1 Random Walks

Definition 1 Assume U_1, U_2, \ldots are \mathbf{Z}^d -valued i.i.d. and X_0 is a \mathbf{Z}^d -valued r.v. that is independent of (U_1, U_2, \ldots) .

A random walk (r.w.) is a sequence X_n defined by

$$X_{n+1} = X_n + U_{n+1}, n = 0, 1, \dots$$

The random variables U_n are called the steps of random walk, and X_n is the state of r.w. at time n. A r.w. X_n is called symmetric if the step distribution is symmetric.

A r.w. X_n is simple if

$$\mathbf{P}(U_i = X_{i+1} - X_i = \pm e_i) = \frac{1}{2d},$$

where e_i , i = 1, ..., d are the standard basis vectors: the ith coordinate is 1 and the remaining coordinates are zeros (this means that a simple r.w. moves only parallel to the coordinate axis to the closest grid point).

Theorem 2 A r.w. X_n is a Markov chain: for all $c \in \mathbf{Z}^d$, $n \ge 1$,

$$\mathbf{P}(X_{n+1} = c | (X_0, X_1, \dots, X_n)) = \mathbf{P}(X_{n+1} = c | X_n).$$

Proof. Since $X_{n+1} = X_n + U_{n+1}$ and U_{n+1} is independent of X_0, \ldots, X_n ,

$$\mathbf{P}(X_{n+1} = c | (X_0, X_1, \dots, X_n)) = \mathbf{P}(X_n + U_{n+1} = c | (X_0, X_1, \dots, X_n))$$

= $\mathbf{P}(x + U_{n+1} = c)|_{x = X_n}$,

and, similarly

$$\mathbf{P}(X_{n+1} = c|X_n) = \mathbf{P}(X_n + U_{n+1} = c|X_n)$$

= $\mathbf{P}(x + U_{n+1} = c)|_{x = X_n}$.

The statement follows.

Remark 3 The moment generating functions of a step $U_1 = X_1$ of a simple r.w. starting at 0:

a) in 1D:

$$\mathbf{E}^{\lambda_1 U_1} = \frac{1}{2} \left(e^{\lambda_1} + e^{-\lambda_1} \right);$$

b) in 2D: (in this case $U_1 = X_1 = (X_1^1, X_2^2)$)

$$\mathbf{E}^{\lambda_1 X_1^1 + \lambda_2 X_1^2} = \frac{1}{4} \left(e^{\lambda_1} + e^{-\lambda_1} + e^{\lambda_2} + e^{-\lambda_2} \right);$$

Some properties of r.w.

1. Consider a simple r.w. X_n on Z starting at 0. Then

$$\mathbf{P}(U_n = X_n - X_{n-1} = \pm 1) = \frac{1}{2},$$

and

$$\mathbf{P}(X_n = k) = \begin{cases} 2^{-n} \binom{n}{(n+k)/2}, & \text{if } n+k \text{ is even,} \\ 0, & \text{if } n+k \text{ is odd.} \end{cases}$$
 (1)

In particular, $P(X_n = 0) = 2^{-n} \binom{n}{n/2}$, if n is even.

Proof. Indeed, we have $X_n = U_1 + \ldots + U_n = M_n - (n - M_n) = 2M_n - n$, where M_n is the number of "1" and $n - M_n$ is the number of "-1" resulting in n independent trials U_1, \ldots, U_n . So, M_n is binomial $(n, \frac{1}{2})$ and (1) follows.

- **2.** a) Assume that X_n and Y_n are two independent simple r.w. on Z starting at 0. Then $Z_n = (X_n, Y_n)$ is a symmetric r.w. (not simple). But $\tilde{Z}_n = ((X_n Y_n)/2, (X_n + Y_n)/2)$ is simple r.w. on Z^2 .
- b) On the other hand, if $X_n = (X_n^1, X_n^2)$ is a simple r.w. on Z^2 starting at 0, then $Y_n = X_n^1 X_n^2$ and $Z_n = X_n^1 + X_n^2$ are two independent r.w. on Z. The probability

$$\mathbf{P}(X_n = 0) = 2^{-2n} \binom{n}{n/2}^2,$$

if n is even, and zero otherwise.

Proof. a) By Remark 3, the mgf of \tilde{Z}_n step,

$$\begin{split} \mathbf{E} \exp \left\{ \lambda_1 \frac{X_1 - Y_1}{2} + \lambda_2 \frac{X_1 + Y_1}{2} \right\} &= \mathbf{E} \exp \{ \frac{\lambda_1 + \lambda_2}{2} X_1 + \frac{\lambda_2 - \lambda_1}{2} Y_1 \} \\ &= \mathbf{E} \exp \{ \frac{\lambda_1 + \lambda_2}{2} X_1 \} \mathbf{E} \exp \{ \frac{\lambda_2 - \lambda_1}{2} Y_1 \} \\ &= \frac{1}{4} \left(e^{(\lambda_1 + \lambda_2)/2} + e^{-(\lambda_1 + \lambda_2)/2} \right) (e^{(\lambda_2 - \lambda_1)/2} + e^{-(\lambda_2 - \lambda_1)/2} \right) \\ &= \frac{1}{4} \left(e^{\lambda_1} + e^{-\lambda_1} + e^{\lambda_2} + e^{-\lambda_2} \right); \end{split}$$

b) By Remark 3, the mgf of (Y_n, Z_n) step

$$\mathbf{E} \exp \{\lambda_1 Y_1 + \lambda_2 Z_1\} = \mathbf{E} \exp \{\lambda_1 (X_1^1 - X_1^2) + \lambda_2 (X_1^1 + X_1^2) \}$$

$$= \mathbf{E} \exp \{(\lambda_1 + \lambda_2) X_1^1 + (\lambda_2 - \lambda_1) X_1^2 \}$$

$$= \frac{1}{4} \left(e^{(\lambda_1 + \lambda_2)} + e^{-(\lambda_1 + \lambda_2)} + e^{(\lambda_2 - \lambda_1)} + e^{-(\lambda_2 - \lambda_1)} \right)$$

$$= \frac{1}{2} \left(e^{\lambda_1} + e^{-\lambda_1} \right) \frac{1}{2} \left(e^{\lambda_2} + e^{-\lambda_2} \right).$$

Obviously, $X_n = 0$ if and only if $Y_n = Z_n = 0$. Therefore,

$$\mathbf{P}(X_n = 0) = \mathbf{P}(Y_n = 0)\mathbf{P}(Z_n = 0) = 2^{-2n} \binom{n}{n/2}^2,$$

if n is even, and zero otherwise. \blacksquare

3. (Recurrent random walk). Consider a r.w. X_n on Z^d starting at 0. Let $T = \inf\{n \ge 1 : X_n = 0\}$ (assuming $\inf \emptyset = +\infty$). Then

$$\mathbf{P}(T < \infty) = 1$$
 if and only if $\sum_{n} \mathbf{P}(X_n = 0) = +\infty$.

Markov property implies that $P(T < \infty) = 1$ if and only if X_n returns to zero infinitely many times a.s. (such a r.w. is called recurrent).

Proof. Consider pieces of a trajectory of X_n between returns to 0. They can be considered as the results of independent trials with probability of the success

$$p = P(T = \infty).$$

Then N="number of trials needed to reach a success (no return)" has a geometric distribution with parameter p. This distribution can be degenerated if p=0 (In this case $N=\infty$ a.s. and X_n visits zero infinitely many times) or p=1 (in this case N=1 a.s. and X_n never returns to zero a.s.). In all cases, $\mathbf{E}N=\frac{1}{p}$. On the other hand,

$$\begin{split} N &=& \sum_{n=1}^{\infty} \mathbf{1}_{\{X_n=0\}}, \\ \mathbf{E} N &=& \frac{1}{p} = \sum_{n=1}^{\infty} \mathbf{P} \left(X_n = 0 \right). \end{split}$$

