

MSBA7003 Decision Analytics

Tutorial 01

Guoxing He 2024-2025

Email: gxhe@connect.hku.hk

Office: Room 119, K. K. Leung Building

Class notes

• The template of answer sheet

- Grading policy of assignment
 - The correct answer may consist of one or more options.
 - Full marks for the correct answer and zero otherwise.
- DO NOT
 - Need to submit a pdf file with your solutions for choice questions
 - Zip the xlsx file
 - Submit the xlsm file (empty file when opening).
 - Rely on ChatGPT

Tutorial

- Explanation of assignments and after-class exercise
- More exercises
 - Similar to in-class exercises and assignments
- Software
 - Python is most used
 - R, Excel (English Version)

Agenda

- Joint Distribution
 - Corpus Data
- Conditional Probability and Independence
 - Coin Tosses Examples
 - Conceptual Questions
- Bayesian Learning and Decision Making
 - The Monty Hall Problem
 - Café Du Donut
- Coding For Bayesian Update
 - Toss Coins In Python

Corpus Data

 Assume we have a corpus of a 100 words (a corpus is a collection of text). We tabulate the words, their frequencies and probabilities in the corpus are as follows:

Words (w)	Occurrences c(w)	Probabilities P(w)	Length (x)	Vowels (y)
the	30	0.30	3	1
to	16	0.16	2	1
some	15	0.15	4	2
grade	10	0.10	5	2
point	9	0.09	5	2
fail	8	0.08	4	2
pass	8	0.08	4	1
НК	4	0.04	2	0

Corpus Data

- We can now define the following random variables:
 - X: the length of the word;
 - Y: number of vowels in the word.
- The probabilities of some events:
 - $P(2 \le X \le 3) =$ P(to) + P(HK) + P(the) =0.16 + 0.3 + 0.04 = 0.5
 - $P(2 \le Y) = P(\text{some}) + P(\text{grade}) + P(\text{point}) + P(\text{fail}) = 0.42$

Words (w)	Occurrences c(w)	Probabilities P(w)	Length (x)	Vowels (y)
the	30	0.30	3	1
to	16	0.16	2	1
some	15	0.15	4	2
grade	10	0.10	5	2
point	9	0.09	5	2
fail	8	0.08	4	2
pass	8	0.08	4	1
НК	4	0.04	2	0

Joint Distribution

- We can describe the joint distribution between word length (X) and number of vowels (Y):
 - Let f(x, y) = P(X = x, Y = y).
 - Examples:
 - f(4,2) = P(fail) + P(some) = 0.15 + 0.08 = 0.23;
 - f(3,1) = P(the) = 0.3;
 - f(5,0) = 0.

Words (w)	Occurrences c(w)	Probabilities P(w)	Length (x)	Vowels (y)
the	30	0.30	3	1
to	16	0.16	2	1
some	15	0.15	4	2
grade	10	0.10	5	2
point	9	0.09	5	2
fail	8	0.08	4	2
pass	8	0.08	4	1
НК	4	0.04	2	0

Joint Distribution		У				
		0	1	2		
	2	0.04	0.16	0		
x	3	0	0.30	0		
	4	0	0.08	0.23		
	5	0	0	0.19		

Corpus Data

• According to the joint distribution f(x, y), we can calculate the marginal distribution (f_X and f_Y) and the conditional distribution.

			У		f
		0	1	2	f_X
	2	0.04	0.16	0	
x	3	0	0.30	0	
	4	0	0.08	0.23	
	5	0	0	0.19	

Conditional Probability

The idea of conditioning

Assume 14 equally likely outcomes

$$Pr(A) = \frac{5}{14} \quad Pr(B) = \frac{8}{14}$$

Use new information to revise a model

If told B occurred:

$$Pr(A|B) = \frac{2}{8} \quad Pr(B|B) = 1$$

Conditional independence

Conditional independent

Assume A and B are independent $(A \perp B)$, A and B are not independent if we are given C occurred.

Conditioning may affect independence

- Two unfair coins, A and B:
 - Pr (H|coin A) = 0.9, Pr (H|coin B) = 0.1
- Choose either coin with equal probability

Compare:

- Pr(toss 11 = H)

Pr (toss 11 = H|first 10 tosses are heads)

Independence vs. pairwise independence

- Two independent fair coin tosses
 - H₁: First toss is H
 - H₂: Second toss is H
- C: the two tosses had the same result

$$H_1 = \{HH, HT\}, H_2 = \{HH, TH\}, C = \{HH, TT\}$$

 $Pr(H_1) = 1/2, Pr(H_2) = 1/2, Pr(C) = 1/2$

$$Pr(H1 \cap C) = P(H1 \cap H2) = Pr(H2 \cap C) = 1/4$$

$$Pr(H1 \cap C \cap H2) = Pr(HH) = 1/4$$

 H_1 , H_2 , and C are pairwise independent, but not independent

НН	НТ
TH	TT

Exercise

- Suppose P(A) = 0.4 and P(B) = 0.6. Are A and B mutually exclusive?
- Suppose A and B are mutually exclusive and P(A) = 0.4. Then P(B) = ?

• (T or F) If events A and B are dependent, it is impossible to find event C that is independent of A but not independent of B.

The Monty Hall Problem

• Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Solve with Bayes' Theorem

You picked door 1	The car is behind door 1	The car is behind door 2	The car is behind door 3	Marginal
Host opens door 1				
Host opens door 2				
Host opens door 3				
Marginal				

- The Café buys donuts each day for \$40 per carton of 20 dozen donuts. Any cartons not sold are thrown away at the end of the day. If a carton is sold, the revenue is \$60.
- The salesperson is faced with two kinds of demand situations and needs to decide order size each day.
- Suppose that the order size (Q) can only be between 6 and 7 due to the storage capacity and delivery capacity.

• The salesperson's initial belief is that two demand situations are equally likely.

DAILY DEMAND (CARTONS)	PROBABILITY UNDER LOW DEMAND	PROBABILITY UNDER HIGH DEMAND	MARGINAL PROBABILITY
4	0.25	0.05	0.15
5	0.20	0.10	0.15
6	0.15	0.10	0.125
7	0.15	0.15	0.15
8	0.10	0.15	0.125
9	0.10	0.20	0.15
10	0.05	0.25	0.15

• On the first day, should the order size be 6 or 7?

Monetary Payoff (Profit) Table

	D = 4	D = 5	D = 6	D = 7	D = 8	D = 9	D = 10	EMV
Q = 6	0	60	120	120	120	120	120	93
Q = 7	-40	20	80	140	140	140	140	87.5
Prob.	0.15	0.15	0.125	0.15	0.125	0.15	0.15	

- If the salesperson finds that the demand in first day is 8, should he increase the order size from 6 to 7?
 - Here, we assume that the distribution of the demand situation on the second day is the same as the distribution of the situation on the first day.

• The salesperson updates his belief:

	Low Demand	High Demand
$D_1 = 8$	0.1*0.5	0.15*0.5

DAILY DEMAND (CARTONS)	PROBABILITY UNDER LOW DEMAND	PROBABILITY UNDER HIGH DEMAND
4	0.25	0.05
5	0.20	0.10
6	0.15	0.10
7	0.15	0.15
8	0.10	0.15
9	0.10	0.20
10	0.05	0.25

• The salesperson then updates monetary payoff (profit) table

	D = 4	D = 5	D = 6	D = 7	D = 8	D = 9	D = 10
Q = 6	0	60	120	120	120	120	120
Q = 7	-40	20	80	140	140	140	140
Prob.							

Tossing Coins

- What is the probability of getting a head?
- Suppose there are three possible cases: 1/3, 1/2, and 2/3.

- What if we can toss the coin many times?
- Please refer to the "TossCoin.py".

