Theory of concurrency

Lecture 9

Nondeterminism

$$P = (x \rightarrow y \rightarrow P), \ Q = (y \rightarrow x \rightarrow Q), \ aP = aQ = \{x, y\}$$

 $(P \square Q) \parallel P = (x \rightarrow y \rightarrow P) = P$
 $(P \sqcap Q) \parallel P = (P \parallel P) \sqcap (Q \parallel P) = P \sqcap STOP$

Nondeterminism: Concealment

- Concealment is hiding the structure of process components from its environment:
 - to prevent observation or control by the environment
 - some events have to be hidden.
- $P \setminus C$ is a process which behaves like P, except that
 - each occurrence of any event in finite set of events *C* is concealed.
 - $a(P \setminus C) = (aP) C$
- **X1.** A noisy vending machine can be placed in a soundproof box:
 - $NOISYVM \setminus \{clink, clunk\}$
- The resulting process is equal to the simple vending machine:
 - $VMS = NOISYVM \setminus \{clink, clunk\}$

Nondeterminism: Concealment

- Mutual interactions of concurrent processes are usually
 - regarded as *internal workings* of the resulting systems.
 - intended to occur
 - autonomously and as quickly as possible,
 - without the knowledge or intervention of the environment.
- Then the symbols in the intersection of the alphabets need to be concealed.

X2. Let

- $aP = \{a, c\} \text{ and } aQ = \{b, c\}$
- $P = (a \rightarrow c \rightarrow P)$ and $Q = (c \rightarrow b \rightarrow Q)$
- The action c in the alphabet of both P and Q is an internal action, to be concealed:

$$(P \parallel Q) \setminus \{c\} = (a \to c \to \mu \ X \bullet (a \to b \to c \to X) \\ \mid b \to a \to c \to X)) \setminus \{c\} \\ = a \to \mu \ X \bullet (a \to b \to X) \\ \mid b \to a \to X)$$

Nondeterminism: Concealment

• Concealment of nothing leaves everything revealed:

L1.
$$P \setminus \{\} = P$$

• Sequential concealment:

L2.
$$(P \setminus B) \setminus C = P \setminus (B \cup C)$$

• Concealment distributes through nondeterministic choice:

L3.
$$(P \sqcap Q) \setminus C = (P \setminus C) \sqcap (Q \setminus C)$$

Concealment affect only the alphabet of a stopped process:

L4.
$$STOP_A \setminus C = STOP_{A-C}$$

• Concealment of nothing leaves everything revealed:

L1.
$$P \setminus \{\} = P$$

• Sequential concealment:

L2.
$$(P \setminus B) \setminus C = P \setminus (B \cup C)$$

• Concealment distributes through nondeterministic choice:

L3.
$$(P \sqcap Q) \setminus C = (P \setminus C) \sqcap (Q \setminus C)$$

• Concealment affect only the alphabet of a stopped process:

L4.
$$STOP_A \setminus C = STOP_{A-C}$$

• Unconcealed events remain unchanged:

L5.
$$(x \to P) \setminus C = x \to (P \setminus C)$$
 if $x \notin C$
= $P \setminus C$ if $x \in C$

• Concealment distributes through concurrency if it hides independent events:

L6.
$$(P \parallel Q) \setminus C = (P \setminus C) \parallel (Q \setminus C)$$
 when $aP \cap aQ \cap C = \{\}$

• Usually events of interest are in $aP \cap aQ$.

• Concealment distributes through symbol change by a one-one function:

L7.
$$f(P \setminus C) = f(P) \setminus f(C)$$

• The initial choice remains the same if the menu does not include concealed events:

L8.
$$(x: B \rightarrow P(x)) \setminus C = (x: B \rightarrow (P(x) \setminus C))$$
 if $B \cap C = \{\}$

• The concealment of events can introduce nondeterminism:

L9. $(x: B \to P(x)) \setminus C = \sqcap_{x \in B} (P(x) \setminus C)$ if $B \subseteq C$, and B is finite and not empty.

