Network and non-Network based Approach for Music Recommendation

Research Question

- Whether network based model of non-network based model performs better in recommendation system
- Which network based model for recommendation system prevails
- What accuracy can a network-based model reach

Motivation

- Help explore music you love in a music platform
- Low frequency of existing recommendation
- Low accuracy of existing recommendation results
- Few recommendation systems based on network concept

Related Work

- Brandon Liu "Better than PageRank: Hitting Time as a Reputation Mechanism", 2014
- Li Gao et all. "Recommendation with Multi-Source Heterogeneous Information", 2018

DataSet

- Song Data: a set of 10000 song records with song metadata fields
 - Used metadata fields: duration, tempo, artist_hotness, key, mode, loudness
 - Dropped metadata fields: drop all remaining fields due to missing data
- User Taste Data: 48,373,586 records of 1,019,318 users' listening history
 - filter listening history records to only those with songs among the 10,000 song data
 - 418,252 users with 772,661 records remains, with listening count provided

User	Song	Listening count
abc	Sorry	1
cba	Timber	23

Methods

- Non-Network based Method
 - Collaborative Filtering
- Core: Network based Method
 - BFS
 - Hitting Time

Method 1: Collaborative Filtering

- Intuition: How much do users similar to me like the song?
 - More listening counts, more likely to like the song!

Challenges

- Sparse → Not many people listened to the exact set of songs as you → correlation = 0.001?
- Computation heavy if compare with everyone to find similar users or similar songs

Solution

- Dense Data Representation: Use k means clustering to cluster songs into 74 clusters.
 Represent a 124,257 x 74 matrix where each element is [user, within cluster listening count]
- Computation speed up:
 - Use python sparse matrix that allows faster computation.
 - Apply early pruning to unpromising users that are not similar to you
 - Use clustering result to help narrow down search domain for similar songs

Method 1: Collaborative Filtering

- Dimension Reduction: K-means++ to cluster all songs to 74 clusters
 - Features: duration, tempo, artist_hotness, key, mode, loudness
 - Optimal # clusters: use np.sqrt(n_samples/2) and silhouette_score
- Algorithm: For each user in test data(user i, song s):
 - Step1: Find which cluster of music the person has ever listened to
 - Step2: Find all potentials who have also listened to the same clusters
 - Step3: Prune potentials who have listened to more than 2 clusters than the user
 - Step4:
 - Narrow down Very similar users: Among pruned potentials we find the cosine_similarity(potential, user) >= 0.6
 - Among very similar users:
 - Has Listened to the song s: look at his listening count
 - Not listened to the song s: find similar songs to song s using the clustering result and look for his listening count for similar songs

Method 1: Collaborative Filtering

Prediction listening count for (user i, song s)

```
Sum over all very similar user j cosine_similarity(user i, user j) * cosine_similarity(song s, song s') * listening_count(user j, song s') cosine_similarity(user i, user j) * cosine_similarity(song s, song s')
```

- If user j has listened to song s, song s' = song s, thus cosine_similarity(song s, song s') = 1
- If user j has never listened to song s, find similar song s' that is in the same cluster and find cosine_similarity(song s, song s')

Collaborative Filtering Result

Test data: 1485 records

Unpromising:

 About half of the records, the system was unable to find similar songs in the same cluster that very similar user has listened to.

High Likeness Detection Accuracy: 13%

Overall Accuracy: 31%

Likeness	# prediction listening counts	# records
Low	<=2	396
Medium	<=4	366
High	>5	115
	NAN	608

Test mini: 877 records

Core: Network Representation

Bipartite Graph Representation:

One Mode projection on Songs:

691 songs, 105,986 users, 286,480 records

WEIGHTED GRAPH

Graph Creation Condition:

- All nodes need to be connected.
- Test data's songs need to be in the graph(344 songs)
- Test data's user's listening history need to be in the graph(564 songs)
- Networkx can handle the size

Network Statistics

• Degree distribution

Network Statistics

Number of nodes: 690

Number of edges: 69,912

Clustering coefficient: 0.703

Average shortest path length: 1.72

Method 2: BFS - Network based

- Neighbors: Node with path length 1 & 2
- Path weight discount parameter: α
- Neighbor score
 - Node with path length 1: α*w1
 - Node with path length 2: $\alpha * \alpha * (w1+w2)$
- Compromise for multiple occurences: log(s1+s2)
- Path weight discount parameter choice: α = 0.01

Method 2: BFS - Network based

Challenge:

- Choice making for path weight discount parameter
- Recommendation score calculation

• Result with $\alpha = 0.01$

Intuition: The lower the hitting time, the more likely it should be recommended to user.

- Hitting Time: Expected number of steps that a random walk i → j
- Can be Recursively defined. Complexity O(|V|^3)

$$h_i^A = egin{cases} \sum_{j \in V} p(i o j) h_j^A + 1, & ext{for } i
otin A \end{cases}$$
 Iterative Computation

Our Approach:

- Naive Monte Carlo Hitting Time
 - Simulate random walk from node i for k times
 - Estimate h_{i,j} = (# random walks that reached j)/ k
- Multiwalk Monte Carlo Hitting Time
 - Observation: Each random walk can also be used to estimate sub-random walks! → 31874 walks!

$$h_{A,B} = 0.1 ^ 1$$

$$h_{A,C} = 0.1 ^2$$

$$h_{B,C} = 0.1 ^1$$

Our Approach:

- Set-up:
 - For each user i in test data, we find all the songs she has listened to.
 - We set each of the listened song as an initial random walk start node.
 - Simulate α -terminating random walk k times. Edge weights is used to pick a path.
 - Record paths and the corresponding hitting time = β ^step_size. $\rightarrow \beta$ = 0.1 Hitting time depends on both edge weights(implicitly) and step_size!
- α -Terminating Random Walk

$$P(X_{t+1} = j | X_t = i) = \mathbb{1}[(1 - \alpha) \frac{w_{i,j}}{\sum w_{i,j}}]$$
 if node i, j is connected

- β -discounted length of Random Walk

Result:

- Evaluation:

1 Song 1

- Best Parameter: **β** = 0.1

2 Song 2

 Sharp increase in accuracy from top 10 to top 30.

- 3 Song 3
- 4 Song 4

Results

- Network based model performs better than non-network based ones in our recommendation mechanism.fif
 - Collaborative Filtering fails to find very similar users with similar songs.
- BFS performs better than Hitting Time among two network based models we study
- The highest accuracy in our study is reached by BFS with a value around 70% when p=0.01

