EDUCATIONAL ASSESSMENT AND EXAMINATIONS SERVICE ETHIOPIAN SECONDARY SCHOOL LEAVING CIRTIFICATE EXAMINATION (ESSLCE)

MATHEMATICS FOR NATURAL SCIENCE SOLUTIONS Hamlie 2015 E.C/ July 2023 G.C

SUBJECT CODE: 02

BOOKLET CODE: 340

Number of Items: 65

Time Allowed: 3 hours

1. Givens sets A and B where $A = \{x \in \mathbb{N}: x < 3\} = \{1, 2\}$, and B is the set of all possible factors of 13 so that $B = \{-13, -1, 1, 13\}$. Then

$$B \times A = \{(x, y): x \in B \text{ and } y \in A\}, By definition$$

= $\{(-13, 1), (-13, 2), (-1, 1), (-1, 2), (1, 1), (1, 2), (13, 1), (13, 2)\}$

Answer: No Answer is given ■

2. Given quadratic function $f(x) = x^2 - 6x + 10$ so that for the general form $f(x) = ax^2 + bx + c$; a = 1, b = -6 and c = 10. Then,

Axis of symmetry of graph of f is the line $x = -\frac{b}{2a}$, i.e., $x = -(\frac{-6}{2(1)}) = 3$.

Vertex of graph of f is at a point $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$ or simply:

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right) = (3, 3^2 - 6(3) + 10) = (3, 1).$$

And, a = 1 > 0 implies graph of f opens upward and range of f is

$$\{y: y \ge f(-\frac{b}{2a})\}\ \text{or } y: y \ge \frac{4ac-b^2}{4a}\}, \text{ i.e., } f(x) \ge 1$$

Answer: C ■

3. The area A of a regular n-sided polygon with radius r (or inscribed in a circle of radius r) is given by

$$A = \frac{1}{2} nr^2 \sin \frac{360^{\circ}}{n}$$

Given hexagon implies n=6; and given r=6 cm give

A =
$$\frac{1}{2}$$
(6)(6 cm)² sin $\frac{360^{\circ}}{6}$
= 108 sin 60° cm² = 54 $\sqrt{3}$ cm², recall that sin 60° = $\frac{\sqrt{3}}{2}$

Answer: A ■

4. A prime number is a natural number that has only two positive factor (i.e., 1 and itself).

Answer: D ■

5. A rational number r is in its standard form if it can be put as:

$$r = a \times 10^n$$
 where $1 \le a < 10$ and $n \in \mathbb{Z}$

Thus, only 5×10^5 is in standard form since $1 \le 5 < 10$ and $5 \in \mathbb{Z}$.

Answer: C ■

6. For a > 0, and integers m, n, recall the exponential rules that

(i)
$$\sqrt{a} = a^{\frac{1}{2}}$$
; (iii) $a^n a^m = a^{n+m}$
(ii) $(a^n)^m = a^{nm}$; (iv) $a^n = a^m \iff n = m$

First, by (ii)
$$125^x = (5^3)^x = 5^{3x}$$
, and $25^{3x+1} = (5^2)^{3x+1} = 5^{6x+2}$...(*)

Then, by (iii) and (*):
$$125^x5^{2x-1} = 5^{3x}5^{2x-1} = 5^{5x-1}$$
 ...(**)

And, by (i), (ii) and (**):
$$\sqrt{125^x 5^{2x-1}} = (5^{5x-1})^{\frac{1}{2}} = 5^{\frac{5x-1}{2}}$$
 ...(***)
Therefore, by (*), and (***):

$$\sqrt{125^{x}5^{2x-1}} = 25^{3x+1} \implies 5^{\frac{5x-1}{2}} = 5^{6x+2}$$

$$\implies \frac{5x-1}{2} = 6x + 2, \text{ by (iv)}$$

$$\implies 5x - 1 = 12x + 4$$

$$\implies x = -\frac{5}{7}$$

Since the given equation is defined for every real number x, $x = -\frac{5}{7}$.

Answer: A ■

7. First, determine the domain of the variable (Universe).

By absolute value definition, in the left $3|2x - 4| \ge 0$ so that

$$\begin{aligned} 6 - 2|1 - 5x| &\geq 0 \Longrightarrow |1 - 5x| \leq 3 \implies -3 \leq 1 - 5x \leq 3 \\ &\Rightarrow -\frac{2}{5} \leq x \leq \frac{4}{5} \\ &\Rightarrow x \in [-\frac{2}{5}, \frac{4}{5}] \dots [I_1] \end{aligned}$$

Again 3|2x-4|=6 - 2|1-5x| implies 2|1-5x|=6 - 3|2x-4| so that by absolute value definition, in the left $2|1-5x| \ge 0$ so that

$$6 - 3|2x - 4| \ge 0 \Rightarrow |2x - 4| \le 2 \Rightarrow -2 \le 2x - 4 \le 2$$
$$\Rightarrow 1 \le x \le 3$$
$$\Rightarrow x \in [1, 3] \dots [I_2]$$

Hence, the domain of variable is: $I_1 \cap I_2 = [-\frac{2}{5}, \frac{4}{5}] \cap [1, 3] = \{ \}.$

Since the universe is empty set, the solution set is also empty set.

Answer: D ■

8. The lateral surface area of a regular pyramid with length of lateral edge ℓ , and n-sided regular polygon base of side length s is given by:

$$A_{\ell} = \frac{1}{2} ns \ell$$

Given, n = 6 (hexagonal base), s = 12 cm, and $\ell = 10$ cm, we have

$$A_{\ell} = \frac{1}{2}(6)(12 \text{ cm})(10 \text{ cm}) = 360 \text{ cm}^2.$$

Answer: B ■

9. Suppose an object is given as in the figure below. Before the cut off, the

volume of the object V_0 was the sum of the volumes of the hemisphere V_H and the cylinder V_C . Diameter of the hemisphere and base of the cylinder are equal, i.e., given d=6 cm; and height of the cylinder is given by $h_C=12$ cm so that:

$$V_{o} = V_{H} + V_{C} = \frac{1}{12}\pi d^{3} + \frac{1}{4}\pi d^{2}h_{C}$$

$$= \frac{1}{12}\pi (6 \text{ cm})^{3} + \frac{1}{4}\pi (6 \text{ cm})^{2} (12 \text{ cm})$$

$$= 126\pi \text{cm}^{3} \qquad \text{(volume before cut off)}$$

The cut off right circular cone has the same base diameter d = 6 cm, and given height $h_{Co} = 8$ cm so that the volume V_{Co} of the cone is:

$$V_{Co} = \frac{1}{12} \pi d^2 h_{Co} = \frac{1}{12} \pi (6 \text{ cm})^2 (8 \text{ cm}) = 24 \pi \text{cm}^3$$

Therefore, the volume V of the remaining object after cut off is:

$$V = V_o$$
- $V_{Co} = 126\pi cm^3$ - $24\pi cm^3 = 102\pi cm^3$.

Answer: B ■

10. The domain of a power function $f(x) = ax^{\frac{n}{m}}$ where $a \neq 0, \frac{n}{m} > 0$ and m is odd integer is \mathbb{R} because f is defined for every real number x so that domain of $f(x) = 2x^{\frac{2}{3}}$ is \mathbb{R} .

Answer: D ■

11. The slope of a line that makes an angle of θ with the positive x-axis (recall this angle is called angle of inclination) is given by

$$m = tan \theta$$
.

Given,
$$\theta = 135^{\circ}$$
 implies:

m =
$$\tan 135^{\circ}$$

= $-\tan(180^{\circ} - 135^{\circ})$, quadrant II reference angle formula
= $-\tan 45^{\circ} = -1$.

Answer: A ■

12. By co-terminal angles relation and periodicity of tan by 180°:

$$\tan \theta = \tan(\theta + n180^{\circ})$$
 for every integer n.

For
$$\theta = 509^{\circ}$$
 choose $n = -3$ so that:

$$\tan 509^{\circ} = \tan(509^{\circ} + (-3)180^{\circ})$$

= $\tan(-31^{\circ})$
= - $\tan 31^{\circ}$, because tangent function is odd
= - 0.81, because given $\tan 31^{\circ} = 0.81$

Answer: A ■

13. Recall the identities $\sec \theta = \frac{1}{\cos \theta}$ and $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$.

Thus,
$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1-\sin^2 \theta}}$$
, since $\sec \theta > 0$ in 4^{th} quadrant
$$= \frac{1}{\sqrt{1-(-\frac{3}{5})^2}}, \text{ given } \sin \theta = -\frac{3}{5}$$
$$= \frac{5}{4}.$$

Answer: A ■

14. Suppose in the following figure that ABCD is a parallelogram with P a mid-point of \overline{AB} and Q a mid-point of \overline{CD} . Then,

First note that:

- i) By opposite sides of parallelogram $\overline{AD} \equiv \overline{CB}$
- ii) By opposite angles of parallelogram

$$\angle ADQ \equiv \angle CBP$$
, and

iii) By opposite sides of parallelogram and given mid points P and Q, $\overline{DQ} \equiv \overline{BP}$

Therefore, by SAS congruency, $\Delta ADQ \equiv \Delta CBP$ so that B is necessarily true; and by corresponding sides of congruent triangles and symmetric property of congruency of a line segment, A is necessarily true. Since we have parallel \overline{AP} and \overline{DC} , by definition of trapezium, APCD is a trapezium so that D is necessarily true.

In \triangle CBP, \overline{PB} and \overline{PC} may not be congruent since \angle PBC might be obtuse so that \overline{PC} be the longest side. Thus, $PC \neq PB = AP$ (P is midpoint) gives; APCQ isn't a rhombus so that C is **NOT** necessarily true.

Answer: C ■

15. First $5\log_9 x - 2\log_9(x^2) - \log_4 8 = -1$ is defined if x > 0.

Recall that for $1 \neq a > 0$:

(i)
$$\log_{a^k} x = \frac{1}{k} \log_a x$$
, (ii) $\log_a x^m = m \log_a x$,
(iii) $\log_a a = 1$, (iv) $\log_a x + \log_a y = \log_a xy$ for $x, y > 0$.

By (i), (ii) and (iii),
$$\log_4 8 = \log_{2^2} 2^3 = \frac{3}{2} \log_2 2 = \frac{3}{2}$$
.

And, x > 0 implies $log_9(x^2) = 2log_9 x$ so that if $log_9 x = y$, then

$$5\log_9 x - 2\log_9(x^2) - \log_4 8 = -1 \Longrightarrow 5y - 2(2y) - \frac{3}{2} = -1 \Longrightarrow y = \frac{1}{2}$$

Thus,
$$\log_9 x = y \Longrightarrow \log_9 x = \frac{1}{2} \Longrightarrow x = 9^{\frac{1}{2}} = 3$$
.

Therefore, solution set = $\{3\}$.

Answer: A ■

16. See rules under solution of Question 6. Here, $x \in \mathbb{R}$.

$$5(\frac{125}{8})^{\frac{1}{3}x^{2} - \frac{2}{3}x} = 2 \implies ((\frac{5}{2})^{3})^{\frac{1}{3}x^{2} - \frac{2}{3}x} = \frac{2}{5}$$

$$\Rightarrow (\frac{5}{2})^{3}(\frac{1}{3}x^{2} - \frac{2}{3}x) = \frac{2}{5}$$

$$\Rightarrow (\frac{5}{2})^{x^{2} - 2x} = \frac{2}{5}$$

$$\Rightarrow (\frac{5}{2})^{2x - x^{2}} = \frac{2}{5}, \text{ by } (\frac{a}{b})^{n} = (\frac{b}{a})^{-n}$$

$$\Rightarrow 2x - x^{2} = 1$$

$$\Rightarrow (x - 1)^{2} = 0 \implies x = 1$$

Answer: B ■

17. You may use Case or Sign Chart or Graphical method.

Using case method for $(2x-3)(x+5) \le 0$ implies

Case I:
$$2x-3 \le 0 \cap x+5 \ge 0 \Longrightarrow x \le 3/2 \cap x \ge -5 \Longrightarrow -5 \le x \le 3/2$$

Case II:
$$2x-3 \ge 0 \cap x+5 \le 0 \implies x \ge 3/2 \cap x \le -5 \implies \emptyset$$

Thus, Solution Set = $\emptyset \cup \{x: -5 \le x \le 3/2\} = [-5, 3/2]$

Or graph of f(x) = (2x-3)(x+5) is open upward and has x-intercepts 3/2 and -5 so that it is on and below x- axis for $x \in [-5, 3/2]$.

Answer: C ■

18. The histogram below shows the recorded temperature (in °C) of certain town in Ethiopia for the first 15 days of March 2023.

First prepare the following frequency distribution table.

Frequency, f _i (No. of days)	1	2	2	1	5	3
Temperature, T ₅	15	17	19	21	22	24

Then, the highest frequency is $f_5 = 5$ of $T_5 = 22^{\circ}$ C (the **Mode**) so that A is **true** but D is false. The temperature was $T_6 = 24^{\circ}$ C for $f_6 = 3$ (three days) so that B is false.

The temperature was more than $T_3 = 19$ °C for $f_4 = 1$ (i.e., $T_4 = 21$ °C), for $f_5 = 5$ (i.e., $T_5 = 19$ °C), and for $f_6 = 3$ (i.e., $T_6 = 24$ °C). Thus, the temperature was more than $T_3 = 19$ °C totally for:

$$f_4+f_5+f_6=1+5+3=9 \ days.$$
 , i.e., $\frac{f_4+f_5+f_6}{\Sigma_1^6f_i}\times 100\%=\frac{9}{1+2+2+1+5+3}\times 100\%=64.30\%$ of the days was with temperature more than $19\ ^{o}C$ so that C is false.

Answer: A ■

19. Given a 20 m high building \overline{AP} casts a shadow of AQ = 4 m, at the same time a BT = 35 m tree casts a shadow of x = BA + AQ m as shown in the figure below.

By AA Similarity, $\Delta TBQ \sim \Delta PAQ$ so that by proportionality of corresponding sides:

$$\frac{BA + AQ}{AQ} = \frac{BT}{AP} \implies \frac{x}{4m} = \frac{35m}{20m} \implies x = 7 \text{ m}$$

Answer: D ■

20. How far means the distance so that the total distance traveled by the car is: 9 km + 4 km + 12 km = 25 km.

Answer: B ■

21. By Remainder Theorem if a polynomial p(x) is divided by x-a, then the remainder is p(a) so that if $p(x) = 3x^6 + 5x^4 - 7x^3 + 2kx^2 + 3$ is divided by x+1=x-(-1), then the remainder is p(-1) so that given a remainder 4 implies:

$$p(-1) = 4 \implies 3(-1)^6 + 5(-1)^4 - 7(-1)^3 + 2k(-1)^2 + 3 = 4$$

 $\implies 2k = -14 \implies k = -7.$

Answer: A ■

22. Let V(h, k) = vertex and $F(x_F, y_F)$ = Focus. Then,

Vertex: V(h, k)=V(2, -1), and Focus: $F(x_F, y_F) = F(-1, -1)$ so that

$$k = -1 = y_F$$
, $h = 2$, $x_F = -1$, and $y_F = -1$.

It is horizontal parabola, because $y_F = k = -1$.

It is open left parabola $(y - k)^2 = -4p(x - h)$, because $-1 = x_F < h = 2$.

