

Decision Tree

Ramaditia D

Ouline

- Pendahuluan
- Contoh Decision Tree
- Proses Membentuk Pohon
- Metode ID3

Konsep Decision Tree (Pohon Keputusan)

 Merupakan representasi visual berupa struktur pohon dari suatu pilihan aksi atau kondisi

 Merupakan mekanisme untuk menyederhanakan situasi kompleks ke dalam skenario yang lebih mudah dimengerti

△ Kons

Konsep Decision Tree (Pohon Keputusan)

 Pembelajaran Decision Tree (DT) adalah metode memperkirakan fungsi target bernilai diskret, dimana fungsi tersebut disajikan sebagai pohon keputusan.

- RepresentasiPohonKeputusan:
 - Setiap Node internal menguji suatu atribut
 - Setiap cabang terkait dengan nilai atribut
 - Setiap Node daun menunjukkan suatu klasifikasi

Contoh Decision Tree (1)

Flue (Class1) atau Tidak (Class2)?

Contoh Proses Klasifikasi Decision Tree

Flue (Class1) atau Tidak (Class2)?

Testing Data:

Pasien Demam (>37,5)

Contoh Decision Tree (2)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Representasi Tree sebagai Rule


```
IF
 ((age \le 30) and
  (student))
OR
  (age=31..40)
OR
  ((age>40) and
  (credit_rating=fair))
THEN
 BELI PC=YES
```

Contoh Kasus Lain

- Input: data mahasiswa
- Output: dua kelas (lulus_tepat_waktu dan lulus_terlambat)
- ✓ Jika diberikan data input mahasiswa, sistem secara otomatis menentukan mahasiswa tersebut akan lulus tepat waktu atau terlambat.

Pembuatan Model

Proses Testing Model

Proses Klasifikasi

Lulus tepat waktu?

Contoh: Cold (flue) atau Tidak?

Data Training (gambar):

Bentuk Pohon Akhir

Relasi antar Atribut

Contoh: Data Rekrutmen Pegawai

Applicants	GPA	Psychology	Interview	Accepted
P1	Good	Strong	Proper	Yes
P2	Good	Moderate	Proper	Yes
P3	Good	Moderate	Unsuitable	No
P4	Good	Weak	Unsuitable	No
P5	Average	Strong	Proper	Yes
P6	Average	Moderate	Proper	Yes
P7	Average	Moderate	Unsuitable	No
P8	Average	Weak	Unsuitable	No
P9	Poor	Strong	Proper	Yes
P10	Poor	Moderate	Proper	Yes
P11	Poor	Moderate	Unsuitable	No
P12	Poor	Weak	Unsuitable	No

Bentuk Decision Tree

if Interview='Proper' then Accepted='Yes'

Relasi antar Atribut

Data Rekrutmen yang lain

Applicants	GPA	Psychology	Interview	Accepted
P1	Good	Strong	Proper	Yes
P2	Good	Moderate	Proper	Yes
P3	Good	Moderate	Unsuitable	Yes
P4	Good	Weak	Unsuitable	No
P5	Average	Strong	Proper	Yes
P6	Average	Moderate	Proper	Yes
P7	Average	Moderate	Unsuitable	Yes
P8	Average	Weak	Unsuitable	No
P9	Poor	Strong	Proper	Yes
P10	Poor	Moderate	Unsuitable	No
P11	Poor	Weak	Proper	Yes

Bentuk Decision Tree


```
if (Interview='Proper') or
  ((Interview='Unsuitable')and(Psychology='Moderate')and(GPA='Good') ) or
  ((Interview='Unsuitable')and(Psychology='Moderate')and(GPA='Average') )
  then Accepted='Yes'
```

Induction of Decision Trees (ID3)

- A adalah atribut keputusan "terbaik" bagi node berikutnya
- Jadikan A sebagai atribut keputusan
- Untuk setiap nilai A, buat keturunan baru
- Urutkan sample pada node-node daun
- Jika sample telah terklasifikasi secara sempurna, STOP.
- Jika tidak, lakukan iterasi terhadap node daun baru.

Cara Pemilihan Urutan Atribut Terbaik?

Metode Pemilihan Atribut Decision Tree

• Entropi: Ukuran kemurnian, semakin murni, semakin homogen, semakin rendah nilainya.

- Information Gain (IG): pengurangan entropi disebabkan oleh partisi berdasarkan suatu atribut.
- Semakin besar IG → atribut itu semakin membuat homogen → semakin bagus
- Ide Utama → pilih atribut dengan info gain yang paling besar

Entrophy untuk dua kelas: (+) dan (-)

Entropy(S) =
$$-p_{\oplus} \log_2 p_{\oplus} - p_{\Theta} \log_2 p_{\Theta}$$

Entropy([9+,5-] ((9 positif, 5 neg)) = $-(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$ = 0.940 Entropy([9+,5-]) = 0.940 Entropy([7+,7-]) = 1 Entropy([14+,0]) = 0

Entroy([0+,14-]) = 0

Nilai Entropi

 Entropi(S) = 0, jika semua contoh pada S berada dalam kelas yang sama.

 Entroiy(S) = 1, jika jumlah contoh positif dan jumlah contoh negatif dalam S adalah sama.

 0 < Entropi(S) < 1, jika jumlah contoh positif dan negatif dalam S tidak sama.

Contoh Entropy

Contoh Data:

Data	Class(Y/N)
1	Υ
2	Υ
3	Υ
4	Υ

$$Entropy(S) = -p_y \log_2 p_y - p_n \log_2 p_n$$
$$= -\frac{4}{4} \log_2 \left(\frac{4}{4}\right) - \frac{0}{4} \log_2 \left(\frac{0}{4}\right)$$
$$= 0$$

$$\begin{split} Entropy(S) &= -p_y \log_2 p_y - p_n \log_2 p_n \\ &= -\frac{2}{4} \log_2 \left(\frac{2}{4}\right) - \frac{2}{4} \log_2 \left(\frac{2}{4}\right) \\ &= 1 \end{split}$$

Entrophy untuk kelas > 2

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Info (D) = Entrophy suatu data 'D' untuk kelas > 2

Information Gain

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times I(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

Gain(A) menyatakan seberapa besar entropi berkurang akibat atribut A. Semakin besar semakin baik.

Contoh Pemilihan Urutan Atribut

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ berarti ada 5 dari 14 "age <=30" dengan 2 yes dan 3 no.

Gain (Age) = Info(D) - Info age (D) = 0.940 - 0.694 = 0.246

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit_rating) = 0.048$

Tahap Pemilihan Atribut (lanj)

Gain (Age) = 0.246 ← yang terbesar, dipilih

Gain (income)=0.029

Gain(student)=0.151

Gain(credit_rating) = 0.048

Setelah AGE, atribut apa selanjutnya?

Diproses untuk setiap cabang selama masih ada > 1 kelas

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	fair	yes
3140	low	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes

Tahap Pemilihan Atribut (lanj)

Selanjutnya... proses data age<=30

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

Info(D) =
$$I(2,3) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.97$$

Gain(age) tidak perlu dihitung lagi, hitung gain(student), gain(credit_rating), gain(income)

$$Info_{student}(D) = \frac{3}{5}I(0,3) + \frac{2}{5}I(2,0) = 0$$

Gain (student) =
$$Info(D) - Info_{student}(D)$$

= $0.97 - 0 = 0.97$

Pemilihan Atribut (lanj)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

hitung gain(credit_rating)

$$Info(D) = I(2,3) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.97$$

$$Info_{credit_rating}(D) = \frac{3}{5}I(1,2) + \frac{2}{5}I(1,1) = 0.95$$

Gain (credit_rating) =
$$Info(D) - Info_{credit_rating}(D)$$

= $0.97 - 0.95 = 0.02$

$$Info_{income}(D) = \frac{2}{5}I(0,2) + \frac{2}{5}I(1,1) + \frac{1}{5}I(1,0) = 0.4$$

Gain (income) = Info(D) - Info_{income}(D)
=
$$0.97 - 0.4 = 0.37$$

Pilihan Atribut (lanj)

Bandingkan semua gain, ambil yang paling besar

```
Gain (student) = 0.97
Gain (credit_rating = 0.02
Gain (income) = 0.37
```


Paling besar: student

Pemilihan Atribut (lanj)

age	income	student	credit_rating	buys_computer
<=30	high	no fair		no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

Contoh lainnya

Contoh: Data Rekrutmen Pegawai

Applicants	GPA	Psychology	Interview	Accepted
P1	Good	Strong	Proper	Yes
P2	Good	Moderate	Proper	Yes
P3	Good	Moderate	Unsuitable	Yes
P4	Good	Weak	Unsuitable	No
P5	Average	Strong	Proper	Yes
P6	Average	Moderate	Proper	Yes
P7	Average	Moderate	Unsuitable	Yes
P8	Average	Weak	Unsuitable	No
P9	Poor	Strong	Proper	Yes
P10	Poor	Moderate	Unsuitable	No
P11	Poor	Weak	Proper	Yes

