Systems Design and Databases (CIS1018-N)

Week 8

Working with SQL Server Data

Teaching Team

Module Leader & Lecturer: Dr Yar Muhammad

Email: Yar.Muhammad@tees.ac.uk

Office: G0.39 (Greig Building)

Tutor:

- Dr Mengda He
- Mr Mansha Nawaz
- Mr Vishalkumar Thakor

Academic Hub Time Slots, Room IT1.13: Yar Muhammad

Monday 10:00 - 11:00 and Tuesday 13:00 - 14:00

Mengda He

Wednesdays 1-2 pm and Fridays 11 am - 12 pm

See Blackboard Ultra for online materials: https://bb.tees.ac.uk/

Lectures & IT Labs

Lectures - Dr Yar Muhammad	Tuesdays @ 2-3 pm	
Week 1 – Week 12	CL1.87	

Tutor - Thursday	IT Lab Session Room #: IT2.42
Mr Mansha Nawaz M.Nawaz@tees.ac.uk	Time: 3 – 5 pm

Tutor – Friday	IT Lab Session Room #: OL3
Dr Yar Muhammad Yar.Muhammad@tees.ac.uk	Time: 9 – 11 am & 11 am – 1 pm
Dr Mengda He M.He@tees.ac.uk	Time: 9 – 11 am
Mr Vishalkumar Thakor V.Thakor@tees.ac.uk	Time: 11 am - 1 pm & 1 - 3 pm
Mr Mansha Nawaz M.Nawaz@tees.ac.uk	Time: 1 – 3 pm

Systems Design and Databases CIS1018-N Weekly Plan for the Activities

Week	Lecturer	Lecture Demo	Lab Exercises & Solutions	ICA Tasks:
01	Module Introduction, System Design, Introduction Databases (DDL, DML, DCL, TCL)	 Requirement List & MoSCoW Wireframe Design & Templates, User Stories 	Team Setup, Hands-on to collect/pick the Requirements from MoSCoW and write Writing User stories on each Tutorial 1	Requirements List & MosCOW, User stories
02	UML and UML Tool,	Use Case Diagrams from Requirements List and Wireframe	 Hands-on Use Case Diagrams Activities Tutorial 2 	Each Wireframe has associated Use Case Activity Deadline for Team Setup is Week # 2, by Friday 07/10/2022 before 4pm
03	Sequence Diagrams	 Class Diagrams 	 Hands-on Sequence & Class Diagrams Activities Tutorial 3 	Each Wireframe has associated Sequence and Class Diagrams
04	Entity Relationship Diagrams (ERD) A Data Modelling Case Tool for Relational Databases	 Introduction to SQL Server Walk-through: SQL Quick Guide 1 - How to use SSMS to build Databases 	Tutorial 4 Lab Resources: SQL Quick Guide 1	Each Wireframe has associated Class Diagram

Week	Lecturer	Lecture Demo	La	b Exercises & Solutions	ICA Tasks:	
05	Querying with Select	Demo A – Writing Simple SELECT Statements Demo B/C – Eliminating Duplicates with DISTINCT Demo D - Writing Simple CASE	•	TSQL-Mod03 Lab-Exercise 1-4 Tutorial 5	SQL Task A: TSQL03 Querying with Select Writing Simple SELECT Statements Eliminating Duplicates with DISTINCT Using Column and Table Aliases Writing Simple CASE Expressions	
06	Querying with Multiple Tables	Demo B – Relating 2 or more tables – Joins & Joining multiple tables – inner, outer and cross.	•	TSQL-Mod04 Exercise 1-5 Tutorial 6	SQL Task B: TSQL04 – Querying with Multiple Tables • Relating 2 or more tables – Joins • Joining multiple tables – inner, outer and cross.	
07	Sorting and Filtering Data	Demo A – Sort with ORDER BY Demo B – Filter with WHERE Clause Demo C – Filtering with Top OffsetFetch Demo D – Handling NULL	•	TSQL-Mod05 Exercise 1 – 4 Tutorial 7	SQL Task C: TSQL <u>05</u> – Sort and Filtering Data • Sort with Order By • Filter with <u>Where By</u> • Filter with top <u>offsetfetch</u> • Handling Nulls	
Sub	Submission ICA 1 (Group Submission) -> Deadline is Wednesday 16/11/2022 before 4pm					
08	Working with SQL Server Data	Demo A - Conversion in a Query Demo B - collation in a query Demo C - date and time functions	•	TSQL-Mod06 Exercise 1 – 4 Tutorial 8	SQL Task D: TSQL06 – Working with SQL Server Data Conversion in a Query collation in a query date and time functions	

09	Using DML to modify Data	Demo A - Adding Data to Tables Demo B - Modifying and Removing Data Demo C - Generating Automatic Column Values	TSQL-Mod07 Exercise 1 – 2 Tutorial 9	SQL Task E: TSQL07– Using DML to Modify Data Adding Data to Tables Modifying and Removing Data Generating Automatic Column Values
10	Using built in Functions	Demo A – Scalar Functions Demo B – Cast Functions Demo C – If Functions Demo D – IsNull Functions	TSQL-Mod08 Exercise 1 – 3 Tutorial 10	SQL Task F: TSQL08– Using Built-In Functions • Writing Queries with Built-In Functions • Using Conversion Functions • Using Logical Functions • Using Functions to Work with NULL
11	Walk through SQL Quick Guide 2 - Create a Tables and Relationships via SSMS GUI	Walk through: SQL Quick Guide 3 - Create Query, View through Designer	Hands-on: • SQL Server Quick Guide 2	SQL Server – Introduction to SQL Server and SSMS
12	Support	Support	Hands-on: SQL Server Quick Guide 3	SQL Server – Introduction to SQL Server and SSMS

Overview

- Introducing SQL Server 2019 Data Types
- Working with Character Data
- Working with Date and Time Data

Introducing SQL Server 2019 Data Types

- SQL Server Data Types
- Numeric Data Types
- Binary String Data Types
- Other Data Types
- Data Type Precedence
- When are Data Types Converted?
- Demonstration: SQL Server Data Types

SQL Server Data Types

- SQL Server associates' columns, expressions, variables and parameters with data types
- Data types determine the kind of data that can be held in a column or variable
 - Integers, characters, dates, decimals, binary strings, and so on
- SQL Server supplies built-in data types
- Developers can also define custom data types

SQL Server Data Type Categories			
Exact numeric	Unicode character strings		
Approximate numeric	Binary strings		
Date and time	Other		
Character strings			

Numeric Data Types

Exact Numeric Data Types

Data Type	Range	Storage (bytes)
tinyint	0 to 255	1
smallint	-32,768 to 32,768	2
int	2 ³¹ (-2,147,483,648) to 2 ³¹ -1 (2,147,483,647)	4
bigint	-2 ⁶³ - 2 ⁶³ -1 (+/- 9 quintillion)	8
bit	1, 0 or NULL	1
decimal/numeric	-10 ³⁸ +1 through 10 ³⁸ – 1 when maximum precision is used	5-17
money	-922,337,203,685,477.5808 to 922,337,203,685,477.5807	8
smallmoney	-214,748.3648 to 214,748.3647	4

Binary String Data Types

Binary string data types

Data Type	Range	Storage (bytes)
binary(n)	1 to 8000 bytes	n bytes
varbinary(n)	1 to 8000 bytes	n bytes + 2
varbinary(max)	1 to 2.1 billion (approx.) bytes	n bytes + 2

 The image data type is also a binary string type but is marked for removal in a future version of SQL Server; varbinary(max) should be used instead

Other Data Types

Data Type	Range	Storage (bytes)	Remarks
xml	0-2 GB	0-2 GB	Stores XML in native hierarchical structure
uniqueidentifier	Auto-generated	16	Globally unique identifier (GUID)
hierarchyid	n/a	Depends on content	Represents position in a hierarchy
rowversion	Auto-generated	8	Previously called timestamp
geometry	0-2 GB	0-2 GB	Shape definitions in Euclidian geometry
geography	0-2 GB	0-2 GB	Shape definitions in round-earth geometry
sql_variant	0-8000 bytes	Depends on content	Can store data of various other data types in the same column
cursor	n/a	n/a	Not a storage datatype—used for cursor operations
table	n/a	n/a	Not a storage data type—used for query operations

Data Type Precedence

- Data type precedence determines which data type will be chosen when expressions of different types are combined
- By default, the data type with the lower precedence is converted to the data type with the higher precedence
- It is important to understand implicit conversions
 - Conversion to a data type of lower precedence must be made explicitly (using CAST or CONVERT functions)
- Example precedence (low to high)
 - CHAR -> VARCHAR -> NVARCHAR -> TINYINT -> INT -> DECIMAL -> TIME -> DATE ->
 DATETIME2 -> XML
- Not all combinations of data type have a conversion (implicit or explicit)

When are Data Types Converted?

