5.5 习题

2024年6月3日

5.5.1

证明:

反证法。假设 M' 是 -E 最大下界,且 $M' \neq -M$,由实数序的三歧性可知,要么 M' < -M,要么 M' > -M。接下来,我们分情况讨论:

M'<-M,那么,此时存在 $x\in -E$,使得 $-M>x\geq M'$,而 $-x\in E$,于是

$$M < -x$$

这与M是E的最小上界矛盾。

M' > -M,那么,此时不存在 $x \in -E$,使得 $-M \le x < M'$,即 $M \ge -x > -M'$,但由于 M 是 E 的最小上界,所以一定存在 $-x \in E$ 使得 $M \ge -x > -M'$,否则 E 的最小上界就不是 M 了,所以存在矛盾。 综上,命题得证。

5.5.2

证明:

由于 L, K 都是整数,且 L < K 可知,K - L 是正自然数,现在通过 对 K - L 进行归纳来完成证明【提示信息中有提到归纳证明】。

归纳基始,K-L=1,此时 m=K, m-1=L,由题设信息可知,该 m 是满足命题的。

归纳假设,K-L=n 时,存在 m 满足命题。 现在假设 K-L=n+1 时,由于 L < L+1 < K, 如果 (L+1)/n 是集合 E 的上界,此时可以取 m=L+1,又由题设可知 (m-1)/n=L/n 不是 E 的上界,此时的 m 满足命题。

如果 (L+1)/n 不是集合 E 的上界,由归纳假设可知,存在 $m, L+1 < m \le K$ 满足命题。

至此,完成归纳。

5.5.3

证明:

由于 m/n 是 E 的上界, 而 (m'-1)/n 不是 E 的上界, 所以

$$m' - 1 < m$$

 $m' \le m$ 【题设说明了 m, m' 是整数, 否则无法成立】

由于 m'/n 是 E 的上界,而 (m-1)/n 不是 E 的上界,所以

$$m - 1 < m'$$

 $m \le m'$ 【题设说明了 m, m' 是整数, 否则无法成立】

所以 m=m'

5.5.4

证明

(1) 对任意有理数 $\epsilon > 0$,由推论 5.4.13 可知,存在正整数 M 使得 $M\epsilon > 1$,此时,

$$\epsilon > 1/M$$

由题设可知,对任意 $j,k \geq M$ 都有 $d(q_j,q_k) \leq \frac{1}{M} < \epsilon$,即: 序列对任意 $\epsilon > 0$ 是最终 $\epsilon -$ 稳定的,所以,序列是柯西序列

(2) 由实数的运算法则可知,

$$q_M - S = LIM_{n \to \infty}q_M - q_n$$

 $q_M - S$ 是一个实数,现在通过实数的三歧性分别讨论。

 $q_M - S = 0$, 显然是满足命题的。

 $q_M-S>0$,则存在 $N\geq 1$ 使得 $q_M-q_n>0$ 对 $n\geq N$ 均成立【因为序列是最终正远离 0 的】。

又由题设可知,当 $n \geq \max(N,M)$ 时, $|q_M-q_n| \leq \frac{1}{M}$,结合 $q_M-q_n>0$ 可知,

$$0 < q_M - q_n \le \frac{1}{M}$$

于是由习题 5.4.8 可知,

$$0 < LIM_{n \to \infty} q_M - q_n \le \frac{1}{M}$$

$$\Rightarrow$$

$$0 < q_M - S \le \frac{1}{M}$$

【注: 不用考虑前 max(N,M) 的情况,这里运用命题: 一个柯西序列 $(a_n)_{n=1}^\infty$,删除开头 k-1 个元素得到序列 $(a_n)_{n=k}^\infty$,两个序列还是等价的】。

 $q_M - S < 0$,类似可证。

综上, 命题得证。

5.5.5

证明,

给定任意两个有理数 x < y,我们能够找到一个无理数 q 使得 x < q < y。

这个命题此时无法证明,无理数的定义到现在为止,书中还没有定义。