(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開書号

特開平11-171981

(43)公開日 平成11年(1999)6月29日

(51) Int.CL ⁶		織別記号	ΡI					
C 0 8 G	59/70		C 0 8 G 59/70	59/70				
	50 /50		59/50					
	59/62		59/62					
C 0 8 L 83/0		•	Ç () § 1. 63/00		В			
			審査請求 未請	求 前求項の数7	OL (全 8 頁)			
(21)出顧書号		特職平9−340126	(71)出顧人 000002141					
			住友	ペークライト株式会社				
(22)出願日		平成9年(1997)12月10日	第10日 東京都品川区東品川2丁目5					
			(72)発明者 三宅	澄也				
			東京	都品川区東品川 2	丁目5番8号 住友			
			~-	クライト 株式会社 (4			
			(72)発明者 第	選幸				
			1		丁目5番8号 住友			
				クライト株式会社	^ 1			
			(72)発明者 永田	- -				
			1		丁目5番8号 住友			
			~	クライト株式会社	^			
					最終頁に続く			

(54) 【発明の名称】 樹脂組成物

(57)【要約】

【課題】 硬化性に優れていて短時間の成形でも十分に 硬化させることかでき、また、常温付近での保存安定性 にも優れ、保存性と硬化性を両立させた、電気 電子材 料として有用な樹脂組成物を提供する。

【解决手段】 エボキシ樹脂(A) 硬化剤(B)、および潜伏性触媒として一般式(1)て表されるような特定構造のオニウムボレート(C)を必須成分とする。

(2)

【特許請求の範囲】

【請求項1】 エポキシ樹脂(A)、硬化剤(B)、お よび一般式(1)で表されるオニウムボレート(C) を、必須成分とすることを特徴とする樹脂組成物。 [{tl]

式中、X1は、中心陽イオンが窒素陽イオンであるオニ ウムを表す。また、Yi、Yi、Yi、およびYiの内の少 なくとも1つは、分子外に放出し得るプロトンを少なく とも1個有するプロトン供与体が、プロトンを1個放出 してなる基であり、それらは同一であっても異なってい でも良い。前記プロトン供与体以外の基は、芳香環もし くは複素環を有する有機基。または脂肪族基を表す。 【請求項2】 エポキシ樹脂(A) 硬化剤(B)、お よび一般式(2)で表されるオニウムボレート(C) を、必須成分とすることを特徴とする樹脂組成物。

$$\chi^{+} \left(\begin{array}{c} \gamma^{7} \\ \gamma^{8} \end{array} \right) \qquad (2)$$

式中 X1は、中心陽イオンか窒素陽イオンであるオニ ウムを表す。また、ホウ素アニオンは、プロトンを放出 も得る官能基Y。、Y。を分子内に有するプロトン供与 体、およびプロトンを放出し得る官能基子。 Y。を分子 内に有するプロトン供与体が、各っプロトンを放出して 30 【発明の属する技術分野】本発明は 硬化性および保存 ホウ素と環を形成している。

【請求項3】 エポキシ樹脂(A) 硬化剤(B)、お よひ一般式(3)で表されるオニウムボレート(C) を一必須成分とすることを特徴とする樹脂組成物。

$$X^{+} = Y^{11}_{\gamma^{12}} = Y^{0}_{\gamma^{10}}$$
 (3)

式中 X1は、中心陽イオンか窒素陽イオンであるオニ。 ウスを書す。また、YaおよびYayの内の少なくとも1

環もしくは複素環を有する有機基または脂肪熱基を表。 ず。もろ一方の「プロトンを放出し得る官能基子」。「学 多分子内に有するプロトン供与体は、プロトンを効出 医医克雷克囊纤维 外 医心丛

(達5)种体 (1) 网络 # 1 1 1 1

よびオニウムボレート (C) を必須成分とする樹脂組成 物であって、該オニウムボレート(广)は、窒素陽イオ ンを中心陽イオンとするオニウムカチオンと、ホウ素を 中心イオンとするアニオンとからなり。ホウ素の4つの 結合手Mの内の少なくとも1つは、分子外に放出し得る プロトンを2個以上有するプロトン供与体が、プロトン を2個以上放出してなる基の結合手Nの内の少なくとも 1つと反応し、残りの結合手Nは他のオニウムとイオン 対を形成しているホウ素と反応して、オニウムボレート 10 が分子間結合を形成しており、分子間結合に寄与してい ないボウ素の残りの結合手Mには、分子外に放出し得る プロトンを少なくとも1個有するプロトン供与体がプロ トンを1個放出してなる墓」または芳香環もしくは復素 環を有する有機基。または脂肪族基が結合してなること を特徴とする樹脂組成物。

