1 Rachunek λ

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $x,\ y,\ \dots$ (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi. Ponieważ V jest potencjalnie nieskończony, zastrzegamy sobie możliwość wybierania w razie potrzeby wcześniej nie użytej zmiennej.

Definicja 1. (Zbiór $\tilde{\Lambda}$ pretermów) Zbiorem pretermów będziemy nazywali najmniejszy (w sensie mnogościowym) zbiór wyrażeń $\tilde{\Lambda}$ taki, że:

- (P1) Jeśli $x \in V$, to $x \in \tilde{\Lambda}$.
- (P2) Jeśli $M, N \in \tilde{\Lambda}$, to $(MN) \in \tilde{\Lambda}$.
- (P3) Jeśli $x \in V$ i $M \in \tilde{\Lambda}$, to $(\lambda x. M) \in \tilde{\Lambda}$.

Definicję 1 można równoznacznie wyrazić przy pomocy notacji Backusa-Naura. Wówczas ma ona następującą, zwięzłą postać:

$$\tilde{\Lambda} \leftarrow V \mid (\tilde{\Lambda} \tilde{\Lambda}) \mid (\lambda V. \tilde{\Lambda})$$

Elementy $\tilde{\Lambda}$ będziemy oznaczali literami L, M, N, P, Q, R i ich wariantami z górnymi lub dolnymi indeksami. Wyrażenia postaci (P2) nazywamy aplikacjami M do N. Symbol λ występujący w (P3) nazywamy λ -abstraktorem, zaś wyrażenia powstałe przez zastosowanie tej reguły to λ -abstrakcje. W wyrażeniu postaci $(\lambda x. M)$ preterm M jest w zasięgu λ -abstraktora, a zmienna x jest przez niego związana. Ponadto, będziemy stosowali następujące konwencje notacyjne:

- najbardziej zewnętrzne nawiasy bedą pomijane,
- aplikacja wiąże lewostronnie; wyrażenia postaci (PQ)R będą zapisywane w postaci PQR,
- $-\lambda$ -abstrakcja wiaże prawostronnie: $\lambda x_1.(\lambda x_2.P)$ zapisujemy $\lambda x_1.\lambda x_2.P$,
- następujące po sobie λ -abstrakcje postaci $\lambda x_1. \lambda x_2....\lambda x_n. P$ zapisujemy pod wspólnym λ -abstraktorem: $\lambda x_1 x_2....x_n. P$.

Powiemy, że dwa λ -termy są syntaktycznie równe, jeśli rozumiane jako ciągi znaków są identyczne. Równość syntaktyczną będziemy oznaczali znakiem \equiv .

Przykład 1. Podajmy kilka przykładów λ -pretermów pogrupowanych ze względu na ich konstrukcję.

- (P1): x, y, z.
- (P2): x x, y x, x(x z), $(\lambda x.(xz))y$, $y(\lambda x.(xz))$, $(\lambda x.x)(\lambda x.x)$.
- (P3): $\lambda x.(xz)$, $\lambda yz.x$, $\lambda x.(\lambda x.(xx))$.

Podwyrażenia λ -pretermu mogą być wzajemnie identyczne i występować wielokrotnie. Obserwację tę ujmuje następująca definicja.

Definicja 2. (Multizbiór Sub podtermów pretermu)

- (1) $Sub(x) = \{x\}$
- (2) $\operatorname{Sub}(MN) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{MN\}$
- (3) $\operatorname{Sub}(\lambda x. M) = \operatorname{Sub}(M) \cup \{\lambda x. M\}$

Elementy multizbioru Sub(M) nazywamy podtermami M. Jeśli L jest podtermem M, ale $L \not\equiv M$, to L nazywamy podtermem wlaściwym.

Przykład 2. Podtermy wybranych λ -pretermów.

(a) Sub
$$(\lambda x. xx) = \{(\lambda x. xx)^1, (xx)^1, x^2\}$$

(b) Sub
$$((\lambda x. x x) (\lambda x. x x)) =$$

= $\{((\lambda x. x x) (\lambda x. x x))^1, (\lambda x. x x)^2, (x x)^2, x^4\}$

W powyższych przykładach użyliśmy standardowej notacji w górnym indeksie umieszczając krotność występowania elementu.

Definicja 3. (Zbiór FV zmiennych wolnych) Dla dowolnego pretermu M określamy zbiór FV(M) zmiennych wolnych w M w następujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli $FV(M) = \emptyset$, to mówimy, że M jest domknięty lub nazywamy M kombinatorem.

