

Biologia

Fisiologia Humana: Sistemas

Professor: Gregório Kappaun Rocha

Contato: gregkappaun@gmail.com / gregorio.rocha@iff.edu.br

Biologia

Fisiologia Humana: Sistema Excretor Urinário

Professor: Gregório Kappaun Rocha

Sistema Excretor Urinário: Funções

- 7

Sistema Excretor Urinário: Funções

Filtrar o sangue!

- Controlar a quantidade de água e sais minerais. Diretamente relacionado ao controle da pressão arterial!
- Retirar excretas nitrogenadas do sangue;
- Retirar substâncias tóxicas e substâncias em excesso do sangue;
- Controlar o pH sanguíneo;
- Formar a Urina!

Excretas Nitrogenadas

Substâncias tóxicas geradas nos seguintes processos:

- Principalmente, na degradação de aminoácidos no metabolismo das proteínas.

- Ainda, no metabolismo das Bases Nitrogenadas. As purinas (A e G) e as pirimidinas
 (C, T e U) são degradadas formando ácido úrico e ureia, respectivamente.
- Exemplos de excretas nitrogenadas: Amônia, Ureia e Ácido Úrico.

Excretas Nitrogenadas --> Disponibilidade de Água

CARACTERÍSTICAS	AMÔNIA	URÉIA	ÁCIDO ÚRICO
TOXICIDADE			
SOLUBILIDADE			
PRINCIPAL AMBIENTE			
REPRESENTANTES			

Excretas Nitrogenadas --> Disponibilidade de Água

CARACTERÍSTICAS	AMÔNIA	URÉIA	ÁCIDO ÚRICO
TOXICIDADE	Alta	Moderada	Baixa
SOLUBILIDADE	Alta	Moderada	Baixa
PRINCIPAL AMBIENTE	Aquático	Terrestre úmido	Terrestre seco
REPRESENTANTES	Peixes ósseos, Invertebrados (exceto insetos)	Peixes cartilaginosos Mamíferos anfíbios	Insetos Répteis Aves

Formação da Ureia

1. Origem: degradação de aminoácidos (Proteínas). Libera um grupamento Amina (NH2), que resultará em excretas nitrogenadas.

- Livre, a Amina será convertida em íon Amônio (NH4*), que possui alta toxicidade e não pode ser acumulada no sangue.
- 3. O **Amônio (NH4***) é, então, convertido no <u>fígado</u> em **Ureia**, que é menos tóxica e pode circular pelo sangue, desde que com níveis controlados.
- 4. A **Ureia** é captada pelos **rins**, onde será eliminada na <u>urina</u>.

Formação da Ureia: o Ciclo da Ureia

Ciclo da Ureia: via metabólica responsável pela formação de ureia a partir de íons amônio.

Os íons amônios gerados no corpo são direcionados para o **fígado**, para serem convertidos em ureia.

Local: principalmente no <u>fígado</u> (mas também ocorre nos rins).

Amônio (NH4*) é convertido em Ureia (NH2)2CO.

Formação da Ureia: o Ciclo da Ureia

O que acelera o Ciclo da Ureia?

- Dieta com alto teor de proteínas: neste caso, o excesso de proteínas será degradado e resultará em muitas moléculas de amônia. Logo, o ciclo da ureia trabalhará muito! Ex: após um churrasco.
- Jejum prolongado: neste caso, a <u>degradação das proteínas dos músculos</u> será intensificada, já que os aminoácidos serão utilizados para produção de ATP e glicose.
 Resultará em muitas moléculas de amônia. Logo, o ciclo da ureia trabalhará muito!

Ureia na Urina

Falhas no Ciclo da Ureia: consequências

Desordens no Ciclo da Ureia: incapacidade de formar ureia a partir de amônia.

A amônia ao se acumular no sangue chega ao **cérebro** e, por ser altamente tóxica, causa danos irreversíveis, podendo levar ao <u>coma</u> e à <u>morte</u>.

Exemplo:

 Encefalopatia hepática: substâncias tóxicas normalmente eliminadas pelo fígado se acumulam no sangue e chegam ao cérebro. Causa a deterioração da função cerebral.

Ocorre em pessoas com doença **hepática** grave e/ou com deficiência na produção de **enzimas atuantes no ciclo da ureia**.

