고급 컴퓨터 수학

소비자 생필품 및 서비스 가격정보

신대니 신민석 신민주 심현솔

CHAPTER. 1

생필품 이란?

- 일상생활에 반드시 있어야 할 물품
- 의식주 중 '식' 즉, 먹거리 위주로 세부 주제 선정 추석 시기에 차례상에 올라가는 식자재들 위주로 조사

세부선정

식자재 종류

- 소고기 beef
- 돼지고기 pork
 - 달걀 egg
- 시금치 spinach
 - 참조기 fish

지역&시기

- 14/09, 15/10 등 추석과 가장 가까운 달

- 서울특별시의 대형마트

식자재 가격

- 5종의 식자재 + 고등어

- 지역과 판매처를 구분해 데이터를 추출하기 어려워 평균 가격으로 분석

-14, 15년도 데이터가 없는 경우 발생

- 19년도 이유없는 참조기 가격 폭등 (경위 확인을 위해 고등어 가격도 함께 분석)

세부주제변경

- 시기를 추석에서 14/01 ~ 21/11로 확장
- 식자재 종류를 육류로 한정(소고기, 돼지고기)
- 월별 데이터, 소고기와 돼지고기를 활용한 회귀 분석
- 특정 수식, 소고기와 돼지고기를 활용한 예측 분석

CHAPTER. 2

회귀분석

분석 목표

상관관계 분석 결과를 통해, 소고기와 돼지고기가 시간 변화 에 따른 가격에 상관관계가 있는지 확인

Data 자료 출처

한국 소비자원 참가격

Method, Toolbox

Curve Fitting Toolbox의 fit Method를 사용함

(Statistics and Machine Learning Toolbox의 fitlm을 통해 서도 가능하다.)

결정 계수란?

$$R^{2} = \frac{RSS}{TSS} = 1 - \frac{ESS}{TSS}$$
$$R^{2}_{adj} = 1 - \left(\frac{n-1}{n-p}\right) \frac{ESS}{TSS}$$

결정 계수 R²의 범위는 0에서 1이다

- 1에 가까울 수록 종속변수의 값을 예측하는 데 독립변수가 유용하다는 의미이다.
- 0에 가까울 수록 종속 변수의 값을 예측하는 데 독립변수가 무의미 하다는 의미이다

결정계수는 회귀모델의 설명력을 의미한다

소고기 - 기본 피팅 분석

기본 피팅에서 1차, 2차, 3차를 사용

※ 선형 회귀와 2차 회귀의 결과가 거의 차이가 없어 작은 이미지로는 구분이 불가능함

소고기 - 선형 회귀 분석

- Robust를 적용하면 결정계수가 더 높게 나옴
- 아웃라이어가 존재한다는 가정을 실험 결과의 향상으로 설명할 수 있음
- 21년 12월: 14392
- 22년 1월: 14460
- 22년 2월: 14528
- 22년 3월: 14596
- 22년 4월: 14664
- 22년 5월: 14733

소고기 - 2차 회귀 분석

- Robust를 적용하면 결정계수가 0.84XX까지 올라감
- 가장 좋은 결과를 보이는 분석
- 21년 12월: 14892
- 22년 1월: 14994
- 22년 2월: 15097
- 22년 3월: 15201
- 22년 4월: 15306
- 22년 5월: 15411

소고기 - 3차 회귀 분석

- Robust를 적용하면 결정계수가 0.80XX까지 올라감

- 21년 12월: 15421

- 22년 1월: 15601

- 22년 2월: 15786

- 22년 3월: 15977

- 22년 4월: 16174

- 22년 5월: 16376

돼지고기 - 기본 피팅 분석

기본 피팅에서 1차, 2차, 3차를 사용

돼지고기 - 선형 회귀 분석

- Robust를 적용하면 오히려 성능 저하가 발생함

- 21년 12월: 2873

- 22년 1월: 2885

- 22년 2월: 2897

- 22년 3월: 2908

- 22년 4월: 2920

- 22년 5월: 2931

돼지고기 - 2차 회귀 분석

- Robust를 적용하면 오히려 성능 저하가 발생함

- 21년 12월: 3122

- 22년 1월: 3149

- 22년 2월: 3177

- 22년 3월: 3204

- 22년 4월: 3232

- 22년 5월: 3261

돼지고기 - 3차 회귀 분석

- Robust를 적용하면 오히려 성능 저하가 발생함
- 가장 좋은 결과를 보이는 분석
- 21년 12월: 3210
- 22년 1월: 3249
- 22년 2월: 3288
- 22년 3월: 3328
- 22년 4월: 3368
- 22년 5월: 3410

상관개 분석

상관 계수란?

