Impact of Medication for Lifestyle Diseases on Hospital Readmission

Table of Contents

Problem Statement	
Dataset Description	
Hackathon Tasks	
Exploratory analysis	
ML Modelling	
Recommendations	
Evaluation Metric	

Problem Statement

Management of lifestyle diseases in hospitalized patients has a significant bearing on outcome, in terms of both morbidity and mortality. The main object for this problem is to predict whether a patient is likely to be readmitted to hospital based on the previous details of the patient.

Dataset Description

Target attribute: "readmitted" (discrete variable: 2 classes)

The dataset contains 48 features and 66587 rows in train dataset and 16647 data in test dataset. The Column readmission is the target dataset. The description of each feature is as below:

Colum Name	Description	Description and values
encounter_id	Encounter ID	Unique identifier of an encounter
patient_id	Patient number	Unique identifier of a patient
		Values: Caucasian, Asian, African
race	Race	American, Hispanic, and other

		Values: male, female, and
gender	Gender	unknown/invalid
		Grouped in 10-year intervals: 0, 10), 10,
age	Age	20),, 90, 100)
weight	Weight	Weight in pounds.
		Integer number of days between admission
time_in_hospital	Time in hospital	and discharge
·		Integer identifier of a specialty of the
		admitting physician, corresponding to 84
		distinct values, for example, cardiology,
	Medical	internal medicine, family/general practice,
medical_specialty	specialty	and surgeon
	Number of lab	Number of lab tests performed during the
num_lab_procedures	procedures	encounter
	Number of	Number of procedures (other than lab
num_procedures	procedures	tests) performed during the encounter
	Number of	Number of distinct generic names
num_medications	medications	administered during the encounter
	Number of	Number of outpatient visits of the patient
number_outpatient	outpatient visits	in the year preceding the encounter
	Number of	Number of emergency visits of the patient
number_emergency	emergency visits	in the year preceding the encounter
	Number of	Number of inpatient visits of the patient in
number_inpatient	inpatient visits	the year preceding the encounter
diag-1 to diag_5	Diagnosis 1	The primary diagnosis values
	Number of	
number_diagnoses	diagnoses	Number of diagnoses entered to the system
		Indicates if there was a change in diabetic
	Change of	medications (either dosage or generic
change	medications	name). Values: "change" and "no change"
		Indicates if there was any diabetic
	Diabetes	medication prescribed. Values: "yes" and
diabetesMed	medications	"no"

		Different Medications and dosages given
		to the patient
		X1 and X2
		Values: "None" if no administered else the
		dosages
		X-3 to X25
		Values: "up" if the dosage was increased
		during the encounter, "down" if the dosage
		was decreased, "steady" if the dosage did
	25 features for	not change, and "no" if the drug was not
X1 - X25	medications	prescribed
		"0" - Not Admitted
readmitted	Readmitted	"1" - Admitted

Hackathon Tasks

As part of this hackathon, you are expected to complete three tasks: i) Exploratory Analysis ii) ML Modelling iii) Recommendations

Exploratory analysis

Exploratory Data Analysis using visualizations, numerical analysis, and describing the findings.

- List down the insights/patterns observed from the visualizations
- Explain the impact of the most important attributes on the target attribute observed from data visualizations.

ML Modelling

You are expected to create a robust framework by feature-engineering and improving the baseline ML model performance.

Recommendations

- Any final visualizations you would use to convey your results?
- Can you explain your ML model using non-technical terms?

Evaluation Metric

• The evaluation metric for this hackathon is the **F1 Score**