

#### MC 613

IC/Unicamp 2012s1 Prof Guido Araújo Prof Mario Côrtes

#### Circuitos Aritméticos

# IC-UNICAMP

# **Tópicos**

- Representação sinal-magnitude
- Representação K<sub>1</sub> e K<sub>2</sub>
- Somadores half-adder e full-adder
- Somador/subtrator
- Somador com overflow



| b <sub>3</sub> b <sub>2</sub> b <sub>1</sub> b <sub>0</sub> | Sinal<br>Magnitude | Complemento de 1 | Complemento de 2 |
|-------------------------------------------------------------|--------------------|------------------|------------------|
| 0111                                                        | +7                 | 7                | +7               |
| 0110                                                        | +6                 | 6                | +6               |
| 0101                                                        | +5                 | 5                | +5               |
| 0100                                                        | +4                 | 4                | +4               |
| 0011                                                        | +3                 | 3                | +3               |
| 0010                                                        | +2                 | 2                | +2               |
| 0001                                                        | +1                 | 1                | +1               |
| 0000                                                        | +0                 | 0                | 0                |
| 1000                                                        | -0                 | -7               | -8               |
| 1001                                                        | -1                 | -6               | -7               |
| 1010                                                        | -2                 | -5               | -6               |
| 1011                                                        | -3                 | -4               | -5               |
| 1100                                                        | -4                 | -3               | -4               |
| 1101                                                        | -5                 | -2               | -3               |
| 1110                                                        | -6                 | -1               | -2               |
| 1111                                                        | -7                 | -0               | -1               |

Table 5.2 Interpretation of four-bit signed integers



#### Representação Sinal Magnitude



(a) Unsigned number



(b) Signed number

Figure 5.8 Formats for representation of integers

# IC-UNICAMP

# Representação de Números Negativos

- Sinal e Magnitude
  - 1 bit de signal, N-1 bits de magnitude
  - O bit de sinal é o mais significativo (mais a esquerda)
    - Número negativo: 1
    - Número positivo: 0
  - Exemplo, representação de ± 5 com 4-bit:

$$-5 = 1101_2$$

$$+5 = 0101_2$$

– Intervalo de um número N-bit sinal/magnitude:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

# Adição e Subtração Sinal e Magnitude

• Exemplo: -5 + 5

IC-UNICAMP

$$\begin{array}{r}
 1 101 \\
 + 0101 \\
 10010
 \end{array}$$

• Duas representações para 0 (± 0):

1000 0000



#### Complemento de 1 (K<sub>1</sub>)

Em complemento de "Um" o número negativo K<sub>1</sub>, com n-bits, é obtido subtraíndo seu positivo P de 2<sup>n</sup> - 1

$$K_1 = (2^n - 1) - P$$

Exemplo: se n = 4 então:

$$K_1 = (2^4 - 1) - P$$
  
 $K_1 = (16 - 1) - P$   
 $K_1 = (1111)_2 - P$ 

P = 7 -> 
$$K_1$$
= ?  
7 = (0111)<sub>2</sub>  
-7 = (1111)<sub>2</sub> - (0111)<sub>2</sub>  
-7 = (1000)<sub>2</sub>



- Complemento de 1 (K<sub>1</sub>)
  - Regra Prática

$$K_1 = (2^n - 1) - P$$

$$K_1 = 11...11 - (p_{n-1} ... p_0)$$

$$K_1 = \overline{(p_{n-1} ... p_0)}$$



#### Complemento de 2 (K<sub>2</sub>)

Em complemento de "Dois" o número negativo K, com n-bits, é obtido subtraíndo seu positivo P de 2<sup>n</sup>

$$K_2 = 2^n - P$$

Exemplo: se n = 4 então:

$$K_2 = 2^4 - P$$
  $P = 7 -> K_2 = ?$   
 $K_2 = 16 - P$   $7 = (0111)_2$   
 $K_2 = (10000)_2 - P$   $-7 = (10000)_2 - (0111)_2$   
 $-7 = (1001)_2$ 



- Complemento de 2 (K<sub>2</sub>)
  - Regra Prática

$$K_2 = 2^n - P$$
 $K_2 = (2^n - 1) + 1 - P$ 
 $K_2 = (2^n - 1) - P + 1$ 

$$K_2 = 11...11 - (p_{n-1} ... p_0) + 1$$

$$K_2 = \overline{(p_{n-1} \dots p_0)} + 1 = K_1(P) + 1$$



- Complemento de 2 (K<sub>2</sub>)
  - Maior número positivo de 4-bit: 0111<sub>2</sub> (7<sub>10</sub>)
  - Maior número negativo de 4-bit:  $1000_2$  (-2<sup>3</sup> = -8<sub>10</sub>)
  - O most significant bit também indica o sinal (1 = negativo, 0 = positivo)
  - Intervalo de um número de N-bit:  $[-2^{N-1}, 2^{N-1}-1]$



## Adição em K<sub>2</sub>

Figure 5.10 Examples of 2's complement addition



# Subtração em K<sub>2</sub>

Figure 5.11 Examples of 2's complement subtraction

ignore



#### Half-adder



(a) The four possible cases

|     | Carry | Sum |
|-----|-------|-----|
| x y | с     |     |
| 0 0 | 0     | 0   |
| 0 1 | 0     | 1   |
| 1 0 | 0     | 1   |
| 1 1 | 1     | 0   |

(b) Truth table





(d) Graphical symbol



#### Somador com Half-adder



Figure 5.5 A decomposed implementation of the full-adder circuit



#### Full-adder

| $c_{i}$ | $x_{i}$ | $y_i$ | $c_{i+1}$ | $S_{i}$ |
|---------|---------|-------|-----------|---------|
| 0       | 0       | 0     | 0         | 0       |
| 0       | 0       | 0     | 0         | 0       |
| 0       | 0       | 1     | 0         | 1       |
| 0       | 1       | 0     | 0         | 1       |
| 0       | 1       | 1     | 1         | 0       |
| 1       | 0       | 0     | 0         | 1       |
| 1       | 0       | 1     | 1         | 0       |
| 1       | 1       | 0     | 1         | 0       |
| 1       | 1       | 1     | 1         | 1       |
|         |         |       |           |         |



| \ x <sub>i</sub> y | i  |    |    |    |
|--------------------|----|----|----|----|
| ci                 | 00 | 01 | 11 | 10 |
| 0                  |    | 1  |    | 1  |
| 1                  | 1  |    | 1  |    |

 $s_{i+1} = x_i \text{ xor } y_i \text{ xor } c_i$ 



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

(b) Karnaugh maps



#### Full-adder (VHDL)

```
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY fulladd IS
   PORT ( Cin, x, y : IN STD LOGIC ;
         s, Cout : OUT STD LOGIC ) ;
END fulladd;
ARCHITECTURE LogicFunc OF fulladd IS
BEGIN
   s <= x XOR y XOR Cin ;
   Cout \leq (x AND y) OR (Cin AND x) OR (Cin AND y);
END LogicFunc ;
```

Figure 5.23 VHDL code for the full-adder



#### Full-adder Package (VHDL)



### Somador Ripple Carry

Atraso para um somador de n bits:

$$t_{\text{ripple}} = Nt_{FA}$$

Onde  $t_{FA}$  é o atraso de um full adder





## 4-bit Ripple Carry Adder (sinais)

```
LIBRARY ieee ;
USE ieee.std logic 1164.all;
USE work.fulladd package.all ;
ENTITY adder4 IS
   PORT ( Cin
                             : IN STD LOGIC ;
           x3, x2, x1, x0 : IN STD_LOGIC ;
           y3, y2, y1, y0 : IN STD_LOGIC ; s3, s2, s1, s0 : OUT STD_LOGIC ;
           Cout : OUT STD LOGIC ) ;
END adder4;
ARCHITECTURE Structure OF adder4 IS
   SIGNAL c1, c2, c3 : STD LOGIC ;
BEGIN
   stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1);
   stage1: fulladd PORT MAP ( c1, x1, y1, s1, c2 );
   stage2: fulladd PORT MAP (c2, x2, y2, s2, c3);
   stage3: fulladd PORT MAP (
            x => x3, y => y3, Cin => c3, Cout => cout, s => s3);
END Structure ;
```

Figure 5.26 Using a package for the four-bit adder



#### 4-bit Ripple Carry Adder (vetores)

```
LIBRARY ieee ;
USE ieee.std logic 1164.all;
USE work.fulladd package.all ;
ENTITY adder4 IS
   PORT (Cin : IN STD LOGIC ;
         X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
              : OUT STD LOGIC VECTOR (3 DOWNTO 0) ;
         S
         Cout : OUT STD LOGIC ) ;
END adder4 ;
ARCHITECTURE Structure OF adder4 IS
   SIGNAL C : STD LOGIC VECTOR (1 TO 3) ;
BEGIN
   stage0: fulladd PORT MAP ( Cin, X(0), Y(0), S(0), C(1) );
   stage1: fulladd PORT MAP (C(1), X(1), Y(1), S(1), C(2));
   stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) );
   stage3: fulladd PORT MAP ( C(3), X(3), Y(3), S(3), Cout );
END Structure :
```

Figure 5.27 A four-bit adder defined using multibit signals



#### Descrição Comportamental

```
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;
ENTITY adder16 IS
   PORT (X, Y: IN STD LOGIC VECTOR (15 DOWNTO 0);
         S : OUT STD LOGIC VECTOR(15 DOWNTO 0) ;
END adder16 ;
ARCHITECTURE Behavior OF adder16 IS
BEGIN
   S \leq X + Y;
END Behavior ;
```

Figure 5.28 VHDL code for a 16-bit adder



#### Somador/Subtrator

$$K_2 = (\overline{p_{n-1}} \dots \overline{p_0}) + 1 = K_1(P) + 1$$



Figure 5.13 Adder/subtractor unit



#### Overflow (Soma)

- A + B
  - sign(A) = sign(B): overflow possível
  - sign(A) ≠ sign(B): overflow impossivel

$$\begin{array}{ccc}
(+7) & 0 & 1 & 1 & 1 \\
+ & (+2) & & + & 0 & 0 & 1 & 0 \\
\hline
(+9) & & & 1 & 0 & 0 & 1
\end{array}$$

$$\begin{array}{ccc}
(-7) & & 1 & 0 & 0 & 1 \\
+ & (+2) & & + & 0 & 0 & 1 & 0 \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
 & & & & & & & \\
\end{array}$$





# Overflow (Subtração)

- A B = A + (-B), reduz à soma
  - sign(A) = sign(B): overflow impossível
  - sign(A) ≠ sign(B): overflow possível

$$\begin{array}{cccc} (+7) & (+7) & 0 & 1 & 1 & 1 \\ - & (+2) & & + & (-2) & & + & 1 & 1 & 1 & 0 \\ \hline (+5) & & (+5) & & & 1 & 0 & 1 & 0 & 1 \end{array}$$





#### Resumo Overflow

| Α | В | S = A + B | OV |
|---|---|-----------|----|
| + | - | +         | 0  |
| + | - | -         | 0  |
| - | + | +         | 0  |
| _ | + | -         | 0  |
| + | + | +         | 0  |
| + | + | -         | 1  |
| _ | - | +         | 1  |
| - | - | -         | 0  |

| 1     | 0     |
|-------|-------|
| 0 x   | 0 x   |
| + 1 x | + 1 x |
| 1 0 x | 0 1 x |
| 1     | 0     |
| 0 x   | 0 x   |
| + 0 x | + 0 x |
| 0 1 x | 0 0 x |
| 0     | 1     |
| 1 x   | 1 x   |
| + 1 x | + 1 x |
| 1 0 x | 1 1 x |

$$V = C_n(S) \text{ xor } C_{n-1}(S)$$



#### Overflow em K<sub>2</sub>

(-9) 10111

 $c_4 = 1$ <br/> $c_3 = 0$ 

(+5) 1 0 1 0 1

 $c_4 = 1$ 

 $c_3 = 1$ 



#### 4-bit Ripple Carry Adder (vetores)

#### + overflow

```
LIBRARY ieee ;
  USE ieee.std logic 1164.all ;
  USE work.fulladd package.all ;
  ENTITY adder4 IS
      PORT (Cin : IN STD LOGIC ;
            X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0);
                : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;
            S
            Cout, Overflow : OUT STD LOGIC ) ;
  END adder4 :
  ARCHITECTURE Structure OF adder4 IS
      SIGNAL C : STD LOGIC VECTOR (1 TO 4) ;
  BEGIN
      stage0: fulladd PORT MAP ( Cin, X(0), Y(0), S(0), C(1) );
      stage1: fulladd PORT MAP (C(1), X(1), Y(1), S(1), C(2));
      stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) );
      stage3: fulladd PORT MAP ( C(3), X(3), Y(3), S(3), C(4) );
      Overflow <= C(3) XOR C(4);
      Cout \leq C(4);
  END Structure :
MC613 – 2012 – IC/Unicamp
```



# Descrição Comportamental Como incluir overflow?

```
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;
ENTITY adder16 IS
   PORT (X, Y: IN STD LOGIC VECTOR (15 DOWNTO 0);
         S : OUT STD LOGIC VECTOR(15 DOWNTO 0) ;
END adder16 ;
ARCHITECTURE Behavior OF adder16 IS
BEGIN
   S \leq X + Y;
END Behavior :
```

Figure 5.28 VHDL code for a 16-bit adder



#### 16-bit Adder com Overflow

```
LIBRARY ieee ;
USE ieee.std logic 1164.all;
USE ieee.std logic signed.all ;
ENTITY adder16 IS
   PORT ( Cin
                   : IN STD LOGIC ;
                   : IN STD LOGIC VECTOR (15 DOWNTO 0) ;
          X, Y
                       : OUT STD LOGIC VECTOR (15 DOWNTO 0) ;
          S
          Cout,Overflow : OUT STD LOGIC ) ;
END adder16 :
ARCHITECTURE Behavior OF adder16 IS
   SIGNAL Sum : STD LOGIC VECTOR (16 DOWNTO 0) ;
BEGIN
   Sum \le ('0' \& X) + Y + Cin ;
   S \le Sum(15 DOWNTO 0);
   Cout <= Sum(16);
   Overflow \leq Sum (16) XOR X(15) XOR Y(15) XOR Sum (15);
END Behavior :
```

Figure 5.29 A 16-bit adder with carry and overflow



### Somador Ripple Carry

Atraso para um somador de n bits:

$$t_{\text{ripple}} = Nt_{FA}$$

Onde  $t_{FA}$  é o atraso de um full adder





# Antecipação de Carry: Carry Look Ahead (CLA)

Aplicado para módulo de 4 bits





#### CLA: Generate e Propagate

- Para gerar carries com atraso menor e fixo
- Observar para o bit i
  - Carry é gerado sempre independente das entradas e dos carries de nível anterior:
    - $g_i = x_i y_i$
  - Carry é propagado sempre independente das entradas e dos carries de nível anterior:
    - $p_i = x_i + y_i$
    - observar que um carry de entrada é morto/killed se:
      - $\sim X_i \cdot \sim Y_i$
      - Que é exatamente ~p<sub>i</sub>



# CLA: Como gerar os carries a partir de g e p

$$c_1 = g_0 + p_0 c_0$$
  
 $c_2 = g_1 + p_1 c_1$   $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$   
 $c_3 = g_2 + p_2 c_2$   $c_3 =$   
 $c_4 = g_3 + p_3 c_3$   $c_4 =$ 

- Atraso:
  - entradas  $\Rightarrow$  g<sub>i</sub> p<sub>i</sub> (1G)
  - g<sub>i</sub> p<sub>i</sub> ⇒ carry (2G) : 1 AND seguido de 1 OR
  - $carry \Rightarrow saídas (2G)$
- Total: 5G, independente de n



#### Codificação em BCD

"No mundo há 10 tipos de pessoas: as que sabem contar em binário e as que não sabem"



#### **BCD**

| Decimal digit | BCD code |
|---------------|----------|
| 0             | 0000     |
| 1             | 0001     |
| 2             | 0010     |
| 3             | 0011     |
| 4             | 0100     |
| 5             | 0101     |
| 6             | 0110     |
| 7             | 0111     |
| 8             | 1000     |
| 9             | 1001     |

Table 5.3 Binary-coded decimal digits



#### Adição Usando BCD

Passou de 10? Remove 10:

$$S-10 = S-9-1$$
  
=  $S + K_2(9_{10}) - 1$   
=  $S + K_1(9_{10}) + 1 - 1$   
=  $S + not (1001_2)$   
=  $S + 0110_2$   
=  $S + 6_{10}$ 

Raciocínio Alternativo Passou de 10? Remove 10 (carry=1)

$$S-10 = S - (16-6)$$
  
=  $S + 6 - 16$   
=  $(S + 6) - 16$ 

37



#### Somador em BCD



Figure 5.37 Block diagram for a one-digit BCD adder



#### Somador de um Dígito BCD



$$c_{out} = d_{out} + z_2 z_3 + z_1 z_3$$



Figure 5.40 Circuit for a one-digit BCD adder



#### Somador BCD

```
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;
ENTITY BCD IS
   PORT (X, Y: IN STD LOGIC VECTOR(3 DOWNTO 0);
          S: OUT STD LOGIC VECTOR (4 DOWNTO 0) ;
END BCD ;
ARCHITECTURE Behavior OF BCD IS
   SIGNAL Z : STD LOGIC VECTOR (4 DOWNTO 0) ;
   SIGNAL Adjust : STD LOGIC ;
BEGIN
   Z \le ('0' \& X) + Y ;
   Adjust \leq '1' WHEN Z > 9 ELSE '0';
   S \le Z WHEN (Adjust = '0') ELSE Z + 6;
END Behavior ;
```

Figure 5.38 VHDL code for a one-digit BCD adder