

# 手把手搞定渐进式Node FaaS

#### 齐穹

蚂蚁保险服务业务前端负责人







陈智浩 (齐穹) 蚂蚁数字金融线体验技术部

Needle Stack发起人 资深Node.js爱好者

Node.js早期玩家 推进落地千万DAU业务 FaaS技术构建IoT低码平台 钉钉防疫精灵机器人,服务超百万群 蚂蚁保险服务业务前端负责人 Needle Node FaaS发起者



O1 Why: 蚂蚁BFF挑战和思考

日录 02 How: Node FaaS平台关键设计和思考

03 Next: 下阶段技术探索方向



分享目标

1.技术实现思路

2.架构思考方法



# /O1 WHY

BFF研发挑战的底层逻辑思考



## 1.1.BFF研发效率的困境

"智子锁死"

| $\Diamond$                             | Busines<br>业务研发   | 应用交付"堵车"频发<br>人员、代码协作成本极高<br>质量、发布风险高 |
|----------------------------------------|-------------------|---------------------------------------|
| À                                      | À                 |                                       |
| <b>\</b>                               | Workflow<br>协作模式  | 多人协作方案<br>Git Flow / Scrum /          |
|                                        | Framework<br>代码组织 | 企业级应用框架 门槛高,非业务代码耗损大                  |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | Deliver<br>交付粒度   | 应用级别单测/集成/部署耗时冗长                      |





## 1.2.新进支持思路突破限制







# /02 HOW

Node FaaS平台关键设计和思考



## 企业级平台的设计思考

#### 技术选型

- · 基石技术是什么?
- ·用户、业务、技术三维分析技术要求
- ·关键要素对比

#### 架构设计

- · 产品化: 生命周期视角
- · 架构设计: 拓扑视角

#### 精益求精

- · 重点加固: 高可用设计
- · 极致追求: 高性能 & 渐进式研究

#### 精益求精

架构设计

技术选型



## 2.1.运行容器技术选型

1

基石技术识别

明确技术要求和优先级

**容器技术** 可靠优先:可靠性不容有失,性能可选

效率优先:逻辑隔离必选,资源隔离可选

技术

2

3

产物标准



交付规格

运行单元

# 

金融业务,高可用 粘合接口,低复杂度

业务

开发任务重,提效诉求强 一方开发者,可信可控

#### 关键要素对比验证

Node.js VM最符合当前需求



|   | 19           |                     |        |         |                      |             |
|---|--------------|---------------------|--------|---------|----------------------|-------------|
|   | 容器方案         | 数据隔离                | 资源隔离   | 启动性能    | 执行性能                 | 平台研发成本      |
| 可 | evel         | ★完全不隔离              | ★共用主線程 | ☑ 无明显耗损 | ✓ 元明显表操              | ▼ 売額外成本     |
|   | new Function | ★不提高表別              | ★共用土纺料 | ☑ 无明显耗损 | ☑元明号热摄               | ▼ 无额外成本     |
| 选 | require      | ★不提高全局变量            | ★共用主線程 | ☑ 无明显耗损 | ☑元明县系摄               | ▼ 売額外成本     |
| 方 | vm           | ▼基于v8上下文<br>不严格     | ★共用主线程 | ▼ 无明显耗损 | ★V8度层无编译优化。计<br>算性能差 | ▼ 无额外成本     |
| 案 | vm2          | ✓ vm + proxy<br>不严格 | ★共用主线程 | ▼ 无明显耗损 | Xvm耗损 + Proxy耗损      | ✓ 无额外成本     |
|   | satelty      | ☑ 独立进程              | ☑使用LXC | ★进程池耗时  | X PC通信 + VM2耗损       | ★进程池維护复杂度增加 |
|   |              |                     |        |         | ·                    |             |

#### 关键要素

| 容器方案         | 数据隔离               | 资源隔离       | 启动性能    | 执行性能                 | 平台研发成本      |
|--------------|--------------------|------------|---------|----------------------|-------------|
| eval         | ★完全不隔离             | X<br>共用主线程 | ✓无明显耗损  | ✓无明显耗损               | ✓无额外成本      |
| new Function | ★不隔离全局变量           | X<br>共用主线程 | ✓无明显耗损  | ✓ 无明显耗损              | ✓无额外成本      |
| require      | 不隔离全局变量            | ×<br>共用主线程 | ✓ 无明显耗损 | ✓ 无明显耗损              | ✓ 无额外成本     |
| vm           | ✓基于v8上下文<br>不严格    | ×共用主线程     | ✓无明显耗损  | XV8底层无编译优化,计<br>算性能差 | ✓无额外成本      |
| vm2          | ✓vm + proxy<br>不严格 | ×共用主线程     | ✓无明显耗损  | Xvm耗损 + Proxy耗损      | ✓无额外成本      |
| safeify      | ✓独立进程              | ▼使用LXC     | ×进程池耗时  | XIPC通信 + VM2耗损       | ×进程池维护复杂度增加 |

- 1.逻辑数据隔离,快发高效无风险
- 2.研发成本占优,可以快速落地
- 3.方案较为简单,可靠性较高



## 2.2.架构设计





## 2.3.重点加固-高可用方案





## 阶段成果

### 5min



选择业务分组





开发接口函数



立即部署,自动监控

#### 一站式在线开发

函数粒度开发、交付



#### 产物样例

#### 余额宝活动卡片





研发提效

400+ 半年预估节约人日



稳定可靠

**40+** 业务应用接入

蚂蚁财富



蚂蚁保险



余额宝









/O3
NEXT

下阶段技术探索方向



## 3.下一步技术探索方向





降本增效

核心指标:单QPS成本



函数调度



单机性能



**√**/~



# 感谢聆听,期待交流



