1 | Experimental Setups and Demonstrations

This chapter will describe the experiments conducted to demonstrate the capabilities of the mobile manipulation robotic system. The experiments consist of three demonstrations named Aruco Follower, Button Presser, and Object Picking. These demos are meant to showcase the capabilities of the robotic system in performing various tasks such as following a marker, pressing buttons, and picking objects. The first demo is meant to be a preview of the robotic arm's autonomous control software. The second demo is meant to showcase the capabilities of the entire system in performing high-level tasks in industrial environments, such as pressing buttons on an industrial control panel. The third demo is meant to showcase the mobile manipulation capabilities in an agricultural environment, such as picking fruits from trees.

The experiments are conducted in a controlled but challenging and realistic environment to test the robustness and reliability of the system. The demos have been tested inside the Artificial Intelligence and Robotics Laboratory at Politecnico di Milano. The laboratory has enough space to allow testing the efficiency of the autonomous navigation software while testing also the obstacle avoidance algorithm in a cluttered and changing environment.

The objectives of these demonstrations are to stress-test the robotic system and to evaluate the performance of the various software components and how well they integrate with the hardware components. The experiments will also highlight the challenges faced during the development and testing of the robotic system and how they were overcome. The demos are meant to be a proof of concept of the robotic system's capabilities in simulated scenarios that are as close as possible to more realistic environments. They are also meant to show the potential of mobile manipulation robots in performing various complex tasks that are currently performed by humans. The objective is not to replace humans but to assist them in performing tasks that are dangerous, repetitive, or require high precision.

1.1. Aruco Follower Demo

The Aruco Follower demo is a simple demonstration of the robotic arm's autonomous control software. The demo consists of the robotic arm following an Aruco marker with the end effector. The demo is meant to showcase the motion planning and execution libraries with MoveIt2 and the integration of the Aruco marker detection and pose estimation algorithms with the robotic arm's control software. The demo tests the autonomous control software of the robotic arm in tracking and following a moving target.

In this demo, the end effector, equipped with the camera, will move in a position and orientation that points toward the center of the Aruco marker. The algorithm for tracking the marker computes the end effector's target position such that the arm can always reach it, and the orientation of the end effector is always pointing towards the marker. The position of the end effector will be exactly the marker's position if the marker is sufficiently close to the arm, otherwise, the end effector will be positioned in a way such that the camera points toward the marker. If the marker is not visible, the end effector will remain in the last known position until the marker is visible again. If the marker moves to a different position in the camera frame and stays visible, the algorithm will compute the new target pose and the end effector will move to it. The computation of the end effector's target pose is based on geometrical calculations from the marker's position in the camera frame. The marker's pose is transformed in the robot arm's base frame, and the target pose is computed based on the robotic arm's workspace. The target pose is then sent to the motion planning and execution libraries to compute and execute the trajectory to reach the target pose.

I tested also the MoveIt2 Servo node to control the end effector's position and orientation in realtime using the Aruco marker's pose as the target pose. This feature is available only in ROS2 Iron, at the moment of writing this thesis. Unfortunately, the MoveIt2 Servo node was not stable enough to be used in the demo, in fact, the generated trajectories were very jerky and the end effector was not able to reach the target pose in a short time. The problem is due to the fact that the MoveIt2 Servo node is still in development and it is not yet stable enough to be used in real-time applications. It also requires a precise PID tuning of the closed loop joint trajectory controller to work properly, which is not easy to do in a short time. So eventually I gave up on using the MoveIt2 Servo node and I used the standard MoveIt2 planning and execution libraries.

TODO: add a figure of the Aruco Follower demo setup during testing

1.2. Button Presser Demo

The "Button Presser" demo is a complex demonstration that showcases the potential of mobile manipulation robots in performing high-level tasks in industrial environments. The demo consists of the robotic arm pressing buttons on an industrial control panel, in an autonomous way. The objective is not to have the fastest and most efficient solution for pressing buttons but to show the capabilities of the robotic system in performing tasks that are currently performed by humans. The demo is meant to be a proof of concept of the robotic system's integration of multiple software components and the orchestration of the robotic arm and mobile base to interact with the environment without human intervention.

