AFRE 835: Introductory Econometrics

Chapter 15: Instrumental Variable Estimation and 2SLS

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 33

Introduction

- A key issue in applied econometrics is the potential for one or more of the regressors being correlated with the unobservable factors captured by the error term *u*.
- We have already seen a number of tools for dealing with this problem, including
 - The use of proxy variables
 - The use of fixed effects or first differencing to control for time constant omitted variables.
- This chapter introduces another approach, the method of instrumental variables.
- We will focus on its application to a simple cross-section,
 - ... though it can be applied as well to time series, pooled cross sections or panel data settings.

Outline

- Motivating the Use of Instrumental Variables
- 2 IV in the Multiple Regression Model
- Two Stage Least Squares

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

3 / 33

Motivating the Use of Instrumental Variables

Omitted Variables in a Simple Regression Model

Consider again the classic returns to education model where

$$In(wage) = \beta_0 + \beta_1 educ + \beta_2 abil + e \tag{1}$$

 Without data on abil (or a reasonable proxy for it), we are left with the model

$$In(wage) = \beta_0 + \beta_1 educ + u \tag{2}$$

where $u = \beta_2 abil + e$ is likely correlated with *educ*, leading to omitted variables bias.

- The key to the instrumental variables approach is to find a way to break the correlation between *educ* and *u*.
- What we need is a new piece of information an instrumental variable
 that is correlated with educ but not with u.

The Generic Problem

Suppose that we have a simple regression model with

$$y = \beta_0 + \beta_1 x + u \tag{3}$$

where $Cov(x, u) \neq 0$.

- An instrumental variable z needs to satisfies two conditions
 - **1** Instrument relevance: $Cov(z, x) \neq 0$
 - i.e., z must be linked positively or negatively to the endogenous regressor x.
 - Formally, in the population model

$$x = \pi_0 + \pi_1 z + v \tag{4}$$

it must be the case that $\pi_1 \neq 0$.

- **2** Instrument exogeneity: Cov(z, u) = 0
- While we cannot test the instrument exogeneity assumption, we can test instrument relevance using a sample of observations on (x, z).

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 33

Motivating the Use of Instrumental Variables

Examples of Instruments

Wooldridge lists a number of examples

- In a model regressing wages on education,
 - IQ would likely be a poor instrument, satisfying relevance, but violating exogeneity;
 - 2 Mothers or Father's education might be somewhat better, but one can still think of reasons why it might be correlated with unobservables like ability;
- In a model regressing final exam score on the number of days of classes skipped,
 - ① Distance from school would likely satisfy the relevance assumption, but could still violate exogeneity by being correlated with household income, etc.
- In a model of the impact of military service on wages during the Vietnam War Era
 - Oraft numbers, randomly assigned to 18 year-olds, would serve as a useful instrument.

Using the Instrumental Variable

• In a simple regression model, it is clearly the case that

$$Cov(z, y) = \beta_1 Cov(z, x) + Cov(z, u)$$
 (5)

- Given instrument exogeneity, the second term on the right-hand side of equation (5) is zero.
- If the instrumental variable also satisfies the relevance assumption, we can divide through by Cov(z,x) to solve for β_1 as

$$\beta_1 = \frac{Cov(z, y)}{Cov(z, x)} \tag{6}$$

• Using the sample counterparts to these population moments yields the instrumental variables (IV) estimator for β_1

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^n (z_i - \bar{z})(x_i - \bar{x})}$$
(7)

• The intercept is estimated as $\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 33

Motivating the Use of Instrumental Variables

The Variance of the IV Slope Estimator

• Under the assumption of homoskedasticity (and the additional assumption that $E(u^2|z) = \sigma^2$), the asymptotic variance of the IV slope estimator in the simple regression model is given by

$$\frac{\sigma^2}{n\sigma_x^2 \rho_{x,z}^2} \tag{8}$$

where σ_x^2 is the population variance of x and $\rho_{x,z}$ is the population covariance between x and z.

- Four factors influence the variance of the slope estimator:
 - **1** The residual variance σ^2 ;
 - ② The sample size n;
 - **3** The variability of x (i.e., σ_x^2); and
 - **1** The strength of the connection between x and z (i.e., $\rho_{x,z}$).

Estimating the Asymptotic Standard Error for $\hat{\beta}_1$

• A consistent estimator for the standard error for $\hat{\beta}_1$ is given by the square root of

$$\frac{\hat{\sigma}^2}{SST_x \cdot R_{x,z}^2} \tag{9}$$

where $\hat{\sigma}^2$ is based on the IV residuals and $R_{x,z}^2$ is the R-squared from a regression of x on z (and a constant).

