15.094J: Robust Modeling, Optimization, Computation

Lecture 16: Robust Option Pricing

Outline

- What are options?
- The classical theory of options pricing
- The Idea of no-arbitrage
- Optimal Replication
- Robust Options Pricing
- 6 Extensions
- Discussion
 - Computational Tractability
 - Modeling Flexibility
- Computational Results

What are options and why they are important?

- A call option on a stock of strike \$50 with maturity 3 months, gives the right to buy the stock 3 months from now at \$50. So, if the price at that time is \$90, then there is a profit of \$40.
- A put option gives the right to sell the stock.
- American versus European options.
- Call options are a widespread method of compensation for executives.
- Put options provide insurance.
- The derivatives industry: 10 trillion dollar industry

Basics

 An option is a contract defined on a set of predetermined underlying securities

$$S = \{S_i\}_{i=1,\dots,M},$$

and is associated with a payoff function

$$P_f(S,K,T)$$
,

where K and T are a set of parameters specified in the contract.

Basics

 An option is a contract defined on a set of predetermined underlying securities

$$S = \{S_i\}_{i=1,\dots,M},$$

and is associated with a payoff function

$$P_f(\mathbf{S}, \mathbf{K}, T)$$
,

where K and T are a set of parameters specified in the contract.

Example. European Call Option

The option holder has the right to buy a unit of stock at a price of K, at time T, even when the market price is S_T . The payoff, then, is

$$P_f(S,K,T) = \max(S_T - K,0).$$

Lecture 16 15.094J-RO 4 / 46

Dynamics

• Given a stock of price S_t

$$S_{t+1} = \left\{ egin{array}{ll} u \cdot S_t & ext{with probability } q \ d \cdot S_t & ext{with probability } 1-q \end{array}
ight.$$

Bond with price \$1

$$1 \rightarrow r$$
, r Riskless Return

Payoff of an option

Consider an option (also called derivative security):

$$C_{t+1} = \left\{ egin{array}{ll} C_u(S_t) & ext{with probability } q \ C_d(S_t) & ext{with probability } 1-q \end{array}
ight.$$

- What should the price of the option be?
- What should it depend on?

European call option

$$f(S) = \begin{cases} 0 & S \leq K \\ S - K & S > K \end{cases}$$

•
$$C_u = C_u(S) = \max(u \cdot S - K, 0)$$

•
$$C_d = C_d(S) = \max(d \cdot S - K, 0).$$

The Idea of no-arbitrage

- The story of the Princeton professor....
- Consider a portfolio that has x \$ worth of the stock and B \$ worth of the bond that pay off B · r.
- Cost of portfolio: x + B
- Return of portfolio:

$$\begin{cases} x \cdot u + B \cdot r & \text{with probability } q \\ x \cdot d + B \cdot r & \text{with probability } 1 - q \end{cases}$$

Critical Idea

 Choose x, B so that we create the same payoff structure as the option, i.e.,

$$x \cdot u + B \cdot r = C_u$$
$$x \cdot d + B \cdot r = C_d$$

Solving the Linear System

$$x^* = \frac{C_u - C_d}{u - d}, \qquad B^* = \frac{u \cdot C_d - d \cdot C_u}{(u - d)r}$$

Critical Idea, continued

- What should the price of the option be?
- By No-Arbitrage

$$\underbrace{C}_{\text{Cost of Option}} = \underbrace{x^* + B^*}_{\text{Cost of Portfolio}}$$

 Since they have identical payoffs, they should have the same cost; otherwise there exists an arbitrage opportunity.

The Price

• By no arbitrage:

$$C = \frac{C_u - C_d}{u - d} + \frac{u \cdot C_d - d \cdot C_u}{(u - d)r}$$
$$= \frac{1}{r} \left[p \cdot C_u + (1 - p)C_d \right] , \quad p = \frac{r - d}{u - d}$$

 Price of option is the present value of the expected payoff of the option, but not using the original probability q, but probability p, the risk neutral measure.

Multiple periods

- Consider now T periods
- Payoff of European call option

$$f(S_T) = (S_T - K)^+ = \max(S_T - K, 0)$$

Price

$$C = \frac{1}{r^{T}} \sum_{n=0}^{T} {T \choose n} p^{n} (1-p)^{T-n} (u^{n} d^{T-n} S - K)^{+}$$

Independent of probability q

Limitations

- Options depending on many securities problematic computationally.
- Modeling transaction costs, liquidity issues and market restrictions problematic conceptually and computationally.

The Model for stock returns

- Consider discrete time $\{0, 1, 2, \dots, T\}$.
- Let \widetilde{r}_t^S be the return at t; i.e., the return from period [t, t+1).
- Assuming $\{\widetilde{r}_1^S,\widetilde{r}_2^S,\ldots,\widetilde{r}_{\tau}^S\}$ are independent, we have from the central limit theorem,

$$rac{\sum_{i=1}^{ au}\log\left(1+\widetilde{r}_{i}^{\mathcal{S}}
ight)- au\cdot\mu_{\log}}{\sigma_{\log}\cdot\sqrt{ au}}\sim \mathcal{N}\left(0,1
ight),$$

where μ_{\log} , σ_{\log} are mean and standard deviation of $\log\left(1+\widetilde{r}_i^{S}\right)$, respectively.

The Model for stock returns, continued

The CLT motivates us to consider constraints of the form

$$\left| \frac{\log \widetilde{R}_{\tau}^{S} - \tau \cdot \mu_{\log}}{\sigma_{\log} \cdot \sqrt{\tau}} \right| \leq \Gamma_{\tau} \qquad \forall \tau,$$

- $\widetilde{R}_{\tau}^{S} = \prod_{i=1}^{\tau} (1 + \widetilde{r}_{i}^{S})$, is the cumulative return up to time τ and Γ_{τ} is some parameter.
- Other constraints can be based on the the assumption of a bounded support

$$\mu_r - \Gamma_\tau \sigma_r \le \frac{\widetilde{R}_\tau^S}{\widetilde{R}_{\tau-1}^S} \le \mu_r + \Gamma_\tau \sigma_r \qquad \forall \tau.$$

The Model for stock returns, continued

Uncertainty set for stock returns:

$$\mathbb{U}^{1} = \left\{ \widetilde{R}_{t}^{S} \middle| \begin{array}{c} \underline{R_{t}^{S}} \leq \widetilde{R}_{t}^{S} \leq \overline{R_{t}^{S}}, & \forall t = 1 \dots T \\ \\ \underline{R_{t}^{S}} \cdot \widetilde{R} \leq \widetilde{R}_{t}^{S} \leq \overline{r_{t}^{S}} \cdot \widetilde{R}_{t-1}^{S}, & \forall t = 1 \dots T \\ \\ \underline{R_{t,\tau}^{S}} \cdot \widetilde{R}_{\tau} \leq \widetilde{R}_{t} \leq \overline{R_{t,\tau}^{S}} \cdot \widetilde{R}_{\tau}, & \forall \{(t,\tau) | \tau < t, \ t = 1 \dots T\} \end{array} \right\}$$

$$\begin{array}{l} \text{where } \underline{R_t^S} = \mathrm{e}^{\mathrm{t} \cdot \mu_{\log} - \Gamma \cdot \sqrt{t} \cdot \sigma_{\log}}, \ \overline{R_t^S} = \mathrm{e}^{\mathrm{t} \cdot \mu_{\log} + \Gamma \cdot \sqrt{t} \cdot \sigma_{\log}}, \ \underline{r_t^S} = \mu_r - \Gamma_t \cdot \sigma_r, \\ \overline{r_t^S} = \mu_r + \Gamma_t \cdot \sigma_r, \\ \underline{R_{t,\tau}^S} = (t - \tau) \cdot \mu_r - \Gamma_t \cdot \sigma_r \cdot \sqrt{t - \tau} \ \text{and} \\ \overline{\overline{R_{t,\tau}^S}} = (t - \tau) \cdot \mu_r + \Gamma_t \cdot \sigma_r \cdot \sqrt{t - \tau}. \end{array}$$

The idea of ϵ -arbitrage

- Replicating portfolios and incomplete markets
 - Exact replication may not be possible.
- The idea of ϵ -arbitrage.
 - Compute the best possible replicating portfolio, when the stock returns lie in an uncertainty set.
 - The resulting replication error stands for the $\epsilon-$ arbitrage.
- ullet can be seen as a measure of incompleteness of the market.

The Problem of Optimal Replication

- Given $P(S_T, K)$ is the payoff of the option.
- Define x_t^S and x_t^B are the amounts invested in the stock and the bond during the period [t, t+1).
- W_T is the value of the replicating portfolio.

$$\begin{aligned} \min_{\left\{x_{t}^{S}, x_{t}^{B}, y_{t}\right\} \left\{\widetilde{R}_{t}^{S} \in \mathbb{U}^{1}\right\}} & |P\left(S_{T}, K\right) - W_{T}| \\ \text{s.t.} & W_{T} = x_{T}^{S} + x_{T}^{B} \\ & x_{t}^{S} = \left(1 + \widetilde{r}_{t-1}^{S}\right) \left(x_{t-1}^{S} + y_{t-1}\right), \forall t = 1, \dots, T, \\ & x_{t}^{B} = \left(1 + r_{t-1}^{B}\right) \left(x_{t-1}^{B} - y_{t-1}\right), \forall t = 1, \dots, T, \end{aligned}$$

Robust Options Pricing

- European Call option: $P\left(\widetilde{S}, K\right) = \left(\widetilde{S}_T K\right)^+$.
- The optimization problem

$$\begin{aligned} & \underset{X}{\min} \ \underset{U^1}{\max} \ \left| \left(\widetilde{S}_T - K \right)^+ - W_T \right| \\ & \text{s.t.} & W_T = x_T^S + x_T^B, \\ & x_t^S = \left(1 + \widetilde{r}_{t-1}^S \right) \left(x_{t-1}^S + y_{t-1} \right), \forall t = 1 \dots T, \\ & x_t^B = \left(1 + r_{t-1}^B \right) \left(x_{t-1}^B - y_{t-1} \right), \forall t = 1 \dots T. \end{aligned}$$

Variable transformations :

$$\alpha_t^{\mathcal{S}} = \frac{x_t^{\mathcal{S}}}{R_t^{\mathcal{S}}}, \ \alpha_t^{\mathcal{B}} = \frac{x_t^{\mathcal{B}}}{R_t^{\mathcal{B}}}, \ \beta_t = \frac{y_t}{R_t^{\mathcal{S}}}, \ \text{where} \ \widetilde{R}_t^{\mathcal{S}} = \prod_{i=0}^{t-1} \left(1 + \widetilde{r}_i^{\mathcal{S}}\right), \ \text{and} \ R_t^{\mathcal{B}} = \prod_{i=0}^{t-1} \left(1 + r_i^{\mathcal{B}}\right).$$

After substitution:

$$\begin{aligned} & \min_{\left\{\alpha_{t}^{S}, \alpha_{t}^{B}, \beta_{t}\right\} \left\{\tilde{R}_{t}^{S} \in \mathbb{U}^{1}\right\}} & \left| \left(S_{0}\tilde{R}_{T}^{S} - K\right)^{+} - \left(\tilde{R}_{T}^{S} \alpha_{T}^{S} + R_{T}^{B} \alpha_{T}^{B}\right) \right| \\ & \text{s.t.} & \alpha_{t}^{S} = \alpha_{t-1}^{S} + \beta_{t-1}, \ \forall t = 1, \dots, T, \\ & \alpha_{t}^{B} = \alpha_{t-1}^{B} - \beta_{t-1} \frac{\tilde{R}_{t-1}^{S}}{R_{T}^{B}}, \ \forall t = 1, \dots, T. \end{aligned}$$

