

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2022 Combinatorial Optimization

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Optimization and decision

- Optimization: Solve $\max_{\theta} f(\theta)$
- Decision: Is there a $\theta \in \Theta$ for which $f(\theta) > c$?
- Optimization problem can be solved by repeatedly solving decision problems for different values of c.
- Decision problems that can be solved in polynomial time $(\mathcal{O}(p^k))$ operations) are generally considered to be efficiently solvable. Called P problems
- Decision problems that can be checked in polynomial time called NP problems
- PCNP
- NP hard: solution to one such problem can be used to solve any NP problem
- NP complete: problem is both NP and NP hard

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

NP - hard

- P (Polynomial-time): decision problems that can be solved in polynomial time
- **NP** (Non-deterministic Polynomial-time): decision problems that can be checked in polynomial time
- We do not know if NP problem can be solved in polynomial time
- NP-hard: (Non-deterministic Polynomial-time hard) problems that are
 "at least as hard as the hardest problems in NP" Solution to a NP-hard problem can be used to solve any NP problem
- **NP-complete:** subclass which are both NP and NP-hard. The hardest problems among NP.

Check versus solve

- How do you «check» a problem without solving it?
 - If someone propose a solution θ^* you can check it
 - evaluate the function $f(\theta)$ for θ^*
 - Is $f(\theta^*) > c$?
 - We still do not know how they got the value [lucky guess??]
 - We still do not know if it is the global optimum
- It is harder to find the solution $argmax f(\theta)$
 - solve it, find the global optimum with guarantee

Det matematisk-naturvitenskapelige fakultet

NP-complete problems (how hard can it be?)

- Consider two problems:
 - The first can be solved in $\mathcal{O}(p^2)$ operations
 - The second $\mathcal{O}(p!)$ operations.
 - They both require 1 minute of computing time when p = 20.

	Time to solve problem of order	
p	$\mathcal{O}(p^2)$	$\mathcal{O}(p!)$
20	1 minute	1 minute
21	1.10 minutes	21 minutes
25	1.57 minutes	12.1 years
30	2.25 minutes	207 million years
50	6.25 minutes	2.4×10 ⁴⁰ years

- There are optimization problems that are inherently too difficult to solve exactly by traditional means.
- Many problems in bioinformatics, experimental design, and nonparametric statistical modeling, for example, require combinatorial optimization.
- (The content of this slide was kindly provided by Givens & Hoeting)

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Model selection

- Genetic association studies: Which genes influence a certain phenotype (presence of cancer, size, etc)
- Linear model including all possible variables:

$$Y_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij} + \varepsilon_i$$

• Reasonable to assume that some x_{ij} 's do not influence the response, modification:

$$Y_i = \beta_0 + \sum_{j=1}^{p} \gamma_j \beta_j x_{ij} + \varepsilon_i$$

where $\gamma_i \in \{0, 1\}$.

- 2^p possible models, how to choose the best one?
 - $p = 20, 2^p = 1048576, p = 100, 2^p = 1.267651 * 10^{30}$
- Combinatorial problem, discrete optimisation

Need for heuristics

- When no algorithm guaranties a global maximum (within a time frame)
- Heuristics: Algorithms that find a good local optima within tolerable time
 - Local search
 - Simulated annealing
 - Tabu algorithm
 - Genetic algorithm

Local search

- Iterative improvement: $\theta^{(t)} \to \theta^{(t+1)}$ (Move or step)
- Limiting the search to a **local neighborhood** $\mathcal{N}(\boldsymbol{\theta}^{(t)})$ at any particular iteration
 - Example model selection : (change only one component) $\mathcal{N}(\boldsymbol{\theta}^{(t)}) = \{\boldsymbol{\theta}: \exists l \text{ such that } \theta_j = \theta_j^{(t)} \text{ for } j \neq l \}$
- Steepest ascent

$$\theta^{(t+1)} = \operatorname{argmax}_{\boldsymbol{\theta} \in \mathcal{N}(\boldsymbol{\theta}^{(t)})} g(\boldsymbol{\theta})$$

- Random ascent:
 - Test random samples θ_S from $\mathcal{N}(\boldsymbol{\theta}^{(t)})$
 - $\theta^{(t+1)}$ first sample such that $g(\theta_S) > g(\theta^{(t)})$
- Balance: neighborhood size vs speed

Random starting points combined with local search

- Select many starting points
 - Stratified or random sampling
- Run local search from each staring point
 - Random or steepest ascent
- Select best final answer
- Works very well in many cases
- Random starting point can be used for any optimization method. (Build confidence in optimum)

Example – Traveling salesperson problem

- A salesman needs to visit p cities
- Each city visited only once
- What is the minimum distance needed in order to visit all the cities?

