UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DIRETORIA DE PESQUISA E PÓS GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

JÔNATAS TRABUCO BELOTTI

IMPLEMENTAÇÃO PROJETO PRÁTICO 7.8: REDE DE HOPFIELD

RELATÓRIO

PONTA GROSSA 2017

JÔNATAS TRABUCO BELOTTI

IMPLEMENTAÇÃO PROJETO PRÁTICO 7.8: REDE DE HOPFIELD

Relatório apresentado como requisito parcial à obtenção de nota na disciplina de Fundamentos de Redes Neurais Artificiais do Programa de Pós-Graduação em Engenharia Elétrica, da Universidade Tecnológica Federal do Paraná–Campus Ponta Grossa.

Professor: Prof. Dr. Sérgio Okida

SUMÁRIO

1 INTRODUÇÃO	3
1.1 ESTUDO DE CASO	
2 DESENVOLVIMENTO DO PROJETO	5
2.1 EXECUÇÃO DA REDE	5
2.2 AUMENTO DO RUÍDO	7
3 CONCLUSÃO	10
REFERÊNCIAS	
APÊNDICE A - IMPLEMENTAÇÃO DA CLASSE HOPFIELD EM JAVA	
APÊNDICE B - PESOS OBTIDOS PELO MÉTODO DO PRODUTO EXTERNO	

1 INTRODUÇÃO

Uma rede neural artificial recorrente é uma rede onde as saídas de uma camada neural podem ser utilizadas como entradas para a rede, ou seja, existe uma realimentação. Tem-se como exemplo de uma rede neural artificial recorrente a rede de *Hopfield*, possuindo uma realimentação global todas as saídas da rede são reutilizadas como entradas para todos os neurônios da rede (SILVA; SPATTI; FLAUZINO, 2010).

Segundo Silva, Spatti e Flauzino (2010) as principais características das redes de *Hopfield* são:

- Comportamento tipicamente dinâmico;
- Capacidade de memorizar relacionamentos;
- Possibilidade de armazenamento de informações;
- Facilidade de implementação em hardware analógico.

A Figura 1 apresenta a arquitetura originalmente proposta para a rede de *Hopfield*.

Figura 1 - Arquitetura rede Hopfield

Fonte: (SILVA; SPATTI; FLAUZINO, 2010).

Como pode ser visto na Figura 1 originalmente a arquitetura proposta para a rede de *Hopfield* é constituída de apenas 1 camada neural, onde existe uma realimentação global entre

seus neurônios, ou seja, todas as saídas da rede realimentam todas as suas entradas. Ainda analisando a Figura 1 nota-se a presença do operador z^{-1} , operador esse que representa um atraso temporal de 1 unidade, dessa forma as saídas da rede serão utilizadas como entradas para a próxima execução.

Esse relatório tem como objetivo descrever o desenvolvimento do Projeto Prático 7.8 do livro Redes neurais artificias para engenharia e ciências aplicadas de Silva, Spatti e Flauzino (2010). O projeto consiste na implementação de uma rede neural artificial de *Hopfield* para ser utilizada na recuperação de imagens que sofreram ruído na transmissão.

1.1 ESTUDO DE CASO

O projeto prático 7.8 do livro Redes neurais artificias para engenharia e ciências aplicadas de Silva, Spatti e Flauzino (2010) apresenta um sistema de transmissão de imagens por meio de um *link* de comunicação. As imagens são codificadas por 45 *bits* para poderem serem enviadas, ao serem recebidas pelo sistema de recepção a informação é decodificada visando recuperar fielmente a imagem enviada. A Figura 2 mostra as 4 imagens que são transmitidas pelo sistema de transmissão de imagens.

Figura 2 – Imagens transmitidas pelo sistema

Fonte: (SILVA; SPATTI; FLAUZINO, 2010).

Durante a transmissão as imagens são corrompidas por ruídos, transformando-as em representações incompletas ou distorcidas das imagens transmitidas. Com o objetivo de resolver esse problema, pretende-se implementar uma rede neural de *Hopfield* para realizar a recuperação das imagens recebidas visando obter as imagens com o maior grau de fidelidade em relação as imagens envidas possível.

O livro determina que a rede neural de Hopfield desenvolvida deve conter 45 neurônios, a matriz de pesos \mathbf{W} deve ser definida por meio do método do produto externo e todos os neurônios deveram possuir função de ativação do tipo sinal. Também é definido que cerca de 20% dos pixels de cada imagem é corrompido na transmissão da imagem.

2 DESENVOLVIMENTO DO PROJETO

A rede neural de *Hopfield* proposta na Seção 1.1 foi desenvolvida na linguagem Java, a classe *Hopfield* é a responsável por implementar o funcionamento da rede, seu código fonte está disponível no Apêndice A. Com o objetivo de facilitar o acesso ao código fonte, o mesmo juntamente com o programa já compilado foram disponibilizados em um repositório do *GitHub*¹ que pode ser acessado pelo link https://github.com/jonatastbelotti/redeHopfield.

2.1 EXECUÇÃO DA REDE

Os pesos sinápticos da rede foram definidos por meio do método do produto externo, conforme mencionado na Seção 1.1, e estão disponíveis no Apêndice B.

Visando testar o funcionamento da rede foram simulados 12 situações de transmissão, 3 com cada imagem apresentada na Figura 2. Para cada simulação foram escolhidos 20% dos *pixels* da imagem de forma aleatória para terem os seus valores trocados, gerando assim o ruído oriundo da transmissão das imagens pelo *link* de comunicação.

A Figura 3 mostra as 3 simulações realizadas para a imagem 1, nela é possível ver a imagem original que foi transmitida, a imagem recebida pelo sistema de recepção contendo o ruído gerado e por fim a imagem final recuperada pela rede de *Hopfield*.

Fonte: Autoria própria.

Verifica-se que mesmo com a imagem ruidosa recebida tendo sido diferente todas as vezes a rede de *Hopfield* foi capaz de recuperar a primeira imagem originalmente transmitida com perfeição em todas as 3 simulações realizadas.

No repositório do GitHub o caminho para acessar a classe Hopfield é './redeHopfield/src/Modelo/Hopfield.java'.

A próxima simulação foi realizada com a segunda imagem 2. A Figura 4 mostra as 3 simulações de transmissão realizadas para a imagem 2, nela é possível ver a imagem original que foi transmitida, a imagem recebida pelo sistema de recepção contendo o ruído gerado e por fim a imagem final recuperada pela rede de *Hopfield*.

Figura 4 – Recuperações imagem 2
Imagem transmitida
Imagem recebida
Imagem recuperada
Imagem transmitida
Imagem recebida
Imagem recuperada
Imagem recuperada
Imagem recuperada
Imagem recuperada
Imagem recuperada

Fonte: Autoria própria.

Analisando a Figura 4 nota-se que a imagem ruidosa recebida pelo sistema de recepção foi diferente nas 3 transmissões, entretanto, a rede de *Hopfield* foi capaz de recuperar a imagem original com perfeição todas as vezes.

A Figura 5 mostra as 3 simulações de transmissão realizadas para a imagem 3, nela é possível ver a imagem original que foi transmitida, a imagem recebida pelo sistema de recepção contendo o ruído gerado e por fim a imagem final recuperada pela rede de *Hopfield*.

Fonte: Autoria própria.

Na simulações realizadas para a imagem 3 (Figura 5) verifica-se que a imagem recebida pelo sistema de recepção contendo o ruido foi diferente nas 3 transmissões realizadas, mas, mesmo assim, a rede de *Hopfield* foi capaz de recuperar a imagem originalmente transmitida com perfeição.

