Retele de calculatoare

Conf. Dr. Carmen Timofte

Bibliografie:

- Rețele de calculatoare, Andrew S. Tanenbaum, Ed. a 4-a, Ed. Byblos, 2004;
- Internet şi Intranet- concepte şi aplicaţii, I. Gh. Roşca, N. Ţăpuş, Ed. Econmică, 2000;
- Rețele de calculatoare, Fl. Năstase, Ed. ASE, 2005;
- Rețele de calculatoare în era Internet, Răzvan Daniel Zota, Ed. Economică, 2002.
- Resurse Internet:

http://authors.phptr.com/tanenbaumcn4/webResources/

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm,

Internetworking Technology Handbook, 2005

Conf.Dr. Carmen Timofte

Retele de calculatoare

1. Notiuni introductive

- 1.1.Istoric
- 1.2.Retele de calculatoare, Sisteme distribuite
- 1.3.Avantaje ale retelelor
- 1.4.Utilizări ale rețelelor
- 1.5.Caracteristicile retelelor
- 1.6.Componente hardware
- 1.7.Componente software
- 1.8.Standarde
- 1.9.Clasificarea retelelor de calculatoare

Conf.Dr. Carmen Timofte

Retele de calculatoare

3

1.1. Istoric

- La începutul anilor'60 apar sistemelor de teleprelucrare a datelor
- În 1966 prima interconectare la distanță a două calculatoare agenției **ARPA** (Advanced Research Project Agency) a departamentului al SUA. (Un calculator TX-2 de la MIT a fost conectat, prin intermediul unui canal de comunicații dedicat, cu un calculator Q-32 al firmei System Development statul California);
- AUTODIN I, mijlocul anilor 60 Una din primele retele cu comutare de mesaje firma Western Union pentru Departamentul Apărării al SUA;
- rețeaua experimentală NPL, 1968, la National Phyzix Laboratory (Marea Britanie)
- primele transe ale retelelor ARPANET, 1969;
- RETD (1971, CTNE, Spania);
- CYCLADES/CIGALE (1973, INRIA, Franța);
- TELENET (1973, TELENET Comunication, SUA) care a evoluat în SPRINT;
- EPSS (1974, Ministerul Comunicațiilor, Marea Britanie);
- European Information Network EIN (1975);
- EDS (1975, Ministerul Comunicațiilor, Germania);
- DATAPAC (1977, Canada); TRANSPAC (1978, France Telecom, Franța);
- Euronet (1979, Comunitatea Economică Europeană);
- Eunet (1982, Europa);
- NSF (1986, National Science Foundation, SUA).

Conf.Dr. Carmen Timofte

Retele de calculatoare

(Cont)

- In prezent, backbone-ul Internet este o conexiune de cateva backbone-uri, care apartin unor furnizori de servicii de retea: MCI, AT&T, IBM, Sprint, GTE, conectate prin gateway-uri:
 - www.nthelp.com/maps.htm
 - www.net.internet2.edu
 - http://navigators.com/isp.html
 - http://www.caida.org/analysis/topology/as core network/AS Network.xml
 - http://www.caida.org/tools/visualization/mapnet/Backbones/ -VBNS -Very High Speed Backbone
 - <u>www.internic.net</u> obtinerea unui adrese IP de la Internet Network Information Center
 - www.ripe.net pentru Europa

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.2. Rețele de calculatoare, Sisteme distribuite

O rețea este un set de dispozitive (deseori numite noduri) conectate prin legături media.

Un **sistem distribuit** este un caz particular de rețea de calculatoare, al cărui software (*sistem de programe*) îi dă un grad un grad mare de coeziune și transparență

Conf.Dr. Carmen Timofte

Retele de calculatoare

11

1.3. Avantaje ale rețelelor

- toate resursele logice, fizice, informaționale ale calculatoarelor sunt puse la dispoziția utilizatorilor interconectați;
- o încărcare optimă a echipamentelor de calcul;
- folosirea eficientă a tuturor resurselor, mărind capacitatea şi performanțele de prelucrare a nodului, în condițiilor unui timp de răspuns rezonabil pentru toți utilizatorii;
- o fiabilitate crescută, existând surse alternative de furnizare a informațiilor;
- economisirea de resurse financiare.

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.4. Utilizări ale rețelelor

- accesul la aplicații situate la distanță, pe discul unui nod îndepărtat;
- accesul la baze de date situate la distanță;
- mediu divers de comunicații (transmitere de date, voce, imagini, filme);
- poştă electronică;

Pt. firme (business applications)

- împărțirea resurselor;
- asigurarea unei fiabilități mari (prin accesul la mai multe echipamente de stocare alternative);
- scalabilitatea

Pt. aplicații personale (Home Applications):

- acces al resurse situate la distanță
- comunicații persoană-la-persoană
- divertisment interactiv
- Comerț electronic

Utilizatori mobili

Implicații sociale

Conf.Dr. Carmen Timofte

Retele de calculatoare

13

1.5. Caracteristicile rețelelor

- Capacitate
- Cost
- Durata de răspuns
- Fiabilitate=

_durate medie ponderata de funcționare normală a serviciilor în rețea durata totală a rețelei (durata funcționării normale + durata restabilirii serviciilor căzute).

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.6.Componente hardware

- Echipamente de transmisie: Tipurile de medii includ cabluri coaxiale, cabluri torsadate si fibre optice, unde radio, microunde, canale sateliți (semnale luminoase)
- Dispozitive de acces: NIC, router
- Dispozitive ce repeta semnalele transmise: repetoare, hub (concentrator)

Conf.Dr. Carmen Timofte

Retele de calculatoare

15

1.7. Componente software

- Protocoale care definesc şi reglează modul in care comunică două sau mai multe dispozitive; Elementele unui protocol sunt:
- Sintaxa se referă la structura sau formatul datelor (exp: primii 8 biţi reprezintă adresă expeditorului, următorii 8 biţi adresa receptorului, iar restul mesajul);
- > Semantica se referă la semnificația fiecărei grupe de biți;
- > Temporizarea (Timing-ul) când datele vor fi trimise și cât de repede.
- **Software la nivel hardware**, cunoscut ca *microcod* sau *drivere*, care controlează modul de funcționare al dispozitivelor individuale, precum plăcile de interfață cu reteaua.
- Software pentru comunicații

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.8. Standarde

Sunt de 2 categorii:

- standarde de facto (de fapt –latină) sunt foarte folosite $\S i$ s-au impus ca standarde pur $\S i$ simplu, fără un plan oficial; exp: Unix-ul ca SO, TCP/IP
- standarde de jure (de drept latină) sunt legale, adoptate de un anumit organism de standardizare, care poate fi guvernamental sau neguvernamental (voluntar); exp:ISO/OSI.

Conf.Dr. Carmen Timofte

Retele de calculatoare

17

1.8. Standarde

În telecomunicații:

ITU (International Telecommunication Union) - http://www.itu.int

- are 3 sectoare:
- ITU-R radiocomunicații alocă frecvențele de radio către grupurile concurente;
- ITU-D -dezvoltare
- ITU-T telecomunicații face recomandări tehnice pentru interfețele de telefonie, telegrafie, comunicații de date (exp: V.24 = EIA RS-232; cunoscut sub numele de CCITT (Comite Concultatif International Telegraphique et Telefonique) din 1956 până în 1993.

Are 4 clase de membrii:

- guverne aproape 200, fiecare membru al Națiunilor Unite (ONU);
- membri sectoriali cca. 500, incluzând:
 - companii de telefonie: AT&T, Vodafone, WorldCom;
 - producători de echipamente de telecomunicații: Cisco, Nokia, Nortel;
 producători de echipamente de calcul: Compaq, Sun, Toshiba;
 - producători de cipuri: Intel, Motorola, TI;
 - companii media: AOL Time, Warner, Sony, CBS;
 - alte companii interesate: Boeing, Samsung, Xerox;
- membri asociați organizații mici interesate într-un grup de studiu;
- agenții de reglementare de supraveghere, cum ar fi US Federal Communication Commision.

