BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Patentschrift _® DE 197 18 584 C 1

② Aktenzeichen:

197 18 584.3-52

② Anmeldetag:

5. 5.97

(4) Offenlegungstag:

(45) Veröffentlichungstag

der Patenterteilung: 19. 11. 98

(f) Int. Cl.⁶: G 01 N 27/12

> G 01 N 27/16 G 01 N 27/407 G 01 N 27/31 // H05B 1/02

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

Patentinhaber:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München, DE

(74) Vertreter:

PFENNING MEINIG & PARTNER GbR, 80336 München

(72) Erfinder:

Böttner, Harald, Dipl.-Chem. Dr., 79108 Freiburg, DE; Höfer, Ulrich, Dipl.-Phys., 79115 Freiburg, DE; Felske, Arne, Dipl.-Phys. Dr., 70374 Stuttgart, DE; Kühner, Gerd, Dipl.-Ing., 79110 Freiburg, DE; Wöllenstein, Jürgen, Dipl.-Ing., 34308 Bad Emstal,

66 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 1 97 10 456 C1 DE DE 44 24 342 C1

(A) Sensor zur Detektion von oxidierenden und/oder reduzierenden Gasen oder Gasgemischen

Die Erfindung betrifft einen Sensor zur Detektion von oxidierenden und/oder reduzierenden Gasen oder Gasgemischen mit mindestens einer Metalloxidschicht und zwei mit der Metalloxidschicht verbundenen Elektroden, wobei mindestens eine der Elektroden als Schottky-Kontakt ausgebildet ist, wobei die Metalloxidschicht in Form mehrerer parallel geschalteter Streifen ausgebildet ist.

Beschreibung

Die Erfindung betrifft einen Sensor nach dem Oberbegriff des Patentanspruches 1, mit dem die Bestimmung verschiedener einzelner Gase, die auch in Gasgemischen enthalten sein können, auch in möglichst quantifizierbarer Form mög-

Dünnschicht-Gassensoren auf Metalloxidbasis, beispielsweise SnO2-Sensoren, sind technologisch fortgeschritten, teils mikromechanische Bauelemente, welche in verschiede- 10 nen Bauformen und Technologien hergestellt und für eine Vielzahl verschiedener Applikationen bereits marktfähig angeboten werden. Zu geeigneten Anwendungsbeispielen zählen z. B. die kontinuierliche Arbeitsplatz- und Haushaltsgeräte-Überwachung, Luftgüte-Kontrollsysteme für 15 Automobile sowie die Umweltanalytik.

Dünnschicht-Gassensoren auf Metalloxidbasis zeigen durch spezifische Oberflächen-, Temperatur-, Volumen- und Geometrie-Variationen bevorzugte Gasreaktionen und finden aufgrund der thermodynamischen Stabilität der aktiven 20 Schichten sowie aufgrund der einfachen Sensorherstellung durch bekannte Standardverfahren häufige Verwendung. Gerade die Kombination aus technischer Stabilität und einfacher, kostengünstiger Verarbeitung prädestiniert Metalloxid-Gassensoren für Anwendungen mit hohen Stückzah- 25 len. Außerdem besitzen derartige Sensoren eine Reihe von Vorteilen gegenüber anderen Sensoren. So lassen sich die sensorischen Eigenschaften durch Variation der Kontaktgeometrie sowie durch Wahl der Dotierstoffe und Katalysatoren gezielt beeinflussen. Ein weiterer Vorteil ist die Kom- 30 patibilität der zur Herstellung erforderlichen Prozeßschritte zur Mikroelektronik.

Fortschritte hinsichtlich der Selektivität von Metalloxid-Gassensoren werden durch die DE 44 24 342 C1 erzielt. In Folge der geometrischen Variation von sensoraktiver Flä- 35 che, Kontaktgeometrie und Kontaktabstand läßt sich eine verbesserte Selektivität gegenüber verschiedenen Analyten erreichen. Nachteilig ist jedoch, daß die als einzelne Streifen ausgebildeten sensorischen Flächen ihre unterschiedlichen sensorischen Eigenschaften durch teilweise erheblich unter- 40 schiedliche Dimensionierung von Kontaktfläche und Kontaktabstand erhalten, was eine aufwendige Strukturierung erforderlich macht. Weitere Nachteile dieses Sensors sind um Größenordnungen auseinanderliegende Sensorwiderstände und meßtechnisch ungünstig hohe Widerstände im 45 MQ-Bereich. Beide Aspekte erschweren das elektrische Auslesen des Sensors.

Aus der nicht vorveröffentlichten DE 197 10 456 C1 ist ein Dünnschicht-Gassensor mit einer heizbaren Metalloxidschicht, bei dem der Kontakt zwischen einer ersten Elektro- 50 denanordnung und der Metalloxidschicht als Schottky-Kontakt mit einer diodenähnlichen Kennlinie, und der Kontakt zwischen einer zweiten Elektrodenanordnung und der Metalloxidschicht als Ohmscher Kontakt mit annähernd linearer Kennlinie ausgebildet ist, bekannt. mit dem insbesondere 55 die Sensitivität für NO2 gegenüber den aus der DE 44 24 342 bekannten Sensorstrukturen auf das bis zu 160-fache verbessert ist.

Bei dem Kontakt-Layout gemäß der DE 44 24 342 (symmetrischer SnO₂-Streifen auf Pt-Kontakten) bilden sich zwi- 60 schen der Metalloxidschicht und Platinelektroden jeweils Schottky-Kontakte aus. Das Ersatzschaltbild zweier über eine Metalloxidschicht verbundener Elektrodenanordnungen entspricht somit prinzipiell zwei gegeneinander geschalteten Schottky-Dioden. Bei Messungen befindet sich 65 somit stets eine der beiden Dioden in Sperrichtung, wodurch ungünstig hohe Widerstandsbereiche ausgewertet werden müssen. Durch die in DE 197 10 456 beschriebene asymme-

trische Kontaktierung der Metalloxidschicht durch einen Schottky-Kontakt und einen Ohmschen Kontakt soll die Auswertung der Messung, sofern der Schottky-Kontakt in

Durchflußrichtung betrieben wird, in einem wesentlich günstigeren, tieferen Widerstandsbereich durchgeführt werden

Mit den bekannten Dünnschicht-Gassensoren bzw. Sensorarrays ist es jedoch nicht ohne weiteres möglich, diese für die Detektion verschiedener Gase mit ausreichender Genauigkeit und mit vernünftigem Aufwand auszulegen oder einen einzigen Sensor zur Detektion verschiedener Gase zur Verfügung zu stellen.

Es ist daher Aufgabe der Erfindung, einen Sensor zur Detektion von oxidierenden und/oder reduzierenden Gasen oder Gasgemischen zur Verfügung zu stellen, der einfach und komplex aufgebaut ist und einen solchen Sensor durch einfache Anpassung oder ein entsprechendes Layout für verschiedene Gase in ausreichendem Maße sensitiv zu ge-

Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungsformen und Weiterbildungen der Erfindung ergeben sich bei Anwendung der in den untergeordneten Ansprüche genannten Merkmale.

Der erfindungsgemäße Sensor zur Detektion verschiedener oxidierender und/oder reduzierender Gase besteht aus mindestens einer Metalloxidschicht und zwei mit der Metalloxidschicht verbundenen Elektroden, wobei wahlweise mindestens eine der Elektroden als Schottky-Kontakt ausgebildet ist. Dabei zeichnet sich der erfindungsgemäße Sensor insbesondere dadurch aus, daß die Metalloxidschicht in Form mehrerer parallel geschalteter Streifen ausgebildet ist. Dies hat den Vorteil, daß auf einfache Art und Weise und in einem technologischen Arbeitsgang die Streifenstruktur der Metalloxidschicht ausgebildet werden kann und dabei definitiv eine ganz bestimmte Querempfindlichkeit einstellbar ist, so daß die Selektivität und/oder Sensitivität für ein ganz bestimmtes Gas optimierbar ist.

Durch die Auswahl der Anzahl und/oder der Breite der einzelnen Metalloxidstreifen kann der Grundwiderstand des sensitiven Teiles des Sensors definiert eingestellt werden, so daß einmal ein Sensor für ein ganz bestimmtes Gas, wie z, B, CO, NO oder CH₄ bzw. H₂O hergestellt werden kann und eine Kombination mehrerer solcher verschieden ausgebildeter Sensoren in Form eines Sensorarrays für die Mischgasanalyse eingesetzt werden können.

