Similarity of Triangles

Srihari S

Question

Construction

Codesandfigures

Construction methods

Construction

Construction

Construction

Solution

a L

Similarity of Triangles

Srihari S

College of Engineering - Guindy

June 7, 2020

Question

Similarity of Triangles

Srihari

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Construction

Solution

a h

Exercise 8.1(Q no.51)

O is a point in the interior of $\triangle ABC$. D is a point on OA. If DE \parallel OB and DF \parallel OC. Show that EF \parallel BC.

Codes and Figures

Similarity of Triangles

Srihari S

Questio

Construction Codesandfigures

Construction methods

Construction methods

Construction

Solution

a

The python code for the figure is

./codes/similar triangle.py

The latex- tikz code is

 $./\mathsf{figs}/\mathsf{constructionpic}.\mathsf{tex}$

The above latex code can be compiled as standalone document

 $./ figs/construction pic_standalone.tex$

Similarity of Triangles

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Construction

Solution

ь

(a) By Python

Similarity of Triangles

Srihari S

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Constructio

Solution

a

Figure: By Latex-tikz

Similarity of Triangles

Srihari S

Questior

Construction

Codesandfigures

Construction methods

Construction methods

Construction

Solutio

The values used for constructing the triangles in both Python and LaTeX-Tikz is given below:

Initial Input Values	
Parameter	Value
a	5
b	6
С	4

Table: To construct $\triangle ABC$

Finding the coordinates of various points of $\triangle ABC$:

From the information provided, let

$$B = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad A = \begin{pmatrix} p \\ q \end{pmatrix}$$

Given a point O, we need to determine whether it lies inside $\triangle ABC$. Consider 3 vectors v_1 , v_2 and v_3 which are orthogonal to vectors AB,BC and CA which are ordered counterclock-wise.

AB = B - A

BC = C - B

$$CA = A - C$$

Similarity of Triangles

Srihari

Questior

Construction

Codesandfigures

Construction methods

Construction methods

methods

Construction nethods

Solution

a b As v_1 is orthogonal to AB, dot product of v_1 and AB is 0. This condition is satisfied when $v_1 = \begin{pmatrix} AB[1] \\ -AB[0] \end{pmatrix}$ Similarly $v_2 = \begin{pmatrix} BC[1] \\ -BC[0] \end{pmatrix}$ $v_3 = \begin{pmatrix} CA[1] \\ -CA[0] \end{pmatrix}$

Position vector of O w.r.t A is $v_1' = O - A$ Position vector of O w.r.t B is $v_2' = O - B$ Position vector of O w.r.t C is $v_3' = O - C$ Now we compute the dot products:
O lies inside $\triangle ABC$ only if dot_1 , dot_2 and dot_3 are all $\geqslant 0$, where $dot_1 = v_1 \cdot v_1'$ $dot_2 = v_2 \cdot v_2'$ $dot_3 = v_3 \cdot v_3'$.

Similarity of Triangles

Construction methods

Let the arbitrary interior point O be represented as $\binom{2}{1.5}$.

D is a point on line AO such that DE || OB and DF || OC.

Determination of points D,E and F:

As DE || OB, by basic proportionality theorem the points E and D, divide the lines AB and AO respectively in the same ratio

Hence we choose points E and D such that

$$\frac{AE}{EB} = \frac{AD}{DO} \tag{1}$$

Similarly point F is chosen such that the points F and D, divide the lines AC and AO respectively in the same ratio such that

$$\frac{AF}{FC} = \frac{AD}{DO} \tag{2}$$

Derived Values	
Parameter	Value
р	0.5
q	3.96

Table: To construct $\triangle ABC$

Similarity of Triangles

Question

Construction

Codesandfigures

Construction methods

Construction methods

Construction methods

Solution

If the point D divides the line AO in the ratio x:y, the coordinates of D is given by section formula as:

$$D = \frac{yA + xO}{x + y} \tag{3}$$

Similarly the coordinates of points E and F is given by

$$\mathsf{E} = \frac{y\mathsf{A} + x\mathsf{B}}{x + y} \tag{4}$$

$$F = \frac{yA + xC}{x + y} \tag{5}$$

Let us assume the points divide the respective lines in the ratio 1:1. Then the coordinates of points D, E and F is

$$D = \begin{pmatrix} 1.25 \\ 2.73 \end{pmatrix} \qquad E = \begin{pmatrix} 0.25 \\ 1.98 \end{pmatrix}$$

$$F = \begin{pmatrix} 2.75 \\ 1.98 \end{pmatrix}$$

To check whether D lies on line AO: Let AD = D - A

$$AO = O - A$$

D lies on AO if the below equation is satisfied:

$$\frac{AD[0]}{AD[1]} = \frac{AO[0]}{AO[1]}$$
 (6)

Solution

Similarity of Triangles

Silliali

Questior

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Construction methods

Solution

a b $\triangle EAD \sim \triangle BAO$ by AAA Similarity: Since DE \parallel OB,

1 $\angle DEA = \angle OBA$ {Alternate Interior Angles}

2 $\angle ADE = \angle AOB$ {Alternate Interior Angles}

③ $\angle EAD = \angle BAO$ {Common angle}

Therefore

$$\frac{AE}{AB} = \frac{AD}{AO} \tag{7}$$

Solution

Similarity of Triangles

orman

Questior

Construction Codesandfigures

Construction methods

Construction methods

methods Construction

Caludan

Solution

a b Similarly $\triangle FDA \sim \triangle COA$ by AAA Similarity: Since DF \parallel OC,

- **1** $\angle DFA = \angle OCA$ {Alternate Interior Angles}
- **2** $\angle ADF = \angle AOC$ {Alternate Interior Angles}
- **3** $\angle FAD = \angle CAO$ {Common angle}

Therefore

$$\frac{AF}{AC} = \frac{AD}{AO} \tag{8}$$

Construction methods

methods

Solutio

Solution

Hence from the above we conclude.

$$\frac{AF}{AC} = \frac{AE}{AB} = \frac{AD}{AO} \tag{9}$$

As the ratio of the sides is the same, \triangle ABC \sim \triangle AEF, which means \angle AFE = \angle ACB and \angle AEF = \angle ABC as similar triangles have same angles. i.e.

$$\mathsf{EF} \parallel \mathsf{QR} \tag{10}$$

Hence Proved.