Introduction to Natural language Processing

Unit-I

Syed Rameem Zahra

(Assistant Professor)
Department of CSE, NSUT

Introduction to NLP

- Natural Language Processing (NLP) refers to AI method of communicating with an intelligent systems using a human languages (e.g. English) — speech or text
- NLP-powered software helps us in our daily lives in various ways, for example:
- Personal assistants: Siri, Cortana, and Google Assistant.
- Auto-complete: In search engines (e.g. Google).
- **Spell checking**: Almost everywhere, in your browser, your IDE (*e.g.* Visual Studio), desktop apps (*e.g.* Microsoft Word).
- Machine Translation: Google Translate.

NLP: Real World Examples

Source: Wikipedia

Advantages of NLP

- Computers can infer and analyze human language
- It is the ability of a computer program to understand the human speech.
- Automatic Text Summarization (like in newspapers).
- Finding relationships between sentences.
- Ease in web search.
- Text/speech translation.
- Understanding sentiment in tweets and blogs (Sentiment Analysis).

Applications of NLP

- Machine Translation (it is the translation of text or speech by a computer with no human involvement.)
- **Information Retrieval** (software program that deals with the organization, storage, retrieval and evaluation of information from document repositories particularly textual information.
- Question Answering (is concerned with building systems that automatically answer questions posed by humans in a natural language.
- Dialogue Systems (computer system intended to converse with a human)
- **Information Extraction** (refers to the automatic extraction of structured information such as entities, relationships between entities, and attributes)
- **Summarization** (refers to the technique of shortening long pieces of text.)
- **Sentiment Analysis** (tries to identify and extract opinions within a given text across blogs, reviews, social media, forums, news etc)

Evolution of NLP

NLP Terminology

- Phonology It is study of organizing sound systematically.
- Morphology It is a study of construction of words from primitive meaningful units.
- Morpheme It is primitive unit of meaning in a language.
- **Syntax** It refers to arranging words to make a sentence. It also involves determining the structural role of words in the sentence and in phrases.
- **Semantics** It is concerned with the meaning of words and how to combine words into meaningful phrases and sentences.
- Pragmatics It deals with using and understanding sentences in different situations and how the interpretation of the sentence is affected.
- **Discourse** It deals with how the immediately preceding sentence can affect the interpretation of the next sentence.
- World Knowledge It includes the general knowledge about the world.

Process of NLP

Natural Language Understanding (NLU)

- Mapping the given input in natural language into useful representations.
- Analyzing different aspects of the language.
- The NLU is harder than NLG.

```
Morphological Analysis

↓ Morphologically analyzed words (another step: POS tagging)

Syntactic Analysis
         Syntactic Structure
Semantic Analysis
         Context-independent meaning representation
Discourse Processing
          Final meaning representation
```

Part-of-Speech (POS) Tagging

- Each word has a part-of-speech tag to describe its category.
- Part-of-speech tag of a word is one of major word groups (or its subgroups).
 - o open classes -- noun, verb, adjective, adverb
 - closed classes -- prepositions, determiners, conjuctions, pronouns, particples
- POS Taggers try to find POS tags for the words.
- duck is a verb or noun? (morphological analyzer cannot make decision).
- A POS tagger may make that decision by looking the surrounding words.
 - Duck! (verb)
 - Duck is delicious for dinner. (noun)

Lexical Processing

- The purpose of lexical processing is to determine meanings of individual words.
- Basic methods is to lookup in a database of meanings -- lexicon
- We should also identify non-words such as punctuation marks.
- Word-level ambiguity -- words may have several meanings, and the correct one cannot be chosen based solely on the word itself.
 - bank in English
 - o yüz in Turkish
- Solution -- resolve the ambiguity on the spot by POS tagging (if possible) or pass-on the ambiguity to the other levels.

Syntactic Processing

- Parsing -- converting a flat input sentence into a hierarchical structure that corresponds to the units of meaning in the sentence.
- There are different parsing formalisms and algorithms.
- Most formalisms have two main components:
 - grammar -- a declarative representation describing the syntactic structure of sentences in the language.
 - parser -- an algorithm that analyzes the input and outputs its structural representation (its parse) consistent with the grammar specification.
- CFGs are in the center of many of the parsing mechanisms. But they are complemented by some additional features that make the formalism more suitable to handle natural languages.

Semantic Analysis

- Assigning meanings to the structures created by syntactic analysis.
- Mapping words and structures to particular domain objects in way consistent with our knowledge of the world.
- Semantic can play an import role in selecting among competing syntactic analyses and discarding illogical analyses.
 - I robbed the bank -- bank is a river bank or a financial institution
- We have to decide the formalisms which will be used in the meaning representation.

Knowledge Representation for NLP

- Which knowledge representation will be used depends on the application.
 - Requires the choice of representational framework, as well as the specific meaning vocabulary (what are concepts and relationship between these concepts -- ontology)
 - Must be computationally effective.
- Common representational formalisms:
 - first order predicate logic
 - conceptual dependency graphs
 - semantic networks
 - Frame-based representations
 - Vector-space models

Natural Language Generation (NLG)

- It is the process of producing meaningful phrases and sentences in the form of natural language from some internal representation.
- It involves:
 - Text planning It includes retrieving the relevant content from knowledge base.
 - Sentence planning It includes choosing required words, forming meaningful phrases, setting tone of the sentence.
 - Text Realization It is mapping sentence plan into sentence structure.

Stages of NLP

Lexical Analysis:

- ➤ It involves identifying and analyzing the structure of words.
- Lexicon of a language means the collection of words and phrases in a language.
- Lexical analysis is dividing the whole chunk of txt into paragraphs, sentences, and words.

Syntactic Analysis (Parsing):

- ➤ It involves analysis of words in the sentence for grammar and arranging words in a manner that shows the relationship among the words.
- The sentence such as "The school goes to boy" is rejected by English syntactic analyzer.

Stages of NLP (Contd...)

Semantic Analysis:

- ➤It draws the exact meaning or the dictionary meaning from the text.
- ➤ The text is checked for meaningfulness.
- ➤It is done by mapping syntactic structures and objects in the task domain.
- ➤ The semantic analyzer disregards sentence such as "hot ice-cream".

Discourse Integration:

- ➤The meaning of any sentence depends upon the meaning of the sentence just before it.
- ➤In addition, it also brings about the meaning of immediately succeeding sentence.

Stages of NLP (Contd...)

Pragmatic Analysis:

- ➤ During this, what was said is re-interpreted on what it actually meant.
- ➤It involves deriving those aspects of language which require real world knowledge.

Levels Of Linguistic Analysis

Why NLP is hard: Difficulties in NLU

- Lexical ambiguity It is at very primitive level such as word-level.
 - For example, treating the word "board" as noun or verb?
- Syntax Level ambiguity A sentence can be parsed in different ways.
 - For example, "He lifted the beetle with red cap." Did he use cap to lift the beetle or he lifted a beetle that had red cap?
- Referential ambiguity Referring to something using pronouns.
 - example, Rima went to Gauri. She said, "I am tired." Exactly who is tired?
 - One input can mean different meanings.
 - Many inputs can mean the same thing.

An example of Ambiguity

The boy saw the man on the mountain with a telescope

Prepositional phrase attachment

Classical NLP Problems

• Mostly Solved:

- **Text Classification** (e.g. spam detection in Gmail).
- Part of Speech (**POS**) tagging: Given a sentence, determine the POS tag for each word (*e.g.* NOUN, VERB, ADV, ADJ).
- Named Entity Recognition (**NER**): Given a sentence, determine named entities (*e.g.* person names, locations, organizations).