- Data type conversion scenarios
 - · When data is moved, compared to or combined with other data
 - During variable assignment
- Implicit conversion
 - When comparing data of one data type to another
 - Transparent to the user

```
WHERE <column of smallint type> = <value of int type>
```

- Explicit conversion
 - Uses CAST or CONVERT functions

```
CAST(unitprice AS INT)
```

Demonstration A withAdventureWorksLT2019 : SQL Server Data Types

In this demonstration, you will see how to Convert data types

- Week8 Demonstration A TSQL conversion in a query.sql
- Week8 Demonstration B AWLT2019 collation in a query.sql
- Week8 Demonstration B TSQL collation in a query.sql
- Week8 Demonstration C AWLT2019 date and time functions.sql
- Week8 Demonstration C TSQL- date and time functions.sql

Demonstration A with TSQL: SQL Server Data Types

In this demonstration, you will see how to Convert data types

- Week8 Demonstration A AWLT2019 conversion in a query.sql
- Week8 Demonstration A TSQL conversion in a query.sql
- Week8 Demonstration B AWLT2019 collation in a query.sql
- Week8 Demonstration B TSQL collation in a query.sql
- Week8 Demonstration C AWLT2019 date and time functions.sql
- Week8 Demonstration C TSQL- date and time functions.sql

Working with Character Data

- Character Data Types
- Collation
- String Concatenation
- Character String Functions
- The LIKE Predicate
- Demonstration: Working with Character Data

Character Data Types

- SQL Server supports two kinds of character data as fixed-width or variable-width data:
 - Single-byte: char and varchar
 - One byte stored per character
 - Only 256 possible characters—limits language support
 - Multibyte: nchar and nvarchar
 - Multiple bytes stored per character (usually two bytes, but sometimes up to four)
 - More than 65,000 characters represented—multiple language support
 - Precede character string literals with N (National)
 - text and ntext data types are deprecated, but may still be used in older systems
 - In new development, use varchar(max) and nvarchar(max) instead

Collation

- Collation is a collection of properties for character data
 - Character set
 - Sort order
 - Case sensitivity
 - Accent sensitivity
- When querying, collation awareness is important for comparison
 - Is the database case-sensitive? If so:
 - 'Funk' does not equal 'funk'
 - SELECT * FROM HR.Employee does not equal SELECT * FROM HR.employee
- Add COLLATE clause to control collation comparison

```
SELECT empid, lastname
FROM HR.employees
WHERE lastname COLLATE Latin1_General_CS_AS = N'Funk';
```

String Concatenation

- The + (plus) operator and the CONCAT function can both be used to concatenate strings in SQL 2019
 - Using CONCAT
 - Converts input values to strings and converts NULL to empty string

```
SELECTcustid, city, region, country,
   CONCAT(city, ', ' + region, ', ' + country) AS location
FROM Sales.Customers;
```

- Using + (plus)
 - No conversion of NULL or data type

```
SELECT empid, lastname, firstname,
firstname + N' ' + lastname AS fullname
FROM HR.Employees;
```

Character String Functions

Common functions that modify character strings

Function	Syntax	Remarks
SUBSTRING	SUBSTRING (expression , start , length)	Returns part of an expression.
LEFT, RIGHT	LEFT (expression , integer_value) RIGHT (expression , integer_value)	LEFT returns left part of string up to integer_value. RIGHT returns right part of string up to integer value.
LEN, DATALENGTH	LEN (string_expression) DATALENGTH (expression)	LEN returns the number of characters in string_expression, excluding trailing spaces. DATALENGTH returns the number of bytes used.
CHARINDEX	CHARINDEX (expressionToFind, expressionToSearch)	Searches expressionToSearch for expressionToFind and returns its start position if found.
REPLACE	REPLACE (string_expression, string_pattern, string_replacement)	Replaces all occurrences of string_pattern in string_expression with string_replacement.
UPPER, LOWER	UPPER (character_expression) LOWER (character_expression)	UPPER converts all characters in a string to uppercase. LOWER converts all characters in a string to lowercase.

The LIKE Predicate

- The LIKE predicate can be used to check a character string for a match with a pattern
- Patterns are expressed with symbols
 - % (Percent) represents a string of any length
 - _ (Underscore) represents a single character
 - [<List of characters>] represents a single character within the supplied list
 - [<Character> <character>] represents a single character within the specified range
 - [^<Character list or range>] represents a single character not in the specified list or range
 - ESCAPE Character allows you to search for characters that would otherwise be treated as part of a pattern - %, _, [, and])

```
SELECT categoryid, categoryname, description
FROM Production.Categories
WHERE description LIKE 'Sweet%';
```

Demonstration B with AdventureWorksLT2019: Working with Character Data

In this demonstration, you will see how to Manipulate character data

- Week8 Demonstration A AWLT2019 conversion in a query.sql
- Week8 Demonstration A TSQL conversion in a query.sql
- Week8 Demonstration B AWLT2019 collation in a query.sql
- Week8 Demonstration B TSQL collation in a query.sql
- Week8 Demonstration C AWLT2019 date and time functions.sql
- Week8 Demonstration C TSQL- date and time functions.sql

Demonstration B with TSQL: Working with Character Data

In this demonstration, you will see how to Manipulate character data

- Week8 Demonstration A AWLT2019 conversion in a query.sql
- Week8 Demonstration A TSQL conversion in a query.sql
- Week8 Demonstration B AWLT2019 collation in a query.sql
- Week8 Demonstration B TSQL collation in a query.sql
- Week8 Demonstration C AWLT2019 date and time functions.sql
- Week8 Demonstration C TSQL- date and time functions.sql

