

Data Science Lab - 5

Bivariate Analysis

Name: Manikandan P RegNo: 2019202030

WORKING WITH SUV - DATA SET

Importing Libraries

Loading suv_data.csv data set

Displaying first 20 records of data

Displaying datatypes of columns

Grouping data set by "purchased"

Dropping column "User ID" and displaying

Describing Data set

Displaying purchased and not purchased count in Bar Diagram

Displaying purchased SUV by categorizing in gender

Data set of column "Age" in bins

Categorizing by age of SUV-Purchasers

Displaying that data in Bar Chart

Categorizing By Income of the SUV - Buyers

Displaying that data in Bar Chart

Slicing the column

Lab-4 DATASCIENCE 2019202030

Predicting:

```
Classifier.fit (X_train, Y_train)
Out[38]: LogisticRegression(random_state=0, solver='liblinear')
In [39]: predictions = classifier.predict (X_test)
In [40]: report = classification_report (Y_test, predictions)
         print (report)
                      precision recall f1-score support
                          0.73
                                  0.98
                                             0.84
                                                        58
                   1
                          0.50
                                   0.05
                                             0.08
                                                        22
                                             0.73
                                                        80
            accuracy
                                            0.46
                        0.62
                                  0.51
                                                        80
           macro avg
                     0.67
                                            0.63
                                                        80
        weighted avg
                                  0.72
In [41]: accuracy_score (Y_test, predictions)
Out[41]: 0.725
```