

# Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

### CIRCUITOS ACOPLADOS MAGNETICAMENTE

Relatório da Disciplina de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Setembro / 2019

# Sumário

| 1 | Obj                     | etivos                                   | 2  |  |  |  |
|---|-------------------------|------------------------------------------|----|--|--|--|
| 2 | Intr                    | odução teórica                           | 2  |  |  |  |
|   | 2.1                     | A Indutância Mútua                       | 2  |  |  |  |
|   | 2.2                     | Cálculo das indutâncias próprias         | 3  |  |  |  |
|   | 2.3                     | Fluxo em circuitos magnéticos            | 4  |  |  |  |
| 3 | Prep                    | paração                                  | 5  |  |  |  |
|   | 3.1                     | Materiais e ferramentas                  | 5  |  |  |  |
|   | 3.2                     | Montagem                                 | 5  |  |  |  |
| 4 | Análise sobre segurança |                                          |    |  |  |  |
| 5 | Cálo                    | culos, análise dos resultados e questões | 9  |  |  |  |
| 6 | Sim                     | ulação computacional                     | 10 |  |  |  |
| 7 | Con                     | clusões                                  | 12 |  |  |  |

### 1 Objetivos

Verificar experimentalmente os conceitos teóricos sobre acoplamentos magnéticos, obtenção dos valores das auto-indutâncias e da indutância mútua, e comparar os resultados com os valores obtidos utilizando uma análise teórica.

## 2 Introdução teórica

Nos circuitos em que a condução de energia elétrica ocorre por meios físicos, diz-se que são circuitos condutivos. Entretanto, ainda é possível que dois circuitos com ou sem contato se afetem por meio do campo magnético gerado por um deles, esses são chamados circuitos magneticamente acoplados [1].

O *transformador* é baseado nesse princípio. Possui quatro terminais e consiste em dois indutores que são colocados com certa proximidade um do outro, logo comparttilham o mesmo fluxo magnético e, portanto, as bobinas indutoras estão acopladas magneticamente.

Sua aplicabilidade é vasta, por exemplo, em sistemas de comunicação, são usados para casamento de impedâncias entre fontes e cargas ou linhas de transmissão. Em sistemas de potências, transformadores são usados para atenuar ou amplificar os sinais de tensão. De fato, transformadores são utilizados em eliminadores de pilha e recarregadores de baterias, que podem ser ligados diretamente em tomadas residenciais [2].

#### 2.1 A Indutância Mútua

Enrolamentos acoplados magneticamente dão origem ao fenômeno de indutância mútua. Os indutores podem neste experimento são acoplados em série, o que permite o cálculo da indutância mútua a partir da Equação (5), considerando a natureza não-ideal dos transformadores.

Da ligação série aditiva e subtrativa tem-se os resultados das Equações (1) e (2) para os módulos das impedâncias obtidas.

$$Z_{ad}^{2} = (R_{1} + R_{2})^{2} + (\omega L_{1} + \omega L_{2} + \omega 2M)^{2}$$
(1)

$$Z_{sub}^{2} = (R_1 + R_2)^2 + (\omega L_1 + \omega L_2 - \omega 2M)^2$$
 (2)

Assim, tem-se:

$$L_1 + L_2 = \frac{\sqrt{Z_{ad}^2 - (R_1 + R_2)^2 - 2\omega M}}{\omega}$$
 (3)

$$L_1 + L_2 = \frac{\sqrt{Z_{sub}^2 - (R_1 + R_2)^2 + 2\omega M}}{\omega}$$
 (4)

Portanto, a indutância mútua será dada por:

$$M = \frac{1}{4\omega} \left( \sqrt{Z_{add}^2 - (R_1 + R_2)^2} - \sqrt{Z_{sub}^2 - (R_1 + R_2)^2} \right)$$
 (5)

A indutância mútua surge devido a interação do fluxo magnético do primário  $(\phi_p)$  nos terminais do secundário, o que provoca uma tensão induzida. Entretanto, para transformadores não-ideais somente uma parcela do fluxo que percorre o primário também percorre o secundário  $(\phi_m)$ . Assim, é interessante definir o **coeficiente de acoplamento** k entre os dois enrolamentos, descrito pela Equação (6) [3].

$$k = \frac{\phi_m}{\phi_p} \tag{6}$$

### 2.2 Cálculo das indutâncias próprias

Para o cálculo das impedâncias próprias é analisado o experimentalmente um transformador a vazio. Na Figura 1, tem-se um transformador a vazio e analisando as duas malhas do circuito tem-se o sistema de equações de (7).



Figura 1: Transformador a vazio (Adaptado de [4]).

$$\begin{cases} v_{1}(t) = R_{L1} i_{1}(t) + L_{1} \cdot \frac{di_{1}(t)}{dt} + M \cdot \frac{di_{2}(t)}{dt} \\ v_{2}(t) = R_{L2} i_{2}(t) + L_{2} \cdot \frac{di_{2}(t)}{dt} + M \cdot \frac{di_{1}(t)}{dt} \end{cases}$$
(7)

Passando para o domínio da frequência, em regime permanente, tem-se 8.

$$\begin{cases} \dot{V}_{1} = R_{L1} \, \dot{I}_{1} + L_{1} \cdot j\omega \dot{I}_{1} + M \cdot j\omega \dot{I}_{2} \\ \dot{V}_{2} = R_{L2} \, \dot{I}_{2} + L_{2} \cdot j\omega \dot{I}_{2} + M \cdot j\omega \dot{I}_{1} \end{cases}$$
(8)

Como a malha do secundário encontra-se em aberto tem-se  $\dot{I}_2 = 0$ , logo (8) reescreve-se como em (9)de forma a conseguir (10).

$$\begin{cases} \dot{V}_{1} = R_{L1} \, \dot{I}_{1} + L_{1} \cdot j\omega \dot{I}_{1} \\ \dot{V}_{2} = R_{L2} \, \dot{I}_{2} + L_{2} \cdot j\omega \dot{I}_{2} \end{cases}$$
(9)

$$\left\{ egin{aligned} |\dot{I_1}| &= rac{|\dot{V_1}|}{R_{L1} + L_1 \omega} \ |M| &= rac{|\dot{V_2}|}{\omega \dot{I_1}} \end{aligned} 
ight.$$

$$Z_1 = R_{L1} + L_1 \omega {10}$$

Da Equação (10) obtém-se a indutância própria  $L_1$  da bobina 1, e invertendo o tranformador, com a bobina 1 em circuito aberto e a bobina 2 conectada ao variador de tensão consegue-se a indutância própria  $L_2$ . Ademais, define-se o coeficiente de acoplamento como em 11.

$$k = \frac{M}{\sqrt{L_1 L_2}} \tag{11}$$

### 2.3 Fluxo em circuitos magnéticos

O fluxo no primário  $\phi_p$  pode ser descrito como na Equação (12) e, por meio de (11), é possível obter suas componentes.

$$L = \frac{\lambda}{\dot{I}} = \frac{N \cdot \phi_p}{\dot{I}}$$

$$\phi_p = \frac{L \cdot \dot{I}}{N} \tag{12}$$

### 3 Preparação

#### 3.1 Materiais e ferramentas

#### 1 - Fonte

Alimentará todo o circuito.

#### 2 - Variador de tensão (Varivolt)

O equipamento permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.

#### 3 - Conjunto de bobinas

Cada bobina possui uma resistência, sendo  $R_1$  para a bobina 1 (600 esp.) e  $R_2$  para a bobina 2 (1200 esp.). Considere  $R_1 < R_2$ .

#### 4 - Conectores

Foram utilizadas pontas de provas para a verificação das grandezas nos multímetros. Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.

#### 5 - Multímetro

Utilizado para medir as tensões elétricas entre os pontos das bobinas especificados no experimento.

#### 6 - Miliamperímetro

A escala mais precisa permite melhor regulagem da corrente desejada.

### 3.2 Montagem

#### 1) Resistências das bobinas

Para o conjunto de bobinas fornecido, foi medido a resistência da bobina 1 (600 esp.) e a resistência da bobina 2 (1200 esp.) e obteve-se:

$$R_1 = 2,6\Omega$$

$$R_2 = 7,4\Omega$$

#### 2) Determinando a polaridade das bobinas

Efetue a montagem da Figura 2, aplicando uma corrente de 50 mA no miliamperímetro, anote a tensão  $V_1$  e marque a polaridade da Bobina 1, indicando-a por um ponto ".", no terminal em que a fem1 (terminal ligado ao positivo da fonte CA) é positiva. Na bobina 2 marque a polaridade (o ponto) no terminal ligado ao voltímetro se a tensão V' < V1, e marque o ponto no terminal debaixo se  $V' > V_1$  (terminal em que a fem induzida é positiva).



Figura 2: Marcação de polaridade.

Da análise experimental, obteve-se V' = 8,33V e  $V_1 = 10,27V$ . Logo, o ponto é indicado como na Figura 2, ponto no terminal superior da bobina 2, pois V' < V1.

#### 3) Ligação série aditiva

Como na Figura 3, a montagem faz a ligação em série aditiva das bobinas 1 e 2 (os fluxos são aditivos). Aplique a tensão necessária de modo a obter o valor de corrente indicado na Tabela 1, completando as demais colunas com os valores das tensões V (tensão total aplicada as bobinas). Os valores de  $Z_{ad}$  são obtidos fazendo V/I.



Figura 3: Ligação série aditiva das bobinas 1 e 2

Tabela 1: Tabela de tensões para cada valor de corrente  $I_{ad}$  setado.

| $I_{ad}$ (mA) | V(V)  | $Z_{ad}(\Omega)$ |
|---------------|-------|------------------|
| 16,7          | 32,66 | 1955,68          |
| 33,3          | 61,55 | 1848,34          |
| 50,0          | 94,60 | 1892,00          |

#### 4) Ligação série subtrativa

Como na Figura 4, a montagem faz a ligação em série subtrativa entre as bobinas 1 e

2 (fluxos subtrativos ou contrários). Aplique a tensão necessária de modo a obter as correntes indicadas na Tabela 2, completando as demais colunas com os valores das tensões V (tensão total aplicada as bobinas). Os valores de  $Z_{sub}$  são obtidos fazendo V/I.



Figura 4: Ligação série subtrativa das bobinas 1 e 2.

| Tabela 2: | Tabela de | tensões | nara | cada | valor | de | corrente | Ι, | setado |
|-----------|-----------|---------|------|------|-------|----|----------|----|--------|
|           |           |         |      |      |       |    |          |    |        |

| $I_{sub}$ (mA) | V (V) | $Z_{sub}(\Omega)$ |
|----------------|-------|-------------------|
| 50,0           | 15,20 | 304,00            |
| 100,0          | 31,11 | 311,10            |
| 150,0          | 46,09 | 307,27            |

#### 5) Transformador a vazio

Efetue a montagem do circuito da Figura 5 abaixo, considerando agora as bobinas 1 e 2 isoladas (como num transformador a vazio). Aplique uma tensão na bobina 1 de modo a obter a corrente indicada na Tabela 3. Meça a tensão na bobina 1  $(V_1)$  e a tensão que é induzida na bobina 2 devido a corrente na bobina 1  $(V_2)$ . Os valores de  $Z_1$  são obtidos fazendo V/I.



Figura 5: Transformador com bobina 1 no primário e bobina 2 no secundário.

Tabela 3: Tabela de tensões para cada valor de corrente  $I_1$  setado

| I <sub>1</sub> (mA) | <i>V</i> <sub>1</sub> (V) | $Z_1(\Omega)$ | <i>V</i> <sub>2</sub> (V) |
|---------------------|---------------------------|---------------|---------------------------|
| 50,0                | 10,30                     | 206,00        | 18,61                     |
| 100,0               | 21,14                     | 211,40        | 38,44                     |
| 150,0               | 32,14                     | 214,27        | 59,01                     |

#### 6) Transformador a vazio com bobinas invertidas

Efetue a montagem do circuito da Figura 6 abaixo, considerando agora as bobinas 1 e 2 isoladas (como num transformador a vazio). Aplique uma tensão na bobina 2 de modo a obter a corrente indicada na Tabela 4. Meça a tensão na bobina 1  $(V_1)$  e a tensão que é induzida na bobina 2 devido a corrente na bobina 1  $(V_2)$ . Os valores de  $Z_1$  são obtidos fazendo V/I.



Figura 6: Transformador com bobina 2 no primário e bobina 1 no secundário

Tabela 4: Tabela de tensões para cada valor de corrente  $I_1$  setado

| <i>I</i> <sub>2</sub> (mA) | <i>V</i> <sub>2</sub> (V) | $Z_2(\Omega)$ | <i>V</i> <sub>1</sub> (V) |
|----------------------------|---------------------------|---------------|---------------------------|
| 25,0                       | 20,97                     | 838,80        | 9,81                      |
| 50,0                       | 43,53                     | 870,60        | 19,14                     |
| 75,0                       | 66,30                     | 884,00        | 29,43                     |

## 4 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [5]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento.

### 5 Cálculos, análise dos resultados e questões

1 - A partir dos valores obtidos na tabela 1, encontre o valor médio da impedância  $Z_{ad}$ . O valor médio da impedância  $Z_{ad}$  será:

$$Z_{ad} = 1898,67\Omega$$

2 - A partir dos valores obtidos na tabela 2, encontre o valor médio da impedância  $Z_{sub}$ . Com os valores médios das impedâncias aditiva e subtrativa e os valores das resistências das bobinas ( $R_1$  e  $R_2$ ), encontre o valor da impedância mútua M. O valor médio da impedância  $Z_{sub}$  será:

$$Z_{sub} = 307,42\Omega$$

Assim, a indutância mútua será dada por meio da Equação (5).

$$M = \frac{1}{4 \times (2\pi \cdot 60)} \left( \sqrt{1898,67^2 - (2,6+7,4)^2} - \sqrt{307,42^2 - (2,6+7,4)^2} \right) = 1,0553H$$

3 - A partir dos valores obtidos na tabela 3, encontre o valor médio da impedância  $Z_1$ . O valor médio da impedância  $Z_1$  será:

$$Z_1 = 210,56\Omega$$

4 - A partir dos valores obtidos na tabela 4, encontre o valor médio da impedância Z<sub>2</sub>. Com os valores médios das impedâncias das bobinas (Z<sub>1</sub> e Z<sub>2</sub>) e os valores das resistências das bobinas (R<sub>1</sub> e R<sub>2</sub>), encontre os valores das reatâncias próprias e das auto indutâncias L<sub>1</sub> e L<sub>2</sub>.

