Privacy-Preserving AIS for Network Security

Karthik S Chandan Yeshwanth

February 2, 2016

Algorithm

- Variation of ARTIS[1]
- Graph consists of single node
- Detectors and antigens consist of binary strings
- Antigen: Encoding of incoming connection

Algorithm

- Broadly consists of the following steps:
 - Generate random set of detectors
 - Tolerization: Replace those detectors that are affine to self strings
 - Collectively classify incoming connections to network using the detectors
 - If detectors are activated (exceed threshold), commit to memory

Algorithm

15:

16:

17:

18:

19: 20: end while 21: return M

Algorithm 1 ARTIS(Aff_func, high_val, threshold) 1: Generate $D = \{d_1, d_2, \dots, d_n\}, d_i \in \{0, 1\}^n$. 2: Initialize $C = \{c_i = 0 | i \in [1, n]\}, M = \{\}$ ▶ Tolerization 3: for self_aq in self_aqs do for d_i in D do if $Aff_func(self_ag, d_i) \ge high_val$ then 5. Replace d_i with new random detector 6. end if end for 9: end for 10: while (1) do \triangleright Match antigen Aa with d_i for $d_i \in D$ 11: for d_i in D do if $Aff_-func(Aq, d_i) > high_val$ then 12: 13: Raise intrusion flag for AqIncrement counter $c_i + = 1$ 14:

end if

end if

end for

if $c_i >= threshold$ then Append d_i to M

Datasets

- NSL-KDD¹ dataset widely used
- Several advantages no duplicates, no need for sampling
- Approximately 200k attack, 800k normal records in the training set

¹http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html

NSL-KDD Records

- Columns: protocol_type, service, num_failed_logins, num_shells ... normal/anomaly
- Eg: 0, tcp, ftp_data, SF, 491 . . . 0.05, 0.00, normal

Other Datasets

- CSIC 2010 HTTP Dataset² HTTP packets, labelled normal/anomalous
- DARPA Intrusion Detection Data Sets³ labelled, collected over 3 weeks
- Several other hosted by UNB⁴

²http://users.aber.ac.uk/pds7/csic_dataset/csic2010http.html

³http://www.ll.mit.edu/ideval/data/

⁴http://www.unb.ca/research/iscx/dataset/index.html → → ◆ ≥ → ◆ ≥ → ◆ ○

Next Steps

- Come up with shared structure for detectors, antigens
- Finalize dataset(s) to be used

Steven A Hofmeyr and Stephanie Forrest.

Architecture for an artificial immune system.

Evolutionary computation, 8(4):443–473, 2000.