Настоящее и будущее 3D Дмитрий Ватолин

Outline

- Введение в 3D
- Форматы 3D кино
- Современные 3D мониторы
- Карты глубин

Outline

- Введение в 3D
- Форматы 3D кино
- Современные 3D мониторы
- Карты глубин

Параллакс в стерео

Параллакс — расстояние между картинками для разных глаз на экране

Зоны комфортного восприятия стерео

- Серый: невидимая зона
- Красный: опасная зона
 - Большая нагрузка на глаза
- Оранжевый: быстрая зона
 - Объект виден только одному глазу — нагрузка
- Зеленый: зона отдыха глаз
 - Рядом с плоскостью экрана
 - Комфортная для восприятия

2011

Outline

- Введение в 3D
- Форматы 3D кино
- Современные 3D мониторы
- Карты глубин

Dolby 3D

• Развитие идеи анаглифного стерео, более сложное разделение изображений по длине волны света

- Применение интерференционных полосно-пропускающих (спектральных) фильтров
- Получение изображения смешиванием цветов из полос пропускания
 - Left eye: Red 629nm, Green 532nm, Blue 446nm
 - Right eye: Red 615nm, Green 518nm, Blue 432nm

Dolby 3D Принцип работы

Затворные форматы 3D кино

- Поочередное перекрывание каждого глаза
- В каждый момент времени вывод на экран только одного ракурса
- Основные форматы:
 - NVIDIA 3D Vision
 - XpanD 3D

NVIDIA 3D Vision

Оборудование

- Мощная видеокарта
- Качественный дисплей
- Специализированный набор IR-синхронизатор и активные очки

RealD 3D Версии формата

- RealD стандартная с максимальной шириной экрана 13.7 м
- RealD XL (в России SuperD) для больших экранов до 24 м
- RealD XLS решение проблемы уменьшения яркости изображения, экран - до 15 м
- RealD LP переносная версия для конференций и выставок, экран до 5 м

RealD 3D

Схема работы

IMAX

- Не является только форматом 3D
- Специфицирует все элементы кинопоказа
- Формат фильмов
 и кинотеатров с большим
 размером экрана
 и эффектом погружения

IMAX Версии

- IMAX GT «Большой кинотеатр», без 3D
- IMAX GT 3D Два «GT» проектора
- IMAX SR мультиплексовый вариант с меньшим экраном, поддержкой 3D
- IMAX MPX технология оборудования существующих мультиплексов под формат IMAX
- IMAX Dome куполообразный экран

Форматы 3D кино Заключение

Dolby 3D	NVIDIA 3D Vision	RealD 3D	IMAX
Спектральный	Затворный	поляризационный	поляризационный
1 проектор	Дисплей с высокой частотой развертки	1 проектор	2 мощных проектора
Обычный экран		Экран с покрытием	Большой экран
Пассивные очки Низкая стоимость	Активные дорогостоящие очки	Пассивные очки Низкая стоимость	Пассивные очки Низкая стоимость
Самый дешевый вариант	Нацелен на персональное использование	Очень распространен, возможность оснащения старых залов	Считается лучшим форматом, эффект погружения

Outline

- Введение в 3D
- Форматы 3D кино
- Современные 3D мониторы
- Карты глубин

Автостереоскопические

Лентикулярные линзы

При взгляде с разных углов увеличиваются разные участки изображения

Автостереоскопические

- Проблема необходимо «попасть» в правильную зону
- Решение увеличение количества видов

2011

Мультивидовые дисплеи

Мультивидовые Проекторные системы

Rear-Projection Screen

Front-Projection Screen

Wojciech et al., "3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes", MERL MA 2004

Мультивидовые Проекторные системы (Видео)

TransCAIP Съемка

- 64 камеры
- Разрешение камеры 320х240

TransCAIP Отображение

- 60 видов
- Разрешение экрана 256х192 пикселя
- Вертикальный и горизонтальный параллакс

• Параметры параллакса настраиваемы

TransCAIP (Видео)

