Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação

SCE0185 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS

Lista de Exercícios do Capítulo 4

1. Seja G = ({a, b}, {A, B}, A, P), onde P consiste de:

$A \rightarrow Ba$	$B \rightarrow BB$
$Aa \rightarrow Bb$	$B \rightarrow b$
$B \rightarrow bA$	$A \rightarrow a$
$Ab \rightarrow \lambda$	

Qual é o tipo da L(G)? Que processador de linguagem (AFD/AFN, APN, Máquina de Turing) reconheceria esta linguagem? Por que?

- **2.** Considere a seguinte linguagem livre de contexto $L = \{0^n 1^n \mid n \ge 1\}$. Escreva a Máquina de Turing T de duas cabeças que processa esta linguagem. Verifique como T age com as entradas 01 e 011.
- **3.** Dê uma Máquina de Turing de duas cabeças que processa a linguagem $L = \{ww^R \mid w \text{ em } \{0,1\}^*\}$. Discuta por que é mais fácil para uma Máquina de Turing de várias cabeças reconhecer esta linguagem do que para uma Máquina de Turing de cabeça única.
- **4.** Escreva uma máquina de Turing de uma fita que compute f(x) = 2 * x. Dê sua especificação completa $(Q, \Sigma, q_0, q_a, \delta)$.
- **5.** Seja o seguinte conjunto de produções da gramática livre de contexto G_A :

$$S \rightarrow aaZcc$$

 $Z \rightarrow aZc$
 $Z \rightarrow b$

Observe agora o seguinte conjunto de produções da gramática linear a direita G_B :

$$S \rightarrow aA$$

 $A \rightarrow aB$
 $B \rightarrow aB \mid bC$
 $C \rightarrow cC \mid cD$
 $D \rightarrow c$

Qual a relação entre G_A e G_B ? São equivalentes? Por que? Escreva a máquina de Turing que processa $L(G_A)$.

6. Seja o seguinte conjunto de produções da gramática *G*:

$$S \rightarrow aSBC|aBC$$

 $CB \rightarrow BC$
 $aB \rightarrow ab$
 $bB \rightarrow bb$
 $bC \rightarrow bc$
 $cC \rightarrow cc$

- a) Qual o processador de linguagem de menor poder computacional capaz de processar L(G) (AFN, APD, ALL ou MT)? Por que?
- b) Escreva este processador.
- **7.** Considere a gramática $G = (\{a,b\}, \{S,A,B\}, S, P\},$ onde P é o conjunto de produções:

$$S \rightarrow aAa \mid bBb$$

 $A \rightarrow b$
 $B \rightarrow aA$

- a) Ache o autômato limitado linearmente que processe L(G), se possível. Se não for possível, explique o porquê.
- b) Ache a máquina de Turing de uma cabeça que processe L(G), se possível. Se não for possível, explique o porquê.
- **8.** Seja a Máquina de Turing M_A , representada no *Virtual Turing Machine*:

q0,a,q0b,d,R	q1b,b,q1c,b,R	q2,B,qc,B,R	qc,d,qc,d,R
q0b,a,q0b,a,R	q1c,c,q2,d,L	q2b,b,q2c,b,R	qc,B,qa,B,R
q0b,b,q0c,b,R	q1c,d,q1c,d,R	q2b,d,q2b,d,R	
q0c,c,q1,d,L	q2,a,q2b,d,R	q2c,c,q2,d,L	
q1,a,q1b,d,R	q2,b,q2,b,L	q2c,d,q2c,d,R	
q1,b,q1,b,L	q2,d,q2,d,L	qc,b,qc,b,R	

Seja a Máquina de Turing $M_{\rm B}$, representada no Virtual Turing Machine:

q0,a,qb,d,R	qc,b,qc,b,R	qv,b,qv,b,L
qb,a,qb,a,R	qc,c,qv,d,L	qv,d,qv,d,L
qb,b,qc,d,R	qc,d,qc,d,R	qv,B,qc,R,R
qb,d,qb,d,R	qv,a,qb,d,R	qc,B,qa,B,R

A partir do conjunto de instruções:

- a) É possível afirmar que $T(M_A)$, ou seja, o conjunto de cadeias aceitas pela Máquina de Turing M_A , é regular?
- b) E quanto à $T(M_B)$?
- c) Se não forem regulares, quais os tipos das linguagens processadas por M_A e por M_B ?

- d) Escreva os processadores de menor poder computacional que processa $T(M_{\rm A})$ e $T(M_{\rm B})$.
- **9.** Seja o seguinte autômato finito $(\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_0\})$:

Escreva a máquina de Turing ${\it T}$ equivalente. Se não for possível, explique o porquê.

10.Escreva uma máquina de Turing que compute max (n, m). Descreva uma configuração exemplo e identifique qual a técnica de construção usada.