# **Rucksack Problem**

Algorithmen und Datenstrukturen II

Sebastian Baumann, Korbinian Karl, Ehsan Moslehi June 23, 2019

Hochschule für Angewandte Wissenschaften München

#### **Table of contents**

- 1. Beschreibung des Problems
- 2. Lösungsansätze

# Beschreibung des Problems

# Rucksack Problem



## Mathematische Beschreibung

#### Gegeben:

- Ggegenstände 1, 2, 3, ..., *n* 
  - w<sub>i</sub> : Wert vom Gegenstand i
  - $v_i \in \mathbb{N}$  : Volumen vom Gegenstand i
- ullet Rucksack mit dem Volumen  $V\in\mathbb{N}$

#### Gesucht:

Eine Rucksackfüllung mit maximalen Gesamtwert, wobei das Volumen V nicht überschritten werden darf.

$$max\Big\{\sum_{i=1}^n w_i t_i \mid \sum_{i=1}^n v_i t_i \leq V, \forall i: t_i \in \{0,1\}\Big\}$$

3

# Mathematische Beschreibung

Ganzzahliges Lineares Optimierungsproblem

## Mathematische Beschreibung

Ganzzahliges Lineares Optimierungsproblem NP-Vollständig

Lösungsansätze

- 1. Brute Force
- 2. Greedy
- 3. Dynamische Programmierung



Figure 2: Probiere alle Teilmengen!

Optimale globale Lösung wird gefunden.

Optimale globale Lösung wird gefunden.

**Exponentielle Laufzeit**  $O(2^n)$ 

# Greedy Algorithmus

#### Strategien:

1. Absteigende Sortierung nach Wert

Packe solange Gegenstände in den Rucksack, bis kein Gegenstand mehr rein passt!

#### Strategien:

- 1. Absteigende Sortierung nach Wert
- 2. Aufsteigende Sortierung nach Volumen

Packe solange Gegenstände in den Rucksack, bis kein Gegenstand mehr rein passt!

#### Strategien:

- 1. Absteigende Sortierung nach Wert
- 2. Aufsteigende Sortierung nach Volumen
- 3. Absteigende Sortierung nach Wertdichte  $d_i = rac{w_i}{v_i}$

Packe solange Gegenstände in den Rucksack, bis kein Gegenstand mehr rein passt!

Optimale globale Lösung wird **NICHT** gefunden.

Optimale lokale Lösung wird gefunden.

Optimale globale Lösung wird **NICHT** gefunden.

Optimale lokale Lösung wird gefunden.

**Laufzeit**  $O(n \cdot \log n)$ 

**Dynamische Programmierung** 

# **Dynamische Programmierung**

| V:<br>I: | 0 | 1 | 2 | 3 |
|----------|---|---|---|---|
| 0        | 0 | 0 | 0 | 0 |
| 1        | 0 | 0 | 0 | 0 |
| 2        | 0 | 0 | 0 | 0 |
| 3        | 0 | 0 | 0 | 0 |
| 4        | 0 | 0 | 0 | 0 |
| 5        | 0 | 0 | 0 | 0 |