So, $\mathbf{P}(T < \infty) = 1 \iff p = 0 \iff \mathbf{E}N = 0 \iff \sum_{n=1}^{\infty} \mathbf{P}(X_n = 0) = \infty$. **4.** A simple random walk X_n on Z^d (d = 1, 2) starting at 0 is recurrent. **Proof.** By the properties 1, 2,

$$\sum_{n=1}^{\infty} \mathbf{P}(X_n = 0) = \sum_{k=1}^{\infty} \mathbf{P}(X_{2k} = 0) = \sum_{k} 2^{-2dk} {2k \choose k}^d$$
$$= \sum_{k} 2^{-2dk} \frac{((2k)!)^d}{(k!)^{2d}}$$

Using Stirling formula $(n! \sim n^n e^{-n} \sqrt{2\pi n})$, for large k,

$$2^{-2dk}\frac{((2k)!)^d}{(k!)^{2d}} \geq \frac{1}{3}2^{-2dk}\frac{(2k)^{2dk}e^{-2dk}(\sqrt{2\pi 2k})^d}{k^{2kd}e^{-2kd}(2\pi)^dk^d} = \frac{1}{3}\frac{1}{\pi^{d/2}k^{d/2}}.$$

Therefore for d = 1, 2,

$$\sum_{k=1}^{\infty} \mathbf{P}(X_{2k} = 0) = \infty,$$

and the r.w. is recurrent.

5. (Average exit time). Assume X_n is a simple r.w. on Z starting at zero. Let

$$\tau_{ab} = \inf \{ n \ge 0 : X_n = a \text{ or } X_n = b \},$$

where $a, b \in \mathbb{Z}$ and a < 0, b > 0. Then $E\tau_{ab} = |a|b$.

Proof. For $x \in [a, b] \cap \mathbf{Z}$ define $\tau(x) = \inf\{n \ge 0 : x + X_n = a \text{ or } x + X_n = b\}$ and $u(x) = \mathbf{E}\tau(x)$. Obviously, u(a) = u(b) = 0. For $x \in (a, b)$, (by total probability formula),

$$u(x) = \frac{1}{2} \mathbf{E} [\tau(x)|X_1 = 1] + \frac{1}{2} \mathbf{E} [\tau(x)|X_1 = -1]$$

$$= \frac{1}{2} \{1 + \mathbf{E} [\tau(x+1)]\} + \frac{1}{2} \{\mathbf{E} [\tau(x-1)] + 1\} =$$

$$= 1 + \frac{1}{2} [u(x+1) + u(x-1)],$$

or u(x+1) + u(x-1) - 2u(x) = -2, a < x < b. The left hand side is the second difference of u(x) (think about the ODE u''(x) = -2, u(a) = u(b) = 0, whose solution is a quadratic function u(x) = (x-a)(b-x)).

Note a) Assume X_n is a simple r.w. on Z starting at zero and $\tau_c = \inf\{n \geq 0 : X_n = c\}$. Then for every a < 0 $(a \in Z)$ and every b > 0 $(b \in Z)$, the expected values $E\tau_a = E\tau_b = \infty$.

b) If X_n is a simple r.w. on Z starting at zero and $T = \inf\{n \ge 1 : Z_n = 0\}$, then $ET = \infty$.

Proof. a) Indeed, by **5.**, $E\tau_a = \lim_{b\to\infty} \mathbf{E}\tau_{ab} = \lim_{b\to\infty} (-ab) = \infty$. Similarly, $E\tau_b = \lim_{a\to-\infty} \mathbf{E}\tau_{ab} = \lim_{a\to-\infty} (-ab) = \infty$.

b) We have $ET = \frac{1}{2}E\left[T|X_1=1\right] + \frac{1}{2}E\left[T|X_1=-1\right] = \frac{1}{2}\mathbf{E}\tau(1)_0 + \frac{1}{2}\mathbf{E}\tau(-1)_0 = \infty$, where $\tau(x)_c$ is the first moment to reach c starting at x.

