

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C6200/6200A CORE CPU MANUAL

E0C6200/6200A Core CPU Manual

CONTENTS

1	DESCR	IPTION	1
	1.1	System Features	1
	1.2	Instruction Set Features	1
	1.3	Differences between E0C6200 and E0C6200A	1
2	Мемо	RY AND OPERATIONS	3
	2.1	Program Memory (ROM)	3
	2.1	2.1.1 Program counter block	
		2.1.2 Flags	
		2.1.3 Jump instructions	5
		2.1.4 PSET with jump instructions	5
		2.1.5 Call instructions	5
		2.1.6 PSET instruction	6
		2.1.7 CALZ instruction	
		2.1.8 RET and RETS instructions	
		2.1.9 Stack considerations for call instructions	7
	2.2	Data Memory	8
		2.2.1 Data memory addressing	8
	2.3	ALU (Arithmetic Logic Unit) and Registers	10
	2.5	2.3.1 D (decimal) flag and decimal operations	10
		2.3.2 A and B registers	
	2.4	Timing Generator	
	2.4	2.4.1 HALT and SLP (sleep) modes	
	2.5		
	2.5	Interrupts	
		2.5.1 Interrupt vectors	
		2.5.2 I (interrupt) flag	
		2.5.4 Initial reset	
3	Instru	CCTION SET	
	3.1	Instruction Indices	16
		3.1.1 By function	17
		3.1.2 In alphabetical order	
		3.1.3 By operation code	23
	3.2	Operands	26
	3.3	Flags	
	3.4	Instruction Types	
	3.5	Instruction Descriptions	27
ΑI	PPENDIX	A. E0C6200A (Advanced E0C6200) Core CPU	8
			_
		R Instruction Index	8'

1 DESCRIPTION

The E0C6200/6200A is the Core CPU of the E0C62 Family of CMOS 4-bit single-chip microcomputers. The CPU features a highly-integrated architecture. Memory-mapped peripheral circuits can include RAM, ROM, I/O ports, interrupt controllers, timers and LCD drivers, depending upon the application.

The memory address space is divided into program and data memory, each with data and address lines. Program memory consists of on-chip ROM, containing instructions to be executed by the CPU. Data memory consists of RAM and memory-mapped I/O, as determined by the design of the peripheral circuitry.

A large memory as well as instructions capable of 8-bit data manipulation enhance the functionality of the E0C62 Family. Implementation of a common Core CPU ensures that a wide range of application-specific devices can be designed and fabricated with the minimum turnaround time.

1.1 System Features

- Common Core CPU for all E0C62 Family microcomputers
- UP to 8,192 12-bit words of program memory (ROM)
- UP to 4,096 4-bit words of data memory (RAM/peripheral circuits)
- Memory-mapped I/O
- 5, 7 or 12 clock cycle instructions
- 109 instructions
- · Up to 85 levels of subroutine nesting
- · 8-bit stack pointer
- · Up to 15 interrupt vectors
- · Two standby modes
- Low-power CMOS process

1.2 Instruction Set Features

- · Four addressing modes: one direct, two indirect, and one stack pointer
- Direct addressing transfers data to and from data memory with a single instruction, resulting in more
 efficient code
- · 8-bit load instructions and table look-up instructions
- · Arithmetic operations in either hexadecimal or decimal
- Arithmetic and logical instructions: addition, subtraction, logical AND, OR, exclusive-OR, comparison and rotation

1.3 Differences between E0C6200 and E0C6200A

There are some differences in the following operation/circuit between the E0C6200 and the E0C6200A. For the detailes of each difference, refer to the section enclosed with parentheses.

- Initial setting of D (decimal) flag (refer to Section 2.5.5, "Initial reset".)
- · Interrupt circuit
 - Interrupt timing (refer to Section 2.5.3, "Operation during interrupt generation".)
 - Writing to interrupt mask registers and reading of interrupt flags (refer to Appendix A, "E0C6200A (Advanced E0C6200) Core CPU".)

Fig. 1.1 Block diagram

2 Memory and Operations

A single-chip microcomputer using the E0C6200/6200A Core CPU has four major blocks: the program memory (ROM), the data memory (RAM and I/O), the arithmetic logic unit (ALU) and the timing generator circuit. This section describes each of these blocks in detail.

2.1 Program Memory (ROM)

Program memory contains the instructions that the CPU executes. Figure 2.1.1 shows the configuration of the program memory.

Each instruction is a 12-bit word. Program memory can also be used for data tables for the table look-up instructions.

There are two banks of program memory. Each bank is subdivided into 16 pages of 256 words (or steps). That is:

Program memory = 2 banks = 8,192 steps 1 bank = 4,096 steps = 16 pages 1 page = 256 steps 1 step = 1 word = 12 bits

Certain addresses in ROM have specific functions, as shown in Table 2.1.1.

Address	Function	
Bank 0, Page 1, Step 0	Reset vector	
Bank 0, Page 1, Step 1 to 15	Interrupt vectors used while a program is running in bank 0	
Bank 0, Page 0, Step 0 to 255	Bank 0, page 0 area	
	Direct call subroutines for use by CALZ while a program is running in bank 0	
Bank 1, Page 1, Step 1 to 15	Interrupt vectors used while a program is running in bank 1	
Bank 1, Page 0, Step 0 to 255	Bank 1, page 0 area	

Direct call subroutines for use by CALZ while a program is running in bank 1

Table 2.1.1 Allocated program memory

Fig. 2.1.1 Program memory configuration

2.1.1 Program counter block

The program counter is used to point to the next instruction step to be executed by the CPU. See Figure 2.1.1.1.

The program counter has the following registers.

Register	Size			
PCB (Program Counter-Bank)	1-bit register			
PCP (Program Counter-Page)	4-bit counter			
PCS (Program Counter-Step)	8-bit counter			
NBP (New Bank Pointer)	1-bit register			
NPP (New Page Pointer)	4-bit register			

Table 2.1.1.1 Program counter registers

Fig. 2.1.1.1 Program counter configuration

PCB, PCP and PCS together from a 13-bit counter which can address any location in program memory.

PCP and PCS together from a 12-bit counter which can address any location within a given bank of program memory. Each time an instruction other than a jump is executed, this counter increments by one. Thus, a jump instruction does not need to be executed between the last step of one page and the first step of the next.

The contents of NBP and NPP are loaded into PCB and PCP each time an instruction is executed. On reset, NBP and NPP are loaded with the same values as PCB and PCP.

2.1.2 Flags

The following flags are provided.

Table 2.1.2.1 Flags

Flag	Menus	Size
Interrupt	I	1: Enabled
		0: Disabled
Decimal mode	D	1: Decimal
		0: Hexadecimal
Zero	Z	1: Set
		0: Ignored
Carry	С	1: Set
		0: Ignored

2.1.3 Jump instructions

A jump can be made using the instructions in Table 2.1.3.1.

Table	2.1.	3.1	Jump	instri	ictions

Type of jump	Instruction	
Unconditional	JP	
Conditional	JP C, JP NC, JP Z, JP NZ	
Subroutine call	CALL, CALZ	
Return	RET, RETS, RETD	
Page set	PSET	
Indirect	JPBA	

The differences between jumps within the same page and jumps from one page to another is as follows.

· Jumps within the same page

A jump can be made within the same page using any of the following instructions:

The destination address is specified by the 8-bit operand. A label can be used to specify a destination address with the E0C62 Family cross assembler.

Jumps from one page to another
 The destination bank and page should be set using PSET before executing a JP instruction.

2.1.4 PSET with jump instructions

PSET loads the four low-order bits (page part) of its 5-bit operand to NPP (new page pointer) and loads the high-order bit (bank part) to NBP (new bank pointer). Executing a JP instruction immediately after PSET causes a jump to the bank specified by NBP, the page specified by NPP and the step specified by the JP instruction operand. See Figure 2.1.4.1.

Fig. 2.1.4.1 The PSET and jump instructions

2.1.5 Call instructions

As only the page data specified by NPP is loaded to PCP when a call instruction is executed, subroutine calls between banks are not possible. Jumps between banks can only be made using JP instructions.

2.1.6 PSET instruction

Jump or call instructions must follow PSET immediately in order for PSET to affect the destination address. When a jump or call is not immediately preceded by PSET, the destination address is within the current page.

Some examples using PSET are shown in Table 2.1.6.1.

Bank	Page	Stap	Instr	uction	Operation
0	01H	10H	PSET	13H	
0	01H	11H	JP	08H	The program jumps to bank 1, page 3, step 8.
•	•	•		•	
•	•	•		•	
0	01H	21H	PSET	15H	
0	01H	22H	NOP5		The data set by PSET is canceled.
0	01H	23H	JP	09H	The program jumps to bank 0, page 1, step 9.
•	•	•		•	
•	•	•		•	
0	01H	55H	SCF		C flag is set.
0	01H	56H	PSET	14H	
0	01H	57H	JP	C, 07H	The program jumps to bank 1, page 4, step 7 because C flag = 1.
•	•	•		•	
•	•	•		•	
0	01H	60H	RFC		C flag is reset.
0	01H	61H	PSET	05H	
0	01H	62H	JP	C, 08H	No jump occurs because C flag = 0.
0	01H	63H	JP	09H	The data set by PSET is canceled, and the program jumps to bank 0, page 1, step 9.
•	•	•		•	
•	•	•		•	

2.1.7 CALZ instruction

CALZ is a direct subroutine call instruction. It calls a subroutine, in page 0 of the current bank, from any page without requiring the use of PSET.

If CALZ is executed immediately after PSET, the bank and page set by PSET is canceled. This allows direct subroutine calls to page 0, minimizing repeated code and unnecessary use of PSET. See Figure 2.1.7.1.

Fig. 2.1.7.1 The use of the CALZ instruction

The difference between CALL and CALZ is shown in Figure 2.1.7.2.

Fig. 2.1.7.2 The difference between CALL and CALZ instructions

2.1.8 RET and RETS instructions

The RET instruction causes a return from a subroutine to the address immediately following the address from where that subroutine was called. The RETS instruction causes a return to the address following this address. Proper use of RET and RETS allows simple conditional exits subroutines back to the main routine. See Figure 2.1.8.1.

Fig. 2.1.8.1 Difference between RET and RETS instructions

2.1.9 Stack considerations for call instructions

When a subroutine is called, the return address is loaded into the stack and retrieved when control is returned to the calling program. Nesting allows efficient usage of the stack area.

As the stack area resides in the data memory, care should be taken to ensure that the stack area is not corrupted by other data.

2.2 Data Memory

The data memory area comprises 4,096 4-bit words. The RAM, timer, I/O and other peripheral circuits are mapped into this memory according to the designer's specifications. Figure 2.2.1 shows the data memory configuration.

Fig. 2.2.1 Data memory configuration

2.2.1 Data memory addressing

The following registers and pointers, which are described in detail below, are used to address the data memory.

Table 2.2.1.1 Registers and pointer for data memory addressing

Register/Pointer	Mnemonic	Size (bits)
Index Register X	IX	12
Index Register Y	IY	12
Stack Pointer	SP	8
Register	RP	4

Index register IX

Index register IX has a 4-bit page part (XP) and an 8-bit register (XHL), and can address any location in the data memory. See Figure 2.2.1.1.

XHL is divided into two 4-bit groups: the four highorder bits (XH) and the four low-order bits (XL), and can address any location within a page.

Fig. 2.2.1.1 The configuration of the index register IX

- MX is the data memory location whose address is specified by IX.
- M(X) refers to the contents of the data memory location whose address is specified by IX.
- XHL can be incremented by 1 or 2 using a post-increment instruction (LDPX, ACPX, SCPX, LBPX or RETD). An overflow occurring in XHL does not affect the flags.

Index register IY

Index register IY is like the index register IX: it has a 4-bit page part (YP), an 8-bit register (YHL), and can address any location in the data memory. See Figure 2.2.1.2.

YHL is divided into two 4-bit groups: the four highorder bits (YH) and the four low-order bits (YL), and can address any location within a page.

Fig. 2.2.1.2 The configuration of the index register IY

- MY is the data memory location whose address is specified by IY.
- M(Y) refers to the contents of the data memory location whose address is specified by IY.
- YHL can be incremented by 1 using a post-increment instruction (LDPY, ACPY or SCPY). An
 overflow occurring in YHL does not affect the flags.

Stack pointer SP

The stack area resides in the data memory. The 8-bit, push-down/pop-up stack pointer (SP) is used to address an element within the stack.

Since it is an 8-bit pointer, SP can only address 256 words out of the total 4,096 words of data memory. When SP is used, the high-order 4 bits (page part) of the data memory address are 0, giving a stack area of 256 words in the address range 000H to 0FFH.

In systems with a RAM area of less than 256 words, the entire RAM area can be used as the stack area.

Stack area usage is shown in Table 2.2.1.2.

	O	
Operation	Instruction	Stack usage
Push-down	Interrupt	-3
(SP is decremented)	CALL or CALZ	-3
	PUSH	-1
	DEC SP	-1
Pop-up	RET, RETS or RETD	+3
(SP is incremented)	POP	+1
	INC SP	+1

Table 2.2.1.2 Stack usage

The PUSH instruction can be used to store registers and flags in the stack in single-word (4-bit) units. The POP instruction is used to retrieve this data.

When an interrupt occurs or a call instruction is executed, the return address from the program counter is pushed onto the stack. When a return instruction is executed, the return address is retrieved from the stack and loaded into the program counter.

On an interrupt, only the program counter is saved on the stack; flag and register data are not saved. Programs should be designed so that flag and register data are pushed onto the stack by the interrupt service routines.

Following a system reset, SP should be initialized using the LD SPH,r or LD SPL,r instructions, where r represents A, B, MX or MY (4 bits).

Stack pointer data can be read using LD *r*,SPH or LD *r*,SPL.

Register pointer RP

The register pointer (RP) is a 4-bit register used to address the first 16 words of data memory, or the register area. Direct addressing can be used to read from, write to, increment or decrement any location within this area efficiently, using a single instruction.

Programs cannot directly access RP. It uses the operand of direct addressing instructions. The instructions that can access the register area of data memory are:

LD	A,Mn	$A \leftarrow M(n)$
LD	B,Mn	$B \leftarrow M(n)$
LD	Mn,A	$M(n) \leftarrow A$
LD	Mn,B	$M(n) \leftarrow B$
INC	Mn	$M(n) \leftarrow M(n) + 1$
DEC	Mn	$M(n) \leftarrow M(n) - 1$
		n: 0 to F

where M(n) is the contents of a data memory location within the register area.

As the register area can also be indirectly accessed using IX, IY or SP, the stack area should not grow to address 000H to 00FH when RP is used.

2.3 ALU (Arithmetic Logic Unit) and Registers

Table 2.3.1 shows ALU operations between the 4-bit registers, TEMPA and TEMPB.

Table 2.3.1 ALU register operation

Operation	Instruction
Add, without carry	ADD
Add, with carry	ADC
Subtract, without borrow	SUB
Subtract, with borrow	SBC
Logical-AND	AND
Logical-OR	OR
Exclusive-OR	XOR
Comparison	CP
Flag bit test	FAN
Rotate right, with carry	RRC
Rotate left, with carry	RLC
Invert	NOT

The Z (zero) flag is set when the result of ALU operation is

C	3	2	1	0
X	0	0	0	0

X: Don't care.

The C (carry) flag is set when an add operation causes a carry or when a subtract operation causes a borrow.

2.3.1 D (decimal) flag and decimal operations

Setting the D (decimal) flag activates the decimal mode, allowing decimal addition and subtraction. Table 2.3.1.1 shows the relations of actual (decimal) results, ALU outputs, and the values of the C and Z flags.

Table 2.3.1.1 Results of hexadecimal and decimal operations

			Addition							Subtraction	n		
Actual	D	0 = 0	: Result of	D	= 1 :	: Result of	Actual	D	0 = 0	: Result of	D) = 1	: Result of
result	hexa	adecii	mal operation	de	ecima	l operation	result	hexa	adeci	mal operation	d€	ecima	al operation
	Z	С	ALU output	Z	С	ALU output		Z	С	ALU output	Z	С	ALU output
0	1	0	0	1	0	0	-16	1	1	0	0	1	Α
1	0	0	1	0	0	1	-15	0	1	1	0	1	В
2	0	0	2	0	0	2	-14	0	1	2	0	1	С
3	0	0	3	0	0	3	-13	0	1	3	0	1	D
4	0	0	4	0	0	4	-12	0	1	4	0	1	E
5	0	0	5	0	0	5	-11	0	1	5	0	1	F
6	0	0	6	0	0	6	-10	0	1	6	1	1	0
7	0	0	7	0	0	7	-9	0	1	7	0	1	1
8	0	0	8	0	0	8	-8	0	1	8	0	1	2
9	0	0	9	0	0	9	-7	0	1	9	0	1	3
10	0	0	Α	1	1	0	-6	0	1	Α	0	1	4
11	0	0	В	0	1	1	-5	0	1	В	0	1	5 6
12	0	0	С	0	1	2	-4	0	1	С	0	1	6
13	0	0	D	0	1	3	-3	0	1	D	0	1	7
14	0	0	E	0	1	4	-2	0	1	E	0	1	8
15	0	0	F	0	1	5	-1	0	1	F	0	1	9
16	1	1	0	0	1	6	0	1	0	0	1	0	0
17	0	1	1	0	1	7	1	0	0	1	0	0	1
18	0	1	2	0	1	8	2	0	0	2	0	0	2
19	0	1	3	0	1	9	3	0	0	3	0	0	3 4
20	0	1	4	0	1	A	4	0	0	4	0	0	4 -
21	0	1	5	0	1	В	5	0	0	5	0	0	5 6
22	0	1	6	0	1	С	6	0	0	6	0	0	7
23	0	1	7	0	1	D E	7	0	0	7	0	0	
24	0	1	8 9	0	1	F E	8	0	0	8 9	0	0	8
25	0	1	9 A	0	1	0	9 10	0	0	9 A	0	0	9 A
26 27	0	1	B B	0		1	11	0	0	B B	0	0	A
28	0	1	C	0		2	12	0	0	C	0	0	B C
28	0	1	D	0		3	13	0	0	D	0	0	C
30	0	1		0		4	14	0	0	ן ט	0	0	
30	0	1	E F	0		5	15	0	0	E F	0	0	D E F
_ J1		· ·	ı	U	_ '_	5	10	U		ı		U	'

Hexadecimal operations will not always produce the correct result if performed in decimal mode.

