

الامتحان الوطني الموحد للبكالوريا

الدورة العادية 2018 -الموضوع-

NS24

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: "أ " و " ب "	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها.
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها لا يسمح باستعمال اللون الأحمر بورقة التحرير

الصفحة	
2	NS

24

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – الموضوع – مادة: الرياضياني — شعبة العلوم الرياضة "أ" و"ببم"

التمرين 1: (3.5 نقطة)

و وحدتها المصفوفة $I=egin{matrix} \mathfrak{A} & 0\ddot{0} \\ \vdots & \vdots \\ 0 & 1 \\ \hline{\emptyset} \end{pmatrix}$ فضاء متجهي حقيقي .

$$M(x,y)=egin{array}{cccc} &x & -2y & \ddot{0} \\ &x & & \dot{\pm} \\ &x + 2y & \ddot{\phi} \end{array}$$
: نضع نضع الكل زوج

$$E = \{M(x,y)/(x,y)\hat{1}_{i}^{2}\}$$
 و نعتبر المجموعة

$$(M_2(i),+)$$
1 ع زمرة جزئية للزمرة E 1 - 1 يين أن E 25

$$(M_2(i),+,.)$$
بين أن E فضاء متجهى جزئى للفضاء المتجهى E أ) بين أن

$$(E,+,.)$$
 بنضع $J=M(0,1)$ بين أن (I,J) أساس للفضاء المتجهي الحقيقي $J=M(0,1)$

$$(M_2(i), ')$$
 بین أن E جزء مستقر من (0.5)

بين أن
$$(E,+,')$$
 حلقة تبادلية. $(E,+,')$

ي: ليكن
$$j$$
 التطبيق من \pm نحو $M_2(j)$ المعرف بما يلي:

$$("(x,y)\hat{I} + (0,0)); j(x+iy) = M(x+y,-y) = \begin{pmatrix} x^2 + y & 2y & \frac{0}{2} \\ x^2 - y & x-y & 0 \end{pmatrix}$$

$$(M_2(i),')$$
نحو $(£^*,')$ نحو نشاکل من (0.5)

$$j(f^*) = E^*$$
 بين أن: $E^* = E - \{O\}$ بين أن: $E^* = E - \{O\}$

ج) استنتج أن
$$(E^*,')$$
 زمرة تبادلية.

جسم نبادلي.
$$(E,+,')$$
 جسم نبادلي.

التمرين 2: (3 نقط)

$$(k \hat{\mathbf{l}} \ \mathbf{F}^*)$$
 $p=3+4k$ ليكن $p=3+4k$

$$x^{p-5} \equiv 1$$
 [p] يحقق: x عددا صحيحا نسبيا يحقق: x عددا

أ) بين أن
$$x$$
 و p أوليان فيما بينهما.

$$x^{p-1} \equiv 1 \, [p]$$
 بین أن: 0.5

$$2+(k-1)(p-1)=k(p-5)$$
 : حقق أن 0.5

$$x^2 \equiv 1$$
 [p] د) استنتج أن: 0.5

$$x^{62} \equiv 1$$
 [67] : محل في ¢ المعادلة = 0.5

الصفحة	
. 3	NS 2

الامتحان الوطني الموحد للركالوريا – الدورة العادية 2018 – الموضوع – مادة: الرياضيات — شعرة العلوم الرياضة "أ" و"بم"

التمرين <u>3</u>: (3.5 نقطة) ليكن m عددا عقديا.

