Convexity and Optimization

Given two points $u, v \in \mathbb{R}^n$, the interval spanned by u and v is defined as $[u, v] = \{\alpha u + (1 - \alpha)v \mid 0 \le \alpha \le 1\} \subseteq \mathbb{R}^n$.

Definition 1 A closed set $K \subseteq \mathbb{R}^n$ is called convex if for all $u, v \in K$ we have $[u, v] \subseteq K$.

An easy to see equivalent definition is that a closed set $K \subseteq \mathbb{R}^n$ is convex iff for all $u, v \in K$ we have $\frac{1}{2}u + \frac{1}{2}v \in K$.

Lemma 1 Let I be a finite set of indices. If $K_i \subseteq \mathbb{R}^n$, $i \in I$ are closed convex sets, then $\bigcap_{i \in I} K_i$ is also closed and convex.

Definition 2 If $x^i \in \mathbb{R}^n$ for i = 1, ..., m and $\alpha_i \geq 0$, i = 1, ..., m satisfying $\sum_{i=1}^m \alpha_i = 1$, then the vector $x = \sum_{i=1}^m \alpha_i x^i$ is called a convex combination of the vectors x^i , i = 1, ..., m.

Definition 3 Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X (denoted by conv (X)) is the intersection of all convex sets $K \subseteq \mathbb{R}^n$ that contain X.

Note that if X is finite then $Y = \operatorname{conv}(X)$ is a closed convex set. We say in this case that Y is finitely generated. In the sequel we shall be concerned mostly with finitely generated closed convex sets.

Theorem 1 (Radon (1921)) If $X \subseteq \mathbb{R}^n$ is of size $|X| \ge n+2$, then there exists a proper subset $\emptyset \ne S \subsetneq X$ such that $\operatorname{conv}(S) \cap \operatorname{conv}(X \setminus S) \ne \emptyset$.

Proof. Assume $X = \{\mathbf{x}^i \mid i = 1, ...m\}, m \ge n + 2$. Let us consider the set of equalities

$$\sum_{i=1}^{m} \tau_i = 0$$

$$\sum_{i=1}^{m} \tau_i \cdot \mathbf{x}^i = 0$$

This homogeneous system contains n+1 equations in $m \ge n+2$ variables, and thus it has a nontrivial solution $0 \ne \tau^* \in \mathbb{R}^m$. Let us define $P = \{i \mid \tau_i^* > 0\}$ and $N = \{i \mid \tau_i^* \le 0\}$. Note that we must have $P \ne \emptyset$ and $N \ne \emptyset$. Define further

$$\pi = \sum_{i \in P} \tau_i^*,$$

and $S = \{\mathbf{x}^i \mid i \in P\}$. Then we have

$$\mathbf{x}^* = \sum_{i \in P} \frac{\tau_i^*}{\pi} \mathbf{x}^i = \sum_{j \in N} -\frac{\tau_j^*}{\pi} \mathbf{x}^j$$

and thus $\mathbf{x}^* \in \text{conv}(S) \cap \text{conv}(X \setminus S)$, as claimed.

Theorem 2 (Helly (1913)) If $K^i \subseteq \mathbb{R}^n$ are convex sets $i = 1, ...m, m \ge n+2$, such that for all $I \subseteq \{1, ...m\}$, $|I| \le n+1$ we have $\bigcap_{i \in I} K^i \ne \emptyset$, then $\bigcap_{i=1}^m K^i \ne \emptyset$.

Proof. Consider a smallest counter example. Then for all indices i we have a point $\mathbf{p}^i \in \bigcap_{\substack{j=1 \ j \neq i}}^m K^j$. Since we must have $m \geq n+2$, by Radon's theorem there exists a proper subset $\emptyset \neq S \subsetneq \{1,...,m\}$ such that $X = \operatorname{conv}(\{\mathbf{p}^i \mid i \in S\}) \cap \operatorname{conv}(\{\mathbf{p}^j \mid j \notin S\}) \neq \emptyset$. Since all \mathbf{p}^i belongs to all sets K^j , $j \neq i$, we get that any point $\mathbf{x} \in X$ must belong to all sets K^i , i = 1,...m.

Theorem 3 (Caratheodory (1907)) If $X \subseteq \mathbb{R}^n$ is finite and $\mathbf{p} \in \text{conv}(X)$, then there exists $S \subseteq X$, $|S| \le n + 1$ such that $\mathbf{p} \in \text{conv}(S)$.

Proof. Assume $X = \{\mathbf{x}^i \mid i = 1, ...m\} \subseteq \mathbb{R}^n$ and that $\mathbf{p} = \sum_{i=1}^m \alpha_i \mathbf{x}^i$ such that $\alpha_i \geq 0$ for all i = 1, ..., m, and $\sum_{i=1}^m \alpha_i = 1$. Denote by $I = \{i \mid \alpha_i > 0\}$ and assume that |I| is the smallest among all possible convex representations of \mathbf{p} . If $|I| \leq n+1$, then we are done with $S = \{\mathbf{x}^i \mid i \in I\}$. Otherwise by Radon's theorem we have $\beta_i \in \mathbb{R}$ such that $\sum_{i \in I} \beta_i = 0$, $\sum_{i \in I} \beta_i \mathbf{x}^i = 0$, and $\beta \neq 0$. Let us then choose an index $j \in I$ such that

$$0 > \frac{\alpha_j}{\beta_j} \ge \max_{k \in I: \beta_k < 0} \frac{\alpha_k}{\beta_k}.$$

Then we have

$$\mathbf{p} = \sum_{i \in I} \left[\alpha_i - \frac{\alpha_j}{\beta_j} \beta_i \right] \mathbf{x}^i$$

as another convex representation of \mathbf{p} , with fewer positive components than |I|, contradicting the choice of I.

Lemma 2 Given $X \subseteq \mathbb{R}^n$, the set conv (X) is the set of convex combinations of finite subsets of X.

Proof. Follows by Caratheodory's theorem.

Read more beautiful theorems about convexity in Danzer, Grünbaum and Klee: *Helly's theorem and its relatives*, 1921.

The idea of convex separation: for a vector $\mathbf{a} \in \mathbb{R}^n$ and real $b \in \mathbb{R}$ we denote by $H(\mathbf{a}, b) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^t \mathbf{x} \geq b\}$ the halfspace defined by \mathbf{a} and b. For a convex set $K \subseteq \mathbb{R}^n$ and point $\mathbf{x}^0 \in \mathbb{R}^n$, $\mathbf{x}^0 \notin K$ we say that $H(\mathbf{a}, b)$ separates \mathbf{x}^0 from K if we have $K \subseteq H(\mathbf{a}, b)$ and $\mathbf{x}^0 \notin H(\mathbf{a}, b)$.

Lemma 3 For all convex sets $K \subseteq \mathbb{R}^n$ and points $\mathbf{x}^0 \in \mathbb{R}^n \setminus K$ there exists a halfspace $H(\mathbf{a}, b)$ that separates \mathbf{x}^0 from K.

Note that a halfspace $H(\mathbf{a}, b)$ is a convex set itself. For a point $\mathbf{x}^0 \in \mathbb{R}^n$ and closed convex set $K \subseteq \mathbb{R}^n$ we define

$$d(\mathbf{x}^0, K) = \min_{\mathbf{x} \in K} d(\mathbf{x}^0, \mathbf{x}),$$

where $d(\mathbf{x}, \mathbf{y})$ is the Euclidean distance of points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$: $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \sqrt{(\mathbf{x} - \mathbf{y})^T(\mathbf{x} - \mathbf{y})}$. In particular, we have $d(\mathbf{x}^0, K) = 0$ iff $\mathbf{x}^0 \in K$. The next theorem is a first example for a min-max theorem:

Theorem 4 Given a closed convex body $K \subseteq \mathbb{R}^n$ and a point $\mathbf{x}^0 \in \mathbb{R}^n \setminus K$, we have

$$\max_{\substack{H(\mathbf{a},b)\supseteq K\\ \mathbf{x}^0\not\in H(\mathbf{a},b)}} d(\mathbf{x}^0,H(\mathbf{a},b)) = d(\mathbf{x}^0,K) = \min_{\mathbf{x}\in K} d(\mathbf{x}^0,\mathbf{x}).$$

Polyhedra defined by systems of inequalities

Let us consider convex polyhedral regions defined by a system of inequalities:

$$P(A, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} \le \mathbf{b} \},$$

where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. In the rest of this subsection we refer to $P(A, \mathbf{b})$ simply as P.

We usually assume that the nonnegativity of the variables is included among these inequalities, and thus in particular that $m \geq n$. As usual we use $[m] = \{1, ..., m\}$, and denote by $\mathbf{a}_i = (a_{i,1}, a_{i,2}, ..., a_{i,n}) \in \mathbb{R}^n$ the *i*th row of matrix A for i = 1, ..., m.

