Modbus RTU Analog Input 8CH

From Waveshare Wiki

Jump to: navigation, search

Overview

Hardware Description

 Each channel can be individually configured for its range, making it more convenient for users.

"AIN+" is the positive input, and "AIN-" is the negative input. The module supports both differential and single-ended input. When used as a single-ended input, "AIN-" is connected to the ground.

File:Modbus-RTU-AI-8CH-06-1.jpg)

Note: When inputting the different powers, it is important to connect the ground wire to establish a common ground. Otherwise, the collected data may be inaccurate.

- Opening the device case, you can see jumpers are near the device terminals, corresponding to the eight channels AI1~AI8. You need to select the jumper mode based on the measurement signal; otherwise, the measurement data will be inaccurate.
 - When measuring voltage signals, the jumper wires for the corresponding channels should be disconnected.
 - When measuring current signals, the jumper wires for the corresponding channels should be connected.

(/wiki/

File:Modbus_RTU_Analog_Input_8CH-Overview.png)

 Modbus RTU Analog Input 8CH defaults to current mode with the jumper wire connected. Modbus RTU Analog Input 8CH (B) defaults to voltage mode with the jumper wires disconnected.

Version Comparision

 Currently, there are two versions of the analog input series, one defaults to current input, and the other defaults to voltage input.

Modbus RTU Analog Input 8CH

Supports four ranges (configurable): 0~5V/1~5V 0~20mA (default) /4~20mA

Modbus RTU Analog Input 8CH (B)

Supports four ranges (configurable): 0~10V (default)/2~10V 0~20mA /4~20mA

Modbus RTU Analog Input 8CH Configurable range

Modbus RTU Analog Input 8CH (B) Configurable range

(/wiki/File:Modbus-RTU-Analog-Input-AB-Compare-01.jpg)

Version	Modbus RTU Analog Input 8CH	Modbus RTU Analog Input 8CH (B)
Default mode	8-ch current mode, 0~20mA	8-ch voltage mode, 0~10V
Measurement range	0~5V/1~5V 0~20mA/4~20mA	0~10V/2~10V 0~20mA/4~20mA
Resolution	12-bit	12-bit
Current sampling resistance	249Ω	499Ω
Operational amplifier ratio	32.4/49.9	10/32.4
Channel	8-AI	8-AI

• Each version has five range modes from 0 to 4.

Mode	Modbus RTU Analog Input 8CH	Modbus RTU Analog Input 8CH (B)
0	0~5V voltage mode	0~10V voltage mode
1	1~5V voltage mode	2~10V voltage mode
2	0~20mA current mode	0~20mA current mode
3	4~20mA current mode	4~20mA current mode
4	4096-scale code mode	4096-scale code mode

- The scale code is the data collected by the AD converter and needs to undergo a linear transformation to obtain voltage or current data. The conversion formula is as follows.
 - Voltage = Scale Code * 3300/4095/Operational Amplifier Ratio
 - Current = Voltage/Sampling Resistor

Hardware Connection

• Connect the USB TO 485 to the target boards via cables, A-A and B-B connected as shown below:

wiki/File:Modbus_RTU_Analog_Input_8CH-03.jpg)

SSCOM Serial Port Debugging Assistant

Download SSCOM serial port debugging assistant (https://files.waveshare.com/wiki/common/Ssco m5.13.1.zip) and open it on the computer. Open the corresponding port number, set the baud rate as 9600, and select hex to send and receive.
Send the following command, and it will return the 8-channel analog input data normally.

01 04 00 00 00 08 F1 CC

File:Modbus-RTU-Analog-Input-SSCOM-test-01.jpg)

• If you need to send other commands, choose SendHEX. For checksum validation, select ModbusCRC16. After entering the first six bytes of the command, clicking SEND will automatically add the CRC check code. For example, send the following command, you can set channel 1 to 4-20mA current input mode.

01 06 10 00 00 03

File:Modbus-RTU-Analog-Input-SSCOM-test-02.jpg)

• For more control commands, you can refer to the development protocol.

Modbus Poll Software

- It is not convenient to use the SSCOM software for observing the data, you can select Modbus Poll software (https://www.modbustools.com/download.html) to read the data. Download and install the Modbus Poll software.
- Open the software, select Setup -> Read/Write Definition. Select the actual device address for Slave ID, 04 Read Input Registers (3x) for Function, and 8 channels for Quantity, and click "OK" to confirm.

File:Modbus_Poll-1.png)

 Select Connection->Connect..., choose the corresponding serial port, set the baud rate to 9600, and select 8 Data bits and None Parity. Click OK to connect.

File:Modbus-RTU-Analog-Input-3.png)

• After successful connection, it can display the analog input data for channels 1-8.

File:Modbus_Poll-3.png)

- Modbus RTU Analog Input 8CH (A) displays the current by default, and the unit is uA. Modbus RTU Analog Input 8CH (B) displays the voltage by default, and the unit is mV.
- Choose File->New to create a new window, select Setup->Read/Write Definition. Select the actual device address for Slave ID, 16 Write Multiple Registers for Function, Hex for Address Mode, 1000 for Address, and 8 channels for Quantity, and then click "OK" to confirm.

File:Modbus_Poll-4.png)

■ The new window 2 can set up the measuring modes for different channels. For example, you can set the channel 1 mode as 2, that is, 0~20mA current mode. And channel 1 of the window 1 will display the current.

Note: The internal jumper wires should be modified when changing the current and voltage mode, otherwise, the measurement data will not be accurate.

File:Modbus_Poll-5.png)

Demo Test

Note: RS485 can not be directly connected to the serial port of the Raspberry Pi, otherwise it may burn the device, you need to add 485 level conversion. For Raspberry Pi, it is recommended to work with the RS485 CAN HAT module. For NUCLEO-F103RB and Arduino, it is recommended to work with the RS485 CAN Shield module.

Raspberry Pi

Open the Raspberry Pi terminal and enter the following command to enter the configuration interface

sudo raspi-config
Select Interfacing Options -> Serial, disable shell access, and enable the hardw
are serial port

(/wiki/File:L76X_GPS_Module_rpi_serial.png)

Then restart Raspberry Pi:	
sudo reboot	- - - - - - -
Open the /boot/config.txt file, find the following configuration statement to enable the serial port, if not, you can add it to the end of the file.	
enable_uart=1	- ! !
For Raspberry Pi 3B users, the serial port is used for Bluetooth and needs to be commented out:	
#dtoverlay=pi3-miniuart-bt	- - - - -
Then restart Raspberry Pi:	
sudo reboot	

Insert the RS485 CAN HAT into the Raspberry Pi, and connect the Modbus RTU Relay module to the RS485 CAN HAT through A and B.

If you are using other 485 devices, make sure to connect A-A, B-B.< br/> Run the following commands to run the demo:

```
sudo apt-get install unzip
sudo apt-get install python3-pip
pip install modbus_tk
wget https://files.waveshare.com/wiki/Modbus-RTU-Analog-Input-8CH/Modbus_RTU_Ana
log_Input_Code.zip
unzip Modbus_RTU_Analog_Input_Code.zip
cd Modbus_RTU_Analog_Input_Code/Python3
sudo python3 modbus.py
```

STM32

Note: The STM32 demo is based on the NUCLEO-F103RB and RS485 CAN Shield module.

1. Download Demo (https://files.waveshare.com/wiki/Modbus-RTU-Analog-Input-8CH/Modbus_RTU_Analog_Input_Code.zip), find the STM32 project file Modbus.uvprojx in the path Modbus_RTU_Analog_Input_Code\STM32\MDK-ARM, and double-click to open the STM32 project file. Note that you should ensure Keil5 software is installed on your computer before using it.

