Московский Физико-Технический Институт

Кафедра общей физики

Экзамен: термодинамика

Автор: Алексей Домрачев

Благодарю за неоценимую помощь: Алексея Шевцова, Ивана Утешева и

Романа Детинина

Содержание

1	Термодинамическая система. Микроскопические и макроскопические параметры. Уравнение состояния (термическое и калорическое). Стацио-	
	нарные, равновесные и неравновесные состояния и процессы.	3
2	Работа, внутренняя энергия, теплота. Первое начало термодинамики.	4
3	Идеальный газ. Связь давления и температуры идеального газа с кинетической энергией его молекул. Уравнение состояния идеального газа.	5
4	Работа идеального газа в равновесных изотермическом и изобарическом процессах. Внутренняя энергия идеального газа.	5
5	Теплоемкость. Теплоемкости C_V и C_P . Теплоемкости идеального газа при постоянном объеме и давлении, соотношение Майера.	6
6	Адиабатический и политропический процессы. Уравнение адиабаты и политропы идеального газа.	7
7	Скорость звука в газах. Скорость истечения газа из отверстия.	7
8	Цикл Карно. КПД машины Карно. Теоремы Карно.	8
9	Холодильная машина. Тепловой насос. Эффективность холодильной машины и теплового насоса, работающих по циклу Карно.	10
10	Второе начало термодинамики. Неравенство и равенство Клаузиуса. Энтропия. Закон возрастания энтропии. Энтропия идеального газа.	10
11	Термодинамические потенциалы. Метод получения соотношений Макс- велла (соотношений взаимности).	12
12	Свободная энергия Гельмгольца, термодинамический потенциал Гиббса. Уравнения Гиббса-Гельмгольца.	12
13	Внутренняя энергия как термодинамический потенциал. Связь производной $\left(\frac{\partial U}{\partial V}\right)_T$ с термическим уравнением состояния.	13
14	Разность C_P-C_V для произвольной термодинамической системы.	13
15	Теплофизические свойства твердых тел. Адиабатическое растяжение упру	y-

	гого стержня.	14
16	Фазовые переходы первого рода. Уравнение Клапейрона–Клаузиуса. Фазовое равновесие «жидкость–пар». Критическая точка.	15
17	Диаграмма фазового равновесия «твердое тело-жидкость-пар». Тройная точка.	16
18	Зависимость теплоты фазового перехода от температуры.	17
19	Уравнение Ван-дер-Ваальса как модель неидеального газа. Изотермы газа Ван-дер-Ваальса. Критические параметры. Приведенное уравнение Ван-дер-Ваальса, закон соответственных состояний.	
20	Метастабильные состояния: переохлажденный пар, перегретая жидкость. Устойчивость состояний. Правило Максвелла.	18
21	Внутренняя энергия и энтропия газа Ван-дер-Ваальса. Равновесное и неравновесное расширение газа Ван-дер-Ваальса в теплоизолированном сосуде.	
22	Эффект Джоуля-Томсона (дифференциальный и интегральный). Температура инверсии.	20
23	Поверхностное натяжение: коэффициент поверхностного натяжения, краевой угол, смачивание и несмачивание. Формула Лапласа. Свободная энергия и внутренняя энергия поверхности.	
24	Зависимость давления насыщенного пара от кривизны поверхности жид-кости. Кипение. Роль зародышей в образовании новой фазы.	23

1. Термодинамическая система. Микроскопические и макроскопические параметры. Уравнение состояния (термическое и калорическое). Стационарные, равновесные и неравновесные состояния и процессы.

Термодинамическая система. Система — совокупность рассматриваемых тел(частиц), которые могут взаимодействовать между собой и с другими телами(внешняя среда) посредством обмена веществом и энергией.

В термодинамике рассматриваются большие системы, называемые **термодинамически-**ми системами.

Микроскопические и макроскопические параметры. Микроскопическое состояние — состояние системы, определяемое заданием координат и импульсов (*микропараметры*) всех составляющих систему частиц.

Макроскопическое состояние — состояние системы, характеризующееся небольшим числом макропараметров(P, V, T, ρ, η и т.д.). Макропараметры подразделяются на внутренние и внешние.

Уравнение состояния (термическое и калорическое). Уравнение состояния — соотношение, связывающее параметры, описывающие состояние термодинамического равновесия.

Термодинамическое равновесие — состояние, в котором прекращаются все макроскопические процессы: выравниваются давление и температура по объему системы, а скорости прямых и обратных реакций сравниваются.

Калорическое уравнение состояния — зависимость типа U=U(V,T). Пример такого уравнения $PV=(\gamma-1)U$, где γ — показатель адиабаты, а U - внутренняя энергия всех молекул

Термическое уравнение состояния — зависимость типа f(P,V,T) = 0

Стационарные, равновесные и неравновесные состояния и процессы. Стационарным состоянием системы называется состояние, в котором определяющие его параметры не меняются со временем [в замкнутой системе термодинамическое равновесие это стац. состояние].

В равновесном процессе система непрерывно проходит (бесконечно близкие) равновесные состояния. Все прочие процессы являются неравновесными.

Равновесным состоянием является состояние системы, при которым компоненты системы находятся в ТДР, и, как следствие, неизменны их макроскопические параметры.

Неравновесный процесс — процесс, на траектории (совокупность всех промежуточных состояний) которого встречаются неравновесные состояния.

Неравновесное состояние — параметры системы меняются от точки к точке с течением времени.

Обратимым называют процесс, который может протекать как в прямом, там и в об-

ратном направлении, причем возможно возвращение системы и ее окружения в исходное (макроскопическое) состояние. Если это неосуществимо, то процесс **необратим**. Неравновесные процессы необратимы.

Круговой процесс — замкнутый равновесный процесс.

2. Работа, внутренняя энергия, теплота. Первое начало термодинамики.

Работа. Бесконечно малая элементарная работа δA , совершаемая газом при бесконечно малом квазистатическом расширении, в котором его объем увеличивается на dV рассматриваемая в модели газа под поршнем. F = PS (P - const, т.к. перемещение малое) \Rightarrow при перемещении поршня на dx: $\delta A = Fdx = PSdx = PdV$. Следует еще заметить , что в квазистатических процессах $\delta A = -\delta A_{\text{внешн.}}$.

Работа конечного процесса: $A = \int\limits_{1 \to 2} \delta A$, она не является функцией состояния, т.к. зависит от пути перехода от 1 к 2.

Адиабатическая оболочка характерна тем, что при любых изменениях температуры окружающих тел состояние системы внутри оболочки неизменно. Значение всех прочих внешних параметров неизменны, например не совершается механическая работа. Изменить состояние системы можно путем механической работы.

Внутренняя энергия. Внутренней энергией U системы называется функция состояния, приращение которой во всяком процессе, совершенном системой в адиабатической оболочке, равно работе внешних сил над системой при переходе ее из начального равновесного состояния в конечное, также равновесное, т.е. $U_2 - U_1 = A_{\text{внешн.}} \to U$ — функция состояния.

Теплота. Пусть система заключена в жесткую теплопроводную оболочку \Rightarrow имеем чисто тепловой контакт системы с внешней средой без совершения макроскопической работы, происходит **теплообмен**, сопровождающийся обменом внутренними энергиями соприкасающихся тел, т.е. **количество теплоты** — приращение внутренней энергии в процессе чистого теплообмена. $Q = U_2 - U_1$ — полученное тепло (не функция состояния!)

Первое начало термодинамики. Теплота Q, полученная системой, идет на приращение ее внутренней энергии $\Delta U = U_2 - U_1$, и совершение системой работы

$$\int_{1\to 2} \delta Q = \int_{1\to 2} dU + \int_{1\to 2} \delta A \quad \Rightarrow \quad Q = \Delta U + A$$

Если процесс круговой, то $U_1=U_2$ и Q=0, то A=0 \Rightarrow невозможен процесс, единственным результатом которой является производство работы без каких-либо изменений в других телах.

3. Идеальный газ. Связь давления и температуры идеального газа с кинетической энергией его молекул. Уравнение состояния идеального газа.

Идеальный газ. Идеальный газ — газ, расстояние между молекулами которого настолько велико, что их взаимодействием можно пренебречь, а его внутренняя энергия — кинетическая энергия частиц.

Связь давления и температуры идеального газа с кинетической энергией его молекул. Число молекул со скоростью v в единице объема — n(v) и импульс одной молекулы $p_x = mv_x$. Тогда импульс переданный стенке молекулой — $2p_x$. Число молекул, которые долетают до стенки за $dt: n(v)Sv_xdt \Rightarrow$ суммарный $\Delta p = 2p_xnSv_xdt \Rightarrow$ полный импульс по всему группам молекул:

$$\sum_{v,v_r>0} 2p_x nSv_x dt = F_x dt \quad \Rightarrow \quad P = \frac{F_x}{S} = \sum_{v,v_r>0} p_x nv_x = n\overline{v_x p_x} = 2n \frac{\overline{mv_x^2}}{2}, n = \sum_v n(v)$$

Вследствие изотропии газа
$$\overline{v_xp_x}=\overline{v_yp_y}=\overline{v_zp_z}=\frac{1}{3}\overline{vp}$$
 \Rightarrow $P=\frac{2}{3}n\frac{\overline{mv^2}}{2},$ так как $E_{\text{кин.}}=3/2kT$ \Rightarrow $P=nkT$

Уравнение состояния идеального газа. Уравнение состояния вещества — соотношение, связывающее параметры, описывающие состояния термодинамического равновесия вещества.

