

Nanotechnologies and Nanoelectronics

2021-semestre 1-P2

Homework #2

The work should be sent to: susana.freitas@tecnico.ulisboa.pt

10 January 2022

Deadline: 31 December 2021 @ 23:591.

Please send the work in one single file² (e.g., pdf, jpeg, word)

 $identified\ as: \textbf{NN2021_YourName_HW2}$

 1 The documents received up to 5 days after the deadline will have a penalty of 1 point (out of 20) per day. No documents will be accepted after the 6^{th} day.

² In case you need to have pictures of hand-written work, or multiple format digital formats for your solutions, please merge them into one single document.

Support bibliography:

Book "Nanoelectronics and Information Technology"

Chapters 26, 27, 28 and 29

from SECTION V- Memory devices and Storage Systems (3rd edition 2012)

For each memory architecture

- 1) Flash memories [chapter 26]
- 2) Capacitive memories DRAM [chapter 27]
- 3) Magnetic memories MRAM [chapter 28]
- 4) Phase change memories PCM [chapter 29]

Write a summary table (maximum 2 pages each) with the key information:

Memory type:	
Design of a typical architecture of the storage element	[insert figure here, including dimensions and materials]
Physical operation principle and basic equations	
Physical limits of scaling (i.e, what are the limitations to reduce the size towards a ultrahigh density memory)	
Indicate how the retention time can be calculated, and what are the key physical parameters that affect the retention of a bit state	
Reliability issues (i.e, what are the causes of failure during operation (read/write) and data storage)	
Example of manufacture companies for such a memory device	