

INSTALLATION RESTORATION PROGRAM PHASE II-CONFIRMATION/QUANTIFICATION STAGE 1

VOLUME II-APPENDIX E-K

For

Former Air Force Plant 83 Albuquerque, New Mexico

Prepared By:

FRED C. HART ASSOCIATES, INC. 530 Fifth Avenue New York, NY 10036

SEPTEMBER 1986

FINAL REPORT FOR PERIOD MARCH 1985 TO SEPTEMBER 1986

Accession For

Approved for Public Release; Distribution is Unlimited

Prepared For:

HEADQUARTERS AIR FORCE SYSTEMS COMMAND COMMAND BIOENVIRONMENTAL ENGINEER (AFSC/SGPB) DIRECTORATE OF MANUFACTURING (AFSC/PLM) ANDREWS AIR FORCE BASE, D.C. 20334

HEADQUARTERS AERONAUTICAL SYSTEMS DIVISION FACILITIES MANAGEMENT DIVISION (ASD/PMDA) WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6503

DTIC

NTIJ GPARI DTIG TIP Unarma and D Justif attion	
Ву	
Distant and and	
150 100 1 00 20 20 5	
A-/	

UNITED STATES AIR FORCE OCCUPATIONAL & ENVIRONMENTAL HEALTH LABORATORY (USAFOEHL) TECHNICAL SERVICES DIVISION (TS) BROOKS AIR FORCE BASE, TEXAS 78235-5501

87 3 25

088

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	REPORT DOCUM	MENTATION	PAGE		
1a REPORT SECURITY CLASSIFICATION Unclassified		16 RESTRICTIVE N/A		<u> </u>	
2a. SECURITY CLASSIFICATION AUTHORITY N/A		3 DISTRIBUTION			
2b. DECLASSIFICATION / DOWNGRADING SCHEDU N/A	LE	UISTRIDUTI	on is unlim	nitea	
4. PERFORMING ORGANIZATION REPORT NUMBER N/A	R(S)	5. MONITORING N/A	ORGANIZATION R	REPORT NUM	BER(S)
FRED C. HART ASSOCIATES, INC.		7a. NAME OF MO USAFOEHL/T		NIZATION	
6c. ADDRESS (City, State, and ZIP Code)		76 ADDRESS (CA	y, State, and ZIP	Code)	
530 Fifth Avenue New York, NY 10036		Brooks AFE	3, Texas 78	3235-5501	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION USAFOEHL/TS	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMENT F33615-84-		ENTIFICATIO	N NUMBER
Sc. ADDRESS (City, State, and ZIP Code)	1	10 SOURCE OF	UNDING NUMBER	RS	
Brooks AFB, Texas 78235-5501	,	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO
11. TITLE (Include Security Classification)					
Final Report for Former AF Pl	ant No. 83 Albu	CUETOUE NM	Vol II /	l n n n n d d	r v
<u> </u>	ant No. 05, Albu	querque, nn,	VOI 11 - F	Appenaix	E-K
12. PERSONAL AUTHOR(S) FRED C. HART ASSOCIATES, INC.					
13a. TYPE OF REPORT 13b. TIME OF FROM 3	OVERED /85 TO 9/86	14. DATE OF REPO August 19	NRT (Year, Month, 186	. Day) 15. P	AGE COUNT 190
16. SUPPLEMENTARY NOTATION					
17 COSATI CODES	18. SUBJECT TERMS (C	continue on revers	e if necessary an	d identify by	block number)
FIELD GROUP SUB-GROUP	LInstallation R	Restoration F	rogram. IRF	· AP=P1a	
	Volatile Organ Mexico, Metals	ic Compounds	s, Superfund	1 Site, N	lew .
S ABSTRACT (Continue on reverse if necessary	and identify by block in	number)	112210	oks Mar	2
In accordance with the procedation Restoration Program (IF Stage I site investigation Albuquerque, New Mexico. In storage sites and in other installed, seven (7) in the aquifer. Boreholes were cont samples being sent to the lat of the sediment in the San (DWA-1 and DWA-2) were pumpe shallow wells in order to evaluation.	RP), and the EP has been perfo vestigations we areas of the plupper water-beatinuously monitor poratory for prilose Drain wered for 24 hours luate the in-situate	A's April 1 rmed at the re conducted lant. A to ring zone a red during d ority pollut also obtaine and water l u permeabili	984 Scope Former U 1 at ident tal of 12 nd five (5 rilling wit tant analysi ed for anal evels measu ty of the c	of Work, SAF Plar ified ha monitorial) in the han OVA is. Eight ysis. Tured in slay unit	a Phase II, it No. 83 in zardous waste ng wells were intermediate N, with select it (8) samples wo deep wells several nearby . Groundwater
samples were obtained from a monitoring wells at the site.	Keyword	, •	investigatio : inued)	on and t	innee existing
20 DISTRIBUTION AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS			CURITY CLASSIFIC	CATION	
22a NAME OF RESPONSIBLE INDIVIDUAL COl. R.C. Wooten		226 TELEPHONE (512) 536-	(Include Area Cod - 2158	USAFOE	CE SYMBOL HL/TS
DD FORM 1473 SAMAR 83A	PR edition may be used us				

A total of 346 subsurface soil samples were collected during this investigation. These samples were evaluated utilizing the OVA in the screening mode and results reflect total VOCs rather than specific compounds or heavy metals. Of these samples, 36 were selected and sent for laboratory analysis. One sample was broken in transit and could not be submitted for analysis. Several of the soil samples that were chemically analyzed are composites of two or three individual subsurface samples.

Generally, there seems to be extensive soil contamination. Almost every soil sample tested contained some volatile organic compounds and metals at elevated levels. For example, soil samples contained benzene at concentrations exceeding 0.09 ppm in 100% (35/35) of samples and tetrachloroethene at concentrations exceeding 0.07 ppm in 40% (14/35) of samples. Methylene chloride was detected at levels greater than 0.25 ppm in 54% (19/35) of soil samples and 1,4-dichlorobenzene was found at concentraitons equal to or exceeding 0.16 ppm in 17% (6/35) of samples. Chromium was detected at concentrations of 10 ppm in 60% (21/35) of soils samples, while nickel was detected at levels equal to or greater than 10 ppm to 15 ppm in 86% (30/35) and 51% (18/35) of samples, respec-Lead was detected at concentrations exceeding 5 ppm and 10 ppm in tively. 69% (24/35) and 57% (20/35) of soil samples, respectively. Sediments in the San Jose Drain contain metals and some volatile organic compounds; there seems to be a pattern related to the plant for some contaminants. Groundwater in the upper-water bearing zone contains volatile organic compounds and metals, while groundwater in the intermediate aquifer shows trace levels of a few volatile organic compounds.

Based upon the current understanding of contaminant distribution and site hydrogeology, recommendations regarding further investigation at the plant were developed. The recommendations were organized into two general groups, one set specific to the individuals and another set for further investigations into plant-wide contaminant distribution and hydrogeologic conditions.

APPENDIX E

SAMPLING AND ANALYTICAL PROCEDURES

E.1 FIELD SAMPLING METHODS

FIELD ANALYTICAL PROCEDURES AND DATA REPORTING

Chemical Data

Procedures for Field Measurement of pH. Readings were taken periodically in buffer solutions of the appropriate range at the same temperature during repeated sampling events. The users manual for the pH meter was available to field personnel.

SCCORE SYSTEM ISSUES SYSTEM INCORPORATION

- Procedures for Field Measurement of Electrical Conductivity. When rapid sample changes did not occur, replicate measurements were made. A standard solution of known conductivity was made available for checking precision. Several readings were taken and the arithmetic mean used as the reported value. The users manual for the electrical conductivity meter was available to field personnel.
- Procedures for Field Measurement of Volatile Organics. Approximately 20 mil of soil was placed in VOA vials. The vials were placed in a 50°C hot water bath for 10 minutes. An aliquot of air from the head space within the vial was then withdrawn by syringe for direct injection into the OVA.

Hydraulic Data

- Procedures for Measurements. An M-scope was used to measure to 0.01 foot the water level under static (non-pumping/static) conditions.
- Procedures for Pump Tests. Water from the deep wells was continuously pumped over a twelve hour period and water levels from adjacent shallow wells were simultaneously monitored. If the groundwater pumped during these tests was determined to contain hazardous constituents, it was discharged to the Albuquerque sewer system for treatment.

Soil Boring Data

- Soil Sampling. Continuous split spoon samples were collected at each test boring site. Sample depth was monitored by the subcontractor (driller) under the supervision of the on-site geologist.
- Blow Counts. Soil density was determined by recording the number of blows necessary for the split spoon to penetrate six inches of soil.

SAMPLE NUMBERING SYSTEM

A sample numbering system was used to identify each sample taken during the on-site remedial investigation. The numbering system provides a tracking procedure to allow retrieval of information about a particular site and assure that each sample is uniquely numbered. A listing of sample numbers was maintained by the HART field team leader. Each sample number consisted of five parts as described below.

Project Identification

The designation Former USAF 83 was used to identify the former Former USAF Plant No. 83, now known as General Electric Aircraft Engine Business Group's Albuquerque Plant.

Site Identification

Each sampling site was identified by a three to four letter identifier code, with the following prefix:

DWA - Deep monitoring well with 6 inch casing

DWB - Deep monitoring well with 4 inch casing

SW - Shallow well

(0164G)

- SJ San Jose Drain Sediment Sample
- UCV Underground Cyanide Vault Sample
- SV Previously installed (South Valley) monitoring well

A numerical suffix unique to each prefix follows. A map and surveyors data was used to locate each sampling site.

きんきんく じくり しゅうしきじょしん かきききいきょく かくりんり

Sequence Number

A two letter code was used to identify the type of sample collected, such as:

- SS soil sample collected during drilling
- SD sediment sample
- GW groundwater sample

Sample Depth

The depth or depth interval at which the sample was collected is noted on the label.

Split Sampling

Two sets of samples were collected. The labels HART, for Fred C. Hart Associates, and USAF OEHL to indicate the sample that was sent to the USAF OEHL laboratory, were used to differentiate the analyzer of each set.

Examples

Examples of sample numbers are:

AF/GE 83, DWB-1, SS-3, 4'-6', HART 005. Air Force General Electric Former USAF Plant No. 83; 60 foot deep Monitoring Well #1; third soil sample collected between a depth of four and six feet below the surface; retained by HART. Fifth chemical sample selected for analysis.

AF/GE 83, DWB-1, SS-3, 4'-6', EPA 005. Same as previous sample, except it is retained for analysis by EPA-designated laboratory. Also identified as fifth chemical sample split and sent to USAF OEHL or EPA.

AF/GE 83, SJ-2, SD-2, 3', HART. Air Force General Electric Former USAF Plant No. 83; San Jose Drain, second sediment sample collected at a depth of three feet; retained by HART.

AF/GE 83, SW-4, SS-5, 8'-10', HART. Air Force General Electric Former USAF Plant No. 83; Shallow Monitoring Well; fifth sample collected at a depth of 8 to 10 feet; retained by HART.

Blanks, Knowns, Spikes, Splits and Duplicates

QA/QC blank and duplicate samples, sent to the USAF OEHL laboratory and the HART subcontractor, Princeton Testing Laboratories at Princeton, NJ, were given sample numbers similar to those for collected samples except that the sequence number was unique. The identity of QA/QC samples was recorded in field log books, but was not marked in any way on the sample containers.

EPA Samples

Samples sent to the USAF OEHL laboratory were accompanied by the following information:

- 1. Purpose of sample (analyte).
- 2. Installation name (base).
- 3. Sample number (on container).
- 4. Source/location of sample.
- 5. Contract task number and title of project.
- 6. Method of collection (bailer, suction pump, air-lift pump, etc.).
- 7. Volumes removed before sample taken.
- 8. Special conditions (use of surrogates, filtering, etc.).
- 9. Preservatives used, especially nonstandard types.

Soil Sampling

Soil samples were collected during drilling with split-spoon drive samplers of two-inch outside diameter. Decontamination procedures for sampling equipment are described in Chapter 3. Samples were taken continuously (i.e., from two foot intervals the length of the boring) using a two foot long split spoon sampler. All soil samples were logged in general accordance with "Description of Soils (Visual Manual Procedure)", ASTM D2488-69, which is based on the Unified Soil Classification System.

A portion of the soil sample from the least disturbed center of the split spoon was placed in a VOA vial for on-site OVA analysis. The remaining portion of the soil sample was placed in a properly labeled glass jar. The VOA vials were analyzed in the field for the presence of volatile organic compounds and the results recorded. Based on the results, soil samples were selected for submittal to the laboratories for further analysis. Up to four (4) samples per borehole were selected. At a minimum, these consisted of one soil sample from the water table interface and one additional sample from the zone judged to be most contaminated. If no zone of contamination was noted, soil samples were composited.

However, a soil sample was not composited over an interval exceeding 10 feet.

Undisturbed samples for triaxial permeability tests using a Shelby tube sampler were taken if a confining layer was encountered during drilling. Both ends of the retrieved Shelby tube were sealed with wax and no other form of sampling was attempted from the tube to insure the integrity of the undisturbed sample. Also, two samples per borehole were obtained for grain size analysis.

GROUNDWATER MONITORING AND SAMPLING

A total of 16 wells were sampled. This includes the 13 wells installed for this study and the three existing South Valley (SV-8, SV-9, SV-15) monitor wells. All measuring, purging and sampling equipment was decontaminated prior to data collection.

Groundwater Level Measurements

After all well installation was completed, the groundwater levels of all the wells were measured within a 24-hour period. The instrument (M-scope: Slope Indicator Co., Model 51453) was lowered down the well and measured from the top of the PVC casing. When the electrode of the M-scope came into contact with water, an audio signal was emitted. The instrument was also used to sound the bottom of the well. HART trained GE personnel to take additional groundwater levels in the monitor wells that were installed during this investigation. Groundwater levels must be periodically monitored in order to determine groundwater flow directions over time. It is not cost-effective for HART personnel to travel to the site for the limited time period required to take these measurements. GE personnel were trained to perform monthly groundwater level measurements in the wells.

On-Site Analysis

Monitor Well Sampling. In order for valid representative groundwater samples to be collected from the monitor wells, it was very important to properly prepare the well prior to sample collection. This preparation entailed removing all the water which was standing in the casing and grabbing the sample from water which had recently been recharged from the aquifer.

To accomplish this, the depth to water from the top of the well casing was measured. This value was used in conjunction with the total casing length to determine the height of the water column. The volume of water standing in the well was then calculated. Five times this volume was removed by pumping or bailing before the sample was collected. In cases where a well was emptied until dry and was very slow to recover, the volume required for evacuation may have been reduced to two or three standing water volumes.

Once the well was adequately evacuated, sample collection was then accomplished by lowering a stainless steel, bottom loading bailer with a teflon check valve into the well. Each bailer was fitted with a stainless steel wire leader and a new piece of nylon cord. A different precleaned bailer was devoted to each well. If the bailer had not been used for well evacuation, the first 3 bails of water were wasted to rinse any cleaning agents which might still have been present on the bailer. The samples were poured directly from the bailers to sample jars for temperature, pH, and specific conductance.

PROPERTY CONTROL OF THE CONTROL OF T

Temperature. Measurements of the sample temperature were taken using a decontaminated mercury thermometer. The field measurement represents the temperature of the aquifer unit at a particular location and time. Variations in sample temperature enabled interpretation of a temperature gradient which reflects aquifer hydraulics. This measurement was also used to calibrate the pH and conductivity meters in the field.

pH. The pH of each sample was measured with a Corning Model 3 pH Meter. Field measurements of sample pH were used as a relative check of the lab measurements. The pH of a sample tends to change upon contact with air, and stabilizes once the sample becomes fully aerated. Therefore, the pH measurements of aerated samples were used as relative indicators of groundwater contamination.

<u>Specific Conductivity</u>. The specific conductivity of each sample was measured with a Hach Model 17250 Conductivity Meter. Elevated specific conductivities indicate the presence of conductive ions such as chlorides and sulfides in the groundwater. High concentrations of these ions may indicate contamination.

NAME OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.

BANGO SAIR SESSON SIR BANGOON SI 1722 2766

Sampling for Off-Site Analysis

Prior to sampling for lab analysis all wells were properly flushed as described above. Bailers were used to obtain groundwater samples. Bailers were decontaminated between wells. Samples were placed in properly prepared bottles, and placed in a cooler at 4°C. Coolers were sealed and shipped over night to the designated laboratory. Samples were split and one sample was shipped to the EPA-designated laboratory and the other sent to Princeton Testing Labs. Proper chain-of-custody procedures were followed when transferring the samples from the field to the laboratory. In addition, accurate records were kept of all sampling activity, and include the following information: date, time, location, sample number, depth to water measurement, method and volume of water evacuation and sampling techniques.

A total of 18 samples were analyzed for Priority Pollutants (except asbestos). This includes the wells installed during this investigation, existing monitor wells SV-8, SV-9 and SV-15 and two QA/QC samples.

SAN JOSE SEDIMENT SAMPLING

Sediment samples were collected at four locations along the San Jose Drain (Figure 2). Each location was marked and two samples were collected: one at the surface and one at three foot depth. Samples were split, with one set being shipped to the EPA-designated laboratory and the other to Princeton Testing Labs. Proper chain-of-custody procedures were followed when transferring the samples from the field to the laboratory. In addition, accurate records were kept of all sampling activities, and include the following information: date, time, location, sample number, depth, and sampling techniques. All samples were tested for Priority Pollutants except asbestos.

OVERALL FACILITY INTEGRITY STUDY

San Jose Drain Sediment Sampling. Sediment samples were collected at four locations along the San Jose Drain (Figure 1). At each location, two samples were collected, one at the surface and one at a three foot depth. Samples were tested for Priority Pollutants (except asbestos). Samples were split. One sample was shipped to the HART designated laboratory and one sample shipped to the USAF OEHL laboratory or an EPA laboratory.

<u>Pumping Test.</u> Two pumping tests were conducted using the deep wells and shallow wells in the northwest and southeast corners of the facility.

Detailed Investigations of Individual Storage Sites

Hazardous Waste Storage Area No. 1 Investigation. This investigation entailed the installation and continuous sampling of one 30 foot test boring (Figure 2). Based on OVA readings, HART selected up to four soil samples for Priority Pollutant analysis (except asbestos). Samples were split. One sample was shipped to the HART designated laboratory and one to the USAF OEHL or an EPA laboratory. If a confining layer was encountered, an undisturbed sample was obtained for permeability analysis. Also, two samples were analyzed for grain size distribution. One 30 foot, 4 inch diameter PVC monitor well (SW-4) was installed. Drill cuttings

KAII KASKKKAI KAKKSAII KAABBADAI KKAKKKAI IKKAKAA

(0164G)

PREPARED BY: FRED C. HART ASSOCIATES, INC. 8 ***** SCALE " () | () PROPOSED SEDIMENT SAMPLING LOCATIONS **:** FORMER USAF PLANT NO. 83 81-3 FIGURE 1 1 PLANT DISCHARGE POINTS DOWNGRADIENT LOCATION LOCATIONS ADJACENT TO UPGRADIENT LOCATION SOURCE: USAF PLANT NO 83 DOCUMENTS LEGEND

KKASOOK KKKKKA PEERION KKKKKK PEERIOPE KKKKKK BKKKKKA BEKKKKKA BEKKESOOT FEET IN PEERIOPEE BEKKA

PREPARED BY: FRED C. HART ASSOCIATES, INC. 쥧 SCALL 3 AND SITES OF POTENTIAL ENVIRONMENTAL CONTAMINATION • PROPOSED MONITORING WELL LOCATIONS FORMER USAF PLANT NO. 83 CYANIDE VAULT FIGURE 2 -DEEP MONITORING WELL (BIX INCH CABING) DEEP MONITOR WELL (FOUR INCH CASING) SOURCE: USAF PLANT NO. 83 DOCUMENTS BRALLOW MONITORING WELL BHALLOW MONITORING WELL HWBA NO.2 PERIMETER MONITORING) PERIMETER MONITORING) PERMETER MONITORING) UBED TO INVESTIGATE A SPECIFIC HWBA HAZARBOUT WASTE STORAGE AREAS (HWSA) INDTING MONITORING 1,555.12 DWA-1 1-0M0 - ^ 1-M8 7-M8 DWA-

TAXASASA TAXASASASA TASASASASA TAXASASASA

のことがある。

were analyzed as to their hazardousness. If drill cuttings were determined to be hazardous, they were drummed by HART for later disposal by GE as hazardous waste. One water sample was taken for Priority Pollutant analysis (except asbestos). This was also split.

SEDIMENT SAMPLING

Hazardous Waste Storage Area No. 2 Investigation. This investigation entailed the installation and continuous sampling of one 30 foot test boring (Figure 2). Based on OVA readings, HART selected four soil samples for Priority Pollutant analysis (except asbestos). Samples were split. One sample was shipped to the HART designated laboratory and one to the USAF OEHL or an EPA laboratory. One undisturbed sample was taken if a confining layer was encountered and two samples were collected for grain size distribution analysis. One 30 foot, 4 inch diameter PVC monitoring well (SW-8) as installed. Drill cuttings were analyzed as to their hazardousness. If drill cuttings were determined to be hazardous, they were drummed by HART and then managed by GE as hazardous waste. One water sample was taken for Priority Pollutant analysis (except asbestos), which was also split.

Hazardous Waste Storage Area No. 3 Investigation. This investigation entailed the installation and continuous sampling of one 30 foot test boring (Figure 2). Based on OVA readings, up to four soil samples were selected for Priority Pollutant analysis (except asbestos). Samples were split. One sample was shipped to the HART designated laboratory and one to the OEHL or an EPA laboratory. One undisturbed sample was taken if a confining layer was encountered and two samples for grain size distribution analysis were collected. One 30 foot, 4 inch diameter PVC monitoring well (SW-6) was installed. Drill cuttings were analyzed as to their hazardousness. If drill cuttings were determined to be hazardous, they were drummed by HART for later disposal by GE as a hazardous waste. One water sample was collected for Priority Pollutant analysis (except asbestos), which was split.

Hazardous Waste Storage Area No. 4 Investigation. This investigation entailed the installation and continuous sampling of one 30 foot test boring (Figure 2). Based on OVA readings, up to four soil samples were collected for Priority Pollutant analysis (except asbestos). Samples were split. One sample was shipped to the HART designated laboratory and one to the USAF OEHL or an EPA laboratory. One undisturbed sample was obtained if a confining layer was encountered and two samples for grain size distribution analysis were collected. A 30 foot, 4 inch diameter PVC monitoring well (SW-7) was installed. Drill cuttings were analyzed as to their hazardousnesses. If drill cuttings were determined to be hazardous they were drummed by HART for later disposal by GE as a hazardous waste. One water sample was collected for Priority Pollutant analysis (except asbestos), which was also split.

Underground Cyanide Vault

A metal detector was used to try to locate the metal cover of the Underground Cyanide Vault. Based upon metal detection data and other information, a backhoe was used to excavate the area. If appropriate, shovels were used in sensitive locations. The tank was examined to determine its structural integrity and potential for leaks. A composite sample of the vault contents were taken and analyzed for total cyanides. Four soil samples were taken from the pit area and soil conditions were examined for evidence of leakage.

If the above investigation indicated contamination around the Underground Cyanide Vault, then a 30 foot test boring was installed and continuously sampled. Up to four soil samples were taken for chemical analysis of cyanide and Priority Pollutants and two samples for grain size distribution analysis were collected. A 30 foot, 4 inch diameter monitor well was installed. A water sample for cyanide and Priority Pollutant analysis was taken, which was also split.

During the investigation no cyanide was found in the vault; therefore, no test borings were installed.

E.2 LABORATORY DETECTION LIMITS

VOLATILE ORGANICS

Method Detection Limit

POR CHEN CONTROL CONTROL SON SERVICE PRODUCE PRODUCE PRODUCES INVESTIGATION (SON SERVICE) INCOME INCOME INCOME

Matrix	Soil ug/g	Water mg/1
Chloromethane	.020	.002
Bromethane	.100	.010
Dichlorodifluoromethane	.050	.005
Vinyl Chloride	.020	.002
Chloroethane	.020	.002
Methylene chloride	.050	.005
Trichlorofluoromethane	.050	.005
1,1-dichloroethene	.010	.001
1,1-dichloroethane	.010	.001
trans-1,2-dichloroethene	.010	.001
Chloroform	.020	.002
1,2-dichloroethane	.010	100.
1,1,1-trichloroethane	.020	.002
Carbon tetrachloride	.020	.002
Bromodichloromethane	.020	.002
1,2-dichloropropane	.010	.001
trans-1,3-dichloropropene	.050	.005
Trichloroethene	.020	.002
Dibromochloromethane	.020	.002
1,1,2-trichloroethane	. 050	.005
cis-1,3-dichloropropene	. 050	.005
2-chloroethylvinylether	.050	.005
Bromoform	.100	.010

VOLATILE ORGANICS (CONTINUED)

Method Detection Limit

このことでは、「日本のことののは、「日本のことのなる。」「日本のことのことのは、「日本のことのことのことのことを、「日本のことのことを、「日本のことのことを、「日本のことのことを、「日本のことのことを

Matrix	Soll ug/g	Water mg/l
1,1,2,2-tetrachloroethane	.100	.010
Tetrach1 oroethene	.020	.002
Benzene	.010	.001
Toluene	.010	.001
Ch1 orobenzene	.010	.001
Ethy1benzene .	.010	.001
1,3-dichlorobenzene	.010	.001
1,2-dichlorobenzene	.010	.001
1,4-dichlorobenzene	.010	.001

ACID EXTRACTS

Method Detection Limit

Matrix	So11 ug/g	Water mg/1
2-Chlorophenol	.001	.025
2,4-Dichlorophenol	.001	.025
2,4-Dimethylphenol	.001	.025
4,6-Dinitro-o-cresol	.010	.250
2,4-Dinitrophenol	.010	.250
2-Nitrophenol	.001	.025
4-Ni trophenol	.001	.025
p-chloro-m-cresol	.001	.025
Pentach1orophenol	.001	.025
Pheno1	.001	.025
2,4,6-Trichlorophenol	.001	.025

BASE/NEUTRAL EXTRACTS

Method Detection Limit

Matrix	Soll ug/g	Water mg/l
Acenaphthene	.001	.010
Acenaphthylene	. 001	.010
Anthracene	. 001	.010
Benzidine	.010	.100
Benzo(a)anthracene	.001	.010
Benzo(a)pyrene	.001	.010
3,4-Benzofluoranthene	.001	.010
Benzo(ghi)perylene	.003	.025
Benzo(k)fluoranthene	.001	.010
bis(2-chloroethoxy)methane	.001	.010
bis(2-chloroethyl)ether	.001	.010
bis2-chloroisopropyl)ether	.001	.010
bis(2-ethylhexyl)phthalate	.001	.010
4-bromophenyl phenyl ether	.001	.010
Butylbenzyl phthalate	.001	.010
2-Chloronaphthalene	.001	.010
4-Chlorophenyl phenyl ether	.001	.010
Chrysene	.001	.010
Dibenzo(a,h)anthracene	. 003	.025
1,2-Dichlorobenzene	. 001	.010
1,3-Dichlorobenzene	. 001	.010
1,4-Dichlorobenzene	.001	.010
3,3'-Dichlorobenzidine	.001	.010

BASE/NEUTRAL EXTRACTS (CONTINUED)

Method Detection Limit

Matrix	Soil ug/g	Water mg/l
Diethyl phthalate	. 001	.010
Dimethyl phthalate	. 001	.010
Di-n-butyl phthalate	. 001	.010
2,4-Dinitrotoluene	.001	.010
2,6-Dinitrotoluene	.001	.010
Di-n-octyl phthalate	. 001	.010
1,2-diphenylhydrazine (as azobenzene)	.001	.010
Fluoranthene	.001	.010
Fluorene	.001	.010
Hexach1 orobenzene	.001	.010
Hexchlorobutadiene	.001	.010
Hexachlorocyclopentadiene	. 001	.010
Hexachloroethane	. 001	.010
Ideno(1,2,3-cd)pyrene	.003	.025
Isophorone	. 001	.010
Naphthalene	.001	.010
Nitrobenzene	. 001	.010
N-nitrosodimethylamine	.001	.010
N-introsodi-n-propylamine	.001	.010
N-nitrosodiphenylamine	.001	.010
Phenanthrene	. 001	.010
Pyrene	.001	.010
1,2,4-Trichlorobenzene	. 001	.010

PESTICIDES AND PCBS SOIL

Method Detection Limit

SOUND COUNTY OF THE PROPERTY O

Matrix	Soil ug/g	Water mg/1
Aldrin	.001	.001
BHC, alpha	.001	.001
BHC, beta	. 001	.001
BHC, gamma Lindane	.001	.001
BHC, delta	.001	.001
Chlordane	.005	.002
4,4'-DDT	.001	.001
4,4'-DOE	.001	.001
4,4'-000	.001	.001
Dieldrin	.001	.001
Endosulfan, alpha	. 001	.001
Endosulfan, beta	.001	.001
Endsosulfan sulfate	. 001	.001
Endrin	. 001	.001
Endrin aldehyde	.001	.001
Heptach1 or	.001	.001
Heptaclor epoxide	. 001	.001
Aroclor 1242	.005	.005
Aroclor 1254	.005	.005
Aroclor 1221	.005	.005
Aroclar 1232	. 005	. 005
Aroclar 1248	.005	.005
Aroclor 1260	.005	. 005
Aroclor 1016	.005	.005
Toxaphene	. 005	.005

METALS AND MISCELLANEOUS COMPOUNDS

Method	Detection	Limit

Matrix	Soll ug/g	Water mg/l
Beryllium	3	.02
Cadmium	2	.01
Chromium	2	.02
Copper	1	.02
Nickel	1	.02
Lead	2	.02
Zinc	2	.02
Arsenic	2	.01
Silver	1	.01
Antimony	5	.02
Selenium	.25	.01
Thallium	3	.03
Mercury	.05	.001
Cyanide	5	.01
Phenols	6	.1

