

Свежие комментарии

- SmNikolay к записи STM Урок 89. LAN. ENC28J60. TCP WEB Server. Подключаем карту SD
- Narod Stream к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- strannik2039 к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- Dmitriy к записи AVR Урок 1. Знакомство с семейством AVR
- Narod Stream к записи STM Урок 9. НАІ Шина І2С Продолжаем работу с DS3231

Форум. Последние ответы

- 🔊 Narod Stream в Программирование MK STM32
- 1 неделя, 3 дн. назад
- П Zandy в Программирование МК STM32
 - 1 неделя, 4 дн. назад
- 🔊 Narod Stream в Программирование MK STM32
 - 3 нед., 1 день назад
- 🌑 Narod Stream в Программирование MK STM32
 - 3 нед., 1 день назад
- Программирование МК STM32
 - 3 нед., 3 дн. назад

Январь 2018

Пн	Вт	Ср	Чт	Пт	Сб	Вс
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				
« Де	К					

Архивы

- Январь 2018
- Декабрь 2017
- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017
- Июль 2017

Главная > I2C > AVR Урок 16. Интерфейс TWI (I2C). Часть 7

AVR Урок 16. Интерфейс TWI (I2C). Часть 7

Stream Опубликовано в I2C, Программирование

AVR — 6 комментариев ↓

Одноплатные компьютеры от IPC2U!

Процессорные модули, PC-104 платы, NANO-ITX, EPIC, PCI-ITX и многие

Мета

• Регистрация

RSS записей

WordPress.org

RSS комментариев

Войти

ірс2и.ru Адрес и телефон

Очень горячая аниме игра

Эндекс.Директ

Уроки по программированию МК

Эта аниме игра поглощает с первых минут, начнешь играть и забудешь про COH 18 promo.101xp.com

> Программирование МК РІФ Тесты устройств и аксессуаров

Урок 16 Часть 7

Интерфейс TWI (12C)

предыдущей занятия уже продолжили свою работу с отправкой значений В память **EEPROM** микросхемы интерфейсу TWI. Только проверить мы это, исключительно смогли статусам.

А в данной части урока мы закрепим полученные знания и подключим по шине І2С переходник для модуля символьного дисплея, тем самым также возможность дисплей по двум проводам.

Модуль дисплея мы булем подключать с дисплеем символным высотой в 4 строки и шириной в 20 символов, или как попросту говорят

Мы в уроке 12 уже разбиравли с вами подобный дисплей, только он был размерностью 16×2 и подключали мы его по 4-битному интерфейсу.

Теперь у нас дисплей 20×4. Его модуль также собран с применением контроллера дисплея HD44780. Возможны тамже варианты применения

Заходите на канал **Narod Stream**

- Июнь 2017
- Май 2017
- Март 2017
- Февраль 2017
- Январь 2017
- Декабрь 2016
- Ноябрь 2016

аналогов, но программирование их вообще не отличается ни чем.

По 4-битному способу программирования модуль дисплея LCD2004 мало чем отличается от LCD1602, в основном, можно сказать только адресацией знакомест. В конце урока мы просто подправим функцию позиционирования.

Основная задача занятия — научить данный модуль общаться с МК AVR посредством шины $\mathbf{12C}$ (TWI) с помощью соответствующего переходника.

Поэтому давайте немного познакомимся с данным переходником.

Выглядит он следующим образом

У него черыре ножки для соединения с МК — это питание, общий провод и две ножки I2C.

Также мы видим, что к нему подпаяна гребёнка из 16 контактов для соединения с соответствующими контакта модуля дисплея. Так как контакты на переходнике типа "ПАПА", то на модуль дисплея я, соответственно, подпаял гребёнку с контактами типа "МАМА" ну и посредством этих двух контактных площадок я его с модулем и соединил.

Купить данный дисплей можно много где. В описании видеоверсии под роликом находится ссылка, где его приобретал я. Только там где я приобретал, один было купить невозможно, минимум три, но цена была такова, что я с удовольствием их купил. Сейчас, по-моему, продавец уже предлагает минимальную партию из 5 штук, но цену вроде ещё убавил. Поэтому есть смысл. Я не думаю, что у кого-то, кто постоянно занимается с контроллерами. в наличии есть только один такой дисплей.

Ну что ж, теперь рассмотрим, из чего состоит собственно данный переходник. Там, соответственно, есть регулятор контрастности, поэтому теперь нам не нужно будет заботиться о его отдельном подключении. А сердцем данного переходника служит микросхема РСГ8574, преобразующая последовательный код I2C в 8-битные логические состояния на выходе.

