# Minería de Datos IIC2433

Reglas de asociación Vicente Domínguez

#### ¿Qué veremos esta clase?

- Reglas de asociación

# Tenemos un pequeño problema...

- Con 5 items, obtuvimos 2⁵ 1 posibles ítems
  - Es decir, 31

| TID | Items                          |
|-----|--------------------------------|
| 1   | Pan, Coca Cola, Leche          |
| 2   | Cerveza, Pan                   |
| 3   | Pan, Coca Cola, Pañales, Leche |
| 4   | Cerveza, Pan, Pañales, Leche   |
| 5   | Coca Cola, Pañales, Leche      |

- {Pan}
- {Coca Cola}
- {Leche}
- {Pañales}
- {Cerveza}
- {Pan, Coca Cola}
- {Pan, Leche}
- {Pan, Pañales}
- {Pan, Cerveza}
- {Coca Cola, Leche}
- {Coca Cola, Pañales}
- {Coca Cola, Cerveza}
- {Leche, Pañales}
- {Leche, Cerveza}
- {Pañales, Cerveza}
- {Pan, Coca Cola, Leche}
- {Pan, Coca Cola, Pañales}
- {Pan, Coca Cola, Cerveza}
- {Pan, Leche, Pañales}
- {Pan, Leche, Cerveza}
- {Pan, Pañales, Cerveza}

- {Coca Cola, Leche, Pañales}
- {Coca Cola, Leche, Cerveza}
- {Coca Cola, Pañales, Cerveza}
- {Leche, Pañales, Cerveza}
- {Pan, Coca Cola, Leche, Pañales}
  - {Pan, Coca Cola, Leche, Cerveza}
- {Pan, Coca Cola, Pañales, Cerveza}
- {Pan, Leche, Pañales, Cerveza}
- {Coca Cola, Leche, Pañales, Cerveza}
- {Pan, Coca Cola, Leche, Pañales, Cerveza}

# Tenemos un pequeño problema...

- Con 5 items, obtuvimos 2⁵ 1 posibles
  ítems
  - Es decir, 31
- Con n items, tenemos 2<sup>n</sup> 1 posibles ítems
- Una tienda suele tener varios ítems
  - Imaginemos n = 100

# Tenemos un pequeño problema...

- Si n = 100
- 2<sup>100</sup> 1 posibles ítems
- $2^{100}$  1 =

1267650600228229401496703205376

Un computador actual puede hacer ~ 3 millones de operaciones por segundo (3 GHz)...

Entonces demoraríamos aproximadamente

64403322675823264816693248 segundos en sólo

encontrar los itemsets posibles

es decir 2040860051243962497 años

# Solución: Algoritmo Apriori

#### Principio de Monotonicidad:

Si un itemset es frecuente, entonces todos los subgrupos de éste también son frecuentes

- Si {pan, cerveza} es frecuente, entonces {pan} y {cerveza} deben ser frecuentes.
- Si {pan, cerveza, pañales}, entonces...

#### Regla inversa (anti-monotonía):

Si un itemset no es frecuente, entonces todos sus supersets deben también ser infrecuentes

- Si {pan} no es frecuente, entonces ningún conjunto que contenga panes será frecuente
- Si {pan, coca cola}, entonces...

# Algoritmo Apriori

- ¿Es la solución perfecta?
- ¿Tiene algún tipo de problema?

# Algoritmo Apriori

#### Algunos problemas

- Consume mucha memoria
- El manejo de ítems como strings hace que el algoritmo sea más pesado
- Probar combinaciones a posibles candidatos puede ser muy lento
- Cada vez que se cuentan se itera sobre las transacciones para contar.

# Algoritmo FP-Growth

- Solución ideada para suplir los problemas de Apriori
- Se basa en una estructura de árbol llamada FP-Tree
- En el árbol, cada nodo representa un ítem y su contador de apariciones
- Una rama completa representa un itemset.

