

Aula 13: Comitês

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos a serem abordados

- Comitês
 - Ensembles
- Combinação de preditores
 - Sequencial
 - o Paralela
 - Hierárquica
- Agrupamentos

Comitês para tarefas preditivas

- Procuram melhorar acurácia preditiva combinando predições de múltiplos estimadores
 - Classificação
 - Constroem conjunto de classificadores a partir de dados de treinamento
 - Classificadores base
 - Classe do novo exemplo é definida pela agregação da predição dos múltiplos classificadores base
 - Também podem ser usados em tarefas de regressão

Comitês para tarefas preditivas

- Principais abordagens de combinação
 - Paralela
 - Sequencial
 - o Híbrida

Combinação paralela

Combinação sequencial (em cascata, pipeline)

Conjunto de dados

Combinação híbrida (hierárquica)

Stacking

- Combinação hierárquica
- Induz T + 1 modelos preditivos
- Um meta-modelo preditivo combina predições de T modelos base
 - o Meta-modelo (meta-aprendiz): induzido por um algoritmo de AM
 - Frequentemente regressão logística
 - Aprende a fazer a combinação
 - o Modelo base : induzido por um ou mais algoritmos de AM
 - Homogêneos
 - Heterógenos

Stacking

Bagging (Bootstrap Aggregating)

- Combinação paralela
- Induz T classificadores
 - o Cada classificador é induzido por uma amostra diferente do conjunto de treinamento
 - Mesmo tamanho do conjunto original
 - Amostra definida usando bootstrap
- Classe definida por votação
- Tende a reduzir variância associada com os classificadores base
 - Reduzindo overfitting
 - o Menos sensível a overfitting quando dados têm ruído
- Indicado quando o algoritmo de AM usado para gerar os classificadores (regressores) base é instável

Bagging

• Seja um conjunto de dados de treinamento formado por 10 exemplos: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}\}$

Amostra: x₈, x₆, x₃, x₅, x₃, x₁₀ Amostra 1

Amostra: x₃, x₇, x₁, x₅, x₅, x₁ Amostra 2

...

Amostra: x_6 , x_2 , x_4 , x_9 , x_6 , x_4 Amostra T

Bagging

Amostra: x₈, x₆, x₃, x₅, x₃, x₁₀

Amostra: x₃, x₇, x₁, x₅, x₅, x₁

.

Amostra: x₆, x₂, x₄, x₉, x₆, x₄

Boosting

- Combinação sequencial
- Induz T modelos preditivos
 - Classificadores base
- Família de algoritmos
 - AdaBoost é um dos mais conhecidos
 - Classificador base é uma árvore de decisão Stump
 - Um nó interno e duas folhas (algoritmo fraco)

AdaBoost

- A cada iteração induz um classificador base
 - Pondera cada exemplo do conjunto de dados de treinamento pelo desempenho do classificador base quando aplicado a ele
 - Quanto mais difícil de ser aprendido, maior o peso associado ao exemplo (e maior a chance de ser selecionado na próxima iteração)
 - E vice-versa
 - Classe definida por votação ponderada (menor o erro, maior o peso)
 - Indicado quando algoritmo que gera modelo base é fraco
 - Classificador induzido tem desempenho pouco melhor que o de classificadores que classificam exemplos de forma aleatória
 - Classificador base (classificador fraco) e o classificador final (classificador forte)

Boosting

• Seja um conjunto de dados treinamento formado por 5 exemplos: $\{x_1, x_2, x_3, x_4, x_5\}$

Exemplos	x ₁	\mathbf{x}_2	\mathbf{x}_3	X ₄	X ₅
Pesos atuais	0,20	0,20	0,20	0,20	0,20
Classificação	Correta	Incorreta	Correta	Correta	Incorreta
Novos pesos	0,10	0,35	0,10	0,10	0,35

Exemplos	x ₁	X_2	X_3	X ₄	X ₅
Pesos atuais	0,10	0,35	0,10	0,10	0,35
Classificação	Correta	Incorreta	Correta	Incorreta	Correta
Novos pesos	0,00	0,60	0,00	0,25	0,15

USP

Algoritmos para comitês de árvores de decisão

- Combinam a predição de várias árvores de decisão (ADs), usando:
 - Algoritmos baseados em Bagging
 - Random forests (1995)
 - Combina as árvores no final do processo de treinamento
 - Algoritmos baseados em Boosting
 - Extreme gradient boosting (2014)
 - Começa a combinar as árvores no início do processo de treinamento
 - LightGBM (2017)
 - CatBoost (2017)

Algoritmo random forests (RFs)

- Combina T ADs, mas pode combinar modelos gerados por qualquer algoritmo de AM
 - o Baseada em Bagging
 - Cada árvore é treinada com uma amostra do conjunto de treinamento
 - o Cada árvore é induzida usando um subconjunto aleatório dos atributos preditivos
 - Usado na escolha do atributo preditivo para cada nó
 - Classificação ocorre por votação
 - Hiperparâmetros definem número de ADs e número de atributos preditivos para cada AD

Algoritmo random forests (RFs)

Treinamento

Para i = 1 até um número T pré-definido de árvores:

Extrair por bootstrap uma amostra dos dados de treinamento

Selecionar aleatoriamente m dos M atributos preditivos

Enquanto um critério de parada não for atingido (número de objetos no nó)

Aplicar um algoritmo de indução de árvore de decisão a amostra para os m atributos

Resultado é um comitê de ADs

Teste

Uma predição para um novo objeto retorna: Média das saídas, para regressão Classe mais votada, para classificação

Algoritmo random forests (RFs)

Conjunto de dados de treinamento

M atributos

Cria amostras do conjunto de treinamento usando bootstrap

Para cada uma das amostras seleciona m dos M atributos originais, m < M

> Se m = M, é o mesmo que Bagging

Constrói uma árvore de decisão para cada amostra e cada subconjunto m

Constrói uma árvore de decisão para cada amostra e cada subconjunto m

Retorna a classe mais votada

Extreme Gradient Boosting

- Combina árvores induzidas por um algoritmo de AM, geralmente pelo algoritmo CART
- Treinamento aditivo
 - o Induz uma árvore
 - Inclui ela no comitê
 - Induz próxima árvore

O ...

- Pondera a resposta de cada árvore para reduzir complexidade do modelo final
 - De acordo com a acurácia preditiva da árvore

Conclusão

- Combinação de estimadores em geral aumenta desempenho preditivo
 - F reduz variância
 - o Desempenho mais estável (menor desvio padrão dos desempenhos)
- As vezes chamado de meta-aprendizado
- Regressão
 - o Combinação em geral usa média simples ou ponderada

Fim do módulo

