Appendix – A list of possibly relevant equations

• Trigonometric identities:

- Identity 1:
$$\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

- Identity 2:
$$\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

- Identity 3:
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

- Identity 4:
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

- Identity 5:
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

– Identity 6:
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

– Identity 7:
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$

- Euler's formula: $e^{j\theta} = \cos \theta + j \sin \theta$
- Fundamental period of a periodic signal:
 - Continuous-time sinusoidal of the form $x(t) = A\cos(\omega t + \phi)$: $T_0 = 2\pi/\omega$
 - Discrete-time sinusoidal of the form $x[n] = A\cos(\Omega n + \phi)$: $N_0 = 2\pi m/\Omega$ if N_0 and m have no factors in common.
 - Continuous-time complex exponential of the form $x(t) = e^{j\omega t}$: $T_0 = 2\pi/|\omega|$
 - Discrete-time complex exponential of the form $x[n] = e^{j\Omega n}$: $N_0 = 2\pi m/|\Omega|$ if N_0 and m have no factors in common.

- Commutative property: x[n] * h[n] = h[n] * x[n]
- Distributive property: $x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$
- Associative property: $x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$
- - Distributive property: $x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$
 - Associative property: $x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t)$

• Properties of continuous-time LTI systems:

- Memoryless: h(t) = 0 for $t \neq 0$.
- Invertibility: $h(t) * h_1(t) = \delta(t)$ where $h_1(t)$ is the unit impulse response of the inverse system.
- Causality: h(t) = 0 for t < 0.
- Stability: $\int_{-\infty}^{+\infty} |h(t)| dt < \infty$

• Properties of discrete-time LTI systems:

- Memoryless: h[n] = 0 for $n \neq 0$.
- Invertibility: $h[n] * h_1[n] = \delta[n]$ where $h_1[n]$ is the unit impulse response of the inverse system.
- Causality: h[n] = 0 for n < 0.
- Stability: $\sum_{n=-\infty}^{+\infty} |h[n]| < \infty$

• Continuous-time Fourier series:

- Formulas: Consider x(t) periodic with fundamental period $T_0 = T$.

* Synthesis:
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

* Analysis:
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

- Properties: Consider x(t) and y(t) periodic with period T, $x(t) \leftrightarrow a_k$, $y(t) \leftrightarrow b_k$.
 - * Linearity: $Ax(t) + By(t) \leftrightarrow Aa_k + Bb_k$
 - * Time shift: $x(t-t_0) \leftrightarrow \left[e^{-jk(2\pi/T)t_0}\right] a_k$
 - * Time reversal: $x(-t) \leftrightarrow a_{-k}$
 - * Time scaling: $x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha\omega_0)t}$
 - * Multiplication: $x(t)y(t) \leftrightarrow \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
 - * Differentiation: $\frac{dx(t)}{dt} \leftrightarrow (jk\omega_0)a_k$
 - * Parseval's relation: $\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$

• Discrete-time Fourier series:

- Formulas: Consider x[n] periodic with fundamental period $N_0 = N$.
 - * Synthesis: $x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$
 - * Analysis: $a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$
- Properties: Consider x[n] and y[n] periodic with period N, $x[n] \leftrightarrow a_k$, $y[n] \leftrightarrow b_k$.
 - * Linearity: $Ax[n] + By[n] \leftrightarrow Aa_k + Bb_k$
 - * Time shift: $x[n-n_0] \leftrightarrow \left[e^{-jk(2\pi/N)n_0}\right] a_k$
 - * Time reversal: $x[-n] \leftrightarrow a_{-k}$
 - * Multiplication: $x[n]y[n] \leftrightarrow \sum_{l=\langle N \rangle} a_l b_{k-l}$
 - * First difference: $x[n] x[n-1] \leftrightarrow \left[1 e^{-jk(2\pi/N)}\right] a_k$
 - * Parseval's relation: $\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{k=\langle N \rangle} |a_k|^2$

• Continuous-time Fourier transform:

