COMP2322 Computer Networking Homework Four

Wang Ruijie 22103808D

March 30, 2024

Question 1 The associated range of destination host addresses and the number of addresses in the range is as follows:

prefix	range of addresses	number of addresses		
00	00000000 - 00111111	64		
010	01000000 - 01011111	32		
011	01100000 - 01111111	32		
10	10000000 - 10111111	64		
11	11000000 - 11111111	64		

Therefore, for each of the four interfaces, we have the following:

interface	range of addresses	number of addresses			
0	00000000 - 00111111	64			
1	01000000 - 01011111	32			
2	01100000 - 10111111	96			
3	11000000 - 11111111	64			

Question 2 Since there are 40 bytes of header in each datagram, the number of data bytes in each packet is 1000 - 40 = 960 bytes. Therefore, the number of datagrams required is $\left[\frac{5 \times 10^6}{960}\right] = 5029$.

Question 3 For each iteration, the distance from the nodes to the node a is shown below:

iteration	\mid node b	node c	\mid node d	node e	\mid node f	\mid node g	node h
1	1	2	∞	∞	∞	∞	∞
2	1	2	7	6	9	∞	∞
3	1	2	7	6	9	10	11
4	1	2	7	6	9	10	11

Shortest path from node a to all network nodes: b: ab, c: ac, d: acd, e: ace, f: abf, g: abfg, h: abfh.