Some of the Big Ideas in Electronics

Joseph Cunningham

Contents

Ι	The circuit formalism							
1	Circuits and circuit topologies 3							
2		4						
II	Introducing some basic ideas	5						
3	Different types of circuits 3.1 Basic circuits 3.1.1 Wires 3.1.2 Series circuits 3.1.3 Parallel circuits 3.2 Integrated circuits 3.3 Circuit boards 3.4 Inside actual electronic devices	7 7 7 7 7 7						
4	Describing sources: AC / DC	8						
5	Transients	9						
6	The bare minimum of practical tips 6.1 Measuring with a multimeter	10 10 10						
ΙΙ	I Analog electronics	11						
7	Ideal linear components 7.1 Voltage and current sources 7.2 Resistors 7.2.1 Ohm's law 7.2.2 Potentiometers 7.2.3 Resistors in circuits 7.2.3.1 Resistors in parallel 7.2.3.2 Resistors in series Voltage divider	12 12 12 12 12 12 12 12						
	7.3 Capacitors	12						

		791	Citinininit-
		7.3.1	Capacitors in circuits
			7.3.1.1 Capacitors in parallel
			7.3.1.2 Capacitors in series
			Capacitive divider
		7.3.2	Capacitive reactance
		7.3.3	Quality factor
	7.4	Induct	
		7.4.1	Inductors in circuits
			7.4.1.1 Inductors in parallel
			7.4.1.2 Inductors in series
		7.4.2	Inductive reactance
		7.4.2 $7.4.3$	
			U V
		7.4.4	Unwanted coupling: spikes
	7.5		ormers
	7.6	Crysta	ls and resonators
_			
8		•	f linear circuits 14
	8.1		off's laws
		8.1.1	Voltage law or loop rule
		8.1.2	Current law or junction rule
		8.1.3	Result: systems of linear equations
	8.2	Superp	osition principle
	8.3	Théver	in's and Norton's theorems
		8.3.1	Thévenin's theorem
		8.3.2	Norton's theorem
		8.3.3	Nodal analysis
		8.3.4	Mesh analysis
	8.4		in AC circuits
	0.1	8.4.1	Power factor
	8.5	0	s with sinusoidal sources
	8.6		
	0.0	Circuit	s with periodic non-sinusoidal sources
9	Eler	ments (of circuits 15
J	9.1		nce
	3.1	9.1.1	Series-resonant circuits
		9.1.1	
			9.1.1.2 LRC
			9.1.1.3 Bandwidth
			9.1.1.4 Quality factor
		9.1.2	Parallel-resonant (antiresonant) circuits
			9.1.2.1 LC
			9.1.2.2 LRC
			9.1.2.3 Bandwidth
			9.1.2.4 Quality factor
	9.2	Input a	and output impedance
	9.3	Filters	
	-	9.3.1	Passive filter
		J.J.	9.3.1.1 Low-pass filters
			9.3.1.2 High-pass filters
			0.0.1.2 High page interes

		9.	3.1.3	Bandpass filters	16
			3.1.4	Notch filters	
		_	3.1.5	Speaker crossover network	
		_	ctive fil		
			3.2.1	Low-pass RC active audio filter	
			3.2.2	High-pass RC active audio filter	16
	9.4	• • •	·		16
	$9.4 \\ 9.5$				16
	9.6 9.6			C blocking	16
	9.0 9.7			~	16
	9.1 9.8		_		16
	9.0 9.9				16
,	9.9	Switching	g reguia	ators	10
10	Non	-ideal co	mpone	ents and models	17
			_		17
				l behaviour	17
				Wire resistance	17
				Wire inductance	17
				Skin effect	17
				Cable impedance	17
		10		•	17
				ductance	
				apacitance	17
			In	npedance matching	
		10 1 0 E	c	Circuit solutions	
				wire	17
				Solid core wire	17
				Stranded wire	18
				Braided wire	18
				wires	18
				cables	18
				connectors \dots	18
		10.1.6 Sy	ymbols		18
		10	0.1.6.1	Wiring	18
		10	0.1.6.2	Connectors	18
	10.2	Switches			18
		10.2.1 K	inds of	switch	19
		10.2.2 Re	elays .		19
		10	0.2.2.1	Kinds of relays	19
				Relay driver circuit	19
				for switches	
	10.3				19
	_			model	19
				eristics of real capacitors	19
				Tolerance	19
				Power rating	19
				Temperature coefficient of resistance	19
				labels	19
				resistors	19 19
		,	· -	registors	19 10

	10 2 5 1	D:- t t	1.0
		Resistance taper	
		Types	
10.4	Capacitors		19
	10.4.1 Realistic	model	19
	10.4.2 Characte	eristics of real capacitors	20
	10.4.2.1	Dissipation factor	20
		Insulation resistance	
		Dissipation factor or tangent delta $(\tan \delta)$	
		capacitors	
10.5			
10.5		ies of inductor configurations	
		Simple coil	
		Multilayer coil	
		Spiral coil	
		Toroidal coil	
	10.5.2 Realistic	model	20
	10.5.3 Inductor	specifications	20
		inductors	
		inductor labels	
		5-band inductor codes	
		4-band inductor codes	
		SMD inductance codes	
10.6			
10.7			
		capacity	
		resistance	
	10.7.3 Combini	ng batteries	21
		packages	
	10.7.5 Primary	${\rm batteries} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	21
		ry batteries	
10.8		·	
		t breakers	
10.1	oruses and encur	t Dicarcis	21
11 Act	ive components	3	22
		physics	
11.2		Phaviour: a simple model	
		, or transient, behaviour	
		Depletion-region capacitance	
		brupt junction	
		inearly graded junction	
		arge-signal depletion-region capacitance	
		Excess minority carrier charge	
	11.2.3 Secondar	ry effect: a more accurate model	23
		Breakdown	
		valanche breakdown	
		ener breakdown	
		Emission coefficient	20

11.3	Thyristors and triacs					
11.4	Bipolar transistors (BJTs)					
11.5	Junction field effect transistors (FETs)	23				
	Metal oxide field effect transistors (MOSFETs)	23				
	11.6.1 Static behaviour	23				
	11.6.1.1 Cut-off region	23				
	11.6.1.2 Ohmic region	$\frac{2}{24}$				
	11.6.1.3 Saturation region	24				
	11.6.2 Some secondary effects	24				
	11.6.2.1 Channel length modulation	24				
	11.6.2.2 Velocity saturation	25				
		$\frac{25}{25}$				
	A simpler model					
	11.6.2.3 Threshold variations	25				
	11.6.2.4 Hot-carrier effects	25				
	11.6.2.5 CMOS latchup	25				
	11.6.3 Dynamic behaviour	25				
	11.6.3.1 Capacitive device model	25				
	MOS structure capacitances	25				
	Channel capacitances	25				
	Junction capacitances	25				
	11.6.3.2 Source-drain resistance	25				
	11.6.4 Comparison NMOS and PMOS	25				
	11.6.5 SPICE models	25				
	11.6.6 Process variations	25				
	11.6.7 Technology scaling	25				
11.7	Insulated-gate bipolar transistors (IGBTs)	25				
12 Ana	alogue integrated circuits	26				
12.1	The ideal op-amp	26				
	The practical op-amp	26				
	Comparators	26				
	Voltage references	26				
13 Clas	ssic circuits	27				
13.1	Rectifiers	27				
13.2	Switching regulators	27				
	13.2.1 Buck converter	27				
	13.2.2 Boost converter	27				
	13.2.3 Buck-boost converter	27				
13.3	Oscillators	27				
	13.3.1 Simple relaxation oscillator	27				
	13.3.2 Op-amp oscillator	27				
	13.3.3 Colpits oscillator	27				
	13.3.4 Hartley oscillator	27				
19 /	Radio circuits					
13.4		27				
	13.4.1 Short-wave receiver	27				
	13.4.2 RF oscillator / transmitter	27				
14 Filt	ors	28				
T-T III	OI D	40				

15	15 Oscillators and timers 29													
16	16 Voltage regulation and power conversion							30						
17	PCE	3 desig	n tips											31
IV	Γ	Digital	electro	nics										32
18	Intr	oducti	on											33
	18.1	Manufa	acturing Cl	MOS integ	rated ci	rcuit	\mathbf{s}	 		 				. 33
			${\rm rules}\ .\ .\ .$											
	18.3	Packag	ing integra	ted circuit	s			 		 				. 33
19	Boo	lean al	gebra and	d gates										34
			aic propert	_				 		 				. 34
		_	atic definiti											
			heorems .											
	19.4	Canon	cal and sta	andard form	ns			 		 				. 34
	19.5	Simplif	ication of I	Boolean fu	nctions			 		 				. 34
		19.5.1	Karnaugh	maps				 		 				. 34
		19.5.2	Don't-care	condition	s			 		 				. 34
		19.5.3	The tabula	ation meth	od			 		 				. 34
	19.6	Time ϵ	volution ar	nd sequent	ial logic			 		 				. 34
20	Som	e idea	digital co	omnonen	te									35
			national log	_										
	20.1		Carry-ripp	-										
			Carry-look											
			Adders and											
			Logic unit											
			Decoders											
			Selectors .											
		20.1.7												
		20.1.8	Priority en	coders				 		 				. 35
		20.1.9	Magnitude	e comparat	ors			 		 				. 35
		20.1.10	Shifters an	nd rotators				 		 				. 35
			Read-Only											
		20.1.12	Programm	able logic	arrays			 		 				. 35
	20.2		tial logic co	omponents				 		 				. 35
		20.2.1												
			20.2.1.1 S											
			20.2.1.2											
			20.2.1.3											
	20.2		Analysis of		_									
	20.3		e componer											
		20.3.1	Registers											
		20.2.2	20.3.1.1 S	_										
		20.3.2	Counters					 		 				. 36

			20.3.2.1 BCD counter	36		
			20.3.2.2 Asynchronous counter	36		
		20.3.3	Random-access memories (RAMs)	36		
21			digital integrated circuits	37		
	21.1	Design	parameters	37		
		21.1.1	Cost	37		
		21.1.2	Performance	38		
			21.1.2.1 Ring oscillators	38		
		21.1.3	Functionality and robustness	38		
			Noise margins	38		
			Noise immunity	38		
			Regenerative property	38		
			Directivity.	38		
			Fan-out	38		
			Fan-in	39		
		21 1 4	Power and energy consumption	39		
	21.2		methodologies	39		
	21.2		Custom circuit design	39		
			Cell-based	39		
		21.2.2	21.2.2.1 Standard cell	39		
			21.2.2.2 Compiled cell	39		
			21.2.2.3 Macro cells	39		
		01 0 9	Array-based	39		
		21.2.3		39		
			21.2.3.1 Prediffused (or mask-programmable) arrays			
	01.9	O:	21.2.3.2 Prewired arrays (FPGAs)	39		
			g with interconnect	39		
	21.4		g issues	39		
		21.4.1	Timing classification	39		
22	Doei	anina	gates and components	40		
22			stor-transistor logic (TTL)	40		
			technology	40		
	44.4		The CMOS inverter	40		
				40		
			Combinational logic in CMOS	_		
		22.2.3	Sequential logic in CMOS	40		
23	Proc	ressors	and microcontrollers	41		
	1100	CCCCCIC				
\mathbf{V}	\mathbf{El}	ectric	e devices	42		
24	Mot	ors an	d actuators	43		
25	\mathbf{Aud}	ioelect	tronics	44		
26	Opt	oelectr	conics	45		
27	7 Radio engineering 46					

V	Multiphase systems	47
\mathbf{V}	General design practices 7.1 Precision and low noise	48 49
V	I Simulation 7.2 Spice	50 51 51
IX	Tools and accessories	52
2 8	ardware 3.1 Screws	53 53
29	evices 0.1 Power supplies 29.1.1 Bench power supply 0.2 Oscilloscopes 29.2.1 Probes 29.2.1.1 Isolation 29.2.1.2 Types Passive probes 29.2.2 Controls	54 54 54 54 55 55
\mathbf{A}	ymbols and constants	56
В	ormula reference	57
tie caj tin	ibliography puts high / low: good practice citors at input / output to reduce noise g with RC and Schmidt trigger bing optics reduction (from Schur complement)	58

$\begin{array}{c} {\rm Part\ I} \\ {\rm The\ circuit\ formalism} \end{array}$

Circuits and circuit topologies

A <u>circuit</u> is a symmetric digraph (C, N).

- The vertices in C are called <u>components</u>.
- The edges in N are called <u>nets</u>.

A <u>complex network</u> is a circuit (C, N) together with a pair of functions

- $V: N \to \mathbb{C}$ such that $V(n) = -V(n^t)$ for all $n \in N$;
- $I: N \to \mathbb{C}$ such that $I(n) = -I(n^t)$ for all $n \in N$.

A <u>timedependent network</u> is a circuit (C, N) together with a pair of functions

- $V: N \to (\mathbb{R} \to \mathbb{R})$ such that $V(n) = -V(n^t)$ for all $n \in N$;
- $I: N \to (\mathbb{R} \to \mathbb{R})$ such that $I(n) = -I(n^t)$ for all $n \in N$.

Part II Introducing some basic ideas

heat conduction / thermal resistance ground decibels

Different types of circuits

- 3.1 Basic circuits
- **3.1.1** Wires
- 3.1.2 Series circuits
- 3.1.3 Parallel circuits
- 3.2 Integrated circuits
- 3.3 Circuit boards
- 3.4 Inside actual electronic devices

Describing sources: AC / DC

Transients

The bare minimum of practical tips

- 6.1 Measuring with a multimeter
- 6.2 Mains power

Part III Analog electronics

Ideal linear components

7.1 Voltage and current sources

 ${
m RMS}$ / ${
m peak}$

7.2 Resistors

- 7.2.1 Ohm's law
- 7.2.2 Potentiometers
- 7.2.3 Resistors in circuits
- 7.2.3.1 Resistors in parallel
- 7.2.3.2 Resistors in series

Voltage divider 10 percent rule (of total load current when multiload)

7.3 Capacitors

- 7.3.1 Capacitors in circuits
- 7.3.1.1 Capacitors in parallel
- 7.3.1.2 Capacitors in series

Capacitive divider

- 7.3.2 Capacitive reactance
- 7.3.3 Quality factor
- 7.4 Inductors
- 7.4.1 Inductors in circuits
- 7.4.1.1 Inductors in parallel
- 7.4.1.2 Inductors in series
- 7.4.2 Inductive reactance
- 7.4.3 Quality factor
- 7.4.4 Unwanted coupling: spikes
- 7.5 Transformers
- 7.6 Crystals and resonators

Analysis of linear circuits

Miller effect??

8.1	Kirchhoff's	laws

- 8.1.1 Voltage law or loop rule
- 8.1.2 Current law *or* junction rule
- 8.1.3 Result: systems of linear equations
- 8.2 Superposition principle
- 8.3 Thévenin's and Norton's theorems
- 8.3.1 Thévenin's theorem
- 8.3.2 Norton's theorem
- 8.3.3 Nodal analysis
- 8.3.4 Mesh analysis

8.4 Power in AC circuits

Apparent power, real power, reactive power

- 8.4.1 Power factor
- 8.5 Circuits with sinusoidal sources
- 8.6 Circuits with periodic non-sinusoidal sources

Elements of circuits

9.1 Resonance

- 9.1.1 Series-resonant circuits
- 9.1.1.1 LC
- 9.1.1.2 LRC
- 9.1.1.3 Bandwidth
- 9.1.1.4 Quality factor
- 9.1.2 Parallel-resonant (antiresonant) circuits

More common

- 9.1.2.1 LC
- 9.1.2.2 LRC
- 9.1.2.3 Bandwidth
- 9.1.2.4 Quality factor

9.2 Input and output impedance

- 9.3 Filters
- 9.3.1 Passive filter
- 9.3.1.1 Low-pass filters
- 9.3.1.2 High-pass filters
- 9.3.1.3 Bandpass filters
- 9.3.1.4 Notch filters
- 9.3.1.5 Speaker crossover network
- 9.3.2 Active filters
- 9.3.2.1 Low-pass RC active audio filter
- 9.3.2.2 High-pass RC active audio filter
- 9.4 RC ripple filter
- 9.5 Attenuators
- 9.6 Coupling and DC blocking
- 9.7 Bypassing
- 9.8 Arc suppression
- 9.9 Switching regulators

Non-ideal components and models

10.1 Wires

- Not breaking
- Not overheating
- Clean signal

Wire vs cable

10.1.1 Non-ideal behaviour

- 10.1.1.1 Wire resistance
- 10.1.1.2 Wire inductance
- 10.1.1.3 Skin effect
- 10.1.1.4 Cable impedance

Inductance

Capacitance

Impedance matching

Circuit solutions

10.1.2 Forms of wire

10.1.2.1 Solid core wire

TODO table of wire gauges.

- 10.1.2.2 Stranded wire
- 10.1.2.3 Braided wire

10.1.3 Kinds of wires

- Pretinned solid bus wire
- Speaker wire
- Magnet wire

10.1.4 Kinds of cables

- Paired cable
- Twisted pair
- Unbalanced coaxial
- Dual coaxial
- Balanced coaxial
- Shielded twin lead
- Ribbon
- Multiple conductor
- Fiberoptic
- 300 Ω

10.1.5 Kinds of connectors

- **10.1.6** Symbols
- 10.1.6.1 Wiring
- 10.1.6.2 Connectors

10.2 Switches

• Wear: depends on speed (arcing)

- 10.2.1 Kinds of switch
- 10.2.2 Relays
- 10.2.2.1 Kinds of relays
- 10.2.2.2 Relay driver circuit
- 10.2.3 Symbols for switches
- 10.3 Resistors
- 10.3.1 Realistic model
- 10.3.2 Characteristics of real capacitors
- 10.3.2.1 Tolerance
- 10.3.2.2 Power rating

power rating twice maximum

- 10.3.2.3 Temperature coefficient of resistance
- 10.3.3 Resistor labels
- 10.3.4 Types of resistors