- The only difference between this variance and the corresponding OLS estimator's variance is the $R_{x,z}^2$ term, which will make the OLS variance smaller.
 - \dots so that if x is not endogenous, then the use of the IV estimator will unnecessarily increase the variance of the slope estimator.
 - \dots of course, this should not be surprising, since, if x is exogenous, then OLS is *BLUE*.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

Motivating the Use of Instrumental Variables

Example #1: The Returns to Education for Women (mroz.dta) - code

```
First Stage Regression - Returns to Education for Women
educ fatheduc, robust;
outreg using "'TableA'", bdec(3) se tex title(IV Relevance)
     ctitle("", fatheduc) replace;
     educ motheduc, robust;
outreg using "`TableA'", bdec(3) se tex title(IV Relevance)
     ctitle("", motheduc) merge;
IV Regression
lwage educ, robust;
outreg using "`TableB'", bdec(3) se tex title(OLS and IV Estimates)
     ctitle("", OLS) replace;
ivregress 2sls lwage (educ = fatheduc), robust;
outreg using "`TableB'", bdec(3) se tex title(OLS and IV Estimates)
     ctitle("", feduc) merge;
ivregress 2sls lwage (educ = motheduc), robust;
outreg using "`TableB'", bdec(3) se tex title(OLS and IV Estimates)
     ctitle("", meduc) merge;
```

Example #1: The Returns to Education for Women (mroz.dta)

Consider three possible instruments: fatheduc and motheduc

<u> </u>	√ Relevanc	e
	fatheduc	motheduc
fatheduc	0.282	
	(0.023)**	
motheduc		0.295
		(0.024)**
_cons	9.799	9.560
	(0.214)**	(0.242)**
R^2	0.20	0.19
N	753	753
* n <	< 0.05· ** n <	< 0.01

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

11 / 33

Motivating the Use of Instrumental Variables

Example #1: The Returns to Education for Woman (cont'd)

OLS and IV Estimates

	OLS	IV-fatheduc	IV-motheduc
educ	0.109	0.059	0.039
cauc	(0.013)**	(0.037)	(0.039)
_cons	-0.185	0.441	0.702
	(0.171)	(0.464)	(0.493)
R^2	0.12	0.09	0.07
Ν	428	428	428

* p < 0.05; ** p < 0.01

Notice what happens to the standard errors using the IV estimator. It's not clear that the education effect significantly different from OLS estimate.

Example #2: The Returns to Education for Men (WAGE2.dta)

Consider three possible instruments: feduc, meduc, and sibs

	IV Re	levance	
	feduc	meduc	sibs
feduc	0.290 (0.021)**		
meduc		0.281 (0.024)**	
sibs			-0.228 (0.028)**
_cons	10.650 (0.225)**	10.575 (0.261)**	14.139 (0.116)**
R ² N	0.18 741	0.13 857	0.06 935

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 33

Motivating the Use of Instrumental Variables

Example #2: The Returns to Education for Men (cont'd)

OLS	and	IV	Estimates
OLJ	anu	ΙV	

OLS	IV-feduc	IV-meduc	IV-sibs
0.060	0.097	0.111	0.122
(0.006)**	(0.016)**	(0.017)**	(0.025)**
5.973	5.473	5.280	5.130
(0.082)**	(0.217)**	(0.226)**	(0.330)**
0.10	0.05	0.03	
935	741	857	935
	0.060 (0.006)** 5.973 (0.082)** 0.10	0.060 0.097 (0.006)** (0.016)** 5.973 5.473 (0.082)** (0.217)** 0.10 0.05	0.060 0.097 0.111 (0.006)** (0.016)** (0.017)** 5.973 5.473 5.280 (0.082)** (0.217)** (0.226)** 0.10 0.05 0.03

* p < 0.05; ** p < 0.01

The direction of the change in $\hat{\beta}_1$ is inconsistent with the omitted variables bias story.

