Random Gradient Hyper-heuristics Can Learn to Escape Local Optima in Multimodal Optimisation

Yuxuan Ma¹ Pietro S. Oliveto¹ John Alasdair Warwicker²

¹Southern University of Science and Technology, Shenzhen, Guangdong, China ²Karlsruhe Institute of Technology, Germany

July 16, 2025

 Generalised Random Gradient Selection Hyper-heuristics (GRG SHH) have been shown to have remarkable performance on unimodal functions(e.g. LEADINGONES,ONEMAX,RIDGE) [Lissovoi et al., 2017, Doerr et al., 2018, Lissovoi et al., 2020].

- Generalised Random Gradient Selection Hyper-heuristics (GRG SHH) have been shown to have remarkable performance on unimodal functions(e.g. LEADINGONES,ONEMAX,RIDGE) [Lissovoi et al., 2017, Doerr et al., 2018, Lissovoi et al., 2020].
- Our aim is to analyse for the first time the performance of GRG in multimodal optimisation.

- Generalised Random Gradient Selection Hyper-heuristics (GRG SHH) have been shown to have remarkable performance on unimodal functions(e.g. LEADINGONES,ONEMAX,RIDGE) [Lissovoi et al., 2017, Doerr et al., 2018, Lissovoi et al., 2020].
- Our aim is to analyse for the first time the performance of GRG in multimodal optimisation.
- We consider the TwoRates function introduced by [Krejca and Witt, 2024] to analyse the performance of the Flex-EA that saves the promising mutation operators in an archive.

- Generalised Random Gradient Selection Hyper-heuristics (GRG SHH) have been shown to have remarkable performance on unimodal functions(e.g. LEADINGONES,ONEMAX,RIDGE) [Lissovoi et al., 2017, Doerr et al., 2018, Lissovoi et al., 2020].
- Our aim is to analyse for the first time the performance of GRG in multimodal optimisation.
- We consider the TWORATES function introduced by [Krejca and Witt, 2024] to analyse the performance of the Flex-EA that saves the promising mutation operators in an archive.
- The expected runtime of flex-EA with the recommended parameters setting on TWORATES is bounded by $\mathcal{O}(n^{4.5})$ [Krejca and Witt, 2024].

- Generalised Random Gradient Selection Hyper-heuristics (GRG SHH) have been shown to have remarkable performance on unimodal functions(e.g. LEADINGONES,ONEMAX,RIDGE) [Lissovoi et al., 2017, Doerr et al., 2018, Lissovoi et al., 2020].
- Our aim is to analyse for the first time the performance of GRG in multimodal optimisation.
- We consider the TWORATES function introduced by [Krejca and Witt, 2024] to analyse the performance of the Flex-EA that saves the promising mutation operators in an archive.
- The expected runtime of flex-EA with the recommended parameters setting on TwoRates is bounded by $\mathcal{O}(n^{4.5})$ [Krejca and Witt, 2024].
- We show that GRG is considerably faster by learning the best operator without switching.

- Generalised Random Gradient Selection Hyper-heuristics (GRG SHH) have been shown to have remarkable performance on unimodal functions(e.g. LEADINGONES,ONEMAX,RIDGE) [Lissovoi et al., 2017, Doerr et al., 2018, Lissovoi et al., 2020].
- Our aim is to analyse for the first time the performance of GRG in multimodal optimisation.
- We consider the TWORATES function introduced by [Krejca and Witt, 2024] to analyse the performance of the Flex-EA that saves the promising mutation operators in an archive.
- The expected runtime of flex-EA with the recommended parameters setting on TWORATES is bounded by $\mathcal{O}(n^{4.5})$ [Krejca and Witt, 2024].
- We show that GRG is considerably faster by learning the best operator without switching.
- This is the first time that GRG is analysed with all RLS operators $H = \{RLS_1, ..., RLS_n\}$.

Generalised Random Gradient Hyper-heuristic

Algorithm 1 Generalised Random Gradient Hyper-heuristic(GRG)

- 1: Choose $x \in S$ uniformly at random
- 2: while stopping conditions not satisfied do
- 3: Choose $h \in H$ uniformly at random
- 4: $c_t \leftarrow 0$
- 5: while $c_t < \tau$ do
- 6: $c_t \leftarrow c_t + 1; x' \leftarrow h(x)$
- 7: if f(x') > f(x) then
- 8: $c_t \leftarrow 0; x \leftarrow x'$

TwoRates and CutTwoRates fitness functions

$$\operatorname{TWORATES}(x) := \begin{cases} \operatorname{OM}(x) & \text{if } |x|_1 < s \text{ or } |x|_1 \geq 3n/4 \\ & \text{or } |x|_1 = s + ig \text{ for } i \in \{0, 2, 3, 5, 6, \dots\}; \\ -1 & \text{otherwise.} \end{cases}$$

$$\operatorname{CUTTWORATES}(x) := \begin{cases} \operatorname{TWORATES}(x) & \text{if } |x|_1 \leq 3n/4; \\ -1 & \text{otherwise.} \end{cases}$$

- $s := 3n/4 \sqrt{n} \implies$ the length of the HURDLE section is \sqrt{n}
- alternating gaps of size $2g := 2 \log_2 n$ and $g := \log_2 n$

Note: g and \sqrt{n}/g are defined to be integers $\implies g$ has to be even.

TwoRates and CutTwoRates fitness functions

Figure: TWORATES fitness function, where s denotes $3n/4 - \sqrt{n}$ and g denotes $\log_2 n$. Note that the graph magnifies the size of the hurdle region

Theorem

Let $\rho > \gamma > 0$ be some constants, and let $\beta = \rho/\gamma$. Then the probability of using RLS_{ρg} and getting an improvement of γg in the hurdles region of the TWORATES function is equal to

$$p(n, a, \gamma g, (\rho - \gamma)g/2) = (1 - o(1))\sqrt{2\rho/(\pi(\rho^2 - \gamma^2)\log n)}n^{-\gamma f(\beta)},$$

where
$$f(\beta) = \beta[1 + \log\sqrt{(\beta^2 - 1)/(3\beta^2)}] + \log\sqrt{3(\beta + 1)/(\beta - 1)}$$
.

•
$$p(n, a, \gamma g, (\rho - \gamma)g/2) = \binom{n-a}{(\rho+\gamma)g/2} \binom{a}{(\rho-\gamma)g/2} / \binom{n}{\rho g}$$

$$\frac{(s-t)^t}{t^{t+1/2}}\frac{e^{t-\frac{1}{12t}}}{\sqrt{2\pi}} < \binom{s}{t} < \frac{s^t}{t^{t+1/2}}\frac{e^{t+\frac{1}{360t^3}-\frac{1}{12t}}}{\sqrt{2\pi}}.$$

Corollary

The value of m, $1 \le m \le n$, that minimises the expected runtime of RLS_m for crossing the Hurdle region of TwoRates starting from $|x|_1 = 3n/4 - \sqrt{n}$, converges to m = 4g (i.e., $m = 4 \log n$) when n is sufficiently large.

Proof idea:

• By Hoeffding's bound, the probability for ${\rm RLS}_m$, where $m = \omega(\log n)$, to make any improvement is $1/n^{\omega(1)}$

Corollary

The value of m, $1 \le m \le n$, that minimises the expected runtime of RLS_m for crossing the Hurdle region of TwoRates starting from $|x|_1 = 3n/4 - \sqrt{n}$, converges to m = 4g (i.e., $m = 4 \log n$) when n is sufficiently large.

- By Hoeffding's bound, the probability for RLS_m , where $m = \omega(\log n)$, to make any improvement is $1/n^{\omega(1)}$
- When n is sufficiently large, $n^{-\gamma f(\beta)}$ dominates $(1-o(1))\sqrt{2\rho/(\pi(\rho^2-\gamma^2)\log n)}n^{-\gamma f(\beta)}$,

Corollary

The value of m, $1 \le m \le n$, that minimises the expected runtime of RLS_m for crossing the Hurdle region of TwoRates starting from $|x|_1 = 3n/4 - \sqrt{n}$, converges to m = 4g (i.e., $m = 4 \log n$) when n is sufficiently large.

