

Université de Kasdi Merbah Ouargla

Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications

 \underline{Module} : Electronique de puissance $3^{\grave{e}me}$ Année licence ELN/INST

<u>Chargé par</u> : M. Bouzidi <u>Durée</u> : 1h:30min (le 23/05/2023)

Correction du Contrôle

Nom et Prénom :	Note:
Spécialité :	20
<u>Groupe :</u>	at-
	*

Exercice 1(7 pts)

Soit la forme d'onde de la tension de sortie v_c de la figure ci-contre, $v_e = V_m \sin \theta$

- 1- A partir de la forme de v_c , déterminer le montage correspondant ci-contre.
- 2- Donner la période de v_c et calculer sa valeur moyenne.
- 3- Préciser les intervalles de conduction.
- 4- Tracer la forme les ondes v_{Th1} , v_{d1} et i_{e} .

Solution

- 2- La periode de v_c est $T = \dots T$.

3- Les intervalles de conduction

 T_{h1} passant si : $\theta \in \mathbb{Z}_{2}$

 D_2 passant si : $\theta \in \mathbb{R}$

Université de Kasdi Merbah Ouargla

Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications

<u>Module</u>: Electronique de puissance 3ème Année licence ELN/INST

Chargé par : M. Bouzidi <u>Durée</u>: 1h:30min (le 23/05/2023)

$Contr\^ole$

Traçage des formes des v_{Tb1} ,

- $$\begin{split} \theta &\in [0 \quad \frac{\pi}{2}], \quad \boxed{v_{\mathit{Th}_1} = \textcolor{red}{\bigvee_{e}}}, \quad \boxed{v_{\mathit{d}_1} = \textcolor{red}{\smile_{e}}} \\ \theta &\in [\frac{\pi}{2} \quad \pi], \quad \boxed{v_{\mathit{Th}_1} = \textcolor{red}{\circ}} \quad \boxed{v_{\mathit{d}_1} = \textcolor{red}{\smile_{e}}} \end{split}$$
- $\theta \in [\pi \ \frac{3\pi}{2}], v_{Th1} = \bullet$
- $heta \in [rac{3\pi}{2} \ 2\pi], \quad v_{Th1} = \mathbf{V_e}$

A Liver of the liv

Université de Kasdi Merbah Ouargla

Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications

 $egin{array}{l} \underline{Module} : Electronique \ de \ puissance \ eta^{\grave{e}^{ine}} \ Ann\'{e}e \ licence \ ELN/INST \end{array}$

<u>Chargé par</u> : M. Bouzidi <u>Durée</u> : 1h:30min (le 23/05/2023)

$Contr\^ole$

Exercice 2 (7 pts)

Le redresseur mixte de la figure ci-contre alimente une charge fortement inductive, le redresseur est alimenté par un système de tensions triphasées équilibrées.

Si l'angle de retard à l'amorçage $\frac{\pi}{6}$:

- 1- Préciser les intervalles de conduction des thyristors et des diodes sur une période.
- 2- Tracer la forme des ondes v_c , v_{Th1} , v_{d1} , et i_1 .

Exercice 3 (6 pts)

Le montage de la figure ci-dessous représente un hacheur a quatre quadrants, les interrupteurs K_l et K_l sont fermes durant l'intervalle $[0, \alpha T]$, et K_l et K_l fermes durant l'intervalle $[\alpha T, T]$, où T est la période de découpage de l'hacheur et α son rapport cyclique. La tension de sortie v_s et le courant de sortie i_s sont représentés dans la figure ci-dessus.

- 1- Déterminer l'intervalle de condition des transistors et des diodes.
- 2- Donner l'expression instantanée du courant $i_s(t)$ sur une période T.
- 3- Tracer sur une période de fonctionnement les ondes suivantes : $i_e(t), v_{TI}(t), v_{TI}(t), v_{dI}(t), v_{dI}(t)$.
- 4- Calculer la valeur moyenne de v_s et déduire la valeur moyenne de i_s .

Solution

1- L'intervalle de conduction

Université de Kasdi Merbah Ouargla

Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications

The second second

 $\underline{Module}: Electronique de puissance \ 3^{\grave{e}me}\ Année\ licence\ ELN/INST$

<u>Chargé par</u> : M. Bouzidi <u>Durée</u> : 1h:30min (le 23/05/2023)

$Contr\^ole$

2- L'expression instantanée du courant $i_s(t)$

$$\begin{bmatrix} 0 & \alpha T \end{bmatrix} : i_s(t) = \underbrace{\mathbf{U}_{-} \mathbf{E}}_{\mathbf{L}} \cdot \mathbf{t} + \underbrace{\mathbf{I}}_{\mathbf{min}} \underbrace{\mathbf{0}_{1} \mathbf{2} \mathbf{1}}_{\mathbf{N}}$$

$$\begin{bmatrix} \alpha T & T \end{bmatrix} : i_s(t) = - \underbrace{U + E}_{L} (t - \alpha T) + \underbrace{L}_{max}$$

3- Traçage de $i_{_{\boldsymbol{e}}}(t),v_{_{T\boldsymbol{I}}}(t),v_{_{T\boldsymbol{I}}}(t),v_{_{d\boldsymbol{J}}}(t),v_{_{d\boldsymbol{J}}}(t).$

	$\begin{bmatrix} 0 & \alpha T \end{bmatrix}$	$\begin{bmatrix} \alpha T & T \end{bmatrix}$	
$oldsymbol{i}_e$	Ĺs	-is	V 0,23
v_{T1}	0	u	v (0,2K)
v_{T2}	U	0	v 0,25
$oldsymbol{v}_{d3}$	0	- U	V(0,25)
v_{d4}	- U	O	V (0,25)

4- Calcule de $V_{s,moy}$ et $I_{s,moy}$

$$V_{s,moy} = (2 \ \ \ \ -1) \cdot \cup 0$$

•
$$I_{s,moy} = \mathcal{R} \cdot \frac{\mathsf{T}}{\mathsf{S} \cdot \mathsf{moy}} + \mathcal{F} = \bigvee_{\mathsf{S} \cdot \mathsf{mov}} Q \mathcal{U}$$

$$I_{s,moy} = \frac{\sqrt{s_{smoy} - E}}{R}$$

