4. 把图 11.20 的(a)和(b)分别确定化、最小化。

图 11.20 NFA 的转换图

(a)

确定化:

(b)

原图已确定化 最小化:

5. 构造一 DFA,它接受 [0,1] 上所有满足如下条件的字符串:每个 1 都有 0 直接跟在右边。

注意题面: 所有

构造正则表达式:

转换为 NFA, 确定化并最小化得 DFA:

1. 对下面的文法 G[E]:

$$E \rightarrow TE'$$

$$E' \rightarrow +E \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow T \mid \varepsilon$$

$$F \rightarrow PF'$$

$$F' \rightarrow F' \mid \varepsilon$$

$$P \rightarrow (E) \mid a \mid b \mid \uparrow$$

- (1) 计算这个文法的每个非终结符号的 FIRST 集合和 FOLLOW 集合;
- (2) 证明这个文法是 LL(1)的;
- (3) 构造它的预测分析表。

(1)

	First	Follow
E	(, a, b, △	#,)
E'	+,ε	#,)
Т	(, a, b, ∧	#,),+
T'	(, a, b, ∧, ε	#,),+
F	(, a, b, △	(, a, b, ∧,#,),+
F'	*,ε	(, a, b, ∧,#,),+
Р	(, a, b, △	*,(, a, b, \(\triangle,\pi\),+

(2)

```
FIRST(+E) \cap FIRST(\epsilon) = {+} \cap {\epsilon} = \emptyset FIRST(+E) \cap FOLLOW(E') = {+} \cap {#, }} = \emptyset FIRST(T) \cap FIRST(\epsilon) = {(, a, b, \wedge} \cap {\epsilon} = \emptyset FIRST(T) \cap FOLLOW(T') = {(, a, b, \wedge} \cap {\epsilon} + \emptyset FIRST(*F') \cap FIRST(\epsilon) = {*} \cap {\epsilon} = \emptyset FIRST(*F') \cap FOLLOW(F') = {*} \cap {(, a, b, \wedge,#,),+} = \emptyset FIRST((E)) \cap FIRST(a) \cap FIRST(b) \cap FIRST(\wedge) = \emptyset 所以此文法是 LL(1)文法。
```

(3)分析表

	+	*	()	a	b	^	#
Е			$E \rightarrow TE'$		E → TE'	E → TE'	E → TE'	
E'	E' → + E			E' →ε	15			$E' \to \epsilon$
T			$T \rightarrow FT'$		T → FT'	$T \rightarrow FT'$	$T \rightarrow FT'$	
T'	Τ' →ε		$T' \rightarrow T$	$T' \rightarrow \epsilon$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \rightarrow T$	Τ'→ ε
F			$F \rightarrow PF'$		F → PF'	$F \rightarrow PF'$	$F \rightarrow PF'$	
F'	F' →ε	F' →* F'	F' →ε	F' →ε	F' →ε	F' →ε	F' →ε	F' →ε
P			P →(E)		P →a	P→b	$P \rightarrow \wedge$	

2. 对于文法 G[S]:

$$S \rightarrow aABbcd \mid \varepsilon$$

$$A \rightarrow ASd \mid \varepsilon$$

$$B \rightarrow Sah \mid eC \mid \varepsilon$$

$$C \rightarrow Sf \mid Cg \mid \varepsilon$$

- (1) 对每一个非终结符号,构造 FOLLOW 集合;
- (2) 对每一产生式的各候选式,构造 FIRST 集合;
- (3) 指出此文法是否为 LL(1) 文法。

(1)

	Follow
S	d,a,f,#
A	a,e,b,d
В	b
С	g,b

(2)

	First
aABbcd	a
ε	ε
ASd	a,d
Sah	a
eC	е
Sf	a,f
Cg	a,g

(3) 不是 LL(1)文法,因

FIRST(Sf)
$$\cap$$
 FIRST(Cg) = {a,f} \cap {a,g} \neq \oint

6. 一个文法 G 是 LL(1)的必要与充分条件是什么?

充要条件是:对于 G 的每一个非终结符 A 的任何两条不同规则 A::= α | β , 有: (1) FIRST(α) \cap FIRST(β)= ∮

(2) 假若 β =*=> ε,则 FIRST(α) ∩ FOLLOW(A)= ∮

2. 试用算符优先分析法分析下述表达式(文法和优先关系矩阵见 269 页):

- (1) a + * b
- (2) a+b*(c+d)-e

步骤	符号栈	输入串	优先关系	动作
1	#	a+b*(c+d)-e#	<	移进
2	#a	+b*(c+d)-e#	>	规约
3	#E	+b*(c+d)-e#	<	移进
4	#E+	b*(c+d)-e#	<	移进
5	#E+b	*(c+d)-e#	>	规约
6	#E+E	*(c+d)-e#	<	移进
7	#E+E*	(c+d)-e#	<	移进
8	#E+E*(c+d)-e#	<	移进
9	#E+E*(c	+d)-e#	>	规约
10	#E+E*(E	+d)-e#	<	移进
11	#E+E*(E+	d)-e#	<	移进
12	#E+E*(E+d)-e#	>	规约
13	#E+E*(E+E)-e#	>	规约
14	#E+E*(E)-e#	-	移进
15	#E+E*(E)	-e#	>	规约
16	#E+E*E	-e#	>	规约
17	#E+E	-e#	>	规约
18	#E	-e#	<	移进
19	#E-	e#	<	移进
20	#E-e	#	>	规约
21	#E-E	#	>	规约
22	#E	#		接受

4. 有文法 G[E]:

$$E := E + T \mid T$$

$$T := T * F \mid F$$

$$F := (E) \mid i$$

列出下述句型的短语和素短语: $E \setminus T \setminus i \setminus T * F \setminus F * F \setminus i * F \setminus F * i \setminus F + F + F$ 。

解: 句型	短语	素短语
\mathbf{E}		
T	T	
i	i	i
T*F	T*F	T*F
F*F	F, F*F	F*F
i*F	i, i*F	i
F* i	F, i, F* i	i
F+F+F	F,F,F,F+F, F+F+F	F+F

5. 利用表 12. 4 中的优先关系矩阵,分析上题文法 G[E] 的下列句子: i+i

步骤	句型	关系	最左子串	规约符号
1	#i+i#	# < i > + < i > #	i	F
2	#F+i#	# < + < i > #	i	F
3	#F+F#	# < + > #	F+F	E

i*(i+i)

步骤	句型	关系	最左子串	规约符号
1	#i*(i*i)#	# < i > * < (< i > * < i >) > #	i	F
2	#F*(i*i)#	# < * < (< i > * < i >) > #	i	F
3	#F*(F*i)#	# < * < (< * < i >) > #	i	F
4	#F*(F*F)#	# < * < (< * >) > #	F * F	E
5	#F*(E)#	# < * < (=) > #	(E)	F
6	#F*F#	# < * > #	F * F	E

补充题

 $E->E+T\mid T$

T->E | (E) | i

	FIRSTVT	LASTVT
E	+,),i	+,),i
T	+,),i	+,),i

算符优先关系矩阵

	+	()	i
+	< >	<	>	<
(<	<	=	<
)	>		>	
i	>		>	

有优先级冲突,故不是算符优先文法(OPG)