Note that:

- An add instruction with carry (for example, ADC XH,i) which uses index registers XH, XL, YH and YL,
 does not involve decimal correction even if it is performed in the decimal mode. This is because it uses
 an 8-bit field for 4-bit data.
- The results of the compare instruction (CP) is not decimal-corrected, because the carry flag is ignored.
- The result of the register memory increment instruction (INC Mn) and decrement instruction (DEC Mn) are not decimal-corrected.

2.3.2 A and B registers

The A and B registers are 4-bit general-purpose registers used as accumulators. They transfer data and perform ALU operations with other registers, data memory and immediate data.

The data in A can be paired with that in B for use as an indirect jump address by the JPBA instruction.

2.4 Timing Generator

E0C6200/6200A instructions can be divided into three different types depending on the number of clock cycles per instruction: 5, 7 or 12 clock cycles. The more complex the instruction, the more cycles it requires. Note that the number of clock cycles determines the duration of instructions which, in turn, will affect any timing performed in software.

As shown in Figure 2.4.1, the first state of all instructions is a fetch cycle. This is followed by a number of execute cycles.

5-clock/7-clock instructions

12-clock instructions

Fig. 2.4.1 Instruction execution timing

2.4.1 HALT and SLP (sleep) modes

HALT and SLP cause the CPU to store the return address on the stack and then stop. HALT will only stop the CPU; the system clock will continue to run. SLP also stops the system clock, resulting in reduced power consumption. The CPU can be restarted by an interrupt.

As interrupts are not automatically enabled by the execution of HALT or SLP, programs should always enable interrupts before executing HALT or SLP, otherwise they will hang waiting for an interrupt.

2.5 Interrupts

The E0C6200/6200A can have up to 15 interrupt vectors. When used with peripheral circuits, these allow internal and external interrupts to be processed easily. See Figure 2.5.3.1 through 2.5.3.4.

2.5.1 Interrupt vectors

The interrupt vectors are assigned to steps 1 to 15 in page 1 of each bank of the program memory. When an interrupt occurs, the program jumps to the appropriate interrupt vector in the current bank.

The priority and linking of these vectors to actual outside events depends on the configuration of the peripheral circuits and therefore is device-specific. This information can be found in the technical manuals for the specific device.

2.5.2 I (interrupt) flag

The I (interrupt) flag enables or disables all interrupts.

When DI or RST F is used to reset the I flag, interrupts are disabled with that instruction step. When EI or SET F is used to set the I flag, interrupts are enabled after the following instruction step. For example, to return control from the interrupt subroutine to the main routine, the sequence EI, RET, does not enable interrupts until after RET has been executed.

The I flag is reset to 0 (DI) on reset.

2.5.3 Operation during interrupt generation

When an interrupt is generated, the program is halted, the program counter (PCP and PCS) is stored on the stack, the I flag is reset to DI mode and NPP is set to 1. The program then branches to the interrupt vector corresponding to the interrupt request. Registers and flags are unaffected by an interrupt.

Register and flag data must be saved by the program since they are not automatically stored on the stack.

The I flag can be set to 1 (EI) within the interrupt subroutine, because nesting of multiple interrupts is available.

If an interrupt is generated while the CPU is in HALT or SLP mode, the CPU is restarted and the interrupt serviced. When the interrupt service routine is completed, the program resumes from the instruction following the HALT or SLP.

<Differences between E0C6200 and E0C6200A>

In the E0C6200 and the E0C6200A, the time it takes to complete interrupt processing by hardware after the Core CPU receives the interrupt request is different as follows:

Item	1	E0C6200A (clock cycles)	E0C6200 (clock cycles)
a) During instruction execution	12-cycle instruction execution	12.5 to 24.5	13 to 25
	7-cycle instruction execution	12.5 to 19.5	13 to 20
	5-cycle instruction execution	12.5 to 17.5	13 to 18
b) At HALT mode	•	14 to 15	14 to 15
c) During PSET instruction execution	PSET + CALL	12.5 to 24.5	13 to 25
	PSET + JP	12.5 to 22.5	13 to 23

Table 2.5.3.1 Required interrupt processing time

E0C6200

E0C6200A

Fig. 2.5.3.1 Interrupt timing during execution

E0C6200/6200A

Fig. 2.5.3.2 Interrupt timing in the HALT mode

E0C6200/6200A

Fig. 2.5.3.3 Interrupt timing in SLEEP mode

E0C6200

E0C6200A

Fig. 2.5.3.4 Interrupt timing with PSET

2.5.4 Initial reset

On reset, the registers and flags are set as shown in Table 2.5.4.1.

Table 2.5.4.1 Reset value

		Bit length	Value
Program Counter Step	PCS	8	00H
Program Counter Page	PCP	4	01H
Program Counter Bank	PCB	1	00H
New Page Pointer	NPP	4	01H
New Bank Pointer	NBP	1	Undefined
Stack Pointer	SP	8	Undefined
Index Register	IX	12	Undefined
Index Register	IY	12	Undefined
Register Pointer	RP	4	Undefined
General Register	A	4	Undefined
General Register	В	4	Undefined
Interrupt Flag	I	1	0H
Decimal Flag	D	1	*
Zero Flag	Z	1	Undefined
Carry Flag	С	1	Undefined

^{*} E0C6200 ...Undefined E0C6200A ...0

<Difference between E0C6200 and E0C6200A>

There is a difference in the setting value of the D (decimal) flag at initial reset between the E0C6200 and the E0C6200A.

Table 2.5.4.2 D (decimal) flag initial setting

CPU Core	E0C6200A	E0C6200
D (decimal) flag setting	0	Undefined

When using the model loaded with the E0C6200 Core CPU, set or reset the D flag in the user's initial routine before using an arithmetic instruction. (refer to the SDF and RDF instructions.)

3 Instruction Set

This chapter describes the entire instruction set of the E0C6200/6200A Core CPU. A subset is allocated to each device within the E0C62 Family according to the configuration of the device. Therefore not all instructions are available in every device. The relevant information is in the technical manual for each device.

The source format and a description of the assembler is in the series-specific cross assembler manuals.

The instruction set contains 109 instructions. Each instruction comprises of one 12-bit word.

3.1 Instruction Indices

Three index tables are used for easy reference instructions.

a. Index by function

The instructions are arranged by function.

- 1. Branch
- 2. System control
- 3. Flag operation
- 4. Stack operation
- 5. Index operation
- 6. Data transfer
- 7. Arithmetic and logical operation

b. Index in alphabetical order

The instructions are arranged in alphabetical order. Page number references are provided.

c. Index by operation code

The instructions are arranged in numerical order by operation code.

3.1.1 By function

01	Mne-	0					Оре	eratio	n C	ode					F	ag	T	011	0
Classification	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	I D	Z (7	Clock	Operation
Branch	PSET	p	1	1	1	0	0	1	0	p4	р3	p2	p1	p0				5	$NBP \leftarrow p4, NPP \leftarrow p3\sim p0$
instructions	JP	s	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0				5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$
		C, s	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0				5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if C=1
		NC, s	0	0	1	1	s7	s6	s5	s4	s3	s2	s1	s0				5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if C=0
		Z, s	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0				5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=1
		NZ, s	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0				5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=0
	JPBA		1	1	1	1	1	1	1	0	1	0	0	0			Ī	5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$
	CALL	s	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0			Ī	7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																			$SP \leftarrow SP-3$, $PCP \leftarrow NPP$, $PCS \leftarrow s7 \sim s0$
	CALZ	s	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0			T	7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																			$SP \leftarrow SP-3$, $PCP \leftarrow 0$, $PCS \leftarrow s7 \sim s0$
	RET		1	1	1	1	1	1	0	1	1	1	1	1			Ť	7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																			$SP \leftarrow SP+3$
	RETS		1	1	1	1	1	1	0	1	1	1	1	0			Ť	12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																			$SP \leftarrow SP+3, PC \leftarrow PC+1$
	RETD	e	0	0	0	1	e7	e6	e5	e4	e3	e2	e1	e0			1	12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																			$SP \leftarrow SP+3$, $M(X) \leftarrow e3\sim e0$, $M(X+1) \leftarrow e7\sim e4$, $X \leftarrow X+2$
System	NOP5		1	1	1	1	1	1	1	1	1	0	1	1			†	5	No operation (5 clock cycles)
control	NOP7				1			1		-							Ť	7	No operation (7 clock cycles)
instructions	HALT				1		_	1									†	5	Halt (stop clock)
	SLP				1			1		-							†	5	SLEEP (stop oscillation)
Index	INC	X			1		_	1									+	5	X ← X+1
operation		Y			1			1		-		0					+	5	Y←Y+1
instructions	LD	X, e												e0			+	5	XH←e7~e4, XL←e3~e0
		Y, e												e0			Ť	5	YH ← e7~e4, YL ← e3~e0
		XP, r			1			0									†	5	XP←r
		XH, r			1			0									Ť	5	XH←r
		XL, r			1			0									†	5	XL←r
		YP, r			1			0						r0			Ť	5	YP←r
		YH, r			1			0						r0			†	5	YH←r
		YL, r			1			0									t	5	YL←r
		r, XP			1			0									t	5	r←XP
		r, XH			1		-	0									t	5	r←XH
		r, XL			1		-	0									†	5	r←XL
		r, YP					_							r0			†	5	r←YP
		r, YH					-	0									\dagger	5	r←YH
		r, YL						0						r0			\dagger	5	r←YL
	ADC	XH, i						0								1 1	†	7	XH ← XH+i3~i0+C
		XL, i			1			0								1 1	+	7	XL←XL+i3~i0+C
		YH, i			1			0		_						1 1	+	7	YH←YH+i3~i0+C
		YL, i						0		_		i2				1 1	+	7	YL←YL+i3~i0+C
		11,1	1	U	1	U	L	U	1	1	13	14	11	10		↓ 1	1	1	IL\ ILTIJ~IUTC

	Mne-						Ope	eratio	n Co	ode					F	Flag			T	
Classification	monic	Operand	В	Α	9	8	7	6		4	3	2	1	0		Z	С	Clo	ck	Operation
Index	CP	XH, i	1	0	1	0				_		i2					1	7	,	XH-i3~i0
operation		XL, i	1	0	1	0	0	1		_	i3	i2	i1	i0			_	7	,	XL-i3~i0
instructions		YH, i	1	0	1	0	0	1	1	0	i3	i2	i1	i0		1		7	,	YH-i3~i0
		YL, i	1	0	1	0				-		i2					-	7	,	YL-i3~i0
Data	LD	r, i	1	1	1	0	0	0	r1	r0	i3	i2	i1	i0				- 5	;	r ← i3~i0
transfer		r, q	1	1	1	0	1	1	0	0	r1	r0	q1	q0				- 5	5	$r \leftarrow q$
instructions		A, Mn	1	1	1	1	1	0	1	0	n3	n2	n1	n0				5	;	$A \leftarrow M(n3 \sim n0)$
		B, Mn	1	1	1	1	1	0	1	1	n3	n2	n1	n0				5	5	$B \leftarrow M(n3 \sim n0)$
		Mn, A	1	1	1	1	1	0	0	0	n3	n2	n1	n0				5	5	$M(n3\sim n0) \leftarrow A$
		Mn, B	1	1	1	1	1	0	0	1	n3	n2	n1	n0				5	5	$M(n3\sim n0) \leftarrow B$
	LDPX	MX, i	1	1	1	0	0	1	1	0	i3	i2	i1	i0				5	5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X + 1$
		r, q	1	1	1	0	1	1	1	0	r1	r0	q1	q0				5	5	$r \leftarrow q, X \leftarrow X+1$
	LDPY	MY, i	1	1	1	0	0	1	1	1	i3	i2	i1	i0				5	5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$
		r, q	1	1	1	0	1	1	1	1	r1	r0	q1	q0				5	5	$r \leftarrow q, Y \leftarrow Y+1$
	LBPX	MX, e	1	0	0	1	e7	e6	e5	e4	e3	e2	e1	e0				5	5	$M(X) \leftarrow e3 \sim e0, M(X+1) \leftarrow e7 \sim e4, X \leftarrow X+2$
Flag	SET	F, i	1	1	1	1	0	1	0	0	i3	i2	i1	i0	1 1	<u> </u>	1	7	,	F←FVi3~i0
operation	RST	F, i	1	1	1	1	0	1	0	1	i3	i2	i1	i0	\downarrow \downarrow	l ↓	\downarrow	7	,	F←FΛi3~i0
instructions	SCF		1	1	1	1	0	1	0	0	0	0	0	1			1	7	7	C←1
	RCF		1	1	1	1	0	1	0	1	1	1	1	0			\downarrow	7	,	C←0
	SZF		1	1	1	1	0	1	0	0	0	0	1	0		1		7	,	Z←1
	RZF		1	1	1	1	0	1	0	1	1	1	0	1		\downarrow		7	7	Z←0
	SDF		1	1	1	1	0	1	0	0	0	1	0	0	1	`		7	7	D←1 (Decimal Adjuster ON)
	RDF		1	1	1	1	0	1	0	1	1	0	1	1	\downarrow	l		7	7	D←0 (Decimal Adjuster OFF)
	EI		1	1	1	1	0	1	0	0	1	0	0	0	1			7	7	$I \leftarrow 1$ (Enables Interrupt)
	DI		1	1	1	1	0	1	0	1	0	1	1	1	\downarrow			7	7	$I \leftarrow 0$ (Disables Interrupt)
Stack	INC	SP	1	1	1	1	1	1	0	1	1	0	1	1				5	5	SP←SP+1
operation	DEC	SP	1	1	1	1	1	1	0	0	1	0	1	1				5	5	SP←SP-1
instructions	PUSH	r	1	1	1	1	1	1	0	0	0	0	r1	r0				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow r$
		XP	1	1	1	1	1	1	0	0	0	1	0	0				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow XP$
		XH	1	1	1	1	1	1	0	0	0	1	0	1				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$
		XL	1	1	1	1	1	1	0	0	0	1	1	0				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$
		YP	1	1	1	1	1	1	0	0	0	1	1	1				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow YP$
		YH	1	1	1	1	1	1	0	0	1	0	0	0				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$
		YL	1	1	1	1	1	1	0	0	1	0	0	1				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow YL$
		F	1	1	1	1	1	1	0	0	1	0	1	0				5	5	$SP \leftarrow SP-1, M(SP) \leftarrow F$
	POP	r	1	1	1	1	1	1	0	1	0	0	r1	r0				5	5	$r \leftarrow M(SP), SP \leftarrow SP+1$
		XP	1	1	1	1	1	1	0	1	0	1	0	0				5	5	$XP \leftarrow M(SP), SP \leftarrow SP+1$
		XH	1	1	1	1	1	1	0	1	0	1	0	1				5	5	$XH \leftarrow M(SP), SP \leftarrow SP+1$
		XL	1	1	1	1	1	1	0	1	0	1	1	0				5	5	$XL \leftarrow M(SP), SP \leftarrow SP+1$
		YP	1	1	1	1	1	1	0	1	0	1	1	1				5	5	$YP \leftarrow M(SP), SP \leftarrow SP+1$

01	Mne-						Оре	ratio	n C	ode					Flag	01	0.0050
Classification	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	IDZC	Cloc	k Operation
Stack	POP	YH	1	1	1	1	1	1	0	1	1	0	0	0		5	$YH \leftarrow M(SP), SP \leftarrow SP+1$
operation		YL	1	1	1	1	1	1	0	1	1	0	0	1		5	$YL \leftarrow M(SP), SP \leftarrow SP+1$
instructions		F	1	1	1	1	1	1	0	1	1	0	1	0	$\uparrow \uparrow \uparrow \uparrow \uparrow$	5	$F \leftarrow M(SP), SP \leftarrow SP+1$
	LD	SPH, r	1	1	1	1	1	1	1	0	0	0	r1	r0		5	SPH←r
		SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0		5	SPL←r
		r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0		5	r←SPH
		r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0		5	r←SPL
Arithmetic	ADD	r, i	1	1	0	0	0	0	r1	r0	i3	i2	i1	i0	* 1 1	7	r ← r+i3~i0
instructions		r, q	1	0	1	0	1	0	0	0	r1	r0	q1 o	q0	* \$ \$	7	r←r+q
	ADC	r, i	1	1	0	0	0	1	r1	r0	i3	i2	i1	i0	* \$ \$	7	r←r+i3~i0+C
		r, q	1	0	1	0	1	0	0	1	r1	r0	q1 (q0	* \$ \$	7	r←r+q+C
	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1 (q0	* \$ \$	7	r←r-q
	SBC	r, i	1	1	0	1	0	1	r1	r0	i3	i2	i1	i0	* \$ \$	7	r←r-i3~i0-C
		r, q	1	0	1	0	1	0	1	1	r1	r0	q1 (q0	* \$ \$	7	r←r-q-C
	AND	r, i	1	1	0	0	1	0	r1	r0	i3	i2	i1	i0	1	7	r←rΛi3~i0
		r, q	1	0	1	0	1	1	0	0	r1	r0	q1 (q0	1	7	r←rΛq
	OR	r, i	1	1	0	0	1	1	r1	r0	i3	i2	i1	i0	1	7	r←rVi3~i0
		r, q	1	0	1	0	1	1	0	1	r1	r0	q1 (q0	1	7	r←rVq
	XOR	r, i	1	1	0	1	0	0	r1	r0	i3	i2	i1	i0	1	7	$r \leftarrow r \forall i 3 \sim i 0$
		r, q	1	0	1	0	1	1	1	0	r1	r0	q1 (q0	1	7	$r \leftarrow r \forall q$
	CP	r, i	1	1	0	1	1	1	r1	r0	i3	i2	i1	i0	11	7	r-i3~i0
		r, q	1	1	1	1	0	0	0	0	r1	r0	q1 (q0	11	7	r-q
	FAN	r, i	1	1	0	1	1	0	r1	r0	i3	i2	i1	i0	1	7	rΛi3~i0
		r, q	1	1	1	1	0	0	0	1	r1	r0	q1 (q0	1	7	rΛq
	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1 :	r0	11	7	$d3 \leftarrow d2, d2 \leftarrow d1, d1 \leftarrow d0, d0 \leftarrow C, C \leftarrow d3$
	RRC	r	1	1	1	0	1	0	0	0	1	1	r1 :	r0	11	5	$d3 \leftarrow C$, $d2 \leftarrow d3$, $d1 \leftarrow d2$, $d0 \leftarrow d1$, $C \leftarrow d0$
	INC	Mn	1	1	1	1	0	1	1	0	n3	n2	n1 1	n0	11	7	$M(n3\sim n0) \leftarrow M(n3\sim n0)+1$
	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1 1	n0	11	7	$M(n3\sim n0) \leftarrow M(n3\sim n0)-1$
	ACPX	MX, r	1	1	1	1	0	0	1	0	1	0	r1	r0	* \$ \$	7	$M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$
	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0	* \$ \$	7	$M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$
	SCPX	MX, r	1	1	1	1	0	0	1	1	1	0	r1	r0	* \$ \$	7	$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$
	SCPY	MY, r	1	1	1	1	0	0	1	1	1	1	r1	r0	* \$ \$	7	$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y+1$
	NOT	r	1	1	0	1	0	0	r1	r0	1	1	1	1	1	7	$r \leftarrow \overline{r}$

3.1.2 In alphabetical order

	Maa		Operation Code													Fla	n	Т		
Page	Mne- monic	Operand		Α	9		7	6		4		2	1	0	_		g Z	c	Clock	Operation
28	ACPX	MX, r		1		_		0		0	\vdash		r1		_		<u>-</u>	-	7	$M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$
28	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0			1	\rightarrow	7	$M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$
29	ADC	r, i	1	1	0	0	0	1	r1	r0	i3	i2	i1	i0		*	1	1	7	r ← r+i3~i0+C
29		r, q	1	0	1	0	1	0	0	1	r1	r0	q1	q0		*	1	1	7	$r \leftarrow r + q + C$
30		XH, i	1	0	1	0	0	0	0	0	i3	i2	i1	i0			1	1	7	XH←XH+i3~i0+C
30		XL, i	1	0	1	0	0	0	0	1	i3	i2	i1	i0			1	1	7	$XL \leftarrow XL + i3 \sim i0 + C$
31		YH, i	1	0	1	0	0	0	1	0	i3	i2	i1	i0			1	1	7	YH←YH+i3~i0+C
31		YL, i	1	0	1	0	0	0	1	1	i3	i2	i1	i0			1	1	7	YL←YL+i3~i0+C
32	ADD	r, i	1	1	0	0	0	0	r1	r0	i3	i2	i1	i0		*	1	1	7	r ← r+i3~i0
32		r, q	1	0	1	0	1	0	0	0	r1	r0	q1	q0		*	1	1	7	$r \leftarrow r + q$
33	AND	r, i	1	1	0	0	1	0	r1	r0	i3	i2	i1	i0			1		7	r←rΛi3~i0
33		r, q	1	0	1	0	1	1	0	0	r1	r0	q1	q0			\updownarrow		7	$r \leftarrow r\Lambda q$
34	CALL	s	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0					7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																				$SP \leftarrow SP-3$, $PCP \leftarrow NPP$, $PCS \leftarrow s7 \sim s0$
34	CALZ	s	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0					7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																				$SP \leftarrow SP-3$, $PCP \leftarrow 0$, $PCS \leftarrow s7 \sim s0$
35	CP	r, i	1	1	0	1	1	1	r1	r0	i3	i2	i1	i0			1	1	7	r-i3~i0
35		r, q	1	1	1	1	0	0	0	0	r1	r0	q1	q0			1	1	7	r-q
36		XH, i	1	0	1	0	0	1	0	0	i3	i2	i1	i0			1	1	7	XH-i3~i0
36		XL, i	1	0	1	0	0	1	0	1	i3	i2	i1	i0			1	1	7	XL-i3~i0
37		YH, i	1	0	1	0	0	1	1	0	i3	i2	i1	i0			1	\$	7	YH-i3~i0
37		YL, i	1	0	1	0	0	1	1	1	i3	i2	i1	i0			1	1	7	YL-i3~i0
38	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1	n0			1	1	7	$M(n3\sim n0) \leftarrow M(n3\sim n0)-1$
38		SP	1	1	1	1	1	1	0	0	1	0	1	1					5	$SP \leftarrow SP-1$
39	DI		1	1	1	1	0	1	0	1	0	1	1	1	\downarrow				7	$I \leftarrow 0$ (Disables Interrupt)
39	EI		1	1	1	1	0	1	0	0	1	0	0	0	1				7	$I \leftarrow 1$ (Enables Interrupt)
40	FAN	r, i	1	1	0	1	1	0	r1	r0	i3	i2	i1	i0			1		7	rΛi3~i0
40		r, q	1	1	1	1	0	0	0	1	r1	r0	q1	q0			1		7	rΛq
41	HALT		1	1	1	1	1	1	1	1	1	0	0	0					5	Halt (stop clock)
41	INC	Mn	1	1	1	1	0	1	1	0	n3	n2	n1	n0			1	1	7	$M(n3\sim n0) \leftarrow M(n3\sim n0)+1$
42		SP	1	1	1	1	1	1	0	1	1	0	1	1					5	$SP \leftarrow SP+1$
42		X	1	1	1	0	1	1	1	0	0	0	0	0					5	X ← X+1
43		Y	1	1	1	0	1	1	1	1	0	0	0	0					5	Y ← Y+1
43	JPBA		1	1	1	1	1	1	1	0	1	0	0	0					5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$
44	JP	C, s	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0					5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } C=1$
44		NC, s	0	0	1	1	s7	s6	s5	s4	s3	s2	s1	s0				1	5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } C=0$
45		NZ, s	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0				1	5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } Z=0$
45		s	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0					5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$
46		Z, s	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0					5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } Z=1$
46	LBPX	MX, e	1	0	0	1	e7	e6	e5	e4	e3	e2	e1	e0					5	$M(X) \leftarrow e3 \sim e0, M(X+1) \leftarrow e7 \sim e4, X \leftarrow X+2$

	Mno						On	erati	on C	Code						Fla	a		
Page	Mne- monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	ī		Z C	Clock	Operation
47	LD	A, Mn	_			1	1	_			\vdash		2 n1		,			5	$A \leftarrow M(n3 \sim n0)$
47		B, Mn	1	1	1	1	1	0	1	1	n3	n2	2 n1	n0				5	$B \leftarrow M(n3 \sim n0)$
48		Mn, A	1	1	1	1	1	0	0	0	n3	n2	2 n1	n0	,			5	$M(n3\sim n0) \leftarrow A$
48		Mn, B	1	1	1	1	1	0	0	1	n3	n2	2 n1	n0				5	$M(n3\sim n0) \leftarrow B$
51		r, i	1	1	1	0	0	0	r1	r0	i3	i2	i1	i0				5	r ← i3~i0
51		r, q	1	1	1	0	1	1	0	0	r1	r0	q1	q0				5	$r \leftarrow q$
52		r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0				5	r←SPH
52		r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0				5	$r \leftarrow SPL$
53		r, XH	1	1	1	0	1	0		0	0	1	r1	r0				5	$r \leftarrow XH$
53		r, XL	1	1	1	0	1	0	1	0	1	0	r1	r0				5	$r \leftarrow XL$
54		r, XP	1	1	1	0	1	0	1	0	0	0	r1	r0				5	$r \leftarrow XP$
54		r, YH	1	1	1	0	1	0	1	1	0	1	r1	r0				5	$r \leftarrow YH$
55		r, YL	1	1	1	0	1	0	1	1	1	0	r1	r0				5	$r \leftarrow YL$
55		r, YP	1	1	1	0	1	0	1	1	0	0	r1	r0				5	$r \leftarrow YP$
56		SPH, r		1		1	1	1	1	0	0	0	r1	r0				5	SPH←r
56		SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0				5	SPL ← r
57		XH, r	1	1	1	0	1	0	0	0	0	1	r1	r0				5	XH←r
58		XL, r	1	1	1	0	1	0	0	0	1	0	r1	r0				5	$XL \leftarrow r$
58		XP, r	1	1	1	0	1	0	0	0	0	0	r1	r0				5	$XP \leftarrow r$
57		X, e	1	0	1	1	e7	e6	e5	e4	e3	e2	2 e1	e0				5	$XH \leftarrow e7 \sim e4, XL \leftarrow e3 \sim e0$
59		YH, r	1	1		0	1	0	0	1	0	1	r1	r0				5	YH←r
60		YL, r	1	1	1	0	1	0	0	1	1	0	r1	r0				5	YL←r
60		YP, r	1	1	1	0	1	0	0	1	0	0	r1	r0				5	YP←r
59		Y, e	1	0		0	e7	e6	e5	e4	e3	e2	2 e1	e0				5	YH←e7~e4, YL←e3~e0
49	LDPX	MX, i	1	1	1	0	0	1	1	0	i3	i2	i1	i0				5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$
49		r, q	1	1	1	0	1	1	1	0	r1	r0	q1	q0				5	$r \leftarrow q, X \leftarrow X+1$
50	LDPY	MY, i	1	1	1	0	0	1	1	1	i3	i2	i1	i0				5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$
50		r, q	1	1	1	0	1	1	1	1	r1	r0	q1	q0				5	$r \leftarrow q, Y \leftarrow Y+1$
61	NOP5		1	1	1	1	1	1	1	1	1	0	1	1				5	No operation (5 clock cycles)
61	NOP7		1	1	1	1	1	1	1	1	1	1	1	1				7	No operation (7 clock cycles)
62	NOT	r	1	1	0	1	0	0	r1	r0	1	1	1	1			<u> </u>	7	$r \leftarrow \overline{r}$
62	OR	r, i	1	1	0	0	1						i1		+		<u> </u>	7	r←rVi3~i0
63		r, q	1	0	1	0	-						q1		_		1	7	$r \leftarrow rVq$
63	POP	F	1	1	1	1	1	1	0	1	1	0	1	0	1	1	<u> </u>	5	$F \leftarrow M(SP), SP \leftarrow SP+1$
64		r	_			1	_	1		1		_	r1	_				5	$r \leftarrow M(SP), SP \leftarrow SP+1$
64		XH	1	1	1	1	-		0		0	1	0	1				5	$XH \leftarrow M(SP), SP \leftarrow SP+1$
65		XL				1	_		0				1					5	$XL \leftarrow M(SP), SP \leftarrow SP+1$
65		XP	1	1	1	1			0		\vdash		0					5	$XP \leftarrow M(SP), SP \leftarrow SP+1$
66		YH				1							0					5	$YH \leftarrow M(SP), SP \leftarrow SP+1$
66		YL		_	_	1		_	0	_			0					5	$YL \leftarrow M(SP), SP \leftarrow SP+1$
67		YP	1	1	1	1	1	1	0	1	0	1	1	1				5	$YP \leftarrow M(SP), SP \leftarrow SP+1$

	Mne-						Оре	eratio	on C	ode						Fla	g	2 1	9 "
Page	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	T	D	z c	Clock	Operation
67	PSET	p	1	1	1	0	0	1	0	p4	р3	p2	p1	p0				5	NBP←p4, NPP←p3~p0
68	PUSH	F	1	1	1	1	1	1	0	0	1	0	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow F$
68		r	1	1	1	1	1	1	0	0	0	0	r1	r0				5	$SP \leftarrow SP-1, M(SP) \leftarrow r$
69		XH	1	1	1	1	1	1	0	0	0	1	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$
69		XL	1	1	1	1	1	1	0	0	0	1	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$
70		XP	1	1	1	1	1	1	0	0	0	1	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XP$
70		YH	1	1	1	1	1	1	0	0	1	0	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$
71		YL	1	1	1	1	1	1	0	0	1	0	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YL$
71		YP	1	1	1	1	1	1	0	0	0	1	1	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YP$
72	RCF		1	1	1	1	0	1	0	1	1	1	1	0			\downarrow	7	C←0
72	RDF		1	1	1	1	0	1	0	1	1	0	1	1		\downarrow		7	$D \leftarrow 0$ (Decimal Adjuster OFF)
73	RET		1	1	1	1	1	1	0	1	1	1	1	1				7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																			$SP \leftarrow SP+3$
73	RETD	e	0	0	0	1	e7	e6	e5	e4	e3	e2	e1	e0				12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																			$SP\!\leftarrow\!SP\!+\!3,M(X)\!\leftarrow\!e3\!\sim\!e0,M(X\!+\!1)\!\leftarrow\!e7\!\sim\!e4,X\!\leftarrow\!X\!+\!2$
74	RETS		1	1	1	1	1	1	0	1	1	1	1	0				12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																			$SP \leftarrow SP+3, PC \leftarrow PC+1$
74	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1	r0			1 1	7	$d3 \leftarrow d2$, $d2 \leftarrow d1$, $d1 \leftarrow d0$, $d0 \leftarrow C$, $C \leftarrow d3$
75	RRC	r	1	1	1	0	1	0	0	0	1	1	r1	r0			1 1	5	$d3 \leftarrow C$, $d2 \leftarrow d3$, $d1 \leftarrow d2$, $d0 \leftarrow d1$, $C \leftarrow d0$
75	RST	F, i	1	1	1	1	0	1	0	1	i3	i2	i1	i0	↓	↓	$\downarrow \downarrow$	7	F←FΛi3~i0
76	RZF		1	1	1	1	0	1	0	1	1	1	0	1			\downarrow	7	Z←0
76	SBC	r, i	1	1	0	1	0	1	r1	r0	i3	i2	i1	i0		*	1 1	7	r←r-i3~i0-C
77		r, q	1	0	1	0	1	0	1	1	r1	r0	q1	q0		*	1 1	7	$r \leftarrow r-q-C$
77	SCF		1	1	1	1	0	1	0	0	0	0	0	1			1	7	C←1
78	SCPX	MX, r	1	1	1	1	0	0				0	r1	r0		*	1 1	7	$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$
78	SCPY	MY, r	1	1	1	1	0	0	1	1		1	r1	r0		*	1 1	7	$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y+1$
79	SDF		1	1	1	1		1	0	0		1	0	0		\uparrow		7	$D \leftarrow 1$ (Decimal Adjuster ON)
79	SET	F, i	1	1	1	1	0	1	0	0	i3	i2	i1	i0	1	1	\uparrow \uparrow	7	F←FVi3~i0
80	SLP		1	1	1	1	1	1	1	1	1	0	0	1				5	SLEEP (stop oscillation)
80	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1	q0		*	1 1	7	$r \leftarrow r - q$
81	SZF		1	1	1	1	0	1	0	0	0	0	1	0				7	Z←1
81	XOR	r, i	1	1	0	1	0	0	r1	r0	i3	i2	i1	i0			1	7	r←r∀i3~i0
82		r, q	1	0	1	0	1	1	1	0	r1	r0	q1	q0			1	7	$r \leftarrow r \forall q$

3.1.3 By operation code

Operation	Mne-						Оре	erati	on C	ode					Flag		
Code (HEX)	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	IDZC	Clock	Operation
000 to 0FF	JP	s	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0		5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$
100 to 1FF	RETD	e	0	0	0	1	e7	e6	e5	e4	e3	e2	e1	e0		12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																	$SP \leftarrow SP+3$, $M(X) \leftarrow e3\sim e0$, $M(X+1) \leftarrow e7\sim e4$, $X \leftarrow X+2$
200 to 2FF	JP	C, s	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0		5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } C=1$
300 to 3FF	JP	NC, s	0	0	1	1	s7	s6	s5	s4	s3	s2	s1	s0		5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } C=0$
400 to 4FF	CALL	s	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0		7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																	$SP \leftarrow SP-3$, $PCP \leftarrow NPP$, $PCS \leftarrow s7 \sim s0$
500 to 5FF	CALZ	s	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0		7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																	$SP \leftarrow SP-3, PCP \leftarrow 0, PCS \leftarrow s7 \sim s0$
600 to 6FF	JP	Z, s	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0		5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } Z=1$
700 to 7FF	JP	NZ, s	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0		5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0 \text{ if } Z=0$
800 to 8FF	LD	Y, e	1	0	0	0	e7	e6	e5	e4	е3	e2	e1	e0		5	YH ← e7~e4, YL ← e3~e0
900 to 9FF	LBPX	MX, e	1	0	0	1	e7	e6	e5	e4	е3	e2	e1	e0		5	$M(X) \leftarrow e3 \sim e0, M(X+1) \leftarrow e7 \sim e4, X \leftarrow X+2$
A00 to A0F	ADC	XH, i	1	0	1	0	0	0	0	0	i3	i2	i1	i0	1 1	7	XH←XH+i3~i0+C
A10 to A1F	ADC	XL, i	1	0	1	0	0	0	0	1	i3	i2	i1	i0	1 1	7	XL←XL+i3~i0+C
A20 to A2F	ADC	YH, i	1	0	1	0	0	0	1	0	i3	i2	i1	i0	1 1	7	YH←YH+i3~i0+C
A30 to A3F	ADC	YL, i	1	0	1	0	0	0	1	1	i3	i2	i1	i0	1 1	7	YL←YL+i3~i0+C
A40 to A4F	CP	XH, i	1	0	1	0	0	1	0	0	i3	i2	i1	i0	1 1	7	XH-i3~i0
A50 to A5F	CP	XL, i	1	0	1	0	0	1	0	1	i3	i2	i1	i0	1 1	7	XL-i3~i0
A60 to A6F	CP	YH, i	1	0	1	0	0	1	1	0	i3	i2	i1	i0	11	7	YH-i3~i0
A70 to A7F	CP	YL, i	1	0	1	0	0	1	1	1	i3	i2	i1	i0	1 1	7	YL-i3~i0
A80 to A8F	ADD	r, q	1	0	1	0	1	0	0	0	r1	r0	q1	q0	* \$ \$	7	r←r+q
A90 to A9F	ADC	r, q	1	0	1	0	1	0	0	1	r1	r0	q1	q0	* \$ \$	7	$r \leftarrow r + q + C$
AA0 to AAF	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1	q0	* \$ \$	7	r←r-q
AB0 to ABF	SBC	r, q	1	0	1	0	1	0	1	1	r1	r0	q1	q0	* \$ \$	7	r←r-q-C
AC0 to ACF	AND	r, q	1	0	1	0	1	1	0	0	r1	r0	q1	q0	1	7	r←rΛq
AD0 to ADF	OR	r, q	1	0	1	0	1	1	0	1	r1	r0	q1	q0	1	7	r←rVq
AE0 to AEF	XOR	r, q	1	0	1	0	1	1	1	0	r1	r0	q1	q0	1	7	$r \leftarrow r \forall q$
AF0 to AFF	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1	r0	11	7	$d3 \leftarrow d2, d2 \leftarrow d1, d1 \leftarrow d0, d0 \leftarrow C, C \leftarrow d3$
B00 to BFF	LD	X, e	1	0	1	1	e7	e6	e5	e4	e3	e2	e1	e0		5	XH ← e7~e4, XL ← e3~e0
C00 to C3F	ADD	r, i	1	1	0	0	0	0	r1	r0	i3	i2	i1	i0	* \$ \$	7	r ← r+i3~i0
C40 to C7F	ADC	r, i	1	1	0	0	0	1	r1	r0	i3	i2	i1	i0	* 1 1	7	r←r+i3~i0+C
C80 to CBF	AND	r, i	1	1	0	0	1	0	r1	r0	i3	i2	i1	i0	1	7	r←r∆i3~i0
CC0 to CFF	OR	r, i	1	1	0	0	1	1	r1	r0	i3	i2	i1	i0	1	7	r←rVi3~i0
D00 to D3F	XOR	r, i	1	1	0	1	0	0	r1	r0	i3	i2	i1	i0	1	7	r←r∀i3~i0
D0F to D3F	NOT	r	1	1	0	1	0	0	r1	r0	1	1	1	1	1	7	$r \leftarrow \overline{r}$
D40 to D7F	SBC	r, i	1	1	0	1	0	1	r1	r0	i3	i2	i1	i0	* \$ \$	7	r ← r-i3~i0-C
D80 to DBF	FAN	r, i	1	1	0	1	1	0	r1	r0	i3	i2	i1	i0	1	7	rAi3~i0
DC0 to DFF	CP	r, i	1	1	0	1	1	1	r1	r0	i3	i2	i1	i0	1 1	7	r-i3~i0
E00 to E3F	LD	r, i	1	1	1	0	0	0	r1	r0	i3	i2	i1	i0		5	r ← i3~i0

