Introducció al Processament del Llenguatge Natural (PLN)

L. Màrquez i H. Rodríguez

Objectius del temari

- Conèixer l'àmbit del PLN i les seves principals aplicacions
- Comprendre la problemàtica associada a la comprensió del llenguatge natural i els nivells d'anàlisi sintàctic i semàntic
- A nivell pràctic, coneixement bàsic de la programació d'analitzadors amb DCG's

Objectius i àmbits del PLN

- L'ús del llenguatge per expressar-nos i comunicar-nos amb els altres és una de les capacitats més importants dels éssers humans.
- L'objectiu del Processament del Llenguatge Natural (PLN) és construir sistemes computacionals capaços de comprendre i/o generar llenguatge humà en totes les seves formes

Objectius i àmbits del PLN

- Per arribar a aquest objectiu cal:
 - Saber com els humans generen expressions correctes i comprensibles pels altres
 - Conèixer com els humans comprenen expressions d'altres humans
 - Ser capaços de formalitzar els coneixements i els processos necessaris de manera que siguin tractables per un sistema computacional

Multidisciplinarietat

Disciplines associades al PLN:

- Lingüística
 - Lingüística computacional
- Teoria de llenguatges formals
 - Compiladors
- Intel·ligència Artificial
 - Representació del coneixement
 - Aprenentatge
 - Raonament

Comprensió/Generació

Les dues operacions bàsiques

 La comprensió de la consulta i la generació de la resposta poden ser orals: speech recognition/synthesis

Comprensió/Generació

Traducció automàtica

<Traducció automàtica: model de transfer>

La traducció també es pot fer a partir d'intervencions orals

Què és comprendre?

"Comprendre alguna cosa consisteix a transformar-la d'una representació a una altra de tal manera que aquesta segona representació correspongui a un conjunt d'accions que es podrien efectuar i la transformació assegura que per cada element a comprendre s'efectuarà l'acció adequada"

(Rich, 1991)

Comprendre LN

- Extreure sentit d'un text per tal d'efectuar les accions corresponents
 - Consulta (query) a una base de dades
 - Actuadors
 - Resumir un text
 - Traduir un text

Com comprendre LN?

- La comprensió exigeix
 - Extreure significat individual de les paraules
 - Extreure significat de les relacions entre paraules
 - Referir el significat literal al context d'actuació del sistema
 - Metàfores, retòrica, ironia, entonació
- Eines
 - Anàlisi de les components del llenguatge a diversos nivells

Informació per a l'anàlisi

- Informació lèxica, sintàctica, semàntica
- Exemple:

"Em parlarà sens dubte de la reestructuració urbana a Barcelona"

- Cal detectar:
 - Paraules individuals amb significat i connectives:
 Barcelona, reestructuració, urbana, de, la, parlarà, etc.
 - Acumular informació per a saber el seu paper dins la frase i establir possibles significats:
 - Categoria morfosintàctica: nom, nom propi, nom compost, verb, article, etc.
 - Informació sobre la relació entre significats per a establir el significat global
 - Paper sintàctic: subjecte, objecte directe, etc.

Nivells d'anàlisi

- Fonològic
 - Tractament dels sons per tal de detectar unitats d'expressió
- Textual
 - Segmentació del text en unitats tractables (paràgrafs, oracions, etc.)
 - Localització (identificació) de paraules o unitats lèxiques
- Morfològic
 - Formació de les paraules considerant la flexió, la derivació, la composició, etc.
 - L'anàlisi morfològica persegueix acumular informació per ajudar a establir les arrels i afixes (prefixes, sufixes, infixes) de les paraules
 - La paraula com a composició de morfemes
- Lèxic
 - Consideració de la paraula com a unitat de significat dins un text.
 - Obtenció d'informació lèxico-semàntica (ontologies, diccionaris semàntics)

Nivells d'anàlisi (2)

- Sintàctic (1)
 - Detecció d'estructures sintàcticament vàlides

Els gat menja bacallà (*) Els gata menja bacallà

- Sintàctic (2)
 - Extracció i representació de les estructures sintàcticament vàlides

Nivells d'anàlisi (3)

- Lògic
 - Extracció del significat literal de la oració
 - Representació del significat mitjançant CP₁, frames, xarxes semàntiques, etc.
 - En el cas de CP₁: expressió en termes de variables, predicats, funcions, constants, connectives lògiques, quantificadors, etc.

