

Práctica 1

1er cuatrimestre 2022

Algoritmos y Estructuras de Datos 1

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

Ciudad Universitaria - (Pabellón I/Planta Baja)

Tel/Fax: (++54 +11) 4576-3300 http://www.exactas.uba.ar

${\rm \acute{I}ndice}$

1.	Prá	actica 1	2
	1.1.	Ejercicio 1	2
	1.2.	Ejercicio 2	2
	1.3.	Ejercicio 3	3
	1.4.	Ejercicio 4	3
	1.5.	Ejercicio 5	3
	1.6.	Ejercicio 6	5
	1.7.	Ejercicio 7	5
	1.8.	Ejercicio 8	6
	1.9.	Ejercicio 9	6
	1.10	. Ejercicio 10	7
	1.11	. Ejercicio 11	7
	1.12	. Ejercicio 12	7
	1.13	. Ejercicio 13	7
	1.14	. Ejercicio 14	8
	1.15	. Ejercicio 15	8
	1.16	. Ejercicio 16	9
	1.17	. Ejercicio 17	9
	1.18	. Ejercicio 18	9
	1.19	. Ejercicio 19	10
	1.20	Eiercicio 20	10

1. Práctica 1

1.1. Ejercicio 1

Me piden determinar si dados p y q variables preposicionales, las expresiones son formulas bien formadas. ★ Rdo.: una formula está bien formada si cumple:

- 1. True y False son fórmulas
- 2. Cualquier variable proposicional es una fórmula
- 3. Si A es una fórmula, $\neg A$ es una fórmula
- 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \land A_2 \land \cdots \land A_n)$ es una fórmula
- 5. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \lor A_2 \lor \cdots \lor A_n)$ es una fórmula
- 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
- 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

1.1.A. Pregunta A

- (a) $(p\neg q)$ no es una fórmula bien formada.
- (b) $p \lor q \land True$ no es una fórmula bien formada pues da lugar a ambigüedad por la falta de paréntesis.
- (c) $p \lor q \land True$ no es una fórmula bien formada pues da lugar a ambigüedad por la falta de paréntesis.
- (d) $\neg(p)$ no es una fórmula bien formada pues el paréntesis es redundante.
- (e) $(p \lor \neg q \land q)$ no es una fórmula bien formada ya que la falta de paréntesis da lugar a ambigüedad.
- (f) $(True \lor True \lor True)$ es una formula bien formada.
- (g) $(\neg p)$ no es una formula bien formada ya que no hacen falta los paréntesis.
- (h) $(p \lor False)$ es una formula bien formada.
- (i) (p = q) es una formula bien formada.

1.2. Ejercicio 2

- (a) Bien definida
- (b) Bien definida
- (c) Mal definida. El conector lógico \vee solo acepta variables del tipo Bool pero x e y son $\mathbb Z$
- (d) Bien definida
- (e) Mal definida. (z = 0) y (z = 1) no tipa correctamente dado que z es de tipo Bool.
- (f) Mal definida. No tipa correctamente dado que (y < 0) es de tipo Bool y la suma solo acepta números.

1.3. Ejercicio 3

Primero se evalúa $\alpha = (3 + 7 = \pi - 8)$ que al ser una igualdad devuelve un valor del tipo Bool. Luego $\alpha \in \{True, False\}$ y la fórmula resulta $\alpha \wedge True$ que está bien formada.

1.4. Ejercicio 4

Se que a = True, b = True, c = True, x = False, y = False

- (a) True
- (b) True
- (c) False
- (d) True
- (e) True
- (f) True
- (g) False

1.5. Ejercicio 5

★ Rdo.: Ua fórmula es **tautología** si siempre toma el valor True, es **contradicción** si siempre toma el valor False, es **contingencia** si no es ni tautología ni contradicción.

3

1.5.A. Inciso A

$$\begin{array}{c|c}
p & (p \lor \neg p) \\
V & V \\
V & V \\
F & V \\
V
\end{array}$$

Es una tautología

1.5.B. Inciso B

$$\begin{array}{c|c} p & (p \land \neg p) \\ V & F \\ F & F \end{array}$$

Es una contradicción

1.5.C. Inciso C

Es una tautología. Recordar para usar como propiedad.

1.5.D. Inciso D

q	$(p \lor q)$	$((p \lor q) \to p)$
V	V	V
F	V	V
V	V	\mathbf{F}
F	F	V
	q V F V F	$ \begin{array}{c c} {\rm q} & ({\rm p} \vee {\rm q}) \\ {\rm V} & {\rm V} \\ {\rm F} & {\rm V} \\ {\rm V} & {\rm V} \\ {\rm F} & {\rm F} \\ \end{array} $

Es una contingencia.

1.5.E. Inciso E

Sean $\alpha = \neg(p \land q); \beta = (\neg p \lor \neg q)$

Es una tautología. Demostración de DeMorgan.

1.5.F. Inciso F

$$\begin{array}{c|c}
p & (p \to p) \\
V & V \\
F & V
\end{array}$$

Es una tautología.

