Algorytmy Metaheurystyczne - lab 1

Jakub Musiał 268442

Listopad 2023

Cykl komiwojażera - algorytm Local Search

Opis problemu

Wyznaczyć cykl komiwojażera dla grafu pełnego używając algorytmu Local Search ze zdefiniowanym otoczeniem $N(\pi) = \{\pi' \in S(P) : (\exists i \neq j)(\pi' = invert(\pi, i, j))\}$, gdzie P - wejściowy zbiór punktów.

Otoczenie *invert* zastosowane w algorytmie przeszukiwania lokalnego na grafach euklidesowych gwarantuje "rozplątanie" przecinających się krawędzi. Wynika to z faktu, że dystans euklidesowy jest metryką, zatem z nierówności trójkąta dla tej metryki możemy zauważyć, że dla pewnych punktów p_1, p_2, p_3, p_4 możemy zbudować 2 nieizomorficzne cykle:

W cyklu C_1 punkt p_5 jest punktem przecięcia odcinków $\overline{p_1p_4}$ oraz $\overline{p_2p_3}$. Wiedząc zatem, że d(p,q) jest metryką euklidesową mamy:

$$d(p_1, p_3) \le d(p_1, p_5) + d(p_3, p_5)$$

$$d(p_2, p_4) \le d(p_2, p_5) + d(p_4, p_5)$$

Stąd zatem możemy pokazać, że $w(C_2) \leq w(C_1)$:

$$w(C_1) = d(p_1, p_2) + d(p_2, p_3) + d(p_3, p_4) + d(p_4, p_1) =$$

$$= d(p_1, p_2) + d(p_2, p_5) + d(p_5, p_3) + d(p_3, p_4) + d(p_4, p_5) + d(p_5, p_1) \ge$$

$$\ge d(p_1, p_2) + d(p_2, p_4) + d(p_4, p_3) + d(p_3, p_1) = w(C_2) \square$$

Dla odległości d'(p,q) = round(d(p,q)) (zaokrąglenie do najbliższej liczby całkowitej), jak w badanych grafach natomiast nie mamy już takiej gwarancji. Jako przykład weźmy pod uwagę wyżej opisane cykle i przyjmijmy, że $p_1 = (1,2) \land p_2 = (2,2) \land p_3 = (1,1) \land p_4 = (2,1)$. Wtedy możemy zauważyć, że:

$$w(C_1) = d'(p_1, p_2) + d'(p_2, p_3) + d'(p_3, p_4) + d'(p_4, p_1) = 1 + 1 + 1 + 1 = 4$$

$$w(C_2) = d'(p_1, p_2) + d'(p_2, p_4) + d'(p_4, p_3) + d'(p_3, p_1) = 1 + 1 + 1 + 1 = 4$$
Zatem $w(C_1) = w(C_2)$.

Rozwiązanie

Poniżej przedstawiona jest procedura wyznaczania cyklu komiwojażera oraz alagorytm *Local Search* dla zadanego problemu.

Algorithm 1 Wyznaczanie cyklu komiwojażera

```
Require: P

1: G \leftarrow graph(P)

2: MST_G \leftarrow prim\_mst(G)

3: \pi_0 \leftarrow dfs\_order(MST_G)

4: \pi \leftarrow local\_seach(\pi_0)
```

Algorithm 2 Wyznaczanie cyklu komiwojażera

```
1: procedure local search(\pi_0)
 2:
           \pi \leftarrow \pi_0
           w_{\pi} \leftarrow weight(\pi)
 3:
           l_{\pi} \leftarrow length(\pi)
 4:
 5:
           while true do
 6:
 7:
                w_b \leftarrow w_\pi
                 (i_b, j_b) \leftarrow (0, 0)
 8:
                for i \leftarrow 0 to l_{\pi} do
 9:
                      for j \leftarrow i + 1 to l_{\pi} do
10:
                            w_{invert} \leftarrow invert\_weight(\pi, i, j)
11:
                           if w_{invert} < w_b then
12:
13:
                                 w_b \leftarrow w_{invert}
                                 (i_b, j_b) \leftarrow (i, j)
14:
15:
                if w_b \geq w_{\pi} then return \pi
16:
17:
                \pi \leftarrow invert(\pi, i_b, j_b)
18:
19:
                w_{\pi} \leftarrow w_{b}
```

Wyniki Poniższe tabele oraz wykresy przedstawiają wyniki otrzymane dla poszczególnych zadań.

Zadanie 1 - losowy wierzchołek startowy w MST

Dane wejściowe	w(MST)	avg(w(TSC))	$w(TSC_{min})$	$avg(n_{impr})$
xqf131	474	605	587	24
xqg237	897	1104	1081	50
pma343	1179	1483	1470	72
pka379	1151	1411	1387	85
bcl380	1444	1755	1727	72
pbl395	1124	1363	1345	81
pbk411	1180	1438	1424	85
pbn423	1201	1479	1450	92
pbm436	1269	1558	1540	98
xql662	2240	2683	2642	127
xit 1083	3253	3822	3773	223
icw1483	4015	4828	4759	309
djc1785	5541	6605	6568	376
dcb2086	5950	7137	7085	410
pds2566	6956	8260	8166	466

Zadanie 2 - losowa permutacja startowa

Dane wejściowe	w(MST)	avg(w(TSC))	$w(TSC_{min})$	$avg(n_{impr})$
xqf131	474	611	579	133
xqg237	897	1118	1066	260
pma343	1179	1485	1427	403
pka379	1151	1446	1403	448
bcl380	1444	1817	1729	447
pbl395	1124	1427	1355	458
pbk411	1180	1489	1417	483
pbn423	1201	1523	1455	496
pbm436	1269	1609	1534	512
xql662	2240	2812	2706	811
xit1083	3253	4021	3906	1384
icw1483	4015	4986	4855	1930
djc1785	5541	6878	6733	2344
dcb2086	5950	7463	7289	2798
pds2566	6956	8695	8547	3483

Zadanie 3 - losowe inwersje

Dane wejściowe	w(MST)	avg(w(TSC))	$w(TSC_{min})$	$avg(n_{impr})$
xqf131	474	720	669	1
xqg237	897	1434	1330	2
pma343	1179	1884	1806	2
pka379	1151	1834	1767	3
bcl380	1444	2317	2188	1
pbl395	1124	1845	1713	2
pbk411	1180	1971	1832	2
pbn423	1201	1977	1909	2
pbm436	1269	2066	1939	2
xql662	2240	3637	3461	2
xit1083	3253	5182	5044	2
icw1483	4015	6647	6381	2
djc1785	5541	8867	8633	2
dcb2086	5950	9796	9438	2
pds2566	6956	11363	10989	3

Badane wartości w zależności od liczby wierzchołków grafu

Wizualizacja cykli komiwojażera wyznaczonych w zadaniu 1

