<u>Dashboard</u> / <u>My courses</u> / <u>PSPP/PUP</u> / <u>Searching techniques: Linear and Binary</u> / <u>Week10 Coding</u>

Started on	Friday, 24 May 2024, 9:38 AM
State	Finished
Completed on	Saturday, 25 May 2024, 11:05 AM
Time taken	1 day 1 hour
Marks	5.00/5.00
Grade	100.00 out of 100.00

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Write a Python program for binary search.

For example:

Input	Result
1,2,3,5,8	False
3,5,9,45,42 42	True

Answer: (penalty regime: 0 %)

```
1 | arr = list(map(int, input().split(',')))
 2 x = int(input())
   arr.sort()
low = 0
 3
 4
   high = len(arr) - 1
 5
   found = False
 8 ▼ while low <= high:
        mid = (low + high) // 2
9
10 •
        if arr[mid] < x:</pre>
            low = mid + 1
11
        elif arr[mid] > x:
12 •
            high = mid - 1
13
14 🔻
        else:
15
            found = True
16
            break
17
18
   print(found)
19
```

	Input	Expected	Got	
~	1,2,3,5,8	False	False	~
~	3,5,9,45,42 42	True	True	~
~	52,45,89,43,11 11	True	True	~

Passed all tests! <

Correct

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Write a Python program to sort a <u>list</u> of elements using the merge sort algorithm.

For example:

Input	Result
5	3 4 5 6 8
6 5 4 3 8	

Answer: (penalty regime: 0 %)

```
1  n = int(input())
   arr = list(map(int, input().split()))
 3
 4
   stack = [(0, n)]
 5
 6 v while stack:
7
        start, end = stack.pop()
 8
        if end - start > 1:
            mid = (start + end) // 2
9
            stack.extend([(start, mid), (mid, end)])
10
            arr[start:end] = sorted(arr[start:end])
11
12
13
14 print(*arr)
```

	Input	Expected	Got	
~	5 6 5 4 3 8	3 4 5 6 8	3 4 5 6 8	~
~	9 14 46 43 27 57 41 45 21 70	14 21 27 41 43 45 46 57 70	14 21 27 41 43 45 46 57 70	~
~	4 86 43 23 49	23 43 49 86	23 43 49 86	~

Passed all tests! 🗸

Correct

```
Question 3
Correct
Mark 1.00 out of 1.00
```

To find the frequency of numbers in a <u>list</u> and display in sorted order.

Constraints:

1<=n, arr[i]<=100

Input:

1 68 79 4 90 68 1 4 5

output:

1 2

4 2

5 1

68 2

79 1

90 1

For example:

Input					R	esult	
4	3	5	3	4	5	3	2
						4	2
						5	2

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	4 3 5 3 4 5	3 2	3 2	~
		4 2	4 2	
		5 2	5 2	
~	12 4 4 4 2 3 5	2 1	2 1	~
		3 1	3 1	
		4 3	4 3	
		5 1	5 1	
		12 1	12 1	
	I .	1		

	Input	Expected	Got	
~	5 4 5 4 6 5 7 3	3 1	3 1	~
		4 2	4 2	
		5 3	5 3	
		6 1	6 1	
		7 1	7 1	

Passed all tests! 🗸

Correct

```
Question 4
Correct
Mark 1.00 out of 1.00
```

An <u>list</u> contains N numbers and you want to determine whether two of the numbers sum to a given number K. For example, if the input is 8, 4, 1, 6 and K is 10, the answer is yes (4 and 6). A number may be used twice.

Input Format

The first line contains a single integer n, the length of <u>list</u>

The second line contains n space-separated integers, $\underline{\text{list}}[i]$.

The third line contains integer k.

Output Format

Print Yes or No.

Sample Input

7 0 1 2 4 6 5 3

Sample Output

Yes

For example:

Input	Result
5 8 9 12 15 3 11	Yes
6 2 9 21 32 43 43 1 4	No

Answer: (penalty regime: 0 %)

```
n = int(input())
   arr = list(map(int, input().split()))
 3
   k = int(input())
   s = set()
 4
 6 v for num in arr:
 7
 8
        if k - num in s:
            print("Yes")
9
10
            break
11
        s.add(num)
12
   v else:
13
        print("No")
14
15
```

	Input	Expected	Got	
~	5 8 9 12 15 3 11	Yes	Yes	~
~	6 2 9 21 32 43 43 1 4	No	No	~
~	6 13 42 31 4 8 9 17	Yes	Yes	~

Passed all tests! 🗸

Correct

```
Question 5
Correct
Mark 1.00 out of 1.00
```

Given an listof integers, sort the array in ascending order using the Bubble Sort algorithm above. Once sorted, print the following three lines:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sort the array. Output would be

```
Array is sorted in 3 swaps.

First Element: 1

Last Element: 6
```

Input Format

The first line contains an integer, n , the size of the $\underline{\text{list}}$ a .

The second line contains n, space-separated integers a[i].

Constraints

- · 2<=n<=600
- \cdot 1<=a[i]<=2x10⁶.

Output Format

You must print the following three lines of output:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

Sample Input 0

3

123

Sample Output 0

List is sorted in 0 swaps.

First Element: 1

Last Element: 3

For example:

Input	Result
3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3
5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9

Answer: (penalty regime: 0 %)

```
n = int(input())
   a = list(map(int, input().split()))
2
4
    swaps = 0
5 🔻
    for i in range(n):
        for j in range(n-1):
6
7
            if a[j] > a[j+1]:
8
                a[j], a[j+1] = a[j+1], a[j]
9
                swaps += 1
10
11 | print(f"List is sorted in {swaps} swaps.")
```

```
print(f"First Element: {a[0]}")

print(f"Last Element: {a[-1]}")
```

	Input	Expected	Got	
~	3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3	List is sorted in 3 swaps. First Element: 1 Last Element: 3	~
~	5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9	List is sorted in 4 swaps. First Element: 1 Last Element: 9	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

■ Week10_MCQ

Jump to...

Sorting ►

10