Module-4: Numerical methods -1

Solution of polynomial and transcendental equations: Regula-Falsi and Newton-Raphson methods (only formulae). Problems.

Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without proof). Problems.

Numerical integration: Simpson's (1/3)rd and (3/8)th rules(without proof). Problems.

Solution of algebraic and transcendental equations:

1. Method of false position (Regula-falsi method):

To find the root of the equation f(x) = 0 by Regula-falsi method,

Step1: Find a and b such that f(a).f(b) < 0, then root lies between a and b.

Step2:
$$x_1 = \frac{af(b) - b(fa)}{f(b) - f(a)}.$$

Step3: If $f(a).f(x_1) < 0$, then root lies between a and x_1 .

Set a = a and $b = x_1$ go to step 2.

If $f(b).f(x_1) < 0$, then root lies between x_1 and b.

Set $a = x_1$ and b = b go to step 2.

This procedure is repeated till the root is found to desired accuracy.

Examples: 1. Find a real root of the equation $x \log_{10} x = 1.2$ by regula-falsi method correct to four decimal places.

Solution: Let $f(x) = x \log_{10} x - 1.2$.

Since f(1) = -1.2, f(2) = -0.5979, f(3) = 0.2314, root lies between 2 and 3.

a	b	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$	f(x)
f(a)	f(b)		, , ,
a = 2	b=3	$2 \times 0.2314 + 3 \times 0.5979$	66) 0.0454
f(a) = -0.5979	f(b) = 0.2314	$x_1 = {0.2314 + 0.5979}$	$f(x_1) = -0.0171$
		= 2.7210	
Since $f(b).f(x_1)$	< 0, root lies between	een 2.7210 and 3.	
a = 2.7210	b = 3	$2.7210 \times 0.2314 + 3 \times 0.0171$	
f(a) = -0.0171	f(b) = 0.2314	$x_2 = {0.2314 + 0.0171}$	$f(x_2) = -0.0004$
		= 2.7402	
Since $f(b).f(x_2)$	< 0 , root lies betw	een 2.7402 and 3.	
a = 2.7402	b=3	$_{x} = \frac{2.7402 \times 0.2314 + 3 \times 0.0004}{2.7402 \times 0.2314 + 3 \times 0.0004}$	f(x) = 0.0000
f(a) = -0.0004	f(b) = 0.2314	$x_3 = {0.2314 + 0.0004}$	$f(x_3) = 0.0000$
		= 2.7406	

Hence the root is 2.7406 correct to four decimal places.

2) Solve $xe^x - 2 = 0$ using Regula-false method.

Solution: Let
$$f(x) = xe^x - 2$$
.

Since f(0.8) = -0.2196, f(0.9) = 0.2136, root lies between 0.8 and 0.9.

a	b	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$	f(x)
f(a)	f(b)) (0)) (0)	
a = 0.8	b = 0.9	$0.8 \times 0.2136 + 0.9 \times 0.2196$	(() 0000
f(a) = -0.2196	f(b) = 0.2136	$x_1 = \frac{0.2136 + 0.2196}{0.2136 + 0.2196}$	$f(x_1) = -0.0083$
		= 0.8507	
Since $f(b).f(x_1)$	< 0 , root lies between	een 0.8507 and 0.9.	
a = 0.8507	b = 0.9	$0.8507 \times 0.2136 + 0.9 \times 0.0083$	
f(a) = -0.0083	f(b) = 0.2136	$x_2 = {0.2136 + 0.0083}$	$f(x_2) = -0.0005$
		= 0.8525	
Since $f(b).f(x_2)$	< 0 , root lies betw	een 0.8525 and 0.9.	
a = 0.8525	b = 0.9	$0.8525 \times 0.2136 + 0.9 \times 0.0005$	
f(a) = -0.0005	f(b) = 0.2136	$x_3 = {0.2136 + 0.0005}$	$f(x_3) = 0.0000$
		= 0.8526	

Hence the root is 0.8526 correct to four decimal places.