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.8. Standarde (*)

Standarde internationale:

- > ISO International Organization for Standardization http://www.iso.org -
- ANSI (American National Standards Institute) http://www.ansi.org
- IEEE (Institute of Electric and Electronic Engineers) http://standards.ieee.org

Numar	Topic
802.1	Principii generale şi arhitectura LAN-urilor
80.2.2 🕁	LLC- Logical Link Control – controlul legăturii logice
802.3 *	Ethernet
802.4	Token Bus (jeton pe magistrala)
802.5	Token Ring (jeton pe inel (IBM)
802.6	Coadă duală, magistrală duală (MAN timpurie)
802.7 ▼	Probleme de tehnologii de bandă largă
802.8 +	Probleme de tehnologii de fibră optică
802.9 🛨	LAN-uri izocrone pentru aplicații în timp real
802.10 🖶	VLAN (virtual LAN) şi securitate
802.11 *	Wireless LAN (LAN-uri fără fir)
802.12 🖶	Prioritatea cererilor (AnyLAN de la HP)
802.13	
802.14	Modemuri de cablu (alt consorțiu a abordat domeniul, deci fără activ
802.15 *	Retele personale (Bluetooth)
802.16 *	Comunicații fără fir în bandă largă
802.17	Inel activ de pachete
	- Datala da calculatarea

Conf.Dr. Carmen Timofte

Retele de calculatoare

19

1.8 Standarde (*)

Standarde Internet

➤IAB — Internet Architecture Board, cunoscută anterior ca *Internet Activities Board*, guvernează dezvoltarea tehnică a Internetului.

Elaborează rapoarte tehnice, numite RFC-uri (Request For Comments), ce pot fi accesate de oricine la adresa www.ietf.org/rfc.

Conține două comitete de lucru: Internet Engineering Task Force (IETF) și Internet Research Task Force (IRTF).

A fost creată societatea *S* (Internet Society), care reunea oamenii interesați de Internet, asemănător cu ACM. Sau IEEE.

>Consorţiul WWW - http://www.w3.org - dezvoltă tehnologii de interoperare, cum ar fi specificații, guidelines, software, instrumente. Este un forum de informații, comerţ, comunicații. Exp: HTML, URL, HTTP, XML, DOM, servicii Web.

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.9. Clasificarea rețelelor de calculatoare

I. După tehnologia de transmisie:

- rețele cu difuzare au un singur canal de comunicație partajat de toate mașinile din rețea; pot transmite mesaje scurte, numite pachete;exp: LAN
 - rețele radio cu difuzare;
 - rețele de sateliți cu difuzare (cosmice);
 - rețele locale cu difuzare.
- rețele punct-la-punct un pachet poate trece prin mai multe noduri intermediare; exp: WAN

Conf.Dr. Carmen Timofte

Retele de calculatoare

21

II. După tipul subrețelei de comunicație

- 1.rejea cu comutare în care fiecare nod utilizator poate comunica la cerere cu
 oricare altul;
- 1.1.comutare de circuite- se stabileste un canal care este fizic rezervat şi disponibil pe toată durata comunicației; exp. rejea telefonică:

A node in a circuit-switching network:

 1.2. comutare logică (store and forward- memorează şi transmite mai departe): de mesaje, de pachete, de caractere

Conf.Dr. Carmen Timofte

Retele de calculatoare

1.2. comutare logică

- comutare de mesaje fiecare mesaj este transmis de la un nod la altul în întregime, ca o entitate unică. A fost folosit pt. telegrame, nu la RC.
- comutare de pachete apelează la fragmentarea mesajelor în unități de mărime mai mică (pachete), fiecare conținând propria adresă şi informația necesară pentru rutare. Exp: WAN, Internet.

