Hierarchy of languages

Non-Recursively Enumerable Languages

Deterministic Finite State Automata (DFA)

- One-way, infinite tape, broken into cells
- One-way, read-only tape head.
- Finite control, i.e.,
 - finite number of states, and
 - transition rules between them, i.e.,
 - a program, containing the position of the read head, current symbol being scanned,
 and the current "state."
- A string is placed on the tape, read head is positioned at the left end, and the DFA will read the string one symbol at a time until all symbols have been read. The DFA will then either *accept* or *reject* the string. 2

- The finite control can be described by a <u>transition diagram</u> or <u>table</u>:
- Example #1:

- One state is final/accepting, all others are rejecting.
- The above DFA accepts those strings that contain an even number of 0's, including the *null* string, over $Sigma = \{0,1\}$

L = {all strings with zero or more 0's}

Note, the DFA must reject all other strings

Note:

- Machine is for accepting a language, language is the purpose!
- Many equivalent machines may accept the same language, but a machine cannot accept multiple languages!

• Id's of the characters or states are irrelevant, you can call them by any names!

Sigma =
$$\{0, 1\} \equiv \{a, b\}$$

States = $\{q0, q1\} \equiv \{u, v\}$, as long as they have
identical (isomorphic) transition table

• An equivalent machine to the previous example (DFA for even number of 0's):

- One state is final/accepting, all others are rejecting.
- The above DFA accepts those strings that contain an even number of 0's, including null string, over $Sigma = \{0,1\}$
- Can you draw a machine for a language by excluding the null string from the language? L = {all strings with 2 or more 0's}

• Example #2:

• Accepts those strings that contain at least two c's

Inductive Proof (sketch): that the machine correctly accepts strings with at least two c's *Proof goes over the length of the string*.

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x| = integer k, & string x is rejected - in state q0 (x must have zero x),

OR, rejected – in state q1 (x must have one c),

OR, accepted – in state q2 (x has already with two c's)

Inductive steps: Each case for symbol p, for string xp(|xp| = k+1), the last symbol p = a, b or c

	xa	xb	xc
x ends in q0	q0 =>reject	q0 =>reject	q1 =>reject
	(still zero c =>	(still zero c =>	(still zero c =>
	should reject)	should reject)	should reject)
x ends in q1	q1 =>reject	q1 =>reject	q2 =>accept
	(still one c => should	(still one c => should	(two c now=>
	reject)	reject)	should accept)
x ends in q2	q2 =>accept	q2 =>accept	q2 =>accept
	(two c already =>	(two c already =>	(two c already =>
	should accept)	should accept)	should accept)

Formal Definition of a DFA

• A DFA is a five-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, which is a total function from Q x Σ to Q

$$δ: (Q \times Σ) \rightarrow Q$$
 $δ$ is defined for any q in Q and s in Σ, and $δ(q,s) = q'$ is equal to some state q' in Q, could be q'=q

Intuitively, $\delta(q,s)$ is the state entered by M after reading symbol s while in state q.

• Revisit example #1:

$$Q = \{q_0, q_1\}$$

$$\Sigma = \{0, 1\}$$
Start state is q_0

$$F = \{q_0\}$$

δ:

	0	1
q_0	q_1	q_0
q_1	q_0	q_1

• Revisit example #2:

δ:		a	b	c
	q_0	q_0	q_0	q_1
	q_1	q_1	q_1	q_2
	q_2	q_2	q_2	q_2

- Since δ is a function, at each step M has exactly one option.
- It follows that for a given string, there is exactly one computation.

Extension of δ to Strings

$$\delta^{\wedge}: (Q \times \Sigma^*) \rightarrow Q$$

 $\delta'(q,w)$ – The state entered after reading string w having started in state q.

