Implementing the Core Chase for the Description Logic ALC

Maël Abily

21 avril 2021

1 Introduction

Definition 1. We define a <u>first-order language</u> as a set of constants (often noted $a,b,c,c_1,...$), predicates $(P,Q,R,P_1,...)$ and variables $(x,y,x_1,...)$.

A <u>term</u> is a variable or a constant (often noted $t,t_1,...$). We note $\underline{Ar(P)}$ the arity of P.

 $P(t_1,...,t_n)$ is an <u>atom</u>.

A fact is a variable-free atom.

A <u>factbase</u> $F := \exists x_1, ..., x_n.P_1(t_1^1, ..., t_{k_1}^1), ..., P_m(t_1^m, ..., t_{k_m}^m)$ is a existentially quantified conjunctions of atoms which is closed (it means that every variable of F is quantified). $\underline{var(F)}$ (respectively $\underline{cst(F)}$ and $\underline{term(F)}$ is the set of variables (resp. constants and terms) that occur in F.

Remark We will often see factbases as sets of atoms. For example, the factbase $\exists x, x_1, x_2, x_3. P(x) \land Q(x, a) \land R(x_1, x_2, x_3, b)$ can be represented by $\{P(x), Q(x, a), R(x_1, x_2, x_3, b)\}.$

Definition 2. A <u>substitution</u> $\sigma: X \to Terms$ is a function where X is a set of variables. For example $\{x \mapsto z, y \mapsto a\}$ is a substitution from $\{x,y\}$ to Terms. A <u>homomorphism</u> from F to F' is a substitution $\sigma: var(F) \to term(F')$ where $\sigma(\overline{F}) \subseteq F'$

Proposal 1. A factbase F entails a factbase F' (often noted $F \to F'$) \Leftrightarrow there exists a homomorphism from F' to F.

For example, $F = \{P(b,a), Q(x)\}$ entails $F' = \{P(x,a)\}$ thanks to the homomorphism $\{x \mapsto b\}$

Definition 3. An isomorphism is a bijective homomorphism.

A subset $F' \subseteq F$ is a <u>retract</u> of F if there exists a substitution σ such that $\sigma(F) = F'$ and $\sigma_{|F'} = id$ (σ is called a retractation from F to F'.

A factbase is a core if its strict subset are not retracts.

A core of a factbase F is a minimal subset of F that is a core.

Proposal 2. A factbase F is a core \Leftrightarrow every homomorphism $\sigma: F \to F$ is a bijection.

Example of core