The Problem of Weak Instruments

- One consequence of using the IV estimator is that the standard errors can become large.
- This is particularly true if $\rho_{z,x}$ is small.
- A more serious problem arises if z is not truly exogenous.
 - ... In this case, the IV estimator can be seriously biased.
- For the IV estimator,

$$plim\hat{\beta}_{1,IV} = \beta_1 + \frac{Corr(z,u)}{Corr(z,x)} \cdot \frac{\sigma_u}{\sigma_x}$$
 (10)

... whereas

$$plim\hat{\beta}_{1,OLS} = \beta_1 + Corr(x, u) \cdot \frac{\sigma_u}{\sigma_x}$$
 (11)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 33

Motivating the Use of Instrumental Variables

The Problem of Weak Instruments (cont'd)

 Combining these results, the relative inconsistency of IV versus OLS is given by

$$\frac{plim\left[\hat{\beta}_{1,IV} - \beta_1\right]}{plim\left[\hat{\beta}_{1,OLS} - \beta_1\right]} = \frac{Corr(z,u)}{Corr(x,u)} \cdot \frac{1}{Corr(z,x)}$$
(12)

- Even if Corr(z, u) < Corr(x, u), a weak instrument (a small Corr(z, x)) can lead to greater inconsistency using IV than using OLS.
- It is not enough that the instrument be statistically significant in the relevance test.
- Staiger and Stock (1997) suggest rules of thumb for avoiding weak instruments.

Example: Birthweight and Smoking

OLS and IV Estimates

RHS variable:	Packs	Bwght (OLS)	Bwght (IV-cigprice)
cigprice	0.00028		
	(0.00078)		
packs		-0.09	2.99
		(0.02)**	(8.98)
_cons	0.06743	4.77	4.45
	(0.10254)	(0.01)**	(0.94)**
R^2	0.00	0.02	
N	1,388	1,388	1,388

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

17 / 33

IV in the Multiple Regression Model

IV in the Multiple Regression Model

- Extending the IV estimator to the multiple regression model setting is straightforward.
- Wooldridge introduces some slightly different notation, with the regression model:

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1 \tag{13}$$

where y_2 denotes our (potentially) endogenous variable and z_1 denotes an additional exogenous variable (with $E(u_1|z_1) = 0$).

- Equation (13) is often referred to as a structural equation for y_1 .
- An example in modeling of the returns to education would be to specify $y_1 = ln(wages)$, $y_2 = educ$ and $z_1 = exper$.

Instrument Assumptions

- Our instrument, denoted by z_2 , must still satisfy two conditions:
 - **1** Instrument exogeneity: $Cov(u_1, z_2) = 0$.
 - 2 Instrument relevance:

... This condition is bit more complex in this setting, requiring $\pi_2 \neq 0$ in the **reduced form model**

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v_2. \tag{14}$$

where, by construction, $E(v_2) = 0$ and $Cov(z_j, v_2) = 0$ (j = 1, 2). . . . Essentially, we require that z_2 contribute something (over and above z_1) in *explaining* the variation in y_2 .

- Generalizing the model further to include additional exogenous variables to our structural model for y_1 is straightforward.
 - ... It boils down to treating z_1 as a vector rather than a scalar above, including in the reduced form model in equation (14)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 33

IV in the Multiple Regression Model

Deriving the IV Estimator

- The IV estimator makes use of the following three assumptions:
 - **1** E(u) = 0;
 - **2** $Cov(z_1, u) = 0$;
 - **3** $Cov(z_2, u) = 0.$
- The sample counterpart to these assumptions imply the underlying instrumental variable (IV) estimator:
- ullet The IV estimator in matrix form is $\hat{eta} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y}_1$ where

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{z}_1 & \boldsymbol{z}_2 \end{bmatrix}$$
 and $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{y}_2 & \boldsymbol{z}_1 \end{bmatrix}$ (15)

Wooldridge Example 15.1 (CARD.dta) - IV code

. ivregress 2sls lwage exper expersq black smsa south (educ = nearc4), robust;

Instrumental variables (2SLS) regression

Number of obs = 3,010 Wald chi2(6) = 792.07 Prob > chi2 = 0.0000 R-squared = 0.2252 Root MSE = .39058

lwage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
educ	.1322888	.0485213	2.73	0.006	.0371888	.2273889
exper	.107498	.0211129	5.09	0.000	.0661175	.1488785
expersq	0022841	.0003463	-6.59	0.000	0029629	0016053
black	1308019	.0514513	-2.54	0.011	2316445	0299592
smsa	.1313237	.0297684	4.41	0.000	.0729787	.1896686
south	1049005	.0228997	-4.58	0.000	1497831	0600179
_cons	3.752781	.8167498	4.59	0.000	2.151981	5.353582

Instrumented: educ

Instruments: exper expersq black smsa south nearc4

Uses college proximity as a instrument for educ.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

