

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565 Application No. 10/652,018

1/10

FIG. 1

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565 Application No. 10/652,018

2
—
10

FIG. 2

DEVICE #	DEVICE VARIABLE(S)	DEVICE CONSTANTS(S)	SYNTHESIZED PERFORMANCE *	
			GAIN (G)	SPECIFICATION(S)
D ₁ (INPUT TRANSISTOR)	LENGTH & WIDTH			
D ₂ (INPUT TRANSISTOR)				
D ₃ (INPUT TRANSISTOR)				
D ₄ (RESISTOR)	RESISTANCE	LENGTH & WIDTH		
D ₅ (CAPACITOR)	CAPACITANCE			
D ₆ (RESISTOR)				
D ₇ (CAPACITOR)				
D ₈ (RESISTOR)	RESISTANCE			

A

TO FROM A-A

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565 Application No. 10/652,018

3
—
10

FIG. 2

TO FROM A-A		A	
D9 (RESISTOR)	II	SETTLING TIME (ST)	POWER (USAGE) (P)
D10 (RESISTOR)	II	LENGTH & WIDTH	ESTIMATED TOTAL AREA (ETA)
D11 (OUTPUT TRANSISTOR)	II	AREA	AREA
D12 (OUTPUT TRANSISTOR)	II	AREA	AREA

* PERFORMANCE SPECIFICATIONS TO BE COMPARED
TO CIRCUIT PERFORMANCES DETERMINED BY A
CIRCUIT SYNTHESIZER

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565 Application No. 10/652,018

FIG. 3

4
—
10

SYNTHESIZED
DESIGN POPULATION

DESIGN POINT	CIRCUIT TOPOLOGY	PERFORMANCE(S)	ORIGINAL COST	DOMINATION COST	TRADEOFF COST	RELATIVE EFFICIENCY	RE DPI
DPI	T _{DPI}	G _P -DPI SR P-DPI • ETAP-DPI	0C _{DPI}	DC _{DPI}	TC _{DPI}		
DP5	T _{DP5}	G _P -DP5 SR P-DP5 • ETAP-DP5	0C _{DP5}	DC _{DP5}	TC _{DP5}		RE _{DP5}
DP7	T _{DP7}	G _P -DP7 SR P-DP7 • ETAP-DP7	0C _{DP7}	DC _{DP7}	TC _{DP7}		RE _{DP7}
DPX	T _{DPX}	G _P -DPX SR P-DPX • ETAP-DPX	0C _{DPX}	DC _{DPX}	TC _{DPX}		RE _{DPX}

5/10

FIG. 4

FIG. 5

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565 Application No. 10/652,018

6/10

FIG. 6

● = DESIGN POINTS WITH LOWEST TRADEOFF COST

○ = NEW DESIGN POINTS GENERATED FROM DESIGN POINTS WITH LOWEST TRADEOFF COSTS

FIG. 7

8/
10

LAYOUT PERFORMANCE SPECIFICATIONS *	14
GAIN (G)	
SLEW RATE (SR)	
UNITY GAIN FREQ. (UGF)	
INPUT OFFSET (IO)	
PHASE MARGIN (PM)	
SETTLING TIME (ST)	
POWER (USAGE) (P)	
ACTUAL TOTAL AREA (ATA)	
YIELD ESTIMATE (YE)	
DESIGN RULE COMPLIANCE (DRC)	

* PERFORMANCE SPECIFICATIONS TO BE COMPARED
TO CIRCUIT PERFORMANCES DETERMINED BY A
CIRCUIT SIMULATOR.

FIG. 8

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565 Application No. 10/652,018

FIG. 9

9
—
10

LAYOUT DESIGN POPULATION

16

LAYOUT DESIGN POINT	CIRCUIT LAYOUT	PERFORMANCE(S)	ORIGINAL DOMINATION COST	TRADEOFF COST	RELATIVE EFFICIENCY
LDP1	L _{LDP1}	G _P -LDP1 SRP-LDP1 ⋮ DRC _P -LDP1	0C _{LDP1}	DC _{LDP1}	TC _{LDP1}
LDP5	L _{LDP5}	G _P -LDP5 SRP-LDP5 ⋮ DRC _P -LDP5	0C _{LDP5}	DC _{LDP5}	TC _{LDP5}
LDP7	L _{LDP7}	G _P -LDP7 SRP-LDP7 ⋮ DRC _P -LDP7	0C _{LDP7}	DC _{LDP7}	TC _{LDP7}
⋮	⋮	⋮	⋮	⋮	⋮
LDPX	L _{LDPX}	G _P -LDPX SRP-LDPX ⋮ DRC _P -LDPX	0C _{LDPX}	DC _{LDPX}	TC _{LDPX}
⋮	⋮	⋮	⋮	⋮	⋮

- = LAYOUT DESIGN POINT GENERATED FROM DESIGN POINTS WITH LOWEST TRADEOFF COST
- = NEW LAYOUT DESIGN POINT GENERATED FROM LAYOUT DESIGN POINTS GENERATED FROM DESIGN POINTS WITH LOWEST TRADEOFF COSTS

FIG. 10