MATH370 HW2

Garrett Peuse

Feb 2022

Contents

1	Introduction
2	Problem 2.2.0 2.1 Problem 2.2.0.a 2.1.1 Proof
3	Problem 2.2.1 3.1 Problem 2.2.1.a
4	Problem 2.2.2 4.1 Definition 2.14 4.2 Problem 2.2.2.a 4.2.1 Proof A 4.2.2 Proof B 4.2.3 Proof C
5	Problem 2.2.3 5.1 (a) $\frac{2+3n-4n^2}{1-2n+3n^2}$ 5.2 (b) $\frac{n^3+n-2}{2n^3+n-2}$ 5.3 (c) $x_n = \sqrt{3n+2} - \sqrt{n}$ 5.4 (d) $x_n = \frac{\sqrt{4n+1}-\sqrt{n-1}}{\sqrt{9n+1}-\sqrt{n+2}}$
6	2.2.5 6.1 Proof
7	2.2.6 7.1 Thoughts

CONTENTS

8	2.2.	2.2.8																11														
	8.1	a																												 		11
	8.2	b																												 		11
	8.3	\mathbf{c}																												 		11

CONTENTS

- 1. Finish problem B and C $\,$
- 2. Note to self I don't think I did this problem totally correct. Looking back at what I did, I didn't use the defintion properly.
- 3. Oh shit have to do this one
- 4. f
- 5. Finish the proof, for zero.
- 6. Nothing so far

1 Introduction

Prove which of the following statements are true. Prove the true ones and provie counter examples to the false ones.

- (a) if $x_n \to \infty$ and $y_n \to -\infty$, then $x_n + y_n \to 0$ as $n \to \infty$
- (b) Prove that the sequence $\{n\}$ does not converge.
- (c) Show that there exist unbounded sequences $x_n \neq y_n$ which satisfy the conclusion of part (a).

2.1 Problem 2.2.0.a

if
$$x_n \to \infty$$
 and $y_n \to -\infty$, then $x_n + y_n \to 0$ as $n \to \infty$

2.1.1 **Proof**

True. By

Prove each statement goes to zero

(a)
$$x_n = \sin(\log(n) + n^5 + e^{n^2})/n$$

(b)
$$x_n = 2n/(n^2 + \pi)$$

(c)
$$x_n = (\sqrt{2n} + 1)/(n + \sqrt{2})$$

3.1 Problem 2.2.1.a

3.1.1 Proof A $x_n = \sin(\log(n) + n^5 + e^{n^2})/n$

Since for all n, $0 \le sin(log(n) + n^5 + e^{n^2}) \le 1$, x_n is dominated by the denominator as $n \to \infty$. We know $n \to \infty$ $\frac{1}{n}$ goes to zero. Thus by undeniable domination of the denominator, x_n goes to zero and n goes to ∞ .

3.1.2 Proof B $x_n = 2n/(n^2 + \pi)$

Note $2n/(n^2 + \pi)$

$$\bullet \ \frac{2n}{(n^2+\pi)} = \frac{2n}{(n^2+\pi)} \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$\bullet \ \frac{\frac{2n}{n}}{(n^2+\pi)\frac{1}{n}} = \frac{2}{n+\frac{\pi}{n}} = 2\frac{1}{n+\frac{\pi}{n}}$$

• Note
$$n + \frac{\pi}{n} \to \infty$$
 as $n \to \infty$.

• Thus as
$$\frac{2n}{n+\frac{\pi}{n}} \to 0$$
 as $n \to \infty$.

3.1.3 Proof C $(\sqrt{2n}+1)/(n+\sqrt{2})$

•
$$(\sqrt{2n}+1)/(n+\sqrt{2}) = \frac{\sqrt{2n}}{n+\sqrt{2}} + \frac{1}{n+\sqrt{2}}$$

•
$$\frac{\sqrt{2}\sqrt{n}}{n+\sqrt{2}}\frac{\sqrt{n}}{\sqrt{n}} = \frac{\sqrt{2}n}{n\sqrt{n}+\sqrt{2}\sqrt{n}} = \frac{\sqrt{2}n}{n^{1.5}+\sqrt{2}n^{0.5}} = \frac{\sqrt{2}n}{n(n^{0.5}+\sqrt{2}n^{-0.5})} = \frac{\sqrt{2}}{(n^{0.5}+\sqrt{2}n^{-0.5})}$$

• Then we would have
$$\frac{\sqrt{2}}{(n^{0.5}+\sqrt{2}n^{-0.5})} + \frac{1}{n+\sqrt{2}}$$

• We can see that
$$\lim_{n\to\infty}(n+\sqrt{2})=\infty$$

• Also
$$\lim_{n \to \infty} (n^{0.5} + \sqrt{2}n^{-0.5}) = \infty$$

• Then
$$\lim_{n\to\infty} \frac{1}{(n+\sqrt{2})} = 0$$
 and $\lim_{n\to\infty} \frac{1}{(n^{0.5}+\sqrt{2}n^{-0.5})} = 0$

• And then
$$\lim_{n\to\infty} \frac{1}{(n+\sqrt{2})} + \lim_{n\to\infty} \frac{1}{(n^{0.5}+\sqrt{2}n^{-0.5})} = \lim_{n\to\infty} (\sqrt{2n}+1)/(n+\sqrt{2}) = 0$$

•

Use the definition 2.14 to prove that each of the foll lowing sequences diverges to $+\infty$ or to $-\infty$

- (a) $x_n = n^2 n$
- (b) $x_n = n 3n^2$
- (c) $x_n = \frac{n^2+1}{n}$

4.1 Definition 2.14

Let $\{x_n\}$ be a sequence of real numbers. $\{x_n\}$ is said to diverge to $+\infty$ if and only if for each $M \in \mathbf{R}$ there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $x_n > M$

4.2 Problem 2.2.2.a

4.2.1 Proof A

- Note $x_n = n^2 n = n(n-1)$.
- We can see that if n = 1 then $n(n-1) \to 0$, but for all n > 1, n(n-1) > 0.
- Choosing $M \ge 2$, we can always find a |M| = N such that for all $n \ge N$, $\{x_n\} > M$.
- As for all $M \in \mathbf{R}$ where $2 \leq M$, then M < |M|(|M|-1) = N(N-1)
- Thus $x_n = n^2 n = n(n-1)$ diverge to $+\infty$.

4.2.2 **Proof B**

 $x_n = n - 3n^2$

- Note that $x_n = n 3n^2 = n(1 3n)$.
- Using the same logic as above, we can see that for n > 0, n(1-3n) < 0.
- Also noting if we have an $M \in \mathbf{R}$ we can always use that M to create a N, where $N = \lfloor |M| \rfloor$ so that $n \geq N$ will imply $M > |M| |(1 3|M|) = N(1 3N) \geq x_n$.
- Thus by definition 2.14 diverges.

4.2.3 Proof C

$$x_n = \frac{n^2 + 1}{n}$$

- Note $x_n = \frac{n^2+1}{n} = \frac{n^2}{n} + \frac{1}{n} = n + \frac{1}{n}$
- Since $n + \frac{1}{n} > n \ge N \ge M$, this implies for all $M \in \mathbf{R}$ there is an $N \in \mathbf{N}$ such that $n \ge N$ implies $x_n > M$.
- Thus, $\{x_n\}$ diverges.

