ratum

वर्षभूत निम्

$$=5^{2}-2.5352+(352)$$

$$= \pm (5-3\sqrt{-2})$$

4

$$=\pm\frac{1}{2}(3-i\sqrt{7})$$

ं निर्मि वर्षम् न र्म्युल = ± र् (%-1/7) (Ans)

(2)

$$=-1$$

$$\Rightarrow \frac{1}{2} \left(\sqrt{1+n} + i\sqrt{1-n} \right)^{-1}$$

$$\Rightarrow \frac{1}{2} \left(\sqrt{1+n} + i \sqrt{1-n} \right)^{2}$$

$$\Rightarrow \left(\frac{1}{\sqrt{2}} \sqrt{1+n} + i \sqrt{1-n} \right)^{2}$$

$$(1) = 8 - 6\sqrt{-1}$$

$$\Rightarrow 1^{2} - 2\cdot3\sqrt{-1} + (3\sqrt{-1})^{2} - 2^{2} + 3^{2}$$

$$= (1 - 3\sqrt{-1})^{2}$$

$$= (1 - 3i)^{2}$$

$$= (3 - 3i)^{2}$$

$$= \pm (1-3i)$$

$$w^{255} = w^{\circ} = 1$$

$$w^{1222} = w$$

(a)
$$4\sqrt{-81}$$

⇒ $4\sqrt{61}$)

⇒ $4\sqrt{191}$

⇒ $3\sqrt{11}$

(Showed)

(a)
$$3\sqrt{x+iy} = p+iq$$
 $x+iy = (p+iq)^3$
 $= p^3 + 3piq + 3p(iq)^2 + (iq)^3$
 $= p^3 + 3piq - 3pq - iq^3$
 $= p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq - q^3)$
 $x = p^3 - 3pq + i(3piq -$

((4) ans, 2+4+1=0 L.H.S = (n-1) (n-a) (n-a) $=(x-1)(n^{2}-an-an+a^{3})$ = $(n-1) (n-n(d+x)+1) [w^{3}=x^{3}=1]$ =(x-1)(n+x+1) $= n^3 - 1$ (Ans) $\frac{1-ix}{1+ix}=\alpha-ib$ = 1-in = (a-ib)(1+in) = a + aix - ib + ibx = ataix-ib+bx = (a+bn) - i(ax b-ax) एक प्रमाय वास्त्र ह न्या सम्बद्ध भर्माकृष्ठ काद् , a+bx=1 $\mathfrak{A}, \ \mathfrak{A} = \frac{1-\alpha}{b}$ x = b - ax=> n(1+a) = b $\chi = \frac{b}{1+a}$ O D 200, $\frac{1-a}{b} = \frac{b}{1+a}$ 可, 6= 1-96

of, : a + b = 1 (showed)

(14) (भग जा ए n=-1+1/2 = (x+1)= (1+2)2 サルナ2スナ1 - - 12 > 7/22+3=0 L.H.S = 24+4n3+6n+4x+9 =>x++2x+3x+2x3+4x+6x-x-2x-3+12 => x (x+2x+3) +2x(x+2x+3)-1(x+2x+3)+12 > n'(0) + 2x(0) -1(0)+12 (Showed) let $x = 3\sqrt{1}$ $n^3 = 1$ $M^3 - 1 = 0$ (ルーリ (ガナガナ1) x=1 302/01, -1± 11-4.1 2 , -1± \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\) RHS (chaved) 1 30 04301

let x = 3 J-1

$$x^3 + 1^3 = 0$$

$$(x+1)(y-x+1)=0$$

$$x = 1$$

$$x = 1$$

$$x = 1$$

$$=\frac{1+\sqrt{-3}}{0}$$

1-1 2 3-1 1 1 = 3-1

$$\chi^3 - 1^3 = 0$$

$$(n-i)(n+in+i)=0$$

$$a = \frac{-1 \pm \sqrt{1-4(-1)}}{2}$$

$$=\frac{-1\pm\sqrt{+3}}{2}$$

$$\frac{-1+\sqrt{3}}{2}$$
, $\frac{-1-\sqrt{7}}{2}$

et,
$$x = 1$$
 311
 $\Rightarrow x^3 = 1$ Trohapur 2 4 4
 $\Rightarrow x^3 + 1^3 = 0$

$$\Rightarrow x^3 + i^3 = 0$$

$$\Rightarrow n + 1$$
 = (n+1) (n-ni-1)
 $\Rightarrow (n+i) (n-ni+i) = (n+1) (n-ni-1)$

$$n = -i$$
 $\sqrt{2}$

$$M = \frac{+i \pm (\pm i)^{2} - 4 \cdot (-1)}{2}$$

$$=\frac{1}{2}\sqrt{1+4}$$

Ø:(1) व क्रमुल,

$$\frac{1-i}{2}, \frac{i \pm \sqrt{3}}{2}$$

(b) (A) Litts =
$$\sqrt{1-1-\sqrt{1-1-1-1}}$$
 (b) $\sqrt{1-2}$ (c) $\sqrt{$

$$|x+y|^{2} + (xw+yw)^{2} + (xw+yw)^{2} + (xw+yw)^{2} = (22)$$

$$+ n^{2} + 2xy + y^{2} + n^{2} + 2xy + y^{2} + n^{2} w$$

$$+ 2xy + y^{2} w^{2} + n^{2} w^{2} + n^{2} w$$

$$+ 2xy + y^{2} w^{2} + n^{2} w^{2} + n^{2} w$$

$$+ 2xy + y^{2} w^{2} + n^{2} w^{2} + n^{2} w$$

$$+ 2xy + y^{2} w^{2} + n^{2} w^{2} + n^{$$

$$(26)$$
 $(-1+\sqrt{-3})^{4} + (-1-\sqrt{-3})^{4}$

$$=\frac{1+\sqrt{-3}}{2} \times 16 + \left(\frac{-1-\sqrt{-3}}{2}\right)^{4} \times 16$$

LHIS =
$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{0} + \left(\frac{-1-\sqrt{-3}}{2}\right)^{0}$$

$$\Rightarrow (w)^{3m} + (wy)^{3m}$$

$$\Rightarrow$$
 1+1 = 2 (showed)

$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{3m+1} + \left(\frac{-1-\sqrt{-3}}{2}\right)^{3m+1}$$

(29)