• Travel_salesman_greedy.R

Example – Traveling salesperson problem

- A salesman needs to visit p cities
- Each city visited only once
- What is the minimum distance needed in order to visit all the cities?

Example: Traveling salesperson

Check:

Compute the travel time along one specific path N – operations (N = number of cities)

Solve:

Find the optimal route for the traveling salesman

N! possibilities (number of orderings)

Det matematisk-naturvitenskapelige fakultet

Simulated annealing

- Annealing (chemistry)
 - Heating up a solid (increasing energy) and then cooling down (decreasing energy)
 - Slow cooling: State with minimal energy
 - Fast cooling: Local minima
- Simulated annealing: Numerical algorithm resembling annealing

$$\min_{\theta} f(\theta)$$

- 1: Start with $\theta^{(0)}$
- 2: At stage j: Repeat m_i times
 - Generate a candidate solution $\theta^* \in \mathcal{N}(\theta^{(t)})$
 - Put

$$heta^{(t+1)} = egin{cases} heta^* & ext{with probability } \min(1, \exp\{[f(heta^{(t)}) - f(heta^*)]/ au_j\} \ heta^{(t)} & ext{otherwise} \end{cases}$$

3: Update $au_{i+1} = lpha(au_i)$ and $m_{i+1} = eta(m_i)$

= Cooling schedule

- If $f(\theta^*) \le f(\theta^{(t)})$, we always move to candidate solution
- If $f(\theta^*) > f(\theta^{(t)})$, we may move to candidate solution
 - For τ_i large, high probability for moving ("high temperature")
 - For τ_j small, small probability for moving ("low temperature")
- Makes it possible to move out of modes
- Store «best so far» in addition to iterations (for the end game)

Practical issues – Simulated annealing

- Neighborhoods
 - Problem dependent, but small neighborhoods typically most efficient
 - Need a neighborhood so that all solutions in Ω communicate:
 - For all θ , θ^* , there exist a finite set θ_1 , ..., θ_k such that $\theta_1 \in \mathcal{N}(\theta)$, $\theta_{j+1} \in \mathcal{N}(\theta_j)$ for j = 1, ..., k-1, $\theta^* \in \mathcal{N}(\theta_k)$
- Proposals
 - Most common to choose uniformly within $\mathcal{N}(\theta)$
- Efficiently calculation of $f(\theta^*)$
 - In many cases $f(\theta^*)$ can be efficiently updated from $f(\theta)$
- Cooling schedule: $\tau_{j+1} = \alpha(\tau_j)$ and $m_{j+1} = \beta(m_j)$
 - If $m_j = 1$, then $\tau_j = c/\log(1+j)$ guarantees asymptotic convergence to global minimum
 - c is the depth, the smallest increase needed to escape the deepest local minima.
 - In practice, $\tau_j = c/\log(1+j)$ results in too slow convergence, faster cooling schedules typically used

Traveling salesperson Simulated annealing

- Neighborhood: Swap the order of two components
 - Will lead to that all solutions communicate
- Proposal: Draw two indices within {1, ..., p} randomly
- Cooling schedule: $m_j = 1$, $\tau_j = 1/\log(1+j)$ or = 10/i
- Updating $f(\theta^*)$ from $f(\theta)$: Assume j < k are swapped

$$f(\theta^{*}) = \sum_{l=1}^{p-1} d(\mathbf{p}(\theta_{l}^{*}), \mathbf{p}(\theta_{l+1}^{*}))$$

$$= f(\theta) + d(\mathbf{p}(\theta_{j-1}^{*}), \mathbf{p}(\theta_{j}^{*})) + d(\mathbf{p}(\theta_{j}^{*}), \mathbf{p}(\theta_{j+1}^{*})) + d(\mathbf{p}(\theta_{k-1}^{*}), \mathbf{p}(\theta_{k}^{*})) + d(\mathbf{p}(\theta_{k}^{*}), \mathbf{p}(\theta_{k+1}^{*})) - d(\mathbf{p}(\theta_{j-1}), \mathbf{p}(\theta_{j})) - d(\mathbf{p}(\theta_{j}), \mathbf{p}(\theta_{j+1})) - d(\mathbf{p}(\theta_{k-1}), \mathbf{p}(\theta_{k})) - d(\mathbf{p}(\theta_{k}), \mathbf{p}(\theta_{k+1}))$$

Travel_salesman_SA.R

Simulated annealing for continuous function

- Simulated annealing can equally be used for continuous functions
- Main change: Define neighborhood in continuous space
 - Example: $\mathcal{N}(\theta) = \{\theta^* : \exists j \text{ such that } \theta_k^* = \theta_k, k \neq j\}$
- Can choose $f(\theta) = L(\theta)$ or $f(\theta) = \ell(\theta)$
- Typically prefer $f(\theta) = \ell(\theta)$ because
 - The depth parameter *c* will usually be smaller
 - It is typically easier to update $\ell(\theta)$

Genetic algorithm background

- Mimics the process of Darwinian natural selection
- Candidate solutions to a maximization problem are envisioned as biological organisms represented by their genetic code.
- The fitness of an organism is analogous to the quality of a candidate solution
- Breeding among highly fit organisms provides the best opportunity to pass along desirable attributes to future generations
- Breeding among less fit organisms (and mutations) ensures population diversity
- Darwin: The population evolve to become increasingly fit
- Consider again maximization of $f(\theta)$

Genetic algorithm (iterations)

- Each iteration t contain a collection/population of solutions, $heta_1^{(t)}$, ..., $heta_P^{(t)}$
- Individuals of next generation $\theta_j^{(t+1)}$ are based on two parents and a stochastic component:

$$\theta_i^{(t+1)} = g(\theta_k^{(t)}, \theta_l^{(t)})$$

- Selection mechanism
 - Parents selected with probabilities related to fitness $f(\theta)$
- Genetic operators

$$- \ \theta_k^{(t)} = (100110001), \ \theta_l^{(t)} = (110101110) \Rightarrow \theta_j^{(t+1)} = (1?01?????) \qquad ? = random$$

$$- \ \theta_k^{(t)} = (100110001), \ \theta_l^{(t)} = (110101110) \Rightarrow \theta_j^{(t+1)} = (100101110) \qquad \text{crossover}$$

- Mutations Randomly change one (or a few) components
 - $(100101110) \Rightarrow (101101110)$
 - Assures that the solution is not limited by the initial population

Schematic example (fig 3.5)

Population size: P = 4

Chromosome length: C=3 (= # of parameters, i.e. p=3)

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Genetic algorithm – Practical issues

- Size of population, P
 - For binary components, suggestion: $p \le P \le 2p$
 - For permutations, suggestion 2p < P < 20p
- Mutation rate, μ
 - Low, typically 1%
 - Theoretical results: $\mu = 1/p$ or $\mu = 1/(P\sqrt{C})$
- Selection of parents
 - Probability proportional to $f(\theta_t^{(k)})$
 - Probability proportional to $exp(f(\theta_t^{(k)}))$
 - Probability proportional to rank of $f(\theta_t^{(k)})$
 - One parent completely random
 - Tournament selection
 - Individuals at iteration t randomly divided into k clusters
 - Best fitted individuals within each cluster used as parents at iteration t+1
- Introducing population gap
 - Only a proportion, G, is replaced between each generation

Genetic algorithm baseball salaries

- Salaries for n = 337 baseball players
- p = 27 possible covariates, $2^{27} = 134217728$ possible models

Covariates are statistics collected during a season

- # runs scored
- batting average
- on pace percentage
- •
- Genetic algorithm (for model selection)
 - Starting with P = 100 models selected randomly
 - Choose two parents with probabilities proportional to exp(-AIC)
 - For each component choose the state from one of the parents randomly
 - Allow mutation (change) with probability $\mu = 0.01$
 - Baseball_genetic.R

Tabu algorithms

- Local (random) search weakness
 - Next move will in many cases reverse previous move
- Tabu idea:
 - Allow downhill move when no uphill move is possible
 - Make some moves temporarily forbidden or tabu
 - Early form: steepest ascent /mildest decent
 - Move to least unfavorable when there is no uphill move

Traveling salesperson Tabu

- Neighborhood: Swap the order of two components
- Move: To the best state in the neighborhood even if it is worse
- Tabu: Do not allow to pick two components that have been selected in the last k
 iterations
- Implementation:
 - Make a table of all possible pairs that can be picked, a $p(p-1) \times 2$ table
 - Make a list H containing the last k pairs that have been picked (references to the rows in the table above)
 - When searching within neighborhood, do not consider those pairs contained in H
 - When found the best pair, remove the first element of H and add the new pair to the end of H
- Travel salesman tabu.R

Det matematisk-naturvitenskapelige fakultet

Tabu additional rules

- Aspiration criterion:
 - Allow a tabu move if it is better than the best found state so far
 - Allow a tabu move if it gives a large change
- Diversification
 - Penalize moves to a worse state if such a move has happened many times before
- Intensification
 - Reward moves that retain features that have shown to be important earlier
 - Variable selection: If inclusion of component j correspond to many good solutions, reward moves including this component