【請求項5】 1分子内に2個のエポキシ基を有するエ ボキン樹脂、及び/またはエボキシ当量か240以上で あるエポキシ樹脂が、エポキシ樹脂 (A) の50重量% 以上を占めることを特徴とする。請求項1乃至請求項4 20 のいすれかに記載の樹脂組成物。

【請求項6】 硬化剤(B)か、1分子内に2個以上の フェノール性水酸基を有する化合物であることを特徴と する。請求項1乃至請求項4のいずれかに記載の樹脂組 成物。

【論卞項7】 硬化剤(B)が、アミン系化合物である ことを特徴とする。請求項1乃至請求項4のいずれかに 記載の樹脂組成物。

【発明の詳細な説明】

[0001]

性が良好で、電気、電子材料として有用な樹脂組成物に 関するものである。

[2002]

【従来の技術】電気、電子材料、特に半導体封止や銅張 り積層板用に用いられる材料は、近年、その生産効率の 向上を目的にますまず速硬化性が求められ、その一方で は、物流、保管時には保存性の向上を要求されている。 【0003】これまでにもその要求に対して、エポキシ 樹脂の硬化促進剤(以下)触媒とも言う)として 様々 40」なアミン系潜伏性験媒の使用が提案されてきた。すなわ ち、イミダソールや3級アミンの有機酸塩、4級アンモ チェスチェートレート 一手紙 アンコンウィデト

特別される「量くるためは単性さればい」。 - に対して、本発明者の59種計した結果では、従来して分 アミン、2級ボスフィンに比して、本発明は保存性と硬 化性の両方に優わ 特に低官能性 低移体エナキン樹脂 5.東印、おして、特にして計里が顕著でするできた分が

The contract was

(3)

[0004]

【発明が解決しようとする課題】本発明は、このような 問題点を解決するべく鋭意検討した結果なされたもの で、保存性と硬化性を両立させた、電気、電子材料とし て有用な樹脂組成物を提供することを目的とするもので ある。

3

[0005]

【課題を解决するための手段】即ち本発明は、エポキシ 樹脂(A)、硬化剤(B)、およびオニウムボレート ボレート (0) が、一般式(1) 、一般式(2) 」もし くは一般式(3)で表されるものであることを特徴とす るする樹脂組成物である。

[0006]

[HE1]

$$x^+ y^4 = B - y^2$$
 (1)

式中、X1は、中心陽イオンが窒素陽イオンであるオニ ウムを表す。また、Y、、Y、、Y、およびY、の内の少 なくとも1つは、分子外に放出し得るプロトンを少なく とも1個有するプロトン供与体が、プロトンを1個放出 してなる基であり、それらは同一であっても異なってい でも良い。前記プロトン供与体以外の基は、芳香環もし くは複素環を有する有機基。または脂肪族基を表す。

[0007]

[(12]

$$X^{+} \begin{pmatrix} Y^{7} & Y^{6} \\ Y^{8} & Y^{6} \end{pmatrix}$$
 (2)

|武中|||X1は、中心陽イオンか窒素陽イオンであるオニ ウムを表す。また、ホウ素アニオンは、プロトンを放出 し得る官能基Y。、Y。を分子内に有するプロトン供与 体 およびプロトンを放出し得る官能基督。 Y。を分子 内に有するプロトン供与体が、各々プロトンを放出して ホウ素と環を形成している。

[00008] (P:3)

透中 天 は、中心臓です)が窒素陽ですってもふす ウムを表す。また、「1.およびYiaの内の少なくともで でんれ、分子外に放出し得るプロトンをのなくともし個有 こうによって記録 タンラがおうな (裏標準)についる基 $(x,y) = (x,y) \cdot \mathbf{f}[x] = (x,y) \cdot (x,\mathbf{w}) = (x,y) \cdot (x,y)$

