1. A large white square represents an x^2 -tile, a black rectangle represents a -x-tile, and a small white square represents a 1-tile.

Write the polynomial represented by this set of algebra tiles.

2. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

How would you model the polynomial $-3x^2 - 4$ with algebra tiles?

- **3.** Which of the following expressions are polynomials?
 - i) $\frac{1}{2}x$
 - ii) $1 7.5n^2$
 - iii) $2\sqrt{t}$
 - iv) 5.5
- 4. How many terms are in the polynomial $8x^2 + 4x 9$?
- **5.** Which of the following expressions is a binomial with degree 2?
 - i) $x^2 10x + 5$
 - ii) $3x^2$
 - iii) $7x^2 2x$
 - iv) $\frac{1}{x^2} 7$
- **6.** Which of the following expressions are monomials with degree 2?
 - i) $2x^2 + 2x$
 - ii) 2*x*²
 - iii) x^2
 - iv) 2x
- 7. Name the coefficients of the variable in the polynomial $-5x^2 + 13x 15$.
- **8.** Identify the polynomials that can be represented by the same set of algebra tiles.
 - i) $4x^2 5 + 6x$
 - ii) $4x^2 6x + 5$
 - iii) $-5 + 6x 4x^2$
 - iv) $6x 5 + 4x^2$

- 9. Identify the polynomial that is equivalent to $5 3v 4v^2$.
 - i) $4v^2 + 3v 5$
 - ii) $5 + 4v^2 3v$
 - iii) $-4v^2 3v + 5$
 - iv) $-4v^2 5 + 3v$
- 10. What algebra tiles would you use to model the polynomial $7 5x^2 + 4x$?
- 11. Combine like terms. Sketch algebra tiles if it helps. 5x + 10 + 7x 3
- 12. Combine like terms. Sketch algebra tiles if it helps.

$$10x^2 - 8x + 2x - 6x^2$$

13. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an x-tile, a black rectangle represents a -x-tile, a small white square represents a -x-tile, and a small black square represents a -x-tile.

Write the simplified polynomial.

14. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an x-tile, a black rectangle represents a -x-tile, a small white square represents a -x-tile, and a small black square represents a -x-tile.

Write the simplified polynomial.

- 15. Simplify: 8x + 4 5 + 3x
- **16.** From the list, which terms are like 7x? $7x^2$, 8x, 6, -8x, -7x, $7x^2$, $7x^$
- **17.** From the list, which terms are like $-7x^2$? $7x^2$, 7x, $2x^2$, -7, -5, -7x, $-4x^2$
- **18.** Combine like terms. Sketch algebra tiles if it helps.

$$3x^2 - 5 - 6x - 9x^2 + 7$$

19. Simplify:
$$6x + 8x - 2x + 4x + 5$$

20. Simplify:
$$11x^2 - 10 + 5x + 4 - 3x^2 - 8x$$

$$+ - 10x + 9$$

22. Add:
$$(6x - 5) + (3x + 7)$$

23. Add:
$$(8x - 6) + (-6x - 3)$$

24. Add:
$$(-4x - 7) + (5 - 2x)$$

25. Add:
$$(2x^2 - 6) + (5x^2 - 8x - 4)$$

26. Write the perimeter of this rectangle as a polynomial in simplest form.

27. Write the perimeter of this triangle as a polynomial in simplest form.

28. Add:
$$(3x^2 - 5x + 5) + (-x^2 - 2x - 5)$$

29. Add:
$$(-3x^2 + 3 - 7x) + (6 + x^2 + 10x)$$

30. Add:
$$(8x^2 - 5x) + (-5 - 3x^2)$$

31. Subtract:
$$(6x - 7) - (9x - 8)$$

32. A large black square represents a $-x^2$ -tile and a black rectangle represents a -x-tile.

Write the subtraction sentence that these algebra tiles represent.

33. A large black square represents a $-x^2$ -tile, a white rectangle represents an x-tile, and a small black square represents a -1-tile.

Write the subtraction sentence that these algebra tiles represent.