Operation	Mne-						Оре	eratio	on C	ode						Flag	1		
Code (HEX)	monic	Operand	В	Α	9	8	·	6		4	3	2	1	0	1 [_	_	Clock	Operation
E40 to E5F	PSET	р	1	1	1	0	0	1			_			p0				5	NBP←p4, NPP←p3~p0
E60 to E6F	LDPX	MX, i	1	1	1	0	0	1	1					i0				5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$
E70 to E7F	LDPY	MY, i	1	1	1	0	0	1	1	1	i3	i2	i1	i0				5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$
E80 to E83	LD	XP, r	1	1	1	0	1	0	0	0	0	0	r1	r0				5	XP←r
E84 to E87	LD	XH, r	1	1	1	0	1	0	0	0	0	1	r1	r0				5	XH←r
E88 to E8B	LD	XL, r	1	1	1	0	1	0	0	0	1	0	r1	r0				5	XL←r
E8C to E8F	RRC	r	1	1	1	0	1	0	0	0	1	1	r1	r0		(11	5	$d3 \leftarrow C$, $d2 \leftarrow d3$, $d1 \leftarrow d2$, $d0 \leftarrow d1$, $C \leftarrow d0$
E90 to E93	LD	YP, r	1	1	1	0	1	0	0	1	0	0	r1	r0				5	YP←r
E94 to E97	LD	YH, r	1	1	1	0	1	0	0	1	0	1	r1	r0				5	YH←r
E98 to E9B	LD	YL, r	1	1	1	0	1	0	0	1	1	0	r1	r0				5	YL←r
EA0 to EA3	LD	r, XP	1	1	1	0	1	0	1	0	0	0	r1	r0				5	r←XP
EA4 to EA7	LD	r, XH	1	1	1	0	1	0	1	0	0	1	r1	r0				5	r←XH
EA8 to EAB	LD	r, XL	1	1	1	0	1	0	1	0	1	0	r1	r0				5	r←XL
EB0 to EB3	LD	r, YP	1	1	1	0	1	0	1	1	0	0	r1	r0				5	r←YP
EB4 to EB7	LD	r, YH	1	1	1	0	1	0	1	1	0	1	r1	r0				5	r←YH
EB8 to EBB	LD	r, YL	1	1	1	0	1	0	1	1	1	0	r1	r0				5	r←YL
EC0 to ECF	LD	r, q	1	1	1	0	1	1	0	0	r1	r0	q1	q0				5	$r \leftarrow q$
EE0	INC	X	1	1	1	0	1	1	1	0	0	0	0	0				5	X←X+1
EE0 to EEF	LDPX	r, q	1	1	1	0	1	1	1	0	r1	r0	q1	q0				5	$r \leftarrow q, X \leftarrow X+1$
EF0	INC	Y	1	1	1	0	1	1	1	1	0	0	0	0				5	Y←Y+1
EF0 to EFF	LDPY	r, q	1	1	1	0	1	1	1	1	r1	r0	q1	q0				5	$r \leftarrow q, Y \leftarrow Y+1$
F00 to F0F	CP	r, q	1	1	1	1	0	0	0	0	r1	r0	q1	q0		1	11	7	r-q
F10 to F1F	FAN	r, q	1	1	1	1	0	0	0	1	r1	r0	q1	q0		1	1	7	rΛq
F28 to F2B	ACPX	MX, r	1	1	1	1	0	0	1	0	1	0	r1	r0	7	* (11	7	$M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$
F2C to F2F	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0	7	* 〔	11	7	$M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$
F38 to F3B	SCPX	MX, r	1	1	1	1	0	0	1	1	1	0	r1	r0	7	* (11	7	$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$
F3C to F3F	SCPY	MY, r	1	1	1	1	0	0	1	1	1	1	r1	r0	7	* (11	7	$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y+1$
F40 to F4F	SET	F, i	1	1	1	1	0	1	0	0	i3	i2	i1	i0	1 1	1	↑ ↑	7	F←FVi3~i0
F41	SCF		1	1	1	1	0	1	0	0	0	0	0	1			1	7	C←1
F42	SZF		1	1	1	1	0	1	0	0	0	0	1	0		1	^	7	Z←1
F44	SDF		1	1	1	1	0	1	0	0	0	1	0	0	_ ′	↑		7	D←1 (Decimal Adjuster ON)
F48	EI		1	1	1	1	0	1	0	0	1	0	0	0	1			7	$I \leftarrow 1$ (Enables Interrupt)
F50 to F5F	RST	F, i	1	1	1	1	0	1	0	1	i3	i2	i1	i0	↓ 、	↓ ↓	$\downarrow \downarrow$	7	F←FΛi3~i0
F57	DI		1	1	1	1	0	1	0	1	0	1	1	1	\downarrow			7	$I \leftarrow 0$ (Disables Interrupt)
F5B	RDF		1	1	1	1	0	1	0	1	1	0	1	1		↓		7	$D \leftarrow 0$ (Decimal Adjuster OFF)
F5D	RZF		1	1	1	1	0	1	0	1	1	1	0	1			↓	7	Z←0
F5E	RCF		1	1	1	1	0	1	0	1	1	1	1	0			\downarrow	7	C←0
F60 to F6F	INC	Mn	1	1	1	1	0	1	1	0	n3	n2	n1	n0		_(11	7	$M(n3\sim n0) \leftarrow M(n3\sim n0)+1$
F70 to F7F	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1	n0		(11	7	$M(n3\sim n0) \leftarrow M(n3\sim n0)-1$
F80 to F8F	LD	Mn, A	1	1	1	1	1	0	0	0	n3	n2	n1	n0				5	M(n3~n0)←A

Code (HEX) Monic Code (HEX) Code (H	Operation	Mne-						Оре	ratio	on C	ode					Flag				
FACI TO FAF LD	Code (HEX)	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	I D Z	Z C		lock	Operation
FB LD	F90 to F9F	LD	Mn, B	1	1	1	1	1	0	0	1	n3	n2	n1	n0				5	$M(n3\sim n0) \leftarrow B$
FCO 10 FCC	FA0 to FAF	LD	A, Mn	1	1	1	1	1	0	1	0	n3	n2	n1	n0				5	$A \leftarrow M(n3 \sim n0)$
FC4 PUSH XP	FB0 to FBF	LD	B, Mn	1	1	1	1	1	0	1	1	n3	n2	n1	n0				5	$B \leftarrow M(n3 \sim n0)$
FC5 PUSH XH I I I I I I I I I I I I I I I I I I	FC0 to FC3	PUSH	r	1	1	1	1	1	1	0	0	0	0	r1	r0				5	$SP \leftarrow SP-1, M(SP) \leftarrow r$
FC6	FC4	PUSH	XP	1	1	1	1	1	1	0	0	0	1	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XP$
FC7 PUSH YP	FC5	PUSH	XH	1	1	1	1	1	1	0	0	0	1	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$
FC8	FC6	PUSH	XL	1	1	1	1	1	1	0	0	0	1	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$
FG9 PUSH YL I I I I I I I I I I I I I I I I I I	FC7	PUSH	YP	1	1	1	1	1	1	0	0	0	1	1	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YP$
FCA PUSH F	FC8	PUSH	YH	1	1	1	1	1	1	0	0	1	0	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$
FCB DEC SP	FC9	PUSH	YL	1	1	1	1	1	1	0	0	1	0	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YL$
FD0 to FD3 POP	FCA	PUSH	F	1	1	1	1	1	1	0	0	1	0	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow F$
FD4 POP XP 1 1 1 1 1 1 1 0 1 0 1 0 0 5 XP←M(SP), SP←SP+1 FD5 POP XH 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 5 XH←M(SP), SP←SP+1 FD6 POP XL 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 5 XH←M(SP), SP←SP+1 FD7 POP YP 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 5 XH←M(SP), SP←SP+1 FD8 POP YH 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 5 YP←M(SP), SP←SP+1 FD9 POP YL 1 1 1 1 1 1 1 1 0 1 1 0 0 1 5 YP←M(SP), SP←SP+1 FD9 POP YL 1 1 1 1 1 1 1 1 0 1 1 0 0 1 5 YP←M(SP), SP←SP+1 FD9 POP YL 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0	FCB	DEC	SP	1	1	1	1	1	1	0	0	1	0	1	1				5	$SP \leftarrow SP-1$
FDS	FD0 to FD3	POP	r	1	1	1	1	1	1	0	1	0	0	r1	r0				5	$r \leftarrow M(SP), SP \leftarrow SP+1$
FD6	FD4	POP	XP	1	1	1	1	1	1	0	1	0	1	0	0				5	$XP \leftarrow M(SP), SP \leftarrow SP+1$
FD7 POP YP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FD5	POP	XH	1	1	1	1	1	1	0	1	0	1	0	1				5	$XH \leftarrow M(SP), SP \leftarrow SP+1$
FD8	FD6	POP	XL	1	1	1	1	1	1	0	1	0	1	1	0				5	$XL \leftarrow M(SP), SP \leftarrow SP+1$
FD9 POP YL 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 5 YL ←M(SP), SP←SP+1 FDA POP F 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 \$\frac{1}{2}\$ \$1	FD7	POP	YP	1	1	1	1	1	1	0	1	0	1	1	1				5	$YP \leftarrow M(SP), SP \leftarrow SP+1$
FDA POP F 1 <td>FD8</td> <td>POP</td> <td>YH</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>5</td> <td>$YH \leftarrow M(SP), SP \leftarrow SP+1$</td>	FD8	POP	YH	1	1	1	1	1	1	0	1	1	0	0	0				5	$YH \leftarrow M(SP), SP \leftarrow SP+1$
FDB INC SP I I I I I I I I I I I I I I I I I I	FD9	POP	YL	1	1	1	1	1	1	0	1	1	0	0	1				5	$YL \leftarrow M(SP), SP \leftarrow SP+1$
FDE RETS	FDA	POP	F	1	1	1	1	1	1	0	1	1	0	1	0	111	1		5	$F \leftarrow M(SP), SP \leftarrow SP+1$
FDF RET 1 <td>FDB</td> <td>INC</td> <td>SP</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>5</td> <td>SP←SP+1</td>	FDB	INC	SP	1	1	1	1	1	1	0	1	1	0	1	1				5	SP←SP+1
FDF RET	FDE	RETS		1	1	1	1	1	1	0	1	1	1	1	0			1	12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
FE0 to FE3 LD SPH, r																				$SP \leftarrow SP+3, PC \leftarrow PC+1$
FE0 to FE3 LD SPH, r 1	FDF	RET		1	1	1	1	1	1	0	1	1	1	1	1				7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
FE4 to FE7 LD r, SPH 1																				$SP \leftarrow SP+3$
FE8 JPBA 1 </td <td>FE0 to FE3</td> <td>LD</td> <td>SPH, r</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>r1</td> <td>r0</td> <td></td> <td></td> <td></td> <td>5</td> <td>SPH←r</td>	FE0 to FE3	LD	SPH, r	1	1	1	1	1	1	1	0	0	0	r1	r0				5	SPH←r
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FE4 to FE7	LD	r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0				5	$r \leftarrow SPH$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FE8	JPBA		1	1	1	1	1	1	1	0	1	0	0	0				5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$
FF8 HALT 1 <td>FF0 to FF3</td> <td>LD</td> <td>SPL, r</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>r1</td> <td>r0</td> <td></td> <td></td> <td></td> <td>5</td> <td>SPL←r</td>	FF0 to FF3	LD	SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0				5	SPL←r
FF9 SLP 1 <td>FF4 to FF7</td> <td>LD</td> <td>r, SPL</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>r1</td> <td>r0</td> <td></td> <td></td> <td></td> <td>5</td> <td>$r \leftarrow SPL$</td>	FF4 to FF7	LD	r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0				5	$r \leftarrow SPL$
FFB NOP5 1 1 1 1 1 1 1 1 1 0 1 1 5 No operation (5 clock cycles)	FF8	HALT		1	1	1	1	1	1	1	1	1	0	0	0				5	Halt (stop clock)
	FF9	SLP		1	1	1	1	1	1	1	1	1	0	0	1				5	SLEEP (stop oscillation)
FFF NOP7 1 1 1 1 1 1 1 1 1 1 1 1 1 7 No operation (7 clock cycles)	FFB	NOP5		1	1	1	1	1	1	1	1	1	0	1	1				5	No operation (5 clock cycles)
	FFF	NOP7		1	1	1	1	1	1	1	1	1	1	1	1				7	No operation (7 clock cycles)

3.2 Operands

This section describes the operands used in the instructions.

- *p* 5-bit immediate data or labels 00H to 1FH. Used to specify a destination address.
- s 8-bit immediate data or labels 00H to FFH. Used to specify a destination address.
- e 8-bit immediate data 00H to FFH.
- *i* 4-bit immediate data 00H to 0FH.
- r 2-bit immediate data. See Table 3.2.1.
- *q* 2-bit immediate data. See Table 3.2.1.

The contents of A, B, MX, MY are referenced using r and q as shown in the following table.

Table 3.2.1 Values of r and q

	r1 or q1	<i>r</i> 0 or <i>q</i> 0
Α	0	0
В	0	1
MX	1	0
MY	1	1

- A A register
- B B register
- XP XP register---four high-order bits of IX
- YP YP register---four high-order bits of IY
- X XHL register---eight low-order bits of IX
- Y YHL register---eight low-order bits of IY
- XH XH register---four high-order bits of XHL
- XL XL register---four low-order bits of XHL
- YH YH register---four high-order bits of YHL
- YL YL register---four low-order bits of YHL
- SP Stack pointer SP
- SPH Four high-order bits of SP
- SPL Four low-order bits of SP
- F Flag register (IF, DF, ZF, CF)
- MX Data memory location whose address is specified by IX
- MY Data memory location whose address is specified by IY
- Mn Data memory location within the register area (000H to 00FH), specified by immediate data n (0H to FH)
- C Carry
- NC No carry
- Z Zero
- NZ Not zero

3.3 Flags

1. Carry flag

The carry flag is set if a carry was generated by the previous operation. It is affected by 17 arithmetic and logical instructions, four flag operations, eight index operation instructions and the POP F instruction.

2. Zero flag

The zero flag is set if a zero occurred in the previous operation. It is affected by 26 arithmetic and logical instructions, four flag operations, eight index operation instructions and the POP F instruction.

3. Decimal flag

The decimal flag enables decimal addition and subtraction when set. It is set by SDF or SET F,i and reset by RDF or RST F,i. It is affected by the POP F instruction.

4. Interrupt flag

The interrupt flag enables interrupts when set. It is set by EI or SET F, i and reset by DI or RST F, i. It is affected by the POP F instruction. When an interrupt is generated, the I flag is automatically reset. It is not automatically set at the end of the interrupt service routine.

3.4 Instruction Types

Instructions are divided into six types according to the size of the operand.

3.5 Instruction Descriptions

This section describes E0C6200/6200A instructions in alphabetical order.

ACPX MX,r Add with carry r-register to M(X), increment X by 1

Source Format: ACPX MX,r

Operation: $M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$

OP-Code: 1 1 1 1 0 0 1 0 1 0 r₁ r₀ F28H to F2BH

Type: V

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the carry bit and the contents of the r-register to the data memory location

addressed by IX. X is incremented by one. Incrementing X does not affect the

flags.

