Randomized Matrix Computations Lecture 4

Daniel Kressner

Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch

Matrix Concentration

- Eigenvalues of sums of independent matrices
- Matrix Bernstein
- Matrix Monte Carlo
- Matrix Chernoff (next week)

Literature:

Tropp'2020 Joel A. Tropp. *Randomized Algorithms for Matrix Computations*, Lecture notes, Caltech, 2020.

Tropp'2015 Joel A. Tropp. *An Introduction to Matrix Concentration Inequalities*, Foundations and Trends in Machine Learning, Vol. 8, No. 1–2 (2015).

pdf available on Moodle

Sums of independent matrices

For independent random matrices $X_1, \ldots, X_s \in \mathbb{R}^{n \times n}$, consider the sum

$$Y = X_1 + \cdots + X_s$$
.

Goal: Control norm $||Y||_2$ of Y.

Often X_i are very simple random matrices. Two examples:

Given a fixed m × n matrix A, one could choose the discrete distribution

$$\mathbb{P}\{X=mn\cdot a_{ij}e_ie_j^{\mathsf{T}}\}=\frac{1}{mn}.$$

Then $\mathbb{E}[X] = A$.

- ▶ Set $X_{ij} = x_{ij}e_ie_j^T$ where $x_{ij} \sim N(0,1)$ are independent for i = 1, ..., m, j = 1, ..., n. Then $Y = \sum_{ij} X_{ij}$ is a Gaussian random matrix.
- ▶ Set $X_{ij} = x_{ij}e_ie_j^T$ where x_{ij} are independent Rademacher rv. Then $Y = \sum_{ij} X_{ij}$ is a Rademacher random matrix.

We now consider *symmetric* independent random matrices $X_1, \ldots, X_s \in \mathbb{R}^{n \times n}$:

$$Y = X_1 + \cdots + X_s$$
.

The matrix mgf of Y is defined by taking the trace of the matrix exponential:

$$m_Y(\theta) = \mathbb{E}\big[\operatorname{trace}\big(\exp(\theta Y)\big)\big] = \mathbb{E}\big[\operatorname{trace}\big(\exp(\theta (X_1 + \dots + X_s))\big)\big].$$

Big problem: The inequality

trace
$$(\exp(\theta(X_1 + \cdots + X_s)))$$

$$\leq \operatorname{trace} \left(\exp(\theta X_1) \right) \cdot \operatorname{trace} \left(\exp(\theta X_2) \right) \cdot \dots \cdot \operatorname{trace} \left(\exp(\theta X_s) \right).$$

only holds for s = 2 (Golden-Thompson inequality) but not for $s \ge 3$.

EFY: Find three matrices such that this inequality is violated (taking n = 2 suffices).

Way out: Lieb's concavity theorem. The set of symmetric positive semi-definite (spsd) matrices is convex:

$$A \ge 0, B \ge 0 \implies tA + (1 - t)B \ge 0, \quad 0 \le t \le 1.$$

For fixed symmetric A, Elliott Lieb showed that the function

$$B \mapsto \operatorname{trace} \left(\exp(A + \log B) \right)$$

is convex on spsd matrices (\log denotes the matrix \log arithm). This allows us to use Jensen's inequality!

$$\begin{split} & \mathbb{E}_{(X_1,X_2)}\big[\operatorname{trace}\big(\exp(X_1+X_2)\big)\big] \\ &= & \mathbb{E}_{X_1}\big[\mathbb{E}_{X_2}\big[\operatorname{trace}\big(\exp(X_1+\log e^{X_2})\big)\,|\,X_1\big]\big] \\ &\leq & \mathbb{E}_{X_1}\big[\operatorname{trace}\big(\exp(X_1+\log \mathbb{E}_{X_2}e^{X_2})\big)\big] \\ &\leq & \operatorname{trace}\big(\exp(\log \mathbb{E}_{X_1}e^{X_1}+\log \mathbb{E}_{X_2}e^{X_2})\big). \end{split}$$

The argument extends to general s.

Lemma. Given symmetric independent random matrices X_1, \ldots, X_s , we have that

$$\mathbb{E}\big[\operatorname{trace}\big(\exp\big(\sum_{j}X_{j}\big)\big)\big] \leq \operatorname{trace}\big(\exp\big(\sum_{j}\log\mathbb{E}e^{X_{j}}\big)\big).$$

Theorem. Let $Y = \sum_{j} X_{j}$ for symmetric independent random matrices X_{1}, \ldots, X_{s} . Then, for all $t \geq 0$,

$$\mathbb{P}\{\lambda_{\max}(\mathbf{Y}) \geq t\} \leq \inf_{\theta > 0} e^{-\theta t} \operatorname{trace}\left(\exp\left(\sum_{j} \log \mathbb{E} e^{\theta X_{j}}\right)\right).$$

Proof. By Markov's inequality, it holds for $\theta > 0$ that

$$\mathbb{P}\{\lambda_{\max}(Y) \geq t\} = \mathbb{P}\{e^{\theta \lambda_{\max}(Y)} \geq e^{\theta t}\} \leq e^{-\theta t} \mathbb{E}e^{\theta \lambda_{\max}(Y)}.$$

Using that the largest eigenvalue of the exponential is the exponential of the largest eigenvalue, we get

$$\mathbb{E}e^{\theta\lambda_{\max}(Y)} = \mathbb{E}\lambda_{\max}(e^{\theta Y}) \leq \mathbb{E}\operatorname{trace}(e^{\theta Y}).$$

The theorem now follows from applying the lemma.

 \Diamond

EFY: Show that the theorem implies the bound

$$\mathbb{E}[\lambda_{\mathsf{max}}(Y)] \leq \inf_{\theta > 0} \frac{1}{\theta} \log \mathsf{trace} \left(\exp \left(\sum_{j} \log \mathbb{E} e^{\theta X_{j}} \right) \right).$$

Matrix Bernstein

To prepare for matrix Bernstein, need to discuss operator monotonicity:

- ▶ For symmetric matrices A, B we write $A \le B$ iff B A is spsd.
- ▶ $f(\lambda) \le g(\lambda)$ for every eigenvalue of A implies $f(A) \le g(A)$.
- If $X \le Y$ holds (almost surely) for random matrices X, Y over the same probability space then $\mathbb{E}X \le \mathbb{E}Y$.
- ▶ A function $f:(0,\infty)\to\mathbb{R}$ is operator monotone if $A\le B$ implies $f(A)\le f(B)$ for all spd A,B.
- $f(x) = x^2$ is monotone but *not* operator monotone.
- ▶ EFY: Prove that f(x) = -1/x is operator monotone.
- EFY: Using the integral representation

$$\log a = \int_0^\infty \left[(1+x)^{-1} - (a+x)^{-1} \right] \mathrm{d}x, \quad a > 0,$$

show that the logarithm is operator monotone.

Matrix Bernstein: MGF for bounded matrices

Lemma. Let X be a zero-mean random matrix such that $\|X\|_2 \le 1$ almost surely. Then

$$\log \mathbb{E} e^{\theta X} \le \frac{\theta^2/2}{1 - |\theta|/3} \cdot \mathbb{E} X^2 \quad \forall |\theta| < 3.$$

Proof. From Lecture 2, we already know that

$$e^{\theta x} \le 1 + \theta x + \frac{\theta^2 x^2/2}{1 - |\theta|/3}, \quad |x| \le 1, |\theta| < 3.$$

Hence.

$$e^{\theta X} \leq I + \theta X + \frac{\theta^2/2}{1 - |\theta|/3} X^2.$$

Taking expected values on both sides gives

$$\mathbb{E} e^{\theta X} \leq I + \frac{\theta^2/2}{1 - |\theta|/3} \mathbb{E} X^2 \leq \exp\Big(\frac{\theta^2/2}{1 - |\theta|/3} \mathbb{E} X^2\Big).$$

Using operator monotonicity, the result is obtained by taking the logarithm on both sides.