- **34.** Subtract: (4p 6) (6 4p)
- **35.** Subtract: (8t 7) (-8t 7)
- **36.** Subtract: $(4r^2 2) (7r^2 + 6r + 9)$
- 37. Subtract: $(3-5c-6c^2)-(2c-3)$
- **38.** Subtract: $(3x 7x^2 + 3) (3x^2 7 + 6x)$
- **39.** Subtract: $(3y^2 6x^2 + 4) (2x 8 + 4y^2)$
- **40.** The perimeter of this isosceles triangle is represented by the polynomial 18p + 16. Write a simplified polynomial for the length of the unknown side.

41. A white rectangle represents an *x*-tile and a small white square represents a 1-tile.

What is the multiplication sentence modelled by this set of algebra tiles?

42. A large black square represents a $-x^2$ tile, a black rectangle represents an -x-tile, and a small white square represents a 1-tile.

What is the division sentence modelled by this set of algebra tiles?

- **43.** Multiply: 5(4x)
- **44.** Multiply: $8(5x^2 2x)$
- **45.** Divide: $\frac{10p 14}{2}$
- **46.** Divide: $20x^2 \div 5$
- **47.** Divide: $\frac{20w^2 16w + 12}{4}$
- **48.** Multiply: $(-4)(6c^2 5c 7)$
- **49.** Determine the area of this rectangle.

$$-4x^2-2x+3$$

50. Divide: $\frac{-12y^2 - 6y - 9}{-3}$

Which of these multiplication sentences is modelled by the algebra tiles below?

- i) 2x(2x+5)
- ii) $2(2x^2 + 5)$
- iii) x(2x+5)
- iv) $2x(4x^2 + 10x)$

- **52.** Which of these multiplication sentences is modelled by the rectangle below?
 - i) 3x(5x-2)
 - ii) 3x(-5x + 2)
 - iii) 5x(3x + 2)
 - iv) 3x(5x + 2)

- 53. Multiply: (-2w)(4w)
- **54.** Divide: $(9x^2) \div (-3x)$
- **55.** Divide: $\frac{-16x^2}{4x^2}$
- **56.** Multiply: (4y 5)(-y)
- **57.** Multiply: -6c(2c 5)
- **58.** Divide: $\frac{-20p^2 16p}{-4p}$

Unit 5 - Answer Key

1. $4x^2 - 3x + 6$

2.

3. i, ii, and iv

4. 3

5. iii

6. ii and iii

7. -5, 13

8. i and iv

9. iii

10. 5 - x^2 -tiles, 4 x-tiles, and 7 1-tiles

11. 12x + 7

12. $4x^2 - 6x$

13. $x^2 + 3x + 2$

14. $-2x^2 - 2$

15. 11x - 1

16. 8*x*, -8*x*, -7*x*

17. $7x^2$, $2x^2$, $-4x^2$

18. $-6x^2 - 6x + 2$

19. 16x + 5

20. $8x^2 - 3x - 6$

21. -4x + 5

22. 9x + 2

23. 2x - 9

24. -6x - 2

25. $7x^2 - 8x - 10$

26. 42t + 10

27. 27x - 3

28. $2x^2 - 7x$

29. $-2x^2 + 3x + 9$

30. $5x^2 - 5x - 5$

31. -3x + 1

32. $(-3x^2 - 3x) - (-2x^2 - 2x)$

33. $(-3x^2 + 3x - 4) - (-x^2 + 2x - 2)$

34. 8p - 12

35. 16t

36. $-3r^2 - 6r - 11$

37. $-6c^2 - 7c + 6$

38. $-10x^2 - 3x + 10$

39. $-1y^2 - 6x^2 - 2x + 12$

40. 6p + 8

41. 4(x+5)

42. $\frac{-2x^2-2x+6}{2}$

43. 20*x*

44. $40x^2 - 16x$

45. 5p - 7

46. $4x^2$

47. $5w^2 - 4w + 3$

48. $-24c^2 + 20c + 28$

49. $-24x^2 - 12x + 18$

50. $4y^2 + 2y + 3$

51. i

52. iv

53. $-8w^2$

54. −3*x*

55. -4

56. $-4y^2 + 5y$

57. $-12c^2 + 30c$

58. 5p + 4