Y。およびY。。の内のプロトン供与体以外の基は、芳香 環もしくは複素環を有する有機基または脂肪族基を表 す。もう一方の、プロトンを放出し得る官能基Yi、Y 1.を分子内に有するプロトン供与体は、プロトンを放出 してボウ素と環を形成している。

【0009】またさらに、エポキシ樹脂(A) 硬化剤 (B)、およびオニウムポレート(①)を必須成分とす る樹脂組成物であって、該オニウムボレート(C)は、 窒素陽イオンを中心陽イオンとするオニウムカチオン。 (C) を必須成分とする樹脂組成物であり、該オニウム。10 と、ホウ素を中心イオンとするアニオンとからなり、ホ ウ素の4つの結合手Mの内の少なくとも1つは、分子外 に放出し得るプロトンを2個以上有するプロトン供与体 が、プロトンを2個以上放出してなる墓の結合手Nの内 の少なくとも1つと反応し、残りの結合手Nは他のオニ ウムとイオン対を形成しているボウ素と反応して、オニ ウムボレートが分子間結合を形成しており、分子間結合 に寄与していないホウ素の残りの結合手Mには、分子外 に放出し得るプロトンを少なくとも1個有するプロトン 供与体がプロトンを1個放出してなる墓、または芳香環 20 もしくは複素環を有する有機基、または脂肪族基が結合 してなることを特徴とする樹脂組成物である。

[0010]

【発明の実施の形態】本発明において用いられるエポキ シ樹脂(A)は、半導体封止材料や銅張り積層板の分野 で使用される。当業者に公知のものであればなんら制限 はなく、例えば、ピフェニル型エポキシ樹脂、フポラッ ク型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナ フタレン型エポキシ樹脂などのフェノール樹脂や「ナフ トール類などの水酸基にエピクロロヒドリンを反応させ 30 て製造するエポキシ樹脂。シシクロペンタジェンとフェ **ビール類の共縮合物をエポキシ化したもの、脂環式エポ** キン樹脂のようにオレフィンを過酸を用いて酸化させエ ボキン化したものも含まれるが、特に、1分子内に2個 のエポキシ基を有するエポキシ樹脂。及び火またはエポ キン当量が240以上のエポキシ樹脂など、比較的低官 能 低核体のエポキシ機能において その良好な硬化 性。保存性を発揮するので好ましい。

【0011】本発明において用いられる硬化剤(B)と しては、フェノール系機能。アミン系化合物、酸無水 40 物 活性エステルなどが有効であるが 特にこれらに限 定されるものではなく、エポキシ樹脂と反応し得るあち 細す付い第日のきく、からのす。 かみずけげり個は

- 操作 - 0 - 1 - **持** 4直 変性である。20時間にアミンバルテンルを入機艦にあ 十三川類とフェンール類をわれたて川基営有化合物と共 縮出した樹脂 シックロペンマッエンとフェアール類の 共福品物などが多くされるなっている。、性水酸基の定 養り、「研的」、シェートルが、これなど、著書類性に

環に結合する水素原子が少なくとも1個水酸基で置換さ れたものであることから この定義に該当するフェアー ル性水酸基を1分子内に2個以上有するものであればよ い。また、後者のアミン系硬化剤としては、シアミノジ フェニルメタンなどの芳香族シアミン、アニリン樹脂、 ジシアンジアミド、グアニジンやその誘導体などを例示 することができるが、当業者に公知のものであればなん ら限定されるものではない。

5

【10.0.1.2】また、本発明のオニウムボレート(〇)を 構成する、カチオンX1は、中心陽イオンが窒素陽イオー 10 一合を形成する。 ンであるオニウムであれば良いが、このような窒素陽イ オンとしては、非環状のアンモニウムイオン、イミニウ ムイオン、グアニジニウムイオン、アミジニウムイオー ン、環状アンモニウムイオンである 1 . 4 - ジアザビン。 カロ〔2,2,2〕オクタニウム。2環式アミシニウムイ オンである1、8 = ジアサビシクロ[5,4,0]ウンデ セニウムや、1、5 - シアザビンクロ[4,3,0]ノネ ニウム、単環のイミダゾリウムイオン、ピリシニウムイ オンなどが例示できる。

