Machine Learning B (2025) Home Assignment 5

Bar Segal xsb740

26/05/2025

Contents

Question 2. PAC-Bayesian Aggregation	2
2.1 Experimental set-up	2
	2
2.3 Results	3
Question 3. VC Dimension	4
3.1 Bound on the VC-dimension of a Finite Hypothesis Set	4
3.2 Exact VC-dimension of a Two-Element Hypothesis Class	5
3.3 A Three-Point Lower Bound for Positive Circles in \mathbb{R}^2	5
3.4 A Four-Point Lower Bound for the Union of Positive & Negative Circles	6
3.5 A Four-Point Lower Bound for the Union of Positive & Negative Circles	8

Question 2. PAC-Bayesian Aggregation

2.1 Experimental set-up

Following Thiemann et al. [2017] we work with the UCI *Ionosphere* data set (n = 351, d = 34):

- A single train—test split with $|S| = n_{\text{train}} = 200$ and the remaining 151 examples kept for testing—the split is fixed once with random_state=60, matching the authors' public code.
- **Pre-processing:** every feature is standardised to zero mean and unit variance with StandardScaler.
- Each weak learner is an RBF SVM trained on a random subset of size r = d + 1 = 35 drawn without replacement from the training set.
- The baseline is a 5-fold cross-validated RBF-SVM (scikit-learn's SVC, i.e. the LIB-SVM solver): $C \in 10^{\{-3,-2,\dots,3\}}$ and $\gamma \in \{\gamma_0 \, 10^{-4},\dots,\gamma_0 \, 10^4\}$, where γ_0 is Jaakkola's heuristic $\gamma_0 = \left(2 \, \text{median}_i \, G_i^2\right)^{-1}$.
- The hypothesis pool sizes $m \in \{1, 2, 3, ..., 200\}$ are sampled logarithmically (21 values equally spaced on the \log_{10} axis).

All results reported below are the mean over $N_{\text{rep}} = 10$ independent repetitions; the random seed of each repetition is seed = $10\,000 + \text{rep}$.

2.2 PAC-Bayesian aggregation

Let $\hat{L}^{\text{val}}(h, S)$ denote the validation loss of a weak classifier h on the n-r points not used for its training. We minimise the PAC-Bayes- λ bound [Thiemann et al., 2017, Thm. 6]

$$F_{\lambda}(\rho) = \frac{\mathbb{E}_{\rho}[\hat{L}^{\text{val}}]}{1 - \lambda/2} + \frac{\text{KL}(\rho \| \pi) + \ln(\frac{2\sqrt{n-r}}{\delta})}{\lambda(1 - \lambda/2)(n-r)}$$

by alternating minimisation:

(
$$\rho$$
-step) $\rho(h) \propto \pi(h) \exp[-\lambda(n-r)(\hat{L}^{\text{val}}(h) - \hat{L}^{\text{val}}_{\min})]$, stabilised by subtracting $\hat{L}^{\text{val}}_{\min}$.

(
$$\lambda$$
-step) $\lambda \leftarrow \frac{2}{\sqrt{2(n-r)\mathbb{E}_{\rho}[\hat{L}^{\mathrm{val}}]/(\mathrm{KL} + \ln \frac{2\sqrt{n-r}}{\delta})} + 1}$.

Listing 1 shows the Python implementation; the resulting posterior ρ is used for a ρ -weighted majority vote on the test set.

```
def alternating_minimization(Lval, n_r, delta=0.05):
 pi = np.full(len(Lval), 1/len(Lval))
 lam, shift = 0.5, Lval.min()
 x = Lval - shift
                                            # stabilise exponent
 for _ in range(1000):
     logits = -lam * n_r * x
     rho = pi * np.exp(logits - logits.max())
     rho = rho.sum()
     KL = (rho * np.log(rho / pi)).sum()
     EL = (rho * Lval).sum()
     lam_new = 2 / (np.sqrt(2*n_r*EL/(KL+np.log(2*np.sqrt(n_r)/delta)))
) + 1)
     if abs(lam - lam_new) < 1e-6:</pre>
         lam = lam_new; break
     lam = lam_new
 return rho, lam
```

Listing 1: Core PAC-Bayes alternating minimisation

2.3 Results

Figure 1 shows the averaged curves over $N_{\text{rep}} = 10$ repetitions.

