

Universidade Federal da Paraíba Centro de Ciências Humanas, Letras e Artes Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Marlon Valmórbida Cendron

Marlon Valmórbida Cendron

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Projeto a ser apresentado no Centro de Ciências Humanas, Letras e Artes da Universidade Federal da Paraíba, sob a orientação de Flávio Freitas Barbosa e coorientação de Wilfredo Blanco Figuerola, no mês de Agosto de 2025.

Orientador: Flávio Freitas Barbosa

Coorientador: Wilfredo Blanco Figuerola

Marlon Valmórbida Cendron

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Projeto a ser apresentado no Centro de Ciências Humanas, Letras e Artes da Universidade Federal da Paraíba, sob a orientação de Flávio Freitas Barbosa e coorientação de Wilfredo Blanco Figuerola, no mês de Agosto de 2025.

João Pessoa - PB, 20 de Agosto de 2025:

Flávio Freitas Barbosa Orientador

Wilfredo Blanco Figuerola

Coorientador

João Pessoa - PB 2025

Resumo

Resumo

Palavras-chave: Palavra1. Palavra2. Palavra3. Palavra4. Palavra5.

Abstract

Abstract

Keywords: Word1. Word2. Word3. Word4. Word5.

Lista de tabelas

Tabela 1 – Parâmetros do modelo Izhikevich por tipo de neurônio	 14
Tabela 2 – Parâmetros das sinapses entre as populações neuronais	 16
Tabela 3 – Cronograma	 18
Tabela 4 – Análise de robustez	 20
Tabela 5 – Análise descritiva adicional	 21

Lista de ilustrações

Figura 1 – Arquitetura da rede	 14
rigula i – Aiquitetula da rede	 17

Sumário

1	INTRODUÇÃO	9
2	JUSTIFICATIVA	10
3	OBJETIVOS	11
3.1	Objetivo geral	11
3.2	Objetivos específicos	11
4	HIPÓTESES	12
5	MATERIAIS E MÉTODOS	13
5.1	Modelo da rede neural DG-CA3	13
5.2	Modelo de neurônio	13
5.3	Modelo de sinapse	15
6	RESULTADOS ESPERADOS	17
7	CRONOGRAMA	18
	REFERÊNCIAS	19
	APÊNDICE A – ANÁLISE DE ROBUSTEZ	20
	A DÊNIDIOS DE COTATÍCTICA O DECODITIVA O	04
	APÊNDICE B – ESTATÍSTICAS DESCRITIVAS	21

1 Introdução

2 Justificativa

Justificativa

3 Objetivos

3.1 Objetivo geral

Desenvolver um modelo de condutância do circuito GD-CA3 do hipocampo para analisar os impactos da neurogênese adulta na capacidade de armazenamento de memória e separação de padrões.

3.2 Objetivos específicos

- •
- •
- •

4 Hipóteses

Hipóteses

5 Materiais e Métodos

5.1 Modelo da rede neural DG-CA3

Brian2 (STIMBERG; BRETTE; GOODMAN, 2019)

Runge-Kutta de 4ª ordem com passo de tempo fixo de 0,1ms (BUTCHER, 1996).

5.2 Modelo de neurônio

Os neurônios foram modelados de acordo com o modelo de neurônio de Izhikevich de 9 parâmetros (IZHIKEVICH, 2006, cap. 8) e um único compartimento, sem considerar dendritos ou axônios. Esse modelo foi escolhido por ser capaz de capturar o comportamento dinâmico de neurônios em uma ampla variedade de condições com plausibilidade biológica, como o modelo de Hodgkin-Huxley (HODGKIN; HUXLEY, 1952), ao mesmo tempo em que apresenta um modelo matemático mais simples e computacionalmente mais eficiente. O modelo de neurônio de Izhikevich é descrito pelas seguintes equações:

$$C_m \frac{dV_m}{dt} = k(V_m - V_r)(V_m - V_t) - u + I$$
 (5.1)

$$\frac{du}{dt} = a[b(V_m - V_r) - u] \tag{5.2}$$

Onde V_m é o potencial de membrana, u é a variável de recuperação, C_m é a capacitância da membrana, V_r é o potencial de repouso, V_t é o potencial de limiar, I é a corrente total que flui para o neurônio e k, a e b são constantes que definem as características dinâmicas do neurônio. Além das equações diferenciais acima, que definem a evolução temporal do potencial de membrana e da variável de recuperação, o modelo de neurônio de Izhikevich também inclui uma regra para a geração de potenciais de ação, definida pela equação 5.3.

