

ອີເລັກ ໂຕຣນິກຂັ້ນສູງ

Advanced Electronics

ສອນໂດຍ: ອຈ. ປທ. ແກ້ວກັນລະຍາ ສີຫາລາດ

Tel & WhatsApp: 020 55607618

Email: ke.sihalath.nuol.edu.la

ບົດທີ 4 ອອບແອມ (Op-Amp)

• ຈໍຣ໌ ຟິນບຣິກ (George Philbrick) ເປັນຜູ້ພັດທະນາເຮັດໃຫ້ອອບແອມ ຮູ້ຈັກກັນຢ່າງ ກວ້າງຂວາງ ໂດຍໄດ້ອອກແບບແລະຜະລິດອອບແອມເປັນຫຼອດສູນຍາກາດດຸງວ (Single Vacuum Tube Op-Amp) ໃນປີ ພ.ສ 2491 ເພື່ອໃຊ້ງານກັບອານາລັອກຄອມພິວເຕີ, ໃຊ້ງານໃນເຊີງຄະນິດສາດເທົ່ານັ້ນ ອອບແອມເປັນກຸ່ມວົງຈອນທີ່ໃຊ້ງານຫຼາຍທີ່ສຸດແບບ ໜຶ່ງໃນວົງຈອນອີເລັກໂຕຣນິກ, ທັງວົງຈອນຂະຫຍາຍສຸເງ, ວົງຈອນເຄື່ອງມືວັດ, ວົງຈອນ ກຳເນີດສັນຍານ ແລະ ວົງຈອນອື່ນໆ ດ້ວຍເຕັກໂນໂລຊີທາງດ້ານໄອຊີ ດັ່ງນັ້ນ ອອບ ແອມຈຶ່ງກາຍເປັນໄອຊີທີ່ເອີ້ນໄດ້ວ່າ: "ມາດຕະຖານ" ເຊິ່ງພົບເຫັນກັນທົ່ວໄປໃນວົງຈອນອີ ເລັກໂຕຣນິກ

4.1 ອອບແອມ: *ອອບແອມຄືຫຍັງ*

- Op Amp (Operational Amplifier IC) ຄືອຸປະກອນທີ່ມີອິນພຸດເປັນການຂະຫຍາຍແບບ ດິບເຟີເຣນຊ້ຽນ (Differential) ແລະມີເອົ້າພຸດດຽວ ເຊິ່ງມີອັດຕາການຂະຫຍາຍສູງ ມີ ການນຳໄປໃຊ້ງານໃນວົງຈອນຂະຫຍາຍຕ່າງໆ ດັ່ງນີ້:
 - Amplifier
 - Integrator
 - Differentiator
 - Voltage Follower
 - Oscillator
 - Mathematical Circuit

4.1 ອອບແອມ: *<u>ອອບແອມຄືຫຍັງ</u>*

- OP AMP ແຕ່ລະເບີທີ່ໂຮງງານຜະລິດມາຈະມີຄຸນສົມບັດບາງຢ່າງສະເພາະຕົວຕາມຄູ່ ມື ຂອງໂຮງງານຜູ້ຜະລິດເຊັ່ນ:
 - High Voltage Gain
 - High Current Gain
 - Short Circuit Protection
 - Low Power Consumption
 - Temperature Stability

4.1 ອອບແອມ: *ອອບແອມຄືຫຍັງ*

- ອອບແອມໃນປະຈຸບັນຢູ່ໃນຮູບແບບຂອງ IC ເຊິ່ງໄດ້ມີການພັດທະນາທີ່ສຳຄັນ 2 ປະ ການຄື:
 - 1. ມີການນຳ FET ມາແທນ Bipolar Transistor ໂດຍນຳ JFET ມາເປັນສ່ວນອິນພຸດ ເຮັດໃຫ້ ກິນກະແສນ້ອຍ ສ່ວນ MOSFET ມາເປັນສ່ວນຂອງເອົ້າພຸດ ເຮັດໃຫ້ມີການ ທຳງານໄດ້ໄວຂຶ້ນ ແລະ ໃຊ້ງານທີ່ຄວາມຖີ່ສູງຂຶ້ນກວ່າເກົ່າ.
 - 2. ສາມາດສ້າງອອບແອມ 2 ຕົວ ແລະ 4 ຕົວ ໃນຖັງດຸງວກັນ.

4.1 ອອບແອມ: *ອອບແອມຄືຫຍັງ*

- ການໃຊ້ງານຂອງອອບແອມ ມີການນຳໄປໃຊ້ງານຢ່າງກວ້າງຂວາງຄື:
 - High Current and /or High Voltage Capability
 - Sonar Send / Receive Modules
 - MPX Amp
 - Programmable Gain Amplifier
 - Automotive Instrumentation and Control
 - Communication IC
 - Radio/Audio/Video IC

• ສັນຍານລັກຈະໃຊ້ຮູບສາມລ່ງມມີຂາທີ່ຕໍ່ກັບອຸປະກອນພາຍນອກ ຮູບສາມລ່ງມສະແດງເຖິງ ການຂະຫຍາຍແລະທິດທາງການໄຫຼຂອງສັນຍານ ສ່ວນຊື່ຂາຂອງອອບແອມໄດ້ສະແດງ ການປຸງບທຸງບກັບຈຸດຕໍ່ກັບວົງຈອນພາຍໃນ

• ຕົວຖັງ ເນື່ອງຈາກວົງຈອນທີ່ປະກອບຂຶ້ນມາເປັນອອບແອມທີ່ສ້າງຂຶ້ນໃນແຜນຊິບທີ່ມີຂະໜາດນ້ອຍຫຼາຍ ດັ່ງນັ້ນຜູ້ຜະລິດ ຈຶ່ງຕ້ອງທຳການບັນຈຸຊິບນີ້ລົງໃນຕົວຖັງຫຼືເອີ້ນວ່າ: ແພກເກດ (Package) ເຊິ່ງອາດຈະເປັນ ພາດສະຕິກ, ຊີຣາມິກ, ແກ້ວ ຫຼື ໂລຫະກໍ່ໄດ້ລັກສະນະຕົວຖັງທີ່ພົບເຫັນມີຢູ່ 2 ແບບຄືຕົວຖັງແບບໂລຫະ ກົມ (TO-5) ເຊິ່ງຈະມີ 8, 10 ຫຼື 12 ຂາ ແລະ ຕົວຖັງ ແບບດິບ (DIP) ມີລັກສະນະເປັນຮູບສີ່ລ່ຽມມີຂາ ຕັ້ງແຕ່ 8 ຂາ ຂຶ້ນໄປເຖິງ 64 ຂາ

• ຈາກຮູບສັນຍາລັກຂອງ OP-AMP ຈະແບ່ງອອກເປັນ 2 ສ່ວນຄື Input ແລະ Output ແລະນອກຈາກນີ້ໃນລາຍລະອງດຍັງມີອີກຫຼາຍ ເຊັ່ນ: ພາກປັບ Offset ຂອງກະແສແລະ ແຮງດັນ

- ຂາ Inverting (ຂາທີ່ມີເຄື່ອງໝາຍ ກຳກັບຢູ່) ມີຄຸນສົມບັດດັ່ງນີ້
- ຖ້າຫາກເຮົາປ້ອນສັນຍານເຂົ້າຂາ Inverting ສັນຍານອອກຈາກເອົ້າພຸດ ຈະມີເຟດຕ່າງ ກັບສັນຍານອິນ 180° (Outoff Phase 180°)

ການຂະຫຍາຍສັນຍານ AC ແບບ Open-Loop ໂດຍໃຊ້ວົງຈອນ Inverting amp

• ຂາ Inverting (ຂາທີ່ມີເຄື່ອງໝາຍ - ກຳກັບຢູ່) ມີຄຸນສົມບັດດັ່ງນີ້

ກຣາບຄວາມສຳພັນລະຫວ່າງ ${
m V}_1$ ແລະ ${
m V}_2$

ການຂະຫຍາຍສັນຍານ DC ແບບ Open – Loop

- ຂາ Inverting (ຂາທີ່ມີເຄື່ອງໝາຍ ກຳກັບຢູ່) ມີຄຸນສົມບັດດັ່ງນີ້
- ullet ຈາກວົງຈອນຂະຫຍາຍ DC ເຮົາຈະເບິ່ງຈາກກຣາບຄວາມສຳພັນລະຫວ[່]າງອິນພຸດ V_1 ແລະ ເອົ້າພຸດ V_2 ຈາກກຣາບເຮົາຈະໄດ້

1. ท้าขับถ่า
$$V_1 = 0V$$

1. ท้าปัยถ่า
$$V_1 = 0V$$
 แล้วจะได้ $V_2 = 0V$

2. ก้าปับ
$$V_1$$
 ถ่า $> 0V_2$

2. ຖ້າປັບ
$$V_1$$
 ຄ່າ $> 0V$ ແລ້ວຈະໄດ້ V_2 ລົບຕໍ່າສຸດ

3. ຖ້າປັບຄ່າ
$$V_1 < 0V$$
 ແລ້ວຈະໄດ້ V_2 ເປັນບວກສູງສຸດ

$$m V_2$$
 ເປັນບວກສູງສຸດ

- ຂາ Non Inverting (ຂາທີ່ມີເຄື່ອງໝາຍບວກ + ກຳກັບຢູ່) ມີຄຸນສົມບັດດັ່ງນີ້
- ຖ້າຫາກປ້ອນສັນຍານເຂົ້າຂາ Non Inverting ສັນຍານອອກທາງເອົ້າພຸດ ຈະມີເຟດດຽວ ກັນກັບສັນຍານທາງອິນພຸດ (Inphase)

