Markov Decision Processes

Dr. Demetrios Glinos University of Central Florida

CAP4630 – Artificial Intelligence

Today

- Markov Decision Processes
- Value Iteration
- Policy Evaluation
- Policy Extraction
- Policy Iteration
- Summary of MDP Algorithms

The Grid World Problem Domain

Grid World

- Agent lives in the grid
- Walls block the agent's path
- Agent cannot move onto gray cell
- Agent can exit from terminal cells

Movement is nondeterministic

- 80% go in intended direction
- 10% go in 90° clockwise direction
- 10% go in 90° counterclockwise direction

Agent gets a reward each step

- Small "living" reward for nonterminal state
- Large rewards at end (good & bad)

If agent tries to move into a wall or the gray cell, it stays where it started (no change)

Markov Decision Process

An MDP is

- A set of states $s \in S$
- A set of actions a∈ A
- A transition model P(s' | s, a)
- A reward function R(s)
- A start state s₀
- Possibly one or more terminal states
- Transitions have the Markov property
 - P(s' | s, a) does not depend on how the agent got to state s
 - we can think of the transition model as a 3-D table of probabilities (for now)

Policies

- Solution cannot be a fixed sequence of actions
- Solution must specify what to do for every state
- We call such a solution a policy, π
 - $\pi(s)$ is the action to take for state s
 - much like a look up table or cipher code book

- Executing a policy produces nondeterministic (stochastic) results
- An optimal policy must *maximize expected utility*

Optimal Policy Example

• R(s) = -0.04 (a small negative reward for entering each non-terminal state)

Q: Why go left from (3,1)?

source: Fig. 17.2(a)

Balancing Risks and Rewards

These are all optimal for their respective reward function ranges

$$R(s) < -1.6284$$

$$-0.4278 < R(s) < -0.0850$$

$$-0.0221 < R(s) < 0$$

source: Fig. 17.2(b)

Example: Hiking the Grand Canyon

Grand Canyon Hiking Problem

- Hiker wants to get to the bottom quickly, but must pace himself/herself
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Hiking Search Tree

MDP Search Trees

Each MDP state projects an expectimax search tree

Horizons

- We measure time by the number of moves (a sequence)
- We can have a finite horizon for decision making
 - After N moves, game over
 - $U_h([s_0, s_1, ..., s_{N+k}]) = U_h([s_0, s_1, ..., s_N])$, for all k > 0
 - e.g., for Grid World, if agent at (3,1) and N=3, the agent must head straight for the +1 terminal state, but for N=100, can take safe route to left
 - → optimal policy for finite horizon is nonstationary (changes over time)

Compare:

With an infinite horizon, optimal policy is stationary; it can (but is not required to) lead agent to a terminal state

Stationarity

 Stationarity is the assumption that the agent's preferences between state sequences are stationary

```
\rightarrow if agent prefers [ s_1, s_2, ... ] over [ s'_1, s'_2, ... ] then the agent should also prefer [ s_0, s_1, s_2, ... ] over [ s_0, s'_1, s'_2, ... ]
```

- Given stationarity, there are just two coherent ways to assign utilities to sequences
 - Additive rewards: $U_h([s_0, s_1, s_2, ...]) = R(s_0) + R(s_1) + R(s_2) + ...$
 - Discounted rewards: $U_h([s_0, s_1, s_2, ...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...$

where γ is a discount factor between 0 and 1 and represents preference for sooner rather than later

Games Without End

- Problem: If sequences are infinitely long, undiscounted rewards will generally converge to +/- ∞
 - tough to compare policies
- Solutions:
 - 1. Discount with γ < 1 and rewards bounded by +/- R_{max}
 - the smaller the value of γ, the smaller the horizon
 - 2. Proper policy: set up the game so that every sequence will end up in a terminal state eventually
 - 3. Finite Horizon: similar to depth-limited search
 - but policies become nonstationary
 - 4. Average reward per turn as basis for comparison of policies

Today

- Markov Decision Processes
- Value Iteration
- Policy Evaluation
- Policy Extraction
- Policy Iteration
- Summary of MDP Algorithms

Terminology for Optimality

Value (utility) of a state s:

V*(s) = expected utility acting
optimally and starting from state s

• Value (utility) of a q-state (s, a):

Q*(s, a) = expected utility acting optimally having taken action a from state s

Optimal policy:

 π^* (s) = the optimal action to take from state s

Recursive Definition of Value

Basic idea:

- Compute the <u>expectimax</u> value of a state
- this represents the expected utility under optimal action
- use average sum (expected value) of discounted rewards for future values
- → this gives us the "Bellman equations"

$$V^*(s) = \max_a Q^*(s,a)$$

$$Q^*(s,a) = \sum_{s'} P(s' | s,a) [R(s') + \gamma V^*(s')]$$

Thus
$$V * (s) = \max_{a} \sum_{s'} P(s' | s, a) [R(s') + \gamma V * (s')]$$

and
$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} V^*(s)$$

state s

← action a

Value Iteration Concept

- Bellman equations form a system of equations
 - n equations, one for each state
 - n unknown state utilities

- This system is nonlinear
 - since use the "max" operator
 - can't use linear algebra methods
 - use iteration instead
- Basic idea (similar to Jacobi iteration for linear systems)
 - 1. start with arbitrary initial values for utilities
 - 2. calculate new values for utilities based on current values
 - 3. repeat until convergence criteria satisfied

Value Iteration Algorithm

- Start with zero vector: V₀(s) = 0, for all s
- Compute for all s: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s' \mid s, a) [R(s') + \gamma V_k(s')]$
- Repeat until convergence
 - convergence guaranteed if $\gamma < 1.0$
 - solution is unique
- Complexity of each iteration: O(S²A)

Grid World V*(s) Values

source: Fig. 17.3

Above utilities are for $\gamma = 1$ and R(s) = -0.04 for nonterminal states. Values reflect proximity to +1 terminal state and possible outcomes

Q: What is the optimal policy starting from (1,1)? From (1,3)?

