BIOLOGY

Chapter 11

GENÉTICA NO MENDELIANA

I. HERENCIA INTERMEDIA

Los cruzamientos de animales y plantas que presentan dominancia incompleta son aquellos en los que no existe rasgo dominante

Flores rosadas Flores rosadas CR CB CR CB **Gametos** CR $\mathbf{C}^{\mathbf{B}}$ (G) CR CR CR CR CB **Filial** (F2) C_B CR CB C_B C_B **ROSADA** Fenotipo: **ROJA BLANCA** Proporción: 1/4 1/2 Probabilidad: Porcentaje: 25% 50% 25%

II. CODOMINANCIA

Es un tipo de herencia en la cual se expresa ambos alelos por igual, no hay recesivos. El fenotipo que resulta en la descendencia es de tipo mosaico (manchado)

Genotipo: 100% CN CB

Fenotipo: 100% Gatos blancos con manchas negras

Fenotipo: gato negro machas negras blanco

 Proporción:
 1
 2
 1

 Probabilidad:
 ½
 ½
 ½

 Porcentaje:
 25%
 50%
 25%

II. CODOMINANCIA

III. ALELOS MULTIPLES: GRUPOS SANGUINEOS A, B y O

Fenotipo	Genotipo	Polisacáridos en superficie del glóbulo rojo
0	00	
А	AA, 0A A A; A	
В	BB, 0B B B; B	
AB	AB A B	

Sistema Rh

- ➤ En 1940, Landsteiner descubrió que los glóbulos rojos representan más antígeno.
- Halló uno al que denominó antígeno D o factor Rh.
- La persona que tiene glóbulos rojos con factor Rh son llamados Rh positivo(+), mientras que las personas que no presentan el factor Rh son llamados Rh negativos(-).

GENOTIPO	FENOTIPO
RR: Homocigote dominante	Rh (+)
Rr: Heterocigote	Rh (+)
rr: Homocigote recesivo	Rh (-)

III. ALELOS MULTIPLES: GRUPOS SANGUINEOS A, B y O

Ejemplo: ¿Qué grupo sanguíneo podrá presentar los hijos de un matrimonio donde los esposos son de grupo sanguíneo A y B ambos heterocigotos?

Línea pare (P)	ental	I ^A i		l ^B i	
(-)		ΙB		i	
	I A	ΙΑΙ	В	l ^A i	
		l ^B i		ii	

Rpta: Grupo sanguíneo AB
Grupo sanguíneo A
Grupo sanguíneo B
Grupo sanguíneo o

Ejemplo: un individuo presenta el grupo sanguíneo AB y tiene descendencia con una mujer de grupo sanguíneo O ¿Cuál es probabilidad de que sus hijos sean de grupo sanguíneo B?

Rpta: la probabilidad es de ½ 50%

IV. HERENCIA LIGADO AL SEXO

HELICO | THEORY

Al analizar el curso de la herencia de múltiples caracteres de los seres vivos resulto que algunos de ellos eran transmitidos de una manera peculiar, detectándose una evidente dependencia del sexo

LIGADAAL CROMOSOMAX

HEMOFILIA

DALTONISMO

LIGADAAL CROMOSOMAY

HIPERTRICOSIS AURICULAR

SINDACTILIA

IV. CASOS LIGADOS AL CROMOSOMA "X"

Hemofilia: es un gen recesivo representado como "h" los que presentan el gen pueden padecer hemofilia

SEXO	GENOTIPO	FENOTIPO
	XH XH	Mujer sana
Y	$X^H X^h$	portadora
т	$X^h X^h$	Mujer no nace(hemofílica)
~	X ^H Y	Hombre sano
O	X ^h Y	Hombre hemofílico

Daltonismo : los que presenta el gen recesivo "d" son incapaces de distinguir los colores rojo y verde.

SEXO	GENOTIPO	FENOTIPO
	$X_D X_D$	Mujer sana
Y	X^D X^d	Mujer portadora
	X^d X^d	Mujer daltónica
~7	X^D Y	Hombre sano
\mathbf{O}	X ^d Y	Hombre daltónica

PARA AMBAS ENFERMEDADES NO EXISTE LA CONDICÓN:
VARON PORTADOR

Ejemplo: una mujer portadora de hemofilia se casa con un hombre hemofílico. ¿Cuál es la probabilidad de que la descendencia sea hemofilica?

Línea parental (P)		X ^H X ^h		
		Χh	Y	
	XH	XHXh	XHY	
	Xh	XhXh	XhY	

Rpta: la probabilidad es de 1/2

Ejemplo: un hombre daltónico se casa con una mujer sana. ¿ cual es la probabilidad de que la descendencia sea daltónica?

-ínea parental		Xq A 💥	$X_D X_D$
(P)		Χp	Χp
	Χq	X ^D X ^d	XDXq
	Y	XDY	XDY

Rpta: la probabilidad es de 0

Genética no mendeliana

3

Al cruzar

¿Cuáles son las enfermedades ligadas al cromosoma X? Represente su genotipo.

Padres:

 X^d

 $X_D X_q$

X_d Y

 X^d

 $X_D X_q$

X^d Y

0

Sustentación

Daltonismo: X^d X^d

Xd Y

hemofilia: Xh Xh Xh Y

¿cuántas hijas "mujeres" son daltónicas?

 X^{D}

Y

Resuelva.

Progenitores:

×

¿Cuántos hijos varones son hemofílicos?

8 9	X^{H}	X^h
X ^H	X _H X _H	XH Xh
Y	X ^H Y	X ^h Y

Sustentación

0% ninguna

¿Qué es el daltonismo? Represente su genotipo.

Sustentación

Incapacidad para distinguir entre los matices de rojo y verde

Xd X Xd Xd

HELICO | PRACTICE

5

Según el tipo de sangre, María y José son

Padres: I^{A_i} × I^{B_i} Grupo Grupo

¿Cuántos hijos serán del grupo sanguíneo A?

Sustentación

25% de probabilidad, ¼ de los hijos

Un conejo blanco se cruza con un conejo blanco con manchas marrones.

01

Padres:

×

Conejos blancos Conejos blancos con manchas

¿Cuántas crías serán blancas con manchas marrones?

30 9	CB	CB
CB	C _B C _B	C _B C _E
$C^{\mathbf{M}}$	СвСм	Св См

Sustentación

50% de crías o 1/2

7

Un jardinero cultivo rosas observando el siguiente cruce

Por dominancia incompleta se tiene

Padres: Flor roja X Flor blanca

$$I^RI^R \quad \times \quad I^BI^B$$

3 9	I ^R	IR
IB	B R	B R
IB	^B R	B R

Sustentación

100% de las flores serán rosadas