Fast Fourier Transform

Recap

- Image Smoothing Using Lowpass Frequency Domain Filters
- Image Sharpening Using Highpass Frequency Domain Filters
- Laplacian in the Frequency Domain
- Homomorphic Filtering
- Selective Filtering

Lecture Objectives

- The 2-D DFT Some Observations
- Separability of Fourier Transform
- IDFT in terms of DFT
- Fast Fourier Transform (FFT)
 - FFT Process in 1-D
 - Special Properties of W_M
 - FFT even-odd approach
 - FFT "Butterfly" Method
 - FFT time complexity
 - Can we speed it up??
 - FFT Algorithm

Key Stages in DIP

The 2-D DFT - Some Observations

- Let f(x,y) be a **digital image** of size $M \times N$.
- The two dimensional **DFT pair** is given by:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for
$$\mathbf{u} = 0, 1, 2, ..., M-1$$
 and $\mathbf{v} = 0, 1, 2, ..., N-1$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

for
$$\mathbf{x} = 0, 1, 2, ..., M-1$$
 and $\mathbf{y} = 0, 1, 2, ..., N-1$

The 2-D DFT - Some Observations

2-D DFT:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$
for $\mathbf{u} = 0, 1, 2, ..., M-1$ and $\mathbf{v} = 0, 1, 2, ..., N-1$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$
for $\mathbf{x} = 0, 1, 2, ..., M-1$ and $\mathbf{y} = 0, 1, 2, ..., N-1$

- Computational requirements for implementing 2-D DFT include:
 - sines and cosine terms
 - multiplication
 - double summation
- Brute-force implementation of 2-D DFT and its inverse requires the order of (MN)² multiplications and additions.

- What properties of F(u,v) can be useful to <u>speed up</u> the calculations?
 - Separability !!!

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

$$= \sum_{x=0}^{M-1} e^{-j2\pi ux/M} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$$

$$= \sum_{x=0}^{M-1} F(x,v)e^{-j2\pi ux/M}$$

where,
$$F(x,v) = \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$$

"Visual Explanation"

First Pass

"Visual Explanation"

"Visual Explanation"

"Visual Explanation"

"Visual Explanation"

"Visual Explanation"

$$F(x,v) = \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$$

• For one value of x, and for v = 0, 1, 2,..., N - 1, we see that F(x,v) is the $\underline{1-D\ DFT}$ of **one row** of the image f(x,y).

- If we vary x from 0 to M-1, we have <u>1D DFT</u> for **all** rows of the image f(x,y).
- Similarly, next we compute the <u>1D DFT</u> of <u>these values</u> for **all columns** by varying x from 0, 1, 2,..., M 1 for each value of v from v = 0, 1, 2,..., N 1

$$= \sum_{x=0}^{M-1} F(x,v)e^{-j2\pi ux/M}$$

Thus, we conclude that the 2-D DFT of f(x,y) can be obtained by computing the 1-D transform of each row of f(x,y), followed by computing the 1-D transform along each column of this result.

"Process So Far"

- We used two 1-D DFT transforms to compute the 2-D DFT transform of an image.
- What about computing the **IDFT**?
 - We use the property of complex conjugate of a Fourier transform to calculate
 IDFT using the standard DFT equation !!!

IDFT in terms of DFT

IDFT =
$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

for
$$\mathbf{x} = 0, 1, 2, ..., M-1$$
 and $\mathbf{y} = 0, 1, 2, ..., N-1$

Multiply both sides by MN

$$MNf(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v)e^{j2\pi(ux/M+vy/N)}$$

Take complex conjugate of both sides

$$MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v)e^{-j2\pi(ux/M + vy/N)}$$

Given any real number x + 0i, its complex conjugate is x - 0i = x itself.

IDFT in terms of DFT

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$
for $\mathbf{u} = 0, 1, 2, ..., M-1$ and $\mathbf{v} = 0, 1, 2, ..., N-1$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$
for $\mathbf{x} = 0, 1, 2, ..., M-1$ and $\mathbf{y} = 0, 1, 2, ..., N-1$

$$MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v)e^{-j2\pi(ux/M+vy/N)}$$

IDFT in terms of DFT

Steps to obtain f(x, y):

- 1. Multiply F(u, v) with MN and take its complex conjugate, $F^*(u, v)$
- 2. Perform DFT of \mathbf{F}^* (u, v) for $\mathbf{x} = 0, 1, 2, ..., M-1$ and $\mathbf{y} = 0, 1, 2, ..., N-1$
- 3. Take the complex conjugate of the result obtained in step-2
- 4. Divide the result in step-3 by MN --> we have the final result as f(x, y)

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

$$MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v)e^{-j2\pi(ux/M + vy/N)}$$

"Computation cost??"

- Separable transforms
 - still require operations in the order of (MN)²
- Image of size 2048 x 2048
 - We need order of a 17 trillion multiplications and additions for ONE pass of DFT
 - excluding the exponential terms (sine/cosine) which could be computed once and stored in a look-up table.

Fast Fourier Transform

A Bit of History

- Before FFT was invented, FT was already known for ~150 years and remained as a theoretical analysis tool only.
- In 1965, James Cooley and John Tukey (IBM Watson Research Center) published a <u>paper</u> of FFT.
- Follows Divide-and-conquer strategy.
- It created a boom in DSP and DIP, since FFT can be directly implemented in hardware.

Fast Fourier Transform (FFT)

- Reduces the computational complexity from (MN)² to MN log₂(MN) operations
 - 2048 x 2048 image
 - Takes order of 92 million operations compared to 17 trillion operations.
 - The difference between $(MN)^2$ to $MN \log_2(MN)$ is immense.
 - With M = N = 10⁶, for example, it is the difference between, roughly, 30 seconds of CPU time and 2 weeks of CPU time on a microsecond cycle time computer.
- log₂ should give some idea about the nature of the process
 - Divide-and-Conquer (recursive subdivision into 2 parts)

FFT Process in 1-D decimation-in-time algorithm

Let
$$W_M = e^{-j2\pi/M}$$

Then, we can express F(u) as:

$$F(u) = \sum_{x=0}^{M-1} f(x)e^{-j2\pi ux/M}$$
$$= \sum_{x=0}^{M-1} f(x)W_M^{ux}$$

We assume $M=2^n$ for some value of $n\geq 0$

Hence, M can be expressed as $M = 2K, K \ge 0$

FFT Process in 1-D

Substituting M = 2K we get

$$F(u) = \sum_{x=0}^{M-1} f(x)W_M^{ux} = \sum_{x=0}^{2K-1} f(x)W_{2K}^{ux}$$
$$= \sum_{x=0}^{K-1} f(2x)W_{2K}^{u(2x)} + \sum_{x=0}^{K-1} f(2x+1)W_{2K}^{u(2x+1)}$$

Split the array of size **2K** into two chunks of size **K** each

Each chunk operates on **ALTERNATE** elements in the original array

FFT Process in 1-D

$$F(u) = \sum_{x=0}^{K-1} f(2x) W_{2K}^{u(2x)} + \sum_{x=0}^{K-1} f(2x+1) W_{2K}^{u(2x+1)}$$

From the definition $W_M = e^{-j2\pi/M}$

$$W_{2K}^{2ux} = e^{-j2\pi(2ux)/(2K)} = e^{-j2\pi ux/K} = W_K^{ux}$$

$$F(u) = \sum_{x=0}^{K-1} f(2x)W_K^{ux} + \sum_{x=0}^{K-1} f(2x+1)W_K^{ux}W_{2K}^{u}$$

Define:

$$F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux}$$

$$F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux}$$

$$F_{odd}(u) = \sum_{x=0}^{K-1} f(2x+1) W_K^{ux}$$

For u = 0, 1, 2, ..., k-1

FFT Process in 1-D

$$F(u) = \sum_{x=0}^{K-1} f(2x)W_K^{ux} + \sum_{x=0}^{K-1} f(2x+1)W_K^{ux}W_{2K}^{u}$$

$$F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux}$$

$$F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux} F_{odd}(u) = \sum_{x=0}^{K-1} f(2x+1) W_K^{ux}$$

$$F(u) = F_{even}(u) + F_{odd}(u)W_{2K}^{u}$$

$$W_K^{u+K} = W_K^u$$

$$w_{2K}^{u+K} = -w_{2K}^u$$

Try these equations with u=2 and K=2

$$F(u+K) = F_{even}(u) - F_{odd}(u)W_{2K}^{u}$$

Special Properties of W_M

$$W_M = e^{-j2\pi/M}$$

- The exponential term W_{M} has some useful special properties:
 - 1. Symmetric:

$$W_M^{k+\frac{M}{2}} = -W_M^k$$

Example:
$$W_8^4 = -W_8^0$$
, $W_8^5 = -W_8^1$, $W_8^6 = -W_8^2$, $W_8^7 - W_8^3$ for **K=0,1,2,3** and **M=8**

2. Periodic:

$$W_M^{k+M} = W_M^k$$

Example: $W_8^4 = W_8^{12}$ for **K=4, M=8**, $W_4^2 = W_4^6$ for **K=2, M=4**

FFT even-odd approach

$$F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux}$$

$$F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux} \qquad F_{odd}(u) = \sum_{x=0}^{K-1} f(2x+1) W_K^{ux}$$

2-point FFT

Let us use a simple example with a signal x[n] of length 2. We have: x[n] = x0, x1

where,

- \square x0, x1 represent the two values of the signal
- □ K=1

$$M=2K,\,K\geq 0$$

- Use definition of FFT based on the even-odd functions:

$$F(u) = F_{even}(u) + F_{odd}(u)W_{2K}^{u}$$

$$F(u+K) = F_{even}(u) - F_{odd}(u)W_{2K}^{u}$$

$$F(u+K) = F_{even}(u) - F_{odd}(u)W_{2K}^{u}$$

we will have the Fourier Transform of x[n] as:

$$F(u) = F[0] = x[0] + x[1] W_2^0$$

$$F(u+k) = F[1] = x[0] - x[1] W_2^0$$

2-point FFT

$$F(u) = F[0] = x[0] + x[1] W_2^0$$

$$F(u+k) = F[1] = x[0] - x[1] W_2^0$$

$$W_2^0=1$$

$$-W_2^0 = -1$$

4-point FFT

• Let us use a simple example with a signal x[n] of length **4**. We have:

$$x[n] = x0, x1, x2, x3$$

where,

- \square x0, x1, x2, x3 represent the four values of the signal
- □ K=2 $M = 2K, K \ge 0$
- □ M=4

4-point FFT

Stage-1, 2-point FFT

$$x[0]$$
 $x[1]$
 $x[1]$
 $x[3]$
 $x[3]$
 $x[4]$
 $x[5]$
 $x[6]$
 $x[6]$

8-point FFT

• Let us use a simple example with a signal x[n] of length **8**. We have:

$$x[n] = x0, x1, x2, x3, x4, x5, x6, x7$$

where,

- \square x0, x1, x2, x3, x4, x5, x6, x7 represent the eight values of the signal
- □ K=4
- $M = 2K, K \ge 0$

FFT "Butterfly" Method 8-point FFT

8-point FFT

$$W_2^0 = W_4^0 = W_8^0 = 1$$

$$W_4^1 = -j$$

$$W_4^1 = -j$$
 $W_8^1 = 0.70 - 0.70j$

$$W_8^2 = -j$$

16-point FFT

• Let us use a simple example with a signal x[n] of length **16**. We have:

$$x[n] = x0, x1, x2, x3, x4, \dots, x15$$

where,

- \square $x0, x1, x2, x3, x4, \dots, x7$ represent the sixteen values of the signal
- □ K=8 $M = 2K, K \ge 0$
- □ M=16

FFT "Butterfly" Method

16-point FFT

FFT "Butterfly" Method 8-point FFT

FFT – time complexity

- Every m-point transform can be computed as a sum of m/2-point transform.
- Divide the elements into even and odd subsets, and compute the transform for these subsets.
- Can be 2ⁿ if computed recursively (What is the base case?)
- Total number of operations:
 - Let m(n) and a(n) represent the number of complex multiplications and complex additions, respectively, where the length of the signal is 2ⁿ
 - O When **K=1**, we need m(1)=1, a(1)=2 operations: $F[0]=x[0] + (x[1] \times W_2^0)$, $F[1]=x[0] (x[1] \times W_2^0)$
 - \circ When **K=2**, we need **m(2)=2m(1)+2**, **a(2)=2a(1)+4** operations
 - \circ When **K=3**, we need **m(3)=2m(2)+4**, **a(3)=2a(2)+8** operations
 - \circ When **K=n**, we need $m(n)=2m(n-1)+2^{n-1}$, $a(n)=2a(n-1)+2^n$

$$m(n)=2^{(n-1)}, a(n)=2^n$$

2ⁿ is number of samples in FFT

Computational Advantage of FFT

Current Butterfly implementation:

- Dividing array in each stage takes log₂(N) steps, but elements need to be reordered.
- In-place access: more operations and vastly complicated implementation.

Can we pre-process the array before running FFT ??

FFT Pre-processing

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
/\.															
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15															

Decimal	Binary	Decimal	Binary
0	0000	0	0000
1	0001	8	1000
2	0010	4	0100
3	0011	12	1100
4	0100	2	0010
5	0101	10	1010
6	0110	6	0110
7	0111	14	1110
8	1000	1	0001
9	1001	9	1001
10	1010	5	0101
11	1011	13	1101
12	1100	3	0011
13	1101	11	1011
14	1110	7	0111
15	1111	15	1111

Can we speed up FFT computation further?? FFT Pre-processing

	Binary	Binary			
	0000	0000			
	0001	1000			
	0010	0100			
	0011	1100			
Original	0100	0010	Pre-processed		
	0101	1010	, , c p, c c c c c c		
	0110	0110			
	0111	1110			
	1000	0001			
	1001	1001			
	1010	0101			
	1011	1101			
	1100	0011			
	1101	1011			
	1110	0111			
	1111	1111			

Can we speed up FFT computation further?? Bit Reversal in FFT

- Element exchange is performed with the element in another position as if the bits of the binary index were reversed.
- Perform this preprocess once.

FFT Computation Steps

- Time domain decomposition of the array elements
 - Pre-processed by bit-reversal exchange
- Successively divide the array
 - Base case: Element count = 1
- What is the FFT of a single element?
 - The element itself no new computations necessary at this point (Base case)

FFT Computation Steps

At this point, the frequency-domain results look like the following:

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

- Are we done?
- NO_■ The above result is simply the FFT of each element in array (16 in number)

FFT Computation Steps

- Are we done?
- NO. The above result is simply the FFT of each element in array (16 in number)
- Now we use the previously discussed property of even-odd functions to combine:
 - 1-element arrays into 2-element arrays,
 - 2-element arrays into 4-element arrays,
 - 4-element arrays into 8-element arrays,
 - 8-element arrays into a 16-element result

FFT Algorithm

- Gather the input data into a buffer of size N (N is power of 2)
- Perform bit-reversal exchange operation
- For count = 0 to log₂(N)
 - Apply butterfly stage calculations to elements of size 2^{count}
- The N-element array contains the Fourier Transform of the original elements

FFT Algorithm

54

Next Lecture

- The image degradation/restoration model
- Noise models
 - Important noise probability density functions
 - Periodic noise
 - Estimating noise parameters
- Restoration using spatial filters
 - Mean filters
 - Order-static filters
 - Adaptive filters