36
$$\lambda_1 = e^{2\pi i/3}$$
 and $\lambda_2 = e^{-2\pi i/3}$ give $\det \lambda_1 \lambda_2 = 1$ and trace $\lambda_1 + \lambda_2 = -1$. $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ with $\theta = \frac{2\pi}{3}$ has this trace and det. So does every $M^{-1}AM!$

- **37** (a) Since the columns of A add to 1, one eigenvalue is $\lambda = 1$ and the other is c .6 (to give the correct trace c + .4).
 - (b) If c = 1.6 then both eigenvalues are 1, and all solutions to (A I) x = 0 are multiples of x = (1, -1).
 - (c) If c=.8, the eigenvectors for $\lambda=1$ are multiples of (1,3). Since all powers A^n also have column sums =1, A^n will approach $\frac{1}{4}\begin{bmatrix}1&1\\3&3\end{bmatrix}=\text{rank-1}$ matrix A^∞ with eigenvalues 1,0 and correct eigenvectors. (1,3) and (1,-1).

Problem Set 6.2, page 307

$$\mathbf{1} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}.$$

- Put the eigenvectors in S and eigenvalues in Λ . $A = S\Lambda S^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$.
- **3** If $A = S\Lambda S^{-1}$ then the eigenvalue matrix for A + 2I is $\Lambda + 2I$ and the eigenvector matrix is still S. $A + 2I = S(\Lambda + 2I)S^{-1} = S\Lambda S^{-1} + S(2I)S^{-1} = A + 2I$.
- **4** (a) False: don't know λ 's (b) True (c) True (d) False: need eigenvectors of S
- **5** With S = I, $A = S\Lambda S^{-1} = \Lambda$ is a diagonal matrix. If S is triangular, then S^{-1} is triangular, so $S\Lambda S^{-1}$ is also triangular.
- **6** The columns of S are nonzero multiples of (2,1) and (0,1): either order. Same for A^{-1} .

7
$$A = S\Lambda S^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ & \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2 = \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix} / 2 = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
 for any a and b .

$$\mathbf{8} \ A = S\Lambda S^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix}. \ S\Lambda^k S^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2nd \ component \ is \ F_k \\ (\lambda_1^k - \lambda_2^k)/(\lambda_1 - \lambda_2) \end{bmatrix}.$$

9 (a)
$$A = \begin{bmatrix} .5 & .5 \\ 1 & 0 \end{bmatrix}$$
 has $\lambda_1 = 1$, $\lambda_2 = -\frac{1}{2}$ with $x_1 = (1, 1)$, $x_2 = (1, -2)$
(b) $A^n = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1^n & 0 \\ 0 & (-.5)^n \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \rightarrow A^{\infty} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$

- **10** The rule $F_{k+2} = F_{k+1} + F_k$ produces the pattern: even, odd, odd, even, odd, odd, . . .
- 11 (a) *True* (no zero eigenvalues) (b) *False* (repeated $\lambda = 2$ may have only one line of eigenvectors) (c) *False* (repeated λ may have a full set of eigenvectors)

- **12** (a) False: don't know λ (b) True: an eigenvector is missing (c) True
- **13** $A = \begin{bmatrix} 8 & 3 \\ -3 & 2 \end{bmatrix}$ (or other), $A = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}$, $A = \begin{bmatrix} 10 & 5 \\ -5 & 0 \end{bmatrix}$; only eigenvectors are $\mathbf{x} = (c, -c)$.
- **14** The rank of A 3I is r = 1. Changing any entry except $a_{12} = 1$ makes A diagonalizable (A will have two different eigenvalues)
- **15** $A^k = S\Lambda^k S^{-1}$ approaches zero if and only if every $|\lambda| < 1$; $A_1^k \to A_1^\infty, A_2^k \to 0$.
- **16** $\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & .2 \end{bmatrix}$ and $S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$; $\Lambda^k \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $S\Lambda^k S^{-1} \to \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$: steady
- **17** $\Lambda = \begin{bmatrix} .9 & 0 \\ 0 & .3 \end{bmatrix}$, $S = \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}$; $A_2^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $A_2^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = (.3)^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, $A_2^{10} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + (.3)^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ because $\begin{bmatrix} 6 \\ 0 \end{bmatrix}$ is the sum of $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.
- **18** $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $A^k = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3^k \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Multiply those last three matrices to get $A^k = \frac{1}{2} \begin{bmatrix} 1 + 3^k & 1 3^k \\ 1 3^k & 1 + 3^k \end{bmatrix}$.
- **19** $B^k = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}^k \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5^k & 5^k 4^k \\ 0 & 4^k \end{bmatrix}.$
- **20** det $A = (\det S)(\det \Lambda)(\det S^{-1}) = \det \Lambda = \lambda_1 \cdots \lambda_n$. This proof works when A is diagonalizable.
- 21 trace ST = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = trace TS. Diagonalizable case: the trace of $SAS^{-1} = \text{trace of } (AS^{-1})S = A$: sum of the λ 's.
- **22** AB-BA = I is impossible since trace AB trace $BA = zero \neq \text{trace } I$. AB-BA = C is possible when trace (C) = 0, and $E = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ has $EE^{T} E^{T}E = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- **23** If $A = S\Lambda S^{-1}$ then $B = \begin{bmatrix} A & 0 \\ 0 & 2A \end{bmatrix} = \begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & 2\Lambda \end{bmatrix} \begin{bmatrix} S^{-1} & 0 \\ 0 & S^{-1} \end{bmatrix}$. So B has the additional eigenvalues $2\lambda_1, \ldots, 2\lambda_n$.
- **24** The A's form a subspace since cA and $A_1 + A_2$ all have the same S. When S = I the A's with those eigenvectors give the subspace of diagonal matrices. Dimension 4.
- 25 If A has columns x_1, \ldots, x_n then column by column, $A^2 = A$ means every $Ax_i = x_i$. All vectors in the column space (combinations of those columns x_i) are eigenvectors with $\lambda = 1$. Always the nullspace has $\lambda = 0$ (A might have dependent columns, so there could be less than n eigenvectors with $\lambda = 1$). Dimensions of those spaces add to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors altogether).
- **26** Two problems: The nullspace and column space can overlap, so x could be in both. There may not be r independent eigenvectors in the column space.

27 $R = S\sqrt{\Lambda}S^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ has $R^2 = A$. \sqrt{B} needs $\lambda = \sqrt{9}$ and $\sqrt{-1}$, trace is not real. Note that $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ can have $\sqrt{-1} = i$ and -i, trace 0, real square root $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

- **28** $A^{T} = A$ gives $x^{T}ABx = (Ax)^{T}(Bx) \le ||Ax|| ||Bx||$ by the Schwarz inequality. $B^{T} = -B$ gives $-x^{T}BAx = (Bx)^{T}(Ax) \le ||Ax|| ||Bx||$. Add to get Heisenberg's Uncertainty Principle when AB BA = I. Position-momentum, also time-energy.
- **29** The factorizations of A and B into $S\Lambda S^{-1}$ are the same. So A = B. (This is the same as Problem 6.1.25, expressed in matrix form.)
- **30** $A = S\Lambda_1 S^{-1}$ and $B = S\Lambda_2 S^{-1}$. Diagonal matrices always give $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$. Then AB = BA from $S\Lambda_1 S^{-1} S\Lambda_2 S^{-1} = S\Lambda_1 \Lambda_2 S^{-1} = S\Lambda_2 \Lambda_1 S^{-1} = S\Lambda_2 S^{-1}$. $S\Lambda_1 S^{-1} = BA$.
- **31** (a) $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ has $\lambda = a$ and $\lambda = d$: $(A-aI)(A-dI) = \begin{bmatrix} 0 & b \\ 0 & d-a \end{bmatrix} \begin{bmatrix} a-d & b \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. (b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has $A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $A^2 A I = 0$ is true, matching $\lambda^2 \lambda 1 = 0$ as the Cayley-Hamilton Theorem predicts.
- 32 When $A = S\Lambda S^{-1}$ is diagonalizable, the matrix $A \lambda_j I = S(\Lambda \lambda_j I)S^{-1}$ will have 0 in the j, j diagonal entry of $\Lambda \lambda_j I$. In the product $p(A) = (A \lambda_1 I) \cdots (A \lambda_n I)$, each inside S^{-1} cancels S. This leaves S times (product of diagonal matrices $\Lambda \lambda_j I$) times S^{-1} . That product is the zero matrix because the factors produce a zero in each diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem. (If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching A.)

Comment I have also seen this reasoning but I am not convinced:

Apply the formula $AC^{T} = (\det A)I$ from Section 5.3 to $A - \lambda I$ with variable λ . Its cofactor matrix C will be a polynomial in λ , since cofactors are determinants:

$$(A - \lambda I) \operatorname{cof} (A - \lambda I)^{\mathrm{T}} = \det(A - \lambda I)I = p(\lambda)I.$$

"For fixed A, this is an identity between two matrix polynomials." Set $\lambda = A$ to find the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ . If other matrices B are substituted, does the identity remain true? If $AB \neq BA$, even the order of multiplication seems unclear ...

33 $\lambda = 2, -1, 0$ are in Λ and the eigenvectors are in S (below). $A^k = S \Lambda^k S^{-1}$ is

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \mathbf{\Lambda}^{k} \frac{1}{6} \begin{bmatrix} 2 & 1 & 1 \\ 2 & -2 & -2 \\ 0 & 3 & -3 \end{bmatrix} = \frac{2^{k}}{6} \begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} + \frac{(-1)^{k}}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Check k = 4. The (2, 2) entry of A^4 is $2^4/6 + (-1)^4/3 = 18/6 = 3$. The 4-step paths that begin and end at node 2 are 2 to 1 to 1 to 1 to 2, 2 to 1 to 2 to 1 to 2, and 2 to 1 to 3 to 1 to 2. Much harder to find the eleven 4-step paths that start and end at node 1.

34 If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is also diagonal b = c = 0. The nullspace for the following equation is 2-dimensional: $AB - BA = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -b \\ c & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. The coefficient matrix has rank 4 - 2 = 2.

- **35** *B* has $\lambda = i$ and -i, so B^4 has $\lambda^4 = 1$ and 1 and $B^4 = I$. *C* has $\lambda = (1 \pm \sqrt{3}i)/2$. This is $\exp(\pm \pi i/3)$ so $\lambda^3 = -1$ and -1. Then $C^3 = -I$ and $C^{1024} = -C$.
- **36** The eigenvalues of $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ are $\lambda = e^{i\theta}$ and $e^{-i\theta}$ (trace $2\cos \theta$ and $\det = 1$). Their eigenvectors are (1, -i) and (1, i):

$$A^{n} = S\Lambda^{n}S^{-1} = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{in\theta} & \\ & e^{-in\theta} \end{bmatrix} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} / 2i$$
$$= \begin{bmatrix} (e^{in\theta} + e^{-in\theta})/2 & \cdots \\ (e^{in\theta} - e^{-in\theta})/2i & \cdots \end{bmatrix} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

Geometrically, n rotations by θ give one rotation by $n\theta$.

- **37** Columns of S times rows of ΛS^{-1} will give r rank-1 matrices (r = rank of A).
- **38** Note that ones(n) * ones(n) = n * ones(n). This leads to C = 1/(n+1).

$$AA^{-1} = (eye(n) + ones(n)) * (eye(n) + C * ones(n))$$

= $eye(n) + (1 + C + Cn) * ones(n) = eye(n)$.

Problem Set 6.3, page 325

1
$$\boldsymbol{u}_1 = e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\boldsymbol{u}_2 = e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. If $\boldsymbol{u}(0) = (5, -2)$, then $\boldsymbol{u}(t) = 3e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- **2** $z(t) = 2e^t$; then $dy/dt = 4y 6e^t$ with y(0) = 5 gives $y(t) = 3e^{4t} + 2e^t$ as in Problem 1.
- **3** (a) If every column of A adds to zero, this means that the rows add to the zero row. So the rows are dependent, and A is singular, and $\lambda = 0$ is an eigenvalue.
 - (b) The eigenvalues of $A = \begin{bmatrix} -2 & 3 \\ 2 & -3 \end{bmatrix}$ are $\lambda_1 = 0$ with eigenvector $x_1 = (3, 2)$ and $\lambda_2 = -5$ (to give trace = -5) with $x_2 = (1, -1)$. Then the usual 3 steps:
 - 1. Write $u(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ as $\begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = x_1 + x_2$
 - 2. Follow those eigenvectors by $e^{0t}x_1$ and $e^{-5t}x_2$
 - 3. The solution $u(t) = x_1 + e^{-5t}x_2$ has steady state $x_1 = (3, 2)$.
- **4** d(v+w)/dt = (w-v) + (v-w) = 0, so the total v+w is constant. $A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ has $\lambda_1 = 0$ with $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$; $v(1) = 20 + 10e^{-2}$ $v(\infty) = 20$ $v(\infty) = 20$

5
$$\frac{d}{dt}\begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 has $\lambda = 0$ and $+2$: $v(t) = 20 + 10e^{2t} - \infty$ as $t \to \infty$.

- **6** $A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix}$ has real eigenvalues a + 1 and a 1. These are both negative if a < -1, and the solutions of u' = Au approach zero. $B = \begin{bmatrix} b & -1 \\ 1 & b \end{bmatrix}$ has complex eigenvalues b + i and b i. These have negative real parts if b < 0, and all solutions of v' = Bv approach zero.
- 7 A projection matrix has eigenvalues $\lambda = 1$ and $\lambda = 0$. Eigenvectors Px = x fill the subspace that P projects onto: here x = (1, 1). Eigenvectors Px = 0 fill the perpendicular subspace: here x = (1, -1). For the solution to u' = -Pu,

$$\mathbf{u}(0) = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 $\mathbf{u}(t) = e^{-t} \begin{bmatrix} 2 \\ 2 \end{bmatrix} + e^{0t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ approaches $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- **8** $\begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix}$ has $\lambda_1 = 5$, $x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\lambda_2 = 2$, $x_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$; rabbits $r(t) = 20e^{5t} + 10e^{2t}$, $w(t) = 10e^{5t} + 20e^{2t}$. The ratio of rabbits to wolves approaches 20/10; e^{5t} dominates.
- $\mathbf{9} \text{ (a) } \begin{bmatrix} 4 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ i \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -i \end{bmatrix}. \text{ (b) Then } u(t) = 2e^{it} \begin{bmatrix} 1 \\ i \end{bmatrix} + 2e^{-it} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} 4\cos t \\ 4\sin t \end{bmatrix}.$
- **10** $\frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix}$. $A = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix}$ has $\det(A \lambda I) = \lambda^2 5\lambda 4 = 0$. Directly substituting $y = e^{\lambda t}$ into y'' = 5y' + 4y also gives $\lambda^2 = 5\lambda + 4$ and the same two values of λ . Those values are $\frac{1}{2}(5 \pm \sqrt{41})$ by the quadratic formula.
- **11** $e^{At} = I + t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \operatorname{zeros} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$. Then $\begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}$ $\begin{bmatrix} y(0) + y'(0)t \\ y'(0) \end{bmatrix}$. This y(t) = y(0) + y'(0)t solves the equation.
- **12** $A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$ has trace 6, det 9, $\lambda = 3$ and 3 with *one* independent eigenvector (1, 3).
- **13** (a) $y(t) = \cos 3t$ and $\sin 3t$ solve y'' = -9y. It is $3 \cos 3t$ that starts with y(0) = 3 and y'(0) = 0. (b) $A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix}$ has $\det = 9$: $\lambda = 3i$ and -3i with x = (1, 3i) and (1, -3i). Then $u(t) = \frac{3}{2}e^{3it}\begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it}\begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos 3t \\ -9\sin 3t \end{bmatrix}$.
- **14** When A is skew-symmetric, $\|\mathbf{u}(t)\| = \|e^{At}\mathbf{u}(0)\|$ is $\|\mathbf{u}(0)\|$. So e^{At} is orthogonal.
- **15** $\boldsymbol{u}_p = 4$ and $\boldsymbol{u}(t) = ce^t + 4$; $\boldsymbol{u}_p = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ and $\boldsymbol{u}(t) = c_1e^t \begin{bmatrix} 1 \\ t \end{bmatrix} + c_2e^t \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.
- **16** Substituting $\mathbf{u} = e^{ct}\mathbf{v}$ gives $ce^{ct}\mathbf{v} = Ae^{ct}\mathbf{v} e^{ct}\mathbf{b}$ or $(A cI)\mathbf{v} = \mathbf{b}$ or $\mathbf{v} = (A cI)^{-1}\mathbf{b} = \mathbf{p}$ articular solution. If c is an eigenvalue then A cI is not invertible.

