Knowledge Tracing - Continued

Machine Learning for Behavioral Data April 4, 2022

Today's Topic

Week	Lecture/Lab		
1	Introduction		
2	Data Exploration		
3	Regression		
4	Classification		
5	Model Evaluation		
6	Knowledge Tracing		
7	Knowledge Tracing		
8	Time Series Prediction		

Supervised learning on time series:

- Probabilistic graphical models
- Neural networks: LSTM, GRU, etc.

Getting ready for today's lecture...

- If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace
- Set up the Tensorflow kernel in Noto (follow the instructions in the student notebook)
- SpeakUp room for today's lecture:

https://go.epfl.ch/mlbd-lecture

Short quiz about the past...

[KT] BKT does account for students guessing the correct answer.

- a) True
- b) False

Short quiz about the past...

[KT] BKT can represent the relationships between different skills.

- a) True
- b) False

Short quiz about the past...

[Mixed Models] Mixed-effect models are useful when the samples in the data set are uncorrelated.

- a) True
- b) False

Today's Topic

Week	Lecture/Lab		
1	Introduction		
2	Data Exploration		
3	Regression		
4	Classification		
5	Model Evaluation		
6	Knowledge Tracing		
7	Knowledge Tracing		
8	Time Series Prediction		

Supervised learning on time series:

- Probabilistic graphical models
- Neural networks: LSTM, GRU, etc.

Last Week: Bayesian Knowledge Tracing

- Predict $p(o_{i_{s1},t}|o_0,...,o_{t-1})$, the probability that the student will solve task i_{s1} correctly at time step t
- Predict $p(s_{1,t}|o_0,...,o_{t-1})$, the probability that the student has mastered skill s_1 at time step t

Assumptions behind BKT

- Knowledge can be divided into different skills
- Definition of skills is accurate/detailed enough
- Each task corresponds to a single skill (original)
- There is no connection between the skills
- Mastery can be achieved through practice
- There is no forgetting: $p_F = 0$ (original)

Today

- Learning Curves
- Alternative Models for Knowledge Tracing:
 - AFM/PFA
 - Deep Knowledge Tracing

Today's Use Case

- ASSISTments is a free tool for assigning and assessing math problems and homework
- All math problems (tasks/items) are associated to a specific skill/knowledge component
- 4,151 middle-school students
- 525,534 observations

Tracing Knowledge – why is it useful?

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

- Choose the next appropriate activity
- Know which activities support learning

Building a learning curve for skill s

Student	Opportunity	y_true	y_pred
0	0	0	0.3
0	1	0	0.5
0	2	1	0.7
0	3	1	0.9
1	0	0	0.3
1	1	1	0.5
2	0	0	0.3
2	1	1	0.5
2	2	1	0.7
3	0	1	0.3
3	1	0	0.7
3	2	1	0.5
3	3	1	0.9

What could this curve indicate?

What could this curve indicate?

Today

- Learning Curves
- Alternative Models for Knowledge Tracing:
 - AFM/PFA
 - Deep Knowledge Tracing

Generalized Linear Mixed Effects Models revisited

- Example: strength gain by weight training
 - Each person has individual starting strength

$$y_n = \frac{\beta_0}{\beta_0} + u_n + \frac{\beta_1}{\beta_1} x_{n,1}$$

"Fixed" Effects

"Random" Effect

Rasch Model

$$\log\left(\frac{p_{i,n}}{1-p_{i,n}}\right) = \theta_n - b_i$$

Probability that student n will solve item i correctly.

 θ_n : student ability

 b_i : difficulty of item i

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

Probability that student n will solve task i correctly.

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$
 $\pi_{n,i} = \theta_n + \sum_{k} q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

$$\frac{1}{1+e^{-\pi_{n,i}}} \qquad \pi_{n,i} = \theta_n + \sum_{k} q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$

Student proficiency

$$p_{n,i} = \frac{1}{1+e^{-\pi_{n,i}}}$$

$$\pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$
 Student proficiency
$$q_{ik} = 1, \text{ if item } i \text{ uses skill } k$$

$$p_{n,i} = \frac{1}{1+e^{-\pi_{n,i}}}$$
 Student proficiency
$$p_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$
 Difficulty of skill k

$$p_{n,i} = \frac{1}{1+e^{-\pi_{n,i}}} \qquad \pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$
 Student proficiency
$$\text{Difficulty of skill } k \text{ Number of practice opportunities student } n \text{ had at skill } k$$

$$q_{ik} = 1, \text{ if item } i \text{ uses skill } k$$

$$\text{at skill } k$$

AFM - Assumptions

- Students may initially know more or less
- Students learn at the same rate
- Some skills are more likely to initially be known
- Some skills are easier to learn than others
- Students learn with each practice opportunity
- Each item belongs to one or more skills

