

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

GRIFIM – Group of Interaction of Photons and Ions with Matter Supervision: Prof. Dr. Lucio Sartori Farenzena

ANALYSIS OF POLYMERIC FILMS DEGRADATION SUBJECTED TO IONIZING RADIATION

Marcelo Girardi Schappo

Doctorate Student

OVERVIEW

WHAT DO WE DO?

WHY DO WE DO?

HOW DO WE DO?

PRELIMINARY RESULTS

CONCLUSIONS

WHAT DO WE DO?

PMMA FILMS

Poly(methyl methacrylate)

UV (H Ly-Alpha 10,2eV) H+, He+, C+ e N²⁺ (~10⁵-10⁶eV)

Chemical & physical changes

Heating, surface mass ejection, aesthetical changes

WHY DO WE DO?

1. Natural Ionizing Radiation

WHY DO WE DO?

2. Ionizing Radiation and PMMA

lifetime of satellites coverage

Polymer degradation subjected to environment radiation

Optical applications and lithography

HOW DO WE DO?

1. Surface Mass Ejection (Desorption)

HOW DO WE DO?

2. Chemical Changes (Degradation)

n !			
Polymer	Abbreviation	Monomer	Туре
Polyethylene	PE	-{CH ₂ -CH ₂ } _n	I
Polystyrene	PS	CH ₂ -CH n	I
Polyvinyl chloride	PVC	-{cH₂-cH} <u>-</u> a	I
Polytetrafluorethylene	PTFE		п
Poly(methacrylic acid)	PMAA	СН ₃ ————————————————————————————————————	п
Poly(methyl methacrylate)	PMMA	$ \begin{array}{c} CH_3 \\ -CH_2-C-\\ -C \\ OCH_3 \end{array} $	П
Poly(maleic acid)	PMA	$ \begin{array}{c} -\left\{CH_{2}-CH\right\}_{n}\\ O=C\\ OCH_{3} \end{array} $	I

Infrared Spectroscopy

$$A(\lambda) = -log\left(\frac{I(\lambda)}{I_0(\lambda)}\right)$$

Beer-Lambert Law for absorbance

TYPE I Reticulation TYPE II Degradation

PRELIMINARY RESULTS

Surface Mass Ejection

Ester group mass signal on spectrum has exponential decay with radiation dose

PRELIMINARY RESULTS

Chemical Changes

PRELIMINARY RESULTS

Chemical Changes

CONCLUSIONS

PMMA is degrading polymer when subjected to ionizing radiation

Degradation increases with the energy deposited by each projectile (depending on the electronic *stopping power*)

The degradation process can be analyzed with two complementary analytical techniques: FTIR (bulk information) and ToF (ejection information)

These two techniques can lead us to have a better understanding about degradation routes on polymers subjected to ionizing radiation

END