WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C07D 243/04, A61K 31 /55, C07/00 401/12, 471/04, 487/04, 267/06, 281/52, 405/06, 409/06, 401/06

A1

(11) International Publication Number:

WO 00/00479

(43) International Publication Date:

6 January 2000 (06.01.00)

(21) International Application Number:

PCT/US99/13872

(22) International Filing Date:

18 June 1999 (18.06.99)

(30) Priority Data:

60/019,252

US 30 June 1998 (30.06.98)

Published

(71) Applicant: DU PONT PHARMACEUTICALS COMPANY [US/US]; 974 Centre Road, WR-1ST18, Wilmington, DE 19807 (US).

(72) Inventors: RODGERS, James, D.; 2 Hillside Lane, Landenberg, PA 19350 (US). COCUZZA, Anthony, J.; 306 Lighthouse Road, Wilmington, DE 19809 (US).

(74) Agent: VANCE, David, H.; Du Pont Pharmaceuticals Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

(81) Designated States: AU, BR, CA, CZ, EE, HU, IL, IN, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, UA, VN, ZA,

GB, GR, IE, IT, LU, MC, NL, PT, SE).

(54) Title: 1,3-BENZODIAZEPIN-2-ONES AND 1,3-BENZOXAZEPIN-2-ONES USEFUL AS HIV REVERSE TRANSCRIPTASE INHIBITORS

(I)

(57) Abstract

The present invention relates to 1,3-benzodiazepin-2-ones and 1,3-benzoxazepin-2-ones of formula (I) or stereoisomeric forms, stereoisomeric mixtures, or pharmaceutically acceptable salt forms thereof, which are useful as inhibitors of HIV reverse transcriptase, and to pharmaceutical compositions and diagnostic kits comprising the same, and methods of using the same for treating viral infection or as an assay standard or reagent.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Butgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS.	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

5

15

30

35

40

TITLE

1,3-BENZODIAZEPIN-2-ONES AND 1,3-BENZOXAZEPIN-2-ONES USEFUL
AS HIV REVERSE TRANSCRIPTASE INHIBITORS

10 FIELD OF THE INVENTION

This invention relates generally to 1,3-benzodiazepin-2-ones and 1,3-benzoxazepin-2-ones which are useful as inhibitors of HIV reverse transcriptase, pharmaceutical compositions and diagnostic kits comprising the same, methods of using the same for treating viral infection or as assay standards or reagents, and intermediates and processes for making the same.

BACKGROUND OF THE INVENTION

Two distinct retroviruses, human immunodeficiency virus

(HIV) type-1 (HIV-1) or type-2 (HIV-2), have been

etiologically linked to the immunosuppressive disease,
acquired immunodeficiency syndrome (AIDS). HIV seropositive
individuals are initially asymptomatic but typically develop

25 AIDS related complex (ARC) followed by AIDS. Affected
individuals exhibit severe immunosuppression which
predisposes them to debilitating and ultimately fatal
opportunistic infections.

The disease AIDS is the end result of an HIV-1 or HIV-2 virus following its own complex life cycle. The virion life cycle begins with the virion attaching itself to the host human T-4 lymphocyte immune cell through the bonding of a glycoprotein on the surface of the virion's protective coat with the CD4 glycoprotein on the lymphocyte cell. Once attached, the virion sheds its glycoprotein coat, penetrates into the membrane of the host cell, and uncoats its RNA. The virion enzyme, reverse transcriptase, directs the process of transcribing the RNA into single-stranded DNA. The viral RNA is degraded and a second DNA strand is created. The now double-stranded DNA is integrated into the

5 human cell's genes and those genes are used for virus reproduction.

At this point, RNA polymerase transcribes the integrated DNA into viral RNA. The viral RNA is translated into the precursor gag-pol fusion polyprotein. The polyprotein is then cleaved by the HIV protease enzyme to yield the mature viral proteins. Thus, HIV protease is responsible for regulating a cascade of cleavage events that lead to the virus particle's maturing into a virus that is capable of full infectivity.

15 The typical human immune system response, killing the invading virion, is taxed because the virus infects and kills the immune system's T cells. In addition, viral reverse transcriptase, the enzyme used in making a new virion particle, is not very specific, and causes 20 transcription mistakes that result in continually changed glycoproteins on the surface of the viral protective coat. This lack of specificity decreases the immune system's effectiveness because antibodies specifically produced against one glycoprotein may be useless against another, 25 hence reducing the number of antibodies available to fight the virus. The virus continues to reproduce while the immune response system continues to weaken. Eventually, the HIV largely holds free reign over the body's immune system, allowing opportunistic infections to set in and without the 30 administration of antiviral agents, immunomodulators, or both, death may result.

There are at least three critical points in the virus's life cycle which have been identified as possible targets for antiviral drugs: (1) the initial attachment of the virion to the T-4 lymphocyte or macrophage site, (2) the transcription of viral RNA to viral DNA (reverse transcriptase, RT), and (3) the processing of gag-pol protein by HIV protease.

Inhibition of the virus at the second critical point, 40 the viral RNA to viral DNA transcription process, has

5 provided a number of the current therapies used in treading AIDS. This transcription must occur for the virion to reproduce because the virion's genes are encoded in RNA and the host cell reads only DNA. By introducing drugs that block the reverse transcriptase from completing the formation of viral DNA, HIV-1 replication can be stopped.

A number of compounds that interfere with viral replication have been developed to treat AIDS. For example, nucleoside analogs, such as 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxycytidine (ddC), 2',3'-dideoxythymidinene (d4T), 2',3'-dideoxyinosine (ddI), and 2',3'-dideoxy-3'-thia-cytidine (3TC) have been shown to be relatively effective in halting HIV replication at the reverse transcriptase (RT) stage.

An active area of research is in the discovery of non-nucleoside HIV reverse transcriptase inhibitors. As an example, it has been found that certain benzoxazinones and quinazolinones are active in the inhibition of HIV reverse transcriptase, the prevention or treatment of infection by HIV and the treatment of AIDS.

U.S. 5,519,021 describe reverse transcriptase inhibitors which are benzoxazinones of the formula:

$$\begin{array}{c|c} X^1 & R \\ \hline X & \\ N & \\ M & \\ \end{array}$$

wherein X is a halogen, Z may be O.

15

20

25

EP 0,530,994 and WO 93/04047 describe HIV reverse 30 transcriptase inhibitors which are quinazolinones of the formula A:

$$(G)_n$$
 R^1
 R^2
 R^3
 R^3

WO 00/00479 PCT/US99/<u>1</u>3872

A

5

10

15

25

wherein G is a variety of groups, R^3 and R^4 may be H, Z may be O, R^2 may be unsubstituted alkyl, unsubstituted alkenyl, unsubstituted alkynyl, unsubstituted cycloalkyl, unsubstituted heterocycle, and optionally substituted aryl, and R^1 may be a variety of groups including substituted alkyl.

WO 95/12583 also describes HIV reverse transcriptase inhibitors of formula A. In this publication, G is a variety of groups, R^3 and R^4 may be H, Z may be O, R^2 is substituted alkenyl or substituted alkynyl, and R^1 is cycloalkyl, alkynyl, alkenyl, or cyano. WO 95/13273 illustrates the asymmetric synthesis of one of the compounds of WO 95/12583, (S)-(-)-6-chloro-4-cyclopropyl-3,4-dihydro-4((2-pyridy)ethynyl)-2(1H)-quinazolinone.

Synthetic procedures for making quinazolinones like those described above are detailed in the following references: Houpis et al, Tetr. Lett. 1994, 35(37), 6811-6814; Tucker et al, J. Med. Chem. 1994, 37, 2437-2444; and, Huffman et al, J. Org. Chem. 1995, 60, 1590-1594.

DE 4,320,347 illustrates quinazolinones of the formula:

$$R^{1} \xrightarrow{\qquad \qquad \qquad N \qquad \qquad N$$

wherein R is a phenyl, carbocyclic ring, or a heterocyclic ring. Compounds of this sort are not considered to be part of the present invention.

30 Even with the current success of reverse transcriptase inhibitors, it has been found that HIV patients can become resistant to a single inhibitor. Thus, it is desirable to develop additional inhibitors to further combat HIV infection.

5

10

15

20

25

30

35

WO 00/00479 PCT/US99/13872

SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to provide novel reverse transcriptase inhibitors.

It is another object of the present invention to provide a novel method of treating HIV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt form thereof.

It is another object of the present invention to provide a novel method of treating HIV infection which comprises administering to a host in need thereof a therapeutically effective combination of (a) one of the compounds of the present invention and (b) one or more compounds selected form the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors.

It is another object of the present invention to provide pharmaceutical compositions with reverse transcriptase inhibiting activity comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt form thereof.

It is another object of the present invention to provide a method of inhibiting HIV present in a body fluid sample which comprises treating the body fluid sample with an effective amount of a compound of the present invention.

It is another object of the present invention to provide a kit or container containing at least one of the compounds of the present invention in an amount effective for use as a standard or reagent in a test or assay for determining the ability of a potential pharmaceutical to inhibit HIV reverse transcriptase, HIV growth, or both.

It is another object of the present invention to provide novel compounds for use in therapy.

WO 00/00479 PCT/US99/<u>1</u>3872

It is another object of the present invention to provide the use of novel compounds for the manufacture of a medicament for the treatment of HIV.

These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that compounds of formula (I):

wherein R^1 , R^2 , R^3 , X, and Y are defined below,

15 stereoisomeric forms, mixtures of stereoisomeric forms, or pharmaceutically acceptable salt forms thereof, are effective reverse transcriptase inhibitors.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

20 [1] Thus, in an embodiment, the present invention provides a novel compound of formula I:

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

A is O or S;

5

30 B is selected from O, S, and NR⁸;

W is N or CR3;

X is N or CR3a;

WO 00/00479 PCT/US99/<u>1</u>3872

5

```
Y is N or CR3b;
```

Z is N or CR^{3c} ;

10 provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

 R^1 is selected from the group C_{1-3} alkyl substituted with 0-7 halogen and cyclopropyl;

15

20

 R^{2a} is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

-NHCHR^{2a}C=R^{2c}, and -NHCHR^{2a}C=C-R^{2b};

R^{2b} is H or R^{2c};

R^{2c} is selected from the group C₁₋₆ alkyl substituted with

0-2 R⁴, C₂₋₅ alkenyl substituted with 0-2 R⁴, C₂₋₅

alkynyl substituted with 0-1 R⁴, C₃₋₆ cycloalkyl

substituted with 0-2 R^{3d}, phenyl substituted with 0-2

R^{3d}, and 3-6 membered heterocyclic group containing 1-3

heteroatoms selected from the group O, N, and S,

substituted with 0-2 R^{3d};

5 alternatively, the group -NR^{2a}R^{2c} represents a 4-7 membered cyclic amine, wherein 0-1 carbon atoms are replaced by 0 or NR⁵;

- R³ is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, -SO₂NR⁵R^{5a}, and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;
- 15 R^{3a} is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, $-NR^5R^{5a}$, $-NO_2$, -CN, -C(O) R^6 , -NHC(O) R^7 , -NHC(O) NR^5R^{5a} , -NHSO₂ R^{10} , -SO₂ NR^5R^{5a} , and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;

alternatively, R^3 and R^{3a} together form $-OCH_2O-$;

20

 R^{3b} is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};

alternatively, R3a and R3b together form -OCH2O-;

R^{3c} is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} 30 alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};

alternatively, R3b and R3c together form -OCH2O-;

35 R^{3d} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I,

5 $-NR^5R^{5a}$, $-NO_2$, -CN, $-C(O)R^6$, $-NHC(O)R^7$, $-NHC(O)NR^5R^{5a}$, $-NHSO_2R^{10}$, and $-SO_2NR^5R^{5a}$;

- R^{3e} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};
- R^{3f} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};
- R^{3g} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, -SO₂NR⁵R^{5a}, C_{3-10} carbocycle substituted with 0-3 R^{3f} and a 5-10 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-3 R^{3f}; and,
- R^4 is selected from the group F, Cl, Br, I, C_{1-6} alkyl substituted with 0-2 R^{3e} , C_{3-10} carbocycle substituted with 0-2 R^{3e} , phenyl substituted with 0-5 R^{3e} , and a 5-10 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-2 R^{3e} ;
 - R^5 and R^{5a} are independently selected from the group H and C_{1-4} alkyl;

5 alternatively, R⁵ and R^{5a}, together with the nitrogen to which they are attached, combine to form a 5-6 membered ring containing 0-1 O or N atoms;

- R^6 is selected from the group H, OH, C_{1-4} alkyl, C_{1-4} alkoxy, and NR^5R^{5a} ;
 - R^7 is selected from the group C_{1-3} alkyl and C_{1-3} alkoxy;
- R⁸ is selected from the group H, OR⁹, SR⁹, NR⁵R⁹, C₁₋₆ alkyl substituted with 0-3 R^{3g}, C₂₋₆ alkenyl substituted with 0-3 R^{3g}, C₃₋₅ cycloalkyl substituted with 0-2 R^{3f}, phenyl substituted with 0-5 R^{3f}, and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-2 R^{3f};
 - R^9 is selected from the group C_{3-10} carbocycle substituted with 0-5 R^{3f} and a 5-10 membered heterocyclic group containing 1-3 heteroatoms selected from the group 0, N, and S, substituted with 0-2 R^{3f} ; and,
 - R^{10} is selected from the group C_{1-4} alkyl and phenyl.
- 30 [2] In a preferred embodiment, the present invention provides a novel compound of formula I, wherein:
 - B is NR⁸;

25

35 R^1 is selected from the group C_{1-3} alkyl substituted with 1-7 halogen and cyclopropyl;

10

 R^{2a} is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

 R^{2b} is H or R^{2c} ;

15

20

- R^{2c} is selected from the group C_{1-5} alkyl substituted with 0-2 R^4 , C_{2-5} alkenyl substituted with 0-2 R^4 , C_{2-5} alkynyl substituted with 0-1 R^4 , C_{3-6} cycloalkyl substituted with 0-2 R^{3d} , and phenyl substituted with 0-2 R^{3d} ;
- R^3 , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, OH, C_{1-4} alkoxy, F, Cl, Br, I, NR^5R^{5a} , NO_2 , -CN, $C(O)R^6$, $NHC(O)R^7$, $NHC(O)NR^5R^{5a}$, and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;
- R^{3a} , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, OH, C_{1-4} alkoxy, F, Cl, Br, I, NR^5R^{5a} , NO_2 , -CN, $C(O)R^6$, $NHC(O)R^7$, $NHC(O)NR^5R^{5a}$, and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;

alternatively, R^3 and R^{3a} together form $-OCH_2O-;$

5 R^{3b} , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, OH, C_{1-4} alkoxy, F, Cl, Br, I, NR^5R^{5a} , NO_2 , -CN, $C(O)R^6$, $NHC(O)R^7$, and $NHC(O)NR^5R^{5a}$;

alternatively, R^{3a} and R^{3b} together form -OCH₂O-;

10

15

- R^4 is selected from the group Cl, F, C_{1-4} alkyl substituted with 0-2 R^{3e} , C_{3-5} carbocycle substituted with 0-2 R^{3e} , phenyl substituted with 0-5 R^{3e} , and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-2 R^{3e} ;
- \mbox{R}^{5} and \mbox{R}^{5a} are independently selected from the group H, \mbox{CH}_{3} and $\mbox{C}_{2}\mbox{H}_{5}\,;$
- 20 R^6 is selected from the group H, OH, CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , and NR^5R^{5a} ;
 - R^7 is selected from the group CH_3 , C_2H_5 , $CH(CH_3)_2$, OCH_3 , OC_2H_5 , and $OCH(CH_3)_2$; and,

- ${\rm R}^{8}$ is selected from the group H, cyclopropyl, CH3, C2H5, and CH(CH3)2.
- 30 [3] In a more preferred embodiment, the present invention provides a novel compound of formula I, wherein:
 - ${\tt R}^1$ is selected from the group CF3, C2F5, and cyclopropyl;
- 35 R^2 is selected from the group $-R^{2c}$, $-OR^{2c}$, $-OCHR^{2a}R^{2b}$, $-OCH_2CHR^{2a}R^{2b}$, $-OCHR^{2a}C=C-R^{2b}$, $-OCHR^{2a}C=R^{2c}$,

```
5 -OCHR^{2a}C = C - R^{2b}, -SR^{2c}, -SCHR^{2a}R^{2b}, -SCH_2CHR^{2a}R^{2b}, -SCHR^{2a}C = C - R^{2b}, -SCHR^{2a}C = R^{2c}, and -SCHR^{2a}C = C - R^{2b};
```

 R^{2a} is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

10

15

R^{2b} is H or R^{2c};

- R^{2c} is selected from the group C_{1-3} alkyl substituted with 0-2 R^4 , C_{2-3} alkenyl substituted with 0-2 R^4 , C_{2-3} alkynyl substituted with 0-1 R^4 , and C_{3-6} cycloalkyl substituted with 0-2 R^{3d} ;
- R^3 , at each occurrence, is independently selected from the group H, C_{1-3} alkyl, OH, C_{1-3} alkoxy, F, Cl, Br, I, NR^5R^{5a} , NO_2 , -CN, $C(O)R^6$, $NHC(O)R^7$, and $NHC(O)NR^5R^{5a}$;

alternatively, R^3 and R^{3a} together form $-OCH_2O-$;

 R^{3b} is H;

25

35

 R^{3c} is H;

- R^{3e} , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, -NR⁵R^{5a}, -C(O)R⁶, and -SO₂NR⁵R^{5a};
 - R^4 is selected from the group Cl, F, C_{1-4} alkyl substituted with 0-1 R^{3e} , C_{3-5} carbocycle substituted with 0-2 R^{3e} , phenyl substituted with 0-2 R^{3e} , and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-1 R^{3e} ;

5 R^5 and R^{5a} are independently selected from the group H, CH_3 and C_2H_5 ;

 R^6 is selected from the group H, OH, CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , and NR^5R^{5a} ;

10

- \mbox{R}^{7} is selected from the group $\mbox{CH}_{3}\,,$ $\mbox{C}_{2}\mbox{H}_{5}\,,$ $\mbox{OCH}_{3}\,,$ and $\mbox{OC}_{2}\mbox{H}_{5}\,;$ and,
- \mbox{R}^{8} is selected from the group H, cyclopropyl, $\mbox{CH}_{3}\,,$ and $\mbox{C}_{2}\mbox{H}_{5}\,.$
 - [4] In an even more preferred embodiment, the present invention provides a novel compound of formula I, wherein:
- 20 R^1 is CF_3 ;
 - R^2 is selected from the group $-R^{2c}$, $-OR^{2c}$, $-OCH_2R^{2b}$, $-OCH_2CH_2R^{2b}, \ -OCH_2C=C-R^{2b}, \ -OCH_2C\equiv C-R^{2b}, \ -SR^{2c}, \ -SCH_2R^{2b},$ $-SCH_2CH_2R^{2b}, \ -SCH_2C=C-R^{2b}, \ and \ -SCH_2C\equiv C-R^{2b};$

25

- R^{2b} is H or R^{2c} ;
- R^{2c} is selected from the group methyl substituted with 0-2
 R⁴, ethyl substituted with 0-2 R⁴, propyl substituted
 with 0-2 R⁴, ethenyl substituted with 0-2 R⁴, 1-propenyl substituted with 0-2 R⁴, ethynyl substituted with 0-2 R⁴, 1-propynyl substituted with 0-2 R⁴, ethynyl substituted with 0-2 R⁴, 1-propynyl substituted with 0-2 R⁴, and cyclopropyl substituted with 0-1 R^{3d};

5 R^3 , at each occurrence, is independently selected from the group C_{1-3} alkyl, OH, C_{1-3} alkoxy, F, Cl, NR^5R^{5a} , NO_2 , -CN, and $C(0)R^6$;

alternatively, R³ and R^{3a} together form -OCH₂O-;

10

- R^{3d} , at each occurrence, is independently selected from the group CH_3 , -OH, OCH_3 , OCF_3 , F, Cl, and $-NR^5R^{5a}$;
- R^{3e} , at each occurrence, is independently selected from the group CH_3 , -OH, OCH_3 , OCF_3 , F, Cl, and $-NR^5R^{5a}$;
- R⁴ is selected from the group Cl, F, CH₃, CH₂CH₃, cyclopropyl substituted with 0-1 R^{3e}, 1-methyl-cyclopropyl substituted with 0-1 R^{3e}, cyclobutyl substituted with 0-1 R^{3e}, phenyl substituted with 0-2 R^{3e}, and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-1 R^{3e}, wherein the heterocyclic group is selected from the group 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furanyl, 3-furanyl, 2-thienyl, 3-thienyl, 2-oxazolyl, 2-thiazolyl, 4-isoxazolyl, and 2-imidazolyl;
 - R^5 and R^{5a} are independently selected from the group H, CH_3 and C_2H_5 ;

- $\rm R^6$ is selected from the group H, OH, CH_3, C_2H_5, OCH_3, OC_2H_5, and NR^5R^5a;
- R^7 is selected from the group CH_3 , C_2H_5 , OCH_3 , and OC_2H_5 ; and,
 - R^8 is selected from the group H, cyclopropyl, and C_2H_5 .

[5] In a further preferred embodiment, wherein the compound is of formula Ia

Ia.

10

[6] In a further preferred embodiment, wherein the compound is of formula Ib:

Ib.

15

[7] In a further preferred embodiment, the compound of formula I is selected from the group:

- 7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5(trifluoromethyl)-1,3-benzodiazepin-2-thione;
 - 7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5

20

```
7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-methyl-5-
(trifluoromethyl)-1,3-benzodiazepin-2-one;
```

- 7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-10 (trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-cyclopropyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-(3,3-dichloro-2-propenyloxy)-1,5-dihydro-3methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-40 (trifluoromethyl)-1,3-benzodiazepin-2-one;

```
(S) -7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy) -1,5-
          dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one:
     7-Chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-
10
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-
15
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-
          (trifluoromethyl) -1, 3-benzodiazepin-2-one;
20
    7-Chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-
         dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5-dihydro-5-
25
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-(1-methylcyclopropyl)methyloxy-1,5-
         dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
30
    7-Chloro-3-cyclopropyl-5-(2-pyridyl)methyloxy-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-
          (trifluoromethyl) -1, 3-benzodiazepin-2-one;
35
    7-Chloro-3-cyclobutyl-5-cyclopropylmethyloxy-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5-
40
         (trifluoromethyl)-1,3-benzodiazepin-2-one;
```

PCT/US99/13872

WO 00/00479 5 (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-10 (trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 15 7-Chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 20 7-Chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-25 (trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 30 7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 35 7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

7-Chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

```
5
     7-Chloro-5-cyclobutylmethyloxy-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-
10
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(phenylmethyloxy)-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-
15
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
20
    7-Chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-
25
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(propylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-
         benzodiazepin-2-one; and,
30
    7-Chloro-5-(2-propenylthio)-1,5-dihydro-5-(trifluoromethyl)-
         1,3-benzodiazepin-2-one;
    or a pharmaceutically acceptable salt form thereof.
35
         In another further preferred embodiment, the compound
    of formula I is selected from the group:
```

(S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 5

20

- (S)-6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-10 (trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-thione;
- 15 (S)-7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3cyclopropyl-5-(trifluoromethyl)-1,3-benzodiazepin-2one;
 - (S)-7-Chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(3,3-dichloro-2-propenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

```
5 (S)-7-Chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-
(trifluoromethyl)-1,3-benzodiazepin-2-one;
```

- (S)-7-Chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 20 (S)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 35 (S)-7-Chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

40

10

5 (S)-7-Chloro-3-cyclopropyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2one;

- (S)-7-Chloro-3-cyclopropyl-5-(2-pyridyl)methyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 15 (S)-7-Chloro-3-cyclobutyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

20

- 30 (S)-7-Chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

PCT/US99/13872

5

20

- (S)-7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 15 (S)-7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(phenylmethyloxy)-1,5-dihydro-5(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 30 (S)-7-Chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

PCT/US99/13872

5

20

25

35

(S)-7-Chloro-5-(propylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; and,

or a pharmaceutically acceptable salt form thereof.

- 15 In another further preferred embodiment, the compound of formula I is selected from the group:
 - (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

(R)-6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (R)-7-Chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-thione;
- 30 (R)-7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5 (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-cyclopropyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (R) -7-Chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-510 (trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 15 (R)-7-Chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

20

- (R)-7-Chloro-5-(3,3-dichloro-2-propenyloxy)-1,5-dihydro-3methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R) -7-Chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 30 (R)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5

```
(R) -7-Chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-
(trifluoromethyl)-1,3-benzodiazepin-2-one;
```

- (R)-7-Chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-10 (trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 15 (R)-7-Chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

20

- (R)-7-Chloro-3-cyclopropyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2one;
- 25 (R)-7-Chloro-3-cyclopropyl-5-(2-pyridyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (R)-7-Chloro-3-cyclobutyl-5-cyclopropylmethyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R) -7-Chloro-5-(cyclopropylmethyloxy) -1,5-dihydro-3-ethyl-5-(trifluoromethyl) -1,3-benzodiazepin-2-one;

5 (R)-7-Chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

(R)-7-Chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

10

- (R)-7-Chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R) -7-Chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 20 (R)-7-Chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

25

- (R)-7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-30 (trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 35 (R)-7-Chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R) -7-Chloro-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5 (R)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

(R)-7-Chloro-5-(phenylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

10

- (R) -7-Chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 20 (R)-7-Chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R) -7-Chloro-5-(propylthio) -1,5-dihydro-5-(trifluoromethyl) 1,3-benzodiazepin-2-one; and,

25

- (R)-7-Chloro-5-(2-propenylthio)-1,5-dihydro-5(trifluoromethyl)-1,3-benzodiazepin-2-one;
- or a pharmaceutically acceptable salt form thereof.

30

35

In another embodiment, the present invention provides a novel pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula I or pharmaceutically acceptable salt form thereof.

In another embodiment, the present invention provides a 40 novel method of treating HIV infection which comprises

administering to a host in need of such treatment a therapeutically effective amount of a compound of formula I or pharmaceutically acceptable salt form thereof.

- In another embodiment, the present invention provides a novel method of treating HIV infection which comprises administering, in combination, to a host in need thereof a therapeutically effective amount of:
 - (a) a compound of formula I; and,
- 15 (b) at least one compound selected from the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors.
- In another preferred embodiment, the reverse transcriptase inhibitor is selected from the group AZT, ddC, ddI, d4T, 3TC, DPC082, DPC083, DPC961, DPC963, AG1549 delavirdine, efavirenz, nevirapine, Ro 18,893, trovirdine, MKC-442, HBY 097, ACT, UC-781, UC-782, RD4-2025, and MEN 10979, and the protease inhibitor is selected from the group saquinavir, ritonavir, indinavir, amprenavir, nelfinavir, palinavir, BMS-232623, GS3333, KNI-413, KNI-272, LG-71350, CGP-61755, PD 173606, PD 177298, PD 178390, PD 178392, U-140690, and ABT-378.

30

35

In an even more preferred embodiment, the reverse transcriptase inhibitor is selected from the group AZT, efavirenz, and 3TC and the protease inhibitor is selected from the group saquinavir, ritonavir, nelfinavir, and indinavir.

In a still further preferred ebodiment, the reverse transcriptase inhibitor is AZT.

In another still further preferred embodiment, the protease inhibitor is indinavir.

10

5

In another embodiment, the present invention provides a pharmaceutical kit useful for the treatment of HIV infection, which comprises a therapeutically effective amount of:

- 15 (a) a compound of formula I or a pharmaceutically acceptable salt form thereof; and,
 - (b) at least one compound selected from the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors, in one or more sterile containers.

20

In another embodiment, the present invention provides novel compounds of formula I or pharmaceutically acceptable salt forms thereof for use in therapy.

25

30

In another embodiment, the present invention provides the use of novel compounds of formula I or pharmaceutically acceptable salt forms thereof for the manufacture of a medicament for the treatment of HIV.

DEFINITIONS

The compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. Geometric isomers of double bonds such as olefins and C=N double bonds can also be present in the

compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated. All processes used to prepare compounds of the present invention and intermediates made therein are considered to be part of the present invention.

The term "substituted," as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =0), then 2 hydrogens on the atom are replaced. Keto substituents are not present on aromatic moieties. When a ring system (e.g., carbocyclic or heterocyclic) is said to be substituted with a carbonyl group or a double bond, it is intended that the carbonyl group or double bond be part (i.e., within) of the ring.

The present invention is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include C-13 and C-14.

30

35

When any variable (e.g., R^6) occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-2 R^6 , then said group may optionally be substituted with up to two R^6 groups and R^6 at each occurrence is selected independently from the definition of

5 R⁶. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

10

15

As used herein, "alkyl" or "alkylene" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon 20 atoms. C_{1-6} alkyl (or alkylene), is intended to include C_1 , C_2 , C_3 , C_4 , C_5 , and C_6 alkyl groups. Examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, ipropyl, n-butyl, s-butyl, t-butyl, n-pentyl, and s-pentyl. "Haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having 25 the specified number of carbon atoms, substituted with 1 or more halogen (for example $-C_vF_w$ where v = 1 to 3 and w = 1 to (2v+1)). Examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl. "Alkoxy" represents an alkyl group as 30 defined above with the indicated number of carbon atoms attached through an oxygen bridge. C_{1-10} alkoxy, is intended to include C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_9 , and C_{10} alkoxy Examples of alkoxy include, but are not limited to, 35 methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy. "Cycloalkyl" is intended to include saturated ring groups, such as cyclopropyl, cyclobutyl, or cyclopentyl. C3-10 cycloalkyl, is intended to include C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_9 , and C_{10}

5 cycloalkyl groups. "Alkenyl" or "alkenylene" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl and propenyl. C₂₋₆ alkenyl (or alkenylene),

is intended to include C₂, C₃, C₄, C₅, and C₆ alkenyl groups.

"Alkynyl" or "alkynylene" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl and propynyl. C₂₋₆ alkynyl (or alkynylene), is intended to include C₂, C₃, C₄, C₅, and C₆ alkynyl groups.

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo; and "counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, and sulfate.

20

25

30

As used herein, "carbocycle" or "carbocyclic group" is intended to mean any stable 3, 4, 5, 6, or 7-membered monocyclic or bicyclic or 7, 8, 9, or 10-membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane, [2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, and tetrahydronaphthyl.

As used herein, the term "heterocycle" or "heterocyclic group" is intended to mean a stable 5, 6, or 7-membered monocyclic or bicyclic or 7, 8, 9, or 10-membered bicyclic heterocyclic ring which is saturated, partially unsaturated or unsaturated (aromatic), and which consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, NH, O and S and including any bicyclic group in which any of the above-defined

5 heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be oxidized. heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting 10 compound is stable. A nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. 15 is preferred that the total number of S and O atoms in the heterocycle is not more than 1. As used herein, the term "aromatic heterocyclic group" or "heteroaryl" is intended to

mean a stable 5, 6, or 7-membered monocyclic or bicyclic or 7, 8, 9, or 10-membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and 1, 2, 3, or 4 heterotams independently selected from the group consisting of N, NH, 0 and S. It is to be noted that total number of S and O atoms in the aromatic heterocycle is not more than 1.

Examples of heterocycles include, but are not limited to, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl,

- ohromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl,
- isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, methylenedioxyphenyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolidinyl,
- 40 pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl,

phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl,

- pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-
- thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienoxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, and xanthenyl. Preferred heterocycles include,
- but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrrolidinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benztriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, and isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

As used herein, "HIV reverse transcriptase inhibitor" is intended to refer to both nucleoside and non-nucleoside inhibitors of HIV reverse transcriptase (RT). Examples of nucleoside RT inhibitors include, but are not limited to,

- AZT, ddC, ddI, d4T, and 3TC. Also included is Glaxo's combination of AZT and 3TC. Examples of non-nucleoside RT inhibitors include, but are no limited to, DPC082 (DuPont, (+)-4-Cyclopropylethenyl-5,6-difluoro-4-trifluoromethyl-3,4-dihydro-2(1H)-quinazolinone), DPC083 (DuPont, (-)-6-chloro-
- 4-E-cyclopropylethenyl-4-trifluoromethyl-3,4-dihydro-2(1H)-quinazolinone), DPC961 (DuPont, (-)-6-chloro-4-cyclopropylethynyl-4-trifluoromethyl-3,4-dihydro-2(1H)-quinazolinone), DPC963 (DuPont, (+)-4-Cyclopropylethynyl-5,6-difluoro-4-trifluoromethyl-3,4-dihydro-2(1H)-
- 40 quinazolinone), AG1549 (Warner Lambert/Shionogi),

5 delavirdine (Pharmacia and Upjohn U90152S), efavirenz (DuPont), nevirapine (Boehringer Ingelheim), Ro 18,893 (Roche), trovirdine (Lilly), MKC-442 (Triangle), HBY 097 (Hoechst), ACT (Korean Research Institute), UC-781 (Rega Institute), UC-782 (Rega Institute), RD4-2025 (Tosoh Co. 10 Ltd.), and MEN 10979 (Menarini Farmaceutici).

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

15

As used herein, "pharmaceutically acceptable salts" 20 refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic groups such as amines; and alkali or organic 25 salts of acidic groups such as carboxylic acids. pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional 30 non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, and nitric; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, 35 maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, and isethionic.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which

5 contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; 10 generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

Since prodrugs are known to enhance numerous desirable qualities of pharmaceuticals (e.g., solubility, bioavailability, manufacturing, etc...) the compounds of the present invention may be delivered in prodrug form. Thus, 20 the present invention is intended to cover prodrugs of the presently claimed compounds, methods of delivering the same and compositions containing the same. "Prodrugs" are intended to include any covalently bonded carriers which release an active parent drug of the present invention in 25 vivo when such prodrug is administered to a mammalian subject. Prodrugs of the present invention are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs 30 include compounds of the present invention wherein a hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug of the present invention is administered to a mammalian subject, it cleaves to form a free hydroxyl, free amino, or free sulfhydryl group,

respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of the present invention.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive

isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

"Therapeutically effective amount" is intended to include an amount of a compound of the present invention or an amount of the combination of compounds claimed effective 10 to inhibit HIV infection or treat the symptoms of HIV infection in a host. The combination of compounds is preferably a synergistic combination. Synergy, as described for example by Chou and Talalay, Adv. Enzyme Regul. 22:27-55 15 (1984), occurs when the effect (in this case, inhibition of HIV) of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. In general, a synergistic effect is most clearly demonstrated at 20 suboptimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity, increased antiviral effect, or some other beneficial effect of the combination compared with the individual components.

25 SYNTHESIS

5

30

35

The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include but are not limited to those methods described below. Each of the references cited below are hereby incorporated herein by reference. In the Schemes which follow, R¹ is shown as a CF₃ group, but could be any one of the presently described R¹ groups.

5 SCHEME 1

Scheme 1 illustrates a method of making tetrahydroquinolinone intermediates. An appropriately substituted amino-ketone is acylated and the resulting amide cyclized in the presence of benzenesulfinate to give alcohol ${\bf 1c}$. Dehydration with base provides the α,β -unsaturated ketone ${\bf 1d}$ which can be modified via a lithium or grignard reagent to give ${\bf 2}$. Sulfone reduction can be achieved with Al/Hg or other known methods of reduction to leave intermediate ${\bf 3}$.

SCHEME 2

20

PCT/US99/13872

Scheme 2 depicts modification of intermediate 3 into a 1,3-benzodiazepin-2-one. Compound 3 is protected as amide 4 using Boc-anhydride and ring opened to hydroxamide 5. Lossen rearrangement and deprotection can then be 10 accomplished with tosyl chloride and based followed by trifluoracetic acid to give the desired 1,3-benzodiazepin-2one 6.

SCHEME 3

15

5

Scheme 3 illustrates a method of reducing acetylene 6 to cis-olefin 7 using NH2OSO3H and DIEA. Other methods known to reduce alkynes to alkenes could also be used. In Scheme 3 and the Schemes which follow, G can be R3, R4, R5, R6 or a combination of two or more of these groups.

SCHEME 4

25

20

$$G$$
 F_3C
 F_3

Thioureas of the present invention can be formed as shown in Scheme 4 from their corresponding ureas. Urea $\bf 6$ is initially converted into a halo-imine via a chlorinating agent such as POCL₃ which is then further transformed into thiourea $\bf 8$ with NH₂C(S)NH₂.

An alternative method of preparing compounds of the present invention is shown below in Scheme 5 and proceeds through a nitro-olefin intermediate.

15 SCHEME 5

5

10

Starting from appropriately substituted ketone 9,

20 nitromethane is added and alkoxide 10 is quenched with a

protecting group like TBS-Cl to provide silyl ether 11.

Nitro-olefin 12 can be formed by heating 11 in the presence

of a base (e.g., K₂CO₃). R² (e.g., butyl) can be attached

via grignard addition (e.g., BuMgCl), (R²)₃Al addition (e.g.,

5 (cyclopropylethyl)₃Al) or other known methods of addition to nitro-olefins. Modification to 14 can be achieved by reduction of the nitro group to an amino group, deprotection of the aniline amine and finally cyclization with a carbonyl reagent like CDI.

SCHEME 6

5

$$G \xrightarrow{\text{CF}_3} \xrightarrow{\text{CH}_2\text{N}_2} G \xrightarrow{\text{CH}_2\text{N}_2} G \xrightarrow{\text{NH}_2} G \xrightarrow{\text{$$

$$G \stackrel{F_3C}{\stackrel{}{\coprod} \stackrel{C1}{\stackrel{}{\bigvee}} \stackrel{R^8}{=} \text{allyl, PMB, or DMB}$$

An alternate means of preparing compounds of the 10 present invention is presented in Scheme 6. The trifluoromethyl ketone is treated with diazomethane,

5 dimethylsulfonium methylide, or dimethylsulfoxonium methylide to give the epoxide. The epoxide is then reacted with a primary amine to give the ring opened alcohol which on treatment with N,N'-carbonyldiimidazole affords a mixture of 5- and 7-membered cyclic amides. Treatment of this . mixture with sodium methoxide or triethylamine in ethanol 10 converts it to the desired 7-membered cyclic urea. addition to N,N'-carbonyldiimidazole, conversion to the cyclic urea can also be accomplished with phosgene, triphosgene, methylchloroformate or a number of similar 15 reagents well-known to practitioners of the art. Treatment of the cyclic urea with thionyl chloride gives the chloride, a compound which when treated with a lithium reagent or a Grignard reagent affords the R^2 substituted compound (R^2 = alkyl, aryl, alkynyl, or alkenyl). Reaction of the chloride with an amine, an alkoxide, or a thioalkoxide gives the QR 20 substituted compound (Q = O, S, NH). For the synthesis of compounds of the invention in which R8 = H, it is preferred to open the epoxide with an amine (R NH,) whose alkyl group (R⁸) can be removed in the final synthetic step. Several such removable alkyl groups are well known to practitioners 25 of the art, preferred examples of which are allyl, pmethoxybenzyl (PMB) and 2,4-dimethoxybenzyl (DMB). The allyl group can be removed by treatment with rhodium chloride followed by aqueous acid. The PMB and DMB groups can be removed by catalytic hydrogenation, treatment with a 30 strong acid such as trifluoroacetic acid, or by treatment with an oxidizing agent such as ceric ammonium nitrate, DDQ, or sodium persulfate.

SCHEME 7

Scheme 7 describes a means of obtaining an amino-ketone useful in the previous schemes. After iodination of an appropriate aniline, the trifluoromethyl group can be introduced using a strong base and ethyl trifluoroacetate.

SCHEME 8

15

20

5

10

Because certain benzo-substituents are incompatible with the methods of the previous schemes, it may be necessary to protect these groups before forming the desired product. In Scheme 8 there is shown a means of obtaining carbonyl-substituted iodo-anilines which can be modified as shown in Scheme 7. After iodination of an acetyl-aniline, the acetyl group is protected by means well known to those

of skill in the art, such as using 1,3-propanedithiol. Deprotection of the ketone can then be achieved using ${\rm HgCl}_2$ and ${\rm HgO}$ or other means well known to those of skill in the art.

10 SCHEME 9

In addition to the methods of obtaining keto-anilines

described previously, nucleophilic opening of isatoic
anhydrides can also be used as shown in Scheme 9. This
reaction is accomplished by using an anionic nucleophile of
the group R^{1a}. See Mack et al, J. Heterocyclic Chem. 1987,
24, 1733-1739; Coppola et al, J. Org. Chem. 1976, 41(6),
825-831; Takimoto et al, Fukuoka Univ. Sci. Reports 1985,
15(1), 37-38; Kadin et al, Synthesis 1977, 500-501; Staiger
et al, J. Org. Chem. 1959, 24, 1214-1219.

PCT/US99/13872 5 SCHEME 10

$$G = \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{$$

The 1,3-benzoxazepinones of this invention can be 10 synthesized as described in Scheme 10. The starting epoxide can be ring-opened with an alkoxide (NaOR', or KOR') in which R' is a protecting group which can be removed later in the synthesis. There are many such removable groups known 15 to practitioners of the art. These include the allyl group, as well as substituted ethyl groups such as 2trimethylsilylethyl or 2,2,2-trichloroethyl, or substituted benzyl groups such as 3,4-dimethoxybenzyl, p-nitrobenzyl, and diphenylmethyl. The next step is to protect the tertiary alcohol with a second protecting group (R") which 20 is stable to the conditions for the removal of the first protecting group (R'). This second protecting group can be

one of the allyl, substituted ethyl, or substituted benzyl 5 groups as described above, or it can be a silvl group (such as triethylsilyl, t-butyldimethylsilyl, or tbutyldiphenylsilyl). There are many combinations of two selectively removable protecting groups which are well known 10 to practitioners of the art. Removal of the first protecting group affords the primary alcohol which upon treatment with N, N'-carbonyldiimidazole or phosgene followed by removal of the second protecting group affords the cyclic carbamate. Treatment of the cyclic carbamate with thionyl chloride converts the tertiary alcohol to a chloride. This 15 compound when treated with a lithium reagent or a Grignard reagent affords the R^2 substituted compound (R^2 = alkyl, aryl, alkynyl, or alkenyl). Reaction of the chloride with an amine, an alkoxide, or a thioalkoxide gives the OR 20 substituted compound (Q = O, S, NH). Additionally, compounds of this invention in which Q = 0 can also be prepared by direct alkylation of the tertiary alcohol.

One enantiomer of a compound of Formula I may display superior activity compared with the other. Thus, the following stereochemistries are considered to be a part of the present invention.

25

When required, separation of the racemic material can be achieved by HPLC using a chiral column as exemplified in Examples 27-34 (Scheme 4) or by a resolution using a resolving agent such as camphonic chloride as in Thomas J. Tucker, et al, J. Med. Chem. 1994, 37, 2437-2444. A chiral compound of Formula I may also be directly synthesized using a chiral catalyst or a chiral ligand, e.g. Mark A. Huffman, et al, J. Org. Chem. 1995, 60, 1590-1594.

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

10 EXAMPLES

5

Abbreviations used in the Examples are defined as "°C" for degrees Celsius, "d" for doublet, "dd" for doublet of doublets, "eq" for equivalent or equivalents, "g" for gram or grams, "mg" for milligram or milligrams. "mL" for milliliter or milliliters, "H" for hydrogen or 15 hydrogens, "hr" for hour or hours, "m" for multiplet, "M" for molar, "min" for minute or minutes, "MHz" for megahertz, "MS" for mass spectroscopy, "nmr" or "NMR" for nuclear magnetic resonance spectroscopy, "t" for triplet, "TLC" for 20 thin layer chromatography, "ACN" for acetic anhydride, "CDI" for carbonyl diimidazole, "DIEA" for diisopropylethylamine, "DIPEA" for diisopropylethylamine, "DMAP" for dimethylaminopyridine, "DME" for dimethoxyethane, "EDAC" for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, "LAH" for lithium aluminium hydride, "TBAF" for 25 tetrabutylammonium fluoride, "TBS-Cl" for tbutyldimethylsilyl chloride, and "TEA" for triethylamine.

5

Example 1

Preparation of 7-chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

To a solution of amino ketone 1a (3.02 g, 13.54 mmol) in THF (55 mL) at room temperature was added potassium

5 carbonate (4.67 g, 33.85 mmol) followed by bromoacetyl bromide (1.5 mL, 16.93 mmol) and the resulting reaction mixture was allowed to stir at room temperature for 3 hours. The reaction mixture was poured onto water and extracted with ethyl acetate (3x100 mL). The combined ethyl acetate extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give a yellow oil 1b. This product was used in the next step of the synthetic sequence without further purification.

To a solution of bromide 1b (crude product, 13.54 mmol) 15 in DMF (55 mL) at room temperature was added sodium benzenesulfinate (4.44 g, 27.08 mmol) and the resulting reaction mixture was allowed to stir at room temperature for 18 hours. The reaction mixture was poured onto water and extracted with ethyl acetate (3x100 mL). The combined ethyl 20 acetate extracts were dried over anhydrous Na2SO4 and concentrated in vacuo. The group is triturated with hexanes (1 L) and dried in vacuo to give 4.88 g an off-white solid **1c** (5.49 g theoretical, 89%). 1 H NMR (300 MHz, DMSO-d₆) δ 11.0(br s , 1H), 7.96(s, 1H), 7.76(d, 2H, J = 8 Hz), 7.66(m,25 1H), 7.51(m, 2H), 7.44(s, 1H), 7.33(m, 1H), 6.82(d, 1H, J =8 Hz), 4.47(s, 1H). 19 F NMR (282 MHz, DMSO-d₆) δ -80.99(s, 3F). High resolution mass spec: calculated for $C_{16}H_{11}NO_4F_3Cls(M+H)+: 405.0042$, found 405.0049.

mmol) in methylene chloride (100 mL) at room temperature was added 4-(dimethylamino)pyridine (4.11 g, 33.65 mmol) followed by acetic anhydride (3.5 mL, 37.03 mmol) and the resulting reaction mixture is allowed to stir at room temperature for 18 hours. The reaction mixture was poured onto water and extracted with ethyl acetate (3x100 mL). The ethyl acetate extracts were washed with saturated NaHCO3 and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The group is triturated with hexanes (1 L) and dried in vacuo to give 6.06 g an off-white solid 1d (93%). Anal.

5 ($C_{16}H_9NO_3F_3ClS$) calcd: C 49.56, H 2.35, N 3.61, Cl 9.14, F 14.70, S 8.28. Found: C 49.26, H 2.68, N 3.30, Cl 9.23, F 14.49, S 8.13.

To a 0°C solution of cyclopropyl acetylene (48% purity, 14.6 mL, 80.9 mmol) in THF (95 mL) was syringed 1.6 M BuLi in hexane (46 mL, 73.5 mmol). After the reaction was stirred for 15-30 min. at 0°C, 1 (9.5 g, 24.5 mmol) was added as a solid and stirred for 2 h. The reaction was quenched with saturated NH4Cl. The reaction was partitioned between EtOAc and saturated NH4Cl, washed with brine, dried (Na2SO4) and evaporated to give a solid. Flash chromatography (50% EtOAc/hexane) gave a white solid 2 (6.6 g, 60% yield).

A mixture of 2 (6.6g, 14.5 mmol), Al/Hg in THF (90 mL) and water (10 mL) was refluxed for 1 h. The reaction was filtered through celite, partitioned between EtOAc and water, washed with brine, dried (Na₂SO₄) and evaporated to give a solid 3 (4 g, 90% yield). MH⁺ = 314.0559.

20

25

30

A solution of 3 (4 g, 12.8 mmol), (Boc)₂O (3.06 g 14 mmol) and DMAP (1.56 g, 12.8 mmol) in ACN (60 mL) was stirred for 1 h. TLC indicated that the ratio of the desired product to starting material was about 3 to 2. More (Boc)₂O (0.6 g, 2.8 mmol) was added and the reaction was stirred for 10 min. TLC showed trace of starting material. The reaction was partitioned between EtOAc and 1N HCl, washed with water, saturated NaHCO₃ and brine, dried (Na₂SO₄) and evaporated to give an orange solid 4 (4.93 g, 93% yield).

A mixture of 4 (4.63 g, 11.2 mmol), H₂NOH·HCl (3.11 g, 44.8 mmol) and DIEA (7.8 mL, 44.8 mmol) in EtOH (65 mL) was stirred for 2 h. The reaction was diluted with EtOAc, washed with dilute HCl (6X), water, saturated NaHCO₃, brine and dried (Na₂SO₄) and evaporated to give a thick orange oil 5 (5.3 g, 95% yield).

A solution of **5** (4.94 g, 11 mmol), TsCl (5.32 g, 27.9 mmo) and 1N NaOH (53.2 mL, 53.2 mmol) in dioxane (240 mL) was stirred for 1.5 h. The reaction was partitioned between EtOAc and saturated NaHCO3, washed with brine, and evaporated to give a semi-solid. A solution of the semi-solid in TFA (20 mL) and CH₂Cl₂ (200 mL) was stirred for 2 h and evaporated to give a thick oil. The oil was partitioned between EtOAc and saturated NaHCO3 and brine, dried (Na₂SO₄) and evaporated to give a thick dark orange oil. Crystallized from dichloroethane to give a white crystalline solid **6** (1.25 g, 40% yield, mp 240-242°C).

Example 2

Preparation of 6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The 6,7-diF analog **6a** was prepared using the same sequence as Example 1, but starting from the difluoro analog **1a**, mp=232-233°C.

25

Example 3

Preparation of 7-chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

30

5

10

15

A suspension of 6 (60 mg), NH₂OSO₃H (1.5 g) and DIEA (3 mL) in THF (5 mL) was refluxed for 48 h. The reaction was diluted with EtOAc, washed with 1 N HCl (2X), water, brine and dried (Na₂SO₄) and evaporated to give a solid which crystallized from dichloroethane to provide a white crystalline solid 7 (30 mg, mp 221-223°C).

Example 4

Preparation of 7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-thione

A suspension of 6 (50 mg) and Na₂CO₃ (24 mg) in POCl₃

(1 mL) was heated at 95°C for 24 h and evaporated to give a semi-solid. The solid and NH₂CSNH₂ (63 mg) in EtOH (4 mL) was refluxed over weekend. The reaction was diluted with EtOAc, washed with water and brine, dried (Na₂SO₄) and evaporated to give a solid. Flash chromatography (25-50% EtOAc/hexane) gave a white solid (22 mg). Crystallized from dichloroethane gave a white crystalline solid 8 (13 mg, mp 230°C dec.).

Example 5

Preparation of 7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

15

20

5

To a solution of 9 (8.48 g, 18.2 mmol) and nitromethane (1.97 mL, 36.4 mmol) in DME (85 mL) was added 60% NaH (2.55 g, 63.8 mmol). After stirring for 1.5 h, TLC indicated that the ratio of the alcohol intermediate 10 to starting material was about 2 to 3. TBS-Cl (13.7 g, 91 mmol) was added and the reaction was stirred for 0.5 h. TLC indicated that the ratio of the desired product 11 to 10 was about 4 The reaction was stirred for another 2 h. reaction was diluted with EtOAc and partitioned between EtOAc and saturated NaHCO3. The reaction was filtered and

the organic phase was washed with brine, dried (Na₂SO₄) and evaporated to give an orange oil (22.3 g). The oil was triturated with hexane and washed with same solvent two times to provide a yellow solid **11** (8.2 g, 75% yield).

A mixture of **11** (8.2 g, 13.8 mmol) and K₂CO₃ (2.2 g) in toluene (80 mL) was refluxed for 0.5 h. The reaction was diluted with EtOAc and washed with water and brine, dried (Na₂SO₄) and evaporated to give an dark orange oil (7.4 g). The oil was triturated with hot hexane and washed with same solvent two times to provide a brown solid **12** (5 g, 71.5% yield).

To a -78°C solution of 12 (204 mg, 0.4 mmol) in THF (2 mL) was added 2M BuMgCl in ether (0.6 mL, 1.2 mmol), TLC showed no starting material. The reaction was quenched with saturated NH4Cl and partitioned between EtOAc and saturated NH4Cl, washed with brine, dried (Na2SO4) and evaporated to give an orange oil (240 mg). Flash chromatography (3% EtOAc/hexane) gave a pale yellow glass 13 (94 mg).

20

25

30

35

A mixture 13 (75 mg), a slurry of Raney nickel (2 mL) and hydrazine monohydrate (0.1 mL) in ethnol (4 mL) was stirred for 2 h. The reaction was filtered with celite and partitioned between EtOAc and water and brine, dried (Na₂SO₄) and evaporated to give an orange oil (85 mg). Flash chromatography (20% EtOAc/hexane) gave a pale yellow glass (46 mg). A solution of the glass (46 mg) in MeOH (1 mL) and concentrated HCl (0.1 mL) was stirred for 15 min. and filtered off. The filtrate was partitioned between EtOAc and 1N NaOH and brine, dried (Na₂SO₄) and evaporated to give an orange oil (20 mg). A solution of the oil (20 mg) and carbonyl diimidazole (33 mg) in THF (1 mL) was stirred overnight. The solvent was evaporated to give an oil which was triturated with Et₂O/hexane/CH₂Cl₂ to provide a fine powder 14 (5.6 mg, mp 174-176°C).

An alternative means of converting 12 to 13 is as follows. To a -78°C solution of 12 (100 mg, 0.2 mmol) in toluene (2 mL) was added 1M (i-Bu)3Al in toluene (0.4 mL, 0.4 mmol), TLC showed no starting material. The reaction was quenched with 0.1M HCl and partitioned between EtOAc and 0.1M HCl, washed with brine, dried (Na₂SO₄) and evaporated to give an orange oil 13 (121 mg).

Example 6

Preparation of 7-chloro-5-(2-cyclopropylethynyl)-1,5dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

C1

$$CF_3$$
 NH_2
 NH_2
 CF_3
 NH_2
 CF_3
 NH_2
 NH_2

A solution of approximately 15 mmoles of diazomethane
in 40 mL of ether was generated from 5 g of Diazald®
following the directions provided by the vender (Aldrich
Chemical Company). This solution was added to a solution of

201 (2.6 g, 11.6 mmoles) in 10 mL of ether and the reaction mixture was stirred for 3 hr at room temperature at which time tlc showed complete conversion to epoxide 202. Excess diazomethane was quenched by the addition of acetic acid, 10 mL of ethanol was added, and the solution was concentrated to a volume of approximately 10 mL on a rotary evaporator. To this solution was added 20 mL of a solution of 33% methylamine in ethanol and the mixture was stirred at room temperature overnight. Evaporation of the solvent under reduced pressure afforded 203 (3.4 g) a semisolid product which was used without purification in the next reaction.

To a solution of 203 (2.9 g, 10.8 mmol) in 50 mL of dry THF was added N,N'-carbonyldiimidazole (2.6 g, 16.2 mmol) and the reaction mixture was stirred for 1.75 h at ambient temperature. An additional 500 mg of N,N'-

- carbonyldiimidazole was added and the reaction was allowed to procede for an additional 30 min. Sodium methoxide in methanol (10 mL of a 3.24M solution) was added and the mixture was refluxed for 30 min. The cooled mixture was poured onto aqueous ammonium chloride, and this mixture was extracted twice with ethyl acetate. The combined extracts were dried over sodium sulfate and evaporated to an orange oil. Flash chromatography (50-70% EtOAc/hexane) gave after washing with methylene chloride a white solid 204 (1.5 g, 42.5% yield).
- The mass added triethylamine (2.3 mL, 16.67 mmol) in 50 mL of dry the chloride (1.2 mL, 15.88 mmol). After stirring 15 min at ambient temperature, 25 mL of methanol was added and this mixture was stirred for 15 min before being poured onto aqueous sodium bicarbonate. The mixture was extracted with ether and the extract was dried over magnesium sulfate and concentrated to a yellow solid 205 (1.18 g, 95% yield) which was used without purification.

To a 0°C solution of cyclopropylacetylene (35% purity, 40 0.45 mL) in THF (3 mL) was syringed 1.6 M BuLi in hexane

5 (0.625 mL, 1.0 mmol). After the reaction was stirred for 30 min. at 0°C, the reaction mixture was cooled to -50°C, 205 (85 mg, 0.27 mmol) in THF (0.7 mL) was added and the reaction mixture was allowed to warm to room temperature over 2 h. The reaction was poured onto saturated ammonium chloride and was extracted with ether. The extracts were washed with brine, dried over magnesium sulfate and evaporated to give an oil. Flash chromatography (50% EtOAc/hexane) gave after crystallization from ethyl acetate/hexane colorless crystals of the title compound (27 mg, mp 177-178°C).

Example 7

Preparation of 7-chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

C1 F₃C N

The title compound (mp 186-188°C) is prepared according to the method of Example 6 by substituting ethylamine for 25 methylamine.

Example 8

Preparation of 7-chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-cyclopropyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 195-196°C) is prepared according to the method of Example 6 by substituting cyclopropylamine for methylamine.

15

Example 9

Preparation of 7-chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

25

To a solution of cyclopropylcarbinol (250 mg, 3.5 mmol) in 5 mL of dry THF at room temperature was added sodium hydride (50 mg, 2.1 mmol). After 30 min, 205 (150 mg, 0.48 mmol) was added and the reaction mixture was stirred at ambient temperature for 30 min. The reaction was poured onto saturated ammonium chloride and was extracted with ether. The extracts were washed with brine, dried over magnesium sulfate and evaporated to give an oil. Flash chromatography

5 (50% EtOAc/hexane) gave 49 mg of a solid which was recrystallized from ethyl acetate/hexane to afford colorless crystals of the title compound (20 mg, mp 192-193°C).

Example 10

10 Preparation of 7-chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

To a solution of 3-methyl-2-buten-1-ol (310 mg, 3.6 mmol) in 5 mL of dry THF at room temperature was added sodium hydride (80 mg, 3.33 mmol). After 30 min, 205 (160 mg, 0.51 mmol) was added and the reaction mixture was stirred at ambient temperature for 30 min. The reaction was poured onto saturated ammonium chloride and was extracted with ethyl acetate. The extracts were washed with brine, dried over magnesium sulfate and evaporated to give an oil. Flash chromatography (30-50% EtOAc/hexane) gave 90 mg of a solid which was recrystallized from ethyl acetate/hexane to afford colorless crystals of the title compound (mp 181-182°C).

Example 11

Preparation of 7-chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

C1
$$F_3C$$
 O N -Me

10

15

20

5

To a solution of allyl alcohol (243 mL, 3.57 mmol) in 5 mL of dry THF at room temperature was added sodium hydride (82 mg, 3.41 mmol). After 30 min, 205 (160 mg, 0.51 mmol) in THF (3 mL) was added and the reaction mixture was stirred at ambient temperature for 35 min. The reaction was poured onto saturated ammonium chloride and was extracted with ethyl acetate. The extracts were washed with brine, dried over magnesium sulfate and evaporated to give an oil. Flash chromatography (40-60% EtOAc/hexane) gave 99 mg of a solid which was recrystallized from ethyl acetate/hexane to afford colorless crystals of the title compound (mp 163-165°C).

Example 12

Preparation of 7-chloro-5-(3,3-dichloro-2-propenyloxy)-1,5dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

The title compound (mp 148.6-149.9°C) is prepared according to the method of Example 11 by substituting 3,3-dichloro-2-propenol for allyl alcohol.

Example 13

Preparation of 7-chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

The title compound (mp 229.7-232.1°C) is prepared according to the method of Example 11 by substituting 2-propyn-1-ol for allyl alcohol.

15

Example 14

Preparation of 7-chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 172.1-173.8°C) is prepared according to the method of Example 11 by substituting 2-fluoro-6-methoxybenzyl alcohol for allyl alcohol.

Example 15

Preparation of 7-chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

To a solid mixture of 95% sodium hydride (650 mg, 25.7 mmol) and trimethylsulfoxonium iodide (6.0 g, 27 mmol) was added dropwise with stirring over 15 min, 35 mL of dry DMSO. After an additional 20 min of stirring at ambient

5 temperature, hydrogen evolution had ceased, and a solution of 201 (3.35 g, 15 mmol) in dry THF (65 mL) was run in over 3 min. After an additional 2 min, the reaction was quenched with water. The reaction mixture was poured onto water and extracted with ether. The ether layer was washed twice with 10 brine and was dried over magnesium sulfate. Ethanol (15 mL) was added to this ethereal solution and this was concentrated at 20° under reduced pressyre to a volume of 15 mL. Allylamine (4.6 g, 81 mmol) was added and the solution was stirred overnight at ambient temperature after which 15 time it was concentrated at 40° to 206 as an oily product.

