6 Geraden und Ebenen

6.1 Vektoren im Raum

Vektoren kommen hauptsächlich auf folgende 3 Arten und Weisen vor:

Gegenvektor

Gegenvektor eines Vektors \vec{a} ist der Vektor $-\vec{a}$.

Beispiel

Bestimme den Gegenvektor zum Vektor $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$.

$$\overrightarrow{BA} = -\overrightarrow{AB} = \begin{pmatrix} -3\\-1\\2 \end{pmatrix}$$

Mittelpunkt

Der Mittelpunkt M zweier Punkte $A(a_1,a_2,a_3)$ und $B(b_1,b_2,b_3)$ ergibt sich wiefolt:

$$M\left(\frac{a_1+b_2}{2}, \frac{a_2+b_2}{2}, \frac{a_3+b_3}{2}\right)$$

Beispiel

Bestimme den Mittelpunkt M der Punkte A(2,3,3) und B(4,1,2).

$$\Rightarrow M(3,2,2.5)$$

Betrag

Der Betrag eines Vektors \vec{a} ist geometrisch die Länge des zugehörigen Pfeils. Er lässt sich mit dem Satz des Pythagoras berechnen:

$$|\vec{a}| = \left| \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \right| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

1

Beispiel

Berechne den Betrag des Vektors $\vec{a} = \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$.

$$|\vec{a}| = \sqrt{9 + 4 + 36} = \sqrt{49} = 7$$

Einheitsvektor

Der Einheitsvektor \vec{a}_0 ist der Vektor, der in dieselbe Richtung wie \vec{a} zeigt, und den Betrag 1 hat. Er errechnet sich mit:

$$\vec{a}_0 = \frac{1}{|\vec{a}|} \cdot \vec{a}$$

Beispiel

Bestimme den Einheitsvektor \vec{a}_0 des Vektors $\vec{a} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$.

$$\vec{a}_0 = \frac{1}{7} \cdot \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$$

Beispiel

Gegeben ist der Vektor $\overrightarrow{AB}=\begin{pmatrix}3\\3\\3\end{pmatrix}$. Bestimme jeweils den fehlenden Punkt. $a)\quad A(0,-1,2)$

a)
$$A(0,-1,2)$$

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$
$$\Rightarrow B(3, 2, 5)$$

b)
$$B(2,0,3)$$

$$\overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{AB} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix}$$
$$\Rightarrow A(-1, -3, 0)$$

6.2 Geraden im Raum

Allgemeine Parametergleichung einer Geraden

$$g: \vec{x} = \vec{p} + t \cdot \vec{u}$$

 \vec{p} : Stützvektor

 \vec{u} : Richtungsvektor

Gegenseite Lage von Geraden

Es gibt vier mögliche gegenseitige Lagen zweier Geraden:

- parallel und verschieden (echt parallel)
- identisch
- sie schneiden sich in einem Punkt
- windschief

Sind die Richtungsvektoren Vielfache?

ja: parallel oder identisch **nein**: schneiden sich oder sind windschief

Haben sie gemeinsame Punkte? Haben sie gemeinsame Punkte?

ja: identisch nein: parallel ja: schneiden sich nein: windschief

Beispiel

Untersuche die gegenseitige Lage der Geraden g und h.

$$g: \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}; \ h: \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Die Richtungsvektoren sind keine Vielfachen ightarrow schneiden sich oder sind windschief

$$g \cap h:$$

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$1 + 2r = 1 + s$$

$$-1 + 3r = 1 - s$$

3

$$1+3r=s$$

$$2r - s = 0 \tag{1}$$

$$3r + s = 2 \tag{2}$$

$$3r - s = -1 \tag{3}$$

$$(2) + (3): \qquad 6r = 1$$

$$r = \frac{1}{6}$$

$$r = \frac{1}{6} \text{ in (2)}: \qquad 3 \cdot \frac{1}{6} + s = 2$$

$$s = 1.5$$

$$r = \frac{1}{6}; \ s = 1.5 \text{ in (1)}: \qquad \frac{1}{3} - 1.5 \neq 0 \rightarrow \text{keine Schnittpunkte}$$

$$\Rightarrow \text{windschief}$$