We also assume that A is of full column rank (that is the rank of A is n). For a subset $I \subseteq [m]$ we define

$$P(I) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i^T \mathbf{x} = b_i \ \forall i \in I \\ \mathbf{a}_i^T \mathbf{x} \le b_i \ \forall i \in [m] \setminus I \right\}$$

Let us further denote by $\mathcal{T} = \mathcal{T}(A, \mathbf{b}) \subseteq 2^{[m]}$ the family of maximal subsets $I \subseteq [m]$ for which $P(I) \neq \emptyset$. In other words for all $I \in \mathcal{T}$ we have $P(I) \neq \emptyset$, but for all such subsets and elements $i \in [m] \setminus I$ we have $P(I \cup \{i\}) = \emptyset$. Finally, for a vector $\mathbf{x} \in P$ we define $T(\mathbf{x}) = \{i \in [m] \mid \mathbf{a}_i^T \mathbf{x} = b_i\}$.

Lemma 4 We have |P(I)| = 1 for all $I \in \mathcal{T}(A, b)$.

Proof. Assume indirectly that for some $I \in \mathcal{T}(A, \mathbf{b})$ we have $|P(I)| \geq 2$, and let $\mathbf{x}, \mathbf{y} \in P(I)$ be two distinct vectors. Note first that if we have $\mathbf{a}_i^T \mathbf{x} = 0$ for all $i \in [m] \setminus I$, the vector \mathbf{x} is the solution of a system of equalities with A as coefficient matrix. Since A is of full column rank, \mathbf{x} must be the unique solution, and thus we can assume w.l.o.g. that there exists an index $i \in [m] \setminus I$ such that $\mathbf{a}_i^T \mathbf{y} \neq 0$. Note also that by the maximality of the set I, we must have $\mathbf{a}_k^T \mathbf{x} > b_k$ and $\mathbf{a}_k^T \mathbf{y} > b_k$ for all indices $k \in [m] \setminus I$. Consequently, we have

$$\mathbf{z}(\lambda) = \mathbf{x} - \lambda \mathbf{y} \in P(I) \subseteq P$$

for all $-\delta \leq \lambda \leq \delta$ for some suitably small $\delta > 0$. Note finally that if $\epsilon = sign(\mathbf{a}_i^T\mathbf{y})$ then we have

$$\mathbf{a}_{i}^{T}\mathbf{z}(\lambda \cdot \epsilon) < b_{i} \quad \text{ for all } \quad \lambda > \frac{\mathbf{a}_{i}^{T}\mathbf{x} - b_{i}}{\epsilon \cdot \mathbf{a}_{i}^{T}\mathbf{y}}.$$

Thus, there exists a largest $\lambda > 0$ such that $\mathbf{z}(\lambda \cdot \epsilon) \in P(I) \subseteq P$. For that value we must have

$$T(\mathbf{z}(\lambda \cdot \epsilon)) \supseteq I$$

which would then contradict the maximality of I. This contradiction proves our claim.

Lemma 5 If for a vector $\mathbf{x} \in P$ we have $T(\mathbf{x}) \notin \mathcal{T}(A, \mathbf{b})$ then \mathbf{x} is not a vertex.

Proof. By definition, $T(\mathbf{x}) \notin \mathcal{T}$ implies the existence of $I \in \mathcal{T}$ such that $I \supsetneq T(\mathbf{x})$, and thus by the above lemma we have $P(I) = \{\mathbf{y}\}$ for a vector $\mathbf{y} \neq \mathbf{x}$. Since $\mathbf{a}_i^T \mathbf{x} > b_i$ for all $i \in [m] \setminus T(\mathbf{x})$ which implies that $(1 + \epsilon)\mathbf{x} - \epsilon\mathbf{y} \in P$ for all $-\delta \le \epsilon \le \delta$ for some suitably small $\delta > 0$. Thus in particular we have $\mathbf{u} = (1 + \delta)\mathbf{x} - \delta\mathbf{y} \in P$ and $\mathbf{v} = (1 - \delta)\mathbf{x} + \delta\mathbf{y} \in P$. Since these are distinct vectors (because we have $\mathbf{x} \ne \mathbf{y}$), and since $\mathbf{x} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$ holds, \mathbf{x} cannot be a vertex, as claimed.

Lemma 6 If $\mathbf{x} \in P$ is not a vertex of P, then we have $T(\mathbf{x}) \notin \mathcal{T}(A, \mathbf{b})$.

Proof. By definition, we must have $\mathbf{u}, \mathbf{v} \in P$, $\mathbf{u} \neq \mathbf{v}$ such that $\mathbf{x} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$. Note that this implies $T(\mathbf{x}) = T(\mathbf{u}) \cap T(\mathbf{v})$, and thus by Lemma 4 we must have $T(\mathbf{u}) \supseteq T(\mathbf{x})$ proving our claim.

Corollary 1 The set

$$V(P) = \{ \mathbf{x} \in P \mid T(\mathbf{x}) \in \mathcal{T}(A, \mathbf{b}) \}$$

is the set of vertices of P.

Proof. Immediate by lemmas 5 and 6.

Polyhedra defined by a system of equalities in the positive orthant

Let us consider convex polyhedral regions defined by a system of equalities and nonnegativity:

$$Q(A, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{b}, \ \mathbf{x} > 0 \},$$

where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. In this case we assume that $n \geq m$ and that A is of full row rank, that is the rank of A is m. In the rest of this subsection we refer to $Q(A, \mathbf{b})$ simply as Q. As usual, we denote by $\mathbf{a}^j = (a_{1,j}, a_{2,j}, ..., a_{m,j}) \in \mathbb{R}^m$ the jth column of A, for $j \in [n]$.

For a vector $\mathbf{x} \in Q$ we define $S(\mathbf{x}) = \{j \in [n] \mid \mathbf{x}_j > 0\}$, sometimes called the *support* of \mathbf{x} (since we have $x_j = 0$ for all $j \in [n] \setminus S(\mathbf{x})$.) For a subset $J \subseteq [n]$ we simply refer to the set of column vectors $\{\mathbf{a}^j \mid j \in J\}$ as A(J).

Lemma 7 If a vector $\mathbf{x} \in Q$ is not a vertex of Q, then $A(S(\mathbf{x}))$ is a set of linearly dependent vectors.

Proof. If \mathbf{x} is not a vertex, then by definition we have $\mathbf{u}, \mathbf{v} \in Q$, $\mathbf{u} \neq \mathbf{v}$ such that $\mathbf{x} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$. This implies that $S(\mathbf{x}) = S(\mathbf{u}) \cup S(\mathbf{v})$. Furthermore we have $\mathbf{z} = \mathbf{u} - \mathbf{v} \neq 0$ and $A\mathbf{z} = 0$ implying our claim, since $A\mathbf{z}$ is a nontrivial linear combination of the vectors $A(S(\mathbf{x}))$.

Lemma 8 If for a vector $\mathbf{x} \in Q$ the set $A(S(\mathbf{x}))$ is linearly dependent, then \mathbf{x} is not a vertex.

Proof. The linear dependence of $A(S(\mathbf{x}))$ implies the existence of a vector $\mathbf{z} \in \mathbb{R}^n$, $\mathbf{z} \neq 0$ such that $A\mathbf{z} = 0$ and $z_j = 0$ for all $j \in [n] \setminus S(\mathbf{x})$. Thus we have $x_j > 0$ for all indices for which $z_j \neq 0$. This implies that $\mathbf{x} + \lambda \mathbf{z} \in Q$ for all $-\delta \leq \lambda \leq \delta$ for a suitably small $\delta > 0$. Thus in particular we have that $\mathbf{u} = \mathbf{x} + \delta \mathbf{z}$ and $\mathbf{v} = \mathbf{x} - \delta \mathbf{z}$ are vectors from Q. Since $\mathbf{x} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$, the vector \mathbf{x} cannot be a vertex, proving our claim.

Corollary 2 The set $V(Q) = \{ \mathbf{x} \in Q \mid A(S(\mathbf{x})) \text{ is linearly independent } \}$ is the set of vertices of Q.

Let us add finally, that since any set of linearly independent columns of $A(S(\mathbf{x}))$ for some $\mathbf{x} \in V(Q)$ can be extended to a basic subset B of columns (of cardinality m, since we assumed that rank(A) = m), and since for a basis the equations $B\mathbf{y} = b$ have a unique solution, we must have $\mathbf{x}_B = \mathbf{y}$, and thus we can view \mathbf{x} as a basic feasible solution to the system $A\mathbf{x} = b$, $\mathbf{x} \geq 0$, corresponding to the basis B of A. Thus, all vertices of Q can be viewed as basic feasible solutions. Conversely, any basic feasible solution is a vertex by the above Lemmas.