Universidad Nacional Autónoma de México

Facultad de Ciencias

Organización y Arquitectura de Computadoras Tarea 03: Lógica Digital

Álvarez Ríos Metzitlalli | 423052523 Martínez Jiménez Maitreyi | 320099773

1. Preguntas

1. Demuestra que $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Respuesta

$$\begin{array}{lllll} x \cdot (y \cdot z) = (x \cdot (y \cdot z)) + 0 & & & & & & & & \\ = (x \cdot (y \cdot z)) + (z \cdot \overline{z}) & & & & & & & \\ = (z \cdot \overline{z}) + (x \cdot (y \cdot z)) & & & & & & & \\ = (z + (x \cdot (y \cdot z)) \cdot (\overline{z} \cdot (x \cdot (y \cdot z)))) & & & & & \\ = ((\overline{z} + x) \cdot (z + (y \cdot z)) \cdot (\overline{z} \cdot (x \cdot (y \cdot z)))) & & & & \\ = ((\overline{z} + x) \cdot (z + (y \cdot z)) \cdot ((\overline{z} + x) \cdot (\overline{z} + (y \cdot z)))) & & & & \\ = ((\overline{z} + x) \cdot (z + (y \cdot z)) \cdot (\overline{z} + (y \cdot z) \cdot (\overline{z} + x))) & & & & \\ = ((z + x) \cdot z) \cdot ((\overline{z} + (y \cdot z) \cdot (\overline{z} + x))) & & & & \\ = ((z \cdot (z + x)) \cdot ((\overline{z} + (y \cdot z) \cdot (\overline{z} + x))) & & & & \\ = ((z \cdot (z + x)) \cdot ((\overline{z} + (y \cdot z) \cdot (\overline{z} + x))) & & & & \\ = ((z \cdot (z + x)) \cdot ((\overline{z} + (y \cdot z)) \cdot (\overline{z} + x))) & & & & \\ = z \cdot (((\overline{z} + (y \cdot z)) \cdot (\overline{z} + x)) & & & & \\ = z \cdot (((\overline{z} + x) \cdot ((\overline{z} + y) \cdot 1)) & & & & \\ = z \cdot (((\overline{z} + x) \cdot ((\overline{z} + y) \cdot 1)) & & & & \\ = z \cdot ((\overline{z} + (y \cdot x)) & & & & \\ = z \cdot ((\overline{z} + (y \cdot x)) & & & & \\ = (z \cdot (y \cdot x)) + (z \cdot \overline{z}) & & & \\ = (z \cdot (y \cdot x)) + (z \cdot \overline{z}) & & & \\ = (z \cdot (y \cdot z)) + 0 & & & & \\ = (y \cdot x) \cdot z & & & & \\ = (x \cdot y) \cdot z & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

2. Demuestra si la siguiente igualdad es válida $x(\overline{x} + y) = xy$

Respuesta

Usaremos los postulados de Huntintong.

$$x(\overline{x}+y)=x(x+y)(\overline{x}+y)$$
 Por T3b. (Absorción.)
 $=x(1)(x+y)(\overline{x}+y)$ Por P2b.
 $=x(x+\overline{x})(x+y)(\overline{x}+y)$ Por P5a.
 $=(x+x)(x+\overline{x})(x+y)(\overline{x}+y)$ Por T1a.
 $=(xy)+(x\overline{x})$ Por P4b.
 $=(xy)+0$ Por P5b.
 $=xy$

3. Demuestra si la siguiente igualdad es válida $(x+y)(\overline{x}+z)(y+z)=(x+y)(\overline{x}+z)$

Respuesta

$$(x+y)(\overline{x}+z)(y+z) = (x+y)(\overline{x}+z)(y+z) + 0$$
 Por P2a.

$$= (x+y)(\overline{x}+z)(y+z) + (x \cdot \overline{x})$$
 Por P5b.

$$= (x+y)(\overline{x}+z)(y+z+x)(y+z+\overline{x})$$
 Por P4b.

$$= ((x+y)+(1+z))((\overline{x}+z)+(1+y))$$
 Por P4b.

$$= ((x+y)+1)((\overline{x}+z)+1)$$
 Por T2a.

