# 理论力学 CAI 静力学

- 力
- 力偶
- 力系的简化 力偶
- 力系的平衡
- 摩擦与摩擦力



# 力偶

- 力偶的定义
- 力偶的性质
- 力偶系及其合成



### 静力学

# 力偶

- 力偶的定义
- 力偶的性质
- 力偶系及其合成



理论力学CAI 静力学

3

# 力偶的定义 ・力偶的定义 ・力偶的定义 ・大小相等、方向相反、作用线相 互平行的一对力称为力偶 ・特殊的力系 $(\bar{F}_P, \bar{F}_Q)$ ・不可再简化的力系 ・不可能有一个力与其等效 ・力偶的作用效果 ・引起变形体扭曲 ・改变刚体转动状态







### 静力学

# 力偶

- 力偶的定义
- 力偶的性质
- 力偶系及其合成



# 力偶/力偶

# 力偶的性质

- 力偶的三个基本要素
  - 作用面
    - 两力构成的平面
  - 力与力臂
    - 力的大小
    - 两力作用线的距离
  - 转动方向(右手法则)
    - 两力构成的旋转效应的方向





2018年9月11日

# 力偶/力偶的性质

• 力偶对任意点的矩

计算力偶对<mark>任意点O</mark> 的矩之矢量和

$$\begin{split} \vec{M}_{\scriptscriptstyle O}(\vec{F}_{\scriptscriptstyle P}) + \vec{M}_{\scriptscriptstyle O}(\vec{F}_{\scriptscriptstyle Q}) &= \vec{r}_{\scriptscriptstyle P} \times \vec{F}_{\scriptscriptstyle P} + \vec{r}_{\scriptscriptstyle Q} \times \vec{F}_{\scriptscriptstyle Q} \\ &= \vec{r}_{\scriptscriptstyle P} \times \vec{F}_{\scriptscriptstyle P} - \vec{r}_{\scriptscriptstyle Q} \times \vec{F}_{\scriptscriptstyle P} \\ &= (\vec{r}_{\scriptscriptstyle P} - \vec{r}_{\scriptscriptstyle Q}) \times \vec{F}_{\scriptscriptstyle P} = \vec{r}_{\scriptscriptstyle QP} \times \vec{F}_{\scriptscriptstyle P} \end{split}$$

与矩心0无关!!

与力偶的要素有关



定义

$$\vec{M} \stackrel{\text{def}}{=} \vec{r}_{QP} \times \vec{F}_P = \vec{r}_{PQ} \times \vec{F}_Q$$

称为力偶矩矢量



2018年9月11

理论力学CAI 静力学

# 力偶/力偶的性质

• 力偶矩矢量的特征

力偶矩矢量  $\vec{M} = \vec{r}_{QP} \times \vec{F}_{P}$  矢量方向 垂直于力偶作用面  $\vec{r}_{QP} \times \vec{F}_{P} = \vec{M}$  右手法则 矢量大小

 $M = F_p d = Fd$  定义为力偶矩的大小



力偶矩矢量包含力偶的三要素信息:大小、作用面、力偶转向

力偶  $(\vec{F}_P, \vec{F}_Q)$ 可由力偶矩矢量  $\vec{M}$  描述



理论力学CAI 静力学

• 力偶的等效性(刚体)  $\left(\vec{F}_P,\vec{F}_Q\right)$   $\vec{F}_Q = -\vec{F}_P$   $F_P = F_Q = F$   $\vec{M} = \vec{r}_{OP} \times \vec{F}_P$  M = Fd



 $\vec{M} = \vec{M}_1$ 

力方向与作用点改变(间距不变)



理论力学CAI 静力学

• 力偶的等效性(刚体)  $(\vec{F}_P, \vec{F}_Q)$   $\vec{F}_Q = -\vec{F}_P$   $F_P = F_Q = F$  $\vec{M} = \vec{r}_{QP} \times \vec{F}_P \qquad M = Fd$ 



力与力臂大小相应改变



• 力偶的等效性(刚体)  $\left(\vec{F}_P,\vec{F}_Q\right)$   $\vec{F}_Q = -\vec{F}_P$   $F_P = F_Q = F$  $\vec{M} = \vec{r}_{OP} \times \vec{F}_{P}$  M = Fd









# 静力学

# 力偶

- 力偶的定义
- 力偶的性质
- 力偶系及其合成



18

### 力偶

# 力偶系及其合成

- 两力偶的合成
- 力偶系的合成



018年9月11日

理论力学CAI 静力学

19











# 力偶系的合成

n个力偶的集合构成力偶系  $(\vec{M}_1, \vec{M}_2, \dots, \vec{M}_n)$ 

合力偶矩 
$$\vec{M} = \sum_{i=1}^{n} \vec{M}_{i}$$

合力偶矩等于力偶系所有力偶矩的矢量和

参考基 
$$\vec{e} = (\vec{x} \quad \vec{y} \quad \vec{z})^{T}$$

$$\mathbf{M} = \begin{pmatrix} M_x & M_y & M_z \end{pmatrix}^{\mathrm{T}}$$
$$\mathbf{M}_{\cdot} = \begin{pmatrix} M_{\cdot} & M_{\cdot} & M_{\cdot} \end{pmatrix}^{\mathrm{T}}$$

$$M_x = \sum_{i=1}^n M_{ix}$$
  $M_y = \sum_{i=1}^n M_{iy}$   $M_z = \sum_{i=1}^n M_{iz}$ 

合力偶矩的坐标等于力偶系各力偶矩对应坐标的代数和



# 力偶/力偶系及其合成

- 小结
  - 力与力偶的性质
    - 对刚体作用的性质
  - 基本力系
    - 汇交力系
    - 力偶系
  - 基本力系的合成
    - 汇交力系与一个作用于汇交点的合力等效
    - 力偶系与一个合力偶等效

$$\vec{F}_O = \vec{F}_R = \sum_{i=1}^n \vec{F}_i$$
  $\vec{M} = \sum_{i=1}^n \vec{M}_i$ 

