目录

1	随机	L过程的基本概念 2	
	1.1	随机过程的定义与有穷维分布族	
	1.2	随机过程的分类	
2	泊松过程 4		
	2.1	泊松过程的定义	
	2.2	泊松过程的性质	
	2.3	非齐次的泊松过程 4	
	2.4	复合泊松过程	
3	离散	时间的马尔可夫链 5	
	3.1	马尔可夫链的基本概念	
	3.2	马氏链的状态分类	
	3.3	转移概率的极限状态与平稳分布	
4	连续时间的马尔可夫链		
	4.1	连续时间马氏链的基本定义 6	
	4.2	转移率	
	4.3	Kolmogorov 方程	
	4.4	生灭过程 6	
5	布朗运动		
	5.1	布朗运动的定义及基本性质 7	
	5.2	布朗运动的首中时和最大值 7	
	5.3	布朗运动的推广 7	

1 随机过程的基本概念

1.1 随机过程的定义与有穷维分布族

(空)

1.2 随机过程的分类

定理 1.2.1 (正态过程充要条件). 随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$ 是正态过程当且仅当 $\forall n \geq 1, \forall t_1, \ldots, t_n \in \mathbb{T}, \forall a_1, \ldots, a_n, \sum\limits_{k=1}^n a_k X_{t_k}$ 服从一维正态分布。

证明. N 维随机向量 $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_N)^T$ 服从多变量正态分布的充要条件是: 任何线性组合 $\mathbf{Y} = a_1 \mathbf{X}_1 + \dots + a_N \mathbf{X}_N$ 服从正态分布。

定理 1.2.2. 二阶矩存在的严平稳过程必为宽平稳的。

证明. 宽平稳需要满足的条件如下:

$$m(t) \equiv C \tag{1}$$

$$k(s, s+t) = B(t) \tag{2}$$

$$E(\mathbf{X}_t^2) < +\infty, \forall t \in \mathbb{T}$$
 (3)

由条件知, (3)成立。

二阶矩存在,则一阶矩存在,且由 Cauchy-Schwarz 不等式的积分形式可知 k(s,s+t) 存在。

而由严平稳过程的定义知: $\forall t \in \mathbb{T}, \mathbf{X}_t$ 同分布,于是(1)成立。对于(2),考虑:

$$k(s, s+t) = E(\mathbf{X}_s, \mathbf{X}_{s+t}) - E(\mathbf{X}_s)E(\mathbf{X}_{s+t})$$

$$= \left[\iint_{\mathbf{X}_s \in \mathbb{E}, \mathbf{X}_{s+t} \in \mathbb{E}} x_s x_{s+t} f(x_s, x_{s+t}) dx_s dx_{s+t} \right] - C^2$$

由严平稳过程的定义知, $\forall s \in \mathbb{T}, f(x_s, x_{s+t}) = f(x_0, x_t),$ 故(2)成立。 \square

定理 1.2.3. 正态宽平稳过程必为严平稳过程。

由于 $\{\mathbf{X}_t(\omega), t \in \mathbb{T}\}$ 为正态宽平稳过程,故 \mathbf{X}_0 , \mathbf{X}_h 服从多元正态分布。

由宽平稳过程的定义知,对于 X_0 和 X_h ,其均值向量相同,均为常数向量。其协方差矩阵只与时间差有关,因此也相同。

由于正态过程的有穷维分布由 m(t) 和 k(s,t) 完全决定。而 \mathbf{X}_0 和 \mathbf{X}_h 均值和协方差相同,故 \mathbf{X}_0 和 \mathbf{X}_h 同分布对任意的 h 成立,从而有 $\{\mathbf{X}_t(\omega), t\in\mathbb{T}\}$ 为严平稳过程。

2 泊松过程 4

2 泊松过程

- 2.1 泊松过程的定义
- 2.2 泊松过程的性质
- 2.3 非齐次的泊松过程
- 2.4 复合泊松过程

3 离散时间的马尔可夫链

- 3.1 马尔可夫链的基本概念
- 3.2 马氏链的状态分类
- 3.3 转移概率的极限状态与平稳分布

4 连续时间的马尔可夫链

- 4.1 连续时间马氏链的基本定义
- 4.2 转移率
- 4.3 Kolmogorov 方程
- 4.4 生灭过程

5 布朗运动 7

5 布朗运动

- 5.1 布朗运动的定义及基本性质
- 5.2 布朗运动的首中时和最大值
- 5.3 布朗运动的推广