Least Squares Generative Adversarial Networks

7107018014張泳樺

GAN

• 目標:

$$\min_{G} \max_{D} V_{\text{GAN}}(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

應用:discriminator as a classifier→vanishing gradients

LSGAN

least squares loss function

$$\begin{split} \min_{D} V_{\text{LSGAN}}(D) = & |\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \big[(D(\boldsymbol{x}) - b)^2 \big] \\ & + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - a)^2 \big] \\ \min_{G} V_{\text{LSGAN}}(G) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - c)^2 \big] \end{split}$$

• Pearson χ^2 divergence

$$b - c = 1$$
 and $b - a = 2$

a: label of fake data b: label of real data c: 臨界點

比較

對於假資料有較高的逞罰,包括被標示為正確標籤但不相像的假資料

結構

generator

Layer (type)	Output Shape
flatten_1 (Flatten)	(None, 784)
dense_1 (Dense)	(None, 512)
leaky_re_lu_1 (LeakyReLU)	(None, 512)
dense_2 (Dense)	(None, 256)
leaky_re_lu_2 (LeakyReLU)	(None, 256)
dense_3 (Dense)	(None, 1)

discriminator

dense_4 (Dense)	(None,	256)
leaky_re_lu_3 (LeakyReLU)	(None,	256)
batch_normalization_1 (Batch	(None,	256)
dense_5 (Dense)	(None,	512)
leaky_re_lu_4 (LeakyReLU)	(None,	512)
batch_normalization_2 (Batch	(None,	512)
dense_6 (Dense)	(None,	1024)
leaky_re_lu_5 (LeakyReLU)	(None,	1024)
batch_normalization_3 (Batch	(None,	1024)
dense_7 (Dense)	(None,	784)

結果(minist)

結果(mixture Gaussian distribution)

