Oblivious Bucketization

Microsoft

ARA-aggr

"Attribution Reporting API with Aggregate Reports" as a starting point

Reports consist of

• A key k: string of bits 16-bit key (AdCategory||Region)

1011101111||000101

• A list of values $v_1, ..., v_m$: these are values one might want to aggregate

Each report $(k, v_1, ..., v_m)$ will be secret shared with one share given to each of **2** aggregation servers

System Design

Flexible Query Structure

Differentially Private Aggregates

Oblivious Bucketization

Goals:

- Provide the same privacy guarantees as (incremental) DPF
 - Only information revealed to reporting origin or aggregation servers is differentially private
- Allow for more **flexibility** in report length and aggregates computed
 - Build hierarchy of histograms using any subsets of key bits at each level
 - Choose which aggregates to compute on the fly e.g. decide whether to compute SUM, or first subdivide further
- Provide better efficiency
 - Least expensive operations
 - BONUS: hierarchy allows better performance

Detailed analysis: 2021/1490.pdf (iacr.org)

Achieving Privacy Goals

Aggregation

Server S_3

Two-party secret sharing

2. Add dummy reports to achieve differentially private aggregate.

Aggregation Server S_1

$$\{(k_i^1, v_i^1)\}_{i \in [n]} \longrightarrow \{(k_i^1, v_i^1)\}_{i \in [n+n']}$$

Secretly shared reports are sent to aggregation servers S_1 and S_2 .

Aggregation Server S_2

Reports

$$\{(k_i^2, v_i^2)\}_{i \in [n]}$$
 —

$$\{(k_i^2, v_i^2)\}_{i \in [n]}$$
 $\{(k_i^2, v_i^2)\}_{i \in [n+n']}$

4. Reveal bits corresponding to a chosen feature

Buckets

5. Output differentially private aggregates and/or continue recursive bucketization.

Performance Evaluation

- Environment: Azure Standard D8s v4, 8vCPU, 32GB RAM. 60 ms network latency
- Dataset size: 10 million reports
- Task: Count => bucketize into 2¹⁶ buckets (includes only keys not values)

Key size (L bits)	32	64	256	512
Add dummy records	26 ms	47 ms	176 ms	355 ms
Shuffling	4 s	6 s	20 s	39 s
Reveal	2.5 s	3 s	7 s	11 s

Performance Evaluation

- Sparse domain: 32-bit keys forming 2²⁰ buckets
 - Incremental DPF with "single user contribution": 0.72 seconds (no sketching, no DP)
 - Bucketization with 1 million records: 10 seconds (end-to-end privacy)

- Heavy-Hitter with 256-bit key
- Dataset size: 400 000 reports (following zipf distribution)

incremental DPF	53 mins
hierarchical Bucketization	28 mins

Wrap-Up Comparisons

COUNTs	Honest-but- curious model	Robustness (malicious clients)	Privacy (malicious server)	Correctness (malicious server)	DP	# of aggregators	Query flexibility
Prio	Yes	SNIPs	Yes	No	No	2	no
DPF	Yes	Sketching	Yes	No	Yes	2	no
Bucketization	Yes	No cost	Yes	No	Yes	3	yes
	1		1				ı
SUMs	Honest-but-	Robustness	Privacy	Correctness	DP	# of	Query

SOIVIS	curious model	(malicious clients)	(malicious server)	(malicious server)	DP	aggregators	flexibility
Prio	Yes	SNIPs	Yes	No	No	2	no
DPF	Yes	Sketching	Yes	No	Yes	2	no
Bucketization	Yes	modulo conversion	Yes	No	Yes	3	yes

Computation vs. Communication

Computation Communication

- DPF is a successor of Prio
- DPF vs Bucketization: Two orthogonal solutions
- More communication does not necessarily mean more expensive protocol