

CONDICIONES DE OPTIMALIDAD

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 16) 30.AGOSTO.2022

Definición

Suponga que $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^*\in\Omega$ es un **mínimo local** o **minimizador local** de f si existe $\varepsilon>0$ tal que

$$f(\mathbf{x}) \ge f(\mathbf{x}^*),$$
 para todo $\mathbf{x} \in \Omega - \{\mathbf{x}^*\}$ con $||\mathbf{x} - \mathbf{x}^*|| < \varepsilon$.

Definición

Suponga que $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local** o **minimizador local** de f si existe $\varepsilon > 0$ tal que

$$f(\mathbf{x}) \geq f(\mathbf{x}^*), \qquad ext{para todo } \mathbf{x} \in \Omega - \{\mathbf{x}^*\} \ ext{con } ||\mathbf{x} - \mathbf{x}^*|| < \varepsilon.$$

Definición

Suponga que $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^*\in\Omega$ es un **mínimo global** o **minimizador global** de f sobre Ω si

$$f(\mathbf{x}) \ge f(\mathbf{x}^*),$$
 para todo $\mathbf{x} \in \Omega, \ \mathbf{x} \ne \mathbf{x}^*.$

Definición

Suponga que $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local** o **minimizador local** de f si existe $\varepsilon > 0$ tal que

$$f(\mathbf{x}) \ge f(\mathbf{x}^*),$$
 para todo $\mathbf{x} \in \Omega - \{\mathbf{x}^*\} \text{ con } ||\mathbf{x} - \mathbf{x}^*|| < \varepsilon.$

Definición

Suponga que $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es una función con valaores reales, definida sobre Ω . Un punto $\mathbf{x}^*\in\Omega$ es un **mínimo global** o **minimizador global** de f sobre Ω si

$$f(\mathbf{x}) \ge f(\mathbf{x}^*),$$
 para todo $\mathbf{x} \in \Omega, \ \mathbf{x} \ne \mathbf{x}^*.$

Obs! Reemplazando \geq con > en las definiciones anteriores obtenemos el concepto de un **mínimo local estricto** y de un **mínimo global estricto**, respectivamente.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ tiene un mínimo global estricto en x = 0.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ tiene un mínimo global estricto en x = 0. Claramente, x = 0 también es un mínimo local de f.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ tiene un mínimo global estricto en x = 0. Claramente, x = 0 también es un mínimo local de f.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = \max\{0, |x-2|\}$ tiene a todos los puntos de intervalo [-2, 2] como mínimos globales. Estos no son estrictos.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ tiene un mínimo global estricto en x = 0. Claramente, x = 0 también es un mínimo local de f.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = \max\{0, |x-2|\}$ tiene a todos los puntos de intervalo [-2, 2] como mínimos globales. Estos no son estrictos.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^4 - 8x^3 - 6x^2 + 12x$ tiene mínimos locales estricto en x = -1 y x = 2.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ tiene un mínimo global estricto en x = 0. Claramente, x = 0 también es un mínimo local de f.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = \max\{0, |x-2|\}$ tiene a todos los puntos de intervalo [-2, 2] como mínimos globales. Estos no son estrictos.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^4 - 8x^3 - 6x^2 + 12x$ tiene mínimos locales estricto en x = -1 y x = 2. De éstos, sólo x = -1 es un mínimo global.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ tiene un mínimo global estricto en x = 0. Claramente, x = 0 también es un mínimo local de f.

Ejemplo: La función $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = \max\{0, |x-2|\}$ tiene a todos los puntos de intervalo [-2, 2] como mínimos globales. Estos no son estrictos.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^4 - 8x^3 - 6x^2 + 12x$ tiene mínimos locales estricto en x = -1 y x = 2. De éstos, sólo x = -1 es un mínimo global.

Definición

Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local aislado** de $f : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, si \mathbf{x}^* es mínimo local de f y existe una vecindad $U \subset \mathbb{R}^n$ de \mathbf{x}^* tal que \mathbf{x}^* es el único mínimo local de f en U.

Definición

Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local aislado** de $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, si \mathbf{x}^* es mínimo local de f y existe una vecindad $U \subset \mathbb{R}^n$ de \mathbf{x}^* tal que \mathbf{x}^* es el único mínimo local de f en U. Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local no aislado** de f, si para toda vecindad U de \mathbf{x}^* , existe $\mathbf{x} \in U$, $\mathbf{x} \neq \mathbf{x}^*$, tal que \mathbf{x} también es mínimo local de f.

Definición

Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local aislado** de $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, si \mathbf{x}^* es mínimo local de f y existe una vecindad $U \subset \mathbb{R}^n$ de \mathbf{x}^* tal que \mathbf{x}^* es el único mínimo local de f en U. Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local no aislado** de f, si para toda vecindad U de \mathbf{x}^* , existe $\mathbf{x} \in U$, $\mathbf{x} \neq \mathbf{x}^*$, tal que \mathbf{x} también es mínimo local de f.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \cos \frac{1}{x} + x^2$, f(0) = 0, posee un mínimo local no estricto y no aislado en x = 0.

Definición

Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local aislado** de $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, si \mathbf{x}^* es mínimo local de f y existe una vecindad $U \subset \mathbb{R}^n$ de \mathbf{x}^* tal que \mathbf{x}^* es el único mínimo local de f en U. Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local no aislado** de f, si para toda vecindad U de \mathbf{x}^* , existe $\mathbf{x} \in U$, $\mathbf{x} \neq \mathbf{x}^*$, tal que \mathbf{x} también es mínimo local de f.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \cos \frac{1}{x} + x^2$, f(0) = 0, posee un mínimo local no estricto y no aislado en x = 0.

Ejemplo: La función $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 \cos \frac{1}{x} + 2x^2$, g(0) = 0, posee un mínimo local estricto y no aislado en x = 0.

Definición

Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local aislado** de $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, si \mathbf{x}^* es mínimo local de f y existe una vecindad $U \subset \mathbb{R}^n$ de \mathbf{x}^* tal que \mathbf{x}^* es el único mínimo local de f en U. Un punto $\mathbf{x}^* \in \Omega$ es un **mínimo local no aislado** de f, si para toda vecindad U de \mathbf{x}^* , existe $\mathbf{x} \in U$, $\mathbf{x} \neq \mathbf{x}^*$, tal que \mathbf{x} también es mínimo local de f.

Ejemplo: La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \cos \frac{1}{x} + x^2$, f(0) = 0, posee un mínimo local no estricto y no aislado en x = 0.

Ejemplo: La función $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 \cos \frac{1}{x} + 2x^2$, g(0) = 0, posee un mínimo local estricto y no aislado en x = 0.

- funciones con muchos mínimos;
- los algoritmos tienden a quedarse atrapados en mínimos locales,

- funciones con muchos mínimos;
- los algoritmos tienden a quedarse atrapados en mínimos locales,
- en el caso de métodos de búsqueda, puede que el óptimo global esté en una región no explorada;

- funciones con muchos mínimos;
- los algoritmos tienden a quedarse atrapados en mínimos locales,
- en el caso de métodos de búsqueda, puede que el óptimo global esté en una región no explorada;
- cuando el mínimo se encuentra dentro de una región donde la función es muy plana (curvatura cercana a o), los métodos de optimización suelen ser muy lentos;

- funciones con muchos mínimos;
- los algoritmos tienden a quedarse atrapados en mínimos locales.
- en el caso de métodos de búsqueda, puede que el óptimo global esté en una región no explorada;
- cuando el mínimo se encuentra dentro de una región donde la función es muy plana (curvatura cercana a o), los métodos de optimización suelen ser muy lentos;
- no-diferenciabilidad en un punto mínimo.

