طراحی، ساخت و کنترل سیستم چهارپره

استاد راهنما: دکتر فرخی نگار احسانی پوریا مرتضی آقا

چهارپره چیست؟

- نحوه بلند شدن چهارپره
- نحوه ایجاد فرامین کنترلی در چهارپره

روشهای کنترلی

- PID-Classic: این روش به دلیل عدم احتیاج به پارامترهای خاص مدل و سادگی کنترل کننده مناسبی است.
- LQR: مزیت این روش این است که میتواند سامانه را در محدوده مجاز طراحی قرار دهد و چون مربوط به نظریه خطی است میتوان کنترل بهینه حلقه بسته را پیاده کرد.
- SMC: مزیت این روش پاسخ سریع و مقاوم در برابر عدم قطعیت و اغتشاشات خارجی است و سازگار با سامانه غیرخطی میباشد و پیاده سازی ساده ای دارد.
 - كنترل تطبیقی: به طور اتوماتیک پارامترها را تنظیم و تولید میكند.
 - روش های هوشمند: همانند روش های کنترل فازی و کنترل کننده عصبی.

قطعات مورد نیاز

بدنه

جنس: فایبرگلس

وزن: ۴۰۴ گرم

حداکثر قطر: ۵.۰ متر

موتور

نوع: موتور براشلس EMAX

وزن: ۶۰ گرم

برد رزبریپای

نوع:رزبری پای +3b وزن:۴۲ گرم

باترى

نوع:لیتیوم پلیمر ۴ سلول Tattu

ولتاژ: ۱۴.۸ ولت

ظرفیت: ۳۷۰۰ میلی آمپر ساعت

ظرفیت دشارژ پیوسته: ۴۵c

كانكتور: XT60

وزن: ۳۴۷ گرم

كارانداز

نوع: Sky ESC

جریان پیوسته: ۳۰ آمپر

ولتاژ خروجی: ۵.۶ تا ۱۶.۸ ولت

وزن: ۲۵ گرم

ملخ

جنس: فيبركربن

طول: ۱۰ اینچ

وزن: ۲۸ گرم

سنسور فاصلهسنج

نوع: سنسور آلتراسونیک

مسافت قابل سنجش:۲ تا ۴۵۰ سانتیمتر

دقت:۳ سانتیمتر

سنسور زاويهسنج

نوع: سنسور MPU 9250

خروجی: دیجیتال برای سه محور در بازه قابل برنامه ریزی ±۲۰۰۰ ف ۲۰۰۰ و ۲۰۰۰ درجه بر ثانیه نمونه گیری داده ها: به صورت ۱۶ بیتی

بدست آوردن معادلات حرکت چهارپره:

ماتریس دوران حول سه محور به صورت روبرو است.

$$S_k \triangleq \sin \theta_k$$

 $C_k \triangleq \cos \theta_k$

$$YPR(\theta) = \begin{bmatrix} C_2C_3 & S_1S_2C_3 + C_1S_3 & C_1S_2C_3 - S_1S_3 \\ -C_2S_3 & S_1S_2S_3 - C_1C_3 & C_1S_2S_3 + S_1C_3 \\ S_2 & -S_1C_2 & C_1C_2 \end{bmatrix}$$

با اثر دادن ماتریس دوران روی معادلات مکان معادلات به شکل روبرو بدست می آیند.

$$\psi I_{zz} = (\tau_{m1} - \tau_{m2} + \tau_{m3} - \tau_{m4})$$

$$x = \frac{1}{m} \sum_{i}^{4} F_{i} [\sin \varphi \sin \psi + \cos \varphi \cos \psi \sin \theta]$$

$$y = \frac{1}{m} \sum_{i}^{4} F_{i} [\sin \psi \sin \theta \cos \varphi - \cos \psi \sin \varphi]$$

$$z = \frac{1}{m} \sum_{i}^{4} F_{i} [\cos \varphi \cos \theta] - g$$

 $\theta I_{xx} = (-F_1 - F_2 + F_3 + F_4)l$

 $\varphi I_{yy} = (-F_1 + F_2 + F_3 - F_4)I$

معادلات فضای حالت چهارپره و خطی سازی آن:

معادلات فضای حالت سیستم به شکل زیر است:

$$\ddot{\phi} = \dot{\theta}\dot{\psi}\left(\frac{I_{xx} - I_{zz}}{I_{xx}}\right) + \dot{\theta}\left(\frac{J}{I_{xx}}\right)\Omega + \frac{1}{I_{xx}}U_{2}$$

$$\ddot{\theta} = \dot{\phi}\dot{\psi}\left(\frac{(I_{zz} - I_{xx})}{I_{yy}}\right) - \dot{\phi}\left(\frac{J}{I_{yy}}\right)\Omega + \frac{1}{I_{yy}}U_{3}$$

$$\ddot{\psi} = \dot{\theta}\dot{\phi}\left(\frac{I_{xx} - I_{yy}}{I_{zz}}\right) + \frac{1}{I_{zz}}U_{4}$$

$$\ddot{Z} = g - (\cos\phi\cos\theta)\frac{1}{m}U_{1}$$

$$\ddot{x} = (\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi)\frac{1}{m}U_{1}$$

$$\ddot{y} = (\cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi)\frac{1}{m}U_{1}$$

$$\ddot{y} = (\cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi)\frac{1}{m}U_{1}$$

به طوری که:

$$U_{1} = b(\Omega_{1}^{2} + \Omega_{2}^{2} + \Omega_{3}^{2} + \Omega_{4}^{2})$$

$$U_{2} = b(-\Omega_{2}^{2} + \Omega_{4}^{2})$$

$$U_{3} = b(\Omega_{1}^{2} + \Omega_{3}^{2})$$

$$U_{4} = d(-\Omega_{1}^{2} + \Omega_{2}^{2} - \Omega_{3}^{2} + \Omega_{4}^{2})$$

برای خطی سازی نقاط تعادل به شکل زیر در نظر گرفتیم.

$$\begin{cases} \theta = \phi = \psi = \dot{\theta} = \dot{\phi} = \dot{\psi} = \ddot{\theta} = \ddot{\phi} = \ddot{\psi} = 0 \\ \dot{x} = \ddot{x} = \dot{y} = \ddot{y} = \dot{z} = \ddot{z} = 0 \\ V_h = V_1 = V_2 = V_3 = V_4 \\ \Omega = \Omega_h \\ \dot{\Omega} = \ddot{\Omega} = 0 \end{cases}$$

$$\begin{bmatrix}
\dot{x}_7 \\ \dot{x}_8 \\ \dot{x}_9 \\ \dot{x}_{10}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix} x_7 \\ x_8 \\ x_9 \\ x_{10} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ a & 0 \\ 0 & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} U_x \\ U_y \end{bmatrix}$$

$$a = (1/m)U_1.$$

$$\frac{\begin{bmatrix} \dot{x}_{11} \\ \dot{x}_{12} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} [U_z]}{A} \begin{bmatrix} U_z \end{bmatrix}$$

$$\begin{cases} u_x = \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi \\ u_y = \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi \\ u_z = g - (\cos\phi\cos\theta)\frac{1}{m}U_1 \end{cases}$$

كنترل

كنترل زاويه و ارتفاع

بلوک دیاگرام:

طراحی کنترل کننده به روش زیگلر-نیکلز نتایج شبیه سازی

سیستم فازی

طراحی کنترل کننده PD فازی برای زوایا

سیستم فازی:

سیستم فازی با فازی گر تکین، موتور استنتاج ضرب، فازیزدای میانگین مرکز و توابع عضویت مثلثی، سیستم فازی استفاده شده است.

تابع عضویت خطا:

تابع عضويت مشتق خطا:

تابع عضویت 'kp',kd:

جداول قواعد فازى:

خطا	مشتق
-----	------

/		NB	NM	NS	ZO	PS	PM	PB
	NB	S	S	S	S	S	S	S
	NM/	В	В	S	S	S	В	В
	NS	В	В	В	S	В	В	В
	ZO	В	В	В	В	В	В	В
	PS	В	В	В	S	В	В	В
	PM	В	В	S	S	S	В	В
	PB	S	S	S	S	S	S	S

جدول قواعد اگر-آنگاه فازی برای تنظیم'kd

مشتق خطا

	NB	NM	NS	ZO	PS	PM	PB		
NB	В	В	В	В	В	В	В		
NM	S	S	В	В	В	S	S		
NS	S	S	S	В	S	S	S		
ZO	S	S	S	S	S	S	S		
PS	S	В	В	S	В	В	В		
PM	S	S	В	В	В	S	S		
PB	S	В	В	В	В	В	В		

جدول قواعد اگر-آنگاه فازی برای تنظیم 'kp

طراحی کنترل کننده PID فازی برای ارتفاع

سیستم فازی:

تابع عضویت خطا:

تابع عضویت مشتق خطا:

تابع عضویت 'kp',kd:

lphaتابع عضویت

جداول قواعد فازى:

