

DC - DC Converters - Discontinuous Conduction

Section 3.19 (page 69/99)

Power Electronics & Power Quality Laboratory, Texas A&M University, enjeti@tamu.edu

5

Switch - ON $v_{L} = L \frac{di_{L}}{dt} = V_{in} - V_{o}$ The average input current: $I_{in} = \frac{1}{T} \int_{0}^{DT} \frac{(V_{in} - V_{o})}{L} t \cdot dt$ $I_{in} = \frac{(V_{in} - V_{o})}{L} t \cdot dt$ Now: $V_{in} * I_{in} = \frac{V_{a}^{2}}{R}$ Simplifying this further and solving the quadratic equation for V_{o} yields:

Note: $D_{off,1} = D_{off,2} = (1-D)$ Current is zero

The average input current: $I_{in} = \frac{V_{in}}{T} = \frac{V_{in}^{2}}{L} = \frac{V_{in}^{2}}{T} = \frac{V_{in}^{2}}{R} =$

- DC Converters - Discontinuous Conduction Buck Converter 3.3V; voltage ripple not to exceed 2% Output voltage V Output power Po 5 watts Switching Frequency f = 300kHz Repeat this by choosing L = 0.25*LFolve M = 0.00925* D^2 ; Find D for L = 0.83 uH D = 0.046Calculate $I_{L,peak}$ and 1 L.peak Let us choose the inductance $L = 0.25*L_{min}$ L = 0.83 uHhis design has a small inductor that can be integrated into a chip $I_{L,avg}$

