Courbes elliptiques — 4TMA902U Responsables: G. Castagnos, D. Robert

Terminal Exam — December 11, 2020

3h

Documents are not allowed

Answer the two parts on separate sheets

G. Castagnos' Part

I Let p be a prime number with p > 3 and $p \equiv 3 \pmod{4}$. We denote by E the elliptic curve of equation $y^2 = x^3 + x$ over \mathbb{F}_p .

- (a) Let $x \in \mathbb{F}_p$ and denote $f(x) = x^3 + x$. Show that f(x) is a square if and only if f(-x) is not a square.
- **(b)** Show that $E(\mathbf{F}_p)$ has p+1 points (Hint: one can use the fact that \mathbf{F}_p can be written as $\mathbf{F}_p = \{0, \pm 1, \pm 2, \dots, \pm (p-1)/2\}$).
- (c) Show that there exists $i \in \mathbb{F}_{p^2}$ such that $i^2 = -1$.

In the following, we denote by ϕ the map that sends a point Q = (x, y) of $E(\mathbf{F}_p)$ to $\phi(Q) = (-x, iy)$ and that sends O_E to itself.

(d) Prove that $\phi(Q) \in E(\mathbb{F}_{p^2})$ for all $Q \in E(\mathbb{F}_p)$.

We assume in the following that ϕ is a morphism for the group law of the points of the curve. Moreover, we will assume that there exists a prime factor ℓ of p+1 with $\ell>2$. We will denote $G=\langle P\rangle$ where P is a point of $E(\mathbb{F}_p)$ of order ℓ .

- (e) Give an algorithm (in pseudo code or Sage) that takes an integer λ as input, and that outputs (with the previous notations) ℓ of λ bits, the prime p, and the point P.
- (f) What is the embedding degree of ℓ in \mathbb{F}_p ?
- (g) Let us denote $P = (x_P, y_P)$ the affine coordinates of P. Show that $y_P \neq 0$. Deduce that P and $\phi(P)$ generate the ℓ -torsion of the curve E.
- (h) Show how to define a cryptographic pairing of type I with this curve.

- (i) Show how to use this pairing to do a tripartite key exchange in one round between Alice, Bob and Carl.
- (j) Suppose that Alice and Bob do a Diffie-Hellman key exchange in the group $G = \langle P \rangle$. Suppose we know the values X and Y exchanged by Alice and Bob. Given and element $Z \in G$ show how to efficiently tell if Z is the secret common quantity established by Alice and Bob.
- Let ℓ be a large prime number and $(G_1, +)$ and (G_t, \times) be two distinct cyclic groups of the same order ℓ . Let P be a generator of G_1 and $e: G_1 \times G_1 \to G_t$ be a cryptographic bilinear pairing of type I. Let H be a cryptographic hash function that maps binary strings to elements of G_1 . We recall the BLS signature scheme using a type I pairing: The secret signature key is an integer x such that $1 < x < \ell$. The public verification key is $Q = xP \in G_1$. The signature of a binary string m with the secret key x is computed as $\sigma = xH(m) \in G_1$.
 - (a) What precise problem an attacker must exactly solve in order to compute a valid signature of m for the public key Q without knowing the corresponding secret key x? Deduce from that the verification algorithm of this signature scheme.
 - **(b)** In this question only, we suppose that we sign integers m with $1 < m < \ell$ and that the hash function H consists in computing H(m) := mP. Show that an attacker can efficiently build a valid signature of m with the public key Q without knowing the corresponding secret key x.

Let n > 1 be an integer. In the following, we suppose that n participants use this BLS signature scheme. For i = 1, ..., n, we denote x_i with $1 < x_i < \ell$, the secret key of participant i and $Q_i = x_i P \in G_1$ its public key. Let $m_1, ..., m_n$ be messages. For i = 1, ..., n, we denote $\sigma_i \in G_1$ the signature by participant i of the message m_i with the signature scheme.

- (c) Show how to combine the signatures $\sigma_1, \dots, \sigma_n$ in a single element σ of G_1 in a way that it is possible, given σ , the messages m_1, \dots, m_n and the public keys Q_1, \dots, Q_n to verify that σ is a combination of signatures by participants 1 to n for messages m_1, \dots, m_n . Give this verification procedure.
- (d) Let m be a message that participant 1 has never signed. Show that an attacker can pretend to have signed together with participant 1 this plaintext m: that is to say, show that an attacker, without knowing neither x_1 nor the signature of participant 1 for m, can produce a public key Q_a and $\sigma \in G_1$ such that the input σ , m, m, Q_1 , Q_a is accepted by the verification procedure given in the previous question.

Propose a countermeasure to this attack.

3

- (a) Give the binary decomposition of $\ell = 37$.
- **(b)** Let E be an elliptic curve, $P \in E$. Explain which precomputation we would make and what intermediate points we would get when computing ℓ . P for $\ell = 37$ via the left to right method, a window of length 2, a window of length 3, and a sliding window of length 2.
- (c) Recall the definition and the explicit form of the function $\mu_{P,Q}$ for $P,Q \in E$.
- (d) Recall the definition of the function $f_{\ell,P}$.
- (e) Show that

$$f_{\ell_1 + \ell_2, P} = f_{\ell_1, P} f_{\ell_2, P} \mu_{\ell_1 P, \ell_2 P} \tag{1}$$

- (f) Explain what is Miller's algorithm to compute $f_{\ell,P}$. Then explain how we would compute $f_{37,P}$ with Miller's algorithm.
- (g) Explain how to adapt Miller's algorithm to use a window of size 2, of size 3 and a sliding window of size 2 for $\ell = 37$. Which precomputation do we need to make in each case?

Remark: For the last two questions, just explain for which values we would use (I), there is no need to give the explicit values of the functions $\mu_{\ell_1 P, \ell_2 P}$ each time.

[4] This exercice is in two independent parts. (Part B reuse the notations for Part A but does not require having done Part A).

Part A

Let \mathbb{F}_q be a finite field, q odd, and $E: y^2 = x^3 + ax + b$ an elliptic curve over \mathbb{F}_q .

- (a) Show that $\mathbf{F}_q^*/\mathbf{F}_q^{*,2} \simeq \mathbf{Z}/2\mathbf{Z}$.
- **(b)** Deduce that there is always a $u \in \mathbb{F}_q^*$ such that u is not a square in \mathbb{F}_q . If we take $u \in \mathbb{F}_q^*$ at random, what is the probability that it is a square?
- (c) Let $u \in \mathbb{F}_q^*$, give a short Weierstrass equation (via a change of variable) of $E_u : uy^2 = x^3 + ax + b$.
- (d) Recall what are the isomorphisms of short Weierstrass equations. Deduce that the isomorphism class of E_u over \mathbf{F}_q only depends on the value of u in $\mathbf{F}_q^*/\mathbf{F}_q^{*,2}$. In other words: if $u \in \mathbf{F}_q^{*,2}$, $E_u \simeq E$ over \mathbf{F}_q , if $u \notin \mathbf{F}_q^{*,2}$, $E_u \not\simeq E$ over \mathbf{F}_q and if $u, u' \notin \mathbf{F}_q^{*,2}$, $E_u \simeq E_{u'}$ over \mathbf{F}_q .
- (e) Show that E_u is always isomorphic to E over \mathbf{F}_{q^2} .
- (f) If E' is an elliptic curve isomorphic to E_u , $u \notin \mathbb{F}_q^{*,2}$, we say that E' is a quadratic twist of E. Explain why a quadratic twist of E always exist, is not isomorphic to E over \mathbb{F}_q but is isomorphic to E over \mathbb{F}_{q^2} .

- (g) Fix $u \notin \mathbf{F}_q^{*,2}$. Show that if $z \in \mathbf{F}_q^*$, either z is a square, or (exclusive) uz is a square.
- **(h)** Deduce that if E' is a quadratic twist of E, #E + #E' = 2q + 2.
- (i) Recall the definition of the characteristic polynomial of the Frobenius χ_{π} and how we can compute $\#E(\mathbf{F}_q)$ from χ_{π} .
- (j) Show that if E' is a quadratic twist of E and π' the Frobenius of E', then $\chi_{\pi'}(X) = \chi_{\pi'}(-X)$. Deduce that $\pi' = -\pi$.
- (k) Show that if $\chi_{\pi} = X^2 tX + q$, then $\chi_{\pi^2} = X^2 (t^2 2q) + q^2$. Explain how to compute $\#E(\mathbf{F}_{q^2})$ from $\#E(\mathbf{F}_q)$.
- (1) Check that $\#E(\mathbf{F}_{q^2}) = \#E(\mathbf{F}_q)\#E'(\mathbf{F}_q)$ (E' a quadratic twist). Deduce that if $2 \nmid \#E(\mathbf{F}_q)$, $E(\mathbf{F}_{q^2}) \simeq E(\mathbf{F}_q) \oplus E'(\mathbf{F}_q)$.

Part B

Assume that E is such that $\ell \mid \#E(\mathbb{F}_q), \ell^2 \nmid \#E(\mathbb{F}_q), \text{ and } k > 1 \text{ where } k \text{ is the embedding degree.}$

- (m) Recall the definition of the embedding degree, of the Weil pairing $e_{W,\ell}$, and of the (reduced) Tate pairing $e_{T,\ell}$.
- (n) Let π be the Frobenius morphism. Define $\mathbf{G}_2 = \operatorname{Ker}(\pi [q])$ and $\mathbf{G}_1 = \operatorname{Ker}(\pi [1])$ in $\mathrm{E}[r]$. In which extension does the points of \mathbf{G}_1 live? Meaning what is the smallest extension \mathbf{F}_{q^d} containing all the points $\mathbf{G}_1(\overline{\mathbf{F}}_q)$? Same question for \mathbf{G}_2 . Deduce on which extension all the points of $\mathrm{E}[\ell]$ live.
- (o) Assume that k = 2k' is even. Show that $q^{k'} \equiv -1 \pmod{\ell}$.
- (p) Let $u \notin \mathbf{F}_q^{*,2}$, and define $E_u : uy^2 = x^3 + ax + b$. Let $v \in \mathbf{F}_{q^2}$ such that $u = v^2$. Using v define an isomorphism $\xi : E \to E_u$ over \mathbf{F}_{q^2} and show that $\pi(\xi(P)) = \xi(-\pi(P))$.
- (q) Show that the points of $\xi(\mathbf{G}_1)$ live in $\mathrm{E}(\mathbf{F}_{q^2})$.
- (r) Assume that k = 2k' and k' is odd. Show that the points of $\xi(\mathbf{G}_2)$ live in $E(\mathbf{F}_{q^{k'}})$.
- (s) Explain how to use ξ to speed up the computation of the Tate pairing on $\mathbb{G}_2 \times \mathbb{G}_1$.