CHAPITRE

38

SOMMES ET PROJECTEURS

38.1 SOMME DE DEUX SOUS-ESPACES VECTORIELS

§1 Somme de deux sous-espaces vectoriels

Définition 1

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. La **somme** de U et V, noté U+V, est l'ensemble

$$U + V = \{ u + v \mid u \in U \text{ et } v \in V \}.$$

Pour $w \in E$,

$$w \in U + V \iff \exists (u,v) \in U \times V, u + v = w.$$

Test 2

Posons $U = \{0, 2, 3\}$ et $V = \{4, 8, 1\}$. Ce ne sont pas des sous-espaces vectoriels de \mathbb{R} . Décrire néanmoins en extension l'ensemble

$$U+V=\{\ u+v\mid u\in U\ \text{ et }v\in V\ \}\ .$$

Théorème 3

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. Alors U + V est un sous-espace vectoriel de E.

Test 4

Montrer le!

Test 5

Soient E un \mathbb{K} -espace vectoriel et $u, v \in E$. Montrer

$$Vect \{ u \} + Vect \{ v \} = Vect \{ u, v \}.$$

Remarque

Il faut bien différencier U+V de $U\cup V$. L'ensemble $U\cup V$ n'est pas, en général, un sous-espace vectoriel de E (voir l'exercice $\ref{eq:continuous}$). Le sous-espace vectoriel U+V contient $U\cup V$, mais il est en général beaucoup plus gros. En fait, U+V est le plus petit sous-espace vectoriel de E contenant U et V.

Exemple 6

Soient $E = \mathbb{R}^3$,

$$U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + y - z = 0 \right\} \quad \text{et} \quad V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y + z = 0 \right\}$$

Montrer que $U + V = \mathbb{R}^3$.

Test 7

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. Montrer les énoncés suivants.

1.
$$U + V = V + U$$
.

2.
$$U \subset U + V$$
 et $V \subset U + V$.

3.
$$U + U = U$$
.

4. Si
$$U \subset V$$
, alors $U + V = V$.

§2 Sommes directes

Définition 8

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. La somme U+V est dite **somme directe** si

$$\forall (u,v) \in U \times V, u+v=0 \implies u=v=0.$$

Notation

Lorsque la somme est directe, on utilise la notation spéciale $U \oplus V$ pour désigner U + V. Au niveau ensembliste, ce sont les mêmes ensembles. Le symbole \oplus rappelant seulement que la somme est directe.

Il existe une autre façon de caractériser les sommes directes, souvent très utile.

Théorème 9

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. Les assertions suivantes sont équivalentes :

1. La somme
$$U + V$$
 est directe.

2.
$$U \cap V = \{ 0 \}.$$

3. Tout vecteur z de la somme U+V peut s'écrire de manière unique z=u+v où $u\in U$ et $v\in V$, c'est-à-dire

$$\forall (u, v) \in U \times V, \forall (u', v') \in U \times V, u + v = u' + v' \implies u = u' \text{ et } v = v'.$$

Exemple 10

Soit $u, v \in E$ deux vecteurs non colinéaires. Alors, la somme Vect $\{u\}$ + Vect $\{v\}$ est directe. Autrement dit,

$$Vect \{ u, v \} = Vect \{ u \} \oplus Vect \{ v \}.$$

§3 Sous-espaces supplémentaires

Définition 11

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. Les assertions suivantes sont équivalentes :

- 1. $E = U \oplus V$.
- **2.** E = U + V et $U \cap V = \{ 0 \}$.
- 3. Tout vecteur $z \in E$ se décompose de manière unique dans U + V:

$$\forall z \in E, \exists !(u, v) \in U \times V, z = u + v.$$

Dans ce cas, on dit que U et V sont deux sous-espaces vectoriels supplémentaires dans E.

2

La notion de supplémentaire est souvent confondue avec la notion ensembliste de complémentaire qui est très différente. Les différences entre les deux notions sont nombreuses. Tout d'abord, il y a unicité du complémentaire, alors que pour un sous-espace donné, il existe généralement une infinité de supplémentaires différents. Ensuite l'intersection d'un sous-espace avec un supplémentaire n'est pas vide mais contient le vecteur nul (et uniquement celui-là). Par ailleurs, le complémentaire d'un sous-espace vectoriel n'est jamais un sous-espace vectoriel. Enfin, la réunion d'un sous-espace et d'un supplémentaire n'est pas égale à tout l'espace, plus subtilement, elle engendre cet espace. De façon intuitive, deux sous-espaces supplémentaires contiennent exactement l'information dont on a besoin pour reconstituer l'espace entier.

