(命名) 实体识别 NER 已有古文预训练模型测评实验报告

数据集

数据集A取自《新五代史》《北史》等古籍,训练集,验证集和测试集分别为21128,2831,2148,平均句长为26,采用BIO,共有5种实体类型,[O,B-NOUN_BOOKNAME,I-NOUN_BOOKNAME,B-NOUN-OTHER]

数据集 B 取自《春秋谷梁传》等古籍,训练集,验证集和测试集分别为 7528, 865, 877, 平均字长为 85, 采用 BIO, 共有 13 种实体类型, [O,B-PER,I-PER,B-ORG,I-ORG,B-LOC,I-LOC, B-JOB,I-JOB,B-WAR, I-WAR, B-BOO, I-BOO]

实验数据下载:

https://github.com/jizijing/C-CLUE https://github.com/Ethan-yt/CCLUE

评价指标

准确率(Accuracy)

Accuracy 是从整体上衡量模型的性能,即模型预测正确的样本占全部样本的比例。它的计算公式如下:

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

其中, TP (True Positive)表示真正例,即模型预测为正例且实际上也为正例的样本数量; FP (False Positive)表示假正例,即模型预测为正例但实际上为负例的样本数量; TN (True Negative)表示真负例,即模型预测为负例且实际上也为负例的样本数量; FN (False Negative)表示假负例,即模型预测为负例但实际上为正例的样本数量。

精确率(Precision)

Precision 关注的是模型预测为正例的样本中有多少是真正的正例。换句话说,它衡量的是模型预测的正例中有多少是正确的,计算公式为:

$$Precision = \frac{TP}{TP + FP}$$

其中,TP(True Positive)表示真正例,即模型预测为正例且实际上也为正例的样本数量;FP(False Positive)表示假正例,即模型预测为正例但实际上为负例的样本数量。

F1 值(F1 Score)

F1 分数是精确率和召回率的调和平均值,用于衡量模型的准确性。它的计算公式如下:

$$F1 = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

其中,精确率 (Precision) 是指模型预测为正例的样本中真正为正例的比例, 召回率 (Recall) 是指所有真正的正例样本中被模型预测为正例的比例。

召回率(Recall)

召回率是指在所有真正的正例样本中,被模型正确预测为正例的比例。它的计算公式如下:

$$Recall = \frac{TP}{TP + FN}$$

其中, TP (True Positive)表示真正例,即模型预测为正例且实际上也为正例的样本数量; FN (False Negative)表示假负例,即模型预测为负例但实际上为正例的样本数量。

Micro-Average

Micro-Average 把所有类别的结果汇总起来计算平均值。它将所有类别的贡献视为等同,因此对于样本量大的类别,Micro-Average 更加敏感。

$$\begin{aligned} &\text{Micro-Average Precision} = \frac{\sum TP}{\sum TP + \sum FP} \\ &\text{Micro-Average Recall} = \frac{\sum TP}{\sum TP + \sum FN} \\ &\text{Micro-Average F1} = 2 \times \frac{(\text{Micro Precision} \times \text{Micro Recall})}{(\text{Micro Precision} + \text{Micro Recall})} \end{aligned}$$

Macro-Average

Macro-Average 分别计算每个类别的性能指标,然后计算这些指标的算术平均值。它给予每个类别同等的权重,无论类别的样本量大小,因此对于样本量小的类别更加敏感。

$$\begin{aligned} &\text{Macro-Average Precision} = \frac{1}{N} \sum \frac{TP_i}{TP_i + FP_i} \\ &\text{Macro-Average Recall} = \frac{1}{N} \sum \frac{TP_i}{TP_i + FN_i} \\ &\text{Macro-Average F1} = \frac{1}{N} \sum 2 \times \frac{(Precision_i \times Recall_i)}{(Precision_i + Recall_i)} \end{aligned}$$

