一、 填空题 (每空3分

1. 复数 $(\frac{2}{i} - \frac{2+2i}{1-i}i)$ 的三角表达式为

2. 已知 $z^2 + 8 = 0$,则z =

3. 已知 $e^z = -1 - i$,则z = $4. \quad \oint \cos(z^2 + 1) dz =$

7. 幂级数 $\sum_{n=1}^{n} z^n$ 的收敛半径为.

8. Res $\frac{1}{2021i-z}$, 2021i =

9. $\operatorname{Res}\left[\frac{z-\sin z}{z^6},0\right] =$

10. 函数 $f(z) = \frac{\sin z^3 + i}{z^3(z^2 + 9)}$ 的奇点为

的导数。

二、函数f(z)=6xy+5+3x²yi-3i在何处可导?何处解析?并在可导点处求出该函数

15 本题分数 水 學 证明 $u(x,y) = x(1-x) + y^2$ 为调和函数,并求出解析函数 f(z) = u(x,y) + iv(x,y),

(使满足 f(i)=1+i。

			$\oint_{ z =1}^{6} \frac{e^{z}}{z(z+2)} dz$		
			2	其中 c: z =3	
. 30		贸分。	dz	$-\frac{1}{2}dz$,	
本题分数	得分	计算以下积分。	$\oint_{ z-1 =1} \frac{\cos z}{(z-1)^3} e^{-1}$	$\oint_{\mathcal{C}} \frac{e^z}{z(z-1)(z-1)}$	
		EI EI	-	3.	

②将 f(z)=z²ez 在0<|z|<+∞内展成洛朗级数

二

$$U(x,y) = 6xy + 5$$
, $V(x,y) = 3x^2y - 3$
 $Ux = 6y$, $Uy = 6x$
 $Vx = 6xy$, $Vy = 3x^2$
 $C - R 方 \hat{x} = \begin{cases} Ux = Vy \\ Uy = -Vx \end{cases}$
 $\Rightarrow \begin{cases} 6y = 3x^2 \\ 6x = -6xy \end{cases} \Rightarrow \begin{cases} \chi = 0 \\ y = 0 \end{cases}$
 $\therefore \text{ (a. ...)}$

: (Q 在 Z = 0 成立 C - R 条件 (Q 在 Z = 0 处可导,处处不解析 $f'(0) = (6y + 6xyi)|_{(0,0)} = 0$

:
$$f(z) = \int 1 - 2z dz = -2^2 + z + C$$

$$c = 0, f(z) = -z^2 + z$$

そに在12-11に内部 (05天在12-11=1内部解析 由高阶导数公式 原式 = $2\pi 1 \cdot \frac{1}{2!} \cdot \frac{1}{2!$ = Tilim - (05Z

= - Ti (051

8-0 22 = 271; es シー 13 | 3

 $= \pi i (1-2e+e^2)$

20 112110 1 BH/BH3/ - 418H) 2748+3 - 21841 f(2)=

五旬 fiz= ze=左021212+2 内是处处解木斤的,已知有 $e^{\frac{7}{2}} = \sum_{n=0}^{\infty} \frac{7^n}{n!}, |7| < +\infty$ 而生在021212+的解析 故 $e^{\frac{1}{2}} = \sum_{n=0}^{\infty} \frac{(\frac{1}{2})^{n}}{n!}$, $0 < |\frac{1}{2}| < +\infty$ $e^{\frac{1}{2}} = \sum_{n=0}^{\infty} \frac{z^{-n}}{n!}, 0 < |z| < +\infty$: $f(z) = z^2 e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{z^{2-n}}{n!}$, $oz|z|z+\infty$