Example: Value Iteration

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s' \mid s, a) [R(s') + \gamma V_k(s')]$$

Assume no discount ($\gamma = 1$) Rewards as shown

Example calculation for $V_1(cool)$:

Start with
$$V_0(cool) = V_0(warm) = V_0(overheated) = 0$$

$$V_1(cool) = max_a[P(cool|cool,fast)(R(cool) + V_0(cool)) + P(warm|cool,fast)(R(warm) + V_0(warm)),$$

$$P(cool|cool,slow)(R(cool) + V_0(cool)) + P(warm|cool,slow)(R(warm) + V_0(warm))]$$

$$= \max_{a} [(0.5)(2+0) + (0.5)(2+0), (1.0)(1+0) + (0.0)(2+0)]$$

$$= \max_{a} [2_{a=fast}, 1_{a=slow}] = 2 (fast)$$

Example: Value Iteration

Iteration	Cool	Warm	Overheated
V_0	0	0	0
V_1	2 (fast)	1 (slow)	0
V_2	3.5 (fast)	2.5 (slow)	0

Final policy: Go as fast as possible without risking overheating (i.e., if cool, go fast, but if warm, go slow)

Homework: Verify results in table for V_1 (warm), V_2 (cool), and V_2 (warm)

Today

- Markov Decision Processes
- Value Iteration
- Policy Evaluation
- Policy Extraction
- Policy Iteration
- Summary of MDP Algorithms

A Policy is Fixed

- Expectimax computes max over all actions to compute optimal value
- Policy computes a value that is not necessarily optimal, but tree much simpler

Utilities for a Policy

- Utility of a state s under a fixed policy π is expected total discounted rewards starting from s and following policy π , which we denote by $V^{\pi}(s)$
- Bellman equation for a fixed policy:

$$V^{\pi}(s) = \sum_{s'} P(s' \mid s, \pi(s)) [R(s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Policy 1:

Always go left

Policy 2:

Always go forward

Calculating the Values

Basic idea: Iterate, just like for value iteration

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} P(s' | s, \pi(s)) [R(s') + \gamma V_k^{\pi}(s')]$$

- Complexity: O(S²) per iteration
- This is just a linear system! (total complexity O(kS²) ≈ O(n³)

Today

- Markov Decision Processes
- Value Iteration
- Policy Evaluation
- Policy Extraction
- Policy Iteration
- Summary of MDP Algorithms

Extracting Actions from Values

Suppose we are given the optimal values $V^*(s)$

Q: What is the policy for this data?

Q: What action should we take in each state?

source: Fig. 17.3

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} V * (s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) [R(s') + \gamma V^*(s')]$$

Q: Why is only one step needed?

Policy Extraction

Above utilities (values) are for $\gamma = 1$ and R(s) = -0.04 for nonterminal states.

Values reflect proximity to +1 terminal state and possible outcomes

Extracting Actions from Q-Values

- This situation is even easier
 - Q-values give us values for each action directly
 - Trivial to choose the largest value

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s,a)$$

The policy for state s is to take the action from s that has the highest q-value

This produces the same policy that we obtain by moving to the adjacent state with the highest state value

(q-values for a sample Grid World cell)

Policy Extraction Comparison

Policies extracted from values and q-values are the same

Today

- Markov Decision Processes
- Value Iteration
- Policy Evaluation
- Policy Extraction
- Policy Iteration
- Summary of MDP Algorithms

Motivation

- Value iteration algorithm is somewhat slow:
 O (S²A) per iteration
- The "max" (hence, the action to choose) at each state changes slowly
- The policy often converges well before the values
- Approach: iterate the policy, not the values

Policy Iteration

- Basic idea: Iterate, but not everything at once ("asynchronous policy iteration")
 - Step 1: Policy Evaluation
 - Calculate utilities for a given policy until convergence
 - Step 2: Policy Improvement
 - Update policy using one-step look-ahead
 - Inputs (for the "future" values) are the values found in Step 1
- This is still optimal:
 - As long as compute all values infinitely many times in the limit, this will converge to the optimal

Computing Values and Actions

- Step 1 (Evaluation):
 - Given a fixed current policy π_i , iterate (over k) until convergence:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} P(s' | s, \pi_i(s)) [R(s') + \gamma V_k^{\pi_i}(s')]$$

- Step 2 (Improvement):
 - For fixed values (computed in Step 1), get a better policy using one-step lookahead policy extraction:

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) [R(s') + \gamma V^{\pi_i}(s')]$$

Repeat Steps 1 and 2 until the policy converges

Summary of MDP Algorithms

Task Algorithm

Compute optimal values: use value iteration or policy iteration

Compute values for a particular policy: use policy evaluation

Compute policy from values: use policy extraction

Similarities:

All are variations of the Bellman equations All use one-step look-ahead expectimax

Differences:

max over actions v. fixed policy