- Formulas:
 - * Analysis: $X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$
 - * Synthesis: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$
- Properties: Consider $x(t) \leftrightarrow X(\omega), y(t) \leftrightarrow Y(\omega)$.
 - * Linearity: $ax(t) + by(t) \leftrightarrow aX(\omega) + bY(\omega)$
 - * Time shift: $x(t-t_0) \leftrightarrow e^{-j\omega t_0} X(\omega)$
 - * Time reversal: $x(-t) \leftrightarrow X(-\omega)$
 - * Time scaling: $x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$
 - * Differentiation in time: $\frac{dx(t)}{dt} \leftrightarrow (j\omega)X(\omega)$
 - * Differentiation in frequency: $tx(t) \leftrightarrow j \frac{dX(\omega)}{d\omega}$
 - * Multiplication: $x(t)y(t) \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega \theta)d\theta$
 - * Convolution: $x(t) * y(t) \leftrightarrow X(\omega)Y(\omega)$
 - * Parseval's relation: $\int_{-\infty}^{+\infty} |x(t)|^2 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$

- Pairs:

* Pair 1:
$$e^{j\omega_0 t} \leftrightarrow 2\pi\delta(\omega - \omega_0)$$

* Pair 2:
$$x(t) = 1 \leftrightarrow 2\pi\delta(\omega)$$

* Pair 3:
$$x(t) = \begin{cases} 1, & |t| < T \\ 0, & |t| > T \end{cases} \leftrightarrow \frac{2\sin(\omega T)}{\omega}$$

* Pair 4:
$$\frac{\sin(Wt)}{\pi t} \leftrightarrow X(\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

* Pair 5:
$$\delta(t) \leftrightarrow 1$$

* Pair 6:
$$e^{-at}u(t)$$
, Re $\{a\} > 0 \leftrightarrow \frac{1}{a+j\omega}$

* Pair 7:
$$te^{-at}u(t)$$
, $Re\{a\} > 0 \leftrightarrow \frac{1}{(a+j\omega)^2}$

• Discrete-time Fourier transform:

- Formulas:

* Analysis:
$$X[\Omega] = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\Omega n}$$

* Synthesis:
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X[\Omega] e^{j\Omega n} d\Omega$$

– Properties: Consider $x[n] \leftrightarrow X[\Omega], \ y[n] \leftrightarrow Y[\Omega].$

* Linearity:
$$ax[n] + by[n] \leftrightarrow aX[\Omega] + bY[\Omega]$$

* Time shift:
$$x[n-n_0] \leftrightarrow e^{-j\Omega n_0} X[\Omega]$$

* Time reversal:
$$x[-n] \leftrightarrow X[-\Omega]$$

* First difference in time:
$$x[n] - x[n-1] \leftrightarrow (1 - e^{-j\Omega}) X[\Omega]$$

* Differentiation in frequency:
$$nx[n] \leftrightarrow j \frac{dX[\Omega]}{d\Omega}$$

* Multiplication:
$$x[n]y[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X[\theta]Y[\Omega - \theta]d\theta$$

* Convolution:
$$x[n] * y[n] \leftrightarrow X[\Omega]Y[\Omega]$$

* Parseval's relation:
$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X[\Omega]|^2 d\Omega$$

- Pairs:

* Pair 1:
$$\delta[n] \leftrightarrow 1$$

* Pair 2:
$$a^n u[n]$$
, $|a| < 1 \leftrightarrow \frac{1}{1 - ae^{-j\Omega}}$

* Pair 3:
$$(n+1)a^n u[n], |a| < 1 \leftrightarrow \frac{1}{(1 - ae^{-j\Omega})^2}$$

• Laplace transform:

- Formula: $X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$
- Properties: Consider $x(t) \leftrightarrow X(s)$ with ROC = $R, y(t) \leftrightarrow Y(s)$ with ROC = R'.
 - * Linearity: $ax(t) + by(t) \leftrightarrow aX(s) + bY(s)$ with ROC $\supseteq (R \cap R')$
 - * Time shift: $x(t-t_0) \leftrightarrow e^{-st_0}X(s)$ with ROC = R
 - * Time reversal: $x(-t) \leftrightarrow X(-s)$ with ROC = -R
 - * Time scaling: $x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{s}{a}\right)$ with ROC = aR
 - * Differentiation in the time domain: $\frac{dx(t)}{dt} \leftrightarrow sX(s)$ with ROC $\supseteq R$
 - * Differentiation in the s-domain: $-tx(t) \leftrightarrow \frac{dX(s)}{ds}$ with ROC = R
 - * Convolution: $x(t) * y(t) \leftrightarrow X(s)Y(s)$ with ROC $\supseteq (R \cap R')$

- Pairs:

* Pair 1:
$$\delta(t) \leftrightarrow 1$$
, for all s

* Pair 2:
$$u(t) \leftrightarrow \frac{1}{s}$$
, Re $\{s\} > 0$

* Pair 3:
$$-u(-t) \leftrightarrow \frac{1}{s}$$
, Re $\{s\} < 0$

* Pair 4:
$$tu(t) \leftrightarrow \frac{1}{s^2}$$
, $\text{Re}\{s\} > 0$

* Pair 5:
$$-tu(-t) \leftrightarrow \frac{1}{s^2}$$
, Re $\{s\} < 0$

* Pair 6:
$$e^{-at}u(t) \leftrightarrow \frac{1}{s+a}$$
, Re $\{s\} > -a$

* Pair 7:
$$-e^{-at}u(-t) \leftrightarrow \frac{1}{s+a}$$
, Re $\{s\} < -a$

* Pair 8:
$$te^{-at}u(t) \leftrightarrow \frac{1}{(s+a)^2}$$
, $\operatorname{Re}\{s\} > -a$

* Pair 9:
$$-te^{-at}u(-t) \leftrightarrow \frac{1}{(s+a)^2}$$
, Re $\{s\} < -a$

• z-transform:

- Formula: $X[z] = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$
- Properties: Consider $x[n] \leftrightarrow X[z]$ with ROC = R, $y[n] \leftrightarrow Y[z]$ with ROC = R'.
 - * Linearity: $ax[n] + by[n] \leftrightarrow aX[z] + bY[z]$ with ROC $\supseteq (R \cap R')$
 - * Time shift: $x[n-n_0] \leftrightarrow z^{-n_0}X[z]$ with ROC = R, except for the possible addition or deletion of z=0 or $z=\infty$

- * Time reversal: $x[-n] \leftrightarrow X[1/z]$ with ROC = 1/R
- * Differentiation in the z-domain: $nx[n] \leftrightarrow -z \frac{dX[z]}{dz}$ with ROC = R
- * Convolution: $x[n] * y[n] \leftrightarrow X[z]Y[z]$ with ROC $\supseteq (R \cap R')$

- Pairs:

- * Pair 1: $\delta[n] \leftrightarrow 1$, for all z
- * Pair 2: $\delta[n-n_0] \leftrightarrow z^{-n_0}$ for all z except 0 (if $n_0>0$) or ∞ (if $n_0<0$)
- * Pair 3: $u[n] \leftrightarrow \frac{1}{1-z^{-1}}$ for |z| > 1
- * Pair 4: $-u[-n-1] \leftrightarrow \frac{1}{1-z^{-1}}$ for |z| < 1
- * Pair 5: $a^n u[n] \leftrightarrow \frac{1}{1 az^{-1}}$ for |z| > |a|
- * Pair 6: $-a^n u[-n-1] \leftrightarrow \frac{1}{1-az^{-1}}$ for |z| < |a|
- * Pair 7: $na^nu[n] \leftrightarrow \frac{az^{-1}}{(1-az^{-1})^2}$ for |z| > |a|
- * Pair 8: $-na^nu[-n-1] \leftrightarrow \frac{az^{-1}}{(1-az^{-1})^2}$ for |z| < |a|

— End of Paper —