MAY 14, 2025

Kowalski - Your Helpful Al Assistant

Christian Goll <cgoll@suse.com>

Outline

Introduction

Introducing Kowalski

Kowalski Workflow

User Interaction

Benefits

The Challenge: LLMs and System Configuration

Current state

- Large Language Models (LLMs) are powerful for general tasks.
- LLMs are allready used for system configuration tasks
- Halucinations and wrong tools likely to be presented

Example

- Answers with standard prompt are extensive
- User has to select the right one
- Sensitive information may be shared!

Problem

- LLMs are created by training text completion on scraped sources
- LLMs don't have any context

You know nothing, John Snow!

Solution

- Context is needed for accurate solutions
- Should be easy to get context of actual system.

I know things!

Introducing Kowalski: A Specialized AI Assistant

- Kowalski is designed to bridge the gap between LLMs and system configuration.
- It provides LLMs with highly relevant and context-aware information.
- Focus on extracting and utilizing knowledge from technical documentation, specifically SUSE/SLE docs.

Excurse: Vector Embeddings

Definition

Numerical representations of data (words, texts, etc.) in a vector space

Key Properties

- Capture semantic relationships (e.g., "king" – "man" + "woman" ≈ "queen").
- Fixed-length (e.g., 300 dimensions for Word2Vec).
- Similar items cluster together in the vector space.

Example

```
"cat" [0.2, -0.5, 0.7], "dog" [0.3, -0.4, 0.6]
```

How are Embeddings Created?

Common Methods

GloVe:

Uses global word co-occurrence statistics from a corpus.

Word2Vec (Skip-gram/CBOW):

Predicts surrounding words (or target word) using shallow neural networks.

Vector space search

- Searching nearest neighbors in high dimesional vector space isn't trivial
- Facebook created faiss library which does this job

Applications of Vector Embeddings

Use Cases:

- NLP: Search engines, chatbots, translation.
- Computer Vision: Image similarity (e.g., CLIP).
- Recommendation Systems: User/item embeddings (e.g., Netflix).

Tools:

 gensim (Word2Vec), sentence-transformers, OpenAI Embeddings API.

Kowalski's Core Idea: Contextualized Information

- Enhance the LLM's ability to perform configuration tasks.
- Achieve this by providing accurate information extracted directly from trusted sources (documentation).
- Supplement documentation knowledge with live system information.

Phase 1: Documentation Ingestion

The Starting Point: SUSE/SLE Documentation

- Kowalski begins by processing official documentation.
- This documentation is a rich source of configuration knowledge.
- The goal is to make this information machine-readable and easily retrievable.

Copyright © SUSE 2025

Extraction Process: Identifying Key Information

What is Extracted?

- Mentioned files (e.g., configuration files, scripts).
- Commands to be executed (e.g., installation, configuration commands).
- Key parameters and values within documentation examples.

How is it Extracted?

- Utilizing parsing techniques.
- Applying Natural Language Processing (NLP) to identify relevant entities.
- Defining patterns and rules to capture structured information.

Building the Knowledge Base: Internal Database

- Extracted files, commands, and related documentation snippets are stored.
- An internal database is created to organize this structured information.
- This database serves as a central repository of documentation-derived knowledge.

Semantic Understanding: Creating Embeddings

- Embeddings are created from the documentation content.
- These embeddings capture the semantic meaning of the text.
- This allows for searching based on concept and relevance, not just keywords.

Copyright © SUSE 2025

The User Interaction: Asking Kowalski

User Query

- A user poses a question to Kowalski regarding a system configuration task.
- The query is the starting point for retrieving relevant information.

Query Embedding: Understanding the User's Need

- The user's query is also converted into an embedding.
- This puts the query into the same semantic space as the documentation embeddings.
- Enables comparing the user's request to the stored knowledge.

Finding Relevant Information: Vector Search with FAISS

- FAISS (Facebook AI Similarity Search) is used for efficient vector similarity search.
- The embedding of the user query is compared against the documentation embeddings.
- The nearest (most semantically similar) help documents are identified.

Enriching the Context: Adding System Specifics

Going Beyond Documentation

- The extracted relevant documentation snippets are a primary source of context.
- Kowalski then checks if files mentioned in the documentation exist on the *actual* system.
- The content of these existing system files is extracted.

Copyright © SUSE 2025

The Enriched Context for the LLM

- The LLM receives a context that includes:
- Relevant information from the documentation (extracted text).
- Information about specific files found on the user's system that were mentioned in the documentation.
- This provides the LLM with a much more accurate picture of the user's situation.

20

Copyright © SUSE 2025

How it Works Together: The Kowalski Workflow

- 1. Documentation Ingestion & Extraction
- 2. Database Creation & Embedding Generation
- 3. User Query
- 4. Query Embedding
- 5. Vector Search (FAISS)
- 6. Retrieve Relevant Docs
- 7. Check for Mentioned System Files
- 8. Extract System File Content
- 9. Provide Enriched Context to LLM
- 10. LLM Generates Configuration Advice

Benefits of Using Kowalski

- **Accuracy:** LLM responses are grounded in trusted documentation.
- **Relevance:** Context is tailored to the specific documentation and the user's system.
- **Efficiency:** Users get direct answers for configuration tasks.
- **Reduced Hallucination:** Providing specific context minimizes the risk of incorrect information.
- **Improved LLM Performance:** LLMs can provide more helpful and actionable configuration steps.