Landscape Generation Using Perlin Noise

Dongho Lee, Mahin Goban, Luke Taranowski 12/2/2023

Α.	Periin	NOISE

B. Inside-Outside

Breakdown C. Parameters

D. Applications

E. Future Ideas

Our Landscape Comes from Noise!

Geography Perlin noise

- Geography = Fluctuations
- Fluctuations = Perlin noise

Landscape in a Grid??

Tile maps can look choppy

- Tile = water/land
- Vertex = water/land
- 2 sprites vs 2⁴ sprites

Translate Perlin Noise to Vertices

Each vertex gets a float value [0, 1]

Translate Perlin Noise to Vertices

Set a threshold value:

If vertex ≤ threshold: water (0)

If vertex > threshold: land (1)

Translate Perlin Noise to Vertices

Each tile looks at its four corners

Loads the right sprite

A Clever Trick

- Q: How do we map a tiles vertices to a sprite?
- A: Convert vertex values to a suffix

Adjustable Parameters

Seed

Predictable randomness

Noise Period

Size of landscape features

Sea Level

Amount of water in the landscape

The Applications are Endless

Level Generation

Spelunkey Spore

The Applications are Endless

Art

The Applications are Endless

Geographical Simulations

What Does the Future Hold?

- Add more vertex types
- 3D
- Add more parameters
- Live editing

Demo Time!

Thank You!

