вычисляли. (Верхняя оценка для T = mg, когда сани станут «невесомыми» для льда; в этом случае нить практически вертикальна.)

9-2. Для правильного решения задачи необходимо учитывать распределение токов между проволочками — в какой именно из них раньше будет достигнуть предельное значение тока.

$$\frac{I_1}{I_2} = \frac{R_2}{R_1} = \frac{S_1}{S_2} = \frac{d^2}{D^2}.$$
 (1)

Из (1) следует, что при токе через R_2 равном 5A (предельном), ток через R_1 равен 1,25 A. Поэтому в первом варианте сборки предохранителя первой расплавится толстая проволочка (D=0,6 MM). В этот момент ток в цепи будет I=5 A+1,25 A=6,25 A- иными словами, после разрыва контакта в цепи R_2 весь этот ток немедленно «сожжет» и тонкую проволочку, т.е. предохранитель выполнит свою функцию и полностью разомкнет цепь.

Во втором случае (соотношение (1) остается в силе) опять же первой расплавится толстая проволочка (R_2) при токе 5A. При этом полный ток в цепи:

$$I = I_2 + 1.25 \cdot 20 = 30 A$$
.

После равнораспределения по тонким проволочкам:

$$I_I' = \frac{30}{20} A = 1,5 A.$$
 (2)

Как видим из (2) при таком токе тонкие проволочки еще уцелеют. Перегорят они при большом токе, а именно:

$$I_1'' = 1.8 A \cdot 20 = 36 A.$$

Таким образом, данные составные предохранители рассчитаны на токи 6,25 A и 36 A и работают по принципу: где «толсто», там и перегорает.

9-3. Прежде всего отметим, что начальный участок графика – почти прямолинейный, а это означает, что потери тепла тут малы. Это дает нам возможность оценить из графика мощность потерь тепла (т.е. количество отводимой по всей поверхности системы теплоты в единицу времени). Для этого сравним наклоны касательных в разных точках графика.

Например, при $60~^{\circ}C$ тангенс угла наклона касательной уменьшается почти в 8 раз (т.е. 7/8 от поступающей энергии уходит наружу):

$$tg\alpha_2 \approx \frac{tg\alpha_I}{8}$$
.

Проводя аналогичные измерения при t=50 °C, найдем, что потери

составляют примерно половину поступающей энергии.

Примерный график, построенный малыми участками прямых по вышеприведенным оценкам, представлен на рисунке. Из него находим, что время остывания до 50

 ^{o}C – около 1/3 минуты, до 40 ^{o}C – чуть больше минуты.

При дальнейшем нагревании воды график, приведенный в условии задачи мог выйти на горизонтальный участок либо без кипения (мощность потерь сравнялась с малой мощностью нагревателя), либо с кипением (мощность потерь при температуре кипения меньше мощности нагревателя).

9-4. Пусть человек находится на расстоянии x от верхнего края лестницы. Тогда условия равновесия лестницы имеет вид

$$mg\frac{l}{2}\sin\alpha + Mgx\sin\alpha - Nl\sin\alpha + F_{mp}l\cos\alpha = 0. (1)$$

$$Mg + mg - N = 0, (2)$$

где (1) — суммарный момент сил, действующих на лестницу относительно точки A, (2) — сумма проекций сил на вертикальную ось. Сила трения покоя не превышает силы трения скольжения, поэтому

$$F_{mp.} < \mu N \tag{3}$$

Выражая из (1), (2) величины N и F_{mp} , подставляя их в (3), получим необходимое условие равновесия:

$$\mu \ge \frac{M + \frac{m}{2} - M\frac{x}{2}}{M + m} tg\alpha.$$