פתרון ממ"ן 11

שאלה 1

לכל אחת מהטענות הבאות קבעו אם היא נכונה או לא.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

- $\varnothing \subseteq \{1,\{2\}\}$.7 $\{2,3\} \subseteq \{1,\{2,3\}\}$.3 $\{2\} \in \{\{1\},\{2\}\}$.2 $\{1,\{2\}\}\}$.8
- $\{1,\{2\}\} \cap \mathcal{P}(\{1,2\}) \neq \varnothing \text{ .n } |\{1,\mathbf{N}\}| = |\{1,\varnothing\}| \text{ .t } \{1,2\} \subseteq \{\mathbf{N}\} \text{ .t } \{\varnothing\} \subseteq \{\{1\}\} \text{ .n}$

תשובה

- $\{2\}$ ו- $\{1\}$ הם $\{1\},\{2\}$ הם וו- $\{2\}$ הם וו- $\{2\}$ ו-
 - ב. נכון, לפי מה שהסברנו בסעיף א.
 - $2 \notin \{1, \{2,3\}\}$ אבל $2 \in \{2,3\}$ ג. לא נכון מפני שלמשל
 - ד. נכון, הקבוצה הריקה חלקית לכל קבוצה.
 - $\varnothing \notin \{\{1\}\}$ אבל $\varnothing \in \{\varnothing\}$ ה. לא נכון מפני ש
- (N הוא $\{\mathbf{N}\}$ שימו לב: האיבר היחיד של $\{\mathbf{N}\}$ הוא $\{\mathbf{N}\}$ הוא לא נכון מפני שלמשל ווא לא $\{\mathbf{N}\}$
 - ז. נכון, כי לכל אחת משתי הקבוצות יש בדיוק שני איברים.
 - $\{2\} \in \mathcal{P}(\{1,2\})$ וגם $\{2\} \in \{1,\{2\}\}$ ח. נכון מפני ש-

שאלה 2

: הבאות הטענות הריחו את קבוצות. קבוצות A,B,C

- $(A \setminus B) \cup (B \setminus C) = (A \cup B) \setminus (B \cap C)$.
- C=B או C=A או $\mathcal{P}(C)=\mathcal{P}(A)\cup\mathcal{P}(B)$ ב. אם
- $|A\cap B|=1$ אז $|\mathcal{P}(A)|=2\cdot|\mathcal{P}(A\setminus B)|$ אז סופיות סופיות ואם $|A\cap B|=1$ אז

תשובה

א. נראה שכל אחת משתי הקבוצות חלקית האחרת.

 $x \in (A \setminus B) \cup (B \setminus C)$ נניח קודם ש-

 $x\in A$ או $x\in C$ או $x\in B$ או $x\in A$ וגם $x\in A$ וגם $x\in A$ וגם $x\in A$ ונביט כעת $x\in A$ או $x\in A$ או $x\in A$ או $x\in A$ או $x\in A$ לכן $x\in A$ (כי $x\in A\cup B$) $x\in A\cup B$ (כי $x\in A\cup B$) $x\in A\cup B$

במקרה השני, $x \in B$ ור $x \in A \cap B$ לכן $x \in A \cap B$ לכן $x \in B \cap C$ ור $x \in B \cap C$ מכאן $x \in A \cap B$ מתקיים $x \in (A \setminus B) \cup (B \setminus C)$ מתקיים אגם במקרה זה $x \in (A \cup B) \setminus (B \cap C)$ מתקיים

 $(A \setminus B) \cup (B \setminus C) \subseteq (A \cup B) \setminus (B \cap C)$ כלומר $x \in (A \cup B) \setminus (B \cap C)$

 $x \notin B \cap C$ אז $x \in A \cup B$ אז $x \in (A \cup B) \setminus (B \cap C)$ להפך נניח ש-

x נבחין כעת בין שני מקרים שבכל אופן מכסים את כל האופציות האפשריות עבור

 $x \notin B$:1 מקרה

 $x \in A \setminus B$ ולכן $x \in A$ ולכן הרי שבמקרה זה, בהכרח $x \in A \cup B$ מאחר ש-

 $x \in B : \mathbf{2}$ מקרה

 $x \in B \setminus C$ -ש ואז ברור ש- $x \notin C$ מקרה זה מחייב ש, $x \notin B \cap C$ מאחר ש-

 $x \in (A \setminus B) \cup (B \setminus C)$ בשני המקרים מצאנו ש- $x \in A \setminus B$ או $x \in A \setminus B$ בשני המקרים

לפיכך הוכחנו שלכל $x \in (A \setminus B) \cup (B \setminus C)$ מתקיים $x \in (A \cup B) \setminus (B \cap C)$ כלומר

. משתי ההכלות נובע השוויון הנדרש. $(A \cup B) \setminus (B \cap C) \subseteq (A \setminus B) \cup (B \setminus C)$

