1、实验名称及目的

基础实验:在自稳模式的基础上改成定高模式。根据实验数据分析,与自稳模式相比, 多旋翼在定高模式下姿态和位置输出值的变化;完成硬件在环仿真。

2、实验原理

在四旋翼无人机中,自稳模式是基本的飞行模式,它旨在保持飞行器的姿态和位置稳定。而定高模式是在自稳模式的基础上增加了高度控制功能,使无人机能够在一定高度上进行定点悬停或飞行。

以下是根据实验数据分析,比较自稳模式和定高模式下四旋翼无人机的姿态和位置输出 值变化的原理:

姿态输出值变化:在自稳模式下,四旋翼无人机会根据传感器测量值和控制指令进行姿态调整。输出值通常表示无人机的姿态角(如滚转、俯仰和偏航角度)。在定高模式下,姿态输出值仍然会根据传感器和控制指令进行调整,但它们会受到高度控制的影响。如果无人机的高度与目标高度有偏差,控制系统会相应地调整姿态,以使无人机上升或下降来纠正高度偏差。

位置输出值变化:在自稳模式下,位置输出值通常指无人机的 GPS 坐标(经纬度)或相对于起始点的位置偏差。这些位置输出值主要用于导航和控制。在定高模式下,位置输出值同样会受到高度控制的影响。无人机的高度偏差将影响其位置调整。例如,如果无人机处于目标高度以下,则控制系统会调整位置输出值,以使无人机上升并保持在目标高度上。

详细内容请参考上层路径文献[3]第 11 讲_实验七_半自主控制模式设计实验.pptx,文献[4]第 13 讲_任务决策 V2.pptx。

3、实验效果

用遥控器解锁多旋翼,实现手动控制。使用遥控器控制四旋翼时,四旋翼的姿态与水平位置的表现与自稳模式相同,当油门摇杆回中时,四旋翼高度能保持稳定

4、文件目录

	文件夹/文件名称		说明
HIL	icon	FlightGear.png	FlightGear 硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
		vehicle_local_position.mat	
		F450.png	F450 飞机模型图片。
	HeightControl_HIL.slx		Simulink 仿真模型文件。
	Init_control.m		控制器初始化参数文件。
	icon	UE_Logo.jpg	UE 软件的 Logo
		Init.m	模型初始化参数文件。

		FlightGear.png	FlightGear 硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
Sim		SupportedVehicleTypes.pdf	机架类型修改说明文件。
		F450.png	F450 飞机模型图片。
	HeightControl_Sim.slx		Simulink 仿真模型文件。
	Init_control.m		控制器初始化参数文件。

5、运行环境

序号	软件要求	硬件要求	
万女 	状件安 水	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	Pixhawk 6C 飞控 ²	1
3	MATLAB 2017B 及以上	遥控器 ³	1
		遥控器接收器	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 天地飞 WFLY-ET10、配套接收器为: WFLY-RF209S。 遥控器相关配置见: http://doc.rflysim.com/hardware.html

6、软件仿真实验步骤

Step 1:

在 MATLAB 中, 打开 e7-SemiAutoCtrl\e7.2\Sim\Init_control.m 文件,点击运行初始化参数,"HeightControl Sim.slx"文件将会自动打开。

Step 2:

打开"*\桌面\RflyTools\RflySim3D.lnk"的 RflySim3D。

Step 3:

在 Simulink 中运行 HeightControl Sim.slx 文件。

Step 4:

运行"e7/e7.2/Sim/HeightControl_Sim.slx'文件。观察示波器结果可知,姿态和水平位置输出与自稳模式下相同,即姿态能保持稳定,而水平位置不能保持稳定,如下图所示。

当高度输入在1460~1540之间时,即油门摇杆在中间死区时,如下图所示。

可以看到高度波动很小误差在 ± 0.002 m 之间,可以认为高度保持稳定成立。当油门超过死区,如油门输入为 1600 时,可以看到沿 $o_e z_e$ 轴实际速度能够跟随期望速度并保持稳定,如下图所示。

高度持续升高,如下图所示。

7、硬件在环仿真实验步骤

Step 1:

在 MATLAB 中运行 e7-SemiAutoCtrl\e7.2\HIL\Init_control.m 文件,将自动打开 HeightC ontrol_HIL.slx 文件,在 Simulink 中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。


```
Could be described as the second as the seco
```

Step 4:

上传成功后, 打开 QGroundControl 软件。确认无人机机架及遥控器通设置如下:

Step 5:

遥控器的设置如下图。注:遥控器设置中,CH5 通道需设置为二段式开关,CH6 通道设置为三段式开关。

Step 6:

通过遥控器给定四旋翼一个期望的姿态,可以看到四旋翼能够快速跟踪上期望的姿态,当遥控器摇杆全部回中时,四旋翼姿态基本保持水平,在 RflySim3D 中按下快捷键 "T",即可显示飞机的轨迹线,可以看到四旋翼轨迹仍在移动,说明四旋翼位置在漂移。

8、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社, 2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.
- [3]. 第 11 讲_实验七_半自主控制模式设计实验.pptx.
- [4]. 第 13 讲_任务决策 V2.pptx.

9、常见问题

Q1: 无

A1: 无