

Generative models

• 3D representation

Speed / Robustness

Embedded performance

Context

Main motivation

Representation Learning for Point Clouds with Variational Autoencoders

Szilárd Molnár and Levente Tamás

Szilard.Molnar@aut.utcluj.ro, Levente.Tamas@robotics-ai.org
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022

Architecture - Variational Autoencoder

 $Loss = Loss_{GIM} + Loss_{CD} + \beta |D_{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) - C|$

Hyperparameter tuning

- Learning Rate
- D_{KL} Kullback-Leibler divergence
- β , C equilibrium of the latent space

Size comparison

64x64

128x128

Training losses

	Lossco	β – loss	$Loss_{L1}$	C [nats]	learning rate
Best 32×32	9.295	100	424	150	10^{-4}
Worst 32×32	25.1	254.1	754.5	1	10^{-3}
Best 64×64	47.03	267	1919	100	10^{-4}
Best 128×128	213.8	124	8337	50	10^{-4}

ANALOG DEVICES ROBOTICS AL

GIM vs PCD representation for VAE

	Noise type	Own	3D-AAE a
	Without noise		3.8
Gau	Gaussian noise (5cm)		11.5
Gaus	sian noise (7.5cm)	9.8	22.2
Gaus	ssian noise (10cm)	10	37.38
Tim	e (on server) [ms]	0.9	1.3
Time	e (Jetson NX) [ms]	5.4	12.5

^aZamorski, M., Zięba, M., Klukowski, P., Nowak, R., et al.: Adversarial Autoencoders for Compact Representations of 3D Point Clouds. Computer Vision and Image Understanding 193, 102921 (2020)

Future work

- Controlled form generation
- Optimize data compression
- Optimize for embedded systems

References

More details in: Szilárd Molnár and Levente Tamás. Representation Learning for Point Clouds with Variational Autoencoders. InProceedings of the European Conference on Computer Vision Workshop, Tel-Aviv, Israel, October 2022.

Funding: The authors are thankful for the support of Analog Devices GMBH Romania, for the equipment list and Nvidia for graphic cards offered as support to this work. This work was financially supported by the Romanian National Authority for Scientific Research, project nr. PN-III-P2-2.1-PED-2021-3120. The authors are also thankful to KMTA and Domus Foundation for their support.