

Dr. Hina Gohar Ali

Hina.gohar@seecs.edu.pk

Office: KBS Lab 1st floor SEECS Building

Office Hours: Open door policy/Appointment through emails

Research Interest: Photovoltaic systems, Power Electronics and Control, Renewable energy, Sliding mode control

(SMC), Artificial Intelligence for PV systems

Electronic Devices & Circuits

Learning Process

THE TEACHING/LEARNING PROCESS

Input

Teacher Characteristics Student

Characteristics

Classroom Processes

Teacher Behavior

Student Behavior

Other

Output

Student Achievement

Other

Academic

2007-2010 B.E Electronic Engineering

NED University of Engineering & Technology, Karachi-Pakistan

2013- Jan 2015 MS Electronic Engineering

GIK Institute of Engineering Sciences & Technology, Topi-Pakistan

Oct 2016-2020 **Doctorate/Ph.D.** Electrical & Telecommunication Engineering (Excellent Grade)

Universitat Autonoma de Barcelona, Spain

Ph.D. Thesis: Maximum Power Point Tracking of Photovoltaic System using Non-Linear Controllers

Professional Experience

Feb 2021-Present Assistant Professor

SEECS, NUST Islamabad, Pakistan

May 2015-Oct 2016 **Lecturer (Adhoc BPS-18)**

B.U.I.T.E.M.S Department of Electrical Engineering, Quetta Pakistan

Jan 2013-Dec 2014 Graduate Assistant

GIK Institute Faculty of Electrical Engineering, Topi-Pakistan

https://www.linkedin.com/in/hina-gohar-ali-40b7a2197/

https://www.researchgate.net/profile/Hina-Gohar-Ali

https://scholar.google.com/citations?user=Z-5yLJEAAAAJ

Important

Some Rules to be observed

- Please be courteous in class
- Punctuality
- Cell phones/Tabs/ Laptops are not allowed to be used
- Ask questions related to the course ...
- Drinking or eating in the class or laboratory is strictly prohibited
- There are things that you cannot learn from reading notes

. . . .

Important Values (to be in good books of Instruction

- Discipline, Respectful & Obedient Students
- Learn Smart & Work Smart
- Focus on Concepts , Revise, Discuss
- Be kind & understand each other
- Mutual understanding, help & build each other
- No Tolerance to any kind of disrespect of Discipline Violation
- Make great memories along with learning
- Keep Good Relation everyone around
- Students really matter (the strength)
- Practice, Practice!!

Today's Lecture

- About the Course Title
- Basic Concepts
- Operational Amplifiers

Chapter 1 Introduction to Electronics

Data Storage Devices Timline

The Start of the Modern Electronics Era

Bardeen, Shockley, and Brattain at Bell Labs - Brattain and Bardeen invented the bipolar transistor in 1947.

The first germanium bipolar transistor. Roughly 50 years later, electronics account for 10% (4 trillion dollars) of the world GDP.

Electronics Milestones

1874	Braun invents the solid-state rectifier.	1958	Integrated circuits developed by Kilby and Noyce
1906	DeForest invents triode vacuum tube.	1961	First commercial IC from Fairchild Semiconductor
1907-1927 First radio circuits developed		1963	IEEE formed from merger of IRE and AIEE
	from diodes and triodes.	1968	First commercial IC opamp
1925	Lilienfeld field-effect device patent filed.	1970	One transistor DRAM cell invented by Dennard at IBM.
1947	Bardeen and Brattain at Bell Laboratories invent bipolar transistors. Commercial bipolar transistor production at Texas Instruments.	1971	4004 Intel microprocessor introduced.
		1978	First commercial 1-kilobit memory.
		1974	8080 microprocessor introduced.
1956	Bardeen, Brattain, and Shockley receive Nobel prize.	1984	Megabit memory chip introduced.
		2000	Alferov, Kilby, and Kromer

Evolution of Electronic Devices

Vacuum Tubes

Discrete Transistors

SSI and MSI Integrated Circuits

VLSI Surface-Mount Circuits

Introduction to Electronics

Types of Electricity

- ★ Two forms of electricity **Static** and **Produced**
- *Static Electricity is an electrical charge at rest.
- ★ Produced Electricity is produced by either magnetism, chemicals, light, heat, or pressure.

Introduction to Electronics

The study of electronics can be broken down into four basic steps:

- Step I Basic Electricity
- Step 2 Electronic Components
- Step 3 Electronic Circuits
- Step 4 Electronic Systems

★Insulators

- An insulator is a material that does not conduct electrical current under normal conditions.
- Most good insulators are compounds rather than single-element materials and have very high resistivities.
- Valence electrons are tightly bound to the atoms; therefore, there are very few free electrons in an insulator.
- Examples of insulators are rubber, plastics, glass, mica, and quartz.

Materials Used In Electronics

★ Conductors

- A conductor is a material that easily conducts electrical current.
- Most metals are good conductors.
- The best conductors are single-element materials, such as copper (Cu), silver (Ag), gold (Au), and aluminum (Al), which are characterized by atoms with only one valence electron very loosely bound to the atom.

★Semiconductors

- A semiconductor is a material that is between conductors and insulators in its ability to conduct electrical current.
- A semiconductor in its pure (intrinsic) state is neither a good conductor nor a good insulator.
- Single-element semiconductors are antimony (Sb), arsenic (As), astatine (At), boron (B), polonium (Po), tellurium (Te), silicon (Si), and germanium (Ge).

Materials Used In Electronics

★Semiconductors

- Compound semiconductors such as gallium arsenide, indium phosphide, gallium nitride, silicon carbide, and silicon germanium are also commonly used.
- The single-element semiconductors are characterized by atoms with four valence electrons.
- Silicon is the most commonly used semiconductor.

Band Gap

- ★ Valence shell of an atom represents a band of energy levels and that the valence electrons are confined to that band.
- ★When an electron acquires enough additional energy, it can leave the valence shell, become a free electron, and exist in what is known as the conduction band.
- ★The difference in energy between the valence band and the conduction band is called an energy gap or band gap.

Band Gap

Chapter 2

Operational Amplifiers

The Basic Op-Amp

Operational amplifier (Op-amp): A high gain differential amplifier with a high input impedance (typically in $M\Omega$) and low output impedance (less than 100Ω).

Note the op-amp has two inputs and one output.

The Basic Op-Amp

Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs. One of the inputs is called the inverting input (–); the other is called the noninverting input. Usually there is a single output. Most op-amps operate from plus and minus supply voltages, which may or may not be shown on the schematic symbol.

Op-Amp Gain

Op-Amps can be connected in *open-loop* or *closed-loop* configurations.

Open-loop: A configuration with no feedback from the op-amp output back to its input. Op-amp open-loop gain typically exceeds 10,000.

Closed-loop: A configuration that has a negative feedback path from the op-amp output back to its input. **Negative feedback** reduces the gain and improves many characteristics of the op-amp.

Closed-loop gain is always lower than open-loop gain.

Inverting Op-Amp

The input signal is applied to the inverting (–) input

The non-inverting input (+) is grounded

The **feedback resistor** (R_f) is connected from the output to the negative (inverting) input; providing *negative feedback*.

Inverting Op-Amp Gain

Gain is set using external resistors: R_f and R_1

$$A_{V} = \frac{V_{o}}{V_{i}} = \frac{R_{f}}{R_{1}}$$

Gain can be set to any value by manipulating the values of R_f and R_1 .

Unity gain $(A_v = 1)$:

$$R_f = R_1$$

$$A_v = \frac{-R_f}{R_1} = -1$$

The negative sign denotes a 180° phase shift between input and output.

Virtual ground: A term used to describe the condition where $V_i \cong 0$ V (at the inverting input) when the noninverting input is grounded.

The op-amp has such high input impedance that even with a high gain there is no current through the inverting input pin, therefore all of the input current passes through R_f .

Common Op-Amp Circuits

Inverting amplifier

Noninverting amplifier

Unity follower

Summing amplifier

Integrator

Differentiator

Inverting/Noninverting Amplifiers

Inverting Amplifier

$$V_o = \frac{-R_f}{R_1} V_1$$

Noninverting Amplifier

$$V_o = (1 + \frac{R_f}{R_1})V_1$$

Unity Follower

$$V_o = V_1$$

Summing Amplifier

Because the op-amp has a high input impedance, the multiple inputs are treated as separate inputs.

$$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

Integrator

The output is the integral of the input; i.e., proportional to the area under the input waveform. This circuit is useful in low-pass filter circuits and sensor conditioning circuits.

$$V_o(t) = -\frac{1}{RC} \int V_1(t) dt$$

Differentiator

The differentiator takes the derivative of the input. This circuit is useful in high-pass filter circuits.

$$V_o(t) = -RC \frac{dV_1(t)}{dt}$$

DC-Offset Parameters

Even when the input voltage is zero, an op-amp can have an output **offset**. The following can cause this offset:

Input offset voltage
Input offset current
Input offset voltage and input offset current
Input bias current

Input Offset Voltage (V_{IO})

The specification sheet for an op-amp indicates an **input offset voltage** (V_{IO}) .

The effect of this input offset voltage on the output can be calculated with

$$V_{o(offset)} = V_{IO} \frac{R_1 + R_f}{R_1}$$

Input Offset Current (I_{IO})

If there is a difference between the dc bias currents generated by the same applied input, this also causes an output offset voltage:

The **input offset current** (I_{IO}) is specified in the specifications for an op-amp.

The effect of I_{IO} on the output offset voltage can be calculated using:

$$V_{o(offset)} = V_{o(offset due to V_{IO})} + V_{o(offset due to I_{IO})}$$

Total Offset Due to V_{io} and I_{io}

Op-amps may have an output offset voltage due to V_{IO} and I_{IO} . The total output offset voltage equals the sum of the effects of both:

 $V_o(offset) = V_o(offset due to V_{IO}) + V_o(offset due to I_{IO})$

Input Bias Current (I_{IB})

A parameter that is related to input offset current (I_{IO}) is called input bias current (I_{IB})

The input bias currents are calculated using:

$$I_{IB}^{-} = I_{IB} - \frac{I_{IO}}{2}$$

$$I_{IB}^{+} = I_{IB} + \frac{I_{IO}}{2}$$

The total input bias current is the average of the two:

$$I_{IB} = \frac{I_{IB}^- + I_{IB}^+}{2}$$

Frequency Parameters

An op-amp is a wide-bandwidth amplifier. The following factors affect the bandwidth of the op-amp:

Gain

Slew rate

Gain and Bandwidth

The op-amp's high frequency response is limited by its internal circuitry. The plot shown is for an open loop gain $(A_{OL} \text{ or } A_{VD})$. This means that the op-amp is operating at the highest possible gain with no feedback resistor.

In the open loop mode, an op-amp has a narrow bandwidth. The bandwidth widens in closed-loop mode, but the gain is lower.

Slew Rate (SR)

Slew rate (SR): The maximum rate at which an op-amp can change output without distortion.

$$SR = \frac{\Delta V_o}{\Delta t}$$
 (in V/\mus)

The SR rating is listed in the specification sheets as the $V/\mu s$ rating.

Maximum Signal Frequency

The slew rate determines the highest frequency of the op-amp without distortion.

$$f \leq \frac{SR}{2\pi V_{p}}$$

where V_P is the peak voltage

General Op-Amp Specifications

Other op-amp ratings found on specification sheets are:

Absolute Ratings

Electrical Characteristics

Performance

Absolute Ratings

These are common maximum ratings for the op-amp.

Absolute Maximum Ratings			
Supply voltage	±22 V		
Internal power dissipation	500 mW		
Differential input voltage	±30 V		
Input voltage	±15 V		

I_{CC} Supply current

 P_D Total power dissipation

Electrical Characteristics

Characteristic	Minimum	Typical	Maximum	Unit
$V_{ m IO}$ Input offset voltage		1	6	mV
I _{IO} Input offset current		20	200	nA
I _{IB} Input bias current		80	500	nA
V _{ICR} Common-mode input voltage range	±12	±13		V
V _{OM} Maximum peak output voltage swing	±12	±14		V
A _{VD} Large-signal differential voltage amplification	20	200		V/mV
r _i Input resistance	0.3	2		$M\Omega$
r _o Output resistance		75		Ω
C _i Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB

uA741 Flectrical Characteristics: Voc = +15 V T₄ = 25°C

Note: These ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

1.7

50

2.8

85

mA

mW

One rating that is unique to op-amps is **CMRR** or **common-mode rejection ratio**.

Because the op-amp has two inputs that are opposite in phase (inverting input and the non-inverting input) any signal that is common to both inputs will be cancelled.

Op-amp CMRR is a measure of the ability to cancel out common-mode signals.

Op-Amp Performance

The specification sheets will also include graphs that indicate the performance of the opamp over a wide range of conditions.

That's all for Today!