Радиотехническая работа 24 Безынерционные линейные цепи Выполнил Жданов Елисей Б01-205

1 Оборудование:

Программное обеспечание MicroCap 10.0.7.0

2 model 1 (Тепловой шум Джонсона)

model 1_1 (Первое знакомство)

(a) Исследуем модель резистора как источника шумового напряжения, изучим зависимость шумового напряжения от R, получим что шум растет как \sqrt{R} .

Рис. 1: Зависимость шумового напряжения от R

(b) Измерим уровень шума σ на выводе резистора в полосе F = 1 МГц.

	1							1000k
σ	4u	5,7u	8u	11,4u	16u	12,7u	40u	128u

Таблица 1: Зависимость уровня шума σ от R

(c) Перейдем к модели источника тока, получаем, что с увеличением R1 ток падает как $1/\sqrt{R}$ (необходимо увеличить масштаб), а напряжение растет как \sqrt{R} .

Рис. 2: R = [1k, 16k| Log2]

Рис. 3: R = [1k, 1000k| Log10]

Рис. 4: Шумовые напряжение и ток в модели с источником тока

model 1_2 (Сложение шумов)

- (а) Изучим шумы в схеме с последовательным соединением, проверим закон сложения шумовых напряжений.
 - Закон сложения шумовых напряжений выполняется.
- (b) Перейдем к схеме с параллельным соединением (рис. 6). Закон сложения

Рис. 5: Варьирование R = [0,1k, 1k| 1k], R = [0,2k, 2k| 2k]

Рис. 6: Варьирование R = [1k, 100k| 99k], R = [2k, 100k| 98k]

model 1_3 (Шум в делителе напряжения)

Рис. 7: Приведенное ко входу напряжение e_n от R

Рис. 8: Нешумящий резистор

При подстановке в формулы $R_s=8$ кОм и $e_n=11.515$ нВ, действительно получим $K_n==T_n==0$.

3 model 2 (Дробовой шум диода Шоттки)

(a) Проверим выполнение закона $\sqrt{I_0}$:

•
$$I_{01} = 1\mu \Rightarrow e_{01} = 566f$$
;

•
$$I_{02} = 10\mu \Rightarrow e_{02} = 1.79p \approx \sqrt{10}e_{01}$$
;

•
$$I_{03} = 100\mu \Rightarrow e_{03} = 5.659p \approx \sqrt{100}e_{01}$$
;

•
$$I_{04} = 1000 \mu \Rightarrow e_{04} = 17.832 p \approx \sqrt{1000} e_{01}$$
;

Рис. 9: Микротоки(2 1 1)

Проверим выполнение закона $\sqrt{I_0}$:

•
$$I_{01} = 1\mu \Rightarrow e_{01} = 17.83p$$
;

•
$$I_{02} = 2\mu \Rightarrow e_{02} = 25.12p \approx \sqrt{2}e_{01}$$
;

•
$$I_{03} = 4\mu \Rightarrow e_{03} = 35.26p \approx \sqrt{4}e_{01}$$
;

•
$$I_{04} = 8\mu \Rightarrow e_{04} = 49.13p \approx \sqrt{8}e_{01}$$
;

•
$$I_{05} = 16\mu \Rightarrow e_{05} = 67.55p \approx \sqrt{16}e_{01}$$
;

•
$$I_{06} = 32\mu \Rightarrow e_{06} = 90.66p \approx \sqrt{32}e_{01}$$
;

Рис. 10: Умеренные токи

Для перевернутого диода поведение при низких токах будет идентично с точностью до значений (дробовой шум от направления не зависит). Напряжение пробоя диода измерим, пустив по нему большой ток (см рис, варьирование [1m, 32, log 2]). Пробой происходит при порядка 200 пА <-> 200 пВ.

Рис. 11: Напряжение пробоя

(b) Найдем r_d как $r_d \approx KR_1$, $R_1 = 10k$:

•
$$I_{01} = 1m \Rightarrow K_1 = 5.16m \Rightarrow r_d = 51.6 \text{ Om};$$

•
$$I_{02} = 100 \mu \Rightarrow K_2 = 49.24 m \Rightarrow r_d = 492.4 \text{ Om};$$

•
$$I_{03} = 10\mu \Rightarrow K_3 = 341.56m \Rightarrow r_d \approx 3415.6 \text{ Om};$$

•
$$I_{04} = 1\mu \Rightarrow K_4 = 841.71m \Rightarrow r_d \approx 8417.1 \text{ Om};$$

Рис. 12: $K = r_d/(R_1 + r_d)$

Рис. 13: e(f) для I = [1u, 10m|Log10]