Formally:

- 1) $\delta'(q, \varepsilon) = q$, and
- 2) For all w in Σ^* and a in Σ

$$\delta^{\wedge}(q,wa) = \delta(\delta^{\wedge}(q,w), a)$$

Recall Example #1: $\begin{array}{c} 1 \\ \hline q_0 \\ \hline \end{array}$

- What is $\delta'(q_0, 011)$? Informally, it is the state entered by M after processing 011 having started in state q_0 .
- Formally:

$$\begin{split} \delta^{\wedge}(q_0,011) &= \delta \left(\delta^{\wedge}(q_0,01),1\right) & \text{by rule } \#2 \\ &= \delta \left(\delta \left(\delta^{\wedge}(q_0,0),1\right),1\right) & \text{by rule } \#2 \\ &= \delta \left(\delta \left(\delta \left(\delta^{\wedge}(q_0,\lambda),0\right),1\right),1\right) & \text{by rule } \#2 \\ &= \delta \left(\delta \left(\delta \left(q_0,0\right),1\right),1\right) & \text{by rule } \#1 \\ &= \delta \left(\delta \left(q_1,1\right),1\right) & \text{by definition of } \delta \\ &= \delta \left(q_1,1\right) & \text{by definition of } \delta \\ &= q_1 & \text{by definition of } \delta \end{split}$$

• Is 011 accepted? No, since $\delta'(q_0, 011) = q_1$ is not a final state.

• Note that:

$$\delta^{\wedge}(q,a) = \delta(\delta^{\wedge}(q,\epsilon), a)$$
 by definition of δ^{\wedge} , rule #2
= $\delta(q,a)$ by definition of δ^{\wedge} , rule #1

• Therefore:

$$\delta^{\wedge}(q, a_1 a_2 \dots a_n) = \delta(\delta(\dots \delta(\delta(q, a_1), a_2) \dots), a_n)$$

• However, we will abuse notations, and use δ in place of δ [^]:

$$\delta'(q, a_1 a_2 ... a_n) = \delta(q, a_1 a_2 ... a_n)$$

• Example #3:

- What is $\delta(q_0, 011)$? Informally, it is the state entered by M after processing 011 having started in state q_0 .
- Formally:

$$\delta(q_0, 011) = \delta (\delta(q_0, 01), 1)$$
 by rule #2
$$= \delta (\delta (\delta(q_0, 0), 1), 1)$$
 by rule #2
$$= \delta (\delta (q_1, 1), 1)$$
 by definition of δ

$$= \delta (q_1, 1)$$
 by definition of δ
by definition of δ

- Is 011 accepted? No, since $\delta(q_0, 011) = q_1$ is not a final state.
- Language?
- L = { all strings over $\{0,1\}$ that has 2 or more θ symbols}

• Recall Example #3:

• What is $\delta(q_1, 10)$?

$$\delta(q_1, 10) = \delta (\delta(q_1, 1), 0)$$
 by rule #2

$$= \delta (q_1, 0)$$
 by definition of δ

$$= q_2$$
 by definition of δ

• Is 10 accepted? No, since $\delta(q_0, 10) = q_1$ is not a final state. The fact that $\delta(q_1, 10) = q_2$ is irrelevant, q1 is not the start state!

Definitions related to DFAs

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let w be in Σ^* . Then w is *accepted* by M iff $\delta(q_0, w) = p$ for some state p in F.
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then the *language accepted* by M is the set:

$$L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(q_0, w) \text{ is in } F\}$$

• Another equivalent definition:

$$L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M\}$$

- Let L be a language. Then L is a *regular language* iff there exists a DFA M such that L = L(M).
- Let $M_1 = (Q_1, \Sigma_1, \delta_1, q_0, F_1)$ and $M_2 = (Q_2, \Sigma_2, \delta_2, p_0, F_2)$ be DFAs. Then M_1 and M_2 are *equivalent* iff $L(M_1) = L(M_2)$.

• Notes:

- A DFA $M = (Q, \Sigma, \delta, q_0, F)$ partitions the set Σ^* into two sets: L(M) and Σ^* L(M).
- If L = L(M) then L is a subset of L(M) and L(M) is a subset of L (def. of set equality).
- Similarly, if $L(M_1) = L(M_2)$ then $L(M_1)$ is a subset of $L(M_2)$ and $L(M_2)$ is a subset of $L(M_1)$.
- Some languages are regular, others are not. For example, if

Regular: $L_1 = \{x \mid x \text{ is a string of 0's and 1's containing an even number of 1's}$ and

Not-regular:
$$L_2 = \{x \mid x = 0^n 1^n \text{ for some } n \ge 0\}$$

- Can you write a program to "simulate" a given DFA, or any arbitrary input DFA?
- Question we will address later:
 - How do we determine whether or not a given language is regular?