- · when several different concealed events can happen,
 - it is not determined which of them will occur.
- The choice is disappeared.

- · Consider the case, when some of the initial events are concealed and some are not.
- In the process $(c \to P \mid d \to Q) \setminus C$, where $c \in C$, $d \notin C$
 - The concealed event *c* may happen immediately.
 - The total behaviour is defined by $(P \setminus C)$, and the event d does not happen.
 - If d occurs, it might have been performed by $(P \setminus C)$ after the hidden occurrence of c.
 - The total behaviour is defined by $(P \setminus C) \square (d \to (Q \setminus C))$
 - The choice between this and $(P \setminus C)$ is nondeterministic.
- This reasoning is summarized in the law:
 - $(c \rightarrow P \mid d \rightarrow Q) \setminus C = (P \setminus C) \sqcap ((P \setminus C) \sqcap (d \rightarrow (Q \setminus C)))$
- The general law:
- **L10.** If $C \cap B$ is finite and non-empty, then

$$(x:B\to P(x))\setminus C=Q\sqcap (Q\sqcap (x:(B-C)\to P(x)\setminus C)), \text{ where } Q=\sqcap_{x\in B\cap C}P(x)\setminus C$$

- Concealment does not distribute backwards through general choice □:
- A counterexample:

```
(c \to STOP \square d \to STOP) \setminus \{c\}
= STOP \sqcap (STOP \square (d \to STOP))
= STOP \sqcap (d \to STOP)
\neq d \to STOP
= STOP \square (d \to STOP)
= ((c \to STOP) \setminus \{c\}) \square ((d \to STOP) \setminus \{c\})
```

L5.
$$(x \to P) \setminus C = x \to (P \setminus C)$$
 if $x \notin C$
= $P \setminus C$ if $x \in C$

- The extension of the alphabet of a process *P* by inclusion of symbols of a set *B*:
 - $a(P_{+B}) = aP \cup B$ and $P_{+B} = (P \parallel STOP_B)$ if $B \cap aP = \{\}$
- None of the new events of *B* will ever actually occur:

L11.
$$traces(P_{+B}) = traces(P)$$

• Concealment of *B* reverses the extension of the alphabet by *B*:

L12.
$$(P_{+B}) \setminus B = P$$

• In simple cases, concealment distributes through recursion:

$$(\mu X : A \bullet (c \to X)) \setminus \{c\}$$

$$= \mu X : (A - \{c\}) \bullet ((c \to X_{+\{c\}}) \setminus \{c\})$$

$$= \mu X : (A - \{c\}) \bullet X$$
 [by L12, L5]

- The attempt to conceal an *infinite* sequence of consecutive events leads to the same unfortunate result as an infinite loop or unguarded recursion.
 - The divergence.

- If the divergent process is infinitely often capable of some unconcealed event
 - the recursion is unguarded and leads to divergence:

$$(\mu X \bullet (c \to X \square d \to P)) \setminus \{c\}$$

$$= \mu X \bullet ((c \to X \square d \to P) \setminus \{c\})$$

$$= \mu X \bullet (X \setminus \{c\}) \sqcap ((X \setminus \{c\}) \square d \to (P \setminus \{c\})) \quad \text{[by L10]}$$

- Even though the environment is infinitely often offered the choice of selecting d
 - the process may infinitely often choose to perform the hidden event instead.
- In this case, we prefer not to insist on fairness of nondeterminism.

L10. If
$$C \cap B$$
 is finite and non-empty, **then** $(x: B \to P(x)) \setminus C = Q \sqcap (Q \sqcap (x: (B - C) \to P(x)))$, **where** $Q = \sqcap_{x \in B \cap C} P(x) \setminus C$

- In some sense, hiding is in fact fair.
- Let $d \in aR$, and consider the process

$$((c \to a \to P \mid d \to STOP) \setminus \{c\}) \parallel (a \to R)$$

$$= ((a \to P \setminus \{c\}) \sqcap (a \to P \setminus \{c\} \square d \to STOP)) \parallel (a \to R)$$

$$= (a \to P \setminus \{c\}) \parallel (a \to R) \sqcap (a \to P \setminus \{c\} \square d \to STOP) \parallel (a \to R)$$

$$= a \to ((P \setminus \{c\}) \parallel R)$$
[L10]

- A process which offers the choice between a hidden action c and a nonhidden one d
 - cannot insist that the nonhidden action shall occur.
- If the environment (in this example, $a \to R$) is not prepared for d, then
 - the hidden event must occur, so that
 - the environment has the chance to interact with the resulting process
 - e.g. $(a \rightarrow P \setminus \{c\})$.

- The trace of $P \setminus C$ is obtained from trace t of P by
 - removing all occurrences of any of the symbols in *C*.

```
L1. traces(P \setminus C) = \{t \land (aP - C) \mid t \in traces(P)\} \text{ if } \forall t : traces(P) \bullet \neg diverges(P \land t, C)\}
```

- Divergence
 - $diverges(P,C) = \forall n \cdot \exists s : traces(P) \cap C^* \cdot \#s > n$
 - *P* diverges immediately on concealment of *C*
 - it can engage in an unbounded sequence of hidden events.

- There can be several traces t of P which cannot be distinguished after the concealment
 - $t \land (aP C) = s$, $s \text{ in } P \setminus C$.
- After s it is not determined which of the possible subsequent behaviours of P defines the subsequent behaviour of $(P \setminus C)$.

L2.
$$(P \setminus C) / s = (\sqcap_{t \in T} P / t) \setminus C$$
, where $T = traces(P) \cap \{t \mid t / (aP - C) = s\}$ if T is finite and $s \in traces(P \setminus C)$

- L1 and L2 are restricted to the case when the process does not diverge.
 - Divergences is never the intended result of the definition of a process.

Nondeterminism: Concealment: Pictures

- Nondeterministic choice is represented in a picture by
 - a node from which emerge two or more unlabelled arrows
 - on reaching this node, a process passes along one of the emergent arrows
 - the choice being nondeterministic.

• Associativity of 77

Figure 3.2

L10. If
$$C \cap B$$
 is finite and non-empty, **then** $(x: B \to P(x)) \setminus C = Q \sqcap (Q \sqcap (x: (B - C) \to P(x)))$, where $Q = \sqcap_{x \in B \cap C} P(x) \setminus C$

Nondeterminism: Concealment: Pictures

• *Concealment* removes concealed symbols from all arrows:

Figure 3.3

- When some arcs of a node are labelled and some are not:
 - By the law L10 such a node can be eliminated:

Figure 3.4

L10. If
$$C \cap B$$
 is finite and non-empty, then $(x: B \to P(x)) \setminus C = Q \sqcap (Q \sqcap (x: (B - C) \to P(x)))$, where $Q = \sqcap_{x \in B \cap C} P(x) \setminus C$

Nondeterminism: Concealment: Pictures

- These eliminations are always possible for
 - finite trees.
 - infinite graphs

Figure 3.5

- if the graph contains no infinite path of consecutive unlabelled arrows:
 - Such a picture can arise only in the case of divergence.

- It is possible that the node may acquire two emergent lines with the same label
 - by the transformation L10
- Such nodes can be eliminated by the law LX

Figure 3.6

LX.
$$(c \rightarrow P \square c \rightarrow Q) = (c \rightarrow P \sqcap c \rightarrow Q)$$

18

Nondeterminism: Interleaving

- The concurrency operator |
 - actions in the alphabet of both operands require their simultaneous participation,
 - · actions not in the alphabet of both operands occur in an arbitrary interleaving,
 - combines interacting processes with differing alphabets into
 - systems exhibiting concurrent activity, but without nondeterminism.
- The interleaving operator
- $P \parallel Q$ P interleave Q
 - $a(P \parallel\mid Q) = aP = aQ$
 - joins processes with the same alphabet to operate concurrently without
 - directly interacting or synchronising with each other.
 - Each action of the system is an action of exactly one of the processes.
 - If one of the processes cannot engage in the action, the other one must act;
 - if both processes have engaged in the same action,
 - the choice between them is nondeterministic.

