计算机学院专业必修课

计算机组成

时序电路(寄存器)

高小鹏

北京航空航天大学计算机学院 系统结构研究所

Great Idea #1: Levels of Representation/Interpretation

提纲

- 内容主要取材
 - □ CS617的18讲
 - □《数字设计和计算机体系结构》的第2章
 - □《数字设计和计算机体系结构》的第3章

- RS锁存器可以自行保持输出状态
 - □ 各种触发器的基本构成部分
- 分析RS锁存器的工作原理

- □ 结构特征: 2个或非门输出信号交叉反馈
 - ◆ 2个输入信号: 1个来自外部输入, 1个来自另一门的输出
- 输出诉求:2个输出值应该为互补(一个若为0,另一个则1)
- □ 符号
 - ◆ Q_{prev}/Q : 代表推理前/后的值

变种表示 Q、Qⁿ Qⁿ、Qⁿ⁺¹ Q、Q_{next}

$$Q = \overline{R|\bar{Q}_{prev}}$$

$$\bar{Q} = \overline{R|Q_{prev}}$$

- 先分析: 仅由外部输入就能直接决定输出值的组合
 - ◆ 以或非门为例:如果任意外部输入为1,则输出必为0
- □ 再分析: 对于外部输入不能直接决定输出值的组合
 - 假设 Q_{prev} 值然后推理,直至推理得出的Q和假设的 Q_{prev} 一致

			•		
序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Х	1	0
3	1	1	X	0	0
4.1	0	0	0	0	1
4.2	0	0	1	1	0

使用价值: 可以先用1或2设置Q的值, 然后用4保持住Q的值

- □ 1、去除输出不合理的那组
 - *Q_{prev}*和*Q* 同值: 不符合规定
- □ 2、去除*Qprev*输入列

□ RS锁存器功能:清除、置位、保持

功能	S	R	Q	$ar{Q}$
清除	0	1	0	1
置位	1	0	1	0
保持	0	0	Q_{prev}	$ar{Q}_{prev}$
コヒミ士	1	1	1	1
オトノム				4

用与非门构造锁存器

- 课堂练习

功能	S	R	Q	$ar{Q}$
	1	1		
	0	1		
	1	0		
	0	0		

用与非门构造锁存器

- 课堂练习

功能	S	R	Q	$ar{Q}$
保持	1	1 Q_{prev}		$ar{Q}_{ ext{prev}}$
清除	0	1	0	1
置位	1	0	1	0
非法	0	0		

RS锁存器的局限性

- 在数字系统中,为协调各部分电路运行,要求 电路在时钟信号控制下统一动作
 - □ 仅在时钟边沿处(0→1) 保存输入
- RS锁存器本质: 没有时间上的同步关系
 - □ 信号之间难以定序
 - □ R/S任一改变都可能造成Q改变
 - ◆ R/S的有效值、有效的先后顺序、时间长短均产生影响
- ▶ 结果:由于RS锁存器的值与时间难以分离, 致使RS难以使用

RS锁存器的局限性

- 解决思路: RS锁存器增加一个控制端
 - □ 只有控制端有效(1)时, RS锁存器才能动作
 - □ 即只有控制端有效(1)时, RS锁存器输出由输入决 定,否则RS锁存器保持前次值
- ▶ 这种控制信号通常为周期振荡信号: 方波
 - □ 也称为时钟信号
 - □ CLK、Clock

D Latch Internal Circuit^{1/5}

CLK	D	\overline{D}	S	R	Q	$ar{Q}$
0	Χ					
1	0					
1	1					

功能	S	R	Q	$ar{Q}$
保持	0	0	$Q_{ m prev}$	$ar{Q}_{ ext{prev}}$
清除	0	1	0	1
置位	1	0	1	0
非法	1	1		

D Latch Internal Circuit^{2/5}

CLK	D	\overline{D}	S	R	Q	$ar{Q}$
0	X	X	0	0	$Q_{ m prev}$	$ar{Q}_{ exttt{prev}}$
1						
1						

功能	S	R	Q	$ar{Q}$
保持	0	0	$Q_{ m prev}$	$ar{Q}_{ extsf{prev}}$
清除	0	1	0	1
置位	1	0	1	0
非法	1	1		

D Latch Internal Circuit^{3/5}

CLK	D	\overline{D}	S	R	Q	$ar{Q}$
0	Χ	Х	0	0	$Q_{ m prev}$	$ar{Q}_{ exttt{prev}}$
1	0	1	0	1	0	1
1						

	功能	S	R	Q	$ar{Q}$
	保持	0	0	$Q_{ m prev}$	$ar{Q}_{ ext{prev}}$
	清除	0	1	0	1
	置位	1	0	1	0
ŀ	非法	1	1		

D Latch Internal Circuit^{4/5}

CLK	D	\overline{D}	S	R	Q	$ar{Q}$
0	Χ	X	0	0	$Q_{ m prev}$	$ar{Q}_{ exttt{prev}}$
1	0	1	0	1	0	1
1	1	1	1	0	1	0