Przykład 3. (a) $FV(\lambda x. xy) = \{y\}$

- (b) $FV(x(\lambda x. xy)) = \{x, y\}$
- (c) $FV(\lambda xyz.xy) = \emptyset$

Definicja 4. (Podstawienie) Dla dowolnych M, N $\in \tilde{\Lambda}$ i $x \in V$ przez N[x/N] oznaczamy rezultat podstawienia termu N za wszystkie wolne wystąpienia zmiennej x w M, o ile w rezultacie podstawienia nie zostaną związane żadne zmienne wolne występujące w N. W takim wypadku:

(S1)
$$x[x/N] = N$$

(S2)
$$y[x/N] = y$$
, o ile $x \not\equiv y$

- (S3) (PQ)[x/N] = P[x/N]Q[x/N]
- (S4) $(\lambda y. P)[x/N] = \lambda y. P[x/N]$, gdzie $x \neq y$ i $y \notin FV(N)$
- (S5) $(\lambda x. P)[x/N] = \lambda x. P$

Lemat 1. (O podstawieniu) Niech $M, N, L \in \tilde{\Lambda}$ i niech ponadto $x \not\equiv y$ oraz $x \not\in FV(L)$. Wówczas

$$M[x/N][y/L] \equiv M[y/L][x/N[y/L]]. \tag{1}$$

 $\mathbf{Dowód}$. Dowód przebiega przez indukcję strukturalną względem M. Rozważmy następujące przypadki:

- i) M jest zmienną. Wówczas:
 - a. Jeśli $M \equiv x$, to obie strony (1) po podstawieniu są postaci N[y/L].
 - b. Jeśli $M \equiv y$, to ponieważ $x \not\equiv y$ i $x \not\in FV(M)$, po wykonaniu podstawienia po lewej stronie (1) otrzymujemy $M[x/N][y/L] \equiv L$. Ponieważ $x \not\in FV(L)$, to po wykonaniu podstawienia po prawej stronie widzimy, że obydwie strony są identyczne.
 - c. Jeśli $M \equiv z$ i $z \not\equiv x$ oraz $z \not\equiv y$, to obydwie strony (1) sa identyczne.
- ii) $M \equiv PQ$ dla pewnych $P, Q \in \tilde{\Lambda}$. Wówczas korzystając z hipotezy indukcyjnej wnosimy, że

$$P[x/N][y/L] \equiv P[y/L][x/N[y/L]],$$

$$Q[x/N][y/L] \equiv Q[y/L][x/N[y/L]].$$

Mając na względzie (S3) widzimy, że twierdzenie zachodzi i w tym przypadku.

iii) Jeśli $M \equiv \lambda z$. P oraz $z \equiv x$ lub $z \equiv y$, to z (S'5) widzimy, że obydwie strony (1) sa identyczne. Przypuśćmy, że $z \not\equiv x$ i $z \not\equiv y$ i $z \not\in FV(L)$. Wówczas na podstawie hipotezy indukcyjnej mamy:

$$(\lambda z. P)[x/N][y/L] = \lambda z. P[x/N][y/L] =$$

$$= \lambda z. P[y/L][x/N[y/L]] =$$

$$= (\lambda z. P)[y/L][x/N[y/L]].$$

Wniosek 1. Jesli M[x/y] jest określone i $y \notin FV(M)$, to M[x/y][y/x] jest określone oraz M[x/y][y/x] = M.

Dowód. Mając na uwadze Lemat 4 dowód przebiega przez indukcję strukturalną względem M.

1.1 Wyrażenia λ

Na ogół chcielibyśmy utożsamiać pretermy, które różnią się wyłącznie zmiennymi związanymi, tak jak w przypadku wyrażeń $\lambda x. zx$ i $\lambda y. zy$. W takim wypadku powiemy o nich, że są swoimi α -wariantami lub że są ze sobą w relacji α -konwersji.

Definicja 5. (Relacja α -konwersji) Relacją = $_{\alpha}$ (α -konwersji) nazywamy najmniejszy w sensie mnogościowym praporządek na $\tilde{\Lambda}$ taki, że

- (α 1) Jeśli $y \notin FV(M)$ oraz M[x/y] jest określone, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$
- $(\alpha 2)$ Jeśli $M =_{\alpha} N$, to dla dowolnego $x \in V$ zachodzi $\lambda x. M =_{\alpha} \lambda x. N$
- ($\alpha 3$) Jeśli $M =_{\alpha} N$, to dla dowolnego $Z \in \tilde{\Lambda}$ zachodzi $MZ =_{\alpha} NZ$
- $(\alpha 4)$ Jeśli $M =_{\alpha} N,$ to dla dowolnego $Z \in \tilde{\mathbf{\Lambda}}$ zachodzi $ZM =_{\alpha} ZN$

Przykład 4.

$$\lambda xy. x(xy) \equiv \lambda x. (\lambda y. x(xy))$$

$$\equiv_{\alpha} \lambda x. (\lambda z. x(xz))$$

$$\equiv_{\alpha} \lambda v. (\lambda z. v(vz))$$

$$\equiv \lambda vz. v(vz).$$

Wniosek 2. $Relacja =_{\alpha} jest \ relacją \ równoważności.$

Dowód. Wystarczy, że pokażemy, że relacja = $_{\alpha}$ jest symetryczna. Dowód przebiega przez indukcję względem Definicji 5. Rozważmy następujące przypadki:

- i) Jeśli $M =_{\alpha} N$ w konsekwencji zwrotności $=_{\alpha}$, to $M \equiv N$, a zatem również $N \equiv M$. Stąd $N =_{\alpha} M$.
- ii) Jeśli $M =_{\alpha} N$ w konsekwencji przechodniości $=_{\alpha}$, to istnieje $L \in \tilde{\Lambda}$ takie, że $M =_{\alpha} L$ i $L =_{\alpha} N$. Wówczas z hipotezy indukcyjnej $N =_{\alpha} L$ i $L =_{\alpha} M$. Z przechodniości relacji $=_{\alpha}$ otrzymujemy spodziewaną tezę.
- iii) Przypuśćmy, że $M =_{\alpha} N$ w konsekwencji ($\alpha 1$) dla $M \equiv \lambda x$. M' i $N \equiv \lambda y$. M'[x/y]. Ponieważ $x \notin FV(M'[x/y])$, to ze względu na Wniosek 1 mamy, że M'[x/y][y/x] = M'. Zatem, na podstawie ($\alpha 1$):

$$\lambda y. M'[x/y] =_{\alpha} \lambda x. M'[x/y][y/x].$$

iv) Jeśli $M=_{\alpha}N$ w konsekwencji ($\alpha 2$), gdzie $M=\lambda x.\,M'$ i $N=\lambda x.\,N'$ dla $M'=_{\alpha}N'$, to z hipotezy indukcyjnej $N'=_{\alpha}M'$ i w konsekwencji ($\alpha 2$) mamy, że $N=_{\alpha}M$.

- v) Jeśli $M =_{\alpha} N$ w konsekwencji (α 3) dla $M \equiv M'Z$ i $N \equiv N'Z$ takich, że $M' =_{\alpha} N'$, to z hipotezy indukcyjnej oczywiście $N' =_{\alpha} M'$, a zatem z (α 3) $N =_{\alpha} M$.
- vi) Jeśli $M =_{\alpha} N$ w konsekwencji ($\alpha 3$), to postępujemy jak w przypadku (v). \square

Definicja 6. (Zbiór Λ λ-termów) Każdą klasę abstrakcji relacji =_α nazywamy λ-termem. Zbiór wszystkich λ-termów Λ to zbiór ilorazowy relacji α-konwersji:

$$\mathbf{\Lambda} = \left\{ [M]_{=_{\alpha}} \mid M \in \tilde{\mathbf{\Lambda}} \right\}$$

Konwencja. Wprowadzamy następujące konwencje notacyjne:

$$x = [x]_{=\alpha},$$

$$PQ = [M'N']_{=\alpha}, \quad gdzie \quad M = [M']_{=\alpha} \quad i \quad N = [N']_{=\alpha},$$

$$\lambda x. \quad M = [\lambda x. M']_{=\alpha}, \quad gdzie \quad N = [N']_{=\alpha}.$$

Na zbiór Λ przenoszą się pojęcia podtermu, zmiennych wolnych i operacji podstawienia definiowane uprzednio dla pretermów.

Definicja 7. (Multizbiór Sub podtermów λ-termu) Dla dowolnego λ-termu $M = [M']_{=\alpha}$ okreslamy

$$Sub(M) = Sub(M'),$$

gdzie Sub(M') jest multizbiorem podwyrażeń pretermu M' zdefiniowanym w myśl Definicji 2.

Definicja 8. (Zbiór zmiennych wolnych FV) Dla dowolnego λ -termu $M = [M']_{=_{\alpha}}$ określamy zbiór FV(M) zmiennych wolnych w M

$$FV(M) = FV(M'),$$

gdzie FV(M') jest zbiorem zmiennych wolnych pretermu M' zdefiniowanym w myśl Definicji 3.

