Model-Parallel Deep Learning Efficient DL, Episode VI '25

Yandex Research

Dealing with large models Model-Parallel Deep Learning Efficient DL, Episode III '25

Yandex Research

Recap: large models

Image Classification ImageNet Machine Translation average over WMT

Source: https://arxiv.org/abs/1811.06965

Recap: Ring allreduce

Bonus quest: you can only send data between adjacent gpus

Ring topology

Image: graphcore ipu server

Answer & more: tinyurl.com/ring-allreduce-blog

Recap: All-Reduce SGD

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Q: What if a model is larger than GPU?

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size hard mode: cannot fit a single sample expert mode: not even parameters!

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size hard mode: cannot fit a single sample expert mode: not even parameters!

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size

hard mode: cannot fit a single sample expert mode: not even parameters!

Solution: accumulate grads from several training batches

```
[ ] 1 optimizer.zero_grad()
2 for i in range(B):
3   loss = model(**next_batch())
4   (loss / B).backward()
5 optimizer.step()
```

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size hard mode: cannot fit one training sample expert mode: not even parameters!

aka rematerialization

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Normal backprop

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Full rematerialization

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Single checkpoint

checkpoint

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Single checkpoint

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Q: What if a model is larger than GPU? easy mode: cannot fit batch size 1 expert mode: not even parameters!

You still have one GPU... (but not only a GPU)

L2L: https://arxiv.org/abs/2002.05645

EPS with L2L execution

- Initialize all layers on CPU
- Move k layers at a time to GPU
- Remove layers after computation
- Fetch k+1-st layer while k-th runs
- Still 20-50% overhead

L2L: https://arxiv.org/abs/2002.05645

Метнор	UBATCH SIZE	DEVICE BATCH SIZE	#Layer	#PARAMETERS	MEMORY (GB)
BASELINE	2 2	2	24	300 MILLION	9.23
BASELINE		2	48	600 MILLION	OOM
L2L-STASH ON GPU	64	64	24	300 MILLION	5.22
L2L-STASH ON GPU	64	64	48	600 MILLION	6.76
L2L-STASH ON GPU	64	64	96	1.2 BILLION	9.83
L2L-STASH ON CPU	64	64	24	300 MILLION	3.69
L2L-STASH ON CPU	64	64	96	1.2 BILLION	3.69
L2L-STASH ON CPU	64	64	384	4.8 BILLION	3.69

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

Figure 6: Delayed parameter update during the training process.

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

Q: What if a model is larger than GPU? easy mode: cannot fit batch size 1 expert mode: not even parameters!

Can we do it better with multiple GPUs?

Model-parallel training

Q: What if a model is larger than GPU?

Model-parallel training

Q: What if a model is larger than GPU?

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Q: Even faster?

Reducing the bubble

GPipe: arxiv.org/abs/1811.06965

... to be improved in a moment

Note: backward takes longer than forward in practice

E.g. linear forward has one matmul, backward has two matmuls (dW and dX)

Reducing the bubble

1F1B pipeline from Megatron: https://arxiv.org/abs/2104.04473

Reducing the bubble (further)

1F1B pipeline from Megatron: https://arxiv.org/abs/2104.04473

Reducing the bubble (furtherer)

ZB1P: "almost zero bubble" https://arxiv.org/abs/2401.10241

Idea: split backward into two ops:

- w.r.t inputs and w.r.t. weights

Grad w.r.t. weights doesn't block backward pass to prev stage

Figure 3: Handcrafted pipeline schedules, top: ZB-H1; bottom: ZB-H2

Reducing the bubble (furtherer yet)

Deepseek V1 schedule: https://arxiv.org/abs/2412.19437

Figure 5 | Example DualPipe scheduling for 8 PP ranks and 20 micro-batches in two directions. The micro-batches in the reverse direction are symmetric to those in the forward direction, so we omit their batch ID for illustration simplicity. Two cells enclosed by a shared black border have mutually overlapped computation and communication.

Asynchronous Pipelining

PipeDream: arxiv.org/abs/1806.03377

Idea: apply gradients with every microbatch for maximum throughput

Also neat:

- Automatically partition layers to GPUs via dynamic programming
- Store k past weight versions to reduce gradient staleness
- Aims at high latency

Pipelining Recap

When to use:

- model doesn't fit on GPU; have multiple GPUs
- if model fits, but not the activations: ???
- if model doesn't fit, but you only have one GPU: ???

How to use:

(just a moment...)

Pipelining Recap

When to use:

- model doesn't fit on GPU; have multiple GPUs
- if model fits, but not the activations: just do grad checkpointing!
- if model doesn't fit, but you only have one GPU: offloading!

How to use:

- Basic implementation (GPipe): github.com/kakaobrain/torchgpipe

```
from torchgpipe import GPipe
model = nn.Sequential(a, b, c, d) 
model = GPipe(model, balance=[1, 1, 1, 1], chunks=8)
output = model(input)
```

Pipelining Recap

When to use:

- model doesn't fit on GPU; have multiple GPUs
- if model fits, but not the activations: just do grad checkpointing!
- if model doesn't fit, but you only have one GPU: offloading!

How to use:

- Basic implementation (GPipe): github.com/kakaobrain/torchgpipe
- PyTorch built-in: pytorch.org/tutorials/intermediate/pipelining tutorial.html

```
from torch.distributed.pipelining import ScheduleGPipe

# Create a schedule
schedule = ScheduleGPipe(stage, n_microbatches)
```

uses torch.distributed (torchrun) | supports GPipe, 1F1B, extendable!

Pipelining Recap

When to use:

- model doesn't fit on GPU; have multiple GPUs
- if model fits, but not the activations: just do grad checkpointing!
- if model doesn't fit, but you only have one GPU: offloading!

How to use:

- Basic implementation (GPipe): github.com/kakaobrain/torchgpipe
- PyTorch built-in: pytorch.org/tutorials/intermediate/pipelining_tutorial.html
- DeepSpeed: https://deepspeed.readthedocs.io/en/latest/pipeline.html

Custom pipelines in many applications

- Megatron-LM: https://github.com/NVIDIA/Megatron-LM (transformer-specific)
- Megablocks: https://github.com/databricks/megablocks (mixture-of-experts)

Pipelining Recap

When to use:

- model doesn't fit on GPU; have multiple GPUs
- if model fits, but not the activations: just do grad checkpointing!
- if model doesn't fit, but you only have one GPU: offloading!

How to use:

- Basic implementation (GPipe): github.com/kakaobrain/torchgpipe
- PyTorch built-in: pytorch.org/tutorials/intermediate/pipelining_tutorial.html
- DeepSpeed: https://deepspeed.readthedocs.io/en/latest/pipeline.html

Problems:

- Bubbles = wasted compute time (duh)
- What if model layers aren't symmetric? (e.g. LLM "head" or any ViT)

 Balancing a pipeline is a world of hurt.

[short break]

How else can we run a large model

over multiple GPUs / hosts?

Tensor-parallel training

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

See also: DP + TP https://arxiv.org/abs/1404.5997

Tensor-parallel training

Q: find AllReduce op here

Q: find AllReduce op here

Tensor-parallel training

https://arxiv.org/pdf/2104.04473

Mix and match parallelism directions to reduce synchronization

MLP: split over neurons

Figure 5: Blocks of transformer model partitioned with tensor model parallelism (figures borrowed from Megatron [40]). f and g are conjugate. f is the identity operator in the forward pass and all-reduce in the backward pass, while g is the reverse.

Attention: split over heads

(b) Self-Attention

Tensor-parallel training

https://arxiv.org/pdf/2104.04473

Mix and match parallelism directions to reduce synchronization

MLP: split over neurons

Figure 5: Blocks of transformer model partitioned with tensor model parallelism (figures borrowed from Megatron [40]). f and g are conjugate. f is the identity operator in the forward pass and all-reduce in the backward pass, while g is the reverse.

Attention: split over heads

(b) Self-Attention.

