

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 486 Control Systems

Lecture 17: Nyquist Stability Examples; Phase and Gain Margins from Nyquist Plots.

Liangjing Yang
Assistant Professor, ZJU-UIUC Institute
liangjingyang@intl.zju.edu.cn

Checklist

Wk	Торіс	Ref.	
1	✓ Introduction to feedback control	Ch. 1	
	✓ State-space models of systems; linearization	Sections 1.1, 1.2, 2.1- 2.4, 7.2, 9.2.1	
2	✓ Linear systems and their dynamic response	Section 3.1, Appendix A	
l Modeling	✓ Transient and steady-state dynamic response with arbitrary initial conditions	Section 3.1, Appendix A	
3	✓ National Holiday Week		
4	✓ System modeling diagrams; prototype second-order system	Sections 3.1, 3.2, lab manual	
(Analysis	✓ Transient response specifications	Sections 3.3, 3.14, lab manual	
5	✓ Effect of zeros and extra poles; Routh- Hurwitz stability criterion	Sections 3.5, 3.6	
 	✓ Basic properties and benefits of feedback control; Introduction to Proportional- Integral-Derivative (PID) control	Section 4.1-4.3, lab manual	
6	✓ Review A		
	✓ Term Test A		
7	✓ Introduction to Root Locus design method	Ch. 5	
	✓ Root Locus continued; introduction to dynamic compensation	Root Locus	
8	✓ Lead and lag dynamic compensation	Ch. 5	
	✓ Introduction to frequency-response design method	Sections 5.1-5.4, 6.1	

		<u> </u>	Root Locus	
Modeling	Analysis	Design		¦
			Frequency Respons	se i
		i I		_ !
		}	State-Space	

	Ref.
Bode plots for three types of transfer functions	Section 6.1
Stability from frequency response; gain and phase margins	Section 6.1
Control design using frequency response: PD and Lead	Ch. 6
Control design using frequency response continued; PI and lag, PID and lead-lag	Frequency Response
Nyquist stability criterion	Ch. 6
Nyquist stability; gain and phase margins from Nyquist plots	Ch. 6
Review B	
Term Test B	
Introduction to state-space design	Ch. 7
Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form	Ch. 7
Pole placement by full state feedback	Ch. 7
Observer design for state estimation	Ch. 7
Joint observer and controller design by dynamic output feedback; separation principle	State-Space
In-class review	Ch. 7
END OF LECTURES: Revision Week	
Final	
	Stability from frequency response; gain and phase margins Control design using frequency response: PD and Lead Control design using frequency response continued; PI and lag, PID and lead-lag Nyquist stability criterion Nyquist stability; gain and phase margins from Nyquist plots Review B Term Test B Introduction to state-space design Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form Pole placement by full state feedback Observer design for state estimation Joint observer and controller design by dynamic output feedback; separation principle In-class review END OF LECTURES: Revision Week

Lecture Overview

Review: Nyquist stability criterion
Today's topic: Phase and Gain Margin from Nyquist Plot

Review: Nyquist Stability Criterion / _ _ _ -

Goal: count the number of RHP poles (if any) of the closed-loop transfer function

$$\frac{KG(s)}{1+KG(s)}$$

based on frequency-domain characteristics of the plant transfer function G(s)

Review: The Nyquist Theorem

Nyquist Theorem (1928) Assume that G(s) has no poles on the imaginary axis*, and that its Nyquist plot does not pass through the point -1/K. Then

through the point
$$-1/K$$
. Then $N = Z - P$ $= -1/K$ by Nyquist plot of $G(s)$ $= \#(RHP \text{ closed-loop poles}) - \#(RHP \text{ open-loop poles})$

^{*} Easy to fix: draw an infinitesimally small circular path that goes *around* the pole and stays in RHP

Review: The Nyquist Stability Criterion

$$\underbrace{N}_{\#(\circlearrowright \text{ of } -1/K)} = \underbrace{Z}_{\#(\text{unstable CL poles})} - \underbrace{P}_{\#(\text{unstable OL poles})}$$

$$Z = N + P$$

$$Z = 0 \iff N = -P$$

Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of G(s) encircles the point -1/K P times counterclockwise, where P is the number of unstable (RHP) open-loop poles of G(s).

Review: Apply Nyquist Criterion

Workflow:

Bode M and ϕ -plots \longrightarrow Nyquist plot

Advantages of Nyquist over Routh-Hurwitz

- ▶ can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

$$G(s) = \frac{1}{(s+1)(s+2)}$$

(no open-loop RHP poles)

Characteristic equation:

$$(s+1)(s+2) + K = 0$$
 \iff $s^2 + 3s + K + 2 = 0$

From Routh, we already know that the closed-loop system is stable for K > -2.

We will now reproduce this answer using the Nyquist criterion.

Strategy:

- \triangleright Start with the Bode plot of G
- ▶ Use the Bode plot to graph Im $G(j\omega)$ vs. Re $G(j\omega)$ for $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

(Re
$$G(j\omega)$$
, Im $G(j\omega)$), $-\infty < \omega < \infty$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!

$$G(s) = \frac{1}{(s+1)(s+2)}$$

(no open-loop RHP poles)

Strategy:

- ightharpoonup Start with the Bode plot of G
- ▶ Use the Bode plot to graph Im $G(j\omega)$ vs. Re $G(j\omega)$ for $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

(Re
$$G(j\omega)$$
, Im $G(j\omega)$), $-\infty < \omega < \infty$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!

Nyquist plot:

$$\#(\circlearrowright \text{ of } -1/K)$$

$$= \#(RHP CL poles) - \underbrace{\#(RHP OL poles)}_{=0}$$

 $\Longrightarrow K \in \mathbb{R}$ is stabilizing if and only if

#(
$$\circlearrowright$$
 of $-1/K$) = 0

- ▶ If K > 0, #(\circlearrowright of -1/K) = 0
- ▶ If 0 < -1/K < 1/2, $\#(\circlearrowright \text{ of } -1/K) > 0 \Longrightarrow$ closed-loop stable for K > -2

Bode plot:

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)} = \frac{1}{s^3 + s^2 + s - 3}$$
#(RHP open-loop poles) = 1 at s = 1

Routh: the characteristic polynomial is

$$s^3 + s^2 + s + K - 3$$
 — 3rd degree

— stable if and only if K-3>0 and 1>K-3.

Stability range: 3 < K < 4

Let's see how to spot this using the Nyquist criterion ...

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)}$$

(1 open-loop RHP pole)

Bode plot:

Nyquist plot:

$$\omega = 0 \quad M = 1/3, \ \phi = -180^{\circ}$$

$$\omega = 1 \quad M = 1/4, \ \phi = -180^{\circ}$$

$$\omega \to \infty \quad M \to 0, \ \phi \to -270^{\circ}$$

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)}$$

Bode plot:

Nyquist plot:

$$\begin{split} \omega &= 0 \quad M = 1/3,\, \phi = -180^\circ \\ \omega &= 1 \quad M = 1/4,\, \phi = -180^\circ \\ \omega &\to \infty \quad M \to 0,\, \phi \to -270^\circ \end{split}$$

#(
$$\circlearrowright$$
 of $-1/K$)
= #(RHP CL poles)
$$-\underbrace{\#(RHP OL poles)}_{-1}$$

 $K \in \mathbb{R}$ is stabilizing if and only if

$$\#(\circlearrowright \text{ of } -1/K) = -1$$

Which points -1/K are encircled once \circlearrowleft by this Nyquist plot?

only
$$-1/3 < -1/K < -1/4$$

 $\implies 3 < K < 4$

Closed-loop stability range for $G(s) = \frac{1}{(s-1)(s^2+2s+3)}$ is 3 < K < 4 (using either Routh or Nyquist).

We can interpret this in terms of phase margin:

So, in this case, stability \iff PM > 0 (typical case).

$$N=Z-P$$

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

Open-loop poles:

$$s = -2$$

$$s^{2} - s + 1 = 0$$

$$\left(s - \frac{1}{2}\right)^{2} + \frac{3}{4} = 0$$

$$s = \frac{1}{2} \pm j\frac{\sqrt{3}}{2}$$
(RHP)

∴ 2 RHP poles

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

Open-loop poles:

$$s = -2$$

$$s^{2} - s + 1 = 0$$

$$\left(s - \frac{1}{2}\right)^{2} + \frac{3}{4} = 0$$

$$s = \frac{1}{2} \pm j\frac{\sqrt{3}}{2}$$
(RHP)

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

Routh:

char. poly.
$$s^3 + s^2 - s + 2 + K(s - 1)$$

 $s^2 + s^2 + (K - 1)s + 2 - K$ (3rd-order)

— stable if and only if

— stability range is 3/2 < K < 2

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)}$$

Bode plot (tricky, RHP poles/zeros)

(2 open-loop RHP poles)

 $\phi = 180^{\circ}$ when:

- $\blacktriangleright \omega = 0 \text{ and } \omega \to 0$

$$\frac{j\omega - 1}{(j\omega - 1)((j\omega)^2 - j\omega + 1)}\Big|_{\omega = 1/\sqrt{2}}$$

$$= \frac{\frac{j}{\sqrt{2}} - 1}{\left(\frac{j}{\sqrt{2}} + 2\right)\left(-\frac{1}{2} - \frac{j}{\sqrt{2}} + 1\right)}$$

$$= \frac{\frac{j}{\sqrt{2}} - 1}{-\frac{3}{2}\left(\frac{j}{\sqrt{2}} - 1\right)} = -\frac{2}{3}$$

(need to guess this, e.g., by mouseclicking in Matlab)

$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$

Bode plot:

(2 open-loop RHP poles)

Nyquist plot:

$$\omega = 0 \quad M = 1/2, \, \phi = 180^{\circ}$$

$$\omega = 1/\sqrt{2} \quad M = 2/3, \, \phi = 180^{\circ}$$

$$\omega \to \infty \quad M \to 0, \, \phi \to 180^{\circ}$$

$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$

Nyquist plot:

#(
$$\circlearrowright$$
 of $-1/K$)
= #(RHP CL poles)
$$- \underbrace{\#(RHP OL poles)}_{=2}$$

(2 open-loop RHP poles)

 $K \in \mathbb{R}$ is stabilizing if and only if

$$\#(\circlearrowright \text{ of } -1/K) = -2$$

Which points -1/K are encircled twice \circlearrowleft by this Nyquist plot?

only
$$-2/3 < -1/K < -1/2$$

 $\implies \frac{3}{2} < K < 2$

CL stability range for
$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$
: $K \in (3/2, 2)$

We can interpret this in terms of phase margin:

So, in this case, stability \iff PM < 0 (atypical case; Nyquist criterion is the only way to resolve this ambiguity of Bode plots).

Stability Margins

How do we determine stability margins (GM & PM) from the Nyquist plot?

GM & PM are defined relative to a given K, so consider Nyquist plot of KG(s) (we only draw the $\omega > 0$ portion):

How do we spot GM & PM?

- GM = $1/M_{180}$ °
 - if we divide K by $M_{180^{\circ}}$, then the Nyquist plot will pass through (-1,0), giving $M=1, \phi=180^{\circ}$
- $ightharpoonup PM = \varphi$
 - the phase difference from 180° when M=1