CS 180 Discussion 1A/1E

Week 2

Haoxin Zheng 10/13/2023

- Class 1,2,...n, each class has starting time s(i) and finishing time f(i).
- Goal: Schedule maximum # of classes that are compatible (no overlap)
- Starting time?
- Finishing time?
- Length of the class?

- Algorithm:
 - Sort classes by finishing time $t_1, t_2 \dots t_n$, s.t. $t_1 \le t_2 \dots \le t_n$
 - A = Ø
 - For I = 1,2, ... n:
 - If t_i is compatible to the current solution A:
 - $A = A + \{t_i\}$
- Time complexity: O(nlogn)
 - Just remember this for sorting right now, will introduce in later lectures.

- Logic Show the solution from greedy algorithm is optimal
 - Let $\{i_1, i_2, ..., i_k\}$ be the solution of the greedy algorithm. There can be 3 situations:
 - \exists another compatible set $\{j_1, j_2, ..., j_b\}$ (b<k) -> Doesn't matter, not optimal since b<k.
 - \exists another compatible set $\{j_1, j_2, ..., j_k\}$. -> Same number, greedy algorithm gives a tie, still OK.
 - \exists another compatible set $\{j_1, j_2, ..., j_c\}$. (c>k) -> this is better. **Disprove this by contradiction**
 - We **claim** if $\{j_1, j_2, ..., j_k\}$ is another compatible set, then $f(i_r) \le f(j_r), \forall r = 1, 2, ..., k$
 - Then we can know that, if there exists a compatible $\{j_1,j_2,...j_k\}$, the solution generated from the greedy algorithm $(\{i_1,i_2,...i_k\})$ will also be compatible.
 - Since $f(i_r) \le f(j_r)$, if \exists another compatible set $\{j_1, j_2, \dots j_c\}$ (c>k), then $\{j_{k+1}, \dots j_c\}$ can also be appended to the end of $\{i_1, i_2, \dots i_k\}$ -> $\{i_1, i_2, \dots i_k, j_{k+1}, \dots j_c\}$, length c.
 - However, if we use the greedy algorithm, we cannot forget to include $\{j_{k+1}, ... j_c\}$ behind i_k , since they are compatible with $\{i_1, i_2, ... i_k\}$. Contradiction Disproved.
 - Next step: prove the **claim**

- We **claim** if $\{j_1, j_2, ..., j_k\}$ is another compatible set, then $f(i_r) \leq f(j_r), \forall r = 1, 2, ..., k$
- Proof: by induction
 - Base case: m=1, $f(i_1) \le f(j_1)$. This is true since the GD algorithm always picks the class with earliest ending time
 - Induction Hypothesis: $f(i_r) \le f(j_r)$, $\forall r \le m$
 - Induction step: we want to show $f(i_{m+1}) \le f(j_{m+1})$
 - $f(i_m) \le f(j_m) \Rightarrow f(i_m) \le s(j_{m+1})$
 - \Rightarrow class j_{m+1} is compatible with $\{i_1, i_2 \dots i_m\}$
 - \Rightarrow GD will always pick i_{m+1} such that -> $f(i_{m+1}) \le f(j_{m+1})$
 - Proved.

Stack & Queue

• Stack: Last in First out

Queue: First in First out

• Priority Queue: Every item pushed is associated with a priority

Build a priority Queue - Heap

- Push(a): O(logn)
- Pop(): O(logn)
- Heap sort: O(nlogn)
- Heap is a "complete binary tree". Similar functionalities as a priority queue.
- Complete binary tree: Every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Complete binary tree

- Pop Method 1:
 - 1) Fill the empty position with one of its children nodes until the bottom of the tree. (Swap with its smaller child in a min-heap, or its larger child in a max-heap.)
 - 2) If it is not a complete tree, fulfill the empty position with the rightmost node.
 - 3) Compare this new node with its new parent node.
 - Min-heap: Swap the new node with its new parent node if the new node is smaller.
 - Max-heap: Swap the new node with its new parent node if the new node is larger.

- Pop Method 2:
 - 1) Replace the root of the heap with the last element on the last level
 - 2) Compare the new root with its children; if they are in the correct order, stop.
 - 3) If not, swap the element with one of its children and return to the previous step. (Swap with its smaller child in a min-heap and its larger child in a max-heap.)

• Example:

Heap – Exercise (Pop)

- Pop:
 - 1) Replace the root of the heap with the last element on the last level
 - 2) Compare the new root with its children; if they are in the correct order, stop.
 - 3) If not, swap the element with one of its children and return to the previous step. (Swap with its smaller child in a min-heap and its larger child in a max-heap.)
- Q1: Min Heap Pop

Q2: Max Heap Pop

Heap – Exercise (Pop) – Method 1

• Q1: Min Heap Pop

• Q2: Max Heap Pop

Heap – Exercise (Pop) – Method 2

• Q1: Min Heap Pop

• Q2: Max Heap Pop

- Push:
 - 1) Add the element to the bottom level of the heap at the leftmost open space
 - 2) Compare the added element with its parent; if they are in the correct order, or become the root node, stop.
 - 3) If not, swap the element with its parent and return to the step 2).

Heap – Exercise (Push)

• Push:

- 1) Add the element to the bottom level of the heap at the leftmost open space
- 2) Compare the added element with its parent; if they are in the correct order, or become the root node, stop.
- 3) If not, swap the element with its parent and return to the step 2).

• Q1: [6, 3, 5, 4, 2, 3, 7] – Max Heap?

• Q2: [6, 3, 5, 4, 2, 3, 7] – Min Heap?

Heap – Exercise (Push)

• Q1: [6, 3, 5, 4, 2, 3, 7] – Max Heap?

Heap – Exercise (Push)

• Q1: [6, 3, 5, 4, 2, 3, 7] – Min Heap?

- Definitions:
 - G = (V, E). V:nodes(vertices), E:edges
 - n = |V|, number of nodes
 - m = |E|, number of edges

- Definitions:
 - *Undirected Graph*:
 - degree(u): number of edges associated with node u

$$V=\{1, L, 3, 4\}$$

$$E=\{[1, L), (1, 4), (L, 3), (3, 4)\}.$$

$$J_{\text{gree}(3)>2}$$

$$J_{\text{gree}(3)>2}$$

- Definitions:
 - Directed Graph:
 - indegree(u): number of edges pointing to node u
 - Outdegree(u): number of edges node u pointing to

$$V=\{1,1,3,4\}$$

$$E=\{(1,1),(1,4),(1,3),(4,3)\}$$

$$indegree (u) = \#edges pointing in outdegree (1) = 2$$

$$indegree (1) = 0$$

$$indegree (3) = 1$$

$$outdegree (3) = 0$$

$$outdegree (3) = 0$$

$$outdegree (3) = 0$$

- Definitions:
 - Path: A path is a sequence of nodes connected by edges

- Connect: Node u and v are connected <=> ∃ a path between u and v
- Connected Graph: All nodes are connected with each other
- Cycle: A sequence of nodes $v_1, v_2 \dots v_k$ $(k > 2), v_1 = v_k$. No repeat edges, not repeat nodes except $v_1 \& v_k$

- Definitions:
 - *Tree*: an undirected graph that
 - 1) Connected
 - 2) Don't have any cycles

Root a Tree: Define a node as root.

• A tree has only one path (distinct edges and distinct nodes) between any two nodes

Data Structure used to store graph

- 1) Adjacency matrix
 - A[u, v]=1 if and only if (u, v)∈E

- **Pros:** checking whether (u, v)∈E in O(1) time
- Cons: $O(n^2)$ Space complexity
- Cons: Slow to list all neighbors of a given node u since you need to traverse all v to check if (u, v)∈E

Data Structure used to store graph

• 2) Adjacency list

- Cons: checking whether (u, v)∈E in O(degree(u)) time
- **Pros:** O(|E|+|V|) Space complexity.
- Pros: O(degree(u)) to list all neighbors of a given node u

• s-t connectivity: Is node s and node t connected?

Implement using Queue

White board

- s-t connectivity: whether s and t are connected?
- Breadth First Search (BFS)
 - visited[v]=False, \forall v \in V
 - queue = [s]
 - while queue is not empty:
 - u = queue.pop()
 - for all v such that (u, v)∈E
 - if visited[v]==False:
 - visited[v]=True
 - queue.push(v)
 - return visited

Time complexity: O(|E|+|V|)

White board

You may get different BFS Tree depends on the order of traversing

• The shortest path from starting node (E here) to node X, is the level index i of node X after BFS.

• Proof:

- 1. Prove the shortest path cannot be longer than index i
 - We want to show there is a path with length of i by connecting different nodes between $L_k \& L_{k+1}$.

L1

L2

L3

- By BFS, we know there has to be an edge between current node and the node in the previous layer.
- 2. Prove the shortest path cannot be shorter than index i
 - By proof by contradiction. If there is such a path, there has to be a link between $L_k \& L_{k+a}$ $(a \ge 2)$.
 - BFS algorithm doesn't allow such scenario happens. Assume there is an edge (A, B), and node A in L_k and node B in L_{k+a} ($a \ge 2$), then by BFS, B should be at L_{k+1} . Contradiction.

