

Mass Measurements

Lecture 1 – October 7, 2015

D. Lascar | Postdoctoral Fellow | TRIUMF

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Precision v. Accuracy

Not Accurate **Not Precise**

Not Accurate **Precise**

Accurate **Not Precise**

Accurate **Precise**

2015

Mass

- The property of a body to attract another body via gravitation
 - Gravitational mass
- Object's resistance to changing acceleration
 - Inertial mass
- The sum of all the rest energy in a body
 - Mass-energy relation

$$F = \frac{Gm_1m_2}{r^2}$$

$$\vec{F} = m\vec{a}$$

$$m = \begin{pmatrix} Nm_n + Z(m_p + m_e) - \\ -\frac{1}{c^2} \sum_i BE_i \end{pmatrix}$$

Oct 7,

Why measure masses?

Molar mass

- 35.453 ± 0.002 g/mol 35.453(2) g/mol
 - $\frac{\delta m}{m} = \frac{0.002}{35.453} \approx 6 \times 10^{-5}$

•
$$\frac{\delta m}{m} = \frac{0.000000074}{6.022140857} \approx 1.2 \times 10^{-8}$$

- If you measure out 35.453 g precisely
 - 6.02214(34) x 10²³ atoms
- Does it matter?
 - Depends on the application

17Cl Chlorine

35.453

Why measure masses?

- Particle/molecular identification
 - What is the difference between:
 - 180Hf
 - 179HfH
 - C₆H₁₂O₆ Glucose
 - C₉H₈O₄ Caffeic Acid (Aspirin)
 - C₁₀H₁₂O₃ Tyrosol, acetate
 - C₇H₇F₃O₂ No idea but it exists in nature

Why measure masses?

	Mass (AMU)	m - M(¹⁸⁰ Hf) (AMU)	$\frac{\Delta m}{M}$
¹⁸⁰ Hf	179.9466		
¹⁷⁹ HfH	179.9538	0.0071	3.94×10^{-5}
$C_6H_{12}O_6$	180.0648	0.1168	6.49×10^{-4}
$C_9H_8O_4$	180.0432	0.0957	5.32×10^{-4}
$C_{10}H_{12}O_3$	180.0800	0.1321	7.34×10^{-4}
$C_7H_7F_3O_2$	180.0406	0.0933	5.18×10^{-4}

Atomic and nuclear masses

Masses determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus.

$$M_{\text{Atom}} = N \cdot m_{\text{neutron}} + Z \cdot m_{\text{proton}} + Z \cdot m_{\text{electron}} - (B_{\text{atom}} + B_{\text{nucleus}})/c^2$$

Slide courtesy of K. Blaum TRIUMF Summer Institute

 $\delta m/m < 10^{-10}$

 $\delta m/m = 10^{-6} - 10^{-8}$

Most of physics requires masses

- General physics and chemistry
- Nuclear structure physics
- Astrophysics
- Weak interaction studies
- Fundamental neutrino physics
- Fundamental symmetries
- Tests of QED

Oct 7,

Nuclear Astrophysics

- Big Bang
 - ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li
- Cosmic Ray Spallation (interstellar medium)
 - Many elements, including most Li, Be, B
- Stellar Burning
 - Up to ⁵⁶Fe
- p Process (core-collapse supernovae)
 - Some heavy elements
- rp/vp Process (x-ray bursts)
- s Process (AGB stars)
 - Heavy elements up to A=208 (half of all heavy nuclei)
- r Process (??)
 - Heavy elements A>56 (the other half)

Neutron separation energy and mass

$$S_n = M(A,Z) + M(n) - M(A+1,Z)$$

- Temperatures are very high (T~10⁹K)
- Neutron densities are very high $(n_n > 10^{20} \text{ cm}^{-3})$
- (n,γ) rate is high (< 1 μs/capture)

- Temperatures are very high (T~10⁹K)
- Neutron densities are very high $(n_n > 10^{20} \text{ cm}^{-3})$
- (n,γ) rate is high (< 1 μ s/capture)
- As region of low neutron separation energy (S_n) reached (n,γ) <- $> (\gamma,n)$ equilibrium achieved

- Temperatures are very high (T~10⁹K)
- Neutron densities are very high $(n_n > 10^{20} \text{ cm}^{-3})$
- (n,γ) rate is high (< 1 μ s/capture)
- As region of low neutron separation energy (S_n) reached (n,γ) <- > (γ ,n) equilibrium achieved
- Equilibrium point defined by Saha Equation

Partition Function – Ratio can vary between
$$10^{\pm 4}$$
 but normally between $10^{\pm 1}$

$$\frac{Y(Z, A+1)}{Y(Z, A)} = n_n \left(\frac{2\pi\hbar^2}{m_u kT}\right)^{\frac{3}{2}} \left(\frac{A+1}{A}\right)^{\frac{3}{2}} \frac{G^*(Z, A+1)}{2G^*(Z, A)} \exp\left[\frac{S_n(Z, A+1)}{kT}\right]$$

- Temperatures are very high (T~10⁹K)
- Neutron densities are very high $(n_n > 10^{20} \text{ cm}^{-3})$
- (n,γ) rate is high (< 1 μ s/capture)
- As region of low neutron separation energy (S_n) reached (n,γ) <- > (γ ,n) equilibrium achieved
- Equilibrium point defined by Saha Equation

$$S_n^0 \approx kT \ln \left[\frac{2}{n_n} \left(\frac{m_u kT}{2\pi\hbar^2} \right)^{3/2} \right]$$

- Temperatures are very high (T~10⁹K)
- Neutron densities are very high $(n_n > 10^{20} \text{ cm}^{-3})$
- (n,γ) rate is high (< 1 μ s/capture)
- As region of low neutron separation energy (S_n) reached (n,γ) <- > (γ ,n) equilibrium achieved
- Equilibrium point defined by Saha Equation

$$S_n^0 \approx kT \ln \left[\frac{2}{n_n} \left(\frac{m_u kT}{2\pi\hbar^2} \right)^{3/2} \right] \approx 3 \text{ MeV}$$

So we wait for a β-decay

[A. Champagne, RIA Summer School 06]

The S_n where equilibrium occurs depends only on T and

$$S_n^0 \approx kT \ln \left[\frac{2}{n_n} \left(\frac{m_u kT}{2\pi\hbar^2} \right)^{3/2} \right]$$

M. Arnould et al. / Physics Reports 450 (2007) 97-213

Oct 7, 2015

Nucleosynthesis in the r-process

Oct 7,

Evidence From Elemental Abundances

Y.-Z. Qian, *Prog. Part. Nucl. Phys.*, 50 (2003) 153

Neutron separation energy and mass

$$S_n = M(A,Z) + M(n) - M(A+1,Z)$$

Test of nuclear mass models...(Hint: They stink!)

Oct 7,

2015

How to measure masses?

Dipole mass spectrometry

- Charged particle in a uniform magnetic field
- $\vec{F} = q\vec{v} \times \vec{B}$ (Magnetic force)
- $\vec{F} \perp \vec{v}$ (F is a centripetal force)

$$qvB = \frac{mv^2}{\rho}$$
 Radius of curvature

Magnetic Rigidity ($B\rho$):

$$B\rho = \frac{p}{q}$$

How to measure masses?

Time of flight mass spectrometry

- Measure the time that an ion at known energy will travel a known distance.
- Can be linear
 - Space limitation
- Storage rings better
 - Distance unlimited
- Best precision:

$$\frac{\delta m}{m}$$
 ~ 10^{-6}

Oct 7,

We can do better than $\delta m/_m \sim 10^{-6}$

- Actually we need
 - For nuclear astrophysics $\frac{\delta m}{m} \sim 10^{-7}$ minimum
 - For fundamental symmetries: $\frac{\delta m}{m} \sim 10^{-10} \ minimum$
- What is the physical quantity that we can measure to the highest precision?

Time

- Time is the physical quantity we can measure most precisely
- For this clock:
- We can do better than $\frac{\delta t}{t} \sim 10^{-15}$
- When making a precision measurement, the goal is to measure time (frequency)

ADAM MANN SCIENCE 04.04.14 6:30 AM

HOW THE U.S. BUILT THE WORLD'S MOST RIDICULOUSLY ACCURATE ATOMIC CLOCK

$$\frac{\delta t}{t} \sim 10^{-14}$$

For next class:

 How can you relate a time (frequency) measurement to mass?

Thank you! Merci

Canada's national laboratory for particle and nuclear physics

Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Fondation canadienne pour l'innovation

Western Economic

Diversification de l'économie de l'Ouest Canada

Natural Resources

Ressources naturelles Canada

