Project report

Collaboration and Competition

Learning Algorithm:

For this project DDPG (Deep Deterministic Policy Gradients) is used which performs good in continuous action space. The network is being updated 10 times after 2-time steps.

The Deep Neural Network has following layers:

Actor Network

- A hidden layer with 128 units and RELU activation.
- Batch normalization.
- Second hidden layer with 64 units and RELU activation.
- Batch normalization.
- Fully connected Layer.
- Tanh.

Critic Network

- Batch normalization on input.
- A hidden layer with 128 units and RELU activation.
- Second hidden layer with 64 units and RELU activation.
- Fully connected Layer.

Parameters used in DDPG Algorithm:

BUFFER_SIZE = int(1e6) # replay buffer size BATCH_SIZE = 512 # minibatch size GAMMA = 0.99 # discount factor

TAU = 1e-3 # for soft update of target parameters

LR_ACTOR = 5e-4 # learning rate of the actor LR_CRITIC = 1e-3 # learning rate of the critic

WEIGHT_DECAY = 0 # L2 weight decay

Result:

The task was completed in 357 episodes.

Ideas for future work

1. Will try to solve this project using other algorithms like PPO, A3C OR MADDPG.

Acknowledgements:

Model Visualization: https://github.com/szagoruyko/pytorchviz