To a solution of 206 in 65 mL of dry THF was added N,N'-carbonyldiimidazole (2.5 g, 15 mmol) and triethylamine (6.3 mL, 45 mmol) and the reaction mixture was stirred overnight at ambient temperature. Ethanol (25 mL) was added and the mixture was refluxed for 2 h and then evaporated to a small volume. This was taken up in ethyl acetate, and this solution was washed with water, aqueous citric acid, and brine, dried over sodium sulfate and concentrated to an oil. Addition of methylene chloride precipitated the product and 207 was collected as colorless crystals (3.05 g, 63%).

20

25

30

35

40

To a solution of 207 (4.6 g, 14.38 mmol) and pyridine (1.393 mL, 17.25 mmol) in 55 mL of dry THF at 0° was added dropwise thionyl chloride (1.865 g, 15.8 mmol). After addition was complete, the cooling bath was removed, and stirring was continued at ambient temperature for 1 h. The reaction mixture was partitioned between water and ethyl acetate, and the organic layer was washed with brine, dried and evaporated to 208 as a crystalline product (4.4 g).

To a solution of cyclopropylmethanol (9 mL) in 45 mL of dry DMSO was added 100% sodium hydride (1.8 g). This was stirred for 3 h at ambient temperature until hydrogen evolution ceased after which time 208 (4.4 g, 13 mmol) was added in one portion. After stirring at ambient temperature for 1 h, the reaction mixture was partitioned between ethyl

acetate and aqueous citric acid, and the organic layer was washed with brine, dried (sodium sulfate) and evaporated to an oily product. Flash chromatography (25% EtOAc/hexane) gave after crystallization from hexane 209 (3.0 g).

A solution of 209 (1.2 g) and rhodium trichloride hydrate (60 mg) in ethanol (100 mL) was refluxed for 2 h. The mixture was cooled to 60°, 1N hydrochloric acid (20 mL) was added, and the mixture was stirred at 60° for 2 h. The cooled mixture was partitioned between water and ethyl acetate, and the organic layer was washed with aqueous sodium bicarbonate and brine, dried and evaporated to a solid. Flash chromatography (50-75% ether/hexane) followed by crystallization from methylene chloride-hexane afforded the title compound (840 mg, 78%, mp 185-186°C) as colorless crystals.

20

5

10

15

Example 16

Preparation of (S)-7-chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

25

30

Racemic 7-chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one (1.2 g) was separated into its constituent enantiomers on a Chiralcel-OD-AMB liquid chromatography column (10% EtOH-hexane). The faster eluting enantiomer was crystallized from ethyl acetate-hexane to give the title compound (335 mg, mp 190-191°C) which has been assigned the (S) absolute configuration.

35

5

PCT/US99/13872

Example 17

Preparation of 7-chloro-3-cyclopropy1-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3benzodiazepin-2-one

C1

$$CF_3$$
 CI
 NH_2
 201
 CI
 NH_2
 202
 CI
 NH_2
 NH_2

10

15

20

To a solid mixture of 95% sodium hydride (1.94 g, 81 mmol) and trimethylsulfoxonium iodide (17.8 g, 81 mmol) was added dropwise with stirring over 20 min, 100 mL of dry DMSO. After an additional 20 min of stirring at ambient temperature, hydrogen evolution had ceased, and a solution of 201 (10 g, 44.7 mmol) in dry THF (200 mL) was run in over 5 min. After an additional 2 min, the reaction was quenched with water. The reaction mixture was poured onto water and extracted with ether. The ether layer was washed twice with

5 brine and was dried over magnesium sulfate. Ethanol (35 mL) was added to this ethereal solution and this was concentrated at 20° under reduced pressure to a volume of 35 mL. Cyclopropylamine (12.4 mL, 179 mmol) was added and the solution was stirred overnight at ambient temperature and 10 then 2 h at 50° after which time it was concentrated at 40° to 210 (9.4 g) as an oily product.

To a solution of 210 (9.4 g, 31.9 mmol) in 250 mL of dry THF was added N,N'-carbonyldiimidazole (9.3 g, 57.4 mmol) and the reaction mixture was stirred overnight at ambient temperature and evaporated to a solid. Ethanol (150 mL), and triethylamine (13 mL) was added and the mixture was refluxed for 4 h and then evaporated to a small volume. This was taken up in ethyl acetate, and this solution was washed with water, aqueous citric acid, and brine, dried over sodium sulfate and concentrated to an oil. Crystallization from ethyl acetate hexane afforded 2.6 g of a crystalline product. Flash chromatography of the mother liquor on silica gel (40-50% ethyl acetate-hexane) afforded an additional 1.7 g for a total of 4.3 g (42%) of 211 as colorless crystals.

15

20

25

30

To a solution of 211 (4.3 g, 13.4 mmol) and pyridine (1.6 mL, 20.1 mmol) in 48 mL of dry THF at 0° was added dropwise thionyl chloride (2.0 mL). After addition was complete, the cooling bath was removed, and stirring was continued at ambient temperature for 20 min. The reaction mixture was partitioned between water and ethyl acetate, and the organic layer was washed with brine, dried and evaporated to 212 as a crystalline product (4.2 g).

To a solution of cyclopropylmethanol (9 mL) in 75 mL of dry DMSO was added 100% sodium hydride (840 mg). This was stirred for 1 h at ambient temperature until hydrogen evolution ceased after which time 212 (4.0 g, 11.8 mmol) in DMSO (25 mL) was added. After stirring at ambient temperature for 1 h, the reaction mixture was partitioned between ethyl ether and aqueous citric acid, and the organic

layer was washed with brine, dried (sodium sulfate) and evaporated to an oily product. Flash chromatography on silica gel (10-60% EtOAc-hexane) gave after crystallization from ethyl acetate -hexane the title compound (2.15 g, 49%, mp 153.5-155°C) as colorless crystals.

10

Example 18

Preparation of (S)-7-chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3benzodiazepin-2-one

15

Racemic 7-chloro-3-cyclopropyl-5-(cyclopropylmethoxy)1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one (1.1
20 g) was separated into its constituent enantiomers on a
Chiralcel OD-H liquid chromatography column (10% EtOHsupercritical carbon dioxide). The faster eluting
enantiomer was crystallized from hexane to give the title
compound (320 mg, mp 66-68°) which has been assigned the (S)
absolute configuration.

PCT/US99/13872

Preparation of 7-chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 153-154°) is prepared according to the method of Example 17 by substituting propanol for cyclopropylmethanol.

15 Example 20

Preparation of 7-chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 150-151°C) is prepared according to the method of Example 17 by substituting propanethiol for cyclopropylmethanol.

Preparation of 7-chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

The title compound (mp 144-145.5°C) is prepared according to the method of Example 17 by substituting allyl mercaptan for cyclopropylmethanol.

15 Example 22

Preparation of 7-chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 120-121°C) is prepared according to the method of Example 17 by substituting allyl alcohol for cyclopropylmethanol.

Example 23

Preparation of 7-chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 130-131°C) is prepared according to the method of Example 17 by substituting 3-methyl-2-butenol for cyclopropylmethanol.

15

Example 24

Preparation of 7-chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 158-159°C) is prepared according to the method of Example 17 by substituting cyclobutylmethanol for cyclopropylmethanol.

Example 25

Preparation of 7-chloro-3-cyclopropyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)1,3-benzodiazepin-2-one

10

5

The title compound (mp 166-167°C) is prepared according to the method of Example 17 by substituting (1-methylcyclopropyl)methanol for cyclopropylmethanol.

15

Example 26

Preparation of 7-chloro-3-cyclopropy1-5-(2-pyridyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

25

$$\begin{array}{c|c}
F_3C & O \\
\hline
N & N \\
N & O
\end{array}$$

The title compound is (mp 170-171.5°C) prepared according to the method of Example 17 by substituting 2-(hydroxymethyl)pyridine for cyclopropylmethanol

Preparation of 7-chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

10

5

The title compound (mp 169.5-170.5°C) is prepared according to the method of Example 17 by substituting isopropylamine for cyclopropylamine.

15

Example 28

Preparation of 7-chloro-3-cyclobutyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 156°C) is prepared according to the method of Example 17 by substituting cyclobutylamine for cyclopropylamine.

Preparation of 7-chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

C1

$$CF_3$$
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CI
 CF_3
 CI
 CF_3
 CI
 CF_3
 CI
 CF_3
 CI
 CF_3
 CI
 CI

10

15

20

5

A solution of approximately 28 mmoles of diazomethane in 100 mL of ether was generated from 10 g of Diazald® following the directions provided by the vender (Aldrich Chemical Company). This solution was added to a solution of 201 (5.2 g, 23.2 mmoles) in 20 mL of ether and the reaction mixture was stirred for 3 hr at room temperature at which time tlc showed complete conversion to epoxide 202. Excess diazomethane was quenched by the addition of acetic acid, 20 mL of ethanol was added, and the solution was concentrated to a volume of approximately 20 mL on a rotary evaporator. To this solution was added 20 mL of a solution of 2M

5 ethylamine in THF and the mixture was stirred in a stoppered flask at 50° for 5 h. Evaporation of the solvent under reduced pressure afforded after purification by flash chromatography on silica gel (20% ethylacetate-hexane) 213 (2.7 g) as an oil.

To a solution of 213 (2.7 g) in 45 mL of dry THF was added N,N'-carbonyldiimidazole (1.8 g), and triethylamine (4.2 mL) and the reaction mixture was stirred overnight at ambient temperature. Ethanol (15 mL) was added and the mixture was refluxed for 3 h, then evaporated to a small volume. This was taken up in ethyl acetate, and this solution was washed eith water, aqueous citric acid, and brine, dried over sodium sulfate and concentrated to an oil. Addition of methylene chloride precipitated the product and 214 was collected as colorless crystals (1.73 g).

To a solution of 214 (1.54 g) and pyridine (0.50 mL) in 20 mL of dry THF at 0° was added dropwise thionyl chloride (0.400 mL) After addition was complete, the cooling bath was removed, and stirring was continued at ambient temperature for 1 h. The reaction mixture was partitioned between water and ethyl acetate, and the organic layer which contained both dissolved and undissolved product was evaporated to 215 as a crystalline product (1.43 g).

To a solution of cyclopropylmethanol (0.20 mL) in 3 mL of dry DMSO was added 100% sodium hydride (36 mg). This was stirred for 30 min at ambient temperature until hydrogen evolution ceased after which time 215 (150 mg) was added in one portion. After stirring at ambient temperature for 20 min, the reaction mixture was partitioned between ethyl acetate and aqueous citric acid, and the organic layer was washed with brine, dried (sodium sulfate) and evaporated to a solid product. This was recrystallized from ethyl acetate-hexane to afford the title compound (85 mg, mp 157-159°) as colorless crystals.

30

Preparation of (S)-7-chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

15

5

Racemic 7-chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one (1.7 g) was separated into its constituent enantiomers on a Chiralcel-OD-H liquid chromatography column (10% EtOH-supercritical carbon dioxide). The faster eluting enantiomer was the title compound (603 mg, Mass Spec. $(M+H)^+$ Calc. for $C_{16}H_{19}F_3N_2O_2Cl$: 363.17076; Fd: 363.17088) as an amorphous solid which has been assigned the (S) absolute configuration.

20

Example 31

Preparation of 7-chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

25

The title compound (mp 158-160°C) is prepared according to the method of Example 29 by substituting 3-methyl-2-butenol for cyclopropylmethanol.

Example 32

Preparation of 7-chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

15

5

The title compound (mp 138.1-141.8°C) is prepared according to the method of Example 29 by substituting allyl mercaptan for cyclopropylmethanol.

Example 33

Preparation of 7-chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (Mass Spec. $(M+H)^{+}$ Calc. for $C_{17}H_{21}F_{3}N_{2}O_{2}Cl$: 377.1244; Fd: 377.1262) is prepared according to the method of Example 29 by substituting cyclobutylmethanol for cyclopropylmethanol.

Example 34

Preparation of 7-chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 152.3-156°C) is prepared according to the method of Example 29 by substituting cyclopropylmethyl mercaptan for cyclopropylmethanol.

15

Example 35

Preparation of 7-chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)1,3-benzodiazepin-2-one

20

The title compound (mp 171-172.5°C) is prepared according to the method of Example 29 by substituting (1-methylcyclopropyl)methanol for cyclopropylmethanol.

Example 36

Preparation of 7-chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp $155.5-157.5^{\circ}$ C) is prepared according to the method of Example 29 by substituting n-propylamine for ethylamine.

Preparation of 7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

15

20

5

To a 0° solution of N-pivaloyl-4-fluoroaniline (10 g) in 150 mL of dry THF was added dropwise over 20 min 1.6M butyllithium in hexane (77 mL). After stirring at 0° for 1 h, ethyltrifluoroacetate (14.0 mL) was added and the the reaction mixture was allowed to warm to room temperature over 1.5 h. The reaction was quenched by the addition of aqueous ammonium chloride and the mixture was partitioned between water and ether. The ether layer was dried and concentrated to a brown oil (18.3 g) which was used directly in the next reaction.

This oil was dissolved in 15 mL of ethylene glycol dimethyl ether, 75 mL of concentrated aqueous hydrochloric acid was added and the mixture was refluxed for 1.5 h. The

5 cooled reaction mixtured was diluted with water and made basic with solid sodium carbonate. This was extracted with ether, and the extractsa were dried and evaporated to an oil which was purified by flash chromatography on silica gel (10-20% ethyl acetate-hexane) to afford after

recrystalization from ethyl acetate-hexane, 2.65 g of 2-amino-5-fluoro-1',1',1'-trifluoroacetophenone **216**.

A solution of approximately 15 mmoles of diazomethane in 40 mL of ether was generated from 5 g of Diazald® following the directions provided by the vender (Aldrich Chemical Company). This solution was added to a solution of 15 2-amino-5-fluoro-1',1',1'-trifluoroacetophenone 216 (2.65 g, 12.8 mmoles) in 10 mL of ether and the reaction mixture was stirred for 5 hr at room temperature at which time tlc showed complete conversion to epoxide 217. Excess 20 diazomethane was quenched by the addition of acetic acid. To one-half of this solution (containing approximately 6.5 mmol of epoxide) 10 mL of ethanol was added, and the solution was concentrated to a volume of approximately 10 mL on a rotary evaporator. To this solution was added 1.69 mL 25 of allylamine and the mixture was stirred at room temperature overnight. Evaporation of the solvent under reduced pressure afforded a crude product which was purified by flash chromatography on silica gel (10-50% ethyl acetatehexane) affording 1.05 g of the product 218 as an oil.

To a solution of 218 (1.05 g, 3.77 mmol) in 20 mL of dry THF was added N,N'-carbonyldiimidazole (856 mg) and triethylamine (2.6 mL) and the reaction mixture was stirred overnight at ambient temperature. Ethanol (7 mL) was added and the mixture was refluxed for 6 h. The cooled mixture was poured onto water, and this mixture was extracted twice with ethyl acetate. The combined extracts were dried over sodium sulfate and evaporated. Flash chromatography (20-50% EtOAc/hexane) gave 219 as a white solid (858 mg, 75%).

30

35

To a solution of **219** (850 mg) and pyridine (0.339 mL) in 12 mL of dry THF at 0° was added dropwise thionyl

5 chloride (0.407 mL) After addition was complete, the cooling bath was removed, and stirring was continued at ambient temperature for 30 min. The reaction mixture was partitioned between water and ethyl acetate, and the organic layer which contained both dissolved and undissolved product was evaporated to 220 as a crystalline product (785 mg, 87%).

To a solution of cyclopropylmethanol (0.624 mL) in 5 mL of dry DMSO was added 100% sodium hydride (55 mg). This was stirred for 30 min at ambient temperature until hydrogen evolution ceased after which time 220 (250 mg) in DMSO (3.5 mL) was added in one portion. After stirring at ambient temperature for 2 h, the reaction mixture was partitioned between ether and aqueous citric acid, and the organic layer was washed with brine, dried (sodium sulfate) and evaporated to 221 (240 mg) as a solid.

A solution of 221 (135 mg) and rhodium trichloride hydrate (8 mg) in ethanol (10 mL) was refluxed for 1.5 h. The mixture was cooled to 60°, 1N hydrochloric acid (2.5 mL) was added, and the mixture was stirred at 60° for 1 h. The cooled mixture was partitioned between water and ethyl acetate, and the organic layer was washed with aqueous sodium bicarbonate and brine, dried and evaporated to an oil. Crystallization from ethyl acetate-hexane afforded the title compound (55 mg, mp 198-199°C) as a colorless solid.

15

20

WO 00/00479

PCT/US99/13872

Example 38

Preparation of 7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 156°C) is prepared according to the method of Example 37 by substituting ethylamine for allylamine, and eliminating the final deprotection step.

15

Example 39

Preparation of 7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

25

30

To a solution of cyclobutylmethanol (0.821 mL) in 5 mL of dry DMSO was added 100% sodium hydride (63 mg). This was stirred for 30 min at ambient temperature until hydrogen evolution ceased after which time 220 (280 mg) in DMSO (2 mL) was added in one portion. After stirring at ambient temperature for 2 h, the reaction mixture was partitioned between ether and aqueous citric acid, and the organic layer was washed with brine, dried (sodium sulfate) and evaporated to a crude product which was purified by flash chromatography on silica gel to give a solid (190 mg).

This solid and rhodium trichloride hydrate (10 mg) in ethanol (13 mL) was refluxed for 1.5 h. The mixture was cooled to 60°, 1N hydrochloric acid (3.5 mL) was added, and the mixture was stirred at 60° for 1 h. The cooled mixture was partitioned between water and ethyl acetate, and the organic layer was washed with aqueous sodium bicarbonate and brine, dried and evaporated to an oil. Crystallization from methylene chloride-hexane afforded the title compound (55 mg, mp 190-191°C) as colorless crystals.

15 Example 40

Preparation of 7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

5

10

The title compound (mp 137-138°C) is prepared according to the method of Example 39 by substituting ethylamine for allylamine, and eliminating the final deprotection step.

Preparation of 7-chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

C1

$$V_{NH_2}$$
 V_{NH_2}
 V_{NH_2}

10

5

A solution of approximately 60 mmoles of diazomethane in 200 mL of ether was generated from 10 g of Diazald® following the directions provided by the vender (Aldrich Chemical Company). This solution was added to a solution of

Н

5 201 (11.15 g, 50 mmoles) in 30 mL of ether and the reaction mixture was stirred for 5 hr at room temperature at which time tlc showed complete conversion to epoxide 202. diazomethane was quenched by the addition of acetic acid, 2,4-dimethoxybenzylamine (12 g), and 50 mL of ethanol was added, and the solution was concentrated to a volume of 10 approximately 60 mL on a rotary evaporator. The mixture was stirred overnight at ambient temperature and then for 4 h at 50°. After evaporation of the solvent under reduced pressure, the crude product was dissolved in ether and this solution was washed twice with water. The ether layer was 15 extracted twice with 1N HCl, and the combined extracts were made basic with 1N NaOH and then extracted with ether. The ether extracts were dried and evaporated and the crude product was redissolved in methylene chloride and this 20 solution was washed with 1% ageous acetic acid, and brine, dried and evaporated to 222 (13.2 g, 65%).

To a solution of 222 (13.0 g) in 150 mL of dry THF was added N,N'-carbonyldiimidazole (6.5 g), and triethylamine (13 mL) and the reaction mixture was stirred 4 h at ambient temperature. Ethanol (75 mL) was added and the mixture was refluxed overnight, then evaporated to a small volume. This was diluted with water and extracted twice with ethyl acetate. The combined extracts were dried and evaporated to a solid which upon trituration with methylene chloride afforded 223 as colorless crystals (10.1 g, 73%).

25

30

35

To a solution of 223 (2.92 g, 6.75 mmol) and pyridine (0.685 mL, 1.2 equiv) in 30 mL of dry THF at 0° was added dropwise thionyl chloride (0.540 mL, 1.1 equiv). After addition was complete, the cooling bath was removed, and stirring was continued at ambient temperature for 1 h. The reaction mixture was partitioned between water and ethyl acetate, and the organic layer which contained both dissolved and undissolved product was evaporated to 224 as a crystalline product (2.4 g, 79%).

To a solution of (1-methylcyclopropyl)acetylene (144 mg, 1.8 mmol) in dry THF (4 mL) at 0° was added 1.6 M butyllithium in hexane (0.99 mL, 1.58 mmol). After 30 min at 0°, the mixture was cooled to -30° and 224 (200 mg, 0.45 mmol) in THF (2 mL) was added dropwise. The reaction

10 mixture was allowed to warm to 0° over 30 min after which time it was poured onto aqueous citric acid and extracted twice with ether. The combined extracts were washed with brine, dried and evaporated to 260 mg of 225 as a solid which was used directly in the next reaction.

15 A solution of 225 (250 mg) in trifluoroacetic acid (1.5 mL) was stirred at room temperature for 30 min then poured onto aqueous sodium bicarbonate and extracted with ethyl acetate. The combined extracts were washed with brine, dried and evaporated to an impure solid which was purified 20 by flash chromatography on silica gel (20-80% ethyl acetate-hexane) followed by recrystallization from ether-ethyl acetate-hexane to afford the title compound (6 mg, mp 196-198°) as colorless crystals.

25 Example 42

Preparation of 7-chloro-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

30

35

To a solution of cyclobutylmethanol (0.456 mL) in 7 mL of dry THF at room temperature was added sodium hydride (110 mg). After 30 min, chloride 224 (300 mg) in THF (3.5 mL) was added and the reaction mixture was stirred at ambient temperature for 1 h. The reaction was poured onto saturated

ammonium chloride and was extracted with ethyl acetate. The extracts dried over magnesium sulfate and evaporated to give a crude product which was purified by flash chromatography (20-40% EtOAc/hexane) gave 124 mg solid product.

A solution of this material in 2.5 mL of

trifluoroacetic acid was stirred at room temperature for 30 min and then partitioned between ethyl acetate and aqueous sodium bicarbonate. The organic phase was dried and evaporated to a crude product which was purified by flash chromatography on silica gel (50% ethyl acetate-hexane) to afford the title compound (74 mg, mp 201.6-202.9°C) as colorless crystals.

Example 43

Preparation of 7-chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (19 F NMR: δ -75.638 ppm) is prepared according to the method of Example 42 by substituting 3-methyl-2-buten-1-ol for cyclobutylmethanol.

Preparation of 7-chloro-5-(phenylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 177-178°C) is prepared according to the method of Example 42 by substituting benzyl alcohol for cyclobutylmethanol.

15

Example 45

Preparation of 7-chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 233-235°C) is prepared according to the method of Example 42 by substituting pyridine-2-methanol for cyclobutylmethanol.

Example 46

Preparation of 7-chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

5

The title compound (mp 211-212°C) is prepared according to the method of Example 42 by substituting (1-methylcyclopropy)methanol for cyclobutylmethanol.

15 **Example 47**

Preparation of 7-chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

25

To a solution of m-cresol (0.259 mL) in 5 mL of dry THF at room temperature was added sodium hydride (41 mg). After 10 min, chloride 224 (300 mg) in THF (3.5 mL) was added and the reaction mixture was stirred at ambient temperature for 1 h. The reaction was poured onto saturated ammonium chloride and was extracted with ethyl acetate. The extracts dried over magnesium sulfate and evaporated to give a white solid.

A solution of this material in 3 mL of trifluoroacetic acid was stirred at room temperature for 2 h and then partitioned between ethyl acetate and aqueous sodium bicarbonate. The organic phase was dried and evaporated to a crude product which was purified by flash chromatography on silica gel (35-50% ethyl acetate-hexane). Crystallization from chloroform and recrystallization from 10% ethyl acetate hexane afforded the title compound (25 mg,mp 137.1-140°C) as colorless crystals.

15 Example 48

Preparation of 7-chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

25

30

35

5

10

To a solution of cyclopropylmethyl mercaptan (532 mg) in 2.3 mL of dry THF at room temperature was added sodium hydride (41 mg). After 10 min,chloride 224 (200 mg) was added and the reaction mixture was stirred at ambient temperature for 1.5 h. The reaction was poured onto saturated ammonium chloride and was extracted with ethyl acetate. The extracts dried over magnesium sulfate and evaporated to give a white solid.

A solution of this material in 3 mL of trifluoroacetic acid was stirred at room temperature for 2 h and then partitioned between ethyl acetate and aqueous sodium bicarbonate. The organic phase was dried and evaporated to a solid product which was twice from methylene chloridehexane to afford the title compound (mp 175-177°C) as a colorless solid.

5

Example 49

Preparation of 7-chloro-5-(propylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

10

The title compound (mp 156-157°C) is prepared according to the method of Example 48 by substituting propanethiol for cyclopropylmethyl mercaptan.

15

Example 50

Preparation of 7-chloro-5-(2-propenylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one

20

The title compound (mp 147.3-149°C) is prepared according to the method of Example 48 by substituting allyl mercaptan for cyclopropylmethyl mercaptan.

5

PCT/US99/13872

Table 1*

$$\left(R^{3}\right)_{n} \stackrel{\text{ii}}{\overset{\text{N}}{\longrightarrow}} A^{2}$$

Ex.#	R ³	R ¹	R ²	A	R ⁸	m.p. (°C)
1	7-C1	CF ₃	C≡C-cycPr	0	Н	240-242
2	6,7- diF	CF ₃	C≡C-cycPr	0	Н	232-233
3	7-Cl	CF ₃	C≡C-cycPr	0	Н	221-223
4	7-Cl	CF ₃	C≡C-cycPr	S	Н	230 dec.
5	7-Cl	CF ₃	n-Bu	0	Н	174-176
6	7-Cl	CF ₃	C≡C-cycPr	0	CH ₃	177-178
7	7-Cl	CF ₃	C≡C-cycPr	0	Et	186-188
8	7-Cl	CF ₃	C≡C-cycPr	0	CyPr	195-196
9	7-Cl	CF ₃	C≡C-cycPr	0	Et	192-193
10	7-Cl	CF ₃	C≡C-cycPr	0	CyPr	181-182
11	7-Cl	CF ₃	OCH ₂ -cycPr	0	СН3	163-165
12	7-Cl	CF ₃	OCH ₂ -C=C(C1) ₂	0	СН3	148.6- 149.9
13	7-Cl	CF ₃	ОСН2-С≡СН3	0	CH ₃	229.7- 232.1
14	7-Cl	CF ₃	OCH ₂ -(2-F-6- CH ₃ O-phenyl)	0	CH ₃	172.1- 173.8
15	7-Cl	CF ₃	OCH ₂ -cycPr	0	Н	185-186
16(s)	7-Cl	CF ₃	OCH ₂ -cycPr	0	Н	190-191
17	7-Cl	CF ₃	OCH ₂ -cycPr	0	CyPr	153.5-155
18(s)	7-C1	CF ₃	OCH ₂ -cycPr	0	CyPr	66-68

19	7-Cl	CF ₃	OCH ₂ CH ₂ CH ₃	0	CyPr	153-154
20	7-Cl	CF ₃	SCH ₂ CH ₂ CH ₃	0	CyPr	150-151
21	7-Cl	CF ₃	SCH ₂ C=CH ₂	0	CyPr	144-145.5
22	7-Cl	CF ₃	OCH ₂ C=CH ₂	0	CyPr	120-121
23	7-C1	CF ₃	OCH ₂ C=C(CH ₃) ₂	0	CyPr	130-131
24	7-Cl	CF ₃	OCH ₂ cycBu	0	CyPr	158-159
25	7-Cl	CF ₃	OCH ₂ -(1-CH ₃ - cycPr)	0	CyPr	166-167
26	7-C1	CF ₃	OCH ₂ -pyrid-2-yl	0	CyPr	170-171.5
27	7-Cl	CF ₃	OCH ₂ -cycPr	0	i-Pr	169.5- 170.5
28	7-Cl	CF ₃	OCH ₂ -cycPr	0	CyBu	156
29	7-C1	CF ₃	OCH ₂ -cycPr	0	Et	157-159
30(s)	7-Cl	CF ₃	OCH ₂ -cycPr	0	Et	
31	7-Cl	CF ₃	OCH ₂ C=C(CH ₃) ₂	0	Et	158-160
32	7-Cl	CF ₃	SCH ₂ C=CH ₂	0	Et	138.1- 141.8
33	7-C1	CF ₃	OCH ₂ -cycBu	0	Et	
34	7-Cl	CF ₃	SCH ₂ -cycPr	0	Et	152.3-156
35	7-C1	CF ₃	OCH ₂ -(1-CH ₃ - cycPr)	0	Et	171-172.5
36	7-Cl	CF ₃	OCH ₂ -cycPr	0	n-Pr	155.5- 157.5
37	7-F	CF ₃	OCH ₂ -cycPr	0	Н	198-199
38	7-F	CF3	OCH ₂ -cycPr	0	Et	156
39	7-F	CF3	OCH ₂ -cycBu	0	Н	190-191
40	7-F	CF ₃	OCH ₂ -cycBu	0	Et	137-138
41	7-Cl	CF ₃	C≡C-(1-CH ₃ -	0	Н	196-198
			cycPr)			

42	7-Cl	CF ₃	OCH ₂ cycBu	0	Н	201.6- 202.9
43	7-Cl	CF ₃	$OCH_2C=C(CH_3)_2$	0	Н	
44	7-Cl	CF ₃	OCH ₂ -phenyl	0	Н	177-178
45	7-C1	CF ₃	OCH ₂ -pyrid-2-yl	0	Н	233-235
46	7-Cl	CF ₃	OCH ₂ -(1-CH ₃ -	0	Н	211-212
			cycPr)		•	
47	7-Cl	CF ₃	O-(3-CH ₃ -	0	Н	137.1-140
			phenyl)			
48	7-Cl	CF ₃	SCH ₂ -cycPr	0	Н	175-177
49	7-Cl	CF ₃	SCH ₂ CH ₂ CH ₃	0	Н	156-157
50	7-Cl	CF ₃	SCH ₂ C=CH ₂	0	Н	147.3-149

^{*}Unless otherwise indicated, stereochemisty is (+/-).

5

Ex.#	W	Х	R ²
1.	СН	СН	C≡C-cycPr
2.	СН	СН	C≡C-(1-CH,-cycPr)

- -

3. CH CH CH CEC-iPr 4. CH CH CH CEC-nPr 5. CH CH CH CEC-Bu 6. CH CH CH CEC-Bu 6. CH CH CH CEC-Bu 7. CH CH CH CEC-EBU 8. CH CH CH CEC-EBU 8. CH CH CH CEC-BC 9. CH CH CH CEC-ME 10. CH CH CH CEC-ME 11. CH CH CH CEC-Ph 11. CH CH CH CEC-3-Pyridyl 12. CH CH CH CEC-3-Pyridyl 13. CH CH CH CEC-3-furanyl 14. CH CH CEC-3-furanyl 15. CH CH CEC-3-furanyl 16. CH CH CEC-3-furanyl 17. CH CH CEC-3-furanyl 18. CH CH CH CEC-3-thienyl 19. CH CH CH CH-CH-Pr 20. CH CH CH CH-CH-Pr 21. CH CH CH CH-CH-IPr 22. CH CH CH CH-CH-IBu 22. CH CH CH CH-CH-IBu 23. CH CH CH CH-CH-IBu 24. CH CH CH CH-CH-Ph 25. CH CH CH CH-CH-Ph 26. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-Ph 30. CH CH CH CH-CH-Ph 31. CH CH CH CH-CH-Ph 32. CH CH CH CH-CH-Ph 33. CH CH CH CH-CH-3-Pyridyl 34. CH CH CH CH-CH-3-furanyl 35. CH CH CH CH-CH-3-furanyl 36. CH CH CH CH-CH-3-furanyl 37. CH CH CH CH-CH-3-thienyl 38. CH CH CH CH-CH-3-thienyl 39. CH CH CH CH-CH-2-cycPr 39. CH CH CH CH-CH-2-cycPr 39. CH CH CH CH-CH-CH-CH-CYCPr) 39. CH CH CH CH-CH-CH-CYCPPr) 39. CH CH CH CH-CH-CH-CYCPPr) 40. CH CH CH-CH-CH-CH-CYCPPr)		r :		
5. CH CH CH CEC-Bu 6. CH CH CH CEC-IBU 7. CH CH CH CEC-IBU 8. CH CH CH CEC-EBU 8. CH CH CH CEC-EBU 9. CH CH CH CEC-ME 10. CH CH CH CEC-Ph 11. CH CH CH CEC-Ph 12. CH CH CH CEC-3-Pyridyl 13. CH CH CH CEC-4-Pyridyl 14. CH CH CEC-3-furanyl 15. CH CH CEC-3-furanyl 16. CH CH CEC-3-furanyl 17. CH CH CEC-3-thienyl 18. CH CH CH CEC-3-thienyl 19. CH CH CH CH-CH-Pyridyl 20. CH CH CH CH-CH-Pyr 21. CH CH CH CH-CH-IBU 22. CH CH CH CH-CH-Bu 23. CH CH CH CH-CH-Bu 24. CH CH CH CH-CH-Bu 25. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-2-Pyridyl 29. CH CH CH CH-CH-3-Pyridyl 30. CH CH CH CH-CH-2-furanyl 31. CH CH CH CH-CH-3-thienyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-2-thienyl 34. CH CH CH CH-CH-2-thienyl 35. CH CH CH CH-CH-2-thienyl 36. CH CH CH CH-CH-2-thienyl 37. CH CH CH CH-CH-2-thienyl 38. CH CH CH CH-CH-2-tycPr 39. CH CH CH CH-CH-2-tycPr) 40. CH CH CH-CH-CH-CH-CY-CYPP	3.	CH	СН	C≡C-iPr
6. CH CH CH CEC-iBu 7. CH CH CH CEC-tBu 8. CH CH CH CEC-tBu 8. CH CH CH CEC-tBu 9. CH CH CH CEC-ME 10. CH CH CH CEC-ME 11. CH CH CH CEC-Ph 11. CH CH CEC-2-Pyridyl 12. CH CH CH CEC-3-Pyridyl 13. CH CH CH CEC-3-Pyridyl 14. CH CH CEC-3-furanyl 15. CH CH CEC-3-furanyl 16. CH CH CEC-3-furanyl 17. CH CH CEC-3-furanyl 18. CH CH CH CEC-3-thienyl 19. CH CH CH CH-CH-PY 20. CH CH CH CH-CH-PY 21. CH CH CH CH-CH-Bu 22. CH CH CH CH-CH-Bu 22. CH CH CH CH-CH-Bu 23. CH CH CH CH-CH-Et 25. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-2-Pyridyl 29. CH CH CH CH-CH-2-Pyridyl 30. CH CH CH CH-CH-3-furanyl 31. CH CH CH CH-CH-2-furanyl 32. CH CH CH CH-CH-2-furanyl 33. CH CH CH CH-CH-2-thienyl 34. CH CH CH CH-CH-2-thienyl 35. CH CH CH CH-CH-2-thienyl 36. CH CH CH CH-CH-2-thienyl 37. CH CH CH CH-CH-2-thienyl 38. CH CH CH CH-CH-2-tycPr 39. CH CH CH CH-CH-2-tycPr 39. CH CH CH CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	4.	СН	СН	C≡C-nPr
7. CH CH CEC-tBu 8. CH CH CEC-tBu 9. CH CH CEC-Et 9. CH CH CEC-Et 10. CH CH CEC-Me 11. CH CH CEC-Ph 11. CH CH CEC-Ph 12. CH CH CEC-Ph 13. CH CH CEC-2-Pyridyl 14. CH CH CEC-2-furanyl 15. CH CH CEC-3-furanyl 16. CH CH CEC-3-furanyl 17. CH CH CEC-3-thienyl 18. CH CH CH CEC-3-thienyl 18. CH CH CH CH-CH-Pr 20. CH CH CH CH-CH-IPr 21. CH CH CH CH-CH-Bu 22. CH CH CH CH-CH-Bu 23. CH CH CH CH-CH-Bu 24. CH CH CH CH-CH-Bu 25. CH CH CH CH-CH-Ph 26. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-Ph 21. CH CH CH-CH-Ph 22. CH CH CH CH-CH-Ph 23. CH CH CH CH-CH-Ph 24. CH CH CH-CH-Et 25. CH CH CH CH-CH-Ph 26. CH CH CH-CH-Ph 27. CH CH CH-CH-Ph 28. CH CH CH-CH-Ph 29. CH CH CH-CH-2-pyridyl 30. CH CH CH CH-CH-2-furanyl 31. CH CH CH-CH-3-furanyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-3-thienyl 34. CH CH CH CH-CH-3-thienyl 35. CH CH CH CH-CH-3-thienyl 36. CH CH CH CH-CH-2-thienyl 37. CH CH CH CH-CH-2-thienyl 38. CH CH CH CH-CH-2-cycPr 39. CH CH CH CH-CH-2-cycPr) 40. CH CH CH-CH-2-tbu	5.	CH	СН	C≡C-Bu
8. CH CH CH C=C-Et 9. CH CH CH C=C-Me 10. CH CH CH C=C-Me 11. CH CH CH C=C-Ph 11. CH CH CH C=C-Ph 12. CH CH CEC-3-Pyridyl 13. CH CH CEC-4-Pyridyl 14. CH CH CEC-3-furanyl 15. CH CH CEC-3-furanyl 16. CH CH CEC-3-furanyl 17. CH CH CEC-3-thienyl 18. CH CH CH CEC-3-thienyl 19. CH CH CH CH-CH-iPr 20. CH CH CH CH-CH-iPr 21. CH CH CH CH-CH-Bu 22. CH CH CH CH-CH-Bu 23. CH CH CH CH-CH-Et 24. CH CH CH CH-CH-Et 25. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-3-Pyridyl 29. CH CH CH CH-CH-3-Pyridyl 30. CH CH CH CH-CH-3-furanyl 31. CH CH CH CH-CH-3-furanyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-3-thienyl 34. CH CH CH CH-CH-3-thienyl 35. CH CH CH CH-CH-3-thienyl 36. CH CH CH CH-CH-3-thienyl 37. CH CH CH CH-CH-2-cycPr 38. CH CH CH CH-CH-2-cycPr 39. CH CH CH CH-CH-1-cycPr) 40. CH CH CH-CH-1-CH-1-CY-CYCPr) 40. CH CH CH-CH-1-CH-1-CY-CYCPr) 40. CH CH CH-CH-1-CH-1-CYCPPr)	6.	СН	СН	C≡C-iBu
9. CH CH CEC-Me 10. CH CH CEC-Me 11. CH CH CEC-Ph 11. CH CH CEC-Ph 12. CH CH CEC-2-Pyridyl 13. CH CH CEC-3-Pyridyl 14. CH CH CEC-3-Pyridyl 15. CH CH CEC-2-furanyl 16. CH CH CEC-3-furanyl 17. CH CH CEC-3-thienyl 18. CH CH CH CH-CycPr 19. CH CH CH-CH-iPr 20. CH CH CH-CH-iPr 21. CH CH CH-CH-Bu 22. CH CH CH CH-CH-Bu 23. CH CH CH CH-CH-Bu 24. CH CH CH-CH-Et 25. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-Ph 21. CH CH CH CH-CH-Ph 22. CH CH CH CH-CH-Ph 23. CH CH CH CH-CH-Bu 24. CH CH CH-CH-Et 25. CH CH CH CH-CH-Et 26. CH CH CH-CH-Ph 27. CH CH CH-CH-Ph 28. CH CH CH CH-CH-2-Pyridyl 29. CH CH CH CH-CH-3-Pyridyl 30. CH CH CH CH-CH-3-furanyl 31. CH CH CH CH-CH-3-furanyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-3-thienyl 34. CH CH CH CH-CH-3-thienyl 35. CH CH CH CH-CH-3-thienyl 36. CH CH CH CH-CH-2-CH-CH-3 37. CH CH CH CH-CH-CH-CH-3 38. CH CH CH CH-CH-2-CYCPr 39. CH CH CH CH-CH-2-CYCPr) 30. CH CH CH CH-CH-2-CYCPr) 30. CH CH CH CH-CH-2-CYCPr) 30. CH CH CH CH-CH-CH-3-CYCPr) 30. CH CH CH CH-CH-CH-3-CYCPr) 31. CH CH CH CH-CH-CH-3-CYCPr) 32. CH CH CH CH-CH-CH-3-CYCPr) 33. CH CH CH CH-CH-CH-2-CYCPr)	7.	СН	СН	C≡C-tBu
9. CH CH CH C=C-Me 10. CH CH CH C=C-Ph 11. CH CH CH C=C-Ph 11. CH CH CH C=C-Pyridyl 12. CH CH CH C=C-3-Pyridyl 13. CH CH CH C=C-4-Pyridyl 14. CH CH CH C=C-2-furanyl 15. CH CH CEC-3-furanyl 16. CH CH C=C-3-furanyl 17. CH CH CEC-3-thienyl 18. CH CH CH C=C-3-thienyl 19. CH CH CH CH=CH-iPr 20. CH CH CH CH=CH-iPr 21. CH CH CH CH=CH-Bu 22. CH CH CH CH=CH-Bu 23. CH CH CH CH=CH-Bu 24. CH CH CH CH=CH-Et 25. CH CH CH CH=CH-Ph 27. CH CH CH CH=CH-Ph 27. CH CH CH CH=CH-Ph 28. CH CH CH CH=CH-Ph 29. CH CH CH CH=CH-2-pyridyl 29. CH CH CH CH=CH-3-pyridyl 30. CH CH CH CH=CH-3-furanyl 31. CH CH CH CH=CH-3-furanyl 32. CH CH CH CH=CH-3-thienyl 33. CH CH CH CH=CH-3-thienyl 34. CH CH CH CH=CH-3-thienyl 35. CH CH CH CH=CH-3-thienyl 36. CH CH CH CH=CH-3-thienyl 37. CH CH CH CH=CH-2-thienyl 38. CH CH CH CH=CH-2-thienyl 39. CH CH CH CH=CH2-CycPr 39. CH CH CH CH2-C+CycPr) 40. CH CH CH CH2-C+CycPr)	8.	СН	СН	C≡C-Et
10. CH CH CH C=C-Ph 11. CH CH CH C=C-Pyridy1 12. CH CH CEC-2-Pyridy1 13. CH CH CEC-3-Pyridy1 14. CH CH CEC-4-Pyridy1 15. CH CH CEC-2-furany1 15. CH CH CEC-3-furany1 16. CH CH CEC-3-furany1 17. CH CH CEC-3-thieny1 18. CH CH CH CEC-3-thieny1 18. CH CH CH CH-CH-PP 20. CH CH CH CH-CH-IPR 21. CH CH CH CH-CH-IBU 22. CH CH CH CH-CH-IBU 23. CH CH CH CH-CH-EE 25. CH CH CH CH-CH-Ph 26. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 28. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-Ph 30. CH CH CH CH-CH-3-Pyridy1 29. CH CH CH CH-CH-3-Pyridy1 30. CH CH CH CH-CH-2-furany1 31. CH CH CH CH-CH-3-furany1 32. CH CH CH CH-CH-3-furany1 33. CH CH CH CH-CH-3-thieny1 34. CH CH CH CH-CH-3-thieny1 35. CH CH CH CH-CH-3-thieny1 36. CH CH CH CH-CH-3-thieny1 37. CH CH CH CH-CH-2-CPP 39. CH CH CH CH-CH-CH-CH-3 39. CH CH CH CH-CH-CH-CH-CPP 39. CH CH CH CH-CH-CH-CH-CPP 39. CH CH CH CH-CH-CH-CH-CPPP 39. CH CH CH CH-CH-CH-CPPP 39. CH CH CH CH-CH-CH-CPPP 40. CH CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CH-CH-CH-CPPPP 40. CH CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	9.	СН	СН	
11. CH CH CH C=C-2-Pyridy1 12. CH CH CH C=C-3-Pyridy1 13. CH CH CH C=C-4-Pyridy1 14. CH CH CH C=C-2-furany1 15. CH CH CEC-2-furany1 16. CH CH CEC-3-furany1 17. CH CH CEC-3-thieny1 18. CH CH CH CH=CH-cycPr 19. CH CH CH CH=CH-iPr 20. CH CH CH CH=CH-iPr 21. CH CH CH CH=CH-iBu 22. CH CH CH CH=CH-iBu 23. CH CH CH CH=CH-Et 25. CH CH CH CH=CH-DE 26. CH CH CH CH=CH-DE 27. CH CH CH CH=CH-DD 28. CH CH CH CH=CH-DD 29. CH CH CH CH=CH-DD 30. CH CH CH CH=CH-3-Pyridy1 29. CH CH CH CH=CH-3-Pyridy1 30. CH CH CH CH=CH-3-furany1 31. CH CH CH CH=CH-3-furany1 32. CH CH CH CH=CH-3-furany1 33. CH CH CH CH=CH-3-thieny1 34. CH CH CH CH=CH-3-thieny1 35. CH CH CH CH=CH-3-thieny1 36. CH CH CH CH=CH-3-thieny1 37. CH CH CH CH2CH2CH2CH3 37. CH CH CH CH2CH2CH2CH3 38. CH CH CH CH2CH2-cycPr 39. CH CH CH CH2CH2-tBu	10.	СН	СН	
12. CH CH C≡C-3-Pyridy1 13. CH CH C≡C-4-Pyridy1 14. CH CH C≡C-2-furany1 15. CH CH C□C-3-furany1 16. CH CH C□C-2-thieny1 17. CH CH C□C-3-thieny1 18. CH CH CH=CH-cycPr 19. CH CH CH=CH-iPr 20. CH CH CH=CH-iPr 20. CH CH CH=CH-Bu 21. CH CH CH=CH-Bu 22. CH CH CH=CH-tBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-tBu 24. CH CH CH=CH-Het 25. CH CH CH=CH-Het 26. CH CH CH=CH-Ph 27. CH CH CH=CH-Pyridy1 28. CH CH CH=CH-2-	11.	СН	СН	
13. CH CH C≡C-4-Pyridy1 14. CH CH C≡C-2-furany1 15. CH CH C≡C-3-furany1 16. CH CH C□C-2-thieny1 17. CH CH C□C-3-thieny1 18. CH CH C□C-3-thieny1 18. CH CH C□C-2-thieny1 18. CH CH C□C-2-thieny1 18. CH CH C□C-2-thieny1 19. CH CH C□C-3-thieny1 19. CH CH C□C-1-iPx 20. CH CH C□C-1-iPx 21. CH CH C□C-1-iPx 22. CH CH C□C-1-iBu 23. CH CH C□C-1-iBu 24. CH CH C□C-1-iBu 24. CH CH C□C-1-Et 25. CH CH C□C-1-IDH 26. CH CH	12.	СН	СН	
14. CH C=C-2-furanyl 15. CH CH C=C-3-furanyl 16. CH CH C=C-2-thienyl 17. CH CH CH=C-2-thienyl 18. CH CH CH=CH-cycPr 19. CH CH CH=CH-iPr 20. CH CH CH=CH-iPr 21. CH CH CH=CH-Bu 22. CH CH CH=CH-iBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-tBu 24. CH CH CH=CH-tBu 24. CH CH CH=CH-tBu 25. CH CH CH=CH-TBu 26. CH CH CH=CH-D+Tbu 27. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-2-Pyridyl 30. CH CH CH=CH-2-Pyridyl	13.	СН	СН	
15. CH CH CEC-3-furanyl 16. CH CH CEC-2-thienyl 17. CH CH CEC-3-thienyl 18. CH CH CH CH-CycPr 19. CH CH CH-CH-IPr 20. CH CH CH-CH-Bu 22. CH CH CH CH-CH-IBu 23. CH CH CH CH-CH-Et 25. CH CH CH CH-CH-Bu 26. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-Ph 29. CH CH CH CH-CH-3-pyridyl 29. CH CH CH CH-CH-3-pyridyl 30. CH CH CH CH-CH-3-furanyl 31. CH CH CH CH-CH-2-thienyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-3-thienyl 34. CH CH CH CH-CH-3-thienyl 35. CH CH CH CH-CH-3-thienyl 36. CH CH CH CH-CH-2-CYCPr 38. CH CH CH CH-CH-2-CYCPr 39. CH CH CH CH-CH-2-CYCPr 39. CH CH CH CH-CH-2-Tbu	14.	СН	СН	
16. CH CH CH C=C-2-thienyl 17. CH CH CH C=C-3-thienyl 18. CH CH CH CH-CycPr 19. CH CH CH-CH-iPr 20. CH CH CH CH-CH-Bu 21. CH CH CH CH-CH-Bu 22. CH CH CH CH-CH-Et 23. CH CH CH CH-CH-Bu 24. CH CH CH CH-CH-Me 26. CH CH CH CH-CH-Me 27. CH CH CH CH-CH-Ph 27. CH CH CH CH-CH-3-Pyridyl 28. CH CH CH CH-CH-4-Pyridyl 29. CH CH CH CH-CH-4-Pyridyl 30. CH CH CH CH-CH-3-furanyl 31. CH CH CH CH-CH-3-furanyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-3-thienyl 34. CH CH CH CH-CH-3-thienyl 35. CH CH CH CH-CH-3-thienyl 36. CH CH CH CH-CH-3-thienyl 37. CH CH CH CH-CH-3-thienyl 38. CH CH CH CH-CH-2-CYCPr 39. CH CH CH CH-2-CYCPr 39. CH CH CH CH-2-TBu	15.	СН	СН	
17. CH CH C≡C-3-thienyl 18. CH CH CH=CH-cycPr 19. CH CH CH=CH-iPr 20. CH CH CH=CH-iPr 21. CH CH CH=CH-Bu 22. CH CH CH=CH-iBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-Et 25. CH CH CH=CH-Et 25. CH CH CH=CH-Ph 27. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-2-Pyridyl 29. CH CH CH=CH-2-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-2-thienyl 34. CH CH		СН	СН	
18. CH CH CH-CycPr 19. CH CH CH-CH-iPr 20. CH CH CH CH-CH-iPr 21. CH CH CH CH-CH-Bu 22. CH CH CH CH-CH-Bu 23. CH CH CH CH-CH-E 24. CH CH CH-CH-E 25. CH CH CH CH-CH-Me 26. CH CH CH-CH-Ph 27. CH CH CH CH-CH-2-Pyridyl 28. CH CH CH CH-CH-3-Pyridyl 29. CH CH CH CH-CH-2-furanyl 30. CH CH CH CH-CH-3-furanyl 31. CH CH CH CH-CH-3-thienyl 32. CH CH CH CH-CH-3-thienyl 33. CH CH CH CH-CH-3-thienyl 34. CH CH CH CH-CH-3-thienyl 35. CH CH CH CH-CH-3-thienyl 36. CH CH CH CH-CH-3-thienyl 37. CH CH CH CH-CH-2-CH-CH-3 37. CH CH CH CH-CH-2-CH-CH-3 38. CH CH CH CH-CH-2-CH-CH-3 39. CH CH CH CH-CH-2-CYCPr 39. CH CH CH CH-CH-2-CYCPr 39. CH CH CH CH-CH-2-CYCPr 40. CH CH CH-CH-2-TBu	17.			
19. CH CH CH=CH-iPr 20. CH CH CH=CH-nPr 21. CH CH CH=CH-Bu 22. CH CH CH=CH-iBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-Et 25. CH CH CH=CH-Me 26. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-Ph 28. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 30. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-2-furanyl 32. CH CH CH=CH-3-furanyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH=CH-3-thienyl 34. CH CH	ļ			
20. CH CH CH=CH-nPr 21. CH CH CH=CH-Bu 22. CH CH CH=CH-iBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-Et 25. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-2-Pyridyl 29. CH CH CH=CH-3-Pyridyl 30. CH CH CH=CH-2-Pyridyl 30. CH CH CH=CH-2-Pyridyl 31. CH CH CH=CH-2-Pyridyl 32. CH CH CH=CH-2-Furanyl 33. CH CH CH=CH-2-Furanyl 33. CH CH CH=CH-2-thienyl 34. CH CH CH=CH-2-thienyl 34. CH CH CH2CH2CH2CH3 35. CH <				
21. CH CH CH=CH-Bu 22. CH CH CH=CH-iBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-Et 25. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-3-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-2-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH3 37. CH CH CH2CH2-cycPr 39. CH C				<u> </u>
22. CH CH CH=CH-iBu 23. CH CH CH=CH-tBu 24. CH CH CH=CH-Et 25. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-2-furanyl 32. CH CH CH=CH-3-furanyl 33. CH CH CH=CH-2-thienyl 34. CH CH CH=CH-3-thienyl 34. CH CH CH=CH-3-thienyl 35. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH2CH3 37. CH CH CH2CH2-cycPr 39. CH				
23. CH CH CH=CH-tBu 24. CH CH CH=CH-Et 25. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH3 37. CH CH CH2CH2-cycPr 39. CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH2CH2-tBu	-			· · · · · · · · · · · · · · · · · · ·
24. CH CH=CH-Et 25. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH2CH3 37. CH CH CH2CH2-cycPr 39. CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH2CH2-tBu				
25. CH CH CH=CH-Me 26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH3 37. CH CH CH2CH2-CH3 38. CH CH CH2CH2-cycPr 39. CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH2CH2-tBu				· · · · · · · · · · · · · · · · · · ·
26. CH CH CH=CH-Ph 27. CH CH CH=CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH2CH3 37. CH CH CH2CH2-CYCP 38. CH CH CH2CH2-CYCPT 39. CH CH CH2CH2-(1-CH3-CYCPT) 40. CH CH2CH2-tBu				
27. CH CH = CH-2-Pyridyl 28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH3 37. CH CH CH2CH2-CycPr 39. CH CH CH2CH2-CycPr 40. CH CH2CH2-tBu		 		
28. CH CH CH=CH-3-Pyridyl 29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH3 37. CH CH CH2CH2-CYCPr 39. CH CH CH2CH2-CYCPr 40. CH CH CH2CH2-TBu				
29. CH CH CH=CH-4-Pyridyl 30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH CH2CH2CH2CH3 35. CH CH CH CH2CH2CH(CH3) 2 36. CH CH CH CH2CH2CH3 37. CH CH CH CH2CH2CH3 38. CH CH CH CH2CH2-cycPr 39. CH CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH CH2CH2-tBu				
30. CH CH CH=CH-2-furanyl 31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH CH=CH-3-thienyl 34. CH CH CH CH2CH2CH2CH3 35. CH CH CH CH2CH2CH2CH3 36. CH CH CH CH2CH2CH2CH3 37. CH CH CH CH2CH2CH3 38. CH CH CH CH2CH2CH3 39. CH CH CH CH2CH2-cycPr 39. CH CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH CH2CH2-tBu		CH	СН	
31. CH CH CH=CH-3-furanyl 32. CH CH CH=CH-2-thienyl 33. CH CH CH=CH-3-thienyl 34. CH CH CH CH2CH2CH2CH3 35. CH CH CH CH2CH2CH(CH3)2 36. CH CH CH CH2CH2CH3 37. CH CH CH CH2CH2CH3 38. CH CH CH CH2CH2CH3 39. CH CH CH CH2CH2-cycPr 40. CH CH CH2CH2-tBu		СН	СН	CH=CH-4-Pyridyl
32. CH CH CH=CH-2-thienyl 33. CH CH CH CH=CH-3-thienyl 34. CH CH CH CH2CH2CH2CH3 35. CH CH CH CH2CH2CH(CH3) 2 36. CH CH CH CH2CH2CH3 37. CH CH CH CH2CH2CH3 38. CH CH CH CH2CH2-cycPr 39. CH CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH CH2CH2-tBu	30.	СН	CH	CH=CH-2-furanyl
33. CH CH CH=CH-3-thienyl 34. CH CH CH CH2CH2CH2CH3 35. CH CH CH CH2CH2CH(CH3)2 36. CH CH CH CH2CH2CH3 37. CH CH CH CH2CH2CH3 38. CH CH CH CH2CH2-cycPr 39. CH CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH CH2CH2-tBu	31.	СН	СН	CH=CH-3-furanyl
34. CH CH CH2CH2CH2CH2CH3 35. CH CH CH2CH2CH(CH3)2 36. CH CH CH2CH2CH2CH3 37. CH CH CH2CH2CH3 38. CH CH CH2CH2-cycPr 39. CH CH CH2CH2-(1-CH3-cycPr) 40. CH CH2CH2-tBu	32.	СН	СН	CH=CH-2-thienyl
35. CH CH CH ₂ CH ₂ CH (CH ₃) ₂ 36. CH CH CH ₂ CH ₂ CH ₂ CH ₃ 37. CH CH CH ₂ CH ₂ CH ₃ 38. CH CH CH CH ₂ CH ₂ -cycPr 39. CH CH CH ₂ CH ₂ -cycPr) 40. CH CH CH ₂ CH ₂ -tBu	33.	CH	СН	CH=CH-3-thienyl
36. CH CH CH ₂ CH ₂ CH ₂ CH ₃ 37. CH CH CH ₂ CH ₂ CH ₃ 38. CH CH CH ₂ CH ₂ -cycPr 39. CH CH CH ₂ CH ₂ -cycPr	34.	СН	СН	CH ₂ CH ₂ CH ₂ CH ₃
37. CH CH CH ₂ CH ₂ CH ₃ 38. CH CH CH ₂ CH ₂ -cycPr 39. CH CH CH ₂ CH ₂ -(1-CH ₃ -cycPr) 40. CH CH CH ₂ CH ₂ -tBu	35.	СН	СН	CH ₂ CH ₂ CH (CH ₃) ₂
38. CH CH CH ₂ CH ₂ -cycPr 39. CH CH CH ₂ CH ₂ -(1-CH ₃ -cycPr) 40. CH CH CH ₂ CH ₂ -tBu	36.	СН	СН	CH ₂ CH ₂ CH ₂ CH ₃
39. CH CH CH ₂ CH ₂ -(1-CH ₃ -cycPr) 40. CH CH CH ₂ CH ₂ -tBu	37.	СН	СН	CH ₂ CH ₂ CH ₃
40. CH CH CH ₂ CH ₂ -tBu	38.	СН	СН	CH ₂ CH ₂ -cycPr
	39.	СН	СН	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
	40.	СН	СН	CH ₂ CH ₂ -tBu
41. CH CH CH ₂ CH ₂ -cycBu	41.	СН	СН	CH ₂ CH ₂ -cycBu

			-
42.	СН	СН	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
43.	CH ·	СН	CH ₂ CH ₂ -2-Pyridyl
44.	СН	CH	CH ₂ CH ₂ -3-Pyridyl
45.	CH	СН	CH ₂ CH ₂ -4-Pyridyl
46.	CH	СН	CH ₂ CH ₂ -2-furanyl
47.	СН	СН	CH ₂ CH ₂ -3-furanyl
48.	СН	СН	CH ₂ CH ₂ -2-thienyl
49.	СН	СН	CH ₂ CH ₂ -3-thienyl
50.	СН	СН	CH ₂ C≡C-cycPr
51.	СН	СН	CH ₂ C≡C-2-furanyl
52.	СН	СН	CH ₂ CH=CH-cycPr
53.	СН	СН	CH ₂ CH=CH-2-furanyl
54.	СН	СН	CH=CHCH2-cycPr
55.	СН	СН	CH=CHCH ₂ -2-furanyl
56.	СН	СН	OCH ₂ C=C (CH ₃) ₂
57.	СН	СН	E-OCH ₂ C=CHCH ₃
58.	СН	СН	Z-OCH ₂ C=CHCH ₃
59.	СН	СН	OCH ₂ CH ₃
60.	СН	СН	OCH ₂ CH ₂ CH ₃
61.	CH	СН	OCH ₂ C=C(C1) ₂
62.	СН	СН	OCH ₂ C=CH ₂
63.	СН	СН	OCH ₂ C≡CCH ₃
64.	СН	СН	OCH ₂ CH ₂ CH ₃
65.	СН	СН	OCH ₂ -cycPr
66.	СН	СН	OCH ₂ -(1-CH ₃ -cycPr)
67.	СН	СН	OCH ₂ -cycBu
68.	СН	СН	$OCH_2 - (1-CH_3-cycBu)$
69.	СН	СН	OCH ₂ -Phenyl
70.	СН	CH	OCH ₂ CH ₂ -cycPr
71.	СН	СН	OCH ₂ CH=cycPr
72.	CCl	СН	C≡C-cycPr
73.	CCl	CH	C≡C-(1-CH,-cycPr)
74.	CCl	СН	C≡C-iPr
75.	CCl	СН	C≡C-nPr
76.	CC1	СН	C≡C-Bu
77.	CCl	СН	C≡C-iBu

