A Note on Cyclic Gradients

Dan Voiculescu

To the memory of Gian-Carlo Rota

The cyclic derivative was introduced by G.-C. Rota, B. Sagan and P. R. Stein in [3] as an extension of the derivative to noncommutative polynomials. Here we show that there are simple necessary and sufficient conditions for an n-tuple of polynomials in n noncommuting indeterminates to be a cyclic gradient (see Theorem 1) and similarly for a polynomial to have vanishing cyclic gradient (see Theorem 2). Our interest in cyclic gradients stems from free probability theory and random matrices (see the Remark at the end) [1],[2],[4],[5],[6]. This note should also reduce the paucity of results on cyclic derivatives in several variables pointed out in [3, page 73].

Let $K_{\langle n \rangle} = K\langle X_1, \dots, X_n \rangle$ be the ring of polynomials in noncommuting indeterminates X_1, \dots, X_n with coefficients in the field K of characteristic zero. The partial generalized difference quotients are the derivations

$$\partial_j: K_{\langle n \rangle} \to K_{\langle n \rangle} \otimes K_{\langle n \rangle}$$

such that $\partial_j X_k = 0$ if $j \neq k$ and $\partial_j X_j = 1 \otimes 1$. The \otimes here is over K and $K_{\langle n \rangle} \otimes K_{\langle n \rangle}$ is given the bimodule structure such that $a(b \otimes c) = ab \otimes c$, $(b \otimes c)d = b \otimes cd$.

The partial cyclic derivatives are then

$$\delta_j = \tilde{\mu} \circ \partial_j : K_{\langle n \rangle} \to K_{\langle n \rangle}$$

where $\tilde{\mu}(a \otimes b) = ba$.

We shall denote by $N: K_{\langle n \rangle} \to K_{\langle n \rangle}$ the "number operator", i.e. the linear map so that $N1=0,\ NX_{i_1}\ldots X_{i_k}=kX_{i_1}\ldots X_{i_k}$. Also, $CK_{\langle n \rangle}$ will denote the cyclic subspace, i.e. the vector subspace spanned by all cyclic symmetrizations of monomials

$$CX_{i_1} \dots X_{i_p} = \sum_{1 \le j \le p} X_{i_{j+1}} \dots X_{i_p} X_{i_1} \dots X_{i_j}$$
, $p \ge 1$ and $C1 = 0$

(the constants are not in the cyclic subspace).

Theorem 1 Let $P_1, \ldots, P_n \in K_{\langle n \rangle}$. The following conditions are equivalent:

(i) there is $P \in K_{\langle n \rangle}$ such that $\delta_j P = P_j$ $(1 \le j \le n)$.

(ii)
$$\sum_{1 \le j \le n} [X_j, P_j] = 0$$
.

(iii)
$$\sum_{1 \le j \le n}^{n} X_j P_j \in CK_{\langle n \rangle}.$$

(iv)
$$\delta_k \left(\sum_{1 \leq j \leq n} X_j P_j \right) = (N+I) P_k$$
. (Here I denotes the identity map of $K_{\langle n \rangle}$ to itself.)

Proof. It is easily seen that it suffices to prove the theorem for homogeneous P_1, \ldots, P_n of the same degree, i.e. we may assume $NP_j = sP_j$ $(1 \le j \le n)$ for some $s \ge 0$. Also the case of constants being obvious we will concentrate on $s \ge 1$.

(i) \Rightarrow (ii) To check that $\sum_{1 \le j \le n} [X_j, \delta_j P] = 0$ it suffices to do so when P is a monomial $X_{i_0} \dots X_{i_s}$. Then

$$\delta_j P = \sum_{i_p=j} X_{i_{p+1}} \dots X_{i_s} X_{i_0} \dots X_{i_{p-1}}$$

so that

$$[X_j, \delta_j P] = \sum_{i_p = j} (X_{i_p} \dots X_{i_s} X_{i_0} \dots X_{i_{p-1}} - X_{i_{p+1}} \dots X_{i_s} X_{i_0} \dots X_{i_p})$$

and hence

$$\sum_{1 \le j \le n} [X_j, \delta_j P] = \sum_{1 \le p \le s} (X_{i_p} \dots X_{i_s} X_{i_0} \dots X_{i_{p-1}} - X_{i_{p+1}} \dots X_{i_s} X_{i_0} \dots X_{i_p}) = 0.$$

 $(ii) \Rightarrow (iii)$ Let

$$P_j = \sum_{i_1, \dots, i_s} c^j_{i_1 \dots i_s} X_{i_1} \dots X_{i_s}$$

The coefficient of $X_{i_0} \dots X_{i_s}$ in $\sum_{1 \leq j \leq n} [X_j, P_j]$ is

$$c_{i_1...i_s}^{i_0} - c_{i_0...i_{s-1}}^{i_s}$$
 .

Hence (ii) gives $c_{i_1...i_s}^{i_0} = c_{i_0...i_{s-1}}^{i_s}$. On the other hand, if $c_{i_0...i_s}$ denotes the coefficient of $X_{i_0}...X_{i_s}$ in $\sum_{i\leq j\leq n} X_j P_j$, clearly $c_{i_0...i_s} = c_{i_1...i_s}^{i_0}$, so that (ii) implies $c_{i_0...i_s} = c_{i_si_0...i_{s-1}}$, i.e. cyclicity.

(iii) \Rightarrow (iv) As before, let $c_{i_1...i_s}^j$ and $c_{i_0...i_s}$ denote the coefficients of P_j and $\sum_j X_j P_j$ respectively. Then $c_{i_1...i_s}^{i_0} = c_{i_0...i_s}$ and the cyclicity condition gives $c_{i_0...i_s} = c_{i_si_0...i_{s-1}}$. We have

$$\delta_k \left(\sum_k X_j P_j \right)$$

$$= \sum_{i_0 \dots i_s} \sum_{\{r: i_r = k\}} c_{i_0 \dots i_s} X_{i_{r+1}} \dots X_{i_s} X_{i_0} \dots X_{i_{r-1}}$$

$$= \sum_{i_0 \dots i_s} \sum_{\{r: i_r = k\}} c_{i_{r+1} \dots i_s i_0 \dots i_{r-1}}^k X_{i_{r+1}} \dots X_{i_s} X_{i_0} \dots X_{i_{r-1}}$$

$$= \sum_{0 \le r \le s} \sum_{i_0 \dots i_{r-1} i_{r+1} \dots i_s} c_{i_{r+1} \dots i_s i_0 \dots i_{r-1}}^k X_{i_{r+1}} \dots X_{i_s} X_{i_0} \dots X_{i_{r-1}} = (s+1) P_k.$$

(iv) \Rightarrow (i) Since the P_j are homogeneous of the same degree and the field characteristic is zero, this is obvious.

There is also a simple description of the noncommutative polynomials with vanishing cyclic gradient.

Theorem 2 We have

$$\operatorname{Ker} \, \delta \ = \sum_{1 < k < n} [X_k, K_{\langle n \rangle}] + \mathbb{C} 1 \ = \ \mathbb{C} 1 + [K_{\langle n \rangle}, K_{\langle n \rangle}] \ = \ \operatorname{Ker} \, C$$

Proof. (i) Ker $\delta \subset \text{Ker } C$. We have

$$Cp = \sum_{1 \le j \le m} X_j \delta_j p = 0$$

(ii) Clearly,

$$\sum_{1 \leq k \leq n} [X_k, K_{\langle n \rangle}] + \mathbb{C}1 \subset [K_{\langle n \rangle}, K_{\langle n \rangle}] + \mathbb{C}1$$

Also, since $1 \in \text{Ker } C$ and $[X_{i_1} \dots X_{i_r}, X_{i_{r+1}} \dots X_{i_{r+s}}]$ is the difference of two cyclic permutations of $X_{i_1} \dots X_{i_{r+s}}$, we have $[K_{\langle n \rangle}, K_{\langle n \rangle}] + \mathbb{C}1 \subset \text{Ker } C$.

