Foundations of Modern Machine Learning

Syllabus Outline

1	Representation and Learning 1.1 Feature Vectors, Feature Spaces 1.2 Feature Extraction 1.3 Learning Problem Formulation
2	Appreciating and Interpreting Data 2.1 Dimensionality Reduction
3	Classification 3.1 Nearest Neighbour methods
4	Experimentation Methods 4.1 Training, Testing and Validation 4.2 Overfitting and Generalization 4.3 Feature Engineering 4.4 Performance Metrics
5	Probabilistic Methods 5.1 Bayes and Naive Bayes Classifiers
6	Unsupervised Learning and Clustering 6.1 K-Means, EM and Mixture Model Fitting
7	Regression 7.1 Linear and Logistic Regression
8	Neural Networks 8.1 Multilayer Perceptrons
9	Deep Neural Networks 9.1 Convolutional Neural Networks 9.2 Recurrent Neural Networks 9.3 Autoencoders