实验二:GPIO输入/输出实验

1. 实验目的

- 了解 Mini2440 ARM 实验板的功能和使用。
- 掌握 J-link 仿真器的用法,并能连接实验板调试程序。
- 掌握 GPIO 外设的操作原理和编程。

2. 实验设备

- 硬件: PC 机一台
 Mini2440 ARM 实验板一套
 J-link 仿真器一套
- 软件: WindowsXP 系统, Keil uVision 4.0 集成开发环境

3. 实验内容

- (1) 使用 GPIO 控制 Mini2440 实验板上的 LED 指示灯的亮/灭,使用 Keil uVision 的调试功能单步、全速运行程序,设置断点,打开寄存器窗口监视寄存器,观察实验板上的 LED 指示灯的状态。
- (2) 使用 GPIO 读取 Mini2440 实验板上的按键状态,观察按键输入的抖动现象。

4. 实验预习要求

- (1) 学习 GPIO 外设的操作原理和编程方法;
- (2) 查阅 JTAG 的介绍,了解使用仿真器联机调试的原理。

5. 实验步骤

(1)认识 Mini 2440 ARM 实验板。见图 2-1。

图 2-1 实验板及主要功能模块

图 2-2 电源接口与电源开关

LED 是开发中最常用的状态指示设备,本开发板具有4个用户可编程LED,它们直接与CPU 的GPIO 相连接,低电平有效(点亮),详细电路连接关系见图2-3、图2-4。

图 2-3 LED 指示灯

开发板总共有6个用户测试用按键,它们均从CPU 中断引脚直接引出,低电平触发,这些引脚也可以复用为GPIO和特殊功能口。

图 2-4 按键输入

JTAG接口是开发中最重要的接口,用途是调试,市面上常见的JLINK、ULINK,以及其他的仿真调试器,最终都是通过JTAG 接口连接的。标准的JTAG 接口是4线: TMS、 TCK、TDI、TDO,分别为模式选择、时钟、数据输入和数据输出线,加上电源和地,一般总共6条线就够了;为了方便调试,大部分仿真器还提供了一个复位信号。见图2-5。

图 2-5 JTAG 接口

- (2) 启动 Keil uVision,新建一个工程 ex02-1。不需要系统提供的 Startup 文件。建立汇编源文件 ex02-1. s,编写实验程序,然后添加到工程中。
 - (3)设置工程选项,存储器映射。见图 2-6。

图 2-6 设置存储器映射

(4) 设置工程调试选项。见图 2-7。建立仿真初始化文件 RAM. ini, 内容如下:

_WDWORD (0x53000000, 0x0); //disable watch dog LOAD %L INCREMENTAL

图 2-7 设置仿真调试选项

(5)编译链接工程。连接实验板电源、J-link 仿真器,进行仿真调试。见图 2-7。

图 2-7 调试运行

(6)单步执行程序,观察板上 LED 灯的变化。

参考: GPIOB 控制寄存器

Register	Address	R/W	Description	Reset Value
GPBCON	0x56000010	R/W	Configures the pins of port B	0x0
GPBDAT	0x56000014	R/W	The data register for port B	Undef.

PBCON	Bit		Description	
GPR10	[21:20]	00 = Input 10 = nXDREQ0	01 = Output 11 = reserved	
GPB9	[19:18]	00 = Input 10 = nXDACK0	01 = Output 11 = reserved	
GPB8	[17:16]	00 = Input 10 = nXDREQ1	01 = Output 11 = Reserved	
GPB7	[15:14]	00 = Input 10 = nXDACK1	01 = Output 11 = Reserved	
GPB6	[13:12]	00 = Input 10 = nXBREQ	01 = Output 11 = reserved	
GPB5	[11:10]	00 = Input 10 = nXBACK	01 = Output 11 = reserved	
GPB4	[9:8]	00 = Input 10 = TCLK [0]	01 = Output 11 = reserved	
GPB3	[7:6]	00 = Input 10 = TOUT3	01 = Output 11 = reserved	
GPB2	[5:4]	00 = Input 10 = TOUT2	01 = Output 11 = reserved]	
GPB1	[3:2]	00 = Input 10 = TOUT1	01 = Output 11 = reserved	
GPB0	[1:0]	00 = Input 10 = TOUT0	01 = Output 11 = reserved	

Register	Address	R/W	Description	Reset Value
GPGCON	0x56000060	R/W	Configures the pins of port G	0x0
GPGDAT	0x56000064	R/W	The data register for port G	Undef.

GPG4	[9:8]	00 = Input 10 = EINT[12]	01 = Output 11 = LCD_PWRDN
GPG3	[7:6]	00 = Input 10 = EINT[11]	01 = Output 11 = nSS1
GPG2	[5:4]	00 = Input 10 = EINT[10]	01 = Output 11 = nSS0
GPG1	[3:2]	00 = Input 10 = EINT[9]	01 = Output 11 = Reserved
GPG0	[1:0]	00 = Input 10 = EINT[8]	01 = Output 11 = Reserved

6. 实验参考程序

GPIO 输出实验的参考程序见程序清单 2.1。GPIO 输入实验的参考程序见程序清单 2.2。

程序清单 2.1 GPIO 输出实验参考程序

rGPBCON	EQU	0x56000010	;Port B control register
rGPBDAT	EQU	0x56000014	;Port B data register

AREA RESET,	CODE,	READONLY
ENTRY		
CODE32		

START	LDR	R1,=rGPBCON	;set GPIO portB(5,6,7,8) as output
	LDR	R0, =0x15400	

	STR	R0, [R1]	
	LDR	R1,=rGPBDAT	;R1 ← GPIO portB data register
L00P	MOV	R0, #0x1e0	;set GPIO portB(5,6,7,8) output high (LEDs off)
	STR	RO, [R1]	
	MOV	R0, #0x00	;set GPIO portB(5,6,7,8) output high (LEDs on)
	STR	R0, [R1]	
	В	L00P	
	END		

程序清单 2.2 GPIO 输入实验参考程序

rGPGCON	EQU	0x56000060	;Port G control register
rGPGDAT	EQU	0x56000064	;Port G data register
	AREA RESE	ET, CODE, READONLY	;声明代码段 RESET
	ENTRY		;表示程序入口
	CODE32		;声明 32 位 ARM 指令
START	LDR	R1, =rGPGCON	;set GPIO portG(0) as input
	LDR	R0, =0x0	
	STR	RO, [R1]	
	MOV	R3, #0x0	;initialize counter to 0
	LDR	RO, =0x7fff	;initialize to default state
	LDR	R1, =rGPGDAT	;R1 ← GPIO portG data register
L00P	MOV	R2, R0	;save the old state
	LDR	RO, [R1]	;read GPIO portG state
	CMP	R0, R2	;detect state change
	BEQ	L00P	
	ADD	R3, #0x1	;increase the counter
	В	L00P	
	END		

7. 思 考

(1) GPIO 输出实验程序全速执行时能看到指示灯的闪烁吗,为了控制闪烁速

度程序要如何扩充?

(2) GPIO 输入实验中,如果信号即不接高电平,也不接低电平,读入的状态是什么呢?

8. 选作内容

- (1)增加延时操作控制指示灯的闪烁速度。
- (2)用按键控制指示灯的状态。