Contents

	4.1	Authenticated en	ncryption	(Age of	Ultron)													2
--	-----	------------------	-----------	---------	---------	--	--	--	--	--	--	--	--	--	--	--	--	---

Lesson 11

4.1 Authenticated encryption (Age of Ultron)

Last time we proved CPA-security of $\Pi.$ Today we will explore the auth property. Consider Π as

$$Enc: \{0,1\}^{\lambda} * \mathcal{M} \to \mathcal{C}$$

 $Tag: \{0,1\}^{\lambda} * \mathcal{C} \to \Phi$

Lemma 1. If Tag(.,.) is **EUF-CMA**, then Π has auth-property.

What is **EUF-CMA**?

It's a property similar to **uf-cma**, but now I want that the challenge message (m^*, ϕ^*) is made by a fresh m^* and a valid **fresh** ϕ^* .

The difference is that in ufcma we didn't care about the freshness of ϕ^* .

Proof. Suppose Π has not the *auth* property.

So we have an \mathcal{A}' which can win the **auth** challenge of Π .

On the other hand, we have a Π_2 schema which uses an **euf-cma** Tag(.,.) function.

So, by reduction, we show that ...

 \Diamond