1 Hitung Entropy Kelas

Accepted
Yes
Yes
Yes
No
Yes
Yes
Yes
No
Yes
No
Yes

•
$$Entropy(A) = -p_y \log_2 p_y - p_n \log_2 p_n$$

•
$$|A| = 11$$
, $|A_y| = 8$, $|A_n| = 3$

•
$$p_y = \frac{8}{11}$$
, $p_n = \frac{3}{11}$

•
$$Entropy(A) = -p_y \log_2 p_y - p_n \log_2 p_n$$

• $|A| = 11$, $|A_y| = 8$, $|A_n| = 3$
• $p_y = \frac{8}{11}$, $p_n = \frac{3}{11}$
• $Entropy(A) = -\frac{8}{11} \log_2 \left(\frac{8}{11}\right) - \frac{3}{11} \log_2 \left(\frac{3}{11}\right)$

$$= 0.8454$$

Information Gain - GPA

GPA	Accepted
Good	Yes
Good	Yes
Good	Yes
Good	No
Average	Yes
Average	Yes
Average	Yes
Average	No
Poor	Yes
Poor	No
Poor	Yes
-	

$$Gain(Accepted, GPA)$$

$$= Ent(A) - \frac{|A_g|}{|A|} Ent(A_g) - \frac{|A_a|}{|A|} Ent(A_a) - \frac{|A_p|}{|A|} Ent(A_p)$$

$$|A_g| = [3y, 1n] = 4,$$

$$|A_a| = [3y, 1n] = 4,$$

$$|A_p| = [2y, 1n] = 3$$

$$Ent(A_g) = -p_{g,y} \log_2 p_{g,y} - p_{g,n} \log_2 p_{g,n}$$

$$Ent(A_a) = -p_{a,y} \log_2 p_{a,y} - p_{a,n} \log_2 p_{a,n}$$

$$Ent(A_p) = -p_{p,y} \log_2 p_{p,y} - p_{p,n} \log_2 p_{p,n}$$

Information Gain - GPA

GPA	Accepted
Good	Yes
Good	Yes
Good	Yes
Good	No
Average	Yes
Average	Yes
Average	Yes
Average	No
Poor	Yes
Poor	No
Poor	Yes
-	

$$|A_g| = [3y, 1n] = 4, |A_a| = [3y, 1n] = 4, |A_p| = [2y, 1n] = 3$$

$$Ent(A_g) = -p_{g,y} \log_2 p_{g,y} - p_{g,n} \log_2 p_{g,n}$$

$$= -\frac{3}{4} \log_2 \left(\frac{3}{4}\right) - \frac{1}{4} \log_2 \left(\frac{1}{4}\right) = 0.8113$$

$$Ent(A_a) = -p_{a,y} \log_2 p_{a,y} - p_{a,n} \log_2 p_{a,n}$$

$$= -\frac{3}{4} \log_2 \left(\frac{3}{4}\right) - \frac{1}{4} \log_2 \left(\frac{1}{4}\right) = 0.8113$$

$$Ent(A_p) = -p_{p,y} \log_2 p_{p,y} - p_{p,n} \log_2 p_{p,n}$$

$$= -\frac{2}{3} \log_2 \left(\frac{2}{3}\right) - \frac{1}{3} \log_2 \left(\frac{1}{3}\right) = 0.9183$$

Information Gain - GPA

GPA	Accepted		
Good	Yes		
Good	Yes		
Good	Yes		
Good	No		
Average	Yes		
Average	Yes		
Average	Yes		
Average	No		
Poor	Yes		
Poor	No		
Poor	Yes		

$$|A_g| = 4$$
, $|A_a| = 4$, $|A_p| = 3$
 $Ent(A_g) = 0.8113$
 $Ent(A_a) = 0.8113$
 $Ent(A_p) = 0.9183$

Gain(Accepted, GPA)
$$= Ent(A) - \frac{|A_g|}{|A|} Ent(A_g) - \frac{|A_a|}{|A|} Ent(A_a) - \frac{|A_p|}{|A|} Ent(A_p)$$

$$= 0.8454 - \frac{4}{11} 0.8113 - \frac{4}{11} 0.8113 - \frac{3}{11} 0.9183$$

$$= 0.0049$$

Information Gain - Psychology

Psy	Accepted		
Strong	Yes		
Mod	Yes		
Mod	Yes		
Weak	No		
Strong	Yes		
Mod	Yes		
Mod	Yes		
Weak	No		
Strong	Yes		
Mod	No		
Weak	Yes		

$$Gain(Accepted, Psychology) = Ent(A) - \frac{|A_s|}{|A|} Ent(A_s) - \frac{|A_m|}{|A|} Ent(A_m) - \frac{|A_w|}{|A|} Ent(A_w)$$

