Задача А. Спички

 Имя входного файла:
 matches.in

 Имя выходного файла:
 matches.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Вы умеете выкладывать на столе некоторые цифры от 0 до k с помощью какого-то количества спичек. Ваша задача — построить максимально большое число из n спичек. Например, если вам нужно 6 спичек для цифры 0, 7 спичек для цифры 1 и 8 спичек для цифры 2, то максимальное число, которое можно сложить из 21 спички — это 210.

Формат входного файла

В первой строке даны числа n и k ($1 \le n \le 50$, $0 \le k \le 9$). Во второй строке задано k+1 число от 1 до 50 — количество спичек, требуемое на цифры от 0 до k. Гарантируется, что из n спичек можно выложить хотя бы одну из цифр.

Формат выходного файла

Выведите максимальное число, которое можно построить. Лидирующие нули в выводе недопустимы. Можно использовать не все n спичек, а только часть.

Примеры

итмеры	
matches.in	
21 2	
6 7 8	
matches.out	
210	
matches.in	
30 2	
5 23 24	
matches.out	
20	
matches.in	
1 3	
1 5 3 2	
matches.out	
0	
matches.in	
50 9	
1 1 1 1 1 1 1 1 1 1	
matches.out	
999999999999999999999999999999999999999	

Задача В. Наилучшее приближение

 Имя входного файла:
 nearest.in

 Имя выходного файла:
 nearest.out

 Ограничение по времени:
 5 секунд

 Ограничение по памяти:
 64 мегабайта

Вам даны N целых чисел. Ваша задача — вставить ровно по одному знаку "+" или "-" между каждой парой соседних таким образом, чтобы сделать значение получившегося выражения максимально близким к заданному числу A.

Формат входного файла

Первая строка входного файла содержит два целых числа: N ($1 \le N \le 10\,000$) и A, которое по модулю не превосходит $10\,000$. Далее следуют N строк, в каждой из которых содержится ровно одно целое число X_i , не превосходящее по модулю $10\,000$. Кроме того, гарантируется, что сумма абсолютных величин всех N чисел также не превосходит $10\,000$.

Формат выходного файла

В первой строке необходимо вывести значение получившегося выражения (которое должно быть настолько близко к A, насколько это возможно). Во второй строке необходимо вывести само выражение, дающее такое значение, в форме $X_1[+|-]X_2[+|-]\dots X_{N-1}[+|-]X_N$. Если оптимальных решений несколько, то разрешается выводить любое из них.

Пример

nearest.in	nearest.out
3 0	0
3	3+-2-1
-2	
1	

Задача C. Plus minus

Имя входного файла: plusminus.in Имя выходного файла: plusminus.out

Ограничение по времени: 1 second Ограничение по памяти: 64 MB

В каждой клетке поля $M \times N$ стоит либо плюс, либо минус. За один ход разрешается поменять знаки на противоположные в любом квадрате 2×2 . Можно ли с помощью таких операций получить во всех клетках поля знаки плюс?

Формат входного файла

В первой строке числа M и N (1 $\leqslant N, M \leqslant$ 1000). В следующих N строках содержится по M символов +, либо -.

Формат выходного файла

Ответ на вопрос задачи: слово Yes или No

Пример

plusminus.in	plusminus.out
3 3	No
-+-	
-+-	
++-	
3 3	Yes
-+-	
+++	
-+-	

Задача D. Произведение чисел

Имя входного файла: product.in Имя выходного файла: product.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Заданы целые числа A_1, A_2, \ldots, A_n и число m. Выберите такое подмножество чисел A_1, A_2, \ldots, A_n , чтобы их произведение, взятое по модулю m, было максимально.

Формат входного файла

В первой строке входного файла заданы два целых числа n и m через пробел $(1 \leqslant n \leqslant 100, \ 1 \leqslant m \leqslant 10\,000)$. Во второй строке записаны n целых чисел $A_1, \ A_2, \ldots, A_n$ через пробел $(0 \leqslant A_i \leqslant 10\,000)$.

Формат выходного файла

В первой строке выходного файла выведите числа p и k через пробел — произведение выбранных чисел по модулю m и количество выбранных чисел, соответственно. Во второй строке выведите k чисел B_1, B_2, \ldots, B_k через пробел — номера выбранных чисел. Номера должны быть попарно различны. Если ответов с максимальным p несколько, можно выводить любой из них.

Примеры

product.out

Задача Е. Психотренинг

 Имя входного файла:
 psyche.in

 Имя выходного файла:
 psyche.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

На очередном психологическом тренинге n участников сборов по информатике играют в занимательную игру. Участники игры рассаживаются по кругу и получают номера от 1 до n против часовой стрелки. После этого главный психолог отсчитывает против часовой стрелки k-го участника игры, начиная с первого. Этот участник выходит из круга и может идти на ужин. А остальные продолжают участие в тренинге. Главный психолог отсчитывает еще k участников, начиная со следующего после выбывшего. Участник, который оказался k-ым, тоже покидает тренинг, и так далее.

Участники сборов решили сесть в круг таким образом, чтобы один вредный тип пошел ужинать последним. Для этого они хотят установить, какой номер он должен для этого получить. Помогите им.

Формат входного файла

Входной файл содержит два целых числа: n и k ($1 \le n, k \le 1\,000\,000$).

Формат выходного файла

Выведите в выходной файл одно число — номер участника, который пойдет на ужин последним.

Пример

•		
	psyche.in	psyche.out
	5 3	4

Задача F. Пересечение прямоугольников

Имя входного файла: rect.in
Имя выходного файла: rect.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти прямоугольник, являющийся их пересечением.

То, что это прямоугольник, докажите самостоятельно.

Формат входного файла

В первой строке входного файла указано число N ($1 \le N \le 1500$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($0 \le x_1 \le x_2 \le 10^9$, $0 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и лаже в точки.

Формат выходного файла

В единственную строку выходного файла поместите описание искомого прямоугольника в том же формате, в котором заданы прямоугольники во входном файле.

Если пересечение заданных прямоугольников пусто, выведите в выходной файл единственное число -1.

Пример

rect.in	rect.out
2	1 1 2 2
0 0 2 2	
1 1 3 3	

Задача G. Веревочки

Имя входного файла: ropes.in
Имя выходного файла: ropes.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

С утра шел дождь, и ничего не предвещало беды. Но к обеду выглянуло солнце, и в лагерь заглянула СЭС. Пройдя по всем домикам и корпусам, СЭС вынесла следующий вердикт: бельевые веревки в жилых домиках не удовлетворяют нормам СЭС. Как выяснилось, в каждом домике должно быть ровно по одной бельевой

веревке, и все веревки должны иметь одинаковую длину. В лагере имеется N бельевых веревок и K домиков. Чтобы лагерь не закрыли, требуется так нарезать данные веревки, чтобы среди получившихся веревочек было K одинаковой длины. Размер штрафа обратно пропорционален длине бельевых веревок, которые будут развешены в домиках. Поэтому начальство лагеря стремиться максимизировать длину этих веревочек.

Формат входного файла

В первой строке заданы два числа — N ($0 \le N \le 10001$) и K ($0 \le K \le 10001$). Далее в каждой из последующих N строк записано по одному числу — длине очередной бельевой веревки. Длина веревки задана в сантиметрах. Все длины лежат в интервале от 1 сантиметра до 100 километров включительно.

Формат выходного файла

В выходной файл следует вывести одно число — максимальную длину веревочек, удовлетворяющую условию, в сантиметрах. В случае, если лагерь закроют, выведите 0.

Пример

•	•	
	ropes.in	ropes.out
	4 11	200
	802	
	743	
	457	
	539	

Задача Н. Точки и отрезки

Имя входного файла: segments.in Имя выходного файла: segments.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дано n отрезков на числовой прямой и m точек на этой же прямой. Для каждой из данных точек определите, скольким отрезкам она принадлежит. Точка x считается принадлежащей отрезку с концами a и b, если выполняется двойное неравенство $\min(a,b)\leqslant x\leqslant \max(a,b)$.

Формат входного файла

Первая строка содержит два целых числа n $(1\leqslant n\leqslant 10^5)$ — число отрезков и m $(1\leqslant m\leqslant 10^5)$ — число точек. В следующих n строках записаны по два целых числа a_i и b_i — координаты концов соответствующего отрезка. В последней строке

записаны m целых чисел — координаты точек. Все числа во входном файле не **Пример** превосходят по модулю 10^9 .

Формат выходного файла

В выходной файл выведите т чисел — для каждой точки выведите количество отрезков, в которых она содержится.

Примеры

segments.in	segments.out
2 2	1 0
0 5	
7 10	
1 6	
1 3	0 0 1
-10 10	
-100 100 0	

Задача І. Объединение прямоугольников

Имя входного файла: union.in Имя выходного файла: union.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти площадь их объединения.

Формат входного файла

В первой строке входного файла указано число N (0 $\leqslant N \leqslant$ 1500). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($0 \le x_1 \le x_2 \le 10^9$, $0 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходного файла

В выходной файл выведите единственное число — ответ на задачу.

union.in	union.out
3	23
1 1 3 5	
5 2 7 4	
2 4 6 7	