Econ 703: Problem Set 2

Sarah Bass

August 24, 2020

• Question 1

Proof: For the sake of contradiction, assume there is a set $S \subseteq \mathbb{R}$ such that the limit points of S equals the set A. For all $\epsilon > 0$, there exists some $N \in \mathbb{N}$ such that $\epsilon > \frac{1}{N}$.

Then, since $\frac{1}{2N}$ is an element of A, $\frac{1}{2N}$ is a limit point of S. Therefore there is some element of S such that $|s_n - \frac{1}{2N}| < \frac{1}{2N}$. Thus, we can see that:

$$|0 - s_n| = |0 - \frac{1}{2N} + \frac{1}{2N} - s_n|$$

$$\leq |0 - \frac{1}{2N}| + |\frac{1}{2N} - s_n|$$

$$< \frac{1}{2N} + \frac{1}{2N}$$

$$= \frac{1}{N}$$

$$\leq \epsilon$$

Therefore 0 is a limit point of S. However, $0 \notin A$, so this contradicts our hypothesis. Thus, there is no set S with limit points equal to the set A.

• Question 2

Proof: Consider $\epsilon = 1$.

Let us construct x and y such that $y = \frac{\pi - \delta^2}{2\delta}$ and $x = \delta + y$. We can see

that:

$$|x - y| = \delta + \frac{\pi - \delta^2}{2\delta} - \frac{\pi - \delta^2}{2\delta}$$
$$= \delta$$

We can also observe that:

$$\begin{split} |f(x) - f(y)| &= |\cos(x^2) - \cos(y^2)| \\ &= |\cos((\delta + \frac{\pi - \delta^2}{2\delta})^2) - \cos((\frac{\pi - \delta^2}{2\delta})^2)| \\ &= |\cos(\delta^2 + 2\delta(\frac{\pi - \delta^2}{2\delta}) + (\frac{\pi - \delta^2}{2\delta})^2) - \cos((\frac{\pi - \delta^2}{2\delta})^2)| \\ &= |\cos(\delta^2 + \pi - \delta^2 + (\frac{\pi - \delta^2}{2\delta})^2) - \cos((\frac{\pi - \delta^2}{2\delta})^2)| \\ &= |\cos(\pi + (\frac{\pi - \delta^2}{2\delta})^2) - \cos((\frac{\pi - \delta^2}{2\delta})^2)| \end{split}$$

Note, the difference between x^2-y^2 is π . Thus, $0 \le |cos(x^2)-cos(y^2)| \le 2$ Since we set $\epsilon = 1$, there exists an x and y such that no value of δ ensures that $|x-y| \le \delta \to |f(x)-f(y)| \le \epsilon$. Hence, the function $f(x) = cos(x^2)$ is not uniformly continuous.

• Question 3

Proof: $f: \mathbb{R} \to \mathbb{R}_{++}$ is continuous on the closed set [a,b]. By the extreme value theorem, f attains a minimum f(c) and a maximum f(d) where $c,d,\in [a,b]$. Since f is always positive and g=1/f,g attains its minimum at g(d) and its maximum at g(c). Therefore, we can choose the maximum M=g(c), such that for all $x\in [a,b], g(x)\leq M$, so $|g(x)|\leq M$. Therefore, g=1/f is bounded on the interval [a,b].

• Question 4

Part A:

Proof: Using induction, we can prove that $l_n \leq l_{n+1}$; and $u_n \geq u_{n+1}$. Base case: $l_1 = a$ and $u_1 = b$. Note a < b Either $l_2 = a = l_1$ or $l_2 = \frac{a+b}{2} > a = l_1$ So $l_1 \leq l_2$ Either $u_2 = b = u_1$ or $u_2 = \frac{a+b}{2} < b = u_1$ So $u_1 \geq u_2$

Induction step:

First, let us note that by the construction of the sequences l_n , u_n , and m_n :

$$m_n - l_n = (l_n + u_n)/2 - l_n = (u_n - l_n)/2 \ge 0 \implies m_n \le l_n$$

 $u_n - m_n = u_n - (l_n + u_n)/2 = (u_n - l_n)/2 \ge 0 \implies u_n \ge m_n$

Therefore, $l_n \leq m_n \leq u_n$.

