Multiple Conclusion Intuitionistic Linear Logic and Cut Elimination

Harley Eades III and Valeria de Paiva

Abstract

Full Intuitionistic Linear Logic (FILL) was first introduced by Hyland and de Paiva as one of the results of their investigation into a categorical understanding of Gödel's Dialectica interpretation. FILL went against current beliefs that it was not possible to incorporate all of the linear connectives, e.g. tensor, par, and implication, into an intuitionistic linear logic. They showed that it is natural to support all of the connectives given sequents that have multiple hypotheses and multiple conclusions. To enforce intuitionism de Paiva's original formalization of FILL used the well-known Dragalin restriction, forcing the implication right rule to have only a single conclusion in its premise, but Schellinx showed that this results in a failure of cut-elimination. To overcome this failure Hyland and de Paiva introduced a term assignment for FILL that eliminated the need for the strong restriction. The main idea was to first relax the restriction by assigning variables to each hypothesis and terms to each conclusion. Then when introducing an implication on the right enforcing that the variable annotating the hypothesis being discharged is only free in the term annotating the conclusion of the implication. Bierman showed in a short note that this formalization of FILL still did not enjoy cut-elimination, because of a flaw in the left rule for par. However, Bellin proposed an alternate left rule for par and conjectured that by adopting his rule cut-elimination is restored. In this note we show that adopting Bellin's proposed rule one does obtain cut-elimination for FILL, as suggested. Additionally, we show that FILL can be modeled by a new form of dialectica category called order-enriched dialectica category, and discuss future work giving FILL a semantics in terms of Lorenzen games.

1 Introduction

A commonly held belief during the early history of linear logic was that the linear-connective par could not be incorporated into an intuitionistic linear logic. This belief was challenged when de Paiva gave a categorical understanding of Gödel's Dialectica interpretation in terms of dialectica categories [7, 6]. Upon setting out on her investigation she initially believed that dialectica categories would end up being a model of intuitionistic logic, but to her surprise they are

Change references to Section 3 to the new semantic results. actually models of intuitionistic linear logic, containing the linear connectives: tensor, par, implication, and their units. Furthermore, unlike other models at that time the units did not collapse into a single object.

Armed with this semantic insight de Paiva gave the first formalization of Full Intuitionistic Linear Logic (FILL) [6]. FILL is a sequent calculus with multiple conclusions in addition to multiple hypotheses. Logics of this type go back to Gentzen's work on the sequent calculi LK and LJ, and Maehara's work on LJ' [12, 17]. The sequents in these types of logics usually have the form $\Gamma \vdash \Delta$ where Γ and Δ are multisets of formulas. Sequents such as these are read as "the conjunction of the formulas in Γ imply the disjunction of the formulas in Δ ". For a brief, but more complete history of logics with multiple conclusions see the introduction to [8].

Gentzen showed that to obtain intuitionistic logic one could start with the logic LK and then place a cardinality restriction on the righthand side of sequents, however, this is not the only means of enforcing intuitionism. Maehara showed that in the propositional case one could simply place the cardinality restriction on the premise of the implication right rule, and leave all of the other rules of LK unrestricted. This restriction is sometimes called the Dragalin restriction, as it appeared in his AMS textbook [9]. The classical implication right rule has the form:

$$\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \multimap B, \Delta} \text{ IMPR}$$

By placing the Dragalin restriction on the previous rule we obtain:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \text{ IMPR}$$

de Paiva's first formalization of FILL used the Dragalin restriction, see [6] p. 58, but Schellinx showed that this restriction has the unfortunate consequence of breaking cut-elimination [16].

Later, Hyland and de Paiva gave an alternate formalization of FILL in the hopes to regain cut-elimination [10]. This new formalization lifted the Dragalin restriction by decorating sequents with a term assignment. Hypotheses were assigned variables, and the conclusions were assigned terms. Then using these terms one can track the use of hypotheses throughout a derivation. They proposed a new implication right rule:

$$\frac{\Gamma, x: A \vdash t: B, \Delta \qquad x \not\in \mathsf{FV}(\Delta)}{\Gamma \vdash \lambda x. t: A \multimap B, \Delta} \text{ \tiny IMPR}$$

Intuitionism is enforced in this rule by requiring that the variable being dischanged, x, is potentially free in only one term annotating a conclusion. Unfortunately, this formalization did not enjoy cut-elimination either.

Bierman was able to give a counterexample to cut-elimination [4]. As Bierman explains the problem was with the left rule for par. The original rule was as follows:

$$\frac{\Gamma, x: A \vdash \Delta \qquad \Gamma', y: B \vdash \Delta'}{\Gamma, \Gamma', z: A \ \Im \ B \vdash \mathsf{let} \ z \, \mathsf{be} \, (x \ \Im -) \, \mathsf{in} \, \Delta \mid \mathsf{let} \, z \, \mathsf{be} \, (- \ \Im \ y) \, \mathsf{in} \, \Delta'} \ ^{\mathsf{PARL}}$$

In this rule the pattern variables x and y are bound in each term of L and L' respectively. Notice that the variable z becomes free in every term in L and L'. Bierman showed that this rule mixed with the restriction on implication right prevents the usual cut-elimination step that commutes cut with the left rule for par. The main idea behind the counterexample is that in the derivation before commuting the cut it is possible to discharge z using implication right, but after the cut is commuted past the left rule for par, the variable z becomes free in more than one conclusion, and thus, can no longer be discharged.

In the conclusion of Bierman's note he gives an alternate left rule for par that he attributes to Bellin. This new left-rule is as follows:

$$\frac{\Gamma, x: A \vdash \Delta \quad \Gamma', y: B \vdash \Delta'}{\Gamma, \Gamma', z: A \ensuremath{\,^{\circ}\!\!\!/} B \vdash \text{let-pat} \ensuremath{\,z} \left(x \ensuremath{\,^{\circ}\!\!\!/} \right) \Delta \mid \text{let-pat} \ensuremath{\,z} \left(-\ensuremath{\,^{\circ}\!\!\!/} y\right) \Delta'} \quad ^{\text{PARL}}$$

In this rule let-pat z (x \Re -) t and let-pat z (- \Re y) t' only let-bind z in t or t' if $x \in FV(t)$ or $y \in FV(t')$. Otherwise the terms are left unaltered. Bellin conjectured that adopting this rule results in FILL regaining cut-elimination. However, no proof has been given.

Contributions. In this paper our main contribution is to confirm Bellin's conjecture by adopting his proposed rule (Section 2) and proving cut-elimination (Section 3). In addition, we show that FILL can be modeled by a new form of dialectica category called order-enriched dialectica category (Section ??).

Related Work. The first formalization of FILL with cut-elimination was due to Brauner and de Paiva [5]. Their formalization can be seen as a linear version of LK with a sophisticated meta-level dependency tracking system. A proof of a FILL sequent in their formalization amounts to a classical derivation, π , invariant in a what they call the FILL property:

• The hypothesis discharged by an application of the implication right rule in π is a dependency of only the conclusion of the implication being introduced.

