Программа курса «Физика кондесированного состояния » (1 семестр 2023-24 учебного года)

1. Теория металлов Друде.

Основные положения и недостатки модели Друде; вывод уравнения $d\vec{p}/dt + \vec{p}/\tau = \vec{f}$; статическая электропроводность металлов; высокочастотная проводимость металлов; диэлектрическая проницаемость; эффект Холла; продольные и поперечные волны в твердотельной плазме; нормальный и аномальный скин-эффект; тензор проводимости металла в магнитном поле; теплопроводность металлов: закон Видемана-Франца; электронная теплоемкость металла; средняя энергия, передаваемая электроном за одно столкновение.

2. Теория металлов Зоммерфельда

Распределения Максвелла-Больцмана, Ферми-Дирака, и Бозе-Эйнштейна (без вывода); фермионы и бозоны, принцип запрета Паули; вырожденный Ферми газ при T=0 (поверхность, скорость, импульс и энергия Ферми); граничные условии Борна-Кармана; плотность состояний (энергетических уровней), плотность состояний для свободных и невзаимодействующих электронов в 1D, 2D и 3D случаях; понятие химического потенциала, температурная зависимость хим. потенциала; теория проводимости в модели Зоммерфельда; средняя энергия вырожденного электронного газа; особенность Ван-Хова; теплоемкость вырожденного электронного газа.

3. Недостатки модели свободных электронов. Адиабатическое приближение Борна-Оппенгеймера.

4. Кристаллическая решетка

Условие дифракции Брэгга-Вульфа; Решетка Бравэ (элементарная ячейка, условноэлементарная ячейка, ячейка Вигнера-Зейтца); ПК, ОЦК, ГЦК – вид и базисы; обратная решетка (определение, построение и свойства); ячейка Бриллюэна, понятие атомной плоскости; условие дифракции Лауэ; эквивалентность условий дифракции Брэгга-Вульфа и Лауэ; понятие брегговской плоскости.

5. Основы зонной теории

Уравнение Шредингера для электрона в периодическом потенциале. Теорема Блоха. Доказательство теоремы Блоха. Общие свойства блоховских функций. Обобщенное граничное условие Борна-Кармана для периодического кристалла. Зона Бриллюэна и энергетические зоны. Энергетическая щель. Поверхность Ферми в кристалле. Приближение слабого периодического потенциала (метод слабой связи). Заполнение энергетических зон электронами. Металлы. Диэлектрики. Необходимое условие диэлектрического состояния. Приближение сильной связи. Функции Ванье. Волновые функции электрона в запрещенной зоне (состояния Тамма).

6. Полуклассическая модель динамики блоховских электронов:

Основные положения полуклассической модели. Электроны как волновые пакеты. Пределы применимости полуклассической модели. Инертность заполненных зон. Уравнения движения в постоянных электрическом и магнитном полях. Блоховские осцилляции. Электроны и дырки. Траектории для электронов и дырок. Эффективная масса. Эффективное число свободных электронов. Кинетическое уравнение Больцмана в τ – приближении. Расчет статической проводимости с помощью кинетического уравнения.

7. Движение частицы в магнитном поле:

Уравнение Шредингера в магнитном поле. Ферми поверхности в магнитном поле: открытые и замкнутые траектории. Описание движения электрона во внешнем постоянном магнитном поле с помощью полуклассической модели. Квантование орбит электрона во внешнем постоянном магнитном поле. Уровни Ландау для свободных электронов в магнитном поле. Вырождение уровней Ландау. Плотность состояний в магнитном поле. Циклотронная масса. Электронные и дырочные траектории.

7. Магнетизм электронного газа

Парамагнетизм Паули. Диамагнетизм Ландау. Понятие «трубки Ландау». Магнитная восприимчивость вырожденного электронного газа. Диамагнитные металлы. Эффект де Газаван Альфена.

8. Колебания кристаллической решетки. Фононы.

Гармоническое приближение. Классическая теория гармонического 3D кристалла. Нормальные моды одномерной моноатомной цепочки (один атом в элементарной ячейке). Нормальные моды одномерной двухатомной цепочки (два атома в элементарной ячейке). Колебания и волны в 3D кристаллической решетке с базисом (акустические и оптические моды). Понятие фонона. Законы дисперсии акустических и оптических фононов в длинноволновом пределе. Продольные и поперечные фононы. Удельная теплоемкость классического кристалла (закон Дюлонга и Пти). Фононная теплоемкость гармонического кристалла при низких температурах. Модель Дебая и интерполяционная формула теплоемкости Дебая. Модель Эйнштейна для теплоемкости гармонического кристалла. Электронная теплоемкость металлов и диэлектриков. Ангармонические эффекты в колебаниях кристаллической решетки и их описание.

