(54) MAGNETIC VIDEO RECUIDING AND REPRODUCING DEVICE

(11) 3-119887 (A) (43) 22.5.1991 (19) JP (21) Appl. No. 64-255317 (22) 2.10.1989

(71) HITACHI LTD (72) MOTOYOSHI SASAKI

(51) Int. Cl⁵. H04N9/83,H04N9/455

PURPOSE: To prevent the erroneous control of a phase control circuit and to improve picture quality by comparing the phases of a burst gate pulse signal, which is obtained by delaying a video synchronizing signal, and a reference pulse signal and controlling the phase of the burst gate pulse signal according to a control output signal.

CONSTITUTION: A reference pulse signal generating circuit 3 inputs an output signal from a burst signal detection circuit 2 and generates a reference pulse signal Ps with prescribed time width from the rising part of this inputted signal. A burst gate pulse signal P_B is passed through a mase control circuit 5 and in a phase comparator circuit 4, difference between the phases of the reference pulse P_S and the signal P_B is detected. Then, the control signal corresponding to the difference is sent to the phase control circuit 5. The phase control circuit 5 delays or advances the phase of the inputted burst gate prase signal PB corresponding to the control signal from the phase compensator circuit 4. This output signal is inparted to the phase comparator circuit 4 again and feedback control is executed until the difference between the phases of the both pulses Ps and P ecomes a certain determined value.

(a): chrominance signal. (b): synchronizing signal

(54) MAGNETIC RECORDING AND REPRODUCING DEVICE

(11) 3-119888 (A)

James William

(43) 22.5.1991 (19) JP

(21) Appl. No. 64-257097 (22) 3.10.1989

(71) TOSHIBA CORP (72) KAZUYUKI UYAMA

(51) Int. Cl5. H04N9/83

PURPOSE: To reproduce a chrominance signal with fidelity by providing a non-linear amplifying means in a reproducing system, amplifying the signal while the more entireing the amplification factor, the more the amplitude level of an input low area converting chrominance signal is high, and correcting the amplitude limit of the input low area converting chrominance signal. CONSTITUTION: A chrominance signal processing circuit a converts the frequency

of the inputted low area converting chrominance signal to the chrominance of a base band and afterwards coss talk removal, etc., is executed. The processed chrominance signal of the base band is outputted to a non-linear am molifier processed chrominance signal of the base band is outputted to a non-linear amplifier circuit 5. The non-linear amplifier circuit 5 amplifies the chrominance signal of the base band to be inputted while enlarging the amplification factor fo a part, where the amplitude—livel is made high, rather than the other part and afterwards, this chrominance signal is outputted to an adder 6. At such a time, the reproducing chrominance signal receiving the amplitude limit by a non-linear electromagnetic

convering property passing through a magnetic type is inserted to the non-linear plifier circuit 5. Thus, the amplitude limit is corrected and a linear relationship can be obtained between the chrominance signal at recording time and the chrominance signal at reproducing time. Then, the chrominance signal can be reproduced with fidelity.

1: amplifier circuit, 2: signal separator circuit, 3: luminance signal processing circuit, T: transistor, 1: video signal

(54) THREE-DIMENSIONAL PICTURE DISPLAY DEVICE

(43) 22.5.1991 (19) JP (11) 3-119889 (A)

(21) Appl. No. 64-255249 (22) 2.10.1989

(71) NIPPON HOSO KYOKAI <NHK> (72) HARUO ISONO(2)

(51) Int. Cl5. H04N13/04

PURPOSE: To enable use as a two-dimensional picture display device and as a three-dimensional picture display device by electronically generating barrier stripes and freely variably controlling the shape, position or concentration, etc., of the generated barrier stripes.

CONSTITUTION: Continuous pictures picked up from two directions or multiple directions are displayed as a longitudinal slit picture on a picture display screen of the picture display device. For example, by using a transmissive liquid crystal display element, etc., X and Y addresses are designated by a control means such as a microcomputer 13, etc., and the barrier stripes in the arbitrary shape are formed at an arbitrary positions on a barrier surface. It is in the case of three-dimensional picture display to generate the longitudinal stripe-shape barrier stripes on a barrier 12. In the case of two-dimensional picture display, the above mentioned barrier stripes are stopped being generated and the drive of the above mentioned barrier 12 is controlled so as to obtain an uncolored and transparent state over the whole area of a picture display area. Thus, the device can be also used as the two-dimensional picture display device.

14: controller, 15: X driver, 16: Y driver, 11: transparent glass/acrylic spacer, 12: electronic paralax barrier due to liquid crystal, 10: panoramagram and stereogram display surface, 1: display picture

⑩日本国特許庁(JP)

①特許出願公開

@ 公開特許公報(A)

平3-119889

®Int.Cl.⁵ H 04 N 13/04 識別記号

庁内整理番号 9068-5C

❸公開 平成3年(1991)5月22日

審査請求 未請求 請求項の数 6 (全11頁)

会発明の名称

3次元画像表示装置

願 平1-255249 ②特

稔

願 平1(1989)10月2日 22出

個発

東京都世田谷区砧1丁目10番11号 日本放送協会 放送技

術研究所内

明 ⑫発

東京都世田谷区砧1丁目10番11号 日本放送協会 放送技

術研究所内

@発明者 H 安

東京都世田谷区砧1丁目10番11号 日本放送協会 放送技

海研究所内

日本放送協会 の出 願 人

東京都渋谷区神南2丁目2番1号

弁理士 谷 義 一 個代 理 人

1. 発明の名称

a Androne Carte

3 次元画像表示装置

- 2. 特許請求の範囲
- 1) 透過形液晶表示素子を用いてバララックス・ パリヤ・ストライブを電子制御により発生するパ リヤ発生手段と、

前記パララックス・パリヤ・ストライブの発生 位置から所定距離を難して表示画面が配設され て、左右画像が少なくとも交互に配列された多方 向画像を該表示画面に出力表示可能な画像表示手 段と

を具備したことを特徴とする3次元國像表示装

2) 前記パリヤ発生手段は、前記画像表示手段が 単なる2次元國像を表示する際には、前記パラ ラックス・パリヤの発生を停止してパリヤ発生面 5)前記パリヤ発生手段の前記パララックス・パ

が無色透明のパネルとなることを特徴とする請求 項しに記載の3次元画像表示装置。

- 3) 前記パリヤ発生手段は、前記パララックス・ バリヤ・ストライブの数、幅、開口比および間隔 を含む該形状や発生位置の位相を指示入力に応じ て自在に可変制御する制御手段を有することを特 徴とする請求項1または2に記載の3次元画像表 示装置。
- 4) 3 次元画像を観察する観察者の頭部位置を検 出する検出手段と、

該検出手段の検出信号に基づいて、該観察者が 左右方向に瞳孔間隔だけ移動する毎に前記パリヤ 発生手段の前記パララックス・パリヤ・ストライ プの位相を反転させるパリヤ反転手段と

を有することを特徴とする請求項しないしるに 記載の3次元画像表示装置。

リヤ・ストライブの発生面は平面状または曲面状に形成されていることを特徴とする請求項1ないし4に記載の3次元画像表示装置。

6) 前記パリヤ発生手段は、前記パララックス・ パリヤ・ストライプの遺度を可変制御する濃度調整手段を有することを特徴とする請求項1ないし 5に記載の3次元画像表示装置。

(以下余白)

[従来の技術]

REGRESSE AND LOS TOTALES TOTALES TO

従来、メガネを使用しない立体画像あるいは 3 次元酉像の表示方式の一つとして、パララック ス・パリヤ方式が提案されている。このパララッ クス・バリヤ方式は、第2図の原理図に示すよう に、きわめて細い縦縞状のアパーチャースリット laの裏側の所定の距離Dだけ離れた位置に、観察 者の左右両眼 2 a . 2 b が見るべき画像 3 a . 3 b を、ス テレオグラム表示面10上に交互に凝縞状に印刷す る(あるいは写真フィルムに焼き込む)ことによ り立体表示するものである。このような複数のア パーチャスリット laを有するプレートをパララッ クス・パリヤ (Parallax barrier)1と呼んでい る。第2図は、このパララックス・パリヤ1を通 して左右画像3b.3a を立体視する原理を示すもの で、この構成は一般にバララックス・ステレオグ ラムと呼ばれている。

だが、このパララックス・ステレオグラムに収 められている情報は、左右 2 眼分、すなわち平面 画像の 2 倍にすぎない。また、視点の移動も決し

3.発明の詳細な説明

[産業上の利用分野]

本発明は、パララックス・パリヤ方式によるメガネ不要の3次元画像表示装置に関し、特にパララックス・パリヤ・ストライブを電子的手段により発生させ、そのパリヤ・ストライブの形状・位置等を制御できるような機能を有する3次元画像表示装置に関する。

