# HE3021 Tutorial 6 Submission

Lui Yu Sen

3/16/2021

 $\mathbf{Q}\mathbf{1}$ 

## Plot of y against time



## PACF plot for y



### ACF plot for y



```
adftest <- adf.test(ts(first_series$y))
## Warning in adf.test(ts(first_series$y)): p-value smaller than printed p-value
pp <- pp.test(first_series$y)</pre>
```

## Warning in pp.test(first\_series\$y): p-value smaller than printed p-value

The ACF plot has an exponentially decaying ACF. ADF test returned 0.01 and PP test returned 0.01, thus we have sufficient evidence to reject the null hypothesis that there exists a unit root at 0.05 significance level. The time series is likely stationary. The ACF is decaying while the PACF has a significant spike at t-1. Thus, it is likely that the appropriate model is AR(1).

 $\mathbf{c}$ 

```
Arima(first_series$y, order = c(1,0,0), include.mean = TRUE)

## Series: first_series$y
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
```

```
## ar1 mean
## 0.8003 9.9665
## s.e. 0.0086 0.0696
##
## sigma^2 estimated as 0.9694: log likelihood=-7016.58
## AIC=14039.17 AICc=14039.17 BIC=14058.72
```

The PACF plot had t-1 as the significant spike, thus I started with and ARIMA(1,0,0) model. The AIC value generated was  $1.4039165 \times 10^4$ .

```
Arima(first_series$y, order = c(2,0,0), include.mean = TRUE)
```

```
## Series: first_series$y
## ARIMA(2,0,0) with non-zero mean
##
## Coefficients:
##
           ar1
                   ar2
                          mean
         0.7922 0.0102 9.9666
##
## s.e. 0.0141 0.0142 0.0704
## sigma^2 estimated as 0.9695:
                                log likelihood=-7016.33
## AIC=14040.65
                 AICc=14040.66
                                 BIC=14066.72
```

AR(2) generated a larger AIC of  $1.4040654 \times 10^4$ , so AR(1) was the closer fitting model. AR(3) generated a larger AIC of  $1.4040342 \times 10^4$ , thus I chose AR(1).

#### d

To check for autocorrelation in the residuals, I fitted an AR(2) model for the residuals and did an F-test.

```
residuals <- Arima(first_series$y, order = c(1,0,0), include.mean = TRUE)$residuals residuals_frame <- data.frame(cbind(residuals[3:5000], residuals[2:4999], residuals[1:4998])) colnames(residuals_frame) <- c("t","t1","t2") residuals_lm <- lm(t ~ t1 + t2 - 1, data = residuals_frame) # p-value 0.3232, cannot reject null hyp th summary(residuals_lm)
```

```
##
## lm(formula = t ~ t1 + t2 - 1, data = residuals_frame)
##
## Residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -3.5354 -0.6501 0.0005 0.6680 3.4194
##
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
                 0.01414 -1.109
## t1 -0.01569
                                     0.267
## t2 0.01407
                 0.01408
                           0.999
                                    0.318
## Residual standard error: 0.9803 on 4996 degrees of freedom
## Multiple R-squared: 0.0004521, Adjusted R-squared:
## F-statistic: 1.13 on 2 and 4996 DF, p-value: 0.3232
```

The p-value is 0.3232, thus we cannot reject the null hypothesis that the partial effects of lags  $u_{t-1}$  and  $u_{t-2}$  are equal to 0. Thus there is no serial correlation of lag 2. Thus, the residuals resemble white noise. Using the forecast package, a Ljung-Box test was also conducted directly on the ARIMA model object.

```
checkresiduals(Arima(first_series$y, order = c(1,0,0), include.mean = TRUE))
```

### Residuals from ARIMA(1,0,0) with non-zero mean



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0) with non-zero mean
## Q* = 6.5518, df = 8, p-value = 0.5857
##
## Model df: 2. Total lags used: 10
```

The high p-value of 0.5857 means that we cannot reject the null hypothesis of no serial correlation under significance level of 0.05. I also conducted a Breusch-Godfrey test using the lmtest package by first manually regressing an AR(1) model.