Nondeterminism: Interleaving

X1. A vending machine accepts up to two coins before dispensing up to two chocolates

• $(VMS \parallel VMS) = VMS2$

 $VMS = (coin \rightarrow (choc \rightarrow VMS))$ $VMS2 = (coin \rightarrow VMCRED)$ $VMCRED = \mu X \bullet (coin \rightarrow choc \rightarrow X \mid choc \rightarrow coin \rightarrow X)$

X2. A footman made from four lackeys, each serving only one philosopher at a time.

• $FOOT = (LACKEY \parallel LACKEY \parallel LACKEY \parallel LACKEY)$ $LACKEY = (sits\ down \rightarrow gets\ up \rightarrow LACKEY)$ $FOOT_0 = (x : D \rightarrow FOOT_1)$

 $FOOT_{j} = (x: D \to FOOT_{j+1} \mid y: U \to FOOT_{j-1})$

 $FOOT_4 = (y: U \rightarrow FOOT_3)$

 $U = U_{i=0}^{4} \{i.gets \ up\} \ D = U_{i=0}^{4} \{i.sits \ down\}$

L6.
$$(a \to P) \parallel (b \to Q) = a \to (P \parallel (b \to Q)) \mid b \to ((a \to P) \parallel Q))$$

Nondeterminism: Interleaving: Laws

L1-L2. || is associative and symmetric.

• $\parallel s$ distributes through π :

L3.
$$(P \sqcap Q) \parallel R = (P \parallel R) \sqcap (Q \parallel R)$$

L4.
$$P \parallel STOP = P$$

L5.
$$P \parallel RUN = RUN$$
 if P does not diverge

L6.
$$(x \to P) \parallel (y \to Q) = (x \to (P \parallel (y \to Q)) \bowtie y \to ((x \to P) \parallel Q))$$

L7. If
$$P = (x : A \to P(x))$$
 and $Q = (y : B \to P(y))$

then
$$P \parallel \mid Q = (x : A \rightarrow (P(x) \parallel \mid Q) \bowtie y : B \rightarrow (P \parallel \mid Q(y)))$$

• $\parallel \mid$ does not distribute through \square (let $b \neq c$):

$$((a \to STOP) \parallel (b \to Q \square c \to R)) /$$

$$= (b \to Q \square c \to R)$$

$$\neq ((b \to Q) \sqcap (c \to R))$$

$$= ((a \to STOP \square b \to Q) \parallel (a \to STOP \square c \to R)) /$$

L6.
$$(x \rightarrow P) \parallel (y \rightarrow Q) = (x \rightarrow (P \parallel (y \rightarrow Q)) \square y \rightarrow ((x \rightarrow P) \parallel Q))$$

Nondeterminism: Interleaving: Laws

- On the left-hand side of this chain $(a \to STOP) \parallel (b \to Q \square c \to R)$
 - the occurrence of α can involve progress only of the left operand of $\parallel \parallel$,
 - no nondeterminism is introduced.
 - The left operand stops, and the choice between b and c is left to the environment.
- On the right-hand side of the chain $(a \to STOP \square b \to Q) \parallel (a \to STOP \square c \to R)$
 - the event α may be an event of either operand of $\parallel \parallel$, the choice is nondeterministic.
 - the environment can no longer choose whether the next event will be b or c.

