

Introduction to Automated Identification System (AIS)

Mr. Bryan Bagnall SPAWAR Systems Center, Pacific

Phone: 619-553-4061

Email: bryan.bagnall@navy.mil

Mr. Sparta Cheung SPAWAR Systems Center, Pacific

Phone: 619-553-5927

Email: sparta.cheung@navy.mil

Overview of Talk

- Overview/History of AIS
- Terrestrial AIS vs. Satellite AIS
- Sources of AIS, How to View/Record AIS
- AIS message specifications and decoding AIS messages
- Example Reading AIS log file, decoding messages, and writing vessel tracks to file

What is Automated Identification System?

- System allowing vessels to automatically report their position and navigational information to all recievers within range, and simultaneously to receive other vessels positions.
- Consists of transceiver, VHF antenna, and GPS antenna
- Operates at VHF maritime channels
 - 87B (161.975 MHz)
 - 88B (162.025MHz)
- Primary Uses-
 - Search and Rescue
 - Collision Avoidance
 - Accident investigation

What is Automated Identification System?

- Typical range of AIS signal is 30 nm in horizontal
 - In vertical, range is much higher...can be received by satellites
- Two main classes of AIS for vessels
 - Class A and Class B

History of AIS

- 1998 International Maritime Organization's (IMO)International Convention passes Safety of Life at Sea (SOLAS)
 - Requires AIS be fitted aboard international voyaging ships with gross tonnage (GT) of 300 or more tons, and all passenger ships regardless of size NLT 31 December, 2004
 - Estimated 40,000 ships currently carry class A AIS equipment.
- 2007- Class B AIS standard introduced which enabled a new generation of low cost AIS transceivers.
 - Class B equipment now required in many nations (Singapore, China, Turkey and North America) → 100,000 vessels

4 Types of AIS Systems

Class A

Integrated display showing other AIS transmissions
12W transmitting power
Interface to ship navigation systems
(GNSS, gyrocompass)
Transmission rate every 3-5 seconds

Class B

2W transmission power
Transmission rate every 30 seconds
Requires at least GPS and VHF antenna

Base Stations

Shore-based AIS transceivers able to control/interrogate individual transponders within range

Aids to Navigation (AtoN)

Shore or buoy based transceiver designed to collect and transmit sea and weather condition messages

Class A AIS Transciever Details

- A vessel Class A AIS systems consist of 3 main components;
 - AIS Transciever transmits binary formated messages at regular intervals.
 - VHF antenna recieves and transmits AIS messages to be decoded by the AIS transciever
 - GPS antenna used to provided GPS position of vessel in AIS messages
 - In addition, the AIS transciever will often be hooked into ship-board gyro

Class A AIS Transponder Details

- The vessel's Maritime Mobile Service Identity (MMSI) a unique nine digit identification number.
- Navigation status "at anchor", "under way using engine(s)", "not under command", etc.
- Rate of turn right or left, from 0 to 720 degrees per minute
- Speed over ground 0.1-knot (0.19 km/h) resolution from 0 to 102 knots (189 km/h)
- Positional accuracy:
- Longitude to 0.0001 minutes
- Latitude to 0.0001 minutes
- Course over ground relative to true north to 0.1°
- True heading 0 to 359 degrees (for example from a gyro compass)
- Time stamp UTC time accurate to the nearest second when these data were generated

Class A AIS Transponder Details

- In addition, the following data are broadcast every 6 minutes:
- IMO ship identification number a seven digit number that remains unchanged upon transfer of the ship's registration to another country
- Radio call sign international radio call sign, up to seven characters, assigned to the vessel by its country of registry
- Name 20 characters to represent the name of the vessel
- Type of ship/cargo
- Dimensions of ship to nearest meter
- Location of positioning system's (e.g., GPS) antenna on board the vessel in meters aft of bow and meters port of starboard
- Type of positioning system such as GPS, DGPS or LORAN-C.
- Draught of ship 0.1 meter to 25.5 meters
- Destination max. 20 characters
- ETA (estimated time of arrival) at destination UTC month/date hour:minute

Class B AIS Transponder Details

- Transmits at lower 2.5W
 - Range is consequently lower than for class A AIS.
- Transmits with lower frequency (30seconds 5 minutes)
- Does not require integrated display (may act only as transponder)
- Much cheaper, easier to mount/install, good solution for smaller vessels.
- Receives both class A and class B AIS messages (aware of surrounding ship traffic)

