Título: Resonancias Plasmónicas Dipolares en Nanoelipsoides: Análisis de Contribuciones Interbanda e Intrabanda en el Régimen Cuasiestático

Autores: Dana Larissa Luna González¹, Jonathan Alexis Urrutia Anguiano¹, Alejandro Reyes Coronado¹

¹ Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México

Resumen (1738 caracteres de 2000):

Las resonancias plasmónicas han cobrado un gran interés en áreas como la óptica, la magnetoóptica y la fotónica, debido a sus potenciales aplicaciones en biodetección, telecomunicaciones y microscopía. En el caso particular de nanoelipsoides iluminados en el espectro visible, las resonancias plasmónicas dipolares se pueden distinguir de otro tipo de excitaciones al resolver analíticamente el problema del esparcimiento y la absorción de luz en el régimen cuasiestático. La distinción entre el origen de las posibles resonancias se realiza al emplear una formulación de la función dieléctrica que separa las contribuciones electrónicas intrabanda e interbanda del material que conforma al nanoelipsoide. En este trabajo, se estudia teóricamente la respuesta plasmónica de nanoelipsoides de materiales reales en la aproximación cuasiestática mediante la solución analítica de la ecuación de Laplace en coordenadas elipsoidales confocales. Se emplean modelos reportados en la literatura ajustados a datos experimentales de la función dieléctrica para distintos materiales con el fin de identificar los dos tipos de contribuciones, y se incorporan correcciones por tamaño, relevantes en la nanoescala. A partir del cálculo de la sección transversal de extinción y la comparación con el caso límite de una nanoesfera, se identifican las frecuencias de excitación de la resonancia plasmónica dipolar y sus corrimientos espectrales en función de parámetros geométricos del nanoelipsoide. Asimismo, se discute el efecto de las contribuciones intrabanda en la función dieléctrica sobre la resonancia plasmónica dipolar excitada en el nanoelipsoide. Los resultados permiten identificar si las resonancias encontradas tienen un origen plasmónico.