Práctica 3: Sucesiones

Ejercicio 1 Dadas las sucesiones

$$a_n = \frac{\sqrt{n}}{n+1}$$
 $b_n = \frac{2^{n-1}}{(2n-1)^3}$ $c_n = \frac{(-1)^{n+1}}{n!}$ $d_n = \frac{\cos(n\pi)}{n}$

Calcule a_9 ; b_5 ; c_3 ; d_{11} .

Ejercicio 2 Para cada una de las siguientes sucesiones, proponga el término general a_n y clasifique las mismas en convergentes o divergentes.

a) 1, 2, 3, 4,...
b)
$$-1$$
, $-\frac{1}{2}$, $-\frac{1}{3}$, $-\frac{1}{4}$,...
c) 1, $-\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{4}$,...
d) $\frac{1}{2}$, $-\frac{1}{4}$, $\frac{1}{8}$, $-\frac{1}{16}$,...
e) -1 , 2, -3 , 4,...
f) 0, $\frac{1}{2}$, 0, $\frac{1}{3}$, 0, $\frac{1}{4}$,...
g) 1, -1 , 1, -1 ,...
h) 2, $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$,...
i) 1, 1, $\frac{1}{2}$, 2, $\frac{1}{3}$, 3...

Ejercicio 3 Sea $a_n = \frac{n}{n+10,5}$. Decida por la verdad o falsedad de las siguientes afirmaciones:

$$a) \quad \lim_{n \to \infty} a_n = 1$$

b)
$$a_n > 0,9$$
 para casi todo n .

c) Existe
$$n_0 \in \mathbb{N}$$
 tal que $a_{n_0} = 1$

d) La sucesión está acotada superior e inferiormente.

Ejercicio 4 Sea $b_n = \frac{(-1)^n + 2}{n}$. Calcule:

a)
$$\lim_{n \to \infty} b_n$$
 b) $\sup \{b_n / n \in \mathbb{N}\}$ c) $\inf \{b_n / n \in \mathbb{N}\}$

Ejercicio 5 Calcule, si existe, el límite de las siguientes sucesiones.

a)
$$a_n = \left(\frac{1}{n} + \frac{2n}{n+1}\right)^3$$

e) $e_n = \frac{\sqrt{n^3 + 2}}{n^2 - 1}$
b) $b_n = \frac{3n^2 + 2}{2n^2 + 5n}$
f) $f_n = \sqrt{\frac{4n^2 - 1}{9n^2 + 2}}$
c) $c_n = \frac{3n^2 + 2}{2n^3 + 5n}$
g) $g_n = \frac{-n}{\sqrt{n^2 - n} + n}$
d) $d_n = \frac{-4n^3 + 2n^2 - 3n - 1}{5n^2 + 4}$

Ejercicio 6

Calcule, si existe, el límite de las siguientes sucesiones.

a)
$$a_n = \frac{n^2 - 5n + 7}{n + 3} + \frac{n^2 + 5}{n + 1}$$
 f) $f_n = \sqrt{\frac{2n^2 - 1}{3n^2 + 2}} + \frac{3n - 1}{2n + 3}$

$$f) f_n = \sqrt{\frac{2n^2 - 1}{3n^2 + 2}} + \frac{3n - 1}{2n + 3}$$

b)
$$b_n = \frac{n^2 - 5n + 7}{n+3} - \frac{n^2 + 5}{n+1}$$

$$g) g_n = \sqrt{n}(\sqrt{n+2} - \sqrt{n})$$

c)
$$c_n = \sqrt{n^2 + n - 2} + n$$

$$h) h_n = n(\sqrt{n+2} - \sqrt{n})$$

d)
$$d_n = \sqrt{n^2 + n - 2} - n$$

$$i) i_n = \frac{n}{\sqrt{n+1} - n}$$

$$e) e_n = \sqrt{n^2 + 1} - \sqrt{n^2 - n - 3}$$

$$j) \ j_n = \sqrt{n}(\sqrt{n^2 + 2} - \sqrt{n})$$

Ejercicio 7 Muestre que cada una de las siguientes situaciones constituye una indeterminación. Para ello exhiba por lo menos dos ejemplos donde los límites sean distintos (finitos o infinitos). Suponga, cuando haga falta, condiciones suficientes para que las sucesiones estén bien definidas.

$$a) \lim_{n \to \infty} a_n = +\infty \text{ y } \lim_{n \to \infty} b_n = +\infty \qquad i) \lim_{n \to \infty} (a_n - b_n) \qquad ii) \lim_{n \to \infty} \frac{a_n}{b_n}.$$

i)
$$\lim (a_n - b_n)$$

ii)
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$
.

$$b) \lim_{n \to \infty} a_n = 0 \text{ y } \lim_{n \to \infty} b_n = 0$$

$$c) \lim_{n \to \infty} a_n = 0 \text{ y } \lim_{n \to \infty} b_n = +\infty$$

$$i) \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$i) \lim_{n \to \infty} a_n.b_n.$$

i)
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$

c)
$$\lim_{n \to \infty} a_n = 0$$
 y $\lim_{n \to \infty} b_n = +\infty$

i)
$$\lim_{n\to\infty} a_n.b_n$$

Ejercicio 8

- a) Marque la única respuesta correcta: si $\lim_{n\to\infty} a_n = +\infty$ y b_n es acotada, entonces $\lim_{n\to\infty} (a_n + b_n)$
- \square oscila \square tiende a más infinito \square es una indeterminación \square está acotada.
- Calcule $\lim_{n \to \infty} \frac{n^4}{n+1} + \cos n$
- Marque la única respuesta correcta: si $\lim_{n\to\infty} a_n = 0$ y $\lim_{n\to\infty} b_n = +\infty$, entonces $\lim_{n\to\infty} \frac{a_n}{b_n}$
- \square es igual a 0 \square tiende a más infinito \square es una indeterminación \square no existe
- d) Calcule $\lim_{n\to\infty} \frac{\frac{1}{n}-1}{n^2+1}$

Ejercicio 9 Calcule, si existen, los siguientes límites

a)
$$\lim_{n\to\infty} \frac{\cos n + 5}{n}$$

c)
$$\lim_{n\to\infty} \frac{(2+(-1)^n)\sin n}{n}$$

b)
$$\lim_{n\to\infty} (-1)^n (\sqrt{n+2} - \sqrt{n})$$

$$d) \lim_{n \to \infty} \left(\frac{2}{5}\right)^n$$

$$e$$
) $\lim_{n\to\infty} (1,5)^n$

$$f$$
) $\lim_{n\to\infty}\frac{2^n+5}{3^n}$

$$g)$$
 $\lim_{n\to\infty} (3+\sin n)(0,8)^n$

h)
$$\lim_{n\to\infty} (0,9)^n (1,1)^{n+1}$$

$$i) \lim_{n \to \infty} \frac{3^n + 4^{n+1} + 2}{2^{2n} + 2^n}$$

$$j) \lim_{n\to\infty} \sqrt[n]{n^2+1}$$

$$k) \lim_{n \to \infty} \sqrt[n]{\frac{3n^3 + 2n^2 + 1}{n^2 + 2}}$$

$$l) \lim_{n \to \infty} \sqrt[n]{\frac{5n+1}{3n+1}}$$

$$m) \lim_{n \to \infty} \left(\frac{n^2 + 2}{5n^2 + 3} \right)^{1/n}$$

$$n) \lim_{n \to \infty} \sqrt[n]{5^n + 2^n}$$

Ejercicio 10 Muestre que las siguientes situaciones constituyen una indeterminación. Para ello exhiba por lo menos dos ejemplos donde los límites sean distintos (finitos o infinitos). Suponga, cuando haga falta, condiciones suficientes para que las sucesiones estén bien definidas.

a)
$$\lim_{n \to \infty} a_n = 0$$
 y $\lim_{n \to \infty} b_n = 0$ i) $\lim_{n \to \infty} (a_n)^{b_n}$

i)
$$\lim_{n\to\infty} (a_n)^{b_n}$$

b)
$$\lim_{n \to \infty} a_n = 0$$
 y $\lim_{n \to \infty} b_n = +\infty$ i) $\lim_{n \to \infty} (b_n)^{a_n}$

i)
$$\lim_{n\to\infty} (b_n)^{a_n}$$

Ejercicio 11 Calcule, si es posible, los siguientes límites

$$a) \lim_{n \to \infty} \left(1 + \frac{2}{n+1} \right)^{n-1}$$

$$e) \lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n$$

$$b) \lim_{n \to \infty} \left(1 + \frac{17}{n} \right)^n$$

f)
$$\lim_{n \to \infty} \left(\frac{3n^2 + 2n + 1}{3n^2 - 5} \right)^{\frac{n^2 + 2}{2n + 1}}$$

$$c) \lim_{n \to \infty} \left(\frac{3n+1}{3n-5} \right)^n$$

$$g) \lim_{n \to \infty} \left(1 + \frac{\operatorname{sen} n}{n^2} \right)^n$$

$$d) \lim_{n \to \infty} \left(\frac{4n+1}{3n-5} \right)^n$$

$$h) \lim_{n \to \infty} \left(1 + \frac{\cos n}{5n^3 + 1} \right)^{2n^2 + 3}$$

Ejercicio 12 Calcule, si es posible, los siguientes límites

$$a) \lim_{n\to\infty} \left(\frac{1}{2} + \frac{2}{n}\right)^n$$

$$b) \lim_{n \to \infty} \left(2 + \frac{1}{n^2} \right)^n$$

$$c) \lim_{n \to \infty} \frac{n}{2^{n+1}}$$

e)
$$\lim_{n \to \infty} \frac{3 \cdot 2^n + n}{2^{n+1} + n^3}$$

$$d) \lim_{n \to \infty} \frac{3^{2n+1} + \cos n}{2 \cdot 9^n + \sin n}$$

Ejercicio 13 Calcule, si existen, los siguientes límites

$$a) \lim_{n\to\infty} \frac{n2^n}{n!}$$

c)
$$\lim_{n\to\infty} \frac{n^{10}}{n!}$$

$$b) \lim_{n \to \infty} \frac{n!}{n^n}$$

$$d) \lim_{n \to \infty} \frac{n^3 + n!}{3^n + 5n!}$$

Ejercicio 14 En cada caso, la sucesión a_n se encuentra sujeta a las condiciones indicadas. Calcule, cuando sea posible, su límite.

c)
$$0 < 3a_n + 2 < \frac{2^n n!}{n^{2n+1}}$$

$$b) \frac{1}{a_n} > \left(1 + \frac{1}{n}\right)^{n^2}$$

d)
$$2a_n + 6 > \frac{1}{\sqrt[n]{n+1}-1}$$

Ejercicio 15 Usando subsucesiones, pruebe que cada una de las siguientes sucesiones carece de límite:

b) sen
$$\left(\frac{n\pi}{2}\right)$$

c)

$$a_n = \begin{cases} n & \text{si } n \text{ es impar,} \\ 2 + \frac{1}{n} & \text{si } n \text{ es par} \end{cases}$$

Ejercicio 16 Se sabe que $\lim_{n\to\infty} a_n = L > 0$. Calcule

$$a) \lim_{n \to \infty} a_{2n+1}.$$

$$b) \lim_{n \to \infty} (a_{2n} - a_{3n}).$$

$$c) \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Ejercicio 17 Considere la sucesión definida recurrentemente como

$$a_1 = 1, \ a_{n+1} = 2 a_n, \ n \in \mathbb{N}.$$

- a) Calcule el cociente de D' Alembert. A partir del mismo, concluya que la sucesión es creciente.
- b) Muestre que $a_n = 2^{n-1}, n \ge 1.$

Ejercicio 18 Calcule, si existe, el límite de las siguientes sucesiones dadas en forma recurrente:

a)
$$a_1 = 5$$
, $\frac{a_{n+1}}{a_n} = \frac{n+1}{3n}$.

b)
$$a_1 = 1$$
, $a_{n+1} = \frac{n^n + 3^n}{n!} a_n$.

PROBLEMAS VARIOS

Ejercicio 1 Calcule el siguiente límite

$$\lim_{n \to \infty} \left(\frac{3n}{n+1} + (-1)^n \frac{n^5 + \cos n}{2 - 6^n} \right)$$

Ejercicio 2 Sean $a_n = n(0,95)^n$ y $b_n = \frac{(1,02)^n}{\sqrt{n}}$. Calcule

- a) $\lim_{n\to\infty}a_n$.
- b) $\lim_{n\to\infty}b_n$.
- c) $\lim_{n\to\infty} (a_n)(b_n).$

Ejercicio 3 Muestre que el valor del $\lim_{n\to\infty} \left(1 + \frac{5}{n} + \frac{b}{n^2}\right)^{n^2}$ no depende de la constante b.

Ejercicio 4 Sea a_n una sucesión definida en forma recurrente como :

$$a_1 = 5$$
, $\frac{a_{n+1}}{a_n} = \frac{2n+1}{5n}$.

Se define $b_n = n^2 a_n$. Calcule $\lim_{n \to \infty} a_n$ y $\lim_{n \to \infty} b_n$.

Ejercicio 5 Calcule $\lim_{n\to\infty} a_n$ sabiendo que $0 < 5 - 3a_n \le 7^n \left(1 - \frac{2}{n}\right)^{n^2}$

Ejercicio 6 Halle los valores de a y b para que

$$\lim_{n \to \infty} \frac{an^6 + 3bn^4 + 2\sqrt{n}}{5n^4 - 3n + 4} = 4.$$

Ejercicio 7 Se definen $a_n = (-1)^n \frac{3n-1}{7n+2}$ y $b_n = (a_n)^2$.

- a) Pruebe por medio de subsucesiones que a_n no tiene límite.
- b) Calcule el $\lim_{n\to\infty} b_n$.

Ejercicio 8 Halle todos los valores de $x \in \mathbb{R}$ para los cuales la sucesión $a_n = \frac{x^{2n+1}}{n^3 4^{n+1}}$ es convergente. Para los x hallados calcule el $\lim_{n \to \infty} a_n$.

Ejercicio 9 Calcule el siguiente límite

$$\lim_{n\to\infty} \sqrt[n]{3^n n^2 + n}.$$

Ejercicio 10 Calcule el siguiente límite

$$\lim_{n \to \infty} \left(\frac{3 + 7n^2}{5 + n^2} + \sqrt{n^2 + 6n + 17} - \sqrt{n^2 + 17} \right).$$

Ejercicio 11 Calcule, si existe, el siguiente límite

$$\lim_{n \to \infty} \left[\left(\frac{n^4 + 2n^2}{n^4 + n^2 + 1} \right)^{3n^2} + \frac{\sin\left(n^4 + 2n^2\right)}{3n^2} \right]$$

Ejercicio 12 Sea $a_n = \frac{\cos(3n) + n!}{n + 2^n}$. Calcule el $\lim_{n \to \infty} \frac{3a_n + 5}{2a_n + 7}$.

Ejercicio 13 Sea a_n tal que $5n - 6n^2 - 7 < 4n^2a_n < \frac{n^3 + n^23^n}{n!} - 6n^2$. Calcule el $\lim_{n \to \infty} a_n$.

Ejercicio 14 Halle $a \in \mathbb{R}$ para que el $\lim_{n \to \infty} \left(\frac{5n^3 + a}{5n^3 + 3} \right)^{4n^3} = e^3$.

Ejercicio 15 Si la sucesión a_n satisface $\lim_{n\to\infty} a_n = 4$ y $a_n > 4$, calcule el $\lim_{n\to\infty} \frac{\sqrt{12+a_n}-\sqrt{4a_n}}{(a_n)^2-2a_n-8}$.

Ejercicio 16 Sea
$$a_n = \left(\frac{5n+8}{5n+3}\right)^n \frac{n^5+1}{n^4+1}$$
. Calcule el $\lim_{n\to\infty} \frac{\cos(5a_n)}{\sqrt{a_n}}$.

Ejercicio 17 Sea
$$a_n$$
 tal que $\left(\frac{2n+11}{2n+3}\right)^n \le 2a_n - 6 \le e^7 + \frac{\cos{(9n)}}{4^n}$. Calcule el $\lim_{n\to\infty} a_n$.