

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

P3
PUB-NO: EP000440559A2
DOCUMENT-IDENTIFIER: EP 440559 A2
TITLE: Polyolefin composition and use thereof.
PUBN-DATE: August 7, 1991

INVENTOR-INFORMATION:

NAME	COUNTRY
ASANO, KUNIYOSHI	JP
UEMURA, TOMOYOSHI	JP
TAKIDA, HIROSHI	JP

ASSIGNEE-INFORMATION:

NAME	COUNTRY
ATOCHEM ELF SA	FR

APPL-NO: EP91400232

APPL-DATE: January 31, 1991

PRIORITY-DATA: JP02301990A (February 1, 1990)

INT-CL (IPC): B32B027/32, C08L023/02, C08L029/04, C08L029/04+

EUR-CL (EPC): B32B027/32 ; C08L023/02, C08L029/04

ABSTRACT:

CHG DATE=19990617 STATUS=O> Composition with gas-barrier properties, comprising: (A) 50 to 99.5 % by weight of a polyolefin resin, (B) 0.4 to 50 % by weight of a saponified ethylene-vinyl acetate copolymer, and (C) 0.1 to 15 % by weight of a compatibilising agent defined in the description, this composition satisfying the relationship: M₂/M₁ = not less than 1.5, in which M₂ and M₁ are the hot melt indices of (B) and (A), respectively, under a load of 2,160 g at 210 DEG C. Use of the composition for the preparation of films which can be employed especially in packaging.

THIS PAGE BLANK (USPTO)

DERWENT-ACC-NO: 1991-232245

DERWENT-WEEK: 199915

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Polyolefin compsn. having good gas barrier
properties - contg. saponified EVA copolymer and polyamide
grafted with unsatd. carboxylic acid derivs.

INVENTOR: ASANO, K; TAKIDA, H ; UEMURA, T

PRIORITY-DATA: 1990JP-0023019 (February 1, 1990) , 1990JP-0293074
(October 29,
1990)

PATENT-FAMILY:

PUB-NO	MAIN-IPC	PUB-DATE	LANGUAGE
EP 440559 A	N/A	August 7, 1991	N/A
JP 2865353 B2	C08L 023/02	March 8, 1999	N/A
CA 2035570 A	N/A	August 2, 1991	N/A
FI 9100465 A	N/A	August 2, 1991	N/A
JP 03227339 A	N/A	October 8, 1991	N/A
US 5278229 A	C08L 029/02	January 11, 1994	N/A

INT-CL (IPC): B29C047/06, B29C055/04 , B32B027/32 , C08L023/02 ,
C08L023/06 , C08L023/12 , C08L023/26 , C08L029/02 , C08L029/04 ,
C08L033/08 , C08L051/06

ABSTRACTED-PUB-NO: EP 440559A

BASIC-ABSTRACT:

Polyolefin compsn. comprises: (a) 50-99.5 wt.% of a polyolefin resin;
(b)
0.4-50 wt.% of a saponified EVA copolymer; and (c) 0.1-15 wt.% of a
graft
polymer obtd. by grafting an ethylenically unsatd. carboxylic acid or
a deriv.
thereof on a polyolefin resin, by reacting the addn. cpd. with a
polyamide
oligomer.

Compsn. satisfies the relationship: M2/M1 = not less than 1.5; M1 =

THIS PAGE BLANK (USPTO)

melt index
of (a) (2160g/210 deg.C); and M2 = melt index of (b) (2160/210 deg.C).

Also claimed are shaped articles obtd. by melt moulding the above compsn. and
laminated structures in which at least one layer comprises the above
compsn.,
the structures and articles being at least mono-axially oriented.

USE/ADVANTAGE - Compsn. has good oxygen impermeability (gas barrier properties), without altering the intrinsic flexibility or elasticity of the polyolefin. Compsn. can be made into articles, adhesives, coatings, etc., and can be moulded into pellets, films, sheets, containers, fibres, rods, pipes, etc. by melt kneading. Laminates can be treated in a variety of ways, e.g.
heat treatment, cooling, calendering, printing, stamping, etc. Films, sheets and containers made from the compsn. can be used for packing foodstuffs and pharmaceutical-, chemical- and agrochemical-prods.

ABSTRACTED-PUB-NO: US 5278229A

EQUIVALENT-ABSTRACTS:

Polyolefin resin compsn. comprises: (A) 50-95 wt.% polyolefin resin; (B) 4-35 wt.% saponified ethylene-vinyl acetate copolymer with an ethylene content of 20-60 mole-% and a degree of saponification of its vinyl acetate component being not less than 95 mole-%; and (C) 1-15 wt.% graft copolymer obtd. by grafting 0.05-10 pts. wt. ethylenically unsatd. carboxylic acid or a deriv. to 100 pts. wt. polyolefin resin to produce an adduct and reacting the adduct with a polyamide having a degree of polymerisation of 200-500, where the reaction ratio of the polyamide to the adduct is 0.05-0.9 mole per mole of carboxyl gp. of the adduct.

The compsn. satisfies the relation M2/M1 is not less than 1.5, where M2 and M1 are the melt flow rates of (B) and (A), respectively, under a load of 2160g at 210 deg.C.

USE/ADVANTAGE - The film, sheet or container obtainable from the compsn. is useful for packaging foodstuffs, pharmaceutical prods., industrial chemicals, agrochemical prods., etc..

