Inference Using t-Distributions

T-DISTRIBUTION FOR TWO SAMPLE INFERENCE

ONE-SIDED HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

Creativity Study

- \rightarrow Population mean: μ_I
- \rightarrow Population mean: μ_E
- •If the questionnaires had no effect, then we would expect:

$$H_0: \mu_I = \mu_E \leftrightarrow H_0: \mu_I - \mu_E = 0$$
 (NULL HYPOTHESIS)

- What is the scientific question of interest? Is it:
 - Is there any difference in the intrinsic/extrinsic group means?

$$\rightarrow H_A$$
: $\mu_I \neq \mu_E$

(ALTERNATIVE HYPOTHESES)

• Is the intrinsic group mean larger than the extrinsic group mean?

$$\rightarrow H_A$$
: $\mu_I > \mu_E$

One-Sided vs. Two-Sided

The core of p-values for t-tests is (heuristically):

 $\frac{\# \ of \ t-ratios \ (under \ H_0) \ as \ or \ more \ extreme \ than \ the \ observed \ t-statistic}{total \ \# \ of \ t-ratios}$

Of course, there are an infinite number of t-ratios, so we really interpret this as a <u>PROBABILITY</u>

"The p-value is the **probability** of observing a t-ratio as or more **extreme** as the observed t-statistic if the null hypothesis is true"

- For this to be made rigorous, we need to define EXTREME
- This depends on the form of the alternative hypothesis

Two-Sided P-values

Is there any difference in the intrinsic/extrinsic group means?

$$\rightarrow H_A: \mu_I \neq \mu_E$$

- Evidence against H_0 comes from values of $\overline{Y}_I \overline{Y}_E$ far from zero in either direction
- This is interpreted quantitatively as is
 - $\bar{Y}_I \bar{Y}_E$ large?
 - $\bar{Y}_E \bar{Y}_I$ large?

This can be summarized as:

Is
$$|\bar{Y}_I - \bar{Y}_E|$$
 large?

One-Sided P-values

• Is the intrinsic group mean larger than the extrinsic group mean?

$$\rightarrow H_A: \mu_I > \mu_E$$

- Evidence against H_0 comes from values of $\bar{Y}_I \bar{Y}_E$ far from zero in the positive direction only
- This is interpreted quantitatively as is
 - Is $\bar{Y}_I \bar{Y}_E$ large?

One-Sided P-values in SAS

```
PROC TTEST DATA=creativity ORDER=DATA SIDES=U;
    CLASS intrinsic;
    VAR SCORE;
RUN;
```

The TTEST Procedure Variable: score

intrinsic	N	Mean	Std Dev	Std Err	Minimum	Maximum
1	24	19.8833	4.4395	0.9062	12.0000	29.7000
0	23	15.7391	5.2526	1.0952	5.0000	24.0000
Diff (1-2)		4.1442	4.8541	1.4164		

One-sided CI

intrinsic	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
1		19.8833	18.0087	21.7580	4.4395	3.4504	6.2276
0		15.7391	13.4677	18.0105	5.2526	4.0623	7.4343
Diff (1-2)	Pooled	4.1442	1.7655	Infty	4.8541	4.0261	6.1138
Diff (1-2)	Satterthwaite	4.1442	1.7546	Infty			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	45	2.93	0.0027
Satterthwaite	Unequal	43.108	2.92	0.0028

Comparing the Distributions

One and Two Tailed Confidence Intervals

One-Sided P-values

• Is the intrinsic group mean larger than the extrinsic group mean?

$$\rightarrow H_A: \mu_I > \mu_E$$

- Evidence against H_0 comes from values of $\bar{Y}_I \bar{Y}_E$ far from zero in the positive direction only
- This is interpreted quantitatively as is
 - Is $\bar{Y}_I \bar{Y}_E$ large?

Related question:

What is the smallest value of μ_I - μ_E that is plausible for this data?

One Sample Confidence Interval

Two Tailed $\bar{Y} \pm t_{\alpha/2,(n-1)} \frac{s}{\sqrt{n}}$ Lower Interval Lower One Tailed $\bar{Y} + t_{\alpha,(n-1)} \frac{s}{\sqrt{n}}$

Upper One Tailed
$$\bar{Y} - t_{\alpha,(n-1)} \frac{S}{\sqrt{n}}$$

Creativity Study: Confidence Interval

$$\rightarrow \bar{y}_I - \bar{y}_E = 4.14$$

$$\bar{y}_I - \bar{y}_E = 19.88 - 15.74$$

PROC SORT DATA = creativity;
BY intrinsic;

RUN;

PROC UNIVARIATE data = creativity;
BY intrinsic;

RUN;

$$s_p = \sqrt{\frac{(n_I - 1) s_I^2 + (n_E - 1) s_E^2}{n_I + n_E - 2}} = \sqrt{\frac{(23)4.44^2 + (22)5.25^2}{45}}$$

$$\rightarrow s_p = 4.85$$

intrinsic=1					
Moments					
N	24	Sum Weights	24		
Mean	19.8833333	Sum Observations	477.2		
Std Deviation	4.43951296	Variance	19.7092754		
Skewness	-0.074952	Kurtosis	0.08425798		
Uncorrected SS	9941.64	Corrected SS	453.313333		
Coeff Variation	22.3278104	Std Error Mean	0.90621179		

intrinsic=0					
Moments					
N	23	Sum Weights	23		
Mean	15.7391304	Sum Observations	362		
Std Deviation	5.25259582	Variance	27.5897628		
Skewness	-0.76156	Kurtosis	-0.0935406		
Uncorrected SS	6304.54	Corrected SS	606.974783		
Coeff Variation	33.3728464	Std Error Mean	1.09524194		

Constructing an Upper One-Tailed Confidence Interval

One-Sided P-values in SAS

"We are 95% confident that the difference in the mean creativity score for the intrinsic group vs. the extrinsic group is at least 1.7655 [units?]"

Five Steps to Hypothesis Testing

Five steps

$$(D=0)$$

Step 1: Identify the null and alternative hypothesis.

$$H_0: \mu_I - \mu_E = D$$

 $H_A: \mu_I - \mu_E > D$

Step 2: Find the test statistic.

$$t = \frac{(\bar{y}_I - \bar{y}_E) - D}{s_p \sqrt{\frac{1}{n_I} + \frac{1}{n_E}}} = \frac{4.14}{4.85 \sqrt{\frac{1}{24} + \frac{1}{23}}} = 2.93$$

Step 3: Draw and shade the correct density according to H_A

t w/df = 24 + 23 - 2 = 45

Five steps

Step 4: Find the size of the shaded region

Step 5: Include the results in a statistical conclusion (hypothesis, p-value, and whether it is one-sided or two sided)

"There is convincing evidence that the intrinsic questionnaire mean is larger than the extrinsic (one-sided p-value =0.0027 from a pooled two-sample t-test for equal means)..."