Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет електроніки Кафедра мікроелектроніки

ЗВІТ ПРО ВИКОНАННЯ ПРАКТИЧНОЇ РОБОТИ №5 з дисципліни: «Фізика напівпровідників»

ПЛАЗМОВИЙ РЕЗОНАНС

Виконавець: Студент 3-го курсу	(підпис)	Б.В. Лищенко
Превірив:	(підпис)	Т.Ю. Обухова

Плазмовий резонанс

Варіант	Напівпровідник	ε	$n^+ , {\rm M}^{-3}$	$\lambda_{ m pe3}, $ мкм
5	$n^+ - Ge$	16.3	$1.3 \cdot 10^{25}$	11.3

Завдання:

Визначити ефективну масу m^* основних носіїв заряду за заданих умов.

Довідкові данні:

- діелектрична проникність вакууму $\varepsilon_0 = 8.8 \cdot 10^{-12}, \frac{\Phi}{M}$
- маса електрона $m_e = 10^{-30} \; {\rm Kr}$
- заряд електрона $e = 1, 6 \cdot 10^{-19} \text{ Kл}$

Спочатку переходимо від резонансної довжини хвилі до резонансної частоти

$$f_{
m pes} = rac{v_{
m cB}}{\lambda_{
m pes}} = rac{3\cdot 10^8}{11.3\cdot 10^{-6}} = 2.654867\cdot 10^{13} \; \Gamma$$
ц

І тепер знаючи все що потрібно, знаходимо ефективну масу m^* основних носіїв заряду за формулою:

$$m^* = \frac{e^2 \cdot n^+}{\varepsilon \cdot \varepsilon_0 \cdot f_{\text{pes}}^2} = \frac{(1, 6 \cdot 10^{-19})^2 \cdot 1.3 \cdot 10^{25}}{16.3 \cdot 8.8 \cdot 10^{-12} \cdot (2.654867 \cdot 10^{13})^2} = 3.2917543533494455 \cdot 10^{-30} \text{ Kp}$$

Відповідь: $m^* = 3.2917543533494455 \cdot 10^{-30}$ кг