Vérification et preuve automatique d'appartenance d'un mot à une grammaire formelle.

Ulysse Durand

Les grammaires formelles

$$G = (T, N_t, S, D)$$
 où :

- ► T est l'alphabet des terminaux
- $ightharpoonup N_t$ est l'alphabet des non terminaux
- S ∈ N_t est l'axiome Notons Σ := $N_t ∪ T$
- ▶ $D \subset (\Sigma^*)^2$ est l'ensemble des règles de dérivation.

 $ightharpoonup x \stackrel{(a,b)}{
ightharpoonup} x' \iff x = uav \text{ et } x' = ubv$

- $x \stackrel{(a,b)}{\rightarrow} x' \iff x = uav \text{ et } x' = ubv$
- $\rightarrow := \bigcup_{(a,b)\in D} \stackrel{(a,b)}{\rightarrow}$
- ▶ $\stackrel{*}{\rightarrow}$ la cloture transitive et réflexive de \rightarrow $(x \stackrel{*}{\rightarrow} m \iff x \rightarrow m_1 \rightarrow \cdots \rightarrow m_{n-1} \rightarrow m)$

- $\triangleright x \stackrel{(a,b)}{\rightarrow} x' \iff x = uav \text{ et } x' = ubv$
- $\rightarrow := \bigcup_{(a,b)\in D} \stackrel{(a,b)}{\rightarrow}$
- ▶ $\stackrel{*}{\rightarrow}$ la cloture transitive et réflexive de \rightarrow $(x \stackrel{*}{\rightarrow} m \iff x \rightarrow m_1 \rightarrow \cdots \rightarrow m_{n-1} \rightarrow m)$
- ▶ $\delta(x)$ successeurs de x par \to (ou successeurs directs de x par $\stackrel{*}{\to}$)

- $\triangleright x \stackrel{(a,b)}{\rightarrow} x' \iff x = uav \text{ et } x' = ubv$
- $\rightarrow := \bigcup_{(a,b)\in D} \stackrel{(a,b)}{\rightarrow}$
- ▶ $\stackrel{*}{\rightarrow}$ la cloture transitive et réflexive de \rightarrow $(x \stackrel{*}{\rightarrow} m \iff x \rightarrow m_1 \rightarrow \cdots \rightarrow m_{n-1} \rightarrow m)$
- ▶ $\delta(x)$ successeurs de x par \to (ou successeurs directs de x par $\stackrel{*}{\to}$)
- $|x|_I$ nombre d'occurences de la lettre I dans x.

- $\triangleright x \stackrel{(a,b)}{\rightarrow} x' \iff x = uav \text{ et } x' = ubv$
- $ightharpoonup
 ightharpoonup := igcup_{(a,b) \in D} \stackrel{(a,b)}{
 ightharpoonup}$
- ▶ $\stackrel{*}{\rightarrow}$ la cloture transitive et réflexive de \rightarrow $(x \stackrel{*}{\rightarrow} m \iff x \rightarrow m_1 \rightarrow \cdots \rightarrow m_{n-1} \rightarrow m)$
- ▶ $\delta(x)$ successeurs de x par \to (ou successeurs directs de x par $\stackrel{*}{\to}$)
- $|x|_I$ nombre d'occurences de la lettre I dans x.
- Le langage de la grammaire formelle G est :

$$\mathcal{L}(G) := \delta(S) \cap T^*$$

Vérification de preuve

```
D = \{d_1, \dots, d_n\} = \{(a_1, b_1), \dots, (a_n, b_n)\}
S \xrightarrow{d_{i_1}} m_1 \xrightarrow{d_{i_2}} \dots \xrightarrow{d_{i_p}} m_p
m_k = u_{k+1} a_{i_{k+1}} v_{k+1} \xrightarrow{(a_{i_{k+1}}, b_{i_{k+1}})} m_{k+1} = u_{k+1} b_{i_{k+1}} v_{k+1}
j_k := |u_k|
type 'e preuveformelle = (('e caractere list)*int*int) list
[\dots; (m_k, j_k, j_k); \dots]
```

Vérification de preuve - Exemple

```
G = (T, N_t, S, D) où :
  T = \{a, b, c\}
  ► N_t = \{S, B\}
  D = \{(S, \underline{aBSc})_1, (\underline{S}, \underline{abc})_2, (\underline{Ba}, \underline{aB})_3, (\underline{Bb}, \underline{bb})_4\}
alors aabbcc est dans \mathcal{L}(G) car
S \rightarrow_1 aBSc \rightarrow_2 aBabcc \rightarrow_3 aaBbcc \rightarrow_4 aabbcc.
En Ocaml:
let unepreuve = [(mot "aBSc",0,0);(mot "aBabcc",1,2);
(mot "aaBbcc",2,1); (mot "aabbcc",3,2)]
```

Preuve automatique d'appartenance d'un mot

Chemin de S à m dans (Σ^*, \rightarrow) .

Preuve automatique d'appartenance d'un mot

Chemin de S à m dans (Σ^*, \rightarrow) .

Parcours en largeur ! Successeurs directs S(x) d'un mot x par \rightarrow ?

Preuve automatique d'appartenance d'un mot

Chemin de S à m dans (Σ^*, \rightarrow) .

Parcours en largeur ! Successeurs directs S(x) d'un mot x par \rightarrow ?

Algorithme de Knuth-Morris-Pratt pour le calcul de $S_{(a,b)}(x)$ successeurs directs de x par $\stackrel{(a,b)}{\rightarrow}$.

Preuve automatique d'appartenance d'un mot - Le parcours en largeur

Réduire la complexité d'un tel parcours ?

Eviter les chemins passant par certains mots.

interdit : ('e caractere list) -> bool

Retourner le chemin pour la preuve d'appartenance du mot.

Amélioration pour les grammaires croissantes

$$\forall (a,b) \in D, |a| \leq |b|$$

$$x \stackrel{*}{\to} x' \implies |x| \le |x'|$$

let interditcroiss x =
Array.length x > Array.length m

Amélioration dans le cas général : déduction sur le nombre d'occurence de chaque lettre

interdit plus sophistiquée dans le cas général.

 $l \in \Sigma$, $s_x(l) \supset |\delta(x)|_l$ nombres d'occurences de l dans les successeurs de x.

Ainsi, $x \stackrel{*}{\to} m \implies \forall I \in \Sigma, |m|_I \in s_x(I)$

Amélioration dans le cas général : déduction sur le nombre d'occurence de chaque lettre

interdit plus sophistiquée dans le cas général.

 $l \in \Sigma$, $s_x(l) \supset |\delta(x)|_l$ nombres d'occurences de l dans les successeurs de x.

Ainsi,
$$x \stackrel{*}{\to} m \implies \forall I \in \Sigma, |m|_I \in s_x(I)$$

Contraposée :
$$\exists I \in \Sigma/|m|_I \notin s_x(I) \implies \neg(x \stackrel{*}{\rightarrow} m)$$

Amélioration dans le cas général : déduction sur le nombre d'occurence de chaque lettre

interdit plus sophistiquée dans le cas général.

 $l \in \Sigma$, $s_x(l) \supset |\delta(x)|_l$ nombres d'occurences de l dans les successeurs de x.

Ainsi,
$$x \stackrel{*}{\to} m \implies \forall I \in \Sigma, |m|_I \in s_x(I)$$

Contraposée :
$$\exists I \in \Sigma/|m|_I \notin s_x(I) \implies \neg(x \stackrel{*}{\rightarrow} m)$$

Pour les grammaires croissantes, $s_x(I) \supset [||x|, \infty|]$

Calcul de s_x - Description des mots

Description d'un mot x (par ses nombres d'occurences des lettres).

Ensemble de ces descriptions Q fini $\subset (\mathcal{P}(\mathbb{N}))^{\Sigma}$.

Soit $cat(x) \in Q$ la description de x,

 $\forall I \in \Sigma, |x|_I \in cat(x)(I).$

Calcul de s_x - Description des mots

Description d'un mot x (par ses nombres d'occurences des lettres).

Ensemble de ces descriptions Q fini $\subset (\mathcal{P}(\mathbb{N}))^{\Sigma}$.

Soit $cat(x) \in Q$ la description de x,

$$\forall I \in \Sigma, |x|_I \in cat(x)(I).$$

Exemple : pour $Q = \{\{0\}, \mathbb{N}^*\}^{\Sigma}$,

$$cat(\underline{abcba}): a \mapsto \mathbb{N}^*, \ b \mapsto \mathbb{N}^*,$$

$$c \mapsto \mathbb{N}^*, \ d \mapsto \{0\},$$

$$S \mapsto \{0\}$$

Calcul de s_x - Description des mots

Description d'un mot x (par ses nombres d'occurences des lettres).

