$O(N^2)$ و پیچیدگی مکانی از مرتبه $O(N^3)$ و پیچیدگی مکانی از مرتبه $O(N^2)$ و پیچیدگی مکانی از مرتبه $O(N^3)$ و بیچیدگی مکانی از مرتبه $O(N^3)$ و پیچیدگی مکانی از مرتبه $O(N^3)$ و پیچیدگی مکانی از مرتبه $O(N^3)$

در ادامه دقت و کارایی سه روش را در ماتریس های با ابعاد مختلف مقایسه میکنیم و در نهایت بهترین روش را انتخاب میکنیم:

1) روش گاوس-جردن

دقت

• روش گاوس-جردن با استفاده از عملیاتهای خطی و ضرب ماتریسها، دقت بالایی دارد. اما در صورتی که اعداد موجود در ماتریس بسیار بزرگ یا بسیار کوچک باشند، ممکن است به دلیل خطاهای عددی دقت کاهش یابد

كارايي

- زمان اجرا: (O(N³)
- o برای ماتریسهای کوچک و متوسط (تا حدود 100 * 100) کارایی بسیار خوبی دارد
- ممکن است طولانی ماتریسهای بزرگتر، زمان اجرا به دلیل پیچیدگی $O(N^3)$ ممکن است طولانی شود

فضای مورد نیاز

- $O(N^2)$: فضای ذخیر هسازی
- نیاز به فضای N^2 برای ذخیره سازی ماتریس اصلی و ماتریسهای میانی \circ

2) روش گسترش لاپلاس

دقت

• گسترش لاپلاس یکی از روشهای کلاسیک و دقیق برای محاسبه دترمینان است. اما در ماتریسهای بزرگ به دلیل تعداد زیاد محاسبات، خطاهای عددی ممکن است افزایش یابد

كارايي

• زمان اجرا: (N!)O

- $_{\circ}$ برای ماتریسهای کوچک (تا حدود 10 * 10) مناسب است
- برای ماتریسهای بزرگتر، پیچیدگی فاکتوریل باعث میشود که زمان اجرا به شدت افزایش یابد و این روش عملاً غیرقابل استفاده شود

فضای مورد نیاز

- $O(N^3)$: فضای ذخیرهسازی $O(N^3)$
- برای هر زیرماتریس نیاز به فضای ذخیرهسازی جدید دارد، اما به دلیل بازگشت به عقب، فضای مورد نیاز تا حدی کاهش مییابد

3) روش امید رضایی فر

دقت

• این روش دقت بالایی دارد، اما مانند دیگر روشها، ممکن است در اعداد بسیار بزرگ یا کوچک خطاهای عددی رخ دهد

كارايي

- زمان اجرا: (4^N)
- مناسب است. ماتریسهای کوچک تا متوسط(تا حدود 15 * 15) مناسب است.
- برای ماتریسهای بزرگتر، پیچیدگی نمایی باعث میشود که زمان اجرا به شدت افز ایش یابد و این روش عملاً غیرقابل استفاده شود

فضای مورد نیاز

- $O(N^3)$: فضای ذخیرهسازی
- نیاز به فضای N^2 برای ذخیر هسازی ماتریس اصلی و فضای اضافی برای ذخیر هسازی \mathbb{Z} گراف و ماتریس های میانی

مقايسه كلى

برای ماتریسهای کوچک (تا حدود 10 * 10):

- روش گسترش لاپلاس: دقیق و مناسب، اما زمان اجرا بالا
 - روش گاوس-جردن: دقیق و کار ا
 - روش اميد رضايي فر: دقيق، اما زمان اجرا بالا

برای ماتریسهای متوسط (تا حدود 50 * 50):

- روش گاوس-جردن: دقیق و کارا، پیچیدگی (O(N³) نسبت به سایر روشها بهتر است
 - روش امید رضایی فر: زمان اجرا بالا
 - روش گسترش لاپلاس: زمان اجرا بسیار بالا

برای ماتریسهای بزرگتر (بیشتر از 50 * 50):

- روش گاوس-جردن: دقیق و کارا، مناسبترین روش از نظر زمان اجرا
- روش امید رضایی فر و روش گسترش لاپلاس: زمان اجرا بسیار بالا و عملاً غیر قابل استفاده

بهترین روش

روش گاوس جردن به دلیل پیچیدگی زمانی $O(N^3)$ و فضای ذخیر هسازی $O(N^2)$ ، به ویژه برای ماتریسهای بزرگ، از نظر کارایی برتری دارد و همچنان دقت بالایی را حفظ میکند. روش بسط لاپلاس تنها برای ماتریسهای بسیار کوچک مناسب است و روش امید رضایی فر برای موارد خاص و ماتریسهای کوچک تا متوسط کاربرد دارد.

در نتیجه ما روش گاوس جردن را برای محاسبه دتر مینان در الگوریتم hill cipher استفاده میکنیم