Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 14.04.2015r	Dzień: Wtorek					
Grupa: VII Godzina: 12:15-15:00						
Temat ćwiczenia:						
$Przetwornice\ DC/DC$						
Dane projektowe:						
$U_{we} = 9.00 \text{ V}$	$R_{SC}=0.625\Omega$	L=330uH				
$U_{wy}=6.00 V$	$R_1=1.795\Omega$	$C_0 = 476 uF$				
$I_{\text{max}} = 9.00 \text{ V}$	$R_2=6.720k\Omega$	$C_T=560pF$				
l.p	Nazwisko i imię	Oceny				
1	Arkadiusz Ziółkowski					
2	Jakub Koban					

1 Zadanie projektowe

Zaprojektować zasilacz stabilizowany obniżający napięcie o zadanych parametrach:

- $U_{we} = 9.00 \text{ V}$
- $U_{wv}=6.00 \text{ V}$
- $I_{max} = 0.25 A$

2 Obliczenia projektowe

$$I_{pk} = I_{Lpk} = 2I_{max} = 2 * 0.25 = 0.5A \tag{1}$$

$$\mathbf{R_{SC}} = \frac{0.3V}{I_{pk}} = \frac{0.3}{0.5} = \mathbf{0.6}\Omega \tag{2}$$

Zakadamy
$$\mathbf{R_1} = \mathbf{1.8k\Omega} \rightarrow \mathbf{R_2} = R_1 \frac{|U_{wy}| - 1.25V}{1.25V} = 1800 \frac{6 - 1.25}{1.25} = \mathbf{6.8k\Omega}$$
 (3)

Zakadamy
$$\mathbf{T} = 25\mathbf{u}s \rightarrow \mathbf{t_{on}} = T\frac{U_0}{U_i} = 25 * 10^{-6} \frac{6}{9} = 16.67\mathbf{us}$$
 (4)

$$\mathbf{L} \geqslant \frac{U_i}{I_{Lpk}} t_{ON} = \frac{9}{0.5} * 16.37 * 10^{-6} = \mathbf{300uH}$$
 (5)

$$\mathbf{C_0} \geqslant \frac{I_{Lpk}T}{8U_{tm}} = \frac{0.5 * 25 * 10^{-6}}{8 * 0.5} = \mathbf{3.125uF}$$
 (6)

3 Schemat projektowy

Rysunek 1: Schemat do symulacji projektowanego układu

Rysunek 2: Symulacja - napięcie wyjściowe od czasu

Rysunek 3: Schemat projektowanego układu

- 4 Część laboratoryjna
- 4.1 Charakterystyka napięciowa i napięciowo prądowa

Rysunek 4: Charakterystyka napięcia wyjściowego od napięcia wejściowego przy stałym obciążeniu

Rysunek 5: Charakterystyka natężenia prądu wyjściowego od napięcia wyjściowego przy zmiennym obciążeniu

Rysunek 6: Wykres sprawności od natężenia prądu wyjściowego

5 Wnioski

- Na podstawie Rysunku nr 4 widzimy, iż zasilacz pracuje zgodnie z oczekiwaniami, ponieważ dla napięcia nominalnego $U_{we} = 9V$ na wyjściu otrzymujemy zadane napięcie ok. 6V.
- Wykres z rysunku nr 5 wskazuje na to, że układ został zaprojektowany i wykonany zgodnie z założeniami projektowymi, gdyż dla wartości od kilkudziesięciu mA do ok. 225mA natężenia prądu wyjściowego układ utrzymuje zadane napięcie wyjściowe na poziomie ok. 6V. Zakres ten jest o ok. 25mA mniejszy od założonego $I_{max}=250mA$. Wynika to najprawdopodobniej z użycia nieco innych wartości elementów niż zakłdają obliczenia projektowe.
- Sprawność wykreślona w zależności od natężenia prądu wyjściowego na rystunku nr 6 przyjmuje wartości na poziomie 0.7 0.8 co możemy uznać za wartości mieszczące się w normach tego typu układów.

Stałe obciążenie				
$\{U_{we}[V]\}$	$\{U_{wy}[V]\}$			
0	0			
0.5	0.001			
0.9	0.010			
1.5	0.200			
2.0	0.586			
2.5	0.940			
3.0	1.340			
3.5	1.750			
4.0	2.170			
4.5	2.570			
5.0	3.040			
5.5	3.480			
6.0	3.860			
6.5	4.320			
7.0	4.670			
7.5	5.120			
8.0	5.500			
8.5	6.140			
9.0	6.180			
9.5	6.180			
10.0	6.190			
10.5	6.190			
11.0	6.192			
11.5	6.192			
12.0	6.194			
12.5	6.194			
13.0	6.196			
13.5	6.196			
14.0	6.199			
14.5	6.208			
15.0	6.206			

Zmienne obciążenie					
$\{U_{we}[V]\}$	$\{I_{we}[mA]\}$	$$U_{wy}[V]$	$I_{wy}[mA]$	η	
9	25.82	6.197	27.91	0.74	
9	36.87	6.192	41.32	0.77	
9	44.92	6.191	51.02	0.78	
9	66.82	6.188	77.11	0.79	
9	93.56	6.184	108.47	0.80	
9	134.13	6.178	154.98	0.79	
9	168.09	6.126	195.13	0.79	
9	228.10	5.840	269.77	0.77	
9	269.00	5.518	330.00	0.75	
9	300.50	4.791	408.50	0.72	
9	270.70	3.808	445.30	0.70	
9	250.80	3.331	464.80	0.69	