Subspace: $W \subseteq V$ where $w_1, w_2 \in W \implies w_1 + w_2 \in W$ $w_1 \in W, a \in K \implies aw_1 \in W$

 $\{v_1,\ldots,v_n\}$ is linearly independent $\iff v_i \notin \operatorname{span}(\{v_1,\ldots,v_n\} \setminus \{v_i\})$

Basis: $\{v_1, \ldots, v_n\}$ spans V and is linearly independent

For a basis, each $v \in V$ is unique with respect to the basis

- Span \implies all $v \in V$ is a linear combination of the basis
- Linear Independence \implies if $v = a_1 + v_1 + \cdots + a_n v_n = b_1 + v_1 + \cdots + b_n v_n$, then $0 = (a_i b_i)w_i \implies a_i = b_i$
- n spanning vectors \implies it is a basis n linearly independent vectors \implies it is a basis

1.2.6: Show that $\{t, 1/t\}$ is linearly independent

• Suppose at + b/t = 0 $t = 1 \implies a = -b$ $t = 2 \implies a = b = 0$

Direct Sum: For any subspace $W \subseteq V$, there exists a subspace U such that $V = W \oplus U$

- Span: $v = a_1 w_1 + \cdots + a_k w_k + b_1 u_1 + \cdots + b_r u_r$
- Linear Independence: $v = a_1w_1 + \cdots + a_kw_k = b_1u_1 + \cdots + b_ru_r \implies a_i = b_j = 0$

Onto: Im(F) = R 1-1: $F(d) = F(e) \implies d = e$

Linear Transformation $T: V \to W:$ $T(v_1 + v_2) = T(v_1) + T(v_2)$ T(cv) = cT(v)

- $T(0_V) = O_W$ $T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n)$
- $\operatorname{Im}(T) \subseteq W$ $w_1 + w_1 = T(v_1) + T(v_2) = T(v_1 + v_2) \in \operatorname{Im}(T)$ $cw = cT(w) = T(cw) \in \operatorname{Im}(T)$

Pullback: $T(v_1) = w_1, ..., T(v_m) = w_m$

- If $\{w_1, \ldots, w_m\}$ is linearly independent, then $\{v_1, \ldots, v_m\}$ is linearly independent $\dim(\operatorname{Im}(T)) \leq n$
- If Ker(F) = 0 and $\{v_1, \dots, v_n\}$ is linearly independent, then $\{F(v_1), \dots, F(v_n)\}$ is linearly independent

 $V = \operatorname{Ker}(T) \oplus S$, the pull back of basis of W

- Take $v \in V$ and $s \in S$, then $T(v-s) = 0 \implies v-s \in \mathrm{Ker}(T) \implies v = (v-s)+s \implies V = \mathrm{Ker}(T)+S$
- Take $v \in \text{Ker}(T) \cap S \implies v = a_1 v_1 + \dots + a_m v_m \implies T(v) = 0 \implies a_i = 0 \implies v = 0 \implies \text{Ker}(T) \cap S = \{0\}$ $\dim(V) = \dim(\text{Ker}(T)) + \dim(\text{Im}(T))$
 - $\dim(\operatorname{Im}(T)) < \dim(W) \implies \operatorname{NOT}$ onto $\dim(\operatorname{Ker}(T)) > 0 \implies \operatorname{NOT}$ 1-1

Isomorphism: Linear Transformation and a Bijection

• T^{-1} is an isomorphism: $T(v_1) = w_1$ and $T(v_2) = w_2 \implies T(v_1 + v_2) = w_1 + w_2 \implies T^{-1}(w_1 + w_2) = v_1 + v_2$

Matrix Linear Mapping: $L_A: \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix

- WRT to standard basis, $A = [T(E_1), \dots, T(E_n)]$
- WRT to any basis $B = \{v_1, \dots, v_n\}, M_{B'}^B(T) = [T(v_1), \dots, T(v_n)]$ with respect to basis B'
- Function composition is matrix multiplication Rotation defined by $\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$

Scalar Product: $\langle v, w \rangle = \langle w, v \rangle$ $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$ $\langle v, cw \rangle = c \langle v, w \rangle$

Positive definite: $\forall v, \langle v, v \rangle \geq 0$ Non-degenerate: $\forall v, \exists w, \langle v, w \rangle \neq 0$ Non-trivial: $\exists v, w, \langle v, w \rangle \neq 0$

Trivial: $\forall v, w, \langle v, w \rangle = 0$ Any trivial scalar product means that any basis is orthogonal

