More undecidable problems

From flickr user pinprick, CC-BY-NC-ND

HW1 due today, HW2 out "Soon"

Today's class

• The following are undecidable:

```
    L<sub>acc</sub> = { <M,x> | M is a TM that accepts x }
    L<sub>empty</sub> = { <M> | M is a TM, L(M) = Ø }
    L<sub>finite</sub> = { <M> | M is a TM, L(M) is finite }
```

- These are all problems about understanding behavior of arbitrary TMs
 - What about more **natural** problems that don't (seem to) involve TMs / computation?

Post Correspondence Problem (PCP)

Input: finite set of "domino" types

• Question: given an infinite supply of each domino type, can you make top row = bottom row? \(\neq \empty \)

PCP examples

• Input: $\begin{bmatrix} 0 & 01 & 110 \\ 100 & 00 & 11 \end{bmatrix}$

yes, solvable

11001100

• Input: $\begin{bmatrix} 0 & 11 & 01 \\ 100 & 001 & 101 \end{bmatrix}$

no, not solvable

top string < bottom string

every domino has 1st bits of top/bottom disagree.

Theorem: PCP is undecidable!

- L_{acc} ≤ PCP: write subroutine for L_{acc}, using a subroutine for PCP
- Need to convert <M,x> into a set of dominos that somehow captures the computation of M on x!

Need to deal with TM details

 "Source code" of a TM is a finite list of simple transition rules:

```
(q,c) → (q',c',L/R)

if in state q reading character c
  write character c'
  move to state q'
  move tape head {left,right}
```

Need to deal with TM details

- TM configuration specifies:
 - Current contents of tape
 - Current state
 - Current tape head location

• Example:

Need to deal with TM details

- Observation: M accepts $x \Leftrightarrow$ there is a sequence of accepting Computation configurations where:
 - First config is "q_{start} x"
 - Last config is in q_{accept}
 - Config i follows from config i+1 by a valid transition
- **Example:** write a sequence of configurations separated by # symbols:

```
" ... # 1 1 q_5 1 0 1 # 1 1 0 q_8 0 1 # ... "
```

PCP reduction idea:

```
# conf<sub>1</sub> # conf<sub>2</sub> # ... # conf<sub>i</sub> #
# conf<sub>1</sub> # conf<sub>2</sub> # ... # conf<sub>i</sub> # conf<sub>i+1</sub> #
```

Idea/invariant:

- Top/bottom rows are sequence of TM configurations
- Bottom row always "1 step ahead" of top row
- Can't get top row to match without adding correct next
 TM configuration to bottom row
- Top row can only "catch up" when TM is in accepting state

PCP proof <u>sketch</u> (III)

 Given TM M & input x, generate set of dominoes as follows:

(#1) Include a domino

(let's assume we can force this to be the first domino in PCP solution)

PCP proof sketch (IV)

 Given TM M & input x, generate set of dominoes as follows:

(#2) Include dominos that "copy" tape contents to next configuration

0101901#0

PCP proof sketch (V)

 Given TM M & input x, generate set of dominoes as follows:

(#3) Include dominos that advance TM one step:

$$(q,1) \rightarrow (q',0,L)$$
 becomes

(edge case: make blank chars appear at right end of tape)

PCP proof sketch (VI)

 Given TM M & input x, generate set of dominoes as follows:

(#4) Include dominos that let the accept state "eat" neighboring characters & "catch up" to bottom row

PCP proof <u>sketch</u> (overview)

- Given TM M & input x, generate set of dominoes as follows:
- 1) "seed" domino with initial TM configuration
- 2) dominoes that copy tape chars to next configuration
- 3) dominoes that advance tape head + state one step
- 4) dominoes that allow accepting configuration to "catch up" to bottom row

Another example: Wang tiles

- Wang tile: square with specific "flavor of glue" on each edge
- Adjacent tiles must have matching glue flavors on shared edge

Another example: Wang tiles

• Input:

- finite set of Wang tile types
- Initial arrangement of tiles

Question:

- Can the configuration be extended to tile the entire plane?
- Theorem: this problem is undecidable!

Wang tile reduction: L_{acc} ≤ WANG

- Write subroutine for $L_{\rm acc}$, using a subroutine for Wang tile question
- Need to convert <M,x> into a set of tiles that somehow captures the computation of M on x!

Wang tile reduction idea

q _{start} 0		1	1	0	1
#	L → q ₁₁	q ₁₁ —, #	# #	# #	# #
	1	q ₁₁ 1	1	0	1
	1	q ₁₁ 1	1	0	1
#	#	# L→ q ₅	q₅	# #	# #
	1	1	q ₅ 1	0	1