Homework 7 - Binary Search Trees

Problem 1:

What does it mean if a binary search tree is a balanced tree?

ANS

It means that in this binary tree the depth of the two subtrees of every node never differ by more than one. The binary search tree is height-balanced.

Name:

Problem 2:

What is the big-Oh search time for a balanced binary tree? Give a logical argument for your response. You may assume that the binary tree is perfectly balanced and full.

ANS

The big-Oh search time for a balanced binary tree is $O(\log n)$. It is similar with the binary search.

Assuming the number of nodes of a balanced binary tree is n, the height of tree is h. The binary tree is perfectly balanced and full, we could get that $n = 2^h - 1$, which also means h = log(n + 1). T(n) is the average time of we search one target value in a balanced tree.

When
$$h = 2, n = 3, T(n) = (1 * 1 + 2 * 2)/3$$

When
$$h = 3$$
, $n = 7$ $T(n) = (1 * 1 + 2 * 2 + 3 * 4)/7$

When
$$h = h$$
, $n = n$, $T(n) = (1 * 1 + 2 * 2 + 3 * 4 + + h * 2^{(h-1)})/n$

Then we could get,

$$1*1+2*2+3*4+....+h*2^{(h-1)}=1*2^0+2*2^1+3*2^2+....+h*2^{(h-1)}$$
 = SUM ②

$$2 * SUM = 2 * (1 * 2^0 + 2 * 2^1 + 3 * 2^2 + + h * 2^{(h-1)})$$

$$=1*2^1+2*2^2+3*2^3+\ldots+(h-1)*2^{(h-1)}+h*2^h$$
 (3)

Then, we use (3) - (2)

SUM =
$$h * 2^h - (2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{(h-1)})$$

 $A = 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{(h-1)}$ is the sum of geometric sequence.

Then,
$$A = 2^h - 1$$
, $h = log(n + 1)$

SUM =
$$h * 2^h - (2^h - 1) = (h - 1) * 2^h + 1 = [log(n + 1) - 1] * 2^{log(n+1)} + 1$$

$$= [log(n+1) - 1] * (n+1) + 1$$

$$= log(n+1) * (n+1) - n$$

So,
$$T(n) = SUM/n = \frac{n+1}{n}log(n+1) - 1$$

The big-Oh search time for a balanced binary tree is O(logn).

Problem 3:

Now think about a binary search tree in general, and that it is basically a linked list with up to two paths from each node. Could a binary tree ever exhibit an O(n) worst-case search time? Explain why or why not. It may be helpful to think of an example of operations that could exhibit worst-case behavior if you believe it is so.

ANS

The big-Oh search time for a binary tree could be O(n).

The worst-case is the binary tree is totally unbalanced, it only has a left path or a right path, which means that we can think of the tree as a linked list. The big-Oh search time is same as a linked list.

In the worst case, we need to traverse all nodes of the unbalanced tree, find the target value or not.

Problem 4:

What is the recurrence relation for a binary search? Your answer should be in the form of T(n) = aT(n/b) + f(n). Clearly state the values for a, b and f(n).

ANS

Pseudocode:

BinarySearch(array A[], int value, int first, int last)

- 1 if(first > last)
- 2 return -1// not found target value
- 3 int mid = (first + last) / 2;
- 4 if (value == A[mid]) then
- 5 return mid:
- 6 else
- 7 if(value < A[mid])
- 8 BinarySearch(A, value, first, mid 1);
- 9 else if(value > A[mid])
- 10 BinarySearch(A, value, mid + 1, last);

Assuming T(n) is the time we spend when we use binary search and the number of array is n.

When n = 1, the algorithm executes from line1 to line5, It takes a "constant" time, T(1) = 1.

When n > 1, the algorithm will execute on line8 or line 10. For both line, they run with the subarray which has $\frac{n}{2}$ elements. The sum of running time from line6 to line 10 is always $T(\frac{n}{2})$.

Then we have,

$$\begin{cases}
T(1) = 1, & n = 1 \\
T(n) = T(\frac{n}{2}) + T(1), & n > 1
\end{cases}$$

So,
$$T(n) = aT(n/b) + f(n) = T(\frac{n}{2}) + T(1), n > 1.$$
 $a = 1, b = 2 f(n) = 1$

Problem 5:

Solve the recurrence for binary search algorithm using the *substitution method*. For full credit, show your work.

ANS

According to #4, we have

$$T(1) = 1, n = 1$$

$$T(n) = T(\frac{n}{2}) + T(1), n > 1$$

$$T(1) = 1$$
,

$$T(2) = 1 + 1 = log_2 2 + 1$$

$$T(4) = 2 + 1 = log_2 4 + 1$$

$$T(8) = 3 + 1 = log_2 8 + 1$$

$$T(16) = 4 + 1 = log_2 16 + 1$$

We can deduce that T(n) = log n + 1, the big-Oh is O(log n).

Problem 6:

Confirm that your solution to #5 is correct by solving the recurrence for binary search using the *master theorem*. For full credit, clearly define the values of *a*, *b*, and *d*.

ANS

The definition of the master theorem is:

If
$$T(n) = a * T(\frac{n}{b}) + n^d$$
 for a>1, b>1, d≥0

There are three cases:

if
$$d > log_b a$$
 $T(n) = O(n^d)$

else if
$$d = log_b a$$
 $T(n) = O(n^d log n)$ 2

else if
$$d < log_b a$$
 $T(n) = O(n^{log_b a})$ 3

According to #5, we have

$$T(1) = 1, n = 1$$

$$T(n) = T(\frac{n}{2}) + T(1), n > 1$$

when n > 1, we can know that a = 1, b = 2, d = 0

According to the Master Theorem, it's the second case,

$$d = log_b a = 0$$
, $T(n) = O(n^d log n) = O(log n)$

The big-Oh is the same as the complexity of binary search algorithm with recursion, thus it's definitely correct.