Fórmula de Taylor:

Si $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$, entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{0}) + \sum_{k=0}^{m} \frac{1}{k!} D^{(k)} f(\mathbf{x}_{0}) \cdot \mathbf{h}^{(k)} + \frac{1}{(m+1)!} D^{(m+1)} f(\mathbf{x}_{0} + t\mathbf{h}) \cdot \mathbf{h}^{(m+1)},$$

donde $t \in (0,1)$ y

Fórmula de Taylor:

Si $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$, entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + \sum_{k=0}^{m} \frac{1}{k!} D^{(k)} f(\mathbf{x}_{o}) \cdot \mathbf{h}^{(k)} + \frac{1}{(m+1)!} D^{(m+1)} f(\mathbf{x}_{o} + t\mathbf{h}) \cdot \mathbf{h}^{(m+1)},$$

donde $t \in (0, 1)$ y

$$D^{(k)}f(\mathbf{x}_{0})\cdot\mathbf{h}^{k}=\sum_{|I|=k}\frac{\partial^{k}f}{\partial\mathbf{x}_{I}}(\mathbf{x}_{0})\,\mathbf{h}_{I}=\sum_{|I|=k}\frac{\partial^{k}f}{\partial\mathbf{x}_{1}^{i_{1}}\cdots\partial\mathbf{x}_{n}^{i_{n}}}\,h_{1}^{i_{1}}h_{2}^{i_{2}}\cdots h_{n}^{i_{n}},$$

$$I = (i_1, \ldots, i_n), \mathbf{x}_l = (x_{i_1}, \ldots, x_{i_n}), \mathbf{h}_l = (h_{i_1}, \ldots, h_{i_n}).$$

Fórmula de Taylor:

Si $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$, entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{0}) + \sum_{k=0}^{m} \frac{1}{k!} D^{(k)} f(\mathbf{x}_{0}) \cdot \mathbf{h}^{(k)} + \frac{1}{(m+1)!} D^{(m+1)} f(\mathbf{x}_{0} + t\mathbf{h}) \cdot \mathbf{h}^{(m+1)},$$

donde $t \in (0,1)$ y

$$D^{(k)}f(\mathbf{x}_{0})\cdot\mathbf{h}^{k}=\sum_{|I|=k}\frac{\partial^{k}f}{\partial\mathbf{x}_{I}}(\mathbf{x}_{0})\,\mathbf{h}_{I}=\sum_{|I|=k}\frac{\partial^{k}f}{\partial\mathbf{x}_{1}^{i_{1}}\cdots\partial\mathbf{x}_{n}^{i_{n}}}\,h_{1}^{i_{1}}h_{2}^{i_{2}}\cdots h_{n}^{i_{n}},$$

$$I=(i_1,\ldots,i_n), \mathbf{x}_I=(x_{i_1},\ldots,x_{i_n}), \mathbf{h}_I=(h_{i_1},\ldots,h_{i_n}).$$

Casos particulares:

Si $f:\mathbb{R}^n o \mathbb{R}$ es de clase C^2 , podemos escribir

$$f(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0 + t\mathbf{h}), t \in (0, 1).$$

Fórmula de Taylor:

Si $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$, entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + \sum_{k=0}^{m} \frac{1}{k!} D^{(k)} f(\mathbf{x}_{o}) \cdot \mathbf{h}^{(k)} + \frac{1}{(m+1)!} D^{(m+1)} f(\mathbf{x}_{o} + t\mathbf{h}) \cdot \mathbf{h}^{(m+1)},$$

donde $t \in (0, 1)$ y

$$D^{(k)}f(\mathbf{x}_{0})\cdot\mathbf{h}^{k}=\sum_{|I|=k}\frac{\partial^{k}f}{\partial\mathbf{x}_{I}}(\mathbf{x}_{0})\,\mathbf{h}_{I}=\sum_{|I|=k}\frac{\partial^{k}f}{\partial\mathbf{x}_{1}^{i_{1}}\cdots\partial\mathbf{x}_{n}^{i_{n}}}\,h_{1}^{i_{1}}h_{2}^{i_{2}}\cdots h_{n}^{i_{n}},$$

$$I = (i_1, \ldots, i_n), \mathbf{x}_I = (x_{i_1}, \ldots, x_{i_n}), \mathbf{h}_I = (h_{i_1}, \ldots, h_{i_n}).$$

Casos particulares:

Si $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^2 , podemos escribir

$$f(\mathbf{x}) = f(\mathbf{x}_{0}) + Df(\mathbf{x}_{0} + t\mathbf{h}), t \in (0, 1).$$

$$f(\mathbf{x}) = f(\mathbf{x}_{0}) + Df(\mathbf{x}_{0}) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathsf{T}} D^{2} f(\mathbf{x}_{0} + t\mathbf{h}) \mathbf{h}, t \in (0, 1).$$

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Prueba: Hacemos la prueba para x* mínimo local.

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{o}$.

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*)=\mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$,

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Por el Teorema de Taylor, si $\mathbf{x} = \mathbf{x}^* + \mathbf{h}$, tenemos $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{h} + o(||\mathbf{h}||)$.

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*)=\mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Por el Teorema de Taylor, si $\mathbf{x} = \mathbf{x}^* + \mathbf{h}$, tenemos $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{h} + o(||\mathbf{h}||)$. Cuando $\alpha \to o$, entonces $\mathbf{h} \to o$, resulta que $\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{h} + o(||\mathbf{h}||) < o$,

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*)=\mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Por el Teorema de Taylor, si $\mathbf{x} = \mathbf{x}^* + \mathbf{h}$, tenemos $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||)$. Cuando $\alpha \to \mathbf{o}$, entonces $\mathbf{h} \to \mathbf{o}$, resulta que $\nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||) < \mathbf{o}$, ya que $o(||\mathbf{h}||)$ se acerca a cero, mucho más rápido que $\nabla f(\mathbf{x}^*)^T \mathbf{h}$.

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Por el Teorema de Taylor, si $\mathbf{x} = \mathbf{x}^* + \mathbf{h}$, tenemos $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||)$. Cuando $\alpha \to \mathbf{o}$, entonces $\mathbf{h} \to \mathbf{o}$, resulta que $\nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||) < \mathbf{o}$, ya que $o(||\mathbf{h}||)$ se acerca a cero, mucho más rápido que $\nabla f(\mathbf{x}^*)^T \mathbf{h}$. De hecho,

$$\lim_{\alpha \to \mathbf{0}} \frac{|\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{h}|}{||\mathbf{h}||} = \frac{\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{u}}{||\mathbf{u}||} = \nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{u} < \mathbf{0}.$$

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Por el Teorema de Taylor, si $\mathbf{x} = \mathbf{x}^* + \mathbf{h}$, tenemos $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||)$. Cuando $\alpha \to \mathbf{o}$, entonces $\mathbf{h} \to \mathbf{o}$, resulta que $\nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||) < \mathbf{o}$, ya que $o(||\mathbf{h}||)$ se acerca a cero, mucho más rápido que $\nabla f(\mathbf{x}^*)^T \mathbf{h}$. De hecho,

$$\lim_{\alpha \to \mathbf{0}} \frac{|\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{h}|}{||\mathbf{h}||} = \frac{\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{u}}{||\mathbf{u}||} = \nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{u} < \mathbf{0}.$$

De ahí que, $f(\mathbf{x}) < f(\mathbf{x}^*)$, y esto contradice el la hipótesis de que \mathbf{x}^* es un mínimo local.

Teorema (Condiciones de Optimalidad de Primer Orden)

Si \mathbf{x}^* es un mínimo local (o un máximo local) de la función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, y f es de clase C^1 en una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*)=\mathbf{0}$.

<u>Prueba</u>: Hacemos la prueba para \mathbf{x}^* mínimo local. Suponga que $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Por lo tanto, podemos encontrar una dirección $\mathbf{h} = -\alpha \frac{\nabla f(\mathbf{x}^*)}{||\nabla f(\mathbf{x}^*)||} = -\alpha \mathbf{u}$, tal que $D_{\mathbf{u}}f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{u} < \mathbf{0}$.

Por el Teorema de Taylor, si $\mathbf{x} = \mathbf{x}^* + \mathbf{h}$, tenemos $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||)$. Cuando $\alpha \to \mathbf{o}$, entonces $\mathbf{h} \to \mathbf{o}$, resulta que $\nabla f(\mathbf{x}^*)^T \mathbf{h} + o(||\mathbf{h}||) < \mathbf{o}$, ya que $o(||\mathbf{h}||)$ se acerca a cero, mucho más rápido que $\nabla f(\mathbf{x}^*)^T \mathbf{h}$. De hecho,

$$\lim_{\alpha \to \mathbf{0}} \frac{|\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{h}|}{||\mathbf{h}||} = \frac{\nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{u}}{||\mathbf{u}||} = \nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{u} < \mathbf{0}.$$

De ahí que, $f(\mathbf{x}) < f(\mathbf{x}^*)$, y esto contradice el la hipótesis de que \mathbf{x}^* es un mínimo local. Portanto, $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Definición

Un punto $\mathbf{x} \in \Omega = \text{dom} f$ que satisface que $\nabla f(\mathbf{x}) = \mathbf{0}$ se llama un **punto crítico** o **punto estacionario** de f.

Definición

Un punto $\mathbf{x} \in \Omega = \operatorname{dom} f$ que satisface que $\nabla f(\mathbf{x}) = \mathbf{0}$ se llama un **punto crítico** o **punto estacionario** de f.

De acuerto a la condición de Optimalizad de Primer Orden, todo mínimo local debe ser un punto estacionario de f.

Definición

Un punto $\mathbf{x} \in \Omega = \text{dom} f$ que satisface que $\nabla f(\mathbf{x}) = \mathbf{0}$ se llama un **punto crítico** o **punto estacionario** de f.

De acuerto a la condición de Optimalizad de Primer Orden, todo mínimo local debe ser un punto estacionario de f.

Teorema (Condiciones de Optimalidad de Segundo Orden)

Si $\mathbf{x}^* \in \mathbb{R}^n$ es un mínimo (máximo) localde $f : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^2 es una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y la hessiana

$$D^2f(\mathbf{x}^*) \succeq O$$

es positiva semidefinida (negativa semidefinida).

Definición

Un punto $\mathbf{x} \in \Omega = \text{dom} f$ que satisface que $\nabla f(\mathbf{x}) = \mathbf{0}$ se llama un **punto crítico** o **punto estacionario** de f.

De acuerto a la condición de Optimalizad de Primer Orden, todo mínimo local debe ser un punto estacionario de f.

Teorema (Condiciones de Optimalidad de Segundo Orden)

Si $\mathbf{x}^* \in \mathbb{R}^n$ es un mínimo (máximo) localde $f : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, y f es de clase C^2 es una vecindad abierta de \mathbf{x}^* , entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y la hessiana

$$D^2f(\mathbf{x}^*) \succeq O$$

es positiva semidefinida (negativa semidefinida).

<u>Prueba</u>: Al igual que antes, hacemos la prueba para el caso de \mathbf{x}^* mínimo local. El caso del máximo se prueba de forma similar.

Suponga que $D^2f(\mathbf{x}^*)$ no es positiva semidefinida.

Suponga que $D^2 f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2 f(\mathbf{x}^*) \mathbf{h} < \mathbf{o}$.

Suponga que $D^2 f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2 f(\mathbf{x}^*) \mathbf{h} < \mathbf{o}$.

Por continuidad de D^2f , y la preservación de signo, existe una bola $\mathbb{D}_r(\mathbf{x}^*)$ y un intervalo $(0,\varepsilon)$, tal que $\mathbf{h}^T D^2 f(\mathbf{x}^* + \widehat{\varepsilon} \mathbf{h}) \mathbf{h} < 0$, para todo $\widehat{\varepsilon} \in (0,\varepsilon)$.

Suponga que $D^2f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2f(\mathbf{x}^*) \mathbf{h} < \mathbf{o}$.

Por continuidad de D^2f , y la preservación de signo, existe una bola $\mathbb{D}_r(\mathbf{x}^*)$ y un intervalo (o, ε) , tal que $\mathbf{h}^T D^2 f(\mathbf{x}^* + \widehat{\varepsilon} \mathbf{h}) \mathbf{h} < o$, para todo $\widehat{\varepsilon} \in (o, \varepsilon)$.

Aplicando el Teorema de Taylor alrededor de \mathbf{x}^* , existe $t \in (0,1)$, tal que

$$f(\mathbf{x} + \widehat{\varepsilon}\mathbf{h}) = f(\mathbf{x}^*) + \widehat{\varepsilon}\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} + \frac{1}{2}\widehat{\varepsilon}^2\mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}^* + t\widehat{\varepsilon}\mathbf{h}) \mathbf{h}.$$

Suponga que $D^2f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2f(\mathbf{x}^*) \mathbf{h} < 0$.

Por continuidad de D^2f , y la preservación de signo, existe una bola $\mathbb{D}_r(\mathbf{x}^*)$ y un intervalo (o, ε) , tal que $\mathbf{h}^T D^2 f(\mathbf{x}^* + \widehat{\varepsilon} \mathbf{h}) \mathbf{h} < o$, para todo $\widehat{\varepsilon} \in (o, \varepsilon)$.

Aplicando el Teorema de Taylor alrededor de \mathbf{x}^* , existe $t \in (0,1)$, tal que

$$f(\mathbf{x} + \widehat{\varepsilon}\mathbf{h}) = f(\mathbf{x}^*) + \widehat{\varepsilon}\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} + \frac{1}{2}\widehat{\varepsilon}^2\mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}^* + t\widehat{\varepsilon}\mathbf{h}) \mathbf{h}.$$

Usando el hecho que $\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} = \mathbf{o}$ (ya que \mathbf{x}^* es mínimo local),

Suponga que $D^2f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2f(\mathbf{x}^*) \mathbf{h} < \mathbf{o}$.

