COMP90051

Workshop Week 07

About the Workshops

- □ 7 sessions in total
 - ☐ Tue 12:00-13:00 AH211
 - ☐ Tue 12:00-13:00 AH108 *
 - ☐ Tue 13:00-14:00 AH210
 - ☐ Tue 16:15-17:15 AH109
 - ☐ Tue 17:15-18:15 AH236 *
 - ☐ Tue 18:15-19:15 AH236 *
 - ☐ Fri 14:15-15:15 AH211

About the Workshops

Homepage

https://trevorcohn.github.io/comp90051-2017/workshops

☐ Solutions will be released on next Friday (a week later).

Syllabus

1	Introduction; Probability theory	Probabilistic models; Parameter fitting	
2	Linear regression; Intro to regularization	Logistic regression; Basis expansion	
3	Optimization; Regularization	Perceptron	
4	Backpropagation	CNNs; Auto-encoders	
5	Hard-margin SVMs	Soft-margin SVMs	
6	Kernel methods	Ensemble Learning	
7	Clustering	EM algorithm	
8	Dimensionality reduction; Principal component analysis	Multidimensional scaling; Spectral clustering	
9	Bayesian fundamentals	Bayesian inference with conjugate priors	
10	PGMs, fundamentals	Conditional independence	
11	PGMs, inference	Belief propagation	
12	Statistical inference; Apps	Subject review	

- □ Review the lecture, background knowledge, etc.
 - Bagging
 - OOB score
 - □ SVM
 - ☐ Hard-margin & Soft-margin
 - □ Comparison with logistic regression, perceptron
 - Kernel method

- Review the lecture, background knowledge, etc.
 - Bagging
 - OOB score
 - \square SVM
 - ☐ Hard-margin & Soft-margin
 - □ Comparison with logistic regression, perceptron
 - ☐ Kernel method

Bagging (bootstrap aggregating)

☐ A model averaging approach

- ☐ Given a standard training set
- ☐ Bootstrap the standard training set
 - \square To generate m new training sets
 - Bootstrap = sample uniformly and with replacement
- \square Train m base models on the above m training sets
- \square Aggregate the *m* base models to make predictions
 - ☐ By voting (classification) or averaging (regression)

☐ Sample without replacement

Iteration	Choose from	Generate	Sample
1	[123456789]	[4]	[4]
2	[12356789]	[1]	[4,1]
3	[2 3 5 6 7 8 9]	[3]	[4,1,3]
4	[256789]	[2]	[4,1,3,2]

☐ Sample with replacement

Iteration	Choose from	Generate	Sample
1	[123456789]	[4]	[4]
2	[123456789]	[1]	[4,1]
3	[123456789]	[4]	[4,1,4]
4	[123456789]	[1]	[4,1,4,1]

Original dataset: $\{(x_i, y_i)\}, i = 1, 2, ..., 9$

Model	Training set
m1	[6 3 6 2 7 4 8 3 4]
m2	[4 7 1 5 4 5 1 1 4]
m3	[7 2 8 4 4 3 7 1 1]
m4	[8 2 9 3 9 3 2 5 9]

 \square To make a prediction for x

$$\hat{y} = \frac{1}{4} \{ m1.predict(x) + m2.predict(x) + m3.predict(x) + m4.predict(x) \}$$

OOB: out-of-bag

Model	Training set	OOB
m1	[6 3 6 2 7 4 8 3 4]	[1 5 9]
m2	[4 7 1 5 4 5 1 1 4]	[2 3 6 8 9]
m3	[7 2 8 4 4 3 7 1 1]	[5 6 9]
m4	[8 2 9 3 9 3 2 5 9]	[1 4 6 7]

 \square To make a prediction for x

$$\hat{y} = \frac{1}{4} \{ m1.predict(x) + m2.predict(x) + m3.predict(x) + m4.predict(x) \}$$

