Danilo Dell'Orco Michele Salvatori

Gestione di una Stazione Ferroviaria

PROGETTO DI MODELLISTICA, SIMULAZIONE E VALUTAZIONE DELLE PRESTAZIONI

AA 2020/2021

1

Introduzione

- A seguito della pandemia globale Covid-19, diverse attività hanno dovuto adeguare le proprie strutture e protocolli per rispettare le direttive sanitarie indicate dal governo.
- Il nostro studio prende in esame una stazione ferroviaria.
 - Si analizza il processo dall'arrivo in stazione fino all'accesso sui binari.
- I componenti considerati nel sistema sono:
 - Sistemi di rilevamento automatico della temperatura, posti all'ingresso.
 - Biglietterie self service per l'acquisto di biglietti in stazione.
 - Gate con operatori per verificare i biglietti dei passeggeri.
 - Tornelli automatici per la verifica degli abbonamenti via NFC.
 - Operatori sui binari per effettuare controlli a campione del Green Pass prima dell'accesso effettivo al treno.

2

Obiettivo

- L'obiettivo dello studio è quello di **minimizzare i costi** per la gestione dei servizi ferroviari e anticovid.
- Si vuole individuare il numero ottimale di serventi ed operatori per rispettare due QoS.
 - 1. Tempo di risposta complessivo del sistema inferiore ai 2 minuti
 - 2. Verificare il Green Pass per almeno il 70% dei passeggeri sui binari.
- A tale scopo si effettua uno studio sia dello stato stazionario che del transiente
 - Analisi di diverse configurazioni di serventi
 - Si cerca di individuare quale rispetta i due vincoli mantenendo il minor costo totale.

3

Modello Concettuale Gate Abbonamenti Controllo temperatura Abconato Biglietto acquistato priine Sportelli Biglietteria Gate Biglietti Gate Biglietti

Modello Concettuale (2)

- · Si distinguono 5 sottosistemi (blocchi differenti)
 - Blocco 0: Controllo Temperatura
 - Blocco 1: Acquisto Biglietti
 - Blocco 2: Gate Abbonamenti
 - Blocco 3: Gate Biglietti
 - Blocco 4: Controllo Green Pass
- I blocchi 0-3 sono modellati come una **M/M/k**, quindi coda infinita in quanto la stazione non limita il numero di clienti che può servire.
- Il blocco 4 è modellato come una **M/M/k/k** in quanto se i controllori sono occupati i passeggeri accedono direttamente al treno.
 - I passeggeri che bypassano il controllo sono considerati come completamenti
 - Si vuole mantenere quindi la probabilità di bypass sotto il 30%

5

Modello Concettuale (3)

- Gli utenti in ingresso al sistema sono di tre tipi:
 - Senza Biglietto
 - Con Biglietto acquistato online
 - Abbonati
- Gli eventi che possiamo avere sono:
 - Arrivo di un utente
 - Servizio di un utente presso l'apposito servente
 - Cambio di Fascia oraria
 - Può causare l'apertura o la chiusura dei gate/serventi attivi in quella specifica fase

Modello Concettuale (4)

- · Le variabili di stato considerate sono
 - · Numero di Serventi Disponibili nei vari blocchi in ogni fascia oraria
 - Determinano la capacità complessiva del sistema
 - Stato di uno Servente: {BUSY,IDLE}
 - Numero di Passeggeri nei blocchi 0-3
 - Numero di Arrivi e di Bypass nel blocco 4
- Se un servente BUSY deve essere spento al cambio di fascia oraria, si aspetta che termini il servizio prima di rimuoverlo.
 - Non è conveniente né realistico spegnere immediatamente uno sportello già in servizio.
 - Il tempo in eccesso speso online viene considerato nel calcolo dei costi.
- Le code di ogni blocco seguono una politica FIFO.

Modello di Specifiche (1)

- Una stazione ferroviaria è aperta tipicamente dalle 05:00 a 00:00
 - Periodo di osservazione: 19 Ore (68400 secondi)
- Sono state identificate 3 differenti fasce orarie*
 - **05:00 08:00**: traffico medio
 - 08:00 19:00: traffico intenso
 - 19:00 00:00: traffico basso

Modello di Specifiche (2)

• I tempi di interarrivo ed i tempi di servizio sono modellati tramite distribuzione Esponenziale.

Grandezza	Media
Numero di Passeggeri in una giornata	43800*
Tasso di Arrivo 05:00 – 08:00	0,405556 arrivi/sec
Tasso di Arrivo 08:00 - 19:00	0,829545 arrivi/sec
Tasso di Arrivo 19:00 – 00:00	0,365 arrivi/sec
Tempo di Servizio controllo temperatura	15 secondi
Tempo di Servizio acquisto biglietto	90 secondi
Tempo di Servizio verifica abbonamento	10 secondi
Tempo di Servizio verifica biglietto	25 secondi
Tempo di Servizio verifica Green Pass	30 secondi

DATI BASATI SULLA STAZIONE FERROVIARIA DI STANDFORD (UK). REPORT 20/21 FORNITO DA «THE OFFICE OF RAIL REGULATION» (ORR)

9

Modello di Specifiche (3)

Grandezza	Valore
Percentuale di utenti con temperaura >37°	0.2%
Percentuale di utenti con abbonamento	25,6486%
Percentuale di utenti con biglietto online	25,953% *
Percentuale di utenti senza biglietto	48,1984%
Costo mensile scanner temperatura	300€
Costo mensile biglietteria automatica	200€
Costo mensile gate abbonamento	50€
Costo mensile dipendente gate biglietto	1300€
Costo mensile dipendente verifica green pass	800€

DAGINE STATISTICA SULLA FREQUENZA DI TRAIN TICKETS ACQUISTATI ONLINE IN UK (201

10

Modello Computazionale

- A livello computazionale distribuiamo il flusso totale in ingresso verso i vari blocchi tramite le probabilità di routing
 - · Non generiamo in modo aleatorio il tipo di utente al suo arrivo
 - Si genera un valore casuale tra 0 e 100 tramite Uniform() di rvgs.c.
 - Si confronta questo valore con le diverse probabilità, individuando quindi il blocco di destinazione.
- Non appena si libera un servente viene prelevato il job in testa alla coda
 - Se sono presenti più serventi liberi viene scelto sempre il primo tra questi, partendo da quello con ID più piccolo.

11

11

Verifica

- La correttezza del modello computazionale è stata verificata controllando la veridicità delle seguenti quattro condizioni:
 - A. Il tempo di risposta per un server è sempre uguale alla somma del tempo di attesa e del tempo di servizio
 - B. Il numero di arrivi di ogni blocco corrisponde alla somma tra il numero di job in coda e il numero di job completati
 - C. Il numero di job in ingresso al sistema è conforme a quello indicato nel modello delle specifiche
 - D. Dati N job in ingresso, le percentuali di job in ingresso su ogni blocco sono conformi al tasso di arrivo e alle probabilità di routing specificate

12

Result for block TEMPERATURE_CTRL

Arrivals = 44070 Completions. ... = 43981 Dropped..... = 89 = 15.196649 Average wait ... Average delay = 0.206358 Average service time = 14.990291

· Condizione A:

• $E(T_S) = E(T_Q) + E(S) = 0.206358 + 14.990291 = 15.196649 sec$

Condizione B:

#arrivi = #completamenti + #jobDropped = 43981 + 89 = 44070 job

Condizione C

- Il numero di arrivi è un outlier rispetto al valore della specifica (43800 arrivi).
- Calcolando la media del numero di arrivi sulle 128 ripetizioni, si ottiene un numero medio di ingressi pari a 43797 job, allineato a quello atteso

Result for block TICKET_BUY

Arrivals = 21249 Completions Average wait = 91.714337 Average delay = 2.191239 Average service time = 89.523098

Condizione A:

• $E(T_S) = E(T_Q) + E(S) = 2.191239 + 89.523098 = 91.714337 sec$

Condizione B:

#arrivi = #completamenti = 21249 job

Result for block GREEN PASS

.... = 38825 Completions... ... = 29.697514 Average wait . Average wait (2)..... = 26.216002 Number bypassed = 5156 Average delay .. = 0.000000

Condizione A:

- wait: tempo di risposta medio dei soli job che effettuano il controllo Green Pass
- wait(2): tiene in considerazione il tempo medio di risposta del blocco, quindi anche i job che bypassano il controllo.

$$> \frac{(43981 - 5156) * 29.697514 + 5156 * 0}{43981} = 26.216002 sec$$

Condizione B:

• #arrivi = #completamenti + #bypassed = 38825 + 5156 = 43981 job

13

Result for block TEMPERATURE_CTRL

Completions.. .. = 43981 Dropped.... = 89

Result for block TICKET_BUY = 21249

Completions. ... = 21249

Result for block SEASON GATE

... = 11297 Completions.

Arrivals = 32684 Completions.

.... = 11297

Result for block TICKET_GATE ... = 32684

Result for block GREEN_PASS Arrivals = 43981 Completions.. ... = 38825

......... = 5156

Condizione D:

Arrivi totali nel sistema = 44070 job

- DROPPED (p=0.2%): 44070 * 0.002 = 88.14 ≈ 89 job scartati.
- TICKET_BUY (p=48.1984%): 44070 * 0.481984 = 21241.03488 \approx 21249 job
- SEASON_GATE (p=25.6486%): 44070 * 0.256486 = 11303.33802 \approx 11297 job
- TICKET_GATE (p=25.953%): 44070 * 0.25953 = 11437.4871 job
 - Sommiamo a questo valore i completamenti del blocco TICKET_BUY
 - $11437.4871 + 21241.03488 = 32678.52198 \approx 32684$ job in ingresso al gate biglietti.
- GREEN_PASS (p=100%): Tutti i job completati dal controllo temperatura (43981) arrivano effettivamente in ingresso al controllo green pass.

Validazione

 La validazione del sistema è stata effettuata verificando che i risultati ottenuti dalle simulazioni rispettino le seguenti leggi teoriche.

$$^{\circ} E(T_{Q,k}) = P_Q * \frac{\rho}{\lambda(1-\rho)}$$

$$P_Q = \frac{(m\rho)^m}{m!(1-\rho)} * P(0)$$
 [Erlang-C]

$$P(0) = \frac{1}{\sum_{0}^{m-1} \frac{(m\rho)^{i}}{i!} + \frac{(m\rho)^{m}}{m!(1-\rho)}}$$

$$\circ \; P_{bypass} = \; \Pi_m = \frac{\frac{1}{m} * (\frac{\lambda}{\mu})^m}{\sum_0^m (\frac{\lambda}{\mu})^j * \frac{1}{j!}} \qquad \text{\tiny [Erlang-B]}$$

$$E(T_{s,tot}) = \sum_{0}^{4} v_k * E(T_{s,k})$$

$$\bullet \ E(T_{Q,4}) = 0$$

•
$$E(T_{s,4}) = P_{bypass} * 0 + (1 - P_{bypass}) * E(S_4)$$

15

15

Validazione (2)

• La configurazione server utilizzata durante la fase di validazione è stata scelta casualmente:

	TEMPERATURE	TICKET BUY	SEASON GATE	TICKET GATE	GREEN PASS
05:00 - 08:00	9	22	3	11	10
08:00 – 19:00	14	42	4	20	20
19:00 - 00:00	9	20	3	12	10

- Sono state effettuate 128 ripetizioni di una simulazione ad orizzonte finito.
- Sui risultati ottenuti è stata calcolata la media con un intervallo di confidenza del 95%.

Fascia 05:00 — 08:00

Statistica	Risultato Analitico	Risultato Sperimentale (α=0.05)
E(TQ ₀)	1,073706144	1.035781 +/- 0.095251
E(TQ ₁)	4,798709172	5.039429 +/- 1.528223
E(TQ ₂)	0,510800481	0.492448 +/- 0.047513
E(TQ₃)	1,27843378	1.429423 +/- 0.181819
P _{bypass}	0,307710371	0.305489 +/- 0.004120
E(T _{s,tot})	104,6740257	104.807374 +/- 1.085204

Fascia 08:00 — 19:00

Statistica	Risultato Analitico	Risultato Sperimentale (α=0.05)
E(TQ ₀)	5,567558552	5.320638 +/- 0.652626
E(TQ ₁)	3,6597019	4.005438 +/- 1.459421
E(TQ ₂)	1,10457884	1.066030 +/- 0.161535
E(TQ ₃)	1,043555698	1.030215 +/- 0.159809
P _{bypass}	0,276229453	0.273317 +/- 0.005148
E(T _{s,tot})	109,5396437	109.336112 +/- 1.306189

Fascia 19:00 - 00:00

Statistica	Risultato Analitico	Risultato Sperimentale (α=0.05)
E(TQ ₀)	0,540070613	0.536954 +/- 0.052692
E(TQ ₁)	5,139317634	5.511025 +/- 1.160988
E(TQ ₂)	0,374300989	0.361841 +/- 0.043293
E(TQ₃)	0,240801791	0.251061 +/- 0.039264
P _{bypass}	0,256430139	0.254103 +/- 0.003774
E(T _{s,tot})	105,035357	105.744819 +/- 0.889858

19

19

Simulazione ad Orizzonte Infinito

- Il sistema viene simulato per un tempo di simulazione molto superiore al tempo reale.
 - Si assume il sistema statico.
 - Si analizzano le singole fasce orarie, con tasso di arrivo e configurazione costanti.
- Per ricavare la media campionaria del tempo di risposta si utilizza il metodo delle **Batch Means**:
 - Run di simulazione suddivisa in k=128 batches di dimensione b=1024 job.
 - Si calcolano le statistiche per ogni batch.
 - · Si genera un campione di k batches indipendenti, sul quale è possibile valutare la media campionaria.
- Valori di b e k scelti con il metodo proposto da Banks, Carson, Nelson, and Nicol
 - Fissato k=128
 - Si è cercato il valore di b per cui l'autocorrelazione del campione prodotto è minore di 0.2 per lag j=1

20

Simulazione ad Orizzonte Infinito (2)

- La simulazione ad orizzonte infinito ha 3 obiettivi principali:
- 1. Analisi dei tempi di risposta a steady state
- 2. Analisi della probabilità P_{bypass}
 - Rapporto tra il numero di passeggeri che bypassano il controllo ed il numero totale di arrivi nel blocco 4
- 3. Ricerca della configurazione ottima per ogni fascia oraria
 - Rispetto dei due QoS.
 - Minimizzazione dei costi.
- Analizziamo ora i risultati e gli esperimenti effettuati nelle singole fasce orarie

21

21

Fascia 05:00 - 08:00

Configurazione {3,20,1,5,15}

- Vediamo che con questa configurazione non raggiungiamo mai lo stato stazionario.
- Il sistema non è stabile ed aumenta all'infinito il tempo di risposta.

- Il blocco 0 ha utilizzazione pari a 1 per il controllo temperatura
- Tutti i job in ingresso non vengono smaltiti, causando accodamenti già nel primo blocco del sistema.

22

23

Fascia 05:00 - 08:00 Configurazione {8,24,2,11,14} vs Configurazione {8,21,2,9,11} • La configurazione individuata in precedenza rispetta largamente i due QoS Analizzando le utilizzazioni vediamo che sono tutte inferiori ad 1. Mean Utilization for block TEMPERATURE_CTRL......0.753277 Mean Utilization for block TICKET BUY..........0.738213 Mean Utilization for block ILKE1_BUY...... Mean Utilization for block SEASON_GATE..... Mean Utilization for block TICKET_GATE.... Mean Utilization for block GREEN_PASS..... Loss Percentage for block GREEN_PASS..... Passiamo ad una seconda configurazione rimuovendo 8 server Il costo scende notevolmente da 5161.18€ a 4286.19€ • $E(T_{s,tot}) = 116.99 + /-1.35 < 120 \text{ sec}$ • Pbypass = 0.248802 < 0,30 TOTAL SLOT 0 CONFIGURATION COST. Provando a rimuovere ulteriori server da questa configurazione - {8,24,2,11,14} {8,21,2,9,11} si viola il QoS sul tempo di risposta • {8,21,2,9,11} è la configurazione ottima per la 1ª fascia oraria.

Fascia 08:00 - 19:00

Configurazione {18,42,5,22,25} vs Configurazione {14,41,3,17,20}

- La prima configurazione rispetta ampiamente i QoS
 - $E(T_{s,tot}) = 108.15 + /-0.89 < 120 sec$
 - $P_{bypass} = 0.139192 < 0.30$

- Passiamo alla seconda configurazione rimuovendo 17 server
 - Il costo scende notevolmente da 4816.44€ a 3899.12€
 - $E(T_{s,tot}) = 118.94 + /-1.02 < 120 \text{ sec}$
 - $P_{bypass} = 0.274171 < 0.30$

- Provando a rimuovere ulteriori server da questa configurazione si viola il QoS sul tempo di risposta
 - {14,41,3,17,20} è la configurazione ottima per la 2ª fascia oraria.

25

25

Fascia 19:00 - 00:00

Configurazione {10,30,3,12,16} vs Configurazione {8,18,2,9,10}

- La prima configurazione rispetta ampiamente i QoS
 - \circ E(T_{s,tot}) = 108.84 +/- 0.46 < 120 sec
 - Pbypass = 0.038549 < 0,30

- Passiamo alla seconda configurazione rimuovendo 24 server
 - Il costo scende notevolmente da 6554.25€ a 4505.36€
 - $\circ~E(T_{s,tot}) =~118.45 \; +/ \text{-} \; 1.33 < 120 \; \text{sec}$
 - $P_{bypass} = 0.254454 < 0.30$

- Provando a rimuovere ulteriori server da questa configurazione si viola il QoS sul tempo di risposta
 - {8,18,2,9,10} è la configurazione ottima per la 3ª fascia oraria.

26

Simulazione ad Orizzonte Finito

- Nella simulazione ad orizzonte finito viene effettuata una simulazione del sistema lungo le 19 ore lavorative.
 - · Sistema assunto dinamico.
 - Viene considerata la variazione del flusso nelle diverse fasce orarie e la riorganizzazione del numero di serventi attivi.
 - Il sistema è IDLE sia all'inizio che alla fine della simulazione.
 - Si ottengono le statistiche di sistema transienti.
- Si utilizza il metodo delle replicazioni.
 - Il procedimento di misurazione è stato replicato 128 volte
 - Si è ottenuto un ensemble di dimensione pari a 128.
 - Ogni replica viene utilizzata per misurare le stesse statistiche, e fornisce quindi un punto del nostro campione.

2

27

Analisi ad Orizzonte Finito

- Per analizzare le statistiche ottenute nel continuo, per ogni ripetizione, effettuiamo ogni 5 minuti una misurazione del tempo di risposta.
 - Misurazione agli istanti 05:00, 05:05, 05:10 ...
 - Per ogni istante si avranno 128 misurazioni del tempo di risposta
 - Calcolando la media delle 128 misurazioni si ottiene il valore del tempo di risposta per quello specifico orario.
- Nella nostra analisi, la simulazione ad orizzonte finito ha 3 obiettivi principali:
 - Analizzare il comportamento del sistema al cambio fascia, verificando che le configurazioni individuate ad orizzonte infinito siano valide effettivamente anche nel sistema reale.
 - 2. Analizzare i costi reali sull'arco dell'intera giornata.
 - 3. Testare diverse configurazioni per valutare il comportamento del sistema nel transiente ed in particolare al cambio di fascia oraria.

28

Scenario 1 – Instabilità nella Prima Fascia

Configurazione {3,20,1,5,15}, {18,42,5,22,25}, {10,30,3,12,16}

- Prima fascia sottodimensionata, in cui il numero di serventi non mantiene il sistema stabile
 - Il tempo di risposta medio aumenta fino ad un massimo di 2793,019547 sec
- Nella seconda e terza fascia vengono allocate più risorse del necessario, quindi permettono di smaltire il traffico accumulato in precedenza.
 - Vengono attivati molti server
 - Il sistema smaltisce velocemente i job rimasti in coda dalla prima fascia, per poi avere una decrescita del tempo di risposta medio
- Al termine della giornata lavorativa il tempo medio di risposta resta comunque di molto superiore al limite di 120 secondi dell'obiettivo.
- Costo Totale: 1662.01€

29

29

Scenario 2 – Over Provisioning

Configurazione {10,30,3,20,15}, {18,42,5,22,25}, {10,30,3,12,16}

- Abbiamo un numero di serventi sovradimensionato rispetto alla configurazione ottima.
 - Il tempo di risposta medio è sempre molto inferiore al QoS.
- Al cambio di fascia oraria (08:00) si ha un leggero decremento del tempo di risposta medio.
 - Attivati 34 server online
 - Vengono smaltiti istantaneamente 34 job dalle code dei blocchi.
- Tempi di risposta nelle tre fasce orarie:
 - · 106.432007 +/- 1.140318
- 107.457562 +/- 0.161081
- · 107.755702 +/- 0.139401
- Probabilità di bypass nelle tre fasce orarie:
 - · 0.081941 +/- 0.001462
 - · 0.130731 +/- 0.005125
 - · 0.116898 +/- 0.007161
- Costo Totale elevato di 1786.75€

30

Scenario 3 – Under Provisioning

Configurazione {9,19,3,11,15}, {14,40,3,17,20}, {10,30,3,12,16}

- Configurazione in cui allochiamo risorse non sufficienti per rispettare il QoS del tempo di risposta
 - Rimuoviamo 2 server dal blocco TICKET_BUY della prima fascia rispetto all'ottimo
- Per il tempo di risposta superiamo leggermente il QoS di 120 sec nella prima e seconda fascia,
 - Picco intorno alle 08:00 di 123,3116 sec.
- I 2 server rimossi dal blocco 1 portano l'utilizzazione a:
 - 0,927781 nella fascia 0
 - 0,901424 nella fascia 1.
 - Il blocco per l'acquisto dei biglietti è il collo di bottiglia della rete

31

31

Scenario Ottimo

Configurazione {8,21,2,9,11}, {14,41,3,17,20}, {8,18,2,9,10}

- Analizziamo il comportamento nel transiente della configurazione ottima, verificando che:
 - il costo sulle 19 ore sia minimo
 - rispettiamo i due QoS.
- Tempi di risposta nelle tre fasce orarie:
 - 115.528435 +/- 0.814483
 - · 117.856171 +/- 0.364914
 - 117.976557 +/- 0.327956
- Probabilità di bypass nelle tre fasce orarie:
 - 0.247849 +/- 0.002984
 - · 0.272511 +/- 0.006007
 - · 0.271137 +/- 0.008372
- Costo Totale di 1347.26€
 - Molto inferiore a 1786.75€ visto nella configurazione di over-provisioning.

32

Modello Migliorato

- Come algoritmo migliorativo si propone una soluzione per bilanciare e suddividere in modo equo il traffico tra i vari serventi.
 - · Il modello base causa accodamenti massivi e poco organizzati presso la singola coda di ogni blocco.
 - Soluzione sicuramente efficace ma poco realistica nei confronti del sistema in esame.
- Molte stazioni ferroviarie suddividono le code per ogni singolo sportello
 - · Questioni di ordine pubblico, evitare assembramenti

33

33

Modello Migliorativo

- Nel modello migliorativo i blocchi dei singoli servizi vengono modellati come K code M/M/1, ad eccezione del servizio relativo al controllo Green Pass che conserverà la sua implementazione M/M/K/k.
 - Questa soluzione non è volta a migliorare i tempi di risposta del sistema.
 - Si vuole bilanciare il carico sulle singole code, garantendo una utilizzazione uniforme tra i server dello stesso blocco.
- E' stato introdotto un meccanismo di **load balancing** che verrà attuato ad ogni cambio di fascia
 - Quando si fa scale-in/scale-out del numero di serventi si bilanciano i passeggeri tra le code.

34

Obiettivo

- L'obiettivo di questa analisi è dunque quello di trovare la *nuova configurazione ottima* che permetta di rispettare i due QoS già descritti in precedenza.
- · QoS:
 - Tempo di risposta complessivo del sistema inferiore ai 2 minuti
 - Verificare il Green Pass per almeno il 70% dei passeggeri sui binari.
- Anche in questo caso si effettua uno studio sia dello stato stazionario che del transiente.

35

35

Modello Concettuale

36

Improvement del Modello Computazionale

• Selezione del servente di destinazione

- Il server destinazione non è randomico, ma è quello con meno job in coda.
- Tramite la distribuzione Equilikely() si sceglie un server casuale dal quale iniziare la ricerca del server destinazione.
- · Si ha una distribuzione equa del traffico in arrivo su ogni blocco.
 - · Se la ricerca partisse sempre dallo stesso server, a parità di numero di job in coda verrebbe sempre scelto quel server, che sarebbe quindi penalizzato.

Load Balancing

- Si calcola la lunghezza finale delle code bilanciate
 - #totalJobInCoda = finalQueueLength
- Su ogni singolo server si sposta l'ultimo job in coda su uno dei nuovi server appena
- Si itera il processo su tutti i server finché ogni coda avrà finalQueueLength job in coda.

37

Verifica

- La verifica del modello migliorativo è stata effettuata sui singoli server del sistema.
- Si verifica la correttezza delle seguenti condizioni:
 - A. Il tempo di risposta (wait) per un server è sempre uguale alla somma del tempo di attesa (delay) e del tempo di servizio (service).
 - B. Il numero di arrivi sul server corrisponde sempre alla somma tra il numero di job in coda e i job completati
 - C. Il numero di job in coda risulta bilanciato per ogni server dello stesso blocco
- Vengono riportati i risultati ottenuti, dopo il cambio di fascia oraria delle ore 19:00, utilizzando una configurazione di under-provisioning.

TEMPERATURE_CTRL server 0
Arrivals = 5051
Completions...... = 3492
Job in Queu = 1558
Server status.... = BUSY ONLINE
Average wait = 6601.744842
Average delay ... = 6586.768759
Average delay ... = 6586.768759
Average service... = 14.976083

TEMPERATURE_CTRL server 1
Arrivals = 4829
Completions...... = 3272
Job in Queue = 1556
Server status..... = BUSY ONLINE
Average wait = 6905.388910
Average delay = 6889.952976
Average service... = 15.435934

TEMPERATURE_CTRL server 2
Arrivals = 4866
Completions...... = 3307
Job in Queeu = 1558
Server status.... = BUSY ONLINE
Average wait = 6852.777123
Average delay ... = 6837.419576
Average service... = 15.357548

- Condizione A (es. server 0)
 - 6601.744842 = 6586.768759 + 14.976083 sec
- Condizione B (es. server 1)
 - 4829 = 3272 + 1556 job (+ 1 job in servizio in quanto il server è BUSY).
- Condizione C
 - Tutti i server hanno circa lo stesso numero di job in coda (1558,1556,1558).

39

39

Validazione

- La validazione del sistema è stata effettuata verificando:
- 1. Leggi di Little
 - $E(N_S) = \lambda E(T_S)$
 - $E(N_O) = \lambda E(T_O)$
- 2. Funzionamento del meccanismo di load balancing
 - · Osserviamo se effettivamente le utilizzazioni sono simili tra tutti i server dello stesso blocco

40

Validazione (2)

TEMPERATURE_CTRL server 0
Arrivals = 5051
Completions...... = 3492
Job in Queue = 11558
Server status..... = BUSY ONLINE
Average wait = 6601.744842
Average delay ... = 6586.768759
Average service... = 14.976083
Average # queue ... = 660.111392
Average # node ... = 661.611173
Utilization = 0.999781

TEMPERATURE_CTRL server 1
Arrivals = 4829
Completions..... = 3272
Job in Queue = 1556
Server status..... = 8U5Y ONLINE
Average wait = 6905.388910
Average delay = 6889.952976
Average service... = 15.435934
Average # queue ... = 660.147383
Average # node ... = 661.547281
Utilization = 0.998899

TEMPERATURE_CTRL server 2
Arrivals = 4866
Completions..... = 3307
Job in Queue = 1558
Server status... = BUSY ONLINE
Average wait = 6852.777123
Average delay = 6837.419576
Average service... = 15.357548
Average # queue ... = 660.136478
Average # nod ... = 661.618900
Utilization = 0.999992

- Osservando ad esempio il server #2, con 4866 arrivi abbiamo:
 - $\lambda = 4866/50400 = 0.0965476 \ arrivi/s$
 - \circ $E(N_0) = 660.136478 = 6837.419576 * 0.0965476 job$
 - $\circ E(N_S) = 661.133500 = 6852.777123 * 0.0965476 job$
- Le utilizzazioni risultano bilanciate (0.999781, 0.999899, 0.999992). Tuttavia, essendo il sistema saturo, analizziamo uno scenario più significativo.

41

41

Validazione (3)

TICKET_GATE server 3
Arrivals = 1756
Completions..... = 1756
Job in Queue = 0
Server status.... = IDLE ONLINE

... Utilization = 0.857013 TICKET_GATE server 4
Arrivals = 1807
Completions = 1807
Job in Queue = 0
Server status = IDLE ONLINE

... Utilization = 0.859608 TICKET_GATE server 5
Arrivals = 1730
Completions = 1728
Job in Queue = 1
Server status = BUSY ONLINE

... Utilization = 0.861908

- Osservando il blocco TICKET_GATE, tutti i server hanno la stessa utilizzazione di circa 0.86
 - 0.857013
 - 0.859608
 - 0.861908

42

Analisi ad Orizzonte Infinito

- Come effettuato nel precedente modello, tramite la simulazione ad orizzonte infinito si cerca di individuare la configurazione ottima, verificando che i tempi di risposta del modello siano conformi a quelli analitici.
- Per ogni configurazione testata si valuta quindi se rispetta i QoS stabiliti, cercando l'ottimo che minimizzi il costo totale.
- Per ricavare la media campionaria del tempo di risposta si utilizza il metodo delle Batch Means,
 - K = 128 batches
 - B = 1024, individuato attraverso il metodo proposto da Banks, Carson, Nelson and Nicol.

43

43

Fascia 05:00 - 08:00

Configurazione {12, 25, 4, 15, 20} vs Configurazione {8, 22, 2, 10, 11}

- La prima configurazione rispetta ampiamente il QoS sulla percentuale di GreenPass controllati:
 - o $E(T_{s,tot})$: 110.08 +/- 0.63 sec
 - o Phypass: 0.009403 < 0.30

- Il basso tasso di utilizzo dei serventi indica il sovradimensionamento del sistema, che giustifica il costo spropositato di gestione.
- Riducendo la disponibilità dei serventi otteniamo la configurazione ottima per questa fascia, {8, 22, 2, 10, 11}, che permette di rispettare i QoS, mantenendo un costo contenuto di 4508.39€.
- 118.01 +/- 1.70 sec
- P_{Bypass}=0.233678 (<30)

44

TOTAL SLOT 1 CONFIGURATION COST......

Analisi ad Orizzonte Finito

- Seguendo lo stesso schema di simulazione e raccolta dei risultati utilizzato nell'analisi del modello base del sistema, consideriamo due scenari di simulazione *finite-horizon*:
 - · Scenario 1: utilizziamo la configurazione ottima trovata per il sistema base, nel modello migliorativo.
 - Scenario 2: analizziamo l'efficacia della configurazione ottima individuata per il sistema migliorativo
 - · {8,22,2,10,11}, {15,44,3,18,20}, {7,21,2,9,10}
- Infine, a parità di configurazione server utilizzata, confrontiamo le utilizzazioni che i singoli server presentano nelle due diverse implementazioni del sistema.

47

47

Modello base vs Modello migliorativo

Configurazione {8,21,2,9,11}, {14,41,3,17,20}, {8,18,2,9,10}

- Confrontiamo i tempi di risposta della configurazione ottima sia nel modello base che nel modello migliorato
- Utilizzando la configurazione ottima per il modello base, sul modello migliorativo vediamo che i tempi di risposta medi durante la giornata migliorativa subiscono un incremento.
- Il sistema non rispetta il QoS stabilito di 120sec.
- Risultato atteso dai risultati teorici.
- Tale analisi ci conferma la necessità di individuare una nuova configurazione che sia ottimale per il sistema migliorativo.

48

Scenario ottimo

Configurazione {8,22,2,10,11}, {15,44,3,18,20}, {7,21,2,9,10}

- I tempi di risposta medi ottenuti nelle singole fasce orarie sono rispettivamente pari a:
 - 117.56 +/- 0.71 sec
 - 115.59 +/- 0.19 sec
 - 116.20 +/- 0.18 sec
- Il QoS relativo alla percentuale di passeggeri che vengono sottoposti al controllo Green Pass viene rispettato in quanto otteniamo valori inferiori al 30%:
 - Fascia 05:00 08:00 = 0.229954 +/- 0.001967
 - Fascia 08:00 19:00 = 0.259645 +/- 0.004582
 - Fascia 19:00 00:00 = 0.260081 +/- 0.003742
- Costo totale giornaliero: 1527.39€
 - Costo giornaliero modello base: 1347.26€

49

49

Analisi e Confronto utilizzazioni

- Il confronto delle utilizzazioni è stato effettuato tramite l'analisi ad orizzonte finito di una singola fascia lavorativa utilizzando sia il sistema originale, sia il modello migliorativo.
- Nel sistema originale, la presenza di una singola coda per ogni blocco giochi a discapito dei primi serventi dei vari blocchi che vengono sottoposti ad un carico maggiore di lavoro.

Conclusioni

 Per il sistema originale, la configurazione ottima per ogni fascia in grado di minimizzare i costi di gestione e al contempo di rispettare i QoS risulta essere:

Configurazione/fascia	E(T _s)	P _{Bypass}
{8,21,2,9,11}	115.528435 +/- 0.814483 sec	0.247849 +/- 0.002984
{14,41,3,17,20}	117.856171 +/- 0.364914 sec	0.272511 +/- 0.006007
{8,18,2,9,10}	117.976557 +/- 0.327956 sec	0.271137 +/- 0.008372

• Costo di gestione giornaliero: 1347.26€

5:

51

Conclusioni

• Per il sistema migliorativo, la configurazione ottima risulta essere:

Configurazione/fascia	E(T _s)	P _{Bypass}
{8,22,2,10,11}	117.567176 +/- 0.718870 sec	0.229954 +/- 0.001967
{15,44,3,18,20}	115.590476 +/- 0.198434 sec	0.259645 +/- 0.004582
{7,21,2,9,10}	116.205546 +/- 0.180245 sec	0.260081 +/- 0.003742

- Per poter rispettare i QoS, questa configurazione richiede 9 server aggiuntivi rispetto alla configurazione del sistema base.
- Ciò porta ad un innalzamento del costo giornaliero di gestione: 1527.39€

52

Conclusioni

- Il modello migliorativo sperimenta un incremento dei tempi di risposta del sistema
 - · Una volta selezionata la coda, il job non può essere migrato su un altro servente, anche se quest'ultimo diventa IDLE
 - Le code vengono bilanciate solamente al cambio di fascia oraria
- · Modelli alternativi di miglioramenti considerati
 - Load balancing costante
 - Non realistico: è poco pratico pensare di poter spostare ad ogni nuovo arrivo un numero considerevole di passeggeri tra le diverse code
 - $^{\circ}\,$ M/M/1 con capacità aggregata $m*\mu$
 - Impossibile pensare ad un unico servente dai tempi di servizio minimali
 - ES: tornello, implica un certo tempo fisico di attraversamento
 - Es: biglietteria self service, migliorabile il tempo per la stampa di un biglietto, ma non il tempo necessario ad un utente per inserire i suoi dati
 - Priority-based
 - In una stazione difficilmente sono previste classi di utenti differenti e rispettive agevolazioni nei blocchi considerati.

53

53

Grazie per l'attenzione

DANILO DELL'ORCO MICHELE SALVATORI