Many Ensembles

```
ens_A1 = paths.TISEnsemble(A, B, interface_A1)
ens_A2 = paths.TISEnsemble(A, B, interface_A2)
ens_A3 = paths.TISEnsemble(A, B, interface_A3)
ens_B1 = paths.TISEnsemble(B, A, interface_B1)
ens_B2 = paths.TISEnsemble(B, A, interface_B2)
ens_B3 = paths.TISEnsemble(B, A, interface_B3)
```

- This is tedious! (Realistic: 8 states, 6 interfaces each!)
- Analysis requires that we organize these into groups
- Each group is a Transition; all transitions are in a single TransitionNetwork

Sampling vs. Analysis Transitions

Full rate matrix:

From\To	Α	В	С
A		K _{A→B}	$K_{A \to C}$
В	K _{B→A}		K _{B→C}
С	$k_{C \rightarrow A}$	K _{C→B}	

All the rates we can calculate (one per transition)

Call these "analysis transitions," or just "transitions"