Ensemble de ces descriptions Q fini $\subset (\mathcal{P}(\mathbb{N}))^{\Sigma}$.

Soit $cat(x) \in Q$ la description de x,

$$\forall I \in \Sigma, |x|_I \in cat(x)(I).$$

Exemple : pour $Q = \{\{0\}, \mathbb{N}^*\}^{\Sigma}$,

$$cat(\underline{abcba}): a \mapsto \mathbb{N}^*, \ b \mapsto \mathbb{N}^*,$$

$$c \mapsto \mathbb{N}^*, \ d \mapsto \{0\},$$

$$S \mapsto \{0\}$$

Partition de Σ^* par $x \sim y \iff cat(x) = cat(y)$.

Calcul de s_x - Le graphe (Q, A_0)

Graphe (Q, A_0) où $A_0 = cat(\rightarrow)$, cat homomorphisme de graphes.

$$x \to x' \implies (cat(x), cat(x')) \in A_0$$

Calcul de s_x - Le graphe (Q, A_0)

Graphe (Q, A_0) où $A_0 = cat(\rightarrow)$, cat homomorphisme de graphes.

$$x o x' \implies (cat(x), cat(x')) \in A_0$$

 $(q, q') \in A_0$
 $\iff \exists x, x' \in \Sigma^*/x \to x' \text{ et } cat(x) = q \text{ et } cat(x') = q'$

 A_0 dérivations possibles d'une description $q \in Q$ à une autre $q' \in Q$.

Calcul de s_x

 $x \stackrel{*}{\to} m \implies cat(m)$ accessible depuis cat(x) dans tout (Q, A) où $A \supset A_0$.

Calcul de s_x

 $x\stackrel{*}{\to} m \implies cat(m)$ accessible depuis cat(x) dans tout (Q,A) où $A\supset A_0$.

La contraposée :

Si cat(m) n'est pas accessible depuis cat(x) dans un graphe (Q,A) majorant (Q,A_0) , alors $\neg(x\stackrel{*}{\to}m)$.

Calcul de s_x

 $x\stackrel{*}{\to} m \implies cat(m)$ accessible depuis cat(x) dans tout (Q,A) où $A\supset A_0$.

La contraposée :

Si cat(m) n'est pas accessible depuis cat(x) dans un graphe (Q,A) majorant (Q,A_0) , alors $\neg(x\stackrel{*}{\to}m)$.

$$(\text{Ici } s_{\scriptscriptstyle X}(I) = \bigcup_{y/x \stackrel{*}{\to} y} cat(y)(I) = \bigcup_{q \text{ accessible depuis } cat(x) \text{ dans A}} q(I)).$$

Les états q sous la forme $q \in Q = \{\{0\}, \mathbb{N}^*\}^{\Sigma}$

D =

 $\{(S,\underline{abc})_0,(\underline{abc},\underline{ab})_1,(\underline{b},\underline{k})_2,(\underline{c},\underline{ak})_3,(\underline{kak},\underline{aa})_4,(\underline{a},\underline{aaa})_5\}$

J, (<u>-</u>	 , <u>-</u>		, (=;		_//
q	q(a)	q(b)	q(c)	q(k)	q(S)
α	N*	N*	N*	{0}	{0}
β	N*	N*	{0}	{0}	{0}
γ	N*	{0}	N*	{0}	{0}
δ	N*	N*	{0}	Ν*	{0}
ϵ	N*	{0}	{0}	N*	{0}
φ	N*	{0}	{0}	{0}	{0}
ψ	N*	{0}	N*	N*	{0}
μ	N*	N*	Ν*	N*	{0}
σ	{0}	{0}	{0}	{0}	\mathbb{N}^*

(b) Ses sommets

(a) Le graphe A

Les états q sous la forme $q \in Q = \{\{0\}, \mathbb{N}^*\}^{\Sigma}$

 $\neg \ (\underline{\ \ aaabakab}\ \stackrel{*}{\rightarrow}\ \underline{\ \ akkcckaaakck}\)\ (\psi\ \ pas\ accessible\ \ depuis\ \delta)$

$$\exists x, y/cat(x) = q \text{ et } cat(y) = q \text{ et } x \stackrel{(a,b)}{\rightarrow} y$$
 \Longrightarrow