[発明の概要〕

本発明では、バララックス・バリヤを用いたメガネ不要の3次元画像表示装置において、バリヤ・ストライブを電子的に発生させるとと、ストライブを電子の形が、に、ライブの数・幅・間隔)や位置(位相)・濃度などで使用目的に応じて、電子的に可変制御することにより、2次元画像表示装置としても使用であるが、2次元画像表示表置としたものである。

て自由とは言えない。そこで、これらの欠点を除くために、1918年にC.W. Kanol tによって提案されたのが、バララックス・バノラマグラムと名付けられた連続的 3 次元画像表示方法である。この方式は、例えば第 3 図に示すように、バララックス・バリヤ1 のアパーチャ1 aの開口比を例えば1/8 ~1/10ぐらいに下げ、その代りに画像表示面10に多方向から複像した連続画像を配置するものである。このとき、方向分解数 6~10の連続的 3 次元画像が得られる。

一方、メガネ不要の3次元画像表示方式には、 上記のパララックス・パリヤ方式の他に、レンティキュラ方式、パリフォーカルミラー方式、インテグラル・フォトグラフィー方式、ホログラフィー方式などいくつかの方式があるが、これらの方式の説明は本発明と直接関係ないので省略する。

[発明が解決しようとする課題]

従来のバララックス・バリヤ方式の3次元画像 表示装置では、通常、バリヤをフィルム等で作成 し、このバリヤを通して、その背後に表示される 多方向連続画像を観察するように構成されてい、 3方向連続画像を観察するように構成されてい、 3方のため、このような従来装置では、通常の 2次元画像を表示させると、このバララック・ バリヤが障害となって2次元画像を見ることがで きない。すなわち、従来のバララックスがで きない。なたでは2次元画像表示装置では2次元画像表示装置では2次元画像表示表

一方、コンピューターグラフィックスや CAD/CAM、ワークステーション等で用いられるディスブレイ装置では、使用目的に応じて 2 次元画像で表示したり、あるいは、3 次元画像で表示したいという要望が強い。また、将来の3 次元テレビション表示装置においても、2 次元画像の番組を表示できる必要があり、2 次元画像表示との両立性を有するか否かは、きわめて重要な問題である。

さらに、従来のパララックス・パリヤ方式の

また、本発明の一形態は、パリヤ発生手段としては、画像表示手段が単なる2次元画像を表示する際には、パララックス・パリヤの発生を停止してパリヤ発生面が無色透明のパネルとなることを特徴とする。

er paragonal is terrer e

また、本発明の別の形態は、バリヤ発生手段としては、バララックス・バリヤ・ストライブの数、幅、閉口比および間隔を含む形状や発生位置の位相を指示入力に応じて自在に可変制御する制御手段を有することを特徴とする。

また、本発明の別の形態は、3次元國像を観察 する観察者の頭郎位置を検出する検出手段と、検 出手段の検出信号に基づいて、観察者が左右方向 に瞳孔間隔だけ移動する毎にパリヤ発生手段のパ ララックス・パリヤ・ストライブの位相を反転さ せるパリヤ反転手段とを有することを特徴とす

また、本発明の別の形態は、パリヤ発生手段の パララックス・パリヤ・ストライプの発生面が平 面状または曲面状に形成されていることを特徴と

3 次元画像表示装置では、一度、パリヤの形状や 位置などを決めた後に、それらを変更することは 容易ではない。

本発明の目的は、これらの問題点を解決するために、バララックス・バリヤを透過形液晶素子などにより電子的に発生させ、このバリヤ・ストライブの形状(ストライブの数・幅・間隔)や、位置(位相)、減度などを使用目的に応じて電子的に可変制御できるようにした3次元画像表示装置を提供することにある。

[課題を解決するための手段]

かかる目的を達成するため、本発明は、透過型 液晶表示素子を用いてバララックス・バリヤ・ストライブを電子制御により発生するバリヤ発生手 段と、バララックス・バリヤ・ストライブの発生 位置から所定距離を離して表示画面が配設され て、少なくとも左右画像が交互に配列された多方 向画像を該表示画面に出力表示可能な画像表示手 段とを具備したことを特徴とする。

する.

