

How to configure SoftMotion Drives

Introduction

After this module you will be ...

able to configure drives for SoftMotion

Agenda

- General information
- Components of CoDeSys SoftMotion
- DriveInterface interface between IEC program and drives
- Drive configuration

General information

- CoDeSys SoftMotion is based on PLCopen motion control.
- CoDeSys SoftMotion is only possible with a CoDeSys Motion Control PLC.
- The SoftMotion functionality is accessed by function blocks
 - FBs beginning with 'SMC_' are 3S specific implementations;
 - those starting with 'MC_' are FBs according to the PLCopen MC specification

General information

Servo Drive

- set values (pos, vel) calculated by SoftMotion FBs cyclically in PLC context (approx. every 1-10 ms)
- set values are carried out by the drive (closed loop control inside drive (typical cycle 100-250 µs))
- actual values are transferred from drive to PLC mainly for monitoring / HMI

General information

Analog / Stepper (PosControl)

- set values (pos, vel) calculated by SoftMotion FBs cyclically in PLC context (approx. 1-10 ms)
- control via set velocity
- position control loop closed inside PLC
- actual position value used for closed position control loop

development environment

drive configuration

CAM editor

CNC editor

motion design

motion

EC 61131-3 program

machine

Components

- **SoftMotion base libraries:**
 - SM3_Basic.library
 - SM3_CNC.library
- Fielbus specific
 - SM3_Drive_CAN.library
 - SM3_Drive_ETC.library
- **Drive specific libraries:**
 - SM3_Drive_CAN_<xy>.library, SM3_Drive_ETC_<xy>.library,...

Drive Interface (AXIS_REF)

- is a function block
- uniform interface between PLC and drive (independent of field bus and drive) for:
 - configuration of drives (start-up)
 - cyclic communication
 - set values PLC → drive
 - actual values drive → PLC
 - supervising the communication
 - acyclic communication
 - read/write parameters

Drive Interface

- When compiling, CoDeSys defines a function block instance with an AXIS_REF data structure which holds all necessary parameters/variables and which is identical for all drive types.
- AXIS_REF is defined in SM3_Basic.library.
- AXIS_REF can be extended by drive specific parameters and variables.

Device Configuration Elements

- drive
- fieldbus node

Configuration

Drive dependent Configuration Tabs

Configuration

Standard Fieldbus Configuration Tabs

Configuration

- poss. set range of movement:
- bSWLimitEnable, bSWLimitNegative/Positive
- modulo
- specify fPositionPeriod ramp type for PLCopen FBs
- trapezoid
- sin²

Configuration

Scaling
 SoftMotion unit (used in PLC program) → increments

SM_Drive_CAN_Nanotec_SMCI475			
SoftMotion Drive: Basic	SoftMotion Drive: Scaling/Mapping	SoftMotion property of	f Nanotec CAN drive Configuration
_scaling			
invert direction			
2000	increments <=> motor turns		1
1	motor turns <=> gear output turns		1
1	gear output turns <=> units in application		1

Visualization Templates - Drive

- SM3_Basic.library provides templates for CoDeSys visualization:
 - LinDrive

RotDrive

Exercise

SM_Config_EX1

Configure two axes (virtual drives):
DriveA as a finite axis (range -100..400)
DriveB as a modulo axis (modulo value 360.0)

Let's check

Summary

- Editors
 - drive configuration
 - CAM
 - CNC
- Drives
 - virtual
 - PosControl
 - "real" drives
 - need a special device description and a driver library
- Same usage of all drives due to common drive interface

Thank you for your interest