Find the limit if it exists

(a)
$$x_n = \frac{2+3n-4n^2}{1-2n+3n^2}$$

(b)
$$x_n = \frac{n^3 + n - 2}{2n^3 + n - 2}$$

(c)
$$x_n = \sqrt{3n+2} - \sqrt{n}$$

(d)
$$x_n = \frac{\sqrt{4n+1} - \sqrt{n-1}}{\sqrt{9n+1} - \sqrt{n+2}}$$

5.1 (a)
$$\frac{2+3n-4n^2}{1-2n+3n^2}$$

$$\bullet \ \frac{2+3n-4n^2}{1-2n+3n^2} = \frac{2+3n-4n^2}{1-2n+3n^2} \frac{\frac{1}{n^2}}{\frac{1}{n^2}}$$

$$\bullet \quad \frac{\frac{2}{n^2} + \frac{3}{n} - 4}{\frac{1}{n^2} - \frac{2}{n} + 3}$$

• Since for any
$$y \in \mathbf{R}$$
, $\lim_{n \to \infty} \frac{y}{n} = 0$

$$\bullet \ \frac{\frac{2}{n^2} + \frac{3}{n} - 4}{\frac{1}{n^2} - \frac{2}{n} + 3} = \frac{0 + 0 - 4}{0 - 0 + 3} = \frac{-4}{3}$$

5.2 (b)
$$\frac{n^3+n-2}{2n^3+n-2}$$

Same reasoning as above

$$\bullet \ \frac{n^3 + n - 2}{2n^3 + n - 2} = \frac{1 + \frac{1}{n^2} - \frac{2}{n^3}}{2 + \frac{1}{n^2} - \frac{2}{n^3}}$$

• Note for for any
$$y \in \mathbf{R}$$
, $\lim_{n \to \infty} \frac{y}{n^2} = 0$ and also for any $y \in \mathbf{R}$, $\lim_{n \to \infty} \frac{y}{n^3} = 0$

• Thus,
$$\frac{1+0-0}{2+0-0} = \frac{1}{2}$$

5.3 (c)
$$x_n = \sqrt{3n+2} - \sqrt{n}$$

$$\bullet \ \sqrt{3n+2} - \sqrt{n}$$

• We can see that
$$\lim_{n\to\infty} \sqrt{n} = \infty$$

• We can also see the same for
$$\lim_{n\to\infty} \sqrt{3n+2} = \infty$$

• We can see then that
$$\lim_{n\to\infty} \sqrt{3n+2} - \lim_{n\to\infty} \sqrt{n}$$
 will diverge.

5.4 (d)
$$x_n = \frac{\sqrt{4n+1} - \sqrt{n-1}}{\sqrt{9n+1} - \sqrt{n+2}}$$

$$\bullet \ \frac{\sqrt{4n+1} - \sqrt{n-1}}{\sqrt{9n+1} - \sqrt{n+2}} = \frac{\sqrt{n}\sqrt{4 + \frac{1}{n}} - \sqrt{n}\sqrt{1 - \frac{1}{n}}}{\sqrt{9n+1} - \sqrt{n+2}} = \frac{\sqrt{n}\sqrt{4 + \frac{1}{n}} - \sqrt{n}\sqrt{1 - \frac{1}{n}}}{\sqrt{n}\sqrt{9 + \frac{1}{n}} - \sqrt{n}\sqrt{1 + \frac{2}{n}}}$$

•
$$\frac{2-1}{3-1} = \frac{1}{2}$$

$6 \quad 2.2.5$

6.1 Proof

6.1.1 For X > 0

- Let $\epsilon > 0$, then we must find an N such that $n \geq N$ implies $|\sqrt{x_n} \sqrt{x}| < \epsilon$.
- Note that $|\sqrt{x_n} \sqrt{x}| = |\sqrt{x_n} \sqrt{x}| \frac{\sqrt{x_n} + \sqrt{x}}{\sqrt{x_n} + \sqrt{x}} = \frac{|x_n x|}{\sqrt{x_n} + \sqrt{x}}$
- Since $\sqrt{x_n} + \sqrt{x} \ge \sqrt{x}$ and thus $\frac{1}{\sqrt{x_n} + \sqrt{x}} < \frac{1}{\sqrt{x}}$
- $\bullet \ \frac{|x_n x|}{\sqrt{x_n} + \sqrt{x}} \le \frac{|x_n x|}{\sqrt{x}}$
- Because x > 0 and $x_n \to x$ then $x_n x = 0$ and $n \to \infty$, thus there is a N such that $N \ge \epsilon \sqrt{x} + x$ such that for all $n \ge N$, $\frac{|x_n x|}{\sqrt{x}} < \epsilon$

6.1.2 For X = 0

- We know that $x_n \to x$ as $n \to \infty$ and that x = 0.
- Let $\epsilon > 0$, then we must find an N such that $n \geq N$ so that $|\sqrt{x_n} 0| = |\sqrt{x_n}| < \epsilon$.
- Note $|\sqrt{x_n}| < \epsilon \to x_n < \epsilon^2$.
- Using the inequality from section $1.2 \to 0 \le a \le b \to 0 \le a^2 \le b^2 \to 0 \le a^{0.5} \le b^{0.5}$
- I don't entirely get the logic from here. I need to come back to this and understand this better

7 2.2.6

7.1 Thoughts

- hmmm I am going to have to think about this one.
- Note even sure what the question is stating entirely.
- So given a real number, there is a sequence of rational numbers that converge to the real number.
- I think there is squeeze theorom manipulation that could be used here, but why cannot we use definitions from section 1.2?

7.2 Proof

- Let a be any \mathbf{R} .
- Say for any $n \in \mathbb{N}$ we have $a \frac{1}{n} < a + \frac{1}{n}$.
- It should be noted that all terminating decimals are rational numbers that can be written as reduced fractions with denominators containing no prime number factors other than two or five.
- Thus we can have a sequence r_n (which is in \mathbb{Q}) that is between $a \frac{1}{n}$ and $a + \frac{1}{n}$, meaning $a \frac{1}{n} < r_n < a + \frac{1}{n}$.
- We would then have $|r_n a| < \frac{1}{n}$.
- As $n \to \infty$, $\frac{1}{n} \to 0$.
- Then by squeeze theorem $r_n \to a$.

8 2.2.8

Find the limit if it exists

- (a) Suppose that $0 \le x_1 \le 1$ and $x_{n+1} = 1 \sqrt{1 x_n}$ for $n \in \mathbb{N}$. If $x_n \to x$ as $n \to \infty$, then x = 0 or 1.
- (b) Suppose that x > 3 and $x_{n+1} = 2 + \sqrt{x_n 2}$ for $n \in \mathbb{N}$. If $x_n \to x$ as $n \to \infty$, then x = 3.

8.1 a

- 1. Given that $x_n \to x$ as $n \to \infty$.
- 2. Applying limits, we can get $\lim_{n \to \infty} (x_{n+1}) = \lim_{n \to \infty} (1) \lim_{n \to \infty} (\sqrt{1 x_n})$
- 3. = $1 \sqrt{lim(1) lim(x_n)} = 1 \sqrt{1 x} = x$
- 4. Then $1 = x + \sqrt{1 x}$
- 5. Which can only be true if x = 1 or 0.

8.2 b

- 1. Given that $x_n \to x$ as $n \to \infty$.
- 2. Applying limits, we can get $\lim(x_{n+1}) = \lim(2) + \lim(\sqrt{x_n 2}) = 2 + \sqrt{\lim(x_n) \lim(2)} = 2 + \sqrt{x 2} = x$
- 3. Then if $\sqrt{x-2} = x-2$
- 4. $1 = \frac{x-2}{\sqrt{x-2}}$
- 5. $1 = \sqrt{x-2}$
- 6. 1 = x 2
- 7. 3 = x

8.3 c

- 1. Given that $x_n \to x$ as $n \to \infty$.
- 2. Applying limits, we can get $\lim(x_{n+1}) = \lim(\sqrt{x_n+2}) = \sqrt{\lim(x_n) + \lim(x_n)}$
- 3. $x = \sqrt{x+2}$
- 4. $\frac{x}{\sqrt{x+2}} = 1$
- 5. $x = 2 \text{ for } x_1 \ge 0$
- 6. if we squared both side we would get $x^2 = 2 + x = (x+1)(x-2)$
- 7. if $x_1 \ge -2$ then x = -1 and x = 2