PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-313568

(43) Date of publication of application: 19.12.1989

(51)Int.Cl.

CO9B 35/00 GO2B 5/30

(21)Application number: 63-144716

(71)Applicant: NIPPON KAYAKU CO LTD

(22)Date of filing:

14.06.1988

(72)Inventor: SUMIYA MITSUKUNI

KOTANI JUNJI

(54) WATER-SOLUBLE AZO DYE AND POLARIZING FILM CONTAINING SAME

(57)Abstract:

NEW MATERIAL:A water-soluble dye which, in the form a free acid, is represented by formula I (wherein X is a 2-carboxyvinyl or a 4-sulfophenylazo, R1 and R2 are each H, a methoxy or the like, R3 is an amino, a methylamino, an ethylamino or the like, and R3 is bonded to the position 6 or 7 of the naphthalene ring) or a complex salt thereof with copper.

USE: A water-soluble dis (or tris) azo dye which is excellent in heat resistance, light resistance, etc., and, when used for dyeing, especially, a poval film, can give a polarizing film having a high polarizability and high heat stability.

PREPARATION: 4-Aminocinnamic acid or 4-aminoazobenzene-4'-sulfonic acid is diazotized and coupled with 2,5-dimethoxyaniline, m-toluidine or the like. The obtained amino group-containing aminoazo compound is diazotized and coupled with T-acid, γ -acid or the like in an alkaline condition to obtain a water-soluble azo dye of formula I (e.g., a compound of formula II).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

@ 公 開 特 許 公 報 (A) 平1-313568

®Int. Cl. ⁴

識別記号 广内整理番号 .

❸公開 平成1年(1989)12月19日

C 09 B 35/00 G 02 B 5/30 7433-4H 7348-2H

審査請求 未請求 請求項の数 2 (全6頁)

図発明の名称 水溶性アゾ染料及びこれを含有する偏光膜

②特 願 昭63-144716

圀

②出 頭 昭63(1988)6月14日

埼玉県浦和市白幡3-1-9-2-704

@発明者 小谷.

埼玉県鴻巣市鴻巣376-33

の出 願 入

小 谷 淳 二日本化薬株式会社

東京都千代田区富士見1丁目11番2号

阳代 理 人 弁理士 竹田 和彦

明細

1. 発明の名称 ...

水溶性アツ染料及びこれを含有する偏光膜

- 2. 特許請求の範囲
 - 1. 遊離酸として式(1)

$$X - \bigcirc -N = N - \bigcirc -N = N - \bigcirc -N = N - \bigcirc -\frac{7}{6} R_3 \qquad (1)$$

- 2. 特許請求の範囲第 1 項記載の式(1)の水溶性 染料またはこの銅錯塩染料を含有する偏光膜
- 3. 発明の詳細な説明...

産業上の利用分野

各種の職物や紙などの染色のほか、特にポリビニルアルコール系偏光膜用の二色性色素として有用なアゾ染料及びそれを含有する偏光膜に関する。

従来の技術・

ポリピニルアルコール系偏光膜用の二色性色 素としては従来ョードが用いられており高い偏 光率を示すという特徴がある反面ョードの揮発 性がたかい為、偏光膜の耐久性が劣るという問 題がある。この為合成染料を使用した偏光膜が 製造されているがその偏光率、堅牢度等にまた 問題が多い。

発明が解決しようとする課題

ポリピニルアルコール系偏光膜に使用される 合成染料は既存の根維用のものの転用が多い為 偏光率がヨード系のものに比べてかなり低く用 金が限定されている。従ってョードの並の偏光 率を示す染料の開発が望まれている。

課題を解決するための手段

本 発明者 5 は前記した課題を解決すべく鋭意 検討を行った結果遊離酸として式(1)

$$X \xrightarrow{O} N = N \xrightarrow{O} N = N \xrightarrow{O} O \xrightarrow{r} R_3$$

$$R_1 \xrightarrow{HO_3} S$$

$$(1)$$

ゾ化合物とする。

上記においてジアゾ化法はジアゾ成分の塩酸、硫酸などの鉱酸水溶液またはけん濁液に亜硝酸ナトリウムなどの亜硝酸塩を混合するという順法によるか、あるいはジアゾ成分の中性乃至弱アルカリ性の水溶液に亜硝酸塩を加えておき、これと鉱酸を混合するという逆法によってもよい。ジアゾ化の温度は一10~40℃が適当である。