Вот, собственно, схема данного переходника (нажмите на картинку для увеличения изображения)

Рубрики

- 1-WIRE (3)
- ADC (6)
- DAC (4)
- GPIO (26)
- I2C (19)
- SPI (13)
- USART (8)
- Программирование AVR (131)
- Программирование РІС (7)
- Программирование STM32 (213)
- Тесты устройств и аксессуаров (1)

	7
Э1 ДЕНЬ	124 507 13 098
ם DHEÛ	30 048 4 366
24 4ACA	5 253 1 0 7 1
сегодня	2 568 580
нялинии	52 26

яндекс.Директ Очень горячая **аниме** игра

Здесь прекрасно видно подключение микросхемы. У нее существуют три адресных контакта, которые способны изменить адрес устройства для I2C также, как это было в случае микросхемы EEPROM, рассмотренной в предыдущих частях нашего занятия. Соответственно, существуют контакты питания VCC и GND, а также контакты шины I2C — SDA и SCL, ну и, конечно же, восемь контактов логических состояний, управляемых данной микросхемой. Только подключен будет модуль дисплея. как мы видим посредством 4-битного подключения. Это сделано потому, что контактов на шине микросхемы всего 8, а нам нужно ещё оперировать с помощью них управляющими ножками модуля дисплея (RS, RW и E, который здесь назван CS), а также включением подсветки (контакт Р3). Подсветка, соответственно, в целях защиты от больших токов контакта параллельного порта микросхемы управляется с помощью ключевого транзистора 8050. Также установлен светодиод через токоограничивающий резистор, сигнализирующий нам о подаче питания на преобразователь, ну и. как уже было выше сказано, регулятор контрастности. Ещё существуют два подтягивающих резистора по 4,7 килоом, подключенные к ножкам шины I2C, назначение которых мы прекрасно знаем.

Ну вот, собственно, и всё насчёт схематического решения переходника.

Теперь немного по техническим характеристикам самой микросхемы **PCF8574**.

Питание микросхемы осуществляется постоянным напряжением в диапазоне от 2,5 до 7 вольт, так что бояться нам нечего.

Токи по портам входным — максимально 20 милиампер, по выходным — 25.

Также ещё немаловажным для нас является параметр максимальной скорости по I2C — он не должен превышать $100~\mathrm{k}\Gamma$ ц.

Нам, конечно, спешить некуда, дисплей всё-таки символьный, но если мы захотим на шину I2C повесить ещё что-то и захотим от этого чего-то большего быстродействия, то мы обязаны об этом помнить.

Также посмотрим адрес, по которому мы будем, собственно, с ней общаться по 12С. В даташите их два в зависимости от типа микросхемы. Нам нужен вот этот

Эта **аниме** игра поглощает с первых минут, начнешь играть и забудешь про сон [18+]

Все об игре Выбери свой класс Следи за новостями Тебя ждет подарок promo.101xp.com

Разработка мобильных приложений.

Разрабатываем все типы мобильных приложений для любых нужд бизнеса. Звоните!

Коммерческие приложения Справочные приложения narisuemvse.by Адрес и телефон

a. PCF8574.

Так как мы в данный переходник данные будем только отправлять, то давайте посмотрим диаграмму протокола общения с ним по шине I2C для записи байтов (нажмите на картинку для увеличения изображения)

Запись здесь идёт стандартно. Просто у нас не память EEPROM и никаких ячеек адресных у нас в микросхеме нет. передаём мы сразу данные. Данные можно передавать как по несколько байт. так и по одному. Как только мы передадим условие СТОП, на этом и заканчивается передача. И передавать мы будем только по одному байту, так как со скоростью 100 кГц контроллер дисплея вряд ли сможет работать, да это и не нужно.

Ну вот мы немного и разобрались с переходником.

Теперь, конечно проект.

Проект был создан с именем **I2CLCD80**.

Стандартно создан и подключен файл main h

Также подключены файлы lcd.h и lcd.c из проекта урока 12 по подключению подобного дисплея по 4-битной шине **Test09**. Затем данные файлы были переименованы соотвественно для избежания путаницы в lcdtwi.c и lcdtwi.h, а также в связи с этим хедер-файл немного претерпел изменения и внутри в директивах.

Код в главный файл **12CLCD80.c** был полностью скопирован из того же проекта Test09 из файла Test09.c.

Ещё, конечно же были подключены файлы **twi.h** и **twi.c** из проекта прошлых частей данного занятия **DS1307Eeprom**.

