A Guided Tour of Chapter 13: Multi-Armed Bandits: Exploration versus Exploitation

Ashwin Rao

ICME, Stanford University

February 27, 2022

Exploration versus Exploitation

- Many situations in business (& life!) present dilemma on choices
- Exploitation: Pick choices that seem best based on past outcomes
- **Exploration:** Pick choices not yet tried out (or not tried enough)
- Exploitation has notions of "being greedy" and being "short-sighted"
- Too much Exploitation ⇒ Regret of missing unexplored "gems"
- Exploration has notions of "gaining info" and being "long-sighted"
- Too much Exploration ⇒ Regret of wasting time on "duds"
- How to balance Exploration and Exploitation so we combine information-gains and greedy-gains in the most optimal manner
- Can we set up this problem in a mathematically disciplined manner?

Examples

- Restaurant Selection
 - Exploitation: Go to your favorite restaurant
 - Exploration: Try a new restaurant
- Online Banner Advertisement
 - Exploitation: Show the most successful advertisement
 - Exploration: Show a new advertisement
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Learning to play a game
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

The Multi-Armed Bandit (MAB) Problem

- Multi-Armed Bandit is spoof name for "Many Single-Armed Bandits"
- A Multi-Armed bandit problem is a 2-tuple (A, R)
- ullet ${\cal A}$ is a known set of m actions (known as "arms")
- $\mathcal{R}^a(r) = \mathbb{P}[r|a]$ is an **unknown** probability distribution over rewards
- ullet At each step t, the Al agent (algorithm) selects an action $A_t \in \mathcal{A}$
- ullet Then the environment generates a reward $R_t \sim \mathcal{R}^{A_t}$
- The Al agent's goal is to maximize the **Cumulative Reward**:

$$\sum_{t=1}^{\mathcal{T}} R_t$$

- Can we design a strategy that does well (in Expectation) for any T?
- Note that any selection strategy risks wasting time on "duds" while exploring and also risks missing untapped "gems" while exploiting

Is the MAB problem a Markov Decision Process (MDP)?

- Note that the environment doesn't have a notion of State
- Upon pulling an arm, the arm just samples from its distribution
- However, the agent might maintain a statistic of history as it's State
- To enable the agent to make the arm-selection (action) decision
- The action is then a (*Policy*) function of the agent's *State*
- So, agent's arm-selection strategy is basically this Policy
- Note that many MAB algorithms don't take this formal MDP view
- Instead, they rely on heuristic methods that don't aim to optimize
- They simply strive for "good" Cumulative Rewards (in Expectation)
- Note that even in a simple heuristic algorithm, A_t is a random variable simply because it is a function of past (random) rewards

Regret

• The Action Value Q(a) is the (unknown) mean reward of action a

$$Q(a) = \mathbb{E}[r|a]$$

• The *Optimal Value V** is defined as:

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

• The Regret I_t is the opportunity loss on a single step t

$$I_t = \mathbb{E}[V^* - Q(A_t)]$$

• The Total Regret L_T is the total opportunity loss

$$L_T = \sum_{t=1}^{T} I_t = \sum_{t=1}^{T} \mathbb{E}[V^* - Q(A_t)]$$

Maximizing Cumulative Reward is same as Minimizing Total Regret

Counting Regret

- Let $N_t(a)$ be the (random) number of selections of a across t steps
- ullet Define $Count_t(a)$ (for given action-selection strategy) as $\mathbb{E}[N_t(a)]$
- ullet Define $Gap\ \Delta_a$ of a as the value difference between a and optimal a^*

$$\Delta_a = V^* - Q(a)$$

Total Regret is sum-product (over actions) of Gaps and Counts_T

$$egin{aligned} L_T &= \sum_{t=1}^T \mathbb{E}[V^* - Q(A_t)] \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_T(a)] \cdot (V^* - Q(a)) \ &= \sum_{a \in \mathcal{A}} {\it Count}_T(a) \cdot \Delta_a \end{aligned}$$

- A good algorithm ensures small Counts for large Gaps
- Little problem though: We don't know the Gaps!