ການຂະຫຍາຍສັນຍານ AC ແບບ Open - Loop ໂດຍໃຊ້ວົງຈອນ Non- Inverting - Amp

• ຂາ Non Inverting (ຂາທີ່ມີເຄື່ອງໝາຍບວກ + ກຳກັບຢູ່) ມີຄຸນສົມບັດດັ່ງນີ້

ການຂະຫຍາຍສັນຍານ DC ແບບ Open - Loop ໂດຍໃຊ້ວົງຈອນ Non- Inverting Amp

- ຂາ Non Inverting (ຂາທີ່ມີເຄື່ອງໝາຍບວກ + ກຳກັບຢູ່) ມີຄຸນສົມບັດດັ່ງນີ້
- ຈາກວົງຈອນຂະຫຍາຍສັນຍານ DC ຖ້າຫາກເບິ່ງກັບຄວາມສຳພັນລະຫວ່າງອິນພຸດ ${
 m V}_1$ ແລະ ເອົ້າພຸດ ${
 m V}_2$ ຈາກກຣາບຈະໄດ້ວ່າ
 - 1. ท้าปับถ่า $m V_1 = 0 V$ แล้วจะได้ $m V_2 = 0 V$
 - 2. ท้าปัยถ่า $V_1 > 0V$ แล้วจะได้ V_2 มีถ่าเป็นขวทสูງสุด
 - 3. ท้าปัยค่า $V_1 < 0 V$ แล้วจะได้ V_2 มีค่าเป็นลิยต่ำสุด

4.3 ອອບແອມ: *ການທໍາງານຂອງອອບແອມ*

ການທຳງານຂອງອອບແອມສາມາດແບ່ງໄດ້
 ຕາມລັກສະນະການທຳງານໄດ້ 2
 ລັກສະນະຄືລັກສະນະການທຳງານທີ່ອິນພຸດ V_i
 ດຽວແລະການທຳງານທີ່ສອງອິນພຸດ

1. ການທຳງານທີ່ອິນພຸດດຽວ
(Single Ended Input) ຄືການປ້ອນສັນຍານ ອິນພຸດທີ່ຂົ້ວໃດຂົ້ວໜຶ່ງ ສ່ວນຂົ້ວທີ່ເຫຼືອຕໍ່ ລົງກຣາວ

4.3 ອອບແອມ: *ການທໍາງານຂອງອອບແອມ*

2. ການທຳງານທີ່ອິນພຸດສອງດ້ານ (Double Ended Input) ຄື ການປ້ອນສັນຍານອິນ ພຸດ ທັງສອງດ້ານ ເຊິ່ງແບ່ງອອກເປັນສອງແບບຄື ແບບດິບເຟເຣນຊັງນ (Differential) ທີ່ມີການ ປ້ອນສັນຍານອິນພຸດສອງສັນຍານທີ່ເປັນອິນ ສະຫຼະຕໍ່ກັນໃຫ້ກັບຂົ້ວອິນພຸດທັງ ສອງ ແລະ ແບບຄອມມອນ ໂມດ (Common Mode) ທີ່ມີ ການປ້ອນສັນຍານອິນພຸດຮ່ວມໃຫ້ກັບຂົ້ວອິນ ພຸດທັງສອງຂອງອອບແອມ

ສະແດງການທຳງານທີ່ອິນພຸດສອງດ້ານແບບດິບເຟີເຣນຊັ້ງວ

4.3 ອອບແອມ: *ການທໍາງານຂອງອອບແອມ*

• ສະແດງການທຳງານທີ່ອິນພຸດແບບຄອມມອນ ໂມດ

4.4 ອອບແອມ: *ການຕໍ່ Op-Amp ໃຊ້ງານຫາງອີເລັກໂຕຣນິກ*

• ໃນປະຈຸບັນນີ້ OP-AMP ໄດ້ຖືກອອກແບບໃຊ້ງານຕ່າງໆ ຂຶ້ນຢູ່ກັບຄວາມສາມາດຂອງວິສະວະກອນ ແຕ່ ຫາກເຮົາຈະແບ່ງລັກສະນະການຕໍ່ໃຊ້ງານໂດຍເອົາເລື່ອງການຢ້ອນກັບ (Feedback) ເຊິ່ງຈະແບ່ງການຕໍ່ ວົງຈອນ 2 ລັກສະນະຄື

1. ການຕໍ່ວົງຈອນໃຊ້ງານລັກສະນະ Negative Feedback ວົງຈອນຈຳພວກນີ້ຄືນຳໄປ ໃຊ້ເປັນ

ລົງຈອນຂະຫຍາຍສັນຍານ R_1 V_2 V_2 V_2 V_2 V_3 V_4 V_2 V_4 V_5 V_5 V_8 $V_$

4.4 ອອບແອມ: *ການຕໍ່ Op-Amp ໃຊ້ງານຫາງອີເລັກໂຕຣນິກ*

2. ການຕໍ່ວົງຈອນໃຊ້ງານລັກສະນະ Positive Feedback ວົງຈອນຈຳພວກນີ້ ສ່ວນໃຫຍ່ນຳ ໄປໃຊ້ເປັນວົງຈອນອ໋ອດຊິເລເຕີ ແລະ ຜະລິດສັນຍານ

