Modern Optimization

Jean-Luc Bouchot

School of Mathematics and Statistics Beijing Institute of Technology jlbouchot@bit.edu.cn

Spring 2021

Constrained optimization: Projected methods

Outline

Constrained optimization: Projected methods

Let $\Omega\subset\mathbb{R}^d$ be a closed convex body, we are interested in the following optimization problems:

$$\min f_0(x)$$

$$\text{s.t. } x \in \Omega.$$

Definition 2.1

The projected gradient descent is defined as the following sequence of rules

$$y^{k+1} = x^k - \gamma_k \nabla f(x^k)$$
$$x^{k+1} = P_{\Omega}(y^{k+1}),$$

where P_{Ω} corresponds to the projection onto the convex set Ω (POCS: Projection Onto Convex Sets is not unrelated...).

Let us review the main ideas behind the projected gradient descent:

- The first step is a basic gradient step
- The second step corrects the gradient step if it reaches a point out of the feasible set
- \bullet γ_k the step size may or may not vary
- The projection step might not be cheap!:

$$P_{\Omega}(x) := \underset{v \in \Omega}{\operatorname{argmin}} \|x - v\|.$$

Proposition 2.1 (Left as exercise)

Let Ω be a closed convex body. Then the projection P_{Ω} are well defined (and unique for all $x \in \mathbb{R}^d$).

Note that the first step assumes a point $x^0 \in \Omega$. This means simply doing a first projection on the input point (or even 0).

Exercise 2.1

Let $\Omega=B^2_{x^*}(R)$ be the ℓ^2 ball centered at a given point $x^*\in\mathbb{R}^d$ and of radius R>0. What is $P_\Omega(x)$ for any $x\in\mathbb{R}^d$.

Lemma 1

Let $\Omega \subseteq \mathbb{R}^d$ be a closed convex body. Let $x \in \Omega$ and $y \in \mathbb{R}^d$. It holds

- $||x P_{\Omega}(y)||^2 + ||y P_{\Omega}(y)||^2 \le ||x y||^2.$

Theorem 2.1

Let $f: \mathrm{dom}(f) \to \mathbb{R}$ be a convex differentiable function. Assume furthermore that $\Omega \subseteq \mathrm{dom}(f)$ is a closed convex subset, x^* is a minimizer of f over Ω , $\|x^0-x^*\| \le R$ for some R>0 and $x^0 \in \Omega$. If the gradient of f is bounded: $\|\nabla f(x)\| \le B$ for all $x \in \Omega$, then choosing a gradient step of

$$\gamma := \frac{R}{B\sqrt{K}}$$

ensures that the iterates generated by the projected gradient descent starting at \boldsymbol{x}^0 satisfy

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \le \frac{RB}{\sqrt{K}}.$$

Lemma 2 (Descent direction of projected gradient)

Let $f: \operatorname{dom}(f) \to \mathbb{R}$ be a convex differentiable L-smooth function over a closed and convex set $\Omega \subseteq \operatorname{dom}(f)$. Given a constant stepsize

$$\gamma = \frac{1}{L},$$

the sequence of iterates of the projected gradient, starting at $x^0 \in \Omega$ satisfies

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|^2 + \frac{L}{2} \|y^{k+1} - x^{k+1}\|^2.$$

Lemma 3

Let x^k be the sequence of iterates generated by the projected gradient descent of an L-smooth convex differentiable function f over a closed convex domain Ω . Then, using a fixed gradient step

$$\gamma = \frac{1}{L}$$

we have

$$f(x^{k+1}) \le f(x^k) - \frac{L}{2} ||x^{k+1} - x^k||^2$$

Theorem 2.2

Let $f: \mathrm{dom}(f) \to \mathbb{R}$ be a convex differentiable L-smooth function over a closed and convex set $\Omega \subseteq \mathrm{dom}(f)$ and assume the existence of a minimizer $x^* \in \Omega$ of f in Ω . Given a constant stepsize

$$\gamma = \frac{1}{L},$$

the sequence of iterates of the projected gradient, starting at $x^0 \in \Omega$ satisfies

$$f(x^K) \le f(x^*) + \frac{L}{2K} ||x^0 - x^*||^2, \quad K > 0.$$

Exercise 2.2

Let $\Omega=B^{\ell_1}_{x^*}(R):=\{x\in\mathbb{R}^d:\|x-x^*\|_1\leq R \text{ for some }R\leq 0.$ Then $P_\Omega(v)=x^*+S_\theta(v-x^*),$ for all $v\in\mathbb{R}^d$ where

- ullet θ is a parameter which will be defined in the proof
- ullet $S_{ heta}(v)$ is the soft thresholding operator defined as

$$S_{\theta}(v)_i = \operatorname{sign}(v_i)(|v_i| - \theta)_+.$$

We are trying to solve the following problem:

$$P_{\ell_1,R}(u) = \underset{\text{s.t. } \|x - u\|_2}{\operatorname{argmin}} \|x - u\|_2$$

where x^* is a given centre and R>0 a given radius.

Without loss of generality, we may assume that $x^* = 0$.

Without loss of generality, we may work with the following conditions:

- **1** R = 1,
- $u_i \geq 0$, for all $1 \leq i \leq d$,
- $\sum_{i=1}^{d} u_i > 1.$

Proposition 2.2

If R=1 and $u_i \geq 0$ for all $1 \leq i \leq d$ then $y=P_{\ell_1}(u)$ satisfies

- $\mathbf{0} \ y_i \geq 0$, for all $1 \leq i \leq d$ and
- $\sum_{i=1}^{d} y_i = 1.$

Up to reshuffling of the indices, we may consider the entries of the vector \boldsymbol{u} to be ordered:

$$u_1 \ge u_2 \ge \cdots \ge u_d$$
.

Proposition 2.3

Let $u \in \mathbb{R}^d$ and $y = P_{\ell_1}(u)$, with the remarks / assumptions from the previous results valid. Then there exists a unique $p \in \{1, \cdots, d\}$ such that

- $y_i > 0$, for $1 \le i \le p$ and
- $y_i = 0$, for $p < i \le d$.

Lemma 4

Let $u \in \mathbb{R}^d$ and define $y = P_{\ell_1}(u)$ with the conditions on u from the previous remarks. We have

$$y_i = u_i - \theta_p$$
, for $1 \le i \le p$,

where

$$\theta_p = \frac{1}{p} \left(\sum_{i=1}^p -1 \right).$$

Proposition 2.4

Let $u \in \mathbb{R}^d$ be such that $u_i \geq 0$, for all $1 \leq i \leq d$ and $\sum_{i=1}^d u_i > 1$. For $p \in \{1, \dots, d\}$, define y(p) as

$$y(p)_i = u_i - \theta_p, \quad 1 \le i \le p,$$
 and 0 for $i > p$.

Then

$$y(p^*) = \operatorname{argmin}_{x \in \Delta_d} ||x - u||_2$$

where

$$p^* = \max\{p : u_p - \frac{1}{p} \left(\sum_{i=1}^p u_p - 1 \right) > 0\}$$

and Δ_d defines the d dimensional unit simplex:

$$\Delta_d = \left\{ x \in \mathbb{R}^d : x_i \ge 0 \text{ and } \sum_{i=1}^d x_i = 1 \right\}.$$

Theorem 2.3

The projection onto a ℓ_1 ball can be computed in $\mathcal{O}(d \log(d))$ operations.

The sorting problem can be reduced to a $\mathcal{O}(d)$. See John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra: *Efficient projections onto the \ell_1-ball for learning in high dimensions*, in Proceedings of the 25th International Conference on Machine Learning, 2008.

Definition 2.2

The accelerated projected gradient descent is defined as

$$x^{k+1} = P_{\Omega}(y^k - \frac{1}{L}\nabla f(y^k))$$

$$z^{k+1} = P_{\Omega}(z^k - \eta_k \nabla f(y^k))$$

$$y^{k+1} = (1 - \tau_{k+1}) x^{k+1} + \tau_{k+1} z^{k+1},$$

with
$$au_k = rac{2}{k+2}$$
 and $au_k = rac{k+1}{2L}$.

Theorem 2.4

Let Ω be a convex body and f a convex L-smooth function which admits a minimum $x^* \in \Omega$. The sequence of accelerated projected gradient descent starting at $x^0 = y^0 = z^0 \in \Omega$ satisfies

$$f(x^K) - f(x^*) \leq \frac{2L}{K(K+1)} \|x^0 - x^*\|_2^2, \quad \text{for all } K \geq 1.$$