Hidden Markov Model I

September 2, 2020

- Assume there are two types of weather "Sunny" and "Rainy". We assume, a prior, that their probabilities are 0.7 and 0.3, e.g., Pr(Sunny) = 0.7, Pr(Rainy) = 0.3.
- Every morning, you do two things: walking dogs ("W") or reading ("R"). Assume the following conditional probabilities:

$$Pr(W|S unny) = 0.8, Pr(R|S unny) = 0.2.$$

 $Pr(W|Rainy) = 0.2, Pr(R|Rainy) = 0.8.$

Assume we know your morning activity for a number of days: {W, W, R, R, W, W, R, W, W, W, W}, but don't know the weather. How can we estimate the weather condition for each day?

Using Bayes' rule, we can compute the following quantity for each day:

```
Pr(Sunny|W) = \frac{Pr(W|Sunny)Pr(Sunny)}{Pr(W|Sunny)Pr(Sunny) + Pr(W|Rainy)Pr(Rainy)}
= \frac{0.8 * 0.7}{0.8 * 0.7 + 0.2 * 0.3} = 0.9
Pr(Sunny|R) = \dots
```

- However, this assumes independence of observations and completely ignores
 the connections between weather changes, e.g., probability of today is Sunny
 given yesterday is Sunny, etc.
- With the consideration the connections between weather changes, today's weather Pr(Sunny|W) should also depend on yesterday's weather, in addition to the W/R status.
- Such an approach can be formalized by a "hidden Markov model" (HMM).

- Assume we observe sequential data $\mathbf{u} = \{u_1, u_2, \dots, u_T\}$ (your morning activities).
- u is generated by a chain of **hidden**, unobserved states: $s = \{s_1, s_2, \dots, s_T\}$.
- Each s_t can take M states, with "initial probability" $\pi_k, k = 1, ..., M$: $Pr(s_1 = k) = \pi_k, \sum_k \pi_k = 1.$
- The distribution of u conditional on s is represented as $b_k(u)$: $u_t|s_t = k \sim b_k(u_t)$. This is called "emission probability".
- The changes of states between consecutive hidden state is specified by "transition probability": $a_{k,l} = Pr(s_{t+1} = l | s_t = k)$. Or you can write this as $a_{k \to l}$.
- Assume the underlying states follow a Markov chain, that is, given present, the future is independent of the past:

$$Pr(s_{t+1}|s_t, s_{t-1}, \ldots, s_1) = Pr(s_{t+1}|s_t).$$

To summarize: a HMM has observed data u, missing data s, and parameters $\lambda = \{\pi_k, b_k(u), a_{k,l}\}.$

Review: discrete time finite homogeneous Markov Chain— 4/25 —

- The possible states are included in a finite discrete set: $\{E_1, E_2, \dots, E_M\}$.
- From time t to t+1, make stochastic movement from one state to another.
- Markov Property: the state of s_{t+1} only depends on the state of s_t , not the states before time t:

$$Pr(s_{t+1}|s_t, s_{t-1}, \ldots, s_1) = Pr(s_{t+1}|s_t).$$

- Time-homogeneous transition probabilities property: $P(s_{t+1}|s_t)$ independent of t.
- Denote the transition probability matrix by **A**. Define N step transition as: $a_{k,l}(N) = Pr(s_{t+N} = l | s_t = k)$. It can be shown that $\mathbf{A}(N) = \mathbf{A}^N$.

A HMM can answer following questions:

- Parameter estimation: estimate the initial/emission/transition probabilities. $\hat{\lambda} = \operatorname{argmax}_{\lambda} Pr(\boldsymbol{u}|\lambda)$.
- What are the probabilities of the underlying states, given the observations: Pr(s|u).
- The most likely path: given the observed data, what are the most likely underlying states for all observations: $\hat{s} = \underset{s}{\operatorname{argmax}} Pr(s|\lambda, u)$.
- Predict future, e.g., $Pr(u_{t+1}|\mathbf{u}, \hat{\lambda})$.

Examples of HMM applications:

- Speech recognition.
- DNA sequence analysis, e.g., gene finding, sequence alignment.
- Financial time series data.

- There's close connection between a HMM and a mixture model: both have hidden states/group assignment, initial and emission probabilities.
- Difference is that mixture model assumes independent observations, HMM assumes sequential observation with transition probability.

According to Markov property, we have:

Joint probability of hidden states:

$$P(s_1, s_2, \dots, s_T) = P(s_1)P(s_2|s_1)\dots P(s_T|s_{T-1})$$

= $\pi_{s_1}a_{s_1, s_2}\dots a_{s_{T-1}, s_T}$

• Conditional on the states, the observations are independent of each other:

$$P(u_i, u_i|s) = P(u_i|s)P(u_i|s)$$

So the joint probability of observations, given hidden states is:

$$P(\boldsymbol{u}|\boldsymbol{s}) = \prod_{i=1}^{T} P(u_i|s_i) = \prod_{i=1}^{T} b_{s_i}(u_i)$$

Note: marginally the observations are NOT independent.

Joint probability of hidden states and observed data

$$P(u,s) = P(s)P(u|s)$$

$$= [P(s_1)p(u_1|s_1)][P(s_2|s_1)P(u_2|s_2)] \dots [P(s_T|s_{T-1})P(u_T|s_T)]$$

$$= \pi_{s_1}b_{s_1}(u_1)a_{s_1,s_2}b_{s_2}(u_2)a_{s_2,s_3} \dots a_{s_{T-1},s_T}b_{s_T}(u_T)$$

Marginal probability of observed data:

$$P(u) = \sum_{s} P(s)P(u|s)$$

$$= \sum_{s} \pi_{s_1}b_{s_1}(u_1)a_{s_1,s_2}b_{s_2}(u_2)a_{s_2,s_3}\dots a_{s_{T-1},s_T}b_{s_T}(u_T)$$

- First need to make parametric assumption of the emission probabilities $b_k(u)$.
- An easy assumption is that $b_k(u)$ is Normal, e.g., $b_k(u) = N(u : \mu_k, \sigma_k^2)$.
- Then the model parameters to be estimated are:

$$\lambda = \{\pi_k, \mu_k, \sigma_k, a_{k,l} : k, l = 1, \dots, M\}$$

- One can obtain the MLEs for λ from the marginal probability of observed data. However it's very difficult because the marginal probability involves summing over all possible paths (\sum_s) .
- Clever algorithm was invented to solve the problem.

• Define $L_k(t)$ be the conditional probability of being in state k at position t given the observed data u:

$$L_k(t) = P(s_t = k|\boldsymbol{u})$$

• Define $H_{k,l}(t)$ be the conditional probability of being in state k at position t and being in state l at position t+1 (i.e., seeing a transition from k to l at t), given the observed data u:

$$H_{k,l}(t) = P(s_t = k, s_{t+1} = l|\mathbf{u})$$

• Note that $L_k(t) = \sum_{l=1}^{M} H_{k,l}(t), \sum_{k=1}^{M} L_k(t) = 1.$

- Then the parameters can be estimated by EM:
 - E-step: Compute $L_k(t)$ and $H_{k,l}(t)$ given current parameters.
 - M-step: update parameters:

$$\mu_{k} = \frac{\sum_{t=1}^{T} L_{k}(t)u_{t}}{\sum_{t=1}^{T} L_{k}(t)}$$

$$\sigma_{k}^{2} = \frac{\sum_{t=1}^{T} L_{k}(t)(u_{t} - \mu_{k})^{2}}{\sum_{t=1}^{T} L_{k}(t)}$$

$$a_{k,l} = \frac{\sum_{t=1}^{T-1} H_{k,l}(t)}{\sum_{t=1}^{T-1} L_{k}(t)}$$

$$\pi_{k} = L_{k}(1)$$

• Derivation steps are similar to that in M-component normal mixture model (try it yourself). The new items are the transition probabilities.

