O Sentido Físico dos Campos B e H

The physical meaning of the fields B and H

G. F. Leal Ferreira guilherm@if.sc.usp.br

Instituto de Física de São Carlos, USP CP 369, 13560-970, São Carlos, SP

Recebido em 03/01/2001. Aceito em 28/02/2001

Mostra-se que, embora seja o campo de indução \vec{B} o campo fundamental, é o campo \vec{H} o campo magnetizante no para e no ferromagnetismo, os quais se realizam pela orientação de dipolos magnéticos. Já no diamagnetismo, cujo caso extremo ocorre nos materiais em estado supercondutor, dependente da ação da indução eletromagnética, o campo indutor é o de indução, \vec{B} . Discute-se a obtenção das relações $\vec{B} = \vec{H} + 4\pi \vec{M}$ fundamentais, e $\vec{D} = \vec{E} + 4\pi \vec{P}$ e as diferenças conceituais entre elas. O efeito desmagnetizante e o status das correntes de Ampère são também abordados.

It is shown that albeit the fundamental character of the induction field \vec{B} , it is the magnetic field \vec{H} the magnetizing field in para and ferromagnetism, phenomena depending on the orientation of magnetic dipoles. However, in diamagnetism, whose extreme case occurs in superconducting materials, the inducting field is \vec{B} . The relations $\vec{B} = \vec{H} + 4\pi \vec{M}$ e $\vec{D} = \vec{E} + 4\pi \vec{P}$ are obtained and the differences between them stressed. The demagnetization effect and the status of the Amperian currents are discussed.

I Introdução

Nos dielétricos a polarização \vec{P} , ou seja, o momento de dipolo elétrico por unidade de volume, é resultante da ação do campo elétrico \vec{E} . Para campos não muito elevados vale a relação linear $\vec{P} = \chi_e \vec{E}$, sendo χ_e a susceptibilidade elétrica. No magnetismo a indução \vec{B} é considerada o campo fundamental (como \vec{E} o é em eletrostática) mas apesar disso a magnetização induzida \vec{M} é sempre expressa em termos do 'campo magnético' \vec{H} , campo aparentemente subsidiário, como $\vec{M} = \chi_m \vec{H}$, sendo χ_m a susceptibilidade magnética (em geral dependente da magnitude de \vec{H} nos materiais ferromagnéticos). Esta tradição, segundo Poincaré [1], foi iniciada por Poisson e Maxwell [2] a considera 'a equação fundamental da magnetização induzida'.

No presente artigo pretendemos justificar a escolha de Poisson, não de forma universal, mas quando ela se aplica ao para e ao ferromagnetismo enquanto que a forma alternativa, $\vec{M} = \eta \vec{B}$, sendo η uma nova susceptibilidade, deve ser usada no diamagnetismo, inclusive para descrever o caso extremo da supercondutividade nessa linguagem de susceptibilidades.

II Obtenção das relações
$$\vec{B} = \vec{H} + 4\pi \vec{M}$$
 e $\vec{D} = \vec{E} + 4\pi \vec{P}$

Será muito útil recapitularmos como a relação $\vec{B} = \vec{H} + 4\pi \vec{M}$ é obtida e compará-la com a correspondente relação elétrica, $\vec{D} = \vec{E} + 4\pi \vec{P}$ [3]. Consideraremos a magnetização \vec{M} e a polarização \vec{P} , como fontes de \vec{B} e de \vec{E} respectivamente. Os efeitos das correntes e das cargas reais podem ser facilmente introduzidos ao final da dedução em cada caso.

II.1
$$\vec{B} = \vec{H} + 4\pi \vec{M}$$

Para a relação magnética partimos da expressão do potencial vetor \vec{a} no ponto \vec{r} de uma espira de momento de dipolo \vec{m}

$$\vec{a} = \frac{\vec{m} \times \vec{r}}{r^3} \tag{1}$$

escrita no CGS gaussiano. Generalizando esta expressão para uma distribuição de densidade de magnetização $\vec{M}(\vec{r}')$, no volume V_0 , criando no ponto \vec{r} o potencial vetor $\vec{A}(\vec{r})$, ver Fig.1, tem-se

$$\vec{A}(\vec{r}) = \int_{V_0} \vec{M}(\vec{r}') \times \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} d\nu'$$
 (2)

e devemos achar \vec{B} como o rotacional de \vec{A} . O rotacional do integrando em relação a \vec{r} é do tipo $\nabla \times (\vec{M} \times \vec{M})$

G.F. Leal Ferreira 253

 $\vec{G}(\vec{r})$) igual a $(\nabla \cdot \vec{G}(\vec{r}))\vec{M} - (\vec{M} \cdot \nabla)G(\vec{r})$ sendo \vec{M} tomado como constante. Portanto, vamos separar \vec{B} em duas partes, \vec{B}_1 e \vec{B}_2 , com

$$\vec{B}_{1}(\vec{r}) = \int_{V_{0}} \vec{M}(\vec{r}') \nabla \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^{3}} d\nu'$$
 (3)

