

TRAVEL INSURANCE ANALYSIS

Name Bhushan Rai PGP-DSBA Online January' 21 Date: 27/06/2021

Table of Contents

Contents

Executive Summary	3
ntroduction	3
Data Description	3
Sample of the dataset	4
Exploratory Data Analysis	4
Missing Values	5
Descriptive Statistics	6
Find and remove duplicate Values	6
Univariate Analysis	7
Check Outliers	8
Skewness	8
Treated Outliers	8
Count plot	9
Bivariate Analysis	
Bivariate Analysis	
Corrrelation	
Convert categorical	13
2.2 Data Split: Split the data into test and train(1 pts), build classification model Company Random Forest (1.5 pts), Artificial Neural Network(1.5 pts). Object data should be converted into categorical/numerical data to fit in the models. (pd.categorical().codes(), pd.get_dummies(drop_first=True)) Data split, ratio detarin-test split should be discussed. Any reasonable split is acceptable. Use of random state is mandatory. Successful implementation of each model. Logical reason behind the selection of different values for the parameters involuence model. Apply grid search for each model and make models on best_parameters importance	fined for the split, ved in
2.3 Performance Metrics: Check the performance of Predictions on Train and Te Accuracy (1 pts), Confusion Matrix (2 pts), Plot ROC curve and get ROC_AUC so each model (2 pts), Make classification reports for each model. Write inference each model (2 pts). Calculate Train and Test Accuracies for each model. Comment on the validness of models (overfitting or underfitting) Build confusion matrix for each model. Comment on the positive class in hand Must clearly show obs/pred in row/col Plot roc_curve for each model. Calculate roc_auc_score for each model. Comment on the above calculated scores and plots. Build classification report Comment on f1 score, precision and recall, which one is important here	ore for ses on d. ts for each model.

Cart Model	14
AUC for training and test data	15
Cart model score	16
Conclusion of cart model	17
Random Forest model	17
RF Conclusion	18
ANN model	19
Comparison of performance metrics	20
Reccomendations	21
Paccamandations	າ

List of Figures

Fig.1 – Distplot	8
Fig.2 – Boxplot	9
Fig.3 – Count plot	10
Fig.4 – Countplot	11
Fig 5- Pairplot	12
Fig 6- Heatmap	13

List of Tables

Table 1. Sample of data and types of data	5
Table 2. missing values	6
Table 3. descriptive statistics and duplicate values	7
Table 4. skewness	9
Table 5. correlation	12
Table 6. proportions of normalize data	13
Table 7. Cart model variable importance	15
Table 9. Cart train and test	16
Table 10. Cart precision and f1 score Table 11. RF train and test	17
Table 12. RF test data precision score and F1 score	18
Table 13: RF variable importance	18
Table 13: RF variable importance Table 14. ANN train data score	19
Table 15.ANN train precision and F1 score	20
Table 16. Comparison of 3 models	20

Executive Summary

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

Introduction

The purpose of the project is to predict the claim status and provide recommendations based on the best model

Data Description

- 1.Target: Claim Status (Claimed)
- 2.Code of tour firm (Agency_Code)
- 3. Type of tour insurance firms (Type)
- 4. Distribution channel of tour insurance agencies (Channel)
- 5. Name of the tour insurance products (Product)
- 6.Duration of the tour (Duration)
- 7.Destination of the tour (Destination)
- 8. Amount of sales of tour insurance policies (Sales)
- 9. The commission received for tour insurance firm (Commission)
- 10Age of insured (Age)

Sample of the dataset:

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	ASIA
1	36	EPX	Travel Agency	No	0.00	Online	34	20.00	Customised Plan	ASIA
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	Americas
3	36	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	ASIA
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	ASIA
5	45	JZI	Airlines	Yes	15.75	Online	8	45.00	Bronze Plan	ASIA
6	61	CWT	Travel Agency	No	35.64	Online	30	59.40	Customised Plan	Americas
7	36	EPX	Travel Agency	No	0.00	Online	16	80.00	Cancellation Plan	ASIA
8	36	EPX	Travel Agency	No	0.00	Online	19	14.00	Cancellation Plan	ASIA
9	36	EPX	Travel Agency	No	0.00	Online	42	43.00	Cancellation Plan	ASIA

Table 1. Dataset Sample

Exploratory Data Analysis

Let us check the types of variables in the data frame.