So
$$F(h-p, k) = F(2-p, -1) = F(-1, -1) \Rightarrow 2 - p = -1 \Rightarrow p = 3$$

Therefore, the parabola is, $(y + 1)^2 = -12(x-2)$

Answer: A ■

23. We need equation of hyperbola with foci $F_1 = (-2, 1)$, $F_2 = (8, 1)$ and the length of the conjugate axis is 2b = 8 units. Then, distance between the foci $F_1 = (-2, 1)$ and $F_2 = (8, 1)$ is 2c

$$\Rightarrow$$
2c = 8 - (-2) = 10 \Rightarrow c = 5 \Rightarrow c² = 25

Length of conjugate axis: $8 \Rightarrow 2b = 8 \Rightarrow b = 4 \Rightarrow b^2 = 16$

Center = $(\frac{-2+8}{2}, \frac{1+1}{2})$ = (3, 1) = (h, k) ←mid-point between foci, and $a^2 = c^2 - b^2 = 25 - 16 = 9$.

It is a horizontal hyperbola $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$, because $y_{F_1} = 1 = y_{F_2}$

Therefore, the hyperbola is $\frac{(x-3)^2}{9} - \frac{(y-1)^2}{16} = 1$.

Answer: No Answer is given ■

24. Given proposition p with $p \equiv T$ and any proposition q

A.
$$(\neg p \land q) \Rightarrow q \equiv (\neg T \land q) \Rightarrow q$$
, given
 $\equiv (F \land q) \Rightarrow q$, rule of negation
 $\equiv F \Rightarrow q$, rule of conjunction
 $\equiv T$, rule of implication

Similarly, we can show that the (B), (C), and (D) are F.

Answer: A ■

- **25.** A. Since |x| = x for $x \in (0, \infty)$ we have f(x) = x 1 which is a linear function so that f is one-to-one function.
 - B. Not one-to-one, because for instance f(1) = f(6) = 5 but $1 \neq 6$.
 - C. Not one-to-one, because y may have two or more children.
 - D. Not one-to-one, because for instance f(-1) = f(1) = 0 but $-1 \neq 1$.

Answer: A ■

26. Given
$$\frac{x^2+14}{(x+2)(x-1)^2} = \frac{A}{x+2} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

$$\Rightarrow \frac{x^2+14}{(x+2)(x-1)^2} = \frac{A(x-1)^2+B(x-1)(x+2)+C(x+2)}{(x+2)(x-1)^2}$$

$$\Rightarrow \frac{x^2+14}{(x+2)(x-1)^2} = \frac{(A+B)x^2+(-2A+B+C)x+(A-2B+2C)}{(x+2)(x^2+1)}$$

$$\Rightarrow x^2+14 = (A+B)x^2+(-2A+B+C)x+(A-2B+2C)$$

$$\begin{cases} A+B=1 & \dots \dots (1) \\ -2A+B+C=0 \dots (2) \\ A-2B+2C=14 \dots (3) \end{cases}$$

$$\Rightarrow \begin{cases} -3A+C=-1 \\ 3A+2C=16 \end{cases} \leftarrow \text{replacing } B=1-A \text{ from } (1) \text{ in to } (2) \& (3)$$

$$\Rightarrow A=2 \text{ and } C=5 \text{ so that by } B=1-A, B=-1$$

Answer: C ■

- **27.** Given a rational function $f(x) = \frac{x^3 3x}{x^2 6}$. Then
 - A. y-intercept is $y = f(0) = \frac{0^3 3(0)}{0^2 6} = 0$.
 - B & C. $f(x) = \frac{x^3 3x}{x^2 6}$ is odd because it has a form $\frac{\text{odd}}{\text{even}}$ so that graph of f is symmetrical with respect to the origin.
 - D. x-intercept is the value of x for which $x^3-3x=0$, i.e., $x=0,\pm\sqrt{3}$.

Answer: C ■

28. Let θ be angle between the lines ℓ_1 :y =2x+3 with slope m_1 = 2 and ℓ_2 :y =1-3x with slope m_1 = -3. Then, $0 \le \theta < \pi$ and

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{-3 - 2}{1 + 2(-3)} = 1$$
 so that $\theta = \tan^{-1} 1 = \pi/4$.

Answer: B ■

29. Given position vectors $\mathbf{u} = (-1, 6)$ and $\mathbf{v} = (2, 4)$. Then

$$4\mathbf{u}$$
- $3\mathbf{v}$ = 4(-1, 6)-3(2, 4) = (-4, 24) - (6, 12)
= (-4-6, 24-12) = (-10, 12).

Answer: B ■

30. Given a function $f(x) = 3\sin(4x)$ has period $p = \frac{2\pi}{4} = \frac{\pi}{2}$. And, the function $y = \sin x$ lies below x-axis on $(\pi, 2\pi)$; dividing bounds of this interval by 4, f lies below x-axis on $(\pi/4, \pi/2)$ so that A is **true**.

Period $p = \frac{\pi}{2}$ implies graph of f completes one cycle on interval $[0, \frac{\pi}{2}]$ so that B & D are false.

The function $y = \sin x$ rises up on the interval $[0, \pi/2]$; dividing bounds of this interval by 4, f rises up on $[0, \pi/8]$ but $[0, \pi/4] \not\sqsubseteq [0, \pi/8]$ so that C is false.

Answer: A ■

31. Given a translation T that takes a point (-1, 1) to point (3, 2).

The translation vector is: $\vec{U}_T = (3, 2) - (-1, 1) = (4, 1)$.

Translating a circle means translating the center and use the same radius. $x^2+y^2-2x+4y+1=0$ has center C=(-(-2)/2,-4/2)=(1,-2).

So,
$$T(1, -2) = \vec{U}_T + (1, -2) = (5, -1)$$
; Center of image circle

And, for radius r,
$$r^2 = \frac{1}{4}((-2)^2 + 4^2 - 4(1)) = 4$$
.

Thus, the image circle is $(x - 5)^2 + (y + 1)^2 = 4$.

32. Let A be a square matrix of order n and let B be a matrix obtained by multiplying one row of A by 2 and C be a matrix found by adding one row of A to another row of A.

If a row/a column is multiplied by a scalar r, then the new determinant equals r times the old determinant; and the determinant remains the same if a multiple of a row/column is added to another row/column. Thus,

$$det(B) = 2det(A) = 20$$
 and $det(C) = det(A) = 10$

Answer: B ■

33. You may check that $\Delta = 0$, $\Delta_x = 0$, $\Delta_v = 0$ and $\Delta_z = 0$ so that from Cramer's rule we conclude that the system has infinitely many solution. And it is better to apply row/column operation method.

The augmented matrix is
$$\begin{pmatrix} 2 & -1 & 3 & 1 \\ 1 & 1 & 3 & 5 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$

Pivoting R_2 and R_3 using R_1 to make $a_{21} = 0 = a_{31}$ as:

$$\begin{pmatrix} 2 & -1 & 3 & 1 \\ 1 & 1 & 3 & 5 \\ 1 & -1 & 1 & -1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - \frac{1}{2}R_1} \begin{pmatrix} 2 & -1 & 3 & 1 \\ 0 & 3/2 & 3/2 & 9/2 \\ 0 & -1/2 & -1/2 & -3/2 \end{pmatrix}$$

After rescaling as $R_2 \rightarrow 2R_2$ and $R_3 \rightarrow -2R_3$: Pivoting R_3 using R_2 to make $a_{32} = 0$ as:

$$\begin{pmatrix} 2 & -1 & 3 & 1 \\ 0 & 3 & 3 & 9 \\ 0 & 1 & 1 & 3 \end{pmatrix} \xrightarrow{R_3 \to R_3 + \frac{1}{3}R_2} \begin{pmatrix} 2 & -1 & 3 & 1 \\ 0 & 3 & 3 & 9 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Rescaling as
$$R_2 \to \frac{1}{3}R_2$$
: $\begin{pmatrix} 2 & -1 & 3 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Therefore, the system is **Dependent**.

From R_1 and R_2 we get two equations in three unknowns as $\begin{cases} 2x-y+3z=1 \dots \dots (1) \\ y+z=3 \dots \dots (2) \end{cases}$

$$\begin{cases} 2x - y + 3z = 1 \dots \dots (1) \\ y + z = 3 \dots \dots (2) \end{cases}$$

Let z = k for $k \in \mathbb{R}$. Then (2) gives y = 3 - k.

Then, substituting z = k and y = 3 - k in to (1) gives x = 2-2k

Therefore, the solution set is: $\{(2-2k, 3-k, k) | k \in \mathbb{R} \}$, and we say the system has infinitely many solution.

Answer: D ■

34.
$$z_1 - (z_2 - z_3) = z_1 + (-1)(z_2 - z_3)$$
$$= z_1 + (-1)(z_2) - (-1)z_3$$
$$= z_1 - z_2 + z_3 \neq (z_1 - z_2) - z_3 \text{ so that A is False}$$

B, C, and, D are commutativity, associativity, and distributivity properties which hold in real number system so that they also hold in set of complex numbers.

Answer: A ■

35. In the Argand plane, the complex numbers a + bi corresponds to the point (a, b) so that -3 - i corresponds to the point (-3, -1).

Answer: C ■

36. A group of students, 5 from grade 10, 8 from grade 11 and 2 from grade 12 to be formed. If a student is chosen randomly from this group, the probability that the chosen student is either from grade 10 or from grade 12 is:

$$p(G10 \text{ or } G12) = \frac{n(G10 \text{ and } G12)}{n(\text{all students})} = \frac{7}{15}$$

Answer: B ■

37. Use matrices multiplication rule and definition of equal matrices.

Since ab = 6 is also satisfied, a = 3, and b = 2.

38. A^T is the transpose of A that is found by making the ith row in to ith column, i.e., $A^T = (a_{ii})$ for $A = (a_{ij})$ so that

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ -3 & 6 \end{pmatrix} \implies A^{T} = \begin{pmatrix} 1 & 0 & -3 \\ -1 & 2 & 6 \end{pmatrix}$$

Answer: B ■

39. Cumulative frequency (commonly the less than cumulative frequency) of a class (except the first class whose cumulative frequency and frequency are equal) is the sum of frequencies of all the classes before it and its frequency.

Temperature (in °C)	10-14	15-19	20-24	25-29	30-34
Frequency (Number of days)	2	9	11	5	3
Cumulative frequencies	2	11	22	27	30

Hence, as shown in bold the cumulative frequency of the fourth class is 27 (i.e., 2+9+11+5).

Answer: A ■

40. Given a universal set \mathbb{N} , the proposition $(\exists_x)(\exists_y)(x-y=y-x)$ is True just by taking x=y so that B is True.

To show the falseness of A, C, and D we use disprove by counter example. Take x = 1 and y = 2. Then,

$$x \neq y \Rightarrow x > y \equiv T \Rightarrow F \equiv F$$
 so that A is False.

No value of $y \in \mathbb{N}$ such that xy < x if x = 1 so that C is False.

No value of $y \in \mathbb{N}$ such that x - y = 5 if x = 1 so that D is False.

Answer: B ■

41. The following is distribution of the weight of 40 students in a certain class.

Weight (in Kg)	40-48	49-57	58-66	67-75	76-84
Frequency, fi	8	18	7	5	2

Then, to get the median weight in Kg, first calculate class boundaries for correction factor 0.5 & (Less than) cumulative frequencies as follows.

Class	39.5-	48.5-	57.5-	66.5-	75.5-
boundaries	48.5	57.5	66.5	75.5	84.5
Frequency, fi	8	18	7	5	2
Cumulative	0	26	33	38	40
frequencies, Cf _i	0	20	33	30	40

Then, $n = \sum_{i=1}^{5} f_i = 40 \Rightarrow Cf_i \geq \frac{n}{2} = 20$ so that $Cf_i \geq 20$ for first time in 2^{nd} class, i.e., the median class is the 2^{nd} class with class boundaries 48.5 - 57.5 and lower bound $B_L = 48.5$, cumulative frequency before the median class $Cf_b = 8$, median class frequency $f_c = 18$, and class size i = 9 so that the median is:

$$\tilde{x} = B_L + \left[\frac{\frac{n}{2} - Cf_b}{f_c}\right] i = 48.5 + \left[\frac{20 - 8}{18}\right] 9 = 54.5 \text{ Kg}$$

Answer: B ■

42. Recall that: Two events are said to be *mutually exclusive*, if both cannot occur simultaneously. If a fair die is rolled once, then the sample space is $S = \{1, 2, 3, 4, 5, 6\}$ and among events:

 E_1 = an even number occurs = {2, 4, 6};

 $E_2 = a$ prime number occurs = $\{2, 3, 5\}$;

 $E_3 = a$ multiple of 3 occurs = $\{3, 6\}$;

 $E_4 = a$ multiple of 5 occurs = $\{5\}$.

, the pairs of mutually exclusive events are: E_1 and E_4 ; and E_3 and E_4 , because their intersection is empty set.

Answer: A ■

43. This question must be specified for a polynomial function; otherwise the question is wrong. For instance: $f(x) = 2^x$ -1 has zero at 0, but x is not factor of f.

Answer: Wrong Item ■

44. Mean Value Theorem: If a function f is continuous on the interval [a, b] and differentiable on (a, b), then there exists (at least one) $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b}$.

 $f(x)=3x^2-5x+1$ is continuous on [0, 1] and differentiable on (0, 1) so that by Mean Value Theorem, there exists $c \in (0, 1)$ such that

$$f'(c) = \frac{f(1) - f(0)}{1 - 0} \Longrightarrow 6c - 5 = \frac{-1 - 1}{1} \Longrightarrow c = 1/2.$$

Answer: B ■

45. Volume of a cone with height h and base radius r is $V = \frac{1}{3}\pi r^2 h$. Given h = 10 cm and r = 5 cm implies

$$\frac{r}{h} = \frac{5}{10} \Longrightarrow r = \frac{1}{2}h \text{ or } h = 2r.$$

Then, $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (\frac{1}{2}h)^2 h = \frac{1}{12}\pi h^3$ so that by chain rule $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt} \implies \frac{dh}{dt} = \frac{4}{\pi h^2} \frac{dV}{dt}$

By given at the moment $\frac{dV}{dt} = 6\pi \text{cm}^3/\text{sec}$, the rate at which the water level rising when the water reaches h = 2 cm deep is

$$\frac{dh}{dt} = \frac{4}{\pi h^2} \frac{dV}{dt} = \frac{4}{\pi (2cm)^2} (6\pi cm^3/sec) = 6 \text{ cm/sec.}$$

Answer: A ■

46. The graphs of $f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = 2 - \frac{1}{6}x^3$ have tangent lines of the same slope at x where f'(x) = g'(x). Thus,

$$f'(x) = g'(x) \Longrightarrow -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2}x^2 \Longrightarrow x = 1 \text{ (WHY?)}$$

Answer: A ■

47. Mechanical (also called physical) meaning of derivative is its interpretation as an instantaneous rate of change.

Answer: D ■

48. Using sum rule of derivative:

$$f(x)=5x^3 +2x - \sin x + e^x \implies f'(x) = 15x^2 +2 - \cos x + e^x$$

Thus, $f'(0) = 15(0)^2 +2 - \cos 0 + e^0 = 2$.

Answer: B ■

49. Given h(x) = g(f(3x+1)), f'(1) = f(1) = 2, and g'(2) = 1. Then, using chain rule

$$\begin{split} h'(x) &= (g(f(3x+1)))' = g'(f(3x+1)) \, f'(3x+1)(3x+1)' \\ &= 3g'(f(3x+1)) \, f'(3x+1) \end{split}$$
 Thus,
$$h'(0) &= 3g'(f(3(0)+1))f'(3(0)+1) \\ &= 3g'(f(1))f'(1) \\ &= 3g'(2)(2), \quad \text{given } f'(1) = f(1) = 2 \\ &= 3(1)(2), \quad \text{given } g'(2) = 1 \\ &= 6. \end{split}$$

Answer: D ■

- **50.** Validity of an argument can be checked using either of Formal proof, Truth table, Tautology or Rules of Inference.
 - A. [Using Formal proof]

Given argument: $p, p \Rightarrow q, r \lor \neg q \vdash p \land \neg r$

- (1) $p \equiv T$ and $p \Rightarrow q \equiv T$...premise
- (2) $q \equiv T \dots (1)$ and rule of " \Rightarrow "
- (3) $\neg q \equiv F \dots (2)$ and rule of " \neg "
- (4) $r \vee \neg q \equiv T \dots premise$
- (5) $r \equiv T \dots (3)$ and rule of "V" on (4)
- (6) $\neg r \equiv F \dots (5)$ and rule of " \neg "
- (7) $p \land \neg r \equiv F \dots (6)$ and rule of " \land "

Therefore, the argument form is invalid.

B. [Using Truth table]

Given argument: $p \lor q$, $p \Rightarrow q \vdash \neg q$

p	q	¬q	p V q	$p \Rightarrow q$
T	T	F	T	T
T	F	T	T	F
F	T	F	T	T
F	F	T	F	T

In first row the premises are T but the conclusion is F so that the argument form is invalid.

C. [Using Formal proof]

Given argument: $p \Rightarrow q$, $\neg r \land q \vdash p \lor r$

- (1) $\neg r \land q \equiv T \dots premise$
- (2) $\neg r \equiv T$ and $q \equiv T ...(1)$ and rule of " \wedge "

- (3) $r \equiv F \dots (2)$ and rule of "¬"
- (4) $p \Rightarrow q \equiv T \dots premise$
- (5) $p \equiv T$ or $p \equiv F$...(2) and (4) with rule of " \Rightarrow "
- (6) $p \lor r \equiv T \text{ or } p \lor r \equiv F \dots by$ (3) and (5) with rule of "V" Therefore, the argument form is invalid.
- D. [Using Formal proof]

Given argument: $p \Rightarrow q, q, r \Rightarrow p \vdash r$

- (1) $q \equiv T$ and $p \Rightarrow q$...premise
- (2) $p \equiv T$ or $p \equiv F$...(1) and rule of " \Rightarrow "
- (3) $r \Rightarrow p \equiv T \dots premise$
- (4) If $p \equiv T$, then $r \equiv T$ or $r \equiv F...(2)$ and rule of " \Rightarrow "
- (5) If $p \equiv F$, then $r \equiv F...(2)$ and rule of " \Rightarrow "

Therefore, the argument form is invalid.

Answer: No Answer is given ■

51. The mid-point of line segment joining (-1, -3, 3) and (-1, 5, -7) in space is $(\frac{-1+(-1)}{2}, \frac{-3+5}{2}, \frac{3+(-7)}{2}) = (-1, 1, -2)$.

Answer: D ■

52. Principle of Mathematical Induction (PMI) is applicable on a proposition with variables' value set of Natural Numbers.

A.
$$n = 0 \implies 0! \ge 2^0$$
 which is false so that no use of PMI.

B.
$$n = 0 \Rightarrow 2^{0+1} - 1 = 1$$
 (True). Hence, first note that $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$ for $n \ge 0$ is similar to

$$1 + 2 + 2^2 + \dots + 2^{n-1} = 2^n - 1$$
 for $n \ge 1$

$$n = 1 \Longrightarrow 2^1 - 1 = 1$$
 (True).

Assume it holds for n = k > 1 and $k \in \mathbb{N}$

, i.e.,
$$1 + 2 + 2^2 + \dots + 2^{k-1} = 2^k - 1$$
 is true. (IH)

Then, for n = k + 1,

$$1 + 2 + 2^2 + \dots + 2^{k-1} + 2^k = 2^k - 1 + 2^k$$
, by IH
= $2 \times 2^k - 1$
= $2^{k+1} - 1$

Thus, the formula holds also for n = k + 1 so that this assertion is true applying the Principle of Mathematical Induction.

C. $n = 1 \implies 1^2 \ne 3$ so that no use of PMI.

D.
$$n = 2 \Rightarrow \frac{2(2+1)}{2} + 1 = 4 \neq 2$$
 so that no use of PMI.

Answer: B ■

53. Let F be the anti-derivative of f. For constant of integration c

A. F' = f(x) so that A is true.

B. $\frac{d}{dx} \int F(x) dx = F(x)$ for every function F so that B is **NOT** true.

C. $\int \frac{d}{dx} f(x) dx = f(x) + c$ so that C is true.

D. $\int f(x)dx = F(x) + c$ so that D is **NOT** true.

Answer: B and D ■

54. $\int 3 \cos 3x \, dx = 3 \int \cos 3x \, dx$

Let
$$u = 3x$$
. Then, $dx = \frac{1}{3}du$ so that
 $3\int \cos 3x \, dx = 3\int \cos u \frac{1}{3}du$
 $= \int \cos u \, du = \sin u + C$
 $= \sin 3x + C$ by $u = 3x$

