colollo Module 4: Isobability Distribution

bernoulli's toid - discoete distoibution - binomial distoibution, Concept of random variables - probability distributionit's mean and vasiance - fitting, of binomial distributiondistribution, its mean and rasiance. Atting of poisson distribution continuos distribution aniform distribution poisson distribution as a limiting, case of binomial distribution - standard normal curve and its proporties. exponential distribution, its mean and variance - normal

1> | Random vasiable:

random experiment and it depends on chance. They are It is a variable associated with the outcome of a denoted by agital letters, variedly x, y, z etc.

Discrete and continuos variables.

A discrete random vasiable is one which can assume isolated values such as 0,1,4,3, etc.

eq: The no. of heads in 8 tosses of a coin. The random vasiable can assume the values 0,1,2,3.

assume only value with in an interval eg: weights of a group of individuals.

--- Discourte probability distribution:

p(α_i), $p(\alpha_a)$ $p(\alpha_n)$ where $\leq p(\alpha_i) = 1$ and $p(\alpha_i) \geq 0$ for all i, then

in called the discrete probability distribution for ∞ and it defines how a total probability of one is distributed over several vietues of ∞ .

Mean and vasiance of sandom vasiables:

P(x): P₁, P₂, P₃, P₄, P₅, P₆, P₆, P₆, P₆, P₇, P₈, P₈,

then, Mean = $\mu = \underbrace{\Sigma x_i p_i} = \underbrace{\Sigma x_i p_i}$, boox $\underbrace{\Sigma p_i} = \underbrace{\Sigma x_i p_i}$

vasionce = o = S xip; - He

Standard deviation:

Ą

S.D = 0 = Vrasiance

Mathematical expectation

 $E(x) = \int \sum x_i p_i$ for discrete $f_i V$ - paradom expectation $\int x_i f_i dx$ for continuous $f_i V$ variable of X

 $E(x) = \left\langle \sum_{\alpha} x f(\alpha) \right\rangle$ for discrete $\Re V$

Ţ

 $E(\widehat{x}) = \int x f(\widehat{x}) dx$ $E(\widehat{x}^{\alpha}) = \int x^{\alpha} f(\widehat{x}) dx$

$$E(\chi(x-1)) = \int \alpha(x-1) f(x) dx.$$

$$E(x) = Man = \mu$$

 $V(x) = E(x^2) - [E(x)]^2$.

Cumulative probability, distribution:

If χ is a discrete as antinuous random rasiable from (probability that $x \le x$) $P[x \le \alpha]$ is called cumulative distribution of x and denoted by F(x).

If X is discrete $F(x) = \mathcal{L} P_j$ where $x_j \mathcal{L} x$.

If X is entiruous, $F(x) = P\left[X \mathcal{L} x\right]$ $= \mathcal{L} F(x) dx$

Q. Find the mean and variance of the R.V with probability distribution fry;

av. | Mean = Exip;

Variance = Engly - He

$$2\alpha_{i}^{\alpha}P_{i} = 0x8 + 1x14 + 2^{\alpha}x6 + 3^{\alpha}x1$$

$$= \frac{12}{12} + \frac{24}{27} + \frac{2}{27}$$

$$= \frac{12}{27} + \frac{24}{27} + \frac{2}{27}$$

$$f(x) = \begin{cases} ce^{2x} & 0 < x < \infty \end{cases}$$

P (872) and unsulative distribution in? find the value of c, much and vasiance and

we know that sotal probability = 1 $\dot{u} = \int f(x) dx = 1$

$$\int_{0}^{\infty} ce^{-2x} dx = 1$$

$$c \int e^{-ax} dx = 1$$

$$\frac{C}{x} \left(\frac{-2x}{2} \right)^{2}$$

$$\frac{Cx}{2}\left[e^{-2xx0}-e^{0}\right]=1$$

so we can write for as, fa)= (exex orxxx

Mean = $\mu = E(x) = \int xf(x) dx$ 0 2 20

$$= \left[(x) \times \left(\frac{e^{-2x}}{e^{-2x}} \right) - (x) \left(\frac{e^{-2x}}{e^{-2x}} \right) \right]$$

$$= \mathcal{R} \left[\frac{3e^{-2x}}{-2} - \frac{e^{-2x}}{4} \right]_0^{\infty}$$

Vostance = = E(xx) - [E(x)]

$$E(x^{\alpha}) = \int x^{\alpha} f(x) dx$$

11 es Re Re-29 de

a) find P(x < 3), $P(x \ge 3)$, $P(k \le x < 5)$.

1) Determine the value of a

3) what is the smallest P[x=x] >0.5 value of se as for which

one) Total probability = 1

ie at 3at 5at 7a+ 9a+ 11a+ 13a+ 15a+ 17a-1

A = 1

2= 18

a + 3a + 5a

1xh=

10-

P[x z3] = 1 - P[x <3]

P[R< x<5] = P[x=e]+ P[x=3]+ = 5a+ 7a+ 9a. · P[R-4]

リモスー

4 4

(3) $P[x=0] = a = \frac{1}{81} < 0.5$

P(x=0,1) = a + 3a = 4a = 4 = 0.04 < 0.5

P(x=0,1,2) = a+3a+5a = 9a = 9 = 0.1 < 0.5

 $P(x=0,1,0,3) = 0+3a+5a+7a = 16a = \frac{16}{81} = 0.19 < 0$

P[x=0,1,2,3,4] = a+3a+5a+7a+9a=85a=25=1P(8=0,1, 2, 3, 4, 5) = a+3a+5a+7a+ 9a+11a

 $= 3601 = \frac{36}{81} = 0.4 < 0.5$

P(x=0,1,0,3,4,5,6)= a+3a+5a+ 4a+9a+11a+1 = 49 a= 49 = 0.6>0.5

P[X56] >0.5 , x=6

3) Find the minimum value of
$$\alpha$$
, so that $P[\alpha \leq \alpha] > 1/2$.

$$\frac{80}{100} = \frac{81}{100}$$

$$f(x \ge 6) = 1 - f(x < 6)$$

$$P(3 < \alpha \le 6) = P(\alpha = 4) + P(\alpha = 5) + P(\alpha = 6)$$

- 3K+ Kr+ QK2

$$(2) P(k=0) = 0 < 1/2$$

$$P(x=0,1)=K=1/10<1/2$$

$$P(x=0,1,q,3) = 8k+ak=5k=5=1$$

$$P(x=0,1,2,3,4) = 5k+3k=8k=8 \times \frac{10}{10} \times \frac{1}{10}$$

 $P(x=4) \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

tonday of Find E(X) ang: $|Magn = E(x) = 0 \times 0 + \sum x_i p_i$ The probability mass in of X, the no all mistakes Exip; = 0x0.83 + 1x0.41 + ex0.20+ 3x0.05 + p(x): 0.33 0.41 P90: 0.1 0.2 per page in a book is as dillows find the expected no of mistakes per page 10x0-1 + 1x0-2 + exo.4 + 8x0-3 0.0 20.0 050 the marky Use I find the vasiance of f(x) = \(\int \) (x+3) \(\text{-3} \) \(\text{-3} \) \(\text{-3} \) $V(\mathbf{x}) = E(\mathbf{x}^{\mathbf{x}}) - [E(\mathbf{x})]^{\mathbf{x}}$ $f(x) = \mu = \sqrt[3]{x + (x) dx}$ $= \frac{16}{(2)(2+3)^3} - (1)(2+3)^4$ $= \int_{3}^{1} x \log (x+3)^{2} dx + \int_{1}^{1} \frac{x}{\log (6-2x^{2})} dx$ $= \frac{16}{16} \left[\left(-1 \right) \frac{23}{3} - \frac{24}{12} \right] - \left[0 - 0 \right] + \frac{1}{12}$ $+3 (a(9-x))^{4} dx$ 16. (6x 2x3)dx + 1/6 (x) (8-x) (1) (g-x) 73 3x4x-1) 1/6(6-20x2) -15x5 (8-x)" 1<x<8

$$E(x^{\kappa}) = \int_{-3}^{3} x^{\kappa} f(x) dx$$

=
$$\int \frac{2\pi}{16} (x+3)^{4} dx + \int \frac{80}{16} (6-8)^{4} dx$$

$$+\frac{3}{3}\left(\frac{4}{4}\left(9-\pi\right)^{4}\right)^{2}$$

$$= \frac{1}{16} \int_{-3}^{-3} x^4 (x+3)^{\alpha} dx + \frac{1}{16} \int_{-1}^{1} x^4 (6-x)^{\alpha} dx$$

$$+\frac{1}{6}\int x^{3} (3-x)^{4} dx$$

$$= \frac{1}{16} \left((94) (x+3)^3 - (8x) (x+3)^4 + (4x) (x+3)^5 \right)^{-1} + (4x) (x+3)^5 \right)^{-1} + (4x) (x+3)^5 = \frac{1}{3}$$

$$\frac{1}{16} \left((x^3) \frac{(3-\alpha)^3}{3x(-1)} - (3\alpha) \frac{(3-\alpha)^4}{3x4x(-1)^3} + \frac{3x4x(-1)^4}{3x5x^{-1}} \right)$$

$$= \frac{1}{16} \left\{ (+1) \frac{2}{3} + 2x \frac{2}{3} + (2)x \frac{2}{3} \right\} - \left((4x) \frac{2}{3} + 2x \frac{2}{3} + (2)x \frac{2}{3} \right) - \left((4x) \frac{2}{3} + 2x \frac{2}{3} + (2)x \frac{2}{3} \right) - \left((4x) \frac{2}{3} + 2x \frac{2}{3} + (2)x \frac{2}{3} \right) + \left((20 - (23) - 2x \frac{2}{3} + 2x \frac{2}{3} + 2x \frac{2}{3} \right) \right\}$$

$$+ \frac{1}{16} \left[(20 - (23) - 2x \frac{2}{3} + 2x \frac{2}{3} + 2x \frac{2}{3} \right]$$

$$= \frac{1}{16} \left(\frac{+8}{3} + \frac{34}{12} + \frac{64}{60} \right) + \frac{2}{16} x^{2} \left(\frac{8}{3} x^{2} - x^{4} \right) ds$$

$$+ \frac{1}{16} \left(\frac{8}{3} + \frac{32}{12} + \frac{64}{60} \right)$$

$$= \frac{1}{16} \times \frac{38}{5} + \frac{4}{16} \left(\frac{3x^3}{9} - \frac{25}{5} \right)^1 + \frac{1}{16} \times \frac{32}{5}$$

$$= \frac{2}{3} + \frac{4}{16} \left((-\frac{1}{5}) - 0 \right) + \frac{2}{5}$$

thusself Dinomial law of probability: $V(\alpha) = E(x^2) - (E(x))^2$

Consider a sandom experiment with following

propostics:

a) Each trial has a outrones usually called) Total no of trial is a finite no (suy n).

success (S) and the failure (f).

3) All totals are independent -

each total. A) They Probability of a success is the sunce for

autome so a success. ie p(s)=p. Let p denote the probability that an

is p(f) = 1-p=2 : so - shall p+9-1. then , the probability that an outcome is a failure

that, there are a success; is $p(s, s, s, \ldots, s) =$ Since all trials are independent, the probability

> P. P. ... P -& time.

 $p(f, f, \dots) = q \dots q = q^{n-\alpha}$ n-x times n-x times The probability of n-a sailures is

obtained in nCx different vays /nCx = n! where n and p are called parameter's of the and now failure in a traile is | f(x) = n(x p) :. probability of a successes binomial distribution. where x=0,1,2...n. It is denoted by b(x:0,1)But of n outromes, a successes can be (x-0)ix

(9+P)" = nCoq"p" + nCoq"-p" + nCoq p+ - S - + C & 9 n-x p 2.

12/ Mean of the binomial soluting

If $X \sim b(\alpha; n, p)$ then $f(\alpha) = h(\alpha p^{\alpha} q^{n-\alpha}$

where the 0,1,2...n.

Mean = $E(x) = \leq x \cdot f(x)$

= = M.n(xpxqn-x

x1(v-w)1x

x(x-1)1(n-n)1 bx du-x 2=0 x(n-1)/n-1

 $x=1 \frac{1}{(x-1)!} \frac{1}{(x-1)!}$

(1-x)-(1-u) bx-1 (1-u) \ du = $(\alpha-1)_{1}[(n-1)-(\alpha-1)]_{1}$

= m = mi py qm= i(h-w) i h put x-1-4, n-1-m

when R=n, y=n-1 when $\alpha=1$, $y=\alpha-1$ 1

Mean = np

NG= NI Mean = np m m my py q m-y

= np (p+g) m

(x-y) ix

1(k-w)1k = hm andna of binowial distribution: [or]

1500t

X~ b(x:n,p) Ans d(x)=n(xp2qnx where $\kappa=0,1,2$...n.

Variance = $\sigma^{\infty} = \mathbb{E}(\mathcal{X}^{2}) - (\mathcal{E}(\mathcal{X}))^{\infty}$

Consider $x^2 = x^2 - x + x$. $=\kappa(x-1)+\alpha$

 $E(x^{\alpha}) = E(x(x-1)) + E(x)$

S/.

$$E(x(x-1)) = \underbrace{\sum_{\alpha = 0}^{\infty} x(\alpha-1) \frac{1}{n!} p^{\alpha} q^{n-\alpha}}_{x = 0}$$

$$= \underbrace{\sum_{\alpha = 0}^{\infty} x(\alpha-1) \frac{1}{n!} p^{\alpha} q^{n-\alpha}}_{x = 0}$$

$$= \underbrace{\sum_{\alpha = 0}^{\infty} x(\alpha-1) \frac{1}{n!} p^{\alpha} q^{n-\alpha}}_{x = 0}$$

$$[x] = x(x-1)(x-2)!$$

$$eg: 6! = 6.5.4.3.2.1$$

$$= 6.5.4!$$

$$= n(n-1)p^{\alpha} \leq (n-\alpha)! p^{\alpha} + q^{\alpha} - 2 - 2 = 1$$

2=2 (2-2)![(n-2)-(2-2)]!

put &-2=y

when
$$x=q$$
,

when $x=q$,

 $y=0$
 $y=$

n-2-y-M

$$E(x) = E(x (2-1))$$

$$= ub^{2} - ub^{2} - ub^{2} - ub^{2} - ub^{2}$$

$$= ub^{2} - ub^{2} - ub^{2} + ub$$

$$= ub^{2} - ub^{2} - ub^{2} + ub$$

$$= ub^{2} - ub^{2} - ub^{2} + ub$$

$$= ub^{2} - ub^{2} - ub^{2} - ub^{2} - ub^{2} + ub$$

$$= ub^{2} - ub^{2} -$$

Titting of a distribution:

the approximate values of the unknown parameters moved in the distribute and writing down the corresponding probability distribution and thousetical trequencies.

fitting a binomial distribution:

and p. Let xo, x, xy ... xa be the rample

volues with the observed frequency 00, 0, 02.

Istination of n:

n = 4k maximum ratue that the random valiable can take.

$$\frac{p = \chi}{n}$$

Fitting the distribut":

17 x~ b(x:n,p) then

 $f(\alpha) = nC_L p^2 q^{n-1} \qquad \alpha = 0, 1, 4 \dots n.$

The theoretical Trequencles EO, E, ... En,

 $E_0 = \int_0^\infty (0) \lambda dt$

if given by:

En = f(n) .N.

finally check whether 50i = 55i

a Fit a binomial distribution to the bollowing data

 $x \sim b(\alpha; n, p)$ thus $f(\alpha) = n(\alpha p^{\alpha}q^{\gamma-\alpha})$

1) Estimation of n:

x=0,1,4...n

n=5 (maximum value of z)

3) Estimation of p.

N= 20; = 88 + 144 + 344 + 487 + 164 +25 = 1000 $S_{x_i'0_i} = 0x38 + 1x144 + 8x348 + 3x887 + 4x164 + 5x25$

f(4) = 0.15436

F(5) = 0.03032

30.3E

154-36

= 2470 = 2470

X = 24.70 1000

MEI = 1015.06

1-44-7

247 - 5. P.

10-0-494 10-0-47

'n	٠ بى ا	-	_. ප	وع
f(3) = 0.31431	10 = 0.32	f(1) = 0.16290.	f(0) = 0.03317	F(R) = 5Cx (497) (506) 5-1 E1 = Nfi)
314.0]	300°	162.9	171-88	Ei = NRi)
, parameter present a see				

Monday Tois

Poisson Distribut"

trial is extremely large and probability of succe is very small, then binomial tends to prieson distribution pat (probability distribution to at poisson distribution given by;

 $f(\alpha) = e^{-\lambda x^2}, x = 0, 1, 2 \cdots x.$

and it donotes ar p(x: 2) where I is the

Binomial approximate of a poisson distributed poisson distribute is a limiting case of binomial

distributy

The binomial distribut tends to poisson that as $n \to \infty$, $p \to 0$ and $np = \lambda$.

board

If $x \sim b(xn, p)$, $f(\alpha) = n(xp^{\alpha}q^{n-\alpha})$.

$$=\frac{n}{\kappa!}\frac{\rho^{\kappa}(1-\rho)^{\eta-\kappa}}{\rho^{\kappa}(1-\rho)^{\eta-\kappa}}\frac{\eta^{\kappa}}{\kappa!}\frac{\rho^{\kappa}(1-\rho)^{\eta-\kappa}}{\rho^{\kappa}(1-\rho)^{\kappa}}$$

$$= \frac{1}{\pi_{i}} n n^{2} - (1 - 1/n) (1 - 2/n) \cdots (1 - 2/n) p^{2} (1 - p)^{2} (1 - p)^{2} = \frac{1}{\pi_{i}} n^{2} p^{2} (1 - 1/n) (1 - 2/n) \cdots (1 - 2/n) (1 - p)^{2} = \frac{1}{\pi_{i}} n^{2} p^{2} p^{2} (1 - 1/n) (1 - 2/n) \cdots (1 - 2/n) (1 - p)^{2} = \frac{1}{\pi_{i}} n^{2} p^{2} p^{2$$

put n->0, & np=1, ie p=1/m.

- 1 vm 2x (1-1/m) (1-0/m)... (1-2-1/m) (1-3/m) (-3/m)

 $=\frac{\lambda^{\alpha}}{\alpha_{1}}\lim_{n\to\infty}\left[(1-\lambda_{1})(1-\alpha_{1})^{\alpha_{1}}...(1-\alpha_{n})^{\alpha_{1}}\right]\lim_{n\to\infty}\left(-\frac{\lambda_{1}}{\lambda_{1}}\right]$ $\lim_{n\to\infty}\left(-\frac{\lambda_{1}}{\lambda_{1}}\right)^{-\alpha_{1}}$

 $=\frac{\lambda^{2}}{\alpha!}\left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ (\alpha-1) & \text{times} \end{array}\right]$

 $ie + (x) = e^{-\lambda} \lambda^{1}.$

Mean and variance of poisson distribut":

Mean = 7

If an p(a; x) then f(a) = e-1, x? (x=0,1.1

Mean= $\mu = F(x) = \sum_{x} f(x)$

TSA. CAZE

= e-x & x. xx xx0 x(x-1)! = e-x & xx x=1 (x-1)!

· Variana:

In many engineesing problems it is convinient to exposes a function in a series of sines and varines in other form:

 $f(\alpha) = \frac{a_0}{a} + a_1 \cos \alpha + a_2 \cos \alpha + a_3 \cos \alpha + \dots + \dots$ b, sink + basinar +

 $= \frac{4a}{2} + \sum_{n=1}^{\infty} \left(4n \cot nx + bn \sin nx \right)$

> Euler Jamulae of Fourier (Euler) constants.

The dounter series for the fr. fa) defined in the interval c< x < c+an is given by.

 $f(x) = \frac{au}{x} + \frac{2}{x} \left(a_n \cos nx + b_n \sin nx \right)$

where $40 = \frac{c+a\pi}{7} + 60 dx$

 $a_n = \frac{d}{\pi} \int_{-\infty}^{\infty} f(x) \cos nx \, dx$

bn = 1 ctell fasiona da

where as, an , bn , n= 1, 9, 3 etc are sourter contr

$$a_0 = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} dx$$

$$b_n = \frac{1}{\pi} \int_0^{\infty} f(x) \sin nx \, dx$$
when $c = -\pi$, $-\pi \leq x \leq \pi$:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\alpha) d\alpha$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

case 1:
$$f(x)$$
 is even $[f(x) = f(x)]$

$$an = \frac{1}{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^$$

$$\frac{1}{2} \cos \sin n \propto dx \qquad \frac{1}{2} \sin (-\theta) = -\sin \theta$$

then,
$$f(a) = \frac{a_0}{2} + \frac{8}{12} a_1 a_2 a_2$$

case
$$2 \cdot f(x)$$
 is odd $[+(-x) = -f(x)]$

$$a_0 = \frac{1}{\pi} \int_{\mathbb{T}} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$