: z المجهول ذات المجهول : المعادلة المجهول المجهول : المجهول : المجهول : المجهول المجهول : المجهول

$$z^{2} + (im + 2)z + im + 2 - m = 0$$

$$(E_m)$$
 هو مميز المعادلة $\Delta = \left(im-2i\right)^2$ اتحقق أن $\Delta = \left(im-2i\right)^2$

$$(E_m)$$
 إعط حسب قيم العدد m مجموعة حلول المعادلة (ب

الأسي. الشكل الأسي.
$$m=i\sqrt{2}$$
 على الشكل الأسي. $m=i\sqrt{2}$

$$(O; \stackrel{\rightarrow}{u}, \stackrel{\rightarrow}{v})$$
 المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر العقدي

m'=-im-1+i و M و M و M دات الألحاق على التوالي a=-1-i و a=-1-i و M و M و M

$$M$$
 الدوران الذي زاويته $-rac{\pi}{2}$ و يحول M إلى R الدوران الذي زاويته $-rac{\pi}{2}$

$$R$$
 أ) تحقق أن Ω هو مركز الدوران Ω

$$A=Rig(Big)$$
 : ب b حدد b لحق النقطة B التي تحقق

$$m'-a = \frac{\omega - a}{\omega - b}(m - b)$$
 :نحقق أن (1-2) يتحقق أن

ب) استنتج أن النقط
$$A$$
 و M و M تكون مستقيمية إذا و فقط إذا كانت النقط A و B و M متداورة .

ج) بين أن مجموعة النقط
$$M$$
 بحيث تكون النقط A و M مستقيمية هي دائرة يجب تحديد مركزها و شعاعها.

التمرين 4 : (7.5 نقطة)

0.5

$$(\forall x \in]0,+\infty[)$$
 ;
$$\int_0^x \frac{t}{1+t} dt = x - \ln(1+x)$$
 : نبن أن: 0.5

ب) باستعمال تغییر المتغیر :
$$u=t^2$$
 بین أن

$$(\forall x \in]0, +\infty[)$$
; $\int_0^x \frac{t}{1+t} dt = \frac{1}{2} \int_0^{x^2} \frac{1}{1+\sqrt{u}} du$ 0.5

$$(\forall x \in]0,+\infty[);$$
 $\frac{1}{2(1+x)} \le \frac{x-\ln(1+x)}{x^2} \le \frac{1}{2}$:ن (5.5)

$$\lim_{x \to 0^+} \frac{x - \ln(1+x)}{x^2} = 2 \quad = 0.25$$

الصفحة	
_4	NS 2

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – الموضوع – مادة: الرياضياني — شعبة العلوم الرياضة "أ" و"بب

الجزء II:

$$\begin{cases} f\left(x\right) = \left(\frac{x+1}{x}\right) \ln\left(1+x\right) \; ; \; x \neq 0 \\ f\left(0\right) = 1 \end{cases}$$
 نعتبر الدالة f المعرفة على $\int_{0}^{\infty} \left[0, +\infty\right] \left[0, +\infty\right] \left[0, +\infty\right]$

 $\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$ و ليكن $\left(C
ight)$ منحناها في معلم متعامد ممنظم

$$0$$
بين أن f متصلة على اليمين في 0

بين أن
$$f$$
 قابلة للاشتقاق على اليمين في 0 (يمكن استعمال نتيجة السؤال $(2-1)$).

ج) احسب
$$f(x)$$
 و $\lim_{x \to +\infty} \frac{f(x)}{x}$ و $\lim_{x \to +\infty} \frac{f(x)}{x}$ قم أول مبيانيا النتيجة المحصل عليها.

ان: أن أن
$$f$$
 قابلة للاشتقاق على $]0,+\infty[$ ثم تحقق أن: $[0.5]$

$$(\forall x \in]0,+\infty[)$$
; $f'(x) = \frac{x - \ln(1+x)}{x^2}$

$$[0,+\infty]$$
 ب) استنتج أن f تزايدية قطعا على f

$$f([0,+\infty[)=[1,+\infty[$$
 خصق أن: $]$ اتحقق أن $]$ 0.25

$$(0)$$
 يتم إنشاء نصف المماس على اليمين في النقطة ذات الأفصول (C) .

الجزء III :

0.25

$$g(x) = f(x) - x$$
 يمتبر الدالة العددية g المعرفة على $g(x) = 0,+\infty$ بما يلي: $g(x) = 0,+\infty$

$$(\forall x \in]0,+\infty[)$$
 ; $0 \le f'(x) \le \frac{1}{2}$ نين أن 0.5

$$g([0,+\infty[)]=[-\infty,1]$$
 ب) استنتج أن الدالة g تناقصية قطعا على $[0,+\infty[]$ ثم بين أن: $[0,+\infty[]]$

$$]0,+\infty[$$
 بين أن المعادلة $f(x)=x$ تقبل حلا وحيدا α على المجال 0.25

$$]0,+\infty[$$
 ليكن a عددا حقيقيا من المجال -2

$$\left(\forall n\in \Box\right)$$
 ; $u_{n+1}=f\left(u_{n}\right)$ و $u_{0}=a$: نعتبر المنتالية $\left(u_{n}\right)_{n\geq 0}$ المعرفة بما يلي

$$(\forall n \in \square)$$
 ; $u_n > 0$ نن:

$$(\forall n \in \square)$$
 ; $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|$: نب بین أن: 0.5

$$(\forall n \in \square)$$
 ; $|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |a - \alpha|$: بين بالترجع أن (0.5)

$$\alpha$$
 د) استنتج أن المتتالية $(u_n)_{n>0}$ تؤول إلى 0.25

الصفحة 5 NS 24	الامتحان الوطني الموحد للبكالوريا – الحورة العادية 2018 — الموضوع – مادة: الرياضيات — شعبة العلوم الرياضة "أ" و"ببم"	
	التمرين <u>5</u> : (2.5 نقطة)	
	$F(x) = \int_0^x e^{t^2} dt$ نعتبر الدالة F المعرفة على \Box بما يلي:	
	ر بین أن F متصلة و تزایدیة قطعا علی \Box الله الله \Box \Box الله \Box	0.5 0.5
	$\lim_{x o -\infty} F(x)$ بین أن F فردیة ثم استنتج	0.5
	\neg ج) بين أن F تقابل من \neg نحو \neg للدالة G قابلة للاشتقاق في σ ثم احسب σ للدالة σ قابلة للاشتقاق في σ ثم احسب	0.5 0.5

انتهى

الامتحان الوطني الموحد للبكالوريا

الدورة العادية 2018 -عناصر الإجابة-

NR24

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: "أ" و"ب"	الشعبة أو المسلك

سلم التنقيط	إشارة الحل	أول	التمرين ال
0.25	$ig(M_2(egin{array}{c} ig),+ig)$ زمرة جزئية للزمرة E		-1
0.25	$ig(M_2(i_i),+,.ig)$ فضاء متجهي جزئي للفضاء E	(1	
0.5	0.25 أسرة حرة (I,J) أسرة مولدة و النتيجة (I,J)	į.	-2
0.5	جزء مستقر E	(1	-3
0.5	حلقة تبادلية $(E,+,^{\prime})$	ť,	-3
0.5	j تشا کل	(أ	
0.5	j (£*)= E*	ť)	-4
0.25	زمرة تبادلية $\left(E^{*},^{'} ight)$	(5	
0.25	(E,+,') جسم تبادل <i>ي</i>		-5

سلم التنقيط	إشارة للحل	ئاني	التمرين الن
0.5	الاستلزام: $(5-p)$ الاستلزام:		1
0.5	او أي طريقة أخرى صحيحة) $x \dot{\mathrm{U}} p = 1$	(أ	
0.5	أو أي طريقة أخرى صحيحة) $x^{p-1} \equiv 1 \ [p]$	ب)	2
0.5	التحقق من المتساوية	(₹	

الصفحة 4 NR 24	الامتدان الوطنيي الموحد للبكالوريا – الدورة العاحية 2018 — عناصر الإجابة	
2 NR 24		
4 \	– ماحة: الرياضيات — شعبة العلوم الرياضة "أ" و"بب"	
	zi o c and hickonication zignication -	

