Particle spectrograph

Wave operator and propagator

$f_{1^-}^{\#2}\alpha$	0	0	0	0	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{3k^2r_3}{2}$	0	0	0
$f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} +^{\alpha\beta}$	$\omega_1^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

$t_{1}^{#2}$	0	0	0	0	0	0	0
$t_{1}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}$	0	0	0	$-\frac{2}{3k^2r_3}$	0	0	0
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2 t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$\omega_0^{\#1} f_0^{\#1} f_0^{\#2} \omega_0^{\#1}$						
$\omega_{0^+}^{\#1}\dagger$	0	0	0	0		
$f_{0^{+}}^{#1}\dagger$	0	0	0	0		
$f_{0}^{#2}$ †	0	0	0	0		
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$		

Source constraints/gauge generators

Source constraints, g	aage generators
SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\sigma_1^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2}^{\#1\alpha\beta} == 0$	5
Total constraints:	28

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2+}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0
.,	- "-		

	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
#1 0+ †	0	0	0	0
#1 0+ †	0	0	0	0
#2 0+ †	0	0	0	0
# ₁ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive and massless spectra

(No massless particles)

Unitarity conditions