Tutorial - Class Activity

8 October, 2019 (Solution)

Problem 1

- **5.10** The S&R index spot price is 1100 and the continuously compounded risk-free rate is 5%. You observe a 9-month forward price of 1129.257.
 - a. What dividend yield is implied by this forward price?
 - **b.** Suppose you believe the dividend yield over the next 9 months will be only 0.5%. What arbitrage would you undertake?
 - **c.** Suppose you believe the dividend yield will be 3% over the next 9 months. What arbitrage would you undertake?

Solution

a) We plug the continuously compounded interest rate, the forward price, the initial index level and the time to expiration in years into the valuation formula and solve for the dividend yield:

$$F_{0,T} = S_0 \times e^{(r-\delta)\times T}$$

$$\Leftrightarrow \frac{F_{0,T}}{S_0} = e^{(r-\delta)\times T}$$

$$\Leftrightarrow \ln\left(\frac{F_{0,T}}{S_0}\right) = (r-\delta) \times T$$

$$\Leftrightarrow \delta = r - \frac{1}{T}\ln\left(\frac{F_{0,T}}{S_0}\right)$$

$$\Rightarrow \delta = 0.05 - \frac{1}{0.75}\ln\left(\frac{1129.257}{1100}\right) = 0.05 - 0.035 = 0.015$$

b) With a dividend yield of only 0.005, you expect that the forward price would be:

$$F_{0,T} = S_0 \times e^{(r-\delta)\times T} = 1,100 \times e^{(0.05-0.005)\times 0.75} = 1,100 \times 1.0343 = 1,137.759$$

Therefore, if we think the dividend yield is 0.005, we consider the observed forward price of \$1,129.257 to be too cheap. We will therefore buy the forward and create a synthetic short forward, capturing a certain amount of \$8.502. We engage in a **reverse cash and carry arbitrage**:

1

Description	Today	In nine months
Long forward	0	S_T - \$1,129.257
Sell short tailed position in	\$1,100 × 0.99626	$-S_T$
index	= \$1,095.88	
Lend \$1,095.88	-\$1,095.88	\$1,137.759
TOTAL	0	\$8.502

c) With a dividend yield of 0.03, you expect that the forward price would be:

$$F_{0,T} = S_0 \times e^{(r-\delta)\times T} = 1,100 \times e^{(0.05-0.03)\times 0.75} = 1,100 \times 1.01511 = 1,116.62$$

Therefore, if we think the dividend yield is 0.03, we consider the observed forward price of \$1,129.257 to be too expensive. We will therefore sell the forward and create a synthetic long forward, capturing a certain amount of \$12.637. We engage in a **cash and carry arbitrage**:

Description	Today	In nine months
Short forward	0	$1,129.257 - S_T$
Buy tailed position in	$-\$1,100 \times .97775$	S_T
index	= -\$1,075.526	
Borrow \$1,075.526	\$1,075.526	-\$1,116.62
TOTAL	0	\$12.637

Problem 2

- 5.13 Verify that going long a forward contract and lending the present value of the forward price creates a payoff of one share of stock when
 - a. The stock pays no dividends.
 - b. The stock pays discrete dividends.
 - c. The stock pays continuous dividends.

Solution

a)

Description	Today	At expiration of the contract
Long forward	0	$S_T - F_{0,T} = S_T - S_0 e^{rT}$
Lend S_0	$-S_0$	S_0e^{rT}
Total	$-S_0$	S_T

In the first row, we made use of the forward price equation if the stock does not pay dividends. We see that the total aggregate position is equivalent to the payoff of one stock.

b) In the case of discrete dividends, we have:

Description	Today	At expiration of the contract	
Long forward	0	$S_T - F_{0,T} = S_T - S_0 e^{rT} + \sum_{i=1}^n e^{r(T-t_i)} D_{t_i}$	
Lend $S_0 - \sum_{i=1}^n e^{-rt_i} D_{t_i}$	$-S_0 + \sum_{i=1}^n e^{-rt_i} D_{t_i}$	$+S_0e^{rT}-\sum_{i=1}^n e^{r(T-t_i)}D_{t_i}$	
Total	$-S_0 + \sum_{i=1}^n e^{-rt_i} D_{t_i}$	S_T	

In the first row, we made use of the forward price equation if the stock pays discrete dividends. We see that the total aggregate position is equivalent to the payoff of one stock at time T.

c) In the case of a continuous dividend, we have to tail the position initially. We, therefore, create a synthetic share at the time of expiration T of the forward contract.

Description	Today	At expiration of the contract
Long forward	0	$S_T - F_{0,T} = S_T - S_0 e^{(r-\delta)T}$
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$S_0e^{(r-\delta)T}$
Total	$-S_0e^{-\delta T}$	S_T

In the first row, we made use of the forward price equation if the stock pays a continuous dividend. We see that the total aggregate position is equivalent to the payoff of one stock at time T.

Problem 3

Suppose the current stock price is \$30.58 and the continuously compounded risk-free interest rate is 6%. The stock pays dividend of \$1.8 and \$2.5 at the end of 3 months and at the end of 6 months respectively. You observe an 8-month forward contract with forward price \$29.15. Is there an arbitrage opportunity on the forward contract? If so, describe the strategy to realize profit and find the accumulated arbitrage profits at the end of 8 months.

Solution

The theoretical forward price = $(30.58 - 1.8e^{-6\% \times 0.25} - 2.5e^{-6\% \times 0.5})e^{6\% \times (8/12)} = 27.4573$.

Now, we have the observed market forward price, \$29.15, is higher than the theoretical forward price. So, the strategy to realize the arbitrage profit is to short the forward contract and long the synthetic forward.

Transactions	Cash Flows			
	t = 0	t = 0.25	t = 0.5	t = 8/12
Short one forward	0	0	0	29.15 –S _{8/12}
Buy one share of the	-30.58	0	0	S _{8/12}
stock				
Borrow \$30.58 at t =	30.58	0	0	$-30.58e^{(0.06)(8/12)}$
0				= - 31.828
Receive the dividend	0	1.8	0	0
(\$1.8) at t = 0.25				
Lend \$1.8 at t =0.25	0	-1.8	0	$1.8e^{(0.06)(5/12)} = 1.8456$
Receive the dividend	0	0	2.5	0
(\$2.5) at t = 0.5				
Lend \$2.5 at t =0.5	0	0	-2.5	$2.5e^{(0.06)(2/12)} = 2.5251$
Total	0	0	0	1.6927

This position requires no initial investment, has no stock price risk, and has a strictly positive payoff. We have exploited the mispricing with a pure arbitrage strategy. The accumulated arbitrage profits at the end of 8 months is \$1.6927.