Lemma: $\langle v, v \rangle = 0 \implies \text{scalar product is trivial} \qquad \langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle \implies \langle v, w \rangle = 0$

• Corollary $\forall v, \langle v, v \rangle = 0 \implies$ has a orthogonal basis

Theorem: For any scalar product, V has a orthogonal basis

- Proof by induction. If $\forall v, \langle v, v \rangle = 0 \implies$ orthogonal by Lemma
- Otherwise, let $V_1 = \text{span}(\{v_1\})$ and show that $V = V_1 \oplus V_1^{\perp}$ and apply IH to the latter
 - $\text{ For any } v, \operatorname{proj}_{V_1} v \in V_1 \text{ and } v \operatorname{proj}_{V_1} v \in V_1^{\perp} \implies v = \operatorname{proj}_{V_1} v + v \operatorname{proj}_{V_1} v \implies V = V_1 + V_1^{\perp}$
 - $\text{ For } v \in V_1 \cap V_1^{\perp}, \ \langle v, v \rangle = 0 \text{ and } v = dv_1 \implies d^2 \langle v_1, v_1 \rangle = 0 \text{ and since } \langle v_1, v_1 \rangle \neq 0 \implies d = 0 \implies v = 0$

 $\textbf{Orthogonal: } \langle v,w\rangle = 0 \implies v \perp w \qquad \textbf{Orthogonal Complement: } W^{\perp} = \{v \in V \mid \forall w \in W, v \perp w\}$

Length: $||v|| = \sqrt{\langle v, v \rangle}$ **Projection**: $\operatorname{proj}_w v = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$ $\langle v - cw, w \rangle = 0$

Theorem: $\{w_1, \ldots, w_r\}$ is pairwise orthogonal \implies it is linearly independent

 $\operatorname{proj}_W v \in W \qquad (v - \operatorname{proj}_W v) \in W^{\perp}$

Gram-Schmidt: $u_1 = \frac{1}{\|v_1\|} v_1$ $p_2 = v_2 - \text{proj}_{u_1} v_2 \implies u_2 = \frac{1}{\|p_2\|} u_2$

• Upshot: Any Vector Space of R with positive definite scalar product has a orthonormal basis

Theorem: For a subspace $W \subseteq V$, $V = W \oplus W^{\perp}$

- Set $w = \operatorname{proj}_W v \in W$ and $v w \in W^{\perp} \implies v = (w) + (v w) \implies V = W + W^{\perp}$
- For $w \in W \cap W^{\perp}$, $\langle w, w \rangle = 0 \implies w = 0$ since positive definite
- Corollary: $\dim(V) = \dim(W) + \dim(W^{\perp})$

5.2.7.a: Let V be the vector space of all $n \times n$ matrices over R, show that $\langle A, B \rangle = \text{Tr}(AB)$ is non-degenerate

• If $\langle A,B\rangle=0$ for all $B\in V$, then we can choose B_{ij} with 0 in all components except ij coordinate to show that A=O

5.2.7.c: Let V be the space of real $n \times n$ symmetric matrices. What is the dimension of W, subspace consisting of matrices with Tr(A) = 0? What is the dimension of W^{\perp} ?

• $\dim(W) = \frac{n(n+1)}{2} - 1$ since one of the diagonal entries will be a LC of the other diagonal entries. Thus $\dim(W^{\perp}) = 1$

Rank: $\dim(R_A) = \dim(C_A)$. For a linear mapping L_A defined by matrix A

- $\operatorname{Im}(L_A) = C_A, \operatorname{Ker}(L_A) = \operatorname{Null}(A) \implies \dim(R^n) = \dim(\operatorname{Im}(L_A)) + \dim(\operatorname{Ker}(L_A)) = \dim(C_A) + \dim(\operatorname{Null}(A))$
- For $v \in \text{Null}(A)$, $A_i \perp v \iff v \in (R_A)^{\perp} \implies \dim(R^n) = \dim(R_A) + \dim((R_A)^{\perp}) = \dim(R_A) + \dim(\text{Null}(A))$
- Solution space for homogenous equation is n rank(A)

5.3.6: Find dimension of solution set of $X \cdot A = P \cdot A$ for vector A and point P

• We have $(X - P) \cdot A = 0 \implies \dim(A^{\perp}) = n - 1$

Hermitian Inner Product: $\langle v, w \rangle = \overline{\langle w, v \rangle}$ $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$ $\langle cv, w \rangle = c \langle v, w \rangle$ $\langle v, cw \rangle = \overline{c} \langle v, w \rangle$

