Difference-in-Differences Methods

Teppei Yamamoto

Keio University

Introduction to Causal Inference Spring 2016 Introduction: A Motivating Example

2 Identification

3 Estimation and Inference

Diagnostics and Extensions

Example: Minimum Wage and Employment

- Do higher minimum wages decrease employment?
- Card and Krueger (1994) consider impact of New Jersey's 1992 minimum wage increase from \$4.25 to \$5.05 per hour
- Compare employment in 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise
- Survey data on wages and employment from two waves:
 - Wave 1: March 1992, one month before the minimum wage increase
 - Wave 2: December 1992, eight month after increase

Location of Restaurants

Wages Before Rise in Minimum Wage

Wages After Rise in Minimum Wage

1 Introduction: A Motivating Example

Identification

3 Estimation and Inference

Diagnostics and Extensions

Setup: Groups, Periods and Treatments

Data structure:

- Two waves of randomly sampled cross-sectional observations
- Either panel or repeated cross sections

Cross-sectional units: $i \in \{1, ..., N\}$

Time periods: $t \in \{0 \text{ (pre-treatment)}, 1 \text{ (post-treatment)}\}\$

Group indicator: $G_i = \begin{cases} 1 & \text{(treatment group)} \\ 0 & \text{(control group)} \end{cases}$

Treatment indicator: $Z_{it} \in \{0, 1\}$

Units in the treatment group receive treatment in t = 1:

	Time Period			
Group	t = 0 $t = 1$			
$G_i = 1$	$Z_{i0} = 0$ $Z_{i1} = 1$			
(treatment group)	(untreated) (treated)			
$G_i = 0$	$Z_{i0} = 0$	$Z_{i0} = 0$		
(control group)	(untreated)	(untreated)		

Setup: Potential Outcomes

Potential outcomes $Y_{it}(z)$:

- $Y_{it}(0)$: potential outcome for unit *i* in period *t* when not treated
- $Y_{it}(1)$: potential outcome for unit *i* in period *t* when treated

Setup: Potential Outcomes

Potential outcomes $Y_{it}(z)$:

- $Y_{it}(0)$: potential outcome for unit *i* in period *t* when not treated
- $Y_{it}(1)$: potential outcome for unit *i* in period *t* when treated

Causal effect for unit i at time t is

$$\tau_{it} = Y_{it}(1) - Y_{it}(0)$$

Setup: Potential Outcomes

Potential outcomes $Y_{it}(z)$:

- $Y_{it}(0)$: potential outcome for unit *i* in period *t* when not treated
- $Y_{it}(1)$: potential outcome for unit *i* in period *t* when treated

Causal effect for unit i at time t is

$$\tau_{it} = Y_{it}(1) - Y_{it}(0)$$

Observed outcomes Y_{it} are realized as

$$Y_{it} = Y_{it}(0)(1 - Z_{it}) + Y_{it}(1)Z_{it}$$

Because $Z_{i1} = G_i$ in the post-treatment period, we can also write

$$Y_{i1} = Y_{i1}(0)(1 - G_i) + Y_{i1}(1)G_i$$

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Problem: Missing potential outcome:

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Problem: Missing potential outcome: $\mathbb{E}[Y_{i1}(0)|G_i=1]$, i.e. what is the average post-period outcome for the treated group in the absence of the treatment?

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Control Strategy: Before vs. After

- Use $\mathbb{E}[Y_{i1}|G_i=1] \mathbb{E}[Y_{i0}|G_i=1]$ for τ_{ATT}
- Assumes

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Control Strategy: Before vs. After

- Use $\mathbb{E}[Y_{i1}|G_i=1] \mathbb{E}[Y_{i0}|G_i=1]$ for τ_{ATT}
- Assumes $\mathbb{E}[Y_{i1}(0)|G_i=1] = \mathbb{E}[Y_{i0}(0)|G_i=1]$ (No change in average potential outcome over time)

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Control Strategy: Treated vs. Control in Post-Period

- Use $\mathbb{E}[Y_{i1}|G_i=1] \mathbb{E}[Y_{i1}|G_i=0]$ for τ_{ATT}
- Assumes

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Control Strategy: Treated vs. Control in Post-Period

- Use $\mathbb{E}[Y_{i1}|G_i=1] \mathbb{E}[Y_{i1}|G_i=0]$ for τ_{ATT}
- Assumes $\mathbb{E}[Y_{i1}(0)|G_i=1] = \mathbb{E}[Y_{i1}(0)|G_i=0]$ (Mean ignorability of treatment assignment)

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
Treatment Group $(G_i = 1)$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Control Strategy: Difference-in-Differences (DD)

$$\bullet \ \ \mathsf{Use:} \ \Big\{ \mathbb{E}[Y_{i1} | G_i = 1] - \mathbb{E}[Y_{i1} | G_i = 0] \Big\} - \Big\{ \mathbb{E}[Y_{i0} | G_i = 1] - \mathbb{E}[Y_{i0} | G_i = 0] \Big\}$$

Estimand: ATT in the post-treatment period

$$\tau_{ATT} = \mathbb{E}[Y_{i1}(1) - Y_{i1}(0)|G_i = 1]$$

= $\mathbb{E}[Y_{i1}(1)|G_i = 1] - \mathbb{E}[Y_{i1}(0)|G_i = 1]$

	Pre-Period ($t = 0$)	Post-Period ($t = 1$)
$\overline{\text{Treatment Group } (G_i = 1)}$	$\mathbb{E}[Y_{i0}(0) G_i=1]$	$\mathbb{E}[Y_{i1}(1) G_i=1]$
Control Group ($G_i = 0$)	$\mathbb{E}[Y_{i0}(0) G_i=0]$	$\mathbb{E}[Y_{i1}(0) G_i=0]$

Control Strategy: Difference-in-Differences (DD)

- Use: $\left\{ \mathbb{E}[Y_{i1}|G_i=1] \mathbb{E}[Y_{i1}|G_i=0] \right\} \left\{ \mathbb{E}[Y_{i0}|G_i=1] \mathbb{E}[Y_{i0}|G_i=0] \right\}$
- Assumes: $\mathbb{E}[Y_{i1}(0) Y_{i0}(0)|G_i = 1] = \mathbb{E}[Y_{i1}(0) Y_{i0}(0)|G_i = 0]$ (Parallel trends)

Identification with Difference-in-Differences

Under the parallel trends assumption:

$$\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 1] = \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 0]$$

The ATT can be nonparametrically identified as:

$$au_{ATT} = \left\{ \mathbb{E}[Y_{i1}|G_i = 1] - \mathbb{E}[Y_{i1}|G_i = 0] \right\} \\ - \left\{ \mathbb{E}[Y_{i0}|G_i = 1] - \mathbb{E}[Y_{i0}|G_i = 0] \right\}$$

Identification with Difference-in-Differences

Under the parallel trends assumption:

$$\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 1] = \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 0]$$

The ATT can be nonparametrically identified as:

$$\begin{aligned} \tau_{ATT} &= \left\{ \mathbb{E}[Y_{i1}|G_i = 1] - \mathbb{E}[Y_{i1}|G_i = 0] \right\} \\ &- \left\{ \mathbb{E}[Y_{i0}|G_i = 1] - \mathbb{E}[Y_{i0}|G_i = 0] \right\} \end{aligned}$$

Proof:

$$\begin{split} &\{\mathbb{E}[Y_{i1}|G_i=1] - \mathbb{E}[Y_{i1}|G_i=0]\} - \{\mathbb{E}[Y_{i0}|G_i=1] - \mathbb{E}[Y_{i0}|G_i=0]\} \\ &= \{\mathbb{E}[Y_{i1}(1)|G_i=1] - \mathbb{E}[Y_{i1}(0)|G_i=0]\} - \{\mathbb{E}[Y_{i0}(0)|G_i=1] - \mathbb{E}[Y_{i0}(0)|G_i=0]\} \\ &= \underbrace{\mathbb{E}[Y_{i1}(1)|G_i=1] - \mathbb{E}[Y_{i1}(0)|G_i=1]}_{= \tau_{ATT}} + \mathbb{E}[Y_{i1}(0)|G_i=0] - \mathbb{E}[Y_{i0}(0)|G_i=1] + \mathbb{E}[Y_{i0}(0)|G_i=0] \\ &= \tau_{ATT} + \{\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i=1] - \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i=0]\} \end{split}$$

= 0 under parallel trends

= τ_{ATT}

• What type of confounding does DD make us robust to?

- What type of confounding does DD make us robust to?
 - Parallel trends is satisfied if unobserved confounding is time-invariant and additive
 - Parallel trends is violated if there is unobserved time-varying confounding

- What type of confounding does DD make us robust to?
 - Parallel trends is satisfied if unobserved confounding is time-invariant and additive
 - Parallel trends is violated if there is unobserved time-varying confounding
- Parallel trends may be more plausible with pre-treatment covariates:

$$\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 1, X_i = x] = \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 0, X_i = x]$$

This assumes parallel trends within strata

• Under the conditional parallel trends assumption, the ATT is identified as

$$\tau_{ATT} = \sum_{x} \left[\{ \mathbb{E}[Y_{i1} | G_i = 1, X_i = x] - \mathbb{E}[Y_{i1} | G_i = 0, X_i = x] \} - \{ \mathbb{E}[Y_{i0} | G_i = 1, X_i = x] - \mathbb{E}[Y_{i0} | G_i = 0, X_i = x] \} \right] \Pr(X_i = x | G_i = 1)$$

- What type of confounding does DD make us robust to?
 - Parallel trends is satisfied if unobserved confounding is time-invariant and additive
 - Parallel trends is violated if there is unobserved time-varying confounding
- Parallel trends may be more plausible with pre-treatment covariates:

$$\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 1, X_i = x] = \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 0, X_i = x]$$

This assumes parallel trends within strata

• Under the conditional parallel trends assumption, the ATT is identified as $\tau_{ATT} = \sum_{x} \left[\left\{ \mathbb{E}[Y_{i1} | G_i = 1, X_i = x] - \mathbb{E}[Y_{i1} | G_i = 0, X_i = x] \right\} - \left\{ \mathbb{E}[Y_{i0} | G_i = 1, X_i = x] - \mathbb{E}[Y_{i0} | G_i = 0, X_i = x] \right\} \right] \Pr(X_i = x | G_i = 1)$

- Note the parallel trends assumption is not invariant to nonlinear transformation of the outcome scale
- For example, parallel trends in $Y_{it}(z)$ implies non-parallel trends in log $Y_{it}(z)$ and vice versa

1 Introduction: A Motivating Example

2 Identification

3 Estimation and Inference

Diagnostics and Extensions

Plug-in Estimation for Panel Data

Estimand:

$$\tau_{ATT} \ = \ \Big\{ \mathbb{E}[Y_{i1} | G_i = 1] - \mathbb{E}[Y_{i1} | G_i = 0] \Big\} - \Big\{ \mathbb{E}[Y_{i0} | G_i = 1] - \mathbb{E}[Y_{i0} | G_i = 0] \Big\}$$

Plug-in Estimation for Panel Data

Estimand:

$$\tau_{ATT} \ = \ \Big\{ \mathbb{E}[Y_{i1} | G_i = 1] - \mathbb{E}[Y_{i1} | G_i = 0] \Big\} - \Big\{ \mathbb{E}[Y_{i0} | G_i = 1] - \mathbb{E}[Y_{i0} | G_i = 0] \Big\}$$