Remark 4 If X_n is a r.w. on **Z** starting at 0 and

$$P(U_1 = X_1 = 1) = p, P(U_1 = X_1 = -1) = q = 1 - p,$$

then $X_n/n \to p-q$ a.s.: with probability 1 it never returns if $p \neq q$ and n is large.

2 Discrete time and space Markov chains

Denote S a finite or infinite but countable set.

Definition 5 A sequence of S-valued r. variables $Z_n, n \geq 0$, is called Markov chain, if the Markov property holds: for all $z_{n+1} \in S$ and n,

$$\mathbf{P}(Z_{n+1} = z_{n+1}|Z_{[0,n]}) = \mathbf{P}(Z_{n+1} = z_{n+1}|Z_n)$$

,where $Z_{[0,n]} = (Z_0, \dots Z_n)$. Equivalently,

$$\mathbf{P}\left(Z_{n+1}=z_{n+1}|Z_{[0,n]}=z_{[0,n]}\right)=\mathbf{P}\left(Z_{n+1}=z_{n+1}|Z_n=z_n,\ldots,Z_0=z_0\right)=\mathbf{P}\left(Z_{n+1}=z_{n+1}|Z_n=z_n\right)$$

for all $z_0, \ldots, z_{n+1} \in \mathbf{S}$, where a notation $z_{[0,n]} = (z_0, \ldots, z_n)$ is used.

A Markov chain is completely described by its initial distribution $\pi^0(z) = \mathbf{P}(Z_0 = z), z \in \mathbf{S}$, and the functions defined in the following statement.

Theorem 6 For every n = 0, 1, ... there exists a function $p_{n+1}(c, z)$, $c, z \in S$, taking values in [0, 1] such that

$$\sum_{z \in \mathbf{S}} p_{n+1}(c, z) = 1 \text{ for all } c \in \mathbf{S},$$

$$and$$

$$\mathbf{P}(Z_{n+1} = z, Z_n = c) = p_{n+1}(c, z) \mathbf{P}(Z_n = c) \text{ for all } c, z \in \mathbf{S}.$$

$$(2)$$

If $\mathbf{P}(Z_n=c)>0$, then necessarily $p_{n+1}(c,z)=\mathbf{P}(Z_{n+1}=z|Z_n=c)$, $z\in\mathbf{S}$

Proof. If $P(Z_n = c) > 0$, we set

$$p_{n+1}(c,z) = \mathbf{P}(Z_{n+1} = z, | Z_n = c), \ z \in \mathbf{S}.$$

Obviously, $\sum_{z \in \mathbf{S}} p_{n+1}(c, z) = 1$ and

$$\mathbf{P}(Z_{n+1} = z | Z_n = c) = p_{n+1}(c, z) \mathbf{P}(Z_n = c) \text{ for all } z \in \mathbf{S},$$
 (3)

in this case.

If $\mathbf{P}(Z_n=c)=0$, there infinitely many $p_{n+1}(c,z), z\in \mathbf{S}$, satisfying (3) and, for example, we could go with $p_{n+1}(c,z)=\pi^0(z)=\mathbf{P}(Z_0=z), z\in \mathbf{S}$.

Definition 7 Any function $p_{n+1}(c,z), c,z \in \mathbf{S}$, satisfying (2) is called an nth transition function of the Markov chain Z_n .

Denote by $\pi^n(z) = \mathbf{P}(Z_n = z)$, $z \in \mathbf{S}$, the distribution of Z_n , $n = 0, 1, 2, \ldots$ All one dimensional and multidimensional distributions of Z_n are completely determined by $\pi^0(z)$ and transition functions $p_{n+1}(c,z)$, $c,z \in \mathbf{S}$, $n = 0, 1, \ldots$ The following statement holds.

Theorem 8 a) (Kolmogorov equation) For every n = 0, 1, ...,

$$\pi^{n+1}(z) = \sum_{c \in \mathbf{S}} p_{n+1}(c, z) \pi^n(c), z \in \mathbf{S};$$

b) For every n and $z_n, \ldots, z_0 \in \mathbf{S}$,

$$\mathbf{P}(Z_n = z_n, \dots, Z_0 = z_0) = p_n(z_{n-1}, z_n) \dots p_1(z_0, z_1) \pi^0(z_0);$$

More general, for $n > m \ge 0$ and $z_n, z_{n-1}, \ldots, z_m \in \mathbf{S}$,

$$\mathbf{P}(Z_n = z_n, \dots, Z_m = z_m) = p_n(z_{n-1}, z_n) \dots p_{m+1}(z_m, z_{m+1}) \pi^m(z_m).$$

Proof. a) By the formula of total probability,

$$\pi^{n+1}(z) = \mathbf{P}(Z_{n+1} = z) = \sum_{c \in \mathbf{S}} \mathbf{P}(Z_{n+1} = z, Z_n = c)$$

$$= \sum_{c \in s} p_{n+1}(c, z) \mathbf{P}(Z_n = c).$$

b) Joint probability by conditioning combined with Markov property,

$$\mathbf{P}(Z_{n} = z_{n}, ..., Z_{m} = z_{m})$$

$$= \mathbf{P}(Z_{n} = z_{n} | Z_{n-1} = z_{n-1}, ..., Z_{m} = z_{m}) ... \mathbf{P}(Z_{m+1} = z_{m+1} | Z_{m} = z_{m}) \mathbf{P}(Z_{m} = z_{m})$$

$$= p_{n}(z_{n-1}, z_{n}) p_{n-1}(z_{n-2}, z_{n-1}) ... p_{m+1}(z_{m}, z_{m+1}) \pi^{m}(z_{m})$$

Definition 9 Markov chain Z_n is called time homogeneous if $p_n(c, z) = p(c, z)$ for $n \ge 1, c, z \in \mathbf{S}$ (transition probabilities do not depend on n).

We can rewrite Theorem 8 for time-homogeneous walks.

Theorem 10 Assume Z_n is time homogeneous with transition probability p(c, z). Then

a) (Kolmogorov equation) for every n = 0, 1, ...,

$$\pi^{n+1}(z) = \sum_{c \in \mathbf{S}} p(c, z) \pi^n(c), z \in \mathbf{S};$$
 (4)

b) For every n and $z_n, \ldots, z_0 \in \mathbf{S}$,

$$\mathbf{P}(Z_n = z_n, \dots, Z_0 = z_0) = p(z_{n-1}, z_n) \dots p(z_0, z_1) \pi^0(z_0);$$

More general, for $n > m \ge 0$ and $z_n, z_{n-1}, \ldots, z_m \in \mathbf{S}$,

$$\mathbf{P}(Z_n = z_n, \dots, Z_m = z_m) = p(z_{n-1}, z_n) \dots p(z_m, z_{m+1}) \pi^m(z_m)$$
 (5)

Applying Theorem 10 a) repeatedly, we obtain immediately

Corollary 11 Assume Z_n is homogeneous with transition probability p(c, z). Then for every $n \ge 1$,

$$\pi^n(z) = \sum_{c \in \mathbf{S}} p(c,z) \pi^{n-1}(c) = \sum_{c \in \mathbf{S}} p^{*n}(c,z) \pi^0(c), z \in \mathbf{S},$$

where

$$p^{*n}(c,z) = \sum_{w \in \mathbf{S}} p(c,w) p^{*(n-1)}(w,z) = \sum_{z_1,\dots,z_{n-1} \in \mathbf{S}} p(c,z_1) p(z_1,z_2) \dots p(z_{n-2},z_{n-1}) p(z_{n-1},z)$$
$$= \sum_{w \in \mathbf{S}} p^{*(n-1)}(c,w) p(w,z), c, z \in \mathbf{S}.$$

