Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Инженерно-технические средства защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

«Инженерно-технические средства защиты информации»

-									
К	ы	П	N.	П	H	И.	П	И	•

() (подпись)

Давлетов Марат Фанилевич	н, студент группы N34471
_	dul
	V /

Кориненко Даниил Трофимович, студент группы N34471

Малыхина Екатерина Евгеньевна, студент группы N34471

Проверил:

к.т.н Попов Илья Юрьевич, доцент ФБИТ

Санкт-Петербург 2023 г.

СОДЕРЖАНИЕ

Введе	ение	4
1	Теоретическая справка	
1.1		
1.2		
2	Практическая часть	
- Закли	очение	

ВВЕДЕНИЕ

Цель работы: приобрести практические навыки в использовании импульсного рефлектометра.

Задачи:

- 1. Исследовать назначение рефлектометра;
- 2. Изучить устройство;
- 3. Определить характеристики участков цепи, находящихся в составе лабораторного стенда.

1 ТЕОРЕТИЧЕСКАЯ СПРАВКА

1.1 Назначение импульсного рефлектометра

Рефлектометрия — это технология, позволяющая определять различные характеристики исследуемой среды по отражению отклика сигнала: поверхности (например, определение коэффициентов отражения и поглощения) или объемной среды (например, изучение распределения неоднородностей в оптическом волокне).

Импульсная рефлектометрия — это область измерительной техники, которая основывается на получении информации об измеряемой линии по анализу ее реакции на зондирующее (возмущающее) воздействие. Импульсная рефлектометрия применяется как для металлических кабелей всех типов, так и для волоконно-оптических кабелей связи.

Рефлектометры реализующие импульсный метод позволяют с высокой точностью определять расстояние до неоднородностей волнового сопротивления кабеля и таким образом определять: длину кабеля, определять расстояние до обрыва и короткого замыкания кабеля, определять места "замыкания кабеля", определять муфты кабеля и места кроссировок (соединение проводов или кабелей линии (магистрали) связи с коммутационным оборудованием средств связи), в том числе определять ошибки кроссировки, места пониженной изоляции.

1.2 Принцип работы импульсного рефлектометра

Принцип работы рефлектометра строится на следующих физических принципах:

- Одной из важнейших характеристик кабеля является волновое сопротивление Z_0 . Если кабель исправен и его волновое сопротивление не меняется — сигнал проходит по кабелю без отражений. Если имеет место обрыв, короткое замыкание или иная неоднородность — сигнал отражается полностью, или частично, причем коэффициент отражения определяется следующим образом:

$$K = \frac{Z - Z_0}{Z + Z_0}$$

Где Z - волновое сопротивление в области неоднородности.

- Любую кабельную линию можно описать в терминах погонных величин: емкости С, индуктивности L, активного сопротивления R и межпроводной проводимости G. Таким образом, бесконечный кабель моделируется бесконечной цепью одинаковых малых кусочков единичной длины, имеющих указанные погонные характеристики. Изображение участка цепи представлено на рисунке 1.

Рисунок 1 – Изображение участка цепи

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

В области высоких частот, где $R \ll \omega L$ и $G \ll \omega C$:

$$Z_0 = \sqrt{\frac{L}{C}}$$

Импульсный рефлектометр обнаруживает и визуализирует наличие отражения от неоднородности волнового сопротивления, причем по характеру отражения можно судить о его природе. Так локальное увеличение индуктивной составляющей приводит к росту волнового сопротивления в этой точке и возникновению отклика положительной полярности, а увеличение емкостной составляющей приводит к уменьшению волнового сопротивления в точке отражения и, соответственно, к образованию отклика отрицательной полярности. В точке обрыва ($R = \infty$) коэффициент отражения K = -1, т. е. имеем полное отражение в виде импульса отрицательной полярности. В точке короткого замыкания ($G = \infty$) K = 1 т. е. возникает такое же отражение, только в виде импульса противоположенной полярности. Что же касается амплитуд импульсов, то они зависят не только от коэффициента отражения, но и от ослабления исходного импульса в кабеле на длине, равной расстоянию от источника импульсов до точки отражения и обратно.

2 ПРАКТИЧЕСКАЯ ЧАСТЬ

Результаты подключения к витым парам на лабораторном стенде:

Рисунок 2 – Желтый провод (КЗ)

Рисунок 3 – Коричневый провод (обрыв)

Рисунок 4 — Синий провод (цепь с сопротивлением)

Рисунок 5 – Зеленый провод

Таблица 1 – Результат анализа графиков

Цвет провода	Пик, м	Период, нс	Результат
Желтый	60	-80	К3
Коричневый	60	60	Обрыв

Синий	28	90	Сопротивление
Зеленый	28	-50	Обрыв –
			подключение
			злоумышленника

ЗАКЛЮЧЕНИЕ

В результате проведенной лабораторной работы мы изучили назначение и принцип работы импульсного рефлектометра, а также приобрели практические навыки в определении характеристик цепи по показателям рефлектометра.