रिप्टें _ HW3

1. $F(x,y,z) = (x^2+y^2, x^2-y^2)$, $R: 1 \le y \le 2-x^2$

"Green theorem" of 1 = 1, $\iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dxdy = \oint_{C} F_{1} dx + F_{2} dy = \oint_{C} F_{2} dx + F_{2} dy = \oint_{C} F_{2} dx + F_{2} dy = \oint_{C} F_{3} dx + F_{2} dy = \oint_{C} F_{4} dx + F_{2} dx +$

2. $\iint_{S} (\alpha + y + z) dA$, S: z = x + 2y, $0 \le x < \pi$, $0 \le y \le x$. S: r(u,v) = [u,v,u+2v], $0 \le u \le \pi$, $0 \le y \le u$ $r_u = (1,0,1)$, $r_v(0,1,2)$ olog = 0 $N = \begin{bmatrix} 1 & j & k \\ 0 & 1 & k \end{bmatrix} = (-1,-2,1)$, $|N| = \sqrt{1+4+1} = \sqrt{6}$ $|N| = \sqrt{1+4+1} = \sqrt{6}$ $|N| = \sqrt{1$ 3. $F(x,y,z) = (xy^2, x^2y, 6\sin x)$, $S: z = \sqrt{x^2 + y^2}$, z = 2, z = 4

"divergence theorem" of etall. Is F.ndA = MT div(F) dV olt.

x=rooso, y=rsino

div(F)= y2+x2+0 = y2+x2

So FindA = MT (y+xt)dV

= 12101 (r251020+ r20020) rdrdodz

= salos rododz

= 1210 [1+4] 2 dodz

 $= \int_{2}^{4} \int_{0}^{2\pi} \frac{1}{4} z^{4} d\theta dz = \int_{2}^{4} \left[\frac{1}{4} z^{4} \theta \right]_{0}^{2\pi} dz$

 $= \int_{\Omega}^{4} \frac{\pi}{2} z^{4} dz = \left[\frac{\pi}{10} z^{5} \right]_{2}^{4}$

 $= \frac{\pi}{10} (45 - 25) = \frac{\pi}{10} \times 992 = \frac{992}{10} \pi$