STAT 530 Homework 2

Hannah Butler

2/5/2022

- (1) (10 pts) Find the method of moment estimators of the unknown parameters based on a random sample X_1, \ldots, X_n of size n from the following distributions. (See "Table of Common Distributions" in Casella & Berger for definitions and properties of these distributions):
- (a) (5 pts) Negative-binomial(3, p), unknown p;

Note about notation: I am using $\widehat{E(X^k)}$ to denote the kth population moment for the distribution with the method of moments estimator $\hat{\theta}$. Also, I will use M_1 to denote $\frac{1}{n}\sum_{i=1}^n X_i$ and M_2 to denote $\frac{1}{n}\sum_{i=1}^n X_i^2$.

Set $M_1 = \widehat{E(X)}$, where $\widehat{E(X)} = \frac{3(1-\hat{p})}{\hat{p}}$ (the mean of the negative-binomial distribution). Then solving for the method of moments estimator, \hat{p} , we have

$$\hat{p} = \frac{3}{M_1 + 3} = \frac{3}{\bar{X} + 3}.$$

(b) (5 pts) Double-exponential (μ, σ) , unknown μ and σ .

To find the method of moments estimators for parameters μ and σ , we begin with the system of equations:

$$M_1 = \widehat{E(X)} = \hat{\mu}$$

$$M_2 = \widehat{E(X^2)} = \widehat{\text{Var}(X)} + \widehat{E(X)}^2 = 2\hat{\sigma}^2 + \hat{\mu}^2$$

The M.o.M. estimator for μ is $\hat{\mu} = \bar{X}$, and substituting this into the second equation and solving for $\hat{\sigma}$ we get

$$\hat{\sigma} = \sqrt{\frac{M_2 - M_1^2}{2}}$$

As the M.o.M. estimator for σ .

(2) (14 pts) Suppose we have a random sample of size $n, X_1, \ldots, X_n \sim f(x|\theta)$, where

$$f(x|\theta) = 2\sqrt{\frac{\theta}{\pi}} \exp(-\theta x^2) \cdot \mathbb{I}(x > 0).$$

(a) (7 pts) Find the method of moment estimator of θ by matching the 1st sample moment with the first population moment.

We first equate the 1st sample moment, M_1 , with the estimated 1st population moment. We can then integrate f to compute the estimated population moment.

1

$$M_{1} = \widehat{E(X)} = \sqrt{\frac{\hat{\theta}}{\pi}} \int_{0}^{\infty} 2xe^{-\hat{\theta}x^{2}} dx$$

$$= \sqrt{\frac{\hat{\theta}}{\pi}} \int_{0}^{\infty} e^{-\hat{\theta}u} du \qquad (u - substitution)$$

$$= \sqrt{\frac{\hat{\theta}}{\pi}} \left(-\frac{1}{\hat{\theta}} e^{-\hat{\theta}u} \right)_{0}^{\infty}$$

$$= \frac{1}{\sqrt{\hat{\theta}\pi}}$$

Solving for $\hat{\theta}$, we get

$$\hat{\theta} = \frac{1}{\pi M_1^2}$$

- (b) (7 pts) Now, suppose we instead match the 2nd sample moment $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)$ with the 2nd population moment moment $(E(X_{1}^{2}))$. We can obtain another estimator of θ . What is this estimator? Is it the same as your answer in (a)?
- (3) (8 pts) Problem 7.1, Casella & Berger:
- (4) (8 pts) Let $\mathbb{I}(A)$ denote the indicator function of an event A, where $\mathbb{I}(A) = 1$ if event A holds true and $\mathbb{I}(A) = 0$ otherwise. Suppose that A_1, \ldots, A_n are n separate events, and B is the event that "events A_1, \ldots, A_n hold true at the same time." Use your knowledge in STAT 520, rigorously show that

$$\prod_{i=1}^{n} \mathbb{I}(A_i) = \mathbb{I}(B).$$

(5) (18 pts) Given a random sample X_1, \ldots, X_n from a pdf/pmf $f(x|\theta)$, $\theta \in \Theta \subset \mathbb{R}$, we know that the likelihood function is

$$L(\theta|x) = \prod_{i=1}^{n} f(x_i|\theta), \quad \theta \in \Theta,$$

but there exists one subtle point to highlight about how to exactly write the likelihood expression depending on the support of $f(x|\theta)$.

- Recall the support of $f(x|\theta)$ is $S_{\theta} = \{x \in \mathbb{R} : f(x|\theta) > 0\}$, which could possibly depend on $\theta \in \Theta$. For example, an exponential distribution has a pdf whose support is free from the parameter θ , while a uniform distribution may have a pdf whose support depends on θ .
- It is always true that $f(x|\theta) = f(x|\theta) \cdot \mathbb{I}(x \in S_{\theta})$ for all $x \in \mathbb{R}$ and so always true that