THIS PAGE BLANK (USPTO)

Europäisches Patentamt
Eur pean Patent Office
Offic uropéen des brevets

(11) Numéro de publication : **0 440 559 A2**

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : **91400232.4**

(51) Int. Cl.⁵ : **C08L 23/02, C08L 29/04,
B32B 27/32**

(22) Date de dépôt : **31.01.91**

(30) Priorité : **01.02.90 JP 23019/90**

(43) Date de publication de la demande :
07.08.91 Bulletin 91/32

(84) Etats contractants désignés :
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(71) Demandeur : **ATOCHEM
4 & 8, Cours Michelet La Défense 10
F-92800 Puteaux (FR)**

(72) Inventeur : **Asano, Kuniyoshi
12-2, Korigaoka 8-Chome
Hirakata (JP)
Inventeur : Uemura, Tomoyoshi
7-24, Minohara 3-chome
Ibaraki (JP)
Inventeur : Takida, Hiroshi
34-13, Miyanogawara, 5-chome
Takatsuki (JP)**

(54) **Composition de polyoléfine et son utilisation.**

(57) L'invention concerne une composition à propriété barrière aux gaz comprenant :
(A) 50 à 99,5 % en poids d'une résine de polyoléfine,
(B) 0,4 à 50 % en poids d'un copolymère éthylène-acétate de vinyle saponifié, et
(C) 0,1 à 15 % en poids d'un agent compatibilisant défini dans la description, cette composition satisfaisant à la relation : $M_2/M_1 = \text{pas moins de } 1,5$, dans laquelle M_2 et M_1 sont respectivement les indices de fluidité à chaud de (B) et (A) sous une charge de 2 160 g à 210°C.

Utilisation de la composition pour la préparation de films utilisables notamment dans l'emballage.

EP 0 440 559 A2

COMPOSITION DE POLYOLEFINE ET SON UTILISATION

La présente invention fournit une composition de résine de polyoléfine assurant une excellente propriété d'imperméabilité à l'oxygène.

5 Art antérieur

Les résines de polyoléfine, comme le polyéthylène et le polypropylène, ont une excellente moulabilité et donnent des articles moulés (ou moulages) excellents quant à leur aspect, leur résistance à l'humidité, leurs propriétés mécaniques, etc., et trouvent, en tant que telles, une application dans de nombreuses utilisations 10 comme films, feuilles, matériaux pour récipients, fibres textiles, etc.

Problèmes à résoudre

Cependant, les résines de polyoléfine ont plutôt une mauvaise propriété d'imperméabilité aux gaz, en particulier d'imperméabilité à l'oxygène, et il est donc pratiquement impossible de les utiliser telles quelles comme 15 matériaux d'emballage pour les denrées alimentaires facilement sujettes à une oxydation et à une dénaturation oxydante.

Par conséquent, si on pouvait conférer auxdites résines une propriété d'imperméabilité à l'oxygène avec un ou plusieurs autres moyens, elles auraient un intérêt utilitaire encore plus grand.

20 Une mesure prise pour cela consiste à stratifier une couche d'une autre résine ayant une bonne propriété d'imperméabilité à l'oxygène sur une couche de résine de polyoléfine ou à mélanger cette autre résine avec une résine de polyoléfine. Cependant, les deux procédés ont chacun des avantages et des inconvénients, les propriétés physiques qu'ils permettent d'obtenir n'étant pas toujours satisfaisantes.

25 Les inventeurs de la présente invention ont aussi tenté d'améliorer la propriété d'imperméabilité à l'oxygène des résines de polyoléfines en les mélangeant avec un copolymère éthylène-acétate de vinyle saponifié qui a une propriété d'imperméabilité à l'oxygène particulièrement bonne. Dans certains cas, toutefois, d'excellentes propriétés physiques des résines de polyoléfine comme l'étrierabilité et la flexibilité sont sacrifiées. On n'a encore jamais obtenu jusqu'à maintenant des résultats entièrement satisfaisants.

30 Moyens de résoudre les problèmes

Les recherches intensives entreprises par les inventeurs de la présente invention ont révélé que les buts précités sont atteints ou, autrement dit, que l'on peut obtenir la propriété d'imperméabilité à l'oxygène que l'on souhaite, sans altérer en aucune manière l'étrierabilité ou la flexibilité intrinsèque des polyoléfines, grâce à une 35 composition de résine de polyoléfine qui comprend

- (A) 50 à 99,5% en poids d'une résine de polyoléfine,
- (B) 0,4 à 50% en poids d'un copolymère éthylène-acétate de vinyle saponifié, et
- (C) 0,1 à 15% en poids d'un polymère greffé obtenu par greffage d'un acide carboxylique à insaturation éthylénique ou d'un de ses dérivés sur une résine de polyoléfine et par réaction du composé d'addition 40 avec un oligomère de polyamide, cette composition satisfaisant à la relation : $M_2/M_1 = \text{pas moins de } 1,5$, dans laquelle M_2 et M_1 sont respectivement les indices de fluidité à chaud de (B) et (A), sous une charge de 2160 g à 210°C. La présente invention est basée sur la découverte ci-dessus.

La présente invention va être décrite plus en détail dans la suite, l'accent étant mis sur la composition ci-dessus et en particulier sur ses utilisations.

45 En ce qui concerne la résine de polyoléfine (A), on peut citer un polyéthylène linéaire basse densité, les polyéthylènes basse densité et haute densité, les ionomères, un copolymère éthylène-propylène, un polypropylène cristallin, un polybutène, un copolymère éthylène-acétate de vinyle, les copolymères éthylène-ester acrylate, etc. Ceux qui présentent une importance pratique particulière sont un polyéthylène linéaire basse densité, un polyéthylène basse densité ou haute densité et un polypropylène isotactique.

50 En ce qui concerne le composant (A) ci-dessus, son indice de fluidité à chaud (désigné dans la suite en abrégé par M_1), déterminé à 210°C et sous une charge de 2160 g, selon JIS R-6760, est dans l'intervalle de 0,05 à 100 g/10 minutes, et de préférence de 0,5 à 20 g/10 minutes.

Le copolymère éthylène-acétate de vinyle saponifié (B) à employer selon la présente invention est un copolymère ayant une teneur en éthylène de 20 à 60% en moles, de préférence de 25 à 55% en moles, avec un degré de saponification de son composant acétate de vinyle pas inférieur à 95% en moles.

55 Avec une teneur en éthylène inférieure à 20% en moles, la propriété d'imperméabilité à l'oxygène dans

des conditions de forte humidité n'est pas aussi élevée qu'on le souhaiterait, tandis qu'une teneur en éthylène dépassant 60% en moles conduit à des baisses de la propriété d'imperméabilité à l'oxygène , de l'aptitude à l'impression et d'autres propriétés physiques. Lorsque le degré de saponification ou d'hydrolyse est inférieur à 95% en moles, la propriété d'imperméabilité à l'oxygène et la résistance à l'humidité sont sacrifiées.

Il est entendu que ce copolymère saponifié peut contenir de faibles proportions d'autres ingrédients comonomères, y compris des α -oléfines comme le propylène, l'isobutène, l' α -octène, l' α -dodécène, l' α -octadécène, etc., des acides carboxyliques insaturés ou leurs sels, des esters alkyliques partiels, des esters alkyliques complets, des nitriles, des amides et des anhydrides desdits acides, et des acides sulfoniques insaturés ou leurs sels.

En ce qui concerne (B), son indice de fluidité à chaud (IFC, désigné dans la suite par M_2), déterminé à 210°C et sous une charge de 2160 g, selon JIS K-6760, est dans l'intervalle de 0,1 à 150 g/10 minutes et de préférence de 5 à 100 g/10 minutes.

Il est essentiel, dans la préparation de la composition de l'invention, que (A) et (B) soient utilisés dans un rapport M_2/M_1 d'au moins 1,5, de préférence de 2 à 100 et, pour des résultats encore meilleurs, de 3 à 50.

Avec un rapport M_2/M_1 inférieur à 1,5, (B) n'est pas dispersé dans (A), le composant matrice, d'une façon lamellaire, mais dispersé sous forme de particules globulaires ou en forme de tuyère, ce qui fait que l'on n'atteint pas entièrement l'effet recherché.

Pour améliorer la compatibilité entre (A) et (B), l'incorporation de (C) est essentielle à la mise en oeuvre de l'invention.

Le composant (C) est un polymère greffé que l'on obtient en greffant un acide carboxylique à insaturation éthylénique ou un de ses dérivés à une résine de polyoléfine et en faisant réagir cet acide carboxylique ou dérivé avec un oligomère de polyamide.

On peut produire ce polymère greffé en dissolvant ou en mettant en suspension une résine de polyoléfine dans un solvant approprié ou en le mettant à l'état fondu, en activant la chaîne de résine de polyoléfine avec un initiateur de type peroxyde ou diazoïque, en y greffant un acide carboxylique à insaturation éthylénique ou un de ses dérivés pour obtenir un polymère et en mélangeant ce polymère avec un oligomère de polyamide à l'état fondu.

Pour cette réaction, on emploie une machine de Brabender, un malaxeur de Buss, une extrudeuse monovis, une extrudeuse bivis de Werner et Pfleiderer ou analogue.

Le degré de polymérisation de la résine de polyoléfine à employer est d'environ 350 à 45 000, et de préférence d'environ 500 à 10 000. L'indice de fluidité à chaud (230°C ; charge 2160 g ; même chose dans la suite) est d'environ 0,1 à 50 g/10 minutes pour toutes les utilisations pratiques.

Le rapport réactionnel de la résine de polyoléfine à l'acide carboxylique à insaturation éthylénique ou son dérivé est de 100/0,05 à 100/10, et de préférence de 100/0,5 à 100/3, exprimé sur une base pondérale.

Si le rapport est de 100/moins de 0,05, l'effet améliorant sur la compatibilité n'est pas suffisant. D'autre part, si le rapport est de 100/plus de 10, la viscosité est trop élevée pour un moulage pratique.

Le degré de polymérisation dudit oligomère de polyamide est de 5 à 80, de préférence d'environ 15 à 55, pour toutes les utilisations pratiques, et le rapport réactionnel est de 0,01 à 1 mole, et de préférence de 0,05 à 0,9 mole, par mole du groupe carboxyle.

Comme exemples de la résine de polyoléfine, on peut citer un polyéthylène linéaire basse densité, un polyéthylène basse densité ou haute densité, des ionomères, un copolymère éthylène-propylène, un polypropylène cristallin, un polybutène, un copolymère éthylène-acétate de vinyle, un copolymère éthylène-ester acrylique, etc. Ceux qui sont importants pour les applications pratiques sont un polyéthylène linéaire basse densité, un polyéthylène basse densité, un polyéthylène moyenne densité, un polyéthylène haute densité, un copolymère éthylène-propylène, un copolymère éthylène-acétate de vinyle et un polypropylène cristallin.

L'acide carboxylique à insaturation éthylénique ou son dérivé à greffer à ce polymère principal englobe, entre autres, les acides carboxyliques insaturés comme l'acide acrylique, l'acide méthacrylique, l'acide crotonique, l'acide maléique, l'acide fumarique et l'acide itaconique, et les anhydrides ou semi-esters correspondants.

L'oligomère de polyamide peut être préparé par des procédés connus comme la polymérisation d'addition d'un lactame, la polycondensation d'un acide aminocarboxylique, la polycondensation d'une diamine avec un acide-dicarboxylique ,etc.

Des exemples des produits de départ pour ledit oligomère de polyamide sont divers lactames comme l' ϵ -caprolactame, l'énantholactame, le caprylolactame, le laurolactame, l' α -pyrrolidone, l' α -pipéridone, etc., les ω -aminoacides comme l'acide 6-aminocaproïque , l'acide 7-aminoheptanoïque, l'acide 9-aminononanoïque, l'acide 11-aminoundécanoïque, tc., les diacides comme l'acide adipique, l'acide glutarique, l'acide pimellique, l'acide subérique , l'acide azélaïque, l'acide sébacique, l'acide undécadioïque, l'acide dodécadioïque, l'acide hexadécadioïque, l'acide hexadécènedioïque, l'acide éicosadioïque, l'acide éicosadiènedioïque, l'acide digly-

colique, l'acide 2,2,4-triméthyladipique, l'acide xylylénedicarboxylique, l'acide 1,4-cyclohexanedicarboxylique, l'acide téraphthalique, l'acide isophthalique, etc., et les diamines comme l'hexaméthylènediamine, la tétraméthylènediamine, la nonaméthylènediamine, l'undécaméthylènediamine, la dodécaméthylènediamine, la 2,2,4- (ou 2,4,4-)triméthylhexaméthylènediamine, le bis(4,4'-aminocyclohexyl)méthane, la métaxylylènediamine, etc. Pour la régulation de la masse moléculaire, on peut aussi utiliser une monoamine comme la laurylamine ou l'oléylamine en une quantité appropriée.

Dans la composition de la présente invention, la proportion de (A) doit être de 50 à 99,5% en poids et de préférence de 60 à 95% en poids, celle de (B) doit être de 0,4 à 50% en poids et de préférence de 4,5 à 35% en poids, et celle de (C) doit être de 0,1 à 15% en poids et de préférence de 0,5 à 10% en poids.

Lorsque la proportion de (A) est inférieure à 50% en poids ou que celle de (B) est supérieure à 50% en poids, cela a une incidence défavorable sur la moulabilité, en particulier sur l'étirabilité. Inversement, lorsque la proportion de (A) est supérieure à 99,5% en poids ou que celle de (B) est inférieure à 0,4% en poids, l'effet d'amélioration de la propriété d'imperméabilité à l'oxygène est insuffisant.

Lorsque la proportion de (C) est inférieure à 0,1% en poids, la compatibilité entre (A) et (B) est faible et l'effet d'amélioration de la propriété d'imperméabilité à l'oxygène est également mauvais. Inverser, lorsque la proportion de (C) dépasse 15% en poids, cela a une incidence défavorable sur la moulabilité en grande série.

Alors que la composition selon la présente invention est utile pour une variété d'applications comme des articles façonnés, des adhésifs, des revêtements, etc., elle est particulièrement utile dans des applications de moulage et peut être moulée en pastilles, films, feuilles, récipients, fibres, barreaux, tuyaux et autres articles façonnés, par la technique du pétrissage en fusion. Ces produits peuvent être broyés (pour être régénérés) ou mis en pastilles pour un nouveau moulage en fusion.

Pour le moulage en fusion de la composition, le moulage par extrusion (par exemple l'extrusion en filière en T, le moulage par gonflement, le moulage par soufflage, le filage en fusion ou l'extrusion-profilage) et le moulage par injection sont principalement employés. La température de moulage en fusion est choisie dans de nombreux cas dans l'intervalle de 160 à 290°C. En plus des techniques ci-dessus, on peut aussi employer des techniques de moulage à deux couleurs et de moulage par injection-soufflage et on peut fabriquer des articles façonnés ayant de bonnes tolérances dimensionnelles.

Dans le procédé de moulage, il est bien sûr possible d'utiliser deux ou plus de deux copolymères éthylène-acétate de vinyle saponifiés de teneurs en éthylène et/ou de degré de saponification différents, en combinaison. Dans le moulage en fusion, il est aussi possible d'incorporer des quantités convenables d'additifs comme un plastifiant (par exemple un polyalcool), un stabilisant, un tensioactif, un agent de réticulation (par exemple un composé époxydé, un sel de métal polyvalent, un polyacide minéral ou organique ou un de ses sels), une charge, un colorant, une fibre de renforcement (par exemple une fibre de verre, une fibre de carbone, etc.), etc. Il est aussi possible d'incorporer une autre résine thermoplastique dans une proportion convenable. Une telle résine thermoplastique englobe, entre autres, diverses polyoléfines autres que (A), des polyoléfines modifiées que l'on obtient par modification par greffage de ces polyoléfines avec des acides carboxyliques insaturés ou des dérivés de ceux-ci, des polyamides, du poly(chlorure de vinyle), du poly(chlorure de vinylidène), des polyesters, du polystyrène, du polyacrylonitrile, des polyuréthanes, des polyacétals, des polycarbonates, une résine de poly(alcool vinylique) moulable à chaud, etc.