17 (a) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. These show the unstable cases (a) $\lambda_1 < 0$ and $\lambda_2 > 0$ (b) $\lambda_1 > 0$ and $\lambda_2 > 0$ (c) $\lambda = a \pm ib$ with a > 0

- **18** $d/dt(e^{At}) = A + A^2t + \frac{1}{2}A^3t^2 + \frac{1}{6}A^4t^3 + \dots = A(I + At + \frac{1}{2}A^2t^2 + \frac{1}{6}A^3t^3 + \dots).$ This is exactly Ae^{At} , the derivative we expect.
- **19** $e^{Bt} = I + Bt$ (short series with $B^2 = 0$) = $\begin{bmatrix} 1 & -4t \\ 0 & 1 \end{bmatrix}$. Derivative = $\begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix} = B$.
- **20** The solution at time t + T is also $e^{A(t+T)}u(0)$. Thus e^{At} times e^{AT} equals $e^{A(t+T)}$.
- $\mathbf{21} \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{0} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & \mathbf{1} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} e^t & 4e^t 4 \\ 0 & 1 \end{bmatrix}.$
- **22** $A^2 = A$ gives $e^{At} = I + At + \frac{1}{2}At^2 + \frac{1}{6}At^3 + \dots = I + (e^t 1)A = \begin{bmatrix} e^t & e^t 1 \\ 0 & 1 \end{bmatrix}$.
- **23** $e^A = \begin{bmatrix} e & 4(e-1) \\ 0 & 1 \end{bmatrix}$ from **21** and $e^B = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}$ from **19**. By direct multiplication $e^A e^B \neq e^B e^A \neq e^{A+B} = \begin{bmatrix} e & 0 \\ 0 & 1 \end{bmatrix}$.
- **24** $A = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{3} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$. Then $e^{At} = \begin{bmatrix} e^t & \frac{1}{2}(e^{3t} e^t) \\ 0 & e^{3t} \end{bmatrix}$.
- **25** The matrix has $A^2 = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} = A$. Then all $A^n = A$. So $e^{At} = I + (t + t^2/2! + \cdots)A = I + (e^t 1)A = \begin{bmatrix} e^t & 3(e^t 1) \\ 0 & 0 \end{bmatrix}$ as in Problem 22.
- **26** (a) The inverse of e^{At} is e^{-At} (b) If $Ax = \lambda x$ then $e^{At}x = e^{\lambda t}x$ and $e^{\lambda t} \neq 0$. To see $e^{At}x$, write $(I + At + \frac{1}{2}A^2t^2 + \cdots)x = (1 + \lambda t + \frac{1}{2}\lambda^2t^2 + \cdots)x = e^{\lambda t}x$.
- **27** $(x, y) = (e^{4t}, e^{-4t})$ is a growing solution. The correct matrix for the exchanged u = (y, x) is $\begin{bmatrix} 2 & -2 \\ -4 & 0 \end{bmatrix}$. It *does* have the same eigenvalues as the original matrix.
- **28** Centering produces $U_{n+1} = \begin{bmatrix} 1 & \Delta t \\ -\Delta t & 1 (\Delta t)^2 \end{bmatrix} U_n$. At $\Delta t = 1$, $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ has $\lambda = e^{i\pi/3}$ and $e^{-i\pi/3}$. Both eigenvalues have $\lambda^6 = 1$ so $A^6 = I$. Therefore $U_6 = A^6 U_0$ comes exactly back to U_0 .
- 29 First A has $\lambda = \pm i$ and $A^4 = I$. Second A has $\lambda = -1, -1$ and $A^n = (-1)^n \begin{bmatrix} 1-2n & -2n \\ 2n & 2n+1 \end{bmatrix}$ Linear growth.
- **30** With $a = \Delta t/2$ the trapezoidal step is $U_{n+1} = \frac{1}{1+a^2} \begin{bmatrix} 1-a^2 & 2a \\ -2a & 1-a^2 \end{bmatrix} U_n$.

That matrix has orthonormal columns \Rightarrow orthogonal matrix $\Rightarrow \|U_{n+1}\| = \|U_n\|$

31 (a) $(\cos A)x = (\cos \lambda)x$ (b) $\lambda(A) = 2\pi$ and 0 so $\cos \lambda = 1, 1$ and $\cos A = I$ (c) $u(t) = 3(\cos 2\pi t)(1, 1) + 1(\cos 0t)(1, -1) [u' = Au \text{ has exp}, u'' = Au \text{ has cos}]$

Problem Set 6.4, page 337

Note A way to complete the proof at the end of page 334, (perturbing the matrix to produce distinct eigenvalues) is now on the course website: "*Proofs of the Spectral Theorem*." **math.mit.edu/linearalgebra**.

1
$$A = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 3 & 3 \\ 6 & 3 & 5 \end{bmatrix} + \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T}) =$$
symmetric + **skew-symmetric**.

- **2** $(A^{T}CA)^{T} = A^{T}C^{T}(A^{T})^{T} = A^{T}CA$. When A is 6 by 3, C will be 6 by 6 and the triple product $A^{T}CA$ is 3 by 3.
- 3 $\lambda = 0, 4, -2$; unit vectors $\pm (0, 1, -1)/\sqrt{2}$ and $\pm (2, 1, 1)/\sqrt{6}$ and $\pm (1, -1, -1)/\sqrt{3}$.
- **4** $\lambda = 10$ and -5 in $\Lambda = \begin{bmatrix} 10 & 0 \\ 0 & -5 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ have to be normalized to unit vectors in $Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.
- **5** $Q = \frac{1}{3}\begin{bmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2 \end{bmatrix}$. The columns of Q are unit eigenvectors of A Each unit eigenvector could be multiplied by -1
- **6** $A = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$ has $\lambda = 0$ and 25 so the columns of Q are the two eigenvectors: $Q = \begin{bmatrix} .8 & .6 \\ -.6 & .8 \end{bmatrix}$ or we can exchange columns or reverse the signs of any column.
- 7 (a) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ has $\lambda = -1$ and 3 (b) The pivots have the same signs as the λ 's (c) trace $= \lambda_1 + \lambda_2 = 2$, so A can't have two negative eigenvalues.
- **8** If $A^3 = 0$ then all $\lambda^3 = 0$ so all $\lambda = 0$ as in $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. If A is symmetric then $A^3 = Q\Lambda^3Q^T = 0$ requires $\Lambda = 0$. The only symmetric A is $Q \circ Q^T = 0$ representation.
- **9** If λ is complex then $\overline{\lambda}$ is also an eigenvalue $(A\overline{x} = \overline{\lambda}\overline{x})$. Always $\lambda + \overline{\lambda}$ is real. The trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.
- **10** If x is not real then $\lambda = x^T A x / x^T x$ is *not* always real. Can't assume real eigenvectors!

$$\mathbf{11} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} + 4 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}; \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix} = 0 \begin{bmatrix} .64 & -.48 \\ -.48 & .36 \end{bmatrix} + 25 \begin{bmatrix} .36 & .48 \\ .48 & .64 \end{bmatrix}$$

- **12** $[x_1 \ x_2]$ is an orthogonal matrix so $P_1 + P_2 = x_1 x_1^T + x_2 x_2^T = [x_1 \ x_2] \begin{bmatrix} x_1^T \\ x_2^T \end{bmatrix} = I;$ $P_1 P_2 = x_1 (x_1^T x_2) x_2^T = 0.$ Second proof: $P_1 P_2 = P_1 (I P_1) = P_1 P_1 = 0$ since $P_1^2 = P_1.$
- **13** $A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$ has $\lambda = ib$ and -ib. The block matrices $\begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$ and $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ are also skew-symmetric with $\lambda = ib$ (twice) and $\lambda = -ib$ (twice).

- **14** M is skew-symmetric and orthogonal; λ 's must be i, i, -i, -i to have trace zero.
- **15** $A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$ has $\lambda = 0, 0$ and only one independent eigenvector $\mathbf{x} = (i, 1)$. The good property for complex matrices is not $A^{\mathrm{T}} = A$ (symmetric) but $\overline{A}^{\mathrm{T}} = A$ (Hermitian with real eigenvalues and orthogonal eigenvectors: see Problem 20 and Section 10.2).
- **16** (a) If $Az = \lambda y$ and $A^{T}y = \lambda z$ then $B[y; -z] = [-Az; A^{T}y] = -\lambda[y; -z]$. So $-\lambda$ is also an eigenvalue of B. (b) $A^{T}Az = A^{T}(\lambda y) = \lambda^{2}z$. (c) $\lambda = -1, -1, 1, 1;$ $x_{1} = (1, 0, -1, 0), \ x_{2} = (0, 1, 0, -1), \ x_{3} = (1, 0, 1, 0), \ x_{4} = (0, 1, 0, 1).$
- 17 The eigenvalues of $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ are $0, \sqrt{2}, -\sqrt{2}$ by Problem 16 with $x_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ 1 \\ \sqrt{2} \end{bmatrix}, x_3 = \begin{bmatrix} 1 \\ 1 \\ -\sqrt{2} \end{bmatrix}$.
- y is in the nullspace of A and x is in the column space = row space because A = A^T. Those spaces are perpendicular so y^Tx = 0.
 If Ax = λx and Ay = βy then shift by β: (A-βI)x = (λ-β)x and (A-βI)y = 0 and again x ⊥y.
- **19** A has $S = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; B has $S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2d \end{bmatrix}$. Perpendicular for A not perpendicular for B since $B^T \neq B$
- **20** $A = \begin{bmatrix} 1 & 3+4i \\ 3-4i & 1 \end{bmatrix}$ is a *Hermitian matrix* $(\overline{A}^T = A)$. Its eigenvalues 6 and -4 are *real*. Adjust equations (1)–(2) in the text to prove that λ is always real when $\overline{A}^T = A$:

 $Ax = \lambda x$ leads to $\overline{A}\overline{x} = \overline{\lambda}\overline{x}$. Transpose to $\overline{x}^T A = \overline{x}^T \overline{\lambda}$ using $\overline{A}^T = A$. Then $\overline{x}^T A x = \overline{x}^T \lambda x$ and also $\overline{x}^T A x = \overline{x}^T \overline{\lambda} x$. So $\lambda = \overline{\lambda}$ is real.

- **21** (a) False. $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ (b) True from $A^{T} = Q\Lambda Q^{T}$ (d) False!
- **22** A and A^{T} have the same λ 's but the *order* of the x's can change. $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ has $\lambda_{1} = i$ and $\lambda_{2} = -i$ with $x_{1} = (1, i)$ first for A but $x_{1} = (1, -i)$ first for A^{T} .
- **23** *A* is invertible, orthogonal, permutation, diagonalizable, Markov; *B* is projection, diagonalizable, Markov. *A* allows QR, $S\Lambda S^{-1}$, $Q\Lambda Q^{T}$; *B* allows $S\Lambda S^{-1}$ and $Q\Lambda Q^{T}$.
- **24** Symmetry gives $Q \Lambda Q^{T}$ if b = 1; repeated λ and no S if b = -1; singular if b = 0.
- 25 Orthogonal and symmetric requires $|\lambda| = 1$ and λ real, so $\lambda = \pm 1$. Then $A = \pm I$ or $A = Q \Lambda Q^{\mathrm{T}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$.
- **26** Eigenvectors (1,0) and (1,1) give a 45° angle even with A^{T} very close to A.

27 The roots of $\lambda^2 + b\lambda + c = 0$ are $\frac{1}{2}(-b \pm \sqrt{b^2 - 4ac})$. Then $\lambda_1 - \lambda_2$ is $\sqrt{b^2 - 4c}$. For $\det(A + tB - \lambda I)$ we have b = -3 - 8t and $c = 2 + 16t - t^2$. The minimum of $b^2 - 4c$ is 1/17 at t = 2/17. Then $\lambda_2 - \lambda_1 = 1/\sqrt{17}$.

- **28** $A = \begin{bmatrix} 4 & 2+i \\ 2-i & 0 \end{bmatrix} = \overline{A}^{T}$ has real eigenvalues $\lambda = 5$ and -1 with trace = 4 and det = -5. The solution to **20** proves that λ is real when $\overline{A}^{T} = A$ is Hermitian; I did not intend to repeat this part.
- **29** (a) $A = Q\Lambda \overline{Q}^{T}$ times $\overline{A}^{T} = Q\overline{\Lambda}^{T}\overline{Q}^{T}$ equals \overline{A}^{T} times A because $\Lambda \overline{\Lambda}^{T} = \overline{\Lambda}^{T}\Lambda$ (diagonal!) (b) step 2: The 1, 1 entries of \overline{T}^{T} T and $T\overline{T}^{T}$ are $|a|^{2}$ and $|a|^{2} + |b|^{2}$. This makes b = 0 and $T = \Lambda$.
- **30** a_{11} is $[q_{11} \dots q_{1n}] [\lambda_1 \overline{q}_{11} \dots \lambda_n \overline{q}_{1n}]^T \le \lambda_{\max} (|q_{11}|^2 + \dots + |q_{1n}|^2) = \lambda_{\max}.$
- **31** (a) $\mathbf{x}^{\mathrm{T}}(A\mathbf{x}) = (A\mathbf{x})^{\mathrm{T}}\mathbf{x} = \mathbf{x}^{\mathrm{T}}A^{\mathrm{T}}\mathbf{x} = -\mathbf{x}^{\mathrm{T}}A\mathbf{x}$. (b) $\overline{\mathbf{z}}^{\mathrm{T}}A\mathbf{z}$ is pure imaginary, its real part is $\mathbf{x}^{\mathrm{T}}A\mathbf{x} + \mathbf{y}^{\mathrm{T}}A\mathbf{y} = 0 + 0$ (c) det $A = \lambda_1 \dots \lambda_n \ge 0$: pairs of λ 's = ib, -ib.
- 32 Since A is diagonalizable with eigenvalue matrix $\Lambda = 2I$, the matrix A itself has to be $S\Lambda S^{-1} = S(2I)S^{-1} = 2I$. (The unsymmetric matrix [2 1; 0 2] also has $\lambda = 2, 2$.)

Problem Set 6.5, page 350

- **1** Suppose a>0 and $ac>b^2$ so that also $c>b^2/a>0$. (i) The eigenvalues have the *same sign* because $\lambda_1\lambda_2=\det=ac-b^2>0$. (ii) That sign is *positive* because $\lambda_1+\lambda_2>0$ (it equals the trace a+c>0).
- 2 Only $A_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$ has two positive eigenvalues. $x^T A_1 x = 5x_1^2 + 12x_1x_2 + 7x_2^2$ is negative for example when $x_1 = 4$ and $x_2 = -3$: A_1 is not positive definite as its determinant confirms.
- Positive definite for -3 < b < 3 $\begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 9 b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 9 b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = LDL^{T}$ Positive definite for c > 8 $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & c 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & c 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDL^{T}.$
- **4** $f(x,y) = x^2 + 4xy + 9y^2 = (x+2y)^2 + 5y^2$; $x^2 + 6xy + 9y^2 = (x+3y)^2$.
- **5** $x^2 + 4xy + 3y^2 = (x + 2y)^2 y^2 =$ difference of squares is negative at x = 2, y = -1, where the first square is zero.
- **6** $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ produces $f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2xy$. A has $\lambda = 1$ and -1. Then A is an *indefinite matrix* and f(x, y) = 2xy has a *saddle point*.
- **7** $R^{\mathrm{T}}R = \begin{bmatrix} 1 & 2 \\ 2 & 13 \end{bmatrix}$ and $R^{\mathrm{T}}R = \begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix}$ are positive definite; $R^{\mathrm{T}}R = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is

singular (and positive semidefinite). The first two R's have independent columns. The 2 by 3 R cannot have full column rank 3, with only 2 rows.

8
$$A = \begin{bmatrix} 3 & 6 \\ 6 & 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
. Pivots 3, 4 outside squares, ℓ_{ij} inside. $\mathbf{x}^{T}A\mathbf{x} = 3(x+2y)^2 + 4y^2$

9
$$A = \begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16 \end{bmatrix}$$
 has only one pivot = 4, rank $A = 1$, eigenvalues are 24, 0, 0, det $A = 0$.

10
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 has pivots $B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ is singular; $B \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

- **11** Corner determinants $|A_1| = 2$, $|A_2| = 6$, $|A_3| = 30$. The pivots are 2/1, 6/2, 30/6.
- 12 A is positive definite for c > 1; determinants $c, c^2 1$, and $(c 1)^2(c + 2) > 0$. B is never positive definite (determinants d 4 and -4d + 12 are never both positive).
- **13** $A = \begin{bmatrix} 1 & 5 \\ 5 & 10 \end{bmatrix}$ is an example with a + c > 2b but $ac < b^2$, so not positive definite.
- 14 The eigenvalues of A^{-1} are positive because they are $1/\lambda(A)$. And the entries of A^{-1} pass the determinant tests. And $x^TA^{-1}x = (A^{-1}x)^TA(A^{-1}x) > 0$ for all $x \neq 0$.
- **15** Since $x^T A x > 0$ and $x^T B x > 0$ we have $x^T (A + B) x = x^T A x + x^T B x > 0$ for all $x \neq 0$. Then A + B is a positive definite matrix. The second proof uses the test $A = R^T R$ (independent columns in R): If $A = R^T R$ and $B = S^T S$ pass this test, then $A + B = \begin{bmatrix} R & S \end{bmatrix}^T \begin{bmatrix} R \\ S \end{bmatrix}$ also passes, and must be positive definite.
- **16** $x^T A x$ is zero when $(x_1, x_2, x_3) = (0, 1, 0)$ because of the zero on the diagonal. Actually $x^T A x$ goes *negative* for x = (1, -10, 0) because the second pivot is *negative*.
- 17 If a_{jj} were smaller than all λ 's, $A a_{jj}I$ would have all eigenvalues > 0 (positive definite). But $A a_{jj}I$ has a zero in the (j, j) position; impossible by Problem 16.
- **18** If $Ax = \lambda x$ then $x^T Ax = \lambda x^T x$. If A is positive definite this leads to $\lambda = x^T Ax / x^T x > 0$ (ratio of positive numbers). So positive energy \Rightarrow positive eigenvalues.
- **19** All cross terms are $x_i^T x_j = 0$ because symmetric matrices have orthogonal eigenvectors. So positive eigenvalues \Rightarrow positive energy.
- **20** (a) The determinant is positive; all $\lambda > 0$ (b) All projection matrices except I are singular (c) The diagonal entries of D are its eigenvalues (d) A = -I has $\det = +1$ when n is even.
- **21** A is positive definite when s > 8; B is positive definite when t > 5 by determinants.

$$\mathbf{22} \ R = \begin{bmatrix} 1 & -1 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{9} \\ \sqrt{1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; R = Q \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} Q^{\mathrm{T}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

- 23 $x^2/a^2 + y^2/b^2$ is $x^T A x$ when $A = \text{diag}(1/a^2, 1/b^2)$. Then $\lambda_1 = 1/a^2$ and $\lambda_2 = 1/b^2$ so $a = 1/\sqrt{\lambda_1}$ and $b = 1/\sqrt{\lambda_2}$. The ellipse $9x^2 + 16y^2 = 1$ has axes with half-lengths $a = \frac{1}{3}$ and $b = \frac{1}{4}$. The points $(\frac{1}{3}, 0)$ and $(0, \frac{1}{4})$ are at the ends of the axes.
- **24** The ellipse $x^2 + xy + y^2 = 1$ has axes with half-lengths $1/\sqrt{\lambda} = \sqrt{2}$ and $\sqrt{2/3}$.