## Algoritmo FP-Growth

#### Paso a paso

- El algoritmo se compone de dos grandes pasos
  - a. Creación del FP-Tree
  - b. Minar el FP-Tree

#### Primero, los datos

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

#### 1. Calculamos el soporte de los 1-itemsets (itemsets de tamaño 1)

- $\sigma(\{Pan\}) =$
- $\sigma(\{\text{Coca Cola}\}) =$
- $\sigma(\{Leche\}) =$
- $\sigma(\{Cerveza\}) =$
- $\sigma(\{Pa\tilde{n}ales\}) =$

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

#### 1. Calculamos el soporte de los 1-itemsets (itemsets de tamaño 1)

- $\sigma(\{Pan\}) = 5$
- $\sigma(\{\text{Coca Cola}\}) = 3$
- $\sigma(\{\text{Leche}\}) = 4$
- $\sigma(\{Cerveza\}) = 2$
- σ({Pañales}) = 1

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

# 2. Definimos el valor del umbral y lo aplicamos

Umbral = 0.3

- $\sigma(\{Pan\}) = 5$
- $\sigma(\{\text{Coca Cola}\}) = 3$
- $\sigma(\{\text{Leche}\}) = 4$
- $\sigma(\{Cerveza\}) = 2$
- σ({Pañales}) = 1

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

# 2. Definimos el valor del umbral y lo aplicamos

Umbral = 0.3

- $\sigma(\{Pan\}) = 5$
- $\sigma(\{\text{Coca Cola}\}) = 3$
- $\sigma(\{\text{Leche}\}) = 4$
- $\sigma(\{Cerveza\}) = 2$
- σ({Pañales}) = 1

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

# 3. Ordenamos los datos según soporte

- $\sigma(\{Pan\}) = 5$
- $\sigma(\{\text{Leche}\}) = 4$
- $\sigma(\{\text{Coca Cola}\}) = 3$
- $\sigma(\{Cerveza\}) = 2$

| TID | Items                        |
|-----|------------------------------|
| 1   | Pan, Coca Cola, Leche        |
| 2   | Cerveza, Pan                 |
| 3   | Pan, Coca Cola, Leche        |
| 4   | Cerveza, Pan, Pañales, Leche |
| 5   | Pan, Coca Cola, Leche        |

| TID | Items                 |
|-----|-----------------------|
| 1   | Pan, Leche, Coca Cola |
| 2   | Pan, Cerveza          |
| 3   | Pan, Leche, Coca Cola |
| 4   | Pan, Leche, Cerveza   |
| 5   | Pan, Leche, Coca Cola |



| TID | Items                 |
|-----|-----------------------|
| 1   | Pan, Leche, Coca Cola |

| TID | Items        |
|-----|--------------|
| 2   | Pan, Cerveza |



| TID | Items                 |
|-----|-----------------------|
| 3   | Pan, Leche, Coca Cola |



| TID | Items               |  |
|-----|---------------------|--|
| 4   | Pan, Leche, Cerveza |  |



| TID | Items                 |
|-----|-----------------------|
| 5   | Pan, Leche, Coca Cola |



#### Minando el FP-Tree

#### 1. Utilizamos los ítems de menor a mayor soporte

- $\sigma(\{Cerveza\}) = 2$
- $\sigma(\{\text{Coca Cola}\}) = 3$
- $\sigma(\{\text{Leche}\}) = 4$
- $\sigma(\{Pan\}) = 5$

# 2. Buscamos itemset frecuentes en los caminos que llegan a los items de menor frecuencia.

- Caminos que llegan a Cerveza
- Caminos que llegan a Coca Cola
- ...

# Algoritmo FP-Tree

Buscando reglas de asociación

Para cada itemset frecuente sacar sus subconjuntos y calcular la **confianza** entre ellas.

## Algoritmo FP-Tree

#### **Beneficios**

- Evita la generación de candidatos en cada iteración
- Pasa por el dataset completo a lo más 2 veces, por lo tanto es O(n)
- Reduce la cantidad de memoria utilizada para almacenar la base de datos

# Ejercicio

| TID | Items          |
|-----|----------------|
| T1  | 11, 12, 15     |
| T2  | 12, 14         |
| Т3  | 12, 13         |
| T4  | 11, 12, 14     |
| T5  | 11, 13         |
| T6  | 12, 13         |
| T7  | 11, 13         |
| T8  | 11, 12, 13, 15 |
| Т9  | 11, 12, 13     |