Linear or Sublinear Total Regret

- If an algorithm never explores, it will have linear total regret
- If an algorithm forever explores, it will have linear total regret
- Is it possible to achieve sublinear total regret?

Greedy Algorithm

- ullet We consider algorithms that estimate $\hat{Q}_t(a)pprox Q(a)$
- Estimate the value of each action by rewards-averaging

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{s=1}^t R_s \cdot \mathbb{1}_{A_s=a}$$

The Greedy algorithm selects the action with highest estimated value

$$A_t = rg \max_{a \in A} \hat{Q}_{t-1}(a)$$

- Greedy algorithm can lock onto a suboptimal action forever
- Hence, Greedy algorithm has linear total regret

ϵ-Greedy Algorithm

- The ϵ -Greedy algorithm continues to explore forever
- At each time-step t:
 - ullet With probability $1-\epsilon$, select $A_t = rg \max_{a \in \mathcal{A}} \hat{Q}_{t-1}(a)$
 - ullet With probability ϵ , select a random action (uniformly) from ${\mathcal A}$
- ullet Constant ϵ ensures a minimum regret proportional to mean gap

$$I_t \geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \Delta_a$$

• Hence, ϵ -Greedy algorithm has linear total regret

Optimistic Initialization

- ullet Simple and practical idea: Initialize $\hat{Q}_0(a)$ to a high value for all $a\in\mathcal{A}$
- Update action value by incremental-averaging
- Starting with $N_0(a) \ge 0$ for all $a \in \mathcal{A}$,

$$N_t(A_t) = N_{t-1}(A_t) + 1$$

$$\hat{Q}_t(A_t) = \hat{Q}_{t-1}(A_t) + rac{R_t - \hat{Q}_{t-1}(A_t)}{N_t(A_t)}$$

- Encourages systematic exploration early on
- One can also start with a high value for $N_0(a)$ for all $a \in \mathcal{A}$
- But can still lock onto suboptimal action
- ullet Hence, Greedy + optimistic initialization has linear total regret
- ullet $\epsilon ext{-Greedy}$ + optimistic initialization also has linear total regret

Decaying ϵ_t -Greedy Algorithm

- Pick a decay schedule for $\epsilon_1, \epsilon_2, \dots$
- Consider the following schedule

$$c>0$$

$$d=\min_{a|\Delta_a>0}\Delta_a$$

$$\epsilon_t=\min\{1,\frac{c|\mathcal{A}|}{d^2t}\}$$

- Decaying ϵ_t -Greedy algorithm has *logarithmic* total regret
- Unfortunately, above schedule requires advance knowledge of gaps
- Practically, implementing some decay schedule helps considerably
- ullet Educational Code for decaying ϵ -greedy with optimistic initialization

Lower Bound

- ullet Goal: Find an algorithm with sublinear total regret for any multi-armed bandit (without any prior knowledge of $\mathcal R$)
- The performance of any algorithm is determined by the similarity between the optimal arm and other arms
- Hard problems have similar-looking arms with different means
- ullet Formally described by KL-Divergence $\mathit{KL}(\mathcal{R}^a||\mathcal{R}^{a^*})$ and gaps Δ_a

Theorem (Lai and Robbins)

Asymptotic Total Regret is at least logarithmic in number of steps, i.e., as $T \to \infty$,

$$L_T \geq \log T \sum_{\mathbf{a} \mid \Delta_\mathbf{a} > 0} \frac{1}{\Delta_\mathbf{a}} \geq \log T \sum_{\mathbf{a} \mid \Delta_\mathbf{a} > 0} \frac{\Delta_\mathbf{a}}{\mathit{KL}(\mathcal{R}^\mathbf{a} \mid \mid \mathcal{R}^{\mathbf{a}^*})}$$

