Antenor Moreira de Barros Leal

Aplicativo web de auxílio à navegação aérea

PROJETO FINAL

DEPARTAMENTO DE INFORMÁTICA
Programa de Graduação em Engenharia da
Computação

Antenor Moreira de Barros Leal

Aplicativo web de auxílio à navegação aérea

Relatório de Projeto Final II

Relatório de Projeto Final, apresentado ao Programa de Engenharia da Computação, do Departamento de Informática da PUC-Rio como requisito parcial para a obtenção do titulo de Bacharel em Engenharia da Computação.

Orientador: Prof. Adriano Francisco Branco

Todos os direitos reservados. A reprodução, total ou parcial do trabalho, é proibida sem a autorização da universidade, do autor e do orientador.

Antenor Moreira de Barros Leal

Graduando em Engenharia da Computação na PUC - Rio

Ficha Catalográfica

Leal, Antenor Moreira de Barros

Aplicativo web de auxílio à navegação aérea / Antenor Moreira de Barros Leal; orientador: Adriano Francisco Branco. – 2024.

?? f: il. color. ; 30 cm

Projeto Final - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática — Trabalho de Conclusão de Curso (Graduação). 2. Aviação. 3. Navegação. 4. Aplicativo. 5. Algoritmo. 6. Web. 7. Internet. I. Branco, Adriano Francisco. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

Resumo

Leal, Antenor Moreira de Barros; Branco, Adriano Francisco. **Aplicativo** web de auxílio à navegação aérea. Rio de Janeiro, 2024. **??**p. Projeto Final — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

É um aplicativo web de código aberto com o objetivo de auxiliar usuários de simuladores de voo que não possuem acesso à ferramenta (Electronic Flight Bag) que um piloto de linha aérea teria. Ao acessar o aplicativo, o usuário se depara com a lista de aeroportos cadastrados e, após escolher um, são exibidas as informações da pista, frequências do aeroporto (torre, solo, ATIS, etc.), e frequências de navegação (ILS, VOR, etc.). Também são apresentadas as informações das condições meteorológicas atuais do aeródromo (vento, visibilidade, temperatura, etc.), tanto no formato oficial (METAR), obtidas a cada hora de uma API externa, como em um texto em linguagem natural para melhor entendimento do jogador iniciante. Um usuário com permissão de administrador pode adicionar e editar aeroportos. A partir de informação atual vento, a pista em uso é calculada.

Palavras-chave

Aviação; Navegação; Aplicativo; Algoritmo; Web; Internet.

Abstract

Leal, Antenor Moreira de Barros; Branco, Adriano Francisco (Advisor). **Aerial navigation aid web application**. Rio de Janeiro, 2024. **??**p. Projeto Final – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

It is an open source web application to auxialiate the flight simulator's users that don't have access to the tool (Electronic Flight Bag) that an airline pilot would have. When accessing the app, the users encounter the list of registered airports and, after choosing one, runway information, airport frequencies (tower, ground, ATIS etc) and navigation frequencies (ILS, VOR etc) are showed. Also provided are the current meteorological conditions of the aerodrome (wind, visibility, temperature, etc.), both in the official format (METAR), obtained hourly from an external API, and in natural language text for better understanding by novice players. An administrator user can add and edit airports. Based on the current wind information, the active runway is calculated.

Keywords

Aviation; Navigation; Application; Algoritm; Web; Internet.

Sumário

Lista de figuras

Lista de tabelas

Lista de Códigos

1 Introdução

Com o aumento da capacidade de passageiros e carga e a necessidade de uma maior segurança, começou a se fazer necessário trazer ao cockpit vários documentos como checklist de procedimentos; log book; cartas de navegação, de saída, de aproximação, do aeródromo; tabelas de performance da aeronave etc.

Para levar tudo isto costumava-se usar uma maleta (a Flight Bag), obviamente esta ficava muito pesada.

