UNIVERSITY COLLEGE LONDON DEPARTMENT OF SPACE AND CLIMATE PHYSICS

Candidate Code: HYXC3

Programme Title: MSc Scientific Computing

Module Code: SPCE0038

Module Title: Machine Learning with Big Data

End Assessment

In submitting this coursework, I assert that the work presented is entirely my own except where properly marked and cited.

Date of dd/mm/yy Submission:

Question 1

1(a)

Referring to the diagram of the Basic Logistic Unit on the following page:

 $a=h(z) \;\; {
m non-linear} \; {
m activation} \; {
m function} \; h$

Activations:

1(b)

TODO

1(c)

Question 1(c) – Fully Connected, Feed Forward, Artificial Neural Network

Input Layer Logistic Units

Hidden Layer Logistic Units

Output Node

Activations:

Weighted Sums:

 $a_j = h(z_j)$

1(d)

TODO

1(e)

TODO

1(f)

Artificial Neural Networks (ANNs) are described as *shallow* or *deep*, and *wide* or *narrow*. *shallow* or *deep* refers to the number of layers in the network, and *wide* or *narrow* refers to the number of nodes in each layer.

The *credit assignment path*, or CAP, of a neural network is a measure of the number of data transformations that occur as data passes through the network. For *feed-forward* networks the CAP is the number of *hidden layers* plus one.

A deep neural network is generally considered to be a network with multiple layers and a CAP > 2.

1(g)

Question 2 **2**(a) TODO **2**(b) TODO **2**(c) TODO **2**(d) TODO **2**(e) TODO **2**(f) TODO

2(g)

(h)

Question 3 3(a) TODO **3**(b) TODO **3(c)** TODO 3(d) TODO 3(e) TODO

3(f)

Question 4

4(a)

TODO

4(b)

TODO

4(c)

TODO

4(d)

TODO

4(e)

TODO

4(f)

question 4f

May 7, 2020

```
[]: # Fetch batch function:
     def fetch_batch(epoch, batch_index, batch_size):
        return X_batch, y_batch
     # Set up computational graph:
     import tensorflow as tf
     reset_graph ()
     n_{epochs} = 1000
     learning_rate = 0.01
     X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
     y = tf.constant(housing_data_target, dtype=tf.float32, name="y")
     theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
     y_pred = tf .matmul(X, theta , name="predictions")
     error = y_pred - y
     mse = tf.reduce_mean(tf.square(error), name="mse")
     optimizer = tf.train.GradientDescentOptimizer(learning_rate)
     training_op = optimizer.minimize(mse)
     # Execute:
     init = tf.global_variables_initializer()
     with
     tf.Session() as sess:
         sess.run(init)
         for epoch in range(n_epochs):
             if epoch % 100 == 0:
                 print("Epoch", epoch, "MSE=", mse.eval()) sess.run(training_op)
         best_theta = theta.eval()
```

```
# Fetch batch function:
   def fetch_batch(epoch, batch_index, batch_size):
3
       return X_batch, y_batch
6
   # Set up computational graph:
   import tensorflow as tf
   reset_graph ()
10
   n_{epochs} = 1000
12
   learning_rate = 0.01
13
14
   X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
15
   y = tf.constant(housing_data_target, dtype=tf.float32, name="y")
16
   theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
18
   y_pred = tf .matmul(X, theta , name="predictions")
19
   error = y_pred - y
20
   mse = tf.reduce_mean(tf.square(error), name="mse")
21
   optimizer = tf.train.GradientDescentOptimizer(learning_rate)
22
   training_op = optimizer.minimize(mse)
   # Execute:
26
27
   init = tf.global_variables_initializer()
28
29
   with tf.Session() as sess:
30
       sess.run(init)
31
       for epoch in range(n_epochs):
32
           if epoch % 100 == 0:
33
                print("Epoch", epoch, "MSE=", mse.eval())
34
                sess.run(training_op)
35
       best_theta = theta.eval()
```

Listing 1: Question 4f

Question 5

5(a)

TODO

5(b)

TODO

5(c)

TODO

5(d)

TODO

5(e)

TODO

5(f)