```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn import metrics

# loading the data from csv file to Pandas DataFrame
big_mart_data = pd.read_csv('/content/Train.csv')
```

first 5 rows of the dataframe
big_mart_data.head()

\Rightarrow	It	em_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Yea
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	199
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	200
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	199
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	199
	4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	198

number of data points & number of features
big_mart_data.shape

(8523, 12)

 $\label{eq:continuous} \mbox{\tt \# getting some information about thye dataset} \\ \mbox{\tt big_mart_data.info()}$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

200	- CO COL 12 CO COM 13/1							
#	Column	Non-Null Count	Dtype					
0	Item_Identifier	8523 non-null	object					
1	Item_Weight	7060 non-null	float64					
2	Item_Fat_Content	8523 non-null	object					
3	<pre>Item_Visibility</pre>	8523 non-null	float64					
4	Item_Type	8523 non-null	object					
5	Item_MRP	8523 non-null	float64					
6	Outlet_Identifier	8523 non-null	object					
7	Outlet_Establishment_Year	8523 non-null	int64					
8	Outlet_Size	6113 non-null	object					
9	Outlet_Location_Type	8523 non-null	object					
10	Outlet_Type	8523 non-null	object					
11	<pre>Item_Outlet_Sales</pre>	8523 non-null	float64					
<pre>dtypes: float64(4), int64(1), object(7)</pre>								
memor	ry usage: 799.2+ KB							

checking for missing values
big_mart_data.isnull().sum()

```
Item_Identifier
Item_Weight
Item_Fat_Content
                                1463
Item_Visibility
                                    0
Item_Type
                                    a
Item_MRP
Outlet_Identifier
                                    0
{\tt Outlet\_Establishment\_Year}
                                    0
{\tt Outlet\_Size}
                                2410
Outlet_Location_Type
                                    0
Outlet_Type
                                    0
Item_Outlet_Sales
dtype: int64
```

mean value of "Item_Weight" column
big_mart_data['Item_Weight'].mean()

```
12.857645184135976
```

```
# filling the missing values in "Item_weight column" with "Mean" value
big_mart_data['Item_Weight'].fillna(big_mart_data['Item_Weight'].mean(), inplace=True)
# mode of "Outlet_Size" column
big_mart_data['Outlet_Size'].mode()
          Medium
     Name: Outlet_Size, dtype: object
# filling the missing values in "Outlet_Size" column with Mode
\verb|mode_of_Outlet_size| = \verb|big_mart_data.pivot_table(values='Outlet_Size', columns='Outlet_Type', aggfunc=(lambda x: x.mode()[0]))|
print(mode_of_Outlet_size)
     Outlet_Type Grocery Store Supermarket Type1 Supermarket Type2 \
     Outlet_Size
                         Small
                                            Small
                                                              Medium
     Outlet_Type Supermarket Type3
     Outlet_Size
                            Medium
miss values = big mart data['Outlet Size'].isnull()
print(miss_values)
             False
     0
     1
             False
     2
             False
              True
     4
             False
     8518
             False
     8519
              True
     8520
             False
     8521
             False
     8522
             False
     Name: Outlet_Size, Length: 8523, dtype: bool
big_mart_data.loc[miss_values, 'Outlet_Size'] = big_mart_data.loc[miss_values, 'Outlet_Type'].apply(lambda x: mode_of_Outlet_size[x])
# checking for missing values
big_mart_data.isnull().sum()
     Item_Identifier
     Item_Weight
                                   0
     {\tt Item\_Fat\_Content}
                                   0
     Item_Visibility
                                   0
     Item_Type
                                   0
     Item_MRP
     Outlet_Identifier
                                   0
     Outlet_Establishment_Year
                                   0
     Outlet_Size
Outlet_Location_Type
                                   0
                                   0
     Outlet_Type
                                   0
     Item_Outlet_Sales
                                   0
     dtype: int64
```

big_mart_data.describe()

	Item_Weight	<pre>Item_Visibility</pre>	Item_MRP	Outlet_Establishment_Year	<pre>Item_Outlet_Sales</pre>
count	8523.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.226124	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	9.310000	0.026989	93.826500	1987.000000	834.247400
50%	12.857645	0.053931	143.012800	1999.000000	1794.331000
75%	16.000000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

sns.set()

```
# Item_Weight distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_Weight'])
plt.show()
```

<ipython-input-18-21151ade0b57>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(big_mart_data['Item_Weight'])

Item Visibility distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_Visibility'])
plt.show()

<ipython-input-19-386044597ca3>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(big_mart_data['Item_Visibility'])

Item MRP distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_MRP'])
plt.show()

<ipython-input-20-0b69bf4930c1>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(big_mart_data['Item_MRP'])

Item_Outlet_Sales distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_Outlet_Sales'])
plt.show()

<ipython-input-21-dedd64409ff7>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(big_mart_data['Item_Outlet_Sales'])

Outlet_Establishment_Year column
plt.figure(figsize=(6,6))
sns.countplot(x='Outlet_Establishment_Year', data=big_mart_data)
plt.show()

Item_Fat_Content column
plt.figure(figsize=(6,6))
sns.countplot(x='Item_Fat_Content', data=big_mart_data)
plt.show()


```
# Item_Type column
plt.figure(figsize=(30,6))
sns.countplot(x='Item_Type', data=big_mart_data)
plt.show()
```



```
# Outlet_Size column
plt.figure(figsize=(6,6))
sns.countplot(x='Outlet_Size', data=big_mart_data)
plt.show()
```


big_mart_data.head()

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	1987

```
big_mart_data['Item_Fat_Content'].value_counts()
```

Low Fat 5089
Regular 2889
LF 316
reg 117
low fat 112

Name: Item_Fat_Content, dtype: int64

big_mart_data.replace({'Item_Fat_Content': {'low fat':'Low Fat', 'LF':'Low Fat', 'reg':'Regular'}}, inplace=True)

big_mart_data['Item_Fat_Content'].value_counts()

Low Fat 5517 Regular 3006

Name: Item_Fat_Content, dtype: int64

encoder = LabelEncoder()

```
big_mart_data['Item_Identifier'] = encoder.fit_transform(big_mart_data['Item_Identifier'])
```

big_mart_data.head()

 $Item_Identifier \quad Item_Weight \quad Item_Fat_Content \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Identifier \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Item_MRP \quad Outlet_Establishment_Year \quad Item_Visibility \quad Item_Type \quad Ite$