Sequence Parallelism

https://arxiv.org/abs/2309.14509

Avoid storing the all activations on every device

Figure 2: DeepSpeed sequence parallelism (DeepSpeed-Ulysses) design

[MOAR] Sequence Parallelism

Early mention of parallelism over sequences

https://arxiv.org/abs/2105.05720

DeepSpeed Ulysses – the method from previous slide

https://arxiv.org/abs/2309.14509

Ring Attention – compute attention dot / softmax in parallel https://arxiv.org/abs/2310.01889

FLUX – overlap computation and communication with custom kernels https://arxiv.org/abs/2406.06858

source: https://sites.google.com/view/icml-2022-big-model

source: https://sites.google.com/view/icml-2022-big-model

Classic view

Data parallelism

Model parallelism

New view (this tutorial)

Inter-op parallelism

Intra-op parallelism

source: https://sites.google.com/view/icml-2022-big-model

Data parallelism

Model parallelism

source: https://sites.google.com/view/icml-2022-big-model

Data and model parallelism

- Two pillars: data and model.
- Variation of the second of the
- ? "Model parallelism" is vague.
- ? The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

- Two pillars: computational graph and device cluster
- This view is based on their computing characteristics.
- This view facilitates the development of new parallelism methods.

source: https://sites.google.com/view/icml-2022-big-model

$$egin{aligned} heta^{(t+1)} &= fig(heta^{(t)},\,
abla_Lig(heta^{(t)},\, D^{(t)}ig)ig) \ L &= ext{MSE}(w_2 \cdot ext{ReLU}(w_1x),\, y) \quad heta = \{w_1,w_2\},\, D = \{(x,y)\} \ f(heta,
abla_L) &= heta -
abla_L \end{aligned}$$

Operator / its output tensor → Data flowing direction

source: https://sites.google.com/view/icml-2022-big-model

Compute graph

Device cluster

source: https://sites.google.com/view/icml-2022-big-model

Q: How to partition the graph on the device cluster?

source: https://sites.google.com/view/icml-2022-big-model

Strategy 1

Strategy 2

Strategy 3

Strategy 4

source: https://sites.google.com/view/icml-2022-big-model

Device 1

Device 2

Q: have you seen S1/2/3/4 before?

Strategy 1

Strategy 2

Strategy 3

Strategy 4

source: https://sites.google.com/view/icml-2022-big-model

Pipeline MP

Tensor-parallel v1

DP with offloading or PS

Tensor-parallel v2

source: https://sites.google.com/view/icml-2022-big-model

Tensor-parallel v2

source: https://sites.google.com/view/icml-2022-big-model

Device 1

Inter-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Intra-op parallelism

source: https://sites.google.com/view/icml-2022-big-model

RL-based partitioning

https://people.csail.mit.edu/hongzi/content/publications/placeto-neurips19.pdf

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with **policy gradient** algorithm.

Optimization-based partitioning

https://arxiv.org/abs/2006.16423

min

Integer Linear Programming:

Variable: Decision variable vector for each operator, representing device assignment.

Minimize: Maximum finishing time of all operators.

Constraint: Execution dependency & memory capacity of each device.

TotalLatency $\sum_{i=0}^k x_{vi} = 1$ s.t. subgraph $\{v \in V : x_{vi} = 1\}$ is contiguous $M \geq \sum_{v} m_v \cdot x_{vi}$ $CommIn_{ui} \ge x_{vi} - x_{ui}$ $CommOut_{ui} \geq x_{ui} - x_{vi}$ $TotalLatency \geq Latency$ $SubgraphStart_i \geq Latency_v \cdot CommIn_{vi}$ $\text{SubgraphFinish}_i = \text{SubgraphStart}_i + \sum_{v} \text{CommIn}_{vi} \cdot c_v$ $+\sum_{v} x_{vi} \cdot p_v^{\mathrm{acc}} + \sum_{v} \mathrm{CommOut}_{vi} \cdot c_v$ Latency_v $\geq x_{v0} \cdot p_v^{\text{cpu}}$ Latency, $\geq x_{v0} \cdot p_v^{\text{cpu}} + \text{Latency}_u$ $Latency_v \geq x_{vi} \cdot SubgraphFinish_i$ $x_{vi} \in \{0, 1\}$

https://arxiv.org/abs/2201.12023

Whole Search Space

Alpa Hierarchical Space

https://arxiv.org/abs/2201.12023

https://arxiv.org/abs/2201.12023

More details of each pass:

https://sites.google.com/view/icml-2022-big-model

https://arxiv.org/abs/2201.12023

Not the first algorithm for auto-parallelism... but the first one that is usable* (* - most of the time)

(benchmarks on AWS V100)

GPT (up to 39B)

Match specialized manual systems.

