Algoritma Runut-balik (Backtracking) (Bagian 1)

Bahan Kuliah IF2211 Strategi Algoritma

Oleh: Rinaldi Munir

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 2021

Pendahuluan

- Backtracking dapat dipandang sebagai salah satu dari dua hal berikut:
 - 1. Sebagai sebuah *fase* di dalam algoritma traversal DFS → Sudah dijelaskan di dalam materi DFS/BFS.

2. Sebagai sebuah *metode* pemecahan masalah yang mangkus, terstruktur, dan sistematis, baik untuk persoalan optimasi maupun non-optimasi

Backtacking sebagai sebuah metode pemecahan masalah yang mangkus

- Algoritma runut-balik merupakan perbaikan dari exhaustive search.
- Pada exhaustive search, semua kemungkinan solusi dieksplorasi dan dievaluasi satu per satu.
- Sedangkan pada algoritma backtracking, hanya pilihan yang mengarah ke solusi yang dieksplorasi, pilihan yang tidak mengarah ke solusi tidak dipertimbangkan lagi
 - → Memangkas (*pruning*) simpul-simpul yang tidak mengarah ke solusi.
- Algoritma runut-balik pertama kali diperkenalkan oleh D. H. Lehmer tahun 1950.
- Kemudian R.J Walker, Golomb, dan Baumert menyajikan uraian umum tentang algoritma runut-balik.

Properti Umum Algoritma Runut-balik

1. Solusi persoalan.

- Solusi dinyatakan sebagai vektor dengan *n-tuple*: $X = (x_1, x_2, ..., x_n)$, $x_i \in S_i$. Umumnya $S_1 = S_2 = ... = S_n$.
- Contoh: Pada persoalan 1/0 knapsack $S_i = \{0, 1\}, x_i = 0$ atau 1

2. Fungsi pembangkit nilai x_k

- Dinyatakan sebagai predikat T()
- T(x[1], x[2], ..., x[k-1]) membangkitkan nilai untuk x_k , yang merupakan komponen vektor solusi.

3. Fungsi pembatas (bounding function)

- Dinyatakan sebagai predikat $B(x_1, x_2, ..., x_k)$
- B bernilai true jika $(x_1, x_2, ..., x_k)$ mengarah ke solusi. Mengarah ke solusi artinya tidak melanggar kendala (constraints)
- Jika true, maka pembangkitan nilai untuk x_{k+1} dilanjutkan, tetapi jika false, maka $(x_1, x_2, ..., x_k)$ dibuang.

Pengorganisasian Solusi

• Semua kemungkinan solusi dari persoalan disebut **ruang solusi** (solution space).

- Tinjau *Knapsack* 0/1 untuk n = 3.
- Solusi persoalan dinyatakan sebagai $X = (x_1, x_2, x_3)$ dengan $x_i \in \{0,1\}$.
- Ruang solusinya adalah:

$$\{(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\}$$

- Ruang solusi diorganisasikan ke dalam struktur pohon berakar.
- Tiap simpul pohon menyatakan status (state) persoalan, sedangkan sisi (cabang) dilabeli dengan nilai-nilai x_i .
- Lintasan dari akar ke daun menyatakan solusi yang mungkin.
- Seluruh lintasan dari akar ke daun membentuk ruang solusi.
- Pengorganisasian pohon ruang solusi diacu sebagai pohon ruang status (state space tree).

Sebuah pohon adalah sekumpulan simpul dan busur yang tidak mempunyai

sirkuit

Ada tiga macam simpul:

- Simpul akar
- Simpul dalam
- Simpul daun

Backtracking dapat dipandang sebagai pencarian di dalam pohon dari akar menuju daun (simpul solusi) Tinjau persoalan *Knapsack* 1/0 untuk n = 3.

Ruang solusinya:

Prinsip Pencarian Solusi dengan Algoritma Runut-balik

- Solusi dicari dengan membangkitkan simpul-simpul status sehingga menghasilkan lintasan dari akar ke daun.
- Aturan pembangkitan simpul yang dipakai adalah mengikuti aturan dephtfirst order (DFS).
- Simpul-simpul yang sudah dibangkitkan dinamakan **simpul hidup** (*live node*).
- Simpul hidup yang sedang diperluas dinamakan simpul-E (Expand-node).

- Tiap kali simpul-E diperluas, lintasan yang dibangun olehnya bertambah panjang.
- Jika lintasan yang sedang dibentuk tidak mengarah ke solusi, maka simpul-E tersebut "dimatikan" sehingga menjadi simpul mati (dead node).
- Fungsi yang digunakan untuk mematikan simpul-E adalah dengan menerapkan fungsi pembatas (bounding function).
- Ketika sebiah simpul berarti, maka secara implist kita telah memangkas (pruning) simpul-simpul anaknya.

Jika pembentukan lintasan berakhir dengan simpul mati, maka proses pencarian *backtrack* ke simpul pada aras diatasnya

• Lalu, teruskan dengan membangkitkan simpul anak yang lainnya.

- Selanjutnya simpul ini menjadi simpul-E yang baru.
- Pencarian dihentikan bila kita telah sampai pada goal node.

• Tinjau persoalan 1/0 Knapsack dengan instansiasi:

$$n = 3$$

 $(w_1, w_2, w_3) = (35, 32, 25)$
 $(p_1, p_2, p_3) = (40, 25, 50)$
 $M = 30$

- Solusi dinyatakan sebagai $X = (x_1, x_2, x_3), x_i \in \{0, 1\}.$
- Fungsi konstrain (dapat dianggap sebagai bounding function):

$$\sum_{i=1}^k w_i x_i \leq M$$

Pada metode brute force, semua lintasan dari akar ke daun dievaluasi

Pohon dinamis yang dibentuk selama pencarian untuk persoalan 1/0 Knapsack dengan n = 3, M = 30, w = (35, 32, 25) dan p = (40, 25, 50)

Penomoran ulang simpul-simpul sesuai urutan pembangkitannya

Solusi optimumnya adalah X = (0, 0, 1) dan F = 50.

Skema Umum Algoritma Runut-Balik (versi rekursif)

```
procedure RunutBalikR(input k : integer)
{Mencari semua solusi persoalan dengan metode runut-balik; skema rekursif
Masukan: k, yaitu indeks komponen vektor solusi, x[k]. Diasumsikan x[1], x[2], ..., x[k-1] sudah
ditentukan nilainya.
Luaran: semua solusi x = (x[1], x[2], ..., x[n])
Algoritma:
 for setiap x[k] \in T(x[1], x[2], ..., x[k-1]) do
      if B(x[1], x[2], ..., x[k]) = true then
         if (x[1], x[2], ..., x[k]) adalah lintasan dari akar ke simpul solusi then
           write(x[1], x[2], ..., x[k]) { cetak solusi }
         endif
         if k < n then
            RunutBalikR(k+1) { tentukan nilai untuk x[k+1]}
         endif
      endif
                                                             Pemanggilan pertama kali: RunutBalikR(1)
  endfor
```

 Setiap simpul dalam pohon ruang status (kecuali simpul daun) berasosiasi dengan sebuah pemanggilan rekursif.

• Jika jumlah simpul dalam pohon ruang status adalah 2^n atau n!, maka pada kasus terburuk, algoritma runut-balik membutuhkan waktu dalam $O(p(n)2^n)$ atau O(q(n)n!),

• dengan p(n) dan q(n) adalah polinom derajat n yang menyatakan waktu komputasi setiap simpul.

Skema Umum Algoritma Runut-Balik (versi iteratif)

```
procedure RunutBalikI(input k : integer)
{Mencari semua solusi persoalan dengan metode runut-balik; skema iteratif
Masukan: k, yaitu indeks komponen vektor solusi, x[k]. Diasumsikan x[1], x[2], ..., x[k-1] sudah ditentukan
nilainya.
Luaran: semua solusi x = (x[1], x[2], ..., x[n])
Algoritma:
   while k \neq 0 do
      if terdapat nilai x[k] yang belum dicoba sedemikian sehingga x[k] \in T(x[1], x[2], ..., x[k-1]) and
         B(x[1], x[2], ..., x[k]) = true then
         if (x[1], x[2], ..., x[k]) adalah lintasan dari akar ke simpul solusi then
           write(x[1], x[2], ..., x[k]) { cetak solusi }
         endif
         k \leftarrow k+1 { tentukan nilai x[k] selanjutnya }
      else
        k \leftarrow k-1
      endif
  endwhile
                                                                    Pemanggilan pertama kali: RunutBalikI(1)
```

1. Persoalan N-Ratu (The N-Queens Problem)

 Diberikan sebuah papan catur yang berukuran N × N dan N buah ratu. Bagaimanakah cara menempatkan N buah ratu (Q) itu pada petak-petak papan catur sedemikian sehingga tidak ada dua ratu atau lebih yang terletak pada satu baris yang sama, atau pada satu kolom yang sama, atau pada satu diagonal yang sama?

Contoh 2 buah solusi 8-queen problem:

- The puzzle was originally proposed in 1848 by the chess player Max Bezzel, and over the years, many mathematicians, including Gauss, have worked on this puzzle and its generalized N-queens problem. The first solutions were provided by Franz Nauck in 1850. Nauck also extended the puzzle to n-queens problem (on an N×N board—a chessboard of arbitrary size).
- Edsger Dijkstra used this problem in 1972 to illustrate the power of what he called structured programming. He published a highly detailed description of the development of a depth-first backtracking algorithm.²

(Sumber: laman Wikipedia)

Penyelesaian dengan Algoritma Brute-Force (N = 8):

a) Brute Force 1

 Mencoba semua kemungkinan solusi penempatan delapan buah ratu pada petak-petak papan catur.

Penempatan ratu dilakukan secara acak pada petak-petak papan catur

 Terdapat C(64, 8) = 4.426.165.368 kemungkinan solusi yang perlu dievaluasi.

b) Brute Force 2

 Meletakkan masing-masing ratu pada setiap baris yang berbeda.
 Untuk setiap baris, kita coba menempatkan ratu mulai dari kolom 1, 2, ..., 8.

• Jumlah kemungkinan solusi yang diperiksa berkurang menjadi $8^8 = 16.777.216$

```
procedure Ratu1
{Mmencari semua solusi penempatan delapan ratu pada petak-petak papan catur yang berukuran 8 x 8 }
Deklarasi
  i1, i2, i3, i4, i5, i6, i7, i8 : integer
Algoritma:
   for il \leftarrow 1 to 8 do
      for i2 \leftarrow 1 to 8 do
        for i3 \leftarrow 1 to 8 do
            for i4 \leftarrow 1 to 8 do
              for i5 \leftarrow 1 to 8 do
                for i6 \leftarrow 1 to 8 do
                    for i7 \leftarrow 1 to 8 do
                       for i8 \leftarrow 1 to 8 do
                            { periksa apakah i1, i2, i3, i4, i5, i6, i7, i8 merupakan solusi }
                            if Solusi(i1, i2, i3, i4, i5, i6, i7, i8) then
                                write(i1, i2, i3, i4, i5, i6, i7, i8)
                           endif
                      endfor
                    endfor
                endfor
             endfor
         endfor
       endfor
    endfor
endfor
```

c) Brute Force 3 (exhaustive search)

• Misalkan solusinya dinyatakan dalam vektor 8-tupple:

$$X = (x_1, x_2, ..., x_8)$$

 x_i menyatakan kolom kedudukan ratu pada baris ke-i

Contoh solusi:
$$X = (2, 4, 6, 8, 3, 1, 7, 5)$$

 $X = (8, 3, 1, 6, 2, 5, 7, 4)$

- Vektor solusi X merupakan permutasi bilangan 1, 2, 3, 4, 5, 6, 7, 8.
- Jumlah permutasi bilangan 1 sampai 8 adalah P(1, 8) = 8! = 40.320 buah.

```
procedure Ratu2
{Mencari semua solusi penempatan delapan ratu pada petak-petak papan catur yang berukuran 8 x 8 }
Deklarasi
  X : array[1..n] of integer
  n, i: integer
Algoritma:
  n \leftarrow 40320 \ \{ Jumlah \ permutasi \ (1, 2, ..., 8) \}
  i \leftarrow 1
  repeat
     X \leftarrow Permutasi(8)  { Bangkitan permutasi(1, 2, ..., 8) }
    { periksa apakah X merupakan solusi }
    if Solusi(X) then
       write(x[1], x[2], ..., x[k]) { cetak solusi }
   endif
   i \leftarrow i+1 { ulangi untuk permutasi berikutnya }
 until i > n
```

Penyelesaian dengan Algoritma Runut-balik:

• Algoritma runut-balik memperbaiki algoritma brute force 3 (exhaustive search).

Ruang solusinya adalah semua permutasi dari angka-angka 1, 2, 3, 4, 5, 6, 7, 8.

• Setiap permutasi dari 1, 2, 3, 4, 5, 6, 7, 8 dinyatakan dengan lintasan dari akar daun. Sisi-sisi pada pohon diberi label nilai x_i .

Contoh: Pohon ruang-status persoalan 4-Ratu

Contoh solusi runut-balik persoalan 4-Ratu:

Pohon ruang status persoalan 4-Ratu yang dibentuk selama pencarian:

Ket: Huruf B di bawah suatu simpul menyatakan bahwa simpul tersebut dibunuh oleh *bounding function*

Algoritma Runut-balik untuk Persoalan 8-Ratu

- Tinjau dua posisi ratu pada (i, j) dan (m, n)
- Dua buah ratu terletak pada baris yang sama, berarti i = m
- Dua buah ratu terletak pada kolom yang sama, berarti j = n
- Dua buah ratu terletak pada diagonal yang sama, berarti

$$\exists i-j=m-n \text{ atau } \not L i+j=m+n$$

 $\Leftrightarrow i-m=j-n \text{ atau } m-i=j-n$
 $\Leftrightarrow |j-n|=|i-m|$

```
function Tempat(input k, i: integer)\rightarrowboolean
{true jika ratu dapat ditempatkan pada baris ke-k dan kolom ke-i, false jika tidak}
Deklarasi
  j : integer
Algoritma:
 for j \leftarrow 1 to k-1 do { periksa ratu-ratu mulai dari baris k-1 sampai baris k-1 }
      if (x[j] = i) {apakah ada dua buah ratu terletak pada kolom yang sama?}
                                         {atau }
            or
         (ABS(x[j]-i]) = ABS(j-k)) { apakah ada dua ratu pada diagonal yang sama?}
      then
           return false
                           { ratu tidak dapat ditempatkan pada baris ke-k dan kolom ke-i }
      endif
  endfor
 return true
```

Function Tempat dapat dianggap sebagai bounding function

Algoritma:

• Inisialisasi x[1], x[2], ..., x[N] dengan 0 sebagai berikut:

for
$$i \leftarrow 1$$
 to N do $x[i] \leftarrow 0$ endfor

Panggil prosedur Nratu_R(1, N)

Versi rekursif

```
procedure Nratu_R(input k, N : integer)
{ Algoritma rekursif untuk menghasilkan semua solusi penempatan N buah ratu pada petak papan catur N x N
tanpa melanggar kendala;
Masukan: N = jumlah ratu
Luaran: semua solusi x = (x[1], x[2], ..., x[N]) dicetak ke layar. }
Deklarasi
  i : integer
Algoritma:
   for i \leftarrow 1 to N do
     if Tempat(k, i) then { periksa apakah ratu ke-k dapat ditempatkan pada baris k dan kolom i }
        x[k] \leftarrow i
        if k = N then
                                    { apakah solusi sudah lengkap? }
           write(x[1], x[2], ..., x[k]) { cetak solusi }
        else
          Nratu_R(k+1, N)
        endif
     endif
   endfor
```

Versi iteratif

```
procedure Nratu I(input k : integer, N : integer)
{ Algoritma iteratif untuk menghasilkan semua solusi penempatan N buah ratu pada petak papan catur N x N
tanpa melanggar kendala;
Masukan: N = jumlah ratu
Luaran: semua solusi x = (x[1], x[2], ..., x[N]) dicetak ke layar. }
Deklarasi
    i : integer
    stop : boolean
Algoritma:
    i \leftarrow 0
    while k \neq 0 do
      i \leftarrow i + 1
      stop ← false
      while (i <= N) and (not stop) do</pre>
          if Tempat(k, i) then {periksa apakah ratu dapat ditempatkan pada baris k dan kolom i}
             x[k] \leftarrow i
             if k = N then { apakah solusi sudah lengkap?}
               write (x[1], x[2], ..., x[k]) { cetak solusi }
               stop ← true
             else
               k \leftarrow k + 1 { menempatkan ratu untuk baris berikutnya}
              i \leftarrow 1
             endif
         else
             i \leftarrow i+1
         endif
      endwhile {i>N}
      k \leftarrow k - 1 { runut-balik ke baris sebelumnya}
      i \leftarrow x[k]
    endwhile
                                                                                                              38
```

Versi rekursif

Lampiran Program C++

```
/ Program N-Queen Problem dengan algoritma backtracking
// Versi rekursif
#include <iostream>
#include <cmath>
using namespace std;
int x[9], sol;
bool Tempat(int k, int i)
    int j;
    for (j=1; j \le k-1; j++) {
       if ((x[j]==i) \mid | (abs(x[j]-i)==abs(j-k))) {
        return false;
    return true;
```

```
void Nratu R(int k, int N) {
  int i,m;
  for(i=1;i<=N;i++) {
    if (Tempat(k,i)){
       x[k]=i;
       if (k==N) {
           sol = sol + 1;
           cout << "Solusi ke-" << sol << ": ";</pre>
           for (m=1; m \le N; m++) cout << x[m] << " "; cout <math><< endl;
      else
         Nratu R(k+1,N);
int main() {
 int j, N;
N = 4;
 sol = 0;
 cout << "N = " << N << endl;
 for (j=1; j \le N; j++) \{ x[j]=0; \}
 Nratu R(1,N);
 return 0;
```

Versi iteratif

```
// Program N-Queen Problem dengan algoritma backtracking
// Versi iteratif
#include <iostream>
#include <cmath>
using namespace std;
int x[9], sol;
bool Tempat(int k, int i)
    int j;
    for(j=1; j<=k-1;j++) {
       if ((x[j]==i) \mid | (abs(x[j]-i)==abs(j-k))) {
        return false;
    return true;
void Nratu I(int k, int N)
  int i,m;
  bool stop;
```

```
i = 0;
sol = 0;
while (k>0) {
  i = i + 1;
  stop = false;
  while (i\leq=N && !stop) {
    if (Tempat(k,i)) {
      x[k] = i;
      if (k==N) {
        sol = sol + 1;
        cout << "Solusi ke-" << sol << ": ";</pre>
        for (m=1; m \le N; m++) cout << x[m] << " "; cout <math><< endl;
        stop = true;
      else {
       k = k + 1;
        i = 1;
    else
      i = i + 1;
  k = k-1;
  i = x[k];
```

```
int main() {
  int j, N;

N = 8;
  cout << "N = " << N << endl;
  for (j=1;j<=N; j++) {
    x[j]=0;
  }
  Nratu_I(1,N);
  return 0;
}</pre>
```

Hasil *run* program untuk *N* = 4

```
Command Prompt

D:\IF2211 Strategi Algoritma\2021>g++ NratuR.cpp

D:\IF2211 Strategi Algoritma\2021>a
N = 4
Solusi ke-1: 2 4 1 3
Solusi ke-2: 3 1 4 2

D:\IF2211 Strategi Algoritma\2021>_
```

Cara membaca hasil run ini:

Solusi ke-1: 2 4 1 3, artinya pada baris ke-1 ratu ditempatkan pada kolom ke-2 pada baris ke-2 ratu ditempatkan pada kolom ke-4 pada baris ke-3 ratu ditempatkan pada kolom ke-1 pada baris ke-4 ratu ditempatkan pada kolom ke-3

	Q1		
			Q2
Q3			
		Q4	

Solusi ke-2: 3 1 4 2, artinya pada baris ke-1 ratu ditempatkan pada kolom ke-3 pada baris ke-2 ratu ditempatkan pada kolom ke-1 pada baris ke-3 ratu ditempatkan pada kolom ke-4 pada baris ke-4 ratu ditempatkan pada kolom ke-2

		Q1	
Q2			
			Q3
	Q4		

Hasil *run* program untuk *N* = 8

```
Command Prompt
                                                                                                                 D:\IF2211 Strategi Algoritma\2021>a
N = 8
Solusi ke-1: 1 5 8 6 3 7 2 4
Solusi ke-2: 1 6 8 3 7 4 2 5
Solusi ke-3: 1 7 4 6 8 2 5 3
Solusi ke-4: 1 7 5 8 2 4 6 3
Solusi ke-5: 2 4 6 8 3 1 7 5
Solusi ke-6: 2 5 7 1 3 8 6 4
Solusi ke-7: 2 5 7 4 1 8 6 3
Solusi ke-8: 2 6 1 7 4 8 3 5
Solusi ke-9: 2 6 8 3 1 4 7 5
Solusi ke-10: 2 7 3 6 8 5 1 4
Solusi ke-11: 2 7 5 8 1 4 6 3
Solusi ke-12: 2 8 6 1 3 5 7 4
Solusi ke-13: 3 1 7 5 8 2 4 6
Solusi ke-14: 3 5 2 8 1 7 4 6
Solusi ke-15: 3 5 2 8 6 4 7 1
Solusi ke-16: 3 5 7 1 4 2 8 6
Solusi ke-17: 3 5 8 4 1 7 2 6
Solusi ke-18: 3 6 2 5 8 1 7 4
Solusi ke-19: 3 6 2 7 1 4 8 5
Solusi ke-20: 3 6 2 7 5 1 8 4
Solusi ke-21: 3 6 4 1 8 5 7 2
Solusi ke-22: 3 6 4 2 8 5 7 1
Solusi ke-23: 3 6 8 1 4 7 5 2
Solusi ke-24: 3 6 8 1 5 7 2 4
Solusi ke-25: 3 6 8 2 4 1 7 5
Solusi ke-26: 3 7 2 8 5 1 4 6
Solusi ke-27: 3 7 2 8 6 4 1 5
                                                                                               DOSEN STEI
Solusi ke-28: 3 8 4 7 1 6 2 5
Solusi ke-29: 4 1 5 8 2 7 3 6
                                                                                                           +62 818-641-155: gast
```


Bersambung