Die Parallelschaltung der streifenförmig ausgebildeten gassensitiven Metalloxidschichten bewirkt eine Verringerung des Gesamtwiderstandes und es kann wie bereits genannt, durch gezielte Einflußnahme auf die Geometrie und Anzahl der einzelnen Streifen die letzliche Selektivität und Sensitivität des Sensors bestimmt werden.

So führen breitere Metalloxidstreifen mit einer Breite zwischen 50 µm und 1000 µm dazu, daß insbesondere die Sensitivität für reduzierend wirkende Gase vergrößert ist und schmalere Metalloxidstreifen mit einer Breite zwischen 2 μm und 100 μm dazu, daß bevorzugt oxidierend wirkende Gase detektierbar sind.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Sensors sind die Elektroden als Interdigitalkämme ausgebildet, wobei auch die jeweilige Breite der Kontaktelektrodenfinger einen Einfluß auf die Selektivität und Sensitivität des jeweiligen Sensors hat. Beispielsweise ist ein solcher Sensor insbesondere für NO2-sensitiv, wenn er einmal relativ schmale Metalloxidstreifen hat und auch die Kontaktelektrodenfinger in einer äquivalenten Breite ausge-

Es besteht aber auch die Möglichkeit, die Elektroden als

3

einfache Kontaktflecken auszubilden, die wiederum vorzugsweise aus Platin oder anderen geeigneten Metallen, wie Aluminium, Palladium, Gold, Silber, Chrom, Nickel und entsprechenden Legierungen bestehen.

Als besonders geeignet hat sich SnO₂ als Metalloxid herausgestellt, wobei jedoch andere Metalloxide, wie z. B. TiO₂, WO₃, Ga₂O₃, ZnO, ZrO₂, V₂O₅, In₂O₃, SrTiO₃ oder Sb₂O₃ oder Mischungen dieser Metalloxide ebenfalls eingesetzt werden können.

Günstig ist es außerdem, wenn das sensitive Metalloxid, 10 wie z. B. SnO₂ auf einer Kontaktseite wahlweise mit einem als Donator wirkenden Material dotiert wird, so daß dieser Bereich Ohmsches Verhalten aufweist und die andere Elektrode als Schottky-Kontakt in Durchlaßrichtung geschaltet, ausgebildet ist.

Prinzipiell besteht jedoch auch die Möglichkeit, beide Elektroden als Schottky-Kontakte auszubilden, wobei jedoch die Verwendung der zwei verschiedenartig ausgebildeten Elektroden den Vorteil erhöhter Sensitivität, insbesondere bei oxidierend wirkenden Gasen hat.

Für die Detektion reduzierend wirkender Gase ist es jedoch günstiger, den Kontaktbereich nicht zu modifizieren. Die Streifen der Metalloxidschicht breiter auszubilden, wie dies bereits genannt worden ist.

Die Metalloxidstreifen-Struktur läßt sich auf relativ einfache Art und Weise mit einem bekannten Bedampfungsverfahren im Vakuum herstellen, wobei die Struktur auf bekanntem lithografischen Wege mit wenigen Arbeitsschritten hergestellt werden kann und die Schichtdicke in einem Beschichtungsgang für die einzelnen Streifen nahezu konstant eingehalten wird und dabei bevorzugt im Bereich zwischen 30 nm und 500 nm liegen sollte.

Der erfindungsgemäße Sensor hat weiter den Vorteil, daß die sensitive Schicht in Form der Streifen im Nachgang getrimmt werden kann, in dem ein Materialabtrag durch beispielsweise Oberflächen- oder Tiefenlaserbearbeitung erfolgen kann.

Dieser Vorgang kann aber auch bei den Elektroden durchgeführt werden, um die jeweils gasabhängige Sensitivität zu optimieren.

Die wirksame Kontaktlänge wird im wesentlichen durch die Anzahl der parallelgeschalteten Metalloxidstreifen, die in der Regel zwischen 2 und 50 Streifen, deren Länge zwischen 10 µm und 10 mm liegen kann, bestimmt.

Die Dicke für die Kontakte sollte bevorzugt bei etwa 45 250 nm liegen, Dicken bis zu 1 μm sind möglich.