This demo was a request by a company that is interested in using mobile manipulation robots in their industrial production plant, for monitoring sensors and various equipment, and intervening in case of emergency, while avoiding human intervention in dangerous environments. The objective was to demonstrate the feasibility of the mobile manipulation robot in interacting with the control panel autonomously and effectively. It was also important to demonstrate the system's reliability and robustness in performing such a complex task, even though it was not required to be the fastest or most effective solution, in terms of accuracy in pressing buttons and the time taken to press all the buttons.

1.2.1. Buttons Setup Box and End Effector Setups

For this demo, the MountV1 was employed, mounted on the robotic arm's end effector. The MountV1 is a custom-designed 3D-printed mount attached to the cobot's flange, which allows the installation of the stereo camera and the cylinder presser. The cylinder presser is a cylinder-shaped tool used for pressing buttons. In MountV1 the camera is placed in front of the flange, and this resulted in a reduced field of view of the camera. Despite this non-ideal camera position, the camera was able to detect the Aruco markers on the control panel and the buttons to be pressed. Since the MountV1 proved to be effective in the demo, I didn't apply any structural changes to the design. The only change that I made was to shorten the cylinder presser to prevent the mobility of the end effector from being reduced due to the length of the tool.

Further in the development of the demo, I switched to MountV2, which is the next version of MountV1. The biggest improvement of MountV2 is the camera's position, which is placed on the wrist of the cobot, allowing a greater field of view of the camera. This proved more effective in finding the Aruco markers on the control panel from a vicinity.

Using MountV1, the end effector was slipping during the execution of the linear trajectories, due to the roundness of the button caps. With MountV2, instead of having a cylinder presser, the end effector presents a vacuum suction cap on its tip, which can be also used to press the buttons. This solution is more effective in pressing the buttons, thanks to the greater friction between the plastic button cap and the silicon suction cup. The vacuum suction cap presses the buttons effectively, and reliably, with less slipping.

The Realsense camera was used only for Aruco markers detection and pose estimation. So the software component related to the perception of the control panel didn't make use of the infrared cameras for depth estimation. The position of the markers is in fact computed using the RGB image as input and the equations for 3D camera projection on a 2D matrix for the pose estimation.

The control panel is a custom-designed box with 3 buttons of different sizes and 7 Aruco markers with a dictionary 4x4 placed around the buttons. The control panel is mobile, meaning that it can be moved around the laboratory to test the robustness of the system by pressing the buttons in an arbitrary location and orientation. The control panel has also 3 different lights, one for each button, that indicate whenever a button is pressed. The control panel is connected to the power supply that can be plugged into a power outlet. I also had to create the internal circuitry to link the buttons to the lights and connect everything to the power supply. The control panel is also equipped with a power switch that can be used to turn on and off the lights.

The reason for having multiple Aruco markers instead of just one or three for the three buttons, is to have a more robust and reliable detection of the buttons' positions. Having multiple markers allows the system to detect the buttons' orientation in a more precise way that is also robust to noise. The markers are placed around the buttons in a way that the plane estimation algorithm can compute the plane of the markers effectively, relying on a greater number of points to estimate the plane.

TODO: insert picture of buttons box

1.2.2. End Effector Positioning and Linear Trajectories

The implementation of the algorithms for pressing buttons and planning the trajectories is handled inside ROS2 nodes. One ROS2 node subscribes to the Aruco markers detection topic containing the estimated markers' poses and their IDs. Given the markers' poses, and the relative positioning of the markers with respect to the buttons, the node computes the position of the buttons in the robot's base frame. The node also computes the orientation of the end effector, such that the tip of the end effector faces the plane of the

markers orthogonally, and this is needed to compute the orientation required to press the buttons.

