NAVAL POSTGRADUATE SCHOOL

Monterey, California

HP-41C PROGRAMS AND INSTRUCTIONS

FOR

PROBABILITY AND STATISTICS

Ъу

Peter W. Zehna

February 1984

Approved for public release; distribution unlimited.

repared for:

FEDDOCS D 208.14/2:NPS-55-84-003

Naval Postgraduate School Nonterey , California 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

Commodore R. H. Shumaker Superintendent

David A. Schrady Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS
1. REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
NPS55-84-003		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
HP-41C PROGRAMS AND INSTRUCTIONS	FOR PROBABILITY	
AND STATISTICS		Technical
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)
Peter W. Zehna		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School		AREA & WORK UNIT NUMBERS
Monterey, CA 93943		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		February 1984
Monterey, Ca 93943		108
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		150. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	-	
Approved for public release; dist	ribution unlimit	ed
approved for pastic readably disc	ribacion animic	
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different fro.	an Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	
HP Programs		
Probability and Statistics Calculator Programs		
odicardor frograms		
20. ABSTRACT (Continue on reverse elde il necessary and		
A compendium of programs and inst		
tered in probability and statisti directly on the HP-41C family of		
	carear	

EDITION OF 1 NOV 65 IS OBSOLETE

HP-41C PROGRAMS AND INSTRUCTIONS FOR PROBABILITY AND STATISTICS

by

Peter W. Zehna

INTRODUCTION

The purpose of this report is to make available a set of programs and the corresponding user instructions so that the problem material found in the writer's textbooks, "Probability by Calculator and Statistics by Calculator* (hereafter referred to, respectively, as ZP and ZS) may be resolved using the HP-41C calculator. In particular, this means that courses using those textbooks, written entirely around the TI-59, need no longer be restricted to that particular machine as a prerequisite. It is almost essential, however, that the HP user have in his or her possession either the HP-41CV, or the HP-41C with the quad memory module installed, along with a card reader for recording magnetic cards. Also, as with the TI-59, it will be necessary to insert the HP applications module STAT PAC for use with the programs in ZS. No additional module is required for ZP.

The original intention was to write the HP programs in such a way that the TI user instructions could be used with little or no modification. program was about 90% successful so that, in general, storage in various registers are identical as are the main subroutines labeled with user defined keys (with HP a,b,c, etc., replacing TI A', B', C', etc. in a natural way). There are, however, some special problems created by the differences in the two machines (RPN not being one of them, by the way) that made it impossible to be 100% successful in that endeavor. For example, the TI random number generator could not be duplicated in the HP because of the difference in accuracy of the two machines. Since the TI carries more significant figures intermally tham the HP, and that intermal carriage is used to generate successive seeds for repeated applications, the two machines soon differ in their output. For true applications of random number generation that would be insignificant, even a desirable difference perhaps, but for tutorial purposes, which is the main intent of the books, that makes it impossible to verify answers and that is a serious drawback for the learner. Otherwise, the difference in accuracy created no special problems. The FIX 4 format is used in all of the HP output to follow and it will be found that the corresponding answers then agree to within 4 decimal places (the maximum usually presented in ZP and ZS) of the published answers given in the two books, almost without exception.

Writing the HP programs to utilize essentially the same user instructions as the TI meant not being able to take full advantage of the superior alphanumerics and prompting facility of the HP41-C. The user may well want to adjust the programs presented here to take better advantage of that option but should of course adjust the user instructions accordingly. That particular feature in itself creates some special problems with regard to the use of HP applications modules like STAT PAC. Almost all of the programs in that module contain pauses for prompts from the user. Unfortunately, when such programs are called as subroutines within a calculator program, there is no automatic return from the module program to the parent one. Much of the success of the TI programs depended on precisely this feature utilizing the canned programs available in the master module for ZP and the statistics module for ZS. This made it necessary to replace several of the programs in the HP STAT PAC that would otherwise have been used, as well as to supply several key programs, such as the t and F distributions, that were missing. Fortunately, the massive memory capability furnished by the HP quad memory made it possible to furnish these and still have enough room for the main programs of interest. For ZS then, a special program called ZSTAT has been supplied for which there

^{*}Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982

is no direct TI analogue. The reader may view this as simply an addition to the HP STAT PAC in order to bring it more in line with the TI statistics module utilized throughout ZS.

In order to follow the textbooks as closely as possible with the least amount of cross-referencing, the following format will be followed. Starting with ZP, each chapter or section for which a separate program exists will be discussed separately starting on a new page. After pointing out any general differences that may exist for that chapter or section including the illustrative examples contained therein, the HP version of the User Instructions for that program will be added, together with a set of examples for each subroutine such as presently found in the books for the TI programs. These model examples will show exactly what the user may expect to see in the display upon executing each step. In each case, the reader will find, in addition to the Register Contents as currently published in the textbooks, a set of assignments used by the program along with a listing of labels used (which may also be seen in the complete listing of the programs in the appendix).

The reader should remember to assign, record (and subsequently read) the magnetic cards in USER mode so as to preserve those assignments. In those assignments, we often use lower case versions of capital letters even when they do not, technically, exist. Thus, [i] is used for the alphanumeric [<] since the latter is located above [I] and is effected by pressing the gold shift key, then [I]. Similar remarks apply to [g] (really [%]), [h] (really [‡]) and [j] (really [>]). Of course [a], [b], [c], etc. are actually listed in the alpha keyboard.

Since the [X<Y] key is used in so many programs, and its execution is considerably slower in USER mode, it is advisable to assign the function X<Y to this key at the start of a session. Such an assignment cannot be made permanent in the programs, but will remain in effect unless the master clear is used.

PROBABILITY BY CALCULATOR

Section 1.3: The Calculator

It is assumed here that the reader is reasonably familiar with the Owner's Hamdbook and Programming Guide for the HP-41C. The general remarks found in this section apply to the HP as well. It has already been remarked that a card reader will be needed to follow the program outlined here. It is possible to do without the magnetic cards for some of the programs since they may be keyed in once and the continuous memory feature of the HP will preserve them. But even that generous memory allowance will soon be used up and programs will have to be replaced to follow all of the subroutines presented in these textbooks. The magnetic cards removes the necessity of having to re-key so many separate programs. Guidelines for recording magnetic cards will be found in the Card Reader handbook and should be consulted.

Section 1.4: The Programs

Many of the remarks in this section will not apply directly to the HP calculator and, again, the Owner's Handbook should be consulted for specifics regarding the related keys. The programs will appear in print-out (see Appendix) as numbered steps with the corresponding mnemonic code (no key code as with the TI). Most are self-explanatory and the Function Index given in the back of the Handbook will be found very helpful should the reader encounter any that are not immediately recognized. Naturally, the programs should be identical with the listings given in the Appendix before any recording takes place.

Section 2.4: Counting Problems

The internal function FACT in the HP will replace the use of label C in Pgm 16 of the TI to display factorials as discussed on page 21. That function has exactly the same restriction, namely, that n must be any positive integer between 0 and 69 inclusive, displaying OUT OF RANGE for larger values. There are no internal programs to handle permutations and combinations directly so they have been programmed in the first card program labeled ZP2. You will find the instructions under Steps 7 and 8. Each scheme prompts you for an input of first N and then R to compute the corresponding values. (The HP alphanumerics do not permit lower case letters so the notation differs just slightly from the book.) With these routines, the answers to the problems in this section may be verified.

Section 2.5: Conditional Probability

The rest of program ZP2 has to do with Bayes probabilities and the instructions match those for the TI exactly (with a,b,c, etc. replacing A',B',C') as previously remarked.

4F2 (A	ssigned [e]) USER INSTRUCTIONS (HP)	SIZE	_
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1.	Initialization	xxx	[e]	0.0000
2.	Input probabilities (Repeat for $j = 1, 2,, k$) NOTE: If $Pr(C_j) \equiv 1/k$, use Step 2'	Pr(E C _j) Pr(C _j)	[A] [R/S]	j
2'.	a. Input partition size b. Input given priors	k Pr(E C _j)	[E] [R/S]	1/k j
3.	Compute Bayes posterior probability Pr(C _i E)	i	[B]	Pr(C _i E)
4.	 a. Initialize for sensitivity analysis b. Recall given priors c. Input new cause probabilities (Repeat for j = 1,2,,k) NOTE: If new Pr(C_j) = 1/k, use Step 4' 	xxx New Pr(C _j)	[e] [D] [R/S]	0.0000 Pr(E C _j) j
41.	a. Initialize b. Input partition size	xxx k	[e] [d]	0.0000 k
5.	Compute Pr(E) (Law of Total Probability)	xxx	[a]	Pr(E)
6.	Birthday Problem (E _k is the event that two or more among k people in a room have the same birth date.)	k	[C]	Pr(E _k)
7.	Calculate P(N)	N R	[b] [R/S] [R/S]	N = ? R = ? P(^N _R)
8.	Calculate $C(\frac{N}{R})$	N R	[c] [R/S] [R/S]	$N = ?$ $R = ?$ $C\binom{N}{R}$

Regi	lster Content	s			
00	Used	10		20	Pr(E C ₁)
01		11	Used	21	Pr(C ₁)
02		12	Used	22	$Pr(E C_2)$
03	k	13	1/k	23	Pr(C ₂)
04	$\Sigma Pr(E C_j)$	14	Used	24	•
05		15		25	•
06		16		26	•
07		17		27	
08		18		28	
09		19		29	

Assign	iments	Labels	Us	ed
ZP2	е	02	A	а
		03	В	Ъ
		04	С	С
		05	D	d
		08	Ε	
		09		
		10		
		11		
		12		

EXAMPLES ZP2 (1) Suppose in medical diagnostics a particular symptom (E) always occurs in conjunction with three diseases C_1 , C_2 , C_3 with respective probabilities 0.90, 0.09 and 0.009 or else occurs rarely (0.001) with no apparent reason (C_4) at all. National statistics show that most people are free of the three diseases, $Pr(C_4) = 0.99$, and disease C_1 is fairly rare, $Pr(C_1) = 0.0001$. Diseases C_2 and C_3 occur with respective probabilities 0.0045 and 0.0054.

Bayes Format:

Events	Conditional Priors	Cause Probabilities	Conditional Posteriors
C ₁ = Disease #1	0.90	0.0001	0.0587
$C_2 = Disease #2$	0.09	0.0045	0.2641
C_3^2 = Disease #3	0.009	0.0054	0.0317
C ₄ = No Disease	0.001	0.9900	0.6455
E = Symptom		Pr(E) = 0.0015

Calculator Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step l		[e]	0.0000	Initialization
Step 2	•9	[A]	1.0000	First conditional prior
11	.0001	[R/S]	1.0000	Shows one pair entered
17	.09	[A]	2.0000	Second conditional prior
н	.0045	[R/S]	2.0000	Shows two pairs entered
**	.009	[A]	3.0000	Third conditional prior
14	.0054	[R/S]	3.0000	Shows three pairs entered
11	.001	[A]	4.0000	Fourth conditional prior
"	.99	[R/S]	4.0000	Shows four pairs entered
Step 3	1	[B]	0.0587	First conditional posterior
44	2	[B]	0.2641	Second conditional posterior
14	3	[B]	0.0317	Third conditional posterior
14	4	[B]	0.6455	Fourth conditional posterior
Step 4		[a]	0.0015	Probability of E

EXAMPLES ZP2 (2) A manufacturer of hand-held calculators has three different assembly plants F, M and T. These three plants historically produce defective items with respective probabilities 0.01, 0.02 and 0.04. Plant F produces 50% of the calculators while plants M and T produce, respectively, 30% and 20%.

Original Bayes Format:

Events	Priors	Causes	Posteriors
C ₁ = Plant A	0.01	0.50	0.2632
$C_2 = Plant B$	0.02	0.30	0.3158
$C_3 = Plant C$	0.04	0.20	0.4211
E = Defective			Pr(E) = 0.0190

Calculator Solution for Changing Priors to $p_i = 1/3$ (after original entry):

ZP	STEP	ENTER	PRESS	DISPLAY	COMMENTS
Ste	p 4a.		[e]	0.0000	Initialization
Ste	p 4b.		[D]	0.0100	First prior displayed
Ste	p 4c.	1/3	[R/S]	1.0000	First cause prob. changed
Ste	p 4b.		[a]	0.0200	Second prior displayed
Ste	p 4c.	1/3	[R/S]	2.0000	Second cause prob. changed
Ste	р 4Ъ.		[D]	0.0400	Third prior displayed
Ste	p 4c.	1/3	[R/S]	3.0000	Third cause prob. changed
Ste	р 3	1	[B]	0.1429	New Pr(E C ₁)
••		2	[B]	0.2857	New Pr(E C ₂)
**		3	[B]	0.5714	New $Pr(E C_3)$
		Alternate	Solution:		
Ste	p 4'a.		[e]	0.0000	Initialization
Ste	p 4'b.	3	[b]	3.0000	Partition size entered
Ste	p 3	1	[B]	0.1429	New Pr(E C ₁)
**		2	[B]	0.2857	New Pr(E C ₂)
••		3	[B]	0.5714	New $Pr(E C_3)$
					, and the second

EXAMPLES ZP2 (3) Calculate $P(\frac{10}{2})$, 4! and $C(\frac{52}{5})$.

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step 7.		[b]	N=?	Prompts for entry of N
	10	[R/S]	R=?	Asks for the value of R.
	2	[R/S]	90.0000	Display $P(\frac{10}{2}) = 90$.
		[b]	N=?	Initializes permutation routine.
	4	[R/S]	R=?	Asks for the value of R.
	4	[R/S]	24.0000	Displays $4! = P(\frac{4}{h})$.
		[c]	N=?	Initializes combination routine.
	52	[R/S]	R=?	Prompts for entry of R=5.
	5	[R/S]	2,598,960	Displays $C(\frac{52}{5})$, the total number
				of poker hands.

NOTE: 4! may also be computed by executing the function FACT.

Section 3.2: Moments of a Random Variable

Just as with ZP2, the HP version of ZP3.2 (denoted ZP3-2 since a period may not be used in an ALPHA label) is almost exactly the same as the TI version. In the discussion of the program on page 57, you may ignore the warnings concerning capacity limitations and repartitioning the calculator. Sizing the HP to allow for more memory registers will accomplish the same thing. In any case, such problems will never arise in the applications presented here. You might observe the use of the alternate HP form, $[X \le Y]$, for the X exchange Y key throughout this report. This is merely a concession to ease of printing. (HP Y-register is always used in place of TI T-register)

The one place where there is serious departure from the TI-59 is in repeated application of LABS. To erase a previous application with the TI, one need only over-write the old algorithm with the new one, paying no attention to what may or may not remain when the new algorithm is finished with a RETURN instruction. But, because algorithms must be created as individual subroutines with the HP, erasing is not so simple. At Step 4f. the beginning of the old algorithm is displayed at program step 88. The steps from this point on need to be erased and this may be accomplished with the internal function DEL. Then the new algorithm may be inserted where the old one resided and the program will function for the new case. As suggested in the footnote to the user instructions that follow, you might assign DEL to a label like [g] if a lot of erasing is to be done. Unfortunately, the DEL function cannot be recorded as an instruction in program memory so this will only be helpful for given session.

On page 59, an HP version of the algorithm for g(x)=3x+19 would be

RCL 09,3,*,19,+,RTN

and g(x)=(x*x-4)/(6x+7) could be keyed in as

4, RCL 09, ENTER, *, -, CHS, RCL 09, 6, *, 7, +, /, RTN

Here we have taken the liberty of using the printed symbol / for the division operator and the symbol * for multiplication.

Section 3.3: Hypergeometric and Binomial Distributions

Section 3.4: Other Discrete Distributions

For both of these sections, the HP programs are practically identical with the TI programs. The basic difference is that the HP initialization step is to press [e] instead of RST. Having so used label e , label J is used for the number of trials, Y , to rth success at NB5 in program ZP3-4.

ZP3-2 (Assigned [e]) USER INSTRUCTIONS (HP)	SIZE 060		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1.	Distribution Entry			
	a. Initialize		[e]	0.0000
	b. Enter (in order) x _i , p _i	×	[A]	×i
	(Repeat for $i = 1, 2, \dots, N \leq 20$;	P _i	[R/S]	i.0000
	$x_1 < x_2 < \dots < x_N$			
2.	Calculate P(x)	x-code	[C]	P(x)
	$(x-code = j where x_j \le x < x_{j+1})$			
3.	Calculate E(X), V(X)		[E]	E(X)
	(after Step 1)		[X<>X]	V(X)
4.	Calculate E[g(X)], V[g(X)]			
	(after Step 1)			
	a. Initialize		[GTO][B]	x.xxxx
	NOTE: It is understood that [ALPHA] must be used for label B.			
	b. Enter Program Mode		[PRGM]	87 LBL
	c. Key in $g(x)$ where $x \in R_{09}$		-	,
	(Avoid labels already in use, end with RTN)		- -	
	d. Exit Program Mode		[PRGM]	x.xxx
	e. Calculate Moments.		[D]	E[g(X)]
			[X<>X]	V[g(X)]
	f. To ERASE Algorithm in [B], complete			
	Steps a,b; then		[SST]	88 yy
			[g]	DEL
	let nnn be at least as large as the number of Steps in $\left[B \right]^{\dagger}$		nnn [PRGM]	87 LBL

 $^{^{\}dagger}$ For repeated uses of this step use ASN to assign DEL to g(%).

Register Contents						
00	Used	10	P(x)	20	x ₁	
01	x-address	11		21	P ₁	
02	p-address	12		22	x ₂	
03	N	13		23	P ₂	
04	x _i p _i	14		24	*3	
05	$x_{i}^{2}p_{i}$	15		25	P ₃	
06	Mean	16		26	•	
07	2nd Moment	17		27	•	
08	Variance	18		28	•	
09	x-value	19		29		

Assignments	Labe1	s Used
ZP3-2 e	01	A
	02	В
	03	С
	04	D
	05	E
	06	
	07	

EXAMPLE ZP3-2. X = # daily sales of a morning newspaper at a local drugstore. 5 1 2 3 4 0 0.67 0.24 p(x): 0.01 0.01 0.04 0.03 Solution: ENTER PRESS DISPLAY COMMENTS ZP STEP [e] 0.0000 Initialization Step la. [A] Enter first x-value 0 0.0000 Step 1b. .01 [R/S] 1.0000 Enter first p-value 1 [A] Enter second x-value 1.0000 2.0000 .01 [R/S]Enter second p-value 2 [A] 2.0000 Enter third x-value .04 [R/S] 3.0000 Enter third p-value 3 [A] 3.0000 Enter fourth x-value .03 [R/S]4.0000 Enter fifth p-value 4 [A] Enter fifth x-value 4.0000 .67 [R/S]5.0000 Enter fifth p-value 5 [A] 5.0000 Enter sixth x-value .24 [R/S] 6.0000 Enter sixth p-value

	Calculate	e P(4.5)	(x-code = 5)	since $x_5 \leq 4.5$	$\langle x_6 = 5 \rangle$
Step	2 5		[C]	0.7600	Note that $x_1=0$ so that $x_5=4$.
	Calculate	e µ = E()	() and $\sigma^2 =$	V(X).	
Step	3		[E]	4.0600	Display $\mu = 4.06$
			[Y<>X]	0.6764	Display $\sigma^2 = 0.6764$
	Calculate	e E[g(X)]	and V[g(X)] where $g(x) =$	25x - 50 is net daily income.
Step	4a.		[GTO]	GTO	Initialize
			[ALPHA]	GTO	
			[B]	GTO B_	
			[ALPHA]	X.XXXX	
Step	46.		[PGRM]	87 LBL B	
Step	4c.		[RCL]	88 RCL	
			09	88 RCL 09	Brings current x-value into
			25	89 25 _	R X

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[x]	90 *	Multiplies x by 25,
		50	91 50	and subtracts
		[-]	92 -	50.
G. / 1		[RTN]	93 RTN	Ends algorithm.
Step 4d.		[PRGM]	x.xxxx	Exit Program mode.
Step 4e.		[D]	51.5000	Calculates "average" daily net income as 51.5 cents.
		[X<>X]	422.7500	Exhibits variance in cents ² .
		[USER] \sqrt{x}	20.5609	Shows σ as 20.56 cents.
Calcu	ılate E[g(X	()] and V[g()	X)] where g(x) i	s daily profit.
Step 4f.		[GTO]	GTO	Initialize
r - L - L		[ALPHA]	GTO	
		[B]	GTO B	
		[ALPHA]	x.xxxx	
		[PGRM]	87 LBL B	Enters ZP-3.2 program at B.
		[SST]	88 yy	Locates first step of last
				algorithm
		[g]	DEL	Prepares to delete algorithm steps.
		010	87 LBL B	Deletes to END statement.
Step 4b.		2	88 2_	Enters 2 for comparison with x .
		[RCL]09	89 RCL 09	Retrieves x.
		[X>Y?]	90 x>y?	Asks if x>y?
		[GTO]20	91 GTO 20	Proceeds to subroutine to be constructed for evaluating $g(x)$.
		0	92 0 _	Otherwise $g(x)=0$
		[RTN]	93 RTN	Ends that part of algorithm
		[LBL]20	94 LBL 20	Prepares to define subroutine.
		25	95 25	g(x) = 25x - 50.
		[x]	96 *	A return is not necessary
		50	97 50	since it is controlled by END.
		[-]	98 -	
		[PRGM]	x.xxxx	Exits program mode.
Step 4c.		[D]	52.2500	Calculates and exhibits "average" daily profit of 57.25 cents.

[X <> Y] 313.6875 Shows profit variance.

Step 4d.

	(Assigned [e]) USER INSTRUCTIONS (HP		*,* * * * * * * * * * * * * * * * * * *	
STEP	PROCEDURE	ENTER	PRESS	DISPI
	Hypergeometric Distribution			i
Н1	Initialization		[e]	0.000
Н2	Enter Parameters	N	[STO]14	N
	$(n \leq N \text{ and } 0 < M \leq N)$	М	[STO]15	М
		n	[STO]13	n
н3	Calculate $P(k) = Pr(X \leq k)$	k	[A]	P(k)
	p(k) = Pr(X = k)		[X<>X]	p(k)
H4	Calculate $Q(k) = Pr(X > k)$	k	[a]	Q(k)
	p(k) = Pr(X = k)		[X<>X]	p(k)
	NOTE: Repeat H ₃ and/or H ₄ as often as desired.			
	Binomial Distribution			
B1	Initialization		[e]	0.00
B2	Enter Parameters (M \leq N)	N	[STO]14	N
		М	[STO]15	М
		n	[STO]13	n
В3	Calculate $P(k) = Pr(X \leq k)$	k	[B]	P(k)
	p(k) = Pr(X = k)		[Y<>X]	p(k)
B4	Calculate $Q(k) = Pr(X > k)$	k	[b]	Q(k)
	p(k) = Pr(X = k)		[Y<>X]	p(k)
	NOTE: Repeat B ₃ and/or B ₄ as often as desired.			
Е	Display E(X) and V(X) (following any application of $H_3(H_4)$ or $B_3(B_4)$		[E] [X<>Y]	E(X) V(X)

Regi	ster Contents				
00		10	P(x)	20	Used
01	N/n for	11	μ	21	1 - M/N
02	r k PMTON CMBON	12	σ^2	22	M/N
03	(GIBONY	13	n	23	Used
04		14	N	24	N-M
05		15	М	25	
06	Used; p(k)	16	p(0)	26	
07	Used; p(k)	17		27	
80	Used	18		28	
09		19		29	

Assignme	ents		Label	ls Us	sed
ZP3-3	е		01	A	а
PMTON	i		02	В	b
CMBON	h		03	E	
			04		
	Note: PMTON and CMBON require		05		
storage	of n in k in R ₀₂ ,		06		
for execusing XE	cution		07		
dering vi	.0		08		
			11		
			12		
			13		
			19		

EXAMPLES ZP3-3. An urn contains five black balls and seven white balls.

- (1) A sample of size 3 is drawn without replacement. Calculate the probability of obtaining exactly two black balls, at most two black balls and at least two black balls. Answers are, respectively, p(2)=0.32, P(2)=0.95 and O(1)=0.36.

 (See display below.)
- (2) Repeat (a) for a sample drawn with replacement. Answers are, respectively, p(2)=0.30, P(2)=0.93, Q(1)=0.38.
- (3) For each of (a) and (b) determine the mean and variance of X, the number of black balls in the sample.

Ans. (a) $\mu = 1.25$, $\sigma^2 = 0.60$; (b) $\mu = 1.25$, $\sigma^2 = 0.73$.

Sol	ution (1), ((3):		
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Н1		[e]	0.0000	Only necessary when starting a new problem.
H2	12	[STO]14	12.0000	
	5	[STO]15	5.0000	
	3	[STO]13	3.0000	
н3	2	[A]	0.9545	Displays CDF P(2) first
		[X<>X]	0.3182	Displays p(2).
Н4	1	[a]	0.3636	Displays Q(l). No re-initial-ization necessary.
E		[E]	1.2500	Displays mean and variance
		[Y<>X]	0.5966	
Sol	ution (2), (3):		
B1		[e]	0.0000	Signals the start of a new program even though the same parameters are involved (B2 unnecessary)
В3	2	[B]	0.9277	Binomial CDF differs from H ₃
		[X<>X]	0.3038	Binomial p(2).
В4	1	[b]	0.3762	$Q(1) = Pr(X > 1) = Pr(X \ge 2)$
E		[E]	1.2500	Mean
		[Y<>X]	0.7292	Variance

ZP3-4 ((Assigned [e]) USER INSTRUCTIONS (HP	SIZE 030		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Binomial Distribution	1		
oin l	Initialization		[e]	0.0000
oin 2	Enter Parameters	n	[STO]13	n
		p	[STO]22	р
oin 3	Calculate $P(k) = Pr(X \leq k)$	k	[B]	P(k)
			[Y<>X]	p(k)
oin 4	Calculate Q(k) = Pr(X > k)	k	[b]	Q(k)
			[Y<>X]	p(k)
	NOTE: Repeat 3 and 4 as often as desired			
	Poisson Distribution			
P01	Initialization for Poisson		[e]	0.0000
202	Enter Parameters	t	[STO]13	t
		λ	[STO]22	λ
203	Calculate $P(k) = Pr(X \leq k)$	k <u>></u> 0	[C]	P(k)
			[Y<>X]	p(k)
P04	Calculate $Q(k) = Pr(X > k)$	k <u>></u> 0	[c]	0(k)
			[Y<>X]	p(k)
	NOTE: See Note in bin			
	Negative Binomial Distribution			
NB1	Initialization for Negative Binomial		[e]	0.0000
NB2	Enter Parameters	r	[STO]13	r
		р	[STO]22	р
NB3	Calculate $P(k) = Pr(X \leq k)$	k <u>></u> 0	[A]	P(k)
	p(k) = Pr(X = k)		[X<>Y]	p(k)
NB4	Calculate Q(k) = Pr(X > k)	k>0	[a]	Q(k)
	p(k) = Pr(X = k)		[X<>X]	p(k)
NB5	Calculate $P(k) = Pr(Y \leq k)$	k <u>></u> r	[J]	P(k)
	p(k) = Pr(Y = k)	_	[X<>X]	p(k)
	NOTE: See Note in bin;			

ZP3-4									
STEP	P	ROCEDU	JRE				ENTER	PRESS	DISPLAY
	Geometric Distrib	ution							
G1	Initialization fo	r Geom	netric					[e]	0.0000
G2	Enter Parameter						p	[STO]22	р
G3	Calculate P(k) =	Pr(Y	≤ k)				k <u>></u> 1	[D]	P(k)
	p(k) =	Pr(Y	= k)					[X<>X]	p(k)
G4	Calculate $Q(k) =$	Pr(Y	> k)				k <u>≥</u> 1	[d]	Q(k)
								[X<>X]	p(k)
	NOTE: See note u	nder b	oin.						
E	Display E(X) and			any	of			[E]	E(X)
	the foregoing rou	tines))					[X<>Y]	V(X)
	Register Contents	.:							
	00 Used	10	z		20	Used			
	01	11	μ		21	P			
	02	12	σ^2		22	p(λ)			
	03	13	n(t,r	.)	23				
	04	14			24				
	05	15			25				
	06 Used (p(k))	16	p(0)		26				
	07 Used (p(k))	17			27				
	08	18			28				
	09	19			29				
	Assignments		Labe	ls	Used				
	ZP3-4 e		05	A	а				
			07	В	Ъ				
			08	С	С				
			11	D	ď				
			13	E					
			14	J					
			15						
			18						
			19						
			20						

EXAMPLES ZP3-4

(1) (Binomial model) The probability of hitting a target in a single trial is 0.3. Suppose 10 independent firings are made. Calculate the probability of 3 hits, no more than 4 hits, at least 6 hits and the mean and variance of the number of hits.

Solution (1), (3):

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
bin l		[e]	0.0000	Initialize program.
bin 2	10	[STO]13	10.0000	Enter parameters.
**	•3	[STO]22	0.3000	
bin 3	3	[B]	0.6496	Display the CDF at 3.
		[X <> Y]	0.2668	Required probability p(3).
bin 3	4	[B]	0.8497	Repeating to find $P(4)$.
bin 4	5	[b]	0.0473	Required Q(5) = $Pr(X \ge 6)$
E		[E]	3.000	Mean value np = 3.
		[Y<>X]	2.1000	Variance of $X = npq$.
bin 4		[b] [E]	0.0473 3.000	Required Q(5) = $Pr(X \ge 6)$ Mean value np = 3.

(2) Poisson model) Telephone calls arrive at a switchboard at the rate of 10 per hour. What is the probability of at most 3 calls in the next 20 minutes? Exactly 3? The mean number of calls?

Solution:

P01		[e]	0.0000	Initialize program.
P02	0.3333	[ST0]13	0.3333	Enter total time period 20 min.
**	10	[STO]22	10.0000	Enter rate λ = 10 per hour.
P03	3	[C]	0.5730	$P(3) = Pr(X \leq 3).$
		[X <> Y]	0.2202	p(3) = Pr(X = 3).
E		[E]	3.3333	Mean number of calls in 20 mins.

(3) (Negative Binomial model) A fly fisherman estimates that his probability of catching a fish on a given cast of his rod is 0.05. He decides to keep trying until he catches three fish. What is the probability that he will need to cast at least 10 times and what is the expected number of failures? What is the probability of 9 trials? The mean number of trials?

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
NB1		[e]	0.0000	Initialize program.
NB2	3	[STO]13	3.0000	Enter r parameter of 3.
11	•05	[STO]22	0.0500	Enter probability of obtaining l.
NB4	6	[a]	0.9916	Probability that the number
				of failures is at least 7, Q(6).
		[Y<>X]	0.0026	Probability of exactly 6 failures.
E		[E]	57.0000	Mean number of failures.
NB5	9	[J]	0.0084	Probability of no more than 9 trials.
		[X<>Y]	0.0026	Probability of exactly 9 trials.

(4) Geometric model) An item has failure probability 0.005 and is cycled until it fails. What is the expected number and standard deviation of the number of cycles? What is the probability that number exceeds 10?

Solution:

Gl		[e]	0.0000	Initialize program.
G2	.0005	[STO]22	0.0005	Enter single parameter.
G3	10	[d]	0.9950	Displays CCDF at 10 , $Pr(Y > 10)$.
E		[E]	2000.0000	Mean cycles to failure.
		[Y<>X]	3,998,000	Variance.
		$[USER]\sqrt{x}$	1999.4999	Standard deviation.
		[e]	0.0000	Clears program.

Section 4.3: Normal Distribution

The user instructions for the HP version of ZP4 are practically identical to those for TI given in the book. Label [J] is used for initialization in place of RST; otherwise, pressing the same labels produces the same results. Using the parameter choices 0 and 1 at step N1 in ZP4 replaces ML-14 in the TI master module everywhere the discussion refers to the latter starting on page 109.

Section 4.4: Uniform Family; Sampling

As previously indicated, the serious departure from the TI format occurs in the random number generator and consequently, both the instructions and the results will differ from those published in the book. The departure begins on page 121. The random number generator adopted for the HP programs is one developed by Don Malm for the HP-65 User's Library and is referred to on page 24 of the HP-41C Standard Applications manual. The algorithm used is the simple one.

$$r_{n+1} = FRC (9821*r_n + .211327)$$

It allegedly will generate one million random numbers when a seed between 0 (inclusive) and I is used. This random number generator is initialized by pressing [I] whereupon you are prompted for a seed which is then entered with [R/S] instead of TI [E']. For some degree of uniformity with the TI illustrations, you may use a decimal point in front of each of the seeds given in the book, such as .419 in Example 4.10 on page 121. Subroutine RNDMU, assigned to label [i], replaces [SBR] [D.MS] and outputs a random number from the unit interval. For this illustration, the output of the HP program is .2104 instead of 0.65816 as listed, and the corresponding value of x will accordingly be 15,589.

In example 4.11, ML-15 is used to generate normal deviates. Here, Step N6, programmed as label [G] of the Normal Distribution program in ZP4, may be used in its place. For the example, using a seed of .793, the output should be 56.2958. (Of course, the parameters must be suitably stored by Step N1 to begin with.)

Continuing on page 122, the subroutine [P+R] replaces the TI key [x], while [R+P] replaces [INV] [x]. In Example 4.12, the sample values will be 47,30,56,48 with a mean of 47.3 and a standard deviation of 10.4. The next successive values are 49,45,57,50,61 with a mean of 49.8 and a standard deviation of 8.5. In Example 4.15, the ten successive values will be 727,708,417, 3401,326,213,1770,686,825,2783 with running counts checked in Register 06 rather than 03. The mean will be [147.9] rather than the published 1311. In Example 4.16, using a seed of .66, the successive values will be 0,2,4,6,2.

If you have been able to check these examples, then, while your answers will differ from the published ones whenever random number generation is called in the problems that follow, you may rely on the results nevertheless.

ZP4 (A	ssigned [J]) USER INSTRUCTIONS (HP	')	SIZE Σ REG	030
STEP	PROCEDURE	ENTER	PRESS	DISPLA
	Exponential Distribution			
E1	Initialization		[J]	0.000
E2	Enter Parameter	λ	[STO]22	λ
E3	Compute $P(x)$ and $Q(x)$	x > 0	[E]	P(x)
	NOTE: λx must not exceed 228		[Y<>X]	0(x)
E4	Calculate $100(1-\alpha)$ th Percentile	α	[e]	×α
	NOTE: Repeat E_3 and E_4 at will			
E5	Generate sample of size n			
	a. Initialize Random Number Generator		[I]	SEED
	b. Enter Seed (0 \leq Seed $<$ 1)	Seed	[R/S]	Seed
	c. Execute Step E2			λ
	d. Generate x (Repeat n times)		[B]	х
	Normal Distribution			
N1	Enter Parameters	μ	[STO]11	μ
		σ^2	[STO]12	σ2
N2	Compute P(x) and Q(x)	x	[C]	P(x)
			[X<>X]	0(x)
N3	Compute $Pr(x_1 < X < x_2)$			
	a. Enter x	x ₁	[D]	P(x
	b. Enter x ₂ and compute.	x ₂	[R/S]	Pr(x1
	2	-	[X<>X]	Pr(X<>+ Pr(X
N4	Calculate Stændard 100(1-α)th Percentile	α	[c]	zα
NB5	Calculate General 100(1-α)th	α	[d]	×α
	NOTE: Repeat N ₂ -N ₅ as often as desired			
N6	Generate sample of size n			
	a. Initialize Random Number Generator		[1]	SEEL
	b. Enter Seed (0 \leq Seed \leq 1)	Seed	[R/S]	Seed
	c. Execute Step N1			
	d. Generate x (Repeat n times)		[G]	х

TEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Uniform Distribution			
U1	Initialization		[J]	0.0000
U2	Enter Parameters	а	[STO]13	
		ь	[STO]14	
J3	Compute P(x) and Q(x)	x	[A]	P(x)
			[Y<>X]	Q(x)
J4	Compute 100(100(1-α)th Percentile	α	[SF]05	xxx
			[A]	×α
J5	Generate sample of size n from			α
	$R_{x} = \{e_{1}, e_{2}, \dots, e_{N}\}$ corresponding			
	to LABELS 00, 01,,K.			
	a. Initialize R <i>a</i> ndom Number Generator		[1]	SEED?
	b. Enter Seed (0 < Seed < 1)	Seed	[R/S]	Seed
	<pre>c. Execute Step U2 with a = 0, b = K</pre>			
	d. Generate R <i>a</i> ndom Label R		[a]	R
	e. Enter e-value corresponding to R. Repeat d and e for i = 1,2,,n.	×i	[R/S]	i
	NOTE 1. Summary stats stored in R ₀₁ - R ₀₆ .			
	NOTE 2. To generate from $\{A,A+1,\ldots,B\}$ execute steps a-d with $a = A$, $b = B$			
1	For each of the above distribu-		[b]	μ 2
	tions μ and σ^2 may be recovered after computing any $P(x)$.		[X<>Y]	σ^2

ZP4		USER INSTRUCTIONS							
	Register Contents:								
	00	Use	ed	10	z = (x-μ	1)/a	20	
	01	Use	ed	11	μ			21	
	02)	Ъу	7	12	σ^2			22	λ
	03	ΣRE	EG .	13	$z_{\alpha}(z)$			23	
	04			14	b(K)			24	
	05)			15	b-a			25	Used
	06	p(3	()	16				26	Used
	07	P(3	()	17				27	
	08	P(3	$(x_1)-P(x_2)$	18				28	
	09	See	_	19				29	
	Assi	gn me	ents		Labe	1s	Used		
	ZP4		J						
	ZCDF		Н		03	A	а		
	GEN-I	NI	I		07	В	Ъ		
	RNDMU		i		09	С	С		
	XBAR		P→R		11	D	d		

12 E e 15 G

16 17

SD

EXAMPLES ZP4

- (1) Time to failure, X, is exponential with failure rate = 0.0001.
 - a. Determine the reliability at $x_0 = 100$ and at $x_0 = 500$.
 - b. What would the failure rate have to be to achieve a reliability of 0.99 at 500 hours?
 - c. Calculate mean and median time to failure and the variance of X.

Solution (1), (3):

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
El		[J]	0.0000	Initialize exponential subroutine.
E 2	.0001	[STO]22	0.0001	Single parameter stored in R22.
E3	100	[E]	0.0100	Displays P(100)
"		[X<>Y]	0.9900	Displays $O(100)$, the reliability at 100 .
E3	500	[E]	0.0488	P(500) displayed.
**		[Y<>X]	0.9512	Q(500) = reliability at 500
E2	500	[STO]22	500.0000	Treating 500 as λ temporarily for computation in b.
E5	.99	[e]	2.0101-05	Value of $\lambda = \ln(0.99)/500$
E2	.0001	[STO]22	0.0001	Restores true λ in R $_{22}$ for the model.
М		[b]	10,000.0000	Displays mean time to failure
		[X <> X]	100,000,000	Displays $\sigma^2 = \mu^2$ for this model
E4	0.5	[e]	6931.0000	The median time to failure
E3		[E]	0.5000	Verifies that $P(6931) = 0.50$.

- (2) A standardized test is administered to incoming freshmen at a university. Scores, X, are assumed to be normally distributed and, based on thousands of past scores, it is assumed that μ = 100 and σ^2 = 245. For an incoming freshman chosen at random what is the probability that the test score will be:
 - a) greater than 110? b) less than 90? c) between 75 and 125? If only the top 80% of incoming freshmen are to be admitted on the basis of this test, what would the minimum passing score be?

Solutions:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
-		[J]	0.0000	Clears exponential problem.
Nl	100	[STO]11	100.0000	Enter the mean value.
**	245	[STO]12	245.0000	Enter the second parameter σ^2 .
N2	110	[C]	0.7385	P(110) = Pr(X < 110).
		[X<>X]	0.2615	Displays Q(110), the required probability
		[RCL]10	0.6389	Shows the standardized value for x = 110, namely, z = $(110-100)/\sqrt{245}$
N2	90	[C]	0.2615	Displays P(90)
N3a	75	[D]	0.9449	Displaýs Q(75), of minor interest
ИЗЪ	125	[R/S]	0.8898	Calculates and displays Pr(75 < X < 125)
		[Y<>X]	0.1102	Displays $Pr(X<75) + Pr(X>125)$.
N5	.80	[d]	86.8291	Displays the 20th percentile for X so that $Pr(X) = 0.80$.

- (3) The time a passenger must wait for a commuter flight on arrival at an airport is a uniform random variable over an inteval from 0 to 30 minutes.
 - a. What is the probability that the passenger will have to wait at least 10 minutes for a flight?
 - b. What waiting time corresponds to a 90% chance of catching a flight?
 - c. What is the probability that the passenger will wait between 10 and 20 minutes?
 - d. What is the mean waiting time? σ^2 and σ ?

Solutions:

Ul		[J]	0.0000	<pre>Initialize program (clears all previous work).</pre>
U2	0	[STO]13	0.0000	Enters first parameter $a = 0$ in R_{13}
10	30	[STO]14	30.0000	Enters second parameter b = 1 in R ₁₄
U3	10	[A]	0.3333	Displays P(0).
		[Y<>X]	0.6667	Displays the required Q(10).
U4	•90	[SF]05	0.9000	Signals calculator that percentile is coming.
U4		[A]	3.0000	Displays x
		[A]	0.1000	Verifies that $P(3) = .10$ so that $Q(3) = .9$

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
U4	10	[ENTER]	10.0000	Enters difference between 10 and 20 min.
**	30	[÷]	0.3333	Calculates and displays $Pr(10 < X < 20) = (20-10)/30$.
M		[b]	15.0000	Recalls and displays μ = 15 from R_{11}
**		[Y<>X]	75.0000	Displays the variance $\sigma^2 = 30^2/12$
		[USER] $[\sqrt{x}]$	8.6603	Displays the value of σ .
		[J]	0.0000	Clears the program.

Chapter 5. BIVARIATE DISTRIBUTIONS

The user instructions are practically identical to those given for the TI-59 so little has to be modified in this chapter. At Step 2 in the HP version a display of moments routine has been added which is effected by pressing [d] followed by successive presses of [R/S]. Of course, these characteristics may also be recalled manually from the respective registers just as instructed in the book.

As with ZP3-2, some modification of the routine for LABS is called for here also. The HP instructions on the matter at Step 3 are reasonably clear. As a footnote, it is advised once more that if you will be involved in a lot of erasing of old algorithms, perhaps it would be advisable to assign the delete function DEL to an unused label, like [g] for a given session. When applying LABS to various algorithms such as those found on page 142, naturally they will have to be programmed in RPN here. It is assumed that the reader is already sufficiently familiar with the HP calculator that the translation for various examples can be made without additional instruction here. Consult the OWNERS HANDBOOK AND PROGRAMMING GUIDE for any required assistance. As one example, the function g(x,y)=(x-1)(y-2) may be programmed at Step 3c as

Other cases can be handled in a similar fashion.

ZP5 (A	ssigned [e]) USER INSTRUCTIONS (HP))	SIZE	090
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1,	Distribution Entry			
,	a. Initialize		[e]	0.0000
	b. Enter in order x_i , y_i , $p(x_i, y_i)$	x _i	[A]	i
	(Repeat for each i through N < 19)	y _i	[B]	i
	NOTE: p(x _i ,y _i) should be positive.	p(x _i ,y _i)	[C]	i
2.	a. Compile Distribution Characteristics		[E]	ρ
	b. Display Characteristics		[d]	μх
			[R/S]	$\sigma_{\mathbf{x}}^2$
			[R/S]	μ
			[2/6]	μ y σ ² y
	NOTE: To re-compile onter N in		[R/S] [R/S]	4
	NOTE: To re-compile, enter N in R ₀₃ after [e]		[R/S]	o xy
	03		[17/ 5]	ρ
3.	Calculate E[g(X,Y)], V[g(X,Y)]			
	(after Step 1)			
	a. Initialize		[GTO][a]	x.xxxx
	NOTE: It is understood that [ALPHA] must be used for label a	a f		
	b. Enter Program Mode		[PRGM]	147 LBL a
	c. Key in $g(x,y)$ with $x \in R_{09}$,		-	
	y ε R ₁₀		-	
	(Avoid labels already in use; end with RTN)		-	
	d. Exit Program Mode		[PRGM]	x.xxxx
	e. Calculate Moments		[D]	E[g(X,Y)]
			[Y<>X]	V[g(X,Y)
	f. To ERASE Algorithm in [a], complete Steps a, b; then (Let nnn be at least as large +		[SST] [g]	148 yy DEL
	as the number of steps in [a].)		nnn	147 LBL
			[PRGM]	x.xxxx

For repeated applications, use ASN to assign DEL to g (%).

Register Contents								
00	Counter	10	last y	20	x,			
01	xp(x,y)	11	μ_{X}	21	y ₁			
02	yp(x,y)	12	σ_{X}^2	22	$p(x_1,y_1)$			
03	N	13	μ _Y	23	*2			
	$x^2p(x,y)$	14	$\sigma_{\mathbf{Y}}^2$	24	у ₂			
05	$y^2p(x,y)$	15	σ_{XY}	25	$p(x_2,y_2)$			
06	xyp(x,y)	16	ρ	26	•			
07	$\Sigma\Sigma_{p_{ij}} = 1(g(x,y)p(x,y))$	17	E[g(X,Y)]	27	•			
08	$lastp(g^{2}(x,y)p(x,y))$	18	V[g(X,Y)]	28	•			
09	last x	19	Used	29				

Assignments			Labe:	Labels Used		
ZP5		e		01	A	а
	ł			02	В	d
				03	С	
					D	
					E	

EXAMPLES ZP5 (1) Calculate the moments μ_X , σ_X^2 , μ_Y , σ_Y^2 , σ_{XY}^2 and ρ for the joint distribution of Figure 5-2 duplicated below.

3	0	.2	0	, 0
2	0	0	•2	0
1	.1	• 2	0	.3
y/x	1	2	3	4

Solutions:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step la		[e]	0.0000	Initialize ZP-5.
Step 1b	1	[A]	1.0000	First x-value for pair (1,1) entered.
••	1	[B]	1.0000	Corresponding y-value is entered.
**	.1	[C]	1.0000	Enter $p(l,l) = .l$; count of l triplet displayed.
**	2	[A]	2.0000	Enter x-value of second pair selected, (2,1).
11	1	[B]	2.0000	Enter corresponding y-value.
**	•2	[C]	2.0000	Enter $p(2,1)$; display shows 2 triplets entered.
11	4	[A]	3.0000	Pass up cell $(3,1)$ since $p(3,1) = 0$; enter next $x = 4$.
**	1	[B]	3.0000	Complete (4,1) entry.
04	•3	[C]	3.000	Enter $p(4,1)$; record of 3 triplets shown.
88	3	[A]	4.0000	Only positive entry in second row, $x=3$.
	2	[B]	4.0000	Enter y-value for pair (3,2).
**	• 2	[C]	4.0000	Enter p(3,2).
**	2	[A]	5.0000	Enter $x = 2$ for only positive entry in third row
**	3	[B]	5.0000	Enter $y = 3$
**	. 2	[C]	5.0000	Complete entry with $p(2,3) = 0.2$
**		[RCL]07	1.0000	Check on data entry to see $\Sigma p(x,y) = 1$
Step 2a		[E]	-0.2736	Displays the value of p after complete compilation and storage of moments.
Step 2b		[d]	2.7000	Displays $\mu_{ ext{X}}$
10		[R/S]	1.0100	Displays $\sigma_{\rm X}^2$
10		[R/S]	1.6000	Displays µ Y

ZP ST	ΕP	ENTER	PRESS	DISPLAY	COMMENTS
11			[R/S]	0.6400	Displays $\sigma_{\mathbf{v}}^{2}$.
				-0.2200	Displays $\sigma_{\chi \gamma}$.
				-0.2736	Verifies again that $\rho = -0.27$.
					variance for $g(X,Y) = XY$.
		Veri	lfy that σ_{XY}	z = -0.22	:
		Solution	:		
Step 3	За		[GTO]	GTO	Preparing for entry to subroutine
			[ALPHA]	GTO _	in order to program $g(x,y)$ with
			[a]	GTO a_	x ε R ₀₉ , y ε R ₁₀
			[ALPHA]	X.XXXX	10
Step 3	3b		[PRGM]	147 LBL a	Enters program mode
••			[RCL]	148 RCL	
			09	148 RCL 09	
**			[RCL]	149 RCL	
**			10	149 RCL 10	
••			[x]	150 *	Completes formula z = xy
••			[RTN]	151 RTN	Required return statement for
Step 3	Bd		[PRGM]	x.xxxx	subroutine. Return to keyboard operation (igno display).
Step 3	3e		[D]	4.1000	Calculates and displays E(XY).
10			[x<>y]	3.2900	Retrieves σ^2 from $R_{0.7}$ to R_{y} .
**			[x<>y]	4.1000	Returns E(XY) to R _y .
14			[RCL]	RCL	Prepares to subtract $\mu_{\chi} \mu_{\psi}$ to
9.0			11	2.7000	evaluate Eq. (5-4)
			[RCL]		
**			13	1.6000	Recovers $\mu_{_{\mathbf{Y}}}$ and multiplies by $\mu_{_{\mathbf{Y}}}$
**			[x]	4.3200	Δ.
10			-	-0.2200	Calculation complete and $s_{XY}^{}$ verifi

[GTO] Step 3f GTO Prepare to erase algorithm in a. [ALPHA] GTO_ Sends pointer to subroutine a.

> GTO a_ [ALPHA] x.xxx

[a]

010

[PRGM] 147 LBL a Enters program mode. [SST] 148 yyy Forward one step to beginning of

algorithm. [g] Execute delete function.

DEL ___ 147 LBL a Use 10 lines (more than enough)

[PRGM] x.xxx Exit program mode. Return to calcu control.

[e] 0.0000 Erases program.

STATISTICS BY CALCULATOR

Section 1.3: The Calculator

This section is quite like that of ZP so that only remarks concerning the statistics module need be added here. As mentioned in the introduction, the HP module STAT PAC will be needed for some of the ZS programs. In addition, the program ZSTAT, found in the appendix, will be needed for all of the ZS programs starting in Chapter 4 since they contain the probability distributions, among other things, that are missing in STAT PAC. Most of the applications of ZSTAT occur internally within ZS programs but, occasionally, some of the subroutines are called for individually. For that reason, suggestive alphanumeric labels have been included and the program has been assigned to label [SCI] to make it convenient to access from the keyboard.

Section 2.3: Simulation

The first departure from the TI format occurs on page 16 in the digression for computing moments of discrete distributions. A subroutine called MU-SIG and assigned to label [j] has been inserted into program ZS-2 to replace the TI use of ST-03. As the reader can see from the User Instructions that follow, the pairs are entered in opposite (but more natural) order with x first, followed by p. Instead of a running count of the number of pairs being displayed at the end of each entry, the cumulated probabilities are shown; thus, the number I should be seen at the conclusion of all entries. A press of [i] will then output the mean, and sigma will be found in the Y-register. (It should be noted throughout that, as with ZP, the HP Y-register replaces the TI T-register always).

Of course, the random number generator output will differ here, just as was the case in ZP. The same HP user instructions apply here, however. Thus, the generator is initialized by pressing [I] as before and you are prompted for a seed. The subroutine RNDMU, assigned to [H], will replace the TI [D.MS] routine to output a number between 0 and 1. If you will use a seed of .49 instead of 49 in the example treated on page 18, the HP output will be .5014, with a second application yielding .2349. A second program, called RNDMAB (assigned to [h]) replaces Steps 4-6 of ST-02 to output a (continuous) random ${\color{blue} ext{number}}$ between A and B , provided A and B are stored in registers 13 and 14, respectively. For the example, again on page 18, using A=10 and B=67, the respective values will be 16.0050, 59.2222, 16.6282 and 24.0426. Finally, the subroutine RNDMI, assigned to [g], will generate random labels. On page 19 using a seed of .21, successive presses of [g] will produce labels 45, 53, 11 and 20. That will take care of the problems for this section. The answers will differ from those published of course. Be sure to press [J] when you wish to return to the main programs in ZS-2.

Section 2.4: Simulating Continuous Distributions

In Example 2.3, if a seed of .635 is used, the successive values of u are: .5464, .1799, .9504, .6085, .7613, yielding x values of 791, 198, 3004, 938 and 1435, respectively. The program instructions at Step E5 should be modified according to the ones provided here.

Program ST-19 may be replaced entirely by using the N routine in ZS-2 with $\mu=0$ and $\sigma=1$. (For that matter, P(z) may be found here by entering z and pressing [XEQ] 19, to mimic the TI program). Alternatively, program ZNORMD in STAT PAC may be used to calculate Q(z). Try z=2.695 as on page 24

to see that .9964 is the value of P(z). The value Q(z) = .0036 will then be found in the Y-register. Generating random samples from both the exponential and normal distributions has been automated in ZS-2 just as in the TI case and examples follow the user instructions. No further checks will be given here.

Section 2.5: Bernoulli Trials

As with ST-19, we have mimicked the TI binomial program ST-20 as subroutine 20 here. The instructions are given under the code BIN in ZS-2 and that program may be used to check all of the problems of this section. It might be noted that the standard deviation is found in the Y-register, pressing [X <> Y] after [a], rather than a separate label [B'], as with TI.

zs-2 (Assigned [J]) USER INSTRUCTIONS (HP						
			Σ REG	01			
TEP	PROCEDURE	ENTER	PRESS	DISPLAY			
E	Exponential Distribution						
1.	Initialization		[J]	0.0000			
2.	Enter Parameter	λ	[STO]16	λ			
3.	Compute P(x) and O(x)	x	[E]	P(x)			
	Note: λx must not exceed 228		[Y<>X]	Q(x)			
4.	Calculate 100(1-α)th Percentile	α	[e]	×α			
	Note: Repeat E_3 and E_4 at will.						
5.							
	a. Initialize Random Number Generator		[I]	SEED?			
	b. Enter Seed (0 < Seed < 1)	Seed	[R/S]	Seed			
	c. Execute Step E2						
	d. Generate x (Repeat n times)		[B]	x			
N	Normal Distribution						
1.	Initialization		[1]	0.0000			
2.	Enter Parameters	μ	[STO]17	μ			
		σ	[STO]18	σ			
3.	Compute P(x) and O(x)	x	[C]	P(x)			
			[X<>X]	Q(x)			
4.	Compute $Pr(x_1 < X < x_2)$ or $1-P(x_1 < X < x_3)$	1)					
	a. Enter x ₁	_ x ₁	[D]	0(x ₁)			
	b. Enter x ₂ and compute	x ₂	[R/S]	Pr(x, < X < x ₂			
	-	_	[Y<>X]	Pr(X <x,) +<="" td=""></x,)>			
				Pr(X>x ₂)			
5.	Calculate Standard 100(1-α)th Percentile	α	[c]	z			
6.	Calculate General 100(1-α)th Percentile	α	[d]	×α			
	Note: Repeat N ₃ -N ₆ as often as desired						
7.							
	a. Initialize Random Number Generator		[I]	SEED?			
	b. Enter Seed (0 < Seed < 1)	Seed	[R/S]	Seed			
	c. Execute Step N1						
	d. Generate x (Repeat n times)		[b]	x			
8.	Standard Normal (TI ST-19)	z	[XEO] 19	P(z)			
			[Y<>X]	Q(z)			

ZS-2		USER IN	NSTRUCTIONS				2.
STEP	PRO	CEDURE		ENTER	PRESS	DISPLAY	
BIN	Binomial Distributi	ion (TI S	r-20)				
1.	Initialize			[XEO]20	PMTERS?		
2.	Enter Parameters		n	[R/S]	n		
			p	[R/S]	0.0000		
3.	Calculate probabili	k	[A]	p(k)			
						[R+]	P(k)
						[R+]	Q(k)
MU-SIG	Discrete Moments				 		
1.	Initialize					[j]	ΣBSTG
2.		Enter discrete pairs					×i
	(Repeat i=1,,N	1)			$p_{\mathtt{i}}$	[A]	$\Sigma_{P_{i}}$
3.	Calculate μ and σ .	•				[i]	μ
						[X<>Y]	σ
MOM	Recall Moments					[a]	μ
						[X<>X]	σ
	Register Contents	3_					
	00 Used	10	K(label)	20	$z = (x-\mu)$	/σ	
	01	11		21	n		
	02 Used	12		22	p		
	03 by	13	A	23	1-p		
	04 Σ ⁺		В	24			
	05	15		25			
	06	16	λ	26			
	07 P(x)	17	μ	27			
	$08 P(x_1) - P(x_2)$		σ	28			
	09 Seed	19	z_{α}	29			

Assign	nments	Label	ls U	sed
ZS-2	J	03	A	a
GEN-INI	I	06	В	Ъ
RNDMU	Н	07	С	С
RNDMAB	h	80	D	d
RNDMI	g	09	E	e
BSTG	j	11		
MU-SIG	i	12		
XBAR	P→R	19		
SD	R→P	20		
RD	R↓			

EXAMPLES ZS-2.

- 1. Let X have an exponential distribution with parameter λ = 0.001 and suppose X measures time to failure in hours.
 - (a) Calculate the probability that time to failure will exceed 1200 hours.
 - (b) Compare the mean time to failure with the median time to failure.
 - (c) How many hours may we reasonably depend upon for survival of 90% of such items?
 - (d) Generate a random sample of five times to failure.

SOLUTIONS:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
E1		[J]	0.0000	Initialize the exponential subrout
E2	0.001	[STO]16	0.0010	Single parameter λ stored in R ₁₆
E3	1200	[E]	0.6988	Displays $P(1200) = Pr(X \le 1200)$.
		[X<>X]	0.3012	Displays $Q(1200) = Pr(X \ge 1200)$ which is the answer to (a).
E4	.50	[e]	693.1472	Calculates and displays the median $x_{.50}$ (in hours).
		[RCL]17	1000.0000	Recall μ , the mean time to failure This answers (b).
E 4	.10	[e]	105.3605	Displays x.90
E5a		[I]	SEED?	Initialize the random no. generato
Е5Ъ	.635	[R/S]	0.6350	Enter Seed = 635 for illustrative purposes.
E5c	(0.001)	([STO]16)	(0.001)	Enter the parameter λ if not already entered.
E5d		[B]	790	Displays the first generated sample value, x_1 (rounded).
		[B]	198	The second simulated time to failu
		[B]	3003	Successive times to failure
		[B]	938	(rounded to whole hours)
		[B]	1432	for a random sample of size 5.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS						
(2)	A standard	lized test	is administere	d to incoming freshmen at a						
	university	. Scores,	X, are assume	d to be normally distributed						
	and, based	d on thousa	nds of past sc	ores, it is assumed that 1 = 100						
	and $\sigma = 16$. For an incoming freshman chosen at random what is the									
	probability that the test score will be:									
	a) greate	er than 110	? b) less th	an 90? c) between 75 and 125?						
	If only th	ne top 80%	of incoming fr	eshmen are to be admitted on the						
	basis of t	his test,	what would the	minimum passing score be?						
Solut	ions:									
N1		[J]	0.0000	Initialize.						
N2	100	[STO]17	100.0000	Enter the mean value.						
**	16	[STO]18	16.0000	Enter the second parameter σ_*						
N3	110	[C]	0.7340	Displays $P(110) = Pr(X \le 110)$.						
		[Y<>X]	0.2660	Displays Q(110), the required probability.						
		[RCL]20	0.6250	Shows the standardized value for $x = 110$, namely, $z = (110-100)/16$.						
N3	90	[C]	0.2660	Displays P(90).						
N4a	75	[D]	0.9409	Displays $Q(75)$, of minor interest.						
N4b	125	[R/S]	0.8818	Calculates and displays $Pr(75 < X < 125)$.						
		[Y<>Y]	0.1182	Displays $Pr(X<75) + Pr(X>125)$.						
N6	.80	[d]	86.5367	Displays the 20th percentile for X , so that $Pr(X>87) = 0.80$.						
(3)	Generate a	a random sa	mple of size 5	from a normal distribution						
N7a		[I]	SEED?	Initialize random number generator.						
N7ъ	.198	[R/S]	0.1980	Enter Seed = 198 for illustrative purposes						
N7c	50	[STO]17	50.0000	Enter the normal parameters						
	10	[STO]18	10.0000	and store in appropriate registers.						
N7d		[b]	42.63	Displays first generated sample						
				value x, (rounded).						
		[b]	56.34	Successive sample values						
		[b]	63.21	are generated and						
		[b]	72.72	displayed (rounded).						
		[b]	46.84							

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
(4)	Find the	mean and stan	dard deviati	ion of the discrete probability
	distribut	ion.		
	x:	4.0 3.0	2.0 1.0	0.0
	p(x):	0.13 0.21	0.43 0.1	14 0.09
SOLU	TION:			
MU-SIG 1.		[j]	ΣBSTG	Initialize module to start program
MU-SIG 2.	4	[ENTER]	4.00	Enter distribution as data
	.13	[A]	0.13	pairs(x _i ,p _i) i = 1,2,,n.
	3	[ENTER]	3.00	See Σp accumulated in R _χ with
	.21	[A]	0.34	l indicating final data entry.
	2	[ENTER]	2.00	
	.43	[A]	0.77	
	1	[ENTER]	1.00	
	.14	[A]	0.91	
	0	[ENTER]	0.00	
	.09	[A]	1.00	
MU-SIG 3.		[i]	2.1500	Displays µ.
		[X<>X]	1.0989	Displays σ from R_{Y}^{\bullet} .
(5)	Example 2	2-7.		
SOLU	TION:			
BIN 1.		[XEQ] 20	PMTERS?	Initialize binomial program. Prompt is for n and p.
BIN 2.	4	[R/S]	4.0000	
	.51	[R/S]	0.0000	Parameter entry complete.
BIN 3.	0	[A]	0.0576	Display $P = p(0) = Pr(Y=0)$.
***	2	[A]	0.3747	Display is p(2) so P(2) is found
		[R\]	0.6724	in R _y .
		[R+]	0.3267	Q(2) is found in R ₇ .
10	1	[A]	0.2400	p(l) is displayed.
MOM		[a]	2.0400	Displays µ = np
		[Y<>X]	0.9998	Displays J = npq
		[USER][x ²]	0.9996	Calculates σ^2 .

Chapter 3 Data Processing

This chapter is rather independent of the others and, as the name suggests, deals with the processing of numerical data to produce traditional statistical summaries as well as grouping data into different patterns. Three programs have been created for this purpose, ZS-3 and two separate ones that are revisions of corresponding TI programs ST-03, ST-07 and ST-09. The latter were created and so named in order to follow the textbook material with the least amount of revision of instructions. The three programs should be loaded simultaneously for solving the problems here. Since some partitioning (using the SIZE function) may be called for, it is advisable that all other programs be cleared from calculator memory. The labels to which the programs have been assigned make it very convenient to move from one to the other when necessary.

Section 3.1: Sample Characteristics

Picking up the discussion on page 41, the HP, like the TI, is hard wired to compute means and standard deviations when data are entered on the keyboard with the Σ + key. Consult the Owner's Hamdbook for details. The basic differences are that (be sure you are not in USER mode) the registers are cleared with the $\mathsf{CL}\Sigma$ key rather than using Pgm 01 and you execute the functions MEAN and SDEV instead of $[\bar{x}]$ and $[INV][\bar{x}]$, respectively. Even so, the TI program ST-03, here assigned to [I], will allow for data storage as it does in the TI module. You see from the User Instructions that follow, you must initialize by pressing [e] and then enter the data one-by-one using label [A]. At the conclusion you will find the data stored beginning in register 31. In addition, you may press $[P \rightarrow R]$ in place of TI $[\overline{x}]$ and use $[R \rightarrow P]$ instead of TI $[INV][\overline{x}]$. To find the range, press [J] to enter program ZS-03 and then press [C] as per the instructions for that program. (Do not forget to press [I] again if you wish to return to ST-03 for any reason.) The remarks regarding repartioning may be easily transferred to appropriate remarks using the SIZE function for the HP. When data have been entered using program ST-03, you may find MSD by pressing [ENG] (the key that the subroutine MSD has been assigned to). MAD is computed by pressing [J] to enter ZS-03 and then press [B]. In this way, these instructions practically follow those of the TI to the letter. Verify the solution on page 47 for Example 3.1 following these instructions.

Section 3.2: Grouping Data

Data are grouped and recovered in cells suitable for histogram construction by means of program ST-07/9 (assigned to label [i]), a program resembling the corresponding TI programs ST-07 and ST-09 discussed in the book. The same remarks regarding conventions and parameter limitations discussed on pages 52 and 53 apply here as well.

After pressing [i] to enter the program, you initialize with [e] just as with the TI program, only here you will be prompted for the number of cells. When you enter that number with a press of [R/S] you will then be prompted for lowest class limit XMIN and, after entering that, for the width, w, of each cell. These instructions conform to the TI instructions. At this point you have two options. If data have been entered previously, either with program ST-03 or with ST-07 itself, you have merely to press [d] whereupon you are prompted for the sample size n. Entering this number and pressing [R/S] causes the program to automatically group the data into cells as per the entry

in steps P1,2,3. Otherwise, you enter the data one-by-one using [A] just as with ST-03. Once the data have been entered, the histogram is constructed by the steps under code H. After initializing with [E], the successive cell frequencies and boundaries are displayed with a STOP at the end to signal completion of the display. This replaces the discussion on pages 53 and 54 of the text.

As for computing grouped moments, the version of ST-03 presented here is initialized the same way ([e]), and pairs are entered as discussed under code G (same as the TI entry). Moments are then displayed in the X-register when XBAR ([P+R]), SD(R+P]) and MSD ([ENG]) are used. You may then proceed to ZS-3 to find MAD and the range as discussed on page 55. The last two paragraphs on that page may be safely ignored.

Section 3.3: Transformations

Step 5 of ZS-3 presented here allows for data transformations just as with the TI version. As with ZP programs, it may be advisable now and then to erase some of the algorithms used in [a] to create transformations if many applications happen to be used. Again, the DEL function will have to be used and this should be assigned to [g] if many such erasures will be taking place. You may also have to repartition your calculator with the SIZE function if there is no room for the data. For the small data sets illustrated here, that situation is not likely to arise. The answers to the problems given at the end of the section may all be verified with the program instructions on the following page.

Section 3.4: The Central Limit Theorem

The program <code>INORMD</code> in STAT PAC will have to be used in this section in place of ST-19, or, as remarked on page 63, you may use ZS-2 with the caution mentioned there. Since there is no binomial program in STAT PAC, the latter might be the advisable thing to do for resolving some of the problems in this section.

:S-3 (A	Assigned [J]) USER INSTRUCTIONS (HP))	SIZE (Σ REG	090 1.
TEP	PROCEDURE	ENTER	PRESS	DISPLAY
1,.	Calculate the range of a sample when raw data have been entered using ST-03		[C]	R
2.	Calculate the range of a sample when data are grouped and have been entered using ST-03 (w = cell width).	W	[c]	R
3.	Compute MAD when ungrouped data have been entered using ST-03.		[B]	MAD
4.	Compute MAD when grouped data have been entered using ST-03		[b]	MAD
5.	<pre>Transform data by the transformation x' = f(x): a. Initialization. b. Enter program mode c. Enter f(x) using parentheses where necessary and always end with [INV][SBR]. Exit program mode. d. (1) Keyboard Entry (repeat for each i). (2) Original Data Stored by ST-03 (n = sample size). NOTE 1: Steps 1 and 3 apply following Step 5d. note To ERASE Algorithm in [a], complete Step b; then (Let nnn be at least as large as the number of steps in [a])</pre>	×i n	[e] [GTO][a] [PRGM] . [PRGM] [A] [E] [SST] [g] nnn [PRGM]	0.0000 x.xxxx 160 LBL a x.xxxx i.0000 n.0000 161 yy DEL 161 LBL a x.xxxx
6.	Recall transformed data. NOTE: May be repeated at any time.		[d] [D] [D] [D]	0.0000 x'1 x'2 x'3
7.	Clear Step 6		[CF]01	x.xxx.

or repeated applications of Step 5, use ASN to assign the function DEL to label g(%) efore executing this step. (DEL is not programmable and cannot be preserved in user ode by the card reader.)

ST-03	(Assigned [I])	USER	INSTR	UCTIO	NS (HP))	SIZE 06	0-089
								Σ REG	01
STEP		PROCEDURE					ENTER	PRESS	DISPLA
I	Initializat	ion						[e]	0.0000
U	Ungrouped Data Entry Repeat i = 1,2,,n.					x _i	[A]	i.0000	
G	Grouped Data Entry					f	[B]	fi	
	Repeat i =	Repeat i = 1,2,,n.						[A]	i.0000
мом	l. Calculate sample mean and sample Standard Deviation							[P+R] [R+P]	x
	2. Calcula	te MSI)					[ENG]	MSD
REGIST	ER CONTENTS (Groupe	ed data in	n pare	nthes	es)			
00	Used	10	1(f _i)	20	30	Point	ter		
01	$\Sigma_{\rm X}(\Sigma_{\rm f X})$	11	W	21	31	x,(x,	1)		
02	$\Sigma x^2 (\Sigma f x^2)$	12	x _{min}	22	32	x ₂ (f	1)		
03		13	x max	23		$x_3(x)$	-		
04		14	Used	24	34	x ₄ (f	_		
05		15		25	35	•	-		
06	$n(\Sigma f_i)$	16		26	36	•			
07	$\Sigma \mid x_i - \overline{x} \mid$	17		27	37				
08	Used	18	Used	28	38				
09	Lastx	19	xcount	29	39				

Assignments		Labe	ls	Use	<u>ed</u>							
ZS-3	J		<u>zs-3</u>			ST-03			ST-07/9			
ST-03	I		01	A	а		01	A e	:	01	A	С
ST-07/9	i		02	В	Ъ		02	В		02	E	d
XBAR	P→R		03	С	С		03			03		e
SD	R→P		04	D	d					04		
MSD	ENG		05	E	е							
			12									
			13									

31	T-07/9 (Assigned [i]) USER INSTRUCTIONS SIZE 060-089 Σ REG 01							
37	TEP	PROCEDURE	ENTER	PRESS	DISPLAY			
[Initialization		[i]	0.0000			
	1. 2. 3.	Enter Parameters Enter number of cells (< 15) Enter Lowest Class Limit Enter Interval Width	Cells ^X min w	[e] [R/S] [R/S] [R/S]	CELLS? XMIN? W = ? 0.0000			
ЭE	1.	Data Entry and Compilation Original Data (Repeat i = 1,2,,n) OR: If Data Are Previously Stored	x _i	[A] [d] [R/S]	i.0000 N = ? n.0000			
H	1. 2. 3.	Histogram Construction (after DE) Initialization Display Cell Frequency Display Upper Limit, B; of Interval (Repeat i = 1,2,,Cells)		[E] [c] [R/S]	0.0000 f _i B _i :			
		Note: Ungrouped moments after DE may be computed by XBAR, SD and MSD in ZS-3. Corresponding grouped moments are then found in R _Y if Histogram has been constructed. In either case, you must press [i] again to return to ST-07/9.						

REGI	STER CONTE	NTS					
00	Used	10	Used	20	f ₇	30	Pointer
01	$\Sigma_{ ext{i}}$	11	w	21	ŕ ₈	31	× ₁
02	$\Sigma_{\mathbf{x_i}}^{-2}$	12	x _{min}	22	f ₉	32	x_2
03	Σf _i x _i	13	x	23	f ₁₀	33	^x 3
04	$\Sigma f_{i} x_{i}^{2}$	14	f ₁	24	f ₁₁	34	•
05	Used	15	f_2	25	f ₁₂	35	•
06	n	16	f ₃	26	f ₁₃	36	
07	Used	17	f ₄	27	f ₁₄	37	
08	Used	18	f ₅	28	f ₁₅	38	
09	CELLS	19	f ₆	29	xcount	39	

EXAMPLES ZS-3

1. For the ungrouped data below, calculate \bar{x} , s, MSD, MAD and R. Then transform the data by x' = 1/x and calculate the same statistics for the transformed data.

5, 10, 6, 4, 3, 8, 12
Recall the actual values of the first three data points.

	Recall the a	ectual values of	the first	three data points.
ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
ST-03		[1]	0.0000	Select ST-03
I		[e]	0.0000	Initialize for data entry.
U	5	[A]	1.0000	Enter data.
	10	[A]	2.0000	
	6	[A]	3.0000	
	4	[A]	4.0000	
	3	[A]	5.0000	
	8	[A]	6.0000	
	12	[A]	7.0000	Data Entry complete.
		[P+R]	6.8571	The value of the sample mean.
		[R+P]	3.2878	The value of the sample standard deviation.
		[ENG]	9.2653	Value of MSD.
ZS-3		[J]	9.2653	Enter program ZS-03.
3.		[B]	2.6939	MAD calculated and displayed.
1.		[C]	9.0000	The range R = 9
5a.		[e]	0.0000	Initialize ZS-3 for data trans- formation.
5b.		[GTO][a][PRGM]	160 LBLa	Preparation for transformation.
5c.		[1/x]	161 1/x	Simple algorithm.
**		[RTN]	162 RTN	Necessary return instruction.
**		[PRGM]	X.XXXX	Exit program mode for ZS-3 operation.
5d.(2)	7	[E]	7.0000	Data automatically transformed an stored in R ₃₁ , R ₃₂ ,
		[P→R]	0.1798	Value of $\bar{\mathbf{x}}$ ' rounded.
		[R→P]	0.0892	Rounded value of s'.
		[ENG]	0.0068	Rounded value of MSD'.
3.		[B]	0.0697	Rounded value of MAD'.
1.		[C]	0.2500	Value of R', the new range.
6.		[d]	0.0000	Initialize to recall transformed data.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[D]	0.2000	Recall value of $x'_1 = 1/x_1$.
		[D]	0.10000	Recall value of $x'_2 = 1/x_2$.
		[D]	0.1667	Recall value of $x'_3 = 1/x_3$.
		[CF]01	0.1667	Clear display program
2.	For the grouped	data be	low, calculate \bar{x}	, s, MSD, MAD and the range.
	Frequency:	3	4 9	4 5
	Class Interval:	0-10	10-20 20-30	30-40 40-50
	SOLUTION:	0 10	10 20 20 30	30 40 40 30
ST-03	<u></u>	[I]	0.0000	Select program ST-03.
I		[e]	0.0000	Initialize ST-03 for data entry.
G	3	[B]	3.0000	Enter first frequency.
G	5	[A]	1.0000	
	4	[B]	4.0000	Enter first midpoint; running count
				displayed.
	15	[A]	2.0000	Repeat for each pair.
	9	[B]	9.0000	
	25	[A]	3.0000	
	4	[B]	4.0000	
	35	[A]	4.0000	
	5	[B]	5.0000	
	45	[A]	5.0000	Data entry concluded.
		[P→R]	26.6000	Grouped mean value $\bar{\mathbf{x}}_{ullet}$
		[R→P]	12.8062	Rounded value of s.
		[ENG]	157.4400	Value of MSD.
ZS-3		[J]	157.4400	Enter Program ZS-3
4.		[b]	10.0480	Value of MAD.
2.	10	[c]	50.0000	Value of grouped range R-based on a class width of 10.
3.	w = 10 starting	at x min	= 70.	ram consisting of 6 cells of width
		86 87 05 95		120 100 80 85 95 85
				and ungrouped data.

SOLUTION:

ST-07/9		[i]	0.0000	Select program ST-07-9
I		[e]	CELLS?	Initialize for parameter entry.
Pl	6	[R/S]	XMIN?	Enter total number of cells.
P2	70	[R/S]	₩ = ?	Enter x_{\min} , lowest data limit.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
P3	10	[R/S]	0.0000	Enter cell width.
DE	120	[A]	1.0000	Enter first data value
	86	[;A]	2.0000	Enter second data value
		•	•	:
	0.5	•	•	
	85	[A]	16.0000	Enter last data value
H1		[E]	0.0000	Initialize histogram display.
Н2		[c]	1	First cell frequency
Н3		[R/S]	80.0000	B_1 so Cell 1 runs from 70 to 80.
Н2		[c]	5	Second cell frequency
Н3		[R/S]	90.0000	$^{ m B}_2$ establishing interval 80 to 90
H2		[c]	3	Third cell frequency
Н3		[R/S]	100.0000	Third cell upper limit.
Н2		[c]	4	Fourth cell frequency
Н3		[R/S]	110.0000	Fourth cell boundary.
H2		[c]	1	Fifth frequency for cell
Н3		[R/S]	120.0000	running from 110 to 120
Н2		[c]	2	Sixth frequency for last cell.
Н3		[R/S]	130.0000	Upper bound on all data (not included as a possible value)
		[c]	STOP	Indicates conclusion of program.
		[P→R]	95.8125	\overline{x} for ungrouped data
		[X<>Y]	98.1250	₹ for grouped data
		[R → P]	13.2525	s for ungrouped data
		[X<>Y]	14.9304	s for grouped data
		[ENG]	164.6523	MSD for ungrouped data
		[Y<>Y]	208.9844	MSD for grouped data
		[i]	0.0000	Ensures return to ST-07/9

Chapter 4 Estimation

Chapter 5 Hypothesis Testing

The problems in both of these chapters are covered by a single program, called ZS-4/5. This was one of the more successful translations from TI to HP so that very little needs to be added in the way of remarks. As the reader will see from the User Instructions that follow, the directions are practically identical to those published in the text. One small difference is that raw data will not be entered by ST-03, but rather by a self-contained data entry scheme (DE) which is much simpler and covers all of the cases treated. Naturally, any TI reference to the T-register should be translated to the HP Y-register, and the display register, $\rm R_D$ referred to so often, becomes the HP X-register. Another important point that is universally true of the difference between the two calculators is that $\rm R_{06}$ is used by the HP routines for storing sample sizes while TI used $\rm R_{03}$. That change should be noted throughout the instructions that follow.

As previously remarked, the program ZSTAT should be loaded into program memory for all of the ZS programs from this point on in the text. It will be convenient to assign ZSTAT to a label, say [SCI], for easy access to the programs that are referred to occasionally in these chapters.

On page 85 reference is made to the formula for the t-density in ASM. It is really not particularly instructive for the applications presented here to actually see the formula but it may be found in most standard textbooks, and a picture of the typical density is shown on page 103. In any case the value of the CDF P(t) may be found by storing degrees of freedom, ν , in R₁₅, entering t and then [XEQ][TF] in ZSTAT. On page 86 it should be noted that the subroutine ZA in ZSTAT replaces the subroutine [sin] in TI. (See also the Note in the User Instructions that follow.)

One of the few distributions provided by STAT PAC is the Chi-square, referred to on page 92. This distribution is labeled ΣCHISOD and is discussed on page 70 of the STAT PAC handbook. It may also be found as the subroutine [CHISD] in ZSTAT (requiring, again, only that degrees of freedom be store in R_{15}). Either replaces references to [C] in TI ST-21. A typical Chi-square density is depicted in the legend to Table C on page 104, where percentiles are located. It should be observed that the footnote regarding large degrees of freedom applies verbatim to the HP program ZS-4/5.

That takes care of all of the differences in these two chapters. Following the User Instructions on the next three pages will be found the typical model problems for verifying program output.

ZS-4/5	ZS-4/5 Assigned [J]) USER INSTRUCTIONS (HP) SIZE 050 Σ REG 01							
STEP	PROCEDURE ENTER PRESS DISPLA							
DE	ORIGINAL DATA ENTRY							
1.	Enter Data			1				
	a. Initialize		[J]	DATA?				
	b. x Repeat i = 1,2,,n		[R/S]	i.0000				
2.	Process Data for Storage		[d]	0.0000				
Ν(μ)	NORMAL MEAN - o UNKNOWN							
1.	Enter Data using DE OR:							
	a. Enter Sample Size	n	[STO]06	n				
	b. Enter Sample Mean	$\bar{\mathbf{x}}$	[STO]37	x				
	c. Enter Sample Standard Deviation	s	[STO]38	s.				
2.	Test $H_0: \mu = \mu_0$							
	a. Enter H _l -code*	H,-code	[a]	H ₁ -cod				
	b. Enter μ ₀ and Compute P-value	μ ₀	[R/S]	Р				
3.	CI for µ			,				
	a. Calculate Degrees of Freedom		[A]	ν̈́				
	b. Enter $t_{\alpha/2}$ with d.f. = ν	t _{α/2}	[R/S]	٤				
	and calculate limits		[X<>X]	u				
	NOTE: For One-sided intervals, enter t α as the case may be.	t Step 3b and	ignore l o	r u				
Ν(μ σ)	NORMAL MEAN - o KNOWN							
1.	Enter Data Using DE <u>OR</u> :							
	a. Enter Sample Size	n	[STO]06	n				
	b. Enter Sample Mean	x	[STO]37	$\bar{\mathbf{x}}$				
3.	Test $H_0 : \mu = \mu_0$							
	a. Enter H ₁ -Code	H _l -code	[b]	H ₁ -cod				

Note: Enter lpha for one-sided intervals and ignore ℓ or u as the case may be

Calculate $100(1-\alpha)\%$ CI for μ

4.

Enter μ_0 and Compute P-value

Note: In ZSTAT (assigned [SCI]), $[XEQ][ZA] \ displays \ z \ p \ if \ P \ is \ in \ R \ X$

 μ_0

 $\alpha/2$

[R/S]

[B]

[X <> Y]

P

l

u

s-4/5	USER INSTRUCTIONS			
TEP	PROCEDURE	ENTER	PRESS	DISPLAY
(σ ²) 1.	NORMAL VARIANCE Enter Data Using DE OR: a. Enter Sample Size b. Enter Sample Standard Deviation	n s	[STO]06 [STO]38	n s
2.	Test H_0 : $s^2 = \sigma_0^2$ a. Enter H_1 -code b. Enter σ_0^2 and Compute P-value	H ₁ -code σ_0^2	[c] [R/S]	H _l -code
3.	CI for σ^2 a. Calculate Degrees of Freedom b. Enter Chi-square Percentiles (v=n-1) and Calculate Limits	$\chi^2_{1-\alpha/2}$ $\chi^2_{\alpha/2}$	[Y<>X]	$\begin{array}{c} v \\ x_{1-\alpha/2}^{2} \\ z_{\alpha/2}^{2} \\ u \end{array}$
	NOTE: For Upper One-sided Interval, enter displayed. For Lower One-sided inte			
Exp(µ)	Exponential Mean Enter data using DE or: a. Enter Sample Size b. Enter Sample Mean	n x	[STO]06 [STO]37	n x
2.	Test H_0 : $\mu = \mu_0$ a. Enter H_1 -code b. Enter μ_0 and Compute P-value	H ₁ -code ^µ 0	[e] [R/S]	H ₁ -code P
3.	CI for a. Calculate Degrees of Freedom b. Enter Chi-square Percentile v=2n and Calculate Limits	$\begin{array}{c} \chi^2 \\ \chi_{1-\alpha/2} \\ \chi^2 \\ \chi_{\alpha/2} \end{array}$	[K/S]	$\begin{array}{c} v \\ 2 \\ x_{1-\alpha/2} \\ x_{\alpha/2} \\ z \end{array}$
	NOTE: See Previous Note for One-Sided Inte	ervals.	[Y<>X]	u

	REGIS	STER CONT	TENTS								
	00	1		10		20		30	ts	40	θ
	01	Σ	* 6	11		21		31	$t_{\alpha/2}, \chi^2_{\alpha/2}$	41	$\chi^2_{1-\alpha/2}$
	02	Σ Σx _i 2		12		22		32	SE G/2	42	1 4/2
	03	•		13		23		33	Used	43	
	04			14	Used	24 _		34	өо	44	
	05		Used	15	ν	25		35		45	
i	06	n		16		26	Used	36		46	
	07			17		27		37	x	47	
	08			18		28	H ₁ -code	38	s	48	
	09			19		29	P(ts)	39	e(θ±e)	49	Used
- 1											

Assignments	Labe	ls.	Used
ZS-4/5 J	01	A	a
	02	В	b
	03	С	С
	04	D	d
	05	E	е
	06		

EXAMPLES ZS-4/5

- (1) To study the effects of a drug, nine athletes were timed in a series of physical tests and yielded an average of \bar{x} = 10.13 minutes. It was assumed in the study that σ = 1 and that reaction times are normally distributed.
 - a. Find a 90% CI for the mean reaction time μ .
 - b. Determine a 99% lower one-sided interval for μ .
 - c. Find a one-sided upper bound on µ having risk 15%.
- (2) Four specimens of an expensive cloth were subjected to strength tests and the breaking strengths in lbs./sq. in. were recorded as 181, 173, 176, 175. The standard deviation based on past experience is 5 lbs./sq in. Assume normality.
 - a. Find a 95% CI for μ , the mean breaking strength.
 - b. What is a lower one-sided bound for μ with confidence 90%?

	Solut	<u>ion</u> (1):			
ZP STE	<u>P</u>	ENTER	PRESS	DISPLAY	COMMENTS
Ν(μ σ)	la.	9	[ST0]06	9.0000	Places the sample size in R_{06} .
	lb.	10.13	[STO]37	10.1300	Stores the sample average in R_{37} .
	2.	1	[STO]48	1.000	Stores known σ -value in R_{48} .
	4.	.05	[B]	9.5816	Enter $\alpha/2 = .10/2$; display $2.$
			[Y<>X]	10.6784	Exchange and display u. 90% CI for μ is (9.58, 10.68).
	4.	.01	[B]	9.3544	Enter α = .01 and find ℓ = 9.35 so confidence is 99% that μ > 9.35 solving (b) (R _y is not examined)
	4.	.15	[B]	9.78	Using $\alpha = .15$, ℓ is calculated but ignored.
			[X<>Y]	10.4755	The Y-register yields required upper limit on μ , solving (c).
	Solut	ion (2):			
DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 for data entry.
		181	[R/S]	1.0000	First breaking strength entered.
		173	[R/S]	2.0000	Second breaking strength entered.
		176	[R/S]	3.0000	Third breaking strength entered.
		175	[R/S]	4.0000	Fourth breaking strength entered.
DE	2.		[d]	0.0000	Data processed.
Ν(μ σ)	2.	5	[STO]48	5.0000	Stores known σ -value in R_{48} .

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
4.	.025	[B]	171.3490	Entering $\alpha/2$ for $\alpha = .05$, ℓ is displayed.
		[X<>Y]	181.1510	Y-register yields u. CI:(171.3,1 is reported and (a) is resolved.
4.	.10	[B]	173.0457	The 90% lower limit for (b) of 17 is found using $\alpha = .10$.
(2)				

(3) Five specimens of coke tested for porosity showed weight gains of 2.16, 2.19, 2.31, 2.30 and 2.21, all in pounds. The variance of the process is unknown. Find a 90% C.I. for the mean weight gain. Find estimates of μ and σ and SE.

Solution:

DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 Ungrouped for data entry.
		2.16	[R/S]	1.0000	First weight entered.
		2.19	[R/S]	2.0000	Successive weights entered.
		2.31	[R/S]	3.0000	
		2.30	[R/S]	4.0000	
		2.21	[R/S]	5.0000	
DE	2.		[d]	0.0000	Process data.
N(µ)	3a.		[A]	4.0000	Display ν = 4.
	Зъ.	2.132	[R/S]	2.1698	Lower confidence limit displayed
			[X<>Y]	2.2982	Upper Limit retrieved from R _y .
			[RCL]40	2.2340	Retrieve $\hat{\mu} = \overline{x}$, the estimate of μ .
			[RCL]38	0.0673	Retrieve $\hat{\sigma}$, the estimate of σ .
			[RCL]32	0.0301	Retrieve s/\sqrt{n} , the estimate of SE.
		Report 2.	$17 < \mu < 2.30$	or 90% (C.I. for µ is (2.17, 2.30).

(4) Summary data for a problem are \bar{x} = 2.268 and s = 0.225. Determine a 90% lower one-sided C.I. for μ and an upper 99% C.I. for μ .

Solut	tion:			
la.	5	[STO]06	5.0000	Enter the sample size in R ₀₃ .
lb.	2.268	[STO]37	2.2680	Enter the sample average in R_{40} .
lc.	.225	[STO]38	0.2250	Enter the sample s.d. in R ₃₈ .
3a.		[A]	4.0000	Display ν = 4.
3ъ.	1.533	[R/S]	2.1137	Lower limit is displayed; R _y ignor
3a.		[A]	4.	•
Зъ.	3.747	[R/S]	(1.890)	t entered and lower limit ignor
		[X<>Y]	2.6450	R yields the upper one-sided limi
	la. lb. lc. 3a. 3b. 3a.	1b. 2.268 1c225 3a. 3b. 1.533 3a.	1a. 5 [STO]06 1b. 2.268 [STO]37 1c. .225 [STO]38 3a. [A] 3b. 1.533 [R/S] 3a. [A] 3b. 3.747 [R/S]	1a. 5 [STO]06 5.0000 1b. 2.268 [STO]37 2.2680 1c. .225 [STO]38 0.2250 3a. [A] 4.0000 3b. 1.533 [R/S] 2.1137 3a. [A] 4. 3b. 3.747 [R/S] (1.390)

ZS STE	P	ENTER	PRESS	DISPLAY	COMMENTS
	(7)	Times to	failure for s	ix expensive	pieces of electronic equipment were
		recorded	in hours as 2	33.6, 1402.7	, 3119.0, 612.9, 258.3 and 2211.2.
7		(a) Find	a 95% C.I. f	or mean time	to failure.
		(b) Dete	rmine a point	estimate and	d a lower one-sided 95% confidence limit
		on t	he reliability	y at 500 hrs	•
	Solu	tion:			
DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 for raw data entry.
		233.6	[R/S]	1.0000	First time to failure entered.
		1402.7	[R/S]	2.0000	Succeeding times to failure
		3119	[R/S]	3.0000	entered and processed.
		612.9	[R/S]	4.0000	
		258.3	[R/S]	5.0000	
		2211.2	[R/S]	6.0000	
DE	2.		[d]	0.0000	Data processed.
Exp(µ)	3a.		[E]	12.0000	Display $v = 2n$
	3ъ.	4.4	[STO]41	4.4	Storing lower percentile in $^{ m R}_{41}$
		23.4	[STO]31	23.3	Storing upper percentile in R ₃₁
			[R/S]	669.8889	Display &
			[Y<>X]	3562.5909	Find u so CI is (673,3563)
			[RCL]40	1306.2833	$\hat{\mu} = \vec{x} = 1306$
			[U][1/x][U]	0.0008	$\hat{\lambda} = 1/\bar{x} = 0.0008$
		500	[x]	0.3828	Multiplying by 500 to find $500\hat{\lambda}$
			[CHS]	-0.3828	Change sign for exponentiation
			[U][e ^X][U]	0.6820	to yield estimate of $R(500)$.
			[E]	12.0000	Display v to start new problem.
		21.0	[STO]31	21.0000	Store required $\chi^2_{.05}$ in R_{31}
			[STO]41	1.0000	and l in R_{41} for one-sided limit.
			[R/S]	746.4476	Display required lower limit on $\boldsymbol{\mu}$
			[U][1/x][U]	0.0013	Upper limit on λ
		500	[x]	0.6698	Multiplying by 500 to find upper limit on -500λ
			[CHS]	-0.6698	Lower limit on -500λ
			[U][e ^X][U]	0.5118	Lower bound on R(500).

NOTE: [U] stands for the [USER] key.

Examples ZS-4 (Testing, Chapter 5)

(1) Seven observations of measured radiation intensity at a nuclear plant we 3.6, 4.2, 4.0, 4.1, 3.8, 3.9, 4.0. Conduct a significance test of $H_0: \mu \le 3.8$ against $H_1: \mu > 3.8$.

Solution:

ZS STEP		ENTER	PRESS	DISPLAY	COMMENTS
DE	1		[J]	DATA?	Select and initialize ZS-4
		3.6	[R/S]	1.0000	
		4.2	[R/S]	2.0000	
		•			Enter Data
		4.0	[R/S]	7.0000	
DE	2		[d]	0.0000	Process data.
Ν(μ)	2a.	1	[a]	1.0000	Enter H _l -code (+1).
	2Ъ.	3.8	[R/S]	0.0530	Enter boundary value and compute $P = .053$ from t-density.

- (2) A water meter has variance 14 (cu. ft)². Twenty monthly readings indicate a sample mean of 1284 cu. ft. per month.
 - (a) Test the hypothesis H $_0$: μ = 1286 against H $_1$: μ ≠ 1286, using α = .05.
 - (b) Calculate the significance level for the one sided alternative H $_{\mbox{\scriptsize I}}$ ' : μ < 1286.

Solution:

N(μ σ)la	20	[STO]06	20.0000	Enter sample size.
$N(\mu \sigma)1b$	1284	[STO]37	1284.0000	Enter sample average.
$N(\mu \sigma)$ lc	14	$[\sqrt{x}][ST0]48$	3.7417	Enter known o.
Ν(μ σ)4	.025	[B]	1284.3598	Ł
		[X<>Y]	1285.6402	u (Since (ℓ ,u) does not contain μ_0 , μ_0 is rejected.)
N(μ σ)3a	-1	[b]	-1.0000	H ₁ -code for part (b).
Ν(μ σ)3b	1286	[R/S]	0.0084	P -value (data are inconsistent with H_0).

ZS STE	P	ENTER	PRESS	DISPLAY	COMMENTS
	(3)	The GRE so	cores for 86	Smith High S	es nationwide has been 40 points. chool students this year has (sample) the significance of this result?
	Solu	tion:			
$N(\sigma^2)$	la.	86	[STO]06	86.0000	Enter sample size.
$N(\sigma^2)$	lb.	35.2	[STO]38	35.2000	Enter sample standard deviation.
$N(\sigma^2)$	2a.	0	[c]	0.0000	Enter H_1 -code for H_1 : $\sigma \neq 40$.
N(σ ²)	2b.	1600	[R/S]	0.1220	P-value. (Data are somewhat consistent with H_0 : $\sigma = 40$.)
	(4)				unused D-cells were (in weeks):
					, 11, 20, 29. The shelf life is
					Conduct a significance test of
		μ ₀ : μ = 3	35 vs. H ₁ : ;	1 / 33.	
	Solu	tion:			
DE	1		[J]	DATA?	Select and initialize ZS-4.
			[R/S]	0.0000	
		27	[R/S]	1.0000	
		41	[R/S]	2.0000	
		•	•		Enter data
		29	[R/S]	12.0000	
DE	2		[d]	0.0000	Process data.
Exp(µ)	2a.	1	[e]	1.0000	Enter H _l -code
Exp(µ)		35	[R/S]	0.7129	P-value (data are consistent with H_0 .)

Chapter 6 Bivariate Populations

Program ZS-6 is another very successful transfer from the TI version and is assigned to [J] which also serves to initialize data entry and will ultimately replace references to ST-04. For matters discussed in Section 6.2, however, it is more convenient to use the program SBSTAT in STAT PAC. The procedure for inputting paired data is discussed on page 11 of the STAT PAC handbook. Output is then displayed by successive [R/S]'s, some of which are of no interest here. It should be noted that the output labeled GXY is simply the correlation coefficient referred to on page 130 of ZS. Also, in the notation of ZS, the HP output labeled SX. is RMSD for X, while SY. is RMSD for Y.

The STAT PAC program Σ BSTAT does not appear to be suitable for entering independent data of the type discussed on page 131 of ZS. Nor is any provision made for entering univariate data in any of the programs published in STAT PAC. The simplest solution is to start with the x-data and enter the data twice at Step 2 (that is, let $y_i = x_i$) in BSTAT, in which case all of the moments are X-moments and the correlation is 1; alternatively, the [ENTER] portion of Step 2 may be ignored, each x entered with [A] in which case you should ignore all X-outputs in the list and copy only those for Y and ignore GXY altogether. Then the whole process needs to be repeated for the y-data.

Section 6.3; Paired Data

For implementation of the programs in ZS-6, raw data will be entered via a self-contained subroutine, called DE in the User Instructions that follow, and replaces references to ST-04 in the rest of the chapter. That subroutine is divided into two parts depending on whether the data are paired or independent. For this section, the data are paired so that option P will be used and the user instructions make it clear how the data are to be entered. Be sure to process the data after entry by pressing [d]. Otherwise, the instructions are identical to those provided in the book for TI.

Section 6.4: Independent Data

In this section the I option of data entry DE is to be used and, at the conclusion of data entry once more [d] must be used to process the data. Please keep in mind also that R_{06} is to be used in place of TI R_{03} throughout. The rest of the instructions are identical.

Section 6.5: Equality of Variances

No F-distribution is provided by STAT PAC so that distribution has been programmed into ZSTAT. Again, no formula is provided in ZS, nor is one really needed in this context. But the subroutine FCDF in ZSTAT will output P(F), while FCCDF will output O(F) provided ν_1 is in R_{15} and ν_2 is in R_{16} . For example, if ν_1 = 2 and ν_2 = 24, you may verify by executing FCCDF in ZSTAT that O(2.63) = .0927; if ν_1 = 20 and ν_2 = 7, then P(.4) = .0510. Again, the rest of the remarks in the book apply to the HP programs verbatim.

S-6 (Assigned [J]) USER INSTRUCTIONS (HP) SIZE 050 Σ REG 01				
TEP PROCEDURE	ENTER	PRESS	DISPLAY	
OE ORIGINAL DATA ENTRY O. Initialize 1. Enter Data		[J]	DATA?	
a. Paired Data (Repeat i = 1,2,,n)	x _i y _i	[P] [ENTER] [R/S]	0.0000 x _i i.0000	
b. Independent Data (1) Repeat i = 1,2,,n	x x i	[I] [R/S] [j]	0.0000 i.0000 0.000	
(2) Repeat j = 1,2,,n Process Data	y ^y j	[R/S] [d]	0.0000	
Paired Data: $\mu_{x} - \mu_{y}$ 1. Enter Data Using DE OR: a. Enter Sample Size b. Enter Sample Means	n	[ST0006	n	
(1) Original Means OR:	¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	[STO]47 [STO]37	x y	
(2) Mean Difference	- d 0	[STO]47 [STO]37	d 0	
c. Enter Sample Standard I	Deviation s _d	[STO]27	s _d	
Test $H_0: \mu_x - \mu_y = \theta_0$ a. Enter H_1 -code* b. Enter θ_0 and Computer 1	P-value θ_0	[b] [R/S]	H ₁ -code P	
3. CI for $\mu_x - \mu_y$ a. Calculate degrees of fine b. Enter $t_{\alpha/2}$ with d.f. = Calculate Limits	1	[B] [R/S] [X<>Y]	v L	

 $\frac{1}{H_1 - \text{code}} = \begin{cases} 1 & \text{if } H_1 : \theta > \theta \\ 0 & \text{if } H_1^1 : \theta \neq \theta \\ -1 & \text{if } H_1 : \theta < \theta \\ 1 & 0 \end{cases}$

ZS-6	USER INSTRUCTIONS			2.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
INA (g =g)	Independent Data: μ - μ y			
(σ=σy) 1.	Enter data Using DE OR: Clear Memory and		[J]	DATA?
	a. Enter Sample Sizes	n _x	[STO]13	n x
	b. Enter Sample Averages	n y	[STO]06 [STO]47 [STO]37	n
	c. Enter Standard Deviation			,
	(1) Pooled Estimate Available OR:	s p	[STO]33	s p
	(2) Original S.D.'s Available	s x s y	[STO]48 [STO]38	s x s y
2.	Test $H_0: \mu_x - \mu_y = \theta_0$			
	a. Enter H ₁ -Code	H ₁ -code	[c]	H ₁ -code
	b. Enter θ_0 and Compute P-value	θ0	[R/S]	Р
3.	CI for μ _x - μ _y			
	a. Calculate degrees of freedom		[C]	ν
	b. Enter $t_{\alpha/2}$ with d.f. = ν and Calculate Limits	t _{α/2}	[R/S] [X<>Y]	l u
	See Previous Note for One-sided Limit	6		
	The fields note for one state binit			
INB	Independent Data: $\mu_{x} - \mu_{y}$			
$(\sigma_{\mathbf{x}} \neq \sigma_{\mathbf{y}})$	(Welch Approximate t)			
1.	Enter Data using DE OR: a. Enter Sample Sizes	n _x	[STO]13 [STO]06	n x n y
	b. Enter Sample Means	\overline{x} \overline{y}	[STO]47 [STO]37	у х ӯ
	c. Enter Sample Standard Deviations	s x s y	[STO]48 [STO]38	s x s y

2S-6	USER INSTRUCTIONS			3.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
2.	Test H_0 : $\mu_x - \mu_y = \theta_0$ a. Enter H_1 -code b. Enter θ_0 and Compute P-value	H ₁ -code	[a] [R/S]	H ₁ -code
3.	CI for $\mu_x - \mu_y$ a. Calculate Degrees of Freedom b. Enter $t_{\alpha/2}$ with d.f. = ν and Calculate Limits See Previous Note for One-Sided Limit	$t_{\alpha/2}$	[A] [R/S] [X<>Y]	v L u
LSN 1.	LARGE SAMPLE NORMAL $\mu_{x} - \mu_{y}$ OR: σ_{x} , σ_{y} known Enter Summary Data Only: a. Enter Sample Sizes b. Enter Sample Means c. Enter Standard Deviations	n n y x y v or s or s y	[STO]13 [STO]06 [STO]47 [STO]37 [STO]48 [STO]38	n _x n _y x v v s v ors v ors v
2.	Test H_0 : $\mu_x - \mu_y = \theta_0$ a. Enter H_1 -code b. Set Flag 5 c. Enter Focal and Calculate P-value CI for $\mu_x - \mu_y$	H ₁ -code	[a] [SF]05 [R/S]	H ₁ -code H ₁ -code P
	a. Initialize (Ignore output) b. Enter $z_{\alpha/2}$ and Calculate Limits	² α/2	[A] [R/S] [X<>Y]	xx L u
	See Previous Note for One-Sided Limit	S		

ZS-6	USER INSTRUCTIONS			4.					
STEP	PROCEDURE	ENTER	PRESS	DISPLAY					
NV	Independent Data $\sigma_{\mathbf{x}}^2/\sigma_{\mathbf{y}}^2$								
1.	Enter Data using DE OR:								
	a. Enter Sample Sizes	n x	[STO]13	n _x					
		n y	[STO]06	n y					
	b. Enter Sample Standard Deviations	s x	[STO]48	s _x					
		sy	[ST0]38	sy					
2.	Test $H_0: \sigma_x^2 = \sigma_y^2$								
	a. Enter H, -code; Set Flag 4.	H ₁ -code	[SF]04	H,-code					
	b. Calculate P-value	1	[0]	P					
3.	CI for σ_x^2/σ_y^2								
	a. Compute Degrees of Freedom		[D]	ν ₁					
	From Accompanying Table:		[R/S]	ν ₂					
	b. Enter F-value with d.f. = (v_1, v_2)	F _{α/2}	[STO]31	F _{a/2}					
	c. Enter F-value with d.f. = (v_2, v_1)	F _{α/2}	[STO]41	F \alpha/2					
	d. Calculate Limits		[R/S]	L L					
			[X<>Y]	u					
	Note: a. For Lower One-Sided Interval, enter F_{α} at Step 3b,								
	l at Step 3c and ignore u.								
	b. For Upper One-Sided Interval, enter 1 at Step 3b,								
	${ t F}_{lpha}$ at Step 3c and ignore ${ t l}$.								
Exp	Independent Exponential μ_{x}/μ_{y}								
1.	Enter Data Using DE <u>OR</u> :								
	a. Enter Sample Sizes	n _x	[STO]13	n _x					
		ny	[STO]06	n _y					
	b. Enter Sample Means	\bar{x}	[STO]47	x					
0	m II	ÿ	[STO]37	ÿ					
2.	$\frac{\text{Test H}_0 : \mu_x = \mu_y}{\text{Test H}_0}$								
	a. Enter H ₁ -code; Set Flag 4.	H _l -code	[SF]04	H ₁ -code					
	<pre>b. Calculate P-value (See Note under NV2)</pre>		[E]	P					

-6 USER INSTRUCTION	S		5.	
EP PROCEDURE	ENTER	ENTER PRESS		
3. CI for μ _x /μ _y a. Compute Degrees of Freedom From Accompanying Table: b. Enter F-value with d.f. = (ν ₁ ,ν ₂) c. Enter F-value with d.f. = (ν ₂ ,ν ₁) d. Calculate Limits	F _{α/2} F _{α/2}	[E] [R/S] [ST0]31 [ST0]41 [R/S] [X<>Y]	ν ₁ ν ₂ F _{α/2} F _{α/2} ε	

See Previous Note (NV) for One-Sided Limits

Regi	ster Con	ntents								
00	xxx		10		20		30		40	ê
01	Σy		11	1	21		31	$t_{\alpha/2}, F_{\alpha/2}$	41	$F_{\alpha/2}$
02	Σy^2		12		22		32	SE	42	
03	Σχ	Used	13	n x	23	Used	33	s	43	
04	Σx^2		14	CCDF	24		34	θ0	44	
05	Σху		15	ν(ν ₁)	25		35		45	
06	n y		16	v_2	26		36		46	
07	Used		17	Used	27	sd	37	<u>y</u>	47	й, d
08	Used		18		28	H ₁ -code	38	sy	48	s
09	Used		19		29	P(ts)	39	e(θ±e)	49	

Assignme	Lab	Labels		
ZS-6 DEP DEI OP11 X TO Y	J P I ENG j	00 01 02 04 05 06 08 09 11 12	A B C D E	a b c d

Examples ZS-6

(1) Before (X) and After (Y) weights were recorded in lbs. after two weeks of dieting. Find a 95% CI for the mean difference $\mu_x - \mu_y$ and conduct a significance test of equality test of equality of means. Test for a weight loss of at least 2 lbs.

x: 119 122 136 130 129 136 134 133 119 115 y: 114 119 134 126 119 137 124 127 119 107

Solution:

	5014				
ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
DE	0.		[J]	DATA?	
	la.		[P]	0.0000	Initialize ZS-6 for paired data entry.
		119	[ENTER]	119.0000	Enter first x-value.
		114	[R/S]	1.0000	Follow with first y-value.
		122	[ENTER]	122.0000	Enter second x-value.
		119	[R/S]	2.0000	Follow with second y-value.
		136	[ENTER]	136.0000	Enter succeeding pairs.
		134	[R/S]	3.0000	
		130	[ENTER]	130.0000	
		126	[R/S]	4.0000	
		129	[ENTER]	129.0000	0
		119	[R/S]	5.0000	
		136	[ENTER]	136.0000	
		137	[R/S]	6.0000	
		134	[ENTER]	134.0000	
		124	[R/S]	7.0000	
		133	[ENTER]	133.0000	
		127	[R/S]	8.0000	
		119	[ENTER]	119.0000	
		119	[R/S]	9.0000	
		115	[ENTER]	115.0000	Enter last x-value
		107	[R/S]	10.	Follow with last y -value (n = 10)
DE	2.		[d]	0.0000	ZS program processes data.
PN	3a.		[B]	9.0000	Calculates and displays $v = 9 = d$.
	3ъ.	2.262	[R/S]	1.9389	Enter t 0.025 from t-table and display 1.94
			[X<>X]	7.4611	Display u so CI is (1.94, 7.46).
PN	2a.	0	[b]	0.0000	Enter H -code = 0 for two-sided test.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
	0	[R/S]	0.0039	Use $\theta = 0$ for this case and find $P = 0.0039$; reject at usual levels.
		[RCL]30	3.8504	Display value of ts.
PN 2a.	1	[b]	1.0000	Use H ₁ -code of 1 making
	2	[R/S]	0.0271	$H_0: \mu_x - \mu_y \le 2$ the disclaimer. With $\theta_0 = 2$, P-value is enough to reject at $\alpha = 5\%$.

(2) A test of color perception was administered to a control group (X) and an experimental group (Y) with results:

x: 16.3 14.7 12.3 13.5 16.0 17.1 17.3

y: 14.0 16.5 17.7 15.9 18.0 16.3

Analyze the two groups for differences. Also test for equality of variances.

Solu	tion assumi	$\lim_{x \to y} \sigma = \sigma$:		
DE 0.		[J]	DATA?	Initialize ZS-6 for independent data entry.
1b.	16.3	[R/S]	1.000	Enter first x-value.
	14.7	[R/S]	2.0000	Continue x-values assuming data
	12.3	[R/S]	3.0000	are independent.
	13.5	[R/S]	4.0000	
	16.0	[R/S]	5.0000	
	17.1	[R/S]	6.0000	
	17.3	[R/S]	7.0000	Last x-value entered; $n_x = 7$.
		[j]	0.0000	Prepare for y-values.
	14	[R/S]	1.0000	Begin entering y-value
	16.5	[R/S]	2.0000	(as with label B in $ST-04$)
	17.7	[R/S]	3.0000	
	15.9	[R/S]	4.0000	
	18	[R/S]	5.0000	
	16.3	[R/S]	6.0000	Conclude y-entries; $n_y = 6$
DE 2.		[d]	0.0000	Process data.
INA 2.	0	[c]	0.0000	Enter H ₁ -code for two-sided test.
	0	[R/S]	0.2740	Display P-value (for $\theta_0 = 0$) of 0.27;
		[RCL]30	-1.1512	Accept H_0 (ts = -1.15).
INA 3.		[C]	11.0000	Reveal d.f. = $n + n - 2 = 11$ for this case.

