Table of Contents

O1 PROBLEM

PROBLEM STATEMENT)2

DATASET DESCRIPTION

03

EDA

04
FEATURE
ENGINEERING

MODEL PERFORMANCE

MODEL

COMPARISON

Problem Statement

01

Classification or Regression?

Context

Telemarketing campaigns for term payments

0 or 1

Class of Interest?

Dataset Description n

02

RangeIndex: 45211 entries, 0 to 45210				
Data columns (total 17 columns):				
#	Column	Non-N	ull Count	Dtype
0	age	45211	non-null	int64
1	job	45211	non-null	object
2	marital	45211	non-null	object
3	education	45211	non-null	object
4	default	45211	non-null	object
5	balance	45211	non-null	int64
6	housing	45211	non-null	object
7	loan	45211	non-null	object
8	contact	45211	non-null	object
9	day	45211	non-null	int64
10	month	45211	non-null	object
11	duration	45211	non-null	int64
12	campaign	45211	non-null	int64
13	pdays	45211	non-null	int64
14	previous	45211	non-null	int64
15	poutcome	45211	non-null	object
16	У	45211	non-null	object
dtypes: int64(7), object(10)				

Yes, to handle categorical attributes

Pre-processing

Exploratory Data Analysis

03

Distribution: Boolean Attributes

Count of categorical attributes

Distribution: Categorical Attributes

1840

other

1511

success

4901

failure

telephone

10k

0

unknown

10k

0

13.02k

unknown

cellular

Categorical Variables

Distribution: Numerical Attributes

To check for skewness

Feature Engineerin

9

04

Heat Map:

To check for correlation of all the variables.

Pair-Plot:

Helps us to know that the data is non-linear. The image shows the columns before performing log transformation:

After Log Transformation

 The image besides depict the pair plot after log transformation:

Before Outlier Distribution

Shows the outlier distribution of all numeric columns:

After Removing Outliers

Applied exponential function to reduce the skewness of our dataset.

Feature Selection

Used ExtraTreesClassifier() to get variable importance.

Feature Selection

Used RandomForestClassifier() to get variable importance.

Standardization and Encoding

Standardization:

 Numerical columns were standardized and categorical variables were encoded.

$$z=rac{x-\mu}{\sigma}$$

with mean:

$$\mu = rac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation

$$\sigma = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left(x_i - \mu
ight)^2}$$

One-Hot Encoding

One-hot encoding was done for the following columns:

```
Index(['age', 'balance', 'duration', 'campaign', 'housing', 'job blue-collar',
       'job entrepreneur', 'job_housemaid', 'job_management', 'job_retired',
       'job self-employed', 'job services', 'job student', 'job technician',
       'job_unemployed', 'job_unknown', 'education secondary',
        'education tertiary', 'education unknown', 'month aug', 'month dec',
        'month_feb', 'month_jan', 'month_jul', 'month_jun', 'month_mar',
        'month_may', 'month_nov', 'month_oct', 'month_sep', 'poutcome_other',
        'poutcome success', 'poutcome unknown', 'y'],
      dtype='object')
```

Model Implementation-1

Logistic Regression: Used this model as a benchmark against other classification models. We performed HyperParameter tuning on various learning rates and also did a K-fold cross-validation by taking k=5. The table displayed is an example of the average of the k-fold validation for one of the learning rates: 0.1 and the best AUC curve value has also been mentioned:

Average of K-fold

Model Implementation-2

Naïve Bayes: Implemented Gaussian Naïve Bayes on our dataset.

Performance Metrics:

- 1) Precision: 0.6512
- 2) Recall:0.7030
- 3) F1-score:0.5962

Prerequisite for SVM

Fixing Unbalanced Data:

Unbalanced Values:

```
df_temp = df["y"].unique()
df['y'].value_counts()

0     39922
1     5289
Name: y, dtype: int64
```


Model Implementation-3

Soft SVM: Our dataset is Non-Linear, hence we decided to implement Soft SVM by making use of **Radial Basis Function** Kernel.

Note: Due to a large amount of dataset we have taken only 20% of our data for practical understanding.

Accuracy Score: 0.7570601441569184

Precision Score: 0.7702169625246549

Confusion Matrix:

Model Implementation-4

Neural Network: Implemented Multi-Layer Perceptron on our dataset. It trains using Backpropagation. We oversampled our dataset and performed hyperparameter tuning on different learning rates and found that the best recall value for our class of interest comes from the value->0.1. The AU curve for that has been mentioned:

Model Comparison

In the next slide, we have given the best-performing parameters for all 4 models that we implemented for our dataset. We have considered f1-Score as our best performance metric

Conclusion

- Logistic Regression: Learning Rate:0.0001,f1 score: 0.4166
- 2. Naïve Bayes:
- 3. SVM: f1-score: 0.757
- 4. Neural Network: Learning Rate:0.01,f1score:0.79