Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and QD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

,¥.

WO 97/08320 PCT/EP96/03647

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Inventi n

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

WO 97/08320 PCT/EP96/03647

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecukle or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

- Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.
- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Ck (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the E. coli phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRl site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEl derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102. Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softy fragments: M: molecular weight marker. A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 25: Schematic representation of the modular pCAL vector system.

Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.

List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31 \ Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.

Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

Table 3: Assignment of rearranged V sequences to their germline counterparts.

(A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).

sub s

- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of V_K (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 V_K , 3 V_A , and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is aiways

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₂₄A,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V κ . In the case of V λ , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-Vκ1	Vκ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vκ2-6	Vκ2-6
HuCAL-Vk3	Vκ3-1, - 4	Vκ3-4
HuCAL-V _K 4	· Vκ4-1	Vĸ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-V).3	DPL23	HUMLV318

SUB

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHXTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vk or V). genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₁Q

VH6: S₄,G

Vκ3: E₁D, I₅₈V

VK4: KaR

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene seaments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene\segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGS. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAÀCCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-Vκ2 gene was inserted via EcoRV and BaiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid plG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector plG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

Supa)

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI) GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAG&CACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) are trinucleotide mixtures encoding the amino phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 10⁷ and 3.4 x 10¹⁰ for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153 \(\) 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 in for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector plG10.3-scH3k2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenical acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15 mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{500nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of 100 μ g/ml in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ I of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µl FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising B-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-B (LT-B), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to \$\textit{B}\$-estradiol, testosterone, LeY, LT-\$\textit{B}\$, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-\$\textit{B}\$-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, \$\textit{B}\$-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via AatII/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatII/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/MscI, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3 κ 2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenical (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α-FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

54B1

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in 15 buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = 40 μ g/ml).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2O . The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 108 for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial H3κ2 H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. <u>136</u>, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science <u>240</u>, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ulirich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research <u>22</u>, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference'	Family ³	Germline genes*
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	` 1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	Lite
Vk1-5	. 2	1	A30
Vk1-6	1	1	LPVK5
Vk1-7	1 -	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1.	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	O2; O12; DPK9
Vk 1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	. 2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	· 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	. 4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name	Reference ²	Family	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18 .
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3 .	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6 .	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	Bi

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference?	Family ³	Germline genes ⁴
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	· 1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	. 2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1 .	3	VI III.1
Humlv318	4	3	-
DPL18	1	7	4A; HUMIGLVA
DPL19	. 1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	į	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b ; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	. 10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1 .	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	. 1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	- 18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

Table 1C: (continued)

Used Name	Reference'	Family	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	· 3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	-3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	· 3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3.	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

50

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	. 3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	. 3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3 ·	3-15; V3-15
VH3-1X-8	. 1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	. 4	H8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name¹	Reference ²	Family	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-2,1-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	~ 4	H10
VH4-31-7	20	4	· H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	. 4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11 .	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	.11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	80	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10.	10,5%	3 0
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0.0%	10
CEA4-8A	107	1	02	. 7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	· 02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108	i	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	02	9	9,5%	73
			53			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	. 1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	. 1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0.0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A 30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	. 1	L8	8	8,4%	· · · 7 0
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	. 7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2.2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	9 5	1 .	A30	5	5,3%	113
GAL(I)	108	1	A30	. 6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	. 8
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	. 32
LUNm01	108	1	L12(2)	10	10,5%	6
HIV-b1	106	1	A20	4	4,3%	8
HIV-s4	103	1	02	2	2,2%	8
			54-			

Table 2A: (continued)

Name¹	aa²	Computed	Germline	Diff. to germline ⁵	% diff. to germline ⁶	Reference
		family ³	gene⁴	gennine	30	
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0.0%	122
CLL PATIENT 12	88	1	02	0	0.0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0.0%	122
CLL PATIENT 9	88	1	012	1	1.1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	1	L8	2	2,3%	122
CLL PATIENT 2	8 8	1	L8	0	0.0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	Ò	0,0%	122
CLL PATIENT 18	85	1	Ł9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 ' '	L12(2)	20	. 21,1%	68
1811	108	1	L12(2)	20	21,1%	6 8
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22.1%	68
CUR	109	3	A27	. 0	0,0%	66
GLO	109	3	A27	0	0.0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0.0%	. 67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0,0%	91
HAH 14.1	109	3	A27	1	1,0%	51
HAH 14.2	109	3	A27	1	1.0%	51

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	. 1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	3	A27	3	3,1%	33
TI :	109	3	A27	3	3,1%	114
mAb113	109	3	A2 7	3	3,1%	71
HEW .	107	3	A27	0	0,0%	94
BRO	106	. 3	-A27	٥.	0,0%	94
ROB	106	3 .	A2 7	0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	6 6
WOL .	109	3	A27	. 4	4,2%	2
35G6	109	3	A27	4	4,2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	. 4	4,2%	84
BRA	106	3	A27	1	1,1%	94
НАН	106	3	A27	. 1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	. 3	A27	6	6,3%	87
JH,	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
mAb112	109	3	A27	6	6,3%	71
SIC	103	3 .	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL.	109	3	A27	· 7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	~9	9,4%	125
Taykv322	. 105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	. 8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1 .	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0.0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	· 108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2.1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	· L6	2	2.1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3.2%	99
LUNm03	109	3	A27	13	13,5%	. 6
IARC/BL41	108	3	A27.	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	۱6	4	4,2%	111

5声

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	· 3	L6	3 ·	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	9 5	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11 -	12,1%	8
HIV-s7	104	3	A27.	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
sikv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 -	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3	L6	10	10,5%	121
GER	109	3	L2/L16	7 .	7,4%	75
GF4/1.1	109	3	L2/L16	. 8	. 8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	. 3	16	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	.2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	. 3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	. 0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7.	8,1%	13
HuFd79	111.	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4 ·	4,8%	122
REE	.104	3	L2/L16	2 5	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	i	1,3%	54
MD3.1	92	. 3	Ľ6	0	0,0%	54
GA3.6	92	3	L6	. 2	2,6%	54
M3.5N	92	3.	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	. 1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	. 3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0.0%	54
MD3.8	91	3	L2/L16	0	0.0%	54
GA3.4	92	3	L6	7	9.0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

5∂

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	. 0	0.0%	54
MD3.9	93	3	A27	0 .	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	. 3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	. 3	A27	-1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3 .	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6 .	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	1.12	12,6%	31
REI-based CAMPATH-9	107	1 -	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
BI	108	1	08	14 -	14,7%	14
AND	107	1	02	13	13,7%	. 69
2A4	109	1	02	12	12,6%	23
KA	108	1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	6 0
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1 -	. 08	21	24,1%	1 .
NI	112	1	08	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

(continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A3	0	0.0%	58
R5A3K	- 114	2	A3	1	1,0%	125
R1C8K	114	2	A3 ·	1	1,0%	125
VK2.R149	113	2	A3	2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	А3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A3	6	6.0%	92
NIM	113	2	А3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A 3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	А3	4	5,6%	. 124
CLL PATIENT 19	87	2	A3	0	0.0%	122
CLL PATIENT 20	87	2	А3	o	0,0%	122
MIL	112	2	A 3	16	16,2%	26
FR	113	2	А3	20	20,0%	101
MAL-Urine	83	1	G2	6.	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1 .	1,6%	52 .
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0,0%	119
1-187-29	110	3	A27	0	0.0%	119
Π117	110	.3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	. 3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	. 8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HIV-LC3	107	3	A27	21	22,3%	. 8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	. 8
HIV-b4	107	¹ 3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3 .	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8.
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
TT1:25	108	1	L5	. 8	8,4%	63
HIV-s2	.103	3	A27	28	31,1%	8 .
265-695	108	1	L5	7	7.4%	3
2-115-19	108.	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2 ·	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17 .	5	5,0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101	4	B 3	1	1,0%	27
LEN	114	4	В3	1	1.0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	. 4	В3	1	1,0%	27
			_			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2 .	2.0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	B 3	3	3.0%	27
H2F	113	4	В3	3	3,0 %	70
PB17IV	114	4	В3	. 4	4,0%	74
CD5+.27	101	4	В3	4	4,0%	27
CD5+.9	101	4	В3	4	4, 0 %	27
CD528	101	4	В3	5	5,0 %	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	B3	0	0.0%	54
MD4.4	92	4	B3	0	0.0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0.0%	54
MD4.7	92	4	В3	0	0,0%	- 54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2.	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name¹	aa²	Computed	Germline	Diff. to germline ⁵	% diff. to germline ⁶	Reference
	•	family ³	gene⁴	germine	germine	
WAH	110	1	DPL3	7	7%	. 68
1B9/F2	112	1	DPL3	7	7 %	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	O%	6
T2:C14	110	1	DPL5	0	O%	6
PR-TS1	110	1	DPL5	0	Ο%.	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	1111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SI2	100	1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	*1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	O%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	.1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	. 110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8.	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8 .	8%	84
FOG1-A3	111	2	DPL11	9	9%	27
AL NOV	112	. 2	DPL11	7	7%	28
			4			

Table 2B: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to germline ⁶	Reference
	•	family ³	gene⁴	germine	germine	
HMST-1	110	2	DPL11	4	40/0	82
HBW4-1	108	2	DPL12	9	9%	52
wh.	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7 .	7%	82
НВр2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL .	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0 %	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	· 70
AL GIL	109	3	DPL16	. 8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	. 111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2 2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	. 27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

AS7 MCG	110	2	DDIAG			
			DPL12	6	6%	56
4	110	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	7 7
PR-SJ2	110	2	DPL12	14	13%	5 5
вон	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
во	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	. 15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	- 111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0 %	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	1.7	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	. 3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
		·	66			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	. 3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE .	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0 %	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.89	. 98	8	DPL21	. 5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8 .	HUMLV801	51	49%	75
К6Н6	112	8	HUMLV801	20	19%	44
K5C7	112	.8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	. 8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP .	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	- 43
SHO	108	3	DPL23	19	18%	19
HAN	108	. 3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY .	106	3	DPL23	9	9%	19
COT	106	3	DPL23	13	12%	19
Pag-1	. 111	3	Humlv318	5	5%	31

67

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	. 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humlv3.18	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	. 19
тно	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	. 1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	• 1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	5 5
R3.5H5G	122	1	. VH1-13-6	10	10,2%	70
N89P2	123	1.	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5.1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	-5	5,1%	9 8
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	. 125	1	VH1-12-7	5	5,1%	9 8
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	. 6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	· 1	VH1-12-7	7	7.1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
NEI	127	1	VH1-12-1	0	0.0%	55
AND	127	1	VH1-12-1	0	0.0%	55
L7	127	1	VH1-12-1	· O	0,0%	54
L22	124	1	VH1-12-1	0	0,0%	54
L24	127	1	VH1-12-1	0	0.0%	. 54
		•	65			

Table 2C: (continued)

Name¹	aa²	·Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	. 1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783 c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1.0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	· 1	1.0%	54
TNF-E7	116	1	VH1-12-1	2	2,0%	42
mÁb111	122	1	VH1-12-1	, 7	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7.1%	79
YES8c	122	1	VH1-12-1	8	8.2%	34
RF-TS1	123	1	VH1-12-1	8	8.2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 -	VH1-12-1	8	8,2%	26
mAb410.30F305	- 117	1	VH1-12-9	5	5,1%	52
EV1-15 .	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	.1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0.0%	30
CLL10 13-3	97	1 "	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1 .	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	. 1	1.0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	.94	1	VH1-13-8	0	0,0%	30

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	. 1	1,0%	30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	. 1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	. 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23.5%	88
S1-1	125	. 1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	. 15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2.0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2.	2.0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	. 1	VH1-12-7	3	3.1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0 -	0,0%	46
ss6	99	1 1	VH1-12-1	0	0,0%	. 46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s 6C 9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	.46
PHOX15	124	, 1	VH1-12-7	20	20,4%	73
			≯ 1			

Table 2C: (continued)

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	· 2	VH2-31-5	9	9.0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2 .	VH2-31-11	8.	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	. 2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7.2%	· 26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21.0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21.0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23.0%	131
TD e Vq	113	3	VH3-14-4	` 0	0,0%	16
rMTF	114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	.3	VH3-14-4	10	10,0%	131 '
RF-KES	107	3	· VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9.0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10.2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0.0%	- 26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100.	3	VH3-13-26	5	5.1%	96
OST577	122	3	VH3-13-13	6	6,1%	5
	,		72			

Table 2C:

(continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
ВО	113	3	VH3-13-19	15	15,3%	10
TT125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3.	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	8 5
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-		•				
9	118	3	VH3-,13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	7 7
Π117	107	3 ·	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14.3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0.0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0.0%	46
ss8	94	3	VH3-13-13	0	0.0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20.4%	42
NOV	118	3	VH3-13-19	14	14.3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	· 46
L2E8	99	3	VH3-13-19	0	0,0%	46
L2D10	101	3	VH3-13-10	1	1.0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0.0%	46
s6A8	100	3	VH3-13-1	0	0.0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0.0%	46
8	112	3	VH3-13-1	6	6,1%	118
23 .	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0.0%	31
30P1	119	3	VH3-13-10	0	0.0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0.0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31.
E54 3.4	109	3	VH3-13-10	0	0,0%	26 °
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1 .	1,0%	26
GL16	106	3 -	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1.0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	57

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
A95	107	3	VH3-13-10	5 .	5,1%	. 44
Ab25	128	3	VH3-13-10	5	5.1%	100
N87	126	. 3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6.1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9 .	9,2%	127
VD	115	3	VH3-13-10	9	9.2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0,0%	104
AL3.5	90	3	VH3-13-10	` 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	. 8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0% -	42.
HA3D1	117	3	VH3-13-21	1	1.0%	81
E54 3.2	112	3	VH3-13-24	. 0	0.0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	. 51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3 .	VH3-13-12	2	2,0%	5.1
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

75

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
F13-28	. 106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4.1%	51
YSE	117	3	VH3-13-24	6	6,1%	. 72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	. 12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4,1%	129
484	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	. 0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3 .	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	1.1	11,0%	2
HIB RC3	100	3	· VH3-1X-6	41	11,0%	1 .
56P1	119	3	VH3-13-7	0	0.0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0.0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	. 3	VH3-13-7	. 1	1,0%	8 3
PR-TS1	114	3	VH3-13-7	1	1,0%	. 85
KIM46H	127	3	VH3-13-13	0	0.0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	. 1	1.0%	26
3.B6	114	3	VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	1	1,0%	26
FL2-2	114	3	VH3-13-13	1	1,0%	80

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	. 4	4,1%	8 2
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	8 5
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110		VH3-13-19	10	10,2%	126
K6H6	119		VH3-1X-6	18	18,0%	60
K4B8	119	•	VH3-1X-6	18	18,0%	60
K5B8	119		VH3-1X-6	18	18,0%	60

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	6 0
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	· 3
HY18	121	, 4	VH4-11-2	0	0,0%	43
mAb63	126	. 4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	.4	VH4-11-2	0	0.0%	86
FS-8	110	4	VH4-11-2	. 0	0.0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	· 15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	· 4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	· 4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8,1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	118	4	VH4-11-8	0 `	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2.1%	108
mF7	111	4.	VH4-31-13	3	3,0%	75

78:

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	.53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	.4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	. 85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	9 5	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0.0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
. L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	· 98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0 .	0,0%	17

Zς

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
CD+1	98	5 .	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	· 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0.0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB.	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0.0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	9 8	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	. 5	VH5-12-1	2	2,0%	17
PBL6	9 8	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	. 2	2,0%	17
CD-2	98	5	VH5-12-1	. 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	3	3,1%	17 .
PBL13	98	.5	VH5-12-1	3	3.1%	17.
PBL7	. 9 8	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	· 5	VH5-12-1	3	3,1%	17
PBL3	98	5.	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	. 4	4,1%	17
VERG2	98	5	VH5-12-1	5	5,1%	17

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLĹ6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5 .	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
Tu0	99	5 ·	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	. 5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11.	11,2%	121
CLL5	98	5	VH5-12-1	13	13.3%	17
CLL7	98	5	VH5-12-1	14	14.3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12.9%	122
s5A9	.102	6	VH6-35-1	1	1,0%	. 46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 ·	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0 '	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	. 6	VH6-35-1	0	0,0%	122
VH6.N11 ·	123	. 6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	. 0	0.0%	122
VH6.N6	127	6	VH6-35-1	0	0.0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	· 6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	. 6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	·1	1.0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	. 1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6 .	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	6 8
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	6 5
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4 ,	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2.0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

8.3

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	6	5,9%	123
VH6-FE2	121	. 6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	. 88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	Vkl-l	28	
1	Vk1-2	0	
ı	Vk1-3	ı	
1	Vk1-4	0	
1	Vk1-5	7	•
1	Vk 1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
.1	Vk1-9	9	
1	Vk1-10	0	
1	Vk1-11	1	
1	Vk1-12	7	-
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
. 1	Vk1-16	2	
1	Vk1-17	16	
1	Vk1-18	1	
I	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	ı	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-I	0	-
2	Vk2-2	1 .	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	.16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2 ·	Vk2-11	7 .	
2	Vk2-12	0	25 entries
3	Vk3-1	i	
3	Vk3-2	0	

Table 3A: (continued)

Sum	Rearranged ²	Name	Family 1
	35	Vk3-3	3
	115	Vk3-4	3
	0	Vk3-5	3
•	0	Vk3-6	. 3
	1	Vk3-7	3
192 entries	40	Vk3-8	3
33 entries	33	Vk4-1	4
1 entry	1	Vk5-1	5
	0	Vk6-1	6
0 entries	0	Vk6-2	6
0 entries	0	Vk7-1	7

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
· 1	DPL5	13	
1	DPL6	0	
1	DPL7	, o	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	•
2	DPL14	0	43 entries
3	DPL16	10	7
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries
			· · · · · · · · · · · · · · · · · · ·

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged?	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	. 0	
1	VH1-12-4	0 -	
1	VH1-12-5	3	
. 1	VH1-12-6	0	
1	VH1-12-7	23	•
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1 .	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	, 1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	•
2	VH2-31-2	. 1	· .
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0 -	
			۰۵

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	Q.	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	. 1	
3	VH3-11-6	1	
3.	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	•
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
. 3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	. 8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	•
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
. 3	VH3-14-3	0	
3	VH3-1X-1	0	
3	VH3-1X-2	0	•
	VH3-1X-3	6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	-
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	-
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
. 4	VH4-11-15	0	•
4 .	VH4-11-16	1	
4	VH4-21-1	, 0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4 .	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	. 0	
4	VH4-31-4	2	
4 .	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	• 7	
4	VH4-31-14	0	-
4	VH4-31-15	0	
4	VH4-31-16	.0	
4	VH4-31-17	0	
. 4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320 Table 4A: Analysis of V kappa subgroup 1

