import libraries

```
In [1]: #import libraries
        # Importing Numpy & Pandas for data processing & data wrangling
        import numpy as np
        import pandas as pd
        # Importing tools for visualization
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Import evaluation metric libraries
        from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, reca
        # Library used for data preprocessing
        from sklearn.preprocessing import LabelEncoder
        # Import model selection libraries
        from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearch
        # Library used for ML Model implementation
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from sklearn.neural network import MLPClassifier
        from sklearn.naive_bayes import GaussianNB
        import xgboost as xgb
        # Library used for ignore warnings
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
```

Loading Data

```
In [2]: df=pd.read_csv(r'files/iris.csv')
```

1.Data handling

dataset top 5 rows views

```
In [3]: df.head()
```

)ut[3]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

Dataset Rows & columns count

```
In [4]: print("Number of rows are : ", df.shape[0])
    print("Number of columns are : ", df.shape[1])

Number of rows are : 150
    Number of columns are : 5
```

Dataset Information

```
In [5]: #checking dataset using info
       df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 150 entries, 0 to 149
      Data columns (total 5 columns):
       # Column Non-Null Count Dtype
       0 SepalLengthCm 150 non-null float64
       1 SepalWidthCm 150 non-null float64
       2 PetalLengthCm 150 non-null float64
       3 PetalWidthCm 150 non-null float64
       4 Species
                       150 non-null object
      dtypes: float64(4), object(1)
      memory usage: 6.0+ KB
In [6]: # checking duplicates
In [7]: #dataset duplicates value Count
       dup = df.duplicated().sum()
       print(f'number of duplicated rows are {dup}')
```

removing duplicates

number of duplicated rows are 3

```
In [8]: #removing duplicates
new_df=df.drop_duplicates()
```

```
In [9]: #rows and columns after removing duplicates
    new_df.shape
Out[9]: (147, 5)
```

checking missing/null values

2. Understanding the variables

Out[12]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	count	147.00	147.00	147.00	147.00	147
	unique	NaN	NaN	NaN	NaN	3
	top	NaN	NaN	NaN	NaN	Iris-versicolor
	freq	NaN	NaN	NaN	NaN	50
	mean	5.86	3.06	3.78	1.21	NaN
	std	0.83	0.44	1.76	0.76	NaN
	min	4.30	2.00	1.00	0.10	NaN
	25%	5.10	2.80	1.60	0.30	NaN
	50%	5.80	3.00	4.40	1.30	NaN
	75%	6.40	3.30	5.10	1.80	NaN
	max	7.90	4.40	6.90	2.50	NaN

checking unique values of each variable.

```
In [13]: # Check Unique Values for each variable.
    for i in new_df.columns.tolist():
        print("No. of unique values in",i,"is",new_df[i].nunique())

No. of unique values in SepalLengthCm is 35
    No. of unique values in SepalWidthCm is 23
    No. of unique values in PetalLengthCm is 43
    No. of unique values in PetalWidthCm is 22
    No. of unique values in Species is 3
```

3. Data_Visualization

understanding the relationships betweeen variables

chart 1: Distribution of Numerical Variables

```
In [14]: # Chart - 1 Histogram visualization code for distribution of numerical variables
         # Create a figure with subplots
         plt.figure(figsize=(8, 6))
         plt.suptitle('Distribution of Iris Flower Measurements', fontsize=14)
         # Create a 2x2 grid of subplots
         plt.subplot(2, 2, 1) # Subplot 1 (Top-Left)
         plt.hist(new df['SepalLengthCm'])
         plt.title('Sepal Length Distribution')
         plt.subplot(2, 2, 2) # Subplot 2 (Top-Right)
         plt.hist(new_df['SepalWidthCm'])
         plt.title('Sepal Width Distribution')
         plt.subplot(2, 2, 3) # Subplot 3 (Bottom-Left)
         plt.hist(new_df['PetalLengthCm'])
         plt.title('Petal Length Distribution')
         plt.subplot(2, 2, 4) # Subplot 4 (Bottom-Right)
         plt.hist(new_df['PetalWidthCm'])
         plt.title('Petal Width Distribution')
         # Display the subplots
         plt.tight_layout() # Helps in adjusting the layout
         plt.show()
```

Distribution of Iris Flower Measurements

Chart - 2 : Sepal Length vs Sepal Width

```
In [15]: # Chart - 2 Scatter plot visualization code for Sepal Length vs Sepal Width.
         # Define colors for each species and the corresponding species labels.
         colors = ['red', 'yellow', 'green']
         species = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
         # Chart - 2 Scatter plot visualization code for Sepal Length vs Sepal Width.
         # Create a scatter plot for Sepal Length vs Sepal Width for each species.
         for i in range(3):
             # Select data for the current species.
             x = new_df[new_df['Species'] == species[i]]
             # Create a scatter plot with the specified color and label for the current spec
             plt.scatter(x['SepalLengthCm'], x['SepalWidthCm'], c=colors[i], label=species[i
         # Add labels to the x and y axes.
         plt.xlabel('Sepal Length')
         plt.ylabel('Sepal Width')
         # Add a legend to identify species based on colors.
         plt.legend()
         # Display the scatter plot.
         plt.show()
```


