

Available online at www.sciencedirect.com

Nuclear Data Sheets

Nuclear Data Sheets 104 (2005) 791-966

www.elsevier.com/locate/nds

Nuclear Data Sheets for A = 113*

Jean Blachot

CEA/IN2P3
Service de Physique Nucleaire
CEA, B.P. 12
F-91680 Bruyeres-le-Chatel, France

(Received June 4, 2004; Revised November 2, 2004)

Abstract: This evaluation for A=113 updates one by J. Blachot, (1998Bl04), published in Nuclear Data Sheets 83, 647 (1998)

Cutoff Date: All data available before October 2004 have been considered.

General Policies and Organization of Material: See the introductory pages.

General Comments: Throughout this evaluation, rotational band parameters have been calculated from the standard energy equation:

 $E(J,K)\!=\!E_0\!+\!A[J(J\!+\!1)\!+\!\delta_{K,1/2}(-1)^{J+1/2}a(J\!+\!1/2)]\!+\!BJ^2(J\!+\!1)^2$

The constant A is reported in keV and the constant B, in eV. When "A" alone is given, "B" is assumed to be 0.

Acknowledgments: Many useful comments and suggestions by the editors are greatly appreciated. The author wishes to thank the compilers of the Experimental Unevaluated Nuclear Data List (XUNDL), an experimental file maintained by the NNDC. XUNDL may be accessed via the NNDC web site (www.nndc.bnl.gov). Thanks to G. Audi and O. Bersillon for many enlightening discussions. This work was done at the facilities of the ISN-Grenoble and DRFMC-Grenoble.

^{*} Research sponsored by Centre d'Etudes de Bruyeres le Chatel (CEA) France.

NUCLEAR DATA SHEETS

Index for A = 113

Nuclide	Data Type	Page	Nuclide	Data Type	Page
	Skeleton Scheme for A=113	794	¹¹³ Sb	Adopted Levels, Gammas	923
$^{113}{ m Nb}$	Adopted Levels	796		¹¹³ Te ε Decay	929
$^{113}{ m Mo}$	Adopted Levels	796		$^{112}\mathrm{Sn}(\mathrm{p,p})$ IAR	930
$^{113}{ m Tc}$	Adopted Levels	796		$^{112}\mathrm{Sn}(^{3}\mathrm{He,d})$	930
$^{113}\mathrm{Ru}$	Adopted Levels, Gammas	797		$^{114}\mathrm{Sn}(\mathrm{p},2\mathrm{n}\gamma)$	931
	113Ru IT Decay	798	440	(HI,xnγ)	932
119	²⁵² Cf SF Decay	799	¹¹³ Te	Adopted Levels, Gammas	936
$^{113}\mathrm{Rh}$	Adopted Levels, Gammas	800		113I & Decay	938
	113Ru β- Decay (0.9 s)	804	1137	(HI,xny)	938
	¹¹³ Ru β ⁻ Decay (0.5 s) ²⁵² Cf SF Decay	809	1101	Adopted Levels, Gammas	941
	²⁰⁸ Pb(¹⁸ O, Fγ)	810		114Cs ep Decay	950
¹¹³ Pd	Adopted Levels, Gammas	813 815	¹¹³ Xe	⁵⁸ Ni(⁵⁸ Ni,3pγ) Adopted Levels, Gammas	950 955
· I u	113Rh β- Decay	817	Ae	58Ni(⁵⁸ Ni,2pnγ)	959
	113Pd IT Decay	820	¹¹³ Cs	Adopted Levels	961
	²⁵² Cf SF Decay	820	C S	Huopica Ecvers	501
	²⁰⁸ Pb(¹⁸ O,Fγ)	821			
	$^{238}\text{U}(^{12}\text{C},\text{F}\gamma)$	822			
$^{113}\mathrm{Ag}$	Adopted Levels, Gammas	824			
8	¹¹³ Pd β ⁻ Decay	825			
	¹¹³ Ag IT Decay	827			
$^{113}\mathrm{Cd}$	Adopted Levels, Gammas	829			
	¹¹³ Ag β ⁻ Decay (5.37 h)	836			
	¹¹³ Ag β ⁻ Decay (68.7 s)	838			
	¹¹³ Cd IT Decay (14.1 y)	840			
	$^{110}\mathrm{Pd}(\alpha,\mathrm{n}\gamma)$	840			
	$^{112}\mathrm{Cd}(\mathrm{n},\gamma)$ E=res	847			
	$^{112}\text{Cd}(d,p), ^{114}\text{Cd}(d,t)$	847			
	$^{113}\mathrm{Cd}(\gamma,\gamma')$	848			
	$^{113}\mathrm{Cd}(\mathbf{n},\mathbf{n}'\gamma)$	849			
	$^{113}\text{Cd}(p,p'),(p,p'\gamma)$	854			
	¹¹³ Cd(d,d')	855			
	Coulomb Excitation	855			
	$^{173}{ m Yb}(^{24}{ m Mg},{ m F}\gamma)$ $^{176}{ m Yb}(^{28}{ m Si},{ m F}\gamma)$	856			
¹¹³ In	Adopted Levels, Gammas	857 859			
111	113Cd β ⁻ Decay $(7.7 \times 10^{15} \text{ y})$	868			
	113Cd β- Decay (14.1 y)	868			
	113In IT Decay (99.476 min)	868			
	¹¹³ Sn ε Decay (115.09 d)	869			
	¹¹³ Sn ε Decay (21.4 min)	871			
	110 Pd(6 Li, 3 n γ)	872			
	$^{110}\mathrm{Pd}(^{7}\mathrm{Li},4\mathrm{n}\gamma)$	873			
	¹¹² Cd(p,p) IAR	878			
	¹¹² Cd(³ He,d)	878			
	$^{112}\mathrm{Cd}(\alpha,t)$	879			
	$^{113}\mathrm{Cd}(p,n\gamma)$	879			
	$^{113}\mathrm{In}(\gamma,\gamma')$	886			
	¹¹³ In(d,d')	886			
	113 In(α,α')	886			
	Coulomb Excitation	887			
	$^{114}\mathrm{Sn}(\mathrm{d},^{3}\mathrm{He})$	888			
	$^{115}In(p,t)$	888			
	$^{116}\mathrm{Sn}(\mathrm{p},\alpha)$	889			
$^{113}\mathrm{Sn}$	Adopted Levels, Gammas	890			
	113Sn IT Decay (21.4 min)	898			
	113Sb ε Decay	898			
	¹⁰⁰ Mo(¹⁸ O,5nγ)	902			
	¹¹⁰ Cd(α,nγ)	903			
	$^{111}\mathrm{Cd}(\alpha,2\mathrm{n}\gamma)$ $^{112}\mathrm{Cd}(\alpha,3\mathrm{n}\gamma)$	907			
	$^{112}\mathrm{Cd}(\alpha,3\mathrm{n}\gamma)$ $^{112}\mathrm{Sn}(\mathrm{n},\gamma)$ E=95 eV	914			
	$^{112}Sn(n,\gamma)$ E=95 eV $^{112}Sn(d,p),^{114}Sn(d,t)$	915 916			
	$^{113}\text{In}(p,n\gamma)$	917			
	111 In(p,3n γ)	920			
	111 Sn(p,d) IAS	922			
	114Sn(p,d)	922			

Skeleton Scheme for A=113 $\%\epsilon + \%\beta^{+} \approx 100; \ \%\alpha \approx 0.011; \ \%\epsilon p = 7 \ 4; \ \%\beta^{+}\alpha \approx 0.007 \ 4$ S(p) 9714¹⁷ $S(n) = 6540.1^6$ $S(\alpha)$ 3868³ $^{113}_{48}{ m Cd}_{65}$ $Q^-=320^3$ 7.7×10^{15} Decay Modes Ground-State and Isomeric-Level Properties $\%IT=91.1\ 23;\ \%\epsilon+\%\beta^{+}=8.9\ 23$ $\%\epsilon\!+\!\%\beta^{+}\!=\!100;~\%\alpha\!=\!3.310\!\!\times\!\!10^{-7}$ $\%\beta^{-}=100; \%\beta^{-}n=2.1 3$ S(n) 8480²³ S(p) ... 7985²⁴ %IT=64 7; %β⁻=36 7 $\%\beta^{-}=100$ %IT=0.14; $\%\beta^{-}=99.86$ $S(\alpha)$ 4447²⁰ $^{113}_{47}\mathrm{Ag}_{66}$ $Q^-=2017^{16}$ %β⁻=92; %IT=8 %p=100; % α =0 $\%\epsilon + \%\beta^{+} = 100$ $\%\epsilon + \%\beta^{+} = 100$ $\%\epsilon + \%\beta^{+} = 100$ $\%\beta^{-}=100$ $\%\beta^{-}=100$ $\%\beta^{-}=100$ %IT=100 $\%\beta^{-}=100$ %IT = 1007/2+ $\% \beta^{-}=3$ 100%S(n) 543040S(α) 527080S(p) 11240⁶⁰ 99.476 min 23 $^{11\,3}_{4\,6}\mathrm{Pd}_{67}$ 100 ms syst 170 ms 20 7.7×10^{15} y 3 $Q^-=3340^{30}$ $T_{1/2}$ 21.4 min 4 30 ms syst 115.09 d 3 6.67 min 7 510 ms 301.7 min 2 2.80 s 1268.7 s 16 16.7 µs 7 93 s0.80 s 514.1 y 5 5.37 h 5 2.74 s 893 s 5 ≥100 s 0.3 s I6.6 s 2stable (9/2-)(7/2+) (5/2+)(9/2-)(7/2+) 7/2 + (5/2+) (3/2+)11/2-1/2+ 9/2+ 1/2-7/2+ 5/2+ 5/2+ 1/2+ 1/2-100%S(n) 7010^{70} $S(\alpha)$ 6570^{110} 10490^{90} 391.699 Level $^{113}_{45}{ m Rh}_{68}$ 263.54 77.389 $Q^-=5010^{40}$ 43.5 130 0.0 0.0 0.0 0.0 0.0 2.80 s Nuclide S(p) $^{113}\mathrm{Ru}$ $^{113}\mathrm{Rh}$ $^{113}\mathrm{Nb}$ ^{113}Cs $^{113}\mathrm{Mo}$ $^{113}\mathrm{Tc}$ 113 Pd ^{113}Ag $^{113}\mathrm{Cd}$ $^{113}\mathrm{Sn}$ ^{113}Sb $^{114}\mathrm{Cs}$ (7/2+) $^{113}\mathrm{In}$ $^{113}\mathrm{Te}$ $^{113}\mathrm{Xe}$ 113I 14900^{140} 4790100 $^{11\,3}_{4\,4}\mathrm{Ru}_{69}$ 130 $Q^-=6480^{50}$ 0.80 S(p) (11/2-)(5/2+)V S(n) $S(p) \hspace{1cm} 12180^{SY}$ $S(\alpha)$ 8050^{SY} S(n) 5800^{SY} $^{113}_{43}\mathrm{Tc}_{70}$ $Q^{-}=8480^{SY}$ 3380^{SY} $S(p) \qquad 15630^{SY}$ $S(\alpha) = 9280^{SY}$ $^{100\ ms}_{113} m Mo_{71}$ $Q^{-}=9590^{SY}$ 0.0 $\mathbf{S}(\mathbf{n})$ S(n) 4470SY $^{113}_{41}\rm{Nb}_{72}$ $Q^{-}=11940^{SY}$ 30 ms

Skeleton Scheme for A=113 (continued)

Adopted Levels

 $Q(\beta^{-})=11940$ SY; S(n)=4470 SY 2003Au03.

Produced from $^{208}Pb(U,f)$ E=750 MeV/u (1994Be24).

Identified with on-line fragment separator at GSI and time of flight.

¹¹³Nb Levels

E(level)	$T_{1/2}$	Comments
0.0	30 ms <i>SY</i>	$T_{1/2}$: tof measurement implies $T_{1/2}>300$ ns. Using extrapolation for Z=41 (2003Au03), the evaluator estimates $T_{1/2}=30$ ms. $\%\beta^-=?$

 $^{113}_{\ 42}\mathrm{Mo}_{71}$

 $^{113}_{\ 42}\mathrm{Mo}_{71}$

Adopted Levels

¹¹³Mo Levels

E(level)	$\underline{\hspace{1cm}} T_{1/2}$	Comments
0.0	100 ms SY	$T_{1/2}$: tof measurement implies $T_{1/2}$ >300 ns. Using extrapolation for Z=42 (2003Au03), the evaluator estimates $T_{1/2}$ =100 ms.
		% B [−] =?

 $^{113}_{\ 43}{\rm Tc}_{70}$

 $^{113}_{\ 43}\mathrm{Tc}_{70}$

Adopted Levels

 $Q(\beta^-)=8480~SY;~S(n)=5800~SY;~S(p)=12180~SY;~Q(\alpha)=-8050~SY~~2003Au03.$ Production and identification: ${}^{238}U(p,F)~E=20~MeV,~on-line~isotopic~separator~IGISOL.~Measured:~\gamma,~X\gamma~(1988Pe13).$

¹¹³Tc Levels

E(level)	$T_{1/2}$	Comments
0.0?	170 ms 20	%β=100; %β-n=2.1 3 (1999Wa09). T. ω: from 1999Wa09 Also 130 ms 50 (1992Av02)

Adopted Levels, Gammas

 $Q(\beta^-) = 6480\ 50;\ S(n) = 4790\ 100;\ S(p) = 14900\ 140;\ Q(\alpha) = -7380\ SY\ 2003 Au 03.$

 $Production \ and \ identification: \ ^{238}U(p,F) \ E=20 \ MeV, \ on-line \ isotopic \ separator \ IGISOL. \ Measured: \ \gamma, \ X\gamma \ (1988Pe13).$

²⁵²Cf SF decay. K x-ray coin (1969WiZX).

Thermal-neutron-induced fission of ²³⁹Pu and ²⁴⁹Cf. Chemical separation. Relative activity compared with mass distribution (1978Fr16).

$^{113}\mathrm{Ru}$ Levels

Cross Reference (XREF) Flags

A 252Cf SF Decay

B ¹¹³Ru IT Decay

E(level):		XREF	T _{1/2}	Comments
0.0	(5/2+)	AB	0.80 s 5	$\%\beta^-$ =100.
				$T_{1/2}$: from decay of 263.5 γ assigned to 113 Ru after mass separation (1998Ku17). This value confirms previous values of the same group: 0.80 s 10 (1988Pe13) and 0.80 s 6 (1992PeZX). Others: 2.69 s 10 (1969WiZX) 3.2 s 3 (1976MaYL), 3.0 s 7 (1978Fr16). These early assignments seem close to the new assignment 113 Rh half-life.
				$J\pi$: from syst.
98.5 3	(7/2+)	В		
113.36# 24	(9/2-)	A		
130 18	(11/2-)	В	510 ms 30	$\%\beta^{-}=92$; %IT=8.
260.44 \$ 24	(11/2-)	A		$T_{1/2}$: from 1998Ku17. E(level): from 2003Au03 because above the 99 Kev level and below 160 Kev. E(level): from 2003Zh14. There is no connection between this band head given by 2003Zh14 and the previous level scheme from 1998Ku17. More work is needed to
,,				clarify the level scheme.
522.5# 3	(13/2-)	A		
676.5 [§] 4	(15/2-)	A		
1082.4# 4	(17/2-)	A		
1238.8 \$ 5	(19/2-)	A		
1935.6 \$ 6	(23/2-)	A		
2740.2 \$ 6	(27/2-)	A		
3612.2 § 7	(31/2-)	A		

 $[\]dot{\dagger}~J\pi$ without comments are based on band assignments.

$\gamma(^{113}Ru)$

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ	Mult.	Comments
98.5	98.5 3	100	D	Mult.: From $\alpha(K)$ exp in 113 Ru it decay.
113.36	113.4 3	100		
260.44	$147.1\ 3$	100		
	$260.4\ 3$	14		
522.5	$262.1\ 3$	100		
	$409.2\ 3$	91		
676.5	154.0 3	14		
	416.1 3	100		
1082.4	405.9 3	90		
	559.9 3	100		
1238.8	562.3 3	100		
1935.6	696.8 3	100		
2740.2	804.5 3	100		
3612.2	872.0 3	100		

 $^{^{\}dagger}~$ From $^{113}Ru~IT~decay$ and $^{252}Cf~SF~decay.$

 $^{^{\}ddagger}$ From least-squares fit to Ey's, assuming $\Delta(\text{E}\gamma)\text{=}0.3$ keV.

 $[\]$ (A): possible $vh_{11/2}$, $\alpha = -1/2$.

^{# (}B): possible $vh_{11/2}$, $\alpha = +1/2$.

(A) possible $vh_{11/2}$, $\alpha=-1/2$

(B) possible $vh_{11/2}$, $\alpha=+1/2$

¹¹³Ru IT Decay 1998Ku17

Parent $^{113}Ru\colon E{=}130$ 18; Jπ=(11/2-); T_{1/2}=510 ms 30; %IT decay=100. Activity: $^{238}U(p,f),~E{=}20$ MeV, on-line isotope separator IGISOL. Measured: $\gamma,~\gamma\gamma,~\gamma(t),~ce,~Ge(Li),~Ge,~Si(Li),~elli~spectrometer.$

¹¹³Ru Levels

E(level)	Jπ	T _{1/2}		Comments
0.0 98.5 3	(5/2+) (7/2+)	0.80	s 5	
130 18	(11/2-)	$510~\mathrm{ms}$	30	T _{1/2} : from 1998Ku17.
				$\frac{\gamma^{(113}Ru)}{}$
Εγ	E(level)	Mult.		Comments
31.5 98.5 3	130 98.5	D		ot seen by 1998Ku17. xp=0.24 <i>12</i> .

Decay Scheme

Intensities: I(γ+ce)
per 100 parent decays
%IT=100

²⁵²Cf SF Decay 2003Zh14

Parent ^{252}Cf : E=0.0; J π =0+; $T_{1/2}$ =2.645 y 8; %SF decay=100. Measured E γ , I γ , $\gamma\gamma$, and $\gamma\gamma\gamma$ using the GAMMASPHERE detector array comprised of 102 Compton-suppressed Ge detectors.

¹¹³Ru Le<u>vels</u>

E(level)†	Jπ‡
0.0	
113.36# 24	(9/2-)
260.44 \$ 24	(11/2-)
522.5# 3	(13/2-)
676.5 \$ 4	(15/2-)
1082.4# 4	(17/2-)
1238.8 \$ 5	(19/2-)
1935.6 \$ 6	(23/2-)
2740.28 6	(27/2-)
3612.2 § 7	(31/2-)

- † From least-squares fit to Ey's, assuming $\Delta(\text{E}\gamma)\text{=}0.3$ keV.
- $\ensuremath{^\ddagger}$ Based on band assignment.
- $\$ (A): possible $\nu h_{11/2}, \ \alpha \text{=-}1/2.$
- # (B): possible $vh_{11/2}$, $\alpha = +1/2$.

$\gamma(^{113}Ru)$

Εγ	E(level)		Εγ	E(level)	Ιγ	Εγ	E(level)	
113.4	113.36	>100	405.9	1082.4	9	696.8	1935.6	26
147.1	260.44	100	409.2	522.5	21	804.5	2740.2	8
154.0	676.5	8	416.1	676.5	57	872.0	3612.2	2
260.4	260.44	14	559.9	1082.4	10			
262.1	522.5	23	562.3	1238.8	52			

Level Scheme

Intensities: relative $I\gamma$

Adopted Levels, Gammas

 $Q(\beta^-) = 5010\ 40;\ S(n) = 7010\ 70;\ S(p) = 10490\ 90;\ Q(\alpha) = -6570\ 110\ 2003 Au 03.$ Production and identification: $^{238}\text{U}(p,F)$ E=20 MeV, on-line isotopic separator IGISOL. ^{252}Cf SF decay. Mass from kinetic energy of fragment (1970Jo20). (K x-ray) γ coin (1972Ho08).

¹¹³Rh Levels

Cross Reference (XREF) Flags

- $A^{-113}Ru~\beta^-~Decay~(0.9~s)$ B 113 Ru β^- Decay (0.5 s) C 252 Cf SF Decay
- D ²⁰⁸Pb(¹⁸O,Fγ)

E(level) [†]	Jπ [‡]	XREF	T _{1/2}	Comments
0.0\$	(7/2+)	ABCD	2.80 s 12	T _{1/2} : From 1993Pe11. %β ⁻ =100.
211.71# 6	(9/2+)	ABCD	0.21 ns 13	$T_{1/2}$: From centroid-shift in $\beta \gamma(t)(2002 \text{Ku} 18)$.
263.21 ^b 7	(3/2+)	ABC	0.38 ns 12	$T_{1/2}$: From centroid-shift in $\beta \gamma(t)(2002Ku18)$.
351.36 ^b 7	(5/2+)	AB		1/2
444.00 \$ 7	(11/2+)	BCD		
570.95 [@] 7	(11/2+)	$^{\mathrm{CD}}$		
578.98 ^b 7	(7/2+)	ABC	0.66 ns 14	$T_{1/2}$: From centroid-shift in $\beta \gamma(t)(2002Ku18)$.
600.73° 7	(3/2+)	ABC		1/2
684.66# 8	(13/2+)	$^{\rm CD}$		
785.14 ^e 10	(7/2-)	ABC		
786.55° 12	(7/2+)	ABC		
823.4 4		A		
834.37d 8	(5/2+)	ABC		
911.93b 10	(9/2+)	C		
936.32 8	(13/2+)	CD		
967.9 4	(,,	A		
978.0 3		A		
1008.9 3		A		
1034.0 5		A		
1060.9 3		A		
1075.72 9	(15/2+)	CD		
1206.4 6	(10/21)	В		
1258.63d <i>13</i>	(9/2+)	C		
1284.25 [@] 8	(15/2+)	CD		
1320.21# 10	(17/2+)	CD		
1412.0@ 7	(11/21)	CD		
1463.9 7		A		
1485.2 6		A		
1529.8 6		В		
1673.61 9	(17/2+)	C		
1775.48 \$ 11	(19/2+)	$^{\mathrm{CD}}$		
1843.4 7		В		
1908.6 6		A		
1945.8 \$ 5		A		
1965.8 6		A		
2025.30@9	(19/2+)	C		
2037.97# 12	(21/2+)	$^{\mathrm{CD}}$		
2058.4 6	(9/2-)	В		
2122.0 4	(5/2,7/2)+	A		
2133.18 12	(21/2+)	C		
2191.3 4		Α		
2221.4 4		A		
2287.5 5		Α		
2297.4 7		A		
2367.9 4	(9/2-)	В		
2398.48& 11	(21/2+)	C		
2417.6 5	(9/2,11/2)-	В		
2446.49 ^a 15	(23/2+)	C		
2470.32 \$ 13	(23/2+)	\mathbf{C}		
2525.7 5		A		
2623.6 9		A		

Continued on next page (footnotes at end of table)

$^{113}Rh\ Levels\ (continued)$

E(level) [†]	$J\pi^{\ddagger}$	XREF
2675.4 13		A
2723.24# 14	(25/2+)	\mathbf{C}
2776.89 15	(25/2+)	C
3090.76 14	(27/2+)	C
3133.06 ^a 18	(27/2+)	C
3334.75# 15	(29/2+)	C
3770.04 \$ 16	(31/2+)	C
4006.03 # 17	(33/2+)	C

- † From least-squares fit to adopted gamma energies.
- $\dot{^{\ddagger}}$ Based on bands assignments and systematics.
- \S (A): g.s. band, $\alpha = -1/2$.
- # (B): g.s. band, $\alpha = +1/2$.
- @ (C): 11/2 + band, $\alpha = -1/2$.
- & (D): 13/2 + band, $\alpha = +1/2$.
- a (E): 23/2+ band, $\alpha \text{=-}1/2.$
- $^{b}\ (F)\hbox{: }3/2\hbox{+ }b\hbox{ and}.$
- c (G): $\pi 1/2[431]$ band, $\alpha = -1/2$.
- d (H): $\pi 1/2[431]$ band, $\alpha = +1/2$.
- e (I): $\pi 1/2[301]$ band.

 $\gamma(^{113}Rh)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ†	E(level)	${f E}\gamma^{\dagger}$	$\underline{\hspace{1.5cm}} \hspace{1.5cm} I \gamma^{\dagger} \underline{\hspace{1.5cm}}$	E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	Ιγ [†]
211.71	211.70 10	100	1034.0	770.9 7	100 8	2037.97	717.66 10	100 20
263.21	263.17 10	100	1060.9	226.0 7	30 15	2058.4	1225.0 10	30 20
351.36	88.17 10	78 16		274.7 7	33 4		1846.1 8	100 10
	351.44 10	100 20		709.4 5	100 5		2058.4 13	15 15
444.00	232.28 10	100 13		797.8 6	85 4	2122.0	1770.2 7	79 9
	443.95 10	91 13		1061.2 6	93 7		1858.1 7	100 6
570.95	359.26 10	100 20	1075.72	391.18 10	100 14		1911.0 9	32 3
	571.0 1	15 3		631.65 10	62 8		2121.8 11	21 3
578.98	227.68 10	100 20	1206.4	994.7 5	100	2133.18	357.67 10	100
	315.73 10		1258.63	424.26 10	100		813.0 1	
	367.25 10	29 6	1284.25	347.84 10	100 20	2191.3	246.4 11	7 4
600.73	337.58 10	100 20		599.45 10	46 9		1223.3 7	38 4
	600.7 1	14 3		713.40 10	23 5		1367.6 6	64 22
684.66	240.65 10	82 11		840.3 1			1840.8 7	64 4
	472.93 10	100 12	1320.21	244.48 10	51 10		1927.6 7	100 7
785.14	206.10 10	100		635.55 10	100 16		2191.0 8	64 22
	433.82 10		1412.0	475.7 7	100	2221.4	1160.8 9	19 3
	785		1463.9	1112.2 10	70 60		1213.1 7	36 <i>3</i>
786.55	185.82 10	100		1464.3 10	100 15		1869.7 7	64 6
823.4	560.1 4	100	1485.2	906.2 8	73 9		1957.8 7	100 8
834.37	233.69 10	100 20		1133.9 8	100 30	2287.5	1226.6 6	100 3
	483.04 10	27 6	1529.8	1318.4 7	100		1936.3 10	19 8
	571.07 10	82 16	1673.61	389.36 10	100 20		2023.9 10	24 11
911.93	332.97 10	100		737.34 10	65 13	2297.4	2034.5 10	47 6
	560.54 10		1775.48	455.34 10	100 20		2297.1 9	100 18
936.32	365.33 10	100 20		699.76 10	38 12	2367.9	1534.6 11	10 5
	724.60 10	42 9	1843.4	1631.7 6	100		1583.1 6	100 10
967.9	181.0 7	28 14	1908.6	1123.0 8	33 10		1922.9 7	100 10
	367.2 5	100 14		1645.7 7	100 20		2156.5 11	20 5
	704.9 7	31 3	1945.8	1367.6 6	100 8		2368.0 9	40 9
978.0	626.8 5	40 2		1593.8 7	83 8	2398.48	373.09 10	100
	715.14	100 3	1965.8	1180.4 7	100 50		724.95 10	60
1008.9	657.8 5	86 4		1614.7 8	100 50	2417.6	888.1 8	10 3
	745.9 5	83 4	2025.30	351.65 10	100 20		1973.2 6	100 10
	1008.7 6	100 7		740.95 10	23 5		2417.6 10	12 4
1034.0	247.0 8	50 30		949.61 10	69 14	2446.49	313.35 10	100
	682.8 8	58 17	2037.97	262.55 10	44 9	2470.32	432.26 10	100 20

Continued on next page (footnotes at end of table)

$\gamma(^{113}Rh) \ (continued)$

<u>E(level)</u>	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1.5cm}}^{} \underline{\hspace{1.5cm}} \hspace{1.5cm} 1 \gamma^{\dagger} \underline{\hspace{1.5cm}}$	E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$
2470.32	694.87 10	74 15	2723.24	685.32 10	100 20	3334.75	244.0 1	
2525.7	403.4 5	100 21	2776.89	330.45 10	100 20		611.45 10	100
	1548.9 7	71 4		643.66 10	56 11	3770.04	435.24 10	
	2173.6 8	$21 ext{ } 4$	3090.76	367.67 10	100 20		679.33 10	100
2623.6	2360.4 9	100		620.35 10	40 8	4006.03	236.0 1	
2675.4	2324.0 13	100 1	3133.06	356.1 [‡]			671.27 10	100
2723.24	252.95 10	69 14		686.57 10	100			

 $^{^{\}dagger}$ If possible, taken from 2004Lu03, otherwise from 2002Ku18.

(A) g.s. band, $\alpha=-1/2$

(B) g.s. band, $\alpha=+1/2$

(C) $11/2 + band, \alpha = -1/2$

[‡] Placement of transition in the level scheme is uncertain.

(H) $\pi 1/2[431]$ band, $\alpha = +1/2$ (I) $\pi 1/2[301]$ band

¹¹³Ru β- Decay (0.9 s) 2002Ku18

Parent $^{113}Ru\colon$ E=0; $J\pi=(5/2+);$ $T_{1/2}=0.9$ s; Q(g.s.)=6480 50; $\%\beta^-$ decay=100. $^{113}Ru-Q(\beta^-)\colon$ 2002Ku18 give 6480, adopted by 2003Au03.

See also $^{113}Ru~\beta^-$ decay (0.5 s).

Preliminary decay scheme was given by 1992PeZX. They show decay up to 1009 Kev.

Measured Eq. Iq, qq, by coin, lifetimes by $\beta\gamma(t)$ using a LEGe-detector and a 37% Ge-detector operated with two plastic scintillators and in anti-coincidence with a BGO shield.

¹¹³Rh Levels

$\underline{\hspace{1.5cm}E(level)^{\dagger}}$	Jπ [‡]	#	E(level)	Jπ [‡]
0.0	(7/2+)		1463.9 8	
211.66 19	(9/2+)	0.21 ns 13	1485.16	
263.16 16	(3/2+)	0.38 ns 12	1711.6? 10	
351.29 18	(5/2+)		1908.5 6	
578.77 24	(7/2+)		1945.7 \$ 5	
600.65 24	(3/2+)	0.66 ns 14	1965.7 6	
785.1 4	(7/2-)		2121.9 4	(5/2,7/2)+
786.5 4	(7/2+)		2191.3 4	
823.4 4			2221.4 4	
834.4 3	(5/2+)		2287.4? \$ 5	
967.8 4			2297.4 7	
978.0 4			2525.7? \$ 5	
1008.9 3			2623.6? \$ 10	
1033.9 5			2675.3? \$ 14	
1060.8 3				

- † From least-squares fit to Ey's.
- $\mbox{\ensuremath{\ddagger}}$ From Adopted levels.
- § Level not shown in figure 1 of 2002Ku18.
- $^{\text{\#}}$ From centroid-shift method in $\beta\gamma(t).$

β^- radiations

Εβ-	E(level)	Ιβ-	Log ft	Εβ-	E(level)	_Ιβ	Log ft
(4180 50)	2297.4	2.0	5.6	(5470 50)	1008.9	5.1	5.7
$(4260 \ 50)$	2221 . 4	6.2	5.1	(5500 50)	978.0	6.3	5.6
(4290 50)	2191.3	12.1	4.8	(5510 50)	967.8	2.3	6.1
(4360 50)	2121.9	6.2	5.2	(5650 50)	834.4	6.5	5.7
(4510 50)	1965.7	2.2	5.7	(5660 50)	823.4	1.7	6.2
(4530 50)	1945.7	3.7	5.5	(5690 50)	786.5	2.7	6.1
(4570 50)	1908.5	2.8	5.6	(5690 50)	785.1	0.3	7.0
(4990 50)	1485.1	1.5	6.1	(5880 50)	600.65	10.2	5.5
(5020 50)	1463.9	0.9	6.3	(5900 50)	578.77	4.5	5.9
(5420 50)	1060.8	6.6	5.6	(6220 50)	263.16	18.9	5.4
(5450 50)	1033.9	2.0	6.1				

 $\gamma(^{113}Rh)$

 $I\gamma$ normalization: From level scheme, assuming no $\beta-$ feeding to the ground state.

Εγ	E(level)	Ιγ\$	Comments
48.1 <i>13</i> 88.1 <i>3</i> 181.0 <i>7</i>	834.4 351.29 967.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$I\gamma$: combined intensity from both isomers=13.1 $I3$.
$185.8 \ 3$ $206.2 \ 4$ $211.7 \ 2$ $226.0 \ 7$	786.5 785.1 211.66 1060.8	6.8 8 0.9 [‡] 2.9 [‡] 8 0.8 4	Iy: combined intensity from both isomers=2.7 4. Iy: combined intensity from both isomers=32.8 8.
227.6 3 233.9 4 246.4 # 11	578.77 834.4 2191.3	$7.0^{\ddagger} 4$ $2.4^{\ddagger} 4$ $0.3 2$	Iy: combined intensity from both isomers=8.2 4. Iy: combined intensity from both isomers=2.7 4.
247.0 [#] 8 263.2 2	1033.9 263.16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Iγ: combined intensity from both isomers=100.0 5 .
			Continued on next page (footnotes at end of table)

$^{113}Ru~\beta^{\text{-}}$ Decay (0.9 s) ~~2002Ku18 (continued)

$\gamma(^{113}Rh)\ (continued)$

Εγ	E(level)	Ιγ§	Comments
274.7 7	1060.8	0.9 1	
337.6 3	600.65	23.1 ‡ 4	Iy: combined intensity from both isomers=23.4 4.
351.2 3	351.29	11.2 ‡ 17	Iγ: combined intensity from both isomers=11.8 17.
367.1 5	578.77	1.8 ‡ 2	lγ: combined intensity from both isomers=2.1 2.
367.2 5	967.8	2.9 4	
x 4 0 1 . 0 † 7		1.1 1	In coin with 88, 117, 152, 186, 263 y's; fits between levels 2368-1966.
403.4 # 5	2525.7?	2.4 5	
* 4 2 2 . 9 † 5		2.3 1	In coin with 88, 162, 263, 338 γ 's; fits between levels 2368-1945.
482.0 8	834.4	0.6 ‡ 2	Iγ: combined intensity from both isomers=0.7 2.
560.14	823.4	5.1.2	
571.1 4	834.4	5.9‡ 2	Iγ: combined intensity from both isomers=6.6 2 .
578.7# 6	578.77	1.6 ‡ 2	Iγ: combined intensity from both isomers=1.9 2 .
600.5 5	600.65	2.1 3	
626.8 5	978.0	2.3 1	
657.8 5	1008.9	2.5 1	
682.8# 8	1033.9	0.7 2	
704.9 7	967.8	0.9 1	
709.4 5	1060.8	2.7 1	
715.1 4	978.0	5.8 1	
745.95 770.97	1008.9 1033.9	$egin{array}{cccc} 2 & . & 4 & 1 \\ 1 & . & 2 & 1 \end{array}$	
770.9 7 785.0# <i>5</i>	785.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Iγ: combined intensity from both isomers=2.7 2.
797.8 6	1060.8	2.3 1	1]. combined invensity from both isomers=2.7 2.
906.2# 8	1485.1	0.8 1	
1008.7# 6	1008.9	2.9 2	
1061.2# 6	1060.8	2.5 2	
1112.2 10	1463.9	0.5 4	
1123.0#8	1908.5	0.9 1	
1133.9 8	1485.1	1.1 3	Eγ: also fits between levels 1966-834.
1160.8#9	2221 . 4	0.7 1	
1180.4 # 7	1965.7	1.4 7	
x1194.6 [†] 6		2.6 2	In coin with 135, 212, 263 γ 's.
1213.1# 7	2221 . 4	1.3 1	
1223.3# 7	2191.3	1.7 2	
1226.6# 6	2287.4?	3.71	
1367.6 [@] 6	1945.7	2.9@1	
	2191.3	2.9 [@] 1	
1448.4 9	1711.6?	0.8 8	Eγ: placement not shown in figure 1; also fits between levels 2417-968.
1464.3# 10	1463.9	0.7 1	
1548.9# 7	2525.7?	1.7 1	
1593.8 7 1614.7 8	1945.7	2.4 2	
1614.7 8	1965.7 1908.5	$egin{array}{cccc} 1 & . & 4 & 1 \\ 2 & . & 7 & 2 \end{array}$	
x1661.2 [†] 10	1000.0	0.6 1	In coin with 88, 212 γ's.
1770.2 7	2121.9	2.7 3	, 0.
1840.8 7	2191.3	2.9 2	
1858.1 7	2121.9	3.4 2	
1869.7 7	2221.4	2.3 2	
1911.0 9	2121.9	1.1 1	
1927.6 7	2191.3	4.5 2	
1936.3# 10	2287.4?	0.7 3	
1957.8 7	2221 . 4	3.6 3	
2023.9 # 10	2287.4?	0.9 4	
2034.5 10	2297 . 4	0.8 1	
2121.8# 11	2121 . 9	0.7 1	
2173.6# 8	2525.7?	0.5 1	
2191.0 8	2191.3	2.9 1	
2297.1 9	2297.4	1.7 3	
2324.0 13	2675.3?	0.3 1	
2360.4 9	2623.6?	1.8 2	

 $^{^{\}dagger}$ This unplaced γ belongs to the decay of either or both the isomers.

Footnotes continued on next page

[‡] From figure 1 of 2002Ku18.

^{113}Ru β^- Decay (0.9 s) 2002Ku18 (continued)

 $\gamma(^{113}Rh)~(continued)$

- \S For absolute intensity per 100 decays, multiply by ${\approx}0.85.$
- For absolute intensity per 100 decays, matriply 3, 2000.

 # Placement of transition in the level scheme is uncertain.

 @ Multiply placed; undivided intensity given.

 x γ ray not placed in level scheme.

¹¹³Ru β- Decay (0.9 s) 2002Ku18 (continued)

Decay Scheme

Intensities: $I(\gamma + ce)$ per 100 parent decays & Multiply placed; undivided intensity given

^{113}Ru β^- Decay (0.9 s) - 2002Ku18 (continued)

Decay Scheme (continued)

Intensities: $I(\gamma + ce)$ per 100 parent decays & Multiply placed; undivided intensity given

2675.3
2623.6
2525 7

^{113}Ru β^- Decay (0.5 s) -2002Ku18

Parent $^{113} Ru: \ E=130 \ 30; \ J\pi=(11/2-); \ T_{1/2}=0.5 \ s; \ Q(g.s.)=6480 \ 50; \ \%\beta^- \ decay=100.$

 $^{113}Ru-Q(\beta^{-});\ 6480\ 50\ (2003Au03).$

¹¹³Ru-E,J: Tentative assignment based on a known level near this energy.

See also ^{113}Ru β^- decay (0.9 s).

Measured Ey, Iy, $\gamma\gamma$, $\beta\gamma$ coin, $\beta\gamma(t)$ using a LEGe-detector and a 37% Ge-detector operated with two plastic scintillators and in anti-coincidence with a BGO shield.

¹¹³Rh Levels

E(level) [†]	Jπ	‡	$\underline{\hspace{1.5cm}E(level)^{\dagger}}$	Jπ
0.0	(7/2+)		786.3 4	(7/2+)
211.73 18	(9/2+)	0.21 ns 13	834.1 3	(5/2+)
263.10 17	(3/2+)		1206.4 6	
351.24 20	(5/2+)		1529.8? 6	
444.12 25	(11/2+)		1843.4 7	
578.80 25	(7/2+)		2058.4 6	(9/2-)
600.5 3	(3/2+)		2367.9 4	(9/2-)
785.0 4	(7/2-)		2417.6 5	(9/2,11/2)-

- † From least-squares fit to Ey's.
- $\mbox{$\overset{\div}{\scriptscriptstyle +}$}$ From centroid-shift in $\beta\gamma(t).$

β- radiations

Εβ-	E(level)	Ιβ-	Log ft
(4190 60)	2417.6	24.1	4.2
$(4240\ 60)$	2367 . 9	23 . 4	4.3
(4550 60)	2058 . 4	6.3	5.0
(4770 60)	1843.4	11.2	4.8
(5080 60)	1529.8?	1.2	5.9
$(5400 \ 60)$	1206 . 4	7.7	5.2
$(6170 \ 60)$	444 . 12	2.3	6.0
$(6400 \ 60)$	211.73	23.8	5.1

$\gamma(^{113}Rh)$

See 401.0, 422.9, 1194.6 and 1661.2 unplaced $\gamma^{\prime}s$ in ^{113}Ru β^{-} decay (0.9 s).

Εγ	E(level)	Ιγ‡	Mult.	Comments
48.1 13	834.1	0.02†		
88.1 3	351.24	0.7†		
185.8 3	786.3	0.02†		
206.2 4	785.0	1.8 † 4		Iγ: combined intensity from both isomers=2.7 4.
211.7 2	211.73	29.9 [†] 8	M1 (+E2)	Iγ: combined intensity from both isomers=32.8 8. $\alpha(K)\exp=0.06$ 2.
227.6 3	578.80	1.2^{\dagger} 4		•
232.3 3	444.12	7.4 3		
233.9 4	834.1	0.3 †		
263.2 2	263.10	1.7^{\dagger} 5	E2	
337.6 3	600.5	0.3 †		
351.2 3	351.24	0.6 †		
367.1 5	578.80	0.3 †		
443.9 4	444.12	5.5 2		
482.0 8	834.1	0 . 1 [†]		
571.1 4	834.1	0.7†		
578.7 6	578.80	0.3 †		
600.5 5	600.5	0.02†		
785.0 5	785.0	1.8 † 2		Iγ: combined intensity from both isomers=2.7 2.
888.1 8	2417.6	0.9 4		
994.7 5	1206.4	3.3 4		
1225.0 \$ 10	2058.4	0.6 4		
1318.4 7	1529.8?	1.4 1		
1534.6 \$ 11	2367.9	0.5 1		
			Continu	ed on next page (footnotes at end of table)

 ^{113}Ru $\beta^{\text{-}}$ Decay (0.5 s) $\qquad 2002Ku18$ (continued)

 $\gamma(^{113}Rh)~(continued)$

Εγ	E(level)	Ιγ‡
1583.1 6	2367.9	3.6 2
1631.7 6	1843.4	4.8 3
1846.1 8	2058 . 4	1.8 1
1922.9 7	2367.9	3.6 1
1973.2 6	2417.6	8.3 2
2058.4 \$ 13	2058.4	0.3 3
2156.5 11	2367.9	0.7 1
2368.0 9	2367.9	1.6 1
2417.6 10	2417.6	1.1 1

- † From figure 2 of 2002Ku18.
- $\mbox{\begin{tabular}{l} $\overset{\pm}{=}$}$ For absolute intensity per 100 decays, multiply by 2.4.
- $\$ Placement of transition in the level scheme is uncertain.

Decay Scheme

²⁵²Cf SF Decay 2004Lu03

Parent $^{252}{\rm Cf:}~E=0;~J\pi=0+;~T_{1/2}=2.645~y~8;~\%{\rm SF~decay}{=}100.$

Measured Ey, Iy, $\gamma\gamma$ using GAMMASPHERE array of 102 Compton-suppressed Ge detectors.

First mass assignment from fragment- γ coin, 1970Jo20. Z assignment of 304 γ from (K x-ray) γ coin, 1972Ho08. Cascade assignment from half-lives, 1970Jo20.

 154.6γ and 304γ seen by 1970Jo20 and 1972Ho08 could belong to an other nuclide.

¹¹³Rh Levels

E(level)	† 	Jπ
0.0‡		(7/2+)
211.728	10	(9/2+)
263 . 21^{b}	10	(3/2+)
351.36 ^b	10	(5/2+)
444.00‡	10	(11/2+)

Continued on next page (footnotes at end of table)

²⁵²Cf SF Decay 2004Lu03 (continued)

$^{113}Rh\ Levels\ (conti\underline{nued})$

E(level) [†]	Jπ	E(level)	Jπ	E(level)	<u></u> Jπ
570.96# 10 578.99b 10 600.72c 10	(11/2+) (7/2+) (3/2+)	1258.63d 13 1284.26# 10 1320.21\$ 10	(9/2+) (15/2+) (17/2+)	$2470.32 \ddagger 13$ $2723.24 \$ 14$ $2776.90 \$ 15$	(23/2+) (25/2+) (25/2+)
684.66 \$ 10 785.13 ° 10 786.54 ° 13 834.36 d 10 911.93 b 10 936.33 @ 10	(13/2+) $(7/2-)$ $(7/2+)$ $(5/2+)$ $(9/2+)$ $(13/2+)$ $(15/2+)$	1673.62 [@] 10 1775.49 [‡] 11 2025.30 [#] 10 2037.97 [§] 12 2133.19 ^{&} 12 2398.48 [@] 11 2446.49 [§] 15	(17/2+) $(19/2+)$ $(19/2+)$ $(21/2+)$ $(21/2+)$ $(21/2+)$ $(21/2+)$ $(23/2+)$	$3090.76^{\ddagger}14$ $3133.06^{a}18$ $3334.76^{\$}15$ $3770.04^{\ddagger}16$ $4006.03^{\$}17$	(27/2+) (27/2+) (29/2+) (31/2+) (33/2+)

 $^{^\}dagger$ From least-squares fit to Ey's, assuming $\Delta(E\gamma)$ =0.1 keV; stated by 2004Lu03 as systematic error. Minimum uncertainty in level energy is assigned as 1 keV.

 $\gamma(^{113}Rh)$

Εγ	E(level)	Ιγ	Comments
88.17 10	351.36	5.4	
185.82 10	786.54	4.5	
206.10 10	785.13	0.6	
211.70 10	211.72	100	Decays with half-life=5 ns 1 (1970Jo20).
227.68 10	578.99	0.7	
232.28 10	444.00	20.7	
233.69 10	834.36	2.2	
236.0 1	4006.03		
240.65 10	684.66	15.8	
244.0 1	3334.76		
244.48 10	1320 . 21	7.3	
252.95 10	2723.24	1.1	
262.55 10	2037.97	2.2	
263.17 10	263.21	20.3	
313.35 10	2446 . 49	2.7	
315.73 10	578.99		
330.45 10	2776.90	0.9	
332.97 10	911.93	0.3	
337.58 10	600.72	5.1	
347.84 10	1284 . 26	2.6	
351.44 10	351.36	6.9	
351.65 10	2025.30	1.3	
356.1 [†]	3133.06		
357.67 10	2133.19	5.1	
$359.26\ 10$	570.96	6.2	
365.33 10	936.33	5.2	
367.25 10	578.99	0.2	
367.67 10	3090.76	1.0	
373.09 10	2398 . 48	0.5	Eγ: 373.2 in figure 6 of 2004Lu03.
389.36 10	1673.62	1.7	
391.18 10	1075.73	8.4	
424 . 26 10	1258 . 63	1.2	
432 . 26 10	2470 . 32	1.9	
433.82 10	785.13		
			Continued on next page (footnotes at end of table)

 $[\]ddagger$ (A): g.s. band, $\alpha = -1/2$.

^{§ (}B): g.s. band, $\alpha = +1/2$.

^{# (}C): 11/2+ band, $\alpha=-1/2$.

^{@ (}D): 13/2+ band, $\alpha=+1/2$.

[&]amp; (E): 21/2+ band, $\alpha=+1/2$.

a (F): 23/2+ band, $\alpha = -1/2$.

b (G): 3/2+ band.

c (H): $\pi 1/2[431]$ band, $\alpha = -1/2$.

d (I): $\pi 1/2 [431]$ band, $\alpha \text{=+}1/2.$

e (J): $\pi 1/2[301]$ band.

²⁵²Cf SF Decay 2004Lu03 (continued)

$\gamma(^{113}Rh) \ (continued)$

Εγ	E(level)	Ιγ	Comments
495 94 10	3770.04		
435.24 10 443.95 10	444.00	18.9	
		6.6	
455.34 10	1775.49		
472.93 10	684.66	19.3	
483.04 10	834.36	0.6	
560.54 10	911.93		
571.0 1	570.96	0.9	
571.07 10	834.36	1.8	
599.45 10	1284.26	1.2	Eγ: 599.6 in figure 6 of 2004Lu03.
600.7 1	600.72	0.7	
611.45 10	3334.76	0.5	
620.35 10	3090.76	0.4	Eγ: 620.5 in figure 6 of 2004Lu03.
631.65 10	1075.73	5.2	
635.55 10	1320 . 21	14.4	
643.66 10	2776.90	0.5	
671.27 10	4006.03	0.3	
679.33 10	3770.04	0.3	
685.32 10	2723 . 24	1.6	
686.57 10	3133.06	0.3	
694.87 10	2470 . 32	1.4	
699.76 10	1775.49	2.5	
713.40 10	1284 . 26	0.6	Eγ: 713.2 in figure 6 of 2004Lu03.
717.66 10	2037.97	5.0	
724.60 10	936.33	2.2	
724.95 10	2398.48	0.3	
737.34 10	1673.62	1.1	
740.95 10	2025.30	0.3	
785	785.13		
813.0 1	2133.19		Ey: from figure 6 of 2004Lu03.
840.3 1	1284.26		Ey: 840.2 in figure 6 of 2004Lu03.
949.61 10	2025.30	0.9	Eγ: 949.5 in figure 6 of 2004Lu03.

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

²⁵²Cf SF Decay 2004Lu03 (continued)

Level Scheme

Intensities: relative $I\gamma$

 $^{113}_{45}\mathrm{Rh}_{68}$

$^{208}{ m Pb}(^{18}{ m O,F}\gamma)$ $2002{ m Ve}08$

E=85 MeV. Measured Eγ, Iγ, γγ using the Euroball IV array comprised of 15 cluster Ge detectors, 26 clover Ge detectors and 30 tapered single-crystal Ge detectors.

$^{113}\mathrm{Rh}$ Levels

$\underline{\hspace{1.5cm}E(level)^{\dagger}}$		$\frac{E(level)^{\dagger}}{}$	Jπ	E(level) [†]	Jπ
0.0‡	(7/2+)	683.78 4	(13/2+)	1319.3 \$ 5	(17/2+)
211.7 8 3	(9/2+)	935.1# 6	(13/2+)	1410.8# 10	(17/2+)
443.4 ‡ 3	(11/2+)	1074.7 ‡ 5	(15/2+)	1773.7‡ 7	(19/2+)
570.1# 5	(11/2+)	1282.7# 8	(15/2+)	2036.9 \$ 10	(21/2+)

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $^{^{\}ddagger}$ (A): $\pi g_{9/2}$, $\alpha = -1/2$.

^{§ (}B): $\pi g_{9/2}$, $\alpha = +1/2$.

^{# (}C): Band based on (11/2+).

208Pb(¹⁸O,Fγ) 2002Ve08 (continued) γ(¹¹³Rh)

Εγ	E(level)	Ιγ	Comments
$211.6 \ 3$	211.7	$100 \ 15$	
$231.6\ 3$	443.4	31 5	
$240.3\ 3$	683.7	40 5	
244.54	1319.3	15 4	
347.5 5	1282.7	10 3	
358.4 4	570.1	26 5	
365.0 4	935.1	20 4	
390.9 4	1074.7	20 4	
443.54	443.4	25 6	
454.4 6	1773.7	15 4	
472.1 4	683.7	29 5	
475.7 7	1410.8	6 2	
631.4 5	1074.7	8 2	
635.7 5	1319.3	16 4	
698.9 8	1773.7	6 2	
713 [†]	1282.7		Ey: from figure 4 of 2002Ve08.
717.6 8	2036.9	6 2	

 $[\]dot{\dagger}$ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: relative $I\gamma$

Adopted Levels, Gammas

 $Q(\beta^-) = 3340\ 30;\ S(n) = 5430\ 40;\ S(p) = 11240\ 60;\ Q(\alpha) = -5270\ 80\ 2003 Au 03.$ $T_{1/2}(128.5\gamma)$ =0.91 s 8, assigned either to 113 Pd or 111 Pd (1970WiZN) via 113 Rh (111 Rh) β^- decay, is not seen by 1988Pel3 after mass separation.

¹¹³Pd Levels

Cross Reference (XREF) Flags

- A ¹¹³Rh β⁻ Decay
- B ¹¹³Pd IT Decay
- C ²⁰⁸Pb(¹⁸O,Fγ)
- D 238 U(12 C,F γ) E 252 Cf SF Decay

E(level)	Jπ [‡]	XREF	T _{1/2}	Comments
0.0	(5/2+)	AB	93 s 5	$\%\beta^{-}=100.$
				$E(level)$: tentative g.s. assignment based on $T_{1/2}$ syst.
				$T_{1/2}$: weighted av of 84 s 6 (1958Al90), 91 s 12 (1970Ar19), 100 s 5
				(1975BrYM), 90 s (1981Me17), 90 s 3 (1974Gr29).
				J π : from syst and log ft =5.5 to 7/2+.
0 + x		A	≥100 s	$T_{1/2}$: from 1981Me17. This isomer is proposed from their half-life measurement and also because 107,109,111 Pd have isomeric states. This isomer is not reported by 1988FoZY in 113 Pd $^-$ decay and an isomer was found by 1993Pe11 with $T_{1/2}$ =0.3 s I .
35.08 17	(1/2+)	A		$J\pi$: E2 γ to (5/2+) and syst.
81.1 3	(9/2-)	AB	0.3 s 1	%IT=100.
				$J\pi$: M2 γ to (5/2+). Syst gives 11/2
e				T _{1/2} : from 1993Pe11.
99\$ 1	(11/2-)	CD		
151.89 17	(3/2+)	A		J π : M1 γ 's to (5/2+) and (1/2+).
172.55 21	(1/2+)	Α		J π : M1 γ to (1/2+) and no γ to (5/2+) g.s.
189.61& 15	(5/2+,7/2+)	A E		J π : M1 γ to (5/2+) and log $ft=5.5$ from (7/2+).
252.18 16	(3/2+,1/2+)	A		J π : E2,M1 γ to (5/2+) and M1,E2 γ to (1/2)+.
349.13 20	(5/2+,7/2+)	A		J π : M1,E2 γ to (5/2+) and log ft =4.9 from (7/2+).
372.97 22	(1/2+,3/2+,5/2+)	A		Jπ: E2 γ to $(1/2+,3/2+)$.
409.26 18 409.8 5	+	A		
409.8 5 454.55 [@] 23		A A E		
482.2\\$ 15	(15/2-)	CDE		
500.35 23	(13/2-)	A		
506.1# 11	(13/2-)	D		
538.7 4	(10/2)	A		
715.9& 3	(11/2+)	E		
730.6 4		A		
742.3 5		A		
861.2 4		A		
1031.3@3	(13/2+)	E		
1052.7 \$ 15	(19/2-)	CDE		
1081.2 6		A		
1082.1# 15	(17/2-)	D		
1111.0 4		E		
1345.6& 4	(15/2+)	E		
1678.3 [@] 5	(17/2+)	E		
1774.9 \$ 16	(23/2-)	CDE		
1784.3 16		E		
1799.1# 18	(21/2-)	DE		
2030.1 5	(19/2+)	Е		
2219.5^{a} 16 $2342.2^{@}$ 6	(23/2+)	E		
2342.2 6 2604.4 § 16	(21/2+)	E CDE		
2617.1# 21	(27/2-) (25/2-)	CDE		
2705.4a 16	(25/2-) (27/2+)	E E		
2707.3& 6	(23/2+)	E		
3000.5 [@] 6	(25/2+)	E		
3341.3 ^a 16	(31/2+)	E		
3491.1# 23	(29/2-)	D		

$^{113} Pd$ Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	
3495.6 \$ 16	(31/2-)	CDE	
4450.6 \$ 19	(35/2-)	$^{\rm CD}$	

 $^{^{\}dagger}$ From least-squares fit to γ energies.

 $\gamma(^{113}Pd)$

E(level)	Εγ‡	Ιγ‡	Mult. [†]	α	Comments
35.08	34.9 3	100	E2	63.0	
81.1	81.1 3	100	M2	8.66	B(M2)(W.u.)=0.00013 5.
151.89	116.8 2	100 5	M1,E2	0.2473	D(M2)(11.4.) = 0.00010 0.
101.00	151.8 3	76 4	M1 , L2	0.1200	
172.55	137.5 2	100	M1	0.1572	
189.61	189.7 2	100	M1	0.066	
252.18	79.7 3	30 3	MII	0.000	
202.10	100.4 3	8 1			
	217.0 2	100 5	M1,E2		
	252.1 3	75 <i>5</i>	E2,M1		
349.13	96.8 3	38 6	E2 ,WII		
345.13	159.9 3	100 10			
	197.0 4	19 6			
	348.9 5		M1 F0		Tay, Gram and
372.97	120.8 3	44 10	M1 , E2 E2	0.715	Iγ: from γγ.
312.91		51 7	E Z	0.715	
	221.0 3	100 12 $42 9$			
400 96	373.1 4				
409.26	157.1 3	14 1			
	219.6 3	24.4 14			
	236.7 4	2.1 7	EO	0.01001	
400.0	409.3 3	100 3	E2	0.01091	
409.8	257.9 4	100			
454 . 55	265.0 3	100 14			
400 0	454.7 4	100 14			
482.2	383.1 3	100			
500.35	310.8 4	22 5			To Comment
	348.5 6	40 9			Iγ: from γγ.
F00 1	500.3 3	100 7			
506.1	407 1				
F.O.O. #	425	0.0 7			
538.7	348.9 5	30 7			
715 0	538.8 4	100 7			
715.9	261.4 3				
700 a	526.1 3	100			
730.6	357.6 3	100			
742.3	332.7 3	100			
861.2	609.0 3	100			
1031.3	315.4 3				
	576.8 3				
1052.7	570.5 3	100			
1081.2	339.1 4	< 2 2			
	671.1 4	100 22			
1082.1	576	100			
1111.0	656.4 3				
1345.6	629.7 3				
1678.3	647.0 3				
1774.9	$722.2\ 3$	100			

 $[\]dot{^{\ddagger}}$ $J\pi$ for levels above 482 keV are based on band assignments.

^{\$ (}A): $vh_{11/2}$, $\alpha = -1/2$ band. # (B): $vh_{11/2}$, $\alpha = +1/2$ band. @ (C): band 3. & (D): band 4.

a (E): band 5.

$\gamma(^{113}Pd) \ (continued)$

E(level)	Εγ‡	$\underline{\hspace{1.5cm}}^{\ddagger}$	E(level)	Εγ‡	Ιγ‡	E(level)	Εγ‡	Ιγ‡
1784.3	731.6 3		2604.4	829.5 3	100	3341.3	635.9 3	
1799.1	717 1	100	2617.1	818	100	3491.1	874	100
2030.1	684.5 3		2705.4	485.9 3		3495.6	891.2 3	100
2219.5	1166.8 3		2707.3	677.2 3		4450.6	955	100
2342 . 2	663.9 3		3000.5	658.3 3				

 $^{^{\}dagger}$ From $\alpha(K) exp$ in ^{113}Ru β^{-} decay.

 $^{^{\}ddagger}$ From ^{113}Ru β^- decay placed below 482 keV and from ^{252}Cf SF for the others.

¹¹³Rh β- Decay 1993Pe11

 $Parent~^{113}Rh;~E=0.0;~J\pi=(7/2+);~T_{1/2}=2.80~s~12;~Q(g.s.)=5010~40;~\%\beta^-~decay=100.$

Preliminary results given in $1992 \mbox{PeZX}$, same author.

Activity: $^{238}\text{U}(\text{p,f})$, E=20 MeV, on-line isotope separator IGISOL.

Measured: $\gamma,\ \gamma\gamma,\ \gamma(t),\ ce,\ Ge(Li),\ Ge,\ Si(Li),\ elli\ spectrometer.$

 $\label{thm:eq:considers} Evaluator \ considers \ the \ level \ scheme \ as \ preliminary.$

¹¹³Pd Levels

E(level) [†]	Jπ	T _{1/2}	Comments						
0.0	(5/2+)	93 s 5	$T_{1/2}$: from adopted levels.						
35.08 17	(1/2+)								
81.1 3	(9/2-)	0.3 s 1	T _{1/2} : from 1993Pe11. Other: 0.4 s (1992PeZX), preliminary, same authors.						
151.88 17	(3/2+)								
172.55 21	(1/2+)								
	Continued on next page (footnotes at end of table)								

^{113}Rh β^- Decay 1993Pe11 (continued)

¹¹³Pd Levels (continued)

$E(level)^{\dagger}$		E(level) [†]	Jπ	E(level)
189.60 15	(5/2+,7/2+)	409.26 18	+	742.3 5
252.18 16	(3/2+,1/2+)	454.6 3		861.2 4
349.13 20	(3/2+,5/2+,7/2+)	500.34 23		1081.2 6
372.97 22	(1/2+,3/2+,5/2+)	538.7 4		
408.8 8		730.6 4		

 $^{^{\}dagger}$ From least-squares fit to γ energies.

β^- radiations

Εβ	E(level)	<u>Ιβ-</u> †	Log ft	Εβ	E(level)		Log ft
(3930 40)	1081.2	1.0 2	6.23 9	(4600 40)	409.26	2.2 3	6.19 7
$(4150 \ 40)$	861.2	2.7 3	5.90 6	(4640 40)	372.97	2.2 3	6.20 7
$(4270 \ 40)$	742.3	0.72	6.54 13	(4660 40)	349.13	$42.1\ 24$	4.93 4
$(4280 \ 40)$	730.6	1.8 2	6.146	(4760 40)	252 . 18	1.3 6	6.48 21
$(4470 \ 40)$	538.7	3.6 4	5.92 6	(4820 40)	189.60	10.6 9	5.59 5
$(4510 \ 40)$	500.34	3.4 4	5.96 6	(4840 40)	172.55	1.4 3	6.48 10
$(\ 4\ 5\ 6\ 0\ \ 4\ 0\)$	454.6	2.2.3	6.17 7	(4860 40)	151.88	3.7 6	6.07 8

 $^{^{\}dagger}$ For β^- intensity per 100 decays, multiply by 1.0.

$\gamma(^{113}Pd)$

Iy normalization: assuming no β feeding to g.s. (tentative).

Εγ	<u>E(level)</u>	Ιγ§	Mult. [†]	α	Comments
34.9 3	35.08	1.2 2	E 2	63.0	$\alpha(L)$ exp=29 7.
79.7 3	252.18	2.7 3	M1 [‡]	0.727	Mult.: the electron intensity taken from the beta-gated electron spectrum.
81.3 3	81.1	6.9 4	M2	8.7	$\alpha(K) exp = 0.56$ 15. Mult.: the ce(K) (79 γ) (M1) is calculated and subtracted from the electron intensity.
					$\alpha(K)\exp=5.4\ 9;\ K/L=4.1\ 12.$ $B(M2)(W.u.)=0.00013\ 5.$
x84.9 2		8.2 5	E1	0.245	Mult.: the electron intensity taken from the beta-gated electron spectrum. $\alpha(K) exp = 0.12 \ 3.$
96.8 3	349.13	1.8 3			7. F
100.4 3	252.18	0.7 1			
116.8 2	151.88	9.7 5	M1,E2	0.247	$\alpha(K)exp=0.31$ 3.
x 119.4 3		0.5 1			
120.8 3	372.97	2.2 3	E 2 ‡	0.715	$\alpha(K)\exp=0.57$ 12.
x 1 3 5 . 0 2		2.8 3	M1	0.165	$\alpha(K)\exp=0.15$ 5.
137.52	172.55	7.8 3	M1	0.157	$\alpha(K)exp=0.16$ 3.
151.8 3	151.88	7.44	M1	0.120	$\alpha(K)exp=0.08$ 2.
157.1 3	409.26	5.7 4			
159.9 3	349.13	4.8 5			
189.7 2	189.60	45.0 8	M1	0.0659	$\alpha(K)exp=0.063$ 4.
197.0 4	349.13	0.9 3			
217.0 2	252.18	9.1 4	M1, E2 [‡]		$\alpha(K)exp=0.05$ 3.
219.6 3	409.26	10.3 6			
221.0 3	372.97	4.3 5			
236.7 4	409.26	0.9 3			
252.1 3	252.18	6.8 5	E2,M1‡		$\alpha(K)\exp=0.04$ 3.
257.9 4	408.8	2.7 4			
265.5 3	454.6	2.8 4			
310.8 4	500.34	1.2 3			
x 3 3 2 . 7 3		2.0 3			
332.7 3	742.3	2.0 3			
339.1 4	1081.2	< 0 . 5			

Continued on next page (footnotes at end of table)

¹¹³Rh β⁻ Decay 1993Pe11 (continued)

$\gamma(^{113}Pd)\ (continued)$

Εγ	E(level)	Ιγ§	Mult.†	α	Comments
348.5 6	500.34	2.1 5			Iγ: from γγ.
348.9 5	349.13	100.0 9	M1,E2		Iγ: from γγ. $\alpha(K)\exp=0.0144$ 20.
	538.7	2.1 5			
357.6 3	730.6	4.5 3			
373.1 4	372.97	1.8 4			
409.3 3	409.26	42.2 8	E2‡	0.0109	$\alpha(K)\exp=0.020$ 6.
454.7 4	454.6	2.8 4			
500.3 3	500.34	5.5 4			
538.8 4	538.7	7.0 5			
x543.0 4		3.8 4			
609.0 3	861.2	6.8 5			
671.1 4	1081.2	2.3 5			
x749.1 4		1.7 4			
x932.7 4		3.8 5			
x980.0 5		2.0 4			
$^{x}1053$. 0 5		1.9 4			

- † Simultaneous measurement of conversion electrons and gammas.
- ‡ Electron and gamma intensities are deduced from single spectra taken in separated runs. Normalized to the 189.7 keV transition (M1)
- $\$ For absolute intensity per 100 decays, multiply by 0.272 14.
- x γ ray not placed in level scheme.

Decay Scheme

¹¹³Pd IT Decay 1993Pe11,1992PeZX

Parent $^{113} Pd\colon$ E=81.3; $J\pi = (9/2-);$ $T_{1/2} = 0.3$ s 1; %IT decay=100. Activity: ²³⁸U(p,f), E=20 MeV, on-line isotope separator IGISOL. Measured: γ , $\gamma\gamma$, $\gamma(t)$, ce, Ge(Li), Ge, Si(Li), elli spectrometer.

¹¹³Pd Levels

E(level)		$T_{1/2}$			Comments				
0.0 81.3	(5/2+) (9/2-)	93 s 5 0.3 s	1 T _{1/2} :	${ m T}_{1/2}$: from 1993Pe11. Preliminary data: 0.4 s $\it I$ (1992PeZX), same author.					
					$\gamma^{(113} Pd)$				
Εγ	E(level)		Mult.†	<u>~</u>	Comments				
81.1 3	81.3	6.9 4	M2	8.7	α(K)exp=5.4 9; K/L=4.1 12. B(M2)(W.u.)=0.00013 5.				

 $^{^{\}dagger}$ Simultaneous measurement of γ and ce.

²⁵²Cf SF Decay 2000Zh04

Parent $^{252}\mathrm{Cf};$ E=0; J\pi=0+; $T_{1/2}{=}2.645$ y 8; %SF decay=100. Prompt γ rays from $^{252}\mathrm{Cf}$ SF decay.

Measured E γ , I γ , $\gamma\gamma$ using GAMMASPHERE array with 72 Compton suppressed Ge detectors.

¹¹³Pd Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level)	$\underline{\hspace{1.5cm} J\pi^{\ddagger}}$
0.0	(5/2+)	1110.9 4		2342.2@6	(21/2+)
x §	(11/2-)	1345.6& 5	(15/2+)	2505.3+x § 6	(27/2-)
189.8 3	(7/2+)	1670.7+x# 6		2606.3+x# 6	(27/2+)
383.1+x § 3	(15/2-)	1675.8+x § 6	(23/2-)	2707.3& 6	(23/2+)
454.5@3	(9/2+)	1678.3@ 5	(17/2+)	3000.5@7	(25/2+)
715.9 3	(11/2+)	1685.2+x# 6		3242.2+x# 7	(31/2+)
953.6+x § 5	(19/2-)	2030.1& 6	(19/2+)	3396.5+x§ 7	(31/2-)
1031.3@4	(13/2+)	2120.4+x# 6	(23/2+)		

 $^{^{\}dagger}$ From least-squares fit to γ energies.

& (D): band 4.

 γ (113Pd)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1.5cm}}^{} \underline{\hspace{1.5cm}}^{} \underline{\hspace{1.5cm}}^{}$	<u>E(level)</u>	$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)
189.8 3	189.8	576.8 3	1031.3	684.5 3	2030.1
261.4 3	715.9	629.7 3	1345.6	717.1 3	1670.7+x
315.4 3	1031.3	635.9 3	$3242 \cdot 2 + x$	722.2 3	1675.8+x
383.1 3	383.1+x	647.0 3	1678.3	731.6 3	1685.2+x
454.5 3	454.5	656.4 3	1110.9	829.5 3	2505.3 + x
485.9 3	2606.3 + x	658.3 3	3000.5	891.2 3	3396.5+x
526.1 3	715.9	663.9 3	2342 . 2	1166.8 3	2120.4+x
570.5 3	953.6 + x	677.2 3	2707.3		

 $^{^{\}dagger}~\Delta E$ not given in the paper, estimated 0.3 by evaluator.

 $[\]dot{\ddagger}$ For absolute intensity per 100 decays, multiply by 1.0.

[‡] From syst. and Band assignments.

⁽A): $vh_{11/2}$, $\alpha = -1/2$ band. # (B): band 2.

^{@ (}C): band 3.

²⁵²Cf SF Decay 2000Zh04 (continued)

Level Scheme

²⁰⁸Pb(¹⁸O,Fγ) 1999Kr17

Prompt γ rays from heavy-ion induced fission. E=91 MeV. Measured prompt γ , $\gamma\gamma$ using GAMMASPHERE array of 100 Compton suppressed HPGe detectors.

¹¹³Pd Levels and Gammas

E(level)	Jπ	E	E(level)
0.0	(5/2+)	38	3 383+x
0 + x [†]	(11/2-)	57	
$383 + x^{\dagger}$	(15/2-)	72	2 1676+x
$954 + x^{\dagger}$	(19/2-)	83	0 2506+x
$1676 + x^{\dagger}$	(23/2-)	89	1 3397+x
$2506 + x^{\dagger}$	(27/2-)		
$3397 + x^{\dagger}$	(31/2-)		
		11	

 $^{^{\}dagger}$ (A): $\nu h_{11/2}$ band.

$^{208}\mathrm{Pb}(^{18}\mathrm{O,F}\gamma)$ 1999Kr17 (continued)

Level Scheme

$^{238}\mathrm{U}(^{12}\mathrm{C,F}\gamma)$ 1999Ho25

Prompt γ rays from heavy-ion induced fission.

E=90 MeV. Measured Ey, Iy, yy using Euroball III array with 15 Cluster Ge detectors, 26 Clover Ge detectors located in two rings around 90° and 30 tapered Ge detectors, with each Ge detector surrounded by its own BGO Compton suppression shield.

$^{113}\mathrm{Pd}$ Levels

E(level)	Jπ	T _{1/2}	E(level)	Jπ	E(level)	Jπ
0.0	5 / 2+		1053 †	(19/2-)	2617‡	(25/2-)
81 [‡]	9 / 2 –	0.3 s	1082 ‡	(17/2-)	3491‡	(29/2-)
99†	(11/2-)		1775^{\dagger}	(23/2-)	3495 †	(31/2-)
482 †	(15/2-)		1799^{\ddagger}	(21/2-)	4450 †	(35/2-)
506‡	(13/2-)		2605	(27/2-)		

$\gamma(^{113}Pd)$

$\underline{\mathbf{E}\gamma}$	E(level)	Comments
81	81	Eγ: from ENSDF for ¹¹³ Pd.
383	482	
407	506	
425	506	
571	1053	
576	1082	
717	1799	
722	1775	
818	2617	
830	2605	
874	3491	
890	3495	
955	4450	

 $[\]label{eq:continuity} \begin{array}{lll} \dot{\mbox{\scriptsize \uparrow}} & (A) \colon \nu h_{11/2}, \ \alpha \text{\scriptsize α=-1/2$ band.} \\ \dot{\mbox{\scriptsize $\dot{$}$}} & (B) \colon \nu h_{11/2}, \ \alpha \text{\scriptsize α=+1/2$ band.} \end{array}$

²³⁸U(¹²C,Fγ) 1999Ho25 (continued)

Level Scheme

Adopted Levels, Gammas

 $Q(\beta^-) = 2017\ 16;\ S(n) = 8480\ 23;\ S(p) = 7985\ 24;\ Q(\alpha) = -4447\ 20\ 2003 Au 03.$

1988 KaZE suggest that the 222, 369, 476 levels could be intruder states and have tried to derive parameter sets for this collective rotational-like band with K=1/2.

¹¹³Ag Levels

Cross Reference (XREF) Flags

 $A~^{113}Pd~\beta^-$ Decay $B~^{113}Ag~IT~Decay$

$\underline{\hspace{1.5cm}E(level)^{\frac{1}{2}}}$	Jπ	$\frac{XREF}{}$	T _{1/2}	Comments
0.0	1/2-	A	5.37 h 5	%β ⁻ =100; μ=0.159 2 (1989Ra17).
				$J\pi$: atomic beam (1976Fu06), negative parity from μ .
				$T_{1/2}$: from 1970Tr02. Other: 5.25 h 4 (1968RoZZ).
43.5 1	7 / 2 +	AB	68.7 s 16	$%IT=64\ 7;\ \%\beta^{-}=36\ 7.$
				%IT: from 1990Fo07.
				$J\pi$: allowed β^- decay to 5/2+ level. E3 γ to 1/2
				$T_{1/2}$: weighted av of 67.8 s 21 (1974Gr29) and 70.0 s 25 (1975BrYM).
				Others: 72 s 9 (1958Al90), 66 s 12 (1970Ma47).
139.30 15	9 / 2 +	A		J π : M1 γ to 7/2+ and syst.
222.08 \$ 13	3 / 2+	A	23 ns 2	$J\pi$: E1 γ to 1/2-, band assignment favors 3/2+.
270.82 14	(3/2-) †	A		J π : γ to 1/2-, not fed from (5/2)+ parent, no γ to 7/2+, syst.
273.59 16	(1/2)	A	≈ 30 ns	J π : γ 's to 1/2- and 1/2+,3/2+, not fed from 5/2+ parent.
280.0 \$ 2	1 / 2 +	A		$J\pi$: member of the intruder band.
366.84 20	(5/2-)†	A		J π : γ 's to 1/2- and 3/2-, syst favors 5/2
369.80 \$ 17	7 / 2+	A	<0.8 ns	$J\pi$: E2 γ to 3/2+. γ to 9/2+.
476.70 14	5 / 2+	A	< 0.5 ns	$J\pi$: member of the intruder band.
526.16 16		A		
607.06 23		A		
611.31 25	(3/2-) †	A		$J\pi$: from syst.
$673.35 \ 23$		A		
$781.79\ 20$	(5/2-) †	A		$J\pi$: γ 's to $3/2-$ and sys.
783.16 14	$(\;3/2\;,5/2\;,7/2\;)$	A		$J\pi$: log $ft \approx 6.1$ from $(5/2+)$.

 $^{^{\}dagger}~1988 KaZE~have~derived~low-lying~negative~parity~states~in~odd-mass~Ag:~A=^{107,109,111,113,115}Ag.$

$\gamma(^{113}Ag)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Mult.‡	α	Comments
43.5	43.6 2	100	E3	1047	B(E3)(W.u.)=0.048 6.
139.30	95.74 20	100	M1	0.478	
222.08	222.06 20	100	E 1	0.01660	$B(E1)(W.u.)=1.13\times10^{-6}$ 10.
270.82	270.81 20	100			
273.59	51.52	25			
	273.6 2	100			
280.0	57.9 3	1.2 6			
	280.0 2	100 4			
366.84	96.0 3	76			
	366.8 3	100			
369.80	147.73 20	100	E 2	0.362	B(E2)(W.u.)>110.
	$230.49 \ 20$	7 7			
	326.28 20	60			
476.70	205.87 20	19			
	254.61 20	100			
	337.32 20	9			
	433.4 2	26			
526 . 16	49.6 2	2.3			
	386.9 2	16			
	482.4 3	100			
607.06	336.3 3	48			
	607.0 3	100			
			0	. ,	we (feetnates at and of table)

 $[\]ddagger$ From least-squares fit to γ energies.

 $[\]$ (A): Intruder-rotational band (1990Ro16) with A=17.23, E0=228.9 keV, a=-1.92.

γ(¹¹³Ag) (continued)

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1.5cm}}^{\dagger}$
611.31	472.1 3	7
	567.7 3	100
673.35	534.2 3	100
	673.2 3	39
781.79	414.9 3	67
	510.9 3	100
	781.9 3	33
783.16	$257.1\ 3$	4.5
	643.7 3	100
	739.63 3	80

 † From ^{113}Pd β^{-} decay.

 $\mbox{$\stackrel{\pm}{\scriptscriptstyle +}$}$ From $\alpha(K) exp$ in ^{113}Pd β^- decay and ^{113}Ag IT decay.

(A) intruder-rotational band (1990Ro16)

¹¹³Pd β⁻ Decay 1988FoZY,1990Ro16

Parent ^{113}Pd : E=0.0; J π =(5/2+); T $_{1/2}$ =93 s 5; Q(g.s.)=3340 30; % β ⁻ decay=100.

 $Activity: \ ^{235}U(n,f) \ on-line \ mass \ separator \ OSIRIS \ (1988FoZY).$

Measured $\gamma,\ I\gamma,\ \gamma\gamma,\ \gamma(t),\ \beta,\ \beta\gamma,\ ce,\ Ge(Li),\ Si\ detector\ (1988FoZY).$

 $^{249}Cf(n,F)$ radiochemical separation (1990Ro16), measured: $\gamma,~\gamma\gamma,~\gamma\gamma(t).$

Others: 1958Al90, 1968Kj01, 1970Ar19, 1975BrYM, 1981Me17.

Decay mode: 81.5% 20 of ^{113}Pd decay is via 5.37-h ^{113}Ag and 18.5% 20 is via 68.7-s ^{113}Ag , from $I\gamma(5.37\text{-h})$ $^{113}\text{Ag}/I\gamma(68.7\text{-s})$ ^{113}Ag) (1975BrYM). Other: from $I\beta(5.37\text{-h})$ $^{113}\text{Ag}/I\beta(68.7\text{-s})$ ^{113}Ag), 90% 5 of ^{113}Pd decay is via 5.37-h ^{113}Ag (1958Al90).

$^{113}\mathrm{Ag}$ Levels

<u>E(level)</u>	$J\pi^{\dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	1/2-	5.37 h 5	
43.53 14	7 / 2+	68.7 s 16	
139.30 15	9 / 2+		
222.08 13	3 / 2+	23 ns 2	$J\pi: 3/2+.$
270.82 14	(3/2-)		$J\pi$: 3/2
273.59 16	(1/2)	30 ns +30-15	$J\pi: 1/2+,3/2+.$
280.08	1/2+		
366.84 20	(5/2-)		$J\pi: \ 5/2$
369.80 \$ 17	7 / 2+	<0.8 ns	
476.70 9 14	5 / 2+	<0.5 ns	

Continued on next page (footnotes at end of table)

¹¹³Pd β- Decay 1988FoZY,1990Ro16 (continued)

¹¹³Ag Levels (conti<u>nued)</u>

E(level)	$J\pi^{\dagger}$	Comments				
526.16 16						
607.06 23						
611.31 25	(3/2-)					
673.35 23						
781.79 20	(5/2-)					
783.16 14	$(\;3/2\;,5/2\;,7/2\;)$	Jπ: 5/2+,7/2+.				

- † Adopted values. Jm given by 1988FoZY are shown under comments. ‡ Levels>43 keV $T_{1/2}$ are from 1988FoZY, other from adopted levels. § (A): Intruder rotational band (1990Ro16) with A=17.23, E0=228.9 keV a=-1.92.

β- radiations

$\underline{\hspace{1cm} \mathbf{E} \beta^-}$	E(level)	$1\beta^{-\ddagger}$	Log ft	$\underline{\hspace{1cm} E\beta^-}$	E(level)	$1\beta^{-\dagger}$	Log ft
(2560 30)	783.16	7.2	6.1	(2970 30)	369.80	0.9	7.3
$(2560 \ 30)$	781.79	0.46	7.3	$(2970 \ 30)$	366.84	0.84	7.3
$(2670 \ 30)$	673.35	0.36	7.5	$(3120 \ 30)$	222.08	1.14	7.3
$(2730 \ 30)$	607.06	0.41	7.5	$(3200 \ 30)$	139.30	1.89	7.1
(2860 30)	476.70	0.59	7.4	(3300 30)	43.53	86	5.5

 $^{^{\}dagger}$ For β^- intensity per 100 decays, multiply by 1.0.

$\gamma(^{113}Ag)$

 $I\gamma \ normalization: \ from \ \Sigma I(\gamma+ce) \ to \ g.s.=81.5 \ 20 \ assuming \ I\beta(g.s.)=0. \ (\Delta J=2, \ \Delta \pi=-). \ 1990 Fo07 \ give \ I\gamma(222\gamma)=2.3\%.$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	<u>E(level)</u>	$I\gamma^{\dagger\S}$	Mult.‡	α	Comments
43.6 2	43.53	0.15	E3	1047	$\alpha(K)\exp=90\ 40;\ \alpha(L)\exp=700\ 300.$
					$\alpha(K)=95.5; \ \alpha(L)=745; \ \alpha(M)=155.3.$
					B(E3)(W.u.)=0.074 4.
49.6 2	526 . 16	0.04			
51.52	273.59	0.01			
57.9 3	280.0				Eγ, Iγ: from 1990Ro16. Iγ(280)=100 4, Iγ(57.9)=1.2 6.
$95.74\ 20$	139.30	6.5	M1	0.478	$\alpha(K)exp=0.46$ 4.
					$\alpha(K) = 0.415; \ \alpha(L) = 0.0515; \ \alpha(M) = 0.00975; \ \alpha(N+) = 0.00196.$
96.0 3	366.84	0.50			
147 . 73 20	369.80	0.35	E2	0.362	$\alpha(K)$ exp=0.38 15.
					$\alpha(K) = 0.294; \ \alpha(L) = 0.0557; \ \alpha(M) = 0.01075; \ \alpha(N+) = 0.00200.$
					B(E2)(W.u.)>110.
178.5	222 . 08	0.02	[E2]		Eγ, Iγ: from 1990Ro16.
					B(E2)(W.u.)=0.034 4.
205.87 20	476.70	0.08			
222 . 06 20	222 . 08	2.4	E1	0.0166	$\alpha(K) \exp \leq 0.03$.
					$B(E1)(W.u.)=1.12\times10^{-6} 10.$
230 . 49 20	369.80	0.27			
254.61 20	476.70	0.43			
$257.1\ 3$	783.16	0.27			
$270.81\ 20$	270 . 82	1.1			
$273.6\ 2$	273.59	0.04			
280.02	280.0				
326 . 28 20	369.80	0.21			
336.3 3	607.06	0.11			
337 . 32 20	476.70	0.04			
366.8 3	366 . 84	0.66			
386.92	526 . 16	0.28			
$414.9 \ 3$	781.79	0.14			
433 . 4 2	476.70	0.11			
$472.1\ 3$	611.31	0.11			
482.6 2	526 . 16	1.7			
510.9 3	781.79	0.21			

Continued on next page (footnotes at end of table)

¹¹³Pd β- Decay 1988FoZY,1990Ro16 (continued)

 $\gamma(^{113}Ag)~(continued)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$I\gamma^{\dagger\S}$
534.2 3	673.35	0.18
567.7 3	611.31	1.6
607.0 3	607.06	0.23
643.7 3	783.16	6.0
673.2 3	673.35	0.07
739.63 3	783.16	4.8
781.9 3	781.79	0.07

- † From 1988FoZY.
- ‡ From α(K)exp (1988FoZY). The conversion coefficients were determined by simultaneous measurements of γ and ce.
- \S For absolute intensity per 100 decays, multiply by $\approx\!1.0.$

Decay Scheme

¹¹³Ag IT Decay 1990Fo07

Parent $^{113} Ag: \ E = 43.6 \ 2; \ J\pi = 7/2 +; \ T_{1/2} = 68.7 \ s \ 16; \ \% IT \ decay = 64 \ 7.$ Activity: 235U(n,f) on-line mass separator OSIRIS. Measured $\gamma,\ I\gamma,\ \gamma\gamma,\ \gamma(t),\ \beta,\ \beta\gamma,\ ce,\ Ge(Li),\ Si\ detector\ (1988FoZY).$

%IT: 1990Fo07 have measured %IT=64 7.

 $^{113}\mathrm{Ag}$ Levels

E(level)	<u></u> Jπ	$T_{1/2}^{\dagger}$
0.0	1/2-	5.37 h <i>5</i>
43.6 2	7 / 2 +	68.7 s 16

 $^{^{\}dagger}$ From adopted levels.

113Ag IT Decay 1990Fo07 (continued)

 $\gamma(^{113}Ag)$

Eq. (E(level) $I\gamma^{\dagger}$ Mult. α $I(\gamma + ce)^{\dagger}$ Comments 43.6 2 43.6 0.64 7 E3 1047 100 α(K)exp=90 40; α(L)exp=700 300. B(E3)(W.u.)=0.048 6.

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.64 7.

Adopted Levels, Gammas

 $^{113}_{48}\mathrm{Cd}_{65}\mathrm{-1}$

 $Q(\beta^-)=320~3;~S(n)=6540.1~6;~S(p)=9714~17;~Q(\alpha)=-3868~3~2003Au03.$ Neutron resonance parameters can be found in 1981MuZQ.

A ^{113}Ag β^- Decay (5.37 h) B ^{113}Ag β^- Decay (68.7 s) C ^{113}Cd IT Decay (14.1 y)

¹¹³Cd Lev<u>els</u>

 $\begin{array}{ll} K & ^{110}Pd(\alpha,n\gamma) \\ L & ^{176}Yb(^{28}Si,F\gamma) \end{array}$

 $M^{-173}Yb(^{24}Mg,F\gamma)$

Cross Reference (XREF) Flags

 $F^{-113}Cd(p,p'),\!(p,p'\gamma)$

H Coulomb Excitation

G ¹¹³Cd(d,d')

D	$C^{113}Cd$ IT Decay (14.3) $C^{112}Cd(n,\gamma)$ E=res $C^{112}Cd(d,p)$, $C^{114}Cd(d,t)$		H Coulomb Excitation I $^{113}\text{Cd}(n,n'\gamma)$ J $^{113}\text{Cd}(\gamma,\gamma')$	$\rm M^{-173}Yb(^{24}Mg,F\gamma)$
E(level) ‡	Jπ	XREF	T _{1/2}	Comments
0.0	1/2+	ABCDEFGHI JK	LM 7.7×10 ¹⁵ y 3	eq:beta-beta-beta-beta-beta-beta-beta-beta-
263.54 [§] 3	11/2-	A C E K	.M 14.1 y 5	$T_{1/2}$: from 1996Da11 using scintillation crystals of CDW04. Other: 9.3×10^{15} y 19 (1970Gr20) from activity measurements on enriched and natural cadmium samples. Others: 1962Wa15, 1994Al49. %IT=0.14; %β ⁻ =99.86 (1969De25); μ =-1.0877842 17 (1989Ra17). Q=-0.71 7 (1989Ra17). μ : NMR. Q: optical double res, recalculated. Jπ: optical double res (1976Fu06), 264γ is E5.
298.597 10	3 / 2+	AB E GHI K	29 ps 9	$T_{1/2}$: unweighted av of 13.6 y 2 (1965Fl02) and 14.6 y 5 (1972Wa11), β (t) for about one half-life. $T_{1/9}$: from B(E2) in Coul. ex.
200.007 10	37 Z T	AD E GIII K	23 ps 3	1/2. How E(12) H Cour. ex. μ=-0.39 80 (1988Be45,1989Ra17). Jπ: M1+E2 γ to 1/2+.
316.206 15	5 / 2+	AB EF HI K	10.8 ns 3	Jm: L(d,p)(316)=2, L(d,p)(458)=4, and M1+E2 γ from 459 to 316 gives Jm(316)=5/2+ and Jm(458)=7/2+.
				T _{1/2} : weighted av of 10.7 ns 4 (1980Oh01), 11.0 ns 6 (1972RaZM). Other: 4.9 ns 7 from B(E2) in Coul. ex.
458.633 17	7 / 2 +	B E I K		$J\pi$: see 316 level.
522.259 24	7 / 2 –	A I K	0.322 ns 12	$J\pi$: E2 γ to 11/2- and E1 γ to 5/2+.
				$T_{1/2}$: from $\gamma\gamma(t)$ (1980Oh01).
530 10	7 / 2 + , 9 / 2 +	E		$J\pi$: from $L(d,p)=4$.
$583.962\ 24$	5 / 2 +	AB E HI K	6.9 ps 14	μ =+0.15 12 (1988Be45,1989Ra17).
				$J\pi\colon\gamma(\theta)$ in Coul. ex. for E2 γ to 1/2+.
				$T_{1/2}$: from $B(E2)$ in Coul. ex.
638.19 3	9 / 2 –	A FIK		J π : M1+E2 γ to 11/2 γ to 5/2+.
680.526 20	3 / 2+	A E HI K	12 fs 3	$T_{1/2}.$ from B(E2) in Coul. ex. $J\pi \colon M1{+}E2 \ \gamma \ to \ 1/2{+} \ and \ M1{+}E2 \ \gamma \ to \ 3/2{+}.$
708.571 19	5 / 2 +	AB HI K		$J\pi$: M1+E2 γ to 3/2+ and 7/2+.
760 10	1 / 2 +	E		$J\pi$: $L(d,p)=0$.
815.34 \$ 3	15/2-		LM	
816.707 22	7 / 2 +	E I K		J π : L(d,p)=4, and M1+E2 γ to 5/2+.
855.28 3	5 / 2 -	A I K		Jπ: E2 γ to 9/2-, M1+E2 γ to 7/2
869.81 22	15/2-	I		Jπ: E2 γ to 11/2-, no γ to low J.
878.54 6	(3/2+)	I K		J π : γ 's to $1/2+,5/2+,7/2+$.
883.62 6	1/2+	E I K		$J\pi$: $L(d,p)=0$.
897.53 4	3 / 2 +	E I K		J π : L(d,p)=2, σ (d,p)/ σ (d,t) favors 3/2+.
939.788 <i>19</i> 960 <i>10</i>	9 / 2 +	I K E		$J\pi$: E2 γ to 5/2+ and M1+E2 γ to 7/2+.
988.40 6	1/2+	A E I K		$J\pi$: $L(d,p)=0$.
999.42 7	1/47	A E I K		ом. д(u,p)-v.
1002.87 4	3 / 2+	A E I		J π : M1+E2 γ 's to 1/2+ and 5/2+.
1007.20 5	(5/2+)	B E I K		J π : log $ft \approx 5.3$ from 7/2+, M1+E2 γ decay to 5/2+.
1034.09 6	(3/2+)	I K		$J\pi$: M1+E2 γ 's to 1/2+ and 5/2+.
1037.40 3	(7/2+)	I K		$J\pi$: E2 γ to 3/2+ and M1+E2 γ to 5/2+.
1047.65 4	7 / 2 +	B I K		J π : log $ft \approx 5.6$ from 7/2+, $\gamma(\theta)$ in $(n, n'\gamma)$.
	* *			20 / 2 - 2 - 2 - 2 - 2 - 2 - 1/2 - 1

¹¹³Cd Levels (continued)

E(level) ‡	Jπ		XR	EF	Comments
1040 66 0	2/0.			T 17	I=. M1 u to 1/9 and on non-in (n u)
1049.66 9	3 / 2 +	A		I K I K	$J\pi$: M1 γ to 1/2+, and av res in (n,γ). $J\pi$: M1+E2 γ to 9/2-, γ to 5/2
1051.248 22	7/2-				3π. M1+E2 γ to 9/2-, γ to 3/2
1109.32 3	13/2-			I K I K	
1124.636 20 $1126.25 6$	9 / 2 + 3 / 2 +	A	E	I K	J π : M1 γ to 1/2+, and av res in (n,γ) .
1170 20	3/2+	Λ	E	1 1	on. Wit γ to 1/2+, and av res in (n,γ) .
1177.723 23	(9/2-)		ь	K	
1177.723 23	(3/2+)			I K	Jπ: M1+E2 γ to 1/2+.
1181.35 4	(0/21)			K	5 K. MITHE 7 00 1/21.
1190.72 5				K	
1192.09 4	_			K	
1194.6 2	3 / 2 –	A		I K	Jπ: M1+E2 γ to (5/2-), av res.
1195.30 20	5/2+,7/2+,9/2+		E	K	XREF: E(1200).
1100.00 20	0721,1721,0721		-	11	$J\pi$: log $ft=5.3$ from $7/2+$.
1209.53 15	13/2-			I	Jπ: M1+E2 γ to 11/2-, γ to 15/2
1214.674 24	11/2+			I K	J π : E2 γ to 7/2+ and M1+E2 γ to 9/2+.
1261.92 4	(9/2)			K	5%. 112 00 1/21 did MITHE 00 5/21.
1268.21 5	3/2+			I K	J π : M1+E γ 's to 1/2+ and 5/2+.
1279.62 7	3 / 2+		E	I K	$J\pi$: $L(d,p)=2$.
1301.07 7	3/2+,5/2+		-	I	$J\pi$: γ 's to $1/2+,5/2+$.
1313.75 3	(5/2+)			I K	J π : γ 's to $5/2+,7/2+$ and syst.
1322.03 12	(7/2-,9/2-)		E	I K	Jπ: γ's to 7/2-,11/2
1327.6 4	(1,2,0,2)		-	K	5 M. 10 00 172 32172 .
1346.53 4	11/2-			K	E(level): 1991NeZX suggested a 1423-keV level with Jπ=11/2- based on syst,
1010.00 1	11/2				but not confirmed by 1997Wa20 in $(\alpha, n\gamma)$.
1351.58 7	5/2,7/2			I	J π : γ 's to $5/2+,7/2-$.
1364.76 7	**-,**-			I K	
1367.569 24	7 / 2 +			K	
1387.47 8	5/2+,3/2+			I K	J π : γ 's to $1/2+,5/2+$.
1390.56 9	(1/2+,3/2+)		E	I	J π : γ 's to $1/2+,3/2+$.
1395.83 3	(9/2+)			I K	
1405.82 10	(1/2+,3/2+)			I K	J π : γ 's to $1/2+,3/2+$.
1407.5 3	(9/2+)			I	Jπ: from syst, analog to 1552 keV in ¹¹¹ Cd.
1410.68 6				K	
1430 10	(3/2)+		E		$J\pi$: $L(d,p)=2$, $\sigma(d,p)/\sigma(d,t)$ favors $3/2+$.
1450.30 7		A		I K	
1461.67 4				K	
1479.08 5	3 / 2 +	A	E	I	J π : from L(d,p)=2 at 1490 10 with $\sigma(d,p)/\sigma(d,t)$ favoring 3/2+, av res.
1493.03 9	1/2+,3/2+			I	J π : M1+E2 to 5/2+ and γ to 1/2+.
1504.90 4	7 / 2+			K	
1513.72 4				K	
1542.28 9	(1/2+)		E	I	$J\pi$: γ 's to $1/2+,3/2+$.
1561.69 3	+			I K	
1575.66 14	7 / 2 –		E	I	$J\pi$: $L(d,p)=(3)$.
1607.21 10	5 / 2+		E	I	J π : L(d,p)=2, σ (d,p)/ σ (d,t) favors 5/2+.
1620.43 3				K	
1626.41 4				K	
1647.23 5				K	
1656.6 \$ 3	(19/2-)			L	
1657.41.5	11/2-			I KLM	
1658.51 7				K	
1670.89 10				K	
1675.09 9	3 / 2 +		\mathbf{E}	I	$J\pi$: $L(d,p)=(2)$.
1732.84 4	11/2+			I K	
1737.53 7				K	
1743.56 21				K	
1746.00 14	(3/2-)			I	J π : γ 's to $1/2+,5/2-$.
1758 † 10	(5/2-,7/2-)		FG		$J\pi$: $L(p,p')=3$. $\pi=+$ is assigned in (d,d') .
1778.92 18	9 / 2 –			I	J π : E2 γ to 13/2- and M1+E2 γ to 11/2
1798.89 12	(1/2,3/2)			I	$J\pi$: γ to $1/2+$.
1813 10	(1/2,3/2)		E	J	$J\pi$: excitation in (γ, γ') .

Continued on next page (footnotes at end of table)

¹¹³Cd Levels (continued)

E(level)	Jπ	XREF		$T_{1/2}$	Comments
1823.24 4	(13/2-)	I	ĸ		
1842.74 13	(3/2-)	EI	IX		$J\pi$: γ 's to $7/2-,3/2-$.
1867.86 8	7/2-,9/2-	I			$J\pi$: γ 's to $11/2-,5/2-$.
1871.7 3	1/2-,3/2-		K		σκ. γs το 11/2-,ο/2
1892.32 [†] 11	7 / 2 –	FI			$J\pi$: L(p,p')=3, E2 γ to 11/2
1896.44 4	1/2-		K		3π. L(p,p)=3, E2 γ to 11/2=.
1900 10	(1/2+)	E	ıx		$J\pi$: $L(d,p)=(0)$.
1900 10	(1/2+)	I i	IZ		$\delta \kappa$. $E(\alpha, \beta) = (0)$.
1902.41 3			K		
1904.35 11	(5/2,7/2)	I	ıx		$J\pi$: γ 's to $7/2+$.
1942	(3/2,1/2)	J		607 fs +90-70	
1942 1986 [†] 10	5/2-,7/2-	EF		607 IS +90-70	$T_{1/2}$: from (γ, γ') . $J\pi$: $L(p, p')=3$.
2037.76 18	5/2-,7/2-	E I			$J\pi: L(p,p)=3.$ $J\pi: L(d,p)=3.$
	3/2-,1/2-		17		$\partial \pi$: $L(\alpha, p) = \delta$.
2042.06 6	(15/0.)		K		
2046.23 7	(15/2+)		K		I I(1-) (0)
2080 10	(1/2+)	Е Е І			$J\pi$: $L(d,p)=(0)$.
2113.04 22	7 / 2 –				$J\pi$: $L(d,p)=(3)$, preferred from shell-model syst.
2120 20	(1/0.)	Е			I I(1-) (0)
2140 20	(1/2+)	E			$J\pi: L(d,p)=(0).$
2146.81 5			K		
2164.48 11	0.40		K	00 6 7	T T(1) 1 0/0 C 1 C 1 11 11 1
2173.60 12	3 / 2 –	E IJ		90 fs 7	$J\pi$: $L(d,p)=1$, 3/2, preferred from shell-model syst. $T_{1/2}$: from (γ,γ') .
2180 10	(3/2)-	E J		228 fs +85-50	$J\pi$: $L(d,p)=1$, 3/2, preferred from shell-model syst. $T_{1/2}$: from (γ,γ') .
2219.64 4			K		1/2
2240 10	(5/2-,7/2-)	E			$J\pi$: $L(d,p)=(3)$.
2270 10		E			
2319.62 18	3 / 2 –	E I			J π : L(d,p)=(1), M1+E2 γ to 5/2
2324.5# 4	(21/2+)		L		
2330 10		E			
2354		J		3.0×10^{2} fs $+16-6$	$T_{1/2}$: from (γ, γ') .
2370 10		E			1/2
2410 10	7 / 2 + , 9 / 2 +	E			$J\pi$: $L(d,p)=4$.
2440 10		E			
2538.3@4	(19/2+)		L		
2540 10	(7/2-)	E			$J\pi$: $L(d,p)=(3)$, preferred from shell-model syst.
2580 10	(3/2-)	E J			$J\pi$: $L(d,p)=(1)$, preferred from shell-model syst.
2613.4 \$ 4	(23/2-)		LM		
2630 10	(1/2+)	E			$J\pi$: $L(d,p)=(0)$.
2690 10		E			
2757.8# 4	(25/2+)		L		
2759.33 13	(3/2+,5/2+)	E I			J π : γ 's to 3/2+,7/2+.
2770 10	(3/2-)	E			$J\pi$: from $L(d,p)=(1)$, preferred from shell-model syst.
2810 10	1 / 2 +	E			$J\pi$: $L(d,p)=0$.
$2962.6^{\circ}4$	(23/2+)		L		
3448.9 \$ 4	(27/2-)		LM		
3473.9# 5	(29/2+)		L		
4201.5 \$ 5	(31/2-)		LM		

 $^{^{\}dagger} \quad From \ ^{113}Cd(p,p').$

 $[\]dot{\tau}$ From least-squares fit to Γ energies. § (A): Member of $\Delta J = 2$ band on 11/2- band.

^{# (}B): Band based on 23/2-.

^{@ (}C): Band based on (19/2).

$\gamma(^{113}Cd)$

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	Ιγ [†]	Mult.‡#	δ#	α	Comments
263.54	263.7 3	100	E5		5.1	Mult., Eγ: from ¹¹³ Cd IT decay (14.1 y). B(E5)(W.u.)=0.0499 23.
298.597	298.60 1	100	M1+E2 \$	+0.30 +3-1	0.029 5	δ : δ from 1987BaYW in (n,n'γ) is discrepant with δ >1.1 in β^- decay, but agrees with δ =0.29 <i>I</i> (1958Mc02) in Coul. ex.
316.206	17.78 9	3.1 4	M1 §		10.2	B(M1)(W.u.)=0.025 8; B(E2)(W.u.)=20 8. B(M1)(W.u.)=0.0082 12.
310.200	316.21 2	100 4	E2		0.0274	B(MT)(W.u.)=0.0002 T2. B(E2)(W.u.)=0.372 25.
458.633	142.42 1	100	M1+E2	-0.04 3	0.02.1	B(B2)(W.u.)=0.012 20.
522.259	205.86 8	1.22 12	E 1			$B(E1)(W.u.)=1.19\times10^{-6}$ 13.
	258.72 2	100.0 19	E2§		0.044 9	$B(E2)(W.u.)=44.2\ 22.$
583.962	126 1	< 10				Ey: not seen in $^{113}Cd(n,n'\gamma)$.
	267.77 6	2.5 2				
	285.3 1	1.4 2	M1,E2			
	583.93 7	100 1	E2			Mult.: see Coul. ex. $B(E2)(W.u.)=34$ 8.
638.19	115.6 2	12.5 19	D			
	374.64 3	100	M1+E2	-0.252		
680.526	96.9 3	5.3 3	[M1, E2]		1.1 6	
	364.31 3	20.14	M1+E2	-0.027		B(M1)(W.u.)=5.0 13; $B(E2)(W.u.)=12$ +84-12.
	381.95 3	20.94	M1+E2	+0.16 15		$B(M1)(W.u.)=4.4$ 12; $B(E2)(W.u.)=6.\times10^2 +12-6$.
	680.6 1	100.0 23	M1+E2	-1.8 1		$B(M1)(W.u.)=0.90\ 24;\ B(E2)(W.u.)=5.0\times10^3\ 13.$
708.571	249.95 2	11 1	M1+E2	+0.34 8		
	392.36 2 $410.11 9$	$\begin{array}{ccc} 100 & 2 \\ 11 & 2 \end{array}$	M1+E2 M1+E2	-0.244 -0.104		
	708.52 5	100 2	W11+E2	-0.10 4		
815.34	551.79 1	100 2	E2			
816.707	358.09 5	35 1				
	500.47 3	100 2	M1+E2	-0.45 16		
	517.67 15	3.2 2				
855.28	217.08 3	4.7 3	E2			
	332.99 3	$100 \ 2$	M1+E2§	-0.272		
	539.3 1	2.7 9	E1			
869.81	606.3 3	100	E 2			
878.54	294.52@ 21	48@ 14				
	419.8 3 $562.26 9$	9.2 23 100 15				
	878.62 9	100 15				
883.62	585 1	3.5 18				
	883.6 1	100.0 25				
897.53	313.48 6	$12.4\ 4$	M1+E2	+0.41		
	439.7 5	$22.4\ 7$				
	581.269	9 4				
	598.95 5	100 2	E2			
939.788	481.13 2	100 2	M1			
000 40	623.58 [@] 2 279.8 2	51 [@] 2	E2			
988.40	279.8 <i>2</i> 988.43 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
999.42	540.78 6	100 8				
1002.87	294.52 [@] 21	44@ 13				
	322.35 3	100 7	M1+E2	-0.8 2		Mult.: $\delta = -0.8 \ 2 \text{ or } -2.2 \ 10.$
	1002.76 9	59 11	M1			
1007 . 20	423 . 3 2	6.5 12	M1			
	548.54 5	35 7	M1			
	691.00 8	100 15	M1+E2	0.35 5		
1034.09	449.9 3	4.8 10	M1			
	735.1 3 1033.80 <i>12</i>	68 18 100 20	M1 M1+E2	0.52 22		
1037.40	356.7 4	9 3	M1+E2 E2	0.02 22		
_00	453.44 1	14 3	M1			
	721.22 8	100 28	M1+E2	0.29 1		
	738.76 9	88 24	E2			
	1037.2 1	55 5				
			Continued	on next page (foo	tnotes at and a	f table)
			Continued	on next page (100)	unotes at end 0	1 table)

$\gamma(^{113}{\rm Cd})~(continued)$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Ιγ [†]	Mult.‡#	δ#	Comments
1047.65	231.0 1	2.2 9			
1047.00	463.69 13	16 2	M1		
	589.02 4	42 2	M1+E2	+0.12 +17-7	
	731.3 4	100 4	M1		
1049.66	369.1 1	18 4	M1		
	733.3 5	22 11			Ey: not seen in $^{113}Cd(n,n'\gamma)$ and $(\alpha,n\gamma)$.
	1049.75 16	100 7	M1+E2	+0.49 8	
1051 . 248	370.72 1	21 4			
	412.906	$100 \ 2$	M1 + E2	-0.41 1	
	528 . 81 8	49 2			
1109 . 32	293.79 7	24.08			
	471.205	4.3 7	E2		
	845.78 1	100 2	D		
1124.636	184.83 2	6.3 8			
	307.89 2	19.1 10	D		
	416.09 4	23.9 10	E 2		
	666.1 1	100 3	EO		
1126.25	808.48 2	$\begin{array}{ccc} 41 & 3 \\ & 1 \cdot 2 & 3 \end{array}$	E2 M1		
1120.25	242.64 4 $827.6 3$	12 4	M1		
	1126.20 8	100 6	M1+E2	-0.02 3	Mult.: E2 is ruled out, $\Delta I=0$.
1177.723	126.48 1	33 3	E2	0.02 0	1141011 12 15 14104 040, 11-01
	322.36 6	60.8 23			
	655.48 1	100 4	M1+E2	-0.001 2	
1177.8	879.2 3	100			
1181.35	543 . 20 5	11 4			
	659.08 3	100 7			
1190 . 72	892.12 5	100			
1192.09	553.9 4	100 6	M1+E2	0.0 1	
	670.2 5	37 3			Εγ: placed as deexciting a 2094 level by 1991NeZX in $(n,n'γ)$.
1194.6	339.33 & 2	99& 5	M1+E2	-0.20 15	
	611.0 5	4.0 4	E1		
	672.34 2	100 6	E2		
1195.30	1194.4 1 $896.7 2$	12.9 <i>13</i> 100	E1		
1209.53	945.96 15	100 18	M1		
1214.674	274.89 4	7 4	M1		
	756.03 2	100 3	E2		
1261.92	444.9 5	38 8			
	677.95 4	79 10			
	803.23 5	100 11	D		
	946.0 1	67 33			
1268 . 21	969.59 5	58 8			
	1268.5 2	100 10	M1		
1279.62	232.6 3	0.8 6			
	291.54 25	1.7 5	M1		
	963.25 15	2.7 8	M1		
	980.94 25	2.3 8	M1 M1		
1301.07	1279.84 <i>10</i> 174.79 9	100 10 16 5	M1		
1301.07	717.13 11	100 19			
	1301.07 10	26 5			
1313.75	729.79 2	100 4	E2		
	855.10 6	6.9 17			
1322.03	799.9 6	97 4			
	1058.48 11	100 27			
1327.6	743.6 4	100			
1346 . 53	824 . 27 3	100	E2		
1351.58	344 . 31 12	6.7 16			
	496.8 3	22 7			
	767.65 13	100 17			
	829.4 3	61 21			
	892.9 3	8 3			
			Continued	on next page (foots	notes at end of table)
				1	

$\gamma(^{113}{\rm Cd})~(continued)$

E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger}$	Mult.‡#	δ#	Comments
1351.58	1052.95 12	39 11			
1364.76	780.81 <i>11</i> 906.1 <i>3</i>	36 11			
	1066.16 8	17.1 14 $100 7$			
1367.569	153.0 1	3.0 13			
	427.71 16	50 3	D		
	469.5 5	1.5 15			
	550.86 1	100 15	M1+E2	-0.0067	
	909.5 8	15 10			
1387.47	928.77 18	77 23			
	1088.89 9	100 23			
	1387.3 5	13 6			
1390.56	264.2 4	10 3			
	402.19 <i>13</i> 1092.18 <i>21</i>	18 5			
	1390.42 15	$\begin{array}{ccc} 11 & 6 \\ 100 & 29 \end{array}$			
1395.83	937.19 3	73 7			
	1079.63 4	100 7			
1405.82	1107.11 18	100 27			
	1405.85 11	86 17			
1407 . 5	823 . 64	$100 \ 20$			
	948.9 3	7 3			
1410.68	952.04 5	100			
1450.30	171.07 12	46 13			Ey: this γ is not seen in $(\alpha, n\gamma)$.
1461 65	770.42 16	100 30	D		
1461.67 1479.08	$606.39 \ 3$ $623.59^{@} \ 7$	$100 \\ 100^{@} 22$	D		
1479.00	770.42 16	33 10			
	1180.8 3	31 7			
	1479.2 1	67 10			
1493.03	224.69 25	2.7 9			
	784.6 3	10 4			
	812.7 4	12 5			
	909.12 13	33 10			
	1176.76 15	100 27	M1+E2	+0.23 17	
1504.00	1492.88 25	5.5 18	T.O.		
1504.90 1513.72	920.94 3	100 100	E2		
1313.72	335.989 875.543	100 5	E2		
	929.4 2	28 6	LZ		
1542.28	539.39 22	78 15			
	658.66 8	100 37			
1561.69	621.52	21 6			
	664.13 5	82 5	E 2		
	744.99 2	100 5			
1575.66	937.2 3	100 29			
1607 91	1312.18 15	54 13	M1		
1607.21	926.6 4	48 20 100 40	M1 M1		
	1023.0 3 1308.70 11	$100 \ 40$ $57 \ 13$	M1		
	1606.96 22	13 3	E2		
1620.43	765.15 1	44 4	D		
	1098.06 7	100 12			
1626 . 41	$501.77 \ 3$	100	M1+E2	0.00 3	
1647 . 23	707 . 44 4	100			
1656.6	842.0 2	100			
1657.41	842.06 3	100	E 2		
1658.51	1020.6 5	57 7			
	1135.8 2	79 8			
1670.89	1394.8 <i>1</i> 561.56 9	100 <i>13</i> 100			
1670.89	791.49 15	100 29	M1		
10.0.00	994.53 11	95 19	M1		
			Continued	on next page (foot	notes at end of table)

$- \gamma(^{113}\mathrm{Cd}) \ (continued)$

E(level)	$E\gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡#	δ#	Comments
1675.09	1376.64 25	66 26	M1		
1732.84	365.4 1	23 23	WII		
	518.15 3	33 3	D		
	793.4 3	100 8			
1737.53	1215.276	100			
1743.56	1221.3 2	100			
1746.00	$890.84\ 22$	62 19			
	1429.94	50 15			
	1746.0 5	100 35			
1778.92	569.3 3	21 5	E2		
1700 00	1515.4 2	100 19	M1		
1798.89	765.13 1214.82	$14 6 \\ 100 14$			
	1482.9 3	11 4			
	1798.7 3	3.6 7			
1823.24	713.91 5	64 7	M1+E2	-0.012	
	1007.90 3	100 7			
1842.74	648.26 25	87 34			
	1320.43 15	100 17			
1867.86	$1012.91\ 21$	73 23			
	1345.56 8	100 7			
	1604.23 23	17 4			
1871.7	931.9 3	100	3.51		
1892.32	1036.87 15	100 30	M1		
	$1370.22 ext{ } 15$ $1628.8 ext{ } 4$	67.87 267	E 2		
1896.44	237.78 8	14 3	152		
1000.44	238.96 9	11 3			
	787.12 2	100 8	E2		
	1081.38 20	62 14			
1902.41	534.87 5	100 5	M1+E2	0.00 5	
	687.6 1	60 5			
1903.97	1088.63 8	100			
1904.35	856.73 25	7 3			
	1445.70 11	100 17			
2037.76	1097.89 22	69 25			
	1221.3 4	100 8			
2042.06	1579.15 1226.715	16 5 100			
2046.23	831.55 6	100	E2		
2113.04	1474.8 3	57 28	M1		
	1590.8 3	100 26	M1		
2146 . 81	633.08 2	100	(E2)		
2164 . 48	949.8 1	100			
2173 . 60	427 . 68 16	76 15	M1		B(M1)(W.u.)=0.87 21.
	979.08 23	38 15	M1		B(M1)(W.u.)=0.036 16.
	1289.4 3	59 15	E1		$B(E1)(W.u.) = 0.00032 \ 10.$
0010 64	2173.64 21	100 18	E1		B(E1)(W.u.)=0.00011 3.
2219.64 2319.62	593.23 2 1464.32 18	$\begin{array}{ccc} 1 & 0 & 0 & 1 \\ & 2 & 2 & 6 & \end{array}$	E2 M1		
2319.02	2319.7 6	100 41	E1		
2324.5	667.9 2	100	LI		
2538.3	881.7 2	100			
2613.4	956.8 2	100			
2757.8	433.3				
2759.33	960.46 15	13 4			
	1942.71 25	49 15			
	2460.6 2	100 20			
2962.6	424.3 2	100			
3448.9	835.5 2	100			
3473.9 4201.5	716.12 752.62	100 100			
7201.0	102.0 2	100			

Footnotes continued on next page

$\gamma(^{113}\text{Cd})$ (continued)

- † From $^{113}Cd(n,n'\gamma)$ or ^{113}Ag β^- decay, except as noted. When the branching is discrepant between $(n,n'\gamma)$ and decay evaluator has chosen $(n,n'\gamma)$ because uncertainties are available.
- ‡ From $^{113}Cd(n,n'\gamma)$.
- § See 113 Ag β^- decay (5.37 h).
- # From $\gamma(\theta)$ and linear polarization in $^{113}Cd(n,n'\gamma)$ and in $(\alpha,n\gamma)$, except as noted.
- @ Multiply placed; undivided intensity given.
- & Multiply placed; intensity suitably divided.

(A) Member of $\Delta J\!=\!2$ (B) Band based on 23/2- (C) Band based on (19/2) band on 11/2- band

 $^{113}_{48}\mathrm{Cd}_{65}$

¹¹³Ag β⁻ Decay (5.37 h) 1978Ma17,1970Ma47

Parent $^{113} Ag$: E=0; J\$\pi\$=1/2-; \$T\$_{1/2}=5.37 h 5; \$Q(g.s.)=2016 17; \$\%\beta^-\$ decay=100.\$ Measured Ey, Iy, Ice, \$\gammay\$ coin, \$\beta\$ endpoint, \$\beta\$ coin, \$1978Ma17, \$1970Ma47.\$ Others: \$1958Al90, \$1960Kj01, \$1969Cl11, \$1969Hn01, \$1969Li20, \$1973BuZW.\$

¹¹³Cd Levels

E(level)	Jπ	$\underline{\hspace{1cm}}^{\dagger}$	Comments
0.0	1 / 2+	$7.7{\times}10^{15}$ y 3	
263.58 13	11/2-	14.1 y 5	
298.53 6	3 / 2+		
316.18 6	5 / 2+	10.7 ns 4	$T_{1/2}$: from $\beta \gamma(t)$ with scin, 1980Oh01.
522.34 9	(7/2)-	0.322 ns 12	$T_{1/2}$: from $\gamma\gamma(t)$ with scin, 1980Oh01.
584.06 9	5 / 2+		
638.06 12			
680.58 7	3 / 2+		
708.58 12	5 / 2+		
855.31 8	(5/2-)		
883.60 10	1 / 2+		
988.44 8	1 / 2+		
1049.90 10	3 / 2+		
1126.09 8	1 / 2+		
1194.66 6	(3/2-)		
1479.29 7	3/2+, 5/2+		

[†] From adopted levels, except as noted.

$^{113}Ag~\beta^{-}~Decay~(5.37~h)~~1978Ma17,1970Ma47~(continued)$

β^- radiations

Εβ-	E(level)	<u>Ιβ-†‡</u>	Log ft	Comments
(537 17)	1479.29	≈ 0 . 12	≈7.7	
(821 17)	1194.66	≈ 2.1	≈ 7.1	
(890 17)	1126.09	$\approx 0 .086$	≈8.6	
(966 17)	1049.90	$\approx 0 .065$	≈8.8	
(1028 17)	988.44	≈ 0 . 45	≈8.1	
(1132 17)	883.60	≈ 0.29	≈8.4	
(1307 17)	708.58	$\approx 0 \ . \ 0 \ 2 \ 0$	$\approx 10.9^{1}u$	Log ft: calculated as first-forbidden unique.
(1335 17)	680.58	≈ 1 . 0	≈8.2	
(1432 17)	584.06	≈ 0.13	$\approx 10.0^{1}u$	$\operatorname{Log}\ ft$: calculated as first-forbidden unique.
(1700 17)	316.18	≈ 1.7	$\approx 9.31u$	Log ft: calculated as first-forbidden unique.
(1717 17)	298.53	≈9.4	≈7.6	
(2016 17)	0.0	≈85	≈ 7 . 0	$E\beta^{-}$: $E\beta=2020$ from 1957Je07. Other: 2030 (1970Ma47).
				Iβ-: from Iβ(total)/Iγ(299) compared with 198 Au Iβ(total)/Iγ(412), 1970Ma47.

 $^{^{\}dot{\uparrow}}~\beta$ branches were obtained from (7+ce) imbalance at each level, except for the g.s.

$\gamma(^{113}Cd)$

Other: 88% (1969Hn01).

 $\alpha(K) exp$ normalized by 316 γ keV to E2 theory. If 316 γ is M1, δ and α will be different for 259 γ and 299 γ . I γ normalization: from $\Sigma I(\gamma + ce)$ to g.s.+I $\beta(g.s.)$ =100. The normalization factor is uncertain, since I $\beta(g.s.)$ is approximate.

Εγ	E(level)	Ιγ‡	Mult.	α	Comments
17.7 2	316.18	0.42 5	M1	10.23 66	Iγ: obtained by low-energy photon spectrometer. I(γ+ce): from I(γ+ce)(17.7γ)/I(γ+ce)(316.3γ) in 113 Ag β ⁻ decay (68.7 s).
					Mult.: from Iy and $I(\gamma+ce)$.
					B(M1)(W.u.)=0.0084 14.
96.2 2	680.58	0.37 2			
x 1 3 3 . 5 2		0.66 2			
206.4 2	522 . 34	0.202			
217.2 1	855.31	0.28 2			
258.8 1	522 . 34	16.35 30	E2	0.048 5	Mult.: from $\alpha(K)$ exp=0.049 6. E1+M2 is not excluded. B(E2)(W.u.)=44.0 21.
298.6 1	298.53	100	E2+(M1)	0.031 2	δ: >1.1.
200.0 1	200.00	100	22 ((111)	0.001 2	Mult.: from $\alpha(K)\exp=0.027$ 1.
316.3 1	316.18	13.43 20	[E2]	0.0274	Mult.: based on $J\pi$ values in proposed decay scheme.
			. ,		B(E2)(W.u.)=0.373 21.
333.1 <i>1</i>	855.31	5.98 9	(M1,E2)	0.025 11	Mult.: from $\alpha(K)\exp=0.021$ 9.
339.4 1	1194.66	6.38 10	M1,E2	0.0196 22	Mult.: from $\alpha(K)\exp=0.019$ 5.
364.4 1	680.58	1.40 3			
369 1	1049.90	0.10 5			
374.3 2	638.06	0.25 2			
382.1 1	680.58	1.45 3			
392.4 1	708.58	0.202			
x 4 1 0 . 8 1		$0.12\ 2$			
539 1	855.31	0.08 3			
584.0 \ 1	584.06	2.1 † § 3			
585 [§] 1	883.60	0.10 ^{†§} 5			
611.0 5	1194.66	0.45 10			
624.0 1	1479 . 29	0.19 1			
672.3 § 1	988.44	0.3 † § 1			
	1194.66	8.7† \$ 3			
680.6 1	680.58	6.95 16			
734 1	1049.90	0.10 5			
809.9 1	1126.09	0.15 2			
x816.1 1		$0.11\ 2$			
827 1	1126.09	0.10 5			
878.5 1	1194.66	$0.52\ 2$			
883.6 1	883.60	2.82 7			

Continued on next page (footnotes at end of table)

 $[\]dot{\ddot{\pm}}$ For β^- intensity per 100 decays, multiply by 1.0.

$^{113}Ag \ \beta^{-} \ Decay \ (5.37 \ h) \qquad 1978Ma17,1970Ma47 \ (continued)$

$\gamma(^{113}Cd)\ (continued)$

Εγ		E(level)	Iγ‡
896.1	1	1194.66	0.58 10
988.4	1	988.44	4.239
1049.9	1	1049.90	$0.45 \ 3$
$^{x}1084.5$	1		0.16 3
1126.1	1	1126.09	0.61 3
1180.8	1	1479.29	0.37 3
1194.6	1	1194.66	3.78 10
1479.2	1	1479.29	0.68 4

- [†] Unresolved doublet. Iy from γy-coin results. Iy divided into two parts on the basis of intensity balances.
- $^{\frac{1}{4}}$ For absolute intensity per 100 decays, multiply by ${\approx}0.10.$
- § Multiply placed; intensity suitably divided.
- x γ ray not placed in level scheme.

Decay Scheme

$^{113} Ag \ \beta^{-} \ Decay \ (68.7 \ s) \\ 1975 BrYM, 1990 Fo 07$

Parent $^{113} Ag:$ E=43.2; J\pi=7/2+; $T_{1/2} = 68.7~s~50;~Q(g.s.) = 2017~16;~\%\beta^-~decay=36~7.$ Measured Ey, Iy, yy coin, y(t), E β , $\beta\gamma$ coin, (1975BrYM) Ey, Iy (1981Me17). Ey, branching for IT decay (1990Fo07). Others: 1969Hn01, 1970Ma47.

¹¹³Cd Levels

E(level)	Jπ	T _{1/2}	Comments
0.0	1/2+	$7.7{ imes}10^{15}$ y 3	T _{1/2} : from adopted levels.
298.30 8	3 / 2+		
316.09 8	5 / 2+		
458.30 16	7 / 2 +		
583.87 25	5 / 2+		
708.34 17	5 / 2+		
1007.1 3	(5/2)+		

$^{113}Ag~\beta^-~Decay~(68.7~s)~~1975BrYM,1990Fo07~(continued)$

 $^{113}Cd\ Levels\ (continued)$

 β^- radiations

 $\underline{I}\beta^{-\dagger\ddagger}$ $E\beta^-$ E(level)Log ft $(\,865\ 16\,)$ 1195.3 0.5 3 $\approx 5 . 3$ (1013 16) 1047.4 ≈ 0.44 (1053 16) 1007.1 ≈0.99 ≈5.3 $(1352\ 16)$ 708.34 ≈ 8.9 ≈ 4 . 8 (1476 16) 583.87 ≈5.5 ≈ 2 . 4 (1602 16)458.30 ≈ 0.60 ≈6.3 (1744 16)316.09 ≈5.8 ≈5.4

 $\dot{\dagger}~\beta^-$ branches were obtained from $(\gamma + ce)$ imbalance at each level.

 ‡ For β^- intensity per 100 decays, multiply by 1.8 4.

 $\gamma(^{113}Cd)$

Iy normalization: assuming no β^- feeding to g.s. $\Delta J{=}3,~\Delta \pi{=}no.$

Εγ	E(level)	<u>Ιγ‡</u>	Mult.	α	$\frac{I(\gamma + ce)^{\frac{+}{2}}}{}$	Comments
17.8 1	316.09		M1	10.06	48.66	I(γ+ce): calculated from the decay scheme with assumption of no $β^-$ feeding of the 298 level. Iγ: from I(γ+ce) and $α$.
						Mult.: from 113 Ag β^- decay (5.37 h).
126 1	583.87	< 2				0 P
142.20^{\dagger} 15	458.30	16.5	[M1]	0.1748		
188 1	1195.3	< 2				
249 . $9\dagger$ 4	708.34	6.3				
268.0 6	583.87	< 2				
285 1	583.87	0.75				
298.3^{\dagger} 1	298.30	57.5	[M1]	$0\;.\;0\;2\;4\;3\;2$		
316 . 1^{\dagger} 1	316.09	100	[E2]	$0\;.\;0\;2\;7\;4$		
392.3^\dagger 2	708.34	63				
410.0^{\dagger} 6	708.34	3.8				
423 1	1007.1	< 1				
487 1	1195.3	2.2				
549 1	1007.1	2.0				
583.8 3	583.87	20.5				Iγ: 1981Me17 gives 17.7 9.
589 1	1047.4	1				
690.8 4	1007.1	4.1				
708.3 4	708.34	20				
709.0 5	1007.1	5				Ey: not seen by 1981Me17 and also by 1987BaYW in $(n,n^{\iota}\gamma).$
731.34	1047.4	3.5				
737 1	1195.3	< 2				
897 1	1195.3	< 2				

 † Also seen by 1981Me17 which agrees on Iy.

 $\dot{\ddagger}$ For absolute intensity per 100 decays, multiply by 0.18 4.

$^{113}Ag~\beta^{-}~Decay~(68.7~s)~~1975BrYM,1990Fo07~(continued)$

Decay Scheme

 $7.7{\times}10^{15}~\mathrm{y}$

¹¹³Cd IT Decay (14.1 y) 1969De25

Parent 113 Cd: E=263.7 3; J π =11/2-; $T_{1/2}$ =14.1 y 5; %IT decay=0.14.

Measured Ey, Iy, $\alpha(K)$ exp from Iy and $I(K \times ray)$.

¹¹³Cd Levels

E(level)	Jπ	${ m T}_{1/2}{}^{\dagger}$			
0.0	1/2+	7.7×10 ¹⁵ y 3			

[†] From adopted levels.

 $\gamma(^{113}Cd)$

Εγ	E(level)	Ιγ'	Mult.	<u>~</u>	I(γ+ce	
263.7 3	263.7	16.4 5	E5	5.1	100	

Iy: from I(y+ce) and α , 3% uncertainty chosen for α . Mult.: $\alpha(K)exp=3.0$ 5 yields M4,E5. ΔJ rules out M4. B(E5)(W.u.)=0.0499 23.

Comments

$^{110}\mathrm{Pd}(\alpha,n\gamma)$ 1997Wa20

 $E\!=\!12.2,\ 14.9,\ 16.2,\ 18.0\ MeV.\ Enriched\ targets.$

 $Measured: \ \gamma, \ \gamma\gamma, \ \gamma\gamma(\theta), \ excitations \ functions, \ two \ Ge \ detectors \ with \ BGO-NaI(Tl) \ Compton \ suppression \ shields.$

¹¹³Cd Levels

E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}_{J\pi^{\dagger}}$
0.0‡	1 / 2 +	638.18 \$ 3	9 / 2 –	883.58‡ 15	1/2+
263.5 \$ 5	11/2-	680.533 [‡] 23	3 / 2 +	897.63‡ 3	7 / 2+
298.599 10	3 / 2 +	708.563 ‡ 22	5 / 2 +	939.766 ‡ 21	9 / 2+
$316.194^{\ddagger}19$	5 / 2 +	815.29 \$ 3	15/2-	988.29 † 3	1 / 2+
$458.620 ^{\ddagger} 20$	7 / 2+	816.737 ‡ 24	7 / 2 +	999.40 7	
522.28 \$ 3	7 / 2 –	855.26 \$ 3	5 / 2 –	1007.43 7	(5/2+)
583.975 [‡] 10	5 / 2+	878.5‡ 2	+	1033.801 22	(5/2+)

Continued on next page (footnotes at end of table)

 $^{^{\}dagger}$ For absolute intensity per 100 decays, multiply by 0.0014.

$^{110}\mathrm{Pd}(\alpha,n\gamma)$ 1997Wa20 (continued)

$^{113}\mathrm{Cd}$ Levels (continued)

E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	E(level)	$J\pi^{\dagger}$
1037.437‡ 14	(5/2+)	1313.763 [‡] 21	9 / 2+	1657.37 \$ 5	11/2-
1047.654 24	7 / 2 +	1321.84 9		1658.47 7	
1049.71	(3/2,5/2+)	1327.6 4		1670.85 10	
1051.243 \$ 25	5 / 2 –	1346.54 \$ 4	11/2-	1732.83 ‡ 4	11/2+
1109.28 § 3	13/2-	1364.70	(5/2+)	1737.54 7	
1124.640 23	9 / 2+	1367.60 ‡ 3	7 / 2 +	1743.58 21	
1126 . 22^{\ddagger} 15	3 / 2+	1387.51 4		1823.20 \$ 4	(13/2-)
1177.74 § 3	(9/2-)	1395.82 ‡ 3	(9/2+)	1871.7 3	
1177.8 ‡ 3	(3/2+)	1405.69 7		1892.36 6	
1181.35 4		1410.66 6		1896.40 4	
1190.72 5		1451.03 7		1902.43 5	
1192.07 \$ 4	_	1461.65 5		1903.93 9	
1194.58 3		1504.92	7 / 2 +	2042.01 6	
1195 . 22^{\ddagger} 5	+	1513.71 4		2046.21 7	(15/2+)
1214 . 651^{\ddagger} 22	11/2+	1561.73 3	+	2146.80 5	
1261.92 4	(9/2)	1620.42 3		2164.46 11	
1268.21 5		1626.40 4		2219.64 5	
1279.856	(3/2)	1647.21 5			

 $^{^{\}dagger}$ From the authors based on previous known $J\pi$ and γ multipolarities.

$\gamma(^{113}Cd)$

Εγ	E(level)	Ιγ	Mult.§	δ§	α	Comments
115.6 2	638.18	6.0 9	D			
126.48 1	1177.74	8.6 8	E2			
142.42 1	458.620	540	M1+E2	-0.0202		
153.0 1	1367.60	1.2 5				
184.83 2	1124.640	4.5 6				
205.9† 1	522.28	6.4 7				
217.08 2	855.26	4.7 5				
231.0 1	1047.654	1.0 4				
237.78 8	1896.40	1.8 5				
238.96 9	1896.40	1.4 6				
242.64 4	1126 . 22	$2.5 ext{ } 4$				
249.95 2	708.563	7.4 5	D			
258.77 1	522 . 28	493 8				
267.77‡ <i>6</i>	583.975	7.5 5	M1+E2	+0.10 4		
274.89 2	1214 . 651	9.8 5	M1+E2	-0.02 1		
285.3 1	583.975	4 1				
293.79 7	1109.28	30 1				
298.60 1	298.599	860 11	M1+E2	+0.40 1		
307.89 2	1124.640	13.6 7	D			
313.48 † 6	897.63	18.3 6	M1+E2	+0.41		
316.22 ‡ 6	316 . 194	1000 10	E 2		$0\;.\;0\;2\;7\;4$	
322.36 6	1177.74	15.8 6				
332.99 1	855 . 26	111 2	M1+E2	-0.217		
335.98 9	1513.71	1.4 6				
339.33 1	1194.58	16.9 8				
358.09 [‡] 5	816.737	50 1	M1+E2	+0.003 3		
364.31 3	680.533	17 8				
365.4 1	1732.83	6 9				
370.72 1	1051.243	12 2				
374.64 3	638.18	48 2				
381.95 3	680.533	16.1 6	M1+E2			Mult.: $\delta = +0.02$ 1 or $+4.7$ 2.
392.36 2	708.563	72 1	M1+E2	-0.052		
110.11 9	708.563	8.7 6	M1+E2	-0.08 4		
112.90 6	1051 . 243	57 1	E 2			
116.09 4	1124.640	17.0 7	E2			

^{† (}A): Positive parity levels. § (B): Negative parity levels.

$^{110}Pd(\alpha,n\gamma)$ 1997Wa20 (continued)

 $\gamma(^{113}{\rm Cd})~(continued)$

Εγ	E(level)	Ιγ	Mult.§	δ§	Comments
427.71 16	1367.60	20 1	D		
439.74 22	897.63	33 1	-		
444.9 5	1261.92	3.4 7			
453.4 1	1037.437	4.3 7			
463.84 13	1047.654	7 1	M1+E2	-0.023	
469.55	1367.60	0.6 8			
471.205	1109.28	5.4 9	E2		
481.13 1	939.766	153 2	M1+E2	-0.045	
500.50 3	816.737	147 3	M1+E2	+0.04 5	
501.77 3	1626.40	35 2	M1+E2	0.00 3	
$518.15 \ 3$ $528.81 ^{\ddagger} \ 8$	1732.83	9.1 7	D		
534.87 5	1051.243 1902.43	27.89 201	D M1+E2	0.00 5	
539.3 1	855.26	3 1	E1	0.00 5	
540.78 6	999.40	6 1	111		
543.20 5	1181.35	3 1			
550.86 1	1367.60	40 6	M1+E2	-0.006 7	
551.79 1	815.29	343 6	E2		
553.90 1	1192 . 07	35 2	M1+E2	0.0 1	
561.569	1670.85	9.1 9			
579.8 1	878.5	6 1			
581.26 9	897.63	13 6			
583.97 1	583.975	301 3	E2		
589.02 2	1047.654	19 1	M1+E2	+0.005 10	
593.23 2	2219.64	11 1	E2		
$598.95 \stackrel{\ddagger}{=} 5$ 606.39 3	897.63	$\begin{array}{ccc} 147 & 2 \\ & 4 & 1 \end{array}$	E2 D		
621.5 2	1461.65 1561.73	8 2	D		
623.58 2	939.766	77 2			
633.08 2	2146.80	22 2	(E2)		
655.48 1	1177.74	26 1	M1+E2	-0.001 2	
659.08 3	1181.35	27 2			
664.13 ‡ 5	1561.73	32 1	E2		
666.1 † 1	1124.640	71 2			
$670.2^{\dagger} 5$	1192 . 07	13 1			
672.34 2	1194.58	17 1			
677.95 4	1261.92	7.1 9			
680.6 1	680.533	78 2	M1+E2		Mult.: δ =+1.34 5 or -0.13 2.
687.6 <i>1</i> 691.23 <i>6</i>	1902.43	$\begin{array}{ccc} 12 & 1 \\ 25 & 2 \end{array}$			
696.5 5	1007.43 1405.69	<1.0			
707.44 4	1647.21	24 4			
708.58 6	708.563	62 5			
713.91 5	1823.20	9 1	M1+E2	-0.01 2	
721.24 4	1037.437	22 1	D		
729.79 2	1313.763	58 2	E2		
$731.47\ 2$	1047 . 654	$45 \ 2$	M1+E2	-0.03 4	
$735.20\ 2$	1033.801	12.69			
738.84 1	1037.437	21 1	M1+E2	+1.1 5	
743.6 4	1327.6	< 3			
744.99 2	1561.73	19 1	7.0		
756.03 1	1214.651	140 4	E2		
765.15 1	1620.42	7.4 9	D		
770.50 6	1451.03	14 4	E o		
$787.12 2$ $793.4^{\dagger} 3$	1896.40 1732.83	$\begin{array}{ccc} 13 & 1 \\ 28 & 2 \end{array}$	E 2		
799.57 8	1321.84	48 5	D		
803.23 5	1261.92	9 1	D		
808.48 2	1124.640	29 2	E2		
824.27 3	1346.54	31 4	E2		
831.55 6	2046 . 21	18 2	E 2		
$842.06\ 3$	1657.37	53 2	E 2		
845.78 1	1109.28	$125 \ 2$	D		
					(0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
			Continu	ed on next page	(footnotes at end of table)

$^{110}\mathrm{Pd}(\alpha,n\gamma)$ 1997Wa20 (continued)

$\gamma(^{113}Cd)~(continued)$

Εγ	E(level)	Ιγ	Mult.§	Comments
855.10 6	1313.763	4 1		
875.54 3	1513.71	18.1 9	E 2	
878.4 2	878.5	4 1		
879.2 3	1177.8	2 2		
883.43 9	1405.69	29 1		
883.6 2	883.58			Eγ: not observed in this work, but 1997Wa20 do not rule its existence.
892.12 5	1190.72	6 1		
896.62 4	1195 . 22	$22 \ 2$		
906.0 2	1364.70	3.3 9		
$909.5 ^{\ddagger} 8$	1367.60	6 4		
920.94 3	1504.92	9.0 9	E 2	
929.4 2	1513.71	5 1		
931.9 3	1871.7	5 1		
937.19 3	1395.82	19 2		
946.0 † 1	1261.92	6 3		
949.8 1	2164.46	2.4 8		
952 . 04 5	1410.66	10 1		
969.59 5	1268 . 21	5.8 8		
988.29 3	988.29	24 1		
1007.90 3	1823.20	14 1		
1020.6^{\dagger} 5	1658.47	8 1		
1033.9 5	1033.801	12 1		
1037.2 † 1	1037.437	12 1		
1049.7 1	1049.71	12.4 1		
1066.11 7	1364.70	9.1 1	D	
1079.63 4	1395.82	$26 \ 2$		
1081.38 ‡ 20	1896.40	8 2		
1088.63 8	1903.93	12 1		
1098.06 7	1620.42	17 2		
1107.1 1	1405 . 69	8.0 9		
1126 . 2^{\ddagger} 2	1126 . 22	18 1		
1135.8 ± 2	1658.47	11 1		
1215 . 27 6	1737.54	14 2		
1221.3 2	1743.58	2.9 9		
1226.71 5	2042 . 01	10 1		
1268 . 5^\dagger 2	1268 . 21	10 1		
1279.846	1279 . 85	6 1		
1370.08 5	1892.36	34 1		
1387.504	1387 . 51	$3\ 4\ \ 2$		
1394.8 1	1658.47	14 2		

 $[\]dagger$ γ ray placed by coincidence relations. ΔE fixed to at least 0.1 keV to allow a fit with the other gammas. \dagger ΔE increased by evaluator to allow fit with levels.

[§] From $\gamma(\theta)$ and excitation functions (five energies).

$^{110}Pd(\alpha,n\gamma)~~1997Wa20~(continued)$

Level Scheme

Intensities: relative $I\gamma\,$

$^{110}Pd(\alpha,n\gamma)~~1997Wa20~(continued)$

 $Level\ Scheme\ (continued)$

Intensities: relative $I\gamma\,$

$^{110}Pd(\alpha,n\gamma)~~1997Wa20~(continued)$

Level Scheme (continued)

Intensities: relative $I\gamma$

		2219.64
		2146.80
		2042.01
		2042.01
		= _{1871.7}
(2-)		1823.20
2+		1732.83
		1658.47
		1620.42
		1561.73
+		1504.92
		1451.03
		1405.69
+)		1364.70
<u>;</u>		1261.92
.)		1201.92
		1181.35
2-		1109.28
2+)		1033.80
+		988.29 939.766
+	8 ¹ / ₂ /2 - ~_	897.63
-		855.26
2-		815.29
+		708.563
+		680.533
_		638.18
+		583.975
-		522.28
+		458.620
		010.10
	¬	316.194 298.599
+		
+		263.5
+		263.5
+ + 2		263.5

¹¹²Cd(n,γ) E=res 1969Ju01

E=4-2000 eV. Measured cross section; neutron time of flight. For deduced resonance parameters for resonances with E=66.7 eV and E=83.3 eV, see 1981MuZQ.