تق خطا	مشا
--------	-----

	NB	NM	NS	ZO	PS	PM	PB
NB	2	2	2	2	2	2	2
NM	3	3	2	2	2	3	3
NS	4	3	3	2	3	3	4
ZO	5	4	3	3	3	4	5
PS	4	3	3	2	3	3	4
PM	3	3	2	2	2	3	3
PB	2	2	2	2	2	2	2

lphaجدول قواعد اگر-آنگاه فازی برای تنظیم

مشتق خطا

مشتق خطا

		NB	NM	NS	ZO	PS	PM	PB
	NB	В	В	В	В	В	В	В
	NM	S	S	В	В	В	S	S
	NS	S	S	S	В	S	S	S
I	ZO	S	S	S	S	S	S	S
	PS	S	В	В	S	В	В	В
	PM	S	/S	В	В	В	S	S
	PB	S	В	В	В	В	В	В

	NB	NM	NS	ZO	PS	PM	PB
NB	S	S	S	S	S	S	S
NM	В	В	S	S	S	В	В
NS	В	В	В	S	В	В	В
ZO	В	В	В	В	В	В	В
PS	В	В	В	S	В	В	В
PM	В	В	S	S	S	В	В
РВ	S	S	S	S	S	S	S

جدول قواعد اگر-آنگاه فازی برای تنظیم kp'

جدول قواعد اگر-آنگاه فازی برای تنظیم'kd

$$K'_{p} = \frac{K_{p} - K_{p} \min}{K_{p} \max - K_{p} \min}$$

$$K'_{d} = \frac{K_{d} - K_{d} \min}{K_{d} \max - K_{d} \min}$$

$$\alpha = \frac{K_p^2}{K_i K_d}$$

نتایج شبیه سازی

طراحی کنترل کننده PID فازی برای زاویه

سیستم فازی:

تابع عضویت خطا:

Membership function plots blot soints: 181 NB NM NS ZO PS PM PB -0.15 -0.1 -0.05 0 0.05 0.1

تابع عضویت مشتق خطا:

تابع عضویت 'kp',kd:

: lphaتابع عضویت

جداول قواعد فازى:

مشتق خطا

	NB	NM	NS	ZO	PS	PM	PB
NB	2	2	2	2	2	2	2
NM	3	3	2	2	2	3	3
NS	4	3	3	2	3	3	4
ZO	5	4	3	3	3	4	5
PS	4	3	3	2	3	3	4
PM	3	3	2	2	2	3	3
PB	2	2	2	2	2	2	2

lpha جدول قواعد اگر –آنگاه فازی برای تنظیم

		NB	NM	NS	ZO	PS	PM	PB
	NB	В	В	В	В	В	В	В
	NM	S	S	В	В	В	S	S
	NS	S	S	S	В	S	S	S
	ZO	S	S	S	S	S	S	S
	PS	S	В	В	S	В	В	В
/	PM	S	S	В	В	В	S	S
	PB	S	В	В	В	В	В	В

	NB	NM	NS	ZO	PS	PM	PB
NB	S	S	S	S	S	S	S
NM	В	В	S	S	S	В	В
NS	В	В	В	S	В	В	В
ZO	В	В	В	В	В	В	В
PS	В	В	В	S	В	В	В
PM	В	В	S	S	S	В	В
PB	S	S	S	S	S	S	S

جدول قواعد اگر-آنگاه فازی برای تنظیم kp'

جدول قواعد اگر-آنگاه فازی برای تنظیم'kd

سیستم فازی با فازی گر تکین، موتور استنتاج ضرب، فازیزدای میانگین مرکز و توابع عضویت مثاثی، سیستم فازی استفاده شده است.

نتایج شبیه سازی

__ Roll

روش آبشاری برای زوایا

نتایج شبیه سازی با کنترل کننده PD

نتایج شبیه سازی باکنترل کننده PD فازی

کنترل موقعیت بلوک دیاگرام:

نتایج شبیه سازی

سنسور

روشهای استفاده شده برای بدست آوردن بهتر دادهها از سنسور:

اندازه گیری زاویه با ژیروسکوپ استفاده از روش میانگین پنجره ای برای فیلتر کردن نویز:

هنگامی که سنسور در حال چرخش است: تغییر roll و pitch زمان: ۱۷ ثانیه اندازه پنجره: ۵۰

زوایا:

با روشن شدن موتورها به دلیل ایجاد شدن نویز شدید زوایا بهم میریزند و دادههای غلط بدست می آیدا

راهحل: فيلتر كالمن

فیلتر کالمن یک فیلتر بازگشتی بهینه یا یک تخمینگر است که حالت یک سیستم دینامیکی را از اندازه گیری های نویزی برآوردکند.