Chart - 3: Petal Length vs Petal Width

```
In [16]: # Chart - 3 Scatter plot visualization code for Petal Length vs Petal Width.
    # Create a scatter plot for Petal Length vs Petal Width for each species.
    for i in range(3):
        # Select data for the current species.
        x = new_df[new_df['Species'] == species[i]]

        # Create a scatter plot with the specified color and label for the current spec plt.scatter(x['PetalLengthCm'], x['PetalWidthCm'], c=colors[i], label=species[i]

# Add labels to the x and y axes.
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')

# Add a Legend to identify species based on colors.
plt.legend()

# Display the scatter plot.
plt.show()
```


Chart - 4 : Sepal Length vs Petal Length

```
In [17]: # Chart - 4 Scatter plot visualization code for Sepal Length vs Petal Length.
# Create a scatter plot for Sepal Length vs Petal Length for each species.
for i in range(3):
    # Select data for the current species.
    x = new_df[new_df['Species'] == species[i]]

# Create a scatter plot with the specified color and label for the current spec plt.scatter(x['SepalLengthCm'], x['PetalLengthCm'], c=colors[i], label=species[
# Add labels to the x and y axes.
plt.xlabel('Sepal Length')
plt.ylabel('Petal Length')

# Add a legend to identify species based on colors.
plt.legend()

# Display the scatter plot.
plt.show()
```


Chart - 5 : Sepal Width vs Petal Width

```
In [18]: # Chart - 5 Scatter plot visualization code for Sepal Width vs Petal Width.
# Create a scatter plot for Sepal Width vs Petal Width for each species.
for i in range(3):
    # Select data for the current species.
    x = new_df[new_df['Species'] == species[i]]

# Create a scatter plot with the specified color and label for the current spec plt.scatter(x['SepalWidthCm'], x['PetalWidthCm'], c=colors[i], label=species[i]

# Add labels to the x and y axes.
plt.xlabel('Sepal Width')
plt.ylabel('Petal Width')

# Add a Legend to identify species based on colors.
plt.legend()

# Display the scatter plot.
plt.show()
```


Chart - 6 : Correlation Heatmap

```
In [19]: # Correlation Heatmap Visualization Code
#conversion of coerr_data for correlation Heatmap
coerr_data=new_df.drop('Species', axis='columns')
corr_matrix = coerr_data.corr()

# Plot Heatmap
plt.figure(figsize=(8, 4))
sns.heatmap(corr_matrix, annot=True, cmap='Reds_r')

# Setting Labels
plt.title('Correlation Matrix heatmap')

# Display Chart
plt.show()
```


4-Feature engineering and Data preprocessing

1.conversion of categorical data

```
In [20]: # Encode the categorical columns
# Create a LabelEncoder object
le = LabelEncoder()

# Encode the 'Species' column to convert the species names to numerical labels
new_df['Species'] = le.fit_transform(new_df['Species'])

# Check the unique values in the 'Species' column after encoding
unique_species = new_df['Species'].unique()

# Display the unique encoded values
print("Encoded Species Values:")
print(unique_species) # 'Iris-setosa' == 0, 'Iris-versicolor' == 1, 'Iris-virginica'

Encoded Species Values:
[0 1 2]
```

```
In [21]: new_df
```

:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••					
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

147 rows × 5 columns

Out[21]

2. Data scaling

```
In [22]: #Defining the X and y for model training
X=new_df.drop('Species',axis='columns')
y=new_df.Species
```

3. Data spliting

Name: count, dtype: int64

```
In [23]: # Splitting the data to train and test
X_train,X_test,y_train,y_test=train_test_split(X,y, test_size=0.3)

In [24]: # Checking the train distribution of dependent variable
y_test.value_counts()
Out[24]: Species
2 18
1 15
```

5- ML MODEL IMPLEMENTATION

```
In [25]: def evaluate_model(model, x_train, x_test, y_train, y_test):
    # Fit the model to the training data.
```

```
model.fit(x_train, y_train)
# make predictions on the test data
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)
# calculate confusion matrix
cm_train = confusion_matrix(y_train, y_pred_train)
cm_test = confusion_matrix(y_test, y_pred_test)
fig, ax = plt.subplots(1, 2, figsize=(11,4))
print("\nConfusion Matrix:")
sns.heatmap(cm_train, annot=True, xticklabels=['Negative', 'Positive'], ytickla
ax[0].set xlabel("Predicted Label")
ax[0].set_ylabel("True Label")
ax[0].set_title("Train Confusion Matrix")
sns.heatmap(cm_test, annot=True, xticklabels=['Negative', 'Positive'], yticklab
ax[1].set_xlabel("Predicted Label")
ax[1].set_ylabel("True Label")
ax[1].set_title("Test Confusion Matrix")
plt.tight_layout()
plt.show()
# calculate classification report
cr_train = classification_report(y_train, y_pred_train, output_dict=True)
cr_test = classification_report(y_test, y_pred_test, output_dict=True)
print("\nTrain Classification Report:")
crt = pd.DataFrame(cr_train).T
print(crt.to_markdown())
# sns.heatmap(pd.DataFrame(cr_train).T.iloc[:, :-1], annot=True, cmap="Blues")
print("\nTest Classification Report:")
crt2 = pd.DataFrame(cr_test).T
print(crt2.to markdown())
# sns.heatmap(pd.DataFrame(cr_test).T.iloc[:, :-1], annot=True, cmap="Blues")
precision_train = cr_train['weighted avg']['precision']
precision_test = cr_test['weighted avg']['precision']
recall_train = cr_train['weighted avg']['recall']
recall_test = cr_test['weighted avg']['recall']
acc_train = accuracy_score(y_true = y_train, y_pred = y_pred_train)
acc_test = accuracy_score(y_true = y_test, y_pred = y_pred_test)
F1_train = cr_train['weighted avg']['f1-score']
F1_test = cr_test['weighted avg']['f1-score']
model_score = [precision_train, precision_test, recall_train, recall_test, acc_
return model score
```

```
In [26]: # Create a score dataframe
    score = pd.DataFrame(index = ['Precision Train', 'Precision Test', 'Recall Train', 'R
In []:
```

