F98 SQUIDs and Noise Thermometers

Figueroa, Q. & Huth, P. J.

January 6, 2025

Structure

- Physikalische Fragestellung
 - SQUIDs
 - Noise Thermometers
 - kurze theoretische Einleitung
- Messprinzip und Apparatur
- Vorstellung der Messergebnisse und deren Auswertung
- kritische Diskussion der Ergebnisse
- Anmerkung zum Versuch

Physics in Question

- Question: How to measure the temperature of a system using noise.
- Answer: Using a SQUID.
 Very sensitive magnetometers, consisting of superconducting loops interrupted by Josephson junctions.

What we measure and why

- Resistance at room temperature and in liquid Helium: Observe the change in Resistence
- **2** Current Voltage characteristics V I: Estimate critical current I_C
- **9** Measure the $V-\Phi$ Characteristics: Determine the inverse mutual inductance M_{IN}^{-1} and $M_{\Phi B}^{-1}$
- Measure output resulting from periodic input signal: Determine the amplification
- Measure Noise at different GBP: Finding an optimal value for the GBP
- Measure Noise Spectrum with a two stage SQUID: Calculate the temperature

Superconductivity

Superconductivity:

Expulsion of magnetic fields from a superconductor below its critical temperature.

- Superconductivity
 - Meissner-Ochsenfeld effect

Meissner-Ochsenfeld Effect:

Expulsion of magnetic fields from a superconductor below its critical temperature.

Josephson junction

Josephson junction:

Josephson junction

- Josephson junction
 - Flux quantization

Flux Quantization:

Flux quantization plays a role in the phase relationship between the two superconductors.

- Josephson junction
 - Cooper pairs

Cooper Pairs:

Cooper pairs tunnel through the insulating barrier, causing the Josephson effect.

SQUIDs:

 ${\sf SQUIDs}.$

SQUIDs

DC SQUID:

A superconducting quantum interference device with two Josephson junctions for measuring magnetic flux.

- SQUIDs
 - DC SQUID

Flux Locked Loop:

A feedback loop that stabilizes the SQUID output by maintaining constant magnetic flux

- SQUIDs
 - Flux locked loop

Two-Stage SQUID:

Enhances sensitivity by using a primary SQUID amplified by a secondary stage.

SQUIDs

Two-stage SQUID

Takeaways

- dc-SQUIDs can be very sensitive ampfiliers for high precision applications such as:
 - Measuring the CMB in the COBE & PLANCK Satelites.