NYC_schools_perceptions

Bena

2023-05-19

Setting up

```
library(tidyverse)
## - Attaching packages -
                                                             - tidyverse 1.3.2 --
## √ ggplot2 3.4.0
                   √ purrr
                                1.0.1
## √ tibble 3.1.8
                      √ dplyr
                                1.1.0
## √ tidyr 1.3.0
                      ✓ stringr 1.5.0
## √ readr
            2.1.3

√ forcats 1.0.0

                                                        - tidyverse_conflicts() —
## — Conflicts —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
```

Import files

The data was downloaded from data.world & NYC education websites using the links below: https://data.world/dataquest/nyc-schools-data/workspace/file?filename=combined.csv (https://data.world/dataquest/nyc-schools-data/workspace/file?filename=combined.csv) & https://data.cityofnewyork.us/Education/2011-NYC-School-Survey/mnz3-dyi8 (https://data.cityofnewyork.us/Education/2011-NYC-School-Survey/mnz3-dyi8)

```
myc_hs <- read_csv("combined.csv")

## Rows: 479 Columns: 30
## — Column specification —
## Delimiter: ","
## chr (3): DBN, school_name, boro
## dbl (27): Num of SAT Test Takers, SAT Critical Reading Avg. Score, SAT Math ...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.</pre>
```

survey_gened <- read_tsv("masterfile11_gened_final.txt")</pre>

```
## Rows: 1646 Columns: 1942
## — Column specification
## Delimiter: "\t"
## chr (5): dbn, bn, schoolname, studentssurveyed, schooltype
## dbl (1904): d75, highschool, rr_s, rr_t, rr_p, N_s, N_t, N_p, nr_s, nr_t, nr...
## lgl (33): p_q1, p_q3d, p_q9, p_q10, p_q12aa, p_q12ab, p_q12ac, p_q12ad, p_...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
survey_d75 <- read_tsv("masterfile11_d75_final.txt")</pre>
```

```
## Rows: 56 Columns: 1773
## — Column specification —
## Delimiter: "\t"
## chr (5): dbn, bn, schoolname, studentssurveyed, schooltype
## dbl (1739): d75, highschool, rr_s, rr_t, rr_p, N_s, N_t, N_p, nr_s, nr_t, nr...
## lgl (29): p_q5, p_q9, p_q13a, p_q13b, p_q13c, p_q13d, p_q14a, p_q14b, p_q1...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Get overview of data

```
head(nyc_hs)
```

```
## # A tibble: 6 × 30
     DBN
             schoo...¹ Num o...² SAT C...³ SAT M...⁴ SAT W...⁵ avg s...⁶ AP Te...<sup>7</sup> Total...<sup>8</sup> Numbe...<sup>9</sup>
                        <dbl>
                                 <dbl>
                                                   <dbl>
                                                                     <dbl>
                                                                              <dbl>
##
     <chr> <chr>
                                          <dbl>
                                                            <dbl>
                                                                                       <dbl>
## 1 01M292 HENRY ...
                            29
                                    355
                                             404
                                                      363
                                                             1122
                                                                       2.5
                                                                                  NA
                                                                                           NA
## 2 01M448 UNIVER...
                           91
                                    383
                                             423
                                                             1172
                                                                      39
                                                                                  49
                                                                                           10
                                                      366
## 3 01M450 EAST S...
                            70
                                    377
                                                      370
                                                             1149
                                                                      19
                                                                                           NA
## 4 01M458 FORSYT...
                            7
                                   414
                                            401
                                                      359
                                                             1174
                                                                       2.5
                                                                                  NA
                                                                                           NA
                                    390
## 5 01M509 MARTA ...
                            44
                                             433
                                                      384
                                                             1207
                                                                       2.5
                                                                                  NA
                                                                                           NA
## 6 01M515 LOWER ...
                                                             1205
                           112
                                    332
                                             557
                                                      316
                                                                       24
                                                                                  26
                                                                                           24
## # ... with 20 more variables: exams_per_student <dbl>, high_score_percent <dbl>,
## #
       avg_class_size <dbl>, frl_percent <dbl>, total_enrollment <dbl>,
       ell_percent <dbl>, sped_percent <dbl>, selfcontained_num <dbl>,
## #
## #
       asian_per <dbl>, black_per <dbl>, hispanic_per <dbl>, white_per <dbl>,
## #
       male_per <dbl>, female_per <dbl>, `Total Cohort` <dbl>,
## #
       grads_percent <dbl>, dropout_percent <dbl>, boro <chr>, lat <dbl>,
## #
       long <dbl>, and abbreviated variable names ¹school name, ...
```

