-GMatching----

One-Shot Relational Learning for Knowledge Graphs

Introduction & related work

- Introduction
- Contributions
- Related work

Introduction

- Problem:
 - datasets (e.g. FB15k, WN18) used by previous models mostly only cover common relations in KGs
- key properties of KG completion models
 - a large portion of KG relations are actually sparse long-tail
 - Realworld KGs are often dynamic and evolving at any given moment

Contributions

- the first to consider the long-tail relations in the link prediction task and formulate the problem as few-shot relational learning
- propose an effective one-shot learning framework for relational data, which achieves better performance than various embedding-based methods.
- present two newly constructed datasets for the task of one-shot knowledge graph completion.

Related work——Embedding Models

- RESCAL(2011)
 - models the relationship using tensor operations
- DistMult(2014) ConvE (2017)
 - assume enough training instances for all relations and entities
 - do not pay attention to those sparse symbols
- ConMASK (2018)
 - handle unseen entities by leveraging text descriptions

Related work——Few-Shot Learning

- metric based approaches
 - learn generalizable metrics and corresponding matching functions from a set of training tasks
 - adopt the general matching framework proposed in deep siamese network
 - multi-metric based approach for text classification (language domain 2018)
- meta-learner based approaches
 - learn the optimization of model parameters
 - outputting the parameter updates
 - directly predicting the model parameters
 - LSTM- based meta-learner (2017)
 - learns the step size for each dimension of the stochastic gradients
- Bayesian Program Induction (2015)
 - represents concepts as simple programs that best explain observed examples under a Bayesian criterion

Algorithm

- Problem Formulation
- One-Shot Learning Settings
- Model
- Loss Function and Training

Problem Formulation

Knowledge graph :

$$\{(h, r, t)\} \subseteq \mathcal{E} \times \mathcal{R} \times \mathcal{E},$$

- knowledge graph completion
 - predict unseen relations r between two existing entities (h, ?, t)
 - predict the tail entity t given the head entity and the query relation (h, r, ?)
- goal:
 - rank the true tail entity t_{true} higher than other candidate entities t ∈ C_{h.r}, given only an example triple
- predict new facts of the relation r, only consider a closed set of entities
 - Eg: no unseen entities during testing
- future work
 - For open-world settings where new entities might appear during testing, external information such as text descriptions about these entities are usually required

One-Shot Learning Settings

- Meta-training set $\mathbb{T}_{meta-train}$
 - Every KG relations r has its own training/testing triples $\{D_r^{train}, D_r^{test}\}$
- Each D_r^{train} has only one triple (h₀, r, t₀)
- $D_r^{test} = \{(h_i, r, t_i, \mathcal{C}_{h_i, r})\}$
 - Ground-truth tail entities t_i for each query (h_i,r)
 - corresponding tail entity candidates $\mathcal{C}_{h_i,r} = \{t_{ij}\}$
- Loss function:

$$\ell_{\theta}(h_i, r, t_i | \mathcal{C}_{h_i, r}, D_r^{train})$$

Meta-training objective

$$\min_{ heta} \mathbb{E}_{T_r} \left[\sum_{\substack{(h_i, r, t_i, \mathcal{C}_{h_i, r}) \in D_r^{test}}} rac{\ell_{ heta}(h_i, r, t_i | \mathcal{C}_{h_i, r}, D_r^{train})}{|D_r^{test}|}
ight]$$

One-Shot Learning Settings

- Meta-testing set $\mathbb{T}_{meta-test}$
 - meta-testing relations are unseen from meta-training
 - $D_{r'}^{train}$ and $D_{r'}^{test}$ defined in the same way as in meta-training
- Meta-validation set $\mathbb{T}_{meta-validation}$
 - Because the meta-testing relations do not have validation sets like in the traditional machine learning setting
- background knowledge graph G':
 - subset of G with all the relations removed

Model

- Similarity function: $\mathcal{M}((h,t),(h',t')|\mathcal{G}')$
 - One known fact (h₀, r, t₀)
 - predict the likelihood of testing triples based on the matching score
- sub-problems
 - the representations of entity pairs;
 - the comparison function between two entity-pair representations.

