

Interakcija čovek računar

(Human-Computer Interaction - HCI)

Elektronski fakultet Niš

Faktor čovek kod HCI-ja - II deo

Čulo vida – percepcija dubine

- Čovekova mogućnost da opaža udaljenost u stvarnom svetu zavisi od većeg broja faktora.
- Osnovni mehanizam osećaja dubine, binokularni stereo vid, nije u potpunosti pouzdan, pa ga nadopunjujemo monokularnim dubinskim komponentama koje ne uključuju stereo vid.
- Na uobičajenim računarskim ekranima, ove monokularne komponente jedina su sredstva za percepciju dubine, budući da se prikaz renderuje na ravnom ekranu.

Čulo vida – percepcija dubine

Trougao i kvadrat su iste visine? Ili je kvadrat dalje od trougla?

Kako dočarati da je trougao u pozadini?

senkom

preklapanjem

Prepoznavanje lica

- Ljudi mogu izvršiti neke tipove segmentacije slike vrlo brzo.
- Obrada slike ljudskog lica unutar scene obavlja se mnogo brže nego ostali tipovi analiza scene.
- Isto tako, neke zadatke koji zahtevaju veliku preciznost možemo izvršiti bez većih problema, na primer određivanje smera tuđeg pogleda...

Vizuelno traženje

- Prilikom pronalaženja nekog objekta u mnoštvu različitih objekata bitno je nekoliko faktora:
 - Pronalaženje zadatog slova u nizu slova linearno zavisi od dužine niza.
 - Međutim, ako se boja slova razlikuje od boje ostatka niza, pronalaženje je moguće u približno konstantnom vremenu.
 - Ostali vizualni efekti "odskakanja" uključuju brzinu kojom pronalazimo lokalnu varijaciju jačine svetla, ili identifikaciju drugačije orjentisanog lika u polju indentično orjentisanih (precizno nišanjenje puškom)

Vizuelno traženje

 Hick je pronašao da je vreme pronalaženja jednog objekta između mnogo sličnih objekata logaritamski zavisno od broja objekata:

$$T = k \log_2(n + 1)$$

- gde je: T vreme pronalaženja objekata, k konstanta koja zavisi od tipa objekata koji se traži i n – broj objekata
- Prema njemu, ovaj zakon se naziva Hickovim zakonom.

Propusna sposobnost

- Koliko će prepoznatih objekata zaista biti procesirano od strane ljudskog mozga, zavisi od propusne sposobnosti čoveka, odnosno njegovog ulaznog vizuelnog kanala.
- Količina informacija koju čovek prima preko svog čula vida je određena propusnom sposobnošću, koja je funkcija tipa upravljačkog zadatka, stepena učešća čoveka u radu sistema, obima prikazanih informacija, dužine izraza u pisanom obliku, sjajnosti, kontrasta, dimenzija simbola, i tako dalje.

Propusna sposobnost

 Propusna sposobnost čoveka je određena izrazom:

$$C = \frac{n \log_2 N}{T}$$

gde su:

- C propusna sposobnost,
- T vreme prikazivanja,
- n broj pravilno prikazanih simbola i
- N– dužina alfavita

Propusna sposobnost

- Propusna sposobnost vizuelnog sistema čoveka pri prepoznavanju predmeta je 50 - 70 bit/s, a slova i brojeva 55 bit/s.
- Pri produženom vremenu prikazivanja informacija, propusna sposobnost čoveka je manja, optimalna brzina prerade informacija je 0,1-5,5 bit/s.

Čulo sluha

- Drugo čulo po značaju prilikom prihvatanja informacija iz spoljašnjeg sveta i ujedno drugi moduo iz skupa ulaznih kanala u kognitivnom modelu je čulo sluha. Ovo čulo detektuje vibracije bubne opne u uhu koje izazivaju zvučni talasi. Te vibracije slušni aparat pretvara u bioelektrične signale koje tumači ljudski mozak.
- Promena pritiska pojačana opnom i srednjim uhom konvertuje se u bioelektrični signal.

