System Windows 11 x64, Środowisko PyCharm

# **MOWNiT – Sprawozdanie 4b**

# Aproksymacja średniokwadratowa wielomianami trygonometrycznymi

## Opis doświadczenia:

Dla funkcji:

$$f(x) = 30 + x^2 - 30 * \cos(x)$$

 $Dla\ przedziału: [-4\pi, 4\pi]$ 



Wykres 1 Funkcja wejściowa

wyznaczono wartości w n dyskretnych punktach (węzłach).

Następnie w oparciu o te punkty wyznaczono przybliżenie funkcji wykorzystując aproksymację średniokwadratową wielomianami algebraicznymi.

Wykonano eksperymenty numeryczne dla układów funkcji bazowych zawierających różną liczbę funkcji.

Oszacowywano błędy przybliżenia.

Graficznie zilustrowano interesujące przypadki.

Użyto próbkowania przedziału dla p=1000 punktów (wartości funkcji zostały wyliczone w 1000 równoodległych punktach z przedziału  $[-4\pi, 4\pi]$ )

**Błąd maksymalny:**  $\max_{-4\pi \le x \le 4\pi} |f(x) - W(x)|$ , gdzie f-funkcja właściwa, W-funkcja wyjściowa z aproksymacji

Błąd średniokwadratowy:  $\frac{1}{1000}\sqrt{\sum_{-4\pi=x}^{4\pi}(f(x)-W(x))^2}$ , gdzie f-funkcja właściwa, W- funkcja wyjściowa z aproksymacji

Do aproksymacji średniokwadratowej trygonometrycznej zostały użyte wzory:

$$a_{j} = \frac{2}{n} \sum_{i=0}^{n-1} f(x_{i}) \cdot \cos(j \cdot x_{i})$$

$$b_{j} = \frac{2}{n} \sum_{i=0}^{n-1} f(x_{i}) \cdot \sin(j \cdot x_{i})$$

$$F_{m}(x) = \frac{1}{2} \cdot a_{0} + \sum_{i=1}^{m} (a_{j} \cdot \cos(j \cdot x) + b_{j} \cdot \sin(j \cdot x))$$

Wielomianami trygonometrycznymi można aproksymować dowolną funkcję okresową.

Zasady doboru stopnia wielomianu aproksymacyjnego różnią się od tych wykorzystanych w przypadku wielomianów algebraicznych. W przypadku wielomianów trygonometrycznych możemy od razu przyjąć najwyższy dopuszczalny stopień (m) równy podłodze z (n+1)/2.

Dodatkowo w przypadku aproksymacji średniokwadratowej wielomianami trygonometrycznymi musimy przeskalować każdy punkt aby był na przedziale  $-\pi$  do  $\pi$ . Należy podzielić każdy x przez długość przedziału, następnie pomnożyć przez  $2^*$   $\pi$ , a później odjąć  $\pi$  oraz ( $2^*$   $\pi^*$ początek\_przedziału/długość\_przedziału). Po przeskalowaniu wyliczamy nasze  $a_j$  oraz  $b_j$ . Wracając do początkowego przedziału należy wykonać kroki odwrotne do opisanych w poprzednim zdaniu. Kolejnym krokiem, jest ponowne przeskalowanie punktów jednak tym razem do wyjściowych wartości, a następnie na tych punktach wyliczamy funkcję F.

# Przykładowe wykresy dla aproksymacji średniokwadratowej wielomianami algebraicznymi

Poniżej zostały umieszczone wykresy dla: n=10 m=4, n=15 m=5, n=30 m=8, n=30 m=14, n=50 m=24, n=100 m=37



Wykres 2 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 10 węzłów i stopnia wielomianu 4



Wykres 3 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 15 węzłów i stopnia wielomianu 5



Wykres 4 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 30 węzłów i stopnia wielomianu 8



Wykres 5 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 30 węzłów i stopnia wielomianu 14



Wykres 6 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 50 węzłów i stopnia wielomianu 24



Wykres 7 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 100 węzłów i stopnia wielomianu 37

Wykresy 2-7 przedstawiają kolejne wyniki funkcji aproksymujących dla coraz to większych n oraz m. Możemy zaobserwować że przybliżenie jest coraz dokładniejsze dla coraz większej liczby węzłów, natomiast im większy m tym większe odchyły na krańcach przedziału.

### Własność funkcji parzystej

Zauważając że wejściowa funkcja jest parzysta możemy wyzerować wszystkie współczynniki b<sub>j</sub> odpowiedzialne za skalowanie funkcji sinus.

Wykres funkcji zgodnie ze wzorem standardowym dla n=15, m=5:



Wykres 8 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 15 węzłów i stopnia wielomianu 5. Wzór standardowy

### Wyzerowane współczynniki b<sub>i</sub>:



Wykres 9 Wykres aproksymacji średniokwadratowej trygonometrycznej dla 15 węzłów i stopnia wielomianu 5. Wzór bez sinusów

Wykresy funkcji są identyczne.

### Błędy

Błędy obliczeniowe zostały wykonane dla błędu maksymalnego punktów oraz dla błędu sumy kwadratów punktów.

Liczby węzłów jakie zostały wzięte pod uwagę to: 4, 5, 7, 10, 15, 20, 30, 50, 75, 100 oraz m: 2, 3, 5, 10, 14, 20, 24

Tabela 1 Błąd maksymalny

| Błąd maksymalny |             |            |            |            |            |            |            |
|-----------------|-------------|------------|------------|------------|------------|------------|------------|
|                 | m           |            |            |            |            |            |            |
| n               | 2           | 3          | 5          | 10         | 14         | 20         | 24         |
| 5               | 47.2789383  | -          | -          | -          | -          | -          | -          |
| 7               | 39.14883792 | 63.2785908 | -          | -          | -          | -          | -          |
| 10              | 25.86565889 | 36.3622856 | -          | -          | -          | -          | -          |
| 20              | 15.9075832  | 17.2686575 | 27.1094877 | -          | -          | -          | -          |
| 30              | 15.29771768 | 12.5035306 | 17.4752078 | 36.6560851 | 53.200231  | -          | -          |
| 50              | 18.92010276 | 9.3028232  | 10.7471371 | 20.8237769 | 30.2538842 | 44.6559385 | 54.3502926 |
| 80              | 20.89076832 | 10.4354404 | 7.4653619  | 12.60176   | 18.1657227 | 26.9613909 | 32.8625501 |
| 100             | 21.53731769 | 11.3501148 | 6.4765111  | 10.0202935 | 14.2940086 | 21.2400981 | 25.9466779 |

Tabela 2 Błąd średniokwadratowy

| Błąd średniokwadrat |             |            |            |            |            |            |            |
|---------------------|-------------|------------|------------|------------|------------|------------|------------|
|                     | m           |            |            |            |            |            |            |
| n                   | 2           | 3          | 5          | 10         | 14         | 20         | 24         |
| 5                   | 0.842296384 | -          | -          | -          | -          | -          | -          |
| 7                   | 0.74361834  | 0.90633271 | -          | -          | -          | -          | -          |
| 10                  | 0.501334307 | 0.53932792 | -          | -          | -          | -          | -          |
| 20                  | 0.309184982 | 0.26380151 | 0.30985755 | -          | -          | -          | -          |
| 30                  | 0.267672792 | 0.19066558 | 0.20436253 | 0.2819814  | 0.33646206 | -          | -          |
| 50                  | 0.245418842 | 0.14327904 | 0.12677524 | 0.16577283 | 0.19634903 | 0.2365176  | 0.26074793 |
| 80                  | 0.237753183 | 0.1240406  | 0.08784697 | 0.10326515 | 0.1213828  | 0.145729   | 0.16034327 |
| 100                 | 0.23600832  | 0.11930717 | 0.07642748 | 0.08297286 | 0.0968891  | 0.11610454 | 0.12769585 |

W tabelach 1 oraz 2 pauzami zaznaczono pola gdzie m nie spełnia warunków opisanych w opisie doświadczenia.

Po przeanalizowaniu różnych przypadków dla aproksymacji trygonometrycznej (tabele, wykresy) możemy zauważyć, że wzrost liczby węzłów aproksymacji oraz stopnia wielomianu aproksymacyjnego nie powoduje zwiększenia się błędów obliczeniowych. Ze względów wydajności i dokładności obliczeń należy starać się zminimalizować stopień wielomianu aproksymacyjnego.



Wykres aproksymacji średniokwadratowej wielomianami algebraicznymi dla 100 węzłów i n=5
Funkcja reprezentująca najlepsze przybliżenie