. 4	EXTRA	CTION or	PREP NA	res	1	Ŕ	CUN DATE	E 5	\$
Job# #	P/PCB	BN	AX	VO -		P/PC8	BN/AX	601/602	2
37738 2(13) 1'	4/16	:4/15	4/15	.4/2		5/1	5/2	4/15	
F44/1 Z	4/16	4/15	4/2	4/2		5/1	5/2	4/15	
3_	4/16	4/15	4/15	4/2		5/1_	5/2	4/15	
4	4/16	4/15	41.5	4/2		<u>-5/1</u>	5/3	4/15	3
<i>S</i>	4/16	<u> 4/15</u>	4/15	4/2		_5/1	5/6	4/15	
4	4/16	4/15	4/15	4/2		5/1_	5/6	4/17	🖇
2	4/16_	4/15	4/15	4/2		5/1_	5/3	4/17	
8	4/16	4/15	4/15	4/2		5/1	5/3	_4/17	
9	4/16_	4/15	4/15	4/2		5/1_	5/3	4/12_	
	4/16	4/15	4/15	4/2		5/1	5/3	4/17_	
	4/16	4/15	4/15	4/2		5/1.	5/3	<u>-4117</u>	X
R_	4/16	4/5.	4/15	4/2		5/1	5/3	4112	
37893 s(7)_13_	4/26	4/25	4/25	<u> </u>		4/29	5/3	4/17	
II;+/9 14	4/26	4/25	4/25	4/11		4/29	5/3	4/17	23
	4/24	4/25	4/25	<u>4/11</u>		4/29	5/6	4/18 _	3
	4/26_	4/25	4/25	4/11		4/29	5/6	4/18	
	4/26	4/25	4/25	4/10		4/29	5/6	4/18	· · · · 💆
	4/26	4/25	4/25	4/11		9/29	5/6	74/18	
	4/26	4/25	4/25	4/4		4/29	5/6-	4/18	
380412(8) 50	6/6	5/6	-5/6	4/22	- <u>·</u>	6/11	5/2	5/21	💥
h. 417 21	6/6	15/6	25/6	4/22		6/11	1	5/21	
22	4/2	5/4	5/1	4/22	_	6/11	5/7	5/21	3
	41	5/4	5/4_	4/22		-414	5/7	5/21	<u>Si</u>
24	6/1	5/4	5/6	4/22		6/11	5/7	5/21	\$
25	46	5/1	5/1	4/22			* * 1	5/21	
26	4/4	5/7	5/7	4/22		4/11	5/8	5/21	**************************************
	4	<u>5h</u>	5/7.	4/22			5/8	5/21	S.
	4/1	5/2	5/7	4/20		411-	**************************************	5/21	
	4	5/7_	<i>sh</i> _	the		Mn =	5/8	5/21	
 - 1	, ,					**	1 miles		

181	EXTRAC	TION 🚗	PREP DAT	4 5		RUN L	ATES	er die Januarie en eeu tre	Janice by John St
TOB#	Plan	ВИ	Ax	40-		1/KB	BN/AY	601/60Z	1
36041 .30	6/6	5/7	.5/7	4/22		6/11	5/8	5/21	
I 4/A 31	46	5/2	5/7	4/22		.6/11	5/8	5/21	
32	6/6	_5/7_	_5/7_	4/22		6/11	5/8	5/21	
33	6/6_	<u>-sl7</u>	5/7	4/22.		6/11	5/8	5/21	_
34	6/6	-5/7	5/7	.4/22		_6/11	5/8	5/23	
35	6/6	5/7	5/2	4/22	-·	.b/11	5/8	5/23	
36	_6/6	5/7_	5/7_	4/22		6/11_	5/8	5/23	
37	6/6	5/2	5/7	4/22		6/n	5/8	5/24	
38440 s @) 38	5/17	5/20	5/20	5/6		5/23	5/21	5/24	
L:4/25 39	5/17	5/20	5/20	5/6_		5/23	5/21	5/24	
40	5/17_	5/20	5/20	3/6		5/23	5/21	5/24	
_ wb) 41	5/21	5/21	5/21	_N.A	<u>.</u>	4/1	5/22	5/25	
42	5/21	5/21	5/21	M.A		6/1	5/22	5/25	
43	5/21	5/21_	_5/21_	<u>N.A</u> .		6/1	5/22	5/25	
<u></u> 44	5/21	5/21	5/21	N.A.		<i>b/1</i>	5/22	5/25	
45	5/21	,5/21	<u> 5/z)</u>	<u> </u>		6/1	5/22	5/25	
s(g) 46	6/8	5/20	5/20	5/6		6/20	5/21	5/24	-
47	51017	5/20	5/20	5/6_		5/23	5/21	5/24	
. 48	(1 7	5/20	5/20,	\$6_		5/23	5/21	5/24	
49		den			<u></u>	,			
38 180 WL) 50	6/18	5/13	5/13	N.A.		6/20	5/17	5/25	٠ د د
Ti: 4/29 51	6/18	5/13	5/13	<u>N.</u> A.		420	5/17	5/25	· .
52	ا ا	edien -	-1-	N.A.				5/25	· ·
53	6/18	5/13	5/13	NA.	~	6/20	5/17	5/26	
54 In:5/13	6/18	5/13	5/13	N.A.		6/20	5/17 6/5	5/25	
38179 w(1) 55 38179 w(1)	6/3		4/3	N.A.	-	5/22,6/1	5/16	5/27	
F.W. 57	5/14	5/10	5/10	N.A.		5/20-	-5/17	5/25 5/25	
59	5/14	5/10_	_5/10_	N.A. N.A.		5/32 5	\$/17 - \$/17 \$/18 -	5/25	
60, -61	5/14	5/10	5/10	NA.		5/22	5/16 -	5/25	

METALS HOLDING TIMES

Appendix E.3

Flom:	PRINCETON TES	TING LABO	RATURY		
The second secon	HART ASSOCIATE		SAMPLE NOS. 13-18	Sample Nos.	SAMPLE AGE 38 - 48
		T	JOB# 37893		38140
DAG	RECEIVED	7	4985	419 85	4/25/17
			11/100	111/103	TANK TO THE TANK T
TOTAL	HETAL DI	(ST(2)	4/11/8	4/22/85	416/15
		:	11113	4100103	478
DATE	or mas				
Bery 11ium	Be	1	417 185	58185	Shop
Cadmium	ch	-1	4122/85		
Chromim	Cr	1		1	1
Copper	Cu				!
Nickel	Ni		i T		
Lead	Pr	1			
Zine	Zn		V	1	
Arsenic	AS		5 1 85	51-538	6418
Silver	Ag		422 85	5/2/15	5)20
Antimony	50		417185	5/1/2	5/20/25
Seknium	Se	· · ·	4 21 8	A 25 X	5810-
Thallium	1	<u> </u>	41715	5/8/85	5 20 18
Mercury	Hg	1	4 16 5	5115	598
	0	!		*** = = = 1	
Cyanide	CN-		426 1	5/6/85	5 nm
	PUENON		420 8	5 6 5	520/11
		<u>.:</u>			
سايران سالا کاانه	1	1		•	
-	<u> </u>			-	
-	<u> </u>]		
•		<u> </u>		70	ue G. Celenia.
-	!		\	/	
	<u> </u>				
-		- -	}	-	
-					l
	 	- 			
		-	}		
	1	-			
•	 	-{·			
	1				
	-				•

Princeton Service Center U.S. Route 1 609-452-9050 TLX 84-3492

Jill Greenberg

530 Fifth Ave. New York, NY 10036

Fred C. Hart

TO: _

P.O. Box 3108. Princeton, N.J. 08540

DATE:

JOB NO.

AUTHORIZATION:

RECEIVED III 18 188

SAMPLE:

REPORT OF ANALY

	(#1-12) §37738	C BUCULCO FIL	(#55)	(# 19) (\$129
Date Received	4/1/85	1/4/1 The	\$13/25	5/24/66
Total Metal Digmetion :	40/85		\$14/86	\$16/85 ·
Date of Analysis For:			* 21	
Beryllium	4/10/85	5/8/85 240/86	5/20/85	20/85
Cadadium	4/10/85	5/10/85 200/85	5/20/85	
Checanium	4/10/85	14 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/20/25	350/85
Copper	4/10/85	\$/14/45	3/20/35	\$,630/85
Mckal	4/10/85 "	1/1/6 T 11/6	NAMES .	8/20/85
Leed	4/8/85	\$7.00 to 10 10 10 10 10 10 10 10 10 10 10 10 10	3/20/0 6	5/20/85
Sinc	A/10/85		45,009/0 5	5/20/65
	428 6 4/28			
	W/10/05	and the same of th	San Asses	·
Antimony Selenium	4/10/85		¥78/05	3/20/85
Thellism	4/21/85	3/3/65 \$/3/85	5/23/85	5/23/85
	4/10/85	5/1/85 5/1/85	5/20/05	5/20/85
Mercury Cyanide	4/8/85 4/18/85	5/9/95 5/9/85	5/17/85	5/17/85
Phenols	4/17/85	5/26/665 9/86/66 5/20/65 5/36/66	5/20/05	5/28/85
	4/1//03		3/27/85	5/27/85
		30 15 m		

Min F, Pietus, Overter

NO - element is less than the value given and notificated by this schooling employs

APPENDIX F
CHAIN OF CUSTODY FORMS

	-							2000		Naccour.		1	NAI.VS	I S B	ANALYSIS RICOTTRED	100			
Project	•	Pro	ject A	Project Name: AF/G	16: 83 16E 83		91	8:	-	l ——		[att		891	7083	. 201	823		
Sampler	Samplers Signature	1 '	Der		P Fant	spilos	ујаеръа	henolic	derenty	eb ina Y	Asbeston Senica	SAS CANS	Volatilo	Pesticio 1 PCB's	Bacterio	itae. Ct	of Sontain	REMARKS	
Stat. #	Date	Time	desog	da 10	Station Location	-			l		 				 				
1	3/28/82	1	×		DWB-3,55-7,8,9				-		-	-					à	PRIORITY 6	POLLUTANTS
2	3/28		X		Dwg-3, 55-14, 15	1		-			-	<u> </u>				-	-		_
3	\$1/5		Y		25, 25, 25-23, 24, 25	52,			-		-						-		
+	3/28		×		18'28 58 8-8ma						-					-			
7	3/29	1540		X	,0'1-15		·				<u> </u>	<u> </u>							
9	3/14	1540		×	511-55											-	-		
~	3/19	1555	_	X	,٥,٤-८১														
<i>></i> ∞	3/25	1523		X	57-583											-			
9		0/9/		×	٥٥- ٤٥/														
01	3/4 1616	9/9/		K	51-3,3						\vdash					H			_>
Relingu (signat	Relinquished by: (signature) Dénnis FAME)	ENNIS FA	VALCY.	3/2	Date/time Received by (aignature)	by: (e)			Reli (sig	Relinquished by: (signature)	d by:				Dote/time	3	Rec (e.j.	Received by: (signature)	
Relinquishe (signature)	Relinquished by: (signature)	<i>ن</i>		De1	Date/time Received by (signature)	by:			Relit (sign	Relinquished (signature)	d by:			٥	De te/time	9	Rec (ei	Received by: (signature)	
Relinqished (signature)	shed by: ure)			0	Date/time Received fo by(signatur	for laboratory ure):	orato	7	Date	Date/time		REMARKS	RKS	-					
Prince	Tee P	40			a golf aca oa		07700												

Princeton Testing Laboratory, PU Box 3108, Princeton, NJ 08540

STATEST SECRECAL PROPERTY FOR A LOCAL COLOR OF STATESTS OF SECRECAL FRANCES FOR SECRETARIAN FOR STATES FOR STATES

	-									1				ANA	ANALYSIS R	19:	OHIRED		
Project 6-104	4	_	Project Name: $A \leftarrow /G$	St N	t Name: A = /G = 83	~				-	•		I	[a13u	59p		· way		513
Sampler	Samplers Signature	ture		م	- Pta	7	solids	уудеруд	ilonadi.	Herenty	Cyanide	os sadaA	SC/NS DEBanici	Dese/Ner Voletil	Organic Pestici	P BCR. 8	Bacterio Misc. Cl	30 \$	Concesin REMARKS
Stat.#	Date	Time		d≡o⊃	610	Station Location				1			i				 -		ļ
=	3/21	1630	0		X 534-0	-0,		-	-					-	-	-			PRIORITY POLLUTANI
12	3/25	1630	0		X SJA	-3			-	-					-	+	-		11
			-					 	-	_			 	-	 	-	-	_	
			-	-						-				-	+-	\vdash	 	 	
			-						-					 -	\vdash	-	-	_	
			-						 -	_				-	-	_	-		
		_	-	-					-	-				-	-		_		
													 	-		<u> </u>	 	_	
																-	-		
Relinqu (eignet	Relinquished by: (signature) Denvis FAAAA	: 3 S 3	Apre		Date/time 3/29 1700	Received by: (signature)				Relin (sign	Relinquished by: (signature)	ed by	:			I on E	late/time		Received by: (signature)
Relinquishe (signature)	Relinquished by (signature)) <u>.</u>			Date/time	Received by: (signature)				Relin (sign	Relinquished by: (signature)	ed by	į			Date	Date/time	e e	Received by: (signature)
Relingished (signature)	Relingished by: (signature)				Date/time	Received for by(signature)		laboratory		Date/time	't ime		* * * * * * * * * * * * * * * * * * *	REMARKS	ဟ				
Prince	ton Test	ting L	.apor	atory	у, РО Вож 3	Princeton Testing Laboratory, PO Box 3108, Princeton,		NJ 08540					<u> </u>						

SOCIET DOSSOCIA DOSSOCIATION SKOCKER DOSSOCIATION DE COCCERCA RECENSOCIATION DOSSOCIATION PARAMETER COCCERCA

											A MAI VE TE			050				7
		:			ŀ				-	-			3) 2) 2)	3				7
Project # (4/04)	Project Name	¥ \$	GE	83					•			səp	oroza	hem.	619			
Samplers Signature	nature De	}	-P Few	1	solids	yldehyd Phenoli	Mercury	Metals Cyanide	o3 se q sy	Organic GC/NS	Sase/Ner Volatil	Pestici Pestici Pestici		Bacteri Misc. C	to \$	REMARKS	co.	a kan panahan
Stat.# Date	ii iii comb	da 10		Station Location						<u> </u>	<u> </u>					PRIORITY	. POLLUTANS	Z.
13 413/85	x	¥	PW8-2,558,9	8,9		_		_		-	-							
14 36 3	× 	*	Dus-2, 5514,17	516,17								<u> </u>						'a Aln' A'
	<u>×</u> 		DWB-2, 55 28,29	62,825						-								
5/\$ 91	×		DWB-2,5540,41	540,41														TANSIN
	× - ×		DWA-2,55 3,4	5 3,4														
18 4/9	×		DWA-Z,	557,8														ADA AĞA
	X			55 28, 29												>		TO POST
l																		
Relinquished (signature) (Relinquished by: (signature) PENNIS FAPLEY	V	Date/time	Received by: (signature)			. Re	Relinquished by: (signature)	hed by		:		D.ite/time	time time	ي ت	Received by: (signature)	:-	
Relinquished by: (signsture)	by: (ď	Date/time	Received by: (signature)			Re (Relinquished by: (signature)	ihed by e)	:			Dite/time	ri me	₽ ∪	Received by: (aignature)	. .	
Relingished by: (signature)	b y:	ă	Date/time	Received for l. by(signature):	1 a boı):	laboratory):	D	Date/time		RE	REMARKS							
Princeton To	Princeton Testing Laboratory, PO Box 3108, Princeton,	tory,	, PO Box 310	18, Princeton,	Z	13 08540									٠			-0-12-619-61

17.2] TASSASSA PASASSA CON PERSONAL MASASSA CONTRACTOR DESASSASSAS PROCESSOS

	-							.					ANA	ANALYSIS	REC	RECUIRED			
Project	•	Pr	Project Nume:	N.	AF/4E 83	83					•		Larsu 	ges.		yem.		272	
Sampler	Samplers Signature	ure	77	{	Denro P Fang	,	y j q ep àqe	ilonada	Hercury	Metals	Vanide Vabesto	Drganic SC/NS	Base/Ner Volatil	organic Pestici	F PCB's	Misc. C	io t Contain	REMARKS	
Stat.#	Date	Time	desoo	Grab	Statio	Station Location												-	
32	4/9/85				DWA-1,55-2,3	5-2,3									-	-		PRIORITY	POLLUTANTS
21	4/9	1			DWA-1,55-10,11	11'01-5													
22	4/9				DWA-1,55	52,42-155-24,25,2													
23	419				pw8-1, 55-3,4	5-3,4									<u> </u>	_			
24	6/4	1			DWB-1, 55-19, 20	02'61-5									<u> </u>	-			
52	6#				PWB-1,55-28,29	5-58,29							-	-	<u> </u>	-			
97	1/1/85				SW-3, 55-2,3	5-2,3								_		-			
1	4/17		7		SW-3, 55-17,18	5-17,18										-			
87	4/17				SW-8, 55-2, 3	5-2,3													
67	4/17		7		SW-8, 55-15,16	91'51-				$\left - \right $				\vdash		\vdash		->	
Relinquish (signsture Dem	5 G	VY:	CLEY	<u> </u>	Date/time 19 400 4/16/65	Received by: (signature)	·		Rel (si	Relinquished by: (signature)	shed t	. y :			Date	Date/time	e e	Received by: (signature)	
Relinquishe (signature)	Relinquished by: (signature)			å	Date/time R	Received by: (signature)			Rel (si	Relinquished by: (signature)	shed k	. . .			Date	Date/time		Received by: (aignature)	
Relingished (signature)	Relinqished by: (signature)			å	Date/time R	Received for laboratory by(signature):	labora :	tory	Dat	Date/time	es es	<u> </u>	REMARKS	S					
												<u> </u>							

	-					<u>`</u>	CHAIN		CUSTODI RECORD	בניטווה		NA	ANALYSTS R	2.18	UJE BED		
Project 1		Prc	ject	Project Name:	AF/6E 83	33				l		Lassu	#3p		pem.		
Samplers	Signature	ure	d	Z	- Pray		y y deplyd 201ids	Phenoli	4ercury	letals Syanide	SC/MS Organic Aspesso	Sase/Ne	Volacil Organic Pestici	F BCB, a	Bacteri Misc. C	30 \$	REMARKS
Stat.#	Date	Time	dmco	Grab	Station	Station Location		 							 		
30 4	417/85		1		SW-4,55-3,4	3,4	-	-			-			-	-		PRIORITY PALLIAM
31 4	4/17				SW-4, SS-14,15,16	14,15,16								-			
32 4	4/17	1	>		12/02-55/4-MS	n'on								<u> </u>			
33 4	410	1			SW-2,55-2,3	.2,3		-					 	-	-		
34 4	4/17		7		SW-2, 55-17,18	-17,18							 		-	_	
T	4/17				TB-14C, 55-3,4	3,4					_]	-		
36	4/1)	1	3		TB-14C,SS-5,6	5,6									_		
j .	4/17		>		10-146,55-7,8	82											>
		•															
Relinquished by: (signature) VEM	shed by: NEWA PFA	DENNIS FARLEY Prand	ene)		Date/time Rec 1450 4/19/85	Received by: (signature)			Rel (ei	Relinquished by: (signature)	d by:			De t	Date/time		Received by: (eignature)
Relinquished by: (signature)	shed by re)			O O	Date/time Rec	Received by: (signature)			Rel (ei	Relinquished (signature)	d by:			[• t	[ate/time		Received by: (eignature)
Relingished (signsture)	ned by:			<u>a</u>	Date/time Rec by(Received for by(signature)	laboratory :	tory	D⊕¢	Date/time		REMARKS	KS	<u> </u>			
Princeton Testing	Teet	-) de la constant de l	1 3	PO Box 3108	3108 Princeton	NI ORSEO	042									

Princeton Testing Laboratory, PO Box 3108, Princeton, NJ 08540

SOSSI EKKKKKI EKKKKIN KALAASI DOSSON BEZZARE HOODDD BESSOON BELAAAN DOSSOON KAAAAA DOS

APPENDIX G

ANALYTICAL DATA

SECOND SAMPLING OF GROUNDWATER VOC ANALYTICAL RESULTS JULY 1985 Appendix G.1

GROUNDWATER SAMPLE NUMBERS

Original Sample No.	Corresponds to Sample No.	Borehole No.
41	62	DWB-1
42	63	DWB-2
43	64	DWB-3
44	65	DWA-1
45	66	DWA-2
50	67	SW-6
51	68	SV-9
52	69	SV-15
53	70	SW-2
54	71	SW-3
55	72	SW-4
56	73	SW-8
57	74	SW-1
58	75	SW-7
59	76	SW-8
61	77	Field Blank

7-18-85 Job #: 39378 Fred C. Hart

	Detectio			
	Limit	#65	#66	#68
			ug/gm	
Chloromethane	4	ND	ND	ND
Bromomethane	20	ND	ND	ND
Dichlorodifluoromethane	10	ND	ND	ND
Vinyl Chloride	4	ND	ND	ND
Chloroethane	• 4	ND	ЙD	ND
Methylene chloride	10	< 10	< 10	< 10
Trichlorofluoromethane	10	ND	< 10	ИD
1,1-dichloroethene	2	ND	ND	ND
1,1-dichloroethane	2	ND	4.3	ND
trans-1,2-dichloroethene	2	ND	ND	ND
Chloroform	4	< 4	< 4	ND
1,2-dichloroethane	2	ND	ND	ND
1,1,1-trichloroethane	4	ND	< 4	ND
Carbon tetrachloride	4	ND	ND	ND
Bromodichloromethane	4	ND	ND	ND
1,2-dichloropropane	2	ND	ND .	ND
trans-1,3-dichloropropene	10	ND	ND	ND
Trichloroethene	4	ND	ND	ND
Dibromochloromethane	4	ND	ND	ND
1,1,2-trichloroethana	10	ND	ND	ND
. cis-1,3-dichloropropene	10	ND	ND	ND
2-chloroethylvinylether	10	ND	ND	ND
3romo form	20	ND	ND	ND
1,1,2,2-tetrachloroethane	20	ND	ND	ND
Tetrachloroethene	4	ND	ND	ND
3enzeae	2	ND	< 2	< 2
Toluene	2	ND	< 2	ND
Chlorobenzene	2	ND	ND	ND
Ethylbenzene	2	ND	< 2	ND
1, J-dichlorobenzene	2	ND	ND	ND
1,2-dichlorobenzene	2	ND	ND	ND
1,4-dichlorobenzene	2	ND	ND	ND

ND=not detected

Jon Gabry, PhD Asst.Organic Lab Manager

princeion festing laboratory

Job #39378 7-18-85 Fred C. Hart

Limit #62 #63 #64 #69 #69 * 69 * 69 * 69 * 69 * 69 * 69 *	•
Chloromethane 2 ND	
Bromomethane 10 ND ND ND ND ND	
Vinyl Chloride 2 ND ND ND ND ND	
Methylene chloride 5 ND ND ND ND ND	
1,1-dichloroethene 1 . ND ND < 1 6.6 7.3	
1,1-dichloroethane 1 ND 2.9 5.7 76 82	
trans-1,2-dichloroethene 1 ND ND ND ND ND	
Chloroform 2 ND ND ND ND ND	
1,2-dichloroethane 1 ND ND 1.4 ND ND	
1,1,1-trichloroethane 2 ND < 2 ND ND ND	
Carbon tetrachloride 2 ND ND < 2 ND ND	
1,2-dichloropropane 1 ND ND ND ND ND	
trans-1,3-dichloropropene 5 ND	
Trichloroethene 2 ND ND ND ND ND	
Dibromochloromethane 2 ND ND ND ND ND	
1,1,2-trichloroethane 5 ND ND ND ND ND	
cis-1,3-dichloropropene 5 ND ND ND ND ND	
Bromoform 10 ND ND ND ND ND	
1,1,2,2-tetrachloroethane 10 ND ND ND ND ND	
Tetrachloroethene 2 ND < 2 < 2 ND ND	
Benzene 1 ND ND ND ND ND	
Toluene 1 2.4 ND 1.3 < 1 < 1	
Chlorobenzene 1 ND ND ND ND ND	
Ethylbenzene 1 ND ND ND ND ND	
1,3-dichlorobenzene 1 ND ND ND ND ND	
1,2-dichlorobenzene 1 ND ND ND ND ND	
1,4-dichiorobenzene 1 ND ND ND ND ND	

ND=not detected

Jon Gabry, PhD Asst. Organic Lab Manager

b-second column confirmation on Porosil-C 100/120 mesh with n-octane column.

princeion lesing leboratory

July 18, 1985 Job #39381 Fred C. Hart

	Detection			ug/g	am .		
	Limit	#67	#70		#72	#73	#76
Chloromethane	2	ND	ND	ND	ND	ND	ND
Bromomethane	10	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND
Chloroethane	2 2	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	< 5	< 5	< 5	< 5	< 5
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND
l, l-dichloroethene	1	14	· ND	ND	ND	1.2	1.4
1,1-dichloroethane	1	85	ND	5.8	ND	28	28
trans-1,2-dichloroethene	1	11	ND	6	ND	ND	ND
Chloroform	2	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	1	ND	ND	1.3	ND	2	ND
1,1,1-trichloroethane	2	74	ND	5.9	ND	ND	ND
Carbon tetrachloride	2	ND	ND	ND	ND	ND	ND
Bromodichloromethane	2	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	1	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	5	ND	ND	ND	ND	ND	ND
Trichloroethene	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	2	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	5	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	5	ND	ND	ND	ND	ND	ND
2-chloroethylvinylether	5	ND	ND	ND	ND	ND	ND
Bromoform	10	ND	ND	ND	ND	ND	ND`
1,1,2,2-tetrachloroethane	10	ND	ND	ND	ND	ND	ND
Tetrachloroethene	2	65	ND	34	ND	ND	ND
Benzene	1	ND	< 1	< 1	< 1	< 1	< 1
Toluene	1 <	_	< 1	< 1	ND	ND	ND
Chlorobenzene	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	1	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	1	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzenc	1	ND	ND	ND	ND	חא	ממ
1,4-dichlorobenzene	1	ND	ND	ND	ND	ND	ND

ND=not detected

Jon Gabry, PhD Asst.Organic Lab Manager

na

> Job # 39381 7-18-85 Fred C. Hart

			T-i-	ι	ıg/gm	
	Detection Limit	#77	Trip Blank	#71 ^b	#73 ^b	#67 ^b
	Limic	₩ / /	DIGIIA			
Chloromethane	2	ND	ND	ND	ND	ND
Bromomethane	10	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND
Chloroethane	2	ND	ND	ND	ND	ND
Methylene chloride	5 <	5	< 5	ND	< 5	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND
1.1-dichloroethene	ì	· ND	ND	ND	1.4	22
1.1-dichloroethane	1	ND	ND	3.2	22	97
trans-1,2-dichloroethene	ī	ND	ND	ND	ND	21
Chloroform	2 <	2	< 2	< 2	ND	3
1,2-dichloroethane	ī	ND	ND	1.5	< 1	6.1
1,1,1-trichloroethane	2	ND	ND	ND	ND	69
Carbon tetrachloride	2 2 2	ND	ND	ND	ND	ND
Bromodichloromethane	2	ND	ND	ND	ND	ND
	ī	ND	ND	ND	ND	ND
1,2-dichloropropane	5	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	2	ND	ND	4.5	ND	ND
Trichloroethene	2	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND
1,1,2-trichloroethane	5	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	5	ND	ND	ND	ND	ND
2-chloroethylvinylether	10	ND	ND	ND	ND	ND
Bromoform	10	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	2	ND	ND	19	ND	140
Tetrachloroethene		< 1	ND	ND	ND	< 1
Benzene	i	1.6	< 1	ND	ND	< 1
Toluene	1	ND	ND	ND	ND	ND
Chlorobenzene	1	ND	ND	ND	ND	ND
Echylbenzene	1	ND	ND	ND	ND	ND
1,3-dichlorobenzene		ND	ND	ND	ND	ND
1,2-dichlorobenzene	1	ND	ND	ND	ИD	ND
1,4-dichlorobenzene	1	ND	.,,			- · -

ND=not detected

Jon Gabry, PhD Asst.Organic Lab Manager

b-Second column confirmation on Porosil-C 100/120 mesh with n-octane column.

Job #39381 7-18-85 Fred C. Hart

	Detectio	n	ug/		_
	Limit	#74	#75	#74 ^b	#75 ^b
Chloromethane	20	ND	ND	ND	ND
Bromomethane	100	ND	ND	ND	ND
Dichlorodifluoromethane	50	ND	ND	ND	ND
Vinyl Chloride	20	ND	ND	ND	ND
Chloroethane	20	ND	ND	ND	ND
Methylene chloride	50	< 50	< 50	< 50	< 50
Trichlorofluoromethane	50	ND	ND	ND	ND
1,1-dichloroethene	10	. 35	38	75	90
l, l-dichloroethane	10	300	300	200 🕝	240
trans-1,2-dichloroethene	10	35	ND	11	14
Chloroform	20	< 20	ND	< 20	< 20
1,2-dichloroethane	10	ND	32	< 10	< 10
1,1,1-trichloroethane	20	28	ND	120	38
Carbon tetrachloride	20	ND	ND	ND	ND
Bromodichloromethane	20	ND	ND	ND	ND
1,2-dichloropropane	10	ND	ND	ND	ND
trans-1,3-dichloropropene	50	ND	ND	ND	ND
Trichloroethene	20	29	< 20	ND	ND
Dibromochloromethane	20	ND	ND	ND	ND
1,1,2-trichloroethane	50	ND	ND	ND	ND
cis-1,3-dichloropropene	50	ND	ND	ND	ND
2-chloroethylvinylether	50	ND	ND	ND	ND
Bromoform	100	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	100	ND	ND	ND	ND
Tetrachloroethene	20	< 20	ND	< 20	ND
Benzene	10	< 10	< 10	ND	< 10
Toluene	10	< 10	ND	ND	ND
Chlorobenzene	10	ND	ND	ND	ND
Ethylbenzene	10	ND	ND	ND	ND
1,3-dichlorobenzene	10	ND	ND	ND	ND
1,2-dichlorobenzene	10	ND	ND	ND	ND
1,4-dichlorobenzene	10	ND	ND	ND	ИD

ND=not detected

b-Second column confirmation on Porosil-C 100/120 mesh with n-octane column

Jon Gabry, PhD Asst.Organic Lab Manager SECOND COLUMN CONFIRMATION

ANALYTICAL RESULTS FOR FIVE

SUBSURFACE SOIL SAMPLES

Appendix G.1

RECEIVED JUL - 1 1985

Princeton Service Center U.S. Route 1 (609) 452-9060 Tlx-84-3942

Fred C. Hart 530 Fifth Ave New York NY 10036

ATT: Jim Mack	Detection Limit	#1	#13	ug/gm #25	#28	#31	
	LIMIC	# ⊥	#T2	#25	#20	# 2 T	
Chloromethane	.02	ND	ND	ND	ND	ND	
Bromomethane	.10	ND	ND	ND	ND	ND	
Dichlorodifluoromethane	.05	ND	ND	ND	ND	ND	
Vinyl Chloride	.02	ND	ND	ND	ND	ND	
Chloroethane	.02	ND	ND	ND	ND	ND	
Methylene chloride	.05	.27	. 29	.28	.11	.21	
Trichlorofluoromethane							
1,1-dichloroethene	.01	ND	ND	ND	ND	ND	
1,1-dichloroethane	.01 .	ND	ND	ND	` N.D	ND	
trans-1,2-dichloroethene	.01	ND	ND	ND	ND	ND	
Chloroform	.02	.05	ND	ND	ND	ND	
1,2-dichloroethane	.01	ND	ND	ND	ND	ND	
1,1,1-trichloroethane	.02	ND	ND	ND	ND	ND	
Carbon tetraculoride	.02	ND	ND	ND	ND	ND	
Bromodichloromethane	.02	ND	ND	ND	ND	ND	
1,2-dichloropropane	.01	ND	ND	ND	ND	ND	
trans-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	
Trichloroethene	.02	.03	ND	ND	ND	ND	ND
Dibromochloromethane	.02	ND	ND	ND	ND	ND	
1,1,2-trichloroethane	.05	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	
2-chloroethylvinylether	.05	ИD	ND	ND	ND	ND	
3romo form '	.10	ND	ND	ND	ND	ND	
1,1,2,2-tetrachloroethane	.10	ND	ND	` ND	ND	ND	
Tetrachloroethene	.02	.07	ND	.07	ND	ND	
Benzene	.01	.03	.02	.01	.01	.01	
Toluene	.01	ND	ND	ND	ND	ND	
Chlorobenzene	.01	ND	ND	ND	ND	ND	
Ethylbenzene	.01	ND	ND	ND	ND	ND	
l,3-dichlorobenzene	.01	ND	ND	ND	ND	ND	
1,2-dichlorubenzene	.01	ND	ND	ND	ND	ND	
i,4-dichiorobenzene	. 31.	310	ND.	N.D	ЯD	ジュン	

ND=not detected

4

Jon Gabry, PhD Asst.Organic Lab Manager

ANALYTICAL RESULTS RE-ANALYSIS OF ANTIMONY AND CHROMIUM Appendix G.1

FRED C. H.	SIT	JOB #	
0.6555		DATE	
<u> </u>		AUTH	DECRUIS
		COURS AT	RECEIVED JUL 1 8 1985
	RE DAI DL	SAMPLE	and Carmina
	NO.44	ANALY TICAL RE	SULTS & CHROMIUM
		Sb'	<u> </u>
38180	#52 (mg/L) -	1.3
37893 (mg/k	7) #15	21.0	
	14	5.2	4
	15	2.4	
	16	2.3	
	1 17	10.4	
	18	2.8	
38143 (mg/kg	1 44	1.5	337
<u> </u>			
38041 (very kg) 120	1,5	9.5
	. 21	61.0	5.1
	22	210	1 2.4
	23	410	1 12-1
	24	03	102
	25	213	9.0
	26	210	12.5
	27	24	20.0
	2.4	1.9	. ! 13 !
	27	C 35	- 1 94

•					
GENY					
WORESS		DATE	•		
TTYSTATE	ZIP			·	
7.m	•	guon	D AT		
	⊕ .	SAMPI	2		
	KEANALY	SAMPI SIS OF ANT ANALY TIC	THE RESUL	TS HROMIUNY	
		80'		cr	
(CO)T)					
	# 30	1.2		2 15	
38641 (mg/kg)	31	Zi.c		2.45	
	92	<u> </u>		12. Z 5. 6	
		2.2			
	33			20.2	
		6.4		34.5	
	35	4.5		4.5	
	36	2.4		25.0	
	31	4.9		18.4	
·					
		N.	Zn	Pb	;
5041 (my/ig)	#20	76.8	122.	17.9	
·	122	12.9	29.2	95	
	21	19.2	21.9	5 c	
	24	22.5	51:	7.2	
	30	10.3	33.3	22 }	
	33	15.3	3 J. Z	12 4	
33142 (my/y)	! ++7	199	1-5	11262	
	i	!	•		

G.1 PTL RESULTS - LAB QA/QC RESULTS

princeion lesing laboratory

Job # 37738 5-16-85

	MDL	#1	‡ 2	#3	#4	# 5
			บ	g/kg		
Chloromethane	20	ND	ND	ND	ND	ND
Bromomethane	100	ND	ND	ND	ND	ND
Dichlorodifluoromethane	50	ND	ND	ND	ND	ND
Vinyl Chloride	20	4400	230	110	270	2600
Chloroethane	20	ND	ND	ND	ND	ND
Methylene chloride	50	4100 '	4800	570	3600	3700
Trichlorofluoromethane	50	2100	1000	270	880	1400
l, l-dichloroethene	10	ND	ND	ND	ND	ND
l,l-dichloroethane	10	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	10	ND	ND	ND	ND	ND
Chloroform	20	340	200	140	ND	ND
1,2-dichloroethane	10	ND	ND	ND	ND	ND
1,1,1-trichloroethane	20	ND	. ND	ND	ND	ND
Carbon tetrachloride	20	ND	ND	ND	ND	ND
Bromodichloromethane	20	ND	ND	ND	ND	ND
1,2-dichloropropane	10	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	50	ND	ND	ND	ND	ND
Trichloroethene	20	50	66	ND	54	ND
Dibromochloromethane	20	ND	ND	ND	ND	ND
1,1,2-trichloroethane	50	ИD	ND	ND	ИD	ND
cis-1,3-dichloropropene	50	ND	ND	ND	ND	ND
2-chloroethylvinylether	50	ND	ND	ND	ND	ND
Bromoform	100	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	100	ND	ND	ND	ND	ND
Tetrachloroethene	20	1200	240	ND	120	72
Benzene	10	330	360	200	510	590
Toluene	10	750	1200	260	1700	870
Chlorobenzene	10	ND	ND	ND	ND	ND
Ethylbenzene	10	15	380	ND	150	10
1,3-dichlorobenzene	10	ND	ND	ND	ND	ND
1,2-dichlorobenzene	10	ND	ND	ND	ND	ND
1,4-dichlorobenzene	10	460	890	ND	1200	480
Unknowns (number of)		(4)	(4)	(2)	(4)	(9)
ND=not detected						

Gene Dennsion, PhD,CIH
Technical Director

GD:mm

noisanne grikssi ynoissoch

DATE: June 14, 1935

10: r

Fred C. Hart Associates

530 Fifth Ave.

New York, NY 10036

Att: Jim weck

JOB NO. 37738

AUTHORIZATION:

SAMPLE: Soil - 12

REPORT OF ANALYSIS

PRIORITY POLLUTANTS

ing/kg

	#7	#8	#9	#10	#11	#12
Beryllium	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
Cadmium	1.3	< .5	1.2	< .5	.65	.55
Chromium	60.5	15.8	44.5	16.8	29.0	26.2
Copper	46.0	5.0	24.0	1.7	7.1	3.9
Nickel	232	29.7	161	15.8	66.5	49.6
Lead	275	26.3	249	11.1	199	201
Zinc	232	29.7	161	15.7	66.5	49.6
Arsenic	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5
Silver	2.1	.55	1.9	< .5	.70	.50
Antimony	193	92.5	163	71.0	150	155
Selenium	< .25	< .25	.48	< .25	< .25	< .25
Thallium	⟨ 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
Mercury	.12	<.05	.05	< .05	< .05	< .05
Cyanide	< 0.5	< 0.5	< 0.5	3.5	2.1	₹ 0.5
Phenols	14	< 5.5	₹ 5.5	< 5.5	< 5.5	< 5.5

Bina A. Alinea, anacer

Water, Waste Water & Microbiolog

pullinexaltonin (kartiling) holorometrony P.O. Box 3108, Princeton, N.J. 05540

Fin clin Service Center (609) 452 9050

QUALITY CONTROL REPORT

JOB NO. 37738
ANALYST: JG

DATE: 5-16-85 MATRIX: PE/MW

IIX: PEZMW

Duplicate Analysis METHOD:

COMPOUND		CONCENTRATION (ug/1)	TION (ug/1)	Relative Percent Difference
Sample ID	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
9#	Vinyl Chloride	1000	570	55
	Methylene chloride	720	480	40
	Trichlorofluoromethane	1200	62	180
	Benzene	250	094	59
	Toluene	590	584	1.0
	Ethylbenzene	58	55	5.3
	1,4-dichlorobenzene	230	250	8.3
	unknowns (rumber of)	(5)	(5)	NA
1	:			

OOL X ['(a '(a)] . OJH.

POLGUI KKKOSON ZALGKAM PRODEEN PROGERN PROGEDE KASASAN KOSOSAN PROGESKY PROGESKY PROGESKY PROGESKY PROGESKY

P.O. Box 3108, Princeton, N.J. 08540

U.S. Route I Pin.eton Service Center (60%) 452 9050

CONTROL REPORT QUALITY

Matrix Spike Analysis

37738 JG ANALYST: JOB NO.

5-16-85 MATRIX: DATE:

EPA 601 PE/MW WETHOD:

<u>SCOOL DOCUMENT DEVELORS FOR CONTROL FOR FOR FOR CONTROL FOR CONTROL FOR CONTROL FOR CONTROL FOR FOR FOR FOR FOR</u>

Princeton Service Center U.S. Route 1 (809) 452-9050 Tix-84-3942

princeion lesting leboratory

Job #37893 5-14-85

	Decerti	J14				
	Limit	#13	#14	#15	#16	#17
				ug/kg		
	•					
Chimmethane	20	ND	ND	ND	ND	ND
Branchethane	100	ND	ND	ND	ND	ND
Dichierodiffuonemethane	50	ND	ND	ND	ND	ND
Virul Chioride	20	2800	570	2500	650	550
Chloroethane	20	. ND	ND	ND	ND	ND
Machylene chloride	50	440	ND	360	440	610
Irichlorofluoromethane	50	ND	300	530	190	360
1,1-dichiorustheme	10	ND	ND	ND	ND	ND
1;1-dichlorosthane	10	ND	ND	ND	ND	ND
trans-1,2-dichieroethene	10	950	ND	1400	200	ND
Chieroform	20	ND	ND	ND	ND	ND
1,2-dichloro-teame	10	ND	ND	ND	ND	ND
1,1,1-t. Ecoloracthane	20	ND	ND	ND	ND	ND
Carbon Letrochloride	20	ДИ	ИD	ИД	ND	ND
Bromedichloromethane	20	ND	ND	ND	ND	ND
1,2-dichloropyopane	10	ND	ND	ND	ND	ND
trans-1,3-dichleropropene	50	ND	ND	ND	ND	ND
Trichloroethene	20	ND	ND	ND	ND	620
Pibromochloromethan-	20	ND	ND	ND	ND	ND
1,1,2-trichloroethane	50	ND	ND	ND	ND	ND
cis-1,3-dichloropropens	50	ND	ND	ND	ND	ND
2-chloroethylvinylrther	50	ND	ND	ND	ND	ND
eronolors.	100	ND	ND	ND	ND	ND
1,1,2,2-terrachloroethane	100	ND	ND	ND	ND	ND
Tetrachloroothens	20	ND	ND	ND	ND	530
Bervaene	10	490	210	630	990	220
Toluene	10	130	290	170	190	650
Chlorobenzene	10	ND	DN	ND	ND	ND
Etnylbenzene	10	ND	ND	ND	ND	30
1,3-dichlorobenzene	10	ND	ND	ND	ND	ND
1,2-dichlorobenzene	10	ND	ND	ND	ND	ND
1,4-dichlorobenzene	10	ND	160	ND	180	750
Unknowns (number of)		(10)	(9)	(9)	(8)	(11)
ND=ant detected		(20)	\ - ,	() ,	(0)	(1 1)

Detection

Gene Dennison, PhD, CIH Technical Director DOOD OF THE CONTRACTOR WAS SOND OF THE PROPERTY OF THE PROPERT

APPENDIX I

BIOGRAPHIES OF KEY PERSONNEL

RECEIVED MAY 2 3 1985

princeion gaing vroiorodol

Job #37893 5-14-85

U.S. Route 1 (609) 452-9050 Tix-84-3942

#18		#19
-	ug/kg	

Uniorumethine	ND	ND
Bromomethane	ND	ND
Dichlorodifluoromethane	ND	ND
Vinyl Unlocide	770	380
Chloroethane	ND	ND
Methylene chloride	96	300
Trichlorofluoromethane	130	100
1, !-dichloroethene	ND	ND
1,1-dichleroethane	מא	ND
trans-1,2-dichloroethene	ND	ND
Chloroform	ND	ND
1,2-dichloroethane	ND	ND
1.1.1-trienloroethane	ND	ND
Carbon tetrachloride	ND	ND
eromodichloromethane	ND	ND
1,2-d%chlosopropane	ND	ND
trans-1.3-dichloropropene	ND	ND
Trichloro-thene	ND	ND
Dibromochloromethane	ND	ND
1,1,2-trichloroethane	ND	ND
cis-1,3-dichloropropene	ND	ИD
2-chloroethylvinylether	ND	ND
Bromoform	ND	ND
1,1,2,2-tetrachloroethane	ND	ND
Tetraunioroethene	ND	ND
Berizend	140	160
Tolucine	62	230
Chlorobenzene	ND	ND
Ethylbenzene	ND	ND
1,3-dichlorobenzene	ND	ND
1,2-dichlorobenzene	ND	ND
1,4-dichlorobenzene Unknowns (number of)	ND	ND
· · · · · · · · · · · · · · · · · · ·	(10)	(8)
MD=not detected		

Gene Dennison, PhD, CIH Technical Director

princeion galicei laboroiory

RECEIVED MAY 20 1985

DATE: 5-14-85

Fred C. Hart Associates 530 Fifth Ave

New York NY 10036

ATT: Jim Meck

TO: |

JOB NO. 37893

AUTHORIZATION:

verbal

SAMPLE: soil

REPORT OF ANALYSIS

	ACID	EXTRACTS	<u> </u>		
	Detection		Station	.S .	
	Limit	13	14	15	16
		п	s/gram		
2-Chlorophenol	1 .	ND	ND	ND	ND
2,4-Dichlorophenol	ī	ND	ND	ND	ND
2,4-Dimethylphenol	ī	ND	ND	ND	ND
4,6-Dinitro-o-cresol	10	ND	ND	ND	ND
2,4-Dinitrophenol	10	ND	ND	ND	ND
2-Nitrophenol	i	ND	ND	ND	ND
4-Nitrophenol	ī	ND	ND	ND	ND
p-chloro-m-cresol	ī	ND	ND	ND	ND
Pentachlorophenol	ī	ND	ND	ND	ND
Phenol	î	ND	ND	ИD	ND
2,4,6-Trichlorophenol	ī	ND	ND	ND	ND

Gene Dennison, PhD, CIH Technical Director

prinction feating laboratory

DATE: May 16, 1985

: وي

JOB NO. 37893

AUTHORIZATION: verbal

.............

SAMPLE: soil

TO: Fred C. Hart Associates
530 Fifth Ave

New York NY 10036

ATT: Jim Meck

REPORT OF ANALYSIS

	ACID EXTRACT	<u>rs</u>	
	17	18	19
	m:	icrograms/g	ram
2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	ND	ND	ND
	ND	ND	ND
p-chloro-m-cresol Pentachlorophenol Phenol 2,4,6-Trichlorophenol	nd nd nd	ND ND ND ND	ND ND ND ND

Gene Dennison, PhD, CIH Technical Director prinction laboratory

--- MAY TH 1983

DATE: 5-14-85

TO: Fred C. Hart Associates

530 Fifth Ave

New York NY 10036

ATT: Jim Meck

JOB NO. 37893

AUTHORIZATION: verbal

SAMPLE: soil

REPORT OF ANALYSIS

BASE/NEUTRAL EXTRACTS						
	Detection		Statio	ns		
	Limit	13	14	15	16	
		mi	crograms	/gram		
Acenaphthene	1	ND	ND '	ND	ND	
Acenaphthylene	1	ND	ND	ND	ND	
Anthracene	1	ND	ND	ND	ND	
Benzidine	10	ND	ND	ND	ND	
Benzo(a) anthracene	1	ND	ND	ND	ND	
Benzo(a)pyrene	1	ND	ND	ND	ND	
3,4-Benzofluoranthene	1	ND	ND	ND	ND	
Benzo(ghi)perylene	3	ND	ND	ND	ND	
Benzo(k) fluoranthene	1	ND	ND	ND	ND	
bis (2-chloroethoxy) methane	1	ND	ND	ND	ND	
bis(2-chloroethyl)ether	1	ND	ND	ND	ND	
bis(2-chloroisopropyl)ether	1	ND	ND	ND	ND	
bis(2-ethylhexyl)phthalate	1	ND	ND	ND	ND	
4-bromophenyl phenyl ether	1	ND	ND	ND	ND	
Butylbenzyl phthalate	1	ND	ND	ND	ND	
2-Chloronaphthalene	1	ND	ND	ND	ND	
4-Chlorophenyl phenyl ether	1	ND	ND	ND	ND	
Chrysene	1	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	3	ND	ND	ND	ND	
1,2-Dichlorobenzene	1	ND	ND	ND	ND	
1,3-Dichlorobenzene	1	ND	ND	ND	ND	
1,4-Dichlorobenzene	1	ND	ND	ND	ND	
3,3'-Dichlorobenzidine	1	ND	ND	ND	ND	
Diethyl phthalate	1	ND	ND	ND	ND	
Dimethyl phthalate	1	ND	ND	ND	ND	
Di-n-butyl phthalate	1	ND	ND	ND	ND	
2,4-Dinitrotoluene	1	ND	ND	ND	ND	
2,6-Dinitrotoluene	1	ND	ND	ND	ND	
Di-n-octyl phthalate	1	ND	ND	ND	ND	
l,2-diphenylhydrazine						
(as azobenzene)	1	ND	ND	ND	ND	
Fluoranthene	1	ND	ND	ND	ND	

Gene Dennison, PhD, CIH Technical Director

MK:na

5-14-85 DATE:

10: r Fred C. Hart Associates

37893 JOB NO.

530 Fifth Ave

New York NY 10036

AUTHORIZATION: verbal

ATT: Jim Meck

soil SAMPLE:

REPORT OF ANALYSIS

	BASE/NEUTRAL	EXTRACTS	(con't)	micr	ograms/gram
	Detection		Stations	•	
	Limit	13	14	15	16
Fiuorene	1	ND	ND	ND	ND
Hexachlorobenzene	ī	ND	ND	ND	ND
Hexchlorobutadiene	ī	ND	ND	ND	ND
Hexachlorocyclopentadiene	ī	ND	ND	ND	ND
Hexachloroethane	1	ND	ND	ND	ND
Ideno(1,2,3-cd)pyrene	3	ND	ND	ND	ND
Isophorone	i	ND	ND	ND	ND
Naphthalene	$\bar{1}$	ND	ND	ND	ND
Nitrobenzene	ī	ND	ND	ND	ND
N-nitrosodimethylamine	ī	ND	ND	ND	ND
N-nitrosodi-n-propylamine	$\bar{1}$	ND	ND	ND	ND
N-nitrosodiphenylamine	ī	ND	ND	ND	ND
Phenanthrene	ī	ND	ND	ND	ND
Pyrene	ī	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ī	ND	ND	ND	ND

Gene Dennison, PhD, CIH Technical Director

MK:na

prinction laborolory

RECEIVED MAY 20 1985

DATE: 5-17-85

TO: | Fred C. Hart Associates

530 Fifth Ave

New York NY 10036

ATT: Jim Meck

JOB NO.

37893

AUTHORIZATION: verbal

SAMPLE: Soil

REPORT OF ANALYSIS

BASE/NEUTRAL EXTRACTS					
		Sta	tio		
	17		18	19	
Acenaphthene	9.8		ND	ND	
Acenaphthylene	ND		ND	ND	
Anthracene/phenanthrene	530		ND	ND	
Benzidine	3000		ND	ND	
Benzo(a)anthracene	420		ND	ND	
Benzo(a)pyrene	880		ND	ND	
3,4-Benzofluoranthene/benzo(k)fluoranthene	350		ND	ND	
Benzo(ghi)perylene	140		ND	ND	
Benzo(k)fluoranthene	see	3,4	bena	zofluoranthene	
bis(2-chloroethoxy)methane	ND		ND	ND	
bis(2-chloroethyl)ether	ИD		ND	ND	
bis(2-chloroisopropyl)ether	ND		ND	ND	
bis(2-ethylhexyl)phthalate	ND		ND	ND	
4-bromophenyl phenyl ether	ND		ND	ND	
Butylbenzyl phthalate	ND		ND	ND	
2-Chloronaphthalene	ND		ND	ND	
4-Chlorophenyl phenyl ether	ND		ND	ND	
Chrysene	500		ND	ND	
Dibenzo(a,h)anthracene	74		ND	ND	
1,2-Dichlorobenzene	ND		ND	ND	
1,3-Dichlorobenzene	ND		ND	ND	
1,4-Dichlorobenzene	ND		ND	ND	
3,3'-Dichlorobenzidine	ND		ND	ND	
Diethyl phthalate	ND		ND	ND	
Dimethyl phthalate	ND		ND	ND	
Di-n-butyl phthalate	ND		ND	ND	
2,4-Dinitrotoluene	ND		ND	ND	
2,6-Dinitrotoluene	ND		ND	ND	
Di-n-octyl phthalate	ND		ND	ND	
1,2-diphenylhydrazine					
(as azobenzene)	ND		ND	ND	
Fluoranthene	690		ND	ND	

- 385

DATE:

May 16, 1985

TO:

JOB NO. 37893

Fred C. Hart Associates

AUTHORIZATION:

verbal

530 Fifth Ave New York NY 10036

SAMPLE: soil

ATT: Jim Meck

REPORT OF ANALYSIS

	BASE/NEUTRAL EXTRA	ACTS (con'i)	
	17	18	19
	n	micrograms/g	ram
Fiuorene	ND	ND	ND
Hexachlorobenzene	690	ND	ND
Hexchlorobutadiene	, ND	ND	ND
Hexachlorocyclopentadiene	ND	ND	ND
Hexachloroethane	ND	ND	ND
Ideno(1,2,3-cd)pyrene	160	ND	ND
Isophorone	ND	ND	ND
Naphthalene	ND	ND	ND
Nitrobenzene	ND	ND	ND
N-nitrosodimethylamine	ND	ND	ND
N-nitrosodi-n-propylamine	ND	ND	ND
N-nitrosodiphenylamine	ND	ND	ND
Phenanthrene	see a	anthracene	
Pyrene	570	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND

Gene Dennison, PhD, CIH Technical Director

MK:na

echegien

RECEIVED MAY 20 1985

DATE:

5-14-85

Fred C. Hart Associates 530 Fifth Ave

JOB NO.

37893

AUTHORIZATION: verbal

New York NY 10036

SAMPLE: soil

ATT: Jim Meck

TO: |

REPORT OF ANALYSIS

	PESTICIDES AND PCB'S							
			G	104	AF/GE	83		
	Detection			Sta	tions			
	Limit	13	14	15	16	17	18	19
Aldrin	1	ND ·	ND	ND	ND	ND	ND	ND
BHC, Alpha	î	ND	ND	ND	ND	ND	ND	ND
BHC, Beta	1	ND	ND	ND	ND	ND	ND	ND
BHC, Gamma	i	ND	ND	ND	ND	ND	ND	ND
BHC, Delta	i	ND	ND	ND	ND	ND	ND	ND
Chlordane	i	ND	ND	ND	ND	ND	ND	ND
4,4'DDT	i	ND	ND	ND	ND	ND	ND	ND
4,4'DDE	i	ND	ND	ND	ND	ND	ND	ND
4,4'DDD	1	ND	ND	ND	ND	ND	ND	ND
Dieldrin	i	ИD	ND	ND	ND	ND	ND	ND
Endosulfan-alpha	i	ND	ND	ND	ND	ND	ND	ND
Endosulfan-beta	i	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	i	ND	ND	ND	ND	ND	ND	ND
Endrin	ī	ND	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	ī	ND	ND	ND	ND	ND	ND	ND
Heptachlor	ī	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	î	ND	ND	ND	ND	ND	ND	ND
PCB-1242	2	ND	ND	ND	ND	ND	ND	ND
PCB-1254	2	ND	ND	ND	ND	ND	ND	ND
PCB-1221	2	ND	ND	ND	ND	ND	ND	ND
PCB-1232	2	ND	ND	ND	ND	ND	ND	ND
PCB-1248	2	ND	ND	ND	ND	ND	ND	ND
PCB-1260	2 2 2 2	ND	ND	ND	ND	ND	ND	ND
PCB-1016	$\overline{2}$	ND	ND	ND	ND	ND	ND	ND
Toxaphene	2	ND	ND	ND	ND	ND	ND	ND
	_							

Gene Dennison, PhD, CIH Technical Director

RECEIVED MAY 20 1985

DATE: 5-13-85

TO: Fred C. Hart Associates

530 Fifth Ave

New York NY 10036

ATT: Jim Meck

JOB NO.

37893

AUTHORIZATION: verbal

SAMPLE:

soils

REPORT OF ANALYSIS

G 104 AF/GE 83 Station

	13	14	15	16	17	18
		mg	/kg dry	basis		
Beryllium Cadmium Chromium Copper Nickel Lead Zinc Arsenic Silver Antimony Selenium	<pre>< 3.0 < 2.0 5.0 6.0 10 17 16 7.8 < 1.0 85.0 < .25</pre>	<pre> < 3.0 2.0 28 18 34 121 37 < 2.0 8.0 295 < .25</pre>	<pre>< 3.0 < 2.0 10 8.0 14 20 18 < 2.0 < 1.0 170 < .25</pre>	<pre>< 3.0 < 2.0 4.0 5.0 10 10 2 < 2.0 < 1.0 80.0 < .25</pre>	<pre> < 3.0 5.0 23 42 32 137 49 < 2.0 5.0 440 < .25</pre>	<pre>< 3.0 < 2.0 4.0 3.0 9.0 10 2.0 < 1.0 65.0 < .25</pre>
Thallium Mercury	< 3.0 < .050	< 3.0	< 3.0	< 3.0 < .050	< 3.0	< 3.0
Cyanide Phenols	< 5.0 < 6.0	< 5.0 < 6.0	< 5.0 < 6.0	< 5.0 < 6.0	< 5.0 8.0	< 5.0 < 6.0

*Results of sample #19 to follow

Water, waste water & microbiology

EAA:na

prince corrective 1000 **Jeaging** aporaiory

DATE: June 6, 1985

JOB NO. 38429

AUTHORIZATION: verbal

SAMPLE: soil - 1

Fred C. Hart Associates

530 Fifth Ave New York NY 10036

Att: Jim Meck

TO:

REPORT OF ANALYSIS

PRIORITY POLLUTANTS

Sample #19

mg/kg Dry Wt.

Beryllium	< 1.0
Cadmium	< 1.0
Chromium	< 1.0
Copper	
Nickel	< 1.0
Lead	< 1.0
	< 1.0
Zinc	6.0
Arsenic	<0.01
Silver	
Antimony	< 1.0
Selenium	2.0
	< .50
Thallium	1.0
Mercury	< .05
Cyanide	
Phenols	< 0.5
LHEHOTS	< 0.1

Edna A. Minea, Manager

Water, Waste Water & Microbiology

reserved execution messesses bosones engineers from

U.S. Route I. Proceton Servace Center 160% 452 9050

CONTROL REPORT QUALITY

Duplicate Analysis

5-14-85 PE/MW 37893 ANALYST. MATRIX: JOB NO. DATE:

EPA 601 METHOD:

P.O. Box 3108, Princeton, N.J. 68540

COMPOUND				
		CONCENTRY	CONCENTRATION (ug/1)	Difference
Sample 1D	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
#14	Vinyl Chloride	570	320	99
	Trichlorofluoromethane	300	190	45
	Benzene	210	211	1.0
	Toluene	290	250	14
	1,4-dichlorobenzene	160	300	09
: !				

A CONTROLL DESCRIPSION PROPERTY RECORDS TRACECES. TRACES AND TOTAL PROPERTY PROCESS TOTAL BESTA

BECENED!

	ž	
intoffer anfined	Per Mines	lelerence Per W
		=

P.O. Box 3108, Princeton, N.J. 08540

U.S. Rimle I meting Service Center (AUY) 452 WISO

CONTROL REPORT QUALITY

ANAL YST: DATE: Matrix Spike Analysis

37893	513
JOB NO.	

5-14-85 PE/MW

MATRIX:

EPA 601 METHOD:

COMPOUND					×
Sample 1D	COMPOUND NAME	Sample Result (SR)	Spiked Sample Result (SSR)	Spike Added (SA)	Recovery*
419	Trichloroethylene	QN	96	111	9.6
		•			

Princeton Service Center U.S. Route 1 (609) 452-9050 Tlx-84-3942

> Job #38041 6-17-85

	#20	#21	#22	#23	#24	#25
			ug/g	m		
Chloromethane	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.94	1.65	0.22	1.08	0.35	2.11
Chloroethane	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	0.75	0.11	<.05	ND	0.63
Trichlorofluoromethane	<.05	0.15	0.05	<.05	<.05	0.13
l, l-dichloroethene	ND .	ND	ND	ND	ND	ND
l,l-dichloroethane	0.19	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND
l,2-dichloroethane	ND	ND	ND	ND	ND	ND
l,l,l-trichloroethane	0.09	ND	ND	ND	ND	ND
Carbon tetrachloride	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND	ND	ND
Trichloroethene	0.06	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ИD
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.20	0.08	0.10	ND	ND	0.07
Benzene	0.16	0.28	0.13	0.53	0.19	0.27
Toluene	ND	0.13	0.10	0.04	0.02	0.11
Chlorobenzene	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND
1 3-dichlorobenzene	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	0.27	ND	ND	ND	ND	ND
Xylenes	0.07	0.05	0.07	ND	ND	0.06
ND=not detected			J , J ,	.,,,,	11 <i>D</i>	0.00

laboraiory Sulice Sunceich

DATE: 6-17-85

JOB NO.