• Give a DFA M such that:

$$L(M) = \{x \mid x \text{ is a string of 0's and 1's and } |x| \ge 2\}$$

Prove this by induction

Give a DFA M such that:

 $L(M) = \{x \mid x \text{ is a string of (zero or more) a's, b's and c's such that x does$ *not* $contain the substring <math>aa\}$

Logic:

In Start state (q0): b's and c's: ignore – stay in same state q0 is also "accept" state

First 'a' appears: get ready (q1) to reject

But followed by a 'b' or 'c': go back to start state q0

When second 'a' appears after the "ready" state: go to reject state q2

Ignore everything after getting to the "reject" state q2

Give a DFA M such that:

 $L(M) = \{x \mid x \text{ is a string of a's, b's and c's such that } x$ contains the substring $aba\}$

Logic: acceptance is straight forward, progressing on each expected symbol

However, rejection needs special care, in each state (for DFA, we will see this becomes easier in NFA, non-deterministic machine)

• Give a DFA M such that:

 $L(M) = \{x \mid x \text{ is a string of a's and b's such that } x$ contains both aa and $bb\}$

First do, for a language where 'aa' comes before 'bb' Then do its reverse; and then parallelize them.

Remember, you may have multiple "final" states, but only one "start" state

• Let $\Sigma = \{0, 1\}$. Give DFAs for $\{\}, \{\epsilon\}, \Sigma^*, \text{ and } \Sigma^+$.

For { }:

For $\{\epsilon\}$:

For Σ^* :

For Σ^+ :

• Problem: Third symbol from last is 1

Is this a DFA?

No, but it is a Non-deterministic Finite Automaton

Nondeterministic Finite State Automata (NFA)

• An NFA is a five-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, which is a total function from Q x Σ to 2^Q

$$\delta$$
: $(Q \times \Sigma) \rightarrow \mathbf{2}^Q$:2 Q is the power set of Q , the set of all subsets of Q :The set of all states P such that there is a transition labeled P from Q to P

 $\delta(q,s)$ is a function from Q x S to 2^Q (but not only to Q)

• Example #1: one or more 0's followed by one or more 1's

δ:	0	1
q_0	$\{q_0, q_1\}$	{}
q_1	{}	$\{q_1, q_2\}$
q_2	{q ₂ }	{q ₂ }

• Example #2: pair of 0's *or* pair of 1's as substring

• Notes:

- $\delta(q,s)$ may not be defined for some q and s (what does that mean?)
- $\delta(q,s)$ may map to multiple q's
- A string is said to be accepted if there exists a path from q_0 to some state in F
- A string is rejected if there exist NO path to any state in F
- The language accepted by an NFA is the set of all accepted strings
- Question: How does an NFA find the correct/accepting path for a given string?
 - NFAs are a non-intuitive computing model
 - You may use backtracking to find if there exists a path to a final state (following slide)

Why NFA?

- We are *primarily* interested in NFAs as language defining capability, i.e., do NFAs accept languages that DFAs do not?
- Other secondary questions include practical ones such as whether or not NFA is easier to develop, or how does one implement NFA

• Determining if a given NFA (example #2) accepts a given string (001) can be done algorithmically:

• Each level will have at most *n* states:

Complexity: O(|x|*n), for running over a string x

• Another example (010):

not accepted

• All paths have been explored, and none lead to an accepting state.

- Question: Why non-determinism is useful?
 - Non-determinism = Backtracking
 - Compressed information
 - Non-determinism hides backtracking
 - Programming languages, e.g., Prolog, hides backtracking => Easy to
 program at a higher level: what we want to do, rather than how to do it
 - Useful in algorithm complexity study
 - Is NDA more "powerful" than DFA, i.e., accepts type of languages that any DFA cannot?