Com a miniaturização dos computadores e surgimentos dos tablets, começaram a ser desenvolvidos programas que substituíam partes ou todos estes documentos, é a chamada maleta de voo eletrônica, mais conhecida pela sigla em Inglês EFB (*Electronic Flight Bag*).

Atualmente existem hardware dedicados para esta função, mas é mais comum se usar um tablet com um aplicativo disponibilizado pela companhia aérea. Normalmente, o tablet escolhido é um iPad da Apple, mas algumas companhias optaram pelo Microsoft Surface. [??]

O uso do EFB trouxe uma série de benefícios para os pilotos e para as companhias aéreas. Além de reduzir o peso e o volume de documentos físicos a serem transportados, o EFB permite uma rápida atualização das informações, garantindo que os pilotos tenham sempre acesso às versões mais recentes das cartas de navegação. [??]

Além disso, a capacidade de armazenamento do EFB possibilita o acesso a uma vasta quantidade de informações adicionais, como manuais de operação da aeronave, regulamentações atualizadas e até mesmo dados meteorológicos em tempo real, o que contribui para uma tomada de decisão mais informada e segura durante o voo.

2 Sistemas Similares

Os EFBs possuem funções variadas como cálculo de combustível, de performance, etc. Para aeronaves mais novas, como o Airbus A320 é difícil realizar cálculos de performance, porque não é disponibilizado ao público como este cálculo é feito. Ferramentas encontradas na Internet [??] normalmente fazem engenharia reversa, e portanto, podem apresentar resultados diferentes de um cálculo oficial.

Nos simuladores de voo para computador pessoal, algumas aeronaves simulam este equipamento como o Airbus A320neo desenvolvido pela FlyByWire Simulations. Apesar de ser uma aeronave freeware, ela é bem sofisticada chegando ao nível de realismo da Fenix Simulations ou da ToLiss Simulations, duas produtoras com modelos pagos do A320.

Figura 2.1: Exemplo de um EFB no Flight Simulator 2020 na aeronave A320neo

Contudo, o METAR do aeródromo não se encontra disponível no EFB. É possível usar o computador de bordo da aeronave (FMC) e conseguir esta informação. Também é possível sintonizar na frequência do ATIS, mas isto só funcionará se o avião já estiver perto do aeródromo.

O que muitos jogadores fazem é acessar o AISWEB (https://aisweb.decea.mil.br/), sistema oficial brasileiro de informações aeronáuticas.

É um site extremamente completo, podendo ser usado em operações reais, mas para o jogador iniciante seria de valia uma interface mais simples.

Figura 2.2: AISWEB com informações de pista, frequências de comunicação e navegação para o Santos Dumont

O AISWEB exibe o METAR no aeroporto, mas não explica para o que cada campo serve.

O site METAR-TAF (https://metar-taf.com/) é o decoder mais conhecido, possui uma interface gráfica bem construída e muito fácil de entender, mas não possui a lista de frequência dos aeroportos e de radionavegação.

SEGUNDA ENTREGA (26/06) Capítulo 2. Sistemas Similares

de ACFT da Aviação Comercial - Grupo 1, porto divulgada pela ANAC.

: PONTOS DE VERIFICAÇÃO

dimento de verificação de segurança de a aviação geral após o pouso e parada nas nente de 0800 às 0100.

o entrar em CTC FREQ 122.30MHZ (OPS III ordo e apoio de solo necessário. A solicitação de deverá ser informada com antecedência MNM or e pelo tel: (21) 99609-5236.

REGIONAL (III COMAR) AVBL somente para ACFT

ância máxima de uma hora. s ACFT estacionadas nos canteiros 5 e 6 ADJ cal.

<a, com envergadura máxima de até 20m e ecessidade de utilização do pátio do GEIV deverá RCR REPORTE DE CONDIÇÃO DE PISTA (O QUE É ISSO?)

