## Chapter 2: Error Detection and Correction Codes Lectures 4-5

To send the message MATH3411, we encode each character in ASCII and add a binary-parity check sum (this is a burst code).

Here, the check sum is 0010111, ASCII for the symbol  $\overline{\text{ETB}}$ . The message sent is then MATH3411 $\overline{\text{ETB}}$ .

Example
Burst noise affects consecutive bits.
For instance, it might send each bit to 1.

|     | ASCII |   |   |   |   |   |   |   |  |
|-----|-------|---|---|---|---|---|---|---|--|
| M   | 1     | 0 | 0 | 1 | 1 | 0 | 1 |   |  |
| Α   | 1     | 0 | 0 | 0 | 0 | 0 | 1 |   |  |
| Τ   | 1     | 0 | 1 | 0 | 1 | 0 | 0 |   |  |
| Н   | 1     | 0 | 0 | 1 | 0 | 0 | 0 |   |  |
| 3   | 0     | 1 | 1 | 0 | 0 | 1 | 1 |   |  |
| 4   | 0     | 1 | 1 | 0 | 1 | 0 | 0 |   |  |
| 1   | 0     | 1 | 1 | 0 | 0 | 0 | 1 |   |  |
| 1   | 0     | 1 | 1 | 0 | 0 | 0 | 1 |   |  |
| ETB | 0     | 0 | 1 | 0 | 1 | 1 | 1 | _ |  |

 $\Lambda \subset \subset \Pi$ 

To send the message MATH3411, we encode each character in ASCII and add a binary-parity check sum (this is a burst code).

Here, the check sum is 0010111, ASCII for the symbol  $\overline{\text{ETB}}$ . The message sent is then MATH3411 $\overline{\text{ETB}}$ .

#### Example

Burst noise affects consecutive bits. For instance, it might send each bit to 1.

### 

To send the message MATH3411, we encode each character in ASCII and add a binary-parity check sum (this is a burst code).

Here, the check sum is 0010111, ASCII for the symbol  $\overline{\text{ETB}}$ . The message sent is then MATH3411 $\overline{\text{ETB}}$ .

We could also use 8-bit even parity ASCII. We can then detect and correct 1 error. We can often detect several errors

- but we cannot correct them.

# ASCII M 01001101 A 0100001 D 11000100 H 010010001 4 10110001 4 10110001 1 10110001

To send long messages, we can partition them into 8-character blocks.

#### Example

The message MATH3411\_IS\_FUN. can be split into the 2 blocks

MATH3411 and LIS\_FUN...

| M   | 01001101                 | П | 10100000 |
|-----|--------------------------|---|----------|
| Α   | 01000001                 |   | 11001001 |
| Т   | 11010100                 | S | 01010011 |
| Н   | 01001000                 | ш | 10100000 |
| 3   | $0\ 0\ 1\ 1\ 0\ 0\ 1\ 1$ | F | 11000110 |
| 4   | 10110100                 | U | 01010101 |
| 1   | 10110001                 | Ν | 01001110 |
| _1  | 10110001                 | • | 00101110 |
| ETB | 00010111                 | i | 01101001 |

The encoded message is then MATH3411ETB\_IS\_FUN.i.

To send long messages, we can partition them into 8-character blocks. This is the 9-character 8-bit ASCII.

- $8 \times 7 = 56$  information bits
- 8 + 8 = 16 check bits
- $8 \times 9 = 72$  bits in total

Each check bit gives a check equation.

$$x_{11} + \dots + x_{18} \equiv 0 \pmod{2}$$

| M   | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |  |
|-----|---|---|---|---|---|---|---|---|--|
| A   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| Т   | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |
| Н   | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| 3   | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |  |
| 4   | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |  |
| 1   | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 1   | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| ETB | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |  |

To send long messages, we can partition them into 8-character blocks. This is the 9-character 8-bit ASCII.

- $8 \times 7 = 56$  information bits
- 8 + 8 = 16 check bits
- $8 \times 9 = 72$  bits in total

Each check bit gives a check equation.

$$x_{16} + \dots + x_{96} \equiv 0 \pmod{2}$$

| M   | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |  |
|-----|---|---|---|---|---|---|---|---|--|
| Α   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| Т   | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |
| Н   | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| 3   | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |  |
| 4   | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |  |
| 1   | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 1   | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| ETB | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |  |

To send long messages, we can partition them into 8-character blocks. This is the 9-character 8-bit ASCII.

- $8 \times 7 = 56$  information bits
- 8 + 8 = 16 check bits
- $8 \times 9 = 72$  bits in total

Each check bit gives a check equation.

Note that

$$x_{91} + \dots + x_{98} \equiv 0 \pmod{2}$$

is the sum of the 8 first row equations and is thus linearly dependent on them.

The 9-character 8-bit ASCII can be seen as a length 72 binary code with 72-bit codewords

$$\mathbf{x} = x_{11} \cdots x_{18} x_{21} \cdots x_{28} \cdots x_{91} \cdots x_{98}$$

- variable length code: codewords have different lengths
- block code: codewords have the same length
- t-error correcting code: code can always correct up to t errors
- systematic code: code with information digits and check digits distinct

#### Example

Morse code is a variable length code. It is neither error correcting nor systematic.

- variable length code: codewords have different lengths
- block code: codewords have the same length
- ullet t-error correcting code: code can always correct up to t errors
- systematic code: code with information digits and check digits distinct

#### Example

ISBN is a block code.

It is single-error detecting.

It is also systematic:

the 10th digit is a check digit;
the other 9 are information digits.