Список литературы

- 1. Н. Ашкрофт, Н. Мермин, Физика твердого тела, М.: "Мир", 1979 г. это «базовая» книга.\
- 2. Ч. Киттель, Введение в физику твердого тела, М., 1978
- 3. А.А. Абрикосов, Основы теории металлов, М.: Наука, 1987.
- 4. Л. Д. Ландау и Е. М. Лифшиц, Курс теоретической физики, т. V, М.: Физматлит, 2001.
- 5. Л. Д. Ландау и Е. М. Лифшиц, Курс теоретической физики, т. III, М.: Физматлит, 2001.
- 6. Задачи по физике твердого тела, под ред. Г.~Дж.~Голдсмида, М.: "Наука", 1976 г.
- 7. Дж. Займан, Принципы теории твердого тела, М.: Мир, 1966.
- 8. О. Маделунг, Теория твердого тела, М.: Наука, 1980.
- 9. В. Л. Бонч-Бруевич, С. Г. Калашников, Физика полупроводников

Список «ключевых» вопросов

- 1. Теорема Блоха для электрона в периодическом потенциале.
- 2. Акустические и оптические фононы. Фононный спектр 3D кристаллической решетки с N-атомным базисом (N атомов в элементарной ячейке).
- 4. Теплоемкость металлов и диэлектриков как функция Т. Поведение теплоемкости при низких и высоких температурах. Закон Дюлонга и Пти. Температура Дебая.
- 4. Распределение Бозе-Эйнштейна и Ферми-Дирака.
- 5. Свойства вырожденного Ферми газа при T=0 (поверхность, скорость, импульс и энергия Ферми). Энергия Ферми и химический потенциал.
- 6. Решетка Бравэ. Прямая и обратная решетки. Элементарная, условно-элементарная ячейка, ячейка Вигнера-Зейтца. Зона Брюллюэна. Вектора основных трансляций для ПК, ОЦК, ГЦК решеток.
- 7. Условия Брэгга-Вульфа и Лауэ.

- 8. Модель Друде. Статическая удельная проводимость в модели Друде. Длина свободного пробега и время tau в модели Друде.
- 9. Закон Видемана-Франца.
- 10. Нормальный скин-эффект.
- 11. Плотность состояний. Зависимость плотности состояний от энергии в 1D, 2D и 3D случаях.
- 12. Поверхность Ферми.
- 13. Заполнение энергетических зон электронами. Металлы. Диэлектрики.
- 14 Граничное условие Борна-Кармана.
- 15. Фермионы и бозоны, принцип запрета Паули
- 16. Уравнение Шредингера.
- 17. Парамагнетизм и диамагнетизм. Магнитные свойства вырожденного электронного газа.

PS.

- 1. Список «ключевых» вопросов включает наиболее важные понятия и темы курса, которые необходимо знать и понимать.
- 2. Задачи, выделенные шрифтом, не войдут в билеты.

Тема 1: Кристаллическая и обратная решетки

- 1.1 Доказать, что кристаллическая решетка может обладать поворотными осями симметрии 2, 3, 4 и 6 порядков. Указание: Задача рассмотрена в [6], стр. 97.}
- 1.2 Показать, что основные вектора \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 обратной решетки $\mathbf{K} = l_1\mathbf{b}_1 + l_2\mathbf{b}_2 + l_3\mathbf{b}_3$ определяются следующими выражениями:

$$b_1 = \frac{2\pi}{V} [a_2 \ x \ a_3], \ b_2 = \frac{2\pi}{V} [a_3 \ x \ a_1], \ b_3 = \frac{2\pi}{V} [a_1 \ x \ a_2]$$

где $V = a_1 [a_2 \ x \ a_3]$ - объем элементарной ячейки прямой решетки. Указание: Задача рассмотрена, например, в [1], стр. 96.