PCT/EP96/03647

· [Fran	newoi	rk I		
amino acid'	-	2	C.	4	5	9	7	80	6	10	Ξ	12	13	14	15	9 .
А		1							1				102		1	
В			1			1										
С														1		
D	64															
E	8		14												1	
F									1	6				1		
G																105
н																
· I		6 5													4	
K			1													
L		6		21) a pap mad bir			9 6		1			
M	1			6 6												
N																
P								103		1		2			1	
Q			62			8 8					1					
R	·															
· 5							8 9		102	80		103		103		
Т	 .	1			88					18						
V		1	9								8		2		9 8	
W											_,,					
X	1															
Y																
-																
unknown (?)				·····												
not sequenced																
sum of seq ² .										-		:			•	
	64	65	62	66	88	88			***********			************************	102		98	105
mcaa¹	D	1	Q	М					S	5	.F	S	Α	S	V	G
rel. oomcaas	%98	98%	71%	76%	100%	99%	100%	100%	980%	76%	91%	986/0	97%	98%	93%	100%
pos occupied ^e	4	5	5	2			1	1	3	4	:	2	3	3	5	:

 ho^2 SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

-							\neg								
amino acid'	17.	18	19	20	21	22	23	24	25	56	27	⋖	60	ပ	٥
А			1	1		1			103						
В											1				
. C							105								
D	101								<u> </u>						
E E	2							1	1		2				
F					2										
G										1					
Н											1				
1			6	4	101	1									
K								2			1				
L								1							
М															
N ·										1					
Р								4-4 00+44 00 0+							
Q								20			100				
R		94						81							
S		5		1						102					
T		6		9 9		103			1	1					
V			98		2					****					
W															
X	1														
Y	1														
_					·							105	105	105	105
unknown (?)				,									••••••		
not sequenced															
sum of seq²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa³	101	94	98	99	**********	1.03	105	81	103	• • • • • • • • • • • • • • • • • • • •	100	105	105	105	105
mcaa ⁴	D	R	٧	T	1	Т	С	R	Α	S	Q	-	-	-	_
rel. oomcaa	₀ 096	906	93%	94%	969%	%86	100%	77%	%86		95%	100%	100%	100%	100%
pos occupied				•	:	•		•	:	:	:	:	:	1	1

Table 4A: Analysis of V kappa subgroup 1

4A: Analysis of	CDRI	· 		<u> </u>											
amino acid'	ш	ட	28	29	99	3	32	33	34	35	36	37	38	33	40
А					1	1		1	42		·ñ·····				
В												1	1		
. C							1								
D			25		1	5	7					1			
E							1					2			.
F				1	1		7				6				
G			25		7	3			4						•
H					1	2	2		1			2			
1				98	1	4			1						
Κ						7								95	
L					2	1		101							
M										-	·				
N			6		16	42			50						
Р															102
Q												98	103	2	
R					16	3	2							3	1
S			41	2	57	32	3	. 1	1						1
T			7			4		•••••	4					1	••••
V			1	4	1		•••••	1			••••••••		•••••		···-
W						•	21			104			••••		
X									1				••••••		
Y					1		60				98				-
	105	105													
unknown (?)														3	···········
not sequenced						1	1	1	1	1	1	1	1	1	1
sum of seq ²	105	105	105	105	105	104	104	104	104	104	104	104	104	104	104
oomcaa,	105	105	41	98	57	42	60	101	50	104	98	98	103	95	102
mcaa¹	-	-	S	l	S	·N	Y	L	N	W	Y	Q	Q	K	Р
rel. oomcaa'	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	99%	91%	%86
pos occupied ⁶	1			•••••	••••••	••••••				1					

WO 97/08320

The state of the s

Table 4A: Analysis of V kappa subgroup 1

	Fram	ewor	k II										DR II		
amino acid'	41	42	43	44	45	46	47	48	49	20	5	22	53	54	52
Α			94							50	95				
В															 -
. C															
D										21	1	1	1		
E	1	3			1	1				1		1			33
F						1			3			1			
G	100		1							9	2				
Н									2						
		1				1		100					1		
K		95			86					16			2		
L		1				89	103							101	
<u>M</u> .								2							
<u>N</u> .	ļ				10					2		1	25		
. Р				104						1					
D	ļ	1			1										6
R	<u> </u>				3	3							1	·	
<u>S</u>	<u> </u>				1				5	1	1			2	
T		3			1					1	4	1	31		
V	<u> </u>		9			9					1		. 1		
W															
X	.l				1			••••••			••••••••••••		1		
Υ									92	1	-				-
-	.							.							.i
unknown (?)	- F	; 												····	
not sequence	=	$\overline{\cdot}$	===				-								
sum of seq ²		ļ	···				:		102						
oomcas,	100	·:	:·····································	104	?•••••••••••••••••••••••••••••••••••••	·	:	100	· · · · · · · · · · · · · · · · · · ·			1	······	101	
mcaa*	G	K	Α	Р	K	L	L	1	Υ	Α	Α	S	S	L	C
rel. oomcaa ^s	%96	91%	%06	100%	83%	%J8	100%	%86	%06	49%	910%	95%	39%	97%	
pos occupied			1	1	.8	6	1	2	4	10	6	6	9	3	<u> </u>

Table	4A:	Analysis	of V	kappa	subgroup	1
-------	-----	-----------------	------	-------	----------	---

amino acid'	26	57	28	59	09	61	29	63	64	65	99	29	89	69	02
А	3										2	1	1	1	
В				1				*******					····		
. C								,							***
D	1														67
Е													1		30
F			1				103					3			
G	2	105							105	4	101		102		
Н															3
<u> </u>	3		4				1	3							
Κ.	1					1		·····				•••••			1
L								1							
М													,	1	
N	6							***********							
. Р	1	<u></u>		101	2										
Q										1	·····				
R	1					103		1		1	1	•••••		2	
S	68			2	103			98		96		100	•		
T	19			1		1		2		3				101	
V			9 9				1					••••••	·····		1
<u> </u>															·
X			1								1		1		2
Y												1			1
-											······				
unknown (?)				·····		•••••									
not sequenced															
sum of seq ²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa,	68	105	99	101	103	103	103	98	105	96	101	100	102	101	67
mcaa ⁴	S	G	٧	Р	S	R	F	S	G	<u>.</u> S	G	S	G	Ţ	D
rel. oomcaa ^s	65%	100%	94%	96%	98%	98%	%86	93%	100%	91%	%96	95%	97%	9006	64%
pos occupied6			4												7

Table 4A: Analysis of V kappa subgroup 1

. 4A. Anarysis or		amev	ork I	ii											_
amino acid'	71	72	73	74	75	9/	77	78	6/	80	18	82	83	84	82
А		3				1				2				101	1
В					1				3		2				
. C															
D						1					16	101			
Е											83				
F	102	1	21										73		
G							4				1			2	
Н															
1					99	5							17		
К													.		
L			81					103	1				1		
M															1
N						7	4								1
Р										97					1
Q.									97						
R						2	1		2						
5		2		1		86	94			4			1		
T		98		102		2	1								97
V	1		2		4			1		•			11		1
W															
X				1							1	2			
Y	1														
														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
unknown (?)											•••••••	······································	····-		
not sequenced	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3
sum of seq²	104	104	104	104	104	104	104	104	103	103	103	103	103	103	102
oomcaa³	102	98	81	102	99	86	94	103	97	97	83	101	73	101	97
mcaa'	F	Т	L	Ţ	l	S	S	L	Ω	Р	Ε	D	F	Α	T
rel. oomcaaʻ	%86	94%	9087	%86	95%	83%	%06	%66	94%	94%	81%	%86	71%	986%	959%
pos occupied ⁵	3	4	3	3	3	7	5	2	4	3	5	2	5	2	6

Table 4A: Analysis of V kappa subgroup 1

,			ogrou						(CDR I	II					
amino acid'	98	87	88	83	8	91	92	93	94	95	A	&	ں	٥	u	ш.
. А					1	7	1		5	1						
В				2	3					. 		<u> </u>				
. с			102													
D							. 23	5	1	*********						
E							1	1		1	1	<u></u>				
F		7				3			13							
G						1		1	2	1		1				
Н		1		4	6	7	3	1								
1							4	1	2	1		<u></u>				
К	1	,			7		1									
L				7	·	6	2	·····	18	2						
M										•••••••						
N					*********	6	31	19	. 1							
Р									1	82	6					
Q		***********		90	86	1	2			<u>-</u>				·····		
Ŕ						1		2	2							•••••
S	1					27	3	58	5	10						
T						3	1	15	25							······
V									. 5							•••••
W									1							
X										•					<i>-</i>	
Y	101	93				42	32	1	23	-599						
										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa,	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa'	Υ	Υ	С	Q	Q	Υ	Υ	S	T	Р	-	-	-	-	-	-
rel. oomcaas	%86	91%	100%	87%	83%	40%	31%	26%	24%	81%	92%	93%	100%	100%	100%	100%
pos occupied	3	3	1	4	5	11	12	10	14			2	١	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

		1					Fra	mev	vork	IV					
amino acid'	96	97	98	99	100	101	102	103	104	105	106	A	107	108	sum
A	1														627
В					1	į				1	<u></u>	į			19
·C															209
D	1									15					459
E					2			.		65					258
F	6		86								2				451
G			<u></u>	87	29	87								2	894
Н	2	1													40
l l	5				-				1		72				606
K	1	1						77					79		480
L	18	1	1	-					22	4	2				793
M		1									5				77
N	1										1		. 2		232
P	6				7									1	620
Q	1				48					1					865
R	6			•••••				6					2	70	413
S	2	2			<u></u>										1636
Т	2	82					87	3					2		1021
V	2							1	63		3				440
W	15				<u> </u>							•••••			141
· X					ļ										14
Y	16														564
-	4	1			ļ	<u> </u>						85		1	1250
unknown (?)	ļ									.		·	···-		7
not sequenced	=	•	:	:				: -		:	:		:		589
sum of seq?	89	89	87	87	87	87	87	87	86	86	85	85	85	74	
oomcaa,	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa*	L	T	F	G	G	G	T	K	٧	Ε	<u> </u>	-	K	R	
rel. oomcaa ^s	20%	92%	%66	100%	55%	100%	100%	89%	73%	76%	85%	100%	93%	95%	
pos occupied ⁶	17	7	2	1	5	1	1	4	3	5	6	1	4	4]

 $\Im\Im$

SUBSTITUTE SHEET (RULE 26)

											Frar	new	ork	I							
amino acid	-	7	c	4	5	9	7	80	6	20	=	12	13	14	15	16.	17	18	13	20	21
А																	-		22		
В																					
· C																					
D	14																				
E	3																15				
F				<u> </u>					1	1											
G																22					
Н														·							
		8																,			22
K																					
L		3		1					17		18				6						
М				15																	
N			******																		
Р								18			-	18			15			22			
Q	ļ					18		•••••	•••••								7				
R_													•••••								
S							18			17										22	
Т			•••		17									21							
V		6	17	1									18								
W					•																
X											·										
Y																					_
-																					
unknown (?)					1																
not sequenced	=			5		_	_			_				_	_1						
sum of seq ²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa'	D	1	٧	М	Ţ	Q	S	Р	L	S	L	Р	٧	T	Р	G	Ε	Р	Α	S	
rel. oomcaa ^s	82%	47%	100%	%88	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	089%	100%	100%	100%	100%
pos occupied ^r	2	3	1	3	1	1	1	1	2	2	1	1	1	1	2	1	2	1	1	1	1

Table 4B: Analysis of V kappa subgroup 2

											CDR	1									
amino acid'	22	23	24	25	26	27	⋖	8	ပ	0	w	u	28	29	30	31	32	33	34	35	36
Α																					
В	ļ																				
. C		22																			
D	ļ		<u> </u>							1			9		1	1			11		
E																					
F.															2						7
G											1			22							
Н										16							1		1		
I																					
К			1													1					
L						1		22	13								٠	22			
М									1												
N													10		7	12			9		
Р																		·			
0	1					21															
R			21								2							·			
S	21			22	22		22				19		1								
T.																8					
V									8												
w										1										22	
×													1		1				1		
Y										4			1		11		21				15
												22									
unknown (?)																					
not sequenced																					
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
oomcas,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	15
mcaa*	S	С	R	S	S	Q	S	L	L	н	S	-	N	G	Υ	N	Υ	L	D	W	Υ
rel. oomcaa	95%	100%	95%	100%	100%	95%.	100%	100%	59%	73%	96%	100%	45%	100%	50%	25%	95%	100%	20%	100%	9/089
pos occupied"	: :		: :	1			,				3	:	5	:	:		2			1	

Table 4B: Analysis of V kappa subgroup 2

				F	ran	iew	ork	11									DR	11			
amino acid'	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	99	27
Α				-															14		
В								-													
· C				٠																	
D														,					7		
E									1												
F .																					
G					22										12				1		22
Н																					
1										1		22									
κ			15											5							
L	16									14	21			14	1						
M																					
N																	18				
Р				22				21													
Q	6	22				22			12					1							
R			7						8	7				1				22			
S							21								2	22	2			22	
T T																	1				
V											1				6						
w																					
x																					
Y				-	·								21				1				
-																					
unknown (?)																					
not sequenced							1	1	1				1	1	1						_
sum of seq?	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	22
oomcaa,	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	22
mcaa¹	L	Q	Κ	Р	G	Q	S	Р	Q	L	L	ı	Y	L	G	S	N	R	Α	5	G
rel. oomcaa'	73%	100%	68%	100%	100%	100%	100%	100%	27%	64%	95%	100%	0001	%29	57%	100%	82%	100%	64%	100%	100%
pos occupied ⁶	: :	•					:	i	1	:		:		:	:	1			_		1

Table 4B: Analysis of V kappa subgroup 2

		орр												Fra	me	vorl	k III				
amino acid'	28	59	09	61	29	63	64	65	99	29	89	69	70	11	72	73	74	75 .	9/	77	78
Α																					
В																					
· c																					
D			22				1				1		22								
E								٠													
F					21									22							
G							21		22		21										
Н																					
1																	1	21			
κ																	19				
L .																21	1				
M																					
N															,						-
Р		22																			
Q																					
R				20				1												20	
S				1		2 2		21		22									20	1	
Т				1								22			21				1		
V	22				1																21
w																					
X																					
Y																					
-																					
unknown (?)															1						
not sequenced																1	1	1	1	1	1
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	21
oowcas,	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	21
_mcaa*	٧	Р	D	R	F	S	G	S	G	S	G	Τ	D	F	T	L	K	1	S	R	٧
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	100%
pos occupied ^a		:								:	:										:

Table 4B: Analysis of V kappa subgroup 2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	_	F F		- 5	ООР						<u> </u>	•					C	DR	111		
amino acid	70	? ;	8	.81	82	83	84	85	98	87	88	68	90	91	92	93	94 ·	95	۷	8	ပ	۵.
Α			20					-						14			1					
В													1			1			Ť			
· C											21											
D				1	21																	
E	1	9		20		<u> </u>																
F.							<u>.</u>															
G		1		*******			21							6			1		2			
Н				••••••										1		7			.			
								1									1					
K				********																		
L ·								1							12			2				
M		<u>.</u>										21										
N																						
Р			1														2	16	1			
0		1											20			13						
R															1							
S																	3	2				
T		<u>.</u>													8		7					
V						21		19														
W																	6					
X	1																			·		·
Y									21	21												
-																			14	17	17	17
unknown (?)																						
not sequence	d	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq'	2	1 2	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa ³	19	9 2	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa'	Ε		Α	Ε	D	٧	G	٧	Υ	Υ	С	М	۵	Α	L	Q	Т	Р	-	-	-	-
rel. oomcaa'	900b		95%	95%	100%	100%	100%	%06	100%	100%	100%	0001	95%	67%	57%	62%	33%	%08	82%	100%	100%	100%
pos occupied																						

Table 4B: Analysis of V kappa subgroup 2

naiysis of V kapt									Fra	mev	vorl	< IV					
amino acid'	ш	u_	96	97	98	99	001	101	102	103	104	105	106	A	107	108	sum
Α																	71
В												1					3
С																	43
D																ı	112
Е						·						13					71
. F			1		17												72
G						17	2	16				1					233
Н																	26
			3						· · ·				14				94
К		·								12					13		66
L			2								11						219
М																	37
N																1	56
Р			1														159
Q			1				14					.					159
R										4						12	126
5																	325
T				17					16								140
V											5						146
W			2	•••••													31
X																	3
ΥΥ			7														123
_	17	17												13			134
unknown (?)																	2
not sequenced	5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	211
sum of seq'	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa,	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa*	-	-	Υ	Ţ	F	G	Q	G	T	K	L	Ε	ı	-	K	R	
rel. oomcaa ^s	100%	100%	41%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied"	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	

105
SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

TC. Analysis of		•		· ·			-				Fra	mew	ork l			
amino acid'	_	2	3	4	2	9	7	&	6	10	=	12	13	14	15	16
Α		5					2		27						1	
В	1		<u>.</u>	<u></u>	<u> </u>		<u> </u>							<u>:</u>		
. c												2				<u> </u>
D	2								14							<u> </u>
E	76		27													
F .		1												1		
G	1								82						1	152
Н										1						
ı		75						<u> </u>								
K	3															1
L		• 4	1	104			1				150		129		1	
·M	5			13												
N														5		
Р								124							147	
Q						123										
R					1											
S							119		3	1		150	1	141		
T		2			117					147				5	1	
V		1	89	1			1				1		22		1	
W															-	
×																_
Y															-	
-																
unknown (?)																
not sequenced	`															
sum of seq'	8 8	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa¹	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152
mcaa'	E	ı	٧	L	Τ	Q	S	Ρ	G	Ţ	L	S	L	S	Р	G
rcl. oomcaas	86%	85%	76%	88%	99%	100%	97%	100%	65%	99%	. %66	99%	85%	93%	97%	%001
pos occupied ^a	6	6									:	:	:			

Table 4C: Analysis of V kappa subgroup 3

				•		•				-						CDRI
amino acid'	17	81	19	20	21	22	23	24	25	97	27	4	В	ပ	0	· ພ
А			178	2					166	1						
В							·									
· c							181		•	1				<u> </u>		
D	6															
E	146	1									1					
F			·		7	1										
G	1	· 1							71	1		1				
н											17					
1		1		5	2											
К		1						5								
L					173						1	1				
M																
N												9				
P																
a											159					
R		175						176		1	1	10				
S						180			7	175		87				
Т		1		174					7	. 2		1				
V		1	4	1					1			1				
W								1					··········			
X																
Y				- 0		1					1					
_												72	182	182	182	182
unknown (?)										_	1					
not sequenced																
sum of seq'	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa'	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa*	Ε	R	Α	Ţ.	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaas	95%	97%	98%	96%	95%	%66	100%	97%	910%	92%	98%	48%	100%	100%	100%	100%
pos occupied	3							_	5	6	6		• • • • • • • • • • • • • • • • • • • •	1	1	1

