UNIVERSIDADE FEDERAL DA BAHIA

COMPONENTE: ACCS: Oficina de Projetos em Inteligência Artificial

Professores: Barbara Coelho Neves, Daniela Claro e Ricardo Coutinho

Equipe 07

RELATÓRIO DE PRÉ-PROCESSAMENTO

O primeiro passo do nosso pré-processamento consistiu em estudar o dicionário, pois o grande número de instâncias e alta dimensionalidade nos impossibilitou de fazer qualquer análise direta sobre os dados. A partir da análise do dicionário, verificamos as informações de cada coluna, possibilitando definir quais delas seriam necessárias manter e quais poderíamos remover para que pudéssemos ter uma base alinhada aos nossos objetivos.

As informações que analisamos no dicionário, nos possibilitou chegar às seguintes conclusões:

- As variáveis com dados sobre números de unidades hospitalares e números de telefones dessas unidades foram descartadas por serem informações irrelevantes para a análise.
- Definimos a variável CLASSI_FIN como alvo para os nossos modelos de predição por conter dados de classificação final para a investigação de suspeita de doença.
- As variáveis com dados de data de investigação, datas de exames, data de internação e coletas de isolamento do paciente foram descartadas, considerando que haviam outras variáveis que continham os resultados desses exames e coletas, sendo essas informações úteis para o modelo que queríamos atingir.
- As variáveis de sintomas foram mantidas e decidimos descartar as variáveis que continham dados de acompanhamento do paciente após o diagnóstico por considerarmos que não seriam informações relevantes para a etapa do projeto.

Quando contabilizamos a quantidade de colunas que havia no arquivo da base e comparamos com a quantidade de variáveis com informações no dicionário, percebemos que havia uma diferença de 63 variáveis a mais no arquivo do que havia sido informado no dicionário. Decidimos remover essas variáveis excedentes por considerarmos impróprio trabalhar com dados dos quais não teríamos informações e consequentemente não conseguiríamos analisá-los.

Com a remoção de todas as colunas que consideramos descartáveis, nossa base de dados ficou com apenas 40 colunas e ao verificarmos a nulidade desse novo conjunto, descobrimos que cada coluna de sintomas estavam com 79.000 instâncias

nulas e cada uma das colunas com informações sobre exames excediam mais de 400.000 instâncias com nulidade. Para as variáveis de sintomas consideramos preencher a nulidade com o valor da moda, considerando também que a quantidade de valores nulos em cada uma era inferior a metade do número total de instâncias e para as outras colunas, consideramos que seria mais viável fazer a imputação desses dados ausentes com o KNN Imputer, porém por problemas de desfalques na equipe e por falta de poder computacional, decidimos descartar essa ideia e trabalhar apenas com a substituição de valores ausentes por valores de moda. Decidimos fazer testes com quatro variações da base pré-processada e quatro variações da base pré-processada na forma balanceada para rodar nos algoritmos de aprendizado de máquina e definirmos qual apresenta a melhor estratégia de pré-processamento em relação ao preenchimento da nulidade:

- Na primeira abordagem, removemos as 79.000 instâncias nulas das variáveis de sintomas e removemos os atributos com informações de exames, HOSPITALIZ e SOROTIPO
- Na segunda abordagem removemos os valores nulos das variáveis de sintomas e preenchemos a nulidade das variáveis HOSPITALIZ, SOROTIPO e das variáveis com informações de exames com os valores de moda.
- Na terceira abordagem, preenchemos a nulidade de todas as variáveis com os valores da moda
- Na quarta abordagem, preenchemos apenas a nulidade das variáveis de sintomas e removemos os atributos HOSPITALIZ, SOROTIPO e as variáveis com informações de exames
- Para as variações da base na forma balanceada, correspondeu manter apenas duas classificações nos modelo de predição: Dengue ou não Dengue.

Utilizamos as bibliotecas Pandas, Matplotlib e Seaborn para criar gráficos de correlações com a coluna alvo e percebemos que haviam altas correlações positivas entre essa coluna e as colunas PLAQ_MENOR, LACO_N, HEMARTURA e PETEQUIAS e correlações negativas com as colunas EPISTAXE e PLASMATICO, porém, só quando estávamos em uma etapa mais avançada do pré processamento, percebemos que na verdade todas essas colunas tinham altas correlações com o alvo por terem poucos dados não nulos, o que poderia significar que os índices de alta correlação dessas variáveis não eram de fato confiáveis e ao gerar gráfico boxplot, percebemos que os dados da base estavam muito concentrados e por conta disso havia poucos valores outliers

Considerando que a maioria das colunas da nossa base eram variáveis qualitativas nominais e que por isso havia a necessidade de fazer o tratamento desses dados propriamente para evitar resultados equivocados dos testes nos modelos de predição, decidimos codifica-los com o codificador LabelEncoder para que os dados do tipo float fossem transformados em números inteiros, porém, essa transformação foi apenas eficiente para as variáveis de sintomas que tinham apenas duas categorias e assim esses números se tornavam categorias binárias, mas para as demais variáveis que continham mais de duas categorias, houve a necessidade de utilizar o codificador One-Hot Encoder para transformá-las de forma que cada

coluna se divide-se em espaços vetoriais contendo apenas categorias binárias e não induzisse os modelos de predição a interpretarem esses valores como ordinais.

Testes das variações das bases pré-processadas nos modelos de predição:

• Percentuais de Acurácias:

A +	В	С	D	Е	F	G	Н	I	J
Abordagem	MLP	KNN RS	KNN Cross	Regreg RS	Regreg Cross	Arvore RS	Arvore Cross	Random F RS	Random F Cross
Base1	0.47080	0.38077	0.36228	0.44203	0.44006	0.43817	0.43615	0.44310	0.43929
Base1_1	0.49800	0.43877	0.43668	0.47547	0.47315	0.46577	0.46871	0.47130	0.47430
Base2	0.54690	0.49217	0.39420	0.48797	0.48459	0.51480	0.51236	0.52147	0.51595
Base2_1	0.50560	0.43527	0.41312	0.45823	0.45617	0.47687	0.47944	0.48127	0.48150
Base1 Balanceada	0.58790	0.52823	0.52894	0.56647	0.56287	0.56427	0.56210	0.56407	0.56147
Base1_1 Balanceada	0.66660	0.61687	0.61728	0.66413	0.66103	0.64927	0.65362	0.65273	0.65695
Base2 Balanceada	0.71060	0.66943	0.67294	0.69443	0.69456	0.68620	0.68967	0.69007	0.69341
Base2 1 Balanceada	0.63680	0.58303	0.55742	0.60433	0.59985	0.61177	0.60711	0.61003	0.60727

Abordagem	Media RS	Media Cros	ss Desvio padrão
Base1	0.44203	0.43772	0.03814750538
Base1_1	0.47130	0.47093	0.01785014099
Base2	0.51480	0.49848	0.05680574413
Base2_1	0.47687	0.46781	0.03177369811
Base1 Balanceada	0.56427	0.56179	0.01661320057
Base1_1 Balanceada	0.65273	0.65529	0.02018871467
Base2 Balanceada	0.69007	0.69154	0.01002314156
Base2 1 Balanceada	0.61003	0.60348	0.0239134082

*testes com a b	ase reduzida para	a 100.000 istância	as devido tempo o	de execução e 50	epocas para MLI	P		
Valores de acui	rácia dos modelos	com hiperparâm	etros fixos definid	dos pela professo	ra em distintos ce	nários de pré-pro	cessamento da l	oase
Legenda								
RS = Random	Split - ou seja, mé	todo houldout usa	ando test-train-sp	lit do SkLearn				
Cross = K-Fold	Cross Validation -	no caso k=5						

• Variação escolhida:

Abordagem	MLP	KNN RS	KNN Cross	Regreg RS	Regreg Cross	Arvore RS	Arvore Cross	Random F RS	Random F Cross
Base2 Balancea	0,71060	0,66943	0,67294	0,69443	0,69456	0,68620	0,68967	0,69007	0,69341

Abordagem Media RS Media Cross Desvio padrão Base2 Balanceada 0.69007 0.69154 0.01002314156

Shape: (549797, 54)

info():

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 549797 entries, 0 to 549796

Data columns (total 54 columns):

