

Progress report

進度報告

林晉德

2021年7月5日

To do list

Person Re-Identification system					
1. Person detection	Object detection (MobileNetSSD) Openpose	done cont.			
2. 特徵擷取網路架構	Torchreid (A Library for Deep Learning Person Re-Identification in Pytorch) backbone: ResNet50 backbone: OSNet Tensorflow -> Pytorch 世超-DSPF (backbone: SE-ResNeXt)	done cont. cont.			
3. 動態每天分群給編號 4. 使用3的分群編號, 去做Query識別	Feature Extractor Compute distance matrix Real-time system	done done cont.			
5. 確認編號的確實身份	結合Line bod應用	cont.			

What I have done

Person detection

Object detection (MobileNetSSD)	done	
Openpose	cont.	

aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
COW
dining table
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
TV monitor

Use person bounding box

```
main loop:
                blob = cv2.dnn.blobFromImage(
                    cv2.resize(frame, (300, 300)), 1.0 / 127.5, (300, 300), 127.5)
                net.setInput(blob)
                detections = net.forward()
                for i in range(0, detections.shape[2]):
                    confidence = detections[0, 0, i, 2]
                    if confidence > threshold:
                        idx = int(detections[0, 0, i, 1])
                        bounding box = detections[0, 0, i, 3:7] * \
                            np.array([origin w, origin h, origin w, origin h])
                        x start, y start, x end, y end = bounding box.astype(
                        if idx == 15:
                            person bounding box = frame[y start:y end, x start:x end].astype(
                                 'uint8')
                            run re id (person bounding box)
```

Torchreid training ResNet50

Hyperparamters						
Data set	Market1501					
batch_size_train	32					
model name	resnet50					
optimizer	adam					
lr	0.0003					
lr_scheduler	single_step					
stepsize	20					
max_epoch	60					

Results				
mAP	67.40%			
Rank-1	85.00%			
Elapsed	01:15:48			

Test image

Torchreid ResNet50 Feature Extractor

layer name	output size	18-layer 34-layer		50-layer 101-layer		152-layer	
conv1	112×112			7×7, 64, stride 2	stride 2		
				3×3 max pool, stric	le 2		
conv2_x	56×56	[222 64]	[242.64]	[1×1, 64]	[1×1, 64]	[1×1, 64]	
CONVZ_X	30×30	$\begin{vmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{vmatrix} \times 2$	$\begin{vmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{vmatrix} \times 3$	3×3, 64 1×1, 256	3×3, 64 ×3	3×3, 64 ×3	
		[3 × 3, 04]	[5×3, 64]	1×1, 256	[1×1, 256]	1×1, 256	
		$28 \times 28 \left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	[2 42 120]	[1×1, 128]	[1×1, 128]	[1×1, 128]	
conv3_x	28×28		$\begin{bmatrix} 3\times3, 128 \\ 3\times3, 128 \end{bmatrix} \times 4$	3×3, 128 ×4	3×3, 128 ×4	3×3, 128 ×8	
				1×1, 512	[1×1, 512]	1×1, 512	
	$ \begin{array}{c c} 14 \times 14 & \begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array} $	[2 2 256]	[2 2 .256]	[1×1, 256]	[1×1, 256]	[1×1, 256]	
conv4_x		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 3 \times 3, 256 \\ 2 \times 2, 256 \end{bmatrix} \times 6 \begin{bmatrix} 3 \times 6 \\ 3 \times 6 \end{bmatrix}$	3×3, 256 ×6	3×3, 256 ×23	3×3, 256 ×36	
		[3×3, 230]	[3×3, 230]	1×1, 1024	[1×1, 1024]	[1×1, 1024]	
		[2 × 2 512]	[2 4 2 512]	[1×1, 512]	[1×1, 512]	[1×1, 512]	
conv5_x	7×7	$\begin{vmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{vmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 512 \\ 2 \times 2, 512 \end{bmatrix} \times 3 \begin{bmatrix} 3 \times 3 \\ 3 \times 3 \end{bmatrix}$	3×3, 512 ×3	3×3, 512 ×3	3×3, 512 ×3	
		$7 \times 7 \qquad \left[\begin{array}{c} 3 \times 3, 512 \\ 3 \times 3, 512 \end{array} \right] \times 2 \qquad \left[\begin{array}{c} 3 \times 3, 5 \\ 3 \times 3, 5 \end{array} \right]$	[3×3, 312]	1×1, 2048	[1×1, 2048]	1×1, 2048	
	1×1		av	erage pool, 1000-d fc,	softmax		
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9	

Input image size (256, 128)

