사물 인터넷

- 01. 사물 인터넷의 이해
- 02. 사물 인터넷 구조
- 03. 사물 인터넷 활용

1. 사물인터넷의 개요 가상 원기 사례, 기원

PC가 인터넷에 연결된 후, <u>스마트폰이</u> <u>연결</u>되기까지 <u>15년이 소요</u>되었지만,/<u>사물들간에</u> <u>네트워크 구축은</u> 급진적으로 진행되고 있다.

1. 사물 인터넷의 개요

निस्स जिस्सर

XXF1D: 号外程 이용해 U. (於於州2") ID은 식면라는 방식.

사물지능통신 Manschine to Manschine, 아 사물지능통신 M2N은 두 개 이상의 디바이스간/데이터를 상호 당기되어 나 산세를 통해 있는 있는. 기계 2 - 기계 간의 연결!

- ✔ 사전에 정해진 프로세스나 규칙에 따라 정해진 일을 수행
- ✓ 디바이스 내에 특정센서가 생성된 아날로그데이터를 디지털로 변환 → 3은 사물에 센서· 동신 기술을 보라함.
- ✔ 사용하는 센서에는 온도, 습도, CO², 가속도, 맥박 등 인지하는 것과 목소리, 홍채, 지문을 인식하는 카메라나 마이크, RFID 나 NFC, 비콘 처럼 미리 정해 놓은 데이터를 전달하는 센서

사물인터넷())란?

- ✓ 사물인터넷(IoT)이란 1999년 MIT의 Auto ID Center 소장인 케빈 에쉬튼(Kevin Ashton)이 처음으로 사용한 용어 - '객체^(사물)가 인터넷과 연결되는 것'을 의미
- 좁은 의미: 사물들이 단순히 인터넷을 통해 서로 연결되는 것

넓은 의미: 사물이나 되바이스가 인터넷에 단순 연결되는 것에 가치를 추가하여

고 가치를 사용자에게 제공하는 기술 (사라가 내방) 사원들이 선거있는 올해 실세계와 가상세계에 존재하는 사람, 사물, 공간, 데이터, 프로세스 등 모든 것들이 생거있는 올해 인터넷으로 연결되어 상호 소통하고 작용하며, 정보가 생성·수집·공유·활용되는 초연결**성경**

인터넷을 뜻하는 미래 인터넷 기술

- गामार्थ निर्मा अन्। अन्।

이터넷 젓보의 이해

사물인터넷이란?

- ✓ 사물인터넷 서비스 제공을 위한 생태계(Echo System) S-P-N-D-Se 구조
 - IoT 응용 서비스(Service), IoT 플랫폼 (Platform), IoT 네트워크(Network), IoT 디바이스(Device), IoT 보안(Security)을 의미
- ✓ S-P-N-D-Se 구조

사물인터넷 활성화 요소

✓ 사물인터넷 4대 활성화 요소

- · 스템화 (디바이스들의 호텔화)
 - 미세전자제어기술(MEMS: Micro Electro Mechanical System)이나 나노기술(Nano Technology) 등 반도체 기술 발전
 - 전자소자를 수 mm 수준으로 소형 제작함으로써 실현 가능

인터넷 정보의 이해

사물인터넷 활성화 요소

✓ 저전력화

- 소형화된 소자는 적은 전력 소모로 저전력화 실현 가능
- 예를 들어 디바이스의 전력소모를 최소화하기 위해 저전력 블루투스(BLE: Bluetooth Low Energy)기술 채택 경우, WiFi에 비해 수백분의 1 정도의 전력으로 동작 가능

✓ 저가격화 (리바이스들의 낮은가격)

- 제품 소형화 및 대량생산 기술의 발전으로 실현 가능
- 센서의 경우 2004년 1.3\$에서 2014년 0.6\$로 1/2 이상 하락

✓ 표준화

- 사물인터넷 글로벌화에 중요한 요소
- 표준화된 무선통신방식이나 개방형 표준 인터페이스를 이용 통신용 칩셋들이 표준화되어 다른 디바이스들과 데이터 교환이 가능하도록 모듈화
- 누구나 새로운 디바이스를 용이하게 제작 가능
- 사물인터넷 플랫폼이 제공하는 표준 API(Application Programming Interface)를 통해 다른 디바이스들과 연결 가능

M2M은 <u>기계와 기계간의 연결</u> 원격검침, 바코드 시스템

📝 IOT는 M<u>2M의 확장</u>되어 <u>사물과사람간의 통신까지</u>(스마트 헬스케어),

사물과 사물을 대상으로 하는 네트워크 전체

) IOE는 사람, 사물, 공간 등 <u>모든 것이 연결되어 소통</u>

(사람의 의식, 식물과 동물, 우리 주변의 벽, 빌딩 등)

- IOT의 구성요소와 기능
 - 센서는 주위 반응을 감지하는 귀
 - 네트워크는 사물의 반응으로 정보를 전달하는 <mark>선로</mark>
 - 클라우드는 데이터를 보관하는 기억
 - 빅데이터는 데이터 활용을 판단하는 뇌

- ② 빅데이터
 - · 소셜네트워크(SNS)와 사물간의 통신의 증대로 데이터의

증가, 다양한 디바이스 증가로 빅데이터가 출현

[그림 10.7] 전세계 정보량 증가에 따른 빅데이터 출현 배경(출처:한국정보화진흥

• 빅데이터의 3요소(자원, 기술, 인력)

[그림 10.8] 빅데이터활용을 위한 3대 요소(출처: 한국정보화진흥원)

이러넷 정보의 이해

17 12 de 101 1135 2.

• 최근에는 스마트폰을 이용해서 센서가 부착된 가전제품, 무인자동차, 다양한 유형의 mash up 정보 산출하는 <u>제4차</u> 산업혁명으로 대두

◉사물 인터넷과 만물 인터넷의 차이첨

智慧性 艾.

사물 인터넷의 진보적 형태

1

만물 인터넷(loE)

∘ <u>사람, 데이터, 사물, 프로세스가</u> 네트워크에 연결되어 소통하면서 새로운 가치 창출

अह र्मण्मिये

• 시스코 챔벌스 회장은 <u>제4세대 인터넷</u>은 모바일, 클라우드, 사물 인터넷이 결합한 <u>만물인터넷 시대</u>가 도래 클라우드, 모바일 소셜미디어, 빅데이터 컴퓨팅 기술의 향상

메칼드 법칙

(NT 규모가 커짐에 따라 그 비용 증가 규모는 줄어들지만, NT가치는 기하급수적으로 증가)

- · IoE와 IoT의 차이점
 - IoT 뿐만 아니라 클라우드, 빅 데이터, IPV6 등 <u>다양한</u> 혁신기술 포함
 - IoT는 <u>한 방향 통신이</u> 위주지만, IoE는 <u>쌍방향 통</u>신이 가능
 - IoT의 한 단계 진화한 것으로, 내가 원하는 결과를 얻기 위해 기기를 조작하지 않아도 결과를 얻을 수 있다

인터넷 정보의 이해

<u>인터넷 커넥트 디바이스</u> 2005년 50억개 2010년 100억개 2020년 9000억개

 \Rightarrow

LTE - 5G로 네트워크 성능향상

[표 10. 2] 초연결사회를 구현하는 기술

구분	IT기술	주요 기술 내용		
핵심 기술	사물인터넷	모든 사물에까지 네트워크로 연결하여 공유하는 네트워크		
	빅데이터	형식이 다양하고 양도 많을 정도로 순환속도가 매우 빨라 기존방식으로 정형화되지 못해 관리 분석이 어려운 데이터		
	M2M	기기간이나 기기에서 사람으로의 통신기법		
	WoT	웹 기술을 기반으로 자원을 검색하고 접속 제어하려는 기술		
유사 및 관련	클라우드 컴퓨팅	인터넷을 통해 서버, 스토리지, SW등 IT자원을 필요 시 인터넷을 통해서 서비스 받는 방식		
기술	웨어러블 디바이스	신체에 부착하여 컴퓨팅 행위를 할 수 있는 모든 기기를 지칭		
	상황인식 컴퓨팅	사용자가 행위, 생체신호, 과거이력 등을 분석하여 상황에 맞게 적절한 기능 자동수행 하는 기술		

기터넷 정보의 이해

。컴퓨터 응용기술과 LTE, 5G등 네트워크 성능 발전

⇒ IT 패러다임의 변화는 가속화

생활과 산업에 영향

[표 10.3] 플랫폼의 구성과 진화과정(출처: oojoo.tistory.com)

내용 년도	1990	2000	2010	2020
IT플랫폼	PC통신	웹(www)	모바일	loT
하드웨어(HW)	PC	멀티미디어 PC	스마트폰	Everything
네트워크(NW)	모뎀	초고속인터넷	4G LTE	M2M
소프트웨어(SW)	DOS	윈도(windows)	안드로이드	Cloud
킬러 앱	채팅	Search	SNS	Machine Learning
비즈니스 모델(BM)	서비스 과금	광고,커머스	중계수수료	Convergence

- 가. 데이터 생성 영역(데이터 생성)
 - 다양한 <u>센서나 디바이스</u>들이, <u>생성된 데이터</u>들을 <u>네트워크를</u> 통해 서버에 전달하는 역할수행
- 나. 연결영역(네트워킹)
 - 생성된 데이터를 인터넷상의 서비에 전달
 - 이동통신기술과 무선근거리 통신기술, 인터넷
- 다. 데이터 처리영역(자료축적 · 가공)
 - · 데이터를 저장·분석하여 가공하는 역할
 - 중앙에 서버를 이용하거나 클라우드 컴퓨팅 기술활용
- 라. 서비스 제공 영역(정보 표현과 피드백)
 - 정보를 <u>표현</u>하는 역할
 - 스마트폰, 컴퓨터, 센서나 디바이스(피드백)

2.3 사물 인터넷의 핵심 구성요소

가. 센서(센싱기술)

of type moder

◦<u>센성 기술</u>은 <u>정보를 수집</u>하고 이를 <u>전송</u>할 수 있는 지능을 갖도록 사물화한 기술

- ex.) 출 퇴근시 사원증, 길거리CCTV, 집 앞에 켜지는 조명

[그림 10.16] 스마트폰 장착 센서(출저: 삼성전자 블로그)

나. 네트워크 기술

• 사물이 인터넷에 연결되도록 지원하는 기술

[표 **10.4**] 다양한 통신 기술

구 분	종 류	
단거리통신기술	RDID, NFC	
근거리통신기술	wi-Fi, Zigbee, Bluetooth, UWB(Ultra Wide Band)	
무선이동통신	LTE, DCMA, WiMax/WiMax, GPS	
유선통합기술	이더넷, PLC(Power Line Communication)	

· 5G의 무선통신 기술이 일반화되면 사물인터넷이 한 단계 더 발전할수 있는 환경제공(2020년 디바이스 수가 9000억 개)

- ① 웨어러블 디바이스
 - 스마트 기기를 사용자가 일상생활 속에서 <u>항시 부담 없이</u> 착용하여 건강관리, 사용자 편의 등의 정보 제공하는 디바이스

품

[그림 **10.18**] 다양한 웨어러블 제품(출처: **BLOTER.NET**)

다. 서비스 인프라(인터페이스)기술

- <u>서비스와 어플리케이션과 연동하는 기술로</u> 각종 서비스 분야 및 형태에 맞게 정보를 가공처리 하거나 **각종 기술을 융합하는 기술**
 - -빅데이터 기술, 시맨틱, 보안 및 인증, 웹 서비스 기술 등
- -서울시 심야버스노선은 KT의 고객통화(빅데이터) 로그 분석을 통해 심야 시간대 최적의 노선을 구성

[그림 10.21] 서울시 심야버스 노선(출처: 데이터마켓(http://datamarket.kr/)

라. 보안기술

· 사물 인터넷 구성요소에 대한 해킹 및 정보유출을 방지하기 위한 기술(4번째 요소 라고도 함)

-프로토콜 및 네트워크 보안, 정보보호 및 사생활 보호, 시스템 장애 방해

사물인터넷의 네 가지 기술적 구성 요소

[그림 10.22] loT의 4가지 기술적 구성요소(출처:

blog.navoer.com/wergreat10)

3. 사물 인터넷의 활용 3.1 사물 인터넷과 5G

3G 이동통신 스마트 혁명 **(2006**년)

4G 이동통신

다양한 스마트 서비스

(2011년)

5G 이동통신

IoT의 현실과 대중화

(2020년)

가. 스마트 시대를 연 3G

- <u>3G 이동통신기술</u>은 <u>언제 어디서나 쉽게 간편하게 정보</u>를 접근할 수 있는 <u>유비쿼터스 환경을 조성하여</u> <u>스마트시대</u>를 개척
- USIM 칩을 이용해 회선번호 등 저장, 최대 2Mbps(↑) 멀티미디어통신 및 영상통화 상용화

[그림 10.24] 스마트 시대를 연 3G(출처: 네이버 매거진 캐스트)

다. 다양한 스마트 서버시대를 연 4G LTE

- 4G LTE(Long Term Evolution)는 고속으로 실시간 동영상 스트리밍 서비스를 시작하여 서비스의 다양화
- LTE-A(어드밴스)와 광대역 LTE는 LTE보다 2배고속
- 주파수 3개를 묶어 6배 고속인 LTE도 출시

▲ 세계 최초 LTE-A 지원 스마트폰 갤럭시S4

[그림 10.25] 세계최초 LTE-A 지원 스마트폰 캘러시 S4(출처: 네이버 매거진 캐스트)

다. LTE보다 1000배 빠른 고속인 5G

- 3G 보다 1000배 빠른 빛의 인터넷, 초당 Gb의 데이터 전송
 800Mb의 다운로드 시 LTE는 2분, LTE-A는 40초, <u>5G 이동통신은</u>
 1초
- 5G는 4G까지 사용했던 지대역 주파수를 고대역 주파수를 확보해서 속도를 높인 것
- <u>5G 기반으로 초고화질(UHD), 홀로그램, 모바일 입체영상</u> 등 다양한 서비스가 일반화되면 IoT 시대가 도래
- -무인자동차 시대, 자동냉장고, 자동실내전등 <u>등 새로운 생활</u> <u>패러다임 전개</u>

[표 **10.5**] 이동통신 기술 비교

세대내역	3G	4G	5G
최고전송 속도	14Mbps	75Mbps	1Gbps
800M 다운로드	7분 25초	1분 25초	1초
사용화시기	2006년	2011년	2020년
서비스 종류	멀티미디어 문자, 화상통신	실시간 동영상스트림	홀러그램, 사물인터넷, 인체영화

3.2 사물 인터넷과 스마트폰

- → 최초의 사물 인터넷 시대 연 제조업체(산업)
- 롤스로이스(<u>명차, 항공기와 선박 가스터빈</u>)는 <u>비행기 엔진에</u> <u>센서를 부착시켜</u> 항공 중에 엔진을 실시간 모니터링

[그림 10.31] 인터넷시대를 열어가는 제조업체(출처: 네이버 매거진 캐스트)

- 섭씨 2000도에 견디는 CCTV를 엔진코어에 설치하여 실시간으로 진단(2014년부터)

→ 생활용품

- · 스마트 칫솔은 <u>칫솔질의 횟수, 시간 등 기</u>록하며 스마트폰으로 확인
- 신발에 운동량과 충격각도 측정하여 자세교정
- 헤드기어에 센서를 내장해서 외부충격강도와 축적된 피로도검사
- 스마트키는 문의 장금장치 해제, 자동시동, 조명조정 및 잠금
- 스마트 콘택트렌즈는 <u>자동으로 혈당을 체크해 실시간으로 건강수치</u> 헤드폰에 알려줌

[그림 **10.42**] 구글 스마트 콘택트렌즈(출처: 네이버블로그)

→ 모든 것은 인터넷을 통해서 - 시스코

· <u>스마트 시티</u>는 도시전역 500km에 네트워크 설치, 500개의 무선인터넷 핫스팟 설치하여 상습정체와 교통혼잡, 주차문제 해결하기 위한 **스마트 주차장(**바르셀로나)

주차-애플리케이션(출처:네이버 매거진)