Slušni aparat

Čulo sluha

- Opseg vibracija pritiska od 20 Hz do 20 kHz visina zvuka
- Amplituda odgovara glasnoći zvuka
- Bitna je i boja zvuka

Čulo sluha

Fletcher - Munsen psiho-akustične krive

Prosečan čovek je osetljiv na frekvencije od 1

kHz - 6 kHz

Čulo dodira

 Treće čulo po značaju prilikom prihvatanja informacija iz spoljašnjeg sveta i ujedno treći moduo iz skupa ulaznih kanala u kognitivnom modelu je čulo dodira. Kod čula dodira se pritisak, odnosno vibracije (< 5kHz) konvertuju u bioelektrični signal koji se prenosi do mozga na interpretaciju.

Čulo dodira

 Treće čulo po značaju prilikom prihvatanja informacija iz spoljašnjeg sveta i ujedno treći moduo iz skupa ulaznih kanala u kognitivnom modelu je čulo dodira. Kod čula dodira se pritisak, odnosno vibracije (< 5kHz) konvertuju u bioelektrični signal koji se prenosi do mozga na interpretaciju.

Čulo dodira

- Kod čula dodira postoje dve vrste senzora:
 - Taktilni i
 - Haptički.
- Taktilni senzori detektuju vibracije manje od 5kHz i služe za detektovanje materijala/teksture.
- Haptički senzori služe za detektovanje oblika.
- Ipak, i ovaj ulazni kanal nije primarni kanal kada je reč o unosu informacija u računarske sisteme.

Memorija

Dve osnovne vrste memorije kod čoveka su:

Radna (privremena) memorija uključuje i senzorsku

memoriju koju čine:

- Video memorija
- Audio memorija
- Trajna memorija

Senzorska memorija

- Bafer stimulansa koji neprekidno dolaze iz svih čula.
- Baferovanje traje najviše 0,05 sekundi.
- Pažnja pomera neku informaciju u radnu memoriju.

Radna memorija

- Čuva informacije koje su prolazne (međurezultati ili početak rečenice tokom čitanja).
- Baferovanje traje najviše 0,2 sekunde.
- Ograničen (mali) kapacitet (7 +- 2).
- Pristup radnoj memoriji najviše 70 ms.

Trajna memorija

- Naš osnovni resurs čuva sve što znamo.
 - Činjenične informacije,
 - Eksperimentalno znanje,
 - Proceduralna pravila ponašanja.
- Ogromnog, možda beskonačnog, kapaciteta.
- Pristup trajnoj memoriji je reda 100 ms

Trajna memorija

- Postoje dva tipa trajne memorije:
 - epizodna, sekvence događaja i iskustva, rekonstrukcija realnog događaja,
 - semantička, mreža strukturiranih činjenica, koncepata i sposobnosti dobijenih iz epizodne (učimo iz iskustva).

Pravilo 7 ± 2

- Jedno od najpoznatijih otkrića kognitivne psihologije je ono Georga Millera iz 1956. Miller je, proučavajući niz studija, pronašao da ljudi mogu pamtiti negde između 5 i 9 stvari istovremeno. To se pravilo često naziva "sedam plus ili minus dva" pravilo.
- Iznenađujuće je to da se uvek radi o istom broju bez obzira na to kakve se stvari pamte:
 - 6174591765 vs. (617) 459-1765
 - DECIBMGMC vs. DEC IBM GMC
- Često se pravilo "plus ili minus dva" primenjuje na pamćenje brojki i slova. Na primer, teško je upamtiti niz od 25 slova, međutim, ako se taj niz podeli u petoroslovne reči, pamćenje postaje mnogo lakše i jednostavnije.

Pravilo 7 ± 2

- Miller je te jedinice kratkoročnog pamćenja nazvao područjima (engl. chunks). Teže je definisati šta je to područje nego samo promatrati fenomen.
- Ipak, nekako je intuitivno jasno da je postojanje područja povezano sa načinom na koji interpretiramo informacije.
- To je često važno za korisnički interfejs korisniku će lakše biti zapamtiti niz od sedam smislenih operacija nego mnoštvo manjih , međusobno isprepletenih, podoperacija.

Radna vs trajna memorija

- Kratkoročno pamćenje uveliko se razlikuje od dugoročnog pamćenja koje uključuje naše celokupno znanje.
- Učenje je proces u kome prekodiramo informacije iz kratkoročnog u dugoročno pamćenje. U dugoročnom pamćenju one se memorišu povezujući se sa ostalim, već ranije naučenim, činjenicama.
- Sadašnji modeli dugoročnog pamćenja većim se delom temelje na konekcijskim teorijama (engl. connectionist theories).
- Prema tim teorijama, prisećanje stvari je rezultat aktivacija koje dolaze iz bliskih čvorova u mreži pamćenja, a pamćenje i učenje mogu se poboljšati stvaranjem bogatih asocijacija, odnosno povećavajući broj konekcija u dugoročnom pamćenju. To se koristi u korisničkim interfejsima koja, u svrhu lakšeg korišćenja, oponašaju stvarni svet ili neku drugu poznatu aplikaciju.