se
$$V_m \ge V_{\text{peak}}, \quad \begin{cases} V_m \leftarrow V_{min} \\ u \leftarrow u + d \end{cases}$$
 (5.3)

Quando o potencial de membrana atinge o valor de pico $V_{\rm peak}$, um potencial de ação é gerado e o potencial de membrana é redefinido para o potencial pós-disparo V_{min} e a variável de recuperação u é incrementada em d, dificultando a geração de um próximo potencial de ação.

Figura 1 – Arquitetura da rede

Célula	k (nS/mV)	a (ms ⁻¹)	b (nS)	d (pA)	C _m (pF)	V _r (mV)	V_t (mV)	V _{min} (mV)	V _{peak} (mV)
Granular madura	0.45	0.003	24.48	50	38	-77.4	-44.9	-66.47	15.49
Granular imatura	0.139	0.002	-1.877	12.149	24.6	-63.66	-38.41	-48.2	83.5
Musgosa	1.5	0.004	-20.84	117	258	-63.67	-37.11	-47.98	28.29
HIPP	0.01	0.004	-2	40.52	58.7	-70	-50	-75	90
Em cesto	0.81	0.097	1.89	553	208	-61.02	-37.84	-36.23	14.08
Piramidal do CA3	0.79	0.008	-42.55	588	366	-63.2	-33.6	-38.87	35.86
Inibitória do CA3	0.81	0.097	1.89	553	208	-61.02	-37.84	-36.23	14.08

Tabela 1 – Parâmetros do modelo Izhikevich por tipo de neurônio.

5.3 Modelo de sinapse

O modelo de sinapse, assim como o de neurônio, foi definido a partir do Hippocampome.org (WHEELER et al., 2023), seguindo a formulação de Tsodyks-Pawelzik-Markram Tsodyks, Pawelzik e Markram (1998). Esse modelo de sinapse possui 5 parâmetros e modela a plasticidade de curto prazo, seja ela a potenciação ou depressão de curto prazo.

O modelo é descrito por um sistema de equações diferenciais que governam a dinâmica de três variáveis: a fração de recursos sinápticos no estado recuperado (x), no estado ativo (y) e uma variável de facilitação (v):

$$\frac{dx}{dt} = \frac{1 - x - y}{\tau_r} \tag{5.4}$$

$$\frac{dy}{dt} = -\frac{y}{\tau_d} \tag{5.5}$$

$$\frac{dv}{dt} = -\frac{v}{\tau_f} \tag{5.6}$$

onde τ_r é a constante de tempo de recuperação, τ_d é a constante de tempo de inativação (decaimento) e τ_f é a constante de tempo de facilitação.

Quando um potencial de ação pré-sináptico ocorre, as variáveis são atualizadas sequencialmente da seguinte forma:

$$v \to v + U(1 - v) \tag{5.7}$$

$$y \to y + v \cdot x \tag{5.8}$$

$$x \to x - v \cdot x \tag{5.9}$$

onde U é um parâmetro que representa a fração de recursos que são utilizados a cada evento.

Finalmente, a corrente sináptica (I_{syn}) injetada no neurônio pós-sináptico é dada por:

$$I_{syn} = \text{scale} \cdot w \cdot g \cdot y \cdot (V_m - E) \tag{5.10}$$

onde scale é um fator de escala, w é o peso sináptico, g é a condutância sináptica, y é a fração de recursos ativos, V_m é o potencial de membrana do neurônio pós-sináptico e E é o potencial de reversão da sinapse.