Performance Factors Analysis (PFA)

$$\pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$

Performance Factors Analysis (PFA)

PFA - Assumptions

- Students may initially know more or less
- Students learn at the same rate
- Some skills are more likely to initially be known
- Some skills are easier to learn than others
- Students learning rate differs for correct and wrong practice opportunities
- Each item belongs to one or more skills

AFM/PFA in action...

→ Jupyter Notebook

Today

- Learning Curves
- Alternative Models for Knowledge Tracing:
 - AFM/PFA
 - Deep Knowledge Tracing

Neural Networks

• We are given a sample data set:

$$T = \{(y_n, x_n)\} \text{ with } n = 1, ... N,$$

where y_n is the n'th output variable and x_n is a D-dimensional vector of input variables

- Goal: learn a model f such that $y_n \approx f(x_n)$
- Linear regression/classification usually requires a lot of feature engineering

Neural Networks

- Neural networks are able to represent non-linear functions, i.e. $y_n \approx f(x_n)$ can be non-linear
- Neural networks are able to *learn* the features and the weights (parameters) from the data
- Tutorial: http://neuralnetworksanddeeplearning.com/

Recurrent Neural Network

Recurrent Neural Network

Input Layer

Recurrent Neural Network

Hidden Layer(s) $\begin{array}{|c|} \hline \boldsymbol{h_t^{(L)}} \\ \vdots \\ \boldsymbol{h_t^{(1)}} \\ \hline \boldsymbol{h_t^{(1)}} \\ \end{array}$ $\boldsymbol{h_t^{(l)}} = \phi_h(W_{h^{(l)}h^{(l-1)}}^{(l)}\boldsymbol{h_t^{(l-1)}} + W_{h^{(l)}h^{(l)}}^{(l)}\boldsymbol{h_{t-1}^{(l)}} + \boldsymbol{b}^{(l)})$

Input Layer

$$\mathbf{y_t} = \phi_y(W_{yh}\mathbf{h}_t^L + \mathbf{b}^{(y)})$$

$$\boldsymbol{h}_{t}^{(l)} = \phi_{h}(W_{h^{(l)}h^{(l-1)}}^{(l)}\boldsymbol{h}_{t}^{(l-1)} + W_{h^{(l)}h^{(l)}}^{(l)}\boldsymbol{h}_{t-1}^{(l)} + \boldsymbol{b}^{(l)})$$

$$\boldsymbol{h}_{t}^{(1)} = \phi_{h} \left(W_{hx} \boldsymbol{x}_{t} + W_{h^{(1)}h^{(1)}}^{(1)} \boldsymbol{h}_{t-1}^{(1)} + \boldsymbol{b}^{(1)} \right)$$

Deep Knowledge Tracing

Deep Knowledge Tracing

Deep Knowledge Tracing

Deep Knowledge Tracing

0.1

Training a DKT model: Binary Crossentropy Loss

Your Turn: Comparing Models

- We have evaluated AFM, PFA, BKT, and DKT on a subset of six skills.
 Your task:
 - Visualize the overall RMSE and AUC of the models such that it can easily be compared
 - Discuss the obtained results
- We have also evaluated BKT and DKT on the full data set and plotted the results. Your task:
 - Do you see a difference between the results on the full model and on the subset? If so, why?

Summary

- Learning Curves
- Alternative Models for Knowledge Tracing:
 - AFM/PFA
 - Deep Knowledge Tracing

Final Project Presentations

- Poster Session
- May 30, 15.15-17.00 (location: EPFL campus)
- Mandatory presence of all team members
- There will be prices and snacks/drinks...

Don't forget – M3 is due today

Week	Project Hours	Milestones
1	Detailed project presentation	-
2	Introduction to tasks for M2	M1: Preferences on team members and data sets (Feb 28, 23:59)
3	Office hours	
4	Office hours	
5	Introductions to tasks for M4	M2: Individual exploration of selected data set (March 21, 23:59)
6	Office hours	
7	Individual discussion with teams	M3: selection of research question and approach (April 4, 23:59)
8	Office hours	

- Submission for M3 is mandatory, one submission per team
- Meetings with TAs on April 6 are mandatory