Inexpensive DAQ Based Physics Labs

Benjamin Lewis, Shane Clark (Mississippi State University)

Abstract

Quality DAQ (Data Acquisition) based physics labs can be designed using microcontrollers and very low cost sensors with little other lab equipment. A prototype device with a few sensors and documentation for a number of DAQ based labs which is showcased. The device uses a simple software interface to acquire the data via Bluetooth, display real time graphs on a computer, and store the data in .txt and .xls formats. A device which includes a large number of sensors, combined with software interface and detailed documentation could provide a high quality lab experience in cases where it wasn't possible before. Examples of this are high schools which have a computer lab but no physics lab curriculum or equipment. Another example is students taking online physics classes. An entire semester lab course could be achieved using a single device with a manufacturing cost of under \$20/device.

The Device

Sensors:

- •3-Axis Accelerometer
- •3-Axis Gyroscope
- •Ultrasonic Distance

Communication:

The device uses Bluetooth to send data from all the sensors to your computer. The software interface allows to you set the sample rate on the device.

Why the 4 segment shape?

The 4 segment shape with a sphere in the center is actually a key design element making our experiments possible. It is designed so that a string can be wrapped around the sphere allowing us to spin it along 2 different moment of inertia axes. The overall rectangular shape is important so the device can slide on surfaces.

The Software

Features:

- Records the device data in .txt and .xls formats
- Adjustable sample rate
- Real time graphing while you record the data
- Measure all the physical quantities below simultaneously:
 - Distance
 - Acceleration in the x direction
 - Acceleration in the y direction
 - Acceleration in the z direction
 - Net acceleration
 - Rotation speed in the x direction
 - Rotation speed in the y direction
 - Rotation speed in the z direction
 - Net rotation speed
 - Tilt Angle
 - Pendulum Angle

Experiments

Lab 1: Position and Velocity Objectives:

- Learn how to acquire data using the device/software and make graphs in spreadsheet
- Develop a graphical understanding of position and velocity
- Learn how to calculate average velocity from discrete data
- Use a linear fit to determine average velocity

Lab 2: Acceleration Due to Gravity Objectives:

- Learn how to graph velocity as a function of midpoint time
- Develop a graphical understanding of acceleration and its relation to position and velocity
- Determine acceleration from position versus time data
- Measure g

Lab 3: Force of Air Resistance Objectives:

- Introduction to force and free body diagrams
- Introduction to linear and quadratic drag
- Determine when non-linear drag terms are negligible
- Determine linear drag of a falling coffee filter

Lab 4: Static and Kinetic Friction Objectives:

- Introduction to vectors
- Learn how to break a force vector into its components
- Derive a relationship between the coefficient of static friction and angle of incline for an object on an incline
- Measure static friction between two surfaces
- Measure acceleration along the axis of tilt
- Measure kinetic friction between two surfaces

Lab 5: Period of a Pendulum Objectives:

- Learn how to measure period and frequency of a wave from angular position vs time graph
- Determine the proportionality constant between the period of a pendulum and $\sqrt{L/g}$

Lab 6: Modeling Angular Position of a Pendulum Objectives:

- Model simple harmonic motion with trigonometry functions and the physical parameters of waves
- Use angular position vs time graph and model curve to:
 - Use least squares fitting
 - Determine wave amplitude
 - Determine phase shift
 - Determine angular frequency

Lab 7: Using Torque to Determine g Objectives:

- Introduction to rotational motion
- Introduction to torque
- Determine rotation speed from gyroscope data
- Measure g using the torque and a free body diagram

Lab 8: Moment of Inertia Objectives:

- Introduction to conservation of energy
- Introduction to moment of inertia
- Calculate angular velocity and angular acceleration from gyroscope data
- Determine the moment of inertia of the device around two different rotation axes
- Calculate torque