25
$$A = C^{\mathsf{T}}C = \begin{bmatrix} 9 & 3 \\ 3 & 5 \end{bmatrix}; \begin{bmatrix} 4 & 8 \\ 8 & 25 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $C = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$

- **26** The Cholesky factors $C = \begin{pmatrix} L\sqrt{D} \end{pmatrix}^{T} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$ have square roots of the pivots from D. Note again $C^{T}C = LDL^{T} = A$.
- Writing out $x^T A x = x^T L D L^T x$ gives $ax^2 + 2bxy + cy^2 = a(x + \frac{b}{a}y)^2 + \frac{ac b^2}{a}y^2$. So the LDL^T from elimination is exactly the same as *completing the square*. The example $2x^2 + 8xy + 10y^2 = 2(x + 2y)^2 + 2y^2$ with pivots 2, 2 outside the squares and multiplier 2 inside.
- **28** det A = (1)(10)(1) = 10; $\lambda = 2$ and 5; $x_1 = (\cos \theta, \sin \theta)$, $x_2 = (-\sin \theta, \cos \theta)$; the λ 's are positive. So A is positive definite.
- **29** $H_1 = \begin{bmatrix} 6x^2 & 2x \\ 2x & 2 \end{bmatrix}$ is semidefinite; $f_1 = (\frac{1}{2}x^2 + y)^2 = 0$ on the curve $\frac{1}{2}x^2 + y = 0$; $H_2 = \begin{bmatrix} 6x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is indefinite at (0, 1) where 1st derivatives = 0. This is a saddle point of the function $f_2(x, y)$.
- **30** $ax^2 + 2bxy + cy^2$ has a saddle point if $ac < b^2$. The matrix is *indefinite* ($\lambda < 0$ and $\lambda > 0$) because the determinant $ac b^2$ is *negative*.
- **31** If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the graph of $z = (2x + 3y)^2$ is a "trough" staying at zero along the line 2x + 3y = 0.
- **32** Orthogonal matrices, exponentials e^{At} , matrices with det = 1 are groups. Examples of subgroups are orthogonal matrices with det = 1, exponentials e^{An} for integer n. Another subgroup: lower triangular elimination matrices E with diagonal 1's.
- 33 A product AB of symmetric positive definite matrices comes into many applications. The "generalized" eigenvalue problem $Kx = \lambda Mx$ has $AB = M^{-1}K$. (often we use eig(K, M) without actually inverting M.) All eigenvalues λ are positive:

$$ABx = \lambda x$$
 gives $(Bx)^{T}ABx = (Bx)^{T}\lambda x$. Then $\lambda = x^{T}B^{T}ABx/x^{T}Bx > 0$.

- **34** The five eigenvalues of K are $2-2\cos\frac{k\pi}{6}=2-\sqrt{3},\,2-1,\,2,\,2+1,\,2+\sqrt{3}$. The product of those eigenvalues is $6=\det K$.
- **35** Put parentheses in $x^T A^T C A x = (Ax)^T C (Ax)$. Since C is assumed positive definite, this energy can drop to zero only when $Ax = \mathbf{0}$. Sine A is assumed to have independent columns, $Ax = \mathbf{0}$ only happens when $x = \mathbf{0}$. Thus $A^T C A$ has positive energy and is positive definite.

My textbooks Computational Science and Engineering and Introduction to Applied Mathematics start with many examples of $A^{T}CA$ in a wide range of applications. I believe this is a unifying concept from linear algebra.

Problem Set 6.6, page 360

1 $B = GCG^{-1} = GF^{-1}AFG^{-1}$ so $M = FG^{-1}$. C similar to A and $B \Rightarrow A$ similar to B.

2
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
 is similar to $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = M^{-1}AM$ with $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

3
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = M^{-1}AM;$$

$$B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix};$$

$$B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- **4** A has no repeated λ so it can be diagonalized: $S^{-1}AS = \Lambda$ makes A similar to Λ .
- **5** $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ are similar (they all have eigenvalues 1 and 0). $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is by itself and also $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is by itself with eigenvalues 1 and -1.
- **6** Eight families of similar matrices: six matrices have $\lambda=0,1$ (one family); three matrices have $\lambda=1,1$ and three have $\lambda=0,0$ (two families each!); one has $\lambda=1,-1$; one has $\lambda=2,0$; two matrices have $\lambda=\frac{1}{2}(1\pm\sqrt{5})$ (they are in one family).
- 7 (a) $(M^{-1}AM)(M^{-1}x) = M^{-1}(Ax) = M^{-1}\mathbf{0} = \mathbf{0}$ (b) The nullspaces of A and of $M^{-1}AM$ have the same *dimension*. Different vectors and different bases.
- 8 Same Λ Same S But $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ have the same line of eigenvectors and the same eigenvalues $\lambda = 0, 0$.
- **9** $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, every $A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$. $A^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.
- **10** $J^2 = \begin{bmatrix} c^2 & 2c \\ 0 & c^2 \end{bmatrix}$ and $J^k = \begin{bmatrix} c^k & kc^{k-1} \\ 0 & c^k \end{bmatrix}$; $J^0 = I$ and $J^{-1} = \begin{bmatrix} c^{-1} & -c^{-2} \\ 0 & c^{-1} \end{bmatrix}$.
- **11** $u(0) = \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} v(0) \\ w(0) \end{bmatrix}$. The equation $\frac{d\mathbf{u}}{dt} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \mathbf{u}$ has $\frac{dv}{dt} = \lambda v + w$ and $\frac{dw}{dt} = \lambda w$. Then $w(t) = 2e^{\lambda t}$ and v(t) must include $2te^{\lambda t}$ (this comes from the repeated λ). To match v(0) = 5, the solution is $v(t) = 2te^{\lambda t} + 5e^{\lambda t}$.

12 If
$$M^{-1}JM = K$$
 then $JM = \begin{bmatrix} m_{21} & m_{22} & m_{23} & m_{24} \\ 0 & \mathbf{0} & \mathbf{0} & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0 \end{bmatrix} = MK = \begin{bmatrix} \mathbf{0} & m_{12} & m_{13} & \mathbf{0} \\ 0 & m_{22} & m_{23} & 0 \\ 0 & m_{32} & m_{33} & 0 \\ 0 & m_{42} & m_{43} & 0 \end{bmatrix}.$

That means $m_{21} = m_{22} = m_{23} = m_{24} = 0$. M is not invertible, \overline{J} not similar to K.

13 The five 4 by 4 Jordan forms with $\lambda = 0, 0, 0, 0$ are $J_1 = \text{zero matrix}$ and

Problem 12 showed that J_3 and J_4 are not similar, even with the same rank. Every matrix with all $\lambda = 0$ is "nilpotent" (its nth power is $A^n = \text{zero matrix}$). You see $J^4 = 0$ for these matrices. How many possible Jordan forms for n = 5 and all $\lambda = 0$?

- **14** (1) Choose M_i = reverse diagonal matrix to get $M_i^{-1}J_iM_i = M_i^{\rm T}$ in each block (2) M_0 has those diagonal blocks M_i to get $M_0^{-1}JM_0 = J^{\rm T}$. (3) $A^{\rm T} = (M^{-1})^{\rm T}J^{\rm T}M^{\rm T}$ equals $(M^{-1})^{\rm T}M_0^{-1}JM_0M^{\rm T} = (MM_0M^{\rm T})^{-1}A(MM_0M^{\rm T})$, and $A^{\rm T}$ is similar to A.
- **15** $\det(M^{-1}AM \lambda I) = \det(M^{-1}AM M^{-1}\lambda IM)$. This is $\det(M^{-1}(A \lambda I)M)$. By the product rule, the determinants of M and M^{-1} cancel to leave $\det(A \lambda I)$.
- **16** $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is similar to $\begin{bmatrix} d & c \\ b & a \end{bmatrix}$; $\begin{bmatrix} b & a \\ d & c \end{bmatrix}$ is similar to $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$. So two pairs of similar matrices but $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is not similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$: different eigenvalues!
- **17** (a) False: Diagonalize a nonsymmetric $A = S \Lambda S^{-1}$. Then Λ is symmetric and similar (b) True: A singular matrix has $\lambda = 0$. (c) False: $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ are similar (they have $\lambda = \pm 1$) (d) *True*: Adding *I* increases all eigenvalues by
- **18** $AB = B^{-1}(BA)B$ so AB is similar to BA. If $ABx = \lambda x$ then $BA(Bx) = \lambda (Bx)$.
- **19** Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6 4 zeros.
- **20** (a) $A = M^{-1}BM \Rightarrow A^2 = (M^{-1}BM)(M^{-1}BM) = M^{-1}B^2M$. So A^2 is similar to B_-^2 . (b) A^2 equals $(-A)^2$ but A may not be similar to B = -A (it could be!). (c) $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$ is diagonalizable to $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ because $\lambda_1 \neq \lambda_2$, so these matrices are similar. (d) $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ has only one eigenvector, so not diagonalizable (e) PAP^T is similar to A.
- 21 J^2 has three 1's down the second superdiagonal, and two independent eigenvectors for

$$\lambda = 0$$
. Its 5 by 5 Jordan form is $\begin{bmatrix} J_3 \\ J_2 \end{bmatrix}$ with $J_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $J_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Note to professors: An interesting question: Which matrices A have (complex) square roots $R^2 = A$? If A is invertible, no problem. But any Jordan blocks for $\lambda = 0$ must have sizes $n_1 \ge n_2 \ge ... \ge n_k \ge n_{k+1} = 0$ that come in pairs like 3 and 2 in this example: $n_1 = (n_2 \text{ or } n_2 + 1)$ and $n_3 = (n_4 \text{ or } n_4 + 1)$ and so on.

