Digital Systems Design and Laboratory [14. Derivation of State Graphs and Tables]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- 的教就对我放下MI 有相 iranit 表示
- Designing a sequential circuit
 - ➤ Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - Derive flip-flop input equations and output equations (Unit 12)

- **☐** Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

"101" Detector (1/5)

- ☐ Output "1" if detecting "101"
- Example
 - > Input X 0011011001010100
 - > Output Z 00000<u>1</u>00000<u>1</u>00
- State graph (Mealy) who x 有以

> S₀: initial, S₁: get "1", S₂: get "10"

"101" Detector (2/5)

☐ State table

Present	Next	State	Present Output			
State	X = 0	X = 1	X = 0	X = 1		
S ₀	S ₀	S ₁	0	0		
S_1	S ₂	S_1	0	0		
S ₂	S ₀	S_1	0	1		
	-					

ΔD	A ⁺	B ⁺	Z					
AB	X = 0 X = 1		X = 0	X = 1				
00	00	01	0	0				
01	10	01	0	0				
10	00	01	0	1				
11	XX	XX	Х	Х				

Next still, orbit & and don't care

"101" Detector (3/5)

☐ State maps

	_		_		AB	0	1	AB	0	1	AB	0	1
AB	A ⁺ B ⁺		-	<u>Z</u>	00	0		00	0	1	00	0	
	X = 0	X = 1	X = 0	X = 1	00	0	0	00	0		00	0	0
00	00	01	0	0	01	1	0	01	0	1	01	0	0
01	10	01	0	0	\Rightarrow 01		U	01	0		UI	0	
10	00	01	0	1	11	Х	X	11	Х	X	11	Х	
11	XX	XX	Х	Χ	11	^	^	11	^	^	11		^
					10	0	0	10	0	1	10	0	1
					10	O	U	10	U		10	0	
			$A^+ = X'B$: X'B	•	B+	= X		Z =	XA		

"101" Detector (4/5)

化簡度, 用只要的tip-tip-d如果.

☐ Realize it

- $A^+ = X'B$
- \triangleright B⁺ = X
- > Z = XA

"101" Detector (5/5)

- ☐ Some variants
 - ➤ Moore machine?
 - One more state

"010" and "1001" Detector

☐ A more complicated machine

- \triangleright S₀: reset
- > S₁: "0" (but not 10 nor 100)
- > S₂: "01"
- > S₃: "10"
- $> S_4$: "1" (but not 01)
- > S₅: "100"

- ☐ Design of a Sequence Detector
- **☐** Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

Guidelines for Construction of State Graphs

Steps

- > Construct sample sequences to help you understand the problem
- Determine under what conditions it should reset 图刻 mitial state
- ➤ If only one or two sequences lead to a nonzero output, construct a partial state graph
 - Another way, determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly
- Each time you add an arrow to the state graph, determine whether it can go to one of the previously defined states or whether a new state must added
- ➤ Check your graph to make sure there is one and only one path leaving each state for each combination of values of the input variables
- ➤ When your graph is complete, verify it by applying the input sequences formulated in step 1

- ☐ Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- **☐** Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

Serial Data Transmission

NRZ: Non-Return-to-Zero

NRZI: Non-Return-to-Zero-Inverted

RZ: Return-to-Zero

Manchester

 $0 \rightarrow 0 \qquad 1 \rightarrow 1 \\ 0 \rightarrow D \qquad 1 \rightarrow D \qquad 2$

 $0 \rightarrow 0$ $1 \rightarrow 10$

 $0 \rightarrow 01 \quad 1 \rightarrow 10$

Mealy Machine

- Output depends on
 - Current state (synchronous)
 - Input (maybe asynchronous)
- State changes at a falling edge

0

Fewer states

NRZ (X)

Clock2

State

Z (Actual)

Manchester (Ideal)

Moore Machine

NRZ Data Conversion Clock2 Network Data

0

 S_0

 S_3

 S_{1}

 S_2

Current state (synchronous)

☐ More states (in general)

- ☐ Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- **☐** Alphanumeric State Graph Notation

Alphanumeric State Graph Notation

- ☐ When a sequential circuit has several inputs, label the state graph arcs with alphanumeric input variable names instead of 0's and 1's
 - > Example
 - 2 inputs: F for "forward" and R for "reverse"

Completely Specified State Graph

Properties

- ightharpoonup together all input labels on arcs emanating from a state, the result can reduce to 1 ho 1
 - Cover all conditions: F + F'R +F'R' = F + F' = 1
- **AND** together any pair of input labels on arcs emanating from a state, the result can reduce to 0 小りははないなれるのでは、1 ないない
 - Only one arc is valid: $F \cdot F'R = 0$, $F \cdot F'R' = 0$, $F'R \cdot F'R' = 0$

Q&A