$\frac{\text{Filters}}{\text{Eilters}}$: X any set. P(X): power set.

Filter: $F \subseteq P(X)$: family of subsets s.t.

① X ∈ F, Ø € F

€ if A ∈ F and B>A, then Be F

3) if A, B \(\mathbb{F} \), then An B \(\mathbb{F} \).

This together up @ means AnB = \$.

Examples: $X = \mathbb{N}$, $\mathcal{F} = \{A \mid 1 \in A\}$ $(\mathcal{F}_{x} = \{A \mid x \in A\}) \longleftarrow \text{Principal}$ filter

Cofinite filter: $A \in \mathcal{F}$ if $X \setminus A$ is finite. (X must be infinite)

Ultrafilter \mathcal{F} has the property that $\forall A \subset X$, either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$.

Example any principal filter.

Non-example cofinite filter.

But,

Thun Every filter is contained in an ultrafilter.

Use for filters:

Consider the soquence X1, X2, -

 $\chi: \mathbb{N} \longrightarrow \mathbb{R}$.

lim $x_n = x_0$ means "for every open $U \ni x_0$, all but finitely many x_n are in u''

⇔ "x'(u) is in the co-finite filter on N "

(∀ open u∋x.)

Define UN = set of ultrafilters on N

eg UN contains F, (principal ultrafilter) Vj.

$$E_X$$
 $S = \{1\}$. Then $F_i \in [S]$, $F_j \notin [S] \ \forall \ j \neq i$.

$$A \subseteq P(X)$$
, A nonempty, A has FIP.

Show
$$[\phi] = \phi$$