-3.1615

0.9900

2.201

[R/S]

[Y <> X]

Entering $t_{.025} = 2.201$, CI runs from

 $\ell = -3.16$ to u = 0.99 which does

include 0.

ZS S	STEP	ENTER	PRESS	DISPLAY	COMMENTS
	Solut	ion assu	ming σ ≠ σ x	<u>y</u> :	
INB	1.	Same as	INA so dat	a are already	entered and processed.
INB	2.		[A]	10.0000	Calculates degrees of freedom for
		2.228	[R/S]	-3.1404	approximate CI based on Welch t.
			[X <> Y]	.9690	Comes close to preceding solution.
INB	3.	0	[a]	0.0000	Begins Welch t-test with H ₁ -code
		0	[R/S]	0.2663	followed by $\theta_0 = 0$ to yield about
					the same P-value.
		To test	for $\sigma_{x}^{2} = \sigma$	2 •	
NV	1.	Same as	INA		
NV	2.	0	[SF]04	0.0000	H _l -code for two-sided test. Flag
					4 signals NV a test is being calle for.
			[D]	•5645	Large P-value; accept $\sigma_x^2 = \sigma_y^2$ with
			[RCL] 30	1.7290	ts = 1.73.
NV	3a.				To take a CI point of view
			[D]	6.0000	Displays $v_1 = n_x - 1$.
			[R/S]	5.0000	Displays $v_2 = n_v - 1$
NV	3ь.	6.98	[ST0]31	6.9800	Enter $F_{.025}$ with d.f. = $(6,5)$.
NV	3c.	5.99	[STO]41	5.9900	Enter $F_{.025}$ with reversed d.f. = (
			[R/S]	0.2477	Shows a 95% CI that includes the
			[Y<>X]	10.3565	value 1. Accept $\sigma_x^2 = \sigma_y^2$.
	(3)	A sampl	e of 60 exp	onential times	s to failure averaged \bar{x} = 1306 hrs.
		Six ind	ependent ti	mes averaged 🤻	\bar{y} = 1247 hours. Test $H_0: \mu_x \leq \mu_y$.
	Solut	ion:			
Exp	1.	60	[STO]13	60.0000	Enter Summary Data
		6	[STO]06	6.0000	
		1306	[STO]47	1,306.0000	
		1247	[STO]37	1,247.0000	Data entry concluded.
Ехр	2.	1	[SF]04	1.0000	Enter H_1 -code for H_1 : $\mu_x > \mu_y$ and set flag 4 to signal H -test.
			[E]	0.5043	P-value of 0.50 obtained; do not reject.
Exp	3a.		[E]	120.0000	$v_1 = 2n_x$ displayed.
			[R/S]	12.0000	$v_2^{1} = 2n_y^{2}$ displayed.
					- y

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
3ь.	2.35	[STO]31	2.3500	$F_{.05}$ for $v_1 = 100$, $v_2 = 10$ entered
	1	[STO]41	1.0000	l store in R_{41} to compute lower CI
		[R/S]	0.4457	Lower bound on μ_{v}/μ_{v} displayed.

Chapter 7 Proportions

This chapter represents the most successful transfer of programs of all. Indeed, the only remarks that need to be added to the existing programs is to remind you once more that all references to register R_{03} in TI are to be replaced with R_{06} in HP, that [X<>Y] is the HP version of [x t] (so that any reference tp TI R_{T} should be replaced by R_{Y}). Finally, since ZS-7 has been assigned to [J], you should press the latter key whenever you need to access the programs here and is the only initialization necessary.

S-7 (As	user Instructions (HP))	SIZE (Σ REG	01
TEP	PROCEDURE	ENTER	PRESS	DISPLAY
(p) 0.	Bernoulli Parameter Initialization (if not already in ZS-7) Data Entry		[J]	0.0000
	a. Enter Sample Size	n	[STO]06	n
	b. Enter Proportion Estimate	p	[STO]40	p
2.	Test H ₀ : p = p ₀ a. Enter H ₁ -code* b. Enter p ₀ and Compute P-value OR: b'. For n Large (Normal Test)	H ₁ -code P ₀ P ₀	[b] [R/S] [c]	H ₁ -code P P
3.	CI for p for n large Enter Risk and Calculate Limits Note: For One-sided Limits, Enter α and Ignore ℓ or u.	α/2	[c]	2. u
4.	CI for p for n small a. Find first d.f. for F.		[B] [R/S]	v ₁
	b. Enter $F_{\alpha/2}$ with d.f. = (v_1, v_2) c. Find second d.f. for F	F _{α/2}	[STO]31 [R/S] [R/S]	Fα/2 1 ν ₂
	d. Enter $F_{\alpha/2}$ with new d.f. e. Calculate limits	^F α/2	[STO]41 [R/S] [X<>Y]	Fα/2 2
	Note: For Lower One-sided Limit, enter F and Ignore u.		l at Step	
	For Upper One-sided Limit, enter 1 and Ignore ℓ .	at Step 3b, 1	F _α at Step	3d
p _x -p _y)	Two Bernoulli Parameters Data Entry a. Enter Sample Sizes	n n n	[STO]13 [STO]06	n x n y
	b. Enter Proportion Estimates	p x p y	[STO]47 [STO]37	p _x p̂y

 $H_{1} - code = \begin{cases} 1 & if \ H_{1} : \theta > \theta \\ 0 & if \ H_{1} : \theta \neq \theta \\ -1 & if \ H_{1}^{1} : \theta < \theta \\ 0 \end{cases}$

zs-7		USER INSTRUCTIONS			2.
STEP	PROCEDU	RE	ENTER	PRESS	DISPLAY
2.	$\frac{\text{Test H}_0 : p_x = p_y}{\text{Enter H}_1 - \text{code and Calc}}$	ılate P-value	H ₁ -code	[a]	Р
3.	CI for p _x - p _y Enter Risk and Calcula Note: For One-sided L	α/2 gnore l or u.	[A] [X<>Y]	£ u	
	02 12 Used 03 13 n x 04 u 14 05 & 15 06 n(n y) 16 07 17 Used 08 BIN p(0) 18 Used	23 Used 33 24 34 25 35 26 36 1 27 37	$z_{\alpha/2}$,	41 F _{α/2} 42 43 44 45 46 47 p̂ _x	

Assignments	Labe	ls t	Used
ZS-7 J	01	A	а
	02	В	Ъ
	03	С	
	04		
	05		

ZS-7 EXAMPLES

(1) In nine independent Bernoulli trials, there were exactly four successes. Find a 95% CI for p and test H_0 : p = 0.5.

Solution:

ZP ST	EP	ENTER	PRESS	DISPLAY	COMMENTS
B(p)	1.	9.	[STO]06	9.0000	Enter sample size.
		.44	[ST0]40	0.44	Enter $\hat{p} = 4/9$, the estimate of p.
	4a.		[B]	12.0000	Since n is small find first pair
			[R/S]	8.0000	of d.f. = (10,10).
	4b.	4.20	[ST0]31	4.2000	Enter first F .025 percentile.
	4c.		[R/S]	10.0000	Discover revised d.f. = (12,8).
			[R/S]	10.0000	
	4d.	3.72	[STO]41	3.72	Store second F _{.025} percentile.
			[R/S]	0.1370	Lower confidence limit displayed
			[X<>X]	0.7881	and u found in R_{γ} .
	3.	0.	[b]	0.0000	Enter H_1 -code for H_1 : p = 0.5.
		0.5	[R/S]	1.0000	Significance level l; accept H_0 .

(2) A device was tested 25 times and passed 23 times. Find a lower one-sided CI on p, the probability of passing. Test H_0 : p \geq 0.95.

Solution:

B(p)	1.	25	[STO]06	25.0000	Enter data as above.
		23÷25	[STO]40	0.9200	$\hat{p} = 23/25 = 0.92$
	2a.	-1	[b]	-1.0000	Enter H_1 -code for H_1 : p < 0.95.
	2b.	0.95	[c]	0.2456	Comparing with large sample test.
	4a.		[B]	6.0000	Initial d.f. for small n CI (to
			[R/S]	46.0000	be ignored along with v_2 .
	4Ъ.	2.29	[STO]31	2.2900	Following instructions store 1 in
	4c.		[R/S]	48.0000	R_{31} . Calculate new d.f. $v_1 = 6$
			[R/S]	4.0000	and $v_2 = 46$.
	4d.	1	[ST0]41	1.0000	Enter $F_{.05}$ for d.f. = (6,50) and
			[R/S]	0.7700	calculate lower confidence bound.

⁽⁴⁾ A sample of size 100 was taken from a lot with replacement and 2 defective items were found. Test the manufactures claim that p < 0.05 at $\alpha = .01$.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
Solu	tion:			
B(p) 1.	100.	[STO]06	100.0000	Enter data as usual.
	.02	[STO]40	0.0200	
2a.	-1.	[b]	-1.0000	H_1 -code for H_1 : p < .05, the null hypothesis being H_0 : p \geq .05, the disclaimer.
2b.	•05	[R/S]	0.1183	Enter p_0 and find $P = 0.12$
2b'.	.05	[c]	0.0843	supporting H ₀ not H ₁ . Compare normal test.

(3) In a random sample of 500 men (X) 350 were found to favor a certain political issue. In a similar sample of 300 women (Y) 200 were so inclined. Is there any real difference between sexes on this issue?

Solu	tion: To	test H ₀ : p _x	= p	
$B(p_x-p_y)$ la.	500	[STO]13	500.0000	Enter first sample size.
A y	300	[STO]06	300.0000	Enter second sample size.
16.	0.7	[STO]47	0.7000	Enter first proportion estimate \hat{p}_x
	2/3	[STO]37	0.6667	Enter second proportion estimate \hat{p}_{ij}
2.	0.	[a]	0.3248	Enter H_1 -code for H_1 : $P_x \neq P_y$
		[RCL]30	.9847	and find $P = 0.32$ with ts = .98.
				Data supports H_0 .
3.	.025	[A]	-0.0335	A 95% CI for the difference $u_{x} - \mu_{y}$
		[X<>Y]	0.1001	extends from03 to + .10; include 0.

Chapter 8 Analysis of Variance

The big change here is the data entry which is via STAT PAC through the Analysis of Variance routines provided there. Unfortunately, those routines are not complete enough to accomplish all of the goals set out in the text so that they too had to be supplemented with program ZS-8, whose user instructions follow.

Section 8.2: One-Way Classifications

On page 95, you may replace the reference to ST-22 with execution of FCCDF in ZSTAT. If you will consult the user instructions, you will see that the program utilizes subroutine \$\times AOVONE\$, assigned to [H] for convenience, in place of the TI program ST-06, referred to on page 197. After pressing [H] and seeing the display \$\times AOVONE\$, you follow Steps 3-5 for inputting data (a model example is provided following the user instructions). A press of [E] while still in \$\times AOVONE\$ will then output most of the AOV table. The only, but important, missing item is the prob-value and that is calculated at Step 3 in ZS-8 by exiting \$\times AOVONE\$ with a press of [J] followed by [A]. The Scheffe' confidence intervals discussed in the very next section follow precisely the same user instructions as the TI and are duplicated in the HP User Instructions that follow.

Section 8.4: Two-Way Classifications

In this section, the program $\Sigma AOVTWO$ in STAT PAC is used for data entry in place of ST-06. This subroutine is assigned to [I] in ZS-8 and, once pressed, the instructions for data entry and output discussed on page 23 of the STAT PAC handbook should be followed. (Again, a model problem is provided at the end of the user instructions for ZS-8). This will provide for only part of the Two-Way table as displayed in this section of the text (and most other textbooks on the subject). To complete the table, you need to exit $\Sigma AOVTWO$ by pressing [J] and then [C] will output the remaining items needed for the table including the all-important prob-values. Once again, the instructions for implementing the Sheffe' confidence interval formulas discussed in the next section are identical to those for the TI and are duplicated in the user instructions that follow.

0. INITIALIZATION (if not already in 25-8) 1. Enter Data Using CAOVONE NOTE: Record Each Row Mean 2. Calculate AOV Table Entries NOTE: These Steps may NOT be repeated once Step 3 is executed. [E] SS [R/S] [R/	ZS-8 (A	ssigned [J])	U	JSER INST	RUCTI	ONS	(HP)		2 T T T T		SIZ	E 06	0
0. INITIALIZATION (if not already in ZS-8) 1. Enter Data Using EAOVONE NOTE: Record Each Row Mean 2. Calculate AOV Table Entries NOTE: These Steps may NOT be repeated once Step 3 is executed. [E] Rss Rss Rs/s Rs/s Rs/s Rs/s Rs/s Rs/s	STEP		PROCE	EDURE				EI	NTER	1	PRESS	D	ISPLAY
NOTE: These Steps may NOT be repeated once Step 3 is executed. [E] R/S	j	INITIALIZATI Enter Data U	ON (if n	ot alrea		ZS-	-8)					Σ	xxxx AOVONE
4. Confidence Intervals for Contrasts (After Step 2) a. Initialize b. Enter Contrast Data (Repeat for each i; ignore any c _i = 0) c _i [R/S] π _i [R/S] π _i c. Enter F-percentile d.f. = (K-1,N-K), and calculate CI NOTE 1: Steps 3abc may be repeated. NOTE 2: These Steps are also valid if R ₀₃ and R ₄₈ are manually store REGISTER CONTENTS 00 SS 10 Used 20 30 F 40 50 Σc _i π̄ _i 01 RSS 11 N-K 21 FCDF 31 P 41 51 Last c _i 02 ESS 12 Used 22 32 42 52 Last π̄ 03 K-1 13 23 33 43 53 Σc _i ² /n _i 04 Used 14 24 34 44 54 Used 05 Used 15 R-1 25 35 45 55 06 M 16 N-K 26 36 46 56 07 Used 17 Used 27 37 47 57 08 Used 18	2.	NOTE: These	Steps n	nay NOT b		eate	ed				[R/S] [R/S] [R/S] [R/S] [R/S] [R/S] [R/S]		RSS ESS K-1 N-K N-1 MRSS MESS
A. Initialize b. Enter Contrast Data (Repeat for each i; ignore any c _i = 0) C _i [R/S] c _i R/S] i C. Enter F-percentile d.f. = (K-1,N-K), and calculate CI NOTE 1: Steps 3abc may be repeated. NOTE 2: These Steps are also valid if R ₀₃ and R ₄₈ are manually store REGISTER CONTENTS 00 SS 10 Used 20 30 F 40 50 Ec _i x̄ _i 01 RSS 11 N-K 21 FCDF 31 P 41 51 Last c _i 02 ESS 12 Used 22 32 42 52 Last x̄ 03 K-1 13 23 33 43 53 Ec _i /n _i 04 Used 14 24 34 44 54 Used 05 Used 15 R-1 25 35 45 55 06 M 16 N-K 26 36 46 56 07 Used 17 Used 27 37 47 57 08 Used 18 28 38 48 MESS 58	3.	3. Exit ΣΟVONE and compute P-value							F				-
REGISTER CONTENTS 00 SS 10 Used 20 30 F 40 50 \(\text{Sc}_i \bar{\pi}_i\) 01 RSS 11 N-K 21 FCDF 31 P 41 51 Last c_i 02 ESS 12 Used 22 32 42 52 Last \bar{\pi} 03 K-1 13 23 33 43 53 \(\text{Sc}_i^2/\pi_i\) 04 Used 14 24 34 44 54 Used 05 Used 15 R-1 25 35 45 55 06 M 16 N-K 26 36 46 56 07 Used 17 Used 27 37 47 57 08 Used 18 28 38 48 MESS 58	4.	(After Step a. Initiali b. Enter Con ea c. Enter F- and calc	ze ntrast I ch i; ig percenti	Data (Rep more any ile d.f.	eat f c _i = = (K-	or 0) 1,N-	-K),		¤ i n		[R/S] [R/S] [R/S]		x i i
00 SS 10 Used 20 30 F 40 50 \(\sum_{i} \bar{x}_{i} \) 01 RSS 11 N-K 21 FCDF 31 P 41 51 Last c 02 ESS 12 Used 22 32 42 52 Last \(\bar{x} \) 03 K-1 13 23 33 43 53 \(\sum_{i} \) 04 Used 14 24 34 44 54 Used 05 Used 15 R-1 25 35 45 55 06 M 16 N-K 26 36 46 56 07 Used 17 Used 27 37 47 57 08 Used 18 28 38 48 MESS 58			•	•	•		f	R ₀₃ ar	nd R ₄	8 ar	e manua	11y	store
	00 SS 01 RSS 02 ESS 03 K-1 04 Use 05 Use 06 M 07 Use	10 Used 11 N-K 12 Used 13 14 14 15 R-1 16 N-K 17 Used	21 22 23 24 25 26 27	FCDF	31 32 33 34 35 36 37	P	41 42 43 44 45 46 47		51525354555657	Last Last Σc_i^2	c x		
14 170% (4 19 19 19	09 K	19 for	28		39		48	MESS e	59				

zs-8	USER INSTRUCTIONS			2.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
AOV-2	Two-Way Analysis of Variance			
0.	Initialize (if not in ZS-8)		[J]	x.xxxx
1.	Enter Data Using ΣΑΟΥΤWO		[I]	ΣΑΟΥΤWO
2.	Calculate Row and Column Means			
	Calculate Row Means After each Row		[R/S]	SUM
	entry (Record). Repeat i = 1,,R.	С	[•]	Ī.
	Calculate Column Means After each		[R/S]	
	Column entry (Record). Repeat	R	[÷]	⊼ •j
	j = 1,2,,C.			
3.	Calculate AOV Table Entries		[E]	RSS
	NOTE: These Steps may NOT be repeated		[R/S]	CSS
	once Step 4 is executed		[R/S]	SS
			[R/S]	ESS
			[R/S]	R-1
			[R/S]	C-1
			[R/S]	(R-1)(C-1)
			[R/S]	FR
			[R/S]	F _C
4.	Exit ΣΑΟΥΤΌΟ		[J]	F _C
5.	Complete the AOV output	F _C	[C]	MRSS
		Ü	[R/S]	MCSS
			[R/S]	MESS
			[R/S]	PR
			[R/S]	P _C

zs-	-8				USER IN	STRUCTI	ONS					3.
STE	Р		PR	OCEDURE		,			ENTE	R	PRESS	DISPLAY
6	•	Confi Contr	dence Interv asts	als for	Poster	ior						
			nitialize								[E]	0.0000
		b. E	nter Contras	t Data					c		[R/S]	c _i ²
	-	((Repeat for each i (or j))						(or	≅.j)	[R/S]	i (or j)
		c. CI for Row Contrast $\Sigma_{i}^{\mu}_{i}$.							$^{\mathrm{F}}\alpha$		[D]	L
			.f. = (R-1, ([X<>X]	u
		d. C	I for Column	Contra	st Σc μ	.j			$^{\rm F}$ α		[d]	L
		d	.f. = (C-1,(R − l)(Ψ-	-1))						[Y<>X]	u
		NOTE	1: Steps 4a repeated		abd ma	ıy be						
		NOTE	2: These st if the c R_{48} , R_{58} stored m	ontents	of reg	gisters						
REG	ISTER	CONTE	NTS:									
00	Used	10		20	30	ts 40			50	$\Sigma_{\mathbf{C}}\overline{\mathbf{x}}$		
01	R	11	(R-1)(C-1)	21	31	41			51	last	: с	
02	С	12	RSS	22	32	42			52	last	: x	
03	RC	13	CSS	23	33	43			53	Σc		
04	х	14	R-1	24	34	44			54	Used	i	
05	x^2 .	15	C-1	25	35	45			55			
06	x	16	(R-1)(C-1)	26	36	46			56	FR		
07	MESS	17	Used	27	37	47			57	FC		
08		18		28	38	48	M	ESS	58	R-1		
09		19		29	39	49	е		59	C-1		
		Assig	nments			Labe	ls	Used				
		ZS-8 ΣΑΟVΟ ΣΑΟVΤ				01 02 03	A C D E	a d e				

EXAMPLES ZS-8

(1) Three types of solvents are tested on grease-soaked material and the amount of grease removed in milligrams is noted for several specimens with the following results:

Solvent	A	11	12	12	
Solvent	В	13	15		
Solvent	С	12	10	11	11

Test the hypothesis of no differences in solvents.

Solution:

ZP STE	EP	ENTER	PRESS	DISPLAY	COMMENTS
			[J]	x.xxxx	
AOV-1	, 1.		[H]	ΣΑΟΥΟΝΕ	Call for $\Sigma AOVONE$ in the module.
ΣΑΟ۷	2.	11	[A]	1.00	Enter data for the first row.
		12	[A]	2.00	Enter data for the first row.
		12	[A]	3.00	Row 1 data entry concluded.
ΣΑΟΥ	5.		[R/S]	11.67	First row mean \bar{x}_1 calculated. Record!
			[R/S]	0.58	s for row 1 and row sum; ignore and
			[R/S]	35.00	go on to enter data for second row.
ΣΑΟΥ	2.	13	[A]	1.00	Running count begins anew.
		15	[A]	2.00	Row 2 data entry concluded.
ΣΑΟΥ	5.		[R/S]	14.00	Row mean \bar{x}_2 calculated. Record!
			[R/S]	1.41	Row 2 s and sum; ignore and proceed
			[R/S]	28.00	to enter data for third row.
ΣΑΟΥ	2.	12	[A]	1.00	
		10	[A]	2.00	
		11	[A]	3.00	
		11	[A]	4.00	Row 3 data entry concluded.
ΣΑΟ۷	5.		[R/S]	11.00	Value of x3. (Record)
			[R/S]	0.82	Value of s and sum; ignore. Data
			[R/S]	44.00	entry concluded.
ΣΑΟΥ	6.		[E]	16.89	Value of SS displayed for total.
			[R/S]	12.22	Value of RSS
			[R/S]	4.67	ESS displayed
			[R/S]	2.00	d.f. for RSS
			[R/S]	6.00	d.f. for ESS displayed
			[R/S]	8.00	d.f. for SS displayed
			[R/S]	6.11	Value of MRSS
			[R/S]	0.78	Value of MESS

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[R/S]	7.86	F-ratio = MRSS/MESS.
		[J]	7.8571	Exit ΣΑΟVONE.
		[A]	0.0211	P-value of the F-ratio.

(2) Find Scheffe 95% confidence intervals for the contrast μ_1 -0.5 μ_2 -0.5 μ_3 where MESS = 105.97 and K = 3, N-k = 18; \overline{x}_1 = 103.71, \overline{x}_2 = 92, \overline{x}_3 = 89, n_i = 7.

Solution:

	0010	C I GII '			
AOV-1.	2.	2	[STO]14	2.0000	$v_1 = K-1 = 2$ stored in R_{14}
		105.97	[ST0]48	105.9700	MESS stored in R ₄₈ as required.
AOV-1.	3.		[e]	0.0000	Initialize CI routine.
		1	[R/S]	1.0000	First of triple triple c_1, \overline{x}, n , entered.
		103.71	[R/S]	103.7100	Second member of triple
		7	[R/S]	1.0000	Sample size n ₁ ; count of l (triple displayed.
		-0.5	[R/S]	-0.5000	Beginning entry of c_2, \bar{x}_2, n_2 .
		92	[R/S]	92.0000	~ <i>~ ~</i>
		7	[R/S]	2.0000	Running count of 2 displayed.
		-0.5	[R/S]	-0.5000	Entering final triple
		89	[R/S]	89.0000	
		7	[R/S]	3.0000	Entry completed.
		3.49	[a]	0.6203	F _{.05} for d.f. = (2,20) entered
			[X<>X]	25.7997	and confidence limits displayed.
					Conclude contrast significantly
					different from 0.

(3) Five teachers were matched with three schools to produce the following average scores on a standardized examination after a unit of instructions

Teachers Schools	A	В	С	D	Е	Ī.
I	53	47	46	50	49	49
II	61	55	52	58	54	56
III	51	51	49	54	50	51
- x •j	55	51	49	54	51	

	Cons	truct a tw		able and find	CI's for μ_1 - μ_2 and $\mu_{\cdot 1}$ - $\mu_{\cdot 3}$.
	Solu	tion:			
			[J]	x.xxxx	
AOV-2	1.		[I]	ΣΑΟΥΤWΟ	Call for Σ AOVTWO from the module.
ΣΑΟΥ	3.	53	[A]	1.00	Enter first data value from row 1.
		47	[A]	2.00	Continue entering data from row 1.
		46	[A]	3.00	•
		50	[A]	4.00	•
		49	[A]	5.00	<pre>•until all the data from row l are entered</pre>
			[R/S]	245.00	
ΣΑΟΥ	5.	5	[*]	49.00	Calculate and record row mean \bar{x}_1 .
ΣΑΟΥ	3.	61	[A]	1.00	Go on with first value from row 2
		55	[A]	2.00	and continue
		52	[A]	3.00	until all of
		58	[A]	4.00	the data from row 2
		54	[A]	5.00	have been entered.
ΣΑΟΥ	5.		[R/S]	280.00	Calculate and
	,	5	[*]	56.00	record \bar{x}_2 .
ΣΑΟΫ	3.	51	[A]	1.00	Continue non-stop with data
		51	[A]	2.00	entry from the third and
		49	[A]	3.00	last row
		54	[A]	4.00	
		50	[A]	5.00	
ΣΑΟΥ	5.		[R/S]	255.00	Calculate and
		5	[÷]	51.00	record \bar{x}_3 .
ΣΑΟΥ	6.		[R/S]	COLUMN-WISE	Prepare for column computations.
ΣΑΟΥ	8.	53	[A]	1.00	Enter first value from column 1.
		61	[A]	2.00	Enter second value from column 1.
		51	[A]	3.00	Enter last value from column 1.
ΣΑΟΥ	10.		[R/S]	165.00	Calculate $\bar{x}_{.}$.
			[•]	55.00	and record.
ΣΑΟΥ	8.	47	[A]	1.00	Repeat for column 2
		55	[A]	2.00	
		51	[A]	3.00	
ΣΑΟΥ	10.		[R/S]	153.00	Calculate and
		3	[÷]	51.00	record $\bar{\mathbf{x}}_{\mathbf{\cdot}2}$

ZS STEP

ENTER

PRESS

DISPLAY

COMMENTS

ZS SI	EP	ENTER	PRESS	DISPLAY	COMMENTS
ΣΑΟΥ	8.	46	[A]	46.00	Repeat for column 3
		52	[A]	52.00	
		49	[A]	49.00	
ΣΑΟΥ	10.		[R/S]	147.00	Calculate and
		3	[÷]	49.00	record $\bar{\mathbf{x}}_{\bullet 3}$
ΣΑΟΥ	8.	50	[A]	50.00	Repeat for column 4
		58	[A]	58.00	
		54	[A]	54.00	
ΣΑΟΥ	10.		[R/S]	162.00	Calculate and
		3	[÷]	54.00	record $\bar{x}_{•4}$
ΣΑΟΥ	8.	49	[A]	49.00	Repeat for column 5.
		54	[A]	54.00	
		50	[A]	50.00	
ΣAOV	10.		[R/S]	153.00	Calculate and
		3	[÷]	51.00	record $\bar{\mathbf{x}}_{.5}$
ΣΑΟΥ	11.		[E]	130.00	Data compiled and RSS displayed
			[R/S]	72.00	CSS displayed.
			[R/S]	224.00	SS total sum of squares.
			[R/S]	22.00	ESS displayed
			[R/S]	2.00	Row d.f. = R-l = 2 displayed.
			[R/S]	4.00	Column d.f. = C-l = 4 displayed
			[R/S]	8.00	Error $d.f. = (R-1)(C-1)$ displayed
			[R/S]	23.64	F _R displayed
			[R/S]	6.55	F _C displayed
			[J]	6.5455	Exit ΣAOVTWO and enter ZS-8
ZS-7	5.		[C]	65.0000	MRSS displayed
			[R/S]	18.0000	MCSS displayed
			[R/S]	2.7500	MESS displayed
			[R/S]	0.0004	P-value for F _R computed and displayed
			[R/S]	0.0122	P-value for F _C
	4.		[E]	0.0000	Initialize for Scheffe CI's
		1	[R/S]	1.0000	Enter $c_1 = 1$ to find CI for $\mu_1 = \mu_2$.
		49	[R/S]	1.0000	Enter row mean \bar{x}_1 .
		-1	[R/S]	1.0000	Enter $c_2 = -1$ for contrast $\mu_1 \cdot - \mu_2 \cdot$

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
	56	[R/S]	2.0000	All non-zero c's now entered.
	4.46	[D]	-10.1324	$F_{.05} = 4.46$ for d.f. = (2,8)
		[Y<>X]	-3.8676	l is displayed followed by u.
		[RCL]49	3.1324	The value of e retrieved from R ₄₉ for further comparisons.
		[E]	0.0000	Re-initialize C.I. program.
	1	[R/S]	1.0000	Enter c, for contrast µ., -µ.3.
	55	[R/S]	1.0000	$\bar{\mathbf{x}}_{-1}$, the first column mean is
				entered.
	-1	[R/S]	1.0000	Enter $c_2 = -1$
	49	[R/S]	2.0000	Enter third column mean $\bar{x}_{.3}$.
	3.84	[d]	0.6934	Enter $F_{.05}$ for d.f. = (4,8) and
				calculate Lower limit.
		[X<>X]	11.3066	Upper limit retrieved from $R_{_{\mathbf{V}}}$.
		[RCL]49	5.3066	Value of e found in R ₄₉ for further comparisons.