A Figura 6 mostra as 3 simulações de transmissão realizadas para a imagem 4, nela é possível ver a imagem original que foi transmitida, a imagem recebida pelo sistema de recepção contendo o ruído gerado e por fim a imagem final recuperada pela rede de *Hopfield*.

Fonte: Autoria própria.

Da mesma forma como ocorreu nas outras 3 simulações (imagens 1, 2 e 3), verifica-se que a imagem recebida pelo sistema de recepção foi diferente nas 3 simulações de transmissão realizadas, mas novamente isso não prejudicou a recuperação da imagem realizada pela rede de *Hopfield*, já que a rede recuperou as imagens com perfeição todas as vezes.

2.2 AUMENTO DO RUÍDO

A rede de *Hopfield* desenvolvida procura dentre os padrões assimilados em sua memória associativa aquele que mais se assimila com a entrada recebida, dessa forma se a imagem recebida pela rede em nada se assemelha a nenhum dos padrões assimilados pela rede a mesma não será capaz de identificar de qual imagem se trata. Nota-se então, que o ruído presente na imagem é determinante para a operação da rede, visto que o ruído modifica a imagem originalmente transmitida fazendo com que a mesma fique diferente.

Com o objetivo de verificar o impacto que a porcentagem de ruído presente na imagem tem sobre a recuperação realizada pela rede de *Hopfield* foram realizadas mais 6 simulações de transmissão para a imagem 4, 3 simulações foram realizadas para uma porcentagem de ruído de

30% e outras 3 simulações com uma taxa de ruído de 50%.

A Figura 7 mostra as 3 simulações de transmissão realizadas para a imagem 4 com uma taxa de ruído de 30%.

Figura 7 – Recuperações imagem 30% de ruído
Imagem transmitida
Imagem recebida
Imagem recuperada
Imagem transmitida
Imagem recebida
Imagem recuperada
Imagem recuperada
Imagem recuperada
Imagem recuperada
Imagem recuperada
Imagem recuperada

Fonte: Autoria própria.

Note que diferentemente das simulações apresentadas na Seção 2.1 onde a taxa de ruído era de 20%, agora com o ruído em 30% a rede de Hopfield recuperou com perfeição apenas a imagem da 2° transmissão, sendo que nas outras 2 transmissões a rede recuperou a imagem 3 para a transmissão da imagem 4.

A Figura 8 mostra as 3 simulações de transmissão realizadas para a imagem 4 com uma taxa de ruído de 50%.

Fonte: Autoria própria.

Mais uma vez, analisando os resultados apresentados na Figura 8, verifica-se que a rede

de *Hopfield* não foi bem sucedida na recuperação das imagens, dessa vez todas as 3 imagens transmitidas foram recuperadas de maneira errada.

Analisando os resultados apresentados na Seção 2.1 e as figuras 7 e 8 verifica-se que o ruído presente na imagem recebida é determinante para o sucesso ou não da recuperação da imagem pela rede de Hopfield, de modo que quanto maior o ruído menor é a chance da rede recuperar de forma correta a imagem enviada. Com as simulações apresentadas na Seção 2.1 e nessa seção é possível determinar que até 20% de ruído não é capaz de prejudicar a recuperação das imagens realizada pela rede de Hopfield, a partir de 30% de ruído a recuperação da imagem pela rede fica comprometida, sendo que com 30% a rede ainda acerta em alguns casos, já a partir de 50% de ruído as chances da rede recuperar a imagem corretamente são praticamente inexistentes.

3 CONCLUSÃO

Concluí-se que a rede de Hopfield desenvolvida para ser utilizada na recuperação de imagens ruidosas recebidas por um sistema de recepção de imagens atenderá a todas as necessidades do sistema desde que a taxa de ruído presente nas imagens recebidas não seja maior que 20%. Com taxas de ruído maiores que 20% o desempenho da rede de Hopfield é reduzido, quanto maior a porcentagem de ruído menor a chance da rede recuperar a imagem corretamente, sendo que a partir de 50% de ruído a chance da rede ter sucesso na recuperação das imagens é quase nula.

