DM4

Exercice 1. Soit $z \in \mathbb{C}$ tel que $|z+1| \leq 1$. Montrer alors que

$$-2 \leq \Re \mathfrak{e}(z) \leq 0$$

On n'est pas obligé d'utiliser la forme algébrique...

Exercice 2. On considère l'équation du second degré suivante :

$$z^2 + (3i - 4)z + 1 - 7i = 0 \quad (E)$$

- 1. A la manière d'une équation réelle, calculer le discriminant Δ du polynôme complexe, et montrer que $\Delta=3+4i$
- 2. On se propose de résoudre (E_2) : $u^2 = \Delta$ d'inconnue complexe u.
 - (a) On écrit u = x + iy avec $(x, y) \in \mathbb{R}^2$. Montrer que (E_2) est équivalent à

$$x^4 - 3x^2 - 4 = 0$$
 et $y = \frac{2}{x}$.

(b) En déduire que les solutions de (E_2) sont

$$u_1 = 3 - i$$
 et $u_2 = 1 - 2i$

- 3. Soit u_1 une solution de l'équation précédente. On considère $r_1 = \frac{-3i+4+u_1}{2}$. Montrer que r_1 est solutions de l'équation (E).
- 4. Quelle est à l'autre solution de (E)?

Exercice 3. Soit $(n, p, k, j) \in \mathbb{N}^4$ avec $k \in [0, n]$ et $j \in [0, k]$. Montrer que

$$\binom{n}{k}\binom{k}{j} = \binom{n}{j}\binom{n-j}{n-k}.$$

Exercice 4. Soit $(a,b) \in \mathbb{R}^2$ tels que 0 < a < b. On pose $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer que : $\forall n \in \mathbb{N}, 0 < u_n < v_n$.
- 2. Montrer que : $\forall n \in \mathbb{N}, v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$.

Correction 1. Comme pour tout $z \in \mathbb{C}$, $|\mathfrak{Re}(z)| \leq |z|$ on a pour tout $z \in \{z \in \mathbb{C}, |z+1| \leq 1\}$:

$$|\Re(z+1)| \le |z+1| \le 1$$

C'est-à-dire:

$$-1 \le \Re \mathfrak{e}(z+1) \le 1$$

soit

$$-2 \le \mathfrak{Re}(z) \le 0$$

Correction 2. On suit les étapes indiquées dans l'énoncé.

1. Le discriminant vaut

$$\Delta = (3i - 4)^2 - u^4(1 - 7i) = -9 - 24i + 16 - 4 + 28i = 3 + 4i$$

- 2. Résolvons $u^2 = 3 + 4i$.
 - (a) On pose donc u=x+iy avec $x,y\in\mathbb{R}$ On a donc $(x+iy)^2=3+4i$, soit $x^2-y^2+2xyi=3+4i$ En identifiant partie réelle et partie imaginaire on obtient :

$$x^2 - y^2 = 3$$
 $2xy = 4$

Comme $x \neq 0$ (sinon $\Delta \in \mathbb{R}_{-}$), la deuxième équation devient

$$y = \frac{2}{x}$$
.

On remplace alors y avec cette valeur dans la première équation, ce qui donne :

$$x^2 - \frac{4}{x^2} = 3$$

et en multipliant par x^2

$$x^4 - 3x - 4 = 0$$

(b) On fait un changement de variable $X=x^2$ dans l'équation $x^4-3x^2-4=0$. On obtient

$$X^2 - 3X - 4 = 0$$

De discriminant $\Delta_2 = 9 + 4 * 4 = 25 = 5^2$. Cette équation admet ainsi deux solutions réelles :

$$X_1 = \frac{3-5}{2} = -1$$
 et $X_2 = \frac{3+5}{2} = 4$

Remarquons maintenant que X doit être positif car $x^2 = X$ ainsi, les solutions pour la variable x sont

$$x_1 = \sqrt{4} = 2$$
 et $x_2 = -\sqrt{4} = -2$

Ce qui correspond respectivement à $y_1=1$ et $y_2=-1$ On obtient finalement deux solutions pour $u^2=\Delta$ à savoir