Groups:

- General purpose
- Precision
- Semiprecision
- Power resistors

10.3.5 Variable resistors

Rheostats, potentiometers, trimmers

- 10.3.5.1 Resistance taper
- 10.3.5.2 Types

10.4 Capacitors

10.4.1 Realistic model

Leakage, equivalent series resistance, equivalent series inductance, dielectric absorption

- 10.4.2 Characteristics of real capacitors
- 10.4.2.1 Dissipation factor
- 10.4.2.2 Insulation resistance
- 10.4.2.3 Dissipation factor or tangent delta $(\tan \delta)$
- 10.4.3 Types of capacitors

10.5 Inductors

- 10.5.1 Geometries of inductor configurations
- 10.5.1.1 Simple coil
- 10.5.1.2 Multilayer coil
- 10.5.1.3 Spiral coil
- 10.5.1.4 Toroidal coil
- 10.5.2 Realistic model
- 10.5.3 Inductor specifications
- 10.5.4 Types of inductors
- 10.5.5 Reading inductor labels
- 10.5.5.1 5-band inductor codes
- 10.5.5.2 4-band inductor codes
- 10.5.5.3 SMD inductance codes

10.6 Transformers

10.7 Batteries

- Size
- Power
- Voltage
- Current capacity
- Rechargeability

- 10.7.1 Battery capacity
- 10.7.2 Internal resistance
- 10.7.3 Combining batteries
- 10.7.4 Battery packages
- 10.7.5 Primary batteries
- 10.7.6 Secondary batteries

10.8 Ground

Symbols for ground Ground loops (and single-point ground; ground bus) separate digital and analog grounds

10.9 Power supplies

10.10 Fuses and circuit breakers

Active components

11.1 Semiconductor physics

11.2 Diodes

There is a <u>built-in potential</u> across the junction:

$$\phi_0 = \phi_T \ln \left[\frac{N_A N_D}{n_i^2} \right]$$

where ϕ_T is the thermal voltage

$$\phi_T = \frac{kT}{q} = 26 \,\mathrm{mV}$$
 at room temperature.

11.2.1 Static behaviour: a simple model

Ideal diode equation

$$I_D = I_S(e^{V_D/\phi_T} - 1)$$

11.2.2 Dynamic, or transient, behaviour

11.2.2.1 Depletion-region capacitance

Abrupt junction

$$Q_j = A_D \sqrt{\left(2\epsilon_{si} q \frac{N_A N_D}{N_A + N_D}\right) (\phi_0 - V_D)}$$

Width

$$\begin{split} W_j &= W_2 - W_1 = A_D \sqrt{\left(\frac{2\epsilon_{si}}{q} \frac{N_A + N_D}{N_A N_D}\right) \left(\phi_0 - V_D\right)} \\ &\frac{W_2}{-W_1} = \frac{N_A}{N_D} \\ E_j &= A_D \sqrt{\left(\frac{2q}{\epsilon_{si}} \frac{N_A N_D}{N_A + N_D}\right) \left(\phi_0 - V_D\right)} \end{split}$$

$$C_j = \frac{\mathrm{d}Q_j}{\mathrm{d}V_D} = A_D \sqrt{\left(\frac{\epsilon_{si}q}{2} \frac{N_A N_D}{N_A + N_D}\right) (\phi_0 - V_D)^{-1}}$$
$$= \frac{C_{j0}}{\sqrt{1 - V_D/\phi_0}}$$

Linearly graded junction

$$C_j = \frac{C_{j0}}{(1 - V_D/\phi_0)^m}$$

where m is the grading coefficient.

Large-signal depletion-region capacitance.

- 11.2.2.2 Excess minority carrier charge
- 11.2.3 Secondary effect: a more accurate model
- 11.2.3.1 Breakdown

Avalanche breakdown. This occurs when carriers crossing the depletion-region are accelerated enough to create electron-hole pairs when they collide with silicon atoms.

Zener breakdown.