Chapter 9 Simple Linear Regression

It is rather surprising that the HP is not hard-wired for at least simple linear regression as is the TI and many lesser hand-held calculators. There is a routine in STAT PAC, but, just as with the TI statistics module, no provision is made for confidence intervals, tests of hypotheses, etc.. In order to make the HP output match the discussions given in the text, we have created a simple data entry scheme in a program called ZS-9 (assigned the label [I] for convenient access). Once that program is accessed, you have only to press [D] (for data) and enter the successive pairs of numbers as per Step 2 of the instructions. At the conclusion of entry, press [e] to compile the data whereupon the degrees of freedom will be displayed for you. At this point, you may enter a t-percentile if you like. In any event, the effect of entering data this way will force the register contents to almost agree with those of the TI entry, with a couple of notable exceptions. Referring to page 237, HP R₀₆ as usual must replace TI R_{03} and then the TI R_{04} , R_{05} , R_{06} become HP R_{03} , R_{04} , R_{05} , respectively. As usual, the HP functions MEAN and SDEV replace TI $[\bar{x}]$ and $[INV][\bar{x}]$ and will output the same quantities. There is a subroutine within ZS-9 called [Op] Il whose execution will exactly match that of TI [Op] Il as referred to in this chapter. Try this on the data in Example 9.1 to verify the results published on page 238. Similarly, there are subroutines in ZS-9 called [Op]14 and [Op]15 that will function in exactly the same way as their TI counterparts referred to in the text. In Note 2 on page 238, HP will display the message DATA ERROR if the data all have the same carrier value. Similarly, in Note 1 on page 250, HP will display the message ALL REALS to signify that the CI does not exist. Otherwise, all of the instructions for the various regression routines through Section 9.4 are identical to those given in the book for the TI. For that reason only Step 1 needs to be modified and that has been taken care of in the User Instructions that follow on the next page.

Section 9.5: Curve Fitting

The procedures in this section utilize the TI statistics module and, fortunately, most of them are duplicated in the HP STAT PAC under the same title, Curve Fitting, beginning on page 32 of the STAT PAC handbook. The only problem is that the HP notation differs slightly from that of TI. Thus, TI b is HP a and TI m is HP b. You will have to make that adjustment in order to use your HP for solving problems in this section. The output of label [E] in that program, however, will produce the right estimated equations and can be used to verify the numbers given in Example 9.9 as well as most of the exercises. The one big departure is that HP makes no allowance for creating your own user defined transformation so that examples like 9.10 on page 265 cannot be checked. Those are not too common, however, so that for the main type of transformations you are likely to run into in practice, what is provided by STAT PAC will suffice. All of the answers to the problems, with the exception of 40e, can be verified with those routines.

ZS-9 (Assigned [I]) USER INSTRUCTIONS (HP))	SIZE (Σ REG	050
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
I 0.	Initialization (if not already in ZS-9) Clear registers		[I] [D]	0.0000
2.	Enter data (repeat i = 1,2,,n)	× _i	[ENTER]	× i
3. 4.	Compile data Enter percentile for CI's (d.f. = n-2) (may also store manually in R ₃₁ at any time)	t _{α/2}	[e] [R/S]	n-2 t _{\alpha/2}
SLOPE				
1	CI for m		[A] [X<>Y]	2 u
2	Test H _O :m = m _O .			
	a. Enter H _l -code.*	H _l -code	[a]	H ₁ -code
	b. Enter hypothesized value.	m _O	[R/S]	Р
INT 1	CI for b		[B]	l u
2	Test H _O :b = b _O .			
	a. Enter H ₁ -code.	H ₁ -code	[b]	H ₁ -code
	b. Enter hypothesized value.	ь	[R/S]	P
at x	CI for mx ₀ + b	x 0	[C]	l u
at x ₀	$PI \text{ for } Y_0 = mx_0 + b + e$	*0	[c] [X<>Y]	l u
DISC	CI for x*, when y* is			
	observed	у*	[b] [x<>x]	2
CORR	Tast H · n = 0		[\(\)\/\]	u
SORK	Test $H_0: \rho = 0$. Enter H_1 -code. Note: Valid whenever $n-2 \in \mathbb{R}_{15}$ and $r \in \mathbb{R}_{44}$	H ₁ -code	[E]	P

*Note: H_1 -code $\begin{cases} -1 & \text{for } H_1: \theta < \theta_0 \\ 0 & \text{for } H_1: \theta \neq \theta \\ 1 & \text{for } H_1: \theta > \theta \\ 1 & 0 \end{cases}$

REGISTER CONTENTS:

00	Used	10	20		30	ts	40	ê
01	Σy_{i}	11	21		31	$t_{\alpha/2}$	41	Used
02	Σy_i^2	12	22	Used	32	, -	42	d
03	$\Sigma_{\mathbf{x}_{\mathbf{i}}}$	13	23	by	33	S	43	y*- y
04	Σx_{i}^{2}	14 n-1	24	TCDF	34	θ 0	44	r
05	Σx_{i}^{y}	15 v = n-2	25		35	s^	45	m
06	n	16	26		36	sâ	46	ĥ
07		17	27		37	s _Ŷ	47	\bar{x}
80	$\Sigma(x_{i}^{1}-\overline{x})^{2}$	18	28	H ₁ -code	38	$\hat{M}_{x_0}+\hat{B}$	48	ÿ
09		19	29	P(ts)	39		49	

For curve fitting, consult STAT PAC p. 32.

Assignme	nts	Labe1	s Used
ZS-9	I	01	A a
OP12	H	02	в ь
OP13	P	03	Сс
OP14	h	04	D d
OP15	i	05	E e

The resistance of a length of wire is thought to be a linear function of the mperature of the wire. For a given temperature, errors in readings of resistance e normally distributed with mean 0 and variance σ^2 . The following readings were made the temperatures indicated.

Temperature	0	10	20	30	40	50
Resistance	22.6	25.1	29.0	29.9	33.4	34.8

- (a) Estimate the regression of resistance on temperature.
- (b) Estimate the resistance if temperature is 25.
- (c) Estimate the temperature if resistance is 30.
- (d) Find a 95% confidence interval for the slope, m.
- (e) Find a 95% confidence interval for the intercept b.
- (f) Find a 95% confidence interval for the expected resistance when temperature is 25.
- (g) Find a 95% prediction interval for the measured response when temperature is 25.
- (h) Find a 95% discrimination interval for the temperature at which a resistance of 30 is observed.
- (i) Test the hypotheses $H_0: m = 0$ vs. $H_1: m \neq 0$.
- (j) Test the hypotheses H_0 : $b \le 20$ vs. H_1 : b > 20.
- (k) Calculate the coefficient of determination.
- (1) Test $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$.

SOLUTIONS:

ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
I	0.		[I]	x.xxxx	
	1.		[D]	0.0000	Clear data registers
I	2.	0	[ENTER]	0.0000	Enter x ₁ .
		22.6	[R/S]	1.0000	Enter y_1 , update data base; (x,y) count displayed.
		10	[ENTER]	10.0000	Enter x ₂ .
		25.1	[R/S]	2.0000	Enter y ₂ , update data base
		20	[ENTER]	20.0000	Enter x ₃ .
		29	[R/S]	3.0000	(x,y) - count displayed.
		30	[ENTER]	30.0000	
		29.9	[R/S]	4.0000	(x,y) - count displayed.
		40	[ENTER]	40.0000	
		33.4	[R/S]	5.0000	(x,y) - count displayed.
		50	[ENTER]	50.0000	
		34.8	[R/S]	6.0000	Value of $n = 6$ concludes data entry.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
I 3.		[e]	4.0000	Compile data; display d.f. = 4.
I 4.	2.776	[R/S]	2.7760	Enter $t_{.025}$ for d.f. = 4.
		[H]	22.9333	b
		[X<>X]	0.2480	m; $y = .248x + 22.93$ answers (a).
	25	[h]	29.1333	y for $x = 25$ answers (b).
	30	[i]	28.4946	x for y = 30 answers (c).
SLOPE 1.		[A]	0.1983	Ł
		[Y<>X]	.2977	u, so CI is .198 < m < .298, answering (d).
INT 1.		[B]	21.4294	L
		[X<>X]	24.4373	u, so CI is 21.4 < b < 24.4, answering (e).
μ at x _O	25	[C]	28.2850	Ł
Ü		[X<>Y]	29.9817	u, so CI is $28.28 < 25m + b < 29.9$ answering (f).
Y at x _O	25	[c]	26.8889	L
, and the second		[Y<>X]	31.3778	u, so PI is 26.89 < Y ₀ < 31.38, answering (g)
DISC	30	[d]	19.3744	L
		[Y<>X]	37.9069	u, so CI is 19.37 < x* < 37.91, answering (h).
SLOPE 2a.	0	[a]	0.0000	Enter H ₁ -code for H ₁ : m = 0
2b.	0	[R/S]	0.0002	Significance of test; reject H_0 ; answers (i).
INT 2a.	1	[b]	1.000	Enter H ₁ -code for H ₁ : b > 20
2b.	20	[R/S]	0.0028	Significance of test; reject H_0 ; answers (j).
		[P]	0.9897	Calculates and displays r
		[x ²]	0.9796	$r^2 = 0.98$ is the answer to (k).
CORR	0	[U][E][U]	0.0002	Significance of test of H_0 : $\rho = 0$ (must agree with (i)).

[[]U] = [USER]

Chapter 10 Multiple Regression

Only the data entry scheme differs from the TI version of this program. The regression program <code>SMLRXY</code> in STAT PAC is utilized for entering the data in the HP version and partial processing takes place in that program. Further processing takes place in program ZS-10 (assigned to label [J] for easy entry from STAT PAC) so that even the register contents (with the slight modification given below) and the remaining instructions will match those given in the book.

Once ZS-10 is entered, a press of [d] will force the pointer to STAT PAC program Σ MLRXY. Data are then entered as follows: first, x and y are successively entered with the [ENTER] key and then the value of z with [A]. At the conclusion of data entry, pressing [E] will cause partial processing, ending with a display of the coefficient of determination. It is at this point that STAT PAC must be exited and ZS-10 entered with a press of [J]. Then, pressing [e] will cause the rest of the processing to take place. Thereafter, the user instructions for ZS-10 may be followed to the letter. For that reason, only the DE instructions need to be modified and are summarized below. The usual sample problem is presented starting on the following page.

SIZE 050

STEP	PROCEDURE			ENTER	PRESS	DISPLAY
DE	Data Entry					
0	Initializatio	n			[d]	0.0000 ΣMLRXY
1	ENTER DATA (repeat i=)	l,,r	n)	xi yi zi	[ENTER] [ENTER] [A]	xi yi i
2	Compile Data Complete comp		ial)		[E] [J] [e]	R ² 0.0000 n-3
3	Enter t-perce (d.f. = n-3)	entile		t _{α/2}	[R/S]	t _{\alpha/2}
Assig	gnments	Labe	ls Use	<u>d</u>	Register Con	ntents
ZS-10 ΣMLRX		01 02	A a B b C c D d E e		40 41 42 43 44 45 46	

ZS-10 EXAMPLE.

The data below represent characteristics of a sample of automobiles.

Weight							
Horsepower	255	180	16	120	100	140	150
Cost	7999	9221	8222	9010	10099	11019	11219

- (a) Regress cost on weight and horsepower.
- (b) Predict the cost of an automobile weighting 5,000 lbs. and having 160 horsepower.
- (c) Determine the significance of horsepower for predicting cost.
- (d) Find a 95% confidence interval for the coefficient of weight.
- (e) Estimate σ .
- (f) Find the coeffficient of determination.

Solution:

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
DE 0.		[J]	0.0000	Enter program ZS-10
1.		[d]	ΣMLRXY	Initialize EMLRXY for data entry.
	3810	[ENTER]	3810.00	Enter x ₁ .
	255	[ENTER]	255.00	Enter y ₁ .
	7999	[A]	1.00	Enter z completing one triple.
	4220	[ENTER]	4220.00	Enter x ₂ .
	180	[ENTER]	180.00	Enter y ₂ .
	9221	[A]	2.00	Enter z ₂ completing two triples.
	2900	[ENTER]	2900.00	Enter x ₃ .
	96	[ENTER]	96.00	Enter y ₃ .
	8222	[A]	3.00	Enter z ₃ completing three triples.
	3290	[ENTER]	3290.00	Enter x ₄ .
	120	[ENTER]	120.00	Enter y ₄ .
	9010	[A]	4.00	Enter z_4 , completing four triples.
	3400	[ENTER]	3400.00	Enter x ₅ .
	100	[ENTER]	100.00	Enter y ₅ .
	10099	[A]	5.00	Enter z ₅ , completing five triplets
	3920	[ENTER]	3920.00	Enter x ₆ .
	140	[ENTER]	140.00	Enter y ₆ .
	11019	[A]	6.00	Enter z ₆ , completing six triplets.
	4350	[ENTER]	4350.00	Enter x ₇ .
	150	[ENTER]	150.00	Enter y ₇ .
	11219	[A]	7.00	Enter z, completing last triplet.

ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
			[E]	0.80	Process data and display R ² .
			[J]	0.8050	Exit EMLRXY and enter ZS-10
I	2.		[e]	4.0000	Process trivariate data further and display $v = 4$.
I	3.	2.776	[R/S]	2.7760	Enter t .025 for CI's.
D			[D]	3361.7167	Display a ₀ .
			[R/S]	2.4657	Display â.
			[R/S]	-19.7686	Recall and display \hat{a}_2 .
		Regression	equation:	z = 3361.72	+ 2.466x - 19.769y .
E		5000	[E]	0.0000	Prepare to predict Z.
		160	[R/S]	12,527.0724	Predicted cost.
С		0	[c]	0.0000	Testing H_{1} : $a_{2} = 0$ vs. H_{1} : $a_{2} = 0$ vs.
		0	[R/S]	0.0318	Significance level for a_2 (ts = -3.2).
В			[B]	0.6786	Lower 95% limit for a ₁ .
			[Y<>X]	4.2527	Upper 95% limit for a ₁ .
			[RCL]33	691.7057	$\hat{\sigma} = s$.
			[RCL] 27	0.8050	Recall and display $R^2 = .80$.

APPENDIX

In the appendix that follows, you will find a complete listing of the programs discussed in the previous sets of User Instructions. These programs are named according to their ZP or ZS application by chapter and, occasionally, by section. To implement the programs, the first step is to key in each step into your calculator exactly as it appears in the listing. (Consult the Owner's Handbook for any instructions that may be unfamiliar.) Next, you should assign various subroutines using the function ASN according to the assignments listed just after the register contents in the User Instructions for each program. Then place your HP41-C in USER mode and record the program on a magnetic card for future reference.

01+LEL *ZP2*	51+LEL d		99 1
02 EREG 01	52 STO 88		199 STO 14
83 CLΣ	53 1/X		101 RCL 12
84 28	54 STO 13		182 8
85 STO 87	34 310 13		183 X=Y?
86 21			164 GTO 18
07 STO 03	55+LBL 03		185 RTH
88 8	56 RCL IND 07		
89 RTH	57 RCL 13		186 • LEL b
•• •••	58 XEQ 82		187 XEQ 88
10+LEL A	59 DSE 00		
11 STO IND 07	68 GTO 83		183+LSL 89
12 RCL 86	61 RTH		189 RCL 11
13 1			110 ST# 14
14 +	62+L9L E		111 1
17 7	63 1/X		112 ST- 11
15 STOP	64 STO 13		113 DSE 12
16 STO IND 83	•		
17.RDH	65+LEL 94		114 GTO 89
18 X<>Y	66 STOP		445 151 40
19 Rt	67 STO IND 87		115+LEL 19
	68 RCL 13		116 RCL 14
20 • LEL 02	69 XEQ 22		117 STOP
21 STO IND 63	78 GTO 84		
22 Σ+		1	113+LEL c
23 2		1	119 XEQ 68
24 ST+ 87 -	71+LBL C		128 XXY?
25 ST+ 03	72 1		121 GTO 12
26 RCL 86	73 STO 03		122 RDH
27 RTH	74 ~		123 RCL 11
	75 STO 88		124 X<>Y
28+LBL B	7& 365		125 X>Y?
29 2	- 77 STO 01		126 GTC 12
38 *	78 STO 82		
31 18			127+LBL 11
32 +	79+L8L 05		128 RCL 11
33 510 69	80 1		129 ST* 14
	. 81 ST- 81		138 1
J1 1	82 RCL 91		131 ST- 11
35 +	83 RCL 02		132 RCL 12
36 STO 19	84 /		133 ST/ 14
37 RCL IHD 09	85 ST* 83		134 DSE 12
38 RCL IND 10	86 DSE 88		
39 *	87 GTO 85		135 GTO 11
48 RCL 85	83 1		136 GTO 18
41 / •	. 89 RCL 03		
42 RTH	98 -		137+LBL 12
			138 8
430LBL a	91 RTH		139 STOP
44 RCL 85	40.101.00		148 END
45 RTH	92+LEL 83		
	93 "H=?"		
46+LEL D	94 PROMPT		
47 RCL IND 87	95 STO 11		
48 STOP	96 "R=?"		
49 STO IND 08	97 PRGMPT		
58 GTO 82	98 510 12		

81+LBL *ZP3-2*	50+LBL E
82 CLRG	51 XEQ 81
93 29	
94 STO 01	52+LBL 83
85 21	53 RCL IND 01
06 STO 02	54 XEQ 85
87 8	55 DSE 80
88 RTH	56 GTO 83
	• • • • • • • • • • • • • • • • • • • •
894LEL A	57+LBL 86
18 STO IND 81	58 RCL 87
11 STOP	59 RCL 86
12 STO IND 92	68 X12
13 1	61 -
14 ST+ 03	62 STO 83
15 2	63 RCL 06
16 ST+ 81	64 RTH
17 ST+ 82	7 KIII
18 RCL 03	65+LEL D
19 RTH	66 XEQ 81
	99 YES 91
28+LSL 01	67+LBL 84
21 RCL 83	68 XEQ 82
22 STO 09	
23 8	69 DSE 09
24 STO 86	78 GTO 84
25 STO 97	.71 GTO 06
26 28	
27 STO 81	72+LBL C
- 28 21	73 STO 88
29 STO 82	74 8
38 RTH	75 STO 18
30 KIN	76 21
31+LEL 02	77 STO 02
32 RCL IND 81	
33 STO 09	78+LBL 97
	79 RCL IND 02
34 XEQ B	80 ST+ 10
75.1 01 .05	81 2
35+LBL 85 36 STO 84	82 ST+ 02
	93 DSE 99
37 X12 .	84 GTO 97
38 STO 85	85 RCL 19
39 RCL IND 92	86 RTM
48 ST* 84	07.1.01.0
41 57* 85	87+LBL 8
42 RCL 84	88 EHD
43 ST+ 86	
44 RCL 05	
45 ST+ 07	
46 2	
47 ST+ 91	•
48 ST+ 02	
49 RTN	

254+LBL b 255 XEQ B 256 1 257 -259 CHS 259 RTH

260+LBL E 261 FCL 12 262 RCL 11 263 RTH 264 END

01+LBL -ZF3-3- 02 CF 02	52 STO 16 53 RCL 14	105 RCL 20 106 •	157•LEL 18	203 RCL 13 204 STO 11
63 8	54 STO 81	197 1/X	158 1 159 STO 84	205 510 12
84 STOP	55 RCL 13	108 ENTERT	160 RCL 82	286 RCL 15
	56 STO 82	189 RCL 13	161 8	287 RCL 14
85+LBL A	57 XEQ "PHICH"	110 EHTERT	162 X=Y?	288 /
66 STO 99	58 ST/ 16	111 RCL 28	163 GTO 18	209 570 22
87 FS? 02	59 SF 82	112 -	164 RTH	218 ST+ 11
68 CTO 55		113 1	TOT KIII	211 ST+ 12
89 RCL 14	68+LBL 82	114 +	165+LBL *PMTOH*	212 1
18 STO 24	61 0	115 •	166 XEQ 18	213 -
11 1/X	62 510 28	116 EHTERT		214 CHS
12 STO 22	63 RCL 16 .	117 RCL 15	167+LBL 19	215 STO 21
13 RCL 15	64 STO 86	118 ENTERT	168 RCL 81	216 ST* 12
14 ST- 24	65 STO 97	119 RCL 28	169 ST* 84	217 RCL 13
15 ST# 22	66 0 67 ENTERT	128 -	178 1	213 YtX
16 RCL 22	68 RCL 80	121 1	171 ST- 01	219 STO 16
17 STO 11	69 X=Y?	122 + 123 *	172 DSE 02	228 STO 86
18 STO 12	78 GTO 85	123	173 GTO 19	221 STO 87
19 1 20 -	, 0 210 00	124+LEL 84		222 SF 82
21 CHS	. 71+LBL 93	125 ST* 06	174+LBL 18	223+LEL 87
22 STO 21	72 1	126 RCL 86	175 RCL 04	224 0
23 ST+ 12	73 SI+ 20	127 ST+ 87	176 RTH	225 STO 28
24 RCL 13	74 RCL 28	128 DSE 00	177.101 aCM00Ma	226 RCL 16
25 STO 83	75 EHTER†	129 GTO 03	177+LBL "CMBON" 178 XEQ 13	227 STO 65
26 ST* 11	76 RCL 15		170 XEQ 13	228 STO 67
27 ST* 12	77 -	138+LEL 65	188 GTO 12	229 RCL 88
28 EHTERT	78 1	131 REL 96	181 RDH	238 8
29 RCL 14	79 -	132 RCL 87	182 RCL 01	231 X=Y?
38 -	88 CHS	133 RTH	183 X()Y	232 GTO 05
31 CH3	81 EHTERT		184 X>Y?	
32 RCL 14	82 8	134+LEL 86	185 GTO 12 ·	233+LBL 03
33 1	83 X<>Y 84 X<=Y?	135 1		234 1
34 -	85 GTO 84	136 STO 06 137 RCL 15	186 • LEL 11	235 51+ 29
35 /	86 CH3	138 STO 01	187 RCL 01	236 RCL 28
36 ST* 12	87 2	139 RCL 20	183 ST* 94	237 RCL 13
37+LBL 81	83 +	148 STO 92	189 1	238 -
38 RCL 24	89 RCL 14	141 XEQ -CHBON-	198 ST- 01	239 CHS 240 1
39 RCL 13	98 +	142 STO 23	. 191 RCL 82	241 +
48 X<=Y?	91 RCL 13	143 RCL 14	192 ST/ 84	242 RTL 28
41 GTO 89	92 -	144 STO 81	193 DSE 02	243 /
42 8	93 ENTERT	145 RCL 13	194 GTO 11	244 RCL 22
43 STO 16	94 8	146 STO 82	195 GTO 18	245 *
44 SF 82	95 X()Y	147 XEQ "CMECH"	196+LBL 12	246 RCL 21
45 GTO 82	96 X<=Y?	148 ST/ 23 .	197 8	247 /
	97 GTO 84	149 RCL 23	198 STOP	248 ST# 06
46+LBL 89	98 1	158 GTO 84		249 RCL 86
47 RCL 24	99 -	APPA - A FOL	199+LBL 8	258 ST+ 87
48 STO 01	100 ENTERT	151+LBL a	200 STO 00	251 DSE 88
49 RCL 13	101 0	152 XER A	201 FS? 82	252 GTO 98
58 STO 82	182 X=Y? 183 GTO 86	153 1 154	: 202 GTO 37	253 GTO 85
51 XEQ "PHTOH"	194 X<>Y	155 CHS		
	4V1 01/1	156 RTH		
		200 10111		

