Security - Encryption Scheme

Problem Statement

An $encryption\ scheme$ consists of a set $\{E_e:e\in K\}$ and a corresponding set $\{D_d:d\in K\}$ of encrypting and decrypting functions respectively such that for each $e\in K$, there is a unique key $d\in K$ such that $D_d=E_e^{-1}$. An encryption scheme is also referred to as a cipher.

It should be clear that every e is actually a representative of some bijection from M to C. In this task you have to count the number of such bijections and hence the number of keys which produce different encryption functions.

Assume that |M| = |C| = n which is given as the input.

Constraints

 $1 \le n \le 10$

Input Format

Input consists of a single positive integer n.

Output Format

Output a single positive integer, the number of bijections.

Sample Input

3

Sample Output

6

Explanation

Here let us assume that $M=\{1,2,3\}$ and $C=\{3,2,1\}$

We can have encryption schemes such that 1 can be mapped to 3 or 2 or 1, 2 can be mapped to the remaining 2 and 1 can be mapped to the unmapped one.

This accounts for 3 * 2 * 1 = 6 such encryption functions.