

必須濱ノ業大学 远程教育学院

第2章 MCS-51单片机的硬件结构

◆ 按功能可分成8个部件,通过片内单一总线连接起

各功能部件:

- 1. CPU (微处理器)
- 2. 数据存储器(RAM)

片内为128个字节(52子系列的为256个字节)

3. 程序存储器(ROM/EPROM)

8031: 无此部件;

8051:4K字节ROM;

8751:4K字节EPROM;

89C51/89C52/89C55:4K/8K/20K 字节闪存。

- 4. P1口、P2口、P3口、P0口: 为4个并行8位1/0口。
- 5. 串行口 1个全双工的异步串行口

6. 定时器/计数器

7. 中断系统

8. 特殊功能寄存器 (SFR)

用于对片内各功能模块进行管理、控制、监视。实际上是一些控制寄存器和状态寄存器。

共有21个,是一个具有特殊功能的RAM区。

2.2 MCS-51的引脚

40只引脚双列直插封装(DIP)

44只引脚方形封装方式(4只无用)

引脚逻辑图

8051单片机为40条引脚双列直插式封装 引脚可分为三个部分

- (1) 电源及时钟引脚: Vcc、Vss; XTAL1、XTAL2。
 - (2) 控制引脚: PSEN*、EA*、ALE、RESET
 - (3) I/O口引脚: PO、P1、P2、P3,4个8位I/O口
- 2.2.1 电源及时钟引脚
 - 1. 电源引脚
 - (1) Vcc(40脚): +5V电源;
 - (2) Vss (20脚):接地。
 - 2. 时钟引脚
 - (1) XTAL1(19脚):接外部晶体的一端;采用外接晶体振荡器时,此引脚应接地。
 - (2) XTAL2(18脚):接外部晶体的另一端。

2.2.2 控制引脚

- (1) RST/VPD(9脚): 复位与备用电源
- (2) ALE/PROG* (30脚):

第一功能ALE: 地址锁存允许,当访问单片机外部存储器时,ALE(地址锁存允许)输出脉冲的下跳沿用于16位地址的低8位的锁存信号。

第二功能PROG*: 编程脉冲输入端。

- (3) PSEN* (29脚): 读外部程序存储器的选通信号。可以驱动8个LS型TTL负载。
- (4) EA*/VPP (31脚): EA*为内外程序存储器选择控制

EA*=1,访问片内程序存储器,

EA*=0,单片机则只访问外部程序存储器。

第二功能VPP,用于施加编程电压。

2.2.3 1/0口引脚

"1",另外准双向I/0LP3.7

(1) PO口:双向8位三态I/O口,地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。

		•		
(2) P1口: 8位准双向I/	<u>′ОП.</u>	可驱动4	<u> 个I S型TTI </u>	•
载。	引脚	转义引 脚	功能说明	
(3) P2口: 8位准双向 I		RXD	串行数据接收端	艮
用,可驱动4个LS型TT	P3.1	TXD	串行数据发送端	
(4) P3口: 8位准双向I/	P3.2	INT0	外部中断0请求	4
个LS型TTL负载。	P3.3	INT1	外部中断1请求	
	P3.4	T0	计数器0外部输入	
注意:准双向口与双向三	P3.5	T1	计数器1外部输入	
当3个准双向1/0口作输	P3.6	WR	外部数据存储器	F
				İ

硖

RD

外部数据存储器

2.3 MCS-51的CPU

由运算器和控制器所构成

2.3.1 运算器

对操作数进行算术、逻辑运算和位操作。

- 1. 算术逻辑运算单元ALU
- 2. 累加器A

使用最频繁的寄存器,可写为Acc。 A的作用:

- (1)是ALU单元的输入之一,又是运算结果存放单元。
- (2) 数据传送大多都通过累加器A。
- (3) A的进位标志Cy同时又是位处理机的位累加器。

3. 程序状态字寄存器PSW

- (1) Cy (PSW. 7) 进位标志位
- (2) Ac(PSW. 6) 辅助进位标志位
- (3) F0(PSW. 5) 标志位 由用户使用的一个状态标志位。
- (4) RS1、RS0(PSW.4、PSW.3): 4组工作寄存器 区选择控制位1和位0。

7FH 用户 RAM 区 (堆栈、数据缓冲区) 30H 2FH 可位寻址区 20H 1FH 第3组工作寄存器区 18H 17H 第2组工作寄存器区 10H 0FH 第1组工作寄存器区 08H 07H 第0组工作寄存器区 00H

工作寄存器区的选择

RS ₁	RS ₀	寄存器组	R ₀ ~R ₇ 地址
0	0	0区	00~07H
0	1	1 🗵	08~0FH
1	0	2 ×	10∼17H
1	1	3 ▼	18~1FH

(5) OV (PSW. 2) 溢出标志位

指示运算是否产生溢出。各种算术运算 指令对该位的影响情况较复杂,将在第3章 介绍。

- (6) PSW. 1位: 保留位,未用
- (7) P(PSW. 0) 奇偶标志位 P=1, A中"1"的个数为奇数 P=0, A中"1"的个数为偶数

2.3.2 控制器

1. 程序计数器PC (Program Counter)

存放下一条要执行的指令在程序存储器中的地址。 基本工作方式:

- (1)程序计数器自动加1
- (2)执行有条件或无条件转移指令时,程序计数器将被置入新的数值,从而使程序的流向发生变化。
 - (3) 执行子程序调用或中断调用时完成下列操作:
- ① PC的当前值保护
- ② 将子程序入口地址或中断向量的地址送入PC。
- 2. 指令寄存器IR、指令译码器及控制逻辑电路

2.4 MCS-51存储器的结构 哈佛 (Har-vard) 结构

- 存储器空间可划分为5类:
- 1. 程序存储器空间 8031无内部程序存储器。
- 2. 内部数据存储器空间
- 3. 特殊功能寄存器
- 4. 位地址空间
 211个可寻址位。
- 5. 外部数据寄存器空间 片外可扩展64K字节RAM。

MCS-51单片机存储器空间分配

2.4.1 程序存储器

存放应用程序和表格之类的固定常数。

分为片内和片外两部分,由EA*引脚上所接电平确定

程序存储器中的0000H地址是系统程序的启动地址

5个单元具有特殊用途

表2-1 5种中断源的中断入口地址

外中断0 0003H

定时器T0 000BH

外中断1 0013H

定时器T1 001BH

串行口 0023H

2.4.2 内部数据存储器

共128个字节, 字节地址为00H~7FH。

00H~1FH: 32个单元,是4组通用工作寄存器区

20H~2FH: 16个单元,可进行128位的位寻址

30H~7FH: 用户RAM区,只能进行字节寻址,用作数据缓冲区以及堆栈区。

2.4.3 特殊功能寄存器 (SFR)

特殊功能寄存器反映了MCS51的状态,实际上是MCS51的状态字及控制字寄存器。51单片机通过写SFR来控制相应功能部件(定时器、串口、中断等)的工作方式,同时SFR也综合的、实际的反映了整个单片机系统内部的工作状态。例如,前面提到的PSW程序状态字寄存器,就是一个特殊功能寄存器。

共21个。

21个SFR的名称及 分布。

有的SFR可进行位寻址,其字节地址的末位是OH或8H。

SFR的名称及其分布

特殊功能 寄存器符号	名称	字节 地址	位地址	
В	B寄存器	FOH	F7H∼F0H	
A (或Acc)	累加器	EOH	Е7Н∼Е0Н	
PSW	程序状态字	DOH	D7H~D0H	
IP	中断优先级控制	В8Н	вғн∼в≈н	
Р3	P3 □	вон	в7н∼вон	
IE	中断允许控制	A8H	AFH∼A8H	
P2	P2 🗆	AOH	A7H~A0H	
SBUF	串行数据缓冲器	99H		
SCON	串行控制	98H	9FH∼98H	
P1	P1 □	90H	97H∼90H	
THI	定时器/计数器1(高字节)	8DH		
THO	定时器/计数器()(高字节)	8CH		
TLI	定时器/计数器1(低字节)	8BH		
TLO	定时器/计数器()(低字节)	8AH		
TMOD	定时器/计数器方式控制	89H		
TCON	定时器/计数器控制	88H	8FH∼88H	
PCON	电源控制	87H		
DPH	数据指针高字节	83H		
DPL	数据指针低字节	82H		
SP	堆栈指针	81H		
PO	P0 🗆	80H	87H~80H	

SFR中的某些寄存器

指示出堆栈顶部在内部RAM块中的位置

复位后 ,SP中的内容为07H。

- (1) 保护断点
- (2) 现场保护

堆栈向上生长,出栈后入先出。

2. 数据指针DPTR

16位特殊功能寄存器,高位字节寄存器用DPH表示,低位字节寄存器用DPL表示。

I/0端口P0~P3
 P0~P3分别为I/0端口P0~P3的锁存器。

4. 寄存器B

为执行乘法和除法操作设置的。

在不执行乘、除的情况下,可当作一个普通寄存器 来使用。

5. 串行数据缓冲器SBUF

存放欲发送或已接收的数据,一个字节地址,物理上是由两个独立的寄存器组成,一个是发送缓冲器,另一个是接收缓冲器。

6. 定时器/计数器

两个16位定时器/计数器T1和T0,各由两个独立的8位寄存器组成: TH1、TL1、TH0、TL0,只能字节寻址,但不能把T1或T0当作一个16位寄存器来寻址访问。

