Fundamentos da Computação I

Aula 14

Ponto de

Sabendo que o valor da form podemos afirmar que o valor

1. V, V

2. F, F

F, V
 V, F

A pedidos vamos eiro comentar o ponto de ente. participação 4.

Sabendo que o valor da formula (p \leftrightarrow q) \underline{v} (\sim p \leftrightarrow q) é verdadeiro podemos afirmar que o valor de p, q podem ser respectivamente.

Z .	Г,	Г

7			\/
3	•	Г,	V

р	q	$p \leftrightarrow q$	~p	~p ↔ q	$(p \leftrightarrow q) \underline{v} (\sim p \leftrightarrow q)$
F	F	V	V	F	V
F	V	F	V	V	V
V	F	F	F	V	V
V	V	V	F	F	V

Dizer que não é verdade que o verê equivalente a:

A. Verão no Rio não é quente ou e

B. Verão no Rio não é quente ou n

C. Verão no Rio não é quente e nã

D. Verão no Rio é quente e não é ens

Vamos comentar agora como será o ponto de participação 5.

Dizer que não é verdade que o verão no Rio é quente e ensolarado, é equivalente a:

- A. Verão no Rio não é quente ou ensolarado.
- B. Verão no Rio não é quente ou não é ensolarado.
- C. Verão no Rio não é quente e não é ensolarado.
- D. Verão no Rio é quente e não é ensolarado.

Dizer que não é verdade que o verão no Rio é quente e ensolarado, é equivalente a:

- A. Verão no Rio não é quente ou ensolarado.
- B. Verão no Rio não é quente ou não é ensolarado.
- C. Verão no Rio não é quente e não é ensolarado.
- D. Verão no Rio é quente e não é ensolarado.

p: Verão no Rio é quente

q: Verão no Rio é ensolarado

Dizer que não é verdade que o verão no Rio é quente e ensolarado, é equivalente a: \sim (p ^ q)

- A. Verão no Rio não é quente ou ensolarado. (~p v q)
- B. Verão no Rio não é quente ou não é ensolarado. (~p v ~q)
- C. Verão no Rio não é quente e não é ensolarado. (~p ^ ~q)
- D. Verão no Rio é quente e não é ensolarado.(p ^ ~q)

p: Verão no Rio é quente

q: Verão no Rio é ensolarado

Dizer que não é verdade que o verão no Rio é quente e ensolarado, é equivalente a: ~(p ^ q)

р	q	~p	~q	p ^ q	~(p ^ q)	~p v q	~p v ~q	~p ^ ~q	p ^ ~q
F	F	V	V	F	V	V	V	V	F
F	V	V	F	F	V	V	V	F	F
V	F	F	V	F	V	F	V	F	V
V	V	F	F	V	F	V	F	F	F

p: Verão no Rio é quente

q: Verão no Rio é ensolarado

Dizer que não é verdade que o verão no Rio é quente e ensolarado, é equivalente a: \sim (p ^ q)

p	q	~p	~q	p ^ q	~(p ^ q)	~p v q	~p v ~q	~p ^ ~q	p ^ ~q
F	F	V	V	F	V	V	V	V	F
F	V	V	F	F	V	V	V	F	F
V	F	F	V	F	V	F	V	F	V
V	V	F	F	V	F	V	F	F	F

p: Verão no Rio é quente

q: Verão no Rio é ensolarado

Resp.:O Verão no Rio não é quente ou não é ensolarado. (B)

Vamos voltar para as nossas relações proposicionais.
Primeiramente vamos corrigir os exercícios.