• Note: Hermitian Inner Product is positive definite

Dual Space: $V^* = L(V, k)$ $\phi: V \to K \in V^*$ Most basic operation: $\phi_i(v_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Theorem: $B' = \{\phi_1, \dots, \phi_n\}$ is a basis for V^*

- Linear Independence: $0 = a_1\phi_1 + \cdots + a_n\phi_n \implies 0$ $v_i = 0 \implies a_i\phi_i = 0 \implies a_i = 0$
- Spanning: Take $T \in L(V, K)$ where $T(v_i) = b_i$ and take $\phi^* = b_1 \phi_1 + \dots + b_n \phi_n \in \text{span}(B')$ Now show that $T = \phi^*$ by applying $Tv_i = \phi^* v_i = b_i \implies T \in \text{span}(B')$
- Corollary: $V^* \approx V \implies \dim(V^*) = \dim(V)$
- Corollary: There exists a 1-1, onto linear function $F: V \to V^*$ such that $F(v_i) = \phi_i$

5.6.5: For ϕ, ψ non-zero functionals that are not scalar multiples of each other, show that dimension of $\text{Ker}(\psi) \cap \text{Ker}(\phi) = n - 2$

• $v \in \text{Ker}(\psi) \cup \text{Ker}(\phi)$ otherwise $v \notin \text{Ker}(\psi)$ and $v \notin \text{Ker}(\phi) \implies \psi = c\phi$. Contradiction Thus $\dim(\text{Ker}(\psi) \cup \text{Ker}(\phi)) = n = (n-1) + (n-1) - \dim(\text{Ker}(\phi) \cap \text{Ker}(\psi)) \implies \dim(\text{Ker}(\phi) \cap \text{Ker}(\psi)) = n - 2$

5.6.6: Show that $v \in V$ gives rise an element $\lambda_v \in V^{**}$ and that $v \to \lambda_v$ gives an isomorphism $V \approx V^{**}$

• $\lambda_v = \phi(v)$ for some $\phi \in V^*$

For 1-1, take $v \in \text{Ker}(F) \implies \lambda_v = 0 \implies \forall \phi \in V^*, \phi(v) = 0$. BWOC, suppose $v \neq 0 \implies \exists \phi$ such that $\phi(v) \neq 0$ Since $\dim(V) = \dim(V^*) = \dim(V^{**}) \implies F$ is onto and thus a bijection

To show that F is an isomorphism, $F(aw + bv) = \lambda_{aw+bv} = \phi(aw + bv) = a\phi(w) + b\phi(v) = a\lambda_w + b\lambda_v$

5.6.7: Show that $W^{\perp \perp} = W$ for a non-degenerate scalar product

• $W^{\perp \perp} = \{ v \in V \mid v \perp W^{\perp} \}$ so for $w \in W, w \perp W^{\perp} \implies W \subseteq W^{\perp}$ Also $V = W \oplus W^{\perp} = W^{\perp} \oplus W^{\perp \perp} \implies \dim(W) = \dim(W^{\perp \perp}) \implies W = W^{\perp \perp}$

Operators: $T: V \to V$, associated with an $n \times n$ matrix

Multilinear k-form: $V \times \cdots \times V \to K, \omega(v_1, \dots, (av_i + bw_i), \dots, v_k) = a\omega(v_1, \dots, v_i, \dots, v_k) + b\omega(v_1, \dots, v_i, \dots, v_k)$

- Upshot: Linear on each coordinate if the other coordinates are fixed
- $\mathrm{ML}_K(V)$: set of all $\omega: V \times \cdots \times V \to K$ is a vector space

$$-\ \mathrm{ML}_1(V) = \{\omega: V \to K\} = V^* \qquad \mathrm{ML}_2(V) = \{\omega \mid V \times V \to K\} \supseteq \mathrm{scalar\ products}$$

Alternating: $\omega: V^K \to K$ such that $v_i = v_i \implies \omega(v_1, \dots, v_k) = 0$

- Example: Determinate with the same column is equal to 0
- A: Set of alternating multilinear k forms $\subseteq ML_K(V)$

Permutation: $\sigma:[n] \to [n]$ Transposition: τ swaps 2 entries of [n] so $\tau = \tau^{-1} \implies \tau^2 = \mathrm{id}$

•
$$\epsilon = \begin{cases} +1 & \sigma \text{ even} \\ -1 & \sigma \text{ odd} \end{cases}$$
 $\sigma \in S_k \text{ permutes } \{x_1, \dots, x_k\} \to \{x_{\sigma(1)}, \dots, x_{\sigma(k)}\}$

