# Grundbegriffe der Informatik Crashkurs WS 2017/18

fuks e.V. - Fachübergreifende Unternehmensberatung Karlsruher Studenten

Miguel Santos Correa

miguelsantoscorrea@gmail.com

https://github.com/miguel-sc/GBI-Crashkurs

#### **Altklausuren**

#### häufige Aufgabentypen:

- Multiple Choice
- Vollständige Induktion
- Relationen
- Kontextfreie Grammatiken
- Graphen
- Reguläre Ausdrücke / Endliche Akzeptoren
- Turingmaschinen

#### **Altklausuren**

#### weitere Aufgabentypen:

- Huffman-Codierung
- O-Kalkül
- Prädikatenlogik
- MIMA
- Speicher
- Hoare-Kalkül

## 4-ECTS-Version

#### nicht relevant:

- MIMA
- Speicher
- Relationen Teil 2

#### **Themen**

- viele Themen
- sehr oberflächlich
- → Skript lernen!

#### **Themen**

- viele Themen
- sehr oberflächlich
- → Skript lernen!
  - viele Aufgaben sind nicht schwer
  - aber nur mit Übung
- → Altklausuren rechnen!

## Gliederung

- Relationen
- 2 Kontextfreie Grammatiken
- 3 Vollständige Induktion
- 4 Huffman-Codierung
- Quantitative Aspekte

# Relationen

## Paare, Tupel

Unterschied zwischen Paaren und Mengen:

- $(1,2) \neq (2,1)$
- **1** {1, 2} = {2, 1}

#### Kartesisches Produkt

Menge aller Paare (a,b) mit 
$$a \in A$$
 und  $b \in B$   
 $A \times B = \{(a,b) | a \in A \text{ und } b \in B\}$ 

$$\{a,b\}\times\{1,2,3\}=\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

#### Relationen

Relation R ist eine Teilmenge von  $A \times B$ 

$$R \subseteq A \times B$$

- $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$
- $R_1 = \{(a,1), (b,1), (b,2)\}$
- $R_2 = \{(a,1), (a,3), (b,2), (b,3)\}$
- $(b,3) \in R_2 \text{ oder } bR_23$

#### Linkstotal

- Jedes Element aus A steht in Relation zu mindestens einem Element aus B



Rechtstotal (surjektiv)

- Jedes Element aus B steht in Relation zu mindestens einem Element aus A



Linkseindeutig (injektiv)

- $\forall (a_1, b_1), (a_2, b_2) \in R : a_1 \neq a_2 \Rightarrow b_1 \neq b_2$
- Jedes Element aus B steht h\u00f6chstens mit einem Element aus A in Relation



#### Rechtseindeutig

- $\forall (a_1, b_1), (a_2, b_2) \in R : b_1 \neq b_2 \Rightarrow a_1 \neq a_2$
- Jedes Element aus A steht h\u00f6chstens mit einem Element aus B in Relation



#### **Funktionen**

- linkstotale und rechtseindeutige Relationen nennt man Funktionen
- andere Schreibweise:  $f: A \rightarrow B$
- Definitionsbereich A, Zielbereich B, Bildbereich f(A)
- linkseindeutige Funktionen nennt man injektiv
- rechtstotale Funktionen nennt man surjektiv
- injektive und surjektive Funktionen nennt man bijektiv

## Produkt von Relationen

- $R \subseteq M_1 \times M_2$  und  $S \subseteq M_2 \times M_3$
- $S \circ R = \{(x,z) | \exists y \in M_2 : (x,y) \in R \land (y,z) \in S\}$
- Beispiel:

$$\begin{aligned} &\{(1,2),(2,2),(1,1)\} \circ \{(1,1),(2,1),(3,3)\} \\ &= \{(1,2),(1,1),(2,2),(2,1)\} \end{aligned}$$

## Produkt von Relationen



## Produkt von Relationen



$$\mathbb{G}_n = \{0, 1, ..., n-1\}$$

- Geben Sie (graphisch) eine Relation  $R_a \subseteq \mathbb{G}_4 \times \mathbb{G}_2$  an, so dass  $R_a$  rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig ist.
- Wie viele solcher Relationen R<sub>a</sub> gibt es?
- Geben Sie (in Mengenschreibweise) eine Relation  $R_b \subseteq \mathbb{G}_2 \times \mathbb{G}_4$  an, so dass  $R_b \circ R_a$  rechtstotal und linkseindeutig ist.

rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig









2



rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig



rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig



Geben Sie (in Mengenschreibweise) eine Relation  $R_b \subseteq \mathbb{G}_2 \times \mathbb{G}_4$  an, so dass  $R_b \circ R_a$  rechtstotal und linkseindeutig ist.





$$R_b = \{(0,0), (0,1), (0,2), (0,3)\}$$

Geben Sie (in Mengenschreibweise) eine Relation  $R_b \subseteq \mathbb{G}_2 \times \mathbb{G}_4$  an, so dass  $R_b \circ R_a$  rechtstotal und linkseindeutig ist.



#### Reflexivität

- $R \subseteq M \times M$
- R ist reflexiv, wenn:  $\Rightarrow \forall x \in M : (x,x) \in R$
- Jedes Element steht in Relation zu sich selbst.





#### **Transitivität**

- $R \subseteq M \times M$
- R ist transitiv, wenn:

$$\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$$



# Symmetrie

- $R \subseteq M \times M$
- R ist symmetrisch, wenn:  $\forall x, y \in M : (x, y) \in R \Rightarrow (y, x) \in R$



# Äquivalenzrelation

- $R \subseteq M \times M$
- R ist reflexiv, symmetrisch und transitiv



Kontextfreie Grammatiken

## Kontextfreie Grammatiken

- G=(N,T,S,P)
- N: Menge der Nichtterminalsymbole
- T: Menge der Terminalsymbole
- S: Startsymbol
- P: Produktionsmenge

## Beispiele

• 
$$G_1 = (\{X, Y\}, \{a\}, Y, \{X \to \epsilon, Y \to aY | X\})$$

- $G_2 = (\{S\}, \{a, b\}, S, \{S \rightarrow \epsilon | aSa|bSb\})$
- $G_3 = (\{X\}, \{a\}, X, P)$  $P = \{X \rightarrow aX\}$

## **Ableitungen**

- $G_2 = (\{S\}, \{a, b\}, S, \{S \rightarrow \epsilon | aSa|bSb\})$
- $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aab\epsilon baa = aabbaa$
- $S \Rightarrow bSb \Rightarrow baSab \Rightarrow baab$
- $S \Rightarrow \epsilon$

## **Ableitungsbaum**

$$G = (\{X, Y\}, \{a, b\}, X, \{X \rightarrow aX | bY, Y \rightarrow Yb | b\})$$



 $X \Rightarrow aX \Rightarrow abY \Rightarrow abYb \Rightarrow abbb$ 

 $G = (\{X, Y\}, \{a, b\}, X, \{X \to XX|a|b\})$ 



z.B.  $X \Rightarrow XX \Rightarrow aXX \Rightarrow aXX \Rightarrow aXXb \Rightarrow aaXb \Rightarrow aaAb \Rightarrow aa$ 

Eine Folge  $(L_n)_{n \in \mathbb{N}_0}$  formaler Sprachen sei wie folgt definiert:

$$L_0 = \{\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{ba\}L_i\{ab\} \cup \{b\}$$

- Geben Sie  $L_1$ ,  $L_2$  und  $L_3$  an.
- Geben Sie  $L = \bigcup_{i=0}^{\infty} L_i$  an.
- Geben Sie eine kontextfreie Grammatik G mit L(G) = L an.
- Zeichnen sie passend zu Ihrer Grammatik einen Ableitungsbaum eines Wortes  $w \in L_3 \setminus L_2$ .

$$L_0 = \{\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{ba\}L_i\{ab\} \cup \{b\}$$

•  $L_1 = \{b\}$ 

$$L_0 = \{\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{ba\}L_i\{ab\} \cup \{b\}$$

- $L_1 = \{b\}$
- $L_2 = \{babab, b\}$

$$L_0 = \{\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{ba\}L_i\{ab\} \cup \{b\}$$

- $L_1 = \{b\}$
- $L_2 = \{babab, b\}$
- $L_3 = \{babababab, babab, b\}$

$$L_0 = \{\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{ba\}L_i\{ab\} \cup \{b\}$$

- $L_1 = \{b\}$
- $L_2 = \{babab, b\}$
- $L_3 = \{babababab, babab, b\}$
- $L = \bigcup_{i=0}^{\infty} L_i =$

$$L_0 = \{\}$$

$$\forall i \in \mathbb{N}_0 : L_{i+1} = \{ba\}L_i\{ab\} \cup \{b\}$$

- $L_1 = \{b\}$
- $L_2 = \{babab, b\}$
- $\bullet \ L_3 = \{babababab, babab, b\}$
- $L = \bigcup_{i=0}^{\infty} L_i = \{ (ba)^n b (ab)^n | n \in \mathbb{N}_0 \}$

$$L = \{(ba)^n b (ab)^n | n \in \mathbb{N}_0\}$$

$$L = \{(ba)^n b (ab)^n | n \in \mathbb{N}_0\}$$

$$G = (\{S\}, \{a,b\}, S, \{S \rightarrow baSab|b\})$$

$$G = (\{S\}, \{a, b\}, S, \{S \rightarrow baSab|b\})$$



 $S \Rightarrow baSab \Rightarrow babaSabab \Rightarrow babababab$ 

Gegeben sei die kontextfreie Grammatik  $G = (\{S,A,B\},\{a,b\},S,P)$  mit der Produktionsmenge

$$P = \{S \to ASB | A | B, \\ A \to Aa | \epsilon, \\ B \to bB | \epsilon\}.$$

- Geben Sie zwei verschiedene Ableitungsbäume der Grammatik für das Wort aab an.
- Geben Sie einen regulären Ausdruck an, der die von G erzeugte Sprache L(G) beschreibt.
- Geben Sie eine kontextfreie Grammatik G' an, die die Sprache  $(L(G))^*$  erzeugt.

$$P = \{S \to ASB|A|B, \\ A \to Aa|\epsilon, \\ B \to bB|\epsilon\}.$$

Ableitungen für das Wort aab

$$P = \{S \to ASB|A|B, \\ A \to Aa|\epsilon, \\ B \to bB|\epsilon\}.$$

Ableitungen für das Wort aab

• 
$$S \Rightarrow ASB \Rightarrow AAB \Rightarrow ...$$

$$P = \{S \to ASB|A|B, \\ A \to Aa|\epsilon, \\ B \to bB|\epsilon\}.$$

Ableitungen für das Wort aab

- $S \Rightarrow ASB \Rightarrow AAB \Rightarrow ...$
- $S \Rightarrow ASB \Rightarrow AASBB \Rightarrow^2 A\epsilon S\epsilon B \Rightarrow ...$





$$P = \{S \to ASB|A|B,$$

$$A \to Aa|\epsilon,$$

$$B \to bB|\epsilon\}.$$

L(G) =

$$P = \{S \to ASB|A|B, \\ A \to Aa|\epsilon, \\ B \to bB|\epsilon\}.$$

• 
$$L(G) = \{a\}^* \{b\}^*$$

$$P = \{S \to ASB|A|B, \\ A \to Aa|\epsilon, \\ B \to bB|\epsilon\}.$$

- $L(G) = \{a\}^* \{b\}^*$
- $L(G)^* = \{a, b\}^*$

$$P = \{S \to ASB|A|B, \\ A \to Aa|\epsilon, \\ B \to bB|\epsilon\}.$$

- $L(G) = \{a\}^* \{b\}^*$
- $L(G)^* = \{a, b\}^*$
- $G' = (\{S\}, \{a, b\}, S, \{S \to aS|bS|\epsilon\})$

### Prinzip der vollständigen Induktion

Zu beweisen ist  $\forall n \in \mathbb{N}_0 : A(n)$ . Man zeigt:

- Für ein festes, aber beliebiges n gilt:  $A(n) \Rightarrow A(n+1)$
- A(0) ist wahr
- Gezeigt wurde:  $A(0) \Rightarrow A(1) \Rightarrow A(2) \Rightarrow ...$

Mit der Definition

$$x_0 = 0$$

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2$$

kann man die Hypothese  $\forall n \in \mathbb{N}_0 : x_n = 2n$  beweisen.

#### Induktionsanfang

- Zu zeigen:  $x_n = 2n$  für n=0
- $x_0 = 0$  nach beiden Definitionen

#### Induktionsvorraussetzung

- Für ein beliebiges aber festes n gilt:  $x_n = 2n$
- Wichtig: n ist nicht variabel, die Induktionsvorraussetzung gilt nicht für alle n!

#### Induktionsschluss

- Zeige: Für das beliebige aber feste n gilt:  $x_{n+1} = 2(n+1)$
- Beweis:

$$x_{n+1} = x_n + 2$$
 nach Definition  
=  $2n + 2$  nach Induktionsvoraussetzung  
=  $2(n+1)$  fertig

Gegeben sei eine natürliche Zahl  $a\in\mathbb{N}_+$ . Die Abbildung  $S:\mathbb{N}_0\to\mathbb{Z}$  sei induktiv definiert durch

$$S(0) = 1,$$
 
$$\forall k \in \mathbb{N}_0 : S(k+1) = a^{k+1} + S(k).$$

Beweisen Sie durch vollständige Induktion, dass gilt:

$$\forall k \in \mathbb{N}_0 : (a-1)S(k) = a^{k+1} - 1.$$

$$S(0)=1$$
 
$$\forall k\in\mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $\forall k\in\mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

$$S(0)=1$$
 
$$orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

#### Induktionsanfang

$$k = 0$$
: Dann ist  $(a - 1)S(0) = a - 1 = a^{0+1} - 1$ 

$$S(0)=1$$
 
$$orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

#### Induktionsvoraussetzung

für ein beliebiges aber festes k gelte:  $(a-1)S(k) = a^{k+1} - 1$ 

$$S(0)=1$$
 
$$orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

Induktionsschluss 
$$k \rightarrow k+1$$
 zu zeigen:  $(a-1)S(k+1) = a^{(k+1)+1} - 1$ 

$$S(0)=1$$
  $orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$  zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

Induktionsschluss 
$$k \rightarrow k+1$$
 zu zeigen:  $(a-1)S(k+1) = a^{(k+1)+1} - 1$ 

$$(a-1)S(k+1) = (a-1)(a^{k+1} + S(k))$$

nach Definition

$$S(0)=1$$
 
$$orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

Induktionsschluss 
$$k \to k+1$$
 zu zeigen:  $(a-1)S(k+1) = a^{(k+1)+1} - 1$  
$$(a-1)S(k+1) = (a-1)(a^{k+1} + S(k)) \qquad \text{nach Definition}$$
 
$$= (a-1)a^{k+1} + (a-1)S(k)$$

Induktions schluss  $k \rightarrow k+1$ 

$$S(0)=1$$
 
$$orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

zu zeigen: 
$$(a-1)S(k+1)=a^{(k+1)+1}-1$$
 
$$(a-1)S(k+1)=(a-1)(a^{k+1}+S(k)) \qquad \text{nach Definition}$$
 
$$=(a-1)a^{k+1}+(a-1)S(k)$$
 
$$=(a-1)a^{k+1}+a^{k+1}-1 \qquad \text{nach I.V.}$$

$$S(0)=1$$
 
$$orall k\in \mathbb{N}_0: S(k+1)=a^{k+1}+S(k)$$
 zu zeigen  $orall k\in \mathbb{N}_0: (a-1)S(k)=a^{k+1}-1$ 

Induktionsschluss 
$$k \to k+1$$
  
zu zeigen:  $(a-1)S(k+1) = a^{(k+1)+1} - 1$   
 $(a-1)S(k+1) = (a-1)(a^{k+1} + S(k))$  nach Definition  
 $= (a-1)a^{k+1} + (a-1)S(k)$   
 $= (a-1)a^{k+1} + a^{k+1} - 1$  nach I.V.  
 $= a^{(k+1)+1} - 1$ 

