

CLAIMS:

What is claimed is:

1. A method comprising:
 - measuring one or more performance characteristics associated with each of at least a subset of a plurality of targets in a wireless communication system; and
 - selectively building one or more clusters, each cluster including one or more target(s) and which share wireless communication channel(s), based at least in part on the performance characteristics.
2. A method according to claim 1, wherein the performance characteristics include one or more of a signal to interference and noise ratio (SINR), a signal to noise ratio (SNR) a received signal strength indication (RSSI), a bit-error rate (BER) and/or a frame-error rate (FER).
3. A method according to claim 1, wherein each cluster is comprised of up to M targets and each communication channel accommodates up to N targets, the method of building one or more cluster(s) further comprising:
 - assigning at least a subset of up to N targets to a first communication channel resource;
 - and
 - selectively assigning subset(s) of a remaining (M-N) targets to share additional communication channel resource(s) within the cluster.
4. A method according to claim 1, wherein measuring the performance characteristics comprises:

3 initializing K sets of weights;
4 estimating the signal to interference and noise ratio (SINR) for each target for each of the
5 K weights; and
6 selecting one of the K weights for each of the targets that maximizes each targets SINR,
7 to produce K clusters of targets based, at least in part, on each target's SINR.

1
2 5. A method according to claim 4, further comprising:
3 identifying a target within each of the cluster(s) with a lowest SINR; and
4 generating a new weight for each of the cluster(s) based, at least in part, on the SINR of
the identified target within the cluster(s).

5
6 6. A method according to claim 5, wherein the new weight is a least-squares weight
7 associated with the identified target.

1
2 7. A method according to claim 5, further comprising:
3 estimating the performance characteristics of each of the target(s) within each of the
4 cluster(s) using the generated new weight for each of the cluster(s); and
5 regrouping targets according to the weights that provide the best SINR for each of the
targets.

1
2 8. A method according to claim 7, further comprising:

2 iteratively repeating the steps of identifying, generating, estimating and regrouping until
3 no significant improvement in the estimated performance characteristics of the target(s) is
4 identified.

1
2 9. A method according to claim 8, further comprising:
3 selectively monitoring at least a subset of target(s) for changing performance
4 characteristics; and
5 iteratively repeating the steps of identifying, generating, estimating and regrouping until
6 no significant improvement in the estimated performance characteristics of the target(s) is
7 identified.

10. A storage medium comprising content which, when executed by an accessing computing
appliance, implements a method according to claim 1.

11. A communication station comprising:
2 wireless communication resources; and
3 a communication agent, coupled with the wireless communication resources, to populate
4 cluster(s) with one or more target(s) based, at least in part, on one or more estimated
5 performance characteristics associated with the targets, and to develop a weighting value for at
6 least a subset of the populated clusters to generate a transmission beam to target(s) within the
7 cluster(s) based, at least in part, on the developed weighting value.

1 12. A communication station according to claim 11, wherein the wireless communication
2 resources include at least a transmitter subsystem.

1
1 13. A communication station according to claim 11, the communication agent comprising:
2 a clustering engine, to measure one or more performance characteristics associated for
3 each of at least a subset of a plurality of targets in a wireless communication system, and to
4 selectively build one or more clusters, each cluster including one or more target(s) and sharing a
5 wireless communication channel, based at least in part on the performance characteristics.

1
1 14. A communication station according to claim 13, wherein the clustering engine initializes
2 K sets of weights, estimates the signal to interference and noise ratio (SINR) for each target for
3 each of the K weights, and selects one of the K weights for each of the targets that maximizes
4 each targets SINR, to produce K clusters of targets based, at least in part, on each targets SINR.

1
1 15. A communication station according to claim 14, further comprising the clustering engine
2 identifies a target within each of the cluster with a lowest SINR, and dynamically generates a
3 new set of weights based, at least in part, on the SINR of the identified target.

1
1 16. A communication station according to claim 15, wherein the clustering engine calculates
2 the new weight as a least-squares weight associated with the identified target.

1
1 17. A communication station according to claim 15, wherein the clustering engine estimates
2 the performance characteristics of each of the target(s) within each of the cluster(s) using the

3 generated new weight for each of the cluster(s), and regroups targets in clusters according to the
4 weights that provide the best SINR for each of the targets.

1
1 18. A communication station according to claim 17, wherein the clustering engine iteratively
2 repeats the process until further re-grouping of targets fails to produce a significant improvement
3 in the estimated performance characteristics of the targets.

1
1 19. A transceiver according to claim 18, the communications agent further comprising:
2 a beamforming engine, responsive to the clustering engine, to modify one or more
3 attributes of a transmission signal to form a beam directed at target(s) within one or more
cluster(s) based, at least in part, on the generated weight value(s) associated with each cluster.

1
1 20. A communication station according to claim 11, further comprising:
2 a memory subsystem having stored therein content; and
3 control logic, coupled with the memory subsystem, to access and execute at least a subset
of the stored content to implement the communications agent.

1
1 21. In a wireless communication system implementing general packet radio services (GPRS),
2 a method comprising:
3 populating cluster(s) with one or more target(s) based, at least in part, on measured
4 performance characteristics of each of the one or more target(s); and

5 developing a weighting value for at least a subset of the populated clusters to generate a
6 transmission beam to target(s) within the cluster(s) based, at least in part, on the cluster spatial
7 signature.

1
1 22. A method according to claim 21, further comprising:

2 modifying one or more parameters of a wireless communication link signal to form the
3 transmission beam to target(s) within the clusters based, at least in part, on the developed weight
4 values.

1
1 23. A method according to claim 22, further comprising:
2 transmitting the formed transmission beam to an associated one or more cluster(s).

1 24. A method according to claim 21, wherein populating cluster(s) comprises:
2 measuring one or more performance characteristics associated for each of at least a subset
3 of a plurality of targets in a wireless communication system; and
4 selectively building one or more clusters, each cluster including one or more target(s) and
5 sharing a wireless communication channel, based at least in part on the performance
6 characteristics.

1
1 25. A method according to claim 24, wherein measuring the performance characteristics
2 comprises:
3 initializing K sets of weights;

4 estimating the signal to interference and noise ratio (SINR) for each target for each of the
5 K weights; and

6 selecting one of the K weights for each of the targets that maximizes each targets SINR,
7 to produce K clusters of targets based, at least in part, on each targets SINR.

1 26. A method according to claim 25, further comprising:

2 identifying a target within each cluster with a lowest SINR; and

generating a new weight for each of the cluster(s) based, at least in part, on the SINR of
the identified target.

27. A method according to claim 26, wherein the new weight is a least-squares weight associated with the identified target.

28. A method according to claim 26, further comprising:

estimating the performance characteristics of each of the target(s) within each of the cluster(s) using the generated new weight for each of the cluster(s); and

4 regrouping targets according to the weights that provide the best SINR for each of the
5 targets.

1 29. A method according to claim 28, further comprising:

2 iteratively repeating the steps of identifying, generating, estimating and regrouping until
3 no significant improvement in the estimated performance characteristics of the target(s) is
4 identified.

1 30. A storage medium comprising content which, when executed by an accessing computing
2 device, causes the device to implement a method according to claim 21.

1

1

00000000000000000000000000000000