01+LGL *ZP3-4*	52 CHS	103 -	153+LEL c	285 RCL 28
02 CF 01	53 RCL 13	164 CHS	154 XEQ C	286 /
83 CF 82	54 +	105 RTH	155 EHTERT	287 RCL 21
94 CF 83	55 1	•	156 1	288 *
85 CF 84	56 +	106+LBL E	157 -	289 ST* 86
86 8	57 RCL 29	107 RCL 12	153 CHS	218 RCL 86
07 STOP	53 /	183 RCL 11	159 RTH	211 ST+ 07
	59 RCL 22	189 RTH		212 DSE 80
88+LEL B	69 *		160+LBL A	213 GTO 19
89 STO 88	61 RCL 21	110+LBL C	161 STO 88	214 GTO 85
18 FS? 82	62 /	111 STO 98	162 FS? 04	
11 GTO 07	63 ST* 86	112 FS? 03	163 GTO 15	215+LBL 15
12 FS? 84	64 RCL 06	113 GTO 13	164 FS? 01	216 RCL 21
13 GTO 11	65 ST+ 07	114 FS? 04	165 GTO 18	217 ST* 11
14 RCL 22	66 DSE 88 67 GTO 88	115 GTO 11 116 RCL 22	166 RCL 22	218 CF 04 219 RCL 00
15 STO 11	67 610 60	117 RCL 13	167 1/X 168 STO 11	229 GTO A
16 STO 12	68+LEL 85	118 *	163 310 11 169 X†2	228 G10 H
17 1	69 RCL 85	119 \$70 11	170 STO 12	221+LEL a
18 -	70 RCL 07	120 STO 12	176 310 12 171 1/X	222 XEQ A
19 CHS	71 RTH	121 228	172 SQRT	223 ENTERT
20 STO 21	11 610	122 X<=Y?	173 1	224 1
21 ST* 12	72+LEL 11	123 GTO 11	174 -	225 -
22 LH 23 RCL 13	73 RCL 80	124 X<>Y	175 CHS	226 CHS
24 ST* 11	74 .5	125 CHS	176 STO 21	227 RTH
25 ST* 12	75 +	126 EtX	177 ST* 11	
26 *	76 RCL 11	127 STO 16	178 ST* 12	228+L5L J
27 CHS	77 -	128 STO 66	179 RCL 22	229 RCL 13
23 228	73 RCL 12	129 STO 97	189 RCL 13	238 -
29 X(=Y?	79 SQRT	130 SF 03	181 ST* 11	231 XEQ A
39 GTO 11	89 /		182 ST* 12	232 RCL 21
31 RCL 21	81 STO 19	131+LBL 13	183 Y†X	233 ST/ 11
32 RCL 13	. 82 XEQ "ZCDF"	132 0	184 STO 16	234 SF 94
33 YtX	83 STO 23	133 STO 28	185 STO 86	235 RCL 96
34 STO 16	84 RCL 00	134 RCL 16	186 570 07	236 RCL 87
35 STO 86	85 .5	135 STO 06	187 SF 01	237 RTH
36 STO 87	86 -	136 STO 97	400.4.01.40	27041 01 7
37 SF 02	87 RCL 11	137 RCL 00	188+LBL 18	238+LBL D
	88 -	138 X=8? 139 GTO 85	189 9	239 STO 99
38+LBL 97	89 RCL 12	137 610 83	190 STO 20	248 FS? 82 241 GTO 28
39 0	98 SQRT 91 /	1.40 AT DI 1.4	191 RCL 16	241 GTU 26 242 RCL 22
48 STO 28	92 XEQ *ZCDF*	140+LBL 14 141 1	192 STO 86 193 STO 07	242 RGL 22 243 1
41 RCL 16	93 RCL 23	142 ST+ 20	194 RCL 00	244 -
42 STO 96	94 -	143 RCL 20	195 X=8?	245 CHS
43 STO 87	95 CHS	144 1/X	196 GTO 85	246 STO 21
44 RCL 98	96 LASTX	145 RCL 11	170 010 03	247 STO 12
45 9	97 SF 84	146 *	197+LBL 19	248 RCL 22
46 X=Y?	98 RTH	147 ST* 06	198 1	249 1/X
47 GTO 95		148 RCL 86	199 ST+ 28	250 STO 11
48+L9L 8S	99+LBL b	149 ST+ 87	200 RCL 20	251 X†2
49 1	199 XEQ B	150 DSE 00	201 RCL 13	252 ST# 12
50 ST+ 20	181 ENTERT	151 GTO 14	202 +	253 SF 82
51 RCL 20	182 1	152 GTO 65	293 1	
			204 -	

254+LBL 28	301 .2316419
255 RCL 21	302 *
256 ENTERT	383 +
257 RCL 00	394 1/X
258 1	385 ENTERT
259 -	386 ENTERT
260 YtX	367 ENTEPT
261 RCL 22	308 1.330274429
262 *	389 *
263 ENTERT	310 -1.821255978
264 ENTERT	311 +
265 RCL 21	312 *
266 RCL 98	313 1.781477937
267 YfX	314 +
268 ENTERT	315 *
269 1	316356563782
279 -	317 +
271 CHS	319 *
272 RTH	319 .31939153
	32₩ +
273+LBL d	321 *
274 MEQ D	. 322 ROL 04
275 ENTERT	323 *
276 1	324 FS? 08
377 -	325 GTO 29
278 CHS	326 PTH
279 RTN	
	337*LBL 27
280+LBL "ZEDF"	328 RCL 83
281 810 93	329 CHS
282 ENTERT	338 STO 83
263 *	331 XE0 23
284 2	332 1
285 /	333 X<>Y
286 CHS	334 -
287 EtX	
288 PI	335+LBL 29
289 2	336 CF 00
290 *	337 EHTERT
291 SURT	338 ENTERT
292 /	339 1
293 STO 94	349 -
294 RCL 03	341 CHS
295 X(8?	342 END
296 GTO 27	
297 SF 80	
298+LBL 23	
299 1	
300 RCL 83	
400	

258 • LGL B 259 XEQ • RHD 260 LH 261 RCL 2: 262 / 263 CHS 264 STO BE 265 E+ 266 RCL BE 267 RTH

268+LEL G 269 XEQ *RNDM 270 XEQ d 271 STO 80 272 E+ 273 RCL 88 274 RTM

275+LEL *XBAF 276 MEAN 277 RTH

278+LBL *SD* 279 SDEY 280 END

01+LBL "ZP4"	53+LBL 87	188+LBL 11	158 1	218 /
03 OF 01	54 RCL 25	189 SF 01	159 -	211 STO 87
03 FIX 4	55 CHS	110 1	168 CHS	212 1
64 8	56 STO 25	111 -	161 RCL 07	
85 STOP	57 XEQ 03		162 RTH	213 -
	58 1	112 CHS	IOC KIII	214 CHS
85+LBL *ZCDF*	59 X()Y	113 RTH	163+LEL D	215 RCL 87
07 STO 25	68 -	444.101.40	164 XEQ C	216 RTH
98 ENTERT		114+LBL 12	165 STO 88	843-141-48
ø9 *	61+LBL 89	115 CF 01	166 X()Y	217+LBL 15
18 2	62 CF 00	116 STO 19	167 STOP	218 RCL 15
11 /	63 ENTERT	117 RTH		219 *
12 CHS	64 ENTERT		168 XEQ C	228 RCL 14
13 EtX	65 1	118+LBL -RHDMU-	169 ST- 88 178 RCL 88	221 -
14 FI	66 -	119 RCL 09	171 1	222 CHS
15/2	67 CHS	128 9321		223 CF 05
16 *	68 RTH ·	121 *	172 +	224 RTH
17 SERT	00 KM	122 .211377	173 RCL 88	
18 /	69+LBL c	123 +	174 CHS	225 • LSL b
19 STO 26	78 .5	124 FRC	175 RTH	226 RCL 12
38 RCL 25	71 X<>Y	125 STO 89	434.4.0	227 RCL 11
31 XK0?	72 X>Y?	126 RTH	176+LBL d	223 RTH
22 GTO 07		•	177 XEQ c	
23 SF 00	73 XEQ 11	127+LEL a	178 RCL 12	229+LBL E
	74 ENTERT	123 XEQ "RNDMU"	179 SQRT	238 STO 68
24+LBL 03	75 *	129 1	138 *	231 FS? 01
25 1	76 1/X	138 RCL 14	181 RCL 11	232 GTO 17
26 RCL 25	77 LH	131 +	182 +	233 RCL 22
27 .2316419	78 SERT	132 *	183 RTH	234 1/X
28 *	79 STO 88	133 RCL 13		235 STO 11
29 +	88 .810328	134 +	184+Lel A	236 X12
39 1/X	81 *	135 INT .	185 STO 88	237 STO 12
31 ENTERT	82 .882853	136 FIX 0	186 FS? 85	238 SF 81
32 ENTERT	93 +	137 STOP	187 GTO 15	
33 ENTERT	64 RCL 00	138 FIX 4	183 FS? 01	239+LBL 17
34 1.330274429	85 *	139 Σ+	169 GTO 16	248 RCL 88
35 *	86 2.515517	140 RTH	198 RCL 13	241 RCL 22
36 -1.82125597	87 +		191 RCL 14	242 *
37 +	88 RCL 88	141+LBL *GEN-INI*	192 +	243 CHS
38 *	89 .881398	142 FIX 4	193 2	244 E1X
39 1.781477937	\$8 *	143 EREG 91	194 /	245 ENTERT
40 + 41 *	91 .189269	144 CLE	195 STO 11 '	246 ENTERT
42356563782	92 +	145 "SEED?"	196 RCL 14	247 1
43 ±	93 RCL 08	146 PROMPT	197 RCL 13	248 -
44 *	94 • .	147 STO 89	198 -	249 CHS
45 .31938153	95 1.432788	148 RTH	199 STO 15	250 STO 87
46 +	96 +		288 X12	251 RTH
47 *	97 RCL 88	149+LBL C	201 12	EUI KIII
48 RCL 26	98 *	158 RCL 11	282 /	252+LSL e
49 *	99 1	151 -	283 STO 12	253 LH
58 FS? 98	188 +	152 RCL 12	284 SF 81	254 RCL 22
51 GTO 89	181 /		- 285 RCL 88	255 /
52 RTH	182 RCL 88	154 /		256 CHS
02 //III	103 X()Y	155 STO 18	206+LEL 16	257 RTH
	194 -	156 XE9 "ZCDF"	207 RCL 13	COL VIE
	105 FS? 01	157 STO 87	288	
	106 CHS		209 RCL 15	
	107 GTO 12	•		

81+LEL -ZP5-	49 RCL THD 19	(183 • LSL 83
B2 EREG 91	58 STO 82		184 RCL 1HD 19
	51 ST* 86		185 STO 89
83 CF2	52 X12		
84 EREG 87			106 1
es clΣ	53 STO 85		187 ST+ 19
B6 EREG 13	54 1		189 RCL IHD 19
. 87 CLΣ	55 ST+ 19		189 STO 18
	56 RCL IND 19		118 1
88 29	57 ST* 01		111 ST+ 19
89 STO 19	58 ST* 02		
18 9			112 XEQ a
•	59 ST* 84		113 STO 07
11+LBL 81	68 ST* 85		114 X12
	61 ST* 06		115 STO 83
12 STOP	62 RCL 01		116 RCL IND 19
	63 ST+ 11		
13+LBL A	=		117 ST* 07
14 STO IND 19	64 RCL 82		118 ST* 83
15 STO 89	65 ST+ 13		119 RCL 87
16 1	66 RCL 04		128 ST+ 17
	67 ST+ 12		121 RCL 03
17 ST+ 19	68 RCL 05		
18 ST+ 03			122 51+ 18
19 RCL 83	69 ST+ 14		123 1
28 STOP	- 70 RCL 86		124 ST+ 19
20 010.	71 ST+ 15		125 DSE 00
01.101.0	72 1		126 GTO 83
21+LEL B	73 ST+ 19		
22 STO IHD 19			127 RCL 17
23 STO 18	74 DSE 09		123 X12
24 1	75 GTO 02		129 ST- 18
25 ST+ 19	76 RCL 11		138 RCL 18
	77 Xt2		131 RCL 17
26 RCL 83	78_ST- 12		132 RTH
27 STOP	79 RCL 13		132 KIN
28+LBL C	88 X12	•	133+LBL d
29 STO IHB 19	81 ST- 14		134 RCL 11
30 ST+ 07	82 RCL 11		135 STOP
	83 RCL 13		136 RCL 12
31 STO 83	84 *		
32 1		•	137 STOP
33 ST+ 19	85 ST- 15		138 RCL 13
34 RCL 83	86 RCL 15		139 STOP
35 GTO 81	87 RCL 12		148 RCL 14
22 610 01	- 88 SQRT		141 STOP
36.4.04.6	89 /		142 RCL 15
36+LBL E	98 RCL 14	h at	
37 RCL 03			143 STOP
38 STO 88	91 SQRT		144 RCL 16
39 20	• 92 /		145 RTH -
48 STO 19	93 STO 16		146 GTO d
90 310 17	94 RTH		
14.101.00	•		147*LBL a
41+LBL 02	95+LBL 3		
42 RCL IND 19			148 EHD
43 STO 81	96 0		
44 STO 86	97 STO 17		
	98 STO 13		
45 X12	99 RCL 93		
46 STO 84	188 STO 88		
47 1			
40 ST+ 19 '	101 20		
	182 STO 19 °		

		•	•		
04-101-070-20	53 +	107 +	161 XEQ C	213 CHS	266 +
81+FBF .52-5.	54 1/X	108 RCL 09	162 ST- 88	214 STO 07	267 RCL 11
82 EREG 81	55 ENTER+	189 *	163 RCL 88	215 RTH	268 /
93 CLS	56 ENTER+	110 2.515517	164 1	210 1111	269 RCL 2
84 FIX 4	57 EHTERT	111 +	165 +	216+LBL e	
85 8	58 1.338274429	112 RCL 88	166 RCL 88	217 1	270 *
86 STOP	59 *	113 .881383	167 CHS	218 -	271 RCL 2:
	68 -1.821255978	114 *	168 RTH		272 /
87+LBL "RHDHU"	61 +	115 .189269	100 KIN	219 CHS	273 \$1* 2!
88 RCL 89	62 *	116 +	460 (1.0)	228 LH	274 RCL 25
89 9821	63 1.781477937	117 RCL 00	169+LBL d	221 RCL 16	275 ST+ 26
18 *	64 +	118 *	178 XEQ c	222 /	276 DSE 08
11 .211377	65 *	119 1.432783	171 RCL 18	223 CHS	277 GTO 86
12 +	66356563782	129 +	172 +	224 RTH	
13 FRC	67 +		173 RCL 17		278+LBL 88
14 STO 09	68 *	121 RCL 88	174 +	225+LBL 29	279 RCL 26
15 RTH	69 .31938153	122 *	175 RTH	226 *PHTERS?*	288 1
	70 +	123 1		227 PROMPT	281 -
16+LBL -RHDMAB-	71 *	124 +	176+LBL *GEH-INI*	223 STO 21	282 CHS
17 XEQ "RHDHU"	72 RCL 26	125 /	177 FIX 4	229 STO 17	283 ECL 26
13 RCL 14	73 *	126 RCL 90	178 EREG 01	239 STOP	284 RCL 25
19 RCL 13	74 FS? 00	127 X()Y	179 CLE	231 STO 22	285 RTH
28 -	75 GTO 89	128 -	180 -SEED?-	232 ST+ 17	
21 *	76 RTH	129 FS? 01	. 181 PROMPT	233 1	286+LBL *#U-SI
22 RCL 13		138 CHS	182 STO 83	234 -	287 FIX 4
23 +	77. LEL 87	131 GTO 12	183 RTH	235 CHS	283 RCL 87
24 RTH	78 RCL 25			236 STO 23	289 RCL 85
21 KIN	79 CHS	132+L8L 11	184+LBL b	237 RCL 22	298 X12
25+LBL *RHIMI*	8ā STO 25	133 SF 01	185 XEQ "RHDMU"	238 *	291 -
59 XEO - SHDKAS.	81 XEQ 83	134 1	166 XEQ d	239 RCL 21	292 SQRT
25 NEW KNUMB 27 INT	82 1	135 -	187 STO 98	248 *	293 STO 18
	83 X()Y	136 CHS	183 Σ+	241 SQRT	294 RCL 86
28 FIX 8	84 -	137 RTH	189 RCL 88	242 STO 18	295 STO 17
29 RTH	•		198 RTH .	243 8	296 RTH
70 101 10	85+LBL 09	138+LBL 12	170 KIII .	244 STOP	279 11111
38+LBL 19	86 CF 80	139 CF 81	191+LEL B	211 3101	297+LBL a
31 STO 25	87 ENTERT	148 STO 19	192 XEQ "RHDMU"	245 + LBL A -	293 RCL 18
32 ENTERT	88 ENTERT	141 RTH	193 XEQ e		293 RCL 17
33 * *	89 1		194 STO 88	246 STO 68 247 RCL 23	388 RTH
34 2	90 -	142+LBL C	195 Σ+	248 RCL 21	200 Kill
35 /	91 CHS	143 STO 00		249 YtX	ľ
36 CHS	92 RTN	144 RCL 17	196 RCL 98	258 STJ 24	381+LBL *851
37 EtX		145 -	-197 RTH	251 STO 25	392 XPON -EBS1
38 PI	93+LBL c	146 RCL 18			303 RTN
39 2	94 .5	147 /	198+LEL E	252 STO 26	
48 * .	95 X<>Y	148 STO 28	199 STO 88	253 8	394+LBL *XB
41 SQRT	96 X>Y?	149 XEQ 19	288 RCL 16	254 STO 10	385 MEAN
42 /	97 XEG 11	150 STO 87	201 1/X	255 RCL 00	366 PTH
43 STO 26	98 ENTERT	151 1	202 STO 17	256 X=Y?	
44 RCL 25	99 *	152 -	283 STO 18	257 GTO 93	387+LBL *
45 X<8?	198 1/X		204 RCL 00		308 SDEV
46 GTO 87	181 LN	153 CHS	285 RCL 16	258+LEL 06	309 RTN
47 SF 80	182 SQRT	154 RCL 87	286 *	259 1	
	103 STO 80	155 RTH	207 CHS	268 ST+ 19	310+LBL *
49+LBL 03	104 .010328	15241 DE D	208 E1X	261 RCL 18	311 RDN
49 1	195 *	156+LBL D	209 ENTERT	262 CHS	312 RTH
50 RCL 25	106 .802053	157 XEQ C .	210 ENTERT	263 RCL 21	313 END
51 .2316419	•	158 STO 88	211 1	264 +	
52 *		159 X()Y	212 -	265 1	
		168 STOP			

81+LBL "ZS-3"	51 ST+ 14	97+LBL 84	145+LBL 12
82 STOP	52 57+ 15	98 RCL [HD 15	146 X12
	53 BSE 00	99 XEQ a	147 RCL 86
83+LBL C	54 GTO 92	188 XEQ 85	148 1
64 RCL 13	55 RCL 07	191 1	. 149 -
85 RCL 12	56 RCL 86	182 ST+ 15	150 *
86 -	57 /	183 DSE 14	151 PCL 06
87 RTH	58 RTH	184 GTO 84	152 /
		185 RCL 19	153 PTH
88+LBL B	59+LBL c	186 RTH	
89 MEAH	60 RCL 13		154*LBL "XBAR"
18 STO 88	61 +	107+LBL A	155 MEAN
11 RCL 86	62 RCL 12	188 XEQ a	156 RTN
12 570 99	. 63 -	100 NEW W	
. 13 31	64 RTH .	109+LEL 05	157+LBL -SD-
14 STO 38		110 STO 83	158 SDEV
15 0	65+LBL d	111 STO IHD 38	159 RTN
16 STO 87	66 CF 81	112 FS? 87	
10 010 01	67 0	113 XEQ 13	160•LBL a
17+LEL 01	68 RTH	114 ST+ 81	161 EHD
18 RCL IND 30	00 11.11	115 RCL 09	
19 RCL 88	69+LEL D	116 *	
20 -	78 F3? 81	117 67. 00	
21 RSS	71 GTO 63	118 1	
22 ST+ 87	72 38	119 ST+ 86	
23 1	73 STO 83	128 ST+ 19	
24 ST+ 38	70 010 00	121 ST+ 30	
25 DSE 88	74+LBL 03	122 RCL 12	
26 GTO 81	75 1	123 FCL 89	
27 RCL 67	76 ST+ 00	124 X<=Y?	
	77 RCL IHD 89	125 STO 12	
29 /	78 SF 81 ·	126 RCL 13	
38 RTH	79 RTN	127 X()Y	
		128 X>Y?	
31+LEL b	88+LEL e	129 STO 13	
32 MERH	81 CF 01	138 RCL 19	, 4
33 510 93	82 EREG 97	131 RTH	
34 RCL 19	83 CLS	•	
35 STO 00	84 EREG 13	132+LBL 13	
36 31	85 CLE	133 STO 12	
37 STO 14	86 TREG 01	134 STO 13	
38 32	87 CLE	135 CF 97	
39 STO 15	88 SF 07	136 RTH .	
	89 31		
41 STO 87	98 STO 15	137+LBL "MSD"	
	31 210 39	138 SDEY	
42+LBL 82	92 8	139 STO 88	
43 RCL IHD 14	93 STO 19	148 RDH	•
44 RCL 83	94 RTN	141 XEQ 12	
45 -		142 RCL 00	
46 RES		143 XEQ 12	
	96 STO 14	· 144 RTH	
48 *			
49 ST+ 07			
50 2			

		03.00	53 ST+ IHD 00
01+LBL -ST-03-	47+LBL B	81+LBL *ST-87/9*	54 ST+ 86
62 0	43 STO 10	92 9	55 RCL 83
83 STOP	49 1	83 STOP	56 ST+ 81
62 2101	50 ST+ 30	1	57 RCL 88
84+LBL e	51 RCL 18	84+LBL e	58 *
85 EREG 81	52 STO IND 30	85 ΣREG 12	59 ST+ 02
96 CF 96	53 1	96 CLΣ	69 RCL 29
	54 ST- 30	07 EREG 18	61 RTN
87 CLRG	55 SF 86	ØS CLΣ	ØT KIU
93 31	56 RCL 18	09 EREG 24	COALDI QI
09 STO 30	57 RTH	18 CLΣ	62+LEL 81
13 1	JI KIR	11 EREG 01	63 8
11 STO 18	59+LBL 81	12 CLS	64 /
12 SF 07	59 2	13 31	65 RTH
13 0	60 ST+ 38	14 STO 38	66.1.51
14 STOP	61 GTO 82	15-8	66+LBL d
	PT 010 05	16 STO 00	67 "H=?"
15+LBL A	40.101.07	17 -CELLS?-	63 PROMPT
16 STO 18	62+LBL 83	18 PROMPT	69 31
17 STO IND 39	63 STO 12	19 STO 09	70 STO 30
18 FS? 06	64 STO 13	28 "XMIN?"	71 +
19 GTO 81	65 CF 87	21 PROMPT	72 STO 05
28 1	66 EHD	22 STO 12	
21 ST+ 38		23 *W=?*	73+LBL 82
		24 PROMPT	74 RCL IND 30
22+LBL 82		25 STO 11	75 XER R
23 RCL 18		26 RCL 89	76 RCL 05
24 STO 99		27 *	77 RCL 30
25 FS? 87		28 RCL 12	78 X=Y?
26 XEQ 83		29 +	79 GTO 83
27 RCL 19		30 STO 13	S8 GTO 82
28 *			
29 ST+ 81		31 8	81+LEL 83
38 RCL 09		32 RTH	82 RCL 29
31 *		77.101.0	83 RTH
32 ST+ 02		33+LBL A	
33 RCL 19		34 STO 08	84+LBL c
34 ST+ 86		35 STO IND 30	85 1
35 1		36 RCL 13	86 ST+ 00
36 ST+ 19		37 X(=Y?	87 ST+ 10
37 RCL 12		38 GTO 81	88 RCL 89
33 RCL 89		39 RDH	89 RCL 88
39 X(=Y?		48 RCL 12	98 X<=Y?
48 STO 12		41 X>Y?	91 GTO 84
41 RCL 13		42 GTO 01	92 *STOP*
42 X()Y		43 -	93 PROMPT
43 X)Y?		44 RCL 11	94 STOP
44 STO 13		45 /	24 J 101
45 RCL 19	•	46 IHT	05 A1 D1 Q4
		47 14	95+LBL 04 96 RCL IND 10
46 RTH		43 +	97 STO 97
		49 STO 00	98 STO 98
		50 1	
		51 ST+ 29	99 FIX 0
		52 ST+ 30	100 STOP
			101 FIX 4

81+LEL *ZS-4/5*	52 510 15	100.154 5
	53 FS? 84	188+LSL E
82 "DATA?"	54 GTO 82	181 RCL 37
83 PROMPT	55 STOP	182 STO 48
84 EREG 01		193 RCL 96
85 CLS	56 STO 31	104 2
86 8	57 XEQ "CI"	
00 0	58 STOP	185 *
•	• • •	106 STO 15
87+LBL 81	5041.01.03	197 GTO 86
93 STOP	59+LBL 02	
θ9 Σ+	- 68 RCL 30	188+LBL 5
	61 XEQ -TF-	
18 CTO 91	62 XEQ "FYAL"	189 XEQ "HYP"
	63 STOP	
11+L8L D		110+LBL B
12 XEQ "ZA"		111 STO 98
13 RCL 15	64+LPL c	112 SF 85
14 9	65 XED .HAL.	113 RCL 48
15 *	66+LEL C	114 STO 33
16 2	67 RCL 38	115 GTO A
17 /		
13 1/%	68 Xt2	116+LEL 84
19 STO 49	69 STO 48	117 CF 85
	78 RCL 86	
28 SQRT	71 1	118 FS? 64
21 *	72 -	119 GTO 05
22 RCL 49	73 STO 15	128 RCL 83
23 -	13 210 13	121 XEQ "ZA"
24 1		122 STO 31
	74+LBL 86	
25 +	75 FS? 84	123 XEQ CI
26 3	76 G10 87	124 RTH
27 Y 1 X	10 010 01	
28 RCL 15	57.15L 03	125+LBL 95
29 *	77.+LEL 83	126 XEQ "ZCDF"
30 GTO 83	78 STOP	127 XEQ "PYRL"
29 610 65	79 RCL 15	
	88 RCL 48	128 STOP
31+LEL a	81 *	
32 XEQ "HYP"	82 STO 88	129+L8L d
	- · · · · · · · · · · · · · · · · · · ·	130 MEAN
33+LBL A	83 RCL 41	131 STO 37
	84 /	132 SDEV
34 RCL 37	85 RCL 89	
35 STO 48	86 RCL 31	133 \$70 38
36 RCL 38	87 /	134 9
37 RCL 96	• -	135 RTH
38 SCRT	88 STOP	136 END
39 /		
	89+L5L 87	
48 STO 32	98 RCL 48	
41 1/X	91 *	
42 RCL 48		
43 RCL 34	92 RCL 34	
44 -	93 /	
	94 \$10 38	
45 *	95 XEQ "CHISD"	
46 STO 38	96 XEQ "PYAL"	
47 FS? 85	97 STOP	
48 GTO 94	31 31UF	
49 RCL 86		
59 1	98+LEL e	
	99 XEQ "HYP"	
51 -		

