TD C6 - Circuits en régime sinusoïdal forcé

Capacités exigibles

• Manipuler des signaux complexes en régime sinusoïdal forcé : tous les exercices!

1 Impédance équivalente

Déterminer l'impédance complexe équivalente de chacun des dipôles ci-dessous en RSF.

2 Circuit RL série en RSF

On considère le circuit ci-contre en régime sinusoïdal forcé, où la source de tension impose $e(t) = E\cos(\omega t)$ avec E > 0.

- 1. Déterminer l'amplitude de u à «très haute» $(\omega\to\infty)$ et «très basse» $(\omega\to0)$ fréquence.
- 2. Exprimer l'amplitude complexe U de u(t) en fonction de E,R,L et ω .
- 3. Les tensions e et u peuvent-elles être en phase? en opposition de phase? en quadrature de phase? Préciser le cas échéant pour quelle(s) pulsation(s).

3 Exploitation d'un oscillogramme en RSF

On considère le circuit ci-dessous. On pose $e(t)=E_m\cos(\omega t)$ et $u(t)=U_m\cos(\omega t+\varphi)$. La figure ci-dessous représente un oscillogramme réalisé à la fréquence $f=1,2\times 10^3$ Hz, avec R=1,0 k Ω et C=0,10 μ F.

- 1. Déduire de cet oscillogramme les valeurs expérimentales de E_m, U_m et φ .
- 2. Exprimer U_m et φ en fonction des composants du circuit.
- 3. En déduire la valeur numérique de l'inductance L de la bobine.

4 Comportement d'un circuit à haute et basse fréquence

On considère le circuit ci-contre. On pose $e(t)=E_m\cos(\omega t)$ et $u(t)=U_m\cos(\omega t+\varphi).$

- 1. Définir les signaux complexes $\underline{e}(t)$ et $\underline{u}(t)$ puis les amplitudes complexes \underline{E} et \underline{U} associées aux tensions e(t) et u(t).
- 2. Établir l'expression de \underline{U} en fonction de E_m, R, L, C et ω .

5 Dipôle inconnu

Dans le montage ci-contre, le GBF délivre une tension e(t) sinusoïdale de pulsation ω , R est une résistance et D un dipôle inconnu. On note $u(t) = U_m \cos(\omega t)$ et $v(t) = V_m \cos(\omega t + \phi)$ les tensions aux bornes respectivement de R et D. On visualise à l'oscilloscope v(t), u(t) et on obtient le graphe suivant.

L'unité de l'axe des temps est 10^{-2} s et celle de l'axe des tensions est 1 V. On utilise ces résultats graphiques pour déterminer les caractéristiques de D, sachant que $R = 100 \Omega$.

- 1. Déterminer V_m, U_m ainsi que la pulsation ω des signaux utilisés.
- 2. La tension v est-elle en avance ou en retard sur la tension u? En déduire le signe de ϕ . Déterminer la valeur de ϕ à partir du graphe.
- 3. On note Z = X + jY l'impédance complexe du dipôle D.
 - a. Déterminer à partir des résultats précédents les valeurs de X et Y.
 - b. Par quel dipôle (condensateur, bobine, résistance) peut-on modéliser D?

6 Obtention d'une équation différentielle

En utilisant les complexes, montrer que la tension u(t) est solution de l'équation différentielle

$$4\tau^2\frac{\mathrm{d}^2u}{\mathrm{d}t^2} + 5\tau\frac{\mathrm{d}u}{\mathrm{d}t} + u(t) = e(t) \qquad \text{avec } \tau = RC$$

.

7 Déphasage, pulsation et impédance

On considère le régime sinusoïdal forcé. Déterminer l'expression de la pulsation ω de la tension sinusoïdale $e(t) = E\cos(\omega t)$ pour que le courant i(t) soit en phase avec e(t).

Indication : utiliser l'impédance équivalente constituée de C,L et $R_2.$

8 Oscillateur à quartz

Un quartz piézo-électrique se modélise par un condensateur (de capacité C_0) placé en parallèle avec un condensateur (de capacité C) en série avec une inductance L. On se place en régime sinusoïdal forcé de pulsation ω .

- a) Donner l'impédance \underline{Z} équivalente de l'oscillateur.
- b) Trouver la pulsation pour laquelle l'impédance de l'ensemble est nulle. Puis celle pour laquelle elle est infinie.
- c) Tracer l'allure de $|\underline{Z}(\omega)|$.
- d) Comment la courbe précédente serait-elle modifiée si on prenait en compte les résistances de chacun des composants.