CS 484 Introduction to Machine Learning

Week 9, March 18, 2021

Spring Semester 2021

ILLINOIS TECH

College of Computing

Week 9 Agenda: Naïve Bayes

Bayesian Network

 $p(\mathbf{B}|\mathbf{A})$

naïve

Naïve Bayes

Graph

A visual tool for displaying the assumed relationship among variables

Node

The variables are called nodes in the context of graphs

Edge

Represent the assumed causal relationships between two variables

Directed Acyclic Graph

- The edges are acyclic (i.e., not forming part of a cycle)
- The causal relationships are assumed onedirectional
- No feedback relationships

Directed Acyclic Graph

Directed Acyclic Graph

- Weather Condition affects Sprinkler On and Rained Before
- Sprinkler On and Rained Before each individually affects Grass Condition
- There is no relationship between Sprinkler On and Rained Before given Weather Condition

Conditional Probability

- Given two events A and B
- The conditional probability, denoted as Pr(A | B), is the probability that Event A will occur provided that Event B has occurred
- $Pr(A \cap B)$ is the probability that both events A and B will occur
- Pr(B) is the probability that event B
 will occur

Conditional Probability

Roll a Fair Dice

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- A = {Odd Value} = {1, 3, 5}
- B = {Value Divisible by 3} = {3, 6}
- $A \cap B = \{3\}$
- $Pr(A \cap B) = 1/6$
- Pr(A) = 3 / 6
- Pr(B|A) = (1/6) / (3/6) = 1/3

Pick a U(0,1) Random Number

- $\Omega = \{x: 0 \le x \le 1\}$
- A = $\{2x < 1\}$ = $\{x: 0 \le x < 0.5\}$
- B = $\{3x > 1\}$ = $\{x: 1/3 < x \le 1\}$
- A \cap B = {x: 1/3 < x < 1/2}
- $Pr(A \cap B) = 1/2 1/3 = 1/6$
- Pr(A) = 1/2
- Pr(B|A) = (1/6) / (1/2) = 1/3

Bayes' Theorem

- $Pr(B|A) = Pr(A \cap B) / Pr(A)$
- \rightarrow Pr(A \cap B) = Pr(B|A) Pr(A)

- $Pr(A|B) = Pr(A \cap B) / Pr(B)$
- \rightarrow Pr(A \cap B) = Pr(A | B) Pr(B)
- \rightarrow Pr(A|B) Pr(B) = Pr(B|A) Pr(A)
- \rightarrow Pr(A|B) = (Pr(B|A) Pr(A)) / Pr(B)

Roll a Fair Dice

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- A = {Odd Value} = {1, 3, 5}
- B = {Value Divisible by 3} = {3, 6}
- Pr(B|A) = (1/6) / (3/6) = 1/3
- Pr(A|B) = (1/3 * 3/6) / (2/6)= 1/2

Bayes' Theorem

- Pr(A|B) = (Pr(B|A) Pr(A)) / Pr(B)
- Do we have to calculate Pr(B) explicitly?
- $Pr(B) = Pr(B \cap \Omega)$ where Ω is the universal set
- Ω = A U (~A) where ~A is the complement set of A (i.e., everything but not in A)
- B $\cap \Omega = B \cap (A \cup A)$

- $B \cap \Omega = B \cap (A \cup A)$
- $B = (B \cap A) \cup (B \cap {}^{\sim}A)$
- $(B \cap A)$ and $(B \cap {}^{\sim}A)$ are disjoint
- $Pr(B) = Pr(B \cap A) + Pr(B \cap ^A)$

Bayes' Theorem

- $Pr(B) = Pr(B \cap A) + Pr(B \cap ^A)$
- $Pr(B \cap A) = Pr(B|A) P(A)$
- $Pr(B \cap ^A) = Pr(B|^A) P(^A)$
- Pr(B) = Pr(B|A) P(A) + Pr(B|A) P(A)
- $Pr(A|B) = (Pr(B|A) Pr(A)) / (Pr(B|A) P(A) + Pr(B|^A) P(^A))$
- $P(^{\sim}A) = 1 P(A)$

Bayesian Network

- A Bayesian network is a directed acyclic graphical model
- It represents (1) probability relationships, and (2) conditional independence structure among the random variables
- A Bayesian network is a family of classification algorithms for
 - Naïve Bayes
 - Tree-augmented Naïve Bayes (TAN)
 - Parent-child Bayesian Network
 - Markov Blanket

- Russell and Norvig (2010). Artificial Intelligence: A Modern Approach, Third Edition. New Jersey: Pearson.
- Suppose you live in an area (e.g., San Francisco Bay) where earthquakes are not uncommon

shutterstock.com • 719191480

You have two neighbors, Mary and John, who do not know each other. If they hear the alarm, they might or might not call you.

The events are

- Has Burglary?
- 2. Has Earthquake?
- 3. Did Alarm Sound?
- 4. Did John call?
- 5. Did Mary call?

- The probabilities are either assigned or observed.
- Earthquake and Burglary are assumed independent
- · Mary and John independently decide whether to call you

• Whether Mary or John calls is conditionally dependent only on the

state of the alarm.

- The purpose of their calls is to inform you that your alarm has sounded, and not to tell you the cause.
- You are responsible to find out the cause.

