```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

▼ 1. Load the Dataset

```
df = pd.read_csv('Mall_Customers.csv')
df.head()
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	##
0	1	Male	19	15	39	ılı
1	2	Male	21	15	81	
2	3	Female	20	16	6	
3	4	Female	23	16	77	
4	5	Female	31	17	40	

df = df.drop(columns=['CustomerID'])
df.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	\blacksquare
0	Male	19	15	39	11.
1	Male	21	15	81	
2	Female	20	16	6	
3	Female	23	16	77	
4	Female	31	17	40	

```
df.shape
```

(200, 4)

df['Spending Score (1-100)'].value_counts()

```
42
55
46
      6
73
      6
35
      5
31
44
      1
53
      1
65
      1
18
```

Name: Spending Score (1-100), Length: 84, dtype: int64

df['Annual Income (k\$)'].value_counts()

2. Data PreProcessing including Visualizations

▼ Univariate

sns.displot(df['Spending Score (1-100)'])

<seaborn.axisgrid.FacetGrid at 0x7fb6e2905e70>

▼ Bivariate

 $\label{eq:sns.lineplot} sns.lineplot(x='Age', y='Annual Income (k$)', data=df) \\ plt.show()$

sns.scatterplot(x='Annual Income (k\$)', y='Spending Score (1-100)', data=df) plt.show()

 $\label{eq:scatterplot} sns.scatterplot(x='Spending Score (1-100)',y='Age',data=df) \\ plt.show()$

▼ Multivariate

sns.pairplot(df)

<ipython-input-17-950e8f39b2a7>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is de sns.heatmap(df.corr(), annot=True)

▼ Preprocessing

▼ 3. ML Model Building, optimising

Clustering based by considering all columns -> Gender, Age, Annual Income, Spending Score and creating Clusters(Groups)

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(df)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss, marker="o")
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of
  warnings.warn(
                                  The Elbow Method
```


kmeans = KMeans(n_clusters=5,init = 'k-means++',random_state=0)
pred = kmeans.fit(df)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value o warnings.warn(

4. Test with random Observation