They were able to show that their formalization is sound, complete, and enjoys cut-elimination. The one point in favor of the term assignment formalization given here over Brauner and de Paiva's formalization is that the dependency tracking system complicates both the definition of the logic and its use. However, we do not wish to detract from the importance of their work.

de Paiva and Pereira used annotations on the sequents of LK to arrive at full intuitionistic logic (FIL) with multiple conclusion that enjoys cut-elimination [8]. They annotate hypothesis with natural number indices, and conclusions with finite sets of indices. The sets on conclusions correspond to the collection of the hypotheses that the conclusion depends on. Then they have a similar property to that of the FILL property from Brauner and de Paiva's formalization. In fact, the dependency tracking system is very similar to this formalization, but the dependency tracking has been collapsed into the object language instead of being at the meta-level.

2 Full Intuitionistic Linear Logic (FILL)

In this section we give a brief description of FILL. We first give the syntax of formulas, patterns, terms, and contexts. Following the syntax we define several meta-functions that will be used when defining the inference rules of the logic.

Definition 1. The syntax for FILL is as follows:

```
 \begin{array}{ll} \textit{(Formulas)} & \textit{A, B, C, D, E} ::= \top \mid \bot \mid \textit{A} \multimap \textit{B} \mid \textit{A} \otimes \textit{B} \mid \textit{A} \ensuremath{\,\%} \ensuremath{\,B} \\ \textit{(Patterns)} & \textit{p} ::= * \mid - \mid \textit{x} \mid \textit{p}_1 \otimes \textit{p}_2 \mid \textit{p}_1 \ensuremath{\,\%} \ensuremath{\,p}_2 \\ \textit{(Terms)} & \textit{t, e} ::= * \mid * \mid \circ \mid \textit{t}_1 \otimes \textit{t}_2 \mid \textit{t}_1 \ensuremath{\,\%} \ensuremath{\,p}_2 \mid \textit{\lambda} \textit{x.t} \mid \text{let } \textit{t} \text{ be } \textit{p} \text{ in } \textit{e} \mid \textit{t}_1 \textit{t}_2 \\ \textit{(Left Contexts)} & \Gamma ::= \cdot \mid \textit{x} : \textit{A} \mid \Gamma_1, \Gamma_2 \\ \textit{(Right Contexts)} & \Delta ::= \cdot \mid \textit{t} : \textit{A} \mid \Delta_1, \Delta_2 \\ \end{array}
```

The formulas of FILL are standard, but we denote the unit of tensor as \top and the unit of par as \bot . Patterns are used to distinguish between the various let-expressions for tensor, par, and their units. There are three different let-expressions:

```
Tensor: let t be p_1 \otimes p_2 in e
Par: let t be p_1 \otimes p_2 in e
Tensor Unit: let t be * in e
```

In addition, each of these will have their own equational rules, see Figure 2. The role each term plays in the overall logic will become clear after we introduce the inference rules.

At this point we introduce some syntax and mete-level functions that will be used in the definition of the inference rules for FILL. Left contexts are multisets of formulas labeled with a variable, and right contexts are multisets of formulas labeled with a term. We will often write $\Delta_1 \mid \Delta_2$ as syntactic sugar for Δ_1, Δ_2 . The former should be read as " Δ_1 or Δ_2 ." We denote the usual capture-avoiding substitution by [t/x]t', and its straightforward extension to right contexts as $[t/x]\Delta$. Similarly, we find it convenient to be able to do this style of extension for the let-binding as well.

Definition 2. We extend let-binding terms to right contexts as follows:

```
\begin{array}{l} \operatorname{let} t \operatorname{be} p \operatorname{in} \cdot = \cdot \\ \operatorname{let} t \operatorname{be} p \operatorname{in} (t' : A) = (\operatorname{let} t \operatorname{be} p \operatorname{in} t') : A \\ \operatorname{let} t \operatorname{be} p \operatorname{in} (\Delta_1 \mid \Delta_2) = (\operatorname{let} t \operatorname{be} p \operatorname{in} \Delta_1) \mid (\operatorname{let} t \operatorname{be} p \operatorname{in} \Delta_2) \end{array}
```

Lastly, we denote the usual function that computes the set of free variables in a term by FV(t), and its straightforward extension to right contexts as $FV(\Delta)$.

The inference rules for FILL are defined in Figure 1. The Parl rule depends on the function let-pat z p Δ which we define next.

Definition 3. The function let-pat z p t is defined as follows:

```
 \begin{array}{ll} \operatorname{let-pat} z \ (x \ ^{\mathfrak{P}} -) \ t = t & \operatorname{let-pat} z \ (- \ ^{\mathfrak{P}} \ y) \ t = t & \operatorname{let-pat} z \ p \ t = \operatorname{let} z \ \operatorname{be} p \ \operatorname{in} t \\ where \ x \not\in \mathsf{FV}(t) & where \ y \not\in \mathsf{FV}(t) \\ \end{array}
```

$$\frac{\Gamma \vdash t : A \mid \Delta \quad \Gamma', y : A \vdash \Delta'}{\Gamma, \Gamma' \vdash \Delta \mid [t/y] \Delta'} \quad \text{Cut} \qquad \frac{\Gamma \vdash \Delta}{\Gamma, x : \top \vdash \text{let } x \text{ be } * \text{ in } \Delta} \quad \text{IL}$$

$$\frac{\Gamma \vdash e : A \mid \Delta \quad \Gamma' \vdash f : B \mid \Delta'}{\Gamma, \Gamma' \vdash e \otimes f : A \otimes B \mid \Delta \mid \Delta'} \quad \text{Tr} \qquad \frac{\Gamma, x : A, y : B \vdash \Delta}{\Gamma, z : A \otimes B \vdash \text{let } z \text{ be } x \otimes y \text{ in } \Delta} \quad \text{TL}$$

$$\frac{\Gamma \vdash e : A \mid \Delta \quad \Gamma' \vdash f : B \mid \Delta'}{\Gamma, \Gamma' \vdash e \otimes f : A \otimes B \mid \Delta \mid \Delta'} \quad \text{Tr} \qquad \frac{\Gamma \vdash \Delta}{x : \bot \vdash} \quad \text{PL} \qquad \frac{\Gamma \vdash \Delta}{\Gamma \vdash \circ : \bot \mid \Delta} \quad \text{PR}$$

$$\frac{\Gamma, x : A \vdash \Delta \quad \Gamma', y : B \vdash \Delta'}{\Gamma, \Gamma', z : A \nearrow B \vdash \text{let-pat } z (x \nearrow \neg) \Delta \mid \text{let-pat } z (\neg \nearrow y) \Delta'} \quad \text{PARL}$$

