CSIT113 Problem Solving

Week 6

Problem

- Alabama Smith, the adventurous archaeologist, is exploring a hidden temple when he comes across a pile of treasure.
- He is able to carry at most 50Kg of treasure out of the temple.
- Sadly, because of the nearby volcano, which is on the verge of a violent eruption, the temple will soon be engulfed in lava.
- The treasure consists of 5 objects each with a different weight and value.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000

- Al is lucky to have a hacksaw with him so he can cut an object into two pieces if he has to.
- What is the most valuable load he can take from the temple?
- A brute force approach to this problem does not seem attractive.
- There are simply too many possible options to consider.
- By the time Al looks at all the options the lava will have covered the temple, the treasure and him!

Greed for the win!

- To solve this problem before the lava arrives he clearly needs a better strategy.
- The strategy he chooses, and which we are going to investigate, is called the greedy approach.
- It chooses items, one at a time, picking the best item at each step.
- Hold on though, what do we mean by "best"?
 - Most valuable?
 - Lightest?
 - Some other measure...?
- We will look at our options in turn.

Strategy 1: pick the most valuable object.

Object 3 has the highest value so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack			1.0		

- The pack now has:
 - Weight = 15Kg
 - Value = \$6,600

Strategy 1: pick the most valuable object.

• Object 5 has the next highest value so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack			1.0		1.0

- The pack now has:
 - Weight = 40Kg
 - Value = \$12,600

Strategy 1: pick the most valuable object.

Object 4 has the next highest value so we put half of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack			1.0	0.5	1.0

- The pack now has:
 - Weight = 50Kg
 - Value = \$14,600
- The pack is now full with a value of \$14,600
- Can we do better?

• Object 1 is the lightest so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack	1.0				

- The pack now has:
 - Weight = 5Kg
 - Value = \$2,000

• Object 2 is the next lightest so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack	1.0	1.0			

- The pack now has:
 - Weight = 15Kg
 - Value = \$5,000

Object 3 is the next lightest so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack	1.0	1.0	1.0		

- The pack now has:
 - Weight = 30Kg
 - Value = \$11,600

Object 4 is the next lightest so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
pack	1.0	1.0	1.0	1.0	

- The pack now has:
 - Weight = 50Kg
 - Value = \$15,600
- Once again, the pack is full; this time with a value of \$15,600
- This is better but is it the best we can do?

We add another row to our table value/Kg

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
value/Kg	400	300	440	200	240

• Object 3 has the highest ratio so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
value/Kg	400	300	440	200	240
pack			1.0		

The pack now has:

- Weight = 15Kg
- Value = \$6,600

• Object 1 has the next highest ratio so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
value/Kg	400	300	440	200	240
pack	1.0		1.0		

The pack now has:

- Weight = 20Kg
- Value = \$8,600

• Object 2 has the next highest ratio so we put all of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
value/Kg	400	300	440	200	240
pack	1.0	1.0	1.0		

The pack now has:

- Weight = 30Kg
- Value = \$11,600

• Object 5 has the next highest ratio so we put 80% of it in the pack.

object	1	2	3	4	5
weight	5	10	15	20	25
value	2000	3000	6600	4000	6000
value/Kg	400	300	440	200	240
pack	1.0	1.0	1.0		0.8

- The pack now has:
 - Weight = 50Kg
 - Value = \$16,400
- The pack is, once again, full; with an even higher value of \$16,400
- This is the best possible outcome.

But really!

- In real life sawing up a gem-encrusted gold statue will result in a huge loss of value.
- This means that we should really be looking for the solution to a different problem:
 - Find the most valuable set of objects that will fit in the backpack using only whole objects.
- This is a much harder problem which we may look at later in the subject.

Paying the Bills

- We want to pay a bill with cash.
- We have banknotes with the following denominations:
 - \$100, \$50, \$20, \$10, \$5
- And coins:
 - \$2, \$1, 50c, 20c, 10c, 5c
- We want to use as few items of currency as possible.
- Can you devise a greedy strategy to achieve this?

Greedy payment

- Simply stated our greedy strategy is to use as many of each item as we can in descending order.
- Thus to pay a bill of \$379.45 we would use:

Three \$100 notes

One \$50 note

No \$1 coins

No \$2 coins

No \$1 coins

No \$0c coins

No \$10 notes

Two 20c coins

No 10c coins

One \$5 note

One 5c coin

- This is the best possible solution
- Is this always the case?

Zlotovian Currency

- The tiny country of Zlotavia bases its currency on the Zlyg.
- It has banknotes in the following denominations.
- Ż100, Ż30, Ż10, Ż7 and Ż1.
- Does the greedy strategy work in Zlotavia?
- Consider paying a bill of Ż15
 - The greedy strategy says use one 210 and five 21 notes, a total of six notes.
 - The optimal solution uses only three notes: two Ż7 notes and a single Ż1 note.
- Clearly we need to be careful in using greedy strategies, they do not always give the best answer.
- But, at least, they do give us an answer.

Egyptian Fractions

- Any rational number can be expressed as the sum of a series of fractions, each with a numerator of one.
- These are the so-called Egyptian fractions.
- For example: 3/4 = 1/2 + 1/4
- Another example: $2\frac{3}{4} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{4}$
- Can you find a greedy strategy for finding Egyptian fractions?
- How about we find the largest fraction of the form 1/n which is no bigger than the value we seek and repeat this process with whatever is left over?

Egyptian Fractions

• Let's try with 7/15

Fraction to find	Best fraction	Amount still to find
7/15	1/3	7/15 – 1/3 = 2/15
2/15	1/8	2/15 – 1/8 = 1/120
1/120	1/120	1/120 - 1/120 = 0

- And we have our answer:
 - 7/15 = 1/3 + 1/8 + 1/120
- Once again, is this optimal?

Egyptian Fractions

- Let's try with 5/121
- The greedy strategy gives us the answer:
 - 5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913+ 1/1527612795642093418864225
- The best answer, however, is:
 - 5/121 = 1/33 + 1/121 + 1/363
- There are even worse cases.
- Once again, the take home message is be careful when you decide to use a greedy strategy.

Don't Panic!

- Despite the last two examples, there are lots of problems for which the greedy strategy works perfectly.
- Just not every problem.
- There are some classes of problem for which the greedy strategy always works: Huffman coding, Minimal spanning trees...
- Greedy algorithms are fast but can be (from Wikipedia) "characterized as being 'short sighted', and also as 'non-recoverable'.".
- Whether they work or not is tied to whether by not making a particular choice at some point we are still able to make that choice later, in some sense.
- Let's look at a more complex problem where a greedy approach does give the best solution.

The Widget Factory

- A factory produces custom widgets; each one is different.
- Each widget takes one day to make.
- We have *n* customers.
- Each customer wants a specific widget.
- Each customer has a specific deadline.
 - If we don't have the widget ready we lose the sale
- Each customer widget has a different profit.
- How can we maximize the total profit?

We are too good for our own good!

- Here's the problem
- At the start of the week we know each customer's order
 - The deadline
 - The profit
- The difficulty is that we have too many orders to make every widget on time.
- For each order we have to decide:
 - Do we make the widget?
 - If so, when do we make it?

A simple example

- We have only four customers for a two day period.
- Their properties are as follows:

Customer	1	2	3	4
Profit	50	10	15	30
Deadline	2	1	2	1

- We can construct a *schedule*, a sequence of jobs in daily order to tell the factory what to produce.
- Let's start with a brute force approach:

Lots of schedules!

Customer	1	2	3	4
Profit	50	10	15	30
Deadline	2	1	2	1

Schedule	Profit	Schedule	Profit
1	50	2, 3	25
2	10	2, 4	BAD
3	15	3, 1	65
4	30	3, 2	BAD
1, 2	BAD	3, 4	BAD
1, 3	65	4, 1	80
1, 4	BAD	4, 2	BAD
2, 1	60	4, 3	45

- Some schedules are impossible; these are marked as BAD.
- The best schedule is 4, 1 with a total profit of 80

Greedy for Profit

- A possible greedy strategy works as follows:
 - Find the most profitable job.
 - Add it to the schedule as late as possible.
 - Repeatedly try to add the next most profitable job to the schedule, again as late as possible, until no more jobs are left.

A simple example

• Let us try this strategy with our simple example:

Customer	1	2	3	4
Profit	50	10	15	30
Deadline	2	1	2	1

- Job 1 is the most profitable. Schedule it for day 2.
- Job 4 is next and we can fit it in day 1. Schedule it.
- Job 3 is next but we have no room in the schedule. Skip it.
- Job 2 remains but we still have no room. Skip it
- This gives us the schedule 4, 1 which is optimal.

