Foundation of Cryptography, Lecture 6 Interactive Proofs and Zero Knowledge Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 23, 2014

Part I

Interactive Proofs

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

A proof system

- Efficient verifier, efficient prover (given the witness)
- Soundness holds unconditionally

Interactive proofs

Protocols between efficient verifier and unbounded provers.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and:

Completeness
$$\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle_V = 1] \geq 2/3.^a$$

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P^*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x)\rangle_{\mathsf{V}}=1]\leq 1/3.$$

IP is the class of languages that have interactive proofs.

$$a < (A(a), B(b))(c) >_B$$
 denote B's view in random execution of $(A(a), B(b))(c)$.

- IP = PSPACE!
- We typically consider (and achieve) perfect completeness.
- Negligible "soundness error" achieved via repetition.
- Sometime we have efficient provers via "auxiliary input".
- Relaxation: Computationally sound proofs [also known as, interactive arguments]: soundness only guaranteed against efficient (PPT) provers.

Section 1

Interactive Proof for Graph Non-Isomorphism

Graph isomorphism

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0 = ([m], E_0)$ and $G_1 = ([m], E_1)$ are isomorphic, denoted $G_0 \equiv G_1$, if $\exists \pi \in \Pi_m$ such that $(u, v) \in E_0$ iff $(\pi(u), \pi(v)) \in E_1$.

- Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT Idea: Beer tasting...

Interactive proof for \mathcal{GNI}

Protocol 4 ((P, V))

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- **1** V chooses $b \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b)$ to P.^a
- 2 P send b' to V (tries to set b' = b).
- \bigcirc V accepts iff b' = b.

$${}^{a}\pi(E) = \{(\pi(u), \pi(v) \colon (u, v) \in E\}.$$

Claim 5

The above protocol is IP for \mathcal{GNI} , with perfect completeness and soundness error $\frac{1}{2}$.

Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

```
G_0 \equiv G_1: \Pr[b' = b] \le \frac{1}{2}. G_0 \not\equiv G_1: \Pr[b' = b] = 1 (i.e., P can, possibly inefficiently, extracted from \pi(E_i))
```

Г

Part II

Zero knowledge Proofs

Where is Waldo?

Question 6

Can you prove you know where Waldo is without revealing his location?

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?
 Simulation paradigm.

Zero-knowledge proof

Definition 7 (zero-knowledge proofs)

An interactive proof (P, V) is computational zero-knowledge proof (\mathcal{CZK}) for $\mathcal{L} \in \mathcal{NP}$, if \forall PPT V^* , \exists PPT S such that

$$\{\langle (\mathsf{P}(\mathsf{w}(x)),\mathsf{V}^*)(x)\rangle_{\mathsf{V}^*}\}_{x\in\mathcal{L}}\approx_c \{\mathsf{S}(x)\}_{x\in\mathcal{L}}.$$

for any function w with $w(x) \in R_{\mathcal{L}}(x)$.

Perfect \mathcal{ZK} (\mathcal{PZK})/statistical \mathcal{ZK} (\mathcal{SZK}) — the above distributions are identically/statistically close.

- ① \mathcal{ZK} is a property of the prover.
- 2 ZK only required to hold wrt. true statements.
- 3 Trivial to achieve for $\mathcal{L} \in \mathcal{BPP}$.
- **1** The \mathcal{NP} proof system is typically not zero knowledge.
- **1** Meaningful also for languages outside \mathcal{NP} .
- Auxiliary input...

Section 2

Zero-Knowledge Proof for Graph Isomorphism

\mathcal{ZK} Proof for Graph Isomorphism

Idea: route finding

Protocol 8 ((P, V))

Common input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

P's input: a permutation π over [m] such that $\pi(E_1) = E_0$.

- **1** P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V.
- 2 V sends $b \leftarrow \{0,1\}$ to P.
- If b = 0, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V.
- V accepts iff $\pi''(E_b) = E$.

Claim 9

Protocol 8 is a \mathcal{SZK} for \mathcal{GI} , with perfect completeness and soundness $\frac{1}{2}$.

Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in \{0, 1\}$ for which $\#\pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Assuming V rejects w.p. less than $\frac{1}{2}$ and let π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then
$$\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in \mathcal{GI}$$
.

• \mathcal{ZK} : Idea – for $(G_0, G_1) \in \mathcal{GI}$, it is easy to generate a random transcript for Steps 1–2, and to be able to open it with prob $\frac{1}{2}$.

The simulator

For a start, consider a deterministic cheating verifier V* that never aborts.

Algorithm 10 (S)

```
Input: x = (G_0 = ([m], E_0), G_1 = ([m], E_1))
```

Do |x| times:

- ① Choose $b' \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- 2 Let b be V*'s answer. If b = b', send π to V*, output V*'s output and halt. Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Claim 11

$$\{\langle (\mathsf{P},\mathsf{V}^*)(x)\rangle_{\mathsf{V}^*}\}_{x\in\mathcal{GI}}\approx \{\mathsf{S}(x)\}_{x\in\mathcal{GI}}$$

Claim 11 implies that Protocol 8 is zero knowledge.

Proving Claim 11

Consider the following inefficient simulator:

Algorithm 12 (S')

Input:
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1)).$$

Do |x| times:

- **1** Choose $\pi \leftarrow \Pi_m$ and send $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

W.p. $\frac{1}{2}$,

- Find π' such that $E = \pi'(E_b)$, and send it to V^* .
- Output V*'s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Claim 13

$$S(x) \equiv S'(x)$$
 for any $x \in \mathcal{GI}$.

Proof: ?

Proving Claim 11 cont.

Consider a second inefficient simulator:

Algorithm 14 (S")

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and send $E = \pi(E_0)$ to $V^*(x)$.
- ② Find π' such that $E = \pi'(E_b)$ and send it to V^*
- Output V*'s output and halt.

Claim 15

 $\forall x \in \mathcal{GI}$ it holds that

- 2 $SD(S''(x), S'(x)) \le 2^{-|x|}$.

Proof: ? (1) is clear.

Proving Claim 15(2)

Fix $t \in \{0,1\}^*$ and let $\alpha = \Pr_{S''(x)}[t]$. It holds that

$$\Pr_{S'(x)}[t] = \alpha \cdot \sum_{i=1}^{|x|} (1 - \frac{1}{2})^{i-1} \cdot \frac{1}{2}$$
$$= (1 - 2^{-|x|}) \cdot \alpha$$

Hence, $SD(S''(x), S'(x)) \le 2^{-|x|} \square$

Remarks

- **1** Perfect \mathcal{ZK} for "expected polynomial-time" simulators.
- Aborting verifiers.
- Randomized verifiers.
 - 1 The simulator first fixes the random coins of V^* at random.
 - Same proof goes through.
- Negligible soundness error?

"Transcript simulation" might not suffice!

Let (G, E, D) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{NP}$.

Protocol 16 ((P, V))

Common input: $x \in \{0, 1\}^*$

P's input: $w \in R_{\mathcal{L}}(x)$

- **1** V chooses $(d, e) \leftarrow G(1^{|x|})$ and sends e to P
- 2 P sends $c = E_e(w)$ to V
- **3** V accepts iff $D_d(c) \in R_{\mathcal{L}}(x)$
 - The above protocol has perfect completeness and soundness.
 - Is it zero-knowledge?
 - It has "transcript simulator" (at least for honest verifiers): exits PPT S such that $\{\langle (P(w \in R_{\mathcal{L}}(x)), V)(x) \rangle_{trans} \}_{x \in \mathcal{L}} \approx_{c} \{S(x)\}_{x \in \mathcal{L}}$,

where trans stands for the transcript of the protocol (i.e., the messages exchange through the execution).

Section 3

Composition of Zero-Knowledge Proofs

Is zero-knowledge maintained under composition?

- Sequential repetition?
- Parallel repetition?

Zero-knowledge proof, auxiliary input variant.

Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof (P, V) is computational zero-knowledge proof (\mathcal{CZK}) for $\mathcal{L} \in \mathcal{NP}$, if \forall deterministic poly-time V^* , \exists PPT S such that:

$$\{\langle (\mathsf{P}(w(x)), \mathsf{V}^*(z(x)))(x)\rangle_{\mathsf{V}^*}\}_{x\in\mathcal{L}}\approx_{\mathsf{c}} \{\mathsf{S}(x,z(x))\}_{x\in\mathcal{L}}$$

for any any w with $w(x) \in R_{\mathcal{L}}(x)$ and any $z \colon \mathcal{L} \mapsto \{0,1\}^*$.

Perfect \mathcal{ZK} (\mathcal{PZK})/statistical \mathcal{ZK} (\mathcal{SZK}) — the above distributions are identically/statistically close.

- **1** The protocol for \mathcal{GI} we just saw, is also auxiliary-input \mathcal{SZK}
- What about randomized verifiers?

^aLength of auxiliary input does not count for the running time.

Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under sequential repetition.
- Zero-knowledge might not maintained under parallel repetition.

Examples:

- Chess game
- Signature game

Section 4

Black-box Zero Knowledge

Black-box simulators

Definition 18 (Black-box simulator)

(P,V) is \mathcal{CZK} with black-box simulation for $\mathcal{L} \in \mathcal{NP}$, if \exists oracle-aided PPT S s.t.

$$\{\langle (\mathsf{P}(w(x)), \mathsf{V}^*(z(x)))(x)\rangle_{\mathsf{V}^*}\}_{x\in\mathcal{L}}\approx_c \{\mathsf{S}^{\mathsf{V}^*(x,z(x))}(x)\}_{x\in\mathcal{L}}$$

for any deterministic polynomial-time V^* , any w with $w(x) \in R_{\mathcal{L}}(x)$ and any $z \colon \mathcal{L} \mapsto \{0,1\}^*$.

