Assignment 8

38

System A System B Sample size $n_1 = 120$ $n_2 = 100$ Sample mean $\bar{X}_1 = 4,1$ $\bar{X}_2 = 3,4$ Population std deu. $\sigma_1 = 2,2$ $\sigma_2 = 1,5$

 $H_0: \mu_1 - \mu_2 = 0$, $\approx = 0.05$ $H_A: \mu_1 - \mu_2 \neq 0$

$$\sigma_{\bar{X}_{1}} - \bar{X}_{2} = \sqrt{\frac{(\sigma_{\bar{X}_{1}})^{2}}{n_{1}} + \frac{C\sigma_{\bar{X}_{2}}}{n_{2}}}^{2} = \sqrt{\frac{C^{2},2)^{2}}{120} + \frac{C^{1},5)^{2}}{100}} = 0,25$$

$$\bar{X}_{1} - \bar{X}_{2} = H, 1 - 3, 4 = 0,7$$

$$Z = \frac{(\bar{x} - \bar{x}_2) - Q_0}{\left[\frac{(\sigma_{\bar{x}_1})^2}{\rho_1} + \frac{(\sigma_{\bar{x}_2})^2}{\rho_2}\right]^2} = \frac{0.7 - 0}{0.25} = 2.8$$

P-value : PCz > 2,8) + PCz < -2,8) = 0,0026 + C1-0,9974) = 0,0052 P-value < 0,05 -> we reject to

We reject that the two systems do not differ, and can conclude that system B is preferred.

2015 2016

Sample size $n_1:35$ $n_2:46$ Sample mean $\bar{X}_1:653$ $\bar{X}_2:540$ Sample std dev. $S_1:101$ $S_2:93,5$

Point estimate: $\bar{X}_1 - \bar{X}_2 = 653 - 540 = 113$

The point estimate indicates that monthly leave payments have declined from 2015 to 2016.

6) 99% confidence interval

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{101^2}{33} + \frac{93.5^2}{46}\right)^2}{\frac{1}{33 - 1} \left(\frac{101^2}{33}\right)^2 + \frac{1}{46 - 1} \left(\frac{93.5^2}{46}\right)^2} \approx 65.77 \approx 65$$

a= 1-0,99 = 0,01 -> a/2 = 0.005 -> ta/2 = 2,654

Margin of error:
$$t_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = 2,654 \sqrt{\frac{101^2}{33} + \frac{935^2}{46}} = 59,29$$

99% confidence interval:
$$\bar{x}_1 - \bar{x}_2 = \frac{5^2}{11} + \frac{5^2}{12} = \frac{113 \pm 59,29}{53,71,172,29}$$

We are 99% confident that 53,71 ≤ µ1- µ2 ≤ 172,29

c) Since we are 99% confident that $53.71 \le \mu_1 - \mu_2 \le 172.29$, we can conclude that monthly lease payments have declined by about 53 to 172 dollars from 2015 to 2016.

ه	Kitchen	Master Bedroo	om .		
	28.2	18.0	Calculations in 1	Calculations in Excel	
	17.4	22.9		Kitchen	Master bedroom
	22.8	26.4	Sample size	n, : 10	n ₂ = 8
	21. 9	24.8 ->	Sample mean	x, = 21,24	x̄₂ = 22,8
	19.7	26.9	Sande Std dev.	5, = 2,77	S₂ = 3,S5
	23.0	17.8	•		
	19. 7	24.6			
	16.9	21. 0			
	21.8				
	23.6				

Point estimate: $\bar{X}_1 - \bar{X}_2 = 21.24 - 22.8 = -1.56$

b) 90% confidence interval:

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{2,77^2}{10} + \frac{3,55}{8}\right)^2}{\frac{1}{10 - 1} \left(\frac{2,77^2}{10}\right)^2 + \frac{1}{6 - 1} \left(\frac{3,65^2}{8}\right)^2} \approx 13.07 \approx 13$$

a= 1-0,90 = 0,10 -> 2/2 = 0.080 -> tal2 = 1,771

Margin of error:
$$t_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = 1.771 \sqrt{\frac{2.77}{10} + \frac{3.55^2}{8}} = 2.71$$

90% Confidence interval:
$$\bar{X}_1 - \bar{X}_2 = \frac{5^2}{11} + \frac{5^2}{12} = -\frac{1}{166} + \frac{5}{2}$$

$$= \frac{-1}{166} + \frac{5}{2}$$

$$= \frac{-1}{166} + \frac{5}{2}$$

we are 90% confident that -4,27 & µ1-µ2 & 1,15. It is therefore dificult to conclude that one remodeling project is cheaper than another.

a woing python to estimate the proportions:

$$75\% \text{ confidence interval} = \hat{\rho}_{1} - \hat{\rho}_{2} \pm z_{\alpha/2} \sqrt{\frac{\hat{\rho}_{1}(1-\hat{\rho}_{1})}{n_{1}} + \frac{\hat{\rho}_{2}(1-\hat{\rho}_{2})}{n_{2}}}$$

$$= 0.726 - 0.545 \pm 1.96 \sqrt{\frac{0.726(1-0726)}{156} + \frac{0.545-(1-0.545)}{200}}$$

c) We can see from the 95% confidence interval that we are 95% confident that $\bar{p}_1 > \bar{p}_2$, and we can therefore conclude that \bar{p}_1 exceeds \bar{p}_2 .

we can show the same result with hypothesis testing:

$$\frac{\bigcap_{1} \cdot \bar{\rho}_{1} + \bigcap_{2} \cdot \bar{\rho}_{2}}{\bigcap_{1} + \bigcap_{2}} = \frac{150 \cdot 0,726 + 200 \cdot 0,545}{150 + 200} = 0,623$$

$$s_{\bar{p}_1-\bar{p}_2} = \sqrt{\bar{p}_{(1-\bar{p}_1)}(\bar{n}_1+\bar{n}_2)} = \sqrt{0.623(1-0.623)(\bar{s}_0+\bar{s}_{\infty})} = 0.0523$$

$$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{5\hat{p}_1 - \hat{p}_2} = \frac{0.736 - 0.545}{0.0523} = 3.46$$

47

95% confidence interval =
$$\bar{\rho}_1 - \bar{\rho}_2 \pm z_{\alpha/2} \sqrt{\frac{\bar{\rho}_1(1-\bar{\rho}_1)}{n_1} + \frac{\bar{\rho}_2(1-\bar{\rho}_2)}{n_2}}$$

$$= 0,276-0,487\pm1,96$$

$$= 0,276-0,487\pm1,96$$

$$= 240$$

$$= (-0.21 \pm 0.089) = [-0.300, -0.122]$$

Rejection of Ho will allow us to conclude that the most recent bullish sentiment is weater than one month ago

If
$$\bar{\rho}_1 - \bar{\rho}_2 < 0 \rightarrow \bar{\rho}_1$$
 is weaker than $\bar{\rho}_2$

$$\frac{\bigcap_{1} \cdot \bar{\rho}_{1} + \bigcap_{2} \cdot \bar{\rho}_{2}}{\bigcap_{1} + \bigcap_{2}} = \frac{240 \cdot 0,276 + 240 \cdot 0,397}{240 \cdot 240} = 0,337$$

$$\frac{C\,\hat{p}_{4}-\,\hat{p}_{2})}{Z=S\,\hat{p}_{1}-\,\hat{p}_{2}} = \frac{0.276-0.397}{0.0452} = -2.80$$