Data Visualization with Esquisse

Esquisse Package

install.packages("esquisse")
library(esquisse)

Esquisse Package

The esquisse package is helpful for getting used to creating plots in R.

It is an interactive tool to help you in RStudio.

It's super **nifty**!

First, get some data..

We can use the CO heat-related ER visits dataset. This dataset contains information about the number and rate of visits for heat-related illness to ERs in Colorado from 2011-2022, adjusted for age.

```
er <-
  read_csv("https://daseh.org/data/CO_ER_heat_visits.csv")
head(er)
## # A tibble: 6 × 6
    county rate lower95cl upper95cl visits year
##
    <chr> <dbl>
                     <dbl>
                               <dbl> <dbl> <dbl> <
##
## 1 Adams
            6.73
                                9.24
                                        29 2011
                     NA
                      2.85
                                        23 2012
## 2 Adams
          4.84
                               NA
          6.84
                                        31 2013
## 3 Adams
                      4.36
                               9.31
          3.08
                                        15 2014
## 4 Adams
                      1.71
                               4.85
          3.36
                      1.89
                               5.23
                                        16 2015
## 5 Adams
## 6 Adams
            8.85
                      6.12
                               11.6
                                        42
                                            2016
```

Starting a plot

Using the esquisser() function you can start creating a plot for a data.frame or tibble. That's it!

esquisser(er)

Show the plot in the browser

esquisse::esquisser(er, viewer = "browser")

Select Variables

To select variables you can drag and drop variables to the respective axis that you would like the variable to be plotted on.

Find code

To select variables you can drag and drop variables to the respective axis that you would like the variable to be plotted on.

Change plot type

esquisse automatically assumes a plot type, but you might want to change this.

Add Facets

Facets create multiple plots based on the different values of a variable.

Add size

Sometimes it is useful to change the way points are plotted so that size represents a variable. This can especially be helpful if you need your plot to be black and white.

Add color

For plots with points use the color region to change coloring according to a variable. (use "fill" for bar plots)

Appearance

You can change the overall appearance with "Geometries" and "Theme".

Change titles

To change titles on your plot, use the "Labels & Titles" tab.

View data

You can also easily view data

Interrupting Esquisse

You'll need to "interrupt" Esquisse to launch it with a new dataset.

Use the stop button or press ctrl+c to stop the Esquisse app.

If you don't see the stop button, you need to resize your window.

Wide & Long Data?

Let's look at why we might want long data using Esquisse.

Wide Data

As a comparison, let's also load a wide version of this dataset.

```
wide_er <- read_csv(file =
    "https://daseh.org/data/CO_heat_er_visits_DenverBoulder_wide.csv")

## Rows: 2 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (1): county
## dbl (12): 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, .
##
## Use `spec()` to retrieve the full column specification for this data.
## Specify the column types or set `show_col_types = FALSE` to quiet this mess</pre>
```

Wide vs Long Data

head(long_er)

```
## # A tibble: 6 × 3
##
    county year visits
##
    <chr>
            <dbl>
                  <dbl>
## 1 Boulder
             2012
                     13
## 2 Boulder
            2014
                     19
                     18
## 3 Boulder
            2016
## 4 Boulder 2018
                     18
## 5 Boulder 2020
                     12
## 6 Boulder 2022
                     19
head(wide_er)
## # A tibble: 2 × 13
    county `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `202
##
             <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
                                                           <dbl> <dbl>
##
    <chr>
                                                                        <db
## 1 Boulder
            4.03
                  4.08
                         3.79 6.29 4.76 5.68 3.51 5.07
                                                                  3.71
                                                                         3.
             7.11
                  6.79 2.95 3.56
                                        3.84 6.18
                                                     3.32 5.81
                                                                  4.54
## 2 Denver
                                                                         4.
## # 0 2 more variables: `2021` <dbl>, `2022` <dbl>
```

Make a plot of visit rates by year for different counties

esquisser(wide_er) # county as x...? Tricky! esquisser(long_er) # county as x, v is it rate as y, year as fill

GUT CHECK!

Why use Esquisse?

- A. Explore your data
- B. Get a "head start" on your code
- C. Both of these!

Some Alternatives to esquisse

- ggquickeda: https://smouksassi.github.io/ggquickeda/
- ggraptR: https://github.com/cargomoose/ggraptR/
- autoplot can be helpful for some packages (see this blog post)

Summary

- Use the esquisser() function on a dataset
- Use the viewer = "browser" argument to launch in your browser.
- Code from Esquisse can copied into code chunks to be generated in the "Plots" pane
- It's easier if your code is in "long" form!

Lab

- Class Website
- Lab
- Day 6 Cheatsheet

Image by Gerd Altmann from Pixabay