保密★启用前

2020-2021 学年第二学期期末考试 《工科数学分析基础 2》 A 卷

考生注意事项

- 1. 答题前, 考生须在试题册指定位置上填写考生学号和考生姓名。
- 2. 在答题卡指定位置上填写考试科目、考生姓名和考生学号,并涂写考生 学号信息。

特别提醒 答题卡上学号设了十一位空格, 2020 级学生在答题卡上填涂 完整的学号。由于其它年级同学的学号是九位,所以在填涂学号时,请 在前面多加 "20". 例如,学号为 201912345,则应填涂 20201912345。

- 3. 第一题的答案必须涂写在答题卡相应题号的选项上,其它题的答案必须 书写在答题卡指定位置的边框区域内。超出答题区域书写的答案无效; 在草稿纸、试题册上答题无效。
- 4. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚; 涂写部分必须使用 2B 铅笔填涂。
- 5. 考试结束, 必须按规定将答题卡和试题册交回。

(以下信息考生必须认真填写)

考生学号						
考生姓名						

一、选择题 每小题 5 分, 共 50 分. 下列每题给出的四个选项中, 只有一个选

项是符合题目要求的,请将答案涂写在答题卡上.

1、曲面 $z = x^3 + y^2$ 在点(1,1,2) 处的切平面和法线方程依次为()

(A)
$$3x+2y-z=3$$
, $\frac{x-1}{3}=\frac{y-1}{2}=2-z$.

(B)
$$3x+2y+z=7$$
, $\frac{x-1}{3}=\frac{y-1}{2}=z-2$.

(C)
$$\frac{x-1}{3} = \frac{y-1}{2} = 2-z$$
, $3x+2y-z=3$.

(D)
$$\frac{x-1}{3} = \frac{y-1}{2} = z-2$$
, $3x+2y+z=7$.

2、设函数 $f(x,y) = 3x + 4y - x^2 - 2y^2 - 2xy$, 则 f(x,y)有唯一的()

(A) 极小值 $\frac{5}{2}$.

(B) 极大值 $\frac{5}{2}$.

(C) 极大值 $-\frac{15}{2}$.

(D) 极小值 $-\frac{15}{2}$.

3、设函数 $f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$,则(

- (A) $f'_x(0,0) = 0, f''_{xy}(0,0) = -1$. (B) $f'_x(0,0) = 1, f''_{xy}(0,0) = -1$.

- (C) $f'_x(0,0) = 0, f''_{xy}(0,0) = 1.$ (D) $f'_x(0,0) = 1, f''_{xy}(0,0) = 1.$

4、将函数 $f(x) = \begin{cases} x, & x \in [0,1] \\ 1-x, & x \in [1,2] \end{cases}$ 展成 Fourier 级数 $\sum_{n=0}^{\infty} b_n \sin \frac{n\pi x}{2}$,其中 Fourier

系数 $b_n = \int_0^2 f(x) \sin \frac{n\pi x}{2} dx (n = 1, 2, \dots)$,级数的和函数记为 S(x),则(

- (A) $S(1) = 1, S(\frac{7}{2}) = -\frac{1}{2}$. (B) $S(1) = \frac{1}{2}, S(\frac{7}{2}) = \frac{1}{2}$.
- (C) $S(1) = \frac{1}{2}, S(\frac{7}{2}) = -\frac{1}{2}$. (D) $S(1) = 1, S(\frac{7}{2}) = \frac{1}{2}$.

5、设函数 $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$,则级数 $f(0) + f'(0) + \dots + f^{(n)}(0) + \dots$ (

(A) 绝对收敛.

- (B) 条件收敛.
- (C) 发散,且部分和数列趋于+∞.
- (D) 发散,且部分和数列趋于 $-\infty$.

- 6、以下四个正项级数中,发散的是()
 - $(A) \quad \sum_{n=1}^{\infty} \frac{n^2}{2^n}.$

(B) $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n} \right).$

- (C) $\sum_{n=1}^{\infty} \frac{n^2 + \ln n}{n^4 \cos n}.$
- (D) $\sum_{n=1}^{\infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \right).$
- 7、设曲面 $S: z = \sqrt{x^2 + y^2} \ (0 \le z \le 1)$,则曲面积分 $\iint_S z \, dS = ($
 - (A) $\frac{2}{3}\pi$.

(B) $\frac{2\sqrt{2}}{3}\pi$.

(C) $\sqrt{2} \pi$.

- (D) π .
- 8、设V 是由两个曲面 $z=x^2+y^2$ 和 $z=2-x^2-y^2$ 围成的 \mathbb{R}^3 中的有界闭区域,则 三重积分 $\iiint_V z \, \mathrm{d}V =$ (
 - (A) $\frac{4}{3}\pi$.

(B) $\frac{8}{3}\pi$.

(C) π .

- (D) $\frac{1}{2}\pi$.
- 9、二次积分 $\int_0^1 dx \int_0^{x^2} x \cos(1-y)^2 dy = ($)
 - (A) $\frac{1}{4}\sin 1$.

(B) $-\frac{1}{4}\sin 1$.

(C) $\frac{1}{4}\cos 1$.

- (D) $-\frac{1}{4}\cos 1$.
- 10、设曲线 $L: x^2 + y^2 = 1$ $(x \ge 0, y \ge 0)$,质量线密度 $\rho = 1$,则 L 对 x 轴的转动惯量等于(
 - (A) $\frac{\pi}{8}$.

(B) $\frac{\pi}{4}$.

(C) $\frac{\pi}{2}$.

- (D) π .
- 二、(10 分) 求微分方程 $y'' + y' 2y = e^x$ 的通解.

三、(10 分) 通过
$$\begin{cases} x = e^u \\ y = e^v \end{cases}$$
, 变换方程 $2x^2 \frac{\partial^2 z}{\partial x^2} + xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0$.

四、(10 分) 求曲线积分 $\int_L f'(x) \sin y \, dx + (f(x) \cos y + \pi x) \, dy$, 其中函数 f(x) 具有二阶连续导数,L 是圆周线 $(x-1)^2 + (y-\pi)^2 = 1 + \pi^2$ 上从点 $A(2,2\pi)$ 沿逆时针方向到点 O(0,0) 的有向弧段.

五、(10 分) 求幂级数
$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 2}{n+1} x^{n+1}$$
 的收敛域、和函数 $S(x)$.

六、(10 分) 求曲面积分 $\iint_{\Sigma} x^2 \, dy dz$,其中 Σ 是曲面 $z = x^2 + y^2$ 被平面 z = x 所截下的有限部分,取下侧.