38041

Fred C. Hart Associates

530 Fifth Ave

10: ┌

New York NY 10036

AUTHORIZATION:

verbal

SAMPLE:

water - 18

REPORT OF ANALYSIS

	A	CID EXT	RACTS	-			<u>. </u>
	Detection						
	Limit	#20	#21	#22	#23	#24	#25
			mic	rograms	/gram		
2-Chlorophenol	1	ŊD	ND	ND	ND	ND	ND
2,4-Dichlorophenol	ī	ИD	ND	ND	ND	ND	ND
2,4-Dimethylphenol	ĩ	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	10	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	10	ND	ND	ND	ND	ND	ND
2-Nitrophenol	i	NL	ND	ND	ND	ND	ND
4-Nitrophenol	ī	ND	IID	ND	ND	ND	ND
p-chloro-m-cresol	ĩ	ND	ND	ND	ND	ND	ND
Pentachlorophenol	ī	ND	ND	ND	ND	ND	ND
Phenol	ī	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	ī	ND	ND	ND	ND	ND	ND

lesing loboraiory

DATE: 6-17-85

TO: |

JOB NO.

38041

Fred C. Hart Associates

530 Fifth Ave

AUTHORIZATION:

verbal

New York NY 10036

SAMPLE:

water - 18

REPORT OF ANALYSIS

	BASE	/NEUTRA	L EXTRA	CTS				
	Detection		п	icrogra	ms/gram	ı		
	Limit	#20	#21	#22	#23	#24	#25	
Acenaphthene	1	ND	ND	ND	ND	ND	ND	
Acenaphthylene	1	ND	ND	ND	ND	ND	ND	
Anthracene	1	ND	ND	ND	ND	ND	ND	
Benzidine	10	ND	ND	ND	ND	ND	ND	
Benzo(a)anthracene	1	ND	ND	ND	ND	ND	ND	
Benzo(a)pyrene	1	ND	ND	ND	ND	ND	ND	
3,4-Benzofluoranthene	1	ND	ND	ND	ND	ND	ND	
Benzo(ghi)perylene	3	ND	ND	ND	ND	ND	ND	
Benzo(k)fluoranthene	1	ND	ND	ND	ND	ND	ND	
bis(2-chloroethoxy) meth	ane 1	ND	ND	ND	ND	ND	ND	
bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	
bis(2-chloroisopropyl)e	ther 1	ND	ND	ND	ND	ИD	ND	
bis(2-ethylhexyl)phthal	ate l	ND	ND	ND	ND	ND	ND	
4-bromophenyl phenyl et	her l	ND	ND	ND	ND	ND	ND	
Butylbenzyl phthalate	1	ND	ND	ND	ND	ND	ND	
2-Chloronaphthalene	1	ND	ND	ND	ND	ND	ND	
4-Chlorophenyl phenyl e	ther 1	ND	ND	ND	ND	ND	ND	
Chrysene	1	ND	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	3	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	1	ND	ND	ND	ИĎ	ND	ND	
3,3'-Dichlorobenzidine	1	ND	ND	ND	NĎ	ND	ND	
Diethyl phthalate	1	ND	ND	ND	ND	ND	ND	
Dimethyl phthalate	1	ND	ND	ND	ND	ND	ND	
Di-n-butyl phthalate	l	ND	ND	ND	ND	ND	ИD	
2,4-Dinitrotoluene	1	ND	ND	ND	ND	ND	ND	
2,6-Dinitrotoluene	1	ND	ND	ND	ND	ND	ND	
Di-n-octyl phthalate	1	ND	ND	ND	ND	ND	ND	
<pre>1,2-diphenylhydrazine</pre>								
(as azobenzene)	1	ND	ND	ND	ND	ND	ND	
Fluoranthene	1	ND	ND	ND	ND	ND	ND	

and selon

DATE: 6-17-85

JOB NO. 38041

Fred C. Hart Associates

AUTHORIZATION: verbal

530 Fifth Ave New York NY 10036

SAMPLE:

water - 18

REPORT OF ANALYSIS

BASE/N	EUTRAL E	XTRACTS	(con't	:)		
			micro	grams/g	ram	
Limit	#20	#21	#22	#23	#24	#25
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
ne l	ИD	ND	ND	ND	ND	ND
1	ИD	ND	ИD	ИD	ND	ND
3	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
ie l	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
1	ND	ND	ND	ND	ND	ND
	BASE/NI Detection Limit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detection	Limit	Detection	Detection	Detection

DATE: 6-17-85

JOB NO.

38041

Fred C. Hart Associates

530 Fifth Ave

TO: __

AUTHORIZATION: verbal

New York NY 10036

SAMPLE:

water - 18

REPORT OF ANALYSIS

	PESTICI	DES AND I	CB'S			_
	#20	#21	#22	#23	#24	#25
			u	g/g		
Aldrin	ND	ND	ND	ND	ND	ND
BHC, Alpha	ND .	ND	ND	ND	ND	ND
BHC, Beta	ND	ND	ND	ND	ND	ND
BHC, Gamma	ND	ND	ND	ND	ND	ND
BHC, Delta	ND	ND	ND	, ND	ND	ND
Chlordane	ND	ND	ND	ИD	ND	ND
4,4'DDT	ND	ND	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND	ND	ND
4,4'DDD	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND
Endosulfan-alpha	ИD	ND	ND	ND	ND	ND
Endosulfan-beta	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	ND	ND	ND	ND	ND	ND
Heptachlor	ИD	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND
PCB-1016	ND	ND	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND	ND	ND

Detection limit for all parameters is 1

ortresion testing telegrore

DATE:

6-17-85

TO: |

Fred C Hart Associates

530 Fifth Ave

New York NY 10036

JOB NO.

38041

AUTHORIZATION: verbal

SAMPLE:

water - 18

REPORT OF ANALYSIS

PRIORITY POLLUTANTS								
	‡ 20	#21 .	#22 mg/:	‡23 1	#24	#25		
Beryllium Cadmium Chromium Copper Nickel Lead Zinc Arsenic Silver Antimony Selenium Thallium	< 5.0 < .50 68.5 16.5 25.4 16.2 130 < 1.5 .70 347 < .25 < 5.0	< 5.0 < .50 21.0 3.0 7.35 < 1.0 15.2 < 1.5 < .50 69.5 < .25 < 5.0	< 5.0 < .50 43.5 8.0 14.0 8.0 27.0 < 1.5 < .50 194 < .25 < 5.0	<pre></pre>	< 5.0 < .50 40.5 6.0 18.5 2.9 26.0 < 1.5 1.10 269 < .25 < 5.0	< 5.0 < .50 32.5 7.0 10.0 < 1.0 19.5 < 1.5 < .50 123 < .25 < 5.0		
Mercury Cyanide Phenols	< .05 < 0.5 5.5	< .05 < 0.5 < 5.5	< .05 < 0.5 7.0	< .05 < 0.5 8.0	< .05 < 0.5 < 5.5	< .05 < 0.5 < 5.5		

Alinea, Manager

Water, waste water & microbiolog

Princeton Service Center U.S. Route 1 (609) 452-9050 Tlx-84-3942

Job #38041 6-17-85

	Detection	າ					
	Limit	#26	#27	#28	#29	#30	#31
				ug/g	gm		
					_		
Chloromethane	.02	ND	ND	ND	ND	ND	ND
Bromomethane	.10	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	.05	ND	ND	ND	ND	ND	ND
Vinyl Chloride	.02	2.34	0.45	2.68	0.74	1.31	1.92
Chloroethane	.02	ND	ND	ND	ND	ND	ND
Methylene chloride	.05	0.38	0.40	0.15	0.27	0.57	0.19
Trichlorofluoromethane	.05	0.11	<.05	<.05	<.05	0.13	0.07
l, l-dichloroethene	.01	ND ·	ND	ND	' ND	ND	ND
l, l-dichloroethane	.01	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	.01	ND	ND	ND	ND	ND	ND
Chloroform	.02	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	.01	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	.02	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	.02	ND	ND	ND	ND	ND	ND
Bromodichloromethane	.02	ND	ND	ND	ND	ND	ND
1,2-dichloropro pane	.01	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	ND
Trichloroethene	.02	ND	0.04	ND	ND	ND	ND
Dibromochloromethane	.02	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	.05	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	ND
2-chloroethylvinylether	.05	ND	ND	ND	ND	ND	ND
Bromoform	.10	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.10	ND	· ND	ND	ND	ND	ND
Tetrachloroethene	.02	0.09	<.02	<.02	<.02	0.07	< .02
Benzene	.01	0.26	0.19	0.23	0.18	0.26	0.20
Toluene	.01	0.08	0.06	0.17	0.13	0.40	0.06
Chlorobenzene	.01	ND	ND	ND	ND	ND	ND
Ethylbenzene	.01	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	.01	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	.01	ND	ND	ND	ND	ND	ND
l,4-dichlorobenzene	.01	ND	ND	ND	ND	ND	ИD
Xylenes	.01	ND	ND	ND	ND	0.16	ND
ND=not detected							

laporajory lasing princean

DATE: 6-17-85

JOB NO.

38041

Fred C. Hart Associates

530 Fifth Ave

TO: |

New York NY 10036

AUTHORIZATION:

verbal

SAMPLE:

water - 18

REPORT OF ANALYSIS

ACID EXTRACTS								
	Detection Limit	‡ 26	#27 micro	#28 grams/g	#29 gram	#30	#31	
2-Chlorophenol	1	ND	ND	ND	ND	ND	ND	
2,4-Dichlorophenol	1	ND	ND	ND	ND	ND	ND	
2,4-Dimethylphenol	1	ND	ND	ND	ND	ND	ND	
4,6-Dinitro-o-cresol	10	ND	ND	ND	ND	ND	ND	
2,4-Dinitrophenol	10	ND	ND	ND	ND	ND	ND	
2-Nitrophenol	1	ND	ND	ND	ND	ND	ND	
4-Nitrophenol	1	ND	ND	ИD	ND	ND	ND	
p-chloro-m-cresol	1	ND	ND	ND	ND	ND	ND	
Pentachlorophenol	1	ND	ND	ND	ND	ND	ND	
Phenol	1	ND	ND	ND	ND	ND	ND	
2,4,6-Trichlorophenol	ī	ND	ND	ND	ND	ND	ND	

Jon Gabry, PhD Asst.Organic Lab Manager

ASSEST TO THE TOTAL PROPERTY TOTAL PROPERTY TOTAL PROPERTY PROPERTY SECURITY TOTAL PROPERTY SECURITY SECU

laporajory fesijus brincejon

6-17-85 DATE:

JOB NO. 38041

TO: Fred C. Hart Associates

530 Fifth Ave New York NY 10036 AUTHORIZATION: verbal

water - 18 SAMPLE:

REPORT OF ANALYSIS

L	REP	ORT OF AN	ALYSIS		
	BASE/N	EUTRAL	EXTRACT	S	
1	etection	#26 ograms/	*27	#28	
cenaphthene cenaphthylene inthracene senzidine Benzo(a) anthracene Benzo(a) pyrene 3,4-Benzofluoranthene Benzo(ghi) perylene Benzo(k) fluoranthene bis(2-chloroethoxy) meth bis(2-chloroethyl) ether bis(2-chloroisopropyl) bis(2-chloroisopropyl) bis(2-ethylhexyl) phthal 4-bromophenyl phenyl et Butylbenzyl phthalate 2-Chloronaphthalene 4-Chlorophenyl phenyl Chrysene Dibenzo(a,h) anthracene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene Di-n-butyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-diphenylhydrazine (as azobenzene) Fluoranthene	l l l l l l l l l l l l l l l l l l l	NO DO	SUBSECTION OF SU	NO DE	Cahry, PhD

districtly

DATE: 6-17-85

TO: Fred C Hart Associates

JOB NO. 38041

SAMPLE:

Fred C. Hart Associates 530 Fifth Ave

AUTHORIZATION: verbal

New York NY 10036

water - 18

REPORT OF ANALYSIS

			XTRACTS	(con't)
	Detection		rams/gr	
	Limit	#26	#27	#28
Fiuorene	1	ND	ND	ND
Hexachlorobenzene	1	ND	ND	ND
Hexchlorobutadiene	1	ND	ND	ND
Hexachlorocyclopentadien	ne Î	ND	ND	ND
Hexachloroethane	1	ЙD	ND	ND
Ideno(1,2,3-cd)pyrene	3	ND	ND	ND
Isophorone	1	ND	ND	ND
Naphthalene	1	ND	ND	ND
Nitrobenzene	1	ND	ND	ND
N-nitrosodimethylamine	1	ND	ND	ND
N-nitrosodi-n-propylamin	ie l	ND	ND	ND
N-nitrosodiphenylamine	1	ND	ND	ND
Phenanthrene	ï	ND	ND	ND
Pyrene	ĩ	ND	ND	ND
1,2,4-Trichlorobenzene	ī	ND	ND	ND

Jon Gabry, PhD Asst.Organic Lab Manage

と関われたののでは、 関本ののののは、 関本ののののでは、 では、 のでは、 ので

pototory Setting Sunicación

DATE: 6-17-85

TO:

JOB NO. 38041

Fred C. Hart Associates 530 Fifth Ave

AUTHORIZATION: verbal

530 Fifth Ave New York NY 10036

SAMPLE: water - !

REPORT OF ANALYSIS

BASE/NEUTRAL EXTRACTS								
	Detecti	on						
	Limit	#29	# 30	#31				
	n	micrograms/	gram					
Acenaphthene	1	ND	ND	СИ				
Acenaphthylene	1	ND	ND	ND				
Anthracene/Phenanthrene	1	ND	2.5	ND				
Benzidine	10	ND	ND	ND				
Benzo(a) anthracene		see Chryse						
Benzo(a) pyrene	1	ИD	9.3	ИD				
3,4-Benzofluoranthene/benzo(k)fluoranthene	1	ND	4.1	ND				
Benzo(ghi)perylene	3	ND	1.7	ND				
Benzo(k) fluoranthene	see	3,4-benzo	fluoranthe	ene				
bis(2-chloroethoxy)methane	1	ND	ND	ND				
bis(2-chloroethyl)ether	1	ND	ND	ND				
bis(2-chloroisopropyl)ether	1	ND	ND	ND				
bis(2-ethylhexyl)phthalate	1	ND	ND	ND				
4-bromophenyl phenyl ether	1	ND	ND	ND				
Butylbenzyl phthalate	1	ND	ND	ND				
2-Chloronaphthalene	1	ND	ND	ND				
4-Chlorophenyl phenyl ether	1	ND	ND	ND				
Chrysene /benzo (a) anthracene	1	ND	7.4	ND				
Dibenzo (a, h) anthracene	3	ND	ND	ND				
1,2-Dichlorobenzene	1	ND	ND	ND				
1,3-Dichlorobenzene	1	ND	ND	ND				
1,4-Dichlorobenzene	1	ND	ND	ND				
3,3'-Dichlorobenzidine	1	ND	ИD	ИD				
Diethyl phthalate	1	ND	ND	212				
Dimothyl phthalate	1	ממ	ИU	NU				
Di-n-butyl phthalate	1	ND	ND	ND				
2,4-Dinitrotoluene	1	ND	ND	ND				
2,6-Dinitrotoluene	1	ND	ND	ND				
Di-n-octyl phthalate	1	ND	ИD	ND				
1,2-diphenylhydrazine								
(as azobenzene)	1	ND	ND	ND				
Fluoranthene	1	ND	4.2	ND				

Theson. isoling ideoratory

DATE: 6-17-85

Fred C. Hart Associates

530 Fifth Ave

New York NY 10036

JOB NO. 38041

AUTHORIZATION verbal

SAMPLE water - 18

REPORT OF ANALYSIS

	BASE/NEUTRAL					
		Detection	micro	N.M.		
		Limit	₽29	# 30	#31	
Fluorene		1	ND	ND	ND	
Hexachlorobenzene		1	ND	ND	ND	
Hexchlorobutadiene		1	ND	ND	ND	
Hexachlorocyclopentadiene	•	1	ND	ND	ND	
Hexachloroethane		1	ND	ND	ND	
Ideno(1,2,3-cd)pyrene		3	ND	1.6	ND	
Isophorone		1	ND	ND	ND	
Naphthalene		1	ND	ND	ND	
Nitrobenzene		1	ND	ND	ND	
N-nitrosodimethylamine		1	ND	ND	ND	
N-nitrosodi-n-propylamine		1	ND	ND	ND	
N-nitrosodiphenylamine		1	ND	ND	ND	
Phenanthrene		500 8	inthrace	n e		
Pyrene		1	ND	3.6	ND	
1.2.4-Trichlorobenzene		1	ND	ND	ND	

idionoliony Sullice The sullice

DATE: 6-17-85

Fred C. Hart Associates

JOB NO.

38041

530 Fifth Ave

AUTHORIZATION:

verbal

New York NY 10036

SAMPLE: water - 18

REPORT OF ANALYSIS

	PESTICII	DES AND P	CB'S			
	#25	#26	\$27	#28	#29	#30
			ug	/g		
Aldrin	ND	ND	ND	ND	ND	ND
BHC, Alpha	ND	ND	ND	ND	ND	ND
BHC, Beta	ND	ND	ND	ND	ND	ND
BHC, Gamma	ND	ND	ND	ND	ND	ND
BHC, Delta	ND	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND	ND
4,4'UOT	ND	ND	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND	ND	ND
4,4'DDD	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND
Endosulfan-alpha	ND	ND	ND	ND	ND	ND
Endosulfan-beta	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	ND	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND
PCR-1221	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND
PCB-1016	מא	ND	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND	ND	ND

Detection limit for all parameters is 1

pinceion lesing leboreiory

DATE: 6-17-85

JOB NO. 38041

AUTHORIZATION: verbal

SAMPLE: water - 18

Fred C. Hart Associates 530 Fifth Ave

New York NY 10036

TO: |

REPORT OF ANALYSIS

	_PF					
	‡26	‡27	#28 mg/l	‡29	# 30	#31
Beryllium Cadmium Chromium Copper Nickel Lead Zinc Arsenic Silver Antimony Selenium Thallium	< 5.0 < 0.5 36.0 5.0 11.0 6.5 22.5 < 1.5 < .5 140 < .25	<pre> < 5.0 < 0.5 44.5 8.5 18.5 4.6 29.5 < 1.5 < .5 269 < .25 < 5.0</pre>	<pre>< 5.0 < 0.5 31.0 6.5 11.5 4.5 24.0 < 1.5 < .5 218 < .25 < 5.0</pre>	<pre>< 5.0 < 0.5 55.0 12.5 21.0 6.6 49.5 < 1.5 < .5 324 < .25 < 5.0</pre>	<pre>< 5.0 < 0.5 45.5 12.5 11.5 25.4 34.5 < 1.5 < .5 199 < .25 < 5.0</pre>	<pre>< 5.0 < 0.5 15.0 2.5 6.5 < 1.0 14.5 2.0 < .5 46.6 < .25 < 5.0</pre>
Mercury Cyanide Phenols	< 5.0 < .05 < 0.5 < 5.5	< .05 < 0.5 < 5.5	< .05 0.8 8.0	< .05 < 0.5 < 5.5	< .05 < 0.5 < 5.5	< .05 < 0.5 < 5.5

Edna A. Alinea, Manager

Water, waste water & microbiclo

EAA:na

Princeton Service Center U.S. Route 1 (609) 452-9050 Tlx-84-3942

princeion lesing laboratory

Job #38041 6-17-85

	Detectio	n					
	Limit	#32	#33	#34	#35	#36	#37
				ug/gm			
Chloromethane	.02	ND	ND	ND	ND	ND	ND
Bromomethane	.10	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	.05	ND	ND	ND	ND	ND	ND
Vinyl Chloride	.02	0.82	2.41	0.12	0.56	0.35	0.58
Chloroethane	.02	ND	ND	ND	ND	ND	ND
Methylene chloride	.05	0.59	0.11	0.06	0.50	0.46	0.32
Trichlorofluoromethane	.05	0.21	<.05	ND	0.23	0.18	0.16
l, l-dichloroethene	.01	ND ·	ND	ND	ND	ND	ND
l, l-dichloroethane	.01	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	.01	ND	ИD	ND	ND	ND	ND
Chloroform	.02	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	.01	ND	ND	ND	ND	ND	ND
I, I, I-trichloroethane	.02	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	.02	ND	ND	ND	ND	ND	ND
Sromodichloromethane	.02	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	.01	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	.05	αи	ND	ND	ND	ND	ND
Trichloroethene	.02	ND	ND	ND	<.02	<.02	ND
Dibromochloromethane	.02	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	.05	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	ND
2-chloroethylvinylether	.05	ND	ND	ND	ND	ND	ND
Bromoform	.10	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.10	ND	ND	ND	ND	ND	ND
Tetrachloroethene	.02	.05	<.02	ND	0.07	0.09	0.03
Benzene	.01	0.17	0.28	0.09	0.18	0.18	0.20
Toluene	.01	0.13	0.22	0.04	0.11	0.16	0.13
Chiorobenzene	.01	ND	ND	ND	ND	ND	ND
Ethylbenzene	.01	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	.01	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	.01	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	.01	ND	ND	ND	ND	ND	ND
Xylenes	.01	ND	ND	ND	0.05	0.06	מא
ND=not detected						J. J.	.,,

laboraiory

DATE: 6-17-85

10: r

JOB NO.

38041

Fred C. Hart & Associates

530 Fifth Ave

AUTHORIZATION:

verbal

New York NY 10036

SAMPIE: water - 18

REPORT OF ANALYSIS

ACID EXTRACTS								
	Detection Limit	#32	#33 micro	#34 ograms/g	#35 yram	#36	#37	
2-Chlorophenol	1	ЙD	ND	ND	ND	ND	ND	
2,4-Dichlorophenol	1	ND	ND	ND	ND	ND	ND	
2,4-Dimethylphenol	1	ND	ND	ND	ND	ND	ND	
4,6-Dinitro-o-cresol	10	ND	ND	ND	ND	ND	ND	
2,4-Dinitrophenol	10	ND	ND	ND	ND	ND	ND	
2-Nitrophenol	1	ND	ND	ND	ND	hin	ND	
4-Nitrophenol	1	ND	ND	ND	ND	ND	ND	
p-chloro-m-cresol	1	ND	ND	ND	ND	ND	ND	
Pentachlorophenol	ī	ND	ND	ND	ND	ND	ND	
Phenol	ī	ND	ND	ND	ND	ND	ND	
2,4,6-Trichlorophenol	ī	ND	ND	ND	ND	ND	ND	

princeion laboratory

DATE: 6-17-85

TO: Fred C. Hart Associates

JOB NO. 38041

Fred C. Hart Associates 530 Fifth Ave

AUTHORIZATION:

verbal

New York NY 10036

AUTHORIZATION:

SAMPLE:

water - 18

REPORT OF ANALYSIS

	BASE	/NEUTRAI	LEXTRA	CTS_			
	Detection		-				
	Limit	#32	#33	#34	#35	# 36	#37
			micr	cograms/	gram		
Acenaphthene	1	ND	ND	ND	ND	ND	ND
Acenaphthylene	1	ЙD	ND	ND	ND	ND	ND
Anthracene	1	ND	ND	ND	ND	ND	ND
Benzidine	10	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	1	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	1	ND	ND	ND	ND	ND	ND
3,4-Benzofluoranthene	1	ND	ND	ND	ND	ND	ND
Benzo(ghi)perylene	3	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	1	ND	ND	ND	ND	ND	ND
bis(2-chloroethoxy)metha	ne 1	ND	ND	ND	ND	NL	ND
bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND
bis(2-chloroisopropyl)et	her l	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthala	te l	ND	ND	ND	ND	ND	ND
4-bromophenyl phenyl eth	er l	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	1	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	1	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl et	her l	ND	ND	ND	ND	ND	ND
Chrysene	1	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	3	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	1	ИD	ND	ND	ND	ND	ND
Diethyl phthalate	1	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	1	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	1	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	1	ND	ND	ND	ND	ND	ИD
2,6-Dinitrotoluene	1	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1	ND	ND	ND	ND	ND	ND
1,2-diphenylhydrazine							
(as azobenzene)	1	ND	ND	ND	ND	ND	ND
Fluoranthene	1	ND	ND	ND	ND	ND	ND

japarajary jasjirg arreger:

DATE: 6-17-85

TO: |

JOB NO. 38041

Fred C. Hart Associates 530 Fifth Ave New York NY 10036

AUTHORIZATION: verbal

SAMPLE:

LE: water - 18

REPORT OF ANALYSIS

	Detection	-	XTRACTS	(con't			
	Limit	#32	#33	#34	#35	#36	#37
Fluorene	1	ND	ND	ND	ND	ND	ND
lexachlorobenzene	1	ND	ND	ND	ND	ND	ND
iexchlorobutadiene	1	ND	ND	ND	ND	ND	ND
lexachlorocyclopentadie	ne l	ND	ND	ND	ND	ND	ND
lexachloroethane	1	ND	ND	ND	ND	ND	ND
Ideno(1,2,3-cd)pyrene	3	ND	ND	ND	ND	ND	ND
sophorone	1	ND	ND	ND	ND	ND	ND
Maphthalene	ĺ	ND	ND	ND	ND	ND	ND
Vitrobenzene	1	עוא	ND	ND	ND	ND	ND
N-nitrosodimethylamine	ī	ND	ND	ND	ND	ND	ND
N-nitrosodi-n-propylami	ne 1	ND	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	ĺ	ND	ND	ND	ND	ND	ND
Phenanthrene	$\bar{1}$	ND	ND	ND	ND	ND	ND
Pyrene	$\bar{1}$	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	<u>.</u>	ND	ND	ND	ND	ND	ND

Jon Gabry, PhD, Asst.Organic Lab Manage:

postoloty jezjirê huraner

DATE: 6-

6-17-85

TO: |

JOB NO.

38041

Fred C. Hart Associates

530 Fifth Ave

AUTHORIZATION: verbal

New York NY 10036

SAMPLE:

water - 18

REPORT OF ANALYSIS

	PESTICI					
	#31	#32	#33	#34	#35	# 36
			υ	ıg/g		
Aldrin	ND	ND	ND	ND	ND	ND
BHC, Alpha	ND ·	ND	ND	ND	ND	ND
BHC, Beta	ND	ND	ND	ND	ND	ND
BHC, Gamma	ND	ND	ND	ND	ND	ND
BHC, Delta	ND	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND	ND
4,4'DDT	ND	ND	NU	Nu	ND	ND
4,4'DDE	ND	ND	ND	ND	ND	ND
4,4'DDD	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND
Endosulfan-alpha	ND	ND	ND	ND	ND	ND
Endosulfan-beta	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	ND	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ИD	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ИD	ND
PCB-1232	ИD	ND	ND	ND	ИD	ИD
PCB-1248	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND
PCB-1016	ND	ND	31D	ND	ND	ИD
Toxapnene	ND	ND	ND	ND	ND	ND

Detection limit for all parameters is 1

orinction iesiing laboraiory

DATE: 6-17-85

Fred C. Hart & Associates JOB NO. 38041

530 Fifth Ave

AUTHORIZATION:

verbal

New York NY 10036

SAMPLE:

water - 18

REPORT OF ANALYSIS

PRIORITY POLLUTANTS										
	#32	‡ 33	#34 mg/	#35 ′1	# 36	#37				
Beryllium	< 5.0	· < 5.0	< 5.0	< 5.0	< 5.0	< 5.0				
Cadmium	₹ .5	< .5	< .5	< .5	< .5	< .5				
Chromium	17.5	46.5	45.0	36.5	38.5	43				
Copper	2.5	13.5	11.5	7.0	8.0	10.5				
Nickel	5.0	16.5	22.0	13.0	15.5	17.8				
Lead	1.55	12.3	6.73	1.5	3.65	44				
Zinc	9.0	33.5	47.5	25.0	32.0	36				
Arsenic	1.8	< 1.5	1.6	< 1.5	< 1.5	4.5				
Silver	< .50	< .5	.80	₹ .5	₹ .5	< .5				
Antimony	57.6	230	269	185	180	208				
Selenium	< .25	< .25	< .25	< .25	< .25	< .25				
Thallium	₹ 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0				
Mercury	⟨ .05	< .05	< .05	< .05	< .05	< .05				
Cyanide	₹ 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				
Phenols	⟨ 5.5	5.5	⟨ 5.5	7.5	5.5	8.0				

/ Edna A. Alinea, Manager

Edna A. Alinea, Manager
Water, waste water & microbiolog

EAA:na

Princeton Service Center U.S. Route 1 (609) 452-9050 Tlx-84-3942

Job # 37738 5-16-85

	MDL	# 6	‡ 7	#8	#9	#10
			ug	/kg		
Chloromethane	20	ND	ND	ND	ND	
Bromomethane	100	ND	ND	ND	ND	ND
Dichlorodifluoromethane	50	ND	ND	ND	ND	ND
Vinyl Chloride	20	1000	1400	200	ND	ND
Chloroethane	20	ND .	ND	ND	1200	620
Methylene chloride	50	720	ND	ND	ND ND	ND
Trichlorofluoromethane	50	1200	6200	270	730	560
l,l-dichloroethene	10	ND	ND	ND		1600
l,l-dichloroethane	10	ND	ND	ND	ND ND	ND
trans-1,2-dichloroethene	10	ND	3200	ND	ND	ND
Chloroform	20	ND	ND	ND	ND	ND
1,2-dichloroethane	10	ND	ND	ND	ND	ND
l,l,l-trichloroethane	20	ND	ND	ND	ND	ND ND
Carbon tetrachloride	20	ND	ND		מא	
Bromodichloromethane	20	ND	ND	ND	ND	ND ND
1,2-dichloropropane	10	ND	ND	ND	ND	ND ND
trans-1,3-dichloropropene	50	ND	ND	ND	ND	ND
Trichloroethene	20	ND	ND	20	ND	23
Dibromochloromethane	20	ND	ND	ND	ND	ND
l,l,2-trichloroethane	50	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	50	ND	ИD	ND	ND	ND
2-chloroethylvinylether	50	ND	ND	ND	ND	ND
Bromoform	100	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	100	ND	ND	ND	ND	ND
Tetrachioroethene	20	ND	ND	20	ND	ND
Benzene	10	250	750	230	230	480
Toluene	10	590	400	760	480	1700
Chlorobenzene	10	NU	ND	ИD	20	NO
Ethylbenzene	10	58	ND	ND	21	220
l,3-dichlorobenzene	10	ND	ND	ND	ND	ND
l,2-dichlorobenzene	10	ND	ND	ND	ND	ND
1,4-dichlorobenzene	10	230	240	71	260	1400
Unknowns (number of)		(5)	(10)	(8)	(7)	(10)
ND=not detected					•	

Tene Dennison PhD,CIH
Technical Director

Princeton Service Center U.S. Route 1 (609) 452-9050 Tlx-84-3942

Job #37738 5-16-85

	11	ug/kg
Chloromethane	ND	ND
Bromomethane	ND	ND
Dichlorodifluoromethane	ND	ND
Vinyl Chloride	600	240
Chloroethane	ND	ND
Methylene chloride	ND	< 50
Trichlorofluoromethane	. 710	250
1,1-dichloroethene	ND	ND
l, l-dichloroethane	ND	ND
trans-1,2-dichloroethene	ND	ND
Chloroform	ND	ND
1,2-dichloroethane	ND	ND
1,1,1-trichloroethane	ND	ND
Carbon tetrachloride	ND	ND
Bromodichloromethane	ND	ND
1,2-dichloropropane	ND	ND
trans-1,3-dichloropropene	ND	ND
Trichloroethene	ND	ND
Dibromochloromethane	ND	ND
1,1,2-trichloroethane	ND	ND
cis-1,3-dichloropropene	ND	ND
2-chloroethylvinylether	ND	ND
Bromoform	ND	ND
1,1,2,2-tetrachloroethane	ND	ND
Tetrachloroethene	ND	970
Benzene	160	220
Toluene	420	550
Chlorobenzene	ND	ND
Ethylbenzene	100	140

ND

270

(6)

:::

420

(7)

Gene Dennison, PhD, JTH Technical Director

1,3 dichlorobenzene

1,2-dichlorobenzene
1,4-dichlorobenzene
unknowns (number of)

ND=not detected

erinceion iesing iodoraion

DATE May 16, 1985

JOB NO

37738

TO: Fred C. Hart Associates
530 Fifth Ave

New York NY 10036

AUTHORIZATION verbal

ATT: Jim Meck

SAMPLE soil - 12

REPORT OF ANALYSIS

	ACID	EXTR	CTS				
	Detection		_				
	Limit	1	2	3	4	5	6
			mic	rogram	s/gram	l	
2-Chlorophenol	1	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	$\overline{1}$	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	$\bar{1}$	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	10	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	10	ND	ND	ND	ND	ND	ND
2-Nitrophenol	1	ND	ND	ND	ND	ND	ND
4-Nitrophenol	1	ND	ND	ND	ND	ND	ND
p-chloro-m-cresol	1	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1	ND	ND	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	1	ND	ND	ND	ND	ND	ND

Gene Dennison, PhD, CIH Technical Director

jesing Jesing Idboralary

DATE: May 16, 1985

JOB NO.

37738

Fred C. Hart Associates AUTHORIZATION: verbal

530 Fifth Ave

New York NY 10036

, ATT: Jim Meck

70: _

SAMPLE: soil - 12

REPORT OF ANALYSIS

	ACID EXTRA	ACTS			· · · · · ·		- ·•· ·
	7	8	9	10	_ 11	12	
		шл	.crogra	ms/gra	ш		
2-Chlorophenol	· ND	ND	ND	ND	ND	ND	
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	
4,6-Dinitro-o-cresol	ND	ND	ND	ND	ND	ND	
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	
2-Nitrophenol	ND	ND	ND	ND	ND	ND	
4-Nitrophenol	ND	ND	ND	ND	ND	ND	
p-chloro-m-cresol	ND	ND	ND	ND	ND	ND	
Pentachlorophenol	ND	ND	ND	ND	ND	ND	
Phenol	ND	ND	ND	ND	ND	NE	
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	NI	

laboratory by laboratory

> DATE: 5-15-85

PARAMETERS DESCRIPTION OF THE PARAMETERS OF THE

JOB NO. 37738

AUTHORIZATION:

SAMPLE:

TO: Fred C. Hart Associates

530 Fifth Ave New York NY 10036

ATT: Jim Meck

REPORT OF ANALYSIS

	BASE/NE	UTRAL E	XTRACI	'S_			
	Detection						
	Limit	1	2	3	4	5	6
		-	micr	ograms	/gram		
Acenaphthene	1	ND	ND	ND	ND	ND	ND
Acenaphthylene	1	. ND	ND	ND	ND	ND	ND
Anthracene	1	ND	ND	ND	ND	ND	ND
Benzidine	10	ND	ND	ND	ND	ИD	ND
Benzo(a)anthracene	1	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	1	ND	ND	ND	ND	ND	ND
3,4-Benzofluoranthene	1 '	ND	ND	ND	ND	ND	ND
Benzo(ghi)perylene	3	ND	ND	ND	ND	ND	ND
Benzo(k) fluoranthene	1	ND	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane	1	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND
bis(2-chloroisopropyl)ether	1	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	1	ND	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	1	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	1	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	1	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	1	ND	ND	ND	ND	ND	ND
Chrysene	1	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	3	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	1	ND	ND	ND	ND	ND	ND
Diethyl phthalate	1	ND	ND	ND	CM	ND	ND
Dimethyl phthalate	1	ND	ND	ND	ND	ND	ИD
Di-n-butyl phthalate	1	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	ī	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	ī	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	ī	ND	ND	ND	ND	ND	ND
1,2-diphenylhydrazine	_						
(as azobenzene)	1	ND	ND	ND	ND	ND	ND
Fluoranthene	ī	ИD	ND	ND	ND	ND	ND

takan na katalan katal

princeion testing laboratory

DATE: 5-16-85

TO: Fred C. Hart Associates

JOB NO. 37738

530 Fifth Ave

AUTHORIZATION:

verbal

New York NY 10036

SAMPLE:

ATT: Jim Meck

REPORT OF ANALYSIS

	BASE/NEUTR	AL EXT	RACTS	(con't)		
	Detection		mi	crogra	ms/gra	m	
	Limit	1	2	3	4	5	6
Fiuorene	1	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	1	ND	ND	ND	ND	ND	ND
Hexchlorobutadiene	1 .	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1	ND	ND	ND	ND	ND	ND
Hexachloroethane	1	ND	ND	ND	ND	ND	ND
<pre>Ideno(1,2,3-cd)pyrene</pre>	3	ND	ND	ND	ND	ND	ND
Isophorone	1	ND	ND	ND	ND	ND	ND
Naphthalene	1	ND	ND	ND	ND	ND	ND
Nitrobenzene	1	ND	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1	ND	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1	ND	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	1	ND	ND	ND	ND	ND	ND
Phenanthrene	1	ND	ND	ND	ND	ND	ND
Pyrene	1	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1	ND	ND	ND	ND	ND	ND

Gene Dennison, PhD, CIH Technical Director

DATE: 5-16-85

37738 JOB NO.

TO: Fred C. Hart Associates 530 Fifth Ave

AUTHORIZATION: verbal

New York NY 10036

soil - 12 SAMPLE:

ATT: Jim Meck

REPORT OF ANALYSIS

	BASE/NEUTRAL	EXTRAC	TS_	-			
		-	microgr	ame/gr	am		
	7	8	9	10	11	12	
Acenaphthene	ND	ND	ND	ND	ND	ND	
Acenaphthylene	· ND	ND	ND	ND	ND	ND	
Anthracene	ND	ND	ND	ND	ND	ND	
Benzidine	ND	ND	ND	ND	ND	ND	
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	
3,4-Benzofluoranthene	ND	DN	ND	ND	ND	ND	
Benzo(ghi)perylene	ND	ND	ND	ND	ND	ND	
Benzo(k) fluoranthene	ND	ND	ND	ND	ND	ND	
bis(2-chloroethoxy)methane	ND	ND	ND	ND	ND	ND	
bis(2-chloroethyl)ether	ND	ND	ND	ND	ND	ND	
bis(2-chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	
bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	
4-bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	
Butylbenzyl phthalate	. ND	ND	ND	ND	ND	ND	
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	
4-Chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND	
Chrysene	ND	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	ND	ИD	ND	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	ИD	ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	ND	ИD	ND	ND	ND	ND	
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	
Diethyl phthalate	ND	ND.	ND	ND	ND	ND	
Dimethyl phthalate	ND	ND	ND	ND	ND	ND	
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	
2,4-Dinitrotoluene	ND	ND	ND	ND	ИD	ND	
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	
1,2-diphenylhydrazine							
(as azobenzene)	ND	ND	ND	ND	ND	ND	
Fluoranthene	ND	ND	ND	ND	ND	ND	

Gene Dennison, PhD, CIH Technical Director

princeion galisei Vroiorodol

DATE: 5-16-85

TO: |

JOB NO. 37738

Fred C. Hart Associates

AUTHORIZATION: verbal

530 Fifth Ave

ATT: Jim Meck

New York NY 10036

SAMPLE: soil - 12

REPORT OF ANALYSIS

	BASE/NEUTRAL	FXTRA	CTS (con't)			
				crogra	ms/gra	m.	
		7	8	9	10	11	12
Fiuorene	:	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	•	ND	ND	ND	ND	ND	ND
Hexchlorobutadiene		ND.	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1	ND	ND	ND	ND	ND	ND
Hexachloroethane	1	ND	ND	ND	ND	ND	ND
Ideno(1,2,3-cd)pyrene	1	ND	ND	ND	ND	ND	ND
Isophorone	1	ND	ND	ND	ND	ND	ND
Naphthalene	1	ИD	ND	ND	ND	ND	ND
Nitrobenzene	1	ND	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1	ND	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1	ND	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	` 1	ND	ND	ND	ND	ND	ND
Phenanthrene	1	ND	ND	ND	ND	ND	ND
Pyrene	1	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1	ND	ND	ND	ND	ND	ND

Cone Dennison, PhD, CIH Technical Director

orinesion iesting laboratory

DATE: 5-15-85

JOB NO. 37738

AUTHORIZATION:

SAMPLE:

Fred C. Hart Associates

530 Fifth Ave New York, NY 10036

ATT: Jim Meck

TO: |

REPORT OF ANALYSIS

	PES	TICID	ES AND	PCB'S			
	Detection		<u>-</u>		_		
	Limit	1	. 2	3,	4	5	6
			microg	rams/g	ram		
Aldrin	0.01	ИD	ND	ND	ND	ND	ND
BHC, Alpha	0.01	ND	ND	ND	ND	ND	ND
BHC,Beta	0.01	ND	ND	ND	ND	ND	ND
BHC, Gamma	0.01	ND	ND	ND	ND	ND	ND
BHC,Delta	0.01	ND	ND	ND	ΝD	ND	ΝD
Chlordane	0.01	ND	ND	ND	ND	ND	ΗD
4,4'DDT	0.01	ND	ND	ND	ИD	ND	ND
4,4'DDE	0.01	ND	ND	ND	ND	ND	ND
4,4'DDD	0.01	ND	ND	ND	ND	ND	CM
Dieldrin	0.01	ND	ND	ND	ИD	ND	ΝD
Endosulfan-alpha	0.01	ND	ND	ND	ND	ND	ND
Endosulfan-beta	0.01	MD	ND	ND	ΝD	ND	ΜD
Endosulfan Sulfate	0.01	ND	ND	ND	ΝD	ND	MD
Endrin	0.01	ИD	ИD	ND	ND	$\mathbb{N} \supset$	ИD
Endrin Aldehyde	0.01	ΝD	ND	ND	ND	ND	ND
Heptachlor	0.01	ИD	ND	ND	ND	ND	ND
Heptachlor epoxide	0.01	MD	ND	ND	ND	0.017	0.021
PCB-1242	1 1	ИD	ND	ND	ΝD	ND	ND
PCB-1254	1	ND	ND	ИD	ИD	'ID	ND
PCB-1221	1	II D	ND	ND	ND	l. D	ND
PCB-1232	1	ND	ND	ND	, ND	ND	ND
PCB-1248	1	ND	ИD	ND	ΝD	ND	II D
PCB-1260	Ţ	ΝD	ND	ND	ИD	ND	ND
PCB-1016	Ţ	HD	ND	HD	IID	ND	ت ۱۰
Toxaphene	1	ИD	ND	ND	ND	ND	∷D

Gene Dennison, Ph.D., CIII Technical Director

princeion jesting laboratory

DATE: 5-15-85

Fred C. Hart Associates

JOB NO. 37738

530 Fifth Ave New York NY 10036 AUTHORIZATION.

ATT: Jim Meck

TO: |

SAMPLE:

REPORT OF ANALYSIS

_	PESTICIDE	S AND	PCB'S	_		
	7	8	9	10	11	12
	·	mi		ms/gra		
Aldrin	ND.	ND	ND	ND	ND	::D
BHC, Alpha	ND	ND	ND	ND	ND	ND
BHC, Beta	ND	ND	ND	ND	ND	ND
BHC, Gamma	ND	ND	ND	ND	ND	НD
BHC, Delta	ИD	ИD	ND	ND	ND	ND
Chlordane	ИD	ND	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND	ND	ND
4,4'DDE	ND	ND	ND	ND	ND	\mathtt{MD}
4,4'DDD	ND	ND	ND	ND	CN	ND
Dieldrin	ND	ИD	ND	ИD	ND	Σ
Endosulfan-alpha	ND	ND	ND	ND	ND	ND
Endosulfan-beta	ND	ND	ИD	ΝD	ND	ΗD
Endosulfan Sulfate	ИD	ND	ND	ND	MD	IID
Endrin	ND	ND	ND	ND	ND	ND
Endrin Aldehyde Heptachlor	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	0.011
PCB-1242	ND	ND	ND	ИД	ND	::D
PCB-1254	ND	ND ND	ND	ND	ND	ND
PCB-1221	ND	ND	N D	ND	MD	:1D
PCB-1232	ND	ND	ИD	ND	ND	ND ND
PCB-1248	ND	ND	ND	ND ND	ND HD	ND CN
PCB-1260	ND	ND	ND	ND	ND ND	11D
PCB-1015	ND	א ט ע א	ע א.	WD WD	とり	:. D :: D
Toxaphene	C M	ND	ND);D	22 D	115

Gene Dennison, PhD, JIN Technical Director CONTROL OF THE CONTRO

princeion gnikesi yrotorodoly

DATE: June 14, 1985

JOB NO. 37738

AUTHORIZATION:

SAMPLE: Soil - 12

TO: Fred C. Hart Associates

530 Fifth Ave

Lew York, NY 10036

Att: Jim Jeck

REPORT OF ANALYSIS

, RECEIVED J	UN 2 0 1985	RIORITY Po		<u>!</u>		
	#1	#2	#3	#4	# 5	#6
Beryllium Cadmium Chromium Chromium Copper Nickel Lead Zinc Arsenic Silver Antimony Selenium Thallium	<pre>< 2.5 < .5 24.1 4.1 23.7 13.9 23.7 < 1.5 .50 108 < .25 < 2.5</pre>	<pre>< 2.5 .75 32.2 9.2 215 14.4 215 <1.5 .90 189 < .25 < 2.5</pre>	<pre>< 2.5 < .5 28.9 5.0 36.7 11.6 36.7 < 1.5 .50 140 < .25 < 2.5</pre>	<pre>< 2.5 .50 30.7 4.8 28.7 14.6 28.7 < 1.5 .90 160 < .25 < 2.5</pre>	<pre>< 2.5 1.1 45.9 37.5 236 238 236 <1.5 1.2 150 <.25 < 2.5</pre>	<pre>< 2.5 .50 34.9 16.5 65.3 63.0 63.5 < 1.5 .90 155 <.25 < 2.5</pre>
Mercury Cyanide Phenols	<.0 5 < 0.5 < 5.5	< .05 < 0.5 6.5	< .05 < 0.5 7.0	< .05 2.3 < 5.5	.06 < 0.5 7.0	.06 < 0.3 < 5.5

Vater, Waste Water & Gorobiolog

U.N. Rimte I. Prim tim Service Center 1609) 452 9050

CONTROL REPORT QUALITY

6-17-85 soil JG ANALYST: JOB NO. DATE:

38041

MATRIX:

Duplicate Analysis

EPA8010,8020 METHOD:

P.O. Box 3108, Princeton, N.J. 0h540

#26 Vinyl chloride Methylene chloride Trichlorofluoromethane Tetrachloroethylene Benzene Toluene Wethylene chloride Toluene Trichlorofluoromethane Tetrachloroethylene Tetrachloroethylene Benzene Toluene Toluene Toluene Tyluene Tyluene Tyluene Tyluene	comPound NAME e oride romethane hylene	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
	e oride romethane hylene	2 34		A CONTRACTOR OF THE PARTY OF TH
	oride romethane hylene	£ • 34	0.88	7.06
	romethane hylene	0.38	0.33	14.1
	hylene	0.11	0.23	9.07
		0.09	0.04	6.97
		0.26	0.16	36.4
		0.08	90.0	28.5
Methylene chlori Trichlorofluorom Tetrachloroethyl Benzene Toluene Trichloroethyler Xylenes(m&p)	2	0.35	0.36	2.8
Trichlorofluorom Tetrachloroethyl Benzene Toluene Trichloroethylen Xylenes(m&p)	oride	0.46	0.42	9.1
Tetrachloroethyl Benzene Toluene Trichloroethylen Xylenes(m&p)	romethane	0.18	0.15	18.2
Benzene Toluene Trichloroethylen Xylenes(m&p)	hylene	60.0	60.0	0
Toluene Trichloroethylen Xylenes(m&p)		0.18	0.18	0
Trichloroethylen Xylenes(m&p)		0.16	0.16	0
Xylenes (m&p)	lene	0.019	0.02	5.1
		90.0	0.07	15.4

001 x ['a 'a] - QAH.

SOOM ESSENDIAL ESCRESSION SOODERS CONSISS FASIASES INSCRESS INCLUDED INCLUDED IN THE CONTRACT IN THE PERSON IN

Princeton Service Center U.S. Route 1 (609) 452-9060 Tix-84-3942

Job # 38140 6-21-85

0-21-03	Detection						
	Limit	38	39	40	46	47	48
Chloromethane	.02	ND	ND	ND	ND	ND	ND
3romome thane	.10	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	.05	ND	ND	ND	ND	ND	ND
Vinyl Chloride	.02	ND	0.03	0.64	0.10	0.03	0.25
Chloroethane	.02	ND	ND	ND	ND	ND	ND
Methylene chloride	.05	0.12	0.12	0.14	0.12	0.09	0.16
Trichlorofluoromethane	•05 ·	ND	0.05	<.05	ND	ND	0.18
1,1-dichloroethene	.01	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	.01	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	.01	ND	ND	ND	ND	ND	ND
Chloroform	.02	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	.01	ND	ND	NU	ND	ND	ND
1,1,1-trichloroethane	.02	ND	ND	ND	ND	ND	ND
Carbon terrachloride	.02	ND	ND	ND	ND	ND .	ND
Bromodichloromethane	.02	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	.01	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	ND
Trichloroethene	.02	<.02	ND	<.02	ND	0.08	<.02
Dibromochloromethane	.02	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	.05	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.05	ND	ND	ND	ND	ND	ND
2-chloroethylvinylether	.05	ND	ND	ND	ND	ND	ND
3romo form	.10	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.10	ND	ND	ND	ND	ND	ND
Tetrachloroethene	.02	ND	0.04	0.07	ND	0.08	0.03
Benzene	.01	0.13	0.11	0.12			0.16
Toluene	.01	ND	0.02	0.02	<.01	0.03	0.05
Chlorobenzene	.01	ND	ND	ND	ND	ND	ND
Echylbenzene	.01	NL	ND	ND	ND	ND	ND
1.3-dichlorobenzene	.01	ND	ND	พบ	ND	מע	ND
1.2-dichlorobenzene	.01	ND	ND	ND	ИD	ND	ND
1,4-dichlorobenzene	.01	ND	ND	ND	ND	ND	ND
•					7		

MP=not detected

Jon Gabry, PhD Asst. Organic Lab. Mgr.

JG:mm

lapotatoth Eulitean Januaria Januaria

DATE: 6-24-85 DESCRIPTION DESCRIPTION DESCRIPTION

JOB NO. 38140

Fred C. Hart Assoc.

AUTHORIZATION:

530 Fifth Ave New York, NY 10036 ATT: Jim Meck

TO: __

SAMPLE:

REPORT OF ANALYSIS

	ACID E	EXTRAC	CTS	
micrograms/gram	Detection limit	38	39	40
2-Chlorophenol	1	ND	ND	ND
2,4-Dichlorophenol	1	ND	ND	ND
2,4-Dimethylphenol	1	ND	ND	ND
4,6-Dinitro-o-cresol	10	ND	ND	ND
2,4-Dinitrophenol	10	ND	ND	ND
2-Nitrophenol	1	ND	ND	ND
4-Nitrophenol	1	ND	ND	ND
p-chloro-m-cresol	1	ИD	ND	ND
Pentachlorophenol	1	ND	ND	ND
Phenol	1	ND	ND	ND
2,4,6-Trichlorophenol	1	ND	ND	ND

Jon Cabry, PhD Asst. Organic Lab Mgr.

riesering Eulisel Vaoimel

DATE:

6-24-85

TO: |

Fred C. Hart Assoc.

530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

JOB NO. 38140

AUTHORIZATION:

SAMPLE:

REPORT OF ANALYSIS

	ACID EXTRACTS			
micrograms/gram	Detection limit	46	47	48
2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	1 1 1 10 10	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
p-chloro-m-cresol Pentachlorophenol Phenol 2,4,6-Trichlorophenol	1 1 1 1	ND ND ND ND	ND ND ND ND	ND ND ND ND

Jon Gabry, PhD Asst. Organic Lab Mgr.

paparajory jezjjua jannasion

DATE: 6-21-85

JOB NO.

38140

AUTHORIZATION:

SAMPLE:

water

REPORT OF ANALYSIS

	BASE/NEUTRAL E	XTRACTS			
	Detection				
	Limit	38	39	40	
micrograms/gram			33	40	
Acenaphthene	1	ND	ND	ND	
Acenaphthylene	i .	ND	ND	ND	
Anthracene	1	ND			
Benzidine	Ío	ND	ND ND	%B	
Benzo(a)anthracene	1	ND	ND	ND	
Benzo(a)pyrene	1	ND	ND	ND	
3,4-Benzofluoranthene	1	ND	ND	ND	
Benzo(ghi)perylene	3	ND	ND	ND	
Benzo(k)fluoranthene	1	ND	ND	ND	
bis(2-chloroethoxy)methane	1	ND	ND	ND	
bis(2-chloroethyl)ether	1	ND	ND	ND	
bis(2-chloroisopropyl)ether	1	ND	ND	ND	
bis(2-ethylhexyl)phthalate	1	ND	ND	ND	
4-bromophenyl phenyl ether	1	ND	ND	ND	
Butylbenzyl phthalate	1	ND	ND	ND	
2-Chloronaphthalene	1	ND	ND	ND	
4-Chlorophenyl phenyl ether	1	ND	ND	ND	
Chrysene	1	ND	ND	ND	
Dibenzo(a,h)anthracene	3	ND	ND	ND	
1,2-Dichlorobenzene	1	ND	ND	ND	
1,3-Dichlorobenzene	1	ND	ND	ND	
1,4-Dichlorobenzene	1	ND	ND	ND	
3,3'-Dichlorobenzidine	1	ND	ND	ND	
Diethyl phthalate	1	ND	ND	ND	
Dimethyl phthalate	1	ND	ND	ND	
Di-n-butyl phthalate	1	ND	ND	ND	
2,4-Dinitrotoluene	1	ND	ND	ND	
2,6-Dinitrotoluene	1	ND	ND	ND	
Di-n-octyl phthalate	1	ND	ND	ND	
1,2-diphenylhydrazine	1	ND	ND	ND	
(as azobenzene)					
Fluoranthene	1	ND	ND	- CN	

Jon Gabry, PhD Asst. Organic Lab. Mgr.

JG:mm

TO: Fred C. Hart

530 Fifth Ave

New York, NY ATT: Jim Meck

10036

nclearing galical ynclenodel

DATE: 6-24-85

TO: |

JOB NO. ~

38140

Fred C. Hart Assoc.

530 Fifth Ave

AUTHORIZATION:

New York,, NY ATT: Jim Meck 10036

SAMPLE:

REPORT OF ANALYSIS

	BASE/NEUTRAL	EXTR	ACTS	(con't)
micrograms/gram	Detection			
	Limit	38	39	40
Fiuorene	1	ND	ND	ND
Hexachlorobenzene	1	ND	ND	ND
Hexchlorobutadiene	1	ND	ND	ND
Hexachlorocyclopentadiene	1 .	ND	ND	ND
Hexachloroethane	1	ND	ND	ND
Ideno(1,2,3-cd)pyrene	3	ND	ND	ND
Isophorone	1	ND	ND	ND
Naphthalene	1	ND	ND	ND
Nitrobenzene	1	ND	ND	ND
N-nitrosodimethylamine	ī	ND	ND	ND
N-nitrosodi-n-propylamine	ī	ND	ND	ND
N-nitrosodiphenylamine	ī	ND	ND	ND
Phenanthrene	1	ND	ND	ND
Pyrene	ī	ND	ND	ND
1,2,4-Trichlorobenzene	ī	ND	ND	ND

Jon Gabry, PhD Asst. Organic Lab Mgr.

iayiya **ayo**yi laboratory

DATE: 6-24-85

JOB NO. 38140

AUTHORIZATION:

SAMPLE:

REPORT OF ANALYSIS

REPORT OF ANALYSIS				
•	BASE/NEUT	RAL E	XTRAC	TS
micrograms/gram	Detection Limit	46	47	48
Acenaphthene	1	ND	ND	ND
Acenaphthylene	1 .	ND	ND	ND
Anthracene	1	ND	ND	ND
Benzidine	10	ND	ND	ND
Benzo(a)anthracene	1	ND	ND	ND
Benzo(a) pyrene	1	ND	ND	ND
3,4-Benzofluoranthene	1	ND	ND	ND
Benzo(ghi)perylene	3	ND	ND	ND
Benzo(k) fluoranthene	1	ND	ND	ND
bis(2-chloroethoxy)methane	ī	ND	ND	ND
bis(2-chloroethyl)ether	ī	ND	ND	ND
bis (2-chloroisopropyl) ether	· 1	ND	ND	ND
bis(2-ethylhexyl)phthalate	ĩ	ND	ND	ND
4-bromophenyl phenyl ether	ī	ND	ND	ND
Butylbenzyl phthalate	ī	ND	ND	ND
2-Chloronaphthalene	i	ND	ND	ND
4-Chlorophenyl phenyl ether	1	ND	ND	ND
Chrysene	ī	ND	ND	ND
Dibenzo(a,h)anthracene	3	ND	ND	ND
1,2-Dichlorobenzene	ī	ND	ND	ND
1,3-Dichlorobenzene	ī	ND	ND	ND
1,4-Dichlorobenzene	ī	ND	ND	ND
3,3'-Dichlorobenzidine	ī	ND	ND	ND
Diethyl phthalata	î	ND	ND	ND
Dimethyl phthalate	1	ND	ND	ND
Di-n-butyl phthalate	î	ND	ND	ND
2,4-Dinitrotoluene	ī	ND	ND	ND
2,6-Dinitrotoluene	î	ND	ND	ND
Di-n-octyl phthalate	1	ND	ND	ND
1,2-diphenylhydrazine	i	ND	ND	ND
(as azobenzene)	•	110	.10	110

ND

ND

ND

1

Jon Gabry, PhD Asst. Organic Lab. Mgr.

JG:mm

Fluoranthene

TO: |

Fred C. Hart Assoc. 530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

lapotaloty lesting juliussion

DATE: 6-24-85

JOB NO.

38140

KKESI KANDADAN MENANGAN KENKKKKA MANDADA MANDADAN KANGKAN MANDADA MANDADAN KANGKAN MANDANA MENEK

TO: Fred C. Hart Assoc. 530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

AUTHORIZATION:

SAMPLE:

REPORT OF ANALYSIS

-: /	BASE/NEUTRAL	EXTR	ACTS	(con't)
micrograms/gram	Detection	46	47	48
Fiuorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Ideno(1,2,3-cd)pyrene Isophorone	limit 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
Naphthalene Nitrobenzene N-nitrosodimethylamine N-nitrosodi-n-propylamine	1 1 1	ND ND ND ND	ND ND ND ND	ND ND ND ND
N-nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene	1 1 1 1	ND ND ND ND	ND ND ND ND	ND ND ND ND

Jon Gabry, PhD Asst. Organic Lab. Mgr.

laboraiory Suitesiony

DATE: 6-24-85

то: __

JOB NO. 38140

Fred C. Hart Assoc. 530 Fifth Ave

AUTHORIZATION:

New York, NY 10036 ATT: Jim Meck

SAMPLE:

REPORT OF ANALYSIS

	PESTICII	ES ANI	PCB	s			
ug/g	Detection						
	Limit	38	39	40	46	47	48
Aldrin	1	ND	ND	ND	ND	ND	ND
BHC, Alpha	1 .	ND	ND	ND	ND	ND	ND
BHC, Beta	1	ND	ND	ND	ND	ND	ND
BHC, Gamma	1	ND	ND	ND	ND	ND	ND
BHC, Delta	1	ND	ND	ND	ND	ND	ND
Chlordane	1	ND	ND	ND	ND	ND	ND
4,4'DDT	1	ND	ND	ND	ND	ND	ND
4,4'DDE	1	ND	ND	ND	ND	ND	ND
4,4'DDD	1	ND	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND	ND
Endosulfan-alpha	1	ND	ДN	ИD	ND	ND	ND
Endosulfan-beta	1	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	1	ND	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	1	ND	ND	ND	ND	ND	ND
PCB-1242	1	ND	ND	ND	ND	ND	ND .
PCB-1254	1	ND	ND	ND	ND	ND	ND
PCB-1221	1	ND	ND	ND	ND	ND	ND
PCB-1232	1	ND	ND	ND	ND	ND	ND
PCB-1248	1	ND	ND	ND	ND	ND	ND
PCB-1260	1	ND	ND	ND	ND	ND	ND
PCB-1016	1	ND	ND	ND	ND	ND	ND
Toxaphene	1	ND	ND	ND	ND	ND	ND

Jon Gabry, PhD Asst. Organic Lab Mg

JG:num

ncieżnie gritzet vrotorodol

DATE: 6-21-85

JOB NO. 38140

AUTHORIZATION:

SAMPLE: water soil

REPORT OF ANALYSIS

	PRIORITY POLL	JTANTS_				
	#AF/GI	E83				
	38	39	40	46	47	48
	•	mg/kg				
Beryllium Cadmium Chromium Chromium Copper Nickel Lead Zinc Arsenic Silven Antimony Selenium Thallium Mercury Cyanide Phenols	<1.0 <1.0 2.0 6.0 10 13 10 <1.5 <1.0 5.8 <.50 2.0 <.100 <0.5 <6.0	<1.0 2.0 30 22 35 67 45 <1.5 <1.0 22 .50 7.0 <.100 0.88 <6.0	<1.0 2.0 24 15 25 61 46 <1.5 <1.0 18 .50 7.0 <.100 0.5 <6.0	<1.0 1.0 4.0 7.0 15 26 10 <1.5 6.0 6.1 <.50 2.0 <.100 0.5 <6.0	<1.0 7.0 325 62 171 250 77 <1.5 5.0 60 <50 21 <100 <0.5 11.0	<1.0 <1.0 4.0 5.0 10 13 8.0 <1.5 <1.0 5.6 <.50 2.0 <.100 <0.5 16.0

sample 49 was broken sample received 4-25-85

530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

Edna A. Alinea, Manager Water, waste water & Microb.

