Name: Omer Abid

Erp: 14922

Forecast:

Options Used to Create Forecasts

Time series: Month of Installment.Payment.Date

Measures: Sum of Total.Paid

Forecast forward: 15 months (October 2019 – December 2020)

Forecast based on: January 2017 - September 2019

Ignore last: 1 month (October 2019)

Seasonal pattern: 12 month cycle

Sum of Total.Paid

l	Initial Change From Initial		Seasona	al Effect	Contribution	
	October 2019	October 2019 – December 2020	High	Low	Trend Season	Quality
	109,456,102 ± 26,439,459	107,972,733	December 2020 2	January 2020 1	0.0% 100.0%	Ok

All forecasts were computed using exponential smoothing.

Sum of Total.Paid

	Model		Quality Metrics Smoothing Co			ning Co	efficients				
Level	Trend	Season	RMSE	MAE	MASE	MAPE	AIC	Alpha	Beta	Gamma	
Multiplicative	None	Multiplicative	21 790 264	16 472 100	0.50	11.9%	1 145	0.292	0.000	0.000	

Options Used to Create Forecasts

Time series: Week of Installment.Payment.Date

Measures: Sum of Total.Paid

Forecast forward: 25 weeks (October 13, 2019 – March 29, 2020)

Forecast based on: January 8, 2017 – October 6, 2019

Ignore last: 1 week (October 13, 2019)

Seasonal pattern: 13 week cycle

Sum of Total.Paid

Initial	Change From Initial	Seasonal Effe	Contribution		
October 13, 2019	October 13, 2019 - March 29, 2020	High	Low	Trend Season	Quality
23,139,097 ± 23,504,834	204,358	March 22, 2020 31,707,782 March	1, 2020 -16,093,054	0.0% 100.0%	Ok

Copy to Clipboard Learn more about the forecast summary

Close

All forecasts were computed using exponential smoothing.

Sum of Total.Paid

Model		Quality N	/letrics			Smooth	ning Co	efficients	ì
Level Trend Season	RMSE	MAE	MASE	MAPE AIC		Alpha	Beta	Gamma	
Additive None Additive	14,289,924	10,404,191	0.80	50.9% 4,77	7	0.046	0.000	0.265	

Interpretation: I made two forecasts, one for the monthly and other for the weekly trend. I used installment payment date as my date variable. Next, I added a filter to it, since I had seen some outlier in the total paid amount, so I used this filter to remove it and through filter I tried to increase the quality of forecast by picking up data that was more useful for the modal, which better showed the trends of total paid amounts. So as a result, I set the filter to get data starting 2017. Both of my models were said to be 'OK' by tableau. It is also visible from the line chart that the forecast somewhat captures the trend of total paid amount since the line follows a similar pattern. One thing that is visible from the outputs of the modals is that in both, Trend is not present from a time series point of view, but the Seasonality is present which is also evident from the line graph. Next the weekly forecast uses an additive approach for season and level, while monthly forecast uses a multiplicative approach for these. Finally, the RMSE and AIC both are towards the high side for both the forecasts which is not very good.

Clustering:

	Sum of Installment.	Amount	
Variables:	Sum of Premium A		
Level of Detail	: Not Aggregated	oan	
Scaling:	Normalized		
Summary Di	agnostics		
		3	
Number of Clu			
Number of Poi		57019	
	Sum of Squares:		
Within-group Sum of Squares:			
		4.6701	
Total Sum of S		10.727	
		10.727	nters
		10.727 Cei	nters nt Sum of Premium.Amoun
Total Sum of S	quares:	10.727 Cei	
Total Sum of S	quares: Number of Items	10.727 Cei Sum of Installment.Amour	nt Sum of Premium.Amoun
Total Sum of S Clusters Cluster 1	Number of Items	Sum of Installment.Amour 6.358e+05	nt Sum of Premium.Amoun 5.07e+05
Clusters Cluster 1 Cluster 2	Number of Items 14 56970	10.727	nt Sum of Premium.Amoun 5.07e+05 73896.0

Analysis of Variance:						
			Model		Error	
Variable					Sum of Squares	DF
Sum of Premium.Amount		0.0	3.418	2	5.851	57016
Sum of Installment.Amount	1.543e+04	0.0	2.638	2	4.875	57016
ppy to Clipboard Learn more about the cluster m						Close

Interpretation: So, I used premium amount paid versus installment as the two KPIs which made the most sense for me for making clusters of customer payment pattern. Three clusters were made and showed three type of people as can be seen in the screen shot:

The ones in red had medium to high premium amounts but zero installment amounts, second in yellow had both the amount in the low category and third in blue had medium to high installment amounts but zero premium amounts.

I tried to make a story out of this to show the use of the clustering, the first chart on the left bottom shows that the cluster which had the low amount for both premium and installment in fact were the people who paid the highest in total, so this tells that these people are very important. We can further drill our analysis from the chart at the bottom right that then these are the people whose average age is somewhere around 40 which further helps to build a customer profile to target.

Lastly coming on to description of model, we see that Anova is used for the clustering and both the variables are significant which is good.