

# Example Asciidoc Document



## **Table of Contents**

| 1. Exan | ple chapter                               | L |
|---------|-------------------------------------------|---|
| 1.1.    | xample chapter section                    | L |
| 1.:     | 1. Example section                        | L |
|         | 1.1.1.1. example sub section              | L |
|         | 1.1.1.2. example dynamic includes section | l |



## **Chapter 1. Example chapter**

### 1.1. Example chapter section

With some example text. And followed by an example sub section.

#### 1.1.1. Example section

#### 1.1.1.1. example sub section

With some test text here.

#### 1.1.1.2. example dynamic includes section

Listing 1. exampleJSON.txt

```
{
    "glossary": {
        "title": "example glossary",
        "GlossDiv": {
            "title": "S",
            "GlossList": {
                "GlossEntry": {
                    "ID": "SGML",
                     "SortAs": "SGML",
                     "GlossTerm": "Standard Generalized Markup Language",
                     "Acronym": "SGML",
                     "Abbrev": "ISO 8879:1986",
                     "GlossDef": {
                         "para": "A meta-markup language, used to create markup
languages such as DocBook.",
                         "GlossSeeAlso": ["GML", "XML"]
                     "GlossSee": "markup"
                3
            3
        3
    3
3
```



#### Listing 2. exampleinclude.txt

This is an example raw text file the file contains just text and could be a log file or output from some tests a list of these can be compiled and automatically pulled in It can also be source code or JSON or siilar and can then even be highlighted by syntax.

```
:leveloffset: +2
= Description of logo
:doc-sub: true
:OLDlocaldir: {localdir}
:OLDimagesdir: {imagesdir}
:localdir: ./chapter-logo/
:imagesdir: {localdir}
== Example chapter section
With some example text.
And folowed by an example sub section.
.Example of inner logo with text as mix
image::./VSR-textndLogoGreen.png[]
.VSR logo scad file with diffreent options
//Script to create a wire mesh cube with 8x8x8 empty spaces
//Virtual Space and Global communications research department logo base object
with 8.2 cm side length
//consisting of the multiplied basic primitives of an x,y,and z axis beam
iterate in one dimension in loops
$fn=100;
module x_beam() {
   cube([82,1,1]);
}
module y_beam(){
   cube([1,82,1]);
module z_beam(){
   cube([1,1,82]);
module vsr_cube(){
  union(){
       //xbeam
       for (xj=[0:10:80]){
           for (xi=[0:10:80]){
               translate([0,xi,xj])
               x_beam();
           3
       3
```



```
//ybeam
       for (yj=[0:10:80]){
           for (yi=[0:10:80]){
               translate([yi,0,yj])
               y_beam();
           3
       3
       //zbeam
       for (zj=[0:10:80]){
           for (zi=[0:10:80]){
               translate([zi,zj,0])
               z_beam();
           3
       3
  3
//basic primitive for VSR logo block.
color("#000",.25)
    vsr_cube();
// base cube with centre cube subtracted
*difference(){
   //basic primitive for VSR logo block.
   color("#000",.25)
        vsr_cube();
   //Whole to subtract
   hull() {
       translate ([30,50,70]) x_block();
       translate ([10,10,60]) x_block();
       translate ([70,40,50]) x_block();
       translate ([50,00,40]) x_block();
       translate ([20,70,30]) x_block();
       translate ([00,30,20]) x_block();
       translate ([60,60,10]) x_block();
       translate ([40,20,00]) x_block();
  3
3
//Just the Centre Block as a block
*hull() {
       translate ([30,50,70]) x_block();
       translate ([10,10,60]) x_block();
       translate ([70,40,50]) x_block();
       translate ([50,00,40]) x_block();
       translate ([20,70,30]) x_block();
       translate ([00,30,20]) x_block();
       translate ([60,60,10]) x_block();
       translate ([40,20,00]) x_block();
  3
module x_block(){
    // Cubes as corners for complex wire frame centre
    *color([0,1,0]) translate ([02,02,02]) cube([8,8,8]);
```



```
//spheres as corners for smoothe wireframe centre
    translate ([6,6,6]) sphere (r=1);
3
//Just 8 centre points as corners
union () {
    //1st set
    hull() {
        translate ([30,50,70]) x_block();
        translate ([10,10,60]) x_block();
    3
    hull() {
        translate ([70,40,50]) x_block();
        translate ([50,00,40]) x_block();
    3
    hull() {
        translate ([20,70,30]) x_block();
        translate ([00,30,20]) x_block();
    3
    hull() {
        translate ([60,60,10]) x_block();
        translate ([40,20,00]) x_block();
    7
    //second set
    hull() {
        translate ([30,50,70]) x_block();
        translate ([20,70,30]) x_block();
    hull() {
        translate ([10,10,60]) x_block();
        translate ([00,30,20]) x_block();
    hull() {
        translate ([70,40,50]) x_block();
        translate ([60,60,10]) x_block();
    hull() {
        translate ([50,00,40]) x_block();
        translate ([40,20,00]) x_block();
    3
    //third set
    hull() {
        translate ([30,50,70]) x_block();
        translate ([70,40,50]) x_block();
    3
    hull() {
        translate ([10,10,60]) x_block();
        translate ([50,00,40]) x_block();
    }
    hull() {
        translate ([20,70,30]) x_block();
```



```
translate ([60,60,10]) x_block();
}
hull() {
    translate ([00,30,20]) x_block();
    translate ([40,20,00]) x_block();
}
:leveloffset!:
```

5