Λήψη απόφασης σε πολυπρακτορικό περιβάλλον

Θεωρία Παιγνίων

Αβεβαιότητα παρουσία άλλου πράκτορα

- Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι βέβαιος για την επιτυχή έκβαση των ενεργειών του.
 - Η κατάσταση του περιβάλλοντος δεν εξαρτάται αποκλειστικά από τις ενέργειες ενός πράκτορα, αλλά από το συνδυασμό ενεργειών όλων των πρακτόρων που κατοικούν σε αυτό.
 - Ενδεχομένως, οι πράκτορες έχουν αντικρουόμενους στόχους (άρα και προτιμήσεις) η συνάρτηση χρησιμότητας είναι **ιδιωτική**.
 - Κλασικό παράδειγμα: τα παιχνίδια.

Θεωρία Παιγνίων

- Ένα παιχνίδι ορίζεται από
 - Τους παίκτες: ποιοί είναι οι πράκτορες που θα λάβουν αποφάσεις
 - Τις ενέργειες: ποιές είναι διαθέσιμες στους παίκτες (οι παίκτες μπορεί να έχουν κοινό ή και διαφορετικά σύνολα ενεργειών)
 - Τον **πίνακα απολαβών**: ποιά είναι η χρησιμότητα κάθε ενέργειας για κάθε παίκτη, λαμβάνοντας υπόψη και τις ενέργειες των υπολοίπων.
- Το ζητούμενο σε κάθε παιχνίδι είναι να αποφασίσει κάθε παίκτης ποιά ενέργεια να εκτελέσει, δηλαδή ποιά **στρατηγική** να ακολουθήσει.
- **Αμιγής στρατηγική**: μια αιτιοκρατική πολιτική που προσδιορίζει ποιά ενέργεια πρέπει να εκτελείται σε κάθε περίσταση. (σε παιχνίδια μιας κίνησης, η στρατηγική είναι μια και μόνο ενέργεια).
- **Μικτή στρατηγική**: μια τυχαιοποιημένη πολιτική που επιλέγει ενέργειες σύμφωνα με μια συγκεκριμένη κατανομή πιθανοτήτων επί του συνόλου των ενεργειών.
- Λύση ενός παιχνιδιού είναι ένα προφίλ στρατηγικών, δηλαδή η ανάθεση μιας ορθολογικής στρατηγικής σε κάθε παίκτη.

Παράδειγμα

• Δύο παίκτες, ο Αντώνης και ο Βασίλης, παίζουν το παιχνίδι μονά-ζυγά στο οποίο καλούνται να επιδείξουν ταυτόχρονα ένα ή δύο δάχτυλα. Έστω f ο συνολικός αριθμός δαχτύλων που επιδεικνύονται. Αν το f είναι περιττό, ο Αντώνης παίρνει f νομίσματα από το Βασίλη, ενώ αν το f είναι άρτιο, ο Αντώνης πληρώνει f νομίσματα στο Βασίλη.

• Πίνακας απολαβών;

Πίνακας απολαβών για το παιχνίδι μονά-ζυγά

	Αντώνης: Ε		Αντώνης: Δ
Βασίλης: Ε		-2	+3
	+2		-3
Βασίλης: Δ		+3	-4
	-3		+4

Πώς αποφασίζει ο καθένας ποιά ενέργεια να επιλέξει;

Προτιμήσεις πρακτόρων

	Αντώνης: Ε	Αντώνης: Δ
Βασίλης: Ε	-2	+3
	+2	-3
Βασίλης: Δ	+3	-4
	-3	+4

Κάθε δυνατό αποτέλεσμα του παιχνιδιού αναπαρίσταται ως διατεταγμένο ζεύγος της μορφής $<\alpha,\beta>$ όπου α η ενέργεια του Αντώνη και β η ενέργεια του Βασίλη.

