

AO4932

Asymmetric Dual N-Channel Enhancement Mode Field Effect Transistor **SRFFT** TM

General Description

The AO4932 uses advanced trench technology to provide excellent R $_{\rm DS(ON)}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in DC-DC converters. A monolithically integrated Schottky diode in parallel with the synchronous MOSFET to boost efficiency further. Standard Product AO4932 is Pb-free (meets ROHS & Sony 259 specifications).

Features

FET1 FET2 $V_{DS}(V) = 30V$ $V_{DS}(V) = 30V$

 $|I_D = 9A|$ $I_D = 9A$ $(V_{GS} = 10V)$ $R_{DS(ON)} < 15.8 m\Omega$ $< 15.8 m\Omega$ $(V_{GS} = 10V)$

 $R_{DS(ON)}$ < 19.6m Ω <23m Ω (V_{GS} = 4.5V)

UIS TESTED! Rg,Ciss,Coss,Crss Tested

SRFET[™]

Soft Recovery MOS**FET**: Integrated Schottky Diode

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Max FET1	Max FET2	Units	
Drain-Source Voltage		V_{DS}	30	30	V	
Gate-Source Voltage		V_{GS}	±12	±20	V	
Continuous Drain T _A =25°C			9.0	9.0		
Current AF	T _A =70°C	I_{DSM}	7.2	7.2	A	
Pulsed Drain Currer	ulsed Drain Current ^B		40	40	А	
Avalanche Current ^C		I _{AR}	16	16	А	
Repetitive avalanche energy L=0.3mH ^c		E _{AR}	38	38	mJ	
	T _A =25°C	P _{DSM}	2.0	2.0	W	
Power Dissipation	T _A =70°C	DSM	1.3	1.3	VV	
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	-55 to 150	°C	

Thermal Characteristics FET1

Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	48	62.5	°C/W
Maximum Junction-to-Ambient A	Steady-State	$\kappa_{ hetaJA}$	74	90	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	32	40	°C/W

Thermal Characteristics FET2

Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	48	62.5	°C/W
Maximum Junction-to-Ambient A	Steady-State	$R_{ heta JA}$	74	90	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	32	40	°C/W

FET1 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =1mA, V _{GS} =0V		30			V	
ı	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V			0.01	0.1	mA	
I _{DSS}	Zero Gate Voltage Drain Current		T _J =125°C		5	10	ША	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				0.1	μА	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		1.5	1.8	2.4	V	
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		40			Α	
		V_{GS} =10V, I_D =9A			13	15.8	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		20.2	25.2	1115.2	
		V_{GS} =4.5V, I_D =7A			16	19.6	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =9A			64		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.4	0.6	V	
I _S	Maximum Body-Diode + Schottky Contin	ntinuous Current				4.5	Α	
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz V _{GS} =0V, V _{DS} =0V, f=1MHz			1450	1885	pF	
C _{oss}	Output Capacitance				224		pF	
C _{rss}	Reverse Transfer Capacitance				92		pF	
R_g	Gate resistance				1.6	3.0	Ω	
SWITCHII	NG PARAMETERS							
Q _g (10V)	Total Gate Charge				24	31		
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =9A			12.0	16	nC	
Q_{gs}	Gate Source Charge				3.9		nC	
Q_{gd}	Gate Drain Charge				4.2		nC	
t _{D(on)}	Turn-On DelayTime				5.5		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1.7 Ω , R_{GEN} =3 Ω			4.7		ns	
t _{D(off)}	Turn-Off DelayTime				24.0		ns	
t _f	Turn-Off Fall Time				4.0		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =9A, dI/dt=300A/μs			10	12	ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =9A, dI/dt=300A/μs			6.8		nC	

A: The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Rev 2: June 2007

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $<300\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the t≤ 10s thermal resistance rating.

FET1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

FET1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

10

100

1000

0.00001

0.0001

0.001

0.01

FET1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Diode Reverse Leakage Current vs.
Junction Temperature

Figure 13: Diode Forward voltage vs. Junction
Temperature

Figure 14: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current

Figure 15: Diode Reverse Recovery Time and Soft Coefficient vs. Conduction Current

Figure 16: Diode Reverse Recovery Charge and Peak Current vs. di/dt

Figure 17: Diode Reverse Recovery Time and Soft Coefficient vs. di/dt

FET2 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V				1	μА	
יטאטי	Zero Gate Voltage Drain Gunent		T _J =55°C			5	μΑ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250 \mu A$		1.3	1.7	2.3	V	
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		40			Α	
		V _{GS} =10V, I _D =9A			13	15.8	mΩ	
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T	_J =125°C		19	23	11122	
		V_{GS} =4.5V, I_D =7A			18.6	23	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =9A			23		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.75	1	V	
I_S	Maximum Body-Diode Continuous Curre	Continuous Current				3	Α	
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance				955	1250	pF	
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz V_{GS} =0V, V_{DS} =0V, f=1MHz			145		pF	
C_{rss}	Reverse Transfer Capacitance				112		pF	
R_g	Gate resistance				0.5	0.85	Ω	
SWITCHII	NG PARAMETERS							
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =9A			17	22	nC	
$Q_g(4.5V)$	Total Gate Charge				9	11.7	nC	
Q_{gs}	Gate Source Charge				3.4		nC	
Q_{gd}	Gate Drain Charge				4.7		nC	
$t_{D(on)}$	Turn-On DelayTime				5		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1.7 Ω , R_{GEN} =3 Ω			6		ns	
$t_{D(off)}$	Turn-Off DelayTime				19		ns	
t _f	Turn-Off Fall Time				4.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =9A, dI/dt=100A/μs			16.7	20	ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =9A, dI/dt=100A/μs			6.7		nC	

A: The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Rev 2: June 2007

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $<300\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the t≤ 10s thermal resistance rating.

FET2 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

FET2 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance