

FCC RF TEST REPORT

Issued to

Shanghai Information Technology Co., Ltd.

Titanium gong

For

TV

Model Name:

: M5500

Trade Name

TTV

Brand Name

TTV

Standard

: 47 CFR Part 15, Subpart C

ANSI C63.10-2013

FCC ID

2AIWA-M5500

Test date

: Jun.19, 2016 to Jul.27, 2016

Issue date

: Aug.9, 2016

Tested by

Approved by

Shanghai Skylabs

Review by Lernard Bar

Email: service@skylabs.cn

Web site: http://www.skylabs.cn

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shanghai Skylabs Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may however, show or send it or a certified copy there of prepared by the Shanghai Skylabs Co., Ltd to his customer. Supplier or others persons directly concerned. Shanghai Skylabs Co., Ltd will not, without the consent of the client enters into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shanghai Skylabs Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate

DIRECTORY

1.	General Information	4
1.1	Applicant	4
1.2	Manufacturer	4
1.3	Description of EUT	4
2.	Facilities and Accreditations	5
2.1	Test Facility	5
2.2	Environmental Conditions	5
2.3	Measurement Uncertainty	5
2.4	List of Equipments Used	6
3.	Test Standards and Results	7
4.	47 CFR Part 15C	8
4.1	Antenna Requirement	8
5.	Test Result	9
5.1	Peak Output Power	9
5.2	6dB & 20dB Bandwidth	11
5.3	Conducted Spurious Emissions	25
5.4	Power Spectral Density (PSD)	33
5.5	Band Edge	41
5.6	Conducted Emission	51
5.7	Radiated Emission.	54
Annex A	Photos of the EUT	58
Annex B	Photos of Setup	61

Change History

Issue	Date	Reason for change
1.0	Jun.24, 2016	First edition
2.0	Jul.28, 2016	Second edition
3.0	Aug. 8, 2016	Update photoes

1. General Information

1.1 Applicant

Shanghai Information Technology Co., Ltd. Titanium gong

2150 Trade Zone Blvd, Suite 104, San Jose, CA95131, USA

1.2 Manufacturer

Titanium gong Information Technology

Baoshan District, Shanghai Yangtze River Road 180 A6646 Room

1.3 Description of EUT

EUT Name..... TV

Model Name M5500

Brand Name..... TTV

Trade Name TTV

Hardware Version PQ1210 M5500

Software Version 2.1.0-R-20160222.1801

Channel Number....: 11

Antenna Type...... WIFI antenna

NOTE 1:

The EUT contains WIFI Module operating at 2.4GHz ISM band; it supports 802.11b, 802.11g, 802.11n, and they are all tested in this report. The frequencies allocated is F(MHz) = 2412 + 5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n-40MHz, the lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

NOTE 2:

For a more detail description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2. Facilities and Accreditations

2.1 Test Facility

Shanghai Skylabs Co., Ltd. Skylabs Laboratory is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6644. A 9*6*6(m)full/semi-anechoic chamber was used for the radiated emissions test.

2.2 Environmental Conditions

Ambient temperature: $15 \sim 35^{\circ}$ C Relative humidity: $30 \sim 60\%$ Atmosphere pressure: 86 - 106kPa

2.3 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission: ±1.76dB Uncertainty of Radiated Emission: ±3.16dB