Optimism in the Face of Uncertainty

- Which action should we pick?
- The more uncertain we are about an action-value, the more important it is to explore that action
- It could turn out to be the best action

Optimism in the Face of Uncertainty (continued)

- After picking blue action, we are less uncertain about the value
- And more likely to pick another action
- Until we home in on the best action

Upper Confidence Bounds

- Estimate an upper confidence $\hat{U}_t(a)$ for each action value
- Such that $Q(a) \leq \hat{Q}_t(a) + \hat{U}_t(a)$ with high probability
- ullet This depends on the number of times $N_t(a)$ that a has been selected
 - Small $N_t(a) \Rightarrow \text{Large } \hat{U}_t(a)$ (estimated value is uncertain)
 - Large $N_t(a) \Rightarrow$ Small $\hat{U}_t(a)$ (estimated value is accurate)
- Select action maximizing Upper Confidence Bound (UCB)

$$A_{t+1} = rg \max_{a \in \mathcal{A}} \{\hat{Q}_t(a) + \hat{U}_t(a)\}$$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be i.i.d. random variables in [0, 1], and let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

be the sample mean. Then for any $u \ge 0$,

$$\mathbb{P}[\mathbb{E}[\bar{X}_n] > \bar{X}_n + u] \le e^{-2nu^2}$$

- Apply Hoeffding's Inequality to rewards of [0,1]-support bandits
- Conditioned on selecting action a at time step t, setting $n = N_t(a)$ and $u = \hat{U}_t(a)$,

$$\mathbb{P}[Q(a) > \hat{Q}_t(a) + \hat{U}_t(a)] \leq e^{-2N_t(a)\cdot \hat{U}_t(a)^2}$$

Calculating Upper Confidence Bounds

- ullet Pick a small probability p that Q(a) exceeds UCB $\{\hat{Q}_t(a)+\hat{U}_t(a)\}$
- Now solve for $\hat{U}_t(a)$

$$e^{-2N_t(a)\cdot\hat{U}_t(a)^2} = p$$

$$\Rightarrow \hat{U}_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

- Reduce p as we observe more rewards, eg: $p = t^{-\alpha}$ (for fixed $\alpha > 0$)
- This ensures we select optimal action as $t \to \infty$

$$\hat{U}_t(a) = \sqrt{\frac{\alpha \log t}{2N_t(a)}}$$

UCB1

Yields UCB1 algorithm for arbitrary-distribution arms bounded in $\left[0,1\right]$

$$A_{t+1} = \argmax_{a \in \mathcal{A}} \{ \hat{Q}_t(a) + \sqrt{\frac{\alpha \log t}{2N_t(a)}} \}$$

Theorem,

The UCB1 Algorithm achieves logarithmic total regret asymptotically, i.e., as $T \to \infty$,

$$L_T \le \sum_{a \mid \Delta_a > 0} \frac{4\alpha \cdot \log T}{\Delta_a} + \frac{2\alpha \cdot \Delta_a}{\alpha - 1}$$

Educational Code for UCB1 algorithm

Bayesian Bandits

- ullet So far we have made no assumptions about the rewards distribution ${\cal R}$ (except bounds on rewards)
- ullet Bayesian Bandits exploit prior knowledge of rewards distribution $\mathbb{P}[\mathcal{R}]$
- They compute posterior distribution of rewards $\mathbb{P}[\mathcal{R}|h_t]$ where $h_t = A_1, R_1, \dots, A_t, R_t$ is the history
- Use posterior to guide exploration
 - Upper Confidence Bounds (Bayesian UCB)
 - Probability Matching (Thompson sampling)
- ullet Better performance if prior knowledge of ${\mathcal R}$ is accurate

Bayesian UCB Example: Independent Gaussians

- ullet Assume reward distribution is Gaussian, $\mathcal{R}^a(r)=\mathcal{N}(r;\mu_a,\sigma_a^2)$
- Compute Gaussian posterior over μ_a, σ_a^2 (details in book Appendix)

$$\mathbb{P}[\mu_{a}, \sigma_{a}^{2} | h_{t}] \propto \mathbb{P}[\mu_{a}, \sigma_{a}^{2}] \cdot \prod_{t | A_{t} = a} \mathcal{N}(R_{t}; \mu_{a}, \sigma_{a}^{2})$$

Pick action that maximizes Expectation of: "c std-errs above mean"

$$A_{t+1} = \argmax_{a \in \mathcal{A}} \mathbb{E}_{\mathbb{P}[\mu_a, \sigma_a | h_t]} [\mu_a + \frac{c \cdot \sigma_a}{\sqrt{N_t(a)}}]$$

Probability Matching

• *Probability Matching* selects action *a* according to probability that *a* is the optimal action

$$\pi(A_{t+1}|h_t) = \mathbb{P}_{\mathcal{D}_t \sim \mathbb{P}[\mathcal{R}|h_t]}[\mathbb{E}_{\mathcal{D}_t}[r|A_{t+1}] > \mathbb{E}_{\mathcal{D}_t}[r|a], \forall a \neq A_{t+1}]$$

- Probability matching is optimistic in the face of uncertainty
- Because uncertain actions have higher probability of being max
- Can be difficult to compute analytically from posterior

Thompson Sampling

Thompson Sampling implements probability matching

$$\begin{split} \pi(A_{t+1}|h_t) &= \mathbb{P}_{\mathcal{D}_t \sim \mathbb{P}[\mathcal{R}|h_t]} [\mathbb{E}_{\mathcal{D}_t}[r|A_{t+1}] > \mathbb{E}_{\mathcal{D}_t}[r|a], \forall a \neq A_{t+1}] \\ &= \mathbb{E}_{\mathcal{D}_t \sim \mathbb{P}[\mathcal{R}|h_t]} [\mathbb{1}_{A_{t+1} = \mathsf{arg} \max_{a \in \mathcal{A}} \mathbb{E}_{\mathcal{D}_t}[r|a]}] \end{split}$$

- ullet Use Bayes law to compute posterior distribution $\mathbb{P}[\mathcal{R}|h_t]$
- ullet Sample a reward distribution \mathcal{D}_t from posterior $\mathbb{P}[\mathcal{R}|h_t]$
- ullet Estimate Action-Value function with sample \mathcal{D}_t as $\hat{Q}_t(a) = \mathbb{E}_{\mathcal{D}_t}[r|a]$
- Select action maximizing value of sample

$$A_{t+1} = rg \max_{a \in \mathcal{A}} \hat{Q}_t(a)$$

- Thompson Sampling achieves Lai-Robbins lower bound!
- Educational Code for Thompson Sampling for Gaussian Distributions
- <u>Educational Code</u> for Thompson Sampling for Bernoulli Distributions

Gradient Bandit Algorithms

- Gradient Bandit Algorithms are based on Stochastic Gradient Ascent
- We optimize *Score* parameters s_a for $a \in \mathcal{A} = \{a_1, \dots, a_m\}$
- Objective function to be maximized is the Expected Reward

$$J(s_{\mathsf{a}_1},\ldots,s_{\mathsf{a}_m}) = \sum_{\mathsf{a}\in\mathcal{A}} \pi(\mathsf{a})\cdot \mathbb{E}[r|\mathsf{a}]$$

- $\pi(\cdot)$ is probabilities of taking actions (based on a stochastic policy)
- The stochastic policy governing $\pi(\cdot)$ is a function of the *Scores*:

$$\pi(a) = \frac{e^{s_a}}{\sum_{b \in \mathcal{A}} e^{s_b}}$$

- Scores represent the relative value of actions based on seen rewards
- Note: π has a Boltzmann distribution (Softmax-function of *Scores*)
- We move the *Score* parameters s_a (hence, action probabilities $\pi(a)$) such that we ascend along the direction of gradient of objective $J(\cdot)$