Centralni procesor

- Moduo centralni procesor u kognitivnom modelu služi za obradu informacija, rešavanje problema, donošenje odluka i iniciranje akcija preko izlaznih kanala. Centralni procesor u sebi sadrži dve celine:
 - moduo za skretanje pažnje i
 - kognitivni procesor.

Pažnja

- Pažnja sprečava information overload u našim glavama,
 - Iz senzorske u radnu memoriju samo interesantne informacije,
 - Iz radne u trajnu memoriju samo rezultati.
- Moduo koji upravlja ovim poslom se zove moduo za skretanje pažnje.
- Postoje dva tipa pažnje:
 - fokusirana, praćenje jednog događaja (dijalog, npr),
 - deljena, praćenje više događaja, (vožnja i dijalog),

Usmeravanje pažnje u korisničkom interfejsu

- Znajući ovu činjenicu, prilikom dizajniranja korisničkog interfejsa, pažnju korisnika treba usmeravati na delove interfejsa koji su u tom trenutku bitni za obavljanje zadatka. Tehnike koje se koriste za to su:
 - Prostorno ili vremensko strukturiranje
 - Boje
 - Alarmi (flashing, audio).

Proces rešavanja problema kod čoveka

- Osnovni zadatak kognitivnog procesora je rešavanje problema.
- Rešavanje problema je proces pronalaženja rešenja nepoznatog zadatka koristeći sve znanje koje imamo pri čemu smo u stanju adaptirati informacije tako da nam koriste i u novoj situaciji.

Proces rešavanja problema kod čoveka

- Ovaj proces rešavanja problema je modeliran različitim teorijama rešavanja problema.
- Ponavljanje rešavanja istog ili sličnih problema dovodi do fenomena sticanja iskustvaveština-znanja koje pomaže da se kod sledećeg rešavanja istog ili sličnog problema, problem reši lakše i za kraće vreme.

Najpoznatije teorije rešavanja problema

- **GESTALT** teorija, 1940-tih, oslanja se na korišćenje već stečenog znanja, odnosno putem pokušaja i grešaka.
- PROBLEM SPACE teorija, 1970. godine, um je information proccessor – ponaša se kao i svaki drugi automat u prostoru stanja.
- Teorija ANALOGIJE, podseća na Gestalt, uspostavlja se veza poznate i nove (nepoznate) oblasti/stanja.

GESTALT teorija

- Rešavanje problema je i produktivno i reproduktivno.
- Produktivno jer se oslanja na pronicljivost (insight) i restukturiranje problema.
- Reproduktivno jer se oslanja na stečeno znanje pri čemu je moguće da se fiksiranjem na poznato propuste važne osobine problema.

PROBLEM SPACE teorija

- Problem space čine:
 - skup stanja problema,
 - operatori prelaza, i
 - inicijalno i ciljno stanje.
- Operatori prelaza se koriste da se stigne u ciljno stanje.
- Ogroman broj stanja forsira heuristiku u izboru operacija.
 - Means-ends je najpoznatija heuristika: uporediti inicijalno sa ciljnim stanjem i izabrati operacije da se smanje razlike.
- Problem premestiti orman sa jednog na drugi zid:
 - Prvo u mislima.
 - Potproblem težina ormana, izbaciti stvari iz njega.
- Ograničenje je kapacitet radne memorije koja aktivno učestvuje tokom pronalaženja operacija.

Teorija ANALOGIJE

- Osnovno je dovesti u vezu novu oblast sa već poznatom oblašću pa se operacije poznate oblasti prenesu u novu oblast.
- Lakše je doći do analogije što su oblasti (ili neke njene operacije) po nekom elementu bliže jedna drugoj.

Modeli rešavanja problema

- Na osnovu pomenutih teorija, razvijani su različiti modeli rešavanja problema.
- Jedan od poznatijih modela je nastao na temeljima istraživanja Ernsta i Newella koji su se bavili rešavanjem problema u oblasti kognitivne psihologije.
- Oni su 1969. godine napravili program pod nazivom General Problem Solver (GPS).

General Problem Solver (GPS)

- General Problem Solver (GPS) je delovao u prostoru stanja.
- Prostor stanja GPS-a sadržao je moguća međustanja koja su se nalazila između nekog početnog stanja i ciljnog stanja.

GPS

- Rad programa temeljio se na rekurzivnoj primeni dve heuristike:
 - A) izabrati međustanje (podcilj) koje će smanjiti razliku između trenutnog stanja i željenog stanja
 - B) ako ne postoji način da se cilj dostigne direktno, rastaviti ga na podciljeve

GPS

- Ovaj model rešavanja problema kao rekurzivne hijerarhije podciljeva široko je usvojen kao osnova za analizu ljudskog rešavanja problema.
- U fizičkim zadacima koje obavljaju ljudi, temeljne i nedeljive operacije (koje ujedno predstavljaju listove stabla podciljeva) su fizičke operacije.
- Smanjenje razlike imeđu trenutnog stanja i cilja obavlja se na temelju vizuelnog ulaza.
- Težina problema može se izraziti pomoću dubine pripadajućeg stabla podciljeva: ako je stablo preduboko, ograničenost kapaciteta radne memorije (radnog pamćenja) uzrokovaće "preliv", pa će osoba koja rešava problem zaboraviti šta treba napraviti sledeće kako bi došla do rešenja.

Sticanje iskustva-veštine-znanja

- Tri osnovna nivoa sticanja veštine:
 - 1. Korisnik koristi opšta pravila kojima interpretira činjenice o problemu. Sporo i zahtevno u pristupu memoriji.
 - 2. Korisnik razvija pravila specifična zadatku.
 - 3. Korisnik podešava pravila tako da se povećaju performanse.
- Proceduralizacija pomera 1. u 2., uklanja pravila zahtevna za memorijom i zamenjuje konkretne vrednosti promenljivama.
- **Generalizacija** pomera 2. u 3., generalizuje specifične slučajeve u generalizovane osobine tih slučajeva.

Sticanje iskustva-veštine-znanja

- Nivo 1 intezivno koristi znanje.
- Nivo 2 se oslanja na poznate procedure
- Nivo 3 je skilled behaviour koje je često automatiozovano (voziti kola ili bicikl) i teško ga je eksplicitno objasniti.

Izlazni kanali

- Izlazni kanali su kanali preko kojih korisnik izvršava neke akcije prema sistemu, na osnovu komandi dobijenih od centralnog procesora.
- Psihološke studije mentalnih "izlaza" tradicionalno su više usmerene na istraživanje govora nego na istraživanje fizičke akcije. Ljudski govor je u domenu interesa HCI-a mnogo manje važan nego što je to fizički aspekt komunikacije, budući da su govornoorjentisani interfejsi relativno retki.

Modeli fizičkog izlaza kod čoveka

 Dinamika akcija koje imaju za cilj neposredan ili posredan dohvat nečega je relativno dobro istražena.
 Za HCI su najbitnije akcije kucanja na tastaturi i usmeravanja pointera pomoću miša.

Fitts-ov zakon

- Ovaj zakon je publikovao naučnik Paul Fitts 1954. godine i po njemu je zakon dobio i ime.
- Ovaj zakon podrazumeva izračunavanje vremena pogađanja (zahvatanja, dostizanja) cilja u pokretu u odnosu na njegovu veličinu i udaljenost.
- Zaključak modela je da je vreme zahvatanja cilja obrnuto proporcionalno širini cilja, a direktno proporcionalno udaljenosti od centra cilja u odnosu na startnu tačku kretanja (teoretski, cilj je na početnoj visini).
- Fitts je, takođe, uočio da vreme kretanja ruke zavisi od udaljenosti A koju ruka treba da pređe i veličine cilja W.

Fitts-ov zakon

Originalno, zakon je imao sledeći oblik:

$$T = a + b(ID) = a + blog_2 (2D/W + 1)$$

gde je:

T - srednje vreme izvršavanja akcije pogađanja cilja,

a i b – parametri modela, odnosno empirijski određene ID –

konstante, gde a približno odgovara start/stop vremenu u

sekundama za dati uređaj (ili vremenu potrebnog da

korisnik klikne na neko dugme), a b meri inherentne brzine

uređaja (jedinica za b je milisekunda/bit),

ID - indeks kompleksnosti,

D – rastojanje od startne pozicije do centra ciljnog objekta,

W – širina ciljnog objekta merena duž ose kretanja.

Fitts-ov zakon

 U HCI oblasti, najčešće korišćen oblik ovog zakona je takozvana Shannon-ova forma, i ona ima sledeći oblik:

$$T = a + blog_2 (D/W + 1)$$

gde je:

T - srednje vreme izvršavanja akcije pogađanja cilja,
 a i b - parametri modela, odnosno empirijski određene ID - konstante, gde a približno odgovara start/stop vremenu u sekundama za dati uređaj (ili vremenu potrebnog da korisnik klikne na neko dugme), a b meri inherentne brzine uređaja (jedinica za b je milisekunda/bit),

D – rastojanje od startne pozicije do centra ciljnog objekta,

W – širina ciljnog objekta merena duž ose kretanja.

Fitts-ov zakon

- Ovaj oblik Fitts-ovog zakona je formulisao Scott MacKenzie, profesor na York univerzitetu.
- Principi koji proizilaze iz zakona Fitts-a, a mogu se primeniti prilikom dizajniranja korisničkog interfejsa, su sledeći:
 - akcijama koje se češće koriste treba pridružiti veće komandne dugmiće, tako da se ne naruši koncept korisničkog interfejsa i
 - akcije koje se češće koriste treba postaviti bliže prosečnoj poziciji kursora.

Ljudska raznolikost i uticaj radnog okruženja

- Prethodno opisani kognitivni model u dobroj meri opisuje način rada čoveka kao sistema.
- Postoje i drugi modeli koji se, sa manje ili više uspeha, mogu primeniti na modeliranje korisnika u interakciji čovek-računar.
- Naravno da svaki od tih modela nije univerzalan, i da se ne može sa istim uspehom primeniti na svakog korisnika. Svaki od modela je, u stvari, pravljen za modeliranje nekog prosečnog korisnika za određenu vrstu sistema.
- Ljudska raznolikost i uticaj radnog okruženja su faktori koje svakako treba uzeti u obzir kada se razmatra dizajniranje nekog korisničkog interfejsa.

Uticaj radnog okruženja

- Radno okruženje veoma utiče na satisfakciju korisnika, njegove performanse i nisku verovatnoću greške.
- American National Standard for Human Factors
 Engineering of Visual Display Terminal Workstation
 (1988) definiše:
 - visinu radne površine i prikaznog uređaja,
 - prostor ispod radne površine za noge,
 - širinu i dubinu radne površine,
 - podesivost visine i ugla stolice i radne površine,
 - karakteristike stolice: dubina i ugao sedanja, podrška leđa i lumbarnog dela, nasloni za ruke i šake ...

Internacionalne razlike

- Kulturna, etička, rasna, lingvistička, ... Pozadina
- Levo-desno vs. desno-levo vs. vertikalno čitanje/pisanje,
- Format datuma, sata, iznosa i valute,
- Mere (dužina, težina, ...),
- Telefonski brojevi i adrese,
- Imena i titule,
- Kapitalizacija i punkcija,
- Sekvenca sortiranja,
- Ikone, dugmići, boje,
- Gramatika i pravopis,
- Formalizmi, etiketiranje, metafore ...

Korisnici sa posebnim potrebama

- Korisnici sa oštećenim vidom:
 - povećavanje površine prikaza, konverzija izlaza/ulaza
 - u Brajovu azbuku ili glas,
- Korisnici sa oštećenim sluhom:
 - konverzija audio informacija u video,
- Korisnici sa oštećenom motorikom:
 - specijalni ulazni uređaji (posebne tastature, tasteri, džojstici, praćenje oka, head-mounted optical mouse),
- Korisnici sa problemom u učenju/čitanju (2% u USA)
 - vizuelizacijom protiv teksta, manje konfuznih grafika i daktilografije...

Stariji korisnici

- Sve veći deo populacije koji sa rezervom prihvata novotarije – opterećenost iskustvom.
- Prilagoditi GUI njihovim fizičko-psihičkim mogućnostima:
 - veći font,
 - jači kontrast,
 - ulazni uređaji koji su lakši za upotrebu,
 - glasniji audio,
 - jednostavniji komandni jezik...