DASHBOARD / I MIEI CORSI / CALCOLO NUMERICO / SEZIONI / ESAME 30 GENNAIO / QUIZ STUDENTI 22-23 TURNO 1

Iniziato lunedì, 30 gennaio 2023, 09:43

Stato Completato

Terminato lunedì, 30 gennaio 2023, 10:15

Tempo impiegato 32 min. 12 secondi

Punteggio 20,00/23,00

Valutazione 8,70 su un massimo di 10,00 (87%)

Domanda **1**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice $n \times n$, quale delle seguenti affermazioni è errata ?

a. Nessuna delle precedenti.

8

- \circ b. $K(A) = ||A||||A^{-1}||$.
- \bigcirc c. $K(A) \geq 1$.

La risposta corretta è: Nessuna delle precedenti.

Domanda **2**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice quadrata $n \times n$ mal condizionata, allora:

- \bigcirc a. $||A^{-1}||$ è molto grande.
- \bigcirc b. $||A||_2$ è molto grande.
- \odot c. K(A) è molto grande.

PO W

La risposta corretta è: K(A) è molto grande.

M M

Domanda 3	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	

Se il vettore $v=(10^6,1)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_\infty$ l'errore relativo tra v e \tilde{v} è:

- O b. Nessuna delle precedenti.
- O c. 4.

La risposta corretta è: $4 \cdot 10^{-6}$.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

L'errore inerente è dovuto:

- oa. All'uso dei <u>numeri finiti</u> per rappresentare i dati.
- O b. Alle imperfezioni dello strumento di misura dei dati del problema.
- o c. Al propagarsi degli errori di arrotondamento delle singole operazioni.

Le risposte corrette sono: All'uso dei <u>numeri finiti</u> per rappresentare i dati., Al propagarsi degli errori di arrotondamento delle singole operazioni.

Domanda $f 5$ Risposta corretta Punteggio ottenuto 1,00 su 1,00 Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono: a. Polinomi di grado $\geq n$. b. Nessuna delle precedenti. c. Polinomi lineari a tratti. Domanda $f 6$ Risposta corretta $\dot e$: Nessuna delle precedenti. La risposta corretta $\dot e$: Nessuna delle precedenti. Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono: a. Polinomi di grado n . b. Nessuna delle precedenti.		
$n+1$ punti sono: a. Polinomi di grado $\geq n$. b. Nessuna delle precedenti. c. Polinomi lineari a tratti. La risposta corretta è: Nessuna delle precedenti. Domanda $\mathbf 6$ Risposta corretta Punteggio ottenuto 1,00 su 1,00 Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono: a. Polinomi di grado n .	sposta corretta	
$ \begin{tabular}{c} \hline \textbf{0} & \textbf{b}. & \textbf{Nessuna delle precedenti.} \\ \hline \textbf{0} & \textbf{c}. & \textbf{Polinomi lineari a tratti.} \\ \hline \end{tabular} $	· ,	İ
Domanda $\bf 6$ Risposta corretta $\bf \hat{e}$: Nessuna delle precedenti. La risposta corretta $\bf \hat{e}$: Nessuna delle precedenti. Domanda $\bf 6$ Risposta corretta Punteggio ottenuto 1,00 su 1,00 Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono: a. Polinomi di grado n .	\bigcirc a. Polinomi di grado $\geq n$.	
La risposta corretta è: Nessuna delle precedenti. $\begin{array}{c} \text{Domanda 6} \\ \text{Risposta corretta} \\ \text{Punteggio ottenuto 1,00 su 1,00} \end{array}$ Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono: $\begin{array}{c} \text{ a. Polinomi di grado } n. \end{array}$	b. Nessuna delle precedenti.	PO NO
Risposta corretta Punteggio ottenuto 1,00 su 1,00 Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di $n+1$ punti sono:		
n+1 punti sono: $lacktriangledown$ a. Polinomi di grado n .	sposta corretta	
	n+1 punti sono:	
	b. Nessuna delle precedenti.	

La risposta corretta è: Polinomi di grado n.

 ${igcup}$ c. Polinomi di grado n+1.

Po M

PO MR

Domanda 7

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ derivabile:

- igcirc a. $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di massimo.
- ullet b. $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.
- \odot c. $abla f(x^*)=0$ è condizione necessaria e sufficiente affinche x^* sia un punto di minimo.

La risposta corretta è: $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

Domanda 8

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile. Vale:

- lacksquare a. Se $abla f(x^*) = 0$ allora x^* è un punto stazionario.
- $\, \bigcirc \,$ b. $\,$ Se $\nabla f(x^*) = 0 \,$ allora x^* è un punto di massimo o minimo locale.
- \bigcirc c. Se $abla f(x^*)=0$ allora x^* è un punto di minimo locale.

La risposta corretta è: Se $\nabla f(x^*) = 0 \,$ allora x^* è un punto stazionario.

Po M

醬

Domanda	9	

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice $n \times n$ simmetrica e definita positiva, allora:

- \bigcirc a. Gli autovalori di A sono tutti non negativi.
- \odot b. Gli autovalori di A sono tutti positivi.
- \bigcirc c. A è singolare.

La risposta corretta è: Gli autovalori di A sono tutti positivi.

Domanda 10

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Data la matrice U:

$$U = egin{bmatrix} 3 & -1/3 & 0 \ 2 & 1/2 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Allora:

- \odot a. U è definita positiva.
- Ob. Nessuna delle precedenti.
- \bigcirc c. U è ortogonale.

La risposta corretta è: $\it U$ è definita positiva.

HI M

Domanda 11

Risposta non data

Punteggio max.: 1,00

Se A è una matrice n imes n tale che $||A||_p = 0$ allora:

- $\bigcirc \ \, {\rm a.} \quad A=0.$
- \bigcirc b. rank(A) = 0.
- \bigcirc c. A puo' essere uguale o meno a 0.

La risposta corretta è: A=0. $\boldsymbol{\varrho}$ rank(A)=0.

Domanda 12

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Data la matrice:

$$A = \left[egin{array}{cc} -2 & 5 \ 0 & 3 \end{array}
ight]$$

calcolare $||A||_2$ e $||A||_1$.

$$\bigcirc \text{ a. } \left|\left|A\right|\right|_2 = 6 \qquad \left|\left|A\right|\right|_1 = 8$$

$$\bigcirc \text{ b. } \left| \left| A \right| \right|_2 = 3 \qquad \left| \left| A \right| \right|_1 = 2$$

o c. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

10 M

PO ass

Domanda 13

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Usando la notazione scientifica normalizzata con base $\beta=10$, se x=3.89, allora:

- O a. Nessuna delle precedenti.
- \bigcirc b. La mantissa di x è 3.89 e la parte esponenziale è 10^{0} .
- \odot c. La mantissa di x è 0.389 e la parte esponenziale è 10^1 .

La risposta corretta è: La mantissa di x è 0.389 e la parte esponenziale è 10^1 .

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi$, w=e, e z=fl(x)-fl(w), allora:

$$\bullet$$
 a. $fl(z) = 0.40 \times 10^0$.

 \bigcirc b. $fl(z)=0.44 imes 10^{0}$.

 \circ c. $fl(z) = 0.43 \times 10^{0}$.

La risposta corretta è: $fl(z) = 0.40 \times 10^{0}$.

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il metodo di discesa del gradiente:

- lacktriangledown a. Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per ogni x_0 , converge sempre ad un punto stazionario di f(x).
- \bigcirc b. Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per x_0 , converge sempre ad un minimo di f(x).
- \bigcirc c. Converge sempre ad un minimo di f(x).

La risposta corretta è: Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per ogni x_0 , converge sempre ad un punto stazionario di f(x).

Domanda 16

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $lpha=rac{1}{2}$, allora:

$$ullet$$
 a. $x^{(1)} = (1 - rac{e}{2}, 1 - rac{e}{2})^T$.

- \circ b. $x^{(1)} = (1 + \frac{e}{2}, 1 + \frac{e}{2})^T$.
- \circ c. $x^{(1)} = (\frac{1}{2} \frac{e}{2}, \frac{1}{2} \frac{e}{2})^T$.

La risposta corretta è: $x^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T$.

8 of 12

an XX Domanda 17

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ con m>n, ha almeno una soluzione se:

- \bigcirc a. rg(A) = n.
- O b. Entrambe le precedenti.
- lacksquare c. $rg(A) \leq n$.

F2

La risposta corretta è: Entrambe le precedenti.

Domanda 18

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il problema lineare ai minimi quadrati $\min \lvert \lvert Ax - b \rvert \rvert_2^2$ ha equazioni normali:

- \bigcirc a. Ax = b
- \bigcirc b. $Ax=A^Tb$
- \odot c. $A^TAx = A^Tb$

PO MR

La risposta corretta è: $A^TAx = A^Tb$

quiz studenti 22-23 tempo 30 ▶

Il costo computazionale per la risoluzione di un sistema triangolare è di:

■ LAB5

Vai a...

$$\bigcirc$$
 b. $O\left(\frac{n}{3}\right)$

 \bigcirc c. $O\left(\frac{n^3}{2}\right)$

La risposta corretta è: $O\left(\frac{n^2}{2}\right)$

 $10 { of } 12$

Domanda 21	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	
Il metodo di Jacobi per risolvere il sistema lineare $Ax=b$, con A $n imes n$:	1
\bigcirc a. è convergente per ogni matrice A .	
\bigcirc b. è convergente per ogni matrice A solo se x_0 è il vettore nullo.	
ullet c. $$ è convergente se il raggio spettrale $ ho(J) < 1$ dove J è la matrice di iterazione.	PO XX
La risposta corretta è: è convergente se il raggio spettrale $ ho(J) < 1$ dove J è la matrice di iterazione.	
Domanda 22	
Risposta corretta Punteggio ottenuto 1,00 su 1,00	
La decomposizione in valori singolari della matrice A esiste se e solo se: o a. Sono entrambe errate. b. è una matrice quadrata.	R
Oc. Ha rango massimo.	

La risposta corretta è: Sono entrambe errate.

Pil W

Domanda 23

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia Σ la matrice della decomposizione SVD di A,

allora:

- \bigcirc a. rank(A) = 3.
- \bigcirc b. rank(A) = 4.
- lacksquare c. rank(A)=2.

La risposta corretta è: rank(A) = 2.

12 of 12