Introductory Seminar Advanced Numerical Analysis

Exercise sheet 3, due date: 21.03.2022

Exercise 1 (Gradient decent and CG).

We wish to solve the linear system $Ax = b, A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ using the Gradient decent method, i.e. the iteration

$$x^{k+1} = x^k + \alpha_k r^k$$

where $r^k = b - Ax^k$ is the residual and $\alpha_k = \frac{(r^k)^T r^k}{(r^k)^T A r^k}$.

- (1) Compute x^1 if $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, $b = (1,1)^T$ and the initial guess is given by $x^0 = 0$.
- (2) Suppose the k-th error $e^k = x x^k$ is an eigenvector of A. What can you say about x^{k+1} ?

Exercise 2 (Norm equivalence: optimality, part 1).

Recall that two norms $\|\cdot\|_*$ and $\|\cdot\|_*$ on a vector space V are called equivalent if there exist positive constants C, C' > 0 such that

$$||v||_* \le C||v||_*, \quad ||v||_* \le C'||v||_*$$

for every $v \in V$. Each of these constants is called *sharp* or *optimal* if the inequalities in (**E**) not hold with any smaller constant. If V is finite-dimensional then any two norms $\|\cdot\|_*$ and $\|\cdot\|_*$ on V are equivalent and there exist $\hat{v}, \hat{v}' \in V \setminus \{0\}$ at which the inequalities in (**E**) with sharp constants become equalities. In this case, the sharp constants C, C' are given by

$$C = \max_{v \in V \backslash \{0\}} \frac{\|v\|_*}{\|v\|_\star} = \frac{\|\hat{v}\|_*}{\|\hat{v}\|_\star}, \quad C' = \max_{v \in V \backslash \{0\}} \frac{\|v\|_\star}{\|v\|_*} = \frac{\|\hat{v}'\|_\star}{\|\hat{v}'\|_*}.$$

In the following we determine the optimal constants C, C' in the case where $V = \mathbb{C}^n, \|\cdot\|_* = \|\cdot\|_\infty$ is the maximum norm and $\|\cdot\|_* = \|\cdot\|_2$ is the Euclidean norm

- (1) Show that $||v||_{\infty} \leq C||v||_2$ for every $v \in \mathbb{C}^n$ with C = 1. Further show that C = 1 is optimal.
- (2) Show that $||v||_2 \leq C' ||v||_{\infty}$ for every $v \in \mathbb{C}^n$ with $C' = \sqrt{n}$. Further show that $C' = \sqrt{n}$ is optimal.

Exercise 3 (Norm equivalence: optimality, part 2).

This is a continuation of exercise 2. We wish to determine the optimal constants for the matrix norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{2}$ (the matrix norms induced by the maximum resp. Euclidean norm on \mathbb{C}^{n}) on $V = \mathbb{C}^{n \times n}$.

- (1) Show that $||A||_{\infty} \leq C||A||_2$ for every $A \in \mathbb{C}^{n \times n}$ where $C = \sqrt{n}$.
- (2) Let A be the matrix all whose rows but the first row are zero and the first row is a row of ones. Further let $b = (1, 1, ..., 1)^T \in \mathbb{C}^n$. Use these definitions of A and b to show that $||A||_2 = \sqrt{n}$.
- (3) Let A be defined as in (4). Show that $||A||_{\infty} = \sqrt{n} ||A||_2$ and conclude that $C = \sqrt{n}$ is optimal.

(4) Show that $||A||_2 \leq \sqrt{n}||A||_{\infty}$ for every $A \in \mathbb{C}^{n \times n}$. Further prove that equality in the previous inequality is attained for the matrix A whose columns but the first are zero and whose first column is a column of ones.

Exercise 4 (Antisymmetric systems, part 1).

Let $\langle x,y\rangle = \sum_{j=1}^n x_j y_j$ denote the Euclidean scalar product on \mathbb{R}^n and let $\|\cdot\|_2$ be the Euclidean norm. Let $B\in\mathbb{R}^{n\times n}$ be an antisymmetric matrix, i.e. $B^T=-B$ and let $A:=\mathrm{Id}-B$ where Id is the identity matrix in $\mathbb{R}^{n\times n}$.

- (1) Show that for every $x \in \mathbb{R}^n$ we have $\langle Bx, x \rangle = 0$ and $\langle Ax, x \rangle = ||x||_2^2$.
- (2) Show that $||Ax||_2^2 = ||x||_2^2 + ||Bx||_2^2$ and that $||A||_2 = \sqrt{1 + ||B||_2^2}$.
- (3) Show that A is invertible and the matrix-norm of its inverse is given by

$$||A^{-1}||_2 = \max_{x \neq 0} \frac{||x||_2}{||Ax||_2}.$$

(4) Show that $||A||_2 \leq 1$.

Exercise 5 (Antisymmetric systems, part 2).

Let the matrices A and B be given as in Exercise 4, i.e. $B \in \mathbb{R}^{n \times n}$ is antisymmetric and $A := \mathrm{Id} - B$.

(1) Let $k \in \{1, ..., n\}$ and let $\mathcal{W} \subset \mathbb{R}^n$ be a k-dimensional subspace of \mathbb{R}^n spanned by the vectors $w_1, ..., w_k \in \mathbb{R}^n$. Show that if $x \in \mathcal{W}$ is such that

$$\langle Ax, w \rangle = \langle b, w \rangle \ \forall w \in \mathcal{W}$$

then $||x||_2 \le ||b||_2$.

(2) With $x := \sum_{j=1}^{k} c_j w_j$ the problem **(P)** is equivalent to finding real numbers c_1, \ldots, c_k solving the linear system

$$\sum_{j=1}^{k} c_j \langle Aw_j, w_i \rangle = \langle b, w_i \rangle, \quad i = 1, \dots, k.$$

Show that **(P)** has a unique solution $x \in \mathcal{W}$.

(3) Let $x^* := A^{-1}b$. Show that

$$||x^* - x||_2 \le ||A||_2 \min_{w \in \mathcal{W}} ||x^* - w||_2.$$