Formação do Ácido Úrico

- Excreta metabólico secundário, sendo um produto do metabolismo das purinas (que são as bases nitrogenadas <u>Adenina</u> e <u>Guanina</u>, formadoras do DNA e RNA) por ação da enzima <u>xantina oxidase</u>.
- O ácido úrico é excretado para fora de nosso organismo: pelos rins, bile e sucos intestinais.
- Apesar da excreta nitrogenada principal dos mamíferos ser a ureia, o ácido úrico também é um componente da urina de seres humanos.

Formação do Ácido Úrico: Hiperuricemia

- Hiperuricemia: taxa de ácido úrico elevada.

- Consequências?

Formação do Ácido Úrico: Hiperuricemia

Hiperuricemia: taxa de ácido úrico elevada.

- Consequências?

Formação de cristais de uratos, semelhantes a agulhinhas, que se depositam em vários locais do corpo, de preferência:

- Articulações?
- **Rins**?

Formação do Ácido Úrico: Hiperuricemia

Hiperuricemia: taxa de ácido úrico elevada.

- Consequências?

Formação de cristais de uratos, semelhantes a agulhinhas, que se depositam em vários locais do corpo, de preferência:

- Articulações (pode causar uma doença conhecida como Gota);
- Rins (pode causar os cálculos renais).

Formação do Ácido Úrico: GOTA

- Doença reumatológica decorrente do aumento dos níveis de ácido úrico (hiperuricemia),
 que passa a se depositar em forma de cristais de urato de sódio nas articulações,
 causando uma crise inflamatória aguda.
- Distribuição universal: atinge, principalmente, homens entre 30-40 anos. Nas mulheres,
 é comum no período pós-menopausa.
- OBS: todos os gotosos têm hiperuricemia, mas nem todos os hiperuricêmicos têm gota (~20% apresentam gota).
- Causas: Superprodução de ácido úrico (~10% dos casos);

Diminuição da excreção urinária de ácido úrico (~90% dos casos).

GOTA

Fatores de risco: Hereditariedade, sobrepeso, doença renal, trauma articular, hipertensão arterial sistêmica, consumo de álcool.

Pedras nos Rins / Cálculo Renal

Pedras nos Rins / Cálculo Renal

Resultantes do acúmulo de cristais existentes na urina.

Causas:

- Volume insuficiente de urina / urina supersaturada de sais;
- Grande quantidade de <u>cálcio</u> e <u>fosfatos</u> na urina;
- Distúrbios metabólicos do ácido úrico;
- Alterações anatômicas.

Pedras nos Rins

Sintoma típico:

 Cólica renal: dor lombar aguda, unilateral, que se irradia para a frente do abdômen.

- Beba muita água regularmente.

De dois a três litros por dia. Essa é a medida mais importante para prevenir o cálculo renal.

Anatomia do Sistema Excretor Urinário

- 02 rins
- 02 ureteres
- 01 bexiga
- 01 uretra

Sistema Urinário x Sistema Cardiovascular

Anatomia: Rins

Anatomia: Rins

Funções: Rins

- Filtrar o sangue!

- Controlar a quantidade de água e sais minerais. Diretamente relacionado ao controle da pressão arterial!
- Retirar excretas nitrogenadas do sangue;
- Retirar substâncias tóxicas e substâncias em excesso do sangue;
- Controle do pH sanguíneo;
- Formar a Urina!

Órgão excretor e osmorregulador!

A extremidade superior de cada rim é coberta por uma glândula endócrina, a glândula suprarrenal (adrenal).

Funções: Rins

- Eliminar substâncias tóxicas endógenas oriundas do metabolismo. Ex: ureia.
- Manter o equilíbrio de eletrólitos, tais como: N⁺, K⁺, Ca²⁺, Mg, HCO3⁻, H⁺, Cl⁻...
- Regular o pH sanguíneo;
- Regular a osmolaridade e volume de líquido corporal eliminando ou retendo água;
- Excreção de substâncias exógenas. Ex: medicações e antibióticos;
- Produção de hormônios: renina, eritropoietina (estimula a produção de hemácias)...
- Produção de urina para exercer as suas funções excretórias.

Néfron: estrutura tubular responsável pela filtração do sangue.

Cada rim é formado por mais de 1 milhão de néfrons!

Especialidade médica: ?

Néfron: estrutura tubular responsável pela filtração do sangue.

Cada rim é formado por mais de 1 milhão de néfrons!

Especialidade médica: Nefrologia!

Vasos Sanguíneos:

 Artéria Renal (ramo da <u>aorta</u>): por onde o sangue <u>cheqa</u> ao rim.