- By Hoeffding's bound, the probability for RLS_m , where $m = \omega(\log n)$, to make any improvement is $1/n^{\omega(1)}$
- When n is sufficiently large, $n^{-\gamma f(\beta)}$ dominates $(1 o(1))\sqrt{2\rho/(\pi(\rho^2 \gamma^2)\log n)}n^{-\gamma f(\beta)}$,
- for $\beta>1$, $f(\beta)$ reaches its minimum at $\beta=\rho/\gamma=2$ \Longrightarrow the best operator crossing 2g hurdle converges to RLS_{4g} , and the best operator crossing 2g+g hurdle converges to RLS_{6g} , etc.

Corollary

The value of m, $1 \le m \le n$, that minimises the expected runtime of RLS_m for crossing the Hurdle region of TwoRates starting from $|x|_1 = 3n/4 - \sqrt{n}$, converges to m = 4g (i.e., $m = 4 \log n$) when n is sufficiently large.

- By Hoeffding's bound, the probability for RLS_m , where $m = \omega(\log n)$, to make any improvement is $1/n^{\omega(1)}$
- When n is sufficiently large, $n^{-\gamma f(\beta)}$ dominates $(1 o(1))\sqrt{2\rho/(\pi(\rho^2 \gamma^2)\log n)}n^{-\gamma f(\beta)}$,
- for $\beta > 1$, $f(\beta)$ reaches its minimum at $\beta = \rho/\gamma = 2 \implies$ the best operator crossing 2g hurdle converges to RLS_{4g} , and the best operator crossing 2g + g hurdle converges to RLS_{6g} , etc.
- The probability for RLS_{6g} to make 3g improvement is already 1/n smaller than the probability for RLS_{4g} to make 2g improvement, while crossing the g hurdle is easier.

Why should we set τ as $\tau \geq n^{\log 9 + \epsilon}$ and $\tau = poly(n)$

• We want to set τ large s.t. RLS_{4g} can make consecutive improvement in the HURDLE section with high probability.

Why should we set τ as $\tau \geq n^{\log 9 + \epsilon}$ and $\tau = poly(n)$

- We want to set τ large s.t. RLS_{4g} can make consecutive improvement in the Hurdle section with high probability.
- We don't want to set τ too large since the expected waiting time will be long. And, even more operators will succeed, which means that the time for each improvement will be longer.

$$rac{1}{
ho} - rac{(1-
ho)^{ au} au}{1-(1-
ho)^{ au}}$$

Why should we set τ as $\tau \geq n^{\log 9 + \epsilon}$ and $\tau = poly(n)$

- We want to set τ large s.t. RLS_{4g} can make consecutive improvement in the Hurdle section with high probability.
- We don't want to set τ too large since the expected waiting time will be long.
 And, even more operators will succeed, which means that the time for each improvement will be longer.

$$\frac{1}{\rho}-\frac{(1-\rho)^\tau\tau}{1-(1-\rho)^\tau}$$

• The probability for ${\rm RLS}_{4g}$ to make an improvement of 2g bits is $(1-o(1))\sqrt{2/(3\pi\log n)}n^{-\log 9} \Longrightarrow$ we can set $\tau \ge n^{\log 9+\epsilon}$ while $\tau = poly(n)$.

GRG with $H = \{RLS_1, RLS_{4g}\}$ CutTwoRates

Note: To see the best possible speed up compared to Flex-EA, we analyse GRG with two optimal operators on CuttwoRates.

Theorem

Let ϵ be an arbitrarily small positive constant. The expected runtime of the Generalised Random Gradient hyper-heuristic for $\mathrm{CUTTWoRATES}$ with $H = \{RLS_1, RLS_{4g}\}$ and $\tau \geq n^{\log 9 + \epsilon}$, $\tau = poly(n)$ is $\mathcal{O}(\tau + n^{\log 9} \sqrt{n/\log n})$.

Proof idea:

• For the first ONEMAX part, both RLS_1 and RLS_{4g} have overwhelming probability to succeed consecutively until reaching the start point of the Hurdle section, and the whole expected runtime in this stage can be bounded by $\mathcal{O}(n^{5-\log 9}\sqrt{\log n})$.

GRG with $H = \{RLS_1, RLS_{4g}\}$ CutTwoRates

Note: To see the best possible speed up compared to Flex-EA, we analyse GRG with two optimal operators on CutTwoRates.

Theorem

Let ϵ be an arbitrarily small positive constant. The expected runtime of the Generalised Random Gradient hyper-heuristic for $\mathrm{CUTTWoRATES}$ with $H = \{RLS_1, RLS_{4g}\}$ and $\tau \geq n^{\log 9 + \epsilon}$, $\tau = poly(n)$ is $\mathcal{O}(\tau + n^{\log 9} \sqrt{n/\log n})$.

- For the first ONEMAX part, both RLS_1 and RLS_{4g} have overwhelming probability to succeed consecutively until reaching the start point of the HURDLE section, and the whole expected runtime in this stage can be bounded by $\mathcal{O}(n^{5-\log 9}\sqrt{\log n})$.
- For the Hurdle section, RLS_1 will directly fail after τ iterations once selected, while RLS_{4g} has overwhelming probability to cross the whole Hurdle section. The expected runtime in this stage can be bounded by $\mathcal{O}(\tau + n^{\log 9} \sqrt{n/\log n})$.

GRG with $H = \{RLS_1, RLS_2, \dots, RLS_n\}$ TwoRates

Note: In practice, we don't know which operators are useful so we consider them all for the complete function.

Theorem

The expected runtime of the Generalised Random Gradient Hyper-heuristic with $\tau \geq n^{\log 9 + \epsilon}$, $\tau = poly(n)$, equipped with $H = \{RLS_1 \dots, RLS_n\}$ for TwoRates is $\mathcal{O}(n\tau \log n)$.

Proof idea:

• Consider the expected runtime on the first ONEMAX part, the HURDLE section and the second ONEMAX part, respectively.

GRG with $H = \{RLS_1, RLS_2, \dots, RLS_n\}$ TwoRates

Note: In practice, we don't know which operators are useful so we consider them all for the complete function.

Theorem

The expected runtime of the Generalised Random Gradient Hyper-heuristic with $\tau \geq n^{\log 9 + \epsilon}$, $\tau = poly(n)$, equipped with $H = \{RLS_1 \dots, RLS_n\}$ for TwoRates is $\mathcal{O}(n\tau \log n)$.

- Consider the expected runtime on the first ONEMAX part, the HURDLE section and the second ONEMAX part, respectively.
- The expected runtime on the second ONEMAX part is $\mathcal{O}(n\tau \log n) \Longrightarrow$ the expected runtime on the first ONEMAX part is also $\mathcal{O}(n\tau \log n)$.

GRG with $H = \{RLS_1, RLS_2, \dots, RLS_n\}$ TwoRates

Note: In practice, we don't know which operators are useful so we consider them all for the complete function.

Theorem

The expected runtime of the Generalised Random Gradient Hyper-heuristic with $\tau \geq n^{\log 9 + \epsilon}$, $\tau = poly(n)$, equipped with $H = \{RLS_1 \dots, RLS_n\}$ for TwoRates is $\mathcal{O}(n\tau \log n)$.

- Consider the expected runtime on the first ONEMAX part, the HURDLE section and the second ONEMAX part, respectively.
- The expected runtime on the second ONEMAX part is $\mathcal{O}(n\tau \log n) \Longrightarrow$ the expected runtime on the first ONEMAX part is also $\mathcal{O}(n\tau \log n)$.
- The expected runtime on the HURDLE section is $\mathcal{O}(n\tau)$.

Lemma

The expected runtime of the Generalised Random Gradient Hyper-heuristic equipped with $H := \{ RLS_1, \dots, RLS_n \}$ and $\tau \ge n^{\log 9 + \epsilon}$, $\tau = poly(n)$, starting from a random heuristic choice at $|x|_1 \ge 3n/4$ on TWORATES is $\mathcal{O}(n\tau \log n)$.

Proof idea:

• We pessimistically assume that once an operator makes any improvement, the fitness improves only by 1 and the number of iterations required to make the improvement is exactly τ .

Lemma

The expected runtime of the Generalised Random Gradient Hyper-heuristic equipped with $H := \{RLS_1, \dots, RLS_n\}$ and $\tau \ge n^{\log 9 + \epsilon}$, $\tau = poly(n)$, starting from a random heuristic choice at $|x|_1 \ge 3n/4$ on TWORATES is $\mathcal{O}(n\tau \log n)$.

- We pessimistically assume that once an operator makes any improvement, the fitness improves only by 1 and the number of iterations required to make the improvement is exactly τ .
- Divide H into three sets H_1, H_2, H_3 where,
 - H_1 contains only RLS_1 ;
 - H_3 contains the operators that have a probability to find an improvement in the second ONEMAX part that is always smaller that $1/n^2$ (i.e. if p is the probability that the current operator will make an improvement in a single step, then $1 (1-p)^{\tau} < 1/n^2$);
 - *H*₂ contains the remaining operators.

• Let $T \mid OM = k$ be the runtime before reaching the optimum, starting at k one bits.

- Let $T \mid OM = k$ be the runtime before reaching the optimum, starting at k one bits.
- Let $k^* = \arg\max_{k \in [3n/4..n]} \mathbb{E}[T \mid OM = k]$.

- Let $T \mid OM = k$ be the runtime before reaching the optimum, starting at k one bits.
- Let $k^* = \arg\max_{k \in [3n/4..n]} \mathbb{E}[T \mid OM = k].$
- We have,

$$\begin{split} \mathbb{E}[T \mid \mathrm{OM} = k^*] &= \frac{1}{n} \cdot \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_1] \\ &+ \frac{1}{n} \cdot \sum_{i \in H_2} \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_i] \\ &+ \frac{1}{n} \cdot \sum_{i \in H_3} \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_i]. \end{split}$$

• For RLS_1 , it has overwhelming probability to consecutively succeed until reaching the optimum $\implies \mathbb{E}[T \mid OM = k^*, RLS_1] = \mathcal{O}(n\tau)$

- For RLS_1 , it has overwhelming probability to consecutively succeed until reaching the optimum $\implies \mathbb{E}[T \mid OM = k^*, RLS_1] = \mathcal{O}(n\tau)$
- For RLS_i where $i \in H_2$, either,
 - (a) It successfully goes all the way to the end \implies the time can be bounded by $\mathcal{O}(n\tau)$,
 - (b) It fails before reaching the optimum \Longrightarrow the time can be bounded by $\tau\theta + \tau + \mathbb{E}[T \mid \mathrm{OM} = k^* + \theta] < \mathcal{O}(n\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*].$

$$\implies \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_{i \in H_2}] < \mathcal{O}(n\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*]$$

- For RLS_1 , it has overwhelming probability to consecutively succeed until reaching the optimum $\implies \mathbb{E}[T \mid OM = k^*, RLS_1] = \mathcal{O}(n\tau)$
- For RLS_i where $i \in H_2$, either,
 - (a) It successfully goes all the way to the end \implies the time can be bounded by $\mathcal{O}(n\tau)$,
 - (b) It fails before reaching the optimum \Longrightarrow the time can be bounded by $\tau\theta + \tau + \mathbb{E}[T \mid \mathrm{OM} = k^* + \theta] < \mathcal{O}(n\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*].$

$$\implies \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_{i \in H_2}] < \mathcal{O}(n\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*]$$

- For RLS_i where $i \in H_3$, either,
 - (a) It fails to make a single improvement \implies the runtime is $\tau + \mathbb{E}[T \mid \mathrm{OM} = k^*]$
 - (b) It succeeds in making a single improvement \Longrightarrow the runtime together with the probability can be bounded by $\mathcal{O}(n^2\tau)\cdot 1/n^2$ by definition of H_3 .

$$\implies \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_{i \in H_3}] < \mathcal{O}(\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*]$$

