ST 705 MIDTERM

March 8, 2021

NAME:

STUDENT ID:

- You have **3.5 hours** to complete this exam.
- Communication with other individuals is **not** permitted during this exam.
 - 1. (3 points) Consider the vector space, $P_3(\mathbb{R})$, of polynomials over \mathbb{R} with degree at most 3, and with the inner product $\langle f, g \rangle := \int_{-1}^{1} f(t)g(t) dt$. Beginning with the standard basis, $\{1, x, x^2, x^3\}$, construct an orthonormal basis for $P_3(\mathbb{R})$.
 - 2. Let $X \in \mathbb{R}^{n \times p}$, $u \in \mathbb{R}^n$, and $v \in \mathbb{R}^p$.
 - (a) (3 points) Prove that

$$|u'Xv| \le \left(\max_{1 \le j \le p} \left\{ \sum_{i=1}^n |X_{i,j}| \right\} \right)^{\frac{1}{2}} \left(\max_{1 \le i \le n} \left\{ \sum_{j=1}^p |X_{i,j}| \right\} \right)^{\frac{1}{2}} \cdot ||u||_2 \cdot ||v||_2.$$

- (b) (3 points) Show that the Cauchy-Schwarz inequality is a special case of the inequality given in part (a).
- 3. (3 points) Let $Q = X(X'V^{-1}X)^gX'V^{-1}$, with V > 0 and symmetric, and show that Q is a projection onto col(X).
- 4. Suppose that $y \in \mathbb{R}^n$ is nonzero, $X \in \mathbb{R}^{n \times n}$ is invertible, $\beta \in \mathbb{R}^n$, and $y = X\beta$. Denoting by σ_{\min} and σ_{\max} the minimum and maximum singular values of X, respectively, prove the following statements.
 - (a) (3 points) $\frac{\sigma_{\min}}{\sigma_{\max}} \cdot \frac{\|\Delta y\|_2}{\|y\|_2} \le \frac{\|\Delta \beta\|_2}{\|\beta\|_2} \le \frac{\sigma_{\max}}{\sigma_{\min}} \cdot \frac{\|\Delta y\|_2}{\|y\|_2},$

where Δy and $\Delta \beta$ are vectors that satisfy $y + \Delta y = X(\beta + \Delta \beta)$.

(b) (3 points) The ratio $\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} = 1$ if and only if X is a scalar multiple of an orthogonal matrix.