EAA: mm

U.S. Rimer !

QUALITY

JOR NO. -38140 ANAL YST.

Chain Chain		Tacala loatico				
	there as anso	CONTROL AETON	DATE	6-2	6-21-85	
Visite Hotely		Ounlicate Analysis	MATRIX	soil	soil	
P.O. Ben 310M, Princeton, N.J. 08540	1. N J. 08545		ME 1400:		8010/8029	
OUND	OUND		CONCENTRATION (49/1)	TION (ug/1)	ENTRATION (ug/1) Relative Percent	
9	COMPOUND NAME	Tremmighamen and Architectus a	Run 1 (D.) Run 2 (O	Run 2 (D ₂)	(370)	

COMPOUND		CONCENTR	CONCENTRATION (ug/1)	Relative Percent Difference
Sample 10	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)
40	Vinly Chlocide	0.64	0.62	3.2
	Methylene Chloride	0.14	80.0	54
	Trichlorofluoromethane	< °.05	< • 05	0
	Trichloroethylene	< .02	< .02	0
	Tetrachloroethylene	0.07	0.07	0
	Benzene	. 0.12	0.11	8.7
	Toluene	0.02	0.02	0

		and the second s		
			:	
			·	
			: 1	

.neu. [('a - 'a)] × 100

Princeton Service Center U.S. Route ! (609) 452-9060 Tls-84-3942

PO Box 3108, Princeton, NJ

Job	38	140
6-2	1-8	5

ug/l

6-21-85						
	Detection					
	Limit	41	42	43	44	45
Chloromethane	2	ND	ND	ND	ND	ND
Bromomethane	10	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	2.9	ND	2.7
Chloroethane	2	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	<5	51	< 5
Trichlorofluoromethane	5	ND	ND ,	<5	ND	< 5
l, l-dichloroethene	1 .	ND	ND	<1	ND	<1
l, 1-dichloroethane	1	ND	ND'	5.7	ND	ND
trans-1,2-dichloroethene	1	ND	ND	ND	ND	ND
Chloroform	2	ND	ND	ND	ND	ND
1,2-dichloroethane	1	ND	ND	ND	ND	ND
1,1,1-trichloroethane	2	ND	ND	<2	<2	ND
Carbon tetrachloride	2	ND	ND	ND	ND	ND
Bromodichloromethane	2	ND	ND	ND	ND	ND
1,2-dichloropropane	1	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	5	ND	ND	ND	ND	ND
Trichloroethene	2	ND	ND	ND	ND	ND
Dibromochloromethane	2	ND	ND	ND	ND	ND
1,1,2-trichloroethane	5	ND	ND	ND	ND	ND
cis-1,3-dichloropropens	5	ND	ND	ND	ND	ND
2-chloroethylvinylether	5	ND	ND	ND	ND	ND ND
3romo form	10	ND	ND	ND ND	ND	ND
1,1,2,2-tetrachloroethane	10	ND	ND ND	< 2	<u>ŅD</u> < <u>2</u>	ND
Tetrachloroethene	2	ND ND	ND	<1	<1	<1
Senzene	1	ND	ND	<1	ND	<1
Toluene	1	ND	ND	ND	ND	ND
Chlorobenzene	1	ND	ND	ND	ND	ND
Ethylbenzene	1	ND	ND	ND	ND	ND
1,3-dichlorobentene	1 1	ND	ND	ND	ND	ND
1,2-dichlorobenzene	1	ND	ND	ND	ממ	טמ
1,4-dichlorobenzene	L	.40	110	,		

ND-not detected

Jon/Gabry, PhD Asst. Organic Lab. Mgr.

JG:mm

poroiory Suitesion Jennesion

DATE: 6-24-85

JOB NO. 38140

AUTHORIZATION:

SAMPLE:

Fred C. Hart Assoc. 530 Fifth Ave

TO: |

New York, NY 10036 ATT: Jim Meck

REPORT OF ANALYSIS

	ACID EXTRACTS									
micrograms/liter	Detection limit	41	42	43	44	45				
2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-c-cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	25 25 25 250 250 25 25	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND				
p-chloro-m-cresol Pentachlorophenol Phenol 2,4,6-Trichlorophenol	25 25 25 25 25	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND				

Jon Gabry, PhD Asst. Organic Lab. Mgr

This makes in laboratory

DATE: 6-24-85

JOB NO.

38140

AUTHORIZATION:

SAMPLE:

REPORT OF ANALYSIS

	BASE/NEUT	RAL E	ZTRAC	ŢS			<u> </u>
micrograms/liter	Detection Limit	41	42	43	44	45	
Acenaphthene	10	ND	ND	ND	ND	ND ,	
Acenaphthylene	10	ND	ND	ND	ND	ND ,	
Anthracene	10 .	ND	ND	ND	ND	ND	
Benzidine	100	ND	ND	ND	ND	ND	
Benzo(a)anthracene	10	ND	ND	ND	ND	ND	
Benzo(a) pyrene	10	ND	ND	ND	ND	ND	
3,4-Benzofluoranthene	10	ND	ND	ND	ND	ND	
Benzo(ghi)perylene	25	ND	ND	ND	ND	ND	
Benzo(k) fluoranthene	10	ND	ND	ND	ND	ND	
bis(2-chloroethoxy)methane	10	ND	ND	ND	ND	ND	
bis(2-chloroethyl)ether	10	ND	ND	ND	ND	ND	
bis(2-chloroisopropyl)ether	10	ND	ND	ND	ND	ND	
bis(2-ethylhexyl)phthalate	10	ND	ND	ND	ND	ND	
4-bromophenyl phenyl ether	10	ND	ND	ND	ND	ND	
Butylbenzyl phthalate	10	ND	ND	ND	ND	ND	
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	
4-Chlorophenyl phenyl ether		ND	ND	ND	ND	ND	
Chrysene	10	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	25	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	10	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	10	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	10 .	ND	ND	ND	ND	ND	
3,3'-Dichlorobenzidine	10	ND	ND	ND	ND	ND	
Diethyl phthalate	10	ND	ND	ND	ND	ND	
Dimethyl phthalate	10	ND	ND	ND	ND	ND	
Di-n-butyl phthalate	10	ND	ND	ND	ND	ND	
2,4-Dinitrotoluene	10	ND	ND	ND	ND	ND	
2,6-Dinitrotoluene	10	ND	ND	ND	ND	ND	
Di-n-octyl phthalate	10	ND	ND	ND	ND	ND	
1,2-diphenylhydrazine	10	ND	חת	ND	ND	ND	
(as azobenzene)	- -		5,-			145	
Fluoranthene	10	ND	ND	ND	ND	ND	
				•••		•••	

Asst. Organic Lab Jon Gabry

TO: Fred C. Hart Assoc.

530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

prinction festing laboratory

DATE: 6-24-85

JOB NO.

38140

AUTHORIZATION:

SAMPLE:

REPORT OF ANALYSIS

•	BASE/NEUTRAL	EVMD	N CMC	(con!t		
micrograms/liter		EXIK	ACIS	(con't	<u>.,</u>	
_	Detection	A 1	42	47		4 -
- .	limit	41	42	43	44	45
Fiuorene	10	ND	ND	ND	ND	ND
Hexachlorobenzene	10	ND	ND	ND	ND	ND
Hexchlorobutadiene	10	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	10	ND	ND	ND	ND	ND
Hexachloroethane	10	ND	ND	ND	ND	ND
Ideno(1,2,3-cd)pyrene	25	ND	ND	ND	ND	ND
Isophorone	10	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND
Nitrobenzene	10	ND	ND	ND	ND	ND
N-nitrosodimethylamine	10	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	10	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	10	ND	ND	ND	ND	ND
Phenanthrene	10	ND	ND	ND	ND	ND
Pyrene	10	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	10	ND	ND	ND	ND	ND

Jon Gabry, PhD Asst. Organic Lab. Mg

TO: |

Fred C. Hart Assoc.

530 Fifth Ave New York, NY 10036 ATT: Jim Meck

lapotatory Salina Sullicatori

DATE: 6-24-85

TO: |

38140 JOB NO.

Fred C. Hart Assoc. 530 Fifth Ave New York, NY 1-036 ATT: Jim Meck **AUTHORIZATION:**

SAMPLE:

REPORT OF ANALYSIS

	PESTICIDE	S AND I	CR'S			
	Detection	o mo	CD D			
ug/1	Limit	41	42	43	44	45
Aldrin	1	ND	ND	ND	ND	ND
BHC, Alpha	1 .	ND	ND	ND	ND	ND
BHC, Beta	1	ND	ND	ND	ND	ND
BHC, Gamma	1	ND	ND	ND	ND	ND
BHC,Delta	1	ND	ND	ND	ND	ND
Chlordane	1	ND	ND	ND	ND	ND
4,4'DDT	1	ND	ND	ND	ND	ND
4,4'DDE	1	ND	ND	ND	ND	ND
4,4'DDD	1 .	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND
Endosulfan-alpha	1	ND	ND	ND	ND	ND
Endosulfan-beta	1	ND	ND	ND	ND	ŊD
Endosulfan Sulfate	1	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND
Heptachlor epoxide	1	ND	ND	ND	ND	ND
PCB-1242	1	ND	ND	ND	ND	ND
PCB-1254	1	ND	ND	ND	ND	ND
PCB-1221	1	ND	ND	ND	ND	ND
PCB-1232	1	ND	ND	ND	ND	ND
PCB-1248	1	ND	ND	ND	ND	ND
PCB-1260	1	ND	ND	ND	ND	ND
PCB-1016	1	ND	ND	ND	ND	ND
Toxaphene	1	ND	ND	ND	ND	ND

Jon Gabry, PhD Asst. Organic Lab. Mgr. JG:mm

iegitê Innegov yroterodel

DATE: 6-21-85

TO: Fred C. Hart Assoc.

JOB NO. 38140

530 Fifth Ave

AUTHORIZATION:

New York, NY 10036 ATT: Jim Meck

SAMPLE: water

REPORT OF ANALYSIS

	PRIORITY POLI	LUTANTS								
		#AF/GE83								
	41	42	43	44	45					
	mg/l									
Beryllium	<.01	<.01	<.01	<.01	<.01					
Cadmium	1<.01	<.01	<.01	<.01	<.01					
Chromium	<.01	.01	.01	<.01	.01					
Copper	.01	.03	.01	.01	.02					
Nickel	.01	.03	.03	.02	.03					
Lead	.11	.14	.13	.11	.14					
Zinc	.06	.03	.03	.02	.03					
Arsenic	<0.01	<0.01	<0.01	<0.01	<0.01					
Silver	<.01	<.01	<.01	<.01	<.01					
Antimony	.01	.04	.05	.03	.04					
Selenium	<.01	<.01	<.01	<.01	.01					
Thallium	<.05	<.05	<.05	<.05	<.05					
Mercury	<.001	<.001	<.001	<.001	<.001					
Cyanide	<0.01	<0.01	<0.01	<0.01	<0.01					
Phenols	<0.1	<0.1	<0.1	<0.1	<0.1					

pH, Conductivity- insufficient sample sample received 4-25-85

> Edna A. Alinea, Manager Water, waste water & Microbiology

EAA: mm

U.S. Remie I Filmation Service Lenter (600) 452 9050

QUALITY CONTROL REPORT

Matrix Spike Analysis

ANALYST: 38140

ANALYST: JG

DATE: 6-21-85

MATRIX

METHOD

P.O. Box 3108, Princeton, N.J. 08540

COMPOUND					×
Sample 10	COMPOUND NAME	Semple Result (SR)	Spiked Semple Result (SSR)	Added (SA)	Recavery
41	Methylene chloride	Q	64	74	86.
	1,1-Dichloroethylene	QN ON	5.8	55	105
	1,1-Dichloroethane	ND	63	09	105
	1,2-Dichloroethylene	QN	65	61	106
	Chloroform	QN	89	72	94.
	a	QN.	77	78	66
-	1,1,1-Trichloroethylene	ND	63	5.4	117
:	Carbon Tetrachloride	QN	7.1	57	124
1	1,2-Dichloroepropane	ND	67	65	103
(Trichloroethylene	QN	62	55	112
1	Tetrachloroethylene	QN	73	62	118
	Chlcrobenzene	QN	48	47	102
	Benzene	QN	62	65	95.
	Ethylbenzene	ND	09	54	111
	Toluene	QN	65	61	106
	m-x) lene	QN	7.1	64	111
	p-xx-d	QN	49	44	111
	m-D chlorobenzene	QN	86	75	114
	p-f) chlorobenzene	QN	26	49	1.5

マイクラウン 10mm かんかん 10mm できる 10

Confineration Destings Hologeneileny

UN Rente I tally 452 wish

CONTROL REPORT **QUALITY**

Duplicate Analysis

38140 ANALYST JOH NO.

6-21-85 DATE

Water MATRIX

EPA 601/602 METHOD:

P.O. Rox 3108, Princelon, N J. 08540

COMPOUND		CONCENTR	CONCENTRATION (ug/1)	Relative Percent
Sample 10	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	inen:
44	Methylene Chloride	51	ND	200
	l, l, l-Trichloroethane	<2	<2	0
	Tetrachloroethylene	<2	42	0
	Benzene	<1	<1	0
	A CANADA			
		1		
			***************************************	,
		a figure propulate de contra pura y despri		
		a degree of the state of the st		
		* * * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				•
			· · · · · · · · · · · · · · · · · · ·	
			:	
g				

001 x [('a-'a)] - aan.

Princeton Service Center U.S. Route 1 (609) 452-9050 Tlx-84-3942

prinction testing laboratory

वस्ता अस्टरक्टरस्य अस्टरक्टरस्य अस्टरक्टरस्य जनस्यक्टरस्य अस्टरक्टरस्य अस्टरक्टरस्य अस्टरक्टरस्य अस्टरस्टरस्य

Fred C. Hart

JOB: #38180	Method Detection		,	ug/l			Trip
June 17, 1985	Limit	#50	#51	#52	#53	‡54	Blank
Chloromethane	2	ND	ND	ND	ND	ND	ND
Bromomethane	10	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	8.0	<2	<2
Chloroethane	2	ND	ND	ND	ND	ND	ND
Methylene chloride	5	< 5	< 5	< 5	< 5	< 5	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND
l,l-dichloroethene	1	<1·		5.9	ND	5.2	ND
l,l-dichloroethane	1	11	ND	110	ND	ND	ND
trans-1,2-dichloroethene	1	ND	ND	ND	ND	8.1	⟨2
Chloroform	2	< 2	ND	ND	ND	ND	ND
1,2-dichloroethane	1	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	2	2.8	ND	ND	ND	< 2	ND
Carbon tetrachloride	2	ND	ND	ND	ND	ND	ND
Bromodichloromethane	2	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	1	ND	ND	ND	ND	ХD	ND
trans-1,3-dichloropropene	5	ND	ND	ND	ND	ND	ND
Trichloroethene	2	⟨2	⟨2	⟨2	ND.	7.2	ND
Dibromochloromethane	2	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	5	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	5	ХD	ND	ND	ND	ND	ND
2-chloroethylvinylether	5	ND	NO	ND	ND	ND	ND
Bromoform	10	ND	ND	ХD	ND	ND	ND
1,1,2,2-tetrachloroethane	10	ND	ND	ND	ND	ND	ND
Tetrachloroethene	2	< 2	ND	ND	ND	6.3	ND ND
Benzene	ī	λî	ND	₹ 1	(1	< 1	ND ND
Toluene	ī	ζī	ND	₹1	< 1	< 1	ND
Chlorobenzene	ī	, ND	ND	ND	ND	УD	ND ND
Ethylbenzene	ī	ND	ND	ND	NO	ND	
1,3-dichlorobenzene	i	ND	ND ND	ND	ND	NO NO	ND ND
1,2-dichlorobenzene	i	ND	ND ND	ND	ND ND		
1,4-dichlorobenzene	i	ND ND	6.6	ND ND	ND ND	ND	ND
xylenes	1	2.3		(1		ND	ND
ND-not detected	1	4.5	ND	\ T	< 1	ND	ND

Jon Gabry, PhD, Asst.Organic Lab.Mr

العاقفانالنالخ laboraicry

DATE: June 17, 1985

JOB NO. 38180

AUTHORIZATION: verbal

SAMPLE: Water - 4

TO: | Fred C. Hart 530 Fifth Avenue New York, NY 10036

REPORT OF ANALYSIS

	ACID	EXTRACTS			6	
(Sample #52 was broken)	Method Detection		ug/l			
	Limit	‡50	#51	#53	#54	
2-Chlorophenol	25	ND	ND	ND	ND	
2,4-Dichlorophenol	25	ND	ND	ND	ND	
2,4-Dimethylphenol	25	ND	ND	ND	ND	
4,6-Dinitro-o-cresol 2,4-Dinitrophenol	250	ND	ND	ND	ND	
2-Nitrophenol	250	ND	ND	ND	ND	
4-Nitrophenol	25	ND	ND	MD	ND	
p-chloro-m-cresol	25	ND	ND	ND	ND	
Pentachlorophenol	25 25	ND	ND	ND	ND	
Phenol	25	ND	ND	ND	ND	
2,4,6-Trichlorophenol	25 35	ND	ND	ND	ND	
-, .,	25	ND	ND	ND	ND	

ND = not detected Method-EPA 625 Matrix-Water

Sample #52 was broken enroute to our facility.

Jon Gabry, PhD, Asst. Organic Lab. Mor.

JG/rk

lapotatory Eulipei Printencin

June 17, 1985 DATE:

TO: Fred C. Hart

JOB NO. 38180

530 Fifth Ave. AUTHORIZATION: verbal New York, New York 10036

SAMPLE: Water - 4

REPORT OF ANALYSIS

	BASE/NEU	TRAL EX	TRACTS		
(Sample)	Method Detection		ug/1		
(#52 Broken)	Limit	#50	#51	#53	#54
Acenaphthene	10	ND	ND	ND	ND
Acenaphthylene	10	ND	ND	ND	ND
Anthracene	10	ND	ND	ND	ND
Benzidine	100	ND	ND	ND	ND
Benzo(a)anthracene	10	ND	ND	ND	ND
Benzo(a) pyrene	10	ND	ND	ND	ND
3,4-Benzofluoranthene	10	ND	ND	ND	ND
Benzo(ghi)perylene	25	ND	ND	ND	ND
Benzo(k) fluoranthene	10	MD	ND	ND	ND
bis(2-chloroethoxy)methane	10	ND	ND	ND	ND
bis(2-chloroethyl)ether	10	ND	ND	ND	ND
bis(2-chloroisopropyl)ether	10	ND	ND	ND	ND
bis (2-ethylhexyl) phthalate	10	ND	ND	ND	ND
4-bromophenyl phenyl ether	10	ND	ND	ND	ND
Butylbenzyl phthalate	10	ND	ND	ND	ND
2-Chloronaphthalene	10	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	10	ND	ND	ND	ND
Chrysene	10	ND	ND	ND	ND
Dibenzo(a,h)anthracene	25	ND	ND	ND	ND
1,2-Dichlorobenzene	10	ND	ND	ND	ND
1,3-Dichlorobenzene	10	ND	ND	ND	ND
1,4-Dichlorobenzene	10	ND	ND	ND	ND
3,3'-Dichlorobenzidine	10	ND	ND	ND	ND
Diethyl phthalate	10	ND	ND	ND	ND
Dimethyl phthalate	10	:©	12 5	: : D	;D
Di-n-butyl phthalate	10	ND	ND	ND	ND
2,4-Dinitrotoluene	10	ND	ND	ND	ND
2,6-Dinitrotoluene	10	ND	ND	ND	ND
Di-n-octyl phthalate	10	ND	ND	ND	ND
<pre>1,2-diphenylhydrazine (as azobenzene)</pre>	10	ND	ND	ND	ND
Fluoranthene	10	ND	ND	ND	ND

laporajory Egjirg Jeruseini

DATE: June 17, 1985

TO: Fred C. Hart

JOB NO. 38180

530 Fifth Ave. New York, NY 10036

AUTHORIZATION:

verbal

100 1001, 11 2000

SAMPLE: Water - 4

REPORT OF ANALYSIS

	BASE/NEUTRAL	EXTRACTS	(con't)		
1	Method Detection		ug/l	,	
(Sample #52 - Broken)	Limit	# 50	#51	#53	#54
Fiuorene	10	ND	ND	ND	ND
Hexachlorobenzene	10	ND	ND	ND	ND
Hexchlorobutadiene	10	ND	ND	ND	ND
Hexachlorocyclopentadiene	10	ND	SD	ND	. 150
Hexachloroethane	10	ND	ND	ND	ND
Ideno(1,2,3-cd)pyrene	25	ND	ND	ND	ND
Isophorone	10	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND
Nitrobenzene	10	ND	ND	ND	ND
N-nitrosodimethylamine	10	ND	ND	ND	ND
N-nitrosodi-n-propylamine	10	ND	ND	ND	ND
N-nitrosodiphenylamine	10	ND	ND	ND	ND
Phenanthrene	10	ND	ND	ND	ND
Pyrene	10	ND	ND	ND	ND
1,2,4-Trichlorobenzene	10	ИĎ	ND	ND	ND

ND = not detected Method= EPA 625 Matrix= Water

Jon Gabry, PhD, Asst. Organic Lab. Mgr.

NOTE: Sample #52 was broken en route to our facility

Managery 1

100 2 8 1885

DATE 6-21-85

TO: |

Fred C. Hart Associates

530 Fifth Ave New York NY 10036

ATT: Jim Meck

JOB NO 38180

1.

AUTHORIZATION verbal

SAMPLE: water

REPORT OF ANALYSIS

	PESTICID	ES AND PC	B'S			
	Detection					
	Limit	#50	#51	#53	a ! 4	
	Dimi		ug/1	. 30		
Aldrin	$\frac{1}{2}$.	ND	ND	ND	ND	
BHC, Alpha	1	ND	ND	ND	ND	
BHC, Beta	1	ND	ND	ND	ND	
BHC, Gamma	1	ND	ND	ND	ND	
BHC, Delta	1	ND	ND	ND	ND	
Chlordane	1	ND	ND	ND	ND	
4,4'001	1	ND	ND	ND	ND	
4,4'55:	1	ND	ND	ND	ND	
4,4'DDL	1	ND	ND	ND	ND	
Dieldrin	1	ND	ND	ND	ND	
Endosulfan-alpha	1	ND	ND	ND	ND	
Endosultun-1/ta	1	ND	ND	ND	NE	
Endovalte Foliate	1	ND	ND	ND	ND	
	ī	ND	ND	ND	N_	
Lidrin Aldenyde	1	ND	ND	ND	ND	
Heptachler	ī	ND	ND	ND	ND	
neptachlor epoxide	ī	ND	ND	ND	ND	
FCB-1242	5	ND	ND	ND	ND	
PCB-1254	Š	ND	ND	ND	ND	
PCB-1234 PCB-1221	5	ND	ND	ND	ND	
	5	ND	ND	ND	ND	
PCB-1232		ND	ND	ND	ND	
PCB-1248	5 5 5 5	ND	ND	ND	ND	
PCB-1260	5	ND	ND	ND	ND	
i CB-1016	ر د	ND	ND	ND	ND	
Toxaphene	9	NO	ND	ND		

Jop Gabry, PhD

Asst.Organic Lab Manager

MK:na

princeion desing

DATE: 6-17-85

TO:

Fred C. Hart Associates

530 Fifth Ave

New York NY 10036

JOB NO. 38180

AUTHORIZATION: verbal

SAMPLE:

water - 5

REPORT OF ANALYSIS

	50	51	52 mg/l	53	54
Beryllium	< .02	< .02	< .02	< .02	< .02
Cadmium	< .01	< .01	< .01	< .01	< .01
Chromium	.67	.50	5.75	.02	< .02
Copper	.59	.18	.17	< .02	< .02
Nickel	.80	.33	.81	.02	.01
Lead	.39	.25	.30	.02	< .02
Zinc	3.13	22.5	22.7	.08	.04
Arsenic	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	< .01	< .01	< .01	< .01	< .01
Selenium	< .01	< .01	< .01	< .01	< .01
Antimony	14.1	3.95	2.82	.14	.10
Thallium	< .02	< .02	< .02	< .02	< .02
Merucury	< .001	< .001	< .001	< .001	< .001
Cyanide	<0.01	<0.01	0.027	<0.01	<0.01
Phenols	0.16	<0.1	0.11	<0.1	<0.1

Edna A. Alinea, Manager Water, waste water & microbiology

P.O. Best 3108, Princeton, N.J. 08540

Primers in Service cates

(A PV) 452 91158

CONTROL REPORT QUALITY

38180 ON BOY

RA G ANAL YST

6A1785 MATRIX. DATE

Matrix Spike Analysis

METHOD:

% Recovery*		102	100												
Spike	Added (SA)	140			* * * * * * * * * * * * * * * * * * * *									:	
Spiked Sample	Heavel (SSM)	142	121											: 1	
Semple	Rosult (SR)	0	0	•	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
COMPOUND NAME		Trichlomethylane	Tatrachlomathulana												
COMPOUND	Sempre 10	151			1	:	1						•		

fettline refletni Pereflingi Beleropetetlety

Francis Service Control (num 452 mst)

CONTROL REPORT QUALITY

J. Gabry 38180 ANALYST. ON BOF

--- 58/11/9 MATRIX DATE

Duplicate Analysis

601/602 ME 11100:

P.O. Ben 3108, Princeton, N.J. 08540

COMPOUND	COMPOUND	CONCENTRA	TION (up/1)	Roletive Percent
Sample 1D	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
#52	1,1-Dichloroethylene	5.9	5.8	7.1
	1,1-Dichlorcethane	106	107	6.6
	Benzene		× 1	0
	Toluene	- 77		0
	m-xylene			0
	Methylene Chloride	< 5	< 5	0
	Trichlomet ylene	5.2	4.2	0

MPD * (10 - 10) × 100

Princeton Service Center U.S. Route 1 (609) 452-9050 Tix-84-3942

ND

ND

ND

ND ND

ND

6-21-85 J# 38420	Detection Limit	#55
Chloromethane	2	ND
Bromomethane	10	ND
Dichlorodifluoromethane		ND
Vinyl Chloride	5 2 2 5 5 1 1 1 2 1 2 2 2 2 2 2 5 5 5	4.0
Chloroethane	2	ND
Methylene chloride	5	< 5
Trichlorofluoromethane	5 ·	ND
l, l-dichloroethene	1	ND
1,1-dichloroethane	1	ND
trans-1,2-dichloroethene	1	ND
Chloroform	2	ND
1,2-dichloroethane	1	ND
l, l, l-trichloroethane	2	ND
Carbon tetrachloride	2	ND
Sromodichloromethane	2	ND
l,2-dichloropropene	1	ND
trans-1,3-dichloropropene	5	ND
Trichloroethene	2	ND
Dibromochloromethane	2	ND
1,1,2-trichloroethane	5	ND
cis-1,3-dichloropropene	5	ND
2-chloroethylvinylether		ND
3 romo form	10	ND
1,1,2,2-tetrachloroethane	10	ND
Tetrachloroethene	2	ND
Benzene	1	ND

ND=not detected

1,3-dichlorobenzene

1,2-dichlorobenzene

1.4-dichlorobenzene

Chlorobenzene

s cny ibenzeue

Toluene

Jon Cabry, PhD Asst. Organic Lah. Mgr.

innesion

TO: | Fred C. Hart Assoc. 530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

DATE: 6-21-85

JOB NO.

38420

AUTHORIZATION:

SAMPLE:

water

REPORT OF ANALYSIS

	ACID EXTRACTS						
micrograms/liter	Detection Limit	# 5 5					
2-Chlorophenol	25	ND					
2,4-Dichlorophenol	25 ·	ND					
2,4-Dimethylphenol	25	ND					
4,6-Dimitro-o-cresol	250	ND					
2,4-Dinitrophenol	250	ND					
2-Nitrophenol	25	ND					
4-Nitrophenol	25	ND					
p-chicro-m-cresol	25	ND					
Pentachlorophenol	25	ND					
Phenol	25	ND					
2,4,6-Trichlorophenol	25	ND					

Jon Gabry, PHd Asst. Organic Lab. Manager

JG:តា៣

ficiestric; gnikesi yrotorodol

DATE: 6-21-85

JOB NO. 38420

AUTHORIZATION:

SAMPLE: water

REPORT OF ANALYSIS

	BASE/NEUTRAL	EXTRACTS
micrograms/liter	Detection Limit	#55
Acenaphthene	10	ND
Acenaphthylene	10	ND
Anthracene	10 .	ND
Benzidine	100	ND
Benzo(a) anthracene	10	ND
Benzo(a)pyrene	10	ND
3,4-Benzofluoranthene	10	ND
Benzo(ghi)perylene	25	ND
Benzo(k)fluoranthene	10	ND
bis(2-chloroethoxy)methane	10	ND
bis(2-chloroethyl)ether	10	ND
bis(2-chloroisopropyl)ether	10	ND
bis(2-ethylhexyl)phthalate	10	88
4-bromophenyl phenyl ether	10	ND
Butylbenzyl phthalate	10	ND
2-Chloronaphthalene	10	ND
4-Chlorophenyl phenyl ether	10	ND
Chrysene	10	ND
Dibenzo(a,h)anthracene	25	ND
1,2-Dichlorobenzene	10	ND
1,3-Dichlorobenzene	10	ND
1,4-Dichlorobenzene	10	ND
3,3'-Dichlorobenzidine	10	ND
Diethyl phthalate	10	ND
Dimethyl phthalate	10	ND
Di-n-butyl phthalate	10	ND
2,4-Dinitrotoluene	10	ND
2,6-Dinitrotoluene	10	ND
Di-n-octyl phthalate	10	ND
1,2-diphenylhydrazine	10	ND
(as azobenzene)		•
Fluoranthene	10	ND
1 1 dO1 dii cii cii c	- 0	

JG:mm

TO: |

Fred C. Hart Assoc.

