Perform pure salt simulation (NH4CI)

- 1. Parameterisation methods
- 2. Measurements

Research on NH4 conduction in ion channel

- [a] Detailed Mechanism for AmtB Conducting NH4 /NH3: Molecular Dynamics Simulations
 - Optimised charges by restrained ESP-fit method using ChelpG approach
 - N: -0.824; H: +0.456

[b] Ammonium Recruitment and Ammonia Transport by E. coli Ammonia Channel AmtB

- NH4+ partial charges using OPLS charges
- NH4+ bond and bond angle using CHARMM27 parameters, same as NH3 moiety of Lysine
- [c] Molecular Dynamics Simulations on the Escherichia coli Ammonia Channel Protein AmtB: Mechanism of Ammonia/ Ammonium Transport
 - Apply Mulliken charges at the HF/6-31G(d)
 - LJ parameters same as amide groups

[d] Ammonium Transporters Achieve Charge Transfer by Fragmenting Their Substrate

- NH4+ and surrounding water molecules and protein side chains are described by a polarizable force field based on the classical Drude oscillator, (62-65) and parametrized to reproduce both the free energy of hydration and the ion–protein interactions
- Pair-specific LJ parameters between the ions and atoms of the ligands are adjusted to reproduce the ab initio interaction energies
- Full geometry optimizations of the complexes between these ligands and the three cations Na+, K+, and NH4+ are performed at the MP2(FC)/6-311++G(d,p) level using Gaussian 09 program

Research on NH4 conduction in ion channel

	Method	Force field, water	Charges
Default	N from primary NH3+, phosphatidylethanolamine H from polar H+	CHARMM36, TIP3P	N: -0.33 H: +0.33
[a]	NH4 charges by restrained ESP-fit method using ChelpG approach	GROMOS87, SPC	N: -0.824 H: +0.456
[b]	NH4+ partial charges using OPLS charges, as OPLS and CHARMM partial charges of NH3+ in Lysine are nearly identical	CHARMM27, H atoms were added to crystal waters using PSFGEN in NAMD	N: -0.40 H: +0.35
[c]	N, H charges using Mulliken charges at the HF/6-31G(d)	CHARMM, TIP3P	Not specified
[d]	 NH4+ and surrounding water molecules and protein side chains are described by a polarizable force field based on the classical Drude oscillator, and parametrised to reproduce both the free energy of hydration and the ion–protein interactions. Pair-specific LJ parameters between the ions and atoms of the ligands are adjusted to reproduce the ab initio interaction energies. Full geometry optimizations of the complexes between these ligands and the three cations Na+, K+, and NH4+ are performed at the MP2(FC)/6-311++G(d,p) level using Gaussian 09 program. 	CHARMM27, TIP3P	1

Parameterisation methods

Other NH4 parameterisation

	Method	Force field, water	Charges
Default	N from primary NH3+, phosphatidylethanolamine H from polar H+	CHARMM36, TIP3P	N: -0.33 H: +0.33
Madrid [5]	N, H charges using OPLS-based model, scaled by 0.85	Madrid-2019, TIP4P/2005	N: -0.3400 H: +0.2975

RDF data (Na-O)

	No. of OH2 in first hydration shell	First peak	First minimum
Simulation [1]	5.702	2.36	3.18
Literature [2]	4.0-8.0	2.36	
MC in TIP4P [3]	6.2	2.50	
Madrid [6]	5.4	2.33	

RDF data (N-O)

	No. of OH2 in first hydration shell	First peak	First minimum
Simulation [1]	6.581	2.82	3.66
Literature [2]	8.1-10.0	2.6-3.05	
MC in TIP4P [3]	7.3	2.90	
MC in TIP3P [4]	7.0-7.1	2.63-2.70	
Madrid [5]	5.5	2.66	

RDF data (CI-O)

	No. of OH2 in first hydration shell	First peak	First minimum
Simulation, NaCl [1]	7.911	3.16	3.84
Simulation, NH4Cl [1]	7.227	3.16	3.80
Literature [2]	5.9-8.5	3.1-3.3	
MC in TIP4P [3]	7.6	3.25	
Madrid [6]	5.9	3.05	

Free energy calculations

	Absolute hydration energy of NH4	Absolute hydration energy of Na	Relative hydration energies between NH4+ and Na+
Experiment [7]	-78.6		-21.7 kcal/mol
Free energy perturbation [4]	-79.55 (+ Born) -98.85		-28.87 kcal/mol
Empirical model [8]	-68.1	-87.2	-19.1 kcal/mol
MC simulation [3]	-73.1	-92.3	-19 kcal/mol

Osmotic coefficient at 1M

	NH4CI	NaCl
Isopiestic vapour pressure method [9]	0.897	
MC simulations [10]		0.91-0.92
Experiment [11]		0.94
MD simulations [12]		0.93

References

- [1] https://github.com/Heiley-W/project/blob/main/RDF-analysis.ipynb
- [2] Ionic radii in aqueous solutions https://doi.org/10.1021/cr00090a003
- [3] Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions https://doi/10.1021/ct600252r
- [4] Free Energy Calculations Involving NH4+in Water https://doi.org/10.1002/jcc.540120106
- [5] Further extension of the Madrid-2019 force field: Parametrization of nitrate and ammonium ion https://doi.org/10.1063/5.0177363
- [6] A force field of Li+, Na+, K+, Mg2+, Ca2+,Cl-, and in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions https://doi.org/10.1063/1.5121392
- [7] Ref 33 and 22 of [4] respectively
- [8] A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes https://doi.org/10.1016/0301-4622(94)00051-4
- [9] The osmotic and activity coefficients of aqueous solutions of ammonium chloride and ammonium nitrate at 25° https://doi.org/10.1039/TF9534900027
- [10] Osmotic and activity coefficients from effective potentials for hydrated ions https://doi.org/10.1103/PhysRevE.55.5689
- [11] Ref 20 of [10]
- [12] Osmotic coefficients of atomistic NaCl (aq) force fields https://doi.org/10.1063/1.2185105
- [a] Detailed Mechanism for AmtB Conducting NH4+/NH3: Molecular Dynamics Simulations https://doi.org/10.1529/biophysj.106.090191
- [b] Ammonium Recruitment and Ammonia Transport by E. coli Ammonia Channel AmtB https://doi.org/10.1529/biophysj.106.089714
- [c] Molecular Dynamics Simulations on the Escherichiacoli Ammonia Channel Protein AmtB: Mechanism of Ammonia/Ammonium Transport https://doi.org/10.1021/ja0631549
- [d] Ammonium Transporters Achieve Charge Transfer by Fragmenting Their Substrate https://doi.org/10.1021/ja300129x