Aufgabe	A21	A22	A23	A24	Σ
Punkte					

Aufgabe 21. (a) Beh.: $\mathbb{P}(\cdot \mid B)$ ist Wahrscheinlichkeitsmaß auf (Ω, A) .

Beweis. (i) Es ist für $A \in \mathcal{A}$: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A|B)}{\mathbb{P}(B)} \geq 0$, da \mathbb{P} W'maß.

(ii)
$$\mathbb{P}(\Omega|B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.$$

(iii) Seien $A_i \in \mathcal{A}$ mit A_i paarweise disjunkt. Dann folgt

$$\begin{split} \mathbb{P}\left(\bigcup_{i\in\mathbb{N}}A_i\right) &= \frac{\mathbb{P}\left(\left(\bigcup_{i\in\mathbb{N}}A_i\right)\cap B\right)}{\mathbb{P}(B)} \\ &= \frac{\mathbb{P}\left(\bigcup_{i\in\mathbb{N}}(A_i\cap B)\right)}{\mathbb{P}(B)} \\ &= \sum_{i\in\mathbb{N}}\frac{\mathbb{P}(A_i\cap B)}{\mathbb{P}(B)} \\ &= \sum_{i\in\mathbb{N}}\mathbb{P}(A_i|B), \end{split}$$

wobei im 3. Schritt die σ -Additivität von \mathbb{P} ausgenutzt wurde.

(b) Es ist beispielsweise mit
$$A = \emptyset$$
: $\mathbb{P}(\emptyset|\Omega) = \frac{\mathbb{P}(\emptyset \cap \Omega)}{\mathbb{P}(\Omega)} = \frac{0}{1} = 0 \neq 1$.

Aufgabe 22. Ist X ein Ereignis, so bezeichne \overline{X} das Gegenereignis zu X. Wir definieren R, V und S wie im Hinweis. Nach Aufgabenstellung gilt $\mathbb{P}(R) = \frac{1}{2}, \mathbb{P}(V|R) = \frac{2}{3}$ und $\mathbb{P}(V|\overline{R}) = \frac{2}{3}$. Sei A das Ereignis, dass Regen vorhergesagt wird. A tritt genau dann ein, wenn es regnet und die Wettervorhersage recht hat oder wenn es nicht regnet und die Wettervorhersage falsch liegt. Es gilt daher $A = R \cap V \cup \overline{R} \cap \overline{V}$ und nach den De Morganschen Regeln

$$\overline{A} = \overline{R \cap V} \cap \overline{\overline{R} \cap \overline{V}} = (\overline{R} \cup \overline{V}) \cap (R \cup V) = \overline{R} \cap V \cup \overline{V} \cap R$$

Weiter gilt $\mathbb{P}(S|A) = 1$ und $\mathbb{P}(S|\overline{A}) = \frac{1}{3}$. Da Mr. Pickwick nicht weiß, ob es regnen wird oder nicht, gilt sogar $\mathbb{P}(S|A \cap R) = \mathbb{P}(S|A \cap \overline{R}) = 1$ und $\mathbb{P}(S|\overline{A} \cap R) = \mathbb{P}(S|\overline{A} \cap \overline{R})$. Daraus erhalten wir

$$1 = \mathbb{P}(S|A \cap R) = \frac{\mathbb{P}(S \cap A \cap R)}{\mathbb{P}(A \cap R)} \implies \mathbb{P}(S \cap A \cap R) = \mathbb{P}(A \cap R),$$

$$1 = \mathbb{P}(S|A \cap \overline{R}) = \frac{\mathbb{P}(S \cap A \cap \overline{R})}{\mathbb{P}(A \cap \overline{R})} \implies \mathbb{P}(S \cap A \cap \overline{R}) = \mathbb{P}(A \cap \overline{R}),$$

$$\frac{1}{3} = \mathbb{P}(S|\overline{A} \cap R) = \frac{\mathbb{P}(S \cap \overline{A} \cap R)}{\mathbb{P}(\overline{A} \cap R)} \implies \mathbb{P}(S \cap \overline{A} \cap R) = \frac{1}{3}\mathbb{P}(\overline{A} \cap R),$$

$$\frac{1}{3} = \mathbb{P}(S|\overline{A} \cap \overline{R}) = \frac{\mathbb{P}(S \cap \overline{A} \cap \overline{R})}{\mathbb{P}(\overline{A} \cap \overline{R})} \implies \mathbb{P}(S \cap \overline{A} \cap \overline{R}) = \frac{1}{3}\mathbb{P}(\overline{A} \cap \overline{R}),$$