A plug-in estimator ("difference in difference-in-means"):

$$\begin{split} \left\{ \frac{1}{N_1} \sum_{i=1}^{N} G_i Y_{i1} - \frac{1}{N_0} \sum_{i=1}^{N} (1 - G_i) Y_{i1} \right\} - \left\{ \frac{1}{N_1} \sum_{i=1}^{N} G_i Y_{i0} - \frac{1}{N_0} \sum_{i=1}^{N} (1 - G_i) Y_{i0} \right\} \\ = \left\{ \frac{1}{N_1} \sum_{i=1}^{N} G_i \{ Y_{i1} - Y_{i0} \} - \frac{1}{N_0} \sum_{i=1}^{N} (1 - G_i) \{ Y_{i1} - Y_{i0} \} \right\}, \end{split}$$

where N_1 and N_0 are the number of treated and control units respectively

Plug-in Estimation for Panel Data

Estimand:

$$\tau_{ATT} \ = \ \Big\{ \mathbb{E}[Y_{i1}|G_i = 1] - \mathbb{E}[Y_{i1}|G_i = 0] \Big\} - \Big\{ \mathbb{E}[Y_{i0}|G_i = 1] - \mathbb{E}[Y_{i0}|G_i = 0] \Big\}$$

A plug-in estimator ("difference in difference-in-means"):

$$\begin{split} \left\{ \frac{1}{N_1} \sum_{i=1}^{N} G_i Y_{i1} - \frac{1}{N_0} \sum_{i=1}^{N} (1 - G_i) Y_{i1} \right\} - \left\{ \frac{1}{N_1} \sum_{i=1}^{N} G_i Y_{i0} - \frac{1}{N_0} \sum_{i=1}^{N} (1 - G_i) Y_{i0} \right\} \\ = \left\{ \frac{1}{N_1} \sum_{i=1}^{N} G_i \{ Y_{i1} - Y_{i0} \} - \frac{1}{N_0} \sum_{i=1}^{N} (1 - G_i) \{ Y_{i1} - Y_{i0} \} \right\}, \end{split}$$

where N_1 and N_0 are the number of treated and control units respectively

Standard errors can be estimated by extending the diff-in-means variance formula using the same logic, assuming no clustering

Example: Card and Krueger

	Stores by state		
Variable	PA (i)	NJ (ii)	Difference, NJ-PA (iii)
FTE employment before, all available observations	23.33 (1.35)	20.44 (0.51)	-2.89 (1.44)
2. FTE employment after, all available observations	21.17 (0.94)	21.03 (0.52)	-0.14 (1.07)
3. Change in mean FTE employment	-2.16 (1.25)	0.59 (0.54)	2.76 (1.36)

Plugin-Estimation for Repeated Cross Sections

Repeated cross-sectional data require slight change in notation:

- Period indicator is now a variable: $T_i \in \{0, 1\}$
- Estimand: $\tau_{ATT} = \mathbb{E}[Y_i(1) Y_i(0) \mid G_i = 1, T_i = 1]$
- Identified as: $\tau_{ATT} = \mathbb{E}[Y_i \mid G_i = 1, T_i = 1] \mathbb{E}[Y_i \mid G_i = 0, T_i = 1] \{\mathbb{E}[Y_i \mid G_i = 1, T_i = 0] \mathbb{E}[Y_i \mid G_i = 0, T_i = 0]\}$
- N now refers to the size of the pooled sample

Plugin-Estimation for Repeated Cross Sections

Repeated cross-sectional data require slight change in notation:

- Period indicator is now a variable: $T_i \in \{0, 1\}$
- Estimand: $\tau_{ATT} = \mathbb{E}[Y_i(1) Y_i(0) \mid G_i = 1, T_i = 1]$
- Identified as: $\tau_{ATT} = \mathbb{E}[Y_i \mid G_i = 1, T_i = 1] \mathbb{E}[Y_i \mid G_i = 0, T_i = 1] \{\mathbb{E}[Y_i \mid G_i = 1, T_i = 0] \mathbb{E}[Y_i \mid G_i = 0, T_i = 0]\}$
- N now refers to the size of the pooled sample

The plug-in estimator is then written as:

$$\hat{\tau}_{ATT} = \left\{ \frac{\sum_{i=1}^{N} G_{i} T_{i} Y_{i}}{\sum_{i=1}^{N} G_{i} T_{i}} - \frac{\sum_{i=1}^{N} (1 - G_{i}) T_{i} Y_{i}}{\sum_{i=1}^{N} (1 - G_{i}) T_{i}} \right\} - \left\{ \frac{\sum_{i=1}^{N} G_{i} (1 - T_{i}) Y_{i}}{\sum_{i=1}^{N} G_{i} (1 - T_{i})} - \frac{\sum_{i=1}^{N} (1 - G_{i}) (1 - T_{i}) Y_{i}}{\sum_{i=1}^{N} (1 - G_{i}) (1 - T_{i})} \right\}$$

Covariates X_i can be incorporated via subclassification

16/30

Regression Estimator for Repeated Cross Sections

Because G_i and T_i are both binary, the same estimator can be calculated via regression:

$$\hat{Y}_i = \hat{\mu} + \hat{\gamma}G_i + \hat{\delta}T_i + \hat{\tau}G_iT_i$$

where $\hat{\mu}$, $\hat{\gamma}$, $\hat{\delta}$ and $\hat{\tau}$ are OLS regression estimates

Regression Estimator for Repeated Cross Sections

Because G_i and T_i are both binary, the same estimator can be calculated via regression:

$$\hat{Y}_i = \hat{\mu} + \hat{\gamma}G_i + \hat{\delta}T_i + \hat{\tau}G_iT_i$$

where $\hat{\mu}$, $\hat{\gamma}$, $\hat{\delta}$ and $\hat{\tau}$ are OLS regression estimates

Easy to show that $\hat{\tau} = \hat{\tau}_{ATT}$:

	After $(T_i = 1)$	Before $(T_i = 0)$	After - Before
Treated $G_i = 1$	$\hat{\mu} + \hat{\gamma} + \hat{\delta} + \hat{\tau}$	$\hat{\mu} + \hat{\gamma}$	$\hat{\delta} + \hat{\tau}$
Control $G_i = 0$	$\hat{\mu} + \hat{\delta}$	$\hat{\mu}$	$\hat{\delta}$
Treated - Control	$\hat{\gamma} + \hat{\tau}$	$\hat{\gamma}$	$\hat{ au}$

Regression Estimator for Repeated Cross Sections

Because G_i and T_i are both binary, the same estimator can be calculated via regression:

$$\hat{Y}_i = \hat{\mu} + \hat{\gamma}G_i + \hat{\delta}T_i + \hat{\tau}G_iT_i$$

where $\hat{\mu}$, $\hat{\gamma}$, $\hat{\delta}$ and $\hat{\tau}$ are OLS regression estimates

Easy to show that $\hat{\tau} = \hat{\tau}_{ATT}$:

	After $(T_i = 1)$	Before $(T_i = 0)$	After - Before
Treated $G_i = 1$	$\hat{\mu} + \hat{\gamma} + \hat{\delta} + \hat{\tau}$	$\hat{\mu} + \hat{\gamma}$	$\hat{\delta} + \hat{\tau}$
Control $G_i = 0$	$\hat{\mu} + \hat{\delta}$	$\hat{\mu}$	$\hat{\delta}$
Treated - Control	$\hat{\gamma} + \hat{\tau}$	$\hat{\gamma}$	$\hat{ au}$

- ullet Covariates (X_i) can be added to the right-hand side, with the risk of possible misspecification bias
- Don't include X_i that can be affected by the treatment! (post-ttt bias)
- Cluster standard errors at the level the treatment is assigned (Card & Krueger get this wrong)

17/30

Regression Estimator for Panel Data

For panel data, consider an additive linear model for potential outcomes:

$$Y_{it}(z) = \alpha_i + \gamma t + \tau z + \varepsilon_{it}$$

where α_i is a time-invariant unobserved effect for unit i that may be correlated with treatment.

Regression Estimator for Panel Data

For panel data, consider an additive linear model for potential outcomes:

$$Y_{it}(z) = \alpha_i + \gamma t + \tau z + \varepsilon_{it}$$

where α_i is a time-invariant unobserved effect for unit i that may be correlated with treatment.

We can show:

- $\tau = \tau_{ATF} = \tau_{ATT}$
- Parallel trends imply:

$$\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 1] = \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 0]$$

$$\iff \mathbb{E}[\varepsilon_{i1} - \varepsilon_{i0} | G_i = d] = 0 \text{ for } d \in \{0, 1\}$$

Regression Estimator for Panel Data

For panel data, consider an additive linear model for potential outcomes:

$$Y_{it}(z) = \alpha_i + \gamma t + \tau z + \varepsilon_{it}$$

where α_i is a time-invariant unobserved effect for unit i that may be correlated with treatment.

We can show:

- $\tau = \tau_{ATF} = \tau_{ATT}$
- Parallel trends imply:

$$\mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 1] = \mathbb{E}[Y_{i1}(0) - Y_{i0}(0)|G_i = 0]$$

$$\iff \mathbb{E}[\varepsilon_{i1} - \varepsilon_{i0} | G_i = d] = 0 \text{ for } d \in \{0, 1\}$$

Therefore, the first-differenced regression of $Y_{i1} - Y_{i0}$ on G_i can unbiasedly estimate $\tau_{ATT} = \tau_{ATE}$

Notice that panel data allow for *unit-level* unobserved confounding unlike the repeated cross-section case, but it must be additive and time-invariant

Can include time-varying covariates (X_{it}) with possible risk of post-ttt bias

18/30

Example: Minimum Wage and Employment

```
ck_data <- plm.data(ck_data, indexes = c("ID", "postperiod"))</pre>
firstdiff.mod <- (plm(emptot ~ postperiod * nj,
                     data = ck data.
                     model = "fd"))
summary(firstdiff.mod)
Oneway (individual) effect First-Difference Model
Call:
plm(formula = emptot ~ postperiod * nj, data = ck_data, model = "fd")
Unbalanced Panel: n=410, T=1-2, N=794
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
(intercept) -2.2833 1.0355 -2.2050 0.02805 *
postperiod1:nj 2.7500 1.1544 2.3823 0.01769 *
```

1 Introduction: A Motivating Example

2 Identification

3 Estimation and Inference

4 Diagnostics and Extensions

Parallel Trends Violations: Selection

The parallel trends assumption can be violated for various reasons

Selection and targeting: Treatment assignment may depend on time-varying factors

Examples:

- Self-selection: participants in worker training programs experience a decrease in earnings before they enter the program
- Targeting: policies may be targeted at units that are currently performing best (or worst).

More Parallel Trends Violations

Compositional Differences Across Time

- In repeated cross-sections, the composition of the sample may change between periods, i.e. due to migration.
- This may confound any DD estimate since "effect" may be attributable to change in population.

- Parallel trends assumption most likely to hold over shorter time-period
- In the long run, many things may happen that could confound effect of treatment.

Functional form dependence

- Functional form dependence: Magnitude or even sign of the DD effect may be sensitive to the functional form, when average outcomes for controls and treated are very different at baseline
 - Training program for the young
 - Employment for the young increases from 20% to 30%
 - Employment for the old increases from 5% to 10%
 - Positive DD effect: (30-20) (10 -5) = 5% increase

Functional form dependence

- Functional form dependence: Magnitude or even sign of the DD effect may be sensitive to the functional form, when average outcomes for controls and treated are very different at baseline
 - Training program for the young
 - Employment for the young increases from 20% to 30%
 - Employment for the old increases from 5% to 10%
 - Positive DD effect: (30-20) (10 -5) = 5% increase
 - But if you consider log changes in employment, the DD is

$$[log(30) - log(20)] - [log(10) - log(5)] = log(1.5) - log(2) < 0$$

 DD estimates may be more reliable if treated and control are more similar at baseline

