Understanding Sparse JL for Feature Hashing

Meena Jagadeesan (Harvard University)

mjagadeesan@college.harvard.edu

NeurIPS 2019

A (randomized) map from \mathbb{R}^n to \mathbb{R}^m that "preserves geometry" of vectors.

A (randomized) map from \mathbb{R}^n to \mathbb{R}^m that "preserves geometry" of vectors.

A pre-processing step in many applications:

A (randomized) map from \mathbb{R}^n to \mathbb{R}^m that "preserves geometry" of vectors.

A pre-processing step in many applications:

- Document classification tasks (Weinberger et al. '09, etc)
- ▶ SVMs (Paul et al. '14)
- k-means/k-medians (Makarychev, Makarychev, Razenshteyn '18)
- ▶ Nearest neighbors (Ailon, Chazelle '09, Har-Peled et al. '14, Wei '19)
- Numerical linear algebra (Clarkson and Woodruff '12, Nelson and Nguyen '14, etc.)

A (randomized) map from \mathbb{R}^n to \mathbb{R}^m that "preserves geometry" of vectors.

A pre-processing step in many applications:

- ▶ Document classification tasks (Weinberger et al. '09, etc)
- ▶ SVMs (Paul et al. '14)
- k-means/k-medians (Makarychev, Makarychev, Razenshteyn '18)
- ▶ Nearest neighbors (Ailon, Chazelle '09, Har-Peled et al. '14, Wei '19)
- Numerical linear algebra (Clarkson and Woodruff '12, Nelson and Nguyen '14, etc.)

Our contribution: Theoretical analysis of a state-of-the-art dimensionality reduction scheme on feature vectors. Could inform how to optimally set parameters in practice.

Use a **hash function** $h: \{1, ..., n\} \rightarrow \{1, ..., m\}$ on coordinates.

Use a **hash function** $h: \{1, ..., n\} \rightarrow \{1, ..., m\}$ on coordinates.

Use a **hash function** $h: \{1, ..., n\} \rightarrow \{1, ..., m\}$ on coordinates.

How should collisions be handled?

Use a **hash function** $h: \{1, ..., n\} \rightarrow \{1, ..., m\}$ on coordinates.

Use **random signs** to handle collisions (unbiased estimator of ℓ_2^2 norm).

Use many hash functions $h_1, h_2, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$.

Use many hash functions $h_1, h_2, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$.

▶ Anti-correlate hash functions so $h_j(i) \neq h_k(i)$.

Use many hash functions $h_1, h_2, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$.

▶ Anti-correlate hash functions so $h_j(i) \neq h_k(i)$.

Use random signs to deal with collisions.

Use many hash functions $h_1, h_2, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$.

▶ Anti-correlate hash functions so $h_i(i) \neq h_k(i)$.

Use random signs to deal with collisions.

Scale the resulting vector by $\frac{1}{\sqrt{s}}$.

Use many hash functions $h_1, h_2, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$.

▶ Anti-correlate hash functions so $h_i(i) \neq h_k(i)$.

Use random signs to deal with collisions.

Scale the resulting vector by $\frac{1}{\sqrt{s}}$.

Sparse JL is a state-of-the-art sparse dimensionality reduction.

Use many hash functions $h_1, h_2, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$.

▶ Anti-correlate hash functions so $h_i(i) \neq h_k(i)$.

Use random signs to deal with collisions.

Scale the resulting vector by $\frac{1}{\sqrt{s}}$.

Sparse JL is a state-of-the-art sparse dimensionality reduction.

Central question

How should the # of hash functions s and dimension m be set?

Intuition for our contribution

Intuition for our contribution

The function v captures the performance of sparse JL on feature vectors.

Use a probability distribution \mathcal{F} over maps $f: \mathbb{R}^n \to \mathbb{R}^m$.

Use a probability distribution \mathcal{F} over maps $f: \mathbb{R}^n \to \mathbb{R}^m$.

What does it mean to "preserve geometry"?

Use a probability distribution \mathcal{F} over maps $f: \mathbb{R}^n \to \mathbb{R}^m$.

What does it mean to "preserve geometry"?

For each $x, y \in \mathbb{R}^n$:

$$\mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \| x - y \|_2 \le \| f(x) - f(y) \|_2 \le (1 + \epsilon) \| x - y \|_2] > 1 - \delta,$$

for ϵ target error, δ target failure probability.

Use a probability distribution \mathcal{F} over maps $f: \mathbb{R}^n \to \mathbb{R}^m$.

What does it mean to "preserve geometry"?

For each $x, y \in \mathbb{R}^n$:

$$\mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \| x - y \|_2 \le \| f(x) - f(y) \|_2 \le (1 + \epsilon) \| x - y \|_2] > 1 - \delta,$$

for ϵ target error, δ target failure probability.

Focus on linear maps:

$$\mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \|x\|_2 \le \|f(x)\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta.$$

$$\text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[\left(1 - \epsilon\right) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq \left(1 + \epsilon\right) \left\|x\right\|_2] > 1 - \delta.$$

$$\text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \|x\|_2 \le \|f(x)\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta.$$

Sometimes a much smaller m works on feature vectors in practice than traditional theory on \mathbb{R}^n suggests...

Goal:
$$\mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \|x\|_2 \le \|f(x)\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta$$
.

Sometimes a much smaller m works on feature vectors in practice than traditional theory on \mathbb{R}^n suggests...

Consider vectors w/ small ℓ_{∞} -to- ℓ_{2} norm ratio:

$$S_{v} = \{x \in \mathbb{R}^{n} \mid ||x||_{\infty} \le v ||x||_{2} \}.$$

Goal:
$$\mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \|x\|_2 \le \|f(x)\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta$$
.

Sometimes a much smaller m works on feature vectors in practice than traditional theory on \mathbb{R}^n suggests...

Consider vectors w/ small ℓ_{∞} -to- ℓ_{2} norm ratio:

$$S_{v} = \{x \in \mathbb{R}^{n} \mid ||x||_{\infty} \le v ||x||_{2}\}.$$

 $v(\textit{m},\epsilon,\delta,\textit{s}) := \mathsf{sup}\,\mathsf{over}\,\,v \in [0,1]\,\,\mathsf{s.t.}\,\,\mathsf{sparse}\,\,\mathsf{JL}\,\,\mathsf{meets}\,\,\ell_2\,\,\mathsf{goal}\,\,\mathsf{on}\,\,x \in S_v.$

Goal:
$$\mathbb{P}_{f \in \mathcal{F}}[(1 - \epsilon) \|x\|_2 \le \|f(x)\|_2 \le (1 + \epsilon) \|x\|_2] > 1 - \delta$$
.

Sometimes a much smaller m works on feature vectors in practice than traditional theory on \mathbb{R}^n suggests...

Consider vectors w/ small ℓ_{∞} -to- ℓ_{2} norm ratio:

$$S_{v} = \{x \in \mathbb{R}^{n} \mid ||x||_{\infty} \le v ||x||_{2}\}.$$

 $v(\textit{m},\epsilon,\delta,\textit{s}) := \mathsf{sup}\,\mathsf{over}\,\,v \in [0,1]\,\,\mathsf{s.t.}\,\,\mathsf{sparse}\,\,\mathsf{JL}\,\,\mathsf{meets}\,\,\ell_2\,\,\mathsf{goal}\,\,\mathsf{on}\,\,x \in S_v.$

We give a tight theoretical analysis of the function $v(m, \epsilon, \delta, s)$, that could inform how to optimally set s and m in practice.

Informal statement of main result

$$\text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[\left(1 - \epsilon\right) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq \left(1 + \epsilon\right) \left\|x\right\|_2] > 1 - \delta...$$

 $v(\textit{m},\epsilon,\delta,\textit{s}) := \mathsf{sup}\,\mathsf{over}\,\,v \in [0,1]\,\,\mathsf{s.t.}\,\,\mathsf{sparse}\,\,\mathsf{JL}\,\,\mathsf{meets}\,\,\ell_2\,\,\mathsf{goal}\,\,\mathsf{on}\,\,x \in \mathcal{S}_v.$

Informal statement of main result

$$\begin{aligned} & \text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[(1-\epsilon) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq (1+\epsilon) \left\|x\right\|_2] > 1-\delta.. \\ & v(m,\epsilon,\delta,s) := \sup \text{over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v. \end{aligned}$$