Web-based Sources for AIS

http://www.shippingexplorer.net/ - Live Vessel Tracking

http://www.marinetraffic.com/ais/default.aspx?language=_EN - Marine Traffic

http://www.digital-seas.com/ - Worldwide real time vessel tracking

http://Vesseltracker.com - Worldwide AIS tracking Website

http://www.vtexplorer.com/ - AIS vessel tracking based on standalone VT Explorer application

http://www.ios-hellas.gr/ais - Vessels from around the world update every sec!!

http://www.mariweb.gr/ecs - On-Line tracking of vessels from around the world, weather reports and live cameras!

http://www.shipspotting.com/modules/myalbum/ais.php - Shipspotting.com - Vessels in Northern Europe

http://www.vesseltrax.com/ - Vessels in the Gulf of Mexico and Texas Ports

http://www.shipais.com/ - Vessels in the Irish Sea, around Great Britain, United Kingdom, and Ireland

<u>http://www.lrfairplay.com/</u> - Loyds register of ship information

http://www.atlanticsource.es/sat/ - Vessels around the world

http://www.shipplotter.dk/dk-kort.html - Vessels around Denmark

http://www.northernbaltic.se/ais/ - Live AIS @ Landsort Vessels in Northern Baltic Sea around Landsort!

<u>http://www.trackaship.com</u> - Ship and vessel tracking world wide. Includes maps optimized for mobile devices. Free iPhone App for live tracking.

Web-based Sources for AIS

- The U.S. Department of Transportation's VOLPE Center takes AIS feeds from around the world and pushes them onto the MSSIS network.
- AIS on this network is viewable using several web tools (VRMTC-A and the Non-Classified Enclave (NCE)). Data can also be viewed/logged using the TV-32 application.

Satellite AIS

- Vertical range of VHF transmission is much greater than horizontal range
 - ~74km horizontal vs. ~400km vertical
- Collected by LEO, Polar orbiting satellites
- First satellites launched in June 2008
- Two main data providers
 - **ORBCOMM**
 - exactEarth

Satellite AIS

- Example of SatAIS over the Gulf of Guinea
- Shows Contacts
- Shows ship tracks
- Combination

SatAIS provided by ExactEarth over Gulf of Guinea

AIS Binary Message Formats

- AIS is decoded as binary message in format called NMEA 0183
- Several standards exists (NMEA 3.0 and NMEA 4.0)
- Two main types of AIS messages
 - 1. Dynamic messages (types 1, 2, and 3 for class A, types 18 and 19 for class B).
 - 2. Static messages (type 5 for class A, types 18,19, 24 for class B)
 - 3. Message types 1,3, 5, 18, & 24 are the most common
- 26 total possible messages
- Details of AIS messages (AIVDO and AIVDM messages) found at http://gpsd.berlios.de/AIVDM.html

!AIVDM,1,1,,A,1Ch6tkg000NBs10USArVOGsd08oR,0*77,1255391874,1255392000 AIS message identifier AIVDM = other ship reporting AIVDO = your ship reporting

!AIVDM, 1, 1, , A, 1Ch6tkg000NBs10USArVOGsd08oR, 0*77, 1255391874, 1255392000 Count of fragments in the currently accumulating message AIS message identifier AIVDM = other ship reporting AIVDO = your ship reporting

AIVDO = your ship reporting

AIS Message Formats

!AIVDM, 1, 1, , A, 1Ch6tkg000NBs10USArVOGsd08oR, 0*77, 1255391874, 1255392000 Fragments number of this sentence Count of fragments in the currently accumulating message AIS message identifier AIVDM = other ship reporting

!AIVDM, 1, 1, , A, 1Ch6tkg000NBs10USArVOGsd08oR, 0*77, 1255391874, 1255392000 Fragments number of this sentence Count of fragments in the currently accumulating message AIS message identifier Sequential message AIVDM = other ship reporting ID for multi-sentence AIVDO = your ship reporting messages

AIS Message Formats – Data Payload

!AIVDM,1,1,,A,1Ch6tkg000NBs10USArVOGsd08oR,0*77,1255391874,1255392000

- Data payload uses 6-bit ASCII
- After recovering each 6-bit sequence they are combined together to provide the full binary of the data payload
- Each binary sequence then corresponds to information about the track
- Details of AIS messages (AIVDO and AIVDM messages) found at http://gpsd.berlios.de/AIVDM.html

