Title

Student Name: Zhan Ruixin

Abstract

Keywords: Frequency Selective Surface Polarization Insensitivity Three-layer Composite Structure

Student Name: Zhan Ruixin

Contents

1	Section 1	3
	1.1 Subsection 1.1	3
2	Section 2	3
	2.1 Subsection 2.1	3
	2.2 Subsection 2.2	3
3	Section 3	3
	3.1 Subsection 3.1	3
	3.2 Subsection 3.2	3
4	Section 4	3
	4.1 Subsection 4.1	3
	4.2 Subsection 4.2	3
5	Section 5	3
	5.1 Subsection 5.1	3
	5.2 Subsection 5.2	3
R	eferences	4
6	Example	5
	6.1 Enumerate	5
	6.2 Table	6
	6.2.1Tables side by side	6
	6.2.2General table	6
	6.3 Picture	7
	6.3.1Pictures side by side	7
	6.3.2picture name adjust	8
	6 4 Equation	9

Student Name: Zhan Ruixin

1 Section 1

- 1.1 Subsection 1.1
- 2 Section 2
- 2.1 Subsection 2.1
- 2.2 Subsection 2.2
- 3 Section 3
- 3.1 Subsection 3.1
- 3.2 Subsection 3.2
- 4 Section 4
- 4.1 Subsection 4.1
- 4.2 Subsection 4.2
- 5 Section 5
- 5.1 Subsection 5.1
- 5.2 Subsection 5.2

References

Student Name: Zhan Ruixin

6 Example

This section includes some examples that are not commonly used

Student Name: Zhan Ruixin

6.1 Enumerate

- 1. 1
- 2. 2
- 3. 3
- 4. 4

itemize

- 1
- 2
- 3
- 4

6.2 Table

6.2.1 Tables side by side

Table 6.1 Difference of Mild Steel

Table 6.2 Difference of Alminium

Student Name: Zhan Ruixin

Loading	Difference	Difference rate	Loading	Difference	Difference rate
50N	0.01906 mm	16.5681%	50N	0.03944 mm	12.1856%
100N	0.03803 mm	16.5298%	100N	0.07887 mm	12.1839%
150N	0.05709 mm	16.5426%	150N	0.11831 mm	12.1845%
Average		16.55%	Average		12.18%

6.2.2 General table

Table 6.3 The value of C_L

Value\Degree	0	5	10	15	17.5	20	22.5	25
$\overline{C_L}$	0.034	-0.378	-0.658	-0.892	-0.954	-0.747	-0.717	-0.702

6.3 Picture

6.3.1 Pictures side by side

Images side-by-side, each with its own subheading but sharing large headings and tags

Student Name: Zhan Ruixin

Figure 6.1 Results of experiments with Steel and Aluminium

6.3.2 picture name adjust

Table 2.1 Result of the maximum bending displacements

Student Name: Zhan Ruixin

Bending Displacement	Mild Steel	Aluminium
$\delta_{AN_{-1}} (P = 50 N)$	0.1341 mm	0.3631 mm
$\delta_{AN_{2}} (P = 100 N)$	0.2681 mm	0.7262 mm
$\delta_{AN_{-3}}$ (P = 150 N)	0.4022 mm	1.0893 mm

6.4 Equation

Editing by Axmath or python pix2tex (cmd input latexocr if you have been install pix2tex in your system)

$$\delta_{An_1} = \frac{P_{50N}L^3}{48E_sI} = \frac{50\times0.1^3}{48\times172.6698\times10^9\times4.5\times10^{-11}} = 0.1341\times10^{-3}m$$

$$\delta_{An_2} = \frac{P_{100N}L^3}{48E_sI} = \frac{100\times0.1^3}{48\times172.6698\times10^9\times4.5\times10^{-11}} = 0.2681\times10^{-3}m$$

$$\delta_{An_3} = \frac{P_{150N}L^3}{48E_sI} = \frac{150\times0.1^3}{48\times172.6698\times10^9\times4.5\times10^{-11}} = 0.4022\times10^{-3}m$$
(6.1)