

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Přípravy na kroužek Mechatronika – KA6(A2d)

7. lekce – programování ovládání motoru - spolupráce AVR a regulátoru motoru

Programování směru pohybu motorů

Každý ze dvou motorů stavebnice Merkur je napojen na svůj vlastní regulátor TA7291SG, jehož činnost jsme si popsali v minulé lekci. Regulátory jsou ovládány pomocí mikrokontroléru AVR.

Jelikož tato část není ve stavebnici Merkur úplně zdokumentována, provedeme jednoduché proměření vstupů a výstupů regulátoru ohmmetrem a zjištěné výsledky porovnáme se schématem základní desky stavebnice Merkur se zapojenými motory.

Pro

Pro naše potřeby budeme uvažovat, že regulátor na obrázku umístěný vpravo bude regulátor č. 1, zbylý regulátor (vlevo) pak bude regulátor č. 2.

Měřením ověříme, že regulátor č. 1 odpovídá kontaktům MOT1 na základní desce a regulátor č. 2 kontaktům MOT2 (viz obrázek). Měřením ještě překontrolujeme napojení regulátorů na jednotlivé výstupní porty mikrokontroléru AVR. Z měření a z obrázku výše dojdeme k závěru, že motor č. 1 je ovládaný přes PORTD4, PORTD5 a motor č. 2 je ovládaný přes PORTD6 a PORTD7 MCU.

Pro účely použití ve stavebnici merkur předpokládejme zapojení motoru č. 2 s opačnou polaritou oproti motoru č. 1 (otočíme hnědý a černý vodič při připojování konektoru). Toto zapojení je z důvodu toho, že jsou ve vozítku namontovány zrcadlově proti sobě (viz návod na stavbu vozítka).

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Zjištěné údaje s pomocí tabulky z předchozí lekce shrneme v následujících tabulkách.

Tabulka funkce regulátoru motoru

Vstup		Výstup		Požim motoru
IN1	IN2	OUT1	OUT2	Režim motoru
0	0	∞	∞	STOP
1	0	Н	L	otáčí se vpřed
0	1	L	Н	otáčí se vzad
1	1	Н	Н	BRZDA

∞ - režim velkého el. odporu

H – max. napětí

L - 0 (zem)

Tabulka PORTů MCU pro nastavení pohybu motorů

Motor	Porty		
MOT1	PORTD4	PORTD5	
MOT2	PORTD6	PORTD7	

Nastavení výstupních hodnot PORTů MCU pro pohyb motorů vpřed

Motor	Port	Hodnota	Port	Hodnota
MOT1	PORTD4	0	PORTD5	1
MOT2	PORTD6	1	PORTD7	0

Pro spuštění chodu motorů v programu pro MCU tedy nastavíme příslušné registry DDRD na výstup (hodnota 1) a registry PORTD dle výše uvedené tabulky.

Pro chod motorů směrem vzad otočíme hodnoty portů, tj. místo 0 -> 1 a naopak. Analogicky se dá dle tabulky odvodit protichůdný běh motorů (vozítko se bude otáčet na místě).

Ve zbylé části lekce budeme pokračovat v sestavování robota Merkur dle návodu z lekce 3.

Vypracoval Radek Zvěřina. Použité materiály: Merkur.