University of Hawai'i

${ m Last}$ name: $_$			
First name: $_$			

Question:	1	2	3	4	5	Total
Points:	20	10	10	5	5	50
Score:						

Instructions:

- Write your complete name on your copy.
- Answer all 5 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your	Signature:	

Let
$$A = \begin{bmatrix} 6 & -5 \\ 2 & -1 \end{bmatrix}$$
.

- (a) (5 Pts) Find the eigenvalues of the matrix A.
- (b) (10 Pts) Find the eigenvectors associated to each eigenvalue.
- (c) (5 Pts) Is A diagonalizable? If so, find the matrix P such that $P^{-1}AP$ is a diagonal matrix.

\square Question 2	(10	pts))
		T O	PUD	,

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ be vectors in a vector space V. Simplify the following expression:

$$2(\mathbf{x} - \mathbf{y}) + 4(\mathbf{z} - \mathbf{y}) + 4(\mathbf{w} - \mathbf{z}) + (\mathbf{x} - 4\mathbf{w}).$$

Which of the following are subspaces of M_{22} , the vector space of all 2×2 matrices with usual addition and scalar multiplication of matrices.

- (a) (5 Pts) $U = \{A : A \in \mathbf{M}_{22} \text{ and } A = A^{\top}\}.$
- (b) (5 Pts) $U = \{A : A \in \mathbf{M_{22}} \text{ and } A^4 = I\}.$

Answer the following questions:

(a) (3 Pts) Assume that A is an 3×3 matrix and that $c_A(x)$ is the characteristic polynomial of A. Show that

$$c_{A^2}(x^2) = (-1)c_A(x)c_A(-x).$$

[Hint: Use the following property of determinants: det(XY) = det(X) det(Y).]

(b) (2 Pts) What does the word "eigen" in "eigen-vectors" and "eigen-values" mean in English?

QUESTION 5	(5 pts
Answer the following questions with True or False .	Write down you answers on the line a
the end of each question. Justify briefly your answer	in the space after the statement of th
problem	_

(b) If
$$A$$
 is a 2×2 matrix with eigenvalues $\lambda_1 = 3$ and $\lambda_2 = -1$, then $P^{-1}AP = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$. (/ 1)

(c) If the solution to
$$A\mathbf{x} = \lambda \mathbf{x}$$
 is only $\mathbf{x} = \mathbf{0}$, then λ is an eigenvalue.

(d) If a matrix
$$A$$
 has $\lambda = 0$ as an eigenvalue, then A is not invertible. $(/ 1)$

(e) The set
$$U = \{p : p \in \mathbf{P_3} \text{ and } p(0) = 1\}$$
 is a subspace of $\mathbf{P_3}$.