ב. $C\in\mathcal{P}(A)$ לכן מהנתון נובע ש- $\mathcal{P}(B)$ לכן מהנתון נובע ש- $C\in\mathcal{P}(A)$ לכן מפני ש- $C\in\mathcal{P}(A)$ או $C\in\mathcal{P}(B)$ או $C\in\mathcal{P}(B)$

נניח ש- $A\in\mathcal{P}(C)$, מפני ש- $A\in\mathcal{P}(A)\cup\mathcal{P}(B)$ נכיח ש- $A\in\mathcal{P}(A)$ מפני ש- $A\in\mathcal{P}(A)$ נכיח ש- $A\in\mathcal{P}(A)$ משתי ההכלות נובע ש- $A\subset C$

. C=B - שמקרה ש- $C\subseteq B$ נקבל בדרך דומה ש-

 $|\mathcal{P}(A)| = 2^{|A|}$, A סופית שלכל קבוצה סופית ג. ידוע שלכל

כמו כן, לכל שתי קבוצות A,B מתקיים A,B מתקיים A,B (קל להוכיח שוויון A לכל איבר A של A יש שני מצבים אפשריים בלבד: או ששייך ל- B (ואז הוא איבר של A או שלא שייך ל- A (ואז הוא איבר של A או לזו (אין להן איברים $A \setminus B$ הו זרות זו לזו (אין להן איברים משותפים) ולכן $A \setminus B \mid A \cap B \mid + |A \cap B| + |A \cap B|$

$$|\mathcal{P}(A)| = 2^{|A|} = 2^{|A \cap B| + |A \setminus B|} = 2^{|A \cap B|} \cdot 2^{|A \setminus B|} = 2^{|A \cap B|} \cdot |\mathcal{P}(A \setminus B)|$$
 מכאן ש-

שאלה 3

 \cdot יהיו את הטענות הבאות הבאות ווניברסלית אוניברסלית קבוצות חלקיות לקבוצה אוניברסלית A,B,C

- $A \cup B^c \neq U$ אז $A \subset B$ אז .
 - A = C in $A^{c} \Delta B = B^{c} \Delta C$
- $A \cap B \subseteq C$ או $A \cap B \subseteq A \triangle B \triangle C$ גו .

תשובה

 $x\in A^c$ אז קיים $x\in B$ במילים אחרות $x\in B$ במילים אז קיים $x\in A$ כלומר אז קיים $x\in A^c\cap B$ וגם $x\in A^c\cap B$

. מכאן ש- $A^c\cap B=U^c=\varnothing$ - מכאן ש- $(A^c\cap B)^c=U$ (שכן אם שכן אם $(A^c\cap B)^c\neq U$ - מכאן ש- $A\cup B^c\neq U$ (אבי חוקי דה מורגו $A\cup B^c\neq U$). לכן $(A^c\cap B)^c=A^{cc}\cup B^c=A\cup B^c$

. $A^c \Delta B = A \Delta B^c$ ב. לפי הטענה שבשאלה 43, מתקיים

. (שכן ההפרש הסימטרי הוא חילופי) $A^c \Delta B = B^c \Delta A$ לכן

. $B^c \Delta A = B^c \Delta C$ נקבל: $B^c \Delta A$ ב- $A^c \Delta B$ נחליף כאן את הפעולה $A^c \Delta B = B^c \Delta C$ נקבל ש- A = C אז על ידי שימוש בחוק הצמצום של הפעולה Δ (שאלה 32 ג) נקבל ש-

 $A\cap B\subseteq (A\Delta B)\Delta C$: ג. ההפרש הסימטרי הוא קיבוצי לכן נוכל לרשום את הנתון כך הסימטרי נובע ש- מכאן שלכל $x\in (A\Delta B)\Delta C$ מתקיים $x\in (A\Delta B)\Delta C$ מתקיים $x\in A\cap B$ מכאן שלכל $x\in A\Delta B$ או $x\in A\Delta B$

אבל, אם $A \triangle B = (A \cup B) \setminus (A \cap B)$ שכן (שכן $A \triangle B = (A \cup B) \setminus (A \cap B)$ מכאן $x \in A \cap B$ שבהכרח . $x \in C$

 $A\cap B\subseteq C$ -ומכאן ש $x\in C$ מתקיים $x\in A\cap B$ מתקיים שלכל

שאלה 4

. בשאלה זו, קבוצת המספרים הטבעיים ${f N}$ היא הקבוצה האוניברסלית.

$$A_k = \{0k, 1k, 2k, 3k, ...\} = \{nk | n \in \mathbb{N}\}$$
 נסמן $k \in \mathbb{N}$

. A_k כך שהקבוצה באותו סעיף תהיה שווה ל- k כל אחד מן הסעיפים הבאים, מיצאו מספר טבעי לכל אחד מן הסעיפים. נמקו טענותיכם.

$$A_6 \cup \{x+3 \mid x \in A_6\}$$
 . $\mathbf{7}$
$$\bigcap_{k=1}^{\infty} A_k \cdot \lambda \qquad \qquad \bigcap_{k=1}^{5} A_k \cdot \mathbf{2} \qquad \qquad \bigcup_{k=1}^{\infty} A_{2k} \cdot \lambda$$

