南京理工大学课程考试试卷 (学生考试用)

课	 程名称:数字逻辑电路	3.5	大纲编号:	04026304				
试组	卷编号: 2021 年上 A 考试方式: 闭卷 卷日期: 2021 年 6 月 22 日 组卷教师(签字): 生班级:学生学号:	满分分值: 集体		考试时间: <u>120</u> 分钟 签字):				
<u>考</u> :	生注意:请把所有答案写在答题纸上,试卷上写好姓名和	答题纸一起	<u>記上交。</u>					
	、填空题(每空 2 分, 共 12 分)							
1.	1. 逻辑函数 $F_1(A,B,C)=\sum m(2,3,4)$, $F_2(A,B,C)=\Pi M(2,3)$,当输入信号 ABC 是()时, $F_1(A,B,C)$ 和 $F_2(A,B,C)$ 的取值相等。							
2.	2. 图 1 所示的 CMOS 门电路中,若 V_1 输入高电平, V_2 输入低电平,则输出信号 F 的状态是()。							
			X Y Q ⁿ⁺					
	V_1 & ∇ V_2 ∇		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	图 1		图 2					
3.	3. 已知某存储单元电路的特性表如图 2 所示(X、Y 为驱动信号),则该电路状态方程的最简与或表达式为							
	() 。							
4.								
	位。	- 15 1 1- 1-	1-1-2-2					
5.	10 线一4 线优先编码器 74147 是最高位优先编码电路(
	8421BCD 码的反码。则当输入 $\bar{I}_1\bar{I}_2\bar{I}_3\bar{I}_4\bar{I}_5\bar{I}_6\bar{I}_7\bar{I}_8\bar{I}_9 = 1101000$	1时,输出		与()。				
6.	一个 8 位 D/A 转换器的输入二进制码为 00010000 时产生	E 0.32V 的	为 输出电压,	那么当输出的电压为 2.72V				
	时对应的输入二进制码为()。							
二、判断题(每题 2 分,共 12 分)(叙述正确的题目填 √,叙述错误的题目填×)								
1.	一个1分10的数据分配器,至少需要10位地址码。			()				
2.	逻辑函数 F(A,B,C,D)=ĀB+ĀD+BC,且Ā+B=1,则其	最简的或非	=-或非表达	式为 $\overline{\overline{A}+C}+\overline{\overline{B+D}}$ 。 ()				
3.	将三态门的输出端直接连在一起可以实现线与的功能。			()				
4.								
	应接低位触发器的 Q̄ _{i-1} 输出端。			()				
5.	对 8 片容量为 2 ⁸ ×8 位的 RAM 进行容量扩展,扩展后的 R							
6.	一个 10 位的 A/D 转换器在量化过程中可以采用只舍不》	、和有舍有	人两种方式					
	化误差是一样的。			()				

- 三、(共12分)按要求完成以下组合逻辑电路的分析和设计。
- 1. 分析图 3 (a) 所示组合逻辑电路,列出逻辑函数 X(A, B, C)和 Y(A, B, C)的真值表;
- 2. 仅用图 3(b)所提供的 3 线—8 线二进制译码器和门电路,实现逻辑函数 $F_1(A,B,C) = \overline{AB} + \overline{AC}$ 和 $F_2(A,B,C) = \sum m(0,1,2,3,4)$,要求画出电路图。

- 四、(共 12 分)7483 是 4 位二进制加法器,其中 $A_3A_2A_1A_0$ 是一组加数, $B_3B_2B_1B_0$ 是另一组加数,CI 为进位输入端, $S_3S_2S_1S_0$ 为和,CO 为向高位的进位信号。
- **1.** 分析图 4(a)所示电路,该电路的输入信号 $A_3A_2A_1A_0$ 为余 3BCD 码,请列出 $Y_3Y_2Y_1Y_0$ 与 $A_3A_2A_1A_0$ 的代码转换关系表;
- 2. 仅用一片 7483 设计一个代码转换电路,该电路的输入信号 $X_3X_2X_1X_0$ 为 8421BCD 码,输出信号为 $Z_3Z_2Z_1Z_0$,代码转换关系表如图 4(b)所示。要求写出设计过程,画出电路图。

	X3X2X1X0	Z3Z2Z1Z0
0	0 0 0 0	0 0 0 0
1	0 0 0 1	0 0 0 1
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 1 0 0
4	0 1 0 0	0 1 1 0
5	0 1 0 1	0 1 1 1
6	0 1 1 0	1 0 0 1
7	0 1 1 1	1 0 1 0
8	1 0 0 0	1 1 0 0
9	1 0 0 1	1 1 0 1

(b)

图 4

- 五、(共 16 分)图 5 是由 JK 触发器($Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$)和 D 触发器($Q^{n+1} = D$)所构成的同步时序逻辑电路,分析电路并完成以下要求:
- 1. 写出电路中各触发器的驱动方程;
- 2. 写出各触发器的状态方程;
- 3. 列出状态表(要求按 $Q_0Q_1Q_2$ 的顺序列表);
- 4. 画出状态图(要求按 $Q_0Q_1Q_2$)的格式画图)。

六、(共12分)图 6(a)是由555定时器所构成的波形变换电路,分析电路并完成以下要求:

- **1.** 画出图 6 (a) 所示电路中 555 定时器的电压传输特性曲线($V_{OI} = f(V_{i})$);并在曲线上标明该电路的 V_{T+} (上触发电平或正向阈值电压)和 V_{T-} (下触发电平或负向阈值电压)的电压值各是多少?
- 2. 输入信号 V_i 波形如图 6 (b) 所示,设触发器的初始状态为 0,画出输出信号 V_{O1} 和 V_{O2} 的波形,并标明相应的参数。
- 3. 如果输入信号 V_i 的频率为 $400H_Z$,则 V_{O1} 和 V_{O2} 波形的频率分别是多少?

- 七、(共12分)图 7(a)是由一片 4 位移位寄存器 74194 辅以少量门电路所构成的一种移位寄存器型计数器电路(74194 功能表见图 7(c)),分析电路并完成以下要求:
- 1. 画出 74194 工作的完整状态图(画成 $Q_0Q_1Q_2Q_3$ →的形式);
- 2. 设 74194 的初始状态 $Q_0Q_1Q_2Q_3$ 为 0000, 完成图 7(b) 所示的时序波形图。

- 八、(共12分)74163 是 4 位二进制同步加法计数器, 其逻辑符号及功能表如图 8 (a) 所示, 完成以下要求:
- **1.** 用一片 74163 和少量门电路设计一个模 8 计数器,此计数器的有效循环输出状态为: 3→4→5→6→11→12→13→14→⋯⋯ 。 (计数器的输出状态是指 74163 的 $Q_3Q_2Q_1Q_0$ 所对应的十进制数,例如: $Q_3Q_2Q_1Q_0=1100$,即为 12)
- 2. 用一片 74163、一个 4 选 1 数据选择器、两个 2 输入端与非门设计一个多功能的计数电路,该电路在信号 S1 和 S0 的控制下可以完成如图 8 (c) 所示有效计数状态。请写出该计数电路的设计过程,并画出电路图。(4 选 1 数据选择器的逻辑符号如图 8 (b) 所示)

S 1	S 0	计数器输出 Q ₃ Q ₂ Q ₁ Q ₀ 的状态	
0	0	$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow \cdots$	(11 个有效循环计数状态)
0	1	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow \cdots$	(10 个有效循环计数状态)
1	0	$2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow \cdots$	(10 个有效循环计数状态)
1	1	$3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow \cdots$	(8个有效循环计数状态)

(c)

图 8