Lecture 32: Cauchy's theorem

Math 660—Jim Fowler

Wednesday, August 4, 2010

Suppose f is analytic in Ω .

Suppose f is analytic in Ω . If $z \in \text{int } Q_i$, then

$$y_j$$
, the

 $f(z) = \frac{1}{2\pi i} \int_{\Gamma_s} \frac{f(\zeta) \, d\zeta}{\zeta - z}$

Suppose f is analytic in Ω . If $z \in \text{int } Q_j$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_a} \frac{f(\zeta) \, d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z \in \Omega_{\delta}$.

Suppose f is analytic in Ω . If $z \in \text{int } Q_i$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z \in \Omega_{\delta}$. Therefore,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right) dz$$

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right)$$

Suppose f is analytic in Ω . If $z \in \text{int } Q_i$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_s} \frac{f(\zeta) \, d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z\in\Omega_\delta.$ Therefore,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right) dz$$

and reversing the order of integration,

$$\int_{\Gamma} f(z) dz = \int_{\Gamma} \left(\frac{1}{2\pi i} \int_{\Omega} \frac{dz}{\zeta - z} \right) f(\zeta) d\zeta$$

Suppose f is analytic in Ω . If $z \in \text{int } Q_j$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\zeta) \, d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z\in\Omega_\delta.$ Therefore,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right) dz$$

and reversing the order of integration,

$$\int_{C} f(z) dz = \int_{C} \left(\frac{1}{2\pi i} \int_{C} \frac{dz}{\zeta - z} \right) f(\zeta) d\zeta$$

and the integral vanishes.

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then $n(\gamma, a) = 0$ for all $a \notin B_R(0)$ or $a \notin \Omega$,

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then
$$n(\gamma, a) = 0$$
 for all $a \notin B_R(0)$ or $a \notin \Omega$, so $[\gamma] = [0] \in H_1(\Omega')$.

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then
$$n(\gamma, a) = 0$$
 for all $a \notin B_R(0)$ or $a \notin \Omega$, so $[\gamma] = [0] \in H_1(\Omega')$.

Thus, $\int_{\gamma} f(z) dz = 0$, so the theorem holds for arbitrary Ω .

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then
$$n(\gamma, a) = 0$$
 for all $a \notin B_R(0)$ or $a \notin \Omega$, so $[\gamma] = [0] \in H_1(\Omega')$.

Thus, $\int_{\gamma} f(z) dz = 0$, so the theorem holds for arbitrary Ω .

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z)\,dz=0$$

for every cycle γ which is homologus to zero in Ω .

Theorem

Suppose f(z) is analytic in Ω , a simply connected region. Then

$$\int_{\gamma} f(z) \, dz = 0$$

for every cycle γ in Ω .

A form p dx + q dy is locally exact in Ω if it is exact in a neighborhood of every point of Ω .

A form p dx + q dy is locally exact in Ω if it is exact in a neighborhood of every point of Ω .

Theorem

If p dx + q dy is locally exact in Ω , then

$$\int_{\gamma} p \, dx + q \, dy = 0$$

for every γ homologous to 0 in Ω .

A form p dx + q dy is locally exact in Ω if it is exact in a neighborhood of every point of Ω .

Theorem

If p dx + q dy is locally exact in Ω , then

$$\int_{\gamma} p\,dx + q\,dy = 0$$

for every γ homologous to 0 in Ω .

Proof is in Ahlfors.

A form p dx + q dy is locally exact in Ω if it is exact in a neighborhood of every point of Ω .

Theorem

If p dx + q dy is locally exact in Ω , then

$$\int_{\gamma} p \, dx + q \, dy = 0$$

for every γ homologous to 0 in Ω .

Proof is in Ahlfors.

This is a theorem that probably belongs more properly to a topology course.

Homology basis

Suppose $\mathbb{C} - \Omega$ has components A_0, \ldots, A_n with $\infty \in A_0$.

Homology basis

Suppose $\mathbb{C} - \Omega$ has components A_0, \ldots, A_n with $\infty \in A_0$.

Then every cycle γ in Ω is homologous to a cycle

$$c_1\gamma_1+\cdots c_n\gamma_n$$

for cycles γ_i which "go around" A_i .

Homology basis

Suppose $\mathbb{C} - \Omega$ has components A_0, \ldots, A_n with $\infty \in A_0$.

Then every cycle γ in Ω is homologous to a cycle

$$c_1\gamma_1+\cdots c_n\gamma_n$$

for cycles γ_i which "go around" A_i . The collection of γ_i are a **homology basis** for Ω .

Periods

If
$$[\gamma] = [c_1\gamma_1 + \cdots c_n\gamma_n]$$
, then

$$\int_{\gamma} f \, dz = \sum_{j} c_{j} \int_{\gamma_{i}} f \, dz$$

so every integral is a sum of $\int_{\gamma_i} f \, dz$ (the "periods") with integral coefficients.

Compute some periods

