VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.1

2020-2021 Güz Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

(SUBSTRING) ARAMA

Substring Arama

- Amaç, N boyutundaki bir metin içinde M boyutundaki bir metni (deseni) bulmak
- Genellikle, N >> M
- Sonsuz uzunlukta akan veri de olabilir.
- pattern: NEEDLE
- text: ...INAHAYSTACKNEEDLEINAHAYSTACK...
- Çok büyük miktarda verinin içinde hızı ve verimli bir şekilde örüntüyü bulmamız gerekir.
 - · Ör: Binlerce satır kod içinde «public» anahtar kelimesini arıyoruz.

String Arama Uygulamaları

- Web araması
- Veritabanı sorguları
- İntihal tespiti
- Adli Bilişim: Hafıza ya da diskte belirli imzaların aranması.
 - Ör. tüm URL'ler ya da RSA anahtarları...
- E-posta: Spam belirteci olan örüntüleri tanımlama
 - PROFITS
 - L0SE WE1GHT
 - herbal Viagra
 - There is no catch.
 - This is a one-time mailing.
 - This message is sent in compliance with spam regulations.

String Arama Uygulamaları

Elektronik gözetim

String Arama Uygulamaları

Webden bilgi çıkarımı

http://finance.yahoo.com/q?s=goog

```
<td class= "yfnc_tablehead1"
width= "48%">
Last Trade:
<br/><big><b>452.92</b></big>
<td class= "vfnc tablehead1"
width= "48%">
Trade Time:
. . .
```

SUBSTRİNG ARAMA YÖNTEMLERİ

- Veri içinde aranan örüntünün başlangıcını bir kaydırarak ara
- Bulursan, örüntünün 2..m arası karakterlerini de eşleştirmeye çalış.
- Hepsi eşleşirse, bulduk ©
- Eşleşmezse, bir kaydırıp aramaya devam et.
- Sona geldiysek, bulamadık ☺
- Javada string.indexOf() da bunu kullanır.

NAIVE-STRING-MATCHER.T;P/

1 n = T.length

2 m = P.length

3 for s = 0 to n - m

4 **if** P[1..m] == T [s + 1 .. s + m]

5 print "Pattern occurs with shift" s

(a)

(b)

(c)

- En kötü durum: veri ve örüntü tekrarlı ise?
- O(MN)

```
AAAAB?
```

```
i j i+j 0 1 2 3 4 5 6 7 8 9
    txt AAAAAAAB
0 4 4 A A A B
1 4 5
         AAAAB
2 4 6
          AAAAB
3
  4
            AAAAB
             AAAAB
  5
    10
```

 Gerçek hayattaki pek çok uygulamada, geriye dönüp kaldığımız yerden devam edemeyiz !!! (Akan veri)

M karakteri önbellekte tutmamız gerekir.

Brute-Force Substring Arama/Backup

- Pratikte akan veride backup kadar bilgiyi saklayacak
 - Yerimiz
 - Zamanımız
 - İznimiz
- Olmayabilir!

- Eşleşmeyen karakter sezgisi (Bad Character Heuristic) olarak da bilinir.
- Örüntüdeki karakterleri sağdan sola! tara
- Örüntüde olmayan bir karakter olduğunda, X adet karakteri geçebiliriz.
 - Brute Force'ta birer birer ilerleyebiliyorduk.
 - Sorun, X kaç olacak?
 - Bir eşleşmeyi kaçırmamayı garanti ederek, olası en büyük ilerlemeyi yapmaya çalışmalıyız.
- "Kötü Eşleşme Tablosu" "Bad Match Table" yaratılır. Buradaki miktar kadar kaydırma yapılır.
- Genellikle lineer zaman.
- En kötü durumda kuadratik.

- Peki, Bad Match Table nasıl yaratılacak?
- Durum 1: Text'te karşılaştırılan karakter (c) Pattern'da yoktur.
 - Rahatlıkla Pattern'in boyu kadar kaydırabiliriz.

$$s_0$$
 ... s_{n-1} \parallel BARBER

- Peki, Bad Match Table nasıl yaratılacak?
- Durum 2: Text'te karşılaştırılan karakter (c) Pattern'da var ama son karakter değil.
 - (c) karakterini, Pattern'deki en sağ pozisyonu ile eşleşecek kadar kaydırırız (olası bir eşleşmeyi kaçırmayalım diye)

$$s_0$$
 ... s_{n-1}

$$\downarrow M$$

$$B A R B E R$$

$$B A R B E R$$

- Peki, Bad Match Table nasıl yaratılacak?
- Durum 3: Text'te karşılaştırılan karakter (c) Pattern'daki son karakter ve kalan m-1 karakter içinde başka tekrarı yok.
 - Durum 1'e benzer şekilde, pattern'in boyu kadar kaydırırız.

$$s_0 \ldots MER \ldots s_{n-1}$$

$$\parallel \parallel \parallel$$

$$LEADER$$

$$LEADER$$

- Peki, Bad Match Table nasıl yaratılacak?
- Durum 4: Text'te karşılaştırılan karakter (c) Pattern'daki son karakter ve başka tekrarı da var.
 - Durum 2'ye benzer şekilde kalan m-1 karakter içinde c'nin en sağda geçtiği yere kadar kaydırırız.

- Brute-Force'taki teker teker kaydırmaya göre kesinlikle daha iyi !
- Ama her seferinde ne kadar kaydıracağımızı hesaplamak yerine, baştan hesaplayıp bir tablo yapabiliriz.
- Kaydırma Tablosu (Bad Match Table yaratımı)

```
ALGORITHM ShiftTable(P[0..m-1])

//Fills the shift table used by Horspool's and Boyer-Moore algorithms

//Input: Pattern P[0..m-1] and an alphabet of possible characters

//Output: Table[0..size-1] indexed by the alphabet's characters and

// filled with shift sizes.

for i \leftarrow 0 to size-1 do Table[i] \leftarrow m // all remaining characters

for j \leftarrow 0 to m-2 do Table[P[j]] \leftarrow m-1-j

return Table
```

Horspool Eşleştirme Algoritması

```
ALGORITHM HorspoolMatching(P[0..m-1], T[0..n-1])
// Implements Horspool's algorithm for string matching
// Input: Pattern P[0..m - 1] and text T[0..n - 1]
// Output: The index of the left end of the first matching substring
          or -1 if there are no matches
ShiftTable(P [0..m - 1]) //generate Table of shifts
i \leftarrow m - 1 //position of the pattern's right end
while i \le n - 1 do
         k\leftarrow 0 //number of matched characters
         while k \le m - 1 and P[m - 1 - k] = T[i - k] do
                  k\leftarrow k+1
         if k = m
                  return i - m + 1
         else i \leftarrow i + Table[T[i]]
return -1
```

- Horspool Eşleştirme Algoritmasını özetlersek:
- m uzunluktaki pattern verildiğinde, text+pattern alfabesi için tabloyu oluştur.
- Pattern'i text'in başına hizala.
- Eşleşme bulana ya da text'in sonuna gidene kadar tekrarla:
 - Pattern'in son karakterinden başlayarak m eşleşme bulana kadar veya eşleşmeme olana kadar text ile karşılaştır.
 - 2. Eşleşmeme olduğunda, pattern'i karakterin tablodaki değeri kadar sağa kaydır.

Boyer-Moore-Horspool Arama Örneği

BARBER için BMT: (İngiliz alfabesi harfleri ve boşluk:

character c	Α	В	C	D	E	F		R		Z	_
shift t(c)	4	2	6	6	1	6	6	3	6	6	6

```
JIM_SAW_ME_IN_A_BARBERSHOP
BARBER BARBER
BARBER BARBER
```

- Bad Match Table Nasıl yaratılacak?
- Değer = Uzunluk 1 index
 - (for $j \leftarrow 0$ to m 2 do $Table[P[j]] \leftarrow m 1 j$)
 - Uzunluk: aranan pattern'ın uzunluğu
 - Index: Pattern içinde karakterin indisi (0'dan başlayarak)
 - Pattern'de olmayan tüm karakterlerin değeri: Uzunluk

0 1 2 3 4

Harf	Т	0	Н	*
Değer	5-0-1 = 4	5-1-1 = 3	5 (0→5)	5 kalan tüm
	5-3-1 = 1	5-2-1 = 2	son karakter	karakterler

Harf	T	0	Н	*
Değer	1	2	5	5

```
• T R U S T H A R D T O O T H B R U S H E S
• T O O T H T!=H → T:1 kaydır
```

Harf	Т	0	Н	*
Değer	1	2	5	5

```
• T R U S T H A R D T O O T H B R U S H E S
• T O O T H H ok, T ok, S!=0 →S:5 kaydır
```

Harf	Т	0	Н	*
Değer	1	2	5	5

Harf	T	0	Н	*
Değer	1	2	5	5

Harf	T	0	Н	*
Değer	1	2	5	5

- En kötü durum:
- Pattern(m):
- En kötü durum:
- O(nm)
- En iyi m/n (hep m adım ileri)
- Ortalama m/len(alfabe)
- Esasen Horspool, Öncüsü olan Boyer-Moore'un basitleştirilmiş halidir.

- Horspool'un çıkış noktasıdır.
 - Ancak daha karmaşıktır.
- Horspool'dan farkı, eşleşmeyen karakter sezgisinin (Bad Match) üzerine bir de iyi sonek sezgisi (Good Suffix Heuristic) kullanmasıdır.
- Her durumda hangisi daha kârlı ise onu kullanır.

- Eğer pattern'in son karakteri text'teki (c) karakteri ile eşleşmezse, algoritma tamamen Horspool ile aynı davranır.
 - Bad Match Table: pattern, tablodaki harfin değeri kadar sağa kaydırılır.
- Sağdan k karakter eşleştiğinde (0<k<m) ise farklı davranır.

$$s_0$$
 ... c s_{i-k+1} ... s_i ... s_{n-1} text p_0 ... p_{m-k-1} p_{m-k} ... p_{m-1} pattern

- Bu durumda, algoritma 2 değere bakarak kaydırma miktarını belirler.
 - Eşleşmeyen (c) karakteri bad match tablomuzda yoksa, pattern'i c+1'e kaydırır. (bad symbol shift)
 - t₁(c) k ile (tablo değeri eşleşmeyen karakter sayısı) kaydırır.

$$s_0$$
 ... s_{i-k+1} ... s_i ... s_{n-1} text p_0 ... p_{m-k-1} p_{m-k} ... p_{m-1} pattern p_0 ... p_{m-1}

- Örneğin: S pattern'de yok, $t_1(S) 2 = 6-2 = 4$ kaydır
 - (Horspool'da R:3 kaydırmıştık)

• A pattern'de var, $t_1(A) - 2 = 4-2 = 2$ kaydır.

- $t_1(c) k \le 0$ olabilir.
- Bu durumda pattern'i geri çekemeyeceğimize göre, bruteforce gibi 1 ilerletiriz.
- Kaydırma kararı (bad-match table güncellemesi):
- $d_1 = \max(1, t_1(c) k)$

- 2. kaydırma türü: Good-Suffix-Shift
- Sondan k>0 tane karakter eşleşirse:
 - k boyutunda sonek → suff(k)
 - Bad Match Table'da olduğu gibi, c eşleşmeyen karakterine göre pattern'deki (1, .., m-1 boyutundaki) tüm suffix'ler ile Good-Suffix-Shift tablosunu doldururuz.
 - Önündeki karakteri farklı olan bir suff(k)'nın pattern içinde olduğunu varsayalım. (Ör. ABCBAB) Bu durumda, patternimizi k uzunluktaki suffix'in tekrarını geçecek kadar (d₂ uzunluğu kadar) kaydırabiliriz.

k	pattern	d_2
1 2	ABCB <u>AB</u> ABCB <u>AB</u>	2 4

Boyer-Moore Algoritması

- suff(k)'nın, tekrarı yoksa?
 - İlk akla gelen, pattern'in tamamı kadar kaydırmaktır.
 - Ör: DBCBAB, k=3

- Ancak, bu her zaman doğru olmayabilir.
- Ör. ABCBAB, k=3 → ya kaydırdığımız yer CBAB... ile başlıyorsa?
- Eşleşmeyi kaçırırız.

```
s_0 ... s_{n-1}
```

Boyer-Moore Algoritması

- Farkettiyseniz, ABCBAB örneğinde k=1 ve k=2 için tekrar eden suffix var, bundan sonraki k'lar için tehlike oluşuyor.
- Bu durumda en uzun prefix I (I<k) sonrasındaki tüm suffix'leri, sadece I kadar kaydırmalıyız.
- Ör: ABCBAB:

k	pattern	d_2
1	ABCBA <u>B</u>	2
2	ABCBAB	4
3	ABCBAB	4
4	ABCBAB	4
5	<u>ABCBAB</u>	4

Boyer-Moore Algoritması

- Bad-Match-Table ve Good-Suffix Table var.
- Ne kadar kaydıracağımıza nasıl karar vereceğiz?
- Hangisi daha kârlıysa, o kadar.

$$d = \begin{cases} d_1 & \text{if } k = 0, \\ \max\{d_1, d_2\} & \text{if } k > 0, \end{cases}$$

$$d_1 = \max\{t_1(c) - k, 1\}$$

Pattern: BAOBAB

Text: BESS KNEW ABOUT BAOBABS

Bad-Match Table:

c	Α	В	C	D		0		Z	İ
$t_1(c)$	1	2	6	6	6	3	6	6	6

Good-Suffix Table: ⁻

k	pattern	d_2
1	BAOBA <u>B</u>	2
2	BAOBAB	5
3	BAOBAB	5
4	BAOBAB	5
5	BAOBAB	5

B E S S
$$\frac{1}{2}$$
 K N E W A B O U T $\frac{1}{2}$ B A O B A B S B A O B A B S B A O B A D B A

Rabin-Karp Algoritması

- Metni direk aramak yerine, imzasını arama fikri
- İmza? Pattern'e ait bir hash fonksiyonu çıktısı
 - Hash çıktıları çakışabilir!
 - Bu durumda Text içinde hash'i eşleşen parça pattern ile birebir karşılaştırılır.
 - Çoklu aramalarda iyi çalışır.
 - Karmaşıklık:
 - Ön işleme: O(m)
 - En kötü: O(mn)
 - Genellikle (m+n)

Rabin-Karp Algoritması

- Her metin pozisyonu için (kaydırmalı olarak) hash değeri hesaplanır ve pattern'in hash'i ile karşılaştırılır.
- Eşleşen hash bulunduğunda pattern ile text karşılaştırılır.
- Hash'in çakışma olasılığını azaltmak için fonksiyonda büyük asal sayılar tercih edilir.

```
Örnek: 59265 \rightarrow 31415926535897932384626433 pattern hash: 59265 = 95 \pmod{97} text hashes: 31415926535897932384626433 31415 = 84 \pmod{97} 14159 = 94 \pmod{97} 41592 = 76 \pmod{97} 15926 = 18 \pmod{97} 59265 = 95 \pmod{97}
```

Rabin-Karp Algoritması

Önceki hash değeri kullanılarak bir adım sonraki hesaplanabilir.

```
)*10 + (9)
        1415(9)
                 = ( 31415 - 30000
     14159 \mod 97 = (31415 \mod 97 - 30000 \mod 97)*10 + 9 \pmod 97
                                         precompute 9 = 10000 (mod 97)
                                              )*10 + 9 \pmod{97}
                                     3 * 9
                                        Key point: all ops involve small numbers
                 = 579 \mod 97 = 94
                                        No restriction on N and M
pattern hash: 59265 = 95 \pmod{97}
text hashes
31415926535897932384626433:
31415 \mod 97 = 84
 14159 \mod 97 = (84 - 3*9)*10 + 9 \pmod{97} = 94
  41592 \mod 97 = (94 - 1*9)*10 + 2 \pmod{97} = 76
   15926 \mod 97 = (76 - 4*9)*10 + 6 \pmod{97} = 18
     59265 \mod 97 = (18 - 1*9)*10 + 5 \pmod{97} = 95
```

Substring Arama Algoritmalarının Maliyet Karşılaştırması

algorithm	version	operation	n count	backup in input?	correct?	extra	
aigontiini	version	guarantee	juarantee typical		correct.	space	
brute force	25	MN	1.1 N	yes	yes	1	
Knuth-Morris-Pratt	full DFA (Algorithm 5.6)	2N	1.1 N	no	yes	MR	
Knum-Morns-Fran	mismatch transitions only	3 N	1.1 N	no	yes	M	
	full algorithm	3N	N/M	yes	yes	R	
Boyer-Moore	mismatched char heuristic only (Algorithm 5.7)	MN	N/M	yes	yes	R	
Rabin-Karp [†]	Monte Carlo (Algorithm 5.8)	7 N	7 N	no	yes†	1	
entropia total	Las Vegas	7 N †	7 N	yes	yes	1	

† probabilisitic guarantee, with uniform and independent hash function

VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.1

2020-2021 Güz Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

AÇGÖZLÜ ALGORİTMALAR

Greedy Algorithms

Greedy Algoritmalar

- Probleme, bir dizi seçimden geçerek parça parça çözüm oluştururlar. Bu seçimler:
 - yapılabilir (feasible)
 - yerel en iyi (locally optimal)
 - geri alınamaz (irrevocable)

olmalıdır.

- Bazı problemlerin tüm örnekleri için optimal çözüm sunarlar.
- Çoğu problem için bunu başaramasa da, hızlı yakınsama nedeniyle tercih edilirler.

Greedy Algoritma Örnekleri

- Optimal çözümler:
 - Bozuk para üstü vermek.
 - Minimum spanning tree (göreceğiz)
 - Single-source shortest paths
 - Basit çizelgeleme problemleri
 - Huffman kodlama
- Yaklaşımlar:
 - Gezgin satıcı problemi (Traveling salesman)
 - Sırt çantası problemi (Knapsack)
 - Diğer kombinatoryal optimizasyon problemleri

Bozuk Para Üstü Vermek

- Bozuk paralarımız: 1TL, 50Kr, 25Kr, 10 Kr, 5 Kr, 1 Kr?:))
- 48 kuruş para üstü verelim.
 - 1 tane 25 Kr. (23 Kr kaldı)
 - 1 tane 10 Kr. (13 Kr kaldı)
 - 1 tane 10 Kr. (3 Kr kaldı)
 - 1 tane 1 Kr (2 Kr kaldı)
 - 1 tane 1 Kr (1 Kr kaldı)
 - 1 tane 1 Kr (0 Kr kaldı)
- Her adımda, kalan miktarı en az yapacak olan bozuk parayı ver.

Huffman Kodlama

karakter A B C D __ frekans 0.35 0.1 0.2 0.2 0.15

Kod 11 100 00 01 101

Karakter başına ortalama bit: 2.25

Sabit uzunlukl kodlama için: 3

BÖL&YÖNET

Divide-and-Conquer

Böl&Yönet

- Şimdiye kadar gördüğümüz algoritmik çözüm yöntemleri:
 - Brute-Force: Başlangıçtan dümdüz ilerleyerek çözüme doğru git.
 - Üs Alma aⁿ=a*a*....*a*a (n kere)
 - Selection Sort
 - Bubble Sort
 - Brute-Force Substring Search
 - Greedy (Açgözlü): Her adımda, o an için en iyi olan çözümü (local optimum) uygula
 - Huffman Encoding
 - Decrease-and-Conquer: Problemi küçülterek çözüme doğru ilerle.
 - Üs Alma aⁿ=aⁿ⁻¹*a
 - Insertion Sort
 - Josephus Problem (Circular Linked List)

Böl&Yönet

- Problem (genellikle eşit boyutlu) aynı tipte küçük problemlere ayrıştırılır.
- Alt problemler çözülür.
 - Genellikle rekürsif olarak daha küçük problemler haline getirilir.
 - Bölünemeyecek kadar küçük problem bir yöntem ile çözülür.
- Gerektiğinde, alt problemlerin çözümleri bir araya getirilerek orijinal probleme ait nihai çözüm oluşturulur.
- Her zaman brute-force yaklaşımdan daha efektif çözüm olacak diye bir şart yoktur.
- Kolaylıkla paralel hesaplama şeklinde gerçekleştirilebilir.

Böl&Yönet

MERGESORT

Merge Sort

- Elimizde A[0..n-1] dizisi var.
- Bu diziyi böl&yönet ile sıralayabilir miyiz?
- Diziyi ikiye böl, her parçayı kendi içinde sırala.
 - Rekürsif olarak parçaları kendi içinde ikiye bölmeye devam et.
 - Algorithm MergeSort
- Tek elemanlık parçalar, zaten sıralı demektir.
- Sonra, her sıralı alt-alt parçayı sıralı olarak birleştir.
- Parçalar birleştikçe onları da sıralı olarak birleştir.
 - Algorithm Merge

Merge Sort (Top-Down MergeSort)

Merge

Abstract in-place merge trace

```
a[]
                                             aux[]
                                    i j <u>0 1 2 3 4 5 6 7 8 9</u>
         k <u>0 1 2 3 4 5 6 7 8 9</u>
           E E G M R A C E R T
Input
           E E G M R A C E R T
                                        EEGMRACERT
Copy
                                    0 5
         0 A
                                    0 6 E E G M R A C E R T
         1 A C
         2 A C E
                                          E G M R
                                   2 8
                                   3 8
         5 A C E E E G
                                            G M R
                                   4 8
                                              M R
                                   5 8
                                   5 9
                                   6 10
         9 A C E E E G M R R T
          ACEEEGMRRT
Merged
input
copy
Abstract in-place merge trace
merged result
```

R T

R T

MergeSort

```
ALGORITHM Mergesort(A[0..n – 1])
//Sorts array A[0..n - 1] by recursive mergesort
//Input: An array A[0..n - 1] of orderable elements
//Output: Array A[0..n - 1] sorted in nondecreasing order
if n > 1
 copy A[0..n/2 - 1] to B[0..n/2 - 1]
 copy A[n/2..n - 1] to C[0..n/2 - 1]
 Mergesort(B[0..n/2 - 1])
 Mergesort(C[0..n/2 - 1])
 Merge(B, C, A)
```

Merge

```
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p-1] and C[0..q-1] both sorted
//Output: Sorted array A[0..p + q - 1] of the elements of B and C
i \leftarrow 0; j \leftarrow 0; k \leftarrow 0
while i < p and j < q do
  if B[i]≤ C[j ]
    A[k] \leftarrow B[i]; i \leftarrow i + 1
  else
    A[k] \leftarrow C[j]; j \leftarrow j + 1
  k\leftarrow k+1
if i = p
  copy C[j..q - 1] to A[k..p + q - 1]
else
  copy B[i..p - 1] to A[k..p + q - 1]
```

Merge Sort Örnek-1

MergeSort Örnek-2

```
12 13 14 15
                    S
            G
 M
        R
                Ε
                                Τ
                                    Ε
                                        X
                            R
                                            A
                                                M
                                                    Р
                                                            Ε
1E
    M
            R
3E
     G
        M
                Ε
                    S
                            R
                Ε
                        R
                    0
7E
     Ε
         G
            M
                    R
```

MergeSort Örnek-2

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
M	E	R	G	E	S	0	R	Τ	E	X	A	M	Р	L	E
Ε	Ε	G	M	0	R	R	S								
8								E	Τ						
9										A	X				
10								A	Ε	Τ	X				
11												M	Р		
12														Ε	L
13												Ε	L	M	Р
14								Α	Ε	Ε	L	M	Р	Τ	Χ
A	E	E	E	E	G	L	M	M	0	Р	R	R	S	Τ	X

MergeSort Örnek-2 Analiz

- MergeSort(A, 0, 15)
 - MergeSort(A, 0, 7)
 - MergeSort(A, 0, 3)
 - MergeSort(A, 0, 1)
 - Merge(A, 0, 0, 1)
 - MergeSort(A, 2, 3)
 - Merge(A, 2, 2, 3)
 - Merge(A, 0, 1, 3)
 - MergeSort(A, 4, 7)
 - MergeSort(A, 4, 5)
 - Merge(A, 4, 4, 5)
 - MergeSort(A, 6, 7)
 - Merge(A, 6, 6, 7)
 - Merge(A, 4, 5, 7)
 - Merge(A, 0, 3, 7)

- MergeSort(A, 8, 15)
 - MergeSort(A, 8, 11)
 - MergeSort(A, 8, 9)
 - Merge(A, 8, 8, 9)
 - MergeSort(A, 10, 11)
 - Merge(A, 10, 10, 11)
 - Merge(A, 8, 9, 11)
 - MergeSort(A, 12, 15)
 - MergeSort(A, 12, 13)
 - Merge(A, 12, 12, 13)
 - MergeSort(A, 14, 15)
 - Merge(A, 14, 14, 15)
 - Merge(A, 12, 13, 15)
 - Merge(A, 8, 11, 15)
- Merge(A, 0, 7, 15)

MergeSort Karmaşıklık Analizi

```
    O(N IgN)

                            A[0..15]
                A[0..7] A[8..15]
        A[0..3] A[4..7] A[8..11] A[12..15]
• A[0,1] A[2,3] . . . . . . . . . A[14,15]

    N Seviye, LogN adım

k=0..n-1

    k.seviyede 2<sup>k</sup> alt dizi, uzunlukları 2<sup>n-k</sup>

    2<sup>n-k</sup> karşılaştırma

• 2^{k}. 2^{n-k} = 2^{n} işlem (her n için)

    n.2<sup>n</sup> → O(N logN)
```

(6NlogN dizi erişimi: Her merge'de 2N kopya, 2N geri taşıma, 2N

karşılaştırma)

Top-Down MergeSort Görselleştirme

Merge Sort (Bottom-Up MergeSort)

- 1-1, 2-2, 4-4, ...N/2-N/2 birleştir
- 1/2NLgN 6NlgN arası karşılaştırma, 6NlgN dizi erişimi

MergeSort Bottom-Up Örnek

```
12 13 14 15
                                        8
                              6
                G
                         S
                                   R
           R
                    Ε
                                        Τ
                                             Ε
                                                 X
 M
      Ε
                                                      A
                                                           M
                                                                Р
                                                                          \mathbf{E}
1E
      M
                                                                    S=1
           G
               R
                    Ε
                         S
                                   R
                                        Ε
                                             Τ
                                                  Α
                                                      X
                                                           M
                                                                Р
                                                                     Ε
                                                                          \mathbf{L}
```

MergeSort Bottom-Up Örnek

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
M	E	R	G	E	S	0	R	Τ	E	X	A	M	Р	L	E
9 E	G	M	R											S=2	2
10				E	0	R	S								
11								A	Ε	Τ	X				
12												E	L	M	Р
13E	Ε	G	M	0	R	R	S							S=4	1
14								A	Ε	Ε	L	M	P	Τ	X
														S=8	3
15A	E	E	E	E	G	L	M	M	0	Р	R	R	S	T	X

Bottom-Up MergeSort Analiz

```
a[i]
                           1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
                         M E R G E S O R T E X A M P L E
     S=1
    merge(a, 0, 0, 1)
    merge(a, 2, 2, 3)
    merge(a, 4, 4, 5)
    merge(a, 6, 6, 7)
    merge(a, 8, 8, 9)
    merge(a, 10, 10, 11)
    merge(a, 12, 12, 13) E M
    merge(a, 14, 14, 15)
                                      S
                                        O R E
                                                   AXMPEL
   S=2
   merge(a, 0, 1, 3)
   merge(a, 4, 5, 7)
   merge(a, 8, 9, 11)
                                                Ε
                                   Е
   merge(a, 12, 13, 15)
                                        R S
                                             A E
                                                  T X E
                                      0
 S=4
 merge(a, 0, 3, 7)
                                   ORRS
                         E E G M O R R S A E E L M P T X
 merge(a, 8, 11, 15)
S=8
merge(a, 0, 7, 15)
                                   E G L M M O P R R S T X
```

Bottom-Up MergeSort Görselleştirme

Böl&Yönet Substring Arama?

Böl&Yönet – Tromino Puzzle

- Elimizde 2ⁿx2ⁿ boyutlarında bir kare pano var. Sadece tek bir gözü dolu.
- 3 tane 1x1 kareden oluşan (L şeklinde) karolarımız var.
- Karolar tüm yönlere döndürülerek yerleştirilebilir.
- Tüm panoyu karolar ile kaplayarak döşeyin.

Tromino Puzzle

Tromino Puzzle

Tromino Puzzle

QUICKSORT

- 1959'da Charles Antony Richard Hoare tarafından tasarlanmıştır. 1961'de yayınlanmıştır.
- Merge sort algoritması, elemanları dizideki pozisyonlarına göre bölüyordu.
- QuickSort ise elemanları değerlerine göre bölerek yönetir.
 - Ortadan değil, değere göre bölüm yaratırız.
- Diziden bir elemanı pivot olarak seç.
- Diziyi, pivottan küçükler ve büyükler olarak iki bölüme ayır. (Partititoning)
- Rekürsif olarak bölümleri partitioning işleminden geçir.

- Partition:
- a[j], final pozisyonunda.
- a[lo, ..., j-1]'de a[j]'den daha büyük eleman yok
- a[j+1, ... hi]'da a[j]'den daha küçük eleman yok

- 4 10 8 7 6 5 3 12 14 2 (pivot:6)
- hepsi daha küçük 4 5 3 2 6 10 8 7 12 14 hepsi daha büyük
- 43256
- 23456
- 23456
- 10 8 7 12 14
- 7 10 8 12 14
- 7 10 8 12 14
- 7 8 10 12 14
- 7 8 10 12 14
- 7 8 10 12 14
- 2345678101214

```
ALGORITHM Quicksort(A[I...r])
// Sorts a subarray by quicksort
// Input: Subarray of array A[0..n - 1], defined by
// its left and right indices / and r
// Output: Subarray A[I..r] sorted in nondecreasing order
if / < r
       s \leftarrow Partition(A[I..r]) //s is a split position
       Quicksort(A[I..s - 1])
       Quicksort(A[s + 1..r])
```

- Pivot'u nasıl seçeceğiz?
 - Pek çok strateji var.
 - En basiti, ilk eleman pivot olsun.
- Soldan sağa tarama ile (i), pivottan büyük eleman bulana kadar ilerleriz.
- Sağdan sola tarama ile (j), pivottan küçük eleman bulana kadar ilerleriz.

 İkisini de bulunca, yerlerini değiştirip (swap) aramaya devam ederiz.

 Soldan sağa ve sağdan sola taramalar kesiştiğinde (i>j olduğunda) pivotu yerine taşırız, solundakiler küçük, sağındakiler büyük bölümleri oluşturur.

Pivot noktamızda s=i=j olduğunda bölümler tamamdır.
 Şimdi onları (rekürsif olarak) partititoning işlemine tabi tutarız.

$\leftarrow j = i \rightarrow$							
all are ≤ p	=p	all are ≥ p					

```
ALGORITHM HoarePartition(A[I..r])
// Partitions a subarray by Hoare's algorithm, using the first element as a pivot
// Input: Subarray of array A[0..n - 1], defined by its left and right indices I and r(I < r)
// Output: Partition of A[l..r], with the split position returned as this function's value
p \leftarrow A[I]
i ←I;
j \leftarrow r + 1
repeat
           repeat i \leftarrow i + 1 until A[i] \ge p
           repeat j \leftarrow j - 1 until A[j] \le p
           swap(A[i], A[i])
until i \ge j
swap(A[i], A[j]) //undo last swap when i \ge j
swap(A[/], A[j])
return j
```

```
1 2 3 4 5 6 7
5 3 1 9 8 2 4 7
                  (repeat .. until i, j)
5 3 1 9 8 2 4 7
                 (swap)
5 3 1 4 8 2 9 7
                  (repeat .. until i, j)
5 3 1 4 8 2 9 7
                  (swap)
5 3 1 4 2 8
            9 7
5 3 1 4 2 8 9 7
                  (exchange)
       5 8
```

```
1 2 3 4 5 6 7
  i
      j
2 3 1 4 (repeat until...)
  iј
2 3 1 4
          (swap)
2 1 3 4
2 1 3 4
          (Exchange)
1 2 3 4
1 2 3 4
      ij
1 2 3 4
1 2 3 4
1 2 3 4
```

1 2 3 4 5 7 8 9

```
3 4 5 6 7
2 3 4 5 8
        8 9 7
                (swap)
        8 7 9
                (Exchange)
        7 8
```

QuickSort Rekürsif Çağrı Ağacı

 Partition için pivot'u son eleman olarak da seçebiliriz.

```
QuickSort(A,p,r)

if (p<r)
q=Partition(A,p,r)
QuickSort(A,p,q-1)
QuickSort(A,q+1,r)
```

```
Partition (A, p, r)
v=A[r]
i=p-1
for j = p to r-1
  if A[i] \le x
        i=i+1
        A[i]⇔A[i]
A[i+1] \Leftrightarrow A[r]
return i+1
```



```
8 1 6 4 0 3 9 5
#define exch(A, B) {int t=A; A=B, B=t;}
                                                           31045896
int partition(int a[], int l, int r){
                                                           31045896
         int i = l-1, j = r, v = a[r];
                                                           0 1 3 4 5 8 9 6
         for(;;){
                                                           0 1 3 4 5 8 9 6
                  while(a[++i]<v);</pre>
                                                           0 1 3 4 5 8 9 6
                  while(v < a[--j]) if(j = 1) break;
                  if (i>=j) break;
                                                           0 1 3 4 5 6 9 8
                  exch(a[i],a[j]);
                                                           0 1 3 4 5 6 8 9
                                                           0 1 3 4 5 6 8 9
         exch(a[i],a[r]);
         return i;
void quicksort(int a[], int l, int r){
                                           int main(){
         int i;
                                              int a[] = \{8,1,6,4,0,3,9,5\};
         if (r<1) return;
                                              int n = sizeof a / sizeof *a;
         i = partition(a, l, r);
                                              quicksort(a,0,n-1);
         quicksort(a, l, i-1);
                                              return 0;
         quicksort(a, i+1, r);
                                           }
```

VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.1

2020-2021 Güz Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

GRAFLAR

Çizgeler

Graflar

- Birbirine bağlı elemanlar kümesine graf adı verilir.
- G(V,E)
- V (vertex) Düğüm, |V| Düğüm sayısı
- E (edge) Kenar, |E| Kenar sayısı
- Karmaşıklık gösteriminde, O(VE) → O(|V||E|)

İstanbul Raylı Sistemleri

ABD Eyaletleri Sınır Komşulukları

Protein-Protein Etkileşim Ağı

Bilim Konuları Tıklama Bağlantıları

FaceBook Arkadaşlık Bağlantıları

Graf Kullanım Alanları

- Haritalar:
 - Beşiktaş-Davutpaşa arası en kısa yol nedir? (Shortest Path)
 - Beşiktaş-Davutpaşa arası en hızlı yol nedir? (Max Flow)
- Web İçeriği: Arama Motorları
- Devreler: Kısa devre var mı? Bağlantılar çaprazlamadan gerçeklenebiliyor mu?
- Zaman Planlaması/Tarife: Birbiri ile bağlı işler sırası, kısıtlar altında en kısa sürede nasıl tamamlanır?
- Ticaret: Alıcı-Satıcı-Ürün Ağı
- Eşleştirme: Öğrenci Kulüp/Staj eşleştirme
- Bilgisayar Ağları
- Yazılım: Derleyicilerin modüller arası statik/dinamik çağrıları, kaynakları modellemesi
- Sosyal ağlar: Anomali, kanaat önderi, bot ağı...

Graf Terminolojisi

- Path (Yol): Kenarlarla bağlanmış olan düğümler silsilesi.
- Cycle (Çevrim): İlk ve Son düğümü aynı olan yollar.
- İki düğüm arasında bir yol varsa, bu iki düğüm birbirine bağlıdır (connected).

Graf Tipleri

- Yönsüz Graf (Undirected)
- Yönlü Graf (Digraph)
- Kenar Ağırlıklı Yönsüz Graf
- Kenar Ağırlıklı Yönlü Graf

Acyclic (Çevrimsiz) Graf

- Kapalı Döngü içermeyen graflar.
- 5 şart doğru ise ağaçtır:
 - V-1 kenar var, döngü yok
 - V-1 kenar var, bileşenleri bağlı
 - Herhangi bir kenarı kaldırmak, ağacı keser
 - Çevrimsizdir, bir kenar eklemek cyclic yapar
 - G'nin her kenar çiftini basit bir yol bağlar.

Graf Gösterimi (Graph Representation)

- Komşuluk Listesi (Adjacency List)
 - Seyrek (Sparse) graflar için uygun
- Komşuluk Matrisi (Adjacency Matrix)
 - V² yer kaplar
 - $A_{ij} = 1$, if $i,j \in E$; 0 otherwise
 - \bullet $A^T = A$
 - 1 bit ile tutabiliriz.

	1	2	3	4	5
1	0.	1	0	0	1
2	1	0.	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1 1 1	0	1	0.

Graf Gösterimi (Graph Representation)

Yönlü grafta A^T != A

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	1 0 0 0 0 0	0	0	0	0	1

- Ağırlıklı (weighted) graflarda matriste değerler yer alır.
- Bağlantı var mı?
 - Listede yavaş O(degree(V))
 - Matriste hızlı O(1)

GRAF ARAMA YÖNTEMLERİ

BFS, DFS

Önce Genişlemesine Arama (Breadth First Search, BFS)

- En basit arama yöntemlerinden biridir.
- Pekçok algoritma BFS'ye benzer mantık kullanır.
 - Prim MST, Dijkstra SP
- Girdi: G(V,E), yönlü ya da yönsüz, kaynak düğüm S∈V
- S'den ulaşılabilen tüm düğümleri «keşfetmeye» çalışır.
 - «Breadth-First Tree» (S kökünden erişilebilen tüm yollar) yaratır.
 - S'den erişilebilen v düğümlerine giden en kısa yolları içerir.
- K+1 uzaklığa geçmeden önce, K uzaklıktaki tüm yollar bulunur.

Önce Genişlemesine Arama (Breadth First Search, BFS)

- Fikir:
 - S'ten bir dalga gönder.
 - İlk önce S'ten 1 uzaklıktakilere çarpar.
 - Onlardan, 2 uzaklıktakilere çarpar.
 - ...
- Dalganın önünde kim olacak?
- FIFO queue
 - Dalga v'ye çarptı ve daha v'yi terketmediyse, v ∈ Q.

```
BFS(V, E, s)
for each u \in V - \{s\}
  do d[u]←∞
d[s] \leftarrow 0
Q \leftarrow \emptyset
ENQUEUE(Q, s)
while Q != Ø
  do u \leftarrow \mathsf{DEQUEUE}(Q)
    for each v \in Adj[u]
       do if d[v] = \infty
         then d[v] \leftarrow d[u] + 1
                ENQUEUE(Q, v)
```


• Q = *NULL*

	a	b	С	е	f	g	h	i	S	
d	∞	∞	∞	∞	∞	∞	∞	∞	0	

- $Q = \{s\}$
- u=s [a,c] d[a]=d[s]+1, d[c]=d[s]+1
- Q={a,c}

	а	b	С	е	f	g	h	i	S
d	1	∞	1	∞	∞	∞	∞	∞	0

- $Q = \{a, c\}$
- u=a [e] d[e]=d[a]+1
- Q={c,e}

	а	b	С	е	f	g	h	i	S
d	1	∞	1	2	∞	∞	∞	∞	0

- $Q = \{c, e\}$
- u=c [e,g] d[e]!=∞, d[g]=d[c]+1
- Q={e,g}

	а	b	С	е	f	g	h	i	S
d	1	∞	1	2	∞	2	∞	∞	0

- $Q = \{e,g\}$
- u=e [b,h] d[b]=d[e]+1, d[h]=d[e]+1
- Q={*g*,*b*,*h*}

	a	b	С	е	f	g	h	i	S
d	1	3	1	2	∞	2	3	∞	0

- $Q = \{g, b, h\}$
- u=g [f,h,i] d[f]=d[g]+1, d[h]!=∞, d[i]=d[g]+1
- Q={b,h,f,i}

	а	b	С	е	f	g	h	i	S
d	1	3	1	2	3	2	3	3	0

- $Q = \{b, h, f, i\}$
- u=b [a] d[a]!=∞
- Q={h,f,i}

	а	b	С	е	f	g	h	i	S
d	1	3	1	2	3	2	3	3	0

- $Q = \{h, f, i\}$
- u=h [g] d[g]!=∞
- Q={f,i}

	а	b	С	е	f	g	h	i	S
d	1	3	1	2	3	2	3	3	0

- Q = $\{f, i\}$
- u=f [c] d[c]!=∞
- Q={*i*}

	а	b	С	е	f	g	h	i	S
d	1	3	1	2	3	2	3	3	0

- $Q = \{i\}$
- u=i [h] d[h]!=∞
- Q={} → stop

	а	b	С	е	f	g	h	i	S
d	1	3	1	2	3	2	3	3	0

- Düğümlerin durumlarını takip etmek isteyebiliriz.
 - Gezilmemiş: Beyaz
 - Gezilmiş Gri/Siyah
 - Siyahların komşuları siyah/gri olabilir. (siyahların tüm komşuları keşfedilmiştir)
 - Grilerin komşuları gri/beyaz olabilir.

```
BFS (G,s)
for each vertex u \in G.V - \{s\}
  u.color = WHITE
 u.d = \infty
  u.p = NIL
s.color = GRAY
s.d = 0
s.p = NIL
Q = \{\};
ENQUEUE(Q,s)
while Q != { }
  u = DEQUEUE(Q)
  for each v ∈ G.Adj[u]
    if v.color == WHITE
     v.color = GRAY
     v.d = u.d + 1
     v.p = u
     ENQUEUE(Q,v)
  u.color = BIACK
```


BFS Karmaşıklık Analizi

- Enqueue / Dequeue O(1)
- Her düğüm en fazla 1 kere enqueue, toplam O(V)
- Her düğüm en fazla 1 kere dequeue ve o zaman (u,v) kontrolü: O(E)
- O(V+E) (+ init O(V))
- Komşuluk listesi gösterimi boyutunda lineer zamanda çalışır.

Tremaux Exploration

- intersection
- Bir labirentin girişindeyiz. Elimizde bir yumak
 ip var. Kaybolmadan labirentten nasıl çıkarız?
- 1. İşaretsiz bir geçide ip döşe
- 2. İlk kez geçtiğin tüm geçit ve kesişimleri işaretle
- 3. İşaretli bir kesişime gelirsen, ip ile geri gel
- Geri gelirken hiçbir işaretsiz kesişim kalmayana kadar adımları geri al.

DFS de bu yönteme benzer. Hatta daha kolaydır ©

Önce Derinlemesine Arama (Depth First Search, DFS)

- Düğümleri rekürsif olarak ziyaret et.
- Bir düğümü al, işaretle.
- Tüm (işaretsiz) komşularını rekürsif olarak ziyaret et.

```
DepthFirstSearch(G,s)
 count=0;
 for each vertex u \in G.V
   marked[u]=FALSE
 dfs(G,s)
dfs(G,v)
 marked[v]=TRUE
 count++
 for each w \in G.adj[v]
   if (! marked[w])
     dfs(G,w)
```

standard drawing

drawing with both edges

- 2, 0'ın ilk komşusu ve unmarked. Visit 2.
- 2'nin ilk komşusu 0 ve marked. Geç.
 Sıradaki komşu 1 ve unmarked. Rekürsif olarak işaretle ve visit 1.
- 1'in tüm komşuları [0,2] marked. Geri dön. 2'nin sıradaki komşusu 3'ü işaretle ve visit (unmarked).
- 3'ün ilk komşusu 5 ve unmarked. İşaretle ve Visit 5.
- 5'in tüm komşuları [3,0] marked. Geri dön. 3'ün sıradaki komşusu 4'ü işaretle ve visit (unmarked).
- 4'ün komşularını kontrol et, geri dön 3'ün kalan komşularını kontrol et, geri dön 2'nin kalan komşularını kontrol et, geri dön 0'ın kalan komşularını kontrol et.
- Tüm gezinti bitti.

DFS ile neyi çözebiliriz?

```
Tek kaynaktan nerelere gidebiliriz?

    Verilen 2 düğüm birbirine bağlı mıdır? ⇔ 2 düğüm arası yol var mıdır?

DepthFirstPaths(G,s)
  for each vertex u € G.V
   marked[u]=FALSE
   edgeTo[u] = 0;
  dfs(G,s)
dfs(G,v)
 marked[v]=TRUE
 for each w € G.adj[v]
   if (! marked[w])
     edgeTo[w]=v
     dfs(G,w)
pathTo(v)
 // path is a stack
 if (! marked[v]) return NULL
 for (x=v; x!=s; x=edgeTo[x])
   path.push(x)
  path.push(s)
  return path
```


X	pa	at	h		
5	5				
3	3	5			
2	2	3	5		
0	0	2	3	5	


```
DFS(V, E)
for each u \in V
  do color[u] \leftarrow WHITE
time \leftarrow 0
for each u \in V
  do if color[u] = WHITE
         then DFS-VISIT(u)
DFS-VISIT(u)
color[u] \leftarrow GRAY // discover u
time ← time+1
d[u] \leftarrow time
for each v \in Adj[u] // explore (u, v)
  do if color[v] = WHITE
         then DFS-VISIT(v)
color[u] \leftarrow \mathsf{BLACK}
time \leftarrow time+1
f[u] \leftarrow time // finish u
```


standard drawing

dfs(3)

542

dfs(5)

30

dfs(4)

3 2

	d	f		color		Pre
0	1	12	VV	G	В	
1	3	4	VV	G	В	2
2	2	11	VV	G	В	0
3	5	10	VV	G	В	2
4	8	9	VV	G	В	3
5	6	7	VV	G	В	3

VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.1

2020-2021 Güz Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

COUNTING SORT

Sorting by Counting

Counting Sort

- Fikir: Sıralanacak dizideki tüm elemanlar için;
- İşlenen elemandan daha küçük olan toplam eleman sayısını sayarız.
- Sonuçları bir tabloya kaydederiz.
- Tablodaki sayılar, sıralı dizide sayıların hangi konumda durması gerektiğini bize gösterir.
 - Örneğin bir elemandan küçük 10 eleman varsa, bu eleman 11.gözde durmalıdır.
- Giriş dizimizi yeni bir diziye indis adreslerine göre kopyalarak sıralı çıktımızı oluşturabiliriz.

Comparison Counting Sort

```
ALGORITHM ComparisonCountingSort(A[0..n - 1])
//Sorts an array by comparison counting
//Input: An array A[0..n - 1] of orderable elements
//Output: Array S[0..n - 1] of A's elements sorted in nondecreasing order
for i ←0 to n − 1 do Count[i] ←0
for i \leftarrow 0 to n - 2 do
  for j \leftarrow i + 1 to n - 1 do
    if A[i]<A[j]
       Count[j] \leftarrow Count[j] + 1
    else
       Count[i] \leftarrow Count[i] + 1
for i \leftarrow 0 to n - 1 do S[Count[i]] \leftarrow A[i]
return S
```

Comparison Counting Sort

Array A[0..5]

31

62

19

Initially

After pass i = 0

After pass i = 1

After pass i = 2

After pass i = 3

After pass i = 4

Final state

Count []

Count []

Count []

Count []

Count []

Count []

Count []

0	0	0	0	0	0
3	0	1	1	0	0
	1	2	2	0	1

96

3

84

			5	0	1
8		6		0	2
3	1	4	5	0	2

31 84 19 47 62 96

Array *S*[0..5]

Nerede İşe Yarar?

- Minimum sayıda indeks değişikliği ile (en sondaki döngü) sıralı dizide doğru konumlara atama yapar.
- Sayma ile sıralama, sıralanacak öğelerin bilinen küçük bir değer kümesine ait olduğu bir durumda verimli bir şekilde çalışır. Her elemanın tekrar sayıları (frekansları) F dizisinde olsun.
 - Değerleri en küçük / değerine eşit olan elemanlar, sıralı dizinin 0 ila
 F[0]- 1 arasındaki pozisyonlara kopyalanır;
 - Değerleri I+1 olanlar F[0] ile (F[0]+ F[1]) 1 arasına kopyalanır;
 - •
 - Bu tür birikmiş frekansların toplamı istatistikte dağılım olarak adlandırıldığından, yöntem dağıtım sayımı (distribution counting) olarak bilinir.

Distribution Counting Sort

```
ALGORITHM DistributionCountingSort(A[0..n - 1], I, u)
//Sorts an array of integers from a limited range by distribution counting
//Input: An array A[0..n - 1] of integers between I and u (I \le u)
//Output: Array S[0..n - 1] of A's elements sorted in nondecreasing order
for j \leftarrow 0 to u - l do D[j] \leftarrow 0 //initialize frequencies
for i \leftarrow 0 to n-1 do D[A[i]-I] \leftarrow D[A[i]-I]+1 //compute frequencies
for j \leftarrow 1 to u - l do D[j] \leftarrow D[j - 1] + D[j] //reuse for distribution
for i \leftarrow n - 1 downto 0 do
  j \leftarrow A[i] - I
  S[D[i] - 1] \leftarrow A[i]
  D[i] \leftarrow D[i] - 1
return S
                                     O(N+R) (R:range)
```

Distribution Counting Sort

13 11	12 13	12	12
-------	-------	----	----

Array values	11	12	13
Frequencies	1	3	2
Distribution values	1	4	6

D[0..2]

A [5]	=	12
A[4]	=	12
A[3]	=	13
A [2]	=	12
A[1]	=	11
A [0]	=	13

1	4	6
1	3	6
1	2	6
1	2	5
1	1	5
0	1	5

0[00]							
			12				
		12					
					13		
	12						
11							
				13			

.S[0.5]

RADIX SORT

Radix Sort

- Mekanik sıralamadan doğdu.
- IBM delikli kartları sıralamak için kolon kolon çalışan (arada insanı da kullanan) yöntem geliştirmişti.

Radix Sort

- Sayıların (veya kelimelerin) ilk ya da son hanesinden başlayarak (baş | son harf)
 - Her basamakta saymalı sıralama yaparız.
- Son haneden başlarsak LSD,
- İlk haneden başlarsak MSD ile sıralarız.

Least Significant Digit Radix Sort

Algorithm LSDRadixSort(R)

// Input: (Multi)set R = $\{S1, S2, ..., Sn\}$ of strings of length m over alphabet $[0..\sigma)$.

// Output: R in ascending lexicographical order.

```
for i ← m − 1 to 0 do
CountingSort(R, i)
return R
```

$$O(|R| + \sigma)$$
.

- Tüm girdilerin aynı uzunlukta olması gerekli.
 - Sayısal girdilerde sol haneleri 0 ile doldururuz.
- R = {cat, him, ham, bat}.

Challenge

Sabit uzunluklu anahtarlardan oluşan devasa bir ticari

veritabanı tablonuz var.

• Ör. Hesap no, kimlik no, GUID, ...

- Neyle sıralasak?
 - Insertion Sort
 - MergeSort
 - QuickSort
 - HeapSort
 - LSD String Sort

		_
	B14-99-8765	
	756-12-AD46	
	CX6-92-0112	T
	332-WX-9877	T
	375-99-QWAX	T
	CV2-59-0221	T
	`97-SS-0321	T
	-	t
-	KJ-0, 12388	Ŋ,
	2201247777	+
	715-YT-013C	+
	MJ0-PP-983F	1
	908-KK-33TY	
	BBN-63-23RE	Τ
	48G-BM-912D	T
	982-ER-9P1B	T
	WBL-37-PB81	T
	810-F4-J87Q	Ť
	LE9-N8-XX76	T
	908-KK-33TY	T
	B14-99-8765	Ť
	CX6-92-0112	Ť
	CV2-59-0221	T
	332-WX-23SQ	T
	332-6A-9877	Ť

Challenge

Sabit uzunluklu anahtarlardan oluşan devasa bir ticari

veritabanı tablonuz var.

• Ör. Hesap no, kimlik no, GUID, ...

- Neyle sıralasak?
 - Insertion Sort
 - MergeSort
 - QuickSort
 - HeapSort
 - LSD String Sort
 - 256 (ASCII) ya da 65536 (Unicode) sayaç
 - W adımda sabit uzunluklu stringleri sıralarız.

	B14-99-8765	
	756-12-AD46	
	CX6-92-0112	Т
	332-WX-9877	
	375-99-QWAX	
	CV2-59-0221	
	`97-SS-0321	
		1
-	KJ-0_ 12388	
	715-YT-013C	
	MJ0-PP-983F	
	908-KK-33TY	
	BBN-63-23RE	
	48G-BM-912D	
_	982-ER-9P1B	
	WBL-37-PB81	
	810-F4-J87Q	
	LE9-N8-XX76	
	908-KK-33TY	
	B14-99-8765	
	CX6-92-0112	
	CV2-59-0221	Т
	332-WX-23SQ	
	332-6A-9877	

- Most Significant Digit Sort
- MSD radix sıralama string quicksort'a benzer, ancak stringleri üç parça yerine σ parçaya böler.
- Her parçayı rekürsif olarak tekrar MSD sort eder.

al	p	habet		al	g	orithm
al	i	gnment		al	i	gnment
al	1	ocate		al	i	as
al	g	orithm	\Longrightarrow	al	1	ocate
al	t	ernative	\longrightarrow	al	1	
al	i	as		al	p	habet
al	t	ernate		al	t	ernative
al	1			al	t	ernate

```
Algorithm MSDRadixSort(R, i)
// Input: (Multi)set R = \{S_1, S_2, ..., S_n\} of strings over the
alphabet [0..\sigma) and the length i of their common prefix.
// Output: R in ascending lexicographical order.
if |R| < \sigma then return StringQuicksort(R, i)
R_{\perp} \leftarrow \{S \in R \mid |S| = i\}; R \leftarrow R \setminus R_{\perp}
(R_0, R_1, \ldots, R_{\sigma-1}) \leftarrow CountingSort(R, i)
for i \leftarrow 0 to \sigma - 1 do R_i \leftarrow MSDRadixSort(R_i, ` + 1)
return R_1 \cdot R_0 \cdot R_1 \cdot \cdots R_{\sigma-1}
O(|R| + \sigma)
```


input		d						
she	are	are	are	are	are	are	are	are
sells	by 10_	by	by	by	by	by	by	by
seashells	she	sells	seashells	sea	sea	sea	seas	sea
by	sells	s e ashells	sea	sea s hells	seashells	seashells	seashells	seashells
the	s eashells	sea	seashells	sea s hells	seashells	seashells	seashells	seashells
sea	sea	sells	sells	sells	sells	sells .	sells	sells
shore	shore	seashells	sells	sells	sells	sells	sells	sells
the	shells	she	she	she	she	she	she	she
shells	she	shore	shore	shore	shore	shore	shells	shells
she	sells	shells	shells	shells	shells	shells	shore	shore
sells	surely	she	she	she	she	she	she	she
are	seashells,	surely	surely	surely	surely	surely	surely	surely
surely	the hi	the	the	the	the	the	the	the
seashells	the	the	the	the	the	the	the	the

		need to examin every character in equal keys			end-of- goes bef	ore any	output
are	are	are	are	are	are/	are	are
by	by	by	by	by	by	by	by
sea	s/ea	sea	sea	sea	s/ea	sea	sea
seashells	seashells	seashells	seashells	seashells,	seashells	seashells	seashells
seashells	seashells	seashells	seashells	seashell;	seashells	seashells	seashells
sells	sells	sells	sells	sells /	sells	sells	sells
sells	sells	sells	sells	sells/	sells	sells	sells
she	she	she	she	she	she	she	she
shells	shells	shells	shells	she	she	she	she
she	she	she	she	shells	shells	shells	shells
shore	shore	shore	shore	shore	shore	shore	shore
surely	surely	surely	surely	surely	surely	surely	surely
the	the	the	the	the	the	the	the
the	the	the	the	the	the	the	the

Trace of recursive calls for MSD string sort (no cutoff for small subarrays, subarrays of size 0 and 1 omitted)

- Kötü yanları:
- Küçük parçalarda oldukça yavaş çalışır.
 - Tüm sayaçları sıfırlıyoruz.
 - Bu yüzden algoritmada küçük boyutlar için QuickSort çağırılmıştı.
 - Insertion Sort da olabilir.
- Özyineleme yüzünden çok fazla küçük parça oluşur.
 - Tüm harfler farklıysa, 2 boyutlu N/2 ayrı parça

- İyi yanları:
 - Tüm karakterleri karşılaştırmak zorunda kalmayabiliriz.

Değişken uzunluklu girdiler ile kolaylıkla çalışabiliriz.

SIRALAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI

Sıralama

 Aynı türden nesnelerden oluşan bir koleksiyonu, birbirini büyüklük-küçüklük açısından mantıksal bir düzene sokmak.

- Girdi: {a₁, a₂, ..., a_n}
- Çıktı: $\{a_1', a_2', ...a_n'\}, a_1' \le a_2' \le ... \le a_n'$
- Kullanım alanları:
 - Transaction processing, kombinatoryal optimizasyon, astrofizik, moleküler dinamik, dilbilim, genbilim, hava tahmini, ...
- 20.yy en iyi 10 algoitmasından biri: QuickSort!

Sıralama Algoritmalarının Değerlendirilmesi

Performans:

- Çalışma zamanı
- Karşılaştırma ve değiştirme sayısı (değiştirme yoksa dizi erişim sayısı)

Ekstra Bellek:

- Yerinde sıralama (In-place) (Küçük bir fonksiyon çağrı yığıtı ya da sabit sayıda değişken olabilir): Raftaki kitapları rafta sıralama
- Harici bellek alanına sıralama (out of place sort): Raftaki kitapları yere döküp sıralama

Tekrar Eden Değerler:

- İstikrarlı (**Stable**): Girdide tekrar eden eğerler, çıktıda aynı sıra ile yer alırlar. 1. tekrar ilk, 2. tekrar ikinci, N. tekrar sonuncu ...
- İstikrarsız (Unstable): Tekrarların yer garantisi yok.

Temel Yöntemler

- Brute-Force
 - Selection Sort
 - Bubble Sort
 - Shell Sort
- Decrease-and-conquer
 - Insertion Sort
- Transform-and-conquer
 - HeapSort
- Divide-and-conquer
 - MergeSort
 - QuickSort

Merge Sort

- Fikir: İki sıralı diziyi birleştirirsek, bir sıralı büyük dizi elde ederiz.
- Rekürsif olarak
 - ikiye böl,
 - Bölünen parçaları kendi içinde sırala,
 - Sıralı sonuçları birleştir.
- + N elemanı O(NlgN)'de sıralar.
- N ile orantılı ekstra Alana ihtiyaç duyar.
 - Yerinde birleştirme yapabilmeliyiz.

Quick Sort

- Tipik olarak tüm değişken türleri için çalışan, popüler bir algoritmadır.
- Genel olarak O(NlgN)
 - En kötü durumda O(N²) olablir.
 - İç döngü çok kısa olduğu için teoride ve pratikte hızlı-efektif çalışır.
- MergeSort'un tümleyenidir.
 - Mergesort'ta diziyi sıralanacak iki diziye böldük ve sıralı diziyi oluşturmak için birleştirdik.
 - Tüm dizide çalışmadan önce iki rekrürsif çağrı
 - Ortadan ikiye böldük
 - Quicksort'ta iki alt dizi sıralı olduğunda tüm dizinin sıralı olmasını sağlayacak şekilde dizimizi yeniden organize ederiz.
 - Tüm dizide çalıştıktan sonra iki rekürsif çağrı
 - Bölme yerimiz dizinin içeriğine göre değişir.
- MergeSort N'lik ekstra alan,
- QuickSort c logN'lik ekstra alana ihtiyaç duyar

Radix Sort

- Basamak basamak sıralama yapılır.
 - En düşük anlamlıdan en yüksek anlamlıya
 - En yüksek anlamlıdan en düşük anlamlıya

Sıralama Algoritmalarının Karşılaştırması

Algoritma	Ort. Karmaşıklık	İstikrarlı?	Yerinde sıralama?	Ekstra alan
Selection	O(n ²)	Hayır	Evet	1
Insertion	$O(n^2) (n^2/2)$	Evet	Evet	1
Shell	$O(n^2) (n^{3/2})$	Hayır	Evet	1
Merge	O(n lg ₂ n)	Evet	Hayır	N
Quick	O(n lg ₂ n) (1.39nlgn)	Hayır	Evet	C IgN
Radix LSD	O(n) (2nw)	Evet	Hayır	N+R
Radix MSD	O(n) (2nw)	Evet	Hayır	N+DR (D fonksiyon stack derinliği)
Неар	O(n lg ₂ n) (2nlgn)	Hayır	Evet	1

VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.1

2020-2021 Güz Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

TOPOLOGICAL SORT

Topological Sort

- G=(V,E) Yönlü Çevrimsiz Çizgesinde (Directed Acyclic Graph) (u,v) kenarı varsa, u'nun v'den önce gelmesinin sağlanması.
- Grafın tüm kenarlarını soldan sağa doğru dizmek gibidir.
 - DFS ile gezerek, düğümlerin bitiş zamanlarını bulur ve ona göre sıralarız.
- Olayların oluş sırasını modellemek için kullanılabilir.

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times v.f for each vertex
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Topological Sort

Strongly Connected Components

- Bir başka DFS uygulaması
- G(V,E) yönlü grafının güçlü bağlı bileşenleri, $C \subseteq V$ olacak şekilde olası en büyük düğüm kümesidir.
 - Öyle ki, bu kümede yer alan tüm u ve v düğümleri için hem u'dan v'ye, hem de v'den u'ya yol vardır (u ve v bir diğerinden erişilebilir durumdadır).
 - İki DFS ile bulabiliriz. DFS(G), DFS(G^T)
 - G^T = (V,E^T), E^T={(u,v) : (v,u) € E} (Kenarların yönleri ters)
 - Tanım gereği, her iki DFS gezintisinde de aynı SCC'leri buluruz.

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS(G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^T
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

- Her işaretli bölge, keşif ve bitiş zamanlarını içeren düğümlerden oluşan sıkı bağlı bileşenleri gösterir.
- G^T'deki her bir sıkı bağlı bileşen, Depth-First ormanındaki bir ağaçtır.
 - 1. b, c, g, h düğümleri bu DFS ağaçlarının kökleridir.
- Çevrimsiz bileşen grafı
 GSCC, bileşenlerin içindeki
 kenarların tümünü birleştirip
 her bileşende tek bir düğüm
 oluşturularak elde edilir.

MINIMUM SPANNING TREE

Asgari Tarama/Örtme Ağacı

Minimum Spanning Tree

- Bir köyün muhtarısınız.
- Sorumluluğunuz gereği, köydeki tüm evleri birbirine bağlamanız gerek.
 - Bir yol parçası w ile 2 ev (u, v) bağlanabilir.
 - Bu yol parçasının yapım/tamir masrafı w(u,v)'dir.
- Hedefiniz,
 - Herkesi birbirine bağlı tutacak (bir evden diğer tüm evlere ulaşılabilecek)
 - Bunu minimum masraf ile yapacak

Yol ağını oluşturmaktır.

Minimum Spanning Tree

- Çözüm: Köyünüzü yönsüz graf olarak modelleyin. G=(V,E)
- Her (u,v) € E kenarı için bir ağırlık w(u,v) atayın.
- Öyle bir $T \subseteq E$ bulun ki;
 - T tüm düğümleri birbirine bağlasın (tarasın/örtsün)
 - $w(T) = \sum_{(u,v) \in T} w(u,v)$ Değeri asgaride kalsın.
- Tüm örten ağaçlar içerisinde ağırlıklarının toplamı en az olan ağaca asgari tarama ağacı (minimum spanning tree) adı verilir.

Minimum Spanning Tree

- G(V,E) grafımızda tanımlı w:E $\rightarrow \mathbb{R}$ ağırlık fonksiyonumuz olsun.
- G için tanımlı bir MST (min w) bulmak istiyoruz.
 - MST'nin |V|-1 kenarı olmalı. ←
 - · Çevrim (cycle) içermemeli.
 - G için birden fazla MST bulunabilir.
- Kenarlardan oluşan bir A kümesi oluşturmalıyız.
- Boş küme ile başlayıp, A'ya kenar ekleyerek büyütürüz.
 - Döngü şartı: A, bir MST'nin alt kumesi olmalıdır.
- Bu durumda ancak güvenli kenarları kümeye eklemeliyiz.
- Her adımda bir stratejiye göre davranıp eylem gerçekleştiriyoruz. → Greedy çözümler MST oluşturmak için uygun.

Generic MST Algoritması

GENERIC-MST(G,w)

- $1 A = \emptyset$;
- 2 while A does not form a spanning tree
- 3 find an edge (u,v) that is safe for A
- 4 $A = A \cup \{(u,v)\}$
- 5 return A
- Güvenli kenar nasıl bulunacak?
 - (c,f) kenarı en düşük maliyetli olan. A için güvenli mi?
 - O ana kadar oluşan ağaçta c ∈ S olsun ama f düğümü yok (f ∈ V-S)
 - Herhangi bir MST'de en az bir kenar ile f de ağaca bağlanmalıdır.
 Neden en ucuz olanını seçmeyelim ki? (Greedy seçim stratejisi)

Generic MST Algoritması

- S ve V-S ayrık kısımlarına kesim (cut) diyelim.
- (S, V-S) kesimleri arasında kenarlar (u,v) € E olabilir.

 Bu kesimler arasında bağlantıyı hafifleten bir kenar bizim için güyenlidir.

V-S

için güvenlidir.

 Örnekte, (u,v) kenarının değeri (x,y) kenarının değerinden küçük olsun. (x,y)'yi kaldırıp (u,v)'yi ekleriz, Spanning tree yapısını bozmamış oluruz.

Generic MST Algoritması

- Algoritmadaki A kümesi, bağlı bileşenlerden oluşan bir ormandır.
 - Başlangıçta, her bileşen tek bir düğümdür.
- Herhangi bir güvenli kenar, iki bileşeni birleştirerek tek bileşen haline getirir.
 - Her bileşen bir ağaçtır.
- MST'de |V|-1 kenar olduğundan, döngü |V|-1 kere döner.
 - |V|-1 güvenli kenarı eklediğimizde, elimizde tek bir bileşen oluşur.
- Bu noktadan devam edersek, Kruskal'ın MST algoritma çözümüne ulaşırız.

KRUSKAL MST

- Her düğüm bir bileşen olacak şekilde başlar.
- Tekrarlı olarak, iki bileşeni birbirine bağlayacak «hafif» bir kenar bularak devam eder (kesimler arasındaki hafif kenar).
- Kenarları, ağırlıklarına göre artan şekilde tarar.
- Bir kenarın farklı bileşenlerdeki düğümleri bağlayıp bağlamadığını belirlemek için ayrık küme şeklinde veri yapısı kullanır.

```
KRUSKAL(V, E,w)
A \leftarrow \emptyset
for each vertex v \in V
  do MAKE-SET(v)
sort E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
  do if FIND-SET(u) = FIND-SET(v)
       then A \leftarrow A \cup \{(u, v)\}
             UNION(u, v)
return A
```


Kruskal MST Karmaşıklık Analizi

- Init A: O(1)
- İlk for döngüsü: |V| (MAKE_SET)
- E'ye göre sıralama: O(E IgE)
- İkinci for döngüsü: O(E) FIND_SET ve UNION
- O(E Ig V)
- Eğer kenarlar sıralıysa, O(E a(V)), neredeyse lineer

PRIM MST

Prim'in MST Algoritması

- Tek bir ağaç oluşturur.
 - A her zaman bir ağaçtır.
- Keyfi bir r kökü ile başlar.
- Her adımda, kesimler arasında bir hafif kenar bularak ağaca ekler. (V_A, V-V_A)
- V_A
- Hafif kenar nasıl bulunabilir? Öncelikli Kuyruk ile.
 - Kuyruktaki elemanlar V-V_A kümesindeki düğümlerdir.
 - Elemanların anahtarları, ağırlık değerleridir.
 - EXTRACT_MIN ile (V_A, V-V_A) arasındaki hafif kenar geçişi bulunur.
 - Eğer düğüm V_A'daki düğümler ile komşu değilse, ağırlığı sonsuzdur.
- A'nın kenarları, r köküne sahip bir ağaç oluşturacaktır.
 - r başlangıcı verilir ama esasen herhangi bir düğüm olabilir.
 - Her düğüm, ağaçtaki ebeveynini (p[v]) bilir.
 - Algoritma ilerledikçe V_A büyür, V boş küme olduğunda (tüm düğümlere erişildiğinde) sonlanır.

Prim'in MST Algoritması

```
PRIM(V, E, w, r)
Q \leftarrow \emptyset
for each u \in V
  do key[u] \leftarrow \infty
      \pi[u] \leftarrow \mathsf{NIL}
      INSERT(Q, u)
DECREASE-KEY(Q, r, 0) key[r] \leftarrow 0
while Q != Ø
  do u \leftarrow \mathsf{EXTRACT}-MIN(Q)
      for each v \in Adj[u]
          do if v \in Q and w(u, v) < key[v]
                 then \pi[v] \leftarrow u
                        DECREASE-KEY(Q, v, w(u, v))
```

Prim'in MST Algoritması

Prim MST Karmaşıklık Analizi

- Q binary heap ile yapılmış olsun.
- Init Q ve ilk for döngüsü: O(V lgV)
- R anahtar değerinin azaltılması: O(lgV)
- While döngüsü
 - |V| Extract_min çağrısı → O(V lgV)
 - <= |E| Decrease_key çağrısı → O(E IgV)
- O(E lg V)
- Eğer (fibonacci heap kullanarak) Decrease_key O(1)'de yapılırsa, O(V IgV + E)

VERI YAPILARI VE ALGORITMALAR

BLM2512 Gr.1

2020-2021 Güz Yarıyılı (Uzaktan Eğitim)

Dr.Öğr.Üyesi Göksel Biricik

SHORTEST PATHS

Tek Kaynaktan En Kısa Yollar

Single-Source Shortest Paths

- G=(V,E) Bir yönlü, kenar ağırlıklı graf olsun.
- Amaç: G grafında verilen bir kaynak (s) düğümünden yola çıkarak, (erişilebilen-yol olan) diğer tüm düğümlere gidilebilecek en kısa yolları bulmak.
 - S'den başlayıp, diğer tüm düğümleri gezme problemi ile karıştırılmamalıdır. (Traveling Salesman Problem)
 - Tüm düğümlerden tüm düğümlere : All-pairs Shortest Path
 - Floyd algoritması
- Nerelerde kulanılır?
 - Ulaşım planlama
 - Bilgisayar ağlarında (Internette) packet routing
 - Sosyal ağ analizi
 - Ses tanıma, belge biçimlendirme, robotik, derleyici, havayolu ekip planlama, ...

Kampüsler arası en hızlı yol??

- Brute-Force çözüm:
 - Düğümler arası olası tüm rotaları çıkar, sürelerini hesapla.
 - Sırala
 - En küçük değere sahip olan rotayı seç.

Edsger Wybe Dijkstra

- (11 Mayıs 1930 6 Ağustos 2002)
- Hollandalı bilgisayar bilimcisi.
- En kısa yol algoritmasını 1950'lerin ortalarında (1956) tasarladı.
- «This was the first graph problem I ever posed myself and solved. The amazing thing was that I didn't publish it. It was not amazing at the time. At the time, algorithms were hardly considered a scientific topic.»
- 1959'da yayınladı.

- Yönlü ve yönsüz graflarda kullanılabilir.
 - G=(V,E)
- Tüm kenarların pozitif ağırlıkları olmalıdır.
 - W(u,v) > = 0
 - Negatif ağırlıklarla çalışmaz
 - Bellman-Ford algoritmasına bakınız.
- Esasen, BFS arama yönteminin ağırlıklandırılmış bir halidir.
 - FIFO queue yapısı yerine, Priority Queue kullanır.
 - Anahtar değerleri, en kısa yol ağırlıklarıdır (d[v])
- İki düğüm kümesi tutar:
 - S = en kısa yolları hesaplanmış olan düğümler
 - Q = Priority Queue = V-S

```
INIT-SINGLE-SOURCE(V, s)
for each v \in V
  do d[v]←∞
      \pi[v] \leftarrow \mathsf{NIL}
d[s] \leftarrow 0
RELAX(u, v, w)
if d[v] > d[u] + w(u, v)
  then d[v] \leftarrow d[u] + w(u, v)
```

 $\pi[v] \leftarrow u$

```
DIJKSTRA(V, E, w, s)
INIT-SINGLE-SOURCE(V, s)
S \leftarrow \emptyset
Q \leftarrow V i.e., insert all vertices into Q
while Q = \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
S \leftarrow S \cup \{u\}
for each vertex v \in Adj[u]
do RELAX(u, v, w)
```

Prim algoritmasına benzer, farkı d[v] hesabı ve en kısa yol ağırlıklarının anahtar olarak kulanılmasıdır.

- Tüm düğümler kaynaktan erişilebilir ise,
- Min-priority-queue dizi ile yapılırsa
- O(V²)
- Min-heap ile yapılırsa
- O(E log V)
- Fibonacci heap ile yapılırsa
- O(E + V logV)

	A	В	С	D	E
1	0	∞	∞	∞	∞

	A	В	C	D	E
1	0	∞	∞	∞	∞
2	0	4(A)	2(A)	∞	∞

	A	В	C	D	Е
1	0	∞	∞	∞	∞
2	0	4(A)	2(A)	∞	∞
3	0	4(A) 3 (C)	2(A)	6(C)	7(C)

	A	В	C	D	Е
1	0	∞	∞	∞	∞
2	0	4(A)	2(A)	∞	∞
3	0	3(C)	2(A)	6(C)	7(C)
4	0	3(C)	2(A)	5(B)	6(B)

	A	В	C	D	Е
1	0	∞	∞	∞	∞
2	0	4(A)	2(A)	∞	∞
3	0	3(C)	2(A)	6(C)	7(C)
4	0	3(C)	2(A)	5(B)	6(B)
5	0	3(C)	2(A)	5(B)	6(B)

	A	В	С	D	E
1	0	∞	∞	∞	∞
2	0	4(A)	2(A)	∞	∞
3	0	3(C)	2(A)	6(C)	7(C)
4	0	3(C)	2(A)	5(B)	6(B)
5	0	3(C)	2(A)	5(B)	6(B)
6	0	3(C)	2(A)	5(B)	6(B)

Node	Status	Shortest Distance From A	Previous Node
Α	Current Node	0	
В		∞	
С		∞	
D		∞	
E		∞	
Z		∞	

Node	Status	Shortest Distance From A	Previous Node
Α	Current Node	0	
В		∞ 4	Α
С		∞ 2	Α
D		∞	
E		∞	
Z		∞	

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В		∞4	Α
С	Current Node	∞2	Α
D		∞	
Е		∞	
Z		∞	

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В		4 2+1=3	С
С	Current Node	2	Α
D		∞ 2+8=10	С
E		∞ 2+10= 12	С
Z		∞	

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В	Current Node	3	С
С	Visited Node	2	Α
D		10	С
E		12	С
Z		∞	

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В	Current Node	3	С
С	Visited Node	2	Α
D		10 3+5= <mark>8</mark>	В
E		12	С
Z		∞	

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В	Visited Node	3	С
С	Visited Node	2	Α
D	Current Node	8	В
Е		$\frac{12}{8+2=10}$	D
Z		∞ 8 + 6 = 14	D

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В	Visited Node	3	С
С	Visited Node	2	Α
D	Visited Node	8	В
E	Current Node	10	D
Z		14 10 +5 = 15	D

Node	Status	Shortest Distance From A	Previous Node
Α	Visited Node	0	
В	Visited Node	3	С
С	Visited Node	2	Α
D	Visited Node	8	В
E	Visited Node	10	D
Z	Current Node	14	D

THE END