Mit der erfindungsgemäßen Lösung ist es aber auch möglich, einen Sensor mit einem Layout vorzugeben, der in der Lage ist, mehrere verschiedene Gase zu detektieren. Hierfür werden Metalloxidstreifen mit unterschiedlicher Breite hergestellt, die wahlweise in verschiedenen Kombinationen kurzschließbar gestaltet sind, so daß, je nachdem welche der Streifen kurzgeschlossen werden, der Grundwiderstand variabel wird und demzufolge je nach Schaltungszustand eine bestimmte Sensitivität für ein bestimmtes Gas ausgewählt werden kann und durch Mehrfachschaltung intermittierend mit nur einem Sensor mehrere Gase detektierbar sind.

Eine weitere verbesserte Möglichkeit für einen erfindungsgemäßen Sensor besteht darin, daß zumindest an einer der Seiten der streifenförmig ausgebildeten sensitiven Metalloxidschicht zwei verschiedene Elektroden, beispielsweise ein Interdigitalkamm und ein Elektrodenfleck ausgebildet sind, von denen wahlweise das Meßsignal abgenommen werden kann. Dadurch besteht die Möglichkeit, einen Sensor zu erhalten, der beidseitig als Schottky-Kontakt ausgebildete Elektroden aufweist und, wie dies bereits aus DE 197 10 456 bekannt ist, an einer Seite einen Schottky-Kontakt und auf der anderen Seite eine Ohmsche Elektrode

4

aufweist.

Der erfindungsgemäße Sensor verfügt, wie dies bereits aus dem Stand der Technik bekannt ist, über eine Heizung mit der die erforderlichen Temperaturen zwischen 100 und 800°C für die Detektion eingestellt werden können. Da die Sensitivität temperaturabhängig ist, ist es besonders günstig, wenn die Heizung steuer- und/oder regelbar ist, wobei am erfindungsgemäßen Gassensor ein Temperatursensor vorhanden sein soll, dessen Signal einmal zur Steuerung bzw. Regelung der Heizung eingesetzt werden kann und zum anderen gezielt bestimmte Temperaturen im Detektionsbereich des Gassensors eingestellt werden können, um temperaturabhängig die Selektivität des Gassensors zu beeinflussen oder eine Temperaturkompensation der Meßsignale vorzunehmen.

Die Heizung kann dabei, wie dies bereits aus dem Stand der Technik bekannt ist, auf einem Substrat ausgebildet werden, wobei die auf der detektiven Seite, also dort, wo die Elektroden- und die Streifenstruktur ausgebildet ist, aber auch auf der anderen Seite des Substrates ausgebildet sein.

Nachfolgend soll die Erfindung an Ausführungsbeispielen näher beschrieben werden.

Dabei zeigt:

Fig. 1 einen schematischen Aufbau eines Beispiels eines erfindungsgemäßen Gassensors;

Fig. 2 ein Sensorarray mit verschiedenen Gassensoren; Fig. 3 ein weiteres Beispiel eines Sensorarrays mit anderen Gassensoren;

Fig. 4 ein Beispiel eines Sensors mit spezieller Elektrodenanordnung;

Fig. 5 ein Beispiel nach Fig. 4 mit variabler Struktur der Metalloxidstreifen;

Fig. 6 ein Beispiel eines Sensors mit einer zusätzlichen Elektrode und

Fig. 7 ein weiteres Beispiel mit einer zusätzlichen Elektrode.

Der in Fig. 1 schematisch gezeigte Gassensor besitzt einen sensitiven Schichtaufbau aus SnO2, der streifenförmig ausgebildet ist und dabei die Streifen 1 parallel geschaltet sind. Bei diesem Beispiel eines erfindungsgemäßen Gassensors sind die beiden Elektroden 2 und 3 als Interdigitalkämme ausgebildet, wobei das Metalloxid auf den Kontaktelektrodenfingern einer der Elektroden 2 oder 3 in den, jedoch in zumindest in einem der SnO₂-Streifen 1 implantiert sind oder, daß die Kontaktelektroden aus einem anderen Metall, als die andere Elektrode bestehen, so daß diese Elektrode Ohmsches Verhalten aufweist. Im Gegensatz dazu kann die andere Elektrode 2 oder 3 dann als Schottky-Kontakt ausgebildet sein. Es besteht aber auch die Möglichkeit, beide Elektroden 2 und 3 als Schottky-Kontakt auszubilden. Die Selektivität und Sensitivität eines solchen Sensors wird im wesentlichen durch die Anzahl der SnO₂-Streifen 1, deren Breite und die Breite bzw. Kontaktfläche der mit den SnO2-Streifen 1 in Verbindung stehenden Kontaktelektrodenfingern bestimmt.