תשובה

$$\bigcup_{k=1}^{\infty}A_{2k}=A_2$$
 -א. נראה ש

,
(k=1 אחת אחת מקבלים (מקבלים באיחוד המשתתפת המשתתפת הקבוצות הקבוצות המשתתפת אחד, אחד, אחד היא אחת הקבוצות המשתתפת המשתתפת המשחתפת אחד אחד היא אחת הקבוצות המשתתפת המשחתפת המשחת המשחת

$$A_2 \subseteq \bigcup_{k=1}^{\infty} A_{2k}$$
 לכן

מצד שני, לכל זוגיים זוגיים, מכילות אך מכילות מכילות הקבוצות $k\in\mathbf{N}$ זוגיים מצד שני, לכל

ולקית ל- A_2 (כי A_2 היא היא הערים מספרים מכיל רק מספרים ולכן הקבוצה ולכן הקבוצה בעיים ווגיים טבעיים ווגיים ולכן מספרים מכיל רק מספרים מכיל אוגיים ווגיים ווג

. $\bigcup\limits_{k=1}^{\infty}A_{2k}\subseteq A_2$ אחרות במילים). במילים הטבעיים הטבעיים קבוצת כל המספרים הטבעיים הזוגיים

. $\bigcup_{k=1}^{\infty}A_{2k}=A_2$ משתי ההכלות שהוכחנו נובע

$$\bigcap_{k=1}^{5} A_k = A_{60}$$
 ב. נראה ש-

k -ב שלכל ב- המתחלקים היא קבוצת כל המספרים הטבעיים המתחלקים ב- A_k , $k \geq 1$ לשם כך נשים לב שלכל (אומרים אז גם שהם כפולות של k) שימו לב k שימו לב: 0 מתחלק ב- (הוא כפולה של)

.1,2,3,4,5 בו זמנית המספרים המספרים הוא קבוצת הוא $\bigcap\limits_{k=1}^{5}A_{k}$ -ש מכאן ש

. $\bigcap_{k=1}^5 A_k \subseteq A_{60}$ ולכן 60 ב- 3,4,5 מתחלק ב- 3,4,5 כל מספר שמתחלק ב-

מצד שני כל מספר 1,2,3,4,5 מתחלק ב- 60 לכן מחלק ב- 60 מתחלק $x\in A_{60}$ מספר מספר מצד שני מ

. $A_{60} \subseteq \bigcap_{k=1}^5 A_k$: במילים אחרות במילים . $\bigcap_{k=1}^5 A_k$ כלומר שייך ל- A_5 ו- A_4 , A_3 , A_2 , A_1 - הוא שייך ל-

. $\bigcap_{k=1}^{5} A_k = A_{60}$ -שתי משתי שהוכחנו נובע שהוכחנו

$$\displaystyle \bigcap_{k=1}^{\infty} A_k = A_0$$
 ג. נראה ש-

 $A_0 = \{0\}$ נשים לב שלפי הנתון

. k-ב המתחלקים המבעיים כל המספרים היא קבוצת היא A_k , $\,k\,\geq 1\,$ לכל כמו כן, כמו

 $k\geq 1$ אז מתחלק בכל מספר אז א $x\in \bigcap_{k=1}^\infty A_k$ לכן אם לכן א

x=0 אין מספר טבעי שיכול להתחלק בכל מספר טבעי שיכול להתחלק אין מספר טבעי שיכול להתחלק

 $.\,\{0\} \subseteq \bigcap_{k=1}^\infty A_k$ לכן , $k \ge 1$ כל עבור כל $x \in A_k$, ההגדה, לפי שני, לפי שני, לפי מכאן ש- . $\bigcap_{k=1}^\infty A_k \subseteq \{0\}$

. $\bigcap_{k=1}^{\infty} A_k = \{0\} = A_0$ -שתי ההכלות נובע

 $A_6 \cup \{x+3 \mid x \in A_6\} = A_3$ ד. נראה ש-

לפי הנתון $A_6 = \{6n | n \in \mathbb{N}\} = \{3 \cdot 2n | n \in \mathbb{N}\}$ וזו קבוצות כל הכפולות של 3 במספר זוגי. (גם 0 זוגי!)

-ש ומכאן אר $\{x+3\mid x\in A_6\}=\{6n+3\mid n\in \mathbf{N}\}$ נקבל ש- $A_6=\{6n\mid n\in \mathbf{N}\}$ ומכאן ש- מצד שני מפני

. וזו קבוצת אי-זוגי אי-זוגי ($x+3 \mid x\in A_6\}=\{3(2n+1)\mid n\in \mathbf{N}\}$

לפיכך (גם אי-זוגיות) היא קבוצת כל הכפולות של (גם אי-זוגיות) אי-זוגיות) לפיכך $A_6 \cup \{x+3 \mid x \in A_6\}$. $A_6 \cup \{x+3 \mid x \in A_6\} = A_3$