The algorithm for computing the sequence of target poses that the end effector must reach uses the estimated position and orientation of the buttons. For each button, the algorithm computes the target pose that "sits" above the button, meaning that the end effector faces the button orthogonally from a fixed distance. Then the algorithm generates the linear path that the end effector must follow to reach the pose where the button is pressed. The linear path is then reversed to get the path required to lift the end effector from the button in order to release it and return to the starting point above the button. This sequence of target poses computation is repeated for each button on the control panel. The ROS2 node uses these target poses and linear paths to plan and generate the trajectories for the arm to reach the target poses and follow the linear paths. Once the trajectory plans are generated, they are executed.

The linear motion trajectory generation is the most probable point of failure for the trajectory planner, because the algorithm that computes the trajectories must take into account several constraints, such as the static collisions with external bodies and the robotic arm's self-collision mapping. MoveIt2 is a library that interfaces directly with the motion planners, which in turn use the inverse kinematic solvers to compute the joint configuration required to move the end effector to the target pose. There are two main methods to generate a linear trajectory for the end effector in cartesian space:

- Cartesian Linear Motion Planning generation via a sequence of waypoints: this method generates a sequence of pose waypoints (sequence of positions
 and orientation) that the end effector must follow to reach the target pose. The
 trajectory is generated by interpolating the sequence of waypoints in space and
 time. The trajectory planner generates a trajectory that follows the waypoints with
 maximum deviation defined as the end effector jump, which is the maximum total
 deviation in joint space that each joint can have from the average joints' positions.
 This parameter controls how much the joints can move from their average configuration during the execution of the linear trajectory. Setting the end effector jump
 to zero means that the joints will not move from their average configuration, and
 the end effector will follow the waypoints exactly.
- Constrained Cartesian Motion Planning: this method creates a motion plan request with the addition of position and orientation constraints on the end effector that must be respected while moving toward the final pose. The constraints are defined as a position box constraint, meaning that the end effector must stay within

a box (parallelepiped) in the cartesian space, and an orientation constraint, defined as a quaternion representing the orientation and the maximum angle of deviation from the orientation axis defined by the quaternion.

Both methods were tested and implemented successfully to be used with the Igus Rebel cobot. The constrained cartesian motion planning method proved to be unreliable due to the high probability of not being able to generate a valid trajectory. Adding only one constraint to the motion plan made the trajectory planner able to find a solution most of the time. But adding two constraints, one for the position and one for the orientation, resulted in failed trajectory generation almost every time. After some research, I found out that the constrained cartesian motion planning method is usable and tractable only for 7-DoF robotic arms. The Igus Rebel cobot has only 6 DoF, and this makes the constrained method not suitable for this robotic arm. The reason behind this is that constraining a motion plan with two constraints for a 6-DoF robotic arm results in an overdetermined system of equations, and the trajectory planner is not able to find a feasible solution, because the constraints add more equations than the number of DoF of the robotic arm, resulting in a system of equations with no feasible solution. This is mostly due to a limitation of the MoveIt2 library and the trajectory planners used since they work well with 7-DoF robotic arms, such as the Franka Emika Panda.

Due to this limitation, the cartesian linear motion planning method was used to generate linear trajectories following a sequence of waypoints. The end effector's jump was set to zero to make the end effector follow the waypoints exactly, to avoid random jumps in the cobot's configuration. The linear trajectories were generated successfully and executed correctly most of the time. Sometimes the trajectory planner failed to find a solution, even when attempting to create a trajectory plan multiple times. This was due to the complexity of the environment that the planner must take into account. After many attempts with different motion planners, I found that no planner can guarantee to find a feasible solution, it exists, 100% of the time. The Pilz industrial motion planner proved to be the most reliable and robust planner for generating linear trajectories.

1.2.3. Mobile Button Presser Demo

The "mobile button presser" demo is a complex demonstration aimed at showcasing the mobile manipulation robot's capabilities in pressing buttons on an industrial control panel autonomously. The demo consists of the mobile manipulation robot navigating to the control panel's location, detecting the control panel, and pressing the buttons in a predefined sequence.

The complete demo consists of the following steps:

- 1. The mobile manipulation robot starts from a random location in the laboratory and does not know where the control panel is located.
- 2. The robotic arm moves around the camera mounted on the end effector to search for a specific Aruco marker in the laboratory, which signals where the control panel is located.
- 3. Once the specified marker is detected, and its distance is computed, the computer algorithm computes the position of the control panel in the map frame of reference.
- 4. The robotic arm parks itself to not obscure the field of view of the LiDAR, which is essential for localization and autonomous navigation.
- 5. The mobile base navigates to the control panel's location autonomously, while avoiding obstacles in the environment.
- 6. The mobile robot parks in front of the control panel at a fixed distance, facing the opposite side of the control panel, so that the robotic arm can move freely without colliding with the mobile base and reach the buttons.
- 7. The robotic arm moves around the camera mounted on the end effector to search for the Aruco markers on the control panel, indicating the locations of the buttons to be pressed.
- 8. Once the camera detects the Aruco markers, the computer computes the position and orientation of the buttons placed on the panel in the robot's base frame.
- 9. For each button, it computes the end effector target poses in the cartesian space required to press the buttons. It also computes the linear paths for the end effector necessary to press and release the buttons.
- 10. The robotic arm executes the computed trajectories, and the end effector presses the buttons in the predefined sequence.
- 11. The control panel lights up the corresponding light for each pressed button.

This complex demonstration is handled by one ROS2 node (action client) that orchestrates the actions of the mobile base and the robotic arm. The client node sends the goal to three different action servers:

• Parking Action Server: this server is responsible for computing the parking algorithm, given the position of the control panel in the map frame. After the parking pose is computed, the server sends a navigation goal to the nav2 stack to

navigate autonomously to the parking pose. The action returns the result containing information about how close the robot is to the parking pose when the autonomous navigation is completed.

- Button Finder Action Server: this server is responsible for searching for a specific Aruco marker in the room. The server executes a "searching movement", which is a sequence of predefined poses that the robotic arm must follow to search for the marker. The server also executes all trajectories until the marker is detected. The server returns once the marker is detected, and the distance from the cobot to the marker is computed.
- Button Presser Action Server: this server is responsible for pressing the buttons on the control panel. It first computes the "searching movement" to search for the Aruco markers on the control panel. Once the markers are detected and the control panel is located, the server computes the target poses and linear paths for pressing the buttons. The server then executes the trajectories to press the buttons in the predefined sequence. The server keeps track of how many trajectories have been planned and successfully executed, with respect to the total number of trajectories to be executed. The server returns the success rate of the executed trajectories. The server terminates its execution once all the buttons have been pressed.

TODO: add pictures of the demo execution

1.2.4. Experimental Challenges and Solutions

One of the main challenges faced during the development of the "Button Presser" demo was the **reliability of the trajectory planner** in generating linear trajectories for the end effector. The planner failed to find a feasible solution frequently even after multiple attempts. I did not manage to overcome this problem, but I optimized the trajectory planner's parameters to increase the probability of finding a feasible solution, by incrementing the tolerances and the number of attempts to generate a trajectory plan.

I used 4x4 Aruco markers for locating the control panel from a distance, instead of the 7x7 markers that I initially used because the 4x4 markers require fewer pixels to be represented, therefore the minimum area of pixels required for detection is smaller. This implies that the 4x4 markers can be detected from a greater distance than the 7x7 markers.

Another issue encountered was the **imprecision of the robotic arm's motors' encoders**, which caused the end effector to not reach the target pose with the desired precision. This problem was partially overcome by adding a function that artificially

compensates for the error in the end effector's position, by adding a small offset to the target pose, based on empirical measurements of the error. This solution was not ideal, but it was effective in increasing the precision of the end effector's position.

Despite the **parking algorithm** being effective in most cases, there were some cases where the robot parked too close or too far from the control panel. This was due to the imprecision of the localization algorithm and the local planner's inability to reach the exact parking pose. This problem resulted in a precision error in the final position of the robot, in the range of ± 15 cm from the desired parking pose. This problem was critical because an error of just a few centimeters could result in the robot being too close to the control panel to find it or interact with it, or too far to reach the buttons orthogonally. Since no ideal solution exists that can compensate for the localization and navigation errors, no further improvements were made to the parking algorithm.

