Problem Set 8

Advanced Logic
30th October 2022

Due date: Friday, 4 November.

1. (50%) Prove the Substitution Lemma for Terms: for any signature Σ , any terms s and t of Σ , any variable v, any structure S for Σ , and any assignment g for S,

$$\llbracket t[s/v] \rrbracket_S^g = \llbracket t \rrbracket_S^{g[v \mapsto \llbracket s \rrbracket_S^g]}$$

Hint: prove this by induction on the construction of terms (should it be t or s?)

Reminder:

 $g[v \mapsto \llbracket s \rrbracket_S^g](u) = \begin{cases} \llbracket s \rrbracket_S^g & \text{if } u = v \\ gu & \text{otherwise} \end{cases}$

2. (30%) Using the result from part 1, prove the Substitution Lemma for Formulae: for any signature Σ , any term s of Σ , any formula P of Σ , any variable v, any structure S for Σ , and any assignment g for S,

$$S, g \Vdash P[s/v] \text{ iff } S, g[v \mapsto \llbracket s \rrbracket_s^g] \Vdash P$$

Hint: prove this by induction on the construction of formulae . In the induction step for quantifiers, you will need to separately consider the case of formulae that begin with $\forall v$ (or $\exists v$) and formulae that begin with $\forall u$ (or $\exists u$) for some other variable u. You may if you wish rely on the "Irrelevance Lemma" according to which if g(u) = h(u) for all $u \in FV(Q)$, $S, g \Vdash Q$ iff $S, h \Vdash Q$.

- 3. (10%) Using the result from part 2, prove the steps in the proof of the Soundness Theorem corresponding to the \forall Elim and \exists Intro rules. That is: show that if $\Gamma \models \forall vP$ then $\Gamma \models P[s/v]$ for every term s, and that if $\Gamma \models P[s/v]$, $\Gamma \models \exists vP$.
- 4. (5%) Using the result from part 2, prove the step in the proof of the Soundness Theorem corresponding to the =Elim rule. That is: show that if $\Gamma \models P[s/v]$ and $\Gamma \models s = t$, then $\Gamma \models P[t/v]$.
- 5. (5%) Using the result from part 2, prove the step in the proof of the Soundness Theorem corresponding to the \exists Elim rule. That is: show that if $\Gamma \models \exists vP$ and $\Gamma, P[u/v] \models Q$, then $\Gamma \models Q$, provided that u is not free in Γ, Q , or $\exists vP$.

Give examples to show that this can fail when (i) u is free in Γ though not in Q or $\exists vP$; (ii) u is free in Q though not in Γ or Q.

1

EXTRA CREDIT (2.5% each, up to a maximum of 10%) Prove the remaining facts about logical consequence required to complete the proof of the Soundness Theorem, namely:

- 1. If $\Gamma \models P$ and $\Gamma \models Q$ then $\Gamma \models P \land Q$ (\land Intro)
- 2. If $\Gamma \models P \land Q$ then $\Gamma \models P$ and $\Gamma \models Q$ (\land Elim1 and \land Elim2).
- 3. If $\Gamma, P \models Q$ then $\Gamma \models P \rightarrow Q$ ($\rightarrow \text{Intro}$).
- 4. If $\Gamma \models P \rightarrow Q$ and $\Gamma \models P$ then $\Gamma \models Q$ (\rightarrow Elim).
- 5. If $\Gamma, P \models Q$ and $\Gamma, P \models \neg Q$ then $\Gamma \models \neg P$ (¬Intro).
- 6. If $\Gamma \models \neg \neg P$ then $\Gamma \models P$ (DNE).
- 7. $\models t = t$ for every term t (=Intro).