- (c) Проверим формулу $e(f)=i(f)r_d$, возьмем $i(f)=\sqrt{2*e*I_{0i}}$:
 - $I_{01} = 1\mu \Rightarrow e(f)_{\text{Teop}} = 29.2n, e(f)_{\text{прак}} = 30.1n;$
 - $I_{02} = 10\mu \Rightarrow e(f)_{\text{Teop}} = 8.8n, e(f)_{\text{прак}} = 9.3n;$
 - $I_{03} = 100 \mu \Rightarrow e(f)_{\text{Teop}} = 2.7n, e(f)_{\text{прак}} = 2.9n;$
 - $I_{04} = 1m \Rightarrow e(f)_{\text{Teop}} = 1005p, e(f)_{\text{прак}} = 928p;$
 - $I_{05} = 10m \Rightarrow e(f)_{\text{Teop}} = 410p, e(f)_{\text{прак}} = 304p;$
- (d) Установим диод в режим пробоя и измерим максимальное шумовое напряжение на невысоких частотах. Оно составит 163 нВ. Ток I_1 составит 7.4 нА.

Рис. 14: e(f) для I = [1n, 1u|Log1.1]

уровень же шума σ примет следующую зависимость от частоты

Рис. 15: $\sigma(f)$ для I1 = 7.4

model 3 (Фильтрация шумов) 4

Интегрирующая цепь

Рис. 16: Граничная частота составляет
$$f_h=10$$
 кГц (a) $\sigma_{\text{тeop1}}=n_1\sqrt{Fn}=12.8n\sqrt{\pi/2\cdot 10000}=1.63\mu\approx\sigma_{\text{Teop2}}=\sqrt{\frac{kT}{C}}=1.61\mu$

Рис. 17: Уровень шума

Снимем зависимость шумового напряжения от R_1 :

•
$$R_1 = 2k => n_1(f) = 5.8n$$
;

•
$$R_1 = 6k => n_1(f) = 10n$$
;

•
$$R_1 = 10k \Rightarrow n_1(f) = 12.8n$$
;

•
$$R_1 = 14k => n_1(f) = 15.6n$$
;

•
$$R_1 = 16k => n_1(f) = 16.3n$$
;

Уровень шума на выходе не зависит от R_1 , поскольку шум создает резистор, а значит $\sigma=\sqrt{P}=\sqrt{\frac{kT}{C}}$ от R не зависит

Рис. 18: Варьирование R_1 = [2k, 16k|4k]

Снимем зависимость уровня шума от C_1 :

•
$$C_1 = 0.8k \Rightarrow n_1(f) = 2.27\mu$$
;

•
$$C_1 = 1.2k => n_1(f) = 1.85\mu$$
;

•
$$C_1 = 1.6k => n_1(f) = 1.60\mu$$
;

•
$$C_1 = 2.0k => n_1(f) = 1.44\mu$$
;

•
$$C_1 = 2.4k => n_1(f) = 1.31\mu$$
;

Рис. 19: Варьирование C_1 = [0.8n, 2.4n|0.4n]

Полосовой LC-фильтр

Рис. 20: $f_0 = 100k$, $\Delta f = 20k$, Q = 5

Рис. 21: $n_2(f_0) = 10n$, $\sigma = 1.82\mu$

Проверим формулу $\sigma = n_2 \sqrt{F_n} = \sqrt{\frac{kT}{C}} = 1.80$, формула работает.

Рис. 22: Варьирование R_2 = [2.3k, 10.3k|4k]

Зависимость $n_2(f_0)$ от R_2 :

•
$$R_2 = 2.3k => n_2 = 6.08n$$
;

•
$$R_2 = 6.3k => n_2 = 10.08$$
;

•
$$R_2 = 10.3k => n_2 = 13.04$$
;

Уровень шума на выходе не зависит по той-же самой причине, формула для $\sigma = \sqrt{\frac{kT}{C}}$

Рис. 23: Варьирование $C_2 = [0.75n, 1.75n|0.5n]$

Зависимость σ от C_2 :

•
$$C_2 = 0.75n => \sigma = 2.34\mu$$
;

•
$$C_2 = 1.25n => \sigma = 1.82\mu$$
;

•
$$C_2 = 1.75n => \sigma = 1.52\mu$$
;

Рис. 24: Варьирование L_2 = [1m, 3m|1m]

Уровень шума на выходе не зависит от индуктивности по формуле для $\sigma = \sqrt{\frac{kT}{C}}$.

LC-фильтр нижних частот

(a) Характеристики:
$$K(p) = \frac{1}{p^2 + 2\delta p + 1}$$
, $p = \frac{jf}{f_0}$, $f_0 = 100k$, $\rho = 1260$, $Q = \frac{1}{2\delta} = 5$

Рис. 25: $n_3(f_0)=10.2n$, $n_3(f_0/10)=2.05n$, $\sigma=1.82\mu$

Разумеется значение n_3 будет совпадать с шумовым напряжением резистора, поскольку при низких частотах фильтр себя не проявляет (конденсатор - обрыв, катушка - провод) и весь шум идет от резистора на узел n_3 .

Оценим шумовую полосу $F_{n\text{Teop}} = \frac{\pi}{2} \frac{f_0}{Q} = 31k$, $F_{n\text{прак}} = 30.9k$

Рис. 26: Варьирование R3 = [100,400|150]

R3	400	250	100
$n_3(f_0)$	8.1n	10.3n	15.9n
$n_3(f_0/10)$	1.1n	2n	2.6n
σ	1.8μ	1.8μ	1.8μ

Рис. 27: Варьирование C3 = [0.75n, 1.75n |0.5n]

C3	0.75n	1.25n	1.75n
$n_3(f_0)$	13.2n	10.2n	8.8n
$n_3(f_0/10)$	2.1n	2.1n	2.1n
σ	2.4μ	1.8μ	1.5μ

Рис. 28: Варьирование L3 = [1m, 3m |1m]

L3	1m	2m	3m
$n_3(f_0)$	7.4n	10.2n	12.6n
$n_3(f_0/10)$	2.1n	2.1n	2.1n
σ	1.8μ	1.8μ	1.8μ

LC-фильтр верхних частот

Рис. 29: $n_4(f_0)=10.3n$, $n_4(10f_0)=2.0n$, $\sigma=2.7\mu$

Разумеется значение $n_4(10f_0)$ будет совпадать с шумовым напряжением резистора, поскольку при высоких частотах фильтр себя не проявляет (конденсатор - провод, катушка - обрыв) и весь шум идет от резистора на узел n_3 .

Рис. 30: Варьирование R4 = [100,400|150]

R3	400	250	100
$n_4(f_0)$	8.2n	10.2n	15.9n
$n_4(10f_0)$	1.1n	2n	2.6n
$\sigma(10f_0)$	3.0μ	2.7μ	2.2 μ

Рис. 31: Варьирование C4 = [0.75n, 1.75n | 0.5n]

C4	0.75n	1.25n	1.75n
$n_4(f_0)$	13.4n	10.2n	8.6n
$n_4(10f_0)$	1.9n	1.9n	1.9n
$\sigma(10f_0)$	3.1μ	2.7μ	2.5μ

Рис. 32: Варьирование L4 = [1m, 3m |1m]

L3	1m	2m	3m
$n_4(f_0)$	7.4n	10.4n	12.6n
$n_4(10f_0)$	2.0n	2.0n	2.0n
$\sigma(10f_0)$	2.6μ	2.6μ	2.6μ

5 model 4 (Шумящие фильтры)

Полосовой LC-фильтр

(a) Параметры первого фильтра: $f_0 = 100kHz$, $\rho = 1260$, Q = 3

Рис. 33: $f_0=100K$, $\Delta f=32K$, K=0.5, с теорией соотносится

Рис. 34: $n(f_0) = 1.32n$, $n(f_0/10) = 1.89n$, $\sigma = 1.82\mu$, оба резистора шумящие На частоте резонанса сопротивление последовательной LC-цепи становится нулевым. Тогда шум на выходе определяется параллельным соединением двух резисторов R. Вдали от резонанса высокий импеданс LC-цепи изолирует второй резистор от первого. Шум на выходе при этом увеличивается до шума е2 одного резистора R. Коэффициент же передачи максимален на резонансной частоте и быстро падает при уходе от нее. Поэтому коэффициент шума минимален в точке резонанса, оказываясь равным здесь коэффициенту шума делителя напряжения, и быстро растет при удалении от резонанса.

Рис. 35: $n(f_0)=1.01n$, $n(f_0/10)=1.86n$, $\sigma=5.9\mu$, R_{s1} - не шумящий

Рис. 36: $n(f_0)=1.01n$, $n(f_0/10)=30p$, $\sigma=240n$, R_1 - не шумящий Для частоты $f_0/10$ закон очевидно выполнен. Для частоты f_0 , учитывая формулу параллельного соединения резисторов, получим требуемое соответствие.

(c) . $\label{eq:condition} \mbox{Формула коэффициента шума } K = 20 lg \left(\frac{e_n(f)}{\sqrt{4kTR}} \right)$

Рис. 37: $e(f_0)=2.6n$, $e(f_0/10)=110.1n=>K_n(f_0/10)\approx 36$, $K_n(f_0)\approx 3$