Teorema Reziduurilor

Tapalaga Ecaterina Simona

Iunie 2013

Rezumat

Aplicatii ale teoremei reziduurilor in calulul unor chestii interesante. In prima parte avem introducere apoi exemple din x urmate de aplicatii de tip y.

Cuprins

1	Teorema Reziduurilor	2
2	Puncte singulare izolate	3
3	Calcularea reziduului intr-un pol	3
4	Aplicatii ale teoriei reziduurilor la calculul unor integrale definite reale	4

1 Teorema Reziduurilor

Teorema 1. Fie functia $f \in \mathcal{H}(G)$, unde $G \subset \mathbb{C}$ multime deschisa. Notam cu ρ mutimea tuturor punctelor singulare izolate ale lui f Fie $\widetilde{G} := G \cup S$, iar γ un contur in G omotop cu zero in \widetilde{G}

$$\begin{split} &Atunci~sum\,a\colon \sum_{z\in\widetilde{G}}n(\gamma;z)Rez(f;z)~este~finita~si\\ &\int_{\gamma}f(z)\mathrm{d}z=2\pi i\sum_{z\in\widetilde{G}}n(\gamma;z)Rez(f;z) \end{split}$$

Demonstrație. $\exists \varphi: [0;1]^2 \mapsto G$ deformare continuua, $k=\varphi([0;1]^2) \subset \widetilde{G}$ compact.

Fie

$$\begin{split} r &:= \frac{1}{2} \mathrm{d} \left(k, \mathbb{C} \setminus \widetilde{G} \right) \\ D &:= \bigcup_{z \in k} \mathcal{U}(z; r) \end{split}$$

 $k\subset D\subset \overline{D}\subset \widetilde{G}$ γ omotop cu 0 in D $\overline{D}\cap \rho$ finita $\implies \exists \{b_1,\ldots,b_k\}=\overline{D}\cap \rho$ Fie $\Pi_k(z)$ partea principala a dezvoltarii lui f in b_k

Deci, functia $g:=f-\sum_{k=1}^n\Pi_k$ olomorfa mai putin in b_k admite o prelungire olomorfa g_1 la D .

$$\int_{\gamma} g = \int_{\gamma} g_1 = 0$$

$$g = g_1|_{D = \{b_1, \dots, b_k\}}$$

$$\implies \int_{\gamma} f = \sum_{k=1}^n \int_{\gamma} \Pi_k$$

Calculam

$$\int_{\gamma} \Pi_k$$
 , unde $\Pi_k(z) = \sum_{m=1}^{\infty} \frac{a^{(k)} - m}{(z - b_k)^m}$

Seria este uniform convergenta pe \forall parte compacta din $\mathbb{C}\setminus\{b_a\}\implies$ uniform convergenta pe $\{\gamma\}\implies$ putem integra termen cu termen si

$$\int_{\gamma} \frac{\mathrm{d}}{z - b_k} m = 0, \forall m > 1$$

Functia $\frac{1}{(z-b_n)^m}$ admite primitiva si $\int_{\gamma} \frac{\mathrm{d}z}{z-b_k} = 2\pi i \cdot n(\gamma;b_n) \cdot a_{-1}^{(k)}$ deci

$$\int_{\gamma} f = 2\pi i \sum_{k=1} nn(\gamma; b_k) Rez(f; b_n)$$

Trebuie sa mai aratam ca $\forall z_0 \in \widetilde{G} \setminus (D \cap \rho) \colon n(\gamma; z_0) \cdot Rez(f; z_0) = 0$ Intr-adevar, daca pentru $z_0 \in \widetilde{G} \setminus (D \cap \rho)$ avem $Rez(f; z_0) \neq 0 \implies z_0 \in \rho$, deci $z_0 \notin D$ si

 $n(\gamma; z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}\xi}{\xi - z_0} = 0$

caci $h(\xi)=\frac{1}{\xi-z_0}$ olomorfa peD si γ omotop cu zero

$$\implies \int_{\gamma} f = 2\pi i \sum_{z \in \widetilde{G}} n(\gamma; z) \cdot Rez(f; z)$$

2 Puncte singulare izolate

Definitie 1. Fie $G \subset \mathbb{C}$ multime deschisa si $f \in \mathcal{H}(G)$. Punctul $z_0 \in \mathbb{C}$ se numeste punct singular izolat pentru functia f daca $z_0 \notin G$, dar $\exists p > 0$ a.i $\dot{\mathcal{U}}(z_0; p) \subset G \Longrightarrow f \in \mathcal{H}(\dot{\mathcal{U}}(z_0; p))$

Observatie 1. De exemplu functiile $\frac{\sin(z)}{z}$, $\frac{1}{z}$, $e^{\frac{1}{z}}$ au singularitati izolate in z=0

Observatie 2. Daca z_0 este un punct singular izolat pentru $f \in \mathcal{H}(G)$, iar p > 0 a.i $\dot{\mathcal{U}}(z_0; p) \subset G$, atunci f admite o dezvoltare in serie Laurent de forma

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k, \quad z \in \dot{\mathcal{U}}(z_0; p)$$

Coeficientul a_{-1} al termenului $(z-z_0)^{-1}$ se numeste reziduul functiei f in z_0 si se noteaza cu $a_{-1} = Rez(f; z_0)$

Definitie 2. Fie $G \subset \mathbb{C}$ multime deschisa, $f \in \mathcal{H}(G)$, iar z_0 punct singular izolat al functiei f. Spunem ca:

- 1. z_0 este punct eliminabil daca f se extinde olomorf la $\Omega \cup \{z_0\}$
- 2. z_0 este pol daca $\lim_{z\to z_0} f(z) = \infty$
- 3. z_0 este punct esential izolat daca \nexists limita a lui f in z_0
- 4. Un punct z este regular pentru f daca z este eliminabil pentru f sau f este derivabila in z

3 Calcularea reziduului intr-un pol

1. Daca z_0 este un pol de ordin k pentru f atunci

$$Rez(f; z_0) = \frac{1}{(k-1)!} \lim_{z \to z_0} \left[(z - z_0)^k f(z) \right]^{(k-1)}$$

- 2. In cazul unui punct singular esential reziduul se calculeaza cu ajutoril dezvoltarii in serie Laurent
- 3. Intr-un punct regular reziduul este 0

4 Aplicatii ale teoriei reziduurilor la calculul unor integrale definite reale

 $\textbf{Tipul 1} \ (1). \ \textit{Fie integrala} \ I = \int_0^{2\pi} R(\sin x, \cos x) \mathrm{d}x, \ \textit{unde} \ R(u, v) \ \textit{este o functie} \\ \textit{rationala reala ce nu are poli pe cercul } u^2 + v^2 = 1$