WO 01/19747

PCT/DE00/02743

Laminated safety glass and PVB film for producing the same

Technical field

1

5 The invention relates to laminated safety glass with improved acoustic properties, and also to a PVB film for producing the same. Laminated safety glass is generally composed of two panes of glass and of an adhesive film bonding the panes. The vast majority of adhesive films used are films made from plasticized, partially acetalized polyvinyl alcohols, in particular from polyvinyl butyral (PVB). Examples of use of the abovementioned laminated safety glass are windscreens in the motor vehicle sector, and also glazing in the construction sector.

The plasticizers mainly used in industry for PVB are aliphatic diesters of tri- or tetraethylene glycol. These include 3GH, 3G7, 3G8, and also 4G7, where the prefixed figure indicates the number n in the repeat the oligoethylene $H-(O-CH_2-CH_2)_n-OH$ of fraction and H indicates 2-ethylbutyrate, 7 indicates n-heptanoate and 8 indicates 2-ethylhexanoate. Examples of other known plasticizers for polyvinyl butyral are 25 adipates with aliphatic or, dialkyl respectively, cycloaliphatic ester components, dialkyl sebacates, triorganophosphates, triorganophosphites and phthalate plasticizers, such as benzyl butyl phthalate.

Ocompared with monolithic panes of glass with the same overall thickness, laminated safety glass has higher sound insulation. This is attributable to the fact that the elasticity of the PVB film reduces the mechanical coupling between the individual panes, and thus hinders the transfer of vibration from the side of the pane facing the sound source to the opposite side of the pane.

- 2 -

The insulation efficiency of glazing can be determined function of the frequency to DIN 52210 DIN EN ISO 717, and is expressed by the insulation value Rw, which is a weighted average over the frequency range from 100 to 3150 Hz relevant for the acoustics of buildings. A higher value R_w here represents better sound insulation by the glazing. For example, a pane of conventional laminated glass with the structure 3 mm of glass/0.38 mm of PVB film/3 mm of glass can achieve a R_w of 33 dB, whereas 32 dB is the value measured for a monolithic pane of thickness 6 mm.

However, the insulation performance of known laminated safety glass is inadequate for many applications. When the sound insulation provided by laminated safety glass 15 of the prior art, with a conventional PVB film as intermediate layer, is measured at room temperature the insulation rises steadily and approximately linearly within a wide range with increasing frequency, but a in insulation (relative minimum 20 marked drop insulation, coincidence drop) can be seen in particular in the frequency range from about 1000 to 3500 Hz. The position of this coincidence drop depends thickness of the glasses used. If each of the panes used has a thickness of 4 mm the coincidence drop is 25 approximately in the range from 1 250 to 2 500 Hz, and if thinner panes are used the insulation drop shifts to higher frequencies, while the range is shifted toward lower frequencies if thicker panes are used. The term coincidence frequency is used below for the frequency 30 which the insulation curve passes through relative minimum in the range of the coincidence drop.

Prior art

10

Proposals have previously been made for improving the sound insulation performance of laminated safety glass.

US 5,773,102 (= EP 0 763 420 A1) discloses laminated safety glass in which a specific acoustic film is used,

- 3 -

besides a standard PVB film, to improve acoustic properties.

DE 197 05 586 C1 and EP 0 844 075 A1 likewise propose a thermoplastic intermediate layer itself having than one layer, for a sound-insulating laminated pane of glass for motor vehicles. The laminate is composed of a viscoelastic acrylic polymer film, each side of which has been bonded via a polyethylene terephthalate 10 from 0.01 0.1 mm thickness film of to thermoplastic adhesive polyvinyl butyral film to two panes of silicate glass.

intermediate layers However, of this type which involve themselves have more than one layer complications in production, and frequently also in further processing.

Finally, DE 24 61 775 Al discloses laminated safety glass in which, although the addition of very large amounts of standard plasticizer, in this case Flexol, achieves improved sound insulation, the amount of plasticizer used leads to increased tack, and the film therefore has limited capability for further processing using conventional systems.