- 11.2.3.2 Emission coefficient
- 11.3 Thyristors and triacs
- 11.4 Bipolar transistors (BJTs)
- 11.5 Junction field effect transistors (FETs)
- 11.6 Metal oxide field effect transistors (MOSFETs)

Advantages:

- Few parasitic effects
- Simple planar manufacturing process

11.6.1 Static behaviour

11.6.1.1 Cut-off region

If we apply a positive voltage to the gate, a depletion region forms

$$W_d = \sqrt{\frac{2\epsilon_{si}\phi}{qN_A}}$$

$$Q_d = \sqrt{2qN_A\epsilon_{si}\phi}$$

When the voltage equals twice the Fermi potential

$$\phi_F = \phi_T \ln \left(\frac{N_A}{n_i} \right) \approx -0.3 \,\mathrm{V}$$

strong inversion occurs. The depletion layer no longer grows, but a layer of electrons forms.

$$Q_B = \sqrt{2qN_A\epsilon_{si}(|-2\phi_F + V_{SB}|)}$$

We determine the threshold voltage empirically and use

$$V_T = V_{T0} + \gamma (\sqrt{|V_{SB} - 2\phi_F|} - \sqrt{|2\phi_F|})$$

with γ the body effect coefficient.

11.6.1.2 Ohmic region

Charge per unit area

$$Q_i(x) = -C_{ox}[V_{GS} - V(x) - V_T]$$

Current flow:

$$I_D = -v_n(x)Q_i(x)W$$

where the electron velocity is related to the mobility μ_n

$$v_n = -\mu_n \xi(x) = \mu_n \frac{\mathrm{d}V}{\mathrm{d}x}$$

Combining we get

$$I_D dx = \mu_n C_{ox} W(V_{GS} - V - V_T) dV$$

Integrating over length of channel L:

$$I_{D} = k'_{n} \frac{W}{L} \left[(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$
$$= k_{n} \left[(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

For small V_{DS} we can ignore the quadratic term. Then the relation between V_{DS} and I_D is linear.

11.6.1.3 Saturation region

When

$$V_{GS} - V_{DS} \le V_T$$

$$I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

11.6.2 Some secondary effects

11.6.2.1 Channel length modulation

$$I_D = I_D'(1 + \lambda V_{DS})$$

11.6.2.2 Velocity saturation

$$v = \begin{cases} \frac{\mu_n \xi}{1 + \xi/\xi_c} & (\xi \le \xi_c) \\ v_{sat} & (\xi \ge \xi_c) \end{cases}$$

More time in saturation for short devices. I_{DSAT} depends linearly on V_GS .

A simpler model

- 11.6.2.3 Threshold variations
- 11.6.2.4 Hot-carrier effects
- 11.6.2.5 CMOS latchup
- 11.6.3 Dynamic behaviour
- 11.6.3.1 Capacitive device model

MOS structure capacitances

Channel capacitances

Junction capacitances

11.6.3.2 Source-drain resistance

11.6.4 Comparison NMOS and PMOS

- Velocity saturation less pronounced in PMOS.
- 11.6.5 SPICE models
- 11.6.6 Process variations
- 11.6.7 Technology scaling
- 11.7 Insulated-gate bipolar transistors (IGBTs)

Analogue integrated circuits

large analog ICs not very abstractable

- 12.1 The ideal op-amp
- 12.2 The practical op-amp
- 12.3 Comparators
- 12.4 Voltage references

Classic circuits

13.1	Rectifiers
13.2	Switching regulators

- 13.2.1 Buck converter
- 13.2.2 Boost converter
- 13.2.3 Buck-boost converter

13.3 Oscillators

- $13.3.1 \quad {\bf Simple \ relaxation \ oscillator}$
- 13.3.2 Op-amp oscillator
- 13.3.3 Colpits oscillator
- 13.3.4 Hartley oscillator
- 13.4 Radio circuits
- 13.4.1 Short-wave receiver
- $13.4.2 \quad {\rm RF\ oscillator\ /\ transmitter}$

Filters

Oscillators and timers

Voltage regulation and power conversion

PCB design tips

Part IV Digital electronics

Introduction

- 18.1 Manufacturing CMOS integrated circuits
- 18.2 Design rules
- 18.3 Packaging integrated circuits

Boolean algebra and gates

- 19.1 Algebraic properties
- 19.2 Axiomatic definition
- 19.3 Basic theorems
- 19.4 Canonical and standard forms
- 19.5 Simplification of Boolean functions
- 19.5.1 Karnaugh maps
- 19.5.2 Don't-care conditions
- 19.5.3 The tabulation method
- 19.6 Time evolution and sequential logic

Some ideal digital components

20.1	Combinational logic components
20.1.1	Carry-ripple adders
20.1.2	Carry-look-ahead adders
20.1.3	Adders and subtractors
20.1.4	Logic unit and arithmetic-logic unit
20.1.5	Decoders
20.1.6	Selectors
20.1.7	Buses
20.1.8	Priority encoders
20.1.9	Magnitude comparators
20.1.10	Shifters and rotators
20.1.11	Read-Only memories
20.1.12	Programmable logic arrays
20.2	Sequential logic components
20.2.1	Latches

