Engineering Rank and Select Queries on Wavelet Trees

Roland Larsen Pedersen

Datalogi, Aarhus Universitet

Thesis defence

June 25, 2015

Overview

- What is a Wavelet Tree?
 - Definitions
 - Constructing the Wavelet Tree
- Queries
 - Rank
 - Select
- 3 Applications
 - Information Retrieval and Compression
- 4 Experiments and Results
- Conclusion

Wavelet Tree

What is a wavelet tree?

Wavelet Tree: Definitions

- Balanced binary tree.
- Stores a sequence $S[1, n] = c_1 c_2 c_3 \dots c_n$ of symbols $c_i \in \Sigma$, where $\Sigma = [1 \dots \sigma]$ is the alphabet of S.
- Height $h = \lceil \log \sigma \rceil$.
- $2\sigma 1$ nodes
- Construction time: $O(n \log \sigma)$
- Memory usage: $O(n \log \sigma + \sigma \cdot ws)$ bits.

Constructing the Wavelet Tree

- The wavelet tree is constructed recursively.
- Each node calculates the middle character of Σ and uses it to set the bits in the bitmap and split S in two substrings S_{left} and S_{right} .

 $S = adsfadaadsfaads, \Sigma = adfs$

Wavelet Tree

Queries

Wavelet Tree: Queries

- The wavelet tree supports three queries:
 - Access(p): Return the character c at position p in sequence S.
 - Running time: $O(n \log \sigma)$.
 - Rank(c, p): Return the number of occurrences of character c in S up to position p.
 - Running time: $O(n \log \sigma)$.
 - Select(c, o): Return the position of the oth occurrence of character c in S.
 - Running time: $O(n \log \sigma)$

Rank on a Wavelet Tree

Select on a Wavelet Tree

Wavelet Tree: Applications

Applications

Information Retrieval: Applications

- Information Retrieval
 - Positional inverted index.
 - For each word: Return positions of occurrences.
 - Document retrieval.
 - Return what document a word appears in.
 - Range Quantile Query.
 - Return the kth smallest number within a subsequence of a given sequence of elements.
 - FM-count.
 - Return number of occurrences of a pattern p in S.

Compression: Applications

Compression

- Zero-order entropy compression (H_0) using a RLE Wavelet Tree or a Huffman Shaped Wavelet Tree.
- Higher-order entropy compression (H_k) using Burrows-Wheeler transformation and a RLE wavelet tree.
- $H_k <= H_0 <= \log \sigma$.

Compression: Run-length encoding

- Example: RLE(aaaaabbbaacccccaaaaa) = a5,b3,a2,c5,a5.
- Binary example: RLE(0000000001111100000) = 10, 5, 5
- Query by reversing RLE. It takes linear time O(n) to reverse. Rank and select query time becomes $O(2n\log\sigma) = O(n\log\sigma)$
- Space complexity $O(nH_0(S))$

RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(a) Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(b) RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

Compression: Burrows-Wheeler transform

- BWT permutes the order of the characters. If the original string had several substrings that occurred often, then the transformed string will have several places where a single character is repeated multiple times in a row.
- As a result it groups symbols more which improves the effect of Run-length encoding
- BWT is reversible
- Combined with RLE Wavelet Tree it achieves H_k compression.

BWT example

S = bananahat.

bananahat#[†] ananahat#b nanahat#ba anahat#ban nahat#bana ahat#banan hat#banana at#bananah t#bananaha #bananahat $\lceil \# \mathit{bananaha} \mathbf{t}
ceil$ ahat#banan anahat#ban ananahat#**b** at#bananah bananahat# hat#banana nahat#bana nanahat#ba t#bananah**a**

BWT(S) = tnnbhaaaa.

Burrows-Wheeler reverse transform example

$$S = dca$$

$$M = \begin{bmatrix} dca\#\\ ca\#d\\ a\#dc\\ \#dca \end{bmatrix} \Rightarrow M' = \begin{bmatrix} \#dc\mathbf{a}\\ a\#d\mathbf{c}\\ ca\#\mathbf{d}\\ dca\# \end{bmatrix}$$

BWT(S) = acd

Reverse BWT:

Neverse DVV I.							
Add 1	Sort 1	Add 2	Sort 2	Add 3	Sort 3	Add 4	Sort 4
а	#	a#	#d	a#d	#dc	a#dc	#dca
С	a	са	a#	ca#	a#d	ca#d	a#dc
d	С	dc	ca	dca	ca#	dca#	ca#d
#	d	#d	dc	#dc	dca	#dca	dca#

^{*# =} end of line character

RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(a) RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(b) BWT RLE Wavelet Tree on string tnnbhaaaa with alphabet $\Sigma = abhnt$

Huffman shaped wavelet tree

- Use Huffman codes of symbols to shape the tree.
- Most frequent symbols at the top of the tree.
- Least frequent symbols at the bottom of the tree.
- Best using non-uniformly distributed data like a natural language text.