TransCAIP (Видео) Управление параллаксом

Волюметрические (Видео) Вращающаяся проекторная плоскость

Волюметрические (Видео)

Проекция на вращающуюся плоскость, находящуюся под углом 45° к проектору и нормальному углу обзора

2011

Голография (Видео)

Пример современной голографической печати высокого качества

Outline

- Введение в 3D
- Форматы 3D кино
- Современные 3D мониторы
- Карты глубин

Карты глубин Способы получения

Ручная разметка кадров

Карты глубин Способы получения

Автоматические способы с использованием depth cues (метод Depth from defocus)

Карты глубин Способы получения

Автоматические способы с использованием depth cues (метод Depth from geometry)

Билатеральная фильтрация глубины

$$\boldsymbol{D}(\boldsymbol{x_0}, \boldsymbol{y_0}) = \frac{1}{2\pi\sigma_s\sigma_c} * \sum_{(x_1, y_1) \in \Omega} \boldsymbol{D}(\boldsymbol{x_1}, \boldsymbol{y_1}) * e^{-\frac{(x_0 - x_1)^2 + (y_0 - y_1)^2}{2\sigma_s^2} - \frac{(I(x_0, y_0) - I(x_1, y_1))^2}{2\sigma_c^2}}$$

D(x, y) - глубина точки (x, y)

I(x, y) - цвет точки (x, y)

arOmega - область ядра свертки

 $\sigma_{\rm s}$ - параметр пространственного усреднения

 σ_c - параметр цветового усреднения

Билатеральная фильтрация глубины

```
for (each pixel in image)
sum = koef = 0;
for (each neighbour_pixel in kernel window)
    cur_koef = gaus_weight(cur_pixel.pos, neighbour_pixel.pos, sigma_spatial)
         * gaus weight(cur_pixel.value, neighbour_pixel.value, sigma_color);
    sum += neighbour_pixel.value * cur_koef;
    koef += cur koef;
new_pixel.value = sum / koef;
```

Билатеральная фильтрация глубины Результат

2011

Билатеральная фильтрация глубины Результат

- Сглаживание глубины ровных по цвету областей
- Подчеркивание разницы на цветовых границах

Временная фильтрация

Схема работы

Сглаживание изменения глубины во времени

- Нормализация,устранение«мерцания»
- Удаление «артефактов»

Временная фильтрация Spatio-Temporal Filtering

- Пиксель определяется тремя координатами (x, y, t) положение в пространстве и времени
- Рассматриваем окрестность по всем трем координатам, с учетом компенсации движения

$$D(x_0, y_0, t_0) = \frac{1}{\sqrt{(2\pi)^3} \sigma_s \sigma_c \sigma_t} *$$

$$*\sum_{(x_1,y_1,t_1)\in\Omega} D(x_1,y_1,t_1) *$$

$$* e^{-\frac{(x_0-x_1)^2+(y_0-y_1)^2}{2\sigma_s^2} \cdot \frac{(I(x_0,y_0,t_0)-I(x_1,y_1,t_0))^2}{2\sigma_c^2} \cdot \frac{(t_0-,t_1)^2}{2\sigma_t^2}}$$

Временная фильтрация Spatio-Temporal Filtering

```
for (each pixel in cur frame)
 sum = koef = 0;
 for (each neighbour pixel in kernel window)
      for (each neighbour frame in temporal window)
         cur_koef = gaus weight(cur_pixel.pos, neighbour_pixel.pos, sigma_spatial)
                * gaus weight(cur pixel.value, neighbour pixel.value, sigma color)
                * gaus weight(cur_frame.count, neighbour_frame.count, sigma_temporal);
          sum += neighbour_pixel.value * cur_koef;
          koef += cur koef;
 new_pixel.value = sum / koef;
```

Временная фильтрация Результаты

CS MSU Graphics & Media Lab (Video Group)

CS MSU Graphics & Media Lab (Video Group)

Дополнительная информация

- Подробные лекции по теме можно найти по адресу http://courses.graphicon.ru/main/mdc/lectures
- Подробное задание по теме можно найти по адресу http://courses.graphicon.ru/main/mdc/assigns