FORMULARIUM: KANSREKENEN EN STATISTIEK I

HULPFORMULES

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \text{ als } |x| < 1.$$

$$\sum_{k=0}^{\infty} x^k = \frac{1-x^{n+1}}{1-x}$$

$$\sum_{k=1}^{\infty} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{\infty} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

$$\left(1 + \frac{a}{n}\right)^n \xrightarrow{n \to \infty} e^a$$

$$\Gamma(t) \sim \left(\frac{t-1}{e}\right)^{t-1} \sqrt{2\pi(t-1)}$$

DISCRETE KANSMODELLEN

naam	f(k) = P(X = k)	Ω	E[X]	Var[X]	$M_X(t)$
discreet uniform	$\frac{1}{n}$	$k=1,2,\ldots,n$	$\frac{n+1}{2}$	$\frac{(n+1)(n-1)}{12}$	$\frac{e^t(e^{tn}-1)}{n(e^t-1)}$
Bernoulli	$p^k(1-p)^{1-k}$	k = 0, 1	p	p(1-p) = pq	$q + pe^t$
binomiaal	$\begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}$ $e^{-\alpha} \frac{\alpha^k}{k!}$	$k=0,\ldots,n$	np	np(1-p) = npq	
Poisson	$e^{-\alpha} \frac{\alpha^k}{k!}$	$k=0,1,2,\dots$	α	α	$e^{\alpha(e^t-1)}$
geometrisch	$(1-p)^k p$	$k=0,1,2\dots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$
negatief binomiaal	$\left(\begin{array}{c} k+r-1\\ k \end{array}\right)p^r(1-p)^k$	$k=0,1,2\dots$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^r$
hypergeometrisch	$ \begin{array}{c c} & N & N-r \\ \hline & N & N-r \\ \hline & N & N \end{array} $	$k = 0, \dots, n$	$\frac{rn}{N}$	$\frac{rn(N-r)(N-n)}{N^2(N-1)}$	/

Opmerkingen:

Soms gebruikt men ook de notaties $Geom(\theta)$ en $NB(r, \theta)$ waarbij $\theta = 1 - p$ de kans op mislukking.

CONTINUE KANSMODELLEN

naam	dichtheid $f(x)$	Ω	E[X]	Var[X]	$M_X(t)$
continu uniform	$\frac{1}{b-a}$	$x \in [a,b] \frac{a+b}{2}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a} \frac{1}{t} \left(e^{tb} - e^{ta} \right)$
$\mathcal{N}(\mu,\sigma^2)$	$\frac{1}{\sqrt{\sigma_{-}}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \ \mu \in \mathbb{R}, \sigma > 0$	$x \in \mathbb{R}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
$\mathcal{E}(lpha)$	$\sqrt{2\pi\sigma}$ $\alpha e^{-\alpha x}, \alpha > 0$	x > 0	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$	$\frac{\alpha}{\alpha - t}, \ t < \alpha$
χ_n^2	$\frac{2^{-n/2}}{\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-x/2}, n > 0$	x > 0	u	2n	$\begin{cases} \frac{1}{(1-2t)^{\frac{n}{2}}} & t < \frac{1}{2} \\ \infty & t \geqslant \frac{1}{2} \end{cases}$
$\Gamma_{\gamma,eta}$	$rac{x^{\gamma-1}e^{-x}}{eta^{\gamma}\Gamma(\gamma)}, \ \gamma, eta > 0$	x > 0	γeta	γeta^2	$\begin{cases} (1-\beta t)^{-\gamma} & \tilde{t} < \frac{1}{\beta} \\ \infty & t \geq \frac{1}{\beta} \end{cases}$
t_n	$\frac{\Gamma((n+1)/2)}{\Gamma(n/2)\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}, n > 0$	$x\in \mathbb{R}$	$0 \ (n > 1)$	$\frac{n}{n-2} \ (n>2)$	
Cauchy	$\frac{1}{\pi} \frac{1}{1+x^2}$	$x\in\mathbb{R}$	/	/	/
$F_{m,n}$	$\frac{m^{\frac{m}{2}}n^{\frac{n}{2}}\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})}\frac{x^{\frac{m}{2}-1}}{(n+mx)^{\frac{n+m}{2}}}, m, n > 0 $	x > 0	$\frac{n}{n-2}$	$\frac{2n^2(m+n-2)}{m(n-4)(n-2)^2}$	
lognormale	$\frac{1}{\sqrt{2\pi}\sigma x}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}, \ \mu \in \mathbb{R}, \sigma > 0$	$x \in \mathbb{R}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
bivariaat normaal	$f(x,y) = \frac{1}{2\pi\sqrt{\det(\Sigma)}} e^{-\frac{1}{2}z^t \Sigma^{-1} z}$	$x, y \in \mathbb{R}$	$E[X] = \mu_X,$	$E[X] = \mu_X, \operatorname{Var}[X] = \sigma_X^2,$	
	$\mu^t = (\mu_X \ \mu_X^{\mathbf{v}}), z^t = (x \ y) - \mu^t $ en		$E[Y] = \mu_Y$	$\mathrm{Var}[Y] = \sigma_Y^2$	$M_X(s) = e^{s^t \mu + \frac{1}{2} s^t \Sigma s}$
	$\Sigma = \left(egin{array}{cc} \sigma_X^2 & ho\sigma_X\sigma_Y \ ho\sigma_X\sigma_Y & \sigma_Y^2 \end{array} ight)$			$Cov(X,Y) = \rho\sigma_X\sigma_Y$	

