Real Analysis MT2223

Chirayu Gupta Spring 2021

Contents

1 Real and complex number systems

2

1 Real and complex number systems

The need for the real number system is replacing the rational number system is because the rational number system has "gaps".

Definition of a field: Set F with 2 operations.

• Axioms of Addition:

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: x + y = y + x for all $x, y \in F$.
- (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
- (A4) F contains an element O such that O + x = x for every $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that

$$x + (-x) = 0.$$

• Axioms of Multiplication:

- (M1) If $x \in F$ and $y \in F$, then their product xy is in F.
- (M2) Multiplication is commutative:

$$xy = yx$$

for all $x, y \in F$.

(M3) Multiplication is associative:

$$(xy)z = x(yz)$$

for all $x, y, z \in F$.

(M4) F contains an element $1 \neq 0$ such that

$$1x = x$$

for every $x \in F$.

(M5) If $x \in F$ and $x \neq 0$ then there exists an element $1/x \in F$ such that

$$x \cdot (1/x) = 1$$

• Distributive Law:

$$x(y+z) = xy + xz$$

holds for all x, y, z e F.

Definition 1.1. An ordered relation(<) is:

• If $x \in S$ and $y \in S$ then one and only of the following statements are true:

$$x < y, \ x = y, \ y < x$$

is true

• If $x, y, z \in S$, if x < y and y < z, then x < z.

Definition 1.2. If S has an ordered relation we call it an ordered set.

Definition 1.3. Start with an ordered set S. Let $E \subset S$ be nonempty. If $\exists \beta \in S$ such that $\forall x \in E$ we have $x \leq \beta$ then we say β is an **upper bound** of E.

Definition 1.4. Start with an ordered set S. Let $E \subset S$ be nonempty. Supposed E bounded above. Suppose that $\exists \alpha \in S$ with the following:

- α is an upper bound of E
- $\gamma < \alpha$ then γ is not an upper bound

then α is called **least upper bound** or supremum.

$$sup(E) = \alpha$$

Definition 1.5. An ordered set has least upper bound property if for a non empty $E \subset S$, E bounded above then

$$sup(E) \in S$$

Remark. Rational numbers do not satisfy this property

Same property for infimum.

Theorem 1.1. Suppose S is an ordered set with the least-upper-bound property, $B \in S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then $\alpha = \sup L$ exists in S, and $\beta = \inf B$

Definition 1.6. An ordered field is a field F which is also an ordered set, such that

- (i) x + y < x + z if $x, y, z \in F$ and y < z,
- (ii) xy > 0 if $x \in F$, $y \in F$, x > 0, and y > 0.

If x > 0, we call x positive; if x < 0, x is negative.

Theorem 1.2. There exists an ordered field R which has the least-upper-bound property.

Moreover, R contains Q as a subfield.

This is called existance theorem