The function $p^{*n}(c,z)$ is called n-step transition function: for $m \geq 0$ and $\mathbf{P}(Z_m=c)>0$, we have

$$P(Z_{n+m} = z | Z_m = c) = p^{*n}(c, z)$$

and for every $z \in \mathbf{S}$,

$$\pi^{n+m}(z) = \sum_{c \in \mathbf{S}} p^{*n}(c, z) \pi^m(c)$$

(total probability formula).

Remark 12 If $\mathbf{S} = \{s_1, \ldots, s_m\}$ is finite, then we can look at $p(s_i, s_j) = p_{ij}$, $i = 1, \ldots, m$, as a $m \times m$ matrix $P = (p_{ij})_{1 \leq i,j \leq m}$. If $\mathbf{S} = \{s_1, s_2, \ldots\}$ is infinite countable set, then we can look at $p(s_i, s_j) = p_{ij}$, $i = 1, \ldots$ as an infinite dimensional matrix $P = (p_{ij})_{i,j \geq 1}$. The probability distribution $\pi^n(s_i) = \pi^n_i$ can be regarded as finite or infinite dimensional column vector $\pi^n = (\pi^n_i)$. Following this point of view, we can summarize Theorem 8 and Corollary 11 as follows:

a) For all $n \geq 1$,

$$\pi^n = \pi^{n-1}P = \pi^0 P^n,$$

where $P^n = P \cdot \ldots \cdot P$ is the nth power of the matrix P;

b) For every $n > m \ge 0$ and $\mathbf{P}(Z_m = s_i) = \pi_i^m > 0$, we have

$$\mathbf{P}\left(Z_n = s_j | Z_m = s_i\right) = \left(P^{n-m}\right)_{ij},\,$$

where $(P^{n-m})_{ij}$ is the "ij"th entry of the matrix P^{n-m} ;

c) For every $n > m \ge 0$, we have

$$\pi^n = \pi^m P^{n-m}.$$

2.1 Invariant (equilibrium) distribution

Sometimes it is more practical to approximate π^n for large n by its limit π as $n \to \infty$, provided such a limit exists. Since $\pi^n = \pi^{n-1}P$ such a limit must satisfy the equation

$$\pi = \pi P$$
.

Definition 13 A probability distribution $\pi(z), z \in \mathbf{S}$, is called invariant or equilibrium distribution for Z_n , if it satisfies the equation

$$\pi(z) = \sum_{c \in \mathbf{S}} p(c, z) \pi(c).$$

Note, that if π^0 is invariant, then $\pi^n = \pi^0$ for all $n \geq 0$. In this case Z_n is discrete time stationary process. It turns out that the invariant distribution and the limit above exists in very many situations.

Theorem 14 Assume $\mathbf{S} = \{s_1, \dots s_d\}$ and there is $m \ge 1$ such that all entries of the matrix P^m (see Remark 12) are strictly positive.

Then there is a unique invariant distribution $\pi = (\pi_1, \dots \pi_d)$ and for all $i, j = 1, \dots, d$,

$$\lim_{n\to\infty} \pi_j^n = \pi_j, \lim_{n\to\infty} (P^n)_{ij} = \pi_j.$$

Proof. Let $Q = P^m = (q_{ij})$, and $q_{ij} \ge \delta > 0$ for all i, j. Then for an arbitrary vector $\nu = (\nu_1, \dots, \nu_d)$ such that $\sum_i \nu_i = 0$, we have

$$\sum_{i} |(\nu Q)_{i}| = \sum_{i} |\sum_{j} \nu_{j} q_{ji}|$$

$$= \sum_{i} |\sum_{j} \nu_{j} (q_{ji} - \delta)|$$

$$\leq \sum_{j} \sum_{i} |\nu_{j}| (q_{ji} - \delta)| = (1 - d\delta) \sum_{j} |\nu_{j}|.$$
(6)