- black zero–one test loss of the ρ -weighted majority vote,
- blue PAC-Bayes–KL bound on the randomised classifier,
- red line baseline 5-fold CV SVM,
- right axis: dashed black = aggregation time, dashed red = CV time.

Figure 1: Ionosphere experiment, averaged over $N_{\text{rep}} = 10$ independent runs. The left-hand axis reports classification loss, the right-hand axis training time.

Observations.

- 1. The aggregated vote already outperforms the CV-tuned SVM once $m \gtrsim 4$; its best test loss (≈ 0.10) is reached around $m \in [5, 8]$.
- 2. The PAC-Bayes–KL bound is looser (roughly a factor two above the empirical risk for small m) but still decreases monotonically and levels off in the same region where the empirical curve plateaus. Hence it remains a useful conservative indicator of performance.
- 3. Aggregation is substantially cheaper than cross-validation: up to $m \approx 70$ its wall-clock time is below the CV baseline; only for very large pools does it overtake the expensive grid search.

Question 3. VC Dimension

3.1 Bound on the VC-dimension of a Finite Hypothesis Set

Let \mathcal{H} be a finite hypothesis class containing $M = |\mathcal{H}|$ hypotheses. We show that its Vapnik-Chervonenkis (VC) dimension is at most $\lfloor \log_2 M \rfloor$.

Key idea. To shatter a set of d points, \mathcal{H} must realise every one of the 2^d possible binary labelings of those points. Hence, on that set of d points there must be at least 2^d distinct hypotheses.

1. Fix any d points x_1, \ldots, x_d in the input space. For each hypothesis $h \in \mathcal{H}$, record the label string

$$(h(x_1), h(x_2), \ldots, h(x_d)) \in \{0, 1\}^d.$$

Different hypotheses can coincide on some points, but each hypothesis contributes at most one such string.

2. If \mathcal{H} shatters these d points, then every one of the 2^d possible binary strings must appear in that list. Therefore

$$|\mathcal{H}| \geq 2^d$$
.

3. But by assumption $|\mathcal{H}| = M$. Combining,

$$2^d < M$$
.

4. Taking base-2 logarithms gives the desired upper bound

$$d < \log_2 M$$
.

Since d is an integer, we may write this more precisely as $d \leq \lfloor \log_2 M \rfloor$.

Tightness of the bound. The inequality can be achieved: if \mathcal{H} consists of all 2^d distinct labelings of some fixed set of d points, then \mathcal{H} shatters those points and has VC-dimension exactly $d = \log_2 M$.

$$VCdim(\mathcal{H}) \leq \lfloor \log_2 M \rfloor$$

3.2 Exact VC-dimension of a Two-Element Hypothesis Class

Let $\mathcal{H} = \{h_1, h_2\}$ be a hypothesis space that contains exactly two distinct binary-valued functions— if $h_1 = h_2$, then $|\mathcal{H}| = 1$, contradicting the premise, so there is at least one x with $h_1(x) \neq h_2(x)$. We prove that

$$d_{VC}(\mathcal{H}) = 1.$$

Lower bound $d_{VC} \ge 1$. Because $h_1 \ne h_2$, there exists a point x^* on which they disagree:

$$h_1(x^*) = 0,$$
 $h_2(x^*) = 1$ (or vice versa).

Hence the single-point set $\{x^*\}$ can be labeled both ways

$$\{0\}$$
 and $\{1\}$

using hypotheses in \mathcal{H} . Therefore \mathcal{H} shatters at least one point, so $d_{VC}(\mathcal{H}) \geq 1$.