The joint probability of the events (B, E, A, J, and M) is Pr(B, E, A, J, M)

The Bayes' Theorem:

Pr(B, E, A, J, M)

= Pr(J, M|B, E, A) * Pr(B, E, A)

Since Mary and John are assumed independent:

Pr(J, M|B, E, A)

= Pr(J|B, E, A) × Pr(M|B, E, A)

Bayesian Network: Pr(J|B, E, A) = Pr(J|A)Pr(M|B, E, A) = Pr(M|A)

 Burglary and Earthquake are assumed independent: Pr(B, E) = Pr(B) * Pr(E).

```
Finally, Pr(B, E, A, J, M) = Pr(J, M|B, E, A) \times Pr(B, E, A)
= Pr(J|B, E, A) \times Pr(M|B, E, A) \times Pr(B, E, A)
= Pr(J|A) \times Pr(M|A) \times Pr(A|B, E) \times Pr(B) \times Pr(E)
```

 The network structure together with the conditional probability distributions completely determines the Bayesian network model.

```
Finally, Pr(B, E, A, J, M) = Pr(J, M|B, E, A) \times Pr(B, E, A)
= Pr(J|B, E, A) \times Pr(M|B, E, A) \times Pr(B, E, A)
= Pr(J|A) \times Pr(M|A) \times Pr(A|B, E) \times Pr(B) \times Pr(E)
```

- Suppose you are at work:
 - The house is being burglarized (B = True)
 - There is no earthquake (E = False)
 - Neither John nor Mary calls (J = False and M = False)
- What is the probability that the alarm went off (A = True)?
- The probability is Pr(A = T | B = T, E = F, J = F, M = F)
 - = $Pr(A|B,^E, ^J, ^M)$
 - = $Pr(B, ^E, A, ^J, ^M) / Pr(B, ^E, ^J, ^M)$

• $Pr(B, ^E, A, ^J, ^M)$ = $Pr(^J|A) \times Pr(^M|A) \times Pr(A|B, ^E) \times Pr(B) \times Pr(^E)$ = $(1-0.9) \times (1-0.7) \times (0.94) \times (0.01) \times (1-0.02)$ = 0.000276360

- Pr(B, ~E, ~A, ~J, ~M)
 - = $Pr(\sim J \mid \sim A) \times Pr(\sim M \mid \sim A) \times Pr(\sim A \mid B, \sim E) \times Pr(B) \times Pr(\sim E)$
 - $= (1 0.05) \times (1 0.01) \times (1 0.94) \times (0.01) \times (1 0.02)$
 - = 0.000553014
- Pr(B, ~E, ~J, ~M) = Pr(B, ~E, A, ~J, ~M) + Pr(B, ~E, ~A, ~J, ~M) = 0.000276360 + 0.000553014 = 0.000829374

- Suppose you are at work, the house is being burglarized (B = True), there is no earthquake (E = False), neither John nor Mary calls to say your alarm is ringing (J = False and M = False).
- The probability that the alarm went off (A = True) is Pr(A = T|B = T, E = F, J = F, M = F) = Pr(A|B,~E, ~J, ~M) = Pr(B, ~E, A, ~J, ~M) / Pr(B, ~E, ~J, ~M) = 0.000276360 / 0.000829374 = 0.333215172
- In summary, the conditional probability of the alarm having gone off in this situation is about 0.33.

- Suppose you are at work:
 - The house is burglarized (B = True)
 - There is no earthquake (E = False)
 - Mary called to say your alarm is ringing (M = True)
 - John did not call (J = False)
- What is the probability that the alarm went off (A = True)?
- The probability is Pr(A = T | B = T, E = F, J = F, M = T)
 - = $Pr(A|B,^E, ^J, M)$
 - = $Pr(B, \sim E, A, \sim J, M) / Pr(B, \sim E, \sim J, M)$

• $Pr(B, ^E, A, ^J, M)$ = $Pr(^J|A) \times Pr(M|A) \times Pr(A|B, ^E) \times Pr(B) * Pr(^E)$ = $(1-0.9) \times (0.7) \times (0.94) \times (0.01) \times (1-0.02)$ = 0.000644840

- $Pr(B, \sim E, \sim A, \sim J, M)$ = $Pr(\sim J \mid \sim A) \times Pr(M \mid \sim A) \times Pr(\sim A \mid B, \sim E) \times Pr(B) \times Pr(\sim E)$ = $(1 - 0.05) \times 0.01 \times (1 - 0.94) \times (0.01) \times (1 - 0.02)$ = 0.000005586
- Pr(B, ~E, ~J, M) = Pr(B, ~E, A, ~J, M) + Pr(B, ~E, ~A, ~J, M) = 0.00064484 + 0.000005586 = 0.000650426

- Suppose you are at work, the house is burglarized (B = True), there is no earthquake (E = False), your neighbor Mary calls to say your alarm is ringing (M = True), but neighbor John doesn't call (J = False). What is the probability that the alarm went off (A = True)?
- The probability is Pr(A = T|B = T, E = F, J = F, M = T) = Pr(A|B,~E, ~J, M)
 = Pr(B, ~E, A, ~J, M) / Pr(B, ~E, ~J, M)
 = 0.000644840 / 0.000650426 = 0.991411782
- In summary, the conditional probability of the alarm having gone off in this situation is about 0.99.

Bayesian Network Example: Pr(A = True)

- What is the overall probability that the alarm went off (A = True)?
- The probability is $Pr(A) = P(A,B,E) + P(A,^B,E) + P(A,B,^E) + P(A,^B,^E) + P(A,^B,^E)$
- = Pr(A|B,E) × Pr(B,E) + Pr(A|~B,E) × Pr(~B,E) + Pr(A|B,~E) × Pr(B,~E) + Pr(A|~B,~E) × Pr(~B,~E)
 - = $Pr(A|B,E) \times Pr(B) \times Pr(E) + Pr(A|^B,E) \times Pr(^B) \times Pr(E)$ + $Pr(A|B,^E) \times Pr(B) \times Pr(^E) + Pr(A|^B,^E) \times Pr(^B) \times Pr(^E)$
 - = $0.95 \times 0.01 \times 0.02 + 0.29 \times (1-0.01) \times 0.02$ + $0.94 \times 0.01 \times (1-0.02) + 0.0001 \times (1-0.01) \times (1-0.02) = 0.01524102$

Bayesian Network Example: Summary

- Scenario 1: When Mary calls but John did not:
 - Pr(A = T | B = T, E = F, J = F, M = T) = 0.99 > 0.02 = Pr(A = T)
 - I can surely classify that the alarm did go off.
 - Action: I should then contact the police to check on my house.

- Scenario 2: When both Mary and John did not call:
 - Pr(A = T | B = T, E = F, J = F, M = F) = 0.33 > 0.02 = Pr(A = T)
 - This is not a negligible probability.
 - Action: I may consider subscribing to some monitoring services too.

Naïve Bayes Overview

- A Naïve Bayes is a particular Bayesian Network.
- There is an edge from the nominal target variable to each predictor
- Categorical or interval predictors are allowed.

Naïve Bayes: Theory

- Denote the target variable as y.
- Denote the predictors as $x_1, ..., x_p$.
- Our goal is to calculate the conditional probability of the target variable given the predictors. This is the <u>Bayes</u> part.

$$\Pr(y|x_1,...,x_p) = \frac{\Pr(y,x_1,...,x_p)}{\Pr(x_1,...,x_p)}$$

Naïve Bayes: Theory

Applying the Bayes' Theorem,

$$Pr(y, x_1, ..., x_p) = Pr(y) Pr(x_1, ..., x_p | y)$$

 Using the assumption that the predictors are mutually independent conditional on the target variable,

$$\Pr(y, x_1, ..., x_p) = \Pr(y) \Pr(x_1, ..., x_p | y) = \Pr(y) \prod_{j=1}^{r} \Pr(x_j | y)$$

 In other words, if we already knew the state of the target variable, the states of other predictors do not contribute any additional information about the state of the current predictor.

Naïve Bayes: Theory

It follows that,

$$\Pr(y|x_1,...,x_p) = \frac{\Pr(y,x_1,...,x_p)}{\Pr(x_1,...,x_p)} = \frac{\Pr(y)\prod_{j=1}^p \Pr(x_j|y)}{\Pr(x_1,...,x_p)}$$

- Although $Pr(x_1, ..., x_p)$ is a probability, its value is fixed for a given data. Therefore, $Pr(y|x_1, ..., x_p) \propto Pr(y) \prod_{i=1}^p Pr(x_i|y)$.
- The probability Pr(y) is the class probability because y is categorical.

Naïve Bayes: Classifier

- Given values of $x_1, ..., x_p$, we calculate this quantity $\Pr(y) \prod_{j=1}^p \Pr(x_j|y)$ (not necessary a valid probability value) for all possible categories of the target variable.
- Then divide these quantities by the sum of them to make the resulting values as valid probabilities values.
- Finally, select the category whose corresponding probability is the highest. Alternatively, select the lexically lowest category whose corresponding probability has exceeded a specified threshold.

Naïve Bayes: Representing $\Pr(x_j|y)$

- Categorical Predictor
 - $Pr(x_i|y)$ follows the empirical probability distribution.
- Interval Predictor
 - $Pr(x_i|y)$ follows a univariate Gaussian (i.e., Normal) distribution
 - The mean and the variance of that distribution is estimated by the sample mean and the sample variance of x_i within each category of y.
- Count Predictor
 - $Pr(x_i|y)$ follows a multinomial distribution.
 - The parameters of that distribution are estimated by the fractions of observations within each category of *y*.

Naïve Bayes: Customer Survey

You are working on a marketing campaign to promote the E-Billing service to bank customers.

You need to build the profiles of customers who will register for the E-Billing service.

You have access to a recent Customer Survey Data which contains information about 4,952 customers.

Naïve Bayes: Structure

Behavioral Theory:

A person's aptitude (e.g., genes) to embrace E-Billing may also exemplifies in the person's gender, the choice of credit card (spending vs. saving), and the career path (work/life balance).

CreditCard

American Express
Discover
MasterCard
Others
Visa

Gender

Female Male

JobCategory

Agriculture

Crafts

Labor

Professional

Sales

Service

Naïve Bayes: Customer Survey

```
# Define a function to visualize the percent of a particular target category by a nominal predictor
def RowWithColumn (
               # Row variable
  rowVar,
  columnVar, # Column predictor
  show = 'ROW'): # Show ROW fraction, COLUMN fraction, or BOTH table
  countTable = pandas.crosstab(index = rowVar, columns = columnVar, margins = False, dropna = True)
  print("Frequency Table: \n", countTable)
  print()
  if (show == 'ROW' or show == 'BOTH'):
       rowFraction = countTable.div(countTable.sum(1), axis='index')
      print("Row Fraction Table: \n", rowFraction)
      print()
  if (show == 'COLUMN' or show == 'BOTH'):
       columnFraction = countTable.div(countTable.sum(0), axis='columns')
      print("Column Fraction Table: \n", columnFraction)
      print()
   return
```

Week 9 EBilling Naive Bayes.py

Customer Survey: Crosstabulation

EBilling	Count	Class Probability
No	3,221	0.6504
Yes	1,731	0.3496

Week 9 EBilling Naive Bayes.py

Count	Credit Card					
Ebilling	American Express	Discover	MasterCard	Others	Visa	Total
No	591	788	815	173	854	3,221
Yes	390	543	369	48	381	1,731

Row Fraction	Credit Card					
EBilling	American Express	Discover	MasterCard	Others	Visa	Total
No	0.1835	0.2446	0.2530	0.0537	0.2651	1.0000
Yes	0.2253	0.3137	0.2132	0.0277	0.2201	1.0000

Customer Survey: Crosstabulation

Count	Gender				
EBilling	Female Male Total				
No	1,595	1,626	3,221		
Yes	895	836	1,731		

Row Fraction	Gender			
EBilling	Female	Male	Total	
No	0.4952	0.5048	1.0000	
Yes	0.5170	0.4830	1.0000	

Week 9 EBilling Naive Bayes.py

Customer Survey: Crosstabulation

Week 9 EBilling Naive Bayes.py

Count		Job Category					
EBilling	Agriculture	Crafts	Labor	Professional	Sales	Service	Total
No	134	297	474	859	1,038	419	3,221
Yes	78	152	206	512	588	195	1,731

Row Fraction		Job Category					
EBilling	Agriculture	Agriculture Crafts Labor Professional Sales Service To				Total	
No	0.0416	0.0922	0.1472	0.2667	0.3223	0.1301	1.0000
Yes	0.0451	0.0878	0.1190	0.2958	0.3397	0.1127	1.0000

Conditional Probabilities of Ebilling = No given CreditCard, Gender, and JobCategory

Pr(EBilling = No | CreditCard = American Express, Gender = Female, JobCategory = Professional)

 \propto Pr(EBilling = No)

× Pr(CreditCard = American Express | EBilling = No)
× Pr(Gender = Female | EBilling = No)

× Pr(JobCategory = Professional | EBilling = No)

= $(3221/4952) \times (591/3221) \times (1595/3221) \times (859/3221) = 0.015760836$

EBilling	Count	Class Probability		
No	3,221	0.6504		
Yes	1,731	0.3496		

Count	CreditCard					
Ebilling	American Express	Discover	MasterCard	Others	Visa	Total
No	591	788	815	173	854	3,221
Yes	390	543	369	48	381	1,731

Count	Gender			
EBilling	Female Male Total			
No	1,595	1,626	3,221	
Yes	895	836	1,731	

Count	JobCategory						
EBilling	Agriculture	Crafts	Labor	Professional	Sales	Service	Total
No	134	297	474	859	1,038	419	3,221
Yes	78	152	206	512	588	195	1,731

Conditional Probabilities of Ebilling = Yes given CreditCard, Gender, and JobCategory

Pr(EBilling = Yes | CreditCard = American Express, Gender = Female, JobCategory = Professional)

 \propto Pr(EBilling = Yes)

× Pr(CreditCard = American Express | EBilling = Yes)
× Pr(Gender = Female | EBilling = Yes)

× Pr(JobCategory = Professional | EBilling = Yes)

= $(1731/4952) \times (390/1731) \times (895/1731) \times (512/1731) = 0.012044335$

EBilling	Count	Class Probability	
No	3,221	0.6504	
Yes	1,731	0.3496	

Count	CreditCard						
Ebilling	American Express						
No	591	788	815	173	854	3,221	
Yes	390	543	369	48	381	1,731	

Count	Gender			
EBilling	Female	Male	Total	
No	1,595	1,626	3,221	
Yes	895	836	1,731	

Count	JobCategory						
EBilling	Agriculture	Crafts	Labor	Professional	Sales	Service	Total
No	134	297	474	859	1,038	419	3,221
Yes	78	152	206	512	588	195	1,731

Recap the results

- Pr(EBilling = No|CreditCard = American Express, Gender = Female, JobCategory = Professional) $\propto 0.015760836$
 - → Pr(EBilling = No|CreditCard = American Express, Gender = Female, JobCategory = Professional) = C * 0.015760836 where C is the proportional constant
- - → Pr(EBilling = Yes | CreditCard = American Express, Gender = Female, JobCategory = Professional) = C * 0.012044335 where C is the proportional constant

Recap the results

• Since Ebilling is either No or Yes, then

```
Pr(EBilling = No | CreditCard = American Express, Gender = Female, JobCategory = Professional) + Pr(EBilling = Yes | CreditCard = American Express, Gender = Female, JobCategory = Professional) = 1
```

- Therefore 1 = C * 0.015760836 + C * 0.01 2044335 = C * 0.027805171
- Hence, C = 1 / 0.027805171.

Convert to Valid Probability Values

- Put C = 1 / 0.027805171
- Pr(EBilling = No|CreditCard = American Express, Gender = Female, JobCategory = Professional)
 - = C * 0.015760836 = 0.015760836 / 0.027805171 = 0.566831107
- Pr(EBilling = Yes|CreditCard = American Express, Gender = Female, JobCategory = Professional)
 - = C * 0.012044335 = 0.012044335 / 0.027805171 = 0.433168893

Caution About naive_bayes.BernoulliNB

Since the naive_bayes.BernoulliNB function can handle binary features that are coded 0 or 1

Pandas.GetDummies can create 0/1 indicator variables for categorical features

Can we use the BernoulliNB function for categorical features?

- The short answer is NO.
- The dummy indicator variables are not functionally independent.
- Since Naïve Bayes will treat each indicator variable as an actual independent variable, it will bring it extraneous probability $Pr(x_i|y)$ into the calculation.
- The resulting predicted probability from BernoulliNB will be different from that by treating the feature as a categorical variable.

Instead Use naive_bayes. CategoricalNB

Training vectors X

- Assume each feature of X is from a different categorical distribution.
- Require that all categories of each feature are represented by integers
 0, ..., n 1, where n is the total number of categories of a feature.
- This can be achieved with the help of OrdinalEncoder.