SBRJ 04190855 02R 6/6/6 NR/NR/NR 0/0/0
DRY/DRY/DRY
RWYCC 6 6 6 8 RBA BOA

METAR

192000Z 17006KT 9999 FEW030 BKN050 23/17 Q1018=

TAF

191500Z 1918/2006 23005KT 9999 FEW020
TX25/1918Z TN22/2006Z BECMG 2000/2002
27005KT FEW030 BECMG 2004/2006 32005KT
SCT017 SCT025 RMK PGY=

Figura 2.3: METAR do Santos Dumont no AISWEB

Figura 2.4: Interface gráfica do METAR-TAF

3 A Proposta

A ideia do trabalho seria unir as funcionalidades do METAR-TAF com o AISWEB em uma interface gráfica que o usuário iniciante consiga usar sem dificuldades.

Pelo fato de aviação necessitar ter um ambiente seguro e bastante regulado, considerando que meu projeto é apenas um protótipo, prefiro restringir o caso de uso apenas para jogadores de simuladores de voo que desejam que a simulação seja parecida com o real. Nas páginas do sistema conterá um aviso de que o sistema **não deve ser usado para um voo real**.

Dito isto, o sistema possui backend escrito na linguagem Python fazendo uso da biblioteca Flask. A renderização de página é server-side, usando a funcionalidades de templates do Flask junto com a biblioteca Jinja2.

No segundo semestre de 2023 comecei a fazer um projeto para uso próprio. O código está disponível em https://github.com/antenor-z/aero. Atualmente o projeto funciona, mas a arquitetura foi feita sem muito planejamento, as informações do aeroporto são hardcoded.

O usuário tem acesso a informações de frequência da torre, solo, tráfego, rampa e operações, bem como das frequências e dados para VOR (um sistema de radionavegação por antenas no solo), ILS (sistema de pouso por instrumentos) e informações de pista. Neste trabalho quero, armazenar estas em um banco de dados relacional com uma arquitetura bem planejada. Farei testes de desempenho simulando uma alta taxa de acesso e, dependendo dos resultados, fazer uso de um banco em memória como intermediário.

Os aeródromos podem, ao longo do tempo, mudarem alguma frequência e outras informações, como o número da pista, que muda a depender da variação do norte magnético, uma ampliação da pista, etc. Atualmente, o código precisa ser alterado para atualizar estas informações. Desejo implementar um sistema diretamente no site, com uma autenticação por senha e TOTP, para que seja possível mudar qualquer informação no banco.

Através de uma API do serviço americano National Weather Service, são coletadas as informações atuais de meteorologia. Estas informações (que vêm em um formato chamado METAR) são processadas pelo backend e mostradas ao usuário de uma forma fácil de entender. Esta parte em específico possui um código de difícil manutenção. Desejo refatorar esta parte e adicionar suporte para a maior parte de códigos da especificação do METAR.

4 Cronograma

Figura 4.1: Cronograma planejado

Figura 4.2: Cronograma realizado

Por ter sido meu primeiro grande projeto autogerido, tive um pouco de dificuldade em estimar o tempo real de implementação de cada tarefa. Portanto, há uma grande diferença entre o gráfico de tempo planejado e realizado.

SEGUNDA ENTREGA (26/06) Capítulo 4. Cronograma

Tabela 4.1: Milestones

Data	Milestone
29/05	Entrega da proposta de Projeto Final I
26/06	Entrega do relatório de Projeto Final I

5 Decodificação do METAR

5.1 Introdução

O METAR é um protocolo de transmissão de dados meteorológicos de um aeroporto ou aeródromo. Não se trata de uma previsão do tempo, mas sim de uma visualização atual. O METAR é formado por itens separados por espaço. Cada item corresponde a uma unidade mínima de informação meteorológica. Com os dados de sensores instalados no aeródromo [??], a cada hora é publicado um novo METAR que é válido para aquela hora. Em casos excepcionais, quando as condições de tempo estiverem mudando repentinamente, um METAR pode ser atualizado a cada meia hora [??].

