Chapitre 1: Interpolation polynomiale

June 8, 2023

1 Les polynômes de Lagrange et la formule de Newton

1.1 Théorème

Soient les n+1 points $(x_0, y_0), ..., (x_n, y_n)$ où les x_i sont distincts. Alors, il existe un polynôme unique p_n de degré $\leq n$, appelé le polynôme d'interpolation, tel que

$$p_n(x_i) = y_i \ pour \ i = 0, 1, ..., n$$

.

1.2 Définition (différences divisées)

Soient les couples (x_i, y_i) avec chaque x_i distinct pour i = 0, ..., n. On définit:

$$\delta y[x_i, x_{i+1}] = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

et pour k = 2, 3, ..., on a:

$$\delta^k y[x_i, x_{i+1}] = \frac{\delta^{k-1} y[x_{i+1}, \dots, x_{i+k}] - \delta^{k-1} y[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

À modifier ???? On note $\delta^0 y[x_i] = y[x_i] = y_i$

1.3 Théorème (Formule de Newton, 1669)

Le polyôme de Newton est défini par:

$$p_n(x) = c_0 + c_1(x - x_0) + \ldots + c_n(x - x_0) \ldots (x - x_{n-1})$$

avec:

$$c_k = \delta^k y[x_0, \dots, x_k]$$

Il est de degré \leq n et passe par les points $(x_0, y_0), \ldots, (x_n, y_n)$ où les x_i sont distinct.

1.4 Lemme

Soit $f:[a,b]\to\mathbb{R}$ une fonction n fois dérivable et soit $y_i=f(x_i)$ pour $x_0,\ldots,x_n\in[a,b]$ distincts.

Alors $\exists \zeta \in [a, b]$ tel que:

$$\delta^n y[x_0, \dots, x_n] = \frac{f^{(n)}(\zeta)}{n!}$$

1.5 Théorème

Soit $f:[a,b]\to\mathbb{R}$ une fonction n+1 fois dérivable et p(x) le polynôme d'interpolation de degré \leq n et passant par les points $(x_0,f(x_0)),\ldots,(x_n,f(x_n))$ $(x_i\in[a,b]$ et distincts).

Alors $\forall x$, $\exists \zeta$ dépendant de x tel que:

$$f(x) - p(x) = (x - x_0) \dots (x - x_n) \frac{f^{(n+1)}(\zeta)}{(n+1)!}$$

1.6 Définition (Polynômes de Chebyshev)

Les polynômes de Chebyshev sont définis $\forall n \in \mathbb{N}$ par:

$$T_n(x) = cos(n * arcos(x)) \ \forall x \in [-1, 1]$$

1.7 Propriétés (Polynômes de Chebyshev)

- T_n est un polynôme de degré n et pour $n \ge 1$ de la forme: $T_n(x) = 2^{n-1}x^n + \dots$
- T_n satisfait la récurrence:

$$-T_0(x) = 0$$
$$-T_1(x) = x$$

$$- T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

- $|T_n(x)| \le 1 \text{ pour } x \in [-1, 1]$
- $T_n(\cos\frac{(2k+1)\pi}{2n}) = 0$ pour $k = 0, \dots, n-1$
- $T_n(\cos\frac{k\pi}{n}) = (-1)^k$ pour $k = 0, \dots, n$

1.8 Lemme

Soit $q(x)=2^{n-1}x^n+b_{n-1}x^{n-1}+\ldots+b_0$ tel que $q(x)\neq T_n(x)$ Alors $\forall x\in[-1,1],$ on a:

$$max(|q(x)|) > max(|T_n(x)|) = 1$$

1.9 Théorème

L'expression $|(x-x_0)...(x-x_n)|$ est minimale pour $x \in [a,b]$ pour toutes les divisions $a \le x_0 < ... < x_n \le b$ si et seulement si $\forall k = 0,...,n$

$$x_k = \frac{b+a}{2} + \frac{b-a}{2} \cos \frac{(2k+1)\pi}{2n+2}$$

1.10 Théorème

Soit f(x) une fois continuement dérivable sur [a,b] et p_n le polynôme d'interpolation passant par $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$ et respectant $\forall k = 0, \ldots, n$:

$$x_k = \frac{b+a}{2} + \frac{b-a}{2}\cos\frac{(2k+1)\pi}{2n+2}$$

Alors pour $n \to \infty$

$$\max_{x \in [a,b]} |f(x) - p(x)| \to 0$$

1.11 Théorème

Soient les points x_0, \ldots, x_n tous distincts et les points y_0, \ldots, y_n et z_0, \ldots, z_n . Alors il existe un unique polynôme p_{2n+1} de degré $\leq 2n+1$, appelé le polynôme d'interpolation d'Hermite tel que $\forall i=0,\ldots,n$:

- $\bullet \ p_{2n+1}(x_i) = y_i$
- $\bullet \ p_{2n+1}'(x_i) = z_i$

1.12 Théorème

Soit $f:[a,b]\to\mathbb{R}$ 2n+2 fois dérivable et p(x) le polynôme d'interpolation d'Hermite.

Alors $\forall x \in [a, b], \exists \zeta \text{ tel que:}$

$$f(x) - p(x) = (x - x_0)^2 \dots (x - x_n)^2 \frac{f^{(2n+2)}(\zeta)}{(2n+2)!}$$

2 Méthodes

À compléter !!!!