ResNet50

Output feature (1, 2048)

p14

p23

(ResNet50)

```
p11
```

p12


```
features_1 = extractor(image_list_p1)
features_2 = extractor(image_list_p2)
print("features_1 ",features_1)
print("features 2 ",features 2)
```

```
=>>>
```

features_1

```
torch.Size([5, 2048])
```

```
[0.0785, 0.3583, 0.3029, ..., 0.0520, 0.0000, 1.0073], [0.0664, 0.0527, 0.3985, ..., 0.0327, 0.0454, 1.1085], [0.5219, 1.2649, 0.0334, ..., 0.0906, 0.1035, 0.2110], [0.0283, 0.2683, 0.5947, ..., 0.3594, 0.0563, 0.2664], [0.4860, 1.0593, 0.0162, ..., 0.0346, 0.0486, 0.1544]
```

features_2

```
torch.Size([3, 2048])
```

```
[0.3463, 1.4591, 0.0021, ..., 0.1234, 0.0718, 0.1940], [0.0032, 0.0800, 0.2054, ..., 0.1168, 0.0088, 0.6943], [0.4860, 1.0593, 0.0162, ..., 0.0346, 0.0486, 0.1544]
```

```
image_list_p1 = [
  'test_image/p11.jpg',
  'test_image/p12.jpg',
  'test_image/p22.jpg',
  'test_image/p31.jpg',
  'test_image/p23.jpg',
]
```

```
image_list_p2 = [
  'test_image/p21.jpg',
  'test_image/p14.jpg',
  'test_image/p23.jpg'
]
```

Compute distance matrix image_list_p2

use **euclidean**

$$d(x,y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

image_list_p1 = [
'test_image/p11.jpg', 'test_image/p12.jpg', 'test_image/p22.jpg', 'test_image/p31.jpg', 'test_image/p23.jpg',	<pre>image_list_p2 = ['test_image/p21.jpg', 'test_image/p14.jpg', 'test_image/p23.jpg']</pre>
]	

features 1 = **extractor**(image list p1) features 2 = **extractor**(image list p2)

distmat = metrics.compute_distance_matrix(features_1, features_2) print(distmat)

10

=>>>		
[689.1064,	71.9318,	666.6927],
[679.5190,	82.5314,	663.0724],
[54.5557,	652.5553,	45.2095],
[662.2687,	602.6262,	615.7032],
[69.6683,	625.9954,	0.0000]

image_	_list_	_p1

p21

p23

689

p12

Compute distance matrix use cosine

```
#cosine
distmat2 = metrics.compute distance matrix(features 1, features 2, metric='cosine')
print(distmat2)
=>>>
[0.5796531438827515,
                        0.0591344833374023.
                                                0.5568877458572388],
[0.5758468508720398,
                        0.0683749318122863,
                                                0.5579483509063721],
[0.04654204845428467,
                        0.545458018779754,
                                                0.038355231285095215],
[0.5825185775756836,
                                                0.5374826192855835],
                        0.517381191253662,
[0.06009882688522339,
                        0.527764081954956,
                                                1.1920928955078125e-07
```

```
features 1 = extractor(image list p1)
features 2 = extractor(image list p2)
distmat = metrics.compute distance matrix(features 1, features 2)
print(distmat)
=>>>
[689.1064.
             71.9318.
                            666.6927],
[679.5190,
             82.5314.
                            663.0724],
[ 54.5557,
                            45.2095],
              652.5553,
[662.2687,
              602.6262,
                            615.7032],
[ 69.6683,
              625.9954.
                            0.00001
```


EE3F test

False Positive (一樣)

False Negative

(不一樣)

image total = 6+7=13

if	Prediction					
V>110	p21	p12	p23	p33	p14	p35
p11	50.9017	20.3506	247.2152	381.1587	77.9178	370.6215
p22	54.5635	127.8018	102.7195	340.7387	140.1973	341.6727
p13	75.845	35.5033	277.5178	385.7975	48.2986	380.8727
p34	452.6635	440.9745	373.1768	89.053	358.6364	84.5405
p24	188.0116	220.797	78.1254	227.1243	132.516	252.0209
p15	142.2623	76.3605	228.548	268.5231	36.2512	279.7692
p41	199.574	179.9592	343.4623	363.6335	186.4541	368.7164

	Ground truth					
	p21	p12	p23	p33	p14	p35
p11		1			1	
p22	1		1			
p13		1			1	
p34				1		1
p24	1		1			
p22 p13 p34 p24 p15		1			1	
p41						

False Negative (不一樣)

Next to do

Next to do

	Person Re-Identification system				
1. Person detection	Object detection (MobileNetSSD) Openpose	done cont.			
2. 特徵擷取網路架構	Torchreid (A Library for Deep Learning Person Re-Identification in Pytorch) backbone: ResNet50 backbone: OSNet Tensorflow -> Pytorch 世超-DSPF (backbone: SE-ResNeXt)	done cont.			
3. 動態每天分群給編號 4. 使用3的分群編號, 去做Query識別	Feature Extractor Compute distance matrix Real-time system	done done cont .			
5. 確認編號的確實身份	結合Line bod應用	cont.			