	•		•
78.	CC1	СН	C≡C-tBu
79.	CCl	СН	C≡C-Et
80.	CCl	СН	C≡C-Me
81.	CCl	СН	C≡C~Ph
82.	CC1	СН	C≡C-2-Pyridyl
83.	CCl	СН	C≡C-3-Pyridyl
84.	CCl	СН	C≡C-4-Pyridyl
85.	CC1	СН	C≡C-2-furanyl
86.	CC1	СН	C≡C-3-furanyl
87.	CC1	СН	
88.	ccl	СН	C≡C-2-thienyl
		 	C≡C-3-thienyl
89.	CC1	CH	CH=CH-cycPr
90.	CCl	СН	CH=CH-iPr
91.	CCl	СН	CH=CH-nPr
92.	CC1	СН	CH=CH-Bu
93.	CCl	СН	CH=CH-iBu
94.	CCl	СН	CH=CH-tBu
95.	CCl	СН	CH=CH-Et
96.	CCl	СН	CH=CH-Me
97.	CCl	СН	CH=CH-Ph
98.	CC1	СН	CH=CH-2-Pyridyl
99.	CCl	СН	CH=CH-3-Pyridyl
100.	CCl	СН	CH=CH-4-Pyridyl
101.	CCl	СН	CH=CH-2-furanyl
102.	CC1	CH	CH=CH-3-furanyl
103.	ccl	СН	CH=CH-2-thienyl
104.	CCl	СН	CH=CH-3-thienyl
105.	CCl	СН	CH ₂ CH ₂ CH ₂ CH ₃
106.	CCl	СН	CH ₂ CH ₂ CH (CH ₃) ₂
107.	CC1	СН	CH ₂ CH ₂ CH ₂ CH ₃
108.	CCl	СН	CH ₂ CH ₂ CH ₃
109.	CCl	СН	CH ₂ CH ₂ -cycPr
110.	CCl	СН	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
111.	CCl	CH	CH ₂ CH ₂ -tBu
112.	CC1	СН	CH ₂ CH ₂ -cycBu
113.	CCl	СН	$CH_2CH_2-(1-CH_3-cycBu)$
114.	CCl	СН	CH ₂ CH ₂ -2-Pyridyl
115.	CCl	СН	CH ₂ CH ₂ -3-Pyridyl
116.	CCl	СН	CH ₂ CH ₂ -4-Pyridyl

117. CC1 CH CH2CH2-2-furanyl 118. CC1 CH CH2CH2-3-furanyl 119. CC1 CH CH2CH2-2-thienyl 120. CC1 CH CH2CH2-3-thienyl 121. CC1 CH CH2CEC-cycPr 122. CC1 CH CH2CEC-2-furanyl 123. CC1 CH CH2CH2-CH-2-furanyl 124. CC1 CH CH2CH2-CycPr 124. CC1 CH CH2CH2-2-furanyl 125. CC1 CH CH2CH2-2-furanyl 126. CC1 CH CH2CH2-2-furanyl 127. CC1 CH OCH2CEC(CH3)2 128. CC1 CH DCH2CECH3 130. CC1 CH Z-OCH2CECH3 131. CC1 CH OCH2CH2CH3 132. CC1 CH OCH2CECCH13 133. CC1 CH OCH2CECCH3 133. CC1 CH OCH2-CYCPL <th></th> <th></th> <th></th> <th>•</th>				•
119. CC1	117.	CCl	СН	CH ₂ CH ₂ -2-furanyl
120. CC1 CH CH2CH2-3-thienyl 121. CC1 CH CH2C≡C-cycPr 122. CC1 CH CH2C≡C-2-furanyl 123. CC1 CH CH2CH=CH-cycPr 124. CC1 CH CH2CH=CH2-furanyl 125. CC1 CH CH=CHCH2-cycPr. 126. CC1 CH CH=CHCH2-2-furanyl 127. CC1 CH OCH2CCC (CH3) 2 128. CC1 CH E-OCH2C=CHCH3 129. CC1 CH Z-OCH2C=CHCH3 130. CC1 CH OCH2CH2CH3 131. CC1 CH OCH2C=C(C1)2 133. CC1 CH OCH2C=CH2 134. CC1 CH OCH2C=CH2 135. CC1 CH OCH2C=CCH3 135. CC1 CH OCH2C=CCH3 135. CC1 CH OCH2C=CPCPT 138. CC1 CH OCH2-CH2CH3	118.	CCl	СН	CH ₂ CH ₂ -3-furanyl
121. CC1 CH CH₂C≡C-cycPr 122. CC1 CH CH₂C≡C-2-furanyl 123. CC1 CH CH₂CH=CH-cycPr 124. CC1 CH CH₂CH=CH-2-furanyl 125. CC1 CH CH=CHCH₂-cycPr 126. CC1 CH CH=CHCH₂-cycPr 127. CC1 CH OCH₂C=C(CH₃)₂ 128. CC1 CH DCH₂C=CHCH₃ 129. CC1 CH Z-OCH₂C=CHCH₃ 130. CC1 CH OCH₂CH₂CH₃ 131. CC1 CH OCH₂CH₂CH₃ 132. CC1 CH OCH₂C=C(C1)₂ 133. CC1 CH OCH₂C=CH₂ 134. CC1 CH OCH₂C=CCH₃ 135. CC1 CH OCH₂C=CCH₃ 137. CC1 CH OCH₂-cycPr 138. CC1 CH OCH₂-cycPu 140. CC1 CH OCH₂-cycPu 141. </td <td>119.</td> <td>CCl</td> <td>СН</td> <td>CH₂CH₂-2-thienyl</td>	119.	CCl	СН	CH ₂ CH ₂ -2-thienyl
122. CC1	120.	CC1	СН	CH ₂ CH ₂ -3-thienyl
123. CC1	121.	CCl	СН	CH ₂ C≡C-cycPr
124. CC1	122.	ccl	СН	CH ₂ C≡C-2-furanyl
125. CC1 CH CH=CHCH ₂ -cycPr. 126. CC1 CH CH=CHCH ₂ -2-furanyl 127. CC1 CH OCH ₂ C=C(CH ₃) ₂ 128. CC1 CH E-OCH ₂ C=CHCH ₃ 129. CC1 CH Z-OCH ₂ C=CHCH ₃ 130. CC1 CH OCH ₂ CH ₃ 131. CC1 CH OCH ₂ CH ₃ 132. CC1 CH OCH ₂ CH ₃ 133. CC1 CH OCH ₂ C=CH ₃ 134. CC1 CH OCH ₂ C=CH ₃ 135. CC1 CH OCH ₂ C=CH ₃ 136. CC1 CH OCH ₂ C+CH ₃ 137. CC1 CH OCH ₂ C+CH ₃ 138. CC1 CH OCH ₂ C+CH ₃ 139. CC1 CH OCH ₂ C+CH ₃ 139. CC1 CH OCH ₂ C+CycPr 140. CC1 CH OCH ₂ C+CycPr 141. CC1 CH OCH ₂ C+CycPr 142. CC1 CH OCH ₂ C+CycPr 144. CH CC1 CH OCH ₂ C+CycPr 145. CH CC1 CH OCH ₂ C+CycPr 146. CH CC1 C=C-CycPr 147. CH CC1 C=C-IPr 148. CH CC1 C=C-IPr 148. CH CC1 C=C-IBu 149. CH CC1 C=C-E-E 150. CH CC1 C=C-Me	123.	ccl	СН	CH ₂ CH=CH-cycPr
126. CC1	124.	ccl	СН	CH ₂ CH=CH-2-furanyl
127. CC1 CH OCH ₂ C=C (CH ₃) ₂ 128. CC1 CH E-OCH ₂ C=CHCH ₃ 129. CC1 CH Z-OCH ₂ C=CHCH ₃ 130. CC1 CH OCH ₂ CH ₃ 131. CC1 CH OCH ₂ CH ₂ CH ₃ 132. CC1 CH OCH ₂ C=C (C1) ₂ 133. CC1 CH OCH ₂ C=CH ₂ 134. CC1 CH OCH ₂ C=CH ₃ 135. CC1 CH OCH ₂ C=CH ₃ 136. CC1 CH OCH ₂ C=CH ₃ 137. CC1 CH OCH ₂ C+CH ₃ 138. CC1 CH OCH ₂ C+CH ₃ 139. CC1 CH OCH ₂ C+CH ₃ 140. CC1 CH OCH ₂ C+CH ₃ 141. CC1 CH OCH ₂ C+CH ₃ 142. CC1 CH OCH ₂ C+CH ₃ 144. CC1 CH OCH ₂ C+CH ₃ 144. CC1 CH OCH ₂ C+CH ₃ 145. CC1 CH OCH ₂ C+CH ₃ 146. CC1 CH OCH ₂ C+CH ₃ C+CH ₃ 147. CC1 CH OCH ₂ C+CH ₃ C+CH ₃ 148. CC1 CC1 C=C-IPT 147. CC1 CC1 C=C-IBu 149. CC1 CC2 C=C-IBu 150. CC1 CC1 C=C-IBu 150. CC1 CC1 C=C-IBC 151. CC1 CC1 C=C-ME	125.	ccl	СН	CH=CHCH2-cycPr .
128. CC1 CH E-OCH ₂ C=CHCH ₃ 129. CC1 CH Z-OCH ₂ C=CHCH ₃ 130. CC1 CH OCH ₂ CH ₃ 131. CC1 CH OCH ₂ CH ₂ CH ₃ 132. CC1 CH OCH ₂ C=C(C1) ₂ 133. CC1 CH OCH ₂ C=CH ₂ 134. CC1 CH OCH ₂ C=CH ₃ 135. CC1 CH OCH ₂ C=CH ₃ 136. CC1 CH OCH ₂ C+CH ₃ 137. CC1 CH OCH ₂ C+CH ₃ 138. CC1 CH OCH ₂ C+CH ₃ 139. CC1 CH OCH ₂ C+CH ₃ 140. CC1 CH OCH ₂ C+CH ₃ 140. CC1 CH OCH ₂ C+CH ₃ 141. CC1 CH OCH ₂ C+CH ₃ 142. CC1 CH OCH ₂ C+CH ₃ 144. CH CC1 CEC-CH ₂ 145. CH CC1 CEC-CH ₂ 146. CH CC1 CEC-CH ₂ 147. CH CC1 C=C-IPr 148. CH CC1 C=C-IBu 149. CH CC1 C=C-EC 151. CH CC1 C=C-Me	126.	CCl	СН	CH=CHCH ₂ -2-furanyl
129. CCl CH Z-OCH ₂ C=CHCH ₃ 130. CCl CH OCH ₂ CH ₃ 131. CCl CH OCH ₂ CH ₃ 132. CCl CH OCH ₂ C=C(Cl) ₂ 133. CCl CH OCH ₂ C=CH ₂ 134. CCl CH OCH ₂ C=CH ₃ 135. CCl CH OCH ₂ C=CH ₃ 136. CCl CH OCH ₂ C+CH ₃ 137. CCl CH OCH ₂ C-CycPr 138. CCl CH OCH ₂ -CycPu 139. CCl CH OCH ₂ -CycBu 140. CCl CH OCH ₂ -CycPu 141. CCl CH OCH ₂ -CycPr 142. CCl CH OCH ₂ -CycPr 144. CH CCl CEC-CycPr 145. CH CCl CEC-CycPr 146. CH CCl CEC-CycPr 147. CH CCl CEC-IPr 148. CH CCl CEC-Bu 149. CH CCl CEC-EBu 150. CH CCl CEC-EC	127.	CC1	СН	OCH ₂ C=C (CH ₃) ₂
130. CCl CH OCH ₂ CH ₃ 131. CCl CH OCH ₂ CH ₂ CH ₃ 132. CCl CH OCH ₂ C=C(Cl) ₂ 133. CCl CH OCH ₂ C=CH ₂ 134. CCl CH OCH ₂ C=CH ₃ 135. CCl CH OCH ₂ C=CH ₃ 136. CCl CH OCH ₂ C+CH ₃ 137. CCl CH OCH ₂ C+CH ₃ 138. CCl CH OCH ₂ C+CH ₃ 139. CCl CH OCH ₂ C+CH ₃ 140. CCl CH OCH ₂ C+CH ₃ 141. CCl CH OCH ₂ C+CH ₃ 142. CCl CH OCH ₂ C+CH ₃ 143. CH CCl CH OCH ₂ C+CH ₃ C+CH ₃ 144. CH CCl CH OCH ₂ C+C+C+C 145. CH CCl C=C-C+C+C 146. CH CCl C=C-IPr 147. CH CCl C=C-IBu 149. CH CCl C=C-Et 150. CH CCl C=C-Me	128.	ccl	СН	E-OCH ₂ C=CHCH ₃
131. CC1 CH OCH2CH2CH3 132. CC1 CH OCH2C=C(C1)2 133. CC1 CH OCH2C=CH2 134. CC1 CH OCH2CECH3 135. CC1 CH OCH2-CH2CH3 136. CC1 CH OCH2-CYCPT 137. CC1 CH OCH2-(1-CH3-CYCPT) 138. CC1 CH OCH2-CYCBU 139. CC1 CH OCH2-CYCBU 140. CC1 CH OCH2-CYCPU 141. CC1 CH OCH2-CYCPT 142. CC1 CH OCH2-CYCPT 143. CH CC1 C≡C-CYCPT 144. CH CC1 C≡C-CYCPT 144. CH CC1 C≡C-IPT 145. CH CC1 C≡C-IPT 146. CH CC1 C≡C-Bu 147. CH CC1 C≡C-Bu 149. CH CC1 C≡C-EtBu 150. CH CC1 C≡C-Et <t< td=""><td>129.</td><td>ccl</td><td>СН</td><td>Z-OCH₂C=CHCH₃</td></t<>	129.	ccl	СН	Z-OCH ₂ C=CHCH ₃
132. CC1 CH OCH2C=C(C1)2 133. CC1 CH OCH2C=CH2 134. CC1 CH OCH2C=CCH3 135. CC1 CH OCH2-CH2CH3 136. CC1 CH OCH2-CycPr 137. CC1 CH OCH2-(1-CH3-cycPr) 138. CC1 CH OCH2-CycBu 139. CC1 CH OCH2-CYcBu 140. CC1 CH OCH2-CH3-CYCPT 141. CC1 CH OCH2-CH2-CYCPT 142. CC1 CH OCH2-CH3-CYCPT 143. CH CC1 C≡C-CYCPT 144. CH CC1 C≡C-CYCPT 144. CH CC1 C≡C-iPr 145. CH CC1 C≡C-iPr 146. CH CC1 C≡C-Bu 147. CH CC1 C≡C-iBu 149. CH CC1 C≡C-Et 150. CH CC1 C≡C-Et 151. CH CC1 C≡C-Me <td>130.</td> <td>CCl</td> <td>СН</td> <td>OCH₂CH₃</td>	130.	CCl	СН	OCH ₂ CH ₃
133. CC1 CH OCH ₂ C=CH ₂ 134. CC1 CH OCH ₂ C=CCH ₃ 135. CC1 CH OCH ₂ CH ₂ CH ₃ 136. CC1 CH OCH ₂ -cycPr 137. CC1 CH OCH ₂ -cycPr 138. CC1 CH OCH ₂ -cycBu 139. CC1 CH OCH ₂ -CH ₃ -cycBu) 140. CC1 CH OCH ₂ -CH ₃ -cycPu) 141. CC1 CH OCH ₂ -CycPr 142. CC1 CH OCH ₂ -CycPr 143. CH CC1 CEC-cycPr 144. CH CC1 CEC-cycPr 144. CH CC1 CEC-cycPr 145. CH CC1 CEC-iPr 146. CH CC1 CEC-iBu 149. CH CC1 CEC-Et 150. CH CC1 CEC-Me	131.	CCl	СН	OCH ₂ CH ₂ CH ₃
134. CCl CH OCH ₂ C=CCH ₃ 135. CCl CH OCH ₂ C+CH ₂ CH ₃ 136. CCl CH OCH ₂ -cycPr 137. CCl CH OCH ₂ -(1-CH ₃ -cycPr) 138. CCl CH OCH ₂ -(1-CH ₃ -cycPr) 139. CCl CH OCH ₂ -(1-CH ₃ -cycBu) 140. CCl CH OCH ₂ -Phenyl 141. CCl CH OCH ₂ CH=cycPr 142. CCl CH OCH ₂ CH=cycPr 143. CH CCl C=C-cycPr 144. CH CCl C=C-cycPr 145. CH CCl C=C-iPr 146. CH CCl C=C-iPr 147. CH CCl C=C-iBu 149. CH CCl C=C-E-tBu 150. CH CCl C=C-Me	132.	ccl	СН	OCH ₂ C=C(Cl) ₂
135. CC1 CH OCH ₂ CH ₂ CH ₃ 136. CC1 CH OCH ₂ -cycPr 137. CC1 CH OCH ₂ -(1-CH ₃ -cycPr) 138. CC1 CH OCH ₂ -(1-CH ₃ -cycPr) 139. CC1 CH OCH ₂ -(1-CH ₃ -cycBu) 140. CC1 CH OCH ₂ -(1-CH ₃ -cycBu) 141. CC1 CH OCH ₂ -Phenyl 142. CC1 CH OCH ₂ CH ₂ -cycPr 143. CH CC1 CEC-cycPr 144. CH CC1 C=C-iPr 146. CH CC1 C=C-iBu 147. CH CC1 C=C-iBu 149. CH CC1 C=C-Et 150. CH CC1 C=C-Me	133.	ccl	СН	OCH ₂ C=CH ₂
136. CCl CH OCH2-cycPr 137. CCl CH OCH2-(1-CH3-cycPr) 138. CCl CH OCH2-cycBu 139. CCl CH OCH2-CH3-cycBu) 140. CCl CH OCH2-Phenyl 141. CCl CH OCH2-CH2-cycPr 142. CCl CH OCH2-CH2-cycPr 143. CH CCl C≡C-cycPr 144. CH CCl C≡C-cycPr 144. CH CCl C≡C-(1-CH,-cycPr) 145. CH CCl C≡C-iPr 146. CH CCl C≡C-iPr 147. CH CCl C≡C-Bu 148. CH CCl C≡C-iBu 149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	134.	CC1	СН	OCH ₂ C≡CCH ₃
137. CCl CH OCH2-(1-CH3-cycPr) 138. CCl CH OCH2-cycBu 139. CCl CH OCH2-(1-CH3-cycBu) 140. CCl CH OCH2-Phenyl 141. CCl CH OCH2CH2-cycPr 142. CCl CH OCH2CH=cycPr 143. CH CCl C≡C-cycPr 144. CH CCl C≡C-cycPr 144. CH CCl C≡C-iPr 145. CH CCl C≡C-iPr 146. CH CCl C≡C-Bu 147. CH CCl C≡C-Bu 148. CH CCl C≡C-iBu 149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	135.	CCl	СН	OCH ₂ CH ₂ CH ₃
138. CC1 CH OCH2-cycBu 139. CC1 CH OCH2-(1-CH3-cycBu) 140. CC1 CH OCH2-Phenyl 141. CC1 CH OCH2CH2-cycPr 142. CC1 CH OCH2CH=cycPr 143. CH CC1 C≡C-cycPr 144. CH CC1 C≡C-(1-CH,-cycPr) 145. CH CC1 C≡C-iPr 146. CH CC1 C≡C-nPr 147. CH CC1 C≡C-Bu 148. CH CC1 C≡C-iBu 149. CH CC1 C≡C-tBu 150. CH CC1 C≡C-Et 151. CH CC1 C≡C-Me	136.	CCl	СН	OCH ₂ -cycPr
139. CCl CH OCH2-(1-CH3-cycBu) 140. CCl CH OCH2-Phenyl 141. CCl CH OCH2CH2-cycPr 142. CCl CH OCH2CH=cycPr 143. CH CCl C≡C-cycPr 144. CH CCl C≡C-(1-CH,-cycPr) 145. CH CCl C≡C-iPr 146. CH CCl C≡C-nPr 147. CH CCl C≡C-iBu 148. CH CCl C≡C-tBu 149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	137.	CCl	СН	OCH ₂ -(1-CH ₃ -cycPr)
140. CCl CH OCH2-Phenyl 141. CCl CH OCH2CH2-cycPr 142. CCl CH OCH2CH=cycPr 143. CH CCl C \equiv C-cycPr 144. CH CCl C \equiv C-(1-CH,-cycPr) 145. CH CCl C \equiv C-iPr 146. CH CCl C \equiv C-nPr 147. CH CCl C \equiv C-Bu 148. CH CCl C \equiv C-iBu 149. CH CCl C \equiv C-tBu 150. CH CCl C \equiv C-Et 151. CH CCl C \equiv C-Me	138.	CCl	СН	OCH ₂ -cycBu
141. CCl CH OCH2CH2-cycPr 142. CCl CH OCH2CH=cycPr 143. CH CCl C≡C-cycPr 144. CH CCl C≡C-(1-CH,-cycPr) 145. CH CCl C≡C-iPr 146. CH CCl C≡C-nPr 147. CH CCl C≡C-Bu 148. CH CCl C≡C-iBu 149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	139.	CCl	СН	OCH ₂ -(1-CH ₃ -cycBu)
142. CCl CH OCH2CH=cycPr 143. CH CCl C \equiv C-cycPr 144. CH CCl C \equiv C-(1-CH,-cycPr) 145. CH CCl C \equiv C-iPr 146. CH CCl C \equiv C-nPr 147. CH CCl C \equiv C-Bu 148. CH CCl C \equiv C-iBu 149. CH CCl C \equiv C-tBu 150. CH CCl C \equiv C-Et 151. CH CCl C \equiv C-Me	140.	CC1	СН	OCH ₂ -Phenyl
143. CH CCl C≡C-cycPr 144. CH CCl C≡C-(1-CH,-cycPr) 145. CH CCl C≡C-iPr 146. CH CCl C≡C-nPr 147. CH CCl C≡C-Bu 148. CH CCl C≡C-iBu 149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	141.	CCl	СН	OCH ₂ CH ₂ -cycPr
144. CH CC1 C≡C-(1-CH,-cycPr) 145. CH CC1 C≡C-iPr 146. CH CC1 C≡C-nPr 147. CH CC1 C≡C-Bu 148. CH CC1 C≡C-iBu 149. CH CC1 C≡C-tBu 150. CH CC1 C≡C-Et 151. CH CC1 C≡C-Me	142.	CCl	СН	OCH ₂ CH=cycPr
145. CH	143.	СН	CCl	C≡C-cycPr
146. CH CC1 C≡C-nPr 147. CH CC1 C≡C-Bu 148. CH CC1 C≡C-iBu 149. CH CC1 C≡C-tBu 150. CH CC1 C≡C-Et 151. CH CC1 C≡C-Me	144.	СН	CCl	C≡C-(1-CH,-cycPr)
147. CH CCl C≡C-Bu 148. CH CCl C≡C-iBu 149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	145.	СН	CCl	C≡C-iPr
148. CH CC1 C≡C-iBu 149. CH CC1 C≡C-tBu 150. CH CC1 C≡C-Et 151. CH CC1 C≡C-Me	146.	СН	CCl	C≡C-nPr
149. CH CCl C≡C-tBu 150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	147.	СН	CCl	C≡C-Bu
150. CH CCl C≡C-Et 151. CH CCl C≡C-Me	148.	СН	CCl	C≡C-iBu
151. CH CCl C≅C-Me	149.	СН	CCl	C≡C-tBu
450	150.	СН	CCl	C≡C-Et
152. CH CCl C≡C-Ph	151.	СН	CCl	C≡C-Me
	152.	СН	CCl	C≡C-Ph

,	,	_	· · · · · · · · · · · · · · · · · · ·
153.	СН	CCl	C≡C-2-Pyridyl
154.	СН	CCl	C≡C-3-Pyridyl
155.	СН	CC1	C≡C-4-Pyridyl
156.	CH	CCl	C≡C-2-furanyl
157.	СН	CCl	C≡C-3-furanyl
158.	СН	CCl	C≡C-2-thienyl
159.	СН	CCl	C≡C-3-thienyl
160.	СН	CC1	CH=CH-cycPr
161.	СН	CCl	CH=CH-iPr
162.	СН	CCl	CH=CH-nPr
163.	СН	CCl	CH=CH-Bu
164.	СН	CCl	CH=CH-iBu
165.	СН	CC1	CH=CH-tBu
166.	СН	CCl	CH=CH-Et
167.	СН	CC1	СН=СН-Ме
168.	CH	CCl	CH=CH-Ph
169.	СН	CCl	CH=CH-2-Pyridyl
170.	СН	CCl	CH=CH-3-Pyridyl
171.	СН	CCl	CH=CH-4-Pyridyl
172.	СН	CCl	CH=CH-2-furanyl
173.	СН	CCl	CH=CH-3-furanyl
174.	СН	CCl	CH=CH-2-thienyl
175.	СН	CCl	CH=CH-3-thienyl
176.	СН	CCl	CH ₂ CH ₂ CH ₂ CH ₃
177.	СН	CCl	CH ₂ CH ₂ CH (CH ₃) ₂
178.	СН	CCl	CH ₂ CH ₂ CH ₂ CH ₃
179.	СН	CCl	CH ₂ CH ₂ CH ₃
180.	СН	ccl	CH ₂ CH ₂ -cycPr
181.	СН	CCl	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
182.	CH	CCl	CH ₂ CH ₂ -tBu
183.	СН	CCl	CH ₂ CH ₂ -cycBu
184.	СН	CCl	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
185.	СН	CCl	CH ₂ CH ₂ -2-Pyridyl
186.	СН	CCl	CH ₂ CH ₂ -3-Pyridyl
187.	СН	CCl	CH ₂ CH ₂ -4-Pyridyl
188.	СН	CCl	CH ₂ CH ₂ -2-furanyl
189.	СН	CCl	CH ₂ CH ₂ -3-furanyl
190.	СН	CCl	CH ₂ CH ₂ -2-thienyl
191.	СН	CCl	CH ₂ CH ₂ -3-thienyl

WO 00/00479 PCT/US99/<u>1</u>3872

192.	СН	CC1	CH ₂ C≡C-cycPr
193.	СН	CC1	CH ₂ C≡C-2-furanyl
194.	СН	CC1	CH ₂ CH=CH-cycPr
195.	СН	CCl	CH ₂ CH=CH-2-furanyl
196.	СН	CC1	CH=CHCH2-cycPr
197.	СН	CC1	CH=CHCH ₂ -2-furanyl
198.	СН	CCl	OCH ₂ C=C (CH ₃) ₂
199.	СН	CCl	E-OCH ₂ C=CHCH ₃
200.	СН	CCl	Z-OCH ₂ C=CHCH ₃
201.	СН	CC1	OCH ₂ CH ₃
202.	СН	CCl	OCH ₂ CH ₂ CH ₃
203.	СН	CCl	OCH ₂ C=C(Cl) ₂
204.	СН	CC1	OCH ₂ C=CH ₂
205.	СН	CCl	OCH ₂ C≡CCH ₃
206.	СН	CCl	OCH ₂ CH ₂ CH ₃
207.	СН	CCl	OCH ₂ -cycPr
208.	СН	CCl	OCH ₂ -(1-CH ₃ -cycPr)
209.	СН	CC1	OCH ₂ -cycBu
210.	СН	CCl	OCH ₂ -(1-CH ₃ -cycBu)
211.	СН	CCl	OCH ₂ -Phenyl
212.	СН	CCl	OCH ₂ CH ₂ -cycPr
213.	СН	CCl	OCH ₂ CH=cycPr
214.	CCl	CCl	C≡C-cycPr
215.	CCl	CC1	C≡C-(1-CH,-cycPr)
216.	CCl	CC1	C≡C-iPr
217.	CCl	CCl	C≡C-nPr
218.	CCl	CCl	C≡C−Bu
219.	CCl	CCl	C≡C-iBu
220.	CCl	CCl	C≡C-tBu
221.	CCl	CC1	C≡C-Et
222.	CC1	CCl	C≡C-Me
223.	CC1	CCl	C≡C-Ph
224.	CCl	CCl	C≡C-2-Pyridyl
225.	CCl	CCl	C≡C-3-Pyridyl
226.	CCl	CCl	C≡C-4-Pyridyl
227.	CCl	CCl	C≡C-2-furanyl

			· ·
228.	CCl	CCl	C≡C-3-furanyl
229.	CCl	CCl	C≡C-2-thienyl
230.	CCl	CCl	C≡C-3-thienyl
231.	CCl	CCl	CH=CH-cycPr
232.	CCl	CC1	CH=CH-iPr
233.	CCl	CC1	CH=CH-nPr
234.	CCl	ccl	CH=CH-Bu
235.	CCl	CCl	CH=CH-iBu
236.	CCl	CC1	CH=CH-tBu
237.	CC1	CCl	CH=CH-Et
238.	CCl	CCl	CH=CH-Me
239.	CC1	CC1	CH=CH-Ph
240.	CCl	CCl	CH=CH-2-Pyridyl
241.	CCl	CC1	CH=CH-3-Pyridyl
242.	CC1	CCl	CH=CH-4-Pyridyl
243.	CCl	CC1	CH=CH-2-furanyl
244.	CC1	CCl .	CH=CH-3-furanyl
245.	CC1	CCl	CH=CH-2-thienyl
246.	CCl	CCl	CH=CH-3-thienyl
247.	CCl	CC1	CH ₂ CH ₂ CH ₂ CH ₃
248.	CC1	CC1	CH ₂ CH ₂ CH (CH ₃) ₂
249.	CCl	CCl	CH ₂ CH ₂ CH ₂ CH ₃
250.	CCl	CCl	CH ₂ CH ₂ CH ₃
251.	CC1	CCl	CH ₂ CH ₂ -cycPr
252.	CCl	CCl	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
253.	CC1	CCl	CH ₂ CH ₂ -tBu
254.	ccl	CCl .	CH ₂ CH ₂ -cycBu
255.	CCl	CC1	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
256.	CCl	CCl	CH ₂ CH ₂ -2-Pyridyl
257.	CC1	CCl	CH ₂ CH ₂ -3-Pyridyl
258.	CCl	CCl	CH ₂ CH ₂ -4-Pyridyl
259.	CCl	CCl	CH_2CH_2-2 -furanyl
260.	CCl	CC1	CH ₂ CH ₂ -3-furanyl
261.	CCl	CCl	CH ₂ CH ₂ -2-thienyl
262.	CCl	CCl	CH ₂ CH ₂ -3-thienyl
263.	CCl	CCl	CH ₂ C≡C-cycPr
264.	CCl	CC1	CH ₂ C≡C-2-furanyl
265.	CCl	CC1	CH ₂ CH=CH-cycPr
266.	ccl	CCl	CH ₂ CH=CH-2-furanyl