- datagram fiecare nod este procesat diferit și trimis pe căi diferite, pachetele putând sosi în ordine diferită de emitere; header-ul (antetul) fiecărui pachet trebuie să conțină adresa destinatarului
- circuit virtual este un hibrid între comutarea de pachete şi de circuite; datele sunt împărțite în pachete, care vor fi transmise pe acelaşi drum

Conf.Dr. Carmen Timofte

Retele de calculatoare

Comparație între rețelele	de comutare de c	circuite si de pache
		3
Criteriu	Comutare de circuite	Comutare de pachete
Realizarea conexiunii	Da	Nu
Cale fizică dedicată	Da	Nu
Fiecare pachet urmează aceeași cale	Da	Nu
Pachetele ajung în ordine	Da	Nu
Defectarea unui comutator este fatală	Da	Nu
Banda de frecvență disponibilă	Fixă	Dinamică
Când poate să apară congestia	La momentul setării	La fiecare pachet
Banda de frecvență eventual risipită	Da	Nu
Transmisie memorează și transmite	Da	Nu
Transparență	Da	Nu
Taxare	Pe minut	Pe pachet

Retele LAN

- Mărime dimensiuni restrânse (timp de transmisie cunoscut). Au întârzieri mici (microsecunde, nanosecunde), erori puține.
- tehnologie de transmisie un singur cablu la care sunt ataşate toate maşinile
- topologie-
- de tip magistrală (a)-Ethernet sau IEEE 802.3; Fast Ethernet; GigaBit Etherent;
- de tip inel (b)- Token Ring (IEEE 802.5 -inelul cu jeton de la IBM) ,;
 Gigabit Token Ring; FDDI (Fiber Distributed Data Interface- Interfață de date distribuite pe fibră optică);
- alte exemple de rețele: AppleTalk şi ArcNet

Retele MAN

- Dispune de un mediu de difuzare (1 sau două cabluri fără elemente de comutate care deviză pachetele pe cele câteva ieşiri posibile) la care sunt ataşate toate calculatoarele – standardul IEEE 802.6 – DQDB (Distributed Queue Dual Bus- magistrală duală cu coadă de distribuţie);
- Fiecare magistrală are un capăt de distribuție (head-end) care inițiază activitatea de transmisie;

- OCalculatoarele se numesc gazde (aparţin utilizatorilor), unite printr-o subreţea de comunicaţie (aparţine unui ISP –Internet Service Provider);
- Subre

 ¡eaua= linii de transmisii (fire cupru, fibră optică, legături radio) + elemente de comutare (calculatoare specialiazate care conectează mai multe linii de transmisii numite router-e)
- o Subrețea cu comutare de pachete- de tipul punct-la-punct

Fluxul de pachete de la emițător la receptor

 Subrețea cu sistem de sateliți (cu difuzare) – fiecare router are o antenă prin care poate trimite şi recepționa; unele router-e sunt conectate la o rețea punctla-punct, şi doar unele cu antenă de satelit;

Conf.Dr. Carmen Timofte

Retele de calculatoare

31

Inter-rețele (internet)-

- o colecție de rețele interconectate, utilizând niște mașini numite porți (gateway); exp.: mai multe LAN-uri conectate într-un WAN, Internet;
- Gateway-ul realizează conectare şi asigură conversiile hardware si software necesare

Conf.Dr. Carmen Timofte

Retele de calculatoare

V. După topologie:

- după tipul canalului de comunicație (punct-la punct sua multipunct)
- după interconectarea nodurilor rețelei: simetrică/asimetrică

VI. Rețele Wireless - fără fir

- componente ale unui sistem, interconectate -=> tehnologia Bluetooth (fără drivere, fără cabluri, doar prin simpla poziționare în zona acoperită de rețea; folosesc paradigma master-slave (mastrer=UC, slave=periferice);
- LAN-uri fără fir fiecare PC are un modem radio şi o antenă prin care comunică cu alte calculatoare; IEEE 802.11 (WiFi)
- WAN-uri fără fir-
 - Cu lărgime de bandă mică exp. rețeaua radio de la telefonia mobilă
 - Cu lărgime de bandă mare exp. conectarea la Internet de acasă sau servici, fără fir, fără sistem telefonic; foloseşte serviciul local de distribuție multipunct; utilizează standardul IEEE 802.16.