0	Age	3000 non-null	int64
1	Agency_Code	3000 non-null	object
2	Type	3000 non-null	object
3	Claimed	3000 non-null	object
4	C ommisio n	3000 non-null	float64
5	Channel	3000 non-null	object
6	Duration	3000 non-null	int64
7	Sales	3000 non-null	float64
8	Product Name	3000 non-null	object
9	D e stinati o n	3000 non-null	object
dt yp	es: float64(2)	, int64(2), obje	ct(6)
memo	ry usag <mark>e: 2</mark> 34.	5+ KB	

The dataset consists of 3000 observations where datatypes are 2 float, 2 int, 6 objects

Check for missing values in the dataset:

The dataset has 3000 rows and 10 columns

df.isnull().sur	m()	
Age	0	
Agency_Code	0	
Type	0	
Claimed	0	
C ommisio n	0	
Channel	0	
Duration	0	
Sales	0	
Product Name	0	
Destination dtype: int64	0	

There are no missing values in the dataset

Descriptive Statistics:

	count	mean	std	min	25%	50 %	75%	max
Age	3000.0	38.091000	10.463518	8.0	32.0	36.00	42.000	84.00
Commision	3000.0	14.529203	25.481455	0.0	0.0	4.63	17.235	210.21
Duration	3000.0	70.001333	134.053313	-1.0	11.0	26.50	63.000	4580.00
Sales	3000.0	60.249913	70.733954	0.0	20.0	33.00	69.000	539.00

The observed values in duration is negative. The mean and median for commission and sales varies significantly

Duplicate Values:

Number of duplicate rows = 139

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
63	30	C2B	Airlines	Yes	15.0	Online	27	60.0	Bronze Plan	ASIA
329	36	EPX	Travel Agency	No	0.0	Online	5	20.0	Customised Plan	ASIA
407	36	EPX	Travel Agency	No	0.0	Online	11	19.0	Cancellation Plan	ASIA
411	35	EPX	Travel Agency	No	0.0	Online	2	20.0	Customised Plan	ASIA
422	36	EPX	Travel Agency	No	0.0	Online	5	20.0	Customised Plan	ASIA
2940	36	EPX	Travel Agency	No	0.0	Online	8	10.0	Cancellation Plan	ASIA
2947	36	EPX	Travel Agency	No	0.0	Online	10	28.0	Customised Plan	ASIA
2952	36	EPX	Travel Agency	No	0.0	Online	2	10.0	Cancellation Plan	ASIA
2962	36	EPX	Travel Agency	No	0.0	Online	4	20.0	Customised Plan	ASIA
2984	36	EPX	Travel Agency	No	0.0	Online	1	20.0	Customised Plan	ASIA

Removed Duplicate values:

The duplicated varibales are now removed from the dataset, we have now 2861 rows and 10 columns

Univariate Analysis:

Check for Outliers:

Skewness:

Duration 13.786096 Commision 3.104741 Sales 2.344643 Age 1.103145

dtype: float64

As we see there are outliers present in all 4 varibales lets treat them

The outliers is been treated

Count plot:

Categorical variables:

Bivariate Analysis:

Check distribution for continuous distribution:

Check Correlation:

	Age	Commision	Duration	Sales
Age	1.000000	0.071246	0.009216	0.021450
Commision	0.071246	1.000000	0.453225	0.682537
Duration	0.009216	0.453225	1.000000	0.534512
Sales	0.021450	0.682537	0.534512	1.000000

Convert Categorical:

0	4.70	2861 non-null	float64
ю	Age	2801 HOH-HULL	T10a104
1	Agency_Code	2861 non-null	int8
2	Type	2861 non-null	int8
3	Claimed	2861 non-null	int8
4	C ommisio n	2861 non-null	float64
5	Channel	2861 non-null	int8
6	Duration	2861 non-null	float64
7	Sales	2861 non-null	float64
8	Product Name	2861 non-null	int8
9	Destination	2861 non-null	int8

dtypes: float64(4), int8(6)
memory usage: 128.5 KB

Proportions of 1s and 0s

0 0.680531 1 0.319469

Name: Claimed, dtype: float64

2.2 Data Split: Split the data into test and train(1 pts), build classification model CART (1.5 pts), Random Forest (1.5 pts), Artificial Neural Network(1.5 pts). Object data should be converted into categorical/numerical data to fit in the models. (pd.categorical().codes(), pd.get_dummies(drop_first=True)) Data split, ratio defined for the split, train-test split should be discussed. Any reasonable split is acceptable. Use of random state is mandatory. Successful implementation of each model. Logical reason behind the selection of different values for the parameters involved in each model. Apply grid search for each model and make models on best_params. Feature importance for each model.

2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy (1 pts), Confusion Matrix (2 pts), Plot ROC curve and get ROC_AUC score for each model (2 pts), Make classification reports for each model. Write inferences on each model (2 pts). Calculate Train and Test Accuracies for each model. Comment on the validness of models (overfitting or underfitting) Build confusion matrix for each model. Comment on the positive class in hand. Must clearly show obs/pred in row/col Plot roc_curve for each model. Calculate roc_auc_score for each model. Comment on the above calculated scores and plots. Build classification reports for each model. Comment on f1 score, precision and recall, which one is important here.

