INVERSE PROBLEMS IN IMAGE PROCESSING

Faisal Jayousi*

TD: 7 January 2023

Exercise 1

Given $y \in \mathbb{R}^n$ and a linear operator $A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, compute the **gradient** of the *n*-dimensional function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ defined as

$$f(x) = \frac{1}{2} ||Ax - y||_2^2 \tag{1}$$

Exercise 2

Compute the **Lipschitz constant** of the gradient of f defined in (1).

Exercise 3

Consider the 1-dimensional function $f(x) = |x|, x \in \mathbb{R}$. Compute the **subdifferential** of f for all $x \in \mathbb{R}$.

Properties of subdifferential calculus

Proposition 1. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be two proper convex functions.

1. $\forall x \in \mathbb{R}^n$ there holds

$$\partial f(x) + \partial g(x) \subset \partial (f+g)(x).$$
 (2)

2. Moreover, if $\operatorname{int}(\operatorname{dom} f) \cap \operatorname{int}(\operatorname{dom} g) \neq \emptyset$, then $\forall x \in \mathbb{R}^n$

$$\partial f(x) + \partial g(x) = \partial (f+g)(x).$$
 (3)

Proof. First of all, we note that $dom(f+g) = dom f \cap dom g$. Let $u \in \partial f(x)$ and $v \in \partial g(x)$. Let $z \in \mathbb{R}^n$. Then, we have

$$f(z) \ge f(x) + \langle u, z - x \rangle$$

 $g(z) \ge g(x) + \langle v, z - x \rangle$

Summing the two inequalities above, we obtain

$$f(z) + g(z) \ge f(x) + g(x) + \langle u + v, z - x \rangle.$$

Hence $u + v \in \partial (f + g)(x)$.

Proposition 2. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $\lambda > 0$. Then $\forall x \in \mathbb{R}^n$

$$\lambda \partial f(x) = \partial(\lambda f)(x). \tag{4}$$

П

Proof. Let $x \in \mathbb{R}^n$ and $p \in \partial f(x)$. Then, by definition of subgradient for any $z \in \mathbb{R}^n$ we have $f(z) \geq f(x) + \langle p, z - x \rangle$. Hence, $\lambda f(z) \geq \lambda f(x) + \langle \lambda p, z - x \rangle$ and thus $\lambda p \in \partial(\lambda f)(x) \Longrightarrow \lambda \partial f(x) \subseteq \partial(\lambda f)(x)$. On the contrary, let $\tilde{p} \in \partial(\lambda f)(x)$. By definition, we have for any $z \in \mathbb{R}^n$ that $\lambda f(z) \geq \lambda f(x) + \langle \tilde{p}, z - x \rangle$. Dividing by $\lambda > 0$: $f(z) \geq f(x) + \langle \frac{\tilde{p}}{\lambda}, z - x \rangle$. It follows that $\frac{\tilde{p}}{\lambda} \in \partial f(x) \Longrightarrow \tilde{p} \in \lambda \partial f(x) \Longrightarrow \partial(\lambda f)(x) \subseteq \lambda \partial f(x)$.

Proposition 3. Separability. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ a convex separable function i.e.

$$f(x) = \sum_{i=1}^{n} f_i(x_i) \tag{5}$$

where $f_i: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is proper and convex for any i = 1, ..., n. Then, the subdifferential of f can be obtained as

$$\partial f(x) = \partial f_1(x_1) \times \partial f_2(x_2) \times \dots \times \partial f_n(x_n)$$

$$= \{ (p_1, p_2, \dots, p_n) \text{ s.t. } p_1 \in \partial f_1(x_1), \ p_2 \in \partial f_2(x_2), \dots, \ p_n \in \partial f_n(x_n) \}.$$
(6)

^{*}E-mail : {surname}@unice.fr

Exercise 4

Given $y \in \mathbb{R}^n$ and a linear operator $A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, use the above propositions to compute the **subdifferential** of the *n*-dimensional function

$$F(x) = \frac{1}{2} ||Ax - y||_2^2 + \lambda ||x||_1, \ \lambda > 0.$$
 (7)