

A first look into Quantum Logic (Just an overview by a non-expert on the field!)

Scientific watch presentation by:

A. Haddad

Supervised by: *T. Krajewski*

Plan

Motivation(s): Physical theories and Logic.

Classically & Quantumly.

Bells' Inequalities.

Conclusions.

$$(\mathcal{L}, \leq, \land, \lor, 0, 1)$$

A Lattice is a set of propositions!

$$(\mathcal{L}, \leq, \wedge, \vee, 0, 1)$$

Propositions can be combined!

And ordered (partially)!

$$(\mathcal{L}, \leq, \wedge, \vee, 0, 1)$$

And bounded!

what else?

Let $x \in L$. An element $x' \in L$ is called the complement of x if $x \vee x' = 1$ and $x \wedge x' = 0$. The lattice $(L, \leq, \wedge, \vee, 0, 1)$ is called complemented if $(\forall)x \in L$ has a complement in L.

Sorin Nadaban (2021) arXiv: 1211.5627 [math-ph]

what else?

Let $x \in L$. An element $x' \in L$ is called the complement of x if $x \vee x' = 1$ and $x \wedge x' = 0$. The lattice $(L, \leq, \wedge, \vee, 0, 1)$ is called complemented if $(\forall)x \in L$ has a complement in L.

$$(L, \leq, \wedge, \vee, 0, 1, \perp)$$
 is called orthocomplemented lattice if $(\forall)x, y \in L$ we have: $x^{\perp^{\perp}} = x$ $x \leq y \Rightarrow y^{\perp} \leq x^{\perp}$ $x \wedge x^{\perp} = 0$

Sorin Nadaban (2021) arXiv: 1211.5627 [math-ph]

what else?

Let $x \in L$. An element $x' \in L$ is called the complement of x if $x \lor x' = 1$ and $x \land x' = 0$. The lattice $(L, \leq, \land, \lor, 0, 1)$ is called complemented if $(\forall)x \in L$ has a complement in L.

$$(L, \leq, \wedge, \vee, 0, 1, \perp)$$
 is called orthocomplemented lattice if $(\forall)x, y \in L$ we have: $x^{\perp^{\perp}} = x$ $x \leq y \Rightarrow y^{\perp} \leq x^{\perp}$ $x \wedge x^{\perp} = 0$

An orthomodular lattice is an orthocomplemented lattice such that $x \leq y \Rightarrow x \vee (x^{\perp} \wedge y) = y, (\forall) x, y \in L$ (orthomodular law).

Sorin Nadaban (2021)

arXiv: 1211.5627 [math-ph]

Classically

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

If L is Boolean algebra, than L is modular, orthogodular and orthocomplemented.

Quantumly

$$x \wedge (y \vee z) \neq (x \wedge y) \vee (x \wedge z).$$

arXiv: 1211.5627

Bell Inequalities

For any two proposition A,B in a lattice \mathcal{L} , we define

$$d(A,B) = P(A \vee B) - P(A \wedge B)$$

Satisfying the following triangle inequality which are closely related to Bell inequalities

$$|d(A,B) - d(A,C)| \le d(B,C) \le d(A,B) + d(A,C).$$

The point is, if we consider a Boolean structure, the inequality hold true, but a non-Boolean structure will break the inequality as QM do with Bell's inequalities!

E. Santos, Physics letters A 115.8 (1986)

arXiv: quant-ph/0207062

S. Pulmannová and V. Majernik (1992)

Conclusions

• Classical and Quantum systems have both an <u>orthocomplemented structure</u> and the <u>distributive property</u> provides the essential difference between them.

Conclusions

 Classical and Quantum systems have both an <u>orthocomplemented structure</u> and the <u>distributive property</u> provides the essential difference between them.

• QL may provide an equivalent inequalities to the well-know <u>"Bell's inequalities"</u> which increase our trust on QL formulation.

Conclusions

 Classical and Quantum systems have both an <u>orthocomplemented structure</u> and the <u>distributive property</u> provides the essential difference between them.

• QL may provide an equivalent inequalities to the well-know <u>"Bell's inequalities"</u> which increase our trust on QL formulation.

Sorin Nadaban (2021) Jaroslaw Pykacz (1993)

• Many works have been done to generalize *quantum logic to fuzzy quantum logic* but also to be related to *Non-Commutative Geometry* (throught a W*-algebra).

Marchetti and R. Rubele (2007)

Thanks for your Attention!

Your questions are more than welcomed:)