EE2227 PRESENTATION-1

D.SIVANI

EE18BTECH11012

12 February 2020

Content

- 2018 GATE paper(EE section)
- Question No:9

Question

Match the transfer functions of the second-order systems with the nature of the systems given below

Transfer functions

$$P: \frac{15}{s^2+5s+15}$$

Q:
$$\frac{25}{s^2+10s+25}$$

R:
$$\frac{35}{s^2+18s+35}$$

Systems

1:Overdamped

2:critically damped

3 : Underdamped

$$(A)P-1,Q-2,R-3$$

$$(C)P-3,Q-2,R-1$$

Solution

The standard transfer function $H(s)=\frac{\omega^2}{s^2+2\zeta\omega+\omega^2}$ where " ω " is natural frequency and " ζ " is damping factor

then compare the given functions with this we get

1. For Transfer function $H(s) = \frac{15}{s^2 + 5s + 15}$,

$$\omega^2 = 15$$

$$2\zeta\omega = 5$$
 then we get $\zeta = \sqrt{\frac{5}{12}} {<} 1$

Solution

2. For Transfer function $H(s) = \frac{25}{s^2 + 10s + 25}$,

$$\omega^2 = 25$$

$$2\zeta\omega = 10$$
 then we get $\zeta = \sqrt{\frac{5}{5}} = 1$

3. For Transfer function $H(s) = \frac{35}{s^2 + 18s + 35}$,

$$\omega^2 = 35$$

$$2\zeta\omega = 18$$
 then we get $\zeta = \sqrt{\frac{81}{35}}{>}1$

Solution contd...

The damping of a system can be described as being one of the following:

Overdamped

The system returns to equilibrium without oscillating. For this $\zeta > 1$.

Critically damped

The system returns to equilibrium as quickly as possible without oscillating. For this $\zeta=1$

Underdamped

The system oscillates(at reduced frequency compared to the undamped case) with the amplitude gradually decreasing to zero.For this $0<\!\zeta\!<\!1$

Undamped

The system oscillates at its natural resonant frequency($\omega 0$).

For this $\zeta = 0$

Final Analysis

- As for P: ζ <1 It is Underdamped system
- As for Q: $\zeta = 1$ It is critically damped system.
- As for R: $\zeta > 1$ It is an overdamped system.

So,P-3,Q-2,R-1. Option (C) is correct.

Graphs of transfer functions

Figure: Different systems based on ζ

The End