

## Mechanical Engineering Systems BSE At Havelock

(MES-400 Engineering Lab)



# Minor Pressure Losses

9/25/21

Mohammad Sheikh

I have neither given nor received any unauthorized assistance on this report.

### **Table of Contents**

| Abstract                                                      | 1  |
|---------------------------------------------------------------|----|
| Introduction                                                  | 2  |
| Objective                                                     | 2  |
| Background                                                    |    |
| Relevant Theory                                               |    |
| Methods                                                       |    |
| Materials and Equipment Used                                  |    |
| Experimental Procedure                                        | 3  |
| Results/Discussion                                            |    |
| Conclusions                                                   |    |
| References.                                                   |    |
| Appendix A: Data Collection Sheet With Calculations and Notes |    |
| Appendix B:                                                   |    |
| Fauinment                                                     | 11 |

#### **Abstract**

When a fluid flows through a pipe fitting the pressure of the fluid drops based on the geometry of the pipe fitting. The purpose of this experiment was to investigate the pressure losses associated with several pipe fittings. For the experiment a Hampden Flow Measurement system that contained a 180 U, Short 90, sudden contraction, sudden expansion, and long 90 fittings. The pressure loss was recorded with changing flow rates for each different fitting. The minor loss coefficient was calculated, and all the delta pressures were compared. There were large percent differences in all the fittings for both the minor losses and delta pressure. It was found that the theoretical data should not be used for real world pipe applications and rather the loss coefficient should be derived experimentally for piping systems.

1

#### Introduction

#### **Objective**

The objective of the experiment was to determine the minor pressure losses of water through different pipe fittings.

#### **Background**

Fluid flow is an important concept to engineers because many practical applications such as vehicles, plumbing systems in houses, etc involve fluid flow. It is important to investigate the pressure losses due to friction as this is important in a variety of engineering calculations.

#### Relevant Theory

The minor loss is given by

$$\Delta_p = K_l \frac{1}{2} \rho V^2 \tag{1}$$

Where:

 $\Delta_p$  is the pressure difference

 $K_l$  is the loss coefficient

 $\rho$  is the density of the fluid

V is the velocity

For a contraction/expansion the pressure loss is a function of the inlet and outlet diameters.



Figure 1: Contraction and Expansion Fittings [3]

Since  $\theta = 75^{\circ}$  the equation is

Contraction: 
$$K_l = \frac{0.5(1-\beta^2)}{\beta^4} \left(\sin\frac{\theta}{2}\right)^{0.5}$$
 Expansion:  $K_l = \frac{\left(1-\beta^2\right)^2}{\beta^4}$  (2)

$$\beta = \frac{D_1}{D_2} \tag{3}$$

Where:

 $D_1$  = Smallest Diameter

 $D_2$  = Biggest Diameter

Reynolds number is given by:

$$R_e = \frac{\rho VD}{\mu} \tag{4}$$

Where:

Re is the Reynolds number

 $\rho$  is the density of the fluid

V is the velocity of the fluid

D is the hydraulic diameter

 $\mu$  is the dynamic viscosity of the fluid

#### **Methods**

Experimental Procedure

- 1. The pipe inlet water valve was turned on to allow flow through the pipes
- 2. The valves located on the top left were turned and tuned until a desired flow was read
- 3. The pressure difference was read from the 180 U fitting
- 4. The flow was adjusted by -1 GPM and the pressure was read from the same fitting
- 5. This was done for all fittings until there was 5 data points per fitting

#### **Results/ Discussion**

**Table 1: Delta Pressure Percent Error** 

| Theoretical Data |                    | Experimental Data  |                 |  |  |
|------------------|--------------------|--------------------|-----------------|--|--|
| Shape            | Δ Pressure (N/m^2) | Δ Pressure (N/m^2) | Percent Error % |  |  |
|                  | 0                  | 0                  | 0               |  |  |
|                  | 154.824            | 723.975            | 368             |  |  |
| 180 U            | 126.830            | 592.970            | 368             |  |  |
| 180 0            | 99.454             | 475.755            | 378             |  |  |
|                  | 76.967             | 372.330            | 384             |  |  |
|                  | 57.433             | 275.800            | 380             |  |  |
|                  | 231.818            | 172.375            | 26              |  |  |
|                  | 209.635            | 137.900            | 34              |  |  |
| Short 90         | 187.313            | 124.110            | 34              |  |  |
|                  | 167.824            | 141.348            | 16              |  |  |
|                  | 150.151            | 120.663            | 20              |  |  |
|                  | 317.452            | 668.815            | 111             |  |  |
|                  | 258.281            | 572.285            | 122             |  |  |
| Contraction      | 204.696            | 468.860            | 129             |  |  |
|                  | 155.552            | 365.435            | 135             |  |  |
|                  | 115.620            | 296.485            | 156             |  |  |
|                  | 28.551             | 151.690            | 431             |  |  |
|                  | 25.713             | 134.453            | 423             |  |  |
| Expansion        | 23.127             | 127.558            | 452             |  |  |
|                  | 20.774             | 99.978             | 381             |  |  |
|                  | 18.273             | 82.740             | 353             |  |  |
|                  | 154.855            | 393.015            | 154             |  |  |
|                  | 125.990            | 320.618            | 154             |  |  |
| Long 90          | 99.355             | 289.590            | 191             |  |  |
|                  | 75.879             | 206.850            | 173             |  |  |
|                  | 55.748             | 158.585            | 184             |  |  |

