Gradient calculations

May 11, 2015

Consider the case when $Y_1 = 0$ and $Y_2 = 0$. Then the likelihood is given by

$$f = \exp\left\{\sum_{l=1}^{L} \left(\sum_{i=1}^{2} \left[\frac{w_l(\mathbf{s}_i)}{z_i}\right]^{1/\alpha}\right)^{\alpha}\right\}$$
 (1)

- where $z_i = (1 \xi \mathbf{X}_i^T \boldsymbol{\beta})^{1/\xi}$, $w_l(\mathbf{s}_i) = \frac{\exp\left\{\frac{-||\mathbf{S}_i \mathbf{V}_l||^2}{2\rho^2}\right\}}{\sum_{k=1}^L \exp\left\{\frac{-||\mathbf{S}_i \mathbf{V}_k||^2}{2\rho^2}\right\}}$. Then these are the gradients with respect to
- model parameters α , β , ρ , and ξ . There's a problem with $\frac{\partial f}{\partial \beta}$. This is only the gradient in the case that we
- 6 have a single covariate (i.e. intercept only)

2

$$\frac{\partial f}{\partial \alpha} = -\sum_{l=1}^{L} \left\{ \left(\sum_{i=1}^{2} \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \right)^{\alpha - 1} \left[\log \left(\sum_{i=1}^{2} \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \right) - \sum_{i=1}^{2} \left(\left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \log \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \right) \right] \right\}$$
(2)

$$= -\sum_{l=1}^{L} \left\{ \left(\sum_{i=1}^{2} \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \right)^{\alpha - 1} \sum_{i=1}^{2} \left(x_i \left[\frac{w_l(\mathbf{s}_i)}{z_i^{\alpha \xi + 1}} \right]^{1/\alpha} \right) \right\}$$
(3)

$$\frac{\partial f}{\partial \rho} = -\sum_{l=1}^{L} \left\{ \left(\sum_{i=1}^{2} \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \right)^{\alpha - 1} \times \frac{1}{\rho^3} \sum_{i=1}^{2} \left(\left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \left[||\mathbf{s}_i - \mathbf{v}_l||^2 - \frac{\sum_{k=1}^{L} ||\mathbf{s}_i - \mathbf{v}_k||^2 \exp\left\{ - \frac{||\mathbf{s}_i - \mathbf{v}_k||^2}{2\rho^2} \right\}}{\sum_{k=1}^{L} \exp\left\{ - \frac{||\mathbf{s}_i - \mathbf{v}_k||^2}{2\rho^2} \right\}} \right] \right) \right\} \tag{4}$$

$$\frac{\partial f}{\partial \xi} = -\sum_{l=1}^{L} \left\{ \left(\sum_{i=1}^{2} \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \right)^{\alpha - 1} \sum_{i=1}^{2} \left(\frac{1}{\xi} \left[\frac{w_l(\mathbf{s}_i)}{z_i} \right]^{1/\alpha} \left[\ln(z_i) + \frac{\mathbf{X}_i^T \boldsymbol{\beta}}{z_i^{\xi}} \right] \right) \right\}$$
(5)