# Philippe DE SOUSA



## Algorithme 1.1

### Comprendre un algorithme

#### **Exercice 1.**

On donne ci-dessous un algorithme écrit en langage courant :

#### Variables

n : un nombre réel q: un nombre réel

#### Entrée

Saisir n

#### **Traitement**

Affecter à q la valeur  $(n + 2) \times (n + 2)$ Affecter à q la valeur q - (n + 4)Affecter à q la valeur q/(n+3)

#### Sortie

Afficher q

- 1°) Tester cet algorithme pour n = 4 puis pour n = -7.
- **2°)** Un élève a saisi n = -3. Que se passe-t-il? Pourquoi?
- 3°) Émettre une conjecture sur le résultat fourni par cet algorithme.
- 4°) Démontrer cette conjecture.

#### **Exercice 2.**

1°) Dans l'algorithme suivant, montrer que l'on pourrait exprimer y directement en fonction de x avec une instruction ne comportant qu'une seule opération.

Écrire alors cette instruction sous la forme d'une expression mathématique A(x) dépendant de xet le plus simplement possible.

#### **Variables**

a : un nombre réel

b: un nombre réel

c : un nombre réel

d: un nombre réel

x : un nombre réel

y: un nombre réel

#### Entrée

Saisir x

#### **Traitement**

Affecter à  $\alpha$  la valeur x + 2

Affecter à b la valeur  $a \times a$ 

Affecter à c la valeur x - 2

Affecter à d la valeur  $c \times c$ 

Affecter à y la valeur (b - d)/4

#### Sortie

Afficher y

- 2°) Modifier alors la partie Traitement de l'algorithme.
- 3°) Quelles sont les seules variables nécessaires?

# Algorithme 1.2 Inéquations

#### **Exercice** 1.

Une société veut imprimer des livres. La location de la machine revient à  $750 \in$  par jour et les frais de fabrication s'élèvent à  $3,75 \in$  par livre.

La société souhaite savoir le nombre de livre à imprimer pour que le prix de revient d'un livre soit inférieur ou égal à 6€. Pour cela, elle utilise la formule suivante :

$$Prix de revient = \frac{Prix total}{Nombre total de livres}$$

Elle utilise également l'algorithme suivant :

#### **Variables**

Livre : un entier naturel Total : un nombre réel Revient : un nombre réel

Entrée

Saisir Livre

#### **Traitement**

Affecter à Total la valeur 750 + 3,50  $\times$  Livre Affecter à Revient la valeur Total/Livre

#### Sortie

Si Revient > 6

Alors Afficher "Le prix de revient est trop élevé!" Sinon Afficher "Le prix de revient est correct!"

FinSi

- 1°) Comment la société doit-elle utiliser cet algorithme?
- 2°) Déterminer par le calcul le nombre minimum de livres à imprimer pour répondre aux contraintes énoncées.

\*

#### **Exercice 2.**

Deux chauffeurs de taxi proposent à leurs clients des tarifs différents :

**Chauffeur A :** Une prise en charge de 4,80 € et un coût supplémentaire de 1,15 € par kilomètre par-

**Chauffeur B :** Une prise en charge de 3,20 € et un coût supplémentaire de 1,20 € par kilomètre parcouru.

- 1°) Paulette a besoin d'effectuer un parcours de 15 km. Quel chauffeur a-t-elle intérêt à choisir?
- **2°)** Déterminer les nombres de kilomètres pour lesquels Paulette a intérêt à choisir le chauffeur A. Écrire le résultat sous forme d'un intervalle.
- **3°)** Écrire un algorithme qui affiche le prix payé à chaque chauffeur en fonction du nombre de kilomètres parcourus.
- **4°)** Améliorer cet algorithme pour qu'il affiche une phrase déterminant le chauffeur qu'il faut choisir en fonction des kilomètres à parcourir ; par exemple :

Pour parcourir ... kilomètres, le chauffeur ... coûte moins cher.

# Algorithme 11.1 Utiliser un algorithme en géométrie

#### **Exercice 1.**

Que font les algorithmes ci-dessous? Expliquer précisément leur différence.

#### Variables

 $x_A$ : un nombre réel  $y_A$ : un nombre réel  $x_B$ : un nombre réel  $y_B$ : un nombre réel

#### Initialisations

Affecter à  $x_B$  la valeur -1Affecter à  $y_B$  la valeur 2

#### Entrées

Saisir  $x_A$ Saisir  $y_A$ 

#### Sortie

Tracer la ligne de  $(x_A; y_A)$  à  $(x_B; y_B)$ .

#### Variables

 $x_A$ : un nombre réel  $y_A$ : un nombre réel  $x_B$ : un nombre réel  $y_B$ : un nombre réel

#### Entrées

Saisir  $x_A$ Saisir  $y_A$ Saisir  $x_B$ Saisir  $y_B$ 

#### Sortie

Tracer la ligne de  $(x_A; y_A)$  à  $(x_B; y_B)$ .