Homework - CS 2020 Problem Sheet #3

Problem 3.1

Prove or disprove the following two propositions:

a)
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

Let
$$(\mathbf{A} \cap \mathbf{B}) \times (\mathbf{C} \cap \mathbf{D}) = \{(\mathbf{a}, \mathbf{b})\}\$$

Then $\{a\} \in A \cap B$ and $\{b\} \in C \cap D$

Meaning both ($\{a\} \in A \text{ and } \{a\} \in B$) and ($\{b\} \in C \text{ and } \{b\} \in D$)

Since a is included in both A and B, and b is included in both C and D, we write:

$$A \times C = \{(a, b)\}\$$
and $B \times D = \{(a, b)\}\$

Now,
$$(\mathbf{A} \times \mathbf{C}) \cap (\mathbf{B} \times \mathbf{D}) = \{(\mathbf{a}, \mathbf{b})\}\$$

Therefore, the proposition is true.

b)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$

Let
$$(\mathbf{A} \cup \mathbf{B}) \times (\mathbf{C} \cup \mathbf{D}) = \{(\mathbf{x}, \mathbf{y})\}\$$

Then $\{x\} \in A \cup B$ and $\{y\} \in C \cup D$

Meaning {x} is included in either A or B and {y} is included in either C or D

Hence, we cannot say that the proposition is true in general, and we can simply proove that by a counter example. I.e. let $\{x\} \in A$ and $\{y\} \in D$, as well as two other values for sets B and C, i.e. $\{w\} \in B$ and $\{z\} \in C$. If we try the proposition, we will have:

$$A \times C = \{(x, w)\} \text{ and } B \times D = \{(z, y)\}\$$

Now,
$$(\mathbf{A} \times \mathbf{C}) \cup (\mathbf{B} \times \mathbf{D}) = \{(\mathbf{x}, \mathbf{w}), (\mathbf{z}, \mathbf{y})\}\$$

Therefore, the proposition is false and disproved.

Problem 3.2

For each of the following relations, determine whether they are reflexive, symmetric, or transitive. Provide a reasoning.

a)
$$R = \{(a, b)|a, b \in Z \land |a - b| \le 3\}$$

(The absolute difference of the numbers a and b is less than or equal to 3.)

- **Reflexive:** \forall a \in Z (a, a) \notin Z because a = a therefore $|a-a| = 0 \le 3$
- Symmetric: \forall a, b \in Z (a, b) \in Z because | a-b | \leq 3 means that: $-3 \leq a-b \leq 3$ (distance from 0 is 3)

And if we multiply by -1 we get:

$$3 \ge b-a \ge -3$$

Therefore, for both (a, b) and (b, a) the absolute value of their difference is going to be 3.

• Not Transitive:

$$\forall \ a, b \in Z \ (a, b) \in R, \ |a - b| \le 3$$

$$\forall b, c \in Z (b, c) \in R, |b - c| \le 3$$

This however doesn't mean that $|a-c| \le 3$ and we can proove that by a counter example:

i.e.
$$a = 8$$
, $b = 5$, $c = 4$ $|8 - 5| = 3 \le 3$ and $|5 - 4| = 1 \le 3$, but $|8 - 4| = 4 \ne 3$

b)
$$R = \{(a, b) \mid a, b \in Z \land (a \mod 10) = (b \mod 10)\}$$

(The last digit of the decimal representation of the numbers a and b is the same.)

- **Reflexive:** \forall a \in Z we have (a, a) \in Z because a mod 10 = a mod 10
- Symmetric: $\forall a \in Z (a, b) \in Z \text{ as a mod } 10 = b \mod 10 \leftrightarrow b \mod 10 = a \mod 10$
- Transitive: \forall a, b \in Z (a, b) \in Z, a mod 10 = b mod 10

And
$$\forall$$
 b, c \in Z (b, c) \in Z, b mod 10 = c mod 10

Therefore, a mod $10 = c \mod 10$

i.e.
$$a = 23$$
, $b = 33$, $c = 43$

$$a\%10 = b\%10 = 3 \text{ (TRUE)}$$

 $b\%10 = c\%10 = 3 \text{ (TRUE)}$
 $a\%10 = c\%10 = 3 \text{ (TRUE)}$

Problem 3.3

Consider the two Haskell functions cnt and con defined below.

Proof by induction over s that cnt x (con s t) == (cnt x s) + (cnt x t) holds.

Proof by Induction

To prove property $\operatorname{cnt} x (\operatorname{con} s t) == (\operatorname{cnt} x s) + (\operatorname{cnt} x t)$ by induction we have:

- Base case: // Prove P([]) //
- a) Consider s to be an empty string (base case s = []). Thus, we write:

On left hand side:

On right hand side:

 $\operatorname{cnt} x (\operatorname{con} [] t) = \operatorname{cnt} x t$

(cnt x []) + (cnt x t) = 0 + cnt x t = cnt x t

LHS = RHS -> The property is true for base case.

- Induction step: // Prove P(xs)(Induction Hypothesis) implies P(x:xs)(new variable x)
- b) Assume the statement is true \forall s.

```
cnt x (con s t) = (cnt x s) + (cnt x t)
```

c) Prove the statement is true for s with an additional element v. We assume v is added to the front

```
of s. \Rightarrow cnt x (con v:s) t) = (cnt x v) + (cnt x t)
```

From patter matching of con we get:

```
con(x:xs)ys = x:con(xs:ys)
```

Resulting: $cnt \ x(con(v:s)t) = cnt \ x(v:(con \ s \ t))$

From the pattern matching of con

```
con x (y:ys)
```

$$x == y = 1 + (cnt x ys)$$

otherwise = cnt x ys

If
$$x = v$$

Then, cnt x(v: (con s t)) = 1 + cnt x(con s t)

Recall cnt x(con s t) = (cnt x s) + (int x t)

$$0 + \operatorname{cnt} x(\operatorname{con} s t) = 0 + (\operatorname{cnt} x s) + (\operatorname{cnt} x t)$$

From the pattern matching of cnt, we know that

$$cnt(x (v:s)) = (cnt x s) = 0 t(cnt x s)$$

As a result
$$0 + (\operatorname{cnt} x s) + (\operatorname{cnt} x t) = \operatorname{cnt}(x(v:s)) + (\operatorname{cnt} x t)$$

In both cases, whether x is equal to v or not, we have proven that:

$$Cnt \ z(con \ (v:s) \ t) = (cnt \ x(v:s)) + (cnt \ x \ t)$$