Question 1

For each of the following statements, determine whether it is **true or false**. No justification required. $[5 \times 2 \text{ Points}]$

- (a) There exists a surjective function $f: \mathbb{R} \to \mathbb{R}^2$.
- (b) If $(\phi \lor \psi)$ is a tautology, then either ϕ is a tautology or ψ is a tautology.
- (c) Every countable linear ordering is isomorphic to a subordering of the rationals.
- (d) There are injective functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(x) + g(x) = e^{-x^2} \sin x$.
- (e) Every chain in $(\mathcal{P}(\omega), \subseteq)$ is countable.

Solution

- (a) True. Since $|\mathbb{R}^2| = |\mathbb{R}|$.
- (b) False. Consider $(p \vee \neg p)$.
- (c) True. See the solution to HW 11.
- (d) True. See HW 19.
- (e) False. See HW 10.

Question 2

- (a) [2 Points] State the Schröder-Bernstein theorem.
- (b) [2 Points] Show that there is a bijection from [0,1] to (0,2).
- (c) [6 Points] Let \mathcal{I} be the set of all bijections from ω to ω . Show that $|\mathcal{I}| = \mathfrak{c}$.

Solution

- (a) For any two sets A and B, if there exist injections from A to B and from B to A, then there exists a bijection from A to B.
- (b) $x \mapsto x + 1/2$ is an injection from [0,1] to (0,2) and $x \mapsto x/2$ is an injection from (0,2) to [0,1]. By the Schröder Bernstein theorem, there is a bijection from [0,1] to (0,2).
- (c) See Practice midterm (2)(b).

Question 3

Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}$,

$$f(x+y) + f(x)f(y) = f(x) + f(y)$$
 (1)

- (a) [2 Points] Show that $f(x) = 1 2^x$ satisfies Equation (1).
- (b) [5 Points] Suppose f is continuous. Show that either f is identically 1 or $f(x) = 1 a^x$ for some constant a > 0.
- (c) [3 Points] Show that there is a discontinuous f satisfying Equation (1).

Solution

- (a) $f(x+y) + f(x)f(y) = 1 2^{x+y} + (1-2^x)(1-2^y) = 1 2^x 2^y + 1 2^x 2^y + 2^x 2^y = 2 2^x 2^y = (1-2^x) + (1-2^y) = f(x) + f(y).$
- (b) Assume f is continuous. Put g(x) = 1 f(x). Then g is continuous and g(x+y) = 2 f(x+y) = 2 f(x) f(y) + f(x)f(y) = (1 f(x))(1 f(y)) = g(x)g(y). By HW 17, either g is identically 0 or $g(x) = a^x$ for some a > 0. Hence f is either identically 1 or $f(x) = 1 a^x$ for some a > 0.
- (c) Let $h: \mathbb{R} \to \mathbb{R}$ be any discontinuous additive function. Define $f(x) = 1 e^{h(x)}$. It is easy to check that f satisfies Equation (1). Note that 1 f(x) > 0 for every x (as $e^y > 0$ for every y). It follows that f cannot be continuous otherwise $h(x) = \ln(1 f(x))$ (being a composition of two continuous functions) would also be continuous.

Question 4

- (a) [2 Points] State the Axiom of choice.
- (b) [2 Points] State Zorn's lemma.
- (c) [6 Points] Let (P, \preceq) be a partial ordering. Let $\mathcal{F} = \{C \subseteq P : C \text{ is a chain in } (P, \preceq)\}$. Show that (\mathcal{F}, \subseteq) has a maximal member.

Solution

- (a) For every family \mathcal{F} of nonempty sets, there exists a function $h: \mathcal{F} \to \bigcup \mathcal{F}$ such that for every $A \in \mathcal{F}$, $h(A) \in A$.
- (b) Let (P, \preceq) be a partial ordering such that every chain in (P, \preceq) has an upper bound in P. Then (P, \preceq) has a maximal element.
- (c) We will show that every chain in (\mathcal{F}, \subseteq) has an upper bound in \mathcal{F} . Zorn's lemma will then imply that (\mathcal{F}, \subseteq) has a maximal member.
 - Let \mathcal{C} be a chain in (\mathcal{F}, \subseteq) . Put $W = \bigcup \mathcal{C}$. We claim that $W \in \mathcal{F}$ or equivalently, W is a chain in (P, \preceq) . Clearly, $W \subseteq P$. Suppose $x, y \in W$. Choose $A, B \in \mathcal{C}$ such that $x \in A$ and $y \in B$. Since \mathcal{C} is a \subseteq -chain, either $A \subseteq B$ or $B \subseteq A$. WLOG assume $A \subseteq B$. Then both $x, y \in B$. As $B \in \mathcal{F}$, B is a chain in (P, \preceq) . So either $x \preceq y$ or $y \preceq x$. It follows that any two members in W are \preceq -comparable. Hence $W \in \mathcal{F}$. It is clear that for every $A \in \mathcal{C}$, $A \subseteq W$. Hence W is an upper bound for \mathcal{C} in (\mathcal{F}, \subseteq) .

Bonus problem

Show that \mathbb{R}^3 can be partitioned into circles of unit radius. [5 Points]

Solution

Let \mathcal{C} be the family of all circles of unit radius in \mathbb{R}^3 . Let $\langle x_{\alpha} : \alpha < \mathfrak{c} \rangle$ be an injective sequence whose range is \mathbb{R}^3 . Using transfinite recursion, construct $\langle \mathcal{C}_{\alpha} : \alpha < \mathfrak{c} \rangle$ such that the following hold.

- (1) Each $\mathcal{C}_{\alpha} \subseteq \mathcal{C}$ consists of pairwise disjoint circles of unit radius and $\mathcal{C}_0 = \emptyset$.
- (2) If $\alpha < \beta < \mathfrak{c}$, then $\mathcal{C}_{\alpha} \subseteq \mathcal{C}_{\beta}$.
- (3) If $\alpha < \mathfrak{c}$ is limit, then $\mathcal{C}_{\alpha} = \bigcup \{\mathcal{C}_{\beta} : \beta < \alpha\}$.
- (4) For every $\alpha < \mathfrak{c}$, $|\mathcal{C}_{\alpha}| \leq \max(\{\omega, |\alpha|\})$.
- (5) For every $\alpha < \mathfrak{c}, x_{\alpha} \in \bigcup \mathcal{C}_{\alpha+1}$.

At limit stages $\alpha < \mathfrak{c}$, we simply define \mathcal{C}_{α} by Clause (3) above. Having constructed \mathcal{C}_{α} , we define $\mathcal{C}_{\alpha+1}$ as follows. If $x_{\alpha} \in \bigcup \mathcal{C}_{\alpha}$, then we put $\mathcal{C}_{\alpha+1} = \mathcal{C}_{\alpha}$. Now assume that x_{α} does not lie on any circle in \mathcal{C}_{α} .

Claim: There is a circle C of radius 1 such that C passes through x_{α} and for every circle $T \in \mathcal{C}_{\alpha}$, $T \cap C = \emptyset$.

Proof of Claim: Let \mathcal{P}_{α} be the family of all planes P such that some circle in \mathcal{C}_{α} lies completely within P. Then $|\mathcal{P}_{\alpha}| \leq |\mathcal{C}_{\alpha}| \leq \max(\{|\alpha|, \omega\}) < \mathfrak{c}$. Choose a plane P such that $x_{\alpha} \in P$ and $P \notin \mathcal{P}_{\alpha}$. This can be done because there are continuum many planes passing through x_{α} . Let B be the set of all points in P which also lie on some circle in \mathcal{C}_{α} . Since each circle in \mathcal{C}_{α} meets P at ≤ 2 points, we get $|B| < \mathfrak{c}$. Note that $x_{\alpha} \notin B$ as $x_{\alpha} \notin \bigcup \mathcal{C}_{\alpha}$.

Consider the family \mathcal{E} of all circles of unit radius inside the plane P that pass through x_{α} . Observe that $|\mathcal{E}| = \mathfrak{c}$. Define a function H with domain B by $H(y) = \{S \in \mathcal{E} : y \in S\}$. Note that for every $y \in B$, H(y) contains at most two circles from \mathcal{E} . Put $\mathcal{R} = \bigcup \operatorname{range}(H)$. Then $|\mathcal{R}| \leq \max(\{2 \cdot |B|, \omega\}) < \mathfrak{c}$. Hence we can choose $C \in \mathcal{E} \setminus \mathcal{R}$.

Let C be as in the claim. Define $\mathcal{C}_{\alpha+1} = \mathcal{C}_{\alpha} \cup \{C\}$ and note that $x_{\alpha} \in \bigcup \mathcal{C}_{\alpha+1}$. This completes the construction. Let $\mathcal{F} = \bigcup \{\mathcal{C}_{\alpha} : \alpha < \mathfrak{c}\}$. By Clause (1), it is clear that \mathcal{F} is a disjoint family of circles. Also, by Clause (5), $\bigcup \mathcal{F} = \mathbb{R}^3$. Hence \mathcal{F} is a partition of \mathbb{R}^3 into circles of unit radius.