Definire formalmente un'espressione regolare e la nozione di implicazione fra espressioni regolari.

Un'espressione regolare è una stringa formata da caratteri dell'alfabeto terminale Σ e dai seguenti operatori: concatenamento, unione, star, insieme vuoto e parantesi.

Di seguito degli esempi di espressioni regolari:

- -espressione regolare = ϕ (insieme vuoto)
- -espressione regolare = E (stringa vuota)
- -espressione regolare = a (con a $\in \Sigma$, cioè qualsiasi simbolo che appartiene all'alfabeto)
- -espressione regolare = e1 U e2 (unione di due espressioni regolari)
- -espressione regolare = e1* e2* (star di due espressioni regolari)
- -espressione regolare = $e1 \cdot e2$ (concatenamento di due espressioni regolari)

Definire che cos'è un linguaggio regolare

Un linguaggio di alfabeto Σ si dice regolare se è esprimibile mediante le operazioni di concatenamento, unione e star applicate per un numero finito di volte ai linguaggi unitari o al linguaggio vuoto.

Definire formalmente l'automa a stati finiti deterministico senza ϵ -mosse $M=<Q, \Sigma, \partial, q_0, F>e$ definire un automa non deterministico $M=<Q', \Sigma', \partial', q_0', F'>$ con ϵ -mosse

(nota: Q', Σ' , δ' , q_0 ', ed F' devono essere definiti formalmente in termini di Q, Σ , δ , q0 e F.

L'automa a stati finiti deterministico, quindi con le E mosse, è definito da cinque elementi:

 $\langle Q, \Sigma, \partial, q_0, F \rangle$

Q, rappresenta l'insieme degli stati

Σ, rappresenta l'alfabeto

ð, rappresenta la funzione di transizione, cioè cosa succede ad un certo stato con un certo input.

 $\mathbf{d} = \mathbf{Q} \times \mathbf{\Sigma} - \mathbf{Q}$, significa che uno stato con un certo input può andare solo ed esclusivamente in un altro stato.

q₀, rappresenta lo stato iniziale

F, è un sottoinsieme di Q, rappresenta l'insieme degli stati finali

L'automa a stati finiti non deterministico quindi senza le E mosse, è definito da cinque elementi:

 $\langle Q, \Sigma, \partial, q0, F \rangle$

Q, rappresenta l'insieme degli stati

Σ, rappresenta l'alfabeto

d, rappresenta la funzione di transizione, cioè cosa succede ad un certo stato con un certo input.

 $\mathbf{\partial} = \mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{2Q}$, significa che uno stato con un certo input può andare in altri stati.

q₀, rappresenta lo stato iniziale

F, è un sottoinsieme di Q, rappresenta l'insieme degli stati finiti

Definire le nozioni di configurazioni e di mossa per un automa a pila.

La configurazione mi indica il punto in cui sono arrivato durante la computazione.

 $(q, y, y) \in Q \times \Sigma^* \times T^*$

q è lo stato attuale della computazione,

y è la stringa in input che dovrà essere letta/consumata,

γ è il contenuto della pila.

Data una configurazione si chiama **mossa** il passaggio da una configurazione ad un'altra tramite la funzione di transizione.

Ci sono due casi: $(y, x \in T^*)$

 $(q, aY, yx) \rightarrow (p, Y, y\pi)$ se $(p, \pi) \in \partial(q, a, x)$, cioè si consuma un elemento dall'input e si fa una push sulla pila

 $(q, Y, yx) \rightarrow (p, y\pi)$ se $(p, \pi) \in \partial(q, \xi, x)$

Definire le regole che permettono di costruire in modo automatico a partire da un automa a stati finiti che riconosce il linguaggio complemento.

L'automa complemento di un automa a stati finiti deterministico, è definito da cinque elementi: $\langle Q', \Sigma', \partial', q_0', F' \rangle$.

q₀' = q₀, cioè rimane sempre lo stesso stato iniziale dell'automa a stati finiti

F' = (Q - F) U {P}, cioè tutti gli stati non finali dell'automa a stati finiti e lo stato P

Q' = Q U {P}, cioè uguale a Q dell'automa a stati finiti con l'aggiunta dello stato P, detto stato pozzo.

- Σ', rimane lo stesso di quello dell'automa di partenza
- ∂', viene suddivisa in casi: (per ogni q ∈ Q e per ogni a ∈ Σ)
 - se $\partial(q, a) = k$ allora $\partial'(q, a) = k$, cioè ogni arco dell'automa a stati finiti ci sarà anche nell'automa complemento.
 - se $\partial(q, a) = /$ allora $\partial'(q, a) = P$, cioè se nell'automa a stati finiti non c'era l'arco con un simbolo dell'alfabeto, allora in quello complemento andrà nello stato P.
 - θ'(p, a) = P, cioè si crea una arco che va da P a P per tutti i simboli dell'alfabeto.

Definire formalmente le regole che permettono di costruire in modo automatico un automa a pila non deterministico data una grammatica context-free.

Si utilizza un'accettazione a pila vuota e occorrono sette entità $\langle Q, \Sigma, T, \partial, q_0, Z_0, F \rangle$:

- **q**₀, ovvero lo stato iniziale.
- F, ovvero l'insieme degli stati finali che in questo caso sarà uguale all'insieme vuoto.
- $Q = \{q_0\}$, esiste solo lo stato iniziale.
- $\Sigma = \Sigma$, l'alfabeto dell'input è sempre lo stesso della grammatica context-free.
- $Z_0 = Z_0$, indica il fondo della pila.
- $T = \{Z_0\}$ U Σ U V, cioè sulla pila ci sono tanti simboli quanti sono i simboli dell'alfabeto e dei non terminali
- **ð** è la funzione di transizione che genera una serie di regole di produzione,

cioè per ogni A -> $\alpha\beta$: (β^r ovvero i simboli dopo α bisogna scriverli al contrario)

- se α = terminale $\rightarrow \partial(q_0, a, A) = (q_0, \beta^r)$
- se α = non terminale $\rightarrow \partial(q_0, \xi, A) = (q_0, \beta^r X)$
- viene gestito ogni simbolo dell'alfabeto, cioè per ogni $A \in \Sigma -> \partial(q_0, a, a) = (q_0, E)$
- vengono gestite le regole della funziona di transizione di inizializzazione e di terminazione.
- inizializzazione $\rightarrow \partial(q_0, \mathcal{E}, Z_0) = (q_0, \angle S)$
- terminazione $\rightarrow \partial(q_0, \, \, \, \, \, \, \, \, \,) = (q_0, \, \xi)$

Definire l'accettazione per un input negli automi a pila

L'accettazione di un input in un automa a pila non deterministico avviene per:

- **stato finale**, cioè l'input si accetta quando si consuma tutta l'input e si arriva in uno stato finale $(q_0, A, Z_0) \rightarrow (q, E, \gamma)$ se $q \in F$
- **pila vuota**, cioè quando si consuma tutto l'input e alla fine la pila è vuota, cioè non contiene nessun simbolo, nemmeno Z_0 (q₀, A, Z_0) -> (q, E, E) se E0

Definire formalmente l'automa a pila

L'automa a pila è definito da 7 elementi: $\langle Q, \Sigma, T, \partial, q_0, Z_0, F \rangle$.

- Q, rappresenta l'insieme degli stati.
- Σ, rappresenta l'alfabeto dell'input.
- T (tao), rappresenta l'alfabeto della pila, cioè i simboli che si possono mettere o togliere dalla pila.
- **ð**, rappresenta la funzione di transizione, cioè cosa succede ad un certo stato con un certo input.
- **q**₀, rappresenta lo stato iniziale.
- **Z**₀, rappresenta la pila vuota ed è un simbolo della pila.
- **F**, è un sottoinsieme di Q, rappresenta l'insieme degli stati finali.

Definire la grammatica context-free (nota è la stessa per le grammatiche dei linguaggi regolari)

Una grammatica context-free è definita da quattro entità: G=(V, Σ, P,S)

- V, è l'insieme dei simboli non terminali che appartengono alla grammatica,
- Σ, è l'insieme dei simboli terminali che appartengono alla grammatica,
- P, è l'insieme delle regole di produzione,
- **S,** è il non terminale specificato come assioma, (S∈V)

Dire perché una grammatica G può essere ambigua

Una grammatica è ambigua quando per una frase x del linguaggio della grammatica G se ha due o più alberi sintattici distinti.

Definizione di go to

Go to (I, x): Mi permette di spostarmi da uno stato ad un altro all'interno di un automa consumando un terminale o un non terminale.

$$\forall A \rightarrow \alpha^{\nabla} X \beta e I$$

Chiusura($\{A \rightarrow \alpha X^{\nabla} \beta\}$) e goto(I, x) con x che può essere un non terminale o un terminale