0.5	$x^{2}.x^{(k-1)(p-1)} \equiv x^{k(p-5)} [p]$ الاستنتاج	(7	
0.5	67 عدد أولي و 16 ′4 +3 = 6767		2
0.5	تطبيق نتائج التمرين		3

سلم التنقيط	إشارة الحل	الث	ين الث	التمر
0.25	التحقق	(1		
0.5	$S=\left\{ -1-i ight\}$ حالة $m=2$ حالة $m=2$ حالة $m=2$ حالة $m\neq 2$ لدينا $m\neq 2$	ť,	1	.I
0.5	الشكل الأسىي للحل الأول الشكل الأسي للحل الثاني الشكل الأسي للحل الثاني المسكل الأسي للحل الثاني المسكل الأساء الشكل الأساء الشكل الأساء المساء المسا		2	
0.25	التحقق	(أ	1	
0.5	b=2	j.		
0.5	التحقق من المتساوية	(أ		
0.5	التكافؤ: 0.25 لكل استلزام $M=A$ تقبل النتيجة في حالة عدم معالجة المترشح للحالة الخاصة	(J	2	.II.
0.5	التعرف على الدائرة	(ह	_	

إشارة الحل	التمرين الرابع
المتساوية	(i
المتساوية	(+ 1
المتفاوتة المزدوجة: 0.25 لكل متفاوتة	(E)
حساب النهاية	2
	المتساوية المتساوية المتفاوتة المزدوجة: 0.25 لكل متفاوتة

الصفحة 3 NR 24	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 — عناصر الإجابة	
3 NR 24		1 11
$ A \sim A - A $	– ماحة: الرياخيان <i>ي — شعب</i> ة العلوم الرياضة "أ" م"بب"	
1* \l	si è c aminchanceixa simminciana -	

0.25	الاتصال على اليمين في 0	(j		
0.5	قابلية الاشتقاق على اليمين في 0	·ť		
0.75	$\lim_{x \to +\infty} f(x)$ عساب		1	
	0.25 $\lim_{x \to +\infty} \frac{f(x)}{x}$	(હ		
	التأويل المبياني			.II.
0.5	قابلية الاشتقاق	(1)		
	حساب المشتقة الأولى		2	
0.25	رتابة f	·Ĺ	2	
0.25	التحقق	(5		
0.5	التمثيل المبياني	3		
0.5	المتفاوتة المزدوجة: 0.25 لكل متفاوتة	(1		
0.5	رتابة g	· J·	1	
0.25	وجود و وحدانية $lpha$	(2		.III.
	وجود و وحدايد م	(E		
0.25		(1	2	
0.5	تطبيق مبرهنة التزايدات المنتهية أو متفاوتة المتزايدات المنتهية	į.		
0.5	الترجع	(5	_	
0.25	$\lim_{n \to +\infty} u_n = \alpha$: تقارب المتتالية	()		

الصفحة 4 NR 24	الامتدان الوطني الموحد للوكالوريا – الدورة العادية 2018 – غناسر الإجابة
4	– ماحة: الرياضيات — هعبة العلوم الرياضة "أ" و"بب"

سلم التنقيط	إشارة الحل	التمرين الخامس	
0.5	0.25 متصلة على \square متصلة F تزايدية قطعا على \square تزايدية قطعا \square	1	
0.5	0.25 $\forall x \in]0, +\infty[F(x) \ge x]$ $\lim_{x \to +\infty} F(x)$	([†]	
0.5	0.25 فردیة (نقبل کل حل صحیح) $\lim_{x \to -\infty} F(x)$	(ب	2
0.5	\square تقابل من \square نحو F	(₹	
0.5	0.25قابلية اشتقاق G في G في $G'(0)$ حساب $G'(0)$	(2	