

CMSC 326 Simulation

Today

Introductions

Course logistics

Motivation

What is a Simulation?

Environment setup

In-class coding exercise

Dr. David Balash

Faculty page: https://cs.richmond.edu/faculty/dbalash

Homepage: https://davidbalash.github.io

Professor Balash

"Ba-lish"

He/Him

- BS in computer engineering lowa State
- Two-decade career as a software engineer
- MS and PhD in computer science from GW
- Research: Computer S&P

Dr. David Balash

Things I like

- Education/Learning
- ☆ Hiking
- ోం Cycling
- **Guitars**
- **\$1** Board games
- **Programming**
- Cats

Ask me anything

Assignment 1

Task: Create a personal introduction slide and post it to the introductions channel on the course Slack workspace

Due: Friday by 11:59 PM

Name

Points: 5

Photo

Be Creative

Faculty page: https://cs.richmond.edu/faculty/dbalash

Homepage: https://davidbalash.github.io

Professor Balash "Ba-lish"

He/Him

- BS in computer engineering Iowa State
- Two-decade career as a software engineer
- MS and PhD in computer science from GW
- Research: Computer S&P

Pronunciation

Pronouns

Personal Introduction

Classroom Meet and Greet

- 1. Introduce yourself to a person near you
- 2. Introduce yourself to a different person near you

- Potential conversation topics:
 - What are some of the things that you like?
 - Who are your favorite pets?
 - Why do you want to take this class?

Student Introductions

- Name
- Pronouns (optional)
- Major
- Class year
- Favorite snack food

Classroom Norms

- Questions are always welcome!!
 - Ask them at any time
- "I don't know" is okay
- Be curious
- Treat peers and instructors with kindness and respect
- Communication is key!
- Seek support when needed

Where All Class Information Can Be Found

https://cmsc326-s25.github.io

How to Communicate With Me

- Slack workspace
 - https://cmsc326-s25.slack.com
- After class or in office hours 223 Jepson Hall
 - Tue 4:30PM 6:00PM
 - Thr 4:30PM 6:00PM
 - and by appointment
- Email
 - david.balash@richmond.edu

Course Outline

- Weeks 1-5 Introduction to C++ programming
 - Syntax, memory management, libraries, file IO
- Weeks 6-10 Object-oriented programming
 - Abstraction, polymorphism, inheritance, encapsulation
- Weeks 11-15 Software systems development
 - UML, design patterns, testing, debugging

Learning Outcomes

- Understand the key concepts of simulation, including discrete-event simulation, Monte Carlo simulation, and stochastic modeling
- Develop discrete-event simulations for systems involving queuing and inventory management
- Develop Monte Carlo simulations to estimate probabilities, model random processes
- Apply elementary statistics to analyze simulation outputs
- Write simulation programs using the Python programming language and libraries

Lecture

- Will usually include in-class module exercises
- In-class exercises will be due one or two weeks from when they are assigned (except during break)
- Regular attendance is expected
- Students who are sick should not attend class
- Notify me in advance of the absence, if possible

Labs

- Lab assignments done individually and in groups
 - but will always be turned in individually
- Lab assignments are typically due at 11:59 pm on the night prior to the next lab (except during break)
- Please ask for help when needed

Coursework and Grading

- Modules (In-class coding exercises)
- Lab assignments
- Programming project
- Project Presentation
- Programming Assignments

Textbook

No textbook

Reading materials may be assigned during the semester

Ask me a question

Why Take a Simulation Course?

What if you could predict the future... using code?

Why Take a Simulation Course?

What if you could predict the future... using code?

Simulations are Everywhere

- Predict customer wait times
- Simulate inventory needs for businesses
- Analyze sports strategies and improve performance
- Optimize traffic flows in cities
- Model disease spread and evaluate public health policies

Why Learn Simulation Techniques?