2.4.4 位地址空间

211个(128个+83个)寻址位。位地址范

围为: 00H~FFH。

内部RAM的可寻址位128个(字节地址20H \sim 2FH)见图2-7(P18)。

特殊功能寄存器SFR为83个可寻址位,见图2-8(P18)。

表内部的可寻址位及位地址

字节			f	t i	te :	址		
地址	D7	D6	D5	D4	D3	D2	D1	DO
2FH	7FH	7EH	7DH	7CH	7BH	7AH	79H	78H
2EH	77H	76H	75H	74H	73H	72H	71H	70H
2DH	6FH	6ЕН	6DH	6CH	6ВН	бан	69H	68H
2CH	67H	66H	65H	64H	63H	62H	61H	60H
2ВН	5FH	5EH	5DH	5CH	5BH	5AH	59H	58H
2AH	57H	56H	55H	54H	53H	52H	51H	50H
29Н	4FH	4EH	4DH	4CH	4вн	4AH	49H	48H
28Н	47H	46H	45H	44H	43H	42H	41H	40H
27H	3FH	ЗЕН	3DH	ЗСН	звн	ЗАН	39H	38H
26H	37H	36H	35H	34H	33H	32H	31H	30H
25H	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H
24Н	27H	26H	25H	24H	23H	22H	21H	20H
23Н	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H
22H	17H	16H	15H	14H	13H	12H	11H	10H
21H	OFH	OEH	ODH	OCH	овн	OAH	09Н	08H
20Н	07H	06H	05H	04H	озн	02H	01H	ООН

SFR中的位地址分布

特殊功能寄存	位 地 址						字节		
器符号	D 7	D6	D5	D4	D3	D2	D1	D0	地址
В	F7H	F6H	F5H	F4H	F3H	F2H	F1H	F0H	F0H
ACC	Е7Н	Е6Н	E5H	E4H	ЕЗН	E2H	E1H	ЕОН	ЕОН
PSW	D7H	D6H	D5H	D4H	D3H	D2H	D1H	D0H	D0H
IP	_	_		ВСН	ввн	BAH	В9Н	ван	ввн
P3	В7Н	В6Н	В5Н	В4Н	взн	В2Н	В1Н	вон	B0H
IE	AFH	_	_	ACH	ABH	AAH	А9Н	А8Н	A8H
P2	А7Н	АбН	A5H	A4H	АЗН	A2H	A1H	АОН	A0H
SCON	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H	98H
P1	97H	96H	95H	94H	93H	92H	91H	90H	90H
TCON	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H	88H
P0	87H	86H	85H	84H	83H	82H	81H	80H	80H

2.4.5 外部数据存储器

最多可外扩64K字节的RAM或I/O。几点注意:

(1) 地址的重叠性

程序存储器与数据存储器全部64K字节地址空间重叠程序存储器与数据存储器在使用上是严格区分的

- (3) 位地址空间共有两个区域
- (4) 片外与片内数据存储器由指令来区分
- (5) 片外数据存储区中,RAM与I/O端口统一编址。 所有外围I/O端口的地址均占用RAM地址单元,使用与访问 外部数据存储器相同的传送指令。

MCS-51单片机存储器空间分配

2.5 并行1/0端口

共有4个8位双向I/0口,共32口线。每位均有自己的锁存器(SFR),输出驱动器和输入缓冲器。

2.5.1 PO口位图内部结构

图1 P0口内部结构

说明:

- 1、当控制信号为0时,P0口做双向1/0口,为漏极开路(三态)
- 2、控制信号为1时,P0口为地址/数据复用总线(用于口扩展)
- 3、POW为端口输出写信号,用于 锁存输出状态
- 4、POR1为读锁存器信号,执行 "ANL PO, #OFH"时该信号有效