また、本発明の別の形態は、パリヤ発生手段としては、パララックス・パリヤ・ストライブの 遠度を可変制御する濃度調整手段を有することを 特徴とする。

[作 用]

本発明では、バリヤ・ストライブを電子式に発生させると共に、発生したバリヤ・ストライブの形状(ストライブ数、幅、間隔)や位置(位相)、濃度などを自由に可変制御できるようにしたので、2次元画像表示装置としても、また3次元画像表示装置としても使用することができ、両立性のある画像表示装置を実現することができ

[実施例]

以下、図面を参照して本発明の実施例を詳細に 説明する。

第1図は、本発明実施例による電子式パララッ

クス・パリヤを用いた3次元画像表示装置の基本 構成を示す。

前述の第2図、および第3図に示したと同様 に、パララックス・パリヤ方式の本例では、2方 向または多方向から過像した連続函像を縦のス リット像として画像表示装置の画像表示面10に表 示する。この場合、この画像表示装置としては、 液晶,プラズマ, EL (エレクトロルミネッセン ス)、 蛍光表示管等を用いた平面型ディスプレイ が好適であるが、後述するようにCRT (降極線 管)やブロジェクション・スクリーンのように曲 面状のディスプレイでも適用できる。また、上記 画像表示面10から一定距離 D だけ間隔をあけるた めに、厚さDの透明なガラス又はアクリル板のス ペーサ11を画像表示面10の表側に密着して配置す る。さらに、そのスペーサ11の手前側(観察側) に電子式パララックス・パリヤ12を密着して配置 する.

この電子式パララックス・パリヤ12は、例えば、透過形液晶表示素子などを用いて、そのXYア

像表示面10上での各画像間の中心距離、 C は視距 載である(第2 図参照)。

一方、パリヤ12に発生させる電子パリヤ・スト ライブの開口幅 B は次式(2) により定める。

ः कृष्टेन्द्रभाग्या प्राच्याक्ष्यं स्थानिकारिकार

$$8 = \left(\frac{C - D}{C}\right) - I \tag{2}$$

一方、第 2 図、第 3 図において、観察者の視点の位置(0) は、実際には第 4 図に示すように、有限の拡がり(大きさ0')をもつため、実際の電子式パリヤの開口幅 8'は次式(3) のように修正する。

$$8. = 1 \left(\frac{c}{c - p} \right) - \left(\frac{c}{p} \right) \cdot 0.$$
 (3)

また、ステレオグラム表示面10の実際の画業間 臨!も、次式(4) のように修正する。

$$I_{s} = I - (\frac{c - b}{B_{s}}) \cdot 0,$$
 (4)

第5回は、本発明実施例の電子式バリヤ12を用いた背面投写形3次元画像表示装置の構成例を示す。ビデオプロジェクタ20によって左右画像が交

ドレスをマイクロコンピュータ 13等の制御手段により指定することにより、パリヤ面上の任意の位置に任意の形状 (パリヤ・ストライブの数・幅・開口比) のパリヤ・ストライブを形成することができるものである。

また、このパララックス・パリヤ12に縦縞状のパリヤ・ストライブを発生させるのは、3次元画像表示の場合であって、2次元画像表示の際には、マイクロコンピュータ13はそのパリヤ・ストライブの発生を停止し、画像表示領域の全域にわたって無色透明な状態となるようにパララックス・パリヤ12を駆動制御する。これによって、本装置は、2次元画像表示装置としても使用することができる。

特に、第1図において、画像表示面10と電子式 パララックス・パリヤ12との間隔 D は、

$$0 = \frac{1 \cdot c}{E \cdot I} \tag{1}$$

となるようにする。

ここで、Eは両眼間隔距離(約6.5cm). 1 は画

互に機構状に配列された多方向画像 21をリアスクリーン 22上に投写し、リアスクリーン 22から一定距離 D だけ離れた位置に、第 1 図に示すのと同様の電子式 パリヤ12を配置する。第 5 図において電子式 パリヤ12のパリヤ・ストライブを開口比 1/N(Nは整数)にし、この開口比に対応させて、多方向画像 21をリアスクリーン 22上に投写すれば、パララックス・パノラマグラムが実現できる。

第6図は、本発明実施例の電子式バリヤ12を用いた前面投写形3次元国像表示装置の構成例を示す。本例では、複数のビデオブロジェクタからなるビデオブロジェクタ群10によって、多方向から白色スクリーン31上に画像を投写し、このスクリーン31上に画像を選子式バリヤ12のスリーン31上に写った画像を電子式バリヤ12のスリット・アバーチャを通して観察するものである。