Target vector y

 Although documentation does not say whether integers 0, 1, ... is required, we will use LabelEncoder too.

```
from sklearn import preprocessing, naive bayes
labelEnc = preprocessing.LabelEncoder()
yTrain = labelEnc.fit transform(subData['EBilling'])
yLabel = labelEnc.inverse transform([0, 1])
uCreditCard = numpy.unique(subData['CreditCard'])
uGender = numpy.unique(subData['Gender'])
uJobCategory = numpy.unique(subData['JobCategory'])
featureCategory = [uCreditCard, uGender, uJobCategory]
featureEnc = preprocessing.OrdinalEncoder(categories = featureCategory)
xTrain = featureEnc.fit transform(subData[['CreditCard', 'Gender', 'JobCategory']])
objNB = naive bayes.CategoricalNB(alpha = 1.0e-10)
thisModel = _objNB.fit(xTrain, yTrain)
```

```
print('Number of samples encountered for each class during fitting')
print(yLabel)
print(_objNB.class_count_)
print('\n')

print('Probability of each class:')
print(yLabel)
print(numpy.exp(_objNB.class_log_prior_))
print('\n')
```

```
Number of samples encountered for each class during fitting ['No' 'Yes']
[3221. 1731.]

Probability of each class:
['No' 'Yes']
[0.65044426 0.34955574]
```

```
feature = ['CreditCard', 'Gender', 'JobCategory']
print('Number of samples encountered for each (class, feature) during fitting')
for i in range(3):
   print('Feature: ', feature[i])
   print(featureCategory[i])
   print( objNB.category count [i])
  print('\n')
print('Empirical probability of features given a class, P(x i|y)')
for i in range(3):
   print('Feature: ', feature[i])
   print(featureCategory[i])
   print(numpy.exp( objNB.feature log prob [i]))
   print('\n')
```

```
Number of samples encountered for each (class, feature) during fitting
Feature: CreditCard
['American Express' 'Discover' 'MasterCard' 'Others' 'Visa']
[[591. 788. 815. 173. 854.]
 [390. 543. 369. 48. 381.]]
Feature: Gender
['Female' 'Male']
[[1595. 1626.]
 [ 895. 836.]]
Feature: JobCategory
['Agriculture' 'Crafts' 'Labor' 'Professional' 'Sales' 'Service']
[[ 134. 297. 474. 859. 1038. 419.]
 [ 78. 152. 206. 512. 588. 195.]]
```

```
Empirical probability of features given a class, P(x i|y)
Feature: CreditCard
['American Express' 'Discover' 'MasterCard' 'Others' 'Visa']
[[0.18348339 0.24464452 0.25302701 0.05371003 0.26513505]
 [0.22530329 0.31369151 0.21317158 0.02772964 0.22010399]]
Feature: Gender
['Female' 'Male']
[[0.49518783 0.50481217]
 [0.51704217 0.48295783]]
Feature: JobCategory
['Agriculture' 'Crafts' 'Labor' 'Professional' 'Sales' 'Service']
[[0.04160199 0.09220739 0.14715927 0.26668736 0.32226017 0.13008382]
 [0.04506066 0.08781051 0.11900635 0.29578278 0.33968804 0.11265165]]
```

```
# CreditCard = American Express, Gender = Female, JobCategory = Professional
xTest = featureEnc.transform([['American Express', 'Female', 'Professional']])

y_predProb = thisModel.predict_proba(xTest)
print('Predicted Probability: ', yLabel, y_predProb)
```

```
Predicted Probability: ['No' 'Yes'] [[0.56683111 0.43316889]]
```

- C = 1 / 0.027805171
- Pr(EBilling = No|CreditCard = American Express, Gender = Female, JobCategory = Professional)
 = C * 0.015760836 = 0.015760836 / 0.027805171 = 0.566831107
- Pr(EBilling = Yes | CreditCard = American Express, Gender = Female, JobCategory = Professional)
 = C * 0.012044335 = 0.012044335 / 0.027805171 = 0.433168893

Nutrition Information Study

Are you taking any dietary supplements?

1 = Yes

2 = No

Source: McKay, D. L., Houser, R. F., Blumberg, J. B., Goldberg, J. P. (2006). Nutrition information sources vary with education level in a population of older adults. *Journal of the American Dietetic Association*, 106, 1108-1111.

Week 9 Nutrition Naive Bayes.py

Is TV a primary source of information about nutrition?

1 = Yes

2 = No

Are magazines a primary source of information about nutrition?

1 = Yes

2 = No

Are friends a primary source of information about nutrition?

1 = Yes

2 = No

Is your doctor a primary source of information about nutrition?

1 = Yes

2 = No

Nutrition Information: Binary Features

```
# Specify the roles
feature = ['tv', 'magazine', 'friends', 'doctor']
target = 'supps'
# Read the Excel file
nutrition = pandas.read excel('C:\\IIT\\Machine Learning\\Data\\Nutrition Information.xls',
                              sheet name = 'Sheet1',
                              usecols = feature + [target])
nutrition = nutrition.dropna()
# Look at the row distribution
print(nutrition.groupby(target).size())
for pred in feature:
    RowWithColumn(rowVar = nutrition[target], columnVar = nutrition[pred], show = 'ROW')
```

Week 9 Nutrition Naive Bayes.py

Naïve Bayes: Binary Features

supps	Count	Class Probability
Yes	66	0.38150289
No	107	0.61849711
Total	173	1.0

ıcy	
)	
_	

supps: A	re you taking	g any dietary	supplements?
----------	---------------	---------------	--------------

tv: Is TV a primary source of information about nutrition?

magazine: Are magazines a primary source of information about nutrition?

friends: Are friends a primary source of information about nutrition?

doctor: Is your doctor a primary source of information about nutrition?