- variable length code: codewords have different lengths
- block code: codewords have the same length
- t-error correcting code: code can always correct up to t errors
- systematic code: code with information digits and check digits distinct

#### Example

```
ASCII (7-bit or 8-bit) is a block code. It is not error correcting.

The 8-bit ASCII is systematic:

the 1st digit is a check bit;

the other 7 are information bits.
```

- variable length code: codewords have different lengths
- block code: codewords have the same length
- ullet t-error correcting code: code can always correct up to t errors
- systematic code: code with information digits and check digits distinct

#### Example

9-character 8-bit ASCII is a block code.

It is single-error correcting.

It is also systematic,

with 16 parity/check bits and 56 information bits.

ullet A binary r-repetition code encodes  $0 o 0 \cdots 0$  and  $1 o 1 \cdots 1$ 





ullet A binary r-repetition code encodes  $0 o 0 \cdots 0$  and  $1 o 1 \cdots 1$ 

#### binary triple-repetition code



ullet A binary r-repetition code encodes  $0 o 0 \cdots 0$  and  $1 o 1 \cdots 1$ 





ullet A binary r-repetition code encodes  $0 o 0 \cdots 0$  and  $1 o 1 \cdots 1$ 

#### Theorem

The binary (2t+1)-repetition code is t-error correcting. The binary 2t-repetition code is (t-1)-error correcting & t-error detecting.

#### Example

We receive the corrupted binary 8-repetition encoded word 01101001. Since there are equally many 0s and 1s, we cannot decode this word. Our decoding therefore Fails.

However, we can see (detect) that there are 4 errors.

#### Theorem

The binary (2t + 1)-repetition code is t-error correcting.

The binary 2t-repetition code is (t-1)-error correcting & t-error detecting.

#### Example

We receive the corrupted binary 8-repetition encoded word 01101001.

Since there are equally many 0s and 1s, we cannot decode this word.

Our decoding therefore Fails.

However, we can see (detect) that there are 4 errors.

#### Example

We receive the corrupted binary 8-repetition encoded word 01101101.

There are more 1s than 0s,

so it is natural to correct to 11111111 and decode to 1.

We write this as  $01101101 \rightarrow 1$ .

#### Theorem

The binary (2t + 1)-repetition code is t-error correcting.

The binary 2t-repetition code is (t-1)-error correcting & t-error detecting.

There are many decoding strategies for decoding repetition codes.

We can choose any of these - but only one of these!

#### Example

For a 5-repetition code, we can choose from the following stategies:

STRATEGY 1

Correct up to 2 errors.

$$00001 \ \rightarrow \ 0$$

$$00011 \rightarrow 0$$

#### Theorem

The binary (2t+1)-repetition code is t-error correcting. The binary 2t-repetition code is (t-1)-error correcting & t-error detecting.

There are many decoding strategies for decoding repetition codes. We can choose any of these - but only one of these!

#### Example

For a 5-repetition code, we can choose from the following stategies:

#### STRATEGY 2

Correct 1 error 
$$00001 \rightarrow 0$$
 or detect 2 or 3 errors. 
$$00011 \rightarrow \mathsf{F}$$
 
$$00111 \rightarrow \mathsf{F}$$

Here, our decoding strategy failed for two of the words

- but we detected that there were 2 or 3 errors.

#### Theorem

The binary (2t+1)-repetition code is t-error correcting. The binary 2t-repetition code is (t-1)-error correcting & t-error detecting.

There are many decoding strategies for decoding repetition codes. We can choose any of these - but only one of these!

#### Example

For a 5-repetition code, we can choose from the following stategies:

Here, our decoding strategy was a complete failure

- but we did detect that there were errors.

#### Theorem

The binary (2t+1)-repetition code is t-error correcting. The binary 2t-repetition code is (t-1)-error correcting & t-error detecting.

There are many decoding strategies for decoding repetition codes. We can choose any of these - but only one of these!

#### Example

At best, we can correct 2 errors, so the code is 2-error correcting.

#### Example

For a 6-repetition code (t = 3), we can choose from these stategies:

STRATEGY 1 Correct up to 2 errors or detect up to 3 errors.

Strategy 2 Correct 1 error or detect up to 4 errors.

Strategy 3 Detect up to 5 errors.

#### STRATEGY

#### Example

For a 7-repetition code (t = 3), we can choose from these stategies:

STRATEGY 1 Correct up to 3 errors.

STRATEGY 2 Correct up to 2 errors or detect up to 4 errors.

STRATEGY 3 Correct 1 error or detect up to 5 errors.

STRATEGY 4 Detect up to 6 errors.

#### STRATEGY

To send the message MATH3411, we encode each character in ASCII and add a binary-parity check sum (this is a burst code).

Here, the check sum is 0010111, ASCII for the symbol  $\overline{ETB}$ . The message sent is then MATH3411 $\overline{ETB}$ .

|     | ASCII         |  |  |  |  |  |  |  |
|-----|---------------|--|--|--|--|--|--|--|
| M   | 1001101       |  |  |  |  |  |  |  |
| Α   | 1000001       |  |  |  |  |  |  |  |
| Τ   | 1010100       |  |  |  |  |  |  |  |
| Н   | 1001000       |  |  |  |  |  |  |  |
| 3   | 0 1 1 0 0 1 1 |  |  |  |  |  |  |  |
| 4   | 0 1 1 0 1 0 0 |  |  |  |  |  |  |  |
| 1   | 0 1 1 0 0 0 1 |  |  |  |  |  |  |  |
| 1   | 0110001       |  |  |  |  |  |  |  |
| ETB | 0010111       |  |  |  |  |  |  |  |

 $\Lambda CCII$