In der Fig. 2 ist dann ein aus mehreren verschieden ausgebildeten Gassensoren bestehendes Sensorarray dargestellt, mit denen verschiedene Gase detektierbar sind.

Dabei ist der Gassensor 4 so ausgebildet, daß die SnO₂-Streifen schmal ausgebildet sind, also eine relativ kleine Breite B_S und einen einseitig dotierten Kontaktbereich aufweisen, so daß die NO₂-Sensitivität, bei verminderter Querempfindlichkeit zu reduzierend wirkenden Gasen, wie z. B. CO erhöht, ist.

Im Gegensatz dazu ist der Gassensor 5, mit erhöhter Breite der SnO₂-Streifen, bei gleichzeitig erhöhter Breite der Kontaktelektrodenfinger für reduzierend wirkende Gase, wie z. B. CO, empfindlicher. Ein solcher Sensor kann aber

6

auch mit schmaleren SnO₂-Streifen ausgebildet werden, wenn diese nicht dotiert sind. Bei den in der Fig. 2 gezeigten Gassensoren 4, 5, 6 und 7 sind die Elektroden jeweils als Interdigitalkamm ausgebildet und mit den Gassensoren 6 und 7 können wiederum andere Gase, als mit den Gassensoren 4 oder 5 detektiert werden.

An dem in Fig. 2 gezeigten Sensorarray ist auch eine Heizung 8, 8' ausgebildet, in deren Nähe ein Temperatursensor 9, 9' vorhanden ist, mit dem die Temperatur erfaßt und wie bereits in der Beschreibung erwähnt, zur Steuerung und Regelung bzw. Meßwertauswertung ausgenutzt werden kann.

Das in der Fig. 3 gezeigte Sensorarray entspricht im wesentlichen dem Aufbau, wie er auch dem in der Fig. 2 dargestellten, entspricht. Dabei sind die Gassensoren 12 und 13 als erfindungsgemäße Gassensoren ausgebildet und die Sensoren 10 und 11 verfügen über eine geschlossene sensitive SnO_2 -Schicht. Bei den in der Fig. 3 dargestellten Gassensoren 10, 11, 12 und 13 sind jedoch im Gegensatz zu den Gassensoren 4, 5, 6 und 7 (Fig. 2) die Kontakte einfache Metallstreifen, deren Länge zwischen $10~\mu m$ und 10~mm liegt und 10~mm liegt.

In der Fig. 4 ist ein Beispiel eines erfindungsgemäßen Sensors dargestellt, bei dem eine Elektrode 3 als Interdigitalkamm und die andere Elektrode 2 aus mehreren Kontaktflecken an den Metalloxidstreifen 1 ausgebildet ist.

In der Fig. 5 ist ein Beispiel für einen erfindungsgemäßen Sensor dargestellt, bei die Metalloxidstreifen 1 jeweils unterschiedliche Breiten aufweisen und durch wahlweises kurzschließen in verschiedenster Kombination die Selektivität bzw. Sensitivität beeinflußbar ist.

Der Sensor nach Fig. 6 ist dahingehend verbessert, daß bei ihm eine zusätzliche Elektrode 2' vorhanden ist, so daß der Sensor wahlweise intermittierend oder parallel so geschaltet werden kann, daß er mit zwei Schottky-Kontakten 35 in deren Durchlaßrichtung betrieben wird oder eine Elektrode 3 ein Schottky-Kontakt ist und die andere Elektrode Ohmsches Verhalten aufweist. Wodurch weitere Möglichkeiten eröffnet werden, bei Verwendung von nur einem Sensor, die Selektivität bzw. Sensitivität zu verbessern oder sogar mindestens zwei verschiedene Komponenten zu detektieren.

Die Elektroden 2 und 2' können wahlweise identisch oder unterschiedlich sein. Dabei kann eine der Elektroden 2 oder 2' Ohmsches Verhalten und die anderen Elektroden nichtlineares Verhalten zeigen.

Dies kann beispielsweise durch unterschiedliche Metalle für die Elektrode 2 oder 2' erreicht werden und eine weitere Möglichkeit besteht darin, eine der Elektroden zu implantieren

Der Sensor kann auch so betrieben werden, daß die Elektrode 3 Ohmsches- oder Schottky-Verhalten aufweist, während die Elektrode 2 oder 2' nichtlineares Verhalten aufweist.