 \Diamond

Matrix Bernstein: Symmetric case

Theorem. Let $Y = \sum_{j} X_{j}$ for symmetric independent random matrices $X_{1}, \ldots, X_{s} \in \mathbb{R}^{n \times n}$. Assume that

$$\mathbb{E}X_j = 0$$
, $\lambda_{\max}(X_j) \leq L$, $j = 1, \ldots, s$,

and set $v(Y) = \|\mathbb{E}Y^2\|_2 = \|\sum_j \mathbb{E}X_j^2\|_2$. Then

$$\mathbb{E}\lambda_{\max}(Y) \leq \sqrt{2v(Y)\log n} + \frac{1}{3}L\log n$$

and

$$\mathbb{P}\{\lambda_{\max}(Y) \ge t\} \le n \cdot \exp\left(\frac{-t^2/2}{v(Y) + Lt/3}\right), \quad t \ge 0.$$

Example. For iid Rademacher ϵ_{ii} , $1 \le i \le j \le n$, consider matrices

$$X_{ij} = \epsilon_{ij} (\boldsymbol{e}_i \boldsymbol{e}_i^\top + \boldsymbol{e}_j \boldsymbol{e}_i^\top), \ i > j, \quad X_{ii} = \epsilon_{ij} \boldsymbol{e}_i \boldsymbol{e}_i^\top.$$

Then v(Y) = n and, hence, $\mathbb{E}\lambda_{\max}(Y) \le \sqrt{2n\log n} + \frac{1}{3}\log n$. Minor improvement in [Tropp'2015]: Term $\frac{1}{3}\log n$ can be dropped.

Matrix Bernstein: Symmetric case

Proof. Known bound (from Slide 6) →

$$\begin{split} \mathbb{P}\{\lambda_{\max}(Y) \geq t\} & \leq & \inf_{\theta > 0} e^{-\theta t} \operatorname{trace} \left(\exp\left(\sum_{j} \log \mathbb{E} e^{\theta X_{j}} \right) \right) \\ & \leq & \inf_{0 < \theta < 3/L} e^{-\theta t} \operatorname{trace} \left(\exp\left(\frac{\theta^{2}/2}{1 - L\theta/3} \sum_{j} \mathbb{E} X_{j}^{2} \right) \right) \\ & = & \inf_{0 < \theta < 3/L} e^{-\theta t} \operatorname{trace} \left(\exp\left(\frac{\theta^{2}/2}{1 - L\theta/3} \mathbb{E} Y^{2} \right) \right) \end{split}$$

In the second inequality we used our mgf bound and: (1) Incorporate L by scaling. (2) EFY: The function $B \mapsto \operatorname{trace} \exp(B)$ is operator monotone.

Matrix Bernstein: Symmetric case

Proof ctd. Bounding the trace by $n \times \lambda_{max} \rightarrow$

$$\begin{split} \mathbb{P}\{\lambda_{\mathsf{max}}(Y) \geq t\} & \leq \inf_{0 < \theta < 3/L} n e^{-\theta t} \lambda_{\mathsf{max}} \Big(\exp\Big(\frac{\theta^2/2}{1 - L\theta/3} \mathbb{E} Y^2 \Big) \Big) \\ & \leq \inf_{0 < \theta < 3/L} n e^{-\theta t} \exp\Big(\frac{\theta^2/2}{1 - L\theta/3} \lambda_{\mathsf{max}} \big(\mathbb{E} Y^2 \big) \Big) \\ & \leq \inf_{0 < \theta < 3/L} n e^{-\theta t} \exp\Big(\frac{\theta^2/2}{1 - L\theta/3} V(Y) \Big). \end{split}$$

Choosing the (nearly optimal) value $\theta^* = \frac{t}{v(Y) + Lt/3}$ concludes the proof.

Bound on expected value proven in [Tropp'2015].

Note: Factor n can be reduced to $4 \cdot \operatorname{intdim}(\mathbb{E}Y^2)$, where $\operatorname{indim}(B) = \operatorname{trace}(B) / \|B\|_2$.

