Convergence d'une suite numérique

Exercice 1 Soit (u_n) et (v_n) deux suites réelles convergeant vers ℓ et ℓ' avec $\ell < \ell'$. Montrer qu'à partir d'un certain rang : $u_n < v_n$.

 $\text{Posons } m = \frac{\ell + \ell'}{2} \text{ . On a } u_n \to \ell < m \text{ et donc } \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n < m \text{ et } \exists n_1 \in \mathbb{N}, \forall n \geq n_1, v_n > m \text{ .}$ $\text{Pour tout } n \geq \max(n_1, n_2) \text{ on a } u_n < m < v_n \text{ .}$

Exercice 2 Soit $(u_n) \in \mathbb{Z}^{\mathbb{N}}$. Montrer que (u_n) converge si et seulement si (u_n) est stationnaire.

Si (u_n) est stationnaire, il est clair que cette suite converge.

Inversement, supposons que (u_n) converge et notons ℓ sa limite.

Montrons $\ell \in \mathbb{Z}$. Par l'absurde, si $\ell \notin \mathbb{Z}$ alors $E(\ell) < \ell < E(\ell) + 1$ donc à partir d'un certain rang

 $E(\ell) < u_n < E(\ell) + 1$. Or $u_n \in \mathbb{Z}$. Absurde. Ainsi $\ell \in \mathbb{Z}$.

Puisque $u_n \to \ell$ et $\ell-1 < \ell < \ell+1$, à partir d'un certain rang $\ell-1 < u_n < \ell+1$.

Or $u_n \in \mathbb{Z}$ et $\ell \in \mathbb{Z}$ donc $u_n = \ell$. Finalement (u_n) est stationnaire égale à ℓ .

Exercice 3 Soit $(a,b) \in \mathbb{R}^2$, (u_n) et (v_n) deux suites telles que : $\begin{cases} n \in \mathbb{N}, u_n \leq a \text{ et } v_n \leq b \\ u_n + v_n \to a + b \end{cases}$ Montrer que $u_n \to a$ et $v_n \to b$.

 $a\geq u_n=u_n+v_n-v_n\geq u_n+v_n-b\ \ \text{et}\ \ u_n+v_n-b\to a\ \ \text{donc}\ \ u_n\to a\ .$ De plus $\ v_n=(u_n+v_n)-u_n\to (a+b)-a=b$.

Exercice 4 Soit (u_n) et (v_n) deux suites réelles telles que $(u_n + v_n)$ et $(u_n - v_n)$ convergent. Montrer que (u_n) et (v_n) convergent.

Supposons $u_n + v_n \to \ell$ et $u_n - v_n \to \ell'$. $u_n = \frac{1}{2}(u_n + v_n) + \frac{1}{2}(u_n - v_n) \to \frac{\ell + \ell'}{2} \text{ et de même } v_n \to \frac{\ell - \ell'}{2}.$

Exercice 5 Soit (u_n) et (v_n) deux suites convergentes. Etudier $\lim_{n \to +\infty} \max(u_n, v_n)$.

 $\max(u_n, v_n) = \frac{1}{2} \left(\left| u_n + v_n \right| + \left| u_n - v_n \right| \right) \to \max(\lim u_n, \lim v_n) .$

Exercice 6 Soit (u_n) et (v_n) deux suites réelles telles que $u_n^2 + u_n v_n + v_n^2 \to 0$. Démontrer que (u_n) et (v_n) convergent vers 0.

 $0 \le (u_n + v_n)^2 = u_n^2 + 2u_n v_n + v_n^2 \le 2(u_n^2 + u_n v_n + v_n^2) \to 0 \text{ . Ainsi } u_n + v_n \to 0 \text{ puis}$ $u_n v_n = (u_n + v_n)^2 - (u_n^2 + u_n v_n + v_n^2) \to 0 \text{ et donc } u_n^2 + v_n^2 \to 0 \text{ qui permet de conclure } u_n, v_n \to 0 \text{ .}$

Exercice 7 Soit (u_n) et (v_n) deux suites telles que $0 \le u_n, v_n \le 1$ et $u_n v_n \to 1$. Que dire de ces suites ?

 $u_n v_n \le u_n, v_n \le 1$. Par le théorème des gendarmes : $\lim u_n = \lim v_n = 1$.

Calculs de limites

Exercice 8 Déterminer la limite, si celle-ci existe, des suites (u_n) suivantes :

a)
$$u_n = \left(1 + \frac{1}{n}\right)^n$$

b)
$$u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$$

c)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$
 d) $u_n = \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}$

d)
$$u_n = \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}$$

e)
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k$$

$$f) \ u_n = \sqrt[n]{n^2}$$

a)
$$u_n = e^{n(\ln(1+1/n))}$$
 or $n \ln\left(1 + \frac{1}{n}\right) = \frac{1}{1/n} \ln\left(1 + \frac{1}{n}\right) \to 1$ car $\frac{\ln(1+x)}{x} \xrightarrow{x \to 0} 1$. Par suite $u_n \to e$.

b)
$$u_n = \frac{1 - (-2/3)^n}{1 + (-2/3)^n} \to 1$$
.

$$\text{c)} \ \ u_{\scriptscriptstyle n} = \frac{2n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}} = \frac{2}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n} + \frac{1}{n^2}}} \to 1 \ .$$

d)
$$u_n = \frac{1 - \sqrt{1 + 1/n^2}}{1 + \sqrt{1 + 1/n^2}} \rightarrow 0$$
.

e)
$$u_n = \frac{(n+1)}{2n} \to \frac{1}{2}$$

f)
$$u_n = e^{\frac{2}{n} \ln n} \rightarrow 1 \text{ car } \frac{\ln n}{n} \rightarrow 0$$
.

Exercice 9 Déterminer les limites des suites dont les termes généraux sont les suivants :

a)
$$u_n = \frac{1}{n} \left(\sin \frac{1}{n} \right)^{1/n}$$

b)
$$u_n = \left(\frac{n-1}{n+1}\right)^n$$

b)
$$u_n = \left(\frac{n-1}{n+1}\right)^n$$
 c) $u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$

a)
$$\left(\sin\frac{1}{n}\right)^{1/n} = e^{\frac{1}{n}\ln(\sin\frac{1}{n})}$$
 or $\frac{1}{n}\ln\left(\sin\frac{1}{n}\right) \sim \frac{1}{n}\ln\frac{1}{n} \to 0$ donc $\left(\sin\frac{1}{n}\right)^{1/n} \to 1$.

b)
$$\left(\frac{n-1}{n+1}\right)^n = e^{n\ln\left(1-\frac{2}{n+1}\right)}$$
 or $n\ln\left(1-\frac{2}{n+1}\right) \sim -2 \to -2$ donc $\left(\frac{n-1}{n+1}\right)^n \to e^{-2}$.

c)
$$\sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1} = \frac{2n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}}$$
 or $\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1} = n + o(n) + n \sim 2n$

đoù
$$\sqrt{n^2+n+1}-\sqrt{n^2-n+1} \to 1$$
.

Exercice 10 Déterminer par comparaison, la limite des suites (u_n) suivantes :

a)
$$u_n = \frac{\sin n}{n + (-1)^{n+1}}$$

$$b) u_n = \frac{n!}{n^n}$$

c)
$$u_n = \frac{n - (-1)^n}{n + (-1)^n}$$

$$d) u_n = \frac{e^n}{n^n}$$

e)
$$u_n = \sqrt[n]{2 + (-1)^n}$$

$$f) u_n = \sum_{k=1}^n \sqrt{k}$$

g)
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$

h)
$$u_n = \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

i)
$$u_n = \sum_{i=1}^{n} \frac{n}{n^2 + k}$$

$$\mathrm{a)}\ \left|u_{\scriptscriptstyle n}\right|\!\leq\!\frac{1}{n-1}\!\to\!0\ \mathrm{donc}\ u_{\scriptscriptstyle n}\to0\ .$$

b)
$$0 \le u_n \le \frac{1.2...n}{n.n..n} \le \frac{1}{n} \to 0$$
 donc $u_n \to 0$.

c)
$$\frac{n-1}{n+1} \le u_n \le \frac{n+1}{n-1}$$
 avec $\frac{n-1}{n+1}, \frac{n+1}{n-1} \to 1$ donc $u_n \to 1$.

d)
$$0 \le u_n \le \frac{e}{1} \frac{e}{2} \times 1 \times \cdots \times 1 \times \frac{e}{n} \to 0$$
 donc $u_n \to 0$.

e)
$$1 \le u_n \le \sqrt[n]{3} = e^{\frac{1}{n} \ln 3} \to 1$$
 donc $u_n \to 1$.

f)
$$u_n \ge \sum_{k=1}^n 1 = n \to +\infty$$
 donc $u_n \to +\infty$.

g)
$$0 \le u_n \le \sum_{k=1}^n \frac{1}{n^2 + 1} = \frac{n}{n^2 + 1} \to 0 \text{ donc } u_n \to 0.$$

h)
$$u_n \ge \sum_{k=1}^n \frac{1}{\sqrt{n}} = \frac{n}{\sqrt{n}} = \sqrt{n} \to +\infty$$
 donc $u_n \to +\infty$.

$$\text{i) } \sum_{k=1}^n \frac{n}{n^2+n} \leq u_n \leq \sum_{k=1}^n \frac{n}{n^2+1} \text{ donc } \frac{n}{n+1} \leq u_n \leq \frac{n^2}{n^2+1} \text{ puis } u_n \to 1 \, .$$

Exercice 11 Déterminer les limites de :

a)
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
.

b)
$$S_n = \sum_{k=n+1}^{2n} \frac{1}{k^2}$$

c)
$$S_n = \sum_{k=0}^{n} (-1)^{n-k} k!$$

d)
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$$
.

a)
$$S_n \ge \sum_{k=1}^n \frac{1}{\sqrt{n}} = \sqrt{n} \to +\infty$$
.

b)
$$0 \le S_n \le \sum_{k=n+1}^{2n} \frac{1}{(n+1)^2} \le \frac{n}{(n+1)^2} \to 0$$
.

c)
$$S_n = n! - (n-1)! + (n-2)! + \dots + (-1)^n$$
. Par regroupement de termes.

Si
$$n$$
 est pair alors $S_n \ge n! - (n-1)!$ et si n est impair $S_n \ge n! - (n-1)! - 1$.

Puisque $n!-(n-1)!=(n-1).(n-1)!\to +\infty$, on a $S_n\to +\infty$.

$$\text{d) } \frac{n}{\sqrt{n^2+n}} = \sum_{k=1}^n \frac{1}{\sqrt{n^2+n}} \leq S_n \leq \sum_{k=1}^n \frac{1}{\sqrt{n^2+1}} = \frac{n}{\sqrt{n^2+1}} \text{ par le th\'eor\`eme des gendarmes}: \ S_n \to 1 \ .$$

 $\textit{Exercice 12} \quad \text{Comparer } \lim_{m \to +\infty} \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^m, \ \lim_{n \to +\infty} \lim_{m \to +\infty} \left(1 - \frac{1}{n}\right)^m \ \text{et } \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n.$

$$\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^m = 1^m \ \text{ et } \ \lim_{m \to +\infty} \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^m = 1 \,.$$

$$\lim_{m \to +\infty} \left(1 - \frac{1}{n} \right)^m = 0 \text{ et } \lim_{n \to +\infty} \lim_{m \to +\infty} \left(1 - \frac{1}{n} \right)^m = 0.$$

$$\left(1-\frac{1}{n}\right)^n = e^{n\ln\left(1-\frac{1}{n}\right)} \to e^{-1}.$$

Exercice 13 Soit (u_n) une suite de réels strictement positifs. On suppose $\sqrt[n]{u_n} \to \ell$.

- a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
- b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
- c) Montrer que dans le cas $\ell = 1$ on ne peut rien conclure.

a) Soit
$$\rho = \frac{\ell+1}{2}$$
 de sorte que $\ell < \rho < 1$.

 $\text{Comme } \sqrt[n]{u_{\scriptscriptstyle n}} \to \ell < \rho \text{ , il existe un rang } N \text{ au delà duquel } \sqrt[n]{u_{\scriptscriptstyle n}} \le \rho \text{ donc } 0 < u_{\scriptscriptstyle n} \le \rho^{\scriptscriptstyle n} \text{ . On a alors } u_{\scriptscriptstyle n} \to 0 \text{ .}$

- b) Même démarche mais par minoration.
- c) $u_n = n$, $u_n = 1$ et $u_n = 1/n$ sont des exemples prouvant qu'on ne peut rien dire.

Exercice 14 Soit (u_n) une suite de réels strictement positifs. On suppose $\dfrac{u_{n+1}}{u_n} \to \ell$.

- a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
- b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
- c) Montrer que dans le cas $\ell = 1$ on ne peut rien conclure.

a) Soit
$$\rho = \frac{\ell+1}{2}$$
 de sorte que $\ell < \rho < 1$.

Comme $\frac{u_{n+1}}{u_n} \to \ell < \rho$, il existe un rang $\,N\,$ au delà duquel $\,\frac{u_{n+1}}{u_n} \le \rho$.

$$\text{On a alors } 0 \leq u_{\scriptscriptstyle n} = \frac{u_{\scriptscriptstyle n}}{u_{\scriptscriptstyle n-1}} \frac{u_{\scriptscriptstyle n-1}}{u_{\scriptscriptstyle n-2}} \cdots \frac{u_{\scriptscriptstyle N+1}}{u_{\scriptscriptstyle N}} u_{\scriptscriptstyle N} \leq \rho^{\scriptscriptstyle n-N} u_{\scriptscriptstyle N} \to 0 \ \ \text{donc} \ \ u_{\scriptscriptstyle n} \to 0 \ .$$

- b) Même démarche mais par minoration.
- c) $u_{\scriptscriptstyle n}=n$, $u_{\scriptscriptstyle n}=1$ et $u_{\scriptscriptstyle n}=1/n$ sont des exemples prouvant qu'on ne peut rien dire.

Exercice 15 Pour tout
$$n \in \mathbb{N}$$
, on pose $S_n = \sum_{k=1}^n \frac{1}{n+k}$ et $S_n' = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$

- a) Etablir que pour tout p > 1, $\int_{p}^{p+1} \frac{dx}{x} \le \frac{1}{p} \le \int_{p-1}^{p} \frac{dx}{x}$. En déduire la limite de (S_n) .
- b) Etablir que $S_{2n}' = S_n$. En déduire la limite de (S_n') .

a)
$$\int_{p}^{p+1} \frac{\mathrm{d}x}{x} \le \int_{p}^{p+1} \frac{\mathrm{d}x}{p} = \frac{1}{p}$$
 car la fonction décroissante $x \mapsto \frac{1}{x}$ est majorée par $\frac{1}{p}$ sur $[p, p+1]$.

$$\int_{p-1}^{p} \frac{\mathrm{d}x}{x} \geq \int_{p-1}^{p} \frac{\mathrm{d}x}{p} = \frac{1}{p} \text{ car la fonction décroissante } x \mapsto \frac{1}{x} \text{ est minorée par } \frac{1}{p} \text{ sur } \left[p-1,p\right].$$

Pour
$$n \ge 1$$
, $\int_{n+k}^{n+k+1} \frac{dx}{x} \le \frac{1}{n+k} \le \int_{n+k-1}^{n+k} \frac{dx}{x}$ donne en sommant $\int_{n+1}^{2n+1} \frac{dx}{x} \le S_n \le \int_{n}^{2n} \frac{dx}{x}$.

Or
$$\int_{n+1}^{2n+1} \frac{\mathrm{d}x}{x} = \ln \frac{2n+1}{n+1} \to \ln 2$$
 et $\int_{n}^{2n} \frac{\mathrm{d}x}{x} = \ln 2$ donc $S_n \to \ln 2$.

b)
$$S'_{2n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2n}\right) - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$$
$$= \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{n+k} = S_n$$

Par suite $S'_{2n} \to \ln 2$. De plus $S'_{2n+1} = S_{2n} + \frac{1}{2n+1} \to \ln 2$ donc $S'_n \to \ln 2$.

Exercice 16 Soit $a \in \mathbb{R}$ et pour $n \in \mathbb{N}$, $P_n = \prod_{k=1}^n \cos \frac{a}{2^k}$.

 $\text{Montrer que } \sin \left(\frac{a}{2^n}\right) P_n = \frac{1}{2^n} \sin a \ \text{ et déterminer } \lim_{n \infty} P_n \, .$

$$\sin \frac{a}{2^{n}} P_{n} = \sin \frac{a}{2^{n}} \cos \frac{a}{2^{n}} \cos \frac{a}{2^{n-1}} \cdots \cos \frac{a}{2} = \frac{1}{2} \sin \frac{a}{2^{n-1}} \cos \frac{a}{2^{n-1}} \cdots \cos \frac{a}{2} = \dots = \frac{1}{2^{n}} \sin a.$$

Si a = 0 alors $P_n = 1 \rightarrow 1$.

Si
$$a \neq 0$$
 alors, pour n assez grand, $\sin \frac{a}{2^n} \neq 0$ et $P_n = \frac{\sin a}{2^n \sin \frac{a}{2^n}} \rightarrow \frac{\sin a}{a}$ car $2^n \sin \frac{a}{2^n} \sim 2^n \frac{a}{2^n} = a$.

Exercice 17 Soit $p \in \mathbb{N} \setminus \{0,1\}$. Pour $n \in \mathbb{N}^*$ on pose $u_n = \binom{n+p}{n}^{-1}$ et $S_n = \sum_{k=1}^n u_k$.

- a) Montrer que $\forall n \in \mathbb{N}$, $(n+p+2)u_{n+2} = (n+2)u_{n+1}$.
- b) Montrer par récurrence $S_n = \frac{1}{p-1}(1-(n+p+1)u_{n+1})$.
- c) On pose $\forall n \in \mathbb{N}^* \ v_n = (n+p)u_n$. Montrer que (v_n) converge vers 0.
- d) En déduire $\lim S_n$ en fonction de p.

a)
$$\binom{n+p+2}{n+2} = \frac{n+p+2}{n+2} \binom{n+p+1}{n+1}$$
 d'où la relation.

b) Par récurrence sur $n \in \mathbb{N}$:

Pour
$$n=1$$
: $S_1 = \frac{1}{\binom{p+1}{1}}$ et $\frac{1}{p-1}(1-(p+2)\frac{2}{(p+2)(p+1)}) = \frac{1}{p+1}$ ok

Supposons la propriété établie au rang $n \ge 1$.

$$S_{n+1} = S_n + u_{n+1} = \frac{1}{p-1} (1 - (n+p+1)u_{n+1}) + u_{n+1} = \frac{1}{p-1} (1 - (n+2)u_{n+1}) = \frac{1}{p-1} (1 - (n+p+2)u_{n+2}) \ .$$

Récurrence établie.

c)
$$0 \le v_n = \frac{n+p}{\binom{n+p}{n}} = \frac{n!p!}{(n+p-1)!} \le \frac{p!}{n+1} \to 0$$
.

d) Par opérations : $S_n \to \frac{1}{p-1}$.