Veia Renal (ramo da <u>veia cava</u> inferior):
 por onde o sangue <u>sai</u> do rim.

Vasos Sanguíneos:

- Artéria Renal (ramo da <u>aorta</u>): por onde o sangue <u>chega</u> ao rim.
 - Arteríola Aferente: chega à Cápsula de Bowman antes da filtração.

Vasos Sanguíneos:

- Artéria Renal (ramo da <u>aorta</u>): por onde o sangue <u>chega</u> ao rim.
 - Arteríola Aferente: chega à Cápsula de Bowman antes da filtração.
 - Arteríola Eferente: sai da Cápsula de Bowman após a filtração.

Vasos Sanguíneos:

- Artéria Renal (ramo da <u>aorta</u>): por onde o sangue <u>cheqa</u> ao rim.
 - Arteríola Aferente: chega à Cápsula de Bowman antes da filtração.
 - Arteríola Eferente: sai da Cápsula de Bowman após a filtração.
- Veia Renal (ramo da <u>veia cava</u> inferior):
 por onde o sangue <u>sai</u> do rim.

Cápsula Renal / Cápsula de Bowman:

- Região em formato de taça na extremidade do néfron.
- Abriga um aglomerado de capilares, chamado de Glomérulo Renal / Glomérulo de Malpighi.

Local onde ocorre a **FILTRAÇÃO** do sangue!

Formação da urina

- 1. Filtração Glomerular
- 2. Reabsção Tubular
- 3. Secreção Tubular
- 4. Excreção

Néfron: processos para a formação da urina

Filtração Glomerular:

- A <u>alta pressão</u> sanguínea nos capilares do Glomérulo força a saída de fluido sanguíneo para a região da Cápsula de Bowman, "filtrando-o".
- Moléculas <u>grandes</u> como proteínas e células sanguíneas <u>não</u> são filtradas e permanecem no sangue.
- O líquido resultante da filtração (filtrado glomerular) tem composição semelhante ao plasma sanguíneo.
- São gerados, diariamente, quase 180 litros de filtrado! Alguém urina isso?
 Não! Volume de urina diário médio é de: 1,5 litros.
- Grande parte retorna para o sangue no processo de Reabsorção!

Néfron: processos para a formação da urina

Reabsorção Tubular:

- Retorno de substâncias do filtrado glomerular para o sangue.
- Ex: glicose (quase 100%), aminoácidos (quase 100%), vitaminas, íons e água.
- Envolve tanto o transporte ativo quanto passivo.
- Ocorre em diferentes regiões do néfron

Néfron: processos para a formação da urina

Reabsorção Tubular:

- Retorno de substâncias do filtrado glomerular para o sangue.
- Ex: glicose (quase 100%), aminoácidos (quase 100%), vitaminas, íons e água.
- Envolve tanto o transporte ativo quanto passivo.
- Ocorre em diferentes regiões do néfron

Secreção tubular:

- Lançamento de substâncias do sangue para dentro dos néfrons.
- Ex: íons H*, K*, amônia e ácido úrico, medicamentos...
- Ocorre em diferentes regiões do néfron

Passo a Passo

Sistema Renina->Angiotensina->Aldosterona

Renina

Produzida no próprio rim.

Estímulo:

- Queda da concentração de Na⁺ no sangue.
- Queda da pressão arterial.

Efeitos:

Angiotensinogênio (inativa, produzido no fígado) Angiotensina (ativa)

Sistema Renina->Angiotensina->Aldosterona

Renina

Produzida no próprio rim.

Estímulo:

- Queda da concentração de Na⁺ no sangue.
- Queda da pressão arterial.

Efeitos:

Angiotensinogênio

(inativa, produzido no fígado)

Angiotensina

(ativa)

Angiotensina

Efeitos:

- Aumenta a reabsorção de Na+;
- Vasoconstrição;
- Sede;
- Estimula a liberação do **ADH** pela hipófise;
- Estimula a liberação da
 Aldosterona nas suprarrenais;

Resultado:

- Elevação do volume do sangue;
- Elevação da Pressão Arterial;

Sistema Renina->Angiotensina->Aldosterona

Renina

Produzida no próprio rim.

Estímulo:

- Queda da concentração de Na⁺ no sangue.
- Queda da pressão arterial.

Efeitos:

Angiotensinogênio

(inativa, produzido no fígado)

Angiotensina

(ativa)

Angiotensina

Efeitos:

- Aumenta a reabsorção de Na+;
- Vasoconstrição;
- Sede;
- Estimula a liberação do **ADH** pela hipófise;
- Estimula a liberação da **Aldosterona** nas suprarrenais;

Resultado:

- Elevação do volume do sangue;
- Elevação da Pressão Arterial;

Aldosterona

Produzida nas suprarrenais.

Estímulo:

- Queda da pressão arterial.

Efeitos

- Secreção de K⁺
- Reabsorção de NaCl
- Reabsorção de H2O

Resultado:

- Aumento do vol. do sangue;
- Elevação da Pressão Arterial;

Hormônio: Eritropoetina (EPO)

Produzida no próprio rim.

Estímulo:

- Estresse hipóxico (ex: falta de oxigênio, grandes altitudes...)
- Queda do número de hemáceas (ex: anemias, hemorragias, ...)

<u>Efeitos</u>

Estimula a **eritropoiese**: proliferação das células-tronco <u>precursoras</u> de glóbulos vermelhos (eritrócitos -> hemácias) ao nível da medula óssea.

OBS: Doping! Quando exógeno, a EPO é usada como uma droga para melhorar o desempenho.

Rins e a Regulação do pH sanguíneo

Dá-se, principalmente, pela regulação da excreção e reabsorção de H+ e HCO₃-.

- Reabsorção de Bicarbonato (HCO3⁻): em geral, todo o bicarbonato filtrado é reabsorvido de forma indireta, na forma de CO2 e H2O, pela ação da anidrase carbônica.

Secreção de íons H⁺: torna a urina ligeiramente ácida.

Acidose sanguínea: aumento da reabsorção de íons HCO3⁻ e aumento da secreção de H⁺.

Alcalose sanguínea: redução da reabsorção de íons HCO3⁻ e redução da secreção de H⁺.

Bexiga

Órgão oco, de paredes musculares e elásticas.

Função: armazenar urina.

600 - 800 ml de urina!

O relaxamento de ambos os esfíncteres libera a urina da bexiga e possibilita a micção.

BEXIGA ARMAZENANDO URINA

Diálise Peritoneal e Hemodiálise

Rim artificial: a máquina filtra o sangue do paciente com deficiência renal e remove substâncias tóxicas e excesso de água.

Ambas apresentam o mesmo efeito. O médico deve definir qual é a melhor opção. É comum alternar as técnicas.

Transplante Renal

Um rim saudável (de uma pessoa viva ou falecida) é doado a um paciente com insuficiência renal crônica avançada.

Os rins do paciente permanecem onde estão, a menos que estejam causando infecção ou hipertensão.

Doador falecido: é necessário estar inscrito na **lista única de receptores** de rim.

Critérios de seleção são compatibilidade com o doador e tempo de espera em lista.

<u>Doador vivo</u>: é necessária uma autorização judicial.

É necessário tomar de forma contínua imunossupressores, para evitar rejeição do órgão.

Doador vivo Receptor

Sistema Excretor: Glândulas Sudoríparas

Produzem e eliminam um líquido <u>sem cheiro</u> chamado de **suor**.

Função:

- Controle da temperatura corporal.
- Eliminação de substâncias tóxicas.

Composição do suor: principalmente, água. Mas também estão presentes: ureia, ácido úrico e cloreto de sódio.

Alguns alimentos e medicamentos, como alho, cebola, antibióticos, vitaminas e algumas toxinas, também podem ser eliminados pelo suor.

Em nosso corpo há cerca de dois milhões de glândulas sudoríparas!

Glândula écrina (vermelho) e glândula apócrina (azul).

Sistema Excretor: Glândulas Sudoríparas

Glândulas Sudoríparas Apócrinas

- Maiores e menos freguentes.
- Local: axilas, aréolas mamárias e região genital/anal.
- Secreções lançadas nos canais dos folículos pilosos.
- Tornam-se ativas a partir da puberdade.
- Suor mais viscoso (rico em <u>proteínas</u> e ácidos graxos).
- O suor não tem cheiro! O típico odor é resultado da ação de <u>bactérias</u> no local que metabolizam as proteínas e os ácidos graxos presentes no suor, produzindo substâncias que com odor desagradável, como o ácido isovalérico e a androsterona.

Glândulas Sudoríparas Écrinas

- Menores e <u>mais frequentes</u> (em quase toda a extensão da pele).
- Concentram-se nas palmas das mãos, plantas dos pés e testa.
- Liberam suas secreções diretamente na superfície da pele via poros.
- Suor mais diluído (pouca quantidade de proteínas).
- Ativas desde o nascimento.