Example:

	ACPX MX	(, A	ACI	PX MX,MY
X register	1010 0000	1010	0001	1010 0010
Y register	0100 0110	0100	0110	0100 0110
Memory (A0H)	0110	11	11	1111
Memory (A1H)	0011	00	11	0111
Memory (46H)	0100	01	00	0100
A register	1000	10	00	1000
C flag	1	()	0
Z flag	0	0)	0

ACPY MY,r Add with carry r-register to M(Y), increment Y by 1

Source Format: ACPY MY,r

Operation: $M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$

OP-Code: 1 1 1 1 0 0 1 0 1 1 r1 r0 F2FH MSB LSB

Type: V

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the carry bit and the contents of the r-register to the data memory location

addressed by IY. Y is incremented by one. Incrementing Y does not affect the

flags.

	ACPY MY	Y,A	ACI	PY MY,MX
X register	0010 0001	0010	0001	0010 0001
Y register	0000 1110	0000	1111	0001 0000
Memory (0EH)	1000	10	11	1011
Memory (0FH)	0100	010	00	1010
Memory (21H)	0110	01	10	0110
A register	0010	00	10	0010
C flag	1	c)	0
Z flag	0	c)	0

ADC r,i Add with carry immediate data i to r-register

Source Format: ADC r,i

Operation: $r \leftarrow r + i3 \text{ to } i0 + C$

 OP-Code:
 1
 1
 0
 0
 0
 1
 r1
 r0
 i3
 i2
 i1
 i0
 C40H to C7FH

Type: ||

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the carry bit and immediate data i to the r-register.

Example:

	ADC MX	7,3	ADC B,7
Memory (MX)	0100	1000	1000
B register	1001	1001	0000
C flag	1	0	1
Z flag	1	0	1

ADC r,q Add with carry q-register to r-register

Source Format: ADC r,q

Operation: $r \leftarrow r + q + C$

Type: IV

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D - Not affectedI - Not affected

Description: Adds the carry bit and the contents of the q-register to the r-register.

	ADC MY	,A A	DC MX,B
A register	0101	0101	0101
B register	0001	0001	0001
Memory (MX)	0111	0111	1001
Memory (MY)	1011	0001	0001
C flag	1	1	0
Z flag	0	0	0

Add with carry immediate data i to XH

Source Format: ADC XH,i

Operation: $XH \leftarrow XH + i3 \text{ to io} + C$

 OP-Code:
 1
 0
 1
 0
 0
 0
 0
 i3
 i2
 i1
 i0
 A00H to A0FH

Type: IV

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the carry bit and immediate data i to XH, the four high-order bits of XHL.

Example:

	ADC XH	l,2 /	ADC XH,4
XH register	1001	1100	0000
C flag	1	0	1
Z flag	0	0	1

ADC XL,i Add with carry immediate data i to XL

Source Format: ADC XL,i

Operation: $XL \leftarrow XL + i3 \text{ to } i0 + C$

 OP-Code:
 1 0 1 0 0 0 0 1 is is is in in the distribution
 A10H to A1FH

Type: IV

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the carry bit and immediate data i to XL, the four low-order bits of XHL.

	ADC XL	.,3 AD	C XL,0EH
XL register	0000	0100	0010
C flag	1	0	1
Z flag	1	0	0

Add with carry immediate data i to YH

Source Format: ADC YH,i

Operation: $YH \leftarrow YH + i3 \text{ to io} + C$

 OP-Code:
 1
 0
 1
 0
 0
 0
 1
 0
 i3
 i2
 i1
 i0
 A20H to A2FH

Type: IV

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the carry bit and immediate data i to YH, the four high-order bits of YHL.

Example:

	ADC YH	l,3 A	ADC YH,6
YH register	1010	1110	0100
C flag	1	0	1
Z flag	0	0	0

ADC YL,i Add with carry immediate data i to YL

Source Format: ADC YL,i

Operation: $YL \leftarrow YL + i3 \text{ to } i0 + C$

 OP-Code:
 1 0 1 0 0 0 1 1 1 i3 i2 i1 i0
 A30H to A3FH

Type: IV

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D - Not affectedI - Not affected

Description: Adds the carry bit and immediate data i to YL, the four low-order bits of YHL.

	ADC YL	.,3	ADC YL,2
YL register	1010	1110	0000
C flag	1	0	1
Z flag	0	0	1

Add immediate data i to r-register

Source Format: ADD r,i

Operation: $r \leftarrow r + i3 \text{ to } i0$

 OP-Code:
 1
 1
 0
 0
 0
 0
 r1
 r0
 i3
 i2
 i1
 i0
 C00H to C3FH

Type: ||

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds immediate data i to the contents of the r-register.

Example:

	ADD A,5		ADD MY,2		
A register	1010	11	11	1111	
Memory (MY)	0110	01	10	1000	
C flag	1	0		0	
Z flag	0	C)	0	

ADD r,q Add q-register to r-register

Source Format: ADD r,q

Operation: $r \leftarrow r + q$

Type: IV

Clock Cycles: 7

Flag: C - Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Adds the contents of the q-register to the contents of the r-register.

	ADD A,N	/IY A	DD MX,B	
A register	0010	1111	1111	
B register	0100	0100	0100	
Memory (MX)	0111	0111	1011	
Memory (MY)	1101	1101	1101	
C flag	1	0	0	
Z flag	1	0	0	

AND r,i Logical AND immediate data i with r-register

Source Format: AND r,i

Operation: $r \leftarrow r \land is to io$

 OP-Code:
 1 | 1 | 0 | 0 | 1 | 0 | r1 | r0 | i3 | i2 | i1 | i0 |
 C80H to CBFH

Type: ||

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a logical AND operation between immediate data i and the contents of

the r-register. The result is stored in the r-register.

Example:

	AND A,	5 A	ND MX,3
A register	0110	0100	0100
Memory (MX)	1000	1000	0000
C flag	1	1	1
Z flag	0	0	1

AND r,q Logical AND q-register with r-register

Source Format: AND r,q

Operation: $r \leftarrow r \land q$

OP-Code: 1 0 1 0 1 1 0 0 r₁ r₀ q₁ q₀ AC0H to ACFH

Type: IV

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a logical AND operation between the contents of the q-register and the

contents of the r-register. The result is stored in the r-register.

	AND MX	,A AI	ND B,MY
A register	0100	0100	0100
B register	1011	1011	0010
Memory (MX)	1010	0000	0000
Memory (MY)	0010	0010	0010
C flag	0	0	0
Z flag	0	1	0

CALL S Call subroutine

Source Format: CALL s

Operation: $M(SP-1) \leftarrow PCP$, $M(SP-2) \leftarrow PCSH$, $M(SP-3) \leftarrow PCSL + 1$, $SP \leftarrow SP - 3$,

LSB

PCP ← NPP, PCS ← s₇ to s₀

OP-Code: 0 1 0 0 87 86 85 84 83 82 81 80 400H to 4FFH

MSB

Type:

Clock Cycles: 7

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Pushes the program counter (PCP, PCS) onto the stack as the return address,

then calls the subroutine addressed by NPP and the 8-bit operand.

Example:

	PSET 06H		C	ALL 10H
PCP	0011	00	11	0110
PCS	0010 1100	0010	1100	0001 0000
NPP	0001	01	10	0110
SP	C0	C	0	BD
Memory (SP-1)	XXXX	xx	ХХ	0011
Memory (SP-2)	XXXX	XX	хх	0010
Memory (SP-3)	XXXX	XX	ΧX	1101

CALZ S Call subroutine at page zero

Source Format: CALZ s

 $\textit{Operation:} \hspace{0.5cm} \mathsf{M}(\mathsf{SP-1}) \leftarrow \mathsf{PCP}, \, \mathsf{M}(\mathsf{SP-2}) \leftarrow \mathsf{PCSH}, \, \mathsf{M}(\mathsf{SP-3}) \leftarrow \mathsf{PCSL} + 1, \, \mathsf{SP} \leftarrow \mathsf{SP-3},$

 $PCP \leftarrow 0$, $PCS \leftarrow s_7$ to s_0

OP-Code: 0 1 0 1 87 86 85 84 83 82 81 80 500H to 5FFH

MSB LS

Type:

Clock Cycles: 7

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Pushes the program counter (PCP, PCS) onto the stack as the return address,

then calls the subroutine addressed by the 8-bit operand. As NPP is reset to 0H,

only a subroutine in page 0 can be called.

	CALZ 10H				
PCP	1010	0000			
PCS	0010 1110	0001 0000			
SP	CA	C7			
Memory (SP-1)	XXXX	1010			
Memory (SP-2)	xxxx	0010			
Memory (SP-3)	xxxx	1111			

CP r,i

Compare immediate data i with r-register

Source Format: CP r,i

Operation: r - is to io

 OP-Code:
 1
 1
 0
 1
 1
 1
 r1
 r0
 i3
 i2
 i1
 i0
 DC0H to DFFH

Type: ||

Clock Cycles: 7

Flag: C - Set if r < i3 to i0; otherwise, reset.

Z – Set if r = i3 to i0; otherwise, reset.

D – Not affectedI – Not affected

Description:

Compares immediate data i to the r-register by subtracting i from the contents of r.

The r-register remains unchanged.

1. When Z = 0 and C = 0 then i < r

2. When Z = 1 and C = 0 then i = r

3. When Z = 0 and C = 1 then i > r

Example:

	CP A,4	СР	MX,7	(CP B,2
A register	0100	0100	01	00	0100
B register	1010	1010	10	10	1010
Memory (MX)	0010	0010	00	10	0010
C flag	1	0	1	1	0
Z flag	0	1)	0

CP r,q

Compare q-register with r-register

Source Format: CP r,q

Operation: r - q

 OP-Code:
 1
 1
 1
 1
 0
 0
 0
 0
 r1
 r0
 q1
 q0
 F00H to F0FH

Type: IV

Clock Cycles: 7

Flag: C - Set if r < q; otherwise, reset.

Z - Set if r = q; otherwise, reset.

D – Not affectedI – Not affected

Description: Compares the q-register to the r-register by subtracting the contents of q from the

contents of r. The registers remain unchanged.

1. When Z = 0 and C = 0 then q < r

2. When Z = 1 and C = 0 then q = r

3. When Z = 0 and C = 1 then q > r

	CP A,E	3	С	P MY,A
A register	1000	10	00	1000
B register	0100	0100		0100
Memory (MY)	0111	0111		0111
C flag	0	C)	1
Z flag	0	C)	0

CP XH,i Compare immediate data i with XH

CP XH,i Source Format:

> Operation: XH - is to io

OP-Code: 1 0 0 0 0 i3 i2 İ1 iо A40H to A4FH MSB LSB

IV Type:

Clock Cycles: 7

> **C** – Set if XH < i3 to i0; otherwise, reset. Flag:

> > Z – Set if XH = i3 to i0; otherwise, reset.

D - Not affected I - Not affected

Description: Compares immediate data i to XH by subtracting i from the contents of XH. XH

remains unchanged.

1. When Z = 0 and C = 0 then i < XH2. When Z = 1 and C = 0 then i = XH3. When Z = 0 and C = 1 then i > XH

Example:

	CP XH,	2 CP	XH,4		P XH,9
XH register	0100	0100	01	00	0100
C flag	1	0	()	1
Z flag	0	0	.	1	0

CP XL,i Compare immediate data i with XL

CP XL,i Source Format:

> XL - is to io Operation:

OP-Code: 0 1 iо A50H to A5FH LSB

MSB

IV Type:

Clock Cycles:

Flag: \mathbf{C} – Set if XL < i3 to i0; otherwise, reset.

Z – Set if XL = i3 to io; otherwise, reset.

D - Not affected I - Not affected

Compares immediate data i to XL by subtracting i from the contents of XL. XL Description:

remains unchanged.

1. When Z = 0 and C = 0 then i < XL2. When Z = 1 and C = 0 then i = XL

3. When Z = 0 and C = 1 then i > XL

	CP XL,	7 CP	XL,9	CP	XL,0AH
XL register	1001	1001	1001		1001
C flag	0	0	0		1
Z flag	0	0	1		0

CP YH,i Compare immediate data i with YH

Source Format: CP YH,i

Operation: YH - is to io

 OP-Code:
 1
 0
 1
 0
 1
 1
 0
 i3
 i2
 i1
 i0
 A60H to A6FH

Type: IV

Clock Cycles: 7

Flag: C - Set if YH < i3 to i0; otherwise, reset.

Z - Set if YH = i3 to i0; otherwise, reset.

D – Not affectedI – Not affected

Description: Compares immediate data i to YH by subtracting i from the contents of YH. YH

remains unchanged.

When Z = 0 and C = 0 then i < YH
 When Z = 1 and C = 0 then i = YH
 When Z = 0 and C = 1 then i > YH

Example:

	CP YH,0AH		CP YH,3		CP YH,0FH	
YH register	1010	10	10	10	10	1010
C flag	1	0		()	1
Z flag	0	1		()	0

CP YL,i Compare immediate data i with YL

Source Format: CP YL,i

Operation: YL - is to io

 OP-Code:
 1 0 1 0 0 1 1 1 1 1 1 13 12 11 10
 A70H to A7FH

Type: IV

Clock Cycles: 7

Flag: C – Set if YL < i3 to i0; otherwise, reset.

Z – Set if YL = i3 to io; otherwise, reset.

D – Not affectedI – Not affected

Description: Compares immediate data i to YL by subtracting i from the contents of YL. YL

remains unchanged.

When Z = 0 and C = 0 then i < YL
 When Z = 1 and C = 0 then i = YL
 When Z = 0 and C = 1 then i > YL

	CP YL,	5	СР	YL,1	C	P YL,4	
YL register	0100	01	00	01	00	0100)
C flag	0	1	1)	0	
Z flag	1)	()	1	

DEC Mn Decrement memory

> DEC Mn Source Format:

> > Operation: $M(n_3 \text{ to } n_0) \leftarrow M(n_3 \text{ to } n_0)$ - 1

OP-Code: 1 0 1 | n₃ | n₂ | n₁ | n₀ F70H to F7FH MSB LSB

IV Type:

7 Clock Cycles:

> Flag: **C** – Set if a borrow is generated; otherwise, reset.

> > **Z** – Set if the result is zero; otherwise, reset.

D - Not affected I - Not affected

Decrements the contents of the data memory location addressed by Mn by 1. Description:

Example:

	DEC M	0 0	EC M2	DE	EC MOFH
Memory (00H)	1001	1000	10	00	1000
Memory (02H)	0000	0000	11	11	1111
Memory (0FH)	0001	0001	00	01	0000
C flag	1	0	- -		0
Z flag	0	0	()	1

DEC SP Decrement stack pointer

DEC SP Source Format:

> $SP \leftarrow SP - 1$ Operation:

OP-Code: 0 0 **FCBH**

MSB

VΙ Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Decrements the contents of the stack pointer by 1. This operation does not affect Description:

the flags.

	DEC SP			
Memory (SP)	1011 0001	1011 0000		
C flag	0	0		
Z flag	1	1		

DI

Disable interrupts

Source Format: DI

Operation: $I \leftarrow 0$

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Reset

Description: Disables all interrupts.

Example:

	DI		
C flag	0	0	
Z flag	1	1	
D flag	0	0	
C flag Z flag D flag I flag	1	0	

ΕĪ

Enable interrupts

Source Format: El

Operation: $l \leftarrow 1$

 OP-Code:
 1
 1
 1
 1
 0
 1
 0
 0
 1
 0
 0
 0
 0
 0
 D
 F48H

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z - Not affectedD - Not affected

I - Set

Description: Enables all interrupts.

	EI		
C flag	1	1	
Z flag	0	0	
D flag	0	0	
C flag Z flag D flag I flag	0	1	

FAN r,i Logical AND immediate data i with r-register for flag check

Source Format: FAN r,i

Operation: $r \wedge i3$ to io

OP-Code: 1 1 0 1 1 0 r₁ r₀ i₃ i₂ i₁ i₀ D80H to DBFH

Type: ||

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a logical AND operation between immediate data i and the contents of

the r-register. Only the Z flag is affected. The r-register remains unchanged.

Example:

	FAN A,	7 FAN	MY,9	F	AN B,2
A register	1000	1000	100	00	1000
B register	0100	0100	010	00	0100
Memory (MY)	1000	1000	100	00	1000
C flag	1	1	1		1
Z flag	0	1	0)	1

FAN r,q Logical AND q-register with r-register for flag check

Source Format: FAN r,q

Operation: $r \wedge q$

OP-Code: 1 1 1 1 0 0 0 1 1 1 1 0 0 0 F1FH

MSB

Type: IV

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a logical AND operation between the contents of the q-register and the

contents of the r-register. Only the Z flag is affected. The registers remains

unchanged.

	FAN A,I	B FAN	MX,B	F/	AN A,MY
A register	1000	1000	100	00	1000
B register	1010	1010	101	10	1010
Memory (MX)	0101	0101	010)1	0101
Memory (MY)	1110	1110	111	10	1110
C flag	0	0	0		0
Z flag	0	0	1		0

HALT Halt

Source Format: HALT

Operation: Stops CPU

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 0
 0
 FF8H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Stops the CPU. When an interrupt occurs, PCP and PCS are pushed onto the

stack as the return address and the interrupt service routine is executed.

Example:

	Instruction	State	PCP	PCS	I flag
	HALT	RUN	0001	0011 0011	1
		HALT			
Interrupt			0001	0011 0100	1
		RUN	0001	Interrupt vector address	0

INC Mn Increment memory by 1

Source Format: INC Mn

Operation: $M(n_3 \text{ to } n_0) \leftarrow M(n_3 \text{ to } n_0) + 1$

OP-Code: 1 1 1 1 0 1 1 0 n3 n2 n1 n0 F60H to F6FH MSB

Type: IV

Clock Cycles: 7

Flag: **C** – Set if a carry is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: The contents of the data memory location addressed by Mn is incremented by 1.

	INC M1	INC	МЗ	IN	C MODH
Memory (01H)	0100	0101	01	01	0101
Memory (03H)	1111	1111	00	00	0000
Memory (0DH)	0111	0111	01	11	1000
C flag	0	0	-		0
Z flag	1	0	-		0

INC SP Increment stack pointer by 1

> INC SP Source Format:

> > $SP \leftarrow SP + 1$ Operation:

OP-Code: 1 1 **FDBH** 1 1 | 1 0 1 MSB LSB

۷I Type:

Clock Cycles: 5

Example:

Flag: C - Not affected

> Z - Not affected D - Not affected I - Not affected

Increments the contents of the stack pointer by 1. This operation does not affect Description:

the flags.