25

30

35

15

20

Object

It is therefore an object of the present invention to provide, for laminated glass, an intermediate film which if possible has one layer and which is based on PVB, and which can give the laminated glass produced from the same improved sound insulation at room temperature, without any substantial alteration in ease of processing. A further object of the invention is to provide laminated glass having an intermediate layer based on PVB and providing improved sound insulation at room temperature.

- 4 -

Description of the invention

The invention achieves this object by means of laminated safety glass according to claim 1, preferably combined with one or more of the features of the subclaims, and, respectively, by means of a sound insulating film according to claim 7.

At the heart of the present invention is the use of a polyalkylene glycol of the formula $HO-(R-O)_n-H$ or derivatives of the same as a plasticizer, in addition to at least one first plasticizer known per se, in a PVB film.

Compared with conventional plasticizers, polyalkylene 15 glycol or derivatives of the same used as coplasticizer in a PVB film bring about a marked improvement in sound insulation in laminated glass produced with a film of this type. In particular, the otherwise pronounced fall-off of sound insulation in the coincidence region 20 significantly less pronounced. Compared with a standard film composition, the proportion of polyvinyl butyral and/or of the standard plasticizer used in each case in the PVB film can be reduced and replaced by a polyalkylene glycol or a derivative of the same. The general embodiment of the invention is characterized by 25 the fact that the polyalkylene glycol or, respectively, a derivative of the same, mixed with one or more conventional plasticizers, plasticizes the PVB resin.

In the general embodiment of the invention the total of the plasticizing components (polyalkylene glycol + conventional plasticizer) makes up from 20 to 50% by weight of the film. In its preferred embodiment the total plasticizer content is from 25 to 40% by weight and in the most preferred embodiment is from 30 to 35% by weight. The proportion of the polyalkylene glycol of the invention in the film here amounts to more than 5% by weight in the preferred case and to more than 10% by

- 5 -

weight in the most preferred case, in each case based on the total composition of the film.

For the purposes of the invention, polyalkylene glycols which have an average polymerization DP of 6 or higher, but where this degree so high that combination with the components of the film gives unacceptable haze in the laminated glass. Haze values which should be regarded 10 as unacceptable when measured to ASTM D1003-6 are those above 3% haze or, respectively, ΔL deviations between greater than 3 found in comparative measurements of the duplex glass laminated with PVB film and duplex glass with no PVB film and taking $\rm L_{(laminate)}\text{-}L_{(duplex\ glass)}$ = $\Delta \rm L$ in with DIN 5033. The 15 accordance haze values preferably below 1.5%, in particular below 1% haze for a film thickness of 0.76 mm.

purposes of For the invention, the specific 20 polyalkylene glycols may be poly(ethylene oxides), including block copolymers of the type HO-(CH2-CH2-O)n- $(CH_2-CH(CH_3)-O)_m-H$, poly(propylene oxides) (butylene oxides), or else derivatives of the same, but poly(propylene oxides) are not preferred, since their effectiveness is low. The non-derivatized polyalkylene 25 glycols of the invention should have an average degree of polymerization - referred to below as DP - of at least 6. Examples here are Pluriol® E 600 from BASF with an average degree of polymerization DP of 13.6 and Pluriol P 2000 from BASF with an average degree of 30 polymerization DP of 15.5.

For the purposes of the invention, derivatives of polyalkylene glycols are those in which the hydrogen of at least one of the two terminal hydroxyl groups of the polyalkylene glycol has been replaced by an organic radical. Possible examples here are ethoxylated fatty alcohols, ethoxylated fatty acids, such as the

35

polyethylene glycol ester of oleic acid, or monoethers polyalkylene glycol with monohydric aliphatic alcohols, such as methanol or ethanol. Other examples are Marlophen® NP 6 from Condea, whose structure has a polyethylene glycol fraction with a DP of 6 and an isononylphenol fraction on one of the two hydroxyland also Marlipal® 0 13/100 terminated ends, Condea, whose structure has a polyethylene fraction with a DP of 10 and a C_{13} oxo alcohol. In these monoderivatives of polyalkylene glycols, the DP of the polyalkylene glycol fraction must be at least 2. The upper DP limit is given by the compatibility with the other components of the film.

10

If the hydrogen of two terminal hydroxyl groups of the 15 polyalkylene glycol fraction has been replaced by an organic radical, the polyalkylene glycol fraction must have a DP of at least 6. An example here is PEG-400 di (2-ethylhexanoate), a poly(ethylene glycol) 20 di (2-ethylhexanoate), whose poly(ethylene fraction molecular weight has an average 400 [g/mol].

resins used in the novel film are partially acetalized polyvinyl alcohols 25 known per particular polyvinyl butyral. The partially acetalized polyvinyl alcohols are prepared in a known manner by acetalizing hydrolyzed polyvinyl esters. Examples of aldehydes which may be used are formaldehyde, 30 acetaldehyde, propionaldehyde, butyraldehyde like, preferably butyraldehyde. The preferred polyvinyl butyral resin contains from 10 to 25% by weight, preferably from 17 to 23% by weight and particularly preferably from 19 to 22% by weight, of vinyl alcohol radicals. The polyvinyl butyral may also, if desired, 35 contain from 0 to 20% by weight, preferably from 0.5 to 2.5% by weight, of acetate radicals. Wherever the term polyvinyl butyral or PVB is used in this application it

- 7 -

generally also includes the other partially acetalized polyvinyl alcohols.

Besides the above-described polyalkylene glycols according to the invention, at least one further plasticizer is used. This is preferably a standard plasticizer selected from the group consisting of

- esters of polybasic aliphatic or aromatic acids, e.g. dialkyl adipates such as dihexyl adipate, dioctyl adipate, hexyl cyclohexyl adipate, mixtures of hepty and nonyl adipates, diisononyl adipate, heptyl nonyl adipate, and also esters of adipic acid with cycloaliphatic ester alcohols, dialkyl sebacates such as dibutyl sebacate, and phthalates such as butyl benzyl phthalate;

10

15

35

esters of polyhydric aliphatic or aromatic alcohols or oligoether glycols having not more than four ethylene glycol units with one or more unbranched or branched aliphatic or aromatic substituents, esters of di-, tri- or tetraglycols with linear or 20 cycloaliphatic branched aliphatic or carboxylic acids; Diethylene glycol bis(2-ethylhexanoate), triethylene glycol bis(2-ethylhexanoate), triethylene glycol bis(2-ethylbutanoate), tetraethylene glycol triethylene qlycol bis-n-25 bis-n-heptanoate, heptanoate, and triethylene glycol bis-n-hexanoate can serve as examples of the latter group.

Particularly preferred standard plasticizers are 30 di-n-hexyl adipate (DHA) and triethylene glycol bis-n-heptanoate (3G7).

To produce the novel PVB film with improved sound the liquid, paste or solid polyalkylene insulation, the standard component is mixed with glycol plasticizer, giving either a homogeneous solution of the polyalkylene glycol component in the plasticizer component if the polyalkylene glycol and or,

- 8 -

plasticizer are incompatible, a dispersion. The mixture made from plasticizer and polyalkylene glycol component is then processed together with the pulverulent polyvinyl butyral, while supplying heat and mechanical work, to give a homogeneous film mass, and this material is preferably extruded through a flat-film die to give a web of film. Further constituents which may, if desired, be present in the film are dyes, light stabilizers, stabilizers, processing aids, water, and also adhesion regulators.

The water content of the films is preferably set at from 0.15 to 0.8% by weight, in particular from 0.4 to 0.7% by weight.

15

20

25

30

35

10

Besides the improved insulation properties, the novel laminated safety glass (LSG) has the properties featured by LSG, resistance such as to breakage, and transparency. For retention example, splinter adhesion tests on the glass using a pummel test give values of 8-10 for the fire side and 7 for the tin side of the glass.

