

Recursive Bayesian Filtering

Feras Dayoub

Learning objectives

- Multivariate Normal Distribution.
- Recursive Bayesian filtering.
 - Discrete Bayesian filter
 - Linear Kalman filter.

Recap

Recap

posterior = likelihood * prior

Recap

posterior = likelihood * prior

$$p(\mathbf{x}_t|z_t, u_t) = \eta \times p(z_t|x_t) \times p(x_t|u_t)$$

Our robot lives in 2D now!

Multivariate Gaussian (bivariate for this case)

Multivariate Gaussian

$$p(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^{k}|\boldsymbol{\Sigma}|}}$$

$$p(\mathbf{x}) = \mathcal{N}(\mu, \mathbf{\Sigma})$$

Multivariate Gaussian $p(\mathbf{x}_t) \sim \mathcal{N}(\mu_t, \Sigma_t)$

The mean of a multivariate Gaussian is a vector of the means.

$$E[\mathbf{x}_t] = \mu_t = \begin{bmatrix} \mu_{X_t} \\ \mu_{Y_t} \end{bmatrix}$$

The covariance is a matrix. In our bivariate case, it is a 2 by 2 matrix:

$$Cov(\mathbf{x_t}) = \Sigma_t = \begin{bmatrix} \sigma_{XX}^2 & \sigma_{XY}^2 \\ \sigma_{XY}^2 & \sigma_{YY}^2 \end{bmatrix}$$

$$\sigma_{XX}^{2} = Var(X) = E[(X - \mu_{X})(X - \mu_{X})]$$

$$\sigma_{YY}^{2} = Var(Y) = E[(Y - \mu_{Y})(Y - \mu_{Y})]$$

$$\sigma_{XY}^{2} = Cov(XY) = E[(X - \mu_{X})(Y - \mu_{Y})]$$

 $Cov(a\mathbf{x}) = a^2 Cov(\mathbf{x})$ $Cov(\mathbf{A}\mathbf{x}) = \mathbf{A}\Sigma \mathbf{A}^T$

The covariance matrix

In 2D and 3D, we can use the the covariance matrix to plot a confidence ellipse and ellipsoid (in 3D) that represent the shape of our confidence region:

The covariance matrix

The link between the covariance matrix and the ellipse equation:

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) = 1$$

The orientation of the ellipse given by the eigenvectors of Σ

The size of the ellipse (area/volume) is given by $\sqrt{|\Sigma|}$

Use the function plot_ellipse(sigma,mu) from Peter's MATLAB toolbox

State estimation

• The state we are trying to estimate in the context of the localization problem is the pose of the robot at time ${f t}$: ${f x}_t$

• The information available to us are the stream of sensor measurements: $\mathbf{z}_{1:t}$. This can be the range and bearing to landmarks with known position.

• And the control commands or the information about the motion between consecutive time steps: $\mathbf{u}_{1:t}$

Measurement probability

Bayes rule as we saw it at the end of the last lecture:

$$p(\mathbf{x}_t|\mathbf{z}_{1:t},\mathbf{u}_{1:t}) = \eta \times p(\mathbf{z}_t|\mathbf{x}_t,\mathbf{z}_{1:t-1},\mathbf{u}_{1:t})p(\mathbf{x}_t|\mathbf{z}_{1:t-1},\mathbf{u}_{1:t})$$

The current measurement is independent of the previous measurements and the motion given the current state of the robot

$$p(\mathbf{z}_t|\mathbf{x}_t,\mathbf{z}_{1:t-1},\mathbf{u}_{1:t}) = p(\mathbf{z}_t|\mathbf{x}_t)$$

Motion probability

Using the law of total probability:
$$p(\mathbf{x}_t|\mathbf{z}_{1:t-1},\mathbf{u}_{1:t}) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{z}_{1:t-1},\mathbf{u}_{1:t}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1},\mathbf{u}_{1:t}) d\mathbf{x}_{t-1}$$
 The current state is independent of the past measurements and controls given the previous state
$$p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{z}_{1:t-1},\mathbf{u}_{1:t}) = p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{u}_t)$$
 What about this term?
$$p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{z}_{1:t-1},\mathbf{u}_{1:t}) = p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{u}_t)$$

Law of total probability

© Feras Dayoub

Why integral?

$$P(C_{i_t}|U_{1:t}) = \sum_{i=1}^{t} P(C_{i_t}|C_{j_{t-1}}, U_t) P(C_{j_{t-1}}|U_{1:t-1})$$

Recursive Bayesian filtering

Discrete Recursive Bayesian Filter

For all i do

$$\bar{bel}(C_{i_t}) = \sum_{j} P(C_{i_t}|C_{j_{t-1}}, U_t)bel(C_{i_{t-1}})$$

$$bel(C_{i_t}) = \eta P(\mathbf{z}_t|C_{i_t}).\bar{bel}(C_{i_t})$$

return

$$bel(C_{i_t}) = P(C_{i_t}|Z_{1:t}, U_{1:t})$$

Kalman filter

The Kalman filter is a Bayesian filter where the motion and the measurement probability distributions are Gaussians (as we saw in the previous lecture) and the state dynamics is linear.

$$\mathbf{x}_t = \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix} \sim \mathcal{N}(\mu_{\mathbf{x_t}}, \mathbf{\Sigma_{x_t}}) \qquad \mathbf{A} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We want to estimate the position and the speed. But we only observe the position.

$$\mathbf{z}_t = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

(Toy example) The component of the motion model

$$\mathbf{x}_t = \mathbf{A}\mathbf{x_{t-1}} + \mathbf{B}\mathbf{u}_t + \mathbf{v}_t$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ Describes how the state evolves between time steps without control or noise.}$$

$$\mathbf{B} = \begin{bmatrix} \frac{(\delta t)}{2} & 0 \\ 0 & \frac{(\delta t)^2}{2} \\ \delta t & 0 \\ 0 & \frac{\delta t}{2} \end{bmatrix}$$
 Describes how the control u change the the state between time steps. Our example consider a constant velocity therefore the control input (i.e the acceleration) is zero.

$${f v}_t \sim \mathcal{N}(0,{f R})$$
 Random variable to represent the process noise which is assumed to be Gaussian with mean 0 and covariance ${f R}$

$$\mathcal{N}(\mu_{x_{t-1}}, \mathbf{\Sigma}_{t-1})$$
 $p(\mathbf{x}_t|\mathbf{u}_{1:t}, \mathbf{z}_{t:1}) = \eta \times p(\mathbf{z}_t|\mathbf{x}_t) \int p(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{u}_t) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}, \mathbf{u}_{1:t-1}) d\mathbf{x}_{t-1}$ $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \mathbf{v}_t$ For given values of \mathbf{X}_{t-1} and \mathbf{u}_t $\mathcal{N}(\mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t, \mathbf{R})$ Our uncertainty increases with each time step


```
update rate =5; %5 Hz
dT = 1/update rate; % time delta
run time = 30; % seconds
nSteps = run time * update rate;
A = [1 \ 0 \ dT \ 0;
      010dT;
      0010;
      00011;
 % The process noise in the syestm
 sigmaV = 0.01;
 R = [0.001 \ 0 \ 0; 0 \ 0.001 \ 0 \ 0;
      0 0 (sigmaV)^2 0;0 0 0 (sigmaV)^2];
figure(1)
hold on
% our initial position
% the point starts at [0 0] and move with vx = vy = 0.5 m/s
initX = [0 \ 0 \ 0.5 \ 0.5];
% lets generate some "real" data
x true = zeros(4, nSteps);
x true(:,1) = initX;
|for i = 2:nSteps|
   v = mvnrnd([0\ 0\ 0\ 0],R,1)';
   x \text{ true}(:,i) = A*x \text{ true}(:,i-1) + v;
end
scatter(x true(1,:),x true(2,:),'ro');
```


Due to the noise in the system, the trajectory of the point is not deterministic.

(Toy example) The component of the measurement model

In our example, at each time step we receive a GPS measurement of our position.

These measurements are noisy so we model them as follows:

$$\mathbf{z}_t = \mathbf{H}\mathbf{x_t} + \mathbf{w}_t$$

$$\mathbf{H} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Describes how to map the state to the measurement.

 $\mathbf{w}_t \sim \mathcal{N}(0, \mathbf{Q})$ Random variable to represent the measurements noise which is assumed to be Gaussian with zero mean and covariance \mathbf{Q}

$$\mathcal{N}(\mathbf{A}\mu_{x_{t-1}} + \mathbf{B}\mathbf{u_t}, \mathbf{A}\boldsymbol{\Sigma}_{t-1}\mathbf{A}^T + \mathbf{R})$$

$$p(\mathbf{x}_t|\mathbf{u}_{1:t}, \mathbf{z}_{t:1}) = \eta \times p(\mathbf{z}_t|\mathbf{x}_t) \int p(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{u}_t) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}, \mathbf{u}_{1:t-1}) d\mathbf{x}_{t-1}$$

$$\mathbf{z}_t = \mathbf{H}\mathbf{x_t} + \mathbf{w}_t$$

When we get a measurement, we can reason about the true state of the system.

 $p(\mathbf{z}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{H}\mathbf{x}_t, \mathbf{Q})$

$$p(\mathbf{z}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{H}\mathbf{x}_t, \mathbf{Q})$$

When we get a measurement, we can reason about the true state of the system.

% let's generate some measurements
H = [1 0 0 0;0 1 0 0];
% measurement noise
sigmaW = 0.5;
Q = [(sigmaW)^2 0;0 (sigmaW)^2];
sensor = [];
for i = 1:nSteps
w = mvnrnd([0 0],Q,1)';
z = H*x_true(:,i) + w;
sensor = [sensor,z];
scatter(z(1),z(2),'k*');

plot cov(z,Q,1)

CRICOS No. 00213J

The Kalman filter's steps

$$p(\mathbf{x}_t|\mathbf{u}_{1:t},\mathbf{z}_{t:1}) = \eta \times p(\mathbf{z}_t|\mathbf{x}_t) \int p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{u}_t) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1},\mathbf{u}_{1:t-1}) d\mathbf{x}_{t-1}$$
sense motion
$$\mathcal{N}(\mathbf{H}\mathbf{x}_t,\mathbf{Q}) \quad \mathcal{N}(\mathbf{A}\mu_{x_{t-1}} + \mathbf{B}\mathbf{u}_t,\mathbf{A}\boldsymbol{\Sigma}_{t-1}\mathbf{A}^T + \mathbf{R})$$

What are the new mean and covariance after performing the two steps?

The Kalman filter's steps

$$p(\mathbf{x}_t|\mathbf{u}_{1:t},\mathbf{z}_{t:1}) = \eta \times \mathcal{N}(\mathbf{H}\mathbf{x}_t,\mathbf{Q}) \times \mathcal{N}(\mathbf{A}\mu_{x_{t-1}} + \mathbf{B}\mathbf{u}_t,\mathbf{A}\boldsymbol{\Sigma}_{t-1}\mathbf{A}^T + \mathbf{R})$$
sense $\bar{\mu}_t$ motion $\bar{\boldsymbol{\Sigma}}_t$

$$p(\mathbf{x}_t|\mathbf{u}_{1:t},\mathbf{z}_{t:1}) = \mathcal{N}(\mu_t,\boldsymbol{\Sigma}_t) \qquad \mu_t = \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{H}\bar{\mu}_t)$$

$$\boldsymbol{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t\mathbf{H})\bar{\boldsymbol{\Sigma}}_t$$
 Kalman gain

The Kalman Gain

The real measurement we get from the sensor

$$p(\mathbf{x}_{t}|\mathbf{u}_{1:t},\mathbf{z}_{t:1}) = \mathcal{N}(\mu_{t},\mathbf{\Sigma}_{t}) = \begin{bmatrix} \mu_{t} = \bar{\mu_{t}} + \mathbf{K}_{t}(\mathbf{z}_{t} - \mathbf{H}\bar{\mu_{t}}) \\ \mathbf{\Sigma}_{t} = (\mathbf{I} - \mathbf{K}_{t}\mathbf{H})\bar{\mathbf{\Sigma}}_{t} \end{bmatrix}$$

$$\mathbf{K}_t = \bar{\mathbf{\Sigma}}_t \mathbf{H}^T (\mathbf{H}_t \bar{\mathbf{\Sigma}}_t \mathbf{H}^T + \mathbf{Q})^{-1}$$

The Kalman filter steps

Prediction: $\bar{\mu}_t = \mathbf{A}\mu_{x_{t-1}} + \mathbf{B}\mathbf{u}_t$ $\bar{\Sigma}_t = \mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \mathbf{R}$ **Update/Correction:** $\mu_t = \bar{\mu_t} + \mathbf{K}_t(\mathbf{z}_t - \mathbf{H}\bar{\mu_t})$ $\Sigma_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \Sigma_t$


```
%initial guess
SigmaX = 10 * eve(4);
muX = [0 \ 0 \ -10 \ -5]';
x \text{ est} = [];
x = [x = (x = x, muX)];
for i= 1:nSteps
  z = sensor(:,i);
  % predict
  muX = A*muX;
  SigmaX = A*SigmaX*A' + R;
  % correct
  K1 = SigmaX * H';
  K2 = H * SigmaX * H' + Q;
  K = K1 / K2;
  r = z - H * muX:
  muX = muX + K * r;
  SigmaX = (eve(4) - K*H)*SigmaX;
  x = [x = (x = x, muX)];
  scatter(muX(1),muX(2),'b*');
  plot cov(muX,SigmaX,3)
end
plot(x est(1,:),x est(2,:))
```


The power of Kalman filter! Our initial guess is very bad but the filter recover after few steps.

But ...

The motion model of the robot and the measurements model of the sensor are not linear.

Good news

Extended Kalman filter can solve this; Next Lecture.

