

DEGREE AND RADIAN

MEASURES OF ANGLES

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Degree

Radian

DEGREE

ANGLE

An <u>angle</u> is formed by two rays (R_1 and R_2) that share a common endpoint, called the vertex (0).

It can be interpreted as the <u>amount of rotation</u> from one ray (initial side) to another (terminal side) around the vertex.

Positive angle

Negative angle

DEGREE

The <u>degree</u> (°) is the most commonly used unit for measuring angles.

A full rotation around a circle corresponds to 360°.

Classification of Angles

COMPLEMENTARY ANGLES

If the sum of the measures of two positive angles is **90°**, the angles are **complementary** and the angles are complements of each other.

Formula

$$\theta_A + \theta_B = 90^{\circ}$$

Example

Find the complement of an angle measuring 40°.

$$40^{\circ} + \theta_{15} = 90^{\circ}$$

 -40° -40°

50° is a complement of 40° to and 40° are complementary angles

SUPPLEMENTARY ANGLES

If the sum of the measures of two positive angles is **180°**, the angles are **supplementary** and the angles are supplements of each other.

<u>Formula</u>

$$\theta_A + \theta_B = 180^{\circ}$$

Example

Find the supplement of an angle measuring 40°.

140° is a supplement of 40°

140° and 40° are supplementary angles

Find the measure of each marked angle.

*

书.

Solution

A. Complementary Angles

$$6x + 3x = 90^{\circ}$$
 $\frac{1}{9}x = \frac{90^{\circ}}{9}$

B. Supplementary Angles 4x + Gx = 180°

$$4x + 6x = 186$$
 $10x = 186$

$$4x = 72^{\circ}$$

$$6x = 108^{\circ}$$
ans

DEGREES, MINUTES, SECONDS

One minute (1') is $\frac{1}{60}$ of a degree.

$$\mathbf{1}' = \frac{1^{\circ}}{60}$$

$$60' = 1^{\circ}$$

One <u>second</u> (1") is $\frac{1}{60}$ of a minute.

$$1'' = \frac{1'}{60}$$

$$60" = 1'$$

$$3600" = 1^{\circ}$$

Example

Convert 74°08′14" to decimal degrees to the nearest thousandth.

$$74^{\circ} + 8^{\circ} \frac{1^{\circ}}{60^{\circ}} + 14^{\circ} \frac{1^{\circ}}{60^{\circ}} \cdot \frac{1^{\circ}}{60^{\circ}}$$

min $\rightarrow deg$ sec \rightarrow min $\rightarrow deg$

Perform each calculation and express the result in degrees, rounded to the nearest thousandth.

a.
$$51^{\circ}29' + 32^{\circ}46'$$

b.
$$90^{\circ} - 73^{\circ}12'$$

b. $90^{\circ} - 73^{\circ}12'$
 $73^{\circ}12'$
 $16^{\circ}48'$

$$\frac{a.}{51^{2}24'} + \frac{52^{2}46'}{54^{2}15'} + \frac{75}{-60} \leftarrow 60 \text{ min (MAX)}$$

STANDARD POSITION

An angle is in **standard position** if its vertex is at the **origin** and its initial side lies on the **positive x-axis**.

Angles in Standard Position

QUADRANTAL ANGLES

Angles in standard position whose terminal sides lie on the x-axis or y-axis, such as angles with measures **90°**, **180°**, **270°**, and so on, are **quadrantal angles**.

Quadrantal Angles

COTERMINAL ANGLES

Coterminal Angles

Coterminal angles are angles that share the same terminal side when drawn in standard position. Their measures differ by a multiple of 360°, meaning they can be found by adding or subtracting 360° repeatedly.

Find the angle of <u>least</u> positive measure that is coterminal with each angle.

- *a*. 908°
- *b*. -75°
- $c. -800^{\circ}$

RADIAN

DEGREE

The <u>radian</u> (rad) is the angle subtended at the center of a circle by an arc whose length is equal to the radius of a circle.

A full rotation around a circle corresponds to 2π radians.

Unit Circle

Find the radian measure of the angle with the given degree measure.

- *a*. 72°
- *b*. -60°

A.
$$\frac{1}{2} = \frac{1}{2} \frac{1}{180^{\circ}}$$
 $\frac{1}{2} = \frac{211}{5} \text{ rad}$
 $\frac{1}{2} = \frac{211}{5} \frac{1}{2} \frac{1$

Find the <u>degree</u> measure of the angle with the given radian measure.

$$a. \frac{7\pi}{6}$$

$$b. -\frac{5\pi}{4}$$

$$\frac{\partial}{\partial t} = \frac{180^{\circ}}{6}$$

$$\frac{\partial}{\partial t} = 210^{\circ}$$

$$\frac{\partial}{\partial t} = -\frac{511}{4} \text{ rad}$$

$$\frac{\partial}{\partial t} = -225^{\circ}$$

$$\frac{\partial}{\partial t} = 135^{\circ}$$

Find the measure of the marked angle.

$$-14x - 4x = 180$$

$$-18x^{7} = 180^{\circ}$$

$$-18}$$

$$-18 = -10^{\circ}$$

$$-4x = 40^{\circ}$$

$$-14x = 140^{\circ}$$
ang

A constant angular velocity disk drive spins a disk at a constant speed. Suppose a disk makes 480 $| rev = 360^{\circ}$ revolutions per min. Through how many degrees will a point on the edge of the disk move in 2 sec?

$$\frac{rev}{min} \longrightarrow \frac{deg}{sec}$$

$$W = \frac{450 \text{ per}}{\text{min}} \cdot \frac{360^{\circ}}{1 \text{ per}} \cdot \frac{1 \text{ min}}{60 \text{ sec}} \cdot 2 \text{ sec}$$

$$W = 5760^{\circ}$$

SEATWORK