模型 BERT

Pre-training

BertModel 部分包含了 BERT 的所有主要组件,包括词嵌入层、位置嵌入层、令牌类型嵌入层、层归一化层和 Dropout 层。

BertEncoder 部分负责处理输入序列,通过多个 BERT 层来进行特征提取。每个 BERT 层都包含注意力机制和前馈神经网络。

BertForTokenClassification 模型的最后一部分是一个线性分类器,它将 BERT 编码器的输出映射到目标类别的概率分布上。

- **1.Transformer 架构:** BERT 建立在 Transformer 模型的基础上,这是一种使用自注意力机制(Self-Attention Mechanism)的深度神经网络。Transformer 允许模型在处理序列数据时同时关注序列中的所有位置,而不是像传统的循环神经网络 (RNN) 或卷积神经网络 (CNN) 那样逐步处理。
- **2.预训练策略:** BERT 采用了无监督的预训练策略,通过大规模的语言模型预训练来学习丰富的语义表示。该模型通过对大量文本数据进行"遮蔽语言模型" (Masked Language Model, MLM) 任务的预训练,使得模型能够理解词汇和语法结构,并捕捉单词之间的关系。
- **3.双向性:** BERT 在预训练时考虑了双向信息,即使用上下文信息来理解每个词的语义。这种双向性有助于模型更好地理解文本中的语境和关联,提高了对上下文相关性的捕捉。
- **4.Fine-tuning:** 预训练后, BERT 模型可以通过微调 (fine-tuning) 来适应特定的下游任务, 如命名实体识别、情感分析等。这种能力使得 BERT 在各种 NLP 任务中都表现出色, 无需从零开始训练新的模型。
- **5.Contextual Embeddings:** BERT 生成的词向量是上下文相关的,每个词的表示取决于整个输入句子的上下文,而不是简单地从固定的嵌入中获取。这种上下文敏感的嵌入有助于更准确地捕捉语义信息。

实验结果

Bert-ancient-Chinese

训练最终结果

数据集	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
	Precision			Accuracy		Runtime
数据集 A	0.97136	0.9717125	0.9715153	0.97171253	0.15913103	4.3364
	1393018	382262997	15584300	82262997	52087021	
	5667		4			
数据集 B	0.96077	0.9653663	0.9627669	0.96536635	0.17902402	8.1976
	3262497	548752834	35930102	48752834	579784393	
	1154		8			

数	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
据	Average	Average	Average F1	Average	Average	Average F1
集	Precision	Recall		Precision	Recall	
数	0.9717125	0.9717125	0.9717125	0.86732892	0.84781305	0.85739623
据	382262997	382262997	382262997	76579453	26942544	08701384
集						
Α						

数	0.9911334	0.9911334	0.9911334	0.24364633	0.21699121	0.21620752
据	325396826	325396826	325396826	330184382	039347588	290443754
集						
В						

模型介绍和分析

这是一个基于 BERT 的模型,专门训练用于古汉语处理。它适用于古文的语义理解和文本生成,旨在提高对古汉语的处理能力。

训练过程分析

数据集 A

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96585936	0.96730427	0.96617555	0.96730427	0.100911110	3.57
	0425647	04626335	33216788	04626335	63957214	47
4	0.96957562	0.97091859	0.96984057	0.97091859	0.097814753	3.58
	73928118	43060499	83513404	43060499	65161896	27
6	0.97483971	0.97531138	0.97499712	0.97531138	0.100681267	3.58
	18458895	79003559	59961178	79003559	67873764	25
8	0.97293647	0.97350422	0.97316420	0.97350422	0.116496860	3.58
	59002894	59786477	14794695	59786477	98098755	87
10	0.97436761	0.97475533	0.97454029	0.97475533	0.131558805	3.57
	82461154	80782918	8619832	80782918	70411682	85

数据集 B

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96348744	0.96477288	0.96361022	0.96477288	0.082923203	7.62
	17593906	83219955	87355702	83219955	70674133	35
4	0.96117072	0.96819196	0.96345379	0.96819196	0.080839999	7.71
	05126476	42857143	70119926	42857143	02009964	77
6	0.96191096	0.96597753	0.96317378	0.96597753	0.101514406	7.58
	14420617	68480725	84030217	68480725	50224686	57
8	0.96074201	0.96667729	0.96304761	0.96667729	0.130816668	7.58
	33460248	59183674	18906922	59183674	27201843	32
10	0.96081516	0.96500318	0.96260497	0.96500318	0.156035974	7.58
	73880866	87755102	02565307	87755102	62177277	66

