Core concepts:

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{\mathcal{L}}{c^2} \hat{\Gamma}, \quad \overrightarrow{F} = 2\overrightarrow{E}$$

Magnetic Field

$$\vec{B} = \frac{\mu_0}{4\pi} \underbrace{\vec{2}\vec{v} \times \hat{r}}_{\vec{c}^2}, \quad \vec{F} = 2\vec{v} \times \vec{B}$$

What to Know:

- Definition of
$$\overrightarrow{E}$$

$$\overrightarrow{E} = \overrightarrow{F}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{9}{(\vec{r})^2} \hat{r} , \quad \vec{r} = \vec{r}_{obs} - \vec{r}_{src}$$

$$\overrightarrow{E} = \overrightarrow{E}_1 + \overrightarrow{E}_2 + \overrightarrow{E}_3 + \dots$$
Vector Sum!

Dipoles >
$$E_{\text{axis}} \approx \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}$$

 $E_{\text{perp}} \approx \frac{1}{4\pi\epsilon_0} \frac{p}{r^3}$

Conceptual

-How do charges behave on conductors?

- How to charge insulators of conductors?

- Static equilibrium in conductor $(\widehat{E}_{net} = 6)$

	Insulators	Conductors
Mobile Chos	No	Yes
Location of excess chy	Anywhere	Sustace
Spreading of excess elso	None	Uniformly constace
Enet inside	Can be anything	O, in equilibrium
Polarizatia	Induced dipoles (P=XE)	Moving charges $\overline{\gamma} = u E$

Extension of superposition principle

$$d\vec{E} = \frac{1}{4\pi\epsilon} \frac{dq}{c^2} \hat{c}$$

$$dq = \frac{Q}{l} dx$$

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{L} \int_0^L \frac{dx}{(x^2 + y^2)^{3/2}} \langle -x, y, 0 \rangle$$

- Be able to derive charged rod/ring (integral form)

- Use superposition with chy distributions

Ch 16

- Be able to calculate potential difference given
$$\vec{E}$$
 $\Delta V = -\vec{E} \cdot J \hat{r}$
 $\Delta V = -\int \vec{E} \cdot d\hat{r}$, path independence

- Know the connection between ΔV , ΔV , ΔK
 $\Delta K = -\Delta U$

$$\Delta K = -\Delta U$$

$$\Delta U = 2\Delta V \qquad P \neq \text{ an } \exp \left[\frac{1}{2}\right]$$

+ Chas want to move from higher to lower V
- chas, opposite

V of a pt chas
$$V(r) = \frac{1}{47160} \frac{2}{r}$$

Superposition, etc

$$\vec{B} = \underbrace{u_0}_{4T} \underbrace{\vec{v} \times \vec{r}}_{\vec{c}^2}$$

$$d\vec{B} = \frac{\mu_6}{4\pi} \frac{\vec{I} d\vec{l} \times \hat{r}}{\vec{r}^2}$$

$$\vec{B} = \frac{\mu_6 \vec{I}}{4\pi} \int \frac{d\vec{l} \times \hat{r}}{\vec{r}^2}$$

de in direction of I

Know the difference or relationship between i + I

$$\Gamma = |q|i$$

Conceptual

-What is steady State?

- What do E, i, T look like in a wire during Steady State?

- What is the source of steady state = ?

- What is the function of the bothy?

Use loop rule & node rule to find

 $\sum \Delta V = 0$ $i_{in} = i_{out}$

DV = EL

Macroscopic Circuit analysis

Be able to solve for I + DN everywhere

$$T = \Delta V$$

Eq Resistance

Series

Parallel

 $T = T_1 = T_2 \cdot \cdots$

Reg = R, + R2 + R3 ...

 $\Delta V = \Delta V, = \Delta Vz \dots$

 $T = T, +T_2 + \overline{L}_3 \cdots$

 $\frac{1}{\varrho_{e_{s}}} = \frac{1}{\varrho_{1}} + \frac{1}{\varrho_{2}} + \frac{1}{\varrho_{3}} \cdots$

- internal resistan Work with RC circuits

Force does no work, only deflects

For a current

In great
$$\vec{F} = g(\vec{E} + \vec{V} \times \vec{B})$$

- Hall effect

- motional emf

$$\frac{Ch}{2l}$$
- Know electric flux
$$\frac{1}{2l} = \frac{1}{2l} \cdot \frac{1}{2l}$$

$$\Phi_{E} = \widehat{E} \cdot \hat{n} \Delta A$$

$$= \int \widehat{E} \cdot \hat{n} dA$$

$$E = 600 \frac{1}{2}$$

Use Gauss' Law

Use symmetry to find E

$$\oint \vec{E} \cdot \hat{n} dA = E \int dA = E A$$

$$E A = \underbrace{2inside}_{E_0}$$

Changing
$$B \rightarrow E$$

Changing $B \rightarrow E$

$$\oint \vec{E} \cdot d\vec{l} = E = -d \oint mag$$

$$d mag = B \cdot h AA$$

Reminder!

Coura Evals