- In the M-step, $L_k(t)$ plays the role of the expected value for the missing data (group assignment).
 - In the mixture model, a component (state) given the observation will be $p_{t,k} = P(s_t = k|u_t)$.
 - In comparison in a HMM, $L_k(t) = P(s_t = k | u_1, u_2, \dots, u_T)$.
- If one ignores the connections among observations, e.g., s_t 's are independent and thus u_t 's are iid, then $L_k(t) = p_{t,k}$, and HMM reduce to a M-component Normal mixture model.
- In a mixture model, s_t only depends on u_t because observations are independent.
- In a HMM, s_t depends on the entire sequence of observations because of the underlying Markov process.

The forward-backward algorithm is designed to efficiently compute:

$$L_k(t) = P(s_t = k|\mathbf{u})$$

$$H_{k,l}(t) = P(s_t = k, s_{t+1} = l|\mathbf{u})$$

• Define the **forward probability** $\alpha_k(t)$ as the **joint probability** of observing the first t data u_i , i = 1, ..., t and being in state k at time t:

$$\alpha_k(t) = P(u_1, u_2, \dots, u_t, s_t = k)$$

The forward probability can be computed recursively:

$$\alpha_k(1) = \pi_k b_k(u_1) \quad 1 \le k \le M$$

$$\alpha_k(t) = b_k(u_t) \sum_{l=1}^{M} \alpha_l(t-1) a_{l,k} \quad 1 < t \le T, 1 \le k \le M.$$

$$a_{k}(t) = P(u_{1}, u_{2}, \dots, u_{t}, s_{t} = k)$$

$$= \sum_{l=1}^{M} P(u_{1}, u_{2}, \dots, u_{t}, s_{t} = k, s_{t-1} = l)$$

$$= \sum_{l=1}^{M} P(u_{1}, u_{2}, \dots, u_{t-1}, s_{t-1} = l)P(u_{t}, s_{t} = k \mid u_{1}, u_{2}, \dots, u_{t-1}, s_{t-1} = l)$$

$$= \sum_{l=1}^{M} \alpha_{l}(t-1)P(u_{t}, s_{t} = k \mid s_{t-1} = l)$$

$$= \sum_{l=1}^{M} \alpha_{l}(t-1)P(u_{t} \mid s_{t} = k, s_{t-1} = l)P(s_{t} = k \mid s_{t-1} = l)$$

$$= \sum_{l=1}^{M} \alpha_{l}(t-1)P(u_{t} \mid s_{t} = k)P(s_{t} = k \mid s_{t-1} = l)$$

$$= b_{k}(u_{t}) \sum_{l=1}^{M} \alpha_{l}(t-1)a_{l,k}$$

• Define the backward probability $\beta_k(t)$ as the conditional probability of observing the data after time t, u_i , i = t + 1, ..., T, given the state at time t is k.

$$\beta_k(t) = P(u_{t+1}, \dots, u_T \mid s_t = k) \quad 1 \le t \le T - 1$$

Again, the backward probability can be computed by following recursive formula:

$$\beta_k(T) = 1$$

$$\beta_k(t) = \sum_{l=1}^{M} a_{k,l} b_l(u_{t+1}) \beta_l(t+1) \quad 1 \le t < T$$

$$\beta_{k}(t) = P(u_{t+1}, \dots, u_{T} \mid s_{t} = k)$$

$$= \sum_{l=1}^{M} P(u_{t+1}, \dots, u_{T}, s_{t+1} = l \mid s_{t} = k)$$

$$= \sum_{l=1}^{M} P(u_{t+1}, \dots, u_{T} \mid s_{t+1} = l, s_{t} = k) P(s_{t+1} = l \mid s_{t} = k)$$

$$= \sum_{l=1}^{M} P(u_{t+1}, \dots, u_{T} \mid s_{t+1} = l) a_{k,l}$$

$$= \sum_{l=1}^{M} P(u_{t+2}, \dots, u_{T} \mid s_{t+1} = l, u_{t+1}) P(u_{t+1} \mid s_{t+1} = l) a_{k,l}$$

$$= \sum_{l=1}^{M} P(u_{t+2}, \dots, u_{T} \mid s_{t+1} = l) b_{l}(u_{t+1}) a_{k,l}$$

$$= \sum_{l=1}^{M} a_{k,l} b_{l}(u_{t+1}) \beta_{l}(t+1)$$

Compute $L_k(t)$ using forward and backward probabilities:

$$L_k(t) \equiv P(s_t = k \mid \boldsymbol{u}) = \frac{P(\boldsymbol{u}, s_t = k)}{P(\boldsymbol{u})} = \frac{\alpha_k(t) \beta_k(t)}{P(\boldsymbol{u})}$$

Proof:

$$P(u, s_t = k) = P(u_1, ..., u_T, s_t = k)$$

$$= P(u_1, ..., u_t, s_t = k) P(u_{t+1}, ..., u_T \mid u_1, ..., u_t, s_t = k)$$

$$= P(u_1, ..., u_t, s_t = k) P(u_{t+1}, ..., u_T \mid s_t = k)$$

$$= \alpha_k(t) \beta_k(t)$$

Compute $H_{k,l}(t)$ using forward and backward probabilities:

$$H_{k,l}(t) = P(s_t = k, s_{t+1} = l | \mathbf{u}) = \frac{P(s_t = k, s_{t+1} = l, \mathbf{u})}{P(\mathbf{u})}$$
$$= \frac{1}{P(\mathbf{u})} \alpha_k(t) \ a_{k,l} \ b_l(u_{t+1}) \ \beta_l(t+1)$$

Proof:

$$P(s_{t} = k, s_{t+1} = l, \mathbf{u}) = P(u_{1}, \dots, u_{t}, \dots, u_{T}, s_{t} = k, s_{t+1} = l)$$

$$= P(u_{1}, \dots, u_{t}, s_{t} = k)P(u_{t+1}, s_{t+1} = l \mid s_{t} = k, u_{1}, \dots, u_{t})$$

$$P(u_{t+2}, \dots, u_{T} \mid s_{t+1} = l, s_{t} = k, u_{1}, \dots, u_{t+1})$$

$$= \alpha_{k}(t)P(u_{t+1}, s_{t+1} = l \mid s_{t} = k)P(u_{t+2}, \dots, u_{T} \mid s_{t+1} = l)$$

$$= \alpha_{k}(t)P(s_{t+1} = l \mid s_{t} = k)P(u_{t+1} \mid s_{t+1} = l, s_{t} = k)\beta_{l}(t+1)$$

$$= \alpha_{k}(t)P(s_{t+1} = l \mid s_{t} = k)P(u_{t+1} \mid s_{t+1} = l)\beta_{l}(t+1)$$

$$= \alpha_{k}(t) a_{k,l} b_{l}(u_{t+1}) \beta_{l}(t+1)$$

The marginal observed data likelihood is:

$$P(\boldsymbol{u}) = \sum_{k=1}^{M} \alpha_k(t) \beta_k(t)$$

Proof:

$$P(u) = \sum_{k=1}^{M} P(u_1, \dots, u_t, \dots, u_T, s_t = k)$$

$$= \sum_{k=1}^{M} P(u_1, \dots, u_t, s_t = k) P(u_{t+1}, \dots, u_T \mid s_t = k, u_1, \dots, u_t)$$

$$= \sum_{k=1}^{M} P(u_1, \dots, u_t, s_t = k) P(u_{t+1}, \dots, u_T \mid s_t = k)$$

$$= \sum_{k=1}^{M} \alpha_k(t) \beta_k(t)$$

To summarize, estimation of model parameters requires iterating following steps, under the current estimates of parameters:

1. Compute the forward and backward probabilities (two matrices of dimension $M \times T$):

$$\alpha_{k}(1) = \pi_{k}b_{k}(u_{1}) \quad 1 \leq k \leq M$$

$$\alpha_{k}(t) = b_{k}(u_{t}) \sum_{l=1}^{M} \alpha_{l}(t-1)a_{l,k} \quad 1 < t \leq T, 1 \leq k \leq M.$$

$$\beta_{k}(T) = 1$$

$$\beta_{k}(t) = \sum_{l=1}^{M} a_{k,l} b_{l}(u_{t+1}) \beta_{l}(t+1) \quad 1 \leq t < T$$

- 2. Compute whole data likelihood: $P(u) = \sum_{k=1}^{M} \alpha_k(t)\beta_k(t)$. This is independent of t. Can use t = 1 or t = T.
- 3. Compute $L_k(t)$ and $H_{k,l}(t)$ from forward/backward probabilities:

$$L_k(t) = \frac{\alpha_k(t) \beta_k(t)}{P(\mathbf{u})}$$

$$H_{k,l}(t) = \frac{1}{P(\mathbf{u})} \alpha_k(t) a_{k,l} b_l(u_{t+1}) \beta_l(t+1)$$

4. Update parameters using $L_k(t)$ and $H_{k,l}(t)$ (assuming Normal emission probabilities):

$$\mu_{k} = \frac{\sum_{t=1}^{T} L_{k}(t)u_{t}}{\sum_{t=1}^{T} L_{k}(t)}, \quad \sigma_{k}^{2} = \frac{\sum_{t=1}^{T} L_{k}(t)(u_{t} - \mu_{k})^{2}}{\sum_{t=1}^{T} L_{k}(t)},$$

$$a_{k,l} = \frac{\sum_{t=1}^{T-1} H_{k,l}(t)}{\sum_{t=1}^{T-1} L_{k}(t)}, \quad \pi_{k} = L_{k}(1)$$

Long HMM chain causes numerical problem.

- The computation of forward/backward matrices requires multiplying probabilities.
- Probabilities are quantities less than 1. Multiplying too many probabilities gives very small number, and will exceed the computer precision quickly and become 0 numerically.

Solution: the computation of forward/backward matrices are done in logarithm scale, i.e., instead of storing P, we store $\log P$.

• Running exp(-1000) *exp(-1000) gives 0 in R, but we know it's exp(-2000).

However we also have sums of probabilities.

- We can't exp the numbers back, sum up, and then take log.
- $\log(e^a + e^b)$ will become negative infinity when a or b are negative number with large absolute values: try to run $\log(\exp(-1000) + \exp(-1000))$ in R.

Use the following trick to deal with the scenario:

```
log(e^a + e^b) = log(e^a(1 + e^{b-a})) = a + log(1 + e^{b-a}).
```

- It equals b when b >> a, equals a when b << a.
- When the values of b and a are close, the computation is numerically stable.

Following is an R implementation of the algorithm, which works for two vectors:

```
Raddlog <- function (a, b)
{
    result <- rep(0, length(a))
    idx1 <- a > b + 200
    result[idx1] <- a[idx1]
    idx2 <- b > a + 200
    result[idx2] <- b[idx2]
    idx0 <- !(idx1 | idx2)
    result[idx0] <- a[idx0] + log1p(exp(b[idx0] - a[idx0]))
    result
}</pre>
```

Some simple tests:

```
> \log(\exp(-100) + \exp(-100))
[1] -99.30685
> Raddlog(-100, -100)
[1] -99.30685
> \log(\exp(-1000) + \exp(-1000))
[1] -Inf
> Raddlog(-1000, -1000)
[1] -999.3069
> \log(\exp(-100) + \exp(-1000))
[1] -100
> Raddlog(-100, -1000)
[1] -100
```

- HMM is used to model sequential data.
- Difference between HMM and mixture model: mixture model assumes iid observations, HMM assumes underlying sequential correlation among hidden states.
- Important components in a HMM: initial, emission and transition probabilities.
- Goals of HMM: estimate hidden states and model parameters, find best path, future prediction.
- Parameter estimation via EM and forward-backward algorithm.
- Next lecture: dynamic programming and Viterbi algorithm to find the best path.