Definicja 9. (Podstawienie) Niech $M = [M']_{=\alpha}$ i $N = [N']_{=\alpha}$ i niech M'[x/N'] będzie określone w myśl Definicji 4. Wówczas

$$M[x/N] = [M'[x/N']]_{=_{\alpha}}.$$

Operacja podstawienia wymaga jednak pewnej delikatności. Rozważmy następującą relację:

$$\lambda x. zx = \lambda y. zy$$

Zauważmy, że traktując podstawienie w sposób naiwny, mamy, że $(\lambda x. zx)[z/x] \neq_{\alpha} (\lambda y. zy)[z/x]$, a więc tracimy pożądaną własność niezmienniczości α -konwersji względem podstawienia. Stąd w Definicji 4 wymóg, aby podstawienie nie prowadziło do uszczuplenia zbioru zmiennych wolnych. Alternatywnym rozwiązaniem jest określenie podstawienia, które wprowadzałoby do wyrażenia nową zmienną i prowadziło w konsekwencji do abstrahowania po wcześniej nie występujacych zmiennych:

$$(\lambda x. M)[y/N] = \lambda x'. M[x/x'][y/N],$$

w przypadku, gdy $x \neq y$, gdzie $x' \notin FV(M)$ i $x' \notin FV(N)$. Rozstrzygnięcie takie przytacza się w [HS08]. Po uwzględneniu odpowiednich modyfikacji, Definicja 4 przyjmuje następującą postać:

Definicja 4'. (Podstawienie')

- (S'1) x[x/N] = N
- (S'2) y[x/N] = y, o ile $x \neq y$
- (S'3) (PQ)[x/N] = P[x/N]Q[x/N]
- $(S'4) (\lambda x. P)[x/N] = \lambda x. P$
- (S'5) $(\lambda y. P)[x/N] = \lambda y. P$, $jeśli x \notin FV(P)$
- (S'6) $(\lambda y. P)[x/N] = \lambda y. P[x/N], qdzie <math>x \in FV(P)$ $i \ y \notin FV(N)$
- (S'7) $(\lambda y. P)[x/N] = \lambda z. P[y/z][x/N], gdzie <math>x \in FV(P)$ $i \ y \in FV(N)$

przy czym w (S'7) wymagamy, aby zmienna z nie występowała wcześniej w termach N i P jako zmienna wolna, zaś dla (S'5)-(S'7) dodatkowo $y \not\equiv x$.

Uwaga1. Każde podstawienie [x/N]jest funkcją z $\Lambda\to\Lambda,$ gdzie $x\in V$ i $N\in\Lambda$ są dowolnymi parametrami. Zbiór S podstawień ma strukturę monoidu z działaniem składania

$$M([x_2/N_2] \circ [x_1/N_1]) = (M[x_1/N_1])[x_2/N_2] \equiv M[x_1/N_1][x_2/N_2]$$

dla dowolnych $[x_1/N_1], [x_2/N_2] \in S$, o ile S posiada element neutralny ι taki, że

$$M\iota = M$$
, gdzie $[x/x] = \iota$ dla dowolnego $x \in V$.

W literaturze znajdujemy mnogość propozycji, które w ten czy inny sposób starają się ułatwić rzeczywistą implementację podstawienia. Na szczególną uwagę zasługują tutaj tak zwane *indeksy de Bruijna*. Zaproponowana przez N. G. de Brujina w [Bru72] notacja eliminuje bezpośrednie występowanie symboli zmiennych

w λ -termach, zastępując je liczbą naturalną wyrażającą głębokość zagnieżdżenia odpowiedniej λ -abstrakcji przez którą jest związana, przykładowo:

$$\lambda f.(\lambda x.(f(xx))\lambda x.(f(xx))) \equiv_{deBruiin} \lambda(\lambda 2(11))\lambda 2(11)$$

Historycznie wiąże się ta notacja z jego pracami nad systemem komputerowo wspomaganego dowodzenia twierdzeń AUTOMATH. Rozwiązanie takie, podobnie jak w przypadku tzw. logik kombinatorów, eliminuje konieczność utożsamiania termów przez α -konwersję, ale istotnie zmniejsza ich czytelność.

Szerszy komentarz dotyczący dotychczasowych prób uchwycenia operacji podstawienia można prześledzić w [Alt02]. Nasze rozważania opierają się w tej materii przeważająco na [SU06]. Samo podejście do definiowania λ -termow przez operację α -konwersji nie jest powszechne w literaturze przedmiotu. Analogiczną konstrukcję należałoby powtarzać wprowadzając każdy kolejny system, dlatego w dalszej części tej pracy będziemy poprzestawali na nieformalnym traktowaniu wyrażeń danego systemu jako odpowiednich klas α -konwersji.

Definicja 10. (Podstawienie jednoczesne) Dla dowolnego $M \in \Lambda$, ciągu λ -zmiennych \vec{x} i ciągu λ -termów \vec{N} określamy:

- $(\vec{s}1)$ $x_i[\vec{x}/\vec{N}] = N_i \text{ dla } i \in \mathbb{N}.$
- $(\vec{s}2)$ $y[\vec{x}/\vec{N}] = y$ o ile dla dowolnego $i \in \mathbb{N}, y \not\equiv x_i$.
- $(\vec{s}3) (PQ)[\vec{x}/\vec{N}] = P[\vec{x}/\vec{N}]Q[\vec{x}/\vec{N}]$
- $(\vec{s}4) (\lambda y. P)[\vec{x}/\vec{N}] = \lambda y. P[\vec{x}/\vec{N}],$ jeśli $y \neq x_i$ dla wszystkich $i \in \mathbb{N}$ i $y \notin \bigcup_{i \in \mathbb{N}} FV(N_i)$

Konwencja. Jeśli $N_i \equiv x_i$ dla wszystkich poza skończenie wieloma $i_1, i_2, \ldots, i_n \in \mathbb{N}$, to $[x_{i_1}/N_{i_1}, x_{i_2}/N_{i_2}, \ldots, x_{i_n}/N_{i_n}] \equiv [\vec{x}/\vec{N}].$

Przykład 5. Zauważmy, że podstawienia w myśl Definicji 4 i Definicji 10 mogą, ale nie muszą, prowadzić do różnych rezultatów.

a)
$$(xy)[y/x][x/u] = uu$$
, b) $(\lambda x. yx)[x/y][y/z] = \lambda x. zx$, $(xy)[y/x, x/u] = ux$. $(\lambda x. yx)[x/y, y/z] = \lambda x. zx$.

1.2 Redukcja

Sens obliczeniowy λ -termom nadajemy przez określenie na Λ operacji β - i η -redukcji. Pożądane jest, żeby operacje te wykonywane na podtermach pozostowały w zgodzie ze strukturą całego λ -termu.

Definicja 11. (Relacja zgodna) Relację binarną \mathcal{R} na zbiorze Λ nazywamy zgodną, jeśli dla dowolnych $M, N, P \in \Lambda$ zachodzą następujące warunki:

- (c1) Jeśli $M\mathcal{R}N$, to $(\lambda x. M)\mathcal{R}(\lambda x. N)$ dla dowolnej λ -zmiennej x.
- (c2) Jeśli $M\mathcal{R}N$, to $(MP)\mathcal{R}(NP)$.
- (c3) Jeśli $M\mathcal{R}N$, to $(PM)\mathcal{R}(PN)$.

Przez domknięcie relacji \mathcal{R}_1 będziemy rozumieli najmniejszą (w sensie mnogościowym) relację \mathcal{R}_2 taką, że $\mathcal{R}_1 \subset \mathcal{R}_2$. Z pewnego rodzaju domknięciami, ze względu na ich szczególną rolę, wiążemy następującą notację:

- (a) Przez \mathcal{R}^+ oznaczamy przechodnie domknięcie relacji \mathcal{R} .
- (b) Przez \mathcal{R}^* oznaczamy zwrotnie domknięcie relacji \mathcal{R}^+ .
- (c) Przez = $_{\mathcal{R}}$ oznaczamy symetryczne domknięcie relacji \mathcal{R}^* .

Dla lepszego zrozumienia powyższych operacji warto zauważyć, że (b) wyznacza praporzadek, który w odniesieniu do redukcji określonych na Λ można rozumieć jako graf skierowany (w przypadku Λ być może nieskończony) w którym krawędzie odpowiadają możliwym krokom obliczenia, zaś (c) – kongruencję, która znów w szczególnym odniesieniu do λ -termów, będzie dokonywała podziału w Λ ze względu na rezultat obliczenia.

Definicja 12. (β-redukcja) β-redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na Λ relację binarną \rightarrow_{β} taką, że

$$(\lambda x. M)N \rightarrow_{\beta} M[x/N].$$

 β -redeksami bedziemy nazywali wyrażenia postaci $(\lambda x. M)N$, zaś rezultat ich β -redukcji w postaci termu $M[x/N] - \beta$ -reduktem. Ciągiem β -redukcji nazywamy skończony lub nieskończony ciąg postaci

$$M_0 \rightarrow_{\beta} M_1 \rightarrow_{\beta} \dots$$

Przykład 6. Oznaczmy Y = $\lambda f.(\lambda x.(f(xx))\lambda x.(f(xx)))$ i niech F będzie dowolnym λ -termem. Wówczas otrzymujemy nieskończony ciąg redukcji postaci

$$YF \equiv (\lambda f. (\lambda x. (f(xx))\lambda x. (f(xx))))F$$

$$\rightarrow_{\beta} (\lambda x. F(xx))\lambda x. F(xx)$$

$$\rightarrow_{\beta} F((\lambda x. F(xx))\lambda x. F(xx))$$

$$\rightarrow_{\beta} F(F((\lambda x. F(xx))\lambda x. F(xx)))$$

$$\rightarrow_{\beta} \dots$$

Definicja 13. (η-redukcja) η-redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na Λ relację binarną \rightarrow_{η} taką, że

$$\lambda x. Mx \rightarrow_n M$$
, o ile $x \notin FV(M)$.

