Pair ou impair

Groupe EMY

7 mai 2022

1 Introduction

On checher à établir un algorithme de détermination de parité fonctionnant sur ordinateur quantique. Le but, étant donné $n \in \mathbb{N}$ fixé, de savoir si n est pair ou impair. Bien entendu l'intérêt de cet algorithme n'est pas d'être plus efficace que des algorithmes classiques (non quantiques) : on cherche principalement à illustrer comment on peut utiliser un ordinateur quantique, avec ses composantes principales (qubits, portes, oracle) afin de résoudre un problème simple.

2 Détail du circuit

Le circuit est illustré par le schéma ci-dessous. On dispose d'un qubit, initialement dans l'état $|0\rangle$. Il passe par une porte Pauli-X (de symbole \oplus), qui en fait un $|1\rangle$. Le qubit passe ensuite par une porte de déphasage R_n , qui déphase l'état $|1\rangle$ pour en faire l'état $e^{in}|1\rangle$. Cet état passe ensuite par un oracle quantique. Cette porte, qui peut être un système physique, renvoie $|f(e^{in}|1\rangle)\rangle$, avec $f(|\psi\rangle) = \langle 1|\psi\rangle \mod 2$, en notant mod le reste de la division euclidienne des entiers.

$$|0\rangle \longrightarrow \oplus \longrightarrow 0$$
 $R_n \xrightarrow[e^{in}|1\rangle]{} U_f \longrightarrow \begin{cases} |0\rangle \text{ si } n \text{ pair} \\ |1\rangle \text{ si } n \text{ impair} \end{cases}$