Université Abdelmalek Essaadi ENSA Al Hoceima Département de Mathématiques et Informatique Matière: 2I 1^{ère} année P A. U. 2019/2020 Prof: E. W. DADI

Examen final

- Session normale -Initiation à l'informatique 03/02/2020, durée : **2h**

Concernant le barème, un point (1pts) est consacré pour la clarté et le respect de l'écriture algorithmique.

Exercice 1 (5pts)

Considérons les deux algorithmes suivants :

Algorithme 1	Algorithme 2
Algorithme Mystère	Algorithme Prima
Var i, j, k, n, s :entiers	$Var T[]={4, 9, 7}, P[3]: tableaux(entiers)$
Début	Début
Ecrire("Saisir n")	Pour i allant de 0 à 2 faire
Lire(n)	P[i] = 0
i:= 1	$Si(T[i] \mod 2 = 1)$ alors
s := 0	P[i] = 1
Pour j allant de l à n faire	j := 3
i:= i*3	r:=racine(T[i])+1
FinPour	Tantque (j < r et P[i] = 1) faire
Pour k allant de 1 à i faire	Si(T[i] mod j = 0)
s := s+1	P[i] := 0
FinPour	FinSi
Ecrire(s)	j := j+2
Fin	FinTQ
	FinSi
	FinPour
	Fin

- 1 Pour l'algorithme 1 (Algorithme Mystère), répondez à ces deux questions :
 - 1.1 Ou'affiche cet algorithme pour n=4.
 - 1.2 Que calcule cet algorithme pour tout n $(\forall n \in N)$.
- 2 Pour l'algorithme 2 (Algorithme Prima), répondez à ces deux questions:
 - 2.1 Qu'affiche cet algorithme pour un tableau $T=\{4, 9, 7\}$.
 - 2.2 Qu'est ce qu'il permet de faire cet algorithme.

Exercice 2 (2pts)

Donner un algorithme qui lit un nombre x puis un entier n, puis calcule et affiche la puissance nième de x : xⁿ

Exercice 3 (3pts)

Donner un algorithme permettant de convertir un nombre entier positif N entré au clavier en binaire. Cet algorithme va afficher la représentation binaire d'un nombre d'une manière inversée. *Par exemple*, si on donne à l'algorithme le nombre 13, il va affiche 1011. Normalement la représentation binaire de ce nombre 13 est 1101.

Exercice 4 (6pts)

Donner un algorithme permettant de :

- 1 Lire la taille N d'un tableau T du type entier (dimension maximale: 50 composantes).
- 2 Remplir le tableau T par des valeurs entrées au clavier et affiche le tableau.
- 3 Afficher la valeur maximale du tableau T.
- 4 Afficher le nombre des éléments pairs et impairs dans le tableau T.

Exercice 5 (3pts)

On cherche à concevoir un algorithme qui calcule, pour une valeur X donnée (entrée au clavier) du type réel, la valeur numérique d'un polynôme de degré n:

$$\begin{split} P(X) &= \sum_{i=0}^{n} A[i] * X^{i} \\ &= A_{n}X^{n} + A_{n-1}X^{n-1} + ... + A_{1}X + A_{0} \end{split}$$

Les valeurs des coefficients A_n , ..., A_0 seront mémorisées dans un tableau A de type **réel** et de dimension n+1. Le tableau A est a rentré par l'utilisateur au clavier.

Une version (non complète) de cet algorithme est donnée ci-après. Ce qui est demandé de vous est de le copier et le compléter (remplacez // à compléter par ce qui manque)

```
Algorithme Polynôme
```

```
Var // à compléter

Début

Ecrire("Entrer n et X")

lire(n, X)

Pour i allant de 0 à n faire

lire(T[i])

FinPour

S<-0

Pour i allant de 0 à n faire

// à compléter

FinPour

Ecrire(S)
```

Fin