Exercise: Using Regula-falsi method compute the real root of the following equations correct to four decimal places. 1. $x^3 - 2x - 5 = 0$ 2. $xe^x - \sin x = 0$ 3. $2x - \log x = 6$.

2. Newton-Raphson method: To find the root of the equation f(x) = 0 by N-R method, Find f'(x) and x_0 such that $f(x_0)$ is nearer to 0.

A closer approximation of the root is $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

Similarly, starting with x_1 , better approximation of the root is $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

In general, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ (this is Newton-Raphson formula or Newton's iteration formula)

Examples: 1. Find by Newton's method, the real root of the equation $3x = \cos x + 1$.

Solution: Let $f(x) = 3x - \cos x - 1$ then $f'(x) = 3 + \sin x$.

Since f(0) = -2, f(1) = 1.4597, f(0.5) = -0.3776.

Let us take $x_0 = 0.5$.

Newton-Raphson formula is $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

$$= x_n - \frac{3x_n - \cos x_n - 1}{3 + \sin x_n}.$$

$$x_1 = 0.5 - \frac{3 \times 0.5 - \cos 0.5 - 1}{3 + \sin 0.5} = 0.6085.$$

$$x_2 = 0.6085 - \frac{3 \times 0.6085 - \cos 0.6085 - 1}{3 + \sin 0.6085} = 0.6071.$$

$$x_3 = 0.6071 - \frac{3 \times 0.6071 - \cos 0.6071 - 1}{3 + \sin 0.6071} = 0.6071$$

Hence the root is 0.6071 correct to four decimal places.

2. Use Newton-Raphson method to find a root of the equation $\tan x - x = 0$ near x = 4.5.

Carry out two iterations. (05 Marks)

Solution: Let
$$f(x) = \tan x - x$$
 then $f'(x) = \sec^2 x - 1 = \tan^2 x$.
$$x_0 = 4.5$$
 .

Newton-Raphson formula is
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 $= x_n - \frac{\tan x_n - x_n}{\tan^2 x_n}$.
 $x_1 = x_0 - \frac{\tan x_0 - x_0}{\tan^2 x_0} = 4.4936$.
 $x_2 = x_1 - \frac{\tan x_1 - x_1}{\tan^2 x_1} = 4.4934$.

Therefore root is 4.4934.

Exercise:

Using Newton-Raphson method compute the real root of the following equations correct to four decimal places.

1.
$$\sin x + \cos x = 0$$
, near $x = \pi$. 2. $\tan x + \tanh x = 1$ 3. $e^x = x^3 + \cos 25x$ near $x = 4.5$

Forward and backward differences:

For the given set of values x_0 , x_1 , x_2 , $\cdots x_n$ coresponding y values are y_0 , y_1 , y_2 , $\cdots y_n$. First forward differences are $\Delta y_0 = y_1 - y_0$, $\Delta y_1 = y_2 - y_1$, $\Delta y_2 = y_3 - y_2$ and so on . Second forward differences are $\Delta^2 y_0 = \Delta y_1 - \Delta y_0$, $\Delta^2 y_1 = \Delta y_2 - \Delta y_1$, $\Delta^2 y_2 = \Delta y_3 - \Delta y_2$ and so on . r^{th} forward differences are $\Delta^r y_0 = \Delta^{r-1} y_1 - \Delta^{r-1} y_0$, $\Delta^{r-1} y_1 = \Delta^{r-1} y_2 - \Delta^{r-1} y_1$, and so on . First backward differences are $\nabla y_1 = y_1 - y_0$, $\nabla y_2 = y_2 - y_1$, $\nabla y_3 = y_3 - y_2$ and so on . Second backward differences are $\nabla^2 y_1 = \nabla y_1 - \nabla y_0$, $\nabla^2 y_2 = \nabla y_2 - \nabla y_1$, $\nabla^2 y_3 = \nabla y_3 - \nabla y_2$ and so on . r^{th} backward differences are $\nabla^r y_1 = \nabla^{r-1} y_1 - \nabla^{r-1} y_0$, $\nabla^{r-1} y_2 = \nabla^{r-1} y_2 - \nabla^{r-1} y_1$, and so on .

