

CLAIMS

What is claimed is:

5 1. A compound represented by the following Structural Formula:

10 and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

(a) T1 is selected from the group consisting of

15 (b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

20 (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy,

$C_1\text{-}C_6$ haloalkyl, $C_1\text{-}C_6$ haloalkyloxy, $C_3\text{-}C_7$ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl- $C_0\text{-}4$ -alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, $C(O)R_{13}$, $COOR_{14}$, $OC(O)R_{15}$, $OS(O)_2R_{16}$, $N(R_{17})_2$, $NR_{18}C(O)R_{19}$, $NR_{20}SO_2R_{21}$, SR_{22} , $S(O)R_{23}$, $S(O)_2R_{24}$, and $S(O)_2N(R_{25})_2$; R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} and R_{25} are each independently selected from the group consisting of hydrogen, $C_1\text{-}C_6$ alkyl and aryl;

5 (d) R_2 is selected from the group consisting of $C_0\text{-}C_8$ alkyl and $C_1\text{-}6$ -heteroalkyl;

10 (e) X is selected from the group consisting of a bond, O, S, $S(O)_2$ and N;

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R_{30} ;

15 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is $C(R_3)(R_4)A$ or A and wherein

20 (i) A is selected from the group consisting of $C_0\text{-}C_6$ alkylcarboxyl, $C_0\text{-}C_6$ alkyltetrazole, $C_1\text{-}C_6$ alkynitrile, $C_0\text{-}C_6$ alkylcarboxamide, $C_0\text{-}C_6$ alkylsulfonamide and $C_0\text{-}C_6$ alkylacylsulfonamide; wherein $C_0\text{-}C_6$ alkylsulfonamide, $C_0\text{-}C_6$ alkylacylsulfonamide and $C_0\text{-}C_6$ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R^7 ;

25 (ii) each R^7 is independently selected from the group consisting of hydrogen, $C_1\text{-}C_6$ haloalkyl, aryl- $C_0\text{-}4$ alkyl and $C_1\text{-}C_6$ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from $R^{7'}$; each $R^{7'}$ is independently selected from halo, $C_1\text{-}C_6$ alkyl, and $haloC_1\text{-}C_6$ alkyl;

30 (iii) R_3 is selected from the group consisting of hydrogen, $C_1\text{-}C_5$ alkyl, and $C_1\text{-}C_5$ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

5 (i) Z5 is S or O;

(j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;

10 (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;

(l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';

15 (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';

(n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;

20 (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂;

25

30

- 197 -

and wherein aryl-C₀₋₄-alkyl, aryl- C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C_{3-C6} cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three independently selected from R28;

(p) R_{12'}, R_{12''}, R_{13'}, R_{14'}, R_{15'}, R_{16'}, R_{17'}, R_{18'}, R_{19'}, R_{20'}, R_{21'}, R_{22'}, R_{23'}, R_{24'}, and R_{25'} are each independently selected from the group consisting of hydrogen, C_{1-C6} alkyl and aryl;

(q) R₃₀ is selected from the group consisting of C_{1-C6} alkyl, aryl-C₀₋₄-alkyl, aryl- C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C_{3-C6} cycloalkylaryl-C₀₋₂-alkyl, and wherein C_{1-C6} alkyl, aryl-C₀₋₄-alkyl, aryl- C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C_{3-C6} cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;

(r) R₃₂ is selected from the group consisting of a bond, hydrogen, halo, C_{1-C6} alkyl, C_{1-C6} haloalkyl, and C_{1-C6} alkyloxo;

(s) R₃₃ is selected from the group consisting of C_{2-C8} alkyl, C_{1-C8} alkoxy, phenyl, thiophene, pyridine, piperidine, ,

alkoxy, phenyl, thiophene, pyridine, piperidine, ,

, and

, wherein the C_{2-C8} alkyl, C_{1-C8}

alkoxy, phenyl, thiophene, pyridine, piperidine, ,

- 198 -

, and , are each optionally substituted with R10

and R11; and

(t) provided that when Y is C or a bond, at least one of R1, R2, R3, and R4 is C1-C4 alkyl.

5

2. The compound of Claim 1, wherein A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrite, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷.

10

3. The compound of Claim 1, wherein the compound is represented by the following Structural Formula:

15

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

20

(a) T1 is selected from the group consisting of

- 199 -

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

(c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryloxy, aryl-C₀₋₄-alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁₋₆-heteroalkyl;

(e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;

(g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is C(R3)(R4)A or A and wherein

- 200 -

5 (i) A is selected from the group consisting of carboxyl, tetrazole, C₁-C₆ alkynitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;

10 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

15 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

20 (iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

25 (i) Z5 is S or O;

(j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;

(k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;

30 (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';

(m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';

(n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; 5 R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;

(o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, 10 C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28; 15

(p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from 20 one to three substituents each independently selected from R31;

(r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;

- 202 -

(s) R33 is selected from the group consisting of phenyl, thiophene,

5

(u) provided that when Y is C or a bond, R1, R2, R3, and R4 are each independently C1-C4 alkyl.

10 4. The compound of Claim 2, wherein the compound is represented by the following Structural Formula:

- 203 -

5. The compound of Claim 1, wherein the compound is represented by the following Structural Formula:

5 6. The compound of Claim 5, wherein the compound is represented by the following Structural Formula:

10 7. The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

15 8. The compound of Claim 7, wherein X is a bond.
9. The compound of Claim 7, wherein X is -S-.
10. The compound of Claim 7, wherein X is -O-.

- 204 -

11. The compound of Claim 10 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R₃)(R₄)-C₁-C₆ alkyl-COOH.
12. The compound of Claim 11 wherein R₁₀ and R₁₁ are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR₁₂”, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
13. The compound of Claim 12 wherein R₁₀ is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and aryloxy.
14. The compound of Claim 13, wherein R₁₀ is CF₃.
15. The compound of Claim 11, wherein R₉ is selected from the group consisting of hydrogen and C₁-C₃ alkyl.
16. The compound of Claim 15, wherein R₁, R₃, and R₄ are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
- 20 17. The compound of Claim 16 wherein R₂ is a bond.
18. The compound of Claim 17, wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.
- 25 19. The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

- 205 -

20. The compound of Claim 19, wherein X is a bond.

5 21. The compound of Claim 19, wherein X is -S-.

22. The compound of Claim 19, wherein X is -O-.

10 23. The compound of Claim 22 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH.

15 24. The compound of Claim 23 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

20 25. The compound of Claim 24 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and aryloxy.

27. The compound of Claim 24, wherein R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl.

25 28. The compound of Claim 27, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

29. The compound of Claim 28 wherein R2 is a bond.

30. The compound of Claim 29, wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.

5

31. The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

10

32. The compound of Claim 31, wherein X is a bond.

33. The compound of Claim 31, wherein X is -S-.

15

34. The compound of Claim 31, wherein X is -O-.

35. The compound of Claim 34 wherein E is -COOH, C₁-C₆ alkylcarboxyl, C(R3)(R4)-C₁-C₆ alkyl-COOH.

20

36. The compound of Claim 35 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyl.

25

37. The compound of Claim 36 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀-₄-alkyl, aryl-C₁-₆-heteroalkyl, heteroaryl-C₀-₄-alkyl, C₃-C₆ cycloalkylaryl-C₀-₂-alkyl, and aryloxy.

38. The compound of Claim 37, wherein R10 is CF₃.

39. The compound of Claim 36, wherein R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl.

5 40. The compound of Claim 39, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

41. The compound of Claim 40 wherein R2 is a bond.

10 42. The compound of Claim 41, wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.

