BÀI SỐ 7. GIÁ TRỊ RIÊNG – VÉC TƠ RIÊNG

I. Định nghĩa

- Cho ma trận $A = [a_{ij}]_{n \times n}$.
- Số λ đgl một giá trị riêng của A nếu tồn tại một véc tơ $x \neq 0$ sao cho $Ax = \lambda x$.
- Véc tơ x đgl một véc tơ riêng của A ứng với giá trị riêng λ.

NX. •
$$Ax = \lambda x \Leftrightarrow (A - \lambda I)x = 0$$
.

Số λ là một giá trị riêng của A

$$\Leftrightarrow (A - \lambda I)x = 0$$
 có nghiệm $x \neq 0$

$$\Leftrightarrow r(A - \lambda I) < n$$

$$\Leftrightarrow \det(A - \lambda I) = 0.$$

• $\det(A - \lambda I) = 0$ đgl phương trình đặc trưng của ma trận A.

Các bước tìm giá trị riêng, véc tơ riêng của A:

- B1: Tính

$$|A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

- B2: Giải phương trình đặc trưng $|A - \lambda I| = 0$.

Các nghiệm của nó chính là các giá trị riêng;

- B3: Với mỗi λ vừa tìm được giải hpt véc tơ riêng $(A - \lambda I)x = 0$. Mỗi nghiệm $x \neq 0$ của hệ sẽ là 1 véc tơ riêng ứng với giá trị riêng λ .

VD. Tìm giá trị riêng, véc tơ riêng của:

a.
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
; b. $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}$
 $a, Co: A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ 1 & 4 - \lambda \end{bmatrix} \Rightarrow |A - \lambda I| = (1 - \lambda)(4 - \lambda) - 1(-2) = \lambda^2 - 5\lambda + 6$

$$|A - \lambda I| = 0 \Leftrightarrow \lambda^{2} - 5\lambda + 6 = 0 \Leftrightarrow \begin{bmatrix} \lambda_{1} = 2 \\ \lambda_{2} = 3 \end{bmatrix}$$

$$Xet: (A - \lambda_{1}I)x = 0 \Leftrightarrow \begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_{1} + 2x_{2} = 0 \Rightarrow \begin{cases} \text{bien tru: } x_{1} \\ \text{bien tu do: } x_{2} \end{cases}$$

Nghiem d/b:
$$(-2,1) \Rightarrow$$
 vecto rieng ung voi λ_1 la $s_1 (= (-2,1)^T) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
 $Xet: (A - \lambda_2 I)x = 0 \Leftrightarrow \begin{bmatrix} -2 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_1 + x_2 = 0 \Rightarrow \begin{cases} bien tru: x_1 \\ bien tu do: x_2 \end{cases}$

Nghiem d/b:
$$(-1,1) \Rightarrow$$
 vecto rieng ung voi λ_2 la $s_2 = (-1,1)^T = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$b, Co: B - \lambda I = \begin{bmatrix} 1 - \lambda & 2 & 3 \\ 0 & 2 - \lambda & 4 \\ 0 & 0 & -\lambda \end{bmatrix} \Rightarrow |B - \lambda I| = (-\lambda)(1 - \lambda)(2 - \lambda)$$

$$|B - \lambda I| = 0 \Leftrightarrow \lambda (1 - \lambda)(2 - \lambda) = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = 0 \\ \lambda_2 = 1 \\ \lambda_3 = 2 \end{bmatrix}$$

$$Xet: (A - \lambda_3 I)x = 0 \Leftrightarrow \begin{bmatrix} -1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longleftrightarrow \xrightarrow{H3 \to H3 + \frac{1}{2}H2} \begin{bmatrix} -1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$
bien tru: $x_1, x_2, \dots, (-x_1 + 2x_2 + 3x_3) = 0$

$$\Rightarrow \text{bien tru: } x_1, x_3 \text{, } co : \begin{cases} -x_1 + 2x_2 + 3x_3 = 0 \\ 4x_3 = 0 \end{cases}, cho : x_2 = 1 \Rightarrow$$

Nghiem d/b: $(2,1,0) \Rightarrow$ vecto rieng ung voi λ_3 la $s_3 = (2,1,0)^T = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

Định lý: Cho ma trận A có giá trị riêng λ và x là một véc tơ riêng tương ứng.

- Nếu A khả nghịch thì A^{-1} có giá trị riêng là λ^{-1} và véc tơ riêng tương ứng là x.
- aA + bI có giá trị riêng $a\lambda + b$ và véc tơ riêng tương ứng là x.
- Aⁿ có giá trị riêng λⁿ và véc tơ riêng tương ứng là x.

VD. Cho
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
. Tìm các giá trị riêng, véc tơ

riêng của các ma trận sau : A^{-1} ; A - 2I; A^{4} .

Định lý: Cho $A = [a_{ij}]_{n \times n}$ có n giá trị riêng $\lambda_1; \lambda_2; ...; \lambda_n$

•
$$a_{11} + a_{22} + ... + a_{nn} = \lambda_1 + \lambda_2 + ... + \lambda_n$$

$$tr(A) := a_{11} + a_{22} + ... + a_{nn} dgl v \acute{e}t c \acute{u}a A.$$

• det $A = \lambda_1 . \lambda_2 ... \lambda_n$.

II. Chéo hóa ma trận

1. Định nghĩa

Ma trận vuông A đgl chéo hóa được nếu tồn tại ma trận S khả nghịch và ma trận đường chéo Λ sao cho $S^{-1}AS = \Lambda$.

Định lý: Cho ma trận A vuông cấp n có n véc tơ riêng độc lập tuyến tính $v_1, v_2, ..., v_n$ tương ứng với các giá trị riêng $\lambda_1, \lambda_2, ..., \lambda_n$. Khi đó A chéo hóa được và $S^{-1}AS = \Lambda$, trong đó $S = [v_1 \ v_2 \ ... \ v_n]$ và

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

• Do các véc tơ $v_1, v_2, ..., v_n$ độc lập tuyến tính nên det $S \neq 0$ và do đó S có ma trận nghịch đảo S^{-1} .

$$\bullet \left[Av_1 \ Av_2 \dots Av_n \right] = \left[\lambda_1 v_1 \ \lambda_2 v_2 \dots \lambda_n v_n \right]$$

$$\Leftrightarrow A[v_1 \ v_2 ... \ v_n] = \begin{bmatrix} v_1 \ v_2 ... \ v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & ... & 0 \\ 0 & \lambda_2 & ... & 0 \\ ... & ... & ... \\ 0 & 0 & ... & \lambda_n \end{bmatrix}$$

$$\Leftrightarrow AS = S\Lambda \Leftrightarrow S^{-1}AS = \Lambda.$$

VD. Chéo hóa ma trận sau (nếu có):

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1-\lambda \end{bmatrix} \qquad a, Co: A - \lambda I = \begin{bmatrix} 1-\lambda & 1 \\ 0 & 1-\lambda \end{bmatrix} \Rightarrow |A - \lambda I| = (1-\lambda)(1-\lambda) - 1 \times 0 = (\lambda - 1)^2$$

$$|A - \lambda I| = 0 \Leftrightarrow (\lambda - 1)^2 = 0 \Leftrightarrow \lambda = 1 \text{ (nghiem kep)}$$

$$Xet: (A - \lambda_1 I)x = 0 \Leftrightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_2 = 0 \Rightarrow \text{bien tru: } x_2 \text{bien tu do: } x_1$$

Nghiem d/b: $(1,0) \Rightarrow$ vecto rieng ung voi λ la $s = (1,0)^T = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

2. Úng dụng

Do ... nen ko cheo hoa dc

Định lý: Cho số nguyên dương k bất kỳ.

• Nếu
$$A = S\Lambda S^{-1}$$
 thì $A^k = S\Lambda^k S^{-1}$.

