

Job shop scheduling by simulated annealing

Thomas Bamelis & Michiel Jonckheere

KU Leuven Kulak

Academiejaar 2017-2018

Overzicht

Inleiding

De algemene vorm van simulated annealing

Waarom niet simpeler

SA toegepast op job shop scheduling

Besluit

Overzicht

Inleiding

De algemene vorm van simulated annealing

Waarom niet simpeler

SA toegepast op job shop scheduling

Besluit

Bamelis & M. Jonckheere Simulated annealing 3 / 14

Inleiding

Simulated annealing

Een manier om dichtbij optimale oplossing te geven voor een combinatorisch optimalisatie probleem.

Gebaseerd op het afkoelen van metalen.

Bamelis & M. Jonckheere Simulated annealing 3 / 14

Inleiding

Simulated annealing

Een manier om dichtbij optimale oplossing te geven voor een combinatorisch optimalisatie probleem.

Gebaseerd op het afkoelen van metalen.

Overzicht

Inleiding

De algemene vorm van simulated annealing

Waarom niet simpeler

SA toegepast op job shop scheduling

Besluit

Bamelis & M. Jonckheere Simulated annealing 4 / 14

Gegevens

3 benodigdheden voor SA:

- 1. \mathscr{R} : Een verzameling configuraties / combinaties
- 2. $C: \mathscr{R} \to \mathbb{R}$: Een functie die de 'kost' van een configuratie weergeeft
- 3. $\mathscr{N}:\mathscr{R}\to 2^{\mathscr{R}}$: Een functie die de 'neighborhood' van een configuratie weergeeft, met $\mathscr{N}(i)\subseteq\mathscr{R}$

Een simpele transitie is nodig waaruit indien toegepast op een configuratie i, alle $\mathcal{N}(i)$ hieruit kunnen volgen

Bamelis & M. Jonckheere Simulated annealing 5 / 14

Algoritme SA

 \triangleright Iteratief algoritme waarin $i \in \mathcal{R}$ gegeven is bij de initialisatie.

- ightarrow Er wordt een neighbor $j \in \mathscr{N}(i)$ genomer
- \rightarrow De kans dat we met j verdergaan is min $\{1, e^{\frac{-(e(j)-e(j))}{c}}\}$ met c een getal die daalt tijdens de uitvoering (*cfr. temperatuur*).

Kans daalt als

- C(j) C(i) groot of dus j veel zwaarder
- c kleiner wordt of dus tijd vordert

Kans 1 als $C(j) \leq C(i)$

Bamelis & M. Jonckheere Simulated annealing 5 / 14

Algoritme SA

 \triangleright Iteratief algoritme waarin $i \in \mathcal{R}$ gegeven is bij de initialisatie.

- → Er wordt een neighbor $j \in \mathcal{N}(i)$ genomen
- \rightarrow De kans dat we met j verdergaan is min $\{1, e^{\frac{-(c(j)-c(j))}{c}}\}$ met c een getal die daalt tijdens de uitvoering (*cfr. temperatuur*).

Kans daalt als

- C(j) C(i) groot of dus j veel zwaarder
- c kleiner wordt of dus tijd vordert

Kans 1 als $C(j) \leq C(i)$

Algoritme SA

 \triangleright Iteratief algoritme waarin $i \in \mathcal{R}$ gegeven is bij de initialisatie.

- → Er wordt een neighbor $j \in \mathcal{N}(i)$ genomen
- \rightarrow De kans dat we met j verdergaan is min $\{1, e^{\frac{-(C(j)-C(i))}{c}}\}$ met c een getal die daalt tijdens de uitvoering (*cfr. temperatuur*).

Kans daalt als

- C(j) C(i) groot of dus j veel zwaarder
- c kleiner wordt of dus tijd vordert

Kans 1 als $C(j) \leq C(i)$

Algoritme SA

 \triangleright Iteratief algoritme waarin $i \in \mathcal{R}$ gegeven is bij de initialisatie.

- \rightarrow Er wordt een neighbor $j \in \mathcal{N}(i)$ genomen
- \rightarrow De kans dat we met j verdergaan is min $\{1, e^{\frac{-(C(j)-C(i))}{c}}\}$ met c een getal die daalt tijdens de uitvoering (*cfr. temperatuur*).

Kans daalt als:

- C(j) C(i) groot of dus j veel zwaarder
- c kleiner wordt of dus tijd vordert

Kans 1 als $C(j) \leq C(i)$

Algoritme SA

 \triangleright Iteratief algoritme waarin $i \in \mathcal{R}$ gegeven is bij de initialisatie.

- \rightarrow Er wordt een neighbor $j \in \mathcal{N}(i)$ genomen
- \rightarrow De kans dat we met j verdergaan is min $\{1, e^{\frac{-(C(j)-C(i))}{c}}\}$ met c een getal die daalt tijdens de uitvoering (*cfr. temperatuur*).

Kans daalt als:

- C(j) − C(i) groot of dus j veel zwaarder
- c kleiner wordt of dus tijd vordert

Kans 1 als $C(j) \leqslant C(i)$

Bamelis & M. Jonckheere Simulated annealing 6 / 14

c en aantal iteraties

Kies voor c begin waarde χ_0 , eindwaard $\epsilon_{\rm s}$ en δ $c_{\rm k+1} = \frac{c_{\rm k}}{1+[c_{\rm k}\cdot\ln(1+\delta)/3\cdot\sigma_{\rm k}]}$

met σ_k de standaard afwijking van de kost van de configuraties van de k'de iteratie

 $ightarrow \delta$ klein gekozen \Rightarrow trage 'kwalitatieve' afname c

We kiezen Lengte L als bovengrens van het aantal mogelijke elementen om te bereiken uit een transitie vanuit i:

$$L_{\mathsf{k}} = \max_{i \in \mathscr{R}} \{ |\mathscr{N}(i)| \}$$

Bamelis & M. Jonckheere Simulated annealing 6 / 14

c en aantal iteraties

Kies voor c begin waarde χ_0 , eindwaard $\epsilon_{\rm s}$ en δ $c_{\rm k+1}=\frac{c_{\rm k}}{1+[c_{\rm k}\cdot\ln(1+\delta)/3\cdot\sigma_{\rm k}]}$

met σ_k de standaard afwijking van de kost van de configuraties van de k'de iteratie

 $ightarrow \delta$ klein gekozen \Rightarrow trage 'kwalitatieve' afname c

We kiezen Lengte L als bovengrens van het aantal mogelijke elementen om te bereiken uit een transitie vanuit i:

$$L_{\mathsf{k}} = \max_{i \in \mathscr{R}} \{ |\mathscr{N}(i)| \}$$

Bamelis & M. Jonckheere Simulated annealing 6 / 14

c en aantal iteraties

Kies voor c begin waarde χ_0 , eindwaard $\epsilon_{\rm s}$ en δ $c_{\rm k+1} = \frac{c_{\rm k}}{1+[c_{\rm k}\cdot\ln(1+\delta)/3\cdot\sigma_{\rm k}]}$

met σ_k de standaard afwijking van de kost van de configuraties van de k'de iteratie

 $ightarrow \delta$ klein gekozen \Rightarrow trage 'kwalitatieve' afname c

We kiezen Lengte L als bovengrens van het aantal mogelijke elementen om te bereiken uit een transitie vanuit i:

$$L_{k} = \max_{i \in \mathcal{R}} \{ |\mathcal{N}(i)| \}$$

Bamelis & M. Jonckheere Simulated annealing 7 / 14

Kwaliteit algoritme

 \triangleright Indien δ kleiner dan 0,1 gekozen wordt is de eindconfiguratie binnen 2% van het globaal minimum.

Tijdscomplexiteit = $\theta(\tau L \ln(|\mathcal{R}|))$ met τ de tijd om een nieuwe transitie door te voeren.

Overzicht

Inleiding

De algemene vorm van simulated annealing

Waarom niet simpeler

SA toegepast op job shop scheduling

Besluit

Bamelis & M. Jonckheere Simulated annealing 8 / 14

Waarom niet simpeler?

Wat indien men met j verdergaat als $C(j) \leq C(i)$?

```
Stel i \in \mathcal{R} en \forall j \in \mathcal{N}(i) : C(j) \geqslant C(i)
(i heeft kleinste kost van al zijn neighbors
\Rightarrow je zit vast in \mathcal{N}(i)
```

SA 'verplicht' om te veranderen in begin en zo niet vast te zitten

Bamelis & M. Jonckheere Simulated annealing 8 / 14

Waarom niet simpeler?

Wat indien men met j verdergaat als $C(j) \leq C(i)$?

```
Stel i \in \mathcal{R} en \forall j \in \mathcal{N}(i) : C(j) \geqslant C(i)
(i heeft kleinste kost van al zijn neighbors)
\Rightarrow je zit vast in \mathcal{N}(i)
```

SA 'verplicht' om te veranderen in begin en zo niet vast te zitten

Waarom niet simpeler?

Wat indien men met j verdergaat als $C(j) \leq C(i)$?

```
Stel i \in \mathcal{R} en \forall j \in \mathcal{N}(i) : C(j) \geqslant C(i)
(i heeft kleinste kost van al zijn neighbors)
\Rightarrow je zit vast in \mathcal{N}(i)
```

SA 'verplicht' om te veranderen in begin en zo niet vast te zitten

Overzicht

Inleiding

De algemene vorm van simulated annealing

Waarom niet simpeler

SA toegepast op job shop scheduling

Besluit

Bamelis & M. Jonckheere Simulated annealing 9 / 14

Configuraties

We geven hier de gegevens die SA nodig heeft door voor ons probleem.

Configuraties

De configuratie i wordt weergegeven door Π_i met $\Pi_i = \{\pi_{i1},...,\pi_{im}\}$ met π_{ik} de volgorde waarin de operaties op machine k worden uitgevoerd.

 π_{ik} moet m_k operaties bevatten $\Rightarrow \#\mathscr{R} = \prod\limits_{k=1}^m m_k!$ met m aanta machines

Als operatie v op machine k uitvoert, dan is $\pi_{ik}(v)$ de operatie die na v op machine k uitvoert.

 $\pi_{ik}^{l}(v)$ is de *l*'de operatie na v

Bamelis & M. Jonckheere Simulated annealing 9 / 14

Configuraties

We geven hier de gegevens die SA nodig heeft door voor ons probleem.

Configuraties:

De configuratie i wordt weergegeven door Π_i met $\Pi_i = \{\pi_{i1},...,\pi_{im}\}$ met π_{ik} de volgorde waarin de operaties op machine k worden uitgevoerd.

 π_{ik} moet m_{k} operaties bevatten $\Rightarrow \#\mathscr{R} = \prod\limits_{k=1}^m m_{\mathsf{k}}!$ met m aantal machines

Als operatie v op machine k uitvoert, dan is $\pi_{ik}(v)$ de operatie die na v op machine k uitvoert.

 $\pi_{ik}^{I}(v)$ is de *l*'de operatie na v

Configuraties

We geven hier de gegevens die SA nodig heeft door voor ons probleem.

Configuraties:

De configuratie i wordt weergegeven door Π_i met $\Pi_i = \{\pi_{i1},...,\pi_{im}\}$ met π_{ik} de volgorde waarin de operaties op machine k worden uitgevoerd.

 π_{ik} moet m_k operaties bevatten $\Rightarrow \#\mathscr{R} = \prod_{k=1}^m m_k!$ met m aantal machines

Als operatie v op machine k uitvoert, dan is $\pi_{ik}(v)$ de operatie die na v op machine k uitvoert.

 $\pi_{ik}^{I}(v)$ is de *l*'de operatie na v.

Stel V de operaties en A de gerichte bogen met $(v, w) \in A$, v en w in zelfde job en w voert direct na v uit. (n jobs, m machines ≥ 2 en N operaties)

Definiëren twee grafen:

- 1. $D_i = (V, A \cup E_i)$, met $E_i = \{(v, w) | \{v, w\} \in E \text{ en } \pi_{ik}(v) = w$, voor een $k \in (M)\}$ $\rightarrow (v, w)$ in E_i als w *direct* na v uitvoert
- 2. $\bar{D}_i = (V, A \cup \bar{E}_i)$, met $\bar{E}_i = \{(v, w) | \{v, w\} \in E \text{ en } \pi_{ik}^l(v) = w$, voor een $k \in (M)$ en een $1 \le l \le m_k 1\} \rightarrow (v, w)$ in \bar{E}_i als w na v wordt uitgevoerd

Stel V de operaties en A de gerichte bogen met $(v, w) \in A$, v en w in zelfde job en w voert direct na v uit. (n jobs, m machines ≥ 2 en N operaties)

Definiëren twee grafen:

- 1. $D_i = (V, A \cup E_i)$, met $E_i = \{(v, w) | \{v, w\} \in E \text{ en } \pi_{ik}(v) = w$, voor een $k \in (M)\}$ $\rightarrow (v, w)$ in E_i als w *direct* na v uitvoert
- 2. $\bar{D}_i = (V, A \cup \bar{E}_i)$, met $\bar{E}_i = \{(v, w) | \{v, w\} \in E \text{ en } \pi_{ik}^I(v) = w$, voor een $k \in (M)$ en een $1 \le I \le m_k 1\} \to (v, w)$ in \bar{E}_i als w na v wordt uitgevoerd

Het langste pad van beide grafen zijn even lang. (Overige paden zijn korter of afkorting van een pad)

- \Rightarrow Kost van configuratie *i* vinden we door het langste pad van beginknoop/bron 0 naar eindknoop/put N+1 te zoeken in D_i \rightarrow labeling algoritme
 - → kortste pad algoritme met gewicht boog = -1

```
Dit heeft tijdscomplexiteit \Theta(\#bogen) |E_i| = \text{operaties} - \# \text{beginknopen machines} = N - m |A| = \text{operaties} - \# \text{beginknopen jobs} = N + n Want iedere knoop heeft precies 1 toekomende behalve 1e. We vergeten uitknopen 0 en inknopen N + 1 Aantal bogen: |A| + |E_i| = (N + n) + (N - m) \Rightarrow O(N)
```


Het langste pad van beide grafen zijn even lang. (Overige paden zijn korter of afkorting van een pad)

- \Rightarrow Kost van configuratie i vinden we door het langste pad van beginknoop/bron 0 naar eindknoop/put N+1 te zoeken in D_i
- ightarrow labeling algoritme
 - → kortste pad algoritme met gewicht boog = -1

```
Dit heeft tijdscomplexiteit \Theta(\#bogen)
|E_i| = \text{operaties} - \# \text{beginknopen machines} = N - m
|A| = \text{operaties} - \# \text{beginknopen jobs} = N + n
Want iedere knoop heeft precies 1 toekomende behalve 1e.
We vergeten uitknopen 0 en inknopen N + 1
Aantal bogen: |A| + |E_i| = (N + n) + (N - m)
```


Het langste pad van beide grafen zijn even lang. (Overige paden zijn korter of afkorting van een pad)

- \Rightarrow Kost van configuratie i vinden we door het langste pad van beginknoop/bron 0 naar eindknoop/put N+1 te zoeken in D_i
- → labeling algoritme
 - → kortste pad algoritme met gewicht boog = -1

```
Dit heeft tijdscomplexiteit \Theta(\#bogen)
```

$$|E_i|$$
 = operaties - # beginknopen machines = $N-m$

$$|A| =$$
 operaties - # beginknopen jobs $= N + n$

Want iedere knoop heeft precies 1 toekomende behalve 1e.

We vergeten uitknopen 0 en inknopen N+1

Aantal bogen:
$$|A| + |E_i| = (N + n) + (N - m)$$

$$\Rightarrow O(N)$$

Bamelis & M. Jonckheere Simulated annealing 12 / 14

Neighborhood Structuur

Transitie:

Neem bogen v en w zodat

- 1. *v* en *w* zijn opeenvolgende operaties op een machine *k*
- 2. $(v, w) \in E_i$ is een kritieke boog

Daarna v en w wisselen in uitvoering.

$$\Rightarrow$$
 $(u, v), (v, w), (w, x) \in E_i$ worden $(u, w), (w, v), (v, x) \in E_i$

Geen kringen worden gecreëerd (kan bewezen worden) en omdat $(v, w) \in \text{cruciaal pad zal de transitie effect hebben op de kost.}$

 $\mathcal{N}(i) = \text{verzameling grafen bereikbaar uit i door omwisselen}$ cruciale boog. Cruciaal pad $\subset E_i$ en $m_k - 1$ bogen per machine

KU LEUVEN kulak

Bamelis & M. Jonckheere Simulated annealing 12 / 14

Neighborhood Structuur

Transitie:

Neem bogen v en w zodat

- 1. *v* en *w* zijn opeenvolgende operaties op een machine *k*
- 2. $(v, w) \in E_i$ is een kritieke boog

Daarna v en w wisselen in uitvoering.

$$\Rightarrow$$
 $(u, v), (v, w), (w, x) \in E_i$ worden $(u, w), (w, v), (v, x) \in E_i$

Geen kringen worden gecreëerd (kan bewezen worden) en omdat $(v, w) \in \text{cruciaal pad zal de transitie effect hebben op de kost.}$

 $\mathcal{N}(i)=$ verzameling grafen bereikbaar uit i door omwisselen cruciale boog. Cruciaal pad $\subset E_i$ en m_k-1 bogen per machine

$$\Rightarrow |\mathcal{N}(i)| < |E_i| = \sum_{k=1}^m (m_k - 1) = N - m$$

KU LEUVEN

Bamelis & M. Jonckheere Simulated annealing 13 / 14

Convergentie

Via een bewijs kan aangetoond worden dat voor iedere begin configuratie *i* een eindig aantal transities bestaat om een globaal minimale configuratie te bereiken.

Overzicht

Inleiding

De algemene vorm van simulated annealing

Waarom niet simpeler

SA toegepast op job shop scheduling

Besluit

E Bamelis & M. Jonckheere Simulated annealing 14 / 14

Besluit

SA blijft relatief simpel, snel en goed en vermijd de valkuil van de simpelere methode.