- 1.3 Показать, что решетка, обратная к обратной, совпадает с прямой решеткой.
- 1.4 Доказать соотношение $V_K = (2\pi)^n / V$, где V_K объем элементарной ячейки обратной решетки, V объем элементарной ячейки кристаллической решетки, v число измерений. Рассмотреть случаи v = 2, 3. Указание: Задача рассмотрена, например, в [1], стр. 96.
- 1.5 Построить ячейку Вигнера-Зейтца для двумерной решетки Бравэ вида

- 1.6 Записать вектора основных трансляций для простой кубической (ПК), объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК) решеток. *Указание: Задача рассмотрена в [1], т.1, стр.97-98.*
- 1.7 Найти вектора обратной решетки для простой кубической (ПК), объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК) решеток. Использовать вектора основных трансляций для прямых решеток в виде:

IIK:
$$a_1 = a x_0$$
, $a_2 = a y_0$, $a_3 = a z_0$;

ОЦК:
$$a_1 = \frac{a}{2}(y_0 + z_0 - x_0)$$
, $a_2 = \frac{a}{2}(z_0 + x_0 - y_0)$, $a_3 = \frac{a}{2}(x_0 + y_0 - z_0)$;

ГЦК:
$$a_1 = \frac{a}{2}(y_0 + z_0)$$
, $a_2 = \frac{a}{2}(z_0 + x_0)$, $a_3 = \frac{a}{2}(x_0 + y_0)$;

где a - постоянная кристаллической решетки. Для указанных типов решетки найти вектора обратной решетки. Указание: Задача рассмотрена в [1], т.1, стр. 97-98.

- 1.8 Построить обратную решетку и первые три зоны Бриллюэна для квадратной двумерной решетки ($a \times a$).
- 1.9 Построить обратную решетку и первые две зоны Бриллюэна для квадратной и прямоугольной (с соотношением сторон 1:2) двумерных решеток.
- 1.10 Рассматривая атомы, из которых построены кристаллические решётки, как твёрдые шары, найти плотность упаковки (т. е. заполненную часть элементарного куба) для ПК, ГЦК и ОЦК кубических решёток.
- 1.11 Показать, что для каждого семейства атомных плоскостей, отстоящих друг от друга на расстояние d, существует такие вектора обратной решетки, которые перпендикулярны к этим плоскостям, причем наименьший из них имеет длину $2\pi/d$. Указание: Задача рассмотрена в [1], т.1, стр.99-101.
- 1.12 Доказать эквивалентность условия дифракции рентгеновских лучей Лауэ и условия Брегга-Вульфа: $2d \sin \theta = n\lambda$, где d - наименьшее расстояние между атомными плоскостями, θ - угол

падения, λ -длина волны падающего излучения. Указание: Задача рассмотрена в [1], т.1, стр.108-109.

Список литературы

- 1. Н. Ашкрофт, Н. Мермин, Физика твердого тела, М.: "Мир", 1979 г. это «базовая» книга.\
- 6. Задачи по физике твердого тела, под ред. Г.~Дж.~Голдсмида, М.: "Наука", 1976 г.

<u>2. Термодинамические свойства газа свободных невзаимодействующих электронов. Теория металлов Зоммерфельда</u>

2.1 Используя большое каноническое распределение Гиббса, получить функции распределения Бозе - Эйнштейна и Ферми - Дирака.

Указание: Задача рассмотрена в [5] стр. 189-191.

- 2.2 Определить радиус сферы Ферми k_F вырожденного газа свободных и независимых электронов с концентрацией n=N/V , где N число электронов в объеме V .
- 2.3 Определить импульс Ферми p_F вырожденного газа свободных и независимых электронов с концентрацией n = N/V, где N число электронов в объеме V .
- 2.4 Определить при T=0 химический потенциал μ вырожденного газа свободных и независимых электронов с концентрацией n=N/V , где N число электронов в объеме V .
- 2.4а Показать, что при T=0 химический потенциал μ вырожденного газа свободных и независимых электронов с концентрацией n=N/V (N число электронов в объеме V) совпадает с энергией Ферми $\varepsilon_F=\frac{\hbar^2}{2m}(3\pi^2n)^{2/3}$
- 2.5 Вычислить при T=0 среднюю энергию газа вырожденного газа свободных и независимых электронов в расчете на одну частицу ε . Указание: Задача рассмотрена в [6] стр.282;
- 2.5а Показать, что при T=0 средняя энергия газа свободных электронов, приходящаяся на одну частицу, равна $\overline{\varepsilon}=3\varepsilon_F/5$.

Указание: Задача рассмотрена в [6] стр. 282;

- 2.6 Вычислить плотность состояний $g(\varepsilon)$ для системы свободных невзаимодействующих электронов. Рассмотреть случаи одномерного, двумерного и трехмерного движения электронов. Указание: Задача частично рассмотрена, например, в [1] стр. 56-63.
- 2.7 Определить температурную зависимость химического потенциала $\mu(T)$ вырожденного газа свободных невзаимодействующих электронов с фиксированным числом частиц,
- 2.7а Для системы с фиксированным числом частиц, определите температурную зависимость химического потенциала $\mu(T)$ для системы свободных невзаимодействующих электронов. Убедитесь, что

$$\mu(T) = \varepsilon_F \left[1 - \frac{\pi^2}{12} \cdot \left(\frac{k_B T}{\varepsilon_F} \right)^2 \right].$$

Указание: Для решения можно использовать разложения Зоммерфельда(см. например, [3], т. I, стр. 56-63) или приближенно вычислять интеграл по энергии с учетом распределения Ферми.

- 2.8 Определить температурную зависимость средней энергии газа вырожденного газа свободных и независимых электронов в расчете на одну частицу $\overline{\mathcal{E}}(T)$.
- 2.8а Покажите, что при $T \neq 0$ средняя энергия газа свободных невзаимодействующих электронов может быть вычислена следующим образом:

$$\overline{\varepsilon} = \frac{3}{5} \varepsilon_F \left[1 + \frac{5\pi^2}{12} \cdot \left(\frac{k_B T}{\varepsilon_F} \right)^2 \right]$$

Указание: Задача рассмотрена в [6] стр. 282; [2] стр.215-224.

3. Транспортные свойства газа свободных невзаимодействующих электронов.

- 3.1 Вычислить удельную проводимость металла σ на постоянном токе в модели Друде.
- 3.2 Вычислить тензор проводимости металла в магнитном поле в модели Друде.
- 3.3 Вычислить высокочастотную проводимость металла $\sigma(\omega)$ в модели Друде.
- 3.4 Вычислить диэлектрическую проницаемость $\varepsilon(\omega)$ металла в модели Друде.
- 3.5 Вычислить электронную теплопроводность κ металла в модели Друде.

Указание: Задачи 3.1 – 3.5 рассмотрены в [1], m.1, стр.31-38.

3.6 Вычислить компоненты тензора проводимости σ_{ij} ($j = \hat{\sigma} E$)для кристалла в магнитном поле с учетом рассеяния (эффект Холла). Указание: Задача рассмотрена в [9], стр.25-28.

- 3.7 Вычислить удельную проводимость металла, используя кинетическое уравнение Больцмана. Указание: Задача рассмотрена в [3],стр.41-42.
- 3.8 Пусть металл, находящийся при постоянной температуре, помещен в однородное постоянное электрическое \vec{E} . Вычислить в модели Друде среднюю энергию, передаваемую движущимся электроном кристаллической решетке, за одно столкновение (τ среднее время между столкновениями).
- 3.9 Пусть металл, находящийся при постоянной температуре, помещен в однородное постоянное электрическое \vec{E} . Вычислить в модели Друде среднюю потерю энергии всеми электронами в проводнике в 1 см³ за 1 сек. (τ среднее время между столкновениями).

Указание: Задачи 3.8 — 3.9 для решения следует использовать результат задачи (3.1) Средняя энергия, передаваемая движущимся электроном кристаллической решетке, за одно столкновение равна $(eE\tau)^2/m$, где τ -среднее время между столкновениями. Средняя потеря энергии всеми электронами в проводнике в 1 см 3 за 1 сек равна σE^2 (σ -удельная проводимость).

3.10 Вычислить удельную проводимость металла в слабом магнитном поле, используя кинетическое уравнение Больцмана (эффект Холла). Указание: Задача рассмотрена в [4], стр. 76-78.

4. Электрон в периодическом потенциале. Поверхность Ферми.

- 4.1 Пользуясь приближением слабой связи, найти зонный спектр для электрона в одномерной решетке с потенциалом $U(x) = U_0 \left[3 + 2\cos(2\pi x/a) \right]$, $(U_0 << 1)$.
- 4.2 Пользуясь приближением слабой связи, найти волновые функции (включая состояния вблизи границы зоны Бриллюэна) для электрона в одномерной решетке с потенциалом $U(x) = U_0 \big[3 + 2\cos(2\pi x/a) \big]$, $(U_0 << 1)$.

Указание: Задача рассмотрена в [9] стр.158-166;

- 4.3 Используя приближение сильной связи для описания электронов в простой кубической (ПК) решетке с периодом a и функции s типа в качестве электронных атомных волновых функций, найти дисперсионную зависимость энергии $\varepsilon(k)$ от волнового числа k для нижней разрешенной зоны. Показать, что изоэнергетические поверхности имеют сферическую симметрию при $k \to 0$.
- 4.4 Используя приближение сильной связи для описания электронов в простой кубической (ПК) решетке с периодом a и функции s типа в качестве электронных атомных волновых функций, найти дисперсионную зависимость энергии $\varepsilon(k)$ от волнового числа k для нижней разрешенной зоны. Определить эффективную массу электронов при $k \to 0$.
- 4.5 Используя приближение сильной связи для описания электронов в гранецентрированной кубической (ГЦК) решетке с периодом a и функции s типа в качестве электронных атомных волновых функций, найти дисперсионную зависимость энергии $\varepsilon(k)$ от волнового числа k для нижней разрешенной зоны. Показать, что изоэнергетические поверхности имеют сферическую симметрию при $k \to 0$.
- 4.6 Используя приближение сильной связи для описания электронов в гранецентрированной кубической (ГЦК) решетке с периодом a и функции s типа в качестве электронных атомных волновых функций, найти дисперсионную зависимость энергии $\varepsilon(k)$ от волнового числа k для нижней разрешенной зоны. Определить эффективную массу электронов при $k \to 0$.
- 4.7 Используя приближение сильной связи для описания электронов в объемноцентрированной кубической (ОЦК) решетке с периодом a и функции s типа в качестве электронных атомных волновых функций, найти дисперсионную зависимость энергии $\varepsilon(k)$ от волнового числа k для нижней разрешенной зоны. Показать, что изоэнергетические поверхности имеют сферическую симметрию при $k \to 0$.
- 4.8 Используя приближение сильной связи для описания электронов в объемноцентрированной кубической (ОЦК) решетке с периодом a и функции s типа в качестве электронных атомных волновых функций, найти дисперсионную зависимость энергии $\varepsilon(k)$ от волнового числа k для нижней разрешенной зоны. Определить эффективную массу электронов при $k \to 0$.

Указание: Задачи 4.3 – 4.8 частично решены в [9] cmp.308-309; [6] m.1 cmp.186-187.

4.9 Рассмотрим одномерную периодическую структуру. Пусть вблизи границы зоны Бриллюэна в энергия частицы может быть записана в следующем виде:

$$\varepsilon(k) = \sqrt{\Delta^2 + \left[k^2 - \left(k - K\right)^2\right]^2} \ ,$$

где k - квазиимпульс, K - вектор обратной решетки. Какой вид имеют волновые функции электрона при $|\varepsilon| < \Delta$, когда его энергия выбрана в запрещенной зоне?

4.10 Получить выражение для скорости и эффективной массы «блоховского» электрона на уровне энергии En(k).

4.11 Рассмотреть энергетические уровни в одномерной решетке с периодом d, где потенциальная энергия имеет вид

$$V = \begin{cases} V_0, & -b \le x \le 0 \\ 0, & 0 \le x \le d - b \end{cases}, \quad V(x+d) = V(x).$$

Расемотреть случай, когда $V_0 \to \infty$, $b \to 0$, но $V_0 b = {\rm const}$ (модель Кронига Пенни). Указание: Решение задачи приведено в [3] стр.152-155; [6] зад №12.5 (решение стр.301)

Тема 6: Колебания кристаллической решетки. Фононы.

6.1 Получите закон дисперсии фононов в одномерной одноатомной цепочке атомов с массой m периодом a и с взаимодействием только между ближайшими соседями, описываемом коэффициентом упругости k.

6.2 Получите закон дисперсии фононов в одномерной двухатомной цепочке атомов с массами m и M периодом a и с взаимодействием только между ближайшими соседями, описываемом коэффициентами упругости k_1 и k_2 . (как вариант $m=M,\,k_1\neq k_2$; $m\neq M,\,k_1=k_2$)

6.3 Вычислить фононную теплоемкость кристалла при высоких температурах.

Тема 7: Магнетизм электронного газа

- 7.1 Вычислить парамагнитную восприимчивость вырожденного газа свободных невзаимодействующих электронов.
- 7.2 Вычислить диамагнитную восприимчивость вырожденного газа свободных невзаимодействующих электронов.

Указание: Задачи 7.1, 7.2 рассмотрены в [4] cmp. 152; [5] cmp.204