Weekly Report 9

The week: Oct 28, Oct 29

Utkarsh Patel

18EC30048

Topics Covered

1 Parametric Methods

- Probability density functions of known distributions and a set of parameters are used and estimated.
- Bayesian inference is then applied to devise conclusions.

2 Maximum Likelihood Estimation

Let θ be any parameter and $X = \{x^t\}$ be the training samples. Then, likelihood of parameter given training examples is defined

$$l(\theta|X) = P(X|\theta) = \prod_t P(x^t|\theta)$$

The MLE estimate of θ is given as $\theta^* = \operatorname*{argmax}_a l(\theta|X)$

$$\theta^* = \operatorname{argmax} l(\theta|X)$$

It is better to define log-likelihood and this eases out the computation.

3 ML Estimation under Bernoulli distribution

Two possible outcomes are possible for each instance. Let those two outcomes be 0 and 1. Let the probability of 1 be p. Then probability function can be written as $P(x) = p^{x}(1-p)^{1-x}$ Then, E(x) = p, Var(x) = p(1-p).

$$P(x) = p^x (1-p)^{1-x}$$

The log-likelihood would be

$$L(p|X) = \log \prod_{t} p^{x^{t}} (1-p)^{1-x^{t}}$$

$$= \log(p) \sum_{t} x^{t} + \log(1 - p) \left(N - \sum_{t} x^{t} \right)$$

By differentiating the above equation, the MLE of parameter p is

$$\hat{p} = \frac{\sum_{t} x^{t}}{N}$$

$p = \frac{1}{N}$ 4 ML Estimation under Multinomial Distribution

- It is basically an extension to Binomial MLE.
- In this approach, we assume that K mutually exclusive states can be achieved with probability p_i , i = 1, 2, ..., K with $\sum_{i=1}^{K} p_i = 1$.
- However, ML estimate is same as in case of Binomial distribution.

5 ML Estimation under Normal Distribution

If we assume the normal distribution, then the estimate of mean and variance is given as

$$\hat{\mu} = m = \frac{1}{N} \sum_{t} x^{t}$$

$$\hat{\sigma^{2}} = s^{2} = \frac{1}{N} \sum_{t} (x^{t} - m)^{2}$$

6 Bias, Variance and MSE of Normal Estimators

- Let d = d(X) be the estimator of parameter θ .
- Then.
- bias $b_{\theta} = E(d) \theta$
- $MSE e = E((d \theta)^2)$
- Let *m* represents sample mean, then, $E(m) = \mu$ $Var(m) = \frac{\sigma^2}{N}$
- Let s^2 represent estimate of sample variance
 - $E(s^2) = \frac{1}{N} \sum_t E((x^t)^2) NE(m^2) =$ $\frac{N-1}{\sigma^2}$

7 Bayesian Estimator

- Estimation of parameter θ is done by posterior probability
- MAP estimate of θ is argmax $P(\theta|X)$
- The optimal Bayesian is given as

$$\theta_B = \int \theta P(\theta|X) d\theta$$

The mean of a normal distribution can be estimated as well. We assume $x^t \sim N(\mu, \sigma^2)$ and $\mu \sim N(\mu_0, \sigma_0^2)$. Then

$$E(\mu|X) = \frac{\frac{N}{\sigma^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}} \mu + \frac{\frac{1}{\sigma_0^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}} \mu_0$$

8 Parametric Classification

Assuming we have K classes, the discriminant function is defined as $g_i(x) = P(x|C_i)P(C_i)$, i = 1, 2, ..., K. Instance x is classified as per the discriminant function which gives maximum value.

9 Multivariate Normal Distribution

The probability density function is given as
$$P(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} e^{\frac{1}{2}(D)}$$
 Where D is Mahala Nabis distance $(x-\mu)^T \Sigma^{-1} (x-\mu)$

Quadratic Discriminant function can be applied in this case. In this we assume that all features are independent and hence the covariance matrix is a diagonal matrix.

$$g_i(X) = -\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_j - \mu_{ij}}{\sigma_{ij}} \right)^2 + \log \left(P(C_i) \right)$$

10 Multivariate Discrete Features and Applications

- Attributes obey Bernoulli distribution. Discriminant is linear.
- Document characterization is one such application

11 Generalisation to Multinomial Cases

- Each x_i takes n_i discrete values.
- Dummy variables $z_{jk} = 1$ if $x_j = v_k$, else 0. Parameters are $p_{ijk} = P(z_{jk} = 1 | C_i)$. Class likelihood = $\prod_{j=1}^{d} \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$

- Discriminant: $\sum_{j} \sum_{k} z_{jk} \log(p_{ijk}) + \log(P(C_i))$

12 Non-parametric approaches

- Assumes similar inputs have similar outputs.
- Estimates probability density locally.
- Memory based learning.

13 Univariate Non-parametric density estimation

- Estimated probability density: P(x) = [(#(xt < x + h) #(xt < x))/N]/hNaive estimator:
- Native estimator: P(x) = [(#(xt < x + h/2) #(xt < x h/2))/N]/hCan also use histogram of bin-width h

14 Kernel Estimator

- Kernel function: function of distance to determine weight of each sample $\,$
- Parzen Window:

$$P(x) = \frac{1}{Nh} \sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right)$$

- K(u) = 1 if $|u| < \frac{1}{2}$, else o K(u) if normal then smooth estimator
- k-NN estimator: Adaptive kernel estimator

$$\frac{1}{N2d_k(x)} \sum_{t=1}^{N} K\left(\frac{x - x^t}{2d_k(x)}\right)$$

15 Multivariate Density Estimation

- Gaussian kernel is used in this case.
- For discrete: Hamming distance may be used.

16 Instance-based Learning

- Training: Store instances
- Testing: Retrieve and classify Compute locally, lazy learning

17 KNN Regression

- . t^{th} neighbour of x: $\frac{\sum_{k=1}^{k} f(x_k)}{k}$ Weight inversely proportional to square of distance, proportional to kernel function

18 Locally Weighted Regression

- $f(x) = w_0 + w_1 x_1 + \dots + w_d x_d$ MSE is computed in three scenarios.

Interesting Concepts

KNN Regression

Novel Ideas out of lesson

KNN Regression can be used in pattern recognition as well

Level of Preparation of 3rd Quiz

Satisfactory