(

(

STS, IT, F, W, KandMat, Lärare

"Gamla" kursen Linjär Algebra 1MA722 oberoende av program

Tentamen består av 10 UPPGIFTER (max 2 poäng per uppgift) samt 4 PROBLEM (max 5 poäng per problem). Till både uppgifterna och problemen fordras fullständiga lösningar. 18-24 poäng ger betyg 3, 25-31 poäng ger betyg 4 och 32-40 poäng ger betyg 5. Det finns inga krav på poängfördelningen mellan uppgiftsdelen och problemdelen. Skrivtid: 8.00-13.00 Tillåtna hjälpmedel: Skrivdon.

UPPGIFTER

- 1. $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Bestäm rangen av A och en bas för nollrummet.
- 2. Låt $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ och definiera $T: \mathbf{R}^2 \to \mathbf{R}^2$ genom $T(\mathbf{x}) = A\mathbf{x}$. Bestäm de värden på a för vilka värderummet av T innehåller vektorn $\begin{bmatrix} a \\ a \end{bmatrix}$.
- 3. Låt $T: \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildning som definieras av en spegling med avseende på x_1 -axeln åtföljd av en moturs rotation omkring origo med vinkeln $\pi/2 = 90^{\circ}$. Bestäm standardmatrisen av T.
- 4. Finn en bas i det ortogonala komplementet M^{\perp} av delrummet $M = \{(x_1, x_2) \in \mathbf{R}^3 | x_1 = x_2 = x_3\}.$

 $(x_{11}x_{21}x_{3})$

- 5. $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Motivera varför det finns en diagonalmatris D och en matris P så att $A = PDP^{-1}$. Ange även en sådan diagonalmatris D.
- 6. $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Motivera varför A är ortogonalt diagonaliserbar. Bestäm dimensionen av egenrummet hörande till egenvärdet 0 som har multipliciteten 2.
- 7. Låt A vara matrisen för ortogonal projektion på linjen $x_1 = 2x_2$. Egenvärdena är 0 och 1. Bestäm en ortogonal bas av egenvektorer till A.

V.G.V!

- 8. Grafen av ekvationen $2x_1x_2=a$, a>0, är en hyperbel. Bestäm det minsta avståndet från origo till en punkt på hyperbeln för varje värde på a>0.
- 9. \mathbf{P}_1 är rummet av polynom av grad högst ett inklusive nollpolynomet. För p och q i \mathbf{P}_1 kan man t ex definiera den inre produkten

$$< p, q > = \int_0^1 p(t)q(t) dt$$
 (1)

Låt W vara det delrum av \mathbf{P}_1 som genereras av p(t)=1, dvs låt $W=\mathrm{Span}\{1\}$. Bestäm den ortogonala projektionen av polynomet $p_0(t)=t$ på W med avseende på den inre produkten (1).

10. $1+t-t^2$, $1-t+t^2$ och $-1+t+t^2$ genererar ett delrum W av \mathbf{P}_2 , dvs $W=\mathrm{Span}\{1+t-t^2,1-t+t^2,-1+t+t^2\}$. Bestäm de värden på $a,\ b$ och c för vilka W innehåller polynomet $a+bt+ct^2$.

PROBLEM

1. Delrummet U av \mathbb{R}^4 spänns upp av vektorerna

$$u_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ u_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \ u_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ u_5 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

- (a) Finn en bas i U bland dessa vektorer.
- (b) Visa att vektorn $v = \begin{pmatrix} 1 \\ 3 \\ 1 \\ -2 \end{pmatrix}$ tillhör delrummet U.
- (c) Ange koordinaterna för vektorn v i den bas i U som du fann i deluppgift (a).
- 2. Den linjära operatorn f på \mathbb{R}^3 ges geometriskt som spegling i planet P: x+y+z=0.
 - (a) Finn f:s matrix A i standardbasen.
 - (b) Avgör om A är ortogonal. (Motivera ditt svar.)
 - (c) Avgör om A är symmetrisk. (Motivera ditt svar.)
- 3. Egenvärdena av matrisen för den kvadratiska formen

$$Q(\mathbf{x}) = -7x_1^2 - x_2^2 - 7x_3^2 + 8x_1x_2 + 4x_1x_3 + 8x_2x_3$$

kan beräknas till -9 och 3 där egenvärdet -9 har multipliciteten 2. Grafen av ekvationen $Q(\mathbf{x})=1$ är därför en två-mantlad rotationshyperboloid. Endast en av symmetriaxlarna skär ytan och denna axel är samtidigt rotationsaxel. Symmetriaxlarna är de räta linjer genom origo som är parallella med principalaxlarna. Ange det minsta avståndet från en punkt på ytan till origo. Bestäm också riktningen i $x_1x_2x_3$ -systemet för rotationsaxeln.

4. Lös följande system av linjära differentialekvationer.

$$\begin{cases} y_1' = y_1 + 4y_2 \\ y_2' = 2y_1 + 3y_2 \end{cases}, y_1(0) = y_2(0) = 1.$$

De som tenterar den gamla kursen 1MA722 kan byta ut Problem 4 mot Problem 4" nedan.

4".

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

har egenvärdena 0 och 3. Bestäm en en diagonalmatris D och en **ortogonal** matris T så att $A = TDT^{-1}$.

Svar på problemdelen i tentan 2011–08–26

- 1. (a) (u_1, u_2, u_4) är en bas i U, exempelvis.
- (b) och (c) Ekvationen $v = -2u_1 + 2u_2 + 3u_4$ visar att $v \in U$, samt att (-2, 2, 3) är v:s koordinatföljd i basen (u_1, u_2, u_4) .

2. (a)
$$A = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

- (b) A är ortogonal, då $A_{\bullet i} \bullet A_{\bullet j} = \delta_{ij}$ för alla $(i,j) \in \underline{3} \times \underline{3}$.
- (c) A är symmetrisk, då $A_{ij} = A_{ji}$ för alla $(i, j) \in \underline{3} \times \underline{3}$.
- 3. Ytans minsta avstånd till origo är $\frac{\sqrt{3}}{3}$. Ytans rotationsaxel har riktningsvektor $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$.

4.
$$y_1 = e^{5x} = y_2$$

4".
$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 och $T = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$, exempelvis.