

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 2.1

Wir betrachten die Edelgase Helium (Molmasse $4\,\mathrm{g/mol}$) und Argon (Molmasse $40\,\mathrm{g/mol}$). Für beide Gase nutzen wir das Idealgas-Modell.

- a) Berechnen Sie die molare innere Energie von Helium und Argon bei den beiden Temperaturen $T_1 = 300 \,\mathrm{K}$ und $T_2 = 400 \,\mathrm{K}$.
- b) Wie groß ist die spezifische innere Energie u in den genannten Fällen?
- c) Wie groß ist jeweils die mittlere Geschwindigkeit der Teilchen?

<u>Hinweis:</u> $R_{\rm m} = 8.314472 \, {\rm J/(mol \, K)}, \, N_{\rm A} = 6.0225 \cdot 10^{23} \, {\rm Teilchen/mol}$

Aufgabe 2.2

In einem Kolben-Zylinder-Systemen befindet sich $m=1\,\mathrm{kg}$ eines idealen Gases bei $p_1=8\,\mathrm{bar},\ T_1=600\,\mathrm{K}.$ Nun wird das Gas [...] auf $v_2=2v_1,\ [p_2=2.83\,\mathrm{bar}]$ expandiert, und anschließend isochor auf Zustand 3 ($T_3=300\,\mathrm{K},\ p_3=2\,\mathrm{bar}$) gebracht. Stoffdaten: $R=0.28\,\mathrm{kJ/(kg\,K)},\ c_v=0.56\,\mathrm{kJ/(kg\,K)},\ \kappa=1.5$

- a) Geben Sie das spezifische Volumen in allen drei Zuständen an.
- b) Berechnen Sie die Temperatur [...] in Zustand 2.

Aufgabe 2.3

Bei einer Temperatur von $T_0 = 15\,^{\circ}\text{C}$ wird am Erdboden ein Druck p_0 von 740 mm Quecksilbersäule (986.6 hPa) gemessen. Berechnen Sie den Atmosphärendruck in einer Höhe von 2000 m unter den folgenden Annahmen:

- a) die Temperatur sei konstant.
- b) der Gradient der Lufttemperatur sei konstant und betrage 6.5 K/km

<u>Hinweis:</u> Luft soll als ideales Gas betrachtet werden, mit $R = 0.287 \,\mathrm{kJ/(kg\,K)}$. Die Erdbeschleunigung beträgt $g = 9.81 \,\mathrm{m/s^2}$.

Aufgabe 2.4

Ein starrer verschlossener Behälter ist mit einem Fluid von $T=20\,^{\circ}\text{C}$ und $p=1\,\text{bar}$ gefüllt. Berechnen Sie die Änderung des Drucks im Behälter bei einer Aufheizung des Fluides um $10\,\text{K}$, wenn es sich um folgende Fluide handelt:

- a) Wasser
- b) Quecksilber
- c) Luft

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

<u>Hinweis:</u> Der (isobare) thermische Ausdehnungskoeffizient α und die isotherme Kompressibilität γ von Wasser und Quecksilber sollen näherungsweise als druck- und temperaturunabhängig betrachtet werden. Luft soll als ideales Gas betrachtet werden.

	Wasser	Quecksilber
α [K ⁻¹]	$18.0 \cdot 10^{-5}$	$18.1 \cdot 10^{-5}$
γ [bar ⁻¹]	$45.4 \cdot 10^{-6}$	$3.86 \cdot 10^{-6}$