Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Cancel claims 1, 5, 6 and 7.

Amend claims 2, 3, 4 and 8-11 by replacement as follows:

2. (amended) A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula I

wherein

M₁ is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

 Y_1 is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$,

 Y_2 is $-SR_1$,

 R_3 is

 R_{δ} and R_{τ} are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, amino- C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

x may be a rational number from 0 to 8

 y_1 and y_2 may be each independently of the other a rational number from 0 to 6

z may be a number from 1 to 4, wherein $(x + y_1 + y_2 + z)$ is ≤ 16 ,

and wherein R, and R, may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by $-O_-$, $-S_-$, $-NH_-$ or $-NR_{10}$ -, wherein R_{10} may be C_1 - C_6 alkyl,

 C_5 - C_{20} cycloalkyl, C_2 - C_{20} alkenyl, C_5 - C_{12} cycloalkenyl, C_2 - C_{20} alkynyl, C_6 - C_{18} aryl or C_7 - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of CH_2 -, -C(=O)-, $-CH(C_1$ - C_4 alkyl)-, $-C(C_1$ - C_4 alkyl)₂-, -C- C_4 - C_4 - C_4 - C_5 - C_5 - C_5 - C_5 - C_6 -

Cont

3. (amended) A A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O \qquad N \qquad N \qquad CH_{2}OC(=O)$$

$$N \qquad N \qquad N \qquad OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8

4. (amended) A A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_2CH)_2C(H)O \\ N \\ N \\ N \\ N \\ OCH(CHMe_2)_2$$

$$(Me_2CH)_2C(H)O \\ M \\ OCH(CHMe_2)_2$$

Cont

where x = 0 to 0.5

8. (amended) A process for the manufacture of optical recording medium having at least one recording layer comprising the steps of

a) incorporating a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH- into said recording layer.

A

9. (amended) An optical recording medium, which comprises a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of $-CH_2-$, -C(=O)-, $-CH(C_1-C_4alkyl)-$, $-C(C_1-C_4alkyl)_2-$, -NH-, -S-, -O- and -CH=CH-.

10. (amended) An optical recording medium, which consists essentially of a transparent substrate, a recording layer on that substrate, a reflection layer on the recording layer and, if desired, a final protective layer, the recording layer comprising a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of $-CH_2-$, -C(=O)-, $-CH(C_1-C_4$ alkyl)-, $-C(C_1-C_4$ alkyl)₂-, -NH-, -S-, -O- and -CH=CH-.

A2 cont

11. (amended) A process according to claim 8 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

Insert new claims 12-23 as follows:

12. (new) A process for the manufacture of optical recording medium having at least one recording layer comprising the steps of

a) incorporating mixture, which comprises

(a) 60 to 95 mol % of a compound II

containing one radical R_3 (z = 1),

(b) $5/to 20 \text{ mol } \% \text{ of a compound II containing two radicals } R_3 (z = 2),$

and

 $\sqrt{0}$ to 25 mol % of a compound IV

wherein $-OR_{11}$, $R_3 = R_{14}$, X and M_3 each have the same meaning in formulae II and IV and are as defined in claim 2, the mol-% amounts making up 100% into said recording layer.

- 13. (new) A process according to claim 2 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.
- 14. (new) A process for the manufacture of optical recording medium having at least one recording layer comprising the steps of
 - a) incorporating a mixture, which comprises
- (a) 60 to 95 mol % of a compound II

containing one radical R_3 (z = 1),

wherein R₁₁ is C₁-C₁₂alkyl and M₃ is palladium or copper, and z is 1,

(b) 5 to 20 mol % of a compound II containing two R_3 (z = 2), and

(c) 0 to 25 mol % of a compound IV

wherein R_{14} may be -CHO, -CH₂OH, -COOH, -CH₂OC(O)-C₁-C₄alkyl or an acetal, and z may be 1 or 2,

wherein $-OR_{11}$, $R_3 = R_{14}$, X and M_3 each have the same meanings in formulae II and IV and are as defined for claim 2, the mol-% amounts making up 100% into said recording layer.