アニオン側のボウ素に結合する。一般式(1)における。 Y_1 、 Y_2 、 Y_3 、 Y_4 、一般式(3)における Y_3 、 Y_4 。 などの元となる。分子外に放出し得るプロトンを少なく とも1個有するプロトン供与体の例としては、酢酸、マ レイン酸、安息香酸、ナフトエ酸、テレフタル酸。ピロ メリット酸、トリメリット酸、ナフタレンジカルボン酸 などのカルボン酸、フェアール、クレソール、ナフトー ル、カテコール、レブルシン、シヒトロキシナフタレー ン ヒドロキシアントラセンなどのフェノール類。サリ ン酸。スクアリック酸、クロコニック酸などのオキッカ ーポン類、イソンアヌル醇。ワタルイミト、アセチルア セトナートなどのプロトン放出体、メタアール。エタア ールーモーフタノール、ヘンジルアルコールなどのアル コール類、さらには、パラキシレンシメタフールなどの。 プロトン供与体の等価体や、アニリンなどのアミン類。 も、プロトンを供与できるならば何ら差し支えなく、そ れらは同一であっても異なっていても良い。

【0014】また、一般式(1)や(3)における。ホー ウ素に結合した前記プロトン供与体以外の基は「芳香環」46 【0020】(実施例】~8、および比較例】~4)成 1!~は複素環を有する有機基一または脂肪酶基であっ

profile and the second section of the second て、プロトンを放出してかり素と環を形成することので きる。官能基Y。、Y、を分子内に有するコロト。伊与一 休、官能基子。 下,を分子内に有するプロトン供与体 … (百姓基) こうしょう (分配) 有さる (は) 連り けず みれら (画師) こういり から基づる こうせつ

素と環を形成するならは何ら制限はない。環の形成の容 易さや安定性の点から、カテコール 隣接位に水酸基が あるジヒドロキシナフタレン、ヒドロキシ安息香酸、ヒ ドロキシナフトエ酸などが例示されるが、2,21-メ チレンピス4-メチルフェノールなども環を形成するな らば、本発明の技術的範囲に含まれる。

【0016】また、これらの分子内に2個以上のプロト ン供与基を有するプロトン供与体は、異なる2個以上の ホウ素原子と結合すれば、オニウムボレートの分子間結

【0017】本発明において、オニウムボレート(C) か。エボキシ樹脂組成物に優れた硬化性と保存性を与え る理由の、詳細は明らかでないが、エポキシが開環した 際の酸素アニオンに、カウンターイオンとして対をなす オニウムボレート (C) を構成するカチオンX*の構 造」および硬化の開始に影響を及ぼすアニオン側のボレ ートの役割が ある特定構造の場合に きわめて良好な 性能を発揮するのであろうと推察される。また、本発明 の検討過程で、エボキシ樹脂が比較的低官能のエボキシ 【0013】一方、オニワムホレート(C)を構成する。20 樹脂。例えば2官能のエポキシ樹脂やエポキシ当量か2 4.0以上のエポキシ樹脂において、従来の3級アミンや 3級ポスフィンに比べて、特に硬化性が優れていること か判明した。これは、3級アミンや3級ホスフィンの場 台。硬化過程でエボキシに何らかの副反応が起こるた。 め、低官能のエポキシ樹脂では、その副反応の影響が大 きいためではないかと考えられる。

【0018】また、本発明の樹脂組成物は、半導体封止 材料など成形材料に通常用いられる無機充填剤や、離型 剤。カップリング剤、顔料、他の硬化促進剤などを必要 チル酸、ヒトロキシナフトエ酸などのヒトロキシカルボー30 に応じて配合し、視線工程を経て成形材料を調製し、あ るいは、樹脂組成物を溶剤に溶解してワニス化した後、 積層板の作製に通常用いられるカラスクロスなどに含浸 塗布し、乾燥工程を経て得られたブリブレクを用いて、 - 銅箔を重ね合わせてプレス成形し、 積層板を作製するた めに、使用することもできる。

[0019]