MI model-1: Logistic regression

```
In [27]: # ML Model - 1 Implementation
lr_model = LogisticRegression(fit_intercept=True, max_iter=10000)
# Model is trained (fit) and predicted in the evaluate model
```

1. 1. Explain the ML Model used and it's performance using Evaluation metric Score Chart.

```
In [28]: # Visualizing evaluation Metric Score chart
lr_score = evaluate_model(lr_model, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	36
1	0.944444	0.971429	0.957746	35
2	0.966667	0.935484	0.95082	31
accuracy	0.970588	0.970588	0.970588	0.970588
macro avg	0.97037	0.968971	0.969522	102
weighted avg	0.970806	0.970588	0.970554	102

Test Classification Report:

	precision	recall	f1-score	support
:	:	: -	:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.955556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

```
In [29]: # Updated Evaluation metric Score Chart
    score['Logistic regression'] = lr_score
    score
```

Out[29]:

Logistic regression

Precision Train	0.970806
Precision Test	0.955556
Recall Train	0.970588
Recall Test	0.955556
Accuracy Train	0.970588
Accuracy Test	0.955556
F1 macro Train	0.970554
F1 macro Test	0.955556

2. Cross- Validation & Hyperparameter Tuning

```
# Using GridSearchCV to tune the hyperparameters using cross-validation
grid = GridSearchCV(logreg, param_grid, cv=rskf)
grid.fit(X_train, y_train)

# Select the best hyperparameters found by GridSearchCV
best_params = grid.best_params_
print("Best hyperparameters: ", best_params)
```

Best hyperparameters: {'C': 10, 'penalty': 'l2', 'solver': 'newton-cg'}

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	36
1	1	0.971429	0.985507	35
2	0.96875	1	0.984127	31
accuracy	0.990196	0.990196	0.990196	0.990196
macro avg	0.989583	0.990476	0.989878	102
weighted avg	0.990502	0.990196	0.990203	102

Test Classification Report:

```
precision |
                            recall |
                                      f1-score
                                                 support
             -----:|-----:|-----:|-----:|
                                             | 12
10
                 1
                        | 1
                                      1
1
                0.933333 | 0.933333 |
                                     0.933333 | 15
                0.944444 | 0.944444 |
                                     0.944444 | 18
                0.955556 | 0.955556 |
                                      0.955556 | 0.955556
accuracy
                0.959259 | 0.959259 |
                                     0.959259 | 45
 macro avg
| weighted avg | 0.955556 | 0.955556 | 0.955556 | 45
```

```
In [33]: # Updated Evaluation metric Score Chart
score['Logistic regression'] = lr_score
```

score

Out	[33]:
-----	-----	----

	Logistic regression
Precision Train	0.970806
Precision Test	0.95556
Recall Train	0.970588
Recall Test	0.955556
Accuracy Train	0.970588
Accuracy Test	0.95556
F1 macro Train	0.970554
F1 macro Test	0.955556

ML MODEL -2 Decision Tree

```
In [34]: # ML Model - 2 Implementation
dt_model = DecisionTreeClassifier(random_state=20)

# Model is trained (fit) and predicted in the evaluate model
```

1. Explain the ML Model used and it's performance using Evaluation metric Score Chart.

In [35]: # Visualizing evaluation Metric Score chart
 dt_score = evaluate_model(dt_model, X_train, X_test, y_train, y_test)

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	36
1	1	1	1	35
2	1	1	1	31
accuracy	1	1	1	1
macro avg	1	1	1	102
weighted avg	1	1	1	102

Test Classification Report:

				support
:	:	: -	:	:
0	1	1	1	12
1	0.928571	0.866667	0.896552	15
2	0.894737	0.944444	0.918919	18
accuracy	0.933333	0.933333	0.933333	0.933333
macro avg	0.941103	0.937037	0.93849	45
weighted avg	0.934085	0.933333	0.933085	45

Logistic regression Decision Tree

```
In [36]: # Updated Evaluation metric Score Chart
score['Decision Tree'] = dt_score
score
```

Out[36]:

	Logistic regression	Decision free
Precision Train	0.970806	1.000000
Precision Test	0.955556	0.934085
Recall Train	0.970588	1.000000
Recall Test	0.955556	0.933333
Accuracy Train	0.970588	1.000000
Accuracy Test	0.955556	0.933333
F1 macro Train	0.970554	1.000000
F1 macro Test	0.955556	0.933085
Accuracy Train Accuracy Test F1 macro Train	0.970588 0.955556 0.970554	1.000000 0.933333 1.000000

2.cross-validation & Hyperparaeter Tuning