Suites monotones et bornées

Exercice 18 Soit (u_n) une suite croissante de limite ℓ . On pose $v_n = \frac{u_1 + \dots + u_n}{n}$.

- a) Montrer que (v_n) est croissante.
- b) Etablir que $v_{2n} \ge \frac{u_n + v_n}{2}$.
- c) En déduire que $v_n \to \ell$.

a)
$$v_{n+1}-v_n=\frac{nu_{n+1}-(u_1+\cdots+u_n)}{n(n+1)}\geq 0$$
 donc (v_n) est croissante.

b)
$$v_{2n} = \frac{u_1 + \dots + u_n}{2n} + \frac{u_{n+1} + \dots + u_{2n}}{2n} \ge \frac{v_n}{2} + \frac{u_n}{2}$$
.

c) On a $\forall n \in \mathbb{N}^*, v_n \leq \ell$ et (v_n) croissante donc (v_n) converge vers un réel $\ell' \leq \ell$.

La relation précédente, passée à la limite, donne $2\ell' \geq \ell + \ell'$ ce qui permet de conclure $S_n \to 1$.

Exercice 19 Soit (u_n) une suite réelle convergente. Etudier la limite de la suite $v_n = \sup_{n>n} u_n$.

 (u_n) converge donc (u_n) est bornée. La suite (v_n) est donc bien définie et elle-même bornée.

On a $v_{n+1} \le v_n$ donc (v_n) est décroissante et donc converge.

Posons $\ell = \lim u_n$ et $\ell' = \lim v_n$.

 $v_n \ge u_n$ donc à la limite $\ell' \ge \ell$.

Si
$$\ell' > \ell$$
 alors $\ell' > \frac{\ell' + \ell}{2} > \ell$.

A partir d'un certain rang $v_n>\frac{\ell+\ell'}{2}$ et $u_n<\frac{\ell+\ell'}{2}$. Impossible. Il reste $\ell'=\ell$.

Exercice 20 Soit (u_n) une suite réelle bornée. On pose $v_n = \sup_{p \geq n} u_n$ et $w_n = \inf_{p \geq n} u_n$.

Montrer que les suites (v_n) et (w_n) possèdent chacune une limite dans $\mathbb R$ et comparer celles-ci. En déduire que de toute suite réelle on peut extraire une suite convergente.

On a $v_{n+1} \leq v_n$ donc (v_n) est décroissante. On a $w_{n+1} \geq w_n$ donc (w_n) est croissante. De plus $w_n \leq v_n$.

La suite (v_n) est décroissante et minorée par w_0 donc elle converge vers une limite ℓ .

De même la suite (w_n) converge vers une limite m. Enfin $w_n \le v_n$ donne à la limite $m \le \ell$.

Exercice 21 Somme harmonique:

Pour tout $n \in \mathbb{N}$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

Montrer que $\forall n \in \mathbb{N}^*, H_{2n} - H_n \geq \frac{1}{2}$. En déduire que $\lim_{n \infty} H_n = +\infty$.

$$H_{2n} - H_n = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}$$

 (H_n) est croissante car $H_{n+1} - H_n = \frac{1}{n+1} \ge 0$.

 $\text{Si } (H_{\scriptscriptstyle n}) \text{ converge vers } \ell \text{ alors } H_{\scriptscriptstyle 2n} - H_{\scriptscriptstyle n} \to \ell - \ell = 0 \text{ . Ceci est impossible puisque } H_{\scriptscriptstyle 2n} - H_{\scriptscriptstyle n} \ge \frac{1}{2} \text{ .}$

Par suite $(H_{\scriptscriptstyle n})$ diverge, et puisque $(H_{\scriptscriptstyle n})$ est croissante, $(H_{\scriptscriptstyle n})$ diverge vers $+\infty$.

Exercice 22 On pose
$$u_n = \frac{1 \times 3 \times 5 \times \cdots \times (2n-1)}{2 \times 4 \times 6 \times \cdots \times (2n)}$$

- a) Exprimer u_n à l'aide de factoriels.
- b) Montrer que (u_n) converge.
- c) Soit $v_n = (n+1)u_n^2$. Montrer que (v_n) converge. Déterminer $\lim u_n$.

a)
$$u_n = \frac{(2n)!}{2^{2n}(n!)^2}$$
.

b)
$$\frac{u_{n+1}}{u_n} = \frac{(2n+2)(2n+1)}{4(n+1)^2} = \frac{2n+1}{2n+2} \le 1$$
 donc (u_n) est décroissante.

Or (u_n) est minorée par 0 donc (u_n) converge.

c)
$$\frac{v_{n+1}}{v_n} = \frac{n+2}{n+1} \frac{u_{n+1}^2}{u_n^2} = \frac{n+2}{n+1} \left(\frac{2n+1}{2n+2}\right)^2$$
 or $(n+2)(2n+1)^2 - 4(n+1)^3 = -3n-2 < 0$

donc $v_{n+1} - v_n \le 0$. (v_n) est décroissante et minorée par 0 donc (v_n) converge.

Nécessairement $\lim u_n = 0$ car sinon $v_n = (n+1)u_n^2 \to +\infty$.

Suites adjacentes

Exercice 23 Soit
$$\theta \in]0, \pi/2[$$
, $u_n = 2^n \sin \frac{\theta}{2^n}$, $v_n = 2^n \tan \frac{\theta}{2^n}$.

Montrer que les suites (u_n) et (v_n) sont adjacentes. Quelle est leur limite commune ?

Via
$$\sin 2a = 2\sin a\cos a$$
, $u_n = 2^{n+1}\sin\frac{\theta}{2^{n+1}}\cos\frac{\theta}{2^{n+1}} \le u_{n+1}$.

$$\mathrm{Via} \ \tan 2a = \frac{2\tan a}{1-\tan^2 a} \ \mathrm{donc} \ \ v_{\scriptscriptstyle n} = 2^{n+1} \frac{\tan(\theta/2^{n+1})}{1-\tan^2(\theta/2^{n+1})} \geq v_{\scriptscriptstyle n+1}.$$

$$\sin x \mathop{\sim}_{x \to 0} x \ \text{ et } \tan x \mathop{\sim}_{x \to 0} x \ \text{donc} \ u_{\scriptscriptstyle n} \to \theta \ \text{ et } v_{\scriptscriptstyle n} \to \theta \ \text{ d'où } v_{\scriptscriptstyle n} - u_{\scriptscriptstyle n} \to 0 \ .$$

Les suites (u_n) et (v_n) sont adjacentes de limite commune égale à θ .

Exercice 24 Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$ et $S_n' = S_n + \frac{1}{n}$.

Montrer que les suites (S_n) et (S'_n) sont adjacentes.

On peut montrer que leur limite commune est $\pi^2/6$, mais c'est une autre histoire...

$$S_{n+1} - S_n = \frac{1}{(n+1)^2} , \ S_{n+1}' - S_n' = \frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n} = \frac{1}{(n+1)^2} - \frac{1}{n(n+1)} \le 0 \ \text{ et } \ S_n' - S_n = \frac{1}{n} \to 0 \ .$$

Exercice 25 Critère spécial des séries alternées ou critère de Leibniz.

Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout
$$n \in \mathbb{N}$$
 , on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

$$S_{2(n+1)} - S_{2n} = u_{2n+2} - u_{2n+1} \leq 0 \; , \; S_{2(n+1)+1} - S_{2n+1} = -u_{2n+3} + u_{2n+2} \geq 0 \; \; \text{et} \; \; S_{2n+1} - S_{2n} = -u_{2n+1} \to 0 \; .$$

Les suites (S_{2n+1}) et (S_{2n}) étant adjacentes elles convergent vers une même limite et par suite (S_n) converge aussi vers cette limite.

Exercice 26 Irrationalité du nombre de Néper.

Soit
$$a_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $b_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \cdot n!} = a_n + \frac{1}{n \cdot n!}$.

a) Montrer que (a_n) et (b_n) sont strictement monotones et adjacentes.

On admet que leur limite commune est $\,$ e . On désire montrer que $\,$ e $\not\in \mathbb{Q} \,$ et pour cela on raisonne

par l'absurde en supposant
$$\mathbf{e} = \frac{p}{q}$$
 avec $p \in \mathbb{Z}, q \in \mathbb{N}^*$.

b) Montrer que $a_a < e < b_a$ puis obtenir une absurdité.

a)
$$a_{n+1} - a_n = \frac{1}{(n+1)!} > 0$$
 donc (a_n) est strictement croissante.

$$b_{n+1} - b_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{n \cdot n!} = \frac{n(n+2) - (n+1)^2}{n(n+1)(n+1)!} < 0 \ \ \text{donc} \ \ (b_n) \ \ \text{est strictement décroissante}.$$

Enfin
$$b_n - a_n = \frac{1}{n \cdot n!} \rightarrow 0$$
.

b) On a
$$\,a_q < a_{q+1} \leq \mathbf{e} \leq b_{q+1} < b_q$$
 .

Par suite
$$a_q < \frac{p}{q} < a_q + \frac{1}{q.q!}$$
 puis $q.q!a_q < p.q! < q.q!a_q + 1$.

Or
$$p.q! \in \mathbb{Z}$$
 et $q.q!.a_q = q \sum_{k=0}^n \frac{q!}{k!} \in \mathbb{Z}$. Absurde.

Exercice 27 Moyenne arithmético-géométrique.

- a) Pour $(a,b) \in \mathbb{R}^{+2}$, établir : $2\sqrt{ab} \le a+b$.
- b) On considère les suites de réels positifs (u_n) et (v_n) définies par : $u_0=a, v_0=b$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, v_{n+1} = \frac{u_n + v_n}{2}.$$

Montrer que, pour tout $n \ge 1$, $u_n \le v_n$, $u_n \le u_{n+1}$ et $v_{n+1} \le v_n$.

c) Etablir que (u_n) et (v_n) convergent vers une même limite.

Cette limite commune est appelée moyenne arithmético-géométrique de a et b et est notée M(a,b) .

- d) Calculer M(a,a) et M(a,0) pour $a \in \mathbb{R}^+$.
- e) Exprimer $M(\lambda a, \lambda b)$ en fonction de M(a, b) pour $\lambda \in \mathbb{R}^+$.

a)
$$\left(\sqrt{a}-\sqrt{b}\right)^2 \geq 0$$
 donne l'inégalité demandée.

b) Pour
$$n \ge 1$$
 , $u_n = \sqrt{u_{n-1}v_{n-1}} \le \frac{u_{n-1}+v_{n-1}}{2} = v_n$ en vertu de a.

$$u_{n+1} = \sqrt{u_n v_n} \ge \sqrt{u_n^2} = u_n \text{ et } v_{n+1} = \frac{u_n + v_n}{2} \le \frac{2v_n}{2} = v_n \ .$$

c) La suite $(u_n)_{n\geq 1}$ est croissante et majorée par v_1 donc elle converge vers une limite notée ℓ .

La suite $(v_n)_{n\geq 1}$ est décroissante est minorée par u_1 donc elle converge vers une limite notée ℓ' .

En passant la relation
$$v_{n+1}=\frac{u_n+v_n}{2}$$
 à la limite, on obtient $\ell'=\frac{\ell+\ell'}{2}$ d'où $\ell=\ell'$.

- d) Si b=a alors les deux suites (u_n) et (v_n) sont constantes égales à a et donc M(a,a)=a.
- Si b=0 alors la suite $(u_n)_{n\geq 1}$ est constante égale à 0 et donc M(a,0)=0 .
- e) Notons (u_n') et (v_n') les suites définies par le procédé précédent à partir de $u_0' = \lambda a$ et $v_0' = \lambda b$.

Par récurrence, $u_n' = \lambda u_n$ et $v_n' = \lambda v_n$ donc $M(\lambda a, \lambda b) = \lambda M(a, b)$.

Suites extraites

Exercice 28 On suppose que (u_n) est une suite réelle croissante telle que (u_{2n}) converge. Montrer que (u_n) converge.

 (u_n) étant croissante, elle admet une limite, (u_{2n}) qui en est extraite a la même limite. Puisque (u_{2n}) converge, il en est de même de (u_n) .

Exercice 29 Soit (u_n) une suite complexe telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que (u_n) converge.

$$\begin{split} u_{2n} &\to \ell, u_{2n+1} \to \ell' \text{ et } u_{3n} \to \ell''. \\ (u_{6n}) \text{ est extraite de } (u_{2n}) \text{ et } (u_{3n}) \text{ donc } u_{6n} \to \ell \text{ et } u_{6n} \to \ell''. \text{ Par suite } \ell = \ell''. \\ (u_{6n+3}) \text{ est extraite de } (u_{2n+1}) \text{ et } (u_{3n}) \text{ donc } u_{6n+3} \to \ell' \text{ et } u_{6n+3} \to \ell''. \text{ Par suite } \ell' = \ell''. \\ \text{Il en découle } \ell = \ell' \text{ et donc } u_n \to \ell. \end{split}$$

Exercice 30 Justifier que la suite $(\cos n)$ diverge.

Par l'absurde, supposons que $(\cos(n))$ converge et notons ℓ sa limite.

Puisque $\cos(2n) = 2\cos^2 n - 1$, à la limite : $\ell = 2\ell^2 - 1$ donc $\ell = 1$ ou $\ell = -1/2$.

Puisque $\cos(3n) = 4\cos^3 n - 3\cos n$ à la limite $\ell^3 = \ell$ donc $\ell = 1$.

 $|\sin n| = \sqrt{1-\cos^2 n} \rightarrow 0$ puis $\cos(n+1) = \cos(n)\cos(1) - \sin(n)\sin(1)$ donne $1 = \cos 1$. Absurde.

Exercice 31 Soit (u_n) une suite réelle telle que $\forall n, p \in \mathbb{N}^*$, $0 \le u_{n+p} \le \frac{n+p}{np}$. Montrer que $u_n \to 0$.

$$0 \leq u_{_{2n}} \leq \frac{2n}{n^2} = \frac{2}{n} \to 0 \ \ \text{et} \ \ 0 \leq u_{_{2n+1}} \leq \frac{2n+1}{n(n+1)} \to 0 \ \ \text{donc} \ \ u_{_n} \to 0 \ .$$

Comparaison de suites numériques

Exercice 32 Classer les suites, dont les termes généraux, sont les suivants par ordre de négligeabilité :

a)
$$\frac{1}{n}, \frac{1}{n^2}, \frac{\ln n}{n}, \frac{\ln n}{n^2}, \frac{1}{n \ln n}$$

a)
$$\frac{1}{n}, \frac{1}{n^2}, \frac{\ln n}{n}, \frac{\ln n}{n^2}, \frac{1}{n \ln n}$$
 b) $n, n^2, n \ln n, \sqrt{n} \ln n, \frac{n^2}{\ln n}$.

a)
$$\frac{1}{n^2} \ll \frac{\ln n}{n^2} \ll \frac{1}{n \ln n} \ll \frac{1}{n} \ll \frac{\ln n}{n}$$
. b) $\sqrt{n} \ln n \ll n \ll n \ln n \ll \frac{n^2}{\ln n} \ll n^2$.

Exercice 33 Trouver un équivalent simple aux suites (u_n) suivantes et donner leur limite :

a)
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$$

b)
$$u_n = \frac{2n^3 - \ln n + 1}{n^2 + 1}$$

c)
$$u_n = \frac{\ln(n^2 + 1)}{n + 1}$$

d)
$$u_n = (n + 3\ln n)e^{-(n+1)}$$

e)
$$u_n = \frac{n! + e^n}{2^n + 3^n}$$

f)
$$u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{n^2 - n + 1}}$$

a)
$$u_n \sim -\frac{1}{2}n \to -\infty$$
 b) $u_n \sim 2n \to +\infty$ c) $u_n \sim \frac{2\ln n}{n} \to 0$

d)
$$u_n = \frac{ne^{-n}}{e} \to 0$$
 e) $u_n \sim \frac{n!}{3^n} \to +\infty$ f) $u_n \sim n^{1/3} \to +\infty$.

Exercice 34 Trouver un équivalent simple aux suites (u_n) suivantes :

a)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

b)
$$u_n = \sqrt{n+1} - \sqrt{n-1}$$
 c) $u_n = \sqrt{\ln(n+1) - \ln(n)}$

c)
$$u_n = \sqrt{\ln(n+1) - \ln(n)}$$

$$d) \ u_n = \sin \frac{1}{\sqrt{n+1}}$$

$$e) u_n = \ln \left(\sin \frac{1}{n} \right)$$

f)
$$u_n = 1 - \cos \frac{1}{n}$$

a)
$$u_n = \frac{2}{n^2 - 1} \sim \frac{2}{n^2}$$
.

$$\text{b)} \ \ u_{\scriptscriptstyle n} = \frac{2}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{\sqrt{n} + o(\sqrt{n}) + \sqrt{n} + o(\sqrt{n})} = \frac{1}{\sqrt{n} + o(\sqrt{n})} \sim \frac{1}{\sqrt{n}} \ .$$

c)
$$u_n = \sqrt{\ln\left(1 + \frac{1}{n}\right)} \sim \sqrt{\frac{1}{n}} = \frac{1}{\sqrt{n}} \operatorname{car} \ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n} \operatorname{puisque} \frac{1}{n} \to 0$$

$$\mathrm{d)}\ u_{\scriptscriptstyle n} = \sin\frac{1}{\sqrt{n+1}} \sim \frac{1}{\sqrt{n+1}} \sim \frac{1}{\sqrt{n}}\ \mathrm{car}\ \frac{1}{\sqrt{n+1}} \to 0\ .$$

e)
$$\sin \frac{1}{n} \sim \frac{1}{n} \to 0 \neq 1$$
 donc $u_n \sim \ln \frac{1}{n} = -\ln n$.

f)
$$u_n = 2\sin^2\frac{1}{n} = \frac{2}{n^2}$$
.

