Robot Motion Planning

I'm obsessed with my dog Alvin

• I'm obsessed with my dog Alvin and my daughter Tess

- I'm obsessed with my dog Alvin and my daughter Tess
- I am passionate about teaching accessible, interdisciplinary hands-on, project-based courses

- I'm obsessed with my dog Alvin and my daughter Tess
- I am passionate about teaching accessible, interdisciplinary hands-on, project-based courses

Widening Access to Applied Machine Learning with TinyML

Vijay Janapa Reddi* Brian Plancher* Susan Kennedy* Laurence Moroney[†]
Pete Warden[†]Anant Agarwal*[‡] Colby Banbury* Massimo Banzi[§] Matthew Bennett*
Benjamin Brown* Sharad Chitlangia[¶] Radhika Ghosal* Sarah Grafman* Rupert Jaeger^{||}
Srivatsan Krishnan* Maximilian Lam* Daniel Leiker^{||} Cara Mann* Mark Mazumder*
Dominic Pajak[§] Dhilan Ramaprasad* J. Evan Smith* Matthew Stewart* Dustin Tingley*

- I'm obsessed with my dog Alvin and my daughter Tess
- I am passionate about teaching accessible, interdisciplinary hands-on, project-based courses
- My research focuses on developing open-source planning and control algorithms that enable robots to operate in the real world and help people!

How about you?

- 1. How many people in the audience have a degree in computer science? (e.g., Faculty, Staff)
- 2. How many people have taken a handful of CS courses? (e.g., Junior or Senior CS Majors)
- 3. How about one or two CS courses?
- 4. How many people have no CS background?

Learning Goals for Today

- 1. Learn some of the language of robotics
- Understand the importance of tradeoffs in the selection of robotics algorithms for real-world deployments
- 3. Gain practice in exploring the attributes of classes of algorithms through an example

Learning Goals for Today

- 1. Learn some of the language of robotics
- Understand the importance of tradeoffs in the selection of robotics algorithms for real-world deployments
- 3. Gain practice in exploring the attributes of classes of algorithms through an example

Robotics is a **BIG** space

Robotics is a **BIG** space

Robotics is a **BIG** space

Planning is the process of computing an action plan for a robot based on given map of the world

Goal State

Learning Goals for Today

- 1. Learn some of the language of robotics
- Understand the importance of tradeoffs in the selection of robotics algorithms for real-world deployments
- 3. Gain practice in exploring the attributes of classes of algorithms through an example

Random Search (RRT)

Optimal Local Search

Machine Learning

Random Search (PRM)

Take 2 minutes and consider: Is the algorithm on the paper in front of you a good fit for the scenario below?

Take another 2 minutes and turn to the person next to you and decide: Which of your algorithms is a better fit?

Take another 2 minutes and discuss with a few pairs of people near you and decide: which of your algorithms is a better fit?

Learning Goals for Today

- 1. Learn some of the language of robotics
- Understand the importance of tradeoffs in the selection of robotics algorithms for real-world deployments
- 3. Gain practice in exploring the attributes of classes of algorithms through an example

Robot Motion Planning with RRT

Naïve Random Search

Rapidly Exploring Random Trees (RRT)

Variants of RRT

Limitations of RRT

Robot Motion Planning with RRT

Naïve Random Search

Rapidly Exploring Random Trees (RRT)

Variants of RRT

Limitations of RRT

What if we incrementally build up a graph to explore our map and get from the start state to the goal state

What if we incrementally build up a graph to explore our map and get from the start state to the goal state

Algorithm (input: S_0 , S_{goal} , initial state graph G)

- Pick a random state $s \in G$
- Apply random action a
- Add resulting state s' to G
- Repeat until G has a path from S₀ to S_{goal}

Algorithm (input: S_0 , S_{goal} , initial state graph G)

- Pick a random state $S \in G$
- Apply random action a
- Add resulting state s' to G
- Repeat until G has a path from S_0 to S_{goal}

What if we incrementally build up a graph to explore our map and get from the start state to the goal state

Algorithm (input: S_0 , S_{goal} , initial state graph G)

- Pick a random state $S \in G$
- Apply random action a
- Add resulting state s' to G
- Repeat until G has a path from S_0 to S_{goal}

Probabilistically complete: As iterations go to infinity, probability that G contains a solution goes to 1!

What if we incrementally build up a graph to explore our map and get from the start state to the goal state

Algorithm (input: S_0 , S_{goal} , initial state graph G)

- Pick a random state $S \in G$
- Apply random action a
- Add resulting state s' to G
- Repeat until G has a path from So to Sgoal

Probabilistically complete: As iterations go to infinity, probability that G contains a solution goes to 1!

Q: What's the problem with this?

Lots of samples close to your initial state —> slow!

Lots of samples close to your initial state —> slow!

