Eksperyment obsługi wyjątków

Wyniki testu od 1 do 10000 iteracji

Iterations	Throws method /0	Try method /0	Throws method (ArrayIndex)	Try method (ArrayIndex)	Iterations				
1	57600	12800	34200	9300	1				
100	569600	525700	833600	626500	100				
1000	8059000	8017800	6137300	5970200	1000				
10000	11340000	45329300	9083800	31056900	10000				

WYKRES DLA WYJĄTKU

Wnioski

- Z wykresów można wnioskować, że na krótkich przedziałach do 1000 iteracji wygrywa obsługa wyjątków try catch wewnątrz wyjątkowej metody, lecz po 1000 iteracji metoda deklarująca wyjątek (throws) zaczyna wyprzedzać try-catch, i na 10 000 iteracji możemy zobaczyć, że wyprzedza ona znacznie. Też, analizując eksperyment, dodawałem iteracji po kolei, zaczynając od 1 do 10 iteracji, i wnioskowałem że czas wykonania try-catch znacznie rośnie w porównaniu z czasem wykonania throws.
- Mówiąc o różnych wyjątkach, możemy zobaczyć że ta tendencja jest ogólna dla dwóch różnych wyjątków (ArithmeticsExeption oraz ArrayOutOfBoundExeption), a też że czas obsługi wyjątków się różni, czyli czas obsługi wyjątku ArithmeticExeption jest większy za 1, 1 000, 10 000 iter. Czyli w tym przykładzie obsługa wyjątku ArrayOutOfBoundsExeption była szybciej niż wyjątku ArithmeticExeption.