Gradient of Expected Reward

ullet To construct Gradient of $J(\cdot)$, we calculate $rac{\partial J}{\partial s_a}$ for all $a\in\mathcal{A}$

$$\begin{split} \frac{\partial J}{\partial s_{a}} &= \frac{\partial}{\partial s_{a}} \left(\sum_{a' \in \mathcal{A}} \pi(a') \cdot \mathbb{E}[r|a'] \right) = \sum_{a' \in \mathcal{A}} \mathbb{E}[r|a'] \cdot \frac{\partial \pi(a')}{\partial s_{a}} \\ &= \sum_{a' \in \mathcal{A}} \pi(a') \cdot \mathbb{E}[r|a'] \cdot \frac{\partial \log \pi(a')}{\partial s_{a}} = \mathbb{E}_{a' \sim \pi, r \sim \mathcal{R}^{a'}} [r \cdot \frac{\partial \log \pi(a')}{\partial s_{a}}] \end{split}$$

• We know from standard softmax-function calculus that:

$$\frac{\partial \log \pi(a')}{\partial s_a} = \frac{\partial}{\partial s_a} (\log \frac{e^{s_{a'}}}{\sum_{b \in \mathcal{A}} e^{s_b}}) = \mathbb{1}_{a=a'} - \pi(a)$$

• Therefore $\frac{\partial J}{\partial s_2}$ can we re-written as:

$$=\mathbb{E}_{a'\sim\pi,r\sim\mathcal{R}^{a'}}[r\cdot(\mathbb{1}_{a=a'}-\pi(a))]$$

• At each step t, we approximate the gradient with (A_t, R_t) sample as:

$$R_t \cdot (\mathbb{1}_{a=A_t} - \pi_t(a))$$
 for all $a \in A$

Score updates with Stochastic Gradient Ascent

- $\pi_t(a)$ is the probability of a at step t derived from score $s_t(a)$ at step t
- Reduce variance of estimate with baseline *B* that's independent of *a*:

$$(R_t - B) \cdot (\mathbb{1}_{a=A_t} - \pi_t(a))$$
 for all $a \in \mathcal{A}$

• This doesn't introduce bias in the estimate of gradient of $J(\cdot)$ because

$$\mathbb{E}_{a' \sim \pi}[B \cdot (\mathbb{1}_{a=a'} - \pi(a))] = \mathbb{E}_{a' \sim \pi}[B \cdot \frac{\partial \log \pi(a')}{\partial s_a}]$$

$$=B\cdot\sum_{a'\in\mathcal{A}}\pi(a')\cdot\frac{\partial\log\pi(a')}{\partial s_a}=B\cdot\sum_{a'\in\mathcal{A}}\frac{\partial\pi(a')}{\partial s_a}=B\cdot\frac{\partial}{\partial s_a}(\sum_{a'\in\mathcal{A}}\pi(a'))=0$$

- We can use $B = \bar{R}_t = \frac{1}{t} \sum_{s=1}^t R_s = ext{average rewards until step } t$
- ullet So, the update to scores $s_t(a)$ for all $a\in\mathcal{A}$ is:

$$s_{t+1}(a) = s_t(a) + \alpha \cdot (R_t - \bar{R}_t) \cdot (\mathbb{1}_{a=A_t} - \pi_t(a))$$

Educational Code for this Gradient Bandit Algorithm

Value of Information

- Exploration is useful because it gains information
- Can we quantify the value of information?
 - How much would a decision-maker be willing to pay to have that information, prior to making a decision?
 - Long-term reward after getting information minus immediate reward
- Information gain is higher in uncertain situations
- Therefore it makes sense to explore uncertain situations more
- If we know value of information, we can trade-off exploration and exploitation optimally