【実施例】以下に実施例を挙げて、本発明をさらに詳細 に説明するが。本発明はこれによって何ら限定されるも のてはない。

形材料を調製し、特性評価のため、加熱成形直後の熱時 (489 - 5997村 100 - 000 - 000 - 100 - 100 円存後ので

r • ¥m f

は、武(4)と(15)にもした通りにもる。

【0001】[ハーコール硬度

7.1.8~K6911に筆する吸水円盤作製金型を用い 7.5 に、多し科技制となる。即席に取り出たので - "门热","热热"。 人名科普尔 "值"。 病學言

の熱時硬度をバーコール硬度計を用いて測定した。この 数値が大きいほど硬化性が高いことを示す。

【0022】2、スパイラルフロー

EMMI-I-66に準じたスパイラルフロー測定用金 型を用いて、金型温度175℃、注入圧70kg/cm *、硬化時間2分で測定する。スパイラルプロー(€ m)は流動性のバラメーターであり、数値の大きい方が、 流動性が良いことを示す。

【0023】3、コロー残存率

成形种料を調製した直後のスパイラルフロー、および4 10 製ビフェニル型エポキシ樹脂(YX4000日)52 OTC. 3日間保存した後のスパイラルプローを測定し、 村村調製直後のスパイラルフロー(cm)に対する、保 存後のスパイラルフロー(cm)の百分率を算出した。 フロー残存率が大きいほど保存性が良いことを示す。 【0024】(実施例1)多官能エポキシ樹脂である、 日本化業製オルソクレゾールアボラックエボキシ樹脂。 (EOCN 102065) 67重量部(以下、単に部と 略す)に、軟化点が105℃で水酸基当量104のフェ ノールノボラック33部 一破砕状溶融シリカ300部、 カルナバワックス2部、式(4)で表される化合物A。 3.1部を配合し、熱ロールで90℃。5分間混練して * -

* 成形材料を調製した。

【()()25】 (実施例2) 多官能で エポキシ当量が2 60の大日本インキ製ジシクロペンタジエン型エポキシ 横鵬(HP-7200)71部に、軟化点が105℃で 水酸基当量104のフェノールノボラック29部、球状 溶融シリカ500部、カルナバワックス2部、式(5) で表される化台物B2部を配合し、熱ロールで90℃、 5分間混練して成形材料を調製した。

【0026】(実施例3)2官能の油化シェルエポキシ 部 三井東圧化学製アラルキル変性フェノール樹脂(X L225-3L) 48部、球状溶融シリカ800部、カ ルナバワックス2部、式(6)で表される化合物C2. 8部を配合し、熱ロールで90℃、5分間混練して成形 材料を調製した。

【①027】 (実施例4~8、比較例1~4) 表1に示 した配合により 実施例1~3と同様に操作して それ それ成形材料を調製した。評価結果は、実施例1~3と 併せて表1にまとめて示した。

20 [0028]

【表】】

	# # 9					比较例						
	1	2	_3_1	4	5	6	7	8	1	2	8	4
20CH 020EST	87		_ 7	67					67			
HP-7200 ²¹		71			71		71	\neg			71	
Y3.4000H ^D			52			52	- '1	52		52		52
フェノールノボラックもはで	33	29	- 1	33	29	~~	29	~~	38	V4	29	JE
XL225-3L5			48			48		48		48		48
建設拡進器シリカ	300			300		~~			300		1	40
は終末職シリカ		500	800		500	600	500	800		800	500	BÓÓ
カルナパワックス 化含物A 式 (4) 化合物B 式 (6) 化合物C 式 (8) 化合物C 式 (7)	2	2	2	2	2	2	2	2	2	2	2	
作金物A 式(4)	3.1	[-								1	
化合物 引 式 (6)									_			
化合物C 式(8)			2.0									
化合物D 式 (7)		Т		3				$\neg \neg$	-			
化合物E 式(8)					3.2			$\overline{}$	\rightarrow			
を合列E 式(8) に合列F 式(9) 化合列C 式(10) 化合列C 式(11)		$\neg \neg$		$\overline{}$		3					 	
化合物 (10)							3.5				-	
化金衡と、式(1)		\neg						2.8			 	
<u>化音動! </u>				\neg		$\neg \uparrow$	$\overline{}$		3.1	_		
化合物 」 式 (7 3)												
化金钢K 式 (14)											1 - 1	
化音集L 式(15)					_	\neg		\rightarrow			' +	- 1
パーコール学芸	84	81	79	66	85	80	82	77	- del	B AAA	基金不住	-
スパイラルフロー (em)	48	73	90	81	73	92	78	99	87	U 5	79	- iš
4 0 ℃、 3 日保存費フロー (a jm)	79	85	17	76	70	80	70	86	62	38		- 60
プロー独界事 (S)	*5	90	86	93	83	87	9al	51	71	45		-