Depth First Search

- DFS(u):
 - visited[u] = True
 - for v s.t. $(u, v) \in E$:
 - If visited[v] = False:
 - DFS(v)

White board

Exercises

2. Give an algorithm to detect whether a given undirected graph contains a cycle. If the graph contains a cycle, then your algorithm should output one. (It should not output all cycles in the graph, just one of them.) The running time of your algorithm should be O(m + n) for a graph with n nodes and m edges.

Exercises

- **2.** Give an algorithm to detect whether a given undirected graph contains a cycle. If the graph contains a cycle, then your algorithm should output one. (It should not output all cycles in the graph, just one of them.) The running time of your algorithm should be O(m + n) for a graph with n nodes and m edges.
 - Using BFS. For every visited vertex v, if there is an adjacent u such that u is already visited and u is not a parent of v, then there exists a edge either within the same level of BFS tree, or between the level of BFS tree.
 - From the root node, we have at least two paths that can approach v.
 - This means there is a cycle in the graph.
 - If we don't find such an adjacent for any vertex, we say that there is no cycle.

11. Container With Most Water

Given n non-negative integers a_1, a_2, \ldots, a_n , where each represents a point at coordinate (i, a_i) . n vertical lines are drawn such that the two endpoints of the line i is at (i, a_i) and (i, θ) . Find two lines, which, together with the x-axis forms a container, such that the container contains the most water.

Notice that you may not slant the container.

Example 1:

Input: height = [1,8,6,2,5,4,8,3,7]

Output: 49

Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example 2:

Input: height = [1,1]

Output: 1

Example 3:

Input: height = [4,3,2,1,4]

Output: 16

Proof – by contradiction

- Suppose the returned result is not the optimal solution. Then there must exist an optimal solution, say a container with a_l and a_r such that it has a greater volume V than the one we got (S). V > S. The two pointers didn't point them at the same stage using our algorithm, or we will have the V in our record.
- Since our algorithm stops only if the two pointers meet. So, we must have visited only one of them. Let's say we have visited a_l but not a_r .
- When a pointer stops at a_l , two situations:
 - Didn't move: The other pointer also points to a_l . In this case, iteration ends. But the other pointer must have visited a_r on its way from right end to a_l . Contradiction to the initial discussion.
 - Moved: The other pointer arrives at a_r , that is greater than a_l before it reaches a_r . In this case, we move a_l . Two situations about current volume $V_{current}$ between $a_l \& a_r$:
 - a_r is higher than a_l . $V_{current} = h(a_l) \times w(a_l, a_r') > h(a_l) \times w(a_l, a_r) = V$
 - a_r is lower than a_l . $V_{current} = h(a_l) \times w(a_l, a_r') > h(a_r) \times w(a_l, a_r) = V$

which means that a_l and a_r is not the optimal solution – Contradiction to the original assumption

Exercises

200. Number of Islands

Medium ௴ 10562 ♀ 276 ♡ Add to List ௴ Share

Given an $m \times n$ 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.

An **island** is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example 1:

Input: grid = [["1","1","1","1","0"], ["1","1","0","1","0"], ["0","0","0","0","0"]] Output: 1

Example 2:

```
Input: grid = [
    ["1","1","0","0","0"],
    ["1","1","0","0","0"],
    ["0","0","1","0","0"],
    ["0","0","0","1","1"]
]
Output: 3
```

Constraints:

- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 300
- grid[i][j] is '0' or '1'.

Exercises

```
class Solution:
          def numIslands(self, grid: List[List[str]]) -> int:
2 🔻
 3
              def bfs(i, j, grid):
 4 *
 5
                  q = collections.deque()
                  q.append((i, j))
                  grid[i][j] = "#"
9
                  while a:
10 ▼
                      (curr_i, curr_j) = q.popleft()
11
                      directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
12
                      for direct in directions:
13 ▼
                          temp i = curr i + direct[0]
14
                          temp j = curr j + direct[1]
15
16
17 ▼
                          if temp_i>=0 and temp_i <len(grid) and temp_j>=0 and temp_j<len(grid[0]) and grid[temp_i][temp_j] == "1":
                               q.append((temp i, temp j))
18
                               grid[temp i][temp_j] = "#"
19
20
              if not grid: return 0
21
22
              count = 0
23
              for i in range(len(grid)):
24 ₹
25 *
                  for j in range(len(grid[0])):
                      if grid[i][j] == "1":
26 ₹
27
                          bfs(i, j, grid)
28
                          count += 1
29
30
              return count
```

Example 2:

```
Input: grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
Output: 3
```