- 1. Suppose $c^T\beta$ is an estimable function, i.e., $c^T \in \mathcal{R}(X)$, the row space of X. Then show that
 - (a) $\mathcal{R}(\boldsymbol{X}) = \mathcal{R}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}) = \mathcal{C}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}).$
 - (b) $c^{\mathrm{T}} \in \mathcal{R}(X^{\mathrm{T}}X)$ if and only if $c^{\mathrm{T}}GX^{\mathrm{T}}X = c^{\mathrm{T}}$, where G is any generalized inverse of $X^{\mathrm{T}}X$.

Remark. Note that, to check whether $c^{T} \in \mathcal{R}(X)$ is often a tedious job in practice but from (a) and (b), we get an equivalent condition for estimability of a linear function, i.e., by checking whether $c^{T}GX^{T}X = c^{T}$.

2. Consider the linear model

$$y = X\beta + \varepsilon$$
,

with $\mathbb{E}(\boldsymbol{\varepsilon}) = 0$ and $\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 I$. Suppose $\operatorname{Rank}(\boldsymbol{X}) \leq p$. Suppose $\boldsymbol{c}_1^{\mathrm{T}} \boldsymbol{\beta}$ and $\boldsymbol{c}_2^{\mathrm{T}} \boldsymbol{\beta}$ are both estimable functions, then show that $\operatorname{Cov}[\boldsymbol{c}_1^{\mathrm{T}} \widehat{\boldsymbol{\beta}}, \boldsymbol{c}_2^{\mathrm{T}} \widehat{\boldsymbol{\beta}}] = \sigma^2 \boldsymbol{c}_1^{\mathrm{T}} \boldsymbol{G} \boldsymbol{c}_2$, where \boldsymbol{G} is any generalized inverse of $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$.

- 3. If Rank(\boldsymbol{X}) has full rank, p, then we know $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$ starting from the normal equations as described in the class and we also know $\mathbb{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ is an unbiased estimator. Show:
 - (a) $\operatorname{Cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}$.
 - (b) $c^{T}\beta$ is estimable for any $c^{T} \in \mathbb{R}^{p}$.
 - (c) $\operatorname{Var}(\boldsymbol{c}^{\mathrm{T}}\widehat{\boldsymbol{\beta}}) = \sigma^{2}\boldsymbol{c}^{\mathrm{T}}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{c}$, for any $\boldsymbol{c}^{\mathrm{T}} \in \mathbb{R}^{p}$.
 - (d) $\operatorname{Cov}(\boldsymbol{c_1^{\operatorname{T}}}\widehat{\boldsymbol{\beta}},\boldsymbol{c_2^{\operatorname{T}}}\widehat{\boldsymbol{\beta}}) = \sigma^2\boldsymbol{c_1^{\operatorname{T}}}(\boldsymbol{X}^{\operatorname{T}}\boldsymbol{X})^{-1}\boldsymbol{c_2}$, for any $\boldsymbol{c_1^{\operatorname{T}}},\boldsymbol{c_2^{\operatorname{T}}} \in \mathbb{R}^p$.