1 | Problem

Suppose $T \in \mathcal{L}(V)$. Prove that T/(T) is injective if and only if $(T) \cap (T) = \{0\}$

2 | **Proof**

2.1 | Condition Manipulation

First, we will rewrite the problem as logical statements for easier manipulation.

2.1.1 | Left Condition

The left-hand side "T/(T) is injective" is equivalent to:

$$(T/U\,(v+U)=0) \implies (v+U=0)$$
 (alternate definition of injective) $Tv+U=T \implies v+U=T$ ($T/U(v+U)$ is defined as $Tv+U$) $Tv+(T)=T \implies v+(T)=T$ ($U=T$) $Tv\in T \implies v\in T$ $T^2v=0 \implies v\in T$

2.1.2 | Right Condition

We can also rewrite the right-hand condition for easier manipulation. The intersection of the null space and the range being 0 is the same as (assuming $w \neq 0$) "if $w \in T$ then $w \notin T$ " and "if $w \in T$ then $w \notin T$ ". Note that these are contrapositives of eachother, so we just need to work with the second statement.

Thus, assuming $w \neq 0$, these statements are equivalent:

$$(\exists v: Tv = w) \implies (Tw \neq 0)$$
 (definitions of null space and range) $v \notin T \implies T^2v \neq 0$ $(w \neq 0)$ $T^2v = 0 \implies v \in T$ (contrapositive)

2.2 | **Proof**

The statements are equivalent.