Fundamentos de Econometría

Ignacio Lobato

ITAM

- Ahora la función de distribución conjunta del vector Y se distribuye normal
- Su función de distribución es:

$$f(Y) = (2\pi)^{-n/2} |\Sigma|^{-1/2} e^{-w/2}$$

- Donde $w = (Y \mu)' \Sigma^{-1} (Y \mu)$ es un escalar
- $\mu_{n \times 1}$ es un vector de medias
- $\sum_{n \times n}$ es una matriz positiva definida de varianzas y covarianzas

- Para una normal multivariada Y, partimos el vector en 2 subvectores Y_1 y Y_2 $n_1 \times 1$ $n_2 \times 1$
- Se cumple que: $E(Y) = \mu \ y \ V(Y) = \Sigma$
- La distribución marginal de Y_1 es normal: $Y_1 \sim N(\mu_1, \Sigma_{11})$, esto se cumple para Y_2 o cualquier subvector de Y
- $Y_2|Y_1 \sim N(\mu_2^*, \Sigma_{22}^*)$
 - $\mu_2^* = E(Y_2|Y_1) = \alpha + B'Y_1$
 - $B = (\Sigma_{11})^{-1} \Sigma_{12}$
 - $\alpha = \mu_2 B' \mu_1$
 - $\Sigma_{22}^* = V(Y_2|Y_1) = \Sigma_{22} B'\Sigma_{11}B$

- Teorema: para una normal multivariada, ausencia de correlación implica independencia
- Demostración:
 - $Y_1 y Y_2$ no están correlacionadas, entonces $\Sigma_{12} = 0$
 - Entonces B=0, por tanto $\mu_2^* = \alpha = \mu_2$ y $\Sigma_{22}^* = \Sigma_{22}$
 - En consecuencia $Y_2|Y_1 \sim \mathcal{N}\left(\mu_2, \varSigma_{22}\right)$ para todo Y_1
 - La distribución condicional es igual a la marginal, por lo tanto Y_1 y Y_2 son independientes

- Funciones lineales de un vector multinormal se distribuyen normal
- Para un vector multinormal Y, z = g + HY, se cumple:

$$z \sim N\left(g + H\mu, H\Sigma H'\right)$$

• H debe ser no estocástica y de rango completo para garantizar que la matriz de varianzas y covarianzas no sea singular

Vector Normal Estándar

- Si $\underset{n \times 1}{z} \sim N(0, I)$, decimos que z es un vector normal estándar
- Si $\underset{n \times 1}{z}$ es un vector normal estándar:

$$w=z'z\sim\chi^2(n)$$

• Si $w_1 \sim \chi^2(m)$ y $w_2 \sim \chi^2(n)$ son independientes:

$$v = \frac{w_1/m}{w_2/n} \sim F(m, n)$$

• Si $z \sim N(0,1)$ y $w \sim \chi^2(n)$ son independientes:

$$u=\frac{z}{\sqrt{w/n}}\sim t(n)$$

Resultados Asintóticos

- Muestras grandes, $n \to \infty$
- Si $v \sim F(m, n)$, $mv \rightarrow^D \chi^2(m)$
 - Escribimos $v = \frac{w_1/m}{w_2/n}$, entonces $mv = \frac{w_1}{w_2/n}$
 - $\frac{w_2}{n} = \frac{1}{n} \sum_i z_i^2$, es una media muestral de la variable z^2 que tiene media 1
 - $\frac{w_2}{n} \rightarrow^p 1$, entonces $\frac{w_1}{1} \rightarrow^p \chi^2(m)$
- Si $u \sim t(n)$, $u \rightarrow^D N(0,1)$
 - Escribimos $u = \frac{z}{\sqrt{(w/n)}}$
 - De la prueba anterior vimos que $\frac{w}{n} \to^p 1$, entonces u converge a la misma distribución que z

