CS419 Project Exploring GANs and Application²

²https://github.com/siddhant-midha/CS419M-Project

Table of Contents

- 1 Introduction
- 2 GAN?
- 3 Work Done
- 4 Contribution and Code Sources

CS419 Project Exploring GANs and Application Litroduction

Motivation

- Throughout the course, we were exposed to a variety of algorithms and basic ML techniques.
- We were also briefly introduced to deep learning.
- Hence, we took up this project to help us appreciate some crucial aspects of deep learning all the while understanding the fundamentals.
- Out of interest, we opted for GANs.
- Out of more interest, we chose image translation particularly, anime face colouration.

Table of Contents

- 1 Introduction
- 2 GAN?
- 3 Work Done
- 4 Contribution and Code Sources

CS419 Project Exploring GANs and Application⁷

GAN?

What are GANs?

- TLDR: GANs implicitly estimate distributions by learning the ability to sample from them.
- Two components,
 - Generator (G) The artist: Tries to generate samples from the distribution.
 - 2 Discriminator (D) The art critic: Tries to root out generated samples from the real samples.
- This competition enables the learning of a mapping from the latent space to the image space.

What are GANs?

Formally, we have

$$J_D(\theta_D, \theta_G) := -(\mathbb{E}_{x \sim p_{data}} log(D(x)) + \mathbb{E}_z log(1 - D(G(z))))$$

$$J_G(\theta_D, \theta_G) := -J_D(\theta_D, \theta_G)$$

Define $V(\theta_D, \theta_G) := -J_D(\theta_D, \theta_G)$. Thus we have the following game

$$\min_{\theta_G} \max_{\theta_D} V(\theta_G, \theta_D)$$

Minima achieved when G draws samples exactly from the distribution.

Table of Contents

- 1 Introduction
- 2 GAN?
- 3 Work Done
- 4 Contribution and Code Sources

CS419 Project Exploring GANs and Application 10

Work Done

A basic GAN

- We observed that the *G* and *D* functions incur a lot of freedom in design.
- Hence, we began with a basic design wherein both of them consist of Dense layers.
- We noted that certain up sampling is required in the G architecture.
- Also noted that down sampling is needed in the D architecture, followed by a sigmoid.
- We trained this basic GAN on both MNIST and Fashion-MNIST datasets.

A basic GAN - Results

Figure: MNIST, 20 epochs

A basic GAN – Results

Figure: FashionMNIST, 20 epochs

CS419 Project Exploring GANs and Application¹³

Work Done

A basic GAN – Observations

- We see that overall performance is better on the Fashion-MNIST dataset.
- Even more so, we note that additional batch normalization was needed in order for the GAN to work on the MNIST dataset.
- That is, initially the exact same model performed much better on the former than the latter intricacies in the dataset.

CS419 Project Exploring GANs and Application 14
Work Done

A deeper GAN

- We note the deficiencies in the basic GAN architecture, and realize the need for convolutional layers to preserve local information in images.
- Here we implement the convolutional-GAN.
- We implement this on MNIST and FashionMNIST datasets.

A deeper GAN - Results

Figure: MNIST, 20 epochs

A deeper GAN - Results

Figure: FashionMNIST, 50 epochs

CS419 Project Exploring GANs and Application¹⁷

Work Done

A deeper GAN – observations

- Image quality improves, as expected.
- Surprisingly, here with batchnorm and 20 epochs.MNIST does much better than FashionMNIST.
- Then, we try increasing the number of epochs for the former.
- Does not help.
- Decreasing Batchnorm helps.

CS419 Project Exploring GANs and Application¹⁸

Work Done

Conditioning the GAN

- We appreciate the use of GANs for sampling from distributions.
- We now require to sample from particular classes.
- That is, we feed the class-labels (such as the digit 7 in MNIST) in the training process.
- Hence getting conditional-GAN.

Conditoning the GAN - Results

Figure: FashionMNIST, 20 epochs, each row corr. to one class query

Conditoning the GAN - Results

Figure: MNIST, 20 epochs, each row corr. to one class query

CS419 Project Exploring GANs and Application²¹

Work Done

Conditioning the GAN - Observations

- We had to modify the architecture in code due to taking class label as input explained in report.
- FashionMNIST trained faster than MNIST.
- We did not require additional batchnorm for MNIST.

CS419 Project Exploring GANs and Application²²
Work Done

Image Translation Using GANs

- After gaining basic understanding of GANs we decided to apply them in a practical scenario.
- We trained a condGAN to learn to colour anime characters given uncoloured images.
- The results on a sample image during training are shown after every 20 epochs.

Image Translation Using GANs – Results

Figure: Result: 0 epochs

Work Done

Image Translation Using GANs - Results

Figure: Result: 20 epochs

Image Translation Using GANs - Results

Figure: Result: 40 epochs

Image Translation Using GANs - Results

Figure: Result: 60 epochs

Table of Contents

- 1 Introduction
- 2 GAN?
- 3 Work Done
- 4 Contribution and Code Sources

Contribution

- Siddhant Midha (200070078)
 - 1 Theory part of report
 - 2 Presentation slides
 - 3 Wrote code and trained for basicGAN
 - Wrote code and trained for convGAN
 - 5 Modified the convGAN code to form condGAN and trained
- Waqar Mirza (200070090)
 - Results part of report.
 - 2 Trained the Anime Colourization GAN.
 - 3 Presentation slides Image Translation using GANs
- Dadhichi Telwadkar (20D070083)
 - 1 Code for Anime Colourization GAN.
- Yuvraj Singh (200070093)
 - 1 Code for Anime Colourization GAN.

Code Sources

- Referred to the GAN course on coursera for basic GAN theory and code organization.
- Referred to the Gradient Tape and GAN tutorials by keras.
- (None of the sources above involved direct use of code.)
- Referred to this tutorial for the Anime Colourization.