Approximate symmetries of Hamiltonians

Joint work with Steve Flammia arXiv:1608.02600

Christopher Thomas Chubb

Centre for Engineered Quantum Systems University of Sydney

AIP 2016

Goals

- Use symmetries to indirectly study ground space
- Show non-commuting symmetries imply degeneracy
- Extend analysis to approximate symmetries

Goals

- Use symmetries to indirectly study ground space
- Show non-commuting symmetries imply degeneracy
- Extend analysis to approximate symmetries

Goals

- Use symmetries to indirectly study ground space
- Show non-commuting symmetries imply degeneracy
- Extend analysis to approximate symmetries

Symmetries

For a system with a Hamiltonian H, an exact symmetry S is a unitary with

Exact symmetry :

$$[H,S]=0$$

We will consider relaxing this to

Approximate symmetry :

$$||[H,S]|| \le \epsilon$$

Symmetries

For a system with a Hamiltonian H, an exact symmetry S is a unitary with

Exact symmetry:

$$[H,S]=0$$

We will consider relaxing this to

Approximate symmetry :
$$||[H, S]|| \le \epsilon$$

$$||[H,S]|| \le \epsilon$$

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

$$\sigma(H) =$$

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

$$\sigma(H) =$$

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

$$\sigma(H) =$$

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

Start with a Hamiltonian H with a band which is:

- Exactly degenerate
- The ground space
- Gapped

- Serves as crude signal of phases of matter, e.g. topological order.
- In the context of quantum codes, degeneracy corresponds to code size.

$$H = -\sum_{i} Z_{i} Z_{i+1}$$

The Quantum Ising model has:

• Two non-commuting symmetries

$$\bar{X} = \prod_i X_i \qquad \bar{Z} = Z_1.$$

Two-dimensional ground space

$$G = \mathsf{Span}\{\ket{000\dots},\ket{111\dots}\}$$

$$H = -\sum_{i} Z_{i} Z_{i+1}$$

The Quantum Ising model has:

• Two non-commuting symmetries

$$\bar{X} = \prod_i X_i \qquad \bar{Z} = Z_1.$$

Two-dimensional ground space

$$G = \mathsf{Span}\{\ket{000\dots},\ket{111\dots}\}$$

$$H = -\sum_{i} Z_{i} Z_{i+1}$$

The Quantum Ising model has:

• Two non-commuting symmetries

$$\bar{X} = \prod_i X_i \qquad \bar{Z} = Z_1.$$

• Two-dimensional ground space

$$G = \mathsf{Span}\{|000\ldots\rangle, |111\ldots\rangle\}.$$

$$H = -\sum_{i} Z_{i} Z_{i+1}$$

The Quantum Ising model has:

• Two non-commuting symmetries

$$\bar{X} = \prod_i X_i \qquad \bar{Z} = Z_1.$$

• Two-dimensional ground space

$$G = \mathsf{Span}\{|000\ldots\rangle, |111\ldots\rangle\}.$$

Non-commuting symmetries

To certify degeneracy we want non-commuting symmetries.

For some phase η , the twisted commutator is defined

$$[U,V]_{\eta}:=UV-\eta VU$$

We are going to consider approximately twisted commuting symmetries

$$||[U,V]_{\eta}|| \leq \delta.$$

Non-commuting symmetries

To certify degeneracy we want non-commuting symmetries.

For some phase η , the twisted commutator is defined

$$[U,V]_{\eta}:=UV-\eta VU.$$

We are going to consider approximately twisted commuting symmetries

$$||[U,V]_{\eta}|| \le \delta.$$

Non-commuting symmetries

To certify degeneracy we want non-commuting symmetries.

For some phase η , the twisted commutator is defined

$$[U,V]_{\eta}:=UV-\eta VU.$$

We are going to consider approximately twisted commuting symmetries

$$||[U, V]_{\eta}|| \leq \delta.$$

Restriction to groundspace

Lemma

For any approximate symmetry

$$||[U, H]|| \leq \epsilon,$$

there exists a unitary $\it u$ on the ground space, which approximates the action of $\it U$

$$||u - \Pi U \Pi|| \le 3\epsilon/\Delta$$
,

where Π is the ground space projector.

This allows us to restrict to the ground space with low distorsion

$$\|[U,H]\|,\|[V,H]\| \leq \epsilon,\ \|[U,V]_{\eta}\| \leq \delta \qquad \Longrightarrow \qquad \|[u,v]_{\eta}\| \leq \delta' := \delta + 12\epsilon/\Delta$$

Restriction to groundspace

Lemma

For any approximate symmetry

$$||[U, H]|| \leq \epsilon,$$

there exists a unitary $\it u$ on the ground space, which approximates the action of $\it U$

$$||u - \Pi U \Pi|| \le 3\epsilon/\Delta$$
,

where Π is the ground space projector.

This allows us to restrict to the ground space with low distorsion

$$\|[U,H]\|,\|[V,H]\| \leq \epsilon, \ \|[U,V]_{\eta}\| \leq \delta \qquad \Longrightarrow \qquad \|[u,v]_{\eta}\| \leq \delta' := \delta + 12\epsilon/\Delta$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Theorem

If η is a dth root of unity, then $[u, v]_{\eta} = 0$ implies that $\dim(u)$ is a multiple of d.

$$u(v|\lambda\rangle) = \eta v u |\lambda\rangle = \lambda \eta (v|\lambda\rangle)$$

Approximate case

If we relax

$$[u, v]_{\eta} = 0$$
 \rightarrow $||[u, v]_{\eta}|| \le \delta'$

then once again starting from λ -eigenvector and considering the action of v:

$$|\langle \lambda | v^{\dagger} u v | \lambda \rangle - \lambda \eta| \le \delta'$$

Approximate case

If we relax

$$[u,v]_{\eta} = 0 \qquad \rightarrow \qquad \|[u,v]_{\eta}\| \le \delta'$$

then once again starting from λ -eigenvector and considering the action of ν :

$$|\langle \lambda | v^{\dagger} u v | \lambda \rangle - \lambda \eta| \le \delta'$$

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

For η a dth root of unity $\|[u,v]_{\eta}\|<\frac{2}{d-1}\left[1-\cos\pi/d\right]$

implies all arcs are non-overlapping, and so the degeneracy is at least d.

Certifiable degeneracy

If we have $\|[u,v]_\eta\|\leq \delta'$ for $\eta:=e^{2i\pi\alpha}$, then the degeneracy we can certify is

Conclusion

- Non-commuting symmetries can serve as certificates of degeneracy
- Twisted commutation gives provable degeneracy certification
- These certificates are valid even with approximate commutation relations
- In the full paper (arXiv:1608:02600) we were able to extend these results to more general norms and more general bands

I will also be presenting a poster on this work, number 229 on Tuesday night (1800-2000).