

ERICSSON CLOUD RAN

Mohammadreza Tahergholi Jan 2017

AGENDA

RAN evolution to Cloud RAN

2

Ericsson Cloud RAN Components

3

5G & Cloud RAN

RAN DRIVERS

- > LTE agreed technology
 - Flat architecture
 - IP Based
 - Distributed topology
 - Coordination via X2
- > Growing Traffic Demand
 - More applications and services
 - Networks become increasingly heterogeneous
 - Multiple standards, bands and layers
- Increased coordination
- > 5G requirements
- Distributed RAN + other topologies

HOW TO CATCH A CLOUD

Baseband Hotel

Centralized RAN

DÉJÀ VU?

ERICSSON CLOUD RAN

Distributed RAN

Improved interworking between sites and layers

Centralized RAN

Colocation of resources and maximum performance in traffic hotspots

Elastic RAN

Optimal coordination across the network for D-RAN and C-RAN

Virtualized RAN

Introducing split architecture for full flexibility on the road to 5G

Coordination

Maximized spectrum efficiency and end-user experience

DRIVERS FOR DE-CENTRALIZATION

- > Fewer node types
- Simple flat architecture
- > Fully integrated solution
- > Relaxed backhaul

DRIVERS FOR CENTRALIZATION

- > Fewer site visits
- Hardware pooling
- Network performance
 - Improved carrier aggregation
 - -L1 CoMP
 - Improved mobility

TOPOLOGIES TODAY

ELASTIC RAN: OVERVIEW

MOTIVATION FOR ELASTIC RAN

- > Rapid LTE carrier growth and small cell growth leading to increasingly large coordination clusters
- > Existing multi-DU strategy constrained in terms of scalability and coordination capabilities
- > Elastic RAN introduced to eliminate any fixed-sized coordination boundaries and scalability constraints, allowing for arbitrarily sized coordination zones with same performance as multi-DU configurations

COORDINATION OPPORTUNITIES

TYPICAL BACKHAUL LATENCIES

Better than expected

Avg Delay (ms) Site level distribution

DISTRIBUTED COORDINATION

X2 latency < 5 ms enables tight coordination

COMMON BASEBAND

Increasing cell edge throughput

CURRENT ARCHITECTURE

ELASTIC RAN ARCHITECTURE

- CPRI front haul uses CWDM or DWDM or direct fiber connections.
- All DUs are connected to the site router (SR) for backhaul connectivity
- All DUs* are connected to an L2 switch for IDLe connectivity
- The site router and L2 switch can be same or different physical units.
- Any 1 DU can be remotely configured to be co-ordinated with any 6 other DUs
- Dus located in different racks and/or different locations, provided RTT latency is <45us between the Dus

^{*}Supported for baseband 52XX series and beyond due to IDLe requirement

DYNAMIC CO-ORDINATION SETS

- Each eNB has 6 neighbor eNBs in its coordination set.
- It is possible to remotely configure coordination sets (no need for site visit)
- > Co-ordination set follows the UE
- Inter-DU features are possible between any DUs within a co-ordination set
 - L1 UL COMP
 - Carrier Aggregation
 - Additional inter-DU features to be introduced as they are developed

UE

One Macro site and underlying small cells configured on one BB5216

Example:

- 3 macro sectors, 3 bands
- 4 small cells, 2 bands
- 17 sector carriers

ELASTIC RAN FOR CA AND COMP

Carrier Aggregation

> L1 UL CoMP

- Notes:
- 1. Maximal DU-DU RTT: 45µs (further optimized in later releases)
- 2. Maximal fronthaul delay (CPRI + RF feeder): 120-150µs RTT

- L1 UL CoMP over IDLe is the next feature to be implemented
 - Evolution over future SW releases
-) (Previously, L1 UL CoMP constrained within one DU)

LATENCY LIMITS

- > Radio-to-DU Latency
 - 120-150 μs RTT on CPRI fronthaul
 - Translates to 12-15 km
- > DU-to-DU Latency
 - 45 μs RTT over IDLe
 - Translates to max 4.5 km (minus switch delays)
 - Future possibility to improve the delays

Note: All DUs need to be synchronized

- GPS
- PTP is also an option

RELATIONSHIP TO V-RAN

- Elastic-RAN is <u>not</u> a replacement for V-RAN
 - Elastic RAN is a replacement for multi-DU configurations
- V-RAN is fully compatible with Elastic RAN
 - Benefits of V-RAN still remain
 - e.g., RAN architecture split allows independent scaling of L3/aL2 and L1/sL2

BENEFITS OF ELASTIC RAN ARCHITECTURE

- > Borderless co-ordination across the entire network
 - Via low latency high Bandwidth IDLe
 - > Allows efficient inter-DU CA
 - Allows L1 CoMP between DUs over IDLe
- More configuration flexibility
 - Remote configuration of co-ordination sets
 - > CA and CoMP between any co-ordinated DUs
 - No need for rewiring (site visits)
- COTS Ethernet switch based connectivity
- C-RAN architecture with greater scalability / flexibility
 - # of cells scales 1:1 with number of DUs
- > Future proof design for inter-DU features in upcoming releases
- > V-RAN compatible architecture: supports architecture split.

VIRTUALIZATION INTERPRETATION

COMPUTATIONAL REQUIREMENTS

Current Distribution and Future Evolution

5G RADIO ACCESS: LTE-E AND NX

- Evolution of existing technology adding new RAN technology
- LTE+ and NX combined allows rapid switching based on radio conditions
- Gradual migration of NX into existing spectrum
- Ericsson principles fully agreed for 3GPP Rel 15

5G REALITIES

New high bands

Asymmetries

TOPOLOGY FOR BEAMFORMING With NX co-located

FUNCTIONAL SPLIT FOR LTE/NX

With NX on different grid

SPLIT ARCHITECTURE

PDCP/RRC Separation

PHY Separation (Beamforming)

DRIVERS FOR VIRTUALIZATION

- Scalability and elasticity
- > Efficient programming environment
- Commercially available hardware
- Flexibility and functionality at the right place

CLOUD RAN The architecture

- Coordination of all cells
- Heterogenous networks
- Distributed and selectively centralized
- Flexible function placement
- Proximity to core network and applications
- Enabling smooth migration
- Securing network investment

CLOUD RAN ROADMAP

ERICSSON