a) Local graph of entity Leonardo da Vinci

b) Neighbor Encoder

c) Matching Processor

Neighbor encoder

- Modeling the structural patterns:
 - use a neighbor encoder to incorporate graph structures into metric-learning model
 - Only considers entities' local connections, i.e. the one-hop neighbors (efficiency)
- Neighbor set: $\mathcal{N}_e = \{(r_k, e_k) | (e, r_k, e_k) \in \mathcal{G}'\}$
 - encode N_e and output a vector as the latent representation of e.
 - Need: invariant to permutations & insensitive to the size of the neighbor set.
- Function f: (Zaheer et al., 2017)

$$f(\mathcal{N}_e) = \sigma(rac{1}{|\mathcal{N}_e|} \sum_{(r_k,e_k) \in \mathcal{N}_e} C_{r_k,e_k}).$$

Neighbor encoder

- Embedding layer emb with dimension d:
 - can be pre-trained using existing embedding-based models
 - $v_{r_k} = \mathbf{emb}(r_k), v_{e_k} = \mathbf{emb}(e_k)$
- Dropout & feed-forward layer :
 - $C_{r_k,e_k} = W_c(v_{r_k} \oplus v_{e_k}) + b_c$
- enable batching during training
 - specific the maximum number of neighbors
 - use all-zero vectors as "dummy" neighbors
 - degree distribution is usually very concentrated
- different from RGCN(2017)
 - only encode the local graphs
 - perform one-step propagation
 - operate on pre-trained graph embeddings

Matching processor

- process:
 - applying f(N_e) to the reference entity pair (h₀,t₀) and any query entity pair (h_i, t_{ii})
 - Get neighbor vectors for each $[f(\mathcal{N}_{h_0}); f(\mathcal{N}_{t_0})]$ $[f(\mathcal{N}_{h_i}); f(\mathcal{N}_{t_{ij}})]$
- LSTM-based recurrent "processing" block (2015,2016)
 - For every query (h_i, r, ?), by comparing (h_i, t_{ij}) with (h₀, t₀), we can get the ranking scores for every t_{ij}

$$h'_{k+1}, c_{k+1} = LSTM(q, [h_k \oplus s, c_k])$$
 $h_{k+1} = h'_{k+1} + q$
 $score_{k+1} = \frac{h_{k+1} \odot s}{\|h_{k+1}\| \|s\|},$
 $s = f(\mathcal{N}_{h_0}) \oplus f(\mathcal{N}_{t_0})$
 $q = f(\mathcal{N}_{h_i}) \oplus f(\mathcal{N}_{t_{ij}})$

(da Vinci, The Starry Night) (da Vinci, Mona Lisa)

Loss Function and Training

- Loss function:
 - positive (true) query triples $\{(h_i, r, t_i^+) | (h_i, r, t_i^+) \in \mathcal{G}\}$
 - group negative (false) query triples by polluting the tail entities. $\{(h_i,r,t_i^-)|(h_i,r,t_i^-) \not\in \mathcal{G}\}$
 - Hinge loss function $\ell_{ heta} = max(0, \gamma + score_{ heta}^- score_{ heta}^+)$
- every training episode
 - sample one task/relation T_r from the meta-training set
 - from all the known triples in T_r , sample one triple as the reference/training triple D_r^{train} and a batch of other triples as the positive query/test triples D_r^{test} .

Algorithm

Algorithm 1 One-shot Training

```
1: Input:
 2: a) Meta-training task set \mathbb{T}_{meta-training};
 3: b) Pre-trained KG embeddings (excluding relation in
    \mathbb{T}_{meta-training});
 4: c) Initial parameters \theta of the metric model;
 5: for epoch = 0:M-1 do
         Shuffle the tasks in \mathcal{T}_{meta-learning}
         for T_r in \mathcal{T}_{meta-learning} do
             Sample one triple as the reference
             Sample a batch B^+ of query triples
             Pollute the tail entity of query triples to get B^-
10:
             Calculate the matching scores for triple in B^+
11:
    and B^-
             Calculate the batch loss \mathcal{L} = \sum_{B} \ell
12:
             Update \theta using gradient g \propto \nabla \tilde{\mathcal{L}}
13:
         end for
14:
15: end for
```


Experiment

- Datasets
- Link prediction
- Analysis on Neighbor-Encoder & Ablation Studies
- Performance on Different Relations

Datasets

- rest of the relations
 - as background relations, their triples provide important background knowledge to match entity pairs
- datasets
 - select the relations with less than 500 but more than 50 triples as one-shot tasks
- training/validation/testing

NELL-One: 51/5/11 task relations

• Wiki-One: 133:16:34 division ratio

Dataset	# Ent.	# R.	# Triples	# Tasks
NELL-One	68,545	358	181,109	67
Wiki-One	4,838,244	822	5,859,240	183

Table 1: Statistics of the Datasets. # Ent. denotes the number of unique entities and # R. denotes the number of all relations. # Tasks denotes the number of relations we use as one-shot tasks.