		•	· ·	
81+LBL *ZS-6*	44+LBL 12	98+LBL 01	145 GTO 85	197+LBL 86
82 *DATA?*	45 MERH	99 STO 15	146 RCL 13	198 RCL 06
93 PROMPT	46 STO 37	188 FS? 84	147 1	199 1
84 STOP	47 SDEV	181 GTO 83	148 -	288 -
64 3101	48 STO 38	182 STOP	149 STO 15	
85+LBL -DEP-	49 8	193 STO 31	150 RCL 48	201+LBL 07
86 SF 81	50 STO 33	104 XEQ "CI"	151 X12	282 STO 16
87 11	51 RTH	185 STOP	152 *	283 FS? 84
88 GTO 98	VI KIII		153 STO 88	284 GTO 88
69 610 00	52+LBL a	106+LBL 02	154 RCL 96	285 STOP
09+LBL -DEI-	53 XEQ "HYP"	197 CF 85	155 1	286 RCL 41
18 CF 81		188 RCL 38	156 -	297 RCL 30
	54+LBL A	189 XEQ "ZCDF"	157 ST+ 15	288 *
. 11 12	22 XEG -DHS-	118 XER -FYAL-	158 RCL 38	209 ENTERT
40 ALDI 00	56 RCL 48	111 STOP	159 X12	218 ENTERT
12+LEL 00	57 X12	111 010.	160 *	211 RCL 38
13 EREG 01	58 RCL 13	112+LBL 03	161 RCL 00	212 RCL 31
14 STO 18		113 RCL 38	162 +	213 /
15 CLE	59 /	114 XEQ "TF"	163 RCL 15	214 CF 81
16 -9	68 STO 87	115 XEQ -PVAL-	164 /	215 CF 82
	61 RCL +39	116 STOP	165 SQRT	216 RTH
17+LBL 13	62 X12	110 2100	166 STO 33	210 Kin
18 STOP	63 RCL 86	117+LBL 84	100 010 00	217+LEL 88
19 FS? 81	64 /	118 STO 32	167+LBL 05	218 RCL 30
28 -	65 STO 88	119 RCL 48	168 RCL 86	219 XEQ -FCD
21 Σ+	66 RCL 07	120 RCL 34	169 1/X	229 XEQ -PY9
22 GTO 13	67 +		179 RCL 13	221 STOP
	68 SQRT	121 -	171 1/X	221 3101
23+LBL "X TO Y"	69 XEQ 84	122 RCL 32	172 +	222+LEL [
24 MEAN	78 FS? 85	123 /	173 SQRT	223 STO 28
25 STO 47	71 GTO 92	124 STO 38	174 RCL 33	224 RCL 47
26 SDEY	72 RCL 07	125 RTH	175 *	
27 STO 48	73 RCL 08		176 XEQ 84	225 RCL 37
28 RCL 06	74 +	126+LEL b	177 RCL 13	226 / 227 STO 38
29 STO 13	75 RCL 87	127 XEQ "HYP"	178 2	227 STU 30
38 CLΣ	76 /	400.151.5	179 -	
31 0	77 1/X	128+LBL B	180 RCL 96	229 2
32 GTO 13	78 STO 89	129 XEQ "DMS"		230 *
•	79 CHS	138 RCL 27	181 +	231 STO 15
33+LBL d	80 1	131 RCL 86	182 GTO 81	232 FS? 64
34 GTO IND 18	81 +	132 SQRT	107.101.9	233 GTO 69
	82 X12	133 /	183+LEL D	234.STOP
35+LBL 11	33 RCL 06	134 XEQ 84	184 STO 36	
36 MERH -	84 1	135 RCL 06	185 RCL 48	235+LBL 89
37 STO 47	85 -	136 1	186 RCL 38	236 RCL 86
38 SDEV	86 /	137 -	187 /	237 2
39 STO 27	87 STO 88	138 GTO 01	188 X12	238 *
48 8	88 RCL 89	•	189 STO 30	239 GTO 97
41 STO 37	89 X12	139+LBL c	190 RCL 13	248 END
42 CF 91	90 RCL 13	148 XEQ -HYP-	191 1	
43 RTN	91 1		192 -	
	92 -	141+L8L C	193 STO 15	
	93 /	142 XEQ "DMS"	194 FS? 84	
	94 RCL 80	143 RCL 33	195 GTO 86	
	• 95 +	144 X#8?	196 STOP	
	96 1/X			
	97 INT			
	- 71 1111			

91+LBL *ZS-7*	58 -	99+LBL b	144+LBL A
02 0	51 CHS	188 STO 28	145 XEQ -ZA
B3 STOP	52 STO 22	101 STOP	146 STO 31
63 3101	53 1	182 STO 34	147 XEQ TOMS
94+LEL C	54 +	193 RCL 86	148 RCL 13
82 XEG -ZB-	55 2	164 RCL 48	149 STO 08
	56 *	185 *	150 RCL 47
96 STO 31	57 STOP	186 RHD	151 XEQ 83
87 RCL 86	58 RCL 18	107 STO 30	152 X†2
88 STO 68	59 2	188 RCL 28	153 STO 27
09 RCL 40 10 XEQ 03	60 *	189 XXY?	154 RCL 06
	61 STOP	118 GTO 85	155 STO 88
11 RCL 31	62 RCL 18	111 1	156 RCL 37
12 XEQ -CI-	63 1	112 X±Y?	157 XEQ 83
13 STO 05	64 +	113 GTO 04	158 X†2
14 X()Y	65 STO 19	114 CHS	159 RCL 27
15 STO 84	66 2	115 RCL 30	169 +
16 X()Y	67 *	116 +	161 SQRT
17 X>8?	68 STOP	117 STO 30	162 STO 32
18 GTO 01	69 RCL 86	111 010 00	163 RCL 31
19 8	79 RCL 18	113+LBL 84	164 XEQ CI-
28 STO 85	71 -	119 RCL 38	165 STOP
044101-04	72 \$10 22	128 XEQ "SINF"	
21+LBL 81	73 2	121 XEQ *PYAL*	166+LEL a
22 RCL 84	74 *	122 STOP	167 STO 28
23 1	75 STOP	122 0101	168 RCL 13
24 X)Y?	76 RCL 19	123+LBL 05	169 1/X
25 GTO 92	77 RCL 41	124 1	179 RCL 06
26 ENTERT	78 *	125 STOP	171 1/X
07.101.00	79 ENTERT	,	172 +
27+LBL 02	88 ENTERT	126+LBL c	173 STO 33
28 RDH	81 RCL 22	127 STO 34	174 RCL 13
29 RCL 85	82 +	128 RCL 48	175 STO 80
30 RTH	83 /	129 -	176 RCL 47
24.4.01 62	84 STO 84	130 CHS	177 *
31+LEL 03	85 RCL 22	131 STO 23	173 EHTERT
32 ENTERT	86 1	132 RCL 86	179 RCL 86
33 ENTERT	87 +	133 STO 99	189 ST+ 89
34 1	88 RCL 31	134 RCL 34	181 RCL 37
35 -	89 *	135 XEQ 83	132 *
36 CHS	98 RCL 13	136 RCL 23	183 +
37 *	91 +	137 X<>Y	184 RCL 00
38 RCL 98	92 1/X	138 /	185 /
39 /	93 RCL 18	, 150	. 186 STO 99
48 SQRT	94 *	139+LEL 06	187 1
41 STO 32	95 STO 05	148 STO 38	188 -
42 RTH	96 RCL 04	141 XEQ "ZCDF"	199 CHS
17.101.0	97 X<>Y	. 142 XEQ "PYAL"	198 ST* 89
43+L6L 8	98 RTH	143 STOP	191 RCL 88
44 RCL 40	70 1000	143 3101	192 ST* 33
45 RCL 96			193 XEQ -DHS-
46 *			194 RCL 33
47 RHD			195 SORT
48 STO 19			196 STO 32
49 RCL 86			197 /
			198 GTO 86
		103	199 END

103

01+LBL -ZS-8-	52 +	` 103 ST+ 53
82 FIX 4	53 LASTX	. 184 STOP
03 STOP	54 RCL 49	185 STO 52
	55 -	186 RCL 51
04+LEL A	56 RTH	187 *
05 STO 30		183 ST+ 58
06 RCL 03	57+LEL C	189 1
87 STO 15	5 8 \$10 \$7	110 ST+ 54
83 RCL 82	59 RCL 12	111 RCL 54
89 RCL 11	68 RCL 14	112 GTO 82
18 STO 16	61 STO 58	
11 /	62 STO 16	113+LPL D
12 STO 48	63 /	114 EHTER†
13 RCL 30	64 RCL 87	115 RCL 58
14 XEQ -FCCDF*	65 /	116 *
15 STO 31	66 STO 56	117 RCL 48
16 RTH	67 RCL 14	118 *
•	68 RCL 12	119 RCL 53
17+LBL e	69 /	128 *
18 0	78 1/X	121 RCL 59
19 STO 53	71 STOP	122 1
20 STO 54	72 RCL 15	123 +
21 STO 50	73 STC 59	124 /
•	74 ST* 16	
22+LEL 01	75 RCL 13	125+LEL 83
23 STOP	76 /	126 SORT
24 \$10 51	77 1/X	127 STO 49
25 STOP	78 STOP	128 RCL 58
26 STO 52	79 RCL 87	129 +
27 STOP	88 STO 48	138 LASTX
28 1/X	81 STOP	131 RCL 49
29 RCL 51	82 RCL 58	132 -
38 X12	83 STO 15	133 RTH
31 *	84 RCL 56	
32 ST+ 53	85 XEQ *FCCDF*	134*LBL d
33 RCL 51	86 STO 38	135 RCL 59
34 RCL 52	87 RCL 59	136 *
35 *	88 STO 15	137 RCL 48
36 ST+ 58	89 RCL 30	138 *
37 1	98 STOP	139 RCL 53
38 ST+ 54	91 RCL 57	148 *
39 RCL 54	92 XEQ "FCCDF"	141 RCL 58
48 GTO 91	93 RTH	142 1
	75	143 +
41+LBL a	94+LBL E	144 /
42 ENTERT	95 8	145 GTO 83
43 RCL 03	96 STO 53	
44 *	97 STO 58	146 • LBL H
45 RCL 48	98 STO 54	147 XROM "SADVOHE"
46 *		The state of the s
47 RCL 53	99+LBL 82	148+LBL 1
48 *	100 STOP	149 XROM ERROYTHO
49 SORT	101 STO 51	158 .ENT.
58 STO 49	102 X12	
51 RCL 50	10 to 111 to	
9. 1104 00		

271+LBL 86 272 *ALL PEALS* 273 AVIEW 274 RTH 275 EHD

}				
I+LEL *ZS-9*	53 RCL 04	186 EHTERT	155+L9E 03	287*656 6
82 8	54 *	107 KEAH	156 PCL 31	200 570 28
03 FIX 4	55 RCL 06	103 STO 43	157 •	299 8
84 STOP	56 /	109 RDH	158 310 39	218 510 34
01 3101	57 RCL 03	110 STO 47	159 RCL 89	210 370 34 211 PCL 44
85+LEL D	58 /	111 •	168 XEQ "0P14"	212 510 48
86 EREG 81	59 SORT	112 CHS	161 870 49	2:3 X12
87 CLRG	68 510 36	113 Rt	162 610 82	214 1
83 B	61 RCL 33	114 +	3.7	215 -
83 0	62 RCL- 88	115 STO 46	163+LBL c	216 CHS
0041.01 01	63 SORT	116 RCL 45	164 XEQ 64	217 SQRT
89+LEL 81	64 /	117 X()Y	165 X†2	218 1/%
18 STOP ·	65 STO 35	113 RTH	166 ROL 33	219 RCL 15
11 Σ+	66 RCL 15	110 KIN	167 Xt2	228 SQRT
12 GTO 81	67 STOP	119+LEL *0P14*	168 +	221 *
	68 STO 31		169 S9RT	222 RCL 40
13+LEL e		120 RCL 45	178 870 37	223 *
14 RCL 86	69 RTH	121 *	171 GTO 83	224 GTO 05
15 1	24 101 -4013-	122 RCL 46	111 0.0	224 010 00
16 -	70+LBL *0F13*	123 +	1720181 64	225+LEL d
17 STO 14	71 RCL 05	124 RTH	173 STO 80	225¥262 G 226 RCL 48
18 1	72 RCL 06		174 ROL 47	225 ROE 40
19 -	73 *	125+LBL *0P15*	175 -	228 810 43
28 STO 15	74 ENTERT	126 RCL 46	176 X12	229 %12
21 SDEY	75 EHTERT	127 -	177 RCL 88	238 RCL 88
22 X12	76 RCL 81	123 RCL 45	178 /	231 /
23 RCL 14	77 RCL 83	129 /	179 RCL 06	232 STO 88
24 *	78 *	138 RTH	189 1/X	233 ROL 33
25 STO 87	79 -		181 +	234 REL 31
26 RIN	89 RCL 66	131+LEL A	182 SQRT	235 *
27 X12	81 /	132 RCL 31	183 PCL 33	236 X12
28 RCL 14	82 LASTX	133 RCL 35	184 *	237 RCL 98
29 *	83 1	134 *	185 510 38	238 /
38 510 63	84 -	135 STO 39	186 RTH	239 RCL 45
31 RCL 87	25 <i>/</i>	136 RCL 45	100 1111	240 X12
32 *	86 ENTERT	137 STO 49	187 +LBL a	241 -
33 SQRT	87 ENTERT		160 XEG "HYP"	242 CHS
34 EHTERT	83 STEV	138+LBL 82	189 RCL 45	243 STO 42
XEQ *OP12*	89 RIH	139 RCL 39	198 -	243 310 42 244 RCL 06
36 X()Y	98 /	148 +	191 CHS	245 /
37 RCL 44	91 Rt	141 RCL 48	192 RCL 35	246 RCL 42
	92 /	142 LASTX	193 /	248 RUL 42 247 +
38 *	93 STD 44	143 -	. 70	248 RCL 89
39 RCL 88		143 - 144 STOP	194+L8L 85	249 +
48 SORT	94 RTH	שונכ דדו	195 STO 38	250 0
41 *	95ALD1 +0D10+	145+L9L 8 .	196 XEQ "TF"	250 B 251 X)Y?
42 RCL 87	95+LBL *0P12*		197 XEQ "PYAL"	251 A717 252 GTO 86
43 SQRT	96 XEQ *0P13*	146 RCL 31	198 STOP	252 G10 66
44 *	97 EHTER†	147 RCL 36	270 0101	254 SQRT
45 CHS	93 EHTER†	148 *	199+LBL b	
46 RCL 87	99 SDEV	149 STO 39	200 XEG THYPT	255 RCL 31
47 +	100 RDH	150 RCL 46	201 RCL 46	256 *
48 RCL 15	101 /	151 STO 48	282 -	257 RCL 33
49 /	182 Rt	152 GTO 82	283 CHS	258 *
SB SQRT	103 *		264 RCL 36	259 ROL 42
51 STO 33	184 STO 45	153+LEL C	205 /	268 /
52 X12	185 ENTERT	154 XEQ 84	296 GTO 85	261 510 39
			270 610 63	262 FCL 45

01+LBL *ZS-10*		188 \$10 37	156+LEL C	285+LBL D
82 FIX 4	55 ST- 49	109 RCL 03	157 RCL 48	
. 83 CF 01	56 RCL 04	110 RCL 05	15S STO 48	286 RCL 46
04 CF 04	57 X12	111 *	159 RCL 31	267 STUP
85 Đ	58 RCL 02	112 RCL 04	160 RCL 38	288 RCL 47
06 STOP	59 ≉	113 X12	161 *	289 STOP
	68 ST- 49	114 -	162 STO 39	219 RCL 48
87+LPL e	61 RCL 01	115 RCL 49	163 GTO 01	211 STOP
83 RCL 41	62 X12	116 /	100 010 01	
89 STO 87	63 RCL 05	117 SQRT	164+LBL a	212+LBL d
18 RCL 01	64 *	118 RCL 33	165 XEQ -HYP-	213 XPOM "EMLRXY"
11 STO 46	65 ST- 49	119 *		214 EHD
12 RCL 42	66 RCL 13	128 510 38	166 RCL 46	
	67 STO 33	121 RCL 07	167 -	
13 STO 11			168 CHS	
14 RCL 02	68 RCL 46	122 RCL 83	169 RCL 36	
15 STO 47	69 RCL 87	123 /	178 /	
16 RCL 43	78 *	124 STO 88		
17 STO 12	71 ST- 33	125 RCL 27	171+LBL 92	
18 RCL 03	72 RCL 47	126 STO 44	172 STO 38	
19 510 43	73 RCL 11	127 RCL 15	173 XEQ *TF*	
28 RCL 33	74 *	123 STOP	174 XEQ "PYAL"	
21 STO 81	. 75 ST- 33	129 STO 31	175 STOP	
22 RCL 33	· 76 RCL 48	130 RTH		
23 510 82	77 RCL 12		176+LEL b	
24 RCL 31	78 *	131+LEL A	177 XEQ *HYP*	
25 STO 83	79 ST- 33	132 RCL 46	178 RCL 47	
26 3	88 RCL 33	133 STO 48	179 -	
27 -	81 RCL 15	134 RCL 31	188 CHS	
28 STO 15	82 /	135 RCL 36	181 RCL 37	
29 RCL 32	83 SERT	136 *		
30 STO 84	84 STO 33	137 STO 39	182 /	
	85 RCL 95	137 370 37	163 GTO 82	
31 RCL 35		1704151 01	10441.01	
32 STO 85	66 RCL 82	138+LEL 01	184+LEL c	
33 RCL 36	87 *	139 RCL 40	185 XEQ .HYP.	
34 STO 86	68 RCL 86	148 +	186 RCL 48	
35 RCL 30	89 X12	141 ENTERT	187 -	
36 STO 13	98 -	142 ENTERT	188 CHS	
37 RCL 03	91 RCL 49	143 RCL 39	189 RCL 38	
38 RCL 85	92 /	144 2	198 /	
39 *	93 SQRT	145 *	191 GTO 82	
48 RCL 02	94 RCL 33	146 -		
41 *	95 *	147 RTH	192+LBL E	
42 STO 49	96 STO 36		193 RCL 47	
43 2	97 RCL 03	148+LEL B	194 *	
44 RCL 84	98 RCL 02	149 RCL 47	195 570 88	
45 *	99 *	150 STO 48	196 8	
46 RCL 81	188 RCL 81	151 RCL 31	197 STOP	
47 *	181 X12	152 RCL 37.	198 RCL 48	
48 RCL 06	182 -	153 *	199 #	
49 *	183 RCL 49	154 STO 39	200 ST+ 00	
58 ST+ 49	184 /	155 GTO 81	200 STY 00 201 RCL 46	
51 RCL 03	105 SORT	100 010 01	202 ST+ 00	
	186 RCL 33			
52 RCL 86			203 RCL 00	
53 X12	187 *		204 RTH	

ZSTAT

		164 CHS	153 -	
@1+LBL "ZSTAT"	52+LEL 82	105 670 95	154 Ytx	2n= 712
es -zstat-	53 RCL 25	100 310 00	155 RCL 38	207 1
AT PROMPT	54 CHS	165+161 64	156 2	29a -
es RTH	55 STO 25	107 SF 01	157	288 RCF 35
Sec. 19111	56 XE0 61	105 1	153 OHS	21M +
95+LBL "ZODF"	57 1	194 -	159 Eth	211 FIE Ex
86 STO 25	56 XOY	119 CHS	160 *	213 SAFT
67 ENTERT	59 -	111 PTH	161 3	213 /
68 a	40 40 40		163 RCL 21	SI4 XEC .SCDE.
ê9 2	6A+LBL 83	112+LBL 85	163 YtX	215 FTH
10 /	61 CF 00	113 CF 01	164 /	
11 CHS	62 ENTER+	114 RTN	165 RCL 23	216+LBL *FCCIF*
12 Eth	63 1	• • • • • • • • • • • • • • • • • • • •	166 /	217 STO 17
17 PI	64 -	115+LBL *CHISD*	167 STO 25	218 PCL 15
14 2	65 CH3	116 370 38	168 RCL 30	219 2
15 *	66 FTH	117 40	169 RCL 21	226 /
16 3897		118 RCL 15	170 /	221 FR0
17 /	67+LBL "ZA"	119 XXY?	171 874 25	222 0
1: STO 26	66 .5	128 G70 10	172 2	223 >= 47
13 RCL 25	Y<>X E9	121 1	173 ROL 21	224 SF 81
39 X(92	78 X>Y2	132 STO 23	174 *	225 RCL 16
21 GTO 82	71 XEP 04	123 XCY	175 ST0 26	226 2
33 SF 00	72 ENTERT	124 2	176 1	237 /
22 31 00	73 *	125 /	177 370 24	228 FFC
33*LBL 01	74 1/X	126 870 21	111 210 21	229 8
24 1	75 LH	127 IHT	178•LEL 89	238 7447
35 RCL 25	76 SQRT	128 LASTX	179 RCL 30	231 SE 83
25 .2316419	77 STO 25	120 ER348 129 X≠Y?	186 RCL 26	232 FSM 81
	78 .010328	130 GTO 06	181 2	233 GTO 16
27 * 26 +	79 *	131 1	183 +	234 F92 82
29 1/X	88 .802853	132 -	183 STO 26	235 670 11
30 ENTERT	81 +	133 FACT	184 /	236 PCL 15
EL ENTERT	82 RCL 25	134 370 23	185 RCL 24	237 FEC 16
	63 ×	135 GTO 86	186 *	238 X<=Y?
32 EHTER*	84 2.515517	100 010 00	187 STD 24	239 GTO 17
33 1.338274429 34 *	85 ÷	136+LBL 06	188 +	
	85 RCL 25	137 .5	189 X≠Y?	248+L8L 11
5 -1.821255978	87 .001308	136 X=Y?	198 GTO 99	241 CF 02
36 +	* 88			242 PCL 15
37 *	89 .189269	139 GTO 07 140 X<>Y	191 RCL 25 192 *	243 STO 18
38 1.781477937	90 +		193 PTH	244 RCL 16
39 +	91 RCL 25	141 1	173 FIN	245 STO 19
49 *	92 *	142 ÷ 143 ST* 23	194+L8L 10	246 STO 25
41356563782	93 1.432788	144 GTO 96		247 XEQ 15
42 +	94 +	144 510 00	195 9	248 ST0 28
43 *	95 RCL 25	145.131.37	196 *	249 CHS
44 .31938153	96 *	145+LBL 97	197 2	250 STO 21
45 +	97 1	146 PI	198 /	
46 *	98 +	147 SQRT	199 1/X	251+LBL 12
47 REL 26	99 /	148 ST* 23	200 STU 29	252 PCL 18
48 =	199 RCL 25	1.46×1.61 - 30	201 RCL 3A	253 2
49 FS2 88	191 X<>Y	149+LBL 98	202 RCL 15	254 /
50 GTO 83	182 -	150 RCL 30	283 /	255 STO 00
51 RTH	183 FS1 01	151 RCL 21	284 3	256 1
		152 1	285 178	257 ST+ 21

				· •	
258 STO 22	303 STC 19	361 2	412 -	462 RCL 06	513 *
259 STO 23	309 STO 25	362 *	413 STO 25	463 RCL 00	514 STO 39
268 STO 24	310 XEQ 15	363 RCL 25		464 -	515 RCL 48
	311 STO 21	364 /	414+L6L 24	465 ST/ 35	516 + 517 ENTER†
261+LBL 13	312 CHS	365 ST* 23	415 2	466 2	518 ENTERT
262 RCL 22	313 STO 20	366 RCL 23	416 ST+ 25	467 *	519 RCL 39
263 RCL 00	314 1	367 ST+ 22	417 ST+ 26	463 STO 16	528 2
264 X<=Y?	315 ST+ 20	368 1	418 RCL 26	469 RCL 35	521 *
265 GTO 14	316 ST- 21	369 ST+ 24	419 RCL 15	478 1/X	522 -
266 X<>Y	317 XEQ 12	378 GTO 19	420 X<=Y?	471 RCL 34	523 RTH
267 1/X	318 CHS		421 GTO 25	472 *	525 KIII
269 RCL 21	319 1	371+LEL 28	422 RCL 26	473 1	524+LBL "HYP"
269 *	329 +	372 RCL 28	423 1/X	474 RCL 34	525 STO 28
278 RCL 19	321 RTN	373 ST* 22	424 RCL 25	475 -	526 STOP
271 *	700.1.01.10	374 RCL 22	425 *	476 /	527 ST0 34
272 2	322+LEL 18	375 ST+ 17	426 RCL 28	477 XEQ "FCCDF"	523 SF 84
273 ST+ 19	323 CF 02	774.151.01	. 427 X12	478 RTH	529 RTH
274 /	324 RCL 17	376+LEL 21	428 *	4704101 *TE*	027 KIII
275 ST* 23	323 RCL 15	377 1	420 ST# 27	479*LSL *TE*	530+LEL *PYAL
276 1	326 *	378 STO 22	430 RCL 27	480 STO 30	531 STO 29
277 ST+ 22	327 RCL 16	379 1	431 ST+ 22	491 49	532 CF 04
278 RCL 23	328 /	389 STO 24	432 GTO 24	482 RCL 15	533 RCL 28
279 ST+ 24	329 SERT	381 RCL 15	477.1.01.05	483 XXY?	534 X(8?
238 GTO 13	330 RAD -	382 X=Y?	433+LEL 25	484 GTC 28	535 GTO 30
	331 ATAN	383 GTO 26	434 RCL 22	485 STO 16	536 X≠8?
281+LBL 14	332 STO 17	384 RIN	435 RCL 24	486 1	537 GTO 29
282 RCL 29	333 SIH	385 RCL 16	436 *	487 STO 15	538 RDH
283 SART	334/STO 29	386 X=Y?	437 ST- 17	488 RCL 38	539 2
284 ENTERT	335 RCL 17	387 GT0 23	4704171 76	499 X12 498 XEQ "FCCDF"	548 *
285 RCL 25	336 009	388 STO 23	438+LBL 26		541 1
286 YtX	337 STO 21	70041 P1 22	439 RCL 17	491 2	542 X>Y?
287 RCL 24	338 STO 22 339 STO 23	389+LEL 22	448 2	492 / 493 STO 00	543 GTO 38
283 *		398 1 701 CT- 27	441 *		544 P.DN
289 RTN	340 DEG	391 ST- 23	442 PI	494 RCL 16 495 STO 15	545 2
****	341 1	392 RCL 23	443 /	496 RCL 30	546 -
290+LBL 15	342 STO 24	393 ST# 24	444 1 445 -	497 9	547 CHS
291 RCL 15	343 STO 25	394 1 395 ST- 23	446 CHS	498 XXY?	548 RTH
292 RCL 16	344 RCL 16		•		0.0
293 /	345 X=Y? 346 GTO 21	396 RCL 23 397 ST/ 24	447 RTH	499 GTO 27 580 RCL 88	549+LBL 29
294 RCL 17		398 X≠Y?	44041 PL +ECTIC+	501 1	558 RDN
295 *	347 2	399 GTO 22	448+LBL "FCDF" 449 XEQ "FCCDF"	582 -	551 1
296 1	348 -	377 610 22	458 1	503 CHS	552 -
297 +	349 STO 14	480+LPL 23	451 -	504 RTH	553 CHS
298 1/X	350+LBL 19	401 RCL 21		JOY KIN	554 RTH
299 RTH	351 RCL 14	402 ENTERT	452 CHS	585+LBL 27	••••
700.101.16			453 RTH	506 RCL 80	555+LBL 30
300+LBL 16	352 RCL 25	403 RCL 16	454+LBL -BINF-	587 RTN	556 RDN
301 CF 01	353 X=Y?	404 Y1X 405 RCL 20	4544LBL "BINF" 455 STO 88	201 VIII	557 RTH
302 FS? 02	354 GTO 29 355 2	405 × CE 20	456 1	589+LBL 28	1
303 GTO 18	356 ST+ 25	487 ST* 24	457 +	509 RCL 30	558+LBL -DMS
70441.01 47					559 RCL 47
394+LBL 17	357 RCL 21	403 RCL 16	458 STO 35	518 GTO *ZCDF*	568 RCL 37
385 RCL 16	358 X12 359 RCL 24	489 1 410 STO 26	459 2 46 <u>9</u> *	. 511+LEL *CI*	561 -
386 910 18	369 × 24	410 STO 25 411 STO 27	461 STO 15	512 RCL 32	562 STO 40
307 RCL 15	วอนู 🎍	411 JIU 41	401 210 12	OIL NOL DE	563 END

DISTRIBUTION LIST

	NO. OF COPIES
Library, Code 0142 Naval Postgraduate School Monterey, CA 93943	4
Office of Research Administration Code 012A Naval Postgraduate School Monterey, CA 93943	1
Library, Code 55 Naval Postgraduate School Monterey, CA 93943	1
Professor P. W. Zehna Code 55Ze Naval Postgraduate School Monterey, CA 93943	10
Professor D. R. Barr Code 55Bn Naval Postgraduate School Monterey, CA 93943	1
Professor R. Shudde Code 55Su Naval Postgraduate School Monterey, CA 93943	1
Professor P. A. W. Lewis Code 55Lw Naval Postgraduate School Monterey, CA 93943	1

U211171

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01057851 1

U21117