Для идеального газа $PV = \nu RT$, где $\nu = \frac{m}{\mu}$, R — универсальная газовая постоянная.

4. Работа идеального газа в равновесных изотермическом и изобарическом процессах. Внутренняя энергия идеального газа.

Работа идеального газа в равновесных изотермическом и изобарическом процессах. Работа $\nu=1$ моль идеального изотермическом расширении. $PV=RT=V_2$ ду

$$= const \quad \Rightarrow \quad A = \int_{V_1}^{V_2} P dV = RT \int_{V_1}^{V_2} \frac{dV}{V} = RT \ln(\frac{V_2}{V_1}) \quad \Rightarrow \quad A_T = RT \ln(\frac{V_2}{V_1})$$

Работа $\nu = 1$ моль идеального газа при **изобарном** расширении.

$$\delta A = PdS \cdot dn = PdV_{\text{9.1.}} \quad \Rightarrow \quad \delta A_P = \int\limits_{V_{\text{c.tog}}} PdV_{\text{9.1.}} = P\int\limits_{V_{\text{c.tog}}} dV_{\text{9.1.}} = PdV \quad \Rightarrow \quad A_P = P\Delta V$$

Внутренняя энергия идеального газа. Опыт Джоуля: идеальный газ с температурой T_1 , давлением P_1 находится в части адиабатической оболочки объемом V_1 , вторая часть оболочки откачана до вакуума. Перегородку между частями убирают, в следствии расширения газа его температура не изменилась, а изменилось лишь давление и объем. Рассмотрим это эмпирическое наблюдение с точки зрения теории. По первому началу термодинамики $Q = \Delta U + A$, причему Q = 0, т.к. газ находится в адиабатической

оболочке и A=0, т.к. газ расширялся в вакуум $\Rightarrow \Delta U=0 \Rightarrow U_2(T,V_2)=U_1(T,V_1) \Rightarrow$ функция U зависит лишь от второго параметра и $\left(\frac{\partial U}{\partial V}\right)_T=0$ для идеального газа. Внутренняя энергия идеального газа зависит лишь от температуры, поскольку она определяется лишь кинетической энергией молекул.

Для одноатомного газа: $U=N\left\langle \frac{mv^2}{2}\right\rangle + U_0$, пусть для удобства $U_0=0 \implies U=$ $=N\frac{3}{2}kT=\frac{3}{2}\nu N_AkT=\frac{3}{2}\nu RT$

В общем случае: $U = \frac{i}{2} \nu R T$, где i - степени свободы газа.

5. Теплоемкость. Теплоемкости C_V и C_P . Теплоемкости идеального газа при постоянном объеме и давлении, соотношение Майера.

Теплоемкость. Теплоемкостью тела называется отношение бесконечно малого количества теплоты δQ , полученного телом, к соответственному приращению его температуры dT

 $C = \frac{\delta Q}{dT}$

Теплоемкости C_V и C_P . **Удельная теплоемкость** c — теплоемкость в расчете на единицу массы.

Молярная теплоемкость C_{μ} — теплоемкость в расчете на 1 моль.

Теплоемкости идеального газа при постоянном объеме и давлении.

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV \quad \Rightarrow \quad C = \frac{dU + PdV}{dT} = \left(\frac{\partial U}{\partial T}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_T + P\right] \frac{dV}{dT}$$

При постоянном **объеме**: $C_v = \left(\frac{\partial U}{\partial T}\right)_V$

При постоянном давлении: $C_P = \left(\frac{\partial V}{\partial T}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_T + P\right] \left(\frac{dV}{dT}\right)_P$

Соотношение Майера. Для идеального газа $\left(\frac{\partial U}{\partial V}\right)_T=0$

$$C_v = \left(\frac{\partial U}{\partial T}\right)_V, C_P = \left(\frac{\partial U}{\partial T}\right)_V + P\left(\frac{dV}{dT}\right)_P \quad \Rightarrow \quad C_P - C_V = P\left(\frac{dV}{dT}\right)_P |_{PV = RT} = P \cdot \frac{R}{P} = R$$

Соотношение Майера — $C_P - C_v = R$

6. Адиабатический и политропический процессы. Уравнение адиабаты и политропы идеального газа.

Адиабатический и политропический процессы. Адиабатическим называется процесс, происходящий в теплоизолированной системе ($\partial Q = 0$)

Политропическим называется процесс, происходящий при постоянной теплоемкости (C=const)

Примеры политропических процессов:

- 1. Адиабатический: $C=0, n=\gamma, PV^{\gamma}=const$
- 2. Изобарический: $C = C_p, n = 0, P = const$
- 3. Изохорический: $C = C_v, n = \infty, V = const$
- 4. Изотермический: $C=\infty, n=1, T=const$

Уравнение адиабаты и политропы идеального газа.

$$\delta Q = C_V dT + P dV = 0; \ T = \frac{PV}{R} \quad \Rightarrow \quad dT = \frac{d(PV)}{R} = \frac{P dV + V dP}{R} = \frac{P dV + V dP}{C_P - C_V} \quad \Rightarrow \quad C_V \frac{P dV + V dP}{C_P - C_V} + P dV = 0 \Leftrightarrow C_V P dV + C_V V dP + C_P P dV - C_V P dV = 0$$
 Введем $\gamma = \frac{C_P}{C_V}$, тогда $\gamma P dV + V dP = 0 \Leftrightarrow \gamma d(\ln V) + d(\ln P) = 0$ У идеального газа $C_V = const, C_p = const \quad \Rightarrow \quad \gamma = const \quad \Rightarrow \quad d(\ln P V^\gamma) = 0$ В итоге получаем $PV^\gamma = const -$ уравнение **Пуассона.**

Теперь выведем уравнение политропы.

$$\delta Q = CdT = C_V dT + PdV \Leftrightarrow (C - C_V) \frac{dT}{T} = R \frac{dV}{V} \Leftrightarrow$$

$$\Leftrightarrow (C - C_V) \ln T = R \ln V + const \Leftrightarrow \ln T - \ln \left(V^{\frac{R}{C - C_V}} \right) + const \Leftrightarrow TV^{-\frac{R}{C - C_V}} = const$$

Введем показатель политропы $n = \frac{C - C_P}{C - C_V}$, тогда $TV^{n-1} = const -$ **уравнение политропы**.

7. Скорость звука в газах. Скорость истечения газа из отверстия.

Скорость звука в газах. Колебания плотности, связанные с ними колебания температуры в звуковой волне происходят так быстро, что из-за малой теплопроводности воздуха **теплообмен не играет никакой роли!** Разности температур между сгущениями и разрежениями воздуха в звуковой волне не успевают выравниваться ⇒ его

распространение можно считать адиабатическим

В уравнении адиабаты
$$P \sim \rho^{\gamma} \quad \Rightarrow \quad \left(\frac{\partial P}{\partial \rho}\right)_{\text{адиаб}} = \gamma \frac{P}{\rho} = \gamma \frac{RT}{\mu} \quad \Rightarrow$$

$$\Rightarrow c_{\rm 3B} = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\rm agua6.}} = \sqrt{\gamma \frac{RT}{\mu}}.$$

Для воздуха $\gamma=1.4;~\mu=28.8;$ при $T=273~{\rm K}~c_{\rm 3B}\simeq 330~{\rm m/c}$

Истечение газа из отверстия. Исследуем адиабатическое ламинарное течение. Пусть изначально газ находился в сосуде при давлении P_1 и температуре T_1 , после он истекает в среду с температурой T_2 и давлением P_2 , известны все эти величины кроме T_2 . Уравнение Бернулли:

$$\frac{v_1^2}{2} + \frac{P_1}{\rho_1} + gh_1 + u_1 = \frac{v_2^2}{2} + \frac{P_2}{\rho_2} + gh_2 + u_2, \tag{1}$$

gh=const, т.к. не меняется существенно вдоль трубки тока. Введем H=I=U+PV- энтальпия. $i=u+Pv_{\rm уд.}$ — удельная энтальпия. Подставим і в (1)

$$\frac{v_1^2}{2} + i_1 = \frac{v_2^2}{2} + i_2$$

Если сосуд большой, а отверстие мало, то можно принять, что скорость газа в сосуде $v_1=0 \quad \Rightarrow \quad v_2=\sqrt{2(i_1-i_2)}.$

В случае идеального газа $(C_V = const)$: $i = u + \frac{P}{\rho} = \frac{C_V T}{\mu} + \frac{RT}{\mu} = \frac{C_P T}{\mu}$ \Rightarrow

$$\Rightarrow v = \sqrt{\frac{2}{\mu}C_P(T_1 - T_2)}$$

Вычислительная формула: $\frac{P_1^{\gamma-1}}{T_1^{\gamma}}=\frac{P_2^{\gamma-1}}{T_2^{\gamma}}\Leftrightarrow T_2=T_1\left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$

$$v = \sqrt{\frac{2}{\mu} C_P T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} \right]}$$

Максимальная скорость достигается при истечении в вакуум: $v_{\text{вак.}} = \sqrt{\frac{2}{\mu} C_P T}$ или

$$v_{\text{\tiny BAK.}} = \sqrt{\frac{2}{\mu} \frac{\gamma}{\gamma - 1} RT} = \sqrt{\frac{2}{\gamma - 1}} c_{\text{\tiny 3B.}}$$

8. Цикл Карно. КПД машины Карно. Теоремы Карно.

Цикл Карно. Тепловая машина — устройство, преобразующее теплоту в работу или обратно и действует строго периодически.

Машина Карно — тепловая машина, работающая между двумя резервуарами с T_1 и T_2 , причем $T_2 < T_1$, по обратному циклу, состоящему из двух изотерм и двух адиабат (циклу Карно).

КПД машины Карно. КПД тепловой машины — отношение работы, произведенной машиной за один цикл, к теплоте, поглощенной в ходе рассматриваемого цикла.

$$\eta = \frac{A}{Q_{\rm H}} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1} < 1$$

Рассчитаем КПД машины Карно. Рабочее тело - идеальный газ.

$$Q_{12} = \delta U_{12} + A_{12} = RT_1 \ln \left(\frac{V_2}{V_1}\right), \quad Q_{34}' = -Q_{34} = -A_{34} = -RT_2 \ln \left(\frac{V_4}{V_3}\right)$$

$$T_1 V_2^{\gamma - 1} = T_2 V_3^{\gamma - 1} \quad \Rightarrow \quad \frac{T_1}{T_2} = \left(\frac{V_3}{V_2}\right)^{\gamma - 1}, \quad T_2 V_4^{\gamma - 1} = T_1 V_1^{\gamma - 1} \quad \Rightarrow \quad \frac{T_1}{T_2} = \left(\frac{V_4}{V_1}\right)^{\gamma - 1}$$

$$\frac{V_3}{V_2} = \frac{V_4}{V_1} \quad \Rightarrow \quad Q_{34} = RT_2 \ln \left(\frac{V_2}{V_1}\right), \quad \text{тогда} \quad \eta = 1 - \frac{Q_{34}'}{Q_{12}} = 1 - \frac{T_2}{T_1}$$

Теоремы Карно. Первая теорема Карно: КПД тепловой машины, работающей по циклу Карно, зависит только от температур T_1 и T_2 нагревателя и холодильника, но не зависит от устройства машины, а также от вида использованного рабочего вещества.

Доказательство. Рассмотрим две машины Карно с общим нагревателем T_1 и холодильником T_2 . Пусть КПД первой η , второй — η' и $\eta > \eta'$.

Пусть в результате m циклов первая машина совершила работу $A=Q_1-Q_2$, например подняв груз. Используем потенциальную энергию груза для запуска второй машины в обратном направлении, тогда в результате m' циклов над этой машиной будет совершена работа $A'=Q_1'-Q_2' \Rightarrow$ за m+m' циклов нагреватель отдал Q_1-Q_1' , холодильник отдал $Q_2'-Q_2$, а совершенная работа $A-A'=(Q_1-Q_2)-(Q_1'-Q_2')=\eta Q_1-\eta'Q_1'$

Используя постулат Томпсона-Планка о невозможности кругового процесса единственным результатом которого было бы совершение работы за счет охлаждения теплового резервуара выберем m и m' так, что $Q_1-Q_1'=0$.

Т.к. $Q_1 = mq_1, Q_1' = m'q_1'$, где q_1 и q_1' - теплота за 1 цикл; если q_1 и q_1' соизмеримы, то всегда существуют m и m': $Q_1 - Q_1' = 0$. Если нет, то m и m' можно выбрать настолько большими, что равенство будет выполнено с любой точностью, заданной заранее, следовательно физически это возможно всегда.

Тогда в результате кругового процесса:

- 1. Состояние нагревателя не изменилось;
- 2. $Q_2' Q_2 = (\eta \eta')Q_1 > 0$ отданное холодильником тепло;
- 3. $\eta Q_1 \eta' Q_1' = (\eta \eta') Q_1 > 0$ совершенная машиной работа.

Таким образом единственным результатом кругового процесса будет произведение работы $(\eta - \eta')Q_1 > 0$ за счет эквивалентного количества тепла, заимствованного у холодильника. Получаем противоречие с постулатом Томпсона–Планка, значит предположение $\eta > \eta'$ — неверно, аналогично $\eta < \eta$ — неверно, следовательно $\eta = \eta'$.

Вторая теорема Карно: КПД любой тепловой машины, работающей между двумя резервуарами, не может превышать КПД машины Карно, работающей между теми же

резервуарами.

Доказательство. Пусть машина получает элементарное количество теплоты δQ_1 и отдает $\delta Q_2,\ T_1$ и T_2 — температуры нагревателя и холодильника остаются постоянными $\int \frac{\delta Q_1}{T_1} - \int \frac{\delta Q_2}{T_2} \leqslant 0 \quad \Rightarrow \quad \frac{Q_1}{T_1} - \frac{Q_2}{T_2} \leqslant 0, \ \text{где } Q_1 - \text{полное количество тепла, полученное от нагревателя, а } Q_2 - \text{полное количество тепла, отданное холодильнику. Тогда} \\ \frac{Q_2}{Q_1} \geqslant \frac{T_2}{T_1} \Leftrightarrow \eta \equiv 1 - \frac{Q_2}{Q_1} \leqslant 1 - \frac{T_2}{T_1} \equiv \eta_{\text{Карно}}.$

9. Холодильная машина. Тепловой насос. Эффективность холодильной машины и теплового насоса, работающих по циклу Карно.

Холодильная машина и ее эффективность. Холодильная машина — устройство, преобразующее работу в тепло, отбирая его у более холодного, и действующая строго периодически.

КПД холодильный машины — отношение отобранного у холодильника тепла к совершенной над рабочим телом работы.

$$\eta_{\rm x} = \frac{Q_2}{A'} = \frac{Q_2}{Q_1 - Q_2} = \frac{Q_2/Q_1}{1 - \frac{Q_2}{Q_1}} = \frac{1 - \eta}{\eta} = \frac{1}{\eta} - 1,$$

где $\eta - \mathrm{K}\Pi \Box$ машины Карно, работающей между теми же резервуарами.

Тепловой насос и ее эффективность. Тепловой насос — устройство, аналогичное холодильной машине, передающее тепло более нагретому телу.

КПД теплового насоса — отношение отданного рабочим телом тепла к совершенной над ним работой $\eta_{\text{тн}} = \frac{Q'}{A'} = \frac{1}{1-\frac{Q_2}{Q_1}} = \frac{1}{\eta}$

10. Второе начало термодинамики. Неравенство и равенство Клаузиуса. Энтропия. Закон возрастания энтропии. Энтропия идеального газа.

Второе начало термодинамики. Формулировка Клаузиуса: невозможен круговой процесс, единственным результатом которого был бы переход тепла от более холодного тела к более нагретому.

Формулировка Томпсона: невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара. Формулировки Клаузиуса и Томпсона эквивалентны.

Формулировка Планка: невозможно построить периодически действующую машину, единственным результатом которой было бы поднятие груза за счет охлаждения теплового резервуара.

Неравенство Клаузиуса. Имеем n тепловых резервуаров R_1, \ldots, R_n достаточно больших, чтобы в процесса теплообмена $T_1, \ldots, T_n \simeq const.$

Таким образом система I совершила круговой процесс, заимствова Q_1 у R_1, \ldots, Q_n у R_n , совершив $A = Q_1 + \ldots + Q_n$

После совершения цикла возьмем R_0 с T_0 , также достаточно большой и n машин Карно K_1, \ldots, K_n , включив их как показано на рисунке. Синхронность их работы и количество не важно.