• Substituting all intermediate α_t^B , α_t^S :

$$\min_{\left\{\alpha_t^S, \alpha_t^B, \beta_t\right\} \left\{\tilde{R}_t^S \in \mathbb{U}^1\right\}} \left| \left(S_0 \tilde{R}_T^S - K\right)^+ - \left(\alpha_0^S + \sum_{t=1}^T \beta_{t-1}\right) \tilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{\mathbf{R}_{\mathrm{T}}^B}{\mathbf{R}_{\mathrm{t}}^B} \tilde{R}_t^S \right|.$$

• Inner problem:

s.t.
$$\kappa \geq \left(S_0 \widetilde{R}_T^S - K\right)^+ - \left(\alpha_0^S + \sum_{t=1}^T \beta_{t-1}\right) \widetilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{R_T^B}{R_t^B} \widetilde{R}_t^S, \ \forall \widetilde{R}_t^S \in \mathbb{U}^1,$$
$$\kappa \geq -\left(\left(S_0 \widetilde{R}_T^S - K\right)^+ - \left(\alpha_0^S + \sum_{t=1}^T \beta_{t-1}\right) \widetilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{R_T^B}{R_t^B} \widetilde{R}_t^S\right), \ \forall \widetilde{R}_t^S \in \mathbb{U}^1.$$

- Model the piecewise-linear function $\left(S_0\widetilde{R}_T^S-K\right)^+$,
- ullet We partition the uncertainty set \mathbb{U}^1

$$\mathbb{U}_a^1 = \mathbb{U}^1 \cap \left\{ \tilde{R}_T^S \geq \frac{K}{S_0} \right\}, \ \mathbb{U}_b^1 = \mathbb{U}^1 \cap \left\{ \tilde{R}_T^S \leq \frac{K}{S_0} \right\} \cdot$$

Using this partition, we obtain the following equivalent formulation

$$\begin{split} \min_{\left\{\alpha_0^S,\alpha_0^B,\beta_t\right\}} & \epsilon \\ \text{s.t.} \\ \epsilon \geq & \left(S_0 \widetilde{R}_T^S - K\right) - \left(\alpha_0^S + \sum_{t=0}^{T-1} \beta_t\right) \widetilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{R_T^B}{R_t^B} \widetilde{R}_t^S, \qquad \forall \widetilde{R}_t^S \in \mathbb{U}_a^1, \\ \epsilon \geq & - \left(\left(S_0 \widetilde{R}_T^S - K\right) - \left(\alpha_0^S + \sum_{t=0}^{T-1} \beta_t\right) \widetilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{R_T^B}{R_t^B} \widetilde{R}_t^S\right), \quad \forall \widetilde{R}_t^S \in \mathbb{U}_a^1, \\ \epsilon \geq & - \left(\alpha_0^S + \sum_{t=0}^{T-1} \beta_t\right) \widetilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{R_T^B}{R_t^B} \widetilde{R}_t^S, \qquad \forall \widetilde{R}_t^S \in \mathbb{U}_b^1, \\ \epsilon \geq & - \left(-\left(\alpha_0^S + \sum_{t=0}^{T-1} \beta_t\right) \widetilde{R}_T^S - \alpha_0^B R_T^B + \sum_{t=0}^{T-1} \beta_t \frac{R_T^B}{R_t^B} \widetilde{R}_t^S\right), \qquad \forall \widetilde{R}_t^S \in \mathbb{U}_b^1. \end{split}$$

- Can be converted to an equivalent linear optimization problem.
- Resulting size: 16T + 4 decision variables and 4T + 4 constraints.

Lecture 16 15.094J-RO 24 / 46

Pricing Asian options

• Asian Call option: $P\left(\widetilde{S},K\right) = \left(S_0\widetilde{R}_{\text{ave}}^S - K\right)^+$, where $\widetilde{R}_{\text{ave}}^S = \sum_{t=1}^T \frac{\widetilde{R}_t^S}{T}$.

ullet Again leads to a linear formulation with size that scales linearly in ${\cal T}.$