 η -redukcja pozwala na pominięcie niczego nie wnoszącej λ -abstrakcji. Operację odwrotną nazywamy η -abstrakcją, zaś λ -termy będące w którejkolwiek z tych relacji nazywamy η -konwersami. Operacja ta nie ma wpływu na rezultat obliczenia, jedynie optymializuje zapis λ -termów i stąd ma duże znaczenie stylistyczne w programowaniu funkcyjnym.

Przykład 7. $\lambda x.((+1)x) =_n (+1)$.

1.3 Kodowanie typów danych

Prosta składnia języka rachunku λ pozwala wyrazić zaskakująco wiele struktur danych reprezentując je i operacje na nich jako funkcje. Z tego powodu, stanowiąc inspirację dla wielu projektantów języków programowania, uchodzi za protoplastę rodziny języków funkcyjnych, chociaż bezpośrednio nie ma on praktycznego zastosowania w praktyce programistycznej. Rozwój tej legendy dobrze oddaje cykl klasycznych artykułów (tzw. $Lambda\ Papers$) zapoczątkowany przez dokumentację języka Scheme [SS75].

Najpopularniejszym sposobem reprezentacji danych przez funkcje w rachunku λ oparty jest na kodowaniu liczb Peano za pomocą tzw. liczebników Churcha. Metoda ta, ze względu na wynikające zeń problemy natury złożonościowej [KPJ14], ma obecnie wyłącznie walory edukacyjne, dlatego w dalszej cześci pracy pokażemy tzw. kodowanie Scotta. Jest ona interesująca ze względu na praktyczną możliwość reprezentacji algebraicznych typów danych (ADT¹) znanych ze współczesnych języków funkcyjnych [Jan13], pozwalając tym samym zaimplementować te konstrukcje na przykład w paradygmacie imperatywnym. Fakt, że każdy typ danych można zastąpić tym sposobem odpowiadającą mu funkcją, wskazuje na metodę konstruowania prostych języków funkcyjnych, ale przede wszystkim na uniwersalność rachunku λ jako języka przejściowego dla kompilatorów języków wysokiego poziomu [PL92, Rozdział 3].

1.3.1 Algebraiczne typy danych

Algebraiczne typy danych są podstawowym środkiem współczesnych języków funkcyjnych do wyrażania struktur danych. Powstają one przy użyciu tzw. typów sumacyjnych i typów produktowych, jednak pojęcia te na gruncie formalnym będą szczegółowo omówione w późniejszej części pracy. Na potrzeby prezentacji poszczególnych kodowań wystarczą nam w tym rozdziale intuicje o ADT zbudowane na gruncie następujących definicji w języku Haskell:

¹Skrót od angielskojezycznego Algebraic Data Types; nie należy mylić z Abstract Data Types.

Definicja typu rozpoczynają się od słowa kluczowego data² po którym występuje konstruktor typu. Na wzór notacji BNF, typy przyjmują jedną z wartości odzielonych znakiem "|". Każda z wartości składa się z konstruktora wartości i ewentualnie występujących po nim parametrów typowych. Zauważmy, że umożliwia to rekurencyjnie konstruowanie typów, tak jak w wypadku Nat i List.

Pokażemy, że algebraiczne typy danych możemy reprezentować w zwięzły sposób w rachunku λ bez typów. Przedstawione tutaj koncepcje w zaskakujący sposób przenoszą się do bardziej złożonych typowanych systemów rachunku λ .

1.3.2 Proste typy wyliczeniowe

Typy wyliczeniowe to typy, które reprezentują możliwe warianty przyjmowanej wartości. Najprostrzym nietrywialnym przykładem takiego typu jest Boolean. Ma on dwa konstruktory wartości: True, False. Praca z tego rodzaju typami wymaga mechanizmu dopasowywania wzorców (ang. pattern-matching), który pozwala na wybór częściowej definicji funkcji w zależności od zadanego konstruktora wartości. Ponieważ w rachunku λ wyrażenia nie mają typów (lub, przyjmując perspektywę systemów z typami: wszystkie wyrażenia mają jeden, ten sam typ), interesowało nas będzie nie bezpośrednie kodowanie typu, ale kodowanie mechanizmu, który odpowiada za dopasowywanie wzorców. Posłużmy się znowu przykładem z języka Haskell i określmy funkcję odpowiadającą wykonaniu instrukcji warunkowej:

```
if True a b = a if False a b = b
```

gdzie True i False są wartościami typu Boolean. Właśnie ze względu na nie, mechanizm dopasowywania wzorca wybiera odpowiednią implementację instrukcji warunkowej. Ten sam efekt osiągnęlibyśmy kodując True i False w rachunku λ w

 $^{^2}$ Dyskusja ta ma na celu wyłącznie ustalenie uwagi; świadomi jesteśmy niuansów związanych z określaniem synonimów typów lub definiowaniem typów przy pomocy słowa kluczowego newtype.

