Some plausible notes

Reporter: Yuren Cao

2018.11.30

The beginning of everything

- What's the difference between adversarial training between hard negative mining?
- Adversarial training: injects adversarial examples into training data to increase robustness[1]
- Hard negative mining: injects adversarial examples into training data to increase performance

Introduction

- > Generation of adversarial examples
 - Methods: FGSM, C&W Attack, DeepFool, Zeroth Order Optimization...

Table II: Taxonomy of Adversarial Examples

Attacks Methods	Adversarial Falsification	Adversary's Knowledge	Adversarial Specificity	Perturbation Scope	Perturbation Limitation	Attack Frequency	Perturbation Measurement	Datasets	Architectures
L-BFGS Attack [134]	False Negative	White-Box	Targeted	Individual	Optimized	Iterative	ℓ_2	MNIST, ImageNet, YoutubeDataset	AlexNet, QuocNet
Fast Gradient Sign Method (FGSM) [48]	False Negative	White-Box	Non-Targeted	Individual	N/A	One-time	element-wise	MNIST, ImageNet	GoogLeNet
Basic Iterative Method (BIM) and Iterative Least-Likely Class (ILLC) [75]	False Negative	White-Box	Non-Targeted	Individual	N/A	Iterative	element-wise	ImageNet	GoogLeNet
Jacobian-based Saliency Map Attack (JSMA) [101]	False Negative	White-Box	Targeted	Individual	Optimized	Iterative	ℓ_2	MNIST	LeNet
DeepFool [97]	False Negative	White-Box	Non-Targeted	Individual	Optimized	Iterative	$\ell_p(p \in 1, \infty)$	MNIST, CIFAR10, ImageNet	LeNet, CaffeNet, GoogLeNet
CPPN EA Fool [99]	False Positive	White-Box	Non-Targeted	Individual	N/A	Iterative	N/A	MNIST, ImageNet	LeNet, AlexNet
C&W's Attack [27]	False Negative	White-Box	Targeted	Individual	Optimized	Iterative	$\ell_1,\ell_2,\ell_\infty$	MNIST, CIFAR10, ImageNet	GoogLeNet
Zeroth Order Optimiza- tion [30]	False Negative	Black-Box	Targeted & Non-Targeted	Individual	Optimized	Iterative	ℓ_2	CIFAR10, ImageNet	GoogLeNet
Universal Per- turbation [96]	False Negative	White-Box	Non-Targeted	Universal	Optimized	Iterative	$\ell_p(p \in 1, \infty)$	ImageNet	CaffeNet, VGG, GoogLeNet, ResNet
Feature Adversary [115]	False Negative	White-Box	Targeted	Individual	Constraint	Iterative	ℓ_2	ImageNet	CaffeNet, VGG, AlexNet, GoogLeNet
Hot/Cold [113]	False Negative	White-Box	Targeted	Individual	Optimized & Constraint	One-time	PASS	MNIST, ImageNet	LeNet, GoogLeNet, ResNet
Natural GAN [147]	False Negative	Black-Box	Non-targeted	Individual	Optimized	Iterative	ℓ_2	MNIST, LSUN, SNLI	LeNet, LSTM, TreeLSTM
Model-based Ensembling Attack [86]	False Negative	White-Box	Targeted & Non-Targeted	Individual	Constraint	Iterative	ℓ_2	ImageNet	VGG, GoogLeNet, ResNet
Ground-Truth Attack [23]	False Negative	White-Box	Targeted	Individual	Optimized	Iterative	ℓ_1,ℓ_∞	MNIST	3-layer FC

Introduction

> Focal loss:

> a method of hard negative mining

$$p_{\mathsf{t}} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise,} \end{cases}$$

$$CE(p, y) = CE(p_t) = -\log(p_t).$$

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t).$$

Some provoking works

> Attribute based model

Some provoking works

Fig. 6. Some examples of C-MNIST. The images from same class own the same digit, b-color and f-color. The size per class is almost 70k/1k=70. Best viewed in color.

Jiang Lu et al. Attribute-Based Synthetic Network (ABS-Net): Learning more from pseudo feature representations

Jiang Lu et al. Attribute-Based Synthetic Network (ABS-Net): Learning more from pseudo feature representations

How & Why it works?

