PAT-NO:

JP408107102A

DOCUMENT-IDENTIFIER:

JP 08107102 A

TITLE:

PLASMA ETCHING DEVICE

PUBN-DATE:

April 23, 1996

INVENTOR-INFORMATION:

NAME

UEDA, YOICHI

HAYATA, HIDENORI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

(スピーッチング)、「これ次、前

SUMITOMO METAL IND LTD

N/A

APPL-NO:

JP06239822

APPL-DATE:

October 4, 1994

INT-CL (IPC): H01L021/3065, C23F004/00

ABSTRACT:

PURPOSE: To lessen the contamination by particles and metal, and to make it possible to conduct high speed polysilicon etching in a stable manner.

CONSTITUTION: In a plasma etching device provided with a reaction container 11, a lower electrode 17, which performs an additional function as an upper electrode 12, provided in the reaction container, and a sample stage, and a means which applies high frequency between the upper electrode 12 and the lower electrode 17, the upper electrode is formed by high purity silicon, and a quartz cover 14, which covers the upper electrode, is provided.

COPYRIGHT: (C) 1996, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-107102

(43)公開日 平成8年(1996)4月23日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/3065

C23F 4/00

A 9352-4K

H01L 21/302

C

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出願番号

(22)出願日

特願平6-239822

平成6年(1994)10月4日

(71)出額人 000002118

住友金属工業株式会社

大阪府大阪市中央区北浜4丁目5番33号

(72)発明者 上田 陽一

大阪府大阪市中央区北浜 4 丁目 5 番33号住

友金属工業株式会社内

(72)発明者 隼田 英紀

大阪府大阪市中央区北浜4丁目5番33号住

友金属工業株式会社内

(74)代理人 弁理士 森 道雄 (外1名)

(54) 【発明の名称】 プラズマエッチング装置

(57)【要約】

【構成】反応容器11と、この反応容器内に設けられた上部電極12および試料台を兼ねた下部電極17と、該上部電極12と該下部電極17との間に高周波を印加する手段とを備えたプラズマエッチング装置において、前記上部電極が高純度シリコンで形成されるとともに前記した。 出土部電極を被覆する石英製カバー14を備える。 「効果】パーティクルやメタルコンタミが少なくしかも安定的に高速のポリシリコンのエッチングを可能とする。

あった。

【特許請求の範囲】

【請求項1】反応容器と、この反応容器内に設けられた 上部電極および試料台を兼ねた下部電極と、該上部電極 と該下部電極との間に高周波を印加する手段とを備えた プラズマエッチング装置において、前記上部電極が高純 度シリコンで形成されるとともに前記上部電極を被覆す る石英製カバーを備えることを特徴とするプラズマエッ チング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体の製造の際用い られる、プラズマエッチング装置、より詳細にはポリシ リコンのエッチングに用いられるプラズマエッチング装 置に関する。

[0002]

【従来の技術】反応容器内に電極が設けられ、高周波放 電を利用するプラズマエッチング装置では、その電極材 料として、カーボンを主成分としたもの、あるいはアル ミニウムを主成分としたものが主流となっている。

【0003】しかしながら、デバイスの集積化が進むに 20 つれて、微細なゴミ(以下パーティクルと記す)や金属 等の不純物(以下メタルコンタミと記す)による基板の 汚染が問題となり、電極自体から発生する上記パーティ クルおよびメタルコンタミも問題となってきている。例 えば、カーボン電極の場合、電極を構成しているカーボ ン粒子自体による汚染が問題となっている。また、アル ミニウム電極の場合にもメタルコンタミ及びアルミニウ ム自体による汚染が問題となってきている。

【0004】このため、これらの問題を解決すべく、カ ーボン基材の表面に高純度かつ緻密な石英またはチタン 30 ナイトライドのコーティングを施し、直接カーボン基材 をプラズマにさらさないようにしたもの(特開昭63-376 15号公報)、エッチングする際に、予めカーボン電極表 面に、シリコンあるいはシリコン化合物からなる電極力 バー膜を成膜、被覆しやはり直接カーボン電極をプラズ・ マにさらさないようにしたもの (特開平3-237715号公 報)あるいは、アルミニウム基材の表面をアルマイト処 ... 理しアルミニウム素地をプラズマにさらさないようにし たもの等が提案されている。

【0005】しかしながら、上記したカーボン基材の表 40 面に高純度かつ緻密な石英またはチタンナイトライドの コーティングを施したものにおいては、寿命が短くコス ト増となる問題、さらには電極の交換頻度の増加による 装置の稼働率低下の問題があった。エッチングする際に 予め電極カバー膜を成膜する方法においては、何回かの エッチング処理の後には必ず上記の成膜工程が入るので エッチング処理が再現性が悪くなるという問題、あるい はその成膜工程が入ることによる装置の稼働率低下の問 題があった。また、アルミ基材の表面をアルマイト処理

