Classification of signals

Guillaume Tochon

LRE

A signal is defined as a function $x:I\subseteq\mathbb{R}\to\mathbb{C}$

$$x:I\subseteq\mathbb{R} \to \mathbb{C}$$
 t $\mapsto x(t)$

that satisfies:

- $\rightarrow x$ is bounded (in magnitude): $\exists 0 < M < +\infty$ such that $|x(t)| < M \ \forall t \in I$
- $\rightarrow x$ is continuous or piecewise continuous with finite or countable infinity discontinuities.

A **signal** is defined as a function $x: I \subseteq \mathbb{R} \rightarrow \mathbb{C}$

$$x:I\subseteq\mathbb{R} \to \mathbb{C}$$
 $t\mapsto x(t)$

that satisfies:

- $\rightarrow x$ is bounded (in magnitude): $\exists \ 0 < M < +\infty$ such that $|x(t)| < M \ \forall t \in I$
- $\rightarrow x$ is continuous or piecewise continuous with finite or countable infinity discontinuities.

A **signal** is defined as a function $x:I \subseteq \mathbb{R}$

$$x:I\subseteq\mathbb{R}$$
 \rightarrow \mathbb{C} t \mapsto $x(t)$

that satisfies:

- $\rightarrow x$ is bounded (in magnitude): $\exists 0 < M < +\infty$ such that $|x(t)| < M \ \forall t \in I$
- $\rightarrow x$ is continuous or piecewise continuous with finite or countable infinity discontinuities.

Remarks:

- We restrict ourselves to univariate and one-dimensional signals.
- x can take complex values.
- In general, $I = \mathbb{R}$.

- The graph of x is called the *time representation*.
- The set of signals is a vector space in which we can define a basis, inner product, and norm.

The radar example

Principle of radar detection (by the way, radar is the acronym of radio detection and ranging):

The radar example

Principle of radar detection (by the way, radar is the acronym of radio detection and ranging):

- 1. Emission of a reference signal x_{ref} that propagates to the target.
- 2. The echo returns to the receiver, which records x_{echo} .
- 3. Measurement of the echo delay \Rightarrow distance to the target.
 - \Rightarrow How to calculate the echo delay most reliably?

The radar example

Principle of radar detection (by the way, radar is the acronym of radio detection and ranging):

- 1. Emission of a reference signal x_{ref} that propagates to the target.
- 2. The echo returns to the receiver, which records x_{echo} .
- 3. Measurement of the echo delay \Rightarrow distance to the target.
 - \Rightarrow How to calculate the echo delay most reliably?

Idea: Find the optimal translation factor to superimpose the pattern of x_{echo} on x_{ref} to maximize the similarity between these two signals.

G. Tochon (LRE) ITSI♥ 3/11

The dot product

The similarity between two vectors x and y is given by their dot product $\langle x, y \rangle$.

Recalls on the dot product for discrete vectors

$$\rightarrow \text{ in } \mathbb{R}^2 \colon x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2 \Rightarrow \langle x, y \rangle = x_1 y_1 + x_2 y_2$$
$$= \|x\| \|y\| \cos \theta$$

$$\rightarrow$$
 in \mathbb{R}^n : $x, y \in \mathbb{R}^n \Rightarrow \langle x, y \rangle = \sum_{i=1}^n x_i y_i$

$$\rightarrow$$
 in \mathbb{C}^n : $x, y \in \mathbb{C}^n \Rightarrow \langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$

The dot product

The similarity between two vectors x and y is given by their dot product $\langle x, y \rangle$.