Por continuidad de D^2f , y la preservación de signo, existe una bola $\mathbb{D}_r(\mathbf{x}^*)$ y un intervalo (o, ε) , tal que $\mathbf{h}^T D^2f(\mathbf{x}^* + \widehat{\varepsilon}\mathbf{h})\mathbf{h} < o$, para todo $\widehat{\varepsilon} \in (o, \varepsilon)$.

Aplicando el Teorema de Taylor alrededor de \mathbf{x}^* , existe $t \in (0,1)$, tal que

$$f(\mathbf{x} + \widehat{\varepsilon}\mathbf{h}) = f(\mathbf{x}^*) + \widehat{\varepsilon}\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} + \frac{1}{2}\widehat{\varepsilon}^2\mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}^* + t\widehat{\varepsilon}\mathbf{h}) \mathbf{h}.$$

Usando el hecho que $\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} = \mathbf{o}$ (ya que \mathbf{x}^* es mínimo local), y el hecho que $\mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}^* + t\widehat{\varepsilon}\mathbf{h}) \mathbf{h} < \mathsf{o}$,

Suponga que $D^2 f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2 f(\mathbf{x}^*) \mathbf{h} < \mathbf{o}$.

Por continuidad de D^2f , y la preservación de signo, existe una bola $\mathbb{D}_r(\mathbf{x}^*)$ y un intervalo (o, ε) , tal que $\mathbf{h}^T D^2 f(\mathbf{x}^* + \widehat{\varepsilon} \mathbf{h}) \mathbf{h} < o$, para todo $\widehat{\varepsilon} \in (o, \varepsilon)$.

Aplicando el Teorema de Taylor alrededor de \mathbf{x}^* , existe $t \in (0,1)$, tal que

$$f(\mathbf{x} + \widehat{\varepsilon}\mathbf{h}) = f(\mathbf{x}^*) + \widehat{\varepsilon}\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} + \frac{1}{2}\widehat{\varepsilon}^2\mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}^* + t\widehat{\varepsilon}\mathbf{h}) \mathbf{h}.$$

Usando el hecho que $\nabla f(\mathbf{x}^*)^T \mathbf{h} = \mathbf{o}$ (ya que \mathbf{x}^* es mínimo local), y el hecho que $\mathbf{h}^T D^2 f(\mathbf{x}^* + t \hat{\epsilon} \mathbf{h}) \mathbf{h} < \mathbf{o}$, obtenemos

$$f(\mathbf{x}^* + \widehat{\varepsilon}\mathbf{h}) < f(\mathbf{x}^*),$$

lo cual contradice la hipótesis de que \mathbf{x}^* es un mínimo local de f.

Suponga que $D^2 f(\mathbf{x}^*)$ no es positiva semidefinida. Entonces, existe $\mathbf{h} \in \mathbb{R}^n$ tal que $\mathbf{h}^T D^2 f(\mathbf{x}^*) \mathbf{h} < 0$.

Por continuidad de D^2f , y la preservación de signo, existe una bola $\mathbb{D}_r(\mathbf{x}^*)$ y un intervalo (o, ε) , tal que $\mathbf{h}^T D^2f(\mathbf{x}^* + \widehat{\varepsilon}\mathbf{h})\mathbf{h} < o$, para todo $\widehat{\varepsilon} \in (o, \varepsilon)$.

Aplicando el Teorema de Taylor alrededor de \mathbf{x}^* , existe $t \in (0,1)$, tal que

$$f(\mathbf{x} + \widehat{\varepsilon}\mathbf{h}) = f(\mathbf{x}^*) + \widehat{\varepsilon}\nabla f(\mathbf{x}^*)^\mathsf{T}\mathbf{h} + \frac{1}{2}\widehat{\varepsilon}^2\mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}^* + t\widehat{\varepsilon}\mathbf{h}) \mathbf{h}.$$

Usando el hecho que $\nabla f(\mathbf{x}^*)^T \mathbf{h} = \mathbf{o}$ (ya que \mathbf{x}^* es mínimo local), y el hecho que $\mathbf{h}^T D^2 f(\mathbf{x}^* + t \widehat{\varepsilon} \mathbf{h}) \mathbf{h} < \mathbf{o}$, obtenemos

$$f(\mathbf{x}^* + \widehat{\varepsilon}\mathbf{h}) < f(\mathbf{x}^*),$$

lo cual contradice la hipótesis de que \mathbf{x}^* es un mínimo local de f. Portanto, $D^2f(\mathbf{x}^*)$ es positiva semidefinida. \Box

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

Prueba: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = {\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h} > 0$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0, 1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$.

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Usando el Teorema de Taylor, con $||\mathbf{h}|| < r$, y como $\nabla f(\mathbf{x}^*) = \mathbf{o}$,

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Usando el Teorema de Taylor, con $||\mathbf{h}|| < r$, y como $\nabla f(\mathbf{x}^*) = \mathbf{0}$, se tiene que existe $t \in (0,1)$ tal que $f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h},$

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Usando el Teorema de Taylor, con $||\mathbf{h}|| < r$, y como $\nabla f(\mathbf{x}^*) = \mathbf{o}$, se tiene que existe $t \in (0,1)$ tal que $f(\mathbf{x}) = f(\mathbf{x}^*) + \tfrac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h},$

Como $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r(\mathbf{x}^*)$,

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Usando el Teorema de Taylor, con $||\mathbf{h}|| < r$, y como $\nabla f(\mathbf{x}^*) = \mathbf{o}$, se tiene que existe $t \in (0,1)$ tal que $f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h},$

Como $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r(\mathbf{x}^*)$, luego $\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h} > 0 \implies f(\mathbf{x}) > f(\mathbf{x}^*)$,

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Usando el Teorema de Taylor, con $||\mathbf{h}|| < r$, y como $\nabla f(\mathbf{x}^*) = \mathbf{0}$, se tiene que existe $t \in (0,1)$ tal que $f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h},$

Como $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r(\mathbf{x}^*)$, luego $\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h} > 0 \Rightarrow f(\mathbf{x}) > f(\mathbf{x}^*)$, para todo $\mathbf{x} \in \mathbb{D}_r(\mathbf{x}^*)$.

Teorema (Condiciones Suficientes de Optimalidad)

Suponga que D^2f existe y es continua en una vecindad de $\mathbf{x}^* \in \mathbb{R}^n$, que $\nabla f(\mathbf{x}^*) = \mathbf{0}$, y que la hessiana $D^2f(\mathbf{x}^*)$ es positiva definida (negativa definida). Entonces \mathbf{x}^* es un mínimo (máximo) local estricto de f.

<u>Prueba</u>: Existe una bola $\mathbb{D}_r(\mathbf{x}^*) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}^*|| < r\}$ para la cual $q(t) = \mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \, \mathbf{h} > \mathbf{0}$, para todo $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r$, con $t \in (0,1)$ y $\mathbf{h} = \mathbf{x} - \mathbf{x}^*$. (Esto es consecuencia de la preservación de signo, ya que la función q es continua y $q(0) = \mathbf{h}^T D^2 f(\mathbf{x}^*) \, \mathbf{h} > \mathbf{0}$).

Usando el Teorema de Taylor, con $||\mathbf{h}|| < r$, y como $\nabla f(\mathbf{x}^*) = \mathbf{o}$, se tiene que existe $t \in (0,1)$ tal que $f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h},$

Como $\mathbf{x}^* + t\mathbf{h} \in \mathbb{D}_r(\mathbf{x}^*)$, luego $\mathbf{h}^T D^2 f(\mathbf{x}^* + t\mathbf{h}) \mathbf{h} > 0 \Rightarrow f(\mathbf{x}) > f(\mathbf{x}^*)$, para todo $\mathbf{x} \in \mathbb{D}_r(\mathbf{x}^*)$. Esto muestra que \mathbf{x}^* es un mínimo local estricto de f.

Podemos encontrar y clasificar puntos estacionarios de la siguiente manera:

1. Encontrar los puntos críticos \mathbf{x} en los que $f(\mathbf{x}) = \mathbf{0}$.

Podemos encontrar y clasificar puntos estacionarios de la siguiente manera:

- 1. Encontrar los puntos críticos \mathbf{x} en los que $f(\mathbf{x}) = \mathbf{0}$.
- 2. Obtener la Hessiana $Hf(\mathbf{x}) = D^2 f(\mathbf{x})$.

Podemos encontrar y clasificar puntos estacionarios de la siguiente manera:

- 1. Encontrar los puntos críticos \mathbf{x} en los que $f(\mathbf{x}) = \mathbf{0}$.
- 2. Obtener la Hessiana $Hf(\mathbf{x}) = D^2 f(\mathbf{x})$.
- 3. Determinar el carácter de $Hf(\mathbf{x})$ para cada punto crítico \mathbf{x} .

Podemos encontrar y clasificar puntos estacionarios de la siguiente manera:

- 1. Encontrar los puntos críticos \mathbf{x} en los que $f(\mathbf{x}) = \mathbf{0}$.
- 2. Obtener la Hessiana $Hf(\mathbf{x}) = D^2 f(\mathbf{x})$.
- 3. Determinar el carácter de $Hf(\mathbf{x})$ para cada punto crítico \mathbf{x} .
 - Si $D^2f(\mathbf{x})$ es positiva (negativa) definida, entonces \mathbf{x} es un mínimo (máximo) local.
 - Si $D^2 f(\mathbf{x})$ es indefinida, \mathbf{x} es un punto silla.
 - Si $D^2f(\mathbf{x})$ es positiva (negativa) semidefinida, \mathbf{x} puede ser un mínimo (máximo) local. En este caso, es necesario seguir trabajando para clasificar el punto estacionario.

Podemos encontrar y clasificar puntos estacionarios de la siguiente manera:

- 1. Encontrar los puntos críticos \mathbf{x} en los que $f(\mathbf{x}) = \mathbf{0}$.
- 2. Obtener la Hessiana $Hf(\mathbf{x}) = D^2 f(\mathbf{x})$.
- 3. Determinar el carácter de $Hf(\mathbf{x})$ para cada punto crítico \mathbf{x} .
 - Si $D^2 f(\mathbf{x})$ es positiva (negativa) definida, entonces \mathbf{x} es un mínimo (máximo) local.
 - Si $D^2 f(\mathbf{x})$ es indefinida, \mathbf{x} es un punto silla.
 - Si $D^2f(\mathbf{x})$ es positiva (negativa) semidefinida, \mathbf{x} puede ser un mínimo (máximo) local. En este caso, es necesario seguir trabajando para clasificar el punto estacionario.

Un posible enfoque sería para deducir las terceras derivadas parciales de $f(\mathbf{x})$ y luego calcular el término correspondiente en la serie de Taylor. Si este término es cero, entonces el siguiente término necesita ser calculado y así por delante.

• En el caso especial donde $D^2 f(\mathbf{x}) = 0$, \mathbf{x} puede ser un minimizador o maximizador ya que las condiciones necesarias se satisfacen tanto en casos.

- En el caso especial donde $D^2 f(\mathbf{x}) = 0$, \mathbf{x} puede ser un minimizador o maximizador ya que las condiciones necesarias se satisfacen tanto en casos.
- Si $D^2 f(\mathbf{x})$ es semidefinida, se requiere más información para caracterización completa de un punto estacionario y más el trabajo es necesario en este caso.

- En el caso especial donde $D^2 f(\mathbf{x}) = 0$, \mathbf{x} puede ser un minimizador o maximizador ya que las condiciones necesarias se satisfacen tanto en casos.
- Si $D^2f(\mathbf{x})$ es semidefinida, se requiere más información para caracterización completa de un punto estacionario y más el trabajo es necesario en este caso.
- Un posible enfoque podría ser calcular el tercer término de la serie de Taylor de $f(\mathbf{x})$,

$$D^{3}f(\mathbf{x}) \cdot \mathbf{h}^{(3)} = \frac{1}{3!} \sum_{|I|=3} \frac{\partial^{3}f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{O}) \, \mathbf{h}_{I} = \frac{1}{3!} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial^{3}f}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \partial x_{3}^{i_{3}}} \, h_{1}^{i_{1}} h_{2}^{i_{2}} h_{3}^{i_{3}};$$

- En el caso especial donde $D^2 f(\mathbf{x}) = 0$, \mathbf{x} puede ser un minimizador o maximizador ya que las condiciones necesarias se satisfacen tanto en casos.
- Si $D^2 f(\mathbf{x})$ es semidefinida, se requiere más información para caracterización completa de un punto estacionario y más el trabajo es necesario en este caso.
- Un posible enfoque podría ser calcular el tercer término de la serie de Taylor de $f(\mathbf{x})$,

$$D^{3}f(\mathbf{x}) \cdot \mathbf{h}^{(3)} = \frac{1}{3!} \sum_{|I|=3} \frac{\partial^{3}f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{O}) \, \mathbf{h}_{I} = \frac{1}{3!} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial^{3}f}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \partial x_{3}^{i_{3}}} \, h_{1}^{i_{1}} h_{2}^{i_{2}} h_{3}^{i_{3}};$$

y se debe determinar el signo de este término. Si este término es cero, entonces debe calcularse el siguiente término $D^4f(\mathbf{x})$.

- En el caso especial donde $D^2 f(\mathbf{x}) = 0$, \mathbf{x} puede ser un minimizador o maximizador ya que las condiciones necesarias se satisfacen tanto en casos.
- Si $D^2 f(\mathbf{x})$ es semidefinida, se requiere más información para caracterización completa de un punto estacionario y más el trabajo es necesario en este caso.
- Un posible enfoque podría ser calcular el tercer término de la serie de Taylor de $f(\mathbf{x})$,

$$D^{3}f(\mathbf{x}) \cdot \mathbf{h}^{(3)} = \frac{1}{3!} \sum_{|I|=3} \frac{\partial^{3}f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{0}) \, \mathbf{h}_{I} = \frac{1}{3!} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial^{3}f}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \partial x_{3}^{i_{3}}} \, h_{1}^{i_{1}} h_{2}^{i_{2}} h_{3}^{i_{3}};$$

y se debe determinar el signo de este término. Si este término es cero, entonces debe calcularse el siguiente término $D^4f(\mathbf{x})$.