Data	columns (total	54 columns):	
#	Column	Non-Null Count	Dtype
0	FEBRE	549797 non-null	
1		549797 non-null	
2	CEFALEIA	549797 non-null	
3	EXANTEMA	549797 non-null	
4		549797 non-null	
5	NAUSEA	549797 non-null	
6	DOR_COSTAS	549797 non-null	
7		549797 non-null	
8		549797 non-null	
9		549797 non-null	
10	PETEQUIA_N	549797 non-null	int64
11	LEUCOPENIA	549797 non-null	
12	LACO	549797 non-null	int64
13	DOR_RETRO	549797 non-null	int64
14	DIABETES	549797 non-null	int64
_		549797 non-null	
16	HEPATOPAT	549797 non-null	int64
17	RENAL	549797 non-null	int64
18	HIPERTENSA	549797 non-null	int64
19	ACIDO_PEPT	549797 non-null	int64
20	AUTO_IMUNE	549797 non-null	int64
21	CLASSI_FIN	549797 non-null	float64
22	HOSPITALIZ	549797 non-null	int64
23	RES_CHIKS1_1.0	549797 non-null	float64
24	RES_CHIKS1_2.0	549797 non-null	float64
25	RES_CHIKS1_3.0	549797 non-null	float64
26		549797 non-null	
27		549797 non-null	
28		549797 non-null	
29		549797 non-null	
30	RESUL_PRNT_2.0	549797 non-null	float64
31	RESUL_PRNT_3.0	549797 non-null	float64
32	RESUL_SORO_1.0	549797 non-null	float64
33	RESUL_SORO_2.0	549797 non-null	float64
34	RESUL_SORO_3.0	549797 non-null	float64
35	RESUL_NS1_1.0		
36	RESUL_NS1_2.0	549797 non-null	float64
37	RESUL_NS1_3.0	549797 non-null	float64
38	RESUL_VI_N_1.0	549797 non-null	float64
39	RESUL_VI_N_2.0	549797 non-null	float64
40	RESUL_VI_N_3.0	549797 non-null	float64
41	RESUL_PCR1.0	549797 non-null	float64
42	RESUL_PCR2.0		
43	RESUL_PCR3.0	549797 non-null	float64
44	HISTOPA_N_1.0	549797 non-null	float64
45	HISTOPA_N_2.0	549797 non-null	float64
46	HISTOPA_N_3.0	549797 non-null	float64

```
47 IMUNOH_N_1.0 549797 non-null float64
48 IMUNOH_N_2.0 549797 non-null float64
49 IMUNOH_N_3.0 549797 non-null float64
50 SOROTIPO_1.0 549797 non-null float64
51 SOROTIPO_2.0 549797 non-null float64
52 SOROTIPO_3.0 549797 non-null float64
53 SOROTIPO_4.0 549797 non-null float64
dtypes: float64(32), int64(22)
```

Nunique():

Nullique().	
FEBRE	2
MIALGIA	2
CEFALEIA	2
EXANTEMA	2
VOMITO	2
NAUSEA	2
DOR_COSTAS	2
CONJUNTVIT	2
ARTRITE	2
ARTRALGIA	2
PETEQUIA_N	2
LEUCOPENIA	2
LACO	2
DOR_RETRO	2
DIABETES	2
HEMATOLOG	2
HEPATOPAT	2
RENAL	2
HIPERTENSA	2
ACIDO_PEPT	2
AUTO_IMUNE	2
CLASSI_FIN	2
HOSPITALIZ	2
RES_CHIKS1_1.0	2
RES_CHIKS1_2.0	2
RES_CHIKS1_3.0	2
RES_CHIKS2_1.0	2
RES_CHIKS2_2.0	2
RES_CHIKS2_3.0	2
RESUL_PRNT_1.0	2
RESUL_PRNT_2.0	2
RESUL_PRNT_3.0	2
RESUL_SORO_1.0	2
RESUL_SORO_2.0	2
RESUL_SORO_3.0	2
RESUL_NS1_1.0	2
RESUL_NS1_2.0	2
RESUL_NS1_3.0	2
RESUL_VI_N_1.0	2
RESUL_VI_N_2.0	2
	_

RESUL_VI_N_3.0

```
RESUL PCR 1.0
                2
RESUL PCR 2.0
                2
RESUL PCR 3.0
                2
HISTOPA N 1.0
                2
               2
HISTOPA_N_2.0
HISTOPA_N_3.0
                2
               2
IMUNOH N 1.0
IMUNOH N 2.0
               2
              2
IMUNOH N 3.0
SOROTIPO 1.0
               2
               2
SOROTIPO 2.0
SOROTIPO_3.0 2
SOROTIPO 4.0 2
```

Balanceamento:

CLASSI_FIN 0.0 328645 1.0 221152

Membros:

Ana Clara Almeida Moreira - **Contribuição**: Pré-processamento Daniel Oliveira Santiago da Silva - **Contribuição**: Pré-processamento

Emily Santos Sancho - Contribuição: Gestão de projeto

Felipe Carvalho Goes - Contribuição: Aprendizado de máquina e

Pré-processamento

João Vitor Moreira de Jesus - Contribuição: Pré-processamento