第7図 (A)~(F) は、それぞれ本発明実施例の 電子式パリヤ12の種々の構成例を示したものである。第7図には、2視点用(パララックス・ステ レオグラム)と多視点用(パララックス・パノラ マグラム)、さらに電子バリヤのピッチが可変の例、および電子式バリヤが平板でなく、凸又は凹面状の例などが示されている。

第9図は、液晶パネルディスプレイと電子式パリヤ発生部とを一体型にした本発明実施例の3次元画像表示装置の構成例を示す。この場合、液晶

電極駆動回路46を駆動制御する。バルス幅変調回路44により、アノードドライバ47を介してアノード電極206を駆動し、カソードドライバ45によりカソード電極204を駆動し、トリガ電極駆動回路46によりトリガ電極205を駆動することにより、画像入力信号に応じた画像が表示される。

ત્રી કુન્યત્રુ કુરાઈ અન્ય કુન્યાના જોફારો કેલ્ડો

この他、本発明の電子式パリヤ12はEL. 蛍光表示 管、CRT などの他のディスプレイ装置と組み合わ せて、3次元画像表示装置を構成することができ る。

第12図は、本発明実施例の2眼式のバララックス・ステレオグラムにおいて立体視可能な観察視域を拡大する手段の一例を示す。

前述の第2図に示すように、2眼式のバララックス・ステレオグラムにおいては、観察者の見る位置が瞳孔間隔だけ移動すると左右の眼2a.2b に入る画像が逆転し、正しい立体像とはならず、いわゆる逆視の状態になる。このため、2眼式バララックス・ステレオグラムでは、立体視できる観察位置が狭い範囲に限定されることとなる。

パネルディスプレイ100 と電子式パリヤ11を同様 な構成とすることができる。

第10図は、本発明の他の実施例の構成を示すもので、ブラズマディスプレイ200 と電子式パリヤ12を一体型にした 3 次元画像表示装置の一例である。このブラズマディスプレイ200 は、背面ガラス201 上の絶縁層202 上に複数のパリアリブ203 が一定方向に形成され、さらに絶縁層202 上にカソード電極204 とトリガ電極205 が交互にパリアリブ203 と直交する方向に形成され、またパリアリブ203 上にアノード電極206 がそれぞれ形成されて構成されたものである。

第11図は、第10図の3次元面像表示装置の具体的な回路構成例を示す。

TVカメラやVTR から出力された画像入力信号はミキサ回路41でデジタル信号に変換され、信号変換専用回路(LSI)42 で 4 ピット階調のデータとなり、タイミングコントローラ43はこのデータに応じてバルス幅変調回路44、カソードドライバ45、トリガ

そこで、本実施例の2眼式パララックス・ステレオグラムにおいては、第12図に示すように、観察者の頭部位置を赤外線などを利用した検出回路51により検出し、この検出した信号に基づいて、頭部位置が瞳孔間隔(約6.5cm)だけ左右方向に移動する毎に、頭の移動に同期させて電子式パララックス・パリヤ12の位置(位相)を位相反転器52によりシフトさせる位相反転制御を行なう。従って、本例によれば、正常に立体視できる観察範囲を拡大することができる。

ところで、本発明の電子式パララックス・パリヤ方式の3次元画像表示装置では、パリヤ・ストライブを透過形液晶パネルなどで実現できることから、パリヤ・ストライブを白黒の2値階調表示のほかに、N階調(N≥2)の表示モードでパリヤ・ストライブを発生させることができる。これにより、パリヤ・ストライブによる光量損失を軽減させることができる。この場合、左右画像の分離が十分できるだけの過度(コントラスト)をもつバ、リヤ・ストライブにしておく。

[発明の効果]

人名英格雷斯 医电影

以上説明したように、発明によれば、パリヤ・ストライブを電子式に発生させると共に、発生したパリヤ・ストライブの形状(ストライブ数・幅、間隔)や位置(位相)、濃度などを自由に可変制御できるようにしたので、2次元画像表示装置としても、また3次元画像表示装置としても使用することができる。

また、本発明によれば、バララックス・バリヤの形状を電子式に可変できるので、一台のディスプレイで2眼式のみならず多眼式の立体画像表示装置として使用することができる。さらに、本発明において、バリヤを平面状ばかりでなく、曲面状にも構成することにより、CRT 等の曲面状のディスプレイにも適用できる。

