Лабораторная работа №1

Числа с фиксированной точкой

Инструментарий и требования к работе

Допустимые языки	С	C++	Python	Java
Стандарты / версии	C17	C++20	3.12.5	Temurin-21.0.4
Требования для всех работ	Правила оформления и написания работ			

Задание

Необходимо написать программу, которая позволяет выполнять арифметические действия с дробными числами в форматах с фиксированной точкой. Программа должна использовать только целочисленные вычисления и типы данных.

Аргументы программе передаются через командную строку в одном из двух вариантов:

- 1. <A.В> <округление> <число>
- 2. <A.В> <округление> <число1> <операция> <число2>

где:

- А.В задаёт формат представления входных чисел. А и В неотрицательные целые числа, обозначающие целую и дробную часть. Гарантируется, что A+B<=32 и A>=1. Числа со знаком в дополнении до 2.
- операция символ арифметической операции: +, -, *, /.
- число одно или два числа, записанные в 16-ричной побитовой форме с префиксом '**0**x' в любом регистре, умещающиеся в 32 бита.

• округление – задаёт тип округления:

тип округления	пояснение	общепринятое обозначение
0	к нулю	toward_zero
1	к ближайшему чётному	toward_nearest_even
2	K +∞	toward_pos_infinity
3	K -∞	toward_neg_infinity

В случае присутствия операции, её результат должен быть получен в том же формате, что и входные числа. Если в результате операции необходимо сделать округление и применить модулярную арифметику, то первым выполняется округление.

Результат операции или единственное входное число необходимо вывести в стандартный поток вывода в виде:

- 1. десятичная запись с 3 десятичными цифрами после точки. Пример: **0.120**
- 2. при делении на 0 вывести div_by_0 и завершиться с 0 кодом возврата.

Примеры:

Входные аргументы	Результат
16.12 0 0x17360	23.210
8.8 1 0xdc9f + 0xd736	-76.168
8.8 2 0xdc9F + 0xd736	-76.167
4.4 3 0x12 / 0x100	div_by_0

Если вы пишете на C++ и у вас не проходит часть тестов (рандомно), то читаем: <u>Does exit() flush and close `ofstream` objects?</u> - Stack Overflow

Запуск автотестов

https://skkv-itmo.gitbook.io/ct-comp-arch-course/course-format/autotests-github

Число попыток = 30.

из Web-интерфейса

4 варианта округления. Нужно выбрать подходящий (по умолчанию выбран округление к 0).

через CLI интерфейс:

```
Запуск скрипта
gh workflow run classroom.yml --ref main -f <field>=<value>
Пример
gh workflow run classroom.yml --ref main -f rounding="0"

Ключ: rounding ("Округление") default: "0"
options: "0" "1" "2" "3"
```