aws re: Invent

AIM 404-R

Amazon SageMaker RL: Solving business problems with RL and bandits

Girish Dilip Patil

Senior Architect
Amazon Web Services India

Segolene Dessertine-panhard

Data Scientist Amazon Web Services France

Marc Cabocel

Senior Architect
Amazon Web Services France

Anna Luo

Applied Scientist
Amazon Web Services USA

Agenda

- 1. A quick primer on reinforcement learning (RL)
- 2. An important trade-off: Explore vs. exploit
- 3. Amazon SageMaker RL
- 4. Workshop #1: Training without a simulator in a real environment
- 5. Workshop #2: Training with a simulator
- 6. Conclusion

A quick primer on reinforcement learning

Reinforcement learning in the broader artificial intelligence context

Reinforcement learning

Reinforcement learning is based on the reward hypothesis:

All goals can be described by the maximization of expected cumulative reward

How RL differs from other variations of machine learning

- Reinforcement learning helps in learning a strategy to maximize a reward in a specific environment
- Very useful when you don't have supervised training data
- \circ Agent learns by interacting with the environment (simulated or real)

RL is applicable in many domains

First step toward RL: Contextual multi-armed bandits

An important trade-off: Explore vs. exploit

You need to have a balance between exploration and exploitation

Amazon SageMaker RL

Amazon SageMaker RL makes RL accessible

Difficult to get started

RL agent algorithms are complex to implement

Hard to integrate environments for training

Training is computationally expensive and time-consuming

Requires trial and error & frequent tuning of hyperparameters

Pre-built environments for RL; numerous examples

Support for RL agent algorithms

Easy to integrate variety of simulation environments

Single/ distributed training; local/ remote environment

Local mode for debugging; automatic model tuning

Train RL models using state-of-the-art algorithms

* RL Toolkits comparison

Integrate any type of RL environment

Amazon SageMaker RL

Workshop #1: Training without a simulator in a real environment

What are the challenges

 Feedback is delayed. It needs to be joined with inputs & actions taken to prepare next training datasets.

 You have to learn fast. Unlike in a simulated environment, the agent doesn't have the luxury to learn from millions of episodes.

Training never stops

Building a recommendation with contextual MAB

Implicit feedback, such as click (reward)

Bandits vs. A/B testing

Online learning

Introduction to online machine learning simplified (source https://analyticsvidhya.com)

Adopting bandits into existing systems: Warm start

CONTEXT	~	Action 1/Arm 1	~	Action 2/Arm 2 ▼	Action 3/Arm 3	
Context 1					Reward = 1	
Context 2				Reward = 1		
Context 3		Reward = 1				
Context 4				Reward = 1		
Context 5				Reward = 1		
Context 6		Reward = 1				

Amazon SageMaker RL bandits container

Contextual MAB: Initialization

Amazon S3

Contextual MAB: Data collection

Contextual MAB: Data aggregation

Contextual MAB: Iterative training

Contextual MAB: Evaluation

Personalization with contextual bandits

Configurations

```
# Vowpal Wabbit container
image: "462105765813.dkr.ecr.{AWS_REGION}.amazonaws.com/sagemaker-rl-vw-container:vw-8.7.0-cpu"
# Vowpal Wabbit algorithm parameters
algor:
  algorithms_parameters:
    exploration_policy: "egreedy" # supports "egreedy", "bag", "cover"
    epsilon: 0.001 # used if egreedy is the exploration policy
    num_policies: 3 # used if bag or cover is the exploration policy
    num_arms: 7
    cfa_type: "dr" # supports "dr", "ips"
# use local mode?
local_mode: true
# if true, use the same endpoint with updated model
soft_deployment: true
```

Reviewing the setup

Amazon DynamoDB

Amazon Kinesis Data Firehose

Reviewing the setup, continued

Amazon Athena

Workshop #2: Training with a simulator

Training with HVAC simulator

Conclusion

Amazon SageMaker (working with other AWS services) makes it equally easy to train with and without simulation environments.

Amazon SageMaker provides containers with popular RL algorithms, and you can bring your own. This includes online learning algorithms.

Contextual bandits make experimentation very effective, and they learn rapidly.

Conquer the newest frontier of ML: Reinforcement learning with Amazon SageMaker

Learn ML with AWS Training and Certification

The same training that our own developers use, now available on demand

Role-based ML learning paths for developers, data scientists, data platform engineers, and business decision makers

70+ free digital ML courses from AWS experts let you learn from real-world challenges tackled at AWS

Validate expertise with the **AWS Certified Machine Learning - Specialty** exam

Visit https://aws.training/machinelearning

Thank you!

Girish Dilip Patil girpatil@amazon.com

Segolene Dessertine-panhard

Marc Cabocel cabocel@amazon.fr

Ann Luo

Please complete the session survey in the mobile app.

