XGBoost

- 1. 西班牙数据集
 - 1.1 寻找最大深度
 - 1.2 n_estimators
- 2. 美国数据集
 - 2.1 寻找最大深度
 - 2.2 n_estimators

XGBoost

1. 西班牙数据集

train index: [6426, 10427] train_len: 4000 test index: [14389, 15390] test_len: 1000

• 输入特征:

```
1 'wind_speed', 'sin(wd)', 'cos(wd)', 【t期】
2 'wind_speed-1', 'sin(wd)-1','cos(wd)-1', 'wind_power-1'【t-1期】
```

• 输出: wind_power

1.1 寻找最大深度

 $max_depth = 2$

1.2 n_estimators

最终设置:

```
1
   XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
2
                colsample_bynode=1, colsample_bytree=1, gamma=0,
3
                importance_type='gain', learning_rate=0.1, max_delta_step=0,
                max_depth=2, min_child_weight=1, missing=None,
4
   n_estimators=100,
5
                n_jobs=4, nthread=None, objective='reg:linear',
   random_state=0,
6
                reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
7
                silent=None, subsample=1, verbosity=1)
```

test mse: 0.0026614413208772537

MSE:0.0027

与单纯决策树对比:

2. 美国数据集

train index: [3001, 7002] train_len: 4000 test index: [2000, 3001] test_len: 1000

• 输入特征:

```
1 'wind_speed', 'sin(wd)', 'cos(wd)', 【t期】
2 'wind_speed-1', 'sin(wd)-1','cos(wd)-1', 'wind_power-1'【t-1期】
```

• 输出: wind_power

2.1 寻找最大深度

max depth = 7

2.2 n_estimators

最终设置:

```
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
1
2
                colsample_bynode=1, colsample_bytree=1, gamma=0,
3
                importance_type='gain', learning_rate=0.1, max_delta_step=0,
                max_depth=7, min_child_weight=1, missing=None,
4
   n_estimators=100,
                n_jobs=4, nthread=None, objective='reg:linear',
5
   random_state=0,
                reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
6
7
                silent=None, subsample=1, verbosity=1)
```

test mse: 2.1475904432718094e-05

与单纯决策树对比:

