Total No. of Questions: 8]	290	SEAT No.:				
PA-1233	[5925]-255	[Total No. of Pages : 5				
S.E. (Computer Engg./Con	mputer Science and	l Design Engineering/				
Artificial Intelligence & Data Science)						
DISCRETE MATHEMATICS						
(2019 Patter	m) (Semester-III) (210241)				
Time: 2½ Hours]	·	[Max. Marks: 70				
Instructions to the candidates:		[Hax. Harks . 70				
1) Solve Q.1 or Q.2, Q.3 or Q	.4, Q.5 or Q.6 Q.7 Q.8.					
2) Neat diagrams must be dra	-					
3) Assume suitable data wher	ever necessary.	330				
Q1) a) The company has 10	members on its board	of directors. In how many				
ways can they elect a p	resident, a vice preside	ent, a secretary and treasure.				
8.		[6]				
b) Find eighth term in the	e expansion of (x+y) ¹³	[6]				
c) A box contains 6 white	e and 5 black balls. Fi	nd number of ways 4 balls				
can be drawn from the	e box if	[6]				
i) Two must be whi	ite O Tool					
ii) All of them must	have same colour					
	OR					
(Q2) a) In how many ways can	word the 'HOLIDAY	'' be arranged such that the				
letter I will always cor	(/),					
		ples among 4 children [6]				
c) Use Binomial theorem	to expand $(X^4+2)^3$	[6]				
Ø.*		9,3				
Q3) a) Is it possible to draw a	simple graph with 4 ve	ertices and 7 edges. Justify?				
		$ \begin{array}{ccc} $				
b) Define following terms	s with example.	[5]				
i) Complete graph	<u> </u>	>, %				
ii) Regular graph		9				
iii) Bipartite graph						
iv) Complete bipartit	tie graph	•				
v) Paths and circuit						

c) The graphs G and H with vertex sets V(G) and V(H), are drawn below. Determine whether or not G and H drawn below are isomorphic. If they are isomorphic, give a function g: V(G)-> V(H) that defines the isomorphism. If they are not explain why they are not. [5]

Q4) a) Determine which if the graph below represents Eulerian circuit, Eulerian path, Hamiltonian circuit and Hamiltonian Path. Justify your answer [7]

A connected planar graph has nine vertices with degree 2,2,2,3,3,3,4,4,5 b) **[5]**

Find

- number of edges
- number of faces ii)
- construct two such graphs
- Explain the following statement with example [5] c) "Every graph with chromatic number 2 is bipartite graph"

Construct Huffman tree **Q5**) a)

	A	5
	В	6
	C	6
	D	11
1	Е	20

- Explain b)
 - i) Cutset
 - Tree properties ii)
 - Prefix code iii)

[5925]-255

c) Give the stepwise construction of minimum spanning tree using Prims algorithm for the following graph. Obtain the total cost of minimum spanning tree. [6]

Q6) a) Using the labelling procedure to find maximum flow in the transport network in the following figure. Determine the corresponding minimum cut. [6]

- b) Define with example.
 - i) Level and height of a tree.
 - ii) Binary search tree.
 - iii) Spanning tree

[6]

	c)	Construct binary search tree by inserting integers in order		
		50,15,62,5,20,58,91,3,8,37,60,24		
		Find		
		i) No of internal nodes		
		ii) leaf nodes		
Q 7)	a)	Let $R = \{0,60,120,180,240,300\}$ and* binary operation so that for a	and	
		b in R, a*b is overall angular rotation corresponding to success	sive	
		rotations by a and by b. show that (R,*) is a group.	[6]	
		6,00		
		8 SV		
	b)	Following is the incomplete operation table of 4-element group. Comp	lete	
		the last two rows.	[6]	
		* e a b c		
		e de a b c		
		a a b c e		
	\	(c) 2°		
	c)	Explain Algebraic system and properties of binary operations.	[5]	
		OR O		
Q 8)	a)	Explain the following terms with examples		
		i) Ring with unity		
		ii) Integral domain		
		iii) Field	[6]	
	b)	Consider the set Q of rational numbers and let a*b be the operation	ion	
		defined by a*b=a+beab i) Find 3*4	[6]	
		i) Find 3*4		
		ii) 2*(-5),		
		iii) 7*(1/2)		
		Is (Q,*)a semigroup? Is it commutative?		
	`		r <i>=</i> 1	
	c)	Show that $(Z_n \oplus)$ is Abelian group	[5]	
		A A A C.		
		Consider the set Q of rational numbers and let a*b be the operated defined by a*b=a+b=ab i) Find 3*4 ii) $2*(-5)$, iii) $7*(1/2)$ Is $(Q,*)a$ semigroup? Is it commutative? Show that $(Z_n \oplus)$ is Abelian group		

[5925]-255