MAE0328 - Lista 7: Entrega dia 25/06/2019

Para ambos os exercícios abaixo, use os dados da Tabela 1. Apresente todas as suas resoluções teóricas e implementações computacionais de forma clara, comentando seu código onde julgar apropriado.

1. Considere o modelo não-linear de regressão dado por

$$Y_i = \beta_0 x_i^{\beta_1} + e_i,$$

em que
$$e_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2), i \in \{1, \dots, n\}.$$

- (a) Apresente um gráfico de dispersão dos dados. Você julga adequada a pressuposição de um modelo linear homoscedástico para esses dados?
- (b) Apresente a esperança e variância de Y_i . A variância é homogênea? O modelo é linearizável?
- (c) Apresente a função de log-verossimilhança $\ell(\theta; \mathbf{y}, \mathbf{X})$, em que $\theta = (\beta_0, \beta_1, \sigma^2)$, desse modelo e calcule a função escore e a matriz de informação de Fisher.
- (d) Com seus resultados do item (c), apresente uma implementação computacional do método escore de Fisher para obter a estimativa de máxima verossimilhança para θ . Usando sua implementação e considerando tolerância de erro de aproximação de 10^{-6} , obtenha as estimativas de máxima verossimilhança de β_0 , β_1 e σ^2 .
- (e) Usando a função optim() (ou alguma função de otimização numérica de sua preferência), estime novamente os parâmetros. Compare esses com os obtidos através do método escore de Fisher.
- 2. Considere agora uma modificação do modelo anterior, com

$$Y_i = \beta_0 x_i^{\beta_1} + e_i$$

e
$$e_i \stackrel{ind}{\sim} \mathcal{N}(0, \exp{\{\gamma_0 + \gamma_1 x_i\}}).$$

- (a) Entre essa e a especificação do exercício (1), qual você julga mais adequada? Justifique com base no gráfico de dispersão.
- (b) Apresente a função de log-verossimilhança desse modelo. Justifique o uso da função exponencial para definir a variância do modelo.
- (c) Encontre a estimativa de máxima verossimilhança para $\theta = (\beta_0, \beta_1, \gamma_0, \gamma_1)$ nesse novo modelo utilizando a função optim(). Compare-as com as obtidas no exercício (1).
- (d) Apresente um gráfico como os valores observados e as curvas de regressão estimadas dos dois modelos sugeridos.

Tabela 1: Dados fictícios, com variável resposta Y_i e covariável x_i .

auos	neucios,	COIII V	ar ra v c	or respos	sta I ₁ C
i	x_i	Y_i	i	x_i	Y_i
1	188.1	86.97	36	251.8	90.96
2	276.0	90.81	37	196.2	85.22
3	198.0	87.64	38	188.5	85.53
4	174.7	83.29	39	241.4	89.72
5	188.6	85.39	40	166.7	83.37
6	226.1	87.69	41	216.4	87.38
7	229.9	88.52	42	158.9	82.52
8	148.4	81.11	43	232.4	89.20
9	302.8	92.70	44	251.9	92.96
10	137.6	81.25	45	327.2	92.17
11	260.3	91.07	46	139.9	80.64
12	186.0	85.16	47	176.4	84.62
13	260.6	92.05	48	214.0	88.58
14	280.9	92.11	49	427.5	91.14
15	170.9	84.72	50	184.3	84.29
16	229.1	89.39	51	176.2	84.15
17	244.0	90.27	52	217.9	88.29
18	174.7	83.89	53	188.5	85.53
19	165.2	83.26	54	359.3	95.48
20	267.3	93.68	55	224.6	88.95
21	252.6	92.34	56	273.8	93.57
22	286.3	92.78	57	145.6	80.72
23	177.0	83.35	58	290.5	90.65
24	202.4	86.40	59	157.4	82.11
25	211.0	87.47	60	262.3	87.90
26	271.6	92.31	61	223.0	89.04
27	348.2	95.31	62	237.3	89.52
28	257.2	90.83	63	210.1	86.57
29	351.9	95.26	64	293.4	93.98
30	208.1	87.23	65	200.0	86.77
31	162.1	82.49	66	176.6	84.66
32	250.1	89.51	67	131.8	79.90
33	195.0	86.59	68	351.0	92.20
34	247.3	90.37	69	188.9	85.27
_35	167.7	83.30	70	236.2	88.15