12

 \Diamond

Matrix Bernstein: General case

We now consider $Y = \sum_j X_j$ for general independent random matrices $X_1, \ldots, X_s \in \mathbb{R}^{m \times n}$. This can be reduced to the symmetric case using the dilation

$$S(B) = \begin{pmatrix} 0 & B \\ B^{\mathsf{T}} & 0 \end{pmatrix}.$$

We need the following simple facts:

- ▶ S(B) is a symmetric $(m+n) \times (m+n)$ matrix.
- ▶ Dilation is linear $\rightarrow S(Y) = \sum_{i} S(X_i)$.
- $\lambda_{\max}(\mathcal{S}(B)) = \|B\|_2.$
- $\mathcal{S}(B)^2 = \begin{pmatrix} BB^{\mathsf{T}} & 0\\ 0 & B^{\mathsf{T}}B \end{pmatrix} \text{ and, hence,}$ $\|\mathcal{S}(B)^2\|_2 = \max\{\|BB^{\mathsf{T}}\|_2, \|B^{\mathsf{T}}B\|_2\}.$

We can now apply symmetric Bernstein to $\mathcal{S}(Y)$ in order to obtain general Bernstein.

Matrix Bernstein: General case

Theorem (Matrix Bernstein inequality). Let $Y = \sum_j X_j$ for independent random matrices $X_1, \ldots, X_s \in \mathbb{R}^{m \times n}$. Assume that

$$\mathbb{E}X_{j} = 0$$
, $||X_{j}||_{2} \leq L$, $j = 1, ..., s$,

and set $\sigma^2 = \max\{\|\mathbb{E} Y^{\mathsf{T}} Y\|_2, \|\mathbb{E} YY^{\mathsf{T}}\|_2\}$. Then

$$\mathbb{E}\|Y\|_2 \leq \sqrt{2\sigma^2\log(m+n)} + \frac{1}{3}L\log(m+n)$$

and

$$\mathbb{P}\{\|Y\|_2 \ge t\} \le (m+n) \cdot \exp\left(\frac{-t^2/2}{\sigma^2 + Lt/3}\right), \quad t \ge 0.$$

EFY. Derive bounds on the expected value and tail for the norm of a Rademacher matrix *Y*. Compare the obtained bounds with numerical experiments.

Matrix Monte Carlo

Abstract setting. Consider a fixed (unknown) matrix $B \in \mathbb{R}^{m \times n}$ we wish to approximate. Assume we have a decomposition

$$B = B_1 + \cdots B_d$$

where each summand B_i is simple to compute.

Idea: Approximate B from sampling summands B_j .

Sampling is driven by (discrete) random matrix X with prob distribution

$$\mathbb{P}\{X=B_k/p_k\}=p_k,\quad k=1,\ldots,d.$$

Scaling ensures that $\mathbb{E}[X] = B$.

Matrix Monte Carlo estimator:

$$\bar{X}_s = \frac{1}{s} (X_1 + \dots + X_s), \quad X_j \sim X \text{ iid.}$$

Note that $\mathbb{E}[\bar{X}_s] = B$ and we expect/hope that \bar{X}_s will concentrate around B as s increases.

Matrix Monte Carlo: Main result

Matrix Bernstein immediately gives:

Theorem. Let $B \in \mathbb{R}^{m \times n}$ be fixed. Consider random matrix X such that

$$\mathbb{E}X = B$$
, $||X||_2 \le L$, almost surely.

Set $\sigma^2 = \max\{\|\mathbb{E}X^\top X\|_2, \|\mathbb{E}XX^\top\|_2\}$. Then $\bar{X}_s = (X_1 + \dots + X_s)/s$ with $X_i \sim X$ iid satisfies the error bounds

$$\mathbb{E}\|\bar{X}_s - B\|_2 \le s^{-1/2} \sqrt{2\sigma^2 \log(m+n)} + (3s)^{-1} L \log(m+n)$$

and

$$\mathbb{P}\{\|\bar{X}_s - B\|_2 \ge t\} \le (m+n) \cdot \exp\left(-\frac{st^2}{\sigma^2 + 2Lt/3}\right), \quad t \ge 0.$$

Idea: Approximate a matrix product of the form

$$B = CR^{\mathsf{T}}$$
, C is $m \times d$, R is $n \times d$ with $d \gg \max\{m, n\}$,

by matrix Monte Carlo. Assume $||C||_2 = ||R||_2 = 1$ in the following.

Partitioning $C = (c_1, \dots, c_d)$, $R = (r_1, \dots, r_d)$, allows us to rewrite

$$B = c_1 r_1^\top + c_2 r_2^\top + \dots + c_d r_d^\top =: B_1 + B_2 + \dots + B_d.$$

Define random matrix X by $\mathbb{P}\{X = c_k r_k^{\mathsf{T}}/p_k\} = p_k$ for sampling probabilities p_1, \ldots, p_d .

Matrix Monte Carlo estimator

$$\bar{X}_s = \frac{1}{s} (X_1 + \dots + X_s), \quad X_j \sim X \text{ iid},$$

requires $\mathcal{O}(smn)$ operations, which is interesting when $s \ll d$.

Application: Approximate matrix multiplication Uniform sampling: $p_k = 1/d$.

Obviously, the estimator will perform poorly if there are a few terms B_j that dominate the rest. Measured by coherence statistics:

$$\mu(C) := d \cdot \max_{k} \|c_k\|_2^2, \quad m \leq \mu(C) \leq d.$$

Recall that $||C||_2 = 1$. Incoherence (small coherence) is good! Computing the ingredients of the theorem:

$$\begin{split} \|X\|_2 & \leq & \max_k \|c_k r_k^{\mathsf{T}}/p_k\|_2 \leq d \cdot \max_k \|c_k\|_2 \cdot \max_k \|r_k\|_2 \leq \max\{\mu(C), \mu(R)\}, \\ \mathbb{E}[XX^{\mathsf{T}}] & = & \sum_{k=1}^d p_k (c_k r_k^{\mathsf{T}}/p_k) (c_k r_k^{\mathsf{T}}/p_k)^{\mathsf{T}} = \sum_{k=1}^d p_k^{-1} \|r_k\|_2^2 c_k c_k^{\mathsf{T}} \\ & \leq & d \cdot \max \|r_k\|_2^2 \sum_{k=1}^d p_k^{-1} c_k c_k^{\mathsf{T}} = \mu(R) \cdot CC^{\mathsf{T}}. \end{split}$$

This implies $\|\mathbb{E}[XX^{\top}]\|_2 \le \mu(R)\|CC^{\top}\|_2 = \mu(R)$. Applying the same arguments to X^{\top} instead of X gives $\|\mathbb{E}[X^{\top}X]\|_2 \le \mu(C)$. In summary

$$\sigma^2 = \max\{\|\mathbb{E} X^{\mathsf{T}} X\|_2, \|\mathbb{E} X X^{\mathsf{T}}\|_2\} \leq \max\{\mu(C), \mu(R)\}.$$

The theorem now tells us that

$$\frac{\mathbb{E}\|\bar{X}_{s}-CR^{\mathsf{T}}\|_{2}}{\|C\|_{2}\|R\|_{2}}\leq 2\varepsilon$$

holds if

$$s \ge \max \left\{ \varepsilon^{-2}, (3\varepsilon)^{-1} \right\} \cdot \max \{ \mu(C), \mu(R) \} \cdot \log(m+n).$$

In favorable situations (incoherent factors), need $s \approx (m+n) \log(m+n)$ samples to attain fixed (but somewhat rough) accuracy.

Importance sampling: Let us reconsider the second moment

$$\mathbb{E}[XX^{\top}] = \sum_{k=1}^{d} p_k^{-1} \|r_k\|_2^2 c_k c_k^{\top}$$

 $p_k \sim \|r_k\|_2^2$ makes the unfavorable dependence of $\mathbb{E}[XX^{\top}]$ on "spiky" row norms disappear. Similarly, $p_k \sim \|c_k\|_2^2$ makes the unfavorable dependence of $\mathbb{E}[X^{\top}X]$ on "spiky" column norms disappear. Therefore, choose:

$$p_k = \frac{\|c_k\|_2^2 + \|r_k\|_2^2}{\|C\|_F^2 + \|R\|_F^2}.$$

With this choice, we have:

$$\begin{split} \|X\|_{2} & \leq \max_{k} \frac{1}{p_{k}} \|c_{k} r_{k}^{\mathsf{T}}\|_{2} = \left(\|C\|_{F}^{2} + \|R\|_{F}^{2} \right) \max_{k} \frac{\|c_{k}\|_{2} \|r_{k}\|_{2}}{\|c_{k}\|_{2}^{2} + \|r_{k}\|_{2}^{2}} \leq \frac{\|C\|_{F}^{2} + \|R\|_{F}^{2}}{2} \\ \|\mathbb{E}[XX^{\mathsf{T}}]\|_{2} & = \left\| \sum_{k=1}^{d} p_{k}^{-1} \|r_{k}\|_{2}^{2} c_{k} c_{k}^{\mathsf{T}} \right\|_{2} \leq \|C\|_{F}^{2} + \|R\|_{F}^{2}. \end{split}$$

Recall that $||R||_2 = ||C||_2 = 1$.