Exercice 35 Déterminer la limite des suites (u_n) suivantes :

$$\text{a)} \ \ u_n = n \sqrt{\ln \left(1 + \frac{1}{n^2 + 1}\right)} \qquad \qquad \text{b)} \ \ u_n = \left(1 + \sin \frac{1}{n}\right)^n$$

b)
$$u_n = \left(1 + \sin\frac{1}{n}\right)^n$$

c)
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$$
.

a)
$$\ln\left(1 + \frac{1}{n^2 + 1}\right) \sim \frac{1}{n^2 + 1} \sim \frac{1}{n^2} \operatorname{car} \frac{1}{n^2 + 1} \to 0$$
. Par suite $u_n \sim 1 \to 1$.
b) $u_n = e^{n \ln\left(1 + \sin\frac{1}{n}\right)} \operatorname{n} \ln\left(1 + \sin\frac{1}{n}\right) \sim \sin\frac{1}{n} \sim \frac{1}{n} \operatorname{donc} n \ln\left(1 + \sin\frac{1}{n}\right) \to 1 \operatorname{puis} u_n \to e$.
c) $u_n = e^{\sqrt{n+1} \ln n - \sqrt{n} \ln(n+1)}$, $\sqrt{n+1} \ln n - \sqrt{n} \ln(n+1) = \left(\sqrt{n+1} - \sqrt{n}\right) \ln n - \sqrt{n} \ln\left(1 + \frac{1}{n}\right)$.
Or $\left(\sqrt{n+1} - \sqrt{n}\right) \ln n = \frac{\ln n}{\sqrt{n+1} + \sqrt{n}} = \frac{\ln n}{2\sqrt{n} + o(\sqrt{n})} \sim \frac{\ln n}{2\sqrt{n}} \operatorname{et} \sqrt{n} \ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{\sqrt{n}} = o\left(\frac{\ln n}{2\sqrt{n}}\right) \operatorname{donc} u_n \to 1$.

Exercice 36 Pour $n \in \mathbb{N}$, on pose $u_n = 0! + 1! + 2! + \dots + n! = \sum_{k=0}^{n} k!$. Montrer que $u_n \sim n!$.

$$\begin{split} u_n &= n! + (n-1)! + \sum_{k=0}^{n-2} k! \\ \frac{(n-1)!}{n!} &= \frac{1}{n} \to 0 \text{ et } 0 \leq \frac{\sum_{k=0}^{n-2} k!}{n!} = \sum_{k=0}^{n-2} \frac{k!}{n!} \leq \sum_{k=0}^{n-2} \frac{(n-2)!}{n!} = \sum_{k=0}^{n-2} \frac{1}{n(n-1)} \leq \frac{1}{n} \to 0 \text{ donc} \\ u_n &= n! + (n-1)! + \sum_{k=0}^{n-2} k! = n! + o(n!) \sim n! \,. \end{split}$$

Exercice 37 On pose $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

a) Justifier que
$$\frac{1}{\sqrt{n+1}} \le 2(\sqrt{n+1} - \sqrt{n}) \le \frac{1}{\sqrt{n}}$$
.

- b) Déterminer la limite de (S_n) .
- c) On pose $u_{\scriptscriptstyle n} = S_{\scriptscriptstyle n} 2\sqrt{n}$. Montrer que $(u_{\scriptscriptstyle n})$ converge.
- d) Donner un équivalent simple de (S_n) .

$$\text{a) } 2\left(\sqrt{n+1}-\sqrt{n}\right) = \frac{2}{\sqrt{n+1}+\sqrt{n}} \text{ donc } \frac{1}{\sqrt{n+1}} \leq 2\left(\sqrt{n+1}-\sqrt{n}\right) \leq \frac{1}{\sqrt{n}} \;.$$

b)
$$S_n \ge \sum_{k=1}^n 2(\sqrt{k+1} - \sqrt{k}) = 2\sqrt{n+1} - 2$$
 puis $S_n \to +\infty$.

c)
$$u_{n+1} - u_n = \frac{1}{\sqrt{n+1}} - 2\left(\sqrt{n+1} - \sqrt{n}\right) \le 0$$
 donc (u_n) est décroissante.

Or $u_n = S_n - 2\sqrt{n} \ge 2\sqrt{n+1} - 2 - 2\sqrt{n} \ge -2$ donc (u_n) est aussi minorée. Par suite (u_n) converge.

d)
$$S_{\scriptscriptstyle n} = 2\sqrt{n} + u_{\scriptscriptstyle n} = 2\sqrt{n} + o(\sqrt{n}) \sim 2\sqrt{n}$$
 .

Exercice 38 Soit $(u_n),(v_n),(w_n),(t_n)$ des suites de réels strictement positifs tels que $u_n \sim v_n$ et $w_n \sim t_n$. Montrer que $u_n + w_n \sim v_n + t_n$.

$$\begin{aligned} & \text{Supposons} \ \ u_n \sim v_n \ \text{ et } \ w_n \sim t_n \ . \\ & \left| \frac{u_n + w_n}{v_n + t_n} - 1 \right| = \left| \frac{(u_n - v_n) + (w_n - t_n)}{v_n + t_n} \right| \leq \frac{\left| u_n - v_n \right|}{v_n} + \frac{\left| w_n - t_n \right|}{t_n} = \left| \frac{u_n}{v_n} - 1 \right| + \left| \frac{w_n}{t_n} - 1 \right| \rightarrow 0 \ . \end{aligned}$$

Exercice 39 Soit (u_n) une suite décroissante de réels telle que $u_n + u_{n+1} \sim \frac{1}{n}$.

- a) Montrer que (u_n) converge vers 0^+ .
- b) Donner un équivalent simple de (u_n) .
- a) (u_n) est décroissante donc admet une limite $\ell \in \mathbb{R} \cup \{-\infty\}$.

Puisque
$$u_n + u_{n+1} \sim \frac{1}{n} \to 0^+$$
, on a $\ell + \ell = 0$ donc $\ell = 0$.

De plus, à partir d'un certain rang : $2u_n \ge u_n + u_{n+1} > 0$

$$\text{b)} \ \ u_{\scriptscriptstyle n+1} + u_{\scriptscriptstyle n} \leq 2u_{\scriptscriptstyle n} \leq u_{\scriptscriptstyle n-1} + u_{\scriptscriptstyle n} \ \text{avec} \ \ u_{\scriptscriptstyle n+1} + u_{\scriptscriptstyle n} \sim \frac{1}{n} \ \text{et} \ \ u_{\scriptscriptstyle n-1} + u_{\scriptscriptstyle n} \sim \frac{1}{n-1} \sim \frac{1}{n} \ \ \text{donc} \ \ 2u_{\scriptscriptstyle n} \sim \frac{1}{n} \ \ \text{puis} \ \ u_{\scriptscriptstyle n} \sim \frac{1}{2n} \ .$$

Etude de suites définies implicitement

Exercice 40 Montrer que l'équation $xe^x = n$ possède pour tout $n \in \mathbb{N}$, une unique solution x_n dans \mathbb{R}^+ . Etudier la limite de (x_n) .

```
Soit f: \mathbb{R}^+ \to \mathbb{R} définie par f(x) = xe^x.
```

f est dérivable et $f'(x) = (x+1)e^x > 0$ donc f est strictement croissante.

f(0) = 0 et $\lim f = +\infty$ donc l'équation $xe^x = n$ possède une unique solution x_n .

$$x_n = f^{-1}(n) \to +\infty.$$

Exercice 41 Soit n un entier naturel et E_n l'équation $x + \ln x = n$ d'inconnue $x \in \mathbb{R}^{+*}$.

- a) Montrer que l'équation E_n possède une solution unique notée x_n .
- b) Montrer que la suite (x_n) diverge vers $+\infty$.
- c) Donner un équivalent simple de la suite (x_n) .
- a) Le tableau de variation de $f: x \mapsto x + \ln x$ permet d'affirmer que cette fonction réalise une bijection croissante de \mathbb{R}^{+*} vers \mathbb{R} . L'équation E_n possède alors pour solution unique $x_n = f^{-1}(n)$.
- b) Le tableau de variation de $\,f^{-1}\,$ donne $\,\lim f^{-1}=+\infty$. Par suite $\,x_{_{\!n}}\to+\infty$.
- c) $x_n \to +\infty$ donne $\ln x_n = o(x_n)$. La relation $x_n + \ln x_n = n$ donne alors $x_n + o(x_n) = n$ et donc $x_n \sim n$.

Exercice 42 Soit n un entier naturel et E_n féquation $x + \tan x = n$ d'inconnue $x \in]-\pi/2, \pi/2[$.

- a) Montrer que l'équation E_n possède une solution unique notée x_n .
- b) Montrer que la suite (x_n) converge et déterminer sa limite.
- a) Le tableau de variation de $f: x \mapsto x + \tan x$ permet d'affirmer que cette fonction réalise une bijection croissante de $]-\pi/2,\pi/2[$ vers $\mathbb R$. L'équation E_n possède alors pour solution unique $x_n=f^{-1}(n)$.
- b) (1) Le tableau de variation de f^{-1} donne $\lim_{n \to \infty} f^{-1} = \frac{\pi}{2}$. Par suite $x_n \to \frac{\pi}{2}$.
- (2) $x_n + \tan x_n = n$ donne $x_n = \arctan(n x_n)$. Or $n x_n \to +\infty$ car (x_n) bornée donc $x_n \to \frac{\pi}{2}$.

Exercice 43 Soit n un entier naturel non nul et E_n l'équation : $x^n \ln x = 1$ d'inconnue $x \in \mathbb{R}^+ *$.

- a) Montrer que l'équation E_n admet une unique solution x_n , et que $x_n \ge 1$.
- b) Montrer que la suite (x_n) est décroissante et converge vers 1.

a) Le tableau de variation de $f_n: x \mapsto x^n \ln x$ permet d'affirmer que l'équation $f_n(x) = 1$ possède une unique solution x_n sur \mathbb{R}^{+*} et que de plus $x_n \in [1, +\infty[$.

b)
$$1 = x_{n+1}^{n+1} \ln x_{n+1} = x_{n+1} f_n(x_{n+1})$$
 donc $f_n(x_{n+1}) = \frac{1}{x_{n+1}} \le 1 = f_n(x_n)$ donc $x_{n+1} \le x_n$ car f est strictement croissante sur $[1, +\infty[$.