Gegeben sei folgende Funktion  $f: \{a, b\}^* \rightarrow \{a, b\}^*$ :

$$f(\epsilon) = \epsilon$$

$$\forall w \in \{a, b\}^* : f(aw) = bf(w)$$

$$\forall w \in \{a, b\}^* : f(bw) = af(w)$$

Beweisen Sie per Induktion, dass gilt:

$$\forall w_1, w_2 \in \{a, b\}^* : f(w_1 w_2) = f(w_1) f(w_2)$$

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

### Induktionsanfang

$$n = 0$$
:  $\{a, b\}^0 = \{\epsilon\}$ 

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

### Induktionsanfang

$$n = 0: \{a, b\}^0 = \{\epsilon\}$$

$$w_1 = w_2 = \epsilon$$

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

### Induktionsanfang

$$n = 0: \{a, b\}^0 = \{\epsilon\}$$
  

$$w_1 = w_2 = \epsilon$$
  

$$f(\epsilon \epsilon) = f(\epsilon) = \epsilon = \epsilon \epsilon = f(\epsilon)f(\epsilon)$$

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

### Induktionsvoraussetzung

Für alle Wörter w' mit beliebiger, aber fester Länge  $n \in \mathbb{N}_0$  gelte:

$$\forall w' \in A^* \text{ mit } w' = w_1 w_2 : f(w_1 w_2) = f(w_1) f(w_2)$$

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1 w_2 \in A^n : f(w_1 w_2) = f(w_1) f(w_2)$$

**Induktionsschritt** beliebiges  $w \in A^{n+1}$ 

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1 w_2 \in A^n : f(w_1 w_2) = f(w_1) f(w_2)$$

**Induktionsschritt** beliebiges  $w \in A^{n+1}$ 

 $\mathbf{w} = \mathbf{a}\mathbf{w}'$ :

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

#### **Induktionsschritt** beliebiges $w \in A^{n+1}$

• w = aw':  $f(w) = f(aw') = bf(w') = bf(w_1w_2) = bf(w_1)f(w_2) = f(aw_1)f(w_2)$ 

$$f(\epsilon) = \epsilon$$
 
$$\forall w \in A^* : f(aw) = bf(w)$$
 
$$\forall w \in A^* : f(bw) = af(w)$$
 zu zeigen 
$$\forall w = w_1w_2 \in A^n : f(w_1w_2) = f(w_1)f(w_2)$$

### **Induktionsschritt** beliebiges $w \in A^{n+1}$

- w = aw':  $f(w) = f(aw') = bf(w') = bf(w_1w_2) = bf(w_1)f(w_2) = f(aw_1)f(w_2)$
- w = bw':  $f(w) = f(bw') = af(w') = af(w_1w_2) = af(w_1)f(w_2) = f(bw_1)f(w_2)$

# Huffman-Codierung

### **Huffman-Codierung**

- Übersetzungsfunktion h(x) gesucht
- ullet  $\epsilon$ -freier und Präfixfreier Homomorphismus
- $h(x): A \to \{0,1\}^*$
- h(w) soll dabei möglichst kurz sein.
- Zeichen, die häufiger vorkommen, bekommen einen kürzeren Code.

 $w{=}\mathsf{aafbcdfbfbeefbcfbbfeb}$ 

| X          |   |   |   |   | е |   |
|------------|---|---|---|---|---|---|
| $N_{x}(w)$ | 2 | 7 | 2 | 1 | 3 | 6 |

w=aafbcdfbfbeefbcfbbfeb

$$N_x(w)$$
 2 7 2 1 3 6

2,a

2,c

1,d

b,7

 $w{=}aafbcdfbfbeefbcfbbfeb\\$ 



e,3

f,6

b,7



w=aafbcdfbfbeefbcfbbfeb



e,3

f,6

b,7

 $w{=}\mathsf{aafbcdfbfbeefbcfbbfeb}$ 



 $w{=}aafbcdfbfbeefbcfbbfeb\\$ 













### **Huffman-Codierung**

- w=aafbcdfbfbeefbcfbbfeb
- Die Codierung von w ist 50 Zeichen lang.

Gegeben sei das Alphabet  $A = \{a, b, c, d, e, f, g\}$  und ein Wort  $w \in A^*$  in dem die Symbole mit folgenden Häufigkeiten vorkommen:

| а  | b | С  | d  | е | f | g  |
|----|---|----|----|---|---|----|
| 11 | 3 | 11 | 24 | 8 | 7 | 36 |

- Zeichnen Sie den Huffman-Baum.
- Geben Sie die Huffman-Codierung des Wortes bad an.



8,e 11,a 11,c

24,d 36,g

7,f

3,b

24,d 36,g







36,g



36,g





 $h(bad) = 0000 \ 010 \ 10$ 

Gegeben seien zwei Codierungen über dem Alphabet  $A = \{a, b, c, d, e\}$ 

| h(x) | a<br>00 |    | •   | d<br>010 | e<br>011 |
|------|---------|----|-----|----------|----------|
|      |         |    |     |          |          |
| Х    | а       | b  | С   | d        | е        |
| h(x) | 10      | 11 | 001 | 010      | 011      |

Welche der beiden Codierungen ist eine gültige Huffman-Codierung?





| Х    | а  | b  | С   | d   | е   |
|------|----|----|-----|-----|-----|
| h(x) | 10 | 11 | 001 | 010 | 011 |



# Quantitative Aspekte

 $f: \mathbb{N}_0 \to \mathbb{R}_0^+$  wächst asymptotisch oder größenordnungsmäßig so schnell wie  $g: \mathbb{N}_0 \to \mathbb{R}_0^+$  wenn gilt:

- $\exists c, c' \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geqslant n_0 : cf(n) \leqslant g(n) \leqslant c'f(n)$
- $f(n) \approx g(n)$

### Beispiel:

- $g(n) = n^3 + 3n^2$
- $f(n) = 8n^3$

#### Beispiel:

- $g(n) = n^3 + 3n^2$
- $f(n) = 8n^3$
- $g(n) = n^3 + 3n^2 \le n^3 + 3n^3 = 4n^3 = 0.5f(n)$ ⇒  $g(n) \le 0.5f(n)$

#### Beispiel:

- $g(n) = n^3 + 3n^2$
- $f(n) = 8n^3$
- $g(n) = n^3 + 3n^2 \le n^3 + 3n^3 = 4n^3 = 0.5f(n)$ ⇒  $g(n) \le 0.5f(n)$
- $g(n) = n^3 + 3n^2 \geqslant n^3 = \frac{1}{8}f(n)$  $\Rightarrow g(n) \geqslant \frac{1}{8}f(n)$
- $\Rightarrow \frac{1}{8}f(n) \leqslant g(n) \leqslant 0.5f(n)$
- $f(n) \approx g(n)$

- $g(n) = 2^n$
- $f(n) = 3^n$

- $g(n) = 2^n$
- $f(n) = 3^n$
- $g(n) \geqslant cf(n)$
- $2^n \ge c3^n$

- $g(n) = 2^n$
- $f(n) = 3^n$
- $g(n) \geqslant cf(n)$
- $2^n \ge c3^n$
- $(\frac{2}{3})^n \geqslant c$

- $g(n) = 2^n$
- $f(n) = 3^n$
- $g(n) \geqslant cf(n)$
- $2^n \ge c3^n$
- $(\frac{2}{3})^n \geqslant c$
- Kein c > 0 erfüllt diese Ungleichung.

### **⊝**-Notation

- ullet  $\Theta(f)$  ist die Menge aller Funktionen die größenordnungsmäßig so schnell wachsen wie f
- $\Theta(f) = \{ g | g \asymp f \}$
- Beispiel:  $\Theta(8n^3) = \{n^3 + 3n^2, 100n^3 10n, 0.01n^3 + 1000, ...\}$
- Alle Polynome gleichen Grades wachsen gleich schnell

### **O-Notation**

- ullet O(f) ist die Menge aller Funktionen die größenordnungsmäßig höchstens so schnell wachsen wie f
- $O(f) = \{g | g \le f\}$ =  $\{g | \exists c \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le cf(n)\}$
- Beispiele:
  - $n^2 \in O(8n^3)$
  - $3n \in O(n^3 + 3n^2)$
  - $n^4 \in O(n^4)$
  - $n^a \in O(n^b)$  für  $a \leqslant b$

### $\Omega$ -Notation

- $\Omega(f)$  ist die Menge aller Funktionen die größenordnungsmäßig mindestens so schnell wachsen wie f
- $\Omega(f) = \{g | g \ge f\}$  $= \{g | \exists c \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geqslant n_0 : cf(n) \leqslant g(n)\}$
- Beispiele:
  - $n^2 \in \Omega(\log(n))$
  - $e^n \in \Omega(n^a)$

# Wachstum wichtiger Funktionen

$$1 \le log(x) \le \sqrt{x} \le x \le xlog(x) \le x^2 \le 2^x < x!$$

■  $sin(x) + 2 \in \Theta(1)$ ?