• Making a Solid Progress:

- **Sentiment Analysis:** Given a sentence, determine it's polarity (*e.g.* positive, negative, neutral), or emotions (*e.g.* happy, sad, surprised, angry, etc)
- **Co-reference Resolution:** Given a sentence, determine which words ("mentions") refer to the same objects ("entities"). for example (**Manning** is a great NLP professor, **he** worked in the field for over two decades).
- Word Sense Disambiguation (**WSD**): Many words have more than one meaning; we have to select the meaning which makes the most sense based on the context (*e.g.* I went to the bank to get some money), here bank means a financial institution, not the land beside a river.
- Machine Translation (e.g. Google Translate).

• Still Challenging:

- Dialogue agents and chat-bots, especially open-domain ones.
- Question Answering.
- Abstractive Summarization.
- NLP for low-resource languages (e.g. African languages)

Morphology

- Morphology comes from a Greek word meaning "Shape" or "Form" and is used in linguistics to denote the study of words, both with regard to their internal structure (e.g. washing -> wash + ing) and their combination or formulation to form new or larger units (e.g. bat->bats:: rat->rats)
- Morphology tries to formulate rules.
- It helps in different domains such as spell checkers and machine translation.
- Morphological Analyzer and generator is a tool for analyzing the given word and generator for generating word given the stem and its features (like affixes).
- It identifies how a word is produced through the use of morphemes.

Morpheme and its Types

- The morpheme is the smallest element of a word that has grammatical function and meaning.
- Types:
 - Free morpheme: A single free morpheme can become a complete word, For instance, a bus, a bicycle, and so forth.
 - Bound morpheme: It cannot stand alone and must be joined to a free morpheme to produce a word. ing, un, and other bound morphemes are examples.

Root	Morphological variants
walk	walks, walked, walking
noise	noisy, noisily
atom	atomic
order	reorder, orderly
active	hyperactive, proactive
elect	reelect, reelection
view	preview, previewer, previewers

Basic word classes (parts of speech)

- Content words (open-class):
- Nouns: student, university, knowledge,...
- Verbs: write, learn, teach,...
- Adjectives: difficult, boring, hard,
- Adverbs: easily, repeatedly,...
 - Function words (closed-class):
- Prepositions: in, with, under,...
- Conjunctions: and, or,...
- Determiners: a, the, every,...

Words aren't just defined by blanks

- Problem 1: Compounding
 - "ice cream", "website", "web site", "New York-based"
- Problem 2: Other writing systems have no blanks, like Chinese
- Problem 3: Clitics
 - English: "doesn't", "I'm",
 - Italian: "dirglielo" = dir + gli(e) + lo (meaning: tell + him + it)

How many words are there?

"Of <u>course</u> he wants to <u>take</u> the advanced <u>course</u> too. He already <u>took two</u> beginners' <u>courses</u>."

- How many word tokens are there?
 - (16 to 19, depending on how we count punctuation)
- How many word types are there?
 - i.e. How many different words are there?
 - Again, this depends on how you count, but it's usually much less than the number of tokens
- The same (underlying) word can take different forms: course/courses, take/took
- We distinguish concrete word forms (take, taking) from abstract lemmas or dictionary forms (take)
- Different words may be spelled/pronounced the same: of course vs. advanced course; two
 vs. too

How many different words are there?

- **Inflection** creates different forms of the same word:
 - Verbs: to be, being, I am, you are, he is, I was,
 - Nouns: one book, two books
- Derivation creates different words from the same lemma:
 - grace ⇒ disgrace ⇒ disgracefull ⇒ disgracefully
- Compounding combines two words into a new word:
 - cream ⇒ ice cream ⇒ ice cream cone ⇒ ice cream cone bakery
- Word formation is productive:
 - New words are subject to all of these processes:
 - Google ⇒ Googler, to google, to ungoogle, to misgoogle, googlification, ungooglification, googlified, Google Maps, Google Maps service,...

Inflectional morphology in English

Verbs:

- Infinitive/present tense: walk, go
- 3rd person singular present tense (s-form): walks, goes
- Simple past: walked, went
- Past participle (ed-form): walked, gone
- Present participle (ing-form): walking, going

• Nouns:

- Number: singular (book) vs. plural (books)
- Plural: books
- Possessive (~ genitive case): book's, books
- Personal pronouns inflect for person, number, gender, case: I saw him; he saw me; you saw her; we saw them; they saw us.

Derivational morphology

Nominalization:

- V + -ation: computerization
- V+ -er: killer
- Adj + -ness: fuzziness

Negation:

- o un-: undo, unseen, ...
- o mis-: mistake,...

Adjectivization:

- V+ -able: doable
- N + -al: national

Morphemes: stems, affixes

dis-grace-ful-ly

prefix-stem-suffix-suffix

- Many word forms consist of a stem plus a number of affixes (prefixes or suffixes)
 - Infixes are inserted inside the stem.
 - Circumfixes (German gesehen) surround the stem
- Morphemes: the smallest (meaningful/grammatical) parts of words.
 - Stems (grace) are often free morphemes.
 - Free morphemes can occur by themselves as words.
 - Affixes (dis-, -ful, -ly) are usually bound morphemes.
 - Bound morphemes have to combine with others to form words.

Morphemes and morphs

- There are many irregular word forms:
 - Plural nouns add -s to singular: book-books,
 - but: box-box<u>es</u>, fly-fl<u>ies</u>, child-child<u>ren</u>
 - Past tense verbs add -ed to infinitive: walk-walked,
 - o but: like-like**d**, leap-leap**t**
- Morphemes are abstract categories
 - Examples: plural morpheme, past tense morpheme
 - The same morpheme (e.g. for plural nouns) can be realized as different surface forms (morphs): -s/-es/-ren
 - Allomorphs: two different realizations (-s/-es/-ren)of the same underlying morpheme (plural)

Morphological parsing

disgracefully
dis grace ful ly
prefix stem suffix suffix
NEG grace+N +ADJ +ADV

Morphological generation

- Generate possible English words:
 - grace, graceful, gracefully
 - disgrace, disgraceful, disgracefully,
 - ungraceful, ungracefully,
 - undisgraceful, undisgracefully,...
- Don't generate impossible English words:
 - *gracelyful, *gracefuly, *disungracefully,...

Finite-State Automata and Regular Languages: review

- An alphabet ∑ is a set of symbols:
 - e.g. ∑= {a, b, c}
- A **string** ω is a sequence of symbols, e.g ω =abcb.
 - The empty string ε consists of zero symbols.
- The Kleene closure ∑* ('sigma star') is the (infinite) set of all strings that can be formed from ∑:
 - \circ $\sum^*=\{\epsilon, a, b, c, aa, ab, ba, aaa, ...\}$
- A language $L \subseteq \sum^*$ over \sum is also a set of strings.
 - Typically we only care about proper subsets of Σ^* (L \subset Σ).

Automata and languages

- An automaton is an abstract model of a computer which reads an input string, and changes its internal state depending on the current input symbol.
- It can either accept or reject the input string.
- Every automaton defines a language (the set of strings it accepts).
- Different automata define different language classes:
 - Finite-state automata define regular languages
 - Pushdown automata define context-free languages
 - Turing machines define recursively enumerable languages

Finite State Automata (FSAs)

- A finite-state automaton $M = \langle Q, \Sigma, qo, F, \delta \rangle$ consists of:
 - A finite set of states Q = {qo , q1 ,..., qn}
 - \circ A finite alphabet Σ of input symbols (e.g. $\Sigma = \{a, b, c, ...\}$)
 - A designated start state qo ∈ Q
 - A set of final states F ⊆Q
 - A transition function δ:
 - The transition function for a **deterministic** (**D)FSA**: $Q \times \Sigma \rightarrow Q$
 - $\delta(q,w) = q'$ for $q, q' \in Q, w \in \Sigma$
 - If the current state is q and the current input is w, go to q'
 - The transition function for a **nondeterministic (N)FSA**: $Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q,w) = Q'$ for $q \in Q$, $Q' \subseteq Q$, $w \in \Sigma$
 - If the current state is q and the current input is w, go to any q' ∈ Q'
 - Every NFA can be transformed into an equivalent DFA

Regular Expressions

- Simple patterns:
 - Standard characters match themselves: 'a', '1'
 - Character classes: '[abc]', '[0-9]', negation: '[^aeiou]'
 - (Predefined: \s (whitespace), \w (alphanumeric), etc.)
 - Any character (except newline) is matched by '.'
- Complex patterns: (e.g. ^[A-Z]([a-z])+\s)
 - Group: '(...)'
 - Repetition: 0 or more times: '*', 1 or more times: '+'
 - Disjunction: '...|...'
 - Beginning of line '^' and end of line '\$'

Finite-state methods for morphology

grace, dis-grace, grace-ful, dis-grace-ful

Stem changes

- Some irregular words require stem changes:
 - Past tense verbs: teach-taught, go-went, write-wrote
 - Plural nouns: mouse-mice, foot-feet, wife-wives

FSAs for derivational morphology

Recognition vs. Analysis

- FSAs can recognize (accept) a string, but they don't tell us its internal structure.
- We need is a machine that maps (<u>transduces</u>) the input string into an output string that encodes its structure:

Finite-state transducers

- A finite-state transducer $T = \langle Q, \Sigma, \Delta, qo, F, \delta, \sigma \rangle$ consists of:
 - A finite set of states Q = {qo , q1 ,..., qn }
 - o A finite alphabet **Σ** of input symbols (e.g. $\Sigma = \{a, b, c,...\}$)
 - A finite alphabet \triangle of output symbols (e.g. \triangle = {+N, +pl,...})
 - A designated start state qo ∈ Q
 - A set of final states F ⊆ Q
 - A transition function δ : Q × Σ → 2^Q
 - An output function σ : Q × $\Sigma \rightarrow \Delta^*$

 - If the current state is q and the current input is w, write ω.

Finite-state transducers

- An FST $\mathbf{T} = L_{in} \times L_{out}$ defines a relation between two regular languages L_{in} and L_{out} :
 - o L_{in} = {cat, cats, fox, foxes, ...}
 - L_{out} = {cat+N+sg, cat+N+pl, fox+N+sg, fox+N+PL ...}

Intermediate representations

- English plural -s: cat ⇒ cats dog ⇒ dogs
 - but: fox ⇒ foxes, bus ⇒ buses buzz ⇒ buzzes
- We define an intermediate representation which captures morpheme boundaries (^) and word boundaries (#):
 - Lexicon: cat+N+PL fox+N+PL
 - ⇒ Intermediate representation: cat^s# fox^s#
 - ⇒ Surface string: cats foxes
- Intermediate-to-Surface Spelling Rule:
 - If plural 's' follows a morpheme ending in 'x','z' or 's', insert 'e'.

Simplified Morpholgical Parsing FST

Some FST operations

• Inversion T⁻¹:

- The inversion (T⁻¹) of a transducer switches input and output labels.
- This can be used to switch from parsing words to generating words.

Composition (T°T'): (Cascade)

• Two transducers $T = L_1 \times L_2$ and $T' = L_2 \times L_3$ can be composed into a third transducer $T'' = L_1 \times L_3$.

Problems in Morphological Analyzer

- Productivity
- False Analysis
- Bound Base Morphemes

Productivity

Property of a morphological process to give rise to new formations on a systematic basis

Exceptions

Peaceable	Actionable	Companionable
Saleable	Marriageable	Reasonable
Impressionable	Fashionable	knowledgeable

False analysis

hospitable, sizeable

They don't have the meaning "to be able"

They can not take the suffix -ity to form a noun

Analyzing them as the words containing suffix -able leads to false analysis

Bound Base Morphemes

- Occur only in a particular complex word
- Do not have independent existence

