Praktikum Theoretische Informatik

Aufgabenblatt 1: Deterministische, endliche Automaten (DEA)

Aufgabe 1

Gegeben sind die folgenden Automaten (DEA) A_1 und A_2 , wobei A_1 über einen Automatengraphen und A_2 über eine Automatentabelle beschrieben wird:

A₂ (Endzustände: z₀, z₃)

A₁ (Endzustände: z₁, z₃)

δ	X	У
$z_{0/E}$	z_1	z_2
z_1	z_1	z_2
z_2	z_3	z_4
$z_{3/E}$	z_4	z_0
z_4	z_3	z_0

- a) Beschreiben Sie A₁ als 5-Tupel $(Z, \Sigma, \delta, z_0, E)$. Geben Sie dabei δ als Funktion und in Tabellenform an.
- b) Beschreiben Sie A2 als 5-Tupel $(Z, \Sigma, \delta, z_0, E)$. Geben Sie dabei δ als Automatengraphen an.
- c) Überprüfen Sie, ob A_1 folgende Wörter akzeptiert: 0, 1110, 11011, 10011, ε
- d) Überprüfen Sie, ob A $_2$ folgende Wörter akzeptiert: xxx, xyyx, ε
- e) Zeigen Sie unter Verwendung der Überführungsfunktion (als Funktion!), dass $A_{\rm 1}$ das Wort 110001 akzeptiert.
- f) Zeigen Sie unter Verwendung der Übergangsrelation (Konfigurationen), dass A_2 das Wort xxxyyx akzeptiert.

(**Hinweis**: Zu überprüfen ist, ob $(z_0, xxxyyx) \rightarrow^* (z, \varepsilon)$ mit $z \in Z$ gilt.)

Aufgabe 2

Geben Sie jeweils einen DEA über $\Sigma = \{0,1\}$ an, der die folgenden (regulären) Sprachen erkennt:

- a) $L_0 = \{\omega \in \Sigma^*\}$
- b) $L_1 = \{ \omega \in \Sigma^* \mid |\omega| = 2 \}$
- c) $L_2 = \{ \omega \in \Sigma^* \mid |\omega|_0 = 2 \}$
- d) $L_3 = \{\omega \in \Sigma^* \mid |\omega| \text{ ist ungerade}\}$

Zeigen Sie für Ihren Automaten, dass das Wort 00110 akzeptiert wird. Welche Möglichkeiten gibt es, diese Akzeptanz zu zeigen?

- e) $L_4 = \{ \omega \in \Sigma^* \mid |\omega|_0 \text{ ist ungerade} \}$
- f) $L_5 = \{ \omega \in \Sigma^* \mid (|\omega|_0 \ge 1) \land (|\omega|_1 \le 3) \}$

Zeigen Sie für Ihren Automaten, dass das Wort 001101 akzeptiert wird.

- g) $L_6 = \{ \omega \in \Sigma^* \mid \omega \text{ enthält nicht } 01 \}$
- h) $L_7 = \{\omega \in \Sigma^* \mid der \ vorletzte \ Buchstabe \ von \ \omega \ ist \ eine \ 1\}$

Viel Spaß!