1.5.G. Inciso G

p V	\mathbf{q}	$(p \land q)$	$ \begin{array}{c c} ((p \land q) \rightarrow p) \\ V \\ V \\ V \\ V \end{array} $
V	F	F	V
F	V	F	V
F	F	F	V

Es una tautología.

1.5.H. Inciso H

Sean $\alpha = (q \vee r)$; $\beta = (p \wedge q)$; $\sigma = (p \wedge r)$

4

Es una tautología.

1.5.I. Inciso I

Sean
$$\alpha = (q \to r)$$
; $\beta = (p \to q)$; $\sigma = (p \to r)$

p	q	r	α	$(p \to \alpha)$	β	σ	$(\beta \to \sigma)$	$((p \to \alpha) \to (\beta \to \sigma))$
V	V	V	V	V	V	V	V	V
V	V	F	F	\mathbf{F}	V	F	F	V
V	\mathbf{F}	V	V	V	F	V	V	V
V	\mathbf{F}	F	V	V	F	F	V	V
\mathbf{F}	V	V	V	V	V	V	V	V
\mathbf{F}	V	F	F	V	V	V	V	V
\mathbf{F}	\mathbf{F}	V	V	V	V	V	V	V
\mathbf{F}	\mathbf{F}	F	V	V	V	V	V	V

Es una tautología.

1.6. Ejercicio 6

- (a) False es más fuerte que True.
- (b) $(p \land q)$ es más fuerte que $(p \lor q)$.
- (c) True es más fuerte que True (Consultar).
- (d) $(p \wedge q)$ es más fuerte que p.
- (e) False es más fuerte que False.
- (f) p es más fuerte que $(p \lor q)$.
- (g) No hay relación de fuerza.
- (h) No hay relación de fuerza.

La proposición más fuerte es False y la más débil es True

1.7. Ejercicio 7

1.7.A. Inciso A

$$(\neg p \vee \neg q) \vee (p \wedge q) \to (p \wedge q)$$
 Por DeMorgan:
$$((\neg (p \wedge q)) \vee (p \wedge q)) \to (p \wedge q)$$

1.7.B. Inciso B

 \bigstar Rdo. Def implicación: $(a \to b) \leftrightarrow (\neg a \lor b)$

$$\neg p \to (p \wedge r)$$
 por implicación: $p \vee (q \wedge r)$
 Dist: $(p \vee q) \wedge (p \vee r)$

Son equivalentes.

1.7.C. Inciso C

$$\neg(\neg p) \to (\neg(\neg p \land \neg q))$$
 Por DeMorgan: $p \to (\neg(\neg(p \lor q)))$ Cancelando: $p \to (p \lor q)$

No son equivalentes pues si p=True; q=False entonces $(p \rightarrow (p \lor q))=True$ pero q=False

1.7.D. Inciso D

$$((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$$

Simplificando: $(p \land \neg p) \rightarrow \neg(\neg p \lor q)$
DeMorgan: $False \rightarrow (p \land \neg q)$

No son equivalentes.

1.7.E. Inciso E

$$p\vee (\neg p\wedge q)$$
 Dist: $(p\vee \neg p)\wedge (p\vee q)$ implicación: $\neg p\to q$

Pues $(p \lor \neg p)$ es siempre True. Luego solo hay que averiguar el valor de verdad de $(p \lor q)$, el cual verifica la equivalencia.

1.7.F. Inciso F

$$\neg (p \land (q \land s))$$
 Conmutatividad:
$$\neg (s \land (p \land q))$$
 DeMorgan:
$$\neg s \lor \neg (p \land q)$$

$$\neg s \lor \neg p \lor \neg q$$
 Asocitividad:
$$\neg s \lor (\neg p \lor \neg q)$$
 implicación:
$$s \to (\neg p \lor \neg q)$$

Son equivalentes.

1.7.G. Inciso G

$$\begin{split} p &\to (p \land \neg (q \to r)) \\ \text{Implicación: } \neg p \lor (q \land \neg (q \to r)) \\ \text{Distribución: } (\neg p \lor q) \land (\neg p \lor \neg (q \to r)) \\ \text{Implicación: } (\neg p \lor q) \land (\neg p \lor \neg (\neg q \lor r)) \\ \text{DeMorgan: } (\neg p \lor q) \land (\neg p \lor (q \land \neg r)) \end{split}$$

Son equivalentes.

