Exercises for Module 7: Linear Algebra I

1. Suppose $\mathbf{v}_1,...,\mathbf{v}_m$ is linearly independent in V and $\mathbf{w} \in V$. Prove that if $\mathbf{v}_1 + \mathbf{w},...,\mathbf{v}_m + \mathbf{w}$ is linearly dependent, then $\mathbf{w} \in \text{span}(\mathbf{v}_1, ..., \mathbf{v}_m)$.

Proof Suppose VI+W, ..., Vm+W are linearly dependent. Then for dielf, i=1,...,m, $0 = \sum_{i=1}^{\infty} \alpha_i(v_i + w_i)$ has at least one $\alpha_i \neq 0$ $\Rightarrow W = \sum_{i=1}^{N} d_i v_i$ <u>ي</u> کي مرر $\exists W = \sum_{i=1}^{m} \frac{\alpha_i}{\sum_{i=1}^{m} \alpha_i} V_i$

=> W & span &u, ..., Um }

2. Suppose that $\mathbf{v}_1, ..., \mathbf{v}_m$ is linearly independent in V and $\mathbf{w} \in V$. Show that $\mathbf{v}_1, ..., \mathbf{v}_m, \mathbf{w}$ is linearly independent if and only if

 $\mathbf{w} \notin \operatorname{span}\{\mathbf{v}_1, ..., \mathbf{v}_m\}$

E) By contrapositive. Suppose we span Evi, ..., Um3. Then Idi, i=1,..., m s.t. w= { 2 x ; v ;

=> 0 = \(\frac{\gamma}{i=1} \beta_i \cup i + \beta_{m+1} \cup \text{has a non-trivial sol'n for \beta_i \text{EF} => V, ... Um, W are lin. dependent

) Also by contrapositive. Suppose V_1, \dots, V_m, W are linearly dependent. Then $\exists x_i, i=1,\dots,m+1, s.t. 0 = \sum_{i=1}^m x_i v_i + d_{m_i} w$ has a non-trivial sol'n. Note that we must have $d_{m+1} \neq 0$ because otherwise $v_1, ..., v_m$ would be

- 3. Let $T \in \mathcal{L}(\mathbb{P}(\mathbb{R}), \mathbb{P}(\mathbb{R}))$ be the map $T(p(x)) = x^2 p(x)$ (multiplication by x^2).
 - (i) Show that T is linear.
 - (ii) Find the null space and range of T.

(i) Let
$$a, \beta \in \mathbb{F}, \rho, q \in \mathbb{P}(\mathbb{R})$$
.

$$T(d\rho(x) + \beta q(x)) = x^2(\alpha \rho(x) + \beta q(x))$$

$$= \alpha x^2 \rho(x) + \beta x^2 q(x)$$

$$= \alpha T \rho(x) + \beta T q(x)$$

(ii) Null space
We need polynomials p(x) such that $k^2 p(x) = 0$ ($\forall x \in \mathbb{R}$).
This implies p(x) = 0 $\forall x \in \mathbb{R}$, so null $T = \{0\}$.

Range We need to find all polynomials p s.t. \exists polynomial q with $p(x) = Tq(x) \implies p(x) = x^aq(x)$ This holds as long as p has minimum degree ≥ 2 , so range $T = \{0\} \cup \{p(x) : minimum degree of <math>p$ is at least ≥ 3 .

4. Let U and V be finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Show that

 $\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T$

Proof By the rank-nullity thm, for $T:U \rightarrow V$, $\dim U = \dim range T + \dim null T$.

Note that $T:U \rightarrow V$, $S:V \rightarrow W$, $ST:U \rightarrow W$.

Also, null ST is a subspace of U. Let T' be T restricted to the subspace null ST.

dim null ST = dim null T' + dim range T' by rank nullity

= dim null T + dim range T' since null T = null ST

= dim null T + dim null S + dim range S(T') by rank nullity

= dim null T + dim null S by construction papplied to
range T

5. Let $D \in \mathcal{L}(\mathbb{P}_4(\mathbb{R}), \mathbb{P}_3(\mathbb{R}))$ be the differentiation map, Dp = p'. Find bases of $\mathbb{P}_4(\mathbb{R})$ and $\mathbb{P}_3(\mathbb{R})$ such that the matrix representation of $\mathcal{M}(D)$ with respect to these basis is given by

$$\mathcal{M}(D) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Basis for
$$P_4(R)$$
: $u_1 = \frac{1}{4}x^4$, $u_2 = \frac{1}{3}x^3$, $u_3 = \frac{1}{3}x^4$, $u_4 = x$, $u_5 = 1$
Basis for $P_3(R)$: $V_1 = x^3$, $V_2 = x^2$, $V_3 = x$, $V_4 = 1$

Then
$$T(u,) = (\frac{1}{4}x^{4})^{1} = x^{3} = v,$$
 $T(u_{2}) = (\frac{1}{3}x^{3})^{1} = x^{2} = v_{2}$
 $T(u_{3}) = (\frac{1}{3}x^{2})^{1} = x = v_{3}$
 $T(u_{4}) = (x)^{1} = 1 = v_{4}$
 $T(u_{5}) = (1)^{1} = 0$

6. Show that matrix multiplication of square matrices is not commutative, i.e find matrices $A, B \in M_2$ such that $AB \neq BA$.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$AB = \begin{pmatrix} 19 & 24 \\ 43 & 50 \end{pmatrix}, BA = \begin{pmatrix} 23 & 34 \\ 31 & 46 \end{pmatrix}$$