$^{112}\mathrm{Cd}(d,p), ^{114}\mathrm{Cd}(d,t)$ 1969Go03

 $^{112}{\rm C}\,{\rm d}({\rm d},{\rm p}){\rm :}~{\rm E}{=}13~{\rm MeV}.$ Other: 1964Ro17.

$^{113}\mathrm{Cd}$ Levels

E(level)	Jπ‡	L [†]	C^2S	Comments
0 0	1/2+	0	0.34	
$0.0 \\ 270 10$	1/2+	0 5	0.34	
300 10	3 / 2+	2	0.40	
320 10	5 / 2 +	2	0.14	
460 10	7/2+	4	0.26	
530 10	7 / 2 +	4	0.36	
590 10	(5/2+)	2	0.05	
680 10	(3/2+)	2	0.27	
760 10	1/2+	0	0.14	
820 10	7 / 2+	4	0.12	
880 10	1/2+	0	0.07	
900 10	3 / 2+	2	0.21	
960 10				
980 10	1 / 2+	0	0.04	
1010 10				
1130 20				
1170 20				
1200 10		2,3		J π : authors assign J π =7/2+ but it is not compatible with given L. A level at 1195.4 has been adopted with J π =5/2+,7/2+,9/2+.
1280 10	(5/2+)	2	0.03	
1320 10				
1390 20				
1430 10	(3/2+)	2	0.06	
$1450 \ 20$				
1490 15	(3/2+)	2	0.06	
1540 10				
1580 10	(7/2-)	(3)	0.02	
1610 10	(5/2+)	2	0.02	
1670 10	(3/2+)	(2)	0.02	
1810 10				
1840 10		1, 2		
1880 10	(1/0)	(0)	0 00	
1900 10	(1/2+)	(0)	0.02	
1990 10	7/9	9	0 04	
2040 10	7/2-	3	0.04	
2080 10 2110 10	(1/2+)	(0)	$0.01 \\ 0.02$	
2110 10 $2120 20$	(7/2-)	(o)	0.02	
2140 20	(1/2+)	(0)		
2170 10	3/2-	1	0.04	
2180 10	3 / 2 -	1	0.03	
2240 10	•	(3)		
2270 10				
2310 10	(3/2-)	(1)	0.01	
2330 10				
2370 10				
2410 10		(4)		
2440 10				
2540 10	(7/2-)	(3)	0.03	
2580 10	(3/2-)	(1)	0.02	
2630 10	(1/2+)	(0)	0.04	
2690 10				
2750 10				

¹¹²Cd(d,p), ¹¹⁴Cd(d,t) 1969Go03 (continued)

¹¹³Cd Levels (continued)

E(level)	Jπ [‡]	L^{\dagger}	C^2S	
2770 10	(3/2-)	(1)	0.02	
2810 10	1/9+	0	0 03	

- \dagger Deduced from proton angular distributions at 16 angles, θ=5°-115° compared with DWBA calculations. For L≥3 the agreement with DWBA is rather poor.
- [‡] Determined from L by use of the shell model. The d5/2 shell-model state is almost full, while the d3/2 state is almost empty.

 For L=2, J was therefore assigned 5/2 or 3/2 from a comparison of σ(d,t) and σ(d,p).

¹¹³Cd(γ,γ') 1994Ge07

Bremsstrahlung at the Stuttgart Dynamitron Facility.

Bremsstrahlung endpoint energy: $4.20~{\rm Mev}~5.$

Enriched Cd (94.6%). Scattered photons were detected by three Ge detectors under angles of 88° , 125° , 149° with respect to the incoming photon beams.

$^{113}\mathrm{Cd}$	Levels
---------------------	--------

E(level)	$J\pi^{\ddagger}$	${\color{red}T_{1/2}}^{\dagger}$	E(level)
0.0	1/2+	stable	2796
1813	(3/2+)		2817
1855			2902
1873			2913
1942		607 fs $+90-70$	2929
2044	3 / 2 + , (3 / 2 - , 1 / 2 -)		2943
2128			3040
2173	3 / 2 –	90 fs 7	3058
2182	(3/2-)	228 fs + 86 - 50	3105
2318			3222
2335			3281
2354		3.0×10^{2} fs $+16-6$	3301
2409			3333
2428	3 / 2 - , 1 / 2 -		3378
2449			3412
2535	(3/2)		3480
2545			3486
2556			3526
2578			3547
2588	3 / 2 –		3741
2743			3814
2753			3850
2773			3902

 $^{^{\}dagger}$ From nuclear resonance fluorescence, assuming J=3/2.

 $[\]ddagger$ The spins of the excited levels have been determined for few levels.

$^{113}\mathrm{Cd}(n,n'\gamma) \quad \ 1987BaYW,1991NeZX$

Enriched≈96% target.

Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, linear polarization. Also measurement $^{112}Cd(n,\gamma)$ E=res.

1991NeZX has reanalyzed the data of 1987BaYW and placed many new gammas.

$^{113}\mathrm{Cd}$ Levels

E(level)	$J\pi^{\dagger}$	E(level)		E(level)	
0.0	1/2+	1051.2 5	7/2-	1542.28 9	(1/2)+
263.68 6	11/2-	1109.5 6		1561.5 5	
298.567 17	3 / 2+	1124.5 6		1575.8 5	7 / 2 –
316.207 16	5 / 2+	1126.22 6	3 / 2 +	1605.7 3	
458.578 24	7 / 2+	1177.26 8	3 / 2 +	1607.17 9	5 / 2+
522.16	7 / 2 –	1195.0 3	3 / 2 –	1658.5 5	
583.89 4	5 / 2+	1209.56 13	13/2-	1675.11 9	3 / 2+
638.35 6	9 / 2 –	1214.31 13	11/2+	1732.5 5	
680.550 21	3 / 2+	1268.13 6	3 / 2+	1746.09 14	3 / 2 –
708.556 22	5 / 2+	1279.55 7	3 / 2 +	1779.02 18	9 / 2 –
816.62 4	7 / 2+	1301.03 7	3 / 2 + , 5 / 2 +	1798.9 5	(1/2,3/2,5/2)+
855.4 3	5 / 2 –	1313.74 12	5 / 2+	1823.5 5	
870.20 14	15/2-	1322.17 13	7 / 2 –	1842.94 14	(3/2-)
878.5 5	3 / 2+	1351.6 5	5/2,7/2	1867.99 9	7 / 2 - , 9 / 2 -
883.62 5	1 / 2 +	1364.71 7		1892.44 12	7 / 2 –
897.3 5	3 / 2+	1387.44 8	5 / 2 + , 3 / 2 +	1902.5 5	
939.72 5	9 / 2 +	1390.56 9	1/2+,3/2+	1904.28 11	5 / 2 + , 7 / 2 +
988.40 6	1 / 2 +	1395.5 5		2037.69 19	5/2,7/2,9/2
1002.89 4	3 / 2+	1405.81 10	1 / 2 + , 3 / 2 +	2094.3 4	7 / 2 –
1007.16 5	7 / 2 +	1407.44 25	(9/2)+	2113.18 22	7 / 2 –
1034.1 5	3 / 2+	1423.85 12	‡	2173.71 12	1 / 2 - , 3 / 2 -
1037.4 2	7 / 2+	1450.3 5		2219.5 5	
1047.49 10	7 / 2+	1479.1 5	1/2,3/2	2319.70 18	3 / 2 –
1049.68 10	3 / 2+	1492.99 9	1/2+,3/2+	2759.32 12	3 / 2 + , 5 / 2 +

 $^{^{\}dagger}$ As given by 1991NeZX, see adopted levels for comments.

$\gamma(^{113}Cd)$

Εγ	E(level)	Ιγ	Mult. [†]	δ
96.9 2	680.550	1.6 3		
$142.35\ 2$	458.578	34 3	M1 + E2	-0.043
x 162.32 5		$0.23 \ 5$		
171.07 12	1450.3	0.27 8		
174.799	1301.03	0.25 8		
184.62^{\ddagger} 25	1124 . 5	0.24 8		
x 186.17 12		0.092		
x 196.90 26		0.28 8		
x 198.27 13		0.47 14		
205.86 8	522 . 1	0.424	E1	
217.00 3	855.4	0.566	E2	
224 . 69 25	1492.99	0.03 1		
x 2 2 8 . 7 3		0.05 2		
$^{x}230$. 34 25		0.16 5		
x 2 3 2 . 6 3		$0.05 \ 3$		
242.6 3	1126 . 22	0.04 1	M1	
x 2 4 4 . 7 3 1 1		$0.26\ 5$		
249.93 6	708.556	1.2 1	M1 + E2	+0.24 8
258.72 2	522 . 1	34 2	E2	
264.24	1390.56	0.144		
267.68 6	583.89	0.82 16	M1	
x 2 7 1 . 0 4 1 9		0.06 2		
x 2 7 3 . 0 5 1 9		0.09 3		
274.67 18	1214 . 31	0.14 4	M1	

Continued on next page (footnotes at end of table)

 $[\]mbox{$\overset{\div}{\pm}$}$ 1991NeZX suggested a 11/2- from syst, not adopted in $(\alpha,2n\gamma)$ 1997Wa20.

$^{113}Cd(n,n'\gamma) \qquad 1987BaYW, 1991\underline{NeZX}\ (continued)$

 $\gamma(^{113}Cd) \ (continued)$

Εγ	E(level)	Ιγ	Mult. [†]	δ	Comments
279.80# 15	988.40	0.12# 2			
	1405.81	0.12# 2			
285.19 8	583.89	0.46 4	M1		
x288.53 30		0.05 3			
291.54 25	1279.55	0.10 3	M1		
294.52# 21	878.5	0.62# 18			
	1002.89	0.62# 18			
298.58 2	298.567	100	M1 + E2	+0.30 +3-1	
307.9 20	988.40	0.052			
313.66 30	897.3	0.71 5			
316.21 2	316.207	73 4	E2		
322.35 3	1002.89	1.4 1	M1 + E2	-0.82	Mult.: $\delta = -0.8 \ 2 \text{ or } -2.2 \ 10.$
332.97 3	855.4	12.2 11	M1 + E2	-0.272	
339.30 \$ 10	1195.0	1.6 § 3	M1 + E2	-0.2015	
	1209.56	0.18			
x341.89 8					
344.31 12	1351.6	0.08 2			
356.7# 4	1037.4	0.23# 7	E2		
	1390.56	0.23# 7			
358.03 21	816.62	2.26			
364.37 3	680.550	3.2 3	M1 + E2	-0.027	
369.10 11	1049.68	0.55 11	M1		
374.64 3	638.35	13.6 14	$\rm M1+E2$	-0.252	
x378.21 23		0.14 4			
381.96 3	680.550	3.0 3	M1 + E2	+0.16 15	Mult.: $\delta = +0.16$ 15 or 2.3 7.
x389.3 3		0.43 8			
392.36 2	708.556	10 1	M1 + E2	-0.244	
x398.08 15		0.19 3			
402.19 13	1390.56	0.25 7			
409.979	708.556	1.0 2	M1 + E2	-0.104	
412.856	1051 . 2	3.3 6	M1 + E2	-0.411	
416.11 4	1450 . 3	0.314			
	1542 . 28	0.31 4			
417.4# 3	1126 . 22	0.44# 8	M1		
	1301.03	0.44# 8			
	1405.81	0.44#8			
419.8 3	878.5	0.12 3			
423.34 18	1007.16	0.226	M1		
427.68 16	2173.71	0.26 5	M1		
438.95 25	897.3	0.16 3			
$445.2\ 3$	1479.1	0.18 4			
449.9 3	1034.1	0.19 4	M1		
453.44 11	1037.4	0.36 7	M1		
463.69 13	1047.49	0.234	M1		
481.10 5	939.72	3.3 3	M1		
496.8 3	1351.6	0.26 8			
	1904.28	0.26 8			
500.43 3	816.62	6.2 7			Eγ: from private communication to 1991NeZX.
x500.47 3		6.2 7	M1+E2	+0.47	δ : +0.47< δ <3.0.
517.67 15	816.62	0.20 4			
528.78 5	1051.2	1.6 3	M1+E2	-2.25 115	
539.39 22	1542.28	0.53 10	3.00		
542.4 3	1126.22	0.32 6	M1		
548.54 5	1007.16	1.2 2	M1		
551.50 21	1746.09	1.3 3	TI O		F 1 16 1100 1 11 (2)
553.9 3	1423.85	0.38 11	E2		Ey: placed from a 1192 level in $(\alpha, 2n\gamma)$.
562.26 9	878.5	1.3 2			
x565.7 3		0.16 3			
x567.2 3		0.16 3			
569.3 3	1779.02	0.17 4	E2		
$580.0^{\#}5$	878.5	2.5# 7			
000.0		2.5#7			
583.93 7	897.3 583.89	33 3	E 2		

$^{113}Cd(n,n'\gamma) \qquad 1987BaYW, 1991\underline{NeZX}\ (continued)$

 $\gamma(^{113}Cd)\ (continued)$

Εγ	E(level)	Ιγ	Mult.†	δ	Comments
588.92 16	1047.49	1.1 2	M1		
x593.45 25	1011.10	0.31 9	1,11		
598.88 \$ 15	897.3	6.0 \ 8			
	1279.55	6.0 \$ 8	M1		
606.33 25	870.20	1.04 13	E2		
x608.8 4		0.19 6			
611.0 3	1195.0	0.34 4	E1		
620.76	1561.5	1.1 3			
623.59 7	939.72	1.8 4	E2		
624.2 3	1479.1				
643.1 3	1351.6	0.14 3			
648.26 25	1842.94	0.41 16			
658.66 8	1542.28	0.68 25			
x661.57 25		0.10 3			
663.96 12	1561.5	0.13 6			
x665.98 25		0.79 15			
665.98 25	1605.7	0.79 15			
670.4 4	2094.3	0.37 15	E 2		
$672.25 ^{\#}15$	988.40	0.1#			
	1195.0	2.5#6	E 2		
678.9	1387.44				
680.59 5	680.550	14.1 9	M1 + E2	-1.8 1	
684.10# 11	1268.13	0.72# 15	M1		
	1322.17	0.72# 15			
687.4 ‡ 3	1902.5	0.12 4			
691.00 8	1007.16	3.4 6	M1 + E2	0.35 5	
x703.82 25		0.08 3			
708.52 \$ 5	708.556	4.9 \$ 5	E 2		
	1007.16	≈ 1.6 §	E2		
717.13 11	1301.03	1.6 3			
721.22 8	1037.4	2.5 7	M1 + E2	0.29 1	
731 . 37	1047.49	2.8 7	M1		
733.3	1049.68	0.6			Eγ: from 1978Ma17.
735.10 10	1034.1	2.7 7	M1		
738.769	1037.4	2.2 6	E2		
745.00 17	1561.5	0.53 16			
x751.95 21		0.62 18			
755.67 16	1214 . 31	1.4 3	E2		
x760.39 25		0.10 2			
x763.6 3		0.25 7			
765.1 3	1798.9	0.20 8			
767.65 13	1351.6	1.2 2			
770.4 3	1450.3	0.59 18			
x777.43 25		0.18 5			
780.81 11	1364.71	0.51 16			
784.6 3	1492.99	0.11 4			
788.0 3	1051 . 2	0.08 2			
791.49 15	1675.11	0.42 12	M1		
794.75 ‡ 18	1732.5	0.56 16			
799.9 6	1322.17	0.68 3			
808.3 5	1124.5	0.45 20			
809.96 25	1126.22	1.2 5	M1		
812.7 4	1492.99	0.13 6			
823.64	1407.44	1.5 3	3.54		
827.65 25	1126.22	0.40 12	M1		
829.4 3	1351.6	0.73 25			
*838.64 22 845.80‡ 9	1100 -	0.20 10			
	1109.5	0.88 17			
855.05 19	1313.74	0.08 3			
856.73 25	1904.28	0.08 3			
861.24 <i>15</i>	1177.26	1.5 2			
*870.10 25 878.62 [#] 9	878.5	0.09 <i>4</i> 8.4 [#] 8			
010.02" 9	0.0.0	0.4" 0			
			Continued o	on next page (for	otnotes at end of table)

¹¹³Cd(n,n'γ) 1987BaYW,1991NeZX (continued)

 $\gamma(^{113}Cd) \ (continued)$

Εγ	E(level)	Ιγ	Mult.†	δ	Comments
878.62# 9	1155 00	0 4# 0			
878.62# 9	1177.26 1195.0	8.4 [#] 8 8.4 [#] 8			
883.60 5	883.62	6.5 6			
x888.02 11	000.02	0.28 8			
890.84 22	1746.09	0.16 5			
892.9 3	1351.6	0.09 3			
896.7 2	1195.0	2.7 3	E1		
x903.2 4		0.20 8			
906.08 25	1364.71	0.242			
909.12 13	1492.99	0.36 12			
x917.81 5		1.2 2			
926.64	1607.17	0.29 12	M1		
928.77 18	1387.44	1.0 3			
x933.6 3		0.06 2			
937.2 3	1575.8	0.24 7			
x938.98 25		0.22 6			
x942.52 25		0.10 3			
945.96 15	1209.56	1.1 2			
948.85 25	1407.44	0.11 5	Mi. Bo	0.0.0	
951.95 <i>13</i>	1268.13	1.5 3	M1+E2	-0.8 3	
×957.70 22	9750 29	0.13 4			
960.46 <i>15</i> 963.25 <i>15</i>	2759.32 1279.55	$ \begin{array}{cccc} 0.07 & 2 \\ 0.16 & 5 \end{array} $	M1		
969.55 10	1268.13	1.1 2	M1		
×974.06 11	1200.10	0.16 2	1111		
979.08 23	2173.71	0.13 5	M1		
980.94 25	1279.55	0.14 5	M1		
987.5	1842.94				
988.43 7	988.40	4.8 3			
994.53 11	1675.11	0.40 8	M1		
997.58 14	1313.74	0.25 5			
1002.769	1002.89	0.82 16	M1		
x1007.50 25		0.124			
1007.50 ± 25	1823.5	0.124			
1012.91 21	1867.99	0.52 16			
1023.00 25	1607.17	0.60 24	M1		
x 1 0 2 7 . 0 3		0.06 2			
1033.80 12	1034.1	4.0 8	M1+E2	0.52 22	
1036.87 15	1892.44	0.90 27	M1 M1+E2	-0.49 8	Mult.: $\delta = -0.49 \ 8 \text{ or } -30 \ +60-20.$
1049.75 16 $1052.95 12$	1049.68 1351.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MITEZ	-0.45 8	Mult 0=-0.49 8 01 -30 +00-20.
1052.55 12	1575.8	0.47 14			
1058.48 11	1322.17	0.70 19			
1066.16 8	1364.71	1.4 1			
x1076.08 10		0.18 5			
1079.46 † 11	1395.5	0.53 10			
1088.89 9	1387.44	1.3 3			
1092.18 21	1390.56	0.16 8			
1097.89 22	2037.69	0.52 19			
1107.11 18	1405.81	1.1 3			
x1116.51 17		0.16 3			
1126.20 8	1126.22	3.4 3	M1+E2	-0.023	
1135.45‡	1658.5	0.45 9			
^x 1144.0 4 ^x 1147.2 4		0.35 11			
1147.2 4	1605.7	0.35 14 0.35 14			
1147.2 4	1423.85	0.64 19	M1		
×1165.49 11	1120.00	0.55 11	474.1		
1176.76# 24	1177.26	<1.1#			
1176.76# 15	1492.99	1.1# 3	M1+E2	+0.23 17	
1180.70 18	1479.1	0.56 11			
1194.43 10	1195.0	1.08 11	E1		
1214.8 5	1798.9	1.4 2			
			Continued o	n next page (foot	notes at end of table)

$^{113}Cd(n,n'\gamma) \qquad 1987BaYW, 1991\underline{NeZX}\ (continued)$

$\gamma(^{113}Cd)\ (continued)$

Εγ	E(level)	Ιγ	Mult.†	Εγ	E(level)	Ιγ	Mult.†
x1218.4 4		0.09 4		1606.96 22	1607.17	0.08 2	E2
1221.3 4	2037.69	0.75 6		x1609.91 25		0.08 2	
$^{x}1230$. 74 21		0.20 8		x 1612.30 25		0.10 2	
x 1 2 4 0 . 8 5		0.29 12		$^{x}1622$. 30 25		$0.10\ 2$	
x 1 2 4 8 . 3 5		$0.21\ 6$		x 1626.7 4		0.13 3	
x 1 2 5 3 . 2 3		0.31 6		1628.8 4	1892.44	0.23 6	E 2
x 1 2 6 1 . 9 3 1 0		0.40 11		x 1645.33 20		0.244	
1268.32 15	1268.13	0.44 6	M1	x 1656.6 5		0.10 4	
x1273.23 17		0.12 4		x1666.37 22		0.04 1	
1279.81 11	1279.55	0.09 2	M1	*1670.3 3		0.04 1	
1289.4 3	2173.71	0.20 5	E1	*1675.7 4		0.03 1	
*1293.46 <i>12</i>	1001 00	0.45 8		x1678.97 22		0.15 6	
1301.07 10	1301.03	0.41 8	Mi	x1682.79 25		0.022 4	
1308.70 <i>11</i> 1312.18 <i>15</i>	1607.17 1575.8	$0.348 \\ 0.133$	M1	x 1689.34 15 x 1694.06 18		0.204 0.061	
x1315.84 16	1373.8	0.13 3		x1698.18 16		0.19 3	
1320.43 15	1842.94	0.47 8		×1705.48		0.37 7	
	1904.28	0.47 8		×1717.40 15		0.16 3	
x1325.46 22		0.17 5		x1721.06 16		0.049 15	
x1326.95 15		0.21 6		x 1743.2 5		0.064 22	
x 1 3 3 2 . 9 4 2 1		0.06 2		1746.0 5	1746.09	0.26 9	
1345.56 8	1867.99	0.71 5		x1758.8 4		0.092 23	
$^{x}1354$. 34 25		0.04 1		x 1 7 6 4 . 4 4		0.036 6	
1370 . 22 15	1892.44	0.610 6		x 1767.7 4		0.154	
1376 . 64 25	1675.11	0.28 11	M1	x1781.8 5		0.26 7	
1387.3 5	1387.44	0.17 8		x1785.83 25		0.46 11	
1390.42 15	1390.56	1.4 4		x1791.2 3		0.051 13	
1394.7 4	2759.32	0.37 14		x1792.7 4		0.015 4	
1405.85 11	1405.81	0.95 19		x1794.7 3		0.015 4	
x1413.11 25		0.34 14		1798.65 25	1798.9	0.051 10	
^x 1417.21 25 ^x 1423.7 4		$\begin{array}{cccc} 0.09 & 2 \\ 0.9 & 2 \end{array}$		*1803.7 4 *1806.1 4		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1429.9 4	1746.09	0.32		x1812.96		0.17 3	
×1433.6	1740.00	0.13 4		x1820.8 4		0.09 2	
1445.70 11	1904.28	1.2 2		x1826.12 20		0.34 8	
x1452.96 14	1001.20	0.04 1		1830.7 5	2094.3	0.17 5	E2
x 1460.41 25		0.04 1		x1837.45 23		0.032 8	
1464.32 18	2319.70	0.12 3	M1	x 1855.18		0.13 3	
x1468.79 25		0.20 8		x1867.6 4		0.15 4	
$^{x}1472$. 0 3		0.64 9		$^{x}1873$. 02 25		0.030 7	
1474.8 3	2113.18	0.2 1	M1	x1881.5 4		0.040 10	
1479.19 15	1479.1	$1.2\ 2$		x1888.7 4		0.0328	
$1482\;.\;85 25$	1798.9	0.16 5		x 1895.4 4		0.032 8	
x1484.80 25		0.05 2		x 1923.8 4		0.031 9	
1492.88# 25	1492.99	0.06#2		x1926.7 5		0.029 9	
_	2173.71	0.06# 2	E1	x1930.29 25		0.05 2	
x1496.66 15		0.29 5		x 1937.8 4		0.08 2	
*1504.05 21		0.07 2		1942.71 25	2759.32	0.27 8	
×1507.83 21	1770 00	0.06 2	Mi	x1952.9 3		$egin{array}{cccc} 0.11 & 4 \ 0.028 & 8 \end{array}$	
1515.4 2 ×1525.71 17	1779.02	0.82 <i>16</i> 0.37 7	M1	*1969.0 3 *1970.9 3		0.028 8	
x1534.46 25		0.05 2		x1974.2 3		0.036 11	
x1538.06 25		0.06 2		x1976.1 4		0.015 6	
x1541.23 25		0.05 2		x1995.7 4		0.06 2	
x1545.17 25		0.08 3		x2044.43 22		0.16 3	
x1549.05 25		0.05 2		x2053.9 4		0.18 4	
x 1 5 5 2 . 6 8 1 4		0.19 6		x 2 0 9 1 . 2 4		0.14 4	
x 1 5 7 1 . 3 5		0.15 5		x 2 1 1 2 . 2 3		0.041 10	
$^{x}1574.16\ 25$		0.41 12		x 2 1 3 5 . 6 3		0.14 3	
$1579.1\ 5$	2037.69	0.124		2173 . 64 21	2173 . 71	0.34 6	E1
$^{x}1585$. 74 25		0.11 3		$^{x}2182$. 5 4		$0.14\ 2$	
1590.8 3	2113.18	0.35 9	M1	$^{x}2209$. 0 4		0.032 8	
1604.23 23	1867.99	0.12 3		x2230.5 3		0.174	

Continued on next page (footnotes at end of table)

$^{113}\mathrm{Cd}(\mathbf{n,n'\gamma})$ 1987BaYW,1991NeZX (continued)

 $\gamma(^{113}Cd) \ (continued)$

Εγ	E(level)	Ιγ	Mult. [†]
x2278.8 4		0.07 2	
x 2 3 1 3 . 7 6		0.144	
2319.7 6	2319.70	$0.54\ 22$	E 1
x2336.0 4		$0.12\ 2$	
$^{x}2353$. 0		0.13 3	
x2383.7 4		0.10 3	
x 2 3 9 4 . 9 6		0.16 7	
$^{x}2409$. 0 4		0.13 5	
$^{x}2413$. 0 4		0.13 5	
$^{x}2428.95$		0.114	
$^{x}2450$. 4 4		0.04 1	
2460 . 6 2	2759.32	0.55 11	
x 2 5 0 6 . 5 7		0.08 2	
x 2 5 2 5 . 6 4		0.11 3	
x 2 5 3 5 . 4 4		0.12 3	
x 2 5 4 5 . 6 5		0.10 4	
x 2 5 5 7 . 5 5		0.08 2	
x2588.6 5		0.216	
x2598.8 6		0.16 4	
x 2 6 7 4 . 6 8		0.6 3	
x2767.8 6		0.14 5	
x2800.3 4		0.14 4	
x3213.6 8		$0.04\ 2$	

 $^{^{\}dagger}$ From 1987BaYW, with new results from 1991NeZX.

$^{113}{ m Cd}(p,p'), (p,p'\gamma)$ 1967Ko07

E=14 MeV. $\sigma(\theta)$, θ =30°-145° with magnetic spectrograph, FWHM≈40 keV, 1967Ko07.

$^{113}\mathrm{Cd}$ Levels

E(level)	Jπ [‡]	T _{1/2}	$\frac{L^{\dagger}}{}$	$\underline{\hspace{1cm}\beta_L}$	Comments
0.0	1/2+				$J\pi$: from adopted levels.
292 10	3 / 2+		2	0.19	
316		11.0 ns 6			T _{1/2} : from pulsed-beam γ(t) with semi, 1972RaZM looking at 316γ.
576 10	5 / 2+		2	0.22	
670 10	3 / 2 + , 5 / 2 +		2	0.11,0.99	
879 10	3 / 2 + , 5 / 2 +		2	0.098,0.08	
1758 10	5 / 2 - , 7 / 2 -		3	0.20,0.17	
1887 10	5 / 2 - , 7 / 2 -		3	0.15,0.13	
1986 10	5 / 2 - , 7 / 2 -		3	0.12, 0.10	

 $[\]dot{\dagger}$ From comparison with DWBA calculations. $\dot{\ddot{\tau}}$ Assumed for β_L calculation.

 $[\]ensuremath{^{\ddagger}}$ γ placed by evaluator using the $(\alpha,n\gamma)$ of 1997Wa20.

[§] Multiply placed; intensity suitably divided.

[#] Multiply placed; undivided intensity given.

 $^{^{}x}$ γ ray not placed in level scheme.

$^{113}{ m Cd}({ m d},{ m d}')$ 1962 ${ m Jo05}$

E=15 MeV. Magnetic spectrograph, resolution ≈ 40 keV.

¹¹³Cd Levels

E(level)	$J\pi^{\dagger}$	Comments
0.0		
300		
580	+	
	+	
690	+	
1160		
1760	+	J π : note that π =- for the 1758 level seen in (p,p').
2010?		

 $^{^{\}dagger}$ From $\sigma(42)/\sigma(59).$

1991KrZR,1958Mc02,1972An28 Coulomb Excitation

 $1991 KrZR:~^{113}Cd(^{197}Au,^{197}Au',\gamma)~E=approximately~4.5~MeV/u.$

Enriched ^{113}Cd target with thick lead-backing to stop the recoils 3 HPGe detectors at 0° , 54° , and 90° .

 γ -intensities, γ - γ -coincidences and angular distributions. Spins and multipole mixing ratios deduced from angular

1958Mc02: 113 Cd(p,p'y) E=2.1-3.3 MeV, scin. Measured Ey, Iy, $\gamma(\theta)$, linear pol. 1972An28: 113 Cd($\alpha,\alpha'\gamma$) E=12.4 MeV. 113 Cd(12 C, 12 C'y) E=35.3, 41.1 MeV, semi. Measured Ey, Iy.

$^{113}\mathrm{Cd}$ Levels

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	1/2+		
298.59 7	3 / 2 +	29 ps 9	$B(E2)=0.13\ 2\ (1972An28).$
316.18 7	5 / 2+	4.9 ns 7	B(E2)=0.0080 10 (1972An28).
583.95 7	5 / 2 +	6.9 ps 14	B(E2)=0.32 6 (1972An28).
680.41 8	3 / 2 +	<12 fs	B(E2)=0.070 15 (1972An28).
708.49 7	3 / 2 +		
897.49 9	3 / 2 +		
1006.88 12	7/2+		
1313.77 9	5/2+		
1450.81 13	3 / 2 +		
1513.05 12	7 / 2+		

 $^{^{\}dagger}$ As given by 1991KrZR.

$\gamma(^{113}Cd)$

$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡	Mult.	δ	α	Comments
17.7	316.18	3.1 4	M1		10.2 3	Iγ: from 1972An28. B(M1)(W.u.)=0.019 5.
96.2 1	680.41	147.2	[M1,E2]		1.1 6	
267.7 1	583.95	>0.0				
285.2 1	583.95	>0.0				
298.6 1	298.59	100	M1+E2	+0.30 +3-1	0.029 5	δ: from 1972An28. δ=0.29 (1958Mc02) from γ(θ) and linear polarization. δ=0.26 +5-5 or -3.6 +6-10 (1991KrZR).
316.2 1	316.18	100	[E2]		0.0080 10	B(M1)(W.u.)=0.025 8; $B(E2)(W.u.)=20$ 8. B(E2)(W.u.)=0.83 13.
364.3 1	680.41	30.2	M1+E2	-0.02 7		$\delta\colon$ from 1972An28. $\delta\!=\!-0.17$ +7-6 or 2.7 +6-4

Continued on next page (footnotes at end of table)

Coulomb Excitation 1991KrZR,1958Mc02,1972An28 (continued)

$\gamma(^{113}Cd)\ (continued)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)		Mult.	δ	Comments
382.0 1	680.41	26.6 4	M1+E2	+0.16 15	$\delta :$ from 1972An28. $\delta {=}0.16$ +5-5 or -11 +7-5 (1991KrZR). B(M1)(W.u.)>1.7.
392.3 1	708.49	36.5	M1+E2		δ: δ=-0.17 +12-17 or -2.7 +8-16 (1991KrZR).
409.9 1	708.49	4.9	M1+E2		δ : δ =+7 +14-3 or -0.17 +17-20 (1991KrZR).
581.3 1	897.49	>0.0			
583.9 1	583.95	100	E 2		B(E2)(W.u.)=37 8.
598.9 1	897.49	64.1	M1+E2		δ: δ =+5.9 +87-18 or -0.09 +7-8 (1991KrZR).
680.6	680.41	100 23	M1+E2	+0.02 +2-6	δ: from 1972An28. δ=0.15 +5-6 or -2.4 +3-4 (1991KrZR). B(M1)(W.u.)>1.2.
690.7 1	1006.88		M1+E2	3.7 + 63 - 17	δ: from 1991KrZR.
708.5 1	708.49	14.7	M1+E2		δ : δ =+0.29 +9-9 or -4 +1-3 (1991KrZR).
729.8 1	1313.77	23.5	M1+E2	-0.18 + 11 - 12	δ: from 1991KrZR.
770.4 1	1450.81		M1+E2		$\delta\colon$ $\delta{=}{+}0.01$ +25-25 or 4.1 -23 (1991KrZR).
929.1 1	1513.05		M1+E2	0.26 + 10 - 10	δ: from 1991KrZR.
997.6 1	1313.77	7	M1+E2	1.6 + 11 - 11	δ: from 1991KrZR.

[†] From 1991KrZR.

Level Scheme

Intensities: relative $I\gamma$

$^{173}{ m Yb}(^{24}{ m Mg,F}\gamma)~~2000{ m Fo}10$

 $E=134.5\ MeV.\ Measured\ E\gamma,\ and\ I\gamma\ using\ the\ GAMMASPHERE\ with\ 92\ Compton-suppressed\ large\ volume\ HPGe\ detectors.$

¹¹³Cd Levels

E(level)‡	J π	Comments
0.0 263.54^{\dagger} 3 815.09^{\dagger} 20 1657.0^{\dagger} 3 2613.7^{\dagger} 5	1/2+ 11/2- 15/2- 19/2- (23/2-)	E(level): from Adopted Levels, Gammas.
$3448.8^{\dagger} 8$ $4201.3^{\dagger} 12$	(27/2-) (31/2-)	$\dot{\uparrow}$ (A): $\nu h_{11/2}$ sequence. $\dot{\div}$ From least-squares fit to Ey's.

 $[\]ensuremath{^{\ddagger}}$ % photon branching from each level (1991KrZR).

$^{173}{\rm Yb}(^{24}{\rm Mg},{\rm F}\gamma)$ 2000Fo10 (continued)

 $\gamma(^{113}Cd)$

Εγ	E(level)	Ιγ
551.5 2	815.09	100
752.5 8	4201.3	7.4 8
835.1 6	3448.8	14.6 10
841.9 2	1657.0	77 5
956.7 4	2613.7	20 3

Level Scheme

Intensities: relative $I\gamma\,$

$^{176}{\rm Yb}(^{28}{ m Si},{ m Fy})$ 2000Bu06

E=145~MeV.

Measured: $\gamma,~\gamma\gamma,~\gamma(\theta),~eurogam2~array.$

 $^{113}\mathrm{Cd}$ Levels

$\underline{\hspace{1.5cm} E(level)^{\dagger}}$	<u></u> Jπ	E(level)	Jπ	E(level)	<u></u> Jπ
0.0	1 / 2+	2324.5 \$ 4	(21/2+)	2962.6# 4	(23/2+)
263.0	11/2-	2538.3# 4	(19/2+)	3448.9 ‡ 4	(27/2-)
814.60 ‡ 20	15/2-	2613.4 ‡ 4	(23/2-)	3473.9 \$ 5	(29/2+)
1656.6 ‡ 3	(19/2-)	2757.8 \$ 4	(25/2+)	4201.5 ‡ 5	(31/2-)

 † From least-squares fit to Ey's.

 ‡ (A): 11/2- band. § (B): band based on 23/2-.

(C): band 3.

γ(¹¹³ Cd)	
-----------------------	--

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	$\underline{I\gamma^{\dagger}}$	Εγ [†]	E(level)	$I\gamma^{\dagger}$
424.3 2	2962.6	100	752.6 2	4201.5	
433.3 2	2757.8	100	835.5 2	3448.9	100
$551.6\ 2$	814.60	100	842.0 2	1656.6	100
667.9 2	2324 . 5	100	881.7 2	2538.3	100
716.12	3473.9	100	956.8 2	2613.4	100

 $^{^{\}dagger}~\Delta E \gamma$ assumed to be 0.2 keV by evaluator no Iy given in the paper.

$^{176}Yb(^{28}Si,F\gamma) \hspace{0.5cm} 2000Bu06 \hspace{0.1cm} (continued)$

Level Scheme

Intensities: relative $I\gamma$

 $^{11\,3}_{~4\,8}\mathrm{Cd}_{65}$

Adopted Levels, Gammas

 $Q(\beta^-) = -1036.6\ 27;\ S(n) = 9445\ 5;\ S(p) = 6078\ 3;\ Q(\alpha) = -3072\ 4\ 2003 Au 03.$

A ^{113}Cd β^- Decay $(7.7{\times}10^{15}$ y) B ^{113}Cd β^- Decay (14.1 y)

C ¹¹³In IT Decay (99.476 min)

D $^{113}\mathrm{Sn}$ ϵ Decay (115.09 d)

¹¹³In Levels

Cross Reference (XREF) Flags

 $\begin{array}{ll} H & ^{112}Cd(^{3}He,d)\\ I & ^{112}Cd(\alpha,t)\\ J & ^{113}Cd(p,n\gamma) \end{array}$

 $K^{-113}In(\gamma,\gamma')$

 $\begin{array}{c} O \quad \underline{Others:} \\ \overline{^{114}Sn(d,}^{3}He) \end{array}$

 $^{115}In(p,t)\\^{116}Sn(p,\alpha)$

D ¹¹³ Sn ε Decay (115.09 d) E ¹¹³ Sn ε Decay (21.4 min) F ¹¹⁰ Pd(⁷ Li,4nγ) G ¹¹⁰ Pd(⁶ Li,3nγ)		K ¹¹³ In(γ,γ') L ¹¹³ In(d,d') M ¹¹³ In(α,α') N Coulomb Excitation			$^{116}\mathrm{Sn}(\mathrm{p},\mathrm{\alpha})$ $^{112}\mathrm{Cd}(\mathrm{p},\mathrm{p})$ IAR	
E(level)§	$-\!$	XREF		T _{1/2}	Comments	
0.0	9 / 2 +	ABCDEFGHIJKL	NO	stable	μ=+5.5289 2 (1989Ra17); Q=+0.799 (1989Ra17). μ: NMR. Q: atomic beam. Value includes pol correction.	
391.699 3	1/2-	CD GHIJK	NO	99.476 min 23	Jπ: atomic beam (1976Fu06), $L(^3He,d)=4$. %IT=100; μ =-0.21074 2 (1989Ra17). %IT: K-electron capture <0.0036% (1970De22). μ : atomic beam. Jπ: atomic beam (1976Fu06), M4 γ to 9/2+. $T_{1/2}$: From weighted average of 99.3 min 2 (1967Ok02), 99.2 min 6 (1969Va04), 99.48 min 3 (1970Go48), 99.48 min 8 (1970Le07), 99.8 min 2 (1970Ro29), 99.47 min 7 (1971Ha18), 99.2 min 6 (1971Oo01), 99.78 (18) (1971Em01), 102 min 2 (1975Bu24), 99.21 min 13 (1982HoZJ), 99.49 min 6 (1982RuZV), 99.45 min 7 (1984Iw06), and 99.6 min 3 (1987Ne01). In the Limited Relative Statistical Weight method, the uncertainty for the 1970Go48 value is increased from 0.03 to 0.0316 to reduce its relative weight from 53% to 50%. For either weighting, the results are the same, with the internal uncertainty of 0.022 and the reduced- χ^2 =1.07. Since these data are consistent, the Rajeval and Normalized Residual methods give the same result. Others: 105 min 10	
646.833 8 1024.24 ^e 5	3/2- 5/2+	D GHIJ D GHIJ	O NO	3.6 ps 3	(1939Ba03), 104 min 2 (1940La07), 102 min 2 (1958Gi06), 114 min (1965Ca13), 102.4 min (1975Ku10), and 99.8 min 7 (1997We13). Jπ: L(³ He,d)=1, γ(θ) of 255γ in (p,nγ). Jπ: L(³ He,d)=2, level excited in Coul. ex., E2 γ to	
1029.63 5	1/2+,3/2+	D J		0.33 ns 3	$9/2+.$ $J\pi\colon$ 638γ is E1, 1/2+ preferred from syst.	
1063.88 7	3 / 2+	HIJ		0.58 ns 3	$T_{1/2}$: from $^{113}Cd(p,n\gamma)$. $J\pi$: $L(^3He,d)=2$, E1 γ to $1/2-$. $T_{1/2}$: from $^{113}Cd(p,n\gamma)$.	
1106.42 8 1131.45 5	3 / 2 - , 5 / 2 - 5 / 2 +	J F HIJK	NO	0.97 ps 7	J π : M1,E2 γ to 1/2-, $\gamma(\theta)$ of 714 γ in $(p,n\gamma)$. J π : L(³ He,d)=2, level excited in Coul. ex., E2 γ to 9/2+.	
1173.06 9	11/2+	FG JK M	I NO	60 fs 6	$T_{1/2}$: from ¹¹³ In Coul. ex. $J\pi$: $\gamma(\theta)$ of 1173 γ and 171 γ in Coul. ex., $L(p,t)$ =2 from 9/2+.	
1191.11 ^d 9	7 / 2 +	FGHIJ L			$T_{1/2}$: from 113 In (γ, γ') . $J\pi$: L(3 He,d)=4, M1 γ 's to 5/2+.	
1344.90 10	13/2+		NO	0.33 ps 3	J π : $\chi(\theta)$ of E2 1344 γ .	
				* " '	$T_{1/2}$: from ¹¹³ In Coul. ex.	
$1351.01\ 20$		J LM	1			
1380.76 7	1 / 2 - , 3 / 2 - , 5 / 2 -	J			J π : E1 γ to 1/2+,3/2+ level.	
1453.0 3	0.10 7.10 7.1	J			T M4 To	
1471.87 8	3 / 2 - , 5 / 2 - , 7 / 2 -	G J			J π : M1,E2 γ to 3/2-, $\gamma(\theta)$ of 825 γ in $(p,n\gamma)$.	
1496.38 8		J				
1504.0 5		JK				

¹¹³In Levels (continued)

E(level)§	$J\pi^{\dagger}$	XREF	T _{1/2}	Comments
1509.00 16	7/2+,9/2+	G J L NO	$\leq 0.2 ps$	J π : $\gamma(\theta)$ of 1509 γ in Coul. ex., L(p,t)=2, 7/2+ preferred in analogy with ¹¹⁵ In. T _{1/2} : from ¹¹³ In Coul. ex.
1535.92 9	1/2-,3/2-,5/2-	G J		$J\pi$: E1 γ to $3/2+$.
1552.04 1567.059	7/2+,9/2+	J M O GHIJ NO	0.24 ps 10	XREF: H(1571)I(1571)O(1569).
1567.05 9	1/2+,9/2+	GH19 NO	0.24 ps 10	J_{π} : $\gamma(\theta)$ of 1567 γ in Coul. ex., $9/2+$ preferred in analogy with 115 In, $L(^{3}$ He, $d)=4$. $T_{1/2}$: from 113 In Coul. ex.
1569.54 7	_	G J		$J\pi$: M1,E2 γ to 3/2
1618.88 9	(= 10 0 10)	J		* 1 * * (0 (0
1630.569 16345	(7/2+,9/2+)	G JK NO HI L O		Jπ: γ 's to 5/2+,11/2+. XREF: L(1648). Jπ: L(p,t)=(3) from 9/2+.
1675.47 8		J		
1684.12 9		J		
1689.6 ^d 5	11/2+	FG J		$J\pi$: E2 γ to $7/2+$.
1700 5	1 / 2 +	Н		$J\pi: L(^{3}He,d)=0.$
				E(level): probably not the same as 1706.99 level, since E(levels) from (³ He,d) in the range 393 to 1567 appear to be about 1-4 keV too high.
1707.35 9	+	J		$J\pi$: M1,E2 γ to 5/2+.
≈ 1758	9 / 2 +	0		E(level): from (p,t) . $J\pi$: $L(p,t)=0+2$ from $9/2+$.
1760.27 14		J		
1768.04 8	3/2+,5/2+	HIJ L		XREF: H(1774)I(1774). Jπ: L(3 He,d)=2 at 1774 8.
1802.30 8	‡	J		
1822.53 <i>10</i> 1835.71 <i>18</i>	† 1/2+	J GH J		$J\pi$: L(³ He,d)=0 at 1831.
1000.71 10	1/2+	GII 6		XREF: H(1831).
1865.33 22	_	J		Jπ: M1,E2 γ to 3/2-,5/2- level.
1914.10 10		J		
1920.77 9		J		
1937.87 10		J O		
1947.56 <i>10</i> 1980? <i>15</i>		J L		
1999.12 12		J		
2032.73 21		J		
$2039.72 \ 14$		J		
2048 10	7 / 2+ , 9 / 2+	HI		$J\pi$: L(³ He,d)=4.
2051.43 8		J		
2063.99 21 2070.09 14		1 1		
≈2094?		0		E(level): from $(p,t),\ possibly\ same\ as\ 2104\ level.$ $L(p,t){=}(3).$
2095.38 8	0/9 11/9	J		In I (or t) E 11/9 professed from the H model cont
2104 10 ≈2116?	9/2-,11/2-	I L O		J π : L(α ,t)=5, 11/2- preferred from shell-model syst. E(level): from (p,t), possibly same as 2104 level, 2120 level (d,d') could also correspond to 2104 or 2116 level, L(p,t)=(3).
2118.32 18		J		
2144.53 11		J 		
2153 10 2164.9 10	1/2+	H G LM O		J π : L(³ He,d)=0. E(level): a level with L=3 observed in (α,α') at 2170 which gives parity=(-).
2170.32 14		J		
2180 . 8 5		J		
2183 . 22 10		J		
2190 10	3 / 2 + , 5 / 2 +	Н		$J\pi: L(^{3}He,d)=2.$
2224.8 10	(15/9.)	G L O F		$I\pi$: (F1) v to 13/9+ and aretematics
2233.2 ^a 5 2253.38 9	(15/2-)	J O		$J\pi$: (E1) γ to 13/2+ and systematics.
		Continued on n	next page (footnotes	at end of table)

¹¹³In Levels (continued)

E(level)§	Jπ [†]	XREF	Comments
2281.04 18		J	
2283.5° 3	17/2+	FG L	E(level): 2283 level seems different from 2298 level because γ to 13/2+ limits $J\pi$ to 9/2+.
2295.25 13		J	
2298 10	3 / 2 + , 5 / 2 +	Н	$J\pi: L(^3He,d)=2.$
2331 . 25 21		J	
2339.46 17		J	
2346 10	3 / 2 + , 5 / 2 +	Н	$J\pi: L(^{3}He,d)=2.$
2371.65 11	0/0 11/0	J O	I = I (, t) F 11/9 and from all model and
2376 10	9/2-,11/2-	I	J π : L(α ,t)=5, 11/2- preferred from shell-model syst. E(level): a 2380 level (d,d') could be 2376, 2391, or 2396 level.
2378.17 <i>14</i> 2383.82 <i>15</i>		J	
2391? 10	3/2+,5/2+	Н	$J\pi$: L(3 He,d)=2.
2391.5?d 6	(15/2+)	F	ом. п(пс,u)−2.
2396.1 ^a 6	(17/2-)	F	
2442.8 10		F L O	
2475 . 29 21		G J M	
$2515.5 \ 3$		J	
2540 15		L	
2556.99 17		J	
2559 10	9/2-,11/2-	I	J π : L(α ,t)=5, 11/2- preferred from shell-model syst.
2560.61 23		J	F(11), f ()
2586 5 $2654.1 4$		$^{ m O}$	$E(level)$: from (p,α) .
2664.1 ^a 5	(19/2-)	FG	
2665.0 4	(10/2)	J	
2665+xb	(19/2-)	F	
2669.6° 3	17/2+	F	
2728.01 23		J	
2783.84 10		J	
2786.05		FG	
2853.9a 6	(21/2-)	FG	
2880.9 5		F	
2904.8 3	(00/0)	J	
3023.4^{a} 7 $3050.6^{@}$ 5	(23/2-)	FG	
3071.6° 4	(19/2+)	F F	
3122.4° 4	(21/2+)	F	
3172.1+xb 3	(23/2-)	F	
3194.5d 6	(19/2+)	\mathbf{F}	
3214.2° 5	(23/2+)	\mathbf{F}	
$3249.6^{\scriptsize @}6$		F	
3280.2ª 7	(25/2-)	F	
3290.1#6	(21/2-)	F	
3305.9 6		F	
3350.9 6	(95/91)	F	
3397.5° 6 3599.2 6	(25/2+)	F F	
3743.9+xb 5	(27/2-)	F	
3788.3° 7	(27/2+)	F	
3854.2 # 7	(23/2-)	F	
$3866.9^{@}6$		F	
3968.1 ^d 6	(23/2+)	\mathbf{F}	
3973.0 ^a 8	(27/2-)	F	
4090.0# 7	(25/2-)	F	
4377.8° 7	(29/2+)	F	
4431.06 4431.9 6	(27/2-)	F	
4431.9\(\text{9}\) 6 4441.0+x\(\text{b}\) 6	(31/2-)	F F	
4606.0 ^d 7	(31/2-)	F	
4715.3ª 8	(29/2-)	F	
4800.3 6	,	F	
		Continued on ne	ext page (footnotes at end of table)

¹¹³In Levels (continued)

E(level)§	$J\pi^{\dot{\dagger}}$	XREF	Comments
5062.4° 7	(31/2+)	F	
5126.2 6	, ,	\mathbf{F}	
5259.2+xb 6	(35/2-)	\mathbf{F}	
5393.0a 6	(31/2-)	\mathbf{F}	
5394+y&	(33/2-)	F	
5448.0 7		\mathbf{F}	
5731.0 7		\mathbf{F}	
5734.8+y& 3	(35/2-)	\mathbf{F}	
5790.6° 8	(33/2+)	\mathbf{F}	
6113.9+y& 5	(37/2-)	\mathbf{F}	
6187.6+xb 7	(39/2-)	\mathbf{F}	
6476.0+y& 6	(39/2-)	\mathbf{F}	
7215.9+x ^b 9	(43/2-)	\mathbf{F}	
12883		G	IAS of 1/2+ ¹¹³ Cd g.s.
13190		G	IAS of 299-keV, (3/2+) ¹¹³ Cd excitation.
13427		G	IAS of 584-keV, 5/2+ 113Cd excitation.
13541		G	IAS of 681 -keV, $(3/2+)$ 113 Cd excitation.
13748		G	IAS of 884-keV, 1/2+ 113Cd excitation.
13867		G	IAS of 988-keV, 1/2+ 113Cd excitation.
14074		G	
14389		G	
14488		G	
14683?		G	
15043		G	
15096?		G	
15141		G	
15335?		G	
15476		G	
15518		G	
15610?		G	
15639		G	
15684?		G	
15758		G	
15801?		G	
15880?		G	
15934?		G	
15971?		G	
16038		G	
16146		G	
16236		G	
16344?		G	
16503? 16597		G G	
10091		G	

 $^{^{\}dagger}$ J for levels greater than 13738 were not adopted because most of these levels are questionable, see $^{112}Cd(p,p)$ IAR. J π without comments are tentative and based on γ 's multipolarities and bands consideration.

 $[\]ddot{\ddagger}$ $J\pi\text{=}1/2\text{+}$ from $L(^3\text{He,d})\text{=}0$ for E=1831 5.

 $[\]$ From least-squares fit to γ energies.

[#] (A): Band 1.

^{@ (}B): Band 2.

[&]amp; (C): Band 3.

a (D): Band 4. b (E): Band 5.

c (F): Band 6.

d (G): Band 7.

 $^{^{\}mbox{\scriptsize e}}$ (H): Suggested members of rotational band with Nilsson orbit 1/2+(431).

$\gamma(110 \text{In})$

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$		Mult.§	δ	α	Comments
391.699	391.698 3	100	M4		0.540 4	Mult.,Ey: from 113 In IT decay. A weak E5 admixture could not be excluded from $\alpha(K)$ exp (1985HaZA), not adopted.
646.833	255.134 10	100 3	M1+E2	0.7 6	0.046 6	B(M4)(W.u.)=8.31 9. Mult.,Ey: from ¹¹³ In IT decay.
						δ: from ¹¹³ Sn ε decay (115.09 d).
	646.830 10	0.00018 9	[E3]			Mult.,Εγ: from ¹¹³ Sn IT decay.
024.24	377.59 10	10.3 5	[E1]			B(E1)(W.u.)=0.000139 14.
029.63	1024.30 <i>10</i> 382.90 <i>8</i>	100.0 7 6.7 3	E2@			B(E2)(W.u.)=3.9 4. $B(E1)(W.u.)=9.8\times10^{-7}$ 11.
029.65	638.03 8	100 3	[E1] E1#			$B(E1)(W.u.)=9.6\times10^{-1}I.$ $B(E1)(W.u.)=3.2\times10^{-6}4.$
	000.00	100 0	LI			Mult.: from 113 Cd(p,n γ).
						Eγ: from ¹¹³ Sn IT decay.
063.88	416.9 1	2.0 5	#			,
	$672.4\ 2$	100 5	E1#			$B(E1)(W.u.)=1.61\times10^{-6}$ 14.
106 . 42	$459.8\ 2$	11.0 10	M1, E2 [#]			
	714.92	100 5	M1,E2#			
131.45	107.21 20	1.32 20	[M1, E2]			
	484.90 10	16.5 3	E1 (+M2) [@] E2 [@]	-0.03 5		$δ$: from B(E2) (see Coul. ex.) and $T_{1/2}$. B(E1)(W.u.)=(0.00037 3); B(M2)(W.u.)=(6 +22-6).
172 06	1131.5 <i>1</i> 1173.1 <i>1</i>	100.0 6 100	M1+E2#	0.47 5		B(E2)(W.u.)=8.2 6.
173.06	1110.1 1	100	M11 T112	0.47 3		δ: from B(E2) (see Coul. ex.) and $T_{1/2}$. B(M1)(W.u.)=0.186 20; B(E2)(W.u.)=24 5.
191.11	167.1 3	2.2 4	M1(+E2)#	<0.89		δ: from Coul. ex.
	1191.1 <i>1</i>	100 4	M1,E2#			
344.90	171.4 7	2.14 10	$M1 + E2^{@}$	+0.03 3	$0.1155\ 3$	$B(M1)(W.u.)=0.28\ 3;\ B(E2)(W.u.)=7\ +14-7.$
	1344.89 10	$100 \ 2$	E2@			B(E2)(W.u.)=11.7 12.
351.01	1351.02	100				
380.76	316.7 1	77 4	,,			
	351.4 1	100 5	E1#			
	734.1 2	12.3 18				
453.0	989.0 <i>1</i> 1453.0 <i>3</i>	36.8 <i>18</i> 100				
471.87	825.01 10	100 45	M1,E2#			
	1080.1 2	45 4	,			
496.38	472.1 1	100 5				
	1496.4 1	10.0 25				
504.0	$1504.0\ 5$	100				
509.00	377.8 10	7 3				
	1509.04 19	100 3				
535.92	345.0 3	15.0 25				
	429.5 2	15.0 25	E1#			
	472.1 <i>1</i> 889.3 <i>10</i>	100 5	EI"			
	1144.5 4	17.5 25	M1,E2#			
552.0	1552.0 4	100	,			
567.05	394.0 5	14.2 10	[M1,E2]			
	1567.0 1	100 1	[M1,E2]			
569.54	922 . 71 10	100 6	M1,E2#			
	1177.8 1	31 4	#			
618.88	972.1 1	22 2				
400	1619.0 2	100 10				
630.56	457.7 2	35 6				
	606.43 1630.51	76 5 $100 4$				
675.47	544.0 1	30.1 14				
	651.1 3	8.2 14				
	1675.5 1	100 6				
684.12	1037.6 1	100				
689.6	497.5 2	100	E 2 #			
707.35	576.0 1	81 6	M1,E2#			
101.55			#			
101.55	677.55 683.22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" M1,E2#			

$\gamma(^{113}\text{In}) \ (\text{continued})$

E(level)	$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	$I\gamma^{\ddagger}$	Mult.§	E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ [‡]	Mult.§
1707.35	1060.4 10			2283.5	938.7 3	100	E2
	1315.3 2	25 3		2295.25	1164.3 3	60 10	
1760 . 27	587.2 1	100			1648.6 2	100 10	
1768.04	738 . 4 1	19.6 18			$1903.2\ 2$	90 10	
	743.8 1	100 5		2331.25	1307.0 2	100	
1802.30	266.8 2	15.4 19		2339.46	1233.1 2	100 5	
	$330.2\ 2$	3.8 19			1692.6 3	36 5	
	696.0 2	30.8 19			1947.6 5	18 5	
	1155.5 4	5.8 19		2371.65	1347.4 1	100	
	1802.2 1	100 6		2378.17	759.3 2	100 12	
1822.53	792.9 1	100 4			1271.9 2	56 4	
1005 51	1430.8 2	6.7 22		0000 00	1731.0 3	32 4	
1835.71	160.3 4	17 4		2383.82	1359.6 2	42 7	
1005 00	326.7 1	100 4	M1 F0#		1737.0 3	14 7	
1865.33	758.9 2	100	M1,E2#	0001 70	1992.1 3	100 7	T-0
1914.10	347.0 3	2.9 19		2391.5?	700.4 3	100	E2
	782.9 2	8.6 10		2396.1	163.3 3	100	
1000 77	889.8 1	100 5		2442.8	1097.9	100	
1920.77	789.3 2	21.7 22		2475.29	1451.0 2	100 8	
	856.6 2	34.822 1004		2515.5	2476.3 10 1409.1 3	100	
1937.87	896.6 1	3.1 15		2515.5 2556.99	1532.8 3	100	
1957.67	831.3 <i>8</i> 1291.1 <i>1</i>	100 6		2556.99	1910.2 2	56 11	
	1546.3 3	12.3 15		2560.61	646.5 2	100	
1947.56	841.2 5	33 4		2654.1	211.7& 3	40 5	
1347.30	1300.8 1	100 7		2004.1	420.4 3	100 10	
	1555.9 3	15 4		2664.1	267.7 3	100 10	
1999.12	291.8 1	100 7		2665.0	1034.4 4	100	
1555.12	808.0 3	36 7		2669.6	1324.6 3	100	E2
	1352.0 4	29 7		2728.01	813.9 2	100	22
2032.73	1003.1 2	100		2783.84	1759.6 1	100 6	
2039.72	848.6 1	100		2.00.01	2137.0 2	22 3	
2051.43	945.0 1	100 8		2786.0	131.8 3	52.4 16	
	2051.4 1	33 8			388.9 3	100 3	
2063.99	1000.1 2	100		2853.9	68.6 3	100	
2070.09	598.1 2	100 5			189.7 3	100	(M1, E2)
	689.5 2	18.9 13		2880.9	483.9 3	100	
	1040.5 5	6.8 14		2904.8	1136.5 5	67 17	
	$1423.2\ 3$	8.1 14			1274.4 4	100 17	
2095.38	388.1 3	8 3			1773.4 4	83 17	
	411.5 1	39 3		3023.4	169.5 3	100	(M1, E2)
	528.1 3	14 3		3050.6	$170.2\ 3$	100	
	$963.7\ 2$	42 6			386.5 3	100	
	2095.2 1	100 6		3071.6	401.8 3	56 2	(M1,E2)
2118 . 32	548 . 7 2	9.5 16			788.2 3	100 3	(M1, E2)
	609.5 3	100 6		3122 . 4	838.9 3	100	E 2
2144 . 53	1114.9 1	100		3172.1+x	507.1 3	100	E 2
2164 . 9	991.8	100		3194.5	803.2 3	100	E 2
2170 . 32	979.2 1	100		3214 . 2	91.8 3	100	(M1,E2)
2180.8	835.9 4	100		3249.6	199.1 3	100	
2183.22	613.3 2	24 6			395.8 3	100	
	711.0 3	18 6		3280.2	256.9 3	100	(M1, E2)
	1052.1 2	100 6		3290.1	625.3 3	100	(E2)
	1076.5 3	47 6		3305.9	641.1 3	100	
	1159.5 2	53 6		3350.9	686.1 3	100	
	1536.0 3	88 6		3397.5	183.3 3	100	(M1, E2)
2224.8	1051.7	100	(P1)	3599.2	744.6 3	100	FIG
2233.2	888.7 3	100	(E1)	3743.9+x	571.8 3	100	E2
2253.38	1147.1 4	17 4		3788.3	390.9 3	100	(M1, E2)
	1606.6 1	91 4		3854.2	564.8 3	100	(M1, E2)
0001 01	1861.7 2	100 9		3866.9	617.2 3	100	T.O.
2281.04	1149.8 3	19 9		3968.1	772.9.3 $692.6.3$	100 100	E2
	1256.7 2	100 6		3973.0			(M1, E2)

$\gamma(^{113}In) \ (continued)$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ‡	Mult.§	E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Ιγ‡	Mult.§
4090.0	236.1 3	100	(M1,E2)	5126.2	326.2 3	< 40	
4377.8	589.4 3	100 3	(M1, E2)		409.7 3	100 8	(M1, E2)
	980.2 3	< 14	(E2)	5259.2+x	818.2 3	100	E 2
4431.0	1406.7 3	100	E2	5393.0	677.7 3	100 12	(M1, E2)
4431.9	564.8 3				1418.6 3	82 17	(E2)
4441.0+x	697.1 3	100	E2	5448.0	731.6 3	100	
4606.0	637.8 3	100	(E2)	5731.0	1014.6 3	100	
4715.3	284.5 3	100	(M1, E2)	5734.8+y	340.8 3	100	
	742.40 3	78 6	(M1, E2)	5790.6	728.2 3	100	(M1, E2)
	1434.9 3	100 9	E2	6113.9+y	379.1 3	100	(M1, E2)
4800.3	826.30 3	< 7.1		6187.6+x	928.4 3	100	(E2)
	1518.3 3	100 21		6476.0+y	362.1 3	100	(M1, E2)
5062.4	684.6 3	100	(M1,E2)	7215.9+x	1028.3 6	100	(E2)
	1274 . 2 3	< 10					

 $[\]label{eq:continuous} \begin{array}{lll} ^{\dagger} & From \ ^{113}Cd(p,n\gamma), \ except \ as \ noted \ and \ when \ possible. \\ ^{\ddagger} & Relative \ branchings \ are \ given. \\ ^{\$} & From \ DCO \ ratios \ in \ ^{110}Pd(^{7}Li,4n). \\ ^{\#} & From \ \alpha(K)exp \ in \ ^{113}Cd(p,n\gamma). \\ \\ @ & Mult \ and \ \delta \ from \ ^{113}In \ Coul. \ ex. \\ ^{\$} & \\ \end{array}$

[&]amp; Placement of transition in the level scheme is uncertain.

(F) band 6

(G) band 7

$^{113}\text{Cd}\ \beta^-\ \text{Decay}\ (7.7{\times}10^{15}\ \text{y}) \ \ 1996Da11,1970Gr20$

Parent $^{113}{\rm Cd}{:}~E=0.0;~J\pi=1/2+;~T_{1/2}=7.7\times10^{15}~y~3;~Q(g.s.)=320~3;~\%\beta^-~decay=100.$

1996Dall: measured scintillation crystals of CDW04.

1970Gr20: measured β^- activity of enriched and natural cadmium samples.

Others: 1962Wa15, 1969De25, 1994Al49.

¹¹³In Levels

β- radiations

 $Eβ^-$ E(level) $Iβ^{-\dagger}$ Log ft Comments (320 3) 0.0 100 23.20 10 $Eβ^-$: 1996Dall give endpoint energy=337.4 keV with error of 0.3 (statistical) and 22 (syst)

¹¹³Cd β- Decay (14.1 y) 1969De25

Parent ^{113}Cd : E=263.7 3; J\pi=11/2-; $T_{1/2}$ =14.1 y 5; Q(g.s.)=320 3; % β^- decay=99.86. Measured E β , $\beta\gamma$ coin. No $\beta\gamma$ coin were observed, 1969De25.

¹¹³In Levels

 β^- radiations

 † For β^- intensity per 100 decays, multiply by 1.0.

¹¹³In IT Decay (99.476 min) 1971Ha18

Parent ¹¹³In: E=391.691 8; $J\pi=1/2-$; $T_{1/2}=99.476$ min 23; %IT decay=100.

Evaluation by M.-M. Be, March 1999 This evaluation was done as part of a collaboration of evaluators from
Laboratoire National Henri Becquerel (LNHB) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; HMS
Sultan and AEA Technology in the United Kingdom; Khlopin Radium Institute (KRI) in Russia; Centro de
Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED)
in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho
National Engineering and Environmental Laboratory (INEEL) in the United States.

Measured Ice, Ice(K) from (ce)(K x ray)-coin, I7, 1971Ha18.

¹¹³In Levels

 $^{^{\}dagger}$ For β^- intensity per 100 decays, multiply by 1.0.

[†] See 113In Adopted Levels.

¹¹³In IT Decay (99.476 min) 1971Ha18 (continued)

 $\gamma(^{113}In)$

Branching: From the presence of Cd K x rays from a 113 In (99 min) source, 1970Ra05 (and 1969RaZP) reported & decay of this level with $I_{\epsilon} = 0.07\%$ 1. Such a transition to 113 Cd would be 1^{st} forbidden, 1/2- to 1/2+, and would have a logft of 5.1. which is possible but unlikely since the logft systematics (1998Si17) indicate that is the lower limit of the observed values. Also, 1970De22 (see also 1969De25) repeated the experiment and placed a limit of <0.0036% on this & transition for which the logft is >6.5. Such an electron capture branch is therefore negligible and has not been included in this scheme.

Εγ	E(level)	$\underline{\hspace{1cm}} \mathbf{I} \gamma^{\dagger} \underline{\hspace{1cm}}$	Mult.	α	Comments
391.698 3	391.699	64.94 17	M4	0.540 4	Eγ: from 2000He14 evaluation. Iγ: From Iγ(391)=[100.0 - I(γ+ce)(646)] / [1 + α(391)]; the uncertainty is all from the 0.26% uncertainty in (1 + α). Mult.: from α(K)exp=0.437 7, α(exp)=0.540 7, α(K)exp/α(L+)exp=4.21 8 (1971Ha18); α(L)exp/α(M)exp, α(L)exp/α(N)exp, α(M)exp/α(N)exp (1972Ko38). Others: 1970Go48, 1970Le07, 1971GoYM, 1985HaZA. α: α and α _K are from 1985HaZA evaluation of measured values; these values average 3% lower than the theoretical values of 1978Ro21. The α _L and α _M were then computed as 3% lower than the corresponding theoretical values. B(M4)(W,u,)=8.31 9.

 $[\]dagger$ For absolute intensity per 100 decays, multiply by 1.0.

¹¹³Sn ε Decay (115.09 d)

Parent $^{113}{\rm Sn}$: E=0; $J\pi=1/2+$; $T_{1/2}=115.09$ d 3; Q(g.s.)=1036.6 27; $\%\epsilon+\%\beta^+$ decay=100.

113Sn-J: From 1998Bl04 evaluation.

 $^{113}\mathrm{Sn-T_{1/2}}$: 115.09 d 3 from weighted average of 115.2 d 8 (1972Em01), 115.07 d 10 (1972La14), 115.09 d 4 (1980Ho17), 115.12 d 13 (1982RuZV), and 115.08 d 8 (1992Un01). The reduced- χ^2 =0.03. Because this set of values is consistent, the Limited Relative Statistical Weight method does not increase the uncertainty for the 1980Ho17 value even though it contributes 66% of the relative weight. If the 1980Ho17 uncertainty were increased from 0.04 to 0.056 in order decrease its relative weight to 50%, the weighted average average would still be 115.09 with an uncertainty of 0.04. The very small reduced- χ^2 value suggests that the reported uncertainties are overestimated. It also means that the Rajeval and Normalized Residual methods give the same result. Others: 107 d (1959Bu08) and 115.06 d 7 (1982HoZJ, replaced by 1992Un01).

 $^{113}Sn{-}Q(\epsilon){:}$ From 2003Au03.

In addition to the 3 excited levels populated in this decay scheme, there is a level below the decay energy in 113 In at 1024 (J π =5/2+). The β^- decay to this level will be negligible.

Decay data evaluated by R. γ. Helmer, August 1996 with minor editing done in July 1998. This evaluation was done under the collaboration which includes evaluators from Laboratoire Primaire des Rayonnments Ionisants (LPRI) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; Imperial College in the United Kingdom; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering Laboratory (INEL) in the United States. This evaluation was reviewed and accepted by evaluators in this collaboration.

The main γ ray of 391 keV depopulates a level with a $T_{1/2}$ of 99 min, so the ratio of its emission rate to the $^{113}\mathrm{Sn}$ decay rate will vary with time. After a sufficient time, about five half-lives for the level, the ratio of the $^{113}\mathrm{In}$ (99 min) and $^{113}\mathrm{Sn}$ activities remains constant and is $T_{1/2}(^{113}\mathrm{Sn})/[T_{1/2}(^{113}\mathrm{Sn})-T_{1/2}(113\mathrm{min})]$ =1.0006.

The total average radiation energy released by 113Sn is 1035.5 keV 5 (calculated by evaluators using the computer program radlst). This value agrees remarkably well with $Q(\epsilon)=1036.6$ keV 27 (2003Au03) and confirms the quality of the decay scheme.

¹¹³In Levels

$^{113}\mathrm{Sn}$ & Decay (115.09 d) (continued)

¹¹³In Levels (continued)

E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	T _{1/2}	Comments
391.699 3	1/2-	99.476 min 23	$T_{1/2}$: From weighted average of 99.3 min 2 (19670k02), 99.2 min 6 (1969Va04), 99.48 min 3 (1970Go48), 99.48 min 8 (1970Le07), 99.8 min 2 (1970Ro29), 99.47 min 7 (1971Ha18), 99.2 min 6 (1971Oo01), 99.78 (18) (1971Em01), 102 min 2 (1975Bu24), 99.21 min 13 (1982HoZJ), 99.49 min 6 (1982RuZV), 99.45 min 7 (1984Iw06), and 99.6 min 3 (1987Ne01). In the Limited Relative Statistical Weight method, the uncertainty for the 1970Go48 value is increased from 0.03 to 0.0316 to reduce its relative weight from 53% to 50%. For either weighting, the results are the same, with the internal uncertainty of 0.022 and the reduced $-\chi^2$ =1.07. Since these data are consistent, the Rajeval and Normalized Residual methods give the same result. Others: 105 min 10 (1939Ba03), 104 min 2 (1940La07), 102 min 2 (1958Gi06), 114 min (1965Ca13), 102.4 min (1975Ku10), and 99.8 min 7 (1997We13).
646.833 10	3/2-		From the presence of Cd K x rays from a 113 In (99 min) source, 1970Ra05 (and 1969RaZP) reported ϵ decay of this level with $I(\epsilon)$ =0.07% I . Such a transition to 113 Cd would be 1st forbidden, $1/2$ - to $1/2$ +, and would have a log ft of 5.1. This ϵ intensity is unlikely since the log ft systematics (1973Ra10) indicate that such transitions have log ft 's of >5.9. Also, 1970De22 (see also 1969De25) repeated the experiment and placed a limit of <0.0036% on this ϵ transition for which the log ft is >6.5. Such an electron capture branch is therefore negligible and has not been included in this scheme.
1029.73 8	1/2+,3/2+	0.33 ns 3	T _{1/2} : From Adopted Level data in 1998Bl04 evaluation.
† F 1000	D104 1 1		

[†] From 1998Bl04 evaluation.

β+,ε Data

The electron-capture decay from the 1/2+ parent to the ground state (9/2+) is 4th forbidden. From log ft systematics (1973Ra10), one expects this log ft value to be ≥ 22 , with a corresponding $I(\epsilon) \leq 1.\times 10^{-12}\%$. For the unpopulated level at 1024 keV, the decay is 2nd forbidden, with an expected log ft value of >11.0. The corresponding $I(\epsilon)$ is $<2.\times 10^{-7}\%$; so this branch is also completely negligible.

εK,εL,εM Calculated from tables of 1995ScZY.

Εε	E(level)	Ιε [†]	Log ft
(7 3)	1029.73	0.00103 4	6.5 8
(390 3)	646.833	2.21 8	8.20 2
$(645 \ 3)$	391.699	97.79 8	7.0104

 $^{^{\}dagger}$ For intensity per 100 decays, multiply by 1.00.

Εγ	E(level)	Ιγ ^{†‡#}	Mult.§	§	α	Comments
255.134 10	646.833	2.11 8	M1+E2	0.7 6	0.046 6	Eγ: Based on value of 255.126 10 (1973In06) scaled by the evaluator by the ratio Eγ(391,here)/Eγ(391,1973In06). Iγ: From Iγ(255)/Iγ(392)=0.0325 12 from Limited Relative Statistical Weight analysis of 0.0333 13 (1973In06), 0.0285 9 (1978He08), 0.0337 8 (1993Mu14), and 0.0327 8 (1994DeZX). Others: 0.030 3 (1958Gi06), 0.027 2 (1959Bu08), 0.028 1 (1961Gr11), 0.029 3 (1967Bo18), 0.0322 (1968Fo07), and 0.0285 7 (1976De35 from same data as 1978He08).
382.90 8	1029.73	0.000060 3				Ey: Calculated from level energies; γ not observed in this decay. Iy: From Iy(382)/Iy(638)=6.2/100 from Adopted γ data in 1998Bl04 evaluation and based on observed decay of this level in $^{113}\text{Cd}(p,n\gamma)$ (1976Di03,1974Ki02).

$^{113}\mathrm{Sn}$ & Decay (115.09 d) (continued)

$\gamma(^{113}In)$ (continued)

Εγ	E(level)	Ιγ ^{†‡#}	Mult.§	α	Comments
391.698 3	391.699	64.97 17	M4	0.540 4	Eγ: From 1997HeZZ.
					Iy: From Iy(391)=[100.0 - I(\gamma+ce)(646)] / [1 + $\alpha(391)$]; the
					uncertainty is all from the 0.26% uncertainty in (1 + α).
					$\alpha{:}~\alpha(K)$ and α are from 1985HaZA evaluation of measured values;
					these values average 3% lower than the theoretical values of
					1978Ro21. The $\alpha(L)$ and $\alpha(M)$ were then computed as 3% lower
					than the corresponding theoretical values.
					B(M4)(W.u.)=8.31 9.
638.03 8	1029.73	0.000974	E1		E γ ,I γ : From 1978He08.
					Mult.: from $^{113}Cd(p,n\gamma)$.
					α: Theoretical value from 1968Ha54.
					$B(E1)(W.u.)=3.2\times10^{-6}$ 4.
646.830 10	646.833	4×10^{-6} 2	[E3]		Eγ: Calculated from level energy.
					Iv: From 1978He08.

 † Values are with $^{113}\mathrm{In}$ in equilibrium (i.e., at long decay times).

 $\dot{\bar{x}}$ I(K α_2 x ray)=27.85 22, I(K α_1 x ray)=52.2 4, I(K β x ray)=17.44 14 calculated by radist.

§ From 1998Bl04 evaluation.

 $^{\#}\,$ For absolute intensity per 100 decays, multiply by 1.00.

Decay Scheme

¹¹³Sn ε Decay (21.4 min) 1961Sc12

Parent $^{113}{\rm Sn:}$ E=77.38 2; Jπ=7/2+; T $_{1/2}$ =21.4 min 4; Q(g.s.)=1035.9 28; %ε+% β^+ decay=8.9 23. Measured I(K x ray), 1961Sc12.

$$\begin{array}{ccc} \underline{E(level)} & \underline{J\pi} & \underline{T_{1/2}}^{\dagger} \\ \\ 0.0 & 9/2+ & stable \end{array}$$

† From adopted levels.

β+,ε Data

$$\frac{\text{Eε}}{}$$
 $\frac{\text{E(level)}}{}$ $\frac{\text{Iε}^{\dagger}}{}$ $\frac{\text{Log }\textit{ft}}{}$ (1113 3) 0.0 100 25 4.65 12

 † For intensity per 100 decays, multiply by 0.089 23.

$^{110}\mathrm{Pd}(^{6}\mathrm{Li},3\mathrm{n}\gamma)$ 1976TuZX

E=24 MeV. Measured Ey, Iy, $\gamma\gamma\text{-coin},~\gamma(\theta),~1976TuZX.$ For information on coin relations for unplaced $\gamma \mbox{'s, see } 1976 TuZX.$

¹¹³In Levels

E(level)	$J\pi^{\dagger}$	[‡]	E(level)	
0.0	9 / 2 +	stable	2164.8	
391.7	1/2-	1.6582 h 6	2224.7	
646.9	3 / 2 -		2233.1	(15/2-)
1024.2	5 / 2+		2264.1	(11/2, 15/2)
1131.7	5 / 2+		2282.7	(17/2+)
1173.0	11/2+		2358.8?	(15/2+)
1191.38	(7/2+)		2389.78	(13/2+)
1344.4	13/2+		2396.4	(17/2-)
1472.9			2442.3	(11/2,15/2)
1509.5			2466.7	
1536.2?			2654.2	(17/2)
1566.7			2664.0	(19/2-)
1570.7			2786.2	(19/2)
1630.7			2853.6	(21/2-)
1688.88	(11/2+)		3023.2	(23/2-)
1836.2				

 $^{^\}dagger$ Jm for levels below 1400 keV are from adopted levels. Jm for higher levels are suggested on the basis of directional correlation of oriented nuclei.

$\gamma(^{113}In)$

Εγ	<u>E(level)</u>	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$	Εγ	E(level)	$\underline{\hspace{1.5cm}}^{\dagger}$	Εγ	E(level)	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$
x 9 1			377.3	1024.2	2.1	923.8	1570.7	1.0
$^{x}123$. 0			391.7	391.7		938.3	2282.7	20.5
132.0	2786.2	2.3	x 4 1 4			991.8	2164.8	4.9
163.3	2396.4	18.0	421.1	2654.2	3.8	1024.2	1024.2	21
169.6	3023.2	5.9	484.8	1131.7	1.5	1051.7	2224.7	6.2
171.4	1344.4	2.1	497.5	1688.8	20.4	1097.9	2442.3	7.4
184.0	2466.7	4.6	670.08	2358.8?	3.1	1131.7	1131.7	10
189.5	2853.6	9.8	x 673.5			1173.0	1173.0	53.4
x198.7			700.9	2389.7	18.0	1191.3	1191.3	36.4
212 \$	2654.2	3.0	826.0	1472.9	1.7	1344.4	1344.4	100
255.3	646.9	17.6	888.7	2233.1	39.5	1509.5	1509.5	7.9
267.7	2664.0	14.7	889.3‡\$	1536.2?	3.5	1566.7	1566.7	9
326 . 7	1836.2	4.7	919.7	2264.1	8.1	1630.7	1630.7	8

 $^{^{\}dagger}$ Measured at 55°.

[‡] From adopted levels.

 $[\]mbox{\colored}$ (A): Suggested members of rotational band with Nilsson Orbit 1/2+(431).

 $^{^{\}ddagger}$ From coin data in $^{113}Cd(p,n\gamma)$, this γ deexcites the 1914-keV level and not the 1536-keV level.

[§] Placement of transition in the level scheme is uncertain.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

$^{110}Pd(^{6}Li, 3n\gamma) \hspace{0.5cm} 1976TuZX \hspace{0.1cm} (continued)$

Level Scheme

Intensities: relative $I\gamma$

¹¹⁰Pd(⁷Li,4nγ) 1997Ch01

1997ChO1: E=35-45 MeV. Measured Ey, Iy, $\gamma\gamma$ -coin, $\gamma(\theta)$, DCO. Array detectors: five Compton-suppressed Ge with eight NaI multiplicity filter.

1976TuZX: 110 Pd(6 Li,3n γ), E=24 MeV. Preliminary. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$.

The level scheme is as given by 1997Ch01, some discrepancies are noted in comments in the level scheme by evaluator.

¹¹³In Levels

E(level) ‡	$\underline{\hspace{1cm} J\pi^{\dagger}}$	T _{1/2}	E(level)‡	$J\pi^{\dagger}$	E(level) ‡	$-J\pi^{\dagger}$
0.0	9 / 2+	stable	2653.8 4		3172.1+ya 3	(23/2-)
1173.11 25	11/2+		2664.2 5	(19/2-)	3190.1 6	
1191.3° 3	(7/2+)		$2665 + y^a$	(19/2-)	3192 . 2^{c} 6	(19/2+)
1344.51b 25	13/2+		2669.2b 4	17/2+	3213.8b 6	(23/2+)
1688.6° 5	(11/2+)		2785.5 5		3249.7# 5	
2233.4 4	(15/2-)		2854.1	(21/2-)	3280.9 6	(25/2-)
2283.1b 4	17/2+		2880.5 5		3289.5 6	(21/2-)
2357.6 11			3023.8 6	(23/2-)	3305.3 6	
2389.0° 6	(15/2+)		3050.7#5		3350.3 6	
2396.6 4	(17/2-)		3071.2 ^b 4	(19/2+)	3397.1 ^b 7	(25/2+)
2442.3 4			3122.0 ^b 5	(21/2+)	3598.7 6	

Continued on next page (footnotes at end of table)

¹¹⁰Pd(⁷Li,4nγ) 1997Ch01 (continued)

$^{113} In \ Levels \ (conti\underline{nued})$

E(level) [‡]		E(level) ÷	$-^{J\pi^{\dagger}}$	E(level) ÷	$J\pi^{\dagger}$
3743.9+ya 5	(27/2-)	4441.0+ya 6	(31/2-)	5447.3 7	
3787.9b 7	(27/2+)	4602.9° 8	(27/2+)	5730.3 7	
3854.3 7	(23/2-)	4715.7& 6	(29/2-)	5734.8+x [@] 3	(35/2-)
3866.7# 6		4799.4 6		5790.3b 8	(33/2+)
3965.1° 7	(23/2+)	5062.1 ^b 7	(31/2+)	6113.9+x [@] 5	(37/2-)
3973.5 6	(27/2-)	5125.5 6		6187.6+y ^a 7	(39/2-)
4090.4 \$ 7	(25/2-)	5172.5 12		6476.0+x [@] 6	(39/2-)
4377.4 ^b 7	(29/2+)	5259.2+ya 6	(35/2-)	7215.9+ya 9	(43/2-)
4430.5 6	(27/2-)	5392.7& 6	(31/2-)		
4431.4# 6		5394+x@	(33/2-)		

 $^{^{\}dagger}$ $J\pi$ as given by 1997Ch01 derived from $\gamma(\theta),$ DCO the gammas's multipolarities, and bands consideration.

$\gamma(^{113}In)$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.‡	Comments
у	2665+y			
x	5394+x			
68.6 3	2854.1	17 2		
91.8 3	3213.8	122 2	(M1, E2)	Mult.: DCO=0.57 5.
131.8 3	2785.5	33 1		
163.2 3	2396.6	443 4	(M1, E2)	Mult.: DCO=0.49 1.
169.5 3	3023.8	254 2	(M1, E2)	Mult.: DCO=0.45 4.
170.2# 3	3050.7	44# 3		
171.5 3	1344.51	44 3	(M1, E2)	Mult.: DCO=0.57 5.
183.3 3	3397.1	228 2	(M1, E2)	Mult.: DCO=0.55 3.
189.7 3	2854.1	228 2	(M1, E2)	Mult.: DCO=0.58 4.
199.1 3	3249.7	39 1		
211.7 3	2653.8	17 2		
226.7 3	2880.5	23 2		Eγ: given also deexciting the 3050 level but no level to feed?
236.1 3	4090.4	17 2	(M1,E2)§	
256.9 3	3280.9	167 2	(M1, E2)	Mult.: DCO=0.59 5.
267.5 3	2664.2	349 2	(M1, E2)	Mult.: DCO=0.57 5.
x 2 7 1 . 1 3		12 2		
x278.2 3		56 2		
284.5 3	4715.7	12 2	(M1, E2)§	
326.2 3	5125.5	< 10		
340.8 3	5734.8+x	25 2	§	
362.1 3	6476.0+x	16 2	(M1,E2)§	
x377.2 3				
379.1 3	6113.9+x	15 2	(M1,E2)§	
386.5 3	3050.7	45 2	(M1, E2)	Mult.: DCO=0.55 10.
388.9 3	2785.5	63 2	(M1, E2)	Mult.: DCO=0.47 12.
				Eγ: placed as deexciting the 2652 level and feeding the 2396 level by 1997Ch01, placed from this level by evaluator.
390.9 3	3787.9	167 2	(M1, E2)	Mult.: DCO=0.52 5.
395.8 3	3249.7	19 1	(M1,E2)	Mult.: DCO=0.53 10.
401.8 3	3071.2	70 2	(M1, E2)	Mult.: DCO=0.61 20.
409.7 3	5125.5	24 2	(M1,E2) §	Matt.: B00-0.01 20.
420.4 3	2653.8	42 4	(M1, E2)	Mult.: DCO=0.49 15.
×474.3 3	2000.0	10 2	(211, 112)	ARRENT DOG-0110 101
483.9 3	2880.5	23 2		
497.3 3	1688.6	90 3	E2	Mult.: DCO=0.9 1.
			Continue	d on next page (footnotes at end of table)

 $[\]ddagger$ From least-squares fit to γ energies.

 $[\]$ (A): Band 1.

^{# (}B): Band 2.

^{@ (}C): Band 3.

[&]amp; (D): Band 4.

a (E): Band 5.

b (F): Band 6.

c (G): Band 7.

¹¹⁰Pd(⁷Li,4nγ) 1997Ch01 (continued)

$\gamma(^{113}In)$ (continued)

507.1 3 3172.1+y 25 2 E2 Mult: DCO=0.9 3. 528.9 3 3190.1 35 2 564.8 3 3854.3 23 2 (M1,E2) 4431.4 571.8 3 3743.9+y 63 2 E2 Mult: DCO=0.9 3. 589.4 3 4377.4 72 2 (M1,E2) 617.2 3 3866.7 45 3 625.3 3 3289.5 28 2 (E2) 641.1 3 3305.3 15 2 669.1 63 3305.3 15 2 669.1 63 3305.3 15 2 669.1 63 3305.3 15 2 669.1 63 3305.3 15 2 669.1 3 3305.3 15 2 684.6 3 3305.3 10 692.6 3 3973.5 68 2 (M1,E2) 681.1 3 3305.3 479 692.6 3 3973.5 68 2 (M1,E2) 700.4 3 3050.3 12 2 725.2 3 5790.3 31 2 (M1,E2) 711.6 3 5047.3 31 2 (M1,E2) 712.9 3 3065.1 51 3 E2 713.6 3 3093.7 19 2 712.9 3 3056.1 51 3 E2 713.6 3 3093.7 19 2 712.9 3 3056.1 51 3 E2 713.6 3 3192.2 80 2 E2 Mult: DCO=0.9 2. 803.2 3 3192.2 80 2 E2 Mult: DCO=0.9 2. 818.2 3 3192.2 80 2 E2 Mult: DCO=0.9 2. 826.3 3 4799.4 40 828.8 3 312 0 (M1,E2) 828.8 3 312 0 (M1,E2) 838.9 3 312 0 (M1,E2) 838.9 3 312 0 80 2 E2 Mult: DCO=0.9 5. 838.9 3 312.0 87 2 E2 Mult: DCO=0.9 5. 838.9 3 312.0 87 2 E2 Mult: DCO=0.9 2. 838.9 3 312.0 80 2 E2 Mult: DCO=0.9 2. 838.9 3 312.0 80 2 E2 Mult: DCO=0.9 2. 838.9 3 312.0 80 2 E2 Mult: DCO=0.9 2. 838.9 3 312.0 80 2 E2 Mult: DCO=0.9 2. 841.1 3 119.1 3 119.1 3 15 3 (E1) 841.1 3 119.3 119.3 83 3 (M1,E2) 842.1 3 144.5 1 1000 E2 Mult: DCO=0.99 4. 841.1 3 144.5 1 1000 E2 Mult: DCO=0.99 9. 841.1 3 144.5 1 1000 E2 Mult: DCO=0.99 9. 841.1 3 144.5 1 1000 E2 Mult: DCO=0.99 9. 841.1 3 144.5 1 1000 E2 Mult: DCO=0.99 9. 841.1 3 144.5 1 1000 E2 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9. 841.1 3 144.5 1 142 E2 842 Mult: DCO=0.99 9.	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	Comments
564.8 s 3 3190.1 36 2 664.8 s 3884.3 c 23 2 (M1, E2) 571.8 s 3743.9 y 63 2 E2 Mult.: DCO=0.9 3. 589.4 7 4377.4 y 62 2 (M1, E2) Mult.: DCO=0.49 2. 617.2 3 3866.7 45 3 (E2) (E2) 637.7 3 306.5 3 15 2 (E2) 641.1 3 3305.3 16 2 (E2) (M1, E2) 684.6 3 5062.1 47 2 (M1, E2) Mult.: DCO=0.48 16. 686.1 3 3350.3 3 <10	507 1 3	2179 1±v	25 2	E 2	Mult - DCO-0 9 3
Section Sect				112	Muit D00-0.5 5.
671.8 3 3743.99 y 63 2 E2 Mult:: DCO=0.9 3. 689.4 3 3477.4 y 72 2 (M1, E2) Mult:: DCO=0.49 2. 617.2 3 386.7 7 45 3 3 282.5 2 E2 Mult:: DCO=0.49 2. 637.7 3 400.2 9 31 2 (E2) E7: not given in Table 1, only in figure 1 (1997Ch01). 687.7 3 5092.7 17 2 (M1, E2) Mult:: DCO=0.48 26. 686.1 3 3030.3 3 < 10 (M1, E2) Mult:: DCO=0.57 17. 692.6 3 3973.5 68 2 (M1, E2) Mult:: DCO=0.9 2. 700.4 3 2389.0 85 2 E2 Mult:: DCO=0.9 2. 718.2 3 50790.3 31 2 (M1, E2) Mult:: DCO=0.9 2. 728.2 3 3071.2 2 (M1, E2) Mult:: DCO=0.9 2. 742.4 3 3595.7 19 2 2 Mult:: DCO=0.9 2. 742.4 3 3595.7 19 2 2 Mult:: DCO=0.9 2. 788.2 3 3071.2 124 2 (M1, E2) Mult:: DCO=0.95 8. 888.7 3 2283.4 515 3 (E2) Mult:: DCO=0.95 8. 888.7 3 2283.1 4 515 3 (E1) (E2) 991.5 3 <td></td> <td></td> <td></td> <td>(M1 F2)</td> <td></td>				(M1 F2)	
571.8 3 374.3 .9+y 6 2 E2 Mult.: DCO=0.9 3. 589.4 3 4 3437.4 72 2 (M1, E2) Mult.: DCO=0.49 2. 617.2 3 3866.7 45 3 Mult.: DCO=0.49 2. 625.3 3 3289.5 28 2 (E2) 637.8 3 4602.9 31 2 (E2) 641.1 3 3305.3 15 2 E7; not given in Table 1, only in figure 1 (1997Ch01). 677.7 3 5382.7 17 2 (M1, E2) Mult.: DCO=0.48 16. 684.6 3 3350.3 17 (M1, E2) Mult.: DCO=0.9 2. 689.2 6.3 3 3973.5 68 2 E2 Mult.: DCO=0.9 2. 700.4 3 341.0+y 12 2 E2 Mult.: DCO=0.9 2. 728.2 3 5790.3 31 2 (M1, E2) Mult.: DCO=0.9 2. 731.6 3 5447.3 2 (M E2) 742.4 3 4715.7 25 2 (M1, E2) Mult.: DCO=0.9 2. 830.2 3 3192.2 80 2 80 2 80 2 Mult.: DCO=0.95 8.	304.0 3		20 2	(1111,122)	
589.4 3	571.8 3		63 2	E2	Mult.: DCO=0.9 3.
625. 3 3 3289. 5 28 2 (E2) 637. 8 3 4602. 9 31 2 (E2) 637. 8 3 4602. 9 31 2 (E2) 637. 8 3 4602. 9 31 2 (E2) 639. 1 2357. 6					
637.8 3 389.5 28 2 (E2) 641.1 3 3305.3 15 2 669 1 2357.6				, , ,	
641. 1 3 3305.3 15 2 Ey: not given in Table 1, only in figure 1 (1997Ch01). 669. 1 2357.6 Ey: not given in Table 1, only in figure 1 (1997Ch01). 677. 7 3 5392.7 17 2 (M1, E2) 684. 6 3 5062.1 47 2 (M1, E2) 686. 1 3 3350.3 3 10 682. 6 3 3973.5 68 2 (M1, E2) 692. 6 3 3973.5 68 2 (M1, E2) 692. 6 3 3973.5 68 2 E2 692. 6 3 3973.5 68 2 E2 692. 700. 4 3 2389.0 85 2 E2 692. 700. 4 3 2389.0 85 2 E2 692. 700. 4 3 4715.7 25 2 (M1, E2) 731. 6 3 5447.3 4715.7 25 2 (M1, E2) 731. 6 3 5447.3 4715.7 25 2 (M1, E2) 744. 6 3 3598.7 1 9 2 772. 9 3 3965.1 51 3 E2 788. 2 3 3071. 2 124 2 (M1, E2) 803. 2 3 3192. 2 80 2 E2 803. 3 4799. 4 4 818. 2 3 5259.2+y 23 4 E2 818. 2 3 3192. 2 80 2 E2 82 Mult.: DC0=0.95 8. 888. 9 3 3122. 0 87 2 E2 888. 7 3 2233. 4 615 3 (E1) 810. 500-0.99 4. 828. 7 3 2233. 4 615 3 (E2) 838. 7 3 2228.1 256 2 E2 838. 7 3 2233. 4 615 3 (E2) 838. 7 3 2283.1 256 2 E2 840.1: DC0=0.99 4. 840.1: DC0=0.99				(E2)	
641.1 3 3095.3 15 2 669 1 2057.6 Ey: not given in Table 1, only in figure 1 (1997Ch01). 664.6 3 5062.1 47 2 (M1,E2) 684.6 3 5062.1 47 2 (M1,E2) 684.6 3 3350.3 <10 692.6 3 3973.5 68 2 (M1,E2) 697.1 3 4441.0+y 12 2 E2 697.1 3 4441.0+y 12 2 E2 698.1 3 3550.3 31 2 (M1,E2) 731.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1,E2) 742.4 3 4715.7 25 2 (M1,E2) 742.4 3 4715.7 125 2 (M1,E2) 742.4 3 3071.2 124 2 (M1,E2) 742.4 3 4715.7 25 2 (M1,E2) 742.4 3 3071.2 124 2 (M1,E2) 742.4 3 4715.7 25 2 (M1,E2) 742.4 3 4715.7 32 3 (M1,E2) 743.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
Ey: not given in Table 1, only in figure 1 (1997Ch01). 684.6 3					
684.6 3 5062.1 47 2 (MI, E2) 684.6 3 3050.3 <10 692.6 3 3073.5 68 2 (MI, E2) 697.1 3 4441.0+y 12 2 E2 Mult: DCO=0.57 17. 700.4 3 2389.0 85 2 E2 Mult: DCO=0.9 2. 7131.6 3 5447.3 <10 742.4 3 4715.7 25 2 (MI, E2) 7742.9 3 3965.1 51 3 E2 788.2 3 3071.2 1242 (MI, E2) 803.2 3 3192.2 80 2 E2 Mult: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult: DCO=0.9 8. 838.9 3 3122.0 87 2 E2 Mult: DCO=0.95 8. 838.9 3 3122.0 87 2 E2 Mult: DCO=0.44 2. 838.9 3 3122.0 87 2 E2 Mult: DCO=0.44 2. 838.7 3 2233.4 515 3 (E2) 838.7 3 2233.4 515 3 (E2) 838.7 3 2233.1 256 2 E2 Mult: DCO=0.99 4. 838.9 3 3132.2 80 (E2) 838.7 3 2283.1 256 2 E2 Mult: DCO=0.99 4. 818.2 3 5730.3 33 3 828.4 3 6187.6+y <20 (E2) 838.7 3 2283.1 256 2 E2 Mult: DCO=0.99 4. 819.2 3 672.5 2 E2 Mult: DCO=0.99 4. 819.2 3 1173.11 25 2 (MI, E2) 819.3 3 1191.3 88 3 (MI, E2) 8191.3 3 1191.3 88 3 (MI, E2) 8193.3 6 7215.9+y <20 (E2) 8182.4 3 615.0 4					Ey: not given in Table 1, only in figure 1 (1997Ch01).
684.6 3 5062.1 47 2 (M1,E2) Mult.: DCO=0.48 16. 6861.3 3350.3 <10 692.6 3 3973.5 68 2 (M1,E2) Mult.: DCO=0.57 17. 697.1 3 4441.0+y 12 2 E2 Mult.: DCO=0.9 2. 700.4 3 2389.0 85 2 E2 Mult.: DCO=0.9 2. 718.2 3 5790.3 31 2 (M1,E2) 718.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1,E2) 744.6 3 3598.7 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) 803.2 3 3192.2 80 2 E2 Mult.: DCO=0.9 2. 818.2 3 3071.2 124 2 (M1,E2) 818.2 3 5259.2+y 2 4 E2 Mult.: DCO=0.9 2. 828.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DCO=0.9 2. 838.7 3 2233.4 515 3 (E1) Mult.: DCO=0.5 8. 838.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. 838.7 3 2233.4 515 3 (E1) Mult.: DCO=0.94 2. 838.7 3 2233.4 515 3 (E1) Mult.: DCO=0.99 4. 838.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 838.7 3 123.0 87 3 (E2) 838.7 3 2233.1 256 2 E2 Mult.: DCO=0.99 4. 838.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 838.7 3 123.0 87 3 (E2) 838.7 3 124.2 80 2 E2 Mult.: DCO=0.99 4. 844.3 6 187.6+y <20 (E2) 858.7 3 2669.2 82 2 E2 Mult.: DCO=0.99 4. 8591.5 3			17 2	(M1,E2)	
686.1 3 3350.3 <10 692.6 3 3973.5 68 2 (M1,E2) Mult.: DCO=0.57 17. 697.1 3 4441.0+y 12 2 E2 Mult.: DCO=0.9 2. 700.4 3 2389.0 85 2 E2 Mult.: DCO=0.9 2. 731.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1,E2) 731.6 3 5547.3 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) 803.2 3 3192.2 80 2 E2 Mult.: DCO=0.8 2. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 8. 818.3 3 122.0 87 2 E2 Mult.: DCO=0.9 8. 818.5 3 123.0 87 2 E2 Mult.: DCO=0.9 8. 818.7 3 2233.4 515 3 (E1) Mult.: DCO=0.9 9. 818.7 3 2233.4 515 3 (E1) Mult.: DCO=0.99 4. 828.7 3 2233.1 256 2 E2 Mult.: DCO=0.99 4. 838.7 3 2233.1 256 2 E2 Mult.: DCO=0.99 4. 8391.5 5					Mult.: DCO=0.48 16.
692.6 3 3973.5 68 2 (M1,E2) Mult: DCO=0.57 17. 697.1 3 4441.0+y 12 2 E2 Mult: DCO=0.9 2. 728.2 3 5790.3 31 2 (M1,E2) 731.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1,E2) 744.6 3 3598.7 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) 818.2 3 5259.2+y 23 4 E2 Mult: DCO=0.9 2. 818.2 3 3071.2 124 2 (M1,E2) 826.3 3 4799.4 <10 828.8 3 3 312.0 87 2 E2 Mult: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult: DCO=0.94 2. 938.7 3 2233.4 515 3 (E1) Mult: DCO=0.94 2. 938.7 3 2283.1 256 2 E2 Mult: DCO=0.99 4. 9991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1194.6 3 5392.7 14 3 (E2) 11444.9 3 4430.5 14 2 E2 1143.9 3 4415.7 1000 E2 Mult: DCO=0.89 9. 1444.4 3 1344.51 1000 E2 Mult: DCO=0.89 9. 1444.9 3 4430.5 14 2 E2 1443.9 3 4415.7 12 E2 1443.9 3 4715.7 32 3 E2 1448.9 3 4715.7 32 3 E2					
687.1 3				(M1, E2)	Mult.: DCO=0.57 17.
700.4 3 2889.0 85 2 E2 Mult: DCO=0.9 2. 728.2 3 5790.3 31 2 (M1,E2) 731.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1,E2) 742.6 3 3598.7 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) Mult:: DCO=0.68 2. 803.2 3 3192.2 80 2 E2 Mult:: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult:: DCO=0.9 5. 818.2 3 5259.2+y 23 4 E2 Mult:: DCO=0.9 5. 888.7 3 2233.4 515 3 (E1) Mult:: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult:: DCO=0.44 2. **919.2 3 313 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult:: DCO=0.99 4. 998.7 3 2283.1 256 2 E2 Mult:: DCO=0.99 4. **991.5 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) 1199.1 5172.5 Ey: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult:: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult:: DCO=0.89 9. 1406.7 3 4430.5 14 2 E2\$ 1148.6 3 5392.7 14 3 (E2) 1406.7 3 4430.5 14 2 E2\$ 1418.6 3 5392.7 14 3 (E2)					
728. 2 3 5790. 3 31 2 (M1, E2) 731.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1, E2)\$ 744.6 3 3598.7 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1, E2) Mult.: DC0=0.68 2. 803.2 3 3192.2 80 2 E2 Mult.: DC0=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult.: DC0=1.1 3. 826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DC0=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DC0=0.44 2. **919.2 3 **919.2 3 **928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DC0=0.99 4. **980.2 3 4377.4 <10 (E2) **991.6 3 **1014.6 3 5730.3 33 3 **1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1, E2)\$ 1191.3 3 1191.3 88 3 (M1, E2) 1199.1 5172.5 E7: not given in Table 1, only in figure 1 (1997Ch01). **1394.4 3 1344.51 1000 E2 Mult.: DC0=0.89 9. **1344.4 3 1344.51 1000 E2 Mult.: DC0=0.89 9. **1344.4 3 1344.51 1000 E2 Mult.: DC0=0.89 9. **1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2\$					
731.6 3 5447.3 <10 742.4 3 4715.7 25 2 (M1,E2) \$ 744.6 3 3598.7 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) Mult.: DCO=0.68 2. 803.2 3 3192.2 80 2 E2 Mult.: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.1 3. 826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. **991.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 980.2 3 4377.4 <10 (E2) **991.5 3 56 1 1014.6 3 5730.3 33 1028.3 6 7215.9+y <20 (E2) 1199.7 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) \$ 1191.3 3 1191.3 88 3 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1194.4 3 560.2 1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1348.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1406.7 3 4430.5 14 2 E2 \$ 11436.9 3 4715.7 32 3 E2 \$				(M1, E2)	
742.4 3 4715.7 25 2 (M1,E2) \$ 744.6 3 3598.7 19 2 772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) Mult.: DCO=0.68 2. 803.2 3 3192.2 80 2 E2 Mult.: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.9 2. 826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. *919.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. *991.5 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1197.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) \$ 1191.3 3 1191.3 88 3 (M1,E2) 1199.1 5172.5 Ey: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1341.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1418.6 3 5392.7 14 3 (E2) 1436.7 3 4430.5 14 2 E2\$ 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2\$					
772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) Mult.: DCO=0.68 2. 803.2 3 3192.2 80 2 E2 Mult.: DCO=1.1 3. 826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. *919.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 980.2 3 4377.4 <10 (E2) *991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) \$1191.3 3 1191.3 88 3 (M1,E2) \$1199.1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1406.7 3 4430.5 14 2 E2\$ 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2\$				(M1, E2)§	
772.9 3 3965.1 51 3 E2 788.2 3 3071.2 124 2 (M1,E2) Mult.: DCO=0.68 2. 803.2 3 3192.2 80 2 E2 Mult.: DCO=1.1 3. 826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. *919.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 980.2 3 4377.4 <10 (E2) *991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) \$1191.3 3 1191.3 88 3 (M1,E2) \$1199.1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1406.7 3 4430.5 14 2 E2\$ 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2\$	744.6 3	3598.7	19 2		
788.2 3 3071.2 124 2 (M1,E2) Mult.: DCO=0.68 2. 803.2 3 3192.2 80 2 E2 Mult.: DCO=0.9 2. 818.2 3 5259.2+y 23 4 E2 Mult.: DCO=0.1 3. 826.3 3 4799.4 <10			51 3	E2	
803.2 3				(M1, E2)	Mult.: DCO=0.68 2.
818.2 3 5259.2+y 23 4 E2 Mult:: DCO=1.1 3. 826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult:: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult:: DCO=0.44 2. *919.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult:: DCO=0.99 4. *991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1197.3 2 31173.11 25 2 (M1,E2) \$ 1191.3 3 1191.3 88 3 (M1,E2) 1199.1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). *2	803.2 3	3192.2	80 2	E2	Mult.: DCO=0.9 2.
826.3 3 4799.4 <10 838.9 3 3122.0 87 2 E2 Mult.: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. *8919.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 980.2 3 4377.4 <10 (E2) *8991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) *1191.3 3 1191.3 88 3 (M1,E2) 1199.1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1436.7 3 4430.5 14 2 E2 1418.6 3 5392.7 14 3 (E2) 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2 *** ** ** ** ** ** ** ** **				E2	
838.9 3 3122.0 87 2 E2 Mult.: DCO=0.95 8. 888.7 3 2233.4 515 3 (E1) Mult.: DCO=0.44 2. *919.2 3 31 3 928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. *891.5 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1199 1 5172.5 Ey: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3					
*919.2 3	838.9 3	3122.0	87 2	E 2	Mult.: DCO=0.95 8.
928.4 3 6187.6+y <20 (E2) 938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 980.2 3 4377.4 <10 (E2) *991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1199 1 5172.5 Ey: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3	888.7 3	2233.4	515 3	(E1)	Mult.: DCO=0.44 2.
938.7 3 2283.1 256 2 E2 Mult.: DCO=0.99 4. 980.2 3 4377.4 <10 (E2) *991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) 1191.3 3 1191.3 88 3 (M1,E2) 1199 1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=0.89 9. 1349.3 3 430.5 14 2 E2 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2 **Mult.: DCO=0.99 4.** **Mult.: DCO=0.99 4.** **Mult.: DCO=0.99 4.* **Mult.	x919.2 3		31 3		
980.2 3 4377.4 <10 (E2) *991.5 3 56 1 1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) 1199.1 5172.5 Ey: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 Ey: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 Mult.: DCO=0.89 9 . 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6 . **1390.3 3 <10 1406.7 3 4430.5 14 2 E2 \S 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2 \S	928.4 3	6187.6+y	< 20	(E2)	
$^{\times}991.5$ 3	938.7 3	2283.1	256 2	E 2	Mult.: DCO=0.99 4.
1014.6 3 5730.3 33 3 1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) $^{\$}$ 1191.3 3 1191.3 88 3 (M1,E2) 1199 1 5172.5	980.2 3	4377.4	< 10	(E2)	
1028.3 6 7215.9+y <20 (E2) 1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2 (M1,E2) $^{\$}$ 1191.3 3 1191.3 88 3 (M1,E2) 1199 1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3 <** **1390.3 3 ** **1406.7 3 4430.5 14 2 E2 $^{\$}$ 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2 $^{\$}$	x991.5 3		56 1		
1097.9 3 2442.3 24 2 1173.2 3 1173.11 25 2	1014.6 3	5730.3	33 3		
1173.2 3 1173.11 25 2 (M1,E2) § 1191.3 3 1191.3 88 3 (M1,E2) 1199 I 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3	1028.3 6	7215 . $9+\mathrm{y}$	< 20	(E2)	
1191.3 3 1191.3 88 3 (M1,E2) 1199 1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3	1097.9 3	2442 . 3	24 2		
1199 1 5172.5 Eγ: not given in Table 1, only in figure 1 (1997Ch01). 1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6 . **1390.3 3 **1406.7 3 4430.5 14 2 E2 \S 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2 \S	$1173.2\ 3$	1173.11	$25 \ 2$	(M1, E2)§	
1274.2 3 5062.1 <5 1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3 <10 1406.7 3 4430.5 14 2 E2\strace{\psi} 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2\strace{\psi}	1191.3 3	1191.3	88 3	(M1, E2)	
1324.6 3 2669.2 82 2 E2 Mult.: DCO=0.89 9. 1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3	1199 1	5172 . 5			Eγ: not given in Table 1, only in figure 1 (1997Ch01).
1344.4 3 1344.51 1000 E2 Mult.: DCO=1.07 6. **1390.3 3 <10 1406.7 3 4430.5 14 2 E2 \\$ 1418.6 3 5392.7 14 3 (E2) 1434.9 3 4715.7 32 3 E2 \\$	1274 . 2 3	5062.1	< 5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1324.6\ 3$	2669.2	82 2	E 2	Mult.: DCO=0.89 9.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1344.4\ 3$	1344 . 51	1000	E 2	Mult.: DCO=1.07 6.
$1418.6\ 3$ 5392.7 $14\ 3$ (E2) $1434.9\ 3$ 4715.7 $32\ 3$ $E2^{\S}$	x1390.3 3		< 10		
1434.9 3 4715.7 32 3 E2§	$1406.7\ 3$	4430 . 5	14 2	E2§	
	1418.6 3	5392.7	14 3		
*1444.5 3 <10		4715.7	32 3	E2§	
	x 1 4 4 4 . 5 3		< 10		
1518.3 3 4799.4 14 3		4799.4			
x1583.5 3 14 3	x1583.5 3		14 3		

[†] From 1991Ch01.

 $^{^{\}frac{1}{2}}$ From DCO ratio and/or $\gamma(\theta).$ The values for DCO with the gating transition(s) as quadrupole are given in comments.

 $[\]$ Mult from DCO when the gating transition is a dipole.

[#] Multiply placed; undivided intensity given.

 $^{^{}x}$ γ ray not placed in level scheme.

$^{110}Pd(^{7}Li,4n\gamma) \hspace{0.5cm} 1997Ch01 \hspace{0.1cm} (continued)$

Level Scheme

& Multiply placed; undivided intensity given $Intensities: \ relative \ I\gamma$

$^{110}Pd(^{7}Li,4n\gamma) \hspace{0.5cm} 1997Ch01 \hspace{0.1cm} (continued)$

Level Scheme (continued)

¹¹²Cd(p,p) IAR 1970Mi08

 $E=6-11~MeV.~Measured~\sigma(E(p),\theta),~\theta=90^{\circ},~120^{\circ},~150^{\circ},~and~170^{\circ},~semi,~1970Mi08.$

For level widths, see 1970Mi08.

Others: 1969Ab09, 1975Ab09, 1977So10.

¹¹³In Levels

E(level)#	Jπ‡	L [†]	Comments
12873	1/2+	0	IAS of 1/2+ 113Cd g.s.
13180	3 / 2 +	2	IAS of 299 keV, (3/2+) ¹¹³ Cd excitation.
13417	5/2+	2	IAS of 584 keV, 5/2+ ¹¹³ Cd excitation.
13531	3 / 2 +	2	IAS of 681 keV, (3/2+) ¹¹³ Cd excitation.
13738	1/2+	0	IAS of 884 keV, 1/2+ 113Cd excitation.
13857	1/2+	0	IAS of 988 keV, 1/2+ 113Cd excitation.
14064	5 / 2+	2	
14379	3 / 2+	2	
14478	3 / 2+	2	
14673?	(5/2+)	(2)	
15033	1/2+	0	
15086?	(1/2+)	(0)	
15131	7/2-	3	
15325?	(3/2-)	(1)	
15466	3 / 2 –	1	
15508	7/2-	3	
15600?	(3/2-)	(1)	
15629	(7/2-)	(3)	
15674?	(1/2+)	(0)	
15748	7 / 2 –	3	
15791?	(7/2-)	(3)	
15870?	(5/2+)	(2)	
15924?	(1/2+)	(0)	
15961?	(5/2+)	(2)	
16028	3 / 2 -	1	
16136	3 / 2 -	1	
16226	7 / 2 –	3	
16334?	(3/2-)	(1)	
16493?	(1/2+)	(0)	
16587	3 / 2 –	1	

 $^{^{\}dagger} \ \ From \ shape \ of \ \sigma(E(p),\theta).$

¹¹²Cd(³He,d) 1974Ma09

 $E{=}27~MeV.~Magnetic~spectrograph~with~spark~counter.~\sigma(\theta)~at~12~angles~(5^{\circ}{-}40^{\circ}),~compared~with~DWBA~calculations,$ 1974Ma09.

113 In Levels

E(level)	$J\pi^{\dagger}$	L	C2S‡	E(level)	Jπ [†]	L	-C ² S [‡]
0.0	9 / 2+	4	0.17	1700 5	1 / 2+	0	0.024
393 5	1 / 2 –	1	0.059	1774 10	3 / 2+	2	0.14
648 5	3 / 2 –	1	0.048	1831 8	1 / 2+	0	0.029
1026 5	5 / 2+	2	0.52	2048 10	7 / 2+	4	0.097
1066 5	3 / 2+	2	0.15	2153 10	1 / 2+	0	0.048
1133 5	5 / 2+	2	0.02	2190 10	3 / 2 + , 5 / 2 +	2	0.045,0.03
1194 5	7 / 2+	4	0.21	2298 10	3/2+,5/2+	2	0.04,0.024
1571 5	7/2+,9/2+	4	0.03,0.04	2346 10	3/2+,5/2+	2	0.033,0.02
1634 5		(3, 4)		2391 10	3/2+,5/2+	2	0.10,0.064

 $^{^{\}dagger}$ Assumed for calculation of $\mathrm{C}^2\mathrm{S}.$

 $[\]dot{\bar{\tau}}$ Based on L-values, known Jπ in ^{113}Cd or shell-model considerations. # From S(p)=6074 4 (1985Wa02) + res E(p)(c.m.) (1970Mi08).

 $[\]ensuremath{^{\ddagger}}$ C^2S normalized to the sum rule limit for the 3 lowest levels.

$^{112}Cd(\alpha,t)$ 1974Ma09

 $E=27~MeV.~Magnetic~spectrograph~with~spark~counter.~\sigma(\theta)~at~10~angles~(10^{\circ}-80^{\circ}),~compared~with~DWBA~calculations.$

¹¹³In Levels

E(level)	$J\pi^{\dagger}$	L	C2S‡	Comments
0.0	9 / 2+	4	0.15	
393 5	1/2-	1	0.083	
648 5	3 / 2 –	1	0.078	
$1026 \ 5$	5 / 2+	2	0.30	E(level): probable doublet.
1066 5	3 / 2+	2	0.090	
1133 5	5 / 2+	2	0.021	
1194 5	7 / 2+	4	0.19	
$1571 \ 5$	7 / 2 + , 9 / 2 +	4	0.022,0.03	
1634 5		(3, 4)		
1774 10	3 / 2+	2	0.099	
2048 10	7 / 2+	4	0.063	
2104 10	11/2-	5	0.028	
2376 10	11/2-	5	0.11	
2559 10	11/2-	5	0.080	

 $^{^{\}dagger}$ Assumed for calculation of C^2S .

¹¹³Cd(p,nγ) 1990Vi09,1976Di03,1974Ki02

 $J\pi(^{113}Cd)=1/2+.$

1976Di03: E=6-11 MeV. Measured (semi) E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, E(ce), I(ce), excit. $\gamma(\theta)$ measured at 9 angles $(30^{\circ}-145^{\circ})$ at E=7.5 MeV.

1974Ki02: E=2.7-5.2 MeV. Measured neutron time of flight, Ey, Iy (semi), ny coin.

1990Vi09: E=6.8 MeV. Measured Ey, Iy (semi), yy.

The level scheme is as proposed by 1990Vi09, it is in agreement with the one given by 1976Di03 and 1974Ki02 upto the 1999-keV level. All levels above that have been proposed by 1990Vi09.

 113 In Levels

E(level)	$-\!$	†	E(level)	Jπ [‡]
0.0	9 / 2 +		1688.61 22	9 / 2 +
391.73 6	1/2-		1707.35 9	(3/2,5/2)+
646.76 6	3 / 2 –		1760.26 14	
1024.23 \$ 6	5 / 2+		1768.03 9	3/2+,5/2+,7/2+
1029.60 8	1/2+,(3/2+)	0.33 ns 3	1802.30 8	
1063.89 8	3/2+,(1/2+)	0.58 ns 3	1822.51 11	1/2,3/2,5/2
1106.46 9	3 / 2 - , 5 / 2 -		1835.68 19	
1131.45 6	5 / 2+		1865.36 22	5/2-,7/2-
1173.06 9	(7/2+,9/2+),11/2+		1914.08 10	3/2+,5/2+
1191.11 9	7 / 2 +		1920.77 10	3/2+,5/2+,7/2+
1344.91 10	(9/2+,11/2+),13/2+		1937.88 11	3/2-,5/2-
1351.01 20			1947.57 11	
1380.77 8	1/2-,3/2-		1999.13 12	1/2,3/2
1453.0 3			$2032.71\ 22$	
1471.87 9	3 / 2 - , 5 / 2 - , 7 / 2 -		2039.72 14	
1496.34 11			2051 . 45 12	
1504.0 5			2064 . 00 22	
1508.97 17	(3/2,5/2),7/2+		2070.10 14	
1535.93 10	3 / 2 - , 5 / 2 -		2095.38 8	
1552.0 4			2118.32 19	
1567.04 9	(5/2),7/2+,9/2+		2144.51 13	
1569.559	1/2-,3/2-		2170.32 14	
1618.89 10			2180.8 5	
1630.56 9	5/2+,7/2+,9/2+		2183.23 11	
1675.47 8			2253.39 11	
1684.12 9			2281.04 18	

Continued on next page (footnotes at end of table)

 $^{^{\}ddagger}$ C^2S normalized to the sum rule limit for the 3 lowest levels.

¹¹³Cd(p,nγ) 1990Vi09,1976Di03,1974Ki02 (continued)

$^{113} In \ Levels \ (conti\underline{nued})$

E(level)	E(level)	E(level)
2295.27 14	2383.83 16	2665.0 4
2331.24 21	2476.0 2	2727.98 23
2339.49 17	2515.6 4	2783.84 11
2371.64 12	2557.00 18	2904.8 3
2378.18 15	2560.46# 22	

- † From pulsed-beam $\gamma(t)$ with semi, 1971Ki14.
- $\dot{\ddot{\pm}}$ Based on $\gamma(\theta),~\gamma-decay$ properties, excit and systematics.
- $\mbox{\S}$ (A): Suggested members of rotational band with Nilsson Orbit 1/2+(431).
- $^{\#}$ A 1451.1 γ is given in Table 4 of 1990Vi09 but not in Table 2, does not fit in the level scheme.

$\gamma(^{113}In)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.§	δ	Comments
107.2 2	1131.45	0.5 1			
160.3 4	1835.68	0.4 1			
167.1 3	1191.11	0.6 1	M1(+E2)	<0.89	Mult.: α(K)exp=0.081 35 yields D(+Q). From decay scheme D=M1.
255.0 1	646.76	100 3	M1 (+E2)	<1.17	Mult.: from $\alpha(K)\exp=0.035$ 4.
266.8 2	1802.30	0.8 1	MI (1112)	\1.1 .	Huit Irom w(1)exp=0.000 4.
291.8 1	1999.13	1.4 1			
316.7 1	1380.77	4.4 2			
326.7 1	1835.68	2.3 1			
330.2 2	1802.30	0.2 1			
345.0 3	1535.93	0.6 1			
347.0 3	1914.08	0.3 2			
351.4 1	1380.77	5.7 3	E1		Mult.: from α(K)exp=0.0058 14.
377.6 1	1024.23	7.9 5	LI		Huit 110m w(11)exp=0.0000 11.
382.9 1	1024.20	2.5 1			
388.1 3	2095.38	0.3 1			
391.8 <i>1</i>	391.73	0.0 1			
394.0 5	1567.04	0.4 1			
411.5 1	2095.38	1.4 1			
416.9 1	1063.89	0.4 1			
429.5 2	1535.93	0.6 1			
457.7 2	1630.56	1.0 2			
459.8 2	1106.46	2.3 2	M1,E2		Mult.: from $\alpha(K)\exp=0.0074$ 20.
472.1 1	1496.34	4.0 2	M1, E2		Mult 110m u(K)exp=0.0074 20.
4/2.1 1	1535.93	4.0 2	E1		Mult.: from $\alpha(K)\exp=0.0024$ 6.
484.9 1	1131.45	5.5 3	E1		Mult.: from $\alpha(K)\exp(-0.0027)$ 7.
497.5 2	1688.61	2.7 2	M1,E2		Mult.: from $\alpha(K)\exp(-0.0027)$.
528.1 3	2095.38	0.5 1	M1, E2		Mult 110m u(K)exp=0.0002 10.
544.0 1	1675.47	2.2 1			
548.7 2	2118.32	0.6 1			
576.0 1	1707.35	2.6 2	M1,E2		Mult.: from α(K)exp=0.0043 11.
587.2 1	1760.26	1.7 1	M1, E2		Mult 110m u(K)exp=0.0045 11.
598.1 2	2070.10	7.4 4			
606.4 3	1630.56	4.8 3			
609.5 3	2118.32	6.3 4			
613.3 2	2113.32	0.4 1			
638.0 1	1029.60	37 2	E1		Mult.: from α(K)exp=0.00130 25.
030.0 1	1023.00	31 Z	13.1		$B(E1)(W.u.)=3.2\times10^{-6}$ 4.
646.5 2	2560.46	0.6 1			2(22)(11.41)=0.2/10
651.1 3	1675.47	0.6 1			
672.4 2	1063.89	20 1	E1		Mult.: from α(K)exp=0.00095 18.
012.4 2	1000.00	20 1	21		$B(E1)(W.u.)=1.61\times10^{-6}$ 14.
677.5 5	1707.35	1.4 1			
683.2 2	1707.35	3.2 2	M1,E2		Mult.: from $\alpha(K)\exp=0.0039$ 10.
689.5 2	2070.10	1.4 1	,		12410 11011 W(12)0Ap=0.0000 10.
696.0 2	1802.30	1.6 1			
711.0 3	2183.23	0.3 1			
714.9 2	1106.46	21 1	M1,E2		Mult.: from $\alpha(K)\exp=0.0022$ 3.
		-	,		

¹¹³Cd(p,nγ) 1990Vi09,1976Di03,1974Ki02 (continued)

$\gamma(^{113}\text{In}) \ (\text{continued})$

$E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.§	Comments
734.1 2	1380.77	0.7 1		
738.4 1	1768.03	1.1 1		
743.8 1	1768.03	5.6 3		
758.9 2	1865.36	2.6 1	M1, E2	Mult.: from $\alpha(K)$ exp=0.0018 4.
759.3 2	2378.18	2.5 3		
782.9 2	1914.08	0.9 1		
789.3 2 $792.9 1$	1920.77 1822.51	$\begin{array}{cccc} 1 & 0 & 1 \\ 4 & 5 & 2 \end{array}$		
808.0 3	1999.13	0.5 1		
813.9 2	2727.98	1.0 2		
825.0 1	1471.87	11 5	M1, E2	Mult.: from $\alpha(K)\exp=0.0022$ 4.
831.3 8	1937.88	0.2 1		
835.9 4	2180.8	1.0 1		
841.2 5	1947.57	0.9 1		
848.6 <i>1</i> 856.6 <i>2</i>	2039.72 1920.77	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
889.8 1	1914.08	10.5 5		
896.6 1	1920.77	4.6 2		
922.7 1	1569.55	8.3 5	M1, E2	Mult.: from $\alpha(K)$ exp=0.0018 3.
945.0 1	2051.45	1.2 1		
963.7 2	2095.38	1.5 2		
972.1 1	1618.89	1.1 1		
979.2 1 $989.0 1$	2170.32 1380.77	$egin{array}{cccc} 1 \ . \ 3 & 1 \\ 2 \ . \ 1 & 1 \end{array}$		
1000.1 2	2064.00	2.1 1		
1003.1 2	2032.71	3.9 4		
1024.3 1	1024.23	73 3	E2	
1034 . 4	2665 . 0	1.0 1		
1037.6 1	1684.12	6.8 4		
1040.5 5	2070.10	0.5 1		
1052.12 1060.4	2183.23 1707.35	1.7 1		
×1064.4 3	1707.55	0.2 1		
1076.5 3	2183.23	0.8 1		
1080.1 2	1471.87	5.0 4		
1114.9 1	2144 . 51	8.0 5		
1131.5 1	1131.45	31 2	E2	
1136.5 5	2904.8	0.4 1		
$1144.5 ext{ } 4 \\ 1147.1 ext{ } 4$	1535.93 2253.39	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
1149.8 3	2281.04	0.2 1		
1155.5 4	1802.30	0.3 1		
1159.5 2	2183 . 23	0.9 1		
1164.3 3	2295 . 27	0.6 1		
1173.1 1	1173.06	11.3 6	M1,E2	Mult.: from $\alpha(K)\exp=0.00090$ 15.
1177.8 1	1569.55	2.6 3	M1 E0	Multi-from g/Vione 0.00005 14
1191.1 <i>1</i> 1233.1 <i>2</i>	1191.11 2339.49	$egin{array}{cccc} 27&1&&&&&1&&&&1&&&&&&&&&&&&&&&&&&&&&&&&$	M1, E2	Mult.: from $\alpha(K)\exp=0.00085$ 14.
1256.7 2	2281.04	1.2 1		
1271.9 2	2378.18	1.4 1		
1274.4 4	2904.8	0.6 1		
1291.1 1	1937.88	6.5 4		
1300.8 1	1947.57	2.7 2		
1307.0 2	2331.24	1.2 1		
1315.3 <i>2</i> 1344.9 <i>1</i>	1707.35 1344.91	$ \begin{array}{cccc} 0 & 8 & 1 \\ 2 & 9 & 2 \end{array} $	E2	
1347.4 1	2371.64	1.4 1	112	
1351.0 ‡ 2	1351.01	2.8 2		
1352.0 4	1999.13	0.4 1		
$1359.6\ 2$	2383 . 83	0.6 1		
1409.1 3	2515.6	0.6 1		
1423.2 3	2070.10	0.6 1		
1430.8 2	1822.51	0.3 1		
			Continu	ed on next page (footnotes at end of table)

$^{113}\mathrm{Cd}(p,n\gamma)$ 1990Vi09,1976Di03,1974Ki02 (continued)

$\gamma(^{113}In) \ (continued)$

$E\gamma^{\dagger}$	E(level)	Ιγ [†]	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$
1451.0 2	2476.0	1.2 1	1567.0 1	1567.04	6.7 4	1802.2 1	1802.30	5.2 3
1453.0 # 3	1453.0	1.1 1	1606.6 1	2253.39	2.1 1	1861.7 2	2253.39	$2.3 \ 2$
x 1 4 5 4 . 1 5		0.7 1	1619.0 2	1618.89	5.0 5	1903.2 2	2295.27	0.9 1
1496.4 3	1496.34	0.4 1	1630.5 1	1630.56	6.3 4	1910.2 2	2557.00	0.5 1
1504.0 ‡ 5	1504.0	0.4 1	1648.6 2	2295.27	1.0 1	1947.6 5	2339.49	0.4 1
1509.0 2	1508.97	13.0 6	1675.5 1	1675.47	7.3 4	1992.1 3	2383.83	1.4 1
1532.8 3	2557.00	0.9 1	1692.6 3	2339.49	0.8 1	2051.4 2	2051 . 45	0.4 1
1536.0 3	2183.23	1.5 1	1731.0 3	2378.18	0.8 1	2095.2 1	2095.38	3.6 2
1546.3 3	1937.88	0.8 1	1737.0 3	2383.83	0.2 1	2137.0 2	2783.84	0.7 1
1552.0 ‡ 4	1552.0	0.4 1	1759.6 1	2783.84	3.2 2	x2475.3 3		0.2 1
1555.9 3	1947.57	0.4 1	1773.4 4	2904.8	0.5 1	2476.3	2476.0	

 $[\]dot{\dagger}$ From 1990Vi09, Iy at 90° to beam. $\dot{\ddagger}$ Not observed by 1976Di03.

 $[\]mbox{\$}$ $\alpha(K) exp$ calculated by evaluators normalizing 1024 $\!\gamma\!,$ 1132 $\!\gamma\!$ and 1345 $\!\gamma\!$ to E2 theory. These E2 assignments are based on adopted $J\pi$ values for the levels involved.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

$^{113}Cd(p,n\gamma) \\ \hspace{0.5cm} 1990Vi09, \\ 1976Di03, \\ 1974Ki02 \ (continued)$

Level Scheme

Intensities: relative $I\gamma$

$^{113}Cd(p,n\gamma) \\ \hspace{0.5cm} 1990Vi09, \\ 1976Di03, \\ 1974Ki02 \ (continued)$

Level Scheme (continued)

Intensities: relative $I\gamma$

$^{113}Cd(p,n\gamma) \\ \hspace{0.5cm} 1990Vi09, \\ 1976Di03, \\ 1974Ki02 \ (continued)$

Level Scheme (continued)

Intensities: relative $I\gamma$

¹¹³In(γ,γ') 1969Bo42

Bremsstrahlung, E=1000-1800. Measured yield of 392γ, semi, 1969Bo42.

Others: 1967Bo10, 1977Ca14.

 $1991 Vo05\ has$ shown a resonant and a non-resonant contribution to photoactivation process.

¹¹³In Levels

E(level)	$J\pi^{\dagger}$	$\underline{\hspace{1cm}}^{\dagger}$	Comments
0.0	9 / 2+	stable	
392	1/2-	1.6582 h 6	
1025 5			
1130 10			
1177 1	11/2+	60 fs 6	E(level): from 1977Ca14. $T_{1/2}$ from Γ of level.
1500 10			"-
1630 10			

[†] From adopted levels.

¹¹³In(d,d') 1967Hj03

E=15 MeV. θ =45° and 60°, magnetic-wedge spectrograph, 1967Hj03.

¹¹³In Levels

$-\frac{E(level)^{\dagger}}{}$	Jπ [‡]		$-\frac{E(level)^{\dagger}}{-} - J\pi^{\ddagger}$
0.0	9 / 2+	1648 15	2290 15 (+)
1117? 15	(7/2+)	1697? 15	2380 15
1187 15	(13/2+)	1786 15	2450 15 (-)
1360 15	(11/2+)	1980? 15	2540 15
1477? 15		2120 15	2610 15
1520? 15	(9/2+)	2180 15 (-)	
1587? 15		2240 15	

[†] Systematically≈15 keV too high in comparison to adopted values.

113 In(α , α ') 1968St17

E=42.2 MeV. Measured $\sigma(\theta)$ semi, energy resolution ≈ 100 .

¹¹³In Levels

<u>E(level)</u>	$\frac{\mathbf{L}^{\dagger}}{}$	<u>E(level)</u>	$\frac{\mathbf{L}^{\dagger}}{}$	[†] From differential cross sections between 30° and 80°, characteristic shape.
1170	2	2170	3	
1360	2	2480	3	
1560 20	9			

 $[\]dot{\bar{\tau}}$ π from the ratio $\sigma(45)/\sigma(60).$ Spin assignments from the strengths.

Coulomb Excitation 1976Tu02

 $E(\alpha)=9.4,\ 10.0,\ 10.6\ MeV.$

 $E(^{16}O)=42, 45 \text{ MeV}.$

Enriched target (96%) were chemically processed to eliminate contaminants.

Measured: γ singles, $\gamma(\theta)$ and $\gamma\gamma$ coin, semi, Doppler broadening.

Others: 1970Be02, 1974Er06, 1974Le34.

¹¹³In Levels

B(E2) B(E2) and B(E3) values were calculated from measured yield at 55° in $^{113}In(\alpha,\alpha'\gamma);$ see 1976Tu02.

E(level)	$J\pi^{\dagger}$	T _{1/2}	Comments
0.0	9 / 2+	stable	
391.7 8	1/2-		
646.9 8	3 / 2 –		B(E3)=0.0048 5.
1024.2 7	5 / 2+	3.6 ps 3	B(E2)=0.0075 6.
			$T_{1/9}$; from B(E2). 3.8 ps 7 from DSA.
1131.7 7	5 / 2+	0.97 ps 7	$B(E2) = 0.0160 \ 10.$
			$T_{1/2}$: from B(E2).
1173.0 7	11/2+	0.07 ps‡ 4	B(E2)=0.093 6.
			$T_{1/2}$: from B(E2).
			$J\pi$: $x,\gamma(\theta)$ for 171γ and 1173γ consistent with $11/2+$ only.
1344.4 8	13/2+	0.33 ps 3	B(E2)=0.053 3.
			$J\pi\colonx,\gamma(\theta)$ gives 9/2+ or 13/2+. $T_{1/2}(DSA)$ and $B(E2)$ not mutually consistent with 9/2+.
			$T_{1/2}$: from B(E2). 0.28 ps 7 from DSA.
1509.5 8	7 / 2 + , 9 / 2 +	$\leq 0.2 \text{ ps}^{\ddagger}$	B(E2)=0.0145 10.
			$T_{1/2}$: from $B(E2)$.
			$J\pi$: from $x,\gamma(\theta)$ and adopted levels.
1566.9 8	7 / 2 + , 9 / 2 +	0.24 ps [‡] 10	B(E2)=0.0178 12.
			$J\pi$: from $x,\gamma(\theta)$ and adopted levels.
			$T_{1/2}$: from $B(E2)$.
1630.7 7			B(E2)=0.0032 12.

 $^{^{\}dagger}$ From adopted levels, except as noted.

$\gamma(^{113}In)$

$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡	Mult.§	δ	Comments
107.5	1131.7	0.9 2			
171.4	1344.4	2.1 1	M1+E2	+0.03 3	$B(M1)(W.u.)=0.28\ 3;\ B(E2)(W.u.)=7\ +14-7.$
255.3	646.9				
377.3	1024.2	9.0 6			
377.8	1509.5	6.5 32			
391.7	391.7				
393.9	1566.9	12.5 9			
457.7	1630.7	25.9 48			
484.8	1131.7	14.0 3	E1(+M2)	-0.035	δ : -3.0 5 excluded from transition strength.
					$B(E1)(W.u.)=(0.00037\ 3);\ B(M2)(W.u.)=(6\ +22-6).$
606.5	1630.7	≤1.0			
1024.2	1024.2	91.0 6	E2		B(E2)(W.u.)=3.9 4.
1131 . 7	1131.7	85.1 5	E2		B(E2)(W.u.)=8.2 6.
1173 . 0	1173.0	100			
1344.4	1344.4	97.9 1	E2		B(E2)(W.u.)=11.8 11.
1509.5	1509.5	93.5 32			
1566.9	1566.9	87.5 9			
1630.7	1630.7	73.1 48			

 $^{^{\}dagger}$ Uncertainty not given, 1 keV assumed by evaluator.

[‡] From DSA-method line shapes in 113 In(16 O, 16 O' γ).

 $[\]ensuremath{\ddagger}$ % photon branching from each level.

[§] Mult and δ from $\gamma(\theta).$

Coulomb Excitation 1976Tu02 (continued)

Level Scheme

Intensities: relative $I\gamma$

¹¹⁴Sn(d, ³He) 1969Co03

E=22 MeV. Measured $\sigma(\theta)$, $\theta=30^{\circ}-70^{\circ}$, 1969Co03.

¹¹³In Levels

E(level)	$J\pi^{\ddagger}$	$\frac{L^{\dagger}}{}$	$\frac{C^2S}{}$	
0.0	9 / 2+	4	6.0	
380 25	1/2-	1	1.3	
635 25	3 / 2 -	1	1.7	

- † From comparison with DWBA calculations.
- \ddagger Assumed for calculation of C^2S .

¹¹⁵In(p,t) 1974Ma09

 $J\pi(^{115}In)=9/2+.$

E=17, 19 MeV. $\sigma(\theta),~\theta=5^{\circ}-50^{\circ}$ with magnetic spectrograph, 1974Ma09.

L-values are from comparisons with DWBA calculations.

¹¹³In Levels

E(level)	_L_	E(level)	_L_	E(level)	_L
0.0	0	1569	2	2230	(3)
1026	2	1634	(3)	2263	(3)
1133	2	1758	0 + 2	2407	(3)
1171	2	2094	(3)	2439	(3)
1345	2	2116	(3)		
1511	2	2167	(3)		

$^{116}{\rm Sn}(p,\alpha)$ 1976Sm04

 $^{113}_{\ 49}\mathrm{In}_{64}\text{--}31$

E=22 MeV. Measured $\sigma(\theta)$, $\theta=10^{\circ}-60^{\circ}$, 1976Sm04.

¹¹³In Levels

E(level)	$-J\pi^{\dagger}$	E(level)	$-\frac{J\pi^{\dag}}{}$	E(level)
0.0	9 / 2+	1561 3	9 / 2+	2249 5
393 1	1/2-	1633 3	9 / 2+	2369 5
645 1	3 / 2 -	1753 4		2451 5
1110 2	5 / 2 –	1944 4		2586 5
1349 3	13/2+	2092 4		

 $^{^{\}dagger}$ From comparisons of $\sigma(\theta)$ with known transfers in $^{118}Sn(p,\alpha).$

Adopted Levels, Gammas

 $Q(\beta^-) = -3913 \ 17; \ S(n) = 7743.1 \ 18; \ S(p) = 7626 \ 5; \ Q(\alpha) = -2250 \ 5 \ 2003 Au 03.$

¹¹³Sn Levels

Cross Reference (XREF) Flags

For neutron resonance, see ¹¹²Sn(n,y) (1981MuZQ).

1556.50 10

3/2 +

For gross structure of deeply bound hole states in odd tin isotopes observed with the $(^3\text{He},\alpha)$ reaction, see 1978Ta22. For onset of neutron single-particle strengths with $(\alpha,^3\text{He})$ at 183 MeV, see 1991Ma06.

