Today's Agenda

Practice fitting, evaluating and making point estimates using multiple linear regression models (ch 6)

Justin Leinaweaver (Spring 2022)

What is the most "useful" model of weight in the Ross (1990) dataset?

Predictors to Explore

- Height
- Exercise
- Age

For Today

Evaluate our four models using Wheelan ch 12

- Model 1: Height
- Model 2: Height and Exercise
- Model 3: Height and Age
- Model 4: Height, Exercise and Age

Common Regression Mistakes (Wheelan ch12)

- Linear regression on nonlinear relationships
- Orrelation does not equal causation
- Reverse causality
- Omitted variable bias (too few variables)
- Highly correlated explanatory variables (multicollinearity)
- Extrapolating beyond the data
- Data mining (too many variables)

Common Regression Mistakes (Wheelan ch12)

- Nonlinearity: Residuals Plots
- Orrelation does not equal causation
- Reverse causality
- Omitted variable bias (too few variables)
- Multicollinearity: Correlation Matrix
- Outside Data: Scatterplot
- Data mining (too many variables)

Common Regression Mistakes (Wheelan ch12)

Check the Data

- Nonlinearity: Residuals Plots
- Multicollinearity: Correlation Matrix
- Outside Data: Scatterplot

Make an Argument

- Correlation does not equal causation
- Reverse causality
- Omitted variable bias (too few variables)
- Data mining (too many variables)

For Today

Evaluate our four models using Wheelan ch 12

- Model 1: Height
- Model 2: Height and Exercise
- Model 3: Height and Age
- Model 4: Height, Exercise and Age

	Weight (lb)					
	(1)	(2)	(3)	(4)		
height	4.95* (0.18)	5.21* (0.18)	5.15* (0.18)	5.29* (0.18)		
exercise		-2.05* (0.30)		-1.40* (0.31)		
age			0.33* (0.04)	0.27* (0.04)		
Constant	-173.26* (11.91)	-184.54* (11.88)	-200.94* (12.14)	-203.76* (12.09)		
Observations Adjusted R ² Residual Std. Error F Statistic	1,788 0.30 28.96 (df = 1786) 767.70* (df = 1; 1786)	1,788 0.32 28.59 (df = 1785) 417.44* (df = 2; 1785)	1,788 0.33 28.41 (df = 1785) 434.54* (df = 2; 1785)	1,788 0.33 28.25 (df = 1784) 299.65* (df = 3; 1784)		

Note: *p < 0.05

One approach to building a "best" multiple regression model

- Choose the logical predictors
- Fit a simple OLS regression to each predictor
- Fit a multiple regression with the "best" of those
- Evaluate the model using all five steps
- Use the model to make predictions

What is the "best" multiple regression model of earnings in the Ross (1990) dataset?

Outcome

Yearly income in thousands of dollars (earnk2021)

Predictors to Consider

Age, angry, education, ethnicity, exercise, father's education, height, male, mother's education, smoker, tense, walk and weight

What is the "best" multiple regression model of earnings in the Ross (1990) dataset?

Outcome

Yearly income in thousands of dollars (earnk2021)

Predictors to Consider

Age, angry, education, ethnicity, exercise, father's education, height, male, mother's education, smoker, tense, walk and weight

	Earnings (2021)				
	(1)	(2)	(3)	(4)	(5)
age	0.22* (0.06)				
education		5.57* (0.36)			
exercise			1.88* (0.42)		
neight				3.08* (0.25)	
mother_education					6.21* (0.43)
Constant	33.17* (2.64)	-31.34* (4.89)	36.69* (1.62)	-162.54* (16.46)	-40.64* (5.87)
Observations	1,815	1,813	1,815	1,815	1,570
Adjusted R ² Residual Std. Error	0.01 41.81 (df = 1813)	0.11 39.50 (df = 1811)	0.01 41.75 (df = 1813)	0.08 $40.28 ext{ (df} = 1813)$	0.12 40.45 (df = 1568
Note:					*p < 0.05

	Earnings (2021 USD)	
Age	0.47*	
	(0.05)	
Education	5.42*	
	(0.35)	
Exercise	0.95*	
	(0.41)	
Height	2.84*	
	(0.24)	
Mother's Education	-241.27^{*}	
	(16.34)	
Observations	1,813	
Adjusted R ²	0.21	
Residual Std. Error	37.43 (df = 1808)	
F Statistic	118.04* (df = 4; 1808)	
Note:	*p < 0.05	

	Earnings (2021)					
	(1)	(2)	(3)	(4)	(5)	
Age	0.22* (0.06)				0.47* (0.05)	
Education		5.57* (0.36)			5.42* (0.35)	
Exercise			1.88* (0.42)		0.95* (0.41)	
Height				3.08* (0.25)	2.84* (0.24)	
Constant	33.17* (2.64)	-31.34* (4.89)	36.69* (1.62)	-162.54* (16.46)	-241.27* (16.34)	
Observations	1,815	1,813	1,815	1,815	1,813	
Adjusted R ² Residual Std. Error	0.01 41.81 (df = 1813)	0.11 39.50 (df = 1811)	0.01 41.75 (df = 1813)	0.08 $40.28 (df = 1813)$	0.21 37.43 (df = 1808	

Note: *p < 0.05

For Tuesday - Make Predictions (w/ 95% Pls)

Establish a baseline prediction for a hypothetical person who is 25 (Age), Education 13, Exercise 1, Height 67

Then calculate the predicted income if:

- Finish college? (16)
- Finish grad school? (18)
- Increase exercise to 1x / week? (4)
- Increase exercise to 3x / week? (7)