

Maestría en Ciencias Naturales y Matemáticas Clase 4 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

15 de diciembre de 2022

Topología en \mathbb{R}^n - Equivalencia de métricas

Definición (métricas equivalentes en \mathbb{R}^n).

Sean $d_1,d_2:\mathbb{R}^n\times\mathbb{R}^n\longrightarrow\mathbb{R}$ métricas en \mathbb{R}^n . Decimos que d_1 y d_2 son métricas equivalentes, si existen $\alpha,\beta>0$ tales que para todo $x,y\in\mathbb{R}^n$ se tiene que

$$\alpha \cdot d_1(x,y) \le d_2(x,y) \le \beta \cdot d_1(x,y)$$

Nota (métricas en \mathbb{R}^n).

- (1) Si $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ es la métrica Euclídea para \mathbb{R}^n , entonces denotaremos las bolas abiertas en \mathbb{R}^n simplemente como $B(a; \varepsilon)$.
- (2) Usualmente cuando decimos que un conjunto $U \subseteq \mathbb{R}^n$ es abierto en \mathbb{R}^n , debemos suponer que estamos trabajando con la métrica Euclídea ó con una métrica específica que se esté considerando.
- (3) La importancia de las métricas equivalentes, es que ellas generan los mismos conjuntos abiertos (ya veremos por que esta afirmación es cierta).
- (4) Aunque en este curso trabajaremos principalmente con la métrica Euclídea en \mathbb{R}^n , es importante tener en consideración la existencia de otras métricas en \mathbb{R}^n las cuales son de suma importancia en matemáticas.

Ejemplo (la métrica Euclídea y la métrica del supremo son equivalentes).

Sean d_1 y d_2 las métricas Euclídea y del supremo respectivamente en \mathbb{R}^n , entonces para todo $x,y\in\mathbb{R}^n$ se tiene que:

$$\frac{1}{\sqrt{n}} \cdot d_1(x,y) \le d_2(x,y) \le d_1(x,y).$$

Solución:

Dados $x = (x_1, ..., x_n)$ y $y = (y_1, ..., y_n)$ vectores en \mathbb{R}^n , tenemos que:

$$(\checkmark) d_1(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

$$(\checkmark) d_2(x,y) = \max_{1 \le j \le n} |x_j - y_j|.$$

Además, podemos notar las siguientes cosas:

$$(1) \ \sqrt{\sum_{i=1}^n (x_i-y_i)^2} \leq \sqrt{\sum_{i=1}^n \left(\max_{1\leq j\leq n} |x_j-y_j|\right)^2} = \sqrt{n\cdot \left(\max_{1\leq j\leq n} |x_j-y_j|\right)^2} = \sqrt{n}\cdot \max_{1\leq j\leq n} |x_j-y_j|. \text{ Esto implication}$$

$$d_1(x,y) \le \sqrt{n} \cdot d_2(x,y) \Rightarrow \frac{1}{\sqrt{n}} \cdot d_1(x,y) \le d_2(x,y).$$

(2) Existe $k \in \{1,...,n\}$ tal que $d_2(x,y) = \max_{1 \le j \le n} |x_j - y_j| = |x_k - y_k|$ y por tanto

$$d_2(x,y) = |x_k - y_k| = \sqrt{(x_k - y_k)^2} \le \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = d_1(x,y) \implies d_2(x,y) \le d_1(x,y).$$

Así, de (1) y (2) tenemos que

$$\frac{1}{\sqrt{n}} \cdot d_1(x,y) \le d_2(x,y) \le d_1(x,y).$$

Esto en particular nos muestra que d_1 y d_2 son métricas equivalentes en \mathbb{R}^n .

Nota (métricas Equivalentes).

Es importante notar que no todas las métricas en \mathbb{R}^n son equivalentes (problema 1.3.2). Pero las métricas que son equivalentes describen los mismos conjuntos abiertos como se muestra en el siguiente teorema.

Teorema (equivalencia de métricas ⇒ los mismos abiertos).

Supongamos que d_1 y d_2 son métricas equivalentes en \mathbb{R}^n y $U\subseteq\mathbb{R}^n$. Entonces

U es abierto en \mathbb{R}^n bajo la métrica $d_1 \iff U$ es abierto en \mathbb{R}^n bajo la métrica d_2 .

Demostración.

Sean $\alpha, \beta > 0$ tales que para todo $x, y \in \mathbb{R}^n$ se tiene que

$$\alpha \cdot d_1(x,y) \le d_2(x,y) \le \beta \cdot d_1(x,y)$$

Entonces para demostrar este teorema es necesario verificar las siguientes afirmaciones:

" \Rightarrow " Si U es abierto en \mathbb{R}^n bajo la métrica d_1 , entonces U es abierto en \mathbb{R}^n bajo la métrica d_2 .

" \Leftarrow " Si U es abierto en \mathbb{R}^n bajo la métrica d_2 , entonces U es abierto en \mathbb{R}^n bajo la métrica d_1 .

De esta forma, tenemos que

" \Rightarrow " Supongamos que U es abierto en \mathbb{R}^n bajo la métrica d_1 y probemos que U es abierto en \mathbb{R}^n bajo la métrica d_2 .