	INC SP				
SP	1110 1111	1111 0000			
C flag	0	0			
Z flag	0	0			

INC X Increment X-register by 1

Source Format: INC X

> Operation: $X \leftarrow X + 1$

EE0H OP-Code: 1 1 0 0 LSB

MSB

VΙ Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Increments the contents of register X by 1. This operation does not affect the Description:

flags.

Example: INC X X register 1111 1110 1111 1111 C flag 1 1 Z flag 0 0

INC Y Increment Y-register by 1

Source Format: INC Y

Operation: $Y \leftarrow Y + 1$

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Increments the contents of register Y by 1. This operation does not affect the

flags.

Example:

	INC Y			
Y register	1011 0111	1011 1000		
C flag	1	1		
Z flag	0	0		

JPBA *Indirect jump using registers A and B*

Source Format: JPBA

Operation: $PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 0
 0
 0
 0
 0
 D
 FE8H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Uses the contents of a- and b-registers to specify the destination address of the

jump. The b-register contains the four high-order bits of the address and the a-

register contains the four low-order bits of the address.

	PSET 15	PSET 15H		JPBA	
PCB	0)	1	
NBP	0	1		1	
PCP	1000	10	00	0101	
NPP	0001	01	01	0101	
PCS	1001 0000	1001	0001	0000 0110	
A register	0110	01	10	0110	
B register	0000	00	00	0000	

JP C,s Jump if carry flag is set

> JP C,s Source Format:

> > $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s_7 \text{ to } s_0 \text{ if } C = 1$ Operation:

OP-Code: 0 200H to 2FFH 0 | S7 | S6 | S5 | S4 | S3 | S2 | S1 | S0 MSB

Type:

Clock Cycles: 5

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Description: Jumps to the destination address specified by the 8-bit operand when the carry

flag is set.

Example:

	ADD A,	8 PSE	T 06H	J	P C,10H
PCB	0	0	()	0
NBP	0	0)	0
PCP	0010	0010	00	10	0110
NPP	0001	0001	01	10	0110
PCS	0011 1100	0011 1101	0011	1110	0001 0000
A register	1000	0000	00	00	0000
C flag	0	1	-		1

JP NC.s Jump if not carry

JP NC,s Source Format:

> $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s_7 \text{ to } s_0 \text{ if } C = 0$ Operation:

OP-Code: S7 S6 S5 S4 S3 S2 S1 S0 300H to 3FFH LSB

MSB

I Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Jumps to the destination address specified by the 8-bit operand when the carry Description:

flag is not set.

	PSET 11	H JP	NC,10H
PCB	0	0	1
NBP	0	1	1
PCP	1001	1001	0001
NPP	0001	0001	0001
PCS	1000 1111	1001 0000	0001 0000
C flag	0	0	0

JP NZ,s Jump if not zero

Source Format: JP NZ,s

Operation: $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s_7 \text{ to } s_0 \text{ if } Z = 0$

 OP-Code:
 0
 1
 1
 1
 s7
 s6
 s5
 s4
 s3
 s2
 s1
 s0
 700H to 7FFH

Type:

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Jumps to the destination address specified by the 8-bit operand when the zero flag

is not set.

Example:

	JP NZ,10H			
PCB	1	1		
NBP	1	1		
PCP	0000	0000		
NPP	0000	0000		
PCS	0000 0111	0001 0000		
Z flag	0	0		

JP s Jump

Source Format: JP s

Operation: $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s_7 \text{ to } s_0$

 OP-Code:
 0 0 0 s7 s6 s5 s4 s3 s2 s1 s0
 000H to 0FFH

Type:

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Unconditional jump to the destination address specified by the 8-bit operand.

	PSET 0AH		,	JP 10H
PCB	0	0)	0
NBP	0	0		0
PCP	0000	0000		1010
NPP	0001	1010		1010
PCS	0100 0010	0100 0011		0001 0000

JP Z,s Jump if zero

Source Format: JP Z,s

Operation: $PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s_7 \text{ to } s_0 \text{ if } Z = 1$

 OP-Code:
 0
 1
 1
 0
 s7
 s6
 s5
 s4
 s3
 s2
 s1
 s0
 600H to 6FFH

Type:

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Jumps to the destination address specified by the 8-bit operand when the zero flag

is set.

Example:

	SUB A,	B PSET	1BH .	JP Z,10H
PCB	0	0	0	1
NBP	0	0	1	1
PCP	0101	0101	0101	1011
NPP	0001	0001	1011	1011
PCS	0000 0010	0000 0011	0000 0100	0001 0000
A register	0110	0000	0000	0000
B register	0110	0110	0110	0110
Z flag	0	1	1	1

LBPX MX,e Load immediate data e to memory, and increment X by 2

Source Format: LBPX MX,e

Operation: $M(X) \leftarrow e_3$ to e_0 , $M(X+1) \leftarrow e_7$ to e_4 , $X \leftarrow X + 2$

 OP-Code:
 1 0 0 1 e7 e6 e5 e4 e3 e2 e1 e0
 900H to 9FFH

Type:

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Stores 8-bit immediate data e in two, consecutive 4-bit locations in data memory.

The X-register is incremented by 2. An overflow in X does not affect the flags.

	LBPX MX,18H		LBP	X MX,36H
X register	0001 1110	0010 0000		0010 0010
Memory (1EH)	0010	1000		1000
Memory (1FH)	1111	0001		0001
Memory (20H)	0000	0000		0110
Memory (21H)	0111	0111		0011

LD A,Mn Load memory into A-register

Source Format: LD A,Mn

> Operation: $A \leftarrow M(n_3 \text{ to } n_0)$

OP-Code: FA0H to FAFH 1 1 1 1 0 | n₃ | n₂ | n₁ | n₀ MSB LSB

IV Type:

Clock Cycles: 5

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Loads the contents of the data memory location addressed by Mn into the A-Description:

register.

Example:

	LD A,M	5	LD A,M6
A register	0100	1111	1 0100
Memory (05H)	1111	111	1 1111
Memory (06H)	0100	0100	0 0100

LD B,Mn Load memory into B-register

LD B,Mn Source Format:

> $B \leftarrow M(n_3 \text{ to } n_0)$ Operation:

OP-Code: n3 | n2 | n1 | n0 FB0H to FBFH LSB

MSB

Type: IV

Clock Cycles: 5

> C - Not affected Flag:

> > Z - Not affected D - Not affected I - Not affected

Loads the contents of the data memory location addressed by Mn into the B-Description:

register.

	LD B,M	7	LD B,M8	
B register	0100	0110	1010	
Memory (07H)	0110	0110	0110	
Memory (08H)	1010	1010	1010	

LD Mn,A Load A-register into memory

Source Format: LD Mn,A

> $M(n3 to n0) \leftarrow A$ Operation:

OP-Code: 1 1 1 F80H to F8FH 0 | n₃ | n₂ | n₁ | n₀ MSB LSB

IV Type:

Clock Cycles: 5

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Loads the contents of the A-register into the location addressed by Mn. Description:

Example:

	LD MOAH,A		LD	M0BH,A
A register	0110	0110)	0110
Memory (0AH)	0100	0110		0110
Memory (0BH)	1011	1011		0110

LD Mn,B Load B-register into memory

LD Mn,B Source Format:

> $M(n_3 \text{ to } n_0) \leftarrow B$ Operation:

OP-Code: 1 | n₃ | n₂ | n₁ | n₀ F90H to F9FH LSB

MSB

IV Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Loads the contents of the B-register into the data memory location addressed by Description:

Mn.

	LD M0,	LD M0,B		D M1,B
B register	0100	010	00	0100
Memory (00H)	1011	0100		0100
Memory (01H)	1111	111	11	0100

LDPX MX,i Load immediate data i into MX, increment X by 1

Source Format: LDPX MX,i

Operation: $M(X) \leftarrow is to io, X \leftarrow X + 1$

 OP-Code:
 1
 1
 1
 0
 0
 1
 1
 0
 i3
 i2
 i1
 i0
 E60H to E6FH

Type: IV

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads immediate data i into the data memory location addressed by IX. X is

incremented by 1. Incrementing X does not affect the flags.

Example:

	LDPX MX,7		LDP	X MX,0AH
X register	1000 0011	1000	0100	1000 0101
Memory (83H)	0010	0111		0111
Memory (84H)	1001	10	01	1010

LOPX r,q Load q-register into r-register, increment X by 1

Source Format: LDPX r,q

Operation: $r \leftarrow q, X \leftarrow X + 1$

 OP-Code:
 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | r1 | r0 | q1 | q0 |
 EE0H to EEFH

Type: IV

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the q-register into the r-register. X is incremented by 1.

Incrementing X does not affect the flags.

	LDPX A,B		LD	PX B,MY
X register	0100 1001	0100 1010		0100 1011
A register	1010	1101		1101
B register	1101	1101		0000
Memory (MY)	0000	000	00	0000

LDPY MY,i Load immediate data i into MY, increment Y by 1

Source Format: LDPY MY,i

Operation: $M(Y) \leftarrow is to io, Y \leftarrow Y + 1$

 OP-Code:
 1
 1
 1
 0
 0
 1
 1
 1
 i3
 i2
 i1
 i0
 E70H to E7FH

Type: IV

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads immediate data i into the data memory location addressed by IY. Y is

incremented by 1. Incrementing Y does not affect the flags.

Example:

	LDPY MY,7		LD	PY MY,0
Y register	0010 1101	0010	1110	0010 1111
Memory (2DH)	1010	0111		0111
Memory (2EH)	0010	0010		0000

LDPY r,q Load q-register into r-register, increment Y by 1

Source Format: LDPY r,q

Operation: $r \leftarrow q, Y \leftarrow Y + 1$

OP-Code: 1 1 1 0 1 1 1 1 1 r₁ r₀ q₁ q₀ EF0H to EFFH

MSB

Type: IV

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the q-register into the r-register. Y is incremented by 1.

Incrementing Y does not affect the flags.

	LDPY A,B		LD	PY MX,B
Y register	0100 1000	0100 1001		0100 1010
A register	1010	1000		1000
B register	1000	1000		1000
Memory (MX)	0010	00	10	1000

Load immediate data i into r-register

Source Format: LD r,i

Operation: $r \leftarrow is to io$

 OP-Code:
 1
 1
 1
 0
 0
 0
 r1
 r0
 i3
 i2
 i1
 i0
 E00H to E3FH

Type: ||

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads immediate data i into the r-register.

Example:

	LD A,6	i	LD MY,0		
A register	0101	01	10	0110	
Memory (MY)	1001	10	01	0000	

Load q-register into r-register

Source Format: LD r,q

Operation: $r \leftarrow q$

OP-Code: 1 1 1 0 1 1 0 0 r₁ r₀ q₁ q₀ EC0H to ECFH

MSB

Type: IV

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: The contents of the q-register are loaded into the r-register.

	LD A,B		LD B,MY
A register	0010	0000	0000
B register	0000	0000	0110
Memory (MY)	0110	0110	0110

Load SPH into r-register

Source Format: LD r,SPH

Operation: $r \leftarrow SPH$

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 0
 0
 1
 r1
 r0
 FE4H to FE7H

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the four high-order bits of the stack pointer into the r-register.

Example:

	LD MX,SPH		LI	D A,SPH
SPH	0111	01	11	0111
A register	0000	0000		0111
Memory (MX)	1100	0111		0111

Load SPL into r-register

Source Format: LD r,SPL

Operation: $r \leftarrow SPL$

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the four low-order bits of the stack pointer into the r-register.

	LD A,SPL		LD	MY,SPL
SPL	1001	100	1	1001
A register	0010	100	1	1001
Memory (MY)	0000	0000	0	1001

Load XH into r-register

Source Format: LD r,XH

Operation: $r \leftarrow XH$

 OP-Code:
 1
 1
 1
 0
 1
 0
 1
 0
 1
 r1
 r0
 EA4H to EA7H

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the four high-order bits of register X into the r-register.

Example:

	LD B,XH		LD MX,XH
XH register	1010	1010	1010
B register	0010	1010	1010
Memory (MX)	0000	0000	1010

LD r,XL Load XL into r-register

Source Format: LD r,XL

Operation: $r \leftarrow XL$

 OP-Code:
 1
 1
 0
 1
 0
 1
 0
 1
 0
 r1
 r0
 EA8H to EABH

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the four low-order bits of register X into the r-register.

	LD MY,XL		LD A,XL		
XL register	0000	0000		0000	
A register	1101	1101		0000	
Memory (MY)	0001	0000		0000	

LD r,XP Load XP into r-register

> LD r,XP Source Format:

> > $r \leftarrow XP$ Operation:

OP-Code: 1 1 EA0H to EA3H 0 0 **r**o MSB LSB

٧ Type:

Clock Cycles: 5

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Loads the 4-bit page part of index register IX into the r-register. Description:

Example:

	LD MX,XP		LD A,XP	
XP register	1111	1111	1111	
A register	0010	0010	1111	
Memory (MX)	0101	1111	1111	

LD r,YH Load YH into r-register

Source Format: LD r,YH

> Operation: $r \leftarrow YH$

EB4H to EB7H OP-Code: 1 0 ro LSB

MSB

٧ Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Loads the four high-order bits of register Y into the r-register. Description:

	LD A,YH		LD	MY,YH	
YH register	1010	1010		1010	
A register	1100	1010		1010	
Memory (MY)	1110	1110		1010	

Load YL into r-register

Source Format: LD r,YL

Operation: $r \leftarrow YL$

 OP-Code:
 1
 1
 1
 0
 1
 1
 1
 1
 0
 r1
 r0
 EB8H to EBBH

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the four low-order bits of register Y into the r-register.

Example:

	LD B,YL		LI	O MX,YL
YL register	0000	000	00	0000
B register	0110	0000		0000
Memory (MX)	1011	101	11	0000

LD r,YP Load YP into r-register

Source Format: LD r,YP

Operation: $r \leftarrow YP$

 OP-Code:
 1
 1
 1
 0
 1
 1
 0
 0
 r1
 r0
 EB0H to EB3H

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z - Not affectedD - Not affectedI - Not affected

Description: Loads the 4-bit page part of index register IY into the r-register.

	LD MY,YP		LD B,YP		
YP register	1010	101	0	1010	
B register	1100	110	0	1010	
Memory (MY)	0110	101	0	1010	

Load r-register into SPH

Source Format: LD SPH,r

Operation: SPH \leftarrow r

OP-Code: 1 1 1 1 1 1 1 0 0 0 1 r1 r0 FE0H to FE3H

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the r-register into the four high-order bits of the stack

pointer.

Example:

	LD SPH,A		LD SPH,MY
SPH	1001	0011	1100
A register	0011	0011	0011
Memory (MY)	1100	1100	1100

Load r-register into SPL

Source Format: LD SPL,r

Operation: $SPL \leftarrow r$

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the r-register into the four low-order bits of the stack pointer.

	LD SPL,B		LD	SPL,MX
SPL	1011	01	11	1111
B register	0111	01	11	0111
Memory (MX)	1111	111	11	1111

LD X,e Load immediate data e into X-register

Source Format: LD X,e

> Operation: $XH \leftarrow e_7 \text{ to } e_4, \ XL \leftarrow e_3 \text{ to } e_0$

OP-Code: 1 0 B00H to BFFH 1 e7 e6 e5 e4 e3 e2 e1 e0 MSB LSB

I Type:

5 Clock Cycles:

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Description: Loads 8-bit immediate data e into register X.

Example:

	LD X,6FH		
XH register	0000	0110	
XL register	1011	1111	

LD XH,r Load r-register into XH

LD XH,r Source Format:

> $XH \leftarrow r$ Operation:

OP-Code: 1 0 0 E84H to E87H ro LSB

MSB

٧ Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Loads the contents of the r-register into the four high-order bits of register X. Description:

	LD XH,A		LD XH,MY	
XH register	0000	1011		0110
A register	1011	1011		1011
Memory (MY)	0110	0110		0110

Load r-register into XL

Source Format: LD XL,r

Operation: $XL \leftarrow r$

 OP-Code:
 1
 1
 1
 0
 1
 0
 0
 1
 0
 r1
 r0
 E88H to E8BH

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the r-register into the four low-order bits of register X.

Example:

	LD XL,MY		MY LD XL,A	
XL register	0000	0010	1011	
A register	1011	1011	1011	
Memory (MY)	0010	0010	0010	

Load r-register into XP

Source Format: LD XP,r

Operation: $XP \leftarrow r$

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the r-register into the 4-bit page part of index register IX.

	LD XP,I	В	LD XP,MX	
XP register	1001	0001	1011	
B register	0001	0001	0001	
Memory (MX)	1011	1011	1011	

LD Y,e Load immediate data e into Y-register

Source Format: LD Y,e

> Operation: $YH \leftarrow e_7 \text{ to } e_4, YL \leftarrow e_3 \text{ to } e_0$

1 0 0 0 | e7 | e6 | e5 | e4 | e3 | e2 | e1 | e0 800H to 8FFH OP-Code: MSB LSB

I Type:

5 Clock Cycles:

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Description: Loads 8-bit immediate data e into register Y.