• Notation: $(\sigma_{\omega}) = (x_1, \dots, x_k) = \omega(x_{\sigma(1)}, \dots, x_{\sigma(k)})$

Theorem: For $\omega \in \Lambda(V)$ and $\sigma \in S_k$, $(\sigma_\omega) = \epsilon(\sigma)\omega$

• Look at transposition τ and let $\overline{\omega}(x,y) = \omega(v_1,\ldots,x,\ldots,y,\ldots,v_k) \implies \overline{\omega}(x+y,x+y) = 0 \implies \omega(x,y) = -\omega(y,x)$

Theorem: $\{v_1, \ldots, v_k\}$ linearly dependent $\implies \forall \omega \in \Lambda(V), \omega(v_1, \ldots, v_k) = 0$

• Upshot: Multilinear forms preserve linear dependence

Big Count: For a basis $B = \{b_1, \ldots, b_n\}$ and $\omega \in \Lambda(V)$, $\omega(v_1, \ldots, v_n) = \omega(b_1, \ldots, b_n) \sum_{\sigma \in S_n} (a_{1\sigma(1)}) \cdots a_{n\sigma(n)} \epsilon(\sigma)$

- Note: $\dim(\Lambda(V)) = 1$ if $\dim(V) \ge 1$. Otherwise $\dim(\Lambda(V)) = 0$
- $T: V \to V, T^*: \Lambda_n(V) \to \Lambda_n(V)$, define $T^*(\omega): V^n \to K$ and $T^*(\omega)(u_1, \dots, u_n) = \omega(T(u_1), \dots, T(u_n)) \implies T^*(\omega) = d\omega$

Properties of det(T):

•
$$T(v) = av \implies T^*(\omega)(u_1, \dots, u_n) = \omega(T(u_1), \dots, T(u_n)) = a^n \omega(u_1, \dots, u_n) \implies \det(T) = a^n$$

- id \implies id $(v) = v \implies$ det(id) = 1 zero \implies zero $(v) = 0 \implies$ det(zero) = 0
- $(S \circ T)^* \omega(u_1, \ldots, u_n) = \omega(S \circ T(u_1), \ldots, S \circ T(u_n)) = \det(S) \det(T) \omega(u_1, \ldots, u_n)$
- Invertible: $det(T^{-1}) = \frac{1}{det(T)} \iff T$ is invertible $\iff det(T) \neq 0$

The following are equivalent:

- 1. T is an isomorphism
- 2. T is invertible
- 3. rank(T) = n
- 4. $\det(T) \neq 0$

For $A \in M_{n \times n}(K)$, $\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)} = \epsilon(\operatorname{id}) a_{11} a_{22} + \epsilon(\tau) a_{12} a_{21}$

6.2.1: Show that $D(cA) = c^3 D(A)$

• $D(cA) = D(cA^1, cA^2, cA^3) = c^3 D(A)$

Symmetric Operator: $\langle Av, w \rangle = \langle v, A^tw \rangle$ Symmetric $\iff A = A^t \implies \langle Av, w \rangle = \langle v, Aw \rangle$

•
$$(A+B)^t = A^t + B^t$$
 $(AB)^t = B^t A^t$ $(cA)^t = cA^t$ $A^{tt} = A^t$

Hermitian Operator: $\langle Av, w \rangle = \langle v, A^*w \rangle$ **Hermitian** $\iff A^* = \overline{A^t} = A \iff A^t = \overline{A}$

•
$$(A+B)^* = A^* + B^*$$
 $(AB)^* = B^*A^*$ $(\alpha A)^* = \overline{\alpha}A^*$ $A^{**} = A$

 $\textbf{Unitary}: \ \langle Av,Aw \rangle = \langle v,w \rangle \qquad \textbf{Real Unitary} \iff A^tA = I \qquad \textbf{Complex Unitary} \iff A^*A = i \iff \overline{A^t}A = I$

7.1.1.c: Show that for a skew-symmetric matrix A, det(A) = 0 if A is an $n \times n$ matrix where n is odd

- $\det(A) = \det(A^t) = \det(-A) = (-1)^n \det(A) \implies \det(A) = 0$ when n is odd
- **7.1.2**: If A is an invertible symmetric matrix, show that A^{-1} is symmetric

- $AA^{-1} = I \implies (A^{-1})^t A^t = I \implies (A^{-1})^t A = I \implies A^{-1} = (A^{-1})^t$
- **7.1.7**: For a non-degenerate \langle , \rangle and linear map $A: V \to V$, show that the image of A^t is the orthogonal space to the kernel of A
 - Take $y \in \text{Im}(A^t) \implies A^t x = y$ and take $z \in \text{Ker}(A)$, then $\langle y, z \rangle = \langle Ax, z \rangle = \langle x, Az \rangle = 0$
- **7.1.10**: Take positive definite \langle , \rangle over R and suppose that $V = W + W^{\perp}$. Let P be the projection on W. Show that P is symmetric and semipositive $(\langle Av, v \rangle \geq 0)$
 - Show symmetric, take $a = a_1 + a_2$ and $b = b_1 + b_2$, then $\langle Pa, b \rangle = \langle a_1, b_1 \rangle = \langle a, Pb \rangle$
 - Show semipositive, take $a = a_1 + a_2$, then $\langle Pa, a \rangle = \langle a_1, a_1 \rangle \geq 0$ since positive definite
- **7.3.1.a**: Take a positive definite scalar product over R and let $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_n\}$ be orthonormal bases. Take $A: V \to V$ such that $Av_i = w_i$. Show that A is real unitary.
 - $\langle v_i, w_j \rangle = \langle v_i, a_1 v_1 + \dots + a_n v_n \rangle = a_i$ and $\langle A v_i, A w_j \rangle = a_i \langle w_i, w_i \rangle = a_i$
- **7.3.3**: Let A be real unitary, show that A^t is unitary, A^{-1} exists and is unitary, if B is real unitary, then AB and $B^{-1}AB$ are unitary
 - $\langle A^t v, A^t w \rangle = \langle v, AA^t w \rangle = \langle v, w \rangle$
 - $AA^{-1} = AA^t = I \implies A^{-1} = A^t$ is unitary
 - $\langle ABv, ABw \rangle = \langle v, B^t A^t ABw \rangle = \langle v, w \rangle$ and $\langle B^{-1}ABv, B^{-1}AB \rangle = \langle v, B^t A^t BB^{-1}ABw \rangle = \langle v, w \rangle$

Eigenvalue: λ such that $Av = \lambda v$ for some $v \in V$ **Eigenvector**: v such that $Av = \lambda v$ for some $\lambda \in K$

Theorem: If $\{v_1, \ldots, v_n\}$ are eigenvectors of distinct $\lambda_1, \ldots, \lambda_m$, then it is linearly independent

• By Induction: $\lambda_1(c_1v_1 + \dots + c_mv_m) = 0$ and $A(c_1v_1 + \dots + c_mv_m) = 0 \implies c_2(\lambda_2 - \lambda_1)v_2 + \dots + c_m(\lambda_m - \lambda_1)v_m = 0 \implies c_1 = \dots = c_m = 0$

Diagonalization: Basis $\{v_1, \ldots, v_n\}$ is diagonalizes $L: V \to V$ if each v_i is an eigenvector such that $Lv_i = c_i v_i$

• Transformation matrix WRT to basis is diagonal with c_i

Characteristic Polynomial: $P_A(t) = \det(tI - A)$ λ is an eigenvalue $\iff P_A(\lambda) = 0$

Theorem: $A: V \to V$ is symmetric, then A has a non-zero eigenvector

Invariant: $A(W) \subseteq W \iff \forall u \in W, Au \in W$

Theorem: For symmetric $A: V \to V$ and eigenvector $v, w \in V$ and $w \perp v \implies Aw \perp v$

• $\langle Aw,v\rangle=\langle w,Av\rangle=\lambda\langle w,v\rangle=0 \implies Aw\in W^\perp\implies W^\perp$ is invariant A

Spectral Theorem: For symmetric $A: V \to V$, V has an orthonormal basis of eigenvectors

• Since A is symmetric, take an eigenvector v_1 and define $V_1 = \text{span}(\{v_1\})$, then $V = V_1 \oplus V_1^{\perp}$, both invariant under A Apply IH to W^{\perp} , with dimension n-1 to create an orthonormal basis $\{e_1, \ldots, e_n\}$ where diagonal matrix of λ_i is the matrix WRT to $\{e_1, \ldots, e_n\}$

Theorem: For symmetric A matrix, there exists real unitary matrix U such that $U^tAU = U^{-1}AU$ is diagonal

- Upshot: All symmetric matrices can be written as $A = UDU^t$ where D is diagonal and U is real unitary
- **8.2.10**: Show that eigenvalues of A, A^t are the same
 - $\det(tI A) = \det((tI A)^t) = \det(tI A^t)$
- **8.2.11**: Let A be invertible matrix, then $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A^{-1}
 - If $\lambda = 0$, then $Av = 0 \implies A$ not invertible since $Ker(A) \neq \{O\}$
 - $A^{-1}Av = A^{-1}\lambda v \implies Iv = A^{-1}\lambda v \implies A^{-1}v = \lambda^{-1}v$
- **8.2.12**: Does the derivative of $\{\sin t, \cos t\}$ have any non-zero eigenvectors?
 - $D(a\cos t + b\sin t) = b\cos t a\sin t = \lambda(a\cos t + b\sin t) \implies (b a\lambda)\cos t + (-a b\lambda)\sin t = 0 \implies \lambda^2 b + \lambda = 0 \implies \text{no}$
- **8.2.15**: Show that eigenvalues of AB are the same as eigenvalues of BA
 - $ABv = \lambda v \implies B\lambda v = BABv = (BA)Bv$ so λ is an eigenvalue of AB, BAIf $\lambda = 0$, then $P_{AB}(t) = \det(-AB) = \det(-BA) = P_{AB}(t)$

8.4.3: For symmetric $A: V \to V$ show that $\langle Av, v \rangle > 0 \implies \lambda > 0$ and \exists symmetric B such that $B^2 = A$ and BA = AB, and what are the eigenvalues of B

- $\langle Av, v \rangle = \lambda \langle v, v \rangle \implies \lambda > 0$
- $A = UDU^t = (UD'U^t)(UD'U^t) = B^2$ (symmetric since $B^t = B$) and $(UD'U^t)(UDU^t) = UD'DU^t = (UDU^t)(UD'U^t)$

8.4.12: Show that if symmetric A only has one eigenvalue, every orthogonal basis of V consists of eigenvectors of A

• $D = U^{-1}AU \implies A = UDU^{-1} = U\lambda IU^{-1} = \lambda I$. Thus any vector is an eigenvector

8.4.13: Let $A: V \to V$ be symmetric and that there are n distinct eigenvalues of A. Then the eigenvectors form an orthogonal basis of V

- Any v_i, v_j are orthogonal since $\langle Av_i, v_j \rangle = \lambda_i \langle v_i, v_j \rangle = \lambda_j \langle v_i, v_j \rangle = \langle v_i, Av_j \rangle \implies (\lambda_i \lambda_j) \langle v_i, v_j \rangle = 0 \implies v_i \perp v_j$
- Induction: $\lambda_1(a_1v_1+\cdots+a_nv_n)=A(a_1v_1+\cdots+a_nv_n) \implies (\lambda_1-\lambda_2)a_2v_2+\cdots=0 \implies a_i=0$. Thus linearly independent

Polynomial: $f(t) = a_n t^n + \dots + a_0$ $\deg(fg) = \deg(f) + \deg(g)$ **Root** $\alpha \implies f(\alpha) = 0$

• For complex polynomial, $\exists \alpha_1, \ldots, \alpha_n$ such that $f(t) = (t - \alpha_1) \cdots (t - \alpha_n)$

For $n \times n$ matrix A, exists a polynomial $f \in K[t]$ such that f(A) = 0. Follows from powers of A are linearly dependent for $N > n^2$

$$a_N A^n + \dots + a_0 I = 0 \implies f(t) = a_N t^N + \dots + a_0$$

- Note: this also applies to linear maps A

9.2.2: If A is a symmetric matrix, show that f(A) is also symmetric

• Clearly symmetry holds over + and scalar multiplication. For A^n , use induction: $(A^{k+1})^t = A^t(A^k)^t = A^{k+1}$

Fan: A fan of operator A is sequence of subspace $\{V_1, \ldots, V_n\}$ such that $V_i \subset V_{i+1}$ where each V_i is A-invariant

Fan Basis: $\{v_1, \ldots, v_n\}$ such that $\{v_1, \ldots, v_i\}$ is a basis for V_i

Theorem: If $\{v_1, \ldots, v_n\}$ is a fan basis for A, the matrix associated with A is upper triangular

- Since $AV_i \subset V_i$, $\exists a_{ij}$ such that $Av_i = a_{1i}v_1 + \cdots + a_{ii}v_n$, which creates an upper triangular matrix
- Note: Converse holds since an upper triangular matrix A has column unit vectors that form a fan basis for A

Triangulable: Operator $A: V \to V$ has a basis with an associated matrix of A that is **triangular**

10.1.4: Show that the inverse of an invertible triangular matrix is also triangular, having the same fan as $A, \{V_1, \ldots, V_n\}$

• $A: V_i \to V_i \implies A^{-1}: V_i \to V_i$ so V_i is A^{-1} invariant. Also each $V_i \subset V_{i+1}$

Theorem: For V over the complex, fan of A exists

For char polynomial $P(A) = (A - \lambda_1 I)v_1 \cdots (A - \lambda_n I)v_n = 0 \implies P(A) = 0$ for vectors of a basis of eigenvectors $\{v_1, \dots, v_n\}$

Cayley-Hamilton Theorem: Let V be a complex vector space and $A: V \to V$, let P be the char polynomial, then P(A) = 0

• Corollary: For a $n \times n$ matrix of complex numbers A, P(A) = 0

Euclidean Algorithm: f(t) = q(t)g(t) = r(t) where $\deg(r) < \deg(g)$

• Corollary: $f(\alpha) = 0 \implies f(t) = (t - \alpha)q(t)$

Ideal: $J \subseteq K[t]$ satisfying: $0 \in J$ $f, g \in J \implies f + g \in J$ $f \in J \implies \forall g \in K[t], gf \in J$

• 1 is the **generator** of K[t], also 1 is called the **unit ideal**

Theorem: For an ideal J, there exists a generator q where q is the smallest degree

Greatest Common Divisor: $g = \gcd(f_1, f_2) \implies g \mid f_1, g \mid f_2 \text{ and } h \mid f_1 \text{ and } h \mid f_2 \implies h \mid g$

Theorem If g is the generator of the ideal created by f_1, f_2 , then $gcd(f_1, f_2) = g$

• Corollary: Can be generalized to n polynomials f_1, \ldots, f_n

Relatively Prime: $gcd(f_1, ..., f_n) = 1$ Irreducible if $p = fg \implies f$ or g has degree 0

Theorem: Every $f \in K[t]$ can be expressed as a product of irreducibles p_i

Multiplicity: $f = p^m g \implies m$ is the mulitplicity of p in f

Take $f(t) \in K[t]$ and $w \in W = \text{Ker}(f(A))$, then W is invariant under A

• For $v \in W$, we have $tf(t) = f(t)t \implies Af(A)v = f(A)Av = 0 \implies Av \in W$

Note: f(A)g(A) = g(A)f(A)

Theorem: For $f \in K[t]$ where $f = f_1 f_2$ where f_1, f_2 have degree ≥ 1 and $\gcd = 1$, f(A) = 0, and $W_1 = \operatorname{Ker}(f_1(A)), W_2 = \operatorname{Ker}(f_2(A))$, we have that $V = W_1 + W_2$

- $g_1(A)f_1(A)v + g_2(A)f_2(A)v = v \implies V = W_2 + W_1$ since left component in W_2 and right component in W_1
- Set $v = w_1 + w_2 \implies g_1 f_1 v = g_1 f_1 w_2 \implies w_2 = g_1 f_1 v$. Similar for $w_1 = g_2 f_2 v$. This comes from $g_1 f_1 w_2 + g_2 f_2 w_2 = w_2$
- Corollary: Theorem also applies for several product of factors

Theorem: Vector Space over C and an $A: V \to A$ such that P(A) = 0 where $P(t) = (t - \alpha_1)^{m_1} \cdots (t - \alpha_r)^{m_r}$. Set $W_i = \text{Ker}(A - \alpha_i I)^{m_i}$, then $V = W_1 \oplus \cdots \oplus W_r$

11.4.1: Show that $Im(f_1(A)) = Ker(f_2(A))$

- $y \in \operatorname{Im}(f_1(A)) \implies f_1(A)x = y \implies f_2(A)y = 0 \implies \operatorname{Im}(f_1(A)) \subseteq \operatorname{Ker}(f_2(A))$
- $v \in \text{Ker}(f_2(A)) \implies v = g_1 f_1 v + g_2 f_2 v = g_1 f_1 v \in \text{Im}(f_1(A))$

11.4.3: Show that if $P_A(t) = (t - \alpha_1) \cdots (t - \alpha_n)$ that V has a basis consisting of eigenvectors of A

• P(A) = 0 and $P = \prod f_i$ where $f_i(t) = (t - \alpha_i)$

Set $V_i = \text{Ker}(f_i(A))$, then V_i is an eigenspace of A and $V = V_1 \oplus \cdots \oplus V_n$ and V has a basis of eigenvectors