REFERÊNCIAS

SILVA, Ivan Nunes da; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. **Redes Neurais Artificiais Para Engenharia e Cincias Aplicadas - Curso Pratico**. 1. ed. São Paulo: ARTLIBER, 2010. ISBN 978-85-88098-53-4.

APÊNDICE A - IMPLEMENTAÇÃO DA CLASSE HOPFIELD EM JAVA

```
1 package Modelo;
   import Controle.Comunicador;
4 import Controle. Tabelas;
  import java.util.ArrayList;
6 import java.util.List;
8 /**
   * Cauthor Jônatas Trabuco Belotti [jonatas.t.belotti@hotmail.com]
    */
12 public class Hopfield {
     private final int NUM_ENTRADAS = Tabelas.NUM_LINHAS * Tabelas.
14
        NUM_COLUNAS;
     private final int NUM_NEURONIOS = NUM_ENTRADAS;
16
     private List<int[][] > listaImagens;
     private int entrada[];
18
     private int saida[];
     private double pesos[][];
20
     private double matrizIdentidade[][];
22
     public Hopfield() {
       entrada = new int[NUM_ENTRADAS];
24
       saida = new int[NUM_ENTRADAS];
       pesos = new double[NUM_NEURONIOS][NUM_NEURONIOS];
26
       matrizIdentidade = new double[NUM_NEURONIOS][NUM_NEURONIOS];
28
       //Selecionando o conjunto de treinamento
       listaImagens = new ArrayList <>();
30
       listaImagens.add(Tabelas.tab1);
       listaImagens.add(Tabelas.tab2);
32
       listaImagens.add(Tabelas.tab3);
       listaImagens.add(Tabelas.tab4);
34
     }
36
     public boolean treinar() {
```

```
Comunicador.iniciarLog("Iniciando treinamento da rede Hopfield"
38
          );
       //Iniciando os pesos sinapticos com 0 e criando matriz
40
          identidade
       for (int linha = 0; linha < NUM_NEURONIOS; linha++) {</pre>
         for (int coluna = 0; coluna < NUM_NEURONIOS; coluna++) {</pre>
42
           pesos[linha][coluna] = OD;
           matrizIdentidade[linha][coluna] = OD;
44
           if (linha == coluna) {
46
             matrizIdentidade[linha][coluna] = 1D;
           }
48
         }
       }
50
       //ATUALIZANDO OS PESOS SINAPTICOS
52.
       //Parcela 1
       for (int[][] matriz : listaImagens) {
54
         recuperarEntradas(matriz);
56
         for (int linha = 0; linha < NUM_NEURONIOS; linha++) {</pre>
           for (int coluna = 0; coluna < NUM_NEURONIOS; coluna++) {
58
              pesos[linha][coluna] += entrada[linha] * entrada[coluna];
           }
60
         }
       }
62
       for (int linha = 0; linha < NUM_NEURONIOS; linha++) {</pre>
64
         for (int coluna = 0; coluna < NUM_NEURONIOS; coluna++) {</pre>
           pesos[linha][coluna] /= (double) NUM_ENTRADAS;
66
         }
       }
68
       //Parcela 2
70
       for (int linha = 0; linha < NUM_NEURONIOS; linha++) {</pre>
         for (int coluna = 0; coluna < NUM_NEURONIOS; coluna++) {</pre>
72
           pesos[linha][coluna] -= matrizIdentidade[linha][coluna] *
               ((double) listaImagens.size() / (double) NUM_ENTRADAS);
74
         }
       }
76
```

```
Comunicador.adicionarLog("Fim do teinamento");
        imprimirPesos();
78
       return true;
80
     }
82
     public void executar() {
       int[] v_anterior;
84
       int[] v_atual;
       double valorParcial;
86
       v_anterior = new int[NUM_ENTRADAS];
88
       v_atual = new int[NUM_ENTRADAS];
       recuperarEntradas(Tabelas.getTabelaRuido());
90
        copiarVetor(entrada, v_atual);
92
       //Enquanto a saida atual for diferente da anterior
        do {
94
          copiarVetor(v_atual, v_anterior);
96
          for (int neuronio = 0; neuronio < NUM_NEURONIOS; neuronio++)</pre>
             {
            valorParcial = 0D;
98
            for (int entrada = 0; entrada < NUM_ENTRADAS; entrada++) {</pre>
100
              valorParcial += pesos[neuronio][entrada] * (double)
                 v_anterior[entrada];
            }
102
            v_atual[neuronio] = funcaSinal(valorParcial);
104
       } while (!vetoresIguais(v_anterior, v_atual));
106
        copiarVetor(v_atual, saida);
108
        Tabelas.setTabelaRecuperadaVetor(saida);
110
     }
112
     private int funcaSinal(double valor) {
       if (valor >= OD) {
114
         return 1;
       }
116
```

```
return -1;
     }
118
      private void recuperarEntradas(int[][] matriz) {
120
        int i;
122
        entrada = new int[NUM_ENTRADAS];
        i = 0;
124
        for (int linha = 0; linha < matriz.length; linha++) {</pre>
126
          for (int coluna = 0; coluna < matriz[linha].length; coluna++)</pre>
              {
            if (i < entrada.length) {</pre>
128
              entrada[i++] = matriz[linha][coluna];
            }
130
          }
       }
132
      }
134
      private void imprimirPesos() {
        String texto;
136
        Comunicador.adicionarLog("Pesos sinapticos:");
138
        for (int linha = 0; linha < NUM_NEURONIOS; linha++) {</pre>
140
          texto = String.format("N%d: ", linha + 1);
142
          for (int coluna = 0; coluna < NUM_NEURONIOS; coluna++) {
            texto += String.format("%f ", pesos[linha][coluna]);
144
          }
146
          Comunicador.adicionarLog(texto);
       }
148
      }
150
      private boolean vetoresIguais(int[] v_anterior, int[] v_atual) {
        if (v_anterior == null || v_atual == null) {
152
          return false;
        }
154
        if (v_anterior.length != v_atual.length) {
156
          return false;
```

```
158
        }
        for (int i = 0; i < v_anterior.length; i++) {</pre>
160
          if (v_anterior[i] != v_atual[i]) {
            return false;
162
          }
        }
164
        return true;
166
     }
168
     private void copiarVetor(int[] vetorOrigem, int[] vetorDestino) {
        for (int i = 0; i < vetorOrigem.length; i++) {</pre>
170
          vetorDestino[i] = vetorOrigem[i];
        }
172
      }
174
   }
```

APÊNDICE B - PESOS OBTIDOS PELO MÉTODO DO PRODUTO EXTERNO

```
N1: 0,000000 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000
   0,044444 0,088889 0,000000 0,000000 -0,088889 0,044444 0,088889 0,000000
   0,000000 -0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444
   0.088889 \ 0.000000 \ 0.000000 \ -0.088889 \ 0.000000 \ 0.044444 \ 0.000000 \ 0.000000
   -0,088889 0,000000 0,044444 0,044444 0,044444 0,000000 0,044444 0,088889
   0,044444 0,044444 0,000000 0,044444 0,088889
N2: 0,088889 0,000000 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000
   0,044444 0,088889 0,000000 0,000000 -0,088889 0,044444 0,088889 0,000000
   0,000000 -0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444
   0,088889 0,000000 0,000000 -0,088889 0,000000 0,044444 0,000000 0,000000
    -0,088889 0,000000 0,044444 0,044444 0,044444 0,000000 0,044444 0,088889
   0,044444 0,044444 0,000000 0,044444 0,088889
N3: 0,000000 0,000000 0,000000 0,044444 0,000000 0,000000 0,044444 0,088889
   0,044444 0,000000 -0,088889 -0,088889 0,000000 0,044444 0,000000 -0,088889
   -0,088889 -0,044444 0,044444 0,000000 0,000000 0,000000 0,044444 0,044444
   0,000000 0,000000 -0,044444 0,044444 0,088889 0,044444 0,000000
   0,044444 0,044444 0,088889 0,044444 0,000000
N4: 0,044444 0,044444 0,044444 0,000000 0,044444 0,044444 0,088889 0,044444
   0,088889 0,044444 -0,044444 -0,044444 -0,044444 0,088889 0,044444 -0,044444
   -0,044444 0,000000 0,088889 0,044444 0,044444 0,044444 0,088889 0,088889
   0,044444 - 0,044444 - 0,044444 - 0,044444 0,000000 - 0,044444 - 0,044444
    -0,044444 0,044444 0,000000 0,000000 0,000000 0,044444 0,088889 0,044444
   0,000000 0,000000 0,044444 0,088889 0,044444
N5: 0,088889 0,088889 0,000000 0,044444 0,000000 0,088889 0,044444 0,000000
   0,044444 0,088889 0,000000 0,000000 -0,088889 0,044444 0,088889 0,000000
   0,000000 -0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444
   0,088889 0,000000 0,000000 -0,088889 0,000000 0,044444 0,000000 0,000000
   -0.088889 0.000000 0.044444 0.044444 0.044444 0.000000 0.044444 0.088889
   0,044444 0,044444 0,000000 0,044444 0,088889
N6: 0,088889 0,088889 0,000000 0,044444 0,088889 0,000000 0,044444 0,000000
   0,044444 0,088889 0,000000 0,000000 -0,088889 0,044444 0,088889 0,000000
   0,000000 -0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444
   0,088889 0,000000 0,000000 -0,088889 0,000000 0,044444 0,000000 0,000000
    -0,088889 0,000000 0,044444 0,044444 0,044444 0,000000 0,044444 0,088889
   0,044444 0,044444 0,000000 0,044444 0,088889
```