Recalls on the dot product for discrete vectors

$$\rightarrow \text{ in } \mathbb{R}^2 \colon x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2 \Rightarrow \langle x, y \rangle = x_1 y_1 + x_2 y_2$$
$$= \|x\| \|y\| \cos x$$

$$\rightarrow$$
 in \mathbb{R}^n : $x, y \in \mathbb{R}^n \Rightarrow \langle x, y \rangle = \sum_{i=1}^n x_i y_i$

$$\rightarrow$$
 in \mathbb{C}^n : $x, y \in \mathbb{C}^n \Rightarrow \langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$

$$\langle x, y \rangle = \|x\| \|y\| \cos \theta \approx \|x\| \|y\|$$

$$\langle x, z \rangle = 0$$

Here, the manipulated vectors are signals, thus functions (in other words, vectors from a vector space of infinite dimension...)

We can also define a dot product for such vectors.

 \Rightarrow The symbol \sum is replaced by its continuous equivalent \int , up to some precautions to be taken...

4/11

G. Tochon (LRE)

Integrability

Before writing expressions like $\int_{-\infty}^{+\infty} x(t)dt$, it is important to ensure that it can actually be done...

Integrability of a function

We say that a function $f:I \subseteq \mathbb{R} \to \mathbb{R}$ (or \mathbb{C})

- o is integrable over I if $\int_I |f(t)| dt < +\infty$ o is p-integrable over I (for $p \in \mathbb{N}^*$) if $\int_I |f(t)|^p dt < +\infty$

We usually denote as $\mathcal{L}^p(I)$ the vector space of p-integrable functions over I.

 $\Rightarrow \mathcal{L}^2(I)$ is the space of square-integrable functions over $I: \int_I |f(t)|^2 dt < +\infty$

Integrability

Before writing expressions like $\int_{-\infty}^{+\infty} x(t)dt$, it is important to ensure that it can actually be done...

Integrability of a function

We say that a function $f:I \subseteq \mathbb{R} \to \mathbb{R}$ (or \mathbb{C})

- o is integrable over I if $\int_I |f(t)| dt < +\infty$ o is p-integrable over I (for $p \in \mathbb{N}^*$) if $\int_I |f(t)|^p dt < +\infty$

We usually denote as $\mathcal{L}^p(I)$ the vector space of p-integrable functions over I.

 $\Rightarrow \mathcal{L}^2(I)$ is the space of square-integrable functions over I: $\int |f(t)|^2 dt < +\infty$

In signal processing, the quantity $E_x = \int_{t} |x(t)|^2 dt$ is the energy of the signal over I.

 $\Rightarrow \mathcal{L}^2(I)$ is the space of signals with finite energy over I. In practice, we work in $\mathcal{L}^2(\mathbb{R})$, the space of signals with finite energy over \mathbb{R} .

G. Tochon (LRE)

A dot product can be defined in the vector space (we call it a functional space) $\mathcal{L}^2(\mathbb{R})$.

Dot product (Hermitian product, to be precise...) between two signals of finite energy

The mapping
$$\langle \; , \; \rangle : \; \mathcal{L}^2(\mathbb{R}) \times \mathcal{L}^2(\mathbb{R}) \; \to \; \mathbb{C}$$

$$(x,y) \qquad \mapsto \qquad \overline{\langle x,y \rangle = \int_{\mathbb{R}} x(t) \overline{y(t)} dt}$$

is a dot product on the space $\mathcal{L}^2(\mathbb{R})$ of signals with finite energy.

A dot product can be defined in the vector space (we call it a functional space) $\mathcal{L}^2(\mathbb{R})$.

Dot product (Hermitian product, to be precise...) between two signals of finite energy

The mapping
$$\langle \; , \; \rangle : \; \mathcal{L}^2(\mathbb{R}) \times \mathcal{L}^2(\mathbb{R}) \; \to \; \mathbb{C}$$

$$(x,y) \qquad \mapsto \qquad \boxed{\langle x,y \rangle = \int_{\mathbb{R}} x(t) \overline{y(t)} dt}$$

is a dot product on the space $\mathcal{L}^2(\mathbb{R})$ of signals with finite energy.

Remarks:

- If the signals are real-valued $(x(t),y(t)\in\mathbb{R}),\ \langle x,y\rangle=\int_{\mathbb{R}}x(t)y(t)dt$
- Although it's an abuse of notation (by the way, why?), we will allow ourselves to write $\langle x(t), y(t) \rangle$ instead of $\langle x, y \rangle$ for the dot product between signals x and y.