następujący sposób:

True
$$\equiv \lambda ab. a$$

False $\equiv \lambda ab. b$

Wówczas funkcję if możemy reprezentować wyrażeniem if $\equiv \lambda cte. cte$ lub jego η -reduktem: $\lambda c. c.$

1.3.3 Pary w rachunku λ

Parą nazywamy każdy nierekurencyjny typ, który posiada jeden konstruktor wartości parametryzowany przez dwa typy. W takim wypadku potrzebujemy dwóch projekcji zwracających odpowiednio pierwszy i drugi element pary. Przykładem takiego typu jest Tuple. Mamy wówczas:

```
fst (Tuple a b) = a
snd (Tuple a b) = b
```

Tego rodzaju typy możemy reprezentować przez tak zwane domknięcie (ang. closure), czyli cześciową aplikację termu. Standardowym sposobem reprezentacji pary w rachunku λ jest:

Tuple
$$\equiv \lambda abf. fab$$

Aplikując Tuple tylko do dwóch termów (domykając term Tuple) otrzymujemy reprezentację pary. Pozostały, trzeci argument f nazywamy kontynuacją, gdyż aplikując (Tuple x y) dla dowolnych $x,y\in \mathbf{\Lambda}$ do pewnego $f\in \mathbf{\Lambda}$, w konsekwencji x i y zostają zaaplikowane do f. Zauważmy, że wówczas reprezentacja \mathtt{fst} i \mathtt{snd} ma postać:

fst
$$\equiv \lambda t. t(\lambda ab. a)$$

snd $\equiv \lambda t. t(\lambda ab. b)$

Przykład 8. Wprowadzone konstrukcje pozwalają nam na definicję skończonych (w sensie liczby konstruktorów) typów. Rozważmy następujące przykłady:

a) Konstruktory wartości typu Maybe możemy reprezentować przez

Nothing
$$\equiv \lambda n j. n$$

Just $\equiv \lambda a n j. j a$

Rozważmy następującą funkcję:

```
maybe :: b \rightarrow (a \rightarrow b) \rightarrow Maybe a \rightarrow b
maybe n _ Nothing = n
maybe _ f (Just x) = f x
```

Odpowiadająca jej reprezentacja to

maybe
$$\equiv \lambda b f t. t b(\lambda a. f a)$$

b) Rozważmy następującą funkcję

```
fromTemperature :: Temperature -> Int
fromTemperature (Fahrenheit a) = a
fromTemperature (Celsius a) = a
```

Ustalając reprezentację konstruktorów Fahrenheit i Celsius:

Fahrenheit
$$\equiv \lambda t f c. f t$$

Celsius $\equiv \lambda t f c. c t$

otrzymujemy reprezentację funkcji formTemperature postaci:

from Temperature
$$\equiv \lambda t. t(\lambda f. f)(\lambda c. c)$$

1.3.4 Kodowanie rekurencji

Rozważmy następującą funkcję dodawania liczb Peano w języku Haskell:

```
add Zero m = m
add (Succ n) m = Succ (add n m)
```

Funkcję tę możemy wyrazić w rachunku λ przy pomocy kodowania Scotta w następujący sposób:

$$add_0 \equiv \lambda nm. n m (\lambda n. Succ(add_0 n m))$$

Formalizm rachunku λ nie pozwala na okreslanie nowych nazw i rekurencyjne odnoszenie się przez nie do nich samych. Standardową techniką w rachunku λ do określania funkcji w ten sposób jest użycie operatora punktu stałego Y. Przypomnijmy:

$$Y \equiv \lambda f. (\lambda x. (f(xx))\lambda x. (f(xx)))$$

Wówczas określamy

$$add_{Y} \equiv Y (\lambda a n m. nm (\lambda n. Succ(a n m)))$$

Mając na uwadze możliwość przeprowadzenia powyższej konstrukcji przy użyciu rekurencji, będziemy dopuszczali w notacji odnoszenie się wprowadzanych λ -termów do nich samych.

1.3.5 Kodowanie Scotta typów rekursywnych

Stosując metody kodowania prostych typów wyliczeniowych i par, łatwo odnajdujemy reprezentację konstruktorów wartości dla typów Nat i List:

Zero
$$\equiv \lambda z s. z$$
 Nil $\equiv \lambda n c. n$
Succ $\equiv \lambda n z s. s n$ Cons $\equiv \lambda x x_s n c. c x x_s$

Zwróćmy uwagę, że konstruktory Nat i Maybe są swoimi α -konwersami. Podobieństwo nie jest przypadkowe: na poziomie typów konstrukcja Maybe jest odpowiednikiem brania następnika. Określając dodatkowo Void = $\lambda x.x$ jako element neutralny działania łącznego, otrzymujemy na poziomie typów strukturę półpierścienia z działaniem mnożenia określoną przez konstrukcję par i dzałaniem dodawania określonego przez konstrukcję typów wyliczeniowych. Stąd algebraicze typy danych biora swoja nazwe.