1)日本化本農オルソクレゾールノボラックエボキシ機能

2)大日本インキ要ジシクロペンクジエン型エポキシ制度 3)油化シェルエポキシ領ビフェエル型エポキシ開催

4)禁化点が105℃で水器高当量104のフェノールノポテック製作

6) 三井東江北平豊アラルキル支性フェノール樹物

% N B; OOG = 1/4

化合物A

【0041】 (実施例9~10、および比較例5~7) 板上 網張り精層板を調製し、特性評価のため、得られた積層 およ 板の樹脂のガラス転移温度 およびブリブレク保存後の イム 樹脂分のゲルタイム残存率を創定し 硬化性及び保存性 保存 の評価を行なった。それぞれの評価方法は、下記の通り イム とした。また 本実施例および比較例で新たに用いた 40 す。 仕合物M Nの構造は、式(16)、(17)に示した 【0

板上でケルタイムを創定する。プリプレクの調製直後、および40℃ 35%R月で7日間保存した後のケルタイムを創定し 調製直後のケルタイム(秒)に対する、保存後のゲルタイム(秒)の百分率を算出した。ゲルタイム残存率の値が大きいほと、保存性が良いことを示す。

【0044】(実施例9) エポキシ当歴925のヒフェー・ペッパケー樹脂のケギーエピを1円置はできた

1. (1.1) (

- 19 5 64年の19日に - 178 - 23 - 178 - 23 -

3. キャン・ウイン、混合溶剤、CC部の溶解に、スペット 調製した、このウェスを用いて、厚さ、OCととロシの カチスがロスに含浸させた後、150で、4分間乾燥し トラングを調整になってのですが、か1の枚を重 っま値で厚って、この、まなく乗れ、これ (8)

特開平11-171981

14

のステンレス板に挟んで 170℃ 40kg/cm⁴ で50分間プレスし、厚さ1.6mmの両面銅張り積層 板を得た。

13

*面銅張り精層板を調製した。評価結果は、実施例9の結 果と併せて表2にまとめて示した。

[0046]

【表2】

【0045】(実施例10 比較例5~7)表2に示し

た配台により、実施例9と同様に操作して、それぞれ両*

字 2 (本の数字は交易に於いた用形以取用が)

	実施 例		比較例			
	6	10	5	6	7	
エポキシ当量925のビスフェノールA型エポキシ制御	50	50	50	50	54	
エポキシ当量475のビスフェノールA型エポキシ制能	50	50	50	50	54	
ジアミノジフェニルメタン	3	3	1	3		
ジシアンジアミド	9.8	0.8	0. aj	0.8	Û. i	
化合物B 式(5)	2.8					
化合物H 式 (11)		3				
化合物M 式(16)			0. 1			
化合物 : 式 (12)				3		
化合物N 式 (17)					2	
ガラス転移温度 (℃)	14\$	150	125	105	106	
ゲルタイム製存事(9)	Dt	641	57	83	77	

[0047]

※ ※ 【化16】

式(1€)

化合物 M

[0048]

★【化17】

【0049】表1およひ表2の結果から明らかなよう。 に 成形材料の短時間成形におけるハーコール硬度(表 1) およひプリプレグの短時間の積層成形におけるカ ラス転移温度(表2)は、いずれも実施例の方か全般に 優れた値を示しており、本発明による樹脂組成物の硬化 性が高いことが分かる。また、保存後のプロー残存率。 (责1)、ねよびゲルタイム残存率(表2)も「いずれ」 も実施例の方が高く、保存性についても本発明による樹 脂組成物の方が優れており 潜伏性触媒としてのオニウ☆40

☆ムポレートの効果が明白である。

[0050]

- 【発明の効果】本発明の樹脂組成物は一硬化性に優れて - いて - 短時間の成形でも十分に硬化させることがてき。 また。常温付近ての保存安定性にも優れ、電気、電子材 料用として好道に使用でき、硬化性と保存性の良好な製 品が得られ、電気、電子産業分野へのメリットは大き

. #th: #1 - 11. th.

東京都部川区東部川と丁目を香る寺 (住ち ニークライト株式会社内

nthier in

|単身都gall[3]|東gall[3]|自う書き封。日本 、 かって、株式会社内