APIs de Visualização em Python

TDC 2014

D3 Tips

& Tricks

d3.is

Visualização

Statistics and Computing

Leland Wilkinson

The Grammar of Graphics

Second Edition

D3 on AngularJS

Create Dynamic Visualizations with AngularJS

Copyrighted Mafe

Second Edition

Show Me the Numbers

Designing Tables and Graphs to Enlighten

Stephen Few

Copyrighted Materia

The Visual Display of Quantitative Information

EDWARD R. TUFTE

Matplotlib for Python Developers

Build remarkable publication quality plots the easy way

Python Data Visualization Cookbook

Over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries

Igor Milovanović

[open sour

Countries Material

PACKT

What matters to statistical users?

- Standard suite of linear algebra, matrix operations (NumPy, SciPy)
- Availability of statistical models and functions
 - More than there used to be, but nothing compared to R / CRAN
 - rpy2 is coming along, but it doesn't seem to be an "end-user" project
- Data visualization and graphics tools (matplotlib, ...)
- Interactive research environment (IPython)

Visualização + Python

Mathlottilo

Pandas Support

Javascript Support

bokeh

ggplot

Wes McKinney Mod → Tim · 2 years ago

I definitely agree with you there. ggplot2 is awesome (!). You *can* make attractive graphics with matplotlib but it definitely requires a lot of tweaking / customization. I'm hopeful that a kind soul will put some work into implementing the Grammer of Graphics for Python (ggpy anyone?). We shall see

1 A Reply Share

seaborn

Biblioteca de visualização baseada no <u>matplotlib</u>

" <u>seaborn</u> is a library for making attractive and informative statistical graphics in Python "

- Boa para análise exploratória de dados
- Fortemente integrada com pandas e numpy

mpld3

" Bringing Matplotlib to the Browser "

- Integra <u>matplotlib</u> com <u>D3js</u>
- Cria visualização de dados interativa no navegador

Vincent

"A Python to Vega translator "

"Vega is a visualization grammar, a declarative format for creating, saving and sharing visualization designs."

- Estruturas de dados <u>Python</u>
- Visualização em <u>JavaScript</u>
- Integração com <u>pandas</u>

- Biblioteca de visualização interativa
- Integração com <u>pandas</u>
- Foco: explorar a visualização dos navegadores

dados: Top 100 Wines of the World 2014

ASOCIACIÓN MUNDIAL DE PERIODISTAS Y ESCRITORES DE VINOS Y LICORES

DataFrame pandas: wty

In [50]: wty.head(15)

Out[50]:

	Brand	Wine	Туре	Country	Prizes	Points
ID						
1	VRANKEN POMMERY MONOPOLE HEIDSIECK	Charles Heidsieck Blanc des Millénaires 1995	CHAMPAGNE	FRANCE	8	329.50
2	BODEGA ZEMLIA DE LAS CASUARINAS S.A.	Zemlia Himno Malbec Bicentenario 2010	MALBEC	ARGENTINA	11	314.91
3	TAYLORS / WAKEFIELD WINES PTY LTD	Taylors St Andrews Shiraz Clare Valley 2010	SYRAH/SHIRAZ	AUSTRALIA	13	297.33
4	PELLER ESTATES WINERY	Peller Estates Niagara-On-The-Lake Riesling Ic	ICEWINE/EISWEIN	CANADA	11	293.25
5	JACOBS CREEK PERNOD RICARD PACIFIC	Jacobs Creek Centenary Hill Barossa Shiraz 2009	SYRAH/SHIRAZ	AUSTRALIA	9	273.13
6	GATT WINES	Gatt Shiraz 2010	SYRAH/SHIRAZ	AUSTRALIA	12	271.25
7	VRANKEN POMMERY MONOPOLE HEIDSIECK	Champagne Piper Heidsieck Rare Millésimé 2002	CHAMPAGNE	FRANCE	8	267.50
8	GATT WINES	Gatt Shiraz 2008	SYRAH/SHIRAZ	AUSTRALIA	8	258.25
9	BODEGAS LUIS CAÑAS SA	Luis Cañas Reserva Selección De La Familia Doc	TEMPRANILLO	SPAIN	7	256.38
10	VRANKEN POMMERY MONOPOLE HEIDSIECK	Champagne Piper Heidsieck Brut	CHAMPAGNE	FRANCE	11	255.50
11	GATT WINES	Gatt Cabernet Sauvignon 2009	CABERNET SAUVIGNON	AUSTRALIA	10	248.38
12	VRANKEN POMMERY MONOPOLE HEIDSIECK	Champagne Charles Heidsieck Brut Reserve	CHAMPAGNE	FRANCE	8	236.75
13	VRANKEN POMMERY MONOPOLE HEIDSIECK	Champagne Piper Heidsieck Brut Millesime 2006	CHAMPAGNE	FRANCE	9	235.00
14	VRANKEN POMMERY MONOPOLE HEIDSIECK	Charles Heidsieck Brut Rosé Millésimé 1999	CHAMPAGNE	FRANCE	5	230.75
15	GATT WINES	Gatt High Eden Shiraz 2009	SYRAH/SHIRAZ	AUSTRALIA	10	229.25

Quantos vinhos por País?

Quantos vinhos por País? (com estilo)

Qual a relação entre Pontos e Prêmios?

Qual a relação entre Pontos e Prêmios?

Qual a relação entre Pontos e Prêmios por País?

Como se distribuem os prêmios por País?

Mas qual País possui o melhor vinho?

```
wty country = wty.groupby('Country')
country count = wty country['Wine'].aggregate(len)
country count.sort(inplace=True)
fig, ax = plt.subplots(figsize=(12,8))
ax.spines['top'].set visible(False)
ax.spines['right'].set visible(False)
ax.spines['left'].set visible(False)
ax.get xaxis().tick bottom()
ax.get yaxis().tick left()
plt.subplot(221)
q = wty country['Prizes'].count()
x = np.arange(len(g))
countries = list(q.index.values)
y = q.values
plt.bar(x+1, y, align='center', width=0.5, alpha=0.4)
plt.xticks(x+1, \lceil ' \rceil *10, rotation=90)
plt.title('Contagem')
plt.ylabel('Prizes')
plt.subplot(222)
q = wty country['Prizes'].mean()
y = g.values
plt.bar(x+1, y, align='center', color='red', width=0.5, alpha=0.4)
plt.xticks(x+1, \lceil ' \rceil *10, rotation=90);
plt.title(u'Média')
plt.subplot(223)
g = wty_country['Prizes'].max()
y = q.values
plt.bar(x+1, y, align='center', color='darkgreen', width=0.5, alph
plt.xticks(x+1, countries, rotation=90);
plt.title(u'Máx')
plt.ylabel('Prizes')
plt.subplot(224)
g = wty country['Prizes'].min()
y = q.values
plt.bar(x+1, y, align='center', color='magenta', width=0.5, alpha=0.4)
plt.xticks(x+1, countries, rotation=90);
plt.title(u'Min')
```


mpld3 salva fig em html

```
>>> mpld3.save html(fig, 'fig.html')
<div id="fig el672345700473765832459779"></div>
<script>
function mpld3 load lib(url, callback){
  var s = document.createElement('script');
  s.src = url;
  s.async = true;
  s.onreadystatechange = s.onload = callback;
  s.onerror = function(){console.warn("failed to load library " + url);};
  document.getElementsByTagName("head")[0].appendChild(s);
}
if(typeof(mpld3) !== "undefined" && mpld3. mpld3IsLoaded){
   // already loaded: just create the figure
   !function(mpld3){
```

dados: Ações (Quandl)

```
import Quandl
tickers = \Gamma
     "GOOG/BVMF BOVA11.4",
     "YAH00/SA PETR3.6",
     "GOOG/BVMF VALE5.4",
     "GOOG/BVMF BBDC4.4",
     "GOOG/BVMF BBAS3.4",
     "GOOG/BVMF ITUB4.4"]
series = Quandl.get(tickers,
     trim start="2013-01-01",
     trim end="2013-12-31")
series.columns = [
     "BOVESPA",
     "PETROBRAS",
     "VALE",
     "BRADESCO",
     "BB",
     "ITAU"]
series.dropna(inplace=True)
```

>>> print series

	201/2024	25522224				
	BOVESPA	PETROBRAS	VALE	BRADESC0	ВВ	ITAU
Date						
2013-01-02	61.27	19.00	42.60	36.02	25.80	31.3
2013-01-03	61.92	19.70	42.09	38.12	26.31	32.2
2013-01-04	61.32	19.77	41.17	37.45	26.00	31.9
2013-01-07	60.75	19.51	40.35	37.29	26.15	31.5
2013-01-08	59.91	18.96	40.10	37.42	26.45	31.6
2013-01-09	60.25	19.15	40.30	37.90	26.70	32.1
2013-01-10	60.49	19.27	40.57	37.40	26.30	31.7
2013-01-11	60.30	19.32	39.53	37.27	25.98	31.8
2013-01-14	60.75	19.21	39.77	37.88	26.93	32.2
2013-01-15	60.52	19.27	39.65	37.30	26.70	31.8
2013-01-16	60.54	19.34	39.68	37.49	26.86	32.1
2013-01-17	61.01	19.21	39.75	38.11	26.81	32.6
2013-01-18	60.79	19.05	39.20	38.25	26.20	32.7
2013-01-21	60.75	18.87	39.15	38.09	25.93	32.5
2013-01-22	60.55	19.12	39.59	38.40	25.64	32.9

Visualização de Séries de Preço


```
import vincent as v
line = v.Line(series)
line.axis_titles(x='Date', y='Price')
line.legend(title='Series')
```

Exporta a Gramática de Gráficos

Variação acumulada

Séries de Preço Empilhadas


```
stacked = v.StackedArea(series)
stacked.axis_titles(x='Date', y='Price')
stacked.legend(title='Series')
stacked.colors(brew='Spectral')
```

Qual a correlação entre séries?

com <u>seaborn</u>
sb.corrplot(np.log(series).diff().dropna())

Mais no detalhe

Rentabilidade de ações

- Qual a rentabilidade de cada ação por mês?
- Como visualizar tudo no mesmo gráfico?
- Como fazer isso higienicamente?

Vamos considerar 18 ações no ano de 2013

Rentabilidade de ações

Rentabilidade de ações

```
from bokeh.plotting import *
output_notebook()
import numpy as np
import Quandl
import pandas as pd
from collections import OrderedDict
tickers = ["GOOG/BVMF_BOVA11.4", "GOOG/BVMF_PETR3.4", "GOOG/BVMF_VALE5.4", 'GOOG/BVMF_BBDC4.4', 'GOOG/BVMF_BBAS3.4', 'GOOG/BVMF_ITUB4.4', 'GOOG/BVMF_USIM5.4', 'GOOG/BVMF_CIEL3.
4', 'GOOG/BVMF_CMIG4.4', 'GOOG/BVMF_CTIP3.4', 'GOOG/BVMF_CPLE6.4', 'GOOG/BVMF_ELET6.4', 'GOOG/BVMF_GGBR4.4', 'GOOG/BVMF_GOLL4.4', 'GOOG/BVMF_HGTX3.4', 'GOOG/BVMF_JBSS3.4',
'GOOG/BVMF_MRFG3.4', 'GOOG/BVMF_PDGR3.4']
series = Quandl.get(tickers, trim_start="2013-01-01", trim_end="2013-12-31", authtoken="nJ1NhTYdEs2p3MsS4CVd")
series.columns = ['BOVESPA', 'PETROBRAS', 'VALE', 'BRADESCO', 'BB', 'ITAU', 'USIMINAS', 'CIELO', 'CEMIG', 'CETIP', 'COPEL', 'ELETROPAULO', 'GERDAU', 'GOL', 'HERING', 'JBS',
'MAFRIG', 'PDGR']
series.dropna(inplace=True)
logreturns = np.log(series).diff().dropna()
                                                                       Esse gráfico já não é tão simples!
months = ["Jan", "Fev", "Mar", "Abr", "Mai", "Jun", "Jul", "Ago", "Set", "Out", "Nov", "Dez"]
series_mr = logreturns.resample('M', how=sum)*100
series_mr['Month'] = [months[d.month-1] for d in series_mr.index]
series_mr.set_index('Month', inplace=True)
months = list(series_mr.index)
stocks = list(series_mr.columns)
import brewer2mpl
bmap = brewer2mpl.get_map('RdYlGn', 'diverging', 3)
colors = bmap.hex_colors
levels = np.array([0, 1])
month = []
stock = []
color = []
rate = []
for y in stocks:
   for m in months:
       month.append(m)
       stock.append(y)
       monthly_rate = series_mr[y][m]
        rate.append(monthly_rate)
        color.append(colors[sum(levels < monthly_rate)])</pre>
source = ColumnDataSource(data=dict(month=month, year=stock, color=color, rate=rate, ))
figure()
rect('year', 'month', 0.95, 0.95, source=source, x_range=stocks, y_range=list(reversed(months)), color='color', line_color=None, tools="resize,hover,save", title="Rentabilidade
de ações", plot width=300, plot height=400)
grid().grid_line_color = None
axis().axis_line_color = None
axis().major_tick_line_color = None
axis().major_label_text_font_size = "5pt"
axis().major_label_standoff = 0
xaxis().location = "top"
xaxis().major_label_orientation = np.pi/3
from bokeh.objects import HoverTool
hover = [t for t in curplot().tools if isinstance(t, HoverTool)][0]
hover.tooltips = OrderedDict([('date', '@month'), ('rate', '@rate'),])
show()
```

Referências

- seaborn (github)
- vincent (github)
 - Trifacta vega
- ggplot (github)
 - ggplot tutorial
 - o ggplot2 no R

- bokeh (github)
- mpld3 (github)
- prettyplotlib (github)
- plot.ly
- Quandl
- brewer2mpl (github)

- AboutWilson.net: Refinando o estilo do matplotlib
- AboutWilson.net: Refinando o estilo do matplotlib com seaborn
- EuroPython 2014: Combining the powerful worlds of Python and R
- EuroPython 2014: Scientific Visualization with GR

https://github.com/wilsonfreitas/tdc-2014

Wilson Freitas

http://aboutwilson.net

@aboutwilson