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

•									Framewo							
amino acid'	u_	28	29	30	.31	32	33	34	35	36	37	38	39	.6	4	45
Α				1	1			181								
В						,										
. C												<u> </u>				
D			1	1	2	1						<u> </u>				
E						1							1			1
F	<u> </u>	1				7				1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
<u>}</u>		24	4	1	1	,				<u> </u>		<u> </u>				
K				1	1					<u> </u>		<u>.</u>	153		<u>.</u>	
L		8	1		·	1	176				••••••	3				2
·M							<u> </u>			<u> </u>						
N			3	12	25	32		,		<u></u>						
. Р					1									170		
Q					1	1					183	167	1			181
R			10	3	18	16		1			1		27	5		
S		72	86	151	118	4								5		
· T		1	1	3	8	1							1	••••		
V		76	68		1		7					3		2		
W			5						185							
X																
ΥΥ				1	1	115				183						
-	182															
unknown (?)											1					
not sequenced												,				_
sum of seq?	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	184
oomcaa,	182	76	86	151	118	115	176	181	185	183	183	167	153	170	184	181
mcaa'	-	٧	S	S	S	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	98%	100%	0/066	9,066	%06	83%	92%	100%	%86
pos occupied ⁶	1	6	11	10	13	12	2		1				:		1	3

SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

	rk II							-		(DR I					
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	28
Α	176							4	147				176	1		
В																
. С									1							
D								43					2		4	
E																
F				1		1	4									
G								125					2	10	179	
н							9		1							
1						178								1		168
К			1								7	1				
L		1		179	174	1										
М						3					1					
N			1					1			53			2		
P	5	184								2			2	2		
Q							1									
R			182					1			4	180				
S							3	6	4	179	74	1		5		
T	3			,					11	2	44			164		2
V				3	9			3	19				3			15
W							1					1				
X																
Y							165								2	
unknown (?)			1			1										
not sequenced																
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	1	Υ	G	A	S	S	R	Α	Ţ	G	1
rel. oomcaas	%96	%66	98%	%86	95%	97%	% 06	68%	80%	98%	40%	%86	95%	89%	97%	91%
pos occupied	:		•		:	:				•		:		:		

/°

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

													F	rame	work	: 111
amino acid'	29	9	61	62	63	64	65	99	67	89	69	70	71	.72	73	74
Α		68						3		5	3	1		3		
· B			,													
. C																
D		112				1						152		<u> </u>		
E								1		1		30	<u> </u>			
F .		<u> </u>		183	<u> </u>	<u> </u>							183		2	
G		<u> </u>	<u></u>		<u> </u>	184	3	178	_	177	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	
Н		1			<u> </u>		ļ	ļ				<u> </u>		<u> </u>	<u> </u>	
1		<u></u>		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>		<u> </u>	<u> </u>	1	<u> </u>	3
K		<u> </u>	1	<u> </u>	<u></u>	<u>.</u>	<u> </u>	ļ	<u></u>	<u> </u>		<u></u>	<u></u>	<u> </u>	ļ	<u>.</u>
- L				1								<u> </u>		<u>.</u>	182	
. M								1					<u> </u>	<u> </u>	<u>.</u>	
N		1					<u> </u>	<u> </u>						1		
P	177															
<u> </u>											••••••	1				
R			182		2		1		_		2					
<u>S</u>	7				180	i	179		185		3			. 7		2
T V	1	3	2		. 3	············	2				177			172		179
w		ა	•••••		•••••		•••••	1		1						
X				<u>-</u>						1						
Y					•••••								1			
_							-									_
unknown (?)								1								
not sequenced													•			
sum of seq ²	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	184
oomcaa,		:	:				:		185				•••••	•••••••	••••••	
- mcaa'	Р		R		S	G	S	G	S	G	Т	D	F	Т	Ĺ	T
rel. oomcaa'	,Q	ŞQ	ي	ي	ي.	o	ی		•••••••	İ	۰,۵	İ	·····			
ici. oumcaa	%96	61%	98%	%66	97%	%66	97%	%96	100%	96%	%96	83%	99%	93%	%66	97%
pos occupied ^a	3	5	3	3	3	2	4	······	1	5	4	4	2	5	2	3

Table 4C: Analysis of V kappa subgroup 3

amino acid'	75	9/	12	78	79	80	81	82	83	84	82	98	87	88	83	90
А							3			174						
В					1						-					
· C									2				1	182		
D			1				3	182								
E					149	-	175									2
F		1							178		2	1	4			
G			3					1		2						
Н											1	,			1	7
ı	178							1	1		9					·
К							1									
L				178		1			1		7		1			1
М										1	5					
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			
Т		8	4							1						8
V	4			6					1	3	159					7
W																
X				•												
Y	1										1	183	176		1	2
-				••••••												
unknown (?)																
not sequenced																
sum of seq ²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa ₃	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa ⁴	1	S	R	L	Ε	Р	Ε	D	F	Α	٧	Υ	Υ	С	Q	Q
rel. oomcaas	97%	92%	9,09	97%	81%	81%	%96	99%	. 97%	95%	86%	0,66	%96	%66	99%	85%
pos occupied ⁶	4	: :	•				4									

 H^{\prime}

Table 4C: Analysis of V kappa subgroup 3

: 4C: Analysis of	- 10,	 	<u> </u>	oup .		CDR	111	<u> </u>						T		
amino acidi	91	92	93	94	98	⋖	В	ပ	0	ш	ш.	96	97	86	66	100
Α		1	8	3	3											1
В.	 			<u> </u>	<u> </u>	<u> </u>			<u> </u>						<u> </u>	
. C	2			1	<u> </u>	<u> </u>	<u> </u>		<u>.</u>			2		<u> </u>	<u> </u>	
D	·	8	5	ļ	<u> </u>	<u></u>	<u> </u>		<u> </u>				1	<u></u>	<u></u>	
E		2		<u> </u>	<u> </u>	<u>.</u>		<u>.</u>	<u>.</u>			1				
F	5		2	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				7	<u> </u>	166	<u> </u>	
G	1	104	15		1	1	2					1			166	41
н	4	1										2				٠
1			1			1						4				
K			2			1						1				1
L				2	7	5						42				
· M ·		1			1	2										
N		28	71									1				
Р				1	139	24						7	2			9
Q	1		1		3	1						3				114
R	34	2	3		2	2	<u> </u>					19				
S	2	33	58	102	15	2						1	8			
T		2	13	1	1	· 2						1	154			
V					3	· 1						2				
w				69								24				
X																
Υ	134	1	1									43				
_			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq'	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa,	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
:	Υ		1		Р	-	-	-	-	-		··········		F	:	Q
rel. oomcaa ^s	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	%66	99%	%89
pos occupied	8	11	13	8	11	12			1	1	1		•••••••		······ ·	6

Table 4C: Analysis of V kappa subgroup 3

or v Ruppu suogi			ame	work	IV]
amino acid'	101	102	103	104	105	106	٧	107	108	sum
Α										1345
В										2
С		• • • • • • • • • • • • • • • • • • •							<u> </u>	375
D		<u> </u>		<u> </u>	23		<u> </u>	<u> </u>		564
E			3		141		<u> </u>			759
F						6	<u>.</u>	Ī		765
G	166			<u> </u>					1	1804
н				···········	1			<u> </u>		64
ı			• •• •• •• • • • • • • • • • • • • • • •		••••••	143				803
К			152		*******			157		489
L				54		1			2	1596
М			*****			3				36
N		1						3		255
Р		1		1						1147
Q	1		1		1	••••				1314
R			9			2		4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11			113	646
w										287
×						-				
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
มกknown (?)						•				4
not sequenced	16	16	15	16	16	16	17	17	45	337
sum of seq'	167	167	168	167	167	167	166	166	138	
							166			
mcaa*	G	T	K	٧	E	١	-	K	R	
rel. oomcaa'	%66	97%	%06	%99	84%	96%	100%	95%	97%	,
pos occupied ^a	2	5	7	4	5	7	1	5	4	
				1,	13		************		<i>è</i>	

Table 4D: Analysis of V kappa subgroup 4

											Frai	new	ork	i				
amino acid'	-	2	က	4	2	9	7	œ	6	2	Ξ	12	13	14	15	16	17	18
А												24					1	
В																		
· C										1						1		
D	25								26					<u> </u>	!			
E																,	25	
F· ·																		
G												1				24		-
н																		
l		26																
Κ						1												
L				1							26				26			
. М				24														
N	1																	
Р								26			-	1						
Q			1			25												
R																		26
S					<u>.</u>		26			25				26		1		
T ·					26													
V			25	1									26					
<u> </u>															<u></u>			
X	ļ																	
Y																		
· <u>-</u>	ļ <u>.</u>										į							
unknown (?)																		
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	_ 7
sum of seq?	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa*	D		ν	М	T	Ω	.S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa	%96	100%	%96	92%	100%	%96	100%	100%	0001	%96	100%	92%	100%	100%	100%	92%	% 96	100%
pos occupied ^a	2	1	2	3	1	2	1	1	1		······································	•••••••••••••••••••••••••••••••••••••••	1	1	1	3	2	

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

														CDR	1			
amino acidi	19	70	21	22	23	24	25	92	27	٧	ဆ	ں	0	w	ட	28	29	30
Α	26	-					1				1		•••••					
В																		
· <u>C</u>					33													
D											1		1			1		
E																		
F ·																		
G																		
Н									·							-		
ı			26								1							
K						33					·					2		.3
L											2	_31						
· M																		
N				26												30	31	
Р							1								1			
Q				·					32									
R ·									1								1	
S .							31	33		33				32	32		1	
T		26							_					1				
V								-		_	28	2						
w								•••••										
X																		
Υ													32					
unknown (?)										·			-					
not sequenced	7	7	7	7														
sum of seq?	26	26	26	26	33	33	33	33	33	33	. 33	33	33	33	33	33	33	3
oomcaa ₃	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa'	Α	Ţ	١	N	С	Κ	S	S	Ω	5	٧	L	Υ	S	S	N	N	K
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	92%	97%	91%	94%	7010
pos occupied ⁶	1	1	1	1	1	1	 	:	:	•	5				: · · · · · · · · · · · · · · · · · · ·	3		

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

											Fran	new	ork I					
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Α				32						2								
В		<u> </u>														<u> </u>		
· C																		<u> </u>
D																		
E											1							
F																		
G											32							
Н						2								Ī				
l																		3
K									33						32			
L			33													29	33	
. M.						,										·		
N	33											_						
Р										31		•	31	33				
Q			·				32	33				32						
R							1					1			1			
S		·											2					
T				1														
V																4		
W					33													
Χ.																		
Y		3 3				31												
_																		
unknown (?)					-										**********			*******
not sequenced																		-
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa³			:				:	•••••••••••••••••••	···· ··	31	•	••••••	•••••••		•••••••	••••••		•••••
mcaa'	;	Υ		Α		Υ		•••••••••••••••••••••••••••••••••••••••	·····•····			Q	:	P	•••••••	•••••••••••••••••••••••••••••••••••••••		••••••
rel. oomcaa ^s	100%	100%	100%	92%	100%	940%	97%		•••••••••••••••••••••••••••••••••••••••		·····		94%		97%	••••••	100%	97%
pos occupied ⁶	1	1	1	•	1	2		····	······	2		:			•		1	
	·	··i		ن	:			15			ن ــــــــــــــــــــــــــــــــــــ		<u>.</u>		 .;			<u></u>

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

				(DR	11												
amino acid'	49	20	51	25	53	54	52	26	23	28	29	09	61	62	63	64	65	99
A			30															
В																		
. С																		
D												33						
E							32											
F ·				·									•	33				
G									33						1	33		3:
Н																		
					1						•			•		•		
K											-				•			
L	Î			••••••			•					•••••	••••••					
М	Î			*********			••••••						*********					
N	Ì				2												•	
Р	Î			1							33		1					
Q	Î				•••••		•••••											
R	Î					33							32			• • • • • • • • • • • • • • • • • • • •	••••	
5	Ì		1	31	1			33							32		33	
Ţ			2	1	29										*********	•••••		,
٧							1			33	,							
W		33										-						
Χ					•		••••	•••••										
Y	33																	
_																		
unknown (?)																		
not sequenced																•		••••
sum of seq²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3:
oomcaa,	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	3:
mcaa*	Υ	W	Α	S	Ţ	R	E	S	G	٧٠	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	9/088	100%	97%			%00I	%00I	%001	92%	%00I	92%	%00	%00	%00
pos occupied ^a	1	1	3			••••••							<u>.</u>			····· ··· ··		

Table 4D: Analysis of V kappa subgroup 4

					Fra	ame	work	c III										
amino acid'	29	89	69	20	71	72	73	74	75	9/	77	78	79	80	- [8	82	83	84
A														33				32
В																		
. C	ľ							Ī	<u> </u>	<u> </u>			<u></u>	<u> </u>				<u> </u>
D				32				<u> </u>	İ	İ	<u> </u>	<u> </u>	<u> </u>			33		
E											İ	<u> </u>		Ī	33			
F .			···-		32	•		ļ		<u></u>	<u> </u>	<u> </u>		<u> </u>				
G		33		1		•••••	· ·	<u> </u>	İ			 -		 		<u> </u>		1
Н		<u> </u>	<u></u>							• • • • • • • • • • • • • • • • • • •				• -		<u> </u>		
l			<u> </u>			•••••			33						•			
K		<u> </u>			•		•••••••••••••••••••••••••••••••••••••••											
L		-		,	•		33					32			**********			••••
· M												1	••••••		•			
N	Î									2	1							
Р							•••••••								••••••			
Q			•••••										32		•••••			
R			-		***************************************	•							1		••••••			
S	33						*****			30	32							
T			33			33		33	•	1						•		•
V					1				********	•				••••			33	
. W																	-	
. X																		
Y																		
-																		
unknown (?)																		
not sequenced														•				
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,		:	:			:				•						********	33	********
mcaa*	S	:	T	D	F	Т	L	T	1	S			Q	Α	•••••••	D	•••••	Α
rel. oomcaa ^s	100%	100%	100%	9/0/6	97%	100%	100%	•••••••	%001		97%		92%	%001	‰001	‰001	‰001	92%
pos occupied ⁶	·····	:	1	:	2	1	1		1	1	:	:	2	<u>-</u> -	1	. <u>-</u> .		

Table 4D: Analysis of V kappa subgroup 4

											С	DR I	11					
amino acid'	82	98	87	88	83	06	91	92	93	94	92	∢ .	8	U	٥	ш	ш_	90
Α										1								
В																		
. С				33														
D								1	1									
E			į															
F·			1					1										
G									2	_								
Н			1		3													
1										2								
K									·		·							
L						1		2		1	3							
· M																		
N									4	4								
P										1	29	1						·
Q					30	32					1							
R									1			1						
S							2		23	2						Ē		
× T .									2	22								
V	33																	
W .			-															
X																		
Y		33	31				31	29										
_												13	15	15	15	15	15	
unknown (?)																		
not sequenced												18	18	18	18	18	18	
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	
oomcaa'	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	
mcaa ⁴	٧	Υ	Υ	С	Q	Q	Υ	Y	S	T	Р	-	-	-	-	-	-	
rel. oomcaas	0001	100%	94%	300 _%	910%	37%	94%	38%	0,00	9/0/9	988%	87%	9,001	%001	0000	%00 i	%001	
pos occupied ^a	1	1	3	<u>:</u>	•	:	:	:					•••••				1	Ţ

Table 4D: Analysis of V kappa subgroup 4

						Fr	ame	work	٠IV				
amino acid'	97	86	66	100	10	102	103	104	105	106	4	107	108
Α													
В													
С					7								
D											<u> </u>		
E									14		<u> </u>		
F		15											
G			15	4	15								
Н													
1										14			
K							14					13	
<u> L </u>	<u> </u>							4					
M	1												
N	ļ											1	
Р	ļ					1							
Q	!			11				1					
R	ļ						1		1			1	11
S	2			•••••						1			
<u> </u>	12					14							
<u>V</u>	ļ							9					
W								1					
Χ													
Υ													
-										<u></u>	15		
nknown (?)						<u> </u>							
t sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22
um of seq ²	15	15	15	15	15	15	15	15	15	15	15	15	11
oomcaaı	12	15	15	11	15	14	14	9	14	14	15	13	11
mcaa'	Ţ	F	G	Q	G	Ţ	Κ	٧	Ε	1	-	Κ	R
el. oomcaa'	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%
os occupied ^a	3	1	1	2	1	2	2	4	2	2	1	3	1

Table 5A: Analysis of V lambda subgroup 1

											Frar	new	ork l						
amino acid'	-	7	3	4	2	9	7	8	6	10	=	12	13	14	15	16	17	18	19
Α											19		18	20					
В																			
· c																			
D																			
E																		1	
F .																			
G													22			42			
Н	2																		
l			1								1								
К																		14	
Ĺ			1	41							1								
М																			
N																			
Р							41	41						1	41				
Q	22		1			41											42		
R																		25	
S		39							41			41			1			1	
Т					41									19				1	
V		1	38								20		1	1					42
w																			
X																			
Y																			
Z	16																		
-										41									
unknown (?)																			
not sequenced	2	. 2	1	1	1	1	1	1	1	1	1	1	1	1					
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	42
oomcaa,	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	42
mcaa'	Q	5	٧	L	T	Q	Р	Р	S	-	٧	S	G	Α	Ρ	G	Q	R	٧
rel. oomcaa ^s	55%	%86	93%	100%	100%	100%	100%	100%	100%	100%	49%	100%	54%	49%	%86	100%	100%	%09	100%
pos occupied ^a							:												

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

											CD								
amino acid'	20	21	22	23	24	25	56	27	٥	ų	78	53	30	3	∢	32	33	34	25
Α	2							1				2	2			1			
В																			
C				42															
D										3			3	1		3		1	
E													1						
F					1				1			İ			1	1			
G						42	3	1			2	39	4	2					
Н			·									<u> </u>		2		2		2	
1	1	41				İ				1	37	ĺ						1	
K										1		<u>_</u>	1						
L		1									1								
М											1								
N								2	1	37			13	31	2		1	9	
Р																1			
Q																1			
R							1	1			·		5						
S	1		42		38		34	34	38				13	1	1	3		19	
T	38	·			3		4	3	2			1		1		7		2	
V											1					2	40		
W															,				4
Х										-									
Y														4	1	20		7	<u> </u>
Z																			<u> </u>
-															36				
unknown (?)																			
not sequenced															1	1	1	1	
sum of seq'	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	-
oomcaa ³	38	41	42	42	38	42	34	34	38	37	37	39	13	31	36	20	40	19	4
mcaa ⁴	T	1	S	С	S	G	S	S	S	N	1	G	Ν	N	-	Υ	٧	S	١
rel. oomcaas	%06	38%	%00.I	%00 100%	%06	%00 00%	31%	31%	% 0(38%	38%	33% ·	31%	74%	38%	%61	%86	46%	
pos occupied	7														:	10		:	:

