The Sparks Foundation Task-2

To Explore Unsupervised Machine Learning :- K-Mean Clustring

In this Task ,we will use the iris data set to optimum number of clustring

Importing Libraries

In [3]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [5]:

```
df=pd.read_csv("<mark>Iris.csv</mark>")
df
```

Out[5]:

	ld	SepalLengthCm	Sepa WidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [11]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtyp	es: float64(4),	int64(1), objec	t(1)

memory usage: 7.2+ KB

In [12]:

df.describe()

Out[12]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

How do you find the optimum number of clusters for K Means? How does one determine the value of K?

In [8]:

```
# Finding the optimum number of clusters for k-means classification
x = df.iloc[:, [0, 1, 2, 3]].values
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n clusters = i, init = 'k-means++',
                    max iter = 300, n init = 10, random state = 0)
    kmeans.fit(x)
   wcss.append(kmeans.inertia_)
# Plotting the results onto a line graph,
# `allowing us to observe 'The elbow'
plt.plot(range(1, 11), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') # Within cluster sum of squares
plt.show()
```


You can clearly see why it is called 'The elbow method' from the above graph, the optimum clusters is where the elbow occurs. This is when the within cluster sum of squares (WCSS) doesn't decrease significantly with every iteration.

From this we choose the number of clusters as ** '3**'.

In [9]:

In [10]:

Out[10]:

<matplotlib.legend.Legend at 0x25368ca13a0>

In []: