Cech Cohomology

X a topological space.

Motivating question - Describe all the line bundles on X.

• Conversely, given ∃Ui} and fij: Ujj → C*
satisfying ♠ , ∃ π: L→X ...

Stort with
$$\coprod U_i \times \mathbb{C}$$
 $U_i \times \mathbb{C}$
 $U_i \times \mathbb{C}$
glue
 $U_j \times \mathbb{C} \leftrightarrow U_j \times \mathbb{C}$
 $(u, v) \longrightarrow (u, f_j(u) \cdot v)$

1) Two sets of 3fij3 might give same (iso) L 2) Only L trivialized on suit will arise in this way.

and
$$\exists$$
 iso $N: L \xrightarrow{N} M$
 $L|u: \xrightarrow{N} M|_{Ui}$ $hi: Ui \to \mathbb{C}$
 $U: \times \mathbb{C} \xrightarrow{N} Ui \times \mathbb{C}$
 $(u,v) \mapsto (u, h;(u)-v)$

$$9ij \circ hi = hj \circ fij$$

$$hi \cdot hj = fij \cdot gij$$

Conversely if I hi: Ui -> C* s.t. fij-9ij = hi-hj

then L&M are iso morphic

$$\rightarrow$$
 Ker $(d: C^1 \rightarrow C^2)$
 \rightarrow Im $(d: C^0 \rightarrow C^1)$

X a topological space. F a sheaf of abelian groups on X.

Example.s

①
$$X = RS$$
. : $F = Q_X$
i.e. $F(U) = \{ hol-func. U \rightarrow C \}$

$$\begin{array}{cccc}
\text{(2)} & F = O_{\times}^{*} \\
F(U) = & \text{(bi). func. } U \rightarrow C^{*} & \text{(c)}
\end{array}$$

(3)
$$\pi: V \to X$$
 a $v.b.$ $F = O(V)$
 $F(U) = \S hol. sec. U \to V | u \S$

(5)
$$\times$$
 manifold. $F = C_{\times}^{\infty}$
 $V \rightarrow X \text{ v.b.}$ $F = C_{\times}^{\infty}(V)$

6 Constant sheaves: G an abelian group
$$G_X(U) = \frac{1}{2}$$
 Locally const. fun $U \rightarrow G_X^2$ e.g. Z_X , Z_X

Fix an open cover
$$U = \{Ui\}_{i \in I}$$
 of X .
Given $i_0,..., i_n \in I$

$$U_{i_0,...,i_n} = U_{i_0} \cap \cdots \cap U_{i_n}$$

$$C^{n}(U,F) = TT F(U_{i_0,...,i_n})$$

map
$$d: C^n(U,F) \rightarrow C^{nH}(U,F)$$

$$\phi \mapsto d \phi$$

$$(d\phi)_{i_0,\dots,i_{n+1}} \in F(U_{i_0,\dots,i_{n+1}})$$

$$\phi_{i_1,\dots,i_n} - \phi_{i_0i_2\dots i_n} + \phi_{i_0i_1i_3\dots i_n} \dots$$

e.g.
$$d: C \rightarrow C'$$

$$\{ \phi_i \} \rightarrow \{ d\phi_{ij} \}$$

$$d\phi_{ij} = \phi_i - \phi_j.$$

$$d: C' \rightarrow C^2$$

$$\{\phi_{ij}\} \rightarrow \{\phi_{ijk}\}$$

$$d\phi_{ijk} = \phi_{jk} - \phi_{ik} + \phi_{ij}$$

$$Check \quad dod = 0.$$

$$\frac{\text{Def}: H_0^i(X,F) := \underbrace{\text{Ker}(d: C^i \rightarrow c^{iH})}_{\text{Im}(d: C^{iH} \rightarrow c^i)}$$

 $\frac{\text{Rem}}{\text{m}}: 1) H_{U}^{1}(X, Q_{x}^{*}) = \text{Hol. Line bundles}$ trivi ized on U

a)
$$H_{\upsilon}^{o}(X, \mathcal{O}_{X}) = (X, \mathcal{O}_{X})$$

 $H_{\upsilon}^{o}(X, \mathcal{O}_{X}(v)) = \Gamma(X, V)$
 $H_{\upsilon}^{o}(X, F) = \Gamma(X, F) = F(X).$

3) A map $F \rightarrow G$ induces a map $C_{\nu}^{i}(F) \rightarrow G_{\nu}^{i}(G)$ commuli with d and hence a map $H_{\nu}^{i}(X,F) \rightarrow H_{\nu}^{i}(X,G)$

Refinements: Suppose we have open covers $V = \{U_i\}_{i \in I}$ and $V = \{V_i\}_{i \in I}$. A refinement

 $V \rightarrow V$ is a map $r: J \rightarrow I$ such that $V_j \subset U_{r(j)}$

-A refinement U-aV gives maps

Cu -> Cv

Communing with ds.

Now, open coverings under refin ents homes a "directed system" -> eany two have common refinement.

So an elem. of HI(X,F) is rep by a Čeeh cocycle on <u>some</u> open cover {Ui}.

Two cocycles on {Ui} are eqv. if I

refinement after which their difference
becomes a coboundary.

Eary calculations

Z' on

S'

How

SES -> LES.

 $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$ an exact seg. g sheaves g abelian groups on X. Then we get....

$$0 \rightarrow H^{0}(K) \rightarrow H^{0}(M) \rightarrow H^{0}(N)$$
 $\Rightarrow H^{0}(K) \rightarrow H^{0}(M) \rightarrow H^{0}(N)$
 $\Rightarrow H^{0}(K) \rightarrow$

Bm Han.