$$((a \to STOP) \parallel (b \to Q \square c \to R)) /$$

$$= (b \to Q \square c \to R)$$

$$\neq ((b \to Q) \sqcap (c \to R))$$

$$= ((a \to STOP \square b \to Q) \parallel (a \to STOP \square c \to R)) /$$

- L6 and L7 state that
 - the environment chooses between the initial events offered by the operands of |||.
- Nondeterminism arises only when the chosen event is possible for both operands.

$$\mathbf{X2.}\ P = (a \to c \to P) \text{ and } Q = (c \to b \to Q)$$

$$(P \parallel Q) \setminus \{c\} = (a \to c \to \mu \ X \bullet (a \to b \to c \to X \mid b \to a \to c \to X)) \setminus \{c\}$$

 $= a \rightarrow u X \cdot (a \rightarrow b \rightarrow X \mid b \rightarrow a \rightarrow X)$

Nondeterminism: Interleaving: Laws

X1. Let $R = (a \rightarrow b \rightarrow R)$, then

$$(R \parallel R)$$

$$= (a \rightarrow ((b \rightarrow R) \parallel R) \square a \rightarrow (R \parallel (b \rightarrow R))) \quad [L6]$$

$$= a \rightarrow ((b \rightarrow R) \parallel R) \sqcap (R \parallel (b \rightarrow R))$$

$$= a \rightarrow ((b \rightarrow R) \parallel R) \quad [L2]$$

Also

$$(b \to R) \parallel R$$

$$= (a \to ((b \to R) \parallel (b \to R)) \square b \to (R \parallel R))$$

$$= (a \to (b \to ((b \to R) \parallel R)) \square b \to (a \to ((b \to R) \parallel R)))$$
 [L6]
$$= \mu X \bullet (a \to b \to X \square b \to a \to X)$$
 [since the recursion is guarded]

- Thus $(R \parallel R)$ is identical to the example X2.
- A similar proof shows that $(VMS \parallel VMS) = VMS2$.

```
L3. (\langle x \rangle^{\wedge} s) interleaves (t, u) \equiv (t \neq \langle \rangle \land t_0 = x \land s \ interleaves \ (t, u)) \lor (u \neq \langle \rangle \land u_0 = x \land s \ interleaves \ (t, u))
```

Nondeterminism: Interleaving: Traces and refusals

• A trace of $(P \parallel Q)$ is an arbitrary interleaving of a trace from P with a trace from Q.

```
L1. traces(P \parallel \mid Q) = \{s \mid \exists t : traces(P) \bullet \exists u : traces(Q) \bullet s interleaves(t, u) \}
```

- $(P \parallel Q)$ can engage in any initial action possible for either P or Q
 - it can refuse only those sets which are refused by both *P* and *Q*:

L2.
$$refusals(P \parallel Q) = refusals(P \square Q)$$

• The behaviour of $(P \parallel \mid Q)$ after the trace s:

L3.
$$(P \parallel Q) / s = \sqcap_{t,u \in T} (P / t) \parallel (Q / u),$$

where $T = \{(t, u) \mid t \in traces(P) \land u \in traces(Q) \land s \ interleaves \ (t, u)\}$

- There is no way of knowing the structure of a trace s of $(P \parallel Q)$ as an interleaving of a trace from P and a trace from Q;
 - after s, the future behaviour of $(P \parallel Q)$ may reflect any of the possible interleavings.
 - · The choice between them is not known and not determined.

Nondeterminism: Specifications

- Specification of indirectly observable aspects of the behaviour.
 - describe the desired properties of process refusal sets as well as its traces.
- The variable *ref* denotes an arbitrary refusal set of a process.
- Specification of nondeterministic process *P*:
 - $P \operatorname{sat} S(tr, ref) \operatorname{iff}$
 - $\forall tr, ref \cdot tr \in traces(P) \land ref \in refusals(P / tr) \Rightarrow S(tr, ref)$

$$VMS = (coin \rightarrow (choc \rightarrow VMS))$$

$$VMCRED = \mu X \bullet (coin \rightarrow choc \rightarrow X \mid choc \rightarrow coin \rightarrow X)$$

 $VMS2 = (coin \rightarrow VMCRED)$

Nondeterminism: Specifications

- X1. When a vending machine has ingested more coins than it has dispensed chocolates,
- it must not refuse to dispense a chocolate

$$FAIR = (tr \downarrow choc$$

- Every trace tr and every refusal ref of the specified process at all times
 - should satisfy the specification.
- **X2.** When a vending machine has given out as many chocolates as have been paid for
- it must not refuse a further coin

$$PROFIT1 = (tr \downarrow choc = tr \downarrow coin \Rightarrow coin \notin ref)$$

X3. A simple vending machine should satisfy the combined specification

$$NEWVMSPEC = FAIR \land PROFIT \land (tr \downarrow choc \leq tr \downarrow coin)$$

- This specification is satisfied by *VMS* and *VMS2*
 - may accept several coins in a row, and then give out several chocolates.

L3.
$$refusals(x : B \rightarrow P(x)) = \{X \mid X \subseteq (aP - B)\}$$

$$VMS = (coin \rightarrow (choc \rightarrow VMS))$$

$$VMCRED = \mu X \cdot (coin \rightarrow choc \rightarrow X \mid choc \rightarrow coin \rightarrow X)$$

Nondeterminism: Specifications

$$VMS2 = (coin \rightarrow VMCRED)$$

$$NEWVMSPEC = FAIR \land PROFIT \land (tr \downarrow choc \leq tr \downarrow coin)$$

X4. A limit on the balance of coins which may be accepted in a row

$$ATMOST2 = (tr \downarrow coin - tr \downarrow choc \leq 2)$$

X5. The machine accept at least two coins in a row:

$$ATLEAST2 = (tr \downarrow coin - tr \downarrow choc < 2 \Rightarrow coin \notin ref)$$

- **X6.** The process STOP refuses every event in its alphabet.
- The predicate specifies that a process with alphabet A never stops
 - $NONSTOP = (ref \neq A)$
- If *P* sat *NONSTOP* and an environment allows all events in *A*,
 - *P* must perform one of them.
- Since any process which satisfies *NEWVMSPEC* will never stop.

$$NEWVMSPEC \Rightarrow ref \neq \{coin, choc\}$$

Nondeterminism: Specifications

- · A divergent process can do anything and refuse anything.
 - if there is a set which *cannot* be refused, then the process is not divergent.
 - A sufficient condition for non-divergence
 - $NONDIV = (ref \neq A)$
- Proof of absence of divergence is not more complex than proof of absence of deadlock.
 - $NONSTOP \equiv NONDIV$

- The notation:
 - a specification S, S(tr), S(tr, ref),
 - tr and ref are its free variables.

- $(P \sqcap Q)$ behaves either like P or like Q.
 - Every observation of its behaviour is an observation possible for *P* or for *Q* or for both.
 - described by the specification of *P* or by the specification of *Q* or by both.
- The proof rule for nondeterminism:
- **L1.** If P sat S and Q sat T then $(P \sqcap Q)$ sat $(S \vee T)$

• The proof rule for *STOP* states that it does nothing and refuses anything:

L2A.
$$STOP_A$$
 sat $(tr = \langle \rangle \land ref \subseteq A)$

- The clause $ref \subseteq A$ can be omitted.
- if we omit the alphabet, this law is identical to that for deterministic processes:
 - STOP sat tr = <>
- The law for prefixing extends the one for deterministic processes:

L2B. If
$$P$$
 sat $S(tr)$ then $(c \rightarrow P)$ sat $((tr = \Leftrightarrow \land c \notin ref) \lor (tr_0 = c \land S(tr')))$

- In the initial state, when tr = <>, the initial action cannot be refused
- The law for general choice is similarly strengthened:

L2. If
$$\forall x : B \cdot P(x)$$
 sat $S(tr, x)$

then
$$(x: B \to P(x))$$
 sat $((tr = <> \land (B \cap ref = \{\}) \lor (tr_0 \in B \land S(tr', tr_0))))$

• The law for parallel composition deals correctly with refusals:

L3. If
$$P$$
 sat $S(tr, ref)$ and Q sat $T(tr, ref)$ and neither P nor Q diverges

then
$$(P \parallel Q)$$
 sat $(\exists X, Y, ref \cdot ref = (X \cup Y) \land S(tr \land \alpha P, X) \land T(tr \land \alpha Q, Y))$

• The law for change of symbol needs a similar adaptation:

L4. If
$$P$$
 sat $S(tr, ref)$ then $f(P)$ sat $S(f^{-1}(tr), f^{-1}(ref))$ if f is one-one.

• The law for \square :

L5. If P sat S(tr, ref) and Q sat T(tr, ref) and neither P nor Q diverges

then
$$(P \square Q)$$
 sat (if $tr = \ll$ then $(S \land T)$ else $(S \lor T)$)

- If $tr = \langle \rangle$, a set is refused by $(P \square Q)$ only if it is refused by both P and Q.
 - This set must be described by both their specifications.
- If $tr \neq <>$, each observation of $(P \square Q)$ must be an observation either of P or of Q.
 - It must be described by one of their specifications (or both).

- The law for interleaving:
- **L6.** If P sat S(s) and Q sat T(t) and neither P nor Q diverges

then
$$(P \parallel \mid Q)$$
 sat $(\exists s, t \cdot (tr \ interleaves (s, t) \land S(s) \land T(t)))$

- The law for concealment:
- **L7.** If P sat $(NODIV \land S(tr, ref))$

then
$$(P \setminus C)$$
 sat $\exists s \cdot tr = s \land (\alpha P - C) \land S(tr, ref \cup C)$

- *NODIV* states that the number of hidden symbols that can occur is bounded by some function of the non-hidden symbols that have occurred
 - $NODIV = \#(tr \land C) \le f(tr \land (\alpha P C))$
 - *f* is a total function from traces to natural numbers.
- $P \setminus C$ can refuse a set X only when P can refuse the whole set $X \cup C$.
- $P \setminus C$ cannot refuse to interact with its external environment until it has reached a state in which it cannot engage in any further concealed internal activities.
- This kind of fairness is an important feature of a reasonable definition of concealment.

• The proof method for deterministic recursion is strengthened:

L8. If S(0) and $(X \operatorname{sat} S(n)) \Rightarrow f(X) \operatorname{sat} S(n+1)$ then $(\mu X \cdot f(X)) \operatorname{sat} (\forall n \cdot S(n))$

- S(n) is a predicate with the variable $n \in \mathbb{N}$.
- This law is valid even for an unguarded recursion
 - The strongest specification which can be proved for an unguarded recursion process is the vacuous specification *true*.

Nondeterminism: Divergence

- Consider the infinite recursion $\mu X.X$
 - Every process is a solution of the recursive equation X=X.
 - $\mu X.X$ may behave like any process
 - the most nondeterministic, the least predictable, the least controllable, the worst.
 - $CHAOS_A = \mu X:A.X.$
 - A slightly better case is $\mu X.(c \rightarrow (X \setminus \{c\})) = c \rightarrow CHAOS$.
- CHAOS is also result of
 - engaging a process in an infinite sequence of consecutive hidden events:

$$(\mu X : A \bullet (c \to X)) \setminus \{c\}$$

$$= \mu X : (A - \{c\}) \bullet ((c \to X) \setminus \{c\})$$

$$= \mu X : (A - \{c\}) \bullet (X \setminus \{c\}) \qquad \text{[by L12, L5]}$$

$$= \mu X : (A - \{c\}) \bullet X$$

$$= CHAOS_{A - \{c\}} \qquad \text{def. CHAOS.}$$

Nondeterminism: Divergence: Laws

- *CHAOS* is the most nondeterministic process
 - it cannot be changed by adding yet nondeterministic choices.
- *CHAOS* is a zero of π

