Matematická analýza

Kateřina Ševčíková

Poslední úprava: 8. října 2024

Obsah

1 Úvod

Logika, důkazy, mohutnost množin.

2 Posloupnosti

Limity posloupností.

3 Funkce jedné reálné proměnné – limita a spojitost

Limity funkcí.

4 Funkce jedné reálné proměnné – derivace a Taylorův polynom

Derivace a Taylor.

5 Řady

Konvergence řad.

6 Primitivní funkce

Primitivní funkce, integrace.

7 Určitý integrál

Riemannův a Newtonův integrál.

8 Obyčejné diferenciální rovnice

= diferenciální rovnice s jednou proměnnou, s více proměnnými jsou to parciální diferenciální rovnice

8.1 Řešení, existence a jednoznačnost

y'(x) = f(x, y(x)) má řešení, je-li f hezká

Definice. Nechť $\Phi:\Omega\subset\mathbb{R}^{n+2}\to\mathbb{R}$. Obyčejnou diferenciální rovnicí (zkratka ODR) n-tého řádu nazveme

$$\Phi(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
(1)

Definice. Řešení obyčejné diferenciální rovnice ma otevřeném intervalu $I \subset \mathbb{R}$ je funkce splňující

- (i) existuje $y^{(k)}(x)$ vlastní pro k = 1, 2, ..., n pro všechna $x \in I$
- (ii) rovnice (1) platí pro všechna $x \in I$

Řešením je dvojice (y, I).

Definice. Řekneme, že (\tilde{y}, \tilde{I}) je rozšířením (y, I), pokud

- (i) \tilde{y} je řešení (1) na \tilde{I}
- (ii) $I \subset \tilde{I}$
- (iii) $y = \tilde{y}$ na I

Řekneme, že (y, I), je maximální řešení, pokud nemá rozšíření.

Definice. Řekneme, že $I \subset \mathbb{R}^n$ je otevřený interval, pokud existují otevřené intervaly I_1, I_2, \dots, I_n tak, že $I = I_1 \times \dots \times I_n$.

Definice. Nechť $c \in \mathbb{R}^n$ a r > 0. Definujeme otevřenou kouli jako

$$B(c,r) = \left\{ x \in \mathbb{R}^n : |x - c| = \sqrt{\sum_{i=1}^n (x_i - c_i)^2} > r \right\}$$

Definice. Nechť $I \subset \mathbb{R}^n$ je otevřený interval a $f: I \to \mathbb{R}$ je funkce. Řekneme, že f je spojitá v bodě $x_0 \in I$, pokud $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in B(x_0, \delta) \cap I$ platí $|f(x) - f(x_0)| < \epsilon$. Řekneme, že f je spojitá na I, pokud je spojitá ve všech bodech I.

Pozorování. ...

Důkaz. Důkaz pozorování.

Důsledek. P(x,y) polynom dvou proměnných je spojitá funkce na \mathbb{R}^2

Věta T 8.1. Peano s $y^{(n)}$ (důkaz později, ne tento semestr)

Nechť $I \subset \mathbb{R}^{n+1}$ je otevřený interval, $f: I \to \mathbb{R}$ je spojitá, a $[x_0, y_0, \dots, y_{n-1}] \in I$. Pak $\exists \delta > 0$ a v okolí x_0 existuje interval $(x_0 - \delta, x_0 + \delta)$ a funkce y(x) definována na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR $y^{(n)}(x) = f(x, y(x^1, \dots, y^{(n-1)}) \forall x \in (x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$.

Poznámka. 1. tato věta je lokální a δ může být velmi malé

- 2. tato věta nedává jednoznačnost řešení
- 3. každé řešení lze rozšířit do maximálního řešení

Definice. $f: \mathbb{R} \to \mathbb{R}$ je lipschtzovská, pokud $\exists K > 0$, že $|f(x) - f(y)| \leq K|x - y| \quad \forall x, y \in \mathbb{R}$.

Definice. Nechť $I \subset \mathbb{R}^2$ je otevřený interval. Řekneme, že $f: I \to \mathbb{R}$ je lokálně lipschitzovský vůči y, pokud $\forall U \subset I$ omezenou $\exists K \in \mathbb{R}$, že $|f(x,y) - f(x,\tilde{y})| \leq K|y - \tilde{y}| \ \forall [x,\tilde{y}] \in U$.

Věta T 8.2. Picard

Nechť $I \subset \mathbb{R}^2$ je otevřený interval a $[x_0, y_0] \in I$. Nechť $f: I \to \mathbb{R}$ je spojitá a lokálně lipschitzovská vůči y. Pak existuje $(x_0 - \delta, x_0 + \delta)$ a funkce $y(x): (x_0 - \delta, x_0 + \delta) \to \mathbb{R}$ tak, že y(x) splňuje ODR y'(x) = f(x, y(x)) pro $x \in (x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0$. Navíc y je jedinné řešení na $(x_0 - \delta, x_0 + \delta)$.