1

Control Systems

Pranjal Singh*

CONTENTS

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

1 Feedback Circuits

1.1. The CE BJT amplifier in Fig. ?? employs shunt–shunt feedback: Feedback resistor R_F senses the output Voltage V_o and provides a feedback current to the base node. $\left(R_f = 56k\Omega, R_C = 5.6k\Omega, R_S = 10k\Omega\right)$

- 1.2. Draw the equivalent control system for fig. ?? Solution:
- 1.3. If V_s has a zero dc component, find the dc collector current of the BJT. Assume the transistor H = 100.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.2

Solution: Since, $V_E = 0$ and $V_S = V_{BE}$

$$I_S = \frac{V_{BE}}{R_S} = \frac{0.7}{10 * 10^3}$$
 (1.3.1)

$$\implies I_S = 0.07mA \tag{1.3.2}$$

Applying KCL at feedback resistor output

$$-V_o + V_{BE} + I_f R_f = 0$$

$$\left(Since, I_f = I_B + I_S\right)$$

$$V_o = V_{BE} + (I_B + I_S) R_f$$

$$= 0.7 + \left(I_B + 0.07 * 10^{-3}\right) \left(56 * 10^3\right)$$

$$\implies V_o = \left(56 * 10^3\right) I_B + 4.62 \quad (1.3.3)$$

Applying KCL at collector node

$$\frac{V_o - 15}{5.6 * 10^3} + I_C + I_f = 0$$

$$(Since, I_C = HI_B)$$

$$\frac{V_o - 15}{5.6 * 10^3} + HI_B + (I_B + I_S) = 0$$

$$\frac{V_o - 15}{5.6 * 10^3} + (100 + 1)I_B + (0.07 * 10^{-3}) = 0$$

$$\implies V_o = 14.608 - (565.5 * 10^3)I_B \quad (1.3.4)$$

Subtracting ?? from ??, we get,

$$I_R = 16.06\mu A$$
 (1.3.5)

$$I_C = I_E = HI_B$$
 (1.3.6)

Dc collector Current,
$$I_C = 1.606mA$$
 (1.3.7)

1.4. Find the small-signal equivalent circuit of the

Parameter	Description
R_{in}	Total Input Resistance
R_{out}	Total Output Resistance
r_{π}	Output resistance of NPN
R_f	Feedback resistance
R_i	Input resistance of G circuit
R_o	Output resistance of G circuit
R_{if}	Input resistance of Feedback
R_{of}	Output resistance of Feedback
R_s	Resistance of Current Source
R_L	Output Load Resistance
g_m	Trans conductance
I_C	Collector current
I_E	Emitter Current
I_B	Base Current

TABLE 1.3

amplifier with the signal source represented by its Norton equivalent (as we usually do when the feedback connection at the input is shunt). **Solution:** In fig ??

1.5. Find the G circuit and determine the value of G, R_i , and R_o .

Solution: G circuit in fig. ?? and G Block in ??

Fig. 1.5: Gain Block

Fig. 1.5: G Circuit

$$g_m = \frac{I_C}{V_{\pi}} = \frac{1.606 * 10^{-3}}{25 * 10^{-3}} = 64 mA/V$$
 (1.5.1)

$$r_{\pi} = \frac{H}{g_m} = \frac{100}{64 * 10^{-3}} = 1.56k\Omega$$
 (1.5.2)

$$V_o = -g_m V_\pi \left(R_f || R_C \right) \tag{1.5.3}$$

$$V_{\pi} = I_i \left(R_S || R_f || r_{\pi} \right) \tag{1.5.4}$$

$$Gain, G = \frac{V_o}{I_t} \tag{1.5.5}$$

$$G = -g_m \left(R_f || R_c \right) \left(R_s || R_f || r_s \right) \quad (1.5.6)$$

$$G = -429k\Omega \tag{1.5.7}$$

Input Resistance

$$R_i = (R_s || R_f || r_s) = 1.31 k\Omega$$
 (1.5.8)

$$R_o = R_C || R_f \tag{1.5.10}$$

$$R_o = 5.09k\Omega \qquad (1.5.11)$$

1.6. Find H and hence AH and 1+AH. **Solution:**

Fig. 1.6: H Block

Fig. 1.6: H Circuit

Solution:

$$T = \frac{G}{1 + GH} \tag{1.8.1}$$

$$= -49.54k\Omega \qquad (1.8.2)$$

$$R_{if} = \frac{R_i}{1 + GH} \tag{1.8.3}$$

$$=\frac{1.31*10^3}{8.66}\tag{1.8.4}$$

$$= 151.27\Omega$$
 (1.8.5)

$$R_{of} = \frac{R_o}{1 + GH} {(1.8.6)}$$

$$=\frac{5.09*10^3}{8.66}\tag{1.8.7}$$

$$= 587.7\Omega$$
 (1.8.8)

$$R_{in} = \frac{1}{\frac{1}{R_{if}} - \frac{1}{R_s}} \tag{1.8.9}$$

$$= 153.2\Omega$$
 (1.8.10)

$$R_{out} = \frac{1}{\frac{1}{R_{of}} - \frac{1}{R_L}}$$
 (1.8.11)

$$=R_{of} \tag{1.8.12}$$

1.9. What voltage gain V_o/V_s is realized? How does this value compare to the ideal value obtained if the loop gain is very large and thus the signal voltage at the base becomes almost zero (like what happens in an inverting op-amp circuit).

Solution:

$$\frac{V_o}{V_s} = \frac{V_o}{I_s R_s} \tag{1.9.1}$$

$$=\frac{T}{R_s}\tag{1.9.2}$$

Since,
$$T = \frac{V_o}{I_s}$$
 (1.9.3)

$$\frac{V_o}{V_c} = \frac{-49.54 * 10^3}{10 * 10^3} \tag{1.9.4}$$

$$= -4.95V/V (1.9.5)$$

If the loop gain is very large, then the gain with feedback T is:

(1.6.4) Teedback 1 18:

$$T = \frac{1}{H} \tag{1.9.6}$$

$$=\frac{1}{(-17.85*10^{-6})}\tag{1.9.7}$$

$$= -56k\Omega \tag{1.9.8}$$

 \therefore the closed loop gain, T = - R_f

$$H = \frac{I_f}{V_o} = -\frac{1}{R_f} \tag{1.6.1}$$

$$\implies H = -17.85 * 10^{-4} \tag{1.6.2}$$

$$GH = 7.662$$
 (1.6.3)

$$1 + GH = 8.66 \tag{1.6.4}$$

1.7. Find R_{11} and R_{22} from fig. ?? Solution:

$$R_{11} = R_f (1.7.1)$$

$$R_{22} = R_f (1.7.2)$$

1.8. Find T, R_{if} and R_{of} and hence R_{in} and R_{out} .

Parameter	Value
R_f	$56k\Omega$
R_S	$10k\Omega$
R_C	$5.6k\Omega$
I_S	0.07mA
I_B	16.06μΑ
I_C	1.606 <i>mA</i>
I_E	1.606 <i>mA</i>
g_m	64mA/V
r_{π}	$1.56k\Omega$
G	$-429k\Omega$
R_i	$1.31k\Omega$
R_o	$5.09k\Omega$
Н	$-17.85 * 10^{-4}$
GH	7.662
1 + GH	8.66
T	$-49.54k\Omega$
R_{if}	$151.27k\Omega$
R_{of}	$587.7k\Omega$
R _{in}	153.2Ω

TABLE 1.9

Fig. 1.9: Shunt-Shunt Amplifier Block Diagram

Fig. 1.9: Ideal structure for Shunt-Shunt

1.10. Verify your solution using spice

Solution: The following readme file provides necessary instructions to simulate the circuit in spice.

ee17btech11031/spice/README.md

The following netlist simulates the given circuit.

ee17btech11031/spice/ee17btech11031.net

Doing operational Analysis on the Circuit ??

Parameter	Value
I_C	2.1 <i>mA</i>
I_E	2.1 <i>mA</i>
I_B	$2.1\mu A$
I_S	0.07mA

TABLE 1.10

Table ?? is close to the numerical Calculation done above.