Exemple 12

Soient dans \mathbb{R}^3 les deux parties suivantes:

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \right\} \qquad G = \left\{ (\lambda, \lambda, \lambda) \mid \lambda \in \mathbb{R} \right\}.$$

- **1.** Montrer que F et G sont deux sous-espaces vectoriels de \mathbb{R}^3 .
- **2.** Montrer que F et G sont supplémentaires.
- **3.** Trouver d'autres supplémentaires pour F (resp. pour G).

Exemple 13

Dans l'espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, les sous-espaces vectoriels formés respectivement des fonctions constantes, et des fonctions valant 0 en 0 sont supplémentaires.

Test 14

Soit E un \mathbb{K} -espace vectoriel et soient U et V deux sous-espaces vectoriels de E. Alors $E = U \oplus V$ si, et seulement si

$$\varphi: U \times V \to E$$

$$(u, v) \mapsto u + v$$

est un isomorphisme d'espaces vectoriels.

Remarque

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Alors tout sous-espace vectoriel de E admet un supplémentaire dans E.

Ce résultat reste vrai en dimension infinie en admettant l'axiome du choix.

En général, ce supplémentaire n'est pas unique.

Définition 15

Soit E un \mathbb{K} -espace vectoriel et H un sous-espace vectoriel de E. On dit que H est un **hyperplan** de E si il existe une droite vectorielle $D = \text{Vect } \{ a \}$ telle que

$$E = H \oplus D$$
.

38.2 PROJECTEURS

§1 Projecteurs associés à deux sous-espaces supplémentaires

Définition 16

Soient E un \mathbb{K} -espace vectoriel, U et V deux sous-espaces supplémentaires de E. Chaque vecteur $z \in E$ peut être écrit de manière unique sous la forme

$$z=u+v\quad u\in U\quad v\in V.$$

L'application $p: E \to E$ qui à z associe u est le **projecteur vectoriel sur** U **parallèlement** à V. On dit également que V est la **direction** de ce projecteur.

L'application $q: E \to E$ qui à z associe v est donc le projecteur vectoriel sur V parallèlement à U.

Si p est le projecteur sur U parallèlement à V, et q le projecteur sur V parallèlement à U, alors

$$\forall z \in E$$
, $z = p(z) + q(z)$ et $p(z) \in U$ et $q(z) \in V$.

Test 17

Pourquoi demande-t-on que la somme $E = U \oplus V$ soit directe?

Théorème 18

Soient U et V deux sous-espaces vectoriels supplémentaires du \mathbb{K} -espace vectoriel E. On note p le projecteur sur U parallèlement à V. Alors,

1. p est un endomorphisme de E.

2.
$$U = \text{Im}(p) = \ker(p - \text{Id}_E) = \{ z \in E \mid p(z) = z \}.$$

3.
$$V = \ker(p) = \{ z \in E \mid p(z) = 0 \}.$$

4. L'application p est idempotente : $p \circ p = p$.

5.
$$q = \operatorname{Id}_E - p$$
 est le projecteur sur V parallèlement à U . On a $p \circ q = 0$ et $q \circ p = 0$.

Remarque

Vous aurez peut-être reconnu le contenu du théorème de Thalès : celui-ci veut dire au fond qu'un projecteur (vectorielle) sur une droite est une application linéaire.

Exemples

Exemple 19

Avec $E = \mathcal{F}(\mathbb{R}, \mathbb{R}) = U \oplus V$, où U est le sous-espace vectoriel formés des fonctions constantes, et V le sous-espace vectoriel des fonctions valant 0 en 0. Les projecteurs sur U parallèlement à V et sur V parallèlement à U sont

$$p: E \rightarrow E$$
 et $q: E \rightarrow E$ $f \mapsto (x \mapsto f(0))$

Exemple 20

Soit $U = \text{Vect} \left\{ (1, 2, -1)^T, (1, 0, 1)^T \right\}$ et $V = \text{Vect} \left\{ (1, -1, -1)^T \right\}$. Soit $(x, y, z)^T \in \mathbb{R}^3$. On considère l'équation linéaire

$$\alpha \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\in W$$

c'est-à-dire

$$\begin{cases} \alpha + \beta + \gamma &= x \\ 2\alpha - \gamma &= y \\ -\alpha + \beta - \gamma &= z \end{cases}$$

qui a pour unique solution

$$\alpha = \frac{x}{6} + \frac{y}{3} - \frac{z}{6}, \quad \beta = \frac{x}{2} + \frac{z}{2}, \quad \gamma = \frac{x}{3} - \frac{y}{3} - \frac{z}{3}.$$

Cela prouve que tout vecteur $(x, y, z)^T \in \mathbb{R}^3$ se décompose de manière unique comme somme d'un vecteur de U et un vecteur de V. Le projecteur sur U parallèlement à V est défini par

$$p\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3}x + \frac{1}{3}y + \frac{1}{3}z \\ \frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z \\ \frac{1}{3}x - \frac{1}{3}y + \frac{2}{3}z \end{pmatrix}.$$

Test 21

Vérifier le calcul précédent.

§2 Les projecteurs sont les endomorphismes idempotents

Définition 22

Une application $p: E \to E$ est **idempotente** si

$$p \circ p = p$$
.

Si p est linéaire, cela s'écrit également $p^2 = p$.

Définition 23

Une matrice carrée A est idempotente si $A^2 = A$.

Théorème 24

Caractérisation des projecteurs

Soit $p \in \mathcal{L}(E)$ telle que $p \circ p = p$. Alors

$$E = \operatorname{Im} p \oplus \ker p$$

et p est le projecteur vectoriel sur Im p parallèlement à ker p. On a donc

$$\operatorname{Im} p = \ker \left(p - \operatorname{Id}_E \right)$$

$$E = \ker(p - \operatorname{Id}_E) \oplus \ker(p).$$

Les espaces $ker(p - Id_E)$ et ker(p) sont appelés les **sous-espaces propres** de p.

38.3 SYMÉTRIES

§1 Symétries associés à deux sous-espaces supplémentaires

Définition 25

Soient E un \mathbb{K} -espace vectoriel, U et V deux sous-espaces supplémentaires de E. Chaque vecteur $z \in E$ peut être écrit de manière unique sous la forme

$$z = u + v \quad u \in U \quad v \in V.$$

L'application $s: E \to E$ qui a z associe u - v est la symétrie par rapport à U parallèlement à V.

Proposition 26

Soient U et V deux sous-espaces vectoriels supplémentaires du \mathbb{K} -espace vectoriel E. On note s la symétrie sur U parallèlement à V. Alors,

1. Si p désigne le projecteur sur U parallèlement à V et q le projecteur sur V parallèlement à U, alors

$$s = p - q = 2p - \operatorname{Id}_E = \operatorname{Id}_E - 2q;$$

on a également $p = \frac{1}{2}(s + \text{Id}_E)$.

2. s est un automorphisme involutif de E:

$$s \circ s = \operatorname{Id}_E \quad d'où \quad s^{-1} = s.$$

On a donc $\text{Im } s = E \text{ et ker } s = \{0_E\}.$

3.
$$U = \ker (s - \mathrm{Id}_E) = \{ z \in E \mid s(z) = z \}.$$

4.
$$V = \ker(s + \mathrm{Id}_E) = \{ z \in E \mid s(z) = -z \}.$$

Les espaces $ker(s - Id_E)$ et $ker(s + Id_E)$ sont appelés les **sous-espaces propres** de s.

§2 Les symétries sont les endomorphismes involutifs

Définition 27

Une application $s: E \to E$ telle que $s \circ s = \mathrm{Id}_E$ est appelée **involution**.

Ce qui s'écrit également lorsque s est linéaire, $s^2 = Id_E$.

Théorème 28

Caractèrisation des symétries

Soit E un \mathbb{K} -espace vectoriel et soit $s \in \mathcal{L}(E)$ tel que $s \circ s = \mathrm{Id}_E$. Alors

$$E = \ker(s - \operatorname{Id}_E) \oplus \ker(s + \operatorname{Id}_E)$$

et s est la symétrie vectorielle par rapport à $ker(s - Id_E)$ parallèlement à $ker(s + Id_E)$.

38.4 SOMMES ET APPLICATIONS LINÉAIRES

§1 Caractérisation universelle

Une application linéaire définie sur $U \oplus V$ est entièrement déterminée par ses restrictions à U et V. Autrement dit,

Théorème 29

Caractérisation universelle

Soit E et F deux \mathbb{K} -espaces vectoriels. Soient U et V deux sous-espaces vectoriels de E tels que la somme U + V est directe.

Soit $g \in \mathcal{L}(U, F)$ et $h \in \mathcal{L}(V, F)$, alors, il existe une unique application linéaire $f \in \mathcal{L}(U \oplus V, F)$ telle que

$$\forall x \in U, f(x) = g(x)$$
 et $\forall x \in V, f(x) = h(x)$.

Exemples 30

Soient U et V deux sous-espaces vectoriels supplémentaires de E.

1. L'endomorphisme de E définit par

$$\forall x \in U, p(x) = x$$
 et $\forall x \in V, p(x) = 0$

est le projecteur sur U parallèlement à V.

2. L'endomorphisme de E définit par

$$\forall x \in U, s(x) = x$$
 et $\forall x \in V, s(x) = -x$

est la symétrie par rapport à U dans la direction V.

§2 Forme géométrique du théorème du rang

Théorème 31

Forme géométrique du théorème du rang

Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Soit S est un supplémentaire de ker f dans E alors

$$g = f_S^{\operatorname{Im} f} : S \to \operatorname{Im} f$$

 $x \mapsto f(x)$

est un isomorphisme. C'est-à-dire que tout supplémentaire de $\ker f$ dans E est isomorphe à $\operatorname{Im} f$.

On dit que f induit un isomorphisme g de S sur Im f.

Dans le cas où $f \in \mathcal{L}(E)$, il n'y a aucune raison de croire que ker f et $\operatorname{Im} f$ sont supplémentaires.

CHAPITRE

38

COMPLÉMENTS

38.5 SOMMES ET SOMMES DIRECTES DE PLUSIEURS SOUS-ESPACES VECTORIELS

Définition 32

Soit E un \mathbb{K} -espace vectoriel et V_1, \dots, V_p des sous-espaces vectoriels de E.

• La somme des sous-espaces vectoriels V_1, \dots, V_p est le sous-espace vectoriel

$$V_1 + \dots + V_p = \left\{ \left. x_1 + \dots + x_p \; \right| \; (x_1, \dots, x_p) \in V_1 \times \dots \times V_p \; \right\}.$$

• On dit que les sous-espaces vectoriels V_1, \dots, V_p sont en somme directe lorsque

$$\forall (x_1, \dots, x_p) \in V_1 \times \dots \times V_p, x_1 + \dots + x_p = 0_E \implies x_1 = 0_E, \dots x_p = 0_E.$$

• Lorsque la somme $V = V_1 + \dots V_p$ est directe, on écrit

$$V = V_1 \oplus V_2 \oplus V_p \quad \text{ ou } \quad V = \bigoplus_{i=1}^p V_i.$$

Définition 33

Soit E un \mathbb{K} -espace vectoriel. On suppose que E est somme directe des sous-espaces vectoriels V_1, \dots, V_p :

$$E = V_1 \oplus V_2 \oplus V_p. \tag{38.1}$$

Alors tout $x \in E$ s'écrit de façon unique

$$x = x_1 + \dots + x_p$$
 avec $(x_1, \dots, x_p) \in V_1 \times \dots \times V_p$.

Nous pouvons poser, pour i = 1, ..., p

$$\pi_i(x) = x_i$$
.

On définit ainsi des endomorphismes π_1, \dots, π_p de E, appelés **projecteurs de E associés** à la décomposition en somme directe $E = V_1 \oplus V_2 \oplus V_p$.

38.6 AFFINITÉS VECTORIELLES

Définition 34

Soient E un \mathbb{K} -espace vectoriel, U et V deux sous-espaces supplémentaires de E. Chaque vecteur $x \in E$ peut être écrit de manière unique sous la forme

$$x = u + v \quad u \in U \quad v \in V.$$

L'application de E dans E qui a x associe $u + \alpha v$ est l'**affinité de base U, de direction V et de rapport \alpha**.

Exemple 35

- 1. L'affinité de base U, de direction V et de rapport 0 est le projecteur sur U parallèlement à V.
- **2.** L'affinité de base U, de direction V et de rapport -1 est la symétrie par rapport à U parallèlement à V.
- **3.** Une affinité de rapport 1 est l'identité de *E*.

Proposition 36

Soient U et V deux sous-espaces vectoriels supplémentaires du \mathbb{K} -espace vectoriel E et $\alpha \in \mathbb{K}$. On note f l'affinité de base U, de direction V et de rapport α . Alors,

1. Si p désigne le projecteur sur U parallèlement à V et q le projecteur sur V parallèlement à U, alors

$$f = p + \alpha q = (1 - \alpha)p + \alpha \operatorname{Id}_{E} = \operatorname{Id}_{E} + (\alpha - 1)q.$$

- 2. f est un endomorphisme de E.
- 3. Si $\alpha \neq 0$, f est un automorphisme de E. Sa réciproque est l'affinité de base U, de direction V et de rapport $1/\alpha$.
- **4.** Si $\alpha \neq 1$, on a

$$\begin{split} U &= \ker(f - \operatorname{Id}_E) = \{ \ z \in E \mid f(z) = z \ \} \\ et \ V &= \ker(f - \alpha \operatorname{Id}_E) = \{ \ z \in E \mid f(z) = \alpha z \ \} \,. \end{split}$$