SikuRoberta

训练最终结果

数据集	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval	
-----	------	-------------	---------	------	------------------	------	--

	Precision			Accuracy		Runtime
数据集 A	0.96811	0.9683438	0.9682108	0.96834384	0.15556995	4.3383
	2015577	455657493	01617711	55657493	570659637	
	6729		9			
数据集 B	0.96170	0.9659598	0.9635556	0.96595982	0.15483438	8.1275
	5493661	214285714	88824680	14285714	968658447	
	1624		2			

数据集	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
	Average	Average	Average	Average	Average	Average
	Precision	Recall	F1	Precision	Recall	F1
数据集 A	0.968343	0.968343	0.968343	0.836226	0.835406	0.835655
	84556574	84556574	84556574	94752648	76629689	05209439
	93	93	93	86	05	84
数据集 B	0.991106	0.991106	0.991106	0.231851	0.230711	0.221999
	85941043	85941043	85941043	15660763	27190351	41287605
	09	09	09	794	204	457

模型介绍和分析

这个模型是 Siku Quanshu(四库全书)的基础上训练的 RoBERTa 变体。它对古典文献中的文本理解有很强的能力,适合处理古籍和文献分析任务。

训练过程分析

数据集 A

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ОС	Precision			Accuracy		Runt
h						ime
2	0.96370769	0.96394016	0.96373988	0.96394016	0.112768314	3.59
	86681025	90391459	33761893	90391459	77880478	75
4	0.96781548	0.96880560	0.96748257	0.96880560	0.099622294	3.57
	71484845	49822064	52554453	49822064	30675507	92
6	0.97051037	0.97069617	0.97053512	0.97069617	0.112534001	3.56
	10023891	43772242	02725301	43772242	46961212	79
8	0.97274631	0.97333741	0.97298543	0.97333741	0.120456494	3.57
	90910541	10320284	07448372	10320284	39096451	99
10	0.97290976	0.97350422	0.97314598	0.97350422	0.139481723	3.58
	87048657	59786477	18475224	59786477	30856323	32

数据集 B

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96122561	0.96793509	0.96301542	0.96793509	0.080131962	7.49
	92641184	07029478	82453001	07029478	89539337	49
4	0.96121514	0.96965348	0.96223684	0.96965348	0.079407051	7.74
	59441082	63945578	60374825	63945578	20563507	77

6	0.96174086	0.96769593	0.96372869	0.96769593	0.090674847	7.79
	35243314	25396826	30779716	25396826	36442566	6
8	0.96191942	0.96650899	0.96386045	0.96650899	0.117915615	7.70
	89796517	94331065	28771143	94331065	43941498	83
10	0.96180479	0.96613697	0.96355845	0.96613697	0.130092933	7.91
	87592484	56235828	47151035	56235828	77399445	48

AnchiBERT

训练最终结果

数据集	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
	Precision			Accuracy		Runtime
数据集 A	0.96394	0.9646167	0.9642436	0.96461678	0.18482051	3.9459
	0242927	813455657	22737465	13455657	78976059	
	4961					
数据集 B	0.96140	0.9663495	0.9634749	0.96634956	0.16236752	7.9751
	6071894	606575964	39687441	06575964	271652222	
	0829					

数	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
据	Average	Average	Average F1	Average	Average	Average F1
集	Precision	Recall		Precision	Recall	
数	0.9646167	0.9646167	0.9646167	0.8273717	0.80382831	0.81531084
据	813455657	813455657	813455657	706255621	03729272	07512697
集						
Α						
数	0.9911068	0.9911068	0.9911068	0.2512589	0.24764968	0.23697334
据	594104309	594104309	594104309	632357055	296968584	205426301
集						
В						

模型介绍和分析

AnchiBERT 是针对古代汉语的 BERT 变体,提供了对古汉语语料的更深入的理解。它优化了 BERT 架构以适应古汉语的特殊需求,适合古文翻译和解析。

训练过程分析

数据集 A

~~~	14					
Еp	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.95918495	0.96146574	0.95983018	0.96146574	0.116816453	3.08
	04729812	73309609	22708686	73309609	6356926	97
4	0.96398771	0.96527468	0.96426760	0.96527468	0.110925152	3.13
	51221328	86120996	70302236	86120996	89783478	4
6	0.96665166	0.96719306	0.96687019	0.96719306	0.120304748	3.14

	36368039	04982206	72485794	04982206	41594696	27
8	0.96622835	0.96752669	0.96662462	0.96752669	0.133583903	3.06
	21442985	03914591	75754931	03914591	3126831	76
10	0.96876239	0.96950066	0.96908259	0.96950066	0.154163137	3.05
	78945292	72597865	48759366	72597865	07828522	11

# 数据集 B

Ep	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96407831	0.96525120	0.96390404	0.96525120	0.082221254	9.69
	97007398	46485261	02066386	46485261	70638275	45
4	0.96121962	0.96908659	0.96293416	0.96908659	0.081010073	9.34
	33374363	29705216	77537446	29705216	42338562	74
6	0.96147254	0.96737705	0.96339996	0.96737705	0.092464007	7.18
	17305747	49886621	4029979	49886621	43722916	56
8	0.96124318	0.96758964	0.96360780	0.96758964	0.134863793	6.72
	50099584	00226758	31217096	00226758	84994507	07
10	0.96141629	0.96671272	0.96350522	0.96671272	0.137260258	6.67
	98781131	67573696	48092323	67573696	19778442	15

# guwenbert-base

# 训练最终结果

数	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
据	Precision			Accuracy		Runt
集						ime
数	0.898053521	0.916260512	0.900511550	0.916260512	0.304275244	4.35
据	4526109	2324159	865519	2324159	474411	13
集						
Α						
数	0.950169384	0.961734693	0.954995042	0.961734693	0.138649314	8.13
据	2044238	8775511	3377727	8775511	64195251	59
集						
В						

数	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
据	Average	Average	Average F1	Average	Average	Average F1
集	Precision	Recall		Precision	Recall	
数	0.9162605	0.9162605	0.9162605	0.65320906	0.3968061	0.46904291
据	122324159	122324159	122324159	79952062	30054585	833949097
集						
Α						
数	0.9959254	0.9959254	0.9959254	0.40479139	0.4110982	0.39143839

据	535147393	535147393	535147393	253470026	524602927	70521158
集						
В						

# 模型介绍和分析

guwenbert-base 是一个专门为古文设计的 BERT 模型。它利用大量古文语料进行训练,目标是提高古文文本的理解和处理能力。

# 训练过程分析

# 数据集 A

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.88993566	0.91089301	0.88743998	0.91089301	0.309937715	3.59
	8553033	60142349	1938873	60142349	5303955	96
4	0.89305626	0.90991992	0.89471244	0.90991992	0.300072461	3.56
	64726759	88256228	62689304	88256228	36665344	99
6	0.90708220	0.91912255	0.89589779	0.91912255	0.268147557	3.59
	79888535	3380783	44838243	3380783	9738617	73
8	0.90260813	0.91901134	0.90129137	0.91901134	0.275513738	3.59
	84861598	34163701	17862462	34163701	39378357	42
10	0.89985575	0.91687055	0.90256739	0.91687055	0.274761795	3.61
	31360152	16014235	21036375	16014235	99761963	35

# 数据集 B

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ОС	Precision			Accuracy		Runt
h						ime