N7: 0.044444 0.044444 0.044444 0.088889 0.044444 0.044444 0.000000 0.044444

- 0,088889 0,044444 -0,044444 -0,044444 -0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,088889 0,088889 0,088889 0,044444 0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,000000 0,044444 0,088889 0,044444
- N9: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 0,000000 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,088889 0,088889 0,088889 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 0,000000 0,000000 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889 0,044444

- N13: -0,088889 -0,088889 0,000000 -0,044444 -0,088889 -0,088889 -0,044444 -0,088889 0,000000 0,000000 -0,044444 -0,088889 0,000000 0,000000 -0,044444 -0,088889 0,000000 0,088889 -0,088889 -0,088889 -0,088889 -0,044444 -0,044444 -0,044444 -0,088889 0,000000 -0,044444 0,000000 0,000000 0,088889 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 -0,044444

- -0.088889 -0.044444 -0.044444 0.000000 -0.044444 -0.088889
- N14: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,088889 0,088889 0,088889 0,044444 0,044444 0,088889 0,088889 0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 0,000000 0,000000 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889 0,044444
- N15: 0,088889 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000 0,044444 0,088889 0,000000 0,000000 -0,088889 0,044444 0,000000 0,000000 0,000000 -0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444 0,088889 0,000000 0,044444 0,000000 0,000000 -0,088889 0,000000 0,044444 0,044444 0,044444 0,044444 0,000000 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889
- N17: 0,000000 0,000000 -0,088889 -0,044444 0,000000 0,000000 -0,044444 -0,088889 -0,044444 0,000000 0,088889 0,000000 -0,044444 0,000000 0,088889 0,000000 0,044444 -0,044444 -0,044444 -0,000000 0,000000 0,000000 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,000000
- N18: -0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 0,000000 -0,044444 0,000000 -0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,04444 -0,044444 -0,044444 -0,044444 -0,04444 -0,044444 -0,0444 -0,04444 -0,04444 -0,04444 -0,04444 -0,04444 -0,04444 -
- N19: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,088889 0,088889 0,088889 0,088889 0,044444 -0,044444 0,044444 0,044444 0,088889 0,088889 0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,000000 0,044444 0,088889 0,044444
- N20: 0,088889 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000 0,044444 0,088889 0,000000 -0,088889 0,044444 0,088889 0,000000 0,000000 0,000000 -0,044444 0,044444 0,000000 0,088889 0,088889 0,044444 0,044444