The delta pressure percent error is shown in table 1, equation 1 was used to solve for this after solving for velocity at 10 gallons per minute and an area of 1 in, all the units were converted to their metric counterparts. Table 1 shows percent error between the experimental and theoretical delta pressure. There are big errors because the theoretical loss coefficients are only used to help getting the design started. The given k values in the textbook do not instill enough confidence to use in design, it seems that it would be better to perform an experiment such as this one to determine the loss values.



Figure 2: All Pipe Fittings Loss Coefficient vs Reynolds Number

Figure 2 shows the experimental and theoretical loss coefficient plotted against the Reynolds number, in all the cases the theoretical loss has a linear trendline, while the experimental loss coefficient begins to curve down or up as the Reynolds number increases. The flows in this experiment were never fully turbulent even at 10 GPM, most of the flows were in the transition zone.



Figure 3: All Loss Coefficient vs Reynolds Number

The loss coefficient was calculated by solving for Kl in equation 1 and Reynolds number was solved using equation 4. Figure 3 shows the loss coefficient vs Reynolds number for all the pipe fittings. The loss coefficient decreases as the Reynolds number increases which means that the pressure loss also decreases as the Reynolds number increases. This makes sense because since the fluid becomes more turbulent the molecules are more random and chaotic. The molecules are less likely reverse flow at the slight bends for each fitting.

|             | Minor Loss   | Minor Loss  | Percent |           | Minor | Minor | Percent |
|-------------|--------------|-------------|---------|-----------|-------|-------|---------|
| Shape       | Experimental | Theoretical | Error   | Shape     | Loss  | Loss  | Error   |
|             | KL           | Kth         | %       |           | KL    | Kth   | %       |
|             |              |             |         |           |       |       |         |
|             | 0.935        | 0.2         | 368     |           | 0.223 | 0.3   | 26      |
| 180 U       | 0.935        | 0.2         | 368     | Short 90  | 0.197 | 0.3   | 34      |
|             | 0.957        | 0.2         | 378     | -<br>-    | 0.199 | 0.3   | 34      |
|             | 0.968        | 0.2         | 384     |           | 0.253 | 0.3   | 16      |
|             | 0.960        | 0.2         | 380     |           | 0.241 | 0.3   | 20      |
|             |              |             |         |           |       |       |         |
|             | 0.864        | 4.7         | 82      |           | 3.135 | 9     | 65      |
| Contraction | 0.908        | 4.7         | 81      | Expansion | 3.085 | 9     | 66      |
| Contraction | 0.939        | 4.7         | 80      | Expansion | 3.254 | 9     | 64      |
|             | 0.963        | 4.7         | 79      | 1         | 2.839 | 9     | 68      |
|             | 1.051        | 4.7         | 78      |           | 2.672 | 9     | 70      |
|             |              | •           |         |           |       |       |         |
|             | 0.508        | 0.2         | 154     |           |       |       |         |
| Long 90     | 0.509        | 0.2         | 154     |           |       |       |         |
|             | 0.583        | 0.2         | 191     |           |       |       |         |
|             | 0.545        | 0.2         | 173     | ]         |       |       |         |

Table 2: Experimental vs Theoretical K Values

Table 3 takes the percent differences for the theoretical and experimental loss coefficients. There are significant percent differences between the two. In the cases of the 180 U, and Long 90 the percent errors are over 100 percent, while the loss coefficients for the rest are less than 100 percent. It seems like the longer the pipe is, the more loss error there is.

#### **Conclusions**

The 180 U had the most percent error as the experimental losses were over 300 percent more, the short 90 had the least percent error as it was below 50 percent. It was learned for the expansion fitting that the pressure drops on the bigger area side, this is expected due to the relationship between pressure, velocity, and area. The expansion and contraction valve were found to have a 75-degree angle, if it was 90, then the loss coefficient would be close to 1.

Date

The delta pressure drop percent error is large for all the pipe fittings, with most being over 100 percent. This is expected because of the delta pressure and minor loss relationship. The theoretical data is not reliable for practical real world pipe applications.

It was noted in figure 3 that the overall loss coefficient will decrease when the Reynolds number is increased. Overall, the experiment was a success because the loss coefficient was observed, and it was learned that the theoretical coefficients are not to be used in a real design. The loss coefficients should be experimentally derived for fluid systems to achieve the experimental k for that system. Each system will be different because the roughness of steel, copper, pvc differs.