Zudem gilt

$$\frac{2}{3} = \mathbb{P}(V|R) = \frac{\mathbb{P}(V \cap R)}{\mathbb{P}(R)} = 2P(V \cap R) \implies P(V \cap R) = \frac{1}{3}$$

$$\frac{2}{3} = \mathbb{P}(V|\overline{R}) = \frac{\mathbb{P}(V \cap \overline{R})}{\mathbb{P}(\overline{R})} = 2P(V \cap \overline{R}) \implies P(V \cap \overline{R}) = \frac{1}{3}$$

Daraus erhalten wir wegen $\mathbb{P}(X \cap Y + \mathbb{P}(X \cap \overline{Y}) = \mathbb{P}(X)$ sofort

$$\begin{split} \mathbb{P}(\overline{V} \cap R) &= \mathbb{P}(R) - \mathbb{P}(V \cap R) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \\ \mathbb{P}(\overline{V} \cap \overline{R}) &= \mathbb{P}(\overline{R}) - \mathbb{P}(V \cap \overline{R}) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \end{split}$$

(a) Gesucht ist $\mathbb{P}(\overline{S}|R)$. Wir berechnen zunächst

$$\begin{split} \mathbb{P}(S \cap R) &= \mathbb{P}(S \cap R \cap A) + \mathbb{P}(S \cap R \cap \overline{A}) \\ &= \mathbb{P}(S \cap A \cap R) + \mathbb{P}(S \cap \overline{A} \cap R) \\ &= \mathbb{P}(A \cap R) + \frac{1}{3}\mathbb{P}(\overline{A} \cap R) \\ &= \mathbb{P}((R \cap V \cup \overline{R} \cap \overline{V}) \cap R) + \frac{1}{3}\mathbb{P}((\overline{R} \cap V \cup \overline{V} \cap R) \cap R) \\ &= \mathbb{P}(R \cap V) + \frac{1}{3}\mathbb{P}(R \cap \overline{V}) \\ &= \frac{1}{3} + \frac{1}{3}\frac{1}{6} = \frac{7}{18} \end{split}$$

Es gilt daher

$$\begin{split} \mathbb{P}(\overline{S}|R) &= \frac{\mathbb{P}(\overline{S} \cap R)}{\mathbb{P}(R)} \\ &= 2 \cdot (\mathbb{P}(R) - \mathbb{P}(S \cap R)) \\ &= 1 - 2\mathbb{P}(S \cap R) \\ &= 1 - 2\frac{7}{18} = \frac{18}{18} - \frac{14}{18} = \frac{2}{9} \end{split}$$

(b) Gesucht ist $\mathbb{P}(S|\overline{R})$. Wir berechnen zunächst

$$\begin{split} \mathbb{P}(S \cap \overline{R}) &= \mathbb{P}(S \cap \overline{R} \cap A) + \mathbb{P}(S \cap \overline{R} \cap \overline{A}) \\ &= \mathbb{P}(S \cap A \cap \overline{R}) + \mathbb{P}(S \cap \overline{A} \cap \overline{R}) \\ &= \mathbb{P}(A \cap \overline{R}) + \frac{1}{3} \mathbb{P}(\overline{A} \cap \overline{R}) \\ &= \mathbb{P}((R \cap V \cup \overline{R} \cap \overline{V}) \cap \overline{R}) + \frac{1}{3} \mathbb{P}((\overline{R} \cap V \cup \overline{V} \cap R) \cap \overline{R}) \\ &= \mathbb{P}(\overline{R} \cap \overline{V}) + \frac{1}{3} \mathbb{P}(\overline{R} \cap V) \\ &= \frac{1}{6} + \frac{1}{3} \frac{1}{3} = \frac{5}{18} \end{split}$$

Es gilt daher

$$\mathbb{P}(S|\overline{R}) = \frac{\mathbb{P}(S \cap \overline{R})}{\mathbb{P}(\overline{R})}$$
$$= 2 \cdot \mathbb{P}(S \cap \overline{R})$$
$$= 2\frac{5}{18} = \frac{10}{18} = \frac{5}{9}$$

Aufgabe 23. (a) Sei $A \in \mathcal{A}$. Dann ist $\mathbb{P}(\Omega \cap A) = \mathbb{P}(A) = 1 \cdot \mathbb{P}(A) = \mathbb{P}(\Omega)\mathbb{P}(A)$. Außerdem gilt $\mathbb{P}(\emptyset \cap A) = \mathbb{P}(\emptyset) = 0 = 0 \cdot \mathbb{P}(A) = \mathbb{P}(\emptyset)\mathbb{P}(A)$.