Z łatwością możemy określić teraz operacje brania poprzednika, głowy i ogona listy, odpowiednio:

```
pred \equiv \lambda n. n \text{ undef } (\lambda m. m)
head \equiv \lambda x_s. x_s \text{ undef } (\lambda x_s. x)
tail \equiv \lambda x_s. \text{ undef } (\lambda x_s. x_s)
```

gdzie undef jest stałą o którą rozszerzamy rachunek λ celem sygnalizowania błędnej aplikacji.

1.3.6 Kodowanie Churcha typów rekursywnych

Przedstawimy teraz klasyczny sposób kodowania typów przypisywany A. Churchowi. Różni się on od kodowania Scotta tylko w przypadku typów rekursywnych, w pozostałych przypadkach obydwa kodowania dają te same rezultaty. Rozpocznijmy od typu odpowiadającego liczbom naturalnym. W kodowaniu Churcha w następujący sposób reprezentujemy typ Nat:

Zero
$$\equiv \lambda f x. x$$

Succ $\equiv \lambda n f x. f (n f x)$

Wyrażenia będące skutkiem konsekwentnej aplikacji Succ do Zero w literaturze popularnie nazywa się *liczebnikami Churcha*. Porównując je do kodowania Scotta widzimy, że zamiast aplikować

Celem lepszego porównania kodowania Churcha i Scotta podamy reprezentacje funkcji foldl³ dla typów Nat i List. Określmy:

```
foldlNat f x Zero = x
foldlNat f x (Suc n) = f (foldlNat f x n)
```

1.3.7 Ogólny przypadek typów wyliczeniowych

W ogólnym przypadku, mając nastepującą definicję ADT:

dla $m, n \in \mathbb{N}$, wiążemy z nią następującą reprezentację w rachunku λ :

$$C_{1} \equiv \lambda t_{11} t_{12} \dots t_{1n_{1}} f_{1} f_{2} \dots f_{m} \cdot f_{1} t_{11} t_{12} \dots t_{1n_{1}}$$

$$C_{2} \equiv \lambda t_{21} t_{22} \dots t_{2n_{2}} f_{1} f_{2} \dots f_{m} \cdot f_{2} t_{21} t_{22} \dots t_{2n_{2}}$$

$$\vdots$$

$$C_{m} \equiv \lambda t_{m1} t_{m2} \dots t_{mn_{m}} f_{1} f_{m} \dots f_{m} \cdot f_{1} t_{m1} t_{m2} \dots t_{mn_{m}}$$

Literatura

- [Alt02] Thorsten Altenkirch. "α-conversion is easy". Under Revision. 2002. URL: https://www.cs.nott.ac.uk/~psztxa/publ/alpha-draft.pdf.
- [Bru72] N.G. de Bruijn. "Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem". In: *Indagationes Mathematicae (Proceedings)* 75 (Dec. 1972), pp. 381–392. DOI: 10.1016/1385-7258(72)90034-0.
- [HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction. 2nd ed. New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521898854, 9780521898850.

³Przedstawione definicje mają jedyne charakter ilustracji. Staramy się używać jak najmniejszego podzbioru języka Haskell. Dla porządku należy zaznaczyć, że poprawne określenie klasy funkcji fold polegałoby na zdefiniuwaniu instancji klasy Foldable dla typów Nat i List

- [Jan13] Jan Martin Jansen. "Programming in the λ-Calculus: From Church to Scott and Back". In: Essays Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday on The Beauty of Functional Code Volume 8106. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 168–180. ISBN: 978-3-642-40354-5. DOI: 10.1007/978-3-642-40355-2_12. URL: https://doi.org/10.1007/978-3-642-40355-2_12.
- [KPJ14] Pieter Koopman, Rinus Plasmeijer, and Jan Martin Jansen. "Church Encoding of Data Types Considered Harmful for Implementations: Functional Pearl". In: Proceedings of the 26Nd 2014 International Symposium on Implementation and Application of Functional Languages. IFL '14. Boston, MA, USA: ACM, 2014, 4:1–4:12. ISBN: 978-1-4503-3284-2. DOI: 10.1145/2746325.2746330. URL: http://doi.acm.org/10.1145/2746325.2746330.
- [PL92] Simon L. Peyton Jones and David R. Lester. *Implementing Functional Languages*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992. ISBN: 0-13-721952-0.
- [SS75] Gerald J. Sussman and Guy L. Steele Jr. An Interpreter for Extended Lambda Calculus. Tech. rep. Cambridge, MA, USA, 1975.
- [SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY, USA: Elsevier Science Inc., 2006. ISBN: 0444520775.