Formal Query Languages: Relational Algebra

- Set Theory Operations
- ◆ Specific Relational Operations
- Write Queries in Relational Algebra

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

1

Relational Algebra -+ X +

- Operations on entire relations
 - Operands are (constant or variable) relations
 - Result is a relation
- Set theory operations:
 - Union, Intersection, Difference and Cartesian Product (product for short)
- Specific relational operations:
 - Selection, Projection, Join and Division
- Complete set of relational algebra operations:
 - Select, project, product, union and difference
- SQL is based on concepts from relational algebra

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Selection

Unary operator <u>Select</u>, σ:

$\sigma_{\text{selection-condition}}(r)$

- □ E.g., $\sigma_{Name='John' \lor Name='Susan'}$ (STUDENT)
 - result = {t | t∈r and (t[Name] = 'John' or t[Name] = 'Susan')}
- Selection condition any logical expression on attributes of r involving any applicable comparison operator {=,<,≤,>,≥,≠}

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

3

Example of Selection

σ

 \square $\sigma_{\text{Name='Bob'} \vee \text{Major} = 'Math'}(S) = ?$

Relation **S**

- SID Name Major

 1 Bob CS

 3 Ann CoE

 4 Bob Math
- How can I get a copy of S?
- How can I get an empty copy of S?

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

5

Projection

 π

Unary operator Project, п:

Π_{attribute-list} (r)

Attribute-list ⊂ R

Relation S

- E.g., Π Name, Major (STUDENT)
 result = {t | t∈r and t[Name, Major]}
- SID Name Major

 1 Bob CS

 3 Ann CoE

 4 Bob Math
- □ What about $\pi_{SID, Major}(S) = ?$
- □ What about $\Pi_{\text{Name, Major}}(S) = ?$

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

8

Example of Selection

σ

□ How can I get a copy of S?

 $\sigma_{\text{true}}(S) =$

RSLT:

SID	Name	Major
1	Bob	CS
3	Ann	CoE
4	Bob	Math

- How can I get an empty copy of S?
- $\sigma_{false}(S) =$

SID Name Major

RSLT:

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

6

Example of Projection

 π

Relation **S**

SID Name Major

1 Bob CS

3 Ann CoE

4 Bob Math

Bob

CS

RSLT:

SID	Major
1	CS
3	CoE
4	Math

 \square Π Name, Major (S) = ?

RSLT:

Name	Major	
Bob	CS	
Ann	CoE	
Bob	Math	

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

7

Relational Algebra Expressions

- Query: List the QPA of all students (SID) in CSD whose QPA is greater than 3.5
- □ STUDENT (SID, FName, SName, Dept, Major, QPA)
- Nesting the operations

$$\Pi_{SID, QPA}$$
 ($\sigma_{Dept = 'CSD' \land QPA>3.5}$ (STUDENT))

Sequence of operations

$$\begin{aligned} & \text{HS} \leftarrow \sigma_{\text{ Dept = 'CSD'} \ \land \ \text{QPA>3.5}} \text{ (STUDENT)} \\ & \text{RESULT} \leftarrow \pi_{\text{ SID, OPA}} \text{ (HS)} \end{aligned}$$

- Query tree
 - leaf nodes are relations and internal nodes are operations

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

9

Properties of σ and π

- $\Box \quad \sigma_{cond1} \left(\sigma_{cond2} \left(R \right) \right) = \sigma_{cond2} \left(\sigma_{cond1} \left(R \right) \right)$
- $\Box \quad \sigma_{cond1} \left(\sigma_{cond2} \left(R \right) \right) = \sigma_{cond2} \wedge_{cond1} \left(R \right)$ $= \sigma_{cond1} \wedge_{cond2} \left(R \right)$
- \Box Π_{list1} (Π_{list2} (R)) = Π_{list1} (R) When?

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

Renaming Operator

- Renaming attributes of the result RSLT(StudentID, GPA) \leftarrow Π SID, OPA (HS)
- □ Change the name of Attributes (in general): $\rho(a1,a2,a3,..an)(r)$

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

10

Efficient / Optimized Queries

- □ Reduce cost of computing (a.k.a, time-complexity)
 - Short-circuit (fast computing logical expressions)
 - Execute faster comparisons first
- □ Reduce memory needs (a.k.a., *space-complexity*)
 - Execute Selections with high selectivity (i.e., with more strict conditions) to reduce the size of intermediate tables.
 - Execute Projects as early as possible to reduce tuple size

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

12

11

Selectivity

- Selectivity = The ratio of the number of records that satisfy a condition to the total number of records
- Let assume that Students
 - Female = 55% & Male 45%
 - CS majors = 5% & Non-CS majors = 95%
- □ Which is more efficient? [Poll]
 - a. $\sigma_{Major= 'Non-CS' \land Gender = 'Female'}$ (STUDENT)
 - b. σ_{Gender = 'Female' A Major= 'Non-CS'} (STUDENT)
 - c. σ_{Major= 'CS' Δ} Gender = 'Female'</sub> (STUDENT)

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

13

Basic Set Operations

 \Box $r \cup s$ \Box $r \cap s$

 \Box r - s

relation r

Α	В	С
а	b	С
d	а	f
С	b	d

relation s

D	Е	F
b	g	а
d	а	f

- \square Can we perform \cup , \cap , between any two relations?
- They need to be union compatible
 - -|R| = |S| and
 - corresponding attributes have same domains
- Properties
- Both ∪ and ∩ are commutative operations attribute Names?
 Difference is not commutative
 Panos K Character

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Basic Set Operations

relation r

 $\Gamma \cup S$

 $\Gamma \cap S$ Π r-s

 $B \mid C$ b c а a | f d b

relation s

 $A \mid B$ b a g d a

- \square Can we perform \cup , \cap , between any two relations?
 - They need to be *union compatible*
 - -|R| = |S| and
 - corresponding attributes have same domains
- Properties

rxs

- Both \cup and \cap are commutative operations ribute
- Difference is not commutative

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

14

Cartesian Product

relation r

relation s

- Let $p(P) = r(R) \times s(S)$
- |P| = ? and |p| = ?
 - $|P| = |R| + |S| = \alpha_r + \alpha_s$
 - |p| = |r| * |s|
- Name conflicts are resolved by using the relations names as prefixes: r.A, r.B, S.A, S.B

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh