Embeddings of ZFC⁻

Richard Matthews

University of Leeds

Background

Definition

ZFC- is the theory

- ZF without the Power Set Axiom,
- the Replacement scheme,
- the Well-Ordering principle in place of the Axiom of Choice.

Definition

 ${\rm ZFC^-}$ is the theory ${\rm ZFC-}$ plus the collection scheme.

Remarks

- For μ regular, $H_{\mu} \models ZFC^{-}$.
- Models of ZFC- can behave very counter-intuitively.¹

 $^{^1}$ See What is the Theory ${
m ZFC}$ without Power Set by Gitman, Hamkins and Johnstone for examples.

Background

Definition

Let M be a class and $j: M \to M$ an $(\Sigma_n$ -)elementary embedding. Then $M \models \operatorname{ZF}(\operatorname{C})_i^-$ if:

- $M \models \mathrm{ZF}(\mathrm{C})^-$
- M satisfies the $(\Sigma_n$ -)collection and $(\Sigma_n$ -)separation schemes where j is allowed to be included in a formula as a class predicate.

Remark

 For the purposes of this talk we will assume that all elementary embeddings are non-trivial.

Basic Properties

Theorem (Folklore)

If $N \subseteq M$ are models of ZFC^- and $j: M \to N$ is a Σ_1 -elementary embedding then there exists an ordinal κ such that $j(\kappa) > \kappa$.

Definition

 $j: M \to N$ is cofinal if for any $y \in N$ there is an $x \in M$ such that $y \in j(x)$.

Example

If $M, N \models \mathrm{ZFC}$ then any embedding is cofinal because $y \in (V_{j(\alpha)})^N = j((V_{\alpha})^M)$ for some α .

Definable Embeddings

Theorem (Gaifman)

Suppose that M,N are models of ZF^- and $j:M\to N$ is a cofinal, Σ_0 -elementary embedding. Then j is fully elementary.

Theorem (Suzuki)

Assume that $V \models \mathrm{ZF}^-$. Then there is no cofinal elementary embedding $j: V \to V$ which is definable from parameters.

Remark

Collection is necessary for Gaifman's theorem to hold.

Question

Are there definable, cofinal elementary embeddings $j: V \to V$ where $V \models \mathrm{ZF}(\mathrm{C}) - ?$

Cofinal Embeddings

Theorem (M.)

There is no cofinal Σ_0 -elementary embedding $j: V \to V$ such that $V \models \mathrm{ZFC}_j^-$ and $V_{crit(j)} \in V$.

Sketch

- Suppose for a contradiction the $j:V\to V$ was a cofinal Σ_0 -elementary embedding.
- Let κ denote the critical point.
- Let $\lambda := \sup\{j^n(\kappa) : n \in \omega\}$.
- Note that $V_{\kappa} \in V$ implies $V_{\lambda} \in V$.
- There are two cases:
 - Case 1: λ^+ exists. (This is essentially Woodin's proof of the Kunen's inconsistency)
 - Case 2: For all $x \in V$, there is an injection $f: x \to \lambda$.

Cofinal Embeddings

Theorem (M.)

There is no cofinal Σ_0 -elementary embedding $j: V \to V$ such that $V \models \mathrm{ZFC}_j^-$ and $V_{crit(j)} \in V$.

Sketch

Case 2: For all $x \in V$, there is an injection $f: x \to \lambda$. In this case, any set x can be coded as the Mostowski collapse of some $C_x \subseteq \lambda \times \lambda$. Then

$$j(trcl(\{x\})) = j(coll(C_x)) = coll(j(C_x))$$

$$= coll(\bigcup_{\alpha < \lambda} j(C_x \cap V_\alpha))$$

$$= coll(\bigcup_{\alpha < \lambda} j \upharpoonright V_\lambda(C_x \cap V_\alpha))$$

Therefore j is definable from the parameter $j \upharpoonright V_{\lambda}$. But this contradicts there being no definable elementary embedding.

Removing the Assumption $V_{crit(j)} \in V$

Theorem

Let $V \models \text{"ZFC}^- + DC_\mu$ for all cardinals μ " and let \mathcal{C} be a proper class. Then for any ordinal α there is a set $b \subseteq \mathcal{C}$ and a surjection $f : b \to \alpha$.

Lemma

Suppose that $V, M \models$ "ZFC" + DC $_{\mu}$ for all cardinals μ " and $j: V \rightarrow M$ is a non-trivial elementary embedding with critical point κ . Then for any $\alpha \in \kappa + 1$, $V_{\alpha} \in V$.

Question

The proof of the theorem starts by adding a bijection between V and ORD and seems to require both well-ordering and collection. So is it provable in ZFC^- or $\mathrm{ZFC}-$?