Two-Stage Choices from Conditional Choice Functions

Jeff Helzner (Columbia)

June 21, 2009

Outline

Background

Relating Conditional and Unconditional Choice Functions

Results

Choice Functions

- X is a set of alternatives.
- \triangleright \mathcal{X} is the set of all finite, nonempty subsets of X.
- ▶ $C: \mathcal{X} \to \mathcal{X}$ is a *choice function* on X just in case $C(Y) \subseteq Y$ for all $Y \in \mathcal{X}$.
- ▶ The binary relation R_C is defined as follows: xR_Cy iff $x \in C(Y)$ for some $Y \in \mathcal{X}$.

Conditional Choice Functions

- ▶ X (as before)
- $ightharpoonup \mathcal{E} = \langle E, \sqsubseteq
 angle$ is a nonempty poset of *information states*, partially ordered according to strength.
- ▶ $\mathcal{C}: \mathcal{E} \times \mathcal{X} \to \mathcal{X}$ is a conditional choice function on X just in case the following conditions are satisfied for all $x \in X$, $Y \in \mathcal{X}$ and $e \in E$:
 - \triangleright $C(e, Y) \subseteq Y$
 - ▶ If $x \in C(e, Y)$, then there is an $f \in E$ such that $e \sqsubseteq f$ and $x \in C(g, Y)$ whenever $f \sqsubseteq g$.

Example 1

- $X = \{ (x_1, x_2, x_3) \mid x_1, x_2, x_3 \in N \}$
- ► E is the set of all nonempty subsets of $\{(30, n, 60 n) \mid 0 \le n \le 60\}$.
- ▶ $f \sqsubseteq g$ iff $g \subseteq f$.
- ▶ $(x_1, x_2, x_3) \in C(e, Y)$ just in case there is a $(n_1, n_2, n_3) \in e$ such that $\sum_{i=1}^{3} n_i x_i$ is at least as great as $\sum_{i=1}^{3} n_i y_i$ for all $(y_1, y_2, y_3) \in Y$.

Example 2

- \triangleright \mathcal{X} , \mathcal{E} , \mathcal{C} (as in Example 1).
- ▶ $(x_1, x_2, x_3) \in \mathcal{D}(e, Y)$ iff
 - ▶ $(x_1, x_2, x_3) \in C(e, Y)$,
 - ▶ $\min\{\sum_{i=1}^{3} n_i x_i \mid (n_1, n_2, n_3) \in e\} \ge \min\{\sum_{i=1}^{3} n_i y_i \mid (n_1, n_2, n_3) \in e\} \text{ for all } (y_1, y_2, y_3) \in C(e, Y).$

Outline

Background

Relating Conditional and Unconditional Choice Functions

Results

Basic Relations

- ▶ If $\mathcal{C}: \mathcal{E} \times \mathcal{X} \to \mathcal{X}$ is a conditional choice function and $e \in E$, then let \mathcal{C}_e be the choice function defined by $\mathcal{C}_e(Y) = \mathcal{C}(e, Y)$ for all $Y \in \mathcal{X}$.
- ▶ If C is a choice function on \mathcal{X} , then let C^* be the conditional choice function defined by $C^*(e, Y) = C(Y)$ for all $e \in E$ and $Y \in \mathcal{X}$.

Extension of Properties

Every property P of choice functions may be extended to a property P^* of conditional choice functions as follows:

Property P^* : For every $e \in E$ there is an $f \in E$ such that $e \sqsubseteq f$ and C_g satisfies P for all $g \in E$ such that $f \sqsubseteq g$.

Moreover, P^* generalizes P in the following sense:

Proposition

Let C be a choice function on X. Let P be a property of choice functions. C satisfies P iff C^* satisfies P^* .

Outline

Background

Relating Conditional and Unconditional Choice Functions

Results

Preliminaries

Let $\mathcal{C}: \mathcal{E} \times \mathcal{X} \to \mathcal{X}$ be a conditional choice function.

- ▶ For each $e \in E$, let $O_e = \{R_{C_f} \mid e \sqsubseteq f\}$.
- ▶ For each $e \in E$, define a binary relation \succ_e on X as follows: $x \succ_e y$ iff there is a $Y \in \mathcal{X}$ and an $f \in E$ such that
 - \triangleright $e \sqsubseteq f$,
 - $x \in \mathcal{C}(e, Y),$
 - ▶ $y \notin C(e, Y)$, and
 - ▶ $y \in C(f, Y)$.
- ▶ Let \succ_e^t be the transitive closure of \succ_e .
- ▶ Define \succeq_e^t by $x \succeq_e^t y$ iff not $y \succeq_e^t x$.

R1

Property α^* : For every $e \in E$ there is an $f \in E$ such that $e \sqsubseteq f$ and C_g satisfies α for all $g \in E$ such that $f \sqsubseteq g$.

Property β^* : For every $e \in E$ there is an $f \in E$ such that $e \sqsubseteq f$ and C_g satisfies β for all $g \in E$ such that $f \sqsubseteq g$.

Proposition

Let $\mathcal C$ be a conditional choice function that satisfies α^* and β^* . If $x \in \mathcal C(e,Y)$, then there is a weak order $R \in \mathcal O_e$ such that xRy for all $y \in Y$.

Property χ : If $x \succ_e^t y$, then there is no Y such that $x, y \in C(e, Y)$.

Proposition

Let \mathcal{C} be a conditional choice function that satisfies α^* , β^* , χ , and such that \succ_e^t is irreflexive for all $e \in E$. $x \in \mathcal{C}(e, Y)$ iff

- \triangleright $x \in Y$,
- ▶ there is a weak order $R \in O_e$ such that xRy for all $y \in Y$, and
- ▶ if $y \in Y$ and, for some weak order $R \in O_e$, yRz for all $z \in Y$, then it is not the case that $y \succ_e^t x$.

Moreover, \succ_e^t asymmetric and transitive.

Proposition

Let $\mathcal C$ be a conditional choice function that satisfies α^* , β^* , χ , and such that \succ_e^t is both irreflexive and negatively transitive for all $e \in E$. $x \in \mathcal C(e,Y)$ iff

- \triangleright $x \in Y$,
- lacktriangle there is a weak order $R\in O_e$ such that xRy for all $y\in Y$, and
- ▶ if $y \in Y$ and, for some weak order $R \in O_e$, yRz for all $z \in Y$, then $x \succsim_e^t y$.

Moreover, \succeq_{e}^{t} is a weak order.