Theorem (Informal)

Sparse JL has **four regimes** in terms of how it performs on norm preservation. For error ϵ and failure probability δ , sparse JL with projected dimension m and s hash functions has performance $v(m, \epsilon, \delta, s)$ equal to:

$$\begin{cases} 1 \ (\textit{full performance}) & \textit{High m} \\ \sqrt{s} \, B_1 \ (\textit{partial performance}) & \textit{Middle m} \\ \sqrt{s} \, \min \left(B_1, B_2\right) \ (\textit{partial performance}) & \textit{Middle m} \\ 0 \ (\textit{poor performance}) & \textit{Small m}, \end{cases}$$

where B_1 , B_2 are functions of m, ϵ , δ .

 $v(m,\epsilon,\delta,s)$ on more synthetic data

$v(m,\epsilon,\delta,s)$ on more synthetic data

Sparse JL on News20 dataset

Sparse JL on News20 dataset

Sparse JL on News20 dataset

Sparse JL with ≥ 4 hash functions can perform much better than feature hashing in practice.

Comparison to previous work

 $\text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[(1-\epsilon) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq (1+\epsilon) \left\|x\right\|_2] > 1-\delta..$

 $v(\textit{m},\epsilon,\delta,\textit{s}) := \mathsf{sup}\,\mathsf{over}\,\,v \in [0,1]\,\,\mathsf{s.t.}\,\,\mathsf{sparse}\,\,\mathsf{JL}\,\,\mathsf{meets}\,\,\ell_2\,\,\mathsf{goal}\,\,\mathsf{on}\,\,x \in S_v.$

$$\begin{split} & \text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[\left(1-\epsilon\right) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq \left(1+\epsilon\right) \left\|x\right\|_2] > 1-\delta.. \\ & v(m,\epsilon,\delta,s) := \sup \text{over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v. \end{split}$$

Bounds on v:

- \triangleright $v(m, \epsilon, \delta, 1)$ understood (Weinberger et al '09,..., Freksen et al. '18)
- \triangleright $v(m, \epsilon, \delta, s)$ lower bound for multiple hashing (Weinberger et al '09)

$$\begin{split} & \text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[(1-\epsilon) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq (1+\epsilon) \left\|x\right\|_2] > 1-\delta.. \\ & v(\textit{m},\epsilon,\delta,\textit{s}) := \sup \text{over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v. \end{split}$$

Bounds on v:

- $\boldsymbol{v}(m, \epsilon, \delta, \boldsymbol{1})$ understood (Weinberger et al '09,..., Freksen et al. '18)
- $ightharpoonup v(m, \epsilon, \delta, s)$ lower bound for multiple hashing (Weinberger et al '09)

Bounds for sparse JL on full space \mathbb{R}^n :

- ▶ Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ (Kane and Nelson '12)
- ► Can set $m \approx \min(2\epsilon^{-2}/\delta, \epsilon^{-2}\log(1/\delta)e^{\Theta(\epsilon^{-1}\log(1/\delta)/s)})$ (Cohen '16)

$$\begin{split} & \text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[\left(1-\epsilon\right) \left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq \left(1+\epsilon\right) \left\|x\right\|_2] > 1-\delta.. \\ & v(m,\epsilon,\delta,s) := \sup \text{over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v. \end{split}$$

Bounds on v:

- $\mathbf{v}(m, \epsilon, \delta, \mathbf{1})$ understood (Weinberger et al '09,..., Freksen et al. '18)
- $ightharpoonup v(m, \epsilon, \delta, s)$ lower bound for multiple hashing (Weinberger et al '09)

Bounds for sparse JL on full space \mathbb{R}^n :

- ▶ Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ (Kane and Nelson '12)
- ► Can set $m \approx \min(2\epsilon^{-2}/\delta, \epsilon^{-2} \log(1/\delta) e^{\Theta(\epsilon^{-1} \log(1/\delta)/s)})$ (Cohen '16)

This work

Tight bounds on $v(m, \epsilon, \delta, s)$ **for a general** s > 1 *for sparse JL*.

$$\begin{split} & \text{Goal: } \mathbb{P}_{f \in \mathcal{F}}[\left(1-\epsilon\right)\left\|x\right\|_2 \leq \left\|f(x)\right\|_2 \leq \left(1+\epsilon\right)\left\|x\right\|_2] > 1-\delta.. \\ & v(\textit{m},\epsilon,\delta,\textit{s}) := \sup \text{over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v. \end{split}$$

Bounds on v:

- $\boldsymbol{v}(m, \epsilon, \delta, \boldsymbol{1})$ understood (Weinberger et al '09,..., Freksen et al. '18)
- $ightharpoonup v(m, \epsilon, \delta, s)$ lower bound for multiple hashing (Weinberger et al '09)

Bounds for sparse JL on full space \mathbb{R}^n :

- ▶ Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ (Kane and Nelson '12)
- ► Can set $m \approx \min(2\epsilon^{-2}/\delta, \epsilon^{-2} \log(1/\delta) e^{\Theta(\epsilon^{-1} \log(1/\delta)/s)})$ (Cohen '16)

This work

Tight bounds on $v(m, \epsilon, \delta, s)$ **for a general** s > 1 *for sparse JL.*

 \implies Characterization of sparse JL performance in terms of ϵ , δ , and ℓ_{∞} -to- ℓ_{2} norm ratio for a general # of hash functions s

Main result

Theorem

Under mild conditions, $v(m, \epsilon, \delta, s)$ is equal to $f'(m, \epsilon, \ln(1/\delta), s)$, where $f'(m, \epsilon, p, s)$ is defined to be:

$$\begin{cases} 1 & \text{if } m \geq \min\left(2\epsilon^{-2}\mathrm{e}^{p}, \epsilon^{-2}p\mathrm{e}^{\Theta\left(\max\left(1,\frac{p\epsilon^{-1}}{s}\right)\right)}\right) \\ \Theta\left(\sqrt{\epsilon s}\frac{\sqrt{\ln(\frac{m\epsilon^{2}}{p})}}{\sqrt{p}}\right) & \text{else, if } m \geq \max\left(\Theta(\epsilon^{-2}p), s \cdot \mathrm{e}^{\Theta\left(\max\left(1,\frac{p\epsilon^{-1}}{s}\right)\right)}\right) \\ \Theta\left(\sqrt{\epsilon s}\min\left(\frac{\ln(\frac{m\epsilon}{p})}{p}, \frac{\sqrt{\ln(\frac{m\epsilon^{2}}{p})}}{\sqrt{p}}\right)\right) & \text{else, if } m \geq \Theta(\epsilon^{-2}p) \\ & \text{and } m \leq \min\left(\epsilon^{-2}\mathrm{e}^{\Theta(p)}, s \cdot \mathrm{e}^{\Theta\left(\max\left(1,\frac{p\epsilon^{-1}}{s}\right)\right)}\right) \\ 0 & \text{if } m \leq \Theta(\epsilon^{-2}p). \end{cases}$$

Conclusion

Tight analysis of $v(m, \epsilon, \delta, s)$ for uniform sparse JL for a general s. Could inform how to optimally set parameters in practice.

Characterization of sparse JL performance in terms of ϵ , δ , and ℓ_{∞} -to- ℓ_{2} norm ratio for a general # of hash functions s.

Evaluation on real-world and synthetic data (sparse JL can perform much better than feature hashing).

Thank you!

PROOF OF MAIN RESULT

 $\mathcal{A}_{s,m,n}$ a distribution over m imes n matrices w/ s nonzero entries per column

 $\mathcal{A}_{s,m,n}$ a distribution over m imes n matrices w/ s nonzero entries per column

Uniform: Mildly correlate hash functions so $h_j(i) \neq h_k(i)$.

Example (Uniform Sparse JL)

Uniformly choose s nonzero entries in each column; i.i.d signs for nonzero entries.

Block: Take
$$h_i: \{1, ..., n\} \to \{(m/s)(i-1)+1, ..., (m/s)(i)\}$$

Example (Block Sparse JL)

Choose one nonzero coordinate per m/s-length block per column; i.i.d signs for nonzero entries.

