

แซง

ถนนจากสนามบินบูดาเปสต์ไปที่โรงแรมฟอร์ราชเดินทางได้ทางเดียวและมีเลนเดียว ถนนนี้มีความยาว L กิโลเมตร

ในช่วงงานแข่งขัน IOI 2023 มีรถบัส N+1 คัน วิ่งบนถนนนี้ รถบัสแต่ละคันกำหนดด้วยหมายเลข 0 ถึง N รถบัส หมายเลข i ($0 \le i < N$) ถูกกำหนดไว้ให้ออกจากสนามบิน ณ วินาทีที่ T[i] ของงาน และสามารถเดินทางได้ 1 กิโลเมตรในระยะเวลา W[i] วินาที รถบัสหมายเลข N เป็นรถบัสสำรอง ซึ่งสามารถเดินทางได้ 1 กิโลเมตรในระยะเวลา X วินาที รถบัสสำรองจะออกจากสนามบิน ณ วินาทีที่ Y ซึ่งยังไม่ได้ถูกกำหนดไว้

การแซงของรถบัสบนถนนไม่สามารถทำได้ แต่รถบัสสามารถที่จะแซงกันได้ที่ **สถานีเรียงรถ** โดยมีสถานีเรียงรถทั้งหมด M (M>1) สถานี ซึ่งกำหนดด้วยหมายเลข 0 ถึง M-1 อยู่ในตำแหน่งที่แตกต่างกันบนถนน สถานีเรียงรถ j ($0\leq j < M$) จะอยู่ตามเส้นทางบนถนนในตำแหน่งกิโลเมตรที่ S[j] โดยเริ่มต้นจากสนามบิน สถานีเรียงรถนั้นเรียง ตามระยะทางจากสนามบินจากน้อยไปมาก ซึ่งแปลว่า S[j] < S[j+1] สำหรับ $0\leq j \leq M-2$ โดยสถานีเรียงรถ แรกคือสนามบินและสถานีเรียงรถสุดท้ายคือโรงแรม ซึ่งแปลว่า S[0]=0 และ S[M-1]=L

รถบัสแต่ละคันจะวิ่งด้วยความเร็วสูงสุดจนกระทั่งตามทันรถบัสคันที่อยู่ด้านหน้าที่วิ่งช้ากว่าบนถนน ซึ่งในกรณีนั้นรถ บัสจะต้องวิ่งต่อกันและถูกบังคับให้เคลื่อนที่ด้วยความเร็วของรถบัสคันที่ช้ากว่าจนกระทั่งถึงสถานีเรียงรถถัดไป รถบัส ที่เร็วกว่าจึงจะแซงรถบัสที่ช้ากว่าได้

กล่าวคือ สำหรับ i กับ j ซึ่ง $0 \le i \le N$ และ $0 \le j < M$ นั้น วินาทีที่ $t_{i,j}$ เป็นเวลาที่รถบัส i **ถึงที่** สถานีเรียงรถ j ซึ่งสามารถนิยามได้ดังนี้ ให้ $t_{i,0} = T[i]$ สำหรับแต่ละ $0 \le i < N$, และให้ $t_{N,0} = Y$

สำหรับแต่ละ j ซึ่ง 0 < j < M

- กำหนดให้ $e_{i,j}$ คือเวลาที่ **คาดว่าจะถึง** (ในหน่วยวินาทีที่) ของรถบัส i ที่สถานีเรียงรถ j ซึ่งเป็นเวลาที่รถบัส i จะถึงสถานีเรียงรถ j ถ้ารถบัสคันดังกล่าวเคลื่อนที่ด้วยความเร็วสูงสุดตั้งแต่เวลาที่รถบัสนั้นถึงสถานีเรียงรถ j-1 นั่นคือ ให้
 - $\circ \ e_{i,j} = t_{i,j-1} + W[i] \cdot (S[j] S[j-1])$ สำหรับ $0 \leq i < N$ และ
 - $\circ \ e_{N,j} = t_{N,j-1} + X \cdot (S[j] S[j-1])$
- รถบัส i ถึงสถานีเรียงรถ j ณ เวลาที่*มากที่สุด* ระหว่างเวลาที่คาดว่าจะถึงของรถบัส i และของรถบัสคันอื่นที่ ถึงที่สถานี j-1 ก่อนรถบัส i กล่าวคือให้ $t_{i,j}$ เป็นค่ามากที่สุดของ $e_{i,j}$ และทุก ๆ $e_{k,j}$ ซึ่ง $0 \leq k \leq N$ และ $t_{k,j-1} < t_{i,j-1}$

ทางผู้จัดงาน IOI ต้องการที่จะกำหนดเวลาออกจากสนามบินของรถบัสสำรอง งานของคุณคือตอบคำถาม Q คำถาม จากผู้จัดงาน ซึ่งอยู่ในรูปแบบต่อไปนี้ หากกำหนดให้วินาทีที่ Y เป็นเวลาที่รถบัสสำรองจะออกจากสนามบิน แล้วถาม ว่า ณวินาทีที่เท่าไร รถบัสสำรองจึงจะมาถึงโรงแรม

รายละเอียดการเขียนโปรแกรม

void init(int L, int N, int64[] T, int[] W, int X, int M, int[] S)

- L: ความยาวของถนน
- N: จำนวนของรถบัสที่ไม่ใช่รถบัสสำรอง
- ullet T: อาร์เรย์ขนาด N ที่ระบุเวลาที่รถบัสไม่สำรองออกจากสนามบิน
- W: อาร์เรย์ขนาด N ที่กำหนดความเร็วสูงสุดของรถบัสไม่สำรอง
- ullet X: ระยะเวลาที่รถบัสสำรองใช้ในการเดินทาง 1 กิโลเมตร
- M: จำนวนสถานีเรียงรถ
- ullet S: อาร์เรย์ขนาด M ที่ระบุระยะทางจากสนามบินไปยังสถานีเรียงรถ
- ฟังก์ชันนี้จะถูกเรียกเพียงครั้งเดียวเท่านั้น ก่อนการเรียก arrival_time ใด ๆ

int64 arrival_time(int64 Y)

- ullet Y: เวลาที่รถบัสสำรอง (รถบัสหมายเลข N) จะออกจากสนามบิน
- ฟังก์ชันนี้ต้องคืนค่าเวลาที่รถบัสสำรองมาถึงที่โรงแรม
- ullet ฟังก์ชันนี้จะถูกเรียกจำนวน Q ครั้งพอดี

ตัวอย่าง

พิจารณาลำดับการเรียกฟังก์ชันต่อไปนี้

ตารางต่อไปนี้แสดงเวลาที่คาดว่าจะถึงและเวลาที่ถึงจริงของรถบัสไม่สำรองที่ไปถึงสถานีเรียงรถต่าง ๆ โดยไม่คำนึงถึง รถบัสหมายเลข 4 (ที่ยังไม่ได้ระบุเวลา)

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180

เวลาที่ถึงสถานีเรียงรถ 0 เป็นเวลาที่รถบัสถูกกำหนดให้ออกจากสนามบิน นั่นคือ $t_{i,0}=T[i]$ สำหรับ $0\leq i\leq 3$ เวลาที่คาดว่าจะถึงและเวลาที่ถึงจริงของสถานีเรียงรถ 1 สามารถคำนวณได้ดังต่อไปนี้:

• เวลาที่คาดว่าจะถึงสถานีเรียงรถ 1

$$\circ$$
 รถบัส 0 : $e_{0,1}=t_{0,0}+W[0]\cdot(S[1]-S[0])=20+5\cdot 1=25$

$$\circ$$
 รถบัส 1 : $e_{1,1}=t_{1,0}+W[1]\cdot (S[1]-S[0])=10+20\cdot 1=30$

- \circ รถบัส 2: $e_{2,1} = t_{2,0} + W[2] \cdot (S[1] S[0]) = 40 + 20 \cdot 1 = 60$
- \circ รถบัส 3: $e_{3,1}=t_{3,0}+W[3]\cdot (S[1]-S[0])=0+30\cdot 1=30$
- เวลาจริงที่ถึงสถานีเรียงรถ 1
 - \circ รถบัส 1 กับ รถบัส 3 ถึงสถานี 0 ก่อนรถบัส 0 ดังนั้น $t_{0,1} = \max([e_{0,1},e_{1,1},e_{3,1}]) = 30$
 - \circ รถบัส 3 ถึงสถานี 0 ก่อนรถบัส 1 ดังนั้น $t_{1,1} = \max([e_{1,1},e_{3,1}]) = 30$
 - \circ รถบัส 0 รถบัส 1 และ รถบัส 3 ถึงสถานีเรียงรถ 0 ก่อนรถบัส 2 ดังนั้น $t_{2,1}=\max([e_{0,1},e_{1,1},e_{2,1},e_{3,1}])=60$
 - \circ ไม่มีรถบัสอื่นถึงสถานี 0 ก่อนรถบัส 3 ดังนั้น $t_{3,1}=\max([e_{3,1}])=30$

arrival_time(0)

รถบัส 4 ใช้เวลา 10 วินาทีที่จะเดินทาง 1 กิโลเมตรและถูกกำหนดให้ออกจากสนามบินที่วินาทีที่ 0 ในกรณีนี้ ตารางต่อ ไปนี้แสดงเวลาที่ถึงของรถบัสแต่ละคัน โดยเวลาที่คาดว่าจะถึงและเวลาที่ถึงจริงของรถบัสไม่สำรอง จุดที่เปลี่ยนแปลง ทั้งหมดได้ชีดเส้นใต้ไว้

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	<u>60</u>
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	0	10	10	30	30	60	60

เราจะเห็นว่ารถบัส 4 ถึงโรงแรม ณ วินาทีที่ 60 ดังนั้นฟังก์ชันต้องคืนค่า 60

รถบัส 4 ถูกกำหนดให้ออกจากสนามบินที่วินาทีที่ 50 ในกรณีนี้ ไม่มีการเปลี่ยนแปลงเวลาที่ถึงของรถบัสไม่สำรองจาก ตารางแรก ตารางต่อไปนี้แสดงเวลาที่ถึงของรถบัสแต่ละคัน

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	50	60	60	80	90	120	130

รถบัส 4 แซงรถบัส 2 ที่ช้ากว่าที่สถานีเรียงรถ 1 โดยที่ทั้งสองคันถึงที่เวลาเดียวกัน หลังจากนั้น รถบัส 4 วิ่งติดกับรถบัส 3 ระหว่างสถานี 1 และ สถานี 2 ทำให้รถบัส 4 ถึงสถานีที่ 2 ณ วินาทีที่ 90 แทนที่จะเป็นวินาทีที่ 80 และหลังจากออก

จากสถานี 2 นั้น รถบัส 4 วิ่งติดไปกับรถบัส 1 จนกระทั่งถึงโรงแรม รถบัส 4 ถึงโรงแรม ณ วินาทีที่ 130 ดังนั้นฟังก์ชัน ต้องคืนค่า 130

เราสามารถพล็อตกราฟเวลาที่รถบัสแต่ละคันต้องใช้เพื่อไปยังระยะทางต่าง ๆ จากสนามบินได้ แกน x ของกราฟคือ ระยะทางจากสนามบิน (หน่วยกิโลเมตร) และแกน y ของกราฟคือเวลา (หน่วยวินาที) เส้นประแนวตั้งระบุตำแหน่ง ของสถานีเรียงรถ เส้นทึบต่าง ๆ (พร้อมด้วยหมายเลขของรถบัส) แสดงถึงรถบัสไม่สำรองทั้งสี่คัน เส้นประสีดำแสดงถึง รถบัสสำรอง

ข้อจำกัด

- $1 \le L \le 10^9$
- $1 \le N \le 1000$
- ullet $0 \leq T[i] \leq 10^{18}$ (สำหรับแต่ละ i ซึ่ง $0 \leq i < N$)
- ullet $1 \leq W[i] \leq 10^9$ (สำหรับแต่ละ i ซึ่ง $0 \leq i < N$)
- $1 \le X \le 10^9$
- $2 \le M \le 1000$
- $0 = S[0] < S[1] < \cdots < S[M-1] = L$
- $1 \le Q \le 10^6$
- $0 < Y < 10^{18}$

ปัญหาย่อย

- 1. (9 คะแนน) $N=1, Q \leq 1\,000$
- 2. (10 คะแนน) $M=2, Q \leq 1\,000$

- 3. (20 คะแนน) $N, M, Q \leq 100$
- 4. (26 คะแนน) $Q \leq 5\,000$
- 5. (35 คะแนน) ไม่มีข้อจำกัดใดเพิ่มเติม

เกรดเดอร์ตัวอย่าง

เกรดเดอร์ตัวอย่างจะอ่านค่าอินพุตในรูปแบบดังนี้

- ullet บรรทัดที่ $1:L\;N\;X\;M\;Q$
- ullet บรรทัดที่ $2{:}T[0]$ T[1] \dots T[N-1]
- ullet บรรทัดที่ $3:W[0]\;W[1]\;\dots\;W[N-1]$
- ullet บรรทัดที่ $4\!:\!S[0]\,S[1]\,\ldots\,S[M-1]$
- ullet บรรทัดที่ 5+k $(0\leq k < Q)$: Y สำหรับคำถามที่ k

เกรดเดอร์ตัวอย่างจะพิมพ์ผลลัพธ์ของคุณตามรูปแบบต่อไปนี้

ullet บรรทัดที่ 1+k ($0\leq k < Q$): คืนค่าผลลัพธ์ของ ${
m arrival_time}$ ในคำถามที่ k