- > Get a scope for whole dataset
 - > Include seen & unseen data
 - > Set attributes for data representation
 - > Generate unseen data
 - > Reconstruct training dataset

Means that the we know and let model know the distribution of whole dataset(seen + synthetic)

Some provoking works

Vinay Kumar Verma et al. Generalized Zero-Shot Learning via Synthesized Examples CVPR 2018

Some provoking works

Perfect, in a despairing way

> Experiment Setting:

- > Training data: 0-4 red & 5-9 green
- > Target data: 0-4 green & 5-9 red
- > Extra: binary attributes vector
- ➤ Model: ONLY CVAE (2-3 layer Convs)
- > Epochs: 5000
- > AUC: 0.997

Experiment Joshua L

Some bricks for jade

> There is a general training phase in supervised learning

Some bricks for jade

But if we do whatever we want, it can be:

A twice-told story: Robust Adversarial RL (RARL)

InvertedPendulum HalfCheetah Swimmer Hopper Walker2d

Two Routes

- Real-World Policy Learning
- Easy to design Better Matching Data scarcity(Expensive
- Dangerous Time-intensive) Hard to generalize
- > Learning in simulation
- Easy to transfer Sufficient data Additional gap(Between
- environment and simulator) Hard to design
- BOTH: Influenced by uncertainty Data-intensity

Design

- > Goal
- 1 Model the gap between simulations and real-world
- ② Learn a policy robust to all uncertainties
- Eureka!

Modeling errors can be viewed as extra forces(->disturbances) in the system(e.g. friction)

-> Representation: Adversarial agent

A smart way to extend information without understanding itself

Design

- Agent
- ① Protagonist Agent
- 2 Adversarial Agent
- > Reward
 - ➤ The Protagonist Agent is rewarded for fulfil the original task goals
 - > The Adversarial Agent is rewarded for the failure of the protagonist

Continuing...

> To name the processes in the diagram:

A game: Gods homing

Many Adversarial tricks:

For a given target model:

- Use a method(e.g. FGSM) to get adversarial examples
- Put these adversarial examples into training set
- ✓ Target model get better performance

Step: Modify

A game: Gods homing

- Many GANs:
- Set a generator & a discriminator
- To get lots of new, fake data
- Put them(with/without originals) in target model(possibly, D)
- ✓ For G: get higher quality generated samples
- ✓ For D: target model get better performance

Step: Modify

A game: Gods homing

> Some AEs:

- Set an encoder & a decoder
- Let encoder learn the transformation: from data to latent representation
- Let decoder learn the transformation: from latent feature to required representation
- ✓ Do: conditional generation, data augmentation...

Step: Modify

Others

- Many loss tricks: e.g. Regularization methods
 - Step: Evaluation
- Many Active learning methods: e.g. Gradient based methods
 - Step: Optimization(Evaluation)
- > Some novel models: e.g. Residual based structure
 - Step: Model
- > Boosting, Bootstrap...
 - -> Semi-Supervised, Unsupervised, Reinforcement learning ...

Another perspective

Imprecisely: they are in different processes

- Hard negative mining: in manage/eval step
- Adversarial training: in modify step

Questions last year (Model-Example-Method)

> Evaluate: Data

Quality – Quantity: For a dataset (+Coverage)

High quality/quantity -> better performance? (respond to gaps)

Another Vision:

Real – Fake:

Real data is better than fake data? (No direct relationship)

> Same criterion for majority tasks? (Specific better, usually)

Know more about data

- > Information of dataset
 - > All classes (seen in dataset + unseen in real)
 - > e.g. attributes based
 - Distributions
 - e.g. imbalance(quality/quantity), "mixup"
 - Gaps
 - > e.g. Train Test, Test Real, Train itself

Doing more about data to promote

- > Provide more information about task
 - > Attribute based model
 - > Additional "unrelated" information
 - **>** ...
- > Treat former steps as a "generalized model"
 - Use generative model to "make" data
 - Cut or modify data if we believe it may be benefit for target model
- Generalized Meta Learning?

Reference

- Attribute-Based Synthetic Network (ABS-Net): Learning more from pseudo feature representations. Jiang Lu et al. Pattern Recognition. Volume 80
- Generalized Zero-Shot Learning via Synthesized Examples. Vinay Kumar Verma et al. CVPR 2018
- ENSEMBLE ADVERSARIAL TRAINING: ATTACKS AND DEFENSES. Florian Tramer et al. ICLR 2018
- Focal Loss for Dense Object Detection. Tsung-Yi Lin et al. ICCV 2017
- Meta learning: a survey of trends and technologies. Christiane Lemke et al. 2013

Reference

- Robust Adversarial Reinforcement Learning Lerrel Pinto et al. ICML 2017
- mixup: Beyond Empirical Risk Minimization Hongyi Zhang et al. ICLR 2018

Thank you!