AMS-LATEX QUICK REFERENCE

Packages

The main package to load is amsmath. More symbols are included in amssymb.

Typeset

For text style (inline) math, use: \$... \$ For display style math, which breaks the paragraph: \begin{equation} ... \end{equation} (numbered) or \[... \] (non-numbered).

Greek letters

α	\alpha	β	\beta	γ	\gamma
δ	\delta	ϵ	\epsilon	ε	$\vert varepsilon$
ζ	\zeta	η	\eta	θ	\theta
ϑ	$\$ vartheta	ι	\iota	Κ	\kappa
λ	\lambda	μ	\mu	ν	\nu
ξ,	\xi	π	\pi	ϖ	\varpi
ρ	\rho	ρ	\varrho	σ	\sigma
τ	\tau	υ	υ	ф	\phi
φ	\varphi	χ	\chi	ψ	\psi
ω	\omega				
Γ	\Gamma	Δ	\Delta	Θ	\Theta
Λ	\Lambda	Ξ	\Xi	П	\Pi
Σ	\Sigma	Υ	Υ	Φ	\Phi
Ψ	\Psi	Ω	\Omega		

To ensure a consistent style throughout the document:

\renewcommand{\epsilon}{\varepsilon}
\renewcommand{\theta}{\vartheta}

 $\verb|\renewcommand{\rho}{\varrho}|$

\renewcommand{\phi}{\varphi}

Superscript & Subscript

 x^y x^y x^{a+b} x^{a+b} x_y x_{a+b} x_{a+b}

Root

Square root $\sqrt{x} \operatorname{\sqrt{x}} \operatorname{\sqrt{x}} \operatorname{N-th} \operatorname{root} \sqrt[N]{x} \operatorname{\sqrt{x}} \operatorname{\sqrt$

Dots

Multiplication dot · \cdot
Three centered dots · \cdots
Three baseline dots · \ldots
Three diagonal dots · \ddots
Three vertical dots · \vdots

Spaces

Negative space \!
Thin space \,
1em space \quad
2em space \quad

Braces

\overbrace{ ... }^{ text over brace }
\underbrace{ ... }_{ text under brace }

Accents

 \hat{a} \hat{a} \bar{a} \bar{a} \hat{a} \mathring{a} \check{a} \check{a} \dot{a} \dot{a} \vec{a} \vec{a} \tilde{a} \tilde{a} \ddot{a} \dot{a} \dot{AAA}

Operators

```
\sin
        \cos
                \arcsin
                          \arccos
\sinh
        \cosh
                \tan
                          \arctan
\log
        \ln
                          \min
                \max
\sup
        \inf
                \tanh
                          \cot
\sec
        \csc
                \det
```

Modulo

Fractions

\frac{ ... }{ ... }

Symbol stacking

\overset{...}{...}
\underset{...}{...}

First argument is the main symbol, second argument is the symbol to put over or under the main symbol.

Big operators

$$\int_a^b \left\{ \inf_{a}^{b} \right\} \sum_{k=0}^n \left\{ \sup_{k=0}^{n} \right\}$$

$$\prod_{k=0}^n \left\{ \inf_{k=0}^{n} \right\} \lim_{x\to 0} \left\{ \lim_{x\to 0} \left\{ x \to 0 \right\} \right\}$$

For multiple integrals: $\iint \$ \iint $\iint \$ \iint etc. Closed path integral: $\oint \$ \oint

Delimiter size

Change the delimiter size by adding one of these modifiers immediately before the delimiter itself: \big \Big \Bigg \Bigg

Let LATEX determine the correct size using \left and \right immediately before the opening and closing delimiters, respectively.

Absolute value & Norm

```
|x| \lvert x \rvert ||x|| \lvert x \rvert
```

The same can be achieved by defining new commands:

\usepackage{mathtools}
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}

Use starred variants \abs* and \norm* to produce the correct delimiter height for any kind of equation.

$$\begin{array}{c|c} |x| & \text{\ \ } |x| & \text{\ \ } |abs\{x\} & \text{\ \ } |abs*\{frac\{a\}\{b\}\} \\ \|x\| & \text{\ \ } |abs\{x\} & \text{\ \ } |abs\{x\}\} & \text{\ \ } |abs\{x\}\} \\ \end{array}$$

Arrows

```
\downarrow
                               \updownarrow
\Uparrow
              \Downarrow
                           1
                               \Updownarrow
                          \rightarrow or \to
\leftarrow or \gets
\leftrightarrow
                          \Leftarrow
\Rightarrow
                          \Leftrightarrow
\mapsto
             \longleftarrow
             \longrightarrow
              \longleftrightarrow
              \Longleftarrow
              \Longrightarrow
              \Longleftrightarrow
              \longmapsto
```

Binary relations

\neq	\ne	\leq	\le	\geqslant	\ge
\equiv	\equiv	\ll	\11	\gg	\gg
÷	\doteq	~	\sim	\simeq	\simeq
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
\in	\in	\ni	\ni	\propto	\propto
	\mid		\parallel	\perp	\perp

It's possible to negate these symbols by prefixing them with \not (for example: $\not\equiv \not\endsymbol{equiv}$)

Binary operators

```
\pm
                                   \cdot
    \pm
                    \mp
    \div
                                   \setminus
                    \times
                    \cup
    \star
                               \cap
                                   \cap
    \ast
                    \circ
                                   \bullet
                    \ominus
                                   \odot
     \oplus
\oplus
     \oslash
                    \otimes
                                   \smallsetminus
```

Logic symbols

\vee	\lor	\wedge	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\neg	\neg
\exists	\exists	∄	\nexists	\forall	\forall
\Rightarrow	\implies	\iff	\iff	⊨	\models

Other symbols

```
 \begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

Multi line equations

Use the multline environment: \begin{multline} ... \end{multline}

To align equations, use the align environment. Specify the alignment position with & and separate equations with \\:

```
\begin{align}
... &= ... \
... &= ...
\end{align}
```

Vectors

x \vec{x}
x \bm{x} (needs bm package)

Best practice to easily switch between types: \usepackage{bm}

\renewcommand{\vec}{\bm}

Arrays

Use the array environment. Use \\ to separate rows, and & to separate elements of each row. To produce large delimiters around the array, use \left and \right followed by the desired delimiter.

Each letter in the argument of the array represents a column:

- 1 left aligned text
- c centered text
- r right aligned text

Cases

Use the cases environment. Use \\ to separate different cases, and & for correct alignment.

Matrices

Use one of the following environments:

matrix	No delimiter
pmatrix	(delimiter
bmatrix	[delimiter
${\tt Bmatrix}$	{ delimiter
vmatrix	delimiter
Vmatrix	delimiter

Use \\ to separate different rows, and & to separate elements of each row.

To produce a small matrix, useful for inline math, use the smallmatrix environment: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.