GShard MoE (up to 70B)

Outperform the manual baseline by up to 8x.

Wide-ResNet (up to 13B)

Generalize to models without manual plans.

https://arxiv.org/abs/2201.12023

Not the first algorithm for auto-parallelism... but the first one that is usable* (*-most of the time)

```
# Define the training step. The body of this function is the same as the
# ``train step`` above. The only difference is to decorate it with
# ``alpa.paralellize``.
@alpa.parallelize auto best strategy
def alpa_train_step(state, batch):
    def loss_func(params):
        out = state.apply_fn(params, batch["x"])
       loss = jnp.mean((out - batch["y"])**2)
        return loss works in jax
    grads = jax.grad(loss_func)(state.params)
    new_state = state.apply_gradients(grads=grads)
    return new state
# Test correctness
actual_state = alpa_train_step(state, batch)
assert allclose(expected state.params, actual state.params, atol=5e-3)
```

</part 2>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Minimalistic tensor parallelism pip install tensor_parallel

</part 2>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Automatic tensor parallelism pip install tensor parallel

Q: what if you have 1024 GPUs, but the model fits on 8?

</part 2>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Automatic tensor parallelism pip install tensor parallel

Large-scale training: combine model- and data-parallel

So far we've been trying to partition for existing models...

Perhaps there are models that are easier to partition?

Expert Parallelism

Sparsely gated MoE: https://arxiv.org/pdf/1701.06538.pdf

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

Terminology

- Experts: Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

MLM pre-training objective [BERT-like]

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

Pre-training vs downstream quality

Alternative: FSDP

Source: microsoft

DeepSpeed Inference

Paper: https://arxiv.org/abs/2207.00032

- Same techniques, but for inference
- Offloading, tensor- & pipeline-parallel
- ... and a ton of hacks

</ZeRO>

Multi-GPU strategies:

- * Pipeline model-parallel allocate layers on different GPUs
- * Sharded data-parallel split optimizer state and/or parameters

Single GPU strategies:

- * Small model gradient checkpointing & virtual batch
- * Large model optimizer state sharding (keep parameters on GPU)

Implementations:

- DeepSpeed— sharded DP, offload, tensor parallelism, active development
 - Offload https://www.deepspeed.ai/news/2021/03/07/zero3-offload.html
- FSDP most of DeepSpeed features with native PyTorch API
- Model-specific implementations— https://github.com/NVIDIA/Megatron-LM

If we have time... *(if not, skip)*

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → ???

</le>

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → grad accumulation

16GB model and optimizer, 16GB activations (batch 1) - ???

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → grad accumulation

16GB model and optimizer, 16GB activations (batch 1) → grad checkpointing

32GB model and optimizer, 1GB activations \rightarrow ???

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing** 32GB model and optimizer, 1GB activations → **it depends...**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing** 32GB model and optimizer, 1GB activations → **it depends...**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel | e.g. if too few GPUs | for other methods

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing** 32GB model and optimizer, 1GB activations → **it depends...**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel
 e.g. if too few GPUs no custom model code, best for large batches

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel

32GB model and optimizer, 1GB activations \rightarrow it depends...

e.g. if too few GPUs for other methods

no custom model code, communication-efficient best for large batches sequential model

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → grad accumulation

16GB model and optimizer, 16GB activations (batch 1) → grad checkpointing

32GB model and optimizer, 1GB activations → it depends...

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel

e.g. if too few GPUs no custom model code, communication-efficient minimal latency for other methods best for large batches sequential model non-symmetric model

Mix and match: TP within one server, minimal PP between servers, DDP between groups Parallel code: manual (e.g. Megatron-LM) vs automated (alpa, FSDP, tensor_parallel) Unconventional hardware: hivemind, petals, varuna, etc

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing**

32GB model and optimizer, 1GB activations → it depends...

If the model does not fit, you can also quantize it into submission! (more on model compression in a future lecture)

That's all Folks.