ARQUITECTURA DE AGENTES REACTIVOS

Luís Morgado 2024

MECANISMOS DE REACÇÃO

Num comportamento composto, uma percepção pode potencialmente activar múltiplas reacções, as quais geram diferentes acções, levanta-se por isso o problema de selecionar qual a acção a gerar à saída

MECANISMOS DE REACÇÃO

SELECÇÃO DE ACÇÃO

- Como seleccionar as acções a realizar?
- Mecanismos de combinação e selecção de acções
 - Execução paralela de acções
 - Prioridade de acções
 - Combinação de acções

SELECÇÃO DE ACÇÃO

ACÇÕES PARALELAS

- Acções que não interferem entre si podem ser executadas em paralelo
- Viável se a infra-estrutura o suportar
 - Por exemplo, se existirem múltiplos actuadores distintos

SELECÇÃO DE ACÇÃO

PRIORIDADE DE ACÇÕES

- Acções interferem entre si
 - Não podem ser executadas em conjunto
- É associada informação de prioridade a cada acção
- A acção com maior prioridade é seleccionada para execução

SELECÇÃO DE ACÇÃO

COMBINAÇÃO DE ACÇÕES

- Diferentes acções são combinadas numa única acção
- Exige um formato adequado de representação de acção
 - Por exemplo, a representação de acções como vectores torna possível a combinação de acções através de soma vectorial

SELECÇÃO DE ACÇÃO

HIERARQUIA

 Os comportamentos estão organizados numa hierarquia fixa de subsunção (supressão e substituição)

PRIORIDADE

 As respostas são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução

COMBINAÇÃO

 As respostas são combinadas numa única resposta por composição (e.g. soma vectorial)

SELECÇÃO DE ACÇÃO

HIERARQUIA

 Os comportamentos estão organizados numa hierarquia fixa de subsunção (supressão e substituição)

S Subsunção (suprime e substitui)

SELECÇÃO DE ACÇÃO

PRIORIDADE

 As acções são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução

SELECÇÃO DE ACÇÃO

COMBINAÇÃO

 As respostas são combinadas numa única resposta por composição (por exemplo, soma vectorial)

AGENTE COM CONTROLO REACTIVO

Na concretização de uma arquitectura de agente, o **processamento interno** que relaciona percepções com acções, pode ser modularizado com base num módulo de **controlo**.

No caso da arquitectura de um **agente reactivo**, esse controlo será um **controlo reactivo**, em que o processar das percepções é realizado com base num módulo comportamental, também designado **comportamento**, o qual representa o comportamento geral do agente que pode ser constituído por diferentes sub-comportamentos.

MODELAÇÃO DE COMPORTAMENTOS

Para modelação dos comportamentos de um agente reactivo, deve ser realizada a **análise do domínio do problema** a resolver para identificação de diferentes aspectos, como a informação que o agente recebe do ambiente (para modelação das percepções), que tipo de acções a realizar e, em particular, qual a **finalidade do agente**, definida em termos de **objectivos** concretos.

A concretização dos objectivos identificados, deve posteriormente ser modelada sob a forma de **comportamentos**, os quais, por sua vez, podem ser definidos em termos de **sub-objectivos** que serão realizados sob a forma de **sub-comportamentos**, de forma modular.

ANÁLISE DO DOMÍNIO DO PROBLEMA

- OBJECTIVOS
 - Definem a finalidade do agente
 - COMPORTAMENTOS
 - Definem formas de concretizar os objectivos
 - SUB-OBJECTIVOS

PROJECTO: AGENTE PROSPECTOR

Objectivo: Realização de um sistema autónomo inteligente capaz de navegar num espaço de dimensões discretas, com obstáculos e um alvo, desviando-se dos obstáculos e recolhendo os alvos.

Direcções de movimento e de percepção do sistema:

- Norte
- Sul
- Este
- Oeste

- OBJECTIVOS
 - Recolher alvos
 - SUB-OBJECTIVOS
 - –Aproximar alvo
 - -Evitar obstáculos
 - -Explorar

Neste exemplo, o objectivo recolher alvos é modelado através de um comportamento, designado **Recolher**, o qual é um comportamento composto que agrega um conjunto de sub-comportamentos (**AproximarAlvo**, **EvitarObst**, **Explorar**), os quais correspondem a sub-objectivos que é necessário concretizar para que o objectivo principal seja concretizado, ou seja, para recolher alvos é necessário aproximar alvo, evitar obstáculos e explorar (quando não é detectado qualquer alvo).

COMPORTAMENTO RECOLHER

Após a definição de objectivos e comportamentos, é necessário definir a forma como estão relacionados e a organização interna dos comportamentos compostos, considerando os seguintes aspectos principais:

- **Níveis de competência** (neste exemplo, são definidos três níveis de competência, *aproximar*, *evitar*, *explorar*, encapsulados de forma modular através dos respetivos comportamentos)
- Tipo de selecção de acção (neste exemplo, existe uma hierarquia fixa de prioridade entre comportamentos)

Ao definir os comportamentos correspondentes a cada nível comportamental, é necessário ter em conta as características do agente, neste exemplo, o agente tem capacidade de percepcionar e de avançar em quatro direcções (NORTE, SUL, ESTE, OESTE), pelo que os comportamentos referentes a aproximar alvo e evitar obstáculos podem ser organizados em sub-comportamentos específicos para cada direcção.

Recolher alvos

- Aproximar alvo
 - Aproximar alvo (direcção = NORTE)
 - Aproximar alvo (direcção = SUL)
 - Aproximar alvo (direcção = ESTE)
 - Aproximar alvo (direcção = OESTE)
- Evitar obstáculos
 - Evitar direccional nas 4 direcções
- Explorar

O tipo de **selecção de acção** para coordenação de sub-comportamentos depende das características dos sub-comportamentos e do objectivo do comportamento composto que os agrega, neste exemplo, o comportamento referente a *aproximar alvo* tem por objectivo aproximar o alvo mais próximo, pelo que cada sub-comportamento do tipo *aproximar alvo direcional* (para a direcção respectiva) deve gerar informação de prioridade (relativa à proximidade a um alvo detectado) e deve ser implementado um mecanismo de selecção de acção por **prioridade**, que produza a acção de aproximação ao alvo mais próximo em função dessas prioridades.

EXEMPLO: Comportamento AproximarAlvo

BIBLIOGRAFIA

[Russel & Norvig, 2003]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003

[Murphy, 2000]

R. Murphy, An Introduction to Al Robotics, MIT Press, 2000

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Pfeifer & Scheier, 2002]

R. Pfeifer, C. Scheier, Understanding Intelligence, MIT Press, 2000

[Brooks, 1985]

R. Brooks, A Robust Layered Control System for a Mobile Robot, A. I. Memo 864, MIT Al-Lab, 1985

[Hoagland et al., 2001]

M. Hoagland, B. Dodson, J. Hauck, *Exploring The Way Life Works: The Science of Biology*, Jones & Bartlett Learning, 2001

[J. Staddon, 2001]

J. Staddon, Adaptive Dynamics: The Theoretical Analysis of Behavior, MIT Press, 2001

[Logan, 2001]

B. Logan, Designing Intelligent Agents, School of Computer Science, University of Nottingham, 2001