Unsupervised Learning

Quiz, 5 questions

1 point

1.

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

Given historical weather records, predict the amount of rainfall
tomorrow (this would be a real-valued output)

1 point

2.

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-2\\1\end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

- $c^{(i)}$ is not assigned
- $c^{(i)} = 1$
- $c^{(i)} = 3$
- $c^{(i)}=2$

1 point

3.

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

- Feature scaling, to ensure each feature is on a comparable scale to the others.
- Move the cluster centroids, where the centroids μ_k are updated.
- Using the elbow method to choose K.
- The cluster assignment step, where the parameters $\boldsymbol{c}^{(i)}$ are updated.

1 point

4.

Suppose you have an unlabeled dataset $\{x^{(1)}, \dots, x^{(m)}\}$. You run K-means with 50 different random

initializations, and obtain 50 different clusterings of the

data. What is the recommended way for choosing which one of

these 50 clusterings to use?

- Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
- The answer is ambiguous, and there is no good way of choosing.
- The only way to do so is if we also have labels $y^{(i)}$ for our data.
- For each of the clusterings, compute $\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} \mu_{c^{(i)}}\|^2$, and pick the one that minimizes this.

1 point

5.

Which of the following statements are true? Select all that apply.

- On every iteration of K-means, the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ (the distortion function) should either stay the same or decrease; in particular, it should not increase.
- K-Means will always give the same results regardless of the initialization of the centroids.
- A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.
- Once an example has been assigned to a particular centroid, it will never be reassigned to another different centroid

	mitting work that isn't my own may result his course or deactivation of my Courseraursera's Honor Code	
Alan Ross		
	Submit Quiz	