Prefect and statistical variants are defined analogously.

- "Most simulators" are black box
- Strictly weaker then general simulation!

Section 5

Zero-knowledge proofs for all NP

\mathcal{CZK} for 3COL

- Assuming that OWFs exists, we give a (black-box) CZK for 3COL.
- We show how to transform it for any $\mathcal{L} \in \mathcal{NP}$ (using that $3COL \in \mathcal{NPC}$).

Definition 19 (3COL)

 $G = (M, E) \in 3COL$, if $\exists \phi : M \mapsto [3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.

We use commitment schemes.

The protocol

Let π_3 be the set of all permutations over [3]. We use perfectly binding commitment Com = (Snd, Rcv).

Protocol 20 ((P, V))

Common input: Graph G = (M, E) with n = |G|

P's input: a (valid) coloring ϕ of G

- **1** P chooses $\pi \leftarrow \Pi_3$ and sets $\psi = \pi \circ \phi$
- ② $\forall v \in M$: P commits to $\psi(v)$ using Com (with security parameter 1ⁿ). Let c_v and d_v be the resulting commitment and decommitment.
- **③** V sends $e = (u, v) \leftarrow E$ to P
- **1** P sends $(d_u, \psi(u)), (d_v, \psi(v))$ to V
- V verifies that
 - Both decommitments are valid,
 - **2** $\psi(u), \psi(v) \in [3]$, and

Claim 21

The above protocol is a \mathcal{CZK} for 3COL, with perfect completeness and soundness 1/|E|.

- Completeness: Clear
- Soundness: Let {c_v}_{v∈M} be the commitments resulting from an interaction of V with an arbitrary P*.

Define $\phi \colon M \mapsto [3]$ as follows:

 $\forall v \in M$: let $\phi(v)$ be the (single) value that it is possible to decommit c_v into (if not in [3], set $\phi(v) = 1$).

If G \notin 3COL, then $\exists (u, v) \in E$ s.t. $\psi(u) = \psi(v)$.

Hence, V rejects such x w.p. at least 1/|E|.

Proving \mathcal{ZK}

Fix a deterministic, non-aborting V* that gets no auxiliary input.

Algorithm 22 (S)

Input: A graph G = (M, E) with n = |G|

Do $n \cdot |E|$ times:

- ① Choose $e' = (u, v) \leftarrow E$.
 - Set $\psi(u) \leftarrow [3]$,
 - 2 Set $\psi(v) \leftarrow [3] \setminus \{\psi(u)\}$, and
- 2 $\forall v \in M$: commit to $\psi(v)$ to V^* (resulting in c_v and d_v)
- Let e be the edge sent by V*.

If e = e', send $(d_u, \psi(u)), (d_v, \psi(v))$ to V^* , output V^* 's output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Proving \mathcal{ZK} cont.

Algorithm 23 (\widetilde{S})

Input: G = (V, E) with n = |G|, and a (valid) coloring ϕ of G.

Do for $n \cdot |E|$ times:

- **1** Choose $e' \leftarrow E$.
- 2 Act like the honest prover does given private input ϕ .
- 3 Let e be the edge sent by V^* . If e = e'
 - Send $(\psi(u), d_u), (\psi(v), d_v)$ to V^* ,
 - Output V*'s output and halt.

Otherwise, rewind V* to its initial step, and go to step 1.

Abort.

Claim 24

$$\{\langle (\mathsf{P}(w(x)), \mathsf{V}^*)(x) \rangle_{\mathsf{V}^*} \}_{x \in \mathsf{3COL}} \approx \{\widetilde{\mathsf{S}}^{\mathsf{V}^*(x)}(x, w(x))\}_{x \in \mathsf{3COL}},$$
 for any w with $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.

Proof: ?

Proving \mathcal{ZK} cont..

Claim 25

$$\{\mathsf{S}^{\mathsf{V}^*(x)}(x)\}_{x\in \mathsf{3COL}}\approx_{\mathsf{c}}\{\widetilde{\mathsf{S}}^{\mathsf{V}^*(x)}(x,w(x))\}_{x\in \mathsf{3COL}}, \text{ for any } w \text{ with } w(x)\in \mathcal{R}_{\mathcal{L}}(x)..$$

Proof: Assume \exists PPT D, $p \in \text{poly}$, $w(x) \in R_{\mathcal{L}}(x)$ and an infinite set $\mathcal{I} \subseteq 3\text{COL}$ s.t.

$$\Pr\left[\mathsf{D}(\mathsf{S}^{\mathsf{V}^*(x)}(x)) = 1\right] - \Pr\left[\mathsf{D}(\widetilde{\mathsf{S}}^{\mathsf{V}^*(x)}(x,w(x))) = 1\right] \geq \frac{1}{\rho(|x|)}$$

for all $x \in \mathcal{I}$.