\tilde{y}_i : aggregation of models haven't seen x_i

Model	Training set	OOB
m1	[6 3 6 2 7 4 8 3 4]	[1 5 9]
m2	[4 7 1 5 4 5 1 1 4]	[2 3 6 8 9]
m3	[7 2 8 4 4 3 7 1 1]	[5 6 9]
m4	[8 2 9 3 9 3 2 5 9]	[1 4 6 7]

$$\begin{split} \tilde{y}_1 &= \frac{1}{2} \{ m1.predict(\boldsymbol{x}_1) + m4.predict(\boldsymbol{x}_1) \} \\ \tilde{y}_2 &= m2.predict(\boldsymbol{x}_2) & \tilde{y}_3 = m2.predict(\boldsymbol{x}_3) \\ \tilde{y}_4 &= m4.predict(\boldsymbol{x}_4) & \tilde{y}_5 = m3.predict(\boldsymbol{x}_5) \\ \tilde{y}_6 &= \frac{1}{3} \{ m2.predict(\boldsymbol{x}_6) + m3.predict(\boldsymbol{x}_6) + m4.predict(\boldsymbol{x}_6) \} \\ \tilde{y}_7 &= m4.predict(\boldsymbol{x}_7) & \tilde{y}_8 = m2.predict(\boldsymbol{x}_8) \\ \tilde{y}_9 &= \frac{1}{3} \{ m1.predict(\boldsymbol{x}_9) + m2.predict(\boldsymbol{x}_9) + m3.predict(\boldsymbol{x}_9) \} \end{split}$$

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

OOB score (regression)

OOB mean squared error

$$MSE_{OOB} = \frac{1}{|D_{train}|} \sum_{(x_i, y_i) \in D_{train}} (y_i - \tilde{y}_i)^2$$

☐ Mean squared error on a validation set

$$MSE_{val} = \frac{1}{|D_{val}|} \sum_{(x_i, y_i) \in D_{val}} (y_i - \hat{y}_i)^2$$

OOB score is an alternative to the score on validation set

Bagging

- ☐ Can be used with any type of method
- Usually applied to decision tree method

☐ In sklearn:

```
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> bagging = BaggingClassifier(KNeighborsClassifier(),
...
max_samples=0.5, max_features=0.5)
```

- Review the lecture, background knowledge, etc.
 - Bagging
 - OOB score
 - - ☐ Hard-margin & Soft-margin
 - □ Comparison with logistic regression, perceptron
 - Kernel method

SVM

☐ Hard-margin

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$

☐ Soft-margin

$$\min_{\mathbf{w},b} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=0}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$

 \square Hard-margin $\Leftrightarrow C \to +\infty$

SVM - different C values

SVM and Perceptron

$$s_i = \boldsymbol{w}^T \boldsymbol{x}_i + b$$

☐ Hinge loss

$$L(\boldsymbol{x}_i, y_i) = \max(0, 1 - y_i s_i)$$

Perceptron loss

$$L(\mathbf{x}_i, y_i) = \max(0, -y_i s_i)$$

Logistic regression (binary classification)

$$s_i = \boldsymbol{w}^T \boldsymbol{x}_i + b$$

 \square Log-loss when $y \in \{0, 1\}$

$$\hat{y}_i = p(y = 1 | \mathbf{x} = \mathbf{x}_i) = \frac{1}{1 + e^{-s_i}}$$

$$L(x_i, y_i) = -(1 - y_i) \log(1 - \hat{y}_i) - y_i \log \hat{y}_i$$

 \square Log-loss when $y \in \{-1, +1\}$

$$p(y|x = x_i) = \frac{1}{1 + e^{-ys_i}}$$

$$L(x_i, y_i) = -\log p(y = y_i | x = x_i) = \log(1 + e^{-y_i s_i})$$

Loss function for an example (x, y)

- Review the lecture, background knowledge, etc.
 - Bagging
 - OOB score
 - \square SVM
 - ☐ Hard-margin & Soft-margin
 - □ Comparison with logistic regression, perceptron
 - Kernel method

Kernel method

- ☐ A kernel function is
 - a similarity function over pairs of raw data points
 - the dot product of a pair of transformed data points

$$K(\boldsymbol{u},\boldsymbol{v}) = \phi(\boldsymbol{u}) \cdot \phi(\boldsymbol{v})$$

- Could be used for many models:
 - □ SVM, perceptron, logistic regression, linear regression, etc.
- ☐ Kernel SVM is the best known one

Kernel method

 \square Prove a kernel K(u, v) is valid by finding its ϕ function

- $\square K(u, v) = (u \cdot v + 1)^2$ is a valid kernel for 2-d points
- Because

- $\square \text{ Then } K(\boldsymbol{u},\boldsymbol{v}) = \phi(\boldsymbol{u}) \cdot \phi(\boldsymbol{v})$

- Review the lecture, background knowledge, etc.
 - Bagging
 - OOB score
 - \square SVM
 - ☐ Hard-margin & Soft-margin
 - □ Comparison with logistic regression, perceptron
 - Kernel method