122

Table 5A: Analysis of V lambda subgroup 1

•						Fram	ewo	rk II											
amino acid'	36	37	38	39	\$,	4	42	43	44	45	46	47	48	49	20	51	25	53	54
. A							4	40									1		
В																			
· C								<u></u>											
D						1									13	10	8		
E										2					5			1	
F	1			4										1					
G						39									1				
Н	1	1	6	. 1										1				1	
													40		1				
K							1			35					1	1		18	
L			1	31							41	40						1	
М							1						1					1	
N ·										1		•			3	28	30	2	••••
Р					42	1			42				••••••						
Q		39	34	•••		•			<u>†</u>									15	••••
R		2		1		1				4					7			2	4
· S								1							9	2	3	1	••••
T							36	1							1				•
V			1	5		·					1	2	1	*****					•••
W																			
Χ		·																	
Υ	40					····-				••••••			•	40	1	1			•••
Z	1									······································			•	•••••				•••••	
	H		Ź																
unknown (?)	1		<u> </u>	 	··			•••											
not sequenced	· II · · · · · · · · ·		 	†					•••••							ļ <u>.</u>			
sum of seq'	-	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	
oomcaa,		·	····	:····						• • • • • • • • • • • • • • • • • • • •	41				:	:		<u>:</u> †	:
mcaa*	· · · · · · · · · · · · · · · · · · ·		••••• •••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	·····	••••••••••••••••••••••••••••••••••••••		• :			L	********	• • • • • • • • • • • • • • • • • • • •	••••••	•	·	······································	•	·····
		•		:		:		·····			:				<u> </u>				
rel. oomcaas	95%	93%	81%	74%	001	93%	86%	95%	100	83%	98%	95%	95%	95%	31%	67%	71%	43%	
pos occupied	;	•	1	:	•	•	1	•	:	:	2	:		:	:	:	i		

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

	CD	RII																	
amino acid'	55	99	V	ဆ	ပ	٥	ш	27	58	59	9	61	62	63	64	92	99	⋖	80
Α	1														5				
В										<u> </u>						<u> </u>		<u> </u>	
. С						Ī											<u> </u>		
D						<u> </u>	ļ				38						<u> </u>		•••••
E				-															
F .						• · · · · · · · · · · · · · · · · · · ·						•	38						-
G		! !		<u> </u>				41			2				36				
Н			<u> </u>	<u> </u>	<u> </u>						1								
I			<u> </u>		<u> </u>				17				3			••••			-
κ			<u> </u>		<u> </u>			•••••								-	38		
L		1	<u> </u>		····			•		1						- -			
М				••••••••••••••••••••••••••••••••••••••						•									
N										•									
Р	38	•	ļ							· 38									•••••
Q			<u> </u>			**********	**********			,									
R												42					4		
'S	2	40								2				42		42			
T															1	**********			
V									24				1						
w							٠												
X																			
Υ .																			
Z																			
•			41	41	41	41	42							•				42	42
unknown (?)																			
not sequenced	1	1						1	1	1	1								
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa3	; ;								*********						*************************		38	• • • • • • • • • • • • • • • • • • • •	
mcaa'	Р	S	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	-
rel. oomcaa ^s	93%	%86	100%	100%	100%	100%	100%	100%	29%	93%	93%	100%	%06	100%	%98	%001	%06	%001	0,001
pos occupied ^e		2	1	1	1	1	1	1	2	3		······	:	:		···		1	

Table 5A: Analysis of V lambda subgroup 1

				Fra	amev	vork	. 111												
amino acid'	29	89	69	70	71	72	73	74	75	9/	11	78	79	80	81	82	83	84	82
A		1	3		41			24						2				38	1
В																			
· c																			
D		1													1	41			37
E													1		24		42		1
F									•										
G		40						17		1	42		•	**********	15				********
Н							********						1	*******	•••••	•••••			2
ı									41										1
к																			••••••
L							42		••••			41	-						
М																		**********	********
N											•••••					1			
Р											•••••			2					•••••
Q											•••••	*******	31	•••••••••					********
R											*******		8						
S	42		1	42		24			····	20				20	•••••	••••		1	•••••
T			38			18				21				17				3	
V		•••••			1			1	1			1	••••••	1					
w											*****		1		2				
x																			••••
Υ							******				•••••		•••••						
Z				******						••••••	•••••								•••
-																			
unknown (?)														·····					
not sequenced					•••••										•••••				
sum of seq?	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
						•••••		• • • • • • • • • • • • • • • • • • • •	********	21	*******	•••••		••••••	•••••••••••••••••••••••••••••••••••••••	*******	•••••••		
mcaa*	S			S		S	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	Т		······································	Q	•••••••	;	D	E		*********
rel. oomcaa ^s	%00 l						100%	•••••••••••••••••••••••••••••••••••••••		20%				······		••••••	, %001	%06	%88
pos occupied ^a		<u>გ</u>						:											σ 5

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

PCT/EP96/03647

								_		CDF	3 111								
amino acid'	98	83	88	83	90	91	92	93	94	95	∢	<u></u>	ပ —	۵	ш	u_	96	97	86
Α				22	15			1				16					4	1	
В	į																		
С			42																
D							39	17			7								
E												1					1		
F		2								1									36
G			ı	14				1				-17	1				5	1	
Н		1											1						
1											1						<u>i</u>	1	
K											1								
L				1						37			1					1	
М		·																1	
N							2	2			9	1							
Р										1							6		
Q				3															
R				,					5	1	2						2		
S					4			17	35		18		1				1		
T					22			1	1		1								
V				1				1		1		2					9	34	
W						38											7		
X																			
Y	42	39				3		1									3		
Z																			
-											2	4	35	39	38	38	1		
unknown (?)																			
not sequenced				1	1	1	1	1	1	1	1	1	3	3	3	3	3	3	4
sum of seq ²	42	42	42	41	41	41	41	41	41	41	41	4.1	39	39	38	38	39	39	36
oomcaa,	42	39	42	22	22	38	39	17	35	37	18	17	35	39	38	38	9	34	36
mcaa'	Υ	Υ	С	Α	T	W	D	Ð	S	L	5	G	-	-	-	-	٧	٧	F
rel. oomcaas	%00I	%	100%	8	%	%	%	%	%	%	%	%	%	%001	100%	100%	%	%	100%
	<u> </u>	93%		•	1 .				85%		•		:		:	2		:	
pos occupied ⁶	1	3	1	5	3	2	2	8	3	5	8	6	5	1	1	1	10	6	1

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

- 01 A 19111009 200			F	ram	ewo	rk IV	,					
amino acid'	66	9		102				106	⋖	107	90	sum
А												285
В												
С												84
D												224
E		1										81
F												87
· G	36	31	36		<u> </u>					26		559
н												25
1												188
К					30			<u></u> į				141
L						25		<u> </u>	34			344
М												5
N					1							176
Р							<u> </u>				1	296
Ċ					3		<u>.</u>		1		18	251
R					1					2		156
S		1								2		720
T		3		36	1		36					359
V						11		36	1			282
W										1		92
X											1	
Υ				ļ								202
Z				<u> </u>							·	16
-		<u></u>	ļ <u>-</u>	<u> </u>								524
unknown (?)	·	<u> </u>	ļ <u></u> -	<u> </u>	ļ							
not sequenced	4	6	6	6	6	6	6	6	6	10	22	141
sum of seq?	36	36	36	36	36	36	36	36	36	31	19	
oomcaa,	36	31	36	36	30	25	36	36	34	26	18	
mcaa'	G	G	G	T	Κ	L	T	٧	L	G	Q	ļ
rel. oomcaa ^s	100%	%98	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied ⁶	1	4	1	1	5	2	1	1	-3	4	2	

27

WO 97/08320 ·

Table 5B: Analysis of V lambda subgroup 2

PCT/EP96/03647

	L										Fran	new	ork	l					
amino acid'	-	2	3	4	2	9	^	8	6	01	Ξ	12	13	14	15	16	17	18	19
Α			35					30			6		1	1					
В																		<u> </u>	
· c	<u> </u>	<u> </u>																	
D						<u> </u>										1			
E		<u> </u>		<u></u>															
F	<u> </u>	<u></u>		<u></u>		<u> </u>													
G	<u> </u>	<u></u>		<i>:</i>		<u> </u>			·				42		<u> </u>	42			
Н	2		<u> </u>	<u> </u>		<u> </u>											1		
1		ļ	1			<u>.</u>						**********			<u>.</u>				28
. K		ļ	<u> </u>			ļ													
L		 .	<u> </u>	40											3				1
M			ļ																
N																			
Р							42	6							40				
Q	22	-	4			41											42		
R				·				6	1										
S		41							40			42		42				43	
T					42				1										
V`		1	2								36								14
W																			
X																			
Y																			
Z	16																		_
-										42									
unknown (?)						1	····- i					<u>į</u>							
not sequenced								1				1							
sum of seq ²	:				••••••	•••••••	••••••	····-							••••••	· · · · · · ÷	•		
oomcaa,		:		:	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa*	Q	S	Α	L	Ţ	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1
rel. oomcaa ^s	55%	98%	83%	%001	100%	%86	100%	71%	95%	0001	%98	100%	98%	98%	93%	%86	%86	100%	65%
pos occupied ⁶	3		•	•					:	:	:	:	2	:	:		•••••		3

Table 5B: Analysis of V lambda subgroup 2

											CD	RI							
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	⋖	32	33	34	25
Α					3		1						1			1			
В																			
. С				42					1					1					
D										39		1	4		5				
E															1				
F		1							·				1			4			
G						43		1				39	26						
Н								1		·	,				1	1			
1		41			1						6								
K															4				
L		1														4		,	
М																			
N								1	3	4		1	4	3	28				
Р								1											
Q													••••						
R									1				2						
S			42		3		3	35	38		•		5	1	2	4	1	42	
Ţ	43	,			36		39	3	•			1		1			.,,		
V											37						41		
W																			
Χ																			
Υ							·	1				1		37		29			
Z																			
-	·														1				
unknown (?)															1				
not sequenced			1	1									•				1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	
oomcaa,	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	
mcaa*	Т	ı	S	С	Т	G	T	S	S	D	٧	G	G	Υ	N	Υ	٧	S	,
rel. oomcaas	%00)5%	100%	0001	14%	%00		:	······	91%	?					9629	%86	%00I	
pos occupied	ļ <u>=</u>	:		•	4	:	•		;	2	:	<u>5</u>	•	•	;		•		-

Table 5B: Analysis of V lambda subgroup 2

						Fran	newo	ork li											
amino acid'	36	37	38	33	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
А					1	- 4		40											
В			<u> </u>																
С			<u> </u>																
D				1		2									20	1	2	1	
E															20			2	
F .	2													7		1			
G						36									2	2		1	
Н			2	34					*******									. 1	
l							1				1	9	43				1		
K			!		••••		40		*********	41	••••		•••••				1	21	
L ·			1	1							38	6						٠.	
М										•		26	-				1		
N				2											1		8	12	
Р					41				43										
Q		41	39							2									
Ŕ		1			·		1										2		43
S					1				*******					2			21	3	
. Т						*******	1		*******								7		
V						1		3			4	2				39			
W																			
Χ												<u>-</u>							
Υ	41			5						*******	••••••	••••••		34				2	
Z		_																	
																			-
unknown (?)		1	1									·						•••••	
not sequenced						••••••						·				•		*****	
sum of seq'	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
				34		••••••			•••••••••••••••••••••••••••••••••••••••			····· ···	••••••	•••••			····	<u>:</u>	
mcaa'				Н		G	••••••		•••••••••••••••••••••••••••••••••••••••		L	····	ı	Υ			•••••••••••••••••••••••••••••••••••••••		•••••
rel. oomcaas	95%	92%	910%	79%	95%	34%	33%	33%	%001)5%	38%	%0 9	%00I	%6,	17%	11%	49%	19%	%001
pos occupied ⁶				5				•		•	:		1	:		<u>ნ</u> 4		8	

Table 5B: Analysis of V lambda subgroup 2

•	CD	R II																	
amino acid'	22	26	⋖	8	ر ا	٥	w	57	28	23	09	61	62	63	64	65	99	∢	<u> </u>
А															2				
В																			
. С																1			
D										·······	17								
E		**********							•••••			····	•••••						
F				-		•						1	42						
G								43	1						41				
Н				*******************							2		•••••						
ı									3	······			•••••						
κ		****															42		
L						*****			*********		1	•••••	1						
М				•		******	•••••		••••										
N				*******				*********	****		19	<u> </u>	•						
Р	43									15									
Q													•••••						
R												43					1		
S		43								28	2			43		42			
Т															•	•••••			
V				•					39				******						
w																			
X									••••		•					•••••			
Y											2								
Z																			
-			43	43	43	43	43											43	43
unknown (?)						• • • • • • • • • • • • • • • • • • • •													
not sequenced																••••			
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
		:	:	······································	••••	• • • • • • • • • • • • • • • • • • • •					19					••••••		• • • • • • • • • • • • • • • • • • • •	
mcaa*	Р	S	_	-	-	-	-	G		S					G		Κ	-	-
rel. oomcaa'	%00 ₁	·····	%00 ₁	%00L	%00i	%00I	%00L		%16	••••••	44%		•••••			%86		%00	%00I
pos occupied ^a	1	1	1	1	•	:	:	:							:	:	•		<u></u> -

13/

Table 5B: Analysis of V lambda subgroup 2

	 ;			E	mev		111									 -			
	_	<u> </u>	-6					4		9			6			2	3	4	2
amino acid'	ون	9	9	<u> </u>	_		7.				7	~		8	8	80	80	8	82
Α		3		1	43				ļ					36				43	
В																			
. C																			
D		1	2												3	42		,	39
E											1				38		43		
F .											.								
G		39									42				1				
Н																			2
1									35										
К			1																
L							43					43							
M																			
N			38												1	1			1
Р								•						2					
Q													41						
R													. 2						
S	42			1		43				42									
T			1	41				43		1				2					
V			••••						8					3					
w																			
X																			
Y																			
Z													-00-						
-																			
unknown (?)			1																1
not sequenced	1																		
sum of seq?	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa ₃	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	Τ	Α	S	L	T	I	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaa⁵	100%	91%	88%	95%	100%	100%	100%	100%	81%	%86	%86	100%	95%	84%	38%	%86	0001	%00 ₁	91%
pos occupied ⁶		3			:				2	÷		- <u>-</u> -		:	4		1	1	3

Table 5B: Analysis of V lambda subgroup 2

										CDI	RIII								
amino acid'	98	83	88	83	8	91	95	93	94	95	⋖	80	ပ	۵	w	u	96	97	86
Α				2	1		21		1								1	1	
В																			
· C			43	11															
D								3	1	2							1		
E							1	1											
F .		3				3				1		1					5		4
G					Ξ		1	21	3	- 4							1		
Н						1													
							1	1		1	2						1	7	
K										3									
L												1	1				6	5	
M															,		1	1	
N									.5	7	5						1		
Р								1				4							
Q										1	2				·				
R						,	2		3			1					5		
S ·		1		30	41			12	23	14	9						1		
T							16	4	4	3	21								
V							1										11	28	
W																	5		
Χ																			
Υ	43	39				39			1	6							4		
Z					-														
_										1	3	36	42	43	43	43			
unknown (?)					-				2								<u></u>		
not sequenced	<u> </u>				1						1						<u> </u>	1	
sum of seq ²	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	4
oomcaa,	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	4
mcaa*	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	_	-	-	-	-	٧	٧	F
rel. oomcaas	100%	91%	100%	70%	98%	91%	49%	49%	53%	33%	20%	34%	%86	%001	%00 I	100%	26%	67%	7000
pos occupied ^r	•	è	•	: .	i	:	:			:	:	<u>5</u>		•••••			13	····	<u> </u>

Table 5B: Analysis of V lambda subgroup 2

					Fran	new	ork l			·]
	amino acid'	66	9	101	102	103	104	105	106	V	107	108	sum
	Α		1										280
	В	 	<u> </u>	<u> </u>			<u> </u>		<u> </u>	İ	<u> </u>	ļ 	
	С		† 		 		<u> </u>	ļ		 		ļ	99
	D			 	<u> </u>	! -	†···	····	 	 			188
	Е		Ī	-		<u> </u>	•	ļ	†	<u>†</u>			107
	F			<u></u>					<u> </u>	····			113
	G	42	33	42						·	19		567
	н		<u> </u>		•	[<u></u>						48
			<u> </u>				<u> </u>	1	····-				184
	K		<u> </u>			36							189
	L				`		28			40			264
	. M	,											29
	N					1							146
	Р				7								238
	Q					1						14	250
	R		1			2					4		121
	S							1			2		831
	T		7		41			40					398
	V						14		42	1			327
1	W									·			48
	X												
	Υ					1							285
	· Z												16
I	-												555
	unknown (?)			<u> </u>									8
	not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
	sum of seq ²	42	42	42	41	41	42	42	42	41	25	14	
	oowcaa	42	33	42	41	36	28	40	42	40	19	14	
	mcaa'	G	G	G	Ţ	Κ	L	Т	٧	L	G	Q	
	rel. oomcaas	0001	%62	100%	100%	988%	9/0/9	95%	0001	98%	%97	%00±	
	pos occupied	1	4	1	1	<u>-</u>	2	3	1	2	3	1	

134

PCT/EP96/03647

Table 5C: Analysis of V lambda subgroup 3

										····	Fran	new	ork l						
amino acid'	-	2	3	4	5	9	7	8	6	0	=	12	13	14	15	16	17	18	19
Α					1		1	2	7					20	1		1		27
В																			
···C																			<u> </u>
D			5				10												
E			20										1			1			
F .	1	1										1			1				
G			1			·										37			
Н																			
													*						
Κ																	. 2		
L				37							4		1		9				
М																			
· N																			
Р							26	35	1						27				1
Q	4		4			38											36		
R																			
S	13	14			1		1		28			37		18					
Т					36			1										38	
V			8	1					2		34		36						10
w																			
X																			
Y		23																	
Z																			
	20									38									
unknown (?)																			
not sequenced																			
sum of seq²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	20	23	20	37	36	38	26		28	38	34	37	36	20	27	37	36	38	27
mcaa*		Υ	- E	L	Ţ	Q	Р	Р	S		٧	S	٧	Α	Р	G	Ω	T	Α
rel. oomcaas	53%	61%	53%	97%	95%	100%	%89	95%	74%	100%	%68	97%	95%	53%	71%	97%	95%	100%	71%
pos occupied	:	: · · · · · · · · · · · · · · · · · · ·	:·······	:		<u> </u>	4	:	:		•					<u> </u>			