New York, NY 1-036 ATT: Jim Meck

530 Fifth Ave

Jon Gabry, PhD Asst. Organic Lab. Mgr.

ingalon Taling Professional Control of the Control

DATE: 6-21-85

TO: Fred C. Hart Assoc.

JOB NO. 38420

530 Fifth Ave New York, NY 10036 ATT: Jim Meck **AUTHORIZATION:**

SAMPLE: water

REPORT OF ANALYSIS

	BASE/NEUTRAL		(con't)
micrograms/liter	Detecti	on	
micrograms, ficer	Limit	#55	
Fiuorene	10	ND	
Hexachlorobenzene	10	ND	
Hexchlorobutadiene	10	ND	
Hexachlorocyclopentadiene	10 .	ND	
Hexachloroethane	10	ND	
Ideno(1,2,3-cd)pyrene	25	ND	
Isophorone	10	ND	
Naphthalene	10	ND	
Nitrobenzene	10	ND	
N-nitrosodimethylamine	10	ND	
N-nitrosodi-n-propylamine	10	ND	
N-nitrosodiphenylamine	10	ND	
Phenanthrene	10	ДN	
Pyrene	10	ND	
1,2,4-Trichlorobenzene	10	ND	

Jon Gabry, PhD Asst. Organic Lab. Manager

allug**a**tan.

DATE: 6-21-85

JOB NO. 38420

AUTHORIZATION:

SAMPLE: water

Fred C. Hart Assoc. 530 Fifth Ave New York, NY 10036 ATT: Jim Meck

REPORT OF ANALYSIS

	PESTICID	ES AND PCB'S
micrograms/liter	MDL	#55
Aldrin	1	ND
BHC, Alpha		ND ND
BHC, Beta	1 1	ND ND
BHC, Gamma	1	ND
BHC, Delta	1	ND ND
Chlordane	1	ND ND
4,4'DDT	1 2 1	ND ND
4,4'DDE	1	ND ND
4,4'DDD	1	
Dieldrin	1	ND
	1	ND
Endosulfan-alpha	1	ND
Endosulfan-beta	1	ND
Endosulfan Sulfate	1	ND
Endrin	1	ND
Endrin Aldehyde	1	ND
Heptachlor	1	ND
Heptachlor epoxide	1	ND
PCB-1242	5	ND
PCB-1254	5	ND
PCB-1221	5	ND
PCB-1232	5	ND
PCB-1248	5 5 5 5 5 5 5 5 5	ND
PCB-1260	5	ND
bCB-JU1€	5	עֿא
Toxaphene	ä	ND

Jon Gabry, PhD Asst. Organic Lab. Mgr. ingering ingering ingeringer

DATE: 6-21-85

TO: Fred C Hart Accord

JOB NO. 38420

Fred C. Hart Assoc. 530 Fifth Ave

AUTHORIZATION:

New York, NY 10036

ATT: Jim Meck

SAMPLE: water

REPORT OF ANALYSIS

PRIORITY POLLUTANTS

AFIGE 83 SW -4,GW Hart 55

 $\cdot mg/1$

Beryllium <.01 Cadmium <0.01 Chromium .03 <.01 Copper Nickel .10 Lead .63 Zinc .63 Arsenic <0.01 Silver <.01 Antimony .45 Selenium <.01 Thallium <.05 Mercury <.001 Cyanide <0.01 Phenols <0.1

sample received 5-13-85

Edna A. Alinea, Manager

Water, waste water & Microbiology

EAA: mm

Princeton Service Center U.S. Route 1 (609) 452-9050 Thate4-3942

Job 38179							
6-21-85							
	MDL	56	58	59	60	61	57
Chloromethane	2	ND	ND	ND	ND	ND	ND
Bromomethane	10	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	6.4
Chloroethane	2	ND	14	ND	ND	ND	ND
Methylene chloride	5	<5.	< 5	<5	<5	<5	<5
Trichlorofluoromethane	5	ND	ND	ND	ND,	ND	<5
l, l-dichloroethene	1	ND	29	ND	ND	ND	11
1,1-dichloroethane	1	21	130	23	ND	ND	63
trans-1,2-dichloroethene	1	ND	ND	ND	ND	ND	6.9
Chloroform	2	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	1	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	2	ND	ND	ND	ND	6.2	9.1
Carbon tetrachloride	2	ND	ND	. ND	ND	ND	ND
Bromodichloromethane	2	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	1	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	5 2	ND	ND	ND	ND	ND	ND
Trichloroethene	2	ND	< 2	ND	ND	ND	8.6
Dibromochloromethane	2	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	5	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	5	ND	ND	ND	ND	ND	ND
2-chloroethylvinylether	5	ND	ND	ND	ND	ND	ND
Bromoform	10	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	10	ND	ND	ND	ND	ND	ND
Tetrachloroethene	2	ND	ND	ND	ND	ND	3.4
Benzene	1	ND	ND	ND	ND	ND	<1
Toluene	1	ND	2.2	ND	ND	ND	<1
Chlorobenzene	1	ND	ND	ND	ND	ND	ND
Schylbenzene	1	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	1	ND	ИD	ND	ND	ND	ND
1,2-dichlorobenzene	1	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	1	ND	ND	ND	ND	ND	ND
xylenes	1	ND	1.5	ND	_ND	ND	<1

ND=not detected

Jon Gabry, PhD Asst. Organic Lab. Mgr. laboraiory

DATE: 6-21-85

JOB NO.

38179

Fred C. Hart Assoc.

AUTHORIZATION:

530 Fifth Ave New York, NY 10036 ATT: Jim Meck

10: L

SAMPLE:

water

REPORT OF ANALYSIS

	ACID EXTRACTS								
micrograms/liter	Detection Limit	56	57	58					
2-Chlorophenol	25	ND	ND	ND					
2,4-Dichlorophenol	25 ·	ND	ND	ND					
2,4-Dimethylphenol	25	ND	ND	ND					
4,6-Dinitro-o-cresol	250	ND	ND	ND					
2,4-Dinitrophenol	250	ND	ND	ND					
2-Nitrophenol	25	ND	ND	ND					
4-Nitrophenol	25	ND	ND	ND					
p-chloro-m-cresol	25	ND	ND	ND					
Pentachlorophenol	25	ND	ND	ND					
Phenol	25	ND	ND	ND					
2,4,6-Trichlorophenol	25	ND	ND	ND					

Jon Gabry, PhD Asst. Organic Lab. Mgr.

jeajiuā İainiraarii laboratory

DATE: 6-21-85

JOB NO.

38179

AUTHORIZATION:

SAMPLE: water

Fred C. Hart Assoc. 530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

REPORT OF ANALYSIS

			-
ACID EXTRAC	CTS		
Detection Limit	59	Field B1 1 60	Field B1 2 61
25	ND	ND	ND
25 .	ND	ND	ND
25	ND	ND	ND
			ND
-			ND
			ND
25	ND	ND	ND
	Detection Limit 25 25 25 25 250 250 25 25 25 25 25	Limit 59 25 ND 25 ND 25 ND 250 ND 250 ND 250 ND 25 ND 25 ND 25 ND 25 ND 25 ND 25 ND	Detection

Jon Gabry, PhD Asst. Organic Lab. Mgr.

DATE: 6-21-85

JOB NO.

38179

Fred C. Hart Assoc.

530 Fifth Ave

то: г

10036

New York, NY ATT: Jim Meck

AUTHORIZATION:

SAMPLE: water

REPORT OF ANALYSIS

	BASE/NEUTRAL	EXTRACTS		
		micrograms/liter		
	Detection			
	Limit	56	57	58
Acenaphthene	10	ND	ND	ND
Acenaphthylene	10	ND	ND	ND
Anthracene	10 ·	ND	ND	ND
Benzidine	100	ND	ND	ND
Benzo(a) anthracene	10	ND	ND	DИ
Benzo (a) pyrene	10	ND	ND	ND
3,4-Benzofluoranthene	10	ND	ND	ND
Benzo(ghi)perylene	25	ND	ND	טא
Benzo(k) fluoranthene	10	ND	ND	MD
bis(2-chloroethoxy)methane	10	ND	ND	ND
bis(2-chloroethyl)ether	10	ND	ND	ND
bis(2-chloroisopropyl)ether	19	ND	ND	ND
bis(2-ethylhexyl)phthalate	10	48	ND	ND
4-bromophenyl phenyl ether	10	ND	ND	ND
Butylbenzyl phthalate	10	ND	ND	ND
2-Chloronaphthalene	10	ND	ND	ND
4-Chlorophenyl phenyl ether	10	ND	ND	ND
Chrysene	10	ND	ND	ND
Dibenzo(a,h)anthracene	25 ·	ND	ND	ND
1,2-Dichlorobenzene	10 .	ND	ND	ND
1,3-Dichlorobenzene	10	ND	ND	ND
1,4-Dichlorobenzene	10	ND	ND	ND
3,3'-Dichlorobenzidine	10	ND	ND	ND
Diethyl phthalate	10	ND	ND	ND
Dimethyl phthalate	10	ND	ND	ND
Di-n-butyl phthalate	10	NU	ND	ND
2,4-Dinitrotoluene	10	ND	ND	ND
2,6-Dinitrotoluene	10	ND	ND	ND
Di-n-octyl phthalate	10	ND	ND	ND
1,2-diphenylhydrazine	10	ND	ND	ND
(as azobenzene)				
Fluoranthene	10	ND	ND	ND

Jon Gabry, PhD Asst. Organic Lab. Mgr.

JG:mm

iealiva iouncaron laboratory

DATE: 6-21-85

10: r Fred C. Hart Assoc.

JOB NO. 38179

530 Fifth Ave New York, NY 10036 ATT: Jim Meck

AUTHORIZATION:

SAMPLE: water

REPORT OF ANALYSIS

micrograms/liter	BASE/NEUTRAL EXT	RACTS	(con't)	
	Detection			
	Limit	56	57	58
Fiuorene	10	ND	ND	ND
Hexachlorobenzene	10	ND	ND	ND
Hexchlorobutadiene	10	ND	ND	ND
Hexachlorocyclopentadiene	10 ·	ND	ND	ND
Hexachloroethane	10	ND	ND	ND
Ideno(1,2,3-cd)pyrene	25	ND	ND	ND
Isophorone	10	ND	ND	ND
Naphthalene	10	ND	ND	ND
Nitrcbenzene	10	ND	ND	ND
N-nitrosodimethylamine	10	ND	ND	ND
N-nitrosodi-n-propylamine	10	ND	ND	ND
N-nitrosodiphenylamine	10	ND	ND	ND
Phenanthrene	10	ND	ND	ND
Pyrene	10	ND	ND	ND
1,2,4-Trichlorobenzene	10	ND	ND	ND

Jon gabry, PhD Asst. Organic Lab. Mgr.

princeion lesing laboratory

DATE: 6-21-85

JOB NO. 38179

AUTHORIZATION:

SAMPLE: water

TO: Fred C. Hart Assoc.
530 Fifth Ave
New York, NY 10036
ATT: Jim Meck

REPORT OF ANALYSIS

•	BASE/NEUTRAL	EXTRACT	S		
Micrograms/liter	Detection Limit	59	60 Field Blank 1	61 Field Blank 2	
Acenaphthene	10	ND	ND	ND	
Acenaphthylene	10 ·	ND	ND	ND	
Anthracene	10	ND	ND	ND	
Benzidine	100	ND	ND	ND	
Benzo(a) anthracene	10	ND	ND	ND .	
Benzo (a) pyrene	10	ND	ND	ND	
3,4-Benzofluoranthene	10	ND	ND	ND	
Benzo(ghi)perylene	25	ND	ND	ND	
Benzo(k) fluoranthene	10	ND	ND	ND	
bis (2-chloroethoxy) methane	10	ND	ND	ND	
bis(2-chloroethyl)ether	10	ИD	ND	ND	
bis(2-chloroisopropyl)ether	10	ND	ND	ND	
bis (2-ethylhexyl) phthalate	10	ND	ND	ND	
4-bromophenyl phenyl ether	10	ND	ND	ND	
Butylbenzyl phthalate	10	ND	ND	ND	
2-Chloronaphthalene	10	ND	ND	ND	
4-Chlorophenyl phenyl ether	10	ND	ND	ND	
Chrysene	10	ND	ND	ND	
Dibenzo(a,h)anthracene	25	ND	ND	ND	
1,2-Dichlorobenzene	10	ND	ND	ND	
1,3-Dichlorobenzene	10	ND	ND	ND	
1,4-Dichlorobenzene	10	ND	ND	ND	
3,3'-Dichlorobenzidine	10	ND	ND	ND	
Diethyl phthalate	10	ND	ND	ND	
nimethyi phthaiate	10	NU	NU	NU	
Di-n-butyl phthalate	10	ND	ND	ND	
2,4-Dinitrotoluene	10	ND	ND	ND	
2,6-Dinitrotoluene	10	ND	ND	ND	
Di-n-octyl phthalate	10	ND	ND	ND	
<pre>1,2-diphenylhydrazine (as azobenzene)</pre>	10	ND	ND	ND	
Fluoranthene	10	ND	ND	ND	

JOF mm

Jon Gabry, PhD Asst. Organic Lab. Mgr.

iedig Indusion Professorial

> 6-21-85 DATE:

AUTHORIZATION:

JOB NO.

38179

Fred C. Hart Assoc.

TO: |

530 Fifth Ave New York, NY 10036 ATT: Jim Meck

SAMPLE: water

REPORT OF ANALYSIS

Detection Field Blank 1 Field Blan	k 2
micrograms/liter Limit 59 60 61	
Fiuorene 10 ND ND ND	
Hexachlorobenzene 10 ND ND ND	
Hexchlorobutadiene 10 ND ND ND	
Hexachlorocyclopentadiene 10 ND ND ND	
Hexachloroethane 10 ND ND ND	
Ideno(1,2,3-cd)pyrene 25 ND ND ND	
Isophorone 10 ND ND ND	
Naphthalene 10 ND ND ND	
Nitrobenzene 10 ND ND ND	
N-nitrosodimethylamine 10 ND ND ND	
N-nitrosodi-n-propylamine 10 ND ND ND	
N-nitrosodiphenylamine 10 ND ND ND	
Phenanthrene 10 ND ND ND	
Pyrene 10 ND ND ND	
1,2,4-Trichlorobenzene 10 ND ND ND	

Jon Gabry, PhD Asst. Organic Lab. Mgr.

jiTiz**u**di. jesiTig julizadi.

DATE: 6-21-85

TO: Fred C. Hart Assoc.

530 Fifth Ave

New York, NY 10036 ATT: Jim Meck

JOB NO.

38179

AUTHORIZATION:

SAMPLE:

water

REPORT OF ANALYSIS

		,			·····		
	PESTIC	IDES A	ND PCE	's		FB1	FB2
ug/g	MDL	56	57	58	59	60	61
Aldrin	1	ND	ND	ND	ND	ND	WD.
BHC,Alpha	1	ND	ND	ND ND	ND ND	ND ND	ND ND
BHC, Beta	1	ND	ND	ND	ND	ND	ND ND
BHC, Gamma	i	ND	ND	ND	ND	ND	ND
BHC, Delta	1	ND	ND	ND	ND	ND	ND
Chlordane	1	ND	ND	ND	ND	ND	ND
4,4'DDT	ī	ND	ND	ND	ND	ND	ND
4,4'DDE	1	ND	ND	ND	ND	ND	ND
4,4'DDD	i	ND	ND	ND	ND	ND	ND
Dieldrin	ī	ND	ND	ND	ND	ND	ND
Endosulfan-alpha	ī	ND	ND	ND	ND	ND	ND
Endosulfan-beta	ī	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ī	ND	ND	ND	ND	ND	ND
Endrin	ī	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	ī	ND	ND	ND	ND	ND	ND
Heptachlor	<u>1</u>	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	1	ND	ND	ND	ND	ND	ND
PCB-1242	1	ND	ND	ND	ND	ND	ND
PCB-1254	1	ND	ND	ND	ND	ND	ND
PCB-1221	1	ND	ND	ND	ND	ND	ND
PCB-1232	1	ND	ND	ND	ND	ND	ND
PCB-1248	1	ND	ND	ND	ND	ND	ND
PCB-1260	1	ND	ND	ND	ND	ND	ND
FCB-1016	ī	นัก	ND	ND	นัก	ND	ND
Toxaphene	1	ND	ND	ND	ND	ND	ND

Jon Gabry, PhD Asst. Organic Lab. Mgr. RECESSOR PROGRAMME SANDARD BUTCH COMMENT OF THE SANDARD SANDAR

idioraiory issiing unasaan

DATE: 6-24-85

TO: Fred C. Hart Assoc.

JOB NO. 38179

530 Fifth Ave

AUTHORIZATION:

New York, NY 10036 ATT: Jim Meck

SAMPLE: water

REPORT OF ANALYSIS

PRIORITY POLLUTANTS								
	56	57	58	59	60	61		
		•	mg/l					
Beryllium Cadmium Chromium Copper Nickel Lead Zinc Arsenic Silver Antimony Selenium Thallium Mercury	<.02 <.01 .11 .03 .06 .03 .19 <0.01 <.01 .66 <.01 <.02 <.001	<.02 .01 .62 .44 .71 .38 2.54 <0.01 .01 8.61 <.02	<.02 <.01 .26 .07 .11 .10 .33 <0.01 <.01 1.54 <.01 <.02 <.001	<.02 <.01 .16 .05 .09 .06 .27 <0.01 <.01 1.23 <.01 <.02 <.001	<.02 <.01 <.02 <.02 <.01 <.02 .01 <.001 <.01 .06 <.01 <.02 <.01	<.02 <.01 <.02 .02 <.01 <.02 .01 <.001 <.01 .05 <.01 <.02 <.01 <.001 <.001		
Cyanide Phenols	<0.01 <0.1	<.001	<0.01 <0.1	<0.01 <0.1	0.02	0.012		

57 Cyanide and Phenols were broken

Edna A. Alinea, Manager Water, waste water & Micro- biology

EAA:mm

38179 ON BOF

		QUALITY CONTROL REPORT Duplicate Analysis	ANALYST: DATE: MATRIK: METHOD:	JG 6-24-85 MW 601/602	
COMPOUND			CONCENTRATION (up/1)	TION (ug/1)	Relative Percen
Sample ID	OMPOUND	OUND NAME	Run 1 (D ₁)	Run 2 (0 ₂)	(RPD)*
5.8	Chloroethane		14	19	30
	Methylene chloride		2.7	1.9	3.5
	1,1-Dichloroethylene		29	32	8.6
	Trichlorcethylene		1.9	1.7	11
	Toluene		2.2	2.9	2.7
	Xylenes		1.1	1.0	9.5
60	Methylane cloride		2.0	1.4	35
				1	

	×
1,0 - 101	(,0.,0)

lotiflineræfotin Ræstflings Referonsifotiv

P.O. Box 3108, Princeton, N 5 08540

I N Rimir I (A PS) 452 WISO

CONTROL REPORT QUALITY

ANALYST ON BOC

38179

Duplicate Analysis

ME THOD:

6-21-85 MATRIX DATE

COMPOUND		CONCENTRA	CONCENTRATION (49/1)	Relative Percent
Sample 1D	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
101(tield	All semi-volatiles (GC/MS)	ON .	GN	0
(7 VIIII)			1	
1 1 1				
				; ; ;
				•
		:		

001 × ('(0.'0) - 0411.

letelline referting Reschlings Reference from V

I'O Hox 3108, Princelon, N J 08540

Principle Structure tedaj 452 misti

CONTROL REPORT QUALITY

Matrix Spike Analysis

RVD ANALYST DATE

38179

0N 80r

6-24-85 PE/MW

MATRIX

METHOD

Semple 1D	COMPOUND NAME	Sample Reult (SR)	Spiked Sample Result (SSR)	Spike Added (SA)	Recovery
59	Trichloroeth/lene	0	189	140	135
	Tetrachloroethylene	0	157	151	104
:					
ľ					
		-			
					j.
		-			
		-			
		-			

	Coffinite tofferful transcourse to Remie to Prince to the Control of the Control	QUALITY CONTROL REPORT	JOB NO ANALYST	38 <u>1</u> 79 JG	
Mudiomadial	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Matrix Spike Analysis	DATE MATRIX	6-24-85 MW	
P.O. Box 3	P.O. Bux, 310M, Princeton, N.J. 08840		•		
COMPOUND					*
Sample 1D	COMPOUND NAME	Sample Result (SR)	SR) Retult (SSR)	Spike Added (SA)	Recovery
			,		,
09	Methylene chloride	2.0	29	74	7.7
,	1,1-Dichloroethylene	QN	43	55	78
:	1,1-Dichloroethane	QN	20	09	83
	1,2-Dichlorsethylene	QN	51	61	84
	Chloroform	GN	53	7.2	73
	1,2-Dichloroethane	GN	09 .	7.8	77
	1,1,1-Trichloroethylene	ND	51	54	95
	Carbon Tetrachloride	QN	95	57	66
	1,2-Dichloropropane	QN	49	65	75
	Trichloroethylene	QN .	47	5.5	8.5
	Tetrachlorcethylene	QN	63	62	101
	· Chlorobenzene	CIN .	40	47	8.5
•	Benzene	QN	49	6.5	76
	Ethylbenzene	GN	48	54	83
	Toluene	מאן	51	61	84

90 91 94

64 44 75 49

58 40 71 47

S S S S

m-Dichloro venzene p-Dichloro senzene

m-xylene p-xylene

Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

DATE: 26 April 1985

0473

Page 1 of 2

ANALYTE

SAMPLE ID/ ANALYTICAL RESULTS

	DWA-1	DWB-1	DWA-2	SW-2
	4/18/85	4/18/85	4/18/85	4/18/85
A.s	<0.05 mg/1	<0.05 mg/l	<0.05 mg/l	<0.05 mg/l
Ba	$\langle 1.0 \text{ mg}/1 \rangle$	<1.0 mg/1	$\langle 1.0 \text{ mg}/1 \rangle$	<1.0 mg/1
Cd	<0.010 mg/1	<0.010 mg/1	<0.010 mg/1	<0.010 mg/1
Cr	<0.05 mg/l	$\langle 0.05 \text{ mg/l} \rangle$	$\langle 0.05 \text{ mg/l} \rangle$	<0.05 mg/1
Нg	<0.002 mg/l	<0.002 mg/l	<0.002 mg/1	(0.002 mg/l)
Pb	<0.050 mg/l	<0.050 mg/1	<0.050 mg/l	(0.002 mg/1)
Se	<0.010 mg/l	<0.010 mg/1	<0.010 mg/1	<0.010 mg/1
Ag	<0.05 mg/l	(0.05 mg/l)	<0.05 mg/1	
Ignitability	>60 °C	>60 °C	>60 °C	<0.05 mg/1 >60 °C
	SW-3	SW-4	SW-7	SW-8
	4/18/85	4/18/85	4/18/85	4/18/85
A =				
As	<0.05 mg/1	<0.05 mg/1	<0.05 mg/1	(0.05 = 0/1
Ba		<0.05 mg/1 <1.0 mg/1	<0.05 mg/1	<0.05 mg/l
	$\langle 1.0 \text{ mg}/1 \rangle$	$\langle 1.0 \text{ mg}/1 \rangle$	<1.0 mg/1	$\langle 1.0 \text{ mg}/1 \rangle$
Ва	<1.0 mg/1 <0.010 mg/1	<1.0 mg/1 <0.010 mg/1	<1.0 mg/1 <0.010 mg/1	<1.0 mg/1 <0.010 mg/1
Ba Cd	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1</pre>	<1.0 mg/1 <0.010 mg/1 <0.05 mg/1	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1</pre>	<1.0 mg/1 <0.010 mg/1 <0.05 mg/1
Ba Cd Cr	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1</pre>	<1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1</pre>	<1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1
Ba Cd Cr Eg	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1 <0.050 mg/1</pre>	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1 <0.050 mg/1</pre>	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1 <0.050 mg/1</pre>	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1 <0.050 mg/1</pre>
Ba Cd Cr Eg Pb	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1</pre>	<1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1	<pre><1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1</pre>	<1.0 mg/1 <0.010 mg/1 <0.05 mg/1 <0.002 mg/1

マングング (1) できょうかん 一大 かくくく (1) できる とうしゅ (1) できょう
Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

DATE: 26 April 1985

0473

Page 2 of 2

A	N	A	L	Y	T	E

SAMPLE ID/ ANALYTICAL RESULTS

NOMINAL DETECTION

LIMITS

	TB-14C	
	4/18/85	
As	<0.05 mg/l	0 65 /1
Ва	<1.0 mg/l	0.05 mg/l
Cd	<0.010 mg/1	1.0 mg/l 0.010 mg/l
Cr	<0.05 mg/l	0.05 mg/1
Hg	<0.002 mg/l	0.002 mg/1
Pb	<0.050 mg/1	0.050 mg/1
Se	<0.010 mg/l	0.010 mg/1
Ag	<0.05 mg/l	0.05 mg/l
Ignitability	>60 °C	0003 -87 -

REFERENCE: "Standard Methods for Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An involve for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

Jewhiter V. Smith, Ph.D. Laboratory Director

Attn: Dennis Farlor

0445

DATE: 18 April 1985

525 5th Ave.

New York, NY 10036

SAMPLE ID: DWB-1

ANALYTE

ANALYTICAL RESULTS

NOMINAL DETECTION LIMIT

TOC

7.2 mg/l

 $0.01 \, mg/1$

TOX <0.01 mg/1 0.01 mg/1

REFERENCE: "Standard Methods for the Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

niter V. Smith, Ph.D. Laboratory Director

7300 cetterson N.E. • Albuquerace New Mexico 47109 • 1505 (454) his

Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

18 April 1985 DATE:

0462

SAMPLE ID: CV-1

ANALYTE

ANALYTICAL RESULTS

NOMINAL DETECTION LIMIT

0.01 mg/1

<0.01 mg/1CN pН

8.05

0.01

EC

22,100 umhos/cm

0.1 umhos/dm

This sample identified as potassium chromate.

REFERENCE: "Standard Methods for the Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An invoice for services is enclosed. Thank you for dontacting Assaigal Laboratories.

Sincerely,

V. Smith, Ph.D. Laboratory Director

7300 Jefferson N.E. • Abuduerate New Mexico 87109 • 605 (45 5 %)

Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

DATE: 24 April 1985

0477

SAMPLE ID: SW-2

ANALYTE

ANALYTICAL RESULTS

NOMINAL DETECTION LIMIT

TOX

<0.01 mg/1

0.01 mg/1

TOC

8.5 mg/l

0.1 mg/1

REFERENCE: "Standard Methods for the Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

January. Smith
January Director

7300 Jetterson N.E. • Albuqueralue Niew Mexico 87,109 • (505) 345-1-3-4

Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

DATE: 24 April 1985

0477

SAMPLE ID: SW-2 SW-4

ANALYTE

ANALYTICAL RESULTS

NOMINAL DETECTION LIMIT

TOX

<0.01 mg/1 7.2 mg/1

0.01 mg/1 0.1 mg/1

Keereer by Statement Freezesch Keereer Descent

REFERENCE: "Standard Methods for the Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An involce for services is enclosed. Thank you for contacting Assaigal Laboratories.

Sincerely,

Johnstor V. Smith, Ph.D. Laboratory Director

7300 Letterson N.E. • Arbudueraue New Mexico 87109 • 505 345-545-

Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

DATE: 24 April 1985

0477

SAMPLE ID: SW-7

ANALYTE

ANALYTICAL RESULTS

NOMINAL DETECTION LIMIT

TOX

<0.01 mg/1
9.6 mg/1</pre>

0.01 mg/1 0.1 mg/1

REFERENCE: "Standard Methods for the Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An involce for services is enclosed. Thank you for contacting Assaigal Laboratories.

Sincerely,

Janniter V. Saith, Ph.D. Laboratory Director

7300 Jetferson N.E. • Albuduerque New Mexico 87109 • 506 345/47/1

Attn: Dennis Farlor

525 5th Ave.

New York, NY 10036

DATE: 24 April 1985

0477

SAMPLE ID: SW-8

ANALYTE

ANALYTICAL RESULTS

NOMINAL DETECTION LIMIT

TOX

<0.01 mg/1

0.01 mg/1 0.1 mg/1

TOC

10.4 mg/1

15th Edition, APHA, N.Y., 1980.

REFERENCE: "Standard Methods for the Examination of Water and Wastewater",

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

V J Smith, Ph.D. Laboratory Director

7300 Letterson N.E. • Albuauerque New Mexico 37100 • 5051 345.435.1

APPENDIX H

COCCOCCE TO THE SECOND TO THE SECOND OF THE SECOND TO THE SECOND TO THE SECOND THE SECON

REFERENCES

- Albuquerque Testing Laboratory, 1981. Geotechnical Investigation for Proposed Building 21D for General Electric Plant. ATL Engineering Services Lab. No. 2950.
- American Geological Institute, 1976. Dictionary of Geological Terms.

 Anchor Books, Garden City, NY. 472p.
- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1st ED, 1980. Standard Methods for the Examination of Water and Wastewater, pp. 35-42.

PARTITURE RESOURCE (NASSESSE) NECESSES (NECESSES)

- Bjorklund, L.J. and Maxwell, B.W., 1961. Availability of Groundwater in the Albuquerque Area, Bernalillo and Sandoval Counties, New Mexico.

