Using moment equations to understand heterogeneity

Definition

We want to write $Y_o(v; D)$ for Type, order, variable, and Domain.

We define total as follows: $T_o(v; D) = \int v(a)^o D(a) da$. Since we're mainly interested with susceptibility for now, T_o is represents $T_o(.; S)$.

We define $M_i = T_i/T_0$. Then, M_1 is the mean susceptibility and $\kappa = \frac{M_2 M_0}{M_1^2} - 1$ is the squared coefficient of variance (CV).

SI model

We have $\dot{S}(a) = -\Lambda \sigma(a) S(a)$. Integrating gives us $\dot{T}_0 = -\Lambda T_1$. More generally, we have $\dot{T}_i = -\Lambda T_{i+1}$. Given that M_1 is the mean susceptibility, we can also write:

$$\dot{S} = -\Lambda M_1 S$$

Using M defined above, we also have the following equations: $\dot{M}_i = -\Lambda (M_{i+1} - M_i M_1)$.

Given that $M_2 = (1 + \kappa)M^2$ and assuming that κ stays constant, we can integrate the equation above to obtain the following equation:

 $M = \hat{M}S^{\kappa}$, where \hat{M} is the mean susceptibility of the susceptible population at a disease free equilibrium.

Definition -
$$\kappa_i = \frac{M_i}{M_{i-1}M_1} - 1$$

$$\begin{split} \dot{\kappa}_i &= \frac{M_{i-1}M_1\dot{M}_i - M_iM_1\dot{M}_{i-1} - M_iM_{i-1}\dot{M}_1}{M_{i-1}^2M_1^2} \\ &= -\Lambda \frac{M_{i-1}M_1(M_{i+1} - M_iM_1) - M_iM_1(M_i - M_{i-1}M_1) - M_iM_{i-1}(M_2 - M_1^2)}{M_{i-1}^2M_1^2} \\ &= -\Lambda \frac{M_{i-1}M_1M_{i+1} - M_iM_1M_i - M_iM_{i-1}M_2 + M_iM_{i-1}M_1^2}{M_{i-1}^2M_1^2} \\ &= -\Lambda \frac{(\kappa_{i+1} + 1)M_iM_{i-1}M_1^2 - M_iM_1M_i - (\kappa_2 + 1)M_iM_{i-1}M_1^2 + M_iM_{i-1}M_1^2}{M_{i-1}^2M_1^2} \\ &= -\Lambda \frac{(\kappa_{i+1} + 1)M_iM_{i-1}M_1 - (\kappa_i + 1)M_{i-1}M_iM_1 - \kappa_2M_iM_{i-1}M_1}{M_{i-1}^2M_1} \\ &= -\Lambda \frac{(\kappa_{i+1} + 1)M_i - (\kappa_i + 1)M_i - \kappa_2M_i}{M_{i-1}} \\ &= -\Lambda M_i \frac{\kappa_{i+1} - (\kappa_2 + \kappa_i)}{M_{i-1}} \\ &= -\Lambda M_1(\kappa_i + 1)\{\kappa_{i+1} - (\kappa_2 + \kappa_i)\} \end{split}$$

When i=2, we have $\dot{\kappa}=-\Lambda M(\kappa+1)(\kappa_3-2\kappa)$, where $\kappa=\kappa_2$. For gamma distribution, $\kappa_3=2\kappa$. Let's assume that $r=\kappa_3/\kappa$ stays constant. Then, we have $\dot{\kappa}=-\Lambda M(r-2)(\kappa+1)(\kappa)$. We can do this:

$$\frac{d\kappa}{dt} = \frac{d\kappa}{dS} \frac{dS}{dt}$$

$$-\Lambda M(r-2)(\kappa+1)(\kappa) = -\Lambda M S \frac{d\kappa}{dS}$$

$$(r-2)(\kappa+1)(\kappa) = S \frac{d\kappa}{dS}$$

$$\frac{(r-2)}{S} = \frac{1}{\kappa(\kappa+1)} \frac{d\kappa}{dS}$$

$$\int \frac{(r-2)}{S} dS = \int \frac{1}{\kappa(\kappa+1)} d\kappa$$

$$(r-2)\log(S) = \log(\kappa) - \log(\kappa+1) + C$$

We let the initial values $(S(0), \kappa(0)) = (1, \hat{\kappa})$, then we have $C = \log(\frac{\hat{\kappa}+1}{\hat{\kappa}})$. We can continue with the derivative:

$$\log(S^{r-2}) = \log(e^C \frac{\kappa}{\kappa + 1})$$

$$S^{r-2} = e^C \frac{\kappa}{\kappa + 1}$$

$$S^{r-2}(\kappa + 1) = e^C \kappa$$

$$S^{r-2} = (e^C - S^{r-2})\kappa$$

$$\kappa = \frac{S^{r-2}}{e^C - S^{r-2}}$$

How accurate is this?

Ex 1 - lognormal distribution

Comparison of 3 simulations Linear equation:

$$r \approx (\hat{r} - 2)S + 2$$

- Heterogeneous model
- Approximated model: linear equation for κ_3/κ_2 coupled with approximated equation for κ
- Approximated model: constant κ

```
source("plotFunctions.R")
baseSim <- list(r.lnorm.het, r.lnorm.app1, r.lnorm.app2)
name <- c("Heterogeneous", "Approximation 1", "Approximation 2")
plotSim(baseSim, name)</pre>
```


Linear extrapolation of the κ_3/κ_2 ratio approximates the prevalence trajectory better sice it matches the initial κ trajectory but it doesn't approximate κ so well near the equilibrium.... How does r vs S look like?

```
plot(cbind(totS, r= k3/k2), type = "1")
lines(cbind(totS,( k3[1]/k2[1] - 2)*totS + 2), col = 2)
```


SIS model

Here is a simple SIS model: $\dot{S}(a) = \rho(N(a) - S(a)) - \Lambda \sigma(a)S(a)$ and $\dot{I} = \int \Lambda \sigma S(a)da - I$, where N(a) is the initial distribution of the susceptible individuals in a disease free equilibrium. We are going to define

 $\bar{Y}_o = Y_o(v; N)$. For this model, we have $\dot{T}_i = \rho(\bar{T}_i - T_i) - \Lambda T_{i+1}$. Using chain rule, we can also get an equation for $M = M_1$:

$$\begin{split} \dot{M}_i &= \frac{\dot{T}_i}{T_0} - \frac{\dot{T}_0 T_i}{T_0^2} \\ &= (\rho (\bar{T}_i / T_0 - M_i) - \Lambda M_{i+1}) - \rho (M_i \bar{T}_0 / T_0 - M_i) + \Lambda M_i M_1 \\ &= \rho (\bar{M}_i - M_i) \frac{\bar{T}_0}{T_0} - \Lambda (M_{i+1} - M_i M_1) \\ &= \rho (\bar{M}_i - M_i) / T_0 - \Lambda \kappa_{i+1} M_i M_1 \end{split}$$

When i = 1, $\dot{M} = \rho(\bar{M}_1 - M_1)/T_0 - \Lambda \kappa M_1^2$.

Derivative of κ

New variable: $\varphi_i = \kappa_i + 1$.

$$\begin{split} &\dot{\varphi} = \varphi(\frac{\dot{M}_2}{M_2} - 2\frac{\dot{M}_1}{M_1}) \\ &= \varphi(\frac{\rho(\bar{M}_2 - M_2)/T_0 - \Lambda\kappa_3 M_2 M_1}{M_2} - 2\frac{\rho(\bar{M}_1 - M_1)/T_0 - \Lambda\kappa_2 M_1^2}{M_1}) \\ &= \varphi\{\frac{\rho}{T_0}(\frac{(\bar{M}_2 - M_2)}{M_2} - 2\frac{(\bar{M}_1 - M_1)}{M_1}) - \Lambda M_1(\varphi_3 - 2\varphi + 1)\} \\ &= \varphi\{\frac{\rho}{T_0}(\frac{M_1 \bar{M}_2 + M_1 M_2 - 2M_2 \bar{M}_1}{M_2 M_1}) - \Lambda M_1(\varphi_3 - 2\varphi + 1)\} \\ &= \varphi\{\frac{\rho}{T_0}(\frac{\bar{M}_2}{M_2} - 2\frac{\bar{M}_1}{M_1} + 1) - \Lambda M_1(\varphi_3 - 2\varphi + 1)\} \\ &= \varphi\{\frac{\rho}{T_0}(\frac{\bar{\varphi}}{\varphi}\frac{\bar{M}_1^2}{M_1^2} - 2\frac{\bar{M}_1}{M_1} + 1) - \Lambda M_1(\varphi_3 - 2\varphi + 1)\} \\ &= \varphi\{\frac{\rho}{T_0}(\frac{\bar{\varphi}\bar{M}_1^2 - 2\varphi\bar{M}_1 M_1 + \varphi M_1^2}{\varphi M_1^2}) - \Lambda M_1(\varphi_3 - 2\varphi + 1)\} \\ &= \varphi\{\frac{\rho}{T_0}(\frac{(\bar{\varphi} - \varphi)\bar{M}_1^2 + \varphi(\bar{M}_1 - M_1)^2}{\varphi M_1^2}) - \Lambda M_1(\varphi_3 - 2\varphi + 1)\} \end{split}$$