Upper bound $d_{VC} \leq 1$. Assume, toward a contradiction, that some two-point set $\{x_1, x_2\}$ is shattered. Shattering requires the four binary labelings

to be realizable by hypotheses in \mathcal{H} . Yet \mathcal{H} contains only two functions, producing at most two different label pairs on $\{x_1, x_2\}$. Consequently *no* two-point set can be shattered, so $d_{VC}(\mathcal{H}) \leq 1$.

Conclusion. Combining the lower and upper bounds we obtain

$$d_{\mathrm{VC}}(\mathcal{H}) = 1$$

Therefore a hypothesis class containing precisely two distinct functions can shatter *exactly* one point and no more.

3.3 A Three-Point Lower Bound for Positive Circles in \mathbb{R}^2

Let \mathcal{H}_+ be the class of *positive circles* (closed disks) in the plane: each hypothesis $h \in \mathcal{H}_+$ is specified by a centre $c \in \mathbb{R}^2$ and a radius $r \in \mathbb{R}_{\geq 0}$; a point x is **positive** iff $||x - c|| \leq r$ and **negative** otherwise. We prove that

$$d_{VC}(\mathcal{H}_+) \geq 3.$$

Choosing the witness set. Select three non-collinear points

$$A, B, C \in \mathbb{R}^2,$$

for instance the vertices of a non-degenerate triangle. We will show that *every* of the $2^3 = 8$ possible $\{0,1\}$ -labelings of $\{A,B,C\}$ can be realised by some disk in \mathcal{H}_+ , hence the set is *shattered*.

Case analysis (all eight labelings).

1. All three negative (000).

Take any disk located far away with sufficiently small radius so that none of A, B, C is covered.

2. All three positive (111).

Pick the circumcircle—any disk that covers the triangle works; the circumcircle is a convenient canonical choice—or simply a disk centred at the centroid with radius larger than $\max\{\|A - G\|, \|B - G\|, \|C - G\|\}$, where G is the centroid.

3. Exactly one positive, two negative (100), (010), (001).

Suppose A is the only positive point (the other two cases are analogous). Place a disk centred at A with radius $0 < r < \min\{\|A - B\|, \|A - C\|\}$. It includes A and excludes B, C.

4. Exactly two positive, one negative (110), (101), (011).

Assume A, B are positive and C is negative (the other patterns are symmetrical). Let m be the midpoint of AB and let L be the line through m perpendicular to AB. Point C lies strictly on one side of L because $\triangle ABC$ is non-collinear. Choose the centre c on L on the side a0 or a1 or a2 or a3 or a4 or a4 or a5 or a6 or a7 or a8. With radius a7 := a8 or a9, the resulting disk contains a8 and a8 (they are on its boundary) but leaves a9 outside.

In every scenario a suitable disk exists, so $\{A, B, C\}$ is shattered by \mathcal{H}_+ . Hence

$$d_{\rm VC}(\mathcal{H}_+) \geq 3.$$

Note It is in fact known that $d_{VC}(\mathcal{H}_+) = 3$, but the exercise asked only for the lower bound, which we have established.

3.4 A Four-Point Lower Bound for the Union of Positive & Negative Circles

Let \mathcal{H}_+ be the class of *positive* disks in the plane (label +1 inside, -1 outside) and \mathcal{H}_- its negative counterparts (label -1 inside, +1 outside). Set $\mathcal{H} = \mathcal{H}_+ \cup \mathcal{H}_-$. We prove that

$$d_{\rm VC}(\mathcal{H}) \geq 4.$$

Step 1 – choose four convenient points. Take an acute triangle $\triangle ABC$ and put a fourth point D strictly in its interior (e.g. the centroid). Thus no three points are collinear and D lies inside conv $\{A, B, C\}$.

Step 2 – shatter the set $\{A, B, C, D\}$. For each $k \in \{0, 1, 2, 3, 4\}$ we show how to realise *every* labelling with exactly k positives.

