School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 4

1. Consider the following 10 instances, given so-called "gold standard" labels (assuming a 3-class problem), and the output of four supervised machine learning models:

Instance	Gold	1 2		3	$\overline{4}$
1	A	A	A or B	Α	A
2	В	A	B or C	A	?
3	A	Α	A	A	A
4	С	С	B or C	A	?
5	В	В	A or B or C	A	?
6	С	A	A or C	Α	?
7	С	A	A or B or C	A	?
8	A	С	A or B	A	A
9	A	Α	A	Α	?
10	A	A	A or C	Α	A

- (a) Where possible, calculate the **accuracy** and **error rate** of the four models.
- (b) Where possible, calculate the **precision** and **recall**, treating class A as the "positive" class. Do the same for the B and C classes, in turn, and then calculate the **macro-averaged precision** and **recall**.
- 2. What is the difference between evaluating using a **holdout** strategy and evaluating using a **cross-validation strategy**?
 - (a) What are some reasons we would prefer one strategy over the other?
- 3. For the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY			
TRAINING INSTANCES								
A	S	h	h	F	N			
В	S	h	h	T	N			
С	0	h	h	F	Y			
D	r	m	h	F	Y			
Ε	r	С	n	F	Y			
F	r	С	n	T	N			
TEST INSTANCES								
G	0	С	n	T	?			
Н	S	m	h	F	?			

- (a) Classify the test instances using the method of 0-R.
- (b) Classify the test instances using the method of 1-R.
- (c) Classify the test instances using the ID3 Decision Tree method:
 - i. Using the **Information Gain** as a splitting criterion
 - ii. Using the Gain Ratio as a splitting criterion