Estructuras Algebraicas Segundo examen parcial	1 ^{er} Apellido: _				1 de junio de 2018 Tiempo 2 h.	
Depto. Matemática Aplicada T.I.C. E.T.S. de Ingenieros Informáticos Universidad Politécnica de Madrid	2º Apellido: _ Nombre: _ Número de	matrícula:		Calificación:		

1. (1 punto) Estudiar si el siguiente conjunto tiene estructura de anillo. En caso afirmativo indicar si se trata de un anillo conmutativo, con identidad, de división y si es un cuerpo.

$$S = \{a + b\sqrt{2} + c\sqrt{3} : a, b, c \in \mathbb{Z}\}$$

2. (1 punto) Describir las unidades y los divisores de cero del anillo

$$(\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}, +, \cdot)$$

3. (1 punto) Estudiar si el siguiente conjunto es un cuerpo:

$$(\{0,2,4,6,8\},+_{10},\cdot_{10})$$

- 4. (1 punto) Obtener la característica del anillo $(\mathbb{Z}_6 \times \mathbb{Z}_{15}, +, \cdot)$
- 5. (1 punto) Sea $(R, +, \cdot)$ un anillo y sea $a \in R$. Demostrar que $N(a) = \{x \in R : xa = 0_R\}$ es un subanillo y estudiar si es un ideal.
- 6. (1 punto) Demostrar o refutar que la intersección de dos ideales, de un mismo anillo, es un ideal (para refutarlo basta con dar un ejemplo en el que no se verifique)
- 7. (1 punto) Estudiar si el polinomio $x^5 x^2 + 1$ es irreducible en $\mathbb{Q}[x]$.
- 8. (1 punto) Determinar el resultado de la siguiente operación en $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+x+2)$: $(x+1)x^{-1}$
- 9. (1 punto) Obtener una base de la extensión $\mathbb{Q}(\alpha)$ sobre \mathbb{Q} , siendo $\alpha = \sqrt{5} \sqrt{2}$.
- 10. (1 punto) Hallar el polinomio mínimo de $\alpha = \sqrt{5} \sqrt{2}$ sobre $\mathbb Q$

Soluciones

- 1. No es un anillo, ya que $\sqrt{2}, \sqrt{3} \in S$ pero $\sqrt{6} \notin S$
- 2. Unidades: $U = \{(a, b, c) \in \mathbb{Z} \times \mathbb{Q} \times \mathbb{Z} : a, c \in \{1, -1\}, b \in \mathbb{Q}^*\},$ Divisores de cero: $C = \{(a, b, c) \in \mathbb{Z} \times \mathbb{Q} \times \mathbb{Z} : (a, b, c) \neq (0, 0, 0) \ y \ abc = 0\}$
- 3. $(\{0, 2, 4, 6, 8\}, +_{10})$ es grupo abeliano, por ser subgrupo de $(\mathbb{Z}_{10}, +_{10})$. Además el producto \cdot_{10} es asociativo, conmutativo y verifica la propiedad distributiva respecto de $+_{10}$. La tabla del producto para estos

	.10	2	4	6	8
elementos, suprimiendo el 0, es:	2	4	8	2	6
	4	8	6	4	2
	6	2	4	6	8
	8	6	2	8	4

Se observa que es un anillo con identidad y es de división, por tanto es cuerpo.

- 4. $c(\mathbb{Z}_6 \times \mathbb{Z}_{15}) = 30$
- 5. $N(a) = \{x \in R : xa = 0_R\} \neq \emptyset$ porque $0_R \in N(a)$. Si $x,y \in N(a) \Rightarrow xa = 0_R$, $ya = 0_R$ y por tanto $(x-y)a = 0_R \Rightarrow x-y \in N(a)$ y $(xy)a = x(ya) = x0_R = 0_R \Rightarrow xy \in N(a)$, Por tanto N(a) es subanillo de $(R,+,\cdot)$. Si el anillo $(R,+\cdot)$ es conmutativo, entonces para todos $r \in R$, $x \in N(a)$ se verifica que $(xr)a = (rx)a = r(xa) = r0_R = 0_R$ y por tanto es un ideal. Si el anillo $(R,+\cdot)$ no es conmutativo, entonces en general N(a) no es un ideal. Por ejemplo, para $(R,+,\cdot) = (\mathbb{Z}^{2\times 2},+,\cdot)$, $N(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{Z}^{2\times 2} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \}$, se verifica que $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in N(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})$ pero $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \not\in N(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})$
- 6. Sea $(R,+,\cdot)$ anillo y sean I y J ideales. entonces $0_R\in I$ y $0_R\in J$ por tanto $0_R\in I\cap J\Rightarrow I\cap J\neq\emptyset$. Si $x,y\in I\cap J\Rightarrow x,y\in I$ y $x,y\in J\Rightarrow x-y\in I$ y $x-y\in J\Rightarrow x-y\in I\cap J$. Si $x\in I\cap J$ y $x\in R\Rightarrow x\in I$ y $x\in J\Rightarrow rx, xr\in I$ y $x,x\in I\Rightarrow rx, xr\in I\cap J$. Por tanto $I\cap J$ es un ideal.
- 7. El polinomio $x^5 + x^2 + 1 \in \mathbb{Z}_2[x]$ es irreducible en $\mathbb{Z}_2[x]$, porque no tienen raíces y no es divisible por el polinomio $x^2 + x + 1$, por tanto el polinomio $x^5 x^2 + 1 \in \mathbb{Q}[x]$ es irreducible.
- 8. x + 2
- 9. $B = \{1, \sqrt{2}, \sqrt{5}, \sqrt{10}\}$
- 10. $x^4 14x^2 + 9$