

Esercizi su modelli PL

Maximize
$$5x - 4y$$

subject to $20x + 25y \le 100$
 $12x - 15y \ge 0$
 $40x - 50y \le 100$
 $x \ge 0$
 $y \ge 0$

- a) Esprime il problema in forma matriciale.
- b) Disegnare la regione ammissibile e risolvere il problema per via grafica.
- c) Costruire il modello in Excel per trovare una soluzione ottimale usando Excel Solver.

Es. 1. Produzione di fertilizzanti

Un consorzio agrario può produrre due tipi di fertilizzanti. Ogni quintale di fertilizzante di tipo A contiene 0.1 quintali di azoto e 0.3 quintali potassio ed ha un prezzo di vendita di 200€. Ogni quintale di fertilizzante di tipo B contiene 0.2 quintali di azoto e 0.1 quintali di potassio e viene venduto a 300€. Il consorzio dispone di 8 quintali di azoto e di 9 quintali di potassio.

- a) Definire il modello di programmazione lineare per determinare le quantità da produrre di fertilizzante di ciascun tipo per massimizzare il ricavo conseguibile.
- b) Esprime il problema in forma matriciale.
- c) Disegnare la regione ammissibile e risolvere il problema per via grafica.
- d) Costruire il modello in Excel per trovare una soluzione ottimale usando Excel Solver.

Es. 2. Miscelazione di mangimi

La dieta alimentare degli animali di un allevamento richiede la presenza di 4 sostanze base: A, B, C e D. La quantità minima giornaliera di cui ogni animale necessita è: 0.4Kg di A,0.6 Kg di B,2 Kg di C e 1.3 Kg di D. Il cibo è ottenuto mescolando due tipi di mangime: M ed N. Ciascun Kg di M contiene 100 grammi di A, 100 grammi di C, 100 grammi di D e nulla di B; ciascun Kg di N contiene 100 grammi di B, 100 grammi di D, 200 grammi di C e nulla di A. Con una spesa di 30AC è possibile acquistare 15 Kg di mangime M oppure 10 Kg di mangime N.

- a) Definire il modello di programmazione lineare per determinare le quantità giornaliere di mangime M ed N (variabili x_1 ed x_2 , rispettivamente) da acquistare per alimentare un animale a costo minimo
- b) Esprime il problema in forma matriciale.
- c) Disegnare la regione ammissibile e determinare per via grafica i valori ottimi delle variabili x₁ ed x₂.
- d) Costruire il modello in Excel per trovare una soluzione ottimale usando Excel Solver.

- Un'azienda produce due articoli A e B che consentono un profitto per ogni pezzo venduto di 3€ e 1€, rispettivamente. La lavorazione di ciascun articolo di tipo A richiede due unità di materia prima M e produce sei unità di sottoprodotto P, mentre ciascun articolo di tipo B richiede una unità di M e tre unità di P. In magazzino sono disponibili 4000 unità di M e 10000 unità di P.
- Il 10% delle confezioni dell'articolo A ed il 20% delle confezioni dell'articolo B contengono un omaggio a sorpresa. Il numero degli omaggi inseriti nelle confezioni prodotte non deve essere inferiore a 400.
- Si suppongano accettabili soluzioni frazionarie.
- a) Definire il modello di programmazione lineare per determinare la produzione di massimo profitto. Si esprimano i quantitativi prodotti in migliaia di articoli ed i profitti in migliaia di €.
- b) Esprime il problema in forma matriciale.
- c) Disegnare la regione ammissibile e risolvere il problema per via grafica.
- d) Costruire il modello in Excel per trovare una soluzione ottimale usando Excel Solver.

Es. 4.

Un'azienda vinicola produce due tipi di vino: DOC e "da tavola". Ogni quintale di vino DOC richiede 2 quintali di uva di prima scelta e mezzo quintale di uva di seconda scelta. Ogni quintale di vino da tavola richiede 80 chili di uva di prima scelta, 80 chili di uva di seconda scelta e 10 litri d'acqua. L'azienda dispone di 800 quintali di uva di prima scelta e di 400 quintali di uva di seconda scelta, oltre a una quantità illimitata di acqua. Ogni quintale di vino DOC dà un profitto di 50€, ogni quintale di vino da tavola un profitto di 30€. L'azienda ritiene di non poter mettere in commercio più di 300 quintali di vino DOC.

- a) Definire il modello di programmazione lineare per determinare le quantità da produrre di ciascun tipo di vino per massimizzare il profitto conseguibile.
- b) Esprime il problema in forma matriciale.
- c) Disegnare la regione ammissibile e risolvere il problema per via grafica.
- d) Costruire il modello in Excel per trovare una soluzione ottimale usando Excel Solver.

Es. 5. Acquisti libri

«Book Emporium» acquista libri da due fornitori: OHaganBooks.com e JungleBooks.com. OHaganBooks.com offre pacchetti di 5 romanzi gialli e 5 romanzi rosa a 50 € per pacchetto, e JungleBooks.com offre pacchetti di 5 romanzi gialli e 10 romanzi rosa a 150 € per pacchetto. L'Emporio deve acquistare almeno 2500 romanzi gialli e almeno 3500 romanzi rosa. Per ragioni troppo complicate da spiegare, al massimo il 75% del numero totale di pacchetti deve provenire da OHaganBooks.com. Quanti pacchi dovrebbe ordinare l'Emporio a ciascun fornitore per soddisfare i requisiti di cui sopra al minor costo possibile?

- a) Definire il modello di programmazione lineare per determinare le quantità ottimale da acquistare di ciascun fornitore.
- b) Esprime il problema in forma matriciale.
- c) Disegnare la regione ammissibile e risolvere il problema per via grafica.
- d) Costruire il modello in Excel per trovare una soluzione ottimale usando Excel Solver.