е

$$\vec{B}_{2}(\vec{r}) = -\int_{V_{0}} (\vec{M}(\vec{r}')\nabla \cdot) \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^{3}} d\nu' . \tag{4}$$

Mas $\nabla \cdot \vec{r}/\vec{r}^3 = 4\pi\delta(\vec{r})$ e, portanto,

$$\vec{B}_1(\vec{r}) = 4\pi \vec{M}(\vec{r}). \tag{5}$$

Para \vec{B}_2 , Eq.4, usa-se a identidade $\nabla(\vec{M} \cdot \vec{G}(\vec{r})) = (\vec{M} \cdot \nabla)\vec{G}(\vec{r}) + \vec{M} \times (\nabla \times \vec{G}(\vec{r}))$ e sendo o rotacional de um gradiente nulo, podemos por

$$\vec{B}_{2}(\vec{r}) = -\int_{V_{0}} \nabla(\vec{M}(\vec{r}') \cdot (\frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^{3}}) d\nu' =$$

$$-\nabla \int_{V_{0}} \vec{M}(\vec{r}') \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^{3}} d\nu' = \vec{H}(\vec{r}),$$
(6)

já que o integrando depende só de \vec{r}' . Notemos que \vec{B}_1 , Eq.5, depende do valor local de \vec{M} enquanto $\vec{B}_2 = \vec{H}(\vec{r})$ é o campo de indução criado pelos dipolos magnéticos distribuidos em V_0 . Enquanto que \vec{B}_1 pode ser chamado de componente local de \vec{B} , e é nulo no exterior de V_0 , \vec{H} , o campo magnético, Eq.6, pode ser chamado de campo distante de \vec{B} e é em geral diferente de zero no interior e no exterior de V_0 . No caso de haver correntes presentes, ou outros materiais magnetizados, \vec{H} incluirá o campo criado por estas. Das relações anteriores conclui-se

$$\vec{B} = \vec{H} + 4\pi \vec{M} \tag{7}$$

Figura 1. Potencial vetor \vec{A} no ponto \vec{r} , criado pela magnetização em \vec{M} em \vec{r}' , interior de V_0 .

II.2 $\vec{D} = \vec{E} + 4\pi \vec{P}$

No caso elétrico, o campo elétrico é criado pela polarização \vec{P} distribuida em V_0 e não teríamos mais do que repetir a Eq.6, com \vec{P} em vez de \vec{M} , isto é,

$$\vec{E}(\vec{r}) = -\nabla \int_{V_0} \vec{P}(\vec{r}') \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} d\nu'$$
 (8)

Note-se que no caso elétrico só o campo chamado distante dá o campo elétrico total. Para obtermos a relação elétrica correspondente à Eq.7, é preferível trabalhar com o potencial U da distribuição de dipolos em vez do campo \vec{E}

$$U(\vec{r}) = \int_{V_0} \vec{P}(\vec{r}') \cdot \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} d\nu'$$
 (9)

e, através de truque bem conhecido, transformar a integral numa de superfície envolvendo a componente normal de \vec{P} agindo como densidade superfícial de carga e outra de volume, envolvendo $-\nabla \cdot \vec{P}$ agindo como densidade volumétrica de carga, ρ_p . Podemos então escrever $\nabla \cdot \vec{E} = 4\pi \rho_p$ e logo $\nabla \cdot (\vec{E} + 4\pi \vec{P})$ e definindo o campo sem divergência \vec{D} (no caso presente em que não há cargas reais), finalmente

$$\vec{D} = \vec{E} + 4\pi \vec{P} \tag{10}$$

Se cargas reais estão presentes com densidade ρ , a divergência de \vec{D} será igual a $4\pi\rho$. A equivalência matemática entre \vec{D} e \vec{B} fica estabelecida além daquelas entre \vec{E} e \vec{H} e entre \vec{P} e \vec{M} . Notemos que a relação magnética, Eq.7 é mais factual do que a elétrica, Eq.10, porque na Eq.7 podemos dar sentido físico aos seus três termos, enquanto na Eq.10 o campo \vec{D} foi introduzido por pura conveniência matemática, em termos das grandezas físicas relevantes, \vec{P} e \vec{E} .