- ເປັນວົງຈອນຂະຫຍາຍທີ່ປ້ອນສັນຍານອິນພຸດເຂົ້າທີ່ຂາອິນເວີຕິ້ງ ຫຼື ຂາລົບ ເຊິ່ງຈະໃຫ້
 ເອົ້າພຸດທີ່ມີລັກສະນະສັນຍານປິ້ນເຟດກັບສັນຍານອິນພຸດ 180°
- ວົງຈອນດັ່ງຮູບເປັນວົງຈອນຂະຫຍາຍ ໄດ້ຕັ້ງແຕ່ສັນຍານ AC ແລະ DC ອັດຕາການ ຂະຫຍາຍແບບລູບປິດ A_{CL} ຈາກ V_i ໄປສູ່ V_o ຂຶ້ນຢູ່ກັບ R_f ແລະ R_i ເພື່ອທຳຄວາມໃຈ ກັບວົງຈອນແບບນີ້ ຂໍຍົກຂໍ້ແນະນຳ ດັ່ງກ່າວມາແລ້ວໃນບົດທີ 2 ມາສະເໜີໃໝ່ດັ່ງນີ້:
 - 1. ໃນກໍລະນີ V_o ບໍ່ອິ່ມຕົວ (Saturation) ຄວາມຕ່າງຂອງແຮງດັນລະຫວ່າງອິນພຸດ ບວກແລະ ລົບ (V_d) ຈະເທົ່າກັບສູນ
 - 2. ປະລິມານກະແສທີ່ໄຫຼເຂົ້າຂາອິນພຸດທັງສອງຈະມີຄ່ານ້ອຍຫຼາຍ ຈົນຄິດວ່າບໍ່ມີກະແສ ໄຫຼເຂົ້າ.

ຮູບທີ່ 1 $V_O = -rac{R_F}{R_i} imes V$

- ເຮົາປ້ອນ $+ V_i$ ໃຫ້ກັບຂາລົບ (ຂາອິນເວີຕິ້ງ) ຜ່ານ ຕົວ ຕ້ານທານອິນພຸດ R_i ແລະໃຫ້ R_f ເຊິ່ງເປັນຕົວຕ້ານທານ ຢ້ອນກັບ ຕໍ່ຢູ່ລະຫວ່າງຂາເອົາພຸດ ແລະອິນພຸດລົບ ສ່ວນ ຂາອິນພຸດບວກຕໍ່ຢູ່ກັບກຣາວ ສິ່ງທີ່ເຮົາຕ້ອງການກໍ່ຄື A_{CL} ວ່າຈະມີຄ່າເທົ່າໃດ ເຊິ່ງຫາໄດ້ຈາກສູດ V_0/V_i ໂດຍ V_0 ຫາໄດ້ຕາມຂັ້ນຕອນດັ່ງຕໍ່ໄປນີ້.
 - ເມື່ອດັນບວກປ້ອນເຂົ້າທີ່ຂາລົບຂອງອອບແອມ Ri ຈະເຮັດ ໜ້າທີ່ ແປງແຮງດັນໃຫ້ກະແສ I ຈາກນັ້ນ R_f ຈະເຮັດໜ້າທີ່ ແປງກະແສ I ໃຫ້ກັບມາຢູ່ໃນຮູບຂອງແຮງ ດັນອີກຄັ້ງ ໂດຍເປັນແຮງດັນທີ່ເປັນສັດສ່ວນກັບ V_i

ຈາກກົດເກນທີ່ວ່າຄວາມຕ່າງຂອງແຮງດັນລະຫວ່າງຂາບວກ ແລະຂາລົບເປັນສູນ ເຊິ່ງໝາຍຄວາມວ່າແຮງດັນທັງ 2 ຂາ ຕ້ອງເທົ່າກັນ ດັ່ງນັ້ນເມື່ອຂາອິນພຸດບວກໃນວົງຈອນນີ້ ຈຶ່ງ ຕໍ່ ລົງກຣາວ ຂາອິນພຸດລົບຈຶ່ງເໝື່ອນຕໍ່ຢູ່ກັບກຣາວນຳ ກະແສທີ່ ໄຫຼຕ່ານ R_i ຈຶ່ງເກີດຄວາມຕ່າງແຮງ ດັນລະຫວ່າງ V_i ແລະກຣາວ ຕາມກົດຂອງໂອມໄດ້ກະແສດັ່ງນີ້.

$$I = \frac{V_i}{R_i} \qquad \dots \dots$$

ຊູບທີ່ 1

ຈາກກົດເກນທີ່ວ່າບໍ່ມີກະແສໄຫຼເຂົ້າຂາອິນພຸດ 2 ຂອງອອບແອມ ດັ່ງນັ້ນກະ ແສ I ທັງໝົດຈາກ R_i ຈະໄຫຼຜ່ານ ໄປຍັງ R_f ເຮັດໃຫ້ເກີດ V_{Rf} ຂຶ້ນ (ໂດຍບໍ່ມີການໄຫຼເຂົ້າຂາອິນ ພຸດລົບ)

ຮູບທີ່ 1

ຮູບທີ່ 1

- ຈາກ V_{Rf} ປັນແຮງດັນຕົກຄ່ອມ R_f ເຊິ່ງເກີດຈາກຄວາມຕ່າງແຮງ ດັນລະຫວ່າງ ກຣາວ ກັບ V_o ຕາມທິດທາງຂອງກະແສ
- ໃນຂະນະນີ້ ກະແສໄຫຼສຶບເນື່ອງມາຈາກ I ຜ່ານກຣາວ ເຊິ່ງຢູ່ ທາງຊ້າຍຂອງ $R_{\rm f}$ ມາຍັງ $V_{\rm o}$ ເຊິ່ງຢູ່ທາງຂວາ ຂອງ $R_{\rm f}$
- ສະແດງໃຫ້ເຫັນວ່າ V_o ໃນຕອນນີ້ມີແຮງດັນຕ່ຳກວ່າກຣາວ ຄືເປັນ ລົບ (ແຮງດັນຕົກຄ່ອມຂາ 2 ແລະຂາ 6 ຂອງອອບແອມມີຄ່າເທົ່າ ກັບ 0 ໂວນ)
 - ດັ່ງນັ້ນໃນຂະນະທີ່ V_i ເປັນບວກທູງບກັບກຣາວ V_o ກໍ່ຈະເປັນລົບ ເມື່ອທູງບກັບກຣາວ (ຈະຫັກລ້າງເປັນ 0 ໂວນພໍດີ) ສະນັ້ນ ຖ້າ ຄິດວ່າຂະໜາດຂອງ $V_o = V_{Rf}$ ແລ້ວເຄື່ອງ ຂອງ V_o ກໍ່ຈະປັ້ນກັນ ກັບ V_{Rf} ດັ່ງນັ້ນຈາກສົມຜົນທີ່ (2) ຈະໄດ້

$$V_o = -V_i \times \frac{R_f}{R_i} \qquad \dots 3$$

- ຈາກນິຍາມອັດຕາການຂະຫຍາຍແບບລູບປິດ $\mathbf{A}_{\mathrm{CL}} = \mathbf{V}_{\!o}/\mathbf{V}_{\!i}$ ຈະໄດ້

$$A_{CL} = -\frac{V_o}{V_i} = \frac{-V_i \frac{R_f}{R_i}}{V_i}$$

$$A_{CL} = -\frac{R_f}{R_i} \qquad4$$

• ເຄື່ອງໝາຍລົບໃນສົມຜົນທີ່ (4) ສະແດງວ່າຂົ້ວຂອງ V_0 ຈະປິ້ນກັບທາງດ້ານ V_i ເຊິ່ງຈຸດນີ້ເອງທີ່ເຮັດໃຫ້ວົງ ຈອນຂະຫຍາຍນີ້ຈຶ່ງໄດ້ຊື່ວ່າ: ວົງຈອນຂະຫຍາຍແບບປິ້ນເຟດ (Inverting Amplifier) ເຊິ່ງອັດຕາການ ຂະຫຍາຍຂອງວົງຈອນນີ້ຈະຂຶ້ນຢູ່ກັບ R_f ແລະ R_i ເທົ່ານັ້ນ

ໂຫຼດແລະກະແສເອົ້າພຸດ

ກະແສເອົ້າພຸດ I_0 ຂອງອອບແອມປະກອບດ້ວຍກະແສ 2 ສ່ວນຄື:

- 1. ກະແສທີ່ເກີດຈາກ V_{o} ຄ່ອມ R_{L} (ໃນຂະນະທີ່ V_{o} ເປັນລົບ) $I_{L} = V_{o} \, / \, R_{L}$
- 2. ກະແສ I ທີ່ໄຫຼຜ່ານ R_f ມາຍັງເອົ້າພຸດ ເຊິ່ງທິດທາງຂອງ I ຈະຄືກັນກັບ I_L (ມີ ທິດທາງໄຫຼເຂົ້າຂາ 6 ຂອງອອບແອມ ດັ່ງຮູບທີ່ 1 ດັ່ງນັ້ນກະແສເອົ້າພຸດຂອງອອບແອມ I_{δ} ຈະເທົ່າ ກັບ

$$I_{o} = I + I_{L} \dots (5)$$

ເຊິ່ງ I_o ຈະມີຄ່າຫຼາຍທີ່ສຸດຢູ່ລະຫວ່າງ $5\mathrm{mA}$ - $10\mathrm{mA}$ ເທົ່ານັ້ນ

ຕົວຢ່າງທີ່ 4.1: ຈາກຮູບທີ່ 1 ໃຫ້ $m R_f = 100~k\Omega$ ແລະ $m V_i = 1V$ ຈົ່ງຫາ $m I, V_o$ ແລະ $m A_{CL}$

$$I = \frac{V_i}{R_i} = \frac{1V}{10k\Omega} = 0.1\text{mA}$$

$$V_o = -V_i \left(\frac{R_f}{R_i}\right) = -1V \left(\frac{100k\Omega}{10k\Omega}\right) = -10V$$

$$A_{CL} = -\frac{R_f}{R_i} = -\frac{100k\Omega}{10k\Omega} = -100$$

ຮູບທີ່ 1

ເມື່ອປ້ອນແຮງດັນລົບທີ່ຂາອິນເວີຕິງ

- ຈາກຮູບທີ່ 2 ມີການປ້ອນ V_i ຜ່ານ R_i ເຂົ້າທາງອິນພຸດ ລົບ ໂດຍ V, ທີ່ປ້ອນໃຫ້ມີແຮງດັນເປັນລົບ
- ດັ່ງນັ້ນເຮັດໃຫ້ທິດທາງຂອງກະແສຈິງ ດັ່ງວົງຈອນໃນຮູບທີ່ 1 ແຕ່ສົມຜົນທຸກໆ ສົມຜົນຈະຄືກັນກັບຕອນທຳອິດ ແລະ ເມື່ອພິຈາລະນາຈາກທິດທາງການ ໄຫຼຂອງກະແສໃນວົງ ຈອນຮູບທີ່ 2 ນີ້ແລ້ວ ຈະໄດ້ຂໍ້ສັງເກດວ່າ ໃນຂະນະທີ່ແຮງ ດັນ V_i ເປັນລົບ ຈະເຮັດໃຫ້ V_i ເປັນບວກ

• **ຕົວຢ່າງທີ່ 4.2** ສຳລັບວົງຈອນໃນຮູບທີ່ 2 ຖ້າໃຫ້ $R_{\mathrm{f}} = 250 \ \mathrm{k}\Omega$ ແລະ $V_{\mathrm{i}} = -0.5 \mathrm{V}$ ຈົ່ງ ຫາ

(ຂ) ແຮງດັນຕົກຄ່ອມ
$${
m R}_{
m f}$$

$$I = \frac{V_i}{R_i} = \frac{-0.5V}{10k\Omega} = -0.05mA$$

$$V_{Rf} = I \times R_f$$

$$= -0.05 \text{mA} \times 250 \text{ k}\Omega$$

$$= -12.5 \text{V}$$

$$V_{o} = -V_{i} \left(\frac{R_{f}}{R_{i}}\right) = -(-0.5V) \left(\frac{250k\Omega}{10k\Omega}\right) = 12.5V$$

ເມື່ອປ້ອນ AC ໃຫ້ຂາອິນເວີຕິງ

ເມື່ອປ້ອນ AC ໃຫ້ຂາອິນເວີຕິງ

ຕົວຢ່າງທີ່ 4.3: ຈາກວົງຈອນໃນຮູບທີ່ 3 ຖ້າ $R_f = 20 k\Omega$ ແລະ $R_i = 10 k\Omega$ ຈົ່ງຄຳນວນຫາ ອັດຕາການຂະຫຍາຍ A_{CL} ແລະ V_O

$$A_{CL} = -\frac{R_f}{R_i} = -\frac{20k\Omega}{10k\Omega} = -2$$

ຈາກສົມຜົນ:
$$A_{\text{CL}} = rac{V_{\text{o}}}{V_{\text{i}}}$$

$$V_o = A_{CL} \times V_i = (-2)(-5 \text{ V}) = 10 \text{ V}$$

4.5 ອອບແອມ: *<u>ວົງຈອນຂະຫຍາຍແບບປິ້ນເຟດ</u>*

ວົງຈອນລວມສັນຍານແບບອິນເວີຕິ້ງ (Inverting Adder)

ວົງຈອນລວມສັນານແບບອິນເວີຕິ້ງ (Inverting Adder)

• ວົງຈອນໃນຮູບທີ່ 4 ເປັນວົງຈອນທີ່ໃຊ້ລວມສັນຍານດ້ານອິນພຸດໃຫ້ອອກມາທີ່ດ້ານເອົ້າ ພຸດ ໂດຍສັນຍານເອົ້າພຸດທີ່ໄດ້ຈາກການລວມເຟດ ເມື່ອທູງບກັບດ້ານອິນພຸດ ເຊິ່ງເປັນໄປ ຕາມສົມຜົນທີ່ (6)

$$V_0 = - (E_1 + E_2 + E_3)$$
(6)

• ພິຈາລະນາກະແສທີ່ເກີດຈາກແຫຼ່ງຈ່າຍໄຟ ແລະ R ທາງດ້ານອິນພຸດແຕ່ລະຕົວລວມກັນ ທີ່ຈຸດ S (ທີ່ຈຸດ S ຈະເພື່ອນເປັນກຣາວ) ເຊິ່ງກະແສ I_1, I_2, I_3 ຫາໄດ້ດັ່ງນີ້:

ວົງຈອນລວມສັນານແບບອິນເວີຕິ້ງ (Inverting Adder)

• ພິຈາລະນາກະແສທີ່ເກີດຈາກແຫຼ່ງຈ່າຍໄຟ ແລະ R ທາງດ້ານອິນພຸດແຕ່ລະຕົວລວມກັນ ທີ່ຈຸດ S (ທີ່ຈຸດ S ຈະເພື່ອນເປັນກຣາວ) ເຊິ່ງກະແສ I_1, I_2, I_3 ຫາໄດ້ດັ່ງນີ້:

$$I_1 = \frac{E_1}{R}; \quad I_2 = \frac{E_2}{R}; \quad I_3 = \frac{E_3}{R}$$
7

• ຈາກລັກສະນະຂອງວົງຈອນຂະຫຍາຍແບບອິນເວີຕິ້ງ ກະແສລວມ ($I_1 + I_2 + I_3$) ທີ່ໄຫຼ ເຂົ້າທີ່ຈຸດ S ຈະໄຫຼຜ່ານອອກມາ R_f ເກີດແຮງດັນຕຶກຄ່ອມ R_f ເຊິ່ງມີຂະໜາດເທົ່າກັບ V_o ແຕ່ປິ້ນເຟດກັນ

$$V_0 = -(I_1 + I_2 + I_3) \times R_f$$

ວົງຈອນລວມສັນານແບບອິນເວີຕິ້ງ (Inverting Adder)

