Analyzing microbiome multi-omics data: Tools and challenges

Cecilia Noecker, PhD
Turnbaugh Lab
May 25, 2021

Goals for today

- Describe metagenomics and metabolomics technologies and data processing
- Describe common challenges and solutions in multi-omics data analysis

- Formulate and test different types of hypotheses with omics data
 - Integrative pathway/reaction analysis
 - Predictive analysis with machine learning

Practice wrangling and plotting data in R

"Multi-omics"

Generating and processing metagenomic data

Bharti & Grimm Briefings in Bioinformatics 2019

Generating and processing metabolomics data

Most common: LC-MS/MS

Image: CourseHero

Multi-omic analysis is not a solved problem

Expectation

Challenge #1 in multi-omics analysis: Define your questions

- What general patterns can be observed?
 - Ordination plots, association analyses
- What features change as a result of an intervention?
 - Regression, time series/change point analysis
- Can we identify biomarkers and/or make predictions about clinical features?
 - Predictive models/machine learning
- Can subjects be grouped into categories based on their molecular profiles?
 - Clustering
- Is there evidence of particular molecular mechanisms? (e.g. are certain microbes producing or consuming a metabolite?)
 - Mechanistic models

Also important for study design!!

Some other computational challenges...

Reference database completeness

Quantification and compositionality

Dimensionality (n << p)

Reference database incompleteness

Metagenomics

Alignment to known genomes:

Solutions:

- Ignore unknowns
- Continually expanding databases
- Assemble genomes, analyze those

Reference database incompleteness

Metabolomics

Database identification of features:

0.5-5% of LC-MS features typically match a known database standard at Levels 1-3

Solutions:

- Ignore unknowns
- Continually expanding databases
- Cheminformatics methods to group related features and learn/predict identities of unknowns (Molecular networking, CSI-FingerID, Mummichog)

Quantification: What do our data values mean?

Metagenomics

Read mapping counts are influenced by:

- 1) True abundance in sample
- 2) Library size (sequencing depth)
- 3) Gene length/genome size
- 4) Mappability
- 5) Compositionality
- →Normalization is important!

Normalization by estimated genome equivalents:

0.8 copies/genome

- MicrobeCensus
- MUSiCC

Quantification: What do our data values mean?

Dimensionality (the n << p problem)

n samples

	met1	met2	met3	taxon1
sample				
sample 2				
sample				

p features

Standard statistical analysis: Model the outcome as a function of our features/predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i.$$

Disease severity = baseline + metabolite 1 effect + metabolite2 effect + taxon1 effect + ... + residual error

Too many parameters → many possible models!

Multiple Linear Regression (2 Independent Variables (x_1, x_2)) X_1 X_2

Solutions:

- Methods that define other constraints to choose the "best" model (regularization, Lasso regression)
- Ask different questions (aware of multiple hypothesis issues) (differential abundance, clustering)
- Reduce p with dimensional reduction tools (PCA)
- Reduce p by making use of relevant biological prior knowledge (pathway analysis, mechanistic modeling)

Today's dataset

	Non-IBD control	CD	UC
Discovery cohort (PRISM)	34	68	53
Validation cohort (LifeLines DEEP and NLIBD)) 22	20	23

Multi-omic screening of stool samples

Data subset:

- Cincinnati study site: 31 subjects, 160 samples
- MGH study site: 28 subjects, 143 samples

2 vignettes:

- Can IBD-associated metabolite shifts be explained by relevant microbial taxa and genes?
- How well do the microbiome & metabolome predict IBD status?

Some additional resources

- Microbiome omics analysis:
 - https://www.sciencedirect.com/science/article/pii/S193152441630127X
- biobakery omics tools:
 - https://elifesciences.org/articles/65088
 - https://github.com/biobakery/biobakery/wiki
- Metabolomics workflows:
 - https://www.sciencedirect.com/science/article/pii/S0003267018306354
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110944/
- tidymodels machine learning (many tutorials and examples):
 - https://www.tidymodels.org
- Using mechanistic models to make sense of microbiome data:
 - https://www.nature.com/articles/s41564-019-0491-9