Для і-ой машины за 1 цикл:
$$1 + \frac{Q_i'}{Q_{oi}} = 1 - \frac{T_i}{T_o} \Leftrightarrow \frac{Q_{oi}}{T_o} + \frac{Q_i'}{T_i} = 0.$$
 Суммируя по і: $Q_o = \sum_i Q_{oi} = -T_o \sum_i \frac{Q_i'}{T_i}$

 Q_o — общее количество теплоты, отданное R_o . Объединим все n циклов машин Карно с циклом I в один большой: R_o отдал Q_o ; R_1 отдал Q_1+Q_1' ; ... R_n отдал Q_n+Q_n' . Совершена работа $A=Q_o+(Q_1+Q_1')+\dots(Q_n+Q_n')$. В силу больших размеров R_1,\dots,R_n выберем в согласии с постулатом Томпсона—Планка Q_1',\dots,Q_n' так, что

 $Q_i'+Q_i=0, i=\overline{1,n}$ \Rightarrow все тепловые резервуары вернутся в исходное состояние, а R_o отдаст $Q_o=T_o\sum_{i=1}^n \frac{Q_i}{T_i}$

Таким образом совершается круговой процесс, за который отдано Q_o и совершена работа $A=Q_o$. Других изменений не произошло. Тогда $A\leqslant 0$ из постулата Томпсона–Планка, значит $Q_o\leqslant 0$

Переходя к пределу бесконечно большого числа тепловых резервуаров R_1, \ldots , обменивающихся бесконечно малыми порциями тепла с I и R_o получаем:

$$\oint \frac{\delta Q}{T} \leqslant 0$$
 — неравенство Клаузиуса

T — температура теплового резервуара, с которым система в данным момент обменивается теплом. В квазистатическом цикле под T можно понимать температуру окружающей среды, так как обе температуры одинаковы.

Квазистатический процесс обратим, следовательно справедливо $\oint \frac{\delta Q'}{T} \leqslant 0$, где $\delta Q'$ — элементарное количество теплоты, получаемое системой на отдельных участках процесса. Так как процесс идет через те же состояния, то $\delta Q = -\delta Q' \Rightarrow \oint \frac{\delta Q}{T} \geqslant$. А такое соотношение верно только тогда, когда

$$\oint\limits_{ ext{ iny KBASUCT.}} rac{\delta Q}{T} = 0$$
 — равенство Клаузиуса

Энтропия. Рассмотрим 2 способа перехода из 1 в 2, каждый из которых — квазистатический процесс. Объединим их в круговой 1I2II1 и применим равенство Клаузиуса.

$$\int_{1I2} \frac{\delta Q}{T} + \int_{2II1} \frac{\delta Q}{T} = 0 \Leftrightarrow \int_{1I2} \frac{\delta Q}{T} = \int_{1II2} \frac{\delta Q}{T} - \text{приведенное количество теплоты}.$$

Таким образом приведенное количество теплоты, полученное системой при любом квазистатическом круговом процессе равно нулю **или** приведенное количество теплоты, полученное системой в квазистатическом процессе, не зависит от пути перехода, а определяется

лишь начальным и конечным состояниями.

Отсюда: **энтропия** — функция состояния системы, определенная с точностью до константы.

 $\Delta S \equiv \int_{1 \to 2} \frac{\delta Q}{T}, \ dS = \left(\frac{\delta Q}{T}\right)_{\text{kba3.}}$

Энтропия идеального газа. Для идеального газа:

$$\delta Q = C_V dT + P dV = C_V(T) dT + R \frac{dV}{V} T \Leftrightarrow dS = \frac{\delta Q}{T} = C_V(T) \frac{dT}{T} + R \frac{dV}{V}$$
$$S = \int C_V(T) \frac{dT}{T} + R \int \frac{dV}{V}$$

Если C_V не зависит от T, то $S=\nu(C_v\ln(T)+R\ln\left(\frac{V}{\nu}\right)+const)$. Всякий адиабатический процесс с $\delta Q=0 \quad \Rightarrow \quad dS=0 \quad \Rightarrow \quad S=const$.

Закон возрастания энтропии. Энтропия адиабатически изолированной системы не может убывать, она либо растет, либо постоянна.

Система может переходить из 1 в 2 необратимо по І. Вернем ее квазистатически по какомулибо ІІ. Тогда $\oint \frac{\delta Q}{T} = \int\limits_{I} \frac{\delta Q}{T} + \int\limits_{II} \frac{\delta Q}{T} \leqslant 0$. Так как $\int\limits_{II} \frac{\delta Q}{T} = S_1 - S_2 \quad \Rightarrow \quad S_2 - S_1 \geqslant \int\limits_{1 \to 2} \frac{\delta Q}{T}$. Если система адиабатически изолирована, то $\delta Q = 0 \quad \Rightarrow \quad S_2 \geqslant S_1$.

11. Термодинамические потенциалы. Метод получения соотношений Максвелла (соотношений взаимности).

Термодинамические потенциалы. Термодинамические потенциалы — функции определенных наборов термодинамических параметров, позволяющие находить все термодинамические характеристики системы, как функции этих параметров.

Метод получения соотношений Максвелла (соотношений взаимности). У Леши Шевцова он представлен на примере вывод одного из потенциалов. В Сивухине похожая ситуация, так что пока что опустим этот пункт, а в следующем билете вы увидите, что это за метод и в чем его суть.

12. Свободная энергия Гельмгольца, термодинамический потенциал Гиббса. Уравнения Гиббса–Гельмгольца.

Свободная энергия Гельмгольца.

$$\Psi = \Psi(T, V) = U - TS \quad \Rightarrow \quad d\Psi = -PdV - SdT \quad \Rightarrow \quad -S = \left(\frac{\partial \Psi}{\partial T}\right)_V, \ -P = \left(\frac{\partial \Psi}{\partial V}\right)_T \quad \Rightarrow \quad -S = \left(\frac{\partial \Psi}{\partial T}\right)_V, \ -P = \left(\frac{\partial \Psi}{\partial V}\right)_T \quad \Rightarrow \quad -S = \left(\frac{\partial \Psi}{\partial T}\right)_V, \ -P = \left(\frac{\partial \Psi}{\partial V}\right)_T \quad \Rightarrow \quad -S = \left(\frac{\partial \Psi}{\partial T}\right)_V, \ -P = \left(\frac{\partial \Psi}{\partial V}\right)_T \quad \Rightarrow \quad -S = \left(\frac{\partial \Psi}{\partial V}\right)_V, \ -P = \left(\frac{\partial \Psi}{\partial V}\right)_T \quad \Rightarrow \quad -S = \left(\frac{\partial \Psi}{\partial V}\right)_V, \ -P =$$

$$\Rightarrow \quad \frac{\partial^2 \Psi}{\partial V \partial T} = \frac{\partial^2 \Psi}{\partial T \partial V} \Leftrightarrow \frac{\partial}{\partial V} \left(\frac{\partial \Psi}{\partial T} \right)_V = \frac{\partial}{\partial T} \left(\frac{\partial \Psi}{\partial V} \right)_T \Leftrightarrow \left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V$$

Вот такой метод получения данных соотношений через двойное дифференцирование и называется методом Максвелла.

Термодинамический потенциал Гиббса.

$$\begin{split} \Phi &= \Phi(T,P) = U - TS + PV \quad \Rightarrow \quad d\Phi = V dP - S dT \quad \Rightarrow \quad V = \left(\frac{\partial \Phi}{\partial P}\right)_T, \, -S = \left(\frac{\partial \Phi}{\partial T}\right)_P \quad \Rightarrow \\ &\Rightarrow \quad \frac{\partial}{\partial T} \left(\frac{\partial \Phi}{\partial P}\right)_T = \frac{\partial}{\partial P} \left(\frac{\partial \Phi}{\partial T}\right)_P \Leftrightarrow \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T \end{split}$$

Уравнения Гиббса-Гельмгольца. Из свободной энергии Гельмгольца $U=\Psi+TS$ подставим S полученное при частном дифференцировании, тогда $U=\Psi-T\left(\frac{\partial\Psi}{\partial T}\right)_V$. Проведем аналогичные действия с термодинамическим потенциалом Гиббса: $I=\Phi-T\left(\frac{\partial\Phi}{\partial T}\right)_D$. Данные соотношения называются **Уравнениями Гиббса-Гельмгольца**

13. Внутренняя энергия как термодинамический потенциал. Связь производной $(\frac{\partial U}{\partial V})_T$ с термическим уравнением состояния.

Внутренняя энергия как термодинамический потенциал.

$$U = U(S,V) \quad \Rightarrow \quad dU = TdS - PdV \quad \Rightarrow \quad T = \left(\frac{\partial U}{\partial S}\right)_{V}, \quad -P = \left(\frac{\partial U}{\partial V}\right)_{S} \quad \Rightarrow \\ \Rightarrow \quad \frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S}\right)_{V} = \frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V}\right)_{S} \Leftrightarrow \left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

Связь производной $\left(\frac{\partial U}{\partial V}\right)_T$ с термическим уравнением состояния.

$$dU = TdS - PdV \quad \Rightarrow \quad \left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - P = T\left(\frac{\partial P}{\partial T}\right)_V - P$$

Полученное соотношение устанавливает связь между калорическим и термическим уравнениями состояния.