#### **References**

- https://moodlecourses2122.wolfware.ncsu.edu/pluginfile.php/417545/mod\_folder/content/0/AS ME%20MFC-3M-2004.pdf?forcedownload=1
- 2. https://moodle-courses2122.wolfware.ncsu.edu/pluginfile.php/417545/mod\_folder/content/0/FF M-6%20Minor%20Losses.pdf?forcedownload=1
- 3. https://www.linkedin.com/pulse/contraction-expansion-pressure-drop-saeid-rahimi-mofrad

### **Appendix A: Data Collection Sheet With Calculations and Notes**

|             |           |            | Minor Loss   |                 | Minor Loss  | Percent |
|-------------|-----------|------------|--------------|-----------------|-------------|---------|
| Shape       | Flow      | Pressure   | Experimental | Reynolds Number | Theoretical | Error   |
|             | M^3/s     | Pa (N/m^2) | $K_L$        | Reynolds Number | $K_{th}$    | %       |
| [           | 6.309E-04 | 723.975    | 0.935        | 3.24E+04        | 0.2         | 368     |
| 180 U       | 5.710E-04 | 592.970    | 0.935        | 2.93E+04        | 0.2         | 368     |
| 1000        | 5.056E-04 | 475.755    | 0.957        | 2.60E+04        | 0.2         | 378     |
|             | 4.448E-04 | 372.330    | 0.968        | 2.29E+04        | 0.2         | 384     |
|             | 3.842E-04 | 275.800    | 0.960        | 1.97E+04        | 0.2         | 380     |
|             | 6.303E-04 | 172.375    | 0.223        | 3.24E+04        | 0.3         | 26      |
|             | 5.994E-04 | 137.900    | 0.197        | 3.08E+04        | 0.3         | 34      |
| Short 90    | 5.666E-04 | 124.110    | 0.199        | 2.91E+04        | 0.3         | 34      |
|             | 5.363E-04 | 141.348    | 0.253        | 2.76E+04        | 0.3         | 16      |
|             | 5.073E-04 | 120.663    | 0.241        | 2.61E+04        | 0.3         | 20      |
|             | 6.309E-04 | 668.815    | 0.864        | 3.24E+04        | 4.68        | 82      |
|             | 5.691E-04 | 572.285    | 0.908        | 2.92E+04        | 4.68        | 81      |
| Contraction | 5.066E-04 | 468.860    | 0.939        | 2.60E+04        | 4.68        | 80      |
|             | 4.416E-04 | 365.435    | 0.963        | 2.27E+04        | 4.68        | 79      |
|             | 3.808E-04 | 296.485    | 1.051        | 1.96E+04        | 4.68        | 78      |
|             | 6.309E-04 | 151.690    | 3.135        | 8.11E+03        | 9           | 65      |
|             | 5.987E-04 | 134.453    | 3.085        | 7.69E+03        | 9           | 66      |
| Expansion   | 5.678E-04 | 127.558    | 3.254        | 7.30E+03        | 9           | 64      |
|             | 5.382E-04 | 99.978     | 2.839        | 6.91E+03        | 9           | 68      |
|             | 5.047E-04 | 82.740     | 2.672        | 6.49E+03        | 9           | 70      |
|             | 6.309E-04 | 393.015    | 0.508        | 3.24E+04        | 0.2         | 154     |
| [           | 5.691E-04 | 320.618    | 0.509        | 2.92E+04        | 0.2         | 154     |
| Long 90     | 5.054E-04 | 289.590    | 0.583        | 2.60E+04        | 0.2         | 191     |
|             | 4.416E-04 | 206.850    | 0.545        | 2.27E+04        | 0.2         | 173     |
|             | 3.785E-04 | 158.585    | 0.569        | 1.95E+04        | 0.2         | 184     |

| rippendix D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hand Calculations                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| 1 7 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |
| The state of the s |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                      |
| Marie William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RE= NEMBOR AP                                                          |
| The state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V2 - 10V2                                                              |
| EN JULY TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{K_{1} = h_{1} m_{1} n_{2}}{V^{2}} = \frac{\Delta P}{2 p v^{2}}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 V <sup>2</sup> (0 00)                                                |
| 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | humor - Ku 29 (8.36)                                                   |
| The state of the s |                                                                        |
| 1 115 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fridsond losses through a pige 15 th                                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Equation 8.36 is different because it do                               |
| 12 th wift to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | not need                                                               |
| Marie Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| CANADA SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Both 111 AA 1                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Regald name The Stiction Sider is way large                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for a fully turbiled flow, So for equety, 8036                         |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | you would egging the loss claffed on a to toplan                       |
| 7 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of temporalizar                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A suffer do by                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| The state of the s | That Rading                                                            |
| 10 10 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elbon                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | long faction Ellow                                                     |
| 77777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180°K                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Controlina                                                             |
| the tenth of the said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contradion                                                             |
| SECTION SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5 tan (0.6) = 75°                                                   |
| A Property of the Parks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angle for contraction /                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exaction                                                               |
| THE STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAPAC. A.                                                              |
| The state of the s |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |

|    | •    |    | 4   |
|----|------|----|-----|
| HО | 1111 | nm | ent |
|    |      |    |     |

| Equipment used:                |  |
|--------------------------------|--|
| Water Flow Bench Dial Calipers |  |