Soccer Player Tracking

Olivia Tchilibou (axt619), Colin Chenoweth (cwc63), and Thomas Bornhorst (thb34)

Project Description and Goal

- Problem to solve: Getting data on position of all players in a game as they move around in a game of soccer.
- Goal: Track players throughout a game using a neural network model with bounding boxes or general locations
 - Identify players from frame to frame
 - Be able to chart players movement across a game
 - Work with a given camera angle

Why is it important? Growing use of and realized importance of data in sports

- Huge movement in baseball in early 2000s shifted perspectives on the sport (Moneyball)
- Advanced analytics in basketball used more and more (i.e. DARKO)
 - By looking at efficiency of shots from different spots, how the game is played has fundamentally changed
- Soccer teams like Manchester City using it to win league
- Teams using analytics get an advantage over competitors
- Being able to track your players and the ball along with results can allow for deep and more automated analysis of a team that was not possible before
 - Trending use of microchips and trackers in the sports world but these can be expensive, intrusive, disruptive, etc.

Paper: <u>Player-Tracking Technology</u>

Related Work

Fig. 2 Basic architecture of one stage detector [1]

- Multi-object detection and tracking is a deep field
 - Some different detectors used: R-CNN variants, YOLO versions, Single-shot detector
 - o For tracking: Deep network MOT, End-to-end Deep Learning MOT, RNN-based MOT
- Methods in a sports context
 - YOLO v5 detection with additional processing for object tracking (Kalman Filter)
 - Going from 2D tracking to a 3D tracking of body positions
 - Constraining a model using context and assumptions and then a random decision forest
 - Tracking a ball in sports using multiple camera angles with use of Kalman Filter, Particle Filter, Trajectory Based approach, and others

Papers: <u>3D Pose Tracking</u>, <u>SoccerTrack</u>, <u>Context-Conditioned Models</u>, <u>Ball Tracking</u>, <u>Tracking Players</u>, <u>MOD</u>, <u>MOT</u>

Dataset

- 60 videos, each 30 seconds or 900 frames, with their corresponding annotations from the top view.
 - Soccer Track Dataset: https://www.kaggle.com/datasets/atomscott/soccertrack
- Annotations in csv format with coordinates of bounding boxes
- Dataset also contains wide_view angles of video that were not used as well as
 GNSS coordinates of each player

Our Approach - PyTorch

Dataset Preprocessing Steps

- Loaded the annotations
- Video frame extractions
- Calculations of Bounding Box coordinates
- Data Split: 70% train, 10% validation, and 20% test.

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

Training Steps

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

- Faster R-CNN model with Region Proposal Networks
 - https://arxiv.org/abs/1506.01497
- One class for each player + ball + background
- SGD with Ir=0.005, momentum=0.9, weight decay=0.005
- Plan was to run for many epochs
- Run on Case HPC

Challenges

- Data
 - 54,000 total frames
 - Takes long time to preprocess extract frames
 - Missing values
- HPC
 - Difficult to debug
 - Takes long time to run a since epoch because large dataset
 - GPU storage limits our usable batch sizes

Results: Data Preprocessing/Faster R-CNN

- Frame extraction
- Drop frames/annotations with missing box annotations
- Implemented Faster R-CNN for 4 classes
 - Background, 2 teams, 1 ball
- Currently training (finally with no errors/nan values appearing, hopefully)

Results: Tracking Algorithm

Next Step

- Try to run on multiple GPUs to speed up training
- Run tracking on the model's predicted boxes
- Performance metrics
- Attempt to extract more useful information, such as possession or goals.
- If have time, work on identifying individual players, not just teams
 - Can try retraining Faster R-CNN
 - Can try using using previous frame's boxes

Thank You!