Electrical Engineering

Electronics and Communication Engineering

DAC. Cont.

Questions discussion on DAC.

Inverted Ladder

Why inverted ladder in place normal ladder?

· In Normal ledder when digital i/P changes, due to switching dulay we get transient error in the O/P before getting the actual or steady state O/P. To rumove this error we we invested Ladder.

$$b_2 \rightarrow 5V \longrightarrow 0V$$

$$b_1 \rightarrow 0V \longrightarrow 5V$$

b2 b1 b0

Circuit:

Working:

$$Iout = \frac{I}{8} \left[2^{3}b_{2} + 2^{3}b_{1} + 2^{6}b_{0} \right]$$

$$\frac{I}{2} = \frac{V_n - 0}{2R} \Rightarrow I = \frac{V_n}{R}$$

Resolution = $\frac{V_n}{2^n}$

Question

A digital to analog converter circuit is as given below:

- (a) Value of output current I_{out} if $R_1 = 1.5 \text{ k}\Omega \frac{2.5}{2}$ (mA).
- (b) Value of output voltage V_{out} if $R_1 = 2 \text{ k}\Omega$ and $R_F = 3 \text{ k}\Omega \frac{9.375}{1.00}$ volts.

(b)
$$V_{\text{out}} = \left(1 + \frac{R_F}{R_I}\right) V_+ = \left(1 + \frac{3}{2}\right) \cdot \frac{15}{4} = \frac{5}{3} \times \frac{15}{4} = \frac{75}{8} \text{ Wat}$$

Question

A digital to analog converter circuit is as given below:

- (a) Value of $V_{\rm out}$ is _____ volts.
- (b) Value of I_{out} is 2.5 mA.

$$Tout = \frac{0 - Vout}{RF} = \frac{10}{4} = 2.5 \text{ mA}$$

Question

In digital to analog converter circuit shown in figure below $V_R = 10 \text{ V}$

- The value of current i
- The value of current $I_{out} = \frac{312.5}{\mu A}$.
- The value of output voltage V_{out} .

Thank you

GW Seldiers!

