



## **Extracting Features and Classifying Anomalies**

Using Computer Vision and Machine Learning

Paul Huxel, PhD

Senior Application Engineer MathWorks



## Fluorescence Guided Surgery

## **Endoscopic Imaging System**

**White-Light** 



**Near-Infrared** 



## University College Dublin Centre for Precision Surgery

Goal: Use fluorescence time histories to assess tissue health



## **Extracting Features using Computer Vision**

Agenda and Workflow (Part 1)

White-Light (tracking) Near-Infrared (registered)



# Extracting Features using Computer Vision Agenda and Workflow (Part 1)

- 1) Detect and track feature points in a video
- 2) Compute transformation using tracked points
- 3) Warp video frame to align with initial frame
- 4) Compute mean grid region intensity using 2-D convolution and leveraging GPU Computing





# Extracting Features using Computer Vision Agenda and Workflow (Part 1)

- 1) Detect and track feature points in a video
- 2) Compute transformation using tracked points
- 3) Warp video frame to align with initial frame
- 4) Compute mean grid region intensity using 2-D convolution and leveraging GPU Computing
- 5) Cluster intensity time histories into groups (*unsupervised* machine learning)





## Traditional Programming vs. Machine Learning

## **Traditional Programming**



## Traditional Programming vs. Machine Learning

## **Supervised Learning**



Classifying Anomalies using Machine Learning

Agenda and Workflow (Part 2)

6) Label regions using Image Labeler app

7) Extract features from time histories, such as time to peak & decay values



Classifying Anomalies using Machine Learning

Agenda and Workflow (Part 2)

6) Label regions using Image Labeler app

7) Extract features from time histories, such as time to peak & decay values

8) Use labeled features to train a classifier using Classification Learner app



Classifying Anomalies using Machine Learning

Agenda and Workflow (Part 2)

6) Label regions using Image Labeler app

7) Extract features from time histories, such as time to peak & decay values

8) Use labeled features to train a classifier using Classification Learner app

9) Test the classifier using new patient videos to assess its robustness



## We provide a broad array of deployment options



## Get Started with Free, Online, Self-Paced "Onramps"

https://matlabacademy.mathworks.com/#getting-started



#### MATLAB Onramp

14 modules | 2 hours | Languages

Get started quickly with the basics of MATLAB.



#### Image Processing Onramp

6 modules 2 hours Languages

Learn the basics of practical image processing techniques in MATLAB.



#### Computer Vision Onramp

6 modules | 2 hours | Languages

Learn the basics of computer vision to design an object detector and tracker.



#### Machine Learning Onramp

6 modules | 2 hours | Languages

Learn the basics of practical machine learning methods for classification problems.



#### **Deep Learning Onramp**

5 modules | 2 hours | Languages

Get started quickly using deep learning methods to perform image recognition.



#### **Statistics Onramp**

6 modules | 1.5 hours | Languages

Get started using statistical methods for analysis in MATLAB.



#### **Curve Fitting Onramp**

6 modules | 1.5 hours | Languages

Learn the basics of curve fitting using the Curve Fitter app.



#### Signal Processing Onramp

7 modules | 1.5 hours | Languages

An interactive introduction to signal processing methods for spectral analysis.



#### **Optimization Onramp**

5 modules | 1 hour | Languages

Learn the basics of solving optimization problems in MATLAB using the problem-based approach.



#### Simscape Stateflow

Including: Simulink

System

Composer



#### **App Building Onramp**

4 modules | 1 hour | Languages

Learn effective ways to develop applications in MATLAB using App Designer.

### Advance Your Skills with MATLAB and Simulink Courses

https://www.mathworks.com/learn/training.html



AI, Data Science, and Statistics



Programming and App Development



Image Processing and Computer Vision



Signal Processing and Communications



Modeling and Simulation



Control and Algorithm Design



**Physical Modeling** 



HDL Code Generation



C Code Generation



## Achieve Results Faster with MathWorks Consulting Services



#### **Transparent Approach**

Your team will have full access to all our work throughout your project



#### **Create Customized Plans**

Achieve your business goals faster through a customized project plan



#### **Return on Investment**

Reduce development time and cost while improving quality and team collaboration via accelerated learning



**Learn more at** 

mathworks.com