- -R = corrcoef(A,B)
- 상관계수 R의 범위는 -1에서 1 사이이다.
 - 1. 1에 가까우면 상관 관계가 있음을 나타낸다.
 - 2. -1에 가까우면 반 상관 관계가 있음을 나타낸다.
 - 3. 0에 가까우면 상관 관계가 없음을 나타낸다.

```
>> beef_r = corrcoef(month, beef)
beef_r =

1.0000     0.8721
0.8721     1.0000
```

- 소고기의 경우 0.8721로 꽤 높은 수치가 나왔다.

```
>> pork_r = corrcoef(month, pork)

pork_r =

1.0000     0.7378
     0.7378     1.0000
```

- 돼지고기의 경우 0.7378로 소고기만큼은 아니지만 높은 수치가 나왔다.

결론&정리

소고기와 시간 변화에 따른 상관계수는 0.8721, 돼지고기와 시간 변화에 따른 상관계수는 0.7378이다.

-> 상관관계가 있다

이차회귀에 Robust Bisquare을 적용하였을 때 결정계수가 가장 크게 나왔다. 결정계수는 0.8439, 수정된 결정계수는 0.8405이다. 선형관계로도 설명할 수 있지만, 소고기는 비선형 이차회귀에 아웃 라이어를 고려한 Robust 기법을 적용하였을 때 가장 좋은 예측 결 과를 보였다.

삼차회귀만 수행하였을 때 결정계수가 가장 크게 나왔다. 결정계수는 0. 6124, 수정된 결정계수는 0. 5996이다. 오히려 아웃라이어가 너무 많기 때문에 Robust 기법이 효과가 없는 것으로 추측하였다. 따라서 돼지고기는 비선형 삼차회 귀를 사용하였을 때 가장 좋은 예측 결과를 보였다.

CHAPTER. 3

예측 분석

개요

- 소고기, 돼지고기 모두 경제이론에 부합하여 일반적인 수 요법칙으로 해석 가능하다는 결과를 보임
- 논문들은 이를 근거로 수요법칙을 통해 두 표본의 평균적 인 특성과 관계를 비교하여 두 고기 모두 가격 비탄력적이 며, 서로 대체관계를 가진다는 결론을 도출함

분석 방법

수요량 데이터가 없는 2020, 2021년도의 경우 다음의 단순예측모형 공식을 사용해 고기별 수요를 추정함

즉, 수요증가을(d) = 인구증가을(P) + 소득증가을 (l) \times 수요의 탄력성(E_1) 으로 n년도의 수요추정량(Q_n) = $Q_0(1+d)^n$ 로 나타낼 수 있으며 여기서 Q_0 : 기준연도 식품소비량, d: 수요증가을, n: 수요추정연도를 말한다.

이 때 소득탄력성은 2019년 <국내 육류 수요탄력성 추정에 관한 연구> 에서 추정된 값인 0.4202, 0.3605를 사용함

분석 목표

소고기와 돼지고기 모두 일반적으로 가격 비탄력적이고 서로 대체재 관계를 보임을 확인

	2014	2015	2016	2017	2018	2019	2020
인구 증가율	0.56	0.48	0.35	0.17	0.23	0.09	-0.28
소득 증가율	3.2	2.8	2.9	3.2	2.9	2.2	-0.9

	2014	2015	2016	2017	2018	2019	2020	2021
소고기	8456	8760	11314	11632	10925	11913	13121	14482
돼지고기	2010	2046	1934	2289	2274	2404	2659	2981

기초 자료

- 연도별 인구 증가율 및 소득 증가율 - 소고기, 삼겹살 가격정보

소득 증가율은 실질 GDP 기준

가격 정보는 한국 소비자원 참가격의 데이터중 소고기 등심, 돼지고기 삼겹살의 가격정보를 사용함 2021년 데이터는 11월까지의 정보를 사용함

	2014	2015	2016	2017	2018	2019
전체 육류 소비량	2308354	2395931	2515900	2551682	2760152	2823700
총 소고기 소비량	542312	553769	593800	582700	653700	672000
1++ 등심 소비 비율	15.2	15.9	15.7	14.8	14.8	14.5
등심 소비량	82431	88049	93227	86240	96748	97440
지출비중	23.5	23.1	23.6	22.8	23.7	23.8
1인당 소고기 소비	10.76	10.90	11.60	11.30	12.70	13.00
총 돼지고기 소비량	1118965	1166407	1219000	1272382	1334452	1390000
삼겹살 소비 비율	26.6	25.2	25.8	24.6	25.5	24.6
삼겹살 소비량	297645	293935	314502	313006	340285	341940
지출비중	48.5	48.7	48.5	49.9	48.3	49.2
1인당 돼지고기 소비	21.80	22.80	24.10	24.50	27.00	28.00

(단위: 전체 소비량-T(톤) // 인당 소비량-kg // 변화율, 지출비중-%)

기초 자료

- 연도별 총 고기 소비량

총 고기 소비량은 한국 육류 유통 수출협회에서 집계한 연도별 총 고기 소비량을 통해 계산함

총 소비량에 해당 부위의 연도별 소비 비율을 곱하여 부위별 소비량을 구함

자료 분석

	2020	2021
총 소고기 소비량	678820	674350
ㄴ인당	13.26	13.17
ㄴ변화율	1.0149	-0.6585
총 돼지고기 소비량	1402300	1393800
ㄴ인당	28.25	28.08
ㄴ변화율	0.8849	-0.6061

- 단순 예측 모형 공식을 통해 누락되어있는 2020, 2021년도 소비량을 예측한 결과

	2020	2021
전체 육류 소비량	2929804	3035666
1++ 등심 소비 비율	14.4	14.2
등심 소비량	100104	102794
지출비중	23.67	23.74
삼겹살 소비 비율	24.4	24.1
삼겹살 소비량	352789	363047
지출비중	49.26	49.38

- 예측한 소비량을 바탕으로 선형회귀로 측정 후 누락값을 예측한 결과

$$E_{\langle p
angle}=rac{\Delta Q/Q}{\Delta P/P}$$

(Q: 수요량, P: 가격)

	2014~15	2015~16	2016~17	2017~18	2018~19	2019~20	2020~21
소고기	1.8994	0.20167	-2.6587	-2.0031	0.079143	0.26963	0.25903
돼지고기	-0.70582	-1.2761	-0.025884	-13.524	0.085065	0.29911	0.24052

자료 분석

- 수요의 가격 탄력성

소고기, 돼지고기 모두 대부분 0~1사이의 값을 가지며 가격에 대해 비탄력적인 모습을 보임

2017~2018년 돼지고기 가격의 경우 가격탄력성이 큰 것을 확인할 수 있다 - 가격 감소와 더불어 매우 큰 폭의 소비량 증가가 발생했기 때문

$$\epsilon_c = rac{\Delta Q_Y/Q_Y}{\Delta P_X/P_X}$$

	2014~15	2015~16	2016~17	2017~18	2018~19	2019~20	2020~21
X-소고기	-0.34739	0.23999	-0.16875	-1.4328	0.053775	0.31288	0.28029
Y-돼지고기							
X-돼지고기	3.8591	-1.0724	-0.40781	-18.908	0.12519	0.25777	0.22228
Y-소고기							

자료 분석

- 수요의 교차 탄력성

교차탄력성이 0보다 클 때 대체재, 0보다 작을 때 보완재의 관계를 가짐

소고기와 돼지고기는 일반적으로 대체재의 성향을 보이며, 보완재의 관계를 보이는 경우는 적어도 한 재화의 가격탄력성이 1을 초과하는 상황에서 발생

결론

- 소고기, 돼지고기 모두 일반적으로 가격 비탄력적이며 서로 대체재 관계를 보이고 있음.

오차 발생 원인

- 축산물 특성 상 시세 예측이 쉽지 않음
- -사료 가격변화, 축산물 관련 전염병 발생 여부
- 정부 정책에 의한 공급량 증가, 수입품 물량 및 가격의 영향
- 유통 업태별 차이 : 온라인 판매규모 증가
- 20,21년도 코로나 영향, 언택트 명절, 재난지원금 사용

신대니 신민석 신민주 심현솔