رالشخ عربی سری اول اکند تمهای بسمسازی

حسام مومیونر فرد 810803063

1404 14

Mce dul f(n) = 100 (n - n2)2+(1-n)2 2.1 a) Vfcn, V2fcn

b) x = (1,1) is the only local minimizer

(7) final is possitive definite.

Mocedal 2.2

ajonly one stationery point b) that point is soddle

C) (on tour lines

$$7 f_{(m)} = \begin{bmatrix} 3 + 2n_1 \\ 3n_1 f_{(m)} \end{bmatrix} = \begin{bmatrix} 3 + 2n_1 \\ 2 - 4n_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T = \begin{bmatrix} 8 + 2n_1 = 0 \Rightarrow n_1 = -4 \\ 12 - 4n_2 & 3n_2 = 3 \end{bmatrix}$$

(a)
$$7^{2} f_{(n)} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \\ \frac{1}{2^{2}} f_{(n)} & \frac{1}{2^{2}} f_{(n)} \end{bmatrix} =$$

$$\frac{3^{2}}{3^{n_{1}}}f_{n_{1}} = \frac{3}{3^{n_{1}}}(8+2^{n_{1}}):2$$

$$\frac{d_{2}(\nabla^{1}f_{xy}-17)}{d_{2}(\nabla^{1}f_{xy}-17)}=0 \implies d_{2}(\nabla^{1}f_{xy}-17)=0 \implies d_{2}(\nabla^{1}f_{xy$$

C)
$$P_{(m)} = 8m_1 + 12m_2 + m_1^2 - 2n_2^2 = m_1^2 + 8m_1 + 16 - 16 - 2(m_2^2) - 2(-6m_2) - 2(9-9)$$

$$= \frac{m_1 + 41^2 - 2(m_2 - 3)^2 - 16 + 18}{2(m_2 - 3)^2 - 2(m_2 - 3)^2} = C - 2$$

بر بدر در در در مای درج و مقاف العلم مستر می مینورسای مالیسی مذلوری خواسدر

Noceder as second-order Tuylor fing: Cus(1/n) arow hon Zero 10) Thind order Taylor gan, s Cer (n) arend any point c) second-order for n=1 (a) $f_{(n)} \approx f_{(n_0)} + f'_{(n_0)} (n_0) + f'_{(n_0)} (n_0)^2$ For = (1/n) $f_{(n)} = -\sin(1/n) \times -\frac{1}{n^2} = \frac{\sin(1/n)}{n^2}$ $\int_{1}^{6} \frac{2 \sin(1/n)}{2n} \frac{\sin(1/n) \times -\frac{1}{2} \times n^{2} - 2n \sin(1/n)}{n^{2}} = \frac{c_{1}(1/n) + 2n \sin(1/n)}{n^{2}}$ =) $f_{(n)} \approx G(1/n_0) + \frac{Sin(1/n_0)}{n_0^2} (n_0) - \frac{G(1/n_0) + 2n_0 Sin(1/n_0)}{2n_0 G} (n_0)^2$ $f_{(n)} = \frac{2}{2n} - \frac{c_1(1/n)_+ 2n \sin(1/n)}{n 4} = -\left[\frac{o c_1(1/n)}{o n n 4} + \frac{o 2 \sin(1/n)}{o n n 3}\right]$ $-\left[-\frac{\sin(1m) \times -\frac{1}{2} \times \pi^{4} - 4n^{3} \cos(1/n)}{\pi^{8}} + \frac{2 \cos(1/n) \times -\frac{1}{2} \times \pi^{3} - 3n^{2} \times 2 \sin(1/n)}{\pi^{6}}\right]$ Sin (1/n) _ 4n cn (1/n) _ 2n cn (1/n) _ 6n2 sin (1/n) 6n2 Sin (1/n) + 6n 6 (1/n) _ Sin (1/n) == Co(1/m) + Sin(1/m) (n-m) - Co(1/m)+2nsin(1/m)(n-n) + 6nco(1/m) + 6nco(1/m) - sin(1/m) (n-n) = 2n4

 $C \int_{(n)}^{\infty} - C_{1}(1) + Sin(1)(n-1) + \frac{1}{2}[C_{2}(1) + 2Sin(1)](n-1)^{2}$

Nocedul fon= 1/21/2 1R2 - 1K $\mathcal{U}_{k} = \left(1 + \frac{1}{2^{k}}\right) \left[\begin{array}{c} c_{1} \\ sin \\ k \end{array}\right]$ 2.5 α) $f(n_k) < f(n_k) = 0,1,2,...$ b)[n| ||n||=1) is the Limit point for nu? Hint YOE[0, 2n] She = le (mod 2n) = k -2n | k | 2n | 9) fin = n2, n2 $N_{k} = \left(1 + \frac{1}{2^{k}}\right) \left[\frac{c_{1}k}{s_{1}n_{k}} \right] = \left[\frac{\left(1 + \frac{1}{2}u\right) c_{1}n_{k}}{\left(1 + \frac{1}{2}u\right) s_{1}n_{k}} \right]$ f(n)= ((1+1/2) conte) 2 + ((1+1/2 a) sink)2 $\frac{F(n_{k+1}) = \left(\left(\frac{1}{2^{k+1}} \right) - \left(\left(\frac{1}{2^{k+1}} \right) - \left(\left(\frac{1}{2^{k+1}} \right) - \frac{1}{2^{k+1}} \right) - \left(\left(\frac{1}{2^{k+1}} \right) - \frac{1}{2^{k+1}} \right) - \left(\frac{1}{2^{k+1}} - \frac{1}{2^{k+1}} \right) - \left(\frac{1}{2^{k+1}} - \frac{1}{2^{k+1}} - \frac{1}{2^{k+1}} \right) - \frac{1}{2^{k+1}} - \frac{1}{2^$ f(mu)= (1+1/2) 2 (m2h + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h) + 5/11/h) = (1+1/2) 2

[(mu)= (1+1/2) 2 (m2h)

Nocedul	
	minimizers are strict.
Hint: note is an isolated local minimizers. N (neighborh	ood) for any neN, n+n*; l(n) > f(n))
f (m) = f (m) + f (m) + f (m) view 6.11) i e vie is	ivi) Vx eN, n = n= for > formy 1 dieses
	$f_{(n)} \leqslant f_{(n^*)}$
مان نواماله المعالم الله المعالم الله مان ما مان مان مان المعالم الله المعالم الله عامل و مودول الله	2 2 () (= 1 + 11 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
P	الميازيريني تنا تنها كاس من الم

Nocedar fize = fing s.+ n=Sz+s to some SEIR " 2. 0 and $S \in IR^n$. Show that $\int \nabla \tilde{f}(z) = S^T \nabla^2 f_{m_1} S$ (b) Seign New Newton $f_{(z)} = f_{(n)} = f(Sz+5)$ $S \in \mathbb{R}^{n \times n}$ new Newton $\nabla \tilde{f}_{(z)} = \nabla f(Sz+5) \stackrel{?}{=} S \stackrel{\top}{\nabla} f_{(n)}$ SOIR" Ixn rector $\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}$ $\frac{\partial^{2}f(z)}{\partial z^{2}} = \frac{\partial^{2}f(z)}{\partial z^{2}} = \frac{\partial^{2}f(z)}{\partial z^{2}} = \frac{\partial^{2}f(z)}{\partial z^{2}} \times \frac{\partial^{2}f(z)}{\partial z^{2}} \times \frac{\partial^{2}f(z)}{\partial z^{2}} = \frac{\partial^{2}f(z)}{\partial z^{2}} \times \frac{\partial^{2}f(z)}{\partial z^{2}} \times \frac{\partial^{2}f(z)}{\partial z^{2}} = \frac{\partial^{2}f(z)}{\partial z^{2}} \times \frac{\partial$ $= > \sqrt{f(z)} = \begin{bmatrix} \frac{z}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} \\ \frac{z}{2} & \frac{1}{2} & \frac{1}{2}$ b) $\nabla^2 \tilde{f}_{(z)} = \frac{\partial^2 \tilde{f}_{(z)}}{\partial z^2} = \frac{\partial^2 \tilde{f}_{(z)}}{\partial z} \frac{\partial}{\partial z} \left(\frac{\partial \tilde{f}_{(z)}}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{n}{z} \frac{\partial \tilde{f}_{(n)}}{\partial n_k} \frac{S}{S} \right)$

$$\frac{\partial z^{2}}{\partial z} = \frac{\partial z}{\partial z$$

Nocedul

3.4 Show that one dimentional minimizer of strongly convex quadratic function always satisfies the Gold strue conditions. (3.11) $f_{(n_k)} + (1-c) \propto_k \nabla f_k P_k \leq f_{(n_k + \alpha_k P_k)} \leq f_{(n_k)} + C \propto_k \nabla f_k P_k \quad (3.11)$ $f_{(n_k)} + (1-c) \propto_k \nabla f_k P_k \leq f_{(n_k + \alpha_k P_k)} \leq f_{(n_k)} + C \propto_k \nabla f_k P_k \quad (3.11)$ $f_{(n_k)} + (1-c) \propto_k \nabla f_k P_k \leq f_{(n_k + \alpha_k P_k)} \leq f_{(n_k)} + C \propto_k \nabla f_k P_k \quad (3.11)$ $f_{(n_k)} + (1-c) \propto_k \nabla f_k P_k \leq f_{(n_k + \alpha_k P_k)} \leq f_{(n_k)} + C \propto_k \nabla f_k P_k \quad (3.11)$ $f_{(n_k)} + (1-c) \propto_k \nabla f_k P_k \leq f_{(n_k + \alpha_k P_k)} \leq f_{(n_k)} + C \propto_k \nabla f_k P_k \quad (3.11)$ $f_{(n_k)} + (1-c) \propto_k \nabla f_k P_k \leq f_{(n_k + \alpha_k P_k)} \leq f_{(n_$

 $n = n_{k} + \alpha P_{k}$ $= \frac{1}{2} (n_{k} + \alpha P_{k})^{T} Q (n_{k} + \alpha P_{k}) + b^{T} (n_{k} + \alpha P_{k}) + c$ $= \frac{1}{2} (n_{k}^{T} + \alpha P_{k}^{T}) Q (n_{k} + \alpha P_{k}) + b^{T} (n_{k} + \alpha P_{k}) + c$ $= \frac{1}{2} n^{T} Q n_{k} + \alpha n_{k}^{T} Q P_{k} + \alpha P_{k}^{T} Q n_{k} + \alpha^{2} p^{T} Q P_{k} + b^{T} (n_{k} + \alpha P_{k}) + c$ $= \frac{1}{2} (n^{T} Q n_{k} + 2 \alpha n_{k}^{T} Q P_{k} + \alpha^{2} p^{T} Q P_{k}) + b^{T} (n_{k} + \alpha P_{k}) + c$ $= \frac{1}{2} (n^{T} Q n_{k} + 2 \alpha n_{k}^{T} Q P_{k} + \alpha^{2} p^{T} Q P_{k}) + b^{T} (n_{k} + \alpha P_{k}) + c$ $= \frac{1}{2} (n^{T} Q n_{k} + 2 \alpha n_{k}^{T} Q P_{k} + \alpha^{2} p^{T} Q P_{k}) + b^{T} (n_{k} + \alpha P_{k}) + c$ $= \frac{1}{2} (n^{T} Q n_{k} + 2 \alpha n_{k}^{T} Q P_{k} + \alpha^{2} P_{k}^{T} Q P_{k}) + b^{T} (n_{k} + \alpha P_{k}) + c$

المراز مهام کی کای لوکیم براغ درسی ناصادی طلمکیک

a) fin + (1-c) of Ph Ph & fine + of Ph)

b) fine + app < fine) + cor 7 ft Pe

a: $\rho(\alpha_{k}) = \frac{F(x_{k} + \alpha_{k} P_{k}) - \frac{1}{2} (P^{T}QP_{k}) (-\frac{\nabla P_{k} P_{k}}{P_{k}})^{2} + \nabla P_{k} P_{k} (\frac{\nabla P_{k} P_{k}}{P_{k}}) + \frac{1}{2} (P^{T}QP_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac{1}{2} \frac{(\nabla P_{k} P_{k})^{2} + \frac{1}{2} (\nabla P_{k} P_{k})^{2}}{P^{T}QP_{k}} + \frac{1}{2} \frac$

b: fine + C x w Pfk Pk = f (nk) + C (- Pfk Pk) pfk Pk = f(nk) - C (Pfk Pk)2

Pk QPk

 $\Rightarrow C \leq \frac{1}{2}, C \in (90.5)$ B

Nocedul

Consider the steepest descent method with exact line Searches applied to the Convox quadratic function (3.24). Using the properties given in this chapter, show that if the initial point is such that no not is parallel to an eigenvector of Q, then the steepest descent method will find the solution in one step.

$$f(n) = \frac{1}{2} \pi^{T} Q \pi - b^{T} \pi$$
 (3.44)

fin) = 1 xQn, bx, C; 2, x* 1 [igonvector of Q

Steepest resent > Pr - Pf(nk), 4k

Ly 2 5.t. Vf(n*) = 0

Eigenvector

Q: A,V; Av=Qv

Eigenvalue

=> no-x* = BV =, no = x+ BV

7 fm = Qn+b -, Qn+b=0 L, Qn+b=Q(n+pu)+b=Qn+13Qu+b=, 7fm)= BQu=Q1v

P(α): F(n, +αP) = n, +α(-βλυ): x +βυ- αβλυ: n +β(1-αλ)ν
P: -- P(n): -- βλυ

=> P(a) = F(ns+ap) = 1 (ns+ap) TQ (ns+ap) + 5 (ns + ap) + C

= P(a) = f(n+xB)= \ \((x* B(1-x)) V) TQ (x* +B(1-xb) V) +b T(x* +B(1-xb) V) + C

= L(n+13(-xx)vT)Q(n+13(1-xx)v)+bT(n+13(1-xx)v)+C = n+ TQn+23(1- x1) n QV+132(1-x2) V TQV

 $\begin{cases} v^{T}Qv = v^{T}(\lambda v) = \lambda ||v||^{2} \\ Qn^{*} + b = 0 = 0 \\ (x^{*})^{T}Qv = (n^{*})^{T}(\lambda v) = \lambda (n^{*})^{T}v \end{cases}$

 $= \int_{(N_0 + \alpha \gamma_0^2)} = \frac{1}{2} (n^*)^T Q n^* + \frac{1}{3} (1 - \alpha \lambda) \lambda n^* V_{+\frac{1}{2}} S^2 (1 - \alpha \lambda)^2 \lambda ||V||^2 n^* T Q n^* - \frac{1}{3} (1 - \alpha \lambda) \lambda n^* V_{+\frac{1}{2}} C$ $= -\frac{1}{2} n^* T Q n^2 + \frac{1}{2} p^2 (1 - \alpha \lambda)^2 \lambda ||V||^2 + C = \frac{1}{2} p^2 \lambda ||V||^2 (1 - \alpha \lambda)^2 + C = p(\alpha)$ $= -\frac{1}{2} n^* T Q n^2 + \frac{1}{2} p^2 (1 - \alpha \lambda) (1 - \alpha \lambda)$

Mocedul

4.5 show that T_k defined by (4.12) does identify the minimizer of M_k along the direction $-g_k$. $T_k = \begin{cases} 1 & \text{if } g^T B g_k < 0; \\ M & \text{in } (11g_{k} 11^3 / (D_k g_k R_k R_k), 1) \end{cases}$ win (11g_{k} 11^3 / (D_k g_k R_k R_k), 1) 0.00.

M (n + P) = f(n) + V f (n) P + 1 pT B P

P = T(-9)

= TZgT Bkgk

=, $m_{k}(\chi_{k}+T(-g_{k})) = \frac{1}{2}(m_{k}) + g_{k}T(-Tg_{k}) + \frac{1}{2}(-Tg_{k})^{T}B_{k}(-Tg_{k})$ = $-T(g_{k}^{T}g_{k}) = -T(g_{k}^{T}g_{k})^{2}$

=, m (2 + T(-96)) = from - T 119112, 1 T2 (9TBagk) = PCT)

200 = 0 = - 119/12+T (9 18/2) => T = 49/12

3T 19/12

انجاب ربد مل در رئید ی و م حدورم وابع سرام که دمیما ایر حکار کرد...

13+ A[= QAQT + \lambda [= QAQT + \lambda QEQT = Q (\lambda + \lambda [] QT \lambda \lambda

n-120int

مسلکی رارسیون ۱ نبط با حدید بدای درجه لی را بر مست که مشکه طرین ربعات نبرلسید.
م) سرط مازم د کافی مرای نبطه ی مهم را بدست آ داری .
د) سرط مازم د کنید و درب نبطم کنند و (۲۰۵۱ ما ۱۹۰۱ ما ۱۹۰۱ ما این المانه لد و و شرط لازم دکافی را دراین حالت لنولید.

J(w) = 1 Z (y - wTm;)2 + 1 11 w112

n, erd

y; erk

we IRd

λ: Keynlavizaha πολή

MWIIZ = wTw: Norm 2 w

2 (1 ||w||²) = 3 (ww) = 20

=, DIM = 1 Z (y = w x) n = 1 Z (y = w n | n = 1 w 2 w = 1 Z (y = w n | n = 1 w =

 $= -\frac{1}{N} \frac{Z}{i^{-1}} \frac{\gamma_{i} n_{i}}{i} - \frac{1}{N} \frac{Z}{i} (\omega^{T} n_{i} | n_{i}) = \lambda \omega$

 $\frac{1}{N} = \frac{1}{N} = \frac{1}$

 $= \alpha = (XX + N\lambda I) \times Ty \qquad 5 \cdot 5 \cdot 5 \cdot 1 \qquad Z \qquad n \cdot n \cdot T = \frac{1}{N} \times Tx$ $= \frac{1}{N} \times \frac{1}{N} \times$

b) who 1 7 (y. - w m) 2 1 1 whi 2 = (min 1 2 (y. - w m)) 2 1 whi 2 (y. - w m) 2 1 whi 2 2 1 whi