Week 9 Nutrition Naive Bayes.py

Count	tv			
supps	Yes	No	Total	
Yes	34	32	66	
No	51	56	107	

Count	magazine			
supps	Yes No Total			
Yes	42	24	66	
No	62	45	107	

Count	friends			
supps	Yes	No	Total	
Yes	22	44	66	
No	30	77	107	

Count	doctor			
supps	Yes	No	Total	
Yes	39	27	66	
No	68	39	107	

Conditional Probabilities of supps = Yes given tv, magazine, friends, and doctor

Pr(supps = Yes|tv = Yes, magazine = Yes, friends = Yes, doctor = Yes)

- ∞ Pr(supps = Yes)
 - \times Pr(tv = Yes | supps = Yes)
 - × Pr(magazine = Yes|supps = Yes)
 - × Pr(friends = Yes|supps = Yes)
 - × Pr(doctor = Yes | supps = Yes)

=
$$(66/173) \times (34/66) \times (42/66)$$

 $\times (22/66) \times (39/66) = 0.0246341502253221$

supps	Count Class Probability	
Yes	66	0.38150289
No	107	0.61849711
Total	173	1.0

Count	tv				
supps	Yes	No	Total		
Yes	34	32	66		
No	51	56	107		

Count	magazine			
supps	Yes No Total			
Yes	42	24	66	
No	62	45	107	

Count	friends			
supps	Yes No Total			
Yes	22	44	66	
No	30	77	107	

Count	doctor			
supps	Yes No Total			
Yes	39	27	66	
No	68	39	107	

Conditional Probabilities of supps = No given tv, magazine, friends, and doctor

Pr(supps = No|tv = Yes, magazine = Yes, friends = Yes, doctor = Yes)

- ∞ Pr(supps = No)
 - \times Pr(tv = Yes | supps = No)
 - × Pr(magazine = Yes|supps = No)
 - × Pr(friends = Yes | supps = No)
 - \times Pr(doctor = Yes|supps = No)
- $= (107/173) \times (51/107) \times (62/107)$
- \times (30/107) \times (68/107) = 0.030436492074722

supps	Count	Class Probability
Yes	66	0.38150289
No	107	0.61849711
Total	173	1.0

Count	tv			
supps	Yes No Total			
Yes	34	32	66	
No	51	56	107	

Count	magazine			
supps	Yes No Total			
Yes	42	24	66	
No	62	45	107	

Count	friends			
supps	Yes No Total			
Yes	22	44	66	
No	30	77	107	

Count	doctor			
supps	Yes No Total			
Yes	39	27	66	
No	68	39	107	

Recap the results

- Pr(supps = Yes | tv = Yes, magazine = Yes, friends = Yes, doctor = Yes) $\propto 0.0246341502253221$
- Pr(supps = No | tv = Yes, magazine = Yes, friends = Yes, doctor = Yes) $\propto 0.030436492074722$
- The sum is 0.0246341502253221 + 0.030436492074722 = 0.0550706423000441

Convert to Valid Probability Values

- Pr(supps = Yes | tv = Yes, magazine = Yes, friends = Yes, doctor = Yes)
 - = 0.0246341502253221 / 0.0550706423000441
 - = 0.4473191014
- Pr(supps = No | tv = Yes, magazine = Yes, friends = Yes, doctor = Yes)
 - = 0.030436492074722 / 0.0550706423000441
 - = 0.5526808986

Nutrition Information: BernoulliNB

```
# Make the binary features take values 0 and 1 (was 2=No and 1=Yes)-
                                                                                  The features must take
nutrition[feature] = 2 - nutrition[feature]
                                                                                    only 0 or 1 values
xTrain = nutrition[feature].astype('category')
yTrain = nutrition[target].astype('category')
objNB = naive bayes.BernoulliNB(alpha = 1.e-10)
thisFit = objNB.fit(xTrain, yTrain)
                                                                                   Alpha is the additive
print('Probability of each class')
                                                                               (Laplace/Lidstone) smoothing
print(numpy.exp(thisFit.class log prior ))
                                                                              parameter (0 for no smoothing).
print('Empirical probability of features given a class, P(x i|y)')
                                                                             Ideally, we want alpha = 0, but this
print(numpy.exp(thisFit.feature log prob ))
                                                                              is as small as the function allows.
print('Number of samples encountered for each class during fitting')
print(thisFit.class count )
print('Number of samples encountered for each (class, feature) during fitting')
print(thisFit.feature count )
```

Nutrition Information: BernoulliNB

```
Probability of each class
supps = No supps = Yes
[0.38150289 0.61849711]
Empirical probability of features given a class, P(x i|y)
             tv
                magazine friends
                                             doctor
supps = Yes [[0.51515152 0.63636364 0.33333333 0.59090909]]
supps = No [0.47663551 0.57943925 0.28037383 0.63551402]]
Number of samples encountered for each class during fitting
[ 66. 107.]
Number of samples encountered for each (class, feature) during fitting
supps = Yes [[34. 42. 22. 39.] # tv magazine friends doctor
supps = No [51. 62. 30. 68.]]
```

