

1. Consider the following dataset

Α	В	С
1		1
1	1	
		1
1	1	1

- a) Following the Apriori algorithm, identify the frequent sets, assuming Sup_{min} = 30%.
- **b)** Say which rules will be selected if Conf_{min}= 100%.
- 2. Consider the following set of purchases represented in the Table

TID	Α	В	С	D
1	1			
2	1		1	
3	1	1	1	1
4				1
5		1	1	1

- a) Indicate the support and confidence of the rule $\{D\} \Rightarrow \{B,C\}$.
- b) Explain the meaning of the measure of support and confidence in terms of probabilities.
- c) If we know that the rule { D } \Rightarrow { B, C } has sufficient confidence (above a minimum established), what can be said about the rules {B, D} \Rightarrow {C} and {C, D} \Rightarrow {B}? Justify.
- d) Suppose the frequent sets of size 2 are: {A,C}, {B,C}, {C,D}. What the candidate sets of size 3 constructed by the APRIORI algorithm and their respective supports?
- e) Assume that the minimum support is 0.5. Which frequent sets are found by APRIORI.
- f) Assume that the minimum confidence is 0.4. What rules would be produced from the sets {A, B} and {B, C}? Justify.

3. Consider the following dataset

Α	Х	S	W
В	Х	S	r
С	У	S	t
D	х	n	r

- a) What changes should you make to this dataset so that the Apriori algorithm can be applied? Present the new dataset.
- **b)** Identify the frequent sets for a minimum support of 0.5.
- c) Say which rules will be selected if the minimum confidence is 1.

1. a)

A	В	С
1		1
1	1	
		1
1	1	1

Frequent sets Minimum Support = 0,30

Sets of size 1

	_		
Sate	Λf	ciza	า

Item_set Support	Item_set	Support		
	Support	{ A, B }	1/2 (0,50)	
{ A }	3 / 4 (0,75)	{ A, C }	1/2 (0,50)	
{ B }	1/2 (0,50)	{ B, C }	1/4 (0,25)	< 0,30 eliminated!
{ C }	3 / 4 (0,75)	[0, 0]	1 / 4 (0,23)	v 0,50 eminiated :

Sets of size 3

Item_set		Support	
{ A, B, C }	4 (0,25)	eliminated!	

b)

Minimum Confidence = 1

Rules	Confidence	Support
A⇒B	2/3 (0,66)	0,50
$A \mathop{\Rightarrow} C$	2/3 (0,66)	0,50
$B \Rightarrow A$	1	0,50
C⇒A	2/3 (0,66)	0,50

2.

a) Rule
$$\{D\} \Rightarrow \{B,C\}$$

Support =
$$2/5 = 0.4$$

Confidence = $2/3 = 0.67$

b)

Support (\{P,Q\} \Rightarrow \{Z\}) is the % of "baskets" in which the joint occurrence of items is observed, that is, it is the probability that the transactions contain $\{P \cap Q \cap Z\}$.

Support (
$$\{P, Q\} \Rightarrow \{Z\}$$
) = Probability ($P \cap Q \cap Z$)

Confidence (\{P,Q\} \Rightarrow \{Z\}) is the % of "baskets" in which the occurrence of $\{P,Q\}$ correctly predicts the occurrence of $\{Z\}$, that is, it is the **conditional probability** that a transaction containing $\{P \cap Q\}$ also contains Z.

Conf (
$$\{P,Q\} \Rightarrow \{Z\}$$
) = Prob($Z|(P,Q)$).

c)

By the rule $\{D\} \Rightarrow \{B, C\}$

Confidence ({ D }
$$\Rightarrow$$
 { B , C}) = Sup (D, B, C)
Sup(D)

Therefore, the Confidence of the rules:

Confidence ({ B, D}
$$\Rightarrow$$
 { C}) = Sup (B, D, C)

Sup(B,D)

Confidence ({ C, D}
$$\Rightarrow$$
 { B}) = Sup (C,D,B)

Sup(C,D)

The number of records in the database with B and D:

$$\{\text{records with B}\} \cap \{\text{ records with D}\} \leq \{\text{ records with D}\}$$

the same applies to the number of records with C and D, so we can conclude that

Confidence ({ B, D}
$$\Rightarrow$$
 { C}) \geq Confidence ({ D} \Rightarrow { B, C})

Confidence (
$$\{C, D\} \Rightarrow \{B\}$$
) \geq Confidence ($\{D\} \Rightarrow \{B, C\}$)

d) Candidate sets of size 3

 ${A,C}, {B,C}, {B,D}, {C,D}$

 $\{A\}, \{B\}, \{C\}, \{D\}$

	Support
{A, B, C }	1/5
{A, B, D }	1/5
{ A, C, D}	1/5
{ B, C, D}	2/5

e)

Sets of size 1

Item_set	Support
{ A }	3/5 (0,6)
{ B }	2/5 (0,4) eliminado
{ C }	3/5 (0,6)
{ D }	3/5 (0,6)

Sets of size 2

ltem_set	Support
{ A, C }	2/5 (0,4) eliminado
{ A, D }	1/5 (0,2) eliminado
{ C, D }	2/5 (0,4) eliminado

R: No Frequent sets are found.

f)

 $Conf_{min} = 0,4$

Rules	Support	Confidence
{A}⇒{B}	1/5 = 0,2	1/3 = 0,33
$\{B\} \Longrightarrow \{A\}$	1/5 = 0,2	1/2 = 0,5
$\{B\} \Longrightarrow \{C\}$	2/5 = 0,4	2/2 = 1
$\{C\} \! \Rightarrow \! \{B\}$	2/5 = 0,4	2/3 = 0,67

R: The rules { B } \Rightarrow { A }, { B } \Rightarrow { C } e { C } \Rightarrow { B } would be produced.

3.

a)

Cli	Х	У	S	n	W	t	r
Α	1	0	1	0	1	0	0
В	1	0	1	0	0	0	1
С	0	1	1	0	0	1	0
D	1	0	0	1	0	0	1

b) Minimum Support = 50%

Cli	Х	у	S	n	W	t	r
Α	1	0	1	0	1	0	0
В	1	0	1	0	0	0	1
С	0	1	1	0	0	1	0
D	1	0	0	1	0	0	1
Sup	3/4	1/4	3/4	1/4	1/4	1/4	2/4