CSE 431/531: Algorithm Analysis and Design

Fall 2022

Homework 1

Instructor: Shi Li Deadline: 9/25/2022

Your Name: _____ Your Student ID: ____

Problems	1	2	3	Total
Max. Score	20	30	30	80
Your Score				

Problem 1. Asymptotic Notations.

(1a) For each pair of functions f(n) and g(n) in the following table, indicate whether $f(n) = O(g(n)), f(n) = \Omega(g(n))$ and $f(n) = \Theta(g(n))$ respectively.

f(n)	g(n)	О	Ω	Θ
$\log_2(n^3)$	$10\log_2(\sqrt{n})$			
$5n^2 + n$	$n \log n$			
$\boxed{10n^2 + n + 10}$	n^3			
e^n	2^{2n}			

(1b) Prove $\lceil 10n\sqrt{n} \rceil = O(n\sqrt{n})$ using the definition of the O-notation.

In the following two problems, we assume every vertex is incident to at least one edge. So we have n = O(m). Then the running time O(n+m) on the slides becomes O(m).

Problem 2: Cycle detection in (undirected) graphs A cycle in an undirected graph G = (V, E) is a sequence of $t \geq 3$ different vertices v_1, v_2, \dots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \dots, t-1$ and $(v_t, v_1) \in E$. Given the linked-list representation of an (undirected) graph G = (V, E), design an O(m)-time algorithm to decide if G contains a cycle or not; if it contains a cycle, output one (you only need to output one cycle). To output the cycle, you can just output v_1, v_2, \dots, v_t .

If the correctness of the algorithm is easy to see from your pseudo-code, then there is no need to prove the correctness separately. However, you should briefly mention why the algorithm runs in time O(m).

Problem 3: Cycle detection in directed graphs A cycle in a directed graph G = (V, E) is a sequence of $t \geq 2$ different vertices v_1, v_2, \dots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \dots, t-1$ and $(v_t, v_1) \in E$. Given the linked-list representation of a directed graph G = (V, E), design an O(m)-time algorithm to decide if G contains a cycle or not; if it contains a cycle, output one (you only need to output one cycle). To output the cycle, you can just output v_1, v_2, \dots, v_t .

If the correctness of the algorithm is easy to see from your pseudo-code, then there is no need to prove the correctness separately. However, you should briefly mention why the algorithm runs in time O(m).

Figure 1: Cycles in undirected and directed graphs are denoted as red edges. (1, 2, 5, 3) is a cycle in the undirected graph. (1, 2, 5, 6, 7, 3) is a cycle in the directed graph. However, (1, 2, 5, 8, 3) is not a cycle in the directed graph.

Remark In a cycle of a directed graph, the directions of the edges have to be consistent. See Figure 1. So, converting a directed graph to a undirected graph and then using algorithm for Problem 2 does not give you a correct algorithm for Problem 3.