"El gat menja bacallà"

existeix x, y (Gat(x) & Bacallà(y) & Menja(x,y))

Nivells d'anàlisi (5)

Semàntic

- Interpretació de la forma lògica: Relació de les entitats lògiques (constants, variables, termes, etc.) amb el món real (o la seva representació): objectes del domini
- Ex:
 - El gat és un felí,
 - el bacallà és un peix comestible,
 - l'actor de menjar ha de ser un ésser viu,
 - •

Nivells d'anàlisi (6)

- Pragmàtic
 - Interpretació dins un context (incorpora informació implícita)
 - Ex: "L'avió va detectar el banc"
- Il.locutiu
 - Detecció de les intencions de qui profereix la frase
 - Ex: "Els plats estan bruts"
 - Es tracta d'una frase declarativa neutra?
 - És una invitació a l'acció?
 - ("renta'ls!")
 - És un retret?
 - ("sempre els deixes bruts i em toca rentar-los a mí")

Problemàtica del LN (1)

- Ambigüitat lèxica
 - "Va puxar la <u>roda</u> del davant"
 - "roda" pot ser nom o verb (POS tagging)
 - "Va veure el <u>banc</u>"
 - Moble per a seure? Entitat financera? Banc de peixos? (WSD)
- Ambigüitat sintàctica
 - "Va veure un home dalt de la muntanya amb uns prismàtics"
 - "El venedor de diaris <u>del barri</u>..." (PP-attachment)

Problemàtica del LN (2)

- Ambigüitat semàntica
 - "Li va donar un pastís als nens"
 - 1 a tots?, 1 a cadascun? (àmbit quantificació)
 - "Les idees verdes dormen furiosament" (Chomsky)
- Referències, el.lipsis (nivell pragmàtic)
 - "Li va donar un llibre" (...) "No <u>li</u> va agradar"
- Il.locució: problema d'assignació d'intencions
 - "Els plats estan bruts"
 - (per tant, renta'ls?)

Plantejament de l'Anàlisi

- La resolució d'algunes ambigüitats necessita la col.laboració entre diversos nivells d'informació (un analitzador per nivell?): més coneixement de context
- Cooperació entre analitzadors:
 - Estratificat: Seqüencial / en cascada
 - Global (en paral.lel)

Processament del LN

"Quina es la capital de França?"

. . .

LSI-FIB-UPC Inteligencia Artificial Curso 2006/2007 20

Preprocés

- Segmentació
- Localització d'unitats (paraules)
- Lematització, analisi morfològica
- Desambiguació morfosintàctica (POS tagging)
- Etiquetat semàntic
- Desambiguació semàntica (WSD)
- Detecció i classificació d'entitats amb nom (Named Entity Recognition, NER)

Anàlisi Textual

- Detecció d'unitats tractables: paràgrafs i oracions
 - Mètodes simples,
 - basats en localitzar marques d e puntuació:
 - ".", "?", "!", "...", etc.
 - Problema: sigles, inicials, etc.
 - Mètodes basats en tècniques d'Aprenentatge Automàtic (classificació)
 - Tenen en compte més informació contextual

Anàlisi Lèxica: objectius

- Detectar paraules (unitats de significat)
 - Requereix ser capaç de reconèixer i fragmentar adequadament les paraules:

"/Parlarà//sens dubte//de//les//reestructuracions//urbanes//a//Sant Cugat/"

- Recollir informacions útils i aplicar coneixements per a facilitar les fases d'anàlisi posteriors
 - Associar categories gramaticals
 - Associar informació semàntica a les unitats lèxiques (ús d'ontologies, diccionaris, etc.)
 - Reconeixement i classificació de noms propis i entitats

Problemàtica de l'anàlisi lèxica (1)

Correspondència paraules ortogràfiques /gramaticals

Necessitat de coneixement o informació per a detectar els casos següents:
 "dóna-m'ho", "dímelo" (1 p. ortogràfica, 3 p. gramaticals)
 "sens dubte", "sin embargo" (2 p. ortogràfiques, 1 gramatical)

