EXHIBIT 6

(12) United States Patent

Falster

(10) Patent No.:

US 6,236,104 B1

(45) Date of Patent:

*May 22, 2001

(54)	SILICON ON INSULATOR STRUCTURE
• •	FROM LOW DEFECT DENSITY SINGLE
	CRYSTAL SILICON

(75)	Inventor:	Robert J	. Falster.	Milan	(TI)
٠,	,	IM CHICL.	MICOSOL . O	· · · · · · · · · · · · · · · · · · ·	TATIONI	** <i>/</i>

(73) Assignee: MEMC Electronic Materials, Inc., St. Peters, MO (US)

(*) Notice:

This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/387,288

(22) Filed: Aug. 31, 1999

Related U.S. Application Data

(60) Provisional application No. 60/098,902, filed on Sep. 2, 1998.

(51)	Int. Cl. ⁷	
		H01L 27/12; H01L 31/0392

) Field of Search257/347, 618, 257/913

(56) References Cited

U.S. PATENT DOCUMENTS

4,314,595	2/1982	Yamamoto et al.	********************************	148/1.5
4,376,657	3/1983	Nagasawa et al.	,	148/1.5

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

39 05 626 A1 43 23 964 A1 44 14 947 A1	1/1994	(DE)	
198 06 045 A1	8/1998	(DE)	

02180789	7/1990	(EP)		C30B/15/20
04108682	4/1992	(EP)		C30B/15/00
0 503 816 B1	9/1992	(EP)	***************************************	C30B/33/02
0 504 837 A2	9/1992	(EP)		C30B/15/00
0 536 958 A1	4/1993	(EP)	************	C30B/15/00
0 716 168 A1	6/1996	(EP)		C30B/15/14
0 799 913 A1	10/1997	(EP)	***************************************	C30B/15/00
0 962 556 A1	8/1999	(EP)	***************************************	C30B/15/00
2182 262	5/1987	(GB)	***************************************	C30B/15/20
3-9078	2/1991	(JP)		C30B/29/06
5 -155 700	6/1993	(JP)		C30B/33/02
7-201874	8/1995	(JP)		H01L/21/322

(List continued on next page.)

OTHER PUBLICATIONS

Falster, R., et al., "The Engineering of Silicon Wafer Material Properties Through Vacancy Concentration Profile Control and the Achievement of Ideal Oxygen Precipitation Behavior", Mat. Res. Soc. Symp. Proc., vol. 510, pp. 27–35, 1998.

(List continued on next page.)

Primary Examiner—Ngân V. Ngô (74) Attorney, Agent, or Firm—Senniger, Powers, Leavitt & Roedel

(57) ABSTRACT

The present invention relates to a silicon on insulator ("SOI") structure having a low defect density device layer and, optionally, a handle wafer having improved gettering capabilities. The device layer comprises a central axis, a circumferential edge, a radius extending from the central axis to the circumferential edge, and a first axially symmetric region which is substantially free of agglomerated intrinsic point defects. Additionally, the present invention is directed to such a SOI structure which has a Czochralski single crystal silicon handle wafer which is capable of forming an ideal, non-uniform depth distribution of oxygen precipitates upon being subjected to the heat treatment cycles of essentially any arbitrary electronic device manufacturing process.

40 Claims, 35 Drawing Sheets

US 6,236,104 B1

Page 2

U.S. PATENT DOCUMENTS

4,437,922	3/1984	Bischoff et al 156/603
4,505,759	3/1985	O'Mara 148/1.5
4,548,654	10/1985	Tobin 148/1.5
4,851,358	7/1989	Huber 437/10
4,868,133	9/1989	Huber 437/10
4,981,549	1/1991	Yamashita et al 156/620.4
5,024,723	* 6/1991	Goesele .
5,189,500	2/1993	Kusunoki
5,264,189	11/1993	Yamashita et al 422/249
5,327,007	7/1994	Imura et al 257/610
5,401,669	3/1995	Falster et al 437/12
5,403,406	4/1995	Falster et al 148/33.2
5,436,175	* 7/1995	Nakato et al 437/24
5,445,975	8/1995	Gardner et al 437/10
5,474,020	12/1995	Bell et al 117/20
5,478,408	12/1995	Mitani et al 448/33.3
5,485,803	1/1996	Habu 117/14
5,487,354	1/1996	von Ammon et al 117/13
5,502,010	3/1996	Nadahara et al 437/247
5,502,331	3/1996	Inoue et al 257/617
5,534,294	7/1996	Kubota et al 427/255
5,539,245	7/1996	Imura et al 257/610
5,593,494	1/1997	Falster 117/2
5,611,855		Wijaranakula 117/2
5,659,192	8/1997	Sarma et al 257/347
5,667,584	9/1997	Takano et al 117/13
5,674 ,7 56	10/199 7	Satoh et al 437/10
5,704,973	1/1998	Sakurada et al 117/15
5,728,211	3/1998	Takano et al 117/14
5,738,942	4/1998	Kubota et al 428/428
5,788,763	8/1998	Hayashi et al 117/2
5,939,770	8/1999	Kageyama 257/611
5,944,889	8/1999	Park et al 117/94
5,954,873	9/1999	Hourai et al 117/13
5,968,262	10/1999	Saishouji et al 117/13
5,968,264	10/1999	lida et al 117/30
5,994,761	* 11/1999	Falster et al
6,045,610	4/2000	Park et al 117/13