► $cat(a) \leq cat(x)$ où $\forall \alpha, \beta \in Q, (\alpha \leq \beta) \iff \forall I \in \Sigma, \max \alpha(I) \leq \min \beta(I).$

$$\exists x, y/cat(x) = q \text{ et } cat(y) = q \text{ et } x \stackrel{(a,b)}{\rightarrow} y$$

- ► $cat(a) \leq cat(x)$ où $\forall \alpha, \beta \in Q, (\alpha \leq \beta) \iff \forall I \in \Sigma, \max \alpha(I) \leq \min \beta(I).$
- ► $cat(x) cat(a) \leq cat(y)$ où $\forall \alpha, \beta \in Q, \alpha \beta : I \mapsto$ $\begin{cases} \{0\} & \text{si } q'(I) = \mathbb{N} \text{ ou } q(I) = \{0\} \\ \mathbb{N} & \text{sinon} \end{cases}$

$$\exists x, y/cat(x) = q \text{ et } cat(y) = q \text{ et } x \stackrel{(a,b)}{\rightarrow} y$$

- ► $cat(a) \leq cat(x)$ où $\forall \alpha, \beta \in Q, (\alpha \leq \beta) \iff \forall I \in \Sigma, \max \alpha(I) \leq \min \beta(I).$
- ► $cat(x) cat(a) \leq cat(y)$ où $\forall \alpha, \beta \in Q, \alpha \beta : I \mapsto$ $\begin{cases} \{0\} & \text{si } q'(I) = \mathbb{N} \text{ ou } q(I) = \{0\} \\ \mathbb{N} & \text{sinon} \end{cases}$
- $\blacktriangleright \ \forall I \in \Sigma, cat(b)(I) = \mathbb{N}^* \implies cat(y)(I) = \mathbb{N}^*.$

$$\exists x, y/cat(x) = q \text{ et } cat(y) = q \text{ et } x \stackrel{(a,b)}{\rightarrow} y$$
 \Longrightarrow

- ► $cat(a) \leq cat(x)$ où $\forall \alpha, \beta \in Q, (\alpha \leq \beta) \iff \forall I \in \Sigma, \max \alpha(I) \leq \min \beta(I).$
- ► $cat(x) cat(a) \leq cat(y)$ où $\forall \alpha, \beta \in Q, \alpha \beta : I \mapsto$ $\begin{cases} \{0\} & \text{si } q'(I) = \mathbb{N} \text{ ou } q(I) = \{0\} \\ \mathbb{N} & \text{sinon} \end{cases}$
- $\blacktriangleright \ \forall I \in \Sigma, cat(b)(I) = \mathbb{N}^* \implies cat(y)(I) = \mathbb{N}^*.$
- $\forall l \in \Sigma, cat(x)(l) = \{0\} \text{ et}$ $cat(b)(l) = \{0\} \implies cat(y)(l) = \{0\}.$

Calcul des arêtes A du graphe (3)

Pour
$$A_{(a,b)} \supset \{(q,q') \in A \mid \exists x, x' \in \Sigma^*/x \xrightarrow{(a,b)} x' \text{ et } cat(x) = q \text{ et } cat(x') = q'\}$$

$$A = \bigcup_{(a,b)\in D} A_{(a,b)}.$$

En précalculant la matrice d'accessibilité de A (avec Floyd-Warshall), elimine x en $\mathcal{O}(|x|)$.

En précalculant la matrice d'accessibilité de A (avec Floyd-Warshall), elimine x en $\mathcal{O}(|x|)$.

Mais, seulement 3 appels à inderdit réussis pour dériver <u>S</u> en <u>aaakaaak</u> de profondeur 5...

En précalculant la matrice d'accessibilité de A (avec Floyd-Warshall), elimine x en $\mathcal{O}(|x|)$.

Mais, seulement 3 appels à inderdit réussis pour dériver <u>S</u> en <u>aaakaaak</u> de profondeur 5...

Prétraitement couteux

En précalculant la matrice d'accessibilité de A (avec Floyd-Warshall), elimine x en $\mathcal{O}(|x|)$.

Mais, seulement 3 appels à inderdit réussis pour dériver <u>S</u> en <u>aaakaaak</u> de profondeur 5...

Prétraitement couteux

Extension probablement possible (mais aussi peu utile ?) pour $Q\subset\{2\mathbb{N},2\mathbb{N}+1\}^\Sigma$