Pricing Lookback options

- $P\left(\widetilde{S}, K\right) = \left(S_0 \widetilde{R}_{\max}^S K\right)^+, \ \widetilde{R}_{\max}^S = \max_{t=1...T} \left\{\widetilde{R}_t^S\right\}.$
- We obtain the following formulation

$$\begin{aligned} & \underset{\left\{\alpha_{0}^{S},\alpha_{0}^{B},\beta_{t}\right\}}{\min} \epsilon \\ \text{s.t.} & \forall k = 1 \dots T \\ \epsilon \geq & \left(S_{0}\tilde{R}_{k}^{S} - K\right) - \alpha_{0}^{S}\tilde{R}_{T}^{S} - \alpha_{0}^{B}R_{T}^{B} + \sum_{t=1}^{T}\beta_{t-1}\left(\frac{R_{T}^{B}}{R_{t}^{B}}\tilde{R}_{t}^{S} - \tilde{R}_{T}^{S}\right) & \forall \mathbb{U}_{k}^{1} \cap \left\{\tilde{R}_{k}^{S} \geq \frac{K}{S_{0}}\right\} \\ \epsilon \geq & -\left(S_{0}\tilde{R}_{k}^{S} - K\right) + \alpha_{0}^{S}\tilde{R}_{T}^{S} + \alpha_{0}^{B}R_{T}^{B} - \sum_{t=1}^{T}\beta_{t-1}\left(\frac{R_{T}^{B}}{R_{t}^{B}}\tilde{R}_{t}^{S} - \tilde{R}_{T}^{S}\right) & \forall \mathbb{U}_{k}^{1} \cap \left\{\tilde{R}_{k}^{S} \geq \frac{K}{S_{0}}\right\} \\ \epsilon \geq & -\left(\alpha_{0}^{S} + \sum_{t=1}^{T}\beta_{t-1}\right)\tilde{R}_{T}^{S} - \alpha_{0}^{B}R_{T}^{B} + \sum_{t=1}^{T}\beta_{t-1}\frac{R_{T}^{B}}{R_{t}^{B}}\tilde{R}_{t}^{S} & \forall \mathbb{U}_{k}^{1} \cap \left\{\tilde{R}_{k}^{S} \leq \frac{K}{S_{0}}\right\} \\ \epsilon \geq & -\left(-\left(\alpha_{0}^{S} + \sum_{t=1}^{T}\beta_{t-1}\right)\tilde{R}_{T}^{S} - \alpha_{0}^{B}R_{T}^{B} + \sum_{t=1}^{T}\beta_{t-1}\frac{R_{T}^{B}}{R_{t}^{B}}\tilde{R}_{t}^{S}\right) & \forall \mathbb{U}_{k}^{1} \cap \left\{\tilde{R}_{k}^{S} \leq \frac{K}{S_{0}}\right\} \end{aligned}$$

Pricing American Put options

- Can exercise the option at any time up to the time of exercise T.
- The payoff is then given by $P\left(\widetilde{S},K\right)=\left(K-\widetilde{S}_{\tau}\right)$, where τ is the time of exercise.
 - ullet au depends on the utility of the option holder.
- In the absence of any information about the utility function of the option holder, we seek to find a replicating portfolio for all possible exercise policies.

Pricing American Put options

Proceeding as before, we obtain the following formulation

$$\min_{\substack{\{\alpha_t^S, \alpha_t^B, \beta_t\} \\ \text{s.t.}}} \max_{\substack{\tau=1, \dots, T \\ \tau=1, \dots, T}} \left| \left(K - S_0 \widetilde{R}_\tau \right)^+ - \left(\widetilde{R}_\tau^S \alpha_\tau^S + R_\tau^B \alpha_\tau^B \right) \right|$$

$$\alpha_t^S = \alpha_{t-1}^S + \beta_{t-1}, \ \forall t = 1, \dots, T,$$

$$\alpha_t^B = \alpha_{t-1}^B - \beta_{t-1} \frac{\widetilde{R}_t^S}{R_t^B}, \forall t = 1, \dots, T,$$

where τ is the time of exercise.

• The size of the resulting formulation will be quadratic in T.

Pricing Barrier options

- These options become inactive as soon as a condition(\mathbb{C}) of the form $S_t \leq a$ or $S_t \geq b$ is reached.
- The problem of optimal replication then reduces to

$$\min_{\left\{x_{t}^{S}, x_{t}^{B}, y_{t}\right\}\left\{\widetilde{R}_{t}^{S} \in \mathbb{U}^{1} \cap \mathbb{C}\right\}} \left|P\left(S_{T}, K\right) - W_{T}\right|$$

because if \mathbb{C} is not satisfied the option ceases to exist and one need not worry about replicating its payoff.

• We obtain a linear formulation that scales linearly in T.

Pricing Multidimensional options

- Pricing options that depend on M underlying assets is difficult to price, for large M, using current methods because of
 - unavailability of an analytic solution and
 - the curse-of-dimensionality which prevents one from using dynamic programming.
- Proceeding as before, we seek to obtain the optimal solution of the following optimization problem

$$\begin{aligned} & \underset{\left\{x_{t}^{m}, y_{t}^{m}\right\}}{\min} & \underset{\left\{\widetilde{r}_{t}^{m}\right\} \in \mathbb{U}^{M}}{\max} \left| P_{f}\left(\left\{S^{i}\right\}_{i=1, \ldots, M}, \mathcal{K}\right) - W_{T} \right| \\ & \text{s.t.} & W_{T} = \sum_{m=0}^{M} x_{T}^{m}, \\ & x_{t}^{m} = \left(1 + \widetilde{r}_{t-1}^{m}\right) \cdot \left(x_{t-1}^{m} + y_{t-1}^{m}\right) & \forall t = 1, \ldots, T, \ \forall m = 1, \ldots, M, \\ & x_{t}^{0} = \left(1 + \widetilde{r}_{t-1}^{m}\right) \cdot \left(x_{t-1}^{0} - \sum_{m=1}^{M} y_{t-1}^{m}\right) & \forall t = 1, \ldots, T. \end{aligned}$$

Multidimensional options

- C: the covariance matrix of the single period returns.
- Uncertainty set \mathbb{U}^M

$$\mathbb{U}^{\textit{M}} \quad = \quad \left\{ \widetilde{R}_t \left| \begin{array}{l} ||C(\widetilde{R}_1 - \overline{R}_1)|| \leq \Gamma, \\ \frac{r_t^m \widetilde{R}_{t-1}^m \leq \widetilde{R}_t^m \leq \overline{r_t^m} \widetilde{R}_{t-1}^m, \quad \forall t = 2, \ldots, \textit{T}, \, \forall \textit{m} = 1, \ldots, \textit{M}, \\ \frac{R_t^m}{} \leq \widetilde{R}_t^m \leq \overline{R}_t^m, \quad \forall t = 1, \ldots, \textit{T}, \, \forall \textit{m} = 1, \ldots, \textit{M}. \end{array} \right\} \cdot \right.$$

• By choosing the ℓ_1 or ℓ_∞ we obtain LO formulations.

Computational Complexity

 Methodology scales polynomially with the dimension of the option and the discretization, unlike DP.

Option Type	European	Asian	Lookback	American	Index	American Index
Size	O(T)	O(T)	$O(T^2)$	$O(T^2)$	$O(M \cdot T)$	$O(M \cdot T^2)$

T: the number of time periods the option is written for.

M: the number of different assets required to define the option.

Size: Number of variables and constraints.

Lecture 16 15.094J-RO 32 / 46

Modeling Flexibility

- Modeling many types of options Barrier, Lookback etc.
- Modeling implied volatility smile
- Modeling transaction costs and other market restrictions, still obtaining LO formulations.

Lecture 16 15.094J-RO 33 / 46

Modeling Implied Volatility smile

- Implied volatility of an option is simply that volatility that makes the Black-Scholes (BS) model price exactly equal to the observed market price.
 - Expect flat lines, if market participants use BS Model.
- Plotted across strike prices, they exhibit smiles or smirks.

Lecture 16 15.094J-RO 34 / 46

Modeling the implied volatility smile

- Risk Aversion as an explanation for the Implied Volatility Smile.
- Lower value for Γ implies that the user is willing to take higher risk by ignoring the variability of stock prices.
- Higher value of Γ indicates that the user seeks a price that will allow him to replicate the payoff of the option for a larger range of stock prices.
- Historical evidence.
 - No smile was observed before the crash of 1987.
 - After the crash, the smile started appearing.

