СПРАВОЧНЫЙ МАТЕРИАЛ по геометрии

1. Треугольник

Пусть a,b,c — длины сторон BC, AC, AB треугольника ABC соответственно; $p=\frac{a+b+c}{2}$ — полупериметр треугольника ABC; A,B,C — величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c — длины высот AA_2,BB_2,CC_2 треугольника ABC соответственно; R — радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольника ABC; $S_{\triangle ABC}$ — площадь треугольника ABC. Тогда имеют место следующие соотношения:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \text{ (теорема синусов)};$$

$$c^2 = a^2 + b^2 - 2ab\cos C \text{ (теорема косинусов)};$$

$$S_{\triangle ABC} = \frac{1}{2}ah_a; \qquad S_{\triangle ABC} = \frac{1}{2}ab\sin C; \qquad S_{\triangle ABC} = \frac{abc}{4R}; \qquad S_{\triangle ABC} = pr;$$

$$S_{\triangle ABC} = \sqrt{p(p-a)(p-b)(p-c)} \,.$$

2. Четырехугольники

Параллелограмм

 Π араллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

 Π лощадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, $l_{n^{\circ}}$ — длина дуги в α градусов, l_{α} — длина дуги в α радиан, $S_{n^{\circ}}$ — площадь сектора, ограниченного дугой в α радиан. Тогда имеют место следующие соотношения:

$$C = 2\pi r \qquad \qquad l_{n^{\circ}} = \frac{\pi r}{180} n \qquad \qquad S_{n^{\circ}} = \frac{\pi r^2}{360} n$$

$$S = \pi r^2 \qquad \qquad l_{\alpha} = \alpha r \qquad \qquad S_{\alpha} = \frac{1}{2} \alpha r^2$$

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается. Вписанные углы, опирающиеся на одну и ту же дугу, равны. Вписанный угол, опирающийся на полуокружность, – прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, — точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, — точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180° .

4. Призма

Пусть H — высота призмы, AA_1 — боковое ребро призмы, P_{ocn} — периметр основания призмы, S_{ocn} — площадь основания призмы, S_{for} — площадь боковой поверхности призмы, S_{non} — площадь полной поверхности призмы, V — объем призмы, P_{\perp} — периметр перпендикулярного сечения призмы, S_{\perp} — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

$$S_{\delta o \kappa} = P_{\perp} A A_{\parallel};$$
 $S_{no m} = 2 S_{o c m} + S_{\delta o \kappa};$ $V = S_{\perp} A A_{\parallel};$ $V = S_{o c m} H$.

- Противоположные грани параллелепипеда равны и параллельны.
- Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
- Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

5. Пирамида

Пусть H — высота пирамиды, P_{ocn} — периметр основания пирамиды, S_{ocn} — площадь основания пирамиды, S_{fook} — площадь боковой поверхности пирамиды, S_{nonh} — площадь полной поверхности пирамиды, V — объем пирамиды. Тогда имеют место следующие соотношения: $S_{nonh} = S_{och} + S_{fook}$; $V = \frac{1}{3}S_{och}H$.

3 а м е ч а н и е. Если все двугранные углы при основании пирамиды равны β , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны $h_{\delta o \kappa}$, то $S_{\delta o \kappa} = \frac{1}{2} P_{o c \mu} h_{\delta o \kappa} = \frac{S_{o c \mu}}{\cos \beta}$.

6. Усеченная пирамида

Пусть H — высота усеченной пирамиды, P_1 и P_2 — периметры оснований усеченной пирамиды, S_1 и S_2 — площади оснований усеченной пирамиды, S_{60k} — площадь боковой поверхности усеченной пирамиды, S_{non} — площадь полной поверхности усеченной пирамиды, V — объем усеченной пирамиды.

Тогда имеют место следующие соотношения: $S_{nолн} = S_1 + S_2 + S_{\delta o \kappa}$; $V = \frac{1}{3} H(S_1 + S_2 + \sqrt{S_1 S_2})$.

3 а м е ч а н и е. Если все двугранные углы при основании усеченной пирамиды равны β , а высоты всех боковых граней пирамиды равны $h_{\delta o \kappa}$, то $S_{\delta o \kappa} = \frac{1}{2} (P_1 + P_2) h_{\delta o \kappa} = \frac{|S_1 - S_2|}{\cos \beta}$.

7. Цилиндр

Пусть h — высота цилиндра, r — радиус цилиндра, $S_{\text{бок}}$ — площадь боковой поверхности цилиндра, V — объем цилиндра.

Тогда имеют место следующие соотношения: $S_{60\kappa} = 2\pi r h$; $S_{noxy} = 2\pi r (r + h)$; $V = \pi r^2 h$.

8. Конус

Пусть h — высота конуса, r — радиус основания конуса, l — образующая конуса, $S_{\text{бок}}$ — площадь боковой поверхности конуса, $S_{\text{полн}}$ — площадь полной поверхности конуса, V — объем конуса.

Тогда имеют место следующие соотношения: $S_{\delta \rho \kappa} = \pi r l$; $S_{n \rho \eta h} = \pi r (r + l)$; $V = \frac{1}{3} \pi r^2 h$.

9. Усеченный конус

Пусть h — высота усеченного конуса, r u r_1 — радиусы основания усеченного конуса, l — образующая усеченного конуса, $S_{\delta o \kappa}$ — площадь боковой поверхности усеченного конуса, V —

объем усеченного конуса. Тогда имеют место следующие соотношения: $S_{\delta o \kappa} = \pi (r + r_1) l$; $V = \frac{1}{3} \pi h (r^2 + r r_1 + r_1^2)$.

10. Сфера и шар

Пусть R — радиус шара, D — его диаметр, S — площадь ограничивающей шар сферы, S_h — площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна $h,\ V$ — объем шара, V_{cerm} — объем сегмента, высота которого равна $h,\ V_{cerm}$ — объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

$$D = 2R$$

$$S_h = 2\pi Rh$$

$$V_{cexm} = \pi h^2 (R - \frac{1}{3}h)$$

$$S = 4\pi R^2$$

$$V = \frac{4}{3}\pi R^3$$

$$V_{cexm} = \frac{2}{3}\pi R^2 h$$