OSI и TCP/IP комуникационни модели

Референтен комуникационен модел OSI

- · Open Systems Interconnection
- Разработен от International Standards Organization, ISO (ISO 7489)
- Базов референтен модел
 - Обща основа за разработване на нови стандарти
 - Перспектива за съществуващите стандарти
 - Специфицира външно поведение на системи, чрез използване на референтни интерфейси.
 - Осигурява отвореност
- 7-слоен модел
- Теоретична система предоставена твърде късно!
- ТСР/ІР е де-факто стандарт!

OSI: PDU of Meh

7. APPLICATION LAYER
6. PRESENTATION LAYER
5. SESSION LAYER
4. TRANSPORT LAYER
3. NETWORK LAYER
2. DATA LINK LAYER
1. PHYSICAL LAYER

OSI: Слой 1

- Физически слой (Physical Layer, PHY):
 - Отговорен за физ. предаване на битове от един мрежов възел към следващия възел, съседен на него.
 - Предаване/приемане на <u>сигнали</u> по/от преносната среда
 - Характеристики и видове преносни среди
 - Преобразуване на сигнали (модулация и кодиране)
 - Синхронизация по битове
 - Мултиплексиране
 - Физически интерфейс между съседни устройства:
 - Механични характеристики
 - Електрически характеристики
 - Функционални спецификации
 - Процедурни спецификации
- Реализиран във всеки мрежов възел

OSI: Слой 2

- Канален слой (Data Link Layer, DLL):
 - Формиране на кадри (framing)
 - Организиране на битовете в кадри
 - Доставка на кадри между съседни възли
 - Адресация
 - Контрол на грешките
 - Т.е. осигуряване на комуникация без грешки (за по-горния слой)
 - Контрол на потока данни
 - Контрол на достъпа
 - Управление на канала
 - Активиране, поддържане и деактивиране на надежден канал.
- Реализиран във всеки мрежов възел

OSI: Слой 3

- Мрежов слой (Network Layer, NL):
 - Придвижване на <u>пакети</u> в рамките на мрежата (или интернет)
 - Взаимно свързване на мрежи (internetworking)
 - Адресация
 - Комутация (layer-3 switching)
 - Маршрутизация
 - Контрол на задръстванията
 - Контрол на качеството на облужване (QoS control)
- Реализиран във всеки мрежов възел

OSI: Слой 4

- Транспортен слой (Transport Layer, TL):
 - Обмен на данни между крайните възли (хостове)
 - (надеждна) Доставка на съобщения от край до край (E2E)
 - Е2Е контрол на грешките
 - Е2Е контрол на потока (и буфериране)
 - (по възмойност) Доставка на съобщения в правилен ред
 - (по възмойност) Без загуби на съобщения
 - (по възмойност) Без дублиране на съобщения
 - E2E контрол на качесвото на обслужване (E2E QoS control)
 - Адресация
 - Сегментация и десегментация
 - Възстановяване след срив в мрежата или в хостовете
- Реализиран само в крайните възли (хостовете)!

OSI: Слой 5

- Сесиен слой (Session Layer, SL)
 - Създаване, управление и прекратяване на логически комуникационни сесии
 - Контрол на диалога между приложенията
 - Диалогова дисциплина (полу-дуплекс или пълен дуплекс)
 - Управление с жетони
 - Възстановяване на сесии с помощта на контролни точки за синхронизация
 - Управление на ресурси
- Реализиран само в крайните възли (хостовете)!
 - Съществува само в някои системи!
 - Абсорбиран от приложния слой в новите стандарти/системи!

OSI: Слой 6

- Представителен слой (Presentation Layer, **PL**)
 - Формати и кодове за обмен на данни
 - Преобразуване на синтаксиса
- Реализиран <u>само</u> в крайните възли (хостовете)!
- Абсорбиран от приложния слой в новите стандарти/системи!

OSI: Слой 7

- Приложен слой (Application Layer, APP)
 - Комуникация между приложения/процеси
 - Интерфейс за приложенията за достъп до OSI средата
 - Специфични приложения с общо предназначение
 - Трансфер на файлове (FTAM), електронна поща (X.400), отдалечено влизане и работа със система (VT)...
- Реализиран само в крайните възли (хостовете)!

OSI: Заключение

- Това е референтен модел, така че:
 - Не е задължително всички функции или всички слоеве да се използват на практика
 - Често функциите на слоевете се обединяват
 - Обикновено се използват само 4-5 слоя
 - Много добър модел за дизайн на мрежови протоколи, но много лош – за прилагането им.
 - Много добър референтен модел!
 - Отлична основа за преподаване и разбиране на мрежови концепции

ТСР/ІР модел

TCP/IP модел (1)

- Доминираща комерсиална протоколна архитектура
- Специфициран и широко използван преди OSI
- Разработен от US Defense Advanced Research Project Agency (DARPA) за нейната мрежа с комутация на пакети (ARPANET)
- Използван от Интернет
- 4/5 слоя (оригиналният ТСР/IР модел е дефиниран с 4 софтуерни слоя; днес обаче за ТСР/IР се мисли като за 5-слоен модел, като имената на слоевете са аналогични на тези в модела OSI):
 - Приложен слой (АРР)
 Транспортен слой (ТСР)
 Мрежов слой (IP)
 Канален слой (DLL)
 Физически слой (РНУ)
- Комуникацията между несъседни слоеве е позволена!
 - Не е стриктна йерархия!

