CS581 Theory of Computation: Homework #5

Due on March 2 2016 at 2:00pm

Harry H. Porter Winter 2016

Konstantin Macarenco

Problem 5.3

Find a match in the following instance of the Post Correspondence Problem.

$$\left\{ \left\lceil \frac{ab}{abab} \right\rceil, \left\lceil \frac{b}{a} \right\rceil, \left\lceil \frac{aba}{b} \right\rceil, \left\lceil \frac{aa}{a} \right\rceil \right\}$$

Solution

$$\frac{ab}{abab}, \frac{ab}{abab}, \frac{aba}{b}, \frac{b}{a}, \frac{b}{a}, \frac{aa}{a}, \frac{aa}{a}$$

Problem 5.4

If $A \leq_m B$ and B is a regular language, does that imply that A is a regular language? Why or why not?

Solution

No it doesn't imply that A is regular, for example: $\{a^nb^n \mid n \geq 0\}$ can be reduced to $\{a^n\} \mid n \geq 0$, by following procedure: Check if input $\in a^n, b^n$, output a^n it is, and b if is not.

Description of the TM form problems 1 and 2.

- 1. $Q = \{A, B, C, D\}$
- 2. $\Sigma = \{0, 1\}$
- 3. $\Gamma = \{0, 1, _\}$
- 4. $\delta =$
 - 1. $\delta(A,0) = (B,1,R)$
 - 2. $\delta(A, 1) = (A, 1, R)$
 - 3. $\delta(A, _) = (C, _, L)$
 - 4. $\delta(B,0) = (D,0,L)$
 - 5. $\delta(B, 1) = (A, 0, R)$
 - 6. $\delta(B, L) = (D, L, L)$
- 5. $q_0 = A$
- 6. $q_{accept} = C$
- 7. $q_{reject} = D$

Problem 1

Convert this into and instance of the PCP.

Solution

Convert the TM into instance of PCP by adding required domino tiles:

Part 1: add first tile

$$\frac{\#}{\#\#Aw_1w_2w_3...}$$

Part 2: Take care of the right transitions

$$\frac{A0}{1B} \frac{A1}{1A} \frac{B1}{0A}$$

Part 3: Take care of the left transitions

Part 4: For every $a \in \Gamma$ put $\frac{a}{a}$

$$\frac{0}{0} \frac{1}{1} =$$

Part5

$$\frac{\#}{\#} \; \frac{\#}{-\#}$$

Part 6: Accept states

$$\frac{0C}{C} \frac{1C}{C} \frac{C}{C} \frac{C0}{C} \frac{C1}{C} \frac{C}{C}$$

Part7: Final domino

$$\frac{C\#\#}{\#}$$

Problem 2

Show that the string "01" is in the language recognized by this TM by showing a solution to your instance of the PCP.

Solution

$$\frac{\#}{\#\#A01}\frac{\#}{\#}\frac{A0}{1B}\frac{1}{1}\frac{\#}{\#}\frac{1}{1}\frac{B1}{0A}\frac{\#}{\#}\frac{1}{1}\frac{0A_{-}}{C0_{-}}\frac{\#}{\#}\frac{1}{1}\frac{C0}{C}\frac{\#}{\#}\frac{1C}{C}\frac{\#}{\#}\frac{C\#\#}{\#}$$

$$\frac{\#}{\#\#A01_\#}\frac{\#}{1B}\frac{A0}{1}_\#\frac{1}{_}\#\frac{B1}{1}\frac{B1}{0A}_\#\frac{\#}{1}\frac{1}{C0}_\#\frac{\#}{1}\frac{1}{C}_\#\frac{\#}{C}_\#\frac{C}_\#\frac{C\#}{C}\#\#\frac{C\#}{\#}$$