A bigger example

• This time we have ten orders over four days:

customer	1	2	3	4	5	6	7	8	9	10
profit	10	8	5	4	10	7	7	9	6	5
deadline	1	2	4	4	2	4	1	1	1	3

• The first step is to sort them by their profit:

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

• We can now try to schedule each job in order.

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Choose job 1
- We can fit it in our schedule

Day	1	2	3	4
Job	1			
Profit	10			

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 5
- We can fit it in our schedule

Day	1	2	3	4
Job	1			
Profit	10			

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 8
- We can't fit it in our schedule

Day	1	2	3	4
Job	1	5		
Profit	10	10		

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 2
- We can't fit it in our schedule

Day	1	2	3	4
Job	1	5		
Profit	10	10		

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 6
- We can fit it in our schedule

Day	1	2	3	4
Job	1	5		
Profit	10	10		

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 7
- We can't fit it in our schedule

Day	1	2	3	4
Job	1	5		6
Profit	10	10		7

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 9
- We can't fit it in our schedule

Day	1	2	3	4
Job	1	5		6
Profit	10	10		7

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Next choose job 3
- We can fit it in our schedule

Day	1	2	3	4
Job	1	5	3	6
Profit	10	10	5	7

• The schedule is now full so we do not need to go any further.

Day	1	2	3	4
Job	1	5	3	6
Profit	10	10	5	7

- The final schedule is 1, 5, 3, 6 for a total profit of 32.
- Can we show that this strategy always gives us the maximum profit?
- Yes! But we aren't going to ☺
- Some of you will see the proof of this in CSCI203 next year.

Wait!

- Did anyone see the magic in what we just did?
 - How did I get from:

customer	1	2	3	4	5	6	7	8	9	10
profit	10	8	5	4	10	7	7	9	6	5
deadline	1	2	4	4	2	4	1	1	1	3

to:

customer	1	5	8	2	6	7	9	3	10	4
profit	10	10	9	8	7	7	6	5	5	4
deadline	1	2	1	2	4	1	1	4	3	4

- Sorting looks pretty magical!
- We will look at sorting later in this subject.

Discussion: What should we be greedy about?

- If we are going to be greedy in solving a problem we need to think about what we use as a measure.
- That is, how do we know which option is the best one to take at any given time.
- This is going to be a function of the scenario you are in.
- Here go some problems to think about measures for.
 - Reaching a location based on known coordinates.
 - Anywhere? In a city?
 - Draughts/Checkers. What is it worth to take a piece?
 - Choosing which piece to take in Chess.
 - Picking people for a team.

Reaching a location based on known coordinates

- You can use the distance from the location to determine how close you are.
- As the crow flies or Euclidean distance might seem a sensible first option.
- If you were in a city, a distance/metric like Manhatten distance would probably make more sense.
 - Manhatten distances only allows moves along the edges of city blocks, not diagonal moves.
- If we are travelling cross country there may well be obstacles than mean we cannot travel as the crow flies.

Draughts/Checkers

- The pieces are all the same initially so it seems reasonable to give them all the same value.
- It's possible to take multiple pieces in one move so the number of pieces taken would seem to help us distinguish between moves.
- Once a piece reaches the end it becomes a king and can move forwards or backwards.
 - So it would seem it should be worth more to capture one.

Chess

- Different pieces in chess are considered to have different values.
- There is a discussion on the relative value of chess pieces at https://en.wikipedia.org/wiki/Chess_piece_relative_value#Standard_valuations
- The main impression you should probably get is that it depends.
- It describes the most common assignment as \rightarrow

Symbol	Name	Value		
≌ = K	King	Infinite		
∰ = Q	Queen	9 pawns		
□ = R	Rook	5 pawns		
<u></u> = B	Bishop	3 pawns		
∅ = N	Knight	3 pawns		
△ = P	Pawn	1 pawn		

Table from http://twcahowtoplaychess.blogspot.com.au/2007/12/lesson3-chess-notation.html

Picking people for a team...

- Do you want a star team or a team of stars?
- If you are only taking individual ability into account, you might end up with a team of stars who don't work together well at all.
- See the film Moneyball.

Conclusion

- Greedy approach solves an optimization problem by a sequence of steps, each expanding a partially constructed solution until a complete solution is reached
- At each step, the choice is to produce the largest immediate gain without violating the problem's constraints.
- hope that a sequence of locally optimal choices will yield a (globally) optimal solution to the entire problem
- Greedy approach works in some cases and fails in others.
- Usually it is not difficult to design a greedy algorithm; a more difficult task is to prove that it indeed yields an optimal solution.