Working with Date and Time Data

- Date and Time Data Types
- Entering Date and Time Data Types Using Strings
- Working Separately with Date and Time
- Querying Date and Time Values
- Date and Time Functions
- Demonstration: Working with Date and Time Data

Date and Time Data Types

- Older versions of SQL Server support only datetime and smalldatetime data types
- SQL Server 2008 introduced date, time, datetime2 and datetimeoffset data types
- SQL Server 2012 added further functionality for working with date and time data types

Data Type	Storage (bytes)	Date Range (Gregorian Calendar)	Accuracy	Recommended Entry Format
datetime	8	January 1, 1753 to December 31, 9999	Rounded to increments of .000, .003, or .007 seconds	YYYYMMDD hh:mm:ss[.mmm]
smalldatetime	4	January 1, 1900 to June 6, 2079	1 minute	YYYYMMDD hh:mm:ss[.mmm]
datetime2	6 to 8	January 1, 0001 to December 31, 9999	100 nanoseconds	YYYYMMDD hh:mm:ss[.nnnnnnn]
date	3	January 1, 0001 to December 31, 9999	1 day	YYYY-MM-DD
time	3 to 5	n/a – time only	100 nanoseconds	hh:mm:ss[.nnnnnnn]
datetimeoffset	8 to 10	January 1, 0001 to December 31, 9999	100 nanoseconds	YYYY-MM- DDThh:mm:ss[.nnnnnnn][{+ -}hh:mm]

Entering Date and Time Data Types Using Strings

- SQL Server doesn't offer a means to enter a date or time value as a literal value
 - Dates and times are entered as character literals and converted explicitly or implicitly
 - For example, char converted to datetime due to precedence
 - Formats are language-dependent, and can cause confusion
- Best practices:
 - Use character strings to express date and time values
 - Use language-neutral formats

```
SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate = '20070825';
```

Working Separately with Date and Time

- datetime, smalldatetime, datetime2, and datetimeoffset include both date and time data
- If only date is specified, time set to midnight (all zeros)

```
DECLARE @DateOnly AS datetime2 = '20190112';
SELECT @DateOnly AS Result;
```

• If only time is specified, date set to base date (January 1, 1900)

```
DECLARE @time AS time = '12:34:56';
SELECT CAST(@time AS datetime2) AS Result;
```

Querying Date and Time Values

- Date values converted from character literals often omit time
 - Queries written with equality operator for date will match midnight

```
SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate= '20070825';
```

- If time values are stored, queries need to account for time past midnight on a date
 - Use range filters instead of equality

```
SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHEREorderdate >= '20070825'
ANDorderdate < '20070826';</pre>
```

Date and Time Functions

- To get system date and time values
 - For example, GETDATE, GETUTCDATE, SYSDATETIME
- To get date and time parts
 - For example, DATENAME, DATEPART
- To get date and time values from their parts
 - For example, DATETIME2FROMPARTS, DATEFROMPARTS
- To get date and time difference
 - For example, DATEDIFF, DATEDIFF_BIG
- To modify date and time values
 - For example, DATEADD, EOMONTH
- To validate date and time values
 - For example, ISDATE

Demonstration C with AdventureWorksLT2019: Working with Date and Time Data

In this demonstration, you will see how to Query date and time values

- Week8 Demonstration A AWLT2019 conversion in a query.sql
- Week8 Demonstration A TSQL conversion in a query.sql
- Week8 Demonstration B AWLT2019 collation in a query.sql
- Week8 Demonstration B TSQL collation in a query.sql
- Week8 Demonstration C AWLT2019 date and time functions.sql
- Week8 Demonstration C TSQL- date and time functions.sql

Demonstration C with TSQL: Working with Date and Time Data

In this demonstration, you will see how to Query date and time values

- Week8 Demonstration A AWLT2019 conversion in a query.sql
- Week8 Demonstration A TSQL conversion in a query.sql
- Week8 Demonstration B AWLT2019 collation in a query.sql
- Week8 Demonstration B TSQL collation in a query.sql
- Week8 Demonstration C AWLT2019 date and time functions.sql
- Week8 Demonstration C TSQL- date and time functions.sql

Transact-SQL Data types

SQL Data types (Transact-SQL) web resources:

- Microsoft Docs | Data types (Transact-SQL)
- W3Schools | SQL Data Type
- <u>SQL Server Tutorial.net | SQL Server Data Types</u>
- <u>Tutorialspoint</u> | T-SQL Data Types
- JavaTpoint | Data types T-SQL

SQL Data types (Transact-SQL) Video link:

T-SQL - Data Types

Data Types in SQL Server

T-SQL Data Types

