BCM0504

Natureza da Informação

Sistemas de Numeração

Prof. Alexandre Donizeti Alves

Bacharelado em Ciência e Tecnologia

Bacharelado em Ciências e Humanidades

Terceiro Quadrimestre - 2018

Sistema de Numeração

- Conjunto de símbolos utilizados para representação de quantidades
- Cada sistema de numeração é apenas um método diferente de representar quantidades
- As quantidades em si não mudam, mudam apenas os símbolos usados para representá-las

Sistema de Numeração

- A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de base
- Representação numérica mais empregada: notação posicional

Notação posicional

- Valor atribuído a um símbolo dependente da posição em que ele se encontra no conjunto de símbolos que representa uma quantidade
- O valor total do número é a soma dos valores relativos de cada algarismo

Notação posicional

Notação não posicional

Valor atribuído a um símbolo é inalterável, independente da posição em que se encontre no conjunto de símbolos que representam uma quantidade

Notação não posicional

Sistema de Numeração Romano

Sistema de Numeração

- Sistema de numeração código
- Operação básica contagem
- Grupo com um determinado número de objetos – base (raiz)
- Sistemas de numeração básicos:
 - Decimal (10)
 - □ Binário (2)
 - □ Octal (8)
 - Hexadecimal (16)

- O sistema de numeração que nós usamos é o decimal
 - Chama-se decimal (base 10) porque utiliza 10 símbolos:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Com estes 10 símbolos somos capazes de construir números tais como 747
 - O número 747 tem uma sequência de 3 símbolos (ou algarismos), dois dos quais repetidos (dois setes)

- No entanto, o primeiro 7 tem um valor diferente do segundo 7
- O primeiro vale 700 (7 centenas) mas o segundo só vale 7 (7 unidades)
- \Box 747 = 700 + 40 + 7 = 7*10² + 4*10¹ + 7*10⁰

- Resumindo, os algarismos têm um valor diferente de acordo com a sua posição
- No sistema decimal, o peso dos algarismos são potências de 10

Sistema	Base	Algarismos
Binário	2	0,1
Ternário	3	0,1,2
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Duodecimal	12	0,1,2,3,4,5,6,7,8,9,A,B
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F

- Como os números representados em base 2 são muito extensos e, portanto, de difícil manipulação visual, costumase representar externamente os valores binários em outras bases de valor mais elevado (octal ou hexadecimal)
- Isso permite maior compactação de algarismos e melhor visualização dos valores

base 10	base 3	base 2	base 1 (pauzinhos)
0	0	0	
1	1	1	1
2	2	10	11
3	10	11	111
4	11	100	1111
5	12	101	11111
6	20	110	111111
7	21	111	1111111
8	22	1000	11111111
9	100	1001	11111111
10	101	1010	111111111
11	102	1011	1111111111
12	110	1100	11111111111
13	111	1101	
14	112	1110	
15	120	1111	
16	121	10000	
17	122	10001	
18	200	10010	
19	201	10011	
20	202	10100	
-	-	-	-
			-
-		-	

- Para se passar para a base 2 qualquer número da base 10, basta dividir o número na base 10 por 2 e seus quocientes sucessivamente até dar quociente 0
- Os restos (na ordem inversa de obtenção) formam a representação do número na base 2

Exemplo:

57 na base 10 escrito na base 2 ficara:

- $-57 \div 2 = 28 \text{ e resto } 1$
- $-28 \div 2 = 14 \text{ e resto } 0$
- $-14 \div 2 = 7 \text{ e resto } 0$
- $-7 \div 2 = 3$ e resto 1
- $-3 \div 2 = 1$ e resto 1
- $-1 \div 2 = 0$ e resto 1

Portanto $(57)_{10} = (111001)_2$

Para se obter um número na base 10 a partir de um número na base 2, basta multiplicar o dígito na sequência do número pela potência de 2 elevado a ordem do dígito, e somar todas as parcelas

Exemplo:

$$(1111001)_2 =$$

$$(1.2^5 + 1.2^4 + 1.2^3 + 0.2^2 + 0.2^1 + 1.2^0)_{10} = (57)_{10}$$

 Para se passar da base 10 para a base 16, segue-se o mesmo raciocínio aplicado a base binária

Exemplo:

- \blacksquare 297 \div 16 = 18 e resto 9
- \blacksquare 18 \div 16 = 1 e resto 2
- $-1 \div 16 = 0$ e resto 1

Portanto, $(297)_{10} = (129)_{16}$

Exemplo:

 $333 \div 16 = 20 \text{ e resto } 13$

 $20 \div 16 = 1 \text{ e resto } 4$

 $1 \div 16 = 0$ e resto 1

Portanto, $(333)_{10} = (14D)_{16}$

Recuperando os número da base 16 na

base 10, temos:

$$(129)_{16} = (1.16^2 + 2.16^1 + 9.16^0)_{10} = (297)_{10}$$

$$(14D)_{16} = (1.16^2 + 4.16^1 + 13.16^0)_{10} = (333)_{10}$$

 Conversão de números em uma base b qualquer para a base 10

 Conversão de números da base 10 para uma base b qualquer

Parte Inteira:

 número decimal será dividido sucessivas vezes pela base;

o resto de cada divisão ocupará sucessivamente as posições de ordem 0, 1, 2 e assim por diante até que o resto da última divisão (que resulta em quociente zero) ocupe a posição de mais alta ordem

Conversão de número 19 para a base 2

- Conversão de números da base 10 para uma base b qualquer
 - Parte Fracionária: se o número for fracionário, a conversão se fará em duas etapas distintas: primeiro a parte inteira e depois a parte fracionária

 O algoritmo para a parte fracionária consiste de uma série de multiplicações sucessivas do número fracionário a ser convertido pela base;

a parte inteira do resultado da primeira multiplicação será o valor da primeira casa fracionária e a parte fracionária será de novo multiplicada pela base; e assim por diante, o resultado dar zero ou até até encontrarmos o número de casas decimais desejado

Conversão de números da base 10 para uma base b qualquer

Conversão do número decimal 15,65 para a base 2, usando 5 e 10 dígitos fracionários

Conversão do número decima
$$\begin{vmatrix} 15 & 2 \\ a0 = 1 & 7 & 2 \\ a1 = 1 & 3 & 2 \\ a2 = 1 & 1 & 2 \\ a3 = 1 & 0 \end{vmatrix}$$

Parte Fracionária:			
Com 5 dígitos:	Ampliando para 10 dígitos:		
$0,65 \times 2 = 1,3$ $0,3 \times 2 = 0,6$ $0,6 \times 2 = 1,2$ $0,2 \times 2 = 0,4$ $0,4 \times 3 = 0.8$	0,8 x 2 = 1,6 0,6 x 2 = 1,2 0,2 x 2 = 0,4 0,4 x 2 = 0,8		
$0,4 \times 2 = 0,8$	$0.8 \times 2 = 1.6$		

Com 5 dígitos fracionários: Com 10 dígitos fracionários: 0.65 = 0.10100 0.65 = 0.1010011001

 $15,65_{10} = 1111,10100_2$ (com 5 dígitos)

 $15,65_{10} = 1111,1010011001_2$ (com 10 dígitos)

 Converter as seguintes representações para a base 10

- □ 4F5₁₆
- □ 3485₉
- □ 1001,01₂

Respostas

- \blacksquare 4F5₁₆ = 1269₁₀
 - \Box 4.16² + 15.16¹ + 5.16⁰
 - \Box 1024 + 240 + 5 = **1269**₁₀
- = 3485₉ = 2588₁₀
 - $\square 3.9^3 + 4.9^2 + 8.9^1 + 5.9^0$
 - \square 2187 + 324 + 72 + 5 = **2588**₁₀
- \blacksquare 1001,01₂ = 9,25₁₀
 - $\Box 1.2^3 + 0.2^2 + 0.2^1 + 1.2^0 + 0.2^{-1} + 1.2^{-2}$
 - $0.8 + 0 + 0 + 1 + 0 + 0.25 = 9.25_{10}$

Para converter números de uma base b para uma outra base b' quaisquer, o processo prático utilizado é converter da base b dada para a base 10 e depois da base 10 para a base b' pedida

Exercício 01

Converta os seguintes números em hexadecimal, para binário e decimal:

A4

34

FF

67

234

Exercício 02

Converta os seguintes números de binário para decimal:

Exercício 03

Converta os seguintes números de decimal para binário:

Bibliografia

Capítulo 3

Capítulo 2