Οι προτιμήσεις του Αντώνη για τα τέσσερα δυνατά αποτελέσματα του παιχνιδιού είναι

$$E, \Delta \approx \Delta, E \succ E, E \succ \Delta, \Delta$$

Οι προτιμήσεις του Βασίλη για τα τέσσερα δυνατά αποτελέσματα του παιχνιδιού είναι

$$\Delta, \Delta \succ E, E \succ \Delta, E \approx E, \Delta$$

Κυρίαρχη στρατηγική

	Αντώνης: Ε	Αντώνης: Δ
Βασίλης: Ε	-2	+3
	+2	-3
Βασίλης: Δ	+3	-4
	-3	+4

Προτιμήσεις Αντώνη: $E, \Delta \approx \Delta, E \succ E, E \succ \Delta, \Delta$

Προτιμήσεις Βασίλη: $\Delta, \Delta \succ E, E \succ \Delta, E \approx E, \Delta$

Αντώνης: Αν κάνω E τότε τα ενδεχόμενα αποτελέσματα είναι $E^*=\{(E,E),(E,\Delta)\}$ και αν κάνω Δ τότε τα ενδεχόμενα αποτελέσματα είναι $\Delta^*=\{(\Delta,E),(\Delta,\Delta)\}$.

Αν υπάρχει κυρίαρχη στρατηγική, αυτήν πρέπει να επιλέξει ο πράκτορας.

Μια στρατηγική σ1 κυριαρχεί ισχυρά επί μιας στρατηγικής σ2 αν κάθε ένα από τα αποτελέσματα σ1* είναι προτιμότερο από κάθε ένα από τα αποτελέσματα σ2* για έναν δεδομένο πράκτορα.

Ανάλυση χειρότερης περίπτωσης

	Αντώνης: Ε		Αντώνης: Δ
Βασίλης: Ε		-2	+3
	+2		-3
Βασίλης: Δ		+3	-4
	-3		+4

Αντώνης:

Αν κάνω Ε και ο Βασίλης κάνει Ε τότε κερδίζω –2 ενώ αν ο Βασίλης κάνει Δ τότε κερδίζω +3. Στη χειρότερη περίπτωση αν κάνω Ε, κερδίζω –2.

Αν κάνω Δ και ο Βασίλης κάνει Ε τότε κερδίζω +3 ενώ αν ο Βασίλης κάνει Δ τότε κερδίζω -4. Στη χειρότερη περίπτωση αν κάνω Δ κερδίζω -4. Οπότε, αφού το μέγιστο από τα ελάχιστα εγγυημένα κέρδη μου είναι -2, με συμφέρει να κάνω Ε.

Βασίλης:

Ισορροπία Nash

	Αντώνης: Ε	Αντώνης: Δ	
Βασίλης: Ε	-2	+3	
	+2	-3	
Βασίλης: Δ	+3	-4	
	-3	+4	

Έστω σ1 και σ2 οι στρατηγικές των δύο παικτών. Αυτές βρίσκονται σε ισορροπία Nash αν και μόνο αν:

Υποθέτοντας ότι ο ένας παίκτης κάνει σ1, τότε δεν υπάρχει τίποτα καλύτερο για τον άλλο παίκτη από το να κάνει σ2 και

Υποθέτοντας ότι ο δεύτερος παίκτης κάνει σ2, τότε δεν υπάρχει τίποτα καλύτερο για τον πρώτο παίκτη από το να κάνει σ1.

Η παρουσία ισορροπίας Nash απαντά στην ερώτηση «τι να κάνω» για έναν πράκτορα υπό οποιεσδήποτε συνθήκες. Δυστυχώς όμως

- Δεν έχουν όλα τα σενάρια αλληλεπίδρασης ισορροπία Nash
- Μερικά σενάρια αλληλεπίδρασης έχουν περισσότερες από μια ισορροπίες Nash.

Παιχνίδια μηδενικού αθροίσματος ή ανταγωνιστικά παιχνίδια

	Αντώνης: Ε	Αντώνης: Δ
Βασίλης: Ε	-2	2 +3
	+2	-3
Βασίλης: Δ	+(3 -4
	-3	+4

- Τα παιχνίδια μηδενικού αθροίσματος (ή ανταγωνιστικά παιχνίδια) είναι αυτά στα οποία οι απολαβές σε κάθε κελί του πίνακα έχουν άθροισμα μηδέν (όπως στο παράδειγμα παραπάνω).
- Στα ανταγωνιστικά παιχνίδια κάθε παίκτης μπορεί να βελτιώσει τη θέση του μόνο εις βάρος του άλλου.
- Τα ανταγωνιστικά παιχνίδια δεν έχουν ισορροπία Nash αμιγούς στρατηγικής, και απαιτούν να εξετάσουμε μικτές στρατηγικές.

Ασκήσεις

- [R&N] chapter 17.
 - 17.4
 - 17.10
 - 17.13