VD. Cho ma trận $A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$. a. Chéo hóa ma trận A. b. Tính A^{100} . $a, Co: A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ 1 & 4 - \lambda \end{bmatrix} \Rightarrow |A - \lambda I| = (1 - \lambda)(4 - \lambda) - 1(-2) = \lambda^2 - 5\lambda + 6$

$$|A - \lambda I| = 0 \Leftrightarrow \lambda^2 - 5\lambda + 6 = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = 2 \\ \lambda_2 = 3 \end{bmatrix}$$

$$Xet: (A - \lambda_1 I)x = 0 \Leftrightarrow \begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_1 + 2x_2 = 0 \Rightarrow \begin{cases} \text{bien tru: } x_1 \\ \text{bien tu do: } x_2 \end{cases}$$

$$Nghiem d/b: (-2,1) \Rightarrow \text{vecto rieng ung voi } \lambda_1 \text{ la } s_1 (= (-2,1)^T) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

 $Xet: (A - \lambda_2 I)x = 0 \Leftrightarrow \begin{bmatrix} -2 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_1 + x_2 = 0 \Rightarrow \begin{cases} bien tru: x_1 \\ bien tu do: x_2 \end{cases}$

Nghiem d/b:
$$(-1,1) \Rightarrow$$
 vecto rieng ung voi λ_2 la $s_2 = (-1,1)^T = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$\Rightarrow S = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix}, \Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \Rightarrow S^{-1} = \frac{1}{-2 \times 1 - (-1) \times 1} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix}$$

$$\approx S^{-1} A S = A$$

$$a, S^{-1}AS = \Lambda \dots$$

$$b, A^{n} = S\Lambda^{n}S^{-1} = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -2^{n+1} & -3^{n} \\ 2^{n} & 3^{n} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2^{n+1} - 3^{n} & 2^{n+1} - 2 \times 3^{n} \\ -2^{n} + 3^{n} & -2^{n} + 2 \times 3^{n} \end{bmatrix}$$

Cho ma trận
$$A =$$

VD. Cho ma trận
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$
. a. Chéo hóa ma trận A. b. Tính A^{100} .

$$a, Co: A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ 1 & 3 - \lambda \end{bmatrix} \Rightarrow |A - \lambda I| = (1 - \lambda)(3 - \lambda) - 1(-2) = \lambda^2 - 4\lambda + 5$$

$$|A - \lambda I| = 0 \Leftrightarrow \lambda^2 - 4\lambda + 5 = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = 2 + i \\ \lambda_2 = 2 - i \end{bmatrix}$$

$$Xet: (A - \lambda_1 I)x = 0 \Leftrightarrow \begin{bmatrix} -1 - i & -2 \\ 1 & 1 - i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_1 + (1 - i)x_2 = 0 \Rightarrow \begin{cases} bien tru: x_1 \\ bien tu do: x_2 \end{cases}$$

Nghiem d/b:
$$(-1+i,1) \Rightarrow$$
 vecto rieng ung voi λ_1 la $s_1 = (-1+i,1)^T = \begin{bmatrix} -1+i \\ 1 \end{bmatrix}$

$$Xet: (A - \lambda_2 I)x = 0 \Leftrightarrow \begin{bmatrix} -1 + i & -2 \\ 1 & 1 + i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow x_1 + (1 + i)x_2 = 0 \Rightarrow \begin{cases} \text{bien tru: } x_1 \\ \text{bien tu do: } x_2 \end{cases}$$

Nghiem d/b:
$$(-1-i,1) \Rightarrow$$
 vecto rieng ung voi λ_2 la $s_2 = (-1-i,1)^T = \begin{bmatrix} -1-i \\ 1 \end{bmatrix}$

$$\Rightarrow S = \begin{bmatrix} -1+i & -1-i \\ 1 & 1 \end{bmatrix}, \Lambda = \begin{bmatrix} 2+i & 0 \\ 0 & 2-i \end{bmatrix} \Rightarrow S^{-1} = \frac{1}{-1+i-(-1-i)} \begin{bmatrix} 1 & 1+i \\ -1 & -1+i \end{bmatrix} = \frac{1}{2i} \begin{bmatrix} 1 & 1+i \\ -1 & -1+i \end{bmatrix}$$

$$a, S^{-1}AS = \Lambda...$$

$$b, A^{n} = S \Lambda^{n} S^{-1} = \begin{bmatrix} -1+i & -1-i \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (2+i)^{n} & 0 \\ 0 & (2-i)^{n} \end{bmatrix} \frac{1}{2i} \begin{bmatrix} 1 & 1+i \\ -1 & -1+i \end{bmatrix} = \dots$$