Lecture 16 15.094J-RO 35 / 46

Modeling the implied volatility smile, continued

Risk Aversion as an explanation for the Implied Volatility Smile

- Empirical results indicate that a quadratic dependence of $\Gamma_{implied}$ with $\frac{K}{S_0}$ would be adequate to characterize the risk aversion of investor towards different strike prices.
- The following function is used to describe the relationship:

$$\Gamma\left(K\right) = \theta_0 + \theta_1 \frac{K - S_0}{S_0} + \theta_2 \left(\frac{K - S_0}{S_0}\right)^2, \; \theta_2 \geq 0.$$

• The quantity $\frac{K-S_0}{S_0}$ captures the distance between the strike and the spot price and is also called as *moneyness* in the literature.

Lecture 16 15.094J-RO 36 / 46

Experiments setup

- We perform the following experiments:
 - Experiment 1 : Compare with actual market prices for European call options.
 - Experiment 2 : Compare with actual market prices for American put options.

Experiments setup

- All the experiments have a training stage and a testing stage.
 - In the training stage, we choose a random set of strike prices and calibrate (compute $\theta_0, \theta_1, \theta_2$) our model to it.
 - In the testing stage, we use our model to price the options for the remaining strikes.

- The underlying security is Microsoft stock.
- The number of periods T = 18 weeks.
- The initial price of underlying security $S_0 = 21.4$.
- Strike price of options K: ranges from 2.5 to 30.

Out of Sample

No.	Т	K/S	$\Gamma_{implied}$	Mkt Price	Model Price	Error
1	18	0.654	2.45	7.475	7.48	0.005
2	18	0.794	2.056	4.8	4.797	-0.003
3	18	0.888	1.75	3.25	3.232	-0.018
4	18	0.981	1.66	1.97	1.968	-0.002
5	18	1.028	1.65	1.47	1.462	-0.008
6	18	1.121	1.73	0.735	0.749	0.014

In Sample

No.	Т	K/S	$\Gamma_{implied}$	Mkt Price	Model Price	Error
1	18	0.607	2.77	8.425	8.42	-0.005
2	18	0.701	2.25	6.55	6.561	0.011
3	18	0.841	1.921	4	3.984	-0.016
4	18	0.935	1.69	2.56	2.556	-0.004
5	18	1.285	2.19	0.155	0.152	-0.003

- The underlying security is MSFT stock.
- The number of periods T = 25 weeks.
- The initial price of underlying security $S_0 = 24.8$.
- Strike price of options K: ranges from 7.5 to 50.

Out of Sample

No.	Τ	K/S	$\Gamma_{implied}$	Mkt Price	Model Price	Error
1	25	0.605	2.62	0.17	0.201	0.031
2	25	0.806	1.83	0.695	0.589	-0.106
3	25	0.968	1.6	1.895	1.764	-0.132
4	25	1.008	1.59	2.365	2.266	-0.099
5	25	1.21	1.9	5.85	5.939	0.089
6	25	1.411	2.87	10.5	10.703	0.203
7	25	1.815	7.7	20.45	20.303	-0.147

In Sample

No.	Т	K/S	$\Gamma_{implied}$	Mkt Price	Model Price	Error
1	25	0.504	3.24	0.065	0.17	0.105
2	25	0.706	2.15	0.34	0.305	-0.035
3	25	0.766	1.94	0.525	0.442	-0.083
4	25	0.847	1.74	0.905	0.778	-0.127

Dependence on Discretization and Transaction Costs

Dependence on Discretization and Transaction Costs

Dependence on Discretization and Transaction Costs

Conclusions

- Tractable approach to price options while accounting for the risk attitudes of the option writer.
- Approach scales polynomially (as opposed to exponentially) with the dimension of the original pricing problem.
- We provide a potential explanation for the phenomenon of the implied volatility smile, and support experimental evidence for the same.