21 / 33

IV in the Multiple Regression Model

	Relevance	OLS	IV(nearc4)
RHS Variable:	educ	lwage	Iwage
nearc4	0.337 (0.083)**		
educ		0.074 (0.004)**	0.132 (0.049)**
exper	-0.410	0.084	0.107
	(0.034)**	(0.007)**	(0.021)**
expersq	0.001	-0.002	-0.002
	(0.002)	(0.000)**	(0.000)**
black	-1.006	-0.190	-0.131
	(0.090)**	(0.017)**	(0.051)*
smsa	0.404	0.161	0.131
	(0.085)**	(0.015)**	(0.030)**
south	-0.291	-0.125	-0.105
	(0.079)**	(0.015)**	(0.023)**
_cons	16.659	4.734	3.753
	(0.176)**	(0.070)**	(0.817)**
R^2	0.47	0.29	0.23

2017 Herriges (MSU)

Do not quote/distribute without permission

Multiple Instruments

- There are going to be settings in which we have more than one instrumental variable for an endogenous variable.
- In the modeling the returns to education, we have already considered four instruments for education:
 - Mother's education
 - 2 Father's education
 - Number of siblings
 - Proximity to a four year college
- The question is how best to use these competing instruments.
- Using them individually leaves us with competing sets of parameter estimates.
- Instead, we want to consider how to use them in combination.
 - ... A linear regression provides a natural approach for doing so.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 33

Two Stage Least Squares

Multiple Instruments with a Single Endogenous Regressor

• Consider again our structural model:

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1 \tag{16}$$

where now we have, say, two instrumental variables z_2 and z_3 .

- The assumptions that our instruments do not appear in (16) and are uncorrelated with u_1 are referred as **exclusion restrictions**.
- The reduced form expression for our endogenous variable becomes:

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + v_2$$

= $y_2^* + v_2$ (17)

where $E(v_2) = 0$ and $Cov(z_i, v_2) = 0$ j = 1, 2, 3.

- Effectively, we have segments y_2 into two parts
 - \bigcirc y_2^* which is uncorrelated with u_1
 - 2 v_2 which is potentially correlated with u_1 .

Forming the Instrument for y_2

• We then form the instrument for y_2 using OLS, yielding

$$\hat{y}^2 = \hat{\pi}_0 + \hat{\pi}_1 z_1 + \hat{\pi}_2 z_2 + \hat{\pi}_3 z_3 \tag{18}$$

Note: It is key that z_1 is included in (18).

- Our instruments, z_2 and z_3 , must still satisfy two conditions:
 - **1** Instrument exogeneity: $Cov(u_1, z_i) = 0$ j = 2, 3.
 - Instrument relevance: In the reduced form model

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + v_2. \tag{19}$$

we need either $\pi_2 \neq 0$ or $\pi_3 \neq 0$.

i.e., similar to the single instrument case, we require that z_2 and z_3 together contribute something (over and above z_1) in explaining the variation in y_2 .

- Again, generalizing the model further to include additional exogenous variables to our structural model for y_1 is straightforward.
 - ... It boils down to treating z_1 as a vector rather than a scalar above, including in the reduced form model in (19)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

Two Stage Least Squares

The Two Stage Least Squares (2SLS) Estimator

- The IV estimator in this case solves the following set of equations:

 - 2 $\sum_{i=1}^{n} z_{i1}(y_{i1} \hat{\beta}_0 \hat{\beta}_1 y_{i2} + \hat{\beta}_2 z_{i1}) = 0;$ 3 $\sum_{i=1}^{n} \hat{y}_{i2}(y_{i1} \hat{\beta}_0 \hat{\beta}_1 y_{i2} + \hat{\beta}_2 z_{i1}) = 0.$
- This is also known as the Two Stage Least Squares (2SLS) **Estimator** since it can be obtained using the two stages:
 - **1** Regressing y_2 on all of the exogenous variables z_1 , z_2 and z_3 , and forming \hat{y}_2 .
 - 2 Regressing y_1 on z_1 and \hat{y}_2 (and a constant).

Important note: the standard errors from this second stage regression will not be correct, but must be adjusted to reflect the use of an estimator for y_2^* .

Stata does this correction for you.