• En general, si los primeros *i* términos $D^i f(\mathbf{x})$ de la serie de Taylor son todos nulos, debe calcularse el signo de primer término $D^k f(\mathbf{x}) \cdot \mathbf{h}^{(k)}$ que no se anule.

- En el caso especial donde $D^2 f(\mathbf{x}) = 0$, \mathbf{x} puede ser un minimizador o maximizador ya que las condiciones necesarias se satisfacen tanto en casos.
- Si $D^2 f(\mathbf{x})$ es semidefinida, se requiere más información para caracterización completa de un punto estacionario y más el trabajo es necesario en este caso.
- Un posible enfoque podría ser calcular el tercer término de la serie de Taylor de $f(\mathbf{x})$,

$$D^{3}f(\mathbf{x}) \cdot \mathbf{h}^{(3)} = \frac{1}{3!} \sum_{|I|=3} \frac{\partial^{3}f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{0}) \, \mathbf{h}_{I} = \frac{1}{3!} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial^{3}f}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \partial x_{3}^{i_{3}}} \, h_{1}^{i_{1}} h_{2}^{i_{2}} h_{3}^{i_{3}};$$

y se debe determinar el signo de este término. Si este término es cero, entonces debe calcularse el siguiente término $D^4f(\mathbf{x})$.

• En general, si los primeros *i* términos $D^i f(\mathbf{x})$ de la serie de Taylor son todos nulos, debe calcularse el signo de primer término $D^k f(\mathbf{x}) \cdot \mathbf{h}^{(k)}$ que no se anule.

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$.

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$. En este caso, el gradiente es

$$\nabla f(\mathbf{x}) = \frac{1}{2} ((X_1 - 2)^2 (X_2 - 3)^2).$$

Resolviendo $\nabla f(\mathbf{x}) = \mathbf{0}$, se obtiene que el único punto crítico es $\mathbf{x}^* = (2,3)^T$.

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$. En este caso, el gradiente es

$$\nabla f(\mathbf{x}) = \frac{1}{2} ((X_1 - 2)^2 (X_2 - 3)^2).$$

Resolviendo $\nabla f(\mathbf{x}) = \mathbf{0}$, se obtiene que el único punto crítico es $\mathbf{x}^* = (2,3)^T$. La Hessiana de f es

$$D^2f(\mathbf{x}) = \begin{pmatrix} x_1 - 2 & 0 \\ 0 & x_2 - 3 \end{pmatrix}.$$

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$. En este caso, el gradiente es

$$\nabla f(\mathbf{x}) = \frac{1}{2} ((X_1 - 2)^2 (X_2 - 3)^2).$$

Resolviendo $\nabla f(\mathbf{x}) = \mathbf{0}$, se obtiene que el único punto crítico es $\mathbf{x}^* = (2,3)^T$. La Hessiana de f es

$$D^2 f(\mathbf{x}) = \begin{pmatrix} x_1 - 2 & 0 \\ 0 & x_2 - 3 \end{pmatrix}.$$

Así, en el punto crítico, $D^2(\mathbf{x}^*) = \mathbf{0}$.

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$. En este caso, el gradiente es

$$\nabla f(\mathbf{x}) = \frac{1}{2} ((X_1 - 2)^2 (X_2 - 3)^2).$$

Resolviendo $\nabla f(\mathbf{x}) = \mathbf{0}$, se obtiene que el único punto crítico es $\mathbf{x}^* = (2,3)^T$. La Hessiana de f es

$$D^2f(\mathbf{x}) = \begin{pmatrix} x_1 - 2 & 0 \\ 0 & x_2 - 3 \end{pmatrix}.$$

Así, en el punto crítico, $D^2(\mathbf{x}^*) = \mathbf{0}$. Las terceras derivadas de f son todas cero, excepto $\frac{\partial^3 f}{\partial \mathbf{x}_1^3}(\mathbf{x}) = \frac{\partial^3 f}{\partial \mathbf{x}_2^3}(\mathbf{x}) = 1$.

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$. En este caso, el gradiente es

$$\nabla f(\mathbf{x}) = \frac{1}{2} ((X_1 - 2)^2 (X_2 - 3)^2).$$

Resolviendo $\nabla f(\mathbf{x}) = \mathbf{0}$, se obtiene que el único punto crítico es $\mathbf{x}^* = (2,3)^T$. La Hessiana de f es

$$D^2f(\mathbf{x}) = \begin{pmatrix} x_1 - 2 & 0 \\ 0 & x_2 - 3 \end{pmatrix}.$$

Así, en el punto crítico, $D^2(\mathbf{x}^*) = \mathbf{0}$. Las terceras derivadas de f son todas cero, excepto $\frac{\partial^3 f}{\partial \mathbf{x}^3}(\mathbf{x}) = \frac{\partial^3 f}{\partial \mathbf{x}^3}(\mathbf{x}) = 1$.

Luego, el término

$$D^{3}f(\mathbf{x}^{*})\cdot\mathbf{h}^{(3)}=\frac{1}{3!}\sum_{i=1}^{3}\sum_{i=1}^{3}\sum_{k=1}^{3}\frac{\partial^{3}f}{\partial x_{1}^{i_{1}}\partial x_{2}^{i_{2}}\partial x_{3}^{i_{3}}}h_{1}^{i_{1}}h_{2}^{i_{2}}h_{3}^{i_{3}}=\frac{1}{6}(h_{1}^{3}+h_{2}^{3})$$

es positivo si $h_1, h_2 > 0$, pero es negativo si $h_1, h_2 < 0$.

Condiciones de Optimalidad

Ejemplo: Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por $f(\mathbf{x}) = \frac{1}{6}[(x_1 - 2)^3 + (x_2 - 3)^3]$. En este caso, el gradiente es

$$\nabla f(\mathbf{x}) = \frac{1}{2} ((X_1 - 2)^2 (X_2 - 3)^2).$$

Resolviendo $\nabla f(\mathbf{x}) = \mathbf{0}$, se obtiene que el único punto crítico es $\mathbf{x}^* = (2,3)^T$. La Hessiana de f es

$$D^2f(\mathbf{x}) = \begin{pmatrix} x_1-2 & 0 \\ 0 & x_2-3 \end{pmatrix}.$$

Así, en el punto crítico, $D^2(\mathbf{x}^*) = \mathbf{0}$. Las terceras derivadas de f son todas cero, excepto $\frac{\partial^3 f}{\partial \mathbf{x}^3}(\mathbf{x}) = \frac{\partial^3 f}{\partial \mathbf{x}^3}(\mathbf{x}) = 1$.

Luego, el término

$$D^{3}f(\mathbf{x}^{*})\cdot\mathbf{h}^{(3)}=\frac{1}{3!}\sum_{i=1}^{3}\sum_{i=1}^{3}\sum_{k=1}^{3}\frac{\partial^{3}f}{\partial x_{1}^{i_{1}}\partial x_{2}^{i_{2}}\partial x_{3}^{i_{3}}}h_{1}^{i_{1}}h_{2}^{i_{2}}h_{3}^{i_{3}}=\frac{1}{6}(h_{1}^{3}+h_{2}^{3})$$

es positivo si $h_1, h_2 > 0$, pero es negativo si $h_1, h_2 < 0$. Portanto, $D^3 f(\mathbf{x}^*) \cdot \mathbf{h}^{(3)}$ toma ambos signos, y \mathbf{x}^* es un punto silla de f.

Definición

Un subconjunto $\Omega \subseteq \mathbb{R}^n$ es **convexo** si para todo $\mathbf{x}, \mathbf{y} \in \Omega$, el segmento de recta $[\mathbf{x}, \mathbf{y}] = \{(1-t)\mathbf{x} + t\mathbf{y} : t \in [0,1]\}$ está totalmente contenido en Ω .

Definición

Un subconjunto $\Omega \subseteq \mathbb{R}^n$ es **convexo** si para todo $\mathbf{x}, \mathbf{y} \in \Omega$, el segmento de recta $[\mathbf{x}, \mathbf{y}] = \{(1-t)\mathbf{x} + t\mathbf{y} : t \in [0,1]\}$ está totalmente contenido en Ω .

(a) Conjunto no convexo, (b) Conjunto convexo.

Definición

Un subconjunto $\Omega \subseteq \mathbb{R}^n$ es **convexo** si para todo $\mathbf{x}, \mathbf{y} \in \Omega$, el segmento de recta $[\mathbf{x}, \mathbf{y}] = \{(1 - t)\mathbf{x} + t\mathbf{y} : t \in [0, 1]\}$ está totalmente contenido en Ω .

(a) Conjunto no convexo, (b) Conjunto convexo.

Ejemplos:

- Convexos: esferas, hiperplanos, semiespacios, conos, ...
- No Convexos: conjunto no conexos, uniones de rectas, uniones en general, ...

Definición

Una función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es **convexa** si $\Omega=\mathrm{dom}\, f$ es un conjunto convexo, y para todo $\mathbf{x},\mathbf{y}\in\Omega$, y todo $t\in[0,1]$ vale

$$f((1-t)\mathbf{x}+t\mathbf{y}) \le (1-t)f(\mathbf{x})+tf(\mathbf{y}). \tag{1}$$

Definición

Una función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es **convexa** si $\Omega=\mathrm{dom}\, f$ es un conjunto convexo, y para todo $\mathbf{x},\mathbf{y}\in\Omega$, y todo $t\in[0,1]$ vale

$$f((1-t)\mathbf{x}+t\mathbf{y}) \le (1-t)f(\mathbf{x})+tf(\mathbf{y}). \tag{1}$$

Geométricamente, la desigualdad (1) significa que el segmento de recta entre $(\mathbf{x}, f(\mathbf{x}))$ y $(\mathbf{y}, f(\mathbf{y}))$ está por encima de la gráfica de f.

Definición

Una función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es **convexa** si $\Omega=\mathrm{dom}\, f$ es un conjunto convexo, y para todo $\mathbf{x},\mathbf{y}\in\Omega$, y todo $t\in[0,1]$ vale

$$f((1-t)\mathbf{x}+t\mathbf{y}) \le (1-t)f(\mathbf{x})+tf(\mathbf{y}). \tag{1}$$

Geométricamente, la desigualdad (1) significa que el segmento de recta entre $(\mathbf{x}, f(\mathbf{x}))$ y $(\mathbf{y}, f(\mathbf{y}))$ está por encima de la gráfica de f.

La función f es **estrictamente convexa** si en (1) vale la desigualdad estricta, siempre que $\mathbf{x} \neq \mathbf{y}$ y $t \neq 0,1$. Decimos que f es **cóncava** (**estrictamente cóncava**) si -f es convexa (estrictamente convexa).

Definición

Una función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es **convexa** si $\Omega=\mathrm{dom}\, f$ es un conjunto convexo, y para todo $\mathbf{x},\mathbf{y}\in\Omega$, y todo $t\in[0,1]$ vale

$$f((1-t)\mathbf{x}+t\mathbf{y}) \le (1-t)f(\mathbf{x})+tf(\mathbf{y}). \tag{1}$$

Geométricamente, la desigualdad (1) significa que el segmento de recta entre $(\mathbf{x}, f(\mathbf{x}))$ y $(\mathbf{y}, f(\mathbf{y}))$ está por encima de la gráfica de f.

La función f es **estrictamente convexa** si en (1) vale la desigualdad estricta, siempre que $\mathbf{x} \neq \mathbf{y}$ y $t \neq 0, 1$. Decimos que f es **cóncava** (**estrictamente cóncava**) si -f es convexa (estrictamente convexa).

A la desigualdad (1) se le llama usualmente **desigualdad de Jensen**.

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1, \dots, \mathbf{x}_k \in \Omega$, y cualesquiera $t_1, \dots, t_k \in [0, 1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\left(\sum_{i=1}^k t_i \, \mathbf{x}_i\right) \le \sum_{i=1}^k t_i f(\mathbf{x}_i). \tag{2}$$

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f:\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \Omega$, y cualesquiera $t_1,\ldots,t_k \in [0,1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\Big(\sum_{i=1}^k t_i \mathbf{x}_i\Big) \leq \sum_{i=1}^k t_i f(\mathbf{x}_i).$$
 (2)

<u>Prueba</u>: (\Leftarrow) Para k=2, tome $\mathbf{x}_1=\mathbf{x}, \mathbf{x}_2=\mathbf{y}\in\Omega$, y sean $t_1=1-t, t_2=t$, con $t\in[0,1]$. La designaldad (2) se reduce a $f((1-t)\mathbf{x}+t\mathbf{y})\leq (1-t)f(\mathbf{x})+tf(\mathbf{y})$, lo que implica que f es convexa.

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f:\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \Omega$, y cualesquiera $t_1,\ldots,t_k \in [0,1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\Big(\sum_{i=1}^k t_i \mathbf{x}_i\Big) \leq \sum_{i=1}^k t_i f(\mathbf{x}_i). \tag{2}$$

<u>Prueba</u>: (\Leftarrow) Para k=2, tome $\mathbf{x}_1=\mathbf{x}, \mathbf{x}_2=\mathbf{y}\in\Omega$, y sean $t_1=1-t, t_2=t$, con $t\in[0,1]$. La designaldad (2) se reduce a $f((1-t)\mathbf{x}+t\mathbf{y})\leq (1-t)f(\mathbf{x})+tf(\mathbf{y})$, lo que implica que f es convexa.

(⇒) Mostramos la desigualdad (2) por inducción sobre k.

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f:\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \Omega$, y cualesquiera $t_1,\ldots,t_k \in [0,1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\left(\sum_{i=1}^k t_i \, \mathbf{x}_i\right) \le \sum_{i=1}^k t_i f(\mathbf{x}_i). \tag{2}$$

<u>Prueba</u>: (\Leftarrow) Para k=2, tome $\mathbf{x}_1=\mathbf{x}, \mathbf{x}_2=\mathbf{y}\in\Omega$, y sean $t_1=1-t, t_2=t$, con $t\in[0,1]$. La designaldad (2) se reduce a $f((1-t)\mathbf{x}+t\mathbf{y})\leq (1-t)f(\mathbf{x})+tf(\mathbf{y})$, lo que implica que f es convexa.

