Question number	Scheme	Marks
2 (a)	$\cos ABC = \frac{(2x)^2 + (4x)^2 - (3x)^2}{2 \times 2x \times 4x} = \frac{x^2 (4 + 16 - 9)}{x^2 (16)} = \frac{11}{16}$	M1A1
	$l = \sqrt{16^2 - 11^2} = 3\sqrt{15}$	M1
	$\sin ABC = \frac{3\sqrt{15}}{16} *$ ALT	A1 [4]
	$\sin^2 ABC = 1 - \frac{121}{256} = \frac{135}{256} \Rightarrow \sin ABC = \frac{3\sqrt{15}}{16} = \frac{1}{16} = \frac{75\sqrt{15}}{64} = \frac{1}{2} \times 2x \times 4x \times \frac{3\sqrt{15}}{16} \Rightarrow x^2 = \frac{25}{16} \Rightarrow x = \frac{5}{4} \text{ oe}$	{M1A1}
(b)	$\frac{75\sqrt{15}}{64} = \frac{1}{2} \times 2x \times 4x \times \frac{3\sqrt{15}}{16} \Rightarrow x^2 = \frac{25}{16} \Rightarrow x = \frac{5}{4} \text{ oe}$ (positive root only)	M1A1 [2]
	To	tal 6 marks
(a)		
M1	Use the cosine rule, either form. If not for angle ABC there must be a method shown for obtaining ABC	complete
A1	Correct expression for cos ABC	
M1	Use of Pythagoras' leading to $l = \dots$	
A1	Obtains the given expression for sin ABC	
ALT:		
M1	Use of $\sin^2 \theta + \cos^2 \theta = 1$ leading to $\sin^2 \theta =$	
A1	Obtains the given expression for sin <i>ABC</i>	
(b) M1		
1V11	Use of $\frac{1}{2}ab\sin C = \frac{75\sqrt{15}}{64}$ Need not be simplified.	
A1	$x = \frac{5}{4}$ oe	