14. Разность $C_P - C_V$ для произвольной термодинамической системы.

$$CdT = dU + PdV = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right] dV$$

Полагая $C = C_P$:

$$C_P - C_V = \left[P + \left(\frac{\partial U}{\partial V}\right)_T\right] \left(\frac{\partial V}{\partial T}\right)_P$$

воспользуемся соотношением из п. 13.2

$$C_P - C_V = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P = \left| \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial T}{\partial V} \right)_P \left(\frac{\partial V}{\partial P} \right)_T = -1 \right| = -T \frac{\left(\frac{\partial V}{\partial T} \right)_P^2}{\left(\frac{\partial V}{\partial P} \right)_T}$$

Поскольку $\left(\frac{\partial V}{\partial P}\right)_T < 0$, то $C_P - C_V > 0$.

15. Теплофизические свойства твердых тел. Адиабатическое растяжение упругого стержня.

Теплофизические свойства твердых тел. Теплофизические свойства материала – свойства, характеризующие поведение этого материала при изменении температуры, как-либо: теплоемкость, теплопроводность, коэффициенты теплового расширения, температура плавления.

Адиабатическое растяжение упругого стержня. Уравнение состояния — f=f(l,T). При f=0 $l(T,0)=l_0(1+\alpha(T-T_0))$, где $l_0=l(T_0,0)$, α — коэффициент линейного температурного расширения. При T=const согласно закону Гука:

$$\frac{\Delta l}{l} = \frac{f}{ES_{\perp}} = \frac{l(T,f) - l(T,0)}{l(T,0)} \quad \Rightarrow \quad f = ES_{\perp} \left(\frac{l}{l_0(1 + \alpha[T - T_0])} - 1 \right)$$

В большинстве случаев тепловая деформация мала, $\alpha |T-T_0| \ll 1$ \Rightarrow

$$\Rightarrow f = ES_{\perp} \left(\frac{l}{l_0} (1 - \alpha [T - T_0]) - 1 \right)$$

Предположен, что стержень окружен адиабатической оболочкой. При квазистатической деформации $dS = \left(\frac{\partial S}{\partial T}\right)_l dT + \left(\frac{\partial S}{\partial l}\right)_T dl = 0 \Rightarrow dT = -\frac{\left(\frac{\partial S}{\partial l}\right)_T}{\left(\frac{\partial S}{\partial T}\right)_l} dl; \ \left(\frac{\partial S}{\partial T}\right)_l = \left(\frac{\delta Q}{\partial T}\right)_l \frac{1}{T} = \frac{C_l}{T}$

$$PdV = -\sigma d(s_{\perp}l) = -\sigma S_{\perp}dl = -fdl \Rightarrow dU = TdS + fdl$$

$$\Psi=U-TS, d\Psi=-SdT+fdl$$
 \Rightarrow метод Максвелла $-\left(rac{\partial S}{\partial l}
ight)_T=\left(rac{\partial f}{\partial T}
ight)_T$

Откуда

$$dT = \frac{T}{C_l} \left(\frac{\partial f}{\partial T} \right)_l dl$$

Используя
$$f: \Delta T = \int\limits_{l_0}^{l} \frac{T}{C_l} \left(\frac{\partial f}{\partial T} \right)_l dl = -\frac{ES_\perp \alpha}{2C_l l_0} T(l^2 - l_0^2) \simeq -\frac{ES_\perp \alpha}{C_l} T(l - l_0)$$

При адиабатическом растяжении $(l > l_0)$ температура стержня понижается из-за совершения работы против внутренних сил притяжения молекул. Для идеального стержня (E = const):

$$U_{\text{деф.}} = V \frac{E\varepsilon^2}{2} = \Psi_{\text{деф.}}$$

Внутренняя энергия деформации совпадает со свободной энергией и явно не зависит от температуры.

16. Фазовые переходы первого рода. Уравнение Клапейрона-Клаузиуса. Фазовое равновесие «жидкость-пар». Критическая точка.

Фазовые переходы первого рода. Фаза — макроскопическая физическая однородная часть вещества, отделенная от остальных частей системы границами раздела, так что она может быть извлечена из системы механическим путем.

Фазовый переход — переход вещества из одной фазы в другую при изменении внешних условий (температуры, давления, полей) при подводе или отводе тепла и т.д.

Величины, пропорциональные объему подсистемы называются **экстенсивными** (V,U,S), а не зависящие от объема выделенной подсистемыы — **интенсивными** (T,P,ρ) .

Фазовые превращения, при которых первые производные удельного термодинамического потенциала $\varphi(T,P)$ меняются скочкообразно называются фазовыми переходами первого роже

 $v = \left(\frac{\partial \varphi}{\partial P}\right)_T, s = -\left(\frac{\partial \varphi}{\partial T}\right)_P \Rightarrow$ скачкообразно меняется плотность $(\rho \simeq \frac{1}{v})$. Отлична от нуля теплота фазового перехода $q_{12} = T(s_2 - s_1)$.

Плавление, испарение, возгонка, кристаллизация сопровождаются выделением или поглощением тепла, поэтому относятся к Ф.П. І рода.

Уравнение Клапейрона-Клаузиуса. Условия равновесия системы:

- 1) P = const условие механического равновесия;
- 2) T = const -условие теплового равновесия;
- 3) $\varphi = const$ условие фазового перехода.

Обоснование 3):

Рассмотрим двух фазную сиситему в жесткой адиабатической оболочке. Проведем в системе некий бесконечно малый процесс, в холе которого T = const, в обоих подсистемах и равны между собой, тогда:

$$dU_1 = TdS_1 - PdV_1 + \varphi_1 dN_1;$$

 $dU_2 = TdS_2 - PdV_2 + \varphi_2 dN_2;$

Полная энтропия системы $S=S_1+S_2$, а в следствие изолированности $dU_1=-dU_2\Rightarrow$ $\Rightarrow TdS=(\varphi_1-\varphi_2)dN_2$.В состоянии термодинамического равновесия энтропия максимальная, значит $dS=0\Rightarrow \varphi_1=\varphi_2$

$$\begin{split} d\varphi_1 &= -s_1 dT + v_1 dP, \quad d\varphi_2 = -s_2 dT + v_2 dP, \quad \varphi_1 = \varphi_2 \Rightarrow d\varphi_1 = d\varphi_2 \Rightarrow \\ &\Rightarrow (s_2 - s_1) dT = (v_2 - v_1) dP \Leftrightarrow \frac{dP}{dT} = \frac{s_2 - s_1}{v_2 - v_1}, \quad q_{12} = T(v_2 - v_1) - \text{теплота фаз перехода в} \\ &\text{расчете на 1 частицу} \quad \Rightarrow \quad \frac{dP}{dT} = \frac{q_{12}}{T(v_2 - v_1)} - \mathbf{Уравнение Kлапейрона-Kлаузиуса}. \end{split}$$

Экзамен: термодинамика

Фазовое равновесие «жидкость-пар».

Примем
$$q_{12}=q=const\Rightarrow \frac{dP}{dT}=\frac{q}{T(v_1-v_2)}$$
Так как $v_1\gg v_2$:
$$\simeq \frac{q}{Tv_1}\bigg|_{Pv_1=kT}=\frac{q}{kT^2}P\Leftrightarrow \int\limits_{P_0}^P=\frac{dP}{P}=\frac{q}{k}\int\limits_{T_0}^T\frac{dT}{T^2}\Rightarrow$$

$$\Rightarrow P=P_0exp\left(\frac{q}{kT_0}-\frac{q}{kT}\right), P(T_0)=P_0$$

Критическая точка(К) — точка, в которой обрывается кривая фазового равновесия и исчезает разница между фазами. При наличии К всегда есть путь, в каждый момент которого вещество однородно, т.е. не возникает граница раздела.

I — пересекая кривую фазового равновесия (с образованием двухфазовой системы)

II — в обход K (сохраняя пространственную однородность)

Для воды: $T_{\text{кр.}} = 647.3 \text{ K}, P_{\text{кр.}} = 22.12 \text{ М}\Pi \text{a}$

17. Диаграмма фазового равновесия «твердое тело-жидкость-пар». Тройная точка.

Диаграмма фазового равновесия «твердое тело-жидкость-пар».

Рассмотрим трех фазную систему. Для равновесия необходимо:

(1)
$$\varphi_1(P,T) = \varphi_2(P,T)$$
 — кривая испарения 12

(2)
$$\varphi_2(P,T) = \varphi_3(P,T)$$
 — кривая плавления 23

(3)
$$\varphi_1(P,T) = \varphi_3(P,T)$$
 — кривая возгонки 31

Все они пересекаются в т.А

Тройная точка. Точка А называется **тройной точкой**, три фазы могут находится в равновесии друг с другом, лишь в этой точке, имеющей конкретный параметры. В малой окрестности тройной точки можно провести круговой изотермический процесс, для которого справедливо

$$\oint \frac{\delta Q}{T} = 0 \underset{T=const}{\longmapsto} \oint \delta Q \Rightarrow q_{13} = q_{32} + q_{21}$$

18. Зависимость теплоты фазового перехода от температуры.

 $q = T(S_2 - S_1)$ — удельная теплота фазового превращения.