Comme on l'a indiqué ci-dessus, la composition de la présente invention n'est pas seulement utilisée pour la fabrication d'un article à une seule couche essentiellement composé de la composition, mais est aussi souvent utilisée comme article stratifié contenant au moins une couche de la composition. La couche de la composition de la présente invention présente une affinité de liaison élevée caractéristique pour le matériau de la couche à stratifier avec elle.

Dans la fabrication d'un produit stratifié selon l'invention, dans lequel un matériau différent est stratifié sur un côté ou sur les deux côtés d'une couche de la composition de l'invention, on peut, par exemple, employer les procédés de stratification suivants. On peut ainsi mentionner le procédé qui comprend l'extrusion en fusion d'une résine thermoplastique sur un film ou une feuille de la composition de l'invention, le procédé qui comprend l'extrusion en fusion de la composition de l'invention sur un substrat fait d'une résine thermoplastique ou d'un autre matériau quelconque, le procédé qui comprend la co-extrusion de la composition de l'invention et d'une résine thermoplastique différente, et le procédé dans lequel un film ou une feuille de la composition de l'invention est stratifié sur un film ou une feuille d'un matériau différent avec un adhésif connu tel qu'un composé d'organotitanate, un composé isocyanate ou un composé polyester.

Comme résines de combinaison pour la co-extrusion, on peut mentionner un polyéthylène linéaire basse densité, un polyéthylène basse densité, un polyéthylène moyenne densité, un polyéthylène haute densité, un copolymère éthylène-acétate de vinyle, des ionomères, des copolymères éthylène-propylène, des copolymères éthylène-ester acrylique, un polypropylène, des copolymères propylène- α -oléfine (α -oléfine en C₄-C₂₀), des homo- et copolymères d'oléfines comme le polybutène, le polypentène, etc., et des résines de polyoléfine au

5 sans larg qu l'on obti nt n modifiant ces homopolymères ou copolymères d'oléfines par greffage d'un acid carboxylique insaturé ou d'un ester de celui-ci, des polyesters, des polyamides, des polyamides copolymérisés, un poly(chlorure de vinyle), un poly(chlorure de vinylidène), des résines acryliques, des résines styréniques, une résine d'ester vinylique, des élastomères de polyester, des élastomères de polyuréthane, un polyéthylène chloré, un polypropylène chloré, etc. Un copolymère éthylène-acétate de vinyle saponifié peut aussi être co-extrudé.

10 Lorsqu'on prépare un film ou une feuille ou un article façonné analogue à partir de la composition de l'invention, puis qu'on le revêt par extrusion d'un matériau différent ou qu'on le stratifie sur un film ou une feuille d'un matériau différent avec un adhésif, ledit matériau différent n'est pas limité auxdites résines thermoplastiques, mais peut être pratiquement n'importe quel autre matériau (comme le papier, une feuille métallique, un film ou une feuille de matière plastique orienté uniaxiallement ou biaxiallement, un tissu tissé, un tissu non tissé, un filament métallique, du bois, etc.).

15 La structure stratifiée dudit produit stratifié est une question de choix. Ainsi, une couche de la composition de l'invention étant appelée A (A₁, A₂,...), et une couche d'un matériau différent, par exemple une résine thermoplastique, étant appelée B (B₁, B₂,...), on peut employer pour un film, une feuille ou une bouteille, par exemple, non seulement une structure à deux couches de A/B, mais aussi une variété d'autres combinaisons comme B/A/B, A/B/A, A₁/A₂/B, A/B₁/B₂, B/A/B, B₂/B₁/A/B₁/B₂, etc. Dans le cas d'un filament, on peut adopter un type bimétal, âme (A) - gaine (B), âme (B) - gaine (A), âmegaine excentrées et d'autres combinaisons de A et de B.

20 Pour la co-extrusion, on peut mélanger A à B ou vice versa ou bien, pour améliorer l'adhérence entre les couches, on peut incorporer une résine convenable au moins dans l'un de A et B.

25 Le produit stratifié peut être éventuellement configuré. Ainsi, on peut citer un film, une feuille, un ruban, une bouteille, un tuyau, un filament ou un extrudat à section droite modifiée.

30 Le produit stratifié peut, éventuellement, être soumis ensuite à une variété de traitements, comme un traitement thermique, un refroidissement, un laminage, une impression, une stratification à sec, un revêtement en solution ou en fusion, la production de sacs, l'emboutissage profond, la fabrication de boîtes, la fabrication de tubes, un dédoublement, etc.

35 Les articles façonnés et les produits stratifiés précités, en particulier sous forme de films ou de feuilles, peuvent avoir des propriétés physiques améliorées par étirage ou traction, le cas échéant.

40 Dans la présente invention, la composition est moulée en fusion en un matériau en film. L'épaisseur de ce film est pratiquement une question de choix et peut s'échelonner de quelques microns à plusieurs centaines de microns. Le terme "film" utilisé dans cette description signifie un film au sens large du terme, incluant ainsi une feuille, un ruban, un tube, un récipient, etc.

45 Le film obtenu de la manière ci-dessus est conditionné pour l'absorption de l'humidité ou le séchage, éventuellement, puis étiré.

50 Cet étirage peut être uniaxial ou biaxial. Les effets de l'invention sont mieux matérialisés lorsque le taux d'étirage ou traction est aussi élevé que possible. Dans le cas d'un étirage uniaxial, le taux d'étirage est de préférence d'au moins 1,5 fois et, pour de meilleurs résultats encore, non inférieur à 2 fois. Dans le cas d'un étirage biaxial, le taux d'étirage n'est de préférence pas inférieur à 1,5 fois, mieux encore pas inférieur à 2 fois et, pour des résultats encore meilleurs, pas inférieur à 4 fois, sur une base surfacique.

55 Quant à la technique d'étirage que l'on peut employer, on peut citer les procédés d'étirage au cylindre, d'étirage à la rame, d'étirage tubulaire et d'étirage-soufflage, ainsi que l'emboutissage profond à forte traction ou le moulage sous vide. Dans le cas d'un tirage biaxial, on peut adopter ou bien l'étirage biaxial simultané, ou bien l'étirage biaxial en deux temps.

60 La température d'étirage est choisie dans l'intervalle d'environ 40 à 150°C.

65 A la fin de l'étirage, le produit est durci thermiquement. Ce durcissement thermique peut être réalisé par la technique bien connue. Ainsi, le film étiré étant maintenu dans un état raidi, il est traité thermiquement à une température de 50 à 160°C, de préférence de 80 à 160°C, pendant environ 2 à 600 secondes.

70 Le film orienté résultant peut être soumis à une variété de traitements tels que refroidissement, laminage, impression, stratification à sec, revêtement en solution ou en fusion, fabrication de sacs, emboutissage profond, fabrication de boîtes, fabrication de tubes, dédoublement, etc.

75 Le film, la feuille ou le récipient que l'on obtient à partir de la composition de la présente invention est utilisé pour emballer les denrées alimentaires, les produits pharmaceutiques, les produits chimiques industriels, les produits agrochimiques, etc.

Effets

La composition selon l'invention, qui comprend (A), (B) et (C), peut avoir une propriété d'imperméabilité à

l'oxygène nettement améliorée, tout en conservant les excellentes caractéristiques de moulage et les excellentes propriétés physiques (étirabilité, flexibilité, etc.) qui sont inhérents aux polyoléfines.

5

Exemples

Les exemples suivants constituent une autre illustration de la composition de la présente invention. Dans la description qui suit, toutes les parties et tous les % sont en poids, sauf indication contraire.

10 Préparation des échantillons

15

Résine de polyoléfine

20

Echantillon	IFC (g/10 minutes)	Point de fusion (°C)
P-1 Polypropylène	3	168
P-2 Copolymère éthylène-propylène (teneur en éthylène 4%)	3	160
P-3 Copolymère éthylène-propylène (teneur en éthylène 7%)	5	150
P-4 Polypropylène	15	168
P-5 Polyéthylène haute densité	10	125

25

Copolymère éthylène-acétate de vinyle saponifié

30

Echantillon	E-1	E-2	E-3	E-4	E-5
Teneur en éthylène (% en moles)	30	34	40	45	30
Degré de saponification du composant acétate de vinyle (% en moles)	99,7	99,4	99,2	99,7	99,7
Indice de fluidité à chaud (g/10 min)	25	10	48	60	3

40

50

55

5

10

15

20

25

30

35

40

45

50

55

polymère grafted

Echantillon	G-1	G-2	G-3	G-4
Polymer principal (a)	Copolymeré séquéncé éthylène-propylène (teneur en éthylène 12%)	Copolymeré statis- tique éthylène- propylène (teneur en éthylène 3%)	Copolymeré éthylène- acétale de vinyle (teneur en acétate de vinyle 12%)	Copolymeré éthylène- propylène (teneur en éthylène 12%)
IFC (g/10 min)	(4,2)	(3,6)	(10,5)	(27)
Acide carboxylique insaturé (b)	Anhydride maléique	Anhydride maléique	Anhydride maléique	Anhydride maléique
Oligomère polyamide (c)	Oligomère ϵ - caprolactame (P : 24)	Oligomère ϵ - caprolactame (P : 50)	Oligomère hexamé- thylenediamine/ acide adipique (P : 31)	Oligomère ϵ - caprolactame (P : 25)
(a)/(b) (rapport pondéral)	100/2,1	100/2,5	100/1,0	100/2,1
Rapport de compo- sition (c)/(b) (rapport molaire)	1/2	2/2,5	1,4/1,8	0,9/2,1

Exemples 1 à 10 et exemples de référence 1 à 7

- 5 On mélange dans un malaxeur Henschel des pastilles de la composition de (A), (B) et (C) et on les introduit dans une machine d'extrusion à filière en T pour le pétrissage en fusion et l'extrusion de la filière en T, pour produire un film de 30 μ d'épaisseur. (Dans l'évaluation de l'étirabilité, on utilise un film de 180 μ d'épaisseur.)
Les conditions de moulage par extrusion sont les suivantes.
- 10 Extrudeuse : extrudeuse de diamètre 40 mm
Vis : type vis sans fin, L/D = 28, taux de compression = 3
Température d'extrusion ($^{\circ}$ C) :
 $C_1/C_2/C_3/C_4/H/D_1/D_2 = 170/200/220/220/210/210$
Vitesse de rotation de la vis : 30 tours/min ou 85 tours/min
- 15 Les résultats obtenus sur le film sont indiqués sur le tableau 1.
Dans ce tableau, ainsi que dans le tableau 2, les signes \odot , 0 , Δ et X signifient respectivement très bon, bon, moyen et mauvais.

20

25

30

35

40

45

50

55

5

Tableau 1

	Matériaux Type M ₂ /M ₁	Rapport de Propriétés physiques			
		mélange E/P/G	Permeabilité à l'oxygène (cc .20u/m ² .jour.atm)	Étira-	Resistance au choc (kg.cm/mm)
				bilité 25°C x 75% HR	
	P-1				
10	1 E-1 8,3	70/20/10	220	◎	520
	G-2				
15	2 " "	60/30/10	28	◎	440
	3 " "	90/8/2	980	◎	600
	P-2				
20	4 E-2 3,3	80/15/5	700	◎	535
	G-2				
	P-2				
25	5 E-3 16	70/25/5	340	◎	555
	G-2				
	P-3				
Exemple	6 E-1 5	95/4/1	980	◎	680
	G-1				
	P-4				
30	7 E-3 3,2	75/20/5	550	◎	510
	G-1				
	P-5				
35	8 E-4 6	75/15/10	500	◎	475
	G-3				
	P-5				
	9 E-4 "	75/15/10	620	◎	635
	G-4				
	10 " "	90/5/5	830	◎	510
35	1 P-1 8,3	78/22/0	700	x	210
	E-1				
	P-1				
Exemple	2 E-5 1	70/20/10	1900	○	340
	G-1				
40	3 E-1 8,3	99,7/0,3/0,1	2800	○	700
	G-1				
	4 " "	35/60/5	35	x	160
	5 " "	55/15/30	500	△	380
				(substance étrangère trouvée)	
45	6 " "	98/22/0.05	2200	x	320
	7 P-1 -	--	3200	◎	720

50

(Détermination des propriétés physiques)

Perméabilité à l'oxygène : déterminée avec un

MOCON Oxtran 10/50.

Étirabilité : évaluée en termes d'étrage non uniforme dans un étirage biaxial simultané (5 x 5 fois) à 90°C.

Résistance au choc : déterminée dans un appareil de mesure des chocs pour films, diamètre de la

tête d'impact 1 pouce, 20°C x 65% HR.

5 Exemples 11 à 15

Couche intérieure (I) : Polyéthylène basse densité

(IFC : 16 g/10 min, 190°C/2160 g)

Couches adhésives (II) et (IV) : Copolymère éthylène

10 modifié par l'anhydride maléique-acétate de vinyle
(IFC : 2 g/10 min, 190°C/2160 g)

Couche intermédiaire (III) : Composition comprenant
(A), (B) et (C) selon l'invention

Couche extérieure (V) : Polyéthylène basse densité
(IFC : 16 g/10 min, 190°C/2160 g).

En utilisant les matériaux résiniques ci-dessus, on fabrique, dans les conditions suivantes, un stratifié à cinq couches ayant pour construction et épaisseurs de films (μ) (I)/(II)/(III)/(IV)/(V) = 20/5/60/5/20.

20 Conditions de moulage

Extrudeuses

Extrudeuse de diamètre 60 mm (pour la couche intérieure)

Extrudeuse de diamètre 40 mm (pour la couche intermédiaire)

25 Extrudeuse de diamètre 40 mm (pour les couches adhésives)
Extrudeuse de diamètre 60 mm (pour la couche extérieure)

Vis : toutes de type vis sans fin, L/D = 30 ; taux de compression 2,8

Vitesse de rotation de la vis :

50 tours/min pour la couche intérieure

30 40 tours/min pour la couche intermédiaire
40 tours/min pour les couches adhésives
50 tours/min pour la couche extérieure

Filière :

35 Filière en T avec adaptateur de combinaison de 5 couches
Largeur de la filière : 300 mm

Température d'extrusion :

40 Extrudeuses pour couches intérieure, extérieure et adhésives
 $C_1 = 170^\circ C$ $C_2 = 220^\circ C$

$C_3 = 210^\circ C$ $C_4 = 210^\circ C$

Extrudeuse pour couche intermédiaire

45 $C_1 = 170^\circ C$ $C_2 = 200^\circ C$
 $C_3 = 210^\circ C$ $C_4 = 210^\circ C$
Adaptateur de combinaison 210°C

Filière en T 210°C

Les résultats sont présentés sur le tableau 2.

50

55

5

10

15

20

25

30

40

45

50

55

Tableau 2

Matériau	Rapport de mélange P/E/G	Propriétés physiques			
		Permeabilité à l'oxygène (cc/m ² , jour, atm)	Etira- bilité à 25°C x 75% IIR	Permeabilité à l'oxygène après essai de fatigue en flexion	Adhérence (cc/m ² , jour, atm)
P-5	E-4 6 G-3	90/5/5	900	⑥	1020
12	E-4 6 G-3	60/20/10	220	⑤	Inséparable
Exemple	E-3 9,6 G-1	60/35/5	240	④	1300
P-3	E-1 8,3 G-2	80/15/5	100	④	2950
14	E-1 8,3 G-2	80/15/5	100	④	800
P-5	E-1 2,5 G-4	65/25/10	110	⑤	150
15	E-1 2,5 G-4	65/25/10	110	⑤	2800

Adhérence : la résistance au décollement en V entre (II) et (III) a été mesurée (vitesse de traction 300 mm/min, 20°C x 65% IIR, 15 mm de largeur)

Permeabilité à l'oxygène : Déterminée avec un MOCON Oxtran 10/50

Etirabilité : Évaluée en termes d'étrage non uniforme dans un étirage biaxial simultané (5 x 5 fois) à 90°C

Résistance à la fatigue en flexion : Évaluée en termes de perméabilité à l'oxygène (25°C, 75% IIR) après 1 000 cycles de flexion sur un appareil de mesure Gelboflex (torsion de 400°, coup linéaire de 3,25 pouces)

5 Revendications

1. Composition de polyoléfine comprenant

(A) 50 à 99,5% en poids d'une résine de polyoléfine,
(B) 0,4 à 50% en poids d'un copolymère éthylène-acétate de vinyle saponifié, et

10 (C) 0,1 à 15% en poids d'un polymère greffé obtenu par greffage d'un acide carboxylique à insaturation thylénique ou d'un de ses dérivés sur une résine de polyoléfine et par réaction du composé d'addition avec un oligomère de polyamide, cette composition satisfaisant à la relation : $M_2/M_1 = \text{pas moins de } 1,5$, dans laquelle M_2 et M_1 sont respectivement les indices de fluidité à chaud de (B) et (A), sous une charge de 2160 g à 210°C.

15

2. Article façonné obtenu par moulage en fusion de la composition selon la revendication 1.

3. Structure stratifiée dont moins une couche est constituée d'une composition selon la revendication 1.

20 4. Article façonné selon la revendication 2 ou structure stratifiée selon la revendication 3, qui est au moins orienté uniaxiallement.

25

30

35

40

45

50

55

Europäisches Patentamt
Europatent Office
Office européen des brevets

(11) Numéro de publication : **0 440 559 A3**

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : **91400232.4**

(51) Int. Cl.⁵ : **C08L 23/02, C08L 29/04+,
B32B 27/32**

(22) Date de dépôt : **31.01.91**

(30) Priorité : **01.02.90 JP 23019/90**

(72) Inventeur : **Asano, Kuniyoshi
12-2, Korigaoka 8-Chome
Hirakata (JP)**
Inventeur : **Uemura, Tomoyoshi
7-24, Minohara 3-chome
Ibaraki (JP)**
Inventeur : **Takida, Hiroshi
34-13, Miyanogawara, 5-chome
Takatsuki (JP)**

(43) Date de publication de la demande :
07.08.91 Bulletin 91/32

(84) Etats contractants désignés :
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(88) Date de publication différée de rapport de recherche : **04.12.91 Bulletin 91/49**

(71) Demandeur : **ATOCHEM
4 & 8, Cours Michelet La Défense 10
F-92800 Puteaux (FR)**

(54) **Composition de polyoléfine et son utilisation.**

(57) L'invention concerne une composition à propriété barrière aux gaz comprenant :

(A) 50 à 99,5 % en poids d'une résine de polyoléfine,

(B) 0,4 à 50 % en poids d'un copolymère éthylène-acétate de vinyle saponifié, et

(C) 0,1 à 15 % en poids d'un agent compatibilisant défini dans la description, cette composition satisfaisant à la relation : $M_2/M_1 = \text{pas moins de } 1,5$, dans laquelle M_2 et M_1 sont respectivement les indices de fluidité à chaud de (B) et (A) sous une charge de 2 160 g à 210°C.

Utilisation de la composition pour la préparation de films utilisables notamment dans l'emballage.

EP 0 440 559 A3

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

Número de la demanda

EP 91 40 0232

DOCUMENTS CONSIDERES COMME PERTINENTS

DOCUMENTS CONSIDERES COMME PERTINENTS			
CATEGORIE	Citation du document avec indication, au cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Im. CL5)
Y	US-A-3 975 463 (TOYO SEIKAN KAISHA LIMITED) * colonne 2, ligne 36 - ligne 49; revendications * * colonne 1, ligne 48 - ligne 64 *	1-4	C08L23/02 C08L29/04+ B32B27/32
Y	EP-A-342 066 (ATOCHIM) * revendications * ---	1-4	
A	WO-A-8 908 548 (DU PONT DE NEMOURS AND COMPANY) * revendications * -----	1-4	
			DOMAINES TECHNIQUES RECHERCHES (Im. CL5)
			C08L
Le présent rapport a été établi pour toutes les revendications			
Lieu de la recherche	Date d'achèvement de la recherche	Examinateur	
LA HAYE	10 OCTOBRE 1991	CLEMENTE GARCIA R.	
CATEGORIE DES DOCUMENTS CITES			
X : particulièrement pertinents à lui seul	T : théorie ou principe à la base de l'invention		
Y : particulièrement pertinents en combinaison avec un autre document de la même catégorie	E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date		
A : arrête-pièce technologique	D : cité dans la demande		
O : divulgation non-torticte	L : cité pour d'autres raisons		
P : document intercalaire	M : membre de la même famille, document correspondant		