Ну и. соответственно, все данные файлы были также подключены в файле main.h. Вот его полный исходный код

```
#ifndef MAIN_H_
#define MAIN_H_
#define F_CPU 8000000UL
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdio.h>
#include <stdib.h>
#include "twi.h"
#include "lcdtwi.h"
#endif /* MAIN_H_ */
```

В файле lcdtwi.c подключили также файл lcdtwi.h

```
#include "lcdtwi.h"
  Начнём
             теперь
                        алаптировать
понемногу код к переходнику.
  Напишем ещё одну функцию в файл
twi.c для передачи байта по адресу,
чтобы упростить вызов. Напишем её
после функции передачи байта в шину,
так как мы ею будем пользоваться
void I2C SendByteByADDR(unsigned
char c,unsigned char addr)
  I2C_StartCondition(); // Отправим
условие START
  I2C_SendByte(addr); // Отправим в
шину адрес устройства + бит чтения-
записи
  I2C_SendByte(c);// Отправим байт
 I2C_StopCondition();// Отправим
условие STOP
  Также не забываем о прототипе в
хедере.
  Теперь в файле реализации функций
         lcdtwi.c мы создадим
глобальную переменную, которая будет в
себе хранить значение состояния
контактов на параллельной шине
микросхемы, чтобы нам его не читать из
шины I2C, а просто помнить его именно
в переменной
#include "lcdtwi.h"
//--
unsigned char portlcd = 0; //ячейка
для хранения данных порта микросхемы
расширения
```

Utsource Electronics

Good Parts, Good Price, Fast Shipping, All Guarantee utsource.net

Теперь исправим макроподстановки в файле **lcdtwi.h** и добавим ещё некоторые в соответствии со схемой на переходник

```
void sendcharlcd(unsigned char c);
#define e1
I2C_SendByteByADDR(portlcd|=0x04,0b0
1001110) // установка линии Е в 1
#define e0
I2C_SendByteByADDR(portlcd&=~0x04,0b
01001110) // установка линии Е в 0
#define rs1
I2C_SendByteByADDR(portlcd|=0x01,0b0
1001110) // установка линии RS в 1
#define rs0
I2C_SendByteByADDR(portlcd&=~0x01,0b
01001110) // установка линии RS в 0
#define setled()
I2C_SendByteByADDR(portlcd|=0x08,0b0
1001110) // включение подсветки
#define setwrite()
I2C_SendByteByADDR(portlcd&=~0x02,0b
01001110) // установка записи в
память дисплея
```

Здесь, в принципе всё понятно. Мы отправляем определённые значения в шину I2C, для того чтобы менять состояение ножек параллельной шины на микросхеме, причем не изменив при этом состояние остальных ножек, для чего и идёт постоянное логическое сложение с состоянием данной параллельной шины. Все битовые операции нам давно знакомы и говорить подробно о них мы не будем.

Вернёмся теперь в файл lcdtwi.c и подправим там тоже некоторые вещи.

Первым делом, коненчно же у нас несколько изменится функция отправки половины байта в контроллер дисплея. Там мы изменим только одну строку и уберём установку значения порта D, так как мы его не используем теперь и он у нас свободен

```
void sendhalfbyte(unsigned char c)
{
    c<<=4;
    e1; //включаем линию E
    _delay_us(50);

I2C_SendByteByADDR(portlcd|c,0b01001
110);
    e0; //выключаем линию E
    _delay_us(50);
}
```

Теперь функция setpos. В неё также нужно будет внести определённые изменения. так как у нас изменилось разрешение дисплея. У него увеличилось количество строк и колонок.

Для этого заглянем в техническую документацию на дисплей и посмотрим адресацию в нём памяти **DDRAM**

Здесь всё ясно, нам нужны только адреса первого символа в каждой строке, на них мы и будем смещаться по строкам

```
void setpos(unsigned char x,
unsigned y)
{
  switch(y)
  {
    case 0:
      sendbyte(x|0x80,0);
      break;
    case 1:
      sendbyte((0x40+x)|0x80,0);
      break;
    case 2:
      sendbyte((0x14+x)|0x80,0);
      break;
    case 3:
      sendbyte((0x54+x)|0x80,0);
      break;
  }
}
```

Смысл байта 0x80 я думаю все знают. Здесь мы устанавливаем седьмой бит, чтобы контроллер дисплея распознал команду записи в DDRAM в соответствии с таблицей инструкций.

