Mesh to Voxel Transformations for Optimised Physics-Based Interactions

T. Lefley F. Ponjou-Tasse

Progress Report, 2015

Motivation

Figure: A simple collision and its volumetric resolution.

- Meshes only store surface information
- Reasoning on interior difficult
- Most destruction algorithms limited
 - Only work on convex shapes
 - Or have to split concave shapes first
- By precomputing volume data we have an O(1) check for inside/outside a shape

Voxelisation

Figure: Voxelisation of the 'Stanford Bunny' model, composed of 69,666 triangles.

- HLSL GPU implementation
- ► Triangle phase
 - Project triangle onto XZ plane
 - Find intersected voxel columns
 - Mark first voxel below triangle
- Propagation phase
 - Moves up Y plane
 - XORs with voxels below

Destruction

Figure: Labelling of voxels to their correct fragments.

- Process collision information
 - Find collision point
 - Calculate force
 - Generate fragment points
- Construct 3D voronoi diagram
 - Label each voxel by nearest point
 - Within radius
- ► Find islands
 - ► Flood fill

Rebuilding the Mesh

Marching Tetrahedrons

Figure: A cube divided into six tetrahedra, with one tetrahedron shaded.

- Form triangles
 - For each cube of 8 voxels
 - Look up correct triangle

Rebuilding the Mesh

Marching Tetrahedrons

Figure: Fractured Stanford Bunny remeshed using the Marching Tetrahedrons algorithm.

- ► Form triangles
 - For each cube of 8 voxels
 - Look up correct triangle
- Problems
 - Too slow (implementation?)
 - Wasted complexity on interior voxels
 - Detail loss
- Working on new solution

The Next Steps

- Implement new remeshing algorithm
- Optimise for speed
 - Multithreading
 - Remove unnecessary complexity
- Post destruction calculations
 - Fragment mass
- Evaluation
 - Framerate
 - Memory usage
 - Physical accuracy
- Write-up