Nutrition Information: BernoulliNB

Nutrition Information: Naïve Bayes

tv	magazine	friends	doctor	P_suppsYes	P_suppsNo
0	0	0	0	0.33938350	0.66061650
0	0	0	1	0.29853915	0.70146085
0	0	1	0	0.39733497	0.60266503
0	0	1	1	0.35324558	0.64675442
0	1	0	0	0.39486710	0.60513290
0	1	0	1	0.35089211	0.64910789
0	1	1	0	0.45575652	0.54424348
0	1	1	1	0.40959031	0.59040969
1	0	0	0	0.37475009	0.62524991
1	0	0	1	0.33178710	0.66821290
1	0	1	0	0.43476616	0.56523384
1	0	1	1	0.38920564	0.61079436
1	1	0	0	0.43223255	0.56776745
1	1	0	1	0.38675587	0.61324413
1	1	1	0	0.49417844	0.50582156
1	1	1	1	0.44731910	0.55268090

Decreasing P_suppsYNo

Nutrition Information: Naïve Bayes

Listen Only to your Doctor!

tv	magazine	friends	doctor	P_suppsYes	P_suppsNo
0	0	0	1	0.29853915	0.70146085
1	0	0	1	0.33178710	0.66821290
0	0	0	0	0.33938350	0.66061650
0	1	0	1	0.35089211	0.64910789
0	0	1	1	0.35324558	0.64675442
1	0	0	0	0.37475009	0.62524991
1	1	0	1	0.38675587	0.61324413
1	0	1	1	0.38920564	0.61079436
0	1	0	0	0.39486710	0.60513290
0	0	1	0	0.39733497	0.60266503
0	1	1	1	0.40959031	0.59040969
1	1	0	0	0.43223255	0.56776745
1	0	1	0	0.43476616	0.56523384
1	1	1	1	0.44731910	0.55268090
0	1	1	0	0.45575652	0.54424348
1	1	1	0	0.49417844	0.50582156

Gaussian Naïve Bayes

• The likelihood
$$Pr(x_j|y) = \frac{1}{\sqrt{2\pi\sigma_{y_c}^2}} \exp\left(-\frac{(x_i - \mu_{y_c})^2}{2\sigma_{y_c}^2}\right)$$

- The mean μ_{y_c} is estimated by the sample mean of x_i within the y_c category of the target variable.
- Likewise, the variable mean $\sigma_{y_c}^2$ is estimated by the sample variance of x_i within the y_c category of the target variable.

Multinomial Naïve Bayes

- Suppose the feature x_i has k categories in the training data.
- Let $n_{rc} \ge 0$ be the number of observations in the r^{th} category of the predictor and the y_c category of the target variable.
- Let $n_c = \sum_{r=1}^k n_{rc}$ be the number of observations in the y_c category of the target variable.
- The likelihood $\Pr(x_j|y) = \frac{n_c!}{\prod_{r=1}^k n_{rc}!} \prod_{r=1}^k (\theta_{rc})^{n_{rc}}$ where $0 < \theta_{rc} < 1$.

Multinomial Naïve Bayes: Smoothing Alpha

Naturally, we estimate θ_{rc} by the relative frequencies as $\theta_{rc}=n_{rc}/n_c$

If the $r^{\rm th}$ category of the feature is not observed in the y_c category of the target variable, then $n_{rc}=0$ and the natural estimate $\theta_{rc}=0$

Any $\theta_{rc}=0$ will make the likelihood zero, and thus spoil all the calculations

Multinomial Naïve Bayes: Smoothing Alpha

- Therefore, we estimate $\theta_{rc} = \frac{n_{rc} + \alpha}{n_c + \alpha k}$. Note that $\sum_{r=1}^k \theta_{rc} = 1$
- The smoothing prior $\alpha \geq 0$ accounts for the categories of the feature x_i that are not observed in the y_c category of the target variable.
- Common choices of α are:
 - No smoothing: $\alpha=0$ if all categories of the predictor x_j are always observed
 - Laplace smoothing: $\alpha = 1$ (Pierre-Simon Laplace, French, 1749 1827)
 - Lidstone smoothing: $\alpha < 1$ (George James Lidstone, British, 1870 1952)

	ID	Words in Document	City in China?
	1	Chinese Beijing Chinese	Yes
Training	2	Chinese Chinese Shanghai	Yes
Training	Training 3	Chinese Macao	Yes
	4	Tokyo Japan Chinese	No
Tooting	5	Chinese Chinese Tokyo Japan	?
Testing	6	Beijing Shanghai Macao	?

- Determine if the document contains the name of a Chinese city
- Reference: https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html

Week 10 Chinese City Naive Bayes.py

	ID	Words in Document	City in China?
1		Chinese Beijing Chinese	Yes
Training	2 Chinese Chinese Shanghai	Chinese Chinese Shanghai	Yes
Training	3	Chinese Macao	Yes
	4	Tokyo Japan Chinese	No

- Six Features that indicate the number of times a word appeared.
- The features are: How Often <word> appear in the document?
- The word: (1) Chinese, (2) Beijing, (3) Shanghai, (4) Macao, (5) Tokyo, and (6) Japan

```
(1) Chinese, (2) Beijing, (3) Shanghai,
import numpy
                                                           (4) Macao, (5) Tokyo, and (6) Japan
import pandas
import sklearn.naive_bayes as naive_bayes
X = numpy.array([[2,1,0,0,0,0]],
                  [2,0,1,0,0,0],
                  [1,0,0,1,0,0],
                  [1,0,0,0,1,1]
y = numpy.array([1,1,1,0])
classifier = naive bayes.MultinomialNB().fit(X, y)
print('Class Count:\n', classifier.class count )
print('Log Class Probability:\n', classifier.class log prior )
print('Feature Count (after adding alpha):\n', classifier.feature_count_)
print('Log Feature Probability:\n', classifier.feature log prob )
```

Week 9 Chinese City Naive Bayes.py

- Since three out of four documents have positive identification, the class probabilities are
 - Negative: Pr(y = 0) = 1/4 = 0.25.
 - Positive: Pr(y = 1) = 3/4 = 0.75
- The natural logarithm of these probabilities are
 - Negative: ln(Pr(y = 0)) = ln(0.25) = -1.38629436
 - Positive: ln(Pr(y = 1)) = ln(0.75) = -0.28768207

```
Class Count:
[1. 3.]
Log Class Probability:
[-1.38629436 -0.28768207]
```

 Count the number of occurrences of each word by identification result.