FOREIGN PATENT DOCUMENTS

7321120	12/1995	(JP) H01L/21/322
7335657	12/1995	(JP) H01L/21/322
8-045945	2/1996	(JP)H01L/21/322
8045944	2/1996	(JP).
8045947	2/1996	(JP) H01L/21/322
8-268794	10/1996	(JP) C30B/15/20
8-293589	11/1996	(JP) H01L/27/12
8-330316	12/1996	(JP) H01L/21/322
9-199416	7/1997	(JP) H01L/21/20
9-202690	8/1997	(JP) C30B/15/22
9-326396	12/1997	(JP) H01L/21/322
11-067781	3/1999	(JP) H01L/21/322
11-150119	6/1999	(JP) H01L/21/322
11-157995	6/1999	(JP) C30B/29/06
11-180800	7/1999	(JP) C30B/29/06
11-189495	7/1999	(JP) C30B/29/06
11-199386	7/1999	(JP) C30B/29/06
11-199387	7/1999	(JP) C30B/29/06
WO 97/26393	7/1997	(WO) C30B/29/06
WO 98/38675	9/1998	(WO) H01L/21/322
WO 98/45507	10/1998	(WO) C30B/15/00
WO 98/45508	10/1998	(WO) C30B/15/00
WO 98/45509	10/1998	(WO).
WO 98/45510	10/1998	(WO) C30B/15/00

OTHER PUBLICATIONS

Jacob, M., et al., "Influence of RTP on Vacancy Concentrations", Mat. Res. Soc. Symp. Proc. vol. 490, pp. 129-134, 1998.

Pagani, M., et al., "Spatial variations in oxygen precipitation in silicon after high temperature rapid thermal annealing", Appl. Phys. Lett., vol. 70, No. 12, pp. 1572–1574, 1997. Shimura, Fumio, "Semiconductor Silicon Crystal Technology", Academic Press, Inc., San Diego, CA, pp. 361–367, 1989.

Zimmermann, H., et al., "Vacancy Concentration Wafer Mapping in Silicon", J. Crystal Growth, vol. 129 (1993), pp. 582-592, 1993.

Abe, et al., "Defect-Free Surfaces of Bulk Wafers by Combination of RTA and Crystal Growth", (publication information unknown).

Abe, et al., "Innovated Silicon Crystal Growth and Wafering Technologies", Electrochemical Society Proceedings, vol. 97, No. 3, pp. 123–133.

E. Dornberger et al., "The Dependence of Ring Like Distributed Stacking Faults on the Axial Temperature Gradient of Growing Czochralski Silicon Crystals", Electrochemical Society Proceedings, vol. 95–4, (1995), pp. 294–305.

Hara, et al., "Enhancement of Oxygen Precipitation in Quenched Czochralski Silicon Crystals", J. Appl. Phys., vol. 66, No. 8 (1989), pp. 3958–3960.

Jacob, et al., "Determination of Vacancy Concentrations in the Bulk of Silicon Wafers by Platinum Diffusion Experiments", J. Appl. Phys., vol. 82, No. 1 (1997), pp. 182–191. Kissinger, et al. "A Method for Studying the Grown-In Defect Density Spectra in Czochralski Silicon Wafers", J. Electrochem. Soc., vol. 144, No. 4 (1997), pp. 1447–1456. A.J.R. de Kock, et al. "The Effect of Doping on the Formation of Swirl Defects in Dislocation-Free Czochralski-Grown Silicon Crystals", Journal of Crystal Growth, vol. 49 (1980), pp. 718–734.

von Ammon et al., "The Dependence of Bulk Defects on the Axial Temperature Gradient of Silicon Crystals During Czochralski Growth", Journal of Crystal Growth, vol. 151 (1995), pp. 273–277.

V. Voronkov et al., "Behaviour and Effects of Intrinsic Point Defects in the Growth of Large Silicon Crystals", Electrochemical Society Proceedings, vol. 97–22 (1997), pp. 3–17. Voronkov, "The Mechanism of Swirl Defects Formation in Silicon", Journal of Crystal Growth, vol. 59, pp. 625–643. Winkler, et al., "Improvement of the Gate Oxide Integrity by Modifying Crystal Pulling and Its Impact on Device Failures", J. Electrochem. Soc., vol. 141, No. 5 (1994), pp. 1398–1401.