Example #1: MROZ (female returns to education)

	OLS and I	V Estimates	
	OLS	IV Stage 1	IV Stage 2
educ	0.1075		0.0614
	(0.0132)**		(0.0332)
exper	0.0416	0.085	0.0442
	(0.0153)**	(0.026)**	(0.0155)**
expersq	-0.0008	-0.002	-0.0009
	(0.0004)	(0.001)*	(0.0004)*
fatheduc		0.185	
		(0.024)**	
motheduc		0.186	
		(0.026)**	
_cons	-0.5220	8.367	0.0481
	(0.2017)**	(0.280)**	(0.4278)
2017 Herriges (MSU)	Do not quote/distri	bute without permission	on Spi
N	428	753	428

Two Stage Least Squares

Miscellaneous 2SLS Issues/Topics

- The 2SLS estimator is more susceptible to the problem multicollinearity because
 - \hat{y}_2 will have less variability than y_2 .
 - $\mathsf{Corr}(\hat{y}_2, z_1)$ will generally be much higher than $\mathsf{Corr}(y_2, z_1)$.
- One can have multiple endogenous regressors, but this requires at least one instrument for each regressor.
- It is important not to rely on 2SLS *R*-squared or *SSR*'s reported for most regression packages.
 - ... Instead one should use Stata's test command, which computes the correct F-stats.
- 2SLS can be adapted to
 - allow for heteroskedasticity (See Wooldridge 15.6)
 - time series and panel data settings (See Wooldridge Sections 15.7 and 15.8, respectively)

IV Solution to the Errors-in-Variables Problem

• Recall in the classic error-in-variables (CEV) setting, the observed (mis-measured) variable $x_1 = x_1^* + e_1$ is correlated with the composite error term $\tilde{u} = u - \beta_1 e_1$, since

$$y = \beta_0 + \beta_1 x_1^* + \beta_2 x_2 + u$$

$$= \beta_0 + \beta_1 (x_1 - e_1) + \beta_2 x_2 + u$$

$$= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + (u - \beta_1 e_1)$$

$$= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \tilde{u}$$
(20)

• To the extent that there is an instrument for our mis-measured variable, and the instrument is not correlated with the measurement error, one can reduce to attenuation bias due to measurement error.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

29 / 33

Two Stage Least Squares

Testing for Endogeneity - The Control Function Approach

- We've already seen that 2SLS is less efficient than OLS when our regressors are exogenous.
- It makes sense, then, to test for exogeneity.
 - ... If we fail to reject exogeneity, then we can return to using OLS.
- The test uses what's known as a **control function** approach.
- Suppose we have a single endogenous variable, two exogenous variables and two instruments; i.e., a structural equation for y_1 given by

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \beta_3 z_2 + u_1 \tag{21}$$

and a reduced form equation for y_2 given by;

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + \pi_4 z_4 + v_2 \tag{22}$$

with $Cov(z_i, u_1) = 0 \ \forall j$.

Testing for Endogeneity - The Control Function Approach

- The only way in which y_2 is correlated with u_1 is if v_2 is correlated with u_1 .
- We can segment u_1 into two components:
 - The part that is correlated with v_2
 - The part that is uncorrelated with v_2
- We do this by writing u_1 as $\delta_1 v_2 + e_1$, where $Corr(e_1, v_2) = 0$ and $E(e_1) = 0$.
- If $\delta_1 = 0$, then $u_1 = e_1$ and $Corr(y_2, u_1) = 0$.
- While we do not have v_2 , we can use the estimated residuals from the reduced form regression for y_2 to obtain \hat{v}_2 and estimate

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \beta_3 z_2 + \delta_1 \hat{v}_2 + error.$$
 (23)

• Testing $H_0: \delta_1 = 0$ is our test for exogeneity.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

31 / 33

Two Stage Least Squares

A Few More Notes on the Endogeneity Test

- Even before testing for endogeneity, one should compare the OLS and 2SLS estimates.
- If they are substantially different, that suggest potential endogeneity problem
 - ... or other problems with the underlying assumptions.
- The estimates of the β_j 's in equation (23) will be identical to those obtained via 2SLS
- The 2SLS and control function approaches both break the endogeneity, but using different tacks:
 - 2SLS subdivides y_2
 - The control function approach subdivides u_1 .

Testing Overidentifying Restrictions

- If our model is just identified, then we cannot test the suitability of the instrument.
- However, with multiple instruments for a single endogenous variable, we can test the implied *overidentifying restrictions*.
 - ... The basic idea is that we can obtain separate estimates of the parameter on our endogenous variables for each instrument.
 - ... If all of our instruments are valid, these estimates should be the same (asymptotically).
- Three steps are involved in the test
 - **①** Estimate the structural equation for y_1 and construct \hat{u}_1 .
 - 2 Regress \hat{u}_1 on all exogenous variables, obtaining R_1^2 .
 - ① Under the null hypothesis that all of the IV's are uncorrelated with u_1 , $nR_1^2 \stackrel{a}{\sim} \chi_q^2$ where q is the number of instrumental variables minus the number of endogenous variables.
- Note: Passing this test is no guarantee that the instruments are fine.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

33 / 33