19. Уравнение Ван-дер-Ваальса как модель неидеального газа. Изотермы газа Ван-дер-Ваальса. Критические параметры. Приведенное уравнение Ван-дер-Ваальса, закон соответственных состояний.

Уравнение Ван-дер-Ваальса.

$$\left(P + \frac{a\nu^2}{V^2}\right)(V - \nu b) = RT$$

Выведем его, основываясь на $PV = \nu RT$:

Во-первых, учтем размеры молекул:

 $\frac{4}{3}\pi(2r)^3 = 8\cdot \frac{4}{3}\pi r^3$ — недоступный объем для второй частицы \Rightarrow в расчете на 1 молекулу

$$\frac{1}{2}(8 \cdot \frac{4}{3}\pi r^3) = 4V_0$$

где $V_0 = 4\pi r^3/3$ — объем одной молекулы. В результате объем, разрешенный для движения молекул, составит

Рис. 1: Учет конечности размеров молекул

$$V_{\text{поп.}} = V - \nu b$$

 $b \simeq 4 \cdot ($ объем молекулы в одном моле $) = 4 N_A V_0$

Во-вторых, учтем, что молекулы притягиваются друг к другу. Одним из механизмов такого притяжения может быть перераспределение зарядов и образование диполей (см. рис 2).

Рис. 2: Молекулы диполи притягиваются друг к другу

Давление газа определяется столкновениями молекул со стенкой. Сила, действующая на молекулу у стенки со стороны газа $\sim n$, где n — число частиц. Частота соударений $\sim n$, значит давление уменьшается на $\Delta P \sim n^2$. Переходя от плотности n к объему V по формуле $n = \frac{\nu N_A}{V}$, мы можем записать поправку к давлению в виде $\Delta P = a_1 n^2 = a(\nu/V)^2$. Окончательно это дает

$$\left(P + \frac{a\nu^2}{V^2}\right)(V - \nu b) = RT$$

Величины a и b называется параметрами Ван-дер-Ваальса. Параметре a учитывает притяжение, а b — отталкивание молекул.

Изотермы газа Ван-дер-Ваальса. Критические параметры. Уравнение Ван-дер-Ваальса:

$$PV^{3} - (RT + Pb)V^{2} + aV - ab = 0$$

имеет один или три корня. В случае 1 это изотерма MN, а трех — три пересечения в точках A, C, E изотермы LABCDEG. При некоторой T $V_1 = V_2 = V_3$. Такая температура называется **критической** (изотерма FKH). Для нахождения критических давления, температуры и объема воспользуемся уравнением: P_{κ} ($V - V_{\kappa}$) $^3 = 0$

Рис. 3: Изотермы Ван-дер-Ваальса

$$\begin{cases} P_{\text{\tiny K.}} V_{\text{\tiny K.}}^3 = ab \\ 3P_{\text{\tiny K.}} V_{\text{\tiny K.}}^2 = a \\ 3P_{\text{\tiny K.}} V_{\text{\tiny K.}} = RT_{\text{\tiny K.}} + P_{\text{\tiny K.}}b \end{cases} \Leftrightarrow \begin{cases} P_{\text{\tiny K.}} = \frac{a}{27b^2} \\ V_{\text{\tiny K.}} = 3b \\ T_{\text{\tiny K.}} = \frac{8a}{27Bb} \end{cases}$$

Приведенное уравнение Ван-дер-Ваальса $\varphi=rac{V}{V_{\text{к.}}}, \quad \pi=rac{P}{P_{\text{к.}}}, \quad \tau=rac{T}{T_{\text{к.}}}$ — приведенные параметры. Тогда $V=3b\varphi, \quad P=rac{a\pi}{27b^2},$

 $T=rac{8a}{27Rb}\; au\Rightarrow$ приведенное уравнение Ван-дер-Ваальса:

$$\left(\pi + \frac{3}{\varphi^2}\right)(\varphi - 1/3) = 8/3\tau$$

Закон соответственных состояний. Уравнение Ван-дер-Ваальса содержит только 3 параметра: a, b, R. Всякое уравнение, обладающее этим свойством, записанное в переменных φ, π, τ должно быть также одинаковым для всех веществ. Это положение есть закон соответственных состояний.

Соответственными называют состояния разных веществ, которые имеют одинаковые φ, π, τ . Следовательно: если для различных веществ из трех параметров φ, π, τ совпадают значения каких-либо двух, то совпадут и третьи.

20. Метастабильные состояния: переохлажденный пар, перегретая жидкость. Устойчивость состояний. Правило Максвелла.

Метастабильные состояния: переохлажденный пар, перегретая жидкость. Устойчивость состояний. При специальных условия могут быть реализованы участки AG —

перенасыщенный пар и LB — перегретая жидкость (см. рис. 3). Эти состояния называют **метастабильными**. Каждое существует, пока его менее устойчивая фаза не граничит с другой — более устойчивой. Например, перенасыщенный пар переходит в насыщенный, если в него попадет капля воды.

Правило Максвелла. Положение горизонтального участка определяется с помощью равенства Клазиуса $\oint \frac{\delta Q}{T} = 0$. Из G в L можно перейти двумя путями: по GCL двухфазного состояния и по теоретической изотерме физически однородного вещества GACBL, содержащей неустойчивый участок ACB. Применим равенство Клаузиуса к квазистатическому круговому процессу GCLBCAG: $T = const \Rightarrow \oint \delta Q = 0$, кроме того $\delta Q = dU + PV$, $\oint dU = 0 \Rightarrow \oint PdV = 0$ или $\int\limits_{\text{GCL}} PdV + \int\limits_{\text{LBCAG}} PdV = 0$ или $\int\limits_{\text{LCG}} PdV = \int\limits_{\text{LBCAG}} PdV$ Значит площади QLGR и QLBCAGR равны, значит LG надо проводить так, чтобы

$$S_{\rm LBC} = S_{\rm CAG}$$

Это и есть правило Максвелла.

 Внутренняя энергия и энтропия газа Ван-дер-Ваальса. Равновесное и неравновесное расширение газа Ван-дер-Ваальса в теплоизолированном сосуде.

Внутренняя энергия и энтропия газа Ван-дер-Ваальса. Рассмотрим U=U(T,V), тогда $dU=\left(\frac{\partial U}{\partial T}\right)_VdT+\left(\frac{\partial U}{\partial V}\right)_TdV=C_VdT+\left(T\left(\frac{\partial P}{\partial T}\right)_V-P\right)dV.$ Для $\nu=1$ моль, предполагая $C_V=const,\ dU=C_VdT+\frac{a}{V^2}dV$

$$U = C_V T - \frac{a}{V}$$

С ростом объема и, следовательно, расстояния между молекулами (при T=const) внутренняя энергия газа растет.

Рассмотрим S=S(T,V), тогда $dS=\left(\frac{\partial S}{\partial T}\right)_VdT+\left(\frac{\partial S}{\partial V}\right)_TdV=\frac{C_V}{T}dT+\left(\frac{\partial P}{\partial T}\right)_VdV$. Для $\nu=1$ моль, $C_V=const,\,dS=\frac{C_V}{T}dT+\frac{R}{V-b}dV$

$$S = S_0 + C_V \ln \left(\frac{T}{T_0}\right) + R \ln \left(\frac{V - b}{V_0 - b}\right)$$

Равновесное и неравновесное расширение газа Ван-дер-Ваальса в теплоизолированном сосуде. Рассмотри свободное расширение газа в вакуум. Пусть в начальный момент газ Ван-дер-Ваальса находился в сосуде, занимая в нем объем V. После удаления перегородки газ получил возможность свободно расшириться до объема $V_2(V_2>V_1)$. Считая, что сосуд окружен теплоизолированной оболочкой найдем ΔT после установления равновесия. Поскольку $\delta Q=0$ и $\delta A=0$, то dU=0, а для газа Ван-дер-Ваальса

Экзамен: термодинамика

$$U_{1,2}=C_VT_{1,2}-rac{a}{V_{1,2}}\Rightarrow \Delta T=T_2-T_1=-rac{a}{C_V}\left(rac{1}{V_1}-rac{1}{V_2}
ight)<0$$
 значит газ в данном процессе охлаждается.

При расширении газа работа совершается против сил притяжения молекул. Эта работа производится за счет кинетической энергии и, значит, сопровождается охлаждением газа

22. Эффект Джоуля-Томсона (дифференциальный и интегральный). Температура инверсии.

Дифференциальный эффект Джоуля—**Томпсона.** Рассмотрим процесс Джоуля—Томпсона: адиабатическое стационарное течение газа через пористую перегородку, под действием разности давлений

по разные стороны от пробки. Изменение температуры в этом процессе — эффект Джоуля-Томпсона. Течение медленное, следовательно можно пренебречь кинетической энергией. Тогда по первому началу термодинамики $Q=0\Rightarrow 0=\Delta U+A=U_2-U_1+P_2V_2-P_1V_1=I_2-I_1\Leftrightarrow I_1=I_2$. В процессе Джоуля-Томпсона I=const.

Пусть теперь по разные стороны от перегородки разность давлений мала. Найдем ΔT :

$$\Delta I = \left(\frac{\partial I}{\partial T}\right)_P \Delta T + \left(\frac{\partial I}{\partial P}\right)_T \Delta P = 0 \Rightarrow \left(\frac{\partial I}{\partial T}\right)_P = C_P, \ \left(\frac{\partial I}{\partial P}\right)_T = V - T\left(\frac{\partial V}{\partial T}\right)_P \Rightarrow$$
$$\Rightarrow \left(\frac{\Delta T}{\Delta P}\right)_I = \frac{T\left(\frac{\partial V}{\partial T}\right)_P - V}{C_P}$$

Если газ идеальный, то $V=\frac{RT}{P},\ T\left(\frac{\partial V}{\partial T}\right)_P=V\Rightarrow \Delta T=0$, то есть для идеальных газов эффект Джоуля–Томпсона не имеет места. Повышение или понижение температуры реального газа при протекании через пробку при малых ΔT и ΔP (для замены их отношения на $\left(\frac{\partial T}{\partial P}\right)_I$) называется дифференциальным эффектом Джоуля–Томпсона.

Так как течение происходит от большего давления к меньшему, то $\Delta P < 0$, значит если $\frac{\Delta T}{\Delta P} > 0$, то эффекто Джоуля–Томпсона **положительный**, а если соответственно $\frac{\Delta T}{\Delta P} < 0$ — **отрицательный**.

Вычисляя
$$\left(\frac{\partial V}{\partial T}\right)_P=\frac{-\left(\frac{\partial P}{\partial T}\right)_V}{\left(\frac{\partial P}{\partial V}\right)_T}$$
 из уравнения Ван-дер-Ваальса получаем:

$$\frac{\Delta T}{\Delta P} = -\frac{T\left(\frac{\partial P}{\partial T}\right)_{V} + V\left(\frac{\partial P}{\partial V}\right)_{T}}{C_{P}\left(\frac{\partial P}{\partial V}\right)_{T}} = \frac{\frac{bRT}{(V-b)^{2}} - \frac{2a}{V^{2}}}{C_{P}\left(\frac{\partial P}{\partial V}\right)_{T}}$$

 $T = \frac{T_{\infty}}{(\partial T/\partial P)_{H} < 0}$ $(\partial T/\partial P)_{H} > 0$ V

Температура инверсии. Пояснение к графику: $T_{\infty} \equiv T_i$, $H \equiv I$. В случае разреженного газа можно отбросить малые поправки a и

b высших порядков $\Rightarrow \frac{\Delta T}{\Delta P} = \frac{\frac{2a}{RT} - b}{C_P}$. При $T_i = \frac{2a}{RB} = \frac{27}{4} T_{\text{кр.}}$ — температуре инверсии дифференциального эффекта Джоуля—Томпсона $\Delta T = 0$. Газ ниже этой температуры охлаждается, выше — нагревается в процессе Джоуля—Томпсона.

Интегральный эффект Джоуля—Томпсона. Пусть теперь по разные стороны от перегородки ΔP велика, тогда велика и ΔT . Тогда мы имеем дело с **интегральным** законом Джоуля—Томпсона.

$$T_2 - T_1 = \int_{P_1}^{P_2} \left(\frac{\partial T}{\partial P}\right)_I dP = \int_{P_1}^{P_2} \frac{T\left(\frac{\partial V}{\partial T}\right)_P - V}{C_P} dP \tag{2}$$

Если во всем диапазоне давлений дифференциального эффекта Джоуля–Томпсона положительный, то и интегральный будет положительным. Максимальное охлаждение из начального состояния T_1 , P_1 :

$$\frac{d}{dP_1}(T_2-T_1)=\frac{dT_2}{dP_1}=-\left(\frac{\partial T}{\partial P}\right)_I=0$$
— условие максимума записанное при $P=P_1,\,T=T_1$

Но $\left(\frac{\partial T}{\partial P}\right)_I=0$ — уравнение кривой инверсии дифференциального эффекта Джоуля—Томпсона, следовательно, для максимального охлаждения ??? на кривой инверсии. Формула (2) интегрируется до конца в случае, когда в начальном состоянии газ под высоким давлением, а после прохода через вентиль его можно рассматривать как идеальный.

$$I_{1} = I_{2} \Leftrightarrow \int_{T_{0}}^{T_{1}} C_{v} T dT - \frac{a}{V_{1}} + P_{1} V_{1} = \int_{T_{0}}^{T_{2}} C_{v} T dT - \frac{a}{V_{2}} + P_{2} V_{2} \xrightarrow{\frac{a}{V_{2}} \to 0} \int_{T_{2}}^{T_{1}} C_{v} T dT - \frac{a}{V_{1}} + P_{1} V_{1} = RT_{2}$$

$$\overline{C_{V}} (T_{1} - T_{2}) - \frac{2a}{V_{1}} + \frac{RT_{1} V_{1}}{V_{1} - b} = RT_{2},$$

где $\overline{C_V}$ — средняя теплоемкость при V=const в диапазоне $T_1\leftrightarrow T_2$. В итоге получим:

$$T_2 - T_1 = \frac{1}{R + \overline{C_V}} \left(\frac{RbT_1}{V_1 - b} - \frac{2a}{V_1} \right)$$

Так как знаменатель положительный, то знак эффекта определяется знаком числителя.

Рис. 4: штрих. линия - кривая инверсии диф. эффекта

23. Поверхностное натяжение: коэффициент поверхностного натяжения, краевой угол, смачивание и несмачивание. Формула Лапласа. Свободная энергия и внутренняя энергия поверхности.

Поверхностное натяжение: коэффициент поверхностного натяжения, краевой угол, смачивание и несмачивание. Работа, которую нужно затратить, чтобы изотермически и квазистатически увеличить поверхность жидкости на единицу при сохранении её объема неизменным называется поверхностным натяжением жидкости.

$$\sigma \equiv \frac{A}{\Pi}$$
 — коэффициент поверхностного натяжение,

где Π — площадь поверхности жидкости. В изотермическом процессе работа идет на изменение $\Psi=\Psi_{\text{об.}}+\Psi_{\text{пов.}}$, где $\Psi_{\text{об.}}$ — объемная энергия. $\Psi_{\text{об.}}\sim U$, а поверхностная энергия $\Psi_{\text{пов.}}=\sigma\Pi$. Пленка состоит из двух простых, значит $\delta A=2fdx$.

$$\sigma = \left(\frac{\delta A}{d\Pi}\right)_T = \frac{2fdx}{2adx} = \frac{f}{a}$$

Равновесие: $\sigma_{31} + \sigma_{23} + \sigma_{12} cos \vartheta = 0$, $\vartheta -$ краевой угол.. $\sigma_{12} - \sigma_{22}$

 $rac{\sigma_{13}-\sigma_{23}}{\sigma_{12}}>1$ — полное смачивание; $rac{\sigma_{13}-\sigma_{23}}{\sigma_{12}}<-1$ — полное смачивание;

Также если $0 < \vartheta < \pi/2$, то имеет место частичное смачивание, а при $\pi/2 < \vartheta < \pi$ — частичное не смачивание.

Формула Лапласа. AD=dx, AB=dy — стороны прямоугольника, выделенного на кривой поверхности. Равнодействующая сил, приложенных к AD и BC направленна по радиусу и равна

$$dF_1 = 2\sigma dx \sin \varphi / 2 \simeq \sigma \varphi dx, \ \varphi = \frac{AB}{R_1} = \frac{dy}{R_1} \Rightarrow$$

$$\Rightarrow dF_1 = \frac{\sigma}{R_1} dx = \frac{\sigma}{R_1} d\Pi; \quad dF_2 = \frac{\sigma}{R_2} d\Pi;$$

$$dF = dF_1 + dF_2 = \sigma \left(R_1^{-1} + R_2^{-1} \right) d\Pi \Rightarrow$$

$$P_2 - P_1 = \sigma \left(R_1^{-1} + R_2^{-1}
ight) \ oldsymbol{---}$$
формула Лапласа

Для сферической поверхности: $\Delta p=\frac{2\sigma}{R}$, а для мыльного пузыря — $\Delta P=(2\sigma)\frac{2}{R}=\frac{4\sigma}{R}$

Свободная энергия и внутренняя энергия поверхности. По первому началу термодинамики: $\delta Q = dU + \delta A = dU - \sigma d\Pi \Leftrightarrow dU = TdS + \sigma d\Pi$

$$\Psi = U - TS \Rightarrow d\Psi = -SdT + \sigma d\Pi \Rightarrow S = -\left(\frac{\partial \Psi}{\partial T}\right)_{\Pi} \Rightarrow \Psi = U + T\left(\frac{\partial \Psi}{\partial T}\right)_{\Pi}$$

$$U = \left(\sigma - T\frac{d\sigma}{dT}\right)\Pi - \text{внутренняя энергия поверхности}$$

Если расширение изотермическое, то надо сообщить $Q=\Delta U-\sigma\Pi=-T\frac{d\sigma}{dT}d\Pi\Rightarrow$ $\Rightarrow q=-T\frac{d\sigma}{dT}$ — теплота образования единицы поверхности пленки.