$K^{-115}Sn(p,t)$ A ¹¹³Sn IT Decay (21.4 min) $F^{-112}Sn(n,\gamma)$ E=95 eV B 113Sb ε Decay $G^{-112}Sn(d,p),^{114}Sn(d,t)$ $L^{-114}Sn(p,d)$ IAS $C^{-110}Cd(\alpha,n\gamma)$ $H^{-113}In(p,n\gamma)$ M 100Mo(18O,5nγ) $D^{-111}Cd(\alpha,2n\gamma)$ $I^{-113}In(p,3n\gamma)$ $J^{-114}Sn(p,d)$ $E^{-112}Cd(\alpha,3n\gamma)$ E(level)# $J\pi^{\dagger}$ XREF T_{1/2}§ Comments 0.0 1/2+ ABCDEFGHI JKLM 115.09 d 3 $\%\epsilon + \%\beta^{+} = 100$. $\mu = -0.8791$ 6 (1989Ra17). u: atomic beam. T_{1/2}: from weighted average of 115.2 d 8 (1972Em01), 115.07 d 10 (1972La14), 115.09 d 4 (1980Ho17), 115.12 d 13 (1982RuZV), and 115.08 d 8 (1992Un01). The reduced- χ^2 = 0.03. Because this set of values is consistent, the Limited Relative Statistical Weight method (1985ZiZY, 1992Ra09) does not increase the uncertainty for the 1980 Ho17 value even though it contributes 66% of the relative weight. If the 1980Ho17 uncertainty were increased from 0.04 to 0.056 in order to decrease its relative weight to 50%, the weighted average average would still be 115.09 with an uncertainty of 0.04. The very small reduced- $\!\chi^2$ value suggests that the reported uncertainties are overestimated. Other measurements: 107 d (1959Bu08), 115.12 d 20 (1976MeZR, replaced by 1982RuZV), and 115.06 d 7 (1982HoZJ, replaced by 1992Un01). Jn: atomic beam (1976Fu06), L(d,p)=0. 77.389 19 ABCDE GHIJK 21.4 min 4 %IT=91.1 23; % ϵ +% β +=8.9 23 (1961Sc12). 7/2 + $T_{1/2}$: from 1974Ho17. Others: 21 min 1 (1961Se08), 20 min 1 (1961Sc12). %IT from I(Kα x ray, 113In)/I(Kα x ray, 113Sn). $J\pi\text{:}$ atomic beam (1976Fu06), 77γ is M3(+E4).409.83 4 BCD GHIJK $J\pi$: L(d,p)=2, $\sigma(d,p)/\sigma(d,t)$ favors 5/2+. 5/2 +498 07 5 BCD FGHLIK >0.35 ps 3/2 + $J\pi$: L(d,p)=2, $\sigma(d,p)/\sigma(d,t)$ favors 3/2+. 738 4b 3 11/2-CDE GHIJ M 86 ns 2 μ =-1.293 16 (1989Ra17); Q=+0.41 1 (1989Ra17). μ: μ and Q: differential perturbed angular distribution. $J\pi$: L(d,p)=5, M2(+E3) γ to 7/2+. $T_{1/2}$: unweighted av of 88 ns 3 (1973IsZQ), 89 ns 3 (1974Di18), 82.1 ns 17 (1974Br29). 1013.94 14 3/2 +BCD GH 0.2 ps 1 E(level): a level with L(d,p)=2 observed at 1014 5, may correspond to either 1013.22 or 1018.09 level. $J\pi: log ft=5.86 \ 3 \ from \ 5/2+, \ M1+E2 \ \gamma \ to \ 1/2+.$ 1018.08 5 ні к 5/2 +BCD 1.0 ps 5 $J\pi$: allowed ϵ decay from 5/2+. E2 γ to 1/2+. 3 / 2 + , 5 / 2 + 1042 25 J E(level): from (p,d), possibly same as 1018 level. $J\pi: L(p,d)=2.$ 1140 25 J 1248.7 3 D н 1284.06 11 5/2 +BCD $_{\rm HI}$ 0.5 ps 2 J π : E2 γ to 1/2+. log ft=6.93 7 from 5/2+. 1303 25 1/2 + $J\pi$: L(p,d)=0. 1314.07 15 3/2 +BCD FGHI $J\pi$: L(d,p)=2. $1\,3\,5\,5\,.\,9\,0\quad 2\,0$ 3/2 +CDні 0.7 ps 3 $J\pi\colon$ M1 γ to 1/2+. 1472 54 15 5/2+CDнт 0.8 ps 5 $J\pi\colon\,\gamma(\theta)$ gives 3/2,5/2. E2 to 1/2+ g.s. 1537 5 (7/2+,9/2+) G $J\pi: L(d,p)=(4).$ 1539.0 7 $^{\mathrm{CD}}$ ні 0.6 ps 1 Jπ: M1+E2 γ to 1/2+. 5/2+1539.9 4 (11/2-)CDHI 0.2 ps 1 $J\pi$: from $\gamma(\theta)$, γ to 11/2-.

Continued on next page (footnotes at end of table)

 $J\pi$: allowed ϵ decay from 5/2+, M1 γ to 1/2+.

BCD FGHI

$^{113}\mathrm{Sn}$ Levels (continued)

1646.06 14				
	3 / 2 + , 5 / 2 +	BCD H		$J\pi$: $L(d,p)=2$.
	,			E(level): the 1646 level in (d,p) could also correspond to
				the 1651 level.
1647.2 3		D		
1651.62 17	5 / 2 +	BCD H J		J π : L(p,d)=2, M1 γ to 7/2+.
1732.22 17	(3/2+,5/2+)	BCD H		J π : log $ft = 6.05$ 5 from 5/2+.
1744.81 14	3 / 2 + , 5 / 2 +	BCD HIJ	0.31 ps 8	J π : L(d,p)=2 at 1745 5.
1781.1 3	9 / 2 -	D HI	0.19 ps 7	J π : M1+E2 γ to 11/2- and γ to 7/2+.
1821.0 3	1/2+	СНЈ		$J\pi$: $L(d,p)=0$.
1831.0 3	1/2+	C H J	0 99 10	J π : L(p,d)=0.
1867.28 20	5/2+	CD HI	0.33 ps 10	Jπ: M1,E2 γ to 3/2+,5/2+, γ (θ) in 113 In(p,n γ). Jπ: stretched E2 to 11/2
1906.6 ^b 4 1909.64 18	15/2 - (5/2 + , 7/2 +)	CDE GHI M CD HI	0.8 ps 2	JR: stretched E2 to 11/2 JR: γ 's to $3/2+,5/2+$, $\gamma(\theta)$ in 113 In(p,n γ).
1909.64 18	(3/2+, 7/2+) (11/2-)	CD HI	1.9 ps 8	$J\pi$: γ to $3/2+,3/2+$, γ to $11/2-$, M_1+E_2 γ to $11/2-$.
1945.3 4	(9/2-)	CD HI	0.40 ps 20	$J\pi$: γ to $11/2-$, $M1+E2$ γ to $11/2-$.
1952.1 4	13/2-	CDE HI	1.0 ps 4	J π : γ to $11/2-$. J π : γ to $11/2-$, $\gamma(\theta)$ in 113 In(p,n γ).
1957.05 16	3/2(+),5/2(+)	В	1.0 ps 4	$J\pi$: log ft =6.40 10 from 5/2+, γ to 1/2+ and 7/2+.
2031.4 3	3/2(+),3/2(+)	D H		σκ. log /1-0.40 10 110m σ/2+, / to 1/2+ and 1/2+.
2031.4 5	7 / 2 +	CD H	0.2 ps 1	J π : γ 's to 3/2+,5/2+ and 5/2+,7/2+. $\gamma(\theta)$ in $^{113}In(p,n\gamma)$.
2045.47 20	(3/2+,5/2+)	B E JK	0.2 ps 1	$J\pi$: log ft = 6.63 12 from 5/2+, γ to 7/2+.
2050 5	1/2-,3/2-	G G		E(level): probably not identical to 2045 level from γ decay.
	· = , - · =	21		$J\pi$: $L(d,p)=1$.
2105 5	(3/2-)	G		$J\pi$: L(d,p)=1, and from shell-model syst.
2128.14 21	3/2+,5/2+	B G		$J\pi$: $L(d,p)=2$ at 2129 5, the 2129 level in (d,p) does not
	,			seem to correspond to the 2134 level (no γ to g.s.).
2135.0 3		D H		
2176.27 18	7/2+	D HI	0.3 ps 2	$J\pi$: M1 γ to 5/2+ and 7/2+.
2200.7 3	5 / 2+	CD GHI	>0.24 ps	J π : M1+E2 γ to 3/2+, $\gamma(\theta)$ in ¹¹³ In(p,n γ).
2258.6 3	5 / 2+	CD HI	0.3 ps 1	$J\pi$: from $\gamma(\theta)$ and linear polarization in $(\alpha,2n\gamma)$.
2275.8 3	1/2-,3/2-	D GH		$J\pi$: $L(d,p)=1$.
2336.7 4	11/2-	CD HI	0.35 ps 8	$J\pi$: γ to $11/2-$.
$2385.77 \ 25$	7 / 2+	CD H	0.7 ps 6	$J\pi$: γ 's to $5/2+$.
2410 . 8 5		D		
2448 . 38 23	7 / 2+	CD HI		Jπ: M1+E2 γ to 5/2+.
2457.11 22		C H		
2467.9 3		H		
2506.0 3		CD H		440
2512.0 3	(3/2,5/2)	CD H		J π : γ to $3/2+,5/2+$, $\gamma(\theta)$ in $^{113}In(p,n\gamma)$.
2538.27 22	3 / 2 + , 5 / 2 +	В НІ		$J\pi$: $L(d,p)=2$.
2540 5	5/2-,7/2-	G		$J\pi$: $L(d,p)=3$.
2540.0 4	(15/2-)	CD H	0.07 ps 3	J π : E2 γ to 11/2
2552.4 3	(3/2,5/2,7/2)	D H		J π : γ 's to 3/2+,5/2+, $\gamma(\theta)$ in $^{113}In(p,n\gamma)$.
≈ 2579		F		E(level): not the same as 2583 level with $J\pi$ between $7/2-$
0500 2 4	(15/9)	CD III	0 99 0	and 15/2
2582.3 4 $2590.77 22$	(15/2-)	CD HI HI	0.22 ps 9	$J\pi$: E2 γ to 11/2
2616.7 5		С НІ		
2619.4 4		D HI		
2620 5	1/2+	CD GHI		E(level): could correspond to 2617 or 2624 level, who have
2020 0	1/41	OD GIII		γ feeding to low $J\pi$.
				$J\pi$: L(d,p)=0.
2624.04 21		CD H		· ···· · · · · · · · · · · · · · · · ·
2649.0 4	(9/2-)	CD H		
2662.8 3	(3/2+,5/2+)	CD HI		$J\pi$: γ to $3/2+,5/2+, \gamma(\theta)$ in $^{113}In(p,n\gamma)$.
2671.1 4		CD H		
2675.3 4		D		E(level): from coin between 1284-583-808 gammas.
2700 . 4 4		D	0.4 ps 1	-
2717.8 4	(11/2-)	D	-	$J\pi$: M1 γ to 11/2
2749.7 4	17/2-	D	0.21 ps 7	Jπ: E2 γ to 13/2
2764 5	(7/2)-‡	G	_	$J\pi$: $L(d,p)=3$.
2777.9 4		CD GHI		
2111.0 1				
2780 5		F		
	19/2-	F CDE I M	0.31 ps 10	$J\pi$: stretched (E2) to 15/2

¹¹³Sn Levels (continued)

E(level)#	$J\pi^{\dagger}$	XREF		T _{1/2} §	Comments			
2851.6 4	(17/2-)	D		1.2 ps 6				
2862 5	$(7/2) - \div$	G		1.2 ps 0	$J\pi$: $L(d,p)=3$.			
2888.9 4	(1/2)	CD H			σπ. L(d,p)-σ.			
2915.9 4		D II						
2932.2 5		В						
2956.5 4		CD H						
2975.0 4	(19/2-)	CDE I	M	0.28 ps 14				
3004 5	1/2-,3/2-	G		0.20 pt 11	$J\pi$: $L(d,p)=1$.			
3080 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3091.2 4	19/2-	DE I	M	0.45 ps 18	$J\pi$: (E2) to 15/2			
3128.7 5	21/2-	CDE I		•	Jπ: M1,E2 to 19/2			
3130.3 5		D	M					
3138.9 6		D						
3204 5	1 / 2 - , 3 / 2 -	G			$J\pi$: $L(d,p)=1$.			
3223.2 5	(19/2)-	D	\mathbf{M}	>1.4 ps	$J\pi$: Q γ to 15/2			
3307 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3409.5@6	17/2		M					
3412.5 4		D						
3418 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3420 . 4 5	(21/2-)	D	M		$J\pi$: M1+E2 γ to (21/2-).			
3456.5 5		D						
3458.3 5	(23/2-)	DE	M		$J\pi$: M1,E2 to (21/2-).			
3494 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3499 5		G						
3539 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3584 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3680.4 6	(23/2-)	E			$J\pi$: M1+E2 γ to (21/2-).			
3696 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3743 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3796 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3808 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3822 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3837.5 6	_	D						
3846 5		G						
3873 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3901.9 5	(23/2-)	DE	M	0.6 ps 2	$J\pi$: (E2) γ to 19/2			
3906 2	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
3913.8 6	(21/2-)	D			$J\pi$: M1 γ to (19/2-).			
3960 5	(00/0)	G	3.5	0.5 0	I M1. F9 4. (01/0)			
3972.15 40225	(23/2-)	DE	M	0.5 ps 2	$J\pi$: M1+E2 γ to (21/2-).			
4044 5	(7/2)-‡	G F			I_{π} : $I(d, n) = 2$			
4044 5 4051.8 [@] 5		Р	м		$J\pi$: $L(d,p)=3$.			
4051.80 5	21/2	DE	M M	0 60 20 20	Im: F1 v to 22/2 o three quest partials poutron			
4056.0 6	25/2+	DE	IVI	0.69 ns 28	J π : E1 γ to 23/2-, a three quasi-particle neutron configuration proposed by 1997Ka40.			
					T _{1/2} : from γ -rf(t) in $(\alpha, 2n\gamma)$.			
4233 5	(7/2)-‡	G			J_{π} : $L(d,p)=3$.			
4265 5	$(7/2) = \frac{1}{7}$	G			$J\pi$: L(d,p)=3.			
4315 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
4335 5	***=/ '	G			······································			
4343 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
4364 5	* *	G			•••			
4397 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
4430 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
4438 5		G			-			
4475.1 6	(27/2+)	DE	M	>1.1 ps	$J\pi$: D+Q γ to (25/2).			
4504 5		G						
4589 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
4609 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
4649 5		G						
4714.4 6	(27/2-)	DE	M	0.31 ps 10	$J\pi$: (E2) γ to (23/2-).			
$4752.2^{@}6$	25/2		M					
4992 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.			
		_	_					
	Continued on next page (footnotes at end of table)							

¹¹³Sn Levels (continued)

E(level)#	$J\pi^{\dagger}$	XREF	Comments
5012 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5067 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5239 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5291 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5318 5		G	
5450 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5534.4 [@] 6	29/2	M	
5605.7 8	31/2+	M	
5645.6a 7	31/2-	M	
5647 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
6385.3 [@] 7	33/2	M	
6682.3ª 9	35/2-	M	
$7322.0^{@}9$	37/2	M	
7784.4 ^a 10	39/2-	M	
7883.1 4 10	39/2-	M	
8347.8@ 10	41/2	M	
8811.7ª 10	43/2-	M	
9014.0 % 10	43/2-	M	
9466.9@ 11	45/2	M	
9936.4 ^a 11	47/2-	M	
10209.7& 11	47/2-	M	
10589.1@ 12	49/2	M	
11242.0ª 12	51/2-	M	
11405.1 2	51/2-	M	
11723.5 [@] 13	53/2	M	
11826 50		L	IAS of ¹¹³ In g.s.
12254 50		L	IAS of 113 In 392 level.
12513 50		L	IAS of 113 In 647 level.
12642.9	55/2-	M	
12736.8ª 13	(55/2-)	M	
13034.6@ 14	57/2	M	
14032.6 4 14	59/2-	M	
14286.5a 14	59/2-	M	
14577.5@ 15	(61/2)	M	
15653.9& 15	(63/2-)	M	
15990.8ª 18	(63/2-)	M	
16309.8@ 18	(65/2)	M	
17504.3 4 18	(67/2-)	M	
18219.8? [@] 20	(69/2)	M	

 $^{^{\}dagger}~J\pi$ without comments are based on band assignments.

 $\gamma(^{113}\mathrm{Sn})$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	δ	α	Comments
77.389	77.38 2	100	M3+E4	0.13 2	181 5	Mult.,δ: see ¹¹³ Sn IT decay (21.4 min). B(M3)(W.u.): the calculated B(E4)(W.u.) gives 140 50 which violates RUL.
						B(M3)(W.u.)=0.0281 15; $B(E4)(W.u.)=140$ 50.
409.83	332 . 41 5	100 4	M1 + E2	-0.082		
	409.9 2	0.87 11				
498.07	88.25 2	3.4 4				
	420.7 2	0.3 2				
	497.96 9	100 5	$\mathrm{M1} + \mathrm{E2}$	0.12 6		$B(M1)(W.u.) {<} 0.49; \ B(E2)(W.u.) {<} 44.$
			Continued or	n next page (foo	otnotes at end of	table)

 $[\]ensuremath{^\ddagger}$ J is assigned to 7/2 from shell-model syst.

 $[\]S$ In the ps range are from Doppler shift in $(\alpha,2n\gamma)$ (1991Vi09).

 $^{^{\#}}$ From least-squares fit to γ energies.

^{@ (}A): $\Delta J \text{=} 2$ band based on 17/2.

[&]amp; (B): $\Delta J{=}2$ band based on 39/2-.

 $^{^{\}rm a}$ (C): $\Delta J{=}2$ band based on 31/2-.

b (D): Proposed neutron h11/2 band. $\Delta\,J{=}2$ spacings.

$\gamma(^{113}Sn) \ (continued)$

E(level)	$\underline{\hspace{1cm} \mathbf{E} \gamma^{\dagger}}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$	Mult.‡	δ	α	Comments
738.4	661.0 3	100	M2 (+E3)	<2.6	0.0133 16	Mult.,δ: from 1972Br38. RUL gives δ≤0.65, then B(M2)(W.u.)=0.10 2. B(M2)(W.u.)>0.015?; B(E3)(W.u.)<300.
013.94	603.0 4	0.65 14				
	936.7 2	100 5				
	1014.4 3	96 6	M1 + E2	0.5 1		B(M1)(W.u.)=0.041 21; B(E2)(W.u.)=8 5.
018.08	608.2 2	100 7	M1 + E2	3 1		B(M1)(W.u.)=0.006 5; $B(E2)(W.u.)=110$ 60.
	940.63 6	59 3	M1+E2	0.5 2		B(M1)(W.u.)=0.007 4; $B(E2)(W.u.)=1.6$ 13.
	1018.126	15 3	E 2			B(E2)(W.u.)=1.4 8.
248.7	838.9 3	100				
284.06	$786.1 \ 3$	11 1				
	873.9 4	6.3 3	M1 + E2	2.7 8		$B(M1)(W.u.) = 0.0004\ 3;\ B(E2)(W.u.) = 3.0\ 13.$
	1206.3 3	9 5				
	1284 . 2 2	100 5	E2			B(E2)(W.u.)=8 4.
314.07	816.3 3	18.3 22				
	1314.02	100 11	M1			
355.90	1356.0 3	100	M1 + E2	0.14 6		$B(M1)(W.u.) = 0.012 \ 6; \ B(E2)(W.u.) = 0.10 \ 10.$
472.54	1472.8 3	100	E 2			B(E2)(W.u.)=3.1 20.
539.0	1129.2 7	100	M1 + E2	-2.5 10		$B(M1)(W.u.) = 0.0035 \ 25; \ B(E2)(W.u.) = 14 \ 3.$
539.9	801.5 3	100	M1 + E2	-0.3 1		$B(M1)(W.u.) {=} 0.20\ 10;\ B(E2)(W.u.) {=} 22\ 18.$
556.50	242.6 3	2.2 5				
	273.4 8	3.6 4				Ey: not reported in $(\alpha, 2n\gamma)$.
	538.2 2	5.6 4				
	1058.3 2	5.2 5				
	1146.6 4	43 3				
	1478.8 2	11.5 15				
	1557.0 2	100 8	M1+E2	0.2 1		
646.06	1147.24	88 22				
	1568.9 2	34 4				
	1646.0 2	100 15				
647.2	1149.3 4	100 30				
051 0-	1237.1 4	30 15	3.51			
651.62	1241.6 3	100 20	M1	1.0 ~		
E00 00	1574.3 2	50 5	M1+E2	-1.0 5		
732.22	448.3 5	4.8 20				
	718.4 3	7 4	3.54			
	1234.2 3	100 13	M1			
F.4.4.01	1654.6 3	13.0 13				
744.81	725.3 10 $1247.1 3$	6 3 15 2	M1 . E0	2.1 15		B(M1)(W.u.)=0.0006 +8-6; B(E2)(W.u.)=1.4 6.
			M1+E2			B(M1)(W.u.)=0.0006 +8-6; $B(E2)(W.u.)=1.4 6$. B(M1)(W.u.)=0.014 6; $B(E2)(W.u.)=2.2 22$.
	1334.9 2 1667.5 3	$100 \ 5$ $41 \ 3$	M1+E2	0.6 4		D(MI)(W.U.)=0.014 0; D(E2)(W.U.)=2.2 22.
781.1	1042.6 5	100 5	M1+E2	-0.5 3		Mult.: δ=0.5 3 or -1.6 3.
	1042.0 0	100 0	W11 + £ 2	-0.00		Mult.: $o=0.5$ 3 or -1.6 3. B(M1)(W.u.)=0.08 4; B(E2)(W.u.)=14 +15-14.
	1703.8 4	5 2	[E1]			B(M1)(W.u.)=0.08 4; $B(E2)(W.u.)=14$ +15-14. $B(E1)(W.u.)=1.5\times10^{-5}$ 8.
821.0	1821.0 3	100	[11]			D(DI)(W.U.)-1.0/10 0.
831.0	1831.0 3	100				
867.28	394.8 3	11.3 25				
	583.2 3	100 5	M1+E2	0.15 10		B(M1)(W.u.)=0.30 10; B(E2)(W.u.)=15 +21-15.
906.6	1168.3 3	100 5	E2	0.10 10		B(E2)(W.u.)=10 3.
909.64	1411.7 2	100				_ (,(, 20 0 .
	1499.5 3	45 9				
935.4	1196.9 3	100	M1+E2	-5 3		B(M1)(W.u.)=0.0003 +4-3; B(E2)(W.u.)=3.6 16
945.3	1206.9 3	100	M1+E2	0.15 5		B(M1)(W.u.)=0.0003 +4-5, $B(E2)(W.u.)=0.010B(M1)(W.u.)=0.031 16$; $B(E2)(W.u.)=0.4 3$.
952.1	1213.6 3	100	M1+E2	3.4 2		$B(M1)(W.u.)=0.0031 \ 10$, $B(E2)(W.u.)=0.4 \ 3$. $B(M1)(W.u.)=0.0010 \ 4$; $B(E2)(W.u.)=6.1 \ 25$.
957.05	1458.9 2	85 8				
	1547.2 5	≈100				
	1880.1 4	33 4				
	1956.9 4	100 10				
031.4	1621.6 3	100 10				
1031.4	172.7 3	80 7	M1+E2	0.4 2		$B(M1)(W.u.)=5$ 3; $B(E2)(W.u.)=2.0\times10^4$ 20.
	567.2 3	80 7	M1+E2	6 3		B(M1)(W.u.)=0.004 4; $B(E2)(W.u.)=380$ 200.
	684.0 2	100 7	E2	- 0		B(E2)(W.u.)=190 100.

$\gamma(^{113}Sn) \ (continued)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ [†]	Mult.‡	δ	Comments
2039.88	755.8 3	47 5			
2045.47	573.0 3	53 5	(M1)		
	1547.9 5	≈ 1 0 0			
	1635.3 3	63 8			
	1968.3 5	35 5			
2128.14	1718.3 2	100			
2135.0	1725.2 3	100			
2176.27	892.1 3	64 4	M1+E2	-0.2 1	Mult.: δ =-0.2 <i>I</i> or -2.1 <i>6</i> . B(M1)(W.u.)=0.029 <i>20</i> ; B(E2)(W.u.)=1.2 +14-2.
	1766.4 3	100 8	M1		B(M1)(W.u.)=0.006 4.
	2099.0 3	56 4	M1		B(M1)(W.u.)=0.0020 14.
2200.7	1702.6 3	100	M1+E2	-0.53	B(M1)(W.u.) < 0.018; B(E2)(W.u.) < 2.0.
2258.6	786.0 3	67 25			
0077 0	974.6 4	100 8			
2275.8	1866.0 3	100	M1.E0	1 0 0	D(M1)(W) 0.0022 10. D(E2)(W) 2.7 0
2336.7 2385.77	1598.3 3 $518.4 5$	$\begin{array}{cc} 100 \\ 17 & 7 \end{array}$	M1+E2	1.9 2	B(M1)(W.u.)=0.0033 10; $B(E2)(W.u.)=3.7$ 9.
2000.11	913.2 3	100 30	M1+E2	0.4 2	B(M1)(W.u.)=0.03 3; $B(E2)(W.u.)=4 +6-4$.
	1101.8 4	14 7	MITTEL	0.4 2	B(M1)(W.d.)=0.00 0, B(B2)(W.d.)=4 10 4.
2410.8	543.5 4	100			
2448.38	975.8 3	70.8			
	1092.6 5	7 3			
	1164.3 3	100	M1+E2	1.4 6	
2457 . 11	$1959.1\ 3$	100 5			
	$2047.2\ 3$	14 1			
2467.9	1969.8 3	100			
2506.0	1034.04	66 22			
	1221.7 3	100 10			
2512.0	2013.9 3	100			
2538.27	2040.3 3	100 18			
2540.0	2128.33 633.33	60 10 70 5	M1+E2	-1.2 8	$B(M1)(W.u.)=0.21$ 19; $B(E2)(W.u.)=6.\times10^2$ 5.
2340.0	1801.6 3	100 5	E2	-1.2 8	B(E2)(W.u.)=8 4.
2552.4	1079.8 4	100 66	22		B(B2)(W.u.)=0 4.
	1268.4 3	100 20			
2582.3	1843.8 3	100			
2590.77	2092.9 3	12 3			
	2180 . 7 3	100 10			
2616.7	2206.9 5	100			
2619.4	282.7 3	33 13			
	838.4 4	100 13			
0.004 0.4	1881.0 3	60 7			
2624.04	879.4 3	56 3			
	1151.85 2213.93	$25 ext{ } 13$ $100 ext{ } 10$			
2649.0	1910.6 3	100 10	(E2)		
2662.8	2164.7 3	100	(22)		
2671.1	1932.7 3	100			
2675.3	808.0 4	83 33			
	1202.8 4	100 33			
2700 . 4	363.74	56 22			
	748.4 3	100 22			
	765.0 4	44 22			
	1962.0 3	78 22			
2717.8	381.1 5	66 33	Mi		
	772.5 3	100 33	M1		
2740 7	1979.43 797.73	100 33	(F2)		R(F2)(W n)=260 00
2749.7 2777.9	2039.5 3	$\begin{array}{cc} 100 \\ 100 & 12 \end{array}$	(E2)		B(E2)(W.u.)=260 90.
2806.6	900.0 3	100 12	E2		$B(E2)(W.u.)=100 \ 30.$
2851.6	899.1 4	100 50			
	945.0 2	84 11			
2888.9	2150.5 3	100			
			Continued or	n next page (fo	ootnotes at end of table)

$\gamma(^{113}Sn) \ (continued)$

E(level)	${\rm E}\gamma^{\dagger}$		Mult.‡	δ	Comments
2915.9	963.8 2	100 17			
	1009.1 5	17 8			
2932 . 2	1918.7 8	37 15			
	2433.9 8	100 19			
	2854 . 4 8	48 11			
2956.5	1672.4 3	100			
2975.0	225.3 3	60 30	M1+E2	0.25 5	$B(M1)(W.u.)=1.8 \ 13; \ B(E2)(W.u.)=1.7\times10^3 \ 15.$
	392.7 2	61 5			
	1068.3 3	100 30	E2		B(E2)(W.u.)=20 13.
3091.2	1184.7 3	100	E2		B(E2)(W.u.)=17 7.
3128.7	153.0	3 1			
0.4.0.0.0	322.4 3	100 13	M1+E2	0.15 5	
3130.3	510.9 5	100 57			
0100 0	1223.6 4	29 14			
3138.9	1271.6 5	100	0		Mult.: From ¹⁰⁰ Mo(¹⁸ O,5nγ).
3223.2 3409.5	1316.53 1502.65	100 100	Q D		Mult.: From ¹⁰⁰ Mo(¹⁸ O,5nγ). Mult.: From ¹⁰⁰ Mo(¹⁸ O,5nγ).
			Ъ		Muit.: FromMo(0,5πγ).
3412.5 3420.4	1502.83 291.72	100 100 <i>11</i>	M1+E2	0.35 15	
0420.4	613.9 4	39 11	M1+E2 M1+E2	0.35 15	
3456.5	1546.8 4	100	W11 TE2	0.4 1	
3458.3	329.3 3	100	M1+E2	0.16 5	
0.00.0	651.1 5	3.4 17	111111111111111111111111111111111111111	0.10 0	
3680.4	551.7 3	100	M1+E2	>10	
3837.5	379.2 4	33 17			
	708.7 4	100 8	M1		
3901.9	678.7 4	44 11	(E2)		$B(E2)(W.u.)=60 \ 30.$
	810.8 3	100	(E2)		$B(E2)(W.u.)=58 \ 20.$
3913.8	1107.2 3	100	M1		
3972.1	551.9 3	14 14	M1 + E2	>10	B(M1)(W.u.) < 0.00067.
	843.7 3	100 18	M1 + E2	0.25 5	$B(M1)(W.u.)=0.06 \ 3; \ B(E2)(W.u.)=4 \ 3.$
4051.8	$642.0\ 5$	100 5	E2		
	960.7 5	73 5	D		
4058.0	86.1 2	$40 \ 20$			
	$599.1\ 3$	$100 \ 20$	E 1		$B(E1)(W.u.)=1.4\times10^{-6}$ 7.
4475.1	$417.1\ 3$	100	M1 + E2	0.4 2	$B(M1)(W.u.) < 0.27; \ B(E2)(W.u.) < 320.$
4714.4	812.4 3	100	(E2)		B(E2)(W.u.)=160 60.
4752.2	700.3 5	88 5	E 2		
	850.5 5	100 5	D		
5534.4	782.3 5	100 4	E2		
	820.3 5	34.9 18	D		
5605.7	1130.6 5	100	E2		
5645.6	930.8 5	100	E2		
6385.3	739.4 5	17.8 9	D Fo		
6689 9	851.35 1036.75	100 3	E2		
6682.3 7322.0	936.7 5	100 100	E2 E2		
7784.4	1102.3 5	100	E2		
7883.1	1200.7 5	100	E2		
8347.8	1025.7 5	100	E2		
8811.7	928.4 5	≤14	E2		
= =	1027.4 5	100 4	E2		
9014.0	1130.8 5	91 5	E2		
	1229.6 5	100 5	E2		
9466.9	1119.1 5	100	E2		
9936.4	1124.75	100	E 2		
10209.7	1195.7 5	100	E2		
10589.1	1122 . 2 5	100	E2		
11242.0	1305.6 5	100	E2		
11405 . 1	1195 . 4 5	100	E2		
11723 . 5	1134 . 4 5	100	E2		
12642 . 9	1237 . 8 5	100	E 2		
12736.8	1494.8 5	100	(E2)		
			Continued o	n next page (foo	tnotes at end of table)

 $\gamma(^{113}Sn) \ (continued)$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡
13034.6	1311.1 5	100	E2
14032.6	1389.7 5	100	E2
14286.5	1549.7 5	100	(E2)
14577.5	1542.9 5	100	(E2)
15653.9	1621.3 5	100	(E2)
15990.8	1704.3 10	100	(E2)
16309.8	1732.3 10	100	(E2)
17504.3	1850.4 10	100	(E2)
18219.8?	1910.8 \$ 10	100	(E2)

 $^{^{\}dagger}$ Average from (p,n\gamma), (p,3n\gamma), (\alpha,2n), (\alpha,3n) when they are given.

[§] Placement of transition in the level scheme is uncertain.

 $^{113}_{50}\mathrm{Sn}_{63}$

 $[\]dot{\bar{\tau}}$ The M and δ are from $(\alpha,2n\gamma),$ unless otherwise noted.

¹¹³Sn IT Decay (21.4 min) 1961Sc12

Parent $^{113}{\rm Sn:~E=77;~J\pi=7/2+;~T}_{1/2}{=}21.4~{\rm min~4;~\%IT~decay=91.1~23.}$ Measured Ey, Iy, $\alpha(K){\rm exp~from~Iy~and~I(K~x-ray),~1961Sc12.}$

¹¹³Sn Levels

E(level)	Jπ	†	Comments
0.0	1/2+	115.09 d 4	
77	7 / 2+	21.4 min 4	J π : atomic beam (1976Fu06), 77 γ is M3(+E4).

[†] See adopted levels.

$\gamma(^{113}Sn)$

$\mathbf{E}\gamma$	E(level)	ΙγΫ	Mult.	δ	α	Comments	
77	77	0.55	M3+E4	0.13 2	181 5	Eγ: from 1960Se06; other: 79 3 (1961Sc12). Mult.,δ: M and δ: from α(K)exp=95 15 (1961Sc12) and α(K)exp/α(L)exp=1.7 I(1961Se08). %IT from I(Kα x ray, ¹¹³ In)/I(Kα x ray, ¹¹³ Sn).	
						$B(M3)(W,u_*)=0.029$ 3; $B(E4)(W,u_*)=150$ 50.	

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.911 23.

¹¹³Sb ε Decay 1976Wi10,1975WiZX

Parent \$^{113}\$b: E=0.0; $J\pi=5/2+$; $T_{1/2}=6.67$ min 7; Q(g.s.)=3913 17; $\%\epsilon+\%\beta^+$ decay=100. Chemical and mass separation. γ singles with escape-suppression spectrometer and semi, $\gamma\gamma$ coin, $\gamma(t)$, 1976Wi10, 1975WiZX.

Others: 1969Ki16, 1972Si28.

¹¹³Sn Levels

New levels are proposed only if they could be based on coincidence relations.

E(level)	Jπ	[†]	E(level)	Jπ
0.0	1/2+	115.09 d 4	1646.18 13	3/2+,5/2+
				<i>'</i>
77.39 2	7 / 2 +	21.4 min 4	1651.75 20	5 / 2+
409.774	5 / 2+		1731.90 17	(3/2+,5/2+)
498.01 5	3 / 2 +		1743.94 14	3 / 2 + , 5 / 2 +
1013.22 5	3 / 2 +		1957.02 16	3 / 2 , 5 / 2
1018.09 4	5 / 2 +		2045.39 23	(5/2+,5/2+)
1283.17 12	2 5 / 2 +		2128.08 21	3 / 2 + , 5 / 2 +
1314.04 14	4 3/2+		2540.34	3 / 2 + , 5 / 2 +
1556.369	3 / 2+		2931.9 5	

 † From adopted levels.

β+,ε Data

 ϵ branches were obtained from (γ +ce) imbalance at each level.

Εε	<u>E(level)</u>	Ιβ+	Ιε	Log ft	$\frac{I(\epsilon\!+\!\beta^+)}{}$
(981 17)	2931.9		0.040 6	6.42 7	0.040 6
$(1373 \ 17)$	2540.3	0.00036 8	0.131 11	6.20 4	0.131 11
(1785 17)	2128 . 08	0.0112 15	$0.213\ 24$	6.22 5	$0.224\ 25$
(1868 17)	2045.39	0.0067 18	0.088 23	6.64 12	$0.095\ 25$
$(1956\ 17)$	1957.02	0.017 4	0.164	6.42 10	0.18 4
(2169 17)	1743.94	0.090 10	0.424	6.10 5	0.51 5
(2181 17)	1731.90	0.10 1	0.46 5	6.06 5	0.566
$(\ 2\ 2\ 6\ 1\ \ 1\ 7\)$	1651.75	0.037 9	0.13 3	6.63 11	0.174
(2267 17)	1646.18	$0.11\ 2$	0.37 5	6.19 7	0.48 7
$(2357\ 17)$	1556.36	0.47 3	1.32 8	5.67 3	1.79 10
$(2599\ 17)$	1314 . 04	0.047 8	0.076 13	7.00 8	$0.123 \ 21$

Continued on next page (footnotes at end of table)

¹¹³Sb ε Decay 1976Wi10,1975WiZX (continued)

 β^+,ϵ Data (continued)

Εε	E(level)	Ιβ+	ε	Log ft	$I(\epsilon\!+\!\beta^+)$
(2630 17)	1283.17	0.058 8	0.088 12	6.94 6	0.146 20
(2895 17)	1018.09	1.76 9	1.67 8	5.750 24	3.43 16
(2900 17)	1013.22	1.34 7	1.26 7	5.874 25	2.60 13
(3415 17)	498.01	60.3 19	26.7 9	4.691 18	87.0 26
(3503 17)	409.77	4.2 19	1.7 7	5.92 20	5.9 26
(3836 † 17)	77.39	< 2	< 0 . 4	>6.6	<2.4

 $^{^{\}dagger}$ Existence of this branch is questionable.

 $\gamma(^{113}Sn)$

Measured Iγ of annihilation radiation is 168 4, 1976Wi10.

If normalization: Calculated from measured annihilation radiation intensity and theoretical ϵ/β^+ ratios by assuming no ϵ decay to g.s., since $I(\epsilon+\beta^+)$ to g.s. $<8\times10^{-5}\%$ from $\log ft>11$ for a second-forbidden transition.

Εγ	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.	δ	α	$I(\gamma\text{+ce})^{\dagger}$	Comments
77.38 2	77.39	0.13 1	M3+E4	0.13 2	181 5	23 1	Iy: from I(y+ce) and α (from adopted levels). I(y+ce): deduced from decay scheme. B(M3)(W.u.)=0.0309 14; B(E4)(W.u.)=160 50.
88.25 2	498.01	3.4 4	M1,E2		1.7 9		α: 88γ is M1,E2 from spin difference.
242.6 3	1556.36	0.029 6	,				,,
273.4 2	1556.36	0.047 5					
332.0 4	1646.18	0.030 14					
332.41 5	409.77	18.5 8					
409.9 2	409.77	0.16 2					
420.7 2	498.01	0.3 2					
448.3 5	1731.90	0.027 11					
497.96 9	498.01	100					
538.2 2	1556.36	0.073 5					
603.0 4	1013.22	0.014 3					
608.4 1	1018.09	0.50 3					
718.4 3	1731.90	0.04 2					
725.3 10	1743.94	0.015 8					
785.2 3	1283.17	0.019 4					
x801.0 2	1200.11	0.034 4					
816.3 3	1314.04	0.033 4					
x886.5 2	1011.01	0.10 2					
935.77 6	1013.22	2.14 11					
940.63 6	1018.09	3.27 16					
1013.28 6	1013.22	1.14 7					
1018.12 6	1018.09	0.60 3					
1058.3 2	1556.36	0.068 6					
*1128.8 2		0.034 4					
1146.6 4	1556.36	0.56 4					
1148.4 4	1646.18	0.14 4					
1205.7 3	1283.17	0.027 4					
1234.2 3	1731.90	0.56 7					
1236.8 7	1646.18	0.21 7					
1242.8 8	1651.75	0.14 5					
1246.2 3	1743.94	0.27 5					
1283.3 2	1283.17	0.21 2					
1314.0 2	1314.04	0.18 2					
1334.0 2	1743.94	0.21 2					
x1355.9 3		0.036 4					
x1390.7 2		0.058 5					
1458.9 2	1957.02	0.060 6					
1478.8 2	1556.36	0.15 2					
1547.2 5	1957.02	0.07 4					
1547.9 5	2045.39	0.06 3					
1556.3 2	1556.36	1.31 10					
1568.9 2	1646.18	0.055 6					
1574.3 2	1651.75	0.070 7					

¹¹³Sb ε Decay 1976Wi10,1975WiZX (continued)

$\gamma(^{113}Sn) \ (continued)$

Εγ	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Εγ	E(level)	Ιγ [†]	Εγ	E(level)	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$
1635.3 3	2045.39	0.038 5	1918.7 8	2931.9	0.010 4	2433.9 8	2931.9	0.027 5
1646.0 2	1646.18	0.16 2	1956.9 4	1957.02	0.071 7	2540.1 7	2540.3	0.061 8
1654.6 3	1731.90	0.073 7	1968.3 5	2045.39	0.021 3	x 2 6 2 4 . 6 6		0.015 3
1666.4 3	1743.94	0.122	x2006.7 6		0.033 4	x2791.5 13		0.011 3
1718.3 2	2128.08	0.28 3	x 2 0 1 4 . 7 6		0.044 6	2854.4 8	2931.9	0.013 3
1744.4 4	1743.94	0.026 4	2042.7 6	2540.3	0.056 7	x3143.7 12		0.016 3
x1806.1 3		0.035 4	2130.1 6	2540.3	0.047 6	x3192.5 12		0.014 3
1880.1 4	1957.02	0.024 3	x2304.8 7		0.016 3	x 3 6 0 5 . 6 13		0.021 5
x1889.4 3		0.078 7	x2337.2 7		0.015 3			

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.80 2.

 $^{^{}x}$ γ ray not placed in level scheme.

¹⁰⁰Mo(¹⁸O,5nγ) 1998Se14,1998Ch38

1998Se14: $^{100}\text{Mo}(^{18}\text{O},5\text{n}\gamma)$ E=94 MeV. Measured E γ , I γ , $\gamma\gamma(\theta)(DCO)$ using 20 Ge detectors and 71-detector BGO filter at "TASCC" facility at "CHALK RIVER".

See 1998Se14 for detailed orbital configurations for each band.

1998Ch39: 100 Mo(18 O,5n γ) E=70 MeV. Measured E γ , I γ , $\gamma\gamma$, using the OSIRIS spectrometer array.

The data of 1998Se14 are adopted. Only a figure is given in 1998Ch38, without table, however 1998Ch38 agree with the 1998Se14 until the 8810 level (43/2-).

¹¹³Sn Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level) †	$\underline{\hspace{1.5cm} J\pi^{\ddagger}}$
0.08	1/2+	4474.3 10	27/2+	10208.9@ 13	47/2-
77.48	7 / 2 +	4713.5 8	27/2-	10588.3# 14	49/2
738.48	11/2-	4751.6# 8	25/2	11241.2& 14	51/2-
1906.3 5	15/2-	5533.7 # 8	29/2	11404.3@ 14	51/2-
2806.1 7	19/2-	5604.9 11	31/2+	11722.7# 15	53/2
2973.8 7	19/2-	5644.8 8 9	31/2-	12642.1@ 14	55/2-
3091.0 7	19/2-	6384.6#9	33/2	12736.0 4 14	(55/2-)
3128.4 7	21/2-	6681.5	35/2-	13033.8# 15	57/2
3222.7 7	19/2-	7321.3 # 10	37/2	14031.8@ 15	59/2-
3409.1# 7	17/2	7783.6	39/2-	14285.7& 15	59/2-
3419.7 9	21/2-	7882.3 [@] 11	39/2-	14576.7# 16	(61/2)
3457.6 9	23/2-	8347.0 # 12	41/2	15653.1 [@] 16	(63/2-)
3901.3 % 7	23/2-	8810.9 2 12	43/2-	15990.0 4 18	(63/2-)
3971.6 8	23/2(+)	9013.2@ 12	43/2-	16309.0# 19	(65/2)
4051.4 # 7	21/2	9466.1 # 13	45/2	17503.5 [@] 19	(67/2-)
4057.1 9	25/2+	9935.6 4 13	47/2-	18219.8?# 20	(69/2)

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $\gamma(^{113}Sn)$

E(level)	$\mathbf{E}\gamma$	Ιγ	Mult.†	Comments
77.4	77.4 [‡]			
738.4	661.0 [‡]			
1906.3	1167.9 5	100.0 37	E 2	
2806.1	899.9 5	38.9 13	E2	DCO=0.97 3.
2973.8	1067.4 5	9.1 5	E2	DCO=1.01 10.
3091.0	1184.9 5	31.0 11	E2	DCO=0.98 4.
3128 . 4	154.5 5	≤1.0	M1,E2	
	$3\ 2\ 2\ .\ 4\ \ 5$	20.3 6	M1+E2	DCO=0.84 2.
3222 . 7	1316.4 5	17.7 7	E2	DCO=1.01 7.
3409.1	1502.6 5	3.3 3	D	
3419.7	291.3 5	1.9 1	M1+E2	DCO=1.16 12.
3457.6	329 . 1 5	7.82	M1 + E2	DCO=0.86 3.
3901.3	678.6 5	12.24	E2	DCO=0.97 9.
	810.3 5	23.2 8	E2	DCO=1.00 2 for 810.3+812.0.
3971.6	551.9 5	2.1 1	(E1)	DCO=0.66 7.
	843.3 5	9.3 3	(E1)	DCO=0.56 3.
4051 . 4	$642.0\ 5$	2.2 1	E2	DCO=1.02 13.
	960.7 5	1.6 1	D	
4057.1	85.5 5	≤1.0	(M1+E2)	
	$599.4\ 5$	7.62	E1	DCO=0.78 5.
4474.3	417 . 2 5	4.5 1	M1,E2	DCO=0.89 3.
4713.5	812.0 5	32.8 11	E2	DCO=1.00 2 for 810.3+812.0.
4751.6	700.3 5	3.8 2	E2	DCO=1.02 11.
	850.5 5	4.3 2	D	DCO=0.85 3 for 850.5+851.3.
5533.7	782.3 5	10.9 4	E2	DCO=0.95 8.
	820.3 5	3.8 2	D	DCO=0.58 9.
5604.9	1130.6 5	3.8 1	E2	DCO=1.09 10.

 $[\]dot{\ddagger}$ From 1998Se14, based on their $\gamma\gamma(\theta)(DCO)$ data and band assignments.

 $[\]$ From adopted levels, Rounded-off value.

 $^{^{\}text{\#}}$ (A): $\Delta J {=} 2$ band based on on 17/2 at 3409.5 Kev, [21,3].

^{@ (}B): $\Delta J = 2$ band based on on 39/2- at 7883.1 Kev, [21,4].

[&]amp; (C): $\Delta J {=} 2$ band based on on $31/2 {-}$ at 5645.6 Kev, [20,3].

$^{100} Mo(^{18} O, 5n\gamma) \qquad 1998 Se14, 1998 Ch38 \ (continued)$

 $\gamma(^{113}\mathrm{Sn})$ (continued)

E(level)	Εγ	Ιγ	Mult.†	Comments
5644.8	930.8 5	30.9 10	E2	DCO=0.98 2.
6384.6	739.4 5	2.1 1	D	DCO=0.61 20.
	851.3 5	11.8 4	E2	DCO=0.85 3 for 850.5+851.3.
6681.5	1036.7 5	23.2 7	E2	DCO=0.98 3.
7321.3	936.7 5	15.9 5	E 2	DCO=0.97 4.
7783.6	1102.3 5	13.6 4	E 2	DCO=1.00 5.
7882.3	1200.7 5	4.22	E 2	DCO=1.07 15.
8347.0	1025.75	12.6 4	E 2	DCO=0.98 8 for 1025.7+1027.4.
8810.9	928 . 4 5	≤1.0	E2	
	1027.45	7.3 3	E2	DCO=0.98 8 for 1025.7+1027.4.
9013.2	1130.8 5	3.9.2	E2	DCO=0.93 19.
	$1229.6\ 5$	4.3 2	E2	DCO=1.06 13.
9466.1	$1119.1\ 5$	7.8 3	E2	DCO=0.98 3 for 1119.1+1122.2.
9935.6	1124 . 7 5	6.3 2	E2	DCO=0.92 14.
10208.9	1195.75	3.5 2	E2	DCO=1.07 9 for 1195.4+1195.7.
10588.3	1122 . 2 5	6.9 3	E2	DCO=0.98 3 for 1119.1+1122.2.
11241 . 2	1305.6 5	3.9 1	E 2	DCO=1.05 9.
11404 . 3	1195.4.5	2.6 2	E 2	DCO=1.07 9 for 1195.4+1195.7.
11722 . 7	1134 . 4 5	7.2.2	E 2	DCO=0.95 6.
12642 . 1	1237.85	2.2 1	E 2	DCO=1.04 14.
12736 . 0	1494.8 5	1.5 1	(E2)	
13033.8	$1311.1\ 5$	3.2 1	E2	DCO=0.97 6.
14031.8	1389.7 5	1.9 1	E 2	DCO=1.11 18.
14285.7	1549.7 5	1.2 1	(E2)	
14576.7	1542.9 5	1.8 1	(E2)	
15653.1	1621.3 5	≤1.0	(E2)	
15990.0	1704.3 10	≤1.0	(E2)	
16309.0	1732.3 10	≤1.0	(E2)	
17503.5	$1850.4\ 10$	≤1.0	(E2)	
18219.8?	1910.8 \$ 10	≤1.0	(E2)	

 $^{^{\}dagger}$ Primarily from DCO.

¹¹⁰Cd(α,nγ) 1997Ka40,1976Ma09

1997Ka40: E=18 MeV. Measured: γ and ce singles, excit, $\gamma\gamma$ coin. Preliminary report was given in 1995KaZV. 1976Ma09: E=15-18 MeV. Measured: γ and ce singles, excit functions, $\gamma\gamma$.

¹¹³Sn Levels

	$J\pi^{\ddagger}$	T _{1/2}	E(level) [†]	Jπ [‡]
0.0	1 / 2+		1732.3 4	(3/2+,5/2+)
77.38 1	7 / 2+		1745.29 23	5 / 2+
410.37 18	5 / 2+		1781.5 3	9 / 2 -
498.16 16	3 / 2+		1831.0 3	
739.3 4	11/2-	86 ns § 2	1867.5 3	5 / 2+
1014.66 24	(1/2),3/2+		1907.6 5	15/2-
1018.36 21	5 / 2+		1909.9 3	(5/2+,7/2+)
1284.22 17	5 / 2+		1936.3 5	(11/2-)
1314.0 3	3 / 2+		1946.2 5	(9/2-)
1356.0 3	3 / 2+		1952.9 5	(13/2-)
1472.77 23	5 / 2+		2039.97 25	(7/2+)
1539.4 4	5 / 2+		2045.9 3	(3/2+,5/2+)
1540.8 5	(11/2-)		2176.9 5	7 / 2+
1557.0 3	3 / 2+		2200.8 4	5 / 2+
1645.2 4			2258.8 4	5 / 2+
1652.1 3	5 / 2+		2337.6 5	11/2-

[‡] Rounded-off value from adopted gammas.

[§] Placement of transition in the level scheme is uncertain.

$^{110}\mathrm{Cd}(\alpha,n\gamma)$ 1997Ka40,1976Ma09 (continued)

$^{113}\mathrm{Sn}$ Levels (continued)

E(level)	$J\pi^{\ddagger}$	E(level)	Jπ [‡]	E(level)	$-\!$
2386.0 4	7 / 2+	2617.3 4		2807.7 6	19/2-
2448.6 3	7 / 2 +	2620.1 4		2890.0 5	11/2-
2457.4 3		2624.7 4		2956.6 4	
2505.8 4		2649.9 5		2976.0 7	(19/2-)
2512.14	(3/2+,5/2+)	2662.9 4	(3/2+,5/2+)	3130.2 6	21/2-
2540.9 5	(15/2-)	2672.0 5			
2583.1 5		2750.7 6	17/2-		
2591.1 3		2778.8 5			

 $^{^{\}dagger}$ From least-squares fit to γ energies.

$\gamma(^{113}Sn)$

77.38 1 77.38 Eγ: from adopted levels, gammas. 172.4 3 2039.97 1.2 1 225.3 3 2976.0 0.5 2 322.5 3 3130.2 1.1 1 332.6 3 410.37 44 3 M1, E2 Mult.: from α(K)exp=0.0192 13. 498.1 2 498.16 30 2 M1 Mult.: from γ(θ) and linear polarization. 567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1, E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3. 755.8 3 2039.97 0.6 1	
172.4 3 2039.97 1.2 1 225.3 3 2976.0 0.5 2 322.5 3 3130.2 1.1 1 332.6 3 410.37 44 3 M1,E2 Mult.: from α(K)exp=0.0192 13. 498.1 2 498.16 30 2 M1 Mult.: from γ(θ) and linear polarization. 567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
225.3 3 2976.0 0.5 2 322.5 3 3130.2 1.1 1 332.6 3 410.37 44 3 M1,E2 Mult.: from α(K)exp=0.0192 13. 498.1 2 498.16 30.2 M1 Mult.: from γ(θ) and linear polarization. 567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
322.5 3 3130.2 1.1 1 332.6 3 410.37 44 3 M1,E2 Mult.: from α(K)exp=0.0192 13. 498.1 2 498.16 30 2 M1 Mult.: from γ(θ) and linear polarization. 567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
332.6 3 410.37 44 3 M1,E2 Mult.: from α(K)exp=0.0192 13. 498.1 2 498.16 30 2 M1 Mult.: from γ(θ) and linear polarization. 567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
498.1 2 498.16 30 2 M1 Mult.: from γ(θ) and linear polarization. 567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
567.2 3 2039.97 1.2 1 583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
583.2 3 1867.5 7.1 4 M1,E2 Mult.: from α(K)exp=0.0038 7. 608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
608.0 3 1018.36 2.5 2 M1 Mult.: from γ(θ) and linear polarization. 633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
633.3 3 2540.9 1.2 1 661.5 3 739.3 100 4 M2 Mult.: from γ(θ) and linear polarization. B(M2)(W.u.)=0.122 3.	
661.5 3 739.3 100 4 M2 Mult.: from $\gamma(\theta)$ and linear polarization. $B(M2)(W.u.) = 0.122 \ 3.$	
$B(M2)(W.u.)=0.122 \ 3.$	
786.0 § 3 2258.8 4.4 § 2	
786.1 § 3 1284.22 4.4 § 2	
$797.8 \ 3 \ \ 2750.7 \ \ \ 1.4 \ 1$	
801.5 3 1540.8 3.6 3 Ey: the placement of this transition is questionable. 1987Vi09 in (p,nγ) has found 801γ in coin with 662γ but not with 1018γ and 332γ.	
$838.4 \ 3 \ 2620.1 \ 2.3 \ 2$	
*838.9 [§] 3 2.3 [§] 2	
$873.9 \ 3 \ 1284.22 \ 2.0 \ 2$	
$879.4 \ 3 \ 2624.7 \ 1.1 \ 1$	
$892.6 \ 3 \ 2176.9 \ 2.8 \ 2$	
*899.7 § 3 3.9 § 2	
900.1 $^{\$}$ $^{\$}$ $^{\$}$ $^{\$}$ $^{\$}$ $^{\$}$ $^{\$}$ $^{\$}$	
$913.2 \ 3 \qquad 2386.0 \qquad 1.8 \ 1$	
$936.7 \ 3 \qquad 1014.66 \qquad 5.5 \ 3$	
$940.6 \ 3 \qquad 1018.36 \qquad 12.0 \ 6$	
$975.8 \ 3 \qquad 2448.6 \qquad 1.1 \ 1$	
$1014.4\ 3 \qquad 1014.66 \qquad 3.6\ 2$	
$1018.3 \ 3 \qquad 1018.36 \qquad 2.5 \ 2$	
$1042.3 \ 3 \ 1781.5 \ 6.8 \ 3$	
$1068.3 \ 3 \ 2976.0 \ 1.2 \ I$	
$1129.0\ 3 \qquad 1539.4 \qquad 4.4\ 3$	
1147.2 3 1645.2 1.5 I	
$1164.3 \ 3 \ 2448.6 \ 1.2 \ 1$	
$1168.3 \ 3 \qquad 1907.6 \qquad 22.1 \ 9$	
1197.0 3 1936.3 7.3 4	
$1206.9 \ 3 \qquad 1946.2 \qquad 3.8 \ 3$	
1213.6 3 1952.9 11.3 6	
1221.6 3 2505.8 0.9 2	
1234.1 3 1732.3 3.8 3	
1241.6 3 1652.1 4.0 3	
$1247.1 \ 3 \qquad 1745.29 \qquad 1.4 \ I$	
1284.2 3 1284.22 28 2 E2 Mult.: M1,E2 from $\alpha(K)$ exp=0.0006 1, E2 from $\gamma(\theta)$ and linear polarization.	

[†] From adopted levels. All the reactions works $(\alpha, xn\gamma)$ and $(p,n\gamma)$ of 1997Ka40 are in the same paper and have the same $J\pi$. From adopted levels. Measured in $^{111}Cd(\alpha, 2n\gamma)$.

$^{110}Cd(\alpha,n\gamma) \qquad 1997Ka40,1976Ma09 \ (continued)$

$\gamma(^{113}Sn)~(con\underline{tinued})$

$\underline{\hspace{1cm}}^\dagger$	E(level)	$I\gamma^{\dagger}$	Mult.‡	Comments
1314.0 3	1314.0	5.0 3	M1	Mult.: from $\gamma(\theta)$ and linear polarization.
1334.9 3	1745.29	7.3 4		
1356.0 3	1356.0	8.8 4		
1411.7 3	1909.9	3.7 3		
1472.8 3	1472.77	23.3 2	E2	Mult.: from $\gamma(\theta)$ and linear polarization.
1499.5 3	1909.9	2.92		
x 1 5 4 6 . 8 3		2.02		
1547.7 \$ 3	2045.9	2.0 \$ 2		
1557.0 3	1557.0	1.4 1		
1574.5 3	1652.1	2.4 2		
1598.3 3	2337.6	4.0 3		
1667.5 3	1745.29	3.5 3		
1672.4 3	2956.6	0.6 2		
1702.6 3	2200.8	3.9 3		
1801.6 3	2540.9	0.72		
1831.0 3	1831.0	1.4 1		
1843.8 3	2583.1	2.4 2		
1910.6 3	2649.9	0.4 1		
1932.7 3	2672.0	0.6 2		
1959.1 3	2457.4	1.1 1		
2013.9 3	2512.1	1.4 1		
2039.5 3	2778.8	1.4 1		
2092.9 3	2591.1	0.1 1		
2099.3 3	2176.9	1.2 1		
2150.5 3	2890.0	0.6 2		
2164.7 3	2662.9	1.3 1		
2206.9 3	2617.3	0.3 1		

 $^{^{\}dagger}$ From 1997Ka40, $\Delta E \gamma = 0.3$ keV estimated by evaluator, average of $\Delta E \gamma = 0.1 - 0.4$ keV (1997Ka40).

 $^{^{\}frac{1}{5}}$ $\alpha(K)$ exp normalized by 498 γ and 662 γ to M1 and M2 theory, respectively. 498 γ is M1,E2 from decay scheme, and 662 γ is M2(+E3) from 113 Sn IT decay (86 ns). The other multipolarity assignments are not affected by this uncertainty.

[§] Multiply placed; undivided intensity given.

 $^{^{\}boldsymbol{x}}$ γ ray not placed in level scheme.

$^{111}Cd(\alpha,2n\gamma) \\ \phantom{^{111}Cd(\alpha,2n\gamma)} 1997Ka40,1991Vi09$

1997Ka40: E=27 MeV. Measured: γ , excit, $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma(t)$ Doppler shift, linear polarization, γ -rf distribution. Preliminary report was given in 1995KaZV. 1991Vi09: E=27 MeV. Measured: γ , excit, $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma(t)$ Doppler shift. Others: 1972Br38, 1973IsZQ, 1974Br29. Measured: $T_{1/2}$ of 739 level.

¹¹³Sn Levels

E(level)	Jπ [†]	T _{1/2} ‡	Comments
0.0\$	1/2+		
77.38\$	7/2+		
410.36 \$ 14	5/2+		
498.11 9	3 / 2 +	>0.35 ps	
739.17# 18	11/2-	86 ns 2	T _{1/2} : from adopted levels.
1014.39 \$ 22	3 / 2 +	0.2 ps 1	1/2
1018.31 \$ 18	5 / 2 +	1.0 ps 5	
1249.3 5		F	
1284.27 \$ 12	5 / 2+	0.5 ps 2	
1314.01 \$ 20	3 / 2+		
1356.00 \$ 16	3 / 2+	0.7 ps 3	
1472.78 9	5 / 2+	0.8 ps 5	
1539.36 \$ 24	5 / 2+	0.6 ps 1	
1540.7# 4	(11/2-)	0.2 ps 1	
1557.0 \$ 3	3 / 2+		
1645.3 5			
1647.4 3			
1652.0 \ 3	5 / 2+		
1732.5 \$ 5	$(\ 3\ /\ 2+\ ,\ 5\ /\ 2+\)$		
1745.22 \$ 18	5 / 2+	0.31 ps 8	
1781.52# 24	9 / 2 –	0.19 ps 7	
1867.55 \$ 16	5 / 2+	0.33 ps 10	
1907.45# 20	15/2-	0.8 ps 2	
1909.83 \$ 19	(5/2+,7/2+)		
1936.18# 20	11/2-	1.9 ps 8	
1946.08# 25	(9/2-)	0.4 ps 2	
1952.78# 20	13/2-	1.0 ps 4	
2031.7 6			
2039.99 16	7 / 2 +	0.2 ps 1	
2045.81 \$ 24	(3/2+,5/2+)		
2135.5 6	= 40		
2176.83 \$ 16	7 / 2 +	0.3 ps 2	
2200.72 22	(5/2)	>0.24 ps	
2258.8 3 2275.2 6	(5/2+)	0.3 ps 1	
2337.47# 24	11/2-	0.35 ps 8	
2386.01 \$ 24	7/2+	0.33 ps 3 0.7 ps 4	
2411.0 5	1/2+	0.7 ps 4	E(level): from coin between 1284-583-543 gammas.
2448.59 18	(7/2)		E(level). Hom com between 1204-305-545 gammas.
2506.2 3	(1,2)		
2512.0 \$ 5	(3/2+,5/2+)		
2540.78# 25	(15/2-)	0.07 ps 3	
2552.6 4	/		
2583.10# 24	(15/2-)	0.22 ps 9	
2620.1 3		•	
2624.6 3			
2649.8#6	(9/2-)		
2662.8 \$ 4	(3/2+,5/2+)		
2671.9 6			
2675.6 3			E(level): from coin between 1284-583-808 gammas.
2701.15 25		0.4 ps 1	
2718.6# 3	(11/2-)		
2750.61# 25	17/2-	0.21 ps 7	
2778.7 4			
2807.50# 22	19/2-	0.31 ps 10	
2852.5# 3	(17/2-)	1.2 ps 6	
2889.9 6			
2916.6 3			
		Cont	inued on next page (footnotes at end of table)

$^{111}\mathrm{Cd}(\alpha,2\,\mathrm{n}\gamma)$ 1997Ka40,1991Vi09 (continued)

$^{113}\mathrm{Sn}$ Levels (continued)

E(level)	$J\pi^{\dagger}$	[‡]	Comments
2956.7 4			
2975.92# 24	(19/2-)	0.28 ps 14	
3092.55# 22	19/2-	0.45 ps 18	
3129.9# 3	21/2-	>0.35 ps	
3131.0 4			
3139.2 6			
3224.0# 4	(19/2-)	>1.4 ps	
3410.3 4			
3421.4# 3	21/2-		
3454.3 5			
3459.5# 3	23/2-		
3838.7# 4	(23/2-)		
3902.7# 4	(23/2-)	0.6 ps 2	
3914.7# 4	(21/2-)		
3973.4# 3	(23/2-)	0.5 ps 2	
1059.28 4	25/2+	0.69 ns 28	$T_{1/2}$: from γ -rf(t) (1997Ka40).
1476.6§ 4	(27/2+)	>1.1 ps	
1714.7# 6	(27/2-)	0.31 ps 10	

 $[\]dot{\bar{\tau}}$ From decay properties, as given by 1997Ka40. $\ddot{\bar{\tau}}$ From Doppler shift.

 $\gamma(^{113}Sn)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{\dagger}$	Mult.‡	δ	Comments				
77.38	77.38				Eγ: from adopted levels, gammas.				
86.1 3	4059.2				Eγ. from adopted levels, gammas.				
87.8	498.11								
153.5 3	3129.9	0.4 2							
172.4 2	2039.99	1.2 1	M1+E2	0.4 2	$B(M1)(W.u.)=5$ 3; $B(E2)(W.u.)=2.1\times10^4$ 21.				
225.3 2	2975.92	1.6 1	M1+E2	0.42	$B(M1)(W.u.)=1.3$ 7; $B(E2)(W.u.)=1.2\times10^3$ 8.				
282.7 3	2620.1	0.5 2	M1+12	0.25 5	$D(M1)(W.u.) = 1.0 7, D(D2)(W.u.) = 1.2 \times 10 0.$				
291.7 2	3421.4	1.8 2	M1+E2	0.35 15					
322.5 1	3129.9	15.9 8	M1+E2	0.33 13	$B(M1)(W.u.)<1.8; \ B(E2)(W.u.)<510.$				
329.5 \$ 2	3459.5	5.8\$ 5	M1+E2	0.16 5	B(MI)(W.d.)(110, B(B2)(W.d.)(010.				
332.6 2	410.36	11.2 6	M1+E2	-0.08 2					
363.7 4	2701.15	0.5 2		0.002					
379.2 4	3838.7	0.4 2							
381.1 5	2718.6	0.4 2							
392.7 2	2975.92	2.5 2							
394.8 3	1867.55	0.9 2							
410.3 3	410.36	0.6 2							
417.4 2	4476.6	1.3 1	M1+E2	0.4 2	B(M1)(W.u.)<0.27; B(E2)(W.u.)<320.				
498.1 1	498.11	6.6 4	M1+E2	0.12 6	B(M1)(W.u.)<0.51; B(E2)(W.u.)<46.				
510.9 5	3131.0	1.4 8							
518.4 5	2386.01	0.5 2							
543.5 4	2411.0	0.4 2							
551.9 3	3973.4	0.9 1	M1+E2	>10	B(M1)(W.u.)<0.00044; B(E2)(W.u.)>47.				
567.2 3	2039.99	1.2 1	M1+E2	6 3	B(M1)(W.u.)=0.004 4; $B(E2)(W.u.)=380$ 200.				
573.0 3	2045.81	1.0 1	(M1)						
583.2 2	1867.55	8.0 4	M1 + E2	0.15 10	$B(M1)(W.u.)=0.30 \ 10; \ B(E2)(W.u.)=15 \ +21-15.$				
599.5 2	4059.2	3.0 2	E 1		$B(E1)(W.u.)=1.9\times10^{-6} 9.$				
608.0 2	1018.31	4.2 3	M1 + E2	3 1	B(M1)(W.u.)=0.006 5; $B(E2)(W.u.)=110$ 60.				
613.3 3	3421 . 4	0.72	M1 + E2	0.4 1					
633.3 3	2540 . 78	1.0 1	M1 + E2	-1.28	$B(M1)(W.u.)=0.24\ 22;\ B(E2)(W.u.)=7.\times10^{2}\ 5.$				
$652.1\ 5$	3459 . 5	0.2 1							
661.5 1	739 . 17	$100 \ 4$	M2		B(M2)(W.u.)=0.122 3.				
678.7 4	3902.7	0.8 2	(E2)		$B(E2)(W.u.)=60 \ 30.$				
$684.0\ 2$	2039 . 99	1.5 1	E 2		$B(E2)(W.u.)=190\ 100.$				
	Continued on next page (footnotes at end of table)								

^{§ (}A): Positive-parity levels.
(B): Negative-parity levels.