Exercise: You can check yourself that this definition satisfies the axioms of the dot product.

G. Tochon (LRE) ITSI♥ 6/11

From any dot product $\langle \ , \ \rangle$ can be defined a norm $\| \cdot \| : x \mapsto \| x \| = \sqrt{\langle x, x \rangle}$

Norm of a signal with finite energy

Let
$$x \in \mathcal{L}^2(\mathbb{R})$$
,

$$||x||^2 = \langle x, x \rangle = \int_{\mathbb{R}} x(t) \overline{x(t)} dt = \int_{\mathbb{R}} |x(t)|^2 dt = E_x < +\infty \text{ (since } x \in \mathcal{L}^2(\mathbb{R}))$$

$$E_x = ||x||^2 \Rightarrow \text{energy (signal)} = \text{square of the norm (mathematics)}.$$

From any dot product $\langle \ , \ \rangle$ can be defined a norm $\| \cdot \| : x \mapsto \|x\| = \sqrt{\langle x, x \rangle}$

Norm of a signal with finite energy

Let
$$x \in \mathcal{L}^2(\mathbb{R})$$
,

$$\|x\|^2 = \langle x, x \rangle = \int_{\mathbb{R}} x(t) \overline{x(t)} dt = \int_{\mathbb{R}} |x(t)|^2 dt = E_x < +\infty \text{ (since } x \in \mathcal{L}^2(\mathbb{R}))$$

$$E_x = ||x||^2 \Rightarrow \text{energy (signal)} = \text{square of the norm (mathematics)}.$$

Example: Let's consider the *window* function with width $T: \Pi_T(t) = \begin{cases} 1 & t \in [-\frac{T}{2}, \frac{T}{2}] \\ 0 & \text{otherwise} \end{cases}$

What is the energy of $x: t \mapsto A\Pi_T(t), A > 0$?

From any dot product $\langle \ , \ \rangle$ can be defined a norm $\| \cdot \| : x \mapsto \| x \| = \sqrt{\langle x, x \rangle}$

Norm of a signal with finite energy

Let
$$x \in \mathcal{L}^2(\mathbb{R})$$
,

$$||x||^2 = \langle x, x \rangle = \int_{\mathbb{R}} x(t) \overline{x(t)} dt = \int_{\mathbb{R}} |x(t)|^2 dt = E_x < +\infty \text{ (since } x \in \mathcal{L}^2(\mathbb{R}))$$

$$|E_x = ||x||^2$$
 \Rightarrow energy (signal) = square of the norm (mathematics).

Example: Let's consider the *window* function with width $T: \Pi_T(t) = \begin{cases} 1 & t \in [-\frac{T}{2}, \frac{T}{2}] \\ 0 & \text{otherwise} \end{cases}$

What is the energy of $x: t \mapsto A\Pi_T(t), A > 0$?

7/11

$$E_x = \int_{\mathbb{R}} |x(t)|^2 dt = \int_{-T/2}^{T/2} A^2 dt = \boxed{A^2 T}$$

G. Tochon (LRE)

The importance of signal support for energy calculation

In general, any signal with bounded support has finite energy (since by definition, the signal $\exists B > 0$ such that $|x(t)| = 0 \ \forall |t| > B$

has bounded magnitude).

The importance of signal support for energy calculation

In general, any signal with bounded support has finite energy (since by definition, the signal $\exists B > 0$ such that $|x(t)| = 0 \ \forall |t| > B$

has bounded magnitude).

What about a signal with unbounded support? (w)

For example, $x:t\mapsto\cos(\omega t)$ (recall: angular frequency $\omega=rac{2\pi}{ au}=2\pi
u$ with T period and u frequency)

The importance of signal support for energy calculation

In general, any signal with bounded support has finite energy (since by definition, the signal $\exists B > 0$ such that $|x(t)| = 0 \ \forall |t| > B$

has bounded magnitude).

