

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2010-2011 (2 hours)

Integrated Circuit Technology

Answer **THREE** questions. **No marks will be awarded for a solution to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The number given after each section of a question indicates the relative weighting of that section.**

1.	а.	Explain with the aid of a diagram the difference between a metal, semiconductor and an insulator. Describe an experimental method to differentiate between a metal and a semiconductor. What is a semi-metal?				
	b	Explain, with the help of a diagram and a formula how you would measure the resistivity of a material.				
	c	Name the crystal lattice system for silicon. Derive the packing density, assuming that the atom at the tetrahedral site (completely inside a unit lattice) is at a distance of ¼ along the lattice diagonal.				
	d	Draw diagrams for the (111), (100) and the (110) planes in silicon. What is the notation for describing a "family" of planes?				
	e	Name any two types of dislocations. What is the burgers vector for the most common dislocations found in the diamond cubic lattice?				
	f	Name (in Hexagonal Close Packed format) and show diagrammatically the two types of faults in a crystal.	(3)			
2.	a.	Describe the main differences between (1) MOCVD and (ii) MBE techniques for epitaxial growth. Show diagrammatically the MOCVD growth characteristics with time and the factors controlling each regime.				
	b	Name two modifications of the basic Czochralski technique required for growth of GaAs ingots? Explain the reasons for these modifications.				
	c	Explain what is meant by autodoping. What is the condition to minimise autodoping?	(2)			
	d	An amorphous layer 3×10^{-5} cm thick is produced in (001) Si by Si ion implantation. How long will the epitaxial regrowth of this layer take at 580° C. (Assume that the activation energy for the regrowth process is 2.76eV , the preexponential factor (v_0) is				
		3.68 x 10 cm/s and Boltzmann's constant (k) is 8.617 x 10 eV/K.)	(6)			
	e	Explain the key aspects of the growth process in MBE such as factors affecting	(3)			

the	quality	and	growth	rate

(k) is 8.61×10^{-5} eV/K.

- 3. a. Starting from a basic p-type substrate, show diagrammatically the most important steps in a CMOS process (ie adjacent p and n MOS devices). (10)
 - b Transition element impurities are detected in a batch of wafers after epitaxial layer growth. Describe how the unwanted impurities may be removed from device regions by the process of external gettering?

(3)

c Describe the key reactions (with equations) for wet and dry oxidation. Describe the reaction kinetics in an oxidation process.

(5)

d Name two methods currently used in industry to boost the channel mobility.

(2)

4. a Explain the main differences between wet and dry chemical etching in terms of process and characteristics. Give an example of where each is most suitable?

(6)

b What is meant by a pseudomorphic layer? Explain what happens if the grown layer is under (i) tension or (ii) compression, if the lattice mismatch is > 1.5%

(4)

A stage in the fabrication of a particular transistor requires the formation of an n-type tub in an initial p-type wafer. An implant of As is first carried out using 12 keV ions to give a shallow As-containing layer. The impurity is then driven in by a 30min anneal at 1150°C. Calculate the characteristic diffusion length of the impurity as a result of this anneal. The diffusion pre-exponential factor (D₀) may be taken to be

12cm /sec, with an activation energy for diffusion of 4.05eV: Boltzmann's constant

nt **(6)**

d Between CMOS and bipolar, in general, which technology consumes more power? What are the factors which affect yield? Name a critical issue facing future 22 nm CMOS technology.

(4)