24. Зависимость давления насыщенного пара от кривизны поверхности жид-кости. Кипение. Роль зародышей в образовании новой фазы.

Зависимость давления насыщенного пара от кривизны поверхности жидкости.

Пусть капля находится в состоянии равновесия и имеет форму шара, радиуса r.

По формуле Лапласа $P_{\text{ж.}} - P_{\text{п.}} = \frac{2\sigma}{r}$. В состоянии термодинамического равновесия химические потенциалы $\left(\frac{\Phi}{N}\right)$ равны: $\varphi_{\text{ж.}}(P_{\text{ж.}},T) = \varphi_{\text{п.}}(P_{\text{п.}},T)$.

В случае плоской поверхности раздела, когда давление насыщенного пара P_0 :

$$\begin{split} \varphi_{\mathtt{ж.}}(P_0,T) &= \varphi_{\mathtt{\Pi}}(P_0,T) \Rightarrow \varphi_{\mathtt{ж.}}(P_{\mathtt{ж.}},T) - \varphi_{\mathtt{ж.}}(P_0,T) = \varphi_{\mathtt{\Pi.}}(P_{\mathtt{п.}},T - \varphi_{\mathtt{\Pi}}(P_0,T). \\ \text{Считая } P_{\mathtt{ж.}} - P_0 \text{ и } P_{\mathtt{п.}} - P_0 \text{ малыми: } (P_{\mathtt{ж.}} - P_0) \left(\frac{\partial \varphi_{\mathtt{ж.}}}{\partial P}\right)_T = (P_{\mathtt{п.}} - P_0) \left(\frac{\partial \varphi_{\mathtt{п.}}}{\partial P}\right)_T \\ d\varphi &= -sdT + vdP \Rightarrow \left(\frac{\partial \varphi}{\partial P}\right)_T = v \Rightarrow (P_{\mathtt{ж.}} - P_0)v_{\mathtt{ж.}} = (P_{\mathtt{п.}} - P_0)v_{\mathtt{п.}} \Rightarrow \end{split}$$

$$\Rightarrow \begin{cases} P_{\text{\tiny M.}} - P_0 = \frac{v_{\text{\tiny II.}}}{v_{\text{\tiny II.}} - v_{\text{\tiny M.}}} \frac{2\sigma}{r} \simeq \frac{2\sigma}{r} \longrightarrow P_{\text{\tiny M.}} = P_0 + \frac{2\sigma}{r} \\ P_{\text{\tiny II.}} - P_0 = \frac{v_{\text{\tiny M.}}}{v_{\text{\tiny II.}} - v_{\text{\tiny M.}}} \frac{2\sigma}{r} \simeq \frac{v_{\text{\tiny M.}}}{v_{\text{\tiny II.}}} \frac{2\sigma}{r} \longrightarrow P_{\text{\tiny II.}} = P_0 + \frac{v_{\text{\tiny M.}}}{v_{\text{\tiny II.}}} \frac{2\sigma}{r} \end{cases}$$

 $P_{\text{п.}} = P_0 + \frac{v_{\text{ж.}}}{v_{\text{п.}}} \frac{2\sigma}{r}$ — давление пара над искривленной поверхностью капли в воздухе. Формальной заменой r на (-r) получаем:

$$P_{\text{\tiny M.}} = P_0 - \frac{2\sigma}{r}$$

$$P_{\text{\tiny II.}} = P_0 - \frac{v_{\text{\tiny M.}}}{v_{\text{\tiny II}}} \frac{2\sigma}{r} = P_0 - \frac{\rho_{\text{\tiny II.}}}{\rho_{\text{\tiny M.}}} \frac{2\sigma}{r}$$

 $P_{\text{п.}} = P_0 - \frac{\rho_{\text{п.}}}{\rho_{\text{ж.}}} \frac{2\sigma}{r}$ — давление пара под искривленной поверхностью пузырька в жидкости.

Но $P_{\text{п.}}-P_0$ не всегда мала, тогда считая пар идеальным газом можем получить следующую выкладку: $v=\frac{RT}{P};\;d\varphi=-sdT+vdP,\;$ при $T=const:\;\varphi_{\text{п.}}(P_{\text{п.}},T)-\varphi_{\text{п.}}(P_0,T)=RT\ln\left(\frac{P_{\text{п.}}}{P_0}\right)$

$$v_{\mathrm{ж.}}(P_{\mathrm{ж.}}-P_0)=RT\ln\left(rac{P}{P_0}
ight)\Leftrightarrow v_{\mathrm{ж.}}\left(P_{\mathrm{п.}}-P_0-rac{2\sigma}{r}
ight)=RT\ln\left(rac{P}{P_0}
ight)$$
 и при $P_{\mathrm{п.}}-P_0\llrac{2\sigma}{r}$:

$$P_{\scriptscriptstyle \Pi.} = P_0 \exp\left[-\frac{2\sigma v_{\scriptscriptstyle \mathbb{K}.}}{RTr}\right] \Leftrightarrow \underline{P_{\scriptscriptstyle \Pi.}} = P_0 \exp\left[-\frac{2\sigma}{P_0 r} \frac{v_{\scriptscriptstyle \mathbb{K}.}}{v_{\scriptscriptstyle \Pi.}}\right]$$

Кипение. Фазовые переход, происходящий с образованием пузырьков пара по всему объему жидкости называется **кипением**, относится к фазовым переходам первого рода. Температура, при которой кипит жидкость при $\underline{P=const}$ — **температура кипения**. Кипение может начинаться при тех температурах, когда вместе могут существовать жидкая и парообразная фазы, т.е. $P_{\text{н.п.}} = P_{\text{внеш.}} = P_0$ при этом $P(T) = P_0 \exp\left[\frac{q_{\text{м.}}}{RT_0} - \frac{q_{\text{м.}}}{RT}\right]$, где $q_{\text{м.}}$ — молярная теплота парообразования. Тогда

$$T=rac{T_0}{1-rac{RT_0}{q_{\scriptscriptstyle
m M}}\ln\left(rac{P}{P_0}
ight)}$$
 — зависимость $T_{\scriptscriptstyle
m KИП}$. от P

Найдем критический размер пузырька пара в жидкости. Пусть однородная жидкость находится в метастабильном состоянии. Будем наблюдать за пузырьком пара в ней. $P_{\text{ж.}} = P_{\text{атм.}} + P_{\text{гидростат.}} = const$, значит однозначно задается $P_{\text{п. и}}$ r

$$\begin{cases} P_{\scriptscriptstyle \rm II.} = P_{\scriptscriptstyle \rm \#.} + \frac{2\sigma}{r} \\ P_{\scriptscriptstyle \rm II.} = P_0(T) - \frac{v_{\scriptscriptstyle \rm \#.}}{v_{\scriptscriptstyle \rm II.} - v_{\scriptscriptstyle \rm \#.}} \frac{2\sigma}{r} \end{cases} \longrightarrow r_{\scriptscriptstyle \rm Kp.} = \frac{2\sigma}{P_0(T) - P_{\scriptscriptstyle \rm \#.}} \frac{v_{\scriptscriptstyle \rm \#.}}{v_{\scriptscriptstyle \rm II.} - v_{\scriptscriptstyle \rm \#.}}$$

$$r_{ ext{ iny Kp.}} \simeq rac{2\sigma}{P_0(T) - P_{ ext{ iny K.}}}$$
 — критический размер пузырька

При $r < r_{\rm кр.} \; P_{\rm нас.} < P_{\rm лап.} \to$ пузырек не выдерживает и схлопывается.

При $r > r_{\text{кр.}} \, P_{\text{нас.}} > P_{\text{лап.}} o$ пузырек начинает расти.

Аналогичный случай — капля воды в переохлажденном паре

$$r_{\text{\tiny KP.}} \simeq \frac{2\sigma}{P_0(T) - P_{\text{\tiny II.}}} \frac{v_{\text{\tiny M.}}}{v_{\text{\tiny II.}}}$$

 $r < r_{
m kp.}$ — капля испарится, $r \geqslant r_{
m kp}$ — будет расти.

Роль зародышей в образовании новой фазы. Если в очищенную от посторонних примесей воду, которая остается жидкой при $t = -10^{\circ}C$ и ниже бросить кристаллик льда (**зародыш** кристаллической фазы) или встряхнуть сосуд, то вода быстро затвердеет и ее температура быстро поднимется до $0^{\circ}C$. Если же она не была очищена от посторонних вкраплений, способных выполнять функцию зародыша кристаллической фазы, то переохлаждение наблюдаться не будет. (Подробнее — Сивухин стр. 465-466).