Mendelova univerzita v Brně Provozně ekonomická fakulta

Řízení autonomního agenta pomocí neuroevoluce

Diplomová práce

Vedoucí práce: Ing. Jiří Lýsek, Ph.D.

Bc. Martin Hnátek

Čestné prohlášení

Prohlašuji, že jsem práci: **Řízení autonomního agenta pomocí neuroevoluce** vypracoval samostatně a veškeré použité prameny a informace uvádím v seznamu použité literatury. Souhlasím, aby moje práce byla zveřejněna v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, a v souladu s platnou *Směrnicí o zveřejňování vysokoškolských závěrečných prací*.

Jsem si vědom, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzavření licenční smlouvy a užití této práce jako školního díla podle § 60 odst. 1 autorského zákona.

Dále se zavazuji, že před sepsáním licenční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity o tom, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity, a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla, a to až do jejich skutečné výše.

Abstract

Autonomous agent control using neuroevolution

Abstrakt

Řízení autonomního agenta pomocí neuroevoluce

Tato práce se zabývá trénováním autonomního agenta - auta s pomocí algoritmu neuroevoluce. Toto zahrnuje tvorbu simulačního prostředí pro agenta, vhodným návrhem agenta (senzorů a řízení) a také návrhem fitness funkce

OBSAH 5

Obsah

1	Úvo	d a cíl práce	6
		Úvod do problematiky	6
2	Neuronové sítě		
	2.1	Druhy úloh neuronových sítí	7
	2.2	Neuron	7
		Aktivační funkce	7
		Linearní funkce	7
		Sigmoid	8
		Tanh	9
		RELU	9
	2.3	Genetické algoritmy	9
3	Praktická část		
	3.1	Simulace	10
	3.2	Servrová část	10
	3.3	Klientská část	10
	3.4	Konfigurace	10
4	Refe	erence	11
Ρř	Přílohy		
\mathbf{A}	CD	se zdrojovým kódem	13

1 ÚVOD A CÍL PRÁCE **6**

1 Úvod a cíl práce

1.1 Úvod do problematiky

S růstem výpočetního výkonu a rozvojem **gpugpu** (paralelizace výpočtů na grafické kartě) se neuronové sítě ukázaly jako mocný nástroj pro řešení složitých problémů na které standardní metody umělé inteligence nestačily. K dalším možnostem

2 NEURONOVÉ SÍTĚ **7**

2 Neuronové sítě

Neuronové sítě jsou model strojového učení, který je volně založený na principu zvířecího mozku. (PATTERSON, Josh. 2017, s. 41)

2.1 Druhy úloh neuronových sítí

Neuronové sítě se používají především pro řešení regresních a klasifikačních problémů.

2.2 Neuron

Neuron je základní jednotka neuronových sítí, která je definovaná jako suma všech jejích vstupů a aplikace aktivační funkce.

$$\sigma(\sum_{i=0}^{N} \theta \cdot x_i + b)$$

Aktivační funkce

Aktivační funkce se používá pro definování výstupu a zavedení nelinearity. Bez nich by byla neuronová síť schopna aproximovat pouze n-dimenzionální rovinu. (PATTERSON, Josh. 2017, s. 65)

Dalším využitím je omezení výstupních hodnot. Například aktivační funkce sigmoid se s oblibou používá u výstupní vrstvy neuronových sítí určených ke klasifikačním problémům, protože je to relace $\mathbb{R} \to \{0..1\}$, která se dá jednoduše jako "jistota" neuronu, že se jedná o výstup, který neuron reprezentuje. Podobně se dá uvažovat i o funkcích jako je například softmax a tanh, které také najdou hojné využití u klasifikačních problémů.

Linearní funkce

Vrací vstup, tak jak je. Využití najde především u vstupní vrstvy neuronové sítě a u neuronových sítí, které řeší regresní typy úloh.

2.2 Neuron **8**

$$f(x) = x$$

Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

Tanh

Tanh je funkce obdobná sigmoidu. Hlavní rozdíl mezi ní a sigmoidem je ten, že její obor je v rozmezí -1 a 1 hodí se proto i pro záporná čísla. (PATTERSON, Josh.

2017, s. 67)

$$f(x) = tanh(x)$$

RELU

RELU je aktivační funkce, která je podobná lineární aktivační funkci s tím rozdílem, že pokud vstupní hodnota nepřesáhne určitého prahu výstupem je 0. Její hlavní výhodou je to, že zabraňuje problémům s takzvaným explodujícím gradientem (PATTERSON, Josh. 2017, s. 69)

$$f(x) = \begin{cases} x >= 0, & x \\ x < 0, & 0 \end{cases}$$

2.3 Genetické algoritmy

2.4 Neuroevoluce

3 VLASTNÍ PRÁCE 10

3 Vlastní práce

- 3.1 Simulace
- 3.2 Serverová část

Serverová část slouží k

- 3.3 Klientská část
- 3.4 Simulace

4 REFERENCE 11

4 Reference

BUDUMA, Nikhil. Fundamentals of deep learning: designing next-generation machine intelligence algorithms. Sebastopol: O'Reilly, 2017. ISBN 978-149-1925-614..

PATTERSON, Josh. Deep learning: a practitioner's approach Deep learning: a practitioner's approach. 1. Beijing; Boston; Farnham; Sebastopol; Tokyo: O'Reilly, 2017. ISBN 978-1-491-91425-0..

A CD se zdrojovým kódem