$$|A_s| = [3y, 0n] = 3,$$

$$|A_m| = [4y, 1n] = 5,$$

$$|A_w| = [1y, 2n] = 3$$

$$Ent(A_s) = -\frac{3}{3} \log_2\left(\frac{3}{3}\right) - \frac{0}{3} \log_2\left(\frac{0}{3}\right) = 0$$

$$Ent(A_m) = -\frac{4}{5} \log_2\left(\frac{4}{5}\right) - \frac{1}{5} \log_2\left(\frac{1}{5}\right) = 0.7219$$

$$Ent(A_w) = -\frac{1}{3} \log_2\left(\frac{1}{3}\right) - \frac{2}{3} \log_2\left(\frac{2}{3}\right) = 0.9183$$

Information Gain - Psychology

= 0.2669

Psy	Accepted			
Strong	Yes			
Mod	Yes			
Mod	Yes			
Weak	No			
Strong	Yes			
Mod	Yes			
Mod	Yes			
Weak	No			
Strong	Yes			
Mod	No			
Weak	Yes			

$$|A_s| = 3, |A_m| = 5, |A_w| = 3$$

$$Ent(A_s) = 0$$

$$Ent(A_m) = 0.7219$$

$$Ent(A_w) = 0.9183$$

$$Gain(Accepted, Psychology)$$

$$= Ent(A) - \frac{|A_s|}{|A|} Ent(A_s) - \frac{|A_m|}{|A|} Ent(A_m) - \frac{|A_w|}{|A|} Ent(A_w)$$

$$= 0.8454 - \frac{3}{11}0 - \frac{5}{11}0.7219 - \frac{3}{11}0.9183$$

Information Gain - Interview

Intv	Accepted			
Proper	Yes			
Proper	Yes			
Unsuit	Yes			
Unsuit	No			
Proper	Yes			
Proper	Yes			
Unsuit	Yes			
Unsuit	No			
Proper	Yes			
Unsuit	No			
Proper	Yes			

Gain(Accepted, Interview)

$$= Ent(A) - \frac{|A_p|}{|A|} Ent(A_p) - \frac{|A_u|}{|A|} Ent(A_u)$$

$$|A_p| = [6y, 0n] = 6,$$

 $|A_u| = [2y, 3n] = 5,$

$$|A_u| = [2y, 3n] = 5,$$

$$Ent(A_p) = -\frac{6}{6}\log_2\left(\frac{6}{6}\right) - \frac{0}{6}\log_2\left(\frac{0}{6}\right) = 0$$

$$Ent(A_p) = -\frac{6}{6}\log_2\left(\frac{6}{6}\right) - \frac{0}{6}\log_2\left(\frac{0}{6}\right) = 0$$

$$Ent(A_u) = -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0.9710$$

Information Gain - Interview

Intv	Accepted	
Proper	Yes	
Proper	Yes	
Unsuit	Yes	
Unsuit	No	
Proper	Yes	
Proper	Yes	
Unsuit	Yes	
Unsuit	No	
Proper	Yes	
Unsuit	No	
Proper	Yes	

$$|A_p| = [6y, 0n] = 6, |A_u| = [2y, 3n] = 5,$$

$$Ent(A_p)=0$$

$$Ent(A_u) = 0.9710$$

Gain(Accepted, Interview)

$$= Ent(A) - \frac{|A_p|}{|A|} Ent(A_p) - \frac{|A_u|}{|A|} Ent(A_u)$$
$$= 0.8454 - \frac{6}{11}0 - \frac{5}{11}0.9710$$

$$= 0.8454 - \frac{6}{11}0 - \frac{5}{11}0.9710$$

$$= 0.4040$$

Hasil Perhitungan Atribut untuk pemilihan Root

- Gain(Accepted, GPA) = 0.0049
- Gain(Accepted, Psychology) = 0.2669
- Gain(Accepted, Interview) = 0.4040

Pilih Interview sebagai Root

Bentuk Awal Decision Tree

GPA	Psychology	Accepted	
Good	Strong	Yes	
Good	Good Moderate		
Average	Strong	Yes	
Average	Moderate	Yes	
Poor	Strong	Yes	
Poor	Weak	Yes	

GPA	Psychology	Accepted
Good	Moderate	Yes
Good	Weak	No
Average	Moderate	Yes
Average	Weak	No
Poor	Moderate	No

Pemilihan Atribut setelah Atribut Interview - Proper

Proper Interview

GPA	Psychology	Accepted
Good	Strong	Yes
Good	Moderate	Yes
Average	Strong	Yes
Average	Moderate	Yes
Poor	Strong	Yes
Poor	Weak	Yes

Unsuitable Interview

GPA	Psychology	Accepted
Good	Moderate	Yes
Good	Weak	No
Average	Moderate	Yes
Average	Weak	No
Poor	Moderate	No

$$Ent(A) = -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0.9709$$

$$Ent(A_m) = -\frac{2}{3}\log_2\left(\frac{2}{3}\right) - \frac{1}{3}\log_2\left(\frac{1}{3}\right) = 0.9182$$

$$Ent(A_w) = 0$$

$$Ent(A_w) = 0$$

$$Ent(A_g) = 1 \qquad Ent(A_a) = 1 \qquad Ent(A_p) = 0$$

$$Gain(Accepted, GPA) = Ent(A) - \frac{|A_g|}{|A|} Ent(A_g) - \frac{|A_a|}{|A|} Ent(A_a) - \frac{|A_p|}{|A|} Ent(A_p)$$

$$= 0.9709 - \frac{2}{5}1 - \frac{2}{5}1 - \frac{1}{5}0 = 0.1709$$

$$Gain(Accepted, Psi) = Ent(A) - \frac{|A_m|}{|A|} Ent(A_m) - \frac{|A_w|}{|A|} Ent(A_w)$$

$$= 0.9709 - \frac{3}{5}0.9182 - \frac{2}{5}0 = \mathbf{0}.2822$$

Hasil Decision Tree setelah Atribut Psycology Dipilih

Hasil Akhir Decision Tree

Mengapa Decision Tree?

- Mudah diimplementasikan
- Hipotesis yang dihasilkan mudah dipahami
- Efisien
- Daerah pengambilan dapat diubah menjadi simple dan spesifik.
- Dapat Eliminasi perhitungan-perhitungan yang tidak diperlukan

Decision Tree Cocok untuk Masalah:

- Data dalam bentuk atribut-nilai. Kondisi ideal adalah jika isi nilai jumlahnya sedikit. Misalnya: "panas", "sedang", "dingin".
- Output diskrit.

1 Latihan

Buat Decision Tree untuk menentukan kelas dari suatu buah

No	Kulit Buah	Warna	Ukuran	Bau	Kelas
1	Kasar	Coklat	Besar	keras	Aman
2	Kasar	Hijau	Besar	keras	Aman
3	Halus	Merah	Besar	Lunak	Berbahaya
4	Kasar	Hijau	Besar	Lunak	Aman
5	Kasar	Merah	Kecil	Keras	Aman
6	Halus	Merah	Kecil	Keras	Aman
7	Halus	Coklat	Kecil	Keras	Aman
8	Kasar	Hijau	Kecil	Lunak	Berbahaya
9	Halus	Hijau	Kecil	Keras	Berbahaya
10	Kasar	Merah	Besar	Keras	Aman
11	Halus	Coklat	Besar	Lunak	Aman
12	Halus	Hijau	Kecil	Keras	Berbahaya
13	Kasar	Merah	Kecil	Lunak	Aman
14	Halus	Merah	Besar	Keras	Berbahaya
15	Halus	Merah	Kecil	Keras	Aman
16	Kasar	Hijau	Kecil	Keras	Berbahaya

Contoh Konversi Decision Tree

Contoh Wujud Decision Tree

Apakah kamu suka hal yang berhubungan dengan perancangan?

T1

T2

T3

T4

T5

. . .

	Pertanyaan	Ya	Tidak
(11)	T1	T4	T2
	T2	T7	T3
Ť2	Т3	S1	S10
	T4	Т9	T5
Te SS TS Pertanyaan	Jawab Pertan	SISTEM PAKAR KARIR MAHASISWA PROGRAM STUDI TEKNIK INFO	100
Apakah kamu suka hal yang berhubungan dengan so	ftware?	•	Detail
Apakah kamu suka hal yang berhubungan dengan ha	ardware?	12	
Apakah kamu suka hal yang berhubungan dengan ko	mputer?	YA SKE	EMBALI X TIDAK
Apakah kamu suka hal yang berhubungan dengan co	ding?	@Copyrl	ght SPKM

Contoh Tabel Kesimpulan

ID	Solusi	Detail
S 5	Program mer	Programmer adalah orang yang membuat suatu aplikasi untuk kclient atau server baik untuk perusahaan, istansi atupun perorangan. Tugas: Membuat perogram baik aplikasi maupun sistem oprasi dengan menggunakan bahasa pemrograman yang ada. Kualifikasi: Menguasai logika dan algoritma pemrograman seperti HTML, Ajax, CSS, JavaScript, C++, VB, PHP, Java, Ruby dll. Memahami SQL dan menguasai Bahasa Inggris IT.