Defining the stable rank $\operatorname{srank}(C) := \|C\|_F^2 / \|C\|_2^2 \in [1, \operatorname{rank}(C)],$ we have

$$\begin{split} \|X\|_2 & \leq & \frac{1}{2}(\operatorname{srank}(B) + \operatorname{srank}(C)), \\ \max\{\|\mathbb{E}[XX^\top]\|_2, \|\mathbb{E}[X^\top X]\|_2\} & \leq & \operatorname{srank}(B) + \operatorname{srank}(C) \end{split}$$

The theorem now tells us that

$$\frac{\mathbb{E}\|\bar{X}_s - CR^{\mathsf{T}}\|_2}{\|C\|_2 \|R\|_2} \le 2\varepsilon$$

holds if

$$s \ge \max\{2\varepsilon^{-2}, (6\varepsilon)^{-1}\} \cdot (\operatorname{srank}(B) + \operatorname{srank}(C)) \cdot \log(m+n).$$

This is never worse than (the bound for) uniform sampling. Becomes very effective for small stable ranks.

Matrix Chernoff: Setting and MGF

Now consider $Y = X_1 + \cdots + X_s$ for independent random symmetric positive semi-definite (SPSD) matrices $X_1, \ldots, X_s \in \mathbb{R}^{n \times n}$. Assume that

$$0 \le \lambda_{\min}(X_j), \quad \lambda_{\max}(X_j) \le L, \quad j = 1, \dots, s.$$

Goals:

- Control norm/maximum eigenvalue of Y.
- ► Control invertibility/minimum eigenvalue of *Y*.

Lemma. Let *X* be a random symmetrix matrix s.t. $0 \le X \le I$. Then

$$\log \mathbb{E} e^{\theta X} \leq (e^{\theta} - 1) \mathbb{E} X, \quad \forall \theta \in \mathbb{R}.$$

Proof. The convexity of $t \mapsto e^{\theta t}$ implies $e^{\theta t} \le 1 + (e^{\theta} - 1)t$ for $t \in [0, 1]$. Because the eigenvalues of X are in [0, 1], this implies

$$e^{\theta X} \le I + (e^{\theta} - 1)X \implies \mathbb{E}e^{\theta X} \le I + (e^{\theta} - 1)\mathbb{E}X.$$

Taking the matrix logarithm (and using operator monotonicity) and using $log(1 + t) \le t$ completes the proof.

 \Diamond

Matrix Chernoff: Tail bounds

Theorem. Consider setting from previous slide and define

$$\mu_{\min} = \lambda_{\min}(\mathbb{E}Y), \quad \mu_{\max} = \lambda_{\max}(\mathbb{E}Y).$$

Then

$$\mathbb{P}\left\{\lambda_{\min}(Y) \leq (1 - \epsilon)\mu_{\min}\right\} \leq n \cdot \left(\frac{e^{-\epsilon}}{(1 - \epsilon)^{1 - \epsilon}}\right)^{\mu_{\min}/L}, \quad 0 < \epsilon \leq 1,$$

$$\mathbb{P}\left\{\lambda_{\max}(Y) \geq (1 + \epsilon)\mu_{\min}\right\} \leq n \cdot \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{1 + \epsilon}}\right)^{\mu_{\max}/L}, \quad 0 < \epsilon.$$

Corollary: If X_1, \ldots, X_s are iid $\sim X$, $Y = (X_1 + \cdots + X_s)/s$, then

$$\mathbb{P}\{\lambda_{\min}(Y) \leq \mu_{\min}/2\} \leq n \cdot 0.86^{s \cdot \mu_{\min}/L}$$

with $\mu_{\min} = \lambda_{\min}(\mathbb{E}X)$, $\lambda_{\max}(X) \leq L$.

