Optimisation des accès mémoire

L'objectif est de mettre en œuvre des techniques d'optimisation pour éviter les défauts de cache inutiles.

Scrollup

Nous allons modifier le noyau scrollup du programme 2Dcomp afin provoquer de nombreux défauts cache et observer leurs impacts sur les performances.

- Modifier le fichier makefile pour compiler en niveau d'optimisation -02. Cela désactivera la vectorisation automatique et nous permettra de mieux distinguer l'influence du cache sur les performances du programme.
- 2. Produire une version scrollup_compute_ji() en dupliquant la fonction scrollup_compute_seq() et en inversant l'ordre des boucles en i et j :

```
for (int j = 0; j < DIM - 1; j++)
for (int i = 0; i < DIM; i++)
  next_img (i, j) = cur_img (i + 1, j);</pre>
```

- 3. En utilisant l'image shibuya.png, vérifier visuellement le résultat. Comparer « visuellement » la fluidité de l'animation obtenues par les versions seq et ji du noyau scrollup.
- 4. Utiliser les scripts expe-scrollup.sh et tracer-courbes-log.r afin d'obtenir un graphique présentant les performances des versions seq et ji en fonction de la taille de l'image.
- 5. Interpréter ce graphique sachant qu'un pixel est codé sur 4 octets et que les tailles des caches de la matrice peuvent être obtenues via la commande lstopo.

Multiplication de matrices

Le programme mul_mat.c effectue une multiplications de matrices de façon classique.

- 1. Modifier le code de mulMat2 afin d'utiliser plus efficacement le cache du processeur. Le gain obtenu est-il décevant, correct ou plus que satisfaisant?
- 2. Il est probable que quelques défauts de cache évitables subsistent. Les repérez-vous? Quelle permutation des boucles sur i, j, k induit le plus petit nombre de défauts de cache? Modifier votre code en conséquence.

Bonus Lorsque N est assez grand il est probable quelques défauts de cache évitables subsistent dans votre code. Supposons que le cache fasse 8 Mo pour quelle valeur de N apparaissent ces défauts de cache? Quelle technique faudrait-il utiliser pour limiter ces défauts?

Transposée d'une image

Nous allons étudier l'impact du cache sur les performances du noyau transpose du programme 2Dcomp.

- 1. Produire une version optimisée du noyaux transpose en utilisant la technique de pavage (tuilage). On s'inspirera du code de la fonction mandel_compute_tiled() et utilisera la variable GRAIN. Vérifier visuellement le bon fonctionnement pour différents grains.
- 2. En utilisant les scripts expe-transpose.sh et tracer-courbes-log.r, produire un graphique présentant les performances de la version tiled du noyau transpose en fonction du GRAIN utilisé.
- 3. Analyser le graphique obtenu.
- 4. Produire une version parallèle de chaque code (omp et omp_tiled, comparer les performances obtenues pour une image de taille 4096.