Formas Cuadráticas

• Teorema: sea $\underset{n \times 1}{Y} \sim N\left(\mu, \Sigma\right)$, entonces

$$w = (Y - \mu)' \sum_{n=1}^{\infty} (Y - \mu) \sim \chi^{2}(n)$$

- Como Σ es positiva definida, la podemos escribir como $\Sigma = \mathcal{C}\Lambda\mathcal{C}',$ donde Λ es diagonal con los eigenvalores de Σ y C es ortonormal con los eigenvectores de Σ como columnas
- Sea $\Lambda^* = \sqrt{\Lambda^{-1}}$
- Sea $H=C\Lambda^*C'$, entonces H'=H, $H'H=C\Lambda^{-1}C'=\Sigma^{-1}$ y $H\Sigma H'=I$
- Sea $\epsilon = Y \mu$, entonces $\epsilon \sim N(0, \Sigma)$
- Por último, sea $z = H\epsilon$, entonces $z \sim N(0, I)$
- Definimos $w = \epsilon' \Sigma^{-1} \epsilon = \epsilon' H' H \epsilon = (H \epsilon)' (H \epsilon) = z' z$

Formas Cuadráticas

- Teorema: sea $z \sim N(0, I)$ y M = matriz no estocástica de rango $r \leq n$, entonces $w = z'Mz \sim \chi^2(r)$
 - Como M es simétrica e idempotente, $M = C\Lambda C'$, donde C es ortonormal y Λ es diagonal
 - Los eigenvalores de M son r 1's y n-r 0's:

$$\Lambda = \left(\begin{array}{cc} I_{r \times r} & 0_{r \times (n-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times (n-r)} \end{array} \right)$$

- Partimos C como $C = \begin{pmatrix} C_1, & C_2 \\ n \times r & n \times (n-r) \end{pmatrix}$
- $u = C_1'z$ multinormal con media 0 y varianza I
- $w = z'Mz = z'(C_1C_1')z = (z'C_1)(C_1'z) = u'u$

Inferencia

- Varios tipos de inferencia
- Dependiendo la cantidad de variables:
 - Univariada
 - Multivariada
- Dependiendo los supuestos sobre las distribuciones:
 - Aproximada
 - Exacta

Inferencia Exacta

- Hacemos supuestos sobre las distribuciones de la muestra
- Las distribuciones de los estadísticos estimados son exactas
- Por ejemplo, bajo el modelo clásico:

$$Y\sim^{ extbf{E}} extbf{N}\left(Xeta,\sigma^2I
ight), \ extbf{X}$$
 no estocástica

Adicionalmente se asume que la varianza es conocida

Prueba de Hipótesis

- Univariada: se refiere a que se hace inferencia sobre un único parámetro o combinación lineal de parámetros
- $\hat{\beta}_j \sim^E N\left(\beta, \sigma^2 q_{ii}\right) \beta_j$ y el ICA al 95 % para β_j es:

$$eta_j \in \left(\hat{eta}_j \pm 1{,}96\sigma\sqrt{q_{ii}}
ight)$$

- Para el i-ésimo regresor, se desea probar la hipótesis $H_0: \beta_i = \beta_i^0$ vs $H_1: \beta_i \neq \beta_i^0$
- El estadístico es:

$$z_{i}^{0}=\left(b_{j}-eta_{i}^{0}
ight)/\hat{\sigma}\sqrt{q_{ii}}\sim N\left(0,1
ight)$$

- Comparamos $|z_i^0|$ con el valor crítico de la normal correspondiente al nivel de significancia deseado
- Por ejemplo, al 95 %:
 - Si $|z_i^0| > 1.96$, se rechaza la hipótesis nula $H_0: \beta_i = \beta_i^0$
 - Si $|z_i^0| \leq 1.96$, se acepta la hipótesis nula $H_0: \beta_i = \beta_i^0$

Intervalo de Confianza Exacto

• La formula para el intervalo de confianza es:

$$b_j \pm z_{\alpha} \hat{\sigma} \sqrt{q_{ii}}$$

- Es decir, estimación puntual $\pm z_{\alpha}$ (error estándar)
- Como se asumió distribución normal, el error estándar es conocido
- Si β_i^0 está dentro del intervalo de confianza, se acepta la hipótesis nula

