5장 경사 하강법

감사의 글

자료를 공개한 저자 오렐리앙 제롱과 강의자료를 지원한 한빛아카데미에게 진심어린 감사를 전합니다.

주요 내용

- 수학적으로 선형 회귀 모델 구하기
- 경사하강법으로 선형 회귀 모델 구하기
- 경사하강법 종류
 - 배치 경사하강법
 - 미니배치 경사하강법
 - 확률적 경사하강법(SGD)

선형 회귀

선형 회귀 모델 함수

• 한 개의 특성 x_1 을 사용하는 i 번째 훈련 샘플에 대한 예측값

$$\hat{y}^{(i)}= heta_0+ heta_1\,x_1^{(i)}$$

- n>1 개의 특성을 사용하는 i번째 훈련 샘플에 대한 예측값
 - 예제: 캘리포니아 주택 가격 예측 모델

$$\hat{y}^{(i)} = heta_0 + heta_1 \, x_1^{(i)} + \dots + heta_{16} \, x_{16}^{(i)}$$

- $\hat{y}^{(i)}$: i 번째 훈련 샘플에 대한 예측값
- ullet $x_k^{(i)}$: i 번째 훈련 샘플의 k 번째 특성값
- θ_k : 편향 (θ_0) 및 k 번째 특성에 대한 가중치 파라미터

비용함수: 평균 제곱 오차(MSE)

• MSE를 활용한 선형 회귀 모델 성능 평가

$$ext{MSE}(heta) := ext{MSE}(\mathbf{X}, h_{ heta}) = rac{1}{m} \sum_{i=1}^m \left(heta^T \, \mathbf{x^{(i)}} - y^{(i)}
ight)^2$$

• 목표: $\mathrm{MSE}(\theta)$ 가 최소가 되도록 하는 θ 찾기

- 방식 1: 정규방정식 또는 특이값 분해(SVD) 활용
 - ullet 드물지만 수학적으로 비용함수를 최소화하는 heta 값을 직접 계산할 수 있는 경우 활용
 - 계산복잡도가 $O(n^2)$ 이상인 행렬 연산을 수행해야 함.
 - 따라서 특성 수(n)이 큰 경우 메모리 관리 및 시간복잡도 문제때문에 비효율적임.
- 방식 2: 경사하강법
 - 특성 수가 매우 크거나 훈련 샘플이 너무 많아 메모리에 한꺼번에 담을 수 없을 때 적합
 - 일반적으로 선형 회귀 모델 훈련에 적용되는 기법

정규 방정식

정규 방정식을 이용하여 비용함수를 최소화 하는 θ 를 아래와 같이 구할 수 있음:

$$egin{array}{lll} \mathbf{X} \, heta = \mathbf{y} & \Rightarrow & \left((\mathbf{X}^T)^{-1} \mathbf{X}^T \right) \mathbf{X} \, heta = \mathbf{y} \\ & \Rightarrow & \left(\mathbf{X}^T \right)^{-1} \left(\mathbf{X}^T \, \mathbf{X} \right) \, heta = \mathbf{y} \\ & \Rightarrow & \left(\mathbf{X}^T \, \mathbf{X} \right) \, heta = \mathbf{X}^T \, \mathbf{y} \\ & \Rightarrow & \theta = \left(\mathbf{X}^T \, \mathbf{X} \right)^{-1} \, \mathbf{X}^T \, \mathbf{y} \end{array}$$

SVD(특잇값 분해) 활용

- 행렬 연산과 역행렬 계산은 계산 복잡도가 $O(n^{2.4})$ 이상이고 항상 역행렬 계산이 가능한 것도 아님.
- 반면에, 특잇값 분해를 활용하여 얻어지는 무어-펜로즈(Moore-Penrose) 유사 역행렬 ${f X}^+$ 계산 이 보다 효율적임. 계산 복잡도는 $O(n^2)$.

$$\hat{ heta} = \mathbf{X}^+\,\mathbf{y}$$

경사 하강법

기본 아이디어

- 훈련 세트를 이용한 훈련 과정 중에 가중치 등과 같은 파라미터를 조금씩 반복적으로 조정하기
- 조정 기준: 비용 함수의 크기 줄이기

경사 하강법 관련 주요 개념

최적 학습 모델

• 비용함수를 최소화하는 또는 효용함수를 최대화하는 파라미터를 사용하는 모델

파라미터

- 예측값을 생성하는 함수로 구현되는 학습 모델에 사용되는 파라미터
- 예제: 선형 회귀 모델에 사용되는 편향과 가중치 파라미터

$$\theta = \theta_0, \theta_1, \dots, \theta_n$$

비용함수

- 모델이 얼마나 나쁜지를 계산해주는 함수
- 예제: 선형 회귀 모델의 평균 제곱 오차(MSE)

$$ext{MSE}(heta) = rac{1}{m} \sum_{i=1}^m \left(heta^T \, \mathbf{x^{(i)}} - y^{(i)}
ight)^2$$

전역 최솟값

- 비용함수가 가질 수 있는 최솟값
- 예제: 선형 회귀 모델의 평균 제곱 오차(MSE) 함수가 갖는 최솟값

그레이디언트 벡터

- 다변수 함수의 미분값.
- (그레이디언트) 벡터는 방향과 크기에 대한 정보 제공
- 그레이디언트가 가리키는 방향의 반대 방향으로 움직여야 가장 빠르게 전역 최솟값에 접근
- 예제: 선형 회귀 MSE의 그레이디언트 벡터 $abla_{ heta} ext{MSE}(heta)$

$$abla_{ heta} ext{MSE}(heta) = egin{bmatrix} rac{\partial}{\partial heta_0} ext{MSE}(heta) \ rac{\partial}{\partial heta_1} ext{MSE}(heta) \ dots \ rac{\partial}{\partial heta_n} ext{MSE}(heta) \end{bmatrix} = rac{2}{m} \, extbf{X}^T \, (extbf{X} \, heta^T - extbf{y})$$

학습률

• 훈련 과정에서의 비용함수 파라미터 조정 비율

예제: 선형회귀 모델 파라미터 조정 과정

- θ 를 임의의 값으로 지정한 후 훈련 시작
- ullet 아래 단계를 heta가 특정 값에 지정된 오차범위 내로 수렴할 때까지 반복
 - 1. (배치 크기로) 지정된 수의 훈련 샘플을 이용하여 학습.
 - 2. 학습 후 $ext{MSE}(\theta)$ 계산.
 - 3. 이전 θ 에서 $\nabla_{\theta} \mathrm{MSE}(\theta)$ 과 학습률 η 를 곱한 값 빼기.

$$heta^{(ext{new})} = heta^{(ext{old})} \, - \, \eta \cdot
abla_{ heta} ext{MSE}(heta^{(ext{old})})$$

• 학습률이 너무 작은 경우: 비용 함수가 전역 최소값에 너무 느리게 수렴.

• 학습률이 너무 큰 경우: 비용 함수가 수렴하지 않음.

• (선형 회귀가 아닌 경우에) 시작점에 따라 지역 최솟값에 수렴하지 못할 수도 있음.

- 선형 회귀와 학습률
 - 비용함수(MSE)가 볼록 함수. 즉, 지역 최솟값을 갖지 않음
 - 따라서 학습률이 너무 크지 않으면 언젠가는 전역 최솟값에 수렴

경사 하강법 종류

배치 경사 하강법

- 전체 훈련 샘플을 대상으로 훈련한 후에, 즉 에포크마다 그레이디언트를 계산하여 파라미터 조정
- 훈련 세트가 크면 그레이디언트를 계산하는 데에 많은 시간 필요. 아주 많은 데이터를 저장해야 하는 메모리 문제도 발생 가능

확률적 경사 하강법

- 배치 크기: 1
- 즉, 하나의 훈련 샘플을 학습할 때마다 그레이디언트를 계산해서 파라미터 조정

미니배치 경사 하강법

- 배치 크기: 2에서 수백 사이
- 최적 배치 크기: 경우에 따라 다름. 여러 논문이 32 이하 추천

학습율과 경사 하강법의 관계

확률적 경사 하강법

- 장점
- 매우 큰 훈련 세트를 다룰 수 있음. 예를 들어, 외부 메모리(out-of-core) 학습을 활용할수 있음
- 학습 과정이 매우 빠르며 파라미터 조정이 불안정 할 수 있기 때문에 지역 최솟값에 상대 적으로 덜 민감
- 단점: 학습 과정에서 파라미터의 동요가 심해서 경우에 따라 전역 최솟값에 수렴하지 못하고 계속 해서 발산할 가능성도 높음

편향 vs 분산

- 편향(bias)
 - 실제로는 2차원 모델인데 1차원 모델을 사용하는 경우처럼 잘못된 가정으로 인해 발생.
 - 과소적합 발생 가능성 높음.
- 분산(variance)
 - 모델이 훈련 데이터에 민감하게 반응하는 정도
 - 고차 다항 회귀 모델의 경우 분산이 높아질 수 있음.
 - 과대적합 발생 가능성 높음.
- 편향과 분산의 트레이드 오프
 - 복잡한 모델일 수록 편향을 줄어들지만 분산을 커짐.