```
# Initialize GridSearchCV
grid_search = GridSearchCV(model, grid, cv=rskf)

# Fit the GridSearchCV to the training data
grid_search.fit(X_train, y_train)

# Select the best hyperparameters
best_params = grid_search.best_params_
print("Best hyperparameters: ", best_params)
```

Best hyperparameters: {'max_depth': 3, 'min_samples_leaf': np.int64(10), 'min_sampl
es_split': np.int64(2)}

```
In [39]: # Visualizing evaluation Metric Score chart
    dt2_score = evaluate_model(dt_model2, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

	20.020epo. c.				
	precision	recall	f1-score	support	
:	- :	:	:	:	
0	1	1	1	36	
1	0.897436	1	0.945946	35	
2	1	0.870968	0.931034	31	
accuracy	0.960784	0.960784	0.960784	0.960784	
macro avg	0.965812	0.956989	0.958993	102	
weighted avg	0.964806	0.960784	0.960492	102	I

Test Classification Report:

rese erassificación Report.						
	precision	recall	f1-score	support		
:	:	: -	:	:		
0	1	1	1	12		
1	0.933333	0.933333	0.933333	15		
2	0.944444	0.944444	0.944444	18		
accuracy	0.955556	0.955556	0.955556	0.955556		
macro avg	0.959259	0.959259	0.959259	45		
weighted avg	0.955556	0.955556	0.955556	45		

```
In [40]: score['Decision Tree tuned'] = dt2_score
In [41]: # Updated Evaluation metric Score Chart
score
```

Out[41]:

	Logistic regression	Decision Tree	Decision Tree tuned
Precision Train	0.970806	1.000000	0.964806
Precision Test	0.955556	0.934085	0.95556
Recall Train	0.970588	1.000000	0.960784
Recall Test	0.955556	0.933333	0.955556
Accuracy Train	0.970588	1.000000	0.960784
Accuracy Test	0.955556	0.933333	0.95556
F1 macro Train	0.970554	1.000000	0.960492
F1 macro Test	0.955556	0.933085	0.955556

ML Model-3 Random Forest

```
In [42]: # ML Model - 3 Implementation
    rf_model = RandomForestClassifier(random_state=0)
# Model is trained (fit) and predicted in the evaluate model
```

1 Explain the ML Model used and it's performance using Evaluation metric Score Chart.

```
In [43]: # Visualizing evaluation Metric Score chart
    rf_score = evaluate_model(rf_model, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

	po			
	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	36
1	1	1	1	35
2	1	1	1	31
accuracy	1	1	1	1
macro avg	1	1	1	102
weighted avg	1	1	1	102

Test Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.955556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

In [44]: # Updated Evaluation metric Score Chart
 score['Random Forest'] = rf_score
 score

Out[44]:

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest
Precision Train	0.970806	1.000000	0.964806	1.000000
Precision Test	0.95556	0.934085	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000
Recall Test	0.95556	0.933333	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000
Accuracy Test	0.95556	0.933333	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000
F1 macro Test	0.95556	0.933085	0.955556	0.955556

3. Cross- Validation & Hyperparameter Tuning

```
In [45]: # ML Model - 3 Implementation with hyperparameter optimization techniques (i.e., Gr
         # Define the hyperparameter grid
         grid = {'n_estimators': [10, 50, 100, 200],
                        'max_depth': [8, 9, 10, 11, 12,13, 14, 15],
                        'min_samples_split': [2, 3, 4, 5]}
         # Initialize the model
         rf = RandomForestClassifier(random_state=0)
         # Repeated stratified kfold
         rskf = RepeatedStratifiedKFold(n_splits=3, n_repeats=3, random_state=0)
         # Initialize RandomSearchCV
         random_search = RandomizedSearchCV(rf, grid,cv=rskf, n_iter=10, n_jobs=-1)
         # Fit the RandomSearchCV to the training data
         random_search.fit(X_train, y_train)
         # Select the best hyperparameters
         best_params = random_search.best_params_
         print("Best hyperparameters: ", best_params)
        Best hyperparameters: {'n_estimators': 100, 'min_samples_split': 4, 'max_depth': 1
        5}
In [46]: # Initialize model with best parameters
         rf_model2 = RandomForestClassifier(n_estimators = best_params['n_estimators'],
                                          min_samples_leaf= best_params['min_samples_split']
                                          max_depth = best_params['max_depth'],
                                           random_state=0)
In [47]: # Visualizing evaluation Metric Score chart
         rf2_score = evaluate_model(rf_model2, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

