AIY - Vision Kit test

Benjamin IOLLER 2019-02-01

EAMS Lab Co. Ltd

Table of Content

- 1. AlY vision presentation
- 2. Potential use case
- 3. Crack Classification demo
- 4. Sum-up
- 5. Ressources and tips

I] AIY - Vision Bonnet: RaspberryZero Shield

I] AIY - Advantages

Al on Edge	Less latency Privacy No inference cost
Size	65 x 30 x 20
Weight	22.4 (without PiCam)
Low price	Kit around 90 \$

Small size and weight = easy integration:

I] AIY - Performances

1] Movibius*: SoC for image processing

- ≥ 2 Trillion 16-bit operation | 6 Mpixel second | 4K-HD cameras | Low power
- Experienced in lab: Classification (avg 20 fps) | Detection (avg 6 fps)

2] Supported Network**:

MODEL TYPE	SUPPORTED CONFIGURATION
MobileNetV1	input size: 160x160, depth multiplier = 0.5 input size: 192x192, depth multiplier = 1.0
MobileNetV1 + SSD	input size: 256x256, depth multiplier = 0.125
SqueezeNet	input size: 160x160, depth multiplier = 0.75

^{*}http://uploads.movidius.com/1441734401-Myriad-2-product-brief.pdf

^{**}https://aiyprojects.withgoogle.com/vision/

II] Possible Use case

1] Detection-Classification

- Easy to integrate into small UVA-UGV
- Non-real time application (eg: Autonomous control based on it)

My ideas: detection of stable, slow changing phenomena like

Wall crack:

Fired:

2] Cloud preprocessing:

- ▶ Frame selection
- Feature extraction

Come speak to me if you have any ideas:)

1] Objectif

- ▷ Being able to detect crack on the wall, integrating the board on a small drone
- First quick demonstration is done with image classification, holding by hand and turning led red if crack is detected

negative:

2] Used dataset

Concrete Crack Images for Classification*:

*https://data.mendeley.com/datasets/5y9wdsg2zt/1

3] Network description:

I used the MobileNet V1 pretrained network with:

- ▷ INPUT: 160x160
- Depth multiplier (original network capacity): 0.5

4] Training:

The board API is full python-tensorflow:

- ▶ Train your network on local machine
- Compile the graph (on Ubuntu 14.4 / 16.4)
- Upload the graph and label on the Raspberry
- Call inference and load model with aiy API

5] Results:

The board API is full python-tensorflow.

Classification running at average 20 fps

In case of video issue: https://www.youtube.com/watch?v=e4FoHp6COhM

IV] Sum-up

 Can provide a cheap Ai-on-Edge solution with easy integration on drone, small rover

Seems not able to tackle difficulties task like autonomous control due to hardware limitation

Active support from Google but product is not stable

VI Ressources and Tips

Don't upgrade your flashed image, it seems to mess up with the spicomm module

When flashed first reflex:

sudo systemctl disable joy_detection_demo

Don't try to preview the camera, it crash the pi.

VI Ressources and Tips

- https://aiyprojects.withgoogle.com/vision/#try-more-demos--stop-the-joy-detector
- https://github.com/google/aiyprojects-raspbian/tree/aiyprojects/src/examples
 es
- https://cogint.ai/custom-vision-training-on-the-aiy-vision-kit/
- https://aiyprojects.readthedocs.io/en/latest/
- https://blog.hackster.io/teething-troubles-for-the-new-aiy-projects-vision-ki t-625ed4e9287a
- https://github.com/google/aiyprojects-raspbian/releases
- https://aiyprojects.withgoogle.com/models/
- https://aiyprojects.readthedocs.io/en/latest/