43. The compound of Claim 1 wherein the compound is selected from the group consisting of:
15 Racemic-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;
Racemic-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
20 Racemic-(1-Methyl-6-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
(S)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
(R)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
25 Racemic-(6-Hydroxy-5-{1-[4-isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethyl}-1H-indol-3-yl)-acetic acid;
(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;
30 (1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(6-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(R)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

5 (S)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

Racemic-(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(1-Ethyl-6-{2-[4-isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

10 Racemic-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-propyl-1H-indol-3-yl)-acetic acid;

{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethyl]-1H-indol-5-yloxy}-acetic acid;

15 Racemic(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

Racemic(6-{1-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(R)-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

20 (S)-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(R)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

25 (S)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(R)-(1-Methyl-5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

30 (S)-(1-Methyl-5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

- 209 -

(1-Methyl-5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;
 5-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-1H-indole-2-carboxylic acid; and
 5-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-1-methyl-1H-indole-2-carboxylic acid.

44. The compound of Claim 1, wherein the compound is in the S conformation.

10 45. The compound of Claim 1, wherein the compound is in the R conformation.

46. The compound of Claim 1, wherein the compound is radiolabeled.

47. A compound represented by the following Structural Formula:

15

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

20

(a) T1 is selected from the group consisting of

- 210 -

5 (b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

10 (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀₋₄-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

15 (d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁₋₆-heteroalkyl;

20 (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;

25 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is C(R3)(R4)A or A and wherein

30 (i) A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylcarboxamide, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆

alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷;

5 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

10 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

15 (i) Z5 is S or O;

(j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;

20 (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;

(l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';

25 (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';

(n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally

30

- 212 -

substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;

(o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;

(p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;

(r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;

(s) R33 is selected from the group consisting of C₂-C₈ alkyl, C₁-C₈

alkoxy, phenyl, thiophene, pyridine, piperidine,

- 213 -

, and

, wherein the C2-C8 alkyl, C1-C8

alkoxy, phenyl, thiophene, pyridine, piperidine,

, and

, are each optionally substituted with R10
and R11.

5

48. The compound of Claim 47, wherein A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆

10

alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷.

10

49. The compound of Claim 47, wherein the compound is represented by the following Structural Formula:

15

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

(a) T1 is selected from the group consisting of

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

(c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryloxy, aryl-C₀₋₄-alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁₋₆-heteroalkyl;

(e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;

- 215 -

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;

5 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is C(R3)(R4)A or A and wherein

10 (i) A is selected from the group consisting of carboxyl, tetrazole, C₁-C₆ alkylnitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;

15 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

20 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

25 (i) Z5 is S or O;

(j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;

(k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;

30

(l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';

5 (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';

10 (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;

15 (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;

20 (p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

25 (q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆

- 217 -

cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;

- (r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- 5 (s) R33 is selected from the group consisting of phenyl, thiophene,

10 , and , are each optionally substituted with R10 and R11.

50. The compound of Claim 47, wherein the compound is represented by the following Structural Formula:

15 51. The compound of Claim 50, wherein the compound is represented by the following Structural Formula:

52. The compound of Claim 51, wherein the compound is represented by the following Structural Formula:

5

53. The compound of Claim 52, wherein X is a bond.

54. The compound of Claim 52, wherein X is -S-.

10

55. The compound of Claim 52, wherein X is -O-.

56. The compound of Claim 55 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH.

15

57. The compound of Claim 56 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

20

58. The compound of Claim 57 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and aryloxy.

- 219 -

59. The compound of Claim 58, wherein R10 is CF_3 .

60. The compound of Claim 57, wherein R9 is selected from the group consisting of hydrogen and $\text{C}_1\text{-C}_3$ alkyl.

61. The compound of Claim 60, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and $\text{C}_1\text{-C}_2$ alkyl.

62. The compound of Claim 61 wherein R2 is a bond.

10

63. The compound of Claim 62, wherein U is:
saturated $\text{C}_1\text{-C}_3$ alkyl; and
optionally substituted with $\text{C}_1\text{-C}_3$ alkyl.

15 64. The compound of Claim 51, wherein the compound is represented by the following Structural Formula:

65. The compound of Claim 64, wherein X is a bond.

20

66. The compound of Claim 64, wherein X is -S-.

67. The compound of Claim 64, wherein X is -O-.

25 68. The compound of Claim 67 wherein E is -COOH, $\text{C}_1\text{-C}_6$ alkylcarboxyl, or $\text{C}(\text{R}3)(\text{R}4)\text{-C}_1\text{-C}_6$ alkyl-COOH.

- 220 -

5 70. The compound of Claim 69 wherein R10 is selected from the group consisting of C_3 - C_7 cycloalkyl, aryl- C_0 - 4 -alkyl, aryl- C_1 - 6 -heteroalkyl, heteroaryl- C_0 - 4 -alkyl, C_3 - C_6 cycloalkylaryl- C_0 - 2 -alkyl, and aryloxy.

10 71. The compound of Claim 70, wherein R10 is CF_3 .

15 72. The compound of Claim 69, wherein R9 is selected from the group consisting of hydrogen and C_1 - C_3 alkyl.

20 73. The compound of Claim 72, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C_1 - C_2 alkyl.

25 74. The compound of Claim 73 wherein R2 is a bond.

75. The compound of Claim 74, wherein U is:
 20 saturated C_1 - C_3 alkyl; and
 25 optionally substituted with C_1 - C_3 alkyl.

76. The compound of Claim 51, wherein the compound is represented by the following Structural Formula:

25

77. The compound of Claim 76, wherein X is a bond.

78. The compound of Claim 76, wherein X is -S-.
79. The compound of Claim 76, wherein X is -O-.
- 5 80. The compound of Claim 33 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH.
- 10 81. The compound of Claim 80 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
- 15 82. The compound of Claim 81 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and aryloxy.
83. The compound of Claim 82, wherein R10 is CF₃.
84. The compound of Claim 81, wherein R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl.
- 20 85. The compound of Claim 84, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
- 25 86. The compound of Claim 85 wherein R2 is a bond.
87. The compound of Claim 86, wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.
- 30 88. The compound of Claim 47 wherein the compound is selected from the group consisting of:

- 222 -

{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

[5-(5-Methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-acetic acid;

{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[2-(4-Benzyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-{5-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic 2-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[2-(4-Bromo-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic 2-Methyl-2-{5-[4-phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

5 2-Methyl-2-{5-[4-phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

5-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

10 5-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

15 {5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

5-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

20 5-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

25 4-[1-(4-Carboxy-butyl)-1H-indol-5-yloxy-methyl]-2-(4-trifluoromethyl-phenyl)-thiazole-5-carboxylic acid;

3-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

30 3-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

4-[1-(2-Carboxy-ethyl)-1H-indol-5-yloxyethyl]-2-(4-trifluoromethyl-phenyl)-thiazole-5-carboxylic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethylsulfanyl]-indol-1-yl}-acetic acid;

5 {5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

10 {5-[2-(5-Methyl-2-pyridin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-morpholin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

15 (5-{2-[5-Methyl-2-(tetrahydro-pyran-4-yl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[2-(2-Butoxy-5-methyl-oxazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-pyridin-3-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-pyridin-2-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

20 (5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[3-(4-Butyl-phenoxy)-propoxy]-indol-1-yl}-acetic acid;

(5-{2-[2-(3-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

25 (5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

30 2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

- 225 -

(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

5 2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

Racemic 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

10 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

3-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

15 3-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-Methyl-2-(5-{2-[5-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

20 Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

25 Racemic-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

30 (S)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

5 Racemic-(5-{1-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic-2-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

10 2-Methyl-2-{5-[4-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic-2-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

15 2-Methyl-2-{5-[4-phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Phenyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

20 {5-[4-tert-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

25 2-Methyl-2-[5-(5-methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-propionic acid;

2-{5-[2-(4-Trifluoromethyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

30 2-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-Methyl-2-(5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

5 2-(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-Methyl-2-{5-[2-(5-methyl-2-phenyl-thiazol-4-yl)-ethoxy]-indol-1-yl}-propionic acid;

10 {5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-methyl-indol-1-yl}-acetic acid;

2-{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

{4-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

15 Racemic-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-2-phenyl-ethoxy}-indol-1-yl)-acetic acid;

20 Racemic-(5-{1-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

(R)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

25 (S)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

30 (S)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

5 (*R*)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*S*)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*S*)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

10 (*R*)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-methanesulfonamide;

15 N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-benzenesulfonamide; and

N-[2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetyl]-methanesulfonamide.

20 89. The compound of Claim 47, wherein the compound is in the S conformation.

90. The compound of Claim 47, wherein the compound is in the R conformation.

91. The compound of Claim 47, wherein the compound is radiolabeled.

25 92. A method of treating a mammal in need of treatment for a disease, wherein the disease is treatable by modulating a peroxisome proliferator activated receptor, comprising the step of administering to the mammal in need thereof a therapeutically effective amount of a compound represented by the following Structural Formula:

30

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

5

(a) T1 is selected from the group consisting of

10

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

15

(c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀₋₄-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)R24, and S(O)R25N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21,

20

- 230 -

R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁-C₆ heteroalkyl;

5 (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;

10 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is C(R3)(R4)A or A and wherein

15 (i) A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylcarboxamide, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷;

20 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

25 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

30

- 231 -

- (i) Z5 is S or O;
- (j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- 5 (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- 10 (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- 15 (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- 20 (p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 25
- 30

- 232 -

5 (q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;

(r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;

(s) R33 is selected from the group consisting of C₁-C₈ alkyl, C₁-C₈

10 alkoxy, phenyl, thiophene, pyridine, piperidine, ,

, and

, wherein the C₁-C₈ alkyl, C₁-C₈

alkoxy, phenyl, thiophene, pyridine, piperidine, ,

, and

, are each optionally substituted with R10 and R11.

15

93. The method of Claim 93, wherein the compound is represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

5 (a) T1 is selected from the group consisting of

10 (b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

15

(c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryloxy, aryl-C₀₋₄-alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each

20

independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁-6-heteroalkyl;

5 (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;

10 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is C(R3)(R4)A or A and wherein

(i) A is selected from the group consisting of carboxyl, tetrazole, C₁-C₆ alkynitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;

15 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

20 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

30 (i) Z5 is S or O;

- 235 -

- (j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- 5 (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- 10 (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- 15 (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- 20 (p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 25
- 30

- 236 -

(q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀₋₄-alkyl, aryl- C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀₋₄-alkyl, aryl- C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from 5 one to three substituents each independently selected from R31;

(r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;

(s) R33 is selected from the group consisting of phenyl, thiophene,

10

pyridine, piperidine,

wherein the phenyl, thiophene, pyridine, piperidine,

, and , are each optionally substituted with R10

and R11.

15 94. The method of Claim 92, wherein the disease is selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis.

95. The method of Claim 94, wherein the disease is diabetes mellitus.

20 96. The method of Claim 94, wherein the disease is Syndrome X.

- 237 -

97. The method of Claim 93, wherein the compound is represented by the following Structural Formula:

5 98. The method of Claim 94, wherein the compound is represented by the following Structural Formula:

10 99. The method of Claim 98, wherein the compound is represented by the following Structural Formula:

100. The method of Claim 99, wherein the compound is represented by the following Structural Formula:

101. The method of Claim 100, wherein X is a bond.
102. The method of Claim 100, wherein X is -S-.
- 5 103. The method of Claim 100, wherein X is -O-.
104. The method of Claim 103 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH.
- 10 105. The method of Claim 104 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
- 15 106. The method of Claim 105 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and aryloxy.
107. The method of Claim 106, wherein R10 is CF₃.
- 20 108. The method of Claim 105, wherein R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl.
109. The method of Claim 108, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
- 25 110. The method of Claim 109 wherein R2 is a bond.
111. The method of Claim 110, wherein U is:
30 saturated C₁-C₃ alkyl; and
 optionally substituted with C₁-C₃ alkyl.

112. The method of Claim 99, wherein the compound is represented by the following Structural Formula:

5

113. The method of Claim 112, wherein X is a bond.

114. The method of Claim 112, wherein X is -S-.

10 115. The method of Claim 112, wherein X is -O-.

116. The method of Claim 115 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH.

15 117. The method of Claim 116 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

18. The method of Claim 117 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and aryloxy.

119. The method of Claim 118, wherein R10 is CF₃.

25 120. The method of Claim 117, wherein R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl.

- 240 -

121. The method of Claim 120, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

122. The method of Claim 121 wherein R2 is a bond.

5

123. The method of Claim 122, wherein U is:

saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.

10 124. The method of Claim 99, wherein the compound is represented by the following Structural Formula:

125. The method of Claim 125, wherein X is a bond.

15

126. The method of Claim 124, wherein X is -S-.

127. The method of Claim 124, wherein X is -O-.

20 128. The method of Claim 127 wherein E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH.

129. The method of Claim 128 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

25

- 241 -

130. The method of Claim 129 wherein R10 is selected from the group consisting of C₃-C₇ cycloalkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and aryloxy.
- 5 131. The method of Claim 130, wherein R10 is CF₃.
132. The method of Claim 129, wherein R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl.
- 10 133. The method of Claim 132, wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
134. The method of Claim 133 wherein R2 is a bond.
- 15 135. The method of Claim 134, wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.
136. The method of Claim 92 wherein the compound is selected from the group consisting of:
20 {5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
[5-(5-Methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-acetic acid;
25 {5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
{5-[2-(4-Benzyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
30 2-Methyl-2-(5-{2-[2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;
{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

5 {5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-{5-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic 2-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

10 {5-[2-(4-Bromo-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

15 2-{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

20 2-{5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic 2-Methyl-2-{5-[4-phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

25 2-Methyl-2-{5-[4-phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

5-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

30 5-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

5 2-{5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

5-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

10 5-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

15 4-[1-(4-Carboxy-butyl)-1H-indol-5-yloxy-methyl]-2-(4-trifluoromethyl-phenyl)-thiazole-5-carboxylic acid;

3-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

20 3-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

4-[1-(2-Carboxy-ethyl)-1H-indol-5-yloxy-methyl]-2-(4-trifluoromethyl-phenyl)-thiazole-5-carboxylic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethylsulfanyl]-indol-1-yl}-acetic acid;

25 {5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[2-(5-Methyl-2-pyridin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

30 {5-[2-(5-Methyl-2-morpholin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

- 244 -

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(tetrahydro-pyran-4-yl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

5 {5-[2-(2-Butoxy-5-methyl-oxazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-pyridin-3-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-pyridin-2-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

10 {5-[3-(4-Butyl-phenoxy)-propoxy]-indol-1-yl}-acetic acid;

(5-{2-[2-(3-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

15 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

20 2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

25 2-(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

Racemic 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

30 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

- 245 -

3-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-
propionic acid;

3-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-
yl)-propionic acid;

5 2-Methyl-2-(5-{2-[5-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-
ethoxy}-indol-1-yl)-propionic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-
ethoxy}-indol-1-yl)-acetic acid;

10 Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-
ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-
ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-
methyl-ethoxy}-indol-1-yl)-acetic acid;

15 Racemic-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-
propoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-
1-yl)-acetic acid;

(S)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-
indol-1-yl)-acetic acid;

20 (R)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-
indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-
ethoxy}-indol-1-yl)-acetic acid;

25 Racemic-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-
ethoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-
propoxy}-1H-indol-3-yl)-acetic acid;

30 Racemic-(1-Methyl-6-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-
yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(S)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-
1H-indol-3-yl)-acetic acid;

(*R*)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(6-Hydroxy-5-{1-[4-isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethyl}-1H-indol-3-yl)-acetic acid;

5 (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

10 (6-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(*R*)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(*S*)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

15 Racemic-(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(1-Ethyl-6-{2-[4-isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-propyl-1H-indol-3-yl)-acetic acid;

20 Racemic-(5-{1-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

25 Racemic-2-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic-2-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

30 2-Methyl-2-{5-[4-phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Phenyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

5 {5-[4-tert-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

10 2-Methyl-2-[5-(5-methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-propionic acid;

2-{5-[2-(4-Trifluoromethyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

15 2-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-Methyl-2-(5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

20 2-(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-Methyl-2-{5-[2-(5-methyl-2-phenyl-thiazol-4-yl)-ethoxy]-indol-1-yl}-propionic acid;

25 {5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-methyl-indol-1-yl}-acetic acid;

2-{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

{4-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

30 Racemic-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

- 248 -

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-2-phenyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

5 2-{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

Racemic(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

Racemic(6-{1-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-10 1H-indol-3-yl)-acetic acid;

(R)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

15 (S)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

20 (S)-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(S)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

25 (R)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

30 (S)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*S*)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

5 (*R*)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(*S*)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

10 (5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(*R*)-(1-Methyl-5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(*S*)-(1-Methyl-5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

15 (1-Methyl-5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

5-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-1H-indole-2-carboxylic acid;

5-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-1-methyl-1H-indole-2-carboxylic acid;

20 N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-methanesulfonamide;

N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-benzenesulfonamide;

25 N-[2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetyl]-methanesulfonamide;

N-[2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetyl]-benzenesulfonamide; and

30 {1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethyl]-1H-indol-5-yloxy}-acetic acid.

137. The method of Claim 92, wherein the compound is in the S conformation.

138. The method of Claim 92, wherein the compound is in the R conformation.

139. The method of Claim 92, wherein the compound is radiolabeled.

5

140. The compound of Claim 1, wherein the compound is selected from the group consisting of:

{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

10

[5-(5-Methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-acetic acid;

{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[2-(4-Benzyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

15

2-Methyl-2-(5-{2-[2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

20

2-Methyl-2-(5-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

25

2-Methyl-2-{5-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic 2-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

30

{5-[2-(4-Bromo-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2- $\{5\text{-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

5 2- $\{5\text{-[4-(2-Chloro-6-fluoro-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

Racemic 2-Methyl-2- $\{5\text{-[4-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

10 2-Methyl-2- $\{5\text{-[4-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

3- $\{5\text{-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

5- $\{5\text{-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -pentanoic acid;

15 5- $\{5\text{-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -pentanoic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

20 2- $\{5\text{-[4-(2-Chloro-6-fluoro-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -2-methyl-propionic acid;

5- $\{5\text{-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}\}$ -pentanoic acid;

25 5- $\{5\text{-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}\}$ -pentanoic acid;

3- $\{5\text{-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

3- $\{5\text{-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}\}$ -propionic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethylsulfanyl]-indol-1-yl}-acetic acid;

30 {5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[2-(5-Methyl-2-pyridin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-morpholin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(tetrahydro-pyran-4-yl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[2-(2-Butoxy-5-methyl-oxazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-pyridin-3-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-pyridin-2-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

(5-{2-[2-(3-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

Racemic 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

- 253 -

(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid; 3-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

5 3-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-Methyl-2-(5-{2-[5-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

10 Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

15 Racemic-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

20 (5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(S)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(R)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

25 Racemic-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

30 {5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

- 254 -

Racemic-2-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

5 Racemic-2-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-tert-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

10 2-Methyl-2-[5-(5-methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-propionic acid;

2-{5-[2-(4-Trifluoromethyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

15 2-{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

20 2-Methyl-2-(5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

25 2-Methyl-2-{5-[2-(5-methyl-2-phenyl-thiazol-4-yl)-ethoxy]-indol-1-yl}-propionic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-methyl-indol-1-yl}-acetic acid;

2-{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

30 {4-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-2-phenyl-ethoxy}-indol-1-yl)-acetic acid;

5 Racemic-(5-{1-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

(R)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

10 (S)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

15 (R)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

20 (R)-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

25 (S)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

30 N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-methanesulfonamide;

- 256 -

N-(2-{5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-benzenesulfonamide; and
N-[2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetyl]-methanesulfonamide.