Exercício 1 da página 28

p	V	p^V	F	pvF	p^F	pvV	pvp	р ^р
						V		
F	V	F	F	F	F	V	F	F

a)
$$p \wedge V \equiv p$$

Exercício 1 da página 28

	p	V	p^V	F	p v F	p ^ F	pvV	pvp	p ^p
•	V	V	V	F	V	F	V	V	V
	F	V	F	F	F	F	V	F	F

b)
$$p v F \equiv p$$

Exercício 1 da página

p	V	p^V	F	рv
٧	V	V	F	V
F	V	F	F	F

- a) p ^ V ≡ pb) p v F ≡ p

Essas equivalências são denominadas como Propriedades dos Elementos **Neutros**

Exercício 1 da página 28

p	V	p^V	F	pvF	p^F	pvV	pvp	p ^p
V	V	V	F	V	F	V	V	V
F	V	F	F	F	F	V	F	F

c)
$$p \wedge F \equiv F$$

Exercício 1 da página 28

p	V	p^V	F	p v F	p^F	pvV	pvp	p ^p
V	V	V	F	V	F	V	V	V
F	V	F	F	F	F	V	F	F

c)
$$p \wedge F \equiv F$$

d) $p \vee V \equiv V$

d)
$$p \vee V \equiv V$$

Exercício 1 da página

p	V	p^V	F	рv
V	V	V	F	V
F	V	F	F	F

- c) $p \wedge F \equiv F$ d) $p \vee V \equiv V$

Essas equivalências são denominadas como Propriedades de Dominação

۸p

Exercício 1 da página 28

	p	V	p^V	F	p v F	p^F	pvV	pvp	p ^p
•	V	V	V	F	V	F	V	V	V
	F	V	F	F	F	F	V	F	F

e)
$$p v p \equiv p$$

Exercício 1 da página 28

p	V	p^V	F	p v F	p^F	pvV	pvp	р ^р
V	V	V	F	V	F	V	V	V
F	V	F	F	F	F	V	F	F

e)
$$p \vee p \equiv p$$

f) $p \wedge p \equiv p$

$$f) p ^p \equiv p$$

Exercício 1 da página

p	V	p^V	F	рv
V	V	V	F	V
F	V	F	F	F

e)
$$p \vee p \equiv p$$

f) $p \wedge p \equiv p$

Essas equivalências são denominadas como Propriedades Idempotentes

Exercício 2 da página 28

p	~p	~(~p)
V	F	V
F	V	F

$$\sim$$
(\sim p) \equiv p

Exercício 2 da página

p	~p	
V	F	
F	V	

$$\sim$$
(\sim p) \equiv p

Essa equivalência é denominada como Propriedade da Dupla Negação

Exercício 3 da página 28

р	q	p v q	qvp	p ^ q	q ^ p
F	F	F	F	F	F
F	V	V	V	F	F
V	F	V	V	F	F
V	V	V	V	V	V

a)
$$p v q \equiv q v p$$

b)
$$p \land q \equiv q \land p$$

A ordem das proposições não altera o resultado

Exercício 3 da página

р	q	pvc
F	F	F
F	V	V
V	F	V
V	V	V

Essas equivalências são denominadas como Propriedades Comutativas

a)
$$p v q \equiv q v p$$

b)
$$p \wedge q \equiv q \wedge p$$

A ordem das proposiçonão altera o resultado

Exercício 4 da página 28

p	q	r	pvq	(pvq)vr	qvr	pv(qvr)	p^q	(p^q)^r	q^r	p^(q^r)
F	F	F	F	F	F	F	F	F	F	F
F	F	V	F	V	V	V	F	F	F	F
F	٧	F	V	V	V	V	F	F	F	F
F	٧	V	V	V	V	V	F	F	V	F
V	F	F	V	V	F	V	F	F	F	F
V	F	V	V	V	V	V	F	F	F	F
V	٧	F	V	V	V	V	V	F	F	F
V	V	V	V	V	V	V	V	V	V	V

a)
$$(p \vee q) \vee r \equiv p \vee (q \vee r)$$

b)
$$(p \land q) \land r \equiv p \land (q \land r)$$

A ordem das proposições não altera o resultado

Exercício 4 da página

p	q	r	pvq	(pvq)v	
F	F	F	F	F	Es
F	F	V	F	V	sã
F	V	F	V	V	
F	V	V	V	V	CO
٧	F	F	V	V	As
٧	F	V	V	V	
٧	٧	F	V	V	
V	V	V	V	V	V

