

Complexidade de Algoritmos

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Reduções de Problemas

$X \in NP$ -Completo

Um problema X é *NP-Completo* se:

1. O problema deve ser NP:

- $X \in NP$
- a) Conseguir um algoritmo não determinista que resolva o problema em tempo polinomial
- b) Conseguir um algoritmo determinista que verifica em tempo polinomial se uma resposta é verdadeira ou não (**certificado**)
- 2. Fazer a redução de um problema NP-Completo (Y) conhecido para o problema X: $Y \leq_p X$ para todo $Y \in NP$

Forma Normal Conjuntiva

Uma formula booleana está na *Forma Normal Conjuntiva* (*CNF*) se é expressa por um grupo cláusulas AND, cada uma das quais formada por OR entre literais.

Uma fórmula booleana esta na k-CNF se cada cláusula possui exatamente k literais:

Exemplo 2-CNF:

Problema: verificar se uma fórmula booleana na 3-CNF é satisfazível.

3-CNF-SAT é *NP-Completo*?

- Passo 1: 3-CNF-SAT ∈ NP.

- Passo 2: SAT \leq_p 3-CNF-SAT.

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

Passo 1: 3-CNF-SAT $\in NP$.

- 1. Para cada símbolo y da entrada w:
 - i. Simule a operação booleana sempre que possível, armazenando os resultados parciais ou os símbolos que ainda não puderam ser simplificados
- 2. Considerando uma fórmula booleana válida, retorne o último valor booleano restante como resposta (V = aceite / F = rejeite)

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

Neste caso qual seria a complexidade do algoritmo?

Passo 2: SAT \leq_p 3-CNF-SAT.

Dada uma fórmula booleana:

$$\phi = x_1 \wedge \neg (x_1 \vee \neg x_2)$$

SAT

REDUÇÃO

- 1. Construir uma árvore que represente à fórmula.
- 2. Introduzir uma variável y_i para a raiz e a saída de cada no interno.

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

3. Reescrevemos a fórmula original como conjunções entre a variável raiz e as cláusulas que descrevem as operações de cada nó.

Introduz **uma** variável e **uma** cláusula para cada operador.

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

4. Para cada ϕ'_i construir uma tabela verdade, usando as entradas que tornam $\neg \phi'_i$ verdade, construir uma forma normal disjuntiva (DNF) para cada ϕ'_i

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

y_1	x_1	y_2	$y_1 \leftrightarrow (x_1 \land y_2)$
V	V	V	V
V	V	F	F
V	F	V	F
V	F	F	F
F	V	V	F
F	V	F	V
F	F	V	V
F	F	F	V

$$\neg \phi_2'' = (y_1 \land x_1 \land \neg y_2)$$

$$\lor (y_1 \land \neg x_1 \land y_2)$$

$$\lor (y_1 \land \neg x_1 \land \neg y_2)$$

$$\lor (\neg y_1 \land x_1 \land y_2)$$

Cada cláusula de ϕ' introduz no máximo 8 cláusulas em ϕ'' , pois cada cláusula de ϕ' possui no máximo 3 variáveis.

$$\neg \phi_2'' = (y_1 \land x_1 \land \neg y_2) \lor (y_1 \land \neg x_1 \land y_2) \lor (y_1 \land \neg x_1 \land y_2) \lor (y_1 \land \neg x_1 \land \neg y_2) \lor (\neg y_1 \land x_1 \land y_2)$$

Converter a fórmula para a CNF usando as leis de De Morgan:

$$\phi_2'' = (\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)$$

O último passo faz com que cada cláusula tenha exatamente 3 literais, para isso usamos duas novas variáveis p e q. Para cada cláusula C_i em ϕ'' :

- 1. Se C_i tem 3 literais, simplesmente inclua C_i .
- 2. Se C_i tem 2 literais, $C_i = (l_1 \lor l_2)$, inclua: $(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$
- 3. Se C_i tem 1 literal, l_1 , inclua:

$$(l_1 \lor p \lor q) \land (l_1 \lor \neg p \lor \neg q) \land (l_1 \lor p \lor \neg q) \land (l_1 \lor \neg p \lor q)$$

Introduz no máximo 4 cláusulas por cláusula em ϕ'' .

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

$$\phi_{1}''' = (y_{1} \lor p \lor q) \land (y_{1} \lor \neg p \lor \neg q) \land (y_{1} \lor p \lor \neg q) \land (y_{1} \lor \neg p \lor q)$$

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

$$(y_1 \lor p \lor q) \land (y_1 \lor \neg p \lor \neg q) \land (y_1 \lor p \lor \neg q) \land (y_1 \lor \neg p \lor q) \land$$

$$(\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)$$

Problema: verificar se uma fórmula booleana na 3-CNF é satisfazível.

3-CNF-SAT é NP-Completo? SIM

- **Passo 1**: 3-CNF-SAT ∈ NP.
- Passo 2: SAT \leq_p 3-CNF-SAT.

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

$$\begin{vmatrix} (y_1 \lor p \lor q) \land (y_1 \lor \neg p \lor \neg q) \land (y_1 \lor p \lor \neg q) \land (y_1 \lor \neg p \lor q) \land \\ (\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2) \land \dots \end{vmatrix}$$

CLIQUE

Um *Clique* em um grafo não direcionado G = (V, A) é um subconjunto de vértices $V' \subseteq V$, onde cada vértice está conectado por uma aresta. Ou seja, um subgrafo completo.

Versão de otimização: Encontrar o maior *Clique* possível.

Versão de decisão: Existe um *Clique* de tamanho $\geq k$?

CLIQUE é NP-Completo?

- **Passo 1**: CLIQUE ∈ NP.

– **Passo 2**: 3-CNF-SAT \leq_p CLIQUE.

Passo 1: Clique $\in NP$

$$V = \{ a, b, c, d, e, f \}$$

$$A = \{ (a,b), (a,f), (b,c), (b,d), (b,e), (c,d), (c,e), (d,e) \}$$

$$V' = \{ b, c, d, e \}$$

Dado um grafo G = (V, A), a solução (**certificado**) V' e k, verificar se V' é válido e se $|V'| \ge k$ em tempo polinomial

Se $|V'| \le k$ então retorne Falso

Para cada $u \in V'$

Para cada $v \in V'$

Se $u \neq v$ então verificar se $(u, v) \in A$

Complexidade?

• **Passo 2**: 3-CNF-SAT \leq_p CLIQUE.

Dada uma instancia ϕ do problema 3-CNF-SAT converteremos esta para um grafo G que terá 3k vértices, onde k é o número de cláusulas de ϕ .

- u e v são vértices que correspondem a literais em diferentes cláusulas;
- Todos os vértices são ligados por arestas, com exceção:
 - se *u* e *v* pertencem a mesma cláusula, então não há ligação;
 - se u corresponde a um literal x, e v corresponde ao literal $\sim x$, então não há ligação entre esses dois vértices;

• Passo 2: 3-CNF-SAT \leq_p CLIQUE.

$$\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

 ϕ é satisfazível \leftrightarrow G possui um clique \geq k

Cobertura de Vértices (VERTEX-COVER)

Uma *Cobertura de Vértices* de um grafo não orientado G = (V, A) é um subconjunto $V' \subseteq V$ tal que se $(u, v) \in A$, então $u \in V'$ ou $v \in V'$.

Cobertura de Vértices (VERTEX-COVER)

Versão de otimização: Encontrar menor Cobertura de Vértices.

Versão de decisão: Existe uma cobertura de tamanho k?

VERTEX-COVER ∈ NP-Completo

Passo 1: Cobertura de Vértices \in NP.

$$V = \{ a, b, c, d, e, f \}$$

$$A = \{ (a,c), (a,d), (b,f), (c,f), (f,e) \}$$

$$V' = \{ a, f \}$$

Dado um grafo G = (V, A) e a solução (**certificado**) V' verificar se V'é válido e se $|V'| \le k$ em tempo polinomial

Se |V'| > k então retorne FalsoPara cada $(u, v) \in A$ Verificar se $u \in V'$ ou $v \in V'$

Complexidade?

VERTEX-COVER ∈ NP-Completo

• **Passo 2**: CLIQUE \leq_p VERTEX-COVER

CLIQUE Entrada (G, k), onde G = (V, A)

VERTEX-COVER Entrada (\overline{G} , /V/-k)

Ciclo Hamiltoniano

Um *Ciclo Hamiltoniano* em um grafo não orientado é um caminho que passa por cada vértice do grafo exatamente uma vez e retorna ao vértice inicial.

Versão de decisão: um grafo G possui um ciclo Hamiltoniano?