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	1	0	0	0	1	1
Positive (y = 1)	5	1	1	1	0	0

- Specify alpha = 1. Thus, add one to each cell of the table
- Before

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	1	0	0	0	1	1
Positive (y = 1)	5	1	1	1	0	0

After

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	2	1	1	1	2	2
Positive (y = 1)	6	2	2	2	1	1

• Calculate the probability of each word, by Identification Result

• Table

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan	Total
Negative (y = 0)	2	1	1	1	2	2	9
Positive (y = 1)	6	2	2	2	1	1	14

• Result

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	2/9	1/9	1/9	1/9	2/9	2/9
Positive (y = 1)	6/14	2/14	2/14	2/14	1/14	1/14

- Natural logarithm of the probabilities, by Identification Result
- The probability

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	2/9	1/9	1/9	1/9	2/9	2/9
Positive (y = 1)	6/14	2/14	2/14	2/14	1/14	1/14

The natural logarithm of the probability

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	-1.5041	-2.1972	-2.1972	-2.1972	-1.5041	-1.5041
Positive (y = 1)	-0.8473	-1.9459	-1.9459	-1.9459	-2.6391	-2.6391

The natural logarithm of the probability

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	-1.5041	-2.1972	-2.1972	-2.1972	-1.5041	-1.5041
Positive (y = 1)	-0.8473	-1.9459	-1.9459	-1.9459	-2.6391	-2.6391

```
Log Feature Probability:

[[-1.5040774 -2.19722458 -2.19722458 -2.19722458 -1.5040774 -1.5040774 ]

[-0.84729786 -1.94591015 -1.94591015 -1.94591015 -2.63905733 -2.63905733]]
```

• Given the number of occurrences of the words, what is the likelihood of a positive identification?

	ID	Words in Document	City in China?
	1	Chinese Beijing Chinese	Yes
Training	2	Chinese Chinese Shanghai	Yes
Training	3	Chinese Macao	Yes
	4	Tokyo Japan Chinese	No

 Pr(Y = Negative | Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0)

 ∞ Pr(Y = Negative) × Pr(Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0 | Y = Negative)

$$\propto \frac{1}{4} \times \left(\frac{2}{9}\right)^2 \times \left(\frac{1}{9}\right)^1 \times \left(\frac{1}{9}\right)^0 \times \left(\frac{1}{9}\right)^0 \times \left(\frac{2}{9}\right)^0 \times \left(\frac{2}{9}\right)^0 = \frac{1}{729}$$

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	2/9	1/9	1/9	1/9	2/9	2/9
Positive (y = 1)	6/14	2/14	2/14	2/14	1/14	1/14

Score First Document in Training

 Pr(Y = Positive | Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0)

 ∞ Pr(Y = Positive) × Pr(Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0 | Y = Positive)

$$\propto \frac{3}{4} \times \left(\frac{6}{14}\right)^2 \times \left(\frac{2}{14}\right)^1 \times \left(\frac{2}{14}\right)^0 \times \left(\frac{2}{14}\right)^0 \times \left(\frac{1}{14}\right)^0 \times \left(\frac{1}{14}\right)^0 = \frac{27}{1372}$$

Identification Result	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
Negative (y = 0)	2/9	1/9	1/9	1/9	2/9	2/9
Positive (y = 1)	6/14	2/14	2/14	2/14	1/14	1/14

- For the first document in Training,
 - Pr(Y = Negative | Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0) $\propto 1/729$
 - Pr(Y = Positive | Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0) $\propto 27/1372$
- Final step is to rescale these two values such that the resulting values add up to one.
 - Pr(Y = Negative | Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0,
 Japan = 0) = (1/729) / (1/729 + 27/1372) = 0.06516267
 - Pr(Y = Positive | Chinese = 2, Beijing = 1, Shanghai = 0, Macao = 0, Tokyo = 0, Japan = 0) = (27/1372) / (1/729 + 27/1372) = 0.93483733

Predicted Probabilities for all the documents

	ID	Words in Document	City in China?	Pr(Positive Dcoument)	Pr(Negative Document)
	1	Chinese Beijing Chinese	Yes	0.93483733	0.06516267
Training	2	Chinese Chinese Shanghai	Yes	0.93483733	0.06516267
Training	3	Chinese Macao	Yes	0.88149940	0.11850060
	4	Tokyo Japan Chinese	No	0.37412328	0.62587672
Tosting	5	Chinese Chinese Tokyo Japan	Yes	0.68975861	0.31024139
Testing	6	Beijing Shanghai Macao	No	0.33878380	0.66121620

```
Predicted Conditional Probability (Training):
[[0.06516267 0.93483733]
[0.06516267 0.93483733]
[0.1185006 0.8814994]
[0.62587672 0.37412328]]
Predicted Conditional Probability (Testing):
[[0.31024139 0.68975861]
[0.6612162 0.3387838]] Copyright © 2021 by Ming-Long Lam, Ph.D.
```


Lecture Recap

- Introduced to Directed Acyclic Graph (DAG) and Bayesian Network
- Understood Naïve Bayes' Algorithms
- Target is always Categorical
- Features can be
 - Categorical and Binary in particular
 - Continuous
 - Multinomial