Essas equivalências são denominadas como Propriedades Associativas

a) (pv	q)	$vr \equiv$	pv	(qvi	()
/ \	`				`	/

b)
$$(p \land q) \land r \equiv p \land (q \land r)$$

A ordem das proponão altera o resultad

 $p^{\Lambda}(q^{\Lambda}r)$

Exercício 5 da página 28

р	q	r	p^q	p^r	qvr	p^(qvr)	(p^q)v(p^r)
F	F	F	F	F	F	F	F
F	F	V	F	F	V	F	F
F	V	F	F	F	V	F	F
F	V	V	F	F	V	F	F
V	F	F	F	F	F	F	F
V	F	V	F	V	V	V	V
V	V	F	V	F	V	V	V
V	V	V	V	V	V	V	V

$$p^{(q v r)} \equiv (p^{q}) v (p^{r})$$

Exercício 5 da página 28

p	q	r	pvq	pvr	q^r	pv(q^r)	(pvq)^(pvr)
F	F	F	F	F	F	F	F
F	F	V	F	V	F	F	F
F	V	F	V	F	F	F	F
F	V	V	V	V	V	V	V
V	F	F	V	V	F	V	V
V	F	V	V	V	F	V	V
V	V	F	V	V	F	V	V
V	V	V	V	V	V	V	V

$$p v (q \wedge r) \equiv (p v q) \wedge (p v r)$$

Exercício 5 da página

p	q	r	p^q	
F	F	F	F	
F	F	V	F	
F	V	F	F	
F	V	V	F	
V	F	F	F	
V	F	V	F	
V	V	F	V	
V	V	V	V	

Essas equivalências são denominadas como Propriedades Distributivas

$$p v (q \wedge r) \equiv (p v q) \wedge (p v r)$$

$$p^{(q v r)} \equiv (p^{q} v r) v (p^{r})$$

Exercício 5 da página

			Δ	
p	q	r	p^q	
F	F	F	F	
F	F	V	F	
F	V	F	F	
F	V	V	F	
V	F	F	F	
V	F	V	F	
V	V	F	V	
V	V	٧	V	

Note que a formula possui conjunção e disjunção. Diferente da associativa que possui uma ou outra, mas não ambas ao mesmo tempo.

 $p v (q ^r) \equiv (p v q) ^(p v r)$

$$p^{(q v r)} \equiv (p^{q}) v (p^{r})$$

Equivalências Exercício 6 da página 28

p	~p	q	~q	pvq	~(p v q)	~p ^ ~q	q ^ p	~(p^q)	~pv~q
F	V	F	V	F	V	V	F	V	V
F	V	V	F	V	F	F	F	V	V
V	F	F	V	V	F	F	F	V	V
V	F	V	F	V	F	F	V	F	F

$$\sim$$
(p \(^{\text{q}}\) = \sim p \(^{\text{q}}\) \sim q \(^{\text{p v q}}) = \sim p \(^{\text{q}}\) \sim q

Exercício 6 da página

p	~p	q	~q	pvq	~(p v
F	V	F	V	F	V
F	V	V	F	V	F
V	F	F	V	V	F
V	F	V	F	V	F

Essas equivalências são denominadas como Leis de De Morgan

~pv~q
V
V
V
F

$$\sim$$
(p \(^{\text{q}}\) = \sim p \(^{\text{q}}\) \sim q \(^{\text{p v q}}) = \sim p \(^{\text{q}}\) \sim q

р	~p	p v ~p	p ^~p
V	F	V	F
F	V	V	F

$$p \vee \sim p \equiv V$$

 $p \wedge \sim p \equiv F$

$$p \wedge p \equiv F$$

Equ

p	~p	p v ~p
V	F	V
F	V	V

Essas equivalências são denominadas como Propriedades de negação.

$$p \vee \sim p \equiv V$$

 $p \wedge \sim p \equiv F$

Condicional

р	~p	q	$p \rightarrow q$	~pvq
F	V	F	V	V
F	V	V	V	V
V	F	F	F	F
V	F	V	V	V

$$p \rightarrow q \equiv -p \vee q$$

Condicional

p ~p
F V
F V
V F
V F

Essas equivalências são denominadas como Propriedades da Condicional.

$$p \rightarrow q \equiv p \vee q$$

- Propriedade da Contrapositiva
 - $p \rightarrow q \equiv -q \rightarrow -p$
- Propriedade dos Elementos Neutros
 - $p \wedge V \equiv p$
 - p v F ≡ p
- Propriedade de Dominação
 - p ^ F ≡ F
 - $p \vee V \equiv V$
- Propriedade Idempotentes
 - $p \land p \equiv p$
 - $p v p \equiv p$
- Propriedade da Dupla Negação
 - ~(~p) ≡ p
- Propriedade Comutativa
 - $p \land q \equiv q \land p$
 - $p v q \equiv q v p$

- Propriedade Associativa
 - $(p \vee q) \vee r \equiv p \vee (q \vee r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Propriedade Distributiva
 - $p v (q \wedge r) \equiv (p v q) \wedge (p v r)$
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- Lei de De Morgan
 - $\sim (p \vee q) \equiv \sim p \wedge \sim q$
 - $\sim (p \land q) \equiv \sim p \lor \sim q$
- Propriedade Absorção
 - $p v (p \wedge q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Propriedade Negação
 - p ^ ~p ≡ F
 - $p v \sim p \equiv V$

- Propriedade da Contrapositiva
 - $p \rightarrow q \equiv -q \rightarrow -p$
- Propriedade dos Elementos Neut
 - $p \wedge V \equiv p$
 - p v F ≡ p
- Propriedade de Dominação
 - p ^ F ≡ F
 - $p \vee V \equiv V$
- Propriedade Idempotentes
 - $p \wedge p \equiv p$
 - $p \vee p \equiv p$
- Propriedade da Dupla Negação
 - ~(~p) ≡ p
- Propriedade Comutativa
 - $p \land q \equiv q \land p$
 - $p v q \equiv q v p$

- Propriedade Associativa

Esta tabela se encontra na página 24 do Rosen.

- Propriedade Negação
 - p ^ ~p ≡ F
 - $p \vee p \equiv V$

Exercício3 da página 16

Negar: O verão no Rio é quente e ensolarado

Exercício

Inicialmente negamos esta proposição composta dessa forma.

- Negar: O verão no Rio é quente e ensolarado
- Não é verdade que o verão no Rio é quente e ensolarado

Exercício3 da para podemos aplicar a Lei de De Morgan para nega la.

- Negar: O verão no Rio é quente e ensolarado
- Não é verdade que o verão no Rio é quente e ensolarado
- O verão no Rio não é quente ou não é ensolarado

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Jan é rica e feliz.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Jan é rica e feliz.
 - Jan não é rica ou não é feliz.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Carlos andará de bicicleta ou correrá amanhã.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Carlos andará de bicicleta ou correrá amanhã.
 - Carlos não andará de bicicleta e não correrá amanhã.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Mei anda ou pega ônibus para ir a escola.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Mei anda ou pega ônibus para ir a escola.
 - Mei não anda e não pega ônibus para ir a escola.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Ibrahim é esperto e trabalha muito.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Ibrahim é esperto e trabalha muito.
 - Pibrahim não é esperto ou não trabalha muito.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Kwame trabalhará na indústria ou irá para a faculdade.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Kwame trabalhará na indústria ou irá para a faculdade.
 - Kwame não trabalhará na indústria e não irá para a faculdade.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Yoshiko conhece Java e cálculo.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Yoshiko conhece Java e cálculo.
 - Yoshiko não conhece Java ou não conhece cálculo.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - James é jovem e forte.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - James é jovem e forte.
 - James não é jovem ou não é forte.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Rita mudará para Oregon ou Washington.

- Use as leis de De Morgan para encontrar a negação de cada uma das proposições abaixo:
 - Rita mudará para Oregon ou Washington.
 - Rita não mudará para Oregon e não mudará para Washington.

Ponto de Participação 5

Dizer que não é verdade que o verão no Rio é quente e ensolarado, é equivalente a:

- A. Verão no Rio não é quente ou ensolarado.
- B. Verão no Rio não é quente ou não é ensolarado.
- C. Verão no Rio não é quente e não é ensolarado.
- D. Verão no Rio é quente e não é ensolarado.

Podemos usar essas propriedades das equivalências para fazer o PP5.