Inferencia Multivariada

- Ahora queremos estimar un conjunto de p restricciones lineales entre los coeficientes de β
- Por ejemplo:

$$\beta_1 = 0$$
$$\beta_2 + \beta_3 = 1$$

- En otras palabras, queremos estimar $\theta = R \beta r \rho \times 1$, donde H es una matriz no estocástica de rango p
- La hipótesis nula es $H_0: \theta = 0$
- ullet Para nuestro ejemplo: $R=\left(egin{array}{ccc}1&0&0\\0&1&1\end{array}
 ight),\;r=\left(egin{array}{ccc}0\\1\end{array}
 ight)$

Prueba de Hipótesis

• El estadístico que se propone es:

$$w^{0} = (\theta_{n} - \theta)' \left[\sigma^{2} R \left(X' X \right)^{-1} R' \right]^{-1} (\theta_{n} - \theta) \sim \chi_{p}^{2}$$

- Se compara con c_p , el valor crítico superior (cola derecha) de la distribución χ^2 con p grados de libertad
- Si $w^0>c_p$, se rechaza la hipótesis nula $H_0:\theta=0$
- Si $w^0 \le c_p$, se acepta la hipótesis nula $H_0: \theta = 0$

Elipses de Confianza

- Similar a los intervalos, pero ahora con múltiples dimensiones
- Ahora son regiones en \mathbb{R}^p
- La forma de la región es:

$$(\theta_n - \theta)' \left[\sigma^2 R \left(X' X \right)^{-1} R' \right]^{-1} (\theta_n - \theta) \le c_p$$

• Si 0 cae dentro de la región, se acepta la hipótesis nula

Potencia de la Prueba

- La potencia de la prueba se refiere a la probabilidad de rechazar una hipótesis nula como función del verdadero parámetro
- Para una prueba al 95 %, $P\left[\left(w^0>c\right)|\theta\right]\geq$,05 con igualdad ssi $\theta=\theta^0$
- La potencia de a prueba es mayor al nivel de significancia excepto en el valor de la hipótesis nula
- La potencia es una función creciente en la distancia entre el valor de la hipótesis θ^0 y el valor real θ

- Eliminamos el supuesto de varianza conocida
- Ahora la estimamos de forma insesgada con $\hat{\sigma}^2 = e'e/(n-k)$
- Para el caso univariado, el estadístico es:

$$\hat{z}_i = \frac{\left(b_i - \beta_i\right)}{\hat{\sigma}\sqrt{q_{ii}}}$$

Para el caso multivariado:

$$\hat{w} = (\theta_n - \theta)' \left[p \hat{\sigma}^2 R \left(X' X \right)^{-1} R' \right]^{-1} (\theta_n - \theta)$$

- Teorema: $w_0 = e'e/\sigma^2 \sim \chi^2_{n-k}$
- Demostración:
 - Sea $\epsilon = Y X\beta$, entonces $\epsilon \sim N(0, \sigma^2 I)$
 - Definimos $u = \frac{1}{\sigma}\epsilon$, entonces $\underset{n \times 1}{u} \sim N\left(0, I\right)$
 - Ahora, $Y = X\beta + \epsilon = X\beta + \sigma u$, entonces $e = MY = M(X\beta + \sigma u) = \sigma Mu$
 - Recordemos que M es idempotente, no estocástica y de rango n-k
 - Entonces $e'e = \sigma^2 u' M u$ y $w_0 = \frac{e'e}{\sigma^2} = u' M u \sim \chi^2_{n-k}$

• Teorema:
$$\hat{w} = (\theta_n - \theta)' \left[p \hat{\sigma}^2 R \left(X' X \right)^{-1} R' \right] (\theta_n - \theta) \sim F_{p,n-k}$$

- Demostración:
 - $\frac{\hat{\sigma}^2}{\sigma^2} = \left[e'e/(n-k) \right] / \sigma^2 = \left(e'e/\sigma^2 \right) / (n-k) = w_0/(n-k)$
 - $\hat{w}/p = (w/p)/(\hat{\sigma}^2/\sigma^2) = (w/p)/[w_0/(n-k)]$
 - $w \sim \chi_p^2$ es independiente de $w_0 \sim \chi_{n-k}^2$

- Teorema: $u_i = (b_i \beta_i)/\hat{\sigma}\sqrt{q_{ii}} \sim t_{n-k}$
- Demostración:
 - $z_i = (b_i \beta_i)/\hat{\sigma}\sqrt{q_{ii}}$
 - $\hat{\sigma}_{bi}/\sigma_{bi} = \sqrt{(\hat{\sigma}^2 q_{ii})/(\sigma^2 q_{ii})} = \sqrt{\hat{\sigma}^2/\sigma^2} = \sqrt{w_0/(n-k)}$
 - $z_i \sim N(0,1)$ es independiente de $w_0 \sim \chi^2_{n-k}$

Intervalos de Confianza

• Seguimos utilizando la formula estimación puntual $\pm t_{\frac{\alpha}{2},(n-k)}$ error estándar:

$$b_i \pm t_{\frac{\alpha}{2},(n-k)} \hat{\sigma} \sqrt{q_{ii}}$$

- La distribución t depende del tamaño muestral
- Ahora se utiliza el valor crítico de la distribución t
- Definimos la región A como:

$$A = \left\{ \beta_{i} - t_{\frac{\alpha}{2},(n-k)} \hat{\sigma} \sqrt{q_{ii}} \leq b_{i} \leq \beta_{i} + t_{\frac{\alpha}{2},(n-k)} \hat{\sigma} \sqrt{q_{ii}} \right\}$$
$$= \left\{ \left| \frac{b_{i} - \beta_{i}}{\hat{\sigma} \sqrt{q_{ii}}} \right| \leq t_{\frac{\alpha}{2},(n-k)} \hat{\sigma} \sqrt{q_{ii}} \right\}$$

- El intervalo es $P(A) = 1 \alpha$, donde α es el nivel de significancia
- $(b_i \beta_i)/\hat{\sigma}\sqrt{q_{ii}} \sim t_{n-k}$, entonces $c = t_{\alpha/2}$
- En una prueba de hipótesis, si el valor de la hipótesis nula $\beta_i = \beta_i^0$ cae dentro del intervalo, se acepta

Elipses de Confianza

- Similar que el intervalo, pero ahora para un vector $\frac{\theta}{p \times 1} = R\beta r$ de parámetros
- La región queda dada por:

$$(\theta_n - \theta)' \frac{\left[pR \left(X'X \right)^{-1} R' \right]^{-1}}{\hat{\sigma}^2} (\theta_n - \theta) \le F_{p,n-k}$$

- d se obtiene de la distribución $F_{p,n-k}$
- Si 0 cae dentro de la región, se acepta la hipótesis nula

Inferencia Aproximada

- Ahora relajaremos los supuestos que hemos hecho sobre la distribución de la muestra
- En la práctica no se conocen las distribuciones
- Los resultados ya no son exactos
- Nos basaremos ahora en propiedades asintóticas para obtener las distribuciones aproximadas

Estadístico de Wald

- Eliminamos el supuesto de normalidad
- Utilizamos el mismo estimador $\hat{\theta}$ =Rb-r
- Nuestro estadístico para la prueba de hipótesis ahora es:

$$W_n = (Rb - r)' \left[\tilde{\sigma}_n^2 R \left(X'X \right)^{-1} R' \right]^{-1} (Rb - r)$$

- $\tilde{\sigma}_n^2 = \frac{e'e}{n}$, la estimación de la varianza ahora no tiene que ser insesgada, basta que sea consistente
- $W_n \to^D \chi_p^2$, la distribución ahora es aproximada

Estadístico de Wald

- Definimos los residuales de la regresión bajo la hipótesis nula como e*'e*
- Una manera alternativa de escribir el estadístico de Wald es:

$$F_n = \frac{e^{*'}e^* - e'e}{pe'e} = \frac{\sigma^{*2} - \tilde{\sigma}^2}{p\sigma^2} \to^D \frac{\chi_p^2}{p}$$

- Nuevamente, la distribución es aproximada
- Cuando n es grande, inferencia exacta e inferencia aproximada llevan a resultados similares