1.3. Object Picking Demo

The "Object Picking" demo is a more complex demonstration that showcases the mobile manipulation robot's capabilities in picking objects from the environment autonomously. The demo consists of the robotic arm picking colored balls or apples from a fake plant tree, in an autonomous way. The objective is to demonstrate the robotic system's integration of multiple software components and the orchestration of the robotic arm and mobile base to interact and grasp objects of different shapes and sizes, using a soft robotic hand gripper. The soft gripper enables the robotic arm to grasp fragile objects without damaging them, and it is also able to grasp objects of different shapes and sizes, thanks to the flexibility and adaptability of the silicone fingers. For this demo, only MountV2 is used, since it is the only one that supports the soft gripper.

The colored balls used in the demo are small plastic balls of different colors. The balls are used as a simple test ground for the grasping capabilities of the soft gripper, in fact, the balls are small enough to be easy to grasp and the plastic material enables high grip friction between the fingers and the ball. Instead, the fake plastic apples are a little more challenging to grasp, because of their irregular shape (not as ideal as the sphere). The fake apples are used to simulate a realistic and more complex scenario, where the objects to be picked are closer to objects appearing in real-world environments, such as fruits on trees.

The objective of the demo is to apply the mobile manipulation robot in an agricultural environment, which is often more challenging and irregular than in industrial environments. The demo is meant to be a proof of concept of the autonomous control of a robot

to pick and place objects in a realistic environment, such as a plantation.

For this demo, three different versions were developed, each with different levels of complexity and challenges. The first version is used as a test for the algorithm for object pose estimation and the grasping capabilities of the soft gripper. The second version is used to test the robot's navigation and obstacle avoidance capabilities in conjunction with the object detection neural network and the perception algorithms. The third version is a simplified version of the second one because it is not a pick and place task with the targets in two different locations, but a picking task where the placing location is on the robot itself.

1.3.1. Plants, Colored Balls, and Fruits Setup

The first setup for testing and demonstrating the demo uses a small fake plant tree with colored balls attached to it. The second more realistic setup uses a big flat surface with fake apples placed on it, simulating a more realistic espalier apple tree. This sort of tree is used in agriculture to grow apples flatly and vertically, to save space, and to make the apples more accessible for picking. The apples are placed on the tree at different heights and distances from each other, to simulate a more realistic scenario where the apples are not all at the same height and distance from the robot. The apples are also placed in a way that the robot must move around the tree to reach all the apples, and this is meant to test the robot's navigation and obstacle avoidance capabilities.

The colored balls and apples are attached to the plant with a nylon string. At the extremity of the string, there is a small magnet that is attached to the string with hot glue. In the case of the apples, the magnet is attracted to another magnet placed on a screw that is screwed into the plastic apple. In the case of the colored balls, the magnet is attracted to another magnet glued onto the ball. To make this solution more robust, the balls have two magnets: one inside it, and one glued onto the external surface. This solution is effective in attaching the objects to the plant and making them detachable, without the need to exert too much force to detach them so that the robotic arm can easily detach them without stressing the motors at all. The magnets are small and lightweight, and they do not affect the object's weight and shape. The nylon string is thin and transparent, and it is not visible in the camera's field of view, so it does not affect the object's appearance.