O valor médio da impedância  $Z_2$  será:

$$Z_2 = 864,47\Omega$$

Da Equação (10) utilizando como referência a montagem da Figura 5 tem-se:

$$210,56 = 2,6 + L_1 \cdot (2\pi \cdot 60) \Rightarrow L_1 = 0,55H$$

E utilizando como referência a montagem da Figura 6 tem-se:

$$864,47 = 7,4 + L_2 \cdot (2\pi \cdot 60) \Rightarrow L_2 = 2,27H$$

5 - Com os valores obtidos para  $L_1$ ,  $L_2$  e M encontre o valor do coeficiente de acopla-

mento entre as bobinas 1 e 2.

A partir Equação (11), tem o coeficiente de acoplamento:

$$k = \frac{1,0553}{\sqrt{0,55 \cdot 2,27}} = 0,9424$$

6 - Para uma corrente de 1,0*A* na bobina 1 (Figura 5), encontre o valor do fluxo  $\phi_1$ ,  $\phi_{12}$ . Utilizando-se a Equação (12), obtém-se:

$$\phi_1 = \frac{0.55 \cdot 1}{600} = 0.92 \, mWb$$

Da Equação (11), tem-se ainda que  $\phi_{12} = 0,00086697 Wb$ .

7 - Para uma corrente de 1,0*A* na bobina 1 (Figura 6), encontre o valor do fluxo  $\phi_2$ ,  $\phi_{22}$ . Utilizando-se a Equação (12), obtém-se:

$$\phi_2 = \frac{2,27 \cdot 1}{1200} = 0,19 \, mWb$$

Da Equação (11), tem-se ainda que  $\phi_{22} = 0,00017905 Wb$ .

8 - O que deve acontecer com as leituras dos instrumentos do primário, em qualquer das montagens efetuadas, se a barra superior do núcleo de ferro for removida (o núcleo for aberto)?

Nesse caso, a tensão diminui, uma vez que no lugar da barra haverá o espraiamento do fluxo, o que significa que haverá uma relutância. Entretanto a corrente aumenta bastante, haja vista que o fluxo deve aumentar consideravelmente a fim de vencer a barreira dielétrica imposta pelo entreferro.

9 - O que deve acontecer com as leituras dos instrumentos do secundário, em qualquer das montagens efetuadas, se o núcleo de ferro for retirado do circuito sem desligamento do mesmo?

Ocorre o mesmo comportamento de tensão e corrente que na situação anterior. Observe como no secundário o fluxo é menor, provavelmente a corrente se elevará mais ainda comparada à situação anteriormente proposta.

# 6 Simulação computacional

1. Ligação série aditiva



Figura 7: Ligação série aditiva.

## 2. Ligação série subtrativa



Figura 8: Ligação série subtrativa.

## 3. Transformador a vazio



Figura 9: Ligação série subtrativa.

#### 4. Transformador a vazio com bobinas invertidas



Figura 10: Ligação série subtrativa.

# 7 Conclusões

No experimento, um transformador foi uitlizado a fim de discutir o fenômeno da indutância mútua. A simulação experimental permitiu também calcular o fluxo e impedâncias envolvidas. Além disso, foi discutido a situação em que é removido o barramento superior do núcleo.

Sobreleva-se a importância dos Equipamento de Proteção Invidual, para melhor aproveitamento.

### Referências

- [1] P. H. Rezende, "Circuitos Magneticamente Acoplados", UFU, 2018. Disponível em: https://www.moodle.ufu.br/pluginfile.php/702496/mod\_resource/content/3/Cap.%20I\_Acoplamento.pdf. Acesso em: ago. 2019.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson, 4<sup>a</sup> Ed., 2000.
- [3] R. L. Boylestad, "Intrdução À Análise de Circuitos", Pearson, 10<sup>a</sup> Ed., 2004.
- [4] B. S. Marczewski, B. J. R. Santos, F. H. G. Zucatelli, L. A. Tonin, "Experimento 4: Indutância Mútua.", Uversidade Federal do ABC, 2011. Disponível em: https://www.scribd.com/document/97029440/Relatorio-Exp4-Indutancia-Mutua-Circuitos-Eletricos-2-Trim3-3. Acesso em: set. 2019.
- [5] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.