Homework 1

BIOS 7731

Due 9/10 10:30 am through Canvas

Students may work together on homework assignments, but the assignment handed in must represent the students own work.

- 1. Using the properties of a probability measure, show (BD pg. 443)
 - (a) A.2.2
 - (b) A.2.3
 - (c) A.2.5
 - (d) A.2.7
- 2. Consider $f_X(x) = \frac{x^2 e^{-x}}{2}$ for $x \in (0, \infty)$, and zero otherwise.
 - (a) Show this is a density function by verifying (BD pg. 449) A.7.6.
 - (b) Find the distribution function, F(x).
 - (c) Find F(2).
- 3. The Gamma Distribution
 - (a) The gamma function is defined for $\alpha > 0$ by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.$$

Use integration by parts to show that $\Gamma(x+1)=x\Gamma(x)$. Show that $\Gamma(x+1)=x!$ for $x=0,1,\ldots$

(b) Show that the function

$$p(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \quad x > 0$$

is a probability density function when $\alpha > 0$ and $\beta > 0$. This density is called the gamma density with parameters α and β . The corresponding probability distribution function is denoted $\Gamma(\alpha, \beta)$.

- (c) Show that if $X \sim \Gamma(\alpha, \beta)$, then $E[X^r] = \beta^r \Gamma(\alpha + r) / \Gamma(\alpha)$. Use this formula to derive the mean and variance of X.
- 4. Suppose $X \sim N(0,1)$, find the mean and covariance of the random vector $(X, I\{X > c\})$.
- 5. Let T be an exponential random variable and conditional on T, let U be uniform on [0,T]. Find the unconditional mean and variance of U.
- 6. For any two random variables X and Y with finite variances, prove that
 - (a) Cov(X, Y) = Cov(X, E[Y|X]).
 - (b) X and Y E[Y|X] are uncorrelated.