1.8. Ejercicio 8

TODO

1.9. Ejercicio 9

1.9.A. Inciso A

(a)
$$f \to (e \lor m) \land \neg (e \land m)$$

(b)
$$\neg f \rightarrow \neg e$$

(c)
$$(f \wedge e) \rightarrow m$$

1.9.B. Inciso B

TODO

1.10. Ejercicio 10

Defino $j={\rm Conocen}$ a Juan; $c={\rm Conocen}$ a Camila; $g={\rm Conocen}$ a Gonzalo

j	c	g	$(j \rightarrow c)$	$(c \rightarrow g)$	$((j \to c) \lor (c \to g))$	$(j \rightarrow g)$	$ (((j \to c) \lor (c \to g)) \to (j \to g)) $
\mathbf{F}	F	F	V	V	V	V	V
\mathbf{F}	F	V	V	V	V	V	V
\mathbf{F}	V	F	V	F	\mathbf{F}	V	V
\mathbf{F}	V	V	V	V	V	V	V
V	F	F	F	V	F	\mathbf{F}	V
V	F	V	F	V	F	V	V
V	V	F	V	\mathbf{F}	F	\mathbf{F}	V
V	V	V	V	V	V	V	V

1.11. Ejercicio 11

Si p = pelea y o = ojo morado. Luego se que $p \to o$ pero si o es verdadero, puede darse como resultado de p = True/False Si por ejemplo digo çada vez que nieva hace frio", veo que hace frio y determino que está nevando es un pensamiento incorrecto porque puede hacer frio sin estar nevando.

1.12. Ejercicio 12

- (a) verdadero
- (b) verdadero
- (c) \(\pm\)
- (d) falso
- (e) ⊥
- (f) \(\pm \)
- (g) \(\pm\)
- (h) ⊥
- (i) falso

1.13. Ejercicio 13

El operador \wedge_L se evalúa de forma secuencial, de izquierda a derecha. Su tabla de verdad es:

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	丄	上
F	工	F
\perp	V	上
工	F	上
\perp		1

1.14. Ejercicio 14

El operador \vee_L se evalúa de forma secuencial, de izquierda a derecha. Su tabla de verdad es:

p	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	上	V
F	上	Т
	V	
	F	Т
	工	

1.15. Ejercicio 15

El operador \longrightarrow_L se evalúa de forma secuencial, de izquierda a derecha. Su tabla de verdad es:

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	工	
F	上	V
上	V	上
工	F	
	1	上

1.16. Ejercicio 16

- (a) ⊥
- (b) verdadero
- (c) falso
- (d) verdadero
- (e) verdadero
- (f) verdadero
- (g) falso

1.17. Ejercicio 17

- (a) $p \lor (q \lor_L r)$
- (b) $\neg (p \lor (q \lor_L r))$
- (c) TODO
- (d) $(p \land (q \lor_L r))$
- (e) TODO
- (f) TODO
- (g) TODO

1.18. Ejercicio 18

- (a) ligada: x; n = 1, y = z = 1
- (b) ligada: x, y; n = m = 1, z = 0
- (c) ligada: j; no es posible
- (d) ligada: j; s = True, b = 1, a = 0
- (e) ligada: j; siempre verdadera
- (f) ligada: j; el valor de verdad depende de P(j)
- (g) ligada: j; el valor de verdad depende de P(j)

1.19. Ejercicio 19

- 1. El pred a expresa çumple P(x) y Q(x)", no refleja la implicación, donde P = Falso y Q = Verdadero hace verdadero el enunciado.
- 2. El pred c expresa que no hay natural que no cumpla P(x) y cumpla Q(x). Hay que eliminar el \neg dentro del la formula.

1.20. Ejercicio 20

```
1. aux suc (x : \mathbb{Z}) : \mathbb{Z} = x + 1

2. aux suma (x,y : \mathbb{R}) : \mathbb{R} = x + y

3. aux producto (x,y : \mathbb{R}) : \mathbb{R} = x * y

4. pred esCuadrado (x : \mathbb{Z})\{(\exists y : \mathbb{Z})(x = y * y)\}

5. pred esPrimo (x : \mathbb{Z})\{(x > 1) \land (\forall y : \mathbb{Z})((1 < y < x) \longrightarrow_L (x \text{ mód } y \neq 0))\}

6. pred sonCprimos (x,y : \mathbb{Z})\{\neg(\exists z : \mathbb{Z})((z > 1) \land (x \text{ mód } z = 0) \land (y \text{ mód } z = 0))\}

7. pred divisoresGrandes (x,y : \mathbb{Z})\{(\forall z : \mathbb{Z})((z > 1) \land (x \text{ mód } z = 0)) \longrightarrow_L (x > y)\}

8. pred mayorPrimoQueDivide (x,y : \mathbb{Z})\{\neg(\exists z : \mathbb{Z})((z > y) \land \text{esPrimo}(z) \land (x \text{ mód } z = 0)) \land \text{esPrimo}(y) \land (x \text{ mód } y = 0)\}

9. pred sonPrimosGEMELOS (x,y : \mathbb{Z})\{\text{esPrimo}(x) \land \text{esPrimo}(y) \land ((x - y = 2) \lor (y - x = 2))\}

10. pred sonPrimosHermanos (x,y : \mathbb{Z})\{

esPrimo(x) \land esPrimo(y) \land ((\forall z : \mathbb{Z})((x < z < y) \lor (y < z < x)) \longrightarrow_L \neg esPrimo(z))

\}
```