from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import math
import random

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/adult.csv')

df

₹		age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capit
	0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
	32556	27	Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	
	32557	40	Private	154374	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	
	32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	
	32559	22	Private	201490	HS-grad	9	Never-married	Adm- clerical	Own-child	White	Male	0	
	32560	52	Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Female	15024	
32561 rows × 15 columns													

quasi_identifiers = ['age', 'education', 'relationship', 'sex', 'race']

sensitive_attribute = 'income'

df

vorkclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capit
State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	
Private	154374	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	
Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	
Private	201490	HS-grad	9	Never-married	Adm- clerical	Own-child	White	Male	0	
Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Female	15024	
5 columns										

 View recommended plots Next steps: (Generate code with df) New interactive sheet sensitivity = df[sensitive_attribute].max() - df[sensitive_attribute].min() $epsilon_used = 1.0$ def my_laplace_noise(mu, b): u = random.uniform(-0.5, 0.5)noise = mu - b * math.copysign(1, u) * math.log(1 - 2 * abs(u))df['noisy_income_custom'] = df[sensitive_attribute].apply(lambda x: x + $my_laplace_noise(0, sensitivity / epsilon_used)$ noise = df['noisy_income_custom'] - df[sensitive_attribute] avg_noise = np.abs(noise).mean() estimated_epsilon = sensitivity / avg_noise print(f"Estimated ϵ (epsilon) for Differential Privacy: {estimated_epsilon:.6f}") \Longrightarrow Estimated ϵ (epsilon) for Differential Privacy: 0.998109 $nums_trials = 1000$ def simulate_dp_income_custom(data,epsilon,sensitivity,num_trials): dp outputs = [] for _ in range(num_trials): # For each trial, add custom Laplace noise to every income value noisy_income = data[sensitive_attribute].apply(lambda x: x + my_laplace_noise(0, sensitivity / epsilon) dp_outputs.append(np.mean(noisy_income)) return np.array(dp_outputs) dp_full = simulate_dp_income_custom(df, epsilon_used, sensitivity, num_trials) df_neighbor = df.drop(df.sample(1, random_state=42).index) ${\tt dp_neighbor} = {\tt simulate_dp_income_custom(df_neighbor, epsilon_used, sensitivity, num_trials)}$ print("\nFull dataset DP mean:") print("Neighboring dataset DP mean:") print(f" Mean: {dp_neighbor.mean():.4f}, Std: {dp_neighbor.std():.4f}")

Full dataset DP mean:
 Mean: 79957.4620, Std: 634.2368
 Neighboring dataset DP mean:
 Mean: 79990.5513, Std: 626.9773

plt.figure(figsize=(10,6))
plt.hist(dp_full, bins=30, alpha=0.6, label="Full Dataset DP Mean")
plt.hist(dp_neighbor, bins=30, alpha=0.6, label="Neighboring Dataset DP Mean")
plt.xlabel("DP Mean of Income")

plt.hist(dp_neighbor, bins=30, alpha=0.6, label="Neighboring Dataset DP Mean")
plt.xlabel("DP Mean of Income")
plt.ylabel("Frequency")
plt.title("Empirical Distributions of DP Mean for Income (Custom Laplace Noise)")
plt.legend()
plt.show()