PCT/EP96/03647

Table 5C: Analysis of V lambda subgroup 3

											CE	RI							
amino acid'	20	21	22	23	24	25	56	27	٥	ш	28	29	30	31	¥	32	33	34	35
Α			1					5					. 1	1			21	3	
В															<u> </u>				<u> </u>
. с				38												<u> </u>		5	<u> </u>
D							30	1					10			3		1	
Ε							2	2				1	3	6					
F .										ì				1		2			
G					9	38		1				23	4						
Н							1									2		9	
l l		38									9			1					
К								7				·	2	13		·			
L											28				·				
M _.	1													1					
N			2				4	9			1		2			1		2	
Р			1									3							
Q					10									4					
R	25							2				10	1				1		
S	9		1		19			10					11	2		8		14	
Т	3		33	·				1				1	4						
V																1	15		
w																			3
X																			
Y							1							8		20	1	4	
Z																			
<u>-</u>									38	38					37				
unknown (?)																			· · · · · · · · · · · · · · · · · · ·
not sequenced															1	1			
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	3
oowcaa,	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	3
mcaa'	R		T	С					-	-	L	G		Κ		Υ		••••••••••••	
rel. oomcaa ^s	9,99	100%	87%	100%	50%	100%	9%67	76%	100%	,000 100%	74%	61%	29%	35%	,001	54%	55%	37%	%00
pos occupied ^a			5	1	••••••	···						5		•••••			:		

Table 5C: Analysis of V lambda subgroup 3

PCT/EP96/03647

					F	ram	ewo	rk II											
amino acid'	36	37	38	33	40	14	42	43	44	45	46	47	48	49	20	51	25	23	54
А		Ī				·		23								1		1	
В					<u> </u>							-							
С																			
D															9	22	2	. 8	
E			1												5	3		3	
F	3													2			1		
G		<u></u> į				36									9	2			
Н							1							1	3			1	
<u> </u>										1			28				1		•••••
K			į	32											2	6	1	13	
L			2							6	33	1							
M											1		1						
N.			j													1	19	9	
Р					36		1		38										
Q		37	35	1			36								9			1	
R		1		4		2									1	1		1	38
S				1	2			14									10	1	
Т																2	4		
V								1		31	4	37	9						
W																			
X																		,	
Y	35							ļ	ļ					35		ļ			
Z																	<u> </u>		
							ļ		<u> </u>	<u> </u>						ļ			
unknown (?)		<u> </u>		<u> </u>			<u> </u>	ļ	ļ	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	
not sequenced	~	<u> </u>	<u> </u>				<u> </u>								<u> </u>	<u> </u>	<u> </u>		
sum of seq ²	•	··		:	:	:	·i			:·····	:	:			·	:		1	•
oomcaa ¹	35	37	35	32	!		·*····	·	·!	31	33	37	28		9	22	÷	;·····	!···
mcaa*	Y	Q	Q	K	Р	G	Q	Α	Р	٧	L	V	1	Y	D	D	N	K	·
rel. oomcaas	92%	97%	92%	84%	95%	95%	95%	61%	100%	82%	87%	92%	74%	92%	24%	58%	50%	34%	100%
pos occupied ⁶	-			:	•	:				-	:	•	•	3	:	•	7	9	1

SUBSTITUTE SHEET (RULE 26)

Table 5C: Analysis of V lambda subgroup 3

PCT/EP96/03647

•	CE	R·II																	
amino acid'	22	99	A	80	ပ	0	ш	57	28	29	09	61	62	63	64	65	99	A	8
А		1																	
В								Ī			<u></u>	<u> </u>						-	
С				Ī							<u> </u>		<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>		
D						Ī					9		Ī	Ī	<u> </u>	<u> </u>		<u> </u>	
E								T			27			<u> </u>	Ī	<u> </u>			
F													38	ļ <u>.</u>					
G								38						·	38	}		} -	
Н																			
. 1									37							·			
K	.	<u> </u>		<u> </u>															
L L	ļ	<u></u>		<u> </u>							·								
M	<u> </u>	<u> </u>		<u></u>															
N				<u> </u>													21		-
Р	37	1								36									
<u> 0</u>																			
R												38							
S	1	36								1				38		38	12		
Т																	5		
V									į										
w																			
X																			
Υ																			
Z																			
-			38	38	38	38	38											38	38
unknown (?)							<u></u>				1								
not sequenced									1		1								
sum of seq?																			
oomcaa,	37	36	38	38	38	38	38	38	37	36	27	38	38	38	38	38	21	38	38
mcaa*	Р	S	-	-	-	-	-	G		•••••••	Ε				**********		N	-	-]
rel. oomcaas	97%	95%	100%	100%	100%	100%	100%	100%	100%	97%	73%	100%	100%	100%	100%	100%	55%	100%	100%
pos occupied ⁶			1	1	1			1					:				• • • • • • • • • • • • • • • • • • • •	1	

Table 5C: Analysis of V lambda subgroup 3

		,		Fra	mev	vork	Ш												
amino acid'	67	89	69	70	71	72	73	74	75	9/	11	78	79	80	8	82	83	84	.85
Α				1	36	1		. 1				11	1	34	_			38	
В																			
. С	·																		
D								-								38			37
E													10		14		38		1
F																			
G		37									28				10				
H.			1																
						1		1	37	1					1				
K			1																
L						••••	38								2				
M															10				
N			28			-				1									
Р				•••••		••••	•••••									1			
Q		1											25						••••
R		••••								1	10		1						
S	37		2			11				23				1					
Т	1		6	37		25		36		12		13		2					
V					2				1			14		1	1				
W-							********												*******
X							********												•••••
Υ							••••••			*******	••••								
Z				•															
-																			
unknown (?)					•••••			••••			•••••	••••							*******
not sequenced	B			••••															
sum of seq ²	-	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa			28	•••••	*********		• • • • • • • • • • • • • • • • • • • •		***********	********									
mcaa*	S				Α	T	L	Ţ	1	S	G	٧	Q	Α	E	D	E		D
rel. oomcaas	97%	97%	74%	97%	92%	%99	100%	95%	97%	61%	74%	37%	%99	%68	37%	100%	100%	100%	92%
pos occupied ⁶	2			2	2			3	2	5	2	3	5	4	6	1	1	1	2

Table 5C: Analysis of V lambda subgroup 3

PCT/EP96/03647

	<u>`</u>			Ĺ						CD	R III								
amino acid'	98	87	88	68	90	91	92	93	94	95	4	80	ပ	۵	ш	ų_	96	97	86
А					13	3	2			1	2						Ã		
В	<u> </u>	<u> </u>																	
· C		İ	38																<u> </u>
D							32	1	1		6								
Ε				1								2					· 2		
F		2						2											35
G									3	14	3			1			3	1	
н												12	1						
1												••••••						4	
K										*****	1	••••••	••••••	İ				-	
L				1				1		1		1	1		<u> </u>		4	2	
М									1								1	1	
N				10			2	1	2		10	1			 !				
Р		·							1				3				1		
Q				25						1	1					7			
. R						10		1	2			2							
S				1	14	1		28	26	13		1				1			
Т						1		3		7	2								
V					11												18	28	
w		Ţ				23	·										1		
X										·									
Y	38	36					1		1		1	3	1				3		
Z																			
							<u> </u>				10	15	31	36	37	36		1	
unknown (?)				<u> </u>			<u> </u>			<u> </u>		<u> </u>							
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	3
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	35
oomcaa,	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	35
mcaa¹	Υ	Ý	С	Q	S	W	D	S	S	G	Ν	-]	-	-	-	-	٧	٧	F
rel. oomcaas	100%	95%	100%	₉₀ 99	37%	61%	%98	0/9/	70%	38%	28%	41%	34%	92%	%00 ₁	97%	49%	%9/	100%
pos occupied ^a	1	2		:	:	5	4				9	8	••••••			2	9	6	1

Table 5C: Analysis of V lambda subgroup 3

PCT/EP96/03647

			F	ram	ewo	rk I\	,					
amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
A												265
В			Ī		<u></u>							
С			Ì							1		82
D			Ī					i				225
E			i		2			<u> </u>				145
F												90
G	35	31	35							24		461
Н												32
1												160
К					30							110
L ·						28			33	,		233
М												17
N	1											126
Р									1			249
Q		-	,								7	275
R					2	٠						154
5										2		501
T		4		35			3 5					347
V			·			7		35				308
. w												62
X												
Y												211
Z					<u> </u>	<u> </u>						
_				<u></u>		<u> </u>	<u></u>					603
unknown (?)	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	1
not sequenced	3	3	3	3	4	3	3	3	4	11	28	89
sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa,	35	31	35	35	30	28	35	35	33	24	7	
mcaa*	G	·G	G	T	Κ	L	T	V	L	G	Q	
rel. oomcaa'	100%	%68	100%	100%	88%	80%	100%	100%	97%	89%	100%	
pos occupied [«]	1	2	1	1	3	2	1	1	2	3	1	

Table 6A: Analysis of V heavy chain subgroup 1A

PCT/EP96/03647

														Fr	ame	wor	kΊ			
, amino acid'	-	7	c	4	2	9	1	∞	6	10	=	12	13	4	15	16	17	18	19	20
Α					1	14			60							24	1			
В								·												
С										-										
D																				
E	1				2	1		2		64										
F																				
G								58	1					**********	64					
н			2																	
-1		2						**********												
K		2										57	64			·			60	
L		•••••	2	59							3									
М		1																		•,,••
N												.6								*******
Р														63						
Q	53		56		2	45														
R												1							3	
S							6 0		3					1		40	63			
Т																			1	
V	2	55		1	5 5						61	٠						64		64
w																				
X																				
Υ																				
Z	3																			
· -													n							·
unknown (?)		·	1																	
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq²	59	60	60	60	60	60	6 0	60	64	64	64	64	64	64	64	64	64	64	64	64
oomcaa,	53	55	56	59	55	45	6 0	58	60	64	61	57	64	63	64	40	63	64	60	64
mcaa'	Q	٧	O	L	٧	Q	. S	G	Α	Ε	٧	Κ	K	Р	G	S	S	٧	Κ	٧
rel. oomcaa'	%06	92%	93%	%86	92%	75%	100%	97%	94%	1000%	95%	9068	100%	98%	100%	63%	98%	100%	94%	100%
pos occupied ^a															1					

Table 6A: Analysis of V heavy chain subgroup 1A

PCT/EP96/03647

														CD	RI					
amino acid'	21	22	23	24	25	56	27	28	29	9	3	⋖	ω	32	33	34	35	36	37	38
Α				62				1							41					
В		<u> </u>									į									
. С		63																		
D							1								<u> </u>		<u> </u>			
Ε																				
F									69					3		3				****
G				1		69	41		1		_				23					
Н										1	<u>.</u>			1			1			••••
1								1			<u>.</u>					61	1		1	
K			63						•	1	1									••••
L															1	2			<u></u>	
M								<u> </u>	<u> </u>							4				
N			-							2	5						4			
Р								ļ							1					
Q							<u></u>	<u> </u>	<u> </u>						- -					
R		1	1					<u> </u>	<u> </u>	1	1									7
S	63	<u> </u>			68		1	<u></u>	<u> </u>	40	60			2			60			
T	1	<u> </u>		2	<u> </u>		<u> </u>	68	<u> </u>	25	3				3		4			
V		<u> </u>	<u>.</u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>					1				69	
W		<u> </u>			<u> </u>			<u></u>	<u> </u>							<u></u>		70		
Χ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>							<u> </u>			
Υ		<u> </u>	<u></u>	<u></u>	<u> </u>	ļ <u>.</u>	27	<u>.</u>	<u>.</u>	<u> </u>	<u> </u>			64		<u></u>	ļ			_
Z				<u> </u>			<u> </u>													
-		<u> </u>	<u> </u>			<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>	70	70			<u> </u>				ļ
unknown (?)	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>					ļ	<u> </u>			<u>.</u>
not sequence	d 6	6	6	5	2	1		<u> </u>	<u> </u>	<u></u>						<u> </u>				_
sum of seq ²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	_
oomcaa,	63	•	÷	·	• : •	•:•	-:		69	·÷·····	÷	70	70	64	41	61	÷	÷	-	
mcaa*	S	C	K	Α	S	G	G	T	F	S	S	_	-	Υ	Α	1	S	W	٧	ļ.,
rel. oomcaas	9080	%8€	38%	35%	%001	%00l	29%	37%	90%	37%	36%	100%	100%	31%	39%	37%	36%	90001	%66	
pos occupied		1	1		•	:		:	•	1	:	1	:		6	:	:	1	2	:

PCT/EP96/03647

Table 6A: Analysis of V heavy chain subgroup 1A

					ame	wor														
amino acid'	33	40	4	42	43	44	45	46	47	48	49	22	5	25	⋖	8	ပ	53	54	55
Α		70									1				5					
В			<u> </u>																	
. с		<u> </u>	<u> </u>	<u>.</u>															<u> </u>	
D		<u> </u>	<u> </u>					1												
E								69												
F .													2					3	39	
G			1	68		69			1		69	39			1					68
Н			1													,				
1			<u></u>										65	38				34		
K																				-
L				1			68			1		1						2	4	
M										67				2				4		
N														4				3	22	
P			68				1								44					
Q	69				6 9													1	1	1
R	1			1		1						4						1	·	
S					1				1	1				22		mass.			1	1
T													1	2	4			1	3	
V										1			2	2	16			1		
W					<u>-</u>		1		67			26								
X																				
Y									1									20		
Z																				
-																70	70			
unknown (?)																				
not sequenced																				
sum of seq?	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,				•••••••••••••••••••••••••••••••••••••••		•••••••		••••••	•••••		69	39	65	38	44	70	70	34	39	68
mcaa'	Q	Α	Р	G	Q	G	L	Ε	W	М	G	G	1	1	Р	-	-	1	F	G
rel. oomcaa ^s	%66	100%	97%	9/0/6	%66	%66	97%	%66	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	%95	97%
pos occupied	2	1					3				:	•	4		••••			10	6	

Table 6A: Analysis of V heavy chain subgroup 1A

•	С	DR	11																	
amino acid'	26	57	28	29	09	61	29	ខ	64	65	99	69	88	69	2	7	72	23	74	75
Α	1	34			69											43				
В																				
- C																				
D	15		1							2							70			
E									1									33	<u> </u>	
F				1				48				3		4						
G	1						3			67										
Н			1																	 .
1	4												1	44				1		
<u>K</u>	1		2	1			47		1		1							8		·····
L	1	1						22				2		1		3				
М														21						
N	9		59				18													
Р	1	7																		
Q	1	1				70			64			<u> </u>			<u></u> j					
R	2						2		1		69							1		
S		1	2		1										5				70	
T	34	26	4						3				66		65	24		27		67
V		<u> </u>	<u> </u>							1		65	3			.,				3
W		<u> </u>																		
X			<u></u>	`																
Υ		<u>.</u>	1	68		ļ														
Z	L_	<u> </u>				<u> </u>														
		<u> </u>	<u> </u>			ļ		ļ		<u></u>						·····				
unknown (?)	.	<u></u>	<u> </u>	<u> </u>		<u></u>		<u> </u>	ļ	ļ							<u> </u>	<u> </u>		
not sequenced	<u> </u>		<u> </u>					<u> </u>												
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oowcaa,	34	34	59	68	69	70	47	48	64	67	69	65	66	44	65	43	70	33	70	67
mcaa'	T	Α	N	Υ	Α	Q	K	F	۵	G	R	٧	T	1	T	Α	D	Ε	S	T
rel. oomcaa ⁵	49%	49%	84%	97%	%66	100%	%29	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	%96
pos occupied ⁶	:		i		2		4		5		2		3	•			7	Ţ	1	

WO 97/08320 ·

Table 6A: Analysis of V heavy chain subgroup 1A

PCT/EP96/03647

				F	ram	ewo	rk II	1												
amino acid	9/	11	78	79	8	8	82	4	80	ပ	83	84	82	98	87	88	68	06	6	92
A			64			1						3			1	70				
В							-													
С																				70
D						2							26	70						
E						64							44							
F																	1	1	2	
G									1											•
н				1				1												
l I		1					3	1	1								2			
K											3									·····
L					3		63			70							2			
М					67										1		1			
N	4							1	16											
Р																				
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
Т	.1	69	2					3	2		4				67					
V			3				4				1						64			•••••
W					, 															
X																				••••
Y				68				···										69	68	
Z																				
-																				
unknown (?)																				.
not sequenced	-																			
sum of seq ²																			•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
oomcaa,		*******		********	*******	********	63										******		••••••	
mcaa•	5	Ţ	Α	Y	M	E	L	5	5	L	R	5	Ł	ט	Г 	Α.	V	·Y	Υ	С
rel. oomcaa ^s	89%	%66	91%	97%	%96	91%	%06	29%	20%	100%	%68	%96	63%	100%	%96	100%	91%	%66	97%	100%
pos occupied ^a	4	2	4	3	2	4	3	6	6	1	4	2	2	1	4	1	· 5	2	2	1

Table 6A: Analysis of V heavy chain subgroup 1A

Į										CDF	R 111									
amino acid'	93	94	95	96	97	98	66	90	⋖	മ	ပ	0	ш	ш	9	I	_	_	*	10
Α	66		16						1			1	1		1	1	1	2		1
В												•								
С					1	1	16	2		1	1	7	2	1						
Ð			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н									<u> </u>	1	1	1		1						
				2	5	2	2		2	2	1	1			1					
Κ		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	•
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4	,,,,,,,		
['] P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		. 1		16						
S		1	٠ 1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T-	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3		•••••		1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z									7											
-				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)													1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	_ 5	5	5	5	5	5	_ 5
sum of seq?	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa ³	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa'	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied		T	Ī	Ī			······]		Ī	:	:			: · · · · · · · · · · · · · · · · · · ·	1		-	

142

Table 6A: Analysis of V heavy chain subgroup 1A

	Γ				Fra	mev	work	· IV					
amino acid	102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
Α													670
В													
С													165
D		1	1										308
E	1	1											297
F	2			••••						*****			226
G			58		59	1	1				111		928
н				1					·	•••••			14
1	3								4				286
К				3		1						ľ	325
L	3			1			40	1					386
М	1				,		3		,				189
N				1									176
Р	5											1	238
Q				52								1	494
R				1								l.	351
S											53	51	972
Т						54	11	1	51		1		736
V	15		1				1	54		54		1	699
W		59		1									243
X													
Υ	34		1										542
Z													3
_	1												578
unknown (?)													8
not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
sum of seq'	65	61	61	60	59	56	56	56	55	54	54	53	
oomcaa,	34	59	58	52	59	54	40	54	51	54	.53	51	
mcaa*	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ⁵	52%	97%	95%	87%	100%	% 96	71%	%96	93%	100%	%86	%96	
pos occupied ⁶							5		2	1	2	3	