La suite (x_n) est décroissante et minorée par 1 donc elle converge. Posons ℓ sa limite, on a $\ell \ge 1$

Si $\ell > 1$ alors $x_n^n \ln x_n \ge \ell^n \ln \ell \to +\infty$ ce qui est absurde car $x_n^n \ln x_n = 1$. Il reste $\ell = 1$.

Exercice 44 Soit $n \in \mathbb{N}^*$ et $E_n : x^n + x^{n-1} + \dots + x = 1$.

- a) Montrer que l'équation E_n possède une unique solution x_n dans \mathbb{R}^+ et que $x_n \in \left[\frac{1}{2},1\right]$
- b) Montrer que (x_n) converge.
- c) Déterminer la limite de (x_n) .

a)
$$f: x \mapsto x^n + \dots + x$$
 est continue, strictement croissante, $f(0) = 0$ et $\lim_{x \to +\infty} f(x) = +\infty$.

Par suite l'équation E_n possède une unique solution $x_n \in \mathbb{R}^+$.

$$f(1/2) = \frac{1}{2} \frac{1 - 1/2^n}{1 - 1/2} < 1$$
 et $f(1) = n \ge 1$.

b)
$$x_n^{n+1} + \dots + x_n^2 + x_n = x_n(x_n^n + \dots + x_n) + x_n = 2x_n \ge 1$$
 donc $x_{n+1} \le x_n$.

La suite (x_n) est décroissante et minorée, donc elle converge.

c) Posons $\ell = \lim x_n$. Puisque $x_2 < 1$, $x_n \le x_2$ donne à la limite $\ell < 1$.

$$1 = x_n^n + \dots + x_n = x_n \frac{1 - x_n^n}{1 - x_n} \text{ donne à la limite } 1 = \frac{\ell}{1 - \ell} \text{ car } 0 \le x_n^n \le \ell^n \to 0 \text{ et finalement } \ell = 1/2 \,.$$

Expression du terme général d'une suite récurrente

Exercice 45 Donner l'expression du terme général et la limite de la suite récurrente réelle $(u_n)_{n>0}$ définie par :

a)
$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1$

b)
$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 1}{2}$.

- a) Posons $v_n=u_n+1$. (v_n) est géométrique de raison 2 et $v_0=1$ donc $u_n=2^n-1 \to +\infty$.
- b) Posons $v_n = u_n 1$. (v_n) est géométrique de raison 1/2 et $v_0 = -1$ donc $u_n = 1 \frac{1}{2^n} \to 1$.

Exercice 46 Soit (x_n) et (y_n) deux suites réelles telles que $\forall n \in \mathbb{N}, x_{n+1} = \frac{x_n - y_n}{2}$ et $y_{n+1} = \frac{x_n + y_n}{2}$.

En introduisant la suite complexe de terme général $z_n = x_n + i.y_n$, montrer que les suites (x_n) et (y_n) convergent et déterminer leurs limites.

$$\text{On a } z_{n+1} = \frac{1+i}{2} z_n \text{ donc } z_n = \left(\frac{1+i}{2}\right)^n z_0 \text{. Or } \left|\frac{1+i}{2}\right| < 1 \text{ donc } z_n \to 0 \text{ puis } x_n, y_n \to 0 \text{.}$$

Exercice 47 Soit (z_n) une suite complexe telle que $\forall n \in \mathbb{N}, z_{n+1} = \frac{1}{3}(z_n + 2\overline{z}_n)$.

Montrer que (z_n) converge et exprimer sa limite en fonction de z_0 .

Introduisons
$$x_n=\mathrm{Re}(z_n)$$
 et $y_n=\mathrm{Im}(z_n)$. On a $x_{n+1}=x_n$ et $y_{n+1}=-\frac{y_n}{3}$. $x_n\to x_0$ et $y_n\to 0$ donc $z_n\to\mathrm{Re}(z_0)$.

Exercice 48 Soit (u_n) et (v_n) les suites déterminées par $u_0 = 1$, $v_0 = 2$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 3u_n + 2v_n$$
 et $v_{n+1} = 2u_n + 3v_n$.

- a) Montrer que la suite $(u_n v_n)$ est constante.
- b) Prouver que (u_n) est une suite arithmético-géométrique.
- c) Exprimer les termes généraux des suites (u_n) et (v_n) .

a)
$$u_{n+1} - v_{n+1} = u_n - v_n$$
 et $u_0 - v_0 = -1$ donc $(u_n - v_n)$ est constante égale à -1 .

- b) $v_n = u_n + 1$ donc $u_{n+1} = 5u_n + 2$. La suite (u_n) est arithmético-géométrique.
- c) $u_{n+1} a = 5(u_n a) + 4a + 2$. Pour a = -1/2, $(u_n a)$ est géométrique de raison 5 et de premier terme

$$3/2$$
. Ainsi $u_n = \frac{3.5^n - 1}{2}$ et $v_n = \frac{3.5^n + 1}{2}$.

Exercice 49 Soit $\rho > 0$ et $\theta \in]0,\pi[$.

On considère la suite complexe (z_n) définie par $z_0 = \rho \mathrm{e}^{\mathrm{i}\theta}$ et $\forall n \in \mathbb{N}, z_{n+1} = \frac{z_n + \left|z_n\right|}{2}$.

- a) Exprimer z_n sous forme d'un produit.
- b) Déterminer $\lim_{n\to +\infty} z_n$.

$$\text{a) } z_{\text{1}} = \rho \frac{1 + \mathrm{e}^{\mathrm{i}\theta}}{2} = \rho \cos \frac{\theta}{2} \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}, \ z_{\text{2}} = \rho \cos \frac{\theta}{2} \cos \frac{\theta}{4} \mathrm{e}^{\mathrm{i}\frac{\theta}{4}}, \dots, \ z_{\text{n}} = \rho \prod_{k=1}^{n} \cos \frac{\theta}{2^{k}} \mathrm{e}^{\mathrm{i}\frac{\theta}{2^{n}}}.$$

b)
$$e^{i\frac{\theta}{2^n}} \to 1$$
, $\prod_{k=1}^n \cos \frac{\theta}{2^k} = \frac{\sin \theta}{2^n \sin \frac{\theta}{2^n}} \sim \frac{\sin \theta}{\theta}$ donc $z_n \to \rho \frac{\sin \theta}{\theta}$.

Suites récurrentes linéaire d'ordre 2

Exercice 50 Donner l'expression du terme général de la suite récurrente complexe $(u_n)_{n>0}$ définie par :

$$u_0 = 0, u_1 = 1 + 4i$$
 et $\forall n \in \mathbb{N}, u_{n+2} = (3 - 2i)u_{n+1} - (5 - 5i)u_n$.

$$u_n = (2+i)^n - (1-3i)^n$$

Exercice 51 Donner l'expression du terme général des suites récurrentes réelles suivantes :

a)
$$(u_n)_{n\geq 0}$$
 définie par $u_0 = 1, u_1 = 0$ et $\forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} - 4u_n$

b)
$$(u_n)_{n\geq 0}$$
 définie par $u_0=1, u_1=-1$ et $\forall n\in\mathbb{N}, 2u_{n+2}=3u_{n+1}-u_n$

c)
$$(u_n)_{n>0}$$
 définie par $u_0 = 1, u_1 = 2$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - u_n$.

a)
$$u_n = 2^n (1-n)$$
 b) $u_n = -3 + 2^{2-n}$ c) $u_n = 2\cos\frac{(n-1)\pi}{3}$.

Exercice 52 Soit $\theta \in \mathbb{R}$. Déterminer le terme général de la suite réelle (u_n) définie par :

$$u_0 = u_{\!\scriptscriptstyle 1} = 1 \ \mbox{et} \ \ \forall n \in \mathbb{N}, u_{\!\scriptscriptstyle n+2} + 2\cos\theta u_{\!\scriptscriptstyle n+1} + u_{\!\scriptscriptstyle n} = 0 \ .$$

 (u_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique : $r^2 + 2\cos\theta r + 1 = 0$ de solutions $r = \mathrm{e}^{\mathrm{i}\theta}$ et $r = \mathrm{e}^{-\mathrm{i}\theta}$. Par suite il existe $\alpha, \beta \in \mathbb{R}$ tels que $\forall n \in \mathbb{N}, u_n = \alpha\cos n\theta + \beta\sin n\theta$.

$$n=0$$
 donne $\alpha=1$ et $n=1$ donne $\alpha\cos\theta+\beta\sin\theta=1$ donc $\beta=\frac{1-\cos\theta}{\sin\theta}=\frac{2\sin^2\theta/2}{\sin\theta}=\tan\frac{\theta}{2}$

Finalement $\forall n \in \mathbb{N}, u_n = \cos n\theta + \tan \frac{\theta}{2} \sin n\theta$.

Etude de suites récurrentes

Exercice 53 Soit $a \in \mathbb{R}^{+*}$. On définit une suite (u_n) par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{\sum_{k=0}^n u_k}$.

- a) Déterminer la limite de (u_n) .
- b) Déterminer la limite de $u_{n+1} u_n$.

a) Pour
$$n \ge 1$$
: $u_{n+1} - u_n = \sqrt{\sum_{k=0}^n u_k} - \sqrt{\sum_{k=0}^{n-1} u_k} = \frac{u_n}{\sqrt{\sum_{k=0}^n u_k} + \sqrt{\sum_{k=0}^{n-1} u_k}} \ge 0$ donc $(u_n)_{n \ge 1}$ est croissante.

Supposons $\,u_{\scriptscriptstyle n} \to \ell \in \mathbb{R}$. On a $\,\ell \ge u_{\scriptscriptstyle 1} = \sqrt{a} > 0\,$

En passant la relation précédente à la limite : $0 = \frac{\ell}{\ell + \ell} = \frac{1}{2}$. Cest absurde.

Par suite $u_n \to +\infty$.

$$\text{b)} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{u_{\scriptscriptstyle n}}{u_{\scriptscriptstyle n+1} + u_{\scriptscriptstyle n}} \ \ \text{donc} \ \ \frac{u_{\scriptscriptstyle n+1}}{u_{\scriptscriptstyle n}} - 1 = \frac{1}{u_{\scriptscriptstyle n+1} + u_{\scriptscriptstyle n}} \\ \to 0 \ . \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ \text{Par suite} \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} \ \text{et} \ \ u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} = \frac{1}{u_{\scriptscriptstyle n+1}/u_{\scriptscriptstyle n} + 1} \\ \to \frac{1}{2} \ . \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} = \frac{1}{2} \ . \ \ u_{\scriptscriptstyle n+1} \sim u_{\scriptscriptstyle n} = \frac{1}{2} \ .$$

Exercice 54 On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sqrt{n + \sqrt{(n-1) + \dots + \sqrt{2 + \sqrt{1}}}}$.

- a) Montrer que (u_n) diverge vers $+\infty$.
- b) Exprimer u_{n+1} en fonction de u_n .
- c) Montrer que $u_n \le n$ puis que $u_n \le \sqrt{n+2\sqrt{n-1}}$.
- d) Donner un équivalent simple de (u_n) .
- e) Déterminer $\lim_{n \to +\infty} u_n \sqrt{n}$.

a)
$$u_n \ge \sqrt{n} \to +\infty$$
.

b)
$$u_{n+1} = \sqrt{(n+1) + u_n}$$
.

c) Montrons par récurrence sur $n \ge 1$ que $u_n \le 2\sqrt{n}$.

Pour n = 1: ok

Supposons la propriété établie au rang $n \ge 1$.

$$u_{{\scriptscriptstyle n+1}} = \sqrt{(n+1) + u_{{\scriptscriptstyle n}}} \le_{\frac{n}{n+1}} \sqrt{(n+1) + n} \le n+1 \, .$$

Récurrence établie

$$u_{\scriptscriptstyle n} = \sqrt{n + u_{\scriptscriptstyle n-1}} \leq \sqrt{2n} \ \ \text{puis} \ \ u_{\scriptscriptstyle n} = \sqrt{n + u_{\scriptscriptstyle n-1}} \leq \sqrt{n + 2\sqrt{n-1}} \ .$$

d)
$$1 \le \frac{u_n}{\sqrt{n}} \le \sqrt{1 + \frac{2\sqrt{n-1}}{n}} \to 1$$
 donc $u_n \sim \sqrt{n}$.

$$\text{e)} \ \ u_{\scriptscriptstyle n} - \sqrt{n} = \frac{u_{\scriptscriptstyle n-1}}{u_{\scriptscriptstyle n} + \sqrt{n}} \ \ \text{or} \ \ u_{\scriptscriptstyle n-1} \sim \sqrt{n-1} \sim \sqrt{n} \ \ \text{et} \ \ u_{\scriptscriptstyle n} + \sqrt{n} = \sqrt{n} + o(\sqrt{n}) + \sqrt{n} \sim 2\sqrt{n} \ \ \text{donc} \ \ u_{\scriptscriptstyle n} - \sqrt{n} \rightarrow \frac{1}{2} \ .$$

Exercice 55 Etudier la suite (u_n) définie par $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=\sqrt{1+u_n}$.

Pour tout
$$n \ge 1$$
: $u_{n+1} - u_n = \frac{u_n - u_{n-1}}{\sqrt{1 + u_n} + \sqrt{1 + u_{n-1}}}$. $u_1 - u_0 = \sqrt{2} - \sqrt{1} \ge 0$ donc (u_n) est croissante.

Si (u_n) converge vers ℓ alors $u_{n+1} = \sqrt{1+u_n}$ donne à la limite $\ell = \sqrt{1+\ell}$ donc $\ell^2 - \ell - 1 = 0$ et $\ell \ge 0$.

Par suite
$$\ell = \frac{1+\sqrt{5}}{2} = \alpha$$
.

Par récurrence on montre aisément que $\,\,\,\forall n\in\mathbb{N}, u_n\leq\alpha\,$ et par suite $\,(u_n)\,$ converge vers $\,\,\alpha$.

Exercice 56 Etudier la suite (u_n) définie par $u_0 = a \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n^2$.

On a
$$\,u_0=a,u_1=a^2,u_2=a^4$$
 , par récurrence $\,u_{\scriptscriptstyle n}=a^{2^{^n}}$.

Pour |a|<1 alors $u_n\to 0$, pour $|a|=1,\ u_n\to 1$ et pour $|a|>1,\ u_n\to +\infty$.

Exercice 57 Etudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$.

La suite (u_n) est bien définie et supérieure à 1 à partir du rang 1 car la fonction itératrice $f: x \mapsto x^2 + 1$ est définie sur $\mathbb R$ et à valeurs dans $[1, +\infty[$.

$$u_{{\scriptscriptstyle n}+1}-u_{{\scriptscriptstyle n}}=u_{{\scriptscriptstyle n}}^2-u_{{\scriptscriptstyle n}}+1\geq 0\,$$
 car le discriminant de $\,x^2-x+1\,$ est $\,\Delta=-3<0$.

La suite (u_n) est croissante.

Si celle-ci converge vers un réel ℓ alors en passant à la limite la relation d'itération : $\ell = \ell^2 + 1$.

Or cette équation ne possède pas de racines réelles. Par suite (u_n) diverge, or elle est croissante, donc (u_n) diverge vers $+\infty$.

Exercice 58 Etudier la suite (u_n) définie par $u_0 \ge 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \ln u_n$.

La suite (u_n) est bien définie et à valeurs strictement supérieure à 1 car sa fonction itératrice $f: x \mapsto 1 + \ln x$ est définie sur $[1, +\infty[$ à valeurs dans $[1, +\infty[$.

Pour $n \ge 1$: $u_{n+1} - u_n = \ln(u_n) - \ln(u_{n-1})$ est du signe de $u_n - u_{n-1}$.

La suite (u_n) est monotone et de monotonie déterminée par le signe de $u_1 - u_0 = 1 + \ln u_0 - u_0$.

Etudions la fonction $g(x) = x \mapsto 1 + \ln x - x$ définie sur $[1, +\infty]$.

g est dérivable, $g'(x) = \frac{1}{x} - 1 \le 0$ ne s'annulant quand 1, g(1) = 0 donc g est strictement négative sur $]1, +\infty[$.

La suite (u_n) est décroissante. De plus elle est minorée par 1, donc elle converge vers un réel $\ell \ge 1$.

En passant la relation d'itération à la limite, on obtient $\,\ell=1+\ln\ell\,\,$ i.e. $\,g(\ell)=0$.

Par l'étude de la fonction g, on conclut $\ell = 1$.

Finalement (u_n) converge vers 1.

Exercice 59 Etudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = e^{u_n} - 1$.

La suite (u_n) est bien définie car sa fonction itératrice $f: x \mapsto e^x - 1$ est définie sur \mathbb{R} .

Pour
$$n \ge 1$$
, $u_{n+1} - u_n = e^{u_n} - e^{u_{n-1}}$ est du signe de $u_n - u_{n-1}$.

La suite (u_n) est monotone et de monotonie déterminée par le signe de $u_1 - u_0 = e^{u_0} - u_0 - 1$.

Etudions la fonction $g(x) = e^x - x - 1$ définie sur \mathbb{R} .

g est dérivable et $g'(x) = e^x - 1$ du signe de x. g(0) = 0 donc g est du signe de x.

Si $u_0 = 0$ alors (u_n) est constante égale à 1.

Si $u_0 > 0$ alors (u_n) est croissante. Si (u_n) converge vers un réel ℓ alors $\ell = e^{\ell} - 1$ donc $\ell = 0$.

Or (u_n) est minorée par $u_0 > 0$ donc ne peut converger vers 0. Par suite (u_n) diverge vers $+\infty$.

Si $u_0 < 0$ alors (u_n) est décroissante et par un raisonnement semblable, (u_n) diverge vers $-\infty$.

Exercice 60 Etudier la suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2+u}$.

La suite (u_n) est bien définie et strictement positive car de fonction itératrice $f: x \mapsto \frac{1}{2+x}$ définie sur \mathbb{R}^{+*} et

à valeurs dans \mathbb{R}^{+*} . Si la suite (u_n) converge, sa limite ℓ vérifie $\ell = \frac{1}{2+\ell}$ et $\ell \geq 0$ donc $\ell = -1 + \sqrt{2}$.

$$\left| u_{n+1} - \ell \right| = \left| \frac{1}{2 + u_n} - \frac{1}{2 + \ell} \right| = \frac{\left| u_n - \ell \right|}{(2 + u_n)(2 + \ell)} \le \frac{1}{4} \left| u_n - \ell \right|.$$

Par récurrence, on montre $\left|u_{\scriptscriptstyle n}-\ell\right|\!=\!\frac{1}{4^{\scriptscriptstyle n}}\big|u_{\scriptscriptstyle 0}-\ell\big|$ et on conclut $\,u_{\scriptscriptstyle n}\to\ell$.

Exercice 61 Soit (u_n) la suite réelle définie par $u_0 = a \in [-2,2]$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2-u_n}$

- a) Justifier que la suite (u_n) est bien définie et $\forall n \in \mathbb{N}, u_n \in [-2, 2]$.
- b) Quelles sont les limites finies possibles pour (u_n) ?
- c) Montrer que $(|u_n 1|)$ converge puis que $\lim |u_n 1| = 0$. En déduire $\lim u_n$.
- a) L'application $x \mapsto \sqrt{2-x}$ est définie de [-2,2] vers $[0,2] \subset [-2,2]$.
- b) Supposons $u_{\scriptscriptstyle n} \to \ell$. Puisque $\, \forall n \geq$ 1, $u_{\scriptscriptstyle n} \in$ $\left[0,2\right]$, à la limite $\, \ell \in$ $\left[0,2\right]$.

 $\text{La relation } u_{\scriptscriptstyle n+1} = \sqrt{2-u_{\scriptscriptstyle n}} \ \ \text{donne à la limite} \ \ \ell = \sqrt{2-\ell} \ \ \text{donc} \ \ \ell^2 + \ell - 2 = 0 \ \ \text{d'où} \ \ \ell = 1 \ \text{ou} \ \ \ell = -2 \ .$

Or $\ell \ge 0$ donc $\ell = 1$.

c)
$$\left|u_{n+1}-1\right|=\frac{\left|u_{n}-1\right|}{1+\sqrt{2-u_{n}}}\leq\left|u_{n}-1\right| \text{ donc }\left(\left|u_{n}-1\right|\right) \text{ est décroissante et par suite converge vers }\alpha\geq0$$
 .

Si $\alpha > 0$ alors $1 + \sqrt{2 - u_n} = \frac{|u_{n+1} - 1|}{|u_n - 1|} \to 1$ donc $\sqrt{2 - u_n} \to 0$ puis $u_n \to 2$. Cest impossible.

Nécessairement $\left|u_{\scriptscriptstyle n}-1\right|\to 0$ et donc $\,u_{\scriptscriptstyle n}\to 1\,.$

Exercice 62 Soit $a \in \mathbb{C}$ tel que 0 < |a| < 1 et (u_n) la suite définie par $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2 - u_n}$.

Montrer que (u_n) est bien définie et $\left|u_n\right|<1$. Etudier la limite de (u_n) .

Par récurrence montrons u_n existe et $|u_n| < 1$.

Pour n = 0: ok

Supposons la propriété établie au rang $n \ge 0$.

Par HR, u_n existe et $|u_n| < 1$ donc $2 - u_n \neq 0$ d'où $u_{n+1} = \frac{u_n}{2 - u_n}$ existe et $|u_{n+1}| \le \frac{|u_n|}{|2 - u_n|} \le \frac{|u_n|}{2 - |u_n|} < 1$.

Récurrence établie.

$$\left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|u_{\scriptscriptstyle n}\right|} \leq \left|u_{\scriptscriptstyle n}\right| \ \ \text{donc} \ \ \left(\left|u_{\scriptscriptstyle n}\right|\right) \ \ \text{est décroissante d'où} \ \left|u_{\scriptscriptstyle n}\right| \leq \left|a\right| \ \ \text{puis} \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n+1}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \ \text{puis} \ \ \left|u_{\scriptscriptstyle n+1}\right| \leq \frac{\left|u_{\scriptscriptstyle n}\right|}{2-\left|a\right|} \ \ \ \$$

$$\left|u_n\right| \le \left(\frac{1}{2-|a|}\right)^n \left|a\right| \to 0$$
 . Par suite $u_n \to 0$.

Exercice 63 Déterminer le terme général de la suite (u_n) définie par :

$$u_0 = a > 0, u_{\scriptscriptstyle 1} = b > 0 \ \ \text{et} \ \ \forall n \in \mathbb{N}, u_{\scriptscriptstyle n+2} u_{\scriptscriptstyle n} = u_{\scriptscriptstyle n+1}^2 \, .$$

A quelle condition (u_n) converge?

Par récurrence, on montre que u_n existe et $u_n > 0$.

Posons $\,v_{\scriptscriptstyle n} = \ln(u_{\scriptscriptstyle n})$. On a $\,v_{\scriptscriptstyle n+2} - 2v_{\scriptscriptstyle n+1} + v_{\scriptscriptstyle n} = 0$.

 (v_n) est une suite récurrente linéaire d'ordre d'équation caractéristique $(r-1)^2=0$.

$$\exists \lambda, \mu \in \mathbb{R}, v_{_{\! n}} = \lambda n + \mu \;. \; v_{_{\! 0}} = \ln a \;\; \mathrm{et} \;\; v_{_{\! 1}} = \ln b \;\; \mathrm{donc} \;\; \lambda = \ln \frac{b}{a} \;\; \mathrm{et} \;\; \mu = \ln a \;.$$

$$\text{Par suite}: \ u_{\scriptscriptstyle n} = \mathrm{e}^{v_{\scriptscriptstyle n}} = \mathrm{e}^{\frac{n \ln \frac{b}{a} + \ln a}{a}} = a \bigg(\frac{b}{a}\bigg)^{\!\! n} \text{. La suite } (u_{\scriptscriptstyle n}) \text{ converge ssi } b \leq a \text{ .}$$

Exercice 64 Soit a>0 et (u_n) la suite définie par $u_0>0$ et $\forall n\in\mathbb{N}, u_{n+1}=\frac{1}{2}\bigg[u_n+\frac{a}{u_n}\bigg].$

- a) Etudier la convergence de la suite (u_n) .
- b) On pose $\,\, \forall n \in \mathbb{N}, v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$. Calculer $\,\, v_{n+1}$ en fonction de $\,\, v_n$, puis $\,\, v_n$ en fonction de $\,\, v_0$ et
- c) Montrer que, si $u_0 > \sqrt{a}$, on a $\left| u_n \sqrt{a} \right| \le 2u_0.v_0^{2^n}$.

Ainsi, u_n réalise une approximation de \sqrt{a} à la précision $2u_0.v_0^{2^n} \to 0$.

On peut alors par des calculs élémentaires, déterminer une approximation de \sqrt{a} . Cette méthode était exploitée par les Babyloniens 3000 ans avant notre ère.

La suite (u_n) est bien définie et à valeurs dans $\left[\sqrt{a},+\infty\right[$ à partir du rang 1 car de fonction itératrice

$$f: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$$
 définie sur \mathbb{R}^{+*} et à valeurs dans $\left[\sqrt{a}, +\infty \right]$.

 ${\rm Si}\ (u_{\scriptscriptstyle n})\ {\rm converge}\ {\rm vers}\ {\rm un}\ {\rm r\'eel}\ \ell\ {\rm alors}\ \ell=\frac{1}{2}\bigg(\ell+\frac{a}{\ell}\bigg)\ {\rm et}\ \ell\geq 0\ {\rm donc}\ \ell=\sqrt{a}\ .$

$$\left|u_{n+1} - \sqrt{a}\right| = \frac{1}{2}\left|u_n + \frac{a}{u_n} - \sqrt{a}\right| = \frac{\left(u_n - \sqrt{a}\right)^2}{2\left|u_n\right|} = \frac{\left|u_n - \sqrt{a}\right|}{2}\frac{\left|u_n - \sqrt{a}\right|}{(u_n)}.$$

Pour
$$n \ge 1$$
, $\frac{\left|u_n - \sqrt{a}\right|}{u_n} = \frac{u_n - \sqrt{a}}{u_n} \le 1$ donc $\left|u_{n+1} - \sqrt{a}\right| \le \frac{1}{2} \left|u_n - \sqrt{a}\right|$.

Par récurrence : $\left|u_n-\sqrt{a}\right| \leq \frac{1}{2^{n-1}} \left|u_1-\sqrt{a}\right| \ {\rm donc} \ \ u_n \to \sqrt{a} \ .$

$$\text{b)} \ \ v_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} + \sqrt{a}} = \frac{u_n^2 - 2\sqrt{a}u_n + a}{u_n^2 + 2\sqrt{a}u_n + a} = \left(\frac{u_n - \sqrt{a}}{u_n + \sqrt{a}}\right)^2 = v_n^2 \ \ \text{donc} \ \ v_n = v_0^{2^n} \ .$$

c)
$$\left|u_{\scriptscriptstyle n}-\sqrt{a}\right| \leq v_{\scriptscriptstyle n}\left|u_{\scriptscriptstyle n}+\sqrt{a}\right| \leq 2u_{\scriptscriptstyle 0}v_{\scriptscriptstyle n}=2u_{\scriptscriptstyle 0}v_{\scriptscriptstyle 0}^{z^{\scriptscriptstyle n}}$$
 .

Exercice 65 On considère l'équation $\ln x + x = 0$ d'inconnue x > 0.

- a) Montrer que l'équation possède une unique solution α .
- b) Former, par l'algorithme de Newton, une suite récurrente réelle (u_n) convergeant vers α .
- a) $f: x \mapsto \ln x + x$ réalise une bijection strictement croissante de \mathbb{R}^{+*} vers \mathbb{R} .

L'équation proposée possède une unique solution $\alpha = f^{-1}(0)$.

b) L'algorithme de Newton, propose de définir la suite (u_n) par la relation :

$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)} = u_n - \frac{\ln u_n + u_n}{1/u_n + 1} = \frac{u_n(1 - \ln u_n)}{u_n + 1}.$$

La fonction f est de classe \mathcal{C}^2 , $f'(x)=\frac{1}{x}+1$ et $f''(x)=-\frac{1}{x^2}$ ne s'annulent pas. Pour $u_0>0$ tel que $f(u_0)f''(u_0)\geq 0$, la suite converge vers α .

david Delaunay http://mpsiddl.free.fr