Uniqueness. Assume π and μ are both invariant probability distributions on **S**. Then $\pi - \mu = (\pi - \mu) Q$, and by (6) it follows

$$\sum_{i} |\mu_i - \pi_i| \le (1 - \delta d) \sum_{i} |\mu_i - \pi_i|.$$

So, $\mu_i = \pi_i$ for all i.

Existence. For any initial distribution π^0 and l = 0, ..., m - 1, we have (Remark 12) for all $k \ge 1$,

$$\pi^{(k+1)m+l} = \pi^{km+l}Q. \tag{7}$$

By (6), for all $k \ge 1$,

$$\sum_{i} |\pi_{i}^{(k+1)m+l} - \pi_{i}^{km+l}| \le (1 - \delta d) \sum_{i} |\pi_{i}^{km+l} - \pi_{i}^{(k-1)m+l}| \le 2(1 - \delta d)^{k}.$$

Therefore the limit $\pi(n) = \lim_{k \to \infty} \pi^{km+l}$ exists and passing to the limit in (7) we see that $\pi(n)$ is invariant. In fact $\pi(n) = \pi$ does not depend on n because of the uniqueness of invariant distribution. Since $l = 0, \ldots, m-1$ is arbitrary, $\lim_{n \to \infty} \pi^n = \pi$. Initial distribution can be arbitrary as well and taking $\pi^0 = (\delta_{ij})_{1 \le i \le d}$, we obtain $\pi^n_j = (P^n)_{ij} \to \pi_j$ for every $i = 1, \ldots, d$.

Remark 15 Random walks Z_n on \mathbf{Z}^d which are non trivial in the sense that $\mathbf{P}(Z_1 \neq Z_0) > 0$, do not have invariant distributions.

Indeed, if an invariant distribution exists, then for the r.w. with invariant starting state we would have (using independence of increments),

$$\mathbf{E} \exp \{i\lambda Z_0\} = \mathbf{E} \exp \{i\lambda Z_1\} = \mathbf{E} \exp \{i\lambda (Z_1 - Z_0) + i\lambda Z_0\}$$
$$= \mathbf{E} \exp \{i\lambda Z_0\} \mathbf{E} \exp \{i\lambda (Z_1 - Z_0)\}$$

which is a contradiction.

The following statement shows that finite state Markov chains always have an invariant distribution.

Proposition 16 Let $S = \{s_1, \dots s_d\}$ and Z_n be time homogeneous M. chain on S. Then it has an invariant distribution.

Proof. The matrix $A = P - I = (P_{ij} - \delta_{ij})$ has linearly dependent columns (their sum is 0). Therefore the rows are linearly independent as well. So, there is $\lambda = (\lambda_1, \dots, \lambda_d) \neq 0$ such that

$$\sum_{i} \lambda_i a_{ij} = 0 \text{ for all } j$$

or, equivalently,

$$\sum_{i} \lambda_{i} p_{ij} = \lambda_{j} \text{ for all } j.$$

Let $\pi_i = |\lambda_i| / \sum_j |\lambda_j|$. Then

$$\pi_j \leq \sum_i \pi_i P_{ij}$$
 for all j ,

and

$$1 = \sum_{i} \pi_i \le \sum_{i,j} \pi_i P_{ij} = 1,$$

which implies that

$$\sum_{i} \left(\sum_{i} \pi_{i} P_{ij} - \pi_{j} \right) = 0$$

or $\sum_{i} \pi_{i} P_{ij} - \pi_{j} = 0$ for all $j : \pi = (\pi_{j})$ is invariant distribution.