To see that Ker $C \subset \sum_{1 \leq k \leq n} [X_k, K_{\langle n \rangle}] + \mathbb{C}1$, remark that Ker C is spanned by homogeneous elements and that Cp = 0, where p is homogeneous of degree m iff p is a linear combination of differences $X_{i_1} \dots X_{i_m} - X_{i_2} \dots X_{i_m} X_{i_0}$.

(iii) To see that $\sum_{1 \leq k \leq n} [X_k, K_{\langle n \rangle}] + \mathbb{C}1 \subset \text{Ker } \delta$, it suffices to show that $[X_k, X_{i_1} \dots X_{i_s}] \in \text{Ker } \delta$. This is clearly so, since

$$[X_k, X_{i_1} \dots X_{i_s}] = X_k X_{i_s} \dots X_{i_s} - X_{i_1} \dots X_{i_s} X_k$$

and the cyclically equivalent elements $X_k X_{i_1} \dots X_{i_s}, \ X_{i_1} \dots X_{i_s} X_{i_k}$ have the same cyclic gradient.

Putting together the two theorems, we have an exact sequence

$$0 \to [K_{\langle n \rangle}, K_{\langle n \rangle}] \to K_{\langle n \rangle} \xrightarrow{\delta} (K_{\langle n \rangle})^n \xrightarrow{\theta} K_{\langle n \rangle}$$

where
$$\theta((P_j)_{1 \le j \le n}) = \sum_j [X_j, P_j].$$

Remark. The motivation for this note is from free entropy and large deviations for random matrices. Let (M, τ) be a von Neumann algebra with normal faithful trace-state τ and $X_k = X_k^* \in M$ $(1 \le k \le n)$ which are algebraically free.

Let $\mathcal{J}_k = \mathcal{J}(X_k : \mathbb{C}\langle X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n \rangle)$ be the noncommutative Hilbert transforms defined in [4], in connection with free entropy. On the other hand, the upper bound for large deviations for n-tuples of random matrices found in [2] fits well with free entropy except for a term involving cyclic gradients and about which it is not known whether it is not actually zero. The precise question is, whether the n-tuple $(\mathcal{J}_k)_{1 \leq k \leq n}$ (when it exists) is a limit in 2-norm of cyclic gradients of polynomials in the noncommuting variables X_1, \dots, X_n ? The theorem we proved here provides a partial affirmative answer:

If $(\mathcal{J}_k)_{1 \leq k \leq n}$ are noncommutative polynomials in X_1, \ldots, X_n , then there is a noncommutative polynomial P in X_1, \ldots, X_n such that $\mathcal{J}_k = \delta_k P$ $(1 \leq k \leq n)$.

Indeed, by Corollary 5.12 in [5] we have $\sum_{k} [\mathcal{J}_{k}, X_{k}] = 0$. Hence the commutator condition (ii) in the Theorem is satisfied.

Acknowledgments. This research was conducted by the author for the Clay Mathematics Institute. Partial support was also provided by National Science Foundation Grant DMS95–00308.

References

- [1] P.Biane, R.Speicher. Free diffusions, free entropy and free Fisher information, preprint.
- [2] T.Cabanal-Duvillard, A.Guionnet. Large deviations upper bounds and noncommutative entropies for some matrices ensembles, preprint.
- [3] G.-C.Rota, B.Sagan, P.R.Stein. A cyclic derivative in noncommutative algebra. Journal of Algebra 64, 54–75 (1980).
- [4] D.Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, V: noncommutative Hilbert transforms. *Invent. Math.* **32**, no. 1, 189–227 (1998).
- [5] D.Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, VI: liberation and mutual free information. Advances in Mathematics 146, 101–166 (1999).
- [6] D.Voiculescu. Lectures on free probability theory. Notes for a course at the Saint-Flour Summer School on Probability Theory, preprint (1998).

Department of Mathematics University of California Berkeley, California 94720-3840 dvv@math.berkeley.edu