Domberger, E., et al., "Simulation of Grown-In Voids in Czochralski Silicon Crystals", Electrochemical Society Proceedings, vol. 97, No. 22, pp. 40–49.

Dornberger, E., et al., "Simulation of Non-Uniform Grown-In Void Distributions in Czochralski Silicon Crystals", Electrochemical Society Proceedings, vol. 98, vol. 1, pp. 490-503.

Dornberger, E., et al., "The Impact of Dwell Time Above 900° C During Crystal Growth on the Gate Oxide Integrity of Silicon Wafers", Electrochemical Society Proceedings, vol. 96, No. 13, pp. 140–151.

Nakamura, Kozo, et al., "Formation Process of Grown-In Defects in Czochralski Grown Silicon Crystals", Journal of Crystal Growth, vol. 180, pp. 61–72, 1997.

Sinno, T., et al., "On the Dynamics of the Oxidation-Induced Stacking-Fault Ring in as-grown Czochralski silicon crystals", Applied Physics Letters, vol. 70, No. 17, pp. 2250–2252, 1997.

US 6,236,104 B1

Page 3

Sinno, T., et al., "Point Defect Dynamics and the Oxidation-Induced Stacking-Fault Ring in Czochralski-Grown Silicon Crystals", J. Electrochem. Soc., vol. 145, No. 1, pp. 302–318, 1998.

Tan, T. Y., "Point Defects, Diffusion Processes, and Swirl Defect Formation in Silicon", Appl. Phys. A., vol. 37, pp. 1–17, 1985.

Vanhellemont, J., et al., "Defects in As-Grown Silicon and Their Evolution During Heat Treatments", Materials Science Forum, vol. 258-263, pp. 341-346, 1997.

Herng-Der Chiou, "The Effects of Preheatings on Axial Oxygen Precipitation Uniformity in Czochralski Silicon Crystals", J. Electrochem. Soc., vol. 139, No. 6, Jun., 1992. Abstract of Japanese Patent No. 8–293589.

Abstract of Japanese Patent No. 9-326396.

Chiou, H.D., et al., "Gettering of Bonded Soi Layers", Proceedings of the International Symposium on Silicon-On-Insulator Technology and Devices pp. 416-423.

Hawkins, G.A., et al., "Effect of Rapid Thermal Processing on Oxygen Precipitation in Silicon", Mat. Res. Soc. Symp. Proc., vol. 104, pp. 197–200, 1988.

Hawkins, G.A., et al., "The Effect of Rapid Thermal Annealing of the Precipitation of Oxygen in Silicon", J. Appl. Phys., vol. 65, No. 9, pp. 3644-3654, 1989.

Mulestagno, L., et al., "Gettering of Copper in Bonded Silicon Wafers", Electrochemical Society Proceedings, vol. 96, No. 3, pp. 176–182.

International Search Report for Application No. PCT/US99/19958, filed Aug. 31, 1999, 11 pages.

Abstract of Japanese Patent No. 59119822.

* cited by examiner

U.S. Patent

May 22, 2001

Sheet 1 of 35

May 22, 2001

Sheet 2 of 35

U.S. Patent May 22, 2001

Sheet 3 of 35

U.S. Patent May 22, 2001 Sheet 4 of 35 US 6,236,104 B1

May 22, 2001

Sheet 5 of 35

U.S. Patent May 22, 2001 Sheet 6 of 35

U.S. Patent May 22, 2001

Sheet 7 of 35

U.S. Patent May 22, 2001 Sheet 8 of 35

U.S. Patent May 22, 2001

Sheet 9 of 35

May 22, 2001

Sheet 10 of 35

F/G. 10 BMO DENSITY US. OXYGEN PARTIAL PRESSURE

May 22, 2001

Sheet 11 of 35

FIG.11

May 22, 2001

Sheet 12 of 35

FIG.13

FIG.14

May 22, 2001

Sheet 13 of 35

U.S. Patent May 22, 2001

Sheet 14 of 35 US 6,236,104 B1

May 22, 2001

Sheet 15 of 35

May 22, 2001

Sheet 16 of 35

F/G.18

May 22, 2001

Sheet 17 of 35

May 22, 2001

Sheet 18 of 35

F/G. 20

May 22, 2001

Sheet 19 of 35

FIG. 22

May 22, 2001

Sheet 20 of 35

May 22, 2001

Sheet 21 of 35

VACANCY-INTERSTITIAL BOUNDARY RADIUS (mm) 60 40 20 600 700 800 900 1000 500 300 400 200 CRYSTAL LENGTH (mm)

U.S. Patent May 22, 2001

Sheet 22 of 35

US 6,236,104 B1

F1G.26A

May 22, 2001

Sheet 23 of 35

US 6,236,104 B1

FIG. 26B

