Задача 1. Автостопом по галактике.

Анатолий Коченюк, команда ЛНМО#2 Март 2019

Содержание

_	Композиция		
	1.1	Композиция конечных	3
	1.2	Композиция докально конечных	3

Введение

Определение 0.1. Перестановка – биективная функция $f: \mathbb{Z} \to \mathbb{Z}$

Определение 0.2. Перестановка f называется конечной, если множество $N_f = \{n \in \mathbb{Z} \mid f(n) \neq n\}$ – конечно.

Определение 0.3. Для $n \in \mathbb{Z}$ множество $\mathcal{O}_f(n) = \{n, f(n), f(f(n)) \dots\} \cup \{f^{-1}(n), f^{-1}(f^{-1}(n)) \dots\}$ называется орбитой n под действием f.

Определение 0.4. Перестановка f называется локально конечной, если y всех $n \in \mathbb{Z}$ орбиты $\mathcal{O}_f(n)$ конечны.

1 Композиция

1.1 Композиция конечных

Теорема 1.1. Композиция двух конечных перестановок является конечной перестановкой

Доказательство. Рассмотрим две конечные перестановки f, g, а также их композицию $f \circ g(x) = f(g(x))$.

$$N_f = \{ n \in \mathbb{Z} \mid f(n) \neq n \} \quad N_g = \{ n \in \mathbb{Z} \mid g(n) \neq n \}$$

 $f\mid_{\mathbb{Z}\setminus N_g}(n)=f(n)$

 $N_{f\circ g}\cap N_g\subset N_f$ потому на первом множестве $f\circ g(n)\neq n$, а на втором $f\circ g(n)=f(n)$, т.е. f ведёт себя так же, как и $f\circ g$, т.е. $f(n)=f\circ g(n)\neq n$

 $N_{f \circ g} \cap N_g$ – конечно как пересечение с конечным множеством

 $(N_{f \circ g} \cap Z \setminus N_g) \cup (N_{f \circ g} \cap N_g) = N_{f \circ g}$ по теории множеств и конечно, как объединение конечных множеств, а значит $N_{f \circ g}$ – конечна $\Rightarrow f \circ g$ – конечна

1.2 Композиция локально конечных

Композиция двух локально конечных не всегда локально конечна.

Контрпример: рассмотрим две функции:

1.
$$f(x) = -x - 1$$
 $f(f(x)) = -(-x - 1) - 1 = x$

2.
$$g(x) = -x$$
 $g(g(x)) = -(-x) = x$

т.е. $\mathcal{O}_f, \mathcal{O}_g$ – конечны, а значит f,g – локально конечны

А теперь рассмотрим $h(x)=f\circ g(x)=-(-x)-1=x-1.$ h(x)=x-1 h(h(x))=(x-1)-1=x-2

Таким образом $\underbrace{h(h \dots (h(x)) \dots)}_n = x - n$ и так продолжается до бесконечности, т.е.

 $\mathcal{O}_{f\circ g}(x)$ – не конечен $\Rightarrow f\circ g$ – не локально конечна