(\Rightarrow) Mostramos la desigualdad (2) por inducción sobre k. Para k=1, necesariamente $t_1=1$ de modo que $f(\mathbf{x}_1) \leq f(\mathbf{x}_1)$ y (2) se cumple de manera automática.

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f:\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \Omega$, y cualesquiera $t_1,\ldots,t_k \in [0,1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\left(\sum_{i=1}^k t_i \, \mathbf{x}_i\right) \le \sum_{i=1}^k t_i f(\mathbf{x}_i). \tag{2}$$

<u>Prueba</u>: (\Leftarrow) Para k=2, tome $\mathbf{x}_1=\mathbf{x}, \mathbf{x}_2=\mathbf{y}\in\Omega$, y sean $t_1=1-t, t_2=t$, con $t\in[0,1]$. La designaldad (2) se reduce a $f((1-t)\mathbf{x}+t\mathbf{y})\leq (1-t)f(\mathbf{x})+tf(\mathbf{y})$, lo que implica que f es convexa.

(\Rightarrow) Mostramos la desigualdad (2) por inducción sobre k. Para k=1, necesariamente $t_1=1$ de modo que $f(\mathbf{x}_1) \leq f(\mathbf{x}_1)$ y (2) se cumple de manera automática. El caso k=2 se cumple a partir de la definición de convexidad (1).

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f:\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \Omega$, y cualesquiera $t_1,\ldots,t_k \in [0,1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\Big(\sum_{i=1}^k t_i \mathbf{x}_i\Big) \leq \sum_{i=1}^k t_i f(\mathbf{x}_i).$$
 (2)

<u>Prueba</u>: (\Leftarrow) Para k=2, tome $\mathbf{x}_1=\mathbf{x}, \mathbf{x}_2=\mathbf{y}\in\Omega$, y sean $t_1=1-t, t_2=t$, con $t\in[0,1]$. La designaldad (2) se reduce a $f((1-t)\mathbf{x}+t\mathbf{y})\leq (1-t)f(\mathbf{x})+tf(\mathbf{y})$, lo que implica que f es convexa.

(\Rightarrow) Mostramos la desigualdad (2) por inducción sobre k. Para k=1, necesariamente $t_1=1$ de modo que $f(\mathbf{x}_1) \leq f(\mathbf{x}_1)$ y (2) se cumple de manera automática. El caso k=2 se cumple a partir de la definición de convexidad (1).

Suponga que (2) se cumple para cualesquiera k puntos $\mathbf{p}_1, \dots, \mathbf{p}_k \in \Omega$, siempre que se forme una combinación lineal convexa $s_1\mathbf{p}_1 + \dots + s_k\mathbf{p}_k$, con $0 \le s_i \le 1$ y $\sum_{i=1}^k s_i = 1$.

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

Definamos
$$t=t_{k+1}$$
, $1-t=\sum_{j=1}^k t_j=t_1+\ldots+t_k$.

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

Definamos $t=t_{k+1}$, $1-t=\sum_{j=1}^k t_j=t_1+\ldots+t_k$. Ambos coeficientes satisfacen o < t, 1-t < 1.

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

$$\mathbf{x} = (1-t)\mathbf{p} + t\mathbf{x}_{k+1} = (1-t)\sum_{i=1}^{R} s_i \mathbf{x}_j + t_{k+1} \implies t_j = (1-t)s_j, \ j = 1, \ldots, k;$$

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

$$\mathbf{x} = (1-t)\mathbf{p} + t\mathbf{x}_{k+1} = (1-t)\sum_{j=1}^{k} s_j \mathbf{x}_j + t_{k+1} \implies t_j = (1-t)s_j, \ j = 1, \ldots, k;$$

y
$$f\left(\sum_{i=1}^{k+1} t_i \mathbf{x}_i\right) = f\left((1-t)\mathbf{p} + t \mathbf{x}_{k+1}\right) \le (1-t)f(\mathbf{p}) + t f(\mathbf{x}_{k+1})$$

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

$$\mathbf{x} = (1-t)\mathbf{p} + t\mathbf{x}_{k+1} = (1-t)\sum_{i=1}^{k} s_{i}\mathbf{x}_{j} + t_{k+1} \implies t_{j} = (1-t)s_{j}, \ j = 1, \ldots, k;$$

y
$$f(\sum_{i=1}^{k+1} t_i \mathbf{x}_i) = f((1-t)\mathbf{p} + t \mathbf{x}_{k+1}) \le (1-t)f(\mathbf{p}) + t f(\mathbf{x}_{k+1})$$

$$\le (1-t)f(\sum_{j=1}^k s_j \mathbf{x}_j) + t f(\mathbf{x}_{k+1}) \le (1-t)\sum_{j=1}^k s_j f(\mathbf{x}_j) + t f(\mathbf{x}_{k+1})$$

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

$$\mathbf{x} = (1-t)\mathbf{p} + t\mathbf{x}_{k+1} = (1-t)\sum_{i=1}^{K} s_i \mathbf{x}_j + t_{k+1} \implies t_j = (1-t)s_j, \ j = 1, \ldots, k;$$

$$f\left(\sum_{i=1}^{k+1} t_{i} \mathbf{x}_{i}\right) = f\left((1-t)\mathbf{p} + t \mathbf{x}_{k+1}\right) \leq (1-t)f(\mathbf{p}) + t f(\mathbf{x}_{k+1})$$

$$\leq (1-t)f\left(\sum_{j=1}^{k} s_{j} \mathbf{x}_{j}\right) + t f(\mathbf{x}_{k+1}) \leq (1-t)\sum_{j=1}^{k} s_{j} f(\mathbf{x}_{j}) + t f(\mathbf{x}_{k+1})$$

$$\leq \sum_{i=1}^{k} t_{i} f(\mathbf{x}_{i}) + t f(\mathbf{x}_{k+1}) \leq \sum_{i=1}^{k+1} t_{i} f(\mathbf{x}_{i}). \square$$

Definición

Sea $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$. Definimos el **epígrafo** de f, como el conjunto

$$\mathsf{Epi}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1}: \ y \geq f(\mathbf{x})\} \subseteq \mathbb{R}^{n+1}.$$

Definición

Sea $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$. Definimos el **epígrafo** de f, como el conjunto

$$\mathsf{Epi}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1}: y \geq f(\mathbf{x})\} \subseteq \mathbb{R}^{n+1}.$$

Definición

Sea $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$. Definimos el **epígrafo** de f, como el conjunto

$$\mathsf{Epi}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1} : y \ge f(\mathbf{x})\} \subseteq \mathbb{R}^{n+1}.$$

Teorema

f es convexa \iff su epígrafo Epi(f) es un conjunto convexo.

Definición

Sea $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$. Definimos el **epígrafo** de f, como el conjunto

$$\mathsf{Epi}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1} : y \ge f(\mathbf{x})\} \subseteq \mathbb{R}^{n+1}.$$

Teorema

f es convexa \iff su epígrafo Epi(f) es un conjunto convexo.