

Digital Logic and System Design

5. Combinational Logic

COL215, I Semester 2023-2024

Venue: LHC 111

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

Combinational Logic

 Output is function only of present values of inputs

• where output could depend on Sequential Circuits: Sequential circuits are digital

previous values

What netlists are NOT combinational?

Sequential Circuits: Sequential circuits are digital circuits where the output depends not only on the current inputs but also on previous inputs and the internal state of the circuit. These circuits contain memory elements like flip-flops or latches to store information and produce outputs based on both the current inputs and the stored state. Netlists for sequential circuits

would include information about flip-flops, clock mple combinational circuit signals, and the logic connecting them.

Representing Combinational Logic

- Representing multiple outputs in Truth Table?
- K-Map representation?

Tasks with Combinational Logic Circuits

- Analyse the behaviour of a logic circuit
- Synthesise a circuit for a given behaviour
 - Manually
 - Specify using Hardware Description Language (HDL)
- Study standard combinational circuits
 - Arithmetic operations (addition, multiplication,...)

Analysing a Combinational Circuit (Netlist)

- What Boolean function does a gate netlist implement?
- Follow the netlist from inputs to output
 - identify Boolean functions at intermediate stages

Synthesising a Combinational Circuit

- Capturing informal specification in precise language
- Identify input and output variables
- Represent the logic
 - Truth tables
 - Boolean expressions
- Simplify Boolean expressions
- Implement gate netlist
- Verify: simulation

Example Design: Gray Code Converter

Specification:
 Given a 3-bit Binary
 Code, convert to
 Gray Code

Binary Code Gray Code 0: 3: 4: 5: 6:

Example: Inputs and Outputs, Representation

Example: Boolean Simplification

Inputs	Outputs
abc	хуz
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

Gate Implementation

Designing a 1-bit Adder

 Specification: single-bit binary addition

- Inputs: x, y
- Outputs: sum (s), carry (c)
- Truth Table
- Boolean simplification

ху	c s
00	00
0 1	0 1
10	0 1
1 1	10

Adder: Simplification and Implementation

- Boolean simplification
- Gate implementation

4-bit Adder

- Specification: 4-bit binary addition
- Inputs: X₃₋₀, Y₃₋₀
- Outputs: sum (s₃₋₀), carry (c)
- Truth Table?
- Composing larger designs out of smaller ones

Identify repeating pattern

At each bit position i:

Inputs: x_i, y_i, c_i

Outputs: S_i , C_{i+1}

$x_i y_i c_i$	C _{i+}	. ₁ S _i
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Boolean Function for Full Adder

At each bit position i:

Inputs: a, b, c **Outputs**: c°, s

abc	Co	S
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
1 1 1	1	1

Full Adder

Sum:

$$s = ab'c' + a'b'c + a'bc' + abc$$

$$= a (bc + b'c') + a'(b'c + bc')$$

$$= a \oplus b \oplus c$$

Half Adder vs. Full Adder

Half Adder

Full Adder

Ripple Carry Adder (RCA)

At each bit position i:

Inputs: x_i, y_i, c_i

Outputs: S_i, C_{i+1}

x _i y _i c _i	$C_{i+1} S_{i}$
000	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

Full Adder

Chain of Full Adders

Adder delay analysis

- How many gate levels for final output?
- Delay for n-bit RCA?
- Can we make it faster?
 - Use faster gates on Carry propagation path
 - Partial computation ahead of time: Carry Lookahead

Carry In and Out in Full Adder

- Carry Generation: When do we generate a carry out irrespective of input carry?
 - carry_out = 1 irrespective of carry_in values
- Carry Propagation: When do we propagate an input carry to the output irrespective of input values?
 - carry = carry_in irrespective of x, y values

x _i y _i c _i	C _{i+}	1 S _i
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

$$G_i = x_i y_i$$

 $P_i = x_i \oplus y_i$

Using Propagate and Generate Values

- Sum and Carry_out can be derived from P_i and G_i values
- 1 logic level to generate P_i and G_i
 - treating AND and XOR as 1 gate level
- 1 logic level to generate Sum

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i}$$

$$c_{i+1} = x_{i}y_{i} + x_{i}c_{i} + y_{i}c_{i}$$

$$G_{i} = x_{i}y_{i}$$

$$P_{i} = x_{i} \oplus y_{i}$$

$$s_{i} = P_{i} \oplus c_{i}$$

$$c_{i+1} = G_{i} + P_{i}c_{i}$$
 (verify)

