

Risk Management for Tech Index Portfolio

Volatility-Targeted Delta and Gamma Hedging for a Tech Index Portfolio

MATH 583: Final Presentation

Nzarama Kouadio Data Science Student Duke MIDS 2026

Si Min Loo (Lucy)
Data Science Student
Duke MIDS 2026

Ramil Mammadov
Data Science Student
Duke MIDS 2026

Cynthia Zhou
Data Science Student
Duke MIDS 2026

Project Overview Data Source and Key Features Predicting Market Volatility Hedging Strategy Back-testing, Strategy Evaluation and Limitations

NVIDIA Stock Price Drop Since January 2025

TRUMP IMPOSES

145% TARRIF

RATE ON CHINA

NVDIA SUFFERS

RECORD \$600 BILLION LOSS

Objective

Maintain a 20% volatility target and use delta and to actively manage risk and stabilize our QQQ portfolio (\$10 Million) in volatile markets

Risk Modeling Approach:

Use GARCH and XG-Boost to forecast volatility

Risk Management Methodology:

Hedge with QQQ options using volatility targeting, delta neutral strategies

Business Impact

- ✓ Enhances portfolio resilience
- ✓ Stabilizes volatility near target
- ✓ Reduces losses from price swings
- ✓ Improves risk-adjusted returns

QQQ ETF Data

- **Date**: Trading date
- **Return**: Daily return of QQQ
- Realized Volatility: 21-day rolling annualized volatility
- **Volume**: Trading volume

Macro Market Risk Indicators

- VIX: S&P 500 implied volatility index
- VXN: Nasdaq 100 implied volatility index
- **Fed Rate:** Proxy for the Fed Funds Rate using IRX
- **RSI 14:** 14-day Relative Strength Index

QQQ Option Data

- Call Options
- Put Options
 Strike price, delta, gamma, implied volatility

QQQ vs S&P 500 Annualized Realized Volatility (21-Day Rolling)

- QQQ Realized Volatility
- S&P 500 Realized Volatility
- 1% Daily = 16% Annual
- 1.3% Daily = 21% Annual
- 3% Daily = 48% Annual

Volatility Type	Nature	Risk
Normal (-/+ 1.3%)	Frequent Moves	Volatility Drag
Sudden (-/+ 3-5%)	Extreme Moves	Large Fall

Modeling: Predicting QQQ Volatility Using GARCH and XG-Boost

- Compare GARCH(1,1) vs XG-Boost for predicting QQQ volatility
- Support delta hedging & volatility targeting (keep volatility < 20%)
- Focus is on real-world applicability, not which model is "better" in general

One Step-Ahead Forecasting Framework

- Mimics real trading: forecast tomorrow's risk
- Allows daily rolling evaluation
- No data leakage from the future
- Ensures fair comparison across models

GARCH (1, 1) Statistical Model

Rolling Expanding Window (start date to previous predicted day)

- Stable parameter estimation
- Leverages long-term volatility structure

XG Boost (Machine Learning Model)

Rolling Fixed Window (Rolling the most recent 3 years)

- Avoids overfitting
- Adapts to regime changes
- Uses market features (VIX, VXN,)

Forecasting QQQ Volatility: Using GARCH(1,1) Model

Testing Base GARCH Assumptions

- 1 ADF test for stationarity: p-value: 3.79e-29 < 0.05
- 2 Testing for ARCH Effects: p-value: 2.43e-144 < 0.05

GARCH(1,1): Rolling Fixed-Window [Robustness Test]

Realized vs Predicted Volatility Over Time

	Fixed	Expanding	Comparison
R square	0.791	0.835	+ 9%
RMSE	0.058	0.051	- 7%
MAE	0.038	0.032	- 6%

GARCH(1,1): Rolling Expanding-Window

Realized vs Predicted Volatility Over Time

Prediction Fit: Actual vs Predicted

Performance Metrics

Feature Correlations Behind XG-Boost's Strong Forecasts

Comparison: XG-boost the Leading Model based on Performance Metrics

Hedging Strategy Methodology: Regime Specific Hedging

Predicted vs Actual Implied Volatility and QQQ Close Price (2020-2023)

Volatility and QQQ show an inverse relationship, guiding our regimespecific hedging strategy

Why Use Regimes

- Market volatility impacts risk
- Based on predicted volatility levels
- Based on historical market behavior and practical trading considerations

3 Regime Classifications

- Low Volatility: Predicted < 0.20 → Calm, stable markets
- Moderate Volatility: 0.20–0.35 →
 Some uncertainty, balanced protection needed
- **High Volatility**: > 0.35 → Stress/crisis periods, strong protection required.

Option Hedging Strategy at each Volatility Regime

Overall Strategy Design

- Rebalanced portfolio every 14 days
- Used XG-Boost to predict next-day volatility
- Apply matching options strategy based on predicted regime

Starting Parameters

- **Initial Portfolio Value**: \$10 million invested in QQQ ETF shares.
- **Instruments Set**: Long and Short Options Positions

Comparison of QQQ Portfolio Value: Hedged vs Unhedged (2020-2023)

	Unhedged	Hedged	Comparison
Annualized Volatility	25%	19%	-24%
Sharpe Ratio	0.6	0.7	+ 17%
Cumulative Return	49%	44%	- 10%
Maximum Drawdown	-35.1%	-34.7%	+ 1.1%

Successfully reduced volatility and still deliver strong long-term performance

Limitations and Future Work

Q&A