Link Prediction

	NELL-One			Wiki-One				
Model	MRR	Hits@10	Hits@5	Hits@1	MRR	Hits@10	Hits@5	Hits@1
RESCAL	.071/.140	.100/.229	.082/.186	.048/.089	.119/.072	.167/.082	.132/.062	.093/.051
TransE	.082/.093	.177/.192	.126/.141	.032/.043	.023/.035	.036/.052	.029/.043	.015/.025
DistMult	.075/.102	.128/.177	.093/.126	.045/.066	.042/.048	.086/.101	.055/.070	.017/.019
ComplEx	.072/.131	.128/.223	.041/.086	.041/.086	.079/.069	.148/.121	.106/.092	.046/.040
GMatching (RESCAL)	.144/ .188	.277/.305	.216/.243	.087/ .133	.113/.139	.330/.305	.180/.228	.033/.061
GMatching (TransE)	.168 /.171	.293/.255	.239 /.210	.103 /.122	.167/.219	.349/.328	.289/.269	.083/.163
GMatching (DistMult)	.119/.171	.238/.301	.183/.221	.054/.114	.190/ .222	.384/.340	.291 /.271	.114/ .164
GMatching (ComplEx)	.132/.185	.308/.313	.232/ .260	.049/.119	.201 /.200	.350/.336	.231/ .272	.141 /.120
GMatching (Random)	.083/.151	.211/.252	.135/.186	.024/.103	.174/.198	.309/.299	.222/.260	.121/.133

Table 2: Link prediction results on validation/test relations. KG embeddings baselines are shown at the top of the table and our one-shot learning (GMatching) results are shown at the bottom. **Bold** numbers denote the best results on meta-validation/meta-test. <u>Underline</u> numbers denote the model selection results from all KG embeddings baselines, or from all one-shot methods, i.e. selecting the method with the best validation score and reporting the corresponding test score.

Analysis on Neighbor-Encoder & Ablation Studies

Figure 4: The learning curves on NELL-one. Every
run uses different number of neighbors. The y-axis is
Hits@10 calculated on all the validation relations.

Configuration	Hits@10
Full Model with ComplEx	.308/.313
w/o Matching Processor w/o Neighbor Encoder w/o Scaling Factor	.266/.269 .248/.296 .229/.219

Table 4: Ablation on different components.

Performance on Different Relations

		MRR		Hits@10		
Relations	# Candidates	GMatching	ComplEx	GMatching	ComplEx	
sportsGameSport	123	0.424	0.466 (0.139*)	1.000	0.479(0.200*)	
athleteInjuredHisBodypart	299	0.025	$0.026(0.330^{\star})$	0.015	$0.059(0.444^{\star})$	
animalSuchAsInvertebrate	786	0.447	$0.333(0.555^{\star})$	0.626	$0.587(0.783^{\star})$	
automobilemakerDealersInCountry	1084	0.453	$0.245(0.396^*)$	0.821	$0.453(0.500^*)$	
sportSchoolIncountry	2100	0.534	$0.324(0.294^*)$	0.745	0.529(0.571*)	
politicianEndorsesPolitician	2160	0.093	$0.026(0.194^{\star})$	0.226	$0.047(0.357^{*})$	
agriculturalProductFromCountry	2222	0.120	$0.029(0.042^*)$	0.288	$0.058(0.086^*)$	
producedBy	3174	0.085	$0.040(0.165^{\star})$	0.179	$0.075(0.241^{\star})$	
automobilemakerDealersInCity	5716	0.026	$0.024(0.041^*)$	0.040	$0.051(0.174^{\star})$	
teamCoach	10569	0.017	$0.065(0.376^{*})$	0.024	$0.079(0.547^*)$	
geopoliticalLocationOfPerson	11618	0.028	$0.016(0.284^{\star})$	0.035	0.035(0.447*)	

Table 3: Results decomposed over different relations. "*" denotes the results with standard training settings and "# Candidates" denotes the size of candidate entity set.

-END-THANKYOU