- 1. If the vectors $a_1, a_2, a_3, a_4 \in V$ are linear independent,
 - a) Whether $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_3 + a_4$ are linear independent? Explain.
 - b) Find a basis of a subspace $W = \{a_1 + a_2, a_2 + a_3, a_3 + a_4, a_3 + a_4\}$, and compute the dimension of W.

2. True or False

- a) If the vectors a_1, a_2, \cdots, a_m are linear dependent, then a_1 is a linear combination of a_2, \cdots, a_m .
- b) If the numbers c_1 , c_2 , ..., c_m are not all zero and $c_1a_1 + \cdots + c_ma_m + c_1b1 + \cdots + c_mb_m = 0$, then the vectors a_1, a_2, \cdots, a_m are linear dependent and b_1, b_2, \cdots, b_m are linear dependent also.
- c) If there exists a linearly dependent set $(v_1, ..., v_p)$ in V, then $\dim V \le p$.
- d) If every set of p elements in V fails to spanV, then dim V > p.
- e) If $p \ge 2$ and $\dim V = p$, then every set of p-1 nonzero vectors is linearly independent.
- 3. The set $\beta = \{1+t^2, t+t^2, 1+2t+t^2\}$ is a basis for P^2 , find the coordinate vector of $P(t) = 1+4t+7t^2$ relative to β .
- 4. Find the basis of the subspace spanned by vectors $\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix} \begin{bmatrix} 1\\2\\1\\3\\0 \end{bmatrix} \begin{bmatrix} 2\\5\\5\\-1\\3\\-1 \end{bmatrix}$
- 5. Prove the Theorem 8. (Onto and One-to-one map)
- 6. (a)Proof:If β_1 ={ $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ } is a basis of space V in Rⁿ, then β_2 ={ $\mathbf{a_1}$, $\mathbf{a_1}$ + $\mathbf{a_2}$, ..., $\mathbf{a_1}$ + $\mathbf{a_2}$ +...+ $\mathbf{a_n}$ } is also a basis of space V.

(b)Even more if
$$\,[v]_{\beta_1}=({\rm n,n-1,...\,,2,1}),$$
 compute $\,[v]_{\beta_2}$

- 7. Let T: $R^n \rightarrow R^m$ be a linear transformation.
 - a) What is the dimension of the range of T if T is a one-to-one mapping? Explain.
 - b) What is the dimension of the kernel of T (see Section 4.2) if T maps Rn onto \mathbb{R}^m ? Explain.
- 8. Consider the polynomials $p_1(t) = 1 + t$, $p_2(t) = 1 t$, $p_3(t) = 4$, $p_4(t) = 1 + t^2$, and $p_5(t) = 1 + 2t + t^2$, and let H be the subspace of P5 spanned by the set $S = \{p_1, p_2, p_3, p_4, p_5\}$. Produce a basis for H. (Explain how to select appropriate members of S.)