```
y_lagged <- as.data.frame(cbind(first_series$y[2:5000], first_series$y[1:4999]))
colnames(y_lagged) <- c("y_t", "y_tlag1")
modelar1 <- lm(y_t ~ y_tlag1, data = y_lagged)
bgtest_results <- c()
for (n in 1:24){
    bgtest_results <- c(bgtest_results, bgtest(modelar1, data = y_lagged, order = n)$p.value)
}
range(bgtest_results)</pre>
```

#### ## [1] 0.2532732 0.5977828

Testing lags from 1 to 24 for any seasonal lags returned a range of 24 values all above 0.05 significance level. Thus we cannot reject null hypothesis of no serial correlation. The residuals appear to be white noise.

 $\mathbf{2}$ 

 $\mathbf{a}$ 

$$E(y_i|x_{i1}, x_{i2}) = E(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i|x_{i1}, x_{i2})$$
(1)

$$= E(\beta_0|x_{i1}, x_{i2}) + E(\beta_1 x_{i1}|x_{i1}, x_{i2}) + E(\beta_2 x_{i2}|x_{i1}, x_{i2}) + E(u_i|x_{i1}, x_{i2})$$
(2)

$$= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + 0 = P(y_i = 1 | x_{i1}, x_{i2})$$
(3)

b

$$Var(y_i|x_{i1}, x_{i2}) = Var(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i|x_{i1}, x_{i2})$$

$$\tag{4}$$

$$= 0 + 0 + Var(u_i|x_{i1}, x_{i2}) \tag{5}$$

$$= P(y_i = 1|x_{i1}, x_{i2})(1 - P(y_i = 1|x_{i1}, x_{i2}))$$
(6)

$$\implies Var(u_i|x_{i1}, x_{i2}) = f(x_{i1}, x_{i2}) = (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2})[1 - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2})] \tag{7}$$

Thus a linear probability model cannot be homoskedastic, because it is a Bernoulli process and the error variance is a function of the independent variables.

 $\mathbf{c}$ 

An increase of \$1000 in income leads to increase of 0.08 chance of buying a car, holding education constant. An increase of 1 year of education leads to increase of 0.01 chance of buying a car holding income constant.

 $\mathbf{d}$ 

$$\hat{y}_i = -0.1 + 0.08 \cdot 8 + 0.01 \cdot 16 = 0.7$$

There is a 0.7 chance that this person has a car.

 $\mathbf{e}$ 

$$\hat{y}_i = -0.1 + 0.08 \cdot 15 + 0.01 \cdot 16 = 1.26 > 1$$

There is a 1.26 chance that this person has a car. This result does not make sense, since  $P(y = 1|x_{i1}, x_{i2}) \in [0, 1]$ . To solve it, let

$$\hat{y}_i = \begin{cases} 0, & \text{if } \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} < 0 \\ 1, & \text{if } \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} > 1 \\ \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}, \hat{y}_i \in [0, 1] \end{cases}$$

Then,  $\hat{y}_i = -0.1 + 0.08 \cdot 15 + 0.01 \cdot 16 = 1$ , there is probability of 1 that this person has a car.

3

 $\mathbf{a}$ 

Let

$$CDF = \Phi(z), PDF = \phi(z), z = \beta_0 + \beta_1 x_1 + beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5$$
 (8)

$$\frac{\partial P(y=1|X)}{\partial x_1} = \frac{\partial}{\partial x_1} \int_{-\infty}^{z} \phi(z) dx_1 = (2\pi)^{-\frac{1}{2}} \cdot e^{-\frac{z^2}{2}} \cdot \beta_1$$
(9)

b

```
model <- glm(inlf ~ nwifeinc + educ + kidslt6 + age + exper,</pre>
           family = binomial(link = "probit"),
           data = mroz)
summary(model)
##
## Call:
## glm(formula = inlf ~ nwifeinc + educ + kidslt6 + age + exper,
     family = binomial(link = "probit"), data = mroz)
##
## Deviance Residuals:
     Min
            1Q
                 Median
                              3Q
                                     Max
## -2.5942 -0.9371 0.4342
                         0.8934
                                  2.3229
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.764541 0.439490
                               1.740 0.0819 .
## nwifeinc -0.011371 0.004857 -2.341
                                       0.0192 *
            ## educ
## kidslt6
           ## age
            0.069148 0.007556
                               9.151 < 2e-16 ***
## exper
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 1029.75 on 752 degrees of freedom
## Residual deviance: 813.08 on 747 degrees of freedom
## AIC: 825.08
##
## Number of Fisher Scoring iterations: 4
Using the TI-84's normal CDF function:
```

```
\Phi(0.76454 + (-0.11371)20 + 0.131532 \cdot 10 + (-0.057919)30 + 0.069148 \cdot 10) = \Phi(0.806351) = 0.78998
```

 $\mathbf{c}$ 

$$\frac{\partial P(y=1|X)}{\partial x_{exper}} = \frac{\partial}{\partial x_{exper}} \int_{-\infty}^{z} \phi(z) dx_{exper} = (2\pi)^{-\frac{1}{2}} \cdot e^{-\frac{0.806351^{2}}{2}} \cdot 0.069148 = 0.019930$$