Week12-part2-Ml-on-EDGE

Steps for Training the Classification Model

- 1. **Dataset**: We'll use the temperature and humidity data from the **DHT11 dataset**.
- 2. **Preprocessing**:
 - We'll categorize the temperature into **comfort levels** like "Cold," "Comfort," and "Hot" based on predefined thresholds.
 - o We'll use **temperature** and **humidity** as features for the classification.
- 3. **Model**: We'll train a classification model to predict the comfort level.
- 4. **Convert to TensorFlow Lite**: We'll convert the model to TensorFlow Lite format for deployment on ESP32.

Step 1: Data Preprocessing for Classification

We will define the comfort level based on the **temperature**:

- **Cold**: Temperature < 20°C
- **Comfort**: $21^{\circ}\text{C} \leq \text{Temperature} \leq 30^{\circ}\text{C}$
- **Hot**: Temperature > 31°C

We'll create a new column comfort level as the target variable for classification.

Code for Data Preprocessing

```
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder

# Load the dataset
df = pd.read_csv('dht11_data.csv')

# Define comfort levels based on temperature
def get_comfort_level(temperature):
    if temperature <= 20:
        return 'Cold'
    elif 21 <= temperature <= 30:
        return 'Comfort'
    else:
        return 'Hot'</pre>
```

```
# Create a new column 'comfort level' as the target variable
df['comfort level'] = df['temperature'].apply(get comfort level)
# Features: temperature and humidity
X = df[['temperature', 'humidity']].values
# Labels: comfort level classification (Cold, Comfort, Hot)
y = df['comfort level'].values
# Encode labels as integers (Cold=0, Comfort=1, Hot=2)
label encoder = LabelEncoder()
y encoded = label encoder.fit transform(y)
# Normalize the features
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Split into training and testing datasets
X train, X test, y train, y test = train test split(X scaled, y encoded,
test size=0.2, random state=42)
# Build a classification model
model = tf.keras.Sequential([
   tf.keras.layers.InputLayer(input shape=(2,)), # 2 features (temperature,
humidity)
   tf.keras.layers.Dense(8, activation='relu'),
   tf.keras.layers.Dense(3, activation='softmax') # 3 classes (Cold,
Comfort, Hot)
1)
# Compile the model
model.compile(optimizer='adam', loss='sparse categorical crossentropy',
metrics=['accuracy'])
# Train the model
model.fit(X train, y train, epochs=50, batch size=32)
# Evaluate the model
loss, accuracy = model.evaluate(X test, y test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")
```

Explanation:

- We are classifying the environment into three categories: **Cold**, **Comfort**, and **Hot** based on the **temperature**.
- The **temperature** and **humidity** are the features, while the **comfort level** is the target.
- We use LabelEncoder to convert the comfort level labels (Cold, Comfort, Hot) into integers (0, 1, 2).
- The model uses sparse_categorical_crossentropy loss for multi-class classification.

Step 2: Convert the Model to TensorFlow Lite

After training the model, we can convert it to TensorFlow Lite format for deployment on the **ESP32**.

```
# Convert the trained model to TensorFlow Lite format
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()

# Save the converted TFLite model
with open('dht11_classification_model.tflite', 'wb') as f:
    f.write(tflite model)
```

Step 3: Prepare for ESP32 Deployment

Next, we will convert the .tflite model to a C array that can be embedded into the Arduino sketch.

Use the following command to convert the .tflite model into a C array:

Step 4: Arduino Code to Run the Model on ESP32

Here's an updated version of the **Arduino code** (ESP32_DHT_TFLite.ino) to work with both **temperature and humidity** for classification:

```
#include <TensorFlowLite.h>
#include <DHT.h>

// DHT sensor configuration
#define DHTPIN 4  // Pin connected to DHT11
#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

// Define the model
extern "C" const unsigned char model_data[];  // TFLite model array
extern "C" const int model_data_len;

tflite::MicroInterpreter* interpreter;
tflite::Model* model;
tflite::ops::micro::OpResolver<4> resolver;  // Resolving operations for the
model
```

```
void setup() {
  Serial.begin(115200);
  dht.begin();
  // Load the TensorFlow Lite model
 model = tflite::GetModel(model data);
 interpreter = new tflite::MicroInterpreter(model, resolver, model data len,
4 * 1024); // 4KB memory buffer
  interpreter->AllocateTensors();
  Serial.println("TensorFlow Lite model loaded successfully!");
}
void loop() {
  // Read temperature and humidity
  float temperature = dht.readTemperature();
  float humidity = dht.readHumidity();
  if (isnan(temperature) || isnan(humidity)) {
   Serial.println("Failed to read from DHT sensor!");
   return;
  }
  // Input the data to the model
  float* input = interpreter->input(0)->data.f;
  input[0] = temperature; // Temperature
  input[1] = humidity; // Humidity
  // Run the model
  interpreter->Invoke();
  // Get the output
  float* output = interpreter->output(0)->data.f;
  // Get the predicted class (Cold, Comfort, Hot)
  int predicted class = std::distance(output, std::max element(output, output
+ 3));
  if (predicted class == 0) {
   Serial.println("Predicted: Cold");
  } else if (predicted class == 1) {
   Serial.println("Predicted: Comfort");
  } else {
    Serial.println("Predicted: Hot");
  delay(2000); // Wait for 2 seconds
}
```

Step 5: Upload to ESP32

1. Prepare your ESP32:

 Select your ESP32 board model in Arduino IDE (Tools > Board > ESP32 Dev Module).

- o Set the correct port (Tools > Port).
- 2. **Upload** the code.
- 3. **Open the Serial Monitor** to see the predicted comfort level based on temperature and humidity.

Conclusion

By using both **temperature** and **humidity** as input features, this classification model predicts whether the environment is **Cold**, **Comfort**, or **Hot**.

the **full Python script** to train a simple TensorFlow classification model using synthetic DHT11-like temperature and humidity data. It saves the model as model.h5—ready to be used with your Firebase Cloud Function.

✓ Python Script: train_dht_model.py

```
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, StandardScaler
# Step 1: Generate Synthetic DHT11-like Data
np.random.seed(42)
data size = 300
temperature = np.random.uniform(15, 35, size=data size) # Celsius
humidity = np.random.uniform(30, 90, size=data size) # Percent
# Step 2: Create Rule-Based Labels
labels = []
for t, h in zip(temperature, humidity):
    if t < 20 or h < 40:
       labels.append("Cold")
    elif 20 <= t <= 28 and 40 <= h <= 70:
       labels.append("Comfort")
```

```
else:
        labels.append("Hot")
df = pd.DataFrame({
    "temperature": temperature,
    "humidity": humidity,
    "label": labels
})
# Step 3: Encode Labels
label encoder = LabelEncoder()
df["label encoded"] = label encoder.fit transform(df["label"])
# Step 4: Prepare Features and Target
X = df[["temperature", "humidity"]].values
y = tf.keras.utils.to_categorical(df["label_encoded"].values, num classes=3)
# Step 5: Scale Features
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Step 6: Train/Test Split
X train, X test, y train, y test = train test split(X scaled, y,
test size=0.2, random state=42)
# Step 7: Build TensorFlow Model
model = tf.keras.Sequential([
    tf.keras.layers.Dense(16, activation='relu', input shape=(2,)),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(3, activation='softmax')
])
model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
# Step 8: Train Model
model.fit(X train, y train, validation split=0.2, epochs=50, verbose=1)
# Step 9: Evaluate and Save Model
loss, accuracy = model.evaluate(X test, y_test, verbose=0)
print(f"Test Accuracy: {accuracy:.2f}")
model.save("model.h5")
print(" model.h5 saved successfully!")
```

Updated Script to Convert .h5 → .tflite

Add the following after training and saving the model. h5 in your existing script:

```
# Step 11: Convert to TensorFlow Lite format
converter = tf.lite.TFLiteConverter.from keras model(model)
```

```
tflite model = converter.convert()
# Step 12: Save the .tflite file
with open("model.tflite", "wb") as f:
    f.write(tflite model)
print(" ✓ Saved model.tflite for ESP32")
```

Notes for ESP32 Deployment

To deploy this .tflite model on ESP32:

- 1. Use **TensorFlow Lite for Microcontrollers (TFLM)** not regular TensorFlow Lite.
- 2. You'll need to:
 - o Convert model.tflite to a C array using xxd or Python.
 - o Include that array in your Arduino sketch.
 - Use the TFLM Arduino library.

Convert .tflite to C Array (example):

✓ Python Script (Recommended)

Cross-platform and reliable. Just install Python (if not already):

Python Script (copy-paste-ready):

```
def bin to c array(input file, output file, array name="model tflite"):
    with open (input file, "rb") as f:
        data = f.read()
    with open (output file, "w") as f:
        f.write(f"const unsigned char {array name}[] = {{\n")
        for i in range(0, len(data), 12):
            chunk = data[i:i+12]
            line = ", ".join(f"0x\{b:02x\}" for b in chunk)
            f.write(" " + line + ",\n")
        f.write("};\n")
        f.write(f"const unsigned int {array name} len = {len(data)};\n")
# Use like this:
bin to c array("dht classifier model.tflite", "model data.h")
```

To **load a TensorFlow Lite model into PSRAM** on an **ESP32-S3** for inference (instead of internal SRAM), you need to follow these key steps:

✓ 1. Use an ESP32-S3 with PSRAM Enabled

- Ensure your ESP32-S3 board has PSRAM (most dev boards do, like ESP32-S3-DevKitC-1 with 8MB PSRAM).
- In the Arduino IDE:
 - \circ Tools \rightarrow "PSRAM" \rightarrow Enabled
 - o Board → Select **ESP32S3 Dev Module**

✓ 2. Store the TensorFlow Lite model in PSRAM

Use the PROGMEM keyword without forcing it into internal SRAM. Also, dynamically copy it to a pointer in PSRAM before loading.

Example:

```
#include <esp heap caps.h>
#include "model data.h" // Your .tflite model as a C array
const unsigned char* tflite model data = nullptr;
void setup() {
  Serial.begin(115200);
  // Allocate space in PSRAM
  tflite model data = (const unsigned char*)heap caps malloc(
      dht classifier model tflite len, MALLOC CAP SPIRAM);
  if (tflite model data == nullptr) {
    Serial.println("Failed to allocate model in PSRAM!");
   while (1);
  }
  // Copy model from flash to PSRAM
  memcpy((void*)tflite model data, dht classifier model tflite,
dht classifier model tflite len);
  // Load model from PSRAM
  const tflite::Model* model = tflite::GetModel(tflite model data);
  if (model->version() != TFLITE_SCHEMA_VERSION) {
```

```
Serial.println("Model version mismatch!");
 while (1);
// Continue with interpreter setup...
```

✓ 3. Use TensorArena in PSRAM too

```
constexpr int kTensorArenaSize = 40 * 1024;
uint8 t* tensor arena = (uint8 t*)heap caps malloc(kTensorArenaSize,
MALLOC CAP SPIRAM);
```

This ensures both your model and tensor buffers are offloaded to external PSRAM, avoiding internal memory limitations.

Summary:

- Use heap_caps_malloc(..., MALLOC_CAP_SPIRAM) to allocate PSRAM.
- Use memcpy to move model data from flash to PSRAM.
- Pass that pointer to tflite::GetModel().

```
DHT11 + TensorFlow Lite on ESP32-S3 using PSRAM
#include <Arduino.h>
#include <DHT.h>
#include <WiFi.h>
#include <esp_heap_caps.h>
// TensorFlow Lite Micro
```

```
#include "tensorflow/lite/micro/micro interpreter.h"
#include "tensorflow/lite/micro/all ops resolver.h"
#include "tensorflow/lite/schema/schema generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h" // Your converted .h model file
#define DHTPIN 4
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
constexpr int kTensorArenaSize = 40 * 1024;
uint8_t* tensor_arena;
const unsigned char* model_data_ptr = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
void setup() {
  Serial.begin(115200);
  dht.begin();
  // Allocate PSRAM for model
  model data ptr = (const unsigned
char*)heap_caps_malloc(model_tflite_len,
MALLOC CAP SPIRAM);
  if (!model data ptr) {
    Serial.println("Failed to allocate PSRAM for
model!");
    while (1);
```

```
memcpy((void*)model data ptr, model tflite,
model tflite len);
  // Load model
  model = tflite::GetModel(model_data_ptr);
  if (model->version() != TFLITE SCHEMA VERSION) {
    Serial.println("Model version mismatch!");
    while (1);
  }
  // Allocate PSRAM for tensor arena
  tensor arena =
(uint8 t*)heap caps malloc(kTensorArenaSize,
MALLOC CAP SPIRAM);
  if (!tensor arena) {
    Serial.println("Failed to allocate tensor arena in
PSRAM!"):
    while (1);
  }
  // Set up the interpreter
  static tflite::AllOpsResolver resolver;
  static tflite::MicroInterpreter
static interpreter(model, resolver, tensor arena,
kTensorArenaSize);
  interpreter = &static interpreter;
  if (interpreter->AllocateTensors() != kTfLiteOk) {
    Serial.println("Tensor allocation failed");
    while (1);
  }
```

```
Serial.println("Setup complete. Starting
inference...");
void loop() {
  float temperature = dht.readTemperature();
  float humidity = dht.readHumidity();
  if (isnan(temperature) | isnan(humidity)) {
    Serial.println("Failed to read from DHT sensor!");
    delay(2000);
    return;
  TfLiteTensor* input = interpreter->input(0);
  input->data.f[0] = temperature;
  input->data.f[1] = humidity;
  if (interpreter->Invoke() != kTfLiteOk) {
    Serial.println("Inference failed");
    return;
  }
  TfLiteTensor* output = interpreter->output(0);
  Serial.print("Temperature: ");
  Serial.print(temperature);
  Serial.print(" C, Humidity: ");
  Serial.print(humidity);
  Serial.print(" %, Prediction: ");
  Serial.println(output->data.f[0]);
  delay(5000);
```

TensorFlow Lite (TFLite) model on the **ESP32-S3** using **PSRAM** (external RAM) to make predictions based on data from a **DHT11 sensor** (temperature and humidity). Below is an explanation of the important portions of the code.

1. Library Inclusions

```
#include <Arduino.h>
#include <DHT.h>
#include <WiFi.h>
#include <esp_heap_caps.h>
```

- **Arduino.h**: Required for using the Arduino functions (ESP32-specific).
- **DHT.h**: Library to read temperature and humidity data from the DHT11 sensor.
- **WiFi.h**: Provides Wi-Fi connectivity (though it's not directly used in this snippet, it could be for features like time synchronization or data upload).
- **esp_heap_caps.h**: Allows you to allocate memory from specific regions like **PSRAM** (external RAM) using heap caps malloc().

2. TensorFlow Lite Micro Libraries

```
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
```

These libraries are for integrating **TensorFlow Lite Micro** into the ESP32, which is a lightweight version of TensorFlow Lite designed to run on embedded devices with limited resources.

- **micro_interpreter.h**: Manages the model's execution and handles tensor allocation and interpretation.
- **all_ops_resolver.h**: Resolves the operations needed to run the model.
- **schema_generated.h**: Contains the schema of the model, generated during model conversion.
- **version.h**: Contains the TensorFlow Lite version.

3. Model Data Header File

```
#include "model data.h" // Your converted .h model file
```

- This header file contains the **converted TensorFlow Lite model** in a format that can be used by the ESP32. The model is converted into a byte array (from .tflite to .h) using tools like xxd or the xxd tool.
- The model is stored in a model_tflite byte array in the header file (model_tflite is a part of the conversion).

4. Pin Definition and DHT Sensor Initialization

```
#define DHTPIN 4
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
```

- The **DHT11 sensor** is connected to **GPIO pin 4** on the ESP32.
- An instance of the **DHT** class is created using the defined pin and sensor type.