- (b) Seien A, B, C gemeinsam stochastisch unabhängig. Dann ist $\mathbb{P}((A \cap B) \cap C) = \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = \mathbb{P}(A \cap B)\mathbb{P}(C)$. Außerdem gilt $\mathbb{P}((A \cup B) \cap C) = \mathbb{P}((A \cap B) \cup (B \cap C)) = \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C) \mathbb{P}(A \cap C) \cap (B \cap C) = \mathbb{P}(A)\mathbb{P}(C) + \mathbb{P}(B)\mathbb{P}(C) \mathbb{P}(A \cap B \cap C) = \mathbb{P}(C)(\mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)) = \mathbb{P}(C)\mathbb{P}(A \cup B)$.
- (c) Da der Würfel Laplace verteilt angenommen ist, folgt direkt $\mathbb{P}(A) = \frac{1}{2}$ und $\mathbb{P}(B) = \frac{1}{2}$. Da die Summe der Augenzahlen genau dann gerade ist, wenn einer der Würfe eine gerade und einer der Würfe eine ungerade Zahl ergibt, folgt $\mathbb{P}(C) = \frac{1}{2}$. Dabei gilt $\mathbb{P}(A \cap B \cap C) = 0$, da die Summe der Augenzahlen gerade ist, falls beide Würfe gerade Augenzahlen ergeben.

Die Ereignisse A, B, C sind paarweise unabhängig, denn

$$\mathbb{P}(A\cap C)=\mathbb{P}(,1. \text{ Wurf gerade, 2. ungerade"})=\frac{1}{4}=\mathbb{P}(A)\mathbb{P}(C)$$

$$\mathbb{P}(A\cap B)=\mathbb{P}(,1. \text{ und 2. Wurf gerade"})=\frac{1}{4}=\mathbb{P}(A)\mathbb{P}(B)$$

$$\mathbb{P}(B\cap C)=\mathbb{P}(,1. \text{ Wurf ungerade, 2. gerade"})=\frac{1}{4}=\mathbb{P}(B)\mathbb{P}(C).$$

Aber
$$\mathbb{P}(A \cap B \cap C) = 0 \neq \frac{1}{8} = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$$

Aufgabe 24. Sei N die Anzahl der (nicht notwendigerweise verschiedenen) Zeichen in Goethes Faust und M die Menge der verschiedenen Zeichen in Goethes Faust. Sei $\Omega = M^{\mathbb{N}}$. Sei dann

$$A_n := \{ \omega \in \Omega \colon \forall i \in [n, n+N-1] \colon \omega_i = G_{i-n} \},\$$

wobei G_i das *i*-te Zeichen von Goethes Faust bezeichne. Die Ereignisse $(A_{kN})_{k\in\mathbb{N}}$ sind dann offensichtlich stochastisch unabhängig (analog zu Beispiel 14.8(b)) und es gilt $\mathbb{P}(A_i) = \frac{1}{(\#M)^N}$, also insbesondere

$$\sum_{k \in \mathbb{N}} \mathbb{P}(A_{kN}) = \sum_{k \in \mathbb{N}} \frac{1}{(\#M)^N} = \infty.$$

Nach dem Lemma von Borel-Cantelli gilt daher $\mathbb{P}(\limsup_{k\to\infty}A_{kN})=1$. $(A_{kN})_{k\in\mathbb{N}}$ ist eine Teilfolge von $(A_n)_{n\in\mathbb{N}}$, also gilt auch $\mathbb{P}(\limsup_{n\to\infty}A_n)=1$. Die Menge $\limsup_{n\to\infty}A_n$ enthält gerade die $\omega\in\Omega$, die in unendlich vielen A_n enthalten sind, also genau die Zeichenfolgen, in denen der Affe unendlich oft Goethes Faust tippt. Eines dieser Ereignisse tritt mit Wahrscheinlichkeit 1 ein.