Newton's forward interpolation formula: To find y(x) near x_0 from the given set of values

$$x_0$$
 , x_1 , x_2 , $\cdots \cdots x_n$ coresponding y values are y_0 , y_1 , y_2 , $\cdots \cdots y_n$ With $x_1-x_0=x_2-x_1=x_3-x_2=\cdots=h$

Then,
$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \cdots$$
 where $p = \frac{x-x_0}{h}$.

Newton's backward interpolation formula : To find y(x) near x_n from the given set of values

$$x_0$$
 , x_1 , x_2 , $\cdots \cdots x_n$ coresponding y values are y_0 , y_1 , y_2 , $\cdots \cdots y_n$ with $x_1-x_0=x_2-x_1=x_3-x_2=\cdots=h$.

Then,
$$y(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_n + \cdots$$
 where $p = \frac{x - x_n}{h}$.

Example: Using suitable interpolation formulae, find y(38) and y(85) for the following data:

					80	
у	184	204	226	250	276	304

Ans: The difference table is

(i) Since $x_0 = 40$, $h = 10$ $p =$
$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}$
$y(38) = 184 - 0.2 \times 20 - 0.00$

(ii)	Since	$r_{} = 90$	h = 10	n =

y(x)	$= y_1$	$_n + p$	∇y_n	+

у	Δ or ∇	Δ^2 or ∇^2
184		
	20	
204		2
	22	
226		2
	24	
250		2
	26	
276		2
	28	
304		
	204 226 250 276	184 20 20 22 226 24 250 26 276 28

20		$x-x_0$
204	2	$\frac{x-x_0}{h}$:
22		
226	2	$\Delta^2 y_0$
24		
250	2	$\frac{0.2 \times -1}{2}$
26		2
276	2	$\frac{x-x_n}{h}$
28		h
304		n(n+1
•	_	$\frac{p(p+1)}{2!}$

$\frac{x-x_0}{h} = \frac{38-40}{10} = -0.2$.

$$\frac{0.2 \times -1.2 \times 2}{2} = 180.24 \ .$$

$$\frac{x - x_n}{h} = \frac{85 - 90}{10} = -0.5.$$

$$\frac{p(p+1)}{2!} \nabla^2 y_n$$

Lagrange's interpolation formula: If y = f(x) or x = g(y) then

 $y(85) = 304 - 0.5 \times 28 - \frac{0.5 \times 0.5 \times 2}{2} = 289.75.$

$$y = f(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_n)y_0}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)} + \frac{(x - x_0)(x - x_2) \cdots (x - x_n)y_1}{(x_1 - x_0)(x_1 - x_2) \cdots (x_1 - x_n)} + \cdots + \frac{(x - x_0)(x - x_1) \cdots (x - x_{n-1})y_n}{(x_n - x_0)(x_n - x_1) \cdots (x_n - x_{n-1})}$$

Example: If y(0) = -12, y(1) = 0, y(3) = 6, and y(4) = 12, Find the Lagrange's interpolation polynomial and estimate y(2).

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)y_0}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} + \frac{(x - x_0)(x - x_2)(x - x_3)y_1}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} + \frac{(x - x_0)(x - x_1)(x - x_3)y_2}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} + \frac{(x - x_0)(x - x_1)(x - x_2)y_3}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

$$= \frac{(x-1)(x-3)(x-4)(-12)}{(-1)(-3)(-4)} + 0 + \frac{x(x-1)(x-4)6}{(3)(2)(-1)} + \frac{x(x-1)(x-3)12}{(4)(3)(1)} = x^3 - 9x^2 + 18x - 12.$$

$$\therefore y(2) = -4$$
.

Newton's divided difference formula:

$$y = f(x) = y_0 + (x - x_0) \times 1^{st} D. D. + (x - x_0)(x - x_1) \times 2^{nd} D. D.$$

$$+(x-x_0)(x-x_1)(x-x_2)\times 3^{nd}D.D.+\cdots\cdots$$

Where
$$1^{st}D.D. = [x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$$

$$2^{st}D.D. = [x_0, x_1, x_2] = \frac{[x_1, x_2] - [x_0, x_1]}{x_2 - x_0} \quad , \quad 3^{rd}D.D. = [x_0, x_1, x_2, x_3] = \frac{[x_1, x_2, x_3] - [x_0, x_1, x_2]}{x_3 - x_0}.\cdots\cdots$$

Example

1) Find the interpolating polynomial f(x) by using Newton's divided difference interpolation formula from the data

x	0	1	2	3	4	5
f(x)	3	2	7	24	59	118

Sol: The divided difference table is

х	у	1st D.D	2nd D.D	3rd D.D
0	3			
		-1		
1	2		3	
		5		1
2	7		6	
		17		1
3	24		9	
		35		1
4	59		12	
		59		
5	118			

$$f(x) = y_0 + (x - x_0) \times 1^{st} D. D. + (x - x_0)(x - x_1) \times 2^{nd} D. D. + (x - x_0)(x - x_1)(x - x_2) \times 3^{nd} D. D.$$

$$= 3 + x \times -1 + x(x - 1) \times 3 + x(x - 1)(x - 2)$$

$$= x^3 - 2x + 3$$

Problems:

1. From the following table, estimate the number of students who have obtained the marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80
Number of students	31	42	51	35	31

Sol: Let y be the number of students with marks less than or equal to x marks.

Then the number of students who have obtained the marks between 40 and 45 = y(45) - y(40)

х	40	50	60	70	80
у	31	73	124	159	190

The difference table is

х	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
40	31				
		42			
50	73		9		
		51		-25	
60	124		-16		37
		35		12	
70	159		-4		
		31			
80	190				

Since
$$x_0 = 40$$
, $h = 10$ $p = \frac{x - x_0}{h} = \frac{45 - 40}{10} = 0.5$.

$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!}\Delta^4 y_0$$

$$y(45) = 31 + 0.5 \times 32 + \frac{0.5(-0.5)(9)}{2} + \frac{0.5(-0.5)(-1.5)(-25)}{6} + \frac{0.5(-0.5)(-1.5)(-2.5)}{24}$$
(37)
= 47.8672 \approx 48 students.

Therefore the number of students with marks between 40 and 45 = y(45) - y(40) = 48 - 31 = 17.

2. The following data is on melting point of an alloy of lead and zine where t is temperature in celsius and P is percentage of lead alloy. Find the melting point of the alloy containing 86% of lead.

Р	40	50	60	70	80	90
t	180	204	226	250	276	304

Sol: The difference table is

	t = y	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
P = x						
40	180					
		24				
50	204		-2			
		22		4		
60	226		2		-4	
		24		0		4
70	250		2		0	
		26		0		
80	276		2			
		28				
90	304					

Since
$$x_n = 90$$
, $h = 10$ $p = \frac{x - x_n}{h} = \frac{86 - 90}{10} = -0.4$.

$$y(x) = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \dots + \frac{p(p+1)(p+2)(p+3)(p+4)}{5!}\nabla^5 y_n + \dots$$

$$y(86) = 304 - 0.4 \times 28 - \frac{0.4(0.6)(2)}{2} + 0 + 0 - \frac{0.4(0.6)(1.6)(2.6)(3.6)(4)}{120}$$
= 292.4402 celsius.

Therefore melting point of the alloy containing 86% of lead \cong 292 celsius.

3. Given

x	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

Estimate f(7.5) using Newton-Gregory Backward difference interpolation formula.

