9 - Gli Spazi con Prodotto Scalare e di Hilbert

☆ Definizione: Prodotto scalare, Spazio con prodotto scalare

Sia E uno spazio vettoriale.

Una funzione $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ si dice prodotto scalare su E quando:

- 1. $\langle \lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z} \rangle = \lambda \langle \mathbf{x}, \mathbf{z} \rangle + \mu \langle \mathbf{y}, \mathbf{z} \rangle$ per ogni $\mathbf{x}, \mathbf{y}, \mathbf{z} \in E$ e per ogni $\lambda, \mu \in \mathbb{R}$;
- 2. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ per ogni $\mathbf{x}, \mathbf{y} \in E$;
- 3. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ per ogni $\mathbf{x} \in E$, e $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ se e solo se $\mathbf{x} = \mathbf{0}$.

Dati uno spazio vettoriale E e un prodotto scalare $\langle \cdot, \cdot \rangle$ su E, la coppia $(E, \langle \cdot, \cdot \rangle)$ prende il nome di **spazio con prodotto scalare** o **spazio pre-Hilbertiano**.

Q Osservazione

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

La funzione $\|\cdot\|:E o\mathbb{R}$ definita ponendo

Il prodotto scalare $\langle \cdot, \cdot \rangle$ induce una norma $\| \cdot \|$; essa è definita ponendo $\| \mathbf{x} \| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ per ogni $\mathbf{x} \in E$.

Proposizione: Disuguaglianza di Cauchy-Schwartz

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\|\cdot\|$ la norma indotta da $\langle\cdot,\cdot\rangle$.

Per ogni $\mathbf{x}, \mathbf{y} \in E$, si ha $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$.

♯ Definizione: Spazio di Hilbert

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\|\cdot\|$ la norma indotta da $\langle\cdot,\cdot\rangle$.

Sia d la metrica indotta da $\|\cdot\|$.

 $(E, \langle \cdot, \cdot \rangle)$ si dice **spazio di Hilbert** quando è completo rispetto a d.

Q Osservazione

Gli spazi di Hilbert sono di Banach.

Proposizione 9.1: Legge del parallelogramma

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sono equivalenti le seguenti affermazioni:

- 1. Esiste un prodotto scalare $\langle \cdot, \cdot \rangle$ su E avente $\| \cdot \|$ come norma indotta;
- 2. $\|\cdot\|$ soddisfa la legge del parallelogramma, ossia $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$ per ogni $\mathbf{x}, \mathbf{y} \in E$.

ightharpoonup Dimostrazione (1. \Rightarrow 2.)

Sia $\langle \cdot, \cdot \rangle$ su E che ha $\| \cdot \|$ come norma indotta.

Dunque, $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ per ogni $\mathbf{x} \in E$.

Siano $\mathbf{x}, \mathbf{y} \in E$. Si ha

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle.$$

Analogamente,

$$\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle.$$

Sommando i primi e gli ultimi membri delle due catene di uguaglianze, si ottiene

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$

Proposizione 9.2: Insiemi limitati e debolmente chiusi in uno spazio di Hilbert sono debolmente compatti

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $A \subseteq E$ limitato e debolmente chiuso.

Allora, A è debolmente compatto, cioè compatto rispetto alla topologia debole su E.

Proposizione 9.3: Esistenza di una funzione a valori reali continua e suriettiva sulla sfera unitaria

Sia $(E, \|\cdot\|)$ uno spazio normato.

Si supponga che $\it E$ abbia dimensione infinita.

Sia
$$S = \{ \mathbf{x} \in E : ||\mathbf{x}|| = 1 \}.$$

Esiste una funzione $f:S \to \mathbb{R}$ continua e suriettiva.

Q Osservazioni preliminari

S è connesso per archi.

Infatti, siano $\mathbf{x}, \mathbf{y} \in S$ con $\mathbf{x} \neq \mathbf{y}$.

Si consideri il vettore $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$, con $\lambda \in [0, 1]$.

Si ha $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = \mathbf{0}$ se e solo se $\mathbf{x} = -\mathbf{y}$ e $\lambda = \frac{1}{2}$.

Infatti, sotto tali condizioni vale l'uguaglianza.

Viceversa, se vale l'uguaglianza si ha $\lambda \mathbf{x} = (\lambda - 1)\mathbf{y}$, dunque \mathbf{x} e \mathbf{y} sono linearmente dipendenti.

Essendo $x, y \in S$ distinti, si deve allora avere y = -x.

Allora, si ha $\lambda \mathbf{x} = (1 - \lambda)\mathbf{x}$, da cui segue $\lambda = 1 - \lambda$, ossia $\lambda = \frac{1}{2}$.

Allora, se $\mathbf{y} \neq -\mathbf{x}$, la funzione $s:[0;1] \to S$ definita ponendo $s(\lambda) = \frac{\lambda \mathbf{x} + (1-\lambda)\mathbf{y}}{\|\lambda \mathbf{x} + (1-\lambda)\mathbf{y}\|}$ è ben definita e continua, dunque è un arco.

Se invece y = -x, sia $u \in S$ tale che $u \notin \{x, -x\}$.

esso esiste; basta infatti considerare un vettore $\mathbf{z} \notin \operatorname{span}(\mathbf{x})$, che esiste essendo $\operatorname{span}(\mathbf{x})$ di dimensione 1 e E di dimensione infinita, e poi porre $\mathbf{u} = \frac{\mathbf{z}}{\|\mathbf{z}\|}$, vettore ben definito in quanto $\mathbf{z} \neq \mathbf{0}$ essendo $\mathbf{z} \notin \operatorname{span}(\mathbf{x})$.

Essendo \mathbf{u} distinto da \mathbf{x} e $-\mathbf{x}$, per il caso precedente esistono un arco da \mathbf{x} a \mathbf{u} , e un arco da \mathbf{u} a $-\mathbf{x}$; il loro arco unione è un arco da \mathbf{x} a $-\mathbf{x} = \mathbf{y}$.

Dimostrazione

La dimostrazione della [Proposizione 6.3] mostra che esiste $D \subseteq S$ numerabile e tale che $\|\mathbf{x} - \mathbf{y}\| > \frac{1}{2}$ per ogni $\mathbf{x}, \mathbf{y} \in D$ con $\mathbf{x} \neq \mathbf{y}$.

Q Osservazione

Si osserva che, per ogni $\mathbf{x}, \mathbf{y} \in D$, si ha $\overline{B}\left(\mathbf{x}, \frac{1}{4}\right) \cap \overline{B}\left(\mathbf{y}, \frac{1}{4}\right) = \varnothing$. $(\overline{B}(\mathbf{x}_0, r) \text{ denota l'insieme } \{\mathbf{x} \in E : \|\mathbf{x} - \mathbf{x}_0\| \le r\})$

Infatti, se $\mathbf{z} \in \overline{B}\left(\mathbf{x}, \frac{1}{4}\right)$, si ha

 $\|\mathbf{z} - \mathbf{y}\| \ge \|\mathbf{x} - \mathbf{y}\| - \|\mathbf{x} - \mathbf{z}\|$ Disuguaglianza triangolare

$$\|\mathbf{x}-\mathbf{y}\|>rac{1}{2}$$
 per costruzione di D , essendo $\mathbf{x},\mathbf{y}\in D$ $\|\mathbf{x}-\mathbf{z}\|\leqrac{1}{4}$ in quanto $\mathbf{z}\in\overline{B}\left(\mathbf{x},rac{1}{4}
ight)$

Pertanto, $\mathbf{z} \notin \overline{B}(\mathbf{y}, \frac{1}{4})$.

Sia $\gamma: \mathbb{Z} \underset{n \mapsto \mathbf{x}_n}{\to} D$ una bijezione tra \mathbb{Z} e D (che esiste in quanto anche \mathbb{Z} è numerabile).

Sia $\varphi:\mathbb{R}\to\mathbb{R}$ una funzione continua tale che $\varphi(0)=1$ e $\varphi(t)=0$ per ogni $t\in\mathbb{R}$ con $|t|\geq \frac{1}{8}$; essa esiste, basta considerare ad esempio

$$arphi: t \mapsto egin{cases} 1-8|t|, & |t| < rac{1}{8} \ 0, & |t| \geq rac{1}{8}. \end{cases}$$

$$\mathsf{Sia}\; f:S\to\mathbb{R}\; \mathsf{definita}\; \mathsf{ponendo}\; f(\mathbf{x}) = \begin{cases} n\; \varphi(\|\mathbf{x}-\mathbf{x}_n\|), & \exists n\in\mathbb{Z}: \|\mathbf{x}-\mathbf{x}_n\|<\frac{1}{4}\\ 0, & \forall n\in\mathbb{Z}, \; \|\mathbf{x}-\mathbf{x}_n\|\geq \frac{1}{4} \end{cases} \; \mathsf{per}\; \mathsf{ogni}\; \mathbf{x}\in X.$$

f è ben definita.

Infatti, se esiste $n \in \mathbb{Z}$ per cui $\|\mathbf{x} - \mathbf{x}_n\| < \frac{1}{4}$, per l'osservazione iniziale si ha $\mathbf{x} \notin \overline{B}\left(\mathbf{x}_m, \frac{1}{4}\right)$ per ogni $m \in \mathbb{Z}$ con $m \neq n$, dunque tale n è unico.

f è continua su S.

Sia infatti $\mathbf{y} \in S$, e sia $\{\mathbf{y}_p\}_{p \in \mathbb{N}} \subseteq S$ una successione in S convergente a \mathbf{y} .

Se $\|\mathbf{y} - \mathbf{x}_n\| < \frac{1}{4}$, ossia $\mathbf{y} \in B\left(\mathbf{x}_n, \frac{1}{4}\right)$ per qualche $n \in \mathbb{Z}$, essendo tale insieme aperto si ha $\mathbf{y}_p \in B\left(\mathbf{x}_n, \frac{1}{4}\right)$ definitivamente; la continuità segue allora in questo caso dalla continuità di φ e della norma $\|\cdot\|$.

Se $\|\mathbf{y} - \mathbf{x}_n\| \ge \frac{1}{4}$ per ogni $n \in \mathbb{Z}$, si consideri l'intorno $B\left(\mathbf{y}, \frac{1}{8}\right)$; dalla definizione di φ segue che $\varphi\left(B(\mathbf{y}, \frac{1}{8})\right) = \{0\}$. Poiché $\mathbf{y}_n \in B\left(\mathbf{y}, \frac{1}{8}\right)$ definitivamente essendo tale insieme aperto, segue anche in questo caso la continuità di f

Inoltre, f è suriettiva.

Infatti, S è connesso per archi per l'osservazione preliminare, dunque è connesso; essendo f continua, f(S) è allora un intervallo in \mathbb{R} .

Essendo $f(\mathbf{x}_n)=n\, \varphi(0)=n$ per ogni $n\in\mathbb{Z}$, segue che $\mathbb{Z}\subseteq f(S)$; allora, $f(S)=\mathbb{R}$, essendo l'unico intervallo che contiene \mathbb{Z} .