## CSC 225

Algorithms and Data Structures I
Rich Little
rlittle@uvic.ca
ECS 516

# Algorithm Design Technique Divide and Conquer

- Best-known general algorithm design technique
- Some very efficient algorithms are direct results of this technique
  - > Mergesort
  - **>** Quicksort
  - ➤ Linear selection/median

# Algorithm Design Technique Divide and Conquer

- The problem instance is divided into smaller instances of the same problem, ideally of about the same size (typically n/2)
- The smaller instances are solved (typically recursively, though sometimes a different algorithm is employed when instances become small enough)
- If necessary, the solution obtained for the smaller instances are combined to get a solution to the original instance

## Merge-Sort

*Input*: A collection of *n* objects (stored in a list, vector, array or sequence) and a comparator defining a total order on these objects

Output: An ordered representation of these objects

→ Apply the Divide-and-Conquer technique to the Sorting problem.

## Merge-Sort Algorithm



## Merge-Sort

Let S be a sequence with n elements

#### 1. Divide

- ✓ If S has zero or one element, return S since S is sorted.
- ✓ Otherwise, remove all the elements from S and put them into two sequences  $S_1$  and  $S_2$  such that  $S_1$  and  $S_2$  each contain about half of the elements of S.

## Merge-Sort

#### 2. Recur

✓ Recursively sort sequences  $S_1$  and  $S_2$ 

### 3. Conquer

✓ Put the elements back into S by merging the sorted sequences  $S_1$  and  $S_2$  into a sorted sequence.

#### Example

Let S = [8,1,11,4,12,3,7,5] and sort using merge-sort.

## **Algorithm** mergeSort(S)

```
if S.size() < 2 then
     return S
divide (S_1, S_2, S)
S_1 \leftarrow \text{mergeSort}(S_1)
S_2 \leftarrow \text{mergeSort}(S_2)
merge (S_1, S_2, S)
return S
```

## Algorithm divide( $S_1$ , $S_2$ , S)

- $\checkmark S$  is a sequence containing n elements
- ✓ Let  $S_1$  and  $S_2$  be empty sequences

for 
$$i \leftarrow 0$$
 to  $\lfloor n/2 \rfloor$  do  $S_1[i] \leftarrow S[i]$  end for  $i \leftarrow \lfloor n/2 \rfloor + 1$  to  $n-1$  do  $S_2[i] \leftarrow S[i]$  end

## Merging Two Sorted Sequences

- Assume two sorted sequences  $S_1$  and  $S_2$
- Look up the smallest element of each sequence and compare the two elements
- Remove a smallest element *e* from these two elements from its sequence and add it to the output sequence *S*
- Repeat the previous two steps until one of the two sequences is empty
- Copy the remainder of the non-empty sequence to the output sequence

## **Algorithm** merge( $S_1$ , $S_2$ , S)

**Input:** Arrays  $S_1$  and  $S_2$  sorted in non-decreasing order; an empty output arrray S. **Output:** Array S containing the elements from  $S_1$  and  $S_2$  sorted in non-decreasing order

$$\begin{array}{l} i \leftarrow 1 \\ j \leftarrow 1 \\ \textbf{while} \ i \leq n_1 \ \textbf{and} \ j \leq n_2 \ \textbf{do} \\ \textbf{if} \ S_1[i] \leq S_2[j] \ \textbf{then} \\ \qquad \qquad S[i+j-1] \leftarrow S_1[i] \\ \qquad \qquad i \leftarrow i + 1 \\ \textbf{else} \\ \qquad \qquad S[i+j-1] \leftarrow S_2[j] \\ \qquad \qquad j \leftarrow j + 1 \\ \textbf{while} \ i \leq n_1 \ \textbf{do} \\ \qquad S[i+j-1] \leftarrow S_1[i] \\ \qquad \qquad i \leftarrow i + 1 \\ \textbf{while} \ j \leq n_2 \ \textbf{do} \\ \qquad S[i+j-1] \leftarrow S_2[j] \\ \qquad \qquad j \leftarrow j + 1 \end{array}$$

### **Worst-case Running Time of Merge-Sort**

```
if S.size() < 2 then
      return S
divide (S_1, S_2, S)
S_1 \leftarrow \text{mergeSort}(S_1)
S_2 \leftarrow \text{mergeSort}(S_2)
merge (S_1, S_2, S)
return S
```

# Solve Recurrence Equation by Repeated Substitution

#### Another Substitution

## Depth of Recursion of Merge Sort



## Depth of Recursion of Merge Sort