Information State Space

- We have viewed bandits as one-step decision-making problems
- Can also view as sequential decision-making problems
- ullet At each step there is an information state $ilde{s}$
 - ullet $ilde{s}$ is a statistic of the history, i.e., $ilde{s}_t = f(h_t)$
 - summarizing all information accumulated so far
- Each action a causes a transition to a new information state \tilde{s}' (by adding information), with probability $\tilde{\mathcal{P}}^a_{\tilde{s}\,\tilde{s}'}$
- ullet This defines an MDP $ilde{M}$ in information state space

$$\tilde{\textit{M}} = (\tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{P}}, \mathcal{R}, \gamma)$$

Example: Bernoulli Bandits

- ullet Consider a Bernoulli Bandit, such that $\mathcal{R}^{a}=\mathcal{B}(\mu_{a})$
- ullet For arm a, reward=1 with probability μ_a (=0 with probability $1-\mu_a$)
- Assume we have m arms a_1, a_2, \ldots, a_m
- The information state is $\tilde{s} = (\alpha_{a_1}, \beta_{a_1}, \alpha_{a_2}, \beta_{a_2}, \dots, \alpha_{a_m}, \beta_{a_m})$
- ullet $lpha_a$ records the pulls of arms a for which reward was 1
- ullet eta_a records the pulls of arm a for which reward was 0
- ullet In the long-run, $rac{lpha_{\mathsf{a}}}{lpha_{\mathsf{a}}+eta_{\mathsf{a}}}
 ightarrow \mu_{\mathsf{a}}$

Solving Information State Space Bandits

- We now have an infinite MDP over information states
- This MDP can be solved by Reinforcement Learning
- Model-free Reinforcement learning, eg: Q-Learning (Duff, 1994)
- Or Bayesian Model-based Reinforcement Learning
 - eg: Gittins indices (Gittins, 1979)
 - This approach is known as Bayes-adaptive RL
 - Finds Bayes-optimal exploration/exploitation trade-off with respect of prior distribution

Bayes-Adaptive Bernoulli Bandits

- Start with $Beta(\alpha_a, \beta_a)$ prior over reward function \mathcal{R}^a
- Each time a is selected, update posterior for \mathcal{R}^a as:
 - $Beta(\alpha_a + 1, \beta_a)$ if r = 1
 - $Beta(\alpha_a, \beta_a + 1)$ if r = 0
- ullet This defines transition function $ilde{\mathcal{P}}$ for the Bayes-adaptive MDP
- (α_a, β_a) in information state provides reward model $Beta(\alpha_a, \beta_a)$
- Each state transition corresponds to a Bayesian model update

Gittins Indices for Bernoulli Bandits

- Bayes-adaptive MDP can be solved by Dynamic Programming
- The solution is known as the Gittins Index
- Exact solution to Bayes-adaptive MDP is typically intractable
- Guez et al. 2020 applied Simulation-based search
 - Forward search in information state space
 - Using simulations from current information state

Summary of approaches to Bandit Algorithms

- Naive Exploration (eg: ϵ -Greedy)
- Optimistic Initialization
- Optimism in the face of uncertainty (eg: UCB, Bayesian UCB)
- Probability Matching (eg: Thompson Sampling)
- Gradient Bandit Algorithms
- Information State Space MDP, incorporating value of information

Contextual Bandits

- A Contextual Bandit is a 3-tuple (A, S, R)
- A is a known set of m actions ("arms")
- ullet $\mathcal{S}=\mathbb{P}[s]$ is an **unknown** distribution over states ("contexts")
- $\mathcal{R}_s^a(r) = \mathbb{P}[r|s,a]$ is an **unknown** probability distribution over rewards
- At each step t, the following sequence of events occur:
 - ullet The environment generates a states $\mathcal{S}_t \sim \mathcal{S}$
 - ullet Then the Al Agent (algorithm) selects an actions $A_t \in \mathcal{A}$
 - ullet Then the environment generates a reward $R_t \in \mathcal{R}_{S_t}^{A_t}$
- The AI agent's goal is to maximize the Cumulative Reward:

$$\sum_{t=1}^{T} R_{i}$$

ullet Extend Bandit Algorithms to Action-Value Q(s,a) (instead of Q(a))