S-invariant: $BW \subseteq W$ for all operators $B \in S$ Simple S-space: Only S-invariant subspaces of V are V, O

Example 1: A such that AB = BA for all $B \in S \implies \operatorname{Im}(A)$, $\operatorname{Ker}(A)$ are S-invariant

• $w = Av \implies Bw = BAv = ABv \implies Bw \in \text{Im}(A)$ $u \in \text{Ker}(A) \implies ABu = BAu = 0 \implies Bu \in \text{Ker}(A)$

Theorem: For a simple S-space V and operator $A: V \to V$ such that AB = BA for all $B \in S$, either A is invertible or A is zero map

• Assume $A \neq 0$, by example 1, $Ker(A) = \{O\}$ and its image is all of $V \implies A$ is invertible

Theorem: For a vector space V over C, a set of operators S, V is S-simple, operator $A:V\to V$ such that AB=bA, there exists λ such that $A=\lambda I$

• Take the ideal J such that f(A) = 0 and take its generator g. g is irreducible since otherwise $g = h_1 h_2 \implies h_1(A) \neq 0$, $h_2(A) \neq 0$ are invertible $\implies g = h_1 h_2$ is invertible but $\deg(g) > 0$

Any irreducible over C has degree 1 thus $q(t) = t - \lambda \implies q(A) = 9 \implies A = \lambda I$

11.5.5: Let S be a set of operators and U, W be S-invariant. Show that U + W and $U \cap W$ are S-invariant

• Take $v=u+w \implies Tv=Tu+Tw \in U+W$ Take $v\in U\cap W \implies Tv\in U$ and $\in W$

Cyclic: $(A - \lambda I)$ is cyclic if $(A - \lambda I)^r v = O$ **Period** is r such that $(A - \alpha I)^k v \neq 0$ for $0 \leq k < r$

Lemma: $\{v, (A-\alpha I)v, \dots, (A-\alpha I)^{r-1}v\}$ is linearly independent

• Let $B = A - \alpha I$ and $f(t) = c_0 + \cdots + c_s t^s$ for $s \le r - 1$, then f(B)v = 0

Take $g = t^r$ and let $h = \gcd(f, g) \implies h = f_1 f + g_1 g \implies h(B)v = 0$

Then $h \mid g \implies h = t^d$ for $d \le r - 1$. Contradiction since r is the period

A vector space is **cyclic** if $\{v, Av, \dots, A^{r-1}v\}$ generates V

• Corollary: By the previous lemma, $\{(A-\alpha I)^{r-1}v,\ldots,v\}$ is a basis for V

Jordon Basis for V with respect to A

$$\begin{pmatrix} \alpha & 1 & 0 & \cdots & 0 & 0 \\ 0 & \alpha & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 1 \\ 0 & 0 & 0 & \cdots & 0 & \alpha \end{pmatrix}$$

Figure 1: Jordan Basis

• Note: $(A - \alpha I)^{r-1}v$ is an eigenvector with eigenvalue α

If V is the direct sum of A-invariant subspaces, $V = V_1 \oplus \cdots \oplus V_m$ and each V_i is cyclic, the then the sequence of Jordan basis for each V_i form a basis for V

Jordan Normal Form:

Figure 2: Jordan Normal Form

Theorem: For V over C and operator $A: V \to V$, V can be expressed as a direct sum of A-invariant cyclic subspace

Minimal Polynomial: Factors of characteristic polynomial of minimal degrees such that M(A) = 0

Similar: A, B are similar if there is an invertible matrix N such that $B = N^{-1}AN$

- If $det(A) \neq det(B)$, then A, B are NOT similar
- 11.6.2: Let V be cyclic. Show that the subspace of V generated by eigenvectors of A is one-dimensional.
 - V has a basis $\{v, (A \alpha I)v, \dots, (A \alpha I)^{r-1}v\}$ then we see that $0 = (A \alpha I) = a_0(A \alpha I)v + \dots + a_{r-2}(A \alpha I)v \implies a_0 = \dots = a_{r-2} = 0 \implies$ subspace is generated by $(A \alpha I)^{r-1}v$
- **11.6.3**: Let V be cyclic and f be a polynomial. What are the eigenvalues of f(A)? Same question when V is not cyclic?
 - Since V is cyclic, it has a jordan basis with eigenvalues on the diagonal \implies eigenvalue of f(A) is $f(\lambda)$. Otherwise, we can write V as a direct sum of cyclic subspaces, eigenvalues are $f(\lambda_i)$