Exercise 3.4.9a

Let $\{r_1, r_2, r_3, ...\}$ be an enumeration of the rational numbers, and for each $n \in \mathbb{N}$ set $\varepsilon_n = 1/2^n$. Define $O = \bigcup_{n=1}^{\infty} V_{\varepsilon_n}(R_n)$, and let $F = O^c$.

a. Argue that F is a closed, nonempty set consisting only of irrational numbers.

Solution:		
x<1		

Exercise 4.2.2abc

For each stated limit, find the largest possible δ -neighborhood that is a proper response to the given ϵ challenge.

a. $\lim_{x\to 3} (5x-6) = 9$, where $\varepsilon = 1$.

Solution:

x<1

b. $\lim_{x\to 4} \sqrt{x} = 2$, where $\varepsilon = 1$.

Solution:

x<1

c. $\lim_{x\to\pi} \lfloor x \rfloor = 3$, where $\varepsilon = 1$.

Solution:

Exercise 4.2.5abc

Use Definition 4.2.1 to supply a proper prof for the following limit statements.

a.
$$\lim_{x\to 2} (3x+4) = 10$$

Solution:

x<1

b.
$$\lim_{x\to 0} x^3 = 0$$

Solution:

x<1

c.
$$\lim_{x\to 2} (x^2 + x - 1) = 5$$

Solution:

Exercise 4.2.6

Decide if the following are true or false, and give short justifications for each conclusion.

a. If a particular δ has been constructed as a suitable response to a particular ε challange, then any smaller positive δ will also suffice.

Solution:

x<1

b. If $\lim_{x\to a} f(x) = L$ and a happens to be in the domain of f, then L = f(a).

Solution:

x<1

c. If $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a} 3[f(x) - 2]^2 = 3(L-2)^2$.

Solution:

x<1

d. If If $\lim_{x\to a} f(x) = 0$, then $\lim_{x\to a} f(x) = 0$ for any function g (with domain equal to the domain of f.)

Solution:

Exercise 4.3.1

$$\overline{\text{Let } g(x) = \sqrt[3]{x}}$$

a. Prove that g is continuous at c = 0.

Solution:

x<1

b. Prove that g is continuous at a point $c \neq 0$. (The Identity $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ will be helpful.)

Solution: