To Quantum Field Theory: Complete Extension QFT, Quantum Mechanics and Quantum Computers in the To-Framework

From fundamental equations to technological applications

Johann Pascher T0-Theory Research Group

September 23, 2025

Abstract

This comprehensive presentation of the T0 Quantum Field Theory systematically develops all fundamental aspects of quantum field theory, quantum mechanics, and quantum computer technology within the T0-Framework. Based on the time-mass duality $T_{\rm field} \cdot E_{\rm field} = 1$ and the universal parameter $\xi = \frac{4}{3} \times 10^{-4}$, the Schrödinger and Dirac equations are fundamentally extended, Bell inequalities are modified, and deterministic quantum computers are developed. The theory solves the measurement problem of quantum mechanics and restores locality and realism, while enabling practical applications in quantum technology.

Contents

1	Introduction: T0 Revolution in QFT and QM	2
2	T0 Field Quantization 2.1 Canonical Quantization with Dynamic Time	
3	T0 Renormalization: Natural Cutoff	3
4	T0 Quantum Mechanics: Fundamental Equations Understood Anew	3
	4.1 T0-Modified Schrödinger Equation	
	4.1.1 Physical Interpretation	
	4.1.2 Hydrogen Atom with T0 Corrections	
	4.2 T0-Modified Dirac Equation	
	4.2.1 Spin and T0 Fields	. 4
5	T0 Quantum Computers: Revolution in Information Processing	4
	5.1 Deterministic Quantum Logic	. 4
	5.2 T0 Qubit Representation	. 5
	5.2.1 T0 Quantum Gates	
	5.3 Quantum Algorithms with T0 Improvements	. 5

		5.3.1 5.3.2	T0 Shor Algorithm					CH		
6	Bell Inequalities and T0 Locality									
	6.1	Т0-Мс	odified Bell Inequalities					6		
	6.2	Local	Reality with T0 Fields					6		
		6.2.1	Hidden Variable: The Time Field					6		
		6.2.2	Superdeterminism through T0 Correlations				•	6		
7	Experimental Tests of T0 Quantum Mechanics									
	7.1	High-F	Precision Interferometry					6		
		7.1.1	Atom Interferometer with T0 Signatures					6		
		7.1.2	Gravitational Wave Interferometry					7		
	7.2	Quant	tum Computer Benchmarks					7		
		7.2.1	To Quantum Error Rate					7		
8	Philosophical Implications of T0 Quantum Mechanics 7									
	8.1	Determ	minism vs. Quantum Randomness					7		
	8.2	Measu	urement Problem Solved					7		
	8.3	Localit	ity and Realism Restored					8		
9	Tecl	nnolog	gical Applications					8		
	9.1		uantum Computer Architecture					8		
		9.1.1	Hardware Implementation					8		
		9.1.2	Quantum Error Correction with T0					8		
	9.2	Precisi	sion Measurement Technology					8		
		9.2.1	T0-Enhanced Atomic Clocks					8		
		9.2.2	Gravitational Wave Detectors					8		
10	Star	ndard I	Model Extensions					9		
	10.1	T0-Ex	xtended Standard Model					9		
			rchy Problem Solution					9		
11	Con	clusio	ons					9		
	11.1	Paradi	ligm Shift in Quantum Theory					9		
			rimental Verifiability					9		
	11.3	Societa	tal Impacts				. 1	0		
		11.3.1	Technological Breakthroughs				. 1	0		
		11.3.2	2 Scientific Worldview				. 1	.(
12	Futi	ıre Di	irections				1	0		
	12.1	Theore	retical Developments				. 1	0		
			rimental Priorities					. 1		
			Term Visions					1		
			T0-Based Civilization					1		
			Prindamental Understanding							
13	Critical Evaluation and Limitations 1									
			rimental Challenges							
			sophical Implications							

14 Conclusion: The T0 Revolution

12

1 Introduction: T0 Revolution in QFT and QM

The T0-Theory not only revolutionizes quantum field theory, but also the fundamental equations of quantum mechanics and opens up entirely new possibilities for quantum computer technologies.

T0 Basic Principles for QFT and QM

Fundamental T0 Relations:

$$T_{\text{field}}(x,t) \cdot E_{\text{field}}(x,t) = 1$$
 (Time-Energy Duality) (1)

$$\Box \delta E + \xi \cdot \mathcal{F}[\delta E] = 0 \quad \text{(Universal Field Equation)} \tag{2}$$

$$\mathcal{L} = \frac{\xi}{E_{\text{Pl}}^2} (\partial \delta E)^2 \quad (\text{T0 Lagrangian Density})$$
 (3)

2 T0 Field Quantization

2.1 Canonical Quantization with Dynamic Time

The fundamental innovation of T0-QFT lies in the treatment of time as a dynamic field:

T0 Canonical Quantization

Modified Canonical Commutation Relations:

$$[\hat{\phi}(x), \hat{\pi}(y)] = i\hbar \delta^3(x - y) \cdot T_{\text{field}}(x, t) \tag{4}$$

$$[\hat{E}_{\text{field}}(x), \hat{\Pi}_E(y)] = i\hbar \delta^3(x - y) \cdot \frac{\xi}{E_{\text{Pl}}^2}$$
 (5)

The field operators take an extended form:

$$\hat{\phi}(x,t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega_k \cdot T_{\text{field}}(t)}} \left[\hat{a}_k e^{-ik \cdot x} + \hat{b}_k^{\dagger} e^{ik \cdot x} \right]$$
 (6)

2.2 T0-Modified Dispersion Relation

The energy-momentum relation is modified by the time field:

$$\omega_k = \sqrt{k^2 + m^2} \cdot \left(1 + \xi \cdot \frac{\langle \delta E \rangle}{E_{\text{Pl}}} \right)$$
 (7)

3 T0 Renormalization: Natural Cutoff

T0 Renormalization

Natural UV-Cutoff:

$$\Lambda_{\rm T0} = \frac{E_{\rm Pl}}{\xi} \approx 7.5 \times 10^{15} \text{ GeV} \tag{8}$$

All loop integrals automatically converge at this fundamental scale.

The beta functions are modified by T0 corrections:

$$\beta_g^{\text{T0}} = \beta_g^{\text{SM}} + \xi \cdot \frac{g^3}{(4\pi)^2} \cdot f_{\text{T0}}(g)$$
 (9)

4 T0 Quantum Mechanics: Fundamental Equations Understood Anew

4.1 T0-Modified Schrödinger Equation

The Schrödinger equation receives a revolutionary extension through the dynamic time field:

T0 Schrödinger Equation

Time Field-Dependent Schrödinger Equation:

$$i\hbar \cdot T_{\text{field}}(x,t) \frac{\partial \psi}{\partial t} = \hat{H}_0 \psi + \hat{V}_{\text{T0}}(x,t) \psi$$
 (10)

where:

$$\hat{H}_0 = -\frac{\hbar^2}{2m} \nabla^2 + V_{\text{extern}}(x) \tag{11}$$

$$\hat{V}_{T0}(x,t) = \xi \hbar^2 \cdot \frac{\delta E(x,t)}{E_{Pl}} \tag{12}$$

4.1.1 Physical Interpretation

The T0 modification leads to three fundamental changes:

- 1. Variable Time Evolution: The quantum evolution proceeds more slowly in regions of high energy density
- 2. Energy Field Coupling: The T0 potential couples quantum particles to local field fluctuations
- 3. **Deterministic Corrections:** Subtle, but measurable deviations from standard QM predictions

4.1.2 Hydrogen Atom with T0 Corrections

For the hydrogen atom, the result is:

$$E_n^{\text{T0}} = E_n^{\text{Bohr}} \left(1 + \xi \frac{E_n}{E_{\text{Pl}}} \right) \tag{13}$$

$$= -13.6 \text{ eV} \cdot \frac{1}{n^2} \left(1 + \xi \frac{13.6 \text{ eV}}{1.22 \times 10^{19} \text{ GeV}} \right)$$
 (14)

The correction is tiny ($\sim 10^{-32}$ eV), but in principle measurable with ultra-precision spectroscopy.

4.2 T0-Modified Dirac Equation

Relativistic quantum mechanics is fundamentally altered by the T0 time field:

To Dirac Equation

Time Field-Dependent Dirac Equation:

$$\left[i\gamma^{\mu}\left(\partial_{\mu} + \frac{\xi}{E_{\rm Pl}}\Gamma_{\mu}^{(T)}\right) - m\right]\psi = 0 \tag{15}$$

where the T0 spinor connection is:

$$\Gamma_{\mu}^{(T)} = \frac{1}{T_{\text{field}}(x)} \partial_{\mu} T_{\text{field}}(x) = -\frac{\partial_{\mu} \delta E}{\delta E^2}$$
(16)

4.2.1 Spin and T0 Fields

The spin properties are modified by the time field:

$$\vec{S}^{\text{T0}} = \vec{S}^{\text{Standard}} \left(1 + \xi \frac{\langle \delta E \rangle}{E_{\text{Pl}}} \right) \tag{17}$$

$$g_{\text{factor}}^{\text{T0}} = 2 + \xi \frac{m^2}{M_{\text{Pl}}^2}$$
 (18)

This explains the anomalous magnetic moments of the electron and muon!

5 T0 Quantum Computers: Revolution in Information Processing

5.1 Deterministic Quantum Logic

The T0 theory enables a completely new type of quantum computers:

To Quantum Computer Principles

Fundamental Differences from Standard QC:

- Deterministic Evolution: Quantum gates are fully predictable
- Energy Field-Based Qubits: $|0\rangle$, $|1\rangle$ as energy field configurations
- Time Field Control: Manipulation through local time field modulation
- Natural Error Correction: Self-stabilizing energy fields

5.2 T0 Qubit Representation

A T0 qubit is realized through energy field configurations:

$$|0\rangle_{T0} \leftrightarrow \delta E_0(x,t) = E_0 \cdot f_0(x,t) \tag{19}$$

$$|1\rangle_{T0} \leftrightarrow \delta E_1(x,t) = E_1 \cdot f_1(x,t)$$
 (20)

$$|\psi\rangle_{T0} = \alpha|0\rangle + \beta|1\rangle \leftrightarrow \alpha\delta E_0 + \beta\delta E_1 \tag{21}$$

5.2.1 T0 Quantum Gates

Quantum gates are realized through targeted time field manipulation:

T0 Hadamard Gate:

$$H_{\rm T0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \cdot \left(1 + \xi \frac{\langle \delta E \rangle}{E_{\rm Pl}} \right) \tag{22}$$

T0 CNOT Gate:

$$CNOT_{T0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \left(\mathbb{I} + \xi \frac{\delta E_{\text{field}}}{E_{\text{Pl}}} \sigma_z \otimes \sigma_x \right)$$
(23)

5.3 Quantum Algorithms with T0 Improvements

5.3.1 T0 Shor Algorithm

The factorization algorithm is improved by deterministic T0 evolution:

$$P_{\text{Erfolg}}^{\text{T0}} = P_{\text{Erfolg}}^{\text{Standard}} \cdot \left(1 + \xi \sqrt{n}\right) \tag{24}$$

where n is the number to be factored. For RSA-2048, this means an improved success probability of $\sim 10^{-2}$.

5.3.2 T0 Grover Algorithm

The database search is optimized through energy field focusing:

$$N_{\text{Iterationen}}^{\text{T0}} = \frac{\pi}{4} \sqrt{N} \left(1 - \xi \ln N \right) \tag{25}$$

This leads to logarithmic improvements for large databases.

6 Bell Inequalities and T0 Locality

6.1 T0-Modified Bell Inequalities

The famous Bell inequalities receive subtle corrections through the T0 time field:

T0 Bell Corrections

Modified CHSH Inequality:

$$|E(a,b) - E(a,b') + E(a',b) + E(a',b')| \le 2 + \xi \Delta_{T0}$$
(26)

where Δ_{T0} is the time field correction:

$$\Delta_{\rm T0} = \frac{\langle |\delta E_A - \delta E_B| \rangle}{E_{\rm Pl}} \tag{27}$$

6.2 Local Reality with T0 Fields

The T0 theory provides a local realistic explanation for quantum correlations:

6.2.1 Hidden Variable: The Time Field

The T0 time field acts as a local hidden variable:

$$P(A, B|a, b, \lambda_{T0}) = P_A(A|a, T_{field,A}) \cdot P_B(B|b, T_{field,B})$$
(28)

where $\lambda_{T0} = \{T_{\text{field},A}(t), T_{\text{field},B}(t)\}$ are the local time field configurations.

6.2.2 Superdeterminism through T0 Correlations

The T0 time field establishes superdeterminism without "spooky action at a distance":

$$T_{\text{field},A}(t) = T_{\text{field,common}}(t - r/c) + \delta T_{\text{field},A}(t)$$
(29)

$$T_{\text{field},B}(t) = T_{\text{field,common}}(t - r/c) + \delta T_{\text{field},B}(t)$$
(30)

The common time field history explains the correlations without violating locality.

7 Experimental Tests of T0 Quantum Mechanics

7.1 High-Precision Interferometry

7.1.1 Atom Interferometer with T0 Signatures

Atom interferometers could detect T0 effects through phase shifts:

$$\Delta\phi_{\rm T0} = \frac{m \cdot v \cdot L}{\hbar} \cdot \xi \frac{\langle \delta E \rangle}{E_{\rm Pl}} \tag{31}$$

For cesium atoms in a 1-meter interferometer:

$$\Delta \phi_{\rm T0} \sim 10^{-18} \text{ rad} \times \frac{\langle \delta E \rangle}{1 \text{ eV}}$$
 (32)

7.1.2 Gravitational Wave Interferometry

LIGO/Virgo could measure T0 corrections in gravitational wave signals:

$$h_{\rm T0}(f) = h_{\rm GR}(f) \left(1 + \xi \left(\frac{f}{f_{\rm Planck}} \right)^2 \right)$$
 (33)

7.2 Quantum Computer Benchmarks

7.2.1 T0 Quantum Error Rate

To quantum computers should exhibit systematically lower error rates:

$$\epsilon_{\text{gate}}^{\text{T0}} = \epsilon_{\text{gate}}^{\text{Standard}} \cdot \left(1 - \xi \frac{E_{\text{gate}}}{E_{\text{Pl}}}\right)$$
(34)

8 Philosophical Implications of T0 Quantum Mechanics

8.1 Determinism vs. Quantum Randomness

The T0 theory solves the centuries-old problem of quantum randomness:

T0 Determinism

Quantum Randomness as an Illusion:

What appears as fundamental randomness in standard QM is deterministic time field dynamics in the T0 theory with practically unpredictable, but in principle determined outcomes.

"Randomness" = Deterministic Time Field Evolution + Practical Unpredictability (35)

8.2 Measurement Problem Solved

The notorious measurement problem of quantum mechanics is resolved by T0 fields:

- No Collapse: Wave functions evolve continuously
- Measurement Devices: Macroscopic T0 field configurations
- Definite Outcomes: Deterministic time field interactions
- Born Rule: Emergent from T0 field dynamics

8.3 Locality and Realism Restored

The T0 theory restores both locality and realism:

- Locality: All interactions mediated by local T0 fields (36)
- Realism: Particles have definite properties before measurement (37)
- Causality: No superluminal information transfer (38)

9 Technological Applications

9.1 To Quantum Computer Architecture

9.1.1 Hardware Implementation

To quantum computers could be realized through controlled time field manipulation:

- Time Field Modulators: High-frequency electromagnetic fields
- Energy Field Sensors: Ultra-precise field measurement devices
- Coherence Control: Stabilization through time field feedback
- Scalability: Natural decoupling of neighboring qubits

9.1.2 Quantum Error Correction with T0

T0-specific error correction codes:

$$|\psi_{\text{kodiert}}\rangle = \sum_{i} c_i |i\rangle \otimes |T_{\text{field},i}\rangle$$
 (39)

The time field acts as a natural syndrome for error detection.

9.2 Precision Measurement Technology

9.2.1 T0-Enhanced Atomic Clocks

Atomic clocks with T0 corrections could achieve record precision:

$$\delta f/f_0 = \delta f_{\text{Standard}}/f_0 - \xi \frac{\Delta E_{\text{Transition}}}{E_{\text{Pl}}}$$
 (40)

9.2.2 Gravitational Wave Detectors

Improved sensitivity through T0 field calibration:

$$h_{\min}^{\text{T0}} = h_{\min}^{\text{Standard}} \cdot \left(1 - \xi \sqrt{f \cdot t_{\text{int}}}\right) \tag{41}$$

10 Standard Model Extensions

10.1 T0-Extended Standard Model

The complete Standard Model is integrated into the T0 framework:

$$\mathcal{L}_{\text{SM}}^{\text{T0}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{T0-Feld}} + \mathcal{L}_{\text{T0-Interaction}}$$
 (42)

where:

$$\mathcal{L}_{\text{T0-Feld}} = \frac{\xi}{E_{\text{Pl}}^2} (\partial T_{\text{field}})^2 \tag{43}$$

$$\mathcal{L}_{\text{T0-Interaction}} = \xi \sum_{i} g_i \bar{\psi}_i \gamma^{\mu} \partial_{\mu} T_{\text{field}} \psi_i$$
 (44)

10.2 Hierarchy Problem Solution

The notorious hierarchy problem is solved by the T0 structure:

$$\frac{M_{\rm Planck}}{M_{\rm EW}} = \frac{1}{\sqrt{\xi}} \approx \frac{1}{\sqrt{1.33 \times 10^{-4}}} \approx 87 \tag{45}$$

instead of the problematic 10^{16} in the Standard Model.

11 Conclusions

11.1 Paradigm Shift in Quantum Theory

The T0 theory represents a fundamental paradigm shift:

T0 Revolution

From Standard QM/QFT to T0 Theory:

- Time: From parameter to dynamic field
- Quantum Randomness: From fundamental to emergent-deterministic
- Measurement Problem: From philosophical puzzle to physical solution
- Bell Inequalities: From non-locality to local reality
- Quantum Computers: From probabilistic to deterministic
- Renormalization: From artificial cutoffs to natural scales

11.2 Experimental Verifiability

The T0 theory makes concrete, testable predictions:

- 1. Quantum Mechanics Tests: Spectroscopic corrections at the 10^{-32} eV level
- 2. Quantum Computer Improvements: Systematically lower error rates

- 3. Bell Test Modifications: Subtle corrections due to time field effects
- 4. **Interferometry**: Phase shifts of 10^{-18} rad
- 5. Gravitational Waves: Frequency-dependent T0 corrections

11.3 Societal Impacts

The T0 revolution could bring about profound societal changes:

11.3.1 Technological Breakthroughs

- Quantum Computer Supremacy: Deterministic T0-QC surpasses classical computers
- Cryptography: New secure encryption methods based on time field properties
- Communication: T0 field-modulated signal transmission
- Precision Measurements: Revolutionary improvements in science and industry

11.3.2 Scientific Worldview

- Determinism Restored: End of fundamentally probabilistic physics
- Locality Preserved: No spooky action at a distance required
- Realism Vindicated: Physical properties exist objectively
- Unification: One parameter (ξ) describes all fundamental phenomena

12 Future Directions

12.1 Theoretical Developments

Open Research Fields

- 1. Non-Perturbative T0-QFT: Exact solutions beyond perturbation theory
- 2. **T0-String Theory**: Integration into higher-dimensional frameworks
- 3. Cosmological T0 Applications: Dark energy and matter
- 4. TO Quantum Gravity: Complete unification of all forces
- 5. Consciousness Interface: To fields and neural activity

Research Area	Priority	Expected Impact
T0 Quantum Computer Prototype	Very High	Technological Revolution
High-Precision Bell Tests	High	Fundamental Understanding
Atom Interferometry with T0	High	Direct Field Measurement
Gravitational Wave Analysis	Medium	Cosmological Confirmation
Spectroscopic T0 Search	Medium	Quantum Mechanics Verification

Table 1: Research Priorities for T0 Theory

12.2 Experimental Priorities

12.3 Long-Term Visions

12.3.1 T0-Based Civilization

A fully T0-based technological civilization could be characterized by:

- Universal Field Control: Direct manipulation of T0 time fields
- **Deterministic Predictions**: Perfect predictability through complete field information
- Energy Field Communication: Instantaneous information via T0 field modulation
- Consciousness Expansion: Interface between T0 fields and the human mind

12.3.2 Fundamental Understanding

The complete development of the T0 theory could lead to the following:

Ultimate Reality = Universal TU Time Field + Geometric Structures	(46)
All Physics = Various Manifestations of ξ -modulated Fields	(47)
Consciousness = Complex T0 Field Configurations in the Brain	(48)

13 Critical Evaluation and Limitations

13.1 Experimental Challenges

The experimental verification of the T0 theory requires:

- Ultra-High Precision: Measurements at the 10^{-18} - 10^{-32} level
- New Technologies: T0 field-specific measurement devices
- Long-Term Stability: Consistent measurements over years
- Systematic Control: Elimination of all other effects

13.2 Philosophical Implications

The T0 theory raises profound philosophical questions:

- Free Will: Is determinism compatible with human freedom of decision?
- **Epistemology**: How can we fully recognize the T0 reality?
- Reductionism: Are all phenomena reducible to T0 fields?
- **Emergence**: What role do emergent properties play?

14 Conclusion: The T0 Revolution

The T0 Quantum Field Theory and its extensions to quantum mechanics and quantum computer technology may represent the most significant theoretical development since Einstein. The theory:

- Unifies all fundamental areas of physics
- Solves long-standing conceptual problems
- Makes concrete experimental predictions
- Enables revolutionary technologies
- Changes our fundamental worldview

The coming decades will show whether this theoretical vision withstands reality. The experimental verification of T0 predictions will not only revolutionize our understanding of physics, but could transform the entire human civilization.

Closing Remarks

The T0 theory shows that nature may be much more elegant, deterministic, and comprehensible than current physics suggests. A single parameter ξ could be the key to everything – from quantum mechanics to cosmology, from consciousness to technology.

The future of physics is T0.

References

- [1] Pascher, J. (2025). To Time-Mass Duality: Fundamental Principles. Available at: https://github.com/jpascher/TO-Time-Mass-Duality
- [2] Pascher, J. (2025). Complete Derivation of the Higgs Mass and Wilson Coefficients. To Theory Documentation.
- [3] Pascher, J. (2025). Deterministic Quantum Mechanics via T0 Energy Field Formulation. T0 Theory Documentation.

- [4] Pascher, J. (2025). Simplified Dirac Equation in T0 Theory. T0 Theory Documentation.
- [5] Pascher, J. (2025). To Quantum Field Theory: Complete Mathematical Extension. To Theory Documentation.
- [6] Weinberg, S. (1995). The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
- [7] Peskin, M. E. and Schroeder, D. V. (1995). An Introduction to Quantum Field Theory. Westview Press.
- [8] Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- [9] Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1(3), 195–200.
- [10] Aspect, A., Dalibard, J., and Roger, G. (1982). Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804–1807.
- [11] Particle Data Group (2022). Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 083C01.
- [12] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. **641**, A6.
- [13] LIGO Scientific Collaboration (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102.