•  $sin(x) + 2 \in \Theta(1)$ ? Ja, weil  $1 \leq sin(x) + 2 \leq 3 \cdot 1$ 

- sin(x) + 2 ∈ Θ(1)? Ja, weil 1 ≤ sin(x) + 2 ≤ 3 ⋅ 1
- $log_a(x) \in \Theta(log_b(x))$ ?

- $sin(x) + 2 \in \Theta(1)$ ? Ja, weil  $1 \leq sin(x) + 2 \leq 3 \cdot 1$
- $log_a(x) \in \Theta(log_b(x))$ ? Ja, weil  $log_b(x) = \frac{log_a(x)}{log_a(b)}$

- sin(x) + 2 ∈ Θ(1)? Ja, weil 1 ≤ sin(x) + 2 ≤ 3 ⋅ 1
- $log_a(x) \in \Theta(log_b(x))$ ? Ja, weil  $log_b(x) = \frac{log_a(x)}{log_a(b)}$
- $log(x) \in \Omega(n^{0.1})$ ?

- sin(x) + 2 ∈ Θ(1)? Ja, weil 1 ≤ sin(x) + 2 ≤ 3 ⋅ 1
- $log_a(x) \in \Theta(log_b(x))$ ? Ja, weil  $log_b(x) = \frac{log_a(x)}{log_a(b)}$
- $log(x) \in \Omega(n^{0.1})$ ? Nein.

- $sin(x) + 2 \in \Theta(1)$ ? Ja, weil  $1 \leq sin(x) + 2 \leq 3 \cdot 1$
- $log_a(x) \in \Theta(log_b(x))$ ? Ja, weil  $log_b(x) = \frac{log_a(x)}{log_a(b)}$
- $log(x) \in \Omega(n^{0.1})$ ? Nein.
- $nlog(n) \in \Theta(log(n!))$ ?

- $sin(x) + 2 \in \Theta(1)$ ? Ja, weil  $1 \leq sin(x) + 2 \leq 3 \cdot 1$
- $log_a(x) \in \Theta(log_b(x))$ ? Ja, weil  $log_b(x) = \frac{log_a(x)}{log_a(b)}$
- $log(x) \in \Omega(n^{0.1})$ ? Nein.
- $nlog(n) \in \Theta(log(n!))$ ? Ja, weil

$$\begin{split} log(n!) &= log(1) + log(2) + ... + log(n-1) + log(n) \\ &\leq log(n) + log(n) + ... + log(n) + log(n) = nlog(n) \\ &\geq log(n/2) + log(n/2) + ... + log(n/2) = n/2log(n/2) \end{split}$$

## Unvergleichbare Funktionen

Es gibt unvergleichbare Funktionen. Beispiel:

$$f = egin{cases} 1 & ext{falls } n ext{ gerade} \\ n & ext{falls } n ext{ ungerade} \end{cases}$$
  $g = egin{cases} n & ext{falls } n ext{ gerade} \\ 1 & ext{falls } n ext{ ungerade} \end{cases}$ 

 $f \notin O(g)$  und  $g \notin O(f)$ 

## Klausuraufgabe: WS 2013/14 A1

Geben Sie eine Funktion  $f: \mathbb{N}_0 \to \mathbb{R}_0^+$  an, für die gilt:

$$f(n) \notin O(n^3) \wedge f(n) \notin \Omega(n^3)$$

## Klausuraufgabe: WS 2013/14 A1

Geben Sie eine Funktion  $f: \mathbb{N}_0 \to \mathbb{R}_0^+$  an, für die gilt:

$$f(n)\notin \mathit{O}(n^3) \, \wedge \, f(n)\notin \Omega(n^3)$$

$$f = \begin{cases} 1 & \text{falls } n \text{ gerade} \\ n^4 & \text{falls } n \text{ ungerade} \end{cases}$$