

Spring 2022 **ECE 568: Embedded Systems**

Lecture #4: Review of MCU hardware

Vijay Raghunathan

Ack.: Soumendu Ghosh

(c) 2022, All rights reserved.

Typical MCU: Pin-Out View

```
has 1000s of
transistors inside
any interaction
```

- any interaction with outside world happens using the pins
- using the pins

 many of the pins

 are very heavily

 multiplexed
 - pin can be used for several purposes

Typical MCU: Inside View

How do you build notion of time in microcontroller? How do you take the internal notion of time and correlate to the occurrence of various events in physical world?

ESP32-WROOM-32D: Pin-Out View

microcontroller
 has 39 pins

ESP32 Functional Blocks

Espressif ESP32 Wi-Fi & Bluetooth Microcontroller — Function Block Diagram

Key Components of MCU

- 6
- Core, registers, MULT and CRC modules, memory map
- GPIO
- Clock sub-system
- Timers, Watchdog, RTC
- Serial Communications (UART, SPI)
- Analog to Digital Converter (ADC)
- Direct Memory Access (DMA)
- Power Management Module
- Debug and Emulation Support

ESP32 Components

7

- Core and Memory
 - Single/Dual Core Microprocessor
 - Internal Memory (ROM, SRAM)
- Timer and Watchdog
 - 4 General Purpose timers
 - 3 watchdog timers (to recover from faults)
- RTC (Real-Time Clock)
- Wireless connectivity, 2.4 GHz receiver and transmitter radio
 - Wi-Fi: 802.11 b/g/n
 - Bluetooth: classic and BLE
- RTC (co-processor) and Low-Power management with multiple power modes
- Multiple GPIO pins
- Security
 - ► IEEE 802.11 standard security features all supported, including WFA, WPA/WPA2 and WAPI
 - Secure boot
 - Flash encryption
 - ▶ 1024-bit OTP, up to 768-bit for customers
 - Cryptographic hardware acceleration: AES, SHA-2, RSA, elliptic curve cryptography

ESP32 Components

8

Peripheral Interfaces

- ▶ 12-bit SAR ADC up to 18 channels
- 2 × 8-bit DACs
- ▶ 10 × touch sensors (capacitive sensing GPIOs)
- 4 × SPI
- 2 × I²S interfaces
- 2 × I²C interfaces
- ▶ 3 × UART
- SD/SDIO/CE-ATA/MMC/eMMC host controller
- SDIO/SPI slave controller
- Ethernet MAC interface with dedicated DMA and IEEE 1588 Precision Time Protocol support
- CAN bus 2.0
- Infrared remote controller (TX/RX, up to 8 channels)
- Motor PWM
- LED PWM (up to 16 channels)
- Hall effect sensor
- Ultra low power analog pre-amplifier

Power management

- Internal low-dropout regulator
- Individual power domain for RTC
- ► 5µA deep sleep current
- Wake up from GPIO interrupt, timer, ADC measurements, capacitive touch sensor interrupt

Harvard vs. von Neumann (* very important *)

- Harvard architecture has separate instruction and data buses
 - More efficient (can read both memories in parallel)
 - Can optimize bus-width for the two memories independently
 - Many microcontrollers use this; e.g., Microchip PIC, Intel 8051, Atmel AVR, ESP32

- von Neumann architecture has a single instruction and data bus
 - ► Can only fetch either instruction or data on any given clock cycle
 - Microcontrollers that use this include TI MSP430, Freescale HCS

10

Memory Mapped I/O

- Instead of having special instructions for accessing peripheral device registers, just read/write to them as if they were memory
- Part of address space reserved for peripherals
- Device registers directly mapped to these main memory locations
- Advantage: Makes programming much simpler
 - No special instructions to access I/O devices
 - Simply used LOAD and STORE
- Disadvantage: Occupies part of memory space
 - Usually very little compared to the size of main memory
- ESP32 Address Space
 - ▶ 4 GB (32-bit) address space for both data bus and instruction bus
 - 512 KB peripheral address space

Program	45BFF 10000
Interrupt Vectors	OFFFF
	OFF80
Program	OFF7F
	05C00
RAM 16 KB	05BFF
	01C00
Factory data (4 x 128B)	01BFF
	01A00
User Info Segment A (128 B)	019FF
	01980
User Info Segment B (128 B)	0197F
	01900
User Info Segment C (128 B)	018FF
	01880
User Info Segment D (128 B)	0187F
	01800
BSL Segment 3 (512 B)	017FF
	01600
BSL Segment 2 (512 B)	015FF
	01400
BSL Segment 1 (512 B)	013FF
	01200
BSL Segment 0 (512 B)	011FF
	01000
Peripherals 4 KB	OOFFF
	00000

Clocks in MCU

1. How does a MCU get the notion of time? Where How does it know?

2. How do you take this MCV time and correlate with outside events?

Time in Embedded Systems

- Time is kept by a hardware counter that is fed by a clock signal
 - ► The hardware counter is n bits wide; counts from 0 to (2ⁿ 1) and rolls over
 - The clock signal has a frequency f_{CLK}
- The clock signal increments the counter every 1/f seconds (resolution)
- Software can read the counter or set it to a particular value
 - Smallest increment at which software can read the counter (precision)
- How close is timer to UTC? (accuracy)

Clock Generation

13

- An electronic oscillator is a circuit that produces a periodic electronic signal, often a sine wave or a square wave
- Most oscillators operate using the notion of positive feedback
- Several varieties exist. Common types in embedded systems include:
 - Ring Oscillators
 - RC Circuit Oscillators
 - Quartz Crystal Oscillators
 - Ceramic Resonator Oscillators

Should know what these are!

Oscillator Basics

- Barkhausen criterion: A linear circuit with a feedback loop will sustain steadystate oscillations only for frequencies at which the loop gain (product of forward gain and feedback gain) has a magnitude equal to one and a phase shift equal to zero or an integer multiple of 2π
- In effect, feedback network acts as a band-pass filter
 - Initially, only noise present at amplifier input; feedback network only allows the oscillation frequency through, amplitude increases till stable oscillations start

