Portfolio
Diversification
Based on
Clustering
Analysis

Young Sim, Meng Lu, Kit Qian, Shanshan Ding, Jenny Gray

The objective of the project is to optimize stock portfolio diversification in order to reduce volatility and increase capital preservation by using clustering methods

Data Source

- Comprised of the daily close price of the 470 common stocks in S&P 500 in the 5-year data
- Date range: Feb 7, 2013 Feb 6, 2018
- Split into training period followed by test period
 - Training Period 1: Feb 2013 Feb 2017
 - Training Period 2: Feb 2016 Feb 2017
 - Test Period: Feb 2017 Feb 2018

Sharpe Ratio

- Measures how much a portfolio outperforms the risk-free rate of return on a risk-adjusted basis.
- Formula: excess return divided by standard deviation
- Assumed zero risk-free rates in all cases of the study for simplicity
- Log Return = log(1+R_i) is used for normalization purposes

Clustering

K-MEANS

- Grouping by distance to the nearest cluster center
- Assume same density and equal weights on all directions

AGGLOMERATIVE

- Start by N
 (number of data points) clusters
- Similar clusters are merged until the specified clusters are left
- Reflects hierarchy via dendrograms

DBSCAN

- Consider density of data points
- No need to specify number of clusters
- Identify noise points

Algorithm Selection

K-MEANS

Only
Euclidean
distance of
the features is
allowed in
Scikit-learn

AGGLOMERATIVE

Precomputed
Correlationbased
distance can
be used to
measure the
distance

DBSCAN

Clusters are
of very
different sizes
(no freedom
of cluster
numbers)

Algorithm Selection

Set to 30 to distance of match the hased the features number of allowed in stocks in DJI as benchmark for portfolio evaluation

Linkage

- Single
- Complete
- Average reedom of cluster numbers)

Portfolio Construction & Evaluation

1

Sharpe ratio

DIVERSIFIED PORTFOLIO

Selecting the stock with highest Sharpe ratio from each cluster with equal weight

2

Annualized portfolio volatility

Benchmarks

Sharpe Ratio

- Dow Jones Index
- 30 randomly selected stocks

Volatility

- Market(equally weightedS&P500 stocks)
- Random Selection
- Cluster

Results: Training Period 1

Training period 1: Feb 7, 2013 - Feb 6, 2017

Test period: Feb 6, 2017 - Feb 6, 2018

Benchmark /Portfolio	DJI	Random	K means	Single	Complete	Average
Sharpe Ratio	0.150174	0.102065	0.122447	0.11101	0.085972	0.089122

Results continued

Results: Training Period 2

- Training period 2: Feb 7, 2016 Feb 6, 2017
- Test period: Feb 6, 2017 Feb 6, 2018
- Stock prices from 5 years ago may not necessarily be consistent with the prices today.

Benchmark /Portfolio	DJI	Random	K means	Single	Complete	Average
Sharpe Ratio	0.150174	0.102065	0.094728	0.075378	0.115475	0.125963

Results continued

Results continued

Only 1 out of 30 clusters had a volatility lower than the portfolio constructed.

Further Research

- 1. Other metrics can be used as alternatives of Sharpe Ratio: Sortino Ratio, Value-at-Risk, etc.
- 2. Adjust length of training period and number of clusters
- 3. Change/extend pool of stocks
- 4. Implement distance thresholds
- 5. Improve on the risk-return of the portfolio by: assigning weights on each stock of the portfolio based on an optimization problem to maximize Sharpe ratio
- 6. Add/utilize industry sector information for each company
- 7. Use time series analysis to describe the changes in stock prices throughout the duration

THANK YOU

Q&A