- **1.** Let A_0, \ldots, A_n be the vertices of a polygon. Determine $\overrightarrow{A_0 A_1} + \overrightarrow{A_1 A_2} + \cdots + \overrightarrow{A_{n-1} A_n} + \overrightarrow{A_n A_0}$.
- 2. In each of the following cases, decide if the indicated vectors \mathbf{u} , \mathbf{v} , \mathbf{w} can be represented with the vertices of a triangle:
 - 1. $\mathbf{u}(7,3)$, $\mathbf{v}(-2,-8)$, $\mathbf{w}(-5,5)$.
 - 2. $\mathbf{u}(7,3)$, $\mathbf{v}(2,8)$, $\mathbf{w}(-5,5)$.
 - 3. $\|\mathbf{u}\| = 7$, $\|\mathbf{v}\| = 3$, $\|\mathbf{w}\| = 11$.
 - 4. $\mathbf{u}(1,0,1)$, $\mathbf{v}(0,1,0)$, $\mathbf{w}(2,2,2)$.
- **3.** Let *ABCDEF* be a regular hexagon centered at *O*.
 - 1. Express the vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} in terms of \overrightarrow{OE} and \overrightarrow{OF} .
 - 2. Show that $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3\overrightarrow{AD}$.
- **4.** Let ABCD be a quadrilateral. Let M, N, P, Q be the midpoints of [AB], [BC], [CD] and [DA] respectively. Show that $\overrightarrow{MN} + \overrightarrow{PQ} = 0$. Deduce that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram.
- **5.** Let ABCD be a quadrilateral. Let E be the midpoint of [AC] and let F be the midpoint of [BD]. Show that

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD}) = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{CB}).$$

6. Let ABCD be a quadrilateral. Let E be the midpoint of [AB] and let F be the midpoint of [CD]. Show that

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{BC}).$$

Deduce that the length of the midsegment in a trapezoid is the arithmetic mean of the lengths of the bases.

7. Let \overrightarrow{ABC} be a triangle and let $D \in [BC]$ be such that AD is an angle bisector. Express \overrightarrow{AD} in terms of $\mathbf{b} = \overrightarrow{AB}$ und $\mathbf{c} = \overrightarrow{AC}$.

8. Let A', B' and C' be midpoints of the sides of a triangle ABC. Show that for any point O we have

$$\overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

9. Show that the medians in a triangle intersect in one point.

10. Let *ABCD* be a tetrahedron. Determine the sums

1.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$
,

2.
$$\overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{DB}$$
,

3.
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} + \overrightarrow{DA}$$
.

- 11. Let \overrightarrow{ABCD} be a tetrahedron. Show that $\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{AC}$.
- 12. Let SABCD be a pyramid with apex S and base the parallelogram ABCD. Show that

$$\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} = 4\overrightarrow{SO}$$

where *O* is the center of the parallelogram.

13. In \mathbb{E}^3 consider the parallelograms $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$. Show that the midpoints of the segments $[A_1B_1]$, $[A_2B_2]$, $[A_3B_3]$ and $[A_4B_4]$ are the vertices of a parallelogram.