In the claims:

- 1. (Currently Amended) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
- (a) performing an aldol condensation of a first compound selected from the formulas: of the formula:

$$\begin{array}{c|c} H & \begin{array}{c} R_1 & R_2 \\ \hline \\ O & \\ \end{array} \\ \begin{array}{c} \\ O \\ \end{array} \\ \begin{array}{c} \\ O \\ \end{array} \\ \end{array}$$

and stereoisomers thereof, with a second compound selected from the formulas:

and stereoisomers thereof, thereby to form a third compound selected from the formulas: of the formula:

and stereoisomers thereof, wherein Z is selected from

and

$$R_3$$
 $N = R_4$

; wherein R₁, R₂, and R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₅, R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound selected from the formulas: of the formula:

and stereoisomers thereof, wherein A is selected from

and

R₄ N

 R_4 N wherein R_1 , R_2 , and R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 , R_7 and R_8 are each selected from H and a protecting group.

- 2. (Currently Amended) A method according to claim 1 wherein R_1 , and R_3 and R_4 are each methyl, and R_2 is H or methyl.
 - 3. Cancelled.
 - 4. (Original) A method according to claim 2 wherein R₂ is methyl.
- 5. (Original) A method according to claim 2 wherein at least one of $R_{\rm 5}$ $R_{\rm 8}$ is TBS.
- 6. (Original) A method according to claim 2 wherein R_6 , R_7 and R_8 are each TBS.
 - 7. (Original) A method according to claim 2 wherein R₅ is PMB.
 - 8. Cancelled.
- 9. (Original) A method according to claim 1 wherein R_5 is selected from PMB, DPS and TBS; wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R_7 is selected from H, TBS, TROC, -CO(CH₂)₄CH₃ and -CO(CH₂)₃CH=CH₂; and wherein R_8 is selected from H and TBS.

10. - 32. Cancelled.

33. (Original) A chemical compound formed according to the method of claim 1.

34. - 68. Cancelled.

Amendment Ser. No. 09/981,312 November 23, 2004 Page 3 of 39 69. (Currently Amended) A chemical compound having a formula selected from: of the formula:

and stereoisomers thereof, wherein W is selected from

$$R_{5}O$$
 $R_{9}COO$ R_{10} R_{10}

wherein R_1 , R_2 , and R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 , R_6 , R_7 and R_8 are each is selected from H and a protecting group; wherein R_7 is selected from H, a protecting group and COR_{11} ; wherein R_8 is selected from H, a protecting group and COR_{12} ; wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 70. (Original) A chemical compound according to claim 69 wherein at least one of R_{11} and R_{12} is selected from -(CH₂)_xCH₃ and -(CH₂)_yCH=CH₂, where x and y are integers.
- 71. (Previously Amended) A chemical compound according to claim 70 wherein x and y are selected from the integers 3 and 4.
- 72. (Original) A chemical compound according to claim 70 wherein x is 4 and y is 3.
 - 73. and 74. Cancelled.
 - 75. (Withdrawn) A chemical compound having a formula

and stereoisomers thereof, wherein W is R_4 N ; wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_7 is selected from H, a protecting group, and COR_{11} ; wherein R_8 is selected from H, a protecting group, and COR_{12} , and wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 76. (Withdrawn) A chemical compound according to claim 75 wherein at least one of R_{11} and R_{12} is selected from -(CH_2)_x CH_3 and -(CH_2)_y $CH=CH_2$, where x and y are integers.
- 77. (Withdrawn) A chemical compound according to claim 76 wherein x and y are selected from the integers 3 and 4.
- 78. (Withdrawn) A chemical compound according to claim 76 wherein x is 4 and y is 3.
- 79. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

$$H = \begin{bmatrix} R_1 & R_2 \\ S & OR_6 \end{bmatrix}$$

and stereoisomers thereof, with a second compound selected from the formulas:

Amendment Ser. No. 09/981,312 November 23, 2004 Page 5 of 39

$$R_{13}OOC$$
 $R_{7}OOC$
 $R_{7}OOC$
 $R_{7}OOC$
 $R_{7}OOC$
 $R_{13}OOC$
 $R_{13}OOC$

and stereoisomers thereof, thereby to form a third compound of the formula:

and stereoisomers thereof, wherein Z is selected from

OR₅

and

; wherein R₁, R₃ and R₄ are each, methyl; wherein R₂ is H; wherein R₅, R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

R₃

and stereoisomers thereof, wherein A is selected from

and

 R_4 ; wherein R_1 , R_3 and R_4 are each methyl; wherein R_2 is H; and wherein R_5 , R_7 and R_8 are each selected from H and a protecting group.

- 80. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

$$H \bigvee_{O}^{R_1} \bigvee_{S}^{R_2} \bigvee_{OR_6}^{Z}$$

and stereoisomers thereof, with a second compound selected from the formulas:

$$R_{13}OOC$$
 $R_{7}OOC$
 $R_{13}OOC$
 $R_{13}OOC$

and stereoisomers thereof, thereby to form a third compound of the formula:

and stereoisomers thereof, wherein Z is selected from

R₃

and

 R_3 $N = \begin{cases} R_4 \\ S \end{cases}$

; wherein R_1 , R_3 and R_4 are each methyl; wherein R_2 is H or methyl; wherein R_5 , R_7 and R_8 are each selected from H and a protecting group; wherein R_6

is SEM; wherein R_{13} is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

and stereoisomers thereof, wherein A is selected from

and

 R_4 ; wherein R_1 , R_3 and R_4 are each methyl; wherein R_2 is H or methyl; and wherein R_5 , R_7 and R_8 are each selected from H and a protecting group.

- 81. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

$$H \bigvee_{O}^{R_1} \bigvee_{S}^{R_2} \bigvee_{OR_6}^{Z}$$

and stereoisomers thereof, with a second compound selected from the formulas:

and stereoisomers thereof, thereby to form a third compound of the formula:

and stereoisomers thereof, wherein Z is selected from

and

; wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₅, R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt;

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

and stereoisomers thereof, wherein A is TBSO ; R_2 is H or methyl; R_3 is methyl; R_7 and R_8 are each selected from TBS, H, and a protecting group; and

(c) converting said fourth compound to a fifth compound of the formula:

Amendment Ser. No. 09/981,312 November 23, 2004 Page 9 of 39

and stereoisomers thereof, wherein B is $\stackrel{R_3}{\mapsto}$; R_2 is H or methyl; R_3 is methyl; and R_7 and R_8 are each selected from TBS, H, and a protecting group.

82. (New) A method according to claim 81 wherein said fifth compound is converted to a sixth compound of the formula:

and stereoisomers thereof, wherein D is $R_9COO^{R_1}$; R_2 is H or methyl; R_3 is methyl; R_7 and R_8 are each selected from TBS, H, and a protecting group, and wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof.

83. (New) A method according to claim 81 wherein said fifth compound is converted to a sixth compound of the formula:

and stereoisomers thereof, wherein D is $O^{1/2}$; R_2 is H or methyl; R_3 is methyl; and R_7 and R_8 are each selected from TBS, H, and a protecting group.

84. (New) A method according to claim 83 wherein said sixth compound is converted to a seventh compound of the formula:

and stereoisomers thereof, wherein D is R_{10} ; R_2 is H or methyl; R_3 is methyl; R_7 and R_8 are each selected from TBS, H, and a protecting group; and wherein R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof.

85. (New) A method according to claim 83 wherein said sixth compound is converted to a seventh compound of the formula:

and stereoisomers thereof, wherein D is R_4 ; R_2 is H or methyl; R_3 and R_4 are each methyl; and R_7 and R_8 are each selected from TBS, H, and a protecting group.

- 86. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

$$H \bigvee_{O}^{R_1} \bigvee_{S}^{R_2} \bigvee_{OR_6}^{Z}$$

and stereoisomers thereof, with a second compound selected from the formulas:

$$R_{13}OOC$$
 $R_{7}OOC$
 $R_{13}OOC$
 $R_{13}OOC$

and stereoisomers thereof, thereby to form a third compound of the formula:

OR₅

and stereoisomers thereof, wherein Z is selected from

and

; wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₅, R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

and stereoisomers thereof, wherein A is R_4 , R_2 is H or methyl; R and R4 are each methyl; and wherein R7 and R8 are each H; and

(c) converting said fourth compound to a fifth compound of the formula:

and stereoisomers thereof, wherein B is R₄ N ; wherein R₂, R₃, and R

are each methyl; R₇ is R₁₁; R₈ is H; and R₁₁ is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

87. (New) A method according to claim 86 wherein said fifth compound is further converted to a sixth compound of the formula:

and stereoisomers thereof, wherein D is R4 N, wherein R2, R3, and R4

are each methyl; R_7 is R_{11} , R_8 is R_{12} , and R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 88. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

Amendment Ser. No. 09/981,312 November 23, 2004 Page 14 of 39 and stereoisomers thereof, with a second compound selected from the formulas:

$$R_{13}OOC$$
 $R_{7}OOC$
 $R_{13}OOC$
 $R_{13}OOC$

and stereoisomers thereof, thereby to form a third compound of the formula:

and stereoisomers thereof, wherein Z is selected from

and

; wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₅, R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt;

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

and stereoisomers thereof, wherein A is
$$R_4$$
 ; R_2 is H or methyl; R_3 and R_4 are each methyl; and wherein R_7 and R_8 are each H; and

(c) converting said fourth compound to a fifth compound of the formula:

and stereoisomers thereof wherein B is R_4 , wherein R_2 , R_3 , and R_4 are each methyl; R_7 is TMS; and R_8 is H.

89. (New) A method according to claim 88 wherein said fifth compound is further converted to a sixth compound of the formula:

and stereoisomers thereof, wherein D is R_4 , wherein R_2 , R_3 , and R_4

are each methyl; R_7 is H; R_8 is R_{12} ; and R_{12} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

Amendment Ser. No. 09/981,312 November 23, 2004 Page 16 of 39

- 90. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

$$H \bigvee_{S}^{R_1} \bigvee_{OR_6}^{R_2}$$

and stereoisomers thereof, with a second compound selected from the formulas:

$$R_{13}OOC$$
 $R_{7}OOC$
 $R_{13}OOC$
 $R_{13}OOC$

and stereoisomers thereof, thereby to form a third compound of the formula:

and stereoisomers thereof, wherein Z is selected from

and

; wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₅, R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

and stereoisomers thereof, wherein A is R_4 , R_4 is H or methyl; R_3 and R_4 are each methyl; and wherein R_7 is TBS and R_8 is TROC.

91. (New) A method according to claim 90 wherein said fourth compound is further converted to a fifth compound of the formula:

and stereoisomers thereof wherein B is R_4 , R_7 is TBS and R_8 is H

92. (New) A method according to claim 91 wherein said fifth compound is further converted to a sixth compound of the formula:

93. (New) A method according to claim 92 wherein said sixth compound is further converted to a seventh compound of the formula:

and stereoisomers thereof, wherein E is R_4 ; R_7 is H; R_8 is COR_{12} ; and R_{12} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

94. (New) A method according to claim 93 wherein said seventh compound is further converted to an eighth compound of the formula:

and stereoisomers thereof, wherein G is R_4 ; R_7 is COR_{11} ; R_8 is COR_{12} ; and R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

Amendment Ser. No. 09/981,312 November 23, 2004 Page 19 of 39 95. (New) A method according to claim 90 wherein said fourth compound is further converted to a fifth compound of the formula:

and stereoisomers thereof wherein B is R_4 , R_7 is H; and R_8 is TROC.

96. (New) A method according to claim 95 wherein said fifth compound is further converted to a sixth compound of the formula:

and stereoisomers thereof wherein D is R₄ and R₇ and R₈ are each H.

- 97. (New) A method according to claim 96 wherein said sixth compound is further converted to Epothilone B.
- 98. (New) A method according to claim 95 wherein said fifth compound is further converted to a sixth compound of the formula:

and stereoisomers thereof, wherein D is R₄; R₇ is COR₁₁; R₈ is TROC; and R₁₁ is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

99. (New) A method according to claim 98 wherein said sixth compound is further converted to a seventh compound of the formula:

and stereoisomers thereof, wherein E is R_4 ; R_7 is COR_{11} ; R_8 is H; and R_{11} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

100. (New) A method according to claim 99 wherein said seventh compound is further converted to an eighth compound of the formula:

and stereoisomers thereof, wherein G is R_4 ; R_7 is COR_{11} ; R_8 is COR_{12} ; and R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 101. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) performing an aldol condensation of a first compound of the formula:

$$\begin{array}{c|c} H & \begin{array}{c} R_1 \\ \hline \\ O \end{array} & \begin{array}{c} R_2 \\ \hline \\ OR_6 \end{array}$$

and stereoisomers thereof, with a second compound selected from the formulas:

and stereoisomers thereof, thereby to form a third compound of the formula:

$$R_3$$
 N

and stereoisomers thereof, wherein Z is \uparrow ; wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₆, R₇ and R₈ are each selected from H and a protecting group; wherein R₁₃ is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

and stereoisomers thereof, wherein A is R_4 N, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_7 and R_8 are each selected from H and a protecting group.

- 102. (New) A method according to claim 101 wherein R_1 , R_3 and R_4 are each methyl, and R_2 is H or methyl.
 - 103. (New) A method according to claim 102 wherein R₂ is methyl.
- 104. (New) A method according to claim 102 wherein at least one of R_6 R_8 is TBS.
- 105. (New) A method according to claim 102 wherein R_6 , R_7 and R_8 are each TBS.
- 106. (New) A method according to claim 101 wherein R₆ is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R₇ is selected from H, TBS, TROC,

Amendment Ser. No. 09/981,312 November 23, 2004 Page 23 of 39 -CO(CH₂)₄CH₃ and -CO(CH₂)₃CH=CH₂; and wherein R₈ is selected from H and TBS.

107. (New) A method according to claim 101 wherein said fourth compound is of the formula:

and stereoisomers thereof, wherein A is R_4 , R_4 ; R_2 is H or methyl; R_7 is H or TBS; and R_8 is H, TBS, or TROC.

108. (New) A method according to claim 107 wherein said fourth compound is further converted to Epothilone B.

109. (New) A method according to claim 107 wherein R_7 and R_8 each are H.

110. (New) A chemical compound formed according to the method of claim 101.

111. (New) A method for use in producing epothilones and analogs and derivatives thereof, comprising:

(a) performing an aldol condensation of a first compound of the formula:

and stereoisomers thereof, with a second compound selected from the formulas:

and stereoisomers thereof, thereby to form a third compound of the formula:

HOOC
$$S$$
 R
 S
 S
 S
 OR_6
 R_3
 N
 R_4
 R_4

and stereoisomers thereof, wherein \boldsymbol{Z} is

wherein

R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof;

 $\ensuremath{\mathsf{R}}_6,\,\ensuremath{\mathsf{R}}_7$ and $\ensuremath{\mathsf{R}}_8$ are each selected from H and a protecting group; provided that

R₁ - R₄ of the first compound are not each methyl when R₆ is the protecting group TBS; and

provided that

- R_1 R_4 of the third compound are not each methyl when R_7 is TBS, and R_6 and R_8 are hydrogen or the protecting group TBS;
- (b) performing a macrolactonization of the third compound thereby to form a fourth compound of the formula:

R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof;

 $\ensuremath{\mathsf{R}}_7$ and $\ensuremath{\mathsf{R}}_8$ are each selected from H and a protecting group; provided that

- R_1-R_4 of the fourth compound are not each methyl when R_7 and R_8 are either H or the protecting group TBS.
- 112. (New) A method according to claim 111 wherein R_1 , R_3 and R_4 are each methyl, and R_2 is H or methyl.
 - 113. (New) A method according to claim 112 wherein R_2 is methyl.
- 114. (New) A method according to claim 112 wherein at least one of R_6 R_8 is TBS.
- 115. (New) A method according to claim 112 wherein R_6 , R_7 and R_8 are each TBS.
- 116. (New) A method according to claim 111 wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R_7 is selected from H, TBS, TROC, $CO(CH_2)_4CH_3$ and $-CO(CH_2)_3CH=CH_2$; and wherein R_8 is selected from H and TBS.
- 117. (New) A method according to claim 111 wherein said fourth compound is of the formula:

and stereoisomers thereof, wherein A is R_4 , R_4 ; R_2 is H or methyl; R_7 is H or TBS; and R_8 is H, TBS, or TROC.

- 118. (New) A method according to claim 117 wherein said fourth compound is further converted to Epothilone B.
- 119. (New) A method according to claim 117 wherein R_7 and R_8 each are H.
- 120. (New) A chemical compound formed according to the method of claim 111.
 - 121. (New) A chemical compound of the formula:

and stereoisomers thereof, wherein W is selected from

$$R_{10}$$
 f and

R₄ ; and wherein

R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof;

Amendment Ser. No. 09/981,312 November 23, 2004 Page 27 of 39 R₇ is COR₁₁;

R₈ is selected from H, a protecting group and COR₁₂;

R₁₁ and R₁₂ are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof;

- 122. (New) A chemical compound according to claim 121 wherein at least one of R_{11} and R_{12} is selected from -(CH₂)_xCH₃ and -(CH₂)_yCH=CH₂, where x and y are integers.
- 123. (New) A chemical compound according to claim 122 wherein x and y are selected from the integers 3 and 4.
- 124. (New) A chemical compound according to claim 122 wherein x is 4 and y is 3.
 - 125. (New) A chemical compound according to claim 121 wherein W is

R₂ is H or methyl,

R₈ is H or COR₁₂,

and wherein R_{11} and R_{12} are each selected from -(CH₂)₄CH₃ and (CH₂)₃CH=CH₂.

126. (New) A chemical compound of the formula:

and stereoisomers thereof, wherein W is selected from R₁₀ , and

Amendment Ser. No. 09/981,312 November 23, 2004 Page 28 of 39 R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof;

R₇ is selected from H, a protecting group and COR₁₁;

R₈ is COR₁₂;

- R₁₁ and R₁₂ are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof;
- 127. (New) A chemical compound according to claim 126 wherein at least one of R_{11} and R_{12} is selected from -(CH_2)_x CH_3 and -(CH_2)_y $CH=CH_2$, where x and y are integers.
- 128. (New) A chemical compound according to claim 127 wherein x and y are selected from the integers 3 and 4.
- 129. (New) A chemical compound according to claim 127 wherein x is 4 and y is 3.
 - 130. (New) A chemical compound according to claim 126 wherein W is

^{ノ゛}, and wherein

R₂ is H or methyl;

R₇ is H or COR₁₁; and

 R_{11} and R_{12} are each selected from -(CH₂)₄CH₃ and-(CH₂)₃CH=CH₂.