III Para e Ferromagnetismo

Na recapitulação da seção II.1, o ponto importante a ser realçado é o da existência da componente local de \vec{B} , igual a $4\pi \vec{M}$, e o seu aparecimento se deve à singularidade do campo de indução de uma espira, protótipo do momento magnético, no interior da própria espira, responsável afinal pelo aparecimento da função delta no integrando da Eq.3. E com ela podemos compreender porque no para e no ferromagnetismo a indução deve relacionar \vec{M} a \vec{H} e não a \vec{B} : é que nestes casos os dipolos magnéticos precisam ser orientados para criar a magnetização mas a própria magnetização, campo local de \vec{B} , não tem nenhum efeito de orientação sobre ela mesma. Considere por exemplo o dipolo magnético \vec{m} no interior do meio magnético, fig.2. Como Onsager [4,5] raciocinou, o dipolo \vec{m} magnetizará o meio, mas o campo de reação \vec{R} deste sobre o dipolo será na direção de \vec{m} e, portanto, não terá nenhuma ação orientadora sobre ele. Só a interação do momento magnético com o campo distante \vec{H} poderá gerar orientação preferencial do momento magnético na direção do próprio \vec{H} . Quer dizer, a componente local de \vec{B} não pode ter ação indutora, ficando esta para a componente distante, \vec{H} .

IV Susceptibilidades

Em eletrostática não temos dúvidas em por $\vec{P} = \chi_e \vec{E}$, com χ_e , a susceptibilidade elétrica, positiva, e maior ou menor conforme responda o meio ao campo elétrico, não havendo em princípio um limite superior a se postular para ela. Vamos ver agora o que aconteceria se usássemos $\vec{M} = \alpha \vec{B}$. Da relação de Poisson temos $\vec{M} = \chi_m \vec{H} = \chi_m (\vec{B} - 4\pi \vec{M})$ da qual podemos tirar $\vec{M} (1 + 4\pi \chi_m) = \chi_m \vec{B}$ e então teríamos

$$\alpha = \frac{\chi_m}{1 + 4\pi\chi_m}. (11)$$

No ferro χ_m é bem grande, o que está de acordo com nossa expectativa por se tratar de material bem magnetizável. Porém, expressa a magnetização através de $\vec{M} = \alpha \vec{B}$, a susceptibilidade α teria pela Eq.11 o valor limite de $1/4\pi$, para o que seria difícil encontrar justificativa. Vemos pois que muito trabalho inútil foi evitado com a escolha de Poisson, ou antes, que este fez intuitivamente a escolha correta, assemelhando a magnetostática à eletrostática, apesar de não poder justificá-la completamente.

Voltando à Eq.11 vemos que, se χ_m é em valor absoluto pequeno, não há diferença essencial entre usar-se α ou χ_m , e este fato tem sido invocado para não se considerar relevante a discussão sobre qual das susceptibilidades é mais adequada [6]. Mas nem sempre é assim, como acabamos de ver. Em outro caso [7] a escolha de uma ou outra susceptibilidade é considerada matéria de convenção e deve-se então, para evitar confusão, preferir-se a de Poisson, já em uso. Seria interessante citar também Van Vleck, autor de livro específico sobre as susceptibilidades elétrica e magnética [8]. Em nota de rodapé na página 3 ele diz "...nós não procedemos a estas mudancas afim de nos conformar mais de perto à literatura existente, que considera \vec{H} como o vetor magnético fundamental'(!). E ao tratar no Cap.IV da teoria clássica da susceptibilidade magnética diz '...estes magnetos moleculares tenderão a se alinhar paralelamente a um campo magnético \vec{H} mas são resistidos pela agitação de temperatura...' O diamagnetismo tratado a seguir também segue \vec{H} . Portanto, Van Vleck é pouco esclarecedor para os fins perseguidos aquí.

V O diamagnetismo

As coisas se passam diferentemente com o diamagnetismo que claramente está relacionado com a indução eletromagnética e portanto ao campo de indução \vec{B} . Espera-se então que uma relação como $\vec{M} = \eta \vec{B}$, com η negativo, seja mais conveniente. Tomemos o caso de uma peça metálica conexa no estado supercondutor. Apesar de não ser muito esclarecedor, podemos usar o conceito de magnetização como um caso extremo de diamagnetismo [9]. E o que esperaríamos nesse caso?

Não há dúvida que η deveria ser infinitamente negativo embora \vec{M} devesse permanecer finito. Voltando à relação $\vec{M} = \eta \vec{B}$ vemos que para isso ocorrer \vec{B} deve ser zero fazendo o produto $\eta \vec{B}$ finito, conclusão essencialmente correta [9]. Ao contrário do que ocorre no diamagnetismo comum, não parece razoável querermos usar aquí a Eq.7 já que seu ponto de partida, Eq.2 - baseado no modelo de momentos magnéticos distribuidos no volume -, é inadequado para a situação presente, em que as correntes induzidas na superfície do supercondutor são correntes reais, e, portanto ligadas a \vec{B} . Se insistirmos em usar a relação de Poisson, a Eq.11 mostra que χ_m agora tem o valor limite de $-1/4\pi$. Por que?

VI A equação geral da magnetização induzida

Do exposto, concluimos que a equação geral da magnetização induzida, incluindo a magnetização diamagnética e a de orientação deve ser

$$\vec{B} = \vec{H} + 4\pi\eta \vec{B} + 4\pi\chi_m \vec{H} \tag{12}$$

incluindo no lado direito da Eq.12 as contribuições dia e orientacionais. Ou

$$\vec{B} = \frac{(1 + 4\pi\chi_m)\vec{H}}{1 - 4\pi n} \tag{13}$$

lembrando que η é negativo. Como η é em geral pequeno, a relação usual é válida.

VII O efeito desmagnetizante e as correntes de magnetização de Ampère

Pela presente análise estamos agora em condição de explicar sem dificuldades o efeito desmagnetizante. De fato, no interior de um imã, seja este uma esfera, Fig.3, \vec{B} e \vec{M} têm o mesmo sentido enquanto \vec{H} aponta em direção contrária. Sendo assim só a \vec{H} pode ser atribuída a ação desmagnetizante, o que está de acordo com a nossa conclusão de que é a parte de \vec{B} distante aquela capaz de agir sobre os dipolos, neste caso se opondo à própria magnetização. No caso oposto em que procuramos criar magnetização necessitamos da ação de fontes externas de \vec{H} , usualmente correntes, para vencer o campo desmagnetizante criado pela própria magnetização.

G.F. Leal Ferreira 255

Figura 2. O dipolo magnético \vec{m} no centro da cavidade cria campo de reação \vec{R} , que por ter a mesma direção de \vec{m} , não tem ação orientadora.

Figura 3. Interior do imã esférico: \vec{M} e \vec{B} tem o mesmo sentido enquanto \vec{H} tem sentido oposto e assim só ele pode ter efeito desmagnetizante.

Figura 4. Dois discos imantados na direção \vec{M} de suas alturas h têm correntes Ampèrianas $i_s = Mh$ mas não apresentam efeitos de indução eletromagnética se aproximados ou afastados como o fariam correntes reais coincidentes com os perímetros dos discos.

Outro ponto interessante de se discutir é o do status das correntes de magnetização de Ampère, às quais, por serem 'naturais', poderia ser emprestada a áurea de supercondutoras. Tomemos, por exemplo, dois discos imantados com magnetização \vec{M} ao longo de suas alturas h, como na Fig. 4. Podemos descrever o estado

magnético dos mesmos através de correntes de Ampère, i_s , no perímetro dos discos, com $i_s=Mh$. Sendo a situação análoga àquela entre duas correntes reais coincidentes com i_s , suspeitaríamos que correntes de indução aparecessem se aproximássemos ou afastássemos os discos. Mas praticamente as imantações permanecem essencialmente as mesmas, e a razão é que as correntes de magnetização de Ampère estão relacionadas a \vec{H} e só efeitos ligados a \vec{B} geram efeitos de indução. Aliás, é o que aconteceria se os discos fossem supercondutores.

Por fim, gostaria de relatar o que o Prof. Norman F. Ramsey, Prêmio Nobel de Física 1989, nos disse em entrevista solicitada por nós para discutir o assunto. Ele disse que experiências realizadas com feixe de eletrons penetrantes em materiais ferromagnéticos (no interior dos quais \vec{B} e \vec{H} diferem significativamente) mostram que eles são desviados pela ação de \vec{B} e não pela de \vec{H} . Não temos a referência.

Agradecimentos

O autor agradece aos colegas, Osvaldo N. de Oliveira Jr. e Luiz N. de Oliveira, ao primeiro pelo estímulo recebido e ao segundo por sugestões a versão anterior deste. Ao Prof. Norman pelo contundente exemplo, que muito ajudou na organização das nossas idéias, e ao CNPq pela bolsa de produtividade.

References

- [1] H. Poincaré, Électricité et Optique, Georges Carré Éditeur, Paris, 1890, p.113.
- [2] J. C. Maxwell, A Treatise in Electricity and Magnetism, Dover Publ., N.York, 1954, Vol.II, p.50.
- [3] J. R. Reitz, F. J. Milford e R. W. Christy, Foundations of Electromagnetic Theory, Addison-Wesley Publ. Co., Reading, 1979, p.191.
- [4] L. Onsager, J. Amer. Chem. So., **58** (1936) 1486.
- [5] C. J. F. Bötttcher e P. Bordewijk, The Theory of Electrical Polarisation, Vol.1, Elsevier Scien. Publ., Amsterdam, 1978, Cap.5.
- [6] E. M. Purcell, Electricity and Magnetism, Berkeley Physics Course, McGraw-Hill Book Co., N. York, 1965, Vol.2, p.380.
- [7] J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co., N. York, 1941, p.12.
- [8] J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, 1952.
- [9] L. Landau e E. Lifchitz, Électrodynamique des millieux continus, Edições MIR, 1969, Cap.8.