Chapter 2

Units of Measurements and Calculations

Much bench work in a Chemistry or Biology lab consists of preparation of reagents. This involves:

- 1) Measuring out mass and volume accurately.
- 2) Computing the required quantities of mass and volume in order to make solutions of the required concentration.

Units of Measurements and Calculations

Property Measured of Units or of Units

Symbol

Length	meter	m
Mass	kilogram	kg
Time	second	S
Temperature	Kelvin	K
Electric Current	Ampere	A
Amount of substance	mole	mol

Common prefixes used with SI units

Prefix	Symbol	Factor	Example
nico		10-12	1 minomator — 1 v 10-12 m
pico	p		1 picometer = 1×10^{-12} m
nano	n	10^{-9}	$1 \text{ nanogram} = 1 \times 10^{-9} \text{ g}$
micro	μ	10^{-6}	1 microliter (μ L) = 1x10 ⁻⁶ L
milli	m	10^{-3}	2 milliseconds (ms) = $2x10^{-3}$ s
centi	C	10^{-2}	5 centimeters (cm) = 5×10^{-2} m
deci	d	10^{-1}	1 deciliter (dL) = 1×10^{-1} L
kilo	k	10^{3}	$1 \text{ kilometer(km)} = 1 \times 10^3 \text{ m}$
mega	M	10^{6}	$3 \text{ megagrams (Mg)} = 3x10^6 \text{ g}$
giga	G	10^{9}	5 gigameters (Gm) = 5×10^9 m

Scientific Notation

- An alternative to using prefixes
- Uses powers of ten to get across size of number
- For example speed of light is 300000000 m/s
- More convenient to write 3x10⁸m/s
- Big numbers
 - More decimal point to the left
 - Count number of jumps necessary to get simple number
 - Number of jumps becomes power of ten
 - Power of ten is positive
- Small numbers
 - More decimal point to the right
 - Count number of jumps necessary to get simple number
 - Number of jumps becomes power of ten
 - Power of ten is negative

Problems on Scientific Notation

```
1/ Express 0.00345m in scientific notation
Move decimal point so that there is one significant
figure to the left of the decimal point => 3.45 x 10<sup>something</sup>
Decimal point moves to the right => negative power of 10
Takes 3 steps to the right => power is -3
Answer is 3.45 x 10<sup>-3</sup>m
2/Express 0.078s in scientific notation
[7.8 \times 10^{-2} \text{s}]
3/Express 94300kg in scientific notation
[ 9.43 x 104kg ]
```

Units of Volume

- The Cubic Metre (m³):
 This is the S.I. unit. It is the volume of a cube with an edge length of 1 m
- The Litre:

A cube with an edge length of 1 dm contains a volume of 1 cubic decimeter (1 dm³)

The litre (1L) is a more common name for 1 dm³

• The cubic centimeter (1 cm³):

This is the volume of a cube with an edge length of 1 cm

It is also called a milliliter (ml) and is 0.001 L

 $1 \mathrm{m}^3$ Is a thousand times bigger than Is a thousand times bigger than 1cm^3

Unit Conversion

- For all calculations it is necessary to convert all units to the same system.
- Length, Area and Volume
- Length:
 - $1 \text{ cm} = 1 \text{ x } 10^{-2} \text{ m}$
 - $1 \text{ mm} = 1 \times 10^{-3} \text{ m}$
- Area:
 - 1 cm²
 - \bullet = 1 X 10⁻⁴ m²
 - $1 \text{ mm}^2 = 1 \times 10^{-6} \text{ m}^2$
- Volume:
 - 1 cm3
 - \bullet = 1 x 10⁻⁶ m³
 - $1 \text{ mm3} = 1 \times 10^{-9} \text{ m}^2$
- Note: $1 \text{ cm}^3 = 1 \text{ ml} = 1 \text{ cc}$

Problems on Unit Conversion

- 1/ Convert 2.87x10⁻²cm² to m²
 - $1 \text{cm}^2 = 1 \text{X} 10^{-4} \text{m}^2$
 - take away 4 from the power of ten to change from cm² to m²
 - power goes from -2 to -6
 - Answer is 2.87x10⁻⁶ m²
- 2/ Convert 9.2x10⁻¹²m to mm
 - [9.2X10⁻⁹ mm]
- 3/ Convert 6.914x10⁸mm³ to m³
 - $[6.914 \times 10^{-1} \text{ m}^3 = 0.6914 \text{ m}^3]$
- 4/ Convert 5.68x10²m³ to cc
 - [5.68x10⁸cc]

Density

Density is the ratio of the mass of a substance to its volume.

