Versuch 301 "Leerlaufspannung und Innenwiderstand von Spannungsquellen"

Robert Konradi robert.konradi@tu-dortmund.de

Lauritz Klünder lauritz.kluender@tu-dortmund.de

Durchführung: 12.01.2018, Abgabe: 19.01.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Durchführung	4

1 Zielsetzung

In diesem Versuch soll die Leerlaufspannung als auch den Innenwiderstand gemessen werden.

2 Theorie

Die Leerlaufspannung U_0 ist die Spannung an der Spannungsquelle, die über einen endlichen Zeitraum eine konstante Leistung liefert, an dem kein Strom I fließt. Mit einem Lastwiderstand R_a fließt ein Strom I und die Spannung, die man nun abgreifen kann, nennt sich "Klemmspannung" U_k und ist geringer als U_0 . In Abbildung (1) kann mit Hilfe der Maschenregel (zweites Kirschhoffsche Gesetz)

$$\sum_{1} U_i = 0$$

und das Ohmische Gesetz

$$U = R \cdot I \tag{1}$$

die Formel für ${\cal U}_0$ und ${\cal U}_K,$ mit Betrachtung der Stromrichtung darstellen.

$$U_0 = I(R_i + R_a) \ bzw. \ U_k = U_0 - IR_i \tag{2}$$

Abbildung 1: Stromkreis mit realen Spannungsquelle [1]

Ebenso bescheibt in Abbildung(1) die geschrichelten Linien das Ersatzschaltbild dar mit einer realen Spannungsquelle und einem Innenwiderstand R_i . Aus Gleichung(2) folgt, dass für ein hochohmigen Widerstand $U_K \approx U_0$ gilt.

Durch den Innenwiderstand R_i ist es nicht möglich aus einer idealen Spannungsquelle

eine beliebig hohe Leistung zu entnehmen. Die abgegebende Leistung kann an dem Lastwiderstand R_a mit der Formel

$$N(R_a) = I^2 \cdot R_a \tag{3}$$

als Funktion dagestellt werden. Ist R_a so gewählt, dass N einen Maximum annimmt, so nennt es sich eine Leistungsanpassung.

3 Durchführung

Zu Beginn wird die Leelaufspannung mit Hilfe eines Spannungsmessers bestimmt sowie deren Eigenwiderstand. In Abbildung (2) werden aus unterschiedlichen Spannungsformen (in diesem Fall Gleich-,Rechteck- und Sinusspannung) die Spannungswerte sowie Stromwerte notiert.

Abbildung 2: Stromkreis zu Bestimmung von U_0 und \boldsymbol{R}_i [1]

In Abbildung (3) ist nun eine Gegenspannung angeschlossen. Dies bewirkt, dass sich der Stromfluß ändert.

Abbildung 3: Stromkreis zu Bestimmung von \boldsymbol{U}_0 und \boldsymbol{R}_i [1]

Literatur

 $[1] \quad \hbox{T. Dortmund, $Anleitung zum Versuch 301: Leerlaufspanning und Innenwiderstand} \\ \quad von \ Spanningsquellen, 2017.$