- **k** 0 or 4. A tiny disk placed far away (k = 0) or a tiny *negative* disk around an irrelevant point (k = 4) makes every point negative or, respectively, positive.
- **k** 1 or 3. If exactly one point P is positive, surround P with a sufficiently small positive disk. If exactly one point P is negative, surround P with a sufficiently small negative disk.
- 2 (the delicate case). Suppose the two positive points are P_1 , P_2 and the two negative points are N_1 , N_2 . Instead of building a positive disk, construct a negative disk that contains precisely the two negatives; its complement will label the plane as required.
 - (a) Let m be the midpoint of the segment N_1N_2 and let L be its perpendicular bisector.
 - (b) P_1 and P_2 lie on the same side of L: because D is in the interior of $\triangle ABC$, the convex hull conv $\{A, B, C, D\}$ is a triangle, so any segment joining N_1, N_2 separates the interior in exactly that way.
 - (c) Place the centre c on L, but toward the side containing P_1, P_2 , at a distance $\rho > \max\{\|m P_1\|, \|m P_2\|\}$ from m. Set $r = \|c N_1\| = \|c N_2\|$. Then N_1, N_2 are inside the (negative) disk, while $\|c P_i\| > \rho \ge r$ for i = 1, 2, so both positives lie outside.

Taking the complement of this negative disk yields a hypothesis in \mathcal{H} that labels P_1, P_2 positive and N_1, N_2 negative. All three arrangements of which points are positive (two on an edge, two separated by one vertex, etc.) are handled identically.

Because every one of the $2^4=16$ binary labellings is realisable, $\{A,B,C,D\}$ is shattered, so

$$d_{VC}(\mathcal{H}) \geq 4.$$

Note The upper bound $d_{VC}(\mathcal{H}) \leq 4$ also holds, so the VC-dimension is *exactly* four, but the exercise only asked for the lower bound.

3.5 A Benign Distribution for an ∞ -VC Hypothesis Class

Step 1 – choose a hypothesis space with infinite VC-dimension. Let

$$\mathcal{H} = \left\{ h_B : B \subseteq \mathbb{R}, \ h_B(x) = \mathbf{1}[x \in B] \right\}.$$

For every finite set $\{x_1, \ldots, x_d\} \subset \mathbb{R}$ and every labeling $(y_1, \ldots, y_d) \in \{0, 1\}^d$, picking $B := \{x_i : y_i = 1\}$ gives a hypothesis $h_B \in \mathcal{H}$ that realises that labeling, so $VCdim(\mathcal{H}) = \infty$.

Step 2 – specify the data distribution. Define p(X,Y) by —a single deterministic point already works, but any distribution supported on a single input–label pair would do—

$$X \equiv 0$$
, $Y \equiv 0$ (with probability 1).

Step 3 – show uniform convergence holds automatically. Take any i.i.d. sample $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ with $n \geq 101$. Because (X, Y) is deterministic, every example in S is (0, 0). For any hypothesis $h \in \mathcal{H}$ there are only two cases:

$$h(0) = 0 \implies L(h) = \hat{L}(h, S) = 0;$$
 $h(0) = 1 \implies L(h) = \hat{L}(h, S) = 1.$

In both situations $L(h) - \hat{L}(h, S) = 0 \le 0.01$. Hence

$$\Pr_{S \sim n^n} \left[L(h) \le \hat{L}(h, S) + 0.01 \text{ for all } h \in \mathcal{H} \right] = 1 > 0.95.$$

Conclusion. We have produced

* a hypothesis class \mathcal{H} with VCdim = ∞ , yet * for every sample of at least 101 points the uniform bound $L(h) \leq \hat{L}(h, S) + 0.01$ holds with probability 1.

This example shows that an infinite VC-dimension does *not* automatically imply over-fitting; the data distribution can render generalisation trivial.

References

Nadine Thiemann, Raghuram Iyer, Matthieu Lécuyer, Marcin Mikolajczyk, and Jean-Yves Audibert. A strongly quasiconvex PAC-bayesian bound. *NeurIPS*, 2017.