بلوک دیاگرام:

مدل ژیروسکوپ:

$$A = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Q = 0.00001

$$\begin{bmatrix} x_{k+1} \\ x_{k+1} \end{bmatrix} = A \begin{bmatrix} x_k \\ \dot{x_k} \end{bmatrix} \qquad y = C \begin{bmatrix} x_k \\ \dot{x_k} \end{bmatrix} \qquad R = 10000000$$

معادلات:

$$\left\{ egin{aligned} \underline{m{x}}_k &= m{A}_{k-1} \underline{m{x}}_{k-1} + m{B}_{k-1} \underline{m{u}}_{k-1} + \underline{m{w}}_{k-1} & \longrightarrow \end{array}
ight.$$
عدم قطعیت در مدل $\left\{ m{\underline{z}}_k &= m{H}_k \underline{m{x}}_k + \underline{m{v}}_k
ight.$ نویز اندازه گیری

مرحله پیشبینی

$$\hat{\mathbf{x}}_{k}^{-} = A_{k-1} \hat{\mathbf{x}}_{k-1} + B_{k-1} \underline{\mathbf{u}}_{k-1}$$
$$\mathbf{P}_{k}^{-} = A_{k-1} \mathbf{P}_{k-1} A_{k-1}^{T} + \mathbf{Q}_{k-1}$$

$$\boldsymbol{K}_{k} = \boldsymbol{P}_{k}^{-} \boldsymbol{H}_{k}^{T} \left(\boldsymbol{H}_{k} \boldsymbol{P}_{k}^{-} \boldsymbol{H}_{k}^{T} + \boldsymbol{R}_{k} \right)^{-1}$$

$$\begin{array}{c}
\boldsymbol{K}_{k} = \boldsymbol{P}_{k}^{-} \boldsymbol{H}_{k}^{T} \left(\boldsymbol{H}_{k} \boldsymbol{P}_{k}^{-} \boldsymbol{H}_{k}^{T} + \boldsymbol{R}_{k} \right)^{-1} \\
\boldsymbol{P}_{k} = \left(\boldsymbol{I} - \boldsymbol{K}_{k} \boldsymbol{H}_{k} \right) \boldsymbol{P}_{k}^{-}
\end{array}$$

بلوک دیاگرام:

بلوک دیاگرام برای اجرای فیلتر کالمن بر روی سنسور MPU:

فیلتر کالمن بر روی سنسور MPU:

خروجی ژیروسکوپ + زاویه پیچ/رول قبلی = زاویه پیچ/رول * dt

(زاویه پیچ/رول – خروجی شتابسنج) بهره کالمن+ زاویه پیچ/رول = تخمین جدید

دادههای خام شتاب سنج:

Time(s)

Time(s)

دادههای خام ژیروسکوپ:

دادههای پس از اعمال فیلتر کالمن:

اندازه گیری ارتفاع با آلتراسونیک

$$x = \frac{1}{2}Vt$$

نحوه گرفتن دادهها از آلتراسونیک با رزبریپای و استفاده در متلب:

نتایج عملی

$$PWM1 = U1 + U2 + U3$$
 $U1 - PWM2 = U1 + U2 - U3$

$$PWM3 = U1 - U2 - U3$$

$$PWM4 = U1 - U2 + U3$$

$$U1 \rightarrow Throttle$$
 $U2 \rightarrow Roll$
 $U3 \rightarrow Pitch$

كنترل زوايا با كنترل كننده PD فازى:

ضرایب کنترل کننده:

سیگنالهای کنترلی:

کنترل زوایا با کنترل کننده PD فازی و کنترل ارتفاع با کنترل کننده PID

ضرایب کنترل کننده ارتفاع:

ضرایب کنترلکننده زوایا:

سیگنالهای کنترلی:

Time(s)

سیگنالهای مدولاسیون پهنای پالس:

کنترل زوایا با کنترل کننده PID فازی و ارتفاع با کنترل کننده PID فازی:

■ Kp(1) Time(s) ■ Kd(3) Time(s)

ضرایب کنترل کننده ارتفاع:

Time(s)

ضرایب کنترلکننده زوایا:

ضرایب کنترلکننده زوایا:

U1(N) 10. 20 Time(s) ■ U2 U2(N) 42 Time(s)

سیگنالهای کنترلی:

سیگنالهای مدولاسیون پهنای پالس:

کنترل زوایا با کنترلکننده PID فازی و ارتفاع با PID فازی همراه با مقدار مرجع برای زاویه پیچ:

■ Kd(3) \mathbf{K}_{d} Time(s) ■ Kp(1) Time(s)

ضرایب کنترل کننده ارتفاع:

ضرایب کنترل کننده زوایا:

سیگنالهای کنترلی:

سیگنالهای مدولاسیون پهنای پالس:

#