Robot Motion Planning with RRT

Naïve Random Search

Rapidly Exploring Random Trees (RRT)

Variants of RRT

Limitations of RRT

Rapidly Exploring Random Trees (RRTs)

Naïve (S_0 , S_{goal} , initial state graph G)

- Pick a random state s ∈ G
- Apply random action a
- Add resulting state s' to G
- Repeat until G has a path from S_0 to S_{goal}

RRT (So, Sgoal, initial state tree T)

- Sample a random state $s \in S$
- Find closest state $S_C \in T$
- Extend S_C toward S
- Add resulting state s' to T
- Repeat until T contains a path from S_0 to S_{goal}

- Sample a random state $s \in S$
- Find closest state $S_C \in T$
- Extend *Sc* toward *S*
- Add resulting state S' to T
- Repeat until T contains a path from S_0 to S_{goal}

- Sample a random state s ∈ S
- Find closest state $S_C \in T$
- Extend *Sc* toward *S*
- Add resulting state s' to T
- Repeat until T contains a path from S_0 to S_{goal}

- Sample a random state $s \in S$
- Find closest state $s_c \in T$
- Extend S_C toward S
- Add resulting state S' to T
- Repeat until T contains a path from S_0 to S_{goal}

- Sample a random state s ∈ S
- Find closest state $S_C \in T$
- Extend *Sc* toward *S*
- Add resulting state s' to T
- Repeat until T contains a path from S_0 to S_{goal}

- Sample a random state $s \in S$
- Find closest state $S_c \in T$
- Extend S_C toward S
- Add resulting state S' to T
- Repeat until T contains a path from S_0 to S_{goal}

- Sample a random state $s \in S$
- Find closest state $S_C \in T$
- Extend *S_C* toward *S*
- Add resulting state S' to T
- Repeat until *T* contains a path from S₀ to S_{goal}

Rapidly Exploring Random Trees (RRTs)

45 iterations

RRT (So, Sgoal, initial state tree T)

- Sample a random state $s \in S$
- Find closest state $S_C \in T$
- Extend Sc toward S
- Add resulting state s' to T
- Repeat until T contains a path from S_0 to S_{goal}

Rapidly Exploring Random Trees (RRTs)

2345 iterations

RRT (*S*₀, *S*_{goal}, initial state tree *T*)

- Sample a random state $s \in S$
- Find closest state $S_C \in T$
- Extend Sc toward S
- Add resulting state s' to T
- Repeat until T contains a path from S_0 to S_{goal}

Properties of RRT

Key idea: random sampling will naturally encourage exploration

Properties of RRT

Key idea: random sampling will naturally encourage exploration

RRT is probabilistically complete!

- If there's a solution it will find it eventually
- Can still be slow for some problems, but it is faster than naive action sampling approach

RRT often works really well in practice

RRT often works really well in practice

Robot Motion Planning with RRT

Naïve Random Search

Rapidly Exploring Random Trees (RRT)

Variants of RRT

Limitations of RRT

Standard RRT (input: So, Sgoal, initial state tree T)

- Sample a random state $s \in S$
- Find closest state $s_c \in T$
- Extend S_C toward S
- Add resulting state S' to T
- Repeat until T contains a path from S_0 to S_{goal}

Q: What can we change to make this better?

RRT with Goal Directed Sampling (input: S_0 , S_{goal} , initial state tree T)

- Sample a random state $s \in S$ with probability (1-p) and with probability p sample the goal
- Find closest state $s_c \in T$
- Extend *S_C* toward *S*
- Add resulting state S' to T
- Repeat until T contains a path from S_0 to S_{goal}

Intuition: instead of "stumbling" upon the solution, bias the tree growth in the goal direction

Of course again we have a tradeoff in exploration vs. goal direction!

RRT* **Goal Directed RRT Bidirectional RRT** LQR-RRT* **GPU-RRT***

Robot Motion Planning with RRT

Naïve Random Search

Rapidly Exploring Random Trees (RRT)

Variants of RRT

Limitations of RRT

Sometimes Paths are Weird (Not Optimal)

Configuration Space (aka where we plan)

 So far we have been exploring RRT in 2D but robots don't exist in a 2D world!

Configuration Space (aka where we plan)

- So far we have been exploring RRT in 2D but robots don't exist in a 2D world!
- Task space: the 6D workspace of the robot
 - E.g., the pose (x,y,z,roll,pitch,yaw) of the robot's hand or an object

Configuration Space (aka where we plan)

- So far we have been exploring RRT in 2D but robots don't exist in a 2D world!
- Task space: the 6D workspace of the robot
 - E.g., the pose (x,y,z,roll,pitch,yaw) of the robot's hand or an object
- Configuration space: the n-dimensional space of joint angles + robot world position
 - Vector

Planning (in configuration space) is hard!

How many dimensions is the configuration space for Atlas?

Planning (in configuration space) is hard!

How many dimensions is the configuration space for Atlas?

(2 ankles + 2 knees + 2 hips (in 2 directions) + torso + 2 shoulders (in 2 directions) + 2 elbows + 2 wrists + 6dof pose of com) = \sim 24 variables

Planning (in configuration space) is hard!

Sampling in 24+ dimensions can be very slow!

(2 ankles + 2 knees + 2 hips (in 2 directions) + torso + 2 shoulders (in 2 directions) + 2 elbows + 2 wrists + 6dof pose of com) = \sim 24 variables

Remember its all about the tradeoffs!

CafeX, the San Francisco based startup, has hired you to upgrade the motion planning software for their robot to make it faster without sacrificing coffee quality.

Learning Goals for Today

- 1. Learn some of the language of robotics
- Understand the importance of tradeoffs in the selection of robotics algorithms for real-world deployments
- 3. Gain practice in exploring the attributes of classes of algorithms through an example

Thank You! Questions? I'd love your feedback!

Feedback Link: https://bit.ly/Brian-Simmons-21