TODO: add picture of real plant tree and simulated apple tree

TODO: add picture of colored balls on fake plant tree

TODO: add picture of magnet attachment to apples and balls

1.3.2. Algorithm for Grasp Pose Estimation

algorithm for center estimation refer to algorithm

Algorithm 1.1 Grasp Pose Estimation from Object's Barycenter

```
Require: p = (x, y, z) estimated object's barycenter in the camera frame
 1: C \leftarrow \emptyset
                                                                           ▶ Set of candidate grasping poses
 2: n_{candidates} \leftarrow 50
                                                                    ▶ Number of candidate grasping poses
 3: \theta_{min}, \theta_{max} \leftarrow -\pi, \pi/3
                                            ▶ Range of angles for the orientation of the end effector
 4: q \leftarrow 0.05
                                        ▷ Grasping distance from the object's barycenter in meters
 5: transform p into the robot's base frame
 6: for \theta in linspace(\theta_{min}, \theta_{max}, n_{candidates}) do
         v_c = \frac{(x,y,z)}{||(x,y,z)||}
                                                     ▶ Vector from the base to the object's barycenter
         v_l = -v_c \cdot g \cdot \cos(\theta)
                                                                                 \triangleright Longitudinal component v_l
 8:
         p_v = \frac{(x,y,0)}{||(x,y)||}
         v_v = (v_c \times p_v) \times v_c
10:
                                                                                       \triangleright Vertical component v_v
         v_v = v_v \cdot g \cdot \sin(\theta)
         v_{grasp} = v_v + v_l + v_c
12:
                                                                                        \triangleright Grasping vector v_{qrasp}
         v_{grasp,x} = \frac{-v_{grasp}}{||v_{grasp}||}
13:
         plane_{xy} = (0, 0, 1)
14:
         v_{qrasp,y} = plane_{xy} \times v_{qrasp,x}
15:
16:
         v_{grasp,z} = v_{grasp,x} \times v_{grasp,y}
         rot_{grasp} \leftarrow \text{Rotation matrix } [v_{grasp,x}, v_{grasp,y}, v_{grasp,z}]
17:
         q_{qrasp} \leftarrow \text{Quaternion representation of } rot_{grasp}
18:
         q_{grasp} = \frac{q_{grasp}}{||q_{grasp}||}
                                                                                         ▷ normalize quaternion
19:
         grasping candidate position \leftarrow v_{qrasp}
20:
          grasping candidate orientation \leftarrow q_{qrasp}
21:
          if \exists I-K solution for (v_{qrasp}, q_{qrasp}) then
22:
              C \leftarrow C \cup (v_{grasp}, q_{grasp})
                                                           ▶ add the candidate grasping pose to the list
23:
         end if
24:
25: end for
26: size \leftarrow |C|
                                                  ▶ get the size of the list of candidate grasping poses
27: if size \geq 1 then
         i = size \cdot 1/4
                                                           \triangleright get the candidate in position 1/4 of the list
28:
29: else
30:
         return No feasible grasping poses found
31: end if
32: return C[i]
                                                          > return the selected candidate grasping pose
```

1.3.3. DemoV1 with Manual User Input

This first version of the demo $(Demo\,V1)$ is a test for the grasping capabilities of the soft gripper and the autonomous control of the robotic arm, without any advanced perception algorithm implemented. This demo is also meant to be used when the robotic arm is fixed in a specific location. The demo consists of the robotic arm picking colored balls from the fake plant tree, with manual user input for selecting the target object to be picked. The user selects the target object by clicking on the object in the camera's field of view, and the robotic arm moves to the target object's position and grasps it. The user can select only one object at a time. The choice of the object is rather simple, as it does not use any neural network for detecting the objects. Instead, it relies on the user's input to select the pixel on the image corresponding to the center of the object to be picked.

When starting the demo, an image window appears on the screen, showing the camera's RGB image feed. The user can click on the image and the coordinates of the mouse click are recorded, and broadcast on a ROS2 topic. The algorithm for object position estimation computes the object's position in the camera frame using the pixel coordinates, the camera's intrinsic parameters, and the depth image from the infrared camera. The result is a (x, y, z) position vector of the visible point in the camera frame. This is the point of the pointcloud on the surface of the object, which roughly corresponds to the object's visible surface center. By projecting a ray from the camera's optical sensor to the computed point, the algorithm computes the object's approximate barycenter in the camera frame. The barycenter is then transformed into the robot's base frame, and used as input to the grasping pose estimation algorithm to compute the target pose for the end effector required to position the robot where the object can be grasped.