If $f(m_n) > 0$, $l_{n+1} = l_n \le m_n = u_{n+1} \le u_n$.

If $f(m_n) < 0$, $l_n \le m_n = l_{n+1} \le u_n = u_{n+1}$.

If $f(m_n) = 0$, we stop and the sequences ends.

Since $l_n \leq l_{n+1}$, we can see that $\min\{l_n\} = l_1 = a$.

Similarly, since $u_n \ge u_{n+1}$, we can see that $\max\{u_n\} = u_1 = b$.

Also, since $l_n \leq m_n \leq u_n$, we can see that $\max\{l_n\} = u_1 = b$ and $\min\{u_n\} = l_1 = a$.

Thus, l_n and u_n are both bounded, monotone sequences, so by the monotone convergence theorem, both sequences converge.

Part B:

Proof: Consider $|l_n - u_n|$. For all n, either $l_n = u_n$, or l_{n+1} or u_{n+1} is set equal to the average of l_n and u_n . As a result, l_n and u_n become progressively closer together, so $|l_n - u_n|$ is monotonically decreasing, nonnegative, and bounded above by $|l_1 - u_1| = |a - b|$. By the monotone convergence theorem, we can conclude that $\lim_{n \to \infty} |l_n - u_n| = 0$.

Using limit operations, know that

$$\lim_{n \to \infty} |l_n - u_n| = |\lim_{n \to \infty} (l_n - u_n)|$$
$$= |\lim_{n \to \infty} (l_n) - \lim_{n \to \infty} (u_n)|$$
$$= 0$$

Since $|\lim_{n\to\infty}(l_n)-\lim_{n\to\infty}(u_n)|=0$, then $\lim_{n\to\infty}(l_n)-\lim_{n\to\infty}(u_n)=0$. So, $\lim_{n\to\infty}(l_n)=\lim_{n\to\infty}(u_n)$.

Part C:

Proof: Let $c = \lim_{n \to \infty} (l_n) = \lim_{n \to \infty} (u_n)$. By the properties of continuity, since the sequences l_n and u_n both converge to c, we know that $\lim_{n \to \infty} f(l_n) = f(c) = \lim_{n \to \infty} f(u_n)$.

By the construction of the l_n , u_n and $m_n = \frac{l_n + u_n}{2}$ sequences, we know that

$$f(l_n) \le f(m_n) \le f(u_n)$$

$$\lim_{n \to \infty} f(l_n) \le \lim_{n \to \infty} f(m_n) \le \lim_{n \to \infty} f(u_n)$$

By the definition of the sequences, we know that $\lim_{n\to\infty} f(m_n) = 0$ We also know that $\lim_{n\to\infty} f(l_n) = f(c) = \lim_{n\to\infty} f(u_n)$ Therefore we can see that $f(c) \le 0 \le f(c)$. Hence, f(c) = 0.

• Question 5

Proof: Consider the equatorial plane of the earth. On this 2D circle

measured in radians, we have diametrically opposite points θ and $\theta + \pi$. Suppose $t(\theta)$ gives us the temperature at each point. Now, we can construct $f(\theta) = t(\theta) - t(\theta + \pi)$.

Since the function t gives us a temperatures at each point in the circle, and there are no jumps in temperature, we can assume t is continuous. Therefore, the composite function f is also continuous.

By the definition of f, either $f(\theta) = 0$ or $f(\theta) \neq 0$.

Let us consider the scenario in which $f(\theta) \neq 0$. If $f(\theta) \neq 0$, either $f(\theta) > 0$ or $f(\theta) < 0$. If $f(\theta) > 0$, there is necessarily a point $f(\theta + \pi) < 0$, and if $f(\theta) < 0$, there is necessarily a point $f(\theta + \pi) > 0$.

Note, f is continuous on the closed interval $[\theta, \theta + \pi]$. By the intermediate value theorem, there exists some $c \in [\theta, \theta + \pi]$ such that f(c) = 0. By our construction of f, if f(c) = 0, this implies that $t(c) = t(c + \pi)$.

If $f(\theta) = 0$, then again by construction, $f(\theta) = t(\theta) - t(\theta + \pi) = 0$ implies $t(\theta) = t(\theta + \pi)$.

Thus, there are two diametrically opposed points with the same temperature. \blacksquare