- SI unit = kg/m³
 (using S.I. units of mass and volume)
- Other units:
 - g/cm³
 - For gases we usually use units of g/L
- Most liquids and solids have densities that range from 0.9 g/cm³ (ice) to 11.3 g/cm³ (lead)
 - density of air = 1.2 g/L

Density

- Density = mass/volume
- Density in $kg/m^3 = Density$ in $g/cm^3 \times 1000$
- Example
- Q. What is the density of lead if a cube of lead has an edge length of 2 cm and a mass of 90.7 g

```
In g/cm<sup>3</sup>: volume = 2 \text{cm x } 2 \text{cm x } 2 \text{cm} = 8 \text{cm}^3
Density = 90.7g/8 \text{ cm}^3 = 11.3 \text{ g/cm}^3
```

In kg/m³: volume = 2 x 10⁻² x 2 x 10⁻² x 2 x 10⁻² = 8 x 10⁻⁶ m³ Density = 90.7 10⁻³ kg/ 10⁻⁶ m³ = 11337 kg/m³

Question on Density

Ethylene glycol (antifreeze) has a density of 1.11 g/cm³ (g/mL).

- (a) What volume of ethylene glycol will have a mass of 1850g?
- (b) Write this volume in litres.

Uncertainty in measurement

 Any measurements has an uncertainty of at least one unit in the last digit of the reported value

Examples:

mass of 2.3g has an uncertainty of 0.1 g mass of 2.294 g has an uncertainty of 0.001 g

- A measured volume of 25.2 ml has an uncertainty of at least 0.1 ml (maybe 0.2 if 0.2 is the smallest graduation on the graduated cylinder used for measuring)
- all the measured digits in a determination including the last uncertain digit are called significant figures

Significant Figures

Significant figures come from the graduations/scale on the measuring device.

Starting with the first <u>nonzero</u> digit on the left, count this digit and all remaining digits to the right

this is the number of significant figures

- Examples:
- 1267 m has 4 significant figures
- 55.og has 3 significant figures
- 70.607 mL has 5 significant figures
- o.oo832407 s has 6 significant figures

Significant Figures....

- The number of significant figures can be uncertain in a number that ends with a zero to the left of where the decimal place would fall e.g. 1300 g
- Using scientific notation is best (less ambiguity) e.g.:
 1.3 x 10³ g (2 significant figures), 1.30 x 10³ g (three significant figures) or 1.300 x10³ (four significant figures)
- we assume all zeros written down are significant

Rules for rounding numbers

Results calculated from a measurement are as uncertain as the measurement itself

- when adding or subtracting numbers we round to the same number of decimal places as the number with the least number of decimal places
- when multiplying or dividing we round to the same number of significant figures as the number with the least number of significant figures

Rules for rounding numbers

- when rounding numbers if the leftmost digit to be dropped is less than 5 we do not change the remaining digits (for two significant figures 3.4456 rounds to 3.4)
- if the leftmost digit to be dropped is greater than 5 we increase the last digit by 1 (for three s.d 23.387 and 23.3511 round to 23.4)
- Examples
- (a) Add 1.0023 g and 4.383 g = 5.385 (3 decimal places)
- (b) Subtract 421.23 from 486 g
 - = 64.77 g = 65 g (no decimal places)

Rules for rounding numbers

- Example
- (a) Multiply 0.6238 cm by 6.6 cm 4.1 cm² (2 significant digits)
- (b) Divide 421.23 g by 486 ml o.867 g/ml (3 significant digits)
- Example

A bathtub is 13.44 dm long, 5.920 dm wide and 2.54 dm deep. Calculate its volume in Litres

V = 1 x w x d = 13.44 dm x 5.920 dm x 2.54 dm = 202 dm³ or 202 L