Once the grasping pose is computed, the robot moves to the target pose and the end effector grasps the object. The robot then moves to a standard pre-defined position and drops the object, assuming that a basket is placed exactly underneath the robot's end effector in the dropping position. The robot then returns to the starting position and waits for the user to select the next object to be picked.

1.3.4. DemoV2 with Object Detection Neural Network

automatic detection algorithm for checking feasibility and validity

In the demo version 2 (Demo V2), the demo does not require any user input for selecting the object to be picked. Instead, it relies on a neural network for detecting the objects in the camera's field of view. The neural network is trained to detect the colored balls and

the apples, and it outputs the object's bounding box and class label with the confidence score. The predicted bounding box is used as the starting point to obtain a pointcloud containing the points on the entire object's surface. The pointcloud is then used to compute the object's barycenter in the camera frame, and the grasping pose is computed as in the previous version of the demo. The algorithm makes the strong assumption that the object can be approximated as an ideal sphere of known radius. This algorithm is very robust for the colored balls, since they are spheres, and less robust and reliable for the apples, because of their irregular shape. The algorithm is able to compute the object's barycenter even from a small portion of the object's surface, and this is a strong point of the algorithm because it does not require the entire object to be visible in the camera's field of view.

The algorithm for the object's barycenter estimation from the surface pointcloud is the one described in 1.2. The algorithm uses a random sample consensus (RANSAC) algorithm to estimate the sphere's center:

Algorithm 1.2 Sphere Barycenter Estimation from Object Detection

```
Require: RGB image I, Depth image D
Require: predicted bounding box B = (x, y, w, h), predicted class label \hat{y}
 1: sphere radius range r_{min}, r_{max}, tolerance \epsilon

    ▶ maximum depth of useful points in meters

 2: d_{max} \leftarrow 1.5
 3: I_{crop} \leftarrow I[y:y+h,x:x+w]
                                                         ▷ Crop the image to the bounding box
 4: D_{crop} \leftarrow D[y:y+h,x:x+w]
                                                 ▷ Crop the depth image to the bounding box
 5: P \leftarrow get\_pointcloud(D_{crop})
                                                    ▷ Get the pointcloud from the depth image
 6: filter pointcloud P by removing points with z \geq d_{max}
 7: colormask \leftarrow get \ colormask(\hat{y}) \triangleright Get the color mask based on predicted class label
 8: P_s \leftarrow \emptyset
                                                       ▷ Object's surface segmented pointcloud
 9: for each pixel p \in I do
        if color of p is within color mask then
10:
            P_s \leftarrow P_s \cup P(p) \triangleright \text{Apply color mask filter and add point to surface pointcloud}
11:
12:
        end if
13: end for
14: n_{min} \leftarrow 4
                              ▶ minimum number of points passing through a unique sphere
15: for a fixed number of iterations do
                                                        ▶ Random sample consensus algorithm
        S \leftarrow \text{random subset of } n_{min} \text{ points from } P_s
16:
        c, r \leftarrow center and radius of sphere fit to subset S
17:
        if r_{min} \leq r \leq r_{max} then
18:
19:
            Calculate inliers: points within a distance threshold \epsilon of the sphere's surface
            Calculate MLESAC score based on the number of inliers and the residual error
20:
            if score > best \ score then
21:
                Update best model \leftarrow (c, r), best score \leftarrow score
22:
            end if
23:
24:
        end if
25: end for
26: Refine best model by fitting the inliers using least squares method
```

The algorithm uses *MLESAC* (Maximum Likelihood Estimation Sample Consensus) to estimate the sphere's center from the segmented pointcloud. The function used for sphere fitting to a pointcloud is provided by *SACSequentation* package from *Pointcloud Library*.

27: **return** best model

1.3.5. Mobile Fruit Picking Demos

composition of the actions

demov2: pick and place demov3: pick and place on robot

1.3.6. Experimental Challenges

grasping is difficult infrared reflectivity object detection false positive and negative object detection slow on cpu $\,$