Также нужно в функции инициализации дисплея включить подстветку и запись

```
_delay_ms(1);
setled();//подсветка
setwrite();//запись
```

Здесь, в принципе, всё.

Перейдём в главный файл I2CLCD80.c и удалим там функцию инициализации порта port_ini.

Также удалим и в функции main() вызов инициализации порта, а вместо него включим инициализацию шины **TWI**

```
int main(void)
{
    I2C_Init();//инициализируем TWI
    LCD_ini(); //инициализируем
дисплей
```

Также давайте после инициализации дисплея вызовем на всякий случай его очистку, а то частенько мусор остаётся после персборки и перезагрузки

```
LCD_ini(); //инициализируем дисплей clearlcd();//очистим дисплей
```

Соберём код и прошьём контроллер. После этого на дисплее мы должны увитель вот такую знакомую картину

Ну, и теперь, я думаю, логично будет проверить работоспособность двух нижних строк дисплея. Добавим код в main()

```
str_lcd("String 2");
setpos(4,2);
str_lcd("String 3");
setpos(6,3);
str_lcd("String 4");
while(1)
```

Соберём код, прошьём контроллер и проверим это

Ну вот теперь всё!

В данной части занятия мы усовершенствовали свои знания в области программирования шины 12С в контроллерах AVR, тем самым также мы неплохо разгрузили значительное количество ножек контроллера.

Исходный код

Техническая документация на микросхему PCF8574

Схема переходника

Техническая документация на дисплей LCD 20×4

Программатор и модуль RTC DS1307 с микросхемой памяти можно приобрести здесь:

Программатор (продавец надёжный) USBASP USBISP 2.0

Модуль RTC DS1307 с микросхемой памяти

Смотреть ВИДЕОУРОК (нажмите на картинку)

Post Views: 600

< AVR Урок 16.

Интерфейс TWI

6 комментариев на "AVR Урокать: 6 Интерфейс TWI (I2C). Часть 7" STM Урок 40.

Виталий: Знакомство с

Февраль 11, 20**11/1 а тойо NAJ**CLEO

STM32F767ZI >

Добрый день,

при запуске симулации, которая находится в архиве, дисплей ни чего не показывает.

Ответить

admin: Февраль 11, 2017 в 7:23 пп

A

Странно. У меня показывал.

Ответить

Denis:

Февраль 21, 2017 в 2:59 дп

ПОдтверждаю. В протеусе ничего не показывает. Также перекомпелированный под mega2560 код тоже не работает...

Ответить

Vadim:

Март 11, 2017 в 1:32 дп

Здравствуйте!

Проверьте пожалуйста, и у меня не работает в Proteus PROSPICE 8.04.00 (Build 21720) (C) Labcenter Electronics 1993-2016.

Labcenter Electronics 1995-20

Loaded netlist
'C:\Users\Comp\AppData\Local\Temp\LIS
A5604.SDF' for design 'I2CLCD80.pdsprj'
AVR Release 8.3SP0 build 22019 for
ATMEGA8. [U1]
Loading HEX file
'I2CLCD80\Debug\I2CLCD80.hex'. [U1]
Read total of 658 bytes from file
'I2CLCD80\Debug\I2CLCD80.hex'. [U1]
Simulation is not running in real time due
to excessive CPU load.

Ответить

Март 11, 2017 в 4:50 дп

Здравствуйте!

Без проекта проверить не могу.

Ответить

Ростислав Троян:

Июль 3, 2017 в 8:07 пп

Добрый день! Разобрался почему не работает в протеусе, дело в том что в эмулиции когда на десплей передаем полубайт удерживаеться линия "Е" в 1, а считование происходит во время изминения этой линии в 0, но когда это происходит то в этот момент полубайт пустой — без данных. Вот фитч на функцию и все заработает: void sendhalfbyte(unsigned char value) { value<<=4; e1; _delay_us(50); //______

e1;
_delay_us(50);
//----TWI_SendByteByADDR(portlcd |= value , 0b01001110);
// ------

e0;

portlcd &= ~value; //удаление

_delay_us(50);
}
У меня все зароботало, но чет
медленно выводит символы. Немогу
понять почему. Реального железа нет,
пока играюссь только на протеусе. Кто
собрал реальную схему отпишитесь, с
какой скоростью выводит символы,
зарание спасибо.

данных для избегания переполнения

Добавить комментарий Ваш е-таі не будет опубликован. Обязательные поля помечены * Комментарий

E-mail *

Сайт

= четыре 🔾

Отправить комментарий

© 2018 Narod Stream