 New Mexico State Engineer Technical Report 21, Santa Fe, New Mexico.
- Bryan, Kirk and McCann, F.T., 1938. The Ceja del Rio Puerco, A Border Feature of the Basin and Range Province in New Mexico, Part 1, Stratigraphy and Structure. Jour. Geology, V.45, p. 801-828.
- CH2M Hill, 1984. Final Scope of Work Contaminant Source Investigation for U.S. Air Force/General Electric: South Valley Hazardous Waste Site, Albuquerque, New Mexico. W66 211. AO/53.6L11.0 (April 1984).
- Engineering-Science, 1981. Installation Restoration Program, Phase I Records Search, Hazardous Materials Disposal Sites, Kirtland Air Force Base, New Mexico.
- Ferris, J.G. and Knowles, D.B., 1955. Groundwater Hydraulics, Part 1, Theory, U.S. Geological Survey Groundwater Note 28 (Open-file), 105p.
- Fetter, Jr., C.W., 1980. Applied Hydrogeology. Charles E. Merrill Pub. Co., Columbus, OH, 488 p.
- General Electric Company, 1983. Closure Plan and Financial Requirements for Interim Status Hazardous Waste Storage Facilities, August 26, 1983. General Electric Company, Aircraft Engine Business Group, Albuquerque, New Mexico.

- Harding Lawson Associates (HLA), 1984. Field Operations Plan Offsite Remedial Investigation South Valley Site, Albuquerque, New Mexico. HLA Job No. 5561 020.11 (April 27, 1984).
- Harding Lawson Associates (HLA), 1985. Draft Technical Report and Appendices, Offsite Remedial Investigation, South Valley Site, Albuquerque, New Mexico. 53-6L11.0. 2 Volumes (April 24, 1985).
- Hawley, J.J., et al. 1978, Editors. Guidebook to Rio Grande Rift in New Mexico and Colorado. New Mexico Bureau of Mines and Mineral Resources Circular 163, 241p.
- Hudson, J.D., 1982. Water Table Map of the San Jose Well Field and Vicinity, Albuquerque, New Mexico, Spring, 1981. U.S. Geological Survey Open-File Report 82-375.
- Kelley, T.E., 1982. History of Water Use in the Greater Albuquerque Area.

 New Mexico Geological Society Guidebook, 33rd Field Conference, Albuquerque Country II, pp. 351-355.
- Kelley, Vincent C., 1977. Geology of Albuquerque Basin, New Mexico. New Mexico Bureau of Mines and Mineral Resources, Memoir 33.
- Kelley, Vincent C., Woodward, Lee A., Kudo, Albert M., and Callender, Jonathan F., 1976. Guidebook to Albuquerque Basin of the Rio Grande Rift, New Mexico. New Mexico Bureau of Mines and Mineral Resources, Circular 153.

TO THE SECONDARY REASONS REASONS

| 「一個などのなる

- Kues, G.E., 1983. Water-Level Data for San Jose Well Field and Vicinity, Albuquerque, New Mexico (Preliminary Data). U.S. Geological Survey, Water Resources Division, Albuquerque, New Mexico.
- Lambert, P.W., 1968. Quaternary stratigraphy of the Albuquerque area, New Mexico: Ph.D. thesis. University New Mexico, 329p.

- McQuillan, D.M., Oppenheimer, S.J. and Meyerhein, R.F., 1982. Organic Groundwater Pollutants in the South Valley of Albuquerque, New Mexico (Final Draft). New Mexico Health and Environment Department, Environmental Improvement Division, Water Pollution Control Board; Surveillance and Standards Section, Santa Fe, New Mexico.
- Merck & Co., 1983. The Merck Index. Rahway, NJ.
- Meinzer, O.E. 1923. Outline of Groundwater Hydrology, with Definitions.
 U.S. Geological Water Supply Paper 494, 71p, 35 figures.
- Powers, J. Patrick, 1981. Construction Dewatering: A Guide to Theory and Practice. John Wiley and Sons, New York, NY. 484p.

SERVICE RESERVED RESERVED WAS SERVED TO SERVED

アンドラング 国内へくくくが

- Safe Drinking Water Committee, 1977. Drinking Water and Health. National Academy of Sciences, Washington, D.C.
- Safe Drinking Water Committee, 1980. Drinking Water and Health, Volume 3. National Academy of Sciences, Washington, D.C.
- Sax, Irving N. 1984, Editor. Dangerous Properties of Industrial Materials, 2nd Edition, Van Nostrand Reinhold Company, NY. 3124p.
- United States Army Corps of Engineers (COE), 1979. Albuquerque Greater Urban Area Water Supply Study. Appendix III.
- U.S. Bureau of National Affairs, 1980. Environmental Protection Agency National Interim Primary Drinking Water Regulations, Environmental Reporter, Washington, D.C., V. 132, pp. 0101-0109 (January 18, 1980).
- U.S. Environmental Protection Agency, 1979. Water-Related Environmental Fate of 129 Priority Pollutants, Volumes I and II. Office of Water and Waste Management, EPA 440/4-79-029a, b (December, 1979).
- U.S. Environmental Protection Agency, 1980. Water Quality Criteria Documents; Availability. Federal Register 79318, Vol. 45 (November 28, 1980).

- U.S. Environmental Protection Agency, 1984. National Primary Drinking Water Regulations., Volatile Synthetic Organic Chemicals: Proposed Rulemaking. Federal Register 24330, Vol. 49, EPA, 40 CPR Part 141 (Tuesday, June 12,1984).
- U.S. Geological Survey (USGS), 1972. Albuquerque West Quadrangle, 7.5 minute series (topographic), Scale: 1:24000.
- Wells, S.G., Lambert, W. and Callender, J.F., 1981. Editors. Environ mental Geology and Hydrology of New Mexico, New Mexico Geological Society Special Publication No. 10.
- Wenzel, L.K., 1942. Methods for Determining Permeability of Water-Bearing Materials, with Special Reference to Discharging Well Methods, with a Section on Direct Laboratory Methods and Bibliography on Permeability and Laminar Flow by V.C. Fishel. U.S. Geological Survey Water Supply Paper 887, 192p., 6 pls.

James O. Brown

Fields of Competence

Geologic sample collection, identification and presentation; water sample collection for chemical analysis; recording of subsurface electrical resistivity; organic vapor analysis (OVA); and installation and monitoring of groundwater wells.

Education

B.A., Geology, Rutger's University, 1979 M.S., Geology, Oregon State University, 1982

Key Projects

- Supervised test boring and installation of NJPDES monitoring wells in a multiple aquifer system at a New Jerey solid waste landfill.
- Assisted in the preparation and outline of tasks to identify site conditions and potential contaminant migration of a multiple aquifer system at a former military operations site in the western U.S.
- Assisted in sampling program to identify site conditions and potential hazards at a major industrial site under consideration for purchase by client.
- Assisted in well installation on offshore drill rigs for petroleum exploration.
- Supervised drill rig operations and assisted in field reconnaissance for exploration of precious minerals in the Basin and Range Province.
- Interpretation of geology of glacial deposits in Ohio and New York, of Coastal Plain sediments in New Jersey, of floodplain alluvium deposits in West Virginia and semi-arid alluvium deposits in New Mexico.

Training

March 1985 - Environmental Protection Agency. One-week course in Hazardous Materials Incident Response Operations.

Professional Affiliations

The Paleontological Society
The New York Paleontological Society

Publications

Kendall, G.W.; Johnson, J.G.; Brown, J.O.; Klapper, G.; 1983. Stratigraphy and Facies Across Lower Devonian--Middle Devonian Boundary, Central Nevada, American Association of Petroleum Geologists Bulletin. V. 67, No. 12, p. 2199-2207.

(680/1-2)

Dennis Farley

Fields of Competence

Hazardous waste site investigation and sampling methodologies, ground-water contamination monitoring and assessment, monitoring well design and installation.

Experience Summary

Two years experience as a hydrogeologist conducting hazardous waste site investigations and remedial action plans. Duties have involved all phases of project management including work plan development, subcontracting, field supervision, sampling, data reduction, and report preparation. Performed work at 17 National Priority List (Superfund) sites.

Education

B.S., Geology/Physics, Moravian College, 1982

Key Projects

Coordinated field efforts and sampling methodologies for a major dioxin sampling project at the top priority Superfund site in 1983. PROTECTIVE RESERVENCE OF THE PROPERTY OF THE P

- Coordinated field efforts and sampling methodologies for a source characterization study at a low level radiation Superfund site. Supervised drilling of over 200 boreholes and the installation of 16 monitoring wells.
- Performed hydrological pathways investigations at several Superfund sites in New York State. These investigations involved the development of groundwater monitoring programs and the design and installation of monitoring wells.
- Conducted preliminary assessments and site investigations at potential hazardous waste sites for the purpose of ranking on the USEPA's Hazard Ranking System.
- was a member of the Regional Level "A" Emergency Response learn (1983 and 1984) while employed with a consultant to the Senvironmental Protection Agency. Have worked with all levels of respiratory and personal protection.

Professional Affiliations

National Water Well Association
Associate Member American Institute of Professional Geologists

Prior Firms

NUS Corp., Edison, N.J.

(68G/2)

Jill F. Greenberg

Fields of Competence

Toxicology of environmental and occupational contaminants; health and safety procedures.

Experience Summary

Four years of experience in reviewing, assessing and disseminating to the public and private sectors information on chemical substances regarding their chemical properties and toxicity; evaluation of epidemiologic data on animal and human carcinogens; preparation of public outreach programs.

Education

- B.S., Biological Sciences State University of New York-Binghamton, 1977
- M.P.H. Candidate, Environmental Sciences Columbia University School of Public Health

TO SOCIO ESPERADO DE PORTO DE PROPOSO DE PORTO D

Key Projects

- Assisted in a study of chemical exposures in the auto repair industry in the greater Metropolitan New York area. Developed a comprehensive manual for education purposes.
- Completion of a nationwide review of state and local regulations pertaining to access to data on chemical composition and hazardous materials.
- Aided in the development of a new research technique and methodology for integrated pest management using the enzyme-lined immunosorbent assay.
- Served as an editor and writer for a national health publication, which focused on critical issues in the area of environmental and occupational health, with analyses of its effect on health policy.
- Aided in the preparation of reports for public dissemination concerning availability of epidemiologic data on humans exposed to animal carcinogens and other toxic substances, such as arsenic, 1,3-butadiene and ethylene dibromide.
- Developed an extensive plan of remedial action for homeowners concerned about health effects from exposure to chlordane and Dursban, pesticides used by commercial applicators for termite eradication.

Coordinator and moderator of a seminar series for community organizations that provided scientific and technical information in areas of environmental and health policy. Responsible for overall evaluation of project and preparation of proceedings for publication.

Professional Affiliations

American Public Health Association Graduate Women in Science (AAAS) Scientists Institute for Public Information

<u>Publications</u>

Karstadt, M., and Greenberg, J. Access to Data on Chemical Composition of Products Used in Auto Repair and Body Shops: Resurvey of Product Marketers (1985). (In preparation).

Karstadt, M., and Greenberg. J. Access to Data on Chemical Composition of Products Used in Workplaces: Impact of the New York State Worker Right to Know Law (1985). (In preparation).

Greenberg, J. 1982. The Fight for Safety and Health at the Workplace. Consumer Health Perspectives. Volume VIII, No. 6. New York.

Greenberg, J., Editor. 1982. Critical Issues in Workplace Health. Consumer Health Perspectives. Volume IX, No. 1. New York.

Langridge, W.H.R., Granados, R.R. and Greenberg, J.F. Journal of General Virology. 1981. Volume 54, pp. 443-448. Detection of Baculovirus Protein in Cell Culture and Insect Larvae by Enzyme-linked Immunosorbent Assay (ELISA).

Langridge, W.H.R. and Greenberg, J.F. Journal of General Virology. 1981. Volume 57, pp. 215-219. Detection of Entomopoxvirus Proteins in Insect Cell Culture by Enzyme-linked Immunosorbent Assay (ELISA).

TREALESCE PRESERVE POSSESSE RECEIVES TO SELECT TO SERVE THE SERVE

Langridge, W.H.R., Granados, R.R. and Greenberg, J.F. Journal of Invertebrate Pathology. Volume 38, pp. 242-250. 1981. Detection of Autographa Californica and Heliothis zea Baculovirus Proteins by Enzyme-linked Immunosorbent Assay (ELISA).

(87W/1-2)

James P. Mack

Fields of Competence

Geology, hydrogeology, water resources evaluation, groundwater monitoring programs, geophysical surveys, groundwater characterization, environmental impact statements and permits, groundwater remediation.

Experience Summary

Five years of hydrogeological experience including design of ground-water monitoring systems, hazardous waste site investigations, application of hazard ranking models, preparation of RCRA compliance plans including monitoring, maintenance, and contingency plans, and spill response plans.

Education

- B.S., Geology Waynesburg College, 1974
- M.S., Geology Adelphi University, 1980

Key Projects

- Conducted and supervised Phase II confirmation studies for the Air Forces' Installation Restoration Program (IRP). This involved developing scopes of work, estimating costs, coordinating subcontractors, supervising field work, preparing draft and final reports and attending meetings.
- Conducted hydrogeologic investigations of landfills and soil contamination problems in Ohio, West Virginia and Connecticut.
- Prepared a draft Corrective Actions Permit Writers Manual for EPA. Manual specified techniques EPA permit writer could use to evaluate the effectiveness of proposed groundwater cleanup programs.
- Participated in the design of a groundwater monitoring system for a major hazardous waste disposal site near Niagara Falls, New York. Because of the unique characteristics of the hydrogeologic environment, a new design was developed for monitoring wells.
- Conducted extensive hydrogeologic field investigations at a hazardous waste disposal site near Baltimore, Maryland, including drilling of test borings, installation of monitoring wells, natural gamma logging, aquifer tests, groundwater flow analysis and an estimate of potential impacts.

THE STATE OF THE PROPERTY OF T

Prepared an off-site spill response plan for a hazardous waste processing facility near Chicago, Illinois. Included coordinating site personnel, contacting local emergency response agencies and establishing a sequence of procedure for corporate personnel in the event of a spill.

- Participated in several Initial Assessment Studies for the U.S. Navy. He has prepared water resources, soils and geology sections for IASs for the Indian Head Naval Ordnance Station; Earl Naval Weapons Station; Patuxent River Naval Air Station, Mechanicsburg Ships Parts Control Centerthe Davisville Construction Battalion Center. Collected available published and file reports, conducted interviews with appropriate personnel, evaluated potential groundwater and surface water impacts from identified disposal areas, and ranked designated sites according to the Navy ranking model.
- Prepared earth and water resources sections for major environmental impact statements on 201 Facilities Plans for large river basins in the Northeast and Puerto Rico. This work included an evaluation of the potential effects expanded suburban development may have on regional groundwater quality and quantity. Characterized existing hydrogeologic conditions, prepared hydrologic budgets, delineated productive aquifers, safe yield determinations and identified aquifer recharge areas.
- Performed a hydrogeological analysis of a proposed hazardous waste disposal site (for PCB's) in the Upper Hudson region of New York. This included an evaluation of the site for compliance with New York State and Federal Hazardous Waste Disposal Regulations, suitability of the leachate collection system and adequacy of the groundwater monitoring plan.

Professional Affiliations

National Water Well Associations

<u>Publications</u>

Mr. Mack prepared Earth & Water Resources sections for the following studies:

Environmental Impact Statement on the 201 Facilities Plan for the Upper Passaic River Basin in New Jersey.

Environmental Impact Statement on the 201 Facilities Plan for the Upper Rockaway River Basin, New Jersey.

Environmental Impact Statement on the 201 Facilities Plan for the Lajas Valley, in Puerto Rico.

Environmental Impact Statement on the 201 Facilities Plan for the Upper Hudson-Lake George Region in New York.

Environmental Impact Statement on the Dredging and Upland Disposal of PCB Laden River Bed Sediments in the Upper Hudson, Fort Edwards, New York.

"Potential Groundwater Contamination from Development at Various Densities at Elwood, New York", Town of Huntington, Department of Environmental Protection, Huntington, New York.

"Environmental Impact Statement on the Imperial Gardens Subdivision with special reference to Anticipated Groundwater Contamination, Commack, New York". Town of Huntington, Department of Environmental Protection, Huntington, New York.

"Monitoring, Maintenance and Contingency Plan for SCA Chemical Services, Inc. Model City, New York"

"Off-Site Spill Emergency Response Plan for SCA Chemical Services Chicago Facility"

"Phase 1 Field Investigations and Risk Assessment of the Solley Road Site"

Hydrogeology Assessment of the Laurel Park Landfill, Naugatuck, CT

IAS Study, Naval Ordnance Station, Indian Head, Maryland

IAS Study, Naval Weapons Station, Earl, New Jersey

IAS Study, Naval Air Station, Patuxent River, Maryland

IAS Study, Ships Parts Conctrol Center, Mechanicsburg, Pennsylvania

IAS Study, Construction Battalion Center, Davisville, Rhode Island

Development of a Comprehensive Groundwater Monitoring System to Meet Federal and State Requirements

Evaluating RCRA Corrective Actions Program

Investigation and Corrective Action: How It Was Done at a Superfund Site in Connecticut

(79CC/1-3)

Bruce E. Mackie

Fields of Competence

Groundwater monitoring and investigation, well design and installation, land reclamation, geophysical investigation, well logging and gas chromatograph analysis.

Experience Summary

Five years varied geologic and hydrogeologic experience, including well-site geology involving lithoigic identification, hydrocarbon evaluation and geophysical analysis, hydrogeologic evaluation of municipal sanitary landfills, evaluation of abandoned mine lands for compliance with federal and state mining laws and hydrogeologic field investigations and groundwater monitoring at six Superfund sites.

Education

- B.A., Geology Susquehanna University, 1978
- M.S. Candidate Hydrogeology, Susquehana University

Key Projects

- Project Manager for statewide abandoned mine lands inventory in Pennsylvania, including mine drainage analysis, identification of health and safety hazards, compliance monitoring and reclamation studies involving reclamation alternatives and cost-benefit analysis.
- Design of maintenance and monitoring contingency plans for hazardous waste landfill to comply with RCRA regulations for PCB storage.
- Field Leader of feasibility study for municipal sanitary landfill involving field analysis of geologic and hydrogeologic condition, receptor impact and compliance with NJPDES permit regulations.
- Investigation of industrial solvent spill involving determining extent of contamination, implementing monitoring systems and instituting recovery programs.
- Well-site geologist for ten petroleum exploration wells involving lithologic identification, stratigraphic correlation, core analysis, gas chromatograph evaluation, selection of packer seats and core sampling locations and Electric Log geophysical investigation.
- Field supervision of quarterly groundwater sampling programs for priority pollutants at both Superfund and non-hazardous waste sites.

- Preparation of work plans and site operations plans for Superfund sites in Missouri and New Jersey.
- Monitoring of EPA Region III Field Investigation Team (FIT) at Pennsylvania Superfund site for compliance with safety and sampling protocols.
- Field experience includes site work under USEPA Levels B, C, and D for personnel respiratory/cutaneous protection.

COCCULA TRECOCACA POSSOSON NOVERRAL TRACA

(87L/1-2)

Jose Luis Vega Field Technician/Draftsman

Jose Luis Vega is a Field Technician and Draftsman with over two years experience at Fred C. Hart Associates, Inc. As a former member of the Region II Field Investigation Team, Mr. Vega has assisted in investigations of over 20 hazardous waste sites, including 5 designated Superfund sites. He has sampled soil, sediment, biota and surface water for potential contamination. He has conducted priority pollutant and EP toxicity studies. He is experienced in the use of Self-Contained Breathing Apparatus (SCBA) and trained in precautionary sampling measures.

Mr. Vega also assists in the graphics department, creating pasterups, layouts, and illustrations. He devises formats for charts, maps, proposals and publications used by the firm.

Mr. Vega holds a drafting degree, has college experience and maintains an aviation A&P license.

Seessa II seessa saaraa in seessa saaraa in seessa saaraa II seessa saaraa in seessa saaraa

(79J/1)

THOMAS R. VETRANO

Fields of Competence

Solid and hazardous waste management, industrial hygiene and toxicology, municipal and industrial wastewater treatment, and hazardous waste site remediation/mitigation.

Education

- B.S., Environmental Science, cum laude, Cook College, Rutgers University, 1982.
- M.S., Environmental Engineering/Toxicology, New Jersey Institute of Technology, 1984.

Key Projects

- Responsible for the management and production of a revised Part B Permit application for a Chemical Waste Management facility in Braintree, MA. Permitted processes included incineration, container storage, tank storage, wastewater treatment and solvent recovery. Work included supervision and review of all revisions necessary to meet NOD items, development of project workplans and schedules, and reformatting of the application to meet RCRA and State requirements.
- Development of a revised Part B Permit application for the CWM-Model City facility. Work included NOD responses, revision of technical areas of the document and reformatting to conform to RCRA standards.
- Development of recommended guidelines for hospital infectious and pathological waste management, transport, and disposal, involving a comprehensive review of all applicable regulations and inspection and review of potential disposal contractors.

TRAKKA KALIMINININ DISISISIA DISISISIA MAZZZZIA MISIKINI MISIKONI MISIKONI MKAKININ MAKANINI MAKAKAN

- Managed the preparation of a RCRA Part B Permit application for container storage of hazardous waste at a military installation.
- Assisted in the development of RCRA Part B permit applications for a waste oil recovery facility and a chemical management/processing facility and weapons storage depot.
- Assisted in the development of a RCRA Part B permit application for an aqueous hazardous waste treatment facility. Work included development of conceptual design plans for facility expansion and aboveground storage for ignitable wastes; design of flood prevention barriers and area drains; and development of contingency plan and tank inspection and closure procedures.
- Assisted in the evaluation and design of a remedial action and closure plan for a hazardous waste landfill in Pennsylvania.

- Oesign of a leachate analysis and management plan, including treatment options designed to meet discharge requirements, for an operating solid waste landfill in New Jersey.
- Preparation and outline of tasks designed to identify site conditions and potential hazards involved with a closed hazardous waste treatment and disposal facility, aimed at reducing the potential liability of a major industrial client.
- Developed toxicity and health risk assessments for contaminants found in soil and groundwater samples at a plastics production facility and an abandoned hazardous waste disposal site. Work included identification of acute and chronic health risks and migration potential for 25 organic compounds and metals.
- Preparation of an Endangerment Assessment for a Superfund site in Missouri. Work included development of aquatic endangerment estimates, health risks to human receptors, and review of suggested remedial alternatives.
- Research and design of original experimental protocols investigating the hypertensive effects of chronic asymptomatic lead poisoning in animals.
- Design of an environmental monitoring program, including air pollution monitoring, waste analysis, and performance auditing, for a 2,000 ton/day municipal resource recovery incinerator.

Publications

"The effect of chronic, low level lead ingestion on blood pressure in young dogs" Journal of Laboratory and Clinical Medicine (pending).

(87K/1,2)

APPENDIX J
GEOPHYSICAL LOGS

IDMPU-LOG YELZ PLOT 24-80-85 .

I-AWC

FRED C. HART & ASSEC

3. E. PLANT ALBO.

HOLE DIFFER F US. C

PROBE **# 90557 - 244**

SENSORI 64 CAL STO CPS 4 152

CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE

UMPU-LOG VAL2 PLOT 04-30-85

AB-1]
PED C. HART & ASSEC
PLANT ALBQ.

DMPU-LOG V8L2 PLOT 04-30-85

3W-3
FRED C. HART & H3SDC

G.E. -PLANT ALB ...
HOLE DIAMETER: 04.0
ROBE # 9055A - 244
EMSOR #1 CAL STO CAS = 152
ENSOR #4 CAL RUN CAS = 165

ENSOR #4 CAL BIAS = 0

ATA V8L2## TRUCK # 7660

. -- BAN---- PPPL.#7

APPENDIX K TECHNICAL OPERATIONS PLAN AND SAFETY PLAN

FIELD INVESTIGATION TEAM HEALTH AND SAFETY PLAN

A. GENERAL	INFORMATION
SITE AF SE Plant 83	PROJECT NO.:G104
OCATION 336 Hoodward Road, SE; Albu	uquerque, NM
PREPARED BY Francie Barker	DATE: 3/4/85
APPROVED BY David Lipsky, PhD.	DATE: 3/5/85
OBJECT:VE(S) Conduct sampling for reme	edial investigation to identify exten
and magnitude of contaminated	soil, sediment and groundwater
PROPOSED DATE(S) OF INVESTIGATION:Mai	rch, April, May and June 1985
BACKGROUND REVIEW COMPLETE:	X PRELIMINARY:
DOCUMENTATION/SUMMARY: OVERALL HAZARD	SERIOUS MODERATE LOW UNKNOWN
B. SITE/WASTE C	HARACTERISTICS
MASTE TYPE(3) LIQUID x SOLID	SLUDGE GAS
CHARACTERISTIC(S): CORROSIVE	IGNITABLE X RADIOACTIVE
VOLATILE X TOXIC X REACTIVE	UNKNOWN OTHER (NAME):
FACILITY DESCRIPTION:Facility_manufac	
engine parts. Storage of some	e hazardous substances for manufactur
PRINCIPAL DISPOSAL METHOD (type an	d location): Storage of hazardous
waste for off-site disposal b	y contractors.
UNUSUAL FEATURES (dike integrity,	power lines, terrain, etc.) Located
in light and heavy industrial	area; near oil storage facilities.
STATUS (active, inactive, unknown)	Active
HISTORY (worker or nonworker injuragency action): Part of	y; compliants from public; previous the South Valley area declared a
Superfund site by EPA due to	contamination of municipal groundwate
wells.	

CONTROL OF THE STATE OF THE STA

C. HAZARD EVALUATION

PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	Hydrogeologic investigation of soils and sediments for possible contamination
Cleaner turco sur, waste, aluminetch #2, Sodium nitrate, nitric nitradd nickel etch waste, freon TF, and 1,1,1-trichloroethane. Water sampling for potential groundwater contamination. Soil sampling at one location for potential cyanide waste contamination. D. SITE SAFETY WORK PLAN RIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plice.	with trace levels of paints, chromate and spend methyl ethyl ketone from
D. SITE SAFETY WORK PLAN RIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown LEVEL OF PROTECTION: A B C D _X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential evanide contaminated SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plice of the potential evanide contaminated SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plice	Adhesive primer, potassium hydroxide, inorganic alkaline cleaner, alkaline
D. SITE SAFETY WORK PLAN PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D _X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plice.	cleaner turco sur, waste, aluminetch #2, Sodium nitrate, nitric nitradd
D. SITE SAFETY WORK PLAN ERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level C and moniticred with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	nickel etch waste, freon TF, and 1,1,1-trichloroethane. Water sampling for
D. SITE SAFETY WORK PLAN ERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D _X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pling	potential groundwater contamination. Soil sampling at one location for
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	potential cyanide waste contamination.
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	•
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes. Cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	
PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	D. SITE SAFETY WORK PLAN
PERIMETER IDENTIFIED YES ZONE(S) IF CONTAINMENT IDENTIFIED Unknown ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes. cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	FRIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED YES SITE SECURED? YES
ERSONNEL PROTECTION LEVEL OF PROTECTION: A B C D X (modified) MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential cyanide contaminated soil will be conducted Level C and monitored with draeger tubes, cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	
MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes, dyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	PERIMETER IDENTIFIED TES ZUNE(S) IF CUNTAINMENT IDENTIFIED UNKNOWN
MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes, dyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger pline	
MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes, dyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	ERSONNEL PROTECTION
MODIFICATIONS: During drilling: upgrade to Level C (MSA GMA-H combination cartidges) if organic vapors less than 1000 ppm are detected and sustained, Level B above 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes, dyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	LEVEL OF PROTECTION: A B C D X (modified)
B above 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes, cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	
B above 1000 ppm. Excavation & sampling of potential dyanide contaminated soil will be conducted Level C and monitored with draeger tubes, dyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	
soil will be conducted Level C and monitored with draeger tubes, cyanide vault SURVEILLANCE EQUIPMENT AND MATERIALS: Organic Vapor Analyzer, draeger plin	
D	soil will be conducted Level C and monitored with draeger tubes, cyanide vault
tubes control to the second control to the s	8.
tune3	tune3

DECONTAMINATION PROCEDURES: Was	hing boots an	d gloves with detergent and water	r,
rinsing with clean water; steam	cleaning of	drilling equipment, separate	
decon area will be established	for steam cle	aning.	
SPECIAL EQUIPMENT, FACILITIES, OF	R PROCEDURES:	Decon waste will be drummed	
and screened for contamination.			
SITE ENTRY PROCEDURES:Not app	olicable		
	•		
TEAM MEMBER (Major)		RESPONSIBILITY	
Jim Mack		Project Director	
Dennis Farley		Field leam Leader/QA/QC/Site	
Jim. Brown Phil Watts	-	Hydrogeologist/Well Installat Hydrogeologist/Well Installat	ion
Jose Vega		Technician/Sampling	
	- -		
WORK LIMITATIONS (time of day, et	tc.):	Daylight Hours	
INVESTIGATION-DERIVED MATERIAL Dito be drummed and disposed if o			
		nation. If contaminated, waste	
will be drummed and disposed of	ff-site.		

Social recessory exercises percental recessors increase increase recessors pressure pressure persons

E. EMERGENCY INFORMATION

LOCAL RESOURCES

AMBULANCE:(50	5) 765-1100 or 911
HOSPITAL EMERGENCY ROOM:(848-8142
	(505) 843-2441
	(505) 766-7700
FIRE DEPARTMENT:	(505) 243-6601
	(505) 842-4366
EXPLOSIVES UNIT:	N/A
EPA CONTACT:	To be arranged
	SITE RESOURCES
WATER SUPPLY:	At GE Plant
TELEPHONE:	(505) 765-9521
RADIO:	N/A
OTHER:	N/A
	EMERGENCY CONTACTS
FCHA Jim Mack	(212) 840-3990
Rick Dorrler	(212) 840-3990
USAF Col. R.C. Wooton	(800) 821-4528
GE Laura J. Mixon	(505) 765-9521
EPA	

F. EMERGENCY ROUTES

(give road or other directions; attach map)

St Joseph's Hospital, 400 Walter at Grand, Northeast

OTHER:

N/A

PROPERTY PROPERTY AND PROPERTY AND PARTY OF A PARTY OF