MATH 161, Autumn 2024 SCRIPT 3: Introducing a Continuum

This sheet introduces a continuum C through a series of axioms.

Axiom 1. A continuum is a nonempty set C.

We often refer to elements of C as points.

Definition 3.1. Let X be a set. An *ordering* on the set X is a subset < of $X \times X$, with elements $(x, y) \in <$ written as x < y, satisfying the following properties:

- (a) (Trichotomy)
 - For all $x, y \in X$ exactly one of the following holds: x < y, y < x or x = y.
- (b) (Transitivity) For all $x, y, z \in X$, if x < y and y < z then x < z.

Remarks 3.2. a) In mathematics "or" is understood to be inclusive unless stated otherwise. So in a) above, the word "exactly" is needed.

- b) x < y may also be written as y > x.
- c) By $x \le y$, we mean x < y or x = y; similarly for $x \ge y$.

Axiom 2. A continuum C has an ordering <.

Definition 3.3. If $A \subset C$ is a subset of C, then a point $a \in A$ is a *first* point of A if, for every element $x \in A$, either a < x or a = x. Similarly, a point $b \in A$ is called a *last* point of A if, for every $x \in A$, either x < b or x = b.

Lemma 3.4. If A is a nonempty, finite subset of a continuum C, then A has a first and last point.

Proof. We prove this by induction on $|A| = n \in \mathbb{N}$.

For the base case, n = 1, so let the singleton set $A = \{x\}$. Thus, x is both the first and last point of A.

For the inductive step, we want to show that if the set A with cardinality n, denoted A_n , has a first and last point, then A_{n+1} has a first and last point.

Consider $A' = A_{n+1} \setminus \{x\}$ for some $x \in A_{n+1}$. Then, we know that |A'| = n, so A' has a first point (let this be F) and a last point (let this be L).

Then, consider $x_0 \in A_{n+1}$. By the ordering < on C, we know that either $x_0 < F$ or $x_0 = F$ or $x_0 > F$.

If x < F, then x is the first point of A_{n+1} . If x = F, then $x \in A_{n+1} \setminus \{x\}$ and this is a contradiction. If x > F, then F is the first point of A_{n+1} .

Therefore, if a set with cardinality n has a first and last point, then a set with cardinality n+1 has a first and last point. This completes the proof.

QED

Theorem 3.5. Suppose that A is a set of n distinct points in a continuum C, or, in other words, $A \subset C$ has cardinality n. Then symbols a_1, \ldots, a_n may be assigned to each point of A so that $a_1 < a_2 < \cdots < a_n$, i.e. $a_i < a_{i+1}$ for $1 \le i \le n-1$.

Proof. We prove this by induction on n.

For the base case, n = 1, so let the singleton set $A = \{a\}$. Then, $a = a_1$ and this completes the base case.

For the inductive step, consider the set A_{n+1} with cardinality n+1. By Lemma 3.4, we know that A_{n+1} has a last point (let this be denoted by a_{max}). Define $A' = A \setminus \{a_{max}\}$. Then, we know that |A'| = n.

By the inductive hypothesis, A' is a set of cardinality n, hence A' can be written as $a_1 < a_2 < \cdots < a_n$. Then, we know that A can be written as $a_1 < a_2 < \cdots < a_n < a_{max}$. This completes the proof.

QED

Definition 3.6. If $x, y, z \in C$ and either (i) both x < y and y < z or (ii) both z < y and y < x, then we say that y is between x and z.

Corollary 3.7. Of three distinct points in a continuum, one must be between the other two.

Proof. Let $x, y, z \in C$ such that $x \neq y, x \neq z, y \neq z$.

Then, let $A \subset C$ such that $A = \{x, y, z\}$. We know that A can be expressed as $\{a_1, a_2, a_3\}$, and moreover these can be written as $a_1 < a_2 < a_3$. Then, $a_1 < a_2$ and $a_2 < a_3$, so a_2 is between a_1 and a_3 .

QED

Axiom 3. A continuum C has no first or last point.

In the next exercise we show that the integers and the rationals both have orderings that satisfy Axioms 1-3.

Exercise 3.8. a) We define a relation < on \mathbb{Z} by m < n if n = m + c for some $c \in \mathbb{N}$. Show that, \mathbb{Z} , with the ordering <, satisfies Axioms 1-3.

Proof. We know that $-1 \in \mathbb{Z}$, hence $\mathbb{Z} \neq \emptyset$, so it satisfies Axiom 1.

For Axiom 2, we want to show that transitivity holds for the ordering <. We want to show that if $x_1 < x_2$ and $x_2 < x_3$, then $x_1 < x_3$.

We know that $x_2 = x_1 + c_1$ and $x_3 = x_2 + c_2$. Hence, $x_3 = x_1 + c_1 + c_2$. Let $c_3 = c_1 + c_2$, then $x_3 = x_1 + c_3$, hence $x_3 > x_1$.

We know that \mathbb{Z} goes from negative infinity to positive infinity, so it has no first or last point, so it satisfies Axiom 3. This completes the proof.

QED

b) Show that, for any $p = \left\lceil \frac{a}{b} \right\rceil \in \mathbb{Q}$, there is some $(a_1, b_1) \in p$ with $0 < b_1$.

Proof. We know that $b \neq 0$, so we proceed by cases.

Case 1: b > 0 and we are done.

Case 2: b < 0. Then, let a' = -a and b' = -b. We want to show that $\left[\frac{a}{b}\right] = \left[\frac{a'}{b'}\right]$.

 $a \cdot -b = -a \cdot b = -ab$, hence $ab' \sim ba'$, hence $(a,b) \sim (a',b')$, hence $\left[\frac{a}{b}\right] = \left[\frac{a'}{b'}\right]$. Then, $p = \left[\frac{a'}{b'}\right]$ and this completes the proof.

QED

c) We define a relation $<_{\mathbb{Q}}$ on \mathbb{Q} as follows. For $p,q \in \mathbb{Q}$, let $(a_1,b_1) \in p$ be such that $0 < b_1$, and let $(a_2,b_2) \in q$ be such that $0 < b_2$. Then we define $p <_{\mathbb{Q}} q$ if $a_1b_2 < a_2b_1$. Show that $<_{\mathbb{Q}}$ is a well-defined relation on \mathbb{Q} .

Proof. We want to show that if $\left[\frac{a}{b}\right] = \left[\frac{a'}{b'}\right]$ and $\left[\frac{c}{d}\right] = \left[\frac{c'}{d'}\right]$ with b, b', d, d' > 0 and ad < bc, then a'd' < b'c'.

We know that ab' = a'b and cd' = c'd. Hence ab'dd' = a'bdd', where we are multiplying by dd' since d, d' > 0.

Then, ab'dd' = adb'd' < bcb'd'. Therefore ab'dd' < bcb'd', hence ab'dd' < cd'bb', hence ab'dd' < c'dbb'.

Hence, a'd'bd < b'c'bd, hence a'd' < b'c'. This completes the proof.

QED

d) Show that \mathbb{Q} , with the ordering $<_{\mathbb{Q}}$, satisfies Axioms 1-3.

Proof. We know that $[1/2] \in \mathbb{Q}$, hence $\mathbb{Q} \neq \emptyset$, so it satisfies Axiom 1.

For Axiom 2, we want to show that transitivity holds for the ordering <. We want to show that if $\left[\frac{a}{b}\right] < \left[\frac{c}{d}\right]$ and $\left[\frac{c}{d}\right] < \left[\frac{e}{f}\right]$, then $\left[\frac{a}{b}\right] < \left[\frac{e}{f}\right]$.

Since ad < bc and cf < de, we know that adf < bcf and bcf < bde, hence adf < bde and af < be.

We know that \mathbb{Q} goes from negative infinity to positive infinity, so it has no first or last point, so it satisfies Axiom 3. This completes the proof.

QED

Definition 3.9. If $a, b \in C$ and a < b, then the set of points between a and b is called a *region*, denoted by ab.

Warning 3.10. One often sees the notation (a, b) for regions. We will reserve the notation (a, b) for ordered pairs in a product $A \times B$. These are very different things.

Theorem 3.11. If x is a point of a continuum C, then there exists a region \underline{ab} such that $x \in \underline{ab}$.

Proof. By the axioms of a continuum, we know that C does not have a first point, hence there exists $a \in C$ such that a < x. Similarly, we know that C does not have a last point, hence there exists $b \in C$ such that x < b.

Since a < x < b, we know that there exists a region \underline{ab} such that $x \in \underline{ab}$. This completes the proof.

QED

We now come to one of the most important definitions of this course:

Definition 3.12. Let A be a subset of a continuum C. A point p of C is called a *limit point* of A if every region R containing p has nonempty intersection with $A \setminus \{p\}$. Explicitly, this means:

for every region
$$R$$
 with $p \in R$, we have $R \cap (A \setminus \{p\}) \neq \emptyset$.

Notice that we do not require that a limit point p of A be an element of A. We will use the notation LP(A) to denote the set of limit points of A.

Theorem 3.13. If $A \subset B$, then $LP(A) \subset LP(B)$.

Proof. Suppose $x \in LP(A)$. Then, for every region R with $x \in R$, there exists $y \in R \cap (A \setminus \{x\})$ such that $y \neq x, y \in R, y \in A, y \in B$, where the last statement follows since $A \subset B$.

Then, we know that since $y \in R, y \neq x, y \in B$, therefore $y \in R \cap (B \setminus \{x\})$. Hence, $R \cap (B \setminus \{x\}) \neq \emptyset$, therefore $x \in LP(B)$.

Hence, $LP(A) \subset LP(B)$. This completes the proof.

QED

Definition 3.14. If \underline{ab} is a region in a continuum C, then $C \setminus (\{a\} \cup \underline{ab} \cup \{b\})$ is called the *exterior* of ab and is denoted by ext ab.

Lemma 3.15. If \underline{ab} is a region in a continuum C, then

$$\operatorname{ext} \underline{ab} = \{ x \in C \mid x < a \} \cup \{ x \in C \mid b < x \}.$$

Proof. Suppose $x \in \text{ext } \underline{ab}$. Then, $x \notin \{a\}, x \notin \{b\}, x \in \underline{ab}$. Hence, either x < a or b < x. Therefore, $x \in \{x \in C \mid x < a\} \cup \{x \in C \mid b < x\}$. Hence, $\text{ext } \underline{ab} \subset \{x \in C \mid x < a\} \cup \{x \in C \mid b < x\}$.

Suppose $x \in \{x \in C \mid x < a\} \cup \{x \in C \mid b < x\}$. Then, $x \notin \{a\} \cup \underline{ab} \cup \{b\}$. Hence, $x \in \text{ext }\underline{ab}$. Hence, $\{x \in C \mid x < a\} \cup \{x \in C \mid b < x\} \subset \text{ext }\underline{ab}$.

This completes the proof.

QED

Lemma 3.16. No point in the exterior of a region is a limit point of that region. No point of a region is a limit point of the exterior of that region.

Proof. Suppose $x \in \text{ext } \underline{ab}$.

Case 1: x < a. Let $c \in C$ such that c < x < a. Then, $\underline{ca} \cap \underline{ab} = \emptyset = \underline{ca} \cap \underline{ab} \setminus \{x\}$. Hence, $x \notin LP(ab)$.

Case 2: x > b. Let $c \in C$ such that b < x < c. Then, $\underline{bc} \cap \underline{ab} = \emptyset = \underline{bc} \cap \underline{ab} \setminus \{x\}$. Hence, $x \notin LP(\underline{ab})$.

This proves that no point in the exterior of a region is a limit point of that region.

Next, suppose $x \in \underline{ab}$. Then, $x \notin \operatorname{ext} \underline{ab}$. Hence, $\operatorname{ext} \underline{ab} \setminus \{x\} = \operatorname{ext} \underline{ab}$. Therefore, $\underline{ab} \cap (\operatorname{ext} \underline{ab} \setminus \{x\}) = \underline{ab} \cap \operatorname{ext} \underline{ab} = \emptyset$. Hence, $x \notin LP(\operatorname{ext} \underline{ab})$.

This proves that no point of a region is a limit point of the exterior of that region.

QED

Theorem 3.17. If two regions have a point x in common, their intersection is a region containing x.