- 0,088889 0,000000 0,000000 -0,088889 0,000000 0,044444 0,000000 0,000000 -0,088889 0,000000 0,044444 0,044444 0,044444 0,000000 0,044444 0,088889 0,044444 0,044444 0,088889
- N21: 0,088889 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000 0,044444 0,088889 0,000000 0,000000 -0,088889 0,0044444 0,088889 0,000000 0,000000 0,000000 -0,044444 0,044444 0,088889 0,000000 0,088889 0,044444 0,044444 0,088889 0,000000 0,088889 0,000000 0,088889 0,000000 0,088889 0,000000 0,044444 0,088889 0,000000 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889 0,044444 0,088889
- N22: 0,088889 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000 0,044444 0,088889 0,000000 0,000000 -0,088889 0,044444 0,088889 0,000000 0,000000 -0,044444 0,044444 0,088889 0,000000 0,044444 0,044444 0,088889 0,000000 0,044444 0,044444 0,088889 0,000000 0,044444 0,000000 0,088889 0,000000 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889
- N23: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,000000 0,088889 0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444
- N24: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,088889 0,000000 0,044444 -0,044444 0,044444 0,088889 0,000000 0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444
- N26: 0,000000 0,000000 0,000000 -0,044444 0,000000 0,000000 -0,044444 0,000000 -0,044444 0,000000 0,000000 0,000000 -0,044444 0,000000 0,000000 0,000000 -0,044444 -0,044444 0,000000 0,000000 -0,044444 -0,044444 0,000000 0,000000 -0,044444 0,088889 0,000000 -0,088889 0,000000 -0,044444 0,088889 0,088889 0,000000 -0,044444 0,044444 0,044444 0,000000 -0,044444 0,000000 0,044444 0,044444 0,000000
- N27: 0,000000 0,000000 0,000000 -0,044444 0,000000 0,000000 -0,044444 0,000000

- N28: -0,088889 -0,088889 0,000000 -0,044444 -0,088889 -0,088889 -0,044444 0,000000 -0,044444 -0,088889 0,000000 0,000000 0,088889 -0,044444 -0,088889 0,000000 0,000000 0,000000 0,088889 -0,088889 -0,044444 -0,044444 -0,088889 0,000000 0,000000 0,000000 -0,044444 0,000000 0,000000 0,088889 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,044444 -0,088889 -0,088889 -0,044444 -0,088889 -0,088889 -0,044444 -0,088889 -0,0888
- N30: 0,044444 0,044444 -0,044444 0,000000 0,044444 0,000000 -0,044444 0,000000 -0,044444 0,000000 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 0,044444 0,000000 -0,044444 0,04444 0,044444 0,044444 0,044444 0,044444 0,04444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,0444 0,04444 0,04444 0,04444 0,0444 0,04444 0,0444 0,04444 0,04444 0,04444 0,0444 0,0444 0,04444 0,04444 0,

- N33: -0,088889 -0,088889 0,000000 -0,044444 -0,088889 -0,088889 -0,044444 0,000000 -0,044444 -0,088889 0,000000 0,000000 0,000000 0,044444 -0,044444 -0,088889 -0,088889 -0,088889 -0,044444 -0,044444 -0,044444 -0,088889 0,000000 -0,044444 0,000000 0,000000 0,000000 0,088889 0,000000 -0,044444 0,000000 0,000000 0,000000 0,000000 -0,044444 -0,088889 0,000000 -0,044444 -0,088889

