3^a Prova de Geometria Analítica e Álgebra Linear - $2021/\mathrm{I}$

Profa. Lana Mara Rodrigues dos Santos

Matrícula: 102017

- 1. (10 pontos) Em \mathbb{R}^3 , com o produto interno usual, use o procedimento de Gram-Schmidt para obter uma base **ortogonal** de \mathbb{R}^3 , a partir da base $B = \{v_1 = (1, 1, 0), v_2 = (0, 2, 0), v_3 = (1, 0, -1)\}.$
- 2. (10 pontos) Considere nesta questão o seguinte produto interno em \mathbb{R}^2 :

$$\langle (x,y),(a,b)\rangle = xa - xb - ya + 2yb$$

Dado $W=\{(x,y)\in\mathbb{R}^2:x-2y=0\}$, determine uma base e a dimensão do subespaço vetorial W^\perp , em que $W^\perp=\{(x,y)\in\mathbb{R}^2:\langle (x,y),(a,b)\rangle=0, \forall (a,b)\in W\}$

- 3. (24 pontos) Seja T um operador do \mathbb{R}^3 cuja matriz em relação à base canônica é $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
 - (a) (4 pontos) Mostre que as raízes do polinômio característico de T são $\lambda_1 = -1$ e $\lambda_2 = 1$.
 - (b) (10 pontos) Determine o autoespaço de T associado ao autovalor $\lambda_1 = -1$. Determine a dimensão e uma base para este subespaço.
 - (c) (10 pontos) Mostre que T é diagonalizável. Determine uma base **ortogonal** do \mathbb{R}^3 de autovetores de A.
- 4. (20 pontos) Considere em \mathbb{R}^2 o produto interno usual. Seja a quádrica cuja equação na base canônica é:

$$-x^2 + 2yz - y + z = 1 (*)$$

- (a) (4 pontos) Escreva a equação (*) na forma matricial: $\mathbf{x}^T A \mathbf{x} + B \mathbf{x} + C = 0$, em que $\mathbf{x}^T = (x, y, z)$.

 Observe que a matriz A da equação matricial é a matriz A da questão anterior. Por isso, pode usar (sem ter que refazer os cálculos) qualquer informação que julgar útil e que tenha obtido na questão anterior.
- (b) (6 pontos) Determine uma matriz ortogonal P que diagonaliza ortogonalmente a matriz A.
- (c) (10 pontos) Reescreva a equação (*) na forma reduzida (sem termos mistos e sem os termos lineares). Classifique a quádrica.

- 5. (20 pontos) Sejam os pontos A = (0, 1, 1), B = (1, 1, 0) e C = (0, -1, 1).
 - (a) Determine a equação geral do plano que contenha os pontos A e B e seja perpendicular ao plano x-2y=0.
 - (b) Seja r a reta definida pelos pontos A e B. Determine a equação vetorial de uma reta s, ortogonal a r tais que r e s sejam reversas.
- 6. (16 pontos) Mostre que as afirmações são verdadeiras.
 - (a) Seja $T:V\to V$ uma transformação linear sobre um espaço vetorial V e $v\in V$ um autovetor de T associado ao autovalor λ . Se v é também autovetor de $T\circ T$ (transformação composta de T com T) associado ao mesmo autovalor λ , então $\lambda=-1$ ou $\lambda=1$.
 - (b) Seja V um espaço vetorial euclidiano e $u, v \in V$. Se B é uma base ortonormal de V, então $\langle u, v \rangle = \langle [u]_B, [v]_B \rangle$.