- For RLS_1 , it has overwhelming probability to consecutively succeed until reaching the optimum $\implies \mathbb{E}[T \mid OM = k^*, RLS_1] = \mathcal{O}(n\tau)$
- For RLS_i where $i \in H_2$, either,
 - (a) It successfully goes all the way to the end \implies the time can be bounded by $\mathcal{O}(n\tau)$,
 - (b) It fails before reaching the optimum \Longrightarrow the time can be bounded by $\tau\theta + \tau + \mathbb{E}[T \mid \mathrm{OM} = k^* + \theta] < \mathcal{O}(n\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*].$

$$\implies \mathbb{E}[T \mid \mathrm{OM} = k^*, \mathrm{RLS}_{i \in H_2}] < \mathcal{O}(n\tau) + \mathbb{E}[T \mid \mathrm{OM} = k^*]$$

- For RLS_i where $i \in H_3$, either,
 - (a) It fails to make a single improvement \implies the runtime is $\tau + \mathbb{E}[T \mid \mathrm{OM} = k^*]$
 - (b) It succeeds in making a single improvement \Longrightarrow the runtime together with the probability can be bounded by $\mathcal{O}(n^2\tau)\cdot 1/n^2$ by definition of H_3 .

$$\implies \mathbb{E}[T \mid \text{OM} = k^*, \text{RLS}_{i \in H_3}] < \mathcal{O}(\tau) + \mathbb{E}[T \mid \text{OM} = k^*]$$

• By Hoeffding's bound, we know $|H_3| = n - \mathcal{O}(\log n)$. Using all the inequalities above, we finish the proof.

GRG with $H = \{RLS_1, RLS_2, \dots, RLS_n\}$ Hurdle Section

Lemma

Starting with a random heuristic choice at the beginning of any hurdle in the Hurdle region, the expected runtime of the Generalised Random Gradient Hyper-heuristic with $\tau \geq n^{\log 9 + \epsilon}$, $\tau = \text{poly}(n)$, equipped with $H = \{RLS_1 \dots RLS_n\}$, to optimise CutTwoRates is $\mathcal{O}(n\tau)$.

Proof idea: The idea is similar.

Conclusion and Discussion

- The whole analysis relies on the gaps of TWORATES being of even length.
- The following variant of GRG allows to jump gaps of both even and odd length at the expense of a factor 2 on the expected runtime.

Algorithm 2 Extended GRG Hyper-heuristic

```
1: Choose x \in S uniformly at random
    while stopping conditions not satisfied do
 3:
          Choose h \in H according to some distribution
         c_t \leftarrow 0
 4:
 5:
         while c_t < \tau do
              c_t \leftarrow c_t + 1; x' \leftarrow h(x); x^{\dagger} \leftarrow RLS_1(x')
 6:
              if f(x') > f(x) then
 7:
                   c_t \leftarrow 0: x \leftarrow x'
 8.
               else if f(x^{\dagger}) > f(x) then
 9:
                   c_t \leftarrow 0: x \leftarrow x^{\dagger}
10:
```

Conclusion and Discussion

Conclusion

- Flex-EA on TWORATES: $\mathcal{O}(n^{4.5})$
- GRG with $H = \{RLS_1, RLS_{4g}\}$ on Cuttworates: $\mathcal{O}\left(n^{3.67}/\sqrt{\log n}\right)$
- GRG with $H = \{RLS_1, ..., RLS_n\}$ on TwoRates: $\mathcal{O}(n^{4.17} \log n)$

Future work

- Flex-EA may also be able to optimise $\mathrm{TWORATES}$ by only applying RLS_{4g} .
- Analysis of ARG on TWORATES is needed because in practice we do not know how to set τ .
- Lower bounds and more precise upper bounds are needed.

References I

- Doerr, B., Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2018). On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '18, pages 1015–1022. ACM.
- Krejca, M. S. and Witt, C. (2024).

 A flexible evolutionary algorithm with dynamic mutation rate archive.

 In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '24, pages 1578–1586. ACM.
- Lissovoi, A., Oliveto, P., and Warwicker, J. A. (2020). How the duration of the learning period affects the performance of random gradient selection hyper-heuristics.

Proceedings of the AAAI Conference on Artificial Intelligence, 34(03):2376–2383.

References II

Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2017).

On the runtime analysis of generalised selection hyper-heuristics for pseudo-boolean optimisation.

In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '17, pages 849–856. ACM.