	<u> </u>		·
267.	CCl	CC1	CH=CHCH2-cycPr
268.	ccl	CCl	CH=CHCH ₂ -2-furanyl
269.	CCl	CCl	OCH ₂ C=C(CH ₃) ₂
270.	CCl	CCl	E-OCH ₂ C=CHCH ₃
271.	CCl	CCl	Z-OCH ₂ C=CHCH ₃
272.	CC1	CC1	OCH ₂ CH ₃
273.	CCl	CCl	OCH ₂ CH ₂ CH ₃
274.	CCl	CCl	OCH ₂ C=C(Cl) ₂
275.	CCl	CCl	OCH ₂ C=CH ₂
276.	CCl	CCl	OCH ₂ C≡CCH ₃
277.	CCl	CCl	OCH ₂ CH ₂ CH ₃
278.	CCl	CC1	OCH ₂ -cycPr
279.	ccl	CCl	OCH ₂ -(1-CH ₃ -cycPr)
280.	CCl	CCl	OCH ₂ -cycBu
281.	CCl	CCl	OCH ₂ -(1-CH ₃ -cycBu)
282.	CCl	CC1	OCH ₂ -Phenyl
283.	CCl	CCl	OCH ₂ CH ₂ -cycPr
284.	CC1	CCl	OCH ₂ CH=cycPr
285.	CF	СН	C≡C-cycPr
286.	CF	СН	C≡C-(1-CH,-cycPr)
287.	CF	СН	C≡C-iPr
288.	CF	СН	C≡C-nPr
289.	CF	СН	C≡C−Bu
290.	CF	СН	C≡C-iBu
291.	CF	СН	C≡C-tBu
292.	CF	СН	C≡C-Et
293.	CF	СН	C≡C-Me
294.	CF	СН	C≡C-Ph
295.	CF	СН	C≡C-2-Pyridyl
296.	CF	СН	C≡C-3-Pyridyl
297.	CF	СН	C≡C-4-Pyridyl
298.	CF	СН	C≡C-2-furanyl
299.	CF	СН	C≡C-3-furanyl
300.	CF	CH	C≡C-2-thienyl
301.	CF	СН	C≡C-3-thienyl
302.	CF	СН	CH=CH-cycPr

			
303.	CF	СН	CH=CH-iPr
304.	CF	СН	CH=CH-nPr
305.	CF	СН	CH=CH-Bu
306.	CF	СН	CH=CH-iBu
307.	CF	СН	CH=CH-tBu
308.	CF	СН	CH=CH-Et
309.	CF	СН	CH=CH-Me
310.	CF	СН	CH=CH-Ph
311.	CF	СН	CH=CH-2-Pyridyl
312.	CF	СН	CH=CH-3-Pyridyl
313.	CF	СН	CH=CH-4-Pyridyl
314.	CF	СН	CH=CH-2-furanyl
315.	CF	СН	CH=CH-3-furanyl
316.	CF	СН	CH=CH-2-thienyl
317.	CF	СН	CH=CH-3-thienyl
318.	CF	СН	CH ₂ CH ₂ CH ₂ CH ₃
319.	CF	СН	CH ₂ CH ₂ CH (CH ₃) ₂
320.	CF	СН	CH ₂ CH ₂ CH ₂ CH ₃
321.	CF	СH	CH ₂ CH ₂ CH ₃
322.	CF	СН	CH ₂ CH ₂ -cycPr
323.	CF	СН	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
324.	CF	СН	CH ₂ CH ₂ -tBu
325.	CF	СН	CH ₂ CH ₂ -cycBu
326.	CF	СН	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
327.	CF	CH	CH ₂ CH ₂ -2-Pyridyl
328.	CF	СН	CH ₂ CH ₂ -3-Pyridyl
329.	CF	СН	CH ₂ CH ₂ -4-Pyridyl
330.	CF	СН	CH ₂ CH ₂ -2-furanyl
331.	CF	СН	CH ₂ CH ₂ -3-furanyl
332.	CF	СН	CH ₂ CH ₂ -2-thienyl
333.	CF	СН	CH ₂ CH ₂ -3-thienyl
334.	CF	СН	CH ₂ C≡C-cycPr
335.	CF	СН	CH ₂ C≡C-2-furanyl
336.	CF	СН	CH ₂ CH=CH-cycPr
337.	CF	СН	CH ₂ CH=CH-2-furanyl
338.	CF	СН	CH=CHCH ₂ -cycPr
339.	CF	СН	CH=CHCH ₂ -2-furanyl
340.	CF	СН	OCH ₂ C=C (CH ₃) ₂

	· · · · · · · · · · · · · · · · · · ·		•
341.	CF	СН	E-OCH ₂ C=CHCH ₃
342.	CF	СН	Z-OCH ₂ C=CHCH ₃
343.	CF	СН	OCH ₂ CH ₃
344.	CF	СН	OCH ₂ CH ₂ CH ₃
345.	CF	СН	OCH ₂ C=C(C1) ₂
346.	CF	СН	OCH ₂ C=CH ₂
347.	CF	СН	OCH ₂ C≡CCH ₃
348.	CF	СН	OCH ₂ CH ₂ CH ₃
349.	CF	СН	OCH ₂ -cycPr
350.	CF	СН	OCH ₂ -(1-CH ₃ -cycPr)
351.	CF	СН	OCH ₂ -cycBu
352.	CF	СН	OCH ₂ -(1-CH ₃ -cycBu)
353.	CF	СН	OCH ₂ -Phenyl
354.	CF	СН	OCH ₂ CH ₂ -cycPr
355.	CF	СН	OCH ₂ CH=cycPr
356.	СН	CF	C≡C-cycPr
357.	СН	CF	C≡C-(1-CH,-cycPr)
358.	СН	CF	C≡C-iPr
359.	СН	CF	C≡C-nPr
360.	СН	CF	C≡C-Bu
361.	СН	CF	C≡C-iBu
362.	СН	CF	C≡C-tBu
363.	СН	CF	C≡C-Et
364.	СН	CF	C≡C-Me
365.	СН	CF	C≡C−Ph
366.	СН	CF	C≡C-2-Pyridyl
367.	СН	CF	C≡C-3-Pyridyl
368.	СН	CF	C≡C-4-Pyridyl
369.	СН	CF	C≡C-2-furanyl
370.	СН	CF	C≡C-3-furanyl
371.	СН	CF	C≡C-2-thienyl
372.	СН	CF	C≡C-3-thienyl
373.	СН	CF	CH=CH-cycPr
374.	СН	CF	CH=CH-iPr
375.	СН	CF	CH=CH-nPr
376.	СН	CF	CH=CH-Bu
377.	СН	CF	CH=CH-iBu

			•
378.	CH	CF	CH=CH-tBu
379.	СН	CF	CH=CH-Et
380.	СН	CF	CH=CH-Me
381.	СН	CF	CH=CH-Ph
382.	СН	CF	CH=CH-2-Pyridyl
383.	СН	CF	CH=CH-3-Pyridyl
384.	СН	CF	CH=CH-4-Pyridyl
385.	CH	CF	CH=CH-2-furanyl
386.	CH	CF	CH=CH-3-furanyl
387.	CH	CF	CH=CH-2-thienyl
388.	CH	CF ·	CH=CH-3-thienyl
389.	CH	CF	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
390.	CH	CF	CH ₂ CH ₂ CH (CH ₃) ₂
391.	СН	CF	CH ₂ CH ₂ CH ₃
392.	СН	CF	CH ₂ CH ₂ CH ₃
393.	СН	CF	CH ₂ CH ₂ -cycPr
394.	СН	CF	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
395.	СН	CF	CH ₂ CH ₂ -tBu
396.	СН	CF	CH ₂ CH ₂ -cycBu
397.	СН	CF	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
398.	СН	CF	CH ₂ CH ₂ -2-Pyridyl
399.	СН	CF	CH ₂ CH ₂ -3-Pyridyl
400.	СН	CF	CH ₂ CH ₂ -4-Pyridyl
401.	СН	CF	CH ₂ CH ₂ -2-furanyl
402.	СН	CF	CH ₂ CH ₂ -3-furanyl
403.	СН	CF	CH ₂ CH ₂ -2-thienyl
404.	СН	CF	CH ₂ CH ₂ -3-thienyl
405.	СН	CF	CH ₂ C≡C-cycPr
406.	СН	CF	CH ₂ C≡C-2-furanyl
407.	СН	CF	CH ₂ CH=CH-cycPr
408.	СН	CF	CH ₂ CH=CH-2-furanyl
409.	СН	CF	CH=CHCH ₂ -cycPr
410.	СН	CF	CH=CHCH ₂ -2-furanyl
411.	СН	CF	OCH ₂ C=C (CH ₃) ₂
412.	СН	CF	E-OCH ₂ C=CHCH ₃
413.	СН	CF	Z-OCH ₂ C=CHCH ₃
414.	СН	CF	OCH ₂ CH ₃
415.	СН	CF	OCH ₂ CH ₂ CH ₃

416.	СН	CF	OCH ₂ C=C(Cl) ₂
417.	СН	CF	OCH ₂ C=CH ₂
418.	СН	CF	OCH ₂ C≡CCH ₃
419.	СН	CF	OCH ₂ CH ₂ CH ₃
420.	СН	CF	OCH ₂ -cycPr
421.	СН	CF	OCH ₂ -(1-CH ₃ -cycPr)
422.	СН	CF	OCH ₂ -cycBu
423.	СН	CF	OCH ₂ -(1-CH ₃ -cycBu)
424.	СН	CF	OCH ₂ -Phenyl
425.	СН	CF	OCH ₂ CH ₂ -cycPr
426.	СН	CF	OCH ₂ CH=cycPr
427.	CF	CF	C≡C-cycPr
428.	CF	CF	C≡C-(1-CH,-cycPr)
429.	CF	CF	C≡C−iPr
430.	CF	CF	C≡C-nPr
431.	CF	CF	C≡C−Bu
432.	CF	CF	C≡C-iBu
433.	CF	CF	C≡C-tBu
434.	CF	CF	C≡C-Et
435.	CF	CF	C≡C-Me
436.	CF	CF	C≡C-Ph
437.	CF	CF	C≡C-2-Pyridyl
438.	CF	CF	C≡C-3-Pyridyl
439.	CF	CF	C≡C-4-Pyridyl
440.	CF	CF	C≡C-2-furanyl
441.	CF	CF	C≡C-3-furanyl
442.	CF	CF	C≡C-2-thienyl
443.	CF	CF	C≡C-3-thienyl
444.	CF	CF	CH=CH-cycPr
445.	CF	CF	CH=CH-iPr
446.	CF	CF	CH=CH-nPr
447.	CF	CF	CH=CH-Bu
448.	CF	CF	CH=CH-iBu
449.	CF	CF	CH=CH-tBu
450.	CF	CF	CH=CH-Et
451.	CF	CF	CH=CH-Me
452.	CF	CF	CH=CH-Ph
453.	CF ·	CF	CH=CH-2-Pyridyl

	· · · · · · · · · · · · · · · · · · ·		
454.	CF	CF	CH=CH-3-Pyridyl
455.	CF	CF	CH=CH-4-Pyridyl
456.	CF	CF	CH=CH-2-furanyl
457.	CF	CF	CH=CH-3-furanyl
458.	CF	CF	CH=CH-2-thienyl
459.	CF	CF	CH=CH-3-thienyl
460.	CF	CF	CH ₂ CH ₂ CH ₂ CH ₃
461.	CF	CF	CH ₂ CH ₂ CH (CH ₃) ₂
462.	CF	CF	CH ₂ CH ₂ CH ₂ CH ₃
463.	CF	CF	CH ₂ CH ₂ CH ₃
464.	CF	CF	CH ₂ CH ₂ -cycPr
465.	CF	CF	$CH_2CH_2-(1-CH_3-cycPr)$
466.	CF	CF	CH ₂ CH ₂ -tBu
467.	CF	CF	CH ₂ CH ₂ -cycBu
468.	CF	CF	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
469.	CF	CF	CH ₂ CH ₂ -2-Pyridyl
470.	CF	CF	CH ₂ CH ₂ -3-Pyridyl
471.	CF	CF	CH ₂ CH ₂ -4-Pyridyl
472.	CF	CF	CH ₂ CH ₂ -2-furanyl
473.	CF	CF	CH ₂ CH ₂ -3-furanyl
474.	CF	CF	CH ₂ CH ₂ -2-thienyl
475.	CF	CF	CH ₂ CH ₂ -3-thienyl
476.	CF	CF	CH ₂ C≡C-cycPr
477.	CF	CF	CH ₂ C≡C-2-furanyl
478.	CF	CF	CH ₂ CH=CH-cycPr
479.	CF	CF	CH ₂ CH=CH-2-furanyl
480.	CF	CF	CH=CHCH2-cycPr
481.	CF	CF	CH=CHCH ₂ -2-furanyl
482.	CF	CF	OCH ₂ C=C (CH ₃) ₂
483.	CF	CF	E-OCH ₂ C=CHCH ₃
484.	CF	CF	Z-OCH ₂ C=CHCH ₃
485.	CF	CF	OCH ₂ CH ₃
486.	CF	CF	OCH ₂ CH ₂ CH ₃
487.	CF	CF	OCH ₂ C=C(C1) ₂
488.	CF	CF	OCH ₂ C=CH ₂
489.	CF	CF	OCH ₂ C≡CCH ₃
490.	CF	CF	OCH ₂ CH ₂ CH ₃

			•	
491.	CF	CF	OCH ₂ -cycPr	
492.	CF	CF	OCH ₂ -(1-CH ₃ -cycPr)	
493.	CF	CF	OCH ₂ -cycBu	
494.	CF	CF	OCH ₂ -(1-CH ₃ -cycBu)	
495.	CF	CF	OCH ₂ -Phenyl	
496.	CF	CF	OCH ₂ CH ₂ -cycPr	
497.	CF	CF	OCH ₂ CH=cycPr	
498.	CCl	CF	C≡C-cycPr	
499.	CCl	CF	C≡C-(1-CH ₃ -cycPr)	, , , , , , , , , , , , , , , , , , , ,
500.	CC1	CF	C≡C-iPr	
501.	CCl	CF	C≡C-nPr	
502.	CCl	CF	C≡C-Bu	
503.	CCl	CF	C≡C-iBu	
504.	CC1	CF	C≡C-tBu	
505.	CCl	CF	C≡C-Et	
506.	ccl	CF	C≡C-Me	
507.	ccl	CF	C≡C-Ph	
508.	ccl	CF	C≡C-2-Pyridyl	
509.	CC1	CF	C≡C-3-Pyridyl	
510.	ccl	CF	C≡C-4-Pyridyl	-
511.	CC1	CF	C≡C-2-furanyl	
512.	CCl	CF	C≡C-3-furanyl	-
513.	CCl	CF	C≡C-2-thienyl	
514.	CCl	CF	C≡C-3-thienyl	
515.	CCl	CF	CH=CH-cycPr	
516.	CC1	CF	CH=CH-iPr	
517.	CCl	CF	CH=CH-nPr	
518.	CCl	CF	CH=CH-Bu	
519.	CCl	CF	CH=CH-iBu	,
520.	CCl	CF	CH=CH-tBu	
521.	CCl	CF	CH=CH-Et	
522.	CCl	CF	CH=CH-Me	
523.	CCl	CF	CH=CH-Ph	
524.	CCl	CF	CH=CH-2-Pyridyl	
525.	CCl	CF	CH=CH-3-Pyridyl	
526.	CCl	CF	CH=CH-4-Pyridyl	
527.	CCl	CF	CH=CH-2-furanyl	
528.	CCl	CF	CH=CH-3-furanyl	
529.	CCl	CF	CH=CH-2-thienyl	

530.	CCl	CF	CH=CH-3-thienyl
531.	CCl	CF	CH ₂ CH ₂ CH ₂ CH ₃
532.	CCl	CF	CH ₂ CH ₂ CH(CH ₃) ₂
533.	CCl	CF	CH ₂ CH ₂ CH ₂ CH ₃
534.	CCl	CF	CH ₂ CH ₂ CH ₃
535.	CC1	CF	CH ₂ CH ₂ -cycPr
536.	CC1	CF	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
537.	CCl	CF	CH ₂ CH ₂ -tBu
538.	CCl	CF	CH ₂ CH ₂ -cycBu
539.	CC1	CF	$CH_2CH_2-(1-CH_3-cycBu)$
540.	CC1	CF	CH ₂ CH ₂ -2-Pyridyl
541.	CCl	CF	CH ₂ CH ₂ -3-Pyridyl
542.	CCl	CF	CH ₂ CH ₂ -4-Pyridyl
543.	ccl	CF	CH ₂ CH ₂ -2-furanyl
544.	CCl	CF	CH ₂ CH ₂ -3-furanyl
545.	CCl	CF	CH ₂ CH ₂ -2-thienyl
546.	CCl	CF	CH ₂ CH ₂ -3-thienyl
547.	CCl	CF	CH ₂ C≡C-cycPr
548.	ccl	CF	CH ₂ C≡C-2-furanyl
549.	CCl	CF	CH ₂ CH=CH-cycPr
550.	CCl	CF	CH ₂ CH=CH-2-furanyl
551.	CC1	CF	CH=CHCH ₂ -cycPr
552.	CCl	CF	CH=CHCH ₂ -2-furanyl
553.	CCl	CF	OCH ₂ C=C (CH ₃) ₂
554.	CCl	CF	E-OCH ₂ C=CHCH ₃
555.	CCl	CF	Z-OCH ₂ C=CHCH ₃
556.	CCl	CF	OCH ₂ CH ₃
557.	CCl	CF	OCH ₂ CH ₂ CH ₃
558.	CCl	CF	OCH ₂ C=C(Cl) ₂
559.	CCl	CF	OCH ₂ C=CH ₂
560.	CC1	CF	OCH ₂ C≡CCH ₃
561.	CC1	CF	OCH ₂ CH ₂ CH ₃
562.	CCl	CF	OCH ₂ -cycPr
563.	CCl	CF	OCH ₂ -(1-CH ₃ -cycPr)
564.	CCl	CF	OCH ₂ -cycBu
565.	CC1	CF	OCH ₂ -(1-CH ₃ -cycBu)
566.	CCl	CF	OCH ₂ -Phenyl

567.	CCl	CF	OCH ₂ CH ₂ -cycPr
568.	ccl	CF	OCH ₂ CH=cycPr
569.	CF	CCl	C≡C-cycPr
570.	CF	ccl	C≡C-(1-CH,-cycPr)
571.	CF	CCl	C≡C−iPr
572.	CF	CCl	C≡C-nPr
573.	CF	CC1	C≡C−Bu
574.	CF	CC1	C≡C-iBu
575.	CF	CC1	C≡C-tBu
576.	CF	CC1	C≡C-Et
577.	CF	CC1	C≡C-Me
578.	CF	ccl	C≡C-Ph
579.	CF	ccı	C≡C-2-Pyridyl
580.	CF	CC1	C≡C-3-Pyridyl
581.	CF	ccl	
582.	CF	CC1	C=C-4-Pyridyl
583.	CF	CC1	C≡C-2-furanyl
584.	CF	CC1	C≡C-3-furanyl
			C≡C-2-thienyl
585.	CF	CC1	C≡C-3-thienyl
586.	CF	CCl	CH=CH-cycPr
587.	CF	CCl	CH=CH-iPr
588.	CF	CCl	CH=CH-nPr
589.	CF	CC1	CH=CH-Bu
590.	CF	CCl	CH=CH-iBu
591.	CF	CCl	CH=CH-tBu
592.	CF	CC1	CH=CH-Et
593.	CF	CCl	CH=CH-Me
594.	CF	CCl	CH=CH-Ph
595.	CF	CCl	CH=CH-2-Pyridyl
596.	CF ·	CCl	CH=CH-3-Pyridyl
597.	CF	CCl	CH=CH-4-Pyridyl
598.	CF	CCl	CH=CH-2-furanyl
599.	CF	CCl	CH=CH-3-furanyl
600.	CF	CC1	CH=CH-2-thienyl
601.	CF	CCl	CH=CH-3-thienyl
602.	CF	CC1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
603.	CF	CC1	CH ₂ CH ₂ CH (CH ₃) ₂
604.	CF	CC1	CH ₂ CH ₂ CH ₂ CH ₃
605.	CF	CCl	CH ₂ CH ₂ CH ₃
L			

	· · · · · · · · · · · · · · · · · · ·		
606.	CF	CCl	CH ₂ CH ₂ -cycPr
607.	CF	CC1	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
608.	CF	CC1	CH ₂ CH ₂ -tBu
609.	CF	CCl	CH ₂ CH ₂ -cycBu
610.	CF	CCl	$CH_2CH_2-(1-CH_3-cycBu)$
611.	CF	CCl	CH ₂ CH ₂ -2-Pyridyl
612.	CF	CCl	CH ₂ CH ₂ -3-Pyridyl
613.	CF	CCl	CH ₂ CH ₂ -4-Pyridyl
614.	CF	CCl	CH ₂ CH ₂ -2-furanyl
615.	CF	CCl	CH ₂ CH ₂ -3-furanyl
616.	CF	CC1	CH ₂ CH ₂ -2-thienyl
617.	CF	CCl	CH ₂ CH ₂ -3-thienyl
618.	CF	CC1	CH ₂ C≡C-cycPr
619.	CF	CCl	CH ₂ C≡C-2-furanyl
620.	CF	CCl	CH ₂ CH=CH-cycPr
621.	CF	CCl	CH ₂ CH=CH-2-furanyl
622.	CF	CCl	CH=CHCH2-cycPr
623.	CF	CC1	CH=CHCH ₂ -2-furanyl
624.	CF	CCl	OCH ₂ C=C (CH ₃) ₂
625.	CF	CCl	E-OCH ₂ C=CHCH ₃
626.	CF	CCl	Z-OCH ₂ C=CHCH ₃
627.	CF	CC1	OCH ₂ CH ₃
628.	CF	CCl	OCH ₂ CH ₂ CH ₃
629.	CF	CCl	$OCH_2C=C(C1)_2$
630.	CF	CC1	OCH ₂ C=CH ₂
631.	CF	CC1	OCH ₂ C≡CCH ₃
632.	CF	CCl	OCH ₂ CH ₂ CH ₃
633.	CF	CC1	OCH ₂ -cycPr
634.	CF	CC1	OCH ₂ -(1-CH ₃ -cycPr)
635.	CF .	CC1	OCH ₂ -cycBu
636.	CF	CC1	OCH ₂ -(1-CH ₃ -cycBu)
637.	CF	CCl	OCH ₂ -Phenyl
638.	CF	CCl	OCH ₂ CH ₂ -cycPr
639.	CF	CC1	OCH ₂ CH=cycPr
640.	C(OMe)	CH	C≡C-cycPr
	C(OMe)	СН	C≡C-(1-CH,-cycPr)

- -

642.	C(OMe)	CH	C≡C-iPr
643.	C(OMe)	СН	C≡C-nPr
644.	C(OMe)	СН	C≡C-Bu
645.	C(OMe)	СH	C≡C-iBu
646.	C(OMe)	СН	C≡C-tBu
647.	C(OMe)	СН	C≡C-Et
648.	C(OMe)	СН	C≡C-Me
649.	C(OMe)	СН	C≡C-Ph
650.	C(OMe)	СН	C≡C-2-Pyridyl
651.	C(OMe)	СН	C≡C-3-Pyridyl
652.	C(OMe)	СН	C≡C-4-Pyridyl
653.	C(OMe)	СН	C≡C-2-furanyl
654.	C(OMe)	СН	C≡C-3-furanyl
655.	C(OMe)	СН	C≡C-2-thienyl
656.	C(OMe)	СН	C≡C-3-thienyl
657.	C(OMe)	СН	CH=CH-cycPr
658.	C(OMe)	СН	CH=CH-iPr
659.	C(OMe)	СН	CH=CH-nPr
660.	C(OMe)	СН	CH=CH-Bu
661.	C(OMe)	СН	CH=CH-iBu
662.	C(OMe)	СН	CH=CH-tBu
663.	C(OMe)	СН	CH=CH-Et
664.	C(OMe)	СН	CH=CH-Me
665.	C(OMe)	CH	CH=CH-Ph
666.	C(OMe)	СН	CH=CH-2-Pyridyl
667.	C(OMe)	СН	CH=CH-3-Pyridyl
668.	C(OMe)	CH	CH=CH-4-Pyridyl
669.	C(OMe)	СН	CH=CH-2-furanyl
670.	C(OMe)	СН	CH=CH-3-furanyl
671.	C(OMe)	СН	CH=CH-2-thienyl
672.	C(OMe)	СН	CH=CH-3-thienyl
673.	C(OMe)	СН	CH ₂ CH ₂ CH ₂ CH ₃
674.	C(OMe)	СН	CH ₂ CH ₂ CH (CH ₃) ₂
675.	C(OMe)	СН	CH ₂ CH ₂ CH ₂ CH ₃
676.	C(OMe)	СН	CH ₂ CH ₂ CH ₃
677.	C(OMe)	СН	CH ₂ CH ₂ -cycPr
678.	C(OMe)	СН	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
679.	C(OMe)	СН	CH ₂ CH ₂ -tBu
680.	C(OMe)	СН	CH ₂ CH ₂ -cycBu

0/004/2			
681.	C(OMe)	СН	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
682.	C(OMe)	СН	CH ₂ CH ₂ -2-Pyridyl
683.	C(OMe)	CH	CH ₂ CH ₂ -3-Pyridyl
684.	C(OMe)	CH	CH ₂ CH ₂ -4-Pyridyl
685.	C(OMe)	СН	CH ₂ CH ₂ -2-furanyl
686.	C(OMe)	СН	CH ₂ CH ₂ -3-furanyl
687.	C(OMe)	СН	CH ₂ CH ₂ -2-thienyl
688.	C(OMe)	СН	CH ₂ CH ₂ -3-thienyl
689.	C(OMe)	СН	CH ₂ C≡C-cycPr
690.	C(OMe)	СН	CH ₂ C≡C-2-furanyl
691.	C(OMe)	СН	CH ₂ CH=CH-cycPr
692.	C(OMe)	СН	CH ₂ CH=CH-2-furanyl
693.	C(OMe)	СН	CH=CHCH ₂ -cycPr
694.	C(OMe)	CH .	CH=CHCH ₂ -2-furanyl
695.	C(OMe)	СН	OCH ₂ C=Ċ (CH ₃) ₂
696.	C(OMe)	СН	E-OCH ₂ C=CHCH ₃
697.	C(OMe)	СН	Z-OCH ₂ C=CHCH ₃
698.	C(OMe)	СН	OCH ₂ CH ₃
699.	C(OMe)	СН	OCH ₂ CH ₂ CH ₃
700.	C(OMe)	СН	OCH ₂ C=C(Cl) ₂
701.	C(OMe)	СН	OCH ₂ C=CH ₂
702.	C(OMe)	СН	OCH ₂ C≡CCH ₃
703.	C(OMe)	СН	OCH ₂ CH ₂ CH ₃
704.	C(OMe)	СН	OCH ₂ -cycPr
705.	C(OMe)	СН	OCH ₂ -(1-CH ₃ -cycPr)
706.	C(OMe)	СН	OCH ₂ -cycBu
707.	C(OMe)	СН	OCH ₂ -(1-CH ₃ -cycBu)
708.	C(OMe)	СН	OCH ₂ -Phenyl
709.	C(OMe)	СН	OCH ₂ CH ₂ -cycPr
710.	C(OMe)	СН	OCH ₂ CH=cycPr
711.	СН	C(OMe)	C≡C-cycPr
712.	СН	C(OMe)	C≡C-(1-CH,-cycPr)
713.	СН	C(OMe)	C≡C-iPr
714.	СН	C(OMe)	C≡C-nPr
715.	СН	C(OMe)	C≡C-Bu
716.	СН	C(OMe)	C≡C-iBu

717.	СН	C(OMe)	C≡C-tBu
718.	СН	C(OMe)	C=C-Et
719.	СН	C(OMe)	C≡C-Me
720.	СН	C(OMe)	C≡C-Ph
721.	СН	C(OMe)	C≡C-2-Pyridyl
722.	СН	C(OMe)	C≡C-3-Pyridyl
723.	СН	C(OMe)	C≡C-4-Pyridyl
724.	СН	C(OMe)	C≡C-2-furanyl
725.	СН	C(OMe)	C≡C-3-furanyl
726.	СН	C(OMe)	
727.	СН	C(OMe)	C≡C-2-thienyl
			C≡C-3-thienyl
728.	CH	C(OMe)	CH=CH-cycPr
729.	СН	C(OMe)	CH=CH-iPr
730.	СН	C(OMe)	CH=CH-nPr
731.	СН	C(OMe)	CH=CH-Bu
732.	СН	C(OMe)	CH=CH-iBu
733.	СН	C(OMe)	CH=CH-tBu
734.	СН	C(OMe)	CH=CH-Et
735.	СН	C(OMe)	СН=СН-Ме
736.	СН	C(OMe)	CH=CH-Ph
737.	СН	C(OMe)	CH=CH-2-Pyridyl
738.	СН	C(OMe)	CH=CH-3-Pyridyl
739.	СН	C(OMe)	CH=CH-4-Pyridyl
740.	СН	C(OMe)	CH=CH-2-furanyl
741.	СН	C(OMe)	CH=CH-3-furanyl
742.	СН	C(OMe)	CH=CH-2-thienyl
743.	СН	C(OMe)	CH=CH-3-thienyl
744.	СН	C(OMe)	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
745.	СН	C(OMe)	CH ₂ CH ₂ CH (CH ₃) ₂
746.	СН	C(OMe)	CH ₂ CH ₂ CH ₂ CH ₃
747.	СН	C(OMe)	CH ₂ CH ₂ CH ₃
748.	СН	C(OMe)	CH ₂ CH ₂ -cycPr
749.	СН	C(OMe)	CH ₂ CH ₂ -(1-CH ₃ -cycPr)
750.	СН	C(OMe)	CH ₂ CH ₂ -tBu
751.	СН	C(OMe)	CH ₂ CH ₂ -cycBu
752.	СН	C(OMe)	CH ₂ CH ₂ -(1-CH ₃ -cycBu)
753.	СН	C(OMe)	CH ₂ CH ₂ -2-Pyridyl
754.	СН	C(OMe)	CH ₂ CH ₂ -3-Pyridyl
755.	СН	C(OMe)	CH ₂ CH ₂ -4-Pyridyl

