Охолодження світлом. (10 балів)

- 1. Розглянемо атом маси m, що знаходиться у стані спокою. На нього падає пучок світла частоти ω потужністю (кількість енергії, що проходить через поперечний переріз пучка за одиницю часу) W. Вважаючи, що при зіткненні з фотоном атом з імовірністю $P(\omega)$ розсіює його у випадковому напрямі, а з імовірністю $1-P(\omega)$ вони не взаємодіють, знайти середню силу, яка діє на атом з боку пучка світла. (З бали) Розсіяння фотонів на атомі можна вважати незалежними. Вважати, що $\hbar\omega \ll mc^2$.
- 2. Атом з попереднього пункту рухається проти напряму розповсюдження пучка зі швидкістю $v \ll c$. Знайти середню силу, яка діє на атом з боку світла, включаючи члени порядку v/c. (4 бали)
- 3. Тепер на атом діють два пучки світла однакової потужності та частоти, які розповсюджуються в протилежних напрямках. Атом рухається зі швидкістю $v \ll c$ вздовж прямої розповсюдження пучків. З точністю v/c включно знайти середню силу, яка діє на атом з боку світла. (1 бал)
- 4. Ідеальний нерелятивістський газ атомів знаходиться у прозорій для світла пастці, що розташована на початку координат. Через пастку проходять три взаємно перпендикулярні прямі. Уздовж кожної з трьох прямих назустріч один одному розповсюджуються два пучки світла. Усі шість пучків мають потужність W і частоту ω. Вважаючи, що кожен атом розсіює світло незалежно від інших, і нехтуючи процесами перерозсіяння фотонів, знайти залежність кінетичної енергії атомів від часу. (1 бал). Вважаючи, що уся енергія газу це кінетична енергія атомів, знайти залежність температури газу від часу. (1 бал)

1. Задача на вік Всесвіту

Ядерна космологія дозволяє оцінити вік Всесвіту порівнюючи початкове відношення деяких радіоактивних ізотопів, що довго живуть, з відношенням в даний момент. Відомо, що в кінці першого мільйону років існування Всесвіту відношення кількості N_{235} ізотопу урану U^{235} до кількості N_{238} ізотопу урану U^{238} було рівним 1.65. В даний момент це відношення — $N_{235}/N_{238}\approx 0.0072$. Вважаючи, що періоди напіврозпаду цих ізотопів дорівнюють $t_{1/2}(U^{235})=1.03\cdot 10^9$ років, $t_{1/2}(U^{238})=6.67\cdot 10^9$ років, знайдіть вік Всесвіту.

2. Задача на вік Землі

Відомо, що ізотопи урану U^{235} і U^{238} шляхом ланцюжку розпадів перетворюються на стабільні ізотопи свинцю $U^{235} \to Pb^{207}$, $U^{238} \to Pb^{206}$. Нестабільний ізотоп свинцю Pb^{204} не має довгоживучих батьківських ядер і тому є мірою початкового розповсюдження свинцю.

Вважаючи що,

- a) ми маємо два зразка $\bf a$ та $\bf b$, для яких виміряно відношення N_{206}/N_{204} і N_{207}/N_{204} кількостей N_{207} і N_{206} ізотопів Pb^{207} і Pb^{206} до кількості N_{204} ізотопу Pb^{204} на даний момент,
- δ) ці відношення були рівними в початковий момент часу t_0 :

$$\frac{N_{207}^{t_0}}{N_{204}^{t_0}} = \frac{N_{206}^{t_0}}{N_{204}^{t_0}},$$

в) Земля і вся сонячна система були створені за період часу набагато менший, ніж вік Землі і сонячної системи.

Знайти приблизно вік Землі t_e .

3. Задача на нестійкість Джинса

Ріст неоднорідності густини речовини у ранньому Всесвіті приводить до утворення структур (галактик, скупчень галактик) у Всесвіті. В загальних рисах механізм росту неоднорідностей густини речовини є таким. Область підвищеної густини матерії створює навколо себе гравітаційне поле. Це поле притягує речовину, яка оточує цю область. Речовина в результаті притягання починає падати на цю область і створює ще більший контраст густини. Процес продовжується до тих пір, поки контраст густини $\delta \rho/\rho_0$ не стане порядку одиниці (тут ρ_0 — середнє значення густини речовини, яке не залежить від координат та часу, $\delta \rho$ — відхилення густини від рівноважного значення, яке є функцією координат та часу; в початковий момент $\delta \rho/\rho_0 \ll 1$).

