Условия оптимальности. Теория двойственности

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

17 октября 2017 г.

Напоминание

- Выпуклые множества
- Выпуклые функции
- Критерии выпуклости
- Операции, сохраняющие выпуклость

Мотивация

Вопрос 0

Когда существует решение оптимизационной задачи?

Вопрос 1

Как проверить, что точка является решением оптимизационной задачи?

Вопрос 2

Из каких условий можно найти решение оптимизационной задачи?

Существование решения

Теорема Вейерштрасса

Пусть $X \subset R^n$ компактное множество и пусть f(x) непрерывная функция на X. Тогда точка глобального минимума функции f(x) на X существует.

Эта теорема гарантирует, что решение подавляющего большинства разумных задач существует.

Условия оптимальности

Определение

Условием оптимальности будем называть некоторое выражение, выполнимость которого даёт необходимое и (или) достаточное условие экстремума.

Классы задач:

- Общая задача минимизации
- Задача безусловной минимизации
- Задача минимизации с ограничениями типа равенств
- Задача минимизации с ограничениями типа равенств и неравенств

Общая задача минимизации

Задача

$$f(x) \to \min_{x \in X}$$

Критерий оптимальности

Пусть f(x) определена на множестве $X\subset \mathbb{R}^n$. Тогда

- ullet если x^* точка минимума f(x) на X, то $\partial_X f(x^*)
 eq \emptyset$ и $0 \in \partial_X f(x^*)$
- $m{2}$ если для некоторой точки $x^* \in X$ существует субдифференциал $\partial_X f(x^*)$ и $0 \in \partial_X f(x^*)$, то x^* точка минимума f(x) на X.

Какие недостатки у приведённого критерия?

Задача безусловной минимизации

Задача: $f(x) \to \min_{x \in \mathbb{R}^n}$.

Критерий оптимальности для выпуклых функций

Пусть f(x) выпуклая функция на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации $\Leftrightarrow 0 \in \partial f(x^*)$.

Следствие

Если f(x) выпукла и дифференцируема на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации \Leftrightarrow $\nabla f(x^*) = 0$.

Достаточное условие для невыпуклых функций

Пусть f дважды дифференцируема на \mathbb{R}^n и x^* такая что $\nabla f(x^*)=0$. Тогда если $\nabla^2 f(x^*)\succ 0$, то x^* точка строгого локального минимума f(x) на \mathbb{R}^n .

Задача минимизации с ограничениями типа равенств

Задача

$$f(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $g_i(x) = 0, \ i = 1, \dots, m$

Лагранжиан

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Критерий оптимальности

Пусть f(x) и $g_i(x)$ дважды дифференцируемы в точке x^* и непрерывно дифференцируемы в некоторой окрестности x^* . Пусть также $\nabla_x L(x^*, \lambda) = 0$. Тогда если $\mathbf{h}^\mathsf{T} \nabla^2 L(x^*, \lambda) \mathbf{h} > 0$, где $\mathbf{h} \in \mathcal{T}(\mathbf{x}^*|\mathcal{G})$ — касательный конус, то x^* — точка локального минимума.

Возможные варианты

Рис.: Рисунок взят из блога

 $\verb|http://www.offconvex.org/2016/03/22/saddlepoints/|$

Задача минимизации с ограничениями типа равенств и неравенств

Задача

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Условия оптимальности

Необходимое условие (Каруша-Куна-Такера)

Пусть x^* решение задачи математического программирования, и функции f,h_j,g_i дифференцирумы. Тогда найдутся такие μ^* и λ^* , что выполнены следующие условия:

- $g_i(x^*) = 0$
- $h_j(x^*) \leq 0$
- $\mu_j^* \ge 0$
- $\mu_i^* h_i(x^*) = 0$

Если задача выпуклая, то это же условие является достаточным.

Условия оптимальности (cont'd)

Если задача невыпуклая, то

Достаточное условие первого порядка

Если для стационарной точки (x^*, λ^*, μ^*) число активных неравенств |J| такое что n=m+|J| и $\mu_j>0,\ j\in J$, то эта точка является точкой минимума.

Достаточное условие второго порядка

Если в задаче математического программирования число активных ограничений меньше размерности задачи, то точка x^{*} яляется решением задачи, если выполнены условия

$$\mathbf{z}^{\mathsf{T}} \nabla_{xx}^2 L(x^*) \mathbf{z} > 0$$

для

- $\mathbf{z} \neq 0$ и $\nabla g_i^\mathsf{T}(x^*)\mathbf{z} = 0$
- ullet при $j\in J$ и $\mu_j>0$, $abla h_i^{\mathsf{T}}(x^*)\mathbf{z}=0$
- ullet при $j\in J$ и $\mu_j=0$, $abla h_i^\mathsf{T}(x^*)\mathbf{z}\leq 0$

Двойственность: обозначения

Задача

$$\min_{x \in \mathcal{D}} f(x) = p^*$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(x) + \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \sum_{i=1}^{p} \mu_{i} h_{j}(x)$$

Двойственные переменные

Вектора μ и λ называются двойственными переменными.

Двойственная функция

Функция $g(\mu, \lambda) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu)$ называется двойственной функцией Лагранжа.

Свойства двойственной функции

Вогнутость

Двойственная функция является вогнутой как инфимум аффинных функций по (μ, λ) вне зависимости от того, является ли исходная задача выпуклой.

Нижняя граница

Для любого $\pmb{\lambda}$ и для $\pmb{\mu} \geq 0$ выполнено $g(\pmb{\mu}, \pmb{\lambda}) \leq p^*$.

<u>Двой</u>ственная задача

$$\max g(oldsymbol{\mu},oldsymbol{\lambda})=d^*$$
 s.t. $oldsymbol{\mu}\geq 0$

Зачем?

- Двойственная задача выпукла независимо от того, выпукла ли прямая
- Нижняя оценка может достигаться

Примеры

Найти двойственную функцию:

• Решение СЛУ минимальной нормы

$$\min \|\mathbf{x}\|_2^2$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

• Линейное программирование

$$min c^{T}x$$
s.t. $Ax = b$

$$x > 0$$

• Задача разбиения

$$\min \mathbf{x}^{\mathsf{T}} \mathbf{W} \mathbf{x}$$

s.t. $x_i^2 = 1, i = 1, \dots, n$

Слабая и сильная двойственность

Определение

Оптимальные значения целевой функции в прямой и двойственной задаче связаны соотношением

$$d^* \leq p^*$$
.

Если $d^* < p^*$, то свойство называют слабой двойственностью. Если $d^* = p^*$, то — сильной двойственностью.

Замечание

Слабая двойственность есть всегда по построению двойственной задачи.

Вопросы

- При каких условиях выполняется сильная двойственность?
- Как использовать двойственность для проверки оптимальности?

Критерий субоптимальности

По построению $p^* \geq g(\lambda, \mu)$, поэтому $f_0(x) - p^* \leq f_0(x) - g(\lambda, \mu) = \varepsilon$.

Определение

Разность $f_0(x) - g(\lambda, \mu)$ называется двойственным зазором и является оценкой сверху для разности текущего и оптимального значения функции.

Способы использования:

- критерий остановки в итерационном процессе
- теоретическая оценка сходимости алгоритма
- проверка оптимальности данной точки

Условия Слейтера

Теорема

Если задача выпуклая и существует x, лежащий внутри допустимой области, т.е. ограничения типа неравенств выполнены как строгие неравенства, то выполнено свойство сильной двойственности.

- Решение СЛАУ наименьшей нормы
- Линейное программирование
- Квадратичное программирование с квадратичными огранчиениями
- Невыпуклая задача с сильной двойственностью

Условия дополняющей нежёсткости

Пусть \mathbf{x}^* и $(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ решения прямой и двойственной задачи. То есть

$$f(\mathbf{x}^*) = g(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \le$$

$$f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*) \le$$

$$f(\mathbf{x}^*), \qquad \boldsymbol{\mu} \ge 0$$

Условия дополняющей нежёсткости

$$\mu_i^* h_j(\mathbf{x}^*) = 0, \qquad j = 1, \dots, p$$

Для каждого неравенства

- либо множитель Лагранжа равен нулю
- либо оно активно.

Условия Каруша-Куна-Таккера

Необходимые условия ККТ:

- $b_j(x^*) \le 0 допустимость в прямой задаче$
- $oldsymbol{0} \mu_j^* \geq 0$ допустимость в двойственной задаче
- ullet $\mu_{i}^{*}h_{j}(x^{*})=0$ условие дополняющей нежёсткости

Пример $(\mathbf{P} \in \mathcal{S}^n_+)$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\mathsf{T} \mathsf{P} \mathbf{x} + \mathbf{q}^\mathsf{T} \mathbf{x} + r$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

Механическая интерпретация

Поиск устойчивого положения системы:

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^3} \frac{1}{2} k_1 x_1^2 + \frac{1}{2} k_2 (x_2 - x_1)^2 + \frac{1}{2} k_3 (I - x_2)^2 \\ \text{s.t. } \frac{w}{2} - x_1 &\leq 0 \\ w + x_1 - x_2 &\leq 0 \\ \frac{w}{2} - I + x_2 &\leq 0 \end{aligned}$$

Примеры

• Орицательная энтропия при линейных ограничениях

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^{n} x_i \log x_i$$
 s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

S.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{D}$$

 $\mathbf{1}^{\mathsf{T}}\mathbf{x} = 1$

• Сформулировать двойственную задачу и по её решению найти решение прямой задачи:

$$\min \frac{1}{2}x^2 + 2y^2 + \frac{1}{2}z^2 + x + y + 2z$$

s.t. $x + 2y + z = 4$

• Релаксация Лагранжа для задачи бинарного линейного программирования:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\mathsf{T} \mathbf{x}$$

s.t. $\mathbf{A} \mathbf{x} < \mathbf{b}$

$$x_i \in \{0,1\}, \quad i = 1, \dots, n$$

Резюме

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств
- Двойственая задача: что это такое и зачем оно надо?
- Сильная и слабая двойственность
- Условия Слейтера