$$\frac{\Gamma \vdash \Delta \mid e : A \mid f : B \mid \Delta'}{\Gamma \vdash \Delta \mid e \nearrow f : A \nearrow B \mid \Delta'} \quad \text{PARR} \qquad \frac{\Gamma \vdash e : A \mid \Delta \quad \Gamma', x : B \vdash \Delta'}{\Gamma, y : A \multimap B, \Gamma' \vdash \Delta \mid [y e / x] \Delta'} \quad \text{IMPL}$$

$$\frac{\Gamma, x : A \vdash e : B \mid \Delta}{\Gamma \vdash \lambda x . e : A \multimap B \mid \Delta} \quad \text{IMPR} \qquad \frac{\Gamma, x : A, y : B \vdash \Delta}{\Gamma, y : B, x : A \vdash \Delta} \quad \text{EXL}$$

$$\frac{\Gamma \vdash \Delta \mid t : A \mid t_2 : B \mid \Delta_2}{\Gamma \vdash \Delta \mid t_2 : B \mid t_1 : A \mid \Delta_2} \quad \text{EXR}$$

Figure 1: Inference rules for FILL

It is straightforward to extend the previous definition to right-contexts, and we denote this extension by let-pat z p Δ .

The motivation behind this function is that it only binds the pattern variables in $x \, \Im$ – and – \Im y if and only if those pattern variables are free in the body of the let. This over comes the counterexample given by Bierman in [4]. Throughout the sequel we will denote derivations of the previous rules by π .

Similarly to λ -calculi the terms of FILL are equipped with an equivalence relation. This equivalence on terms is defined in Figure 2. However, these rules should not be considered as computational rules, but rather are only necessary for the cut-elimination procedure. The rules are highly motivated by the semantic interpretation of FILL into symmetric monoidal categories. There are a number of α , β , and η like rules as well as several rules we call naturality rules. These rules are similar to the rules presented in [10].

3 Cut-elimination

FILL can be viewed from two different angles: i. as an intuitionistic linear logic with par, or ii. as a restricted form of classical linear logic. Thus, to prove cut-elimination of FILL one only need to start with the cut-elimination procedure for intuitionistic linear logic, and then dualize all of the steps in the procedure for tensor and its unit to obtain the steps for par and its unit. Similarly, one could just as easily start with the cut-elimination procedure for classical linear logic, and then apply the restriction on the implication right rule producing a cut-elimination procedure for FILL.

$$\frac{y \not \in \mathsf{FV}(t)}{t = [y/x]t} \quad \mathsf{ALPHA} \qquad \frac{x \not \in \mathsf{FV}(f)}{(\lambda x.f \, x) = f} \quad \mathsf{ETAFUN} \qquad \frac{(\lambda x.e) \, e' = [e'/x]e}{(\lambda x.e) \, e' = [e'/x]e} \quad \mathsf{BETAFUN}$$

$$\overline{|\mathsf{let} \, u \, \mathsf{be} \, * \, \mathsf{in} \, e = e} \quad \mathsf{ETAII} \qquad \overline{|\mathsf{let} \, u \, \mathsf{be} \, * \, \mathsf{in} \, [e/y]f} \quad \mathsf{NATI}$$

$$\overline{|\mathsf{let} \, u \, \mathsf{be} \, * \, \mathsf{in} \, e/y]f} = \mathsf{let} \, u \, \mathsf{be} \, * \, \mathsf{in} \, [e/y]f \qquad \mathsf{BETAITEN}$$

$$\overline{|\mathsf{let} \, u \, \mathsf{be} \, x \, \otimes y \, \mathsf{in} \, [x \, \otimes y/z]f = [u/z]f} \quad \mathsf{BETA2TEN}$$

$$\overline{|\mathsf{let} \, u \, \mathsf{be} \, x \, \otimes y \, \mathsf{in} \, [x \, \otimes y/z]f = [u/z]f} \quad \mathsf{BETA2TEN}$$

$$\overline{|\mathsf{let} \, u \, \mathsf{be} \, x \, \otimes y \, \mathsf{in} \, [y/y]f = \mathsf{let} \, u \, \mathsf{be} \, x \, \otimes y \, \mathsf{in} \, [y/w]f} \quad \overline{u = \circ} \quad \mathsf{ETAPARU}$$

$$\overline{|\mathsf{let} \, u \, \mathsf{be} \, x \, \Im - \mathsf{in} \, x) \, \Im \, (\mathsf{let} \, u \, \mathsf{be} - \Im y \, \mathsf{in} \, y) = u} \quad \mathsf{ETAPAR}$$

$$\overline{|\mathsf{let} \, u \, \Im \, t \, \mathsf{be} \, x \, \Im - \mathsf{in} \, e = [u/x]e} \quad \overline{\mathsf{let} \, u \, \Im \, t \, \mathsf{be} - \Im y \, \mathsf{in} \, e = [t/y]e} \quad \mathsf{BETA2PAR}$$

$$\overline{|\mathsf{let} \, u \, \Im \, t \, \mathsf{be} \, x \, \Im - \mathsf{in} \, [u/x]f} = [\mathsf{let} \, t \, \mathsf{be} \, x \, \Im - \mathsf{in} \, u/x]f} \quad \mathsf{NAT1PAR}$$

$$\overline{\mathsf{let} \, t \, \mathsf{be} \, - \Im y \, \mathsf{in} \, [v/y]f} = [\mathsf{let} \, t \, \mathsf{be} - \Im y \, \mathsf{in} \, v/y]f} \quad \mathsf{NAT2PAR}$$

Figure 2: Equivalence on terms

The major difference between proving cut-elimination of FILL from classical or intuitionistic linear logic is that we must prove an invariant across each step in the procedure. The invariant is that if a derivation π is transformed into a derivation π' , then the terms in the conclusion of the final rule applied in π must be equivalent to the terms in the conclusion of the final rule applied in π' using the rules from Figure 2. For example, consider the following case in the cut-elimination procedure for FILL:

The proof

$$\begin{array}{c} \pi_{1} \\ \vdots \\ \overline{\Gamma \vdash t:A \mid \Delta} \end{array} \xrightarrow[\Gamma_{1}, x:A, \Gamma_{2} \vdash \Delta_{1} \mid t_{1}:B \mid t_{2}:C \mid \Delta_{2} \\ \overline{\Gamma_{1}, x:A, \Gamma_{2} \vdash \Delta_{1} \mid t_{1} \cdot \Re \ t_{2}:B \cdot \Re \ C \mid \Delta_{2}}} \xrightarrow{\mathrm{PARR}} \\ \overline{\Gamma_{1}, \Gamma, \Gamma_{2} \vdash \Delta \mid [t/x]\Delta_{1} \mid [t/x](t_{1} \cdot \Re \ t_{2}):B \cdot \Re \ C \mid [t/x]\Delta_{2}}} \xrightarrow{\mathrm{Cut}} \end{array}$$

transforms into the proof

$$\begin{array}{c|c} \pi_1 & \pi_2 \\ \vdots & \vdots \\ \hline \frac{\Gamma \vdash t : A \mid \Delta}{\Gamma_1, \tau : A, \Gamma_2 \vdash \Delta_1 \mid t_1 : B \mid t_2 : C \mid \Delta_2} \\ \hline \frac{\Gamma_1, \Gamma, \Gamma_2 \vdash \Delta \mid [t/x]\Delta_1 \mid [t/x]t_1 : B \mid [t/x]t_2 : C \mid [t/x]\Delta_2}{\Gamma_1, \Gamma, \Gamma_2 \vdash \Delta \mid [t/x]\Delta_1 \mid [t/x]t_1 \ensuremath{\,\%} \ensuremath{\,[t/x]} \ensuremath{\,(t/x]} \ensuremath{\,(t/x]}$$

We finally arrive at cut-elimination.

Theorem 4. If $\Gamma \vdash t_1 : A_1, ..., t_i : A_i$ steps to $\Gamma \vdash t'_1 : A_1, ..., t'_i : A_i$ using the cut-elimination procedure, then $t_j = t'_i$ for $1 \le j \le i$.

Proof. The cut-elimination procedure given here is the standard cut-elimination procedure for classical linear logic except the cases involving the implication right rule have the FILL restriction. The structure of our procedure follows the structure of the procedure found in [13]. Due to space limitations we only show two of the most interesting cases, but for the entire proof see the companion report [?].

Case: principal formula vs. principal formula: par. The proof

$$\underset{\text{Park }}{\underset{\text{Park }}{\frac{\pi_{1}}{\sum_{1}\vdash\Delta_{1}\mid t_{1}:A\mid t_{2}:B\mid\Delta_{2}}}} \underbrace{\frac{\pi_{2}}{\sum_{1}\vdash\Delta_{1}\mid t_{1}:A\mid t_{2}:B\mid\Delta_{2}}}_{\frac{\Gamma_{2}\vdash\Delta_{1}\mid t_{1}\cdot X\mid t_{2}:A\cdot X\mid B\mid\Delta_{2}}{\sum_{1}\vdash\Delta_{1}\mid t_{1}\cdot X\mid t_{2}:A\cdot X\mid B\mid\Delta_{2}}} \underbrace{\frac{\pi_{2}}{\Gamma_{2},x:A\vdash\Delta_{3}}}_{\frac{\Gamma_{2}\vdash\Delta_{1}\mid t_{1}\cdot X\mid t_{2}\vdash\Delta_{1}\mid t_{1}\cdot X\mid t_{2}\vdash\Delta_{1}\mid \Delta_{2}\mid [\text{te-pat }z\:(x\cdot X\mid -)\Delta_{3}\mid [\text{te-pat }z\:(-X\mid Y\mid \Delta_{4}\mid t_{2}\mid T\mid X\mid t_{2}\mid T\mid T\mid X\mid t_{2}\mid T\mid$$

is transformed into the proof

$$\frac{\pi_{1}}{\vdots} \frac{\pi_{3}}{\vdots} \frac{\pi_{2}}{\Gamma_{1} \vdash \Delta_{1} \mid t_{1} : A \mid t_{2} : B \mid \Delta_{2}} \frac{\pi_{3}, y : B \vdash \Delta_{4}}{\Gamma_{3}, y : B \vdash \Delta_{4}} \underbrace{\text{Cut}} \frac{\vdots}{\Gamma_{2}, x : A \vdash \Delta_{3}} \underbrace{\text{Cut}} \frac{\Xi_{2}, x : A \vdash \Delta_{3}}{\Gamma_{2}, \Gamma_{3}, \Gamma_{1} \vdash \Delta_{1} \mid \Delta_{2} \mid [t_{2}/y]\Delta_{4} \mid [t_{1}/x]\Delta_{3}} \underbrace{\text{Cut}} \underbrace{\text{Cut}} \frac{\Xi_{2}, x : A \vdash \Delta_{3}}{\Gamma_{2}, x : A \vdash \Delta_{3}} \underbrace{\text{Cut}} \underbrace{\text{Cut}} \underbrace{\text{Series of Exchange.}} \underbrace{\text{Cut}} \underbrace{\text{$$

Note that we could have first cut on A, and then on B in the second derivation, but we would have arrived at the same result just with potentially more exchanges on the right.

Case: principal formula vs. principal formula: implication. The proof

transforms into the proof

$$\frac{ \begin{array}{c} \pi_2 \\ \vdots \\ \Gamma_1 \vdash t_1 : A \mid \Delta_1 \end{array} \begin{array}{c} \pi_1 \\ \vdots \\ \Gamma_{\Gamma} \vdash t_1 : A \mid \Delta_1 \end{array} \begin{array}{c} \Gamma, x : A \vdash t : B \mid \Delta \end{array} x \not \in \mathsf{FV}(\Delta) \\ \hline \frac{\Gamma, \Gamma_1 \vdash \Delta_1 \mid [t_1/x]t : B \mid [t_1/x]\Delta}{\Gamma_2, \Gamma, \Gamma_1 \vdash \Delta_1 \mid [t_1/x]\Delta \mid [[t_1/x]t/y]\Delta_2} \\ \hline \frac{\Gamma_2, \Gamma, \Gamma_1 \vdash \Delta_1 \mid [t_1/x]\Delta \mid [[t_1/x]t/y]\Delta_2}{\Gamma_1, \Gamma, \Gamma_2 \vdash [t_1/x]\Delta \mid \Delta_1 \mid [[t_1/x]t/y]\Delta_2} \end{array} \\ \xrightarrow{\text{Series of Exchange}}$$

Without loss of generality consider the case when $\Delta_2 = t_2 : C \mid \Delta_2'$. First, by hypothesis we know $x \notin \mathsf{FV}(\Delta)$, and so we know $\Delta = [t_1/x]\Delta$. We can see that $[\lambda x.t/z][z\ t_1/y]t_2 = [(\lambda x.t)\ t_1/y]t_2 = [[t_1/x]t/y]t_2$ by using the congruence rules of equality and the rule Eq.Betafun. This argument can be repeated for any term in $[\lambda x.t/z][z\ t_1/y]\Delta_2'$, and so $[\lambda x.t/z][z\ t_1/y]\Delta_2 = [[t_1/x]t/y]\Delta_2$. Finally, by inspecting the previous derivations we can see that $z \notin \mathsf{FV}(\Delta_1)$, and thus, $\Delta_1 = [\lambda x.t/z]\Delta_1$.

Corollary 5 (Cut-Elimination). Cut-elimination holds for FILL.

4 Full Linear Categories

One of the first questions considering the categorical models of linear logic was how to model Girard's exponential, !, which is read "of course". The ! modality can be used to translate intuitionistic logic into intuitionistic linear logic, and so the correct categorical interpretation of ! should involve a relationship between a cartesian closed category, and the model of intuitionistic linear logic.

de Paiva gave one of the first categorical models of both classical and intuitionistic linear logic in her thesis [6]. She showed that a particular dialectica category called $\mathsf{Dial}_2(\mathsf{Sets})$ is a model of FILL where ! is interpreted as a cofree comonad, see page 76 of [6].

Definition 6. The category Dial₂(Sets) consists of

- objects that are triples, $A = (U, X, \alpha)$, where U and X are sets, and $\alpha \subseteq U \times X$ is a relation, and
- maps that are pairs $(f, F) : (U, X, \alpha) \longrightarrow (V, Y, \beta)$ where $f : U \longrightarrow V$ and $F : Y \longrightarrow X$ such that

- For any $u \in U$ and $y \in Y$, $\alpha(u, F(y))$ implies $\beta(f(u), y)$.

Suppose $A = (U, X, \alpha)$, $B = (V, Y, \beta)$, and $C = (W, Z, \gamma)$. Then identities are given by $(\mathsf{id}_U, \mathsf{id}_X) : A \longrightarrow A$. The composition of the maps $(f, F) : A \longrightarrow B$ and $(g, G) : B \longrightarrow C$ is defined as $(f; g, G; F) : A \longrightarrow C$.

In her thesis de Paiva defines a particular class of dialectica categories called GC over a base category C, see page 41 of [6]. The category $\mathsf{Dial}_2(\mathsf{Sets})$ defined above can be seen as an instantiation of GC by setting C to be the category Sets of sets and functions between them.

Later, Seely gave a different categorial model that also confirmed that the of-course exponential should be modeled by a comonad [1]. However, Seely's model turned out to be unsound, as pointed out by Bierman [3]. This then prompted Bierman, Hyland, de Paiva, and Benton to define another categorical model called linear categories (Definition 10) that are sound, and also model! using a cofree comonad [3]. An unfortunate aspect of linear categories is that their definition is quite complex.

Definition 7. A linear category, C, consists of:

- A symmetric monoidal closed category C,
- A symmetric monoidal comonad $(!, \epsilon, \delta, m_{A,B}, m_I)$ such that
 - For every free !-coalgebra $(!A, \delta_A)$ there are two distinguished monoidal natural transformations $e_A : !A \longrightarrow I$ and $d_A : !A \longrightarrow !A \otimes !A$ which form a commutative comonoid and are coalgebra morphisms.
 - If $f:(!A,\delta_A) \longrightarrow (!B,\delta_B)$ is a coalgebra morphism between free coalgebras, then it is also a comonoid morphism.

This definition is the one given by Bierman in his thesis, see page 140 of [3]. Due to space constraints we omit the definitions of the various algebraic notions used in this definition, see [3] for full definitions.

Intuitionistic logic can now be interpreted in a linear category as a full sub-category of the category of !-coalgebras for the comonad, see proposition 17 of [3].

Benton gave a more fundamental view of linear categories called LNL models.

Definition 8. A linear/non-linear model (LNL model) consists of

- a cartesian closed category $(C, 1, \times, \Rightarrow)$,
- a SMCC $(\mathcal{L}, I, \otimes, \multimap)$, and
- a pair of symmetric monoidal functors $(G, n) : \mathcal{L} \longrightarrow \mathcal{C}$ and $(F, m) : \mathcal{C} \longrightarrow \mathcal{L}$ between them that form a symmetric monoidal adjunction with $F \dashv G$.

This is the same definition given by Benton on page 12 of [2]. Due to space constraints we omit the definitions of symmetric monoidal functors and adjunctions.

A non-trivial consequence of the definition of a LNL model is that the ! modality can indeed be interpreted as a comonad. Suppose $(\mathcal{L}, \mathcal{C}, F, G)$ is a LNL model. Then the comonad is given by $(!, \epsilon : ! \longrightarrow \mathsf{Id}, \delta : ! \longrightarrow !!)$ where ! = FG, ϵ is the counit of the adjunction and δ is the natural transformation $\delta_A = F(\eta_{G(A)})$, see page 15 of [2]. We recall the following result from Benton [2]:

Theorem 9 (LNL Models are Linear Categories, page 16 of [2]).

- i. Every LNL model is a linear category.
- ii. Every linear category is a LNL model.

Proof. The proof of part i. is a matter of checking that each part of the definition of a linear category can be constructed using the definition of a LNL model. See lemmata 3-7 of [2].

As for the proof of part ii. Given a linear category we have a SMCC and so the difficulty of proving this result is constructing the CCC and the adjunction between both parts of the model. Suppose \mathcal{L} is a linear category. Benton constructs the CCC out of the full subcategory of Eilenberg-Moore category $\mathcal{L}^!$ whose objects are exponentiable coalgebras and is denoted $\text{Exp}(\mathcal{L}^!)$. He shows that this subcategory is cartesian closed, and contains the (co)Kleisli category, $\mathcal{L}_!$, Lemma 11 on page 23 of [2]. As for the adjunction $F: \text{Exp}(\mathcal{L}^!) \longrightarrow L: G$ can be defined using the adjunct functors $F(A, h_A) = A$ and $G(A) = (!A, \delta_A)$, see lemmata 13 - 16 of [2].

Next we show that the category $\mathsf{Dial}_2(\mathsf{Sets})$ is a full version of a linear category. First, we extend the notion of a linear category to be equipped with the necessary categorical structure to model par and its unit.

Definition 10. A full linear category, C, consists of:

- A linear category $(C, \top, \otimes, \multimap, e_A, d_A)$,
- A symmetric monoidal category $(C, \perp, ?)$,
- Distribution natural transformations $\operatorname{dist}_1: A \otimes (B \ {}^{\mathfrak{P}} C) \longrightarrow (A \otimes B) \ {}^{\mathfrak{P}} C$ and $\operatorname{dist}_2: (A \ {}^{\mathfrak{P}} B) \otimes C \longrightarrow A \ {}^{\mathfrak{P}} (B \otimes C),$

The following is our first main result of this section.

Lemma 11. The category Dial₂(Sets) is a full linear category.

Proof. We prove this by constructing each piece of a full linear category using the structure of Dial₂(Sets).

First, we must construct a linear category. It is well known that Sets is a CCC, and in fact, locally cartesian closed, and so by using the results of de Paiva's thesis we can easily see that Dial₂(Sets) is symmetric monoidal closed:

• (Definition 7, page 43 of [6]). Suppose $A, B \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets}))$. Then there are sets X, Y, V, and U, and relations $\alpha \subseteq U \times X$ and $\beta \subseteq V \times Y$, such that, $A = (U, X, \alpha)$ and $B = (V, Y, \beta)$. The tensor product of A and B can now be defined by $A \otimes B = (U \times V, (V \Rightarrow X) \times (U \Rightarrow Y), \alpha \otimes \beta)$, where $(-\Rightarrow -)$ is the internal hom of Sets. We define $((u, v), (f, g)) \in \alpha \otimes \beta$ if and only if $(u, f(v)) \in \alpha$ and $(v, g(u)) \in \beta$.

Suppose $A=(U,X,\alpha),\ B=(V,Y,\beta),\ C=(W,Z,\gamma),\ \text{and}\ D=(S,T,\delta)$ objects of $\mathsf{Dial}_2(\mathsf{Sets}),\ \text{and}\ m_1=(f,F):A\longrightarrow C\ \text{and}\ m_2=(g,G):B\longrightarrow D$ are maps of $\mathsf{Dial}_2(\mathsf{Sets}).$ Then the map $m_1\otimes m_2:A\otimes B\longrightarrow C\otimes D$ is defined by $(f\times g,F\otimes G)$ where $f\times g$ is the ordinary cartesian product functor in $\mathsf{Sets},\ \text{and}\ \text{we define}\ F\otimes G$ as follows:

$$F \otimes G : (S \Rightarrow Z) \times (W \Rightarrow T) \longrightarrow (V \Rightarrow X) \times (U \Rightarrow Y)$$

 $(F \otimes G)(h_1, h_2) = (\lambda v.F(h_1(g(v))), \lambda u.G(h_2(f(u))))$

It is straightforward to confirm the relation condition on maps for $m_1 \otimes m_2$.

- (Definition 7, page 44 of [6]). Suppose $1 \in \mathsf{Obj}(\mathsf{Sets})$ is the final object, and $\mathsf{id}_1 \subseteq 1 \times 1$. Then we can define tensors unit by the object $\top = (1, 1, \mathsf{id}_1)$.
- Suppose $A = (U, X, \alpha)$ is an object of $\mathsf{Dial}_2(\mathsf{Sets})$. Then the map $\lambda_A : \top \otimes A \longrightarrow A$ is defined by $(\hat{\lambda}_U, F_\lambda)$ where $\hat{\lambda}_U$ is the left unitor for the cartesian product in Sets , $F_\lambda(x) = (\diamond, \lambda y.x) : X \longrightarrow (U \Rightarrow 1) \times (1 \Rightarrow X)$, and \diamond is the terminal arrow in Sets . It is easy to see that both $\hat{\lambda}_U$ and F_λ have inverses, and thus, λ_A has an inverse. It is straightforward to confirm the relation condition on maps for λ_A and its inverse.
- Suppose $A = (U, X, \alpha)$ is an object of $\mathsf{Dial}_2(\mathsf{Sets})$. Then the map $\rho_A : A \otimes \top \longrightarrow A$ is defined similarly to λ_A given above.
- Suppose $A = (U, X, \alpha) \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets}))$ and $B = (V, Y, \beta) \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets}))$. Then we define the map $\beta_{A,B} : A \otimes B \longrightarrow B \otimes A$ by $(\hat{\beta}_{U,V}, \hat{\beta}_{V \Rightarrow X,U \Rightarrow Y})$ where $\hat{\beta}$ is the symmetry of the cartesian product in Sets. Again, it is straightforward to see that β has an inverse, and the relation condition on maps is satisfied.
- Suppose $A=(U,X,\alpha)\in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets})), B=(V,Y,\beta)\in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets})),$ and $C=(W,Z,\gamma)\in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets})).$ Then we define $\alpha_{A,B,C}:(A\otimes B)\otimes C\longrightarrow A\otimes (B\otimes C)$ by $(\hat{\alpha}_{U,V,W},F_{\alpha})$ where $\hat{\alpha}_{U,V,W}$ is the associator for the cartesian product in Sets and F_{α} is defined as follows:

$$\begin{array}{l} F_{\alpha}: ((V \times W) \Rightarrow X) \times (U \Rightarrow ((W \Rightarrow Y) \times (V \Rightarrow Z))) \longrightarrow (W \Rightarrow ((V \Rightarrow X) \times (U \Rightarrow Y))) \times ((U \times V) \Rightarrow Z) \\ F_{\alpha}(h_1, h_2) = (\lambda w. (\lambda v. h_1(v, w), \lambda u. h_1(u)_1(w)), \lambda (u, v). h_2(u)_2(v)) \end{array}$$

The inverse of $\alpha_{A,B,C}$ is similar, and it is straightforward to confirm the relation condition on maps.

• (Definition 9, page 44 of [6]). Suppose $A, B \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets}))$. Then there are sets X, Y, V, and U, and relations $\alpha \subseteq U \times X$ and $\beta \subseteq V \times Y$, such that, $A = (U, X, \alpha)$ and $B = (V, Y, \beta)$. Then we define the internal hom of $\mathsf{Dial}_2(\mathsf{Sets})$ by $A \multimap B = ((U \Rightarrow V) \times (Y \Rightarrow X), U \times Y, \alpha \Rightarrow \beta)$. We define $((f,g),(u,y)) \in \alpha \Rightarrow \beta$ if and only if whenever $(u,g(y)) \in \alpha$, then $(f(u),y) \in \beta$. The locally cartesian closed structure of Sets guarantees that for any two objects $A,B \in \mathsf{Dial}_2(\mathsf{Sets})$ the internal hom $A \multimap B \in \mathsf{Dial}_2(\mathsf{Sets})$ exists.

Using the constructions above Dial₂(Sets) is a SMCC by Proposition 24 on page 46 of [6].

Next we define the symmetric monoidal comonad $(!, \epsilon, \delta, m_{A,B}, m_I)$ of the linear category:

- (Section 4.5, on page 76 of [6]). The endofunctor!: Dial₂(Sets)→Dial₂(Sets) is defined as follows:
 - Objects. Suppose $A = (U, X, \alpha) \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets}))$. Then we set $!A = (U, U \Rightarrow X^*, !\alpha)$, where $(u, f) \in !\alpha$ if and only if $(u, f(u)_1) \in \alpha$ and \cdots and $(u, f(u)_i) \in \alpha$ where f(u) is a sequence of length i.
 - Morphisms. Suppose $A = (U, X, \alpha) \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets})), B = (V, Y, \beta) \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets})), \text{ and } (f, F) : A \longrightarrow B \in \mathsf{Mor}(\mathsf{Dial}_2(\mathsf{Sets})).$ Then we define $!(f, F) = (f, !F) : !A \longrightarrow !B$, where $!F(g) = \lambda x.F^*(g(f(x))) : V \Rightarrow Y^* \longrightarrow U \Rightarrow X^*.$
- (Section 4.5, page 77 of [6]). The endofunctor ! defined above is the functor part of the comonad $(!, \epsilon, \delta)$. Suppose $A = (U, X, \alpha) \in \mathsf{Obj}(\mathsf{Dial}_2(\mathsf{Sets}))$. Then the co-unit $\epsilon : !A \longrightarrow A$ is defined by $\epsilon = (\mathsf{id}_U, F_0)$ where $F_0(x) = \lambda y.(x) : X \longrightarrow U \Rightarrow X^*$. Furthermore, the co-multiplication $\delta_A : !A \longrightarrow !!A$ is defined by $\delta_A = (\mathsf{id}_U, F_1)$ where $F_1(g) = \lambda u.(f_1(u) \circ \cdots \circ f_i(u)) : U \Rightarrow (U \Rightarrow X^*)^* \longrightarrow U \Rightarrow X^*$ where $g(u) = (f_1, \ldots, f_i)$.
- The following diagrams commute:

We show the left most diagram commutes first. It suffices to show that $\delta_a; !\delta_A = (\mathsf{id}_U, !F_1; F_1) = (\mathsf{id}_U, F_1; F_1)$. Suppose $g \in U \Rightarrow (U \Rightarrow X^*)^*$. Then

$$F_1(F_1(g)) = F_1(\lambda u.g(u)_1(u) \circ \cdots \circ g(u)_i(u)) = \lambda u.g(u)_1(u)_1(u) \circ \cdots \circ g(u)_1(u)_j(u) \circ \cdots \circ g(u)_i(u)_1(u) \circ \cdots \circ g(u)_i(u)_k(u)$$

Consider the other direction in the diagram.

$$F_1(!F_1(g)) = F_1(\lambda x.F_1^*(g(x))) = \lambda u.F_1(g(u)_1)(u) \circ \cdots \circ F_1(g(u)_i)(u)$$

Note that we have the following:

$$F_{1}(g(u)_{1})(u) = g(u)_{1}(u)_{1}(u) \circ \cdots \circ g(u)_{1}(u)_{k}(u)$$

$$\vdots$$

$$F_{1}(g(u)_{i})(u) = g(u)_{i}(u)_{1}(u) \circ \cdots \circ g(u)_{i}(u)_{k}(u)$$

Clearly, the above reasoning implies that F_1 ; $F_1 = !F_1$; F_1 .

Now we prove that the second diagram commutes, but we break it into two. We define δ_A ; $!\epsilon_A = (\mathrm{id}_U, !F_0; F_1)$ where for any $g \in U \Rightarrow X^*$,

$$(!F_0; F_1)(g) = F_1(!F_0(g)) = F_1(\lambda u'.F_0^*(g(u'))) = F_1(\lambda u'.(\lambda y.(g(u')_1), ..., (\lambda y.g(u')_i))) = \lambda u.(g(u)_1) \circ \cdots \circ (g(u)_i) = g$$

and we can define δ_A ; $\epsilon_{!A} = (\mathsf{id}_U, F_0; F_1)$ where for any $g \in U \Rightarrow X^*$,

$$(F_0; F_1)(g) = F_1(F_0(g))$$

= $F_1(\lambda y.(g))$
= $\lambda u.g(u)$
= g

We can see by the reasoning above that $!F_0; F_1 = F_0; F_1 = \mathsf{id}_{U \Rightarrow X^*}$.

• The monoidal natural transformation $m_{\top}: \top \longrightarrow !\top$ is defined by $m_{\top}=$ $(id_1, \lambda f.\star)$ where $\star \in \top$. It is easy to see that the relation condition on maps for Dial₂(Sets) is satisfied. The following two diagrams commute:

It is straightforward to see that the above two diagrams commute using the fact that the second coordinate of m_{\top} is a constant function.

• The monoidal natural transformation $m_{A,B}: A \otimes B \longrightarrow (A \otimes B)$ is defined by $m_{A,B} = (id_{U \times V}, F_2)$. We need to define F_2 , but two auxiliary functions are needed first:

$$h_1: (U \times V) \Rightarrow ((V \Rightarrow X) \times (U \Rightarrow Y))^* \longrightarrow (V \Rightarrow (U \Rightarrow X^*))$$

 $h_1(g, v, u) = (f_1(v), \dots, f_i(v)) \text{ where } g(u, v) = ((f_1, g_1), \dots, (f_i, g_i))$

$$h_2: (U \times V) \Rightarrow ((V \Rightarrow X) \times (U \Rightarrow Y))^* \longrightarrow (U \Rightarrow (V \Rightarrow Y^*))$$

 $h_2(g, u, v) = (g_1(u), \dots, g_i(u))$ where $g(u, v) = ((f_1, g_1), \dots, (f_i, g_i))$

Then $F_2(g) = (h_1(g), h_2(g))$. In order for $m_{A,B}$ to be considered a full fledge map in $\mathsf{Dial}_2(\mathsf{Sets})$ we have to verify that the relation condition on maps is satisfied. Suppose $(u,v) \in U \times V$ and $g \in (U \times V) \Rightarrow ((V \Rightarrow X) \times (U \Rightarrow Y))^*$, where $g(u,v) = ((f_1,g_1),\ldots,(f_i,g_i))$. Then we know the following by definition:

$$\begin{array}{ll} ((u,v),F(g))\in !\alpha\otimes !\beta & \text{ iff } & ((u,v),(h_1(g),h_2(g)))\in !\alpha\otimes !\beta \\ & \text{ iff } & (u,h_1(g)(v))\in !\alpha \text{ and } (v,h_2(g)(u))\in !\beta \\ & \text{ iff } & (u,f_1(v))\in \alpha \text{ and } \cdots \text{ and } (u,f_i(v)) \text{ and } \\ & (v,g_1(u))\in \beta \text{ and } \cdots \text{ and } (v,g_i(u)) \end{array}$$

and

$$((u,v),g) \in !(\alpha \otimes \beta)$$
 iff $((u,v),(f_1,g_1)) \in \alpha \otimes \beta$ and \cdots and $((u,v),(f_i,g_i)) \in \alpha \otimes \beta$ iff $(u,f_1(v)) \in \alpha$ and $(v,g_1(u)) \in \beta$ and \cdots and $(u,f_i(v)) \in \alpha$ and $(v,g_i(u)) \in \beta$

The previous definitions imply that $((u, v), F(g)) \in !\alpha \otimes !\beta$ implies $((u, v), g) \in !(\alpha \otimes \beta)$. Thus, $m_{A,B}$ is a map in $\mathsf{Dial}_2(\mathsf{Sets})$.

At this point we show that the following diagrams commute:

We first prove that diagram A commutes, and then diagrams B will commute using similar reasoning. It suffices to show that

$$(m_{\top} \otimes id_{!A}); m_{\top,A}; !\lambda_A = (\hat{\lambda}_U, \lambda g.F_{\otimes}(F_2(F_{!\lambda_A}(g)))) = (\hat{\lambda}_U, \lambda g.(\diamond, \lambda t.\lambda u.g(u))).$$

Suppose $g \in U \Rightarrow X^*$, $(\star, u) \in 1 \times U$, and $g(u) = (x_1, \dots, x_i)$. Then

$$F_{!\lambda_A}(g)(\star, u) = (\lambda x'.(\diamond, \lambda y.x'))^*(g(\hat{\lambda}_U(\star, u)))$$

$$= (\lambda x'.(\diamond, \lambda y.x'))^*(g(u))$$

$$= (\lambda x'.(\diamond, \lambda y.x'))^*(x_1, \dots, x_i)$$

$$= ((\diamond, \lambda y.x_1), \dots, (\diamond, \lambda y.x_i))$$

This implies that

$$F_{!\lambda_A}(g) = \lambda(\star, u).$$
let $(x_1, \dots, x_i) = g(u)$ in $((\diamond, \lambda y.x_1), \dots, (\diamond, \lambda y.x_i))$.

Using this reasoning we can see the following:

$$\begin{split} F_2(F_{!\lambda_A}(g)) &= & (\lambda u.\lambda t. \mathrm{let} \left((\diamond, \lambda y.x_1), \ldots, (\diamond, \lambda y.x_i) \right) = F_{!\lambda_A}(g)(t,u) \, \mathrm{in} \\ & (\diamond(u), \ldots, \diamond(u)), \\ & \lambda t.\lambda u. \mathrm{let} \left((\diamond, \lambda y.x_1), \ldots, (\diamond, \lambda y.x_i) \right) = F_{!\lambda_A}(g)(t,u) \, \mathrm{in} \\ & ((\lambda y.x_1)(t), \ldots, (\lambda y.x_1)(t))) \\ &= & (\lambda u.\lambda t. \mathrm{let} \left((\diamond, \lambda y.x_1), \ldots, (\diamond, \lambda y.x_i) \right) = F_{!\lambda_A}(g)(t,u) \, \mathrm{in} \\ & (\star, \ldots, \star), \\ & \lambda t.\lambda u. \mathrm{let} \left((\diamond, \lambda y.x_1), \ldots, (\diamond, \lambda y.x_i) \right) = F_{!\lambda_A}(g)(t,u) \, \mathrm{in} \\ & (x_1, \ldots, x_1)) \\ &= & (\lambda u.\lambda t. (\star, \ldots, \star), \\ & \lambda t.\lambda u. \mathrm{let} \left((\diamond, \lambda y.x_1), \ldots, (\diamond, \lambda y.x_i) \right) = F_{!\lambda_A}(g)(t,u) \, \mathrm{in} \\ & (x_1, \ldots, x_1)) \\ &= & (\lambda u.\lambda t. (\star, \ldots, \star), \lambda t.\lambda u. g(u)) \end{split}$$

Finally, the previous allows us to infer the following:

$$F_{\otimes}(F_2(F_{!\lambda_A}(g))) = (\diamond, \lambda t. \lambda u. g(u))$$

Thus, we obtained our desired result.

5 Conclusion and Future Work

We first gave the definition of full intuitionistic linear logic using the left rule for par proposed by Bellin in Section 2. We then proved cut-elimination of FILL in Section 3 by adapting the well-known cut-elimination procedure for classical linear logic to FILL. Finally, we gave a semantics of FILL interms of order-enriched dialectica categories in Section ??.

Future work. Lorenzen games are a particular type of game semantics for various logics developed by Lorenz, Felscher, and Rahman et al. See [11, 15] for an introduction. Lorenzen games consist of a first-order language consisting of the logical connectives of the logic one wishes to study. Then the structure of the games are defined by two types of rules: particle rules and structural rules. The particle rules describe how formulas can be attacked or defended based on the formulas main connective. Then the structural rules orchestrate the particle rules as the game progresses. They describe the overall organization of the game.

Rahman showed that Lorenzen games could be defined for classical linear logic [14]. The main difficulty is enforcing linearity, but due to the flexibility inherit in the definition of Lorenzen games it can be enforced in the particle rules. He was able to define a sound and complete semantics in Lorenzen games for classical linear logic, but he does mention that one could adopt a particular structural rule that enforces intuitionism. We plan to show that by adopting this rule we actually obtain a sound and complete semantics in Lorenzen games for FILL. Furthermore, we hope to show that these strategies of the games are also compositional, and thus, can be used as the morphisms of a category of Lorezen games.

References

- [1] R. a. g. Seely. Linear logic, *-autonomous categories and cofree coalgebras. In *Computer Science Logic*, 1989.
- [2] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (extended abstract). In Selected Papers from the 8th International Workshop on Computer Science Logic, CSL '94, pages 121–135, London, UK, UK, 1995. Springer-Verlag.
- [3] G. M. Bierman. *On Intuitionistic Linear Logic*. PhD thesis, Wolfson College, Cambridge, December 1993.
- [4] Gavin Bierman. A note on full intuitionistic linear logic. Annals of Pure and Applied Logic, 79(3):281 287, 1996.
- [5] Torben Brauner and Valeria Paiva. A formulation of linear logic based on dependency-relations. In Mogens Nielsen and Wolfgang Thomas, editors, Computer Science Logic, volume 1414 of Lecture Notes in Computer Science, pages 129–148. Springer Berlin Heidelberg, 1998.
- [6] Valeria de Paiva. The Dialectica Categories. PhD thesis, University of Cambridge, 1988.
- [7] Valeria de Paiva. Dialectica categories. In J. Gray and A. Scedrov, editors, Categories in Computer Science and Logic, volume 92, pages 47–62. Amerian Mathematical Society, 1989.

- [8] Valeria de Paiva and Luiz Carlos Pereira. A short note on intuitionistic propositional logic with multiple conclusions. *MANUSCRITO Rev. Int. Fil.*, 28(2):317 329, jul-dez 2005.
- [9] A. G. Dragalin. Mathematical Intuitionism. Introduction to Proof Theory, volume 67 of Translations of Mathematical Monographs. Amerian Mathematical Society, 1988.
- [10] Martin Hyland and Valeria de Paiva. Full intuitionistic linear logic (extended abstract). Annals of Pure and Applied Logic, 64(3):273 291, 1993.
- [11] Laurent Keiff. Dialogical logic. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Summer 2011 edition, 2011.
- [12] S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Mathematical Journal, 7:45–64, 1954.
- [13] Paul-Andre Mellies. Categorical Semantics of Linear Logic. 2009.
- [14] S. Rahman. Un desafio para las teorias cognitivas de la competencia log- ica: los fundamentos pragmaticos de la semantica de la logica linear. *Manuscrito*, XXV(2):381–432, October 2002.
- [15] Shahid Rahman and Laurent Keiff. On how to be a dialogician. In Daniel Vanderveken, editor, *Logic*, *Thought and Action*, volume 2 of *Logic*, *Epistemology*, and the Unity of Science, pages 359–408. Springer Netherlands, 2005.
- [16] Harold Schellinx. Some syntactical observations on linear logic. *Journal of Logic and Computation*, 1(4):537–559, 1991.
- [17] G. Takeuti. Proof Theory. Amsterdam: North-Holland, 1975.