SC224: Tutorial Sheet 3

Problems based on Jointly Distributed Random Variables, Expectation, Variance, Covariance and the Weak Law of Large Numbers.

Pb 1) The joint PMF of a discrete random vector (X_1, X_2) is given by the following table

$x_2 \setminus x_1$	-1	0	1
0	1/9	2/9	1/9
1	1/9	2/9	1/9
2	0	1/9	0

- a) Determine the covariance of X_1 and X_2 . (Ans: 15/81).
- b) Calculate the correlation coefficient $\rho_{X_1,X_2} = \frac{\text{Cov}(X_1,X_2)}{\sqrt{\text{Var}(X_1)\text{Var}(X_2)}}$ of X_1 and X_2 . (Ans: 15/36).
- c) Are X_1 and X_2 independent random variables? Justify your answer.
- Pb 2) The moment generating function of a random variable X is a function $M_X(t)$ of a free parameter t, defined by $M_X(t) = E[e^{tX}]$ (if it exists).
 - (i) Compute the moment generating functions for the following distributions.
 - a) Geometric distribution with parameter p.
 - b) Uniform distribution over the interval [a, b].
 - (ii) If the moment generating function exists for a random variable X, then show that the n^{th} moment about the origin (or $E[X^n]$) can be found by evaluating the n^{th} derivative of the moment generating function at t=0.
- Pb 3) Suppose that we have a resistance R. We know that the value of R follows a uniform law between 900 and 1100 Ω . What is the density of the corresponding conductance G = 1/R?
- Pb 4) (Universality of the uniform distribution) Let X be a real valued random variable and let $U \sim U([0,1])$. Since $F_X : \mathbb{R} \to [0,1]$ is not always one-to-one, therefore, we define F_X^{-1} as

$$F_X^{-1}(u) = \sup\{x \in \mathbb{R} : F_X(x) \le u\}.$$

Show that $F_X^{-1}(U)$ and X has the same distribution.

- Pb 5) If X and Y are two independent random variables, then so are g(X) and h(Y).
- Pb 6) Two random variables X and Y are said to be uncorrelated if their covariance is 0. Suppose X and Y are independent uniformly distributed random variables over the common interval [0,1]. Define Z=X+Y and W=X-Y. Show that Z and W are not independent, but uncorrelated random variables.

Pb 7) Let the joint PDF of random variables X and Y be defined as

$$f_{X,Y}(x,y) = k\cos(x+y)$$
 for $0 \le x \le \frac{\pi}{4}, 0 \le y \le \frac{\pi}{4}$.

Determine the constant k and the marginal probability density functions $(f_X(x))$ and $f_Y(y)$ of X and Y. Are the random variables X and Y are orthogonal? Justify. (The random variables X and Y are said to be **orthogonal** if the mathematical expectation E[XY] = 0.)

- Pb 8) Let X and Y be linearly dependent real valued random variables. Show that X and Y are not independent (in the probability sense.)
- Pb 9) (Multinomial Distribution) Let Ω be a sample space associated with a random experiment E, and let $B_1, B_2, ..., B_n$ be a partition of Ω . Assume that we perform m independent repetitions of the experiment E and that the probability $p_k = P[B_k]$ is constant from one repetition to another. If X_k denotes the number of times that the event B_k has occurred among the m repetitions, for k = 1, 2, ..., n, then, determine the joint PMF of the random vector $(X_1, X_2, ..., X_n)$ and $Cov(X_i, X_j)$. Also, calculate the expectation and variance of the random variable $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$.
- Pb 10) Show that if $X \geq 0$ and $E(X) = \mu$ then $P(X \geq \sqrt{\mu}) \leq \sqrt{\mu}$.
- Pb 11) Let X have variance σ_X^2 and Y have variance σ_Y^2 . Show that $-1 \le \rho_{X,Y} \le 1$. Further, argue that, if $\rho_{X,Y} = 1$ or -1, then X and Y are related by Y = a + bX, where b > 0 if $\rho_{X,Y} = 1$ and b < 0 if $\rho_{X,Y} = -1$.
- Pb 12) Consider n independent trials, each of which results in any of the outcomes i, i = 1, 2, 3, with respective probabilities $p_1, p_2, p_3, \sum_{i=1}^{3} p_i = 1$. Let N_i denote the number of trials that result in outcome i, and show that $\text{Cov}(N_1, N_2) = -np_1p_2$. Also explain why it is intuitive that this covariance is negative.
- Pb 13) Suppose that X is a random variable with mean and variance both equal to 20. What can be said about $P[0 \le X \le 40]$?.
- Pb 14) From past experience, a professor knows that the test score of a student taking her final examination is a random variable with mean 75.
 - (a) Give an upper bound to the probability that a student's test score will exceed 85.
 - (b) Suppose in addition the professor knows that the variance of a student's test score is equal to 25. What can be said about the probability that a student will score between 65 and 85?

Problems based on Special Discrete Random Variables.

Pb 1) The moment generating function of a random variable X is a function $M_X(t)$ of a free parameter t, defined by $M_X(t) = E[e^{tX}]$ (if it exists).

- (i) Compute the moment generating functions for the following distributions.
 - a) Bernoulli distribution with probability of success p.
 - b) Binomial distribution with parameters n and p.
 - c) Poisson distribution with parameter $\lambda > 0$.
- (ii) Using the moment generating function, find the mean and variance of above mentioned distributions. Further, argue that sum of independent Binomial (Poisson) random variables follows Binomial (Poisson) distribution.
- Pb 2) An urn contains n balls numbered 1 through n. If you withdraw m balls randomly in sequence, each time replacing the ball selected previously, find P[X=k], k=1,...,m, where X is the maximum of the m chosen numbers.
- Pb 3) If X is a binomial random variable with expected value 6 and variance 2.4, find P[X=5].
- Pb 4) On average, 5.2 hurricanes hit a certain region in a year. What is the probability that there will be 3 or fewer hurricanes hitting this year?
- Pb 5) The number of eggs laid on a tree leaf by an insect of a certain type is a Poisson random variable with parameter λ . However, such a random variable can be observed only if it is positive, since if it is 0 then we cannot know that such an insect was on the leaf. If we let Y denote the observed number of eggs, then

$$P[Y=i] = P[X=i|X>0]$$

where X is Poisson with parameter λ . Find E[Y].

Pb 6) Suppose that

$$P[X = a] = p$$
 $P[X = b] = 1 - p.$

Show that $\frac{X-b}{a-b}$ is a Bernoulli random variable. Find Var(X).

- Pb 7) Each game you play is a win with probability p. You plan to play 5 games, but if you win the fifth game, then you will keep on playing until you lose. Find the expected number of games that you lose.
- Pb 8) Ten balls are to be distributed among 5 urns, with each ball going into urn i with probability $p_i, \sum_{i=1}^{5} p_i = 1$. Let X_i denote the number of balls that go into urn i. Assume that events corresponding to the locations of different balls are independent.
 - a) What type of random variable is X_i ? Be as specific as possible.
 - b) For $i \neq j$, what type of random variable is $X_i + X_j$?
 - c) Find $P[X_1 + X_2 + X_3 = 7]$.