Perceptron-Algorithm.md 5/28/2021

Suppose we have sample points X_1, X_2, \ldots, X_N which are represented as row vectors. For each sample point, the label $y_i = \{1 \quad if, X_i \in classC, and \ -1 \quad if, X_i \notin classC. \ \text{Goal: find the weights } \omega \text{ such that } X_i \cdot \omega \geq 0 \quad if \quad y_i = 1 \quad X_i \cdot \omega \leq 0 \quad if \quad y_i = -1. \ [X_i \cdot \omega \text{ is the inner product which is the signed distance}] \text{ Equivalently: } y_i X_i \cdot \omega \geq 0. \text{ Define the } loss function$

 $L(z,y_i)=\{0 \ if \ y_iz\geq 0, and -y_iz \ otherwise.$ Define rise function (aka objective function or cost function) $R(\omega)=rac{1}{n}\sum_{i=1}^n L(X_i\cdot\omega,y_i)=rac{1}{n}\sum_{i\in V}-y_iX_i\cdot\omega$ where V is the set of indices i for which $y_iX_i\cdot\omega<0$, essentially V contains the indices of samples which are incorrectly classified.

Point x lies on hyperplane $\{z: \omega \cdot z = 0\} \hookrightarrow \omega \cdot x = 0 \hookrightarrow \omega$ lies on hyperplane $\{z: x \cdot z = 0\}$ **Draw a pic to illustrate this** For a sample point x in class C, ω and x must be on same side of the hyperplane that x transforms into. For a point not in class C, ω and x must be on opposite sides of the hyperplane that x transforms into. **Draw a pic to illustrate this** We get an optimization problem; We need a optimization algorithm to solve it.

Gradient descent

balabalabala == I will fill in this part later.==

 $\omega \leftarrow$ arbitrary nonzero starting point while $R(\omega) > 0$

- $V \leftarrow$ set of indices i for which $y_i X_i \cdot \omega < 0$
- $\omega \leftarrow \omega + \epsilon \sum_{i \in V} y_i X_i$

return ω ϵ is step size aka learning rate. Problem: Slow! We can use Stochastic gradient descent(only choose on point from V)

Maximum Margin Classifiers

The margin of a linear classifier is the distance from the decision boundary to the nearest sample point. Our goal is to make the margin as wide as possible. We enforce the **constraints**

•
$$y_i(\omega \cdot X_i + \alpha) \geq 1$$

I don't know why the right-hand side is 1, but I think since we have α it can be set to any value

 $||\omega||=1$, signed distance from hyperplane to X_i is $\omega\cdot X_i+\alpha$. Otherwise, it's $\frac{\omega}{||\omega||}\cdot X_i+\frac{\alpha}{||\omega||}$. There are two ways to illustrate why this is signed distance, I will draw two pic to illustrate this later. Hence the margin is $\min_i \frac{1}{||\omega||} |\omega\cdot X_i+\alpha| \geq \frac{1}{||\omega||}$, consider the constraints we can easily get this inequality. To maximize the margin \to maximize $||\omega|| \to$ minimize $||\omega||$. We have optimization problem:

Find ω and lpha that minimize $\left|\left|\omega\right|\right|^2$ subject to $y_i(X_i\cdot\omega)\geq 1$ for all $i\in[1,n]$