Modélisation cinématique des systèmes et hyperstatisme

CTI2 - Chapitre 2

I. Modélisation cinématique

1. Liaisons usuelles

Liaison	Modélisation			Torseur cinématique {V}	Torseur des AM {T}
Encastrement	+	+	+	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $	$ \begin{cases} X & L \\ Y & M \\ Z & N \end{cases} $
Appui plan	4			$ \left\{ \begin{array}{ll} 0 & V_x \\ 0 & V_y \\ \omega_z & 0 \end{array} \right\} $	$ \begin{pmatrix} X & 0 \\ Y & 0 \\ 0 & N \end{pmatrix} $
Linéaire rectiligne	x	2	\$	$egin{cases} \omega_x & V_x \ 0 & V_y \ \omega_z & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ Y & 0 \\ 0 & N \end{pmatrix} $
Pivot	₩	9	-/C O/-	$\begin{pmatrix} \omega_x & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{cases} 0 & L \\ Y & M \\ Z & N \end{cases} $
Pivot glissant	P	Q'	-50-	$egin{pmatrix} \omega_x & V_x \ 0 & 0 \ 0 & 0 \end{pmatrix}$	$ \begin{cases} 0 & 0 \\ Y & M \\ Z & N \end{cases} $
Hélicoïdale	4	þ	-9	$egin{cases} \omega_x & V_x \ 0 & 0 \ 0 & 0 \end{pmatrix}$	$ \begin{cases} 0 & 0 \\ Y & M \\ Z & N \end{cases} $
Glissière	-	*		$\begin{pmatrix} 0 & V_x \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{cases} X & 0 \\ Y & M \\ Z & N \end{cases} $
Rotule a doigt	Ø	Ø	Ø	$\begin{pmatrix} \omega_x & 0 \\ \omega_y & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{cases} 0 & L \\ 0 & M \\ Z & N \end{cases} $
Rotule	Ø	Ý	ợ	$\begin{cases} \omega_x & 0 \\ \omega_y & 0 \\ \omega_z & 0 \end{cases}$	$ \begin{pmatrix} 0 & L \\ 0 & M \\ 0 & N \end{pmatrix} $
Linéaire annulaire	4	<u> </u>	de	$egin{pmatrix} \omega_x & V_x \ \omega_y & 0 \ \omega_z & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ 0 & M \\ 0 & N \end{pmatrix} $
Ponctuelle		0		$egin{cases} \omega_x & V_x \ \omega_y & V_y \ \omega_z & 0 \end{cases}$	$ \left\{ $

2. Définition et information

- <u>Classe d'équivalence</u>: ensemble de pièces sans mouvement relatif.
- Les pièces déformables (ressorts, joins, ...) et éléments roulants sont exclus de l'étude.

3. Graphe de liaisons (exemple)

4. Eléments cinématiques particuliers

5. Schémas cinématiques

Minimal: minimum de liaison calcul des vitesses de rotation

Architectural: 1 liaison par contact calcul des actions mécaniques et hyperstatisme

Modélisation cinématique des systèmes et hyperstatisme

CTI2 – Chapitre 2

Notion d'hyperstatisme

Relation globale 1.

Mécanisme spatial:

Au maximum 6 inconnues dans $\{\mathcal{T}\}$:

$$\{\mathcal{T}\} = \begin{cases} X & L \\ Y & M \\ Z & N \end{cases}$$

$$H = m_u + m_i + \sum_{i \neq j} I_{i/j} - 6(p-1)$$

Mécanisme plan :

Au maximum 3 inconnues dans $\{\mathcal{T}\}$:

$$\{\mathcal{T}\} = \begin{cases} X & 0 \\ Y & 0 \\ 0 & N \end{cases}$$

$$H = m_u + m_i + \sum I_{i/j} - 3(p-1)$$

- Nombre de mobilités utiles du mécanisme (mvts mettant tout le mécanisme en mvt)
- Nombre de mobilités internes du mécanisme (mvts sans influence sur le reste)
- $\sum I_{i/i}$: Somme des inconnues des torseurs des AM.
- Nombre de pièces dans le mécanisme (bâti compris).

Hyperstatisme

- H < 0: mécanisme hypostatique (mécanisme sous-contraint)
- H = 0: mécanisme isostatique (mécanisme parfaitement positionné)
- H > 0: mécanisme hyperstatique (mécanisme sur-contraint)