Pré-sináptico	Pós-sináptico	Conexão	P	g	τ_d	τ_r	$ au_f$	U
			(%)	(nS)	(ms)	(ms)	(ms)	
Córtex Entorrinal	Granular madura	Aleatória	8	1.825	5.333	266.239	18.714	0.27
Córtex Entorrinal	Granular imatura	Aleatória	0	1.825	5.333	266.239	18.714	0.27
Córtex Entorrinal	Musgosa	Aleatória	20	1.422	4.671	319.835	57.766	0.204
Córtex Entorrinal	Em cesto	Aleatória	20	1.406	3.849	144.415	48.2	0.214
Córtex Entorrinal	Piramidal do CA3	Aleatória	4	1.065	6.55	258.318	53.478	0.184
Córtex Entorrinal	Inibitória do CA3	Aleatória	20	1.556	3.602	457.468	35.904	0.21
Granular madura	Musgosa	Lamelar	20	1.713	5.347	428.583	73.479	0.151
Granular madura	HIPP	Aleatória	10	1.305	5.181	462.814	48.986	0.15
Granular madura	Em cesto	Lamelar	100	1.458	3.566	151.265	62.278	0.197
Granular madura	Piramidal do CA3	Lamelar	5	1.384	6.657	278.286	78.584	0.155
Granular madura	Inibitória do CA3	Lamelar	100	1.625	3.915	518.934	43.274	0.176
Granular imatura	Musgosa	Lamelar	20	1.713	5.347	428.583	73.479	0.151
Granular imatura	HIPP	Aleatória	10	1.305	5.181	462.814	48.986	0.15
Granular imatura	Em cesto	Lamelar	100	1.458	3.566	151.265	62.278	0.197
Granular imatura	Piramidal do CA3	Lamelar	5	1.384	6.657	278.286	78.584	0.155
Granular imatura	Inibitória do CA3	Lamelar	100	1.625	3.915	518.934	43.274	0.176
Musgosa	Granular madura	Entre lamelas	0.2	2.394	5.357	166.162	20.224	0.304
Musgosa	Granular imatura	Entre lamelas	0.2	2.394	5.357	166.162	20.224	0.304
Musgosa	HIPP	Entre lamelas	100	1.376	4.824	358.431	54.872	0.181
Musgosa	Em cesto	Entre lamelas	100	1.996	3.396	117.365	69.316	0.255
HIPP	Granular madura	Aleatória	20	2.002	8.935	559.143	8.396	0.278
HIPP	Em cesto	Aleatória	2	1.709	5.982	367.198	15.292	0.221
Em cesto	Granular madura	Lamelar	100	2.451	6.543	433.876	6.347	0.332
Em cesto	Granular imatura	Lamelar	100	2.451	6.543	433.876	6.347	0.332
Em cesto	HIPP	Aleatória	2	1.408	6.544	534.182	8.385	0.24
Piramidal do CA3	Piramidal do CA3	Aleatória	2	0.603	9.516	278.258	27.513	0.172
Piramidal do CA3	Musgosa	Lamelar	10	2.035	4.297	359.116	40.457	0.236
Piramidal do CA3	Inibitória do CA3	Aleatória	70	1.247	4.525	525.605	23.321	0.189
Inibitória do CA3	Piramidal do CA3	Aleatória	70	1.462	7.793	416.282	20.63	0.203

Tabela 2 – Parâmetros das sinapses entre as populações neuronais.

6 Resultados esperados

Resultados esperados

7 Cronograma

Tabela 3 – Cronograma

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4

Referências

BUTCHER, J. A history of Runge-Kutta methods. *Applied Numerical Mathematics*, v. 20, n. 3, p. 247–260, mar. 1996. ISSN 01689274. 13

HODGKIN, A. L.; HUXLEY, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of Physiology*, v. 117, n. 4, p. 500–544, ago. 1952. ISSN 0022-3751, 1469-7793. 13

IZHIKEVICH, E. M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. [S.l.]: The MIT Press, 2006. ISBN 978-0-262-27607-8. 13

STIMBERG, M.; BRETTE, R.; GOODMAN, D. F. Brian 2, an intuitive and efficient neural simulator. *eLife*, v. 8, p. e47314, ago. 2019. ISSN 2050-084X. 13

TSODYKS, M.; PAWELZIK, K.; MARKRAM, H. Neural Networks with Dynamic Synapses. *Neural Computation*, v. 10, n. 4, p. 821–835, maio 1998. ISSN 0899-7667, 1530-888X. 15

WHEELER, D. W. et al. *Hippocampome.Org v2.0: A Knowledge Base Enabling Data-Driven Spiking Neural Network Simulations of Rodent Hippocampal Circuits*. 2023. 15

APÊNDICE A - Análise de Robustez

Tabela 4 – Análise de robustez

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4

APÊNDICE B - Estatísticas descritivas

Tabela 5 – Análise descritiva adicional

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4