FLORIDA ATLANTIC UNIVERSITY

EEG-BASED USER IDENTIFICATION SYSTEM USING 1D-CONVOLUTIONAL LONG SHORT-TERM MEMORY NEURAL NETWORKS WITH WAVELET TRANSFORM

Abhishek Singh Kushwaha Akhilesh Singh Kushwaha

Outline

- Introduction
- Datasets
- Methodology
- Proposed Enhancement
- Results
- Conclusion

Introduction

- **Problem Statement**: Traditional user identification systems, such as passwords and fingerprints, have vulnerabilities to theft and forgery.
- **EEG as Biometrics**: EEG signals are unique and difficult to mimic, offering a more secure biometric solution.
- Objective: Propose a novel 1D-Convolutional LSTM neural network to enhance EEG-based user identification with wavelet transform

Datasets

Physionet EEG Motor Movement/Imagery Dataset

- **Subjects**: 109 individuals performing physical and imaginary tasks.
- Channels: 64 EEG channels with sampling frequency of 160 Hz.
- Preprocessing: Normalization and segmentation into 1-second windows (160 × 64 samples).

Experimental Settings:

Different experiments with 4, 16, 32, and 64 EEG channels.

Overview of the proposed EEG-based biometric identification system

Experiment Methodology

Preprocessing:

- Normalize EEG signals across time.
- Segment into 1-second epochs with 160×64 samples.

Model Training:

- Data split: 90% for training/validation (3:1 ratio), 10% for testing.
- Optimization: Adam optimizer, dropout for regularization.
- Comparison Models: CNN, LSTM, and 1D-Convolutional LSTM.
- Evaluation Metrics: Rank-1 accuracy

Proposed Enhancements

Improving Signal Processing:

• Implemented advanced feature extraction method called wavelet transform to handle non-stationary signals.

Implemented Models:

- Comparison of CNN, LSTM, and CNN-LSTM hybrid approaches with wavelet transform and without wavelet transform.
- Demonstrate improvements from CNN-LSTM over standalone CNN and LSTM.

What is Wavelet Transform?

Wavelet Transform:

- Breaks down a time-domain signal into smaller frequency components.
- Keeps both time and frequency information for each part of the signal.
- It is especially useful for non-stationary signals like EEG, where frequency characteristics change over time.

Wavelet Function:

- A wavelet transform decomposes a signal into approximate coefficients and detailed coefficients for multiple frequency bands (scales).
- For a 1D signal of length N, the wavelet transform might output fewer or more coefficients than the original signal length
- Different wavelets (e.g., Daubechies) have different lengths and overlaps.
- The overlap extends the signal during decomposition.
- Libraries: Pywt

Time (seconds)

Model Architecture

Channels

Results

Performance Comparison:

Results without Wavelet Transform		
Model	No of Channels	Rank-1 Accuracy
CNN_LSTM	64	0.9641
	32	0.9382
	16	0.9582
	4	0.9352
CNN	64	0.9641
	32	0.9382
	16	0.9835
	4	0.9611
LSTM	64	0.666
	32	0.577
	16	0.6642
	4	0.6582

Results with Wavelet Transform		
Model	No of Channels	Rank-1 Accuracy
CNN_LSTM	64	0.9964
	32	0.9929
	16	0.9888
	4	0.9823
CNN	64	0.9988
	32	0.997
	16	0.9935
	4	0.9829
LSTM	64	0.9594
	32	0.877
	16	0.8111
	4	0.6582

Effectiveness of Reduced Channels:

• 64-channel proposed approach achieves the highest accuracy.

Conclusion

- The 1D-Convolutional LSTM model improves upon existing EEG-based identification systems.
- Achieves high accuracy with fewer channels, reducing system cost and complexity.

Thank You