What is claimed is:

- 1. A method of treating or preventing IBD in a mammal; comprising, administering a therapeutically effective amount of LXR agonist, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
 - 2. The method of claim 1 in which IBD is selected from the group consisting of Crohn's disease, ulcerative colitis, and inflammatory colitis caused by bacteria, ischemia, radiation, drugs or chemical substances.

3

5

10

3. The method according to claim 1 or 2, wherein the LXR agonist is a compound of formula (II):

$$(CR^{1}R^{2})_{p}$$
 $(CR^{1}R^{2})_{p}$
 $(CHR^{4})_{q}$
 $(CHR^{4})_{q}$

wherein:

15 X is OH or NH₂;

p is 0-6;

each R¹ and R² are the same or different and are each independently selected from the group consisting of H, C₁₋₈alkyl, C₁₋₈alkoxy and C₁₋₈thioalkyl;

Z is CH or N;

20 when Z is CH, k is 0-4;

when Z is N, k is 0-3;

each R^3 is the same or different and is independently selected from the group consisting of halo, –OH, C_{1-8} alkyl, C_{2-8} alkenyl, C_{1-8} alkoxy, C_{2-8} alkenyloxy,

-S(O)₂R⁶, -NR⁷R⁸, -COR⁶, COOR⁶, R¹⁰COOR⁶, OR¹⁰COOR⁶, CONR⁷R⁸, -OC(O)R⁹,

25 -R¹⁰NR⁷R⁸, -OR¹⁰NR⁷R⁸, 5-6 membered heterocycle, nitro, and cyano; a is 0, 1 or 2;

 R^6 is selected from the group consisting of H, C_{1-8} alkyl, C_{1-8} alkoxy and C_{2-8} alkenyl;

WO 2005/013946 PCT/EP2004/008426

each R⁷ and R⁸ are the same or different and are each independently selected from the group consisting of H, C₁₋₈alkyl, C₂₋₈alkenyl,

C₃₋₈alkynyl;

 R^9 is selected from the group consisting of H, C_{1-8} alkyl and -NR⁷R⁸;

5 R^{10} is C_{1-8} alkyl;

n is 2-8;

q is 0 or 1;

R⁴ is selected from the group consisting of H, C₁₋₈alkyl, C₁₋₈alkenyl, and alkenyloxy;

Ring A is selected from the group consisting of C₃₋₈cycloalkyl, aryl, 4-8 membered

heterocycle, and 5-6 membered heteroaryl;

each ring B is the same or different and is independently selected from the group consisting of C₃₋₈cycloalkyl and aryl.

4. The method according to claim 3, in which the LXR agonist is the compound of formula (IIa)

5. The method according to claim 1 or 2, wherein the LXR agonist is a compound of compounds of formula (I):

$$X^{1} \xrightarrow{X^{2}} X^{3}$$

$$R^{1} \xrightarrow{Ar-Y}$$

$$X^{4} \xrightarrow{X^{5}} X^{6}$$

$$(I)$$

wherein:

WO 2005/013946 PCT/EP2004/008426

Ar represents an aryl group; R^1 is — OH, -O-(C_1 -C7)alkyl, -OC(O)-(C_1 -C7)heteroalkyl, -OC(O)-(C_1 -C7)heteroalkyl, -CO₂H, -NH₂, -NH(C_1 -C7)alkyl, -N((C_1 -C7)alkyl)₂ or — NH-S(O)₂-(C_1 -C5)alkyl;

- 5 R^2 is (C_1-C_7) alkyl, (C_1-C_7) heteroalkyl, aryl and aryl (C_1-C_7) alkyl;
 - X^1 , X^2 , X^3 , X^4 , X^5 and X^6 are each independently H, (C₁-C₅)alkyl, (C₁-C₅)hetroalkyl, F or Cl, with the proviso that no more than three of X^1 through X^6 are H, (C₁-C₅)alkyl or (C₁-C₅)heteroalkyl; and

Y is $-N(R^{12})S(O)_{m^-}$, $-N(R^{12})S(O)_{m}N(R^{13})$ -, $-N(R^{12})C(O)$ -, -

 $N(R^{12})C(O)N(R^{13})-, -N(R^{12})C(S)- \text{ or } -N(R^{12})C(O)O-, \text{ wherein } R12 \text{ and } R13 \text{ are each independently hydrogen, } (C_1-C_7)\text{aryl, } (C_1-C_7)\text{heteroalkyl, aryl and } \\ \text{aryl}(C_1-C_7)\text{alkyl, and optionally when } Y \text{ is } -\\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12} \text{ forms a five, six or } \\ N(R^{12})S(O)_m\text{- or } -N(R^{12})S(O)_mN(R^{13})-, R^{12})S(O)_mN(R^{13})-, R^{12})S(O)_mN(R^{13})-, R^{12}$

seven-membered ring fused to Ar or to R² through covalent attachment to Ar or R², respectively. In the above Y groups, the subscript m is an integer of from 1 to 2.

6. The method according to claim 5, in which the LXR agonist is the compound of formula Ia

20

25

la