

planetmath.org

Math for the people, by the people.

axiom of dependent choices

Canonical name AxiomOfDependentChoices

Date of creation 2013-03-22 18:46:39 Last modified on 2013-03-22 18:46:39

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 03E25 The axiom of dependent choices (DC), or the principle of dependent choices, is the following statement:

given a set A and a binary relation $R \neq \emptyset$ on A such that $ran(R) \subseteq dom(R)$, then there is a sequence $(a_n)_{n \in \mathbb{N}}$ in A such that $a_n Ra_{n+1}$.

Here, \mathbb{N} is the set of all natural numbers.

The relation between DC, AC (axiom of choice), and CC (axiom of countable choice) are the following:

Proposition 1. ZF+AC implies ZF+DC.

We prove this by using one of the equivalents of AC: Zorn's lemma. For this proof, we define $seg(n) := \{m \in \mathbb{N} \mid m \leq n\}$, the initial segment of \mathbb{N} with the greatest element n. Before starting the proof, we need a fact about initial segments:

Lemma 1. The union of initial segments of \mathbb{N} is either \mathbb{N} or an initial segment.

Proof. Let S be a set of initial segments of \mathbb{N} . If $s := \bigcup S \neq \mathbb{N}$, then $B := \mathbb{N} - S \neq \emptyset$, so B has a least element r. As a result, none of $i \in \operatorname{seg}(r-1)$ is in B, and $\operatorname{seg}(r-1) \subseteq s$. If some $m \geq r$ is in s, then there is an initial segment $\operatorname{seg}(n) \in S$ with $m \in \operatorname{seg}(n)$, so that $r \in \operatorname{seg}(m) \subseteq \operatorname{sg}(n) \subseteq s$, contradicting $r \in B$.

Remark. The fact that B in the proof above has a least element is a direct result of ZF, so the well-ordering principle (and hence AC) is not needed.

We are now ready for the proof of proposition 1.

Proof. Let R be a non-empty binary relation on a set A (of course non-empty). We want to find a function $f: \mathbb{N} \to \text{dom}(R)$ such that f(n)Rf(n+1).

Let P be the set of all partial functions $f: \mathbb{N} \Rightarrow \operatorname{dom}(R)$ such that $\operatorname{dom}(f)$ is either an initial segment of \mathbb{N} , or \mathbb{N} itself, such that f(n)Rf(n+1), whenever $n, n+1 \in \operatorname{dom}(f)$. Since $R \neq \emptyset$, some $(a,b) \in R$. Additionally, $b \in \operatorname{ran}(R) \subseteq \operatorname{dom}(R)$. Define function $g: \{1,2\} \to \operatorname{dom}(R)$ by g(1) = a and g(2) = b. Then g(1)Rg(2), so that $g \in P$, or P is non-empty.

Partial order P by inclusion so it is a poset. Let C be a chain in P, then $h := \bigcup C$ is a partial function from \mathbb{N} to A. Since dom(h) is the union

of initial segments or \mathbb{N} , dom(h) itself is either an initial segment or \mathbb{N} by Lemma 1.

Now, suppose $m, m+1 \in \text{dom}(h)$, then $m+1 \in \text{dom}(s)$ for some $s \in C$, so $m \in \text{dom}(s)$ as well. Therefore s(m)Rs(m+1). Since h(i) = s(i) for any $i \in \text{dom}(s)$, we see that h(m)Rh(m+1). This shows that $h \in P$, or that C has an upper bound in P.

By Zorn's lemma, P has a maximal element f. We claim that f is a total function. If not, then $dom(f) = \{1, \ldots, n\}$ for some n. Since $f(n) \in dom(R)$, there is some $d \in ran(R)$ such that f(n)Rd. Define a partial function $g: \mathbb{N} \Rightarrow dom(R)$ such that $dom(g) = \{1, \ldots, n+1\}$, and g(i) = f(i) for all $i = 1, \ldots, n$, and g(n+1) = b. So $g \neq f$ extends f, contradicting the maximality of f. Hence, f is a total function, and we are done. \square

Proposition 2. ZF+DC implies ZF+CC.

Proof. Let C be a countable set of non-empty sets. We assume that C is countably infinite, for the finite case can be proved using ZF alone, and is left for the reader.

Since there is a bijection $\phi: C \to \mathbb{N}$, index each element in C by its image in \mathbb{N} , so that $C = \{A_i \mid i \in \mathbb{N}\}$. Let $A := \bigcup C$. We want to find a function $f: C \to A$ such that $f(A_i) \in A_i$ for every $i \in \mathbb{N}$.

Define a binary relation R on A as follows: aRb iff there is an $i \in \mathbb{N}$ such that $a \in A_i$ and $b \in A_{i+1}$. Since each $A_i \neq \emptyset$, $R \neq \emptyset$. Furthermore, if $b \in \operatorname{ran}(R)$, then $b \in A_{i+1}$ for some $i \in \mathbb{N}$. Pick any $c \in A_{i+2}$ (since $A_{i+2} \neq \emptyset$), so that bRc, and therefore $b \in \operatorname{dom}(R)$. This shows that $\operatorname{ran}(R) \subseteq \operatorname{dom}(R)$.

By DC, there is a function $g: \mathbb{N} \to \text{dom}(R)$ such that g(i)Rg(i+1) for every $i \in \mathbb{N}$. Now, $g(1) \in A_j$ for some $j \in \mathbb{N}$. Define a function $h: \mathbb{N} \to A$ as follows, for each $i \in \text{seg}(j-1)$, pick $a_i \in A_i$ and set $h(i) := a_i$ (this can be done by induction), and for $i \geq j$, set h(i) := g(j-i+1) (arithmetic of finite cardinals is possible in ZF). Then $h(i) \in A_i$ for all $i \in \mathbb{N}$.

Finally, define $f: C \to A$ as follows: for each $A_i \in C$, set $f(A_i) := h(i)$. Then f has the desired property $f(A_i) \in A_i$, and the proof is complete. \square

However, the converses of both of these implications are false. Jensen proved the independence of DC from ZF+CC, and Mostowski and Jech proved the independence of AC from ZF+DC. In fact, it was shown that the weaker version of AC, which states that every set with cardinality at most \aleph_1 has a choice function, is independent from ZF+DC.

Remark. DC is related to Baire spaces in point-set topology. It can be shown that DC is equivalent to each of the following statements in ZF:

- Any complete pseudometric space is Baire under the topology induced by the pseudometric.
- Any product of compact Hausdorff spaces is Baire under the product topology.

References

- [1] T. Jech, Interdependence of weakened forms of the axiom of choice, Comment. Math. Univ. Carolinae 7, pp. 359-371, (1966).
- [2] R. B. Jensen Independence of the axiom of dependent choices from the countable axiom of choice (abstract), Jour. Symbolic Logic 31, 294, (1966).
- [3] A. Levy, Basic Set Theory, Dover Publications Inc., (2002).
- [4] A. Mostowski On the principle of dependent choices, Fund. Math. 35, pp 127-130 (1948).