

SINTEF Energy Research

Gas Technology

Address:

P.O. Box 4761 Torgarden NO-7465 Trondheim

NORWAY

Location:

Sem Sælands vei 11

Trondheim NORWAY

www.sintef.no/energi

Memo

User guide

AUTHOR
Vegard Gjeldvik Jervell, Morten Hammer

DATE
2022-04-19

Contents

1	Introduction	1
2	Phase keys	1
3	Cubic Equations of State	2
	3.1 Pure fluid α	2
	3.2 α mixing Rules	2

1 Introduction

This document is intended for generic user documentation. Also see https://github.com/SINTEF/thermopack/wiki.

2 Phase keys

The phase keys are defined in src/thermopack_constants.f90, and are shown in Table 1.

Phase	Key	Description
Two-phase	0	Liquid-vapor two-phase mixture (Code: TWOPH)
Liquid	1	Single phase liquid (Code: LIQPH)
Vapor	2	Single phase vapor (Code: VAPPH)
Minimum Gibbs	3	Single phase root with the minimum Gibbs free energy
		(Code: MINGIBBSPH)
Single	4	Single phase not identified as liquid or vapor
		(Code: SINGLEPH)
Solid	5	Single phase solid (Code: SOLIDPH)
Fake	6	In rare cases no physical roots exist, and a fake liquid root is
		returned (Code: FAKEPH)

Table 1: Phase flags in thermopack.

3 Cubic Equations of State

Name	Key
Van der Waal	VdW
Soave Redlich Kwong	SRK
Peng Robinson	PR
Schmidt-Wensel	SW
Patel Teja	PT
Translated consistent PR	tcPR

Table 2: Cubic Equations of state implemented in ThermoPack and the corresponding keys used for initialization.

3.1 Pure fluid α

Model	Key
Model default*	Classic
Twu-Coon-Bluck-Cunninghan	TWU
Mathias-Copeman	MC
Graboski and Daubert	GD
Redlich-Kwong	RK
Soave	Soave
Peng Robinson 76	PR
UMR α formulation	UMR
Peng Robinson 78	PR78
Van der Waal	VdW
Schmidt-Wensel	SW
Patel Teja	PT

^{*}Will use original α for specified EOS.

3.2 α mixing Rules

Name	Key
Van der Waals	Classic or vdW
Wong Sandler	WS
Huron Vidal	HV or HV2
NRTL	NRTL
UNIFAC	UNIFAC

Table 3: Mixing rules and phases available in thermopack, with the corresponding keys used to identify them.

E.g. SRK will use Soave α ,

Peng-Robinson will use PR α etc.