FINAL EXAM PRACTICE PROBLEMS MATH 104, SECTION 2

- (1) (a) Prove that there exists a unique real number $x \in \mathbb{R}$ satisfying $x = \cos x$.
 - (b) Define a sequence of real numbers (a_n) as follows: Let a_1 be any real number satisfying $0 < a_1 < 1$, and define a_2, a_3, \ldots recursively via $a_{n+1} := \cos(a_n)$. Prove that the sequence (a_n) is convergent, and the series $\sum a_n$ is divergent.
- (2) Let $f:[a,b]\to\mathbb{R}$ be an integrable function. Prove that

$$\lim_{n \to \infty} \int_a^b f(x) \sin(nx) dx = 0.$$

Hint: First show that the statement is true for *step functions* (see Wikipedia for the definition of step functions). Then show that there exists a step function S(x) such that $0 \le \int_a^b (f(x) - S(x)) dx < \epsilon$.

(3) Let f, g, h be continuous functions on [a, b] that are differentiable on (a, b). Consider

$$F(x) = \det \begin{pmatrix} f(x) & g(x) & h(x) \\ f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \end{pmatrix}.$$

- (a) Prove that F is also continuous on [a, b] and differentiable on (a, b).
- (b) Prove that there exists $x_0 \in (a,b)$ such that $F'(x_0) = 0$.
- (c) Prove the following generalization of mean value theorem: If f and g are continuous functions on [a,b] that are differentiable on (a,b), then there exists $c \in (a,b)$ such that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

(4) Let X be a compact metric space, and let $\mathcal{B}(X)$ be the set of real-valued bounded functions on X. For any $f,g\in\mathcal{B}(X)$, define

$$d_{\mathcal{B}}(f,g) := \sup_{x \in X} |f(x) - g(x)|.$$

We know that $(\mathcal{B}(X), d_{\mathcal{B}})$ is a metric space.

- (a) Prove that $\mathcal{B}(X)$ is a complete metric space, i.e. every Cauchy sequence in $\mathcal{B}(X)$ converges to some element in $\mathcal{B}(X)$.
- (b) Let $\mathcal{C}(X)$ be the set of real-valued continuous functions on X. Prove that $\mathcal{C}(X)$ is a closed subset of $\mathcal{B}(X)$.
- (c) Prove that a closed subset of a complete metric space is also complete, therefore concludes that C(X) is a complete metric space.

- (5) Prove that the closed interval [a,b] is not of measure zero in \mathbb{R} . (Hint: Suppose there is a "bad" covering of [a,b] by open intervals whose total length is less than b-a. First prove that you can assume the covering is finite. Take a bad covering $\{U_1,\ldots,U_n\}$ consists of n open intervals. Then prove that there exists a bad covering consists of no more than n-1 open intervals. Show that this implies the existence of a bad covering consists of a single open interval, and get a contradiction.)
- (6) Suppose that $f:[1,\infty)\to\mathbb{R}$ is uniformly continuous on $[1,\infty)$. Prove that there exists M>0 such that

$$\frac{|f(x)|}{x} \le M$$
 holds for any $x \ge 1$.

(7) (a) Find the domain $E \subset \mathbb{R}$ of pointwise convergence of the series

$$\sum_{n=1}^{\infty} e^{-nx} \cos(nx),$$

i.e. find all possible $x \in \mathbb{R}$ such that the above series converges.

- (b) Prove or disprove: the series converges uniformly on E.
- (8) Let $f: [0,1] \to \mathbb{R}$ be an increasing function.
 - (a) Prove that for any $a \in (0,1)$, the left hand limit $\lim_{x\to a^-} f(x)$ and the right hand limit $\lim_{x\to a^+} f(x)$ of f at a both exists. (See Ross, §20 for the definition.)
 - (b) Define $A := \{x \in [0,1]: f \text{ is not continuous at } x\}$. Prove that the set A is either finite or countable. (Hint: Define an injection from A to \mathbb{Q} using (a).)
- (9) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

One can regard \mathbb{R}^2 and \mathbb{R} as metric spaces via the standard distance functions:

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Prove that:

- (a) For any fixed $x \in \mathbb{R}$, the function $f_x \colon \mathbb{R} \to \mathbb{R}$ that sends y to f(x,y) is continuous. Similarly, for any fixed $y \in \mathbb{R}$, the function $f_y \colon \mathbb{R} \to \mathbb{R}$ that sends x to f(x,y) is also continuous.
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ is not a continuous function.
- (10) Define a sequence of real numbers (a_n) by setting $a_1 = 1$ and

$$a_{n+1} = \sqrt{a_n^2 + \frac{1}{2^n}}$$
 for $n \ge 1$.

Prove that (a_n) is convergent.

(11) Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ be a polynomial of degree $n \geq 2$, where the coefficients a_n, a_{n-1}, \dots, a_0 are real numbers. Suppose that all of the roots of P(x) are real numbers.

Prove that all of the roots of its derivative P'(x) are also real numbers.

- (12) Let (f_n) be a sequence of real-valued function defined on a set X. Suppose that
 - $f_n(x) \ge 0$ for any $x \in X$ and any $n \in \mathbb{N}$,
 - $f_n(x) \ge f_{n+1}(x)$ for any $x \in X$ and any $n \in \mathbb{N}$,
 - $\lim_{n\to\infty} \sup\{f_n(x) \colon x \in X\} = 0$.

Prove that the series of functions $\sum (-1)^n f_n(x)$ converges uniformly on X.

(13) Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (-1)^k f\left(\frac{k}{n}\right) = 0.$$

(14) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that there exists T > 0 such that

$$f(x) = f(x+T)$$
 holds for any $x \in \mathbb{R}$.

Prove that there exists $x_0 \in \mathbb{R}$ such that $f(x_0) = f(x_0 + \frac{T}{2})$.

(15) Let a_1, a_2, \dots, a_n be real numbers. Suppose that

$$|a_1 \sin x + a_2 \sin(2x) + \dots + a_n \sin(nx)| \le |\sin x|$$
 for any $x \in \mathbb{R}$.

Prove that $|a_1 + 2a_2 + \cdots + na_n| \le 1$. (Hint: Let $f(x) = a_1 \sin x + a_2 \sin(2x) + \cdots + a_n \sin(nx)$ and consider f'(0).)

(16) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that for any $r \in \mathbb{R}$, we have

$$\lim_{n \to \infty} f(\frac{r}{n}) = 0.$$

Prove or disprove: $\lim_{x\to 0} f(x) = 0$.

- (17) Let f and g be continuous functions on [a,b] that are differentiable on (a,b). Suppose that f(a)=f(b)=0. Prove that there exists $x\in(a,b)$ such that g'(x)f(x)+f'(x)=0.
- (18) For a bounded function $f: [0,1] \to \mathbb{R}$, define

$$R_n := \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

- (a) Prove that if f is integrable, then $\lim_{n\to\infty} R_n = \int_0^1 f(x)dx$.
- (b) Find an example of f that is not integrable, but $\lim_{n\to\infty} R_n$ exists.