File:600px-Modbus-RTU-Relay-stm32-6.png)

2. Connect the STM32 to a computer via the STM32 download and debug probe. Compile and download the program to the development board.

File:600px-Modbus-RTU-Relay-stm32-2.png)

- 3. Install the RS485 CAN Shield module on the STM32. Connect the RS485_A on the RS485 CAN Shield module to the RS485_A on the Modbus RTU Analog Input 8CH via a wire, and connect the RS485_B on the RS485 CAN Shield module to the RS485_B on the Modbus RTU Analog Input 8CH via a wire. Then power on the Modbus RTU Analog Input 8CH and the STM32 sequentially.
- 4. After the program runs normally, you can observe through the serial port assistant that the device prints the collected results

File:600px-Modbus-RTU-Relay-stm32-7.png)

Arduino

Note: The Arduino demo is based on the UNO PLUS and RS485 CAN Shield module.

1. Download Demo (https://files.waveshare.com/wiki/Modbus-RTU-Analog-Input-8CH/Modbus_RTU_Analog_Input_Code.zip), find the Arduino project file Modbus_RTU_Analog_Input.ino in the path Modbus_RTU_Analog_Input_Code\Arduino\Modbus_RTU_Analog_Input, and double-click to open the Arduino project file. Note that you should ensure Arduino IDE software is installed on your computer before using it.

File:600px-Modbus-RTU-Relay-arduino-6.png)

- 2. Connect the Arduino to the computer via a USB cable. In the Arduino IDE software, select the Arduino board model under Tools->Board. Choose the COM port that the Arduino is connected to under Tools->Port.
- 3. After seeing the prompt to connect to the computer in the lower right corner, click to compile and flash the program, and wait for the flashing to complete.

File:600px-Modbus-RTU-Relay-arduino-7.png)

- 4. Install the RS485 CAN Shield module on the Arduino. Connect the RS485_A on the RS485 CAN Shield module to the RS485_A on the Modbus RTU Analog Input 8CH via a wire, and connect the RS485_B on the RS485 CAN Shield module to the RS485_B on the Modbus RTU Analog Input 8CH via a wire. Then power on the Modbus RTU Analog Input 8CH and the Arduino sequentially.
- 5. After the program runs normally, you can observe through the serial port assistant that the device prints the collected results

File:600px-Modbus-RTU-Relay-arduino-8.png)

Development Protocol V2

Function Code Introduction

Function Code	Description
03	Read holding register
04	Read input register
06	Write single holding register
10	Write single input register

Register Address Introduction

Address (HEX)	Address storage content	Register value	Permission	Modbus Function Code
3x0000 3x0007	Channels 1~8 input data	Read values as unsigned hexadecimal	Read	0x04
4x1000 4x1007	Channels 1~8 data types	0x0000~0x0004 five ranges	Read/Write	0x03,0x06,0x10
4x2000	UART Parameter	The high eight bits indicate the parity mode: $0x00\sim0x02$ The low eight bits indicate the baud rate mode: $0x00\sim0x07$	Read/Write	0x03, 0x06
4x4000	Device Address	Directly store Modbus address Device address: 0x0001-0x00FF	Read/Write	0x03, 0x06
4x8000	Software Version	Converting to decimal and then shifting the decimal point two places to the left will represent the software version $0x0064 = 100 = V1.00$	Read	0x03

Operation Command Introduction

Read Analog Input Command

Send code: 01 04 00 00 00 08 F1 CC

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
04	04 command	Read input register
00 00	Register Start Address	0x0000 - 0x0007 correspond to 1~8 input channels
00 08	Register Number	The number of the registers to be read, which must not exceed the maximum number of the channels
F1 CC	CRC16	The CRC16 checksum of the first 6 bytes of data

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
04	04 command	Read input register
10	Byte Number	Data length
00 00 00 00	Register data	Indicates the values of analog inputs from channels 0 - 7 An unsigned 16-bit identifier for a channel, with the higher bits first and the lower bits last The data range is determined by the output data type
55 2C	CRC16	The CRC16 checksum of the first 6 bytes of data

Read 1-8 channels : 01 04 00 00 00 08 F1 CC
Read 1 channel : 01 04 00 00 00 01 31 CA
Read 2 channel : 01 04 00 01 00 01 60 0A
Read 3-5 channels : 01 04 00 02 00 03 11 CB

Read Channel Data Type Command

Send code: 01 03 10 00 00 08 40 CC

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03	03 Command	Read holding register
10 00	Register Start Address	0x1000 - 0x1007 correspond to 1~8 input channels
00 08	Register Number	The number of the registers to be read, which must not exceed the maximum number of the channels
40 CC	CRC16	The CRC16 checksum of the first 6 bytes of data

Return code: 01 03 10 00 02 00 02 00 02 00 02 00 02 00 02 00 02 00 02 00 02 00 02 00 03

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03	03 Command	Read holding register
10	Byte Number	The number of all bytes of the returned status information
00 02 00 02	Data Type	Indicates data types of 0-7 channels, 0x0000~0x0004 represents five ranges 0x0000: Range 0~5V, output range 0~5000 or 0~10000, unit mV; 0x0001: Range 1~5V, output range 1000~5000 or 2~10V, output range 2000~10000, unit mV; 0x0002: Range 0~20mA, output range 0~20000, unit uA; 0x0003: Range 4~20mA, output range 4000~20000, unit uA; 0x0004: Direct output of numerical code, output range 0~4096, requires linear conversion to obtain actual measured voltage and current;
09 C3	CRC16	The CRC16 checksum of the first 6 bytes of data

```
Read data types for channels 1-8 : 01 03 10 00 00 08 40 CC
Read data type for channel 1 : 01 03 10 00 00 01 80 CA
Read data type for channel 2 : 01 03 10 01 00 01 D1 0A
Read data type for channels 3-5 : 01 03 10 02 00 03 A0 CB
```

Set Single-channel Data Type Command

Send code: 01 06 10 00 00 03 CD 0B

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06	06 Command	Write single register
10 00	Register Start Address	0x1000 - 0x1007 correspond to data types of 1~8 input channels
00 03	Channel Data Type	Channel data types, 0x0000~0x0004 represents five ranges 0x0000: Range 0~5V, output range 0~5000 or 0~10000, unit mV; 0x0001: Range 1~5V, output range 1000~5000 or 2~10V, output range 2000~10000, unit mV; 0x0002: Range 0~20mA, output range 0~20000, unit uA; 0x0003: Range 4~20mA, output range 4000~20000, unit uA; 0x0004: Direct output of numerical code, output range 0~4096, requires linear conversion to obtain actual measured voltage and current;
CD 0B	CRC16	The CRC16 checksum of the first 6 bytes of data

Return code: 01 06 10 00 00 03 CD 0B

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06	06 Command	Write single register
10 00	Channel Data Type Address	0x1000 - 0x1007 correspond to data types of 1~8 input channels
00 03	Channel Data Type	Channel data type, 0x0000~0x0004 represents five ranges
CD 0B	CRC16	The CRC16 checksum of the first 6 bytes of data

Set data type to $0\sim20$ mA for channel 1 : 01 06 10 00 00 02 0C CB Read data type $4\sim20$ mA for channel 2: 01 06 10 01 00 03 9C CB

Set Multi-channel Data Type Command

Send code: 01 10 10 00 00 08 10 00 03 00 03 00 03 00 03 00 03 00 03 00 03 00 03 91 2B

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
10	10 Command	Write multiple registers
10 00	Register Start Address	0x1000 - 0x1007 correspond to data types of 1~8 input channels
00 08	Register Number	Set register number, which must not exceed the maximum number of the channels
10	Byte Number	Set the number of bytes to be output
00 03 00 03	Command	Corresponding to data types of 0-7 channels, 0x0000~0x0004 represents five ranges 0x0000: Range 0~5V, output range 0~5000 or 0~10000, unit mV; 0x0001: Range 1~5V, output range 1000~5000 or 2~10V, output range 2000~10000, unit mV; 0x0002: Range 0~20mA, output range 0~20000, unit uA; 0x0003: Range 4~20mA, output range 4000~20000, unit uA; 0x0004: Direct output of numerical code, output range 0~4096, requires linear conversion to obtain actual measured voltage and current;
91 2B	CRC16	The CRC16 checksum of the first 6 bytes of data

Return code: 01 10 10 00 00 08 C5 0F

Field	Description	Note	
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
10	10 Command	Write multiple registers	
10 00	Register Start Address	0x1000 - 0x1007 correspond to data types of 1~8 input channels	
00 08	Register Number	Set register number, which must not exceed the maximum number of the channel	
C5 0F	CRC16	The CRC16 checksum of the first 6 bytes of data	

Read data type for channels 3-5: 01 10 10 02 00 03 06 00 01 00 01 00 01 BE 4A

Set Baudrate Command

Send code: 00 06 20 00 00 05 43 D8

Field	Description	Note	
00	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
06	06 command	Set the baud rate and device address	
20 00	Command Register	0x2000: set the baud rate; 0x4000: set the device address	
00	Parity Method	0x00: no parity, 0x01: even parity; 0x02: odd parity	
05	Baud Rate Value	Correspondence of baud rate values 0x00: 4800 0x01: 9600 0x02: 19200 0x03: 38400 0x04: 57600 0x05: 115200 0x06: 128000 0x07: 256000	
43 D8	CRC16	The CRC16 checksum of the first 6 bytes of data	

Return code: 00 06 20 00 00 05 43 D8

Field	Description	Note
00	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06	06 command Set the baud rate and device address	
20 00	Command Register	0x2000: set the baud rate; 0x4000: set the device address
00	Parity Method	0x00: no parity, 0x01: odd parity; 0x02: even parity
05	Baud Rate	Correspondence of baud rate values 0x00: 4800 0x01: 9600 0x02: 19200 0x03: 38400 0x04: 57600 0x05: 115200 0x06: 128000 0x07: 256000
43 D8	CRC16 The CRC16 checksum of the first 6 bytes of data	

Set the baud rate as 4800: 00 06 20 00 00 00 83 DB Set the baud rate as 9600: 00 06 20 00 00 01 42 1B Set the baud rate as 115200: 00 06 20 00 00 05 43 D8

Set Device Address Command

Send code: 00 06 40 00 00 01 5C 1B

Field	Description	Note
00	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06	06 command	Set the baud rate and device address
40 00	Command Register	0x2000: set the baud rate; 0x4000: set the device address
00 01	Device Address Set the device address, 0x0001-0x00FF	
5C 1B	CRC16	The CRC16 checksum of the first 6 bytes of data

Return code: 00 06 40 00 00 01 5C 1B

Field	Description	Note	
00	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
06	06 command	Set the baud rate and device address	
40 00	Command Register	0x2000: set the baud rate; 0x4000: set the device address	
00 01	Device Address	Set the device address, 0x0001-0x00FF	
5C 1B	CRC16	The CRC16 checksum of the first 6 bytes of data	

Set the device address as 0×01 : 00 06 40 00 00 01 5C 1B Set the device address as 0×02 : 00 06 40 00 00 02 1C 1A Set the device address as 0×03 : 00 06 40 00 00 03 DD DA

Read Device Address Command

Send code: 00 03 40 00 00 01 90 1B

Field	Description	Note	
00	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
03	03 Command	Read the device address	
40 00	Command register	0x4000: read the device address, 0x8000: read software version	
00 01	Byte Number	Fixed 0x0001	
90 1B	CRC16	The CRC16 checksum of the first 6 bytes of data	

Return code: 01 03 02 00 01 79 84

Field	Description	Note	
00	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
03	03 Command	Read the software version and device address	
02	Byte Number	The number of bytes returned	
00 01	Device Address	Set the device address, 0x0001-0x00FF	
79 84	CRC16	The CRC16 checksum of the first 6 bytes of data	

For example: [Address 2 device]

Send: 00 03 40 00 00 01 90 1B

Return : 02 03 02 00 02 7D 85 // Address 0x02

Read Software Version Command

Send code: 00 03 80 00 00 01 AC 1B

Field	d Description Note		
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
03	03 Command Read the software version and device address		
80 00	Command register 0x4000: read the device address, 0x8000: read software version		
00 01	Byte Number	Fixed 0x0001	
8F CA	CRC16	The CRC16 checksum of the first 6 bytes of data	

Return code: 01 03 02 00 64 B9 AF

Field	Description	Note	
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address	
03	03 Command	Read the software version and device address	
02	Byte Number	The number of bytes returned	
00 64	Software Version	Converting to decimal and then shifting the decimal point two places to the left will represent the software version $0x0064 = 100 = V1.00$	
B9 AF	CRC16	The CRC16 checksum of the first 6 bytes of data	

For example:

Send: 00 03 80 00 00 01 AC 1B

Return: 01 03 02 00 64 B9 AF //0x0064 = 100 = V1.00

Exception Function Code

When the received command is incorrect or the device is abnormal, an exception response will be returned in the following format:

Return: 01 85 03 02 91

Field	Description	Note
01	Device Address	0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
85	Exception Function Code	Exception function code = Request function code + 0x80
03	Byte Number	Exception Code
02 91	CRC16	The CRC16 checksum of the first 6 bytes of data

An exception code is a single-byte value that indicates the type of error. Several commonly used exception codes defined by the Modbus protocol:

Exception Code	Name	Description
0x01	Illegal Function	The requested function code is not supported
0x02	Illegal Data Address	The requested data address is incorrect
0x03	Illegal Data Value	The requested data value or operation cannot be executed
0x04	Server Failure	Server equipment failure
0x05	Response	The request has been received and is being processed
0x06	Device Busy	The device is currently busy and cannot perform the requested operation

Resources

Demo

Demo (https://files.waveshare.com/wiki/Modbus-RTU-Analog-Input-8CH/Modbus_RTU_Analog_Input_Code.zip)

Softwares

- Sscom serial port debugging assistant (https://files.waveshare.com/wiki/common/Sscom5.13.1.zip)
- Modbus Poll software (https://www.modbustools.com/download.html)
- SecureCRT software (https://files.waveshare.com/wiki/common/SecureCRT.7z)

Related Resources

- Modbus Protocol Specification (https://www.waveshare.com/wiki/Modbus_Protocol_Specification)
- Modbus Series BootLoader Description (https://www.waveshare.com/wiki/Modbus_Series_BootLoader_Description)

FAQ

Question: I sent a command to control the relay, but it didn't respond. What could be the issue??

Answer:

The command must be sent in hex format with a CRC checksum.

1. If the module does not respond to the command, verify that the baud rate and device ID are correct. You may also try Restoring the factory settings (https://www.waveshare.com/wiki/Templ

ate:Modbus_Series_Products:_Factory_Reset_and_Firmware_Upgrade_Guide).

2. If the above steps do not resolve the issue, please submit a ticket (https://service.waveshar e.com/) to contact the Waveshare technical support team.

Support

Technical Support

If you need technical support or have any feedback/review, please click the **Submit Now** button to submit a ticket, Our support team will check and reply to you within 1 to 2 working days. Please be patient as we make every effort to help you to resolve the issue.

Working Time: 9 AM - 6 PM GMT+8 (Monday to Friday)

Submit Now (https://service.wa veshare.com/)

Retrieved from "https://www.waveshare.com/w/index.php?title=Modbus_RTU_Analog_Input_8CH&oldid=102116 (https://www.waveshare.com/w/index.php?title=Modbus_RTU_Analog_Input_8CH&oldid=102116)"