2.4 List of Equipments Used

					Cal.
Description	Manufacturer	Model	Serial No.	Cal. Date	Due
Service Simulator	Agilent	N4010A	MY47230669	2015.9.22	1year
Spectrum Analyzer	R&S	FSU26	200880	2016.2.24	1year
EMI Test Receiver	R&S	ESCI7	100787	2016.2.24	1 year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Power Splitter	Mini-Circuits	ZFRSC-183-S+	76500F1016	(n.a.)	(n.a.)
Attenuator 1	Resnet	10dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)
Shielding Room	CHENGYU	5m×4m×3m	CR	2015. 9.13	3year
Full/Semi-Anechoie	CHENGYU	9.2×6.25×6.15m	SAR	2015.9.13	2xxxx
Chamber	CHENGIU	9.2×0.23×0.13111	SAK	2013.9.13	2year
Broadband Log	Schwarzbeck	VULB 9163	9163-561	2015.7.24	2year
Antenna	Schwarzbeck	VOLB 9103	9103-301	2013.7.24	Zyeai
Broadband Horn	Schwarzbeck	BBHA 9120 D	9120D-1033	2015.7.24	2year
Antenna	Schwarzocck	DDIIA 9120 D	9120D-1033	2013.7.24	Zycai
Broadband Horn	Schwarzbeck	BBHA 9170	BBHA91970171	2015.9.22	2year
Antenna	Senwarzoeek	DDIIA 7170	BBHA717/01/1	2013.7.22	Zycai
Test Antenna-Loop	Rohde&Schwarz	HFH2-Z2	860004/001	2015.9.22	1year
Artificial Mains	TESEQ	NNB 51	33285	2016. 2.24	1year
Network	***				, ,
Personal Computer	HP	(n.a.)	(n.a.)	(n.a.)	(n.a.)
EPM Series Power	Agilent	E4418B	GB43318055	2016.5.24	1year
Meter					
Power Sensor	Agilent	8482A	MY41091706	2016.5.24	1year
Temporary Antenna	Farpu	SMA-K	(n.a.)	(n.a.)	(n.a.)
Connector	•		` ′		` ´
RF Cable	(n.a.)	(n.a.)	(n.a.)	(n.a.)	(n.a.)
Power Supplier	NF	ES2000S	9087735	2015. 9.25	1 year

NOTE:

 $\label{lem:equipments} \textit{Equipments listed above have been calibrated and are in the period of validation}.$

3. Test Standards and Results

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

FCC Part 15 Subpart C ANSI C63.10-2013 June 2015 KDB558074

NOTE:

(1)All test items were verified and recorded according to the standards and without any deviation during the test.

(2) This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart C, (WIFI, 2.4GHz ISM band radiators) recorded in a separate test report.

Test items and the results are as bellow:

No.	FCC Rules	Description	Result
1	15.203	Antenna Requirement	Pass
2	15.247(b)	Peak Output power	Pass
3	15.247(a)	20dB Bandwidth	Pass
4	15.247(d)	Conducted Spurious Emission	Pass
5	15.247(d)	Band Edge	Pass
6	15.207	Conducted Emission	Pass
7	15.247(d) 15.209	Radiated Emission	Pass
8	15.247(e)	Power Spectral Density (PSD)	Pass

4. 47 CFR Part 15C

4.1 Antenna Requirement

4.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

5. Test Result

5.1 Peak Output Power

5.1.1 Requirement

According to FCC section 15.247(b) (3), for systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt.

5.1.2 Test Description

The measured output power was calculated by the reading of the spectrum analyzer and calibration.

A. Test Setup:

The EUT (Equipment under the test) is coupled to the Power Meter; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

5.1.3 Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module. (Duty cycle > 98%)

A.Test Verdict:

Mode	Channel	Frequency	Measured Outp	out Peak Power	Liı	mit	Verdict
Mode	Chamilei	(MHz)	dBm	W	dBm	W	verdict
	1	2412	18.71	0.07430			Pass
802.11b	6	2437	17.90	0.06166			Pass
	11	2462	18.39	0.06902			Pass
	1	2412	18.88	0.07727			Pass
802.11g	6	2437	19.54	0.08995			Pass
	11	2462	20.40	0.10965	20	1	Pass
002 11.	1	2412	20.46	0.11117	30	1	Pass
802.11n	6	2437	20.07	0.10162			Pass
(20MHz)	11	2462	20.70	0.11749			Pass
002 11.	3	2422	19.55	0.09016			Pass
802.11n	6	2437	20.26	0.10617			Pass
(40MHz)	9	2452	20.80	0.12023			Pass

5.2 6dB & 20dB Bandwidth

5.2.1 Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.2 Test Description

5.2.3 Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

A.Test Verdict:

802.11b Test mode

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Refer to plot	20dB Bandwidth (MHz)	Refer to plot	Limit (KHz)	Result
1	2412	10.216	Plot A1	17.708	Plot A2	≥500	Pass
6	2437	10.216	Plot B1	17.708	Plot B2	≥500	Pass
11	2462	10.176	Plot C1	17.387	Plot C2	≥500	Pass

802.11g Test mode

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Refer to plot	20dB Bandwidth (MHz)	Refer to plot	Limit (KHz)	Result
1	2412	16.586	Plot D1	20.953	Plot D2	≥500	Pass
6	2437	16.506	Plot E1	21.233	Plot E2	≥500	Pass
11	2462	16.466	Plot F1	20.993	Plot F2	≥500	Pass

802.11n (20MHz) Test mode

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Refer to plot	20dB Bandwidth (MHz)	Refer to plot	Limit (KHz)	Result
1	2412	17.868	Plot G1	20.392	Plot G2	≥500	Pass
6	2437	17.903	Plot H1	20.352	Plot H2	≥500	Pass
11	2462	17.908	Plot I1	20.272	Plot I2	≥500	Pass

802.11n (40MHz) Test mode

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Refer to plot	20dB Bandwidth (MHz)	Refer to plot	Limit (KHz)	Result
3	2422	36.618	Plot J1	38.221	Plot J2	≥500	Pass
6	2437	36.602	Plot K1	37.964	Plot K2	≥500	Pass
9	2452	36.618	Plot L1	38.141	Plot L2	≥500	Pass

B. Test Plots:

Date: 20.JUN.2016 17:04:19

Plot A1

Date: 20.JUN.2016 17:05:18

Plot A2

Date: 20.JUN.2016 19:05:43

Plot B1

Date: 20.JUN.2016 19:06:35

Plot B2

Date: 20.JUN.2016 18:56:08

Plot C1

Date: 20.JUN.2016 18:57:53

Plot C2

Date: 20.JUN.2016 17:43:50

Plot D1

Date: 20.JUN.2016 17:45:22

Plot D2

Date: 20.JUN.2016 19:02:57

Plot E1

Date: 20.JUN.2016 19:04:34

Plot E2

Date: 20.JUN.2016 19:00:04

Plot F1

Date: 20.JUN.2016 19:00:43

Plot F2

Date: 27.JUL.2016 17:54:27

Plot G1

Date: 27.JUL.2016 17:56:11

Plot H1

Date: 27.JUL.2016 17:57:55

Plot I1

Date: 27.JUL.2016 17:54:54

Plot G2

Date: 27.JUL.2016 17:56:37

Plot H2

Date: 27.JUL.2016 17:58:25

Plot I2

Date: 27.JUL.2016 18:02:13

Plot J1

Date: 27.JUL.2016 18:04:01

Plot K1

Date: 27.JUL.2016 18:05:16

Plot L1

Date: 27.JUL.2016 18:02:50

Plot J2

Date: 27.JUL.2016 18:04:27

Plot K2

Date: 27.JUL.2016 18:06:25

Plot L2

5.3 Conducted Spurious Emissions

5.3.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.3.2 Test Description

5.3.3 Test Result

The WiFi Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

A.Test Verdict:

802.11b Test mode

	Frequency	Measured max out		Lim	it(dBm)	
Channel	(MHz)	of band	Refer to plot	Carrier	Calculated	Result
	(=-===)	emission(dBm)		level	20dBc limit	
1	2412	-34.27	Plot A	5.84	-14.16	Pass
6	2437	-35.38	Plot B	4.89	-15.11	Pass
11	2462	-38.47	Plot C	4.71	-15.29	Pass

802.11g Test mode

	Frequency	Measured max out		Lim	it(dBm)		
C	Channel	(MHz)	of band	Refer to plot	Carrier	Calculated	Result
		(1,1112)	emission(dBm)		level	20dBc limit	
	1	2412	-34.94	Plot D	-1.69	-21.69	Pass
	6	2437	-34.97	Plot E	-1.34	-21.34	Pass
	11	2462	-33.40	Plot F	-0.70	-20.70	Pass

802.11n (20MHz) Test mode

	Frequency Measu	Measured max out		Lim		
Channel	(MHz)	of band	Refer to plot	Carrier	Calculated	Result
	(1/1112)	emission(dBm)		level	20dBc limit	
1	2412	-33.49	Plot G	-5.01	-25.01	Pass
6	2437	-32.97	Plot H	-3.88	-23.88	Pass
11	2462	-33.74	Plot I	-4.78	-24.78	Pass

