# Chapter 10: Security

**Electronic Commerce** 

## **Objectives**

- Security requirements
- Authentication
- Access control

## **Security requirements**

- Confidentiality
- Integrity
- Availability
- Non-repudiation

| Requirement    | Meaning                                                                                                                                           |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Secrecy        | Prevent unauthorized persons from reading messages and business plans, obtaining credit card numbers, or deriving other confidential information. |  |
| Integrity      | Enclose information in a digital envelope so that the computer can automatically detect messages that have been altered in transit.               |  |
| Availability   | Provide delivery assurance for each message segment so that messages or message segments cannot be lost undetectably.                             |  |
| Key management | Provide secure distribution and management of keys needed to provide secure communications.                                                       |  |
| Nonrepudiation | Provide undeniable, end-to-end proof of each message's origin and recipient.                                                                      |  |
| Authentication | Securely identify clients and servers with digital signatures and certificates.                                                                   |  |

## **Policy and mechanism**

- Need to have a security policy and appropriate security mechanism
  - A security policy is a statement of what is, and what is not, allowed
  - A security mechanism is a method, tool, or procedure for enforcing a security policy
- A security mechanism can implement a policy by
  - Prevent the attack
  - Detect the attack
  - Recover from the attack
- In designing policy, need to identify threat
  - A threat is a potential violation of security

## **Security threats**



FIGURE 10-1 Risk management model

## **Security threats**

- Type of threats
  - Disclosure: unauthorized access to information
  - Deception: acceptance of false data
  - Disruption: interruption or prevention of correct operation
  - Usurpation: unauthorized control of some part of a system
- The security life cycle



- Snooping: unauthorized interception of information, is a form of disclosure
  - Passive
  - Passive wiretapping: snooping happen on a network
- Modification (or alteration): deception, disruption, and usurpation
  - Active
  - Active wiretapping: modification happen on a network
  - Example: man-in-the-middle attack

- Masquerading (or spoofing): impersonation of one entity by another, is a form of deception, and usurpation
  - Passive or active
- Repudiation of origin: false denial that an entity sent something, is a form of deception
  - Active
- Denial of service: long-term inhibition of service, is a form of usurpation
  - Active
  - May happen at the source, the destination, or the communication path

- Malicious code: is a set of instructions that cause a site's security policy to be violated
- Trojan horse: is a program with an overt (documented or known) effect and a covert (undocumented or unexpected) effect
- Example: this UNIX script is named Is, what does it do?
  - cp /bin/sh /tmp/.xxsh
  - chmod o+s,w+x /tmp/.xxsh
  - rm ./ls
  - Is \$\*

- Computer virus: is a program that inserts itself into one or more files and then performs some actions
  - A boot sector infector is a virus that inserts itself into the boot sector of a disk
  - An executable infector is a virus that infects executable programs
  - An encrypted virus is one that enciphers all of the virus code except for a small decryption routine
  - A polymorphic virus is a virus that changes its form each time it inserts itself into another program
  - A macro virus is a virus composed of a sequence of instructions that is interpreted, rather than executed directly

- Computer worm: is a program that copies itself from one computer to another
- Defense: multilevel strategy
  - 1. Written policies and procedures.
  - 2. User awareness and education.
  - 3. Physical security.
  - 4. Product selection, configuration, and maintenance.
  - 5. Password management.
  - 6. Anti-virus software for servers, clients, and electronic mail.
  - 7. Adequate system backups.

- Authentication is the process of verifying the identity a subject claims it to be
- The subject must provide information to enable the system to confirm its identity
  - Something the subject knows
  - Something the subject has
  - Something the subject is
  - Combination of them
- Authentication mechanism
  - Password
  - Challenge-response
  - Biometrics
  - Multi-factor

#### Password

- Based on "something the subject knows"
- The subject supplies a password, and the system verifies it against the stored database
- How to keep the passwords secret even from the administrators? => using a one-way hash function
- Attacks on password systems
  - Dictionary attack: trial and error, using a list of possible passwords
  - Brute force attack: trying every possible passwords
  - Rainbow table: pre-computed table for reversing cryptographic hash functions

- Defending the password system
  - Users need to use "good" password
  - Theorem: let the expected time required to guess a password be T, then T is maximum when the selection of any of a set of possible passwords is equals
  - Random computer-generated passwords: strong, but difficult for human users
  - Pronounceable computer-generated passwords: compromise between passwords selected by users and generated by computer randomly
  - Password aging: a password must be changed after some period of time or after some event has occurred

- Challenge-response
  - The fundamental problem with password: reusable
  - Idea: using passwords that change each time it is used
  - Challenge-response authentication:
    - Server and user agree on a function f
    - Server sends a random message m (the challenge) to user, and user replies with the transformation r = f(m) (the response). Server validates r by computing it separately
    - This is a form of one-time password
    - Also based on "something the subject knows"

 Challenge-response example: CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart)



- Challenge-response authentication (that you are human)
  - What is challenge, what is response?
- Easy for authenticated subjects (human) but difficult for unauthenticated ones: is that assumption still valid now?

Types of Captcha



Fig. 8. Different types of CAPTCHAs.

- Attacks on Captcha system
  - Blind guessing
  - Al attacks
  - Relay attacks: Man in the middle, outsourcing, collusion attacks

### Biometrics

- The automated measurement of biological or behavioral features that identify a person
- Based on "something the subject is"
- Many features can be used
  - Fingerprints
  - Voice
  - Face
  - Keystroke
  - Gesture
- Problems
  - Noisy data
  - Not easy to change once be stolen
  - Availability

- Multi-factor
  - Using more than one way to authenticate a subject
  - Providing more layers of protection
  - But not convenient for users
- How to design an authentication system?
  - =>Using the security life cycle

## **Access control**

- Access control: exerting control over who can interact with a resource
- Types of access control
  - Discretionary access control (DAC): a subject with a certain access permission is capable of passing that permission on to any other subject
  - Mandatory access control: the operating system constrains the ability of a subject to access an object
- Access control presentation
  - Access control matrix
    - Objects: columns
    - Subjects: rows
    - Access permission: respected cells

## **Access control**

|           | File 1    | File 2     | Process 1 | Process 2 |
|-----------|-----------|------------|-----------|-----------|
| Process 1 | Read, own | Write      | Own       |           |
| Process 2 | Append    | Own, write | Execute   | Own       |

- Access control list:
  - There is a list of subjects and their permissions on a particular object
  - Example: acl(file 1) = { (Process 1, { read, own }), (Process 2, { append }) }
- Capabilities list:
  - There is a list of objects and what can be done on them for a particular subject
  - Example: cap(Process 1) = { (File 1, { read, own }), (file 2, { write
  - ), (process 1, {own}), }

## **Access control**

- Bell-LaPadula model
  - Subjects have security clearance: TS (top secret), S (secret), C (confidential),
    UC (unclassified) (I<sub>s</sub>)
  - Object have security classification: the same as above (I<sub>o</sub>)
  - Simple security condition: subject can read object if and only if I<sub>o</sub> <= I<sub>s</sub>
  - Star property: subject can write to object if and only if  $I_s \le I_o$

## **End of chapter 10**