Answer: A ■

55. $f(x) = x^2 - 4$ crosses x-axis at $x = \pm 2$ and $f \le 0$ on [-2, 2] so that the area of the region bounded by the graph of f and x-axis, using the evenness of f is

$$A = 2\int_0^2 -f(x)dx = 2\int_0^2 (4 - x^2)dx$$
$$= 2(4x - \frac{x^3}{3})_0^2$$
$$= 2[(4(2) - \frac{2^3}{3}) - (4(0) - \frac{0^3}{3})] = \frac{32}{3}$$

Answer: C ■

56. Let f be a continuous function on [0, 1] and let F be an anti-derivative of f with F(1) = -11 and F(0) = 11. Then

$$\int_0^1 f(x) dx = F(x) \Big|_0^1 = F(1) - F(0) = -11 - 11 = -22$$

Answer: B ■

57. On xz-plane y = 0 so that the set describing equation of the xz-plane is $\{(x, y, z) \mid x, y, z \in \mathbb{R} \text{ and } y = 0\}.$

Answer: A ■

58. If the sequence $\{a_n\}$ converges to 3 and the sequence $\{b_n\}$ converges to -1, then by convergence theorem, $\{a_n - b_n\}$ converges to 3 - (-1) = 4.

Answer: A ■

59. $f(x) = \frac{x^2 - 1}{x^2 + 1}$ is defined and continuous on \mathbb{R} so that

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 1} = \frac{1^2 - 1}{1^2 + 1} = 0.$$

Answer: C ■

- **60.** $f(x) = \begin{cases} \alpha x + 1, & x \ge 1 \\ x^2 4, & x < 1 \end{cases}$ is continuous at 1 if
 - i) $1 \in$ domain of f. Of course assume $f(1) = \alpha + 1 \in \mathbb{R}$.
 - ii) $\lim_{x\to 1} f(x)$ must exist so that side limits exist and

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \implies \lim_{x \to 1^{-}} (x^{2} - 4) = \lim_{x \to 1^{+}} (\alpha x + 1)$$
$$\implies 1^{2} - 4 = \alpha(1) + 1$$
$$\implies \alpha = -4$$

Answer: A ■

61. First length of the interval $\left[-\frac{\pi}{4}, \frac{11\pi}{4}\right]$ is $\ell = \frac{11\pi}{4} - \left(-\frac{\pi}{4}\right) = 3\pi$ which is a period of the function which completes one cycle.

Period of $f(x) = 2\sin(\frac{2}{3}x + \frac{\pi}{6})$ is: $p = \frac{2\pi}{2/3} = 3\pi$ (see solution of Q62).

Thus, $\ell = p$ implies $f(x) = 2\sin(\frac{2}{3}x + \frac{\pi}{6})$ has a graph that completes one full cycle on $[-\frac{\pi}{4}, \frac{11\pi}{4}]$.

Answer: D ■

62. Graph of $f(x) = c + a \cos(kx + b)$ has:

Period:
$$p = \frac{2\pi}{k}$$
 and Phase shift: $-\frac{b}{k}$.

Thus, for $f(x) = -\frac{1}{3}\cos(\frac{3}{2}x - \frac{\pi}{3})$ we have $k = \frac{3}{2}$, $b = -\frac{\pi}{3}$ so that

Period: $p = \frac{2\pi}{3/2} = \frac{4\pi}{3}$ and Phase shift: $-\frac{b}{k} = -\frac{-\pi/3}{3/2} = \frac{2\pi}{9}$.

Answer: B ■

63. Since n starts from 0, the fifth term is at n = 4

, i.e.,
$$2^4 + 4(4) - 5 = 27$$
.

Answer: B ■

64. By long division $\frac{2n+1}{n+1} = 2 - \frac{1}{n+1}$

Then,
$$n \ge 1 \Rightarrow n + 1 \ge 2 \Rightarrow 0 < \frac{1}{n+1} \le \frac{1}{2}$$
, reciprocal
$$\Rightarrow -\frac{1}{2} \le -\frac{1}{n+1} < 0$$
, multiplying by -1
$$\Rightarrow \frac{3}{2} \le 2 - \frac{1}{n+1} < 2$$
, adding 2
$$\Rightarrow \frac{3}{2} \le \frac{2n+1}{n+1} < 2$$

Thus, every real number greater than or equal to 2 is an upper bound.

Or simply by listing some elements of $\frac{2n+1}{n+1} = 2 - \frac{1}{n+1}$ as:

$$2-\frac{1}{2}$$
, $2-\frac{1}{3}$, $2-\frac{1}{4}$, ..., $2-0$

, we can see it is going to 2 increasingly so that every real number greater than or equal to 2 is an upper bound.

Answer: C ■

65. Given arithmetic sequence $\{a_n\}$ with $a_6 = 35$, and $a_{11} = 75$. Then, the common difference is: $d = \frac{a_{11} - a_6}{11 - 6} = \frac{75 - 35}{5} = 8$.

And, using $a_n = a_1 + (n-1)d$ for n = 6:

$$a_1 = 35 - (6-1)8 = -5.$$

Thus, by $S_n = \frac{n}{2}(2a_1 + (n-1)d)$ the sum of the first 31 terms is

$$S_{31} = \frac{31}{2}(2(-5) + (31 - 1)8) = 3565$$

Answer: No Answer is given ■