1. If $\log_a 2 = b$ and $\log_a 3 = c$, express $\log_a \sqrt{72}$ in terms of b and c.

$$\log_{a} \sqrt{12} = \log_{a} \sqrt{12}$$

$$= \log_{a} \sqrt{2^{\frac{3}{2}}} \cdot 3$$

$$= \frac{3}{2} \sqrt{16} + C$$

2. Find the coordinates of the point on the parabola $y = x^2 - x$ where the tangent is parallel to the line y = 9x.

- 3. Let $f(x) = x^3 \cos x$ and $g(x) = (2x+3)^5$.
 - (a) Find the derivative f'(x). $f'(x) = 3x^{2} \cdot \omega_{5} x + x^{3} \cdot (-\sin x)$ $= 3x^{2} \cdot \omega_{5} x - x^{3} \cdot \sin x$

(b) Find the derivative g'(x).

$$g'(x) = 5(2x+3)^{4} \cdot 2$$

4. Prove
$$\lim_{x\to 0} \frac{1-\cos x}{x} = 0$$
. You may assume the result $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin x}{1 + \cos x}$$

$$= \lim_{x \to 0} \frac{\sin x}{1 + \cos x}$$

5. Without the calculator solve the equation
$$8 \sin x \cos x = 2$$
 where $0 \le x \le 2\pi$.

$$2. \quad 2X = 0R \left\{ \frac{\pi}{5} + 2k\pi \right\}$$

$$\therefore X = OR \begin{cases} \frac{\pi}{12} + k\pi \\ \frac{5\pi}{12} + k\pi \end{cases}$$

$$\therefore \ \ \chi = \frac{11}{12}, \frac{51}{12}, \frac{1311}{12}, \frac{1717}{12}$$

6. Find the equation of the normal to the curve
$$y = \frac{2x-1}{x+1}$$
 at the point where $x = 2$.

1.64 = -3x+7

$$5' = \frac{2(x+1)^2}{(x+1)^2}$$

$$= \frac{2x+2-2x+1}{(x+1)^2}$$

$$= \frac{3}{(x+1)^2}$$

$$f'(z) = \frac{3}{9} = \frac{1}{3}$$

$$f(z) = \frac{3}{3} = 1$$

7. You have two dice: one is a standard die while the other has its six faces labelled 1, 3, 4, 6, 7, 9 respectively. You randomly choose one of the dice and throw it. The result is an even number. What is the probability that you chose the standard die?

Normal end
$$\frac{1}{2}$$
 $\rightarrow \frac{1}{4}$ \downarrow

biash even $\frac{1}{3}$ $\rightarrow \frac{1}{6}$ \downarrow
 $\frac{1}{2}$ biash $\frac{1}{3}$ $\rightarrow \frac{1}{6}$ \downarrow

$$-' \cdot p = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{6}}$$

$$= \frac{3}{4}$$

$$= \frac{3}{4}$$

8. Find the values of k for which the curve $y = x^4 + 4x^3 + kx^2 + 4x + 1$ has no inflection points.

However at k=b, y" has no negative

value, so there's no change of sign, thus no point of inflution.

9. A geometric series has first term 2 and common ratio 0.95. The sum of the first n terms of the series is denoted by S_n and the sum to infinity is denoted by S_∞ . Calculate the least value of n for which $S_\infty - S_n < 1$.

$$S_{\infty} = \frac{2 \cdot (1 - 0.95^{\circ})}{1 - 0.95} = \frac{7}{7.75}$$

$$S_{\infty} - S_{N} = \frac{2 - 2(1 - 0.95^{N})}{0.05}$$

$$= \frac{2 \cdot 0.95^{N}}{0.05} < 1$$

10. A piece of wire 2 m long is to be cut into two pieces. A circle is formed from one piece and a square from the other. Find the exact radius of the circle if the sum of the areas of the circle and the square is

Asum =
$$\pi a^{2} + \left(\frac{2-2a\pi}{4}\right)^{2}$$

$$= \pi a^{2} + \frac{4+4a^{2}\pi^{2}-8a\pi}{16}$$

$$= \frac{(4\pi+\pi^{2})a^{2}-2\pi a+1}{4}$$

$$\alpha = \frac{1}{4 + \pi}$$

$$\therefore radus = \frac{2}{2\pi} = \frac{1}{\pi}$$

Solutions to HL1 Test #7

1.
$$\log_a \sqrt{72} = \frac{1}{2} \log_a (2^3 \cdot 3^2) = \frac{3}{2}b + c$$
.

2. Here
$$y'=2x-1$$
. Solving $2x-1=9$ gives $x=5$. Hence the point is $(5,20)$.

3. (a)
$$f'(x) = 3x^2 \cos x - x^3 \sin x$$
. (b) $g'(x) = 5(2x+3)^4 \cdot 2 = 10(2x+3)^4$.

4.
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x} = 1 \cdot 0 = 0.$$

5.
$$8 \sin x \cos x = 2$$
 becomes $4 \sin 2x = 2$ or equivalently $\sin 2x = 0.5$. Hence $2x = \frac{\pi}{6} + 2n\pi$ or $2x = \frac{5\pi}{6} + 2n\pi$, whence $x = \frac{\pi}{12}, \frac{13\pi}{12}, \frac{5\pi}{12}, \frac{17\pi}{12}$.

6. Here
$$y' = \frac{2(x+1) - 1(2x-1)}{(x+1)^2} = \frac{3}{(x+1)^2}$$
. So at $x = 2$, $m_N = -3$. Hence $N: y - 1 = -3(x-2)$.

7. Let S be the event of choosing the standard die and E the event of an even number. Then using a tree diagram, a Venn diagram or Bayes' theorem, we have

$$P(S \mid E) = \frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3}} = \frac{3}{5}.$$

8. Here $y' = 4x^3 + 12x^2 + 2kx + 4$ and $y'' = 12x^2 + 24x + 2k$. Notice y'' is a quadratic. Since y'' is zero and changing in sign at an inflection point, we require the discriminant of the quadratic, namely $24^2 - 96k \le 0$, to be less than or equal to zero for no inflection points. Solving $\Delta \le 0$ gives $k \ge 6$.

9. Now
$$S_{\infty} - S_n = ar^n + ar^{n+1} + ar^{n+2} + \dots = \frac{2(0.95)^n}{1 - 0.95} = 40(0.95)^n$$
. So $S_{\infty} - S_n < 1$ requires $n \ge 72$. Hence $n_{\min} = 72$.

10. Denote the radius of the circle by r and the sum of the areas by A. Then we have

$$A = \pi r^2 + \frac{1}{4}(1 - \pi r)^2, \quad 0 \le r \le \frac{1}{\pi},$$

and so

$$A' = 2\pi r + \frac{1}{2} \cdot -\pi (1 - \pi r).$$

Solving A'=0 gives $r=\frac{1}{4+\pi}$. Next $A''=\frac{5}{2}\pi>0$ for all r. Hence $r=\frac{1}{4+\pi}$ gives A_{\min} and A_{\max} must occur at an end point of the domain. Checking the areas at r=0 and $r=\frac{1}{\pi}$ gives A_{\max} at $r=\frac{1}{\pi}$, which means the maximum area occurs when all the wire is used to make a circle. This accords with the geometry as the circle contains the most area for a given perimeter.