Proof. Let $x \in \underline{ab}, x \in \underline{cd}$, and let $e = \max\{a, c\}, f = \min\{b, d\}$. Then, we know that a < x < b and c < x < d, hence $\max\{a, c\} < \min\{b, d\}$, hence e < f. We want to show that $\underline{ab} \cap \underline{cd} = ef$.

Suppose $y \in \underline{ab} \cap \underline{cd}$. Then, a < y < b and c < y < d, hence e < y < f, hence $y \in \underline{ef}$, hence $(\underline{ab} \cap \underline{cd}) \subset ef$.

Suppose $y \in \underline{ef}$. Then, e < y < f, hence $\max\{a,c\} < y < \min\{b,d\}$. Hence, $y \in \underline{ab}$ and $y \in \underline{cd}$, hence $y \in \underline{ab} \cap \underline{cd}$. Therefore, $ef \subset (\underline{ab} \cap \underline{cd})$.

QED

Corollary 3.18. If n regions R_1, \ldots, R_n have a point x in common, then their intersection $R_1 \cap \cdots \cap R_n$ is a region containing x.

Proof. We prove this by induction on n.

For the base case, we want to show that if two regions R_1, R_2 have a point x in common, then their intersection $R_1 \cap R_2$ is a region containing x. We know this from Theorem 3.17.

For the inductive step, we want to show that if n regions R_1, \ldots, R_n have a point x in common and if R_{n+1} is a region containing x, then the intersection $R_1 \cap \cdots \cap R_n \cap R_{n+1}$ is a region containing x

By the inductive hypothesis, let $M = R_1 \cap \cdots \cap R_n$ be a region containing x. Then, we want to show that $M \cap R_{n+1}$ is a region containing x. We know that M and R_{n+1} are regions that contain x, so this follows from Theorem 3.17, and this completes the proof.

QED

Theorem 3.19. Let A, B be subsets of a continuum C. Then $LP(A \cup B) = LP(A) \cup LP(B)$.

Proof. First, we show that $LP(A) \cup LP(B) \subset LP(A \cup B)$. By Theorem 3.13, we know that $A \subset A \cup B$, so $LP(A) \subset LP(A \cup B)$. Similarly, $B \subset A \cup B$, so $LP(B) \subset LP(A \cup B)$. Hence, $LP(A) \cup LP(B) \subset LP(A \cup B)$.

Next, we show that $LP(A \cup B) \subset LP(A) \cup LP(B)$. Suppose $x \in LP(A \cup B)$, then we want to show that $x \in LP(A) \cup LP(B)$. Suppose $x \notin LP(A) \cup LP(B)$. This is equivalent to $x \notin LP(A)$, $x \notin LP(B)$.

Hence, there exists a region R_A such that $x \in R_A$ and $R_A \cap A \setminus \{x\} = \emptyset$, and there exists a region R_B such that $x \in R_B$ and $R_B \cap B \setminus \{x\} = \emptyset$.

Let a region $R = R_A \cap R_B$. Then, $R \subset R_A$. Hence, $(R \cap A \setminus \{x\}) \subset (R_A \cap A \setminus \{x\})$. Since the RHS is empty, the LHS must also be empty. Similarly, $R \subset R_B$. Hence, $(R \cap B \setminus \{x\}) \subset (R_B \cap B \setminus \{x\})$. Since the RHS is empty, the LHS must also be empty.

 $R \cap (A \cup B) \setminus \{x\} = (R \cap A \setminus \{x\}) \cup (R \cap B \setminus \{x\})$. Since both sets on the RHS are empty, their union must be empty, hence the LHS must be empty. However, this contradicts our original assumption that $R \cap (A \cup B) \setminus \{x\} \neq \emptyset$, since $x \in LP(A \cup B)$.

QED

Corollary 3.20. Let A_1, \ldots, A_n be n subsets of a continuum C. Then p is a limit point of $(A_1 \cup \cdots \cup A_n)$ if, and only if, p is a limit point of at least one of the sets A_k .

Proof. We prove this by strong induction on n.

For the base case, let n=2. Then, by Theorem 3.19, we know that $LP(A_1 \cup A_2) = LP(A_1) \cup LP(A_2)$.

For the inductive step, suppose $LP(A_1 \cup A_2 \cup \cdots \cup A_n) = LP(A_1) \cup LP(A_2) \cup \cdots \cup LP(A_n)$. Then, $LP(A_1 \cup A_2 \cup \cdots \cup A_n \cup A_{n+1}) = LP(A_1 \cup A_2 \cup \cdots \cup A_n) \cup LP(A_{n+1}) = LP(A_1) \cup LP(A_2) \cup \cdots \cup LP(A_n) \cup LP(A_{n+1})$.

This completes the proof.

QED

Theorem 3.21. If p and q are distinct points of a continuum C, then there exist disjoint regions R and S containing p and q, respectively.

Proof. We know that $p \neq q$. Since a continuum has an ordering <, suppose without loss of generality that p < q. Since a continuum does not have a first or last point, let $a, b \in C$ such that a < p, b > q.

Case 1: $\exists x \in C$ such that p < x < q. Then, let region $R = \underline{ax}$ and let region $S = \underline{xb}$.

Since $a , we know that <math>p \in R$. Since x < q < b, we know that $q \in S$.

Suppose R and S are not disjoint, i.e., there exists some $y \in C$ such that $y \in R, y \in S$. Then, a < y < x and x < y < b, i.e., y < x and x < y, and this contradicts the trichotomy of the ordering <. Hence, R and S are disjoint.

Case 2: $\not\exists x \in C$ such that p < x < q. Then, let region R = aq and let region S = pb.

Since $a , we know that <math>p \in R$. Since p < q < b, we know that $q \in S$.

Suppose R and S are not disjoint, i.e., there exists some $y \in C$ such that $y \in R, y \in S$. Then, a < y < q and p < y < b, i.e., p < y < q, and this contradicts our original assumption that $\not\exists y \in C$ such that p < y < q. Hence, R and S are disjoint.

This completes the proof.

QED

Corollary 3.22. A subset of a continuum C consisting of one point has no limit points.

Proof. Let $A \subset C$ such that $A = \{a\}$. We want to show that $LP(A) = \emptyset$.

Suppose $LP(A) \neq \emptyset$, then let $p \in LP(A)$. It suffices to show that there exists a region R such that $R \cap (A \setminus \{p\}) = \emptyset$.

Case 1: p = a. Then, $A \setminus \{p\} = A \setminus \{a\} = \{a\} \setminus \{a\} = \emptyset$. Hence, $R \cap \emptyset = \emptyset$.

Case 2: $p \neq a$. Then, $A \setminus \{p\} = A$. Hence, we want to show that there exists a region R that contains p such that $R \cap A = \emptyset$. It suffices to show that there exists a region R such that $p \in R, a \notin R$.

Subcase 2a: p > a. Then, let $b \in C$ such that b > p and let $R = \underline{ab}$. Since $a , <math>p \in R$ and $a \notin R$.

Subcase 2b: p < a. Then, let $b \in C$ such that b < p and let $R = \underline{ba}$. Since $b , <math>p \in R$ and $a \notin R$.

This completes the proof.

QED

Theorem 3.23. A finite subset A of a continuum C has no limit points.

Proof. Let $A_n \subset C$ such that $|A_n| = n$. Then, we prove this theorem by induction on n.

For the base case, n = 1, i.e., A consists of one point. Corollary 3.22 completes the base case.

For the inductive step, we want to show that if $LP(A_n) = \emptyset$, then $LP(A_{n+1}) = \emptyset$.

We know that any finite subset of a continuum has a last point. Hence, let a_{max} denote the last point of A_{n+1} . Then, we know that $|A_{n+1} \setminus \{a_{max}\}| = n$. Hence, by the inductive hypothesis, $LP(A_{n+1} \setminus \{a_{max}\}) = \emptyset$. We also know from Corollary 3.22 that $LP(\{a_{max}\}) = \emptyset$.

By Theorem 3.19, $LP(A_{n+1}) = LP(A_{n+1} \setminus \{a_{max}\}) \cup LP(a_{max}) = \emptyset \cup \emptyset = \emptyset$. This completes the proof.