• Let $\Sigma = \{a, b, c\}$. Give an NFA M that accepts:

 $L = \{x \mid x \text{ is in } \Sigma^* \text{ and } x \text{ contains } ab\}$

Is L a subset of L(M)? Or, does M accepts all string in L? Is L(M) a subset of L? Or, does M rejects all strings not in L?

- Is an NFA necessary? Can you draw a DFA for this L?
- Designing NFAs is not as trivial as it seems: easy to create bug accepting string outside language

• Let $\Sigma = \{a, b\}$. Give an NFA M that accepts:

 $L = \{x \mid x \text{ is in } \Sigma^* \text{ and the third to the last symbol in } x \text{ is } b\}$

Is L a subset of L(M)?

Is L(M) a subset of L?

Give an equivalent DFA as an exercise.

Extension of δ to Strings and Sets of States

- What we currently have: $\delta: (Q \times \Sigma) \rightarrow 2^Q$
- What we want (why?): $\delta: (2^Q \times \Sigma^*) \rightarrow 2^Q$
- We will do this in two steps, which will be slightly different from the book, and we will make use of the following NFA.

Extension of δ to Strings and Sets of States

• Step #1:

Given δ : $(Q \times \Sigma) \rightarrow 2^Q$ define $\delta^{\#}$: $(2^Q \times \Sigma) \rightarrow 2^Q$ as follows:

1)
$$\delta^{\#}(R, a) = \bigcup_{q \in R} \delta(q, a)$$
 for all subsets R of Q, and symbols a in Σ

• Note that:

$$\delta^{\#}(\{p\},a) = \bigcup_{\substack{q \in \{p\} \\ = \delta(p, a)}} \delta(q, a)$$

by definition of $\delta^{\#}$, rule #1 above

• Hence, we can use δ for δ [#]

$$\delta(\{q_0, q_2\}, 0)$$

 $\delta(\{q_0, q_1, q_2\}, 0)$

These now make sense, but previously they did not.

• Example:

$$\delta(\{q_0, q_2\}, 0) = \delta(q_0, 0) \cup \delta(q_2, 0)$$
$$= \{q_1, q_3\} \cup \{q_3, q_4\}$$
$$= \{q_1, q_3, q_4\}$$

$$\delta(\{q_0, q_1, q_2\}, 1) = \delta(q_0, 1) U \delta(q_1, 1) U \delta(q_2, 1)$$

$$= \{\} U \{q_2, q_3\} U \{\}$$

$$= \{q_2, q_3\}$$

• Step #2:

Given δ : $(2^Q \times \Sigma) \rightarrow 2^Q$ define δ^* : $(2^Q \times \Sigma^*) \rightarrow 2^Q$ as follows:

 $\delta^{\prime}(R,w)$ – The set of states M could be in after processing string w, having started from any state in R.

Formally:

2)
$$\delta^{\prime}(R, \varepsilon) = R$$

3)
$$\delta'(R,wa) = \delta(\delta'(R,w), a)$$

for any subset R of Q for any w in Σ^* , a in Σ , and subset R of Q

Note that:

$$\delta^{\wedge}(R, a) = \delta(\delta^{\wedge}(R, \epsilon), a)$$
$$= \delta(R, a)$$

• Hence, we can use δ for δ ^

$$\delta(\{q_0, q_2\}, 0110)$$

 $\delta(\{q_0, q_1, q_2\}, 101101)$

These now make sense, but previously they did not.

What is $\delta(\{q_0\}, 10)$?

Informally: The set of states the NFA could be in after processing 10, having started in state q_0 , i.e., $\{q_1, q_2, q_3\}$.

Formally:
$$\delta(\{q_0\}, 10) = \delta(\delta(\{q_0\}, 1), 0)$$
$$= \delta(\{q_0\}, 0)$$
$$= \{q_1, q_2, q_3\}$$

Is 10 accepted? Yes!

What is $\delta(\{q_0, q_1\}, 1)$?

$$\delta(\{q_0, q_1\}, 1) = \delta(\{q_0\}, 1) \cup \delta(\{q_1\}, 1)$$
$$= \{q_0\} \cup \{q_2, q_3\}$$
$$= \{q_0, q_2, q_3\}$$

What is $\delta(\{q_0, q_2\}, 10)$?

$$\begin{split} \delta(\{q_0\,,\,q_2\},\,10) &= \delta(\delta(\{q_0\,,\,q_2\},\,1),\,0) \\ &= \delta(\delta(\{q_0\},\,1)\,\,U\,\,\delta(\{q_2\},\,1),\,0) \\ &= \delta(\{q_0\}\,\cup\,\{q_3\},\,0) \\ &= \delta(\{q_0,q_3\},\,0) \\ &= \delta(\{q_0\},\,0)\,\cup\,\delta(\{q_3\},\,0) \\ &= \{q_1,\,q_2,\,q_3\}\,\cup\,\{\} \\ &= \{q_1,\,q_2,\,q_3\} \end{split}$$

```
\begin{split} \delta(\{q_0\},\,101) &= \delta(\delta(\{q_0\},\,10),\,1) \\ &= \delta(\delta(\{q_0\},\,1),\,0),\,1) \\ &= \delta(\delta(\{q_0\},\,0),\,1) \\ &= \delta(\{q_1\,,\,q_2,\,q_3\},\,1) \\ &= \delta(\{q_1\},\,1)\,U\,\delta(\{q_2\},\,1)\,U\,\delta(\{q_3\},\,1) \\ &= \{q_2,\,q_3\}\,U\,\{q_3\}\,U\,\{\} \\ &= \{q_2,\,q_3\} \end{split}
```

Is 101 accepted? Yes! q₃ is a final state.

Definitions for NFAs

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let w be in Σ^* . Then w is accepted by M iff $\delta(\{q_0\}, w)$ contains at least one state in F.
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA. Then the *language accepted* by M is the set:

 $L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(\{q_0\}, w) \text{ contains at least one state in } F\}$

Another equivalent definition:

 $L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M\}$

Equivalence of DFAs and NFAs

- Do DFAs and NFAs accept the same *class* of languages?
 - Is there a language L that is accepted by a DFA, but not by any NFA?
 - Is there a language L that is accepted by an NFA, but not by any DFA?
- Observation: Every DFA is an NFA, DFA is only restricted NFA.
- Therefore, if L is a regular language then there exists an NFA M such that L = L(M).
- It follows that NFAs accept all regular languages.
- But do NFAs accept more?

• Consider the following DFA: 2 or more c's

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b, c\}$$

$$Start state is q_0$$

$$F = \{q_2\}$$

$$b$$

$$\frac{a/b/c}{q_1}$$

$$\frac{a}{q_2}$$

δ:		a	b	c
	q_0	q_0	q_0	q_1
	q_1	q_1	q_1	q_2
	q_2	q_2	q_2	q_2

• An Equivalent NFA:

δ:	a	b	c
q_0	$\{q_0\}$	$\{q_0\}$	{q ₁ }
\mathbf{q}_1	{q ₁ }	{q ₁ }	{q ₂ }
q_2	{q ₂ }	{q ₂ }	{q ₂ }

- Lemma 1: Let M be an DFA. Then there exists a NFA M' such that L(M) = L(M').
- **Proof:** Every DFA is an NFA. Hence, if we let M' = M, then it follows that L(M') = L(M).

The above is just a formal statement of the observation from the previous slide.

- Lemma 2: Let M be an NFA. Then there exists a DFA M' such that L(M) = L(M').
- **Proof:** (sketch)

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
.

Define a DFA M' = $(Q', \Sigma, \delta', q_0, F')$ as:

$$Q' = 2^{Q}$$

= $\{Q_0, Q_1,...,\}$

Each state in M' corresponds to a subset of states from M

where
$$Q_u = [q_{i0}, q_{i1}, ... q_{ij}]$$

 $F' = \{Q_u \mid Q_u \text{ contains at least one state in } F\}$

$$q'_0 = [q_0]$$

$$\delta'(Q_u, a) = Q_v \text{ iff } \delta(Q_u, a) = Q_v$$

• Example: empty string or start and end with 0

δ:		0	1
	q_0	$\{q_1\}$	{}
	q_1	$\{q_0, q_1\}$	{q ₁ }

Example of creating a DFA out of an NFA (as per the constructive

• Example of creating a DFA out of an NFA (as per the constructive proof):

δ:

 $\{q_0,q_1\}$

write as

 $[q_{01}]$

 $[q_1]$

 $[\]$

 $[q_{01}]$

 $\{q_1\}$

• Example of creating a DFA out of an NFA (as per the constructive proof):

δ:

• Example of creating a DFA out of an NFA (as per the constructive proof):

[]

 $[q_1]$

[]

 $[q_{01}]$

 $[q_{01}]$

{}

 $\{q_1\}$

Construct DFA M' as follows:

• **Theorem:** Let L be a language. Then there exists an DFA M such that L = L(M) iff there exists an NFA M' such that L = L(M').

Proof:

(if) Suppose there exists an NFA M' such that L = L(M'). Then by Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M). Then by Lemma 1 there exists an NFA M' such that L = L(M').

• Corollary: The NFAs define the regular languages.

• Note: Suppose $R = \{\}$

$$\begin{split} \delta(R,0) &= \delta(\delta(R,\epsilon),0) \\ &= \delta(R,0) \\ &= \bigcup_{q \in R} \delta(q,0) \\ &= \{\} \end{split} \qquad \text{Since } R = \{\} \end{split}$$

• Exercise - Convert the following NFA to a DFA:

$$Q = \{q_0, q_1, q_2\} \qquad \delta \colon \qquad 0 \qquad 1$$

$$\Sigma = \{0, 1\}$$
 Start state is q_0
$$q_0 \qquad \{q_0, q_1\} \qquad \{\}$$

$$q_1 \qquad \{q_1\} \qquad \{q_2\}$$

$$q_2 \qquad \{q_2\} \qquad \{q_2\}$$

• Problem: Third symbol from last is 1

Now, can you convert this NFA to a DFA?

NFAs with ε Moves

• An NFA- ε is a five-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, which is a total function from Q x Σ U $\{\epsilon\}$ to 2^Q

$$δ: (Q \times (\Sigma \cup {\epsilon})) \rightarrow 2^Q$$

 $δ(q,s)$

-The set of all states p such that there is a transition labeled a from q to p, where a is in Σ U $\{\epsilon\}$

• Sometimes referred to as an NFA-ε other times, simply as an NFA.

δ: 0 3 q_0 $\{q_0\}$ $\{q_1\}$ \mathbf{q}_1 $\{q_1, q_2\}$ $\{q_0, q_3\}$ $\{q_2\}$ { } $\{q_2\}$ $\{q_2\}$ q_2 { } { } { } q_3

- A string $w = w_1 w_2 ... w_n$ is processed as $w = \varepsilon^* w_1 \varepsilon^* w_2 \varepsilon^* ... \varepsilon^* w_n \varepsilon^*$
- Example: all computations on 00:

Informal Definitions

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA- ϵ .
- A String w in Σ^* is *accepted* by M iff there exists a path in M from q_0 to a state in F labeled by w and zero or more ε transitions.
- The language accepted by M is the set of all strings from Σ^* that are accepted by M.

E-closure

- Define ε-closure(q) to denote the set of all states reachable from q by zero or more ε transitions.
- Examples: (for the previous NFA)

$$\begin{array}{ll} \epsilon\text{-closure}(q_0) = \{q_0, \, q_1, \, q_2\} & \epsilon\text{-closure}(q_2) = \{q_2\} \\ \epsilon\text{-closure}(q_1) = \{q_1, \, q_2\} & \epsilon\text{-closure}(q_3) = \{q_3\} \end{array}$$

• ε-closure(q) can be extended to sets of states by defining:

$$\epsilon\text{-closure}(P) = \bigcup_{q \in P} \epsilon\text{-closure}(q)$$

• Examples:

$$\epsilon$$
-closure($\{q_1, q_2\}$) = $\{q_1, q_2\}$
 ϵ -closure($\{q_0, q_3\}$) = $\{q_0, q_1, q_2, q_3\}$

Extension of δ to Strings and Sets of States

- What we currently have: $\delta : (Q \times (\Sigma \cup \{\epsilon\})) \rightarrow 2^Q$
- What we want (why?):

- $\delta: (2^{Q} \times \Sigma^{*}) \rightarrow 2^{Q}$
- As before, we will do this in two steps, which will be slightly different from the book, and we will make use of the following NFA.

• Step #1:

Given
$$\delta$$
: $(Q \times (\Sigma \cup \{\epsilon\})) \rightarrow 2^Q$ define $\delta^{\#}$: $(2^Q \times (\Sigma \cup \{\epsilon\})) \rightarrow 2^Q$ as follows:

- 1) $\delta^{\#}(R, a) = \bigcup_{q \in R} \delta(q, a)$ for all subsets R of Q, and symbols a in $\Sigma \cup \{\epsilon\}$
- Note that:

$$\delta^{\#}(\{p\},a) = \bigcup_{q \in \{p\}} \delta(q, a)$$
 by definition of $\delta^{\#}$, rule #1 above $= \delta(p, a)$

• Hence, we can use δ for δ [#]

$$\delta(\{q_0, q_2\}, 0)$$

 $\delta(\{q_0, q_1, q_2\}, 0)$

These now make sense, but previously they did not.

What is $\delta(\{q_0, q_1, q_2\}, 1)$?

$$\delta(\{q_0, q_1, q_2\}, 1) = \delta(q_0, 1) U \delta(q_1, 1) U \delta(q_2, 1)$$

$$= \{ \} U \{q_0, q_3\} U \{q_2\}$$

$$= \{q_0, q_2, q_3\}$$

What is $\delta(\{q_0, q_1\}, 0)$?

$$\delta(\{q_0, q_1\}, 0) = \delta(q_0, 0) \cup \delta(q_1, 0)$$
$$= \{q_0\} \cup \{q_1, q_2\}$$
$$= \{q_0, q_1, q_2\}$$

• Step #2:

Given
$$\delta$$
: $(2^Q \times (\Sigma \cup \{\epsilon\})) \rightarrow 2^Q$ define δ ^{*}: $(2^Q \times \Sigma^*) \rightarrow 2^Q$ as follows:

 $\delta^{\hat{}}(R,w)$ – The set of states M could be in after processing string w, having starting from any state in R.

Formally:

- 2) $\delta'(R, \varepsilon) = \varepsilon$ -closure(R) for any subset R of Q
- 3) $\delta^{\wedge}(R,wa) = \epsilon\text{-closure}(\delta(\delta^{\wedge}(R,w), a))$ for any w in Σ^{*} , a in Σ , and subset R of Q

• Can we use δ for δ ?

Consider the following example:

$$\begin{split} \delta(\{q_0\},0) &= \{q_0\} \\ \delta^{\wedge}(\{q_0\},0) &= \epsilon\text{-closure}(\delta(\delta^{\wedge}(\{q_0\},\epsilon),0)) & \text{By rule $\#3$} \\ &= \epsilon\text{-closure}(\delta(\epsilon\text{-closure}(\{q_0\}),0)) & \text{By rule $\#2$} \\ &= \epsilon\text{-closure}(\delta(\{q_0,q_1,q_2\},0)) & \text{By $\epsilon\text{-closure}$} \\ &= \epsilon\text{-closure}(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0)) & \text{By rule $\#1$} \\ &= \epsilon\text{-closure}(\{q_0\} \cup \{q_1,q_2\} \cup \{q_2\}) \\ &= \epsilon\text{-closure}(\{q_0,q_1,q_2\}) \\ &= \epsilon\text{-closure}(\{q_0\}) \cup \epsilon\text{-closure}(\{q_1\}) \cup \epsilon\text{-closure}(\{q_2\}) \\ &= \{q_0,q_1,q_2\} \cup \{q_1,q_2\} \cup \{q_2\} \\ &= \{q_0,q_1,q_2\} \end{split}$$

• So what is the difference?

 $\delta(q_0, 0)$ - Processes 0 as a single symbol, without ϵ transitions.

 $δ^{(q_0, 0)}$ - Processes 0 using as many ε transitions as are possible.

```
\begin{split} \delta^{\wedge}(\{q_{0}\},\,01) &= \epsilon\text{-closure}(\delta(\delta^{\wedge}(\{q_{0}\},\,0),\,1)) & \text{By rule } \#3 \\ &= \epsilon\text{-closure}(\delta(\{q_{0},\,q_{1},\,q_{2}\}),\,1) & \text{Previous slide} \\ &= \epsilon\text{-closure}(\delta(q_{0},\,1)\,\,U\,\,\delta(q_{1},\,1)\,\,U\,\,\delta(q_{2},\,1)) & \text{By rule } \#1 \\ &= \epsilon\text{-closure}(\{\,\}\,\,U\,\,\{q_{0},\,q_{3}\}\,\,U\,\,\{q_{2}\}) \\ &= \epsilon\text{-closure}(\{q_{0},\,q_{2},\,q_{3}\}) \\ &= \epsilon\text{-closure}(\{q_{0}\})\,\,U\,\,\epsilon\text{-closure}(\{q_{2}\})\,\,U\,\,\epsilon\text{-closure}(\{q_{3}\}) \\ &= \{q_{0},\,q_{1},\,q_{2}\}\,\,U\,\,\{q_{2}\}\,\,U\,\,\{q_{3}\} \\ &= \{q_{0},\,q_{1},\,q_{2},\,q_{3}\} \end{split}
```

Definitions for NFA-ε Machines

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA- ε and let w be in Σ^* . Then w is accepted by M iff $\delta^{(q_0)}$, w) contains at least one state in F.
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA- ϵ . Then the *language accepted* by M is the set:

 $L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } \delta^{(q_0)}, w \}$ contains at least one state in $F\}$

• Another equivalent definition:

 $L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M\}$

Equivalence of NFAs and NFA-εs

- Do NFAs and NFA-ε machines accept the same *class* of languages?
 - Is there a language L that is accepted by a NFA, but not by any NFA-ε?
 - Is there a language L that is accepted by an NFA-ε, but not by any DFA?
- Observation: Every NFA is an NFA-ε.
- Therefore, if L is a regular language then there exists an NFA- ϵ M such that L = L(M).
- It follows that NFA-ε machines accept all regular languages.
- But do NFA-ε machines accept more?

- **Lemma 1:** Let M be an NFA. Then there exists a NFA- ε M' such that L(M) = L(M').
- **Proof:** Every NFA is an NFA- ε . Hence, if we let M' = M, then it follows that L(M') = L(M).

The above is just a formal statement of the observation from the previous slide.

- Lemma 2: Let M be an NFA- ε . Then there exists a NFA M' such that L(M) = L(M').
- **Proof:** (sketch)

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be an NFA- ϵ .

Define an NFA M' = $(Q, \Sigma, \delta', q_0, F')$ as:

 $F' = F \ U \ \{q\}$ if ϵ -closure(q) contains at least one state from F F' = F otherwise

$$\delta'(q, a) = \delta'(q, a)$$
 - for all q in Q and a in Σ

- Notes:
 - δ' : $(Q \times \Sigma) \rightarrow 2^Q$ is a function
 - M' has the same state set, the same alphabet, and the same start state as M
 - M' has no ε transitions

• Step #1:

- Same state set as M
- q_0 is the starting state

• Step #2:

- q₀ becomes a final state

• Step #3:

• Step #4:

• Step #5:

• Step #6:

• Step #7:

• **Theorem:** Let L be a language. Then there exists an NFA M such that L=L(M) iff there exists an NFA- ε M' such that L=L(M').

Proof:

(if) Suppose there exists an NFA- ϵ M' such that L = L(M'). Then by Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M). Then by Lemma 1 there exists an NFA- ε M' such that L = L(M').

• Corollary: The NFA-ε machines define the regular languages.