Example:

	LD Y,E1H		
YH register	0001	1110	
YL register	1100	0001	

LD YH,r Load r-register into YH

LD YH,r Source Format:

> $YH \leftarrow r$ Operation:

OP-Code: 1 0 E94H to E97H ro MSB LSB

٧ Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Loads the contents of the r-register into the four high-order bits of register Y. Description:

	LD YH,	В	LD YH,MX	
YH register	0000	0110	0101	
B register	0110	0110	0110	
Memory (MX)	0101	0101	0101	

Load r-register into YL

LD YL,r Source Format:

> $\mathsf{YL} \leftarrow \mathsf{r}$ Operation:

OP-Code: 1 1 **r**o E98H to E9BH MSB LSB

٧ Type:

Clock Cycles: 5

> Flag: C - Not affected

> > Z - Not affected D - Not affected I - Not affected

Loads the contents of the r-register into the four low-order bits of register Y. Description:

Example:

	LD YL,I	В	LD YL,MX
YL register	1011	1010	0111
B register	1010	1010	1010
Memory (MX)	0111	0111	0111

LD YP,r Load r-register into YP

Source Format: LD YP,r

> Operation: $YP \leftarrow r$

OP-Code: E90H to E93H ro

MSB

٧ Type:

Clock Cycles:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Loads the contents of the r-register into the 4-bit page part of index register IY. Description:

	LD YP,MX		LD YP,A	
YP register	0011	0000	0100	
A register	0100	0100	0100	
Memory (MX)	0000	0000	0000	

NOP5 No operation for 5 clock cycles

Source Format: NOP5

Operation: No operation (5 clock cycles)

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 FFBH

Type: VI
Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Increments the program counter by 1. Has no other effect for 5 clock cycles.

Example:

	NOP5		
PCB	0	0	
PCP	0011	0011	
PCS	0001 0011	0001 0100	

NOP7 No operation for 7 clock cycles

Source Format: NOP7

Operation: No operation (7 clock cycles)

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1<

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Increments the program counter by 1. Has no other effect for 7 clock cycles.

	NOP7		
PCB	0	0	
PCP	1010	1010	
PCS	1001 1001	1001 1010	

NOT r-register (one's complement)

Source Format: NOT r

Operation: $r \leftarrow \overline{r}$

OP-Code: 1 1 0 1 0 0 r₁ r₀ 1 1 1 1 D0FH to D3FH

Type: ||

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a one's complement operation on the contents of the r-register.

Example:

	NOT A		N	IOT MY
A register	1001	011	0	0110
Memory (MY)	1111	111	1	0000
Z flag	0	0		1

OR r,i Logical OR immediate data i with r-register

Source Format: OR r,i

Operation: $r \leftarrow r \lor i3 to i0$

 OP-Code:
 1 | 1 | 0 | 0 | 1 | 1 | r1 | r0 | i3 | i2 | i1 | i0 |
 CC0H to CFFH

Type: ||

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a logical OR operation between immediate data i and the contents of the

r-register. The result is stored in the r-register.

	OR B,5 OR MX,0E		OR MX,0BH
B register	0100	0101	0101
Memory (MX)	0011	0011	0111
Z flag	0	0	0

OR r,q Logical OR q-register with r-register

Source Format: OR r,q

Operation: $r \leftarrow r \lor q$

 OP-Code:
 1
 0
 1
 0
 1
 1
 0
 1
 r1
 r0
 q1
 q0
 AD0H to ADFH

Type: IV

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs a logical OR operation between the contents of the q-register and the

contents of the r-register. The result is stored in the r-register.

Example:

	OR MY,0		OR MY,0 OR A,0CH		R A,0CH
A register	0011	0011		1111	
Memory (MY)	0000	0000)	0000	
Z flag	0	1		0	

POP F Pop stack data into flags

Source Format: POP F

Operation: $F \leftarrow M(SP), SP \leftarrow SP + 1$

OP-Code: 1 1 1 1 1 1 0 1 1 0 1 0 FDAH

MSB LSB

Type: VI

Clock Cycles: 5

Flag: C - Set or Reset by M(SP) data

Z - Set or Reset by M(SP) data
D - Set or Reset by M(SP) data
I - Set or Reset by M(SP) data

Description: Replaces the flags (F) with the contents of the data memory location addressed by

1001

the stack pointer. SP is incremented by 1.

0001

 Example:
 POP F

 SP
 C0
 C1

 Memory (C0H)
 1001
 1001

Flags (I,D,Z,C)

$M(SP) = 2^{3} 2^{2} 2^{1} 2^{0}$	
C flag Z flag D flag L flag	9

POP r Pop stack data into r-register

Source Format: POP r

Operation: $r \leftarrow M(SP), SP \leftarrow SP + 1$

OP-Code: 1 1 1 1 1 1 0 1 0 0 r₁ r₀ FD0H to FD3H

Type: V

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the data memory location addressed by the stack pointer

into the r-register. SP is incremented by 1.

Example:

	POP B		
SP	C0	C1	
Memory (C0H)	1001	1001	
B register	0101	1001	

POP XH Pop stack data into XH

Source Format: POP XH

Operation: $XH \leftarrow M(SP), SP \leftarrow SP + 1$

OP-Code: 1 1 1 1 1 1 0 1 0 1 0 1 FD5H

MSB LSB

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the data memory location addressed by the stack pointer

into XH, the four high-order bits of X. SP is incremented by 1.

	POP XH		
SP	CE	CF	
Memory (CEH)	0110	0110	
XH register	0010	0110	

POP XL Pop stack data into XL

Source Format: POP XL

Operation: $XL \leftarrow M(SP), SP \leftarrow SP + 1$

 OP-Code:
 1
 1
 1
 1
 1
 1
 0
 1
 0
 1
 1
 0
 FD6H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the data memory location addressed by the stack pointer

into XL, the four low-order bits of X. SP is incremented by 1.

Example:

	POP XL		
SP	C0	C1	
Memory (C0H)	0001	0001	
XL register	1101	0001	

POP XP Pop stack data into XP

Source Format: POP XP

Operation: $XP \leftarrow M(SP), SP \leftarrow SP + 1$

 OP-Code:
 1
 1
 1
 1
 1
 0
 1
 0
 1
 0
 0
 FD4H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the data memory location addressed by the stack pointer

into XP, the 4-bit page part of IX. SP is incremented by 1.

	POP XP		
SP	B4	B5	
Memory (B4H)	0101	0101	
XP register	0111	0101	

POP YH Pop stack data into YH

> POP YH Source Format:

> > Operation: $YH \leftarrow M(SP), SP \leftarrow SP + 1$

OP-Code: 1 0 0 0 FD8H MSB LSB

VΙ Type:

Clock Cycles: 5

> C - Not affected Flag:

> > Z - Not affected D - Not affected I - Not affected

Description: Loads the contents of the data memory location addressed by the stack pointer

1101

into YH, the four high-order bits of Y. SP is incremented by 1.

POP YH Example: C1 C2 Memory (C1H) 1101 1101

0010

POP YL Pop stack data into YL

POP YL Source Format:

> $YL \leftarrow M(SP), SP \leftarrow SP + 1$ Operation:

YH register

OP-Code: FD9H MSB

VΙ Type:

Clock Cycles:

Example:

C - Not affected Flag:

> Z - Not affected D - Not affected I - Not affected

Loads the contents of the data memory location addressed by the stack pointer Description:

into YL, the four low-order bits of Y. SP is incremented by 1.

	POP	YL	$M(SP) = 2^{3} 2^{2} 2^{1} 2^{0}$
SP	CA	СВ	
Memory (CAH)	0100	0100	$\frac{21}{22} = YL$
YL register	0101	0100	22

POP YP Pop stack data into YP

Source Format: POP YP

Operation: $YP \leftarrow M(SP), SP \leftarrow SP + 1$

 OP-Code:
 1
 1
 1
 1
 1
 1
 0
 1
 0
 1
 1
 1
 1
 D7H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads the contents of the data memory location addressed by the stack pointer

into YP, the 4-bit page part of IY. SP is incremented by 1.

Example:

	POP YP		
SP	C0	C1	
Memory (C0H)	0000	0000	
YP register	0001	0000	

PSET p Page set

Source Format: PSET p

Operation: NBP \leftarrow p4, NPP \leftarrow p3 to p0

OP-Code: 1 1 1 0 0 1 0 p₄ p₃ p₂ p₁ p₀ E40H to E5FH MSB

Type: |||

Clock Cycles: 5

Flag: C - Not affected

Z - Not affectedD - Not affectedI - Not affected

Description: Loads the most-significant bit of the 5-bit immediate data p to the new bank

pointer (NBP) and the four low-order bits to the new page pointer (NPP).

	PSET 1F	FH	JP 00H
PCB	0	0	1
NBP	0	1	1
PCP	1000	1000	1111
NPP	0001	1111	1111
PCS	0010 0011	0010 0100	0000 0000

PUSH F Push flag onto stack

PUSH F Source Format:

> $SP' \leftarrow SP - 1$, $M(SP') \leftarrow F$ Operation:

OP-Code: 1 0 0 0 0 **FCAH** MSB LSB

VΙ Type:

Clock Cycles: 5

> C - Not affected Flag:

> > Z - Not affected D - Not affected Not affected

Description: Decrements the stack pointer by 1 and loads the flags (F) into the data memory

location addressed by SP.

PUSH F Example:

SP D0 CF Memory (CFH) 0100 0001 Flags (I,D,Z,C) 0001 0001

PUSH r Push r-register onto stack

PUSH r Source Format:

> $SP' \leftarrow SP - 1$, $M(SP') \leftarrow r$ Operation:

OP-Code: FC0H to FC3H ro MSB LSB

٧ Type:

Clock Cycles:

Example:

Flag: C - Not affected

> Z - Not affected D - Not affected I - Not affected

Decrements the stack pointer by 1 and loads the contents of the r-register into the Description:

data memory location addressed by SP.

PUSH XH Push XH onto stack

Source Format: PUSH XH

 $\textit{Operation:} \quad \mathsf{SP'} \leftarrow \mathsf{SP-1}, \, \mathsf{M}(\mathsf{SP'}) \leftarrow \mathsf{XH}$

 OP-Code:
 1
 1
 1
 1
 1
 1
 0
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Decrements the stack pointer by 1 and loads the contents of XH, the four high-

order bits of XHL, into the data memory location addressed by SP.

Example:

	PUSH XH		
SP	CC	CB	
Memory (CBH)	0000	1000	
XH register	1000	1000	

PUSH XL Push XL onto stack

Source Format: PUSH XL

Operation: $SP' \leftarrow SP - 1$, $M(SP') \leftarrow XL$

OP-Code: 1 1 1 1 1 1 0 0 0 1 1 0 FC6H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z - Not affectedD - Not affectedI - Not affected

Description: Decrements the stack pointer by 1 and loads the contents of XL, the four low-order

bits of XHL, into the data memory location addressed by SP.

	PUSH XL		
SP	D0	CF	
Memory (CFH)	1111	0110	
XI register	0110	0110	

PUSH XP Push XP onto stack

Source Format: PUSH XP

Operation: $SP' \leftarrow SP - 1, M(SP') \leftarrow XP$

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 0
 0
 0
 1
 0
 0
 FC4H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Decrements the stack pointer by 1 and loads the contents of XP, the page part of

IX, into the data memory location addressed by SP.

Example:

	PUSH XP		
SP	D0	CF	
Memory (CFH)	0011	0000	
XP register	0000	0000	

PUSH YH Push YH onto stack

Source Format: PUSH YH

Operation: $SP' \leftarrow SP - 1$, $M(SP') \leftarrow YH$

 OP-Code:
 1
 1
 1
 1
 1
 0
 0
 1
 0
 0
 0
 ESB

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Decrements the stack pointer by 1 and loads the contents of YH, the four high-

order bits of YHL, into the data memory location addressed by SP.

Example: PUSH YH

	PUSH TH			
SP	BF	BE		
Memory (BEH)	0100	0001		
YH register	0001	0001		

PUSH YL Push YL onto stack

Source Format: PUSH YL

Operation: $SP' \leftarrow SP - 1$, $M(SP') \leftarrow YL$

 OP-Code:
 1
 1
 1
 1
 1
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 D
 0
 1
 D
 D
 ISB
 FC9H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Decrements the stack pointer by 1 and loads the contents of YL, the four low-order

bits of YHL, into the data memory location addressed by SP.

Example:

	PUSH YL		
SP	D0	CF	
Memory (CFH)	0001	0111	
YL register	0111	0111	

PUSH YP Push YP onto stack

Source Format: PUSH YP

Operation: $SP' \leftarrow SP - 1$, $M(SP') \leftarrow YP$

 OP-Code:
 1
 1
 1
 1
 1
 0
 0
 0
 1
 1
 1
 TC7H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z - Not affectedD - Not affectedI - Not affected

Description: Decrements the stack pointer by 1 and loads the contents of YP, the page part of

IY, into the data memory location addressed by SP.

	PUSH YP		
SP	C0	BF	
Memory (BFH)	1111	0000	
VP register	0000	0000	

RCF Reset carry flag

> Source Format: **RCF**

> > $C \leftarrow 0$ Operation:

OP-Code: 1 1 0 F5EH 0 1 | 1 LSB MSB

Type: VΙ

Clock Cycles: 7

> Flag: C - Reset

> > Z - Not affected D - Not affected I - Not affected

Description: Resets the C (carry) flag.

Example:

	ADD A,	4	RCF
A register	1101	0001	0001
C flag	0	1	0

RDF Reset decimal flag

> Source Format: **RDF**

> > Operation: $D \leftarrow 0$

OP-Code: F5BH 1 1 0 1 0 LSB

MSB

Type: VI

7 Clock Cycles:

> Flag: C - Not affected

> > Z - Not affected D - Reset

I - Not affected

Resets the D (decimal) flag. Description:

	ADD A,8 RE)F	LD	A,6	Α	DD A,8	
A register	0110	01	00	01	00	01	10	1110
D flag	1	1		()	()	0
C flag	0	1		1		1		0
Z flag	0	()	()	()	0

RET

Return from subroutine

Source Format: RET

Operation: $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2), SP \leftarrow SP + 3$

 OP-Code:
 1
 1
 1
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1<

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description:

Jumps to the return address that was pushed onto the stack when the subroutine

was called.

Example:

	RET			
PCP	1101	0010		
PCS	1000 1101	0010 1101		
SP	BD	C0		
Memory (SP)	1101	1101		
Memory (SP+1)	0010	0010		
Memory (SP+2)	0010	0010		

RETD e

Load immediate data e to memory, and increment X by 2, then return

Source Format: RETD e

Operation: $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2), SP \leftarrow SP + 3,$

 $M(X) \leftarrow e_3 \text{ to } e_0, M(X+1) \leftarrow e_7 \text{ to } e_4, X \leftarrow X+2$

 OP-Code:
 0
 0
 1
 e7
 e6
 e5
 e4
 e3
 e2
 e1
 e0
 MSH
 LSB

Type:

Clock Cycles: 12

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Loads 8-bit immediate data e into the data memory location addressed by IX and

executes the RET command. X is incremented by 2.

	RETD F5H			
PCP	0000	0010		
PCS	1010 1011	0010 1101		
SP	BD	C0		
Memory (SP)	1101	1101		
Memory (SP+1)	0010	0010		
Memory (SP+2)	0010 0010			
X register	0010 1010	0010 1100		
Memory (2AH)	0000	0101		
Memory (2BH)	0000	1111		

RETS Return then skip an instruction

Source Format: RETS

Operation: $PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2), SP \leftarrow SP + 3, PC \leftarrow PC + 1$

OP-Code: 1 1 1 1 1 1 0 1 1 1 0 FDEH

Type: VI

Clock Cycles: 12

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Jumps to the return address that was pushed onto the stack when the subroutine

was called and then skips one instruction.

Example:

	RETS			
PCP	0110 0000			
PCS	1001 0000	0000 0111		
SP	B0	B3		
Memory (SP)	0110	0110		
Memory (SP+1)	0000	0000		
Memory (SP+2)	0000	0000		

RLC r Rotate r-register left with carry

Source Format: RLC r

Operation: $d_3 \leftarrow d_2, d_2 \leftarrow d_1, d_1 \leftarrow d_0, d_0 \leftarrow C, C \leftarrow d_3$

 OP-Code:
 1 0 1 0 1 1 1 1 1 1 r1 r0 r1 r0
 AF0H to AFFH

Type: IV

Clock Cycles: 7

Flag: **C** – Set when the high-order bit of the r-register is 1; otherwise, reset.

Z - Not affectedD - Not affectedI - Not affected

Description: Shifts the contents of the r-register one bit to the left. The high-order bit is shifted

into the carry flag and the carry bit becomes the low-order bit of the r-register.

	RLC A		
A register	0011	0111	
C flag	1	0	

Rotate r-register right with carry

Source Format: RRC r

Operation: $d_3 \leftarrow C$, $d_2 \leftarrow d_3$, $d_1 \leftarrow d_2$, $d_0 \leftarrow d_1$, $C \leftarrow d_0$

 OP-Code:
 1
 1
 1
 0
 1
 0
 0
 1
 1
 ro
 E8CH to E8FH

Type: V

Clock Cycles: 5

Flag: C - Set when the low-order bit of the r-register is 1; otherwise, reset.

Z – Not affectedD – Not affectedI – Not affected

Description: Shifts the contents of the r-register one bit to the right. The low-order bit is shifted

into the carry flag and the carry bit becomes the high-order bit of the r-register.

Example:

	RRC MY		
Memory (MY)	1010	1101	
C flag	1	0	

RST F,i Reset flags using immediate data i

Source Format: RST F,i

Operation: $F \leftarrow F \land is to io$

 OP-Code:
 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | i3 | i2 | i1 | i0 |
 F50H to F5FH

Type: IV

Clock Cycles: 7

Flag: C - Reset if io is zero; otherwise, not affected.

Z - Reset if i¹ is zero; otherwise, not affected.
 D - Reset if i² is zero; otherwise, not affected.
 I - Reset if i³ is zero; otherwise, not affected.

Description: Performs a logical AND operation between immediate data i and the contents of

the flags. The result is stored in each respective flag.

Example: RST F,2
Flags (I,D,Z,C) 1010 0010

RESET ZETO flag

Source Format: RZF

Operation: $Z \leftarrow 0$

 OP-Code:
 1
 1
 1
 1
 0
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z – Reset

D – Not affectedI – Not affected

Description: Resets the Z (zero) flag.

Example:

	ADD A,3			RZF
Z flag	0	1		0
A register	1101	00	00	0000

SBC r,i Subtract with carry immediate data i from r-register

Source Format: SBC r,i

Operation: $r \leftarrow r - i3$ to io - C

 OP-Code:
 1
 1
 0
 1
 r1
 r0
 i3
 i2
 i1
 i0
 D40H to D7FH

Type: ||

Clock Cycles: 7

Flag: C - Set if a borrow is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Subtracts the carry flag and immediate data i from the r-register.

	SBC A,9		SBC MY,0DH	
A register	1000	11	11	1111
Memory (MY)	1110	11	10	0000
C flag	0	1		0
Z flag	0	C)	1

SBC r,q Subtract with carry q-register from r-register

Source Format: SBC r,q

Operation: $r \leftarrow r - q - C$

 OP-Code:
 1
 0
 1
 0
 1
 0
 1
 1
 r1
 r0
 q1
 q0
 AB0H to ABFH

Type: IV

Clock Cycles: 7

Flag: C - Set if a borrow is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Subtracts the carry flag and the contents of the q-register from the r-register.

Example:

	SBC A,	В	SBC	MY,MX
A register	1110	1011		1011
B register	0010	0010		0010
Memory (MX)	1001	1001		1001
Memory (MY)	0100	0100		1011
C flag	1	0		1
Z flag	0	0		0

SCF Set carry flag

Source Format: SCF

Operation: $C \leftarrow 1$

OP-Code: 1 1 1 1 0 1 0 0 0 0 1 F41H

MSB

Type: VI

Clock Cycles: 7

Flag: C - Set

Z – Not affectedD – Not affectedI – Not affected

Description: Sets the C (carry) flag.

	SCF	
C flag	0	1

SCPX MX,r Subtract with carry r-register from M(X) and increment X by 1

Source Format: SCPX MX,r

Operation: $M(X) \leftarrow M(X) - r - C, X \leftarrow X + 1$

OP-Code: 1 1 1 1 0 0 1 1 1 0 0 r₁ r₀ F38H to F3BH

Type: V

Clock Cycles: 7

Flag: C - Set if a borrow is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Subtracts the carry flag and the contents of the r-register from the data memory

location addressed by IX. X is incremented by 1. Incrementing X does not affect

the flags.

Example:

	SCPX MX,B		
X register	0101 0000	0101 0001	
Memory (50H)	0110	0100	
B register	0010	0010	
C flag	0	0	
Z flag	0	0	

SCPY MY,r Subtract with carry r-register from M(Y) and increment Y by 1

Source Format: SCPY MY,r

Operation: $M(Y) \leftarrow M(Y) - r - C, Y \leftarrow Y + 1$

Type: V

Clock Cycles: 7

Flag: C - Set if a borrow is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Subtracts the carry flag and the contents of the r-register from the data memory

location addressed by IY. Y is incremented by 1. Incrementing Y does not affect

the flags.

	SCPY MY,A		
Y register	1111 1111	0000 0000	
Memory (FFH)	0111	0100	
A register	0010	0010	
C flag	1	0	
Z flag	1	0	

SDF Set decimal flag

Source Format: SDF

Operation: $D \leftarrow 1$

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z - Not affected

D - Set

I - Not affected

Description: Sets the D (decimal) flag.

Example:

	SDF	
D flag	0	1

SET F,i Set flags using immediate data i

Source Format: SET F,i

Operation: $F \leftarrow F \lor is to io$

 OP-Code:
 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | i3 | i2 | i1 | i0 |
 F40H to F4FH

Type: IV

Clock Cycles: 7

Flag: C - Set if io is 1; otherwise, not affected.

Z - Set if i₁ is 1; otherwise, not affected.
D - Set if i₂ is 1; otherwise, not affected.
I - Set if i₃ is 1; otherwise, not affected.

Description: Performs a logical OR operation between immediate data i and the contents of the

flags. The results are stored in each respective flag.

Example: SET F,0DH
Flags (C,Z,D,I) 0011 1111

SLP Sleep

Source Format: SLP

Operation: Stop CPU and peripheral oscillator

 OP-Code:
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 0
 1
 FF9H

Type: VI

Clock Cycles: 5

Flag: C - Not affected

Z – Not affectedD – Not affectedI – Not affected

Description: Stops the CPU and the peripheral oscillator. When an interrupt occurs PCP and

PCS are pushed onto the stack as the return address and the interrupt service

routine is executed.

Example:

	Instruction	State	PCP	PCS	I flag
		RUN	0100	0011 0000	1
	SLP		0100	0011 0001	1
		SLEEP			
Interrupt →	NOP5	RUN			
			0001	0000 0001	0

SUB r,q Subtract q-register from r-register

Source Format: SUB r,q

Operation: $r \leftarrow r - q$

 OP-Code:
 1 0 1 0 1 0 1 0 1 0 r1 r0 q1 q0
 AA0H to AAFH

Type: IV

JI

Clock Cycles: 7

Flag: C - Set if a borrow is generated; otherwise, reset.

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Subtracts the contents of the q-register from the r-register.

	SUB A,B		
A register	1100	1001	
B register	0011	0011	
C flag Z flag	1	0	
Z flag	0	0	

SZF Set zero flag

Source Format: SZF

Operation: $Z \leftarrow 1$

Type: VI

Clock Cycles: 7

Flag: C - Not affected

Z - Set

D – Not affectedI – Not affected

Description: Sets the Z (zero) flag.

Example:

	SZF	
Z flag	0	1

XOR r,i Exclusive-OR immediate data i with r-register

Source Format: XOR r,i

Operation: $r \leftarrow r \ \forall is to io$

 OP-Code:
 1
 1
 0
 1
 0
 0
 r1
 r0
 i3
 i2
 i1
 i0
 D00H to D3FH

Type: ||

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs an exclusive-OR operation between immediate data i and the contents

of the r-register. The result is stored in the r-register.

	XOR A,	R A,12 XOR MX,1	
A register	0110	1010	1010
Memory (MX)	0001	0001	0000
Z flag	0	0	1

XOR r,q Exclusive-OR q-register with r-register

Source Format: XOR r,q

Operation: $r \leftarrow r \forall q$

 OP-Code:
 1 0 1 0 1 0 1 1 1 1 0 r1 r0 q1 q0
 AE0H to AEFH

Type: IV

Clock Cycles: 7

Flag: C - Not affected

Z – Set if the result is zero; otherwise, reset.

D – Not affectedI – Not affected

Description: Performs an exclusive-OR operation between the contents of the q-register and

the contents of the r-register. The result is stored in the r-register.

	XOR A,N	ΛY	XOR MX,B
A register	0100	1100	1100
B register	1111	1111	1111
Memory (MX)	0111	0111	1000
Memory (MY)	1000	1000	1000
Z flag	0	0	0

ABBREVIATIONS

A A register (4 bits) B
M(SP) Contents of the data memory location whose address is specified by stack pointer SP (4 bits)
M(X) Contents of the data memory location whose address is specified by IX (4 bits)
M(Y) Contents of the data memory location whose address is specified by IY (4 bits)
M(n ₃ - ₀) Contents of the data memory location within the register area 00H to 0FH (4 bits)
MX Data memory location whose address is specified by IX
MY Data memory location whose address is specified by IY
NBP New Bank Pointer (1 bit)
NPP New Page Pointer (4 bits)
PCB Program Counter-Bank (1 bit)
PCP Program Counter-Page (4 bits)
PCS Program Counter-Step (8 bits)
PCSH Four high-order bits of PCS
PCSL Four low-order bits of PCS
RP Register Pointer (4 bits)
SP Stack Pointer (8 bits)
SPH Four high-order bits of SP
SPL Four low-order bits of SP
X Eight low-order bits of IX, that is, XHL
XH Four high-order bits of X
XL Four low-order bits of X
XP Four high-order bits of IX (page part)
Y Eight low-order bits of IY, that is, YHL
YH Four high-order bits of Y
YL Four low-order bits of Y
YP Four high-order bits of IY (page part)
+ Addition
Subtraction
∧Logical AND
vLogical OR
∀ Exclusive-OR
↓Reset flag
↑ Set flag
Set/reset flag
* Decimal addition/subtraction

APPENDIX A. E0C6200A (ADVANCED E0C6200) CORE CPU

E0C6200A is an improved version of the E0C6200. In this section, E0C6200A is described only in terms of its differences with E0C6200. It is recommended that users of E0C6200A read this section.

E0C6200A is a Core CPU which has been made easier to integrate software by improving the parts of the E0C6200 CPU which are difficult to use.

This section lists its differences with E0C6200; for items which are not included here, refer to the corresponding section in this manual.

A1 Outline of Differences

- The D (decimal) flag is set to "0" during initial reset.
- Modifications of the interrupt circuit
 - The interrupt timing has been shifted to 0.5 clock later.
 - <Reference> In the 1-chip micro controller which uses E0C6200A, writing on the interrupt mask
 register and reading the interrupt factor flag during EI (enable interrupt flag) are possible. (However,
 consult the respective hardware manuals to find out whether these are possible with the CPU peripheral circuits.)

A2 Detailed Description of the Differences

A2.1 Initial reset

The D (decimal) flag will be set as follows through initial reset:

Table A2.1.1 D (decimal) flag initial setting

CPU Core	E0C6200A	E0C6200
D (decimal) flag setting	0	Undefined

Owing to this, bugs due to omission of D (decimal) flag setting during software development can now be easily prevented.

For the values of other registers and flags during initial reset, see Section 2.5.4, "Initial reset".

A2.2 Interrupt

Operation during interrupt issuance

The time it takes to complete interrupt processing by hardware after the Core CPU receives the interrupt request has changed as follows:

Table A2.2.1 Required interrupt processing time

Item		E0C6200A	E0C6200
		(clock cycles)	(clock cycles)
a) During instruction execution	12-cycle instruction execution	12.5 to 24.5	13 to 25
	7-cycle instruction execution	12.5 to 19.5	13 to 20
	5-cycle instruction execution	12.5 to 17.5	13 to 18
b) At HALT mode		14 to 15	14 to 15
c) During PSET instruction execution	PSET + CALL	12.5 to 24.5	13 to 25
	PSET + JP	12.5 to 22.5	13 to 23

Figure A2.2.1 shows the timing chart of the E0C6200A interrupt.

a) During instruction execution

b) At HALT mode

c) During "PSET" instruction execution

Fig. A2.2.1 Timing chart of E0C6200A interrupt

<Reference 1> Writing on the interrupt mask register during EI

This section describes the operation for writing on the interrupt mask register during EI (enable interrupt flag) in the regular 1-chip micro controller which uses E0C6200 Core CPU and in the regular 1-chip micro controller which uses E0C6200A Core CPU. For information on accurate operation, see the respective hardware manuals of the E0C62 Family.

Table A2.2.2 Writing on the interrupt mask register at EI

CPU Core	E0C6200A	E0C6200
Writing on the interrupt mask register at EI	Possible	Not possible

The operation during the instruction execution for writing "0" (i.e., to mask the interrupt factor) on the interrupt mask register at EI is shown in Figure A2.2.2. At this point, the interrupt is masked 0.5 clock before the start of the instruction execution through the 0.5 clock advance operation.

Moreover, during the instruction execution for writing "1" (i.e., to cancel the interrupt mask) on the mask register at EI, it is the same as the ordinary interrupt timing as shown in Figure A2.2.2. In other words, if the interrupt factor flag value is set to "1", the interrupt processing by hardware will start in the next instruction execution cycle 0.5 clock before the completion of the instruction execution.

Fig. A2.2.2 Writing on the interrupt mask register and interrupt request generation

<Reference 2> Reading the interrupt factor flag during El

This section describes the operation for reading the interrupt factor flag during EI (enable interrupt flag) in the regular 1-chip micro controller which uses E0C6200 Core CPU and in the regular 1-chip micro controller which uses E0C6200A Core CPU. For information on accurate operation, see the respective hardware manuals of the E0C62 Family.

Table A2.2.3 Reading the interrupt factor flag at EI

CPU Core	E0C6200A	E0C6200
Reading the interrupt factor flag at EI	Possible	Not possible

At EI, reading the interrupt factor flag is possible but caution must be observed in the following case: when the value of the interrupt mask register corresponding to the interrupt factor flag which is to be read is set to "1" (unmasked). In this case, interrupt request may be issued to the CPU due to the timing by which the interrupt factor flag is set to "1", or the interrupt factor flag may be cleared by reading it and hence interrupt request will not be issued.

Particularly when there are multiple interrupt factor flags in the same address, extra caution is required.

APPENDIX B. INSTRUCTION INDEX

Α	ACPX MX,r	Add with carry r-register to M(X), increment X by 1	28
_	ACPY MY,r	Add with carry r-register to M(Y), increment Y by 1	28
	ADC r,i	Add with carry immediate data i to r-register	29
	ADC r,q	Add with carry q-register to r-register	29
	ADC XH,i	Add with carry immediate data i to XH	30
	ADC XL,i	Add with carry immediate data i to XL	30
	ADC YH,i	Add with carry immediate data i to YH	31
	ADC YL,i	Add with carry immediate data i to YL	31
	ADD r,i	Add immediate data i to r-register	32
	ADD r,q	Add q-register to r-register	32
	AND r,i	Logical AND immediate data i with r-register	33
	AND r,q	Logical AND q-register with r-register	33
C	CALL s	Call subroutine	34
	CALZ s	Call subroutine at page zero	34
	CP r,i	Compare immediate data i with r-register	35
	CP r,q	Compare q-register with r-register	35
	CP XH,i	Compare immediate data i with XH	36
	CP XL,i	Compare immediate data i with XL	36
	CP YH,i	Compare immediate data i with YH	37
	CP YL,i	Compare immediate data i with YL	37
D	DEC Mn	Decrement memory	<i>3</i> 8
	DEC SP	Decrement stack pointer	<i>3</i> 8
	DI	Disable interrupts	39
Ε	EI	Enable interrupts	39
F	FAN r,i	Logical AND immediate data i with r-register for flag check	40
•	FAN r,q	Logical AND q-register with r-register for flag check	40
Н	HALT	Halt	41
1	INC Mn	Increment memory by 1	41
_	INC SP	Increment stack pointer by 1	42
	INC X	Increment X-register by 1	42
	INC Y	Increment Y-register by 1	43
J	JPBA	Indirect jump using registers A and B	
-	JP C,s	Jump if carry flag is set	
	JP NC,s	Jump if not carry	44
	JP NZ,s	Jump if not zero	
	JP s	Jump	45
	JP Z,s	Jump if zero	46

1	LBPX MX,e	Load immediate data e to memory, and increment X by 2	46
_	LD A,Mn	Load memory into A-register	47
	LD B,Mn	Load memory into B-register	47
	LD Mn,A	Load A-register into memory	48
	LD Mn,B	Load B-register into memory	
	LDPX MX,i	Load immediate data i into MX, increment X by 1	
	LDPX r,q	Load q-register into r-register, increment X by 1	
	LDPY MY,i	Load immediate data i into MY, increment Y by 1	
	LDPY r,q	Load q-register into r-register, increment Y by 1	
	LD r,i	Load immediate data i into r-register	
	LD r,q	Load q-register into r-register	
	LD r,SPH	Load SPH into r-register	
	LD r,SPL	Load SPL into r-register	
	LD r,XH	Load XH into r-register	
	LD r,XL	Load XL into r-register	
	LD r,XP	Load XP into r-register	
	LD r,YH	Load YH into r-register	
	LD r,YL	Load YL into r-register	
	LD r,YP	Load YP into r-register	
	LD 7,11 LD SPH,r	Load r-register into SPH	
	LD SPL,r	Load r-register into SPL	
	LD SI L,I LD X,e	Load immediate data e into X-register	
	LD XH,r	Load r-register into XH	
	LD XL,r	Load r-register into XL	
	LD XP,r	Load r-register into XP	
	LD XI,I LD Y,e	Load immediate data e into Y-register	
	LD 1,e LD YH,r	Load r-register into YH	
	,		
	LD YL,r	Load r-register into YL	
	LD YP,r	Load r-register into YP	60
N	NOP5	No operation for 5 clock cycles	61
	NOP7	No operation for 7 clock cycles	61
	NOT r	NOT r-register (one's complement)	62
_	OD:	Locical OD immediate data i with a recietar	62
U	OR r,i	Logical OR immediate data i with r-register Logical OR q-register with r-register	
	OR r,q	Logical OK q-register with r-register	03
Р	POP F	Pop stack data into flags	63
•	POP r	Pop stack data into r-register	64
	POP XH	Pop stack data into XH	64
	POP XL	Pop stack data into XL	65
	POP XP	Pop stack data into XP	65
	POP YH	Pop stack data into YH	66
	POP YL	Pop stack data into YL	66
	POP YP	Pop stack data into YP	67
	PSET p	Page set	
	PUSH F	Push flag onto stack	68

Р	PUSH r	Push r-register onto stack	68
•	PUSH XH	Push XH onto stack	69
	PUSH XL	Push XL onto stack	69
	PUSH XP	Push XP onto stack	70
	PUSH YH	Push YH onto stack	70
	PUSH YL	Push YL onto stack	71
	PUSH YP	Push YP onto stack	71
R	RCF	Reset carry flag	72
•	RDF	Reset decimal flag	72
	RET	Return from subroutine	73
	RETD e	Load immediate data e to memory, and increment X by 2, then retu	rn 73
	RETS	Return then skip an instruction	74
	RLC r	Rotate r-register left with carry	74
	RRC r	Rotate r-register right with carry	75
	RST F,i	Reset flags using immediate data i	75
	RZF	Reset zero flag	76
S	SBC r,i	Subtract with carry immediate data i from r-register	76
	SBC r,q	Subtract with carry q-register from r-register	77
	SCF	Set carry flag	77
	SCPX MX,r	Subtract with carry r-register from $M(X)$ and increment X by 1	78
	SCPY MY,r	Subtract with carry r-register from $M(Y)$ and increment Y by $1 \dots$	78
	SDF	Set decimal flag	79
	SET F,i	Set flags using immediate data i	79
	SLP	Sleep	80
	SUB r,q	Subtract q-register from r-register	80
	SZF	Set zero flag	81
X	XOR r,i	Exclusive-OR immediate data i with r-register	81
	XOR r,q	Exclusive-OR q-register with r-register	82

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

- TAIWAN -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN

Phone: 02-2717-7360 Fax: 02-2712-9164

Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2

HsinChu 300, TAIWAN

Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices.

Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website http://www.epson.co.jp/device/