

Figura 2.12: ΔV_{th} al variare della dose per diversi metodi di estrazione, per dispositivi con dimensione $W = 100 \mu m$ e L = 30 nm.

2.3 Variazione della transconduttanza

Un parametro utile ad indicare quanto un dispositivo MOSFET possa regolare la corrente di drain I_D , attraverso la tensione V_{GS} , è la transconduttanza g_m . Essa è definita dal rapporto incrementale:

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

Nel caso in cui il MOSFET si trovi nella regione di saturazione si ottiene la seguente espressione:

$$g_m = \frac{W}{L} \cdot \mu \cdot C_{ox} \cdot (V_{GS} - V_{th})$$

2.3.1 Calcolo della transconduttanza

Derivare dei dati discontinui porta sempre, o quasi sempre, ad avere delle curve spezzate, per le quali è difficile trarre informazioni utili. Questo è stato il caso per la transconduttanza; la figura 2.13a (curva di sinistra) rappresenta la g_m di un transistor MOSFET a canale N, con $W=100\mu m$ e L=30nm senza eseguire nessun tipo di smooth; in particolare, per alte V_{GS} , il difetto è molto marcato. Per ridurre questo effetto, oltre ad applicare alla fine uno smooth di ampiezza 5, due valori prima e due valori dopo; sono state calcolato due transconduttanze, la prima g_m' normalmente, mentre, per la seconda g_m'' si è eseguito il rapporto incrementale tra I_D e V_{GS}^* , tensione gate-source shiftata di una posizione, duplicando il primo valore ed eliminando l'ultimo. In seguito la transconduttanza è stata ricavata eseguendo la media tra i singoli valori di g_m' e g_m'' :

$$g_{m_i} = \frac{g_{m_i'} + g_{m_i''}}{2} \ i \in [1, 2, 3...]$$

Trovando, per il dispositivo in questione, la curva a figura 2.13b(curva a destra).

Figura 2.13: Confronto delle transconduttanze calcolate senza applicare smooth e con l'utilizzo di smooth.

A figura 2.14 vengono mostrati i grafici relativi alla transconduttanza per i diversi transistori MOSFET, sia a canale N che P. Avendo imposto, sul dispositivo che effettua le misure statiche, il limite di correte di drain a 100mA (positiva e negativa); per i dispositivi con larghezza $600\mu m$ e con lunghezze inferiori a 60nm, questo limite viene raggiunto spiegando così il motivo del crollo della g_m per alte V_{GS} .

Uno degli effetti delle radiazioni ionizzanti è quella di ridurre la mobilità dei portatori di carica μ all'interno del canale. Osservando l'espressione della g_m si nota la proporzionalità diretta con la mobilità dei portatori comportando una riduzione della transconduttanza, all'aumentare della dose assorbita. Per confermare questo effetto, si è calcolata la variazione della transconduttanza, in percentuale, all'aumentare della dose assorbita:

$$\Delta g_{mpost}\% = \frac{g_{mpost} - g_{mpre}}{g_{mpre}} \cdot 100$$

Con g_{mpost} si intende il massimo valore della transconduttanza per un certo dosaggio, e similmente per g_{mpre} , il massimo valore pre-irraggiamento. L'effetto è stato confermato dai dati sperimentali (tabelle 2.20 e 2.21 e figura 2.15) ottenuti dai transistori⁵ sotto osservazione in questo lavoro di tesi.

 $^{^5 \}mathrm{La}~V_{DS}$ da cui è stata estratta la transconduttanza è di 0.9V, nel caso di NMOS, mentre per PMOS -0.9V.