TransformerAssisted Representation Learning for Deep Reinforcement Learning

Unique Divine (u.divine@columbia.edu), Erik Skalnes (eas2301@columbia.edu)

Columbia University

Motivation

- Raw sensory inputs often have high dimensionality, making them difficult to work with in the context of reinforcement learning (RL):
 - Sample-inefficient
- Computationally heavy
- Auxiliary tasks have been shown to enhance state representations in RL → better performance

Objectives

- Improve sample efficiency in sparse-reward, partially observable environments
- Train for an unsupervised auxiliary task to efficiently learn better latent representations for image inputs
- Perform unsupervised learning and reinforcement learning simultaneously.

RL (Background)

After each scene in an episode, append the tuple (s_t, a_t, r_t, s_{t+1}) to the experience replay buffer, \mathcal{B} .

Self-Supervised Pre-training (Background)

(BERT) Bidirectional Encoder Representations for Transformers

Trained with "masked language model" objective: Mask
 some percentage of the input sequence and predict the masked elements.

"You only [mask] once." — "live"

Contrastive learning:

- Self-supervised pre-training method
- o Effective in computer vision for training image encoders
- Encoder: A map from high-dimensional inputs to low-dimensional representations
- Allows models with pure pixel inputs to nearly match SOTA performance and sample-efficiency in deep RL (Srinivas et al., 2020)
- Goal: Learn a representation space in which different representations of the same image are close together and representations of different images are far apart.

References

- ☐ Chen et al. (2020). A simple framework for contrastive learning of visual representations. *In International conference on machine learning* (pp. 1597-1607). PMLR. [pdf]
- ☐ Devlin et al. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint *arXiv*:1810.04805. [pdf]
- ☐ Hessel et al. (2018). Rainbow: Combining improvements in deep reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 32, No. 1).
- ☐ Mnih et al. (2015). Human-level control through deep reinforcement learning. *Nature*, 518(7540), 529-533. [pdf]
- ☐ Srinivas et al. (2020). CURL: Contrastive unsupervised representations for reinforcement learning. In *International Conference on Machine Learning* (pp. 5639-5650). PMLR. [pdf] [code]
- ☐ Oh et al. (2016). Control of memory, active perception, and action in Minecraft. In *International Conference on Machine Learning* (pp. 2790-2799). PMLR. [pdf]
- ☐ Oord et al. (2018). Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*. [pdf]
- ☐ Zhu et al. (2020). Masked Contrastive Representation Learning for Reinforcement Learning. *arXiv preprint arXiv:2010.07470*. [pdf] [code]

Methods

Masked Contrastive Learning

Step 1. Sample $S = (s_1, ..., s_T)$ from the replay buffer B.

Step 2. **Mask S**. \rightarrow **get S**' = $(s'_1, ..., s'_T)$, where $s'_i = \bar{s}'_i M_i + s_i (1 - M_i)$, $M_i \in \{0,1\}$, and $p_M := \mathbb{P}(M_i = 1)$.

Step 3. **Encode** *S'*. $f_{\theta}(S') = (f_{\theta}(s'_1), ..., f_{\theta}(s'_T))$

Overall objective: $\min_{\theta,\omega,\varphi} \mathcal{L} = \mathcal{L}_{RL} + \lambda \mathcal{L}_{ct}$

Toy environment:

Curren

Environment

Reinforcement Learning

- Select and take actions
- Populate the replay buffer with experiences

 f_{θ} (ConvNet): The RL encoder. Also, the query

 $f_{\theta_{\nu}}$ (ConvNet): The key encoder for contrastive

learning. Uses the same architecture as f_{θ} but has

 φ (Transformer): Encodes masked inputs sequences

 ω (NN module): Parameters for the learnable policy

or action value functions. Used in \mathcal{L}_{RL} .

encoder for contrastive learning

 \circ Train ω with objective \mathcal{L}_{RL}

Methods Key

different parameters

 λ , τ , K, p_M : Hyperparameters

 \mathcal{B} .append (s_t, a_t, r_t, s_{t+1})

Step 4. Reconstruct masked inputs

using the context from the global input.

g(S') Transformer encoder φ

Architecture:

- Blocks of self-attention followed by fully-connected layer(s)
- Residual connections
- Layer normalization

Step 5. Train encoders f_{θ} and φ using contrastive loss.

 $\mathcal{L}_{ct} = \sum_{i=1}^{T} -M_i \log \left(\frac{\exp(q_i \cdot k_i/\tau)}{\sum_{j=1}^{T} \exp(q_i \cdot k_j/\tau)} \right)$

Queries $q_i = \varphi(f_{\theta}(s'_i))$ Keys $k_i = f_{\theta_k}(s_i)$

Ongoing & Future Experiments

- Benchmark on more challenging environments after tinkering on the toy environment.
- Use the transformer to prioritize sequences on the buffer.
- Diversify the replay buffer and see if that improves training.

Open-source code coming soon to https://github.com/eskalnes/RL memory

Update θ_k with momentum contrast (He et al., 2019): $\theta_k = m SG(\theta) + (1-m)\theta_k$