1990年计算机数学基础

二、

1.

- (1) 由图论基本定理和每个顶点度数为 3 可知, 2m = 3n。由题设有 2n 3 = m。解得, n = 6, m = 9。
- (2) 不是唯一的。例如,以下几个图都满足题目的条件。

 G_2

 G_3

 G_1 显然与 G_2 , G_3 都不同构。 G_2 是二部图 $K_{3,3}$ 且不是平面图; G_3 有奇圈,且是平面图。 所以 G_2 与 G_3 也不同构。

2

- (1) T 有 3 条弦,因而有 3 个基本回路: $C_b = bade$, $C_c = cde$, $C_g = gef$.
- (2) 基本回路系统即为 $\{C_b, C_c, C_q\}$ 。
- (3) 由于任意环路都可表示成基本回路的环和,且基本回路系统是线性独立的,又由于对任意环路 C,有 $C \oplus C = \emptyset$,所以只需考虑每个基本回路在环和运算式中出现 0 次或 1 次的情况即可。

从而 G 中不同的环路有:

Ø,

 $C_b = bade$,

 $C_c = cde$,

 $C_g = gef$,

 $C_b \oplus C_c = bac$,

 $C_b \oplus C_q = badgf$,

 $C_c \oplus C_g = cdgf$,

 $C_b \oplus C_c \oplus C_g = bacegf$.

G 的圈空间(即环路空间)为 $\{\varnothing, C_b, C_c, C_q, C_b \oplus C_c, C_b \oplus C_q, C_c \oplus C_q, C_b \oplus C_c \oplus C_q\}$ 。