Diagnostics for Parallel Trends

- Pre-treatment trends in the outcome:
 - Check if the trends are parallel in the pre-treatment periods
 - Requires data on multiple pre-treatment periods (the more the better)
 - Note this is only diagnostics, not a direct test of the assumption!
- Placebo test using previous periods:
 - Suppose DD with time periods t_1 , t_2 , t_3 , where treatment occurs in t_3
 - Exclude data from t₃, assign t₂ as "placebo" treatment period, and re-estimate DD
- Placebo test using alternative groups:
 - Re-code some control groups as treated
 - Re-estimate DD with the placebo treated units & without actual treated units
- Placebo outcomes:
 - Find outcomes that, theoretically, should be unaffected by the treatment, but might
 - Re-estimate DD on these outcomes

Checking for Pre-Treatment Trends

Checking for Pre-Treatment Trends

Checking for Pre-Treatment Trends ©

Checking for Pre-Treatment Trends ©

Chiefs and Voting (de Kadt and Larreguy 2015)

Extension: Triple Differences

Triple differences (or "difference in differences in differences"): Use a placebo DD to make parallel trends more plausible

Extension: Triple Differences

Triple differences (or "difference in differences in differences"): Use a placebo DD to make parallel trends more plausible

Example: In state A, all 9th-grade girls are given a free bicycle.

- 1st DD: $G_i \in \{girl, boy\}$ and $T_i \in \{9, 10\}$ in state A
- 2nd DD: $G_i \in \{girl, boy\}$ and $T_i \in \{9, 10\}$ in state B (placebo)
- The DDD estimator:

$$\hat{\tau}_{DDD} = \hat{\mathbb{E}}[Y_i|\text{girl}, 10, A] - \hat{\mathbb{E}}[Y_i|\text{girl}, 9, A]$$

$$- \left\{\hat{\mathbb{E}}[Y_i|\text{boy}, 10, A] - \hat{\mathbb{E}}[Y_i|\text{boy}, 9, A]\right\}$$

$$- \left(\hat{\mathbb{E}}[Y_i|\text{girl}, 10, B] - \hat{\mathbb{E}}[Y_i|\text{girl}, 9, B]$$

$$- \left\{\hat{\mathbb{E}}[Y_i|\text{boy}, 10, B] - \hat{\mathbb{E}}[Y_i|\text{boy}, 9, B]\right\} \right)$$

- Can use regression with a triple interaction
- May eliminate time-varying confounding that are common in states
 A and B (e.g. girls change more from grade 9 to 10 than boys)

27 / 30

Muralidharan and Prakash (2013)

Dependent variable: Log (9th Grade Enrollment)

PANEL A: Testing Parallel Trends for the Difference-in-Difference (DD)

Female Dummy×Year	0.0518***
	(0.00)
Female Dummy	-0.870***
	(0.06)
Year (time trend)	0.0852***
	(0.01)
Constant	4.235***
	(0.05)
Observations	20,266
R-squared	0.167

Muralidharan and Prakash (2013)

PANEL B: Testing Parallel Trends for the Triple Difference (DDD)

Female Dummy×Year×Bihar dummy	-0.0100
	(0.01)
Female Dummy×Year	0.0618***
	(0.01)
Female Dummy×Bihar dummy	0.175
	(0.11)
Bihar dummy×Year	0.0290**
	(0.01)
Female dummy	-1.045***
	(0.09)
Year (time trend)	0.0562***
	(0.01)
Bihar dummy	-0.123
	(0.12)
Constant	4.358***
	(0.11)
Observations	22,279
R-squared	0.171

Summary and Remarks

- DD: An extremely popular strategy when there is longitudinal data (panel or repeated cross-sections) and the treatment is one-shot
- Parallel trends = a form of ignorability assumption, i.e., unobserved confounding must be additive and time-invariant
- An important generalization of DD is fixed effects regression with both time and unit fixed effects:

$$\mathbf{y}_{it} = \mathbf{x}_{it}^{\top} \mathbf{b} + \alpha_i + \eta_t + \varepsilon_{it}$$

where \mathbf{x}_{it} includes the treatment variable Z_{it}

- Other extensions include:
 - Nonlinear and semi-/nonparametric DD
 - Difference in discontinuities: Combine RD with DD
 - Matching before DD: Make estimates more robust to functional form misspecification