$$u_1 = 2 + i$$
 et $u_2 = -2 - i$

3. On considère donc $r_1 = \frac{-3i + 4 + 2 + i}{2} = 3 - i$. Montrons que r_1 est solution de (E)

$$r_1^2 = (3-i)^2 = 9 - 6i - 1 = 8 - 6i$$

$$(3i-4)r_1 = (3i-4)(3-i) = 9i + 3 - 12 + 4i = -9 + 13i$$
Donc $r_1^2 + (3i-4)r_1 = 8 - 6i - 9 + 13i = -1 + 7i$ Soit
$$r_1^2 + (3i-4)r_1 + 1 - 7i = 0$$
Donc r_1 est bien solution de (E) .

4. L'autre solution est sans aucun doute

$$r_2 = \frac{-3i + 4 + u_2}{2} = 1 - 2i$$

Correction 3.

$$\binom{n}{k} \binom{k}{j} = \frac{n!}{k!(n-k)!} \frac{k!}{j!(k-j)!} = \frac{n!}{(n-k)!} \frac{1}{(k-j)!j!}$$

et

$$\binom{n}{j}\binom{n-j}{n-k} = \frac{n!}{j!(n-j)!} \frac{(n-j)!}{(n-j-(n-k)!(n-k)!} = \frac{n!}{j!} \frac{1}{(k-j)!(n-k)!}$$

Correction 4.

1. Montrons par récurrence la propriété $\mathcal{P}(n)$ définie pour tout n par : « $0 < u_n < v_n$ ». Initialisation : Pour n = 0, la propriété est vraie, d'après l'hypothèse faite dans l'énoncé 0 < a < b.

Hérédité:

Soit $n \ge 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$ est vraie.

On a $u_{n+1} = \sqrt{u_n v_n}$ qui est bien défini car u_n et v_n sont positifs par hypothèse de récurrence. Cette expression assure aussi que u_{n+1} est positif.

De plus,

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n}$$
 Par définition.

$$= \frac{u_n - 2\sqrt{u_n v_n} + v_n}{2}$$

$$= \frac{(\sqrt{u_n} - \sqrt{v_n})^2}{2}$$
 car u_n et v_n sont positifs.
 > 0

Ainsi $v_{n+1} > u_{n+1}$ La propriété \mathcal{P} est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \geq 0$:

$$0 < u_n < v_n$$

2. Montrons par récurrence la propriété définie $\mathcal{P}(n)$ définie pour tout n par : « $v_n - u_n \leq \frac{1}{2^n}(v_0 - u_0)$. ». **Initialisation :** Pour n = 0, la propriété est vraie car le terme de gauche vaut $v_0 - u_0$ et le terme de droite vaut $\frac{1}{1}(v_0 - u_0)$.

Hérédité:

Soit $n \ge 0$ fixé. On suppose la propriété vraie à l'ordre n. Montrons qu'alors $\mathcal{P}(n+1)$ est vraie.

Montrons tout d'abord que $v_{n+1} - u_{n+1} \le \frac{1}{2}(v_n - u_n)$. En effet, on a

$$v_{n+1} - u_{n+1} - \frac{1}{2}(v_n - u_n) = \frac{u_n + v_n}{2} - \sqrt{u_n v_n} - \frac{1}{2}(v_n - u_n)$$

$$= u_n - \sqrt{u_n v_n}$$

$$= \sqrt{u_n}(\sqrt{u_n} - \sqrt{v_n})$$

$$< 0$$

On a donc bien $v_{n+1} - u_{n+1} \le \frac{1}{2}(v_n - u_n)$. On applique maintenant l'hypothèse de récurrence, on a alors

$$v_{n+1} - u_{n+1} \le \frac{1}{2} \times \frac{1}{2^n} (v_0 - u_0)$$

$$\le \frac{1}{2^{n+1}} (v_0 - u_0)$$

La propriété P est donc vraie au rang n+1.

Conclusion:

Il résulte du principe de récurrence que pour tout $n \ge 0$:

$$v_n - u_n \le \frac{1}{2^n} (v_0 - u_0).$$