Conclusion: Smallest eigenvalue of Y stays nicely away from zero for $s \sim \log n$, assuming that μ_{\min} , L do not depend on n. X only needs to be PD in expectation!

Matrix Chernoff: Tail bounds

Proof for λ_{max} . Assume w.l.o.g. L = 1. Recall MGF bound $\log \mathbb{E} e^{\theta X} \leq g(\theta) \mathbb{E} X$ with $g(\theta) = e^{\theta} - 1$. Combined with Lemma from Slide 6, this gives

$$\begin{split} \mathbb{P}\{\lambda_{\max}(Y) \geq t\} & \leq & \inf_{\theta \geq 0} e^{-\theta t} \operatorname{trace} \left(\exp\left(\sum_{j} \log \mathbb{E} e^{\theta X_{j}} \right) \right) \\ & \leq & \inf_{\theta \geq 0} e^{-\theta t} \operatorname{trace} \left(\exp\left(g(\theta) \mathbb{E} Y \right) \right) \\ & \leq & n \cdot \inf_{\theta \geq 0} e^{-\theta t} \lambda_{\max} \left(\exp\left(g(\theta) \mathbb{E} Y \right) \right) \\ & = & n \cdot \inf_{\theta \geq 0} e^{-\theta t} \exp\left(g(\theta) \lambda_{\max}(\mathbb{E} Y) \right). \end{split}$$

Change of variables $t\mapsto (1+\epsilon)\mu_{\max}$ and setting $\theta=\log(1+\epsilon)$ complete proof of tail bound for λ_{\max} .

Matrix Chernoff: Tail bounds

Proof for λ_{min} . Again combining Lemma from Slide 6 (applied to -Y) with mgf bound gives

$$\begin{split} \mathbb{P}\{\lambda_{\min}(Y) \leq t\} & \leq & \inf_{\theta < 0} e^{-\theta t} \operatorname{trace} \left(\exp\left(\sum_{j} \log \mathbb{E} e^{\theta X_{j}} \right) \right) \\ & \leq & \inf_{\theta < 0} e^{-\theta t} \operatorname{trace} \left(\exp\left(g(\theta) \mathbb{E} Y \right) \right) \\ & \leq & n \cdot \inf_{\theta > 0} e^{-\theta t} \lambda_{\max} \left(\exp\left(g(\theta) \mathbb{E} Y \right) \right) \\ & = & n \cdot \inf_{\theta > 0} e^{-\theta t} \exp\left(g(\theta) \lambda_{\min}(\mathbb{E} Y) \right). \end{split}$$

Here, we used that $g(\theta) = e^{\theta} - 1 < 0$ for $\theta < 0$. Hence, the largest eigenvalue of $g(\theta)\mathbb{E}Y$ corresponds to the smallest eigenvalue of $\mathbb{E}Y$. The proof is completed by change of variables $t \mapsto (1 - \epsilon)\mu_{\min}$ and setting $\theta = \log(1 - \epsilon)$.

Matrix Chernoff: Expectation bounds

EFY: Derive, with similar arguments, the following result by combining the bound of Slide 7 with the mgf bound.

Theorem. Consider setting from previous theorem. Then

$$\begin{split} \mathbb{E} \lambda_{\mathsf{min}}(Y) & \geq & \frac{1 - e^{-\theta}}{\theta} \mu_{\mathsf{min}} - \frac{1}{\theta} L \log n, \\ \mathbb{E} \lambda_{\mathsf{max}}(Y) & \leq & \frac{e^{\theta} - 1}{\theta} \mu_{\mathsf{max}} + \frac{1}{\theta} L \log n, \end{split}$$

hold for every $\theta > 0$.

Setting θ = 1 in the bounds gives the simplified version

$$\mathbb{E}\lambda_{\min}(Y) \geq 0.63\mu_{\min} - L\log n,$$

 $\mathbb{E}\lambda_{\max}(Y) \leq 1.72\mu_{\max} + L\log n.$

Matrix Chernoff: Application to Erdős–Rényi graphs Setting:

- ► Consider undirected graphs (V, E) with vertices $V = \{1, ..., n\}$.
- ▶ Adjacency matrix A associated with (V, E) is a symmetric 0-1 matrix with $a_{ij} = 1$ if $\{i, j\} \in E$ and $a_{ij} = 0$. We use the convention that the diagonal entries are zero: $a_{ii} = 0$ for i = 1, ..., n.