What about a signal with unbounded support? (w)

For example, $x:t\mapsto\cos(\omega t)$ (recall: angular frequency $\omega=\frac{2\pi}{\tau}=2\pi\nu$ with T period and ν frequency)

$$E_x = \int_{\mathbb{R}} |x(t)|^2 dt = \int_{-\infty}^{+\infty} \cos^2(\omega t) dt = \boxed{+\infty}$$

G. Tochon (LRE)

What about signals with unbounded support?

- $o t \mapsto \cos(\omega t)$ is not of finite energy. The same goes for $t \mapsto \sin(\omega t)$...
- \rightarrow ...and any linear combination of cos/sin, regardless of their amplitude and frequency/angular frequency/period.

What about signals with unbounded support?

- o $t\mapsto \cos(\omega t)$ is not of finite energy. The same goes for $t\mapsto \sin(\omega t)...$
- → ...and any linear combination of cos/sin, regardless of their amplitude and frequency/angular frequency/period.

 \rightarrow Therefore, (see the lecture on Fourier Series) for any T-periodic signal (except $x(t) = 0 \ \forall t...$)

What about signals with unbounded support?

- o $t\mapsto \cos(\omega t)$ is not of finite energy. The same goes for $t\mapsto \sin(\omega t)...$
- \rightarrow ...and any linear combination of \cos/\sin , regardless of their amplitude and frequency/angular frequency/period.

 \rightarrow Therefore, (see the lecture on Fourier Series) for any T-periodic signal (except $x(t) = 0 \ \forall t...$)

The space of signals with finite energy $\mathcal{L}^2(\mathbb{R})$ is not sufficiently exhaustive to allow a general description of the signals commonly encountered in signal processing.

G. Tochon (LRE) ITSI♥ 9 / 11

Mean power

Mean power of a signal

The **mean power** of a signal x is the temporal average of its energy:

$$P_{x} = \lim_{T \to +\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^{2} dt$$

We say that x has **finite mean power** if $P_x < +\infty$, and we denote $\mathcal{L}^{pm}(\mathbb{R})$ the space of signals with finite mean power (it is also a vector space).

Mean power

Mean power of a signal

The **mean power** of a signal x is the temporal average of its energy:

$$P_{x} = \lim_{T \to +\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^{2} dt$$

We say that x has **finite mean power** if $P_x < +\infty$, and we denote $\mathcal{L}^{pm}(\mathbb{R})$ the space of signals with finite mean power (it is also a vector space).

Remarks:

- This relates to the interpretation of power in physics $(1W = 1 \text{ J.s}^{-1})$.
- $\langle , \rangle : (x,y) \mapsto \langle x,y \rangle = \lim_{T \to +\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \overline{y(t)} dt \text{ is a dot product in } \mathcal{L}^{pm}(\mathbb{R}).$
- In $\mathcal{L}^{pm}(\mathbb{R})$ endowed with this dot product, we have $\langle x,x\rangle = \boxed{\|x\|^2 = P_x}$
- If x is T-periodic, then $P_{x} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^{2} dt = \frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt$
 - ightarrow the mean power is calculated over a single period.

G. Tochon (LRE) ITSI♥ 10 / 11

Relationship between $\mathcal{L}^2(\mathbb{R})$ and $\mathcal{L}^{pm}(\mathbb{R})$

Relationship between energy and mean power

Any signal x with finite energy $E_x < +\infty$ has zero mean power $P_x = 0$ (hence finite). Any signal x with positive finite mean power $0 < P_x < +\infty$ has infinite energy $E_x = +\infty$.

The space of signals with finite mean power $\mathcal{L}^{pm}(\mathbb{R})$ includes the space of signals with finite energy $\mathcal{L}^2(\mathbb{R})$, while providing a broader framework that also includes T-periodic signals.

G. Tochon (LRE) ITSI♥ 11/11