

Thalavapalayam, Karur - 639 113.

MULTI FAULT MULTI-LAYER DIAGNOSIS FOR FAULT-TOLERANT NETWORKS-ON-CHIP

PRESENRED BY:

MIDHUN.R KAVINESH. A.S BALAKUMAR.A MOHAMED ANAS. S

GUIDED BY: Ms. S. VASUKI

INTRODUCTION

- ❖ The continuous evolution of new application has become the reason of the invention of some new processor, memory and accelerator cores.
- ❖ Moreover, the fast development and improvement of computation and the complexity of communication have caused the invention of the scalability-centered paradigms.

PROBLEM STATEMENT

Recently, NOC reliability research has made significant strides and has developed a suite of canonical approaches to improve failure resistance including the use of redundant components and logic for self-repair at the circuit layer, redundant wires and error correction codes at the data layer, and reconfiguration and fault-tolerant routing algorithms at the network layer.

OBJECTIVE

- ❖In order to tolerate faults that emerge in operating Networks-on-Chip, diagnosis techniques are employed for fault detection and localization.
- ❖On various network layers, diverse diagnosis methods can be employed which differ in terms of their impact on network performance (e.g., by operating concurrently versus pre-empting regular network operation) and the quality of diagnostic results.

EXISTING SYSTEM

- As the complexity of designs increases and technology scales down into the deep-submicron domain, the probability of malfunctions and failures in the networks-on-chip (NOCs) components increases.
- * Networks-on-Chip constitute the interconnection architecture of future, massively parallel multiprocessors that assemble hundreds to thousands of processing cores on a single chip.

PROPOSED SYSTEM

- Networks-on-chip are inherently fault tolerant or at least gracefully degradable as both, connectivity and amount of resources, provide some useful redundancy.
- *These properties can only be exploited extensively if test and diagnosis techniques support fault detection and error containment in an optimized way.

COMPARISION

S.No	Paper	Methodology	Merits/demerits
1	Fault-tolerant networks-on-chip routing with coarse and fine-grained look-ahead	novel adaptive routing algorithms, namely coarse and fine-grained (FG) look-ahead algorithms	higher throughput and scalability
2	A unified test and fault-tolerant multicast solution for network-on- chip designs	fault-free routers/links	Performance degradation
3	Simple fault-tolerant method to balance load in network-on-chip	Multi Router Fault tolerant (LBMF) routing method	Low Power
4	Reliability assessment of fault tolerant routing algorithms in networks-on-chip: An analytic approach	Efficient fault adaptive routing algorithms	Energy efficient System
5	Fault Tolerant Deadlock-Free Adaptive Routing Algorithms for Hexagonal Networks-on-Chip	hexagonal on-chip network topology	Proposed method in reducing test time.

TOOL USED

❖Xilix 14.7

BASE BLOCK DIAGRAM

PROPOSED BLOCK DIAGRAM

Modules

- Network on Chip (NoC)
 - Router
 - Network interface (NI)
 - Core
 - Physical Link (PL)
 - Scalable Traffic Pattern Up-Scaling Algorithm
- Fuzzy based Traffic Regulation Unit (F-TRU)
- Testing Architecture

SIMULATION RESULTS

Router

CORES

NI

Base Area @ 130 slices

□ Design Overview	^					
🖹 Summary						
🖹 IOB Properties						
🖹 Module Level Utilization						
── 🖹 Timing Constraints						
Pinout Report						
Clock Report						
Static Timing						
Errors and Warnings						
Parser Messages						
Synthesis Messages						
🖹 Translation Messages						
Translation Messages Map Messages	-					
Place and Route Messages						
🖹 Timing Messages						
Bitgen Messages	= =					
All Implementation Messages						
□ Detailed Reports						
Synthesis Report						
🖹 Translation Report						
🖹 Map Report	= =					
🖹 Place and Route Report	=					
Post-PAR Static Timing Report						
Power Report	=					
Bitgen Report	~ E					
Design Properties						
Enable Message Filtering						
Optional Design Summary Contents						
Show Clock Report						
Show Failing Constraints						
Show Warnings						
Show Errors						

BMIA_PROP_TOP Project Status							
Project File:	NoC_Project.xise	Parser Errors:	No Errors				
Module Name:	BMIA_PROP_TOP	Implementation State:	Placed and Routed				
Target Device:	xc6vcx75t-2ff484	• Errors:	No Errors				
Product Version:	ISE 14.7	• Warnings:	391 Warnings (0 new)				
Design Goal:	Balanced	Routing Results:	All Signals Completely Routed				
Design Strategy:	Xilinx Default (unlocked)	Timing Constraints:	All Constraints Met				
Environment:	System Settings	Final Timing Score:	0 (Timing Report)				

Device Utilization Summary					<u>[-1</u>
Slice Logic Utilization	Used	Available	Utilization	Note(s)	
Number of Slice Registers		93,120	1%		
Number used as Flip Flops					
Number used as Latches					
Number used as Latch-thrus					
Number used as AND/OR logics					
Number of Slice LUTs		46,560	1%		
Number used as logic		46,560	1%		
Number using O6 output only	145				
Number using O5 output only	13				
Number using O5 and O6	65				
Number used as ROM	0				
Number used as Memory		16,720	0%		
Number used exclusively as route-thrus					
Number with same-slice register load	0				
Number with same-slice carry load	2				
Number with other load	0				
Number of occupied Slices	114	11,640	1%		

Base Power @ 71%(1.293W)

Base Speed @ 350MHz

Base Latency @ 3.025ns.

CONCLUSION

- *The proliferation of multi-core and many-core chips for performance scaling is making the Network-on-Chip (NOC) occupy a growing amount of silicon area spanning several metal layers.
- To this end, we propose a Permanent Fault Tolerant Router (PFTR) that is capable of tolerating multiple permanent faults in the pipeline. PFTR is designed by making architectural modifications to individual pipeline stages of the baseline NoC router.

REFERENCE

- [1] Intel Xeon Phi Coprocessor, visited March 2015. [Online]. Available: https://software.intel.com/de-de/mic-developer
- [2] International Technology Roadmap For Semiconductors, visited March 2015. [Online]. Available: http://www.itrs.net/
- [3] W. Dally and B. Towles, "Route packets, not wires: on-chip interconnection networks," in Proc. of Design Automation Conf. (DAC), 2001, pp. 684–689.
- [4] S. Borkar, "Designing reliable systems from unreliable components: the challenges of transistor variability and degradation," IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.
- [5] J. Lienig, "Electromigration and its impact on physical design in future technologies," in Proc. of ACM Int'l Symp. on Physical Design (ISPD), 2013, pp. 33–40.

Thank you