QED

Corollary 3.24. If A is a finite subset of a continuum C and $x \in A$, then there exists a region R, containing x, such that $A \cap R = \{x\}$.

Proof. Since A is finite, $LP(A) = \emptyset$. Hence, there exists some region R such that $x \in R$ and $R \cap A \setminus \{x\} = \emptyset$.

We can write $A \cap R = A \cap (R \setminus \{x\} \cup \{x\}) = (A \cap (R \setminus \{x\})) \cup (A \cap \{x\}) = \emptyset \cup \{x\} = \{x\}$. This completes the proof.

QED

Theorem 3.25. If p is a limit point of A and R is a region containing p, then the set $R \cap A$ is infinite.

Proof. Assume $R \cap A$ is finite. Then, $LP(R \cap A) = \emptyset$, hence $p \notin LP(R \cap A)$.

Hence, there exists a region R' such that $p \in R'$ and $R' \cap R \cap A \setminus \{p\} = \emptyset$.

Then, $p \in R'$, $p \in R$, hence $R' \cap R$ is a region containing p, and let this be S, i.e., $p \in S$.

Then, $S \cap A \setminus \{p\} = \emptyset$, hence $p \notin LP(A)$.

QED

Exercise 3.26. Find realizations of a continuum (C, <). That is, find concrete sets C endowed with a relation < satisfying all of the axioms (so far). Are they the same? What does "the same" mean here?

Proof. \mathbb{Q} , \mathbb{Z} are realizations of a continuum.

QED

Additional Exercises

In all exercises you are expected to prove your answer, unless explicitly stated otherwise.

1. Show that for all $p, q \in \mathbb{Q}$ such that $p <_{\mathbb{Q}} q$, there is some $r \in \mathbb{Q}$ with $p <_{\mathbb{Q}} r <_{\mathbb{Q}} q$.

Proof. Let $r = \frac{p+q}{2}$. Then, p < q, hence 2p < p+q, hence $\frac{2p}{2} < \frac{p+q}{2}$, hence p < r.

Next, p < q, hence p + q < 2q, hence $\frac{p+q}{2} < \frac{2q}{2}$, hence r < q.

Therefore, p < r < q. This completes the proof.

QED

2. By identifying $n \in \mathbb{Z}$ with $\left[\frac{n}{1}\right] \in \mathbb{Q}$ we can think of \mathbb{Z} as a subset of \mathbb{Q} . We shall write n to mean $\left[\frac{n}{1}\right]$. Show that for all $p \in \mathbb{Q}$, there is some $n \in \mathbb{Z}$ such that $p <_{\mathbb{Q}} n$.

Proof. Let $p = \begin{bmatrix} \frac{a}{b} \end{bmatrix}$ for $a \in \mathbb{Z}, b \in \mathbb{N}$.

Case 1: If a = 0, let n = 1. Then, $p = [\frac{0}{1}] < 1 = n$.

Case 2: If a > 0, let n = a. Then, $p = \left[\frac{a}{b}\right] < a = n$.

Case 3: If a < 0, let n = 0. Then, $p = [\frac{a}{b}] < 0 = n$.

This completes the proof.

QED

3.

Definition 3.27. Given two sets A and B, we say that $A \subseteq B$ if $A \subset B$ and $A \neq B$.

For each set X and subset $<_X \subset X \times X$, determine if $<_X$ is an ordering:

- (a) Let $X = \wp(\mathbb{N})$ and $<_X = \{(A, B) \in \wp(\mathbb{N}) \times \wp(\mathbb{N}) | A \subset B\}$.
- (b) Let $X = \{ \{x \in \mathbb{N} | x \le n\} \in \wp(\mathbb{N}) | n \in \mathbb{N} \}$ and $A = \{ (A, B) \in X \times X | A \subsetneq B \}$.
- (c) Let $X = \{f \subset \mathbb{N} \times \mathbb{N} | f \text{ is a function}\}\$ and $<_X = \{(f,g) \in X \times X | f(n) < g(n) \text{ for all } n \in \mathbb{N}\}.$
- (d) Let $X = \{f \subset \mathbb{N} \times \mathbb{N} | f \text{ is a function} \}$ and $<_X = \{(f,g) \in X \times X | f(n) \leq g(n) \text{ for all } n \in \mathbb{N} \}$ and there exists $n \in \mathbb{N}$ such that $f(n) < g(n) \}$.