140

Table 6B: Analysis of V heavy chain subgroup 1B

PCT/EP96/03647

ĺ					<u>. </u>									Fr	ame	wor	k I			
amino acid'	-	2	ო	4	2	9	7	∞	6	2	Ξ	12	13	14	15	16	17	18	19	20
Α									32							34				
В		1																		
· C																				
D							·													
E		1			5	1				35										·
F																				
G								27							35					•••••
Н			1											1						
ļ																				1
Κ		3	1									34	33						33	
L			3	26	1															
M				1	1															
N																				
Р						••••••			1					33			1			
Q	21		20			26														
R	1											1	2							
S							27									1	34			
T									1					1			-		2	
V	3	21			20						-35							35		34
W																				
X	4																			
Y																				
Z																				
_							<u>.</u>	<u> </u>					·							
unknown (?)							<u> </u>	<u> </u>	<u> </u>								ļ			
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	5
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	35
oowcss,	********	* • • • • • • • • • • • • • • • • • • •		····	,	;	********	• ;•• •••••	• • • • • • • • •	• • • • • • • • •	*****	·	,,,,,,,,,,,	:	••••••	; • • • • • • • • • • • • • • • • • • •	34	•	*******	····
mcaa*	O.	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Α	S	٧	K	٧
rel. oomcaas	84%	84%	9008	%96	74%	9696	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	92%	100%	94%	97%
pos occupied ⁿ	•	1		:		:				;				:			2		:	1

Table 6B: Analysis of V heavy chain subgroup 1B

PCT/EP96/03647

														CE	RI					
amino acid'	21	22	23	24	25	56	22	28	29	30	31	∢	8	32	33	34	35	36	37	38
Α				30							2				6					
В																				
С		35																		
D											1				5		1			1
Ε			3								1									
F							2		39					2	2					
G				1		40				1	14				1					1
H									·					3	1		34			
l l								1		1						9				
K			28																	
L									1		1					5			2	
M.																23				
N							1			1	3					1	3			•••••
Р															1					
Q			2								1				1		1			1
R			2					2						1						37
S	35				40			5		2	15			2	1					
T				3				32		34					1					
V				1			1			1	1				2	2			38	
W																		40		
. X																				
Y							36				1			32	19		1			
Z	_																			
												40	٠40							
unknown (?)																				
not sequenced				-																
sum of seq'				•••••	••••••											•••••				
oomcaa,	·	*******					**********	*******				40		********	**********			40		
mcaa•	S	С	K	Α	S	G	Υ	T	F	T	5	-	-	Υ	Υ	М	Н	W	V	R
rel. oomcaa ^s	100%	100%	%08	%98	100%	100%	% 06	%08 80%	%86	85%	38%	100%	100%	%O8	48%	28%	85%	100%	95%	93%
pos occupied ⁿ	1	1	4							6					11					4

PCT/EP96/03647

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	me	work	: 11													
amino acid'	33	40	41	45	43	44	45	46	47	48	49	20	2	52	⋖		U	53	54	7,
Α		39				1					1				7			1		
В			<u> </u>	<u> </u>																
. С		-																		
D														1					1	
E				1				39										1	1	
F			·				. 2						1					1		
G				39		28					39	1			1			9	1	3
Н																		2		
ı										3			34							
K					1														1	
L			. 1				37		Ī				1							
M										37		2	4				,			
N							٠.							3 5				20	12	
P		1	34			•••••	1								31					
Q	39				39			1											-	
R	1					10						4						3	1	
S	1		1			1								2				1	2 0	
T			4				•••••							1			••••		3	
·V	1					••••								1	1		•••••			
W		İ							40			33			•••••					-
X		ļ				••								••••	•••••					
Y		1	Ī															2		
Z		1					 													
_																40	40			
unknown (?)		<u> </u>	<u> </u>	Ī .																
not sequenced	1		<u> </u>	<u> </u>																
sum of seq ²		40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	,
oomcaa,		†···	†····	····	·····	:		·	İ	*********	·	33	:	:····	: 	;·····	:	:	: ········	•
mcaa*		÷	÷ <u>-</u>	÷	Q	į. 		. 	.		<u>.</u>	W	····-	N	···	-	-	N	÷	••••
			.0	.0	.0	.0	.0	.0	%	.0	.0	۰	.0	ە.	.0	%	%	۔	٥	
rel. oomcaas	%86	086	85%	980/	980	70%	93%	989	5	93%	980	83%	85%	980	780/	100%	100%	20%	20%	
pos occupied	:	:	4	2	2	4	3	2	1	2	2	4	4	5	4	1	:	:	•	

Table 6B: Analysis of V heavy chain subgroup 1B

PCT/EP96/03647

		DR	II																	
amino acid'	26	23	28	23	99	19	62	63	64	65	99	29	89	69	2	7	72	73	74	75
Α	1	2			27	2				1		1				2				12
В														<u> </u>				<u> </u>	<u></u>	
С																		<u> </u>		
D	1		<u> </u>							4							35			
E	2		2			1				1						1				
F .				4				39						3						
G	15		6		1					34										
Н			1	1													1			-
ı		1	1				*****					1	1	13	•••••					22
. к	2	2	8				36		1							1				
L						1		1						1						
М														23				1		1
N	17		18				1										4			
Р																	·		3	
Ω						36			37											
R			2				1		2		37	-				34		1		
5	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V .	1											38								
w						İ					3									
X																				
Υ				33																
Z		7																		
-																				
unknown (?)																				•
not sequenced											<u>-</u>					Ī				
sum of seq?	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
						36	••••••••				••••••••				•••••••	·····÷			:	•••••
mcaa'		·T				••••••	Κ	F	Q	G	R	٧	T	М	T	R	D	T	S	ı
rel. oomcaa³	43%	988%	45%	83%	%89	%06	% 06	98%	93%	85%	93%	95%	%86	58%	100%	85%	%88	95%	93%	25%
pos occupied ^a													:	4			•	÷	:	4

152_

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II									8				
amino acid'	76	77	78	79	80	81	82	A	8	ပ	83	84	85	98	87	88	68	90	91	92
А			35									1	2			40				
В																				
· c		į																		37
D	1	Ī				4							19	40			1			
E						35							19							
F .			1									2							2	1
G						1		1	2											
Н																				
ı		1															1			
К											1									
L					2		3 9			39							2			1
М					37		1							-			2			
N	7							1	2											
Р												1			<u> </u>				1	
Q																				
R	4							2	16		37									
S	27			1				35	20		1	36						1	1	
T	1	3 9						1			1				40					
V			4		1					1							33			
w																				
X																				
Y				39														38	35	
Z																				
_								<u> </u>												
unknown (?)							ļ	<u></u>												
not sequenced	L_						<u> </u>	<u> </u>				-					1	1	1	1
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	39
oomcaa3	·	÷			····	·	·	····	÷ • • • • • • • • • • • • • • • • • • •	•••••							!		 -	37
mcaa'	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	D	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	%89	%86	98%	%86	93%	98%	%86	98%	50%	%86	93%	%06	48%	%001	100%	0001	85%	97%	%06	95%
pos occupied ⁶	5	2	3	2	3	3	2	5	4	2	4	4	3	1	1	1	5	2	4	3

Table 6B: Analysis of V heavy chain subgroup 1B

						-	•			CDI	R III									
amino acid'	93	94	92	96	97	86	66	001	∢	8	ပ	٥	u	щ	၅	I	_	ſ	×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В																				
· C		1				3				2	1									
D			7		5	2	3	1	5	4		1		²	2	1	2			27
E			2		1			1	1		2		1		1					
F				1	1	3			2	1	1	1	1			-		2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
1		1		1	1	3	1	1	1	1	1	1		********					1	
κ		1			1				1	1		1		1			1			
L			2	4	4	4	3			1	2	1	1	2		1			2	
M				2		1	1								1				4	
N					1			1		1	1	1			3		1			1
P				6	4				1	1		3	2			••••	1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
Т		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y.				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
-				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)																			3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq?	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa,	37	31	7	7	5	5	9	8	10	11	14	20	23	25	25	25	23	18	15	27
· mcaa*	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	%56	%6/	19%	19%	14%	14%	24%	22%	28%	31%	39%	9,99	64%	%69	%69	%69	64%	50%	42%	75%
pos occupied ^a				12	18	13			·		····· ·	13	10	9	8					_

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	IV.					
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113	sum
Α													340
В													
С		Ī					••••••		<u>-</u>				79
D	2						<u>-</u>						179
Ε				1			····						159
F	1						••••••						130
G			27		26		•••••			1			450
H ·	1												5
ı	7								3				113
K				2				Ī	····	····			194
L							12		·····	1			204
М							2		••••••				144
N	1												138
Р	1			1					•••••				128
Q .				23									25:
R							1						247
S	3								1		18	18	43:
T						21	6		16		1		390
V	6							21		18			34:
W		29		·			-						15
X							·						
Υ	11												29
Z													
_	3												39
unknown (?)													:
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	45
sum of seq ²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa,	11	29	27	23	26	21	12	21	16	18	18	18	
mcaa'	Y	W	G	Q	G	T	L	٧	Ţ	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	%06	95%	100%	
pos occupied ⁶	10	1	1	4	1	1	4	1	3	3	2	1	

PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

														`Fra	ame	wor	k I			
amino acid'	-	2	က	4	2	9	7	8	6	2	=	12	13	14	15	16	17	28	19	20
A										3										
В		İ								<u> </u>										
C								<u> </u>	<u>i</u>	<u> </u>	i									
D											į									
Е	1					6			<u> </u>							2				
F .										į										
G								6												
Н														<u> </u>						
1		1																		
κ					3								6		1					
L				6							6							6		6
М														-						
N							1													
Р							1		6					6			1			
Q	2															4				
R					2						.									
S							4													
Т			6		1					2					5		5		6	
V		5								1		6		<u></u>						
w														<u></u>						
X															٠					·····
Y																				
Z	3																			
-															•					
unknown (?)																				
not sequenced	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa³	3	5	6	6	3	6	4	6	6	3	6	6	6	6	5	4	5	6	6	6
mcaa'	Z	٧	T	L	K	E	5	G	Р	Α	L	٧	Κ	Р	T	Q	T	L	T	L
rel. oomcaas	50%	83%	100%	%00 1	20%	100%	%29	100%	100%	20%	100%	100%	100%	100%	83%	%29	83%	100%	100%	100%
pos occupied						:	:	:	:	: :	1	:. :	1			:	2		1	1

PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

•														CDI	RI					
amino acid'	21	22	23	24	25	56	27	28	29	8	3	⋖	ω	32	33	34	32	36	37	38
Α								1				1			1					
В																				
C		7													2					
D												1			į					
E																				
F				3			6		1											
G						7			<u> </u>		+	į	4		3		3			
Н		·																		
1 .													1						7	
К										į		· [
L				2			1		6					.						
M			Ī											5						
N											2									
Р																				
Q																			<u> </u>	
R		<u> </u>											2		1				<u> </u>	<u> </u>
S		<u> </u>	1		6			6		6	2	4					4	<u> </u>	<u> </u>	<u>.</u>
T	6	Ī .	6							1	3	1					<u> </u>	<u> </u>	<u> </u>	<u> </u>
٧		-	-	2										2		7		<u> </u>	<u> </u>	<u> </u>
W		1			:													7	<u> </u>	
Χ		-		-																
Υ		1		Ī	1				-											
Z																				
-																				
unknown (?)				Ī					Ī								<u> </u>	<u> </u>	ļ.,	<u> </u>
not sequenced	1																<u> </u>		<u> </u>	
sum of seq ²	6	7	7	, 7	7 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa ³	6	7	' (3	3 6	7	' 6	6	6	6	3	4	4	5	3	7	4	7	:	•
mcaa ⁴	T	·÷			S			S		· ····	Τ	S	G	М	G	٧	S	W	Ī	I
rel. oomcaas	100%	100%	86%	430%	86%	100%	96%	86%	%98	%98	43%	57%	57%	71%	43%	100%	57%	100%	100%	
pos occupied	:	1	1	•	:		1 2		•	1	•	:	:		:	:	:	2 1	1	

15 X

WO 97/08320 PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

				Fr	ame	worl	k II						<u> </u>			_				
amino acid'	39	40	41	42	43	4	45	46	47	48	49	20	51	25	4	8	U	53	54	55
Α						6	_				7									
В				Ī			***********									<u> </u>	<u> </u>	Ī	:	
. С			<u> </u>	<u> </u>					<u> </u>				 !			<u> </u>	 	Ī		
D				<u> </u>	Ī				ļ			•••••		2		<u> </u>	Ì	i	3	6
Ε				Ī				7	[
F														2						
. G		1		7		1														
Н								}				2								1
I													6	••••••						
κ		•	Ī		6															
L							7			7		2	1	1	••••					
M																				
N							·											`	3	
Р		5	7												•••••					
Q	6																			
R	1				1							2								
S		1																2		
T																				
V																				
W									7			1						4		
X														1				1	1	
Y											-			1	1					
Z																				
-															6	7	7			
unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	6	5	7	7	6	6	7	7	7	7	7	2	6	2	6	7	7	4	3	6
mcaa*	Ω	Р	Ρ	G	K	Α	L	Ε	W	L	Α	Н	١	D	-	-	-	W	D	D
rel. oomcaa ^s	%98	71%	100%	100%	%98	%98	100%	100%	0001	100%	100%	29%	%98	29%	86%	100%	100%	57%	43%	%98
pos occupied	:	3								. :		4				1	1	:	3	

PCT/EP96/03647 WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

	С	DR	11																	
amino acid'	26	23	28	23	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75
Α																				
В																				
C																				
D	5																6	1		
E	1								1											
F .		1		1																
G																				
Н				1																
l l														6						
К	1	6							4							6				6
L								7	<u>-</u>			7								
М.										•										
N																	1			
. P						2														
Q																				
R			2			1			2		7					1				1
S			2		6		7			4		·	1		5				7	
Т						4				3			6		2			6		
V														1						
W				1			-													
X					1															
Y			3	4																
Z									·											
_																				
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	6
mcaa*	D	K	Υ	Y	S	Ţ	S	L	K	S	R	L	Ţ	1	S	K	D	T	S	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	92	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied ⁶	•	i		;	:	:	1	i	•		:					:				

WO 97/08320 .

Table 6C: Analysis of V heavy chain subgroup 2

PCT/EP96/03647

•				F	ram	ewo	rk II	1			_									
amino acid'	9/	77	78	79	8	81	82	⋖	8	ပ	83	84	82	98	83	88	68	90	91	92
Α													1			5				
В		·																		
С																				7
D					·						6			7						
E																				
· F					1															
G				٠												2				
Н																				
1				1		2		1					·							
K																				
L					6															
M							7			5										
N	5				-				6		1									
- P												7								
Q		7																		
R																				
S	2																			
T	·					5		5				-			7		7			
V			7	7						1			6							
W										<u> </u>										
x																				
Y																		7	7	
Z																				
-							İ	1	1	1										
unknown (?)																	·			
not sequenced			·																	
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	· 7	7	7	7	7	7	7	7	7
oomcaa ₃	5	**********		7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa'	N	Q	٧	٧	L	T	М	T	N	М	D	Ρ	٧	D	T	Α	T	Υ	Υ	С
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	%98	0001	%98	100%	100%	71%	100%	100%	100%	100%
pos occupied ⁶	2	1	1	1	2	2	1	3		:	2		•	;		2	1	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

										CDI	RIII									
amino acid'	93	94	98	96	97	86	66	9	A	8	ပ	٥	u	ட	တ	I	_	_	¥	101
Α	5							1	2	1										
В																	į			
· C																				
D																			.,	6
E								2			1									
F																			3	
G						1	. 1		1	2	1	1	1	1						
Н		1		1																
1			3			2						·								
κ							1													
L								1		1		······							1	
M.		·						1											2	
N				1	2												1			
Р				1	1		1		1										·	
Q			1																	
R		6	1			1			1											
· S				1		1	1								•					
Т				1			1		1											
V	2		1	1	1		1	1			1									
W						1									1			1		
X												···								
Y					2						1	2	1	1	1			2		
. Z																				
-										2	2	. 3	4	4	4	6	5	3		
unknown (?)																				
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq?	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ₃	5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	5	3	3	6
mcaa*	Α	R	ı	Н	N	ı	G	Ε	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	%/9	9029	67%	100%	83%	20%	20%	100%
pos occupied ⁶	2	2	4	6	4	5	6	5	5	4	5	3	3	3	3				:	1

Table 6C: Analysis of V heavy chain subgroup 2

PCT/EP96/03647

				Fra	mev	vork	<u> </u>					İ
102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
								. 1			- 1	35
		•••••	-									16
						Ī						43
	····					1						21
												18
		6		6								55
		•••••										6
												29
			1			1	•					42
1		••••				3						78
												20
					·							23
1	·			•••••		1						41
	•		3									23
			2									41
							,			6	3	82
				·	6	1		5		·		102
3							6		6			68
	6											29
												4
1												35
												3
												56
1	1	1	1	1	1	1	1	1	1	1	4	54
6	6	6	6	6	6	6	6	6	6	6	3	
3	6	6	3	6	6	3	6	5	6	6	3	
٧	W	G	Q	G	T	L	٧	T	٧	S	S	
50%	0001	%001	20%	100%	0001	20%	100%	83%	100%	100%	100%	
		1	3	1	· 1	4	1	2	1	1	1	
	1 1 6 3 V 0005	1 1 6 6 3 6 V %0001	3 6 6 7 W %001	1 1 1 1 1 1 6 6 6 6 3 V W %0001								

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

PCT/EP96/03647

L												12	13	4	2 rame
amino acidi		2	د	4	n.	9	<u>`</u>	ω .	თ 	2	-	-		-	
Α					1		1			12		1		3	1
В			1			1							1		
. C															
D	1					1				16					
E	110		9		15	166			9				8		
F ·											4				
G								181	193	174		1			202
Н			5										4		
1	i											9			
Κ		5	3										26		······
L		1	5	176	43						140			1	
М		12		1											
N										1					
Р													1	194	,
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T						·	1					-			
V	5	147		1	118						62	195			
W															
Χ	·										·				
Y				i								•			
Z	8										-				
-															
unknown (?)															
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	
sum of seq'	165	165	167	179	180	180	180	181	202	205	206	206	206	206	20
oomcaa ³	:	···		·····	·:······	· · · · · · · · · · · · · · · · · · ·	:	·	· <u>:</u>	174	;				•
mcaa*	Ε	٧	۵	L	٧	Ε	S	G	G	G	L	٧	Q	Р	G
rel. oomcaas	%	ş	Se.	%	&	%	%	%00I	g.	%	%	9,	્ર	%	,
ici. UUINCad	%29	89%	83%	%86	%99	92%	%66	5	%96	85%	9089	95%	79%	94%	3
pos occupied ⁶	5	4	7	4	5	4	3	1	2	5	3	4	7	4	