さらに、本発明は観察者の頭部位置を検出し、 その検出信号によって電子バリヤの位置(位相) を、瞳孔間隔の距離だけ頭部が左右方向に移動す る毎に位相反転(バリヤと透過部の位置関係を逆

た背面投写形 3 次元國像表示装置の構成例を示す 平面図、

第6図は、本発明実施例の電子式バリヤを用いた全面投写形3次元画像表示装置の構成例を示す 平面図、

第7図は、本発明実施例の電子式パララックス・パリヤの構成例を示す斜視図、

第8図は、本発明実施例の電子式バリヤの構成例を詳細に示す断面図、

第9図は、本発明実施例の液晶パネルディスプ レイと電子式パリヤによる3次元画像表示装置の 構成例を示す断面図、

第10回は、本発明実施例のブラズマディスプレイと電子式バリヤによる3次元國像表示装置の構成例を示す分解斜視図、

第11図は、本発明実施例の電子式バララック ス・パリヤを用いた3次元画像表示装置の回路構成例を示すブロック図、

第12図は、本発明実施例のパララックス・ステ 模 レオグラムの観察視域の拡大手段を示す模式図で

転)させることにより、2眼式バララックス・ステレオグラムでの逆視現象を解決し、立体視可能な観察範囲を拡げることができる。

以上のような効果及び利点のある本発明装置は、コンピュータ端末用や産業用、医学用、放送用などの幅広い分野での3次元画像表示装置として役立つものである。

4. 図面の簡単な説明

第1 図は、本発明実施例の電子式バララック ス・バリヤを用いた3 次元画像表示装置の基本構成を示す斜視図、

第2図は、バララックス・ステレオグラムの原理を示す平面図、

第3図は、バララックス・バノラマグラムの原理を示す平面図、

第4図は、本発明実施例のバララックス・バリヤ及びステレオグラムの画素間隔の補正を示す平面図、

第5図は、本発明実施例の電子式パリヤを用い

ある.

10… 画像表示面、

11…スペーサ、

12… 電子式パララックス・パリヤ、

13…マイクロコンピュータ、

14…コントローラ、

15.18 …ドライバ、

20…ピデオブロジェクタ、

22…リアスクリーン、

30…ビデオプロジェッタ群、

32… 白色スクリーン、

51--頭郵位置検出回路、

52…電子バリヤの位相反転器、

100 …被晶パネルディスプレイ、

200 …プラズマディスプレイ。

特許出願人 日本放送協会

代理人 弁理士谷 義一

本光明実施例の電子式パフフックス・バリヤを用いた3次元画像表示表面の基本層版を影響を提回

第 1 図

Alberta Agreematic Control of the Control

パラフックス・ステレオグラムの原理を示す平面図

第 2 図

૧૯૪૧ કર્યું હતું હતા હોલ્લા છે. છે. કર્યું કર્યો કેલ્પલાઈ

パララッス・パノフマグラム の原理 (6視点の例)をおす平面図

雑3図

本任明实施伊In電子式/II/Y 8用以及實面投写形3次定區像表示装置の 構成伊I 8示于平面图

第 5 図

本光明実施例のパララックス・パリヤ及びステはグラムの画素間隔の補正を示す平面図

第 4 図

32 AE 271-7 JIZY-7 12 电子式パリヤ

本带明实在例agasty没品片本心至用いE电子式パリヤ。种瓜伊尼尔首面图 第8図

本来明实施护的电子实力中互形体制面投车形式决定直像象示规重的踝成例包含针面图

第6 図

· was

(C) 6 視^{息用}

(D) 可変ピッケバッヤ

(E) 凸面状/竹片

(F) 凹面状/パリヤ

本形明実施例の電子式パフラックス・パリヤの構成例を示す針視図

第7四

-645 -

本光明実施例の液晶パキルガスプレイと電子式パリヤドよう3次元画像表示装置の構成例を示す断面図

第 9 図

applement reserving

本発明実施伊加プラズマデスフレイと電子式パリアによる3次元画像表示装置の構成例を示す分解料視図

第10 図

本発明実施例の電子式パフラックス・パリヤを用いた3次元画像表示装置(フラズマデスブレイの場合)の回路構成例を示すフロック図

第 11 図

ga yana addigashka silabbar kasi

本代明実施例のパラフックス・スナレオグラムの観察視域の拡大手段を示す模式図

第 12 図