COMP 5711: Advanced Algorithms Fall 2018 Midterm Exam

Name:	Student ID:

Instructions

- 1. This is an open-book, open-notes exam.
- 2. Time limit: 80 minutes.
- 3. You can write on the back of the paper if you run out of space. Please let us know if you need more scratch paper.

- 1. (20 pts) Design a data structure to support the following two operations on a dynamic set S of elements:
 - INSERT(S, x) inserts x into S.
 - DELETE-LARGER-HALF(S) deletes the largest $\lceil |S|/2 \rceil$ elements from S.

Explain how to implement this data structure so that each operation takes O(1) time amortized. [Hint: The median of n elements can be found in O(n) time.]

- 2. (30 pts) We want to implement a queue Q with two stacks S_1 and S_2 , which support POP and PUSH operations in O(1) time. You can also check if the stack is empty in O(1) time.
 - (a) How would you implement the queue? Specifically, how should the $\mathtt{ENQUEUE}(Q,x)$ and $\mathtt{DEQUEUE}(Q)$ operations of the queue be implemented with the two stacks? Note that you are not allowed to use any other data structures.
 - (b) Show that the amortized cost of each operation on the queue is O(1).

3. (30 pts) Let S be a set of n students in a class. There are m study groups, denoted as G_1, \ldots, G_m . Each student can be in more than one group, and each study group has at least δn students for some $\delta \in (0,1)$. We would like to select a committee $C \subseteq S$ of small size such that each study group has at least one of its members in the committee, i.e., $C \cap G_i \neq \emptyset$ for all i. Finding such a committee with the smallest size is an NP-hard problem, but can you design a polynomial-time randomized algorithm that, with probability at least $1 - \frac{1}{m}$, finds such a committee of size at most $\frac{2}{\delta} \ln m$?

4.	2. (20pts) Show that the randomized selection algorithm runs in $O(\log n)$ iterations in expectation. One iteration is defined as selecting a pivot, partitioning the array into two parts, and reducing the problem to one part.	