- 20.2.1.1 SR-latch
- 20.2.1.2 Gated SR-latch
- 20.2.1.3 Gated D-latch
- Flip-flops 20.2.2

Flip-flop types

- 20.2.3 Analysis of sequential logic
- 20.3 Storage components
- 20.3.1 Registers
- 20.3.1.1 Shift registers
- 20.3.2 Counters
- **20.3.2.1** BCD counter
- ${\bf 20.3.2.2} \quad {\bf Asynchronous\ counter}$
- 20.3.3 Random-access memories (RAMs)

Designing digital integrated circuits

Divide-and-conquor: hierarchy, but clocks and power defy hierarchy -; global and external issues

die, wafer, masks

21.1 Design parameters

21.1.1 Cost

The cost of an integrated circuit can be split into fixed costs, such as the cost of designing the IC, indirect costs for general company overhead and variable costs which is the cost directly attributable to the manufactured product:

$$cost per IC = variable cost per IC + \left(\frac{fixed cost + indirect cost}{volume}\right)$$

The fixed cost is strongly dependent on complexity and its impact is much more pronounced for small-volume products.

The variable cost is made up of the cost of the die plus the cost of testing and packaging, where the cost of the die is given by

$$cost of die = \frac{cost of wafer}{dies per wafer \times die yield}.$$

The die yield gives the proportion of dies that do not have a defect and, assuming defects are randomly distributed, can be expressed as

die yield =
$$\left(1 + \frac{\text{defects per unit area} \times \text{die area}}{\alpha}\right)^{-\alpha}$$

where α is a parameter that depends on the complexity of the manufacturing process and is roughly proportional to the number of masks. For modern CMOS processes $\alpha \approx 3$. One can expect about 0.5 to 1 defects per cm², but this depends strongly on the maturity of the process. Using $\alpha = 3$, we see that

cost of die
$$\sim$$
 (die area)⁴

so the die area is a prime metric for the cost.

21.1.2 Performance

Obviously we want our ICs to be as fast as possible.

For processors the speed depends on both the architecture of the processor (e.g. how many commands it can execute in parallel) and its clock speed.

For individual gates the performance is determined by the **propagation delay** t_p which is how quickly the output responds to changes in input. In other words it is the delay experienced by a signal travelling through the gate. This delay actually also depends on the input signal. In particular its slope (see figure TODO). For that reason we introduce the quantities t_r and t_f which are the rise and fall times.

21.1.2.1 Ring oscillators

The defacto way to measure delays for a given circuit technology is with a ring oscillator, which is an odd number (usually at least five are needed) of inverters put back-to-back in a loop. This configuration has no stable state and thus will oscillate. The frequency of the oscillation is proportional to the propagation delay.

This method is primarily useful to compare different technologies, not to determine actual values for t_p . The situation is fairly ideal with minimal load. In actual circuits t_p may be expected to be 50 to 100 times slower.

21.1.3 Functionality and robustness

In real life nothing is perfect, but the output of an integrated circuits must be within an acceptable range, even if the conditions it is deployed in are not ideal.

A good design accounts for variations in the manufacturing process and must also be able to deal with *noise*, which is unexpected variation in the signal. Noise can also easily be generated within the IC if the input is rapidly changing for example. A good design will not introduce too much noise itself.

Noise margins are the ranges that the input voltage has to be in to be interpreted as either low or high. Ideally these are as large as possible.

Noise immunity refers to the ability to function correctly in the presence of noise. Many digital circuits with low noise margins have very good noise immunity because the reject the noise.

Regenerative property. If every gate adds a bit of noise, the signal will eventually be lost. Thus an important property of gates is the ability to bring back the signal to nominal levels after a disturbance.

Directivity. We in general want gates to be *unidirectional*: changes in output should not impact the input. In practice there will always be some capacitive coupling for instance.

Fan-out refers to the number of gates attached to the output. With large fan-out, the added load can reduce performance. For this reason library components often specify a maximum fan-out.

The added load can also affect the logic output levels. In order to minimise this effect, the input resistance is made as large as possible while keeping the output resistance small.

Fan-in is the number of inputs. More inputs means more complexity.

21.1.4 Power and energy consumption

Power considerations are very important. This was the main limiting factor for vacuum tube and bipolar technologies. It is also the reason CMOS is much more popular than pure NMOS (TODO?), although now even CMOS is reaching its limits in this regard.

Power and energy consumption can be measured with different metrics. Obviously we can measure peak and average power dissipation, P_{peak} and P_{av} . It is also useful to decompose power consumption into *static* and *dynamic* components. The higher the number of switching events, the higher the dynamic power consumption.

The propagation delay and power consumption of a gate are related: the propagation delay is mostly determined by the speed at which a given amount of energy can be stored in the gate capacitors. For a given technology and gate topology, the product of the power consumption and propagation delay is generally a constant, called the <u>power-delay product (PDP)</u>. This is simply the energy consumed per switching event and is a good quality measure for a switching device.

21.2 Design methodologies

- 21.2.1 Custom circuit design
- 21.2.2 Cell-based
- 21.2.2.1 Standard cell
- 21.2.2.2 Compiled cell
- 21.2.2.3 Macro cells
- 21.2.3 Array-based
- 21.2.3.1 Prediffused (or mask-programmable) arrays
- 21.2.3.2 Prewired arrays (FPGAs)

21.3 Coping with interconnect

21.4 Timing issues

21.4.1 Timing classification

Designing gates and components

- 22.1 Transistor-transistor logic (TTL)
- 22.2 CMOS technology
- 22.2.1 The CMOS inverter
- 22.2.2 Combinational logic in CMOS
- 22.2.3 Sequential logic in CMOS

Processors and microcontrollers

Intel 4004 in 1972 and 8080 in 1974 (IBM computers? Instruction set)

Part V Electric devices

Motors and actuators

Audioelectronics

Optoelectronics

Radio engineering

Part VI Multiphase systems

Part VII General design practices

27.1 Precision and low noise

Part VIII Simulation

- **27.2** Spice
- 27.3 Verilog

Part IX Tools and accessories

Hardware

28.1 Screws

Devices

29.1 Power supplies

29.1.1 Bench power supply

Output: three terminals: positive, negative and ground. Ground should be isolated from other terminals.

29.2 Oscilloscopes

The main function of an oscilloscope is the measure voltage in function of time. Time is on the horizontal axis.

The scope will sweep along the time axis. Triggering resets the horizontal sweep at a particular location each time a particular event, the trigger event, occurs. Typically a trigger event is when the signal passes a certain threshold and is either rising or falling.

29.2.1 Probes

Usually BNC connector on one end and other end has measuring tip and alligator clip for reference.

29.2.1.1 Isolation

It is important that the circuit being measured is completely isolated from the oscilloscope. If this is not the case and the ground clip is connected to a part of the circuit that is not ground, then this will complete a low resistance path to ground, causing much current to flow.

Usually oscilloscopes probes are connected to the ground of the grid. So the circuit being tested should be isolated from the grid! It is done this way round for a couple of reasons: as soon as the scope is connected to something else, e.g. to a computer via USB, then it is no longer floating. Also floating a scope may leave it with charge that will discharge through the next user.

If the circuit being measured cannot be isolated, then isolated probes can be used. There are also devices for galvanically isolating USB connections. Remember that a circuit connected by USB is not isolated!

29.2.1.2 Types

There exist many types of probes. These include passive probes, active probes, differential probes, current probes, logic probes, high voltage probes, optical probes and isolated. Most common are passive probes.

Passive probes Passive are distinguished by their attenuation factor: usually 1X, 10X or 100X. Probes may be switchable: it can be both 1X and 10X or 10X and 100X. The attenuation is achieved by connecting a resistor in series inside the probe, such that the oscilloscope is measuring over a voltage divider. WHY?

29.2.2 Controls

Most oscilloscopes have the following controls:

- Moving vertical position up and down.
- Change scale of time and voltage axis. This is often labelled as seconds / division and volts / division. Some scopes have a button or a sensing device (Tektronix) to know whether the probe is 1X or 10X. All this does is change the label on the voltage axis.
- Coupling: DC, AC and ground. DC shows the signal as is, AC translates the signal vertically such that the average is zero and ground disconnects the signal.
- Setting trigger type.
- XY mode: displays a second channel along the horizontal axis instead of time.
- Autoset tries to find settings that show something of the signal. Very useful if you don't know why a signal is not showing up.

There will also be a square wave output to calibrate probes with compensation.

Appendix A Symbols and constants

Appendix B

Formula reference

Appendix C

Bibliography

The Art of Electronics
The circuit designers handbook, williams
Digital integrated circuits, a design perspective; Rabaey, Chandrakasan and Nikolic
Electrische energie; Ronnie Belmans, Geert Deconinck, Johan Driesen

- 1. Analog circuits:
 - https://www.allaboutcircuits.com/textbook/