Hence, \exists PPT \mathbb{R}^* and $b \in [3] \setminus \{1\}$ such that

$$\Pr\left[\left\langle \left(\operatorname{Snd}(1), \mathsf{R}^*(x, w(x))\right) (1^{|x|})\right\rangle_{\mathsf{R}^*} = 1\right] - \Pr\left[\left\langle \left(\operatorname{Snd}(b), \mathsf{R}^*(x, w(x))\right) (1^{|x|})\right\rangle_{\mathsf{R}^*} = 1\right]$$

$$\geq \frac{1}{|x|^2 \cdot p(|x|)}$$

for all $x \in \mathcal{I}$.

In contradiction to the (non-uniform) security of Com.

Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification

Extending to all \mathcal{NP}

For $\mathcal{L} \in \mathcal{NP}$ let Map_X and Map_W be two poly-time computable functions s.t.

- $x \in \mathcal{L} \iff \mathsf{Map}_X(x) \in \mathsf{3COL},$
- $\bullet \ (x,w) \in R_{\mathcal{L}} \Longleftrightarrow \mathsf{Map}_{W}(x,w) \in R_{\mathsf{3COL}}(\mathsf{Map}_{X}(x)).$

We assume for simplicity that Map_X is injective.

Let (P, V) be a \mathcal{CZK} for 3COL.

Protocol 26 (($P_{\mathcal{L}}, V_{\mathcal{L}}$))

Common input: $x \in \{0, 1\}^*$.

 $P_{\mathcal{L}}$'s input: $w \in R_{\mathcal{L}}(x)$.

- The two parties interact in $(P(Map_W(x, w)), V)(Map_X(x))$, where $P_{\mathcal{L}}$ and $V_{\mathcal{L}}$ taking the role of P and V respectively.
- $\bigvee_{\mathcal{L}}$ accepts iff \bigvee accepts in the above execution.

Extending to all $\mathcal{L} \in \mathcal{NP}$ cont.

Claim 27

 $(P_{\mathcal{L}},V_{\mathcal{L}})$ is a \mathcal{CZK} for $\mathcal L$ with the same completeness and soundness as (P,V) as for 3COL.

- Completeness and soundness: Clear.
- ullet Zero knowledge: Let S (an efficient) \mathcal{ZK} simulator for (P, V) (for 3COL).

On input (x, z_x) and verifier V^* , let $S_{\mathcal{L}}$ output $S^{V^*(x, z_x)}(\mathsf{Map}_X(x))$.

Claim 28

$$\{\langle (\mathsf{P}_{\mathcal{L}}(w(x)), \mathsf{V}_{\mathcal{L}}^*(z(x)))(x)\rangle_{\mathsf{V}_{\mathcal{L}}^*}\}_{x\in\mathcal{L}}\approx_{c} \{\mathsf{S}_{\mathcal{L}}^{\mathsf{V}_{\mathcal{L}}^*(x,z(x))}(x)\}_{x\in\mathcal{L}} \ \ \forall \ \mathsf{PPT}\ \mathsf{V}_{\mathcal{L}}^*,\ w,\ z.$$

 $\text{Proof: Assume } \{ \langle (\mathsf{P}_{\mathcal{L}}(w(x)), \mathsf{V}_{\mathcal{L}}^*(z(x))(x) \rangle_{\mathsf{V}_{\mathcal{L}}^*} \}_{x \in \mathcal{L}} \not\approx_{\mathsf{c}} \{ \mathsf{S}_{\mathcal{L}}^{\mathsf{V}_{\mathcal{L}}^*(x,z(x))}(x) \}_{x \in \mathcal{L}}.$

Hence.

$$\{\langle (\mathsf{P}(\mathsf{Map}_{W}(x,w(x))),\mathsf{V}^{*})(x)\rangle_{\mathsf{V}^{*}(z'(x))}\}_{x\in 3\mathsf{COL}}\not\approx_{c} \{\mathsf{S}^{\mathsf{V}^{*}(x,z'(x))}(x)\}_{x\in 3\mathsf{COL}},$$

where
$$V^*(x, z_x' = (z_x, x^{-1}))$$
 acts like $V_{\mathcal{L}}^*(x^{-1}, z_x)$, and $z'(x) = (z(x^{-1}), x^{-1})$ for $x^{-1} = \operatorname{Map}_x^{-1}(x)$.