	+	
1000		1
£	4A \$ 0,5A	I

Pela análise deste nircuito podemos concluir que a corrente I é de:

a .)	125 mA	•••••••••
		······································
٥)	500 mA	

Note: Pela lei de Ohm, temos V eRI e como V tem o mesmo valor para a resistência de 4 Ω e para a de 8 Ω (porque estão em paralelo), se R passa para o dobro (4 para 8) então I passa para metade (de 0,5 para 0,250 A) para que V se mantenha constante.

De facto, V₂= 4 × 0,5 = 2V e 2 = 8 × I

De facto,
$$V_2 = 4 \times 0.5 = 2V = 2 = 8 \times I$$

 $\implies I = \frac{2}{8} = 0.250 A = 250 mA$

2.2.7.1

Se no circuito abaixo indicado, a queda da tensão na resistência R_{l.}
for 16 volts, qual é a corrente que deve indicar o amperímetro?

Nota:
$$R_p = \frac{R1 - R2}{R_1 + R_2}$$
 ou $R_p = \frac{200 \times 800}{200 + 800} = 160 \Omega$
 $V = R_p I$ ou $16 = 160 I \implies I = \frac{16}{160} = 0.1 A$