

Aula 8 - Exercícios de Revisão

1. A partir dos modelos apresentados abaixo (expressões que podem ser reconhecidas) que geram expressões aritméticas simples com parênteses balanceados, faça:

 $x \times (x+x) \qquad (((((x)))))$

- a. A Gramática que reconheça dois operadores representados por * e + (multiplicação e soma), um operando x e parênteses balanceados.
- b. Um AFD que reconheça a Gramática descrita na questão 1a.
- c. Um ADND que reconheça a Gramática descrita na questão 1a.
- 2. A partir da Gramática $G = (\{S\}, \{a, b\}, P, S)$

```
P = \{S \rightarrow SS \mid aSa \mid bSb \mid \epsilon\}:
```

- a) Apresente o AFD que reconheça a Gramática acima.
- b) Apresente o AFND que reconheça a Gramática acima.
- 3. A partir da Gramática $G = (\{S, A, B\}, \{a, b\}, P, S), \text{ onde } P$:

$$S \rightarrow \varepsilon$$
 | a | b | aA | bS
A \rightarrow bS | aB | b

D : 110

- $B \rightarrow bbS$
- a) Construa o Autômato Finito Não-Determinístico para a Gramática acima.
- b) Prove por derivação e por Função Programa estendida (δ) que a palavra baba pertence ou não a Gramática e ao Autômato acima.
- 4. Construa o Autômato sobre $M=(\{q0, q1, q2, q3, q4\}, \{a, b, c\}, \delta, q0, \{q3\})$, onde δ é dada pela tabela abaixo. Após responda as questões na sequência.

δ	а	b	С
q0	q0, q1	q0	q4
q1	q2	q2	q2
q2	q3	-	-
q3	q3	q3	q3
q4	q0, q4	q0, q4	q0, q4

- a) Qual a categoria desse Autômato? Justifique sua resposta.
- b) Qual a Linguagem que ele aceita?
- 5. Dada a representação gráfica do Autômato abaixo, execute:
 - a) Demonstre a definição do Autômato (Máquina).
 - b) Qual a Linguagem que ele reconhece?
 - c) Construa a Gramática pertencente ao Autômato.

ciência da computação

Linguagens Formais

d) Apresente a derivação de três palavras através da Gramática e do Autômato.

- 6. Sejam as linguagens na forma $L = \{xyx \mid x, y \in \{a,b\}^* e \ x = n\}$. Determine o menor número de estados para um AFND e para um AFD, que reconheçam L, nos seguintes casos:
- a) n = 1;
- b) n = 2;
- c) n arbitrário.
- 7. Desenvolva uma Gramática que gere a seguinte Linguagem sobre o Alfabeto $\Sigma = \{a, b, c\}$ e L = $\{w \mid w = a^nb^mc^y, \text{ onde } n \geq 0, m \geq 0 \text{ e } y \geq 0\}$
- 8. Construa um AFD que reconheça a $L=\{w\mid w\in\{0,\,1\}\ e\ w\ começa\ por\ 1\ e\ termina\ por\ 0\}$. Prove que a palavra 1010 é reconhecida pelo Autômato
- 9. Construa o AFD e o AFND que aceita: L = $\{y^n c y^n \mid y \in \{a, b\}^* e n >= 0\}$, sobre o $\Sigma = \{a, b, c\}$.
- 10. Converta a Gramática abaixo em um AFND que aceita a mesma Linguagem da Gramática (demonstre a Linguagem aceita).

G = ({S, A}, {0, 1}, P, S)
P = {S
$$\rightarrow$$
 0S1 | A
A \rightarrow 1A0 | S | ϵ }

- 11. Construa o Autômato Finito Determinístico para a seguinte Linguagem:
- $L = \{xba^n \mid x \in \{a, b\}^*, n \ge 0 \text{ e } x \text{ tem número par de as} \}$