

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Г «Информатика и системы управления (ИУ)»	
КАФЕЛРА «	Программное обеспечение ЭВМ и информационные технологии (ИУ7)»	

ОТЧЕТ

Лабораторная работа №7

по курсу «Моделирование»

на тему: «Моделирование работы системы массового обслуживания (GPSS)»

Студент ИУ7-73Б		К.Э. Ковалец
(Группа)	(Подпись, дата)	(И. О. Фамилия)
_		HD D
Іреподаватель		И.В. Рудаков

Содержание

1	Зад	цание	٠
2	Teo	ретическая часть	4
	2.1	Равномерное распределение	4
	2.2	Распределение Эрланга	4
3	Рез	вультаты работы	E e
	3.1	Листинги программы	

1 Задание

Для выполнения лабораторной необходимо смоделировать работу системы массового обслуживания, состоящую из генератора и обслуживающего аппарата. Генератор работает по равномерному закону распределения, а обслуживающий аппарат — по закону распределения Эрланга (в соответствии с вариантом из лабораторной работы №1). Необходимо определить максимальную длину очереди без потерь. Предусмотреть возможность возврата обработанной заявки обратно на вход обслуживающего аппарата (задается вероятностью). Реализовать на языке имитационного моделирования GPSS.

2 Теоретическая часть

2.1 Равномерное распределение

Функция равномерного распределения:

$$F(x) = \begin{cases} 0, x < a, \\ \frac{x - a}{b - a}, x \in [a, b], \\ 0, x > b. \end{cases}$$
 (2.1)

Функция плотности равномерного распределения:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b], \\ 0, & else. \end{cases}$$
 (2.2)

2.2 Распределение Эрланга

Функция распределения Эрланга:

$$F_k(x) = 1 - e^{-\lambda \cdot x} \cdot \sum_{i=1}^{k-1} \frac{(\lambda \cdot x)^i}{i!}.$$
 (2.3)

Функция плотности распределения Эрланга:

$$f_k(x) = \frac{\lambda \cdot (\lambda \cdot x)^{k-1}}{(k-1)!} \cdot e^{-\lambda \cdot x}.$$
 (2.4)

В данных формулах λ и k — положительные параметры распределения $(\lambda\geqslant 0; k=1,2,\ldots); \ x\geqslant 0.$

3 Результаты работы

3.1 Листинги программы

Специальный эрланговский закон можно ввести частным случаем гаммараспределения с помощью функции (GAMMA (A,B,C,D)). В аргументе A записывается номер генератора равномерно распределенных случайных чисел в диапазоне от 0 до 1, который рекомендуется выбирать из диапазона от 1 до 7. Для специального эрланговского закона аргумент В принимается равным 0, в аргумент C записывается среднее значение, а в аргумент D записывается количество фаз.

В листинге 3.1 представлен код программы.

Листинг 3.1 - Код программы

```
GENERATE (UNIFORM(1,1,5)),0,1000
     MoveTo QUEUE Queue_
2
3
     SEIZE Operator_
     DEPART Queue_
6
7
     ADVANCE (GAMMA(1,0,2,2))
     RELEASE Operator_
8
9
     TRANSFER 0.1, Finish, MoveTo
10
     Finish TERMINATE 1
11
12
     START 1000
13
```

В листинге 3.2 представлен результат работы программы.

Листинг 3.2 — Результат работы программы

```
GPSS World Simulation Report - lab_06.2.1
1
2
3
                         Friday, December 16, 2022 22:43:31
5
                                      END TIME BLOCKS FACILITIES STORAGES
                 START TIME
6
                                                                         0
                      0.000
                                       5468.555
                                                    8
                                                              1
8
9
                    NAME
                                                VALUE
10
                FINISH
                                                 8.000
11
```

Продолжение листинга 3.2

1								
12	MOVE	07		2.0	000			
13	OPER!	ATOR_	10001.000					
14	QUEUE_			10000.0	000			
15								
16								
17	LABEL	LOC BLO	CK TYPE	ENTRY	COUNT	CURRENT C	COUNT RETRY	
18		1 GEN	ERATE	15	500	C	0	
19	MOVETO	2 QUE	UE	16	323	499	0	
20		3 SEI	ZE	11	24	1	0	
21		4 DEP	ART	11	.23	C	0	
22		5 ADV	ANCE	11	.23	C	0	
23		6 REL	EASE	11	.23	C	0	
24		7 TRA	NSFER	11	.23	C	0	
25	FINISH	8 TER	MINATE	10	000	C	0	
26								
27								
28	FACILITY							
29	OPERATOR_	1124 0	.817	3.976	1	1036	0 0	499
30								
31								
32	QUEUE							
33	QUEUE_	502 500	1623	1 1	199.140	670.98	86 671.399	9 0
34								
35								
36	CEC XN PRI	M1				PARAMETER	R VALUE	
37	1036 0	4089.879	1036	3	4			
38								
39	EDG VV DOT	ррш	A GGEN	OTTO DELL'	MOVE	DADAMEET		
40	FEC XN PRI	BDT				PAKAMETER	ι VALUE	
41	1501 0	5468.874	1501	0	1			

Из полученного результата видно, что при вероятности возврата 0.1 максимальная длина очереди равна 502.