CO - RELATED SUB QUERY

A query written inside another query such that the outer query and the inner query are Dependent on each other, this is known as Co-Related Sub-Query.

WORKING PRINCIPLE:

Let us consider two queries inner and outer query respectively,

- 1. Outer query executes first but partially
- 2. The partially executed output is given as an input to the inner Query
- 3. The inner query executes completely and generates an output
- 4. The output of inner query is fed as an input to the Outer query andOuter
 - Query produces the result.
- 5. Therefore, we can state that the outer query and the inner query both areINTERDEPENDENT (dependent on each other).

NOTE:

- i. In co-related sub query a <u>Join condition</u> is a must, And must be written <u>only in the Inner Query</u>.
- ii. Co-Related sub query works with the principles of both SUB QUERY & JOINS .

Example:

DEPT

DNAME	DNO
D1	10
D2	20
D3	30
D4	40

EMP

ENAME	<u>DNO</u>
A	20
В	10
С	20
D	30

SELECT DNAME FROM DEPT D

40 = 10

40 = 20

40 = 30

False

False

False

1. WAQTD dnames in which there are employees working .

SELECT DNAME
FROM DEPT D
WHERE D.DEPTNO IN (SELECT E.DEPTNO
FROM EMP E
WHERE D.DEPTNO = E.DEPTNO);

2. WAQTD dname in which there are no employees working.

SELECT DNAME
FROM DEPT D
WHERE D.DEPTNO NOT IN (SELECT E.DEPTNO
FROM EMP E
WHERE D.DEPTNO = E.DEPTNO);

<u>DIFFERENCE BETWEEN SUB OUERY AND CO RELATED SUB OUERY</u>.

SUB OUERY	CO-RELATED SUB OUERY
Inner query executes first	Outer query executes first
Outer query is dependent on inner query	Both are interdependent
Join condition not mandatory	Join condition is mandatory and must be written in inner query
Outer query executes Once	Outer query executes Twice.

EXISTS & NOT EXISTS OPERATORS

1. **EXISTS**:

- Exists Op is a Unary Op (One Operand) which can accept One Operand Towards RHS and that Operand has to be a Co-related Sub Query.
- Exists Op returns true if the Sub Query returns Any valueother than Null.

2. NOT EXISTS:

- Not Exists Op is a Unary Op (One Operand) whichcan accept One Operand Towards RHS and that Operand has to be A Co-related Sub Query.
- \blacktriangleright Not Exists Op returns true if the Sub Query returns NULL .

To Find MAX & MIN salary

To find MAXIMUM salary:

SELECT SAL FROM EMP E1

WHERE (SELECT COUNT(DISTINCT SAL) FROM EMP E2

WHERE E1.SAL < E2.SAL) = N-1;

TO FIND 3^{rd} max salary (N = 3):

E1.SAL	
1000	
3000	
2000	
3000	
2000	
4000	
5000	

3000

SELECT SAL
FROM EMP E1
WHERE (SELECT COUNT (DISTINCT SAL)
FROM EMP E2

WHERE E1.SAL<E2.SAL) = 2;

E1.SAL	E2.SAL
1000	1000
3000	3000
2000	2000
3000	3000
2000	2000
4000	4000
5000	5000

SELECT SAL FROM EMP E1 WHERE (SELECT COUNT(DISTINCT SAL) FROM EMP E2

WHERE E1.SAL < E2.SAL) in (1,3,4,6);

To find MINUMUM salary:

SELECT SAL

FROM EMP E1

WHERE (SELECT COUNT(DISTINCT SAL)

FROM EMP E2

WHERE E1.SAL \geq E2.SAL \rangle = N-1;