Homonímia

Mateixa forma i diverses categories gramaticals
 "roda" (verb, 3a persona), "roda" (nom) → connexió sintaxis

Polisèmia

Mateixa forma i categoria, diversos significats (p.ex, "banc")

Problemàtica de l'anàlisi lèxica (2)

- Sigles
 - "Un cop s'ha generat un PCB es pot enviar a una cua FIFO"
 - "The cell's DNA sample was identified by PRC, a process approved by the official UBI"
- Abreviatures
 - "El Dr. Peris va parlar del Tract. del Lleng. Natural..."
- Fórmules i mesures
 - "Afegir dos mg. de DM-oxano i guardar dins d'un vial de PVC"
 - "Si tenim en compte que x=y*2+k, on k és una constant"
- Volum d'informació

Informació necessària

- Utilització de lexicons
 - "Diccionaris lèxics"
 - Apleguen informació útil per a reconèixer i categoritzar paraules i la seva ubicació al text

Lexema	Informació
cant-	cantar -o/-es/-a/-em/-eu/-en V / Infinitiu

Problemàtica: representació (1)

- Decidir el tipus d'informació que ha de contenir:
 - Categoria sintàctica
 - determinant, proposició, nom propi, substantiu, verb, etc.
 - Problema de la granularitat (verb -> transitiu/intransitiu)
 - Propietats sintàctiques de concordança
 - gènere (masculi/femeni)
 - nombre (singular/plural)
 - persona (primera, segona...)
 - cas (acusatiu, datiu..)

Problemàtica: representació (2)

- Altres propietats sintàctiques:
 - Tipus de complement del verb
 - Preposicions que accepta una paraula
- Categoria semàntica
- Informació morfològica
 - Derivació: prefixos/infixos/sufixos

Problemàtica: representació (3)

Informació lèxica

Anàlisi Morfològica

- Versió simple: utilització de formaris (llista de formes amb informació morfològica i els lemes corresponents)
- Analitzadors morfològics:
 - Diccionaris de morfemes:
 - diccionari d'arrels, de sufixes, prefixes, etc.
 - Morfotàctica: regles de combinació de morfemes
 - Variacions fonològiques: canvis al combinar els morfemes
- Tipus d'analitzadors
 - 1 nivell: FSA
 - 2 nivells: FST
 - més de dos nivells: Cascada de FSTs

Resultat del Preprocés (lèxic/morfològic)

"Quina es la capital de França?"

Resultat de l'analisi morfològica

quina és	quin DT0FS00 ésser VMIP3S0	quina NCFS000	
la	el TDFS0 capital AQPCS00 de SPS00	ell PP3FS000 capital NCFS000	la I capital NCMS000
França ?	frança NP00000-loc ? Fit		

Resultat del POS tagging

quina	quin	DT0FS00
és	ésser	VMIP3S0
la	el	TDFS0
capital	capital	NCFS000
de	de	SPS00
França	frança	NP00000-loc
?	?	Fit

Processament del LN


```
"Quina es la capital de França?"
(oracio
 (oracio interrogativa
  (pron interrogatiu (quina))
  (verb (es)
    (sn (... la capital de França)))
```

Formes de col·laboració

- sense sintaxi
- sense semàntica
- procés en cascada (1)
 - sintaxi | semàntica
- procés en cascada (2)
 - {sintaxi + filtre semàntic} | semàntica
- procés en paral·lel
 - {sintaxi, semàntica}

Anàlisi sintàctica (1)

Objectius

- Determinar que l'oració (la unitat textual) es sintàcticament correcta
- Crear una estructura sintàctica amb informació que pugui ser utilitzada per a l'anàlisi semàntica i d'altres

Anàlisi sintàctica (2)

- Alfabet (vocabulari) Σ
- Operació de concatenació
- Σ^* conjunt de totes les cadenes amb símbols de Σ (monoide lliure)
- llenguatge $L \subseteq \Sigma^*$
- Donada una cadena de Σ^* , $w_1^n=w_1, \ldots w_n, \ w_i \in \Sigma$, hem de determinar si $w_1^n \in L$

Formes de definir la pertanyença

- Gramàtica
 - $G \Rightarrow L(G)$
 - $w_1^n \in L(G)$?
- Model del llenguatge
 - $P(w_1^n)$
 - $\operatorname{si} P(w_1^n) > 0 \Longrightarrow w_1^n \in L$
- Corpus (oracions, patrons) que defineix les oracions correctes
 - diccionari sintàctic
 - regles de composició
- Regles de bona formació
 - filtres, gramàtiques negatives, ...

Forma més habitual: Gramàtica

- Gramàtiques de constituents
 - Arbres de derivació
- Gramàtiques de dependències
 - Esquemes de dependències
- Gramàtiques de casos
 - Models d'actants → Xarxes semàntiques

Gramàtiques d'Estructura Sintagmàtica

$$\Sigma \cap V = \emptyset$$

$$\Sigma \cup V = Vocabulari$$

$$S \in V$$

Tipus de Gramàtiques - Jerarquia de Chomsky (1)

Tipus 0 Gramàtiques sense restriccions

• Els elements de P són regles de reescriptura del tipus

$$u \to w$$
, $w,u \in (V \cup \Sigma)^*$

- Corresponen als llenguatges enumerables recursivament
- Son reconeguts per Maquines de Turing

Tipus 1 Gramàtiques sensitives (Context-sensitive Grammars)

• Es defineix com a restricció la llargària de les regles

$$u \to w$$
, $w,u \in (V \cup \Sigma)^* i |u| \le |v|$

- Corresponen als llenguatges Contextuals
- Son reconeguts per Linear Bounded Automata

Tipus de Gramàtiques - Jerarquia de Chomsky (2)

Tipus 2 Gramàtiques incontextuals (Context-free Grammars, CFG)

• Els elements de P son regles de reescriptura restringides a les del tipus:

$$A \to w$$
, $A \in V$, $w \in (V \cup \Sigma)^*$

- Corresponen als llenguatges incontextuals
- Son reconeguts per automates de pila no deterministes

Tipus 3 Gramàtiques regulars (Regular Grammars, RG)

• Els elements de P son regles de reescriptura dels tipus:

$$A \rightarrow a$$

 $A \rightarrow aB, A,B \in V, a \in \Sigma$

- Corresponen als llenguatges regulars
- Son reconeguts per automates finits

Condició de gramaticalitat

• Una frase w (un mot de Σ^*) pertany al llenguatge generat per la gramàtica:

$$w \in L(G) \Leftrightarrow s \xrightarrow{*}_{G} w$$

• Podem dir que la gramàtica G pot derivar el mot w utilitzant les produccions a partir de S.

Obtenció de la gramàtica

- Definició de l'etiquetari terminal (tagset, Σ)
- Definició del etiquetari no terminal (V)
- Regles de la gramàtica (P)
 - construcció manual
 - construcció automàtica
 - inferència (inducció) gramatical
 - construcció semiautomàtica

Gramàtiques per al tractament de la llengua

- Mínim: Gramàtiques Incontextuals
- Es el LN un llenguatge incontextual?
- Suficient? NO (normalment)
- Solució
 - CFG + {adició procedimental del contexte}
 - Gramàtiques Lógiques i d'unificació
 - Gramàtiques enriquides amb informació estadística
 - SCFG
 - Gramàtiques lexicalitzades

Exemple de gramàtica incontextual

```
(1) Oracio \rightarrow GN, GV
        \rightarrow det, n
(2) GN
(3) GN \rightarrow n
(4) GV \rightarrow vi
(5) GV \rightarrow vt, GN
               \rightarrow el | un | ...
(6) det
               →gat | peix | ...
(7) n
(8) vt \rightarrow menja | ...
(9) vi
                → menja | ...
```

CFG + {addició procedimental del contexte}

```
intervencio
                   \rightarrow pregunta | ordre | ...
ordre
                   \rightarrow v, sn {imperatiu(1), ordre(1)}
                   \rightarrow snbase, [snmods] | np {concordancia (1,2)}
sn
snbase
          \rightarrow [det], n, [adjs] {concordancia (1,2,3)}
adjs
                 \rightarrow adj, [adjs]
snmods \rightarrow snmod, [snmods]
snmod
                  \rightarrow sp | ...
                   \rightarrow prep, sn
sp
                   → "barcelona" | "valencia" | ...
np
                   → "billet" | "euromed" ...
 n
                  \rightarrow "donim" | ...
 V
                  \rightarrow "un" | "el" | ...
det
```

Factors que incideixen en el procés d'anàlisi sintàctica

- Expressivitat de la gramàtica
- Àmbit (Coverage)
- Fonts de coneixement implicades
- Estrategia de l'anàlisi
- Direcció de l'anàlisi
- Ordre d'aplicació de les regles
- Gestió de l'ambigüitat
- (in)determinisme
- Enginyeria dels analitzadors

Analitzadors per CFG i extensions

- Simplificacions de CFG
 - CFG \Rightarrow RG
 - Tècniques d'estats finits: FSA
 - CFG ⇒ DCFG
 - Analitzadors deterministes: LL, LR
- Extensions dels FSA
 - TN \Rightarrow RTN \Rightarrow ATN (Woods, 1970)
- WFST, Charts (M. Kay, 1980)
- Métodes tabulars: CKY, Earley (1970)
- Gramàtiques d'estructura de frase:
 - LSP (N. Sager, 1981)
 - **Diagram** (A. Robinson, 1981)
- Parsifal (M. Marcus, 1980)

Xarxes de Transició (TN)

- Autòmat finit
 - Estats associats a parts de la frase
 - Transicions: Etiquetes que fan referència a categories morfosintàctiques
 - No determinisme

TN: limitacions

- Limitat a llenguatges regulars
- No es pot dir que analitzi
 - Reconeix
- No-determinisme ⇒ backtracking
 - Ineficiència
- No separació entre gramàtica i analitzador
 - gramàtica ⇒ descripció del model sintàctic
 - analitzador (parser) \Rightarrow control

Xarxes de Transició Recurrents (RTN)

- Colecció de xarxes de transició (TN) etiquetades amb un nom
 - Arcs etiquetats amb categories → com xarxes normals
 - etiquetes terminals
 - Arcs etiquetats amb identificadors de xarxes de transició (TN)
 - etiquetes no terminals
 - Els estats finals de les TNs causen el retorn a l'estat destí de la transició que ha causat la crida
- Les RTN son dèbilment equivalents a les CFG

RTN: exemple per a frases verbals

RTN: limitacions

- Transicions només depenen de les categories (local/poc expressiu)
 - Llenguatge de context lliure
- Reconeixen però no analitzen
- Ineficiència inherent al backtracking

Xarxes de transició augmentades (ATN) (Woods, 1970)

• ATN = RTN amb operacions afegides als arcs i ús de registres.

Condicions: filtrar transicions entre estats

Operacions

Accions: Construir estructures de sortida i Convertir el reconeixedor en analitzador

Inicialitzacions

Permeten expressar les restriccions contextuals

ATN: exemple (Winograd, 1983)

TRETS: Number: Singular, Plural Default: empty

Person: 1st, 2nd, 3rd Default: 3rd

ROL: Nucli-Subjecte

Xarxa per a reconèixer grups nominals (NP)

ATN: exemple (2)

Inicialitzacions, Condicions i Accions:

```
NP-1: Determiner
      A: Set Number to the number of *
NP-4: <sub>g</sub>Noun<sub>h</sub>
      C: Number is empty or number is the number of *
       A: Set Number to the number of *
          Set Nucli-Subjecte to *
NP-5: Pronoun
      A: Set Number to the number of *
         Set Person to the Person of *
         Set Nucli-Subjecte to *
NP-6: Proper
      A: Set Number to the number of *
         Set Nucli-Subjecte to *
```

ATN: limitacions

- Són adequades per l'anàlisi descendent, però no resulta fàcil implementar una anàlisi ascendent o híbrida
- Redundància de les operacions de backtracking
 - ineficiència
- Problemes d'expressivitat notacional:
 - la gramàtica es barreja amb les accions

Charts (Kay, 1973, 1980)

- Chart = graf dirigit que es construeix de manera dinàmica i incremental a mesura que es realitza l'anàlisi.
- Els **nodes** corresponen al principi i final de la frase i a les separacions entre paraules (N+1 nodes)

```
1 2 3 4 5 6 7
La frase a analitzar és aquesta
```

- Intenten eliminar redundàncies en l'anàlisi (alleujament del cost del Backtracking) memoritzant estructures parcials ja construïdes.
- Inconvenients: espai, temps de construcció, només guarda components ben formats

Charts (Elements)

- Els arcs es creen dinàmicament.
- Un arc de la posició i a la j ($j \ge i$) engloba totes les paraules que estan entre la posició i i la j.
- Els arcs poden ser
 - actius = objectius o hipòtesis per completar
 - **inactius** = components completament analitzades

Charts: notació (1)

- Regla puntejada (DR, "dotted rule"): producció de la gramàtica que conté algun punt en la seva part dreta.
 - Per exemple, de la regla A -> BCD es poden derivar les següents regles puntejades:

```
A -> . B C D (corresponent a un arc actiu)
A -> B . C D "
A -> B C . D "
A -> B C D . (corresponent a un arc inactiu)
```

Charts: notació (2)

• Arc d'un chart: $<ii,j,X\rightarrow a.b>$

 $i \ , j$: nodes origen i destí $X \! o \! ab$ producció de la gramàtica $X \! o \! a.b$ DR

Regla bàsica de combinació

Arc actiu: $\langle i, j, A \rightarrow a.Bb \rangle$

Arc inactiu: $\langle j, k, B \rightarrow g. \rangle$

Resultat:
$$\langle i, k, A \rightarrow aB. b \rangle$$

Estratègia ascendent

Regla bàsica: Cada vegada que s'afegeix un arc inactiu al Chart $\langle i, j, A \rightarrow a. \rangle$, aleshores s'ha d'afegir al seu extrem esquerre un arc actiu $\langle i, i, B \rightarrow Ab \rangle$ per cada regla $B \rightarrow Ab \rangle$ de la gramàtica

Inicialització: afegir els **arcs inactius** que corresponen a les categories lèxiques (terminals).

Ex: $\langle 1, 2, \text{Det } \rightarrow \text{el.} \rangle$

Estratègia descendent

Regla bàsica: Cada vegada que s'afegeix un arc actiu al Chart < i, j, A \rightarrow a.Bb >, aleshores, per cada regla B \rightarrow b de la gramàtica, s'ha d'afegir un arc actiu al seu extrem dret

$$\langle j, j, B \rightarrow .b \rangle$$

Inicialització: Igual que abans però a més cal afegir l'arc actiu que correspon a l'objectiu d'obtenir una frase.

Ex: <1, 1, oracio \rightarrow .SN SV>

La combinació de la regla bàsica amb l'ascendent o la descendent (o qualsevol combinació de les dues) és el que ens proporciona el mètode d'anàlisi

Formalismes d'Unificació. Gramàtiques Lògiques

- Llenguatge habitual d'implementació: Prolog
- Característiques
 - Unificació com a mecanisme bàsic de composició entre constituents
 - Aproximació sintagmàtica com a forma bàsica de descripció gramatical

Notació

- Afirmacions (fets)
 home (X) ←
- Condicions (regles) (Consequent ← antecedent)
 mortal (X) ← home (X)
- Negacions (consultes Existencials)
 inmortal(X)
- Contradicció **←**

Anàlisi gramatical com a demostració de Teoremes

 L'expressió de la gramàtica i el lexicó com clàusules de Horn permet l'aplicació de la resolució i raonament per refutació com a procediment d'anàlisi.

- (1) oracio (X,Y)
- \leftarrow gnom(X,Z), gver(Z,Y)
- (2) gnom(X,Y)
- \leftarrow art(X,Z), nom(Z,Y)

(3) gver(X,Y)

← ver(X,Y)

_ Gramàtica

- (4) art(X,Y) \leftarrow el(X,Y)
- (5) $nom(X,Y) \leftarrow gos(X,Y)$
- (6) $ver(X,Y) \leftarrow borda(X,Y)$

Lexicó

Exemple (1)

- (7) el(1,2) ← (8) gos(2, 3) ←
- (9) borda (3,4) **←**
- TEOREMA a demostrar **oracio** (1,4) ←
- Raonant per refutació hauríem de negar...

 …i per derivació descendent demostrar (una contradicció)

Exemple (2)

```
Frase (1,4) ←

(R1) (X□ 1, Y□ 4) per unificació
← gnom (1,Z), gver(Z,4)

(R2) i (R4) aplicades a gnom(1,Z) i art(1,U)
← art(1,U),nom(U,Z), gver(Z,4)
← el(1,2), nom(U,Z), gver(Z,4)

(R7) (U□ 2)
← nom(2,Z), gver(Z,4)

(R5) i (R8) (Z□ 3)
← gos(2,3), gver(3,4)
← gver(3,4)
```

```
(R3) i (R6) i(R9)

← ver(3,4)

← borda(3,4)
```

Exemple (3)

Interpretació directa a Prolog!!

Analitzadors d'unificació

- Formalisms lògics
 - Expresivitat i Tractament
 - Les gramàtiques de cláusules definides (DCG)
- El Prolog com analitzador
- El tractament de l'unificació
 - Representació dels termes
 - Algoritme d'unificació

Gramàtiques de Clàusules Definides (DCG)

- Les gramàtiques de clàusules definides permeten escriure gramátiques lógiques com programes PROLOG
- PROLOG es un llenguatge de regles que fa servir raonament cap enrere com mètode de resolució
- Es defineix una sintaxi especial que permet ocultar el tractament de la frase i diferenciar els elements gramaticals dels procediments que es fan servir per augmentar la gramatica incontextual
- Les regles fan servir variables per comunicar-se informació i fer les comprovacions necessaries que exigeixi la gramàtica

Gramàtiques de Clàusules Definides (Sintaxi)

- Una regla gramatical te la seguent sintaxi
 - izq --> der1, der2,der3, ..., derN
- Cadascun dels simbols de la gramàtica pot tenir variables per diferents usos (pasar o rebre informació d'altre producció, construir un resultat)
- Es consumeixen elements de l'entrada fent servir corxets i indicant una llista de variables y/o constants que es volen unificar amb l'entrada
 - aaa --> [W], bbb
- Es pot introduir codi PROLOG possant-lo entre claus
 - aaa(W) --> [W], bbb(W), {number(W)}
- Per executar una DCG es crida al simbol principal de la gramàtica amb dos paràmetres, una llista amb les paraules de la frase i una llista buida
 - frase([el,gat,menja,bacalla],[])

Gramàtiques de Clàusules Definides (Exemple)

```
analisis(X,Y):- asercion(X,Y).
asercion --> sn, verb, compl.
compl --> [].
compl --> prep,sn.
compl--> sn.
sn--> npr.
sn--> det,n.
verb--> [W], {verbo(W)}.
npr--> [W], \{npropio(W)\}.
n--> [W], {nombre(W)}.
det--> [W], {determ(W)}.
prep--> [W], {prepo(W)}.
```

```
npropio(clara).
npropio(maria).
npropio(barcelona).
nombre(hombre).
nombre(profesor).
nombre(libro).
determ(un).
determ(el).
verbo(esta).
verbo(rie).
verbo(piensa).
verbo(habla).
verbo(lee).
prepo(en).
prepo(con).
prepo(de).
```

Resultat del anàlisi sintàctic

- Arbre d'anàlisi
 - Estructura de components
- Estructura de dependències
- Model d'actants
 - Xarxa semàntica
- Forma lògica

Estructura de components

Estructura de dependències

Model d'actants

Forma lógica

```
existeix(X,
i(gat(X),
existeix(Y,
i(peix(Y),
menja(X,Y))))
```

La Semàntica

- La Semàntica tracta el significat de les oracions.
- La Interpretació Semàntica (IS) es el procés d'extracció d'aquest significat.

Propietats del Model Semàntic

 Semàntica compositiva: la representació semàntica d'un objecte s'ha de poder realitzar a partir de les representacions semàntiques dels seus components:

IS= f(IS(Components Sintàctiques))

- Basat en una teoria
- Definició d'un Sistema de Representació Semàntica.
- Interfície Sintaxi-Semàntica
- La IS ha de ser robusta en front a les ambigüitats
- La IS ha de poder tractar fenòmens complexos com: la quantificació, les modalitats, la negació.

Dos problemes

- La representació del significat
- La interpretació semàntica

La Representació del significat (1)

```
entrada:
       ¿Qui dirigeix el PSOE?
forma lògica:
       (pregunta
         (referent (X))
          (X instancia (X, persona)
               (el1 (Y instancia(Y, partit_polític)
                      nom(Y, "PSOE"))
                    (Z instancia(Z, dirigir)
                              present(Z)
                              valor prop(Z, agent, X)
                              valor prop(Z, pacient,Y))))
```

La Representació del significat (2)

- En aquesta fòrmula apareixen quatre tipus diferents d'informació:
 - Estructura lògica
 - Contingut conceptual (semàntic)
 - Indicació dels actes de parla
 - Anotacions pragmàtiques
- El formalisme hauria de ser capaç de proporcionar una capacitat expressiva suficient per a garantir la descripció d'aquests quatre tipus d'informació.

La Representació del significat (3)

- Formes de representació:
 - CP1
 - Frequentment en forma clausal
 - Altres formalismes lògics
 - Xarxes semàntiques
 - Frames

Representacions basades en lògica.

- Un vocabulari de **predicats** en el qual haurem d'indicar la aritat (el nombre d'arguments i, de vegades, el seu tipus).
- Un vocabulari de constants i variables.
- Un conjunt de conectors lògics.
- Un vocabulari de funcions de les quals indicarem també la aritat.
- Un conjunt de **quantificadors** que actuaràn sobre els predicats que hagin de ser (o puguin ser) quantificats.

La interpretació semàntica

- Interacció amb l'anàlisi sintàctica:
 - procés en cascada (1)
 - sintaxi | semàntica
 - procés en cascada (2)
 - {sintaxi + filtre semàntic} | semàntica
 - procés en paral·lel
 - {sintaxi, semàntica}
- Forma de realitzar la composició
 - funció de composició
 - activació de la IS

Exemple de Funció de Composició

Interpretació mitjançant lambda avaluacions:

$$(lambda (x) (...)) = (\lambda (x) (...))$$

Gramàtica

Oracio \rightarrow GN FV (2 1)

GN \rightarrow np (1)

FV \rightarrow vi (1)

Fv \rightarrow vt GN (1 2)

Lexicó

Pere \rightarrow np, pere

Maria \rightarrow np, maria

riu \rightarrow vi, $(\lambda(x) (riu(x))$

estima \rightarrow vt,

 $((\lambda(x) (\lambda(y), estima(y, x))))$

Funció de Composició: exemple 1

"Pere riu"

Funció de Composició: exemple 2

"Pere estima Maria"

Processament del LN


```
"Quina es la capital de França?"
(oracio
 (oracio interrogativa
  (pron interrogatiu (quina))
  (verb (es)
    (sn (... la capital de França)))
pregunta(X), capital(X,frança)
```

Postprocés

- Resolució de la referència
- Anàlisi semàntica-pragmàtica
- Anàlisi il·locutiva
 - Reconeixement d'intencions

• ...

PLN a l'actualitat (1990-)

- PLN empíric
- Basat en corpus textuals
- Processament Estadístic vs. Lingüístic
- Combinació de models lingüístics i estadístics
- Aplicació de mètodes d'Aprenentatge Automàtic per a modelar el llenguatge

Aplicacions "clàssiques"

- Basades en textos
 - Traducció automàtica
 - Extracció de informació a partir de textos
- Basades en diàlegs
 - Interfícies en llenguatge natural
 - Accés a BD's
 - Sistemes de consulta telefònica
 - Sistemes tutors intel.ligents

Aplicacions basades en grans coleccions de documents

- Fonts
 - Grans corpora de documents
 - Internet
- Recuperació d'Informació (IR)
 - Valor afegit de la component lingüística
 - Accés i recuperació independent de la llengua
- Categorització de documents
 - Document routing:
 - agències de premsa, classificació de e-mails, etc.
 - Document filtering:
 - e-mails comercials, netnews, etc.
 - (Re)organització automàtica de col.leccions de documents:
 - BD's textuals, Internet, etc.
 - Topic Detection and Tracking

Aplicacions basades en grans coleccions de documents(2)

- Extracció d'Informació sobre el Web
 - Integració d'informació
 - Clustering i detecció de relacions inter/intra documents
- Resum automàtic
- Question Answering

Extracció d'informació de la Web

Question Answering

Question Answering

- Wolfram Alpha http://www.wolframalpha.com/
- Answers.com http://www.answers.com/
- Start http://start.csail.mit.edu/
- Qualim http://demos.inf.ed.ac.uk:8080/qualim/
- TextMap http://brahms.isi.edu:8080/textmap/