Sol: The difference table is

	•		•	
X	у	∇y	$\nabla^2 y$	$\nabla^3 y$
1	1			
		7		
2	8		12	
		19		6
3	27		18	
		37		6
4	64		24	
		61		6
5	125		30	
		91		6
6	216		36	
		127		6
7	343		42	
		169		
8	512			

Since
$$x_n = 8$$
, $h = 1$ $p = \frac{x - x_n}{h} = \frac{7.5 - 8}{1} = -0.5$.

$$\ \, \div \,\, f(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \, \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \, \nabla^3 y_n + \cdots \cdots$$

$$f(7.5) = 512 - 0.5 \times 169 - \frac{0.5(0.5)(42)}{2} - \frac{0.5(0.5)(1.5)(6)}{6} = 421.8750.$$

4. Using the Lagrange's formula find an interpolation polynomial and estimate y(3).

$$y = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)y_0}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} + \frac{(x-x_0)(x-x_2)(x-x_3)y_1}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} + \frac{(x-x_0)(x-x_1)(x-x_3)y_2}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} + \frac{(x-x_0)(x-x_1)(x-x_2)y_3}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}$$

$$= \frac{(x-1)(x-2)(x-5)(2)}{(-1)(-2)(-5)} + \frac{(x)(x-2)(x-5)(3)}{(1)(-1)(-4)} + \frac{x(x-1)(x-5)12}{(2)(1)(-3)} + \frac{x(x-1)(x-2)147}{(5)(4)(3)}$$

$$= -\frac{1}{5}(x^3 - 8x^2 + 17x - 10) + \frac{3}{4}(x^3 - 7x^2 + 10x) - 2(x^3 - 6x^2 + 5x) + \frac{49}{20}(x^3 - 3x^2 + 2x)$$

= $x^3 + x^2 - x + 2$.

$$y(3) = 35$$
.

5. The following table gives the premium payable at ages in years completed. Interpolate the premium payable at age 35 completed using Lagrange's formula. (5 Marks)

x = Age completed				
y = Premium in Rs	50	55	70	95

Solution:

$$y = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)y_0}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} + \frac{(x-x_0)(x-x_2)(x-x_3)y_1}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} + \frac{(x-x_0)(x-x_1)(x-x_3)y_2}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} + \frac{(x-x_0)(x-x_1)(x-x_2)y_3}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}$$
$$= \frac{5\times -5\times -25\times 50}{-5\times -15\times -35} + \frac{10\times -5\times -25\times 55}{5\times -10\times -30} + \frac{10\times 5\times -25\times 70}{15\times 10\times -20} + \frac{10\times 5\times -5\times 95}{35\times 30\times 20} = 61.9643 \approx 62.$$

5. Fit an interpolating polynomial for f(x) using divided difference formula and hence evaluate f(5), given f(0) = -5, f(1) = -14, f(4) = -125, f(8) = -21, f(10) = 355.

Sol: The divided difference table is

x	у	1st D.D	2nd D.D	3rd D.D
0	-5			
		- 9		
1	-14		- 7	
		-37		2
4	-125		9	
		26		2
8	-21		27	
		188		
10	355			

$$f(x) = y_0 + (x - x_0) \times 1^{st} D.D. + (x - x_0)(x - x_1) \times 2^{nd} D.D. + (x - x_0)(x - x_1)(x - x_2) \times 3^{nd} D.D.$$

= -5 + x \times -9 + x(x - 1) \times -7 + x(x - 1)(x - 4) \times 2
= 2x^3 - 17x^2 + 6x - 5 .

$$\therefore f(5) = -150.$$

6. Construct an interpolating polynomial for the data given below using Newton's divided difference formula.

x	2	4	5	6	8	10
f(x)	10	96	196	350	868	1746

Sol: The divided difference table is

x	у	1st D.D	2nd D.D	3rd D.D
2	10			
		43		
4	96		19	
		100		2
5	196		27	
		154		2
6	350		35	
		259		2
8	868		45	
		439		
10	1746			

$$f(x) = y_0 + (x - x_0) \times 1^{st} D.D. + (x - x_0)(x - x_1) \times 2^{nd} D.D. + (x - x_0)(x - x_1)(x - x_2) \times 3^{nd} D.D.$$

$$= 10 + (x - 2) \times 43 + (x - 2)(x - 4) \times 19 + (x - 2)(x - 4)(x - 5) \times 2$$

$$= 2x^3 - 3x^2 + 5x - 4 \qquad .$$

7. Given the values

х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9), using Newton's divided difference formula.