L1. $P \sqcap CHAOS = CHAOS$

- A function of processes is *strict* iff
 - It gives *CHAOS* if any of its arguments is *CHAOS*.
- **L2.** The following operations are strict /s, \parallel , f, \square , $\backslash C$, \parallel , and μX
- Prefixing is not strict:
- **L3.** $CHAOS \neq (\alpha \rightarrow CHAOS)$
 - The right-hand side relies upon to do α before becoming completely unreliable.
- There is nothing that *CHAOS* might not do:

L4.
$$traces(CHAOS_A) = A^*$$

- There is nothing that *CHAOS* might not refuse to do:
- **L5.** $refusals(CHAOS_A) = all subsets of A.$

- A *divergence* of a process is
 - any trace of the process after which the process behaves chaotically.
- The set of all divergences is
 - $divergences(P) = \{s \mid s \in traces(P) \land (P \land s) = CHAOS_{aP} \}$

L1. $divergences(P) \subseteq traces(P)$

• The divergences of a process are extension-closed:

L2. $s \in divergences(P) \land t \in (\alpha P)^* \Rightarrow (s \land t) \in divergences(P)$

- Because / t is strict and CHAOS / t = CHAOS
- $CHAOS_A$ may refuse any subset of its alphabet A
- **L3.** $s \in divergences(P) \land X \subseteq aP \Rightarrow X \in refusal(P / s)$

- The laws show for the divergences of compound processes.
- Firstly, the process *STOP* never diverges:
- **L4.** $divergences(STOP) = \{\}$
- Every trace of *CHAOS* leads to *CHAOS*:
- **L5.** $divergences(CHAOS_A) = A^*$
- For a process defined by choice, the divergences are determined by what happens after the first step:
- **L6.** $divergences(x : B \rightarrow P(x)) = \{ \langle x \rangle \land s \mid x \in B \land s \in divergences(P(x)) \}$
- Any divergence of P is also a divergence of $(P \sqcap Q)$ and of $(P \sqcap Q)$:
- **L7.** $divergences(P \sqcap Q) = divergences(P \sqcup Q) = divergences(P) \cup divergences(Q)$

• Since \parallel is strict, a divergence of $(P \parallel Q)$ starts with a trace of the nondivergent activity of both P and Q, which leads to divergence of either P or of Q (or of both):

```
L8. divergences(P \parallel Q) = \{ s \land t \mid t \in (aP \cup aQ)^* \land ((s \land aP \in divergences(P) \land s \land aQ \in traces(Q)) \lor (s \land aP \in traces(P) \land s \land aQ \in divergences(Q))) \}
```

• A similar explanation for **||**:

```
L9. divergences(P \parallel Q) = \{ u \mid \exists s, t \cdot u \ interleaves (s, t) \land ((s \in divergences(P) \land t \in traces(Q)) \lor (s \in traces(P) \land t \in divergences(Q))) \}
```

- Divergences of a process with concealment include traces
 - derived from the original divergences,
 - plus those resulting from the attempt to conceal an infinite sequence of symbols:

```
L10. divergences(P \setminus C) = \{ (s \land (aP - C)) \land t \mid t \in (aP - C)^* \land (s \in divergences(P) \lor (\forall n \bullet \exists u \in C^* \bullet \#u > n \land (s \land u) \in traces(P))) \}
```

· A process defined by symbol change diverges only when its argument diverges

```
L11. divergences(f(P)) = \{f^*(s) \mid s \in divergences(P)\} if f is one-one.
```

- Why divergence, if divergence is always something we do *not* want?
 - · A consequence of any efficient or even computable method of implementation.
 - It can arise from either *concealment* or *unguarded recursion*.
 - A system designer must prove that for his particular design the problem will not occur.
 - In order to prove that something can't happen
 - we need to use a mathematical theory in which it can.