- Solve problems in fields like healthcare, logistics, finance, and engineering
- Analyze uncertainty and randomness in real-world systems
- Test scenarios and "what-ifs" without real-world risks or costs
- Develop skills in programming, statistics, and critical thinking

- Boids is an artificial life program, developed by Craig Reynolds in 1986, which simulates the flocking behavior of birds, and related group motion
- separation: steer to avoid crowding local flockmates
- alignment: steer towards the average heading of local flockmates
- cohesion: steer to move towards the average position (center of mass) of local flockmates

https://www.complexity-explorables.org/slides/berlin-8-am/

https://www.complexity-explorables.org/slides/i-herd-you/

https://www.complexity-explorables.org/slides/flockn-roll/

Simulation

A **simulation** is the imitation of the operation of a real-world system over time.

- It involves:
 - The generation of an artificial history of a system
 - The observation of the history to draw inferences on the characteristics of the system

Simulation Model

The behavior of a system (as it evolves over time) can be observed through a **simulation model**.

- Models help to investigate a variety of "what if" questions about real-world systems
 - What would be the impact of changes on system performance?
- Many real-world systems are so complex
 - Can be solved with computer-based simulation models

System

A **system** is a group of **objects** that are joined together in regular interaction to accomplish a **purpose**.

- For example:
 - System: Automobile manufacturing system
 - **Objects**: Machines, component parts, workers
 - **Purpose**: Production of vehicles

The following are the components of a system (Example: Bank System)

- Entity: Objects of interest in the system
 - Clients
- Attribute: Properties of an entity
 - Balance in a client's savings account
 - Credit rating
 - Account number
- Activity: A time period of specified length
 - Making deposits
 - Withdrawing cash

The following are the components of a system (Example: Bank System)

- **State Variable**: Collection of variables necessary to describe the system at any time
 - Number of busy tellers
- **Event**: An instantaneous occurrence that might change the state of the system
 - Arrival of a client
 - Service completion of a client

Example: Rapid Rail System

• **Entities**: Riders

Attributes: Origin, destination

Activities: Traveling

 State Variables: Number of riders at each station, number of riders in transit

• **Events**: Arrival at a station, arrival at a destination

Example: Global Inventory System

• **Entities**: Warehouses

Attributes: Capacity

Activities: Withdrawing

State Variables: Level of inventory, backlogged demand,

rejected demand

• Events: Demand

Discrete and Continuous Systems

A system is **discrete** if the state variables are changing at a discrete set of time points

bank, multi-level car park, board game, assembly line

A system is **continuous** if the state variables are changing at a continuous set of time points

water dam, chemical reaction, ball rolling down a hill

The Need For a Model

We can study a system through direct experimentation on the system itself. However, this is often not an option:

- system might not exist yet
- it may be impractical to experiment with the system

Most studies require a model of the system.

Definition of Model

A **model** is a representation of a system for the purpose of studying the system.

- should consider only the aspects of the real system that affect the problem under investigation
- should be sufficiently detailed to permit valid conclusions

A model of the system has the same components as the real system (entities, attributes, etc.), but only the ones that are relevant to the problem

Types of Models

- A physical model is a larger or smaller version of a system
- A mathematical model uses symbolic notation and mathematical equations and inequalities to represent a system
 - A simulation model is a particular type of mathematical model of a system (usually in software)

- Static vs. Dynamic
 - Static simulation models represent systems at a particular point of time
 - the total newspapers sold at the end of a specific day
 - Dynamic simulation models represent systems as they change over time
 - the progress of newspaper sales between 9:00 AM and 4:00 PM

- Deterministic vs. Stochastic
 - Deterministic simulation models have known inputs (variables)
 - the arrivals which are based on scheduled appointment times are deterministic
 - Stochastic simulation models have random (probabilistic) inputs (variables)
 - random arrival and service times are stochastic
- If there is, at least, one random input in the model, then the model is stochastic

Discrete vs. Continuous

- Just like the systems are discrete or continuous, the models are either discrete or continuous
- If there is, at least, one state variable that changes at a continuous set of time points, then the model is continuous