 $\mathcal{A}_{s,m,n}$ a distribution over m imes n matrices w/ s nonzero entries per column

Uniform: Mildly correlate hash functions so $h_j(i) \neq h_k(i)$.

Example (Uniform Sparse JL)

Uniformly choose s nonzero entries in each column; i.i.d signs for nonzero entries.

Block: Take
$$h_i: \{1, ..., n\} \to \{(m/s)(i-1)+1, ..., (m/s)(i)\}$$

Example (Block Sparse JL)

Choose one nonzero coordinate per m/s-length block per column; i.i.d signs for nonzero entries.

Sparse JL distributions are state-of-the-art sparse random projections.

(r, i)th coordinate is $\eta_{r,i}\sigma_{r,i}/\sqrt{s}$, where $\eta_{r,i} \in \{0, 1\}$, $\sigma_{r,i} \in \{-1, 1\}$

(r, i)th coordinate is $\eta_{r,i}\sigma_{r,i}/\sqrt{s}$, where $\eta_{r,i} \in \{0, 1\}$, $\sigma_{r,i} \in \{-1, 1\}$

Analyze moments of "error" rv $||Ax||_2^2 - 1$ for $||x||_2 = 1$:

(r, i)th coordinate is $\eta_{r,i}\sigma_{r,i}/\sqrt{s}$, where $\eta_{r,i} \in \{0, 1\}$, $\sigma_{r,i} \in \{-1, 1\}$

Analyze moments of "error" rv $||Ax||_2^2 - 1$ for $||x||_2 = 1$:

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \leq i \neq j \leq n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

This random variable has been repeatedly analyzed in the literature.

(r, i)th coordinate is $\eta_{r,i}\sigma_{r,i}/\sqrt{s}$, where $\eta_{r,i} \in \{0, 1\}$, $\sigma_{r,i} \in \{-1, 1\}$

Analyze moments of "error" rv $||Ax||_2^2 - 1$ for $||x||_2 = 1$:

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

This random variable has been repeatedly analyzed in the literature.

But... existing bounds are limited to s = 1 (Freksen et al., etc.)

(r, i)th coordinate is $\eta_{r,i}\sigma_{r,i}/\sqrt{s}$, where $\eta_{r,i} \in \{0, 1\}$, $\sigma_{r,i} \in \{-1, 1\}$

Analyze moments of "error" rv $||Ax||_2^2 - 1$ for $||x||_2 = 1$:

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

This random variable has been repeatedly analyzed in the literature.

But... existing bounds are limited to s=1 (Freksen et al., etc.) or limited to v=1 (Kane and Nelson '12, Cohen et al. '18, etc.).

(r, i)th coordinate is $\eta_{r,i}\sigma_{r,i}/\sqrt{s}$, where $\eta_{r,i}\in\{0,1\}$, $\sigma_{r,i}\in\{-1,1\}$

Analyze moments of "error" rv $||Ax||_2^2 - 1$ for $||x||_2 = 1$:

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

This random variable has been repeatedly analyzed in the literature.

But... existing bounds are limited to s=1 (Freksen et al., etc.) or limited to v=1 (Kane and Nelson '12, Cohen et al. '18, etc.).

Need tight bounds on $\mathbb{E}[R(x_1,\ldots,x_n)^p]$ on S_v at every threshold v.

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 < i \neq j < n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

Complexities: $\eta_{r,i}$ are correlated,

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

Complexities: $\eta_{r,i}$ are correlated, sum has $\Theta(mn^2)$ terms

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

Complexities: $\eta_{r,i}$ are correlated, sum has $\Theta(mn^2)$ terms Issues with existing approaches:

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \leq i \neq j \leq n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

Complexities: $\eta_{r,i}$ are correlated, sum has $\Theta(mn^2)$ terms Issues with existing approaches:

1. Not clear how to generalize combinatorics of (Kane and Nelson '12, Freksen et al. '18, etc.)

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \leq i \neq j \leq n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

Complexities: $\eta_{r,i}$ are correlated, sum has $\Theta(mn^2)$ terms Issues with existing approaches:

- 1. Not clear how to generalize combinatorics of (Kane and Nelson '12, Freksen et al. '18, etc.)
- 2. Existing non-combinatorial approaches not sufficiently tight (Cohen et. al '18, Cohen '16, etc.)