T	rain Classitica	ation Report:				
- 1		precision	recall	f1-score	support	
į	:	:	İ:	:	:	
į	0	1	1	1 1	36	
ĺ	1	0.942857	0.942857	0.942857	35	
	2	0.935484	0.935484	0.935484	31	
	accuracy	0.960784	0.960784	0.960784	0.960784	
	macro avg	0.959447	0.959447	0.959447	102	
	weighted avg	0.960784	0.960784	0.960784	102	
Т	est Classifica [.]	tion Report:				
- 1		•	recall	f1-score	support	
i	:		•	:		
i	0	1	1	:	12	
i	1	1	0.933333	0.965517	15	
i	2	0.947368	1	0.972973	18	
i	accuracy	0.977778	0.977778	0.977778	0.977778	
į	macro avg	0.982456	0.977778	0.979497	45	
ĺ	weighted avg	0.978947	0.977778	0.977695	45	
8]:	score['Random	Forest tuned']	= rf2_scor	e		
9]:	score['Random	Forest tuned']	= rf2_scor	e		
0]:	score					
	score	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	
	Precision Train	_		_		tuned
	Precision	regression	Tree	tuned	Forest	tuned 0.960784
	Precision Train Precision	regression 0.970806	1.000000	0.964806	1.000000	0.960784 0.960784
	Precision Train Precision Test	0.970806 0.955556	1.000000 0.934085	0.964806 0.955556	1.000000 0.955556	0.960784 0.978947 0.960784
	Precision Train Precision Test Recall Train	0.970806 0.955556 0.970588	1.000000 0.934085 1.000000	0.964806 0.955556 0.960784	1.000000 0.95556 1.000000	0.960784 0.978947 0.960784 0.977778
50]:	Precision Train Precision Test Recall Train Recall Test Accuracy	0.970806 0.955556 0.970588 0.955556	1.000000 0.934085 1.000000 0.933333	0.964806 0.955556 0.960784 0.955556	1.000000 0.955556 1.000000 0.955556	0.960784 0.978947
	Precision Train Precision Test Recall Train Recall Test Accuracy Train Accuracy	0.970806 0.955556 0.970588 0.955556 0.970588	1.000000 0.934085 1.000000 0.933333 1.000000	0.964806 0.955556 0.960784 0.955556 0.960784	1.000000 0.955556 1.000000 0.95556 1.000000	0.960784 0.978947 0.960784 0.977778

ML model-4 : SVM(Support Vector Machine)

```
In [51]: # ML Model - 4 Implementation
svm_model = SVC(kernel='linear', random_state=0, probability=True)
# Model is trained (fit) and predicted in the evaluate model
```

In [52]: ### 1. Explain the ML Model used and it's performance using Evaluation metric Score

In [53]: # Visualizing evaluation Metric Score chart
svm_score = evaluate_model(svm_model, X_train, X_test, y_train, y_test)

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	36
1	1	0.971429	0.985507	35
2	0.96875	1	0.984127	31
accuracy	0.990196	0.990196	0.990196	0.990196
macro avg	0.989583	0.990476	0.989878	102
weighted avg	0.990502	0.990196	0.990203	102

Test Classification Report:

1	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	12
1	1	0.933333	0.965517	15
2	0.947368	1	0.972973	18
accuracy	0.977778	0.977778	0.977778	0.977778
macro avg	0.982456	0.977778	0.979497	45
weighted avg	0.978947	0.977778	0.977695	45

```
In [54]: # Updated Evaluation metric Score Chart
    score['SVM'] = svm_score
    score
```

Out[54]:		Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM
	Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502
	Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947
	Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196
	Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778
	Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196
	Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778
	F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203
	F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695

2. cross-validation & Hyperparameter Tuning

```
In [55]: # ML Model - 4 Implementation with hyperparameter optimization techniques (i.e., Gr
         # Define the hyperparameter grid
         param_grid = {'C': np.arange(0.1, 10, 0.1),
                       'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],
                        'degree': np.arange(2, 6, 1)}
         # Initialize the model
         svm = SVC(random_state=0, probability=True)
         # Repeated stratified kfold
         rskf = RepeatedStratifiedKFold(n_splits=3, n_repeats=3, random_state=0)
         # Initialize RandomizedSearchCV with kfold cross-validation
         random_search = RandomizedSearchCV(svm, param_grid, n_iter=10, cv=rskf, n_jobs=-1)
         # Fit the RandomizedSearchCV to the training data
         random_search.fit(X_train, y_train)
         # Select the best hyperparameters
         best_params = random_search.best_params_
         print("Best hyperparameters: ", best_params)
        Best hyperparameters: {'kernel': 'rbf', 'degree': np.int64(3), 'C': np.float64(9.
        6)}
In [56]: # Initialize model with best parameters
         svm_model2 = SVC(C = best_params['C'],
```

```
kernel = best_params['kernel'],
degree = best_params['degree'],
random_state=0, probability=True)
```

```
In [57]: # Visualizing evaluation Metric Score chart
svm2_score = evaluate_model(svm_model2, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support	
:	:	:	:	:	
0	1	1	1	36	
1	1	0.971429	0.985507	35	
2	0.96875	1	0.984127	31	
accuracy	0.990196	0.990196	0.990196	0.990196	
macro avg	0.989583	0.990476	0.989878	102	
weighted avg	0.990502	0.990196	0.990203	102	

Test Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.95556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

```
In [58]: score['SVM tuned'] = svm2_score
```

```
In [59]: # Updated Evaluation metric Score Chart
score
```

_			-	_	-	
()	111	Η І	- 5	a		0
\cup	u i	uп		ン		۰

		Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned
Pr	recision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502
Pr	recision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556
	Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196
	Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556
A	ccuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196
A	ccuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556
F1	macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203
F1	macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556

ML Model-5 Xtreme Gradient Boosting

```
In [60]: # ML Model - 5 Implementation
    xgb_model = xgb.XGBClassifier()

# Model is trained (fit) and predicted in the evaluate model
```

1. . Explain the ML Model used and it's performance using Evaluation metric Score Chart.

