Moore and Mealy Machine

- Both moore and mealy machine are special case of DFA
- Both acts like o/p producers rather than language acceptors
- · In moore and mealy machine no need to define the final states
- No concepts of dead states and no concepts of final states
- Mealy and Moore Machines are equivalent in power.

Edward F Moore

Moore Machine

A Moore machine is a six-tuple (Q, Σ , Δ , δ , λ , q_0), where

- Q is a finite set of states:
- ∑ is the input alphabet:
- δ is the output alphabet.
- δ is the transition function Q x ∑ into Q
- * λ is the output function mapping Q into Δ and
- q₀ is the initial state.

Examples: The below table shows the transition table of a Moore Machine.

Present state	Next state 8		Output	
	a = 0	a = 1	2.	
$\rightarrow q_0$	q ₃	g.	0	
q ₁	q.	q_2	1	
q_2	q ₂	Q ₃	0	
93	q ₃	q ₀	0	

In moore machine for every state output is associated.

If the length of i/p string is n, then length of o/p string will be n+1

Moore machine response for empty string ∈

Q construct a Moore machine take all the string of a's and b's as i/p and counts the no of a's in the i/p string in terms of 1, $\Sigma = \{a, b\}$, $\Delta = \{0, 1\}$?

Q construct a Moore machine take all the string of a's and b's as i/p and counts the no of occurrence of sub-string 'ab' in terms of 1, $\Sigma = \{a, b\}$, $\Delta = \{0, 1\}$?

Q construct a Moore machine where $\Sigma = \{0, 1\}$, $\Delta = \{a, b, c\}$, machine should give O/p a, if the i/p string ends with 10, b if i/p string ends with 11, c otherwise?

Mealy Machine

• Mealy machine is a six-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$, where all the symbols except λ have

meaning as in the Moore machine. λ is the output function mapping $Q \times \Sigma$ into Δ .

In case of mealy machine, the output symbol depends on the transition.

Example: The below table shows the transition table of a Mealy Machine.

Present state	Next state				
	a = 0		a = 1		
	state	output	state	output	
$\rightarrow q$	q_3	0	q ₂	0	
92	q.	1	94	0	
Q ₃	92	1	q:	1	
Q_A	94	1	q ₃	0	

If the length of i/p string is n, then length of o/p string will be n

Mealy machine do not response for empty string ∈

Q construct a Mealy machine take all the string of a's and b's as i/p and counts the no of a's in the i/p string in terms of 1, $\Sigma = \{a, b\}$, $\Delta = \{0, 1\}$?

Q construct a Mealy machine take all the string of a's and b's as i/p and counts the no of occurrence of sub-string 'ab' in terms of 1, $\Sigma = \{a, b\}$, $\Delta = \{0, 1\}$?

Q construct a Mealy machine where $\Sigma = \{0, 1\}$, $\Delta = \{a, b, c\}$, machine should give O/p a, if the i/p string ends with 10, b if i/p string ends with 11, c otherwise?

CONVERSION OF MOORE TO MEALY MACHINE

- Let us take an example to understand the conversion:
- Convert the following Moore machine into its equivalent Mealy machine.

Q	2	b	Output(\(\lambda\))
q0	q0	q1	0
q1	q0	q1	1

PROCEDURE FOR TRANSFORMING A MEALY MACHINE INTO A MOORE MACHINE

Consider the Mealy Machine:

Present State	Next State			
	a		ь	
	State	O/P	State	O/P
q ₁	q ₁	1	q ₂	0
q ₂	q ₄	1	q ₄	1
q ₃	q ₂	1	q ₃	1
q ₄	q ₃	0	q ₁	1

Regular Expressions:

- A way of representing Regular Language.
- A Language is said to be Regular Language if their exist a Regular Grammar.
- A Language is said to be Regular Language if there exist a Finite Automata to accept it.
- A Language is said to be Regular Language if there exist a Regular Expression to represent it. Regular Expression is Like a mathematics in which we use string in place of operands and some special different operators in place of +, -,*,/.
- Expression of String & Operators
 Like (1) * (Kleen Closure) [a*]
 - (2) + (Positive Closure) [a+]
 - (3) . (Concatination) [a.b]
 - (4) + (Union) [a+b]

Regular Expressions:

- Regular Expression is said to be valid if it can be derived from the primitive Regular Expression by a finite number of application of the rule r*, r+, r1.r2, r1+r2
- ε (sigma) is a given albhabet then,

$$\emptyset, \frac{\epsilon \ (epsilon)}{\downarrow}, a\epsilon \epsilon \ are \ primitive \ regular \ expression.$$

```
RE RL \emptyset = {} or \emptyset \epsilon (epsilon) = {\epsilon}
```

Identities of Regular Expression

3)
$$ER = RE = R$$

4)
$$E^* = E$$
 and $\emptyset^* = E$

7)
$$RR* = R*R$$

10)
$$(PQ)^*P = P(QP)^*$$

$$R(P + Q) = RP + RQ$$

(1)
$$y_1 = \phi$$
, $L(y_1) = \{\frac{3}{4}\}$
(2) $y_1 = \xi$, $L(y_1) = \{\frac{3}{4}\}$
(3) $y_1 = \alpha$, $L(y_1) = \{\alpha\}$ $\alpha^2 = \alpha \times \alpha$
(9) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(9) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(9) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(1) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(2) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(3) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(4) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(5) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(6) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(7) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$
(8) $y_1 = \alpha + b$, $L(y_1) = \{\alpha, b\}$