PCT/EP96/03647 WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

	work	l_													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	73	30
Α								183	192		1				
В			•••••												
С						1	209		•••••						
D															7
Ε	8				,			8			3		1		
F .		1	1			1						201		201	
G	134								2		207				3
Н														_	1
. 1								2		••••		3	17	1	
κ		***************************************		15											4
L		***************************************	205		201		-					6	•••••	3	
М		•••••••	1										1		
N							•••••				**********		10		10
Р				·····				1			•••••••		2		
α			1	************											
R	62			191											11
S		206	•••••			207		4	2	209			15		174
Т	4	1		2				4	4			1	163		
V					8			7	9				1	6	
w -	-														
X															
Υ															
Z															
-															
unknown (?)															
not sequenced	4	4	4	4	3	3	3	3	3	3	1	1	2	1	2
sum of seq ²	208	208	208	208	209	209	209	209	209	209	211	211	210	211	210
oomcaa,		••••••	***************************************						************		207		*************		
mcaa'	G	S	L	R	L	S	С	Α	Α	S _.	G	F	T	F.	S
rel. oomcaas	64%	99%	99%	95%	%96	%66	%00ı	88%	92%	%00 I	%86	9/256	78%	95%	83%
pos occupied ⁶	!				:		•••••			1			**********		

Table 6D: Analysis of V heavy chain subgroup 3

				CD	RI									F	ram
amino acid'	31	⋖	8	32	33	34	35	36	37	38	39	4	4.	42	43
Α	1	·		17	80		1			1		187		1	
В				·											
. С												1		1	
D	26			3	7		2						·		
E	1				10									1	
F .				5			,	· · ·							
G	13				31		1		•			2		209	
Н				4			88								
ı	1			1		15			12						
K	7						************				1				20
L	3				••••••	3			2	3	1	2	1		
М					***************************************	193				_	··-	***************************************			
N	35			8	3	••••	34								
Р				1			1					4	191		•••••
Q											209		1		
R	7	•••••••			***********					207		7			
S	103			17	8		72					3	14		
T	9				15		10					4	5		******
٧	2				7	1	***********		197		***************************************	2			
W					30		*********	212			•••••				
X	1							***************************************			••••••	***************************************			
Υ	1			154	19	**********	3						••••		
Z									•		***********		10 - 10 - 10 - 10 - 10		*****
_		210	210												
unknown (?)		**********		**********			•••••••••••••••••••••••••••••••••••••••				**********	***************************************			
not sequenced	2			2	2				1	1	1				
sum of seq?	210	210	210	210	210	212	212	212	211	211	211	212	212	212	21
oomcaa,	103	210	210	154	80	193	88	212	197	207	209	187	191	209	20
mcaa*	S	-	-	Υ	Α	М	Н	W	٧	R	Q	Α	P	G	K
rel. oomcaas	49%	%00	%00	73%	38%	91%	42%	%00 l	93%	%86	%66	9088	%06	%66	č
pos occupied ^a	14		····· ·					···-··	_						

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

	work	II.						·							
amino acid'	44	45	46	47	48	49	20	51	52	٧	8	ں	53	54	52
Α	1					77	42		1	2		14		7	
В			3							1					
. с													1		
D			1							7			94	8	3
E			198						3	2	1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
1 I					3		3	191		1			·		1
к							***********	1	37	2	30		3	1	
L		211			5		12	1							***************************************
M ·				•			1	1							
N				•••••	•••••••••		13		7	9	2		13	11	1
Р		1		•		•	•••••	•=•••••		1	•••••••••		1	***************************************	-
Q			7				7			10					
R	1	•					24	1	17	- 5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
Т		**********					3	5	4	2		13	12	3	3
V			3	•••••	204		49	2		1		6			
w			·	210			1		8	6					
X								•					4		3
Υ				1			22	••••••	5	58			·		8
Z					************								***********		
_										14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq'	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa							***************************************	**********						163	
mcaa•	G	L	E	W	•••••	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	98%	%00 l	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	440/0	77%	40%
pos occupied ⁶	6 4												12		

	(DR II													
amino acid'	26	27	28	23	09	19	62	63	64	65	99	29	89	69	70
Α	9	1	2		174	33							1		
В	1	2			-										······································
· C	<u> </u>														
D	11		17			160									
E	8	3	2			1			2						
F .	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
ı	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1	i	1							1		1	
М	8		2	į	1										
N	51		4	İ		2			. 2						
Р	1	1			6	8	18		1						
Ω	3	2							2		2			·	
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
T	42	97	5		7								189		1
V		2			10	2		204			į.	1		3	
w			2		•										
X	4		1			1		·							
Υ	9		151	210			1					1	1		
Z															
-															
unknown (?)								·							
not sequenced															
sum of seq'	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa*	N	T	Υ	Υ	Α	D	S	٧	Κ	G	R	F	T	1	S
rel. oomcaas	24%	46%	71%	99%	82%	75%	91%	96%	94%	100%	95%	%86	89%	98%	100%
pos occupied	19		15					:	!	1					

Table 6D: Analysis of V heavy chain subgroup 3

										Fran	newo	rk III			
amino acid,	71	72	73 -	74	75	9/	11	78	79	80	81	82	⋖	8	ں
А				57			1	. 8						1	
В											2	-			
. С															
D		199	38		2	2			1				10		
E		6			4						5				
F .									13						
G						·							. 1	4	
Н						1	·		1		2		2		
			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		21
M	1				2		10	3		2	-	205			
N		5	170		2	188					3		181	10	
P							1								
Q					7					·	199				
R	211				1	1							2	8	
S				153	8	10	56		3				6	186	<u> </u>
T							142				1		4	2	
V				1				11		1		1			
W															
X		2	2			4							1		
Y									194		•				
Z															
-					**********						-				
unknown (?)			· · · · · · · · · · · · · · · · · · ·												
not sequenced			1	1											
sum of seq'	212	212	211	211	212	212	212	212	212	212	212	212	212	212	21
oomcaa3	211	199	170	153	186	188	142	188	194	209	199	205	181	186	21
mcaa*	R	D	N	S	K	N	Ţ	L	Υ	L	Q	М	N	S	L
rel. oomcaa ^s	100%	94%	81%	73%	988%	89%	67%	%68	92%	%66	94%	97%	85%	88%	100%
pos occupied	2													•••••	

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

											•				
amino acid'	83	84	82	98	87	88	83	8	91	92	93	94	95	96	6
Α		149	1		1	207					173	2	15	9	11
В															
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1	į	190	·									11	2	11
F .							1		15			1		9	6
G	1	1	6			4	1		- .		2	8	34	26	35
н		1							1					3	11
I .		8					2						4	15	10
К	30											60	4	3	5
L							18					1	6	11	7
M		·			2		1							6	1
Ν		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			_ 1							3	9	8	11
Т	3	28			207		1				²⁵	15	7	6	20
V		9					187				10	1	· 7	7	15
· w										1			3	4	3
X				1											
Y								211	194				12	9	8
Z															
											**********		1	3	4
unknown (?)															
not sequenced					1	_ 1	1	1	1	1	1	1	7	12	13
sum of seq?	212	212	212	212	211	211	211	211	211	211	211	211	205	200	199
oomcaa [,]	177	149	190	209	207	207	187	211	194	210	173	103	54	30	35
mcaa ⁴	R	Α	Ε	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	70%	%06	%66	%86	%86	%68	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ^a				:	:			1		2				20	21

WO 97/08320 PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

•					CDF	R 111									
amino acid'	86	66	100	V	8	U	۵	ш	u.		工	_		×	101
А	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
Ε .	6	3	1	13		1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
1	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
X			··········	1											1
Y	16	14	17	5	8	18	20	13	20	25	2 8	32	28		
. Z															
-	12	21	35	54	73	87	***********	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	2 3	25	25	. 26	25
sum of seq'	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oowcaa,	34		•••••	54	73	87	102	110	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-		-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20		19								12				

Table 6D: Analysis of V heavy chain subgroup 3

					Fra	amev	ork ľ	V					
amino acid'	102	103	104	105	106	107	108	901	110	=	112	113	SL
Α	1		1			2							17
. В		Ī		1							•		
С				,									4
D	2												11
E					1			İ					8
F	2												8
G			140		130		1						27
Н	4						İ						1
l	15			<u></u>	<u></u>	<u> </u>			1	1			E
K			<u> </u>	13			į						9
L	10		<u> </u>	1	<u> </u>		91					2	18
. M					<u> </u>		6						4
N	1		<u> </u>			1							8
Р	17					1	1	į					!
Q				111									9
R			<u></u>	8					.]				14
S	7	1									118	110	30
T .						123	27		122			1	14
V *	34		1			1		125		119			18
W		158											
Χ													
. <u>.</u>	82												1
Z													
	9	2	2	2	2	2	2	2	2	2	1	1	20
unknown (?)					<u> </u>								
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	1
sum of seq?	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa				·····	130	÷····	91	125				·	
mcaa'	Υ	W	G	Q	G	Τ	L	V	T	V	S	S	
rel. oomcaa ^s	45%	%86	97%	82%	%86	95%	71%	%86	0/86	%86	%66	%96	
pos occupied ^a	12	!	:	-	:	1	; ·····	1	:	:	:	Ţ	

WO 97/08320 PCT/EP96/03647

Table 6E: Analysis of V heavy chain subgroup 4

														Fr	ame	wor	k I			
amino acid'	_	7	3	4	.c	9	7	æ	6	10	=	12	13	14	15	16	17	8	19	20
Α									19					1			1		1	
В																		·		
. С																				
D																				
E						32										44				
F																				
G								54	1	53		_				2				
Н			4		2															
1																				
К												1	54						1	
L		7		54							53	19		1				53		50
M																				
N					-															
Р									33					51	1					2
Q	52		50		51	20										7				
R	1				•••••															
S			·				33								52				52	
T									1								52			
V		47			······	1						34								1
W						9	20													
X																				
Y																				
Z	1	-			-															
_																				
unknown (?)																				
not sequenced	_				4		4	3		4		3			4			_	3	
sum of seq ²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
oomcaa,	*****		*********	•••••	•••••	*********		*********			53	34			•		52	53	•••••••	50
mcaa'	Q	٧	Q	L	Q	Ε	S	G	Р	G	L	٧	K	Р	S	Ε	T	L	S	L
rel. oomcaas	% 96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	98%	100%	%96	94%
pos occupied ⁶	: :	:							1	:					:			:	:	3

Table 6E: Analysis of V heavy chain subgroup 4

•														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	V	8	32	33	34	35	36	37	38
. А			22											1						
В									<u> </u>	<u>l</u>										<u></u>
. С		53													1					<u> </u>
D			1							<u></u>	4	1	1	1			1			
E										İ										
F					1				22					1	1				1	
G						53	5 3				21	3	4				8			
Н							1							2						<u> </u>
l			1					1	32										51	
К																				<u> </u>
L																			1	<u> </u>
M																				
N										1	1		2	2			1			
Р								3												
Q											1									
R						1				3	2		1							57
S			2		35			51	1	52	25	5	9	1			44		1	
Т	53		29								2	1					3		<u> </u>	
V				5 5		1			1										3	
W												1			2	56		57	İ	
Χ							<u> </u>													
Y		<u> </u>	<u> </u>		19		1	<u> </u>			• · · - · · ·			48	52					
Z				ļ																
-												45	39							
unknown (?)		Ī	Ī					<u> </u>												
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1				
sum of seq'	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa ³	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	57	51	5
mcaa*	T	С	Т	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W	I	F
rel. oomcaa ^s	%00	96001	53%	%00 I	34%	%96	996	33%	37%	3%	15%	30%	%0 ₂	36%	33%	%00°	77%	100%	9668	2,0001
pos occupied	:	:	:	:	:	:	3	:	:	:	:	6	:	÷	:	<u>:</u>	İ	<u> </u>	· · · · · · · · · · · · · · · · · · ·	5

PCT/EP96/03647

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	me	worl	c II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	٧	8	U	53	54	52
Α			8	1							1									
В .																				
· C																				
D														1				1		·
E				1				56				22								
F .												1		1						
G				55		55					56	1						1		57
Н		2																24		
										54		1	54				·			
K		·			54															
L		1					55			2			·							
M																				
N														21						
. Р		50	49				2													
Q	56							1				1							,	
R			·		3	2						9		1						
S		3										7		1	-				52	
Ţ	1	1																8	5	
V										1			3							
W									56											
X																			·	
Y									1			15		32				23		
Z																		·		
-															57	57	57			
unknown (?)																				
not sequenced																				
sum of seq'	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa'	56	50	49	55	54	55	55	56	56	54	56	22	54	32	57	57	57	24	52	57
mcaa*	Q	Ρ	Ρ	G	Κ	G	L	Ε	W	ı	G	Ε	١	Υ	-	-	-	Н	S	G
rel. oomcaas	98%	88%	%98	%96	95%	%96	%96	98%	%86	95%	98%	39%	95%	26%	100%	100%	100%	42%	91%	100%
pos occupied ⁶	2	5	2					2											2	

Table 6E: Analysis of V heavy chain subgroup 4

	C	DR																		
amino acid'	26	57	28	23	99	61	29	83	64	65	99	29	89	69	70	17	72	73	74	.75
Α		1									1		1			1				1
В		<u>i</u>																		
· c								<u> </u>		<u></u>										
D			2							<u> </u>		1					55			
Ε								į									1			
F .				3														1		
G	1									1										
Н			2								<u></u> į									
i i	1	1							į		<u> </u>	1	1	48		3				
К					1				53									1		51
L						1		55			<u> </u>	1				3				1
М									<u> </u>					7				2		
N	2		40		53								2							1
Р						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
Т	1	54	1			1			1			1	51		1			52		
V	1	1										53		2		50		`		1
w		<u> </u>					٠													
X																				
Y		<u> </u>	11	54																
Z		<u> </u>																		
	.	<u> </u>	<u> </u>																	
unknown (?)	<u> </u>	<u> </u>	<u> </u>		<u> </u>															
not sequenced					1	1	1	1				1	1							
sum of seq ²	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa,	49	54	40	54	53	54	·	55	53	56	56	53	51	48	56	50	55	52	57	51
mcaa*	S	Ţ	N	Υ	N	Р	S	L	K	S	R	٧	T	1	S	٧	D	Ţ	S	K
rel. oomcaas	96%	95%	70%	95%	95%	%96	100%	%86	93%	98%	%86	95%	91%	84%	98%	988%	%96	91%	100%	9068
pos occupied		1	6	:	:	÷	1	:	3	:	:	:	:	:		:	:	5	1	6

Table 6E: Analysis of V heavy chain subgroup 4

•				F	ram	ewo	rk II	1							-					
amino acid'	9/	11	78	79	8	81	82	⋖	8	ပ	83	84	82	98	87	88	88	90	91	92
Α												55	57			57				
В											·									
С																				57
D					1									57						
E						1														
F .			54						1											
G								1												
Н																				-
ı			1					1			3									
К	3					46		2												
L		3	1		55		53			2							1			
M.						1	1			1							1			
N	54					3		3	1											
Р					_															
Q		54			1	1														
R						2		2				1					-			
S			1	57		2	1	44	55		1				2				1	
T						1		4			53				55					
V							2			54		1					55			
w ·																				
X																				
Y																		57	56	
Z ·																				
	٠	_																		
unknown (?)			<u></u>																	
not sequenced																				
sum of seq	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa,	54	54	54	57	55	46	53	44	55	54	53	55	57	57	55	57	55	57	56	57
mcaa*	N	Q	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Y	Υ	С
rel. oomcaas	95%	92%	95%	100%	9696	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	96%	100%	98%	100%
pos occupied	:	:					:		:	: :						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2	

Table 6E: Analysis of V heavy chain subgroup 4

										CDF	R III									
amino acid'	93	94	92	96	97	86	66	00 10 10	⋖	80	ပ	۵	ய	Ľ.	ဗ	Ι	_	_	×	101
А	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
C					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			. 6	1	1	2	1			1	3	1	2	1						
F .				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1				<u> </u>	<u> </u>	1			1				2
l				1		2	4	1	3	2	3		1						1	
K.			2	1						2	2			1						
L			2	6	7	3	5	, 3	2	4	1	5	3	3		1	<u></u>			
М				1	4		3	1		2	1		4						9	
N				3					2	1	1	5	1	1			2			
P				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	` 1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Т		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X										`										
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
_						1	2	4	6	9	11	16	23	27	29	34	31	14	4	·
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa,	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa*	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	56%	%09	72%	67%	30%	9/0/9	89%
pos occupied ⁴		:					•	7	-	<u> </u>		<u> </u>		:	:	:	1	:	:	

Table 6E: Analysis of V heavy chain subgroup 4

			•		Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	11	112	113	sun
Α						1		_	1				33:
В		Ī						i					
С		Ī						i					11:
D													210
E													17
F													13
G			41		40	1							67
Н	1		-						1				4
ı	9					1							28
K				3									27
Ĺ	4						19					J	54
М							9						4
N		i				1							20
Р	3			2								2	28
Q				29									33
R	1			4			1						25
S	1			1							36	33	98
Т				1		33	8		34				53
<u>V</u>	12							36		36			48
W		46											26
X													
Y	16												45
Z													
-													46
unknown (?)						ļ							
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	42
sum of seq ²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa	16	*********		;	·····	:····	•	36	34		;	•••••	
mcaa*	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rėl. oomcaa ^s	34%	100%	100%	73%	100%	%68	51%	100%	94%	100%	100%	94%	
pos occupied ⁶	8	1	1	6	:	:	:	:	•	•	1	2	

WO 97/08320 PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

														Fra	me	worl	k I			
amino acid'		2	က	4	S	9	7	8	တ	2	=	12	13	4	5	91	1	82	13	70
А					1			1	89		1			1						
В																				
· C		<u> </u>	į	<u></u>		<u></u>	1													
D		<u> </u>	<u> </u>							2										
Е	88	1			2				4	93						92				
, F <u>.</u>																	1			
G	1							92				į		į	94					
Н											<u></u>	<u> </u>			<u></u>					
												i								96
K												94	94						77	
L		1		91		2												95		
М			·								3	į							1	
N																				
Р				1					1					94						
Q	3		92		1	90										3			1	
R						1				i.		1	1		1				17	
S							92										94			
Т														·						
V		90			89				1		91									
w							٠													
Х																				
Y																	<u> </u>			
Z																				
-		<u> </u>																<u></u>		
unknown (?)										<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u></u>
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	1
sum of seq'	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	96
oomcaa³	88	90	92	91	89	90	92	92	89	93	91	94	94	94	94	92	94	95	77	96
mcaa'	Ε	٧	Q	L	٧	Q	S	G	Α	Е	٧	Κ	Κ	Р	G	Ε	S	L	K	1
rel. oomcaas	%96	%86	100%	%66	%96	97%	%66	%66	94%	%86	%96	99%	%66	%66	%66	97%	%66	100%	%08	100%
pos occupied ^a	•	•	•		•	:	:			•	:	:	:	:	:	:	:	:	:	

PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

														CI	ORI					
amino acid'	21	22	23	24	25	26	. 27	28	29	30	31	A	8	32	33	34	35	36	37	38
Α				3	2					4							8		1	
В																				
С		96						1			1									
D								2			2	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1			
E				<u> </u>		2					1	<u> </u>	<u> </u>		<u> </u>	<u> </u>				
F					3		6		97					2		<u></u>				
G				92		93	; :	,			1						72			•••••
Н											1			4						1
ı		Ĭ	<u> </u>						 !	4					• • • • • • • • • • • • • • • • • • •	93				
κ		· · · · · · · · · · · · · · · · · · ·	89					1						••••••						
L			Ī								•••••			••••	1				2	•••••
M			1									••••••	-			1			1	•••••
N			1		•			2		4	14			2						
Р					1									•••••			••••	•		1
Q			4		********															
R			1			1		2				·			1	•				95
S	94			1	90	*******		84.		10	61			2	2		15			
Т	2	•••••						5			16						1			
V																1		••••	93	
· w					a	-									93			97		
X							••••••													••••••
Υ					***************************************		90							87				••••		
Z																				•••••
-												97	97							
unknown (?)											····				••••••					
not sequenced	1	1	1	1	1	1	1								*****		1		·	
sum of seq ²	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	97
	94			••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	*******	••••••			•••••••	· 	•••••••••••••••••••••••••••••••••••••••	••••••••	• • • • • • • • • • • • • • • • • • • •	•••••		······································	·····÷	
mcaa'	•	С			S		Υ	S		T	S	-	-	•••••••	W	ı	G	W	٧	R
rel. oomcaa'	98%	90001	93%	%96	94%	97%	94%	37%	100%	7.7%	63%	%00ı	%00 ₁	%O(%9(%9(,4%	%00	%96	%86
pos occupied ^a	:			3	:		:	:		•	•			:	:					:

PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

	٠			Fra	mev	work	: 11													
amino acid'	33	4	4	42	43	44	45	46	47	48	49	20	21	25	A	ω	ပ	53	54	55
А			1			1									1			2	1	
В		<u></u>	<u>i</u>							<u> </u>										
· C			<u></u>					İ	<u> </u>	<u> </u>				1			77	1		
D		į												14				8	9 3	
Е				·	3			97											2	
F												1		2						
G				97		96					95							69	1	
Н														3	1				_	
ı										1		75	92							
K		1			94															
L							94			2		2	1							
М		92								89			1		·					
N				•••••	***															
Р			96				2					•••••		1	93	•••••				
Q .	97						1									•••••				
R		1						• • • • • • • • • • • • • • • • • • • •			1	14					··········	1		
S					••••							1			1			16		9
T		1			*******							3	1		1		<u> </u>			
V		2								5	1	1	2							<u> </u>
W									94							•••••	<u></u>			<u> </u>
X							••••••			••••••						********		Ī		
Y							·····		3		*******			76			<u></u>			<u> </u>
Z		1														••••••				
-																97	97			
unknown (?)		<u> </u>										<u> </u>				*****	<u> </u>			
not sequenced											<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	
		97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	9
oomcaa,	97	92	96	97	94	96	94	97	94	89	95	75	92	76	93	97	97	69	93	9
mcaa'		М	÷	·····	·····		L	÷	W	.	÷ • • • • • • • • • • • • • • • • • • •				Р	-	-	G	÷	9
	%00	5%	%6	%00	7%	%6	7%	200 %	2%	2%	8%	7%		8%	9/09	%OC	%OC	71%	9/09	7000
pos occupied ⁶	:	:	:	•	•	•	•	1				•		•		:	1	6	-1	Č

Table 6F: Analysis of V heavy chain subgroup 5

		DR	11			,														
amino acid'	26	27	28	59	9	159	62	63	64	92	99	29	89	69	20	17	72	73	74	7,
Α		6					1									88				
В												٠								
. С					1					1										
D	77		-							2							97			
. E	3								2									2		
F .				2				91				1		3						
G	1									94										
Н											15									
		4	1					1				3		8 8						ç
K			2															93		
L						1		4							2					
М														3						
N	2		14	2													·			
P						95	1		1										1	
Q									91		81							1		
R			78						3		1			1				1		
S	2	2			95	1	95	1					1		95				96	
T		85	2		1								96							
V				1								93		2		9				
W																				
X																				
Y	12			92																
Ζ.																				
_																				
unknown (?)																				
not sequenced																				
sum of seq'	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	ς
oomcaa ³	77	85	*******		*******	95	******	********	*****		·· • · · · · · · · ·	93	96	88	95	88	97	93	96	ç
mcaa'	D	Ţ	R	Υ	S _.	Р	S	F	Q	G	Q	٧	T	1	S	Α	D	Κ	S	,
rel. oomcaas	79%	88%	80%	95%	%86	98%	%8 6	34%	34%	97%	34%	%9E	%66	91%	%8£	31%	%001	%9 <u>(</u>	%66	3
pos occupied																			2	

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk II	ł												
amino acid'	9/	11	78	79	8	81	85	4	∞	ပ	8	84	82	98	81	88	83	6	91	92
Α		1	91								1	96				93				
В.		<u></u>		<u> </u>					<u> </u>		<u> </u>									*****
. С							1			<u> </u>					<u> </u>					95
D				1						<u> </u>				96		į				
E						1					1									
F				1														2	6	
G								3	1							4				
Н						3														
ì															2		9			
K											91						1			
<u> </u>					96					97							2			
М																	84			
N	7							2	2						2					•••••
P			1			•••••														•••••
Q						93														
R	1						1	1	3		3									
S	87	2	1	1				90	91				96		5					
Τ .	2	94	2					1			1	1	1		88		1			
V			2		1	······································								1						
W							95							·						
Χ																				
Y				94	ļ											*******		94	89	
Z							ļ 													
**																				
unknown (?)		<u> </u>	Ī	Ī														<u> </u>		
not sequenced	ال		<u> </u>	<u> </u>														1	2	
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	9
oomcaa,	87	94	91	94	96	93	95	90	91	97	91	96	96	96	88	93	84	94	89	9
mcaa'	S	T	Α	Υ	L	Q	W	S	S	L	K	Α	S	. D	T	Α	М	Υ	Υ	(
rel. oomcaa ^s	30%	37%	14%	37%	39%	9696	98%	30%)4%	%00 l	34%	%6€	∙ %6€	99%	91%	%96	37%	98%	94%	7000
pos occupied		1	:		:			-	;		·	:	2	:				7	2	:

Table 6F: Analysis of V heavy chain subgroup 5

										CDI	RIII									
amino acid'	93	94	95	96	97	86	66	9	⋖	~	U	٥	w	ட	9	Ξ	_	_	~	5
А	92	·	1	1	2		3	4	3	2		1			1			4		2
В																				
· c						1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
E			1	1	1	2			1	1				1			1			-
F					1		3		-	3	2		1						26	
G			1	9	11	12	12	5	2	4	3	10	2	1				5		
Н			10	1		2	•••••		1	1		1								
				3		2	2	1	1	4	1	1		1	1					
К		1	1	1		1	3	1				•	•••••			2				
L			11	2	3	1	1	2	5		1		1		1					
М					2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1					2		
P			5	1	4	3	1	2				1	1	1	1					
Q.		1	3	2		1	1	4	2	1	2									3
R		92	7	9	2	2		2	1		2									
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
Ţ	1		1	3	2	1	2	6	3	3	6	1		1						
V	2		2	4	4		1		1	2			1							
W			1		2	1					1		2		1		1	1		
X																				
Υ				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z																				
_`						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)													1			1	1	1		
not sequenced	2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
sum of seq ²	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
oomcaa,	92	92	11	9	11	12	12	9	8	10	16	23	30	30	31	32	30	22	26	37
mcaa*	Α	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	9/0/6	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	37%	37%	%69	71%	37%	%6t	%69	32%
pos occupied												11		*******	*******		6			5

Table 6F: Analysis of V heavy chain subgroup 5

					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	Su
Α			į									1	6
В													
С													2
D	1												4
E				1									4
F	2												2
G ·			41		41								10
Н													
ľ	9	•	·····						2				5
κ				3							•		6
L	2	•••••					25	1					5
М					·		8						3
N			1										
Р	2		1			1					1		4
Q				34									6
R				3									3
S	2					-					40	39	15
T	1					40	8		39				6
٧	11							40		41			5
W		43											4
. X													
Y	13												7
Z													
-	2												6
unknown (?)													
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	16
sum of seq?													
oomcas ₃	13	43	41	34	41	40	25	40	39	41	40	39	
mcaa ⁴		W	*********	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa'	29%	100%	100%	83%	100%	%86	61%	98%	95%	100%	98%	%86	
pos occupied	10	1	1	4	1	2	3	2		1	2	2	

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

													-	Fr	ame	wor	k I			
amino acid'	-	2	က်	4	လ	9	7	8	6	10	=	12	ದ	14	15	5	1	82	19	70
A												1								
В																				
С																				
D																				
E												-								
F																				
G								52		67										
. н																				
l l																·				
К													68							
L	·			52							6 8	1						67	1	68
М																				
N																				
Р								·	68					67					1	
Q	52		52		51	52										68				
R					1					1										
S							52							1	68				66	
Ţ																	68			
V		52										66						1		
W																				
X				·																
Υ																				
Z																				
unknown (?)				·																
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa,	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68	68	67	66	68
mcaa'	Q	٧	Q	L	Q	Q	S	G	Р	G	L	٧	Κ	Р	S	Q	Т	L	S	L
rel. oomcaas	100%	100%	100%	100%	98%	100%	100%	00001	100%	%66	100%	97%	100%	%66	100%	100%	100%	%66	9,206	1000%
pos occupied ⁶											. 1								:	1

Table 6G: Analysis of V heavy chain subgroup 6

•	_													CD	RI					
amino acid'	21	22	23	24	25	56	27	78	53	၉	33	⋖	œ	32	33	34	35	36	37	38
Α	1		67		Ì									66	67	`				
В																				
С		68										-								
D							68				1						1			
E			,																	
F .								·		2				1	1				1	
G			1			69							3	1	2					
Н											·						1			
l				64								2					1		70	
· K												3								
L																·				
M																				
N							1				2	66					70			
Р												••••								
Q												•								
R											2	1								74
<u>S</u>	1		<u> </u>	1	69			69		68	66		67		3		1			
T	67		<u> </u>				·				2	1	4	••••	1					Ī
V			1	4					70				-	6					2	
W		1				***************************************										74		74		
Χ				Ī																
Y		İ		İ					•			1		••••••] 		1	
Z																				
_																				
unknown (?)			<u>† </u>			i					1				·····		<u></u>			
not sequenced	5	5	5	5	5	5	5	5	4	4	<u> </u>			•						
sum of seq ²		69	69	69	69	-	-		70	70	74	74	74	74	74	74	74	74	74	7
oomcaa,		İ.,	Ť	Ť		·····					····	66	:	•	··········		7	-		7
mcaa'	T	С	Α	1	S	G	D	S	٧	S	÷	·	S		*********	•	*********	W	I	F
rel. oomcaa ^s	97%	93%	92%	93%	100%	100%	99%	100%	100%	97%	89%	%68	91%	89%	91%	100%	95%	100%	95%	7000
pos occupied	:	<u> </u>		:	:	1	2	:	:	:	:	6	:	•			5		4	

PCT/EP96/03647

				Fra	ame	wor	(II													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	22	51	52	4	8	ں 	53	54	55
Α				1									1					1		
В																				
. С																				
D																				
E								74							ľ					
F .														2	1			1		
G						74			ì		74	1							1	
Н															1					
1		-							•••••											
K	1				1				•••••••						•••••	1			66	
L	1						74		•	74										
М								`					••••••		•	-				•••••
N						••••••													1	•••••
Р			73																	•••••
Q	72							•••••						•••••	••••					•••••
R					73							73				72			1	•
S		74	1	73											•••••	1		72		
Τ											********		73	•••••	•••••		******		5	
V																				
W									74											7:
Χ				-																
Υ								•••••						72	72					•••••
Z								•••••												
-																	74			
unknown (?)								•••						•••••	••••					
not sequenced				••••										•••••	••••••					·••••
sum of seq'	•	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
	72			••••••					******	••••••				•••••••••••••••••••••••••••••••••••••••	••••	•••••		•••••••••••••••••••••••••••••••••••••••	· -	
mcaa ⁴	Q	*****	Ρ		R	••••••	••••••			·····÷	G	•••••••			···- - - ···- <u>:</u>		-		Κ	•••••
rel. oomcaas	92%	100%	99%	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	92%	97%	97%	100%	97%	%68	%0b6
pos occupied	3	1		2			:					:						······································		

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

. •	С	DR	II																	
amino acid'	26	57	28	29	99	61	62	83	64	65	99	. 67	89	69	20	71	72	73	74	75
А				_	73	1							2			6		1		
В																				
· c				1																
D			68			1									2		73			
E	1		3			7			1											2
F .	7																			
G			1				1			8										
Н	1																1			
						1						65	2	71				1		
К		1							67						1					70
L	1					5		2				4						1		
М												1								
N	2	65	1						1						69	<u>-</u>				
Р					1	1										66				
Q									2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1			73	
Т		4											69	1				71	1	2
V						58		72				4		2		1				
· W							-													
X																				
Y	60	1		72																
Z																				
_																				
unknown (?)				·																
not sequenced																				
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaai	60	65	68	72	73	58	73	72	67	66	73	65	69	71	69	66	73	71	73	70
mcaa*	Y	N	D	Y,	Α	٧	S	٧	K	5	R	١	T	1	N	Ρ	D	T	S	K
rel. oomcaas	81%	9/88	95%	97%	%66	78%	%66	97%	91%	968	%66	88%	93%	%96	93%	89%	%66	%96	99%	95%
pos occupied ^a		6					2			•										3

Table 6G: Analysis of V heavy chain subgroup 6

				F	ram	ewo	rk li	ii												
amino acid	9/	77	78	79	80	8	82	Ø	8	U	83	84	85	98	87	88	88	90	91	92
А													1			74				
В											-									
С										·										73
D								3						73						
E										·			73							
F .			71						1										3	
G														1						
Н						2		1												-
1			1														2			
К								4												·
L		1			74		72									ų.				
М							1			1							2			
N	74							63											1	
Р			·									70								
Q		72				71								·						
R		1				1		1												1
5				74				1	73		1	3								
Т								1			73				74			1		
V			2				1			73							70			
W																				
X																	-			
Y																		73	70	
Z																				
-																				
unknown (?)																				
not sequenced												1								
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
oomcaa ^a	74	72	71	74	74	71	72	63	73	73	73	70	73	73	74	74	70	73	70	73
mcaa*	N	Q	F	S	L	Q	L	N	S	٧	Т	Р	Ε	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	100%	92%	%96	100%	100%	%96	97%	85%	%66	%66	%66	%96	%66	%66	100%	100%	92%	%66	95%	%66
pos occupied ⁶	: :	3		1	1	3	3			2						1				

Table 6G: Analysis of V heavy chain subgroup 6

										CDI	RIII									
amino acid	93	94	95	96	97	98	99	100	V	8	ن	٥	w	ıL	g	I	_		¥	101
Α	69		11	1	3	12	4	3	2	5	-	8						10	1	
В													,							
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1				į			62
E			10	4	2	1	2	2	1	2							1			
F	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
H				1		1			1	1	1	1				1	1	1		
1				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
M			·	1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
5		3	5	5	5	7	6	7	3	4	2					1	1			
T			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4	•••••	
X																				·
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																			<u>.</u>	
		ļ		2	3	7	14	23	25	33	41	47		******	********			28	12	4
unknown (?)		<u> </u>	ļ						<u> </u>					6	1	5			-	
not sequenced	?	<u> </u>		1		_		_	;			-	_		_	_	_			1
sum of seq'	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
	:********		····		·		14	23	25	33	41	47	53	54	57	56	50	·28		62
mcaa*	A	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	79%	78%	%69	39%	53%	86%
pos occupied ⁶	:	:	:	:	:	:		:	1	:						:				

Table 6G: Analysis of V heavy chain subgroup 6

					Fra	mev	work	٠IV					l
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
А							2						494
В													
С													147
D		•••••						1					403
E			·										186
F	2										2		150
G		•••••	49		50								571
Н	2									·			18
l I	9					3		1					304
К				1			1						293
Ĺ	5						26						632
М							8			-	. –		31
N													436
Р	4			6								1	387
<u> </u>				40									- 539
R				2									495
S	4		1			1					43	46	1271
T						45	4		45				640
V	21						2	46		48			647
W		65					5						398
X													
Υ	19												518
Z													
	2												585
unknown (?)	· .												13
not sequenced	5	. 8	23	24	23	24	25	2 5	28	25	28	26	580
sum of seq?	68	65	50	49	50	49	48	48	45	48	45	47	
oomcaa3	21				• • • • • • • •		26	46	45	48	***************************************	46	
mcaa'	٧	W	G	Q	G	T	L	٧	T	٧	5	S	
rel. oomcaas	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	%86	
pos occupied ⁶	: :				1	3					:	2	

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816–5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. &t Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. &t Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

- 18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.
- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

- 36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.
- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249–5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272–3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499–6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515–6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903–1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)
 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805–810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

- 94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.
- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. &t Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

- 111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.
- 112 Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L, Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795-2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767;
 Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand. J. Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

- Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.
- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915–920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) BiochemJ., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301–306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin. Exp. Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 45 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349–357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol. Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

- Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z. Physiol. Chem., 349, 867-871; (1971)
 Z. Physiol. Chem., 352, 247-266.
- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)
 J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228–1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992)
 Mol.1mmunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem. J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) EurJ.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993)
 J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722–1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529-1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- 15 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Treia, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.lmmunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

- Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.
- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343–350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991)
 Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

- Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.
- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689–1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325+1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294–1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

- 66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- 68 Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994–3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391–1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990)
 J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337–2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachian, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) BiochemJ., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83–103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 95 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. &t Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. &t Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220-1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

- 101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.
- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020–8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

- 120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.
- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

- 6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur J. Immunol., 21, 1821–1827.
- Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- 2 Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- 16 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405–4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

- 20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.immunol., 150, 2858-2868.
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- 22 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.ft Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)