カップリングはアミン類の塩酸、酢酸などの 酸性水溶液と上記ジアン液を混合し中和してpH 3~5にすればよい。カップリングの温度は一 10~40℃が適当である。

生成したアミノアゾ化合物は通常この条件では析出しているので 戸過して取り出すか、 所領ならけん 濁液のまゝ 次のシアゾエ程へ進むこともできる。

ジアソニウム塩が難溶性でけん濁液となっている場合は沪過してプレスケーキとして次のジアソ工程で使うこともできる。

とを見出し本発明を完成させた。即ち本発明は 遊離酸として前記式(1)で表される水溶性染料ま たはこの銅錯塩染料及びこれを含有する偏光膜 を提供する。

本発明を詳細に説明する。

式(1)の水溶性染料は通常のアソ染料の製法に従い公知のシアゾ化、カップリング法で容易に 製造出来る。

この様にして得た中間体のアミノアン化合物をジアン化し、J一酸、 r 一酸、 N ーメチルJ酸、 N ーメチル r 酸、 N ー r せチルJ酸、 N ー r セチルJ酸、 N ー r で で N ー ペンソイルJ酸、 N ー フェニルJ酸、 N ー (4 ー カルボキシフェニル) J酸、 N ー フェニル r 酸などにアルカリ性でカップリングさせて式(1)の水溶性染料が得られる。

上記においてジアン化法は前記の順法によっても良いがアミノアン化合物が酸性では溶解性が著しく小さい場合には逆法による方が好ましい。ジアン化の温度は 0 ~ 4 0 ℃が適当である。ジアン液はけん濁液となっているが、これをそのま」使うことも、炉過してジアンニウム塩のフレスケーキを取り出すこともできる。

カップリングはカップリング成分のアルカリ 水溶液に前記シアゾニウム塩のけん濁液または ジアゾニウム塩を小量づつ添加する。この際液 が pH 8 ~1 1 を保つ様必要に応じアルカリを添 加する。アルカリとしてはナトリウム、カリウ ム、リチウムなどの炭酸塩、アンモニヤ、モノ、 ジ、トリエタノールアミンなどのアミンの使用 が好ましく、これ以外にナトリウム、カリウム などの水酸化物や重炭酸塩を併用してもよい。 また必要に応じピリジンや尿素などの通常のカ ップリング促進剤を添加してもよい。

カップリングの温度は-10~40℃が適当である。カップリング終了後必要に応じ塩化ナトリウムまたは/および塩化カリウムを加えて塩析して取り出す。

又式(1)の水溶性染料の銅錯塩を得るには通常の方法に依ればよい。即ち式(1)の水溶性染料を水溶液中、硫酸銅、塩化銅、酢酸銅などの銅塩と通常70~110℃に加熱する。この原必要に応じアンモニア、モノエタノールアミン、エタノールアミン、モノブロバノールアミン、エリジンなどの有機アミンを添加することも出来る。

・本希明の偏光膜を調製する為の基材としては 繊維素系樹脂(セロファン)、 PVA、変性 PVA、

する染浴中に0℃ないし70℃、好ましくは30~45℃でPVA系フィルムを浸液して染色し、次いで必要に応じてホウ酸処理し、乾燥する。該染色フィルムに偏光機能を付与させる。
に染色前、染色後または染色中に一軸する。
に染色では染色後に延伸する場合には湿が伸の他に乾式条件(通常常温ないし180℃の範囲)で行ってもよく、また染色と同時に延伸する。
をには染浴中で0~70℃好ましくは30~45℃で延伸する。

次に原液染色後製膜する方法は、まず PVA系基材(樹脂)を水、有機溶媒、水ーアルコール混合溶媒等の溶媒に溶解し、式(1)の水溶性染料を添加し、原液染色を行う。はその染色原液を流延法、溶液造布法、押出法等によって製膜し、染色フィルムを製造する。によっにしてえられた染色フィルムを前記同様の设式または乾式条件で一軸方向に延伸する。

PVAと他の樹脂の共重合物等が用いられる。こ れらのうち好ましいものは、 PVA、変性.PVA、 PVAと他の樹脂の共重合物等であり、以下これ らを PVA系基材という。 PVA 系基材としては、 通常の純 PVAの他、…不飽和カルポン酸又はその 誘導体、不飽和スルホン酸又はその誘導体、炭 素数2~30のαーオレフィン等で約15モル %未満共重合変性された変性ポリピニルアルコ ール、ポリピニルホルマール、ポリピニルアセ トアセタール、ポリピニルプチラール等のポリ ピニルアセタール、エチレン含量15~55モ ル%のエチレンー酢酸ビニル共重合体ケン化物 等が挙げられる。これらの基材から偏光膜を製 造する方法としては、成型された PVA系フィル ムそのものを染色する方法、PVA系樹脂の溶液 に染料を添加し、原液染色後製膜する方法等を 挙げる事が出来る。まず PVA系フィルムの一般 的な染色方法及び延伸法について説明する。

式(1)の水溶性染料又はその銅錯体及び必要に 応じて無機塩、界面活性剤等の染色助剤を含有

ここで一軸延伸とは完全に一軸方向にのみフィルムを延伸する(自由幅一軸延伸)他、延伸方向に直角の方向にも幅方向の収縮を防止する為若干の延伸を行う事(一定幅一軸延伸)をも意味する。

またフィルムの染色法としては前記したような受徴による染色又は原液染色による染色法が一般的であるが印捺棚を調製しこれをフィルムに捺染し、加熱して内部拡散により染着させる方法を採用する事も出来る。

式(1)で表される水溶性染料又はその銅錯塩染料は単独で又はそれら同志で混合して使用することが出来る他、更にはこれらの染料と他の発性といるというをできる。特に多用されるグレー又はブラック用の配合の銅錯に多用されるグレースはアクスはその側がえられる。又を吹吹吹作性を示す偏光膜がえられる。又をの数に対する安定性がすぐれている。

この様にして製造された偏光膜はそのまま使用される他、特に高い耐久性を要求される。といった。というではボリエステル、塩化ピニール、ボリローズトリアセテート、アクリル樹脂、ボリエーテルスルホン等の支持フィルムを接着したり特殊アクリル樹脂等でコーティングして使用に供することも出来る。

寒施例

以下に本発明を具体例によって説明する。奥

ウム水溶液 6 0 0 部に容解した液中に約 2 0 な℃で滴下してカップリングさせた。 2 時間かきまぜたのち塩化ナトリウム 9 0 部を加えて塩析し一夜かきまぜてからろ過し、5 %塩化ナトリウム水溶液で洗い、乾燥して次式(3)で表されるトリスアゾ染料 7 0 部を得た。

このトリアソ染料の 0.3 g/8の染浴を調製し40 ℃に保持し、厚さ 7 5 μのポリビニルアルコールフィルムを浸渍し 2 分間染色した。 濡れたまとの染色フィルムを 5 %ホウ酸水溶液中で 4 0 ℃で 4倍に延伸しこの状態のまと水洗、乾燥して青絮色の偏光フィルムを製造した。その偏光フィルムの吸収極大 1maxでの偏光率 ρ(max)を測定した結果単板透過率 4 3 %、 1max は 5 8 0 nm でρ(max)は 9 7.5 %であった。

こゝで吸収極大波長 lmaxでの偏光率 ρ (max) はそ の波長での平行位透過率 Tn (max)、直交位透過率 施例中、部は重量部を示す。 実施例 L.

4 - アミノアソベンゼンー 4 - スルホン酸ナトリウム 2 9.9 部(1/10モル)を水 3 0 0 部にとかし磁塩酸 2 5 部と亜硝酸ナトリウム 6.9 部を加えてジアソ化し、この中へ p - クレンジン 1 3.7 部を塩酸水溶液にとかして加えたのち、酢酸ナトリウムを加えて pH 4 まで中和してカップリングさせた。反応終了後ろ過して次式(2)で表されるジスアゾ化合物 4 1.5 部を含むブレスケーキを得た。

このプレスケーキを水 1 0 0 0 部中に水酸化ナトリウムで中和して溶解し、その中に亜硝酸ナトリウム 8 部を加えた溶液を、 1 0 % 塩酸溶液 2 0 0 部中に約 2 0 ℃で滴下してジアゾ化した。ジアゾ化終了後過剰の亜硝酸をスルファミン酸を加えて分解したのちこのジアゾニウム塩の懸濁液をN-フェニルJ酸 3 1.5 部を 1 0 % 炭酸ナトリ

T₁.(max)を用いて次式によって表される。

$$\rho \,(\text{max}) = \sqrt{\frac{T_{11} \,(\text{max}) - T_{1} \,(\text{max})}{T_{11} \,(\text{max}) + T_{1} \,(\text{max})}} \times 100 \,\%$$

比較のため偏光膜用の脊架色染料として知られている C.I. Direct Violet 9(下記標造式)を使用して

前記同様に偏光膜を調製した所 Amax は 5 7 5 nmで 単板透過率 4 3 % の時の p (max) は 9 2.5%で本発 明の染料の方がすぐれていた。

また偏光展製造時の熱変色の大きさを次の方法により御定した。即ち式(3)の染料を用いて染色し延伸した偏光膜を2枚調製し一方を風乾し、他方を80℃で10分間熱風乾燥器中で乾燥して双方の色差を測定した。色の測定はC光源を用い L*.a*,b* 測定法により測定し次の式より色差 (△E) を算出した。

$$\triangle E = / \triangle a^{*2} + \triangle b^{*2}$$

こ」に $\triangle a^*$, $\triangle b^*$ は二つの資料間の a^* , b^* の差であり L^* は明度、 a^* は赤 \longleftrightarrow 線方向、 b^* は黄 \longleftrightarrow 青方向の色相を示す数値である。

式(3)の染料を用いた場合は透過率 4 3 % の場合 ΔEは 1.1 であった。比較の為行った C.I. Direct Violet 9 で は 2.0 で本発明の染料の方がすぐれて いる事が判った。

寒 施 例 2.

奥施例 1 に於いてNーフェニル J 酸の代わりに Nーメチル J 酸 2 5.3 部または Nーベンゾイル J 酸 3 4.3 部を使用してそれぞれ式(4),(5)で、 表されるトリスアン染料を得た。

これらのトリスアン染料の水溶液で実施例 1 と同様にポリヒニルアルコールフィルムを処理し偏光

リウム 8 部を加えた溶液を、 1 0 % 塩酸溶液200 部中に約20℃で滴下してジアン化した。 ジアン 化終了後過剰の亜硝酸をスルファミン酸を加えて 分解したのち、ろ過してジアソニウム塩のプレス ケーキを得た。このジアソニウム塩を水 6 0 0 部 に懸濁させた液をJ酘 2 3.9 部を 1 0 % 炭酸ナト

クム水溶液300部にとかした溶液中に約20 でで満下してカップリングさせた。2時間かきませたのち塩化ナトリウム90部を加えて塩析し一 夜かきまぜてからろ過し、10%塩化ナトリウム 水溶液で洗い、乾燥して次式(7)で表されるジスア 火染料55部を得た。

このジスアソ染料の水溶液で実施例1と同様にポリビニルアルコールフィルムを処理し赤無色の偏光フィルムを製造した。単板での透過率43%の場合、最大吸収液長は570 nm でこの時の偏光率は95.5%であった。

フィルムを製造した。式(4)の染料は青紫色で単板での透過率43%の場合、最大吸収波長は57.5 nmでこの時の偏光率は96.0%であった。式(5)の染料はルビー赤色で最大吸収波長は55.5 nmでこの時の偏光率は96.5%であった。

実施例 3.

4 ー アミノ桂皮酸 1 6.3 部 (1/10モル)を水600部中に水酸化ナトリウム 4 部と共に溶解し 2 2 部と亜硝酸ナトリウム 6.9 部を加えてジアゾ化した。この中へ p ー クレシジン 1 3.7 部をメタノール 1 0 部に溶解した溶液を加えたのち酢酸ナトリウムを加えて pH 4 まで中和してカップリングさせた。反応終了後ろ過して次式(6)で表されるモノアゾ化合物 3 0 部を含むプレスケーキを得た。

HOOC-CH=CH-
$$\bigcirc$$
-N=N- \bigcirc -NH₂ (6)

このプレスケーキを水1000部中に水酸化ナトリウムで中和して溶解した。これに亜硝酸ナト

奥施例 4.

奥施例 3 に於いて J 酸の代わりに r 酸 2 3.9 部または N ーフェニル J 酸 3 2.5 部を使用して同様操作してそれぞれ式(8)、(9)で表されるジスアン染料を得た。

これらのジスアン染料の水溶液で実施例1と同様にポリビニルアルコールフィルムを処理し偏光フィルムを製造した。式(8)の染料は灰色で単板透過率43%の場合、最大吸収波長は595 nmでこの時の偏光率は94.0%であった。式(9)の染料は 無青色で最大吸収波長は585 nmでこの時の偏光率は97.0%であった。

又この偏光フィルムにつき 実施例 1 と同様にして数変色を 7 印定したところ ΔE=1.2 の値を示した。

実施例 5.

実施例1~4と同様な方法により次表に示される一般式(1)の染料を製造した。

表中 X₁, X₂ は夫々4 ーカルボキシビニル基と4 ースルホフエニルアゾ基を、また色相、 ^{lmax}は共にポリビニルアルコールフィルムに染色した時のものを示す。

染料心	x	R,	Rz	Ra .	色相	lmax (nm)
10	X,	メチル	メトキシ	6 - アミノ	赤紫	570
11	•	•	•	7ーメチル アミノ	灰	600
12	•	,	•	6ー(pーカルポキ シフエニル)アミノ	青絮	585
13	•	メトキシ	•	6ーフエニルアミノ	青	6 1 5
14	•	,	,	6 - アミノ		605
15	•	Н	Н	, .	赤	5 · 2 5

染料心	x	Rı	R₂	Rs	色相	lmax (nm)
29	X2	H	н	6ーフエニルアミノ	青味赤	530
30	•	•	•	6ーアセチルアミノ	赤	5 2 0

寒施例6.

前記実施例 4 記載の式(9) の染料 7 0 部を水 1 0 0 0 部にとかし優アンモニア水 7 0 部を加え たのち結晶硫酸銅 2 4 部の水溶液を加えて 9 0 ℃ で 3 時間加熱した。塩化ナトリウム 6 0 部を加え 冷却塩析し一夜かきまぜてからろ過し、 5 %塩化ナトリウム水溶液で洗い、乾燥して次式 (31) で表されるトリスナン染料 7 1 部を得た。

$$\begin{array}{c|c}
0 - Cu - O \\
Na OOC - CH - CH - O - N = N - O O \\
N - N - O O O O O
\end{array}$$
(31)

このトリスアン染料の水溶液で実施例1と同様にポリビニルアルコールフィルムを処理し育色の 偏光フィルムを製造した。単板透過率43%の場合、最大吸収波長は605mmでこの時の偏光率は

杂科人	x	Rı	. R2	Rs	色相	lmax (nm)
16	X۱	Н	Н	6 ーペンゾイル アミノ	赤	5 2 5
17	•	•	メチール	6ーフエニルアミノ	赤紫	560
1 8.	•	•	メトキシ	7 - ナミノ	灭	5 9 0
19	•	メチ.ル	メチル	6ーフエニルアミノ	架	570
20	X2	•	メトキシ	6ーメチルアミノ	青紫	5 6 5
21	•		٠,	6 ーエチルアミノ	,	•
22	•		,	7 ーメチル ア ミノ	青灰	610
23	. •	•		6 - アミノ	架	580
24	•	メトキシ	メトキジ	6 - アミノ	赤味青	600
25	•	•		7ーフエニルブミノ	灰	610
26	•	エトキシ	エトキシ	6ーフエニルアミノ	背	620
27	•	•	アセチル アミノ	,	•	6 2 5
28	•	Н	メトキシ	6 ープミノ	赤紫	580

9 5. 1 % であった。

契施例 7.

実施例 6 と 同様な方法により前記の各式の染料を原料として次果に示す銅錯塩染料を製造した。

色相、/max は共にポリピニルアルコールフィルムに染色したものについてである。

銅錯塩染料Nn	原科の染料Na	色相	λmax (nm)
3 2	3	青	600
3 3	4	赤味肯	5 9 5
3 4	7	青 架	5 8 5
3 5	1 1	背灰	620
. 3 6	1 3 .	背	640

発明の効果

殊にポパール系フィルムの染色に供して高い 偏光率並びに高い熱安定性を有する偏光膜を与 える水溶性シス(又はトリス)アゾ染料が得ら れた。そしてこの偏光膜は青無色系偏光膜とし てすぐれた光学特性を有する。

特許出頭人 日本化聚株式会社