2	0.94552006	0.96649128	0.95032479	0.96649128	0.140512719	7.74
	07648422	40136054	65618769	40136054	75040436	32
4	0.94603859	0.96634070	0.95133111	0.96634070	0.132223919	7.87
	29088998	29478458	15749682	29478458	0340042	83
6	0.95016825	0.96620783	0.95269547	0.96620783	0.129454582	7.74
	54545535	73015873	70627326	73015873	9296112	6
8	0.94849990	0.96533092	0.95391513	0.96533092	0.132991135	7.56
	6885771	40362812	5909169	40362812	12039185	74
10	0.94886820	0.96336451	0.95444981	0.96336451	0.136606112	7.58
	87282262	24716553	17034105	24716553	1225357	82

# 比较分析

# 数据集 A













# guwenbert-base

guwenbert-base 在各方面表现较差。

### **Bert-ancient-Chinese**

Bert-ancient-Chinese 在整个训练中效果最好。

### **AnchiBERT**

AnchiBERT 在整个训练中不如 SikuRoberta 和 Bert-ancient-Chinese, 但是时间最短。

### SikuRoberta

SikuRoberta 各项指标稍逊于 Bert-ancient-Chinese, 训练效果相对优秀。

# 数据集 B













### guwenbert-base

guwenbert-base 在各方面表现不如其他三个模型。

#### Bert-ancient-Chinese

Bert-ancient-Chinese 在 precision 和 f1 的表现与 AnchiBERT 和 SikuRoberta 类似,在后续 epoch 中相较于 SikuRoberta 更加平稳,表现相对不错。

#### **AnchiBERT**

anchbert 在其他方面表现不错,但在 runtime 中不太稳定。

#### SikuRoberta

SikuRoberta 在 precision 和 f1 的表现与 AnchiBERT 和 SikuRoberta 类似,表现相对不错。

#### 综合比较

Bert-ancient-Chinese 和 SikuRoberta 表现都相对出色,Bert-ancient-Chinese 在后续 epoch 中更加平稳。

## 实验整体分析

### 数据集 A

模型	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
	Average	Average	Average	Average	Average	Average F1
	Precision	Recall	F1	Precision	Recall	
Bert-	0.9717125	0.9717125	0.9717125	0.8673289	0.8478130	0.8573962
ancie	38226299	38226299	38226299	27657945	52694254	308701384
nt-	7	7	7	3	4	
Chine						
se						
SikuR	0.9683438	0.9683438	0.9683438	0.8362269	0.8354067	0.8356550

obert	45565749	45565749	45565749	47526488	66296890	520943984
a	3	3	3	6	5	
Anchi	0.9646167	0.9646167	0.9646167	0.8273717	0.8038283	0.8153108
BERT	81345565	81345565	81345565	70625562	10372927	407512697
	7	7	7	1	2	
guwe	0.9162605	0.9162605	0.9162605	0.6532090	0.3968061	0.4690429
_		0.0000	0.0000	0.000	0.00000	
nbert	12232415	12232415	12232415	67995206	30054585	183394909

#### 数据集 B

模型	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
	Average	Average	Average	Average	Average	Average F1
	Precision	Recall	F1	Precision	Recall	
Bert-	0.9629373	0.9629373	0.9629373	0.4463562	0.3469447	0.3858195
ancie	50478468	50478468	50478468	23356897	37913422	247664353
nt-	8	8	8	7	5	3
Chine						
se						
SikuR	0.9640774	0.9640774	0.9640774	0.6133806	0.3840230	0.4477773
obert	5215311	5215311	5215311	35777134	41465861	397719211
a				8	5	3
Anchi	0.9632177	0.9632177	0.9632177	0.4179623	0.3378474	0.3702823
BERT	03349282	03349282	03349282	60384415	05702294	300980698
	3	3	3	6	1	
guwe	0.9600029	0.9600029	0.9600029	0.3253865	0.2004047	0.2373501
nbert	90430622	90430622	90430622	76678924	49296543	789184325
-base						

Micro-Average 指标反映了所有类别的总体性能,这意味着在考虑样本不平衡的情况下,Bert-ancient-Chinese 在数据集 A 中的各项指标都是最高的,说明在整体上取得了最好的平衡性能。 在数据集 B 中指标相差不大。

Macro-Average 指标展示了模型对所有类别同等对待的性能, Bert-ancient-Chinese 在数据集 A 中的各项指标都是最高的,表明其对于少数类别的识别能力较强。 在数据集 B 中指标相差不大。