Epreuve écrite

Examen de fin d'études secondaires 1998 Nom et prénom du ca	ndidat
Section: BetC	
Branche: CHIMIE	
C = cours (21 points); T = transfert (20 points); N = application numérique (19 poi	nts)
1) Mécanismes réactionnels et isomérie 16 points	
On additionne du bromure d'hydrogène sur le but-1-ène:	
 a) indiquez la formule semidéveloppée et le nom des isomères de position envisageables 	T2
b) énoncez la règle de Markownikoff	C2
c) dressez le mécanisme réactionnel et caractérisez le type de mécanisme	T4
d) expliquez la règle de Markownikoff sur base de considérations électroniques	C3
e) l'isomère de position conforme à la règle de Markownikoff correspond à u d'isomérie de configuration; représentez ce cas d'isomérie par:	n cas
- les formules spatiales	T2
 les formules de Newmann obtenues en regardant les molécules dans le se la liaison C(2) - C(1) 	ens de T2
f) le mélange qui sort de la réaction étudiée fait-il tourner le plan de la lu polarisée? motivez!	ımière T1
2) Acides carboxyliques 16 points	
a) préparation de l'acide éthanoïque par l'action du bichromate de potassiu l'éthanol en milieu acide	m sur C5
b) interprétation électronique de l'acidité du groupement -COOH	C6
c) mécanisme (détaillé) de la réaction d'estérification	C5
3) Calcul du pH 12 points	
Calculer le pH des mélanges suivants:	
a) 50 cm³ d'une solution d'acide éthanoïque à 15 grammes/litre + 100 cm³ d'une solution de chlorure de sodium 0,5 M	N3
 b) 75 cm³ d'une solution 0,2 M d'acide bromhydrique + 50 cm³ d'une solution d'acide perchlorique 0,3 M 	N3
 c) 150 cm³ d'une solution d'acide éthanoïque 0,3 M + 100 cm³ d'une solution d'acide propanoïque 0,4 M 	N3
 d) 100 cm³ d'une solution d'acide éthanoïque 0,25 M + 100 cm³ d'une solution d'hydroxyde de sodium à 4 grammes/litre 	N3

Epreuve écrite

xamen de fin d'études secondaires 1998

Section: BetC

Branche: CHIMIE

Nom	et	prénom	du	candidat	

4) Titration

16 points

le diagramme ci-dessous représente la courbe de titration d'une prise de 20 cm³ d'une solution d'ammoniac par HCl 0,05 M

- a) pourquoi introduit-on dans la burette de préférence une solution d'acide *fort* (ou de base *forte*) pour faire une titration?
- b) cherchez dans l'allure de la courbe de titration 2 indices qui permettent d'affirmer qu'il s'agit de la titration d'une base *faible* par un acide fort!
- c) calculez la concentration de la solution d'ammoniac soumise à la titration! N2
- d) tout en motivant votre raisonnement, déduisez une valeur approchée du pK_a du couple NH₄⁺ / NH₃ à partir de la courbe de titration!
- e) calculez le pH:
 - de la solution initiale d'ammoniac

N2

- au point d'équivalence

N3 T2

f) lequel des indicateurs suivants convient au mieux pour cette titration? Motivez!

- méthylorange: pKa = 3,4

- rouge de méthyle: pKa = 5,0

- phénolphtaléine: pKa = 9,4