1

Circles using Python

Ahilan R - FWC22090

Problem

Let C_1 and C_2 be two circles with C_2 lying inside C_1 . A circle C lying inside C_1 touches C_1 internally and C_2 externally. Identify the locus of the center of C.

Solution

Fig. 1: Rough sketch of given problem

Symbol	Description
A	Center of C_1
B	Center of C_2
P	Center of C
r_1	Radius of C_1
r_2	Radius of C_2
r	Radius of C

From the diagram we can deduce,

$$AP = AT_1 - PT_1$$

$$= r_A - r$$

$$BP = BT_2 + PT_2$$

$$= r - r_A$$

Adding (1) and (2) we get,

$$AP + BP = (r_A - r) + (r - r_B)$$

= $r_A + r_B = c$ (3)

Since R.H.S of (3) is constant, we can say that the locus of P is ellipse, by the defintion of ellipse.

Construction

Let the circles C_1 , C_2 and C be represented by following equations respectively,

$$\mathbf{x}^{\top}\mathbf{I}\mathbf{x} + 2\mathbf{u}_{1}^{\top}\mathbf{x} + f_{2} = 0$$

$$\mathbf{x}^{\top}\mathbf{I}\mathbf{x} + 2\mathbf{u}_{2}^{\top}\mathbf{x} + f_{2} = 0$$

$$\mathbf{x}^{\top}\mathbf{I}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0$$

where,

Center of C_1	A	$-\mathbf{u_1}$
Center of C_2	В	$-\mathbf{u_2}$
Center of C	P	$-\mathbf{u}$

For the sake of simplicity, let's assume $\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

$$AP = \|\mathbf{A} - \mathbf{P}\|$$
$$= \|\mathbf{u}\|$$
$$BP = \|\mathbf{B} - \mathbf{P}\|$$
$$= \|\mathbf{u}_2 - \mathbf{u}\|$$

Now, (3) becomes

$$\|\mathbf{u_2} - \mathbf{u}\| + \|\mathbf{u}\| = c$$

$$\|\mathbf{u_2} - \mathbf{u}\|^2 = (c - \|\mathbf{u}\|)^2$$

$$(\mathbf{u_2} - \mathbf{u}^\top) (\mathbf{u_2} - \mathbf{u}) = c^2 + \mathbf{u}^\top \mathbf{u} - 2c \|\mathbf{u}\|$$

$$\mathbf{u_2}^\top \mathbf{u_2} + \mathbf{u}^\top \mathbf{u} - 2\mathbf{u_2}^\top \mathbf{u} = c^2 + \mathbf{u}^\top \mathbf{u} - 2c \|\mathbf{u}\|$$

$$-2\mathbf{u_2}^\top \mathbf{u} = c^2 - \mathbf{u_2}^\top \mathbf{u_2} - 2c \|\mathbf{u}\|$$

Taking
$$\mathbf{u}_{\mathbf{2}}^{\top}\mathbf{u}_{2} - c^{2} = k$$
,
$$\left(k - 2\mathbf{u}_{\mathbf{2}}^{\top}\mathbf{u}\right)^{2} = \left(-2c \|\mathbf{u}\|\right)^{2}$$
(2)
$$k^{2} + 4\left(\mathbf{u}_{\mathbf{2}}^{\top}\mathbf{u}\right)\left(\mathbf{u}_{\mathbf{2}}^{\top}\mathbf{u}\right) - 4k\mathbf{u}_{\mathbf{2}}^{\top}\mathbf{u} = 4c^{2}\mathbf{u}^{\top}\mathbf{u}$$

$$4c^{2}\mathbf{u}^{\top}\mathbf{u} - 4\mathbf{u}^{\top}\left(\mathbf{u}_{\mathbf{2}}\mathbf{u}_{\mathbf{2}}^{\top}\right)\mathbf{u} + 4k\mathbf{u}_{\mathbf{2}}^{\top}\mathbf{u} - k^{2} = 0$$

$$\Longrightarrow \mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{w}^{\top}\mathbf{x} + g = 0$$
(4)

(4) is the equation of the ellipse, the locus of P, where,

$$\begin{aligned} \mathbf{V} &= 4c^2\mathbf{I} - 4\mathbf{u_2}\mathbf{u_2}^\top, \\ \mathbf{w} &= 2k\mathbf{u_2} \quad \text{and} \quad g = -k^2. \end{aligned}$$

Construction Parameters Used

Symbol	Description	Value
A	Center of C_1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
В	Center of C_2	$\begin{pmatrix} 11 \\ 0 \end{pmatrix}$
P	Center of C	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$
r_1	Radius of C_1	16
r_2	Radius of C_2	3
r	Radius of C	12
r	Radius of C	12
T_1D	Diameter of C_1	
gap	Length of BD	2

TABLE I: Circles parameters

On substituting respective values taken from I, the equation of the locus of, P, (4) will be

$$\mathbf{x}^{\top} \begin{pmatrix} 60 & 0\\ 0 & 90.25 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 330 & 0 \end{pmatrix} \mathbf{x} - 3600 = 0$$
(5)

Symbol	Description	Value
a	Semi-major axis	9.5
b	Semi-minor axis	7.746
С	Center of Ellipse	$\begin{pmatrix} 5.5 \\ 0 \end{pmatrix}$

TABLE II: Ellipse parameters from (5)