Second unit: Algorithms

Some topics in Decision Maths; mostly "easy" points on exam. Largely about optimization problems:

- Kruskal and Prim's algorithms for cheapest spanning trees
- ▶ Dijkstra's algorithm: shortest path between two points
- ► Travelling Salesperson problem

In the real world: computers run these algorithm

From pure math perspective, interesting bits are:

- Proving the algorithm works as advertized
- ► Analyzing speed of algorithm can you go faster?

First topic: Prüfer code

How many trees on *n* vertices are there?

Two interpretations of counting trees

Count isomorphism classes of trees. "unlabelled trees"

- ▶ This is what we do when we count isomers
- ► No nice answer

Count labelled trees on *n* vertices

- Vertices are no longer interchangeable
- ▶ n! ways to label an unlabeled tree
- Symmetries mean some produce the same labelled tree

n	1	2	3	4	5	6	7
Unlabelled trees	1	1	1	2	3	6	11
Labelled trees	1	1	3	16	125	1296	16807

"Cayley's" formula

Theorem (Borchardt 1860, Cayley 1889)

There are n^{n-2} labelled trees on n vertices.

Original proof used determinants.

Prüfer code: another way to prove Cayley's formula

Bijection between Trees and Codes

- ▶ $T_n = \{ \text{labelled trees on } n \text{ vertices} \}$
- $C_n = \{(a_1, a_2, \dots, a_{n-2}) : a_i \in \{1, 2, \dots, n\}\}$
- ▶ Build a bijection between T_n and C_n
- $|C_n| = n^{n-2}$

Bijective Proofs

In combinatorics, bijective proofs often give more...

How to write down a labelled trees?

Record the edges:

Each column is an edge									
1	5	2	6	5	7	8	8		
5	2	6	3	4	5	9	5		

- ▶ Records 2n 2 numbers between 1 and n
- Many ways of recording same tree

Need to record the edges in a canonical way

"Canonical" means: without arbitrary choices

Prüfer code: iteratively remove lowest leaf

- 1. Find lowest leaf ℓ of T
- 2. Record edge e connecting it to rest of tree
- 3. Delete ℓ and e to get a simpler tree T'
- 4. Repeat process with T'

Parent	<u>5</u>	<u>6</u>	<u>5</u>	<u>2</u>	<u>5</u>	<u>5</u>	<u>8</u>	9
Leaf	1	3	4	6	2	7	5	8

The underlined numbers form the Prüfer code

Non-underlined numbers are a permutation of 1-9. Why?

To see Prüfer code is a bijection, construct inverse

Given a Prüfer code, how to fill in empty boxes?

Parent	5	6	5	2	5	5	8	
Leaf								

Numbers in the Prüfer code were parents

- ▶ So the numbers in Prüfer code can't be leaves
- We deleted lowest leaf first
- ▶ Thus, first leaf is lowest number not in the Prüfer code

To reconstruct tree from code:

- ▶ Find lowest number not used yet that's not in remaining code
- ▶ Delete the first column
- ▶ Iterate; last two numbers left are the last edge

Cayley's enrichment: keep track of degrees of vertices

Corollary

The number of labeled trees on n vertices where for each i, vertex i has degree d_i is:

$$\frac{(n-2)!}{\prod (d_i-1)!}$$

Side point: consistent with original formula

Handshaking and multinomial formula.