Carry Lookahead Logic

$$c_{i+1} = G_i + P_i c_i$$

$$\begin{aligned} & \mathbf{c}_1 = \mathbf{G}_0 + \mathbf{P}_0 \, \mathbf{c}_0 \\ & \mathbf{c}_2 = \mathbf{G}_1 + \, \mathbf{P}_1 \mathbf{c}_1 = \mathbf{G}_1 + \, \mathbf{P}_1 (\mathbf{G}_0 + \mathbf{P}_0 \, \mathbf{c}_0) = \mathbf{G}_1 + \, \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0 \\ & \mathbf{c}_3 = \mathbf{G}_2 + \, \mathbf{P}_2 \mathbf{c}_2 = \mathbf{G}_2 + \, \mathbf{P}_2 (\mathbf{G}_1 + \, \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0) = \mathbf{G}_2 + \, \mathbf{P}_2 \mathbf{G}_1 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0 \\ & \mathbf{c}_4 = \mathbf{G}_3 + \, \mathbf{P}_3 \mathbf{c}_3 = \mathbf{G}_3 + \, \mathbf{P}_3 (\mathbf{G}_2 + \, \mathbf{P}_2 \mathbf{G}_1 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0) \\ & = \mathbf{G}_3 + \, \mathbf{P}_3 \mathbf{G}_2 + \, \mathbf{P}_3 \mathbf{P}_2 \mathbf{G}_1 + \, \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0 \end{aligned}$$

- 2 logic levels to generate c₄ from c₀
- Approx: 5 i/p gate has same delay as 2 i/p gate

4-bit Carry Lookahead Adder (CLA)

$$G_i = x_i y_i$$
 $S_i = P_i \oplus C_i$
 $P_i = x_i \oplus y_i$ $C_{i+1} = G_i + P_i C_i$

$$\mathbf{c}_1 = \mathbf{G}_0 + \mathbf{P}_0 \, \mathbf{c}_0$$

$$c_2 = G_1 + P_1G_0 + P_1P_0c_0$$

$$c_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0c_0$$

$$c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$$

- 1 logic level to generate all P_i and G_i
- 2 logic levels to generate c₄ from c₀
 - Approx: 5 i/p gate has same delay as 2 i/p gate

P. R. Panda, IIT Delhi, 2023

- 1 logic level to generate all sums s_i
- 4-bit Adder delay: 1+2+1 = 4 levels

4-bit CLA: Simplified Diagram

16-bit Adder from 4-bit CLA

How do we extend the structure?

CL block-level carry propagate/generate

$$g_{i} = x_{i} y_{i}$$

$$p_{i} = x_{i} \oplus y_{i}$$

$$s_{i} = p_{i} \oplus c_{i}$$

$$c_{i+1} = g_{i} + p_{i} c_{i}$$

$$p' = ?$$
$$g' = ?$$

16-bit Adder from 4-bit CLA

16-bit Adder from 4-bit CLA

16-bit Adder from 4-bit CLA: Delay Analysis

64-bit Adder from 4-bit CLAs

n-bit Subtraction

- $\cdot d = x y$
- $\bullet d = x + (-y)$
- -y: 2's complement of y
- -y: **y' + 1**
- y': inverter
- How do we add 1?

Programmable Adder/Subtractor

Adder

Subtractor

Very similar!

Can we combine into one structure?

Programmable Adder/Subtractor

M = 0: Add M = 1: Subtract

Programmable Adder/Subtractor

M = 0: Add M = 1: Subtract

$$M = 0$$
: $z = y$
 $M = 1$: $z = y'$
What function is $z (y, M)$?

