The information in this guide is to assist students in studying for the final exam. It is not 100% inclusive of material that can be asked on the final exam.

Students are allowed to use both sides of three sheets of 8.5"x11" paper for notes and formulas.

- No worked examples allowed.
- · Sheets must be submitted with the exam
- · Name of the student must be on both sheets

Possible sources of final exam questions include:

- Lecture Material
- Lab assignments
- Homework Assignments turned in and extra problems
- Material from the text book (sections covered by lecture)

Study Exam 1 and Exam 2

Types of Questions will be similar to the two in class exams.

Chapter 1 material

Figure 1.13 – know the OSI – 7 layer names and what is contained on intermediate hosts Internet Architecture – fig. 1.15

Bandwidth, latency, propagation delay, transmit times for physical layer.

Bandwidth is in bit per seconds, data sizes are in Bytes and that Kbytes is 1024 Bytes, Mbytes is 1024x1024 Bytes

Delay X Bandwidth product, Throughput, transfer time

Chapter 2 material

NRZ, NRZI, Manchester and 4B/5B encoding.

Framing –

byte oriented: BISYNC, PPP and DDCMP

Bit oriented (HDLC)

- understand basics of these protocols,

Error detection

Two-dimensional parity – how to perform it

CRC – How to create a transmitted message. How to check a message

Transmission methods

ARQ – stop and wait – how this works

SWP – how it works, how to use the SWS and RWS for flow control, how to find the max sequence number necessary to avoid confusion on received packets

Ethernet

Characteristics of an Ethernet channel, Ethernet frame format, how to determine minimum frame size necessary. How the exponential backoff works, what happens with a collision – what is transmitted

CSMA/CD – how it works,

Wireless -

Use of spread spectrum – information in general on this topic Collision avoidance – how it is obtained in a wireless network – hidden node and exposed node – how these occur

Final Exam Study Guide

Chapter 3 Material Up to section 3.4

Switching - Forwarding table, Datagrams

Switching – Virtual circuit switching – how to create tables for switches – how it is different from datagrams

Source routing – how it works – what is included in packets

Learning Bridges, Spanning tree algorithm, How bridges configure themselves for a root bridge and designated bridges

IP packet format – standard header length

How to read information from the IP header given in hexadecimal format(the sheet handed out in class will be provided if necessary)

Fragmentation and reassembly

Class A, B and C network addresses – how each start and from this can determine the range Subnetting, Subnet mask and classless addressing – know how to determine the next hop from a routing table for a particular destination

Tunneling

Distance Vector Routing and RIP Link State Routing and OSPF Nothing from section 3.4 to the end of the chapter

Chapter 4 material

EGP and BGP

Multiprotocol label switching (MPLS)

Routing to mobile hosts – process for establishing the foreign agent and care of addresses

Chapter 5 Up to section 5.2.9

UDP

TCP – know three way handshake, how it works, the use of sequence numbering and acks. Do not need to know the state transition diagram

TCP – send and receive buffers, silly window syndrome

TCP – adaptive retransmission – karn/partridge, Jacobson karels, calculation of timeout values

TCP - extensions discussed in the text

RPC – what is it, how it works

Nothing from section 5.2.9 to the end of the chapter

Final Exam Study Guide

Chapter 6 material

Issues in resource allocation – taxonomy – section 6.1.2

Power of the network

Queuing Disciplines - FIFO, fair queueing, weighted fair queuing, tail drop

TCP congestion control – additive increase, multiplicative decrease

Slow start (congestion window, congestion threshold)

Congestion avoidance - dec bit and RED

Nothing from 6.4.3 to end of chapter

Chapter 7 material

Nothing from chapter 7. We did not talk about this in class – I presented the general topics with very little information

Chapter 8

Symmetric keys – names and how they work

DES

AES

Public keys – how they work

Authentication using public keys, digital signature using public keys

Cipher block chaining

Authenticators – cryptographic hash functions, MAC and HMAC

MD5

SHA-1

Key predistribuition – symmetric and public

Authentication protocols (see figures 8.7, 8.8, 8.9),