Audio Filtering

EE23BTECH11013 - Avyaaz*

Parameter	Description
x(n)	Input audio signal
y(n)	Output audio signal
$H(e^{j\omega})$	Discret Time Fourier Transform of $x(n)$
h(n)	Impulse response

TABLE 1: Parameters

Fig. 1: Plot of x(n) vs n

Output audio signal can be obtained from the difference equation:

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k)$$
 (1)

where, coefficients of a and b are obtained from the 'noise reduction.py'

Fig. 2: Plot of y(n) vs n

Here,

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$
 (2)

$$y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega)$$
 (3)

$$h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{Y(\omega)}{X(\omega)} = H(\omega)$$
 (4)

Fig. 3: Plot of $|H(e^{j\omega})|$ vs ω

Here.

h(n) is inverse fourier transform of $H(\omega)$

$$H(\omega) \stackrel{\mathcal{F}^{-1}}{\longleftrightarrow} h(n)$$
 (5)

Fig. 4: Plot of h(n) vs n