$$= (x+y)(\overline{x}+z)$$

4. Demuestra si la siguiente igualdad es válida $\overline{x \cdot y} = \overline{x} \cdot \overline{y}$

Respuesta

No es válida, podemos ver esto con tablas de verdad, donde: La tabla de verdad de $\overline{x\cdot y}$

X	у	$x \cdot y$	$\overline{x \cdot y}$
1	1	1	0
1	0	0	1
0	1	0	1
0	0	0	1

La tabla de verdad de $\overline{x} \cdot \overline{y}$

X	У	\overline{x}	\overline{y}	$\overline{x} \cdot \overline{y}$
1	1	0	0	0
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

Sus tablas de verdad no coinciden. Por lo tanto la igualdad no se cumple.

5. Verifica la siguiente igualdad usando los postulados de Huntintong.

Respuesta

$$F(x,y,z) = x + x(\overline{x} + y) + \overline{x}y = x + y$$

$$x + x(\overline{x} + y) + \overline{x}y = x + x\overline{x} + xy + \overline{x}y$$

$$= x + 0 + xy + \overline{x}y$$

$$= x + y + y\overline{x}$$

$$= x + y \cdot (x + \overline{x})$$

$$= x + y \cdot (1)$$

$$= x + y$$
Por P4a.
Por P5a.
Por P5a.

6. Obtén los mintérminos y reduce la siguiente función.

Respuesta

$$F(x,y,z) = \overline{x} \cdot \overline{y} \cdot \overline{z} \cdot x + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

Observemos que si realizamos conmutatividad tenemos que $x\cdot \overline{x}=0$ por Complemento, entonces quedaría:

Por Aniquilación:
$$= 0 + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$
Por Aniquilación:
$$= 0 + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$
Por Identidad:
$$= (0 + \overline{z} \cdot x) + z \cdot x + x \cdot \overline{y} + \overline{z}$$

$$= (\overline{z} \cdot x) + z \cdot x + x \cdot \overline{y} + \overline{z}$$
Por Conmutatividad:
$$= \overline{z} + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y}$$

Por Teorema 3 (Absorción) tomamos a $(\overline{z} + (\overline{z} \cdot x)) = \overline{z}$:

$$= \overline{z} + z \cdot x + x \cdot \overline{y}$$

Por Teorema de Eliminación:

$$= (\overline{z} + (z \cdot x)) + x \cdot \overline{y}$$

$$= (\overline{z} + x) + x \cdot \overline{y}$$

Por Absorción:

$$= \overline{z} + (x + x \cdot \overline{y})$$

$$= \overline{z} + x$$

7. Simplifica la siguiente función usando su tabla de verdad asociada y mapas de Karnaugh.

Respuesta

$$F(x,y,z) = \overline{xyz} + \overline{xy}z + \overline{xy}z + x\overline{yz} + x\overline{yz} + x\overline{yz} + x\overline{yz} + xyz$$

La tabla de verdad asociada es:

X	У	z	
1	1	1	xyz
1	1	0	
1	0	1	$x\overline{y}z$
1	0	0	$x\overline{y}\overline{z}$
0	1	1	$\overline{x}yz$
0	1	0	$\overline{x}y\overline{z}$
0	0	1	$\overline{xy}z$
0	0	0	\overline{xyz}

Su mapa de Karnaugh:

Si reducimos términos obtenemos que:

$$\overline{x} + \overline{y} + z$$

8. Reduce la siguiente función y da su maxitérminos.

$$F(x, y, z) = (x + \overline{x}z) \cdot (\overline{y} + \overline{z}) \cdot z$$

Respuesta

Usamos las propiedades de la álgebra de Boole para simplificar:

$$F(x, y, z) = (x + \overline{x}z) \cdot (\overline{y} + \overline{z}) \cdot z$$

Por Conmutatividad del producto:

$$= (x + \overline{x} \cdot z) \cdot z \cdot (\overline{y} + \overline{z})$$

$$= (x + \overline{x} \cdot z) \cdot z \cdot (\overline{z} + \overline{y})$$

Por Teorema de Eliminación:

$$=(x+\overline{x}\cdot z)\cdot(z\cdot\overline{y})$$

$$= (x+z) \cdot z \cdot y$$

Podemos ver $(x+z) \cdot z$ se puede ver como $z \cdot (x+z)$ por conmutatividad.