(For the purposes of this exercise, "<" means the usual ordering on \mathbb{N} , i.e. if $m, n \in \mathbb{N}$ then m < n if and only if n = m + k for some $k \in \mathbb{N}$.)

- 4. Which of the following pairs of a set and an ordering satisfy Axioms 1,2, and 3 (and are thus examples of a "continuum")?
 - i) $C_1 = \{[n] \in \mathcal{P}(\mathbb{N}) \mid n \in \mathbb{N} \cup \{0\}\}$, where, for $[n], [m] \in C_1$, we say $[n] <_{C_1} [m]$ if $[n] \subsetneq [m]$;
 - ii) $C_2 = \mathbb{Z}$, where $<_{\mathbb{Z}}$ is the usual ordering on \mathbb{Z} ;
 - iii) $C_3 = \mathbb{Z} \times \mathbb{N}$, where, for $(a, b), (x, y) \in \mathbb{Z} \times \mathbb{N}$ we say that $(a, b) <_3 (x, y)$ if a < x or if a = x and b < y.
- 5. Find, without proof, the exterior of each region.
 - (a) Let C_2 and $<_{\mathbb{Z}}$ be as in Exercise 5. Let $R = \underline{38}$.
 - (b) Let C_3 and $<_3$ be as in Exercise 5. Let R = (-2, 5)(-2, 10).
 - (c) Let C_3 and $<_3$ be as in Exercise 5. Let R = (-2, 5)(1, 10).
- 6. Find the limit points of each region.
 - (a) Let C_2 and $<_{\mathbb{Z}}$ be as in Exercise 5. Let $R = \underline{38}$.
 - (b) Let C_3 and $<_3$ be as in Exercise 5. Let R = (-2, 5)(-2, 10).
 - (c) Let C_3 and $<_3$ be as in Exercise 5. Let R = (-2, 5)(1, 10).

7. Let A and B be realizations of the continuum, with orderings $<_A, <_B$, respectively. We say that A and B are isomorphic if there is a bijection $f: A \longrightarrow B$ such that

$$a_1 <_A a_2 \Longrightarrow f(a_1) <_B f(a_2).$$

Show that \mathbb{Z} and \mathbb{Q} (with the orderings given in Scripts 1 and 2) are realizations of the continuum that are *not* isomorphic.

Proof. Suppose $f: \mathbb{Q} \to \mathbb{Z}$ such that $a_1 <_{\mathbb{Q}} a_2 \Longrightarrow f(a_1) <_{\mathbb{Z}} f(a_2)$ and f is bijective.

Let $a_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $a_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then, we know by the ordering $<_{\mathbb{Q}}$ that $a_1 <_{\mathbb{Q}} a_2$.

Let $f(a_1) = z_1$ and $f(a_2) = z_2$, then we know by our original assumption that $z_1 <_{\mathbb{Z}} z_2$.

Then, for all q such that $q \in \underline{01}$, we have that $f(q) \in \underline{z_1 z_2}$. However, there are finitely many points $z \in \mathbb{Z}$ in the region $\underline{z_1 z_2}$, but infinitely many points $q \in \mathbb{Q}$ in the region $\underline{01}$, hence by the pigeonhole principle f cannot be injective, hence it cannot be bijective. This is a contradiction.

QED

- 8. Suppose that R_1, R_2, \ldots are regions in a continuum C and that $x \in LP(\bigcup_{i=1}^{\infty} R_i)$. Is it true that there exists $i \in \mathbb{N}$ such that $x \in LP(R_i)$? Does this answer change if we add the additional hypothesis that there exists $k \in \mathbb{N}$ such that $x \in R_k$?
- 9. Show that any continuum C satisfying Axioms 1-3 is infinite and write C as a union of regions in C.

Proof. Assume continuum C is finite. By Axiom 1, $C \neq \emptyset$. By Axiom 2 for the ordering and Theorem 3.5, C can be written as $a_1 < a_2 < \cdots < a_n$, where n = |C|. Then, a_1 is the first point of C and a_n is the last point of C, and this violates Axiom 3, which says that C has no first or last point. Hence, C is infinite.

