$$M = \frac{D_p}{N} = \frac{1}{p} = 0.5$$

$$P = \frac{N}{D_{\rho}} \Rightarrow O_{\rho} = \frac{N}{P} = \frac{10}{2}$$
$$= 5_{mm}.$$

$$\rho = \frac{\pi}{\rho} = \frac{\pi}{2}$$

 $\frac{6-5}{2} = 5.5 \text{mm} \otimes$

OC Motor speed:

$$6600 \text{ rpm} = 691.15 \text{ rad/s}$$

REQUIRED:

Destred speed:

$$0.25 \, \text{m/s} \Rightarrow 20 \, \text{rad/s}$$

40 (6clow)

$$W_1 = 20 \text{ rad/s}$$
 $\frac{\omega_1}{\omega_2} = \frac{20}{691.15} = 0.0289$ $\omega_2 = 691.15 \text{ rad/s}$

reduction
$$\Rightarrow$$
 ratio of \approx 34.5:1

$$= 0.0289 = \frac{N_2}{N_1}$$

number of feeth if using I gear. $N_2 = 10$, $N_1 = \frac{10}{0.0289} = 346$ teeth. X too much!

SIMPLE gear train: No = 10, wa = 691 mal/s, W. = 20 mal/s

$$\left(\begin{array}{c} \frac{W_1}{W_2} = \frac{N_2}{N_1} \frac{N_3}{N_2} \end{array}\right) \Rightarrow \frac{N_2 N_3}{N_1 N_2} = \frac{20}{69}$$

the size of the $\frac{10 \text{ N/s}}{\text{N, N/2}} = \frac{20}{691}$

Athal gear just the direction H turns

$$\frac{10}{N_1} = \frac{20}{691}$$

$$N_1 = \frac{691}{2} = 345.5$$

Using compound gear train: $W_4 = \frac{N_1}{N_2} \frac{N_2}{N_4} W_1$

$$\Rightarrow \frac{\omega_4}{\omega_1} = \frac{N_1}{N_2} \frac{N_3}{N_4}$$

$$\frac{691}{20} = \frac{N_1}{N_2} \frac{N_3}{10} \cdot \frac{N_1 N_3}{N_2} = \frac{691}{2}$$

>N, & N, & No large.

USING 0.5 m/s => 40 rad/s

$$\frac{\omega_6}{\omega_1} \quad \frac{691}{40} = \frac{N_1}{N_2} \quad \frac{N_3}{N_4} \quad \frac{N_5}{10}$$

$$\Rightarrow \frac{691}{40} = \frac{x}{1000} \quad x = \frac{69100}{4}$$

smallest combo \Rightarrow $N_2 = N_4 (=N_6) = 10$

16×27×40=17280

DESIGNING FOR SPACE LIMITATION:

$$N_2 = 10$$
 $N_3 = 25$

Max length of space = 40mm

 $N_5 = 14$
 $N_6 = 10$

$$\frac{3}{40mm}$$

$$\begin{array}{lll}
O_{P_1} + \frac{O_{P_2}}{2} + \frac{O_{P_3}}{2} + \frac{O_{P_4}}{2} + \frac{O_{P_5}}{2} \\
= Total Length$$

$$W_6 = 691 \text{ rad/s}, N_6 = 10$$

 $W_5 = \frac{14}{3}$

$$\frac{\omega_{5}}{\omega_{6}} = \frac{N_{5}}{N_{5}} \Rightarrow \omega_{5} = \frac{10}{14} \times 691 = 493.6 \text{ rad/s}.$$

$$\frac{\omega_6}{\omega_1} = \frac{N_1}{N_2} \frac{N_3}{N_4} \frac{N_5}{N_6} = \frac{691}{40} = 17.275$$

 $N_1 = 50$

ASSUMING MERE:

Dp follows same rules as N:

⇒
$$D_{P_1}D_{P_3}D_{P_5} = 641$$

 $P_{P_2}D_{P_4}D_{P_6} = 140$
($D_{P_6} = 6mn$, but also not wearying about this due to config.)
⇒ $D_{P_6}D_{P_4} = 40$
⇒ $D_{P_6}=8mn$, $D_{P_6}=5mn$
 $D_{P_6}D_{P_5}=691$, $N_1>N_3>N_4$
 $60>25>14$
 $14.4\times8\times6=691.2$
 $D_{P_6}D_{P_5}D_{P_5}=14.4+\frac{1}{2}(8+8+5+6)$
 $=27.9mn$
Sooo, $D_{P_6}+\frac{1}{2}(D_{P_2}+D_{P_5}+D_{P_4}+D_{P_5})=14.4+\frac{1}{2}(8+8+5+6)$
 $=27.9mn$
Sooo, can increase: $17+\frac{1}{2}(8+10+5+7)$
 $=32mn$
 $D_{P_6}=17mn$, $N_1=50$
 $D_{P_2}=8mn$, $N_2=10$
 $D_{P_3}=10mn$, $N_3=25$
 $D_{P_4}=5mn$, $N_4=10$
 $D_{P_5}=7mn$, $N_5=14$
($D_{P_6}=6mm$, $N_6=10$) $d=1.25m$

Pitch Diameter, Op [mm]

Number teeth, N

Diametral pitch, P= No [1/mm]

Addendum, $a = m = \frac{D_P}{N}$ [mm]

Dedendum, d=1-25 m [mm]

Base circle diameter, Do = De cost [mm]

Tooth depth, I = a+d [mm]

Tooth Mideness, t = Tem [mm]

$$P = \frac{N}{\rho_0}$$

$$a=m=\frac{1}{P}=\frac{D_{P}}{N}$$

$$D_{0} = 20$$

$$D_{ez} = 5$$

$$0_{P_3} = 14$$

$$D_{P_6} = 5$$

$$O_{P_1} + \frac{O_{P_2}}{2} + \frac{O_{P_3}}{2} + \frac{O_{P_4}}{2} + \frac{O_{P_5}}{2} = 20 + \frac{1}{2}(5 + 14 + 5 + 8 + 5)$$