Learning objectives:

- 1. Define the derivative as a function.
- 2. The property of differentiability
- 3. When can a function fail to be differentiable?
- 4. Higher derivatives and their interpretation.

The derivative of a function y = f(x) is a new function f'(x) defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} .$$

Example 1. If $f(x) = x^3 - x$, find a formula for f'(x).

Example 2. Find
$$f'(x)$$
 if $f(x) = \frac{1-x}{2+x}$.

Other Notations for Derivative

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x) .$$

The symbol D and d/dx are called the differentiation operators since they indicate the process of differentiation.

We often write
$$f'(a)$$
 as $\frac{dy}{dx}\Big|_{x=a}$.

Differentiability

A function f is said to be differentiable at a if f'(a) exists. It is differentiable on an open interval if it is differentiable at every number in the interval.

Example of $y = \sqrt{x}$ from previous lecture:

Example 3. Where is function f(x) = |x| differentiable?

Differentiability implies continuity

If f is differentiable at a then f is continuous at a.

There exist functions that are continuous but not differentiable.

How can a function fail to be differentiable?

Higher Derivatives

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} \ .$$

Same as f'' = (f')' we have $f^{(n)} = (f^{(n-1)})'$, that is, in general

$$\frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^n y}{dx^n} \ .$$

Position (function) $\xrightarrow{\text{derivative}}$ velocity $\xrightarrow{\text{derivative}}$ acceleration $\xrightarrow{\text{derivative}}$ jerk

Example 4. If $f(x) = x^3 - x$, find f''(x), f'''(x) and $f^{(4)}(x)$.