- -0,044444 -0,044444 0,000000 -0,044444 -0,088889
- N35: 0,044444 0,044444 -0,044444 0,000000 0,044444 0,044444 0,000000 -0,044444 0,000000 -0,044444 0,000000 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,044444 -0,044444 -0,044444 0,088889 -0,044444 -0,044444 -0,044444 0,044444 0,088889 -0,044444 0,04444 0,044444 0,04444 0,044444 0,044444 0,04444 0,044444 0,04444 0,044444 0,0444 0,0444 0,04444 0,04444 0,04444 0,04444 0,04444 0,0444 0,0444 0,04444 0,04444 0,04444 0,044
- N36: 0,044444 0,044444 0,044444 0,000000 0,044444 0,044444 0,000000 0,044444 0,000000 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,044444 0,044444 -0,044444 0,000000 0,044444 0,04444 0,044444 0,0444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,0444 0,04444 0,04444 0,04444 0,04444 0,044
- N37: 0,044444 0,044444 0,044444 0,000000 0,044444 0,0044444 0,000000 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 -0,044444 -0,044444 0,000000 0,044444 -0,04444 -0,044444 -0,0444 -0,04444 -0,04444 -0,04444 -0,04444 -0,04444 -0,04444 -0,04444 -0,0444 -0,0444 -0,04444 -0,0444 -0,04444 -0,0444 -0,0444 -0,04444 -0,04444 -0,04444 -0,
- N39: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,088889 0,088889 0,088889 0,044444 0,044444 0,088889 0,088889 0,044444 -0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 -0,044444 0,000000 0,044444 0,0000000 0,044444 0,000000 0,00000 0,044444 0,000000 0,00000 0,044444 0,000000 0,00000 0,044444 0,000000 0,00000 0,044444 0,000000 0,00000 0,00000 0,044444 0,000000 0,00000 0
- N40: 0,088889 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000 0,044444 0,088889 0,000000 -0,088889 0,044444 0,088889 0,000000 0,000000 -0,088889 0,088889 0,088889 0,044444 0,044444

- 0,088889 0,000000 0,000000 -0,088889 0,000000 0,044444 0,000000 0,000000 -0,088889 0,000000 0,044444 0,044444 0,044444 0,000000 0,044444 0,000000 0,044444 0,088889
- N41: 0,044444 0,044444 0,044444 0,000000 0,044444 0,044444 0,000000 0,044444 0,000000 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,044444 -0,044444 -0,044444 0,000000 0,044444 0,04444 0,044444 0,044444 0,0444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,04444 0,0444 0,04444 0,0
- N42: 0,044444 0,044444 0,044444 0,000000 0,044444 0,044444 0,000000 0,044444 0,000000 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,04444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,044444 0,0444 0,04444 0,04444 0,04444 0,04444 0,04444 0,0444
- N44: 0,044444 0,044444 0,044444 0,088889 0,044444 0,044444 0,088889 0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,088889 0,088889 0,088889 0,088889 0,044444 0,088889 0,088889 0,044444 -0,044444 0,000000 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 -0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444 0,000000 0,044444 0,088889 0,044444
- N45: 0,088889 0,088889 0,000000 0,044444 0,088889 0,088889 0,044444 0,000000 0,044444 0,088889 0,000000 -0,088889 0,044444 0,088889 0,000000 0,000000 -0,044444 0,044444 0,088889 0,088889 0,088889 0,044444 0,044444 0,088889 0,000000 0,044444 0,000000 0,000000 -0,088889 0,000000 0,044444 0,000000 0,044444 0,04444 0,044444 0,0444 0,04444 0,04444 0,04444 0,0