Cart Model:

Dimensions of train and test data:

```
X_train (2002, 9)
X_test (859, 9)
train_labels (2002,)
test labels (859,)
```

Variable Importance:

-	
	Imp
Age	0.174976
Agency_Code	0.204343
Туре	0.001882
Commision	0.079623
Channel	0.002774
Duration	0.223499
Sales	0.230417
Product Name	0.059610
Destination	0.022875

Predicted Class and Probs:

	0	1
0	0.842105	0.157895
1	0.923077	0.076923
2	0.480392	0.519608
3	0.633663	0.366337
4	0.842105	0.157895

AUC for training Data

AUC: 0.820

AUC for test Data

AUC: 0.789

Train Data:

	precision	recall	f1-score	support
0 1	0.80 0.69	0.87 0.56	0.84 0.62	1342 660
accuracy macro avg weighted avg	0.74 0.76	0.72 0.77	0.77 0.73 0.76	2002 2002 2002

Test Data:

	precision	recall	f1-score	support
0	0.81	0.85	0.83	605
1	0.60	0.52	0.56	254
accuracy			0.75	859
macro avg	0.70	0.69	0.69	859
weighted avg	0.75	0.75	0.75	859

cart_test_precision 0.6
cart_test_recall 0.52
cart_test_f1 0.56

Cart Conclusion: cart_train_precision 0.69 cart_train_recall 0.56 cart_train_f1 0.62 cart_test_precision 0.6 cart_test_recall 0.52 cart_test_f1 0.56

The train and test data are almost similar, the model seems okay.

R۶	n	do	m	Fo	re	st.

Train Data:

0 0.83 0.89 0.86	1342
1 0.74 0.62 0.68	660
accuracy 0.80	2002
macro avg 0.78 0.76 0.77	2002
weighted avg 0.80 0.80 0.80	2002

rf_train_precision 0.74 rf_train_recall 0.62 rf_train_f1 0.68

Area under Curve is 0.8707638982974303

Test Data:

	precision	recall	f1-score	support
9	0.82	0.86	0.84	605
1	0.62	0.56	0.59	254
accuracy			0.77	859
macro avg	0.72	0.71	0.71	859
weighted avg	0.76	0.77	0.76	859

rf_test_precision 0.62
rf_test_recall 0.56
rf_test_f1 0.59

Imp Agency_Code 0.378198 Sales 0.193812 Product Name 0.182063 Duration 0.089622 Age 0.067383 C**ommi**sion 0.061467 Type 0.018426 Destination 0.008378 Channel 0.000651

Random Forest Conclusion: rf_test_precision 0.62 rf_test_recall 0.56 rf_test_f1 0.59

rf_train_precision 0.74 rf_train_recall 0.62 rf_train_f1 0.68

Test seems to be performing better here, could be overfitting, however with overall can be considered as good model

ANN model:

Dimensions of train and test data:

X_train: (2002, 9)
X_test: (859, 9)
y_train: (2002,)
y_test: (859,)

Train Data:

	precision	recall	f1-score	support
0 1	0.80 0.69	0.87 0.56	0.84 0.62	1342 660
accuracy macro avg weighted avg	0.74 0.76	0.72 0.77	0.77 0.73 0.76	2002 2002 2002

nn_train_precision 0.69 nn_train_recall 0.56 nn_train_f1 0.62

Area under Curve is 0.8203862394436165

Test Data:

	precision	recall	f1-score	support
9 1	0.81 0.60	0.85 0.52	0.83 0.56	605 254
accuracy macro avg weighted avg	0.70 0.75	0.69 0.75	0.75 0.69 0.75	859 859 859

nn_test_precision 0.6 nn_test_recall 0.52 nn_test_f1 0.56

Area under Curve is 0.7674952820980022

Comparison of performance metrics for 3 models:

	CART Train	CART Test	Random Forest Train	Random Forest Test	Neural Network Train	Neural Network Test
Ассигасу	0.77	0.75	0.80	0.77	0.77	0.75
AUC	0.77	0.77	0.87	0.79	0.82	0.77
Recall	0.56	0.52	0.62	0.56	0.56	0.52
Precision	0.69	0.60	0.74	0.62	0.69	0.60
F1 Score	0.62	0.56	0.68	0.59	0.62	0.56

#2.5 Based on your analysis and working on the business problem, detail out appropriate insights and recommendations to help the management solve the business objective. There should be at least 3-4 Recommendations and insights in total. Recommendations should be easily understandable and business specific, students should not give any technical suggestions. Full marks should only be allotted if the recommendations are correct and business specific.

Random Forest seems to performing best of the 3 models, with better accuracy, precision, recall and F1 score

As we see the maximum insurance is booked thorugh online channel and very few from offline channel. Customers are benefitting from the source however can be seen offline has claims associated with it. Recommedend to run promotional campigns for other areas so project sales can be boosted. As noticed the claimed is higher on gold plan however cutomized plan shows higher count, as well as for the destination Asia seems to have a higher count however claimed is from other regions.

We would need to collect more data on real time basis.

Recomended:

- 1. Marketing offers to launch new campaigns
- 2. Reduce Claim cycle
- 3. optimize claim recovery
- 4. Reduce claim handling
- 5. Increase customer satisfaction

The End