$^{111}Cd(\alpha,2n\gamma) \qquad 1997Ka40,1991Vi09 \ (continued)$

 $\gamma(^{113}Sn) \ (continued)$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	δ	Comments
708.7 4	3838.7	1.2 1	M1		
748.3 3	2701.15	0.9 2			
755.8 3	2039.99	0.7 2			
765.0 4	2701.15	0.42			
772.5 3	2718.6	0.62	M1		
786.0 4	2258 . 8	0.8 3			
786.1 3	1284 . 27	2.02			
797.8 2	2750.61	4.9 3	(E2)		B(E2)(W.u.)=260 90.
801.5 3	1540.7	2.0 2	M1+E2	-0.3 1	$B(M1)(W.u.)=0.20 \ 10; \ B(E2)(W.u.)=22 \ 18.$
808.0 4	2675.6	0.5 2	(FIG.)		D/D0\/W \ 70.00
810.1 3	3902.7	1.8 2	(E2)		B(E2)(W.u.)=58 22. B(E2)(W.u.)=160 60.
812.04 838.4 § 4	4714.7 2620.1	0.7 1 <1.5§	(E2)		B(E2)(W.U.)=100 60.
838.9\$ 4	1249.3	<1.58			
843.7 2	3973.4	6.6 3	M1+E2	0.25 5	B(M1)(W.u.)=0.061 25; B(E2)(W.u.)=4.2 24.
873.9 4	1284.27	0.6 2	M1+E2	2.7 8	B(M1)(W.u.)=0.00032 24; $B(E2)(W.u.)=2.4$ 13.
879.4 3	2624.6	0.4 2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
892.6 2	2176.83	1.6 1	M1+E2	-0.2 1	Mult.: δ =-0.2 <i>I</i> or -2.1 <i>6</i> . B(M1)(W.u.)=0.029 20; B(E2)(W.u.)=1.1 +14-1.
899.78 4	2852.5	20.5 \$ 9			
900.1 \$ 1	2807.50	20.5 \$ 9	E2		$B(E2)(W.u.)=100 \ 30.$
913.2 3	2386.01	2.9 2	M1+E2	0.4 2	B(M1)(W.u.)=0.027 17; $B(E2)(W.u.)=4$ +5-4.
936.7 2	1014.39	1.6 1	E2		B(E2)(W.u.)=60 40.
$940.6\ 2$	1018 . 31	2.5 2	M1+E2	0.5 2	$B(M1)(W.u.) = 0.008\ 4;\ B(E2)(W.u.) = 1.7\ 14.$
945.0 2	2852.5	1.6 2			
963.8 2	2916.6	1.2 2			
974.6 4	2258.8	1.2 1			
975.8 3	2448.59	1.9 1			
1009.1 5	2916.6	0.2 1	M1 F0	0 7 1	D/M1//W) A A41 A1 D/DA//W) A 5
1014.4 4	1014.39	1.5 1	M1+E2	0.5 1	$B(M1)(W.u.)=0.041 \ 21; \ B(E2)(W.u.)=8 \ 5.$
1018.35 1034.04	1018.31 2506.2	$ \begin{array}{cccc} 0 & 3 & 2 \\ 0 & 6 & 2 \end{array} $	E 2		B(E2)(W.u.)=0.7 6.
1042.3 2	1781.52	4.1 2	M1+E2	-0.5 3	Mult.: $\delta = -0.5 \ 3 \ \text{or} \ -1.6 \ 3$.
1012.02	1.01.02	1.1 2		0.00	B(M1)(W.u.)=0.08 4; B(E2)(W.u.)=14 +15-14.
1068.3 3	2975.92	4.1 2	E2		B(E2)(W.u.)=22 12.
1079.8 4	2552.6	0.3 2			
1092.6 5	2448 . 59	0.2 1			
1101.8 4	2386 . 01	0.42			
1107.2 3	3914.7	1.1 1	M1		
1129.0 2	1539.36	1.2 2	M1+E2	-2.5 10	$B(M1)(W.u.)=0.0035 \ 25; \ B(E2)(W.u.)=14 \ 3.$
1147.2 5	1645.3	0.3 2			
1149.3 4	1647.4	0.62			
1151.8 5	2624.6	0.1 1	M1 LEO	1 4 6	
1164.3 2	2448.59	2.9 2	M1+E2 E2	1.4 6	$R(F2)(W_{11}) = 10.3$
1168.3 <i>1</i> 1185.1 <i>1</i>	1907.45 3092.55	$57 \ 3$ $5.3 \ 3$	E2		B(E2)(W.u.)=10 3. B(E2)(W.u.)=17 7.
1197.0 1	1936.18	3.3 2	M1+E2	-5 3	B(E2)(W.u.)=177. B(M1)(W.u.)=0.0003 +4-3; $B(E2)(W.u.)=3.6$ 16.
1202.8 4	2675.6	0.6 2		- 0	, ,,,
1206.9 2	1946.08	2.5 2	M1+E2	0.15 5	B(M1)(W.u.)=0.031 16; $B(E2)(W.u.)=0.4$ 3.
1213.6 1	1952.78	12.1 6	M1+E2	3.4 2	B(M1)(W.u.)=0.0010 4; $B(E2)(W.u.)=6.1$ 25.
1221.6 3	2506 . 2	0.9 1			
1223.64	3131 . 0	0.42			
1234 . 4	1732.5	0.2 1	M1		
1237.1 4	1647.4	0.2 1			
1241.6 3	1652.0	1.0 2	M1		D/Ma//W \ 0.00040
1247.1 5	1745.22	0.1 1	M1+E2	2.1 15	B(M1)(W.u.)=0.00013 +21-13; B(E2)(W.u.)=0.3 +4-3.
1268.4 5	2552.6	0.2 2			
1271.6 5	3139.2	0.4 2	E2		$R(F2)(W_{11}) - 8$
1284.22 1314.02	1284.27 1314.01	$\begin{array}{ccc}12.5 & 6\\2.6 & 2\end{array}$	M1		B(E2)(W.u.)=8 4.
1314.0 2	3224.0	2.6 2	1111		
1334.9 2	1745.22	3.9 2	M1+E2	0.6 4	B(M1)(W.u.)=0.016 8; $B(E2)(W.u.)=3$ 3.
1356.0 2	1356.00	2.2 2	M1+E2	0.14 6	B(M1)(W.u.)=0.012 6; $B(E2)(W.u.)=0.10$ 10.
			Contir	nued on next pa	age (footnotes at end of table)

$^{111}\mathrm{Cd}(\alpha,2n\gamma) \qquad 1997\mathrm{Ka40,1991Vi09} \ (continued)$

 $\gamma(^{113}\mathrm{Sn})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	δ	Comments
1411.7 2	1909.83	1.2 2			
1472.8 1	1472.78	13.3 7	E2		$B(E2)(W.u.)=3.1\ 20.$
1499.5 3	1909.83	0.52			
1502.8 3	3410.3	0.6 2			
1546.8 4	3454 . 3	< 1.9			
1547.7 5	2045.81	<1.9			
1557.0 3	1557.0	0.72	M1 + E2	0.2 1	
1574.5 4	1652.0	0.52	M1+E2	-1.0 5	
$1598.3\ 2$	2337 . 47	$2.2\ 2$	M1+E2	1.9 2	$B(M1)(W.u.)=0.0033 \ 10; \ B(E2)(W.u.)=3.7 \ 9.$
1621.3 5	2031.7	0.1 1			
1635.5 5	2045.81	0.1 1			
1667.5 2	1745.22	1.2 1			
1672.4 3	2956.7	0.3 1			
1702.62	2200 . 72	1.3 1	M1+E2	-0.53	$B(M1)(W.u.) < 0.018; \ B(E2)(W.u.) < 2.0.$
1703.8 4	1781.52	0.2 1	[E1]		$B(E1)(W.u.)=1.4\times10^{-5} 9.$
1725.15	2135 . 5	0.2 1			
1766.52	2176.83	2.5 2	M1		B(M1)(W.u.)=0.006 4.
1801.6 2	2540 . 78	1.1 1			
1843.8 2	2583.10	3.72	E 2		B(E2)(W.u.)=3.7 16.
1864.8 5	2275 . 2	0.1 1			
1881.0 3	2620.1	0.9 1			
1910.6 5	2649.8	0.2 1	(M1)		
1932.7 5	2671.9	0.1 1			
1962.0 3	2701 . 15	0.72			
$1979.4\ 3$	2718.6	0.62			
2013.9 4	2512 . 0	0.52			
2039.5 3	2778.7	1.6			
2099.3 3	2176 . 83	1.4 1	M1		B(M1)(W.u.)=0.0020 14.
2150 . 5 5	2889.9	0.2 1			
2164.7 3	2662.8	0.9 3			

 $^{^{\}dagger}$ From 1997Ka40, $\Delta E \gamma$ =0.3 keV estimated by evaluator, average of $\Delta E \gamma$ =0.1-0.4 keV (1997Ka40). The data of 1991Vi09 are in agreement with 1997Ka40.

 $[\]ensuremath{^{\ddagger}}$ From $\gamma(\theta)$ at seven angles, linear polarization.

[§] Multiply placed; undivided intensity given.

$^{111}Cd(\alpha,2n\gamma) \hspace{0.5cm} 1997Ka40,1991Vi09 \hspace{0.1cm} (continued)$

Level Scheme

¹¹¹Cd(α,2nγ) 1997Ka40,1991Vi09 (continued)

Level Scheme (continued)

¹¹¹Cd(α,2nγ) 1997Ka40,1991Vi09 (continued)

Level Scheme (continued)

$^{112}{ m Cd}(\alpha, 3n\gamma)$ 1979Ha12

Other: 1969Ya05, E=40 MeV.

 $E{=}40~MeV.~Measured~E\gamma,~I\gamma,~\gamma\gamma{-}coin,~\gamma(\theta),~excit,~E(ce),~I(ce),~1979Ha12.$

¹¹³Sn Levels

E(level)	Jπ [‡]	E(level)		E(level) J	π‡
0.0	1/2+	2807.4 12	$19/2-^{\dagger}$	3902.9 12 (23	/2-)
77.7 10	7 / 2+	2976.1 11	(17/2-)	3972.7 12 (23	/2-)
738.7 11	$11/2-^{\dagger}$	3092.1 12	19/2-	4058.2 12	
1907.4 11	$15/2-\dagger$	3129.8 12	21/2-	4475.3 13	
1952.4 11	(13/2-)	3459.1 12	(23/2-)	4715.3 12 (27	/2-)
2750.1 11	(15/2-)	3681.2 12	23/2-	l l	

 $^{^{\}dagger}$ Proposed neutron h11/2 band. $\Delta J = 2$ spacings correspond with $^{112}Sn, ~^{114}Sn$ g.s. band up to 4+.

$\gamma(^{113}Sn)$

Εγ	E(level)	Ιγ	Mult.†	Comments
77.7	77.7			
85.5 3	4058.2	4 2		
226.0 3	2976.1	4 2		
291.5 3	3972.7	4 2		Ey: The placement of this γ is not as in $(\alpha, 2n\gamma)$.
322 . 4 3	3129.8	48 6	M1,E2	Mult.: $\alpha(K)$ exp=0.024 4.
329.3 3	3459.1	20 3	M1,E2	Mult.: $\alpha(K)$ exp=0.025 6.
417.1 3	4475.3	8 2		
551.4 3	3681.2	6 2		Ey: The placement of this γ is from the 3972 level in $(\alpha,2n\gamma)$.
599.1 3	4058.2	10 2		
x617.8		15 3		
661.0 3	738.7	143 16	M2,E3	Mult.: $\alpha(K) \exp = 0.0088$ 12.
797.7 3	2750.1	7 3		
810.8 3	3902.9	9 3		
812.4 3	4715.3	6 2		
842.9 3	3972.7	17 3		
900.0 3	2807.4	50 7	(E2)‡	
$^{x}1042$. 8		12 3		
1068.7 3	2976.1	7 2		
1168.7 3	1907.4	100		
1184.7 3	3092.1	13 2	(E2) [‡]	
$1213.7 \ 3$	1952.4	16 3		

 $^{^{\}dagger}$ From I(ce) and I γ calibrated by means of known pure E2 transitions in adjacent even tin isotopes.

 $^{^{\}ddagger}$ Suggested by 1979Ha12 on the bases of angular distributions, $\alpha(K)$ exp, and known J π (g.s., 77 and 738 levels).

 $^{\ \ \}stackrel{\div}{+} \ \gamma(\theta)$ typical of a J+2 to J transition.

 $^{^{}x}$ γ ray not placed in level scheme.

¹¹²Cd(α,3nγ) 1979Ha12 (continued)

Level Scheme

Intensities: relative $I\gamma$

 $^{112}Sn(n,\gamma)~E=95~eV~~1968Sa16,1981MuZQ$

 $E{=}95{-}eV\ resonance\ with\ neutron\ time\ of\ flight,\ semi\ (1968Sa16).$ For resonance parameters, see 1981MuZQ. Other: 1969Ju01.

¹¹³Sn Levels

E(level) [†]	_Jπ‡_	Comments
0.0	1/2+	
	1/2+	
504		
1317		
1557		
2060		
2579		
7745.5 29	1 / 2+	Jπ: 1968Sa16, 1981MuZQ.

- † Rounded off level energies based on S(n) = 7742.9 18 (1995 Au 04).
- ‡ From adopted levels.

 $\gamma(^{113}Sn)$

	<u>E(level)</u>		Εγ	E(level)	Ιγ
5167	7745.5		6429	7745.5	
5685	7745.5		7242	7745.5	100 9
6189	7745 5	23 7			

$^{112}Sn(n,\gamma)~E\text{=}95~eV~~1968Sa16,1981MuZQ~(continued)$

Level Scheme

Intensities: relative $I\gamma$

$^{112}{ m Sn}({ m d,p}), ^{114}{ m Sn}({ m d,t})$ 1972Bo76

Others: 1966Co35, E=12 MeV; 1967Sc12, E=15 MeV.

E=12 MeV. Magnetic spectrograph resolution=9 keV, 80% enriched ^{112}Sn target, 1972Bo76. Also authors have measured $\sigma(d,t)$ and $\sigma(d,p).$

¹¹³Sn Levels

E(level)	Jπ [‡]		-C ² S	E(level)	Jπ [‡]	_	$^{}$ C ² S
0.08	1 / 2+	0	0.57	3584 <i>5</i>	(7/2-)	3	0.012
76 § 5	7 / 2+	4	0.23	3696 5	(7/2-)	3	0.007
407 \$ 5	5 / 2+	2	0.15	3743 5	(7/2-)	3	0.012
496 \$ 5	3 / 2+	2	0.60	3796 5	(7/2-)	3	0.005
735 \$ 5	11/2-	5	1.00	3808 5	(7/2-)	3	0.007
1014 \$ 5	3 / 2 + , 5 / 2 +	2	0.02,0.014	3822 5	(7/2-)	3	0.006
1222? 5				3846 5	(3/2-,3/2+)	1, 2	0.005,0.01
1314 5	3 / 2 + , 5 / 2 +	2	0.014,0.01	3873 5	(7/2-)	3	0.009
1537 5	(7/2+)	(4)	0.27	3906 5	(7/2-)	3	0.016
1556 § 5				3960 5			
1646 5	3 / 2+	2	0.044	4022 5	(3/2-,3/2+)	1, 2	0.003,0.01
1745 5	3 / 2+	2	0.011	4044 5	(7/2-)	3	0.009
1817 \$ 5	1 / 2+	0	0.036	4233 5	(7/2-)	3	0.011
1907 5				4265 5	(7/2-)	3	0.029
1939 \$ 5	(7/2-)	(3)	0.012	4315 5	(7/2-)	3	0.007
2050 5	(3/2-)	1	0.007	4335 5			
2105 5	(3/2-)	1	0.005	4343 5	(7/2-)	3	0.007
2129 \$ 5	3 / 2 + , 5 / 2 +	2	0.04,0.026	4364 5			
2203 5				4397 5	(7/2-)	3	0.006
2272 \$ 5	(3/2-)	1	0.007	4430 5	(7/2-)	3	0.021
2540 \$ 5	(7/2-)	3	0.028	4438? 5			
2596 5	(3/2-,3/2+)	1, 2	0.003,0.01	4504 5			
2620 \$ 5	1 / 2+	0	0.027	4589 5	(7/2-)	3	0.016
2764 5	(7/2-)	3	0.008	4609 5	(7/2-)	3	0.018
2780 \$ 5				4649 5			
2862 \$ 5	(7/2-)	3	0.040	4992 5	(7/2-)	3	0.009
3004 \$ 5	(3/2-)	1	0.009	5012 5	(7/2-)	3	0.017
3080 5	(7/2-)	3	0.008	5067 5	(7/2-)	3	0.015
3204 5	(3/2-)	1	0.012	5239 5	(7/2-)	3	0.018
3307 5	(7/2-)	3	0.045	5291 5	(7/2-)	3	0.009
3418 5	(7/2-)	3	0.018	5318 5	(3/2-,7/2-)	1,3	0.005,0.01
3494 5	(7/2-)	3	0.015	5450 5	(7/2-)	3	0.013
3499 5				5647 5	(7/2-)	3	0.008
3539 5	(7/2-)	3	0.020				

[†] Based on angular distributions at 10 angles (10°-69°) compared with DWBA calc. For L≥3, the agreement with DWBA is rather poor.

Footnotes continued on next page

¹¹²Sn(d,p), ¹¹⁴Sn(d,t) 1972Bo76 (continued)

$^{113}\mathrm{Sn}$ Levels (continued)

 $\dot{\bar{z}}$ In the lighter Sn isotopes, the d5/2 shell-model state is almost full, while the d3/2 state is relatively empty. For L=2, J was therefore assigned 5/2 or 3/2 from comparison of $\sigma(d,t)$ and $\sigma(d,p)$. For L=1 and L=3, J was assigned 3/2 and 7/2, respectively, from shell-model syst as corresponding to the lower energy levels.

 $\$ Also observed by 1967Sc12.

113 In(p,n γ) 1997Ka40,1987Vi09

1997Ka40: $^{113}In(p,n\gamma)$ E=6.7 MeV. Preliminary report was given in 1995KaZV.

1987Vi09: 113 In(p,n γ) E=3.2-6 MeV.

Also $^{115}In(p,3n\gamma)$ E=30 MeV.

 $1990 ViZV \ (same \ group) \ present \ levels \ and \ gammas \ from \ ^{111}Cd(\alpha,2n\gamma), \ but \ without \ information \ on \ J\pi \ or \ \gamma \ properties.$

Measured: $\gamma, \ \gamma\gamma, \ \gamma\gamma(t), \ \gamma(\theta).$

The energy gap between the 15/2- and 11/2- states is approximately equal to the energies of the first 2+ states in adjacent even Sn nuclides. The authors suggest the presence of a multiplet formed by a quasiparticle in the h11/2 neutron state and collective core excitation.

The 1908, 1953, 1947, 1936, and 1782 levels could be members of this multiplet.

The levels around 2650 with two 19/2- states could be also members of another multiplet formed by coupling of the $(v\ h11/2)$ with two-phonon core excitations.

$^{113}\mathrm{Sn}$	Levels
---------------------	--------

E(level) [‡]	$J\pi^{\dagger}$	E(level) ‡	$J\pi^{\dagger}$	E(level) ‡	$J\pi^{\dagger}$
0.0	1/2+	1781.9 5	9/2-,11/2-,13/2-	2448.5 3	
77.38	7 / 2 +	1821.0 3	3 / 2 + , 5 / 2 +	2457.6 3	
410.44 17	3 / 2+	1831.0 3		2468.1 4	
498.33 18	3 / 2+	1867.4 3	5 / 2 + , 7 / 2 +	2505.8 4	
739.3 4	11/2-	1907.6 5	15/2-	2512.2 4	(3/2+,5/2+)
1014.46 23	3 / 2 + , 5 / 2 +	1910.0 3	5 / 2+	2538.7 3	
1018.39 20	3 / 2 + , 5 / 2 +	1936.3 5	(9/2-,11/2-,13/2-)	2540.9 5	(13/2-,15/2-)
1249.3 4	5 / 2 –	1946.2 5		2552.0 3	(3/2+,5/2+,7/2+)
1284.15 18	5 / 2+	1952.9 5	(9/2-,13/2-)	2583.1 5	
1313.98 23	3 / 2 + , 5 / 2 +	2031.8 4		2591.2 3	
1356.0 3	3 / 2+	2039.9 3	(3/2+,5/2+,7/2+)	2617.4 4	
1472.74 23	3 / 2 + , 5 / 2 +	2046.0 3	(3/2+,5/2+)	2624.5 3	
1539.4 4	5 / 2 + , 7 / 2 +	2135.6 4		2649.9 5	
1540.8 5	(13/2-)	2176.8 3	(5/2+,7/2+)	2663.1 4	(3/2+,5/2+)
1557.0 3	3 / 2+	2200.9 4	(3/2+,5/2+)	2672.0 5	
1645.3 4	3 / 2+	2258.7 4		2778.8 5	
1652.3 3	5/2+,9/2+	2275.3 4		2852.7 5	(17/2-)
1732.7 4		2337.6 5		2889.8 5	11/2-
$1745.31\ 22$	5 / 2+	2385.9 4		2956.6 4	

[†] From γ(θ) taken at six angles (13°,90°,120°,130°,140°,150°) and linear polarization in (α,2nγ), same authors and same paper.

 $\gamma(^{113}\mathrm{Sn})$

$\mathrm{E}\gamma^{\dagger}$	E(level)	Ιγ [†]	Comments
77.38	77.38		Eγ: from adopted levels, gammas.
$172.4\ 3$	2039.9	1.7 1	
332.6 3	410 . 44	62 4	
498.1 3	498.33	33 2	
567.2 3	2039.9	1.4 1	
583.2 3	1867.4	7.4 4	
608.0 3	1018.39	3.8 3	
633.3 3	2540.9	0.9 1	
661.5 3	739.3	100 5	
755.8 3	2039.9	0.8 1	
786.0 [‡] 3	2258.7	3.9 ‡ 3	
786.1 [‡] 3	1284.15	3.9 ‡ 3	

 $^{^{\}ddagger}$ From least-squares fit to γ energies.

$^{113}{ m In}(p,n\gamma)$ 1997Ka40,1987Vi09 (continued)

 $\gamma(^{113}Sn) \ (continued)$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}}^{\dagger}$	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)_	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$
801.5 3	1540.8	4.3 3	1221.6 3	2505.8	1.0 1	1766.5 3	2176.8	0.4 1
x838.4‡ 3		$1.7 \ ^{\ddagger} \ 2$	1234.4 3	1732.7	6.6 4	1801.6 3	2540.9	1.2 1
838.9 ‡ 3	1249.3	$1.7^{\ddagger}~2$	1241.7 3	1652.3	5.9 4	1821.0 3	1821.0	0.1 1
873.9 3	1284.15	2.3 1	1247.1 3	1745.31	1.7 2	1831.0 3	1831.0	$2.1\ 2$
879.4 3	2624.5	1.1 1	1268.4 3	2552.0	0.3 1	1843.8 3	2583.1	1.2 1
892.6 3	2176 . 8	3.3 2	1284.2 3	1284.15	36 2	1864.8 3	2275.3	0.8 1
×899.7 [‡] 3		$2.0^{\ddagger} 2$	1314.0 3	1313.98	4.4 3	1910.6 3	2649.9	1.2 3
899.7 ‡ 3	2852.7	$2.0^{\ddagger}2$	1334.9 3	1745.31	11.8 6	1932.7 3	2672.0	0.7 1
903.7 3	1313.98	0.6 1	1356.0 3	1356.0	11 <i>1</i>	1959.2 3	2457 . 6	0.9 1
913.2 3	2385.9	1.5 2	1411.7 3	1910.0	5.4 3	1969.8 3	2468 . 1	0.9 1
936.7 3	1014.46	4.5 3	1472.8 3	1472.74	24 2	2013.9 3	2512 . 2	2.5 2
940.6 3	1018.39	12.66	1499.5 3	1910.0	4.5 2	2039.5 3	2778.8	3.6 4
975.8 3	2448.5	1.0 1	x1546.8 3		2.3 1	2040.3 3	2538.7	2.74
1014.4 3	1014.46	16 6	1547.7 [‡] 3	2046.0	2.3 ‡ 1	2047.1 3	2457 . 6	0.2 4
1018.3 3	1018.39	2.8 1	1557.0 3	1557.0	1.4 1	2092.9 3	2591.2	0.1 1
1042.6 3	1781.9	8.0 4	1574.5 3	1652.3	4.1 3	2099.3 3	2176.8	1.4 1
1129.0 3	1539.4	5.1 3	1598.3 3	2337.6	4.3 3	2128.3 3	2538.7	1.5 1
$1147.2\ 3$	1645.3	2.6 1	1621.3 3	2031.8	0.5 1	2150.5 3	2889.8	1.8 1
1164.3 3	2448.5	1.5 1	1635.5 3	2046.0	0.4 1	2164.7 3	2663.1	3.5 3
1168.3 3	1907.6	8.8 6	1667.5 3	1745.31	4.8 3	2180.7 3	2591.2	0.9 1
1197.0 3	1936.3	7.4 5	1672.4 3	2956.6	0.6 1	2206.9 3	2617.4	6.9 6
1206.9 3	1946.2	3.5 3	1702.6 3	2200 . 9	5.1 3			
$1213.6\ 3$	1952.9	8.1 4	1725.1 3	2135 . 6	1.4 1			

 $^{^{\}dagger}$ From 1997Ka40, $\Delta E \gamma$ = 0.3 keV estimated by evaluator, average of $\Delta E \gamma$ = 0.1-0.4 keV (1997Ka40).

 $^{^{\}frac{1}{4}}$ Multiply placed; undivided intensity given. x γ ray not placed in level scheme.

¹¹³In(p,3nγ) 1997Ka40,1987Vi09

1997Ka40: $^{113}In(p,3n\gamma)$ E=30 MeV. Preliminary report was given in 1995KaZV.

1987Vi09: 113 In(p,3n γ) E=30 MeV.

Measured: $\gamma, \ \gamma\gamma, \ \gamma\gamma(t), \ \gamma(\theta).$

The energy gap between the 15/2- and 11/2- states is approximately equal to the energies of the first 2+ states in adjacent even Sn nuclides. The authors suggest the presence of a multiplet formed by a quasiparticle in the h11/2 neutron state and collective core excitation.

The 1908, 1953, 1947, 1936, and 1782 levels could be members of this multiplet.

The levels around 2650 with two 19/2- states could be also members of another multiplet formed by coupling of the $(v\ h11/2)$ with two-phonon core excitations.

$^{113}\mathrm{Sn}$ Levels

E(level)	$J\pi^{\dagger}$	E(level)	Jπ [†]	E(level)‡	$_{-}^{}$
0.0	1/2+	1745.33 22	5 / 2+	2448.6 3	5 / 2+
77.7 3	7 / 2 +	1781.6 4	9 / 2 –	2538.6 3	
410.39 18	3 / 2 +	1867.4 4	5 / 2+	2583.1 4	(15/2-)
498.21 18	3 / 2 +	1907.6 4	15/2-	2617.3 4	
739.3 3	11/2-	1909.9 3	5 / 2+	2662.9 4	(3/2+,5/2+)
1018.37 20	3 / 2 + , 5 / 2 +	1936.3 4	(9/2-,11/2-,13/2-)	2750.6 5	(15/2-)
1284.23 19	5 / 2 +	1946.2 4		2778.7 3	
1313.94 21	3/2+,5/2+	1952.8 4	(9/2-,13/2-)	2807.7 5	19/2-
1356.0 3	3 / 2 +	2045.9 3	3 / 2+	2975.9 5	(17/2-)
1472.8 3	3 / 2 + , 5 / 2 +	2176.8 3	(5/2+,7/2+)	3092.7 5	19/2-
1539.4 3	5/2+,7/2+	2200.8 4	(3/2+,5/2+)	3130.2 6	21/2-
1540.8 4	(13/2-)	2258.8 4			
1557.0 3	3 / 2+	2337.6 4	11/2-		

 $^{^{\}dagger}$ From $\gamma(\theta)$ taken at six angles $(13^{\circ},90^{\circ},120^{\circ},130^{\circ},140^{\circ},150^{\circ}).$

$\gamma(^{113}Sn)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Comments
77.7 3	77.7		Ey: from adopted levels, gammas.
206.0 3	1745.33		
225.3 3	2975.9	1.8 3	
322.5 3	3130.2	12 1	
332.6 3	410.39	14 1	
498.1 3	498.21	10 1	
583.2 3	1867.4	5.6 7	
608.0 3	1018.37		
661.5 3	739.3	100 5	
786.0 ‡ 3	1284.23	$2.5^{\ddagger}2$	
	2258 . 8	$2.5^{\ddagger}2$	
797.8 3	2750.6	3.0 3	
801.5 3	1540.8	$2.1\ 2$	
892.6 3	2176 . 8	$2.2\ 2$	
$900.1\ 3$	2807.7	14 2	
940.6 3	1018.37	3.54	
1018.3 3	1018.37	0.9 3	
1042.3 3	1781.6	3.8 4	
1068.3 3	2975.9	2.02	
$1129.0\ 3$	1539.4	2.1 2	
1164.3 3	2448.6	4.9 4	
1168.3 3	1907.6	35 2	
$1185.1\ 3$	3092.7	2.5 2	
1197.0 3	1936.3	3.54	
1206.9 3	1946.2	2.6 2	
1213.6 3	1952.8	8.4 7	
$1284.2\ 3$	1284.23	16 1	
$1314.0 \ 3$	1313.94	4.9 4	
1334.9 3	1745.33	3.1 3	
1356.0 3	1356.0	2.9 2	
1411.7 3	1909.9	$2.2\ 2$	

 $[\]ddagger$ From least-squares fit to γ energies.

$^{113} In(p, 3n\gamma) \qquad 1997 Ka 40, 1987 Vi 09 \ (continued)$

$\gamma(^{113}Sn)~(continued)$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	$\underline{\hspace{1cm}}^{\text{E}\gamma^{\dagger}}$	E(level)	Ιγ [†]	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$
1472.8 3	1472.8	15 1	1598.3 3	2337.6	2.7 2	2039.5 3	2778.7	1.4 2
1499.5 3	1909.9	2.5 2	1635.5 3	2045.9		2040.3 3	2538.6	1.0 3
x 1 5 4 6 . 8 3		2.3 3	1702.6 3	2200.8	2.0 2	2164.7 3	2662.9	0.9 1
1547.7 ‡ 3	2045.9	2.3	1766.3 3	2176.8		2206.9 3	2617.3	$2.2\ 2$
1557 0 3	1557 0	1 0 1	18/12/8/2	2583 1	3 1 9			

 $^{^{\}dagger}$ From 1997Ka40, $\Delta E \gamma = 0.3$ keV estimated by evaluator, average of $\Delta E \gamma = 0.1 - 0.4$ keV (1997Ka40).

Level Scheme

$Intensities: \ relative \ I\gamma$ & Multiply placed; undivided intensity given

 $^{113}_{50}\mathrm{Sn}_{63}$

 $[\]dot{\ddagger}$ Multiply placed; undivided intensity given.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

¹¹⁴Sn(p,d) IAS 1980Ta04

E=55 MeV. Measured E(d), θ =11° and 23°, magnetic spectrograph, 1980Ta04.

¹¹³Sn Levels

E(level)	$J\pi^{\dagger}$	s‡	Comments
11826 50	(9/2+)	0.0	Γ=22 keV 10.
			E(level): IAS of ¹¹³ In g.s.
12254 50	(1/2-)	428 5	Γ=20 keV 8.
			E(level): IAS of 113 In(392).
12513 50	(3/2-)	687 5	Γ =25 keV 9.
			E(level): IAS of ¹¹³ In(647).

 $^{^{\}dagger}$ From $J\pi$ of parent state.

¹¹⁴Sn(p,d) 1970Ca01

E=30 MeV. $\sigma(\theta)$ with magnetic spectrograph, FWHM=55-70 keV, 1970Ca01.

¹¹³Sn Levels

$\underline{\hspace{1.5cm}E(level)^{\frac{1}{2}}}$	$J\pi^{\dagger}$	_L§	Comments
0.0		0	
72 6	7 / 2+	4	
404 6	5 / 2+	2	
492 6	3 / 2+	2	
740	11/2-	5	
1042 6	3 / 2+	2	
1140			
1303 6		0	
1360			
1450			L: L could be (5).
1570			
1670	5 / 2+	2	
1760			
1830		0	
1940			
2060		(1)	
2120		1	

 $^{^{\}dagger}$ From J-dependence of angular distribution (for L=2) and shell-model syst.

¹¹⁵Sn(p,t) 1971Fl05

E=20 MeV. $\sigma(\theta)$ with magnetic spectrograph, FWHM=25 keV, 1971Fl05. $J\pi(^{115}Sn)\!=\!1/2\!+\!.$

¹¹³Sn Levels

E(level)	LΪ
0.0	0
79 15	
405 10	2
$490 \ 20$	
-10202	

 $^{^{\}dagger}$ From comparisons with DWBA calculations.

 $^{\ \ \ \ \ \}dot{^{\ddagger}} \quad E(level) - E(g.s. \ analog).$

[‡] Systematic errors ≤25 keV.

 $[\]S$ From angular distributions compared with characteristic shapes.

Adopted Levels, Gammas

 $Q(\beta^-) = -6070\ 30;\ S(n) = 10890\ 25;\ S(p) = 3047\ 17;\ Q(\alpha) = -356\ 18\ 2003 Au 03.$ Using DSAM, 1993Ja04 extracted an average quadrupole moment for the rotational sequence, consistent with a prolate

deformation: $\beta_2 \approx 0.32$.

¹¹³Sb Levels

Cross Reference (XREF) Flags

- A ¹¹³Te ε Decay
- B (HI,xn γ) C ¹¹²Sn(p,p) IAR D ¹¹²Sn(³He,d) E ¹¹⁴Sn(p,2n γ)

E(level)#	$J\pi^{\ddagger}$	XREF	$T_{1/2}^{\dagger}$	Comments
0.0&	5 / 2 + §	AB DE	6.67 min 7	$J\pi\colon^{115}\mathrm{Sb}$ to $^{121}\mathrm{Sb}$ have $J\pi\text{=-}5/2\text{+}.$ Allowed ϵ to 3/2+, 5/2+ states in $^{115}\mathrm{Sn}.$
				$\%\epsilon + \%\beta^+ = 100$.
				T _{1/2} : from 1976Wi10. Others: 1962Pa04, 1969Ki16, 1972Si28.
644.78 20	1 / 2+	A DE	<1 ns	XREF: D(659).
	= 10 S	4 D. D.D.	_	$J\pi$: $L(^{3}He,d)=0$.
814.17& 22	7 / 2 + §	AB DE	<1 ns	XREF: D(829).
1018.6 3	5 / 2+	A DE	<1 ns	XREF: D(1045).
1101 0 4				$J\pi$: L(³ He,d)=2. log ft =5.7 from (7/2+).
1181.0 <i>4</i> 1257.1 <i>3</i>	(0/0.)	A E	<1 ns	I (0) in (fil: 9-0) D. O to 7/9.
1347.9 [@] 3	(9/2+) 11/2-	AB E B D	<1 ns	J π : $\gamma(\theta)$ in (6 Li, 3 n γ), D+Q γ to 7/2+. XREF: D(1390).
1547.9~ 5	11/2-	Бυ	<1 ns	$J\pi$: L(³ He,d)=(5). (E3) γ to 5/2+.
1461.0& 3	9 / 2 + §	AB E	-1	J π : C(*He,0)=(5). (E3) γ to 5/2+. J π : could be the bandhead based on a Nilsson orbital (404) 9/2+ M1 γ to
1401.0~ 9	314+3	AD E	<1 ns	3π : could be the bandhead based on a Misson orbital (404) 9/2+ Mi γ to $7/2+$, γ to $5/2+$.
1551.0 4	5 / 2+	A D		7/2+, γ to 5/2+. XREF: D(1590).
1001.0 4	5/4T	Αυ		J π : L(³ He,d)=2. log ft =6.0 from (7/2+).
1716.5 5		A		σπ. Δ. 11c,α/-2. 10g /ι-0.0 110m (1/2τ).
1853.2 5		A E	<1 ns	
1910.1& 4	(11/2+)§	ВЕ	<1 ns	
1995.2 11	(11/21/	E	<1 ns	
2094.2 6		A		
2115.5 6		A		
2132.1 7		A		
2172.1 5		A		
2217.7& 4	(13/2+)§	ВЕ	<1 ns	J π : D+Q γ to 11/2+, γ to (9/2+).
2307.6 4	, ,	В		V 1 · · · · · · · · · · · · · · · · · ·
2395.3 5		В		
2504.8 5	(15/2+)	В		
2534.9 3		A		
2626.3 5	(15/2-)	BC		
2659.1& 4	(15/2+)§	В		
2815.5 [@] 4	15/2-	В		
3009.7 11		В		
3044.7 ^a 5	19/2(-)	В	3.7 ns 3	T _{1/2} : from 1990Ko42.
3083.8& 5	(17/2+)§	В		
3173.4 ^a 5	21/2(-)	В		
3212.9@5	19/2-	В		
3344.8 5	(21/2)	В		
3473.2	(19/2+)§	В		
3552.9 ^a 5	(23/2)	В		
3777.9 [@] 11	23/2-	В		
3914.4	(21/2+) §	В		
4166.8 ^a 5	(25/2)	В		
4344.4° 6	(23/2-)	В		
4363.1& 5	23/2+\$	В		
4459.7@ 12	27/2-	В		
4506.4 5	(25/2-)	В		
4525.2 5		В		
4535.9 5		В		
4642.7° 6	(25/2-)	В		
4744.8 ^b 5	25/2+	В		

¹¹³Sb Levels (continued)

E(level)#	$\underline{\hspace{1cm} J\pi^{\ddagger}}$	XREF	Comments
4783.9a 6	(27/2)	В	
5014.3° 6	(27/2-)	В	
5040.8b 6	27/2+	В	
5166.1 6	29/2	В	
5177.7 8	27/2+§	В	
$5239.0^{@}12$	31/2-	В	
5388.7 ^b 6	29/2+	В	
5391.1° 7	(29/2-)	В	
5569.3 % 9	29/2+\$	В	
5612.0 6	(29/2-)	В	
5716.4 ^a 6	(29/2)	В	
5762.6 ^b 6	31/2+	В	
5781.7° 7	(31/2-)	В	
5960.1 ^{&} 10	31/2+§	В	
6052.6 7		В	
$6093.7^{@}$ 12	35/2-	В	
6153.4b 6	33/2+	В	
6195.9° 7	(33/2-)	В	
6334.2 4 11	33/2+\$	В	
6424.1 ^a 7		В	
6545.7 ^b 6	35/2+	В	
6625.4° 7	(35/2-)	В	
6682.0 4 12	35/2+\$	В	
6976.6 ^b 6	37/2+	В	
6977.6& 13	37/2+\$	В	
7012.8@ 13	39/2-	В	
7075.8° 7	(37/2-)	В	
7544.5° 7	(39/2-)	В	
7998.4@ 13	43/2-	В	
8025.2° 7	(41/2-)	В	
9059.7@ 14	47/2-	В	1125
9280 40		C	IAS of ¹¹³ Sn g.s.
9720 40		С	IAS of ¹¹³ Sn 410 level.
9780 40	F 4 1 0	С	IAS of ¹¹³ Sn 498 level.
10215.4@ 14	51/2-	В	
$11466.6^{\scriptsize @}$ 14 $12800.9^{\scriptsize @}$ 15	55/2-	В	
12800.9 [©] 15 14213.9 [©] 18	59/2-	В	
14213.9 [©] 18 15717.9 [©] 20	(63/2-)	В	
15717.9\(\tilde{9}\) 20 17352.9\(\tilde{0}\) 23	(67/2-) (71/2-)	В	
17352.9 [©] 23 19143.9 [©] 25	(71/2-) (75/2-)	B B	
19143.9© 25 21104@ 3	(75/2-) (79/2-)	В	
21104~ 3	(19/2-)	Đ	

[†] From 1976Ka25 in 114 Sn(p,2n γ).

 $\gamma(^{113}Sb)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ [†]	Mult.‡	δ‡	Comments			
644.78	644.8 2	100	[E2]		B(E2)(W.u.)>0.16. Mult.: from the level scheme.			
814.17	814.4 3	100	D+Q	-0.22 12	$B(M1)(W.u.)>3.7\times10^{-5}$.			
1018.6	1018.1 4	100						
	Continued on next page (footnotes at end of table)							

 $^{^{\}ddagger}$ Based on rotational band observed in (HI,xn γ) and Nilsson model consideration, unless given otherwise.

 $[\]S \quad L(^3He,d) = 2 \ \text{and} \ 4 \ \text{for g.s. and} \ 814 \ \text{level, respectively.} \ 814\gamma \ \text{is not} \ Q \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{110}Cd(^6Li,3n\gamma).$

 $^{^{\}text{\#}}$ From least-squares fit to γ energies.

^{@ (}A): Suggested (1993Ja04) as members of a rotational band with the 1348-keV level as bandhead. Proton h11/2 orbital, 1/2 [550] Nilsson configuration.

[&]amp; (B): Suggested as members of a rotational band with the 1461-keV level as bandhead. Nilsson orbital [404]9/2+.

 $^{^{\}mbox{a}}$ (C): Band Based on 19/2- at 3044.7 Kev.

b (D): Band Based on 25/2+ at 4744.8 Kev.

 $^{^{\}mbox{\scriptsize c}}$ (E): Band Based on (23/2-).

$\gamma(^{113}{\rm Sb})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	$\underline{\hspace{1.5cm}} \hspace{1.5cm} I \gamma^{\dagger} \underline{\hspace{1.5cm}}$	Mult.‡	δ^{\ddagger}	Comments
1181.0	1181.0 4	100			
1257.1	238.4 5	8 3			
	443.3 4	12 4	D+Q	-0.029	$B(M1)(W.u.)>2.5\times10^{-5}$.
	1256 . 7 5	100 12			
1347.9	90.9 2	100 1	(E1+M2)	0.01 5	
1401.0	1347.9 7	20 2	(E3)	0 00 0	B(E3)(W.u.)>33.
1461.0	646.63 1460.85	29 3 100 10	D+Q	+0.03 8	$B(M1)(W.u.) > 1.8 \times 10^{-5}$.
1551.0	737.0 4	44 14			
	1550.3 7	100 30			
1716.5	1071.7 4	100			
1853 . 2	391.8 5	$100 \ 50$			
	1039.5 5	58 17			
1910.1	449.3 3	100	D+Q	+0.24 6	B(M1)(W.u.) > 0.00022; B(E2)(W.u.) > 0.027.
1995.2	1181.0	100			
2094.2	1449.77 2093.710	$62 ext{ } 16$ $100 ext{ } 23$			
2115.5	1301.3 7	90 30			
	2115.5 10	100 22			
2132 . 1	1317.96	100			
2172 . 1	915.0 4	100 30			
0015 5	1358.0 8	84 22	D 0	0 10 0	2 P/M1)/W \ 0.00044 P/F0)/W \ 0.000
2217.7	306.75 756.15	100 10 64 8	D+Q	+0.16 6	B(M1)(W.u.)>0.00044; B(E2)(W.u.)>0.026.
2307.6	397.4 3	100			
2395.3	1047.2 5	100			
2504.8	197.1 3	47 5	D+Q	+0.09 6	3
	$287.2\ 3$	100 11	D+Q	+0.08 9	
2534.9	1515.1 7	58 17			
	1719.8 10	33 10			
2626.3	2535.23 1278.96	100 25 100			
2659.1	351.5 3	100			
	440.9 3				
	749.5 3				
2815 . 5	$1467.6\ 3$	100	(E2)		
3009.7	504.9 10	100			
3044.7	418.5 3	100	D . O	. 0 07 0	
3083.8	424.8 3 865.7	100	D+Q Q	+0.07 8	
3173.4	128.7 2	100	D+Q	-0.10 4	1
3212.9	397.4 3		D+Q	0.24 5	
3344.8	$171.5 \ 3$	100			
3473 . 2	389.9 3	100	D+Q	+0.47 5	
0.5	813.8 3	40-	D+Q	-0.22 1.	
3552.9	379.6 4	100	D+Q	-0.25 5	5
3777.9 3914.4	564.73 441.33	100	(E2)		
UU11.1	830.3 3				
4166.8	613.9 3	100	D		
4344 . 4	998.9 3				
4363.1	448.7 3				
	890.0 3		(T 0)		
4459.7 4506.4	681.8 3 $339.5 3$	100	(E2)		
4500.4	1161.7 3		Q		
4525.2	358.4 3		7		
	972.3 3				
4535.9	$369.1\ 3$				
4642.7	298.3 3	100	D		
4744.8	209.0 3				
	219.73 381.73				
	901.7 9				
			Cont	tinued on ne	ext page (footnotes at end of table)

 $\gamma(^{113}Sb) \ (continued)$

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	$\underline{\hspace{1.5cm}}^{} I \gamma^{\dagger}$	Mult.‡	E(level)	$\underline{\hspace{1cm} \mathbf{E} \gamma^{\dagger}}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$	Mult.‡
4744.8	830.4 3			6334.2	374		D
4783.9	277.5 3				765		Q
	617.1 3		D	6424.1	707.7 3	100	
5014.3	371.6 3			6545.7	392.3 3		
	669.9 3				783.1 3		
5040.8	295.8 3			6625.4	429.5 3		
5166.1	999.3 3	100	Q		843.7 3		
5177.7	432		D	6682.0	348		D
	815		Q		722		Q
5239.0	779.3 3	100	(E2)	6976.6	430.9 3		
5388.7	347.6 3				823.2 3		
	644.0 3			6977.6	296		D
5391.1	376.7 3				643		Q
	748.3 3			7012.8	919.0 3	100	(E2)
5569.3	392		D	7075.8	450.4 3		
	824		Q		879.9 3		
5612.0	1105.6 3	100		7544.5	468.7 3		
5716.4	932.5 3	100			$919.1\ 3$		
5762.6	373.8 3			7998.4	985.6 3	100	(E2)
	722.0 3			8025.2	480.7 3		
5781.7	390.6 3				949.4 3		
	767.3 3			9059.7	1061.3 3		(E2)
5960.1	391		D	10215.4	1155.7 3	100	(E2)
	782		Q	11466.6	1251.23	100	(E2)
6052.6	886.5 3	100		12800.9	1334.3 3	100	(E2)
6093.7	854.7 3	100	(E2)	14213.9	1413 1	100	Q
6153.4	390.8 3			15717.9	1504 1	100	Q
	764.6 3			17352.9	1635 1	100	Q
6195.9	$414.2\ 3$			19143.9	1791 1	100	Q
	804.8 3			21104	1960 1	100	Q

 $^{^{\}dagger}$ From $^{110}Cd(^{6}Li,3n\gamma)$ and ^{113}Te ϵ decay. ‡ Mult and δ from $\gamma(\theta)$ (1979Sh03) and DCO ratios (1993Ja04) in (HI,xn\gamma).

(E) Band Based on (23/2-)

(41/2-)	8025.2
(39/2-)	v 7544.5
(37/2-)	VV 7075.8
(35/2-)	v v 6625.4
(33/2-)	vv 6195.9
(31/2-)	v v 5781.7
(29/2-)	vv 5391.1
(27/2-)	v v 5014.3
(25/2-)	4642.7
(23/2-)	v v 4344.4
	' '
(21/2)	<u> </u>

 $^{113}_{\,51}\mathrm{Sb}_{62}$

¹¹³Te ε Decay 1975WiZX,1976Wi11

 $^{113}_{51}\mathrm{Sb}_{62}\mathrm{-}7$

Parent $^{113}Te\colon E=0.0; \ J\pi=(7/2+); \ T_{1/2}=1.7 \ min \ 2; \ Q(g.s.)=6070 \ 30; \ \%\epsilon+\%\beta^+ \ decay=100.$ γ singles with escape-suppression spectrometer and semi, $\gamma\gamma$ coin, $\gamma(t), \ 1975WiZX, \ 1976Will.$ Others: 1974Ch17, 1974Bu21, 1975BuYW.

¹¹³Sb Levels

E(level)		T _{1/2}	E(level)	Jπ	E(level)
0.0	5 / 2+	6.67 min 7	1257.1 3	(9/2+)	2094.2 6
644.78 20	1 / 2 +		1461.3 5	(9/2+)	2115.4 6
814.07 24	7 / 2 +		1550.9 4	(5/2)+	2132.3? 8
1018.5 4	(5/2)+		1716.5? 5		2172.1 5
1181.0 4			1853.3 5		2534.6 4

β+,ε Data

 $\epsilon + \beta^+$ branches were obtained from (7+ce) imbalance at each level and measured annihilation radiation intensity.

Eε [†]	·	E(level)	Ιβ+†‡	_Iε ^{†‡} _	Log ft	$I(\epsilon+\beta^+)^{\ddagger}$	Comments
(3540	30)	2534.6	≈3.5	≈ 1.5	≈5.4	≈ 5 . 0	
(3900	30)	2172 . 1	≈2 . 0	≈ 0.57	≈5.9	≈ 2.57	
(3950	30)	2115.4	≈2.9	≈ 0.77	≈5.8	≈3.7	
(3980	30)	2094.2	≈3.7	≈ 0.94	≈5.7	≈4.6	
(4220	30)	1853.3	≈3.5	≈ 0.71	≈5.9	≈ 4 . 2	
(4520	30)	1550.9	≈2.8	≈0.43	≈6.2	≈3.2	
(4810	30)	1257.1	≈4.6	≈0.57	≈ 6 . 1	≈5.2	
(4890	30)	1181.0	≈11	≈1.2	≈5.8	≈12.2	
(5050	30)	1018.5	≈10.0	≈1.0	≈5.9	≈11	
(5260	30)	814.07	≈ 1 3	≈1.1	≈5.9	≈14	
(5430	,	644.78	< 5 . 6	< 0 . 44	>6.3	<6.0	
5700	,	0.0	≈28	≈1.4	≈5.9	≈29.4	Eε: from 1974Ch17. Other: 5600 200 (1975BuYW).

 $^{^{\}dagger}~\beta^{+}$ and ϵ intensities are approximate because of the large number of unplaced Iy's.

$\gamma(^{113}Sb)$

Measured I $\gamma(\gamma^{\pm})$ is 780 200 relative to I $\gamma(814)$ =100, 1976Will. I γ normalization: from $\Sigma(I\gamma+ce)$ to g.s. + $\Sigma(\epsilon+\beta^+)$ to g.s.=100.

Εγ	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Εγ	E(level)	Ιγ [†]	Εγ	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$
238.4 5	1257.1	2.1 7	1018.1 4	1018.5	59 6	1550.3 7	1550.9	10 3
x 2 6 9 . 8 5		2.7 7	1039.5 5	1853.3	7 2	x 1 5 6 7 . 2 8		6 2
391.8 5	1853.3	12 6	1071.7 ‡ 4	1716.5?	7 2	1719.8 10	2534.6	3.9 12
x 4 3 7 . 7 4		1.1 6	1181.0 4	1181.0	56 6	x1803.6 7		8 3
443.3 4	1257.1	3.0 9	x1206.6 6		6 2	x1868.1 9		11 3
x 4 7 3 . 1 8		2.5 6	x 1 2 4 5 . 4 5		4 3	x 1944.3 11		4 2
x583.0 5		3 2	1256.7 5	1257.1	25 3	x 2 0 4 7 . 8 10		7 2
x609.3 5		5 2	1301.3 7	2115 . 4	8 3	2093.7 10	2094.2	13 3
644.8 2	644.78	29 3	1317.9 ‡ 6	2132.3?	6 2	2115.5 10	2115 . 4	9 2
647.5 8	1461.3	3.6 10	1358.0 8	2172 . 1	5.3 14	x 2 2 2 1 . 2 9		9 3
737.0 4	1550.9	4.4 14	1449.7 7	2094.2	8 2	2535.25	2534.6	12 3
814.4 3	814.07	100	1460.0 10	1461.3	8 4	x 2 5 5 2 . 4 9		7 2
915.04	2172 . 1	6.3 16	1515.1 7	2534 . 6	7 2	$^{x}2606$. 5 5		8 3

 $^{^{\}dagger}$ For absolute intensity per 100 decays, multiply by 0.22.

[‡] For intensity per 100 decays, multiply by 1.0.

 $^{^{\}ddagger}$ Placement of transition in the level scheme is uncertain.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

¹¹³Te ε Decay 1975WiZX,1976Wi11 (continued)

¹¹²Sn(p,p) IAR 1966Ri06

S(p)=3074 31.

 $\sigma(E(p)) \text{ at } 92^\circ, \ 125^\circ \text{ and } 165^\circ, \ E(p)(c.m.) = 6.1 - 6.9 \ \text{MeV} \text{ with semi. L-values from shape of } \sigma(E(p)), \ 1966Ri06.$

For resonance parameters, see 1966 $\rm Ri06.$

$^{113}\mathrm{Sb}$ Levels

E(level)‡	$\underline{\mathbf{L}}$	_s [†]	Comments
9280 40	0	0.0	E(p)(c.m.)=6202 15. IAS of ¹¹³ Sn(g.s.) with $J\pi=1/2+$.
9720 40	2	440	$E(p)(c.m.) = 6649 \ 15.$ IAS of $^{113}Sn(410)$ with $J\pi = 5/2+.$
9780 40	2	500	E(p)(c.m.)=6710 15. IAS of ¹¹³ Sn(498) with $J\pi=3/2+$.

[†] E'=E(level)-E(g.s. analog).

¹¹²Sn(³He,d) 1966Ba25,1968Co22

E=18 MeV. $\sigma(\theta)$ with particle telescope, FWHM=70-110 keV, 1966Ba25, 1968Co22. L-values and spectroscopic factors are from DWBA calculations.

$^{113}{ m Sb}$ Levels

E(level) [†]	Jπ [‡]	_L_	C ² S'	Comments
0.0	5 / 2+	2	4.2	C^2S' : for $J\pi = 5/2 + .$
659 15	1 / 2+	0	1.0	
829 15	7 / 2+	4	7.5	
$1045 \ 30$	5 / 2+	2	2.3	

 $^{^{\}ddagger}$ From E=res, E(p)(c.m.) + S(p).

¹¹²Sn(³He,d) 1966Ba25,1968Co22 (continued)

$^{113}{\rm Sb~Levels~(conti}\underline{nued})$

 $^{113}_{51}\mathrm{Sb}_{62} - 9$

$-\frac{E(level)^{\frac{1}{7}}}{}$	$\underline{\hspace{1.5cm} J\pi^{\ddagger}}$	_L_	C^2S'	Comments
1390 50	(11/2-)	(5)	4.8	L: both L=4 and L=5 fit the angular distribution. L=5 is assigned because of sum rule limit for L=4.
1590 40	5 / 2+	2	0.6	C^2S' : $J\pi=7/2+$ gives $C^2S'=5.0$. C^2S' : $J\pi=3/2+$ gives $C^2S'=0.8$.

 $^{^{\}dagger}$ Systematically 15-40 keV too high in comparison with the adopted levels.

¹¹⁴Sn(p,2nγ) 1976Ka25

 $E=15.8-18.2,\ 20,\ 28\ MeV.\ Measured\ excit,\ pulsed\ beam\ \gamma(t),\ n\gamma\ coin,\ \gamma\gamma\ coin,\ 1976Ka25.$

$^{113}\mathrm{Sb}$ Levels

E(level)†	$J_{\pi} \S$	T _{1/2}	E(level)†	Jπ§	T _{1/2}	E(level)†	Jπ§	T _{1/2}
0.0	5 / 2+		1181.2 3		<1 ns	1853.6 11		<1 ns
$644.2\ 5$	1 / 2+	<1 ns	1256.9 4	(9/2)+	<1 ns	1910.0 8	(11/2+)‡	<1 ns
814.3 3	7 / 2+	<1 ns	1347.8 7	11/2-	<1 ns	1995.5 4		<1 ns
1018.1 4	(5/2)+	<1 ns	1461.2 5	(9/2+)‡	<1 ns	2218.8 9	(13/2+)‡	<1 ns

[†] As given by 1976Ka25.

$\gamma(^{113}Sb)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡	Εγ [†]	E(level)	<u>Ιγ‡</u>	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡
90.9	1347.8		448.8	1910.0		1039.6	1853.6	80
238.6	1256.9		644.2	644.2		1181.28	1181.2	
308.8	2218.8		647.0	1461.2	35		1995.5	
391.3	1853.6	20	814.3	814.3		1257 . 0	1256.9	86
442.3	1256.9	14	1018.1	1018.1		1460.9	1461.2	65

 $^{^{\}dagger}$ Uncertainty not given by authors.

Level Scheme

Intensities: relative Iy * Multiply placed

(13/2+) 2218.8 <1 ns 1995.5 <1 ns (11/2+)1910.0 <1 ns 1853.6 <1 ns (9/2+) 1461.2 <1 ns 11/2-1347.8 <1 ns (9/2)+ 1256.9 <1 ns 1181.2 <1 ns (5/2)+ 1018.1 <1 ns 7/2+ 814.3 <1 ns 1/2+ 644.2 <1 ns 5/2+ 0.0

 $^{113}_{\,51}\mathrm{Sb}_{62}$

 $[\]ensuremath{^{\ddagger}}$ Assumed for $C^2S^{\mbox{\tiny !}}.$

[‡] Suggested [404] rotational band.

[§] From adopted levels.

 $[\]ensuremath{\ddagger}$ % photon branching from each level.

[§] Multiply placed.

$(HI,xn\gamma)$ 1998Mo22,1993Ja04,1979Sh03

 $1998 Mo 22: \ ^{103}Rh(^{16}O,\alpha 2n) \ E=80 \ MeV. \ Measured \ E\gamma, \ I\gamma, \ \gamma\gamma, \ \gamma\gamma(\theta)(DCO) \ using \ Spectrometer, \ 6 \ Compton-suppressed \ HPGe \ Appendix of the complex of the com$ detectors.

 $1993Ja04,1995Ja15:\ ^{94}Mo(^{23}Na,2p2n)\ E=117\ MeV.\ Preliminary\ data\ in\ 1993Ra08.$

Measured Ey, Iy, $\gamma\gamma$ coin, $\gamma(\theta)$, DCO, 20 Compton-suppressed HPGe, spherical shell of 71 BGO.

1990Ko42: 104 Pd(12 C,p2n γ) E=63 MeV. Measured E\gamma, I\gamma, $\gamma\gamma$ coin, $\gamma(\theta),~\gamma(t).$

 $1989 Bu 27 \colon \ ^{112} Sn(\alpha, pn \gamma) \ E \text{=} 40 \text{-} 50 \ MeV.$

Measured Ey, Iy, $\gamma\gamma$ coin, $\gamma(\theta)$, excit. 1979Sh03: 110 Cd(6 Li,3n γ) E=24-34 MeV.

Measured Ey, Iy, yy coin, $\gamma(\theta),$ excit.

Other: 1975Ga11.

Using DSAM, 1993Ja04 extracted an average quadrupole moment for the rotational sequence, consistent with a prolate deformation: $\beta_2{\approx}0.32.$

$^{113}{ m Sb}$ Levels

E(level) [†]	Jπ [‡]	T _{1/2}	Comments
0.0	o		
0.0	5 / 2 +		
814.6 3	7 / 2 +		
1257.15 1348.0 § 5	9/2+		
1461.1# 3	11/2-		
1910.4# 4	9/2+		
2218.4# 5	11/2+		
2308.0 5	13/2+		
2395.5 5	(13/2+)		
2505.3 5	(15/9.)		
2626.3 [@] 5	(15/2+) 15/2-		
2659.9# 5	15/2-		
2815.6 \$ 5			
3010.2 11	15/2-		
3010.2 11 3044.8 [@] 5	10/0	9 7 9	T 6 1000V. 40
3044.8 5 3084.5 # 5	19/2-	3.7 ns 3	T _{1/2} : from 1990Ko42.
3173.9 5	17/2+ 21/2(-)		
3213.0 \$ 5	19/2-		
3345.3 6	(21/2)		
3346.8 6	(21/2)		
3400.2 12			
3473.4# 5	19/2+		
3553.2 [@] 5	23/2		
3777.7 [§] 6	23/2		
3826.7 6	2072-		
3914.7# 5	21/2+		
4167.1@ 5	25/2		
4345.7a 6	(23/2-)		
4363.4# 5	23/2+		
4459.5 \$ 7	27/2-		
4506.8 6	(25/2-)		
4525.5 5			
4536.2 6			
4644.0a 6	(25/2-)		
4745.2	25/2+		
4784.2@6	27/2		
5015.6ª 6	(27/2-)		
5041.1 6	27/2+		
5166.46	29/2		
5177.7# 8	27/2+		
5238.8 8	31/2-		
5389.0& 6	29/2+		
5392.3ª 7	(29/2-)		
5569.3#9	29/2+		
5612.4 6	(29/2-)		
5716.7 [@] 7	29/2		
5762.9 6	31/2+		
5782.9a 7	(31/2-)		
5960.1# 10	31/2+		
			Continued on next page (footnotes at end of table)

(HI,xnγ) 1998Mo22,1993Ja04,1979Sh03 (continued)

$^{113}{\rm Sb}~{\rm Levels}~({\rm continued})$

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level)	$-J\pi^{\ddagger}$
6052.9 7		6976.9& 6	37/2+	11466.4 \$ 11	55/2-
6093.5 \$ 8	35/2-	6977.6# 13	37/2+	12800.7 \$ 11	59/2-
6153.7	33/2+	7012.5 \$ 9	39/2-	14213.7 \$ 15	63/2-
6197.1 ^a 7	(33/2-)	7077.0ª 7	(37/2-)	15717.7 \$ 18	67/2-
6334.2# 11	33/2+	7545.7ª 7	(39/2-)	17352.7 \$ 21	71/2-
6424.4 @ 7		7998.2 \$ 9	43/2-	19143.7 \$ 23	75/2-
6546.0 6	35/2+	8026.4 ^a 8	(41/2-)	21103.8 \$ 25	79/2-
6626.6 ^a 7	(35/2-)	9059.5 \$ 10	47/2-		
6682.0# 12	35/2+	10215.28 10	51/2-		

 $^{^{\}dagger}$ From least-squares fit to γ energies.

 $\gamma(^{113}Sb)$

E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	Ιγ‡	Mult.#	δ\$	Comments
814.6	814.8 3	157 16	D+Q	-0.22 12	
1257.1	443.0 10	41 4	D+Q D+Q	-0.22 12	
1237.1	1257.1 10	41 4	D+Q	-0.02 9	
1348.0	90.9 2	172 18	E1		
	1347.9 7	35 4	E3		Mult.: from large A_2 in $\gamma(\theta)$.
1461.1	646.6 3	34 3	D+Q	+0.03 8	2 1000
	1460.8 5	117 12	E2		
1910.4	449.3 3	100	D+Q	+0.24 6	
2218.4	306.7		D+Q	+0.16 6	Ey: Ey=306.7 (1979Sh03) Ey=308.7 (1998Mo22).
	756.1		Q		Eγ: Eγ=756.1 (1979Sh03) Eγ=757.3 (1998Mo22).
2308.0	397.4 3	34 5	D+Q	+0.24 5	
2395.5	1047.2 5	38 4			
2505.3	197.1 3	18 2	D+Q	+0.09 6	
	287.2 3	38 4	D+Q	+0.08 9	
2626.3	230.8 3				Eγ: From 1998Mo22.
	1278.9 6	165 17	Q		
2659.9	441.5 10	43 4	D+Q	+0.09 5	
	749.5 3		Q		Ey: $E_{\gamma}=748.2 \ (1979Sh03)$.
2815.6	1467.6 3		(E2)		
3010.2	504.9 10	24 4			
3044.8	418.5 3	163 16	Q		
3084.5	425.6 3	23 3	D+Q	+0.078	
	865.7 3				
3173.9	$129.1\ 2$	122 13	D+Q	-0.10 4	
3213 . 0	397.4 3		(E2)		
	586.7 3				
3345.3	171.5 3				Mult.: DCO=1.10 25.
3346.8	173.0 3				
3400 . 2	390.0 3				
3473 . 4	389.0 3				
	813.8 3				
3553 . 2	$379.2\ 3$		D+Q	$-0.25\ 5$	Mult.: DCO=0.31 24.
3777.7	$564.7\ 3$		(E2)		
3826.7	$652.7\ 3$				
3914.7	$441.3\ 3$				
	830.3 3				
4167 . 1	340 . 3				
	613.9 3		D		Mult.: DCO=0.67 17.
4345 . 7	998.9 3				
			Со	ntinued on nex	t page (footnotes at end of table)

[‡] From 1993Ja04. Based on levels being members of rotational band and Nilsson model consideration.

^{§ (}A): Suggested (1993Ja04) as members of a rotational band with the 1348-keV level as bandhead. Proton h11/2 orbital? 1/2 [550] Nilsson configuration.

^{# (}B): Suggested as members of a rotational band with the 1461-keV level as bandhead. Nilsson orbital [404]9/2+.

 $[\]ensuremath{@}$ (C): Band based on 15/2-, only given in 1998Mo22.

[&]amp; (D): Band 3 based on 25/2+, only given in 1998Mo22.

 $^{^{\}rm a}$ (E): Band 4 based on 25/2-, only given in 1998Mo22.

(HI,xnγ) 1998Mo22,1993Ja04,1979Sh03 (continued)

$\gamma(^{113}{\rm Sb})~(continued)$

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ‡	Mult.#	Comments
4345.7	1000.4 3		D	Mult.: DCO=0.92 42.
4343.7	448.7 3		D	Mule DOO-0.02 T2.
1000.4	890.0 3			
4459.5	681.8 3		(E2)	
4506.8	339.5 3			
	1161.7 3		Q	Mult.: DCO=1.50 20.
4525.5	358.4 3			
	972.3 3			
4536.2	369.1 3			
4644.0	298.3 3	7 1	D	Mult.: DCO=0.65 16.
4745.2	$209.0\ 3$			
	$219.7\ 3$			
	381.7 3			
	830.4 3			
4784.2	277.5 3			
	617.1 3		D	Mult.: DCO=0.32 28.
5015.6	371.6 3			
F0.43	669.9 3			
5041.1	295.8 3		0	M-14 - DCO 1 01 27
5166.4	999.3 3		Q	Mult.: DCO=1.21 37.
5177.7	432		D O	
5238.8	815 779.3 <i>3</i>		Q (E2)	
5389.0	347.6 3		(EZ)	
3303.0	644.0 3			
5392.3	376.7 3			
0002.0	748.3 3			
5569.3	392		D	
	824		Q	
5612.4	1105.6 3		•	
5716.7	932.5 3			
5762.9	373.8 3			
	722.0 3			
5782.9	390.6 3			
	767.3 3			
5960.1	391		D	
	782		Q	
6052.9	886.5 3			
6093.5	854.7 3		(E2)	
6153.7	390.8 3			
	764.6 3			
6197.1	414.2 3			
6004.0	804.8 3		D	
6334.2	374		D	
6121 1	765 707.7 3		Q	
6424.4 6546.0	392.3 3			
0.040.0	783.1 3			
6626.6	429.5 3			
= = . 0	843.7 3			
6682.0	348		D	
	722		Q	
6976.9	430.9 3			
	823.2 3			
6977.6	296		D	
	643		Q	
7012.5	919.0 3		(E2)	
7077.0	$450.4\ 3$			
	879.9 3			
7545.7	468.7 3			
	919.1 3			
7998.2	985.6 3		(E2)	
8026.4	480.7 3			
			Com	atinued on next page (footnotes at end of table)
			Con	termade on near page (tournoves as end of sable)

(HI,xnγ) 1998Mo22,1993Ja04,1979Sh03 (continued)

 $\gamma(^{113}Sb) \ (continued)$

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Mult.#
8026.4	949.4 3	
9059.5	1061.3 3	(E2)
10215.2	1155.7 3	(E2)
11466.4	1251.2 3	(E2)
12800.7	1334.3 3	(E2)
14213.7	1413	Q
15717.7	1504	Q
17352.7	1635	Q
19143.7	1791	Q
21103.8	1960	Q

 $^{^{\}dagger}$ From 1979Sh03 and 1998Mo22.

[†] Relative intensity normalized to the $I\gamma(449)=100$ (1979Sh03).

§ Or $J\pi$'s shown and for an assumed Gaussian distribution with $\sigma=2.2$ 3 for the population of magnetic substates (1979Sh03).

[#] From $\gamma(\theta)$ (1979Sh03).

Adopted Levels, Gammas

$$\begin{split} &Q(\beta^-) \! = \! -7220 \ 60; \ S(n) \! = \! 9120 \ 170; \ S(p) \! = \! 4040 \ 30; \ Q(\alpha) \! = \! 1867 \ 30 \quad 2003 Au 03. \\ &Production \ and \ identification: \ ^{112}Sn(^3He,2n) \ E \! = \! 25 \ MeV. \ Mass \ and \ chemical \ separation \ (1976Will). \end{split}$$

¹¹³Te Levels

Cross Reference (XREF) Flags

A 113 I ϵ Decay B $(HI,xn\gamma)$

E(level) [†]	$J\pi^{\ddagger}$	$\frac{XREF}{}$	$\underline{\hspace{1cm}} T_{1/2}$	Comments
0.0	(7/2+)	AB	1.7 min 2	$%ε+%β^+=100$. Jπ: 7/2+ probable from log $ft=5.7$ to $5/2+$ level and log $ft=5.9$ to $(9/2+)$ level. $T_{1/6}$: av of 2.0 min 2 (1974Ch17), 1.4 min 2 (1975BuYW), 1.6 min 2 (1976Wi11).
0 + x §	(11/2-)	В		1/2
587.2+x § 5	(15/2-)	В		
311.4+x§ 7	(19/2-)	В		
994.4+x§ 9	(23/2-)	В		
506.0+x 10	,	В		
2786.6+x 10		В		
798.3+x# 10	(25/2)	В		
1891.2+x 10	(,-,	В		
3001.3+x § 10	(27/2-)	В		
244.4+x 11	(21,2)	В		
430.7+x 11		В		
573.5+x 11	(29/2+)	В		
8806.0+x [@] 10	(29/2)	В		
917.5+x# 10	(20,2)	В		
1927.3+x 11		В		
1975.1+x 11		В		
1034.6+x§ 11	(31/2-)	В		
184.7+x 11	(51/2-)	В		
264.7+x 12		В		
273.4+x# 11		В		
377.9+x 11		В		
558.2+x 11		В		
616.5+x [@] 11		В		
906.3+x 12		В		
018.8+x [#] 12		В		
5071.2+x\\$ 12		В		
163.1+x [@] 11		В		
188.7+x 11		В		
196.2+x 13		В		
389.9+x 11		В		
551.2+x 12		В		
553.6+x 13		В		
819.9+x [#] 13		В		
149.9+x § 13		В		
6155.9+x 13		В		
204.4+x [@] 11		В		
523.2+x 13		В		
621.8+x [@] 13		В		
786.8+x 14		В		
908.4+x# 14		В		
153.0+x § 14		В		
212.3+x 14		В		
360.6+x 13		В		
689.7+x [@] 14		В		
3061.5+x [@] 14		В		
764.3+x 14				

 $^{^{\}dagger}$ From least-squares fit to γ energies.

[‡] From gammas, DCO ratios, decay patterns and systematics.

^{§ (}A): Ground-state band.

 $^{^{\#}}$ (B): γ cascade, starting on 25/2 at 2798.3+x Kev.

^{@ (}C): γ cascade, starting on 29/2 at 3806+x Kev.

$\gamma(^{113}\text{Te})$	
---------------------------	--

E(level)	Εγ	Ιγ	Mult. [†]	E(level)	Εγ	Ιγ
587.2+x	587.2 5	100	(E2)	4906.3+x	931.2 5	100
1311.4+x	724.2 5	100	(E2)	5018.8+x	745.4 5	100
1994.4+x	683.0 5	100	(E2)	5071.2+x	1036.6 5	100
2506.0+x	511.6 5	100		5163.1+x	546.8 5	100 4
2786.6+x	792.2 5	100			604.3 5	40.4 21
2798.3+x	803.6 5	100	D	5188.7+x	1003.7 5	39 11
2891.2+x	896.8 5	100			1154.3 5	86 11
3001.3 + x	1007.2 5	100	(E2)		1261.6 5	100 11
3244.4 + x	446.25	100		5196.2 + x	931.5 5	100
3430.7 + x	$429.4\ 5$	100		5389.9 + x	226 . 7 5	55 4
3573.5+x	$572.6\ 5$	100	(E1)		832.1 5	100 7
3806.0+x	804.9 5	100	D	5551.2+x	993.0 5	100
3917.5 + x	1118.8 5	100		5553.6+x	$482.4\ 5$	100
3927.3 + x	926.1 5	100		5819.9 + x	801.1 5	100
3975.1+x	973.8 5	100		6149.9 + x	1078.7 5	100
4034.6+x	1033.0 5	100	(E2)	6155.9+x	1084.7 5	100
4184.7 + x	1183.0 5	100		6204.4 + x	814.9 5	$41 \ 3$
4264.7 + x	834.0 5	100			1041.05	100 5
4273.4+x	355.6 5	100 5		6523.2 + x	972.0 5	100
	467.7 5	$50 ext{ } 4$		6621.8 + x	$417.4\ 5$	100
	1029.25	46 4		6786.8 + x	966.9 5	100
4377.9+x	572.05	100		6908.4 + x	1088.5 5	100
4558.2 + x	523 . 2 5	$42 \ 3$		7153.0 + x	$1003.1\ 5$	100
	984.8 5	$100 \ 4$		7212.3 + x	1056.45	100
4616.5 + x	$238.6\ 5$	10.1 11		7360.6 + x	1156 . 2 5	100
	699.0 5	100 5		7689.7 + x	1067.8 5	100
	810.6 5	97 5		8061.5 + x	371.8 5	100
	1043.95	66 3		8764.3 + x	1074.6 5	100

 $^{^{\}dagger}$ From DCO ratios.

(A) Ground-state band

(B) γ cascade, starting on 25/2 at 2798.3+x Kev

(C) γ cascade, starting on 29/2 at 3806+x Kev

 $^{113}_{52}\mathrm{Te}_{61}$

¹¹³Ι ε Decay 1980GoZX

 $Parent \ ^{113}I: \ E=0.0 \geq ; \ J\pi=?; \ T_{1/2}=6.6 \ s \ 2; \ Q(g.s.)=7220 \ 60; \ \%\epsilon + \%\beta^+ \ decay=100.$

Measured Ey, Iy, $\gamma(t)$, K X-ray(t), $\gamma\gamma$ coin, $\beta\gamma$ coin, (K x-ray) γ coin with semi. The results are only preliminary, 1980GoZX.

Other: 1977Kill.

$\gamma(^{113}Te)$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ	Comments
x55.0 2	32 2	Eγ: coin with 352γ, 567γ, 802γ.
x 160.0 2	14 2	Ey: coin with 463γ.
x 2 1 6 . 5 2	7 2	Eγ: coin with tellurium X-ray and 352γ.
$^{x}320$. 4 2	33 2	
x 3 5 1 . 5 2	43 2	Eγ: coin with tellurium X-ray and 216γ.
$^{x}406.12$	8 2	
$^{\mathrm{x}}462$. 5 2	100	Eγ: coin with tellurium X-ray.
x 5 2 3 . 0 5	7.0 10	Eγ: coin with tellurium X-ray.
x 5 6 7 . 4 2	36 3	Eγ: coin with tellurium X-ray.
x608.6 5	6.2 10	
x 6 2 2 . 4 2	74 3	
x628.0 2	13 2	
x651.9 5	3.4 10	
x690.2 5	8.0 10	
x696.2 5	3.1 10	
x774.0 5	8.0 10	
x798.2 2	12 2	
$^{x}802$. 1 5	8.0 20	
x896.0 5	9.7 10	
x929.1 3	8.0 10	
x 1 1 6 1 . 0 5	8.7 10	
x 1 4 2 2 . 4 3	11 2	

 $^{^{\}dagger}$ Assigned to $^{113}\mathrm{Te}$ from $\mathrm{T}_{\mathrm{1/2}}.$

(HI,xnγ) 1998Se05,1997Mo09

Includes $^{64}\mathrm{Ni}(^{56}\mathrm{Fe},\alpha3n\gamma)$ E=236 MeV and $^{90}\mathrm{Zr}(^{31}\mathrm{P},\alphapn\gamma)$ E=150 MeV.

1998Se05: E(⁶³Cu)=245 MeV, ⁶⁴Ni(⁵⁶Fe,α3nγ) E=236 MeV. Measured Eγ, Ιγ, γγ, γγ(θ)(DCO) using GAMMASPHERE array with six rings of 61 'HPGe' detectors (escape-suppressed).

Data (1998Se05) have been verified using $^{90}\mathrm{Zr}(^{31}P,\alpha pn)$ E=150 MeV with 'eurogam ii' spectrometer.

 $1997Mo09:~^{88}Sr(^{28}Si,3n)~E=120~MeV,~Measured:~\gamma,~\gamma\gamma,~\gamma(\theta),~DCO,~seven~Ge-Li~with~BGO~anti~Compton.$

The data given below are from 1998Se05. 1997Mo09 give Band(A) up to 27/2-.

¹¹³Te Levels

E(level) [†]	Jπ [‡]	E(level)	Jπ [‡]	E(level) [†]
0.0		3975.1+x 11		5553.6+x 13
0 + x §	(11/2-)	4034.6+x § 11	(31/2-)	5819.9+x# 13
587.2+x § 5	(15/2-)	4184.7+x 11		6149.9+x § 13
1311.4+x § 7	(19/2-)	4264.7+x 12		6155.9+x 13
1994.4+x § 9	(23/2-)	4273.4+x# 11		6204.4+x [@] 11
2506.0+x 10		4377.9+x 11		6523.2+x 13
2786.6+x 10		4558.2+x 11		6621.8+x [@] 13
2798.3+x# 10	(25/2)	4616.5+x [@] 11		6786.8+x 14
2891.2+x 10		4906.3+x 12		6908.4+x# 14
3001.3+x § 10	(27/2-)	5018.8+x# 12		7153.0+x § 14
3244.4+x 11		5071.2+x § 12		7212.3+x 14
3430.7+x 11		5163.1+x [@] 11		7360.6+x 13
3573.5+x 11	(29/2+)	5188.7+x 11		7689.7+x [@] 14
3806.0+x [@] 10	(29/2)	5196.2+x 13		8061.5+x [@] 14
3917.5+x# 10		5389.9+x 11		8764.3+x 14
3927.3+x 11		5551.2+x 12		

Footnotes continued on next page

 $^{^{}x}$ γ ray not placed in level scheme.

(HI,xnγ) 1998Se05,1997Mo09 (continued)

$^{113}\text{Te Levels (continued)}$

- † From least-squares fit to γ energies.
- $\dot{\bar{\tau}}$ From gammas, DCO ratios, decay patterns and systematics. § (A): Ground-state band.
- $\mbox{\#}$ (B): γ cascade, starting at 25/2.
- @ (C): γ cascade, starting at 29/2.

$\gamma(^{113}\mathrm{Te})$

Εγ	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$	Mult.‡	Comments
226.7 5	5389.9+x	3.0 2		
238.6 5	4616.5+x	0.9 1		
355.6 5	4273.4+x	5.6 3		
371.8 5	8061.5+x	2.4 2		
417.4 5	6621.8+x	7.5 3		
429.4 5	3430.7+x	4.1 3		
446.2 5	3244.4 + x	4.4 4		
467.7 5	4273.4+x	2.8 2		
$482.4\ 5$	5553.6+x	2.2 3		
$511.6 \ 5$	2506 . $0+x$	6.5 5		
523 . 2 5	4558 . $2+x$	4.0 3		
546.8 5	5163.1+x	$14.1\ 5$		
$572.0\ 5$	4377.9 + x	0.9 2		
572.6 5	3573.5+x	15.6 6	(E1)	DCO=0.47 6.
587.2 5	587.2 + x	100 3	(E2)	DCO=1.00 used as reference.
604.3 5	5163.1+x	5.7 3		
683.0 5	1994.4+x	85 3	(E2)	
699.0 5	4616.5 + x	8.9 4		
724.2 5	1311.4+x	100 3	(E2)	DCO=0.86 5.
745.4 5	5018.8+x	9.7 4		
792.2 5	2786.6+x	4.8 7		
801.1 5	5819.9+x	5.3 4	D	DOO 0.00 00 for 000 0.004 0
803.6 5	2798.3+x	14.5 11	D D	DCO=0.68 22 for 803.6+804.9. DCO=0.68 22 for 803.6+804.9.
804.9 5 810.6 5	3806.0+x 4616.5+x	8.5 5 8.6 4	D	DCO=0.08 22 10f 805.0+804.9.
814.9 5	6204.4+x	4.6 3		
832.1 5	5389.9+x	5.5 4		
834.0 5	4264.7+x	2.0 3		
896.8 5	2891.2+x	5.9 6		
926.1 5	3927.3+x	6.9 5		
931.2 5	4906.3+x	4.1 4		
931.5 5	5196.2+x	2.1 3		
966.9 5	6786.8+x	1.7 2		
972.0 5	6523.2+x	0.7 2		
973.8 5	3975.1+x	6.8 5		
984.8 5	4558.2 + x	9.5 4		
993.0 5	5551.2 + x	2.0 2		
1003.1 5	7153.0+x	1.6 3		
1003.7 5	5188.7 + x	1.1 3		
1007.2 5	3001.3+x	50.0 16	(E2)	DCO=0.87 6.
1029.2 5	4273.4+x	2.6 2		
1033.0 5	4034.6+x	9.7 5	(E2)	DCO=0.90 35.
1036.6 5	5071.2+x	4.0 3		
1041.0 5	6204.4+x	11.2 5		
1043.9 5	4616.5+x	5.9 3		
1056.4 5	7212.3+x	1.7 2		
1067.8 5	7689.7+x	6.5 3		
1074.6 5	8764.3+x	2.3 2		
1078.7 5 1084.7 5	6149.9+x 6155.9+x	$\begin{array}{ccc} 1.7 & 2 \\ 1.6 & 3 \end{array}$		
1084.7 5	6908.4+x	3.0 2		
1118.8 5	3917.5+x	11.0 5		
1154.3 5	5188.7+x	2.4 3		
1156.2 5	7360.6+x	2.1 3		

(HI,xnγ) 1998Se05,1997Mo09 (continued)

$\gamma(^{113}Te)~(continued)$

Εγ	E(level)	$I\gamma^{\dagger}$		
1183.0.5	4184.7+x	4.3.4		
1261.6 5	5188.7+x	2.8 3		

 † Normalized to 100% for the 587 and 724 γ from 1998Se05.

‡ From DCO ratios.

Level Scheme

Intensities: relative $I\gamma$

Adopted Levels, Gammas

 $^{113}_{53}\mathrm{I}_{60}$ -1

 $Q(\beta^-) = -9040\ 100;\ S(n) = 12100\ SY;\ S(p) = 1120\ 180;\ Q(\alpha) = 2710\ 50\ 2003 Au 03.$

 $Production \ and \ identification: \ 290-MeV \ ^{58}Ni \ . \ Mass \ separation, \ observed \ tellurium \ x \ rays, \ 1977Kill. \ Chemical \ Applied \ Appl$ and mass separation, $Q(\alpha)\ syst\ (1979Sc22).$

¹¹³I Levels

Nomenclature for band labels:

 $[\textbf{p}_1\textbf{p}_2,\textbf{n}_1(\textbf{n}_2\textbf{n}_3)]; \text{ where } \textbf{p}_1 = \textbf{number of } \textbf{g}_{9/2} \text{ proton holes; } \textbf{p}_2 = \textbf{number of } \textbf{h}_{11/2} \text{ protons; } \textbf{n}_1 = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ protons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{m}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{h}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{n}_{11/2} \text{ neutrons; } \textbf{n}_{1} = \textbf{number of } \textbf{n}_{11/2} \text{ neutrons; } \textbf{n}_{11/2} = \textbf{number of } \textbf{n}_{11/2} \text{ neutrons; } \textbf{n}_{11/2} = \textbf{number of } \textbf{n}_{11/2} \text{ neutrons; } \textbf{n}_{11/2} = \textbf{number of }$ $\rm n_2 = number~g_{9/2}$ or $\rm f_{7/2}$ neutrons; $\rm n_3 = number~of~i_{13/2}$ neutrons.

Cross Reference (XREF) Flags

 $\begin{array}{ll} A & ^{114}\mathrm{Cs} \text{ ϵp Decay} \\ B & ^{58}\mathrm{Ni}(^{58}\mathrm{Ni}, 3p\gamma) \end{array}$

E(level)§	$J\pi^{\dagger \#}$	XREF	T _{1/2} ‡	Comments
0.0	5 / 2+	В	6.6 s 2	% $\epsilon+\%\beta^+=100;\ \%\alpha=3.310\times10^{-7}.$ % α : from 1981Sc17.
				E(level): tentative g.s. assignment for 6.6-s activity (1980GoZX). T _{1/2} : from 1980GoZX. Other: 5.9 s 5 (1979Sc22).
				$J\pi:$ from systematics. All odd-a isotopes have $J\pi = 5/2 + .$
63.6n 5	7 / 2 +	В		
629.4 4	9 / 2 +	В		
753.9 ⁿ 6	11/2+	В		
838.2 6	9 / 2 +	В		
909.3& 4	9 / 2 +	В	170 00	
1017.91 5	11/2-	В	159 ps 36	
1269.1 ^a 6	11/2+	В	F 0 0	
1548.71 7	15/2-	В	5.0 ps 3	
1614.4 ^{&} 6	13/2+	В		
1616.7 ⁿ 7	15/2+	В		
1986.6^{a} 7 2186.4^{l} 9	15/2+	В	1 01 17	
2358.7 8	19/2-	В	1.61 ps 17	
2684.9 ⁿ 8	17/2+	В		
2731.2a 9	19/2+ 19/2+	B B		
2870.3 ¹ 10	23/2-	В	1.86 ps 30	
3035.6° 10	23/2-	В	1.86 ps 30	
3106.2& 10	21/2+	В		
3306.6 10	23/2-	В		
3480.9 ^a 10	23/2-	В		
3568.9 ⁿ 10	23/2+	В		
3696.2 ¹ 10	27/2-	В	0.67 ps 25	
3741.1° 10	27/2-	В	0.07 ps 20	
3766.8 9	23/2+	В		
3792.0 9	23/2+	В		
3861.1& 10	25/2+	В		
4113.3 11	27/2-	В		
4127.9 ^k 22	25/2+	В		
4236.4 ^a 10	27/2	В		
4396.1 ^b 9	27/2+	В		
4497.0° 11	31/2-	В	1.1 ps 3	
4630.0 ^m 10	31/2-	В		
4630.4 % 10	29/2+	В		
4798.6 ^k 20	29/2+	В		
5015.4 ^a 10	31/2+	В		
5081.6° 10	31/2+	В		
5211.8 ^m 11	35/2-	В	1.3 ps 4	
5364.3° 12	35/2-	В		
5423.5 % 11	33/2+	В		
5535.4 ^k 17	33/2+	В		
5838.6ª 11	35/2+	В		
5846.4 ^b 10	35/2+	В		
5947.3^{m} 12	39/2-	В		
6266.2° 13	39/2-	В		
6278.3 211	37/2+	В		
6354 . $0^{\mathbf{k}}$ 14	37/2+	В		

^{113}I Levels (continued)

E(level)§	$J\pi^{\dagger\#}$	XREF	E(level)§	Jπ ^{†#}	XREF	E(level)§	Jπ ^{†#}	XREF
6688.0 ^b 11	39/2+	В	19670° 3	79/2-	В	y f	(59/2-)	В
6712.1 ^m 13	43/2-	В	19773b 3	79/2+	В	1235.5+yf 10	(63/2-)	В
6741.4ª 12	39/2+	В	20523k 3	81/2+	В	2579.5+yf 15	(67/2-)	В
7214.6	41/2+	В	21514° 3	83/2-	В	4032.9+yf 18	(71/2-)	В
7247.1 ^k 13	41/2+	В	21688 ^b 3	83/2+	В	5624.1+yf 20	(75/2-)	В
7249.2° 14	43/2-	В	22419 ^k 4	85/2+	В	7355.6+yf 23	(79/2-)	В
7610.0 ^b 12	43/2+	В	23498 ^c 4	87/2-	В	9261.4+yf 25	(83/2-)	В
7680.7 ^m 14	47/2-	В	23561 4	87/2-	В	11310+y 4	(87/2-)	В
7699.5ª 13	43/2+	В	23764b 4	87/2+	В	11375+yf 4	(87/2-)	В
8198.4 ^k 12	45/2+	В	24459k 4	89/2+	В	z g	(53/2+)	В
8213.6 4 14	45/2+	В	25743° 4	91/2-	В	19.0+z 15		В
8296.2° 14	47/2-	В	26005b 4	91/2+	В	45.5+z 15		В
8347.6 14	47/2-	В	26660 ^k 4	93/2+	В	1258.0+zg 10	(57/2+)	В
8586.3 ^m 15	51/2-	В	28185 ^c 5	(95/2-)@	В	2553.1+zg 15	(61/2+)	В
8613.6 ^b 12	47/2+	В	28432b 5	95/2+	В	3933.8+zg 18	(65/2+)	В
8738.6ª 15	47/2+	В	29039k 4	97/2+	В	5438.3+zg 20	(69/2+)	В
9229.7k 13	49/2+	В	31013 ^b 5	(99/2)+	В	7101.0+zg 23	(73/2+)	В
9279.6 2 16	49/2+	В	31621k 5	(101/2)+	В	8970.8+zg 25	(77/2+)	В
9496.6° 14	51/2-	В	x e	(53/2-)	В	11090+zg 4	(81/2+)	В
9611.0 ^m 16	55/2-	В	11.9+x 15		В	uh	(63/2-)	В
9686.6 ^b 13	51/2+	В	992+xd 3	(57/2-)	В	1543.7+u ^h 10	(67/2-)	В
10332.7 ^k 14	53/2+	В	1098.0+xe 10	(57/2-)	В	3173.4+u ^h 15	(71/2-)	В
10767.2° 15	55/2-	В	2176+xd 3	(61/2-)	В	4915.6+u ^h 18	(75/2-)	В
10834.3 ^b 14	55/2+	В	2218.8+x ^e 15	(61/2-)	В	6782.5+u ^h 20	(79/2-)	В
11066.9 ^m 19	59/2-	В	3392.5+xe 18	(65 / 2 -)	В	8822+uh 3	(83/2-)	В
11510.1 ^k 17	57/2+	В	3433+xd 3	(65 / 2 -)	В	11025+u ^h 4	(87/2-)	В
12083.4 ^b 18	59/2+	В	3518.7+x 18		В	v i	(55/2+)	В
12120.1° 18	59/2-	В	4737.3+xe 20	(69/2-)	В	1360.6+v ⁱ 10	(59/2+)	В
12769.5^{k} 20	61/2+	В	4773.8+x ^d 24	(69/2-)	В	2839.0+v ⁱ 15	(63/2+)	В
$12990.5^{\mathrm{m}}21$	63/2-	В	4913.3+x 20		В	4418.2+v ⁱ 18	(67/2+)	В
13414.8 ^b 20	63/2+	В	6184.8+xe 22	(73/2-)	В	6102.5+v ⁱ 20	(71/2+)	В
13554.5° 24	63/2-	В	6230.6+xd 22	(73/2-)	В	7873.5+v ⁱ 23	(75/2+)	В
14117.4^{k} 22	65/2+	В	6344.7+x 23		В	9817.5+v ⁱ 25	(79/2+)	В
14841.4 ^b 23	67/2+	В	7778.2+xe 25	(77/2-)	В	11930+vi 4	(83/2+)	В
14993° 3	67/2-	В	7857.7+xd 25	(77/2-)	В	wj	(77/2-)	В
15559.3 ^k 24	69/2+	В	9537+xe 3	(81/2-)	В	1680.5+w ^j 10	(81/2-)	В
16366.9 ^b 25	71/2+	В	9644+xd 3	(81/2-)	В	3458.7+w ^j 15	(85/2-)	В
16436° 4	71/2-	В	11540+xe 3	(85/2-)	В	5329.3+w ^j 18	(89/2-)	В
17104 ^k 3	73/2+	В	11615+xd 3	(85/2-)	В	7301.4+w ^j 20	(93/2-)	В
17990° 4	75/2-	В	13772+xd 4	(89/2-)	В	9403+wj 3	(97/2-)	В
18005b 3	75/2+	В	13837+xe 4	(89/2-)	В	11659+wj 4	$(\ 1\ 0\ 1\ /\ 2\ -\)$	В
18756 ^k 3	77/2+	В	13903+x 4	(89/2-)	В	14092+wj 4	(105/2-)	В

 $^{^{\}dagger}$ Assignments for several bands are based on theoretical calculations.

 $^{^{\}ddagger}$ From 2003Pe10, unless given.

 $[\]$ From least-squares fit to Ey's.

[#] From the deduced transitions multipolarities and band assignments.

[@] From figure 1 of 2001St16.

[&]amp; (A): $\alpha = +1/2$, based on 5/2+, $\Delta J=2$, [10,0].

 $^{^{}a}$ (B): $\alpha\text{=-}1/2,$ based on 11/2+, $\Delta J\text{=}2,$ [10,0].

 $[^]b$ (C): $\alpha\text{=-}1/2,$ based on $35/2\text{+},~\Delta J\text{=}2,~[22,4].$

 $[^]c$ (D): $\alpha\text{=+1/2},$ based on 31/2-, $\Delta J\text{=}2,$ [22,3].

d $^{'}$ (E): Based on (57/2-), $\Delta J = 2,$ [22,3].

e (F): Based on (53/2-), $\Delta J=2$, [22,3].

f (G): Based on (59/2-), $\Delta J \!=\! 2,$ [22,3].

g (H): Based on (53/2+), $\Delta J \text{=} 2\text{, } [21,3]\text{.}$

 $h\ \ \, (I);\ \, Based\ \, on\ \, (63/2-),\ \, \Delta J\!=\!2,\ \, [21,4]\,.$

i (J): Based on (55/2+), ΔJ=2, [21,3].

j (K): Based on (77/2-), $\Delta J=2$, [22,3(01)].

 $^{^{\}mbox{k}}$ (L): Based on 25/2+, $\Delta J{=}2,$ [22,4].

l (M): Based on 11/2-, $\Delta J \!=\! 2,$ [01,0].

 $^{^{}m}$ (N): Based on 31/2-, $\Delta J = 2,\ [01,2].$

 $^{^{}n}$ (O): Based on 7/2+, $\Delta J\!=\!2,$ [00,0].

$^{113}_{53}\mathrm{I}_{60}\mathrm{-}3$

Adopted Levels, Gammas (continued)

 $\gamma(^{113}I)$

E(level)	Εγ	Ιγ	Mult.†	Comments
63.6	63.6			Eγ: from level energy difference.
629.4	565.7 5	66.6 4	M1,E2	
	629.2 5	100.0 21	E2	$I\gamma$: uncertainty of 0.1 given by 2001St16 seems too low; increased to 1.0 by compilers.
753.9	690.4 5	100.0	E 2	
838.2	774.3 10	100 12	M1,E2	
	838.0 10	94 12	E2	
909.3	846.0 5	100 7	M1, E2	
	909.4 5	59 7	E 2	
1017.9	179.8 5	6.3 7	E 1	$B(E1)(W.u.)=1.4\times10^{-5}$ 4.
	263.9 5	31.9 12	E 1	$B(E1)(W.u.)=2.3\times10^{-5}$ 6.
	388.4 5	$100 \ 4$	E 1	$B(E1)(W.u.)=2.2\times10^{-5}$ 6.
1269 . 1	360.0 5	100	M1,E2	
1548.7	530.8 5	100	E2	B(E2)(W.u.)=83 5.
1614.4	345.4 5	100 6	M1,E2	
	705.4 8	11 3	E2	
	775.0 10	17 3	E 2	
	984.5 10	8 3	E2	
1616.7	862.8 5	100	E2	
1986.6	372.0 10	100 30	M1, E2	
	717.6 5	76 7	E2	
2186.4	637.7 5	100	E2	B(E2)(W.u.)=103 11.
2358.7	372.4 10	100 40	M1,E2	
0.004.0	744.0 10	96 18	E2	
2684.9	1068.3 5	100	E2	
2731.2	373.0 10	100 40	M1,E2	
0050	744.4 10	97 21	E2	D/D0\/W \ 00.11
2870.3	683.6 5	100	E2	B(E2)(W.u.)=63 11.
3035.6	165.1 5	21.2 19	M1, E2	
0100 0	848.6 5	100	E2	
3106.2	375.0 10	100 40	M1, E2	
2206 6	747.0 10	100 15	E2	
3306.6	271.06 1120.19	25 5	M1,E2 E2	
3480.9	374.0 10	100 10 96 50	M1,E2	
3400.5	750.0 10	100 21	E2	
3568.9	884.0 5	100 21	E2	
3696.2	825.7 5	100	E2	$B(E2)(W.u.)=70 \ 30.$
3741.1	705.6 5	100 7	E2	B(B2)(W.d.)=10 00.
0111.1	870.9 6	17 4	E2	
3766.8	1081.7 5	100	E2	
3792.0	1107.3 5	100	E2	
3861.1	380.0 10	100 9	M1,E2	
•	755.0 10	42 15	E2	
4113.3	806.6 6	100	E2	
4236.4	375.4 10	92 50	M1,E2	
	755.4 10	100 30	E2	
4396.1	604.3 5	5 7	E2	
	629.1 5	100 14	E2	
4497.0	756.0 5	25.1 16	E2	B(E2)(W.u.)=13 4.
	800.6 5	100 3	E2	B(E2)(W.u.)=39 11.
4630.0	516.6 5	18.7 15	E2	
	889.1 5	29 . 1 15	E2	
	933.9 5	100 5	E2	
4630.4	394.0 5	100 6	M1, $E2$	
	769.0 10	41 6	E2	
4798.6	670.7 10	100	E2	
5015.4	385.0 5	71 8	M1,E2	
	779.0 10	100 8	E2	
5081.6	685.6 5	100	E2	
5211 . 8	$582.0\ 5$	$61.1\ 25$	E2	$B(E2)(W.u.)=76\ 24.$
	714.5 5	$100 \ 4$	E2	B(E2)(W.u.)=45 14.
5004 0	867.2 5	100	E2	
5364.3				

 $\gamma(^{113}I) \ (continued)$

E(level)	Εγ	Ιγ	Mult. [†]	E(level)	Εγ	Ιγ	Mult.†
5423.5	408.0 5	100 11	M1,E2	17104	1544.8 10	100	E2
	793.0 10	68 11	E2	17990	1554.0 10	100	E2
5535.4	736.8 10	100	E 2	18005	1638.2 10	100	E 2
5838.6	415.0 5	100	M1+E2	18756	1651.8 10	100	E 2
	823.0 10	67 19	E 2	19670	1680.4 10	100	E 2
5846.4	423.3 10	13 9	M1,E2	19773	1767.7 10	100	E 2
	764.8 5	100 17	E 2	20523	1766.9 10	100	E 2
	831.3 10	17 4	E 2	21514	1844.2 10	100	E 2
5947.3	735.5 5	100	E2	21688	1915.3 10	100	E2
6266 . 2	901.9 5	100	E2	22419	1895.8 10	100	E2
6278 . 3	$439.6\ 5$	100 12	M1,E2	23498	1984.1 10	100	E2
	854.6 10	81 6	E2	23561	2046.6 20	100	E2
6354.0	818.6 10	100	E2	23764	2075.8 10	100	E2
6688.0	841.9 5	100 9	E2	24459	2039.9 10	100	E2
	849.1 10	23 9	E 2	25743	2181.6 20	100	E 2
6712.1	764.8 5	100	E 2		2244.5 20	100	E 2
6741.4	463.0 5	100 12	M1,E2	26005	2241 . 2 20	100	E2
	902.6 10	41 12	E2	26660	2201 . 0 10	100	E2
7214 . 6	473.0 10	100 8	M1,E2	28185	2442.2 ‡ 20	100	E2
	936.0 10	92 8	E2	28432	2426.6 20	100	E2
7247 . 1	505.8 10	33 22	M1,E2	29039	2379.5 20	100	E2
	893.1 5	100 22	E 2	31013	2581.1 20	100	E 2
7249 . 2	983.0 5	100	E2	31621	2582.0 ‡ 20	100	E2
7610.0	922.1 5	100	E 2	1098.0+x	1086.1 10	100 17	E2
7680.7	968.6 5	100	E2		1098.0 10	92 17	E2
7699.5	485.0 10	100 14	M1,E2	2176+x	1184.1 10	100	E2
	958.0 10	43 30	E2	2218.8+x	1120.8 10	100	E2
8198.4	589.2 10	36 9	M1,E2	3392.5+x	1173.7 10	100	E2
	951.3 5	100 9	E2	3433+x	1257.4 10	100	E2
	983.0 10	18 9	E2	3518.7+x	1299.9 10	100	
8213.6	514.0 10	30 20	M1,E2	4737.3+x	1344.8 10	100	E2
	999.0 10	$100 \ 20$	E2	4773.8+x	1340.6 10	100	E2
8296 . 2	1046.9 5	100	E2	4913.3+x	1394.6 10	100	
8347.6	1098.5 5	100	E2	6184.8+x	$1410.0\ 20$	25 17	E2
8586.3	905.6 5	100	E 2		1447.8 10	100 17	E2
8613.6	1003.6 5	100	E 2	6230.6+x	1457 . 1 10	100 17	E2
8738.6	525.0 10	$60 \ 40$	M1,E2		1493.0 10	33 17	E2
	1039.0 10	$100 \ 40$	E 2	6344.7+x	1431.4 10	100	
9229.7	616.0 10	12 6	M1,E2	7778.2+x	1593.3 10	100	E2
	1031.3 5	100 12	E 2	7857.7+x	1627.1 10	100	E 2
9279.6	541.0 10	67 70	M1,E2	9537+x	1758.4 10	100	E 2
	1066.0 10	100 70	E2	9644+x	1786.4 10	100	E2
9496.6	1149.1 3	100 8	E 2	11540+x	2003.2 10	100	E 2
	1200 . 4 5	79 4	E2	11615+x	1970.8 10	100	E2
9611.0	1024.75	100	E2	13772+x	2156.9 20	100	E2
9686.6	1073.0 5	100	E2	13837+x	2296.9 20	100	E2
10332.7	1103.0 5	100	E2	13903+x	2363.0 20	100	E2
10767.2	1270.5 5	100	E2	1235.5+y	1235.5 10	100	E2
10834.3	1147.7 5	100	E2	2579.5+y	1344.0 10	100	E2
11066.9	1455.9 10	100	E2	4032.9+y	1453.4 10	100	E2
11510.1	1177.4 10	100	E2	5624.1+y	1591.2 10	100	E2
12083.4	1249.1 10	100	E2	7355.6+y	1731.4 10	100	E2
12120.1	1352.9 10	100	E2	9261.4+y	1905.8 10	100	E2
12769.5	1259.4 10	100	E2	11310+y	2049.0 20	100	E2
12990.5	1923.6 10	100	E 2	11375+y	2113.1 20	100	E2
13414.8	1331.4 10	100	E2	1258.0+z	1212.5 10	$100 \ 20$	E2
13554.5	1434.4 15	100	E2		1239.0 10	60 20	E 2
14117.4	1347.9 10	100	E2		1258.0 10	60 20	E 2
14841.4	1426.6 10	100	E2	2553.1+z	1295.1 10	100	E 2
14993	1438.5 15	100	E2	3933.8+z	1380.7 10	100	E 2
15559.3	1441.9 10	100	E 2	5438.3+z	1504.5 10	100	E 2
16366.9	1525.5 10	100	E 2	7101.0+z	1662.7 10	100	E 2
16436	1443.0 15	100	E 2	8970.8+z	1869.7 10	100	E 2

Continued on next page (footnotes at end of table)

 $\gamma(^{113}I) \ (continued)$

E(level)	Εγ	Ιγ	Mult. [†]	E(level)	Εγ	Ιγ	Mult.†
11090 + z	2118.9 20	100	E2	7873.5+v	1770.9 10	100	E2
1543.7+u	1543.7 10	100	E2	9817.5+v	1944.0 10	100	E 2
3173.4+u	1629.6 10	100	E 2	11930+v	2112.3 20	100	E2
4915.6+u	1742.2 10	100	E 2	1680.5+w	1680.5 10	100	E2
6782.5+u	1866.9 10	100	E 2	3458.7+w	1778.1 10	100	E2
8822+u	2039.4 20	100	E 2	5329.3+w	1870.6 10	100	E2
11025+u	2202.9 20	100	E 2	7301.4+w	1972.1 10	100	E2
1360.6+v	1360.6 10	100	E 2	9403+w	2101.2 20	100	E2
2839.0 + v	1478.4 10	100	E 2	11659+w	2256.7 20	100	E2
4418.2 + v	1579.2 10	100	E 2	14092+w	2432 . 7 20	100	E2
6102 . $5+v$	1684.3 10	100	E2				

 $^{^{\}dagger}$ From DCO Measurements. ‡ Placement of transition in the level scheme is uncertain.

(A) $\alpha = +1/2$, based on 5/2+, $\Delta J = 2$, [10,0]

(B) α =-1/2, based on 11/2+, ΔJ =2, [10, 0]

(C) α =-1/2, based on 35/2+, ΔJ =2, [22,4]

(D) α =+1/2, based on 31/2-, ΔJ =2, [22, 3]

(E) Based on (57/2-), ΔJ=2, [22,3] (F) Based on (53/2-), $\Delta J=2$, [22,3]

(G) Based on (59/2-), ΔJ=2, [22,3]

(87/2-)		11375+y
(83/2-)		9261.4+y
(79/2-)	- ↓	7355.6+y
(75/2-)	_ V	5624.1+y
(71/2-)	<u> </u>	4032.9+y
(67/2-)	<u> </u>	2579.5+y
(63/2-)	<u> </u>	1235.5+y

- (H) Based on (53/2+), $\Delta J=2, [21,3]$
- (I) Based on (63/2-), $\Delta J=2, [21,4]$
- $\Delta J=2, [21,3]$
- (J) Based on (55/2+), (K) Based on (77/2-), $\Delta J=2, [22,3(01)]$
- (L) Based on 25/2+, ΔJ=2, [22, 4]

		(105/2-)		14092+w
		(101/2-)	V	11659+w
		(97/2-)	V	9403+w
		(93/2-)	v	7301.4+w
		(89/2-)		5329.3+w
		(85/2-)		3458.7+w
		(81/2-)	V	1680.5+w
(83/2+)	11930+v	(77/2-)	V	w

		(79/2+)	9817.5+v
		(75/2+) v	7873.5+v
		(71/2+)	6102.5+v
		(67/2+)	4418.2+v
		(63/2+)	2839.0+v
		(59/2+)	1360.6+v
(87/2-)	11025+u	(55/2+) v	v

		(83/2-)	V	8822+u
		(79/2-)	V	6782.5+u
		(75/2-)	V	4915.6+u
(81/2+) 1	1090+z	(71/2-)	V	3173.4+u
(77/2+) 8	970.8+z	(67/2-)	V	1543.7+u
	101.0+z	(63/2-)	V	u
(69/2+)	438.3+z		1	
	933.8+z			
(61/2+)	553.1+z			
(57/2+)	258.0+z			
\\ <u>\\</u> \/				
(53/2+) v v z				
(77/2+) (73/2+) (69/2+) (65/2+) (61/2+) (57/2+)	970.8+z 101.0+z 438.3+z 933.8+z 553.1+z	(67/2-)	¥ V	1543.7+u

(101/2)+	31621
97/2+	29039
93/2+	26660
89/2+	24459
85/2+	22419
81/2+	20523
77/2+	18756
73/2+	/// 17104
69/2+	15559.3
65/2+	14117.4
61/2+	12769.5
57/2+	/// 11510.1
53/2+	10332.7
49/2+	v_//// 9229.7
(C)47/2+	J /////
45/2+	8198.4
(C)43/2+	
41/2+	
(A)41/2+	
(B)39/2+	
37/2+	6354.0
33/2+	5535.4
29/2+	4798.6
25/2+	4127.9

27/2-

23/2-

19/2-

15/2-

11/2-9/2+ (O)11/2+

9/2+

- (N) Based on 31/2-, ΔJ=2, [01,2]
- (O) Based on 7/2+, ΔJ=2, [00,0]

¹¹⁴Cs εp Decay 1980Ro04

Parent $^{114}\text{Cs: E=0} \ge$; $J\pi=(1+)$; $T_{1/2}=0.57$ s 2; Q(g.s.)=10380 170; %sp decay=100. Measured energies, intensities, and half-lives for delayed protons, delayed α 's and ground-state α 's, $E/\Delta E$ telescope, Ey, Iy, $\gamma\gamma$ -coin, I β , $\beta\gamma$ -coin, $T_{1/2}$; semi, 1980Ro04.

 $\gamma(^{113}I)$

$^{58}\rm{Ni}(^{58}\rm{Ni}, 3p\gamma) ~~2001St16, 2003Pe10$

2001St16: E=250 MeV. Measured Ey, Iy, $\gamma\gamma$ and $\gamma\gamma(\theta)(DCO)$ using GAMMASPHERE array of 83 HPGe detectors coupled with the Microball array of 95 CsI(Tl) charged particle detectors and an array of 15 scintillators for neutron detection.

2003Pe10: 58 Ni(58 Ni(58 Ni), E=210 MeV. Measured E γ , I γ , $\gamma\gamma$ and lifetimes by recoil-distance Doppler-shift using the 4π spectrometer euroball iv.

 $1993 Pa 13 \colon {}^{58}{\rm Ni}({}^{58}{\rm Ni}, \! 3p) \ E \! = \! 240 \ MeV.$

Measured: γ , $\gamma\gamma$, Eurogam system.

1995Wa14: ⁵⁸Ni(⁵⁸Ni,3p) E=240 MeV.

Measured: γ , $\gamma\gamma$, Eurogam system, same experiment with new analysis.

Except for lifetime data, all other data are from 2001St16.

113 I Levels

Nomenclature for band labels:

 $[p_1p_2,n_1(n_2n_3)];$ where p_1 =number of $g_{9/2}$ proton holes; p_2 =number of $h_{11/2}$ protons; n_1 =number of $h_{11/2}$ neutrons; n_2 =number $g_{9/2}$ or $f_{7/2}$ neutrons; n_3 =number of $i_{13/2}$ neutrons.

E(level)‡	Jπ [†]	T _{1/2}	E(level) [‡]	$J\pi^{\dagger}$	T _{1/2}
0.0	5 / 2+		4497.0a 11	21/2	
63.6 ¹ 5	5 / 2 + 7 / 2 +		4497.04 11 4630.0k 10	31/2- 31/2-	1.1 ps 3
			4630.0 10		
629.4 4	9 / 2 +			29/2+	
753.91 6	11/2+		4798.6 ⁱ 20	29/2+	
838.2 6	9 / 2 +		5015.4@ 10	31/2+	
909.3# 4	9 / 2 +		5081.6ª 10	31/2+	
1017.9 ^j 5	11/2-	159 ps 36	5211.8 ^k <i>11</i>	35/2-	1.3 ps 4
1269.1@6	11/2+		5364.3a 12	35/2-	
1548.7j 7	15/2-	5.0 ps 3	5423.5# 11	33/2+	
1614.4# 6	13/2+		5535.4 ⁱ 17	33/2+	
1616.7 ¹ 7	15/2+		5838.6 [@] 11	35/2+	
1986.6 [@] 7	15/2+		5846.4 4 10	35/2+	
2186.4 ^j 9	19/2-	1.61 ps 17	5947.3 ^k 12	39/2-	
2358.7 # 8	17/2+		6266.2 ^a 13	39/2-	
2684.9 ¹ 8	19/2+		6278.3 # 11	37/2+	
$2731.2^{@}9$	19/2+		6354.0^{i} 14	37/2+	
2870.3j 10	23/2-	1.86 ps 30	6688.0	39/2+	
3035.6a 10	23/2-		6712.1 ^k 13	43/2-	
3106.2# 10	21/2+		6741.4@ 12	39/2+	
3306.6 10	23/2-		7214.6# 12	41/2+	
3480.9@ 10	23/2+		$7247.1^{\dot{1}}$ 13	41/2+	
3568.9 ¹ 10	23/2+		7249.2 ^a 14	43/2-	
3696.2 ^j 10	27/2-	0.67 ps 25	7610.0 4 12	43/2+	
3741.1ª 10	27/2-		7680.7k 14	47/2-	
3766.8 9	23/2+		7699.5 [@] 13	43/2+	
3792.0 9	23/2+		8198.4 ⁱ 12	45/2+	
3861.1# 10	25/2+		8213.6# 14	45/2+	
4113.3 11	27/2-		8296.2ª 14	47/2-	
4127.9^{i} 22	25/2+		8347.6 14	47/2-	
4236.4@ 10	27/2		8586.3 ^k 15	51/2-	
4396.1 8 9	27/2+		8613.6	47/2+	

Continued on next page (footnotes at end of table)

 $^{^{}x}$ γ ray not placed in level scheme.

$^{58}{\rm Ni}(^{58}{\rm Ni}, 3{\rm py})$ 2001St16,2003Pe10 (continued)

$^{113}\text{I Levels (continued)}$

				1	
E(level) [‡]	$J\pi^{\dagger}$	E(level) ‡	$J\pi^{\dagger}$	E(level) [‡]	$J\pi^{\dagger}$
8738.6 [@] 15	47/2+	26005& 4	91/2+	11310+y 4	(87/2-)
9229.7 ⁱ 13	49/2+	26660 i 4	93/2+	11375+yd 4	(87/2-)
9279.6# 16	49/2+	28185a 5	(95/2-)§	z e	(53/2+)
9496.6a 14	51/2-	28432& 5	95/2+	19.0+z 15	
9611.0 ^k 16	55/2-	29039i 4	97/2+	45.5+z 15	
9686.6 43	51/2+	31013& 5	(99/2)+	1258.0+ze 10	(57/2+)
10332.7 ⁱ 14	53/2+	31621 ⁱ 5	(101/2)+	2553.1+ze 15	(61/2+)
10767.2ª 15	55/2-	x c	(53/2-)	3933.8+z ^e 18	(65/2+)
10834.3	55/2+	11.9+x 15		5438.3+ze 20	(69/2+)
11066.9k 19	59/2-	992+xb 3	(57/2-)	7101.0+ze 23	(73/2+)
11510.1 ⁱ 17	57/2+	1098.0+x ^c 10	(57/2-)	8970.8+z ^e 25	(77/2+)
12083.4	59/2+	2176+xb 3	(61/2-)	11090+ze 4	(81/2+)
12120.1 ^a 18	59/2-	2218.8+x ^c 15	(61/2-)	u f	(63/2-)
12769.5 ⁱ 20	61/2+	3392.5+x ^c 18	(65/2-)	1543.7+uf 10	(67/2-)
12990.5 ^k 21	63/2-	3433+xb 3	(65/2-)	3173.4+uf 15	(71/2-)
13414.8 20	63/2+	3518.7+x 18		4915.6+uf 18	(75/2-)
13554.5ª 24	63/2-	4737.3+x ^c 20	(69/2-)	6782.5+uf 20	(79/2-)
14117.4 ⁱ 22	65/2+	4773.8+xb 24	(69/2-)	8822+uf 3	(83/2-)
14841.4 23	67/2+	4913.3+x 20		11025+uf 4	(87/2-)
14993 ^a 3	67/2-	6184.8+x ^c 22	(73/2-)	v g	(55/2+)
15559.3^{i} 24	69/2+	6230.6+x ^b 22	(73/2-)	1360.6+vg 10	(59/2+)
16366.9 ^{&} 25	71/2+	6344.7+x 23		2839.0+vg 15	(63/2+)
16436a 4	71/2-	7778.2+x ^c 25	(77/2-)	4418.2+vg 18	(67/2+)
17104^{i} 3	73/2+	7857.7+x ^b 25	(77/2-)	6102.5+vg 20	(71/2+)
17990a 4	75/2-	9537+x ^c 3	(81/2-)	7873.5+vg 23	(75/2+)
18005& 3	75/2+	9644+xb 3	(81/2-)	9817.5+vg 25	(79/2+)
18756 i 3	77/2+	11540+x ^c 3	(85/2-)	11930+vg 4	(83/2+)
19670 ^a 3	79/2-	11615+xb 3	(85/2-)	wh	(77/2-)
19773& 3	79/2+	13772+xb 4	(89/2-)	1680.5+w ^h 10	(81/2-)
20523^{i} 3	81/2+	13837+x ^c 4	(89/2-)	3458.7+wh 15	(85/2-)
21514 ^a 3	83/2-	13903+x 4	(89/2-)	5329.3+w ^h 18	(89/2-)
21688& 3	83/2+	y d	(59/2-)	7301.4+wh 20	(93/2-)
22419^{i} 4	85/2+	1235.5+yd 10	(63/2-)	9403+wh 3	(97/2-)
23498 ^a 4	87/2-	2579.5+yd 15	(67/2-)	11659+wh 4	$(\ 1\ 0\ 1\ /\ 2\ -\)$
23561 4	87/2-	4032.9+yd 18	(71/2-)	14092+wh 4	$(\ 1\ 0\ 5\ /\ 2\ -\)$
23764& 4	87/2+	5624.1+yd 20	(75/2-)		
24459 i 4	89/2+	7355.6+yd 23	(79/2-)		
25743 ^a 4	91/2-	9261.4+yd 25	(83/2-)	I	

 $[\]dot{\dagger}$ Assignments for several bands are based on theoretical calculations.

 $[\]mbox{\begin{tabular}{l} $\overset{\mbox{\scriptsize \pm}}{=}$}$ From least-squares fit to Ey's (by evaluators).

[§] From figure 1 of 2001St16.

 $^{^{\#}}$ (A): $\alpha \text{=+1/2},$ based on 5/2+, $\Delta J \text{=-2},$ [10,0].

^{@ (}B): $\alpha=-1/2$, based on 11/2+, $\Delta J=2$, [10,0].

[&]amp; (C): $\alpha\text{=-}1/2,$ based on 35/2+, $\Delta J\text{=}2,$ [22,4].

a (D): $\alpha = +1/2$, based on 31/2-, $\Delta J = 2$, [22,3].

b (E): Based on (57/2-), $\Delta J=2$, [22,3].

 $[^]c$ (F): Based on (53/2-), $\Delta J \!=\! 2, [22,3].$ d (G): Based on (59/2-), $\Delta J=2$, [22,3].

e (H): Based on (53/2+), $\Delta J=2$, [21,3].

 $f \quad (I): \ Based \ on \ (63/2-), \ \Delta J {=} 2, \ [21,4] \, .$

g (J): Based on (55/2+), $\Delta J = 2$, [21,3].

 $h \ \ (K); \ Based \ on \ (77/2-), \ \Delta J = 2, \ [22,3(01)].$

 $^{^{\}rm i}$ (L): Based on 25/2+, $\Delta J \text{=}2\text{, [22,4]}.$ $\overset{\mbox{\scriptsize j}}{\mbox{\scriptsize (M)}}:$ Based on 11/2-, $\Delta J{=}2,$ [01,0].

k (N): Based on 31/2-, $\Delta J \!=\! 2,$ [01,2].

l (O): Based on 7/2+, $\Delta J=2$, [00,0].

$^{58}Ni(^{58}Ni, 3p\gamma) \qquad 2001St16, 2003Pe10 \ (continued)$

$\gamma(^{113}I)$

E(level)	Εγ	Ιγ	Mult.	Comments
63.6	63.6			Eγ: from level energy difference.
629.4	565.7 5	31.7 2	M1,E2	DCO=0.9 1.
	629.2 5	47.6 10	E2	Iγ: uncertainty of 0.1 given by 2001St16 seems too low; increased to 1.0 by
				compilers.
770.0	200 4 7	00.00	TI O	DCO=1.0 1.
753.9 838.2	690.4 5	$ \begin{array}{cccc} 20.0 & 2 \\ 1.7 & 2 \end{array} $	E2	DCO=0.98 4.
030.2	774.3 10 838.0 10	1.6 2	M1, E2 E2	
909.3	846.0 5	2.7 2	M1,E2	
	909.4 5	1.6 2	E2	
1017.9	179.8 5	4.7 5	E1	DCO=0.65 6.
				$B(E1)(W.u.)=1.4\times10^{-5} 4.$
	263.95	23.99	E 1	DCO=1.3 2.
				$B(E1)(W.u.)=2.3\times10^{-5}$ 6.
	388.4 5	75 3	E1	DCO=0.53 5, 0.65 3.
1000 1	0.00 0 5	0.4.0	Mi Do	$B(E1)(W.u.)=2.2\times10^{-5}$ 6.
1269.1	360.0 5	8.4 6	M1, E2	DCO=0.74 6.
1548.7 1614.4	530.85 345.45	100 3 6.6 4	E2 M1,E2	B(E2)(W.u.)=83 5. DCO=0.73 6.
1014.4	705.4 8	0.7 2	E2	200-0.10 0.
	775.0 10	1.1 2	E2	
	984.5 10	0.5 2	E2	
1616.7	862.8 5	19.5 14	E 2	DCO=1.09 6.
1986.6	372.0 10	4.1 12	M1,E2	DCO=0.75 5.
	717.6 5	3.1 3	E2	
2186 . 4	637.7 5	95 3	E2	DCO=0.97 8, 0.99 5.
				B(E2)(W.u.)=103 11.
2358.7	372.4 10	2.8 12	M1, E2	DCO=0.75 5.
2684.9	744.0 10	2.75 20.19	E2 E2	DCO=0.95 8 for 744.0+744.4+747.0. DCO=1.03 6.
2731.2	1068.3 5 373.0 10	2.9 11	M1,E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
2751.2	744.4 10	2.8 6	E2	DCO=0.95 8 for 744.0+744.4+747.0.
2870.3	683.6 5	78.7 25	E2	DCO=0.94 10, 0.97 5.
				B(E2)(W.u.)=63 11.
3035.6	$165.1\ 5$	$2.2\ 2$	M1,E2	DCO=0.86 8.
	848.6 5	$10.4\ 10$	E2	DCO=1.01 6.
3106.2	375.0 10	2.7 11	M1, E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
	747.0 10	2.7 4	E2	DCO=0.95 8 for 744.0+744.4+747.0.
3306.6	271.0 6	0.5 1	M1, E2	
3480.9	1120.19 374.010	$ \begin{array}{ccc} 2.0 & 2 \\ 2.3 & 11 \end{array} $	E2 M1,E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
3400.3	750.0 10	2.4 5	E2	DCO-0.75 5 101 SIX TIMES 110III 572.0 to 575.4.
3568.9	884.0 5	7.5 4	E2	
3696.2	825.7 5	61.8 20	E2	DCO=0.92 12, 1.05 10.
				$B(E2)(W.u.)=70 \ 30.$
3741.1	$705.6\ 5$	12.99	E 2	DCO=1.02 6.
	870.9 6	2.2 5	E 2	
3766.8	1081.7 5	2.3 4	E2	
3792.0	1107.3 5	1.2 4	E2	
3861.1	380.0 <i>10</i>	3.3 3	M1, E2	
4113.3	755.0 <i>10</i> 806.6 <i>6</i>	1.4 5 2.6 4	E2 E2	
4236.4	375.4 10	2.2 11	M1+E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
	755.4 10	2.4 7	E2	
4396.1	604.3 5	1.2 2	E2	
	$629.1\ 5$	$2.1\ 3$	E2	
4497.0	756.0 5	10.7 7	E2	B(E2)(W.u.)=13 4.
	800.6 5	42.7 14	E2	DCO=0.97 12, 1.04 9.
				B(E2)(W.u.)=39 11.
4630.0	516.6 5	2.5 2	E2	
	889.1 5	3.92 13.47	E2 E2	DCO_0 02 10 1 00 0
4630.4	933.95 394.05	3.2 2	M1,E2	DCO=0.92 18, 1.00 8.
1000.1	551.00	J.2 2	,	
			Continu	ed on next page (footnotes at end of table)

$^{58}Ni(^{58}Ni, 3p\gamma) \qquad 2001St16, 2003Pe10 \ (continued)$

$\gamma(^{113}I) \ (continued)$

4458.4 789.6 70 70 71 71 71 72 72 72 72 72 72 72 72 72 72 72 72 72	E(level)	Εγ	Ιγ	Mult.	Comments
4798. 0 670.7 JO 0.8 2 E2 5016. 4 735. 0 1.7 2 ML 52 5021. 8 636. 6 2.4 6 E2 DCO-1.0 2 5211. 8 542. 0 6 19.8 8 R2 DCO-1.0 2 5211. 8 542. 0 6 19.8 8 R2 DCO-0.0 2 524. 1 71.5 6 52. 4 17 E2 DCO-0.0 2 542. 2 408. 0 1.9 2 ML 72 ML 72 542. 3 408. 0 1.9 2 ML 72 ML 72 542. 4 73. 0 10 1.8 2 ML 72 555. 4 736. 8 10 1.8 2 ML 72 558. 4 731. 3 90 0.4 2 E2 DCO-0.0 4 12 BCO-1.0 2 584. 4 8 8.2 7. 17 E2 DCO-0.0 4 12. 1 BCO-1.0 2 584. 0 91. 9 8 6. 7. 3 E2 BCO-1.0 2 2626. 2 901. 9 8 6. 7. 3 E2 BCO-1	4630 4	769 0 10	1 3 2	E2	
Solit Soli					
1981 1982 1983 1988					
Section Sect					
T14.5	5081.6	685.6 5	2.4 6	E2	DCO=1.0 2.
Tile S	5211.8	582.0 5	19.8 8	E 2	DCO=0.91 15, 1.02 8.
5364.3					$B(E2)(W.u.)=76\ 24.$
5364.3 887.2 5 1.9 2 DCO-0.93 9. 5423.5 408.0 5 1.9 2 M1.E2 5533.4 736.8 20 2.1 2 E2 5838.6 415.0 5 2.1 2 M1.E2 5846.4 423.2 20 0.3 2 M1.E2 5846.4 423.2 20 0.3 2 M1.E2 5847.3 736.8 6.7 3 E2 DCO-1.0 2. 5847.3 738.5 6.7 3 E2 DCO-0.94 12, 101 8. 6268.2 901.9 6.7.7 2 E2 6384.0 818.6 10 0.8 2 E2 6712.1 764.8 2 2.2 2 E2 6714.4 403.0 1.7 2 M1.E2 7247.1 902.6 0.7 2 E2 DCO-0.98 14, 1.03 10. 7414.0 1.0 2.2 E2 E2 <		714.55	32.412	E 2	
6428.5 408.0 8 1.9 2 M1.E2 5538.4 736.8 20 0.8 6 E2 5538.4 736.8 20 0.8 6 E2 5538.6 415.0 2.1 2 M1.E2 5846.4 423.3 10 1.4 4 E2 DCO=1.0 2. 2 DCO=1.0 2. 2 DCO=1.0 2. 2. DCO=1.0 2. DCO=1.0 2. 2. 2. E2 DCO=1.0 2. 2. 2. 2. E2 DCO=1.0 2. 2. 2. 2. 2.					
793. 10 1.8 2 E2 533.4 415. 0 2.1 2 M1,E2 5438.6 415. 0 2.1 2 M1,E2 544.4 423.3 0 0.3 2 M1,E2 6947.3 785. 5 5. 27. 17 E2 DCO-1.0 2. 6247.3 785. 5 5. 27. 17 E2 DCO-0.94 I2, 1.01 8. 6278.2 343.6 1.6 2 M1,E2 DCO-0.94 I2, 1.01 8. 6278.3 343.6 1.6 2 M1,E2 DCO-0.94 I2, 1.01 8. 6354.0 341.9 5 2.2 2 E2 B2 DCO-0.93 I4, 1.03 I0. 6688.0 841.9 6 2.2 2 E2 DCO-0.93 I4, 1.03 I0. 6712.1 764.8 6 41.8 I3 E2 DCO-0.97 9. 7211.6 403.0 6 1.7 2 M1,E2 DCO-0.97 9. 7211.6 938.0 6 1.8 1 M,E2 DCO-0.98 9. 764.7 893.0 6 8.1 3 E2 DCO-0.98 9. 7610.0 922.1 5 8.1 2 E2 DCO-0.98 9. 7680.7 983.0					DCO=0.93 9.
6583.4 738.8 20 0.8 6 E2 5838.6 18.0 0 1.4 4 E2 5848.4 243.3 70 1.4 4 E2 5947.3 735.5 6 2.7 17 E2 DCO=1.0 2. 6278.3 439.6 1.6 2 M1, E2 DCO=0.94 I2, 1018. 6583.0 813.6 70 8 E2 E2 BCO=0.94 I2, 1018. 6683.0 813.6 70 8.2 E2 E2 BCO=0.93 I4, 103 IA 6711.1 408.5 1.7 2 M1, E2 BCO=0.93 I4, 103 IA 724.6 93.0 1.7 2 M1, E2 BCO=0.93 I4, 103 IA 724.1.2 93.0 1.7 2 M1, E2 BCO=0.93 I4, 103 IA 789.5 485.0 1.7 2 E2 BCO=0.93 I4, 103 IA IA <th< td=""><td>5423.5</td><td></td><td></td><td></td><td></td></th<>	5423.5				
5838.6 415.0 5 2.1 2 M1, B2 5846.4 423.3 10 0.3 2 M1, B2 DCO=1.0 2. 5847.3 764.8 5 2.3 4 E2 DCO=1.0 2. 6247.3 735.6 6 62.7 7 E2 DCO=1.0 2. 6246.2 991.9 6 6.7 3 E2 DCO=0.94 12, 1.01 8. 6354.0 318.6 10 0.8 2 2 2 E2 6688.0 81.9 5 2.7 2 E2 DCO=0.93 14, 1.03 10. 6712.1 764.8 5 41.8 13 E2 DCO=0.93 14, 1.03 10. 7247.1 902.6 10 1.2 2 MI, E2 DCO=0.98 9. 7680.7 983.0 5 8 2 E2 DCO=0.98 9. 7689.5 485.0 10 2 E2 <td></td> <td></td> <td></td> <td></td> <td></td>					
5846. 4 423.3 10 0 1.4 4 E2 E2 5947. 3 743.8 5 2.3 4 E2 DCO=1.0 2. 5947. 3 735.5 5 52.7 17 E2 DCO=0.94 I2, 1.01 S. 6266. 2 901.9 5 6 6.7 3 E2 DCO=0.94 I2, 1.01 S. 6278. 3 439.6 5 1.6 2 MI, 82 E2 DCO=0.94 I2, 1.01 S. 6588. 0 818.6 I0 0 0.8 2 E2 E2 66712. 1 764.8 5 d. 1.7 2 MI, 82 E2 DCO=0.98 I4, 1.03 I0. 6712. 1 764.8 5 d. 1.7 2 MI, 82 E2 DCO=0.97 9. 7214. 6 463.0 5 1.7 2 MI, 82 E2 DCO=0.98 I4, 1.03 I0. 6712. 1 764.8 5 d. 1.3 1 E2 DCO=0.97 9. 7214. 6 463.0 5 1.7 2 MI, 82 E2 DCO=0.98 I4, 1.03 I0. 7214. 7 505.8 I0 0.7 2 E2 DCO=0.98 I. 744. 0 508.0 0.3 2 MI, 82 E2 DCO=0.98 I. 744. 0 508.0 0 0.3 2 MI, 82 E2 DCO=0.98 I. 7689.5 0 10 0 0.3 2 MI, 82 E2 DCO=0.98 I. IIII IIII IIII IIII IIII IIII IIII II					
5846.4 423.3 J 0	5838.6				
764.8 5 2.3 4 E2 DCO=1.0 2. 5947.3 735.5 5 52.7 17 F2 DCO=0.94 12, 1.01 8. 6268.2 901.9 5 6.7 3 82 E2 DCO=0.94 12, 1.01 8. 6278.3 439.6 5 1.6 2 Mt, E2 Mt, E2 6554.0 818.6 70 0.8 2 E2 E2 6588.0 841.9 70 0.5 2 E2 E2 6712.1 764.8 5 41.8 13 E2 DCO=0.93 14, 1.03 10. 6741.4 463.0 5 1.7 2 Mt, E2 724.6 473.0 10 1.2 1 Mt, E2 724.7 505.8 10 0.3 2 Mt, E2 724.1 505.8 10 0.3 2 Mt, E2 724.2 983.0 5 5.8 3 E2 DCO=0.98 9. 7610.0 922.1 5 3.1 2 E2 DCO=0.98 9. 7689.5 983.0 5 0 0.3 2 Mt, E2 E2 818.6 5 32.3 70 E2 E2 820.2 6 10.4 1 Mt, E2 DCO=0.97 14, 1.08 10. 821.3 6 514.0 70 0.3 2 Mt, E2 828.4 7.6 10 10 0.3 5 3.1 2 E2 E2 <t< td=""><td>5040 4</td><td></td><td></td><td></td><td></td></t<>	5040 4				
831.3 10 0.4 1 52 6266.2 901.9 5 6.7 3 52 6266.2 901.9 5 6.7 3 52 6266.2 901.9 5 6.7 3 52 6278.3 439.6 5 1.6 2 Mi, E2 6354.0 818.6 10 0.8 8 52 6354.0 10 1.3 1 52 6368.0 841.9 5 2.2 2 52 6712.1 764.8 5 41.8 73 82 6712.1 764.8 5 41.8 73 82 6712.1 764.8 5 41.8 73 82 6721.4 463.0 5 1.7 2 82 7214.6 50.8 1 5 0.0 0.7 2 82 7214.6 50.8 1 5 0.0 0.7 2 82 7247.1 505.8 10 0.1 1.1 1 82 7247.1 505.8 10 0.3 2 Mi, E2 7469.5 485.0 10 0.7 1 Mi, E2 7699.5 485.0 10 0.7 1 Mi, E2 8198.4 589.2 10 0.3 2 Mi, E2 8198.4 589.2 10 0.3 2 Mi, E2 828.1 6 514.0 10 0.3 2 Mi, E2 828.2 10 0.3 2 Mi, E2 829.5 485.0 10 0.2 1 82 8213.6 514.0 10 0.3 2 Mi, E2 828.3 10 0.2 1 82 829.7 610.0 0.2 1 82 829.7 610.0 0.2 2 Mi, E2 829.7 610.0 0.3 2 Mi, E2 820.2 104.7 5 3.0 2 E2 829.7 610.0 0.3 2 E2 829.7 610.0 10.3 2 E2 820.7 610.0 10.3 2 Mi, E2 820.7 610.0 10.3 2 E2 820.7 610.0 10.3 2 Mi, E2 820.7 610.0 10.3 2 E2 820.7 610.0 10.3 2 Mi, E2 820.7 610.0 10.3 2 E2 820.7 610.0 10.3 2 Mi, E2 820.7 610.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 10.0 2 2 Mi, E2 820.7 610.0 10.0 10.0 10.0 2 E2 820.7 610.0 10.0 10.0 2 E2 820.7 610.0 10.0 10.0 10.0 E2 820.7 610.0 10.0 10.0 10.0 E2 820.7 610.0 10.0 10.0 E2 820.7 610.0 10.0 E2 820.7 610.0	3846.4				DCO-1 0 9
5947, 3 735, 5 52, 7, 7 82 DCO-0,94, 12, 1,018. 6268, 2 901, 9 6 7, 3 82 6272, 3 439, 6 1, 6, 2 M1, E2 6454, 0 818, 6, 10 0, 8, 2 82 6458, 0 841, 9 2, 2 2 841, 10 0, 5, 2 82 6712, 1 764, 8 41, 8, 13 82 DCO-0.93, 14, 1.03, 10. 6741, 4 463, 0 5 1, 7, 2 M1, 82 DCO-0.93, 14, 1.03, 10. 7247, 1 505, 8, 10 1, 1 1 82 DCO-0.97, 9. 7247, 1 505, 8, 10 0, 3, 2 82 DCO-0.98, 9. 7610, 0 922, 1 5, 8, 3 82 DCO-0.99, 9. 7699, 5 485, 0, 10 0, 7, 1 M1, 82 891, 4 588, 2, 10 0, 3, 2 82 892, 2 0, 4, 7 M1, 82 983, 0, 70 0, 2, 2 82 8347, 6 1046, 9 3, 0, 2 2 82					DCO=1.0 2.
6278.3 439.6 5 1.6 2 Mi, E2 6354.0 841.6 70 1.3 7 E2 6688.0 841.9 5 2.2 2 E2 66712.1 764.8 5 41.8 13 E2 6774.1 463.0 5 1.7 2 Mi, E2 7247.1 505.8 10 0.3 2 Mi, E2 7249.2 983.0 5 5.8 3 E2 7869.7 986.5 32.3 70 E2 7869.5 456.0 7 98.6 5 32.3 70 E2 8198.4 6 545.0 10 0.3 2 E2 82813.6 614.0 70 0.3 2 Mi, E2 8213.6 614.0 70 0.3 2 E2 8213.6 70 70 70 70 70 70 70 70 70 70 70 70 70	5947 3				DCO-0.94.19. 1.01.8
6278.3					500-0.54 12, 1.01 0.
S54.6 10					
6688.0 841.9 5 2.2 2 E2 849.1 10 0.5 2 E2 849.1 10 0.5 2 E2 6712.1 764.8 5 41.8 13 E2 6741.4 463.6 5 1.7 2 M1,E2 902.6 10 0.7 2 E2 903.6 10 0.7 2 E2 936.0 10 1.1 1 E2 7247.1 506.8 10 0.3 2 M1,E2 893.1 5 0.9 2 E2 7610.0 922.1 5 3.1 2 E2 7680.7 968.6 5 32.3 10 E2 8198.4 589.2 10 0.4 1 M1,E2 951.3 6 1.1 1 E2 8213.6 514.0 10 0.3 2 E2 8296.2 1046.9 5 3.0 2 E2 8296.2 1046.9 5 3.0 2 E2 8296.2 1046.9 5 3.0 2 E2 8286.3 995.6 5 3.0 2 E2 8286.3 1003.6 5 3.1 2 E2 82837.6 1098.5 5 3.2 2 E2 8286.0 1098.5 5 3.2 2 E2 8298.7 610.0 0.3 2 M1,E2 999.0 10 1.0 2 E2 8296.7 1046.9 5 3.0 2 E2 8296.7 1046.9 5 3.0 2 E2 8296.7 1046.9 5 3.0 2 E2 8296.8 1046.9 5 3.0 2 E2 8296.9 1046.9 5 3.0 2 E2 8296.1 1046.9 5 3.0 2 E2 8296.1 1046.9 5 3.0 2 E2 8296.2 1046.9 5 3.0 2 E2 8296.1 1033.0 5 2.4 1.1 F E2 999.0 10 1.0 2 E2 8296.1 1033.0 5 3.0 2 E2 8296.2 1046.9 5 8.0 1.0 1.0 1.0 2 E2 8296.2 1046.9 5 8.0 1.0 1.0 1.0 2 E2 8296.2 1046.9 5 8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0210.0				
6688.0	6354.0				
849, 1 10 0.5 2 E2 6712, 1 764, 85 41, 813 E2 DCO=0.93 14, 1.03 10. 6741, 4 463, 0 5 1, 7 2 M1, E2 7214, 6 473, 0 10 1, 2 1 M1, E2 7247, 1 505, 8 10 0, 3 2 M1, E2 883, 1 5 0, 3 2 M1, E2 7610, 0 922, 1 5 3, 12 E2 7680, 7 968, 6 5 3, 12 E2 7699, 5 485, 0 10 0, 3 2 E2 8198, 4 589, 2 10 0, 4 1 M1, E2 951, 3 5 1, 1 E2 B2 B2 8213, 6 56, 5 3 2.3 1 E2 B2 8213, 6 51, 40, 10 0, 2 2 E2 8296, 2 1046, 9 3 2 E2 8284, 6 1093, 6 5 3, 2 E2 8297, 6 661, 0 0 0 2					
6741.4					
902.6 10 0 0.7 2 E2 DCO=0.97 9. 7214.6 473.0 10 1.2 1 MI,E2 936.0 10 1.1 1 E2 7247.1 505.8 10 0.3 2 MI,E2 7249.2 983.0 5 5.8 3 E2 DCO=0.98 9. 7610.0 922.15 3.1 2 E2 7680.7 968.6 5 32.3 10 E2 958.0 10 0.3 2 E2 8198.4 589.2 10 0.4 1 MI,E2 951.3 5 1.1 1 E2 953.0 10 0.2 1 E2 983.0 10 0.2 1 E2 823.4 659.2 10 0.4 1 MI,E2 999.0 10 1.0 2 E2 8347.6 1098.5 5 3.2 2 E2 8347.6 1098.5 5 3.2 2 E2 8348.6 50 3 905.6 5 21.1 7 E2 8347.6 1003.6 5 31.1 2 E2 8348.6 1003.6 5 31.2 E2 929.7 616.0 10 0.3 2 MI,E2 929.7 616.0 10 0.3 2 E2 929.7 616.0 10 0.2 1 MI,E2 929.7 616.0 10 0.2 2 MI,E2 929.8 62 MI,E2 929.8 62 MI,E2 929.8 62 MI,E2 929.8 63 MI,E2 929.8 63 MI,E2 929.8 64 MI,E2 920.8 7 MI,E2 920.8 64 MI,E2 920.8 7 MI,E2 920.8 84 MI,E2 920.8 84 MI,E2 920.8 84 MI,E2 920.8 94 MI,E2	6712.1			E 2	DCO=0.93 14, 1.03 10.
7214.6	6741.4	463.0 5	1.7 2	M1,E2	
936.0 10		902.6 10	0.72	E2	DCO=0.97 9.
7247.1	7214 . 6	473.0 10	1.2 1	M1, E2	
893.1 5 0.9 2 E2 DCO=0.98 9. 7610.0 922.1 5 3.1 2 E2 DCO=0.97 14, 1.08 10. 7690.7 968.6 5 32.3 10 E2 DCO=0.97 14, 1.08 10. 8198.4 589.2 10 0.4 1 M1, E2 983.0 10 0.2 1 E2 983.0 10 0.2 1 E2 999.0 10 1.0 2 E2 8296.2 1046.9 5 3.0 2 E2 E2 8543.6 1098.5 3.0 2 E2 E2 8586.3 905.6 5 21.1 7 E2 DCO=0.96 10. 8738.6 525.0 10 0.3 2 M1, E2 9229.7 616.0 10 0.2 2 M1, E2 1031.3 5 1.6 2 E2 9496.6 541.0 10 0.3 2 E2 9688.6 1073.0		936.0 10	1.1 1	E 2	
7249.2 983.0 5 5.8 3 E2 DCO=0.98 9. 7610.0 922.1 5 3.1 2 E2 7680.7 968.6 5 32.3 10 E2 DCO=0.97 14, 1.08 10. 7699.5 485.0 10 0.7 1 M1,E2 958.3 0 10 0.4 1 M1,E2 951.3 5 1.1 1 E2 8213.6 514.0 10 0.3 2 E2 8213.6 514.0 10 0.3 2 M1,E2 999.0 10 1.0 2 E2 8347.6 1098.5 5 3.2 2 E2 8347.6 1098.5 5 3.2 2 E2 8347.6 1003.6 5 3.1 2 E2 DCO=0.96 10. 8613.6 1003.6 5 3.1 2 E2 9229.7 616.0 10 0.3 2 M1,E2 1039.0 10 0.5 2 E2 9229.7 616.0 10 0.2 2 M1,E2 9249.6 1149.1 3 2.4 2 E2 9259.6 541.0 10 0.2 2 M1,E2 1031.3 5 1.6 2 E2 9266.6 1073.0 5 2.8 2 E2 1032.0 10 0.3 2 E2 1033.7 1103.0 5 1.6 2 E2 1033.7 1103.0 5 1.6 2 E2 10384.3 1147.7 5 2.2 2 E2 10383.4 1249.1 10 0.5 1 E2 12083.4 1249.1 10 0.5 1 E2 12083.4 1249.1 10 0.5 1 E2 12083.4 1249.1 10 0.5 1 E2 12120.1 1352.9 10 1.5 2 E2	7247.1	505.8 10			
7610.0 922.1 5 32.1 5 32.2 E2 7680.7 968.6 5 32.3 10 E2					
7680.7 968.6 3 32.3 10 E2 DCO=0.97 14, 1.08 10. 7699.5 485.0 10 0.7 1 M1,E2 958.0 10 0.3 2 E2 8198.4 588.2 10 0.4 1 M1,E2 983.0 10 0.2 1 E2 8213.6 514.0 10 0.3 2 M1,E2 999.0 10 1.0 2 E2 8296.2 1046.9 5 3.0 2 E2 8347.6 1098.5 5 3.2 2 E2 8586.3 905.6 5 3.1 2 E2 DCO=0.96 10. 8613.6 1003.6 5 3.1 2 E2 DCO=1.0 2. 9229.7 616.0 10 0.2 1 M1,E2 1031.3 5 1.6 2 E2 9496.6 1149.1 3 2.4 2 2 961.0 1024.7 5 1.2 4 E2 DCO=1.09 10					DCO=0.98 9.
7699.5					
8198.4					DCO=0.97 14, 1.08 10.
8198.4	7699.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0100 4				
8213.6 514.0 10 0.2 1 E2 8290.2 1046.9 5 3.0 2 E2 8347.6 1098.5 5 3.2 2 E2 8586.3 905.6 5 21.1 7 E2 DCO=0.96 10. 8613.6 1003.6 5 3.1 2 E2 DCO=1.0 2. 8738.6 525.0 10 0.3 2 M1,E2 1039.0 10 0.5 2 E2 9229.7 616.0 10 0.2 1 M1,E2 1031.3 5 1.6 2 E2 9279.6 541.0 10 0.3 2 E2 9496.6 1149.1 3 2.4 2 E2 1200.4 5 1.9 1 E2 9611.0 1024.7 5 12.0 4 E2 10332.7 1103.0 5 1.6 2 E2 10332.7 1103.0 5 1.6 2 E2 1066.9 1455.9 10 11.1 11 E2 11510.1 1177.4 10 1.8 2 E2 112083.4 1249.1 10 0.5 1 E2 112120.1 1352.9 10 1.5 2 E2	0190.4				
8213.6					
8296.2	8213.6				
8296.2					
8586.3	8296.2				
8613.6	8347.6	1098.5 5	3.2 2	E2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8586.3	905.6 5	21.1 7	E2	DCO=0.96 10.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8613.6	1003.6 5	$3.1\ 2$	E 2	DCO=1.0 2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8738.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
9279.6 541.0 10 0.2 2 M1,E2 1066.0 10 0.3 2 E2 9496.6 1149.1 3 2.4 2 E2 1200.4 5 1.9 1 E2 9611.0 1024.7 5 12.0 4 E2 DCO=1.09 10. 9686.6 1073.0 5 2.8 2 E2 10332.7 1103.0 5 1.6 2 E2 10767.2 1270.5 5 1.9 1 E2 10834.3 1147.7 5 2.2 2 E2 11066.9 1455.9 10 11.1 11 E2 11510.1 1177.4 10 1.8 2 E2 12083.4 1249.1 10 0.5 1 E2 12120.1 1352.9 10 1.5 2 E2	9229.7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.077.0				
9496.6	9279.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0406 6				
9611.0 1024.7 5 12.0 4 E2 DCO=1.09 10. 9686.6 1073.0 5 2.8 2 E2 10332.7 1103.0 5 1.6 2 E2 10767.2 1270.5 5 1.9 1 E2 10834.3 1147.7 5 2.2 2 E2 11066.9 1455.9 10 11.1 11 E2 11510.1 1177.4 10 1.8 2 E2 12083.4 1249.1 10 0.5 1 E2 12120.1 1352.9 10 1.5 2 E2	9490.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9611 0				DCO-1 09 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					200-1.00 10.
$egin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
11510.1 1177.4 10 1.8 2 E2 12083.4 1249.1 10 0.5 1 E2 12120.1 1352.9 10 1.5 2 E2					
12120.1 1352.9 10 1.5 2 E2	11510.1	1177.4 10	1.8 2		
	12083 . 4	1249.1 10	0.5 1	E2	
Continued on next page (footnotes at end of table)	12120 . 1	1352 . 9 10	$1.5 \ 2$	E 2	
Continued on next page (footnotes at end of table)					
				Continu	ed on next page (footnotes at end of table)

⁵⁸Ni(⁵⁸Ni,3pγ) 2001St16,2003Pe10 (continued)

 $\gamma(^{113}I)$ (continued)

E(level)	Εγ	Ιγ	Mult.	E(level)	Εγ	Ιγ	Mult.
12769.5	1259.4 10	1.7 2	E2	6344.7+x	1431.4 10	0.2 1	
12990.5	1923.6 10	2.1 3	E2	7778.2+x	1593.3 10	0.9 2	E2
13414.8	1331.4 10	0.6 1	E2	7857.7+x	1627.1 10	0.6 1	E2
13554.5	1434.4 15	1.3 2	E2	9537+x	1758.4 10	0.5 1	E2
14117.4	1347.9 10	1.6 2	E2	9644+x	1786.4 10	0.4 1	E2
14841.4	1426.6 10	0.5 1	E2	11540+x	2003.2 10	0.2 1	E2
14993	1438.5 15	1.3 2	E2	11615+x	1970.8 10	0.3 1	E2
15559.3	1441.9 10	1.3 2	E2	13772+x	2156.9 20	0.22	E2
16366.9	1525.5 10	0.4 1	E 2	13837+x	2296.9 20	0.1 1	E2
16436	1443.0 15	0.8 2	E2	13903+x	2363.0 20	0.1 1	E2
17104	1544.8 10	$1.2 \ 2$	E2	1235.5+y	1235.5 10	0.5 2	E2
17990	1554.0 10	0.8 2	E2	2579.5+y	1344.0 10	0.6 2	E2
18005	1638.2 10	0.4 1	E2	4032.9+y	1453.4 10	0.5 1	E2
18756	1651.8 10	1.1 2	E2	5624.1+y	1591.2 10	0.5 1	E2
19670	1680.4 10	0.7 2	E2	7355.6+y	1731.4 10	0.4 1	E2
19773	1767.7 10	0.4 1	E2	9261.4+y	1905.8 10	0.3 1	E2
20523	1766.9 10	0.9 2	E2	11310+y	2049.0 20	0.1 1	E2
21514	1844.2 10	0.4 1	E2	11375+y	2113.1 20	0.1 1	E2
21688	1915.3 10	0.3 1	E2	1258.0+z	1212.5 10	0.5 1	E2
22419	1895.8 10	0.6 2	E2		1239.0 10	0.3 1	E2
23498	1984.1 10	0.2 1	E2		1258.0 10	0.3 1	E2
23561	2046.6 20	0.2 1	E2	2553.1+z	1295.1 10	1.0 1	E2
23764	2075.8 10	0.2 1	E2	3933.8+z	1380.7 10	1.0 1	E2
24459	2039.9 10	0.4 1	E2	5438.3+z	1504.5 10	0.9 1	E2
25743	2181.6 20	0.1 1	E2	7101.0+z	1662.7 10	0.5 1	E2
	2244.5 20	0.1 1	E2	8970.8+z	1869.7 10	0.3 1	E2
26005	2241.2 20	0.2 1	E2	11090+z	2118.9 20	0.2 1	E2
26660	2201.0 10	0.2 1	E2	1543.7+u	1543.7 10	0.3 1	E2
28185	$2442.2^{\dagger}20$	0.1 1	E2	3173.4+u	1629.6 10	0.3 1	E2
28432	2426.6 20	0.1 1	E2	4915.6+u	1742.2 10	0.3 1	E2
29039	2379.5 20	0.2 1	E2	6782.5+u	1866.9 10	0.3 1	E2
31013	2581.1 7 20	0.1 1	E2	8822+u	2039.4 20	0.3 1	E2
31621	2582.0 † 20	0.2 1	E2	11025+u	2202.9 20	0.2 1	E2
1098.0+x	1086.1 10	$1.2 \ 2$	E2	1360.6+v	1360.6 10	0.2 1	E2
	1098.0 10	1.1 2	E 2	2839.0+v	1478.4 10	0.3 1	E2
2176 + x	1184.1 10	0.8 2	E2	4418.2+v	1579.2 10	0.4 1	E2
2218.8+x	1120.8 10	1.7 4	E2	6102.5+v	1684.3 10	0.3 1	E2
3392.5 + x	1173.7 10	1.4 2	E2	7873.5+v	1770.9 10	0.3 1	E2
3433+x	1257.4 10	0.7 2	E2	9817.5+v	1944.0 10	0.2 1	E2
3518.7+x	1299.9 10	0.3 2		11930+v	2112.3 20	0.1 1	E2
4737.3+x	1344.8 10	1.3 2	E2	1680.5+w	1680.5 10	0.2 1	E2
4773.8+x	1340.6 10	0.6 1	E 2	3458.7+w	1778.1 10	0.3 1	E2
4913.3+x	1394.6 10	0.3 2		5329.3+w	1870.6 10	0.4 1	E2
6184.8+x	1410.0 20	0.3 2	E 2	7301.4+w	1972.1 10	0.4 1	E2
	1447.8 10	1.2 2	E 2	9403+w	2101.2 20	0.3 1	E2
6230.6+x	1457.1 10	0.6 1	E 2	11659+w	2256.7 20	0.2 1	E2
	1493.0 10	0.2 1	E 2	14092+w	2432 . 7 20	0.1 1	E2

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^-) = -10390 \ 130; \ S(n) = 10200 \ 130; \ S(p) = 2290 \ SY; \ Q(\alpha) = 3090 \ 50 \ 2003 Au03.$ Production and identification: 290-MeV 58 Ni on 58 Ni. Chemical and mass separation (1978Ro19,1979Sc22). 600-MeV p on cerium. Chemical and mass separation (1973Ha37). p on lanthanum, 290-MeV 58 Ni on 58 Ni. Chemical and mass separation (1979Ew02).

$^{113}\mathrm{Xe}$ Levels

Cross Reference (XREF) Flags

 $A^{-58}\mathrm{Ni}(^{58}\mathrm{Ni},2\,\mathrm{pn}\gamma)$

				$A^{-58}Ni(^{38}Ni,2pn\gamma)$
$\underline{\hspace{1.5cm}E(level)^{\dagger \S}}$	$_{-}J\pi^{\ddagger}$	XREF	T _{1/2}	Comments
0.00	(5/2+)	A	2.74 s 8	%ε+%β+=100; %α=0.011; %εp=7 4; %β+α=0.007 4. %α: from 1985Ti02, based on estimated limit for the reduced width. εp and β+α derived from εp/α=500-1500 in 1985Ti02. Other: εp=4.2 (1978Ro19). E(level): tentative g.s. assignment for 2.8-s activity (1973Ha37), the proton-to-α intensity in β-delayed particle is 830 50 (1979Ew02). $T_{1/2}$: from 1985Ti02. Other: 2.8 s 2 (1973Ha37). Jπ: tentative Jπ from syst.
125.91 ^d 18	7 / 2 +	A		
146.19° 18	5 / 2+	A		
404.8 4	11/2-	A		
549.09° 20	9 / 2 +	A		
711.14 ^d 23	11/2+	A		
820.0 & 4	15/2-	A		
1242.17° 23	13/2+	A		
1472.34 ^d 25	15/2+	A		
1476.3 3	19/2-	A		
2023.2° 3	17/2+	A		
2141.8 ^a 3	17/2+	A		
2285.1 ^e 3	19/2+	A		
2301.9& 4	23/2-	A		
2378.6 ^d 3	19/2+	A		
2393.3 11	01/0	A		
2542.1a 3	21/2+	A		
2787.6° 4 2968.1d 3	21/2+	A		
3022.4° 4	23/2+	A		
3067.6a 4	23/2+ 25/2+	A		
3242.5& 5	27/2-	A A		
3288.5° 4	25/2+	A		
3288.6 5	25/2+	A		
3584.6° 4	27/2-	A		
3587.2a 4	29/2+	A		
3604.9d 4	27/2+	A		
4241.7# 5	31/2-	A		
4263.5 ^a 5	33/2+	A		
4277.1 ^e 5	31/2+	A		
4277.6	31/2-	A		
4315.2 ^d 4	31/2+	A		
5028.2b 5	(33/2+)	A		
5069.4# 5	35/2-	A		
5092.4a 5	37/2+	A		
5097.8e 5	35/2+	A		
5149.8 5	35/2+	A		
5166.5 5	35/2-	A		
5389.6 5	(35/2-)	A		
5610.6 ^b 5	(37/2+)	A		
6040.6# 6	39/2-	A		
6077.1ª 6	(41/2+)	A		
6218.5 ^b 5	(41/2+)	A		
6646.5 6		A		
6661.6 ^{&} 6	(39/2-)	A		
6957.5 ^b 6	(45/2+)	A		
7109.2# 6	43/2-	A		
7243.4 ^a 6	(45/2+)	A		

Continued on next page (footnotes at end of table)

$^{113} Xe \ Levels \ (conti\underline{nued})$

E(level) ^{†§}	$\underline{\hspace{1cm} J\pi^{\ddagger}}$	XREF	E(level)†§	Jπ [‡]	XREF	E(level)†§	Jπ [‡]	$\frac{XREF}{}$
7832.4 ^b 6	(49/2+)	A	8896.1 ^b 6	(53/2+)	A	11513.1 ^b 7	(61/2+)	A
7845.6 [@] 6	(43/2-)	A	9189.6@ 7	(47/2-)	A	12473.6@7	(55/2-)	A
8098.6 6	(43/2-)	A	9711.3# 21	(51/2-)	A	13218.1 ^b 7	(65/2+)	A
8341.3# 21	(47/2-)	A	10084.1b 7	(57/2+)	A			
8566.4^{a} 21	(49/2+)	A	10694.6@7	(51/2-)	A			

 $^{^{\}dagger}$ From least-squares fit to Γ energies.

 $\gamma(^{113} Xe)$

E(level)	$\mathrm{E}\gamma$	Ιγ	Mult. [†]	Comments
125.91	126.0 2	100	M1,E2	
146.19	$146.1\ 2$	100	M1,E2	
549.09	$402.8\ 2$	40	E 2	
	423 . 3 2	100	M1,E2	
711.14	585.2 2	100	E 2	
820.0	415 . 2 2	100	E 2	
1242 . 17	530.8 2	45		
	693.1 2	100	E2	
1472 . 34	230.02	19	M1, E2	
	761.42	100	E2	
1476.3	656.72	100	E2	
2023.2	551.02	8	M1,E2	
	780.8 2	100	E2	
2141 . 8	899.8 2	100	E2	
	1321 . 3 2	20	E 1	
2285 . 1	812.8 2	100	E2	
2301 . 9	825.6 2	100	E2	
2378.6	$355.6\ 2$	4 1	M1+E2	
	$906.1\ 2$	100	E2	
2393.3	917			
2542 . 1	$163.7\ 2$	31	M1,E2	
	256.92	9	M1,E2	
	$400.1\ 2$	56	E2	
	$518.6\ 2$	5 1	E2	
	1066.32	100	E 1	
2787.6	764 . $4\ 2$	100	E 2	
2968.1	$589.3\ 2$	3 1	E 2	
	683.7 2	100	E 2	Eγ: level-energy difference=683.2.
3022.4	736.7 2	100	E 2	
3067.6	525.52	100	E 2	
3242 . 5	940.62	100	E 2	
3288.5	500.92	100	E2	
3288.6	986.7 2	100		
3584.6	$562.2\ 2$	100	E2	
3587.2	$519.6\ 2$	100	E2	
3604.9	581.9 2	20	E2	
	637.4 2	100	E2	
4241.7	$999.2\ 2$	100	E2	
4263 . 5	676.3 2	100	E2	
4277.1	692.5 2	100	E2	
				Continued on next page (footnotes at end of table)

 $[\]ensuremath{^{\frac{1}{2}}}$ From the deduced transitions multipolarities and band assignments.

 $[\]$ From least-squares fit to Ey's.

^{# (}A): Band based on 31/2-.

[@] (B): Band based on (43/2-).

[&]amp; (C): $\nu 3/2[541]$ band, $\alpha = -1/2$.

a (D): Band based on 17/2+.

 $^{^{\}rm b}$ (E): Band based on (33/2+).

c (F): v5/2[413] band, $\alpha = +1/2$.

d (G): v5/2[413] band, $\alpha = -1/2$.

e (H): Band based on 19/2+.

$\gamma(^{113}Xe)$ (continued)

E(level)	Εγ	Ιγ	Mult.†	E(level)_	Εγ	Ιγ	Mult.†	E(level)_	Εγ	Ιγ	Mult. [†]
4277.6	1035.1 2	100	E2	6040.6	971.2 2	100	E2	8341.3	1232 2	100	
4315 . 2	710.32	100	E 2	6077.1	984.6 2	100	E 2	8566.4	1323 2	100	E 1
5028.2	1441.0 2			6218.5	607.9 2	100	E 2	8896.1	1063.7 2	100	
5069.4	827.7 2	100	E2	6646.5	605.9 2	100		9189.6	$1344.0\ 2$	100	
5092.4	828.9 2	100	E2	6661.6	1272.0 2			9711.3	1370.02	100	
5097.8	820.7 2	100	E2	6957.5	739.0 2	100	E 2	10084.1	1188.0 2	100	
5149.8	872.7 2	100	E2	7109.2	1068.6 2			10694.6	1505.02	100	
5166.5	924.8 2	100	E2	7243.4	1166.3 2	100	E1	11513.1	1429.02	100	
5389.6	1112.0 2	100		7832.4	874.9 2	100	E2	12473.6	1779.02	100	
5610.6	582.4 2		E2	7845.6	1184.0 2	100		13218.1	1705.0 2	100	
	1347 . 0 2			8098.6	1437.02	100					

 $^{^{\}dagger}$ From DCO Measurements.

- (A) band based on 31/2-
- (B) band based on (43/2-)
- (C) ν3/2[541] band, α=-1/2
- (D) band based on 17/2+

 $^{11}_{\ 54}{\rm Xe}_{59}$

⁵⁸Ni(⁵⁸Ni,2pnγ) 2000Sc23

E=210 and 250 MeV. At a beam energy of 210, measured E γ , I γ , $\gamma\gamma$, and $\gamma\gamma(\theta)(R)$ using the JUROSPHERE spectrometer equipped with 7 TESSA-type, 5 NORDBALL-type and 14-EUROGRAM type HPGe detectors. At beam energy of 250 MeV, measured E γ , I γ , $\gamma\gamma$ and $\gamma\gamma(\theta)(R)$ using GAMMASPHERE spectrometer consisting of 83 HPGe detectors, used in conjunction with MICROBALL and neutron detector.

Preliminary data was given by 1995Pa01. They show Band C up to 35/2-.

 $^{113}\mathrm{Xe}$ Levels

$E(level)^{\dagger}$		E(level) [†]	Jπ	E(level) [†]	Jπ
0.0ª	5 / 2+	3242.5 # 5	27/2-	6218.5 % 5	(41/2+)
125.91 ^b 18	7 / 2 +	3288.5ª 4	25/2+	6646.5 6	
146.19a 18	5 / 2 +	3288.6 5	25/2-	6661.6# 6	(39/2-)
404.8# 4	11/2-	3584.6° 4	27/2+	6957.5 6	(45/2+)
549.09 ^a 20	9 / 2+	3587.2@4	29/2+	7109.2 ‡ 6	43/2-
711.14b 23	11/2+	3604.9b 4	27/2+	7243.4@6	(45/2+)
820.0# 4	15/2-	4241.7 5	31/2-	7832.4 ^{&} 6	(49/2+)
1242.17a 23	13/2+	4263.5@5	33/2+	7845.6 \$ 6	(43/2-)
1472.34 ^b 25	15/2+	4277.1° 5	31/2+	8098.6# 6	(43/2-)
1476.3 # 3	19/2-	4277.6 # 5	31/2-	8341.3 ‡ 21	(47/2-)
2023.2a 3	17/2+	4315.2b 4	31/2+	8566.4@ 21	(49/2+)
2141.8@3	17/2+	5028.2 % 5	(33/2+)	8896.1 6	(53/2+)
2285.1° 3	19/2+	5069.4 ‡ 5	35/2-	9189.6 \$ 7	(47/2-)
2301.9# 4	23/2-	5092.4 @ 5	37/2+	9711.3 ‡ 21	(51/2-)
2378.6 ^b 3	19/2+	5097.8° 5	35/2+	10084.1 % 7	(57/2+)
2393.3 11		5149.8 5	35/2+	10694.6 7	(51/2-)
$2542.1^{@}$ 3	21/2+	5166.5 5	35/2-	11513.1& 7	(61/2+)
2787.6a 4	21/2+	5389.6# 5	(35/2-)	12473.6 \$ 7	(55/2-)
2968.1b 3	23/2+	5610.6 5	(37/2+)	13218.1& 7	(65/2+)
3022.4° 4	23/2+	6040.6 ‡ 6	39/2-		
$3067.6^{\scriptsize @}4$	25/2+	6077.1@6	(41/2+)		

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $\gamma(^{113}Xe)$

R=Angular intensity ratio (from several spectra gated by low-spin quadrupole transitions).

E(level)	Εγ	Ιγ [†]	Mult.	Comments
407.04			164 P.O.	D 0 70 0
125.91	126.02	51	M1, E2	R=0.72 3.
146.19	146.12	8.9	M1, $E2$	R=0.62 4.
549.09	$402.8\ 2$	9.0	E2	R=1.12 16.
	423.32	22.4	M1, E2	R=0.52 2.
711.14	$585.2\ 2$	50	E2	R=1.13 5.
820.0	415 . 2 2	100	E2	R=1.02 3.
1242.17	530.8 2	6.9		
	693.1 2	15.3	E2	R=0.97 3.
1472.34	230.02	4.4	M1,E2	R=0.64 8.
	761.42	23.0	E2	R=1.02 6.
1476.3	656.7 2	62.6	E2	R=1.02 4.
2023.2	551.02	1.2	M1,E2	R=0.65 1.
	780.8 2	14.5	E2	R=1.03 5.
2141.8	899.8 2	4.9	E2	R=1.13 9.
	1321.3 2	1.0	E 1	Dc0=0.67 8.
2285.1	812.8 2	15.9	E2	R=1.12 6.
2301.9	825.6 2	53.0	E2	R=1.25 3.
2378.6	355.6 2	2.6	M1, E2	R=0.72 8.
	906.1 2	6.3	E2	R=0.98 7.

Continued on next page (footnotes at end of table)

 $[\]ddagger$ (A): Band based on 31/2-.

 $[\]$ (B): Band based on (43/2-).

^{# (}C): v3/2[541] band, $\alpha = -1/2$.

^{@ (}D): Band based on 17/2+.
& (E): Band based on (33/2+).

a (F): v5/2[413] band, $\alpha=+1/2$.

b (G): v5/2[413] band, $\alpha = -1/2$.

 $^{^{}c}\,\,$ (H): Band based on 19/2+.

⁵⁸Ni(⁵⁸Ni,2pnγ) 2000Sc23 (continued)

$\gamma(^{113}Xe) \ (continued)$

E(level)	Εγ	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}\underline{\hspace{1.5cm}}$	Mult.	Comments
2393.3	917			
2542.1	163.7 2	5.1	M1,E2	R=0.56 3.
	256.9 2	1.5	M1,E2	R=0.79 8.
	400.1 2	9.2	E2	R=0.95 4.
	518.6 2	8.3	E2	R=0.97 3.
	1066.3 2	16.4	E1	R=0.60 4.
2787.6	764.4 2	10.6	E2	R=1.06 5.
2968.1	589.3 2	3.8	E2	R=1.03 10.
	683.7 2	12.4	E2	Eγ: level-energy difference=683.2.
				R=1.09 4.
3022.4	736.7 2	11.9	E 2	R=0.92 5.
3067.6	525.52	43.6	E 2	R=1.02 4.
3242 . 5	940.6 2	10.5	E 2	R=1.19 7.
3288.5	500.92	2.4	E2	R=1.19 9.
3288.6	986.7 2	7.0		R=0.64 5.
3584.6	562 . 2 2	6.2	E2	R=1.01 8.
3587.2	$519.6\ 2$	34.3	E 2	R=1.03 4.
3604.9	581.9 2	7.1	E 2	R=0.89 10.
	637.4 2	35.4	E 2	R=1.22 4.
4241 . 7	$999.2\ 2$	7.8	E 2	R=1.10 13.
4263 . 5	676.32	21.9	E 2	R=1.1] 3.
4277 . 1	$692.5\ 2$	10.6	E 2	R=1.20 14.
4277.6	1035.1 2	1.6	E2	R=1.10 8.
4315 . 2	710.32	3.5	E2	R=0.92 14.
5028.2	1441.0 2			
5069.4	827.7 2	8.4	E2	R=1.15 8.
5092.4	828.9 2	12.2	E2	R=0.92 4.
5097.8	820.7 2	3.0	E2	R=0.89 9.
5149.8	872.7 2	2.1	E2	R=0.96 5.
5166.5	924.8 2	1.2	E2	R=0.90 8.
5389.6	1112.0 2			
5610.6	582.4 2	2.3	E 2	R=0.92 7.
0040	1347.0 2			P. 4.00. A
6040.6	971.2 2	6.9	E2	R=0.89 6.
6077.1	984.6 2	4.9	E2	R=1.15 6.
6218.5	607.9 2	4.9	E2	R=1.40 12.
6646.5	605.9 2	2.6		R=0.86 4.
6661.6	1272.0 2	1.0	Eo	D. 0.02.0
6957.5	739.0 2	1.2	E2	R=0.83 8.
7109.2 7243.4	1068.62 1166.32	16.4	E1	R=0.60 4.
7832.4	874.9 2	1.2	E2	R=1.19 14.
7845.6	1184.0 2	1.2	15 2	N-1.13 14.
8098.6	1437.0 2			
8341.3	1232 2			
8566.4	1323 2	1.0	E1	R=0.67 8.
8896.1	1063.7 2	1.0		
9189.6	1344.0 2			
9711.3	1370.0 2			
10084.1	1188.0 2			
10694.6	1505.0 2			
11513.1	1429.0 2			
12473.6	1779.0 2			
13218.1	1705.0 2			

 $^{^{\}dagger}$ Uncertainties are less than 5%.

Adopted Levels

 $S(n) = 13480 \ SY; \ S(p) = -974 \ 3; \ Q(\alpha) = 3484 \ 7 \quad 2003 Au 03.$

Production and identification:

 $250~\mathrm{MeV}^{-58}\mathrm{Ni}$ on $^{58}\mathrm{Ni}$ (1987Gi02).

Analyzed by a gas-detector system in a backward position during the beam pause.

The identification is based on the fact that the 116 Ba compound nucleus with low excitation energy allows only 2 channels: p2n giving 113 Cs and α p2n giving 109 I. The proton line of 109 I has another energy. It can be produced by 54 Fe(58 Ni,p2n).

Preliminary $T_{1/2}$ measurement of 1 μs (1984Fa04) was not confirmed in the last experiment (1987Gi02) with better statistics and new results of 1994Pa12.

$^{113}\mathrm{Cs}$ Levels

E(level)	Jπ	T _{1/2}	Comments
0.0	(3/2+)	11/2 16.7 μs 7	%p=100; %α=0. %α from 1994Pa12. T _{1/2} : from 1998Ba13. Others: 17 μs 2 (1994Pa12), 28 μs 7 (1995Ho26). Jπ: from 2000Bb02. However, a 1/2+ assignment is also possible (1998Ma42). E(p)=960 keV 3, Q(p)=978 keV 3 (1995Ho26), B(p)=1, T _{1/2} (p)=16.7 μs 7. Other E(p)=959 6 (1994Pa12).
			σ≈30 μb (1987Gi02).
			$J\pi$: from shell model (1987Gi02).

REFERENCES FOR A=113

```
1939Ba03
            S.W.Barnes - Phys.Rev. 56, 414 (1939)
1940La07
            J.L.Lawson, J.M.Cork - Phys.Rev. 57, 982 (1940)
1957Je07
             E.N.Jensen - Priv.Comm. (June 1957)
1958A190
            J.M.Alexander, U.Schindewolf, C.D.Coryell - Phys.Rev. 111, 228 (1958)
             R.K.Girgis, R.van Lieshout - Physica 24, 672(1958)
1958Gi06
             F.K.McGowan, P.H.Stelson - Phys.Rev. 109, 901 (1958)
1958Mc02
1959Bu08
             S.B.Burson, H.A.Grench, L.C.Schmid - Phys.Rev. 115, 188 (1959)
1960Ki01
             A.Kjelberg, H.Taniguchi, L.Yaffe - Can.J.Phys. 38, 866 (1960)
1960Se06
             I.P.Selinov, V.D.Chikhladze - Zhur.Eksptl.i Teoret.Fiz. 38, 1012 (1960); Soviet Phys.JETP 11, 728 (1960)
1961Gr11
             R.C.Greenwood, E.Brannen - Phys.Rev. 122, 1849 (1961)
1961Sc12
             M.Schmorak, G.T.Emery, G.Scharff-Goldhaber - Phys.Rev. 124, 1186 (1961)
19615008
            I.P.Selinov, V.L.Chikhladze, D.E.Khulelidze - Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 848 (1961); Columbia Tech.Transl.
             R.K.Jolly, E.K.Lin, B.L.Cohen - Phys.Rev. 128, 2292 (1962)
1962Jo05
1962Pa04
             A.P.Patro, B.Basu - Nuclear Phys. 34, 538 (1962)
1962Wa15
             D.E.Watt, R.N.Glover - Phil.Mag 7, 105 (1962)
1964Ro17
             B.Rosner - Phys.Rev. 136, B664 (1964)
1965Ca13
             R.C.Catura - Nucl.Instrum.Methods 32, 152 (1965)
1965F102
             K.F.Flynn, L.E.Glendenin, E.P.Steinberg - Nucl.Sci.Eng. 22, 416 (1965)
1966Ba25
             G.Bassani, M.Conjeaud, J.Gastebois, S.Harar, J.M.Laget, J.Picard, Y.Cassagnou - Phys.Letters 22, 189 (1966)
1966Co35
             M.Conjeaud, B.Fernandez, S.Harar, J.Picard, G.Souchere - CEA-N-621, p.10 (1966)
1966Ri06
             P.Richard, C.F.Moore, J.A.Becker, J.D.Fox - Phys.Rev. 145, 971 (1966)
1967Bo10
             E.C.Booth, J.Brownson - Nucl. Phys. A98, 529 (1967)
1967Bo18
             H.E.Bosch, M.C.Simon, E.Szichman, L.Gatto, S.M.Abecasis - Phys.Rev. 159, 1029(1967)
1967Hi03
             S.A.Hjorth, L.H.Allen - Arkiv Fysik 33, 121 (1967)
1967Ko07
             M.Koike - Nucl. Phys. A98, 209 (1967)
1967Ok02
             H.Okamura, M.Ogawa, A.Mito - J.Inorg, Nucl. Chem. 29, 1185 (1967)
1967Sc12
             E.J.Schneid, A.Prakash, B.L.Cohen - Phys.Rev. 156, 1316 (1967)
1968Co22
             M.Conjeaud, S.Harar, Y.Cassagnou - Nucl. Phys. A117, 449 (1968)
             B.Fogelberg, A.Backlin - NP-17722 (LF-23) (1968)
1968F007
1968Ha54
             R.S.Hager, E.C.Seltzer - Nucl.Data A4, 397 (1968)
1968Kj01
             A.Kjelberg, A.C.Pappas, T.Tunaal - J.Inorg.Nucl.Chem. 30, 337 (1968)
1968RoZZ
             M.R.Roche - Thesis, Univ.Missouri (1968)
1968Sa16
             C.Samour, J.Julien, J.M.Kuchly, R.N.Alves, J.Morgenstern - Nucl. Phys. A122, 512 (1968)
1968St17
             W M Stewart N Baron R F Leonard - Phys Rev 171 1316 (1968)
1969Ab09
             E.Abramson, R.A.Eisenstein, I.Plesser, Z.Vager - Nucl.Phys. A138, 609 (1969)
1969Bo42
             M.Boivin - Compt.Rend. 269B, 929 (1969)
1969Cl11
             J.E.Cline, R.L.Heath - IN-1130 (1969)
1969Co03
             M.Conjeaud, S.Harar, E.Thuriere - Nucl. Phys. A129, 10 (1969)
1969De25
             E.der Mateosian, M.Goldhaber - Phys.Rev. 186, 1285 (1969)
1969Go03
             L.H.Goldman, J.Kremenek, S.Hinds - Phys.Rev. 179, 1172 (1969)
1969Hn01
             D.J.Hnatowich, C.D.Coryell, W.B.Walters - Nucl. Phys. A130, 497 (1969)
1969Ju01
             J.Julien, R.Alves, S.de Barros, V.D.Huynh, J.Morgenstern, C.Samour - Nucl. Phys. A132, 129 (1969); UCRL-TRANS-10397
1969Ki16
             B.G.Kiselev, V.R.Burmistrov - Yadern.Fiz. 10, 1105 (1969); Soviet J.Nucl.Phys. 10, 629 (1970)
1969Li20
             J.Liptak, J.Vrzal, E.P.Grigoriev, G.S.Katykhin, J.Urbanec - Czech.J.Phys. 19B, 1127 (1969)
             M.K.Ramaswamy - Proc.Intern.Conf.Radioactivity in Nuclear Spectroscopy, Vanderbilt University, Nashville, Tenn.
1969RaZP
              (1969), J.H.Hamilton, J.C.Manthuruthil, Eds., Gordon and Breach, New York, Vol.2, p.1211 (1969)
1969Va04
             H.van den Berg, M.McDonnell, M.K.Ramaswamy - Can.J.Phys. 47, 594(1969)
1969WiZX
             J.B.Wilhelmy - Thesis, Univ.California (1969); UCRL-18978 (1969)
1969Ya05
             T. Yamazaki, G.T. Ewan - Nucl. Phys. A134, 81 (1969)
1970Ar19
             P.O.Aronsson, E.Ehn, J.Rydberg - Phys.Rev.Lett. 25, 590 (1970)
1970Be02
             E.M.Bernstein, G.G.Seaman, J.M.Palms - Nucl. Phys. A141, 67 (1970)
1970Ca01
             P.E.Cavanagh, C.F.Coleman, A.G.Hardacre, G.A.Gard, J.F.Turner - Nucl. Phys. A141, 97 (1970)
1970De22
             E.der Mateosian, M.Goldhaber - Phys.Rev. C2, 2026 (1970)
1970Go48
             I.W.Goodier, F.H.Hughes, M.J.Woods - Int.J.Appl.Radiat.Isotop. 21, 678 (1970)
1970Gr 20
             W.E.Greth, S.Gangadharan, R.L.Wolke - J.Inorg.Nucl.Chem. 32, 2113 (1970)
1970Jo20
             W.John, F.W.Guy, J.J.Wesolowski - Phys.Rev. C2, 1451 (1970)
1970Le07
             J.Legrand, F.Lagoutine, J.P.Brethon - Int.J.Appl.Radiat.Isotop. 21, 139 (1970)
1970Ma47
             Z.-I.Matumoto,\ T.Tamura\ -\ J.Phys.Soc.Jap.\ 29,\ 1116\ (1970)
1970Mi08
             V.D.Mistry, C.L.Hollas, H.R.Hiddleston, P.J.Riley - Phys.Rev. C1, 1595 (1970)
1970Ra05
             M.K.Ramaswamy - Phys.Rev. C1, 333 (1970)
1970Ro29
             R.J.Rousselin, C.Gauthier - Int.J.Appl.Radiat.Isotop. 21, 599 (1970)
1970Tr02
             D.E.Troutner, M.Eichor, C.Pace - Phys.Rev. C1, 1044 (1970)
1970WiZN
             J.B.Wilhelmy,\ S.G.Thompson,\ J.O.Rasmussen,\ J.T.Routti,\ J.E.Phillips\ -\ UCRL-19530,\ p.178\ (1970)
1971Em01
             S.T.Emerson, V.Valkovic, W.R.Jackson, C.Joseph, A.Niiler, W.D.Simpson, G.C.Phillips - Nucl. Phys. A169, 317 (1971)
1971Fl05
             D.G.Fleming, M.Blann, H.W.Fulbright - Nucl. Phys. A163, 401 (1971)
1971GeZW
             J.S.Geiger, R.L.Graham, D.Ward - AECL-3912, PRP-89, p.37 (1971)
1971GoYM
             I.W.Goodier, M.J.Woods, A.Williams - Proc.Int.Conf.Chemical Nucl.Data, Canterbury, M.L.Hurrell, Ed., p.175 (1971)
```

H.H.Hansen, E.De Roost, D.Mouchel, R.Vaninbroukx - Int.J.Appl.Radiat.Isotop. 22, 1 (1971) 1971Ha18 1971Ki14 H.J.Kim, W.T.Milner - Nucl.Instrum.Methods 95, 429 (1971) 19710001 J.M.Oottukulam, M.K.Ramaswamy - Amer.J.Phys. 39, 221 (1971); Addendum Amer.J.Phys. 39, 1282 (1971) 1972An 28 D.S.Andreev, A.P.Grinberg, K.I.Erokhina, V.S.Zvonov, I.K.Lemberg - Izv.Akad.Nauk SSSR, Ser.Fiz. 36, 2172 (1972); Bull.Acad.Sci.USSR, Phys.Ser. 36, 1907 (1973) T.Borello, E.Frota-Pessoa, C.Q.Orsini, O.Dietzsch, E.W.Hamburger - Rev.Bras.Fis, 2, 157 (1972) 1972Bo76 1972Br38 H.F.Brinckmann, W.D.Fromm, C.Heiser, H.Rotter, D.D.Clark, N.J.S.Hansen, J.Pedersen - Nucl. Phys. A193, 236 (1972) 1972Em01 J.F.Emery, S.A.Reynolds, E.I.Wyatt, G.I.Gleason - Nucl.Sci.Eng. 48, 319 (1972) F.F.Hopkins, J.R.White, G.W.Phillips, C.F.Moore, P.Richard - Phys.Rev. C5, 1015 (1972) 1972Ho08 1972Ko38 A.Kover, D.Berenyi, J.Csongor - Z.Phys. 254, 418 (1972) 1972La14 F. Lagoutine, J. Legrand, C. Perrot, J. P. Brethon, J. Morel - Int. J. Appl. Radiat. Isotop. 23, 219 (1972) S.Raman, H.J.Kim, W.T.Milner - ORNL-4743, p.73 (1972) 1972RaZM 1972Si28 M.Singh, J.W.Sunjer, R.M.Devries, G.E.Thompson - Nucl. Phys. A193, 449 (1972) 1972Wa11 A.C.Wahl - J.Inorg.Nucl.Chem. 34, 1767 (1972) 1973BuZW V.R.Burmistrov, V.A.Didorenko - Program and Theses, Proc. 23rd. Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, p. 60 (1973) 1973Ha37 E.Hagberg, P.G.Hansen, B.Jonson, B.G.G.Jorgensen, E.Kugler, T.Mowinckel - Nucl. Phys. A208, 309 (1973) 1973 In 06 H.Inoue, Y.Yoshizawa, T.Morii - J.Phys.Soc.Jap. 34, 1437 (1973) 1973 I s ZQ M.Ishihara, R.Broda, B.Herskind - Proc.Int.Conf.Nuclear Physics, Munich, J.de Boer, H.J.Mang, Eds., North-Holland Publ.Co., Amsterdam, Vol.1, p.256 (1973) 1973Ra10 S.Raman, N.B.Gove - Phys.Rev. C7, 1995 (1973) 1974Br29 R.Brenn, S.K.Bhattacherjee, G.D.Sprouse, L.E.Young - Phys.Rev. C10, 1414 (1974); Erratum Phys.Rev. C11, 1488 (1975) 1974Bu 21 V.P.Burminskii, B.G.Kiselev, O.D.Kovrigin - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 1566 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.8, 4 (1974) 1974Ch17 A.Charvet, R.Chery, R.Duffait - J.Phys.(Paris), Suppl.Lett. 35, L-41 (1974) 1974Di18 F.Dimmling, N.Brauer, B.Focke, T.Kornrumpf, K.Nishiyama, D.Riegel - Z.Phys. 271, 103 (1974) K.I.Erokhina, R.Zhirgulevichus, I.C.Lemberg, A.A.Pasternak - Liet.Fiz.Rinkinys 14, 817 (1974) 1974Er06 1974Gr29 B. Grapengiesser, E. Lund, G. Rudstam - J. Inorg. Nucl. Chem. 36, 2409 (1974) 1974Ho17 W.Hogervorst, C.Ekstrom, S.Ingelman, G.Wannberg - Phys.Scr. 9, 317 (1974) 1974Ki02 H.J.Kim, R.L.Robinson - Phys.Rev. C9, 767 (1974) 1974Le34 I.K.Lemberg, A.A.Pasternak - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 1600 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.8, 35 (1974) 1974Ma09 R.G.Markham, H.W.Fulbright - Phys.Rev. C9, 1633 (1974) 1975Ab09 S.N.Abramovich, B.Y.Guzhovskii, A.G.Zvenigorodskii, S.V.Trusillo - Izv.Akad.Nauk SSSR, Ser.Fiz. 39, 1688 (1975); Bull.Acad.Sci.USSR, Phys.Ser. 39, No.8, 103 (1975) 1975BrYM W.Bruchle - Thesis, Johannes Gutenberg-Universitat, Mainz (1975) 1975Bu24 B.Bulow, M.Eriksson, G.G.Jonsson, E.Hagebo - Z.Phys. A275, 261 (1975) 1975BuYW V.P.Burminsky, I.V.Grebenschikov, O.D.Kovrigin - Proc.Symp.Nucl.Spectrosc.Nucl.Theory,14th,Dubna,JINR-D6-8846, p.88 (1975)1975Ga11 A.K.Gaigalas, R.E.Shroy, G.Schatz, D.B.Fossan - Phys.Rev.Lett. 35, 555 (1975) 1975Ku10 V.Z.Kuttemperoor, R.A.Kobiske - Int.J.Appl.Radiat.Isotop, 26, 138 (1975) 1975WiZX R.Wigmans - Thesis, Vrije Universitat, Amsterdam (1975) 1976De35 A.A.Delucchi, R.A.Meyer - J.Inorg.Nucl.Chem. 38, 2135 (1976) 1976Di03 W.Dietrich, A.Backlin - Z.Phys. A276, 133 (1976) 1976Fu06 G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976) 1976Ka25 R.Kamermans, T.J.Ketel, H.Verheul - Z.Phys. A279, 99 (1976) G.C.Madueme, L.O.Edvardson, L.Westerberg - Phys.Scr. 13, 17 (1976) 1976Ma09 1976MaYL V.Matschoss, K.Bachmann - Proc.Int.Conf.Nuclei Far From Stability, Cargese, Corsica, p.59 (1976); CERN 76-13 (1976) $1976 \mathrm{Me\,ZR}$ J.S.Merritt, F.H.Gibson - AECL-5315, p.37 (1976) 1976Sm04 J.W.Smits, R.H.Siemssen - Nucl. Phys. A261, 385 (1976) 1976Tu02 W.K.Tuttle III, P.H.Stelson, R.L.Robinson, W.T.Milner, F.K.McGowan, S.Raman, W.K.Dagenhart - Phys.Rev. C13, 1036 (1976)1976TuZX W.K.Tuttle III - Thesis, Univ. of Tennessee (1976); Diss. Abst. Int. 37B 833 (1976) 1976Wi10 M.E.J. Wigmans, R.J. Hevnis, P.M.A. van der Kam, H. Verheul - Phys. Rev. C14, 229 (1976) 1976Wi 11 M.E.J.Wigmans, R.J.Heynis, P.M.A.van der Kam, H.Verheul - Phys.Rev. C14, 243 (1976) 1977Ca14 Y.Cauchois, H.ben Abdelaziz, Y.Heno, R.Kherouf, C.Schloesing-Moller - C.R.Acad.Sci., Ser.B 284, 65 (1977) 1977Ki11 R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, E.Roeckl, D.Schardt, N.Kaffrell, P.Peuser, K.Schneeweiss - Phys.Lett. 70B. 150 (1977) 1977So10 F.Soga, Y.Hashimoto, N.Takahashi, Y.Iwasaki, K.Sakurai, S.Kohmoto, Y.Nogami - Nucl. Phys. A288, 504 (1977) 1978Fr16 G.Franz, G.Herrmann - J.Inorg.Nucl.Chem. 40, 945 (1978) 1978He08 K.Heyde, M.Waroquier, R.A.Meyer - Phys.Rev. C17, 1219 (1978) 1978Ma17 Z.-I.Matumoto, T.Tamura, K.Sakurai - J.Phys.Soc.Jpn. 44, 1062 (1978) 1978Ro19 E.Roeckl, R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, D.Schardt, K.Wien, R.Fass, S.Mattsson - Phys.Lett. 78B, 393 1978Ro21 F.Rosel, H.M.Friess, K.Alder, H.C.Pauli - At.Data Nucl.Data Tables 21, 291 (1978) 1978Ta22 M.Tanaka, T.Yamagata, K.Iwamoto, S.Kishimoto, B.Saeki, K.Yuasa, T.Fukuda, I.Miura, K.Okada, M.Inoue, H.Ogata -Phys.Lett. 78B, 221 (1978) 1979Ew02 G.T.Ewan, E.Hagberg, P.G.Hansen, B.Jonson, S.Mattsson, G.Nyman, E.Roeckl, D.Schardt, P.Tidemand-Petersson, The

ISOLDE Collaboration - Phys.Lett. 84B, 173 (1979)

- 1979Ha12 E.Hashimoto, Y.Shida, G.C.Madueme, N.Yoshikawa, M.Sakai, S.Ohya Nucl. Phys. A318, 145 (1979)
- 1979Sc22 D.Schardt, R.Kirchner, O.Klepper, W.Reisdorf, E.Roeckl, P.Tidemand-Petersson, G.T.Ewan, E.Hagberg, B.Jonson, S.Mattsson, G.Nyman Nucl.Phys. A326, 65 (1979)
- 1979Sh03 R.E.Shroy, A.K.Gaigalas, G.Schatz, D.B.Fossan Phys.Rev. C19, 1324 (1979)
- 1980GoZX G.M.Gowdy, R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, E.Roeckl, D.Schardt, N.Kaffrell, K.Schneeweiss Priv.Comm.
 (June 1980)
- 1980Ho17 H.Houtermans, O.Milosevic, F.Reichel Int.J.Appl.Radiat.Isotop. 31, 153 (1980)
- 1980Oh01 S.Ohya, N.Mutsuro, Z.Matumoto, T.Tamura Nucl. Phys. A334, 382 (1980)
- 1980Ro04 E.Roeckl, G.M.Gowdy, R.Kirchner, O.Klepper, A.Piotrowski, A.Plochocki, W.Reisdorf, P.Tidemand-Petersson, J.Zylicz, D.Schardt, G.Nyman, W.Lindenzweig Z.Phys. A294, 221 (1980)
- 1980Ta04 H.Taketani, M.Adachi, T.Matsuzaki, M.Matoba, N.Koori, T.Yamazaki, S.Morinobu, I.Katayama, M.Fujiwara, Y.Fujita, H.Ikegami Phys.Lett. 90B, 214 (1980)
- 1981Me17 D.H.Meikrantz, R.J.Gehrke, L.D.McIsaac, J.D.Baker, R.C.Greenwood Radiochim.Acta 29, 93 (1981)
- 1981MuZQ S.F.Mughabghab, M.Divadeenam, N.E.Holden Neutron Cross Sections, Vol.1, Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z = 1-60, Academic Press, New York (1981)
- 1981Sc17 D.Schardt, T.Batsch, R.Kirchner, O.Klepper, W.Kurcewicz, E.Roeckl, P.Tidemand-Petersson Nucl.Phys. A368, 153 (1981)
- $1982 HoZJ \qquad D.D. Hoppes, \ J.M.R. Hutchinson, \ F.J. Schima, \ M.P. Unterweger NBS-SP-626, \ p.85 \ (1982)$
- 1982RuZV A.R.Rutledge, L.V.Smith, J.S.Merritt NBS-SP-626, p.5 (1982)
- 1984Fa04 T.Faestermann, A.Gillitzer, K.Hartel, P.Kienle, E.Nolte Phys.Lett. 137B, 23 (1984)
- 1984 Iw06 Y.Iwata, I.Yamamoto, Y.Yoshizawa Int.J.Appl.Radiat.Isotop. 35, 907 (1984)
- 1985HaZA H.H.Hansen European App.Res.Rept.Nucl.Sci.Technol. 6, No.4, 777 (1985); EUR 9478 EN
- 1985TiO2 P.Tidemand-Petersson, R.Kirchner, O.Klepper, E.Roeckl, D.Schardt, A.Plochocki, J.Zylicz Nucl.Phys. A437, 342 (1985)
- 1985Wa02 A.H.Wapstra, G.Audi Nucl.Phys. A432, 1 (1985)
- 1985ZiZY W.L.Zijp ECN FYS/RASA-85/19 (1985)
- 1987BaYW K.A.Baskova, A.B.Vovk, T.M.Gerus, L.I.Gorov, A.M.Demidov, V.A.Kurkin IAE-4544/2 (1987)
- 1987Gi02 A.Gillitzer, T.Faestermann, K.Hartel, P.Kienle, E.Nolte Z.Phys. A326, 107 (1987)
- $1987 Ne \, 01 \qquad Zs. Nemeth, \ L. Lakosi, \ I. Pavlicsek, \ A. Veres Appl. Radiat. Isot. \ 38, \ 63 \ (1987)$
- 1987Vi 09 I.N.Vishnevsky, Yu.A.Dei, Yu.N.Lobach, O.B.Melnikov, I.P.Tkachuk, V.V.Trishin, T.V.Chaplitskaya Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 873 (1987); Bull.Acad.Sci.USSR, Phys.Ser. 51, No.5, 33 (1987)
- 1988Be45 N.Benczer-Koller, G.Lenner, R.Tanczyn, A.Pakou, G.Kumbartzki, A.Pique Hyperfine Interactions 43, 457 (1988)
- 1988FoZY B.Fogelberg, E.Lund, Z.Ye, B.Ekstrom Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed.,
 I.S.Towner, p.296 (1988)
- 1988KaZE N.Kaffrell, J.Rogowski, H.Tetzlaff, N.Trautmann, D.De Frenne, K.Heyde, E.Jacobs, G.Skarnemark, J.Alstad, M.N.Harakeh, J.M.Schippers, S.Y.van der Werf, W.R.Daniels, K.Wolfsberg Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I.S.Towner, p.286 (1988)
- 1988Pe13 H.Penttila, P.Taskinen, P.Jauho, V.Koponen, C.N.Davids, J.Aysto Phys.Rev. C38, 931 (1988)
- 1989Bu27 V.P.Burminsky, G.S.Dombrovskaya, O.D.Kovrigin, R.A.Zarifov, O.V.Antsyferov Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 865 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.5, 44 (1989)
- 1989Ra17 P.Raghavan At.Data Nucl.Data Tables 42, 189 (1989)
- 1990Fo07 B.Fogelberg, Z.Ye, B.Ekstrom, E.Lund, K.Aleklett, L.Sihver Z.Phys. A337, 251 (1990)
- 1990Ko42 L.K.Kostov, W.Andrejtscheff, L.G.Kostova, A.Dewald, G.Bohm, K.O.Zell, P.von Brentano, H.Prade, J.Doring, R.Schwengner Z.Phys. A337, 407 (1990)
- 1990Ro16 J.Rogowski, J.Alstad, S.Brant, W.R.Daniels, D.De Frenne, K.Heyde, E.Jacobs, N.Kaffrell, V.Paar, G.Skarnemark, N.Trautmann Phys.Rev. C42, 2733 (1990)
- 1990Vi09 I.N.Vishnevsky, M.Yu.Kirichenko, A.A.Kurteva, Yu.N.Lobach, I.A.Malyuk, I.P.Tkachuk, V.V.Trishin Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 552 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, No.3, 172 (1990)
- 1990ViZV I.N.Vishnevsky, M.Yu.Kirichenko, Yu.N.Lobach, I.A.Malyuk, I.P.Tkachuk, V.V.Trishin, R.M.Shevaga Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.72 (1990)
- 1991Ch01 Y.S.Chen Phys.Rev. C43, 173 (1991)
- 1991KrZR T.Kroll Thesis, Johan Wolfang Goethe-Univ., Frankfurt (1991)
- 1991Ma06 C.P. Massolo, S. Fortier, S. Gales, F. Azaiez, E. Gerlic, J. Guillot, E. Hourani, H. Langevin-Joliot, J. M. Maison, J.P. Schapira, G.M. Crawley Phys. Rev. C43, 1687 (1991)
- $1991 Ne\, ZX \qquad Zs. Nemeth \, \, KFK \, \, 4888 \, \, (1991)$
- 1991Vi09 I.N.Vishnevsky, Yu.N.Lobach, I.A.Malyuk, I.P.Tkachuk, V.V.Trishin, R.M.Shevaga Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2166 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.11, 82 (1991)
- 1991Vo05 P.von Neumann-Cosel, A.Richter, J.J.Carroll, C.B.Collins Phys.Rev. C44, 554 (1991)
- 1992Ay02 J.Aysto, A.Astier, T.Enqvist, K.Eskola, Z.Janas, A.Jokinen, K.-L.Kratz, M.Leino, H.Penttila, B.Pfeiffer, J.Zylicz Phys.Rev.Lett. 69, 1167 (1992)
- 1992PeZX H.Penttila Thesis, Univ.Jyvaskyla (1992)
- 1992Ra09 E.M.Rastopchin, M.I.Svirin, G.N.Smirenkin Yad.Fiz. 55, 310 (1992); Sov.J.Nucl.Phys. 55, 169 (1992)
- 1992Un01 M.P.Unterweger, D.D.Hoppes, F.J.Schima Nucl.Instrum.Methods Phys.Res. A312, 349 (1992)
- 1993Ja04 V.P.Janzen, H.R.Andrews, B.Haas, D.C.Radford, D.Ward, A.Omar, D.Prevost, M.Sawicki, P.Unrau, J.C.Waddington, T.E.Drake, A.Galindo-Uribarri, R.Wyss Phys.Rev.Lett. 70, 1065 (1993)
- $1993 Mu14 \qquad A. Mukherjee, \ S. Bhattacharya, \ B. Dasmahapatra Appl. Radiat. Isot. \ 44, \ 731 \ (1993)$
- 1993Pa13 V.Paar, D.K.Sunko, S.Brant, M.G.Mustafa, R.G.Lanier Z.Phys. A345, 343 (1993)
- 1993Pe11 H.Penttila, T.Enqvist, P.P.Jauho, A.Jokinen, M.Leino, J.M.Parmonen, J.Aysto, K.Eskola Nucl.Phys. A561, 416 (1993)

- 1993Ra08 D.C.Radford, A.Galindo-Uribarri, G.Hackman, V.P.Janzen, and the 8π Collaboration Nucl. Phys. A557, 311c (1993)
- 1994Al49 A.Alessandrello, C.Brofferio, D.V.Camin, C.Cattadori, O.Cremonesi, E.Fiorini, A.Giuliani, M.Pavan, G.Pessina, E.Previtali, L.Zanotti Nucl.Instrum.Methods Phys.Res. A344, 243 (1994)
- 1994Be24 M.Bernas, S.Czajkowski, P.Armbruster, H.Geissel, Ph.Dessagne, C.Donzaud, H.-R.Faust, E.Hanelt, A.Heinz, M.Heese, C.Kozhuharov, Ch.Miehe, G.Munzenberg, M.Pfutzner, C.Rohl, K.-H.Schmidt, W.Schwab, C.Stephan, K.Summerer, L.Tassan-Got, B.Voss Phys.Lett. 331B. 19 (1994)
- 1994DeZX K.Debertin Priv.Comm. (1994)
- 1994Ge07 W.Geiger, Zs.Nemeth, I.Bauske, P.von Brentano, R.D.Heil, R.-D.Herzberg, U.Kneissl, J.Margraf, H.Maser, N.Pietralla, H.H.Pitz, C.Wesselborg, A.Zilges Nucl.Phys. A580, 263 (1994)
- 1994Pa12 R.D.Page, P.J.Woods, R.A.Cunningham, T.Davinson, N.J.Davis, A.N.James, K.Livingston, P.J.Sellin, A.C.Shotter Phys.Rev.Lett. 72, 1798 (1994)
- 1995Au04 G.Audi, A.H.Wapstra Nucl.Phys. A595, 409 (1995)
- 1995Ho26 S.Hofmann Radiochim.Acta 70/71, 93 (1995)
- 1995Ja15 V.P.Janzen Phys.Scr. T56, 144 (1995)
- 1995KaZV L.Kaubler, J.Doring, L.Funke, P.Kleinwachter, H.Prade, J.Reif, R.Schwengner, G.Winter, I.N.Vishnevsky, M.J.Kirichenko, Yu.N.Lobach, I.P.Tkachuk, V.V.Trishin, M.F.Kudoyarov, E.V.Kusmin, A.A.Pasternak, J.Blomqvist, L.Kostova - FZR-95 (1995)
- 1995Pa01 E.S.Paul, P.J.Woods, T.Davinson, R.D.Page, P.J.Sellin, C.W.Beausang, R.M.Clark, R.A.Cunningham, S.A.Forbes, D.B.Fossan, A.Gizon, J.Gizon, K.Hauschild, I.M.Hibbert, A.N.James, D.R.LaFosse, I.Lazarus, H.Schnare, J.Simpson, R.Wadsworth, M.P.Waring Phys.Rev. C51, 78 (1995)
- 1995ScZY E.Schonfeld PTB-6.33-95-2 (1995)
- 1995Wa14 M.P.Waring, E.S.Paul, C.W.Beausang, R.M.Clark, R.A.Cunningham, T.Davinson, S.A.Forbes, D.B.Fossan, S.J.Gale, A.Gizon, K.Hauschild, I.M.Hibbert, A.N.James, P.M.Jones, M.J.Joyce, D.R.LaFosse, R.D.Page, I.Ragnarsson, H.Schnare, P.J.Sellin, J.Simpson, P.Vaska, R.Wadsworth, P.J.Woods Phys.Rev. C51, 2427 (1995)
- 1996Da11 F.A.Danevich, A.Sh.Georgadze, V.V.Kobychev, B.N.Kropivyansky, V.N.Kuts, A.S.Nikolaiko, O.A.Ponkratenko, V.I.Tretyak, Yu.G.Zdesenko Yad.Fiz. 59, No 1, 5 (1996); Phys.Atomic Nuclei 59, 1 (1996)
- 1997Ch01 R.S.Chakrawarthy, R.G.Pillay Phys.Rev. C55, 155 (1997)
- 1997HeZZ R.G.Helmer, C.van der Leun Priv.Comm. (1997)
- 1997Ka40 L.Kaubler, Yu.N.Lobach, V.V.Trishin, A.A.Pasternak, M.F.Kudojarov, H.Prade, J.Reif, R.Schwengner, G.Winter, J.Blomqvist, J.Doring Z.Phys. A358, 303 (1997)
- 1997Mo09 C.-B.Moon, C.S.Lee, J.C.Kim, T.Komatsubara, T.Saitoh, N.Hashimoto, T.Hayakawa, K.Furuno Z.Phys. A357, 127 (1997)
- 1997Wa20 N.Warr, S.Drissi, P.E.Garrett, J.Jolie, J.Kern, S.J.Mannanal, J.-L.Schenker, J.-P.Vorlet Nucl.Phys. A620, 127
- 1997We13 X.-Q.Wen, K.Shizuma, S.Hamanaka, K.Iwatani, H.Hasai Nucl.Instrum.Methods Phys.Res. A397, 478 (1997)
- 1998Ba13 J.C.Batchelder, C.R.Bingham, K.Rykaczewski, K.S.Toth, T.Davinson, J.A.McKenzie, P.J.Woods, T.N.Ginter, C.J.Gross, J.W.McConnell, E.F.Zganjar, J.H.Hamilton, W.B.Walters, C.Baktash, J.Greene, J.F.Mas, W.T.Milner, S.D.Paul, D.Shapira, X.J.Xu, C.H.Yu Phys.Rev. C57, R1042 (1998)
- 1998Bl04 J.Blachot Nucl.Data Sheets 83, 647 (1998)
- 1998Ch38 II.-T.Cheon, G.Kim, A.V.Khugaev Prog.Theor.Phys.(Kyoto) 100, 327 (1998)
- 1998Ch39 R.S.Chakrawarthy, P.von Brentano, J.Gableske, A.Dewald, R.Wirowski, S.Albers, M.Schimmer Eur.Phys.J. A 2, 323 (1998)
- 1998Ku17 J.Kurpeta, G.Lhersonneau, J.C.Wang, P.Dendooven, A.Honkanen, M.Huhta, M.Oinonen, H.Penttila, K.Perajarvi, J.R.Persson, A.Plochocki, J.Aysto Eur.Phys.J. A 2, 241 (1998)
- 1998Ma42 E.Maglione, L.S.Ferreira, R.J.Liotta Phys.Rev.Lett. 81, 538 (1998)
- 1998Mo22 C.-B.Moon, C.S.Lee, J.C.Kim, J.H.Ha, T.Komatsubara, T.Shizuma, K.Uchiyama, K.Matsuura, M.Murasaki, Y.Sasaki, H.Takahashi, Y.Tokita, K.Furuno Phys.Rev. C58, 1833 (1998)
- 1998Se05 J.M.Sears, I.Thorslund, D.B.Fossan, P.Vaska, E.S.Paul, K.Hauschild, I.M.Hibbert, R.Wadsworth, S.M.Mullins Phys.Rev. C57, 1656 (1998)
- 1998Se14 J.M.Sears, S.E.Gundel, D.B.Fossan, D.R.LaFosse, P.Vaska, J.DeGraaf, T.E.Drake, V.P.Janzen, D.C.Radford, Ch.Droste, T.Morek, U.Garg, K.Lamkin, S.Naguleswaran, G.Smith, J.C.Walpe, R.Kaczarowski, A.V.Afanasjev, I.Ragnarsson -Phys.Rev. C58, 1430 (1998)
- 1998Si17 B.Singh, J.L.Rodriguez, S.S.M.Wong, J.K.Tuli Nucl.Data Sheets 84, 487 (1998)
- 1999BeZQ M.-M.Be, B.Duchemin, J.Lame, C.Morillon, F.Piton, E.Browne, V.Chechev, R.Helmer, E.Schonfeld CEA-ISBN 2-7272-0200-8 (1999)
- 1999BeZS M.-M.Be, B.Duchemin, E.Browne, S.-C.Wu, V.Chechev, R.Helmer, E.Schonfeld CEA-ISBN 2-7272-0211-3 (1999)
- 1999Ho25 M.Houry, R.Lucas, M.-G.Porquet, Ch.Theisen, M.Girod, M.Aiche, M.M.Aleonard, A.Astier, G.Barreau, F.Becker, J.F.Chemin, I.Deloncle, T.P.Doan, J.L.Durell, K.Hauschild, W.Korten, Y.Le Coz, M.J.Leddy, S.Perries, N.Redon, A.A.Roach, J.N.Scheurer, A.G.Smith, B.J.Varley Eur.Phys.J. A 6, 43 (1999)
- 1999Kr17 R.Krucken, S.J.Asztalos, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, G.J.Schmid, F.S.Stephens, K.Vetter, J.-Y.Zhang Phys.Rev. C60, 031302 (1999)
- 1999Wa09 J.C.Wang, P.Dendooven, M.Hannawald, A.Honkanen, M.Huhta, A.Jokinen, K.-L.Kratz, G.Lhersonneau, M.Oinonen, H.Penttila, K.Perajarvi, B.Pfeiffer, J.Aysto Phys.Lett. 454B, 1 (1999)
- 2000Bb02 B.Barmore, A.T.Kruppa, W.Nazarewicz, T.Vertse Phys.Rev. C62, 054315 (2000)
- 2000Bu06 N.Buforn, A.Astier, J.Meyer, M.Meyer, S.Perries, N.Redon, O.Stezowski, M.G.Porquet, I.Deloncle, A.Bauchet, J.Duprat, B.J.P.Gall, C.Gautherin, E.Gueorguieva, F.Hoellinger, T.Kutsarova, R.Lucas, A.Minkova, N.Schulz, H.Sergolle, Ts.Venkova, A.N.Wilson Eur.Phys.J. A 7, 347 (2000)

- 2000Folo N.Fotiades, J.A.Cizewski, R.Krucken, K.Y.Ding, D.E.Archer, J.A.Becker, L.A.Bernstein, K.Hauschild, D.P.McNabb, W.Younes, S.J.Asztalos, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, G.J.Schmid, F.S.Stephens, K.Vetter Phys.Rev. C61, 064326 (2000)
- 2000He14 R.G.Helmer, C.van der Leun Nucl.Instrum.Methods Phys.Res. A450, 35 (2000)
- 2000Sc23 H.C.Scraggs, E.S.Paul, A.J.Boston, C.J.Chiara, M.Devlin, O.Dorvaux, D.B.Fossan, P.T.Greenlees, K.Helariutta, P.Jones, R.Julin, S.Juutinen, H.Kankaanpaa, H.Kettunen, D.R.LaFosse, G.J.Lane, I.Y.Lee, A.O.Macchiavelli, M.Muikku, P.Nieminen, P.Rahkila, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, K.Starosta, O.Stezowski Phys.Rev. C61, 064316 (2000)
- 2000Zh04 X.Q.Zhang, J.H.Hamilton, A.V.Ramayya, S.J.Zhu, J.K.Hwang, C.J.Beyer, J.Kormicki, E.F.Jones, P.M.Gore, B.R.S.Babu, T.N.Ginter, R.Aryaeinejad, K.Butler-Moore, J.D.Cole, M.W.Drigert, J.K.Jewell, E.L.Reber, J.Gilat, J.O.Rasmussen, A.V.Daniel, Yu.Ts.Oganessian, G.M.Ter-Akopian, W.C.Ma, P.G.Varmette, L.A.Bernstein, R.W.Lougheed, K.J.Moody, M.A.Stoyer Phys.Rev. C61, 014305 (2000)
- 2001St16 K.Starosta, C.J.Chiara, D.B.Fossan, T.Koike, D.R.LaFosse, G.J.Lane, J.M.Sears, J.F.Smith, A.J.Boston, P.J.Nolan, E.S.Paul, A.T.Semple, M.Devlin, D.G.Sarantites, I.Y.Lee, A.O.Macchiavelli, I.Ragnarsson Phys.Rev. C64, 014304 (2001)
- 2002Ku18 J.Kurpeta, G.Lhersonneau, A.Plochocki, J.C.Wang, P.Dendooven, A.Honkanen, M.Huhta, M.Oinonen, H.Penttila, K.Perajarvi, J.R.Persson, J.Aysto Eur.Phys.J. A 13, 449 (2002)
- 2002Ve08 Ts.Venkova, M.-G.Porquet, A.Astier, A.Bauchet, I.Deloncle, S.Lalkovski, N.Buforn, L.Donadille, O.Dorvaux, B.J.P.Gall, R.Lucas, M.Meyer, A.Minkova, A.Prevost, N.Redon, N.Schulz, O.Stezowski Eur.Phys.J. A 15, 429 (2002)
- 2003Au03 G.Audi, A.H.Wapstra, C.Thibault Nucl.Phys. A729, 337 (2003)
- 2003Pe10 P.Petkov, A.Dewald, A.Fitzler, T.Klug, G.de Angelis, E.Farnea, A.Gadea, R.Isocrate, N.Marginean, D.R.Napoli, D.Curien, N.Kintz, S.Lenzi, S.Lunardi, R.Menegazzo, V.Pucknell, C.Ring Phys.Rev. C 67, 054306 (2003)
- 2003Zh14 Z.Zhang, S.J.Zhu, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, R.Q.Xu, Z.Jiang, S.D.Xiao, X.Q.Zhang, J.Kormicki, P.M.Gore, E.F.Jones, W.C.Ma, J.D.Cole, M.W.Drigert, I.Y.Lee, J.O.Rasmussen, Y.X.Luo, T.N.Ginter, C.Folden, P.Fallon III, P.Zielinski, K.E.Gregorich, A.O.Macchiavelli, R.Donangelo, M.A.Stoyer Phys.Rev. C 67, 064307 (2003)
- 2004Lu03 Y.X.Luo, S.C.Wu, J.Gilat, J.O.Rasmussen, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, C.J.Beyer, S.J.Zhu, J.Kormicki, X.Q.Zhang, E.F.Jones, P.M.Gore, I-Y.Lee, P.Zielinski, C.M.Folden III, T.N.Ginter, P.Fallon, G.M.Ter-Akopian, A.V.Daniel, M.A.Stoyer, J.D.Cole, R.Donangelo, S.J.Asztalos, A.Gelberg Phys.Rev. C 69, 024315 (2004)