Assignment Math45-Module-05-Exercises due 09/24/2020 at 11:59pm PDT

Which of the following is the integrating factor?

• A. $e^{\int Q dx}$

• B. $e^{-\int Q dx}$

• C. $e^{\int P dx}$

• D. $e^{-\int Pdx}$

Solution:

SOLUTION:

The correct answer is C.

Correct Answers:

• C

The motivation for the integrating factor is so that $e^{\int P dx}(y' +$ Py) becomes which of the following?

• A. $e^{-\int Pdx} \int e^{\int Pdx} y dx$

• B. $\frac{d}{dx} \left(e^{\int Q dx} y \right)$

• C. $\frac{d}{dx} \left(e^{\int P dx} y \right)$

• D. $\frac{d}{dx} \left(e^{-\int P dx} y \right)$

Solution:

SOLUTION:

The correct answer is C.

Correct Answers:

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

3. (1 point) The differential equation $\frac{dy}{dx} = 9y$ is a linear differential equation.

Convert the equation to standard form (use the prime notation for the derivative):

The integrating factor is: ____

After multiplying both sides by the integrating factor and unapplying the product rule we get the new differential equation:

 $\frac{d}{dx}$ [_____] = __

Integrating both sides we get algebraic equation $\underline{\hspace{1cm}} = C$ Solving for y, the solution to the differential equation is y =

Correct Answers:

- y'-9*y
- e^(-9*x)
- e^(-9*x)*y
- e^(-9*x)*y
- C*e^(9*x)

4. (1 point) Solve the differential equation by the method of integrating factors.

$$\frac{dy}{dx} + 2xy = 2x$$

____ Use "C" to represent any constant of integration.

Solution:

SOLUTION

$$p(x) = 2x, q(x) = 2x, \mu = e^{x^2}$$

Multiplying the DE by e^{x^2} gives

$$e^{x^2}\frac{dy}{dx} + 2xe^{x^2}y = 2xe^{x^2}$$

integrating we get

$$e^{x^2}y = \int 2xe^{x^2} \, dx = e^{x^2} + C$$

finally solving for y gives

$$y = 1 + Ce^{-x^2}$$

Correct Answers:

• 1+C*e^(-x^2)

1