	·		•
756.	СН	C(OMe)	CH ₂ CH ₂ -2-furanyl
757.	СН	C(OMe)	CH ₂ CH ₂ -3-furanyl
758.	СН	C(OMe)	CH ₂ CH ₂ -2-thienyl
759.	СН	C(OMe)	CH ₂ CH ₂ -3-thienyl
760.	СН	C(OMe)	CH ₂ C≡C-cycPr
761.	СН	C(OMe)	CH ₂ C≡C-2-furanyl
762.	СН	C(OMe)	CH ₂ CH=CH-cycPr
763.	СН	C(OMe)	CH ₂ CH=CH-2-furanyl
764.	СН	C(OMe)	CH=CHCH2-cycPr
765.	СН	C(OMe)	CH=CHCH ₂ -2-furanyl
766.	СН	C(OMe)	OCH ₂ C=C (CH ₃) ₂
767.	СН	C(OMe)	E-OCH ₂ C=CHCH ₃
768.	CH ·	C(OMe)	Z-OCH ₂ C=CHCH ₃
769.	СН	C(OMe)	OCH ₂ CH ₃
770.	СН	C(OMe)	OCH ₂ CH ₂ CH ₃
771.	СН	C(OMe)	OCH ₂ C=C(Cl) ₂
772.	СН	C(OMe)	OCH ₂ C=CH ₂
773.	СН	C(OMe)	OCH ₂ C≡CCH ₃
774.	СН	C(OMe)	OCH ₂ CH ₂ CH ₃
775.	СН	C(OMe)	OCH ₂ -cycPr
776.	СН	C(OMe)	OCH ₂ -(1-CH ₃ -cycPr)
777.	СН	C(OMe)	OCH ₂ -cycBu
778.	СН	C(OMe)	OCH ₂ -(1-CH ₃ -cycBu)
779.	СН	C(OMe)	OCH ₂ -Phenyl
780.	СН	C(OMe)	OCH ₂ CH ₂ -cycPr
781.	СН	C(OMe)	OCH ₂ CH=cycPr
782.	-COCH2OC-		C≡C-cycPr
783.	-COCH2OC-		C≡C-(1-CH,-cycPr)
784.	-COCH2OC-		C≡C-iPr
785.	-COCH2OC-		C≡C-nPr
786.	-COCH2OC-		C≡C-Bu
787.	-COCH2OC-		C≡C-iBu
788.	-COCH2OC-		C≡C-tBu
789.	-COCH2OC-		C≡C-Et
790.	-COCH2OC-		C≡C-Me
791.	-сосн2ос-		C≡C-Ph

792COCH2OC- C=C-2-Pyridyl 793COCH2OC- C=C-3-Pyridyl 794COCH2OC- C=C-4-Pyridyl 795COCH2OC- C=C-2-furanyl 796COCH2OC- C=C-3-furanyl 797COCH2OC- C=C-3-thienyl 798COCH2OC- CH=CH-CycPr 800COCH2OC- CH=CH-IPr 801COCH2OC- CH=CH-IPr 802COCH2OC- CH=CH-Bu 803COCH2OC- CH=CH-Bu 804COCH2OC- CH=CH-Bu 805COCH2OC- CH=CH-EBu 806COCH2OC- CH=CH-DE 807COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-2-Pyridyl 810COCH2OC- CH=CH-3-Pyridyl 811COCH2OC- CH=CH-2-furanyl 812COCH2OC- CH=CH-3-furanyl 813COCH2OC- CH=CH-3-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH=CH-3-thienyl 816COCH2OC- CH=CH-3-thienyl 817COCH2OC- CH=CH-3-thienyl <td< th=""></td<>
794COCH2OC- C≡C-4-Pyridyl 795COCH2OC- C≡C-2-furanyl 796COCH2OC- C≡C-3-furanyl 797COCH2OC- C≡C-3-furanyl 798COCH2OC- C≡C-3-thienyl 799COCH2OC- CH=CH-cycPr 800COCH2OC- CH=CH-iPr 801COCH2OC- CH=CH-Bu 802COCH2OC- CH=CH-Bu 803COCH2OC- CH=CH-Bu 804COCH2OC- CH=CH-Et 806COCH2OC- CH=CH-Bu 807COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-Ph 809COCH2OC- CH=CH-Ph 809COCH2OC- CH=CH-2-Pyridyl 809COCH2OC- CH=CH-3-Pyridyl 810COCH2OC- CH=CH-3-furanyl 811COCH2OC- CH=CH-3-furanyl 812COCH2OC- CH=CH-3-furanyl 813COCH2OC- CH=CH-3-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH=CH-3-thienyl 816COCH2OC- CH=CH-3-thienyl 817COCH2OC- CH2CH2CH2CH3 818COCH2OC- CH2CH2CH3 818COCH2OC- CH2CH2CH3
795COCH2OC- C≡C-2-furanyl 796COCH2OC- C≡C-3-furanyl 797COCH2OC- C≡C-2-thienyl 798COCH2OC- C≡C-3-thienyl 799COCH2OC- CH=CH-cycPr 800COCH2OC- CH=CH-iPr 801COCH2OC- CH=CH-nPr 802COCH2OC- CH=CH-iBu 803COCH2OC- CH=CH-iBu 804COCH2OC- CH=CH-EU 805COCH2OC- CH=CH-EU 806COCH2OC- CH=CH-We 807COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-2-Pyridyl 809COCH2OC- CH=CH-3-Pyridyl 810COCH2OC- CH=CH-3-furanyl 811COCH2OC- CH=CH-3-furanyl 812COCH2OC- CH=CH-3-thienyl 813COCH2OC- CH=CH-3-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH=CH-3-thienyl 816COCH2OC- CH=CH-3-thienyl 817COCH2OC- CH2CH2CH2CH3 818COCH2OC- CH2CH2CH3 818COCH2OC- CH2CH2CH3
796COCH2OC- C≡C-3-furanyl 797COCH2OC- C≡C-2-thienyl 798COCH2OC- C≡C-3-thienyl 799COCH2OC- CH=CH-cycPr 800COCH2OC- CH=CH-iPr 801COCH2OC- CH=CH-nPr 802COCH2OC- CH=CH-Bu 803COCH2OC- CH=CH-iBu 804COCH2OC- CH=CH-tBu 805COCH2OC- CH=CH-H 806COCH2OC- CH=CH-Me 807COCH2OC- CH=CH-Me 807COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-Ph 809COCH2OC- CH=CH-2-Pyridyl 809COCH2OC- CH=CH-3-pyridyl 810COCH2OC- CH=CH-4-Pyridyl 811COCH2OC- CH=CH-2-thienyl 812COCH2OC- CH=CH-3-furanyl 813COCH2OC- CH=CH-3-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH=CH-3-thienyl 816COCH2OC- CH=CH-3-thienyl 817COCH2OC- CH2CH2CH2CH3 818COCH2OC- CH2CH2CH2CH3 818COCH2OC- CH2CH2CH2CH3
796. -COCH2OC- C≡C-3-furanyl 797. -COCH2OC- C≡C-2-thienyl 798. -COCH2OC- CH=CH-cycPr 800. -COCH2OC- CH=CH-iPr 801. -COCH2OC- CH=CH-nPr 802. -COCH2OC- CH=CH-Bu 803. -COCH2OC- CH=CH-iBu 804. -COCH2OC- CH=CH-tBu 805. -COCH2OC- CH=CH-Dt 806. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-pyridyl 809. -COCH2OC- CH=CH-3-pyridyl 810. -COCH2OC- CH=CH-4-pyridyl 811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-3-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH=CH-3-thienyl 816. -COCH2OC- CH=CH-3-thienyl 816. -COCH2OC- CH=CH-3-thienyl 816. -COCH2OC- CH=CH-
797COCH2OC- C≡C-2-thienyl 798COCH2OC- C≡C-3-thienyl 799COCH2OC- CH=CH-cycPr 800COCH2OC- CH=CH-iPr 801COCH2OC- CH=CH-nPr 802COCH2OC- CH=CH-Bu 803COCH2OC- CH=CH-iBu 804COCH2OC- CH=CH-tBu 805COCH2OC- CH=CH-Et 806COCH2OC- CH=CH-Ph 807COCH2OC- CH=CH-Ph 808COCH2OC- CH=CH-2-Pyridyl 809COCH2OC- CH=CH-3-Pyridyl 810COCH2OC- CH=CH-2-furanyl 811COCH2OC- CH=CH-2-furanyl 812COCH2OC- CH=CH-3-furanyl 813COCH2OC- CH=CH-3-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH=CH-3-thienyl 816COCH2OC- CH2CH2CH2CH3 817COCH2OC- CH2CH2CH2CH3 818COCH2OC- CH2CH2CH2CH3
798. -COCH2OC- C≡C-3-thienyl 799. -COCH2OC- CH=CH-cycPr 800. -COCH2OC- CH=CH-iPr 801. -COCH2OC- CH=CH-Bu 802. -COCH2OC- CH=CH-iBu 803. -COCH2OC- CH=CH-tBu 804. -COCH2OC- CH=CH-tBu 805. -COCH2OC- CH=CH-Dt 806. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-4-Pyridyl 811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-3-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH2CH3 817. -COCH2OC- CH2CH2CH3
799. -COCH2OC- CH=CH-cycPr 800. -COCH2OC- CH=CH-iPr 801. -COCH2OC- CH=CH-nPr 802. -COCH2OC- CH=CH-Bu 803. -COCH2OC- CH=CH-tBu 804. -COCH2OC- CH=CH-Et 805. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-2-furanyl 813. -COCH2OC- CH=CH-3-furanyl 814. -COCH2OC- CH=CH-2-thienyl 815. -COCH2OC- CH=CH-3-thienyl 816. -COCH2OC- CH2CH2CH2CH3 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
800. -COCH2OC- CH=CH-iPr 801. -COCH2OC- CH=CH-nPr 802. -COCH2OC- CH=CH-Bu 803. -COCH2OC- CH=CH-tBu 804. -COCH2OC- CH=CH-Et 806. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-2-furanyl 813. -COCH2OC- CH=CH-3-furanyl 814. -COCH2OC- CH=CH-2-thienyl 815. -COCH2OC- CH=CH-3-thienyl 816. -COCH2OC- CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
801. -COCH2OC- CH=CH-nPr 802. -COCH2OC- CH=CH-Bu 803. -COCH2OC- CH=CH-iBu 804. -COCH2OC- CH=CH-Et 805. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-2-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
802. -COCH2OC- CH=CH-Bu 803. -COCH2OC- CH=CH-iBu 804. -COCH2OC- CH=CH-tBu 805. -COCH2OC- CH=CH-Et 806. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 810. -COCH2OC- CH=CH-3-Pyridyl 811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
803. -COCH2OC- CH=CH-iBu 804. -COCH2OC- CH=CH-tBu 805. -COCH2OC- CH=CH-Et 806. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-2-furanyl 811. -COCH2OC- CH=CH-3-furanyl 812. -COCH2OC- CH=CH-2-thienyl 813. -COCH2OC- CH=CH-3-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 816. -COCH2OC- CH ₂ CH ₂ CH(CH ₃) ₂ 817. -COCH2OC- CH ₂ CH ₂ CH ₂ CH ₃ 818. -COCH2OC- CH ₂ CH ₂ CH ₃
804. -COCH2OC- CH=CH-tBu 805. -COCH2OC- CH=CH-Et 806. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-2-furanyl 811. -COCH2OC- CH=CH-3-furanyl 812. -COCH2OC- CH=CH-2-thienyl 813. -COCH2OC- CH=CH-3-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH3
805. -COCH2OC- CH=CH-Et 806. -COCH2OC- CH=CH-Me 807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-4-Pyridyl 811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
807. -COCH2OC- CH=CH-Ph 808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-2-furanyl 811. -COCH2OC- CH=CH-3-furanyl 812. -COCH2OC- CH=CH-2-thienyl 813. -COCH2OC- CH=CH-3-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH3
808. -COCH2OC- CH=CH-2-Pyridyl 809. -COCH2OC- CH=CH-3-Pyridyl 810. -COCH2OC- CH=CH-4-Pyridyl 811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
809COCH2OC- CH=CH-3-Pyridyl 810COCH2OC- CH=CH-4-Pyridyl 811COCH2OC- CH=CH-2-furanyl 812COCH2OC- CH=CH-3-furanyl 813COCH2OC- CH=CH-2-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH=CH-3-thienyl 816COCH2OC- CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 816COCH2OC- CH ₂ CH ₂ CH ₂ CH ₃ 817COCH2OC- CH ₂ CH ₂ CH ₃ 818COCH2OC- CH ₂ CH ₂ CH ₃
810. -COCH2OC- CH=CH-4-Pyridyl 811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
811. -COCH2OC- CH=CH-2-furanyl 812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
812. -COCH2OC- CH=CH-3-furanyl 813. -COCH2OC- CH=CH-2-thienyl 814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
813COCH2OC- CH=CH-2-thienyl 814COCH2OC- CH=CH-3-thienyl 815COCH2OC- CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 816COCH2OC- CH ₂ CH ₂ CH (CH ₃) ₂ 817COCH2OC- CH ₂ CH ₂ CH ₂ CH ₃ 818COCH2OC- CH ₂ CH ₂ CH ₃
814. -COCH2OC- CH=CH-3-thienyl 815. -COCH2OC- CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
815. -COCH2OC- CH2CH2CH2CH2CH3 816. -COCH2OC- CH2CH2CH(CH3)2 817. -COCH2OC- CH2CH2CH2CH3 818. -COCH2OC- CH2CH2CH3
816COCH2OC- CH ₂ CH ₂ CH (CH ₃) ₂ 817COCH2OC- CH ₂ CH ₂ CH ₂ CH ₃ 818COCH2OC- CH ₂ CH ₂ CH ₃
817COCH2OC- CH ₂ CH ₂ CH ₂ CH ₃ 818COCH2OC- CH ₂ CH ₂ CH ₃
818COCH2OC- CH ₂ CH ₂ CH ₃
819COCH2OC- CH ₂ CH ₂ -cycPr
820. $-COCH2OC CH_2CH_2-(1-CH_3-cycPr)$
821COCH2OC- CH ₂ CH ₂ -tBu
822COCH2OC- CH ₂ CH ₂ -cycBu
823COCH2OC- CH ₂ CH ₂ -(1-CH ₃ -cycBu)
824COCH2OC- CH ₂ CH ₂ -2-Pyridyl
825COCH2OC- CH ₂ CH ₂ -3-Pyridyl
826COCH2OC- CH ₂ CH ₂ -4-Pyridyl
827COCH2OC- CH ₂ CH ₂ -2-furanyl
828COCH2OC- CH ₂ CH ₂ -3-furanyl
829COCH2OC- CH ₂ CH ₂ -2-thienyl
830COCH2OC- CH ₂ CH ₂ -3-thienyl

	· · · · · · · · · · · · · · · · · · ·	
831.	-COCH2OC-	CH ₂ C≡C-cycPr
832.	-COCH2OC-	CH ₂ C≡C-2-furanyl
833.	-сосн2ос-	CH ₂ CH=CH-cycPr
834.	-COCH2OC-	CH ₂ CH=CH-2-furanyl
835.	-COCH2OC-	CH=CHCH2-cycPr
836.	-COCH2OC-	CH=CHCH ₂ -2-furanyl
837.	-COCH2OC-	OCH ₂ C=C (CH ₃) ₂
838.	-COCH2OC-	E-OCH ₂ C=CHCH ₃
839.	-COCH2OC-	Z-OCH ₂ C=CHCH ₃
840.	-COCH2OC-	OCH ₂ CH ₃
841.	-COCH2OC-	OCH ₂ CH ₂ CH ₃
842.	-COCH2OC-	OCH ₂ C=C(Cl) ₂
843.	-COCH2OC-	OCH ₂ C=CH ₂
844.	-COCH2OC-	OCH ₂ C≡CCH ₃
845.	-COCH2OC-	OCH ₂ CH ₂ CH ₃
846.	-COCH2OC-	OCH ₂ -cycPr
847.	-COCH2OC-	OCH ₂ -(1-CH ₃ -cycPr)
848.	-COCH2OC-	OCH ₂ -cycBu
849.	-COCH2OC-	OCH ₂ -(1-CH ₃ -cycBu)
850.	-COCH2OC-	OCH ₂ -Phenyl
851.	-COCH2OC-	OCH ₂ CH ₂ -cycPr
852.	-COCH2OC-	OCH ₂ CH=cycPr

5

^{*}Unless otherwise noted, stereochemistry is (+/-) and in \mathbb{R}^2 , all double bonds are cis and trans.

WO 00/00479 PCT/US99/13872
5 Utility

The compounds of this invention possess reverse transcriptase inhibitory activity, in particular, HIV inhibitory efficacy. The compounds of formula (I) possess HIV reverse transcriptase inhibitory activity and are therefore useful as antiviral agents for the treatment of HIV infection and associated diseases. The compounds of formula (I) possess HIV reverse transcriptase inhibitory activity and are effective as inhibitors of HIV growth. The ability of the compounds of the present invention to inhibit viral growth or infectivity is demonstrated in standard assay of viral growth or infectivity, for example, using the assay described below.

The compounds of formula (I) of the present invention are also useful for the inhibition of HIV in an ex vivo sample containing HIV or expected to be exposed to HIV. Thus, the compounds of the present invention may be used to inhibit HIV present in a body fluid sample (for example, a serum or semen sample) which contains or is suspected to contain or be exposed to HIV.

The compounds provided by this invention are also useful as standard or reference compounds for use in tests or assays for determining the ability of an agent to inhibit viral clone replication and/or HIV reverse transcriptase, for example in a pharmaceutical research program. Thus, the compounds of the present invention may be used as a control or reference compound in such assays and as a quality control standard. The compounds of the present invention may be provided in a commercial kit or container for use as such standard or reference compound.

Since the compounds of the present invention exhibit specificity for HIV reverse transcriptase, the compounds of the present invention may also be useful as diagnostic reagents in diagnostic assays for the detection of HIV reverse transcriptase. Thus, inhibition of the reverse transcriptase activity in an assay (such as the assays

described herein) by a compound of the present invention would be indicative of the presence of HIV reverse transcriptase and HIV virus.

As used herein "µg" denotes microgram, "mg" denotes milligram, "g" denotes gram, "µL" denotes microliter, "mL"

denotes milliliter, "L" denotes liter, "nM" denotes nanomolar, "µM" denotes micromolar, "mM" denotes millimolar, "M" denotes molar and "nm" denotes nanometer. "Sigma" stands for the Sigma-Aldrich Corp. of St. Louis, MO.

15 <u>HIV RNA Assay</u>

DNA Plasmids and in vitro RNA transcripts:

Plasmid pDAB 72 containing both gag and pol sequences of BH10 (bp 113-1816) cloned into PTZ 19R was prepared according to Erickson-Viitanen et al. AIDS Research and

Human Retroviruses 1989, 5, 577. The plasmid was linearized with Bam HI prior to the generation of in vitro RNA transcripts using the Riboprobe Gemini system II kit (Promega) with T7 RNA polymerase. Synthesized RNA was purified by treatment with RNase free DNAse (Promega),

phenol-chloroform extraction, and ethanol precipitation. RNA transcripts were dissolved in water, and stored at -70°C. The concentration of RNA was determined from the A260.

30 Probes:

35

40

Biotinylated capture probes were purified by HPLC after synthesis on an Applied Biosystems (Foster City, CA) DNA synthesizer by addition of biotin to the 5' terminal end of the oligonucleotide, using the biotin-phosphoramidite reagent of Cocuzza, Tet. Lett. 1989, 30, 6287. The gag biotinylated capture probe (5-biotin-CTAGCTCCCTGCTTGCCCATACTA 3') was complementary to nucleotides 889-912 of HXB2 and the pol biotinylated capture probe (5'-biotin -CCCTATCATTTTTGGTTTCCAT 3') was complementary to nucleotides 2374-2395 of HXB2. Alkaline

5 phosphatase conjugated oligonucleotides used as reporter probes were prepared by Syngene (San Diego, CA.). The pol reporter probe (5' CTGTCTTACTTTGATAAAACCTC 3') was complementary to nucleotides 2403-2425 of HXB2. reporter probe (5' CCCAGTATTTGTCTACAGCCTTCT 3') was 10 complementary to nucleotides 950-973 of HXB2. All nucleotide positions are those of the GenBank Genetic Sequence Data Bank as accessed through the Genetics Computer Group Sequence Analysis Software Package (Devereau Nucleic Acids Research 1984, 12, 387). The reporter probes were prepared as 0.5 µM stocks in 2 x SSC (0.3 M NaCl, 0.03 M 15 sodium citrate), 0.05 M Tris pH 8.8, 1 mg/mL BSA. biotinylated capture probes were prepared as 100 µM stocks

20 <u>Streptavidin coated plates:</u>

in water.

Streptavidin coated plates were obtained from Du Pont Biotechnology Systems (Boston, MA).

Cells and virus stocks:

25 MT-2 and MT-4 cells were maintained in RPMI 1640 supplemented with 5% fetal calf serum (FCS) for MT-2 cells or 10% FCS for MT-4 cells, 2 mM L-glutamine and 50 μg/mL gentamycin, all from Gibco. HIV-1 RF was propagated in MT-4 cells in the same medium. Virus stocks were prepared approximately 10 days after acute infection of MT-4 cells and stored as aliquots at -70°C. Infectious titers of HIV-1(RF) stocks were 1-3 x 10⁷ PFU (plaque forming units)/mL as measured by plaque assay on MT-2 cells (see below). Each aliquot of virus stock used for infection was thawed only once.

For evaluation of antiviral efficacy, cells to be infected were subcultured one day prior to infection. On the day of infection, cells were resuspended at 5 x 10^5 cells/mL in RPMI 1640, 5% FCS for bulk infections or at 2 x

5 10⁶/mL in Dulbecco's modified Eagles medium with 5% FCS for infection in microtiter plates. Virus was added and culture continued for 3 days at 37°C.

HIV RNA assay:

Cell lysates or purified RNA in 3 M or 5 M GED were 10 mixed with 5 M GED and capture probe to a final guanidinium isothiocyanate concentration of 3 M and a final biotin oligonucleotide concentration of 30 nM. Hybridization was carried out in sealed U bottom 96 well tissue culture plates 15 (Nunc or Costar) for 16-20 hours at 37°C. RNA hybridization reactions were diluted three-fold with deionized water to a final quanidinium isothiocyanate concentration of 1 M and aliquots (150 μ L) were transferred to streptavidin coated microtiter plates wells. Binding of capture probe and 20 capture probe-RNA hybrid to the immobilized streptavidin was allowed to proceed for 2 hours at room temperature, after which the plates were washed 6 times with DuPont ELISA plate wash buffer (phosphate buffered saline(PBS), 0.05% Tween 20.) A second hybridization of reporter probe to the 25 immobilized complex of capture probe and hybridized target RNA was carried out in the washed streptavidin coated well by addition of 120 µl of a hybridization cocktail containing 4 X SSC, 0.66% Triton X 100, 6.66% deionized formamide, 1 mg/mL BSA and 5 nM reporter probe. After hybridization for one hour at 37°C, the plate was again washed 6 times. 30 Immobilized alkaline phosphatase activity was detected by addition of 100 µL of 0.2 mM 4-methylumbelliferyl phosphate (MUBP, JBL Scientific) in buffer δ (2.5 M diethanolamine pH 8.9 (JBL Scientific), 10 mM MgCl₂, 5 mM zinc acetate dihydrate and 5 mM N-hydroxyethyl-ethylene-diamine-triacetic 35 The plates were incubated at 37°C. Fluorescence at 450 nM was measured using a microplate fluorometer

(Dynateck) exciting at 365 nM.

5 <u>Microplate based compound evaluation in HIV-1 infected MT-2</u> cells:

Compounds to be evaluated were dissolved in DMSO and diluted in culture medium to twice the highest concentration to be tested and a maximum DMSO concentration of 2%.

Further three-fold serial dilutions of the compound in 10 culture medium were performed directly in U bottom microtiter plates (Nunc). After compound dilution, MT-2 cells (50 μ L) were added to a final concentration of 5 x 10⁵ per mL (1 x 10^5 per well). Cells were incubated with 15 compounds for 30 minutes at 37°C in a CO2 incubator. For evaluation of antiviral potency, an appropriate dilution of HIV-1 (RF) virus stock (50 μ L) was added to culture wells containing cells and dilutions of the test compounds. The final volume in each well was 200 µL. Eight wells per plate 20 were left uninfected with 50 µL of medium added in place of virus, while eight wells were infected in the absence of any antiviral compound. For evaluation of compound toxicity, parallel plates were cultured without virus infection.

After 3 days of culture at 37°C in a humidified chamber inside a CO2 incubator, all but 25 μ L of medium/well was removed from the HIV infected plates. Thirty seven μ L of 5 M GED containing biotinylated capture probe was added to the settled cells and remaining medium in each well to a final concentration of 3 M GED and 30 nM capture probe.

30

35

Hybridization of the capture probe to HIV RNA in the cell lysate was carried out in the same microplate well used for virus culture by sealing the plate with a plate sealer (Costar), and incubating for 16--20~hrs in a 37°C incubator. Distilled water was then added to each well to dilute the hybridization reaction three-fold and $150~\mu\text{L}$ of this diluted mixture was transferred to a streptavidin coated microtiter plate. HIV RNA was quantitated as described above. A standard curve, prepared by adding known amounts of pDAB 72 in vitro RNA transcript to wells containing lysed uninfected

5 cells, was run on each microtiter plate in order to determine the amount of viral RNA made during the infection.

In order to standardize the virus inoculum used in the evaluation of compounds for antiviral activity, dilutions of virus were selected which resulted in an IC90 value

- 10 (concentration of compound required to reduce the HIV RNA level by 90%) for dideoxycytidine (ddC) of 0.2 µg/mL. IC90 values of other antiviral compounds, both more and less potent than ddC, were reproducible using several stocks of HIV-1 (RF) when this procedure was followed. This
- 15 concentration of virus corresponded to ~3 x 10⁵ PFU (measured by plaque assay on MT-2 cells) per assay well and typically produced approximately 75% of the maximum viral RNA level achievable at any virus inoculum. For the HIV RNA assay, IC90 values were determined from the percent
- reduction of net signal (signal from infected cell samples minus signal from uninfected cell samples) in the RNA assay relative to the net signal from infected, untreated cells on the same culture plate (average of eight wells). Valid performance of individual infection and RNA assay tests was judged according to three criteria. It was required that
 - the virus infection should result in an RNA assay signal equal to or greater than the signal generated from 2 ng of pDAB 72 in vitro RNA transcript. The IC90 for ddC,
- determined in each assay run, should be between 0.1 and 0.3 µg/mL. Finally, the plateau level of viral RNA produced by an effective reverse transcriptase inhibitor should be less than 10% of the level achieved in an uninhibited infection.

For antiviral potency tests, all manipulations in microtiter plates, following the initial addition of 2X concentrated compound solution to a single row of wells, were performed using a Perkin Elmer/Cetus ProPette.

35

Compounds tested in the above assay are considered to be active if they exhibit an IC_{90} of $\leq 20~\mu M$. Preferred compounds of the present invention have IC_{90} 's of $\leq 5~\mu M$.

More preferred compounds of the present invention have IC_{90} 's of $\leq 0.5 \ \mu\text{M}$. Even more preferred compounds of the present invention have IC_{90} 's of $\leq 0.05 \ \mu\text{M}$. Still more preferred compounds of the present invention have IC_{90} 's of $\leq 0.005 \ \mu\text{M}$.

Using the methodology described above, a number of compounds of the present invention were found to exhibit an IC90 of \leq 20 μ M, thereby confirming the utility of the compounds of the present invention as effective HIV inhibitors.

15 <u>Protein Binding and Mutant Resistance</u>

5

10

20

25

30

35

In order to characterize NNRTI analogs for their clinical efficacy potential the effect of plasma proteins on antiviral potency and measurements of antiviral potency against wild type and mutant variants of HIV which carry amino acid changes in the known binding site for NNRTIs were examined. The rationale for this testing strategy is two fold:

Many drugs are extensively bound to plasma proteins. Although the binding affinity for most drugs for the major components of human plasma, namely, human serum albumin (HSA) or alpha-1-acid glycoprotein (AAG), is low, these major components are present in high concentration in the blood. Only free or unbound drug is available to cross the infected cell membrane for interaction with the target site (i.e., HIV-1 reverse transcriptase, HIV-1 RT). Therefore, the effect of added HSA+AAG on the antiviral potency in tissue culture more closely reflects the potency of a given compound in the clinical setting. concentration of compound required for 90% inhibition of virus replication as measured in a sensitive viral RNA-based detection method is designated the IC90. The fold increase in apparent IC90 for test compounds in the presence or added levels of HSA and AAG that reflect in vivo concentrations (45 mg/ml HSA, 1 mg/ml AAG) was then calculated. The lower

5 the fold increase, the more compound will be available to interact with the target site.

The combination of the high rate of virus replication in the infected individual and the poor fidelity of the viral RT results in the production of a quasi-species 10 or mixtures of HIV species in the infected individual. These species will include a majority wild type species, but also mutant variants of HIV and the proportion of a given mutant will reflect its relative fitness and replication rate. Because mutant variants including mutants with changes in the amino acid sequence of the viral RT likely 15 pre-exist in the infected individual's quasi-species, the overall potency observed in the clinical setting will reflect the ability of a drug to inhibit not only wild type HIV-1, but mutant variants as well. We thus have constructed, in a known genetic background, mutant variants 20 of HIV-1 which carry amino acid substitutions at positions thought to be involved in NNRTI binding, and measured the ability of test compounds to inhibit replication of these mutant viruses. The concentration of compound required for 90% inhibition of virus replication as measured in a 25 sensitive viral RNA-based detection method is designated the It is desirable to have a compound which has high activity against a variety of mutants.

30 Dosage and Formulation

35

40

The antiviral compounds of this invention can be administered as treatment for viral infections by any means that produces contact of the active agent with the agent's site of action, i.e., the viral reverse transcriptase, in the body of a mammal. They can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but preferably are administered with a pharmaceutical carrier selected on the basis of the chosen

5 route of administration and standard pharmaceutical practice.

10

15

20

25

30

35

The dosage administered will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the age, health and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; and the effect desired. A daily dosage of active ingredient can be expected to be about 0.001 to about 1000 milligrams per kilogram of body weight, with the preferred dose being about 0.1 to about 30 mg/kg.

Dosage forms of compositions suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition. The active ingredient can be administered orally in solid dosage forms, such as capsules, tablets and powders, or in liquid dosage forms, such as elixirs, syrups and suspensions. It can also be administered parenterally, in sterile liquid dosage forms.

Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract. Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts, and sodium EDTA.

In addition, parenteral solutions can contain preservatives,

In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, supra, a standard reference text in this field.

20 Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

Capsules

A large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg of lactose, 50 mg of cellulose, and 6 mg magnesium stearic.

30 Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil can be prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules should then be washed and dried.

Tablets

35

A large number of tablets can be prepared by 40 conventional procedures so that the dosage unit is 100 mg of

5 active ingredient, 0.2 mg of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch and 98.8 mg of lactose.

Appropriate coatings may be applied to increase palatability or delay absorption.

10

15

30

Suspension

An aqueous suspension can be prepared for oral administration so that each 5 mL contain 25 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mg of vanillin.

Injectable

A parenteral composition suitable for administration by injection can be prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution is sterilized by commonly used techniques.

25 <u>Combination of components (a) and (b)</u>

Each therapeutic agent component of this invention can independently be in any dosage form, such as those described above, and can also be administered in various ways, as described above. In the following description component (b) is to be understood to represent one or more agents as described previously. Thus, if components (a) and (b) are to be treated the same or independently, each agent of component (b) may also be treated the same or independently.

Components (a) and (b) of the present invention may be formulated together, in a single dosage unit (that is, combined together in one capsule, tablet, powder, or liquid, etc.) as a combination product. When component (a) and (b) are not formulated together in a single dosage unit, the component (a) may be administered at the same time as component (b) or in any order; for example component (a) of

5 this invention may be administered first, followed by administration of component (b), or they may be administered in the revserse order. If component (b) contains more that one agent, e.g., one RT inhibitor and one protease inhibitor, these agents may be administered together or in any order. When not administered at the same time, 10 preferably the administration of component (a) and (b) occurs less than about one hour apart. Preferably, the route of administration of component (a) and (b) is oral. The terms oral agent, oral inhibitor, oral compound, or the 15 like, as used herein, denote compounds which may be orally administered. Although it is preferable that component (a) and component (b) both be administered by the same route (that is, for example, both orally) or dosage form, if desired, they may each be administered by different routes 20 (that is, for example, one component of the combination product may be administered orally, and another component may be administered intravenously) or dosage forms.

As is appreciated by a medical practitioner skilled in the art, the dosage of the combination therapy of the invention may vary depending upon various factors such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration, the age, health and weight of the recipient, the nature and extent of the symptoms, the kind of concurrent treatment, the frequency of treatment, and the effect desired, as described above.

25

30

35

40

The proper dosage of components (a) and (b) of the present invention will be readily ascertainable by a medical practitioner skilled in the art, based upon the present disclosure. By way of general guidance, typically a daily dosage may be about 100 milligrams to about 1.5 grams of each component. If component (b) represents more than one compound, then typically a daily dosage may be about 100 milligrams to about 1.5 grams of each agent of component (b). By way of general guidance, when the compounds of component (a) and component (b) are administered in

combination, the dosage amount of each component may be reduced by about 70-80% relative to the usual dosage of the component when it is administered alone as a single agent for the treatment of HIV infection, in view of the synergistic effect of the combination.

5

10 The combination products of this invention may be formulated such that, although the active ingredients are combined in a single dosage unit, the physical contact between the active ingredients is minimized. In order to minimize contact, for example, where the product is orally administered, one active ingredient may be enteric coated. 15 By enteric coating one of the active ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is 20 not released in the stomach but rather is released in the intestines. Another embodiment of this invention where oral administration is desired provides for a combination product wherein one of the active ingredients is coated with a sustained-release material which effects a sustained-release 25 throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of 30 this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose or other 35 appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component. In each formulation wherein contact is prevented between components (a) and (b) via a coating or 40

5 some other material, contact may also be prevented between the individual agents of component (b).

10

15

20

25

30

35

40

Dosage forms of the combination products of the present invention wherein one active ingredient is enteric coated can be in the form of tablets such that the enteric coated component and the other active ingredient are blended together and then compressed into a tablet or such that the enteric coated component is compressed into one tablet layer and the other active ingredient is compressed into an additional layer. Optionally, in order to further separate the two layers, one or more placebo layers may be present such that the placebo layer is between the layers of active ingredients. In addition, dosage forms of the present invention can be in the form of capsules wherein one active ingredient is compressed into a tablet or in the form of a plurality of microtablets, particles, granules or nonperils, which are then enteric coated. These enteric coated microtablets, particles, granules or non-perils are then placed into a capsule or compressed into a capsule along with a granulation of the other active ingredient.

These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time or concurrently by the same manner, will be readily apparent to those skilled in the art, based on the present disclosure.

Pharmaceutical kits useful for the treatment of HIV infection, which comprise a therapeutically effective amount of a pharmaceutical composition comprising a compound of component (a) and one or more compounds of component (b), in one or more sterile containers, are also within the ambit of the present invention. Sterilization of the container may be carried out using conventional sterilization methodology well known to those skilled in the art. Component (a) and component (b) may be in the same sterile container or in

separate sterile containers. The sterile containers of 5 materials may comprise separate containers, or one or more multi-part containers, as desired. Component (a) and component (b), may be separate, or physically combined into a single dosage form or unit as described above. Such kits 10 may further include, if desired, one or more of various conventional pharmaceutical kit components, such as for example, one or more pharmaceutically acceptable carriers, additional vials for mixing the components, etc., as will be readily apparent to those skilled in the art. Instructions, 15 either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, may also be included in the kit.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

20

5 WHAT IS CLAIMED:

1. A compound of formula I:

X W B B N A

10

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

A is O or S;

15

B is selected from O, S, and NR8;

W is N or CR^3 ;

20 X is N or CR^{3a} ;

Y is N or CR3b;

Z is N or CR3c;

25

provided that if two of W, X, Y, and Z are N, then the remaining are other than N;

 R^1 is selected from the group C_{1-3} alkyl substituted with 0-7 halogen and cyclopropyl;

R² is selected from the group $-R^{2c}$, $-OR^{2c}$, $-OCHR^{2a}R^{2b}$, $-OCH_2CHR^{2a}R^{2b}$, $-O(CH_2)_2CHR^{2a}R^{2b}$, $-OCHR^{2a}C=C-R^{2b}$, $-OCHR^{2a}C=R^{2c}$, $-OCHR^{2a}C=C-R^{2b}$, $-SR^{2c}$, $-SCHR^{2a}R^{2b}$, $-SCH_2CHR^{2a}R^{2b}$, $-SCH_2CHR^{2a}R^{2b}$, $-SCH_2CHR^{2a}R^{2b}$, $-SCH_2CHR^{2a}R^{2c}$, $-SCH_2CHR^{2a}R$

5 -NHCH₂CHR^{2a}R^{2b}, -NH(CH₂)₂CHR^{2a}R^{2b}, -NHCHR^{2a}C=C-R^{2b}, -NHCHR^{2a}C=R^{2c}, and -NHCHR^{2a}C \equiv C-R^{2b};

 R^{2a} is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

10

 R^{2b} is H or R^{2c} ;

R^{2c} is selected from the group C₁₋₆ alkyl substituted with 0-2 R⁴, C₂₋₅ alkenyl substituted with 0-2 R⁴, C₂₋₅

alkynyl substituted with 0-1 R⁴, C₃₋₆ cycloalkyl substituted with 0-2 R^{3d}, phenyl substituted with 0-2 R^{3d}, and 3-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-2 R^{3d};

20

- alternatively, the group $-NR^{2a}R^{2c}$ represents a 4-7 membered cyclic amine, wherein 0-1 carbon atoms are replaced by 0 or NR^5 ;
- 25 R³ is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF3, F, Cl, Br, I, -NR 5 R 5 a, -NO $_2$, -CN, -C(O)R 6 , -NHC(O)R 7 , -NHC(O)NR 5 R 5 a, -NHSO $_2$ R 10 , -SO $_2$ NR 5 R 5 a, and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;

30

35

 R^{3a} is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, -SO₂NR⁵R^{5a}, and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;

alternatively, R^3 and R^{3a} together form $-OCH_2O-;$

 R^{3b} is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(0)R⁶, -NHC(0)R⁷, -NHC(0)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};

10 alternatively, R^{3a} and R^{3b} together form -OCH₂O-;

5

15

 R^{3c} is selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(0)R⁶, -NHC(0)R⁷, -NHC(0)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};

alternatively, R3b and R3c together form -OCH2O-;

- R^{3d} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};
- R^{3e} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};
- R^{3f} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, and -SO₂NR⁵R^{5a};
- R^{3g} , at each occurrence, is independently selected from the group C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, Br, I, -NR⁵R^{5a}, -NO₂, -CN, -C(O)R⁶, -NHC(O)R⁷, -NHC(O)NR⁵R^{5a}, -NHSO₂R¹⁰, -SO₂NR⁵R^{5a}, C_{3-10} carbocycle substituted with 0-3 R^{3f} and a 5-10 membered heterocyclic group

containing 1-3 heteroatoms selected from the group 0, N, and S, substituted with 0-3 R^{3f} ; and,

- R⁴ is selected from the group F, Cl, Br, I, C₁₋₆ alkyl substituted with 0-2 R^{3e}, C₃₋₁₀ carbocycle substituted with 0-2 R^{3e}, phenyl substituted with 0-5 R^{3e}, and a 5-10 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-2 R^{3e};
- 15 R^5 and R^{5a} are independently selected from the group H and C_{1-4} alkyl;
- alternatively, R⁵ and R^{5a}, together with the nitrogen to which they are attached, combine to form a 5-6 membered ring containing 0-1 O or N atoms;
 - R^6 is selected from the group H, OH, C_{1-4} alkyl, C_{1-4} alkoxy, and NR^5R^{5a} ;
- 25 R^7 is selected from the group C_{1-3} alkyl and C_{1-3} alkoxy;
- R⁸ is selected from the group H, OR⁹, SR⁹, NR⁵R⁹, C₁₋₆ alkyl substituted with 0-3 R^{3g}, C₂₋₆ alkenyl substituted with 0-3 R^{3g}, C₃₋₅

 cycloalkyl substituted with 0-2 R^{3f}, phenyl substituted with 0-5 R^{3f}, and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group 0, N, and S, substituted with 0-2 R^{3f};
- 35 R^9 is selected from the group C_{3-10} carbocycle substituted with 0-5 R^{3f} and a 5-10 membered heterocyclic group containing 1-3 heteroatoms selected from the group 0, N, and S, substituted with 0-2 R^{3f} ; and,

 R^{10} is selected from the group C_{1-4} alkyl and phenyl.

- 2. A compound according to Claim 1, wherein:
- B is NR⁸;
 - R^1 is selected from the group C_{1-3} alkyl substituted with 1-7 halogen and cyclopropyl;
- 15

5

- R^2 is selected from the group $-R^{2c}$, $-OR^{2c}$, $-OCHR^{2a}R^{2b}$,
 - $-OCH_2CHR^{2a}R^{2b}$, $-O(CH_2)_2CHR^{2a}R^{2b}$, $-OCHR^{2a}C=C-R^{2b}$,
 - -OCHR^{2a}C=R^{2c}, -OCHR^{2a}C≡C-R^{2b}, -SR^{2c}, -SCHR^{2a}R^{2b},
 - $-SCH_2CHR^{2a}R^{2b}$, $-S(CH_2)_2CHR^{2a}R^{2b}$, $-SCHR^{2a}C=C-R^{2b}$,
- 20 -SCHR^{2a}C=R^{2c}, and -SCHR^{2a}C=C-R^{2b};
 - R^{2a} is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
- 25 R^{2b} is H or R^{2c} ;
- R^{2c} is selected from the group C_{1-5} alkyl substituted with 0-2 R^4 , C_{2-5} alkenyl substituted with 0-2 R^4 , C_{3-6} cycloalkyl substituted with 0-1 R^4 , C_{3-6} cycloalkyl substituted with 0-2 R^{3d} , and phenyl substituted with 0-2 R^{3d} ;
- R³, at each occurrence, is independently selected from the group H, C₁₋₄ alkyl, OH, C₁₋₄ alkoxy, F, Cl, Br, I,

 NR⁵R^{5a}, NO₂, -CN, C(O)R⁶, NHC(O)R⁷, NHC(O)NR⁵R^{5a}, and a

 5-6 membered heteroaromatic ring containing 1-4
 heteroatoms selected from the group O, N, and S;

5

10

25

 R^{3a} , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, OH, C_{1-4} alkoxy, F, Cl, Br, I, $NR^{5}R^{5a}$, NO_{2} , -CN, $C(O)R^{6}$, $NHC(O)R^{7}$, $NHC(O)NR^{5}R^{5a}$, and a 5-6 membered heteroaromatic ring containing 1-4 heteroatoms selected from the group O, N, and S;

alternatively, R3 and R3a together form -OCH2O-;

 R^{3b} , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, OH, C_{1-4} alkoxy, F, Cl, Br, I, NR^5R^{5a} , NO_2 , -CN, $C(O)R^6$, $NHC(O)R^7$, and $NHC(O)NR^5R^{5a}$;

alternatively, R3a and R3b together form -OCH2O-;

- 20 R^4 is selected from the group Cl, F, C_{1-4} alkyl substituted with 0-2 R^{3e} , C_{3-5} carbocycle substituted with 0-2 R^{3e} , phenyl substituted with 0-5 R^{3e} , and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-2 R^{3e} ;
 - \mbox{R}^{5} and \mbox{R}^{5a} are independently selected from the group H, \mbox{CH}_{3} and $\mbox{C}_{2}\mbox{H}_{5};$
- R^6 is selected from the group H, OH, CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , and NR^5R^{5a} ;
 - R^7 is selected from the group CH_3 , C_2H_5 , $CH(CH_3)_2$, OCH_3 , OC_2H_5 , and $OCH(CH_3)_2$; and,
- 35 R^8 is selected from the group H, cyclopropyl, CH_3 , C_2H_5 , and $CH(CH_3)_2$.

5 3. A compound according to Claim 2, wherein:

 R^1 is selected from the group CF_3 , C_2F_5 , and cyclopropyl;

- R² is selected from the group $-R^{2c}$, $-OR^{2c}$, $-OCHR^{2a}R^{2b}$, $-OCH_2CHR^{2a}R^{2b}$, $-OCHR^{2a}C=C-R^{2b}$, $-OCHR^{2a}C=R^{2c}$, $-OCHR^{2a}C=C-R^{2b}$, $-SCHR^{2a}R^{2b}$, $-SCH_2CHR^{2a}R^{2b}$, $-SCHR^{2a}C=C-R^{2b}$, $-SCHR^{2a}C=C-R^{2b}$;
- R^{2a} is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

 R^{2b} is H or R^{2c} ;

- R^{2c} is selected from the group C_{1-3} alkyl substituted with 0-2 R^4 , C_{2-3} alkenyl substituted with 0-2 R^4 , C_{2-3} alkynyl substituted with 0-1 R^4 , and C_{3-6} cycloalkyl substituted with 0-2 R^{3d} ;
- R^3 , at each occurrence, is independently selected from the group H, C_{1-3} alkyl, OH, C_{1-3} alkoxy, F, Cl, Br, I, NR^5R^{5a} , NO_2 , -CN, $C(O)R^6$, $NHC(O)R^7$, and $NHC(O)NR^5R^{5a}$;

alternatively, R^3 and R^{3a} together form -OCH₂O-;

30 R^{3b} is H;

R^{3c} is H:

 R^{3e} , at each occurrence, is independently selected from the group H, C_{1-4} alkyl, -OH, C_{1-4} alkoxy, OCF₃, F, Cl, -NR⁵R^{5a}, -C(O)R⁶, and -SO₂NR⁵R^{5a};

5 R⁴ is selected from the group Cl, F, C₁₋₄ alkyl substituted with 0-1 R^{3e}, C₃₋₅ carbocycle substituted with 0-2 R^{3e}, phenyl substituted with 0-2 R^{3e}, and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-1 R^{3e};

10

- \mbox{R}^{5} and \mbox{R}^{5a} are independently selected from the group H, \mbox{CH}_{3} and $\mbox{C}_{2}\mbox{H}_{5}\,;$
- R^6 is selected from the group H, OH, CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , and NR^5R^{5a} ;
 - ${\ensuremath{\mathsf{R}}}^7$ is selected from the group ${\ensuremath{\mathsf{CH}}}_3$, ${\ensuremath{\mathsf{C}}}_2{\ensuremath{\mathsf{H}}}_5$, ${\ensuremath{\mathsf{OC}}}_4{\ensuremath{\mathsf{H}}}_5$; and,
- 20 R8 is selected from the group H, cyclopropyl, CH3, and C2H5.
 - 4. A compound according to Claim 3, wherein:
- 25 R^1 is CF_3 ;
 - R^2 is selected from the group $-R^{2c},\ -OR^{2c},\ -OCH_2R^{2b},$ $-OCH_2CH_2R^{2b},\ -OCH_2C=C-R^{2b},\ -OCH_2C\equiv C-R^{2b},\ -SR^{2c},\ -SCH_2R^{2b},$ $-SCH_2CH_2R^{2b},\ -SCH_2C=C-R^{2b},\ and\ -SCH_2C\equiv C-R^{2b};$

- R^{2b} is H or R^{2c};
- R^{2c} is selected from the group methyl substituted with 0-2 R^4 , ethyl substituted with 0-2 R^4 , propyl substituted with 0-2 R^4 , ethenyl substituted with 0-2 R^4 , 1-propenyl substituted with 0-2 R^4 , ethynyl substituted with 0-2 R^4 , 1-propynyl

substituted with 0-2 R^4 , 2-propynyl substituted with 0-2 R^4 , and cyclopropyl substituted with 0-1 R^{3d} ;

 R^3 , at each occurrence, is independently selected from the group C_{1-3} alkyl, OH, C_{1-3} alkoxy, F, Cl, NR^5R^{5a} , NO_2 ,

-CN, and $C(0)R^6$;

alternatively, R³ and R^{3a} together form -OCH₂O-;

- R^{3d}, at each occurrence, is independently selected from the group CH₃, -OH, OCH₃, OCF₃, F, Cl, and -NR⁵R^{5a};
 - R^{3e}, at each occurrence, is independently selected from the group CH₂, -OH, OCH₃, OCF₃, F, Cl, and -NR⁵R^{5a};
- 20 R⁴ is selected from the group Cl, F, CH₃, CH₂CH₃, cyclopropyl substituted with 0-1 R^{3e}, 1-methyl-cyclopropyl substituted with 0-1 R^{3e}, cyclobutyl substituted with 0-1 R^{3e}, phenyl substituted with 0-2 R^{3e}, and a 5-6 membered heterocyclic group containing 1-3 heteroatoms selected from the group O, N, and S, substituted with 0-1 R^{3e}, wherein the heterocyclic group is selected from the group 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-furanyl, 3-furanyl, 2-thienyl, 3-thienyl, 2-oxazolyl, 2-thiazolyl, 4-isoxazolyl, and 2-imidazolyl;
 - \mbox{R}^{5} and \mbox{R}^{5a} are independently selected from the group H, \mbox{CH}_{3} and $\mbox{C}_{2}\mbox{H}_{5};$
- R^6 is selected from the group H, OH, CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , and NR^5R^{5a} ;

30

 \mbox{R}^{7} is selected from the group $\mbox{CH}_{3}\,,$ $\mbox{C}_{2}\mbox{H}_{5}\,,$ $\mbox{OCH}_{3}\,,$ and $\mbox{OC}_{2}\mbox{H}_{5}\,;$ and,

 R^8 is selected from the group H, cyclopropyl, and C_2H_5 .

5. A compound according to Claim 4, wherein the compound is of formula Ia

Ia.

15 6. A compound according to Claim 4, wherein the compound is of formula Ib:

Ib.

20

7. A compound according to Claim 1, wherein the compound is selected from the group:

7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

7-Chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-thione;

7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)-1,3benzodiazepin-2-one;

```
7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-methyl-5-
 5
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
10
    7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-cyclopropyl-
         5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
15
    7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-
          (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-
20
          (trifluoromethyl) -1,3-benzodiazepin-2-one;
    7-Chloro-5-(3,3-dichloro-2-propenyloxy)-1,5-dihydro-3-
         methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
25
    7-Chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-
          (trifluoromethyl) -1,3-benzodiazepin-2-one;
    7-Chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3-
30
         methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-
         (trifluoromethyl)-1,3-benzodiazepin-2-one;
35
    (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-
         (trifluoromethyl) -1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-
         (trifluoromethyl)-1,3-benzodiazepin-2-one;
40
    (S)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-
         dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-
45
         (trifluoromethyl) -1, 3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-
         (trifluoromethyl) -1,3-benzodiazepin-2-one;
50
    7-Chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-
         (trifluoromethyl)-1,3-benzodiazepin-2-one;
    7-Chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-
         (trifluoromethyl) -1,3-benzodiazepin-2-one;
55
    7-Chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-
         dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
```

5 7-Chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-cyclopropyl-5-(1-methylcyclopropyl)methyloxy-1,5-10 dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-cyclopropyl-5-(2-pyridyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 15 7-Chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-cyclobutyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 20 7-Chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-3-ethyl-5-25 (trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 30 7-Chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 35 7-Chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5-40 dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 7-Chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 45 7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl) -1, 3-benzodiazepin-2-one; 7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; 50 7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-

(trifluoromethy1)-1,3-benzodiazepin-2-one;

5 7-Chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

7-Chloro-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

10

- 7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-(phenylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - 7-Chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

25

- 7-Chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 7-Chloro-5-(propylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-30 benzodiazepin-2-one; and,
 - 7-Chloro-5-(2-propenylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 35 or a pharmaceutically acceptable salt form thereof.
 - 8. A compound according to Claim 1, wherein the compound is selected from the group:

- (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 50 (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-thione;
 - (S)-7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5

(S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3cyclopropyl-5-(trifluoromethyl)-1,3-benzodiazepin-2one;

15

- (S)-7-Chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 25 (S)-7-Chloro-5-(3,3-dichloro-2-propenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

30

- (S)-7-Chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 40 (S)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one:

- (S)-7-Chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 55 (S)-7-Chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5 (S)-7-Chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (S)-7-Chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 15 (S)-7-Chloro-3-cyclopropyl-5-(2-pyridyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 30 (S)-7-Chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (S)-7-Chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 45 (S)-7-Chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 50
 (S)-7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5-dihydro-5(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5 (S)-7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (S)-7-Chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-cyclobutylmethyloxy-1,5-dihydro-5(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (S)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(phenylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 20 (S)-7-Chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

25

- (S)-7-Chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (S)-7-Chloro-5-(propylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; and,
- 35 (S)-7-Chloro-5-(2-propenylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - or a pharmaceutically acceptable salt form thereof.
 - 9. A compound according to Claim 1, wherein the compound is selected from the group:
- (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-6,7-difluoro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 50 (R)-7-Chloro-5-(2-cyclopropylethenyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-thione;

5

30

- (R)-7-Chloro-5-(2-n-butyl)-1,5-dihydro-5-(trifluoromethyl)1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 15 (R)-7-Chloro-5-(2-cyclopropylethynyl)-1,5-dihydro-3-cyclopropyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-cyclopropylmethyloxy-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 25 (R)-7-Chloro-5-(3-allyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(3,3-dichloro-2-propenyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(2-propynyloxy)-1,5-dihydro-3-methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-(2-fluoro-6-methoxybenzyloxy)-1,5-dihydro-3methyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 40 (R)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-(cyclopropylmethoxy)-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-cyclopropyl-5-propyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-cyclopropyl-5-propylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 55 (R)-7-Chloro-3-cyclopropyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

5 (R)-7-Chloro-3-cyclopropyl-5-allyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

10

20

35

- (R)-7-Chloro-3-cyclopropyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-cyclopropyl-5-cyclobutylmethyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- - (R)-7-Chloro-3-cyclopropyl-5-(2-pyridyl)methyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-isopropyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-cyclobutyl-5-cyclopropylmethyloxy-1,5dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(cyclopropylmethoxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 30 (R)-7-Chloro-5-(cyclopropylmethyloxy)-1,5-dihydro-3-ethyl-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-ethyl-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-ethyl-5-allylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-ethyl-5-cyclopropylmethylthio-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 45 (R)-7-Chloro-3-ethyl-5-(1-methylcyclopropyl)methyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-3-propyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Fluoro-5-(cyclopropylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Fluoro-3-ethyl-5-cyclopropylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

```
5 (R)-7-Fluoro-5-(cyclobutylmethoxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
```

(R)-7-Fluoro-3-ethyl-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

10
(R)-7-Chloro-5-[2-(1-methylcyclopropyl)ethynyl]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

- (R)-7-Chloro-5-cyclobutylmethyloxy-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(3-methyl-2-butenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 20 (R)-7-Chloro-5-(phenylmethyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-[(2-pyridyl)methyloxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-[(1-methylcyclopropyl)methyoxy]-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- (R)-7-Chloro-5-(3-methylphenyloxy)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
 - (R)-7-Chloro-5-(cyclopropylmethylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;
- 35 (R)-7-Chloro-5-(propylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one; and,
 - (R)-7-Chloro-5-(2-propenylthio)-1,5-dihydro-5-(trifluoromethyl)-1,3-benzodiazepin-2-one;

or a pharmaceutically acceptable salt form thereof.

10. A pharmaceutical composition comprising a
45 pharmaceutically acceptable carrier and a therapeutically
effective amount of a compound according to Claim 1, 2, 3,
4, 5, 6, 7, 8, or 9 or pharmaceutically acceptable salt form
thereof.

50

25

11. A method of treating HIV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound according to Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9 or pharmaceutically acceptable salt form thereof.

10

- 12. A method of treating HIV infection which comprises administering, in combination, to a host in need thereof a therapeutically effective amount of:
- 15 (a) a compound according to Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9; and,
 - (b) at least one compound selected from the group consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors.

- 13. A method according to Claim 10, wherein the reverse transcriptase inhibitor is selected from the group AZT, ddC, ddI, d4T, 3TC, DPC082, DPC083, DPC961, DPC963, AG1549
- delavirdine, efavirenz, nevirapine, Ro 18,893, trovirdine, MKC-442, HBY 097, ACT, UC-781, UC-782, RD4-2025, and MEN 10979, and the protease inhibitor is selected from the group saquinavir, ritonavir, indinavir, amprenavir, nelfinavir, palinavir, BMS-232623, GS33333, KNI-413, KNI-272, LG-71350.
- 30 CGP-61755, PD 173606, PD 177298, PD 178390, PD 178392, U-140690, and ABT-378.
- 14. A method according to Claim 11, wherein the reverse transcriptase inhibitor is selected from the group AZT, efavirenz, and 3TC and the protease inhibitor is selected from the group saquinavir, ritonavir, nelfinavir, and indinavir.

5 15. A method according to Claim 12 wherein the reverse transcriptase inhibitor is AZT.

- 16. A method according to Claim 12, wherein the protease 10 inhibitor is indinavir.
 - 17. A pharmaceutical kit useful for the treatment of HIV infection, which comprises a therapeutically effective amount of:

- (a) a compound according to Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9 or a pharmaceutically acceptable salt form thereof; and,
- (b) at least one compound selected from the group 20 consisting of HIV reverse transcriptase inhibitors and HIV protease inhibitors, in one or more sterile containers.
- 18. A compound according to Claim 1, 2, 3, 4, 5, 6, 7, 8,25 or 9 or pharmaceutically acceptable salt forms thereof for use in therapy.
- 19. Use of compounds according to Claim 1, 2, 3, 4, 5, 6,30 7, 8, or 9 or pharmaceutically acceptable salt forms thereof for the manufacture of a medicament for the treatment of HIV.

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 99/13872

	FC1/U3 99/130/2										
A. CLASSI IPC 7	FICATION OF SUBJECT C07D243/04 C07D267/06	A61K31/55	C07D401/ C07D405/		C07D471 C07D409		C07D487/04 C07D401/06				
According to	International Patent Clas	sification (IPC) or to both	national classifica	ation and	IPC						
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED											
Minimum do IPC 7	cumentation searched (c CO7D A61K	lassification system follow	red by classification	on symbo	ols)						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched											
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)											
C. DOCUM	ENTS CONSIDERED TO	BE RELEVANT									
Category °	y ° Citation of document, with indication, where appropriate, of the relevant passages						Relevant to claim No.				
A	10 March 19	94 A (MERCK) 993 (1993-03-1 ne application 3					1,10				
Α	2 July 1996	 57 A (RODGERS 5 (1996-07-02) line 18 - lin	1	aim 1			1,8				
Furti	ner documents are listed in	n the continuation of box	C.	X	Patent family	members	are listed in annex.				
*A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or "T" later document published after the international or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone						inflict with the application but ciple or theory underlying the lince; the claimed invention or cannot be considered to the document is taken alone					
which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "Y" document of particular relevance; the coannot be considered to involve an invol							olve an inventive step when the one or more other such docu- ing obvious to a person skilled				
Date of the actual completion of the international search Date of mailing of the international search report											
28 October 1999 08/11/1999											
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016				Aut	Authorized officer Alfaro Faus, I						

rnational application No.

INTERNATIONAL SEARCH REPORT

PCT/US 99/13872

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
Claims Nos.: 11-16 and 19 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 11-16 and 19 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.						
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:						
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
This International Searching Authority found multiple inventions in this international application, as follows:						
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.						
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:						
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:						
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

INTERNATIONAL SEARCH KEPUKI

information on patent family members

Sam BOT/ICAM10 (natent family annual / lide annual

Inte Conal Application No
PCT/US 99/13872

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 530994 A	10-03-1993	AU 2436792 A CN 1071917 A MX 9204720 A WO 9304047 A	16-03-1993 12-05-1993 01-07-1993 04-03-1993
US 5532357 A	02-07-1996	AU 704535 B AU 5986896 A BR 9609493 A CA 2223391 A CN 1192209 A CZ 9703819 A EP 0837855 A HR 960259 A HU 9900913 A JP 11506779 T LT 97188 A,B LV 12045 A LV 12045 B NO 975679 A NZ 309648 A PL 323993 A SI 9620077 A WO 9640652 A	29-04-1999 30-12-1996 02-03-1999 19-12-1996 02-09-1998 13-01-1999 29-04-1998 31-10-1997 28-09-1999 15-06-1999 27-04-1998 20-05-1998 20-09-1998 02-02-1998 24-09-1998 27-04-1998 31-08-1998 19-12-1996
1		· · · ·	