у М	Z	
00	0	
0 1	1	$z = M \oplus y$
10	1	
11	0	

Binary Multiplier

1x1 Multiplier

Multiplication Algorithm

Multiplier Logic

Multiplication Algorithm

Multiplier Logic

Multiplication Algorithm

4x3 Multiplier

Magnitude Comparator Logic

$$A = B$$

$$X_3X_2X_1X_0$$

$$\mathbf{A} = \mathbf{A}_3 \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0$$

$$B = B_3 B_2 B_1 B_0$$

$$x_i = A_i'B_i' + A_iB_i$$

$$x_i = A_i'B_i' + A_iB_i$$
 $A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$

$$A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Similarity in expressions for the 3 comparisons

Magnitude Comparator Implementation

Magnitude Comparator Implementation

Multiplexer: Implementing Conditionals

Selection Logic

How do we implement a MUX?

$$x = sa + s'b$$

MUX with wider data

Selection Logic

Function

```
if (s)

x [3:0] = a [3:0]

else

x [3:0] = b [3:0]
```


How do we implement a 4-bit MUX?

$$x_0 = sa_0 + s'b_0$$

 $x_1 = sa_1 + s'b_1$
 $x_2 = sa_2 + s'b_2$
 $x_3 = sa_3 + s'b_3$

MUX with wider data

How do we implement a 4-bit MUX?

$$x_0 = sa_0 + s'b_0$$

 $x_1 = sa_1 + s'b_1$
 $x_2 = sa_2 + s'b_2$
 $x_3 = sa_3 + s'b_3$

MUX with multiple data (wider select)

$$x = s_1's_0'a + s_1s_0'b + s_1's_0c + s_1s_0d$$

Function (C++)

switch (s) {
 case 0: x = a; break;
 case 1: x = b; break;
 case 2: x = c; break;
 default: x = d; break;
}

Select a, b, c, or d depending on value of s

How do we implement a **4-to-1 MUX**?

Implement ANY function with MUX

Can we implement ANY function of 2 variables with this structure?

Implement ANY function with MUX

Can we implement x = a' using MUX?

Implement with MUX:

$$x = ab' + a'b$$

= $a(b') + a'(b)$ Any $f(a,b,c,...)$ can be written as:
 $ag(b,c,...) + a'h(b,c,...)$

Implement ANY function with MUX

Implement with 4-to-1 MUX

$$x = a(b'+bc) + a'(bc+bc')$$

= $a'b'0 + a'b(c+c') + ab'(1) + abc$

Equivalently, from Truth Table

What function is x of c for each ab value?

Tristate Gates Buffer and High-Impedance

- High-impedance state
 - similar to open circuit
- Multiple outputs can be shorted if:
 - one is driving 0 or 1
 - others in high-impedance

Tristate Buffer

if
$$c = 1$$
, $x = a$
if $c = 0$, $x = high-impedance$

Implementing MUX with Tristate Buffers

- Complementary control inputs (c and c') to tristate buffers
- Safe to short outputs
- How do we implement tristate buffer?
- MUX implementation more efficient than NAND-NAND
- HDLs allow high-impedance state
 - VHDL: a <= '0', a <= 'Z', etc.

Tristate Buffers Useful in Communication

- Multiple Masters connecting to the same BUS
 - to connect to Slave (e.g., memory)
- One master is granted the bus for communication
 - arbitration logic enables only one out of c₀, c₁, c₂ at any time
 - others are disabled

Decoders

- n-bit number can encode 2ⁿ elements
- Decoder decodes a binary number
 - n-bit input
 - Upto 2ⁿ -bit output
 - Some encodings may be unused
- Each input combination asserts a unique output

Decoder Implementation

Each output is a **minterm**

Truth Table?

abc	$D_0D_1D_2D_3D_4D_5D_6D_7$
000	10000000
001	0100000
010	00100000
011	00010000
100	00001000
101	00000100
110	0000010
111	00000001

Implement ANY function with Decoder

Encoders

- 2ⁿ input bits
- n output bits
- Encodes input bits into binary number
- Inverse of Decoder

Encoders

Truth Table

$D_0D_1D_2D_3D_4D_5D_6D_7$	хуг
10000000	000
0100000	001
00100000	010
00010000	011
00001000	100
00000100	101
0000010	110
0000001	111

$$x = ?$$

 $y = ?$
 $z = ?$
 $x = D_4 + D_5 + D_6 + D_7$
 $y = D_2 + D_3 + D_6 + D_7$
 $z = D_1 + D_3 + D_5 + D_7$

Limitations

Exactly 1 input active at a time More not OK, Less not OK

Priority Encoder

- Priority specified upon contention
- E.g., higher numbered input wins
- Valid bit (v): at least one input is 1

$$\mathbf{v} = D_0 + D_1 + D_2 + D_3$$

 $\mathbf{x} = D_2 + D_3$
 $\mathbf{y} = D_3 + D_1 D_2'$

Inferring Combinational Logic from Language Specification