```
head(survey_gened)
```

```
## # A tibble: 6 × 1,942
                                  d75 stude...¹ highs...² schoo...³ rr_s rr_t rr_p
                   schoolname
##
     dbn
            bn
##
     <chr>
            <chr> <chr>
                                <dbl> <chr>>
                                                 <dbl> <chr>>
                                                                <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 01M015 M015 P.S. 015 R...
                                    0 No
                                                     0 Elemen...
                                                                   NA
                                                                          88
                                                                                 60
                                                                                       NA
## 2 01M019 M019
                  P.S. 019 A...
                                                     0 Elemen...
                                                                         100
                                    0 No
                                                                   NA
                                                                                60
                                                                                       NA
                                                                                73
## 3 01M020 M020 P.S. 020 A...
                                                                                       NA
                                    0 No
                                                      0 Elemen...
                                                                   NA
                                                                          88
## 4 01M034 M034
                  P.S. 034 F...
                                    0 Yes
                                                     0 Elemen...
                                                                   89
                                                                          73
                                                                                50
                                                                                      145
## 5 01M063 M063
                  P.S. 063 W...
                                                     0 Elemen...
                                                                   NA
                                                                         100
                                                                                 60
                                                                                       NA
                                    9 No
## 6 01M064 M064 P.S. 064 R...
                                    0 No
                                                     0 Elemen...
                                                                   NA
                                                                          94
                                                                                 61
                                                                                       NA
## # ... with 1,931 more variables: N_t <dbl>, N_p <dbl>, nr_s <dbl>, nr_t <dbl>,
## #
       nr_p <dbl>, saf_p_11 <dbl>, com_p_11 <dbl>, eng_p_11 <dbl>, aca_p_11 <dbl>,
       saf_t_11 <dbl>, com_t_11 <dbl>, eng_t_11 <dbl>, aca_t_11 <dbl>,
## #
       saf_s_11 <dbl>, com_s_11 <dbl>, eng_s_11 <dbl>, aca_s_11 <dbl>,
## #
## #
       saf_tot_11 <dbl>, com_tot_11 <dbl>, eng_tot_11 <dbl>, aca_tot_11 <dbl>,
       p_q2h < db1>, p_q7a < db1>, p_q7b < db1>, p_q7c < db1>, p_q7d < db1>,
## #
## #
       p_q8a <dbl>, p_q8b <dbl>, p_q8c <dbl>, p_q8d <dbl>, p_q8e <dbl>, ...
```

head(survey_d75)

```
## # A tibble: 6 × 1,773
##
                                d75 studen...¹ highs...² schoo...³ rr_s rr_t rr_p
     dbn
            bn
                   schoolname
                                                                                    Ns
     <chr>>
            <chr> <chr>
                              <dbl> <chr>>
                                                <dbl> <chr>>
                                                               <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 75K004 K004
                  P.S. K004
                                  1 Yes
                                                    0 Distri...
                                                                               72
                                                                  38
                                                                         90
## 2 75K036 K036 P.S. 36
                                  1 Yes
                                                   NA Distri...
                                                                  70
                                                                         69
                                                                               44
                                                                                     97
                                                                        97
## 3 75K053 K053
                  P.S. K053
                                                   NA Distri…
                                                                  94
                                                                               53
                                                                                    131
                                  1 Yes
## 4 75K077 K077 P.S. K077
                                  1 Yes
                                                   NA Distri…
                                                                  95
                                                                         65
                                                                               55
                                                                                     70
## 5 75K140 K140 P.S. K140
                                  1 Yes
                                                    0 Distri...
                                                                  77
                                                                         70
                                                                               42
                                                                                     69
## 6 75K141 K141 P.S. K141
                                                   NA Distri...
                                                                  73
                                                                         55
                                                                               29
                                  1 Yes
                                                                                     53
## # ... with 1,762 more variables: N_t <dbl>, N_p <dbl>, nr_s <dbl>, nr_t <dbl>,
       nr_p <dbl>, saf_p_11 <dbl>, com_p_11 <dbl>, eng_p_11 <dbl>, aca_p_11 <dbl>,
## #
## #
       saf_t_11 <dbl>, com_t_11 <dbl>, eng_t_11 <dbl>, aca_t_11 <dbl>,
       saf_s_11 <dbl>, com_s_11 <dbl>, eng_s_11 <dbl>, aca_s_11 <dbl>,
## #
       saf_tot_11 <dbl>, com_tot_11 <dbl>, eng_tot_11 <dbl>, aca_tot_11 <dbl>,
## #
## #
       p_q1c <dbl>, p_q10a <dbl>, p_q10b <dbl>, p_q10c <dbl>, p_q10d <dbl>,
## #
       p_q10e <dbl>, p_q10f <dbl>, p_q11a <dbl>, p_q11b <dbl>, p_q11c <dbl>, ...
```

```
dim(nyc_hs)
```

```
## [1] 479 30
```

NYC High School data has 479 rows & 30 columns

```
dim(survey_gened)
## [1] 1646 1942
```

general education survey data has 1646 rows & 1942 columns

```
dim(survey_d75)

## [1] 56 1773
```

district75 survey data has 56 rows & 1773 columns

A closer look at the data

What are the school categories?

View(survey_d75_select)

```
schooltype_gened <- survey_gened %>%
  pull(schooltype) %>%
  unique
print(schooltype_gened)
## [1] "Elementary School"
                                            "Elementary / Middle School"
## [3] "Middle / High School"
                                            "Middle School"
## [5] "High School"
                                            "Elementary / Middle / High School"
## [7] "Early Childhood School"
                                            "YABC"
schooltype_d75 <- survey_d75 %>%
  pull(schooltype) %>%
  unique
print(schooltype_d75)
```

```
## [1] "District 75 Special Education"
```

School type in d75 data is "District 75 Special Education, which may refer to either high schools or elementary schools.

Since nyc_hs only contains data for NYC high schools, we'll filter the school type for schooltype_gen We'll also remove some columns & remain with those that are necessary to do the analysis. The removed columns show responses to each of the survey questions.

```
survey_gened_select <- survey_gened %>%
  filter(schooltype == "High School") %>%
  select(dbn:aca_tot_11)

View(survey_gened_select)

survey_d75_select <- survey_d75 %>%
  select(dbn:aca_tot_11)
```

Remove the bn column since it's contained in dbn variable

```
survey_gened_select <- survey_gened_select %>%
  select(-bn)

survey_d75_select <- survey_d75_select %>%
  select(-bn)
```

Combine the 2 dataframes for surveys

```
survey_combined <- bind_rows(survey_gened_select, survey_d75_select)
View(survey_combined)</pre>
```

Alternatively

```
survey_combined <- survey_gened_select %>%
bind_rows(survey_d75_select)
```

Since we're interested in relationships of survey_combined data with variables in the nyc_hs dataframe, it makes sense to join the survey data to nyc_hs using left_join(). This will retain only observations in the survey dataframe that correspond to observations in nyc_hs. Before joining, rename dbn so it matches DBN in nyc_hs

```
survey_combined <- survey_combined %>%
  rename(DBN = "dbn")

survey_nychs <- nyc_hs %>%
  left_join(survey_combined, by = "DBN")

View(survey_nychs)
```

Establish which correlations may be interesting to explore further

```
correlation_matrix <- survey_nychs %>%
  select(avg_sat_score, saf_p_11:aca_tot_11) %>%
  cor(use = "pairwise.complete.obs")
print(correlation_matrix)
```

```
##
                avg_sat_score
                                saf_p_11 com_p_11 eng_p_11
                                                                 aca_p_11
                1.000000000 0.08913424 -0.1139639 0.0094307 0.008276863
## avg_sat_score
## saf_p_11
                  0.089134237 1.00000000 0.8029932 0.7984741 0.817219807
                 -0.113963937 0.80299315 1.0000000 0.9291268 0.925565838
## com_p_11
                 0.009430700 0.79847408 0.9291268 1.0000000 0.907884041
## eng_p_11
                 0.008276863 0.81721981 0.9255658 0.9078840 1.000000000
## aca_p_11
## saf_t_11
                0.309144422 0.49046519 0.3149366 0.3392305 0.415400554
## com_t_11
                 0.107470334 0.23164622 0.2411942 0.2675333 0.285824766
## eng_t_11
                0.056125707 0.31403333 0.3071861 0.3296697 0.373418577
                0.141157527 0.36423106 0.3470251 0.3585188 0.419085881
## aca_t_11
## saf s 11
                  0.277268115 0.73241477 0.5411576 0.5390565 0.593038790
## com_s_11
                 0.162302236 0.61691582 0.5687691 0.5450478 0.598092320
                 0.170346019 0.64749568 0.5913392 0.6075781 0.622737241
## eng_s_11
## aca_s_11
                 0.292587986 0.69197352 0.6146925 0.6236426 0.679837302
## saf_tot_11
                  0.276041045 0.82764669 0.6105585 0.6209748 0.682848168
                0.089098561 0.64231997 0.6933924 0.6820356 0.711988528
## com_tot_11
                 0.094794066 0.66370163 0.6714581 0.7101096 0.720034872
## eng_tot_11
                  0.173800408 0.70043795 0.7028261 0.7054661 0.789215088
## aca tot 11
##
                 saf_t_11 com_t_11
                                      eng_t_11 aca_t_11 saf_s_11 com_s_11
## avg sat score 0.3091444 0.1074703 0.05612571 0.1411575 0.2772681 0.1623022
## saf_p_11
                0.4904652 0.2316462 0.31403333 0.3642311 0.7324148 0.6169158
## com_p_11
                0.3149366 0.2411942 0.30718612 0.3470251 0.5411576 0.5687691
                0.3392305 0.2675333 0.32966966 0.3585188 0.5390565 0.5450478
## eng_p_11
                0.4154006 0.2858248 0.37341858 0.4190859 0.5930388 0.5980923
## aca_p_11
## saf_t_11
                1.0000000 0.7437526 0.79946285 0.8448628 0.5922487 0.3825288
                0.7437526 1.0000000 0.90329649 0.8960927 0.2527900 0.1683019
## com_t_11
                0.7994629 0.9032965 1.000000000 0.9498147 0.3678941 0.2887301
## eng_t_11
## aca_t_11
                0.8448628 0.8960927 0.94981468 1.0000000 0.4186507 0.3239221
## saf_s_11
                0.5922487 0.2527900 0.36789407 0.4186507 1.0000000 0.8227886
                0.3825288 0.1683019 0.28873011 0.3239221 0.8227886 1.0000000
## com_s_11
                0.4565140 0.2585602 0.35784213 0.3881175 0.8847919 0.8836172
## eng_s_11
                0.4932720 0.2652035 0.35936021 0.4089070 0.8719545 0.8649279
## aca s 11
                0.8435345 0.5074542 0.60846241 0.6660397 0.8908945 0.6907220
## saf_tot_11
                0.7363689 0.7997233 0.80356551 0.8236332 0.6412669 0.6575138
## com_tot_11
## eng_tot_11
                0.7568738 0.7214690 0.83787593 0.8276065 0.7078967 0.6591503
## aca tot 11
                0.7817245 0.6943313 0.78680846 0.8445192 0.7142941 0.6597831
                 eng_s_11 aca_s_11 saf_tot_11 com_tot_11 eng_tot_11 aca_tot_11
##
## avg_sat_score 0.1703460 0.2925880 0.2760410 0.08909856 0.09479407 0.1738004
## saf p 11
                0.6474957 0.6919735 0.8276467 0.64231997 0.66370163 0.7004380
## com_p_11
                0.5913392 0.6146925 0.6105585 0.69339241 0.67145808 0.7028261
## eng_p_11
                0.6075781 0.6236426 0.6209748 0.68203559 0.71010958 0.7054661
## aca_p_11
                0.6227372 0.6798373 0.6828482 0.71198853 0.72003487 0.7892151
## saf t 11
                0.4565140 0.4932720 0.8435345 0.73636889 0.75687379 0.7817245
                0.2585602 0.2652035 0.5074542 0.79972327 0.72146902 0.6943313
## com_t_11
                0.3578421 0.3593602 0.6084624 0.80356551 0.83787593 0.7868085
## eng_t_11
## aca t 11
                0.3881175 0.4089070 0.6660397 0.82363320 0.82760652 0.8445192
## saf_s_11
                0.8847919 0.8719545 0.8908945 0.64126689 0.70789667 0.7142941
## com_s_11
                0.8836172 0.8649279 0.6907220 0.65751381 0.65915031 0.6597831
## eng_s_11
                1.0000000 0.9213798 0.7573247 0.68395614 0.75920793 0.7208915
## aca s 11
                0.9213798 1.0000000 0.7855468 0.69009358 0.73953389 0.7778084
## saf_tot_11
                0.7573247 0.7855468 1.0000000 0.79013553 0.83403143 0.8601577
```

Convert the matrix to tibble so it's easier to work with

```
correlation_tibble <- correlation_matrix %>%
  as_tibble(rownames = "variable")
print(correlation_tibble)
```

```
## # A tibble: 17 × 18
                    avg_sa...¹ saf_p...² com_p...³ eng_p...⁴ aca_p...⁵ saf_t...6 com_t...<sup>7</sup> eng_t...8
##
      variable
##
      <chr>>
                       <dbl>
                               <dbl>
                                        <dbl>
                                                 <dbl>
                                                         <dbl>
                                                                  <dbl>
                                                                          <dbl>
                                                                                   <dbl>
##
   1 avg_sat_sco… 1
                              0.0891 -0.114 0.00943 0.00828
                                                                  0.309
                                                                          0.107 0.0561
  2 saf_p_11
                                        0.803 0.798
                                                                  0.490
##
                     0.0891
                                                       0.817
                                                                         0.232 0.314
                              1
                   -0.114
## 3 com_p_11
                              0.803
                                        1
                                              0.929
                                                       0.926
                                                                  0.315
                                                                          0.241 0.307
  4 eng_p_11
                     0.00943
                              0.798
                                        0.929 1
                                                       0.908
                                                                  0.339
                                                                          0.268 0.330
##
##
  5 aca_p_11
                     0.00828
                              0.817
                                        0.926 0.908
                                                                  0.415
                                                                          0.286 0.373
## 6 saf_t_11
                     0.309
                               0.490
                                        0.315 0.339
                                                       0.415
                                                                          0.744 0.799
                                                                  1
## 7 com_t_11
                     0.107
                              0.232
                                        0.241 0.268
                                                       0.286
                                                                  0.744
                                                                          1
                                                                                  0.903
## 8 eng_t_11
                     0.0561
                              0.314
                                        0.307 0.330
                                                       0.373
                                                                  0.799
                                                                          0.903 1
## 9 aca_t_11
                                        0.347 0.359
                                                       0.419
                                                                          0.896 0.950
                     0.141
                              0.364
                                                                  0.845
## 10 saf_s_11
                     0.277
                              0.732
                                        0.541 0.539
                                                       0.593
                                                                  0.592
                                                                          0.253 0.368
## 11 com_s_11
                     0.162
                              0.617
                                        0.569 0.545
                                                       0.598
                                                                  0.383
                                                                          0.168 0.289
## 12 eng_s_11
                     0.170
                              0.647
                                        0.591 0.608
                                                       0.623
                                                                  0.457
                                                                          0.259 0.358
## 13 aca_s_11
                     0.293
                              0.692
                                        0.615 0.624
                                                       0.680
                                                                  0.493
                                                                          0.265 0.359
## 14 saf tot 11
                     0.276
                              0.828
                                        0.611 0.621
                                                       0.683
                                                                  0.844
                                                                          0.507 0.608
## 15 com_tot_11
                     0.0891
                              0.642
                                        0.693 0.682
                                                       0.712
                                                                  0.736
                                                                          0.800 0.804
## 16 eng_tot_11
                     0.0948
                              0.664
                                        0.671 0.710
                                                       0.720
                                                                  0.757
                                                                          0.721 0.838
## 17 aca_tot_11
                     0.174
                              0.700
                                        0.703 0.705
                                                       0.789
                                                                  0.782
                                                                          0.694 0.787
## # ... with 9 more variables: aca_t_11 <dbl>, saf_s_11 <dbl>, com_s_11 <dbl>,
       eng_s_11 <dbl>, aca_s_11 <dbl>, saf_tot_11 <dbl>, com_tot_11 <dbl>,
## #
       eng_tot_11 <dbl>, aca_tot_11 <dbl>, and abbreviated variable names
## #
       <sup>1</sup>avg sat score, <sup>2</sup>saf p 11, <sup>3</sup>com p 11, <sup>4</sup>eng p 11, <sup>5</sup>aca p 11, <sup>6</sup>saf t 11,
## #
       <sup>7</sup>com_t_11, <sup>8</sup>eng_t_11
## #
```

Select variables of interest moderate to strong relationships have a correlation coefficient, Pearson's r value <0.25 or >-0.25

```
strong_cors <- correlation_tibble %>%
  select(variable, avg_sat_score) %>%
  filter(avg_sat_score > 0.25 | avg_sat_score < -0.25)
print(strong_cors)</pre>
```

```
## # A tibble: 5 × 2
##
     variable
                   avg_sat_score
     <chr>>
                           <dbl>
##
## 1 avg_sat_score
## 2 saf_t_11
                           0.309
## 3 saf_s_11
                           0.277
## 4 aca_s_11
                           0.293
## 5 saf_tot_11
                           0.276
```

Visualize for closer examination

```
ggplot(data = survey_nychs,
    aes(x = saf_t_11, y = avg_sat_score)) +
    geom_point()
```

```
## Warning: Removed 137 rows containing missing values (`geom_point()`).
```


Warning: Removed 139 rows containing missing values (`geom_point()`).


```
ggplot(data = survey_nychs,
    aes(x = aca_s_11, y = avg_sat_score)) +
    geom_point()
```

Warning: Removed 139 rows containing missing values (`geom_point()`).


```
ggplot(data = survey_nychs,
    aes(x = saf_tot_11, y = avg_sat_score)) +
    geom_point()
```

Warning: Removed 137 rows containing missing values (`geom_point()`).

Alternatively, we can iterate using function so we don't have to write 4 different code chunks

```
create_scatter <- function(x, y) {
    ggplot(data = survey_nychs) +
        aes_string(x = x, y = y) +
        geom_point(alpha = 0.3) +
        theme(panel.background = element_rect(fill = "white"))
}
x_var <- strong_cors$variable[2:5]
y_var <- "avg_sat_score"

map2(x_var, y_var, create_scatter)</pre>
```

```
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation ideoms with `aes()`
```

```
## [[1]]
```

```
## Warning: Removed 137 rows containing missing values (`geom_point()`).
```



```
## Warning: Removed 139 rows containing missing values (`geom_point()`).
```



```
## Warning: Removed 139 rows containing missing values (`geom_point()`).
```



```
##
## [[4]]
```

Warning: Removed 137 rows containing missing values (`geom_point()`).

The avg_sat_score has a positive relationship with all 4 variables of interest i.e: "saf_t_11", "saf_s_11", "aca_s_11", "saf_tot_11"

In other words, the sat_score increased the more Safety and Respect score (for teachers) increased. Same case applied to students and all respondent groups. The sat_score increased the more Academic expectations score (for students) increased.

Reshape the data so it's more informative

To make it easier to see responses for all metrics by all groups, we'll reshape the data from wide to long data

```
survey_nychs_long <- survey_nychs %>%
  pivot_longer(
    cols = c(saf_p_11:aca_tot_11),  #stacks the perception columns(survey questions) tog
ether
    names_to = "survey_question",
    values_to = "score"
  )

View(survey_nychs_long)
```

Create 2 new variables from the survey_question column i.e. metric & respondent

Replace the values in metric & respondent columns with more meaningful names

```
survey_nychs_long <- survey_nychs_long %>%
mutate(
   metric = case_when(
      metric == "saf" ~ "safety & respect",
      metric == "com" ~ "communication",
      metric == "eng" ~ "engagement",
      metric == "aca" ~ "academic expectations"
   )
)
```

```
survey_nychs_long <- survey_nychs_long %>%
mutate(
    respondent = case_when(
        respondent == "_p_" ~ "parent",
        respondent == "_t_" ~ "teacher",
        respondent == "_s_" ~ "student",
        respondent == "_to" ~ "total"
    )
)
```

Alternatively, if_else() can be used in place of case_when(). Restore data in original long format then use if_else()

```
survey_nychs_long <- survey_nychs %>%
pivot_longer(
   cols = c(saf_p_11:aca_tot_11),  #stacks the perception columns(survey questions) tog
ether
   names_to = "survey_question",
   values_to = "score"
)
```

Now it's manageable to visualize the perceptions

```
ggplot(data = survey_nychs_long,  #visualizes all responses
    aes(x = metric, y = score, color = respondent)) +
    geom_boxplot()
```

Warning: Removed 1688 rows containing non-finite values (`stat_boxplot()`).


```
survey_nychs_long %>%
filter(respondent != "total") %>%
ggplot(aes(x = metric, y = score, fill = respondent)) +
geom_boxplot()
```

Warning: Removed 1268 rows containing non-finite values (`stat_boxplot()`).

From the visualization created with code above, it was noted that:

- Scores for teachers were more spread out than those for students and parents
- The larger & smaller scores are equally spread out for all metrics across all groups except safety & respect(among parents) and academic expectations (among students)
- For academic expectations(among students), those that are smaller than medium value are close together.
- For safety & respect(among parents), those that are higher than medium value are closer together.

Other codes

[1] NA 0

```
HS <- survey_combined %>% #checking unique entries for highschool column
  pull(highschool) %>%
  unique
print(HS)
```

```
surveyed <- survey_combined %>% #checking unique entries for studentssurveyed variable
pull(studentssurveyed) %>%
unique

print(surveyed)
```

```
## [1] "Yes" "No"
```

Investigate those which were not surveyed

```
not_surveyed <- survey_combined %>%
  filter(studentssurveyed == "No")
View(not_surveyed) #Just 1 obs.
```