```
In [61]: # Visualizing evaluation Metric Score chart
   xgb_score = evaluate_model(xgb_model, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

	prec	ision	recall	f1-score	support
:		:	:	:	:
0		1	1	1	36
1		1	1	1	35
2		1	1	1	31
accuracy		1	1	1	1
macro avg		1	1	1	102
weighted avg		1	1	1	102

Test Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.955556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

In [62]: # Updated Evaluation metric Score Chart
score['XGB'] = xgb_score
score

_				
()ı	14-1	6	٠) ا	0
\cup \cup	1 し	U	_	

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned	XGB
Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502	1.000000
Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203	1.000000
F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556	0.955556

2.Cross- Validation & Hyperparameter Tuning

```
In [63]: # ML Model - 5 Implementation with hyperparameter optimization techniques (i.e., Gr
         # Define the hyperparameter grid
         param_grid = {'learning_rate': np.arange(0.01, 0.3, 0.01),
                        'max_depth': np.arange(3, 15, 1),
                       'n_estimators': np.arange(100, 200, 10)}
         # Initialize the model
         xgb2 = xgb.XGBClassifier(random_state=0)
         # Repeated stratified kfold
         rskf = RepeatedStratifiedKFold(n_splits=3, n_repeats=3, random_state=0)
         # Initialize RandomizedSearchCV
         random_search = RandomizedSearchCV(xgb2, param_grid, n_iter=10, cv=rskf)
         # Fit the RandomizedSearchCV to the training data
         random_search.fit(X_train, y_train)
         # Select the best hyperparameters
         best_params = random_search.best_params_
         print("Best hyperparameters: ", best_params)
```

Best hyperparameters: {'n_estimators': np.int64(150), 'max_depth': np.int64(13), 'l
earning_rate': np.float64(0.14)}

In [65]: # Visualizing evaluation Metric Score chart
 xgb2_score = evaluate_model(xgb_model2, X_train, X_test, y_train, y_test)

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support
:	· :	:	:	:
0	1	1	1	36
1	1	1	1	35
2	1	1	1	31
accuracy	1	1	1	1
macro avg	1	1	1	102
weighted avg	1	1	1	102

Test Classification Report:

I	precision	•		support
:	:	:	:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.955556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

In [66]: score['XGB tuned'] = xgb2_score

In [67]: # Updated Evaluation metric Score Chart
score

() i i +	67	
Ou L	0/	

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned	XGB
Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502	1.000000
Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203	1.000000
F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556	0.955556

ML Model -6: Naive Bayes

```
In [68]: # ML Model - 6 Implementation
nb_model = GaussianNB()

# Model is trained (fit) and predicted in the evaluate model
```

1. Explain the ML Model used and it's performance using Evaluation metric Score Chart.

```
In [69]: # Visualizing evaluation Metric Score chart
nb_score = evaluate_model(nb_model, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	36
1	0.918919	0.971429	0.944444	35
2	0.965517	0.903226	0.933333	31
accuracy	0.960784	0.960784	0.960784	0.960784
macro avg	0.961479	0.958218	0.959259	102
weighted avg	0.961698	0.960784	0.960675	102

Test Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.955556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

In [70]: # Updated Evaluation metric Score Chart
score['Naive Bayes'] = nb_score
score

_			-	_	_	-	
()	111	+ 1		7	a		4
\cup	u			/	\cup		4

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned	XGB
Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502	1.000000
Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203	1.000000
F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556	0.955556

2. Cross-Validation & Hyperparameter Tuning

In [72]: # Initiate model with best parameters

```
In [71]: # ML Model - 6 Implementation with hyperparameter optimization techniques (i.e., Gr
# Define the hyperparameter grid
param_grid = {'var_smoothing': np.logspace(0,-9, num=100)}

# Initialize the model
naive = GaussianNB()

# repeated stratified kfold
rskf = RepeatedStratifiedKFold(n_splits=4, n_repeats=4, random_state=0)

# Initialize GridSearchCV
GridSearch = GridSearchCV(naive, param_grid, cv=rskf, n_jobs=-1)

# Fit the GridSearchCV to the training data
GridSearch.fit(X_train, y_train)

# Select the best hyperparameters
best_params = GridSearch.best_params_
print("Best hyperparameters: ", best_params)

Best hyperparameters: {'var_smoothing': np.float64(0.012328467394420659)}
```

```
nb_model2 = GaussianNB(var_smoothing = best_params['var_smoothing'])
```

In [73]: # Visualizing evaluation Metric Score chart
 nb2_score = evaluate_model(nb_model2, X_train, X_test, y_train, y_test)

Confusion Matrix:

Train Classification Report:

		precision	recall	f1-score	support	
:	-	:	:	:	:	
0		1	1	1	36	
1	1	0.944444	0.971429	0.957746	35	
2	1	0.966667	0.935484	0.95082	31	
accur	racy	0.970588	0.970588	0.970588	0.970588	
macro	avg	0.97037	0.968971	0.969522	102	
weigh	nted avg	0.970806	0.970588	0.970554	102	

Test Classification Report:

1	precision	recall	f1-score	support
1				
:	:	: -	:	:
0	1	1	1	12
1	0.823529	0.933333	0.875	15
2	0.9375	0.833333	0.882353	18
accuracy	0.911111	0.911111	0.911111	0.911111
macro avg	0.920343	0.922222	0.919118	45
weighted avg	0.916176	0.911111	0.911275	45

In [74]: score['Naive Bayes tuned']= nb2_score

In [75]: # Updated Evaluation metric Score Chart
score

_			
() i	144	75	
\cup	コ し	/ /	

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned	XGB
Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502	1.000000
Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203	1.000000
F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556	0.955556

ML model-7: Neural Network

```
In [76]: # ML Model - 7 Implementation
    nn_model = MLPClassifier(random_state=0)

# Model is trained (fit) and predicted in the evaluate model
```

1. Explain the ML Model used and it's performance using Evaluation metric Score Chart.