5.2 Exemplo

O METAR no aeroporto de Fortaleza [??], no dia 17 de abril de 2024 às 10.54 foi 171300Z 15010KT 9999 BKN019 SCT025 FEW030TCU BKN100 30/25 Q1011.

"SBFZ"se refere ao código ICAO (International Civil Aviation Organization) do aeroporto, não confundir com o código IATA (International Air Transport Association) que é formado por três letras. O aeroporto Pinto Martins possui o código IATA FOR, o Santos Dumont SDU e o Galeão GIG. O público geral parece conhecer mais este código, mas na aviação costuma-se usar mais o código ICAO, pois todos os aeródromos possuem um, enquanto o IATA só é presente em aeroportos onde há processamento de bagagem [??] [??].

O ICAO é formado por quatro letras em que a primeira é o prefixo da região. A América do Sul possui o prefixo "S", o Brasil possui o prefixo "SB", por isso que o Aeroporto de Fortaleza, Santos Dumont e Galeão possuem os códigos SBFZ, SBRJ e SBGL, respectivamente. Países com muitos aeroportos, apenas uma letra, logo as três últimas letras ficam livres, podendo assim terem mais códigos para uso.

171300Z significa que este METAR se refere ao dia 17 às 13 horas e zero minuto zulu. Horário zulu é simplesmente o fuso horário da longitude de zero grau, chamado de hora UTC ou Coordinated Universal Time [??]. Para que não haja confusões com os horários, a aviação internacionalmente usa o

SEGUNDA ENTREGA (26/06) Capítulo 5. Decodificação do METAR

horário UTC. Este METAR será válido até às 13:59, quando será substituído pelo METAR iniciando com "SBFZ 171400Z".

Note que a seguinte expressão regular com três grupos de captura consegue extrair o dia, a hora e o minuto:

$([0-9]{2})([0-9]{2})([0-9]{2})Z$

Com o METAR supracitado, os grupos de captura serão:

- Grupo 1 (dia): 17
- Grupo 2 (hora): 13
- Grupo 3 (minuto): 00

15010KT se refere à velocidade e direção do vento. Os três primeiros algarismos informam a direção, em graus, de onde o vento sopra, e os últimos dois algarismos informam a velocidade do vento em nós (milhas náuticas por hora). Neste caso, o vento vem da direção 150 graus com velocidade de dez nós. Com a expressão abaixo extraímos essas duas informações:

$([0-9]{3})([0-9]{2})KT$

A informação de vento pode também conter a letra G (gust) para rajadas e a letra V em um item separado para o caso de haver variação de direção. Por exemplo, um METAR com os itens 10016G21KT 080V120 informa que há rajadas de até 21 kt e a direção do vento pode variar de 80 a 120 graus. Existem outros aeroportos que podem usar outras unidades para a velocidade do vento, mas no Brasil só é usado nós (kt). Para obter essas informações usamos o regex ([0-9]3[0-9]2G[0-9]2) e ([0-9]3)V([0-9]3).

9999 significa visibilidade ilimitada (maior ou igual a 10 km). Se fosse 6000, a visibilidade seria de 6 km. Por ser sempre quatro algarismos, o regex ([0-9]4) consegue capturar essa informação.

30/25 Temperatura 30°C e ponto de orvalho 25°C. Caso a temperatura seja negativa, a letra M é adicionada antes do número. M2/M5 significa temperatura -2°C e ponto de orvalho -5°C [??].

Q1012 O altímetro do avião deve ser referenciado para 1012 hectopascal. Também pode ser usada a unidade polegadas de mercúrio (mmHg), mas no Brasil esta não é usada no METAR.

SCT025 Nuvens espalhadas (3/8 a 4/8 do céu com nuvens) em 2500 pés de altitude. 025 se refere ao nível de voo (Flight Level), que é a altitude acima do nível médio do mar com divisão exata por 100.