Das in der Fig. 7 gezeigte Beispiel eines Sensors verwendet zwei als Interdigitalkamm ausgebildete Elektroden 3, 3' und eine zusätzliche Elektrode 2. Der ähnlich betrieben werden kann, wie dies mit dem Sensor nach Fig. 6 der Fall ist.

Patentansprüche

Sensor zur Detektion von oxidierenden und/oder reduzierenden Gasen oder Gasgemischen mit mindestens einer Metalloxidschicht und zwei mit der Metalloxidschicht verbundenen Elektroden, wobei mindestens eine der Elektroden als Schottky-Kontakt ausgebildet ist, dadurch gekennzeichnet, daß die Metalloxidschicht in Form mehrerer parallel geschalteter Streifen

60

- (1) ausgebildet ist.
- 2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Metalloxidstreifen (1) zur Messung oxidierender Gase eine Breite B_S zwischen 2 μm und 100 μm aufweisen.
- 3. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Metalloxidstreifen (1) zur Messung reduzierender Gase eine Breite B_S zwischen 50 μm und 1000 μm aufweisen.
- 4. Sensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Breite B_S der parallel geschalteten Metalloxidstreifen (1) variiert und ausgewählte Metalloxidstreifen (1) selektiv kurzschließbar sind.
- 5. Sensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Elektroden (2, 3) als Interdigitalkämme ausgebildet sind.
- 6. Sensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Elektroden (2, 3) als Kontaktflecken oder Interdigitalkamm ausgebildet sind, wobei die Metalloxidstreifen (1) einseitig mit einem als Donator wirkenden Material dotiert sind.
- 7. Sensor nach Anspruch 6, dadurch gekennzeichnet, daß das Dotiermaterial Antimon, Indium, Vanadium, Nickel, Chrom, Molybdän, Tantal, Gadolinium oder Wismut ist.
- 8. Sensor nach Anspruch 5, dadurch gekennzeichnet, daß die Kontaktelektrodenfinger zur Messung oxidierender Gase eine Breite B_k zwischen 2 μm und 100 μm aufweisen.
- 9. Sensor nach Anspruch 5, dadurch gekennzeichnet, daß einseitig an den Metalloxidstreifen (2) eine zusätzliche als Kontaktfläche ausgebildete Elektrode angeordnet oder in mindestens einem Metalloxidstreifen implantiert ist.
- 10. Sensor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Metalloxidstreifen (1) aus SnO₂, ZnO, TiO₂, WO₃, Ga₂O₃, SrTiO₃, ZrO₂, V₂O₅, In₂O₃ oder Sb₂O₃ bestehen.
- 11. Sensor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Metalloxidstreifen (1) eine Dicke zwischen 30 nm und 500 nm aufweisen.
- 12. Sensor nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß mehrere unterschiedlich dimensionierte und/oder mit unterschiedlichen Elektroden (2, 3) ausgebildete Einzelsensoren (4, 5, 6, 7, 10, 11, 12, 13) auf einem Substrat zur Detektion verschiedener Gase eines Gasgemisches aufgebracht sind.
- 13. Sensor nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine steuer- und/- oder regelbare Heizung (8, 8') vorhanden ist.

Hierzu 7 Seite(n) Zeichnungen

- Leerseite -

Nummer:

DE 197 18 584 C1 G 01 N 27/12 19. November 1998

Int. Cl.6; Veröffentlichungstag:

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 18 584 C1 G 01 N 27/1219. November 1998

Nummer:

Int. Cl.6:

Veröffentlichungstag:

DE 197 18 584 C1 G 01 N 27/12

19. November 1998

Nummer: Int. Cl.⁶;

Veröffentlichungstag: 19. November 1998

DE 197 18 584 C1 G 01 N 27/12

Nummer: Int. Cl.⁶;

Veröffentlichungstag: 19.

DE 197 18 584 C1 G 01 N 27/12 19. November 1998

Figur 5

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 18 584 C1 G 01 N 27/1219. November 1998

Jur 6

Nummer: Int. Cl.⁶: Veröffentlichungstag: DE 197 18 584 C1 G 01 N 27/12 19. November 1998