$$R(x_1,\ldots,x_n) = \frac{1}{s} \sum_{1 \le i \ne j \le n} \sum_{r=1}^m \eta_{r,i} \eta_{r,j} \sigma_{r,i} \sigma_{r,j} x_i x_j$$

Complexities: $\eta_{r,i}$ are correlated, sum has $\Theta(mn^2)$ terms Issues with existing approaches:

- 1. Not clear how to generalize combinatorics of (Kane and Nelson '12, Freksen et al. '18, etc.)
- 2. Existing non-combinatorial approaches not sufficiently tight (Cohen et. al '18, Cohen '16, etc.)

We use a non-combinatorial approach with Rademacher-specific bounds.

$$R(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m Z_r(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m \left(\sum_{1\leq i\neq j\leq n} \eta_{r,i}\eta_{r,j}\sigma_{r,i}\sigma_{r,j}x_ix_j\right).$$

$$R(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m Z_r(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m \left(\sum_{1\leq i\neq j\leq n} \eta_{r,i}\eta_{r,j}\sigma_{r,j}\sigma_{r,j}x_ix_j\right).$$

Lower bound: $\mathbb{E}[Z_r(x_1,\ldots,x_n)^q] = \mathbb{E}_{\eta}[\mathbb{E}_{\sigma}[Z_r(x_1,\ldots,x_n)^q]]$

$$R(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m Z_r(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m \left(\sum_{1\leq i\neq j\leq n} \eta_{r,i}\eta_{r,j}\sigma_{r,j}\sigma_{r,j}x_ix_j\right).$$

Lower bound: $\mathbb{E}[Z_r(x_1,\ldots,x_n)^q] = \mathbb{E}_{\eta}[\mathbb{E}_{\sigma}[Z_r(x_1,\ldots,x_n)^q]]$

- 1. Suffices to pick "worst" vector in each S_v
- 2. View $Z_r(v, ..., v, 0, ..., 0)$ as a quadratic form of ± 1 rvs Use known quadratic form moments bounds (Latała '99)
- 3. Take expectation over $\eta_{r,i}$; carefully combine over $r \in [m]$

$$R(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m Z_r(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m \left(\sum_{1\leq i\neq j\leq n} \eta_{r,i}\eta_{r,j}\sigma_{r,j}\sigma_{r,j}x_ix_j\right).$$

Lower bound: $\mathbb{E}[Z_r(x_1,\ldots,x_n)^q] = \mathbb{E}_{\eta}[\mathbb{E}_{\sigma}[Z_r(x_1,\ldots,x_n)^q]]$

- 1. Suffices to pick "worst" vector in each S_{ν}
- 2. View $Z_r(v, ..., v, 0, ..., 0)$ as a quadratic form of ± 1 rvs Use known quadratic form moments bounds (Latała '99)
- 3. Take expectation over $\eta_{r,i}$; carefully combine over $r \in [m]$

Upper bound: need to consider $R(x_1, ..., x_n)$ for every $x \in S_v$

$$R(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m Z_r(x_1,\ldots,x_n)=\frac{1}{s}\sum_{r=1}^m \left(\sum_{1\leq i\neq j\leq n} \eta_{r,i}\eta_{r,j}\sigma_{r,i}\sigma_{r,j}x_ix_j\right).$$

Lower bound: $\mathbb{E}[Z_r(x_1,\ldots,x_n)^q] = \mathbb{E}_{\eta}[\mathbb{E}_{\sigma}[Z_r(x_1,\ldots,x_n)^q]]$

- 1. Suffices to pick "worst" vector in each S_{ν}
- 2. View $Z_r(v, ..., v, 0, ..., 0)$ as a quadratic form of ± 1 rvs Use known quadratic form moments bounds (Latała '99)
- 3. Take expectation over $\eta_{r,i}$; carefully combine over $r \in [m]$

Upper bound: need to consider $R(x_1, \ldots, x_n)$ for every $x \in S_v$

- 1. Create <u>tractable</u> versions of estimates in (Latała '97, '99) Structure of $Z_r(x_1, \ldots, x_n)$ is helpful
- 2. Combine over $r \in [m]$ using (Latała '97)