Huffman Shaped Wavelet Tree: Example

(a) Balanced Wavelet tree: 39 bits

(b) Huffman-shaped wavelet tree: 22 bits

Huffman Shaped WT: Space complexity

- Balanced version: $O(n \log \sigma + \sigma \cdot ws)$ bits
- Huffman-shaped: $O(n(H_0(S) + 1) + \sigma \cdot ws)$ bits. [Efficient Compressed Wavelet Trees over Large Alphabets by Navarro et al.]

Experiments and Results

Experiments and Results

Focus of experiments

- Focus on optimizing and observing the effect of hardware penalties.
 - Cache Misses.
 - Branch Mispredictions.
 - Translation Lookaside Buffer (TLB) Misses.

Experiments

- Calculate binary rank and select using popcount.
- Pre-compute binary rank values in blocks.
- Concatenate bitmaps and Page-align blocks.
- Block size dependence on input n.
- Pre-compute cumulative sums of rank values.

Calculate binary rank and select using popcount

- Rank: Running time $O(n \log \sigma)$.
- Select: Running time $O(n \log \sigma)$.

Pre-compute binary rank values in blocks

- Rank: Running time $O((\frac{n}{b} + b) \log \sigma)$.
- Select: Running time $O((\frac{n}{b} + b) \log \sigma)$.

Figure : Comparison of wall time of rank and select queries between SimpleNaive not using precomputed values and UnalignedNaive using precomputed values.

26 / 37

The various precomputed versions

Name	Concatenated Bitmaps	Page-aligned Blocks
Preallocated	yes	yes
UnalignedPreallocated	yes	no
Naive	no	yes
UnalignedNaive	no	no

Running time: Pre-compute binary rank values in blocks

(a) Rank: Running Time

(b) Select: Running Time

Best Block size: $\frac{1}{2}$ page size $= \frac{1}{2} * 4096$ bytes = 2048 bytes.

Rank and select TLB misses

- Naive does reduce TLB misses because of page alignment.
- Concatenated bitmaps reduces TLB misses, but page-aligning does not have much effect.

Memory usage: Pre-compute binary rank values in blocks

• There are $O(\frac{n}{b})$ blocks per level of the tree, and so an extra memory consumption of $O(\frac{n}{b}\log\sigma)$ words making the total memory consumption $O(n\log\sigma + (\sigma + \frac{n}{b}\log\sigma) \cdot ws)$ bits.

Block size dependence on input size n

- Costs $O(\frac{n}{b} + b)$ to calculate the binary rank.
- Costs $O(\frac{n}{b})$ to scan the blocks, and O(b) to calculate the rank within a single block using popcount.
- Optimal block size $b = \sqrt{n}$.
- A wavelet tree has many bitmaps of varying sizes n.

Experiment: Block size dependence on input size n for Rank

Cumulative sum

- Each block contain sum of previous blocks.
- Binary rank in O(b) time in stead of $O(\frac{n}{b} + b)$ time.
- Binary search in select.
- Work per level change from $O(\frac{n}{b} + b)$ to $O(\log \frac{n}{b} + b)$. Select query total work $O((\log \frac{n}{b} + b) \log \sigma)$.
- Best block size does not depend on n for Rank.
- A block size below 64 bits should not be an improvement because popcount works on words of size 64 bits.

Cumulative sum: Rank and Select running time

Conclusion: What did we learn?

- What effect hardware can have on running time and memory.
- How to do tests and how to show their results in an understandable way.
- The wavelet tree has many applications.
- The wavelet tree is great for compression of natural language texts.
- Choosing the right test parameters and what data to use can be difficult.
- How to do literature search and how important it is.
- In general, improvements that reduced the raw amount of computations and memory accesses needed were a big improvement.
- That a simple concept can be very difficult to implement.
- Gained experience with profilers and hardware measurement tools (cachegrind, PAPI, Massif)

Conclusion: Problems and questions we faced

- Should we use uniform or non-uniform data?
- How should non-uniform data be distributed?
- How large alphabet and input size should we use?
- Debugging implementation errors in c++
- Making the implementations work
- Should we have focused on compression in stead?
- PAPI produced weird memory measurements. Figuring out what was wrong took some time.
- How to avoid introducing bias in tests.

The End