802.11n (40MHz) Test mode

Channel Frequency (MHz)	Frequency	Measured max out		Limit(dBm)		
	of band	Refer to plot	Carrier	Calculated	Result	
	(1,1112)	emission(dBm)		level	20dBc limit	
3	2422	-35.08	Plot J	-8.94	-28.94	Pass
6	2437	-33.73	Plot K	-8.90	-28.90	Pass
9	2452	-34.62	Plot L	-8.13	-28.13	Pass

B. Test Plot:

Date: 20.JUN.2016 18:05:40

Plot A

Date: 20.JUN.2016 18:07:36

Plot B

Date: 20.JUN.2016 18:09:03

Plot C

Date: 20.JUN.2016 18:11:37

Plot D

Date: 20.JUN.2016 18:12:52

Plot E

Date: 20.JUN.2016 18:13:39

Plot F

Date: 27.JUL.2016 18:09:12

Plot G

Date: 27.JUL.2016 18:11:12

Plot H

Date: 27.JUL.2016 18:12:22

Plot I

Date: 27.JUL.2016 18:17:45

Plot J

Date: 27.JUL.2016 18:20:06

Plot K

Date: 27.JUL.2016 18:22:10

Plot L

5.4 Power Spectral Density (PSD)

5.4.1 Requirement

According to FCC section 15.247(e), the same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

5.4.2 Test Description

5.4.3 Test Result

A.Test Verdict

802.11b Test mode

Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Refer to plot	Limit (dBm/3kHz)	Result
1	2412	-13.86	Plot A	8	Pass
6	2437	-14.98	Plot B	8	Pass
11	2462	-14.97	Plot C	8	Pass

802.11g Test mode

Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Refer to plot	Limit (dBm/3kHz)	Result
1	2412	-15.25	Plot D	8	Pass
6	2437	-15.07	Plot E	8	Pass
11	2462	-15.42	Plot F	8	Pass

802.11n (20MHz) Test mode

Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Refer to plot	Limit (dBm/3kHz)	Result
1	2412	-17.52	Plot G	8	Pass
6	2437	-17.31	Plot H	8	Pass
11	2462	-16.47	Plot I	8	Pass

802.11n (40MHz) Test mode

Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Refer to plot	Limit (dBm/3kHz)	Result
3	2422	-20.49	Plot J	8	Pass
6	2437	-20.49	Plot K	8	Pass
9	2452	-19.94	Plot L	8	Pass

B. Test Plot

Date: 20.JUN.2016 18:21:49

Plot A

Date: 20.JUN.2016 18:23:17

Plot B

Date: 20.JUN.2016 18:23:17

Plot C

Date: 20.JUN.2016 18:20:47

Plot D

Date: 20.JUN.2016 18:24:07

Plot E

Date: 20.JUN.2016 18:25:35

Plot F

Date: 27.JUL.2016 18:24:30

Plot G

Date: 27.JUL.2016 18:25:51

Plot H

Date: 27.JUL.2016 18:26:36

Plot I

Date: 27.JUL.2016 18:29:32

Plot J

Date: 27.JUL.2016 18:28:26

Plot K

Date: 27.JUL.2016 18:27:37

Plot L

5.5 Band Edge

5.5.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, , In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

5.5.2 Test Description

The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

5.5.3 Test Result

The lowest and highest channels are tested to verify the Restricted Frequency Bands.

The measurement results are obtained as below:

E [dBV/m] = UR + AT + AFactor [dB]; AT = Cable Loss [dB] - Gpreamp [dB]

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal

polarity, and only the worse test condition (vertical) was recorded in this test report.

The lowest and highest channels are tested to verify the Restricted Frequency Bands

A.Test Verdict

802.11b Test mode

Ch	Frequency (MHz)	Detector PK/AV	Receiver Reading UR (dBuV/m)	AT (dB)	Afactor (dB@3m)	Max. Emission (dBuV/m)	Limit (dBuV/m)	Result
1	2375.54	PK	43.17	-32.2	32.56	43.53	74	Pass
1	2342.52	AV	39.38	-32.2	32.56	39.74	54	Pass
11	2485.44	PK	41.92	-30.7	32.50	43.72	74	Pass
11	2498.23	AV	38.64	-30.7	32.50	40.44	54	Pass

802.11g Test mode

Ch	Frequency (MHz)	Detector PK/AV	Receiver Reading UR (dBuV/m)	AT (dB)	Afactor (dB@3m)	Max. Emission (dBuV/m)	Limit (dBuV/m)	Result
1	2369.00	PK	42.37	-32.2	32.56	42.73	74	Pass
1	2354.14	AV	37.84	-32.2	32.56	38.20	54	Pass
11	2484.47	PK	42.44	-30.7	32.50	44.24	74	Pass
11	2484.83	AV	37.23	-30.7	32.50	39.03	54	Pass

802.11n (20MHz) Test mode

	002.111 (2011112) 165t mode							
Ch	Frequency (MHz)	Detector PK/AV	Receiver Reading UR (dBuV/m)	AT (dB)	Afactor (dB@3m)	Max. Emission (dBuV/m)	Limit (dBuV/m)	Result
1	2358.54	PK	43.22	-32.2	32.56	43.58	74	Pass
1	2329.77	AV	38.67	-32.2	32.56	39.03	54	Pass
11	2490.74	PK	43.29	-30.7	32.50	45.09	74	Pass
11	2486.48	AV	38.24	-30.7	32.50	40.04	54	Pass

802.11n (40MHz) Test mode

Ch	Frequency (MHz)	Detector PK/AV	Receiver Reading UR (dBuV/m)	AT (dB)	Afactor (dB@3m)	Max. Emission (dBuV/m)	Limit (dBuV/m)	Result
3	2345.16	PK	42.85	-32.2	32.56	43.21	74	Pass
3	2375.00	AV	38.28	-32.2	32.56	38.64	54	Pass
9	2490.03	PK	44.01	-30.7	32.50	45.81	74	Pass
9	2491.573	AV	37.20	-30.7	32.50	39.00	54	Pass

B.Test Plot

Date: 20.JUN.2016 18:42:05

(802.11b Channel = 1 PK)

Date: 20.JUN.2016 18:42:31

(802.11b Channel = 1 AV)

Date: 20.JUN.2016 18:50:22

(802.11b Channel = 11 PK)

Date: 20.JUN.2016 18:49:46

(802.11b Channel = 11 AV)

Date: 20.JUN.2016 18:43:45

(802.11g Channel = 1 PK)

Date: 20.JUN.2016 18:44:19

(802.11g Channel = 1 AV)

Date: 20.JUN.2016 18:46:16

(802.11g Channel = 11 PK)

Date: 20.JUN.2016 18:47:17

(802.11g Channel = 11 AV)

Date: 27.JUL.2016 18:41:53

(802.11n (20MHz) Channel = 1 PK)

Date: 27.JUL.2016 18:42:36

(802.11n (20MHz) Channel = 1 AV)

Date: 27.JUL.2016 18:50:08

(802.11n (20MHz) Channel = 11 PK)

Date: 27.JUL.2016 18:49:33

(802.11n (20MHz) Channel = 11 AV)

Date: 27.JUL.2016 18:45:02

(802.11n (40MHz) Channel = 3 PK)

Date: 27.JUL.2016 18:43:47

(802.11n (40MHz) Channel = 3 AV)

Date: 27.JUL.2016 18:47:17

(802.11n (40MHz) Channel = 9 PK)

Date: 27.JUL.2016 18:48:08

(802.11n (40MHz) Channel = 9 AV)

5.6 Conducted Emission

5.6.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Fragueney range (MHz)	Conducted Limit (dBµV)				
Frequency range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

5.6.2 Test Description

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT connected to Class B Computer/Laptop via USB data cable. The Computer/Laptop installed by US power 120V/60Hz, through a Line Impedance Stabilization Network (LISN), which was supplied power source and was grounded to the ground plane.

. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10-2013

5.6.3 Test result

Test Verdict Recorded for Suspicious Points:

Line	Freq MHz	Result dBuV	Limit dBuV	Margin dB
QP	0.31	41.90	59.94	18.04
Average	0.31	41.82	49.93	8.11
QP	0.51	40.11	56.00	15.89
Average	0.51	34.42	46.00	11.58
QP	0.63	34.91	56.00	21.09
QP	QP 0.76		56.00	22.28
Average	0.94	31.61	46.00	14.39
Average	1.25	32.79	46.00	13.21
QP	1.26	32.63	56.00	23.37
Average	Average 1.57		46.00	18.80
Average	2.51	29.72	46.00	16.28
QP	23.52	35.35	60.00	24.65

Neutral	Freq MHz	Result dBuV	Limit dBuV	Margin dB
QP	0.31	41.73	59.94	18.21
QP	0.52	39.41	56.00	16.59
QP	0.76	35.56	56.00	20.44
QP	0.94	34.85	56.00	21.15
QP	1.25	35.45	56.00	20.55
QP	23.43	34.37	60.00	25.63

Test Plot:

(Plot A: L Phase)

(Plot B: N Phase)

5.7 Radiated Emission

5.7.1 Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)	Limit(dBµV/m)	Detector
0.009-0.490	2400/F(kHz)	300	/	/
0.490-1.705	24000/F(kHz)	30	/	/
1.705-30	30	30	/	/
30 - 88	100	3	40	QP
88 - 216	150	3	43.5	QP
216 - 960	200	3	46	QP
960 - 1000	500	3	54	QP
Above 1000	500	3	54	AV

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

5.7.2 Test setup

Radiated Emissions below 30MHz

Radiated Emissions 30-1000MHz

Radiated Emissions above 1000MHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10-2013. Below 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane. Above 1GHz, the EUT was set-up on insulator 150cm above the Ground Plane. The setup and test methods were according to ANSI C63.10.

The Wi-Fi Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Wi-Fi Module is activated and controlled by the Wi-Fi Service Supplier (SS) via a Common Antenna, and is set to operate under transmitting at maximum power.

For the Test Antenna: In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength, the azimuth range of turntable was 0° to 360° , the receive antenna has two polarizations horizontal and vertical. When doing measurements above 1GHz, the EUT was placed within the 3dB beam width range of the horn antenna, and the EUT was tested in 3 orthogonal positions as recommended in ANSI C63.10 for Radiated Emissions and the worst case data was presented.

5.7.3 Test Result

A. Test Result for 9kHz ~ 30MHz

Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark	
		10	1	See Note	

Note:

- a) The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.
- b) Distance extrapolation factor = $40 \log$ (specific distance / test distance) (dB);
- c) Limit line = specific limits (dBuV) + distance extrapolation factor.

B. Test Result for above 30MHz ~ 10th Harmonic

Frequency (MHz)	Level (dBuV)	Limit Line (dBuV)	Margin (dB)	Detector	Antenna Polarizatio n	Result
54.07	26.48	40.00	13.52	QP	Н	PASS
86.81	28.27	40.00	11.73	QP	Н	PASS
188.41	35.81	43.50	7.69	QP	Н	PASS
252.95	36.79	46.00	9.21	QP	Н	PASS
499.43	38.40	46.00	7.60	QP	Н	PASS
810.27	36.59	46.00	9.41	QP	Н	PASS
1080.09	28.96	54.00	25.04	Average	Н	PASS
1954.47	38.88	54.00	15.12	Average	Н	PASS
2893.64	36.00	54.00	18.00	Average	Н	PASS
3327.66	31.02	54.00	22.98	Average	Н	PASS
4917.86	52.16	54.00	1.84	Average	Н	PASS
5967.84	29.31	54.00	24.69	Average	Н	PASS
30.21	32.27	40.00	7.73	QP	V	PASS
53.51	34.90	40.00	5.10	QP	V	PASS
163.18	35.75	43.50	7.75	QP	V	PASS
259.23	35.94	46.00	10.06	QP	V	PASS
501.18	37.54	46.00	8.46	QP	V	PASS
842.13	37.43	46.00	8.57	QP	V	PASS
1076.23	29.99	54.00	24.01	Average	V	PASS
1972.06	30.38	54.00	23.62	Average	V	PASS
2983.13	33.92	54.00	20.08	Average	V	PASS
3555.75	31.23	54.00	22.77	Average	V	PASS
4926.68	52.97	54.00	1.03	Average	V	PASS
5967.84	30.74	54.00	23.26	Average	V	PASS

Note:

The worst case (802.11n Channel 1:2462MHz) is recorded in the report.

Annex A Photos of the EUT

Page 59 of 62

Annex B Photos of Setup

1. RF

2. Conducted Emission

3. Radiated Emission

** END OF REPORT **