• ເມື່ອແທນຄ່າກະແສຈາກສົມຜົນທີ່ (7) ແລະໃຊ້ $R_f = R$ ລົງໄປໃນສົມຜົນ V_o ກໍ່ຈະໄດ້ V_o ຕາມສົມຜົນທີ່ (6)

$$V_{o} = -\left(\frac{E_{1}}{R} + \frac{E_{2}}{R} + \frac{E_{3}}{R}\right)R$$

$$V_o = -(E_1 + E_2 + E_1)$$

4.5 ອອບແອມ: *ວົງຈອນຂະຫຍາຍແບບປັ້ນເຟດ*

ຕົວຢ່າງທີ່ 4.4: ໃນວົງຈອນຮູບທີ່ 4 ຖ້າໃຫ້ $E_1=2V, E_2=3~V, E_3=1V$ ແລະຕົວຕ້ານ ທານທຸກໆ ຕົວມີຄ່າເທົ່າກັບ 10Ω ຈົ່ງຫາ V_o

ຈາກສົມຜົນທີ່ (6)

$$V_0 = -(E_1 + E_2 + E_3)$$

= $-(2V + 3V + 1V) = -6V$

4.6 ອອບແອມ: *ວົງຈອນຂະຫຍາຍແບບບໍ່ປັ້ນເຟດ*

ເມື່ອປ້ອນແຫຼ່ງຈ່າຍໄຟບວກ

ວົງຈອນຂະຫຍາຍແບບນອນອິນເວີຕິ້ງ ຮູບທີ່ 8
 (ກ) ເປັນວົງຈອນທີ່ໃຫ້ແຮງດັນເອົ້າພຸດ V₀ ມີ ເຄື່ອງໝາຍຫຼືມີຂົ້ວຄືກັນກັບແຮງດັນທາງອິນພຸດ V₁ ໃນການວິເຄາະວົງຈອນ ຈະຄືກັນກັບວົງ ຈອນອິນເວີຕິ້ງ ໂດຍໃຫ້ຖືວ່າຄວາມຕ້ານທານ ດ້ານອິນພຸດຂອງອອບແອມມີຂະໜາດຄ່າຫຼາຍ ເກີນ 100 MΩ

ຮູບທີ່ 8 (ກ)

4.6 ອອບແອມ: *ວົງຈອນຂະຫຍາຍແບບບໍ່ປັ້ນເຟດ*

<u>ເມື່ອປ້ອນແຫຼ່ງຈ່າຍ ໄຟລິບ</u>

• ໂດຍທິດທາງຂອງກະແສຂຶ້ນຢູ່ກັບແຮງດັນ $m V_i$ ເຊິ່ງຄືຕອນຕົກຄ່ອມ R_1 ສຳລັບຮູບທີ່ 8 (ກ) ທີ່ຂາອິນພຸດລົບຈະສະເໜື່ອນມີແຮງດັນບວກ V_i ຢູ່ ດັ່ງນັ້ນກະແສຈຶ່ງໄຫຼຈາກດ້ານຂວາຂອງ R_f ມາ R_i ລົງກຣາວ ການໄຫຼເຂົ້າແບບນີ້ເຮັດ ໃຫ້ເກີດທິດທາງຂອງ I ເຊິ່ງຈະປິ້ນກັບ I ໃນ ຮູບທີ່ 8 (ຂ) ເມື່ອຮູ້ I ແລ້ວຈຶ່ງສາມາດຫາຄ່າ ຄວາມຕ້ານແຮງດັນຕົກຄ່ອມ R_f ໄດ້

$$V_{Rf} = I \times R_f = \frac{V_i}{R_i} R_f$$

4.6 ອອບແອມ: *ວົງຈອນຂະຫຍາຍແບບບໍ່ປິ້ນເຟດ*

ເມື່ອ V_{Rf} ແລະ V_{R1} ເຊິ່ງເທົ່າກັບ V_i ແລ້ວສາມາດຫາໄດ້ V_o ໄດ້ $V_o = V_{Rf} + V_i$ $= \frac{E_i}{R_1} R_f + V_1$ $V_o = \left(1 + \frac{R_f}{R_1}\right) V_i$

ທຸກຄ່າ V_{o} ທີ່ຫາໄດ້ນຳມາໃຊ້ໃນການຫາອັດຕາຂະຫຍາຍຂອງວົງຈອນໄດ້ດັ່ງນີ້

$$A_{CL} = \frac{V_o}{V_i} = \frac{\left(1 + \frac{R_f}{R_1}\right)V_i}{V_i}$$

$$A_{CL} = 1 + \frac{R_f}{R_1}$$
Loctus

4.6 ອອບແອມ: *ວົງຈອນຂະຫຍາຍແບບບໍ່ປັ້ນເຟດ*

- **ຕົວຢ່າງທີ່ 4.5** ຈາກວົງຈອນໃນຮູບ ຖ້າ V_i ເປັນຮູບຄື້ນຊາຍ ແລະ ຈຸດປາຍຂອງແຮງ ດັນຢູ່ທີ່ 2V ຈົ່ງຫາ
 - ແຮງດັນເອົ້າພຸດຂອງວົງຈອນ
 - ອັດຕາການຂະຫຍາຍຂອງວົງຈອນ

ແຮງດັນເອົ້າພຸດຂອງວົງຈອນ

$$V_o = \left(1 + \frac{R_f}{R_1}\right)V_i = \left(1 + \frac{40k\Omega}{10k\Omega}\right)2V = 10V$$

ອັດຕາການຂະຫຍາຍຂອງວົງຈອນ

$$A_{CL} = 1 + \frac{R_f}{R_i} = 1 + \frac{40k\Omega}{10k\Omega} = 5$$

4.6 ອອບແອມ: *<u>ວົງຈອນຂະຫຍາຍແບບບໍ່ປັ້ນເຟດ</u>*

ເມື່ອ V_{Rf} ແລະ V_{R1} ເຊິ່ງເທົ່າກັບ V_{i} ແລ້ວສາມາດຫາໄດ້ V_{o} ໄດ້

$$V_o = \left(1 + \frac{R_f}{R_1}\right) V_i$$

$$A_{CL} = 1 + \frac{R_f}{R_1}$$

• ວົງຈອນຂະຫຍາຍຜົນຕ່າງ (Difference Amplifier) ຈະນຳມາໃຊ້ໃນການຂະຫຍາຍ ສັນຍານຂະໜາດນ້ອຍ (ສັນຍານທີ່ມີຂະໜາດນ້ອຍ 10mV ລົງມາ) ເປັນວົງຈອນທີ່ ສັນຍານເອົ້າພຸດເປັນຜົນຂອງການລົບຂອງສັນຍານອິນພຸດທັງສອງຈາກຈຸດ A ແລະ B ເຊິ່ງຄຸນສົມບັດຄືກັນກັບອິນພຸດຜົນຕ່າງຂອງອອບແອມມາດຕະຖານ ແຕ່ຕ່າງກັນທີ່ວົງຈອນ ຂະຜົນຕ່າງມີການຢ້ອນກັບທາງລົບ ໂດຍເອົາສັນຍານປ້ອນເຂົ້າທີ່ຂາອິນພຸດທັງສອງ ຂອງອອບແອມ ເຊິ່ງຖ້າອິນພຸດທັງສອງເທົ່າ ກັນກໍ່ຈະເຮັດໃຫ້ເອົ້າພຸດ ອອກມາເປັນສູນ

$$V_{O} = \frac{R_{f}}{R} (V_{2} - V_{1})$$

• ເລີ່ມຈາກການໃຫ້ $V_2 = 0$ ດັ່ງນັ້ນ ຈຶ່ງເຫຼືອພູງ V_1 ຕົວດງວທີ່ຜ່ານທາງອອບແອມເຂົ້າທາງ

ອິນພຸດລົບຈະໄດ້ເອົ້າພຸດ

$$V_{O1} = -V_1 \left(\frac{R_f}{R} \right)$$

• ຈາກນັ້ນໃຫ້ $\mathbf{V}_1 = \mathbf{0}$ ເພື່ອຊອກຫາເອົ້າພຸດຈາກ \mathbf{V}_2 ທີ່ເຂົ້າທາງອິນພຸດບວກ ຈະໄດ້

$$V_{P} = V_{2} \left(\frac{R_{f}}{R + R_{f}} \right)$$

ແລະເອົ້າພຸດຈາກວົງຈອນຂະຫຍາຍ $\mathbf{v}_{_{1}}=\mathbf{0}$ ແບບບໍ່ປັ້ນເຟດ ຫາໄດ້ຈາກ

$$V_{O2} = V_{P} \left(\frac{R + R_{f}}{R} \right)$$

ແທນຄ່າ V_{P} ຈະໄດ້

$$V_{O2} = V_2 \left(\frac{R_f}{R + R_f} \right) \left(\frac{R + R_f}{R} \right)$$

$$V_{O2} = V_2 \left(\frac{R_f}{R} \right)$$

21/03/2022

• ຜົນລວມຂອງ V_{O1} ແລະ V_{O2} ຈາກສົມຜົນຂ້າງເທີງຈະໄດ້ແຮງດັນເອົາພຸຂອງວົງຈອນ ຂະຫຍາຍຜົນຕ່າງດັ່ງນີ້:

$$V_{O} = V_{O1} + V_{O2}$$

$$= -V_{1} \left(\frac{R_{f}}{R}\right) + V_{2} \left(\frac{R_{f}}{R}\right)$$

$$V_{O} = \frac{R_{f}}{R} \left(V_{2} - V_{1}\right)$$

ອັດຕາຂະຫຍາຍຂອງວົງຈອນຂະຫຍາຍຜົນຕ່າງຄື

$$A_{V} = \frac{V_{O}}{V_{2} - V_{1}} = \frac{R_{f}}{R}$$

ຈົບບົດຮຸງນທີ 4