Opmerkingen: $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$, t > 0 $\mathcal{B}(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}, \quad s, t > 0$ Als $X \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$ en $Y \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$ dan $X \mid Y = y \sim \mathcal{N}\left(\mu_X + \rho \frac{\sigma_X}{\sigma_Y}(y - \mu_Y), \sigma_X^2(1 - \rho^2)\right)$

SCHATTEN VAN PARAMETERS

parameter	schatter	verdeling	BI
μ bij $\mathcal{N}(\mu, \sigma^2)$	$ar{X}$	$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$ $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$	$\begin{bmatrix} \bar{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \end{bmatrix}$ $\begin{bmatrix} \bar{x} - t_{n-1,1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}; \bar{x} + t_{n-1,1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \end{bmatrix}$
σ^2 bij $\mathcal{N}(\mu, \sigma^2)$	S^2	$(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$	$\left[\frac{(n-1)s^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{(n-1)s^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right]$
proportie p	\hat{P}	$\frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx \mathcal{N}(0,1)$ $n\hat{P} \sim \mathcal{B}(n,p)$	

 $\begin{array}{ll} \textbf{Opmerkingen:} & z_{\alpha} = \Phi^{-1}(\alpha) \\ & t_{n,\alpha} = Q_T(\alpha) \text{ met } T \sim t_n \\ & \chi^2_{n,\alpha} = Q_X(\alpha) \text{ met } X \sim \chi^2_n \\ \end{array}$

HYPOTHESETOETSEN

Hypothese	Mogelijke teststatistieken
$\mu = \mu_0$	$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$ $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$
$\sigma^2 = \sigma_0^2$	$X = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$
$p = p_0$	$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \approx \mathcal{N}(0, 1)$ $n\hat{P} \sim \mathcal{B}(n, p_0)$
$\mu_X = \mu_Y$	$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2} \text{ met } S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ $T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_r \text{ met } r = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$ Definieer $D = X - Y$ en test $\mu_D = \mu_0$
$\sigma_X^2 = \sigma_Y^2$	$F = S_X^2 / S_Y^2 \sim F_{n_1 - 1, n_2 - 1}$ opm: p -waarde= $2P(F_{n_1 - 1, n_2 - 1} > f)$ als $f > F_{n_1 - 1, n_2 - 1, 0.5}$ $2P(F_{n_1 - 1, n_2 - 1} < f) \text{ als } f \leqslant F_{n_1 - 1, n_2 - 1, 0.5}$
$p_1 = p_2$	$Z = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}} \approx \mathcal{N}(0,1)$ Benaderend: $Z' = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{\frac{\hat{P}_1(1-\hat{P}_1)}{n_1} + \frac{\hat{P}_2(1-\hat{P}_2)}{n_2}}} \approx \mathcal{N}(0,1)$
$\rho = 0$	$\frac{R\sqrt{n-2}}{\sqrt{1-R^2}} \sim t_{n-2}$
onafhankelijkheid	$\chi^2 \approx \chi_m^2 \text{met m=(rijen-1)(kolommen-1)}$ $\chi^2 = \text{som over alle cellen van} \frac{\text{(geobserveerde waarde - verwachte waarde)}^2}{\text{verwachte waarde}}$ waarin: verwachte waarde = $\frac{\text{rijsom} \times \text{kolomsom}}{n}$
normaliteit	correlatiecoëfficiënt van normale kwantielplot, zie Tabel 1

Tabel 1: normaliteitstest

n	$\alpha = 0.01$	$\alpha = 0.05$
10	.880	.918
15	.911	.938
20	.929	.950
25	.941	.958
30	.949	.964
40	.960	.972
50	.966	.976
60	.971	.980
75	.976	.984
100	.981	.986
150	.987	.991
200	.990	.993