Sea $a \in U$, entonces como U es abierto bajo la métrica d_1 , existe $\varepsilon > 0$ tal que $B_{d_1}(a;\varepsilon) \subseteq U$. Entonces es fácil notar que $B_{d_2}(a;\alpha \cdot \varepsilon) \subseteq B_{d_1}(a;\varepsilon) \subseteq U$, ya que:

$$\operatorname{Si} x \in B_{d_2}(a; \alpha \cdot \varepsilon) \Rightarrow \begin{cases} d_2(a, x) < \alpha \cdot \varepsilon, \\ \\ \alpha \cdot d_1(a, x) \leq d_2(a, x) \end{cases} \Rightarrow \alpha \cdot d_1(a, x) < \alpha \cdot \varepsilon$$

$$\alpha \cdot d_1(a, x) < \alpha \cdot \varepsilon \Rightarrow d_1(a, x) < \varepsilon \Rightarrow x \in B_{d_1}(a; \varepsilon) \subseteq U.$$

De esta forma $B_{d_2}(a; \alpha \cdot \varepsilon) \subseteq U$, y esto prueba que U es abierto en \mathbb{R}^n respecto a la métrica d_2 . " \Leftarrow " Supongamos que U es abierto en \mathbb{R}^n bajo la métrica d_2 y probemos que U es abierto en \mathbb{R}^n bajo la métrica d_1 .

Sea $a \in U$, entonces como U es abierto bajo la métrica d_2 , existe $\varepsilon > 0$ tal que $B_{d_2}(a;\varepsilon) \subseteq U$.

Entonces es fácil notar que $B_{d_1}\left(a; \frac{\varepsilon}{B}\right) \subseteq B_{d_2}(a; \varepsilon) \subseteq U$, ya que:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♥

$$\operatorname{Si} \times \in B_{d_1}\left(a; \frac{\varepsilon}{\beta}\right) \Rightarrow \begin{cases} d_1(a, x) < \frac{\varepsilon}{\beta}, \\ d_2(a, x) \leq \beta \cdot d_1(a, x) \end{cases} \Rightarrow \begin{cases} \beta \cdot d_1(a, x) < \varepsilon, \\ d_2(a, x) \leq \beta \cdot d_1(a, x) \end{cases}$$
$$\begin{cases} \beta \cdot d_1(a, x) < \varepsilon, \\ d_2(a, x) \leq \beta \cdot d_1(a, x) \end{cases} \Rightarrow d_2(a, x) < \varepsilon \Rightarrow x \in B_{d_2}(a; \varepsilon) \subseteq U.$$

De esta forma $B_{d_1}\left(a; \frac{\varepsilon}{\beta}\right) \subseteq U$, y esto prueba que U es abierto en \mathbb{R}^n respecto a la métrica d_1 .

Observación (idea del teorema anterior).

La idea de la prueba del teorema anterior, es notar que

$$B_{d_2}(a; \alpha \cdot \varepsilon) \subseteq B_{d_1}(a; \varepsilon) \subseteq B_{d_2}(a; \beta \cdot \varepsilon)$$

bajo el supuesto de que $\alpha \cdot d_1(x,y) \le d_2(x,y) \le \beta \cdot d_1(x,y)$ para cada $x,y \in \mathbb{R}^n$.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Corolario (relación entre la métrica Euclídea y la métrica del supremo).

Sean d_1 y d_2 las métricas Euclídea y del supremo respectivamente en \mathbb{R}^n . Si $U\subseteq \mathbb{R}^n$, entonces:

U es abierto en \mathbb{R}^n bajo la métrica $d_1 \iff U$ es abierto en \mathbb{R}^n bajo la métrica d_2 .

Demostración:

Se sigue del ejemplo anterior y el teorema previamente probado.

Problemas.

(1) Sea $d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ la métrica Euclídea sobre \mathbb{R}^2 definida como

$$d[(x_1,x_2),(y_1,y_2)] = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}.$$

Describir geométricamente B((0,0);1)

(2) Sea $d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ la métrica del supremo sobre \mathbb{R}^2 definida como

$$d[(x_1,x_2),(y_1,y_2)] = \max\{|x_1-y_1|,|x_2-y_2|\}.$$

Describir geométricamente $B_d((0,0);1)$.

(3) Sea $d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ la métrica en \mathbb{R}^2 definida como

$$d[(x_1,x_2),(y_1,y_2)] = |x_1-y_1| + |x_2-y_2|.$$

Describir geométricamente $B_d((0,0);1)$.

(4) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ la métrica discreta en \mathbb{R}^n definida como:

$$d(x,y) = \begin{cases} 1 & \text{si } x \neq y, \\ 0 & \text{si } x = y. \end{cases}$$

Si $a \in \mathbb{R}^n$ y $\varepsilon > 0$, entonces describin $B_d(a; \varepsilon)$.

- (5) ¿Cómo son los conjuntos abiertos en \mathbb{R}^n con la métrica discreta?
- (6) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ la métrica en \mathbb{R}^n definida como:

$$d(x,y) = ||x-y||_p := \sum_{i=1}^n |x_i - y_i|$$

para todo $x = (x_1, ..., x_n)$ y $y = (y_1, ..., y_n)$ en \mathbb{R}^n . Demostrar que d es una métrica equivalente a la métrica Euclídea.

(7) Demostrar que la métrica discreta en \mathbb{R}^n no es equivalente a la métrica Euclídea.