Data payload, described later

Table 2. Sixbit ASCII

000000	0	"@"	010000	16	"P"	100000	32	" "	110000	48	"0'
000001	1	"A"	010001	17	"Q"	100001	33	"į"	110001	49	"1
000010	2	"B"	010010	18	"R"	100010	34	"""	110010	50	"2"
000011	3	"C"	010011	19	"S"	100011	35	"\#"	110011	51	"3
000100	4	"D"	010100	20	"T"	100100	36	"\$"	110100	52	"4"
000101	5	"E"	010101	21	"U"	100101	37	"%"	110101	53	"5
000110	6	"F"	010110	22	"V"	100110	38	"&"	110110	54	"6
000111	7	"G"	010111	23	"W"	100111	39	"\""	110111	55	"7
001000	8	"H"	011000	24	"X"	101000	40	"("	111000	56	"8
001001	9	"I"	011001	25	"Y"	101001	41	")"	111001	56	"9
001010	10	"J"	011010	26	"Z"	101010	42	"*"	111010	58	":"
001011	11	"K"	011011	27	"["	101011	43	"\+"	111011	59	";"
001100	12	"L"	011100	28	"\"	101100	44	","	111100	60	"<
001101	13	"M"	011101	29	"]"	101101	45	"_"	111101	61	"=
001110	14	"N"	011110	30	"\^"	101110	46	"."	111110	62	">
001111	15	"O"	011111	31	"_"	101111	47	"/"	111111	63	"?

AIS Message Formats – Data Payload

!AIVDM,1,1,,A,1Ch6tkg000NBs10USArVOGsd08oR,0*77,1255391874,1255392000

- This is the field that includes all of the data that typically is desired to be parsed out
 - Latitude and Longitude
 - Time stamp
 - Ship Name
 - Ship dimensions
 - MMSI Mobile Marine Service Identifier
 - IMO ship identification number
 - Departure and Arrival ports
 - ETA
 - Can include shipping manifests

NMEA 3.0 AIS Parser and KML File Writer

AIS Parser and KML Output Writer

- C++ code to parse NMEA 3.0 AIS messages, form vessel tracks, and write to KML output files
- Support for all 26 messages types
- Sorts all AIS messages by MMSI/IMO and then by time to create "tracks"
- Combines static and dynamic message information to create track data

AIS Parser and KML Output Writer

AIS Parser and KML Output Writer

Overview of Talk

- AIS/IMINT Refresher
- Idea of Fusion
- Code Example
- Conclusions
- Slides located at:

http://midnightsignal.com/chile/day_13

AIS Refresher

- AIS (Automatic Identification System)
 - Automated tracking system used on ships and vessels
 - Mandatory on large ships
 - Broadcasts information about the ship
 - Identification number
 - Ship name
 - Geo-location
 - Velocity
 - Cargo

My name is ChileBoat. I am travelling 10km/hour I am located at (33 S, 150 W)

IMINT Overview

- IMINT Imagery INTelligence
 - Intelligence gather via (satellites or aerial photography)
 - Possible to contain information such as geo-location, heading, size, etc...

- Fusion of two distinct intelligence sources to create a more complete picture of the environment
- Can be used to confirm IMINT detections of ships
- May find vessels which are large enough to have AIS, but do not have it enabled

- Example of vessels detected via SAR imagery, not broadcasting AIS
- Series of "bright" objects on the ocean can be interpreted as ships
- Detection algorithm collects geolocation information for the contacts
- This information can be displayed in a wide variety of ways

- Example of vessels detected via SAR imagery, not broadcasting AIS
- Pink contacts are from SAR detection

Green contacts are AIS

\$ 6121

- Example of vessels detected via SAR imagery and AIS 12 hours apart
- Pink contacts are from SAR detection.
- Green contacts are AIS
- Even 12 hours later you can still see some correlation!

- Example of vessels detected via SAR imagery and AIS 12 hours apart
- Pink contacts are from SAR detection.
- Green contacts are AIS
- Even 12 hours later you can still see some correlation!

OpenCV Matching

- OpenCV provides methods to find "keypoints" in an image
- Keypoints are interesting points in an image that are likely to be found in various lighting conditions and scales/rotations of the object
- We can compute "descriptor" vectors from those keypoints
- Descriptors are vectors that describe the keypoints mathematically (e.g. mean, standard deviation, etc of the surrounding keypoint)

OpenCV Matching

Basic flow of matching

- Find keypoints of image (using SIFT/SURF/HarrisCorners... etc)
- Find descriptor vectors from those keypoints (sometimes based on local histograms)
- Define a metric for distance between descriptors
- Match descriptors from one set with descriptors from another set in a way that minimizes the distance

Code Example

- OpenCV has classes for matching descriptors
- We can use these classes to develop a simple AIS/IMINT correlator
- We used the BruteForceMatcher for this example. There are a few more with different functionality... check out the documentation for more information
- ..\Day5\codigo\AIS_IMINT_FUSION.zip

Code Example - Diagram

Questions?