

Bop or Flop

By: Mackenzie Lees, Joe Kajon, Christian Ingersoll, Katherine Mendyk

Agenda

- Scope
- Data
- Methods & Models
 - Sentiment analysis, Topic modeling, Predictive modeling
- Results
- Conclusion
- Impact & Recommendation

Library

Scope/Data

- Features contributing to a song's success across different platforms and genres
- Genres: Pop, Rock, Latin, Rap, EDM, and R&B
- Focus on identifying the distinguishing elements that resonate with listeners on Spotify and TikTok
- TikTok: Social Media app

Scope

TT.

Identify key features that predict song's success and compare how these features differ across platforms (Spotify and TikTok) and by genre.

Data

- Genre
- Characteristics of song
 - Ex: danceability, speechiness, mode
- **Artist characteristics**
 - Ex: # of streams, # of tracks
- Temporal data from release date
- No artist data for Tiktok

Exploratory Data Analysis - Seasonality

Popular Songs Released By Day of Week

Popular Songs Released By Month

Correlation Matrix

Assumptions/limitations

Popularity

Above the third quartile within a given genre

Repeated Songs

Keep max popularity score for repeated songs and remove other rows

N/A rows

Removing rows with N/A in the release date

Library

Methods and Models

Feature Engineering - LDA

- Latent Dirichlet Allocation (LDA)
 - Topic Modeling
 - Song lyrics into 5 main topics
 - Not necessarily significant features on both
 - Spotify and TikTok

Feature Engineering - LDA

Negative:

Neutral:

Rock,R&B

Positive:

Edm, Pop

Disqust Pop, Rap

Happy EDM, Pop

Neutral EDM, Rock

Sad Pop, Rock

Predictive Models

♥ 01 **Logistic Regression**

Simplicity and Interpretability; Baseline

CART

02 🖤

Non-linear relationships and **Interpretability**

V 03

Random Forest

Robust; Feature Importance evaluation

XGBoost

High performance and Robust

Model Evaluation

- Initial Goal -> Balance interpretability and performance
- Initial metric of focus -> accuracy
- Due to imbalanced data, shifted focus to AUC

Selected model:

XGBoost

Increased AUC outweighed lesser interpretability

Challenges

- Initially > predict popularity overall
 - Improvement when split by genre
- Genres change over years
- Within one genre can be several subgenres
- EDM and Latin limited rows

Library

Results

· • • • • • • • • • • • • • • • • • • •	Results					
([<u>-</u>]»	Ge	nre	Model	AUC	Top Variable Importance	
		Rap	XGBoost	0.8357	Tracks/X100.Million/energy/danceability/feats	
	2	R&B	XGBoost	0.7199	Tracks/speechiness/Lead.Streams/tempo/danceability	
	3	Pop	XGBoost	0.7127	One.Billion/Lead.Streams/energy/Tracks/Feats	
	4	Rock	XGBoost	0.6487	Lead.Streams/Tracks/energy/danceability/ acousticness	
	5	EDM	XGBoost	0.6485	Loudness/speechiness/acousticness/Tracks/valence	
	7	Latin	XGBoost	0.6018	Tracks/loudness/danceability/Feats/valence	

TikTok

xgbTree variable	importance
	Overall
loudness	0.16203
tempo	0.13839
speechiness	0.11569
acousticness	0.10986
valence	0.10140
liveness	0.10009
energy	0.09341
danceability	0.08158
instrumentalness	0.06439
mode	0.01681
key	0.01634

- Top predictors: loudness, tempo, speechiness
- XGBoost, like Spotify
- No Artist data
- AUC: 0.6676

Spotify versus Tikok

- Similar predictors with Spotify: Loudness, speechiness, acousticness
- Energy and danceability surprisingly low in variable importance

Results - Insights

- XGBoost was the top performing model
- Most Important variables were artist-specific statistics
 - More popular artists are more likely to have more popular songs
- Different genres/platforms emphasize different characteristics
 - EDM-> Loudness
 - Latin -> Danceability

Impact/ Recommendations

- Producers and Artists should focus on the most important predictors within their respective genres
 - Pop -> energy
 - Rock -> energy and danceability
- Tiktok targeted > loudness and tempo

Thank you Any Questions?