で失われやすいのでアルミニウム素地の露出を厳しく管 理しなければならないという問題、アルマイト処理中の 封孔処理がメタルコンタミの新たな侵入源となる問題が

【0006】そこで、カーボンやアルミニウムに代え て、シリコンで電極を形成するものが提案されている (特開平4-73936 号公報)。すなわち、シリコンはカー ボンやアルミニウムに比べスパッタされにくく、仮にス パッタされたとしても塩素系、フッ素系、臭素系などの 10 エッチングガスと反応し気体として排気されるのでパー ティクルをほとんど生じない。またアルカリ金属及び重 金属 (Fe、Mn、Cr、Ni等) の不純物をほとんど 含まないので、メタルコンタミの問題を解決できる。 [0007]

【発明が解決しようとする課題】しかしながら、従来の シリコンで電極を形成するものは、主にシリコン酸化膜 のプラズマエッチング装置への適用を目的としたもので あり、ポリシリコンのプラズマエッチング装置への適用 は困難と考えられていた。すなわち、ポリシリコンのプ ラズマエッチングの際に用いられるC12、HBr、S F6 等のガスのプラズマによってシリコンの電極自体が エッチングされ、電極の寿命が短く実用に耐えない、と いう問題があった。

【0008】本発明はかかる事情に鑑みてなされたもの であり、パーティクルやメタルコンタミがなくしかも安 定的に高速のエッチングが可能なポリシリコンのエッチ ング装置を提供することを目的としている。

[0009]

【課題を解決するための手段】すなわち、上記目的を達 成するために本発明に係るプラズマエッチング装置は、 反応容器と、この反応容器内に設けられた上部電極およ び試料台を兼ねた下部電極と、該上部電極と該下部電極 との間に高周波を印加する手段とを備えたプラズマエッ チング装置において、前記上部電極が高純度シリコンで 形成されるとともに前記上部電極を被覆する石英製カバ ーを備えることを特徴としている。

【0010】なおここでいう高純度シリコンとは純度9』。 9.99 %以上のものである。 11 B + G 3

[0011]

【作用】上記した構成に依れば、上部電極が高純度シリ コンで形成されているとともに表面が石英製カバーで被 覆されているので、ポリシリコンのエッチングに使用さ れるCl₂、HBr、SF₆、CF₄等の塩素系、臭素 系、フッ素系のガスのプラズマによって、上部電極自体 がエッチングされることによる電極寿命の低下を抑える ことができる。上部電極が高純度シリコン及び石英で構 成されているので、スパッタされにくくまたアルカリ金 属及び重金属 (Fe、Mn、Cr、Ni等) の不純物を ほとんど含まないので、パーティクルの発生およびメタ したものにおいては、アルマイトが部分的にエッチング 50 ルコンタミの問題を解決することができる。また、通常

3

は上部電極をカバーで被覆すると、高周波の伝わり方が 低下しエッチングレートは低下するが、カバーが石英製 であるのでエッチングレートの低下を実用レベルに維持 することができる。

[0012]

【実施例】以下、本発明に係るプラズマエッチング装置 の実施例を図面に基づいて説明する。

【0013】第1図に本発明に係るプラズマエッチング 装置の一実施例の模式的断面図を示す。11は反応容器 であり、15が反応室である。この反応室15内の上方 には、上部電極12が配設されている。上部電極12は 純度99.99 %の高純度シリコンで形成され、石英製カバ ー14によってプラズマ照射面側が被覆されている。

【0014】上部電極12及び石英製カバー14はアルミナ製のシールド部材16によってアルミニウム製の上部基台13に固定されている。また、高周波電源24より、上部基台13を介して、上部電極12に高周波が供給される構成となっている。また、上部電極12の上方であって上部基台13の略中央部にはガス供給口19が形成されており、ガス供給口19から供給されたガスは、上部電極12及び石英製カバー14のそれぞれに形成された多数の小孔から反応室15内に導入される。また反応室15内を排気するために、ガス排出口20が形成されている。

【0015】反応室15の下方には、上部電極12に対向して試料Sが載置される試料台を兼ねた表面をアルマイト処理されたアルミニウム製の下部電極17が配設されている。下部電極17はアルミナ製シールド部材18によって外周を覆われ、また内部には冷却水路21が形成されており、冷却水供給口22から供給された冷却水30は冷却水路21を通り下部電極17を冷却し、冷却水排出口23から排出される。

【0016】上記したプラズマエッチング装置を用いて、上部電極の寿命、メタルコンタミ、パーティクル、及びポリシリコンのエッチングレートに関して測定した。

【0017】上部電極の寿命の測定は、8インチのシリニンウエハの試料Sを下部電極に載置しプラズマを発生させ、その間に上部電極自体がエッチングされるエッチ

4

ングレートから推定することとした。比較例は、図1において、石英製力バー14を取り外したものとした。120scmの流量のC12を供給し、圧力を450mTorrに設定し、電極間距離を10mmとし、13.56Mtkの高周波を400W供給し、プラズマを50時間発生させた。そして、三次元形状測定装置を用いて上部電極のエッチング量を測定し、エッチングレートを求めた。上部電極のエッチングレートは、石英製力バーが有る場合には、5~6nm/分あり、石英製力バーが無い場合には300nm/分であった。すなわち、寿命がエッチング量によって決まるとすれば、約50倍寿命が延び、通常の1枚あたりのウエハ処理時間を2分とし、シリコン電極が0.5mm削れるまでを寿命とするなら、約4~5万枚のウエハ処理することができ、十分な寿命となることが確認された。

【0018】 コンタミの評価は、8インチのシリコンウ エハの試料Sを下部電極に載置しプラズマを発生させ、 その後全反射型蛍光×線分析計にて評価した。比較例1 は、石英製カバー14を取り外したものである。比較例 2は、上部電極12として高純度シリコンに代えアルマ イト処理したアルミニウムを用いたものである。比較例 3は、比較例2と同様に上部電極12としてアルマイト 処理したアルミニウムを用いるが石英製カバーを取り外 したものである。それぞれに対して、120sccmの流量 のC 12 を供給し、圧力を450mTorr に設定し、13.5 6MHzの高周波を400W供給し、プラズマを30秒間発 生させ、試料Sを処理して測定に用いた。また、処理し なかったものをレファランスとした。 測定結果を表1に 示す。この結果から、上部電極がシリコンで形成されて いる本発明例および比較例1は上部電極がアルマイト処 理したアルミニウムで形成されている比較例2、比較例 3に比べ、不純物量が少ないことがわかる。特にNi、 Cu、Znの不純物量が少ない。上部電極の表面が石英 製カバーで覆われた比較例2の不純物量は、比較例3に 比べれば少ないけれども、本発明例に比べれば非常に多っと言語 くご単に石英製カバーで覆うだけでは不十分であること。代給日一 (がわかる。ボリシリコンのエッチングに ょう*、ガス*福間**1**キ

【0019】 【表1】

e en delinación de la lación de lación de la lación de lación de

【表1】(単位×10 10 atoms/cm2)

元素	レファランス	本発明例	比較例1	比較例2	比較例3
Νi	0	0	0	3	330
Cu	0	0	0	3	170
Мп	0	0	0	1	6
Fe	0	0	0	7	4 7
Zп	0	1	1	54	5 6
Тi	0	0	0	6	110
Сr	0	. 0	0	0	0
Ca	0	3	1 0	2 6	100

【0020】パーティクルの評価は、ポリシリコン膜が * 形成された8インチのシリコンウエハの試料Sを下部電極に載置しエッチング処理を200枚繰り返し行い、25枚毎に予めパーティクル数を測定した8インチのシリコンウエハを下部電極に60秒間エッチング処理と同じガスを流した状態で載置し、増加したパーティクル数より求めた。パーティクル数の測定はウエハパーティクル 20測定装置を用い直径0.3μm以上のものを測定した。エッチング処理は、120sccmの流量のC12を供給し、圧力を450mforrに設定し、13.56MHzの高周波を600W供給し、プラズマを120秒間発生させて行った。本発明例の場合は200枚の処理でも30個程度で安定していた。

【0021】ポリシリコンのエッチングレートの測定は、ポリシリコン膜が形成された8インチのシリコンウエハの試料Sを下部電極に載置しエッチング処理を行い測定した。120sccmの流量のC12を供給し、圧力を30450mTorrに設定し、13.56MHzの高周波を400W供給し、プラズマを30秒間発生させて試料Sのエッチング処理を行った。エッチングレートは295nm/分であり、石英製カバーのないものに比べ若干低下するものの実用上十分なレートであった。

【0022】本実施例においては、反応ガスとしてC12を用いたが、これ以外にポリシリコンのエッチングに用いられるHBr、SF6、CF4等の塩素系、臭素系、フッ素系のガスを含むものであって、石英のエッチングレートが十分に小さいものであれば同様の効果が得られる。

【0023】本実施例においては、高周波が上部電極に*

*印加される構成であり、上部電極の構成の影響が顕著に 現れた。しかし、高周波が下部電極に印加される構成の 装置においても、高周波が上部電極に印加される構成の 装置に比べ、少なくなるが同様の効果が得られる。

[0024]

【図面の簡単な説明】

【図1】本発明のプラズマエッチング装置を示す概略断 面図である。

【符号の説明】

- 10 プラズマエッチング装置
- 11 反応容器
- 12 上部電極
- 30 13 上部基台
 - 14 石英製カバー
 - 15 反応室
 - 16 シールド部材
 - 17 下部電極
 - 18 シールド部材
 - 19 ガス供給口
 - 20 ガス排出口
 - 21 冷却水路
 - 22 冷却水供給口
 - 23 冷却水排出口
 - 24 高周波電源

[図1]

