Homework 8 - Momentum

Corey Mostero - 2566652

 $25~\mathrm{May}~2023$

Contents

1	\mathbf{Boc}	ok																				2
	1.1	8.16					 															2
	1.2	8.21					 															3
	1.3	8.30					 															4
	1.4	8.34					 															4
	1.5	8.41					 															4
	1.6	8.44					 															4
	1.7	8.48					 															4
	1.8	8.62					 															4
	1.9	8.87				,							•									4
2	Lab	Man	ıu	al																		4
	2.1	972 .					 															4
	2.2	975 .					 															4
	2.3	986.					 															4
3	Pro	blem	F	3																		4

1 Book

1.1 8.16

$$m_{(a)stronaut} = 65.5 \,\mathrm{kg}$$
 $m_{(t)ool} = 2.50 \,\mathrm{kg}$ $v_{t_1} = 3.10 \,\mathrm{m \, s^{-1}}$ $v_{a_1} = ?$

$$\begin{split} P_0 &= P_1 \\ m_a v_{a_0} + m_t v_{t_0} &= m_a v_{a_1} + m_t v_{t_1} \\ 0 + 0 &= m_a v_{a_1} + m_t v_{t_1} \\ v_{a_1} &= -\frac{m_t v_{t_1}}{m_a} \\ v_{a_1} &= -\frac{(2.50\,\mathrm{kg})(3.10\,\mathrm{m\,s^{-1}})}{65.5\,\mathrm{kg}} \\ v_{a_1} &= -0.118\,\mathrm{m\,s^{-1}} \end{split}$$

The astronaut will move at a speed of $0.118\,\mathrm{m\,s^{-1}}$ opposite of the tool's direction.

1.2 8.21

$$m_A = 0.360 \,\mathrm{kg}$$

 $m_B = 0.360 \,\mathrm{kg}$
 $v_{B_0} = 0$
 $v_{A_1} = -0.118 \,\mathrm{m \, s^{-1}}$
 $v_{B_1} = 0.660 \,\mathrm{m \, s^{-1}}$

(a) What was the speed of puck A before the collision?

 $v_{A_0} = ?$

$$\begin{split} P_0 &= P_1 \\ m_A v_{A_0} + m_B v_{B_0} &= m_A v_{A_1} + m_B v_{B_1} \\ m_A v_{A_0} + 0 &= m_A v_{A_1} + m_B v_{B_1} \\ v_{A_0} &= \frac{m_A v_{A_1} + m_B v_{B_1}}{m_A} \\ v_{A_0} &= \frac{(0.360 \, \mathrm{kg})(-0.118 \, \mathrm{m \, s^{-1}}) + (0.360 \, \mathrm{kg})(0.660 \, \mathrm{m \, s^{-1}})}{0.360 \, \mathrm{kg}} \\ v_{A_0} &= 0.542 \, \mathrm{m \, s^{-1}} \end{split}$$

(b) Calculate the change in the total kinetic energy of the system that occurs during the collision.

- 1.3 8.30
- 1.4 8.34
- 1.5 8.41
- 1.6 8.44
- 1.7 8.48
- 1.8 8.62
- 1.9 8.87
- 2 Lab Manual
- 2.1 972
- 2.2 975
- 2.3 986

3 Problem B

Consider a Tsiolkovsky Rocket in a gravitational field, g. At time t=0, the velocity of the rocket is $v=v_0$, and the mass is $m=m_0$. Let the mass loss rate of the rocket be constant in time: $\dot{m}=-km_0$ [recall that a variable with a dot on top is the time derivative: $\dot{m}=\frac{dm}{dt},\,\dot{v}=\frac{dv}{dt},\,$ etc.]

1. Show that the acceleration of the rocket is

$$a = \dot{v} = -\frac{u_{rel}}{m}\dot{m} - g$$

2. Show that the mass as a function of time is

$$m = m_0(1 - kt)$$

3. Show that acceleration can also be written as

$$a = \dot{v} = \frac{ku_{rel}}{1 - kt} - g$$

4. Show that the ΔV for a constant mass loss rate rocket is given by:

$$\Delta V = u_{rel} \ln \left[\frac{1}{1 - kt} \right] - gt$$