Sukhdeep Singh^{1,2*}, ¹ Berkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, CA 94720, USA ² Lawrence Berkeley National Laboratory (LBNL), Physics Division, Berkeley, CA 94720-8153, USA

Accepted XXX. Received YYY; in original form ${\bf ZZZ}$

ABSTRACT

Key words: cosmology: observations — large-scale structure of Universe — gravitational lensing: weak

 * E-mail: sukhdeep1@berkeley.edu

1 COSMIC SHEAR

1.1 Power spectra

We compute the shear cross correlation between 2 tomographic bins as

$$C_{\ell}^{ij} = \left\langle \gamma_{i} \gamma_{j}^{*} \right\rangle = \frac{1}{N} \int dz_{p_{i}} p(z_{p_{i}}) \int dz_{s_{i}} p(z_{s_{i}} | z_{p_{i}}) \mathcal{W}(z_{p_{i}}, z_{s_{i}}) \int dz_{p_{j}} p(z_{p_{j}}) \int dz_{s_{j}} p(z_{s_{j}} | z_{p_{j}}) \mathcal{W}(z_{p_{j}}, z_{s_{j}})$$

$$\int dz_{l} \frac{c}{H(z_{l})} \frac{\overline{\rho}_{m}}{\sum_{c} (z_{l}, z_{s_{i}})} \frac{\overline{\rho}_{m}}{\sum_{c} (z_{l}, z_{s_{j}})} \frac{1}{f_{k}(\chi_{l})^{2}} P_{mm}(z_{l})$$

$$N = \int dz_{p_{i}} p(z_{p_{i}}) \int dz_{s_{i}} p(z_{s_{i}} | z_{p_{i}}) \mathcal{W}(z_{p_{i}}, z_{s_{i}}) \int dz_{p_{j}} p(z_{p_{j}}) \int dz_{s_{j}} p(z_{s_{j}} | z_{p_{j}}) \mathcal{W}(z_{p_{j}}, z_{s_{j}})$$

$$(2)$$

Our notation is slightly different from many lensing papers. z_{p_i} denotes the photo-z distribution for sample i, z_{s_i} denotes the true redshift for these source galaxies. $p(z_{p_i})$ is the photometric redshift distribution for these galaxies and $p(z_{s_i}|z_{p_i})$ is the distribution of true redshift for galaxies with photo-z z_{p_i} . We will use subscript l to denote quantities related to the matter (such as z_l) that is lensing the source galaxies. We use $d\chi_l = dz_l \frac{c}{H(z_l)}$, lensing weight $W_L = \frac{\bar{\rho}_m}{\sum_{c}(z_l, z_{s_2}) f_k(\chi_l)}$ where $f_k(\chi_l)$ is the transverse separation to redshift z_l . $P_{mm}(z_l)$ is the matter power spectrum at redshift z_l . We use the normalization factor N to correctly normalize the computed power spectra. $\mathcal{W}(z_{p_i}, z_{s_i})$ are the weights that are applied to the source galaxies.

SS: In the code, we assume that z_{p_i} is the true redshift for now and hence there is not integral over dz_{s_i}