Stepper Motors

Characteristics of Stepper Motors

- Considered to be digital devices motors take a small fixed rotational step when actuated
- Used for precision position control
 - Stepper motors are used to hold a specific rotational position and to move from one fixed rotational position to another.
- Have no brushes to wear out
- Have a high "holding" torque when energized, they are difficult to rotate by hand
- Have a relatively low accelerating torque compared to d.c. motors

Fixed Rotational Steps

Advantages of Stepper Motors

- Low cost
- Long operating life & very reliable (absence of brushes or contacts means the life of the motor is dependant on the life of the bearing.)
- High torque at low speeds, full torque at standstill (with windings energized)
- A simple, rugged construction that operates in almost any environment
- The rotation angle of the motor is proportional to the input pulse count.
- Precise positioning and repeatability of movement (A good stepper motor has an accuracy of 3-5% of a step and this error is non cumulative from one step to the next.
- Excellent response to starting/stopping/reversing
- The motor responds to open-loop digital input pulses, making the motor simpler and less costly to control.
- It is possible to achieve very low speed synchronous rotation with a load that is directly coupled to the shaft.
- A wide range of rotational speeds can be realized as the speed is proportional to the frequency of the input pulses.

Disadvantages of Stepper Motors

- Low accelerating torque
- The resonance effect must be properly controlled and is often exhibited at low speeds
- The decreasing torque with increasing speed makes high speed operation difficult
- "Cogs" with no power applied

Types of Stepper Motors

• Permanent Magnet

- Utilizes attraction (opposite magnetic poles) and repulsion (same magnetic poles) to rotate
- Permanent magnet armature, soft iron stator
- Coils on stator

Hybrid

- Mixture of variable reluctance and permanent magnet
- Coils on stator

Variable Reluctance

- Utilizes variable reluctance effect to rotate
- Only soft iron material in armature and stator
- Coils on stator

Controlling a Permanent Magnet Motor

Concept

Two Pole Motor

Unipolar Permanent Magnet Motor

Driving Unipolar Motors

Controlling a Unipolar Permanent Magnet Motor

Note: phases A & C and phases B & D share the same physical stator pole.

Unipolar Motor Driver

Requires 4 "freewheeling" diodes. Why?

Bipolar Permanent Magnet Motor

Most efficient for a given size motor.

Driving Bipolar Motors

Requires current reversal in windings

Bipolar Motor Driver

H Bridge Driver Operation

Concept: inputs can produce supply voltage or ground.

Other H Bridge Operating Modes

Fast Decay Mode

Slow Decay Mode

Speed ⇒ Current Decay in the Motor

Preventing Short Circuits

Unipolar vs. Bipolar

Permanent Magnet Motor

Disk Magnet Motor

Canstack

Hybrid Motor

Behaves like a permanent magnet motor

Hybrid Motor

Behaves like a permanent magnet motor but with very small steps.

Hybrid Motor Details

Hybrid Motor Wave Excitation

Variable Reluctance Motor

The same electromagnetic effect as the solenoid or magnetic levitation.

Variable Reluctance Driver

As before,
"freewheeling"
diode is needed
for when switch
opens.

switches

Torque Vs. Angle

At different holding torques

Wave Excitation

One winding on at a time

Controlling a Unipolar Permanent Magnet Motor

Note: phases A & C and phases B & D share the same physical stator pole.

Full Step Excitation

Two windings on at a time

Half Step Excitation

- Mixture of Wave Drive and Full Step Excitation
- One winding on followed by two followed by one, etc.
- Torque varies with step
- Finer stepping

Summary of Excitation Methods

		Excitation Method			
		Single Phase	Dual Phase	1-2 Phase	
Switching sequence	Pulse phase A phase B phase A phase B		7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -		
Features		Hold & running torque reduced by 39% Increased efficiency. Poor step accuracy.	High torque Good step accuracy.	Poor step accuracy. Good resonance characteristics. Higher pulse rates. Half stepping	

Wave

Full Step

Half Step

MicroStep Excitation

Current in windings is varied

Very Fine Stepping Angle

Torque to Overcome Friction

Torque Vs. Angle When Rotating

Torque vs. Speed

Pull-in Torque: the maximum torque, for a given speed, where a load can be accelerated into synchronism from a standstill.

Pull-out Torque: the maximum torque that can be applied to a step motor operating at a given speed without losing synchronism.

speed in pulses per second (PPS)

Slew Range: The region between the pull-in and pull-out torque curves. A motor may operate in this range, but cannot start, stop, or reverse without ramping.

Phase A S Phase B Phase B Phase A

Trajectory for a Step

Angular Trajectory Vs. Time

What happens when the frequency of stepping is the same as this frequency?

Controlling Resonance

- In driver by shorting unused switches to provide damping
- In a mechanism with elastic couplings

Controlling Resonance with Stepping Speed

Current Vs. Time

Inductance Reduces Available Torque

Case Study **Stepper Motors** Test Fixture Circuit Board **Terminal** Block Disk Unipolar Stepper Bipolar Stepper Motor (round) Motor (square) (96 steps / revolution (100 steps / revolution) Optical Interrupters

Unipolar Motor Driver

Bipolar Stepper Motor Driver

Case Study Circuit

Driver Block Diagram

Driver Operation

$\mathbf{I_0}$	$\mathbf{I_1}$	Current Level
0	0	100 %
1	0	60 %
0	1	19 %
1	1	No
		Current