A list of all 3 by 3 and 4 by 4 Jordan forms could be $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, \begin{bmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix},$

$$\begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$$
 (for any numbers a, b, c) with $3, 2, 1$ eigenvectors; diag (a, b, c, d) and
$$\begin{bmatrix} a & 1 & & \\ & a & & \\ & & b & \\ & & & c \end{bmatrix}$$
,

$$\begin{bmatrix} a & 1 & & & \\ & a & & & \\ & & b & 1 \\ & & & b \end{bmatrix}, \begin{bmatrix} a & 1 & & \\ & a & 1 & \\ & & a & b \end{bmatrix}, \begin{bmatrix} a & 1 & & \\ & a & 1 & \\ & & a & 1 \\ & & & a \end{bmatrix}$$
with 4, 3, 2, 1 eigenvectors.

22 If all roots are $\lambda = 0$, this means that $\det(A - \lambda I)$ must be just λ^n . The Cayley-Hamilton Theorem in Problem 6.2.32 immediately says that $A^n = \text{zero matrix}$. The key example is a single n by n Jordan block (with n-1 ones above the diagonal): Check directly that $J^n = \text{zero matrix}$.

Solutions to Exercises

- **23** Certainly $Q_1 R_1$ is similar to $R_1 Q_1 = Q_1^{-1}(Q_1 R_1)Q_1$. Then $A_1 = Q_1 R_1 cs^2 I$ is similar to $A_2 = R_1 Q_1 cs^2 I$.
- **24** A could have eigenvalues $\lambda = 2$ and $\lambda = \frac{1}{2}$ (A could be diagonal). Then A^{-1} has the same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371

$$\mathbf{1} \ A = U \Sigma V^{\mathrm{T}} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \\ & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{50} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

2 This $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is a 2 by 2 matrix of rank 1. Its row space has basis v_1 , its nullspace has basis v_2 , its column space has basis u_1 , its left nullspace has basis u_2 :

Row space
$$\frac{1}{\sqrt{5}}\begin{bmatrix}1\\2\end{bmatrix}$$
 Nullspace $\frac{1}{\sqrt{5}}\begin{bmatrix}2\\-1\end{bmatrix}$ Column space $\frac{1}{\sqrt{10}}\begin{bmatrix}1\\3\end{bmatrix}$, $N(A^{\rm T})$ $\frac{1}{\sqrt{10}}\begin{bmatrix}3\\-1\end{bmatrix}$.

- **3** If A has rank 1 then so does A^TA . The only nonzero eigenvalue of A^TA is its trace, which is the sum of all a_{ij}^2 . (Each diagonal entry of A^TA is the sum of a_{ij}^2 down one column, so the trace is the sum down all columns.) Then $\sigma_1 =$ square root of this sum, and $\sigma_1^2 =$ this sum of all a_{ij}^2 .
- **4** $A^{T}A = AA^{T} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ has eigenvalues $\sigma_{1}^{2} = \frac{3 + \sqrt{5}}{2}$, $\sigma_{2}^{2} = \frac{3 \sqrt{5}}{2}$. But A is indefinite $\sigma_{1} = (1 + \sqrt{5})/2 = \lambda_{1}(A)$, $\sigma_{2} = (\sqrt{5} 1)/2 = -\lambda_{2}(A)$; $u_{1} = v_{1}$ but $u_{2} = -v_{2}$.
- **5** A proof that *eigshow* finds the SVD. When $V_1 = (1,0)$, $V_2 = (0,1)$ the demo finds AV_1 and AV_2 at some angle θ . A 90° turn by the mouse to $V_2, -V_1$ finds AV_2 and $-AV_1$ at the angle $\pi \theta$. Somewhere between, the constantly orthogonal v_1 and v_2 must produce Av_1 and Av_2 at angle $\pi/2$. Those orthogonal directions give u_1 and u_2 .

6
$$AA^{T} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 has $\sigma_{1}^{2} = 3$ with $\boldsymbol{u}_{1} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ and $\sigma_{2}^{2} = 1$ with $\boldsymbol{u}_{2} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$.
$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 has $\sigma_{1}^{2} = 3$ with $\boldsymbol{v}_{1} = \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$, $\sigma_{2}^{2} = 1$ with $\boldsymbol{v}_{2} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}$; and $\boldsymbol{v}_{3} = \begin{bmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$. Then $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = [\boldsymbol{u}_{1} \ \boldsymbol{u}_{2}] \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} [\boldsymbol{v}_{1} \ \boldsymbol{v}_{2} \ \boldsymbol{v}_{3}]^{T}$.

7 The matrix A in Problem 6 had $\sigma_1 = \sqrt{3}$ and $\sigma_2 = 1$ in Σ . The smallest change to rank 1 is **to make** $\sigma_2 = \mathbf{0}$. In the factorization

$$A = U \Sigma V^{\mathrm{T}} = \boldsymbol{u}_1 \sigma_1 \boldsymbol{v}_1^{\mathrm{T}} + \boldsymbol{u}_2 \sigma_2 \boldsymbol{v}_2^{\mathrm{T}}$$

this change $\sigma_2 \to 0$ will leave the closest rank-1 matrix as $u_1 \sigma_1 v_1^T$. See Problem 14 for the general case of this problem.

- 8 The number $\sigma_{\max}(A^{-1})\sigma_{\max}(A)$ is the same as $\sigma_{\max}(A)/\sigma_{\min}(A)$. This is certainly ≥ 1 . It equals 1 if all σ 's are equal, and $A = U \Sigma V^{\mathrm{T}}$ is a multiple of an orthogonal matrix. The ratio $\sigma_{\max}/\sigma_{\min}$ is the important **condition number** of A studied in Section 9.2.
- **9** $A = UV^{T}$ since all $\sigma_{j} = 1$, which means that $\Sigma = I$.
- **10** A rank-1 matrix with $A\mathbf{v} = 12\mathbf{u}$ would have \mathbf{u} in its column space, so $A = \mathbf{u}\mathbf{w}^{\mathrm{T}}$ for some vector \mathbf{w} . I intended (but didn't say) that \mathbf{w} is a multiple of the unit vector $\mathbf{v} = \frac{1}{2}(1, 1, 1, 1)$ in the problem. Then $A = 12\mathbf{u}\mathbf{v}^{\mathrm{T}}$ to get $A\mathbf{v} = 12\mathbf{u}$ when $\mathbf{v}^{\mathrm{T}}\mathbf{v} = 1$.
- 11 If A has orthogonal columns w_1, \ldots, w_n of lengths $\sigma_1, \ldots, \sigma_n$, then A^TA will be diagonal with entries $\sigma_1^2, \ldots, \sigma_n^2$. So the σ 's are definitely the singular values of A (as expected). The eigenvalues of that diagonal matrix A^TA are the columns of I, so V = I in the SVD. Then the u_i are Av_i/σ_i which is the unit vector w_i/σ_i .

The SVD of this A with orthogonal columns is $A = U \Sigma V^{T} = (A \Sigma^{-1})(\Sigma)(I)$.

- 12 Since $A^{T} = A$ we have $\sigma_{1}^{2} = \lambda_{1}^{2}$ and $\sigma_{2}^{2} = \lambda_{2}^{2}$. But λ_{2} is negative, so $\sigma_{1} = 3$ and $\sigma_{2} = 2$. The unit eigenvectors of A are the same $u_{1} = v_{1}$ as for $A^{T}A = AA^{T}$ and $u_{2} = -v_{2}$ (notice the sign change because $\sigma_{2} = -\lambda_{2}$, as in Problem 4).
- 13 Suppose the SVD of R is $R = U \Sigma V^{T}$. Then multiply by Q to get A = QR. So the SVD of this A is $(QU)\Sigma V^{T}$. (Orthogonal Q times orthogonal U =orthogonal QU.)
- **14** The smallest change in A is to set its smallest singular value σ_2 to zero. See # 7.
- **15** The singular values of A + I are not $\sigma_j + 1$. They come from eigenvalues of $(A + I)^T (A + I)$.
- 16 This simulates the random walk used by *Google* on billions of sites to solve Ap = p. It is like the power method of Section 9.3 except that it follows the links in one "walk" where the vector $p_k = A^k p_0$ averages over all walks.
- 17 $A = U \Sigma V^{T} = [\text{cosines including } u_{4}] \text{ diag}(\text{sqrt}(2 \sqrt{2}, 2, 2 + \sqrt{2})) [\text{sine matrix}]^{T}.$ $AV = U \Sigma \text{ says that differences of sines in } V \text{ are cosines in } U \text{ times } \sigma$'s.

The SVD of the derivative on $[0, \pi]$ with f(0) = 0 has $\mathbf{u} = \sin nx$, $\sigma = n$, $\mathbf{v} = \cos nx$!

Problem Set 7.1, page 380

- 1 With w = 0 linearity gives T(v + 0) = T(v) + T(0). Thus T(0) = 0. With c = -1 linearity gives T(-0) = -T(0). This is a second proof that T(0) = 0.
- **2** Combining $T(c\mathbf{v}) = cT(\mathbf{v})$ and $T(d\mathbf{w}) = dT(\mathbf{w})$ with addition gives $T(c\mathbf{v} + d\mathbf{w}) = cT(\mathbf{v}) + dT(\mathbf{w})$. Then one more addition gives $cT(\mathbf{v}) + dT(\mathbf{w}) + eT(\mathbf{u})$.
- **3** (d) is not linear.

- **4** (a) S(T(v)) = v (b) $S(T(v_1) + T(v_2)) = S(T(v_1)) + S(T(v_2))$.
- **5** Choose v = (1, 1) and w = (-1, 0). Then T(v) + T(w) = (v + w) but T(v + w) = (0, 0).
- **6** (a) $T(\mathbf{v}) = \mathbf{v}/\|\mathbf{v}\|$ does not satisfy $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$ or $T(c\mathbf{v}) = cT(\mathbf{v})$ (b) and (c) are linear (d) satisfies $T(c\mathbf{v}) = cT(\mathbf{v})$.
- 7 (a) T(T(v)) = v (b) T(T(v)) = v + (2, 2) (c) T(T(v)) = -v (d) T(T(v)) = T(v).
- **8** (a) The range of $T(v_1, v_2) = (v_1 v_2, 0)$ is the line of vectors (c, 0). The nullspace is the line of vectors (c, c). (b) $T(v_1, v_2, v_3) = (v_1, v_2)$ has Range \mathbb{R}^2 , kernel $\{(0, 0, v_3)\}$ (c) $T(v) = \mathbf{0}$ has Range $\{\mathbf{0}\}$, kernel \mathbb{R}^2 (d) $T(v_1, v_2) = (v_1, v_1)$ has Range = multiples of (1, 1), kernel = multiples of (1, -1).
- **9** If $T(v_1, v_2, v_3) = (v_2, v_3, v_1)$ then $T(T(v)) = (v_3, v_1, v_2)$; $T^3(v) = v$; $T^{100}(v) = T(v)$.
- **10** (a) $T(1,0) = \mathbf{0}$ (b) (0,0,1) is not in the range (c) $T(0,1) = \mathbf{0}$.
- 11 For multiplication T(v) = Av: $V = \mathbb{R}^n$, $W = \mathbb{R}^m$; the outputs fill the column space; v is in the kernel if Av = 0.
- **12** $T(\mathbf{v}) = (4,4); (2,2); (2,2); \text{ if } \mathbf{v} = (a,b) = b(1,1) + \frac{a-b}{2}(2,0) \text{ then } T(\mathbf{v}) = b(2,2) + (0,0).$
- **13** The distributive law (page 69) gives $A(M_1 + M_2) = AM_1 + AM_2$. The distributive law over c's gives A(cM) = c(AM).
- **14** This A is invertible. Multiply AM = 0 and AM = B by A^{-1} to get M = 0 and $M = A^{-1}B$. The kernel contains only the zero matrix M = 0.
- **15** This *A* is *not* invertible. AM = I is impossible. $A\begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. The range contains only matrices *AM* whose columns are multiples of (1, 3).
- **16** No matrix A gives $A \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. To professors: Linear transformations on matrix space come from **4** by **4** matrices. Those in Problems 13–15 were special.
- **17** For T(M) = MT (a) $T^2 = I$ is True (b) True (c) True (d) False.
- **18** T(I) = 0 but $M = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = T(M)$; these M's fill the range. Every $M = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$ is in the kernel. Notice that dim (range) + dim (kernel) = $3 + 1 = \dim$ (input space of 2 by 2 M's).
- **19** $T(T^{-1}(M)) = M$ so $T^{-1}(M) = A^{-1}MB^{-1}$.
- **20** (a) Horizontal lines stay horizontal, vertical lines stay vertical onto a line (c) Vertical lines stay vertical because $T(1,0) = (a_{11},0)$.
- **21** $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ doubles the width of the house. $A = \begin{bmatrix} .7 & .7 \\ .3 & .3 \end{bmatrix}$ projects the house (since $A^2 = A$ from trace = 1 and $\lambda = 0, 1$). The projection is onto the column space of A = line through (.7, .3). $U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ will *shear* the house horizontally: The point at (x, y) moves over to (x + y, y).

22 (a)
$$A = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$
 with $d > 0$ leaves the house AH sitting straight up (b) $A = 3I$ expands the house by 3 (c) $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates the house.

- **23** $T(\mathbf{v}) = -\mathbf{v}$ rotates the house by 180° around the origin. Then the affine transformation $T(\mathbf{v}) = -\mathbf{v} + (1,0)$ shifts the rotated house one unit to the right.
- 24 A code to add a chimney will be gratefully received!
- **25** This code needs a correction: add spaces between $-10\ 10\ -10\ 10$
- **26** $\begin{bmatrix} 1 & 0 \\ 0 & .1 \end{bmatrix}$ compresses vertical distances by 10 to 1. $\begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix}$ projects onto the 45° line. $\begin{bmatrix} .5 & .5 \\ -.5 & .5 \end{bmatrix}$ rotates by 45° clockwise and contracts by a factor of $\sqrt{2}$ (the columns have length $1/\sqrt{2}$). $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has determinant -1 so the house is "flipped and sheared." One way to see this is to factor the matrix as LDL^{T} :

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \text{ (shear) (flip left-right) (shear)}.$$

- 27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).
- 28 A code that adds two eyes and a smile will be included here with public credit given!
- **29** (a) ad bc = 0 (b) ad bc > 0 (c) |ad bc| = 1. If vectors to two corners transform to themselves then by linearity T = I. (Fails if one corner is (0, 0).)
- 30 The circle transforms to the ellipse by rotating 30° and stretching the first axis by 2.
- 31 Linear transformations keep straight lines straight! And two parallel edges of a square (edges differing by a fixed v) go to two parallel edges (edges differing by T(v)). So the output is a parallelogram.

Problem Set 7.2, page 395

For
$$S \mathbf{v} = d^2 \mathbf{v}/dx^2$$

$$\mathbf{1} \quad \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 = 1, x, x^2, x^3$$

$$S \mathbf{v}_1 = S \mathbf{v}_2 = \mathbf{0}, S \mathbf{v}_3 = 2 \mathbf{v}_1, S \mathbf{v}_4 = 6 \mathbf{v}_2;$$
The matrix for S is $B = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

- **2** $Sv = d^2v/dx^2 = 0$ for linear functions v(x) = a + bx. All (a, b, 0, 0) are in the nullspace of the second derivative matrix B.
- **3** (Matrix A)² = B when (transformation T)² = S and output basis = input basis.

- 4 The third derivative matrix has 6 in the (1, 4) position; since the third derivative of x^3 is 6. This matrix also comes from AB. The fourth derivative of a cubic is zero, and B^2 is the zero matrix.
- **5** $T(v_1 + v_2 + v_3) = 2w_1 + w_2 + 2w_3$; A times (1, 1, 1) gives (2, 1, 2).
- **6** $v = c(v_2 v_3)$ gives T(v) = 0; nullspace is (0, c, -c); solutions (1, 0, 0) + (0, c, -c).
- **7** (1,0,0) is not in the column space of the matrix A, and \mathbf{w}_1 is not in the range of the linear transformation T. Key point: Column space of matrix matches range of transformation.
- **8** We don't know T(w) unless the w's are the same as the v's. In that case the matrix is A^2 .
- **9** Rank of A = 2 = dimension of the *range* of T. The outputs Av (column space) match the outputs T(v) (the range of T). The "output space" W is like \mathbb{R}^m : it contains all outputs but may not be filled up.
- **10** The matrix for T is $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. For the output $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ choose input $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. This means: For the output \mathbf{w}_1 choose the input $\mathbf{v}_1 \mathbf{v}_2$.
- **11** $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ so $T^{-1}(\boldsymbol{w}_1) = \boldsymbol{v}_1 \boldsymbol{v}_2, T^{-1}(\boldsymbol{w}_2) = \boldsymbol{v}_2 \boldsymbol{v}_3, T^{-1}(\boldsymbol{w}_3) = \boldsymbol{v}_3.$ The columns of A^{-1} describe T^{-1} from W back to V. The only solution to $T(\boldsymbol{v}) = 0$
 - is v = 0.
- **12** (c) $T^{-1}(T(\mathbf{w}_1)) = \mathbf{w}_1$ is wrong because \mathbf{w}_1 is not generally in the input space.
- **13** (a) $T(v_1) = v_2$, $T(v_2) = v_1$ is its own inverse (b) $T(v_1) = v_1$, $T(v_2) = 0$ has $T^2 = T$ (c) If $T^2 = I$ for part (a) and $T^2 = T$ for part (b), then T must be I.
- **14** (a) $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$ = inverse of (a) (c) $A \begin{bmatrix} 2 \\ 6 \end{bmatrix}$ must be $2A \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- **15** (a) $M = \begin{bmatrix} r & s \\ t & u \end{bmatrix}$ transforms $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} r \\ t \end{bmatrix}$ and $\begin{bmatrix} s \\ u \end{bmatrix}$; this is the "easy" direction. (b) $N = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1}$ transforms in the inverse direction, back to the standard basis vectors. (c) ad = bc will make the forward matrix singular and the inverse impossible.
- **16** $MW = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -1 \\ -7 & 3 \end{bmatrix}.$
- **17** Recording basis vectors is done by a *Permutation matrix*. Changing lengths is done by a *positive diagonal matrix*.
- **18** $(a,b) = (\cos \theta, -\sin \theta)$. Minus sign from $Q^{-1} = Q^{T}$.

19
$$M = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$$
; $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$ = first column of M^{-1} = coordinates of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ in basis $\begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.

79

- **20** $w_2(x) = 1 x^2$; $w_3(x) = \frac{1}{2}(x^2 x)$; $y = 4w_1 + 5w_2 + 6w_3$.
- **21** \boldsymbol{w} 's to \boldsymbol{v} 's: $\begin{bmatrix} 0 & 1 & 0 \\ .5 & 0 & -.5 \\ .5 & -1 & .5 \end{bmatrix}$. \boldsymbol{v} 's to \boldsymbol{w} 's: inverse matrix $=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix}$. The key idea: The matrix multiplies the coordinates in the \boldsymbol{v} basis to give the coordinates in the
- **22** The 3 equations to match 4, 5, 6 at x = a, b, c are $\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$. This Vandermonde determinant equals (b-a)(c-a)(c-b). So a, b, c must be distinct to have $\det \neq 0$ and one solution A, B, C.
- 23 The matrix M with these nine entries must be invertible.

w basis.

- 24 Start from A = QR. Column 2 is $a_2 = r_{12}q_1 + r_{22}q_2$. This gives a_2 as a combination of the q's. So the change of basis matrix is R.
- **25** Start from A = LU. Row 2 of A is ℓ_{21} (row 1 of U) + ℓ_{22} (row 2 of U). The change of basis matrix is always *invertible*, because basis goes to basis.
- **26** The matrix for $T(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$ is $\Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.
- **27** If T is not invertible, $T(v_1), \ldots, T(v_n)$ is not a basis. We couldn't choose $w_i = T(v_i)$.
- **28** (a) $\begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$ gives $T(\mathbf{v}_1) = \mathbf{0}$ and $T(\mathbf{v}_2) = 3\mathbf{v}_1$. (b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ gives $T(\mathbf{v}_1) = \mathbf{v}_1$ and $T(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{v}_1$ (which combine into $T(\mathbf{v}_2) = \mathbf{0}$ by *linearity*).
- **29** T(x, y) = (x, -y) is reflection across the x-axis. Then reflect across the y-axis to get S(x, -y) = (-x, -y). Thus ST = -I.
- **30** S takes (x, y) to (-x, y). S(T(v)) = (-1, 2). S(v) = (-2, 1) and T(S(v)) = (1, -2).
- 31 Multiply the two reflections to get $\begin{bmatrix} \cos 2(\theta \alpha) & -\sin 2(\theta \alpha) \\ \sin 2(\theta \alpha) & \cos 2(\theta \alpha) \end{bmatrix}$ which is *rotation* by $2(\theta \alpha)$. In words: (1,0) is reflected to have angle 2α , and that is reflected again to angle $2\theta 2\alpha$.
- **32** False: We will not know T(v) for energy v unless the n v's are linearly independent.
- 33 To find coordinates in the wavelet basis, multiply by $W^{-1} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$.

Then $e = \frac{1}{4}w_1 + \frac{1}{4}w_2 + \frac{1}{2}w_3$ and $v = w_3 + w_4$. Notice again: W tells us how the bases change, W^{-1} tells us how the coordinates change.

34 The last step writes 6, 6, 2, 2 as the overall average 4, 4, 4, 4 plus the difference 2, 2, -2, -2. Therefore $c_1 = 4$ and $c_2 = 2$ and $c_3 = 1$ and $c_4 = 1$.

35 The wavelet basis is (1, 1, 1, 1, 1, 1, 1, 1) and the long wavelet and two medium wavelets (1, 1, -1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, -1, -1) and 4 wavelets with a single pair 1, -1.

- **36** If Vb = Wc then $b = V^{-1}Wc$. The change of basis matrix is $V^{-1}W$.
- 37 Multiplying by $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ gives $T(\mathbf{v}_1) = A \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} = a\mathbf{v}_1 + c\mathbf{v}_3$. Similarly $T(\mathbf{v}_2) = a\mathbf{v}_2 + c\mathbf{v}_4$ and $T(\mathbf{v}_3) = b\mathbf{v}_1 + d\mathbf{v}_3$ and $T(\mathbf{v}_4) = b\mathbf{v}_2 + d\mathbf{v}_4$. The matrix for T in this basis is $\begin{bmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{bmatrix}$.
- **38** The matrix for T in this basis is $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Problem Set 7.3, page 406

- **1** $A^{T}A = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$ has $\lambda = 50$ and 0, $v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$; $\sigma_1 = \sqrt{50}$.
- **2** Orthonormal bases: v_1 for row space, v_2 for nullspace, u_1 for column space, u_2 for $N(A^T)$. All matrices with those four subspaces are multiples cA, since the subspaces are just lines. Normally many more matrices share the same 4 subspaces. (For example, all n by n invertible matrices share \mathbf{R}^n .)
- **3** $A = QH = \frac{1}{\sqrt{50}} \begin{bmatrix} 7 & -1 \\ 1 & 7 \end{bmatrix} \frac{1}{\sqrt{50}} \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$. H is semidefinite because A is singular.
- **4** $A^{+} = V \begin{bmatrix} 1/\sqrt{50} & 0 \\ 0 & 0 \end{bmatrix} U^{T} = \frac{1}{50} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}; A^{+}A = \begin{bmatrix} .2 & .4 \\ .4 & .8 \end{bmatrix}, AA^{+} = \begin{bmatrix} .1 & .3 \\ .3 & .9 \end{bmatrix}.$
- **5** $A^{T}A = \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}$ has $\lambda = 18$ and 2, $\mathbf{v}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\sigma_{1} = \sqrt{18}$ and $\sigma_{2} = \sqrt{2}$.
- **6** $AA^{\mathrm{T}} = \begin{bmatrix} 18 & 0 \\ 0 & 2 \end{bmatrix}$ has $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The same $\sqrt{18}$ and $\sqrt{2}$ go into Σ .
- 7 $\left[\sigma_1 \boldsymbol{u}_1 \ \sigma_2 \boldsymbol{u}_2 \right] \begin{bmatrix} \boldsymbol{v}_1^{\mathrm{T}} \\ \boldsymbol{v}_2^{\mathrm{T}} \end{bmatrix} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathrm{T}}$. In general this is $\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \cdots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathrm{T}}$.
- **8** $A = U\Sigma V^{\mathrm{T}}$ splits into QK (polar): $Q = UV^{\mathrm{T}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ and $K = V\Sigma V^{\mathrm{T}} = \begin{bmatrix} \sqrt{18} & 0 \\ 0 & \sqrt{2} \end{bmatrix}$.
- **9** A^+ is A^{-1} because A is invertible. Pseudoinverse equals inverse when A^{-1} exists!
- **10** $A^{T}A = \begin{bmatrix} 9 & 12 & 0 \\ 12 & 16 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has $\lambda = 25, 0, 0$ and $\mathbf{v}_{1} = \begin{bmatrix} .6 \\ .8 \\ 0 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} .8 \\ -.6 \\ 0 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$

Here $A = \begin{bmatrix} 3 & 4 & 0 \end{bmatrix}$ has rank 1 and $AA^{T} = \begin{bmatrix} 25 \end{bmatrix}$ and $\sigma_{1} = 5$ is the only singular value in $\Sigma = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}$.