XOR- exclusive or

(IVMOS and CMOS gales) Positive logic - Low voltage - High vollage Nagative logic (7 signent display) 0 - Highvollage 1 - Low woldage MOSFET-most populor teansistez for gates 1 yres: _ IV-chanel (IVMOS), joursite P-chand (PMOS) C-church ((MOS) combination Circuit diagram

my make circuit of a can

NOT

(b) Truth table

(c) Graphical symbols

NOR

(c) Graphical symbols

circle muns PMOS PMOS: Vg=low Vg: Ligh V_{DD} = hi (1) V_{DD} = hi (1) $V_f = hi (1)$ V_{\times} V_{f} Y_{f} Y_{f $V_x = Io(0)$ $V_x = Io(0)_$ lo (0) <u>+</u> lo (0) VDD = hi (1) hi lb V_{DD} = hi (1) $V_f = Io(0)$ $V_f = Io(0)$ $V_x = hi(1)$ $V_x = hi(1)$

후 lo (0)

는 lo (0)

	pull down	Pull up Number of Transistors
Logic Gate	Number of Transistors (NMOS)	Number of Transistors (CMOS)
NOT	1	2
NAND	1 per input	2 per input
NOR	1 per input	2 per input
AND	1 + 1 per input	2 + 2 per input
OR	1 + 1 per input	2 + 2 per input

pun series (==> PDN parallell ppn series (==> PUN parallell

(compliment the function)