Passo 1: Ciclo Hamiltoniano $\in NP$

$$V = \{ a, b, c, d, e \}$$

$$A = \{ (a,b), (a,c), (a,d), (b,e), (c,e), (d,e) \}$$

$$V' = \{ a, b, e, d, c \}$$

retorne verdadeiro

Dado um grafo G = (V, A) e a solução (**certificado**) V' verificar se V' é um ciclo Hamiltoniano em tempo polinomial

```
Para cada v ∈ V: viz[v] = não marcado
Para cada v' ∈ V':
    Se viz[v'] == marcado: retorne falso
    Senão: viz[v'] = marcado
Para cada x ∈ viz:
```

Se x não está marcado: retorne falso

Complexidade?

Vertex-Cover \leq_p Ciclo Hamiltoniano

• Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO

Dado um grafo instância do problema de Cobertura de vértices G = (V, E), devemos:

- Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO
- criar uma lista com as adjacências de cada nó (para formar um caminho entre todas as coberturas de um vértices):

- adicionar arestas para unir pares de dispositivos: {([u,u_i,6],[u,u_{i+1},1]), ... }
- criar arestas para unir o primeiro [u, u₁, 1] e o último vértice
 [u, u_{grau(u)}, 6] de cada um desses caminhos a cada vértice seletor.

$$\{(sj, [u, u_1, 1]) : u \in V \ e \ 1 \le j \le k\}$$

 $\{(sj, [u, u_{grau(u)}, 6]) : u \in V \ e \ 1 \le j \le k\}$

• Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO

O caminho 3 entre dispositivos (*) só ocorre em arestas compartilhadas por vértices que fazem parte da solução da cobertura de vértices

• Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO

Importante: note que o novo grafo G' = (V', E')

$$|V'| = 12 |E| + k$$

 $|V'| \le 12 |E| + |V|$

Instância cresceu apenas em tamanho polinomial

$$|E'| = 14 |E| + (2|E| - |V|) + (2k |V|)$$

 $|E'| = 16 |E| + (2k - 1) |V|$
 $|E'| \le 16 |E| + (2|V| - 1) |V|$

Caixeiro Viajante

Um vendedor deseja visitar n cidades e retornar a cidade de origem. Dado um grafo não orientado completo com n vértices, onde existe um custo c(i, j) (associado a cada aresta) para viajar da cidade i a cidade j.

Otimização: Qual é o menor caminho para o vendedor?

Decisão: Existe um caminho para o vendedor com custo máximo igual a *k*?

Caixeiro Viajante ∈ NP-Completo

Passo 1: Caixeiro Viajante $\in NP$

Dado um grafo G = (V, A), a solução (**certificado**) V' e o custo máximo k, verificar se V' é um caminho válido do Caixeiro com custo menor ou igual a k em tempo polinomial

Caixeiro Viajante ∈ NP-Completo

• Passo 2: CICLO HAMILTON \leq_p CAIXEIRO

para cada vértice ipara cada vértice jse $(i, j) \in H$ então $c(i, j) \leftarrow 0$ senão $c(i, j) \leftarrow 1$

SUBSET-SUM

Dado um conjunto finito de inteiros positivos S e um inteiro t > 0, determinar se existe um subconjunto $S' \subseteq S$ onde o somatório dos elementos de S' é igual a t.

$$\sum_{i=1}^{n} S_i' = t$$

SUBSET-SUM

Exemplo:

$$t = 138.457$$

$$S' = \{ 1, 2, 7, 98, 343, 686, 2.409, 17.206, 117.705 \}$$

SUBSET-SUM ∈ NP-Completo

Passo 1: Subset-Sum $\in NP$

Dado um conjunto de números inteiros S, o valor t objetivo e a solução (**certificado**) S', verificar se S' é uma solução do problema em tempo polinomial.

```
soma = 0
Para cada s' ∈ S':
    Se s' ≠ S: retorne falso
    soma = soma + s'
Se soma != t: retorne falso
Senão: retorne verdadeiro
```

Complexidade?

SUBSET-SUM \in NP-Completo

Passo 2: 3-CNF-SAT \leq_p SUBSET-SUM

Dada uma fórmula ϕ instância de 3-CNF-SAT, devemos:

- \triangleright Criar dois números para cada variável x_i em ϕ : v_i e v'_i
- \triangleright Criar dois números para cada cláusula C_j em ϕ : s_j e s_j

Cada número criado terá $\mathbf{n} + \mathbf{k}$ dígitos, onde \mathbf{n} é o número de variáveis e \mathbf{k} é o número de cláusulas.

O valor **t** terá um valor 1 para cada dígito identificado por variável e 4 em cada dígito identificado por uma cláusula

SUBSET-SUM \in NP-Completo

Passo 2: 3-CNF-SAT \leq_p SUