(Dataset FileName : Insurance_pre (1))

Assignment-Regression Algorithm

1. Problem Statement Identification

PREDICTION	Insurance Charges	
DOMAIN SELECTION	Machine Learning / Deep Learning	
LEARNING SELECTION	Supervised-Learning	
REGRESSION / CLASSIFICATION	Supervised Learning - Regression	

2. Tell basic info about the dataset (total num of Rows & columns)

Total num of Rows: 1338

Total num of Columns: 6

Inputs / Features : Age, sex, bmi, children, smoker

Output / Target : Charges

Categorical Data columns: Sex, smoker

3. Pre-processing Method

One-Hot Encoding performed on : Columns (Sex, smoker) [Nominal > Numerical Data]

4. Model Creation

- I. Simple Linear Regression (r_score value) = 0.7894
- II. Multiple Linear Regression (r_score value) = 0.7894
- III. Support Vector Machine

 Default Parameters: (kernel='rbf', C=1.0)

S.No	Rbf (r_score)	Linear (r_score)	Poly (r_score)	Sigmoid (r_score)	С
1.	0.8102	0.7649	0.8566	0.2874	1000
2.	0.8547	0.7440	0.8605	-0.5939	2000
3.	0.8663	0.7414	0.8598	-2.1244	3000
4.	0.8717	0.7414	0.8600	-5.5103	4000

(Kernel ="rbf", c=4000)

(Dataset FileName : Insurance_pre (1))

IV. Decision Tree Default Parameters: (criterion="squared_error", splitter="best")

S.NO	CRITERION	SPLITTER	R_SCORE VALUE
1.	Squared_error	Best	0.6850
2.	Squared_error	random	0.7124
3.	friedman_mse	Best	0.7028
4.	friedman_mse	random	0.6553
5.	absolute_error	Best	0.6711
6.	absolute_error	random	<mark>0.7465</mark>
7.	poisson	Best	0.7332
8.	poisson	random	0.6941

R_score Value = 0.7465

(criterion='absolute_error', splitter='random')

(Dataset FileName : Insurance_pre (1))

V. Random Forest

Default Parameters: (criterion="squared_error", n_estimators=100)

S.NO	CRITERION	n_estimators	R_SCORE VALUE
1.	squared_error	100	0.8494
2.	squared_error	200	0.8542
3.	absolute_error	100	0.8529
4.	absolute_error	200	0.8519
5.	friedman_mse	100	0.8554
6.	friedman_mse	200	0.8526
7.	poisson	100	<mark>0.8557</mark>
8.	poisson	200	0.8536

R_score Value = 0.8557 (criterion='poisson', n_estimators=100)

Final Model: Support vector Machine Algorithm (r_score = 0.8717)

Justification: Based on the above analysis **SVM** performs comparatively better when compared to other algorithms