5. Memory Allocation for PSRAM (Model and Tensor Arena)

```
model_data_ptr = (const unsigned char*)heap_caps_malloc(model_tflite_len,
MALLOC CAP SPIRAM);
```

- **PSRAM** is used to store the **model** and **tensor arena** because the ESP32 has limited internal SRAM.
- The heap_caps_malloc() function allocates memory from PSRAM using the MALLOC CAP SPIRAM flag.
- The model data is copied from the model tflite byte array into **PSRAM** for later use.

```
tensor_arena = (uint8_t*)heap_caps_malloc(kTensorArenaSize,
MALLOC CAP SPIRAM);
```

- Allocates a **tensor arena** in PSRAM to hold the tensors (input and output data for the model) during inference.
- kTensorArenaSize is the size of the memory buffer used for the tensor data. It's set to 40 KB in this example, but the exact size will depend on your model.

6. Model Loading and Interpreter Setup

```
model = tflite::GetModel(model data ptr);
```

- Loads the **TensorFlow Lite model** from **PSRAM**. model_data_ptr points to the model data stored earlier.
- Checks if the model version matches the **TensorFlow Lite version** to ensure compatibility.

```
static tflite::AllOpsResolver resolver;
static tflite::MicroInterpreter static_interpreter (model, resolver,
tensor_arena, kTensorArenaSize);
interpreter = &static_interpreter;
```

- **AllOpsResolver** is used to resolve all the operations (e.g., add, multiply) that the model needs to perform.
- **MicroInterpreter** manages the execution of the TensorFlow Lite model. It is initialized with the **model**, **operation resolver**, **tensor arena**, and **arena size**.
- interpreter is the pointer to the interpreter object that will run the inference.

```
if (interpreter->AllocateTensors() != kTfLiteOk) {
    Serial.println("Tensor allocation failed");
    while (1);
}
```

• Allocates tensors for input and output. If tensor allocation fails, the program enters an infinite loop.

7. Inference and Data Handling in 100p()

```
float temperature = dht.readTemperature();
float humidity = dht.readHumidity();
```

- Reads temperature and humidity data from the **DHT11** sensor.
- If reading fails, the function returns and retries after a 2-second delay.

```
TfLiteTensor* input = interpreter->input(0);
input->data.f[0] = temperature;
input->data.f[1] = humidity;
```

• Sets the input data for the model. The temperature and humidity values are stored in the **input tensor** at indices 0 and 1.

```
if (interpreter->Invoke() != kTfLiteOk) {
    Serial.println("Inference failed");
    return;
}
```

- **Invoke** runs the model inference with the provided input data.
- If the inference fails, the function exits.

8. Output Handling and Result Display

```
TfLiteTensor* output = interpreter->output(0);
Serial.print("Temperature: ");
Serial.print(temperature);
Serial.print(" C, Humidity: ");
Serial.print(humidity);
Serial.print(" %, Prediction: ");
Serial.println(output->data.f[0]);
```

- **Gets the output tensor** after invoking the model.
- The output tensor contains the prediction (e.g., a classification result).
- **Outputs** the temperature, humidity, and the prediction to the Serial Monitor.

9. Delay Between Measurements

delay(5000);

• A **5-second delay** before the next loop, allowing time for the DHT11 sensor to provide new data.

Summary of Important Portions:

- 1. **PSRAM Usage**: The model and tensor arena are allocated in **PSRAM** to efficiently manage memory on the ESP32-S3.
- 2. **Model Loading**: The **TensorFlow Lite model** is loaded from PSRAM into the MicroInterpreter for inference.
- 3. **Sensor Data**: **Temperature and humidity** readings from the DHT11 sensor are passed to the model as input.
- 4. **Inference**: The model performs inference with the sensor data, and the result is outputted to the Serial Monitor.
- 5. **Memory Management**: PSRAM is used for both the model data and tensor arena to avoid exhausting the limited internal SRAM.