Sol: The divided difference table is

x	у	1st D.D	2nd D.D	3rd D.D
5	150			
		121		
7	392		24	
		265		1
11	1452		32	
		457		1
13	2366		42	
		709		
17	5202			

$$f(x) = y_0 + (x - x_0) \times 1^{st} D.D. + (x - x_0)(x - x_1) \times 2^{nd} D.D. + (x - x_0)(x - x_1)(x - x_2) \times 3^{nd} D.D.$$

$$\therefore f(9) = 150 + 4 \times 121 + 4 \times 2 \times 24 + 4 \times 2 \times -2 \times 1$$

$$= 810$$

Numerical-integration:

Simpson's one-third rule:
$$\int_a^b f(x) dx = (\frac{h}{3})[1 \ 4 \ 1]$$
 Where $h = \frac{b-a}{n}$

Simpson's three-eighth rule:
$$\int_a^b f(x) dx = (\frac{3h}{8}) \begin{bmatrix} 1 & 3 & 3 & 1 \end{bmatrix}$$
 n is number of intervals

Where
$$h = \frac{b-a}{n}$$

or n = number of ordinates - 1.

- 1. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using i. Simpson's one-third rule by taking 10 sub intervals.
 - ii. Simpson's $\frac{3}{8}th$ rule by taking 10 ordinates.
 - i. Simpson's one-third rule by taking 10 sub intervals.

$$n = 10$$
, $h = \frac{b-a}{n} = \frac{1}{10} = 0.1$ and $y = \frac{1}{1+x^2}$.

					2.70						
x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	0.9901	0.9615	0.9174	0.8621	0.8	0.7353	0.6711	0.6098	0.5525	0.5
	y_0	y_1	y_2	y_3	y_4	y_5	y_6	<i>y</i> ₇	y_8	y_9	y_{10}
	1	4	1	4	1	4	1	4	1	4	1
			1		1		1		1		

$$\int_0^1 \frac{dx}{1+x^2} = \frac{h}{3} \left[y_0 + y_{10} + 2 \left(y_2 + y_4 + y_6 + y_8 \right) + 4 \left(y_1 + y_3 + y_5 + y_7 + y_9 \right) \right] = 0.7854.$$

ii. Simpson's $\frac{3}{8}th$ rule by taking 10 ordinates.

$$n = 9$$
, $h = \frac{b-a}{n} = \frac{1}{9}$ and $y = \frac{1}{1+x^2}$.

х	0	1_	2	3	4	<u>5</u>	6	7	8	1
		9	9	9	9	9	9	9	9	
y	1	0.9878	0.9529	0.9	0.8351	0.7642	0.6923	0.6231	0.5586	0.5
	y_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9
	1	3	3	1	3	3	1	3	3	1
				1			1			

$$\int_0^1 \frac{dx}{1+x^2} = \frac{3h}{8} \left[y_0 + y_9 + 2(y_3 + y_6) + 3(y_1 + y_2 + y_4 + y_5 + y_7 + y_8) \right] = 0.7854.$$

2. Find an approximate value of $\log_e 5$, by Simpson's 1/3 rule, from $\int_0^5 \frac{dx}{4x+5}$, dividing the range into 10 equal parts.

Since
$$n = 10$$
, $h = \frac{b-a}{n} = \frac{5}{10} = 0.5$ and $y = \frac{1}{4x+5}$.

X	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
у	1	1	1	1	1	1	1	1	$\frac{1}{21}$	1	1
	- 5	7	9	11	13	$\overline{15}$	17	$\overline{19}$	$\overline{21}$	23	25
	y_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}
	1	4	1	4	1	4	1	4	1	4	1
			1		1		1		1		

$$\int_0^5 \frac{dx}{4x+5} = \frac{h}{3} \left[y_0 + y_{10} + 2 \left(y_2 + y_4 + y_6 + y_8 \right) + 4 \left(y_1 + y_3 + y_5 + y_7 + y_9 \right) \right] = 0.4025.$$

But
$$\int_0^5 \frac{dx}{4x+5} = \frac{1}{4} \log(4x+5) \Big|_0^5 = \frac{1}{4} [\log 25 - \log 5] = \frac{\log 5}{4} \cong 0.4025$$
.

And hence $\log 5 \cong 4 \times 0.4025 = 1.61$.

3. Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos\theta} \ d\theta$ by Simpson's $\frac{3}{8} th$ rule by taking 10 ordinates.

$$n = 9$$
, $h = \frac{b-a}{n} = \frac{\pi}{18}$ and $y = \sqrt{\cos \theta}$.

θ	0	π	2π	3π	4π	5π	6π	7π	8π	π
		18	18	18	18	18	18	18	18	2
у	1	0.9924	0.9694	0.9306	0.8752	0.8017	0.7071	0.5848	0.4167	0
	y_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9
	1	3	3	1	3	3	1	3	3	1
				1			1			

$$\int_0^{\frac{\pi}{2}} \sqrt{\cos \theta} \, d\theta = \frac{3h}{8} \left[y_0 + y_9 + 2(y_3 + y_6) + 3(y_1 + y_2 + y_4 + y_5 + y_7 + y_8) \right]$$

$$= \frac{\pi}{48} [1 + 0 + 2(0.9306 + 0.7071) + 3(0.9924 + 0.9694 + 0.8752 + 0.8017 + 0.5848 + 0.4167)]$$

$$= 1.1909$$

Self-study:

Bisection Method: To find the root of the equation f(x) = 0 by Bisection method

Step1: Find a and b such that f(a). f(b) < 0, then root lies between a and .

Step2: Find
$$x_1 = \frac{a+b}{2}$$

Step3: If f(a). $f(x_1) < 0$, then root lies between a and x_1 .

Set
$$a = a$$
 and $b = x$ go to step 2.

If f(b).f(x) < 0, then root lies between x_1 and b.

Set
$$a = x$$
 and $b = b$ go to step 2.

This procedure is repeated till the root is found to desired accuracy.

Example: Solve $xe^x - 2 = 0$ using Bisection method.

Let
$$(x) = xe^x - 2$$
. Since $f(0.8) = -0.2196$, $f(0.9) = 0.2136$, root lies between 0.8 and 0.9. $x = \frac{a+b}{2} = 0.85$. $f(x) = -0.0113$.

$$x = \frac{1}{2} = 0.03$$
. $f(x) = -0.0113$.

Since f(b). f(x) < 0, root lies between 0.85 and 0.9 .

$$a = 0.85$$
, $b = 0.9$

$$x = \frac{a+b}{2} = 0.875$$
 , $f(x) = 0.0990$.

Since f(a). f(x) < 0, root lies between 0.85 and 0.875.

$$a = 0.85$$
, $b = 0.875$

$$x = \frac{a+b}{2} = 0.8625$$
 , $f(x) = 0.0433$.

Since f(a). f(x) < 0, root lies between 0.85 and 0.8625.

$$a = 0.85, b = 0.8625$$

$$x = \frac{a+b}{2} = 0.8563$$
 , $f(x) = 0.0159$.

Since f(a). f(x) < 0, root lies between 0.85 and 0.8563.

$$a = 0.85$$
, $b = 0.8563$

$$x = \frac{a+b}{2} = 0.8532$$
 , $f(x) = 0.0024$.

Since f(a). f(x) < 0, root lies between 0.85 and 0.8532.

$$a = 0.85, b = 0.8532$$

$$x = \frac{a+b}{2} = 0.8516$$
 , $f(x) = -0.0044$.

Lagrange's interpolation inverse formula: If y = f(x) or x = g(y) then

$$x = g(y) = \frac{(y - y_1)(y - y_2) \cdots (y - y_n)x_0}{(y_0 - y_1)(y_0 - y_2) \cdots (y_0 - y_n)} + \frac{(y - y_0)(y - y_2) \cdots (y - y_n)x_1}{(y_1 - y_0)(y_1 - y_2) \cdots (y_1 - y_n)} + \cdots + \frac{(y - y_0)(y - y_1) \cdots (y - y_{n-1})x_n}{(y_n - y_0)(y_n - y_1) \cdots (y_n - y_{n-1})}.$$

Example

1. Find the root of the equation f(x) = 0, using Lagrange interpolation formula given,

x	\boldsymbol{x}		8	18	21	
f(:	x)	-3	2	4	7	

Solution: Let y = f(x),

Then,
$$x = \frac{(y-y_1)(y-y_2)(y-y_3)x_0}{(y_0-y_1)(y_0-y_2)(y_0-y_3)} + \frac{(y-y_0)(y-y_2)(y-y_3)x_1}{(y_1-y_0)(y_1-y_2)(y_1-y_3)} + \frac{(y-y_0)(y-y_1)(y-y_3)x_3}{(y_2-y_0)(y_2-y_1)(y_2-y_3)} + \frac{(y-y_0)(y-y_1)(y-y_2)x_3}{(y_3-y_0)(y_3-y_1)(y_3-y_2)}.$$

$$x(0) = \frac{(-2)(-4)(-7)5}{(-5)(-7)(-10)} + \frac{(3)(-4)(-7)8}{(5)(-2)(-5)} + \frac{(3)(-2)(-7)18}{(7)(2)(-3)} + \frac{(3)(-2)(-4)21}{(10)(5)(3)}$$
$$= -0.4.$$

Numerical-integration:

Weddle's rule:
$$\int_a^b f(x) dx = (\frac{3h}{10})[1 \ 5 \ 1 \ 6 \ 1 \ 5 \ 1]$$

Where $h = \frac{b-a}{n}$, **n** is number of intervals, or n = number of ordinates -1.

1. Evaluate $\int_0^{\frac{\pi}{2}} e^{\sin x} dx$ by Weddle's rule.

Sol:
$$n = 6$$
, $h = \frac{b-a}{a} = \frac{\pi}{42}$ and $y = e^{\sin x}$.

_			11	12				
	\boldsymbol{x}	0	π	2π	3π	4π	5π	π
			12	12	12	12	$\overline{12}$	2
	у	1	1.2954	1.6487	2.0281	2.3774	2.6272	2.7183
		y_0	y_1	y_2	y_3	y_4	y_5	y_6
		1	5	1	6	1	5	1

$$\int_0^{\frac{\pi}{2}} e^{\sin x} dx = \frac{3h}{10} \left[y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 \right] = 3.1044.$$

2. Evaluate $\int_4^{5.2} \log_e x \, dx$ by Weddle's rule by taking n=6 .

$$n = 6$$
, $h = \frac{b-a}{n} = 0.2$ and $y = \log_e x$.

х	4	4.2	4.4	4.6	4.8	5	5.2
у	$\log_e 4$	$\log_e 4.2$	log _e 4.4	log _e 4.6	$\log_e 4.8$	$\log_e 5$	$\log_e 5.2$
	${\mathcal Y}_0$	y_1	y_2	y_3	y_4	y_5	y_6
	1	5	1	6	1	5	1

$$\int_{4}^{5.2} \log_e x \, dx = \frac{3h}{10} \left[y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 \right].$$

$$= \left(\frac{3 \times 0.2}{10} \right) \left[\log_e 4 + 5 \log_e 4.2 + \log_e 4.4 + 6 \log_e 4.6 + \log_e 4.8 + 5 \log_e 5 + \log_e 5.2 \right]$$

$$= 1.8278.$$

3. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Weddle's rule by taking n=6 .

$$n = 6$$
, $h = \frac{b-a}{n} = \frac{1}{6}$ and $y = \frac{1}{1+x^2}$.

		n = 0		1 T A			
х	0	1	2	3	4	5	1
		<u>-</u> 6	6	6	6	6	
y	1	0.9730	0.9	0.8	0.6923	0.5902	0.5
	y_0	y_1	y_2	y_3	y_4	y_5	y_6
	1	_	1	c	1	г	1

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{3h}{10} \left[y_{0} + 5y_{1} + y_{2} + 6y_{3} + y_{4} + 5y_{5} + y_{6} \right] = 0.7854.$$