$$=z\cdot(x+z)\cdot\overline{y}$$

Por el Teorema 2.2 (Absorción.) podemos ver a $z \cdot (x+z)$ como $z \cdot (z+x)$

$$= (z \cdot (z+x)) \cdot y$$

Por Teorema 2.2:

$$= z \cdot y$$

Los maxitérminos:

9. Utilizando Mapas de Karnaugh simplifica la función.

$$F(x_0, x_1, x_2, x_3) = \overline{x_0 x_1 x_2 x_3} + \overline{x_0 x_1 x_2} x_3 + \overline{x_0 x_1} x_2 x_3 + x_0 \overline{x_1} x_2 x_3 + x_0 x_1 \overline{x_2} x_3 + \overline{x_0} x_1 \overline{x_2} x_3 + x_0 x_1 x_2 x_3$$

Respuesta

X2X3							
X ₀ × ₁	00	01	11	10			
00	1	1	1	٥			
01	-	0	0	0			
11	-	0	1	0			
10	0	0	1	0			

Simplificamos los términos y obtenemos:

$$\overline{x_0x_1x_2} + \overline{x_0x_1}x_3 + x_1\overline{x_2x_3} + x_0x_2x_3$$

10. Para realizar un Mapa de Karnaugh con más de 5 variables se mencionó que existe más de una forma de representarlo.

Investiga ambos métodos y utiliza el que más se te acomode para reducir la siguiente función.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + x_0 x_1 \overline{x_2 x_3} x_4 + \overline{x_0} x_1 \overline{x_2 x_3} x_4 + x_0 x_1 x_2 x_3 x_4$$

Respuesta

Podemos representarlo en dos mapas de 4 variables y tomamos x_0 tal que: en un mapa tendremos que $x_0 = 0$ y en otro $x_0 = 1$ y realizamos las agrupaciones.

Los mapas nos quedarían de la siguiente manera:

Al reducir obtenemos:

$$\overline{x_0x_1x_2x_4} + \overline{x_0x_1}x_3\overline{x_4} + x_1\overline{x_2x_3}x_4 + x_0x_2x_3x_4$$

11. Utilizando el algoritmo de Quine-McCluskey realiza la siguiente reducción.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2} x_3 \overline{x_4} + \overline{x_0} x_1 x_2 x_3 \overline{x_4} + \overline{x_0} x_1 \overline{x_2} x_3 \overline{x_4} + x_0 x_1 \overline{x_2} x_3 \overline{x_4} + x_0 x_1 \overline{x_2} x_3 x_4 + x_0 x_1 \overline{x_2} x_3 x_4 + x_0 x_1 \overline{x_2} x_3 x_4 + x_0 x_1 x_2 \overline{x_3} x_4 + x_0 x_1 \overline{x_2} x_3 x_4 +$$

Respuesta

Obtenemos la tabla con los mintérminos y les damos una etiqueta por las cadenas de bits.

5

Minitérmino	Cadena de bits	Etiqueta	Cantidad de 1's
$x_0x_1x_2x_3x_4$	11111	31	5
$x_0x_1x_2\overline{x_3}x_4$	11101	29	4
$x_0\overline{x_1}x_2x_3x_4$	10111	23	4
$x_0x_1\overline{x_2x_3}x_4$	11001	25	3
$\overline{x_0}x_1x_2x_3\overline{x_4}$	01110	14	3
$\overline{x_0}x_1\overline{x_2}x_3\overline{x_4}$	01010	10	2
$\overline{x_0}x_1\overline{x_2}\overline{x_3}x_4$	01001	9	2
$\overline{x_0x_1x_2}x_3\overline{x_4}$	00010	2	1
$\overline{x_0x_1x_2x_3x_4}$	00000	0	0

Asociamos:

Comparamos los grupo 5 con los del 4, los grupo 4 con el grupo 3, el 3 con el 2, el 2 con el 1 y el 1 con el 0. Si solo difieren entre 1 bit, los asociamos, en otro caso, no.

- **29** con 25
- **2**9 con 14
- **2**3 con 25
- **2**3 con 14
- **2**5 con 10
- 14 con 9
- 10 con 2
- 9 con 2

En los bits en los que difieren, les vamos a poner un -, y ubicaremos en qué posición se encuentra α l -

Minitérmino	Cadena de bits	Etiqueta	Cantidad de 1's	Asociación	Posición del -
$x_0x_1x_2x_3x_4$	11111	31	5	(31, 29): 111-1	2
$x_0x_1x_2\overline{x_3}x_4$	11101	29	4	(31, 23): 1-111	8
$x_0\overline{x_1}x_2x_3x_4$	10111	23	4	(25, 9): -1001	16
$x_0x_1\overline{x_2x_3}x_4$	11001	25	3	(14,10): 01-10	4
$\overline{x_0}x_1x_2x_3\overline{x_4}$	01110	14	3	(2,0): 000-0	2
$\overline{x_0}x_1\overline{x_2}x_3\overline{x_4}$	01010	10	2		
$\overline{x_0}x_1\overline{x_2x_3}x_4$	01001	9	2		
$\overline{x_0x_1x_2}x_3\overline{x_4}$	00010	2	1		
$\overline{x_0x_1x_2x_3x_4}$	00000	0	0		

Haremos una segunda asociación, de tal forma que vamos a contar cuántos 1s aparecen, compararemos el grupo 4 con el 2 y el 2 con los del 0. En caso de no obtener asociaciones, nos quedamos con las anteriores.

Asociación	Posición del -	2do conteo de 1s
(31,29): 111-1	2	4
(31,23): 1-111	8	4
(25,9): -1001	16	2
(14,10): 01-10	4	2
(2,0): 000-0	2	0

En este caso, no hubo nuevas asociaciones, nos quedamos con la anterior.

Mintérmino	31	29	23	25	14	10	9	2	0
111-1	√	√							
1-111	√		√						
-1001				√			√		
01-10					√	√			
000-0								√	√

Las expresiones asociadas son:

$$111 - 1 = x_0 x_1 x_2 x_4$$

$$1 - 111 = x_0 x_2 x_3 x_4$$

$$-1001 = x_1 \overline{x_2 x_3} x_4$$

$$01 - 10 = \overline{x_0} x_1 x_3 \overline{x_4}$$

$$000 - 0 = \overline{x_0 x_1 x_2 x_4}$$

La expresión simplificada es:

$$F(x_0, x_1, x_2, x_3, x_4) = x_0 x_1 x_2 x_4 + x_0 x_2 x_3 x_4 + x_1 \overline{x_2 x_3} x_4 + \overline{x_0} x_1 x_3 \overline{x_4} + \overline{x_0 x_1 x_2 x_4}$$

12. Utilizando el algoritmo de Quine-McCluskey realiza la siguiente reducción.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2} x_3 \overline{x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + \overline{x_0} x_1 x_2 x_3 \overline{x_4} + \overline{x_0} x_1 \overline{x_2} x_3 \overline{x_4} + x_0 \overline{x_1} x_2 x_3 x_4 + x_0 x_1 \overline{x_2} \overline{x_3} x_4 + \overline{x_0} x_1 \overline{x_2} \overline{x_3} x_4 + x_0 x_1 x_2 \overline{x_3} x_4 + x_0 x_1 x_2 x_3 x_4 + x_0 x_1 \overline{x_2} \overline{x_3} x_4 + x_0 x_1$$

Respuesta

Minitérmino	Cadena de bits	Etiqueta	Cantidad de 1's
$x_0x_1x_2x_3x_4$	11111	31	5
$x_0x_1x_2\overline{x_3}x_4$	11101	29	4
$\overline{x_0}x_1\overline{x_2x_3}x_4$	01001		
$x_0\overline{x_1}x_2x_3x_4$	10111		
$x_0x_1\overline{x_2x_3}x_4$	11001		
$\overline{x_0}x_1\overline{x_2}x_3\overline{x_4}$	01010		
$\overline{x_0}x_1x_2x_3\overline{x_4}$			
$\overline{x_0x_1}x_2x_3x_4$			
$\overline{x_0x_1}x_2x_3\overline{x_4}$			
$\overline{x_0x_1x_2}x_3\overline{x_4}$			
$\overline{x_0x_1x_2x_3x_4}$	00000	0	0