Розглянемо область простору, заповнену рідиною, яка створює гравітаційний потенціал φ у відповідності до закону Ньютона

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 4\pi G \rho \tag{1}$$

де $\rho = \rho(\vec{r},t)$ — локальна густина рідини. Динаміка рідини визначається наступними рівняннями:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) + \frac{\partial}{\partial z}(\rho V_z) = 0, \tag{2}$$

$$\rho \frac{\partial \vec{V}}{\partial t} + (\rho V_x \frac{\partial}{\partial x}) \vec{V} + (\rho V_y \frac{\partial}{\partial y}) \vec{V} + (\rho V_z \frac{\partial}{\partial z}) \vec{V} = -U_s^2 \vec{\nabla} \rho - \rho \vec{\nabla} \varphi, \tag{3}$$

де \vec{V} — швидкість рідіни, U_s — швидкість звуку в рідині, яка вважається відомою величиною, $\vec{\nabla} f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}$ — градієнт функції f(x,y,z,t).

Вважаючи, що у випадку, коли збурення густини, швидкості і гравітаційного поля відсутні, середовище є статичним, тобто $\rho_0 = const, \vec{V}_0 = \vec{0}$, а φ_0 задовольняє рівнянню

 $\frac{\partial^2 \varphi_0}{\partial x^2} + \frac{\partial^2 \varphi_0}{\partial y^2} + \frac{\partial^2 \varphi_0}{\partial z^2} = 4\pi G \rho_0,$

- 1) Знайти в лінійному наближенні по збуренням (вважати $\vec{\nabla} \varphi_0 \approx 0$) на основі рівнянь (1)–(3) систему рівнянь, яка описує еволюцію малих збурень $\delta \rho, \delta \vec{V}, \delta \varphi$.
- 2) На основі отриманої системи рівнянь в п. 1 вивести рівняння, яке описує еволюцію збурень густини речовини.
- 3) Знайти розв'язок цього рівняння.
- 4) На основі знайденого розв'язку встановити зв'язок між частотними і імпульсними характеристиками збурення густини.
- 5) Знайти, при яких значеннях імпульсу збурення густини зростають з часом.

Задача 1

Потужність гравітаційного випромінювання об'єкту згідно лінеарізованому наближенню загальної теорії відносності задається рівнянням

$$L = \frac{G}{5c^5} < \sum_{i=1}^3 \sum_{j=1}^3 \frac{\mathrm{d}^3 D_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 D_{ij}}{\mathrm{d}t^3} >$$

Усереднення <...> проводиться по декільком характерним періодам джерела випромінювання.

 $D_{ij} = \sum_{k=1}^{N} m_k \left(x_i^k x_j^k - \frac{\delta_{ij} r^2}{3} \right)$

- тензор зведеного квадрупольного момента джерела, $\delta_{ij}=1$, якщо i=j; $\delta_{ij}=0$, якщо $i\neq j$. Сума ведеться по всім об'єктам системи.

Дві зірки масами M₁ та M₂ обертаються по коловим орбітам навколо спільного центру мас з нерелятивістськими швидкостями.

- 1. Знайдіть енергію системи двох зірок в залежності від відстані R між ними.
- Знайдіть потужність гравітаційного випромінювання. Вважайте період обертання зірок значно меншим за характерний час зближення зірок. Ви маєте отримати

$$L = \frac{32G^4}{5c^5} \frac{(M_1 + M_2)M_1^2 M_2^2}{R^5}$$

- 3. Знайдіть аналітично залежність відстані між зірками R від часу. Початкова відстань між зірками R₀.
- 4. Через який час t₀ після початку руху зірки зіштовхнуться? Вважати початкову відстань між зірками значно більшою за їх розмір.
- 5. На скільки зменшиться відстань між Землею та Сонцем за 100 років внаслідок гравітаційного випромінювання?
- Коли Земля впаде на Сонце внаслідок втрати енергії на гравітаційне випромінювання?

Маса Землі - $M_E = 6 \times 10^{24}$ кг . Маса Сонця - $M_S = 2 \times 10^{30}$ кг. Відстань між Землею та Сонцем - $R_0 = 149.6 \times 10^6$ км.

Сучасний Всесвіт описується за допомогою (1) рівняння Фрідмана (c=1)

$$H^2 = \frac{8\pi G}{3}(\rho_m + \rho_r + \rho_\Lambda) - \frac{\kappa}{a^2} \tag{1}$$

де $H=\frac{1}{a}\frac{da}{dt}$ – параметр Хаббла, a – масштабний фактор, який залежить тільки від часу і який описує розширення Всесвіту, ρ_m – густина енергії нерелятивістської речовини у Всесвіті (сума так званої баріонної складової Всесвіту та темної матерії), ρ_r – густина радіаційної складової Всесвіту (слектромагнітне випромінювання), ρ_{Λ} – густина так званої темної енергії, а член $\frac{\kappa^{\bullet}}{a^2}$ ($\kappa=0,\pm1$) описує вклад просторової кривизни Всесвіту в його динаміку, (2) рівнянь

$$\frac{\partial \rho_m}{\partial t} + 3H(\rho_m + p_m) = 0 \tag{2}$$

$$\frac{\partial \rho_r}{\partial t} + 3H(\rho_r + p_r) = 0 \tag{3}$$

$$\frac{\partial \rho_{\Lambda}}{\partial t} + 3H(\rho_{\Lambda} + p_{\Lambda}) = 0 \tag{4}$$

де p — це тиск відповідної складової. Тиск і густина енергії пов'язані між собою співвідношенням $p_i=\omega_i\rho_i$, де $\omega_m=0$, $\omega_r=\frac{1}{3}$, а ω_Λ лежить у межах від -1.2 до -0.8 і в загальному може залежати від часу

- 1) Використовуючи рівняння (1)-(4) отримайте рівняння, яке зв'язує між собою другу похідну за часом від масштабного фактору, масштабний фактор і густини та тиски складових Всесвіту
- 2) Знайти залежності кожної з густин енергій складових Всесвіту від масштабного фактору. Якісно проаналізувати, коли яка складова дає основний внесок в динаміку розширення Всесвіту
- 3) Отримати залежності $a=a(t), \ \rho=\rho(t), \ H=H(t)$ для плоского Всесвіту ($\kappa=0$), який складається тільки з
 - 3.1) радіаційної складової
 - 3.2) нерелятивістської матерії
- 4) Знайти залежність параметру Хаббла від часу для плоского Всесвіту заповненого субстанцією з рівнянням стану $\rho = \omega \rho$, вважаючи, що за весь період еволюції параметр ω не змінювався.
- 5) В який момент часу після народження Всесвіту густина матерії вперше стане більшою за густину випромінювання? Вважаючи, що сучасні значення параметру Хаббла H_0 , а також відносні густини енергій $\Omega_m^0 = \frac{\rho_m^0}{\rho_{cr}}$ і $\Omega_r^0 = \frac{\rho_r^0}{\rho_{cr}}$ відомі (тут $\rho_{cr} = \frac{3H_0^2}{8\pi G}$ сучасне значення так званої критичної густини Всесвіту, ρ_m^0 і ρ_r^0 сучасні значення густини енергії нерелятивістської матерії та випромінювання)
- 6) Вважаючи відомими сучасні значення H_0 , Ω_r^0 , Ω_m^0 знайти сучасний вік Всесвіту, вважаючи, що він просторово-плоский ($\kappa=0$) з домінуванням 1) матерії 2) випромінювання 3) обох складових
- 7) Параметр z характеризує розбігання галактик у Всесвіті і визначається співвідношенням $\frac{a_0}{a}=1+z$, де a_0 сучасне значення масштабного фактору. Вважаючи, що Всесвіт складається з темної енергії ($\Omega_{\Lambda}^0=\frac{\rho_{\Lambda}^0}{\rho_{cr}}\simeq 0.75$) і матерії ($\Omega_m^0=\simeq 0.25$). Знайти при якому значенні параметру z сповільнене розширення Всесвіту $\ddot{a}<0$ змінилось прискореним $\ddot{a}>0$, вважаючи, що густина енергії та тиск темної енергії зв'язані співвідношенням $p_{\Lambda}=-\rho_{\Lambda}$

8) Знайти сучасний вік Всесвіту, який складається з темної енергії і нерелятивістської матерії, вважаючи, що $\Omega_m^0=0.25,\ \Omega_\Lambda^0=0.75,\ H_0=73$ км/(с· Мегапарсек) (1 Мегапарсек = $3.1\cdot 10^{24}$ см) $\omega_\Lambda=-1$, $\rho_\Lambda--\rho_\Lambda$ 9) Густина енергії випромінювання пов'язана з температурою таким

співвідношенням $\rho_r=\frac{\pi^2}{30}gT^4,\,g$ – число. 9.1) Знайти, як залежить в ранньому Всесвіті параметр Хаббла від температури

9.2) Як залежить температура випромінювання від масштабного фактору та від часу?