```
In [77]: # Visualizing evaluation Metric Score chart
neural_score = evaluate_model(nn_model, X_train, X_test, y_train, y_test)
```

Confusion Matrix:

Train Classification Report:

١		1	precision	recall	f1-score	support	Ī
i	:	i				:	
i	0	i	1	1	1	36	İ
	1		1	0.914286	0.955224	35	
	2		0.911765	1	0.953846	31	
	accuracy		0.970588	0.970588	0.970588	0.970588	
	macro avg		0.970588	0.971429	0.96969	102	
	weighted avg		0.973183	0.970588	0.970608	102	

Test Classification Report:

		•		support
:	:	: -	·:	:
0	1	1	1	12
1	0.933333	0.933333	0.933333	15
2	0.944444	0.944444	0.944444	18
accuracy	0.955556	0.955556	0.955556	0.955556
macro avg	0.959259	0.959259	0.959259	45
weighted avg	0.955556	0.955556	0.955556	45

In [78]: # Updated Evaluation metric Score Chart
 score['Neural Network'] = neural_score
 score

_				
()ı	11	17	Q	
\cup	<i>コ</i> し	/	0	١.

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned	XGB
Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502	1.000000
Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203	1.000000
F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556	0.955556

2. Cross-Validation & Hyperparameter Tuning

Best hyperparameters: {'hidden_layer_sizes': np.int64(40), 'alpha': np.float64(0.00
44)}

In [81]: # Visualizing evaluation Metric Score chart
 neural2_score = evaluate_model(nn_model2, X_train, X_test, y_train, y_test)

Confusion Matrix:

Train Classification Report:

		precision	recall	f1-score	support	
:		:	:	:	:	
0		1	1	1	36	
1		1	0.942857	0.970588	35	
2		0.939394	1	0.96875	31	
accuracy		0.980392	0.980392	0.980392	0.980392	
macro avg		0.979798	0.980952	0.979779	102	
weighted avg		0.981581	0.980392	0.98041	102	

Test Classification Report:

	precision	recall	f1-score	support
:	:	:	:	:
0	1	1	1	12
1	1	0.933333	0.965517	15
2	0.947368	1	0.972973	18
accuracy	0.977778	0.977778	0.977778	0.977778
macro avg	0.982456	0.977778	0.979497	45
weighted avg	0.978947	0.977778	0.977695	45

In [82]: score['Neural Network tuned']= neural2_score

In [83]: # Updated Evaluation metric Score Chart
score

\cap	- 「0つ1	
υuι	- 00	

	Logistic regression	Decision Tree	Decision Tree tuned	Random Forest	Random Forest tuned	SVM	SVM tuned	XGB
Precision Train	0.970806	1.000000	0.964806	1.000000	0.960784	0.990502	0.990502	1.000000
Precision Test	0.955556	0.934085	0.955556	0.955556	0.978947	0.978947	0.955556	0.955556
Recall Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Recall Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
Accuracy Train	0.970588	1.000000	0.960784	1.000000	0.960784	0.990196	0.990196	1.000000
Accuracy Test	0.955556	0.933333	0.955556	0.955556	0.977778	0.977778	0.955556	0.955556
F1 macro Train	0.970554	1.000000	0.960492	1.000000	0.960784	0.990203	0.990203	1.000000
F1 macro Test	0.955556	0.933085	0.955556	0.955556	0.977695	0.977695	0.955556	0.955556

It appears that hyperparameter tuning improve the performance of the neural network model on the test set. The precision, recall, accuracy and F1 scores on the test set are increased for the tuned neural network model compare to untuned neural network model.

```
In [84]: print(score.to_markdown())
```

```
| Logistic regression | Decision Tree | Decision Tree tuned
 | Random Forest | Random Forest tuned | SVM | SVM tuned | XGB | XG
 B tuned | Naive Bayes | Naive Bayes tuned | Neural Network | Neural Network
 |:----:|----:|----:|----:
 | 1
          0.961698 | 0.970806 | 0.973183 | 0.981581 |
| Precision Test | 0.955556 | 0.934085 | 0.955556 | 0.955556 | 0.978947 | 0.978947 | 0.955556 | 0.955556 | 0.955556 | 0.916176 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.95556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.955556 | 0.95
978947
977778 |
| Accuracy Train | 0.970588 | 1 | 0.960784 | | |
| 1 | 0.960784 | 0.990196 | 0.990196 | 1 | 1 |
| 0.960784 | 0.970588 | 0.970588 | 0.980392 |
| Accuracy Test | 0.955556 | 0.933333 | 0.955556 |
| 0.955556 | 0.977778 | 0.977778 | 0.955556 | 0.955556 |
| 0.955556 | 0.955556 | 0.91111 | 0.955556 | 0.955556 |
 977778
 977778
977778 |
| F1 macro Train | 0.970554 | 1 | 0.960492 | | |
| 1 | 0.960784 | 0.990203 | 0.990203 | 1 | 1 |
| 0.960675 | 0.970554 | 0.970608 | 0.98041 |
| F1 macro Test | 0.955556 | 0.933085 | 0.955556 |
| 0.955556 | 0.977695 | 0.977695 | 0.955556 | 0.955556 |
 0.955556 | 0.955556 | 0.911275 | 0.955556 | 0.
 977695
```

Selection of best model

```
In [85]: # Removing the overfitted models which have precision, recall, f1 scores for train
score_t = score.transpose() # taking transpose of the score dataframe to create ne
remove_models = score_t[score_t['Recall Train']>=0.98].index # creating a list of
remove_models
# creating a new dataframe with required models
adj = score_t.drop(remove_models)
adj
```

```
print("The best models are:")
for metric, best_model in best_models.items():
    print(f"{metric}: {best_model} - {adj[metric+' Test'][best_model].round(4)}")

The best models are:
Precision: Random Forest tuned - 0.9789
Recall: Random Forest tuned - 0.9778
Accuracy: Random Forest tuned - 0.9778
F1 macro: Random Forest tuned - 0.9777

In [88]:
# Take recall as the primary evaluation metric
score_smpl = score.transpose()
remove_overfitting_models = score_smpl[score_smpl['Recall Train']>=0.98].index
remove_overfitting_models
new_score = score_smpl.drop(remove_overfitting_models)
new_score = new_score.drop(['Precision Train','Precision Test','Accuracy Train','Ac
new_score.index.name = 'Classification Model'
print(new_score.to_markdown())
```

Classification Model	Recall Train	Recall Test
:	: -	:
Logistic regression	0.970588	0.955556
Decision Tree tuned	0.960784	0.955556
Random Forest tuned	0.960784	0.977778
Naive Bayes	0.960784	0.955556
Naive Bayes tuned	0.970588	0.911111
Neural Network	0.970588	0.955556

1. Which Evaluation metrics did i consider for a positive business impact and why?

After carefully considering the potential consequences of false positives and false negatives in the context of our business objectives, I have selected recall as the primary evaluation metric for our Iris flower classification model. This means that our goal is to maximize the number of true positives (correctly identified the different iris flowers) while minimizing the number of false negatives (incorrectly identified the flowers not a iris flower). By doing so, we aim to ensure that we correctly identify as many different iris flowers, even if it means that we may have some false positives.

2. Which ML model did i choose from the above created models as our final prediction model and why?

After evaluating the performance of several machine learning models on the Iris dataset, I have selected the tuned Random Forest as our final prediction model. This decision was based on the model's performance on our primary evaluation metric of recall, which measures the ability of the model to correctly identify different iris flowers. In our analysis, we found that the Random Forest (tuned) had the highest recall score among the models we evaluated. I choose recall as the primary evaluation metric because correctly identifying different iris flowers are critical to achieving our business objectives. By selecting a model with a high recall score, we aim to ensure that we correctly identify as many different iris flowers as possible, even if it means that we may have some false positives. Overall, we believe that the Random Forest (tuned) is the best choice for our needs and will help us achieve a positive business impact.

3--- MODEL I CHOOSE FOR THE PREDICTION :)

```
In [97]: # Define a list of category labels for reference.
Category_RF = ['Iris-Setosa', 'Iris-Versicolor', 'Iris-Virginica']

# In this example, it's a data point with Sepal Length, Sepal Width, Petal Length,
x_rf = np.array([[4.1, 3.5, 3.4, 0.2]])

# Use the tuned random forest model (rf_model2) to make a prediction.
x_rf_prediction = rf_model2.predict(x_rf)
x_rf_prediction[0]

# Display the predicted category label.
print(Category_RF[int(x_rf_prediction[0])])
```

Iris-Setosa

CONCLUSION

In the Iris flower classification project, the tuned Random Forest model has been selected as the final prediction model. The project aimed to classify Iris flowers into three distinct species: Iris-Setosa, Iris-Versicolor, and Iris-Virginica. After extensive data exploration, preprocessing, and model evaluation, the following conclusions can be drawn:

Data Exploration: Through a thorough examination of the dataset, we gained insights into the characteristics and distributions of features. We found that Iris-Setosa exhibited distinct features compared to the other two species.

Data Preprocessing: Data preprocessing steps, including handling missing values and encoding categorical variables, were performed to prepare the dataset for modeling.

Model Selection: After experimenting with various machine learning models, tuned Random Forest was chosen as the final model due to its simplicity, interpretability, and good performance in classifying Iris species.

Model Training and Evaluation: The Random Forest (tuned) model was trained on the training dataset and evaluated using appropriate metrics. The model demonstrated satisfactory accuracy and precision in classifying Iris species.

Challenges and Future Work: The project encountered challenges related to feature engineering and model fine-tuning. Future work may involve exploring more advanced modeling techniques to improve classification accuracy further.

Practical Application: The Iris flower classification model can be applied in real-world scenarios, such as botany and horticulture, to automate the identification of Iris species based on physical characteristics.

In conclusion, the Iris flower classification project successfully employed Random Forest (tuned) as the final prediction model to classify Iris species. The project's outcomes have practical implications in the field of botany and offer valuable insights into feature importance for species differentiation. Further refinements and enhancements may lead to even more accurate and reliable classification models in the future.