Methods of working the invention, and also comparative example

Example 1

triethylene glycol parts by weight of n-heptanoate (3G7) as standard plasticizer, together Pluriol® 11 parts by weight of 600, unsubstituted poly(ethylene glycol) with an average molar mass of 600 [q/mol] or an average degree of polymerization DP of 13.6, and also 0.15 part by weight of Tinuvin® P UV absorber (manufacturer: Ciba) were added to 67 parts by weight of a polyvinyl butyral resin with a vinyl alcohol radical content (OH group content calculated as vinyl alcohol content) of 20.5% by weight and a vinyl acetate radical content of 0.7% The mixture was extruded at by weight.

- 9 -

temperature of about 200°C in a twin-screw extruder with a flat-film die to give a transparent film of thickness 0.76 mm.

The PVB film and each of two panes 5 of glass of $1480 \times 1230 \times 4 \text{ mm}$ dimensions then underwent a by simultaneous heating and lamination process, compression in an autoclave, to give panes of laminated glass. The sound insulation value R_{W} of these panes was determined to DIN EN ISO 717 across the frequency band 10 from 50 Hz to 5000 Hz at frequency intervals of one temperature of third of an octave. The the test specimen and of the test room was 21°C. Results of these measurements are shown in diagram 1 in the form 15 of an insulation curve, in which higher values measured at a particular frequency signify better insulation.

Comparative example (example 2)

insulation curve, shown for comparison diagram 1, of laminated glass with the structure 4 mm 20 of glass/0.76 mm of standard PVB/4 mm of glass, with 26% by weight of 3G7 as plasticizer, shows a clear drop in insulation between 1000 and 2000 Hz. This phenomenon known coincidence drop and as represents characteristic with 25 weakness respect exclusion - of laminated glass produced with standard PVB.

The relative minimum in the sound insulation in the coincidence region is at about 1900 Hz, i.e. the coincidence frequency is 1900 Hz. At this frequency the insulation, at about 31.5 dB, is more than 5 dB below the corresponding value for the film according to example 1.

Examples 3 to 7

The examples 3 to 7 given in the table below were carried out as for example 1. The sound insulation curves for these examples 3 to 7 were at a level similar to the curve according to example 1.

Example/	1	2	3	4	5	6	7
constituent		(comparative)					
Polyvinyl butyral	67	74	67	67	67	67	67
DHA ⁽¹⁾	_	_	_	22	_	22	22
3G7 ⁽²⁾	22	26	22	_	16.5		_
Pluriol® 600 ⁽³⁾	11	_	<u> </u>	11	-		_
Marlophen NP 12 (4)	-	_	11	-	16.5		_
Marlophen® NP 6 (5)	-	-	-	-	-		11
Poly-THF 650 ⁽⁶⁾						11	
UV absorber	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Property							
Film thickness	0.76	0.76	0.76	0.76	0.76	0.76	0.76
[mm]							
Haze Δ L	-0.32			0.01		0.26	-0.16
R _w ⁽⁷⁾	37.0	35.4	36.4	37.3	36.1	36.2	36.9

- (1) Di-n-hexyl adipate
- (2) Triethylene glycol bis-n-heptanoate
- Poly(ethylene glycol) with an average molecular weight of 600 [g/mol]
 - Monolaterally substituted PEG with a polyethylene glycol fraction with a DP of 12 and an isononylphenol fraction on one of the two hydroxyl-terminated ends.
- (5) 15 Bilaterally substituted PEG with a polyethylene fraction with DP of 6 and glycol a an isononylphenol fraction on of the one two hydroxyl-terminated ends.
- (6) Polybutylene glycol with a DP of about 9 from 20 BASF.

- 11 -

 \cdot (7) Sound insulation value in dB measured to DIN EN ISO 717.

For all of the films of the examples the haze values

found for the laminated glass were low and comparable
with those for laminated glass laminated using a PVB
film plasticized in a manner known per se. Despite the
increased total plasticizer content, 33% by weight
compared with 26% by weight in comparative example 2,

there was no significant impairment of the handling
properties of the film, in particular its tack. In
comparison with this, a film with 33% by weight of 3G7
content would have a limited capability for further
processing using conventional systems, due to high tack

- as a result of plasticizer exudation.