	功能	S	R	Q	$ar{Q}$
	保持	0	0	$Q_{ m prev}$	$ar{Q}_{ ext{prev}}$
	清除	0	1	0	1
	置位	1	0	1	0
ŀ	非法	1	1		

D Latch Internal Circuit^{5/5}

CLK	D	\overline{D}	S	R	Q	$ar{Q}$
0	X	Χ	0	0	$Q_{ m prev}$	$ar{Q}_{ exttt{prev}}$
1	0	1	0	1	0	1
1	1	1	1	0	1	0

		/只 +土	Λ		rev	$ar{Q}_{ extsf{prev}}$
用D和CLK区分开	7	信	— 8 7		0	1
			7 7	ר ו ר	1	0
and Computer Architecture, 2 nd Edition, 2012	Cha	非法	1	1		

功能

S

R

VENTIA

D Latch

- Two inputs: *CLK*, *D*
 - CLK: controls when the output changes
 - -D (the data input): controls what the output changes to
- Function
 - When CLK = 1,
 D passes through to Q (transparent)
 - When CLK = 0,Q holds its previous value (opaque)
- Avoids invalid case when $Q \neq \text{NOT } \overline{Q}$

X

 Q_{prev}

D Latch的局限

- 本质是电平缓冲器
 - □ 在一个时钟周期内,Q可以随D多次翻转
- CLK还没有完全达到对时钟的设计初衷

VENTIA

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q
- Thus, on the edge of the clock (when *CLK* rises from $0 \rightarrow 1$)
 - D passes through to Q

CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{nr}	ev $\overline{\overline{Q}_{prev}}$
1	0	1	0	1	0^{r}	1
1	1	0	1	0	1	0

D-FF

D Latch vs. D Flip-Flop

Q (latch)

Q (flop)

CLK	D	D	S	R	Q	Q
0	X	X	0	0	$Q_{pr\epsilon}$	\overline{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

D Latch vs. D Flip-Flop

D Flip-Flop

- Inputs: CLK, D
- Function
 - Samples D on rising edge of CLK
 - When *CLK* rises from 0 to 1, *D* passes through to *Q*
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of CLK
- Called *edge-triggered*
- Activated on the clock edge

Flip-Flop Timing Behavior (1/2)

- Edge-triggered D-type flip-flop
 - This one is "positive edge-triggered"
- "On the rising edge of the clock, input d is sampled and transferred to the output. At other times, the input d is ignored and the previously sampled value is retained."
- Example waveforms:

Flip-Flop Timing Behavior (2/2)

- Setup Time: how long the input must be stable before the CLK trigger for proper input read
- Hold Time: how long the input must be stable after the CLK trigger for proper input read
- "CLK-to-Q" Delay: how long it takes the output to change, measured from the CLK trigg

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example: 2:1 Mux

Multiplexer Implementations

Logic gates

Sum-of-products form

$$Y = D_0 \overline{S} + D_1 S$$

Q:

4选1 MUX逻辑表达式?

A:

- 1)4选1,故需要2个控制信号
- 2) 输入为2控制信号的压缩表

	s	D_1	D_0	Y	S	Υ
_	0	0	0	0	0	D_0
	0	0	1	1	1	D_1
	0	1	0	0		
	0	1	1	1		
	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	1		

Enabled Flip-Flops

- **Inputs:** *CLK*, *D*, *EN*
 - The enable input (EN) controls when new data (D) is stored
- Function
 - -EN = 1: D passes through to Q on the clock edge
 - **E**N = **0**: the flip-flop retains its previous state

Internal Circuit

Resettable Flip-Flops

- Inputs: CLK, D, Reset
- Function:
 - **Reset** = 1: Q is forced to 0
 - **Reset** = **0**: flip-flop behaves as ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop

Internal

- 学习在Logisim中输入真值表,自动综合出组合逻辑。电路功能如下:
 - □ 输入S[2:0]与输出Q[2:0]对应关系如下
 - 000: 010
 - 001: 101
 - ◆ 010: 110
 - 011: 111
 - ◆ 100: 000
 - ◆ 101: 001
 - 110: 010
 - 111: 011
 - □ 阅读User's Guide中的Combinational analysis, 然后在 Logisim中输入真值表,自动产生电路

- 用组合逻辑设计一个可以完成循环左移功能的8位移 位器
 - □ D[7:0]: 移位器的8位输入
 - □ Q[7:0]: 移位器的8位输出
 - □ S[2:0]: 循环移位控制
 - ◆ S[2:0]=000b, 无循环左移
 - ◆ S[2:0]=001b,循环左移1位
 - ◆ 依次类推
 - ◆ S[2:0]=111b,循环左移7位
 - □ WORD: 给出Q7~Q0的逻辑表达式
 - □ Logisim: 测试验证(不提交)

《数字设计》	Logisim(不提交)	WORD
2.24	✓	✓
3.1~3.3		✓
3.5	✓	✓

• 《数字设计与计算机体系结构》

《数字设计》	Logisim(不提交)	WORD
3.6	✓	1、给出真值表
3.9	✓	2、简要说明工作
3.10	✓	原理