15. (new) A process according to claim 14 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

Cont

16. (new) An optical recording medium according to claim 9 wherein the metallocenylphthalocyanine compound is represented by formula I

wherein
$$\begin{bmatrix} X \\ X \\ X \end{bmatrix}_{x}$$

$$\begin{bmatrix} X \\ X \end{bmatrix}_{x}$$

$$\begin{bmatrix} X \\ Y \end{bmatrix}_{y_{1}}$$

$$\begin{bmatrix} Y_{2} \\ Y_{2} \end{bmatrix}_{y_{2}}$$

is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two Μ, hydrogen atoms,

- Χ is halogen
- is $-OR_{1}$, $-OOC-R_{2}$, $-NHR_{1}$, $-N(R_{1})R_{2}$, Υ,
- Υ, is -SR₁,
- R, is

 R_a and R_b are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, amino- C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

may be a rational number from 0 to/8 Х y_1 and y_2 may be each independently of the other a rational number from 0 to 6

may be a number from 1 to 4,

wherein $(x + y_1 + y_2 + z)/is \le 16$,

and wherein R_1 and R_2 may be each independently of the other

C₁-C₂₀alkyl whigh is unsubstituted or substituted by halogen, hydroxy, C₁-C₂₀alkoxy, C₁-C₂₀alkylamino or C_2 - C_{20} dialky lamino and which may be interrupted by -O-, -S-, -NH- or $-NR_{10}-$, wherein R_{10} may be C₁-C₆alkyl,

 C_s - C_{20} cycloalkyl, C_z - C_{20} alkenyl, C_s - C_{12} cycloalkenyl, C_z - C_{20} alkynyl, C_s - C_{18} aryl or C_r - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two/members selected from the group consisting of $-CH_2$ -, -C(=O)-, $-CH(C_1-C_4alkyl)$ -, $-C(C_1-C_4alkyl)_2$ -, -C(=O)-, $-CH(C_1-C_4alkyl)$ -, -C(=O)-, -CH(=O)-, NH-, -S-, -O- and -CH=CH-.

17. (new) An optical recording medium according to claim 9 wherein the metallocenyl-phthalocyanine compound is represented by formula

where x = 2.6/to 3.0, preferably 2.7 to 2.9, more preferably 2.8

18. (new) An optical recording medium adording to claim 17 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

A3 cont.

19. (new) An optical recording medium according to claim 9 wherein the metallocenylphthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O \qquad N \qquad CH_{2}OC(=O)$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O \qquad Where x = 0 to 0.5$$

20. (new) An optical recording medium according to claim 10 wherein the metallocenyl-phthalocyanine compound is represented by formula I

wherein

M₁ is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

$$Y_1$$
 is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$

$$Y_2$$
 is $-SR_1$,

$$R_3$$
 is

 $\begin{array}{c|c} & & & \\ & & & \\$

 R_a and R_7 are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

x may be a rational number from 0 to 8

 y_1 and y_2 may be each independently of the other a rational number from 0 to 6

z may be a number from 1 to 4,

wherein
$$(x + y_1 + y_2 + z)$$
 is ≤ 16 ,

and wherein R₁ and R₂ may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by -O-, -S-, -NH- or $-NR_{10}$ -, wherein R_{10} may be C_1 - C_6 alkyl,

 C_s - C_{20} cycloalkyl, C_z - C_{20} alkenyl, C_s - C_{12} cycloalkenyl, C_z - C_{20} alkynyl, C_s - C_{18} aryl or C_τ - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of - CH_z -, -C(=O)-, - $CH(C_1$ - C_4 alkyl)-, - $C(C_1$ - C_4 alkyl)₂-, -C(=O)-, - $CH(C_1$ - C_4 alkyl)-, - $C(C_1$ - C_4

21. (new) An optical recording medium according to claim 10 wherein the metallocenylphthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O \qquad N \qquad N \qquad CH_{2}OC(=O)$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8

22. (new) An optical recording medium according to claim 10 wherein the metallocenyl-phthalocyanine compound is represented by formula

A3nt

 $(Me_{2}CH)_{2}C(H)O \qquad N \qquad CH_{2}OC(=O)$ $(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$ $(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$ $(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$ $(Me_{2}CH)_{2}C(H)O \qquad OCH(CHMe_{2})_{2}$

23. (new) An optical recording medium according to claim 22 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.