Mine-RPN

Or how we were able to recognize pigs et. familia in Minecraft

Dario Loi, Davide Marincione, Benjamin Barda

Bachelor's degree in Applied Computer Science and Artificial Intelligence Sapienza, University of Rome

A. Y. 2021 - 2022

Breaking the ice

FACCIAMO QUALCOSA DI SCEMO

Faster RCNN

Developed in 2015 by Facebook's researches, Faster-RCNN is still today an industry standard thanks to it's accuracy and performance, getting a step closer to real time object detection

Figure: Faster-RCNN architechture.

Why minecraft?

Minecraft has several desirable qualities:

What, why?

- Simple graphics.
- Sandbox.
- Available to every team member.
- Distinguishable entity silhouettes.

Figure: A Minecraft promotional image.

Behold, data!

How did we collect these 40 videos?

- 1 minute long (circa).
- As many biomes as possible.
- One mob per video (except test).

Figure: A representative chunk of our dataset

Augmentation Techniques

In order to prevent overfitting and increase the amount of information available, we employed various data augmentation techniques, such as:

- Rotation and Reflections.
- Adjustments to Contrast, Brightness and Saturation.
- Sharpening and Blurring the image.

Figure: Our Dataset, Augmented.

Tool

How to label 4000 images?

- 1. Load image
- 2. Create box / purge
- 3. Next

Figure: BBoxing in our tool

Our Backbone

The backbone is the convolutional *heart* of our model, it is:

- Blazingly fast.
- Adaptable to any resolution.

While also offering:

- A 92% accuracy when used as a Classifier.
- A mean training time of $\approx 2h$.

Figure: Our backbone.

Our RPN

Our RPN network extends our Backbone and is composed mainly of two twin layers:

- 1. A Classification layer.
- 2. A Regression layer.

Before feeding data into those, it also performs some pre-processing:

- Anchor Splashing.
- Base convolution.
- Flattening (how do we get to fully connected otherwise?)

Figure: Our network's proposal layer.

Examples

Even if many proposal are presented, the network realizes which is the objects to focus on, and which to discard. It is not always that easy ...

Figure: A zombie in it's natural enviroment

Examples

Figure: A very confusing sunset

Figure: The network struggling

The End.

Question Time! (it's an exam after all...).

Figure: The End.