5、POR2为读引脚信号,执行 "MOV A, PO"时该信号有效

2.5.2 P1口内部结构

7.70

P1口内部结构如图2所示

输出部分有内部上拉电阻R*约为20K。

其他部分与P0端口使用相类似(读引脚时先写入1)。

图2.1、P1口应用

读端口与读锁存器的指令

读锁存器

读锁存器指令是从锁存器中读取数据,进行处理,并把处理后的数据重新写入锁存器中,这类指令称为读、修改、写指令。在ANL、ORL、XRL; JBC; CPL; INC、DEC; DJNZ; MOV、CLR、SETB等指令中,当目的操作数为某一I/O口或I/O口的某一位时,这些指令均为读、修改、写指令。

读端口

读端口指令一般都是以I/O端口为源操作数的指令, 执行读引脚指令时,打开三态门,输入口状态。例如,读 P1口的输入状态时,读引脚指令为: MOV A, P1。

读端口与读锁存器的问题

当给口锁存器写入某一状态后,相应的口引 脚是否呈现锁存器的状态,是与外电路的 联接有关。

例如,用I/O口线驱动外部三极管基 极时,该口线位锁存器写入"1"后使外部三 极管导通,而三极管一旦导通后,基极电 平为"0"。读锁存器与读引脚状态不一致

初级阶段对I/O口读写的注意事项

72.40

当给一个准双向口输出"0" 后,输出驱动器打开,管脚 电位拉低为"0",此时如将 该管脚作输入脚使,将无法 输入高电平。

由此可见,在设计 8051系统时,对51的I/O管 脚要统一规划使用,一个管 脚不能既作为输入,又作为 输出。换言之,一个管脚如 果第一次用其为输入,一直 用其作为输入管脚。

2.5.3 P2口内部结构

说明:

1、P2可以作为通用的I/0,也可以作 为高8位地址输出。

2、当控制信号为1时

P2口输出地址信息,

此时单片机完成外部的取 指操作或对外部数据存储 器16位地址的读写操作。

3、当P2口作为普通I/0口 使用时

用法和P1口类似。

MCS-51单片机片外总线

MCS-51片外总线结构示意图

2.5.4 P3口内部结构

说明:

- **1、**做普通端口使用时,第二功能应为"**1**"。
- **2**、使用第二功能时,输出端 ⁰ 口锁存器应为"**1**"。
- 3、变异功能()
 - P3.0 TXD P3.4 T0
 - P3.1 RXD P3.5 T1
 - P3.2 INTO P3.6 WR
 - P3.3 INT1 P3.7 RD

2.5.5 PO~P3端口功能总结

使用中应注意的问题:

PO~P3口都是并行I/O口,但PO口和P2口还可用来构建数据总线和地址总线,所以电路中有一个MUX,进行转换。

而P1口和P3口无构建系统的数据总线和地址总线的功能,因此,无需转接开关MUX。

只有PO口是一个真正的双向口,P1~P3口都是准双向口。

原因:P0口作数据总线使用时,为保证数据正确传送,需解决芯片内外的隔离问题,即只有在数据传送时芯片内外才接通;否则应处于隔离状态。为此,P0口的输出缓冲器应为三态门。

P3口具有第二功能。因此在P3口电路增加了第二功能控制逻辑。这是P3口与其它各口的不同之处。

2.6 财钟电路与财序

时钟电路用于产生单片机工作所必需的时钟控制信号。

2.6.1 财钟电路

时钟频率直接影响单片机的速度,电路的质量直接影响系统的稳定性。常用的时钟电路有两种方式:内部时钟方式和外部时钟方式。

一、内部时钟方式

内部有一个用于构成振荡器的高增益反相放大器, 其输入端: XTAL1, 输出端: XTAL2。

- ► C1和C2典型值通常选择为30pF左右。
- ►晶体的振荡频率 在1.2MHz~12MHz 之间。
- 产某些高速单片机芯片的时钟频率已达40MHz。

常用于多片MCS-51单片机同时工作。

2.6.2 机器周期、指令周期与指令财序

一、时钟周期

单片机的基本时间单位。

若时钟的晶体的振荡频率为fosc,则时钟周期 Tosc=1/fosc。如fosc=6MHz, Tosc=166.7ns。

二、机器周期

CPU完成一个基本操作所需要的时间。

执行一条指令分为几个机器周期。每个机器周期完成一个基本操作。MCS-51单片机每12个时钟周期为一个机器周期,

一个机器周期又分为6个状态: \$1~\$6。每个状态又分为两拍: P1和P2。因此,一个机器周期中的12个时钟周期表示为:

S1P1、S1P2、S2P1、S2P2、...、S6P2。

三、指令周期

执行一条指令时,可分为取指令阶段和指令执行阶段。

取指令阶段,PC中地址送到程序存储器,并从中取出需要执行指令的操作码和操作数。

指令执行阶段,对指令操作码进行译码,以产生一系列控制信 号完成指令的执行。

ALE信号是为地址锁存而定义的,以时钟脉冲1/6的频率出现,在一个机器周期中,ALE信号两次有效(注意,在执行访问外部数据存储器的指令MOVX时,将会丢失一个ALE脉冲)

时钟电路

➤ 需外接晶振的频率1.2~12MHZ, C1和C2取30±10PF

➤ CPU的时序(时钟周期、 状态周期、机器周期)

若外接晶振为12MHz时,则单片机的四个周期的具体值为:

- ✓ 射钟周期 = 1/12MHz = 1/12 μs = 0.0833 μs
- ✓ 状态周期 = 2* 时钟周期 = $1/6 \mu s = 0.167 \mu s$
- ✓ 机器周期 = 12* 时钟周期 = 1 µ S
- ✓ 指令周期 = $1\sim4\mu s$ ($1\sim4$ 个机器周期)

可用于计算指令、程序的执行时间,以及定时器的定时时间

2.7 复位操作和复位电路

2.7.1 复位操作

单片机的初始化操作,摆脱死锁状态。

引脚RST加上大于2个机器周期(即24个时钟振荡周期)的高电平就可使MCS-51复位。复位时,PC初始化为0000H,使MCS-51单片机从0000H单元开始执行程序。

除PC之外,复位操作还对其它一些寄存器有影响,见表2-3。

SP=07H ,P0-P3的引脚均为高电平。

在复位有效期间,ALE脚和PSEN*脚均为高电平, 内部RAM的状态不受复位的影响。

MCS-51单片机各寄存器的复位状态

寄存器	复位状态	寄存器	复位状态
PC	0000H	TCON	00H
ACC	00H	TL_{0}	00H
PSW	00H	TH_{o}	00H
SP	07H	TL₁	00H
DPTR	0000H	TH₁	00H
$P_0 \sim P_3$	0FFH	SCON	00H
IP	××000000B	SBUF	不定
ΙE	0×00000B	PCON	$0 \times \times \times 0000B$
TMOD	00H		

2.7.2 复位电路

片内复位结构:

上电自动复位和按钮复位

72.00

最简单的上电自动复位电路:

$$C=22\mu F$$
 $R=1k\Omega$

按键手动复位,有电平方式和脉冲方式两种。

电平方式

C=22
$$\mu$$
F Rs=200 Ω R_k=1k Ω

两种实用的兼有上电复位与按钮复位的电路。

上图 (b) 中的电路能输出高、低两种电平的复位控制信号,以适应外围 I/0接口芯片所要求的不同复位电平信号。

74LS122为单稳电路,实验表明,电容C的选择约为0.1μF 较好。

还可采用专用的复位管理芯片如IMP813L、TL7705等

习题

- 1. MCS-51单片机的片内都集成了哪些功能部件?各个功能部件的最主要的功能是什么?
- 2. 说明MCS-51单片机的EA引脚的作用, 该引脚接高电平和接低电平时各有何种功能?
- 3. MCS-51的时钟振荡周期和机器周期之间有何关系?
- 4. 在MCS-51单片机中,如果采用6MHz晶振,一个机器周期为()。
- 5. 内部RAM中,位地址为30H的位,该位所在字节的字节地址为()。
- 6. 若A中的内容为63H,那么,P标志位的值为()。
- 7. 8031 单片机复位后,R4所对应的存储单元的地址为 (),因上电时PSW= ()。这时当前的工作寄存器区是 ()组工作寄存器区。

- 7.4
- 8. 内部RAM中,哪些单元可作为工作寄存器区,哪些单元可以进行位寻址?写出它们的字节地址。
- 9. 使用8031单片机时,需将EA引脚接()电平,因为其片内无()存储器。
- 10. PC的值是:
- (A) 当前正在执行指令的前一条指令的地址
- (B) 当前正在执行指令的地址
- (C) 当前正在执行指令的下一条指令的地址
- (D) 控制器中指令寄存器的地址
- **11**. 通过堆栈操作实现子程序调用,首先就要把()的内容入栈,以进行断点保护。调用返回时,再进行出栈保护,把保护的断点送回到()。
- 12. MCS-51单片机程序存储器的寻址范围是由程序计数器PC的位数所决定的,因为MCS-51的PC是16位的,因此其寻址的范围为() K字节。
- 13. 如果手中仅有一台示波器,可通过观察哪个引脚的状态,来大致判断MCS-51单片机正在工作?

谢谢各位!

