CALCULUS 1 – FINAL EXAMINATION

Semester 2, 2021-22 — Thursday 23 June 2022 — Total duration: 85 minutes

Semester 2, 2021-22	Thursday 23 June 2022	2 Total duration, 65 minutes	
Student's name:		Student ID:	
Chair of Mathematics Department	Lecturers	Proctor	

INSTRUCTIONS: Each student is allowed one double-sided sheet of reference material (size A4 or similar) marked with their name and ID. Calculators are allowed in Part 2 only, *not* in Part 1. All other documents and electronic devices are forbidden. Please choose the correct answers on the answer sheet at the end of Part 1.

PART 1: MULTIPLE CHOICE QUESTIONS - 45 Minutes - 60 points

- 1. The absolute maximum value of the function $f(x) = -12x 3x^2 + 2x^3 + 3$ on the interval [-2, 3] is
 - (A) -1

(B) 9

(C) 10

(D) 5

2. Let $f(x) = (\sin x)^x$. Find f'(x).

Prof. Pham Huu Anh Ngoc

(A) $(x\cot x + \ln(\sin x))(\sin x)^x$

(C) $(\sin x)^x$

(B) $x(\sin x)^{x-1}$

- (D) $(\cos x)^x$
- 3. Suppose that f(0) = 0 and $f'(x) \ge 3$ for all values of x. How small can f(3) possibly be?
 - (A) -12
- (B) 9

(C) 7

- (D) 5
- 4. Let $f(x) = \lfloor x \rfloor$ be the greatest integer that is not greater than x. Find $f'\left(\frac{5}{2}\right)$.
 - (A) Does not exist
- (B) $\frac{5}{2}$

(C) 1

(D) 0

- 5. Evaluate $\lim_{x \to \infty} \frac{\ln(\sqrt{x})}{e^x}$
 - (A) Does not exist
- (B) e^2

(C) -1

- (D) 0
- 6. A particle moves in a straight line and its velocity is given by $v(t) = 2t^2 + t 3$ and its initial position is s(0) = 2. Find its position function s(t).

(A)
$$s(t) = \frac{2t^3}{3} + \frac{t^2}{2} - 3t + 2$$

(C)
$$s(t) = t^3 + 2t + 2$$

(D)
$$s(t) = 2t + 3$$

(B)
$$s(t) = \frac{2t^2}{3} + 3t + 2$$

- 7. Find the length of the arc $y = \frac{2}{3}x^{\frac{3}{2}}$ between x = 0 and x = 1.
 - (A) $\frac{2}{3}$

- (B) $\frac{2}{3}(2\sqrt{2}-1)$
- (C) 1

(D) None of them

- 8. Evaluate $\lim_{x\to 0} (1+x^2)^{\frac{1}{x}}$
 - (A) \sqrt{e}

(B) ∞

(C) e

- (D) 1
- 9. The area of the region enclosed by the curve $y = 5x 2x^2$ and the line y = x is
 - (A) None of them
- (B) $\frac{8}{3}$

- (C) $-\frac{1}{6}$
- (D) $\frac{32}{3}$

- 10. The value of $\int_0^1 \frac{1}{x^2 + 4x + 3} dx$ is
 - (A) None of them
- (B) $\ln \frac{3}{2}$
- (C) $\frac{1}{2} \ln \frac{3}{2}$
- (D) $\ln \frac{\sqrt{3}}{2}$

- 11. The value of limit $\lim_{x\to 0} \frac{\int_{0}^{x} \sqrt[3]{t^2} dt}{x^{5/3}}$ is
 - (A) $\frac{1}{3}$

- (C) $-\frac{2}{3}$
- (D) $\frac{3}{5}$

- 12. Given $F(x) = \int_0^{x^2} \sqrt{t + \cos(\pi t)} dt$, the value of F'(1) is
 - (A) $\sqrt{1+\pi}$
- (B) $2\sqrt{\pi}$
- (C) 0

(D) $2\sqrt{\pi-1}$

- 13. The value of $\int_0^\infty \frac{x^2}{\sqrt{1+x^3}} dx$ is
 - (A) $\frac{1}{\sqrt{3}}$

(C) 0

- (D) divergent
- 14. If f(1) = 5 and $\int_0^1 x f'(x) dx = 1$, then the value of $\int_0^1 f(x) dx$ is
 - (A) 3

(B) 4

(C) 5

- (D) None of them
- 15. The region R enclosed by the curves $y = 2 + x^2$, y = x, x = 0 and x = 1 is rotated about the x-axis. Find the volume of the resulting solid

(A)
$$\frac{\pi}{16}$$

(A)
$$\frac{\pi}{16}$$
 (B) $\frac{26\pi}{5}$

(C)
$$\frac{\pi}{3}$$

(D)
$$2\pi$$

- 16. The value of $\int_0^{\pi/2} \cos^3 x \, dx$ is

(B) 0

(C) $\frac{1}{2}$

- (D) $\frac{2}{3}$
- 17. On which interval the function $f(x) = \frac{x^2}{x^2 + 3}$ is strictly increasing?
 - $(A) (0,+\infty)$
- (B) $(-\infty,0)$ (C) [-1,1]
- (D) None of them
- 18. Which of the following integrals has the Riemann sum by dividing the interval [1,2] into n equal subintervals with the right hand endpoints

$$\frac{1}{n}\sum_{i=1}^{n}e^{1+\frac{i}{n}}.$$
(A) $\int_{0}^{1}e^{x}dx$ (B) $\int_{0}^{1}e^{1+x}dx$ (C) $\int_{1}^{2}e^{1+x}dx$ (D) $\int_{1}^{2}e^{x}dx$

(B)
$$\int_{0}^{1} e^{1+x} dx$$

(C)
$$\int_{1}^{2} e^{1+x} dx$$

- 19. Consider the equation $x^4 + 4x + c = 0$ with c < 3. Then the equation
 - (A) has 2 real roots
- (B) has only one real (C) has no real root root
- (D) None of them

20. In the partial fraction decomposition

$$\frac{1}{x^2 + 2x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 2},$$

the value of B is

(A)
$$\sqrt{2}$$

(B)
$$-\frac{1}{2}$$
 (C) $\sqrt{3}$

(C)
$$\sqrt{3}$$

ANSWER SHEET OF PART 1

- 1 (A) (B) (C) (D)
- $2 \quad (A) \quad (B) \quad (C) \quad (D)$
- $3 \quad (A) \quad (B) \quad (C) \quad (D)$
- $4 \quad (A) \quad (B) \quad (C) \quad (D)$
- 5 (A) (B) (C) (D)
- 6 (A) (B) (C) (D)
- 7 (A) (B) (C) (D)
- $8 \quad (A) \quad (B) \quad (C) \quad (D)$
- 9 (A) (B) (C) (D)
- $10 \quad (A) \quad (B) \quad (C) \quad (D)$
- (A) (B) (C) (D)
- $12 \quad (A) \quad (B) \quad (C) \quad (D)$
- (A) (B) (C) (D)
- 14 (A) (B) (C) (D)
- 15 $\stackrel{\bigcirc}{(A)}$ $\stackrel{\bigcirc}{(B)}$ $\stackrel{\bigcirc}{(C)}$ $\stackrel{\bigcirc}{(D)}$
- (A) (B) (C) (D)
- 17 (A) (B) (C) (D)
- (A) (B) (C) (D)
- 20 (A) (B) (C) (D)

THE INTERNATIONAL UNIVERSITY(IU) - VIETNAM NATIONAL UNIVERSITY - HCMC

CALCULUS 1 – FINAL EXAMINATION

Semester 2, 2021-22 – Thursday 23 June 2022 – Total duration: 85 minutes

Student's name:		Student ID:		Score
Chair of Mathematics Department	Lecturers	S	Proct	or
Prof. Pham Huu Anh Ngoc				

PART 2: WRITTEN ANSWERS • 40 Minutes • 40 points

Write your answers on this paper. Ask for extra paper if you need more space. Each question carries 10 points. You must explain your answers in detail; no points will be given for the answer alone. You can use a calculator when working on these questions.

1. (10 points) A university campus suffers an outbreak of an infectious disease. The percentage of students infected by the disease after t days can be modelled by the function $p(t) = 5te^{-0.1t}$ for $0 \le t \le 30$. After how many days is the percentage of students infected a maximum?

2.	(10 points) trapezoida	Let $I = \int$ l rule to app	$\int_{0}^{1} e^{-x^2} dx$.	Divide the e value of <i>I</i> .	interval	[0,1] into	4 equal	subintervals	and use the	2

3.	(10 points) Use equation $x^2 = 2$)	the Newton's :) correct to six d	method to find ecimal places, s	an approximation x_1	te value of $\sqrt{2}$ = 1.	2 (i.e., solutio	on of the

- 4. (10 points) Let R be the bounded region enclosed by the curves $y = 12 x^2$, y = x, and x = 0.
 - (a) Find the area of the region R,
 - (b) Find the volume of the solid generated by revolving the region R about the x-axis.