By Theorem 3.11, if $p \in C$, then there exists a region R_p such that $p \in R_p$. Then, we know by Axiom of Choice that we can select points p in a continuum C, hence $C = \bigcup_{p \in C} R_p$.

QED

10. Prove that if $A \subset \mathbb{Z}$, A has no limit points.

Proof. We know that if $A \subset \mathbb{Z}$, then $LP(A) \subset LP(\mathbb{Z})$, hence it suffices to show that $LP(\mathbb{Z}) = \emptyset$.

Assume $LP(\mathbb{Z}) \neq \emptyset$, then let $p \in LP(\mathbb{Z})$. We want to show that there exists some region R such that $p \in R, R \cap \mathbb{Z} \setminus \{p\} = \emptyset$.

Let R = (p-1)(p+1). Then, we know that $p-1 , hence <math>p \in R$.

If p is a limit point of \mathbb{Z} , then by Theorem 3.25, $R \cap \mathbb{Z}$ is infinite, and this is a contradiction.

QED

- 11. Let $i^2 = -1$ and define $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$. Define an ordering on $\mathbb{Z}[i]$ by a + bi < c + di if, and only if, either a < c, or a = c and b < d.
 - (a) Prove that < is indeed an ordering. (So you must verify the properties in Definition 3.1. Note that you may assume the usual properties of \mathbb{Z} see Script 0 for full details.)
 - (b) Prove that, with this ordering, $\mathbb{Z}[i]$ satisfies Axioms 1,2 and 3, so is a realization of the continuum as defined so far.

*****Food For Thought****

1 - Suppose C_1, C_2, \ldots are continua, where $<_i$ is the order of C_i . Prove that the following are continua:

a - $C_1 \times C_2$ equipped with lexicographic order $<_L$, that is,

 $(x,y) <_L (u,v)$ if $x <_1 u$ or $(x = u \text{ and } y <_2 v)$.

Proof. Since $C_1 \neq \emptyset$, $C_2 \neq \emptyset$, we know that $C_1 \times C_2 \neq \emptyset$. This satisfies Axiom 1. transitive trichotomy

Let $(p,q) \in C_1 \times C_2$. Since C_1 has no first point, there exists $p' \in C_1$ such that p' < p. Then, $(p',q) <_L (p,q)$. Since $(p,q) \in C_1$ is arbitrary, $C_1 \times C_2$ has no first point.

Let $(p,q) \in C_1 \times C_2$. Since C_2 has no last point, there exists $q' \in C_2$ such that q < q'. Then, $(p,q) <_L (p,q')$. Since $(p,q) \in C_1$ is arbitrary, $C_1 \times C_2$ has no last point. This satisfies Axiom 3.

QED

b - $\prod_{i=1}^{n} C_i$ (i.e., $C_1 \times \cdots \times C_n$) equipped with lexicographic order $<_L$, that is, $(x_1, \ldots, x_n) <_L (y_1, \ldots, y_n)$ if there exists $i \in [n]$ such that $x_j = y_j$ for every $j \in [i-1]$ and $x_i <_i y_i$.

Proof. strong induction on n

QED

c - $\prod_{i \in \mathbb{N}} C_i$ (i.e., the set of infinite sequences $(x_i)_{i \in \mathbb{N}}$ such that $x_i \in C_i$ for every $i \in \mathbb{N}$) equipped with lexicographic order $<_L$, that is,

 $(x_i)_{i\in\mathbb{N}} <_L (y_i)_{i\in\mathbb{N}}$ if there exists $i\in\mathbb{N}$ such that $x_j=y_j$ for every $j\in[i-1]$ and $x_i<_i y_i$.

2 - Using the constructions above of continua (along with the fact that \mathbb{Z} and \mathbb{Q} are continua), decide how many "different" continua you can get considering $C_1 \times \cdots \times C_n$ where each C_i is either \mathbb{Z} or \mathbb{Q} . What about if you also consider $\prod_{i \in \mathbb{N}} C_i$ where each C_i is either \mathbb{Z} or \mathbb{Q} ?