Define Graph Laplacian:

$$\Delta = D - A$$

where *D* is diagonal matrix with diagonal entries $d_1 = \deg(1), \ldots, d_n = \deg(n)$. Equivalently, d = Ae, where $e = [1, \ldots, 1]^{T}$.

Properties of Graph Laplacian:

- ▶ ∆ is symmetric
- ▶ Because of $\Delta e = 0$, Δ has at least one zero eigenvalue.
- ▶ $\|\Delta\|_2 \le \max \deg(i)$ (EFY: Why?)
- Δ is SPSD (EFY: Why?)
- The number of zero eigenvalues of ∆ equals the number of disconnected components of (V, E).
- (V, E) is connected iff second smallest eigenvalue of Δ is pos.

Matrix Chernoff: Application to Erdős–Rényi graphs

Erdős–Rényi graph G(n, p): Between each pair of distinct vertices there is an edge with probability $p \in (0, 1)$.

Entries of adjacency matrix:

$$a_{jk} = \left\{ \begin{array}{ll} \xi_{jk}, & 1 \leq j < k \leq n \\ \xi_{kj}, & 1 \leq k < j \leq n \\ 0, & j = k \end{array} \right. \quad \xi_{jk} \sim \mathsf{Bernoulli}(p) \; \mathsf{iid}.$$

Let E_{ik} be matrix with 1 at entry (j, k) and zero everywhere else. Then

$$A = \sum_{1 \le i < k \le n} \xi_{jk} (E_{jk} + E_{kj})$$

and

$$\Delta = \sum_{1 \leq j < k \leq n} \xi_{jk} \big(E_{jj} + E_{kk} - E_{jk} - E_{kj} \big).$$

Matrix Chernoff: Application to Erdős-Rényi graphs

Aim: Understand when Erdős–Rényi graphs are connected by applying matrix Chernoff.

Problem: Need to control second smallest eigenvalue of Δ , not smallest.

Solution: Deflate smallest eigenvalue. Let the columns of $R \in \mathbb{R}^{n \times (n-1)}$ contain any ONB of span(e) $^{\perp}$. Then $R^{\top}R = I_{n-1}$ and Re = 0.

Second smallest eigenvalue of Δ = smallest eigenvalue of

$$Y = R^{\mathsf{T}} \Delta R = \sum_{1 \leq j < k \leq n} \xi_{jk} R^{\mathsf{T}} (E_{jj} + E_{kk} - E_{jk} - E_{kj}) R =: \sum_{1 \leq j < k \leq n} X_{jk}.$$

 X_{jk} are independent, bounded SPSD matrices.

Quantities relevant for matrix Chernoff:

▶
$$||X_{ij}||_2 \le 2 =: L$$
 (EFY: Why?)

►
$$\mathbb{E}Y = p \sum_{1 \le j < k \le n} R^{T} (E_{jj} + E_{kk} - E_{jk} - E_{kj}) R = pR^{T} ((n-1)I - (ee^{T} - I)) R = pnI_{n-1}$$

Matrix Chernoff: Application to Erdős–Rényi graphs

By matrix Chernoff tail bound for $\lambda_{min}(Y)$, we obtain that

$$\mathbb{P}\{\lambda_2(\Delta) \leq \epsilon \cdot tn\} = \mathbb{P}\{\lambda_{\min}(Y) \leq \epsilon \cdot tn\} \leq (n-1) \left(\frac{e^{\epsilon-1}}{\epsilon^{\epsilon}}\right)^{pn/2}$$

For small ϵ , $e^{\epsilon-1}/\epsilon^{\epsilon} \approx e^{-1}$. Hence, second-smallest eigenvalue of Δ is unlikely to be zero when $\log(n-1) - pn/2 < 0$ or, equivalently,

$$p>\frac{2\log(n-1)}{n}.$$

EFY: Study the sharpness of this rule by a "phase transition diagram".