

4.1. Lenguajes no regulares. Lema de bombeo.

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman

(http://www.eecs.wsu.edu/~ananth/)

- Un lenguaje es regular si podemos construir para él:
 - AFD ο AFN ο ε -AFN ο expresión regular
- ¿Se puede construir un autómata para todos los lenguajes?
- Si probamos que ningún AFD acepta un lenguaje dado, entonces ese lenguaje NO es regular

¿Cómo se prueba que un lenguaje *no* es regular?

Si no se nos ocurre ningún autómata...

- ¿Es que el lenguaje no es regular?
- ¿No hemos abordado el problema correctamente?
- ¿Cómo probamos sin lugar a dudas que no existe tal autómata?

Ejemplo de lenguaje no regular

- $L = \{0^n 1^n \mid n \ge 0\}$
- Hipótesis: L no es regular
- Idea intuitiva: ¿Cómo contamos en un autómata?
- Idea más formal:
 - Por contradicción, si L es regular entonces existe un AFD
 "A" para L.
 Sea k = número de estados de A.
 - Consideremos la palabra w= 0^k1^k
 - A está en algún estado p_i tras consumir cada uno de los k+1 prefijos de 0^k: {ε, 0¹, 0², ... 0^k}

Idea...

- > Sea $\{p_0, p_1, \dots p_k\}$ esa sucesión de estados
- El AFD sólo tiene k estados
- ==> así que existen i,j con i < j tales que p_i=p_i
- > ==> el AFD también acepta 0^{k-(j-i)}1^k
- ==> contradicción con el hecho de que el AFD es correcto

0^{k-j}1^k

Lema de Bombeo para Lenguajes Regulares

Sea L un lenguaje regular

Entonces <u>existe</u> una constante n tal que <u>toda</u> palabra $w \in L$ con $|w| \ge n$, se puede descomponer *en* tres partes, w = xyz, tal que:

- 1. |**x**y|≤n
- 2. $y \neq \varepsilon$
- 3. Para todo *k*≥0, la palabra $xy^kz \in L$

Lema de bombeo: demostración

- L regular => hay un AFD que acepta L
 - Sea A ese AFD;
 - Tomamos n = número de estados de A
- Consideramos las palabras w∈L con |w|≥n w=a₁a₂...a_m, con m≥n
- Conjuntos atravesados al leer los primeros n símbolos de w: {p₀,p₁,... p_n}
 - ==> Hay n+1 estados, mientras que el AFD tiene sólo n estados
 - > ==> al menos un estado se repite, es decir, p_i= p_i con 0≤i<j≤n (principio de palomar)</p>

Lema de bombeo: demostración...

==> Descomponemos w=xyz, de la siguiente forma:

$$x=a_1a_2..a_i$$

$$y=a_{i+1}a_{i+2}..a_{i};$$
 $z=a_{i+1}a_{i+2}..a_{m}$

- > x: camino p₀..p_i
- y: camino p_i p_{i+1}..p_i (como p_i=p_i hay un ciclo)
- z: camino p_ip_{j+1}..p_m
- Consideremos cualquier w₂=xy^kz
- Caso k=0
 - A alcanza el estado p_m
- Caso k>0
 - A cicla en y^k, y finalmente alcanza el estado p_m
- ▶ En cualquier caso, w₂ L

Esto prueba la parte (3) del lema

• Como i<j, y $\neq \varepsilon$

- Para la parte (1):
 - Por el principio del palomar, los estados tienen que repetirse en los primeros n símbolos
 - ==> |xy|≤n

Utilidad del Lema de Bombeo para Lenguajes Regulares

 Probar que algunos lenguajes no pueden ser regulares.

Uso del lema de bombeo

Juego entre dos personas

Jugador 1 (el malo): afirma que el lenguaje es regular

Jugador 2 (el bueno): su adversario, que quiere probar que eso no puede ser verdad

Uso del lema de bombeo

El bueno (nosotros)

Construye $w \in L$ con $|w| \ge n$ usando N (sin usar un valor particular para N)

Intenta violar la tercera condición del lema, sean cuales sean {x,y,z}

- primero lo intenta eliminando y (k=0)
- si eso no funciona, lo intenta añadiendo y's (k≥2)

El malo

Afirma L es regular

=> Conoce N pero no lo revela

Descompone w en $\{x,y,z\}$ con $y \neq \varepsilon$, $|xy| \le n$ (de nuevo, no revela xyz)

Ejemplo de uso del lema de bombo para probar que un lenguaje no es regular

Sea L_{eq} = {w | w cadena binaria con el mismo número de 0s que de 1s}

- Hipótesis: L_{eq} no es regular
- Demostración:
 - L_{eq} es regular. n = constante del lema de bombeo
 - Consideramos w = 0ⁿ1ⁿ
 - Se puede descomponer w=xyz, tal que:
 - 1) **y**≠ *E*
 - ₂₎ |xy|≤n
 - Para todo k≥0, la palabra xy^kz también está en L

MALO

BUENO

MALO

-

Demostración... w = 0ⁿ1ⁿ

- Como |xy|≤n, xy sólo contiene 0s
 - \rightarrow (y como y $\neq \varepsilon$, y=0| con l>0)
- Además, los n 1s están en z
- Por (3), las cadenas xy^kz ∈ L_{eq} para todo k≥0
- Caso k=0: xz tiene n-l 0s y n 1s
- Por lo tanto, xy⁰z ∉ L_{eq} (contradicción) ←

Ejemplo 2

$$L = \{0^n 10^n \mid n \ge 1\} \text{ no es regular}$$

 Obs: No confundir ese n con la constante del lema de bombeo.

■ $L = \{0^k 10^k \mid k \ge 1\}$ no es regular

Ejemplo 3

Hip:L = { 0ⁱ | i cuadrado perfecto} no es regular

Demostración:

- > Suponemos que L es regular.
- Entonces se cumple el lema de bombeo
- \rightarrow n = constante del lema de bombeo
- ➤ Consideramos w=0^{n²}
- Sea w=xyz que satisface las tres condiciones
- Por (1) y (2), y tiene entre 1 y n 0s
- Por (3), las palabras xy^kz están en L para todo k≥0
- Caso k=0:

```
#ceros (xy^0z) = #ceros (xyz) - #ceros (y)
n^2 - n \le #ceros (xy^0z) \le n^2 - 1
(n-1)^2 < n^2 - n \le #ceros (xy^0z) \le n^2 - 1 < n^2
xy^0z \notin L
```


4.2. Propiedades de clausura de los Lenguajes Regulares

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman

(http://www.eecs.wsu.edu/~ananth/)

- Propiedad de clausura:
 - Si un conjunto de lenguajes regulares se combinan usando una operación, el lenguaje resultado también es regular
- Los lenguajes regulares son <u>cerrados</u> para:
 - Unión
 - Intersección, complemento, diferencia
 - Reflexión
 - Concatenación
 - Clausura de Kleene

de Kleene

Unión

- Si L y M son lenguajes regulares:
 - Existen expresiones regulares R y S que generan L y M, respectivamente
 - La expresión regular R+S genera L U M
 - Por lo tanto, (L U M) también es regular

Complemento

- Si L es un lenguaje regular sobre ∑ entonces
 L=∑*-L
- L es regular, mediante la construcción...

Convertimos estados finales en no finales, y viceversa

Intersección

- Demostración rápida e indirecta:
 - Por las leyes de DeMorgan:
 - $L \cap M = (\overline{L} \cup \overline{M})$
 - Como los lenguajes regulares son cerrados para la unión y el complemento, también lo son para la intersección
- Más directa: construcción de un autómata finito para L ∩ M

AFD para L ∩ M

- $A_L = AFD para L = {Q_L, \sum, q_L, F_L, \delta_L}$
- $A_M = AFD$ para $M = \{Q_M, \sum, q_M, F_M, \delta_M\}$
- $A_{L \cap M} = \{Q_L \times Q_M, \sum, (q_L, q_M), F_L \times F_M, \delta\}$ tal que:
 - $\delta((p,q),a) = (\delta_L(p,a), \delta_M(q,a))$, con p en Q_L , y q en Q_M
- Se acepta w si y sólo si w alcanza un estado que es final en ambos autómatas

AFD para L ∩ M

Diferencia

Observamos que:

 $L - M = L \cap \overline{M}$

Cerrados para la intersección

Cerrados para el complemento

Por lo tanto, L - M también es regular

w^R = reflexión de la cadena

Por ejemplo, w=00111, w^R=11100

Reflexión de un lenguaje:

 L^R = lenguaje generado por reflexiones de cadenas de L

Teorema: si L es regular también lo es LR

Si L es regular L^R es regular (usando expresiones regulares)

- Sea E una expresión regular que genera L
- Construimos E^R por inducción en el número de operadores que hay en E:
- Base: Si E= ϵ , Ø, o a, entonces E^R=E
- Inducción: E puede ser de una de las siguientes formas:

1.
$$E = E_1 + E_2$$

•
$$E^{R} = E_{1}^{R} + E_{2}^{R}$$

$$E = E_1 E_2$$

$$\blacksquare \quad \mathsf{E}^\mathsf{R} = \mathsf{E}_2^\mathsf{R} \mathsf{E}_1^\mathsf{R}$$

$$E = (E_1)^*$$

•
$$(E^R)^* = (E_1^R)^*$$

Construcción de ε-AFN para L^R

4.3. Propiedades de decisión de los Lenguajes Regulares

Fernando Rosa Velardo

Pertenencia

- Entrada: w y una representación de L
- Salida: respuesta a ¿está w en L?
- Algoritmo:
 - Construye un AFD para L
 - Ejecuta el AFD sobre w
 - Si el AFD acepta devolvemos true; si no, devolvemos false.

Test de vacío

- Entrada: una representación de L
- Salida: respuesta a ¿L=Ø ?
- Algoritmo:
 - Construye un AF para L
 - Ejecuta un test de alcanzabilidad, que devuelve:
 - false: si existe un estado final alcanzable desde el estado inicial
 - <u>true:</u> en otro caso

¿Cómo se implementa ese test de alcanzabilidad?

Finitud

- Entrada: una representación de L
- Salida: ¿es L finito?
- Algoritmo:
 - Construye un AFN para L
 - 2. Elimina todos los estados inalcanzables desde el estado inicial
 - 3. Elimina todos los estados desde los que no se puede alcanzar ningún estado final
 - 4. Busca ciclos en el AFN resultante
 - L es finito si y sólo si no hay ciclos

¿Cómo se implementan los pasos 2 y 3?

- Entrada: representaciones de L y M
- Salida: ¿L contenido en M?
- Algoritmo:
 - Construye un AFD para L ∩ M
 - Ejecuta el test de vacío sobre ese autómata
 - L contenido en M si y sólo si el test devuelve cierto

Equivalencia

- Entrada: representaciones de L y M
- Salida: ¿L = M?
- Algoritmo:
 - L=M si y sólo si L contenido en M y M contenido en L

4.4. Equivalencia y minimización de autómatas

Fernando Rosa Velardo

- Minimización de AFDs:
 - Construcción de un AFD equivalente a uno dado con el menor número de estados posible
- Aplicación
 - $\angle L(AFD_1) = L(AFD_2)$?

Estados equivalentes en AFD

Decimos que dos estados p y q son equivalentes si:

Cualquier w aceptada desde p también es aceptada desde q;

Cualquier w rechazada desde p también es rechazada desde q.

Estados equivalentes en AFD

Equivalentemente, p y q NO son equivalentes si existe w aceptada desde p y rechazada desde q (o viceversa):

Algoritmo de llenado de tabla

Cálculo de estados de tabla equivalentes en un AFD

Marcamos pares de estado final y no final

Pasada #1

1. Comparamos cada par de estados no marcados

2. Distinguimos mediante palabras de longitud 1

Pasada #2

- 1. Comparamos cada par de estados no marcados
- 2. Distinguimos mediante palabras de longitud hasta 2

. . . .

(hasta que no se pueden poner más marcas)

1. Marcamos pares final/no final

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos

Α								
В								
С	X							
D	X							
Ε	X	X	X	X				
F					X			
G	X				X			
Н	X				X			
	Α	В	С	D	Е	F	G	Н
	1							

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos

Α								
В								
С	X	X						
D	X	X						
Е	X	X	X	X				
F					X			
G	X	X			X			
Н	X	X			X			
	Α	В	С	D	Е	F	G	Н
		1						

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos

Α								
В								
С	X	X						
D	X	X	X					
Ε	X	X	X	X				
F			X		X			
G	X	X	X		X			
Н	X	X			X			
	Α	В	С	D	E	F	G	Н
	-	-		-	-	- '		•

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos

Α								
В								
С	X	X						
D	X	X	X					
Е	X	X	X	X				
F			X	X	X			
G	X	X	X		X			
Н	X	X		X	X			
	Α	В	С	D	E	F	G	Н
				1				

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos

Α								
В								
С	X	X						
D	X	X	X					
Е	X	X	X	X				
F			X	X	X			
G	X	X	X		X	X		
Н	X	X		X	X	X		
	Α	В	С	D	Е	F	G	Н
	-	-	-	-		†		'

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos

Α								
В								
С	X	X						
D	X	X	X					
E	X	X	X	X				
F			X	X	X			
G	X	X	X		X	X		
Н	X	X		X	X	X	X	
	Α	В	С	D	Е	F	G	Н
	_	•	•	•		'		•

- 1. Marcamos pares final/no final
- 2. Buscamos pares distinguibles mediante símbolos
- 3. Buscamos pares distinguibles mediante palabras de longitud 2

Α								
В								
С	X	X						
D	X	X	X					
Е	X	X	X	X				
F	X	X	X	X	X			
G	X	X	\mathbf{X}		X	X		
Н	X	X		X	X	X	X	
	Α	В	$\stackrel{\smile}{C}$	D	Е	F	G	Η

Equivalencias:

- A=B
- C=H
- D=G

Unificación de estados equivalentes

Equivalencias:

- A=B
- C=H
- D=G

Minimización de AFD

Objetivo: Minimizar número de estados de un AFD

Test de alcanzabilidad

- Algoritmo:
 - Eliminar estados inálcanzables desde el estado inicial
 - Identificar y eliminar estados equivalentes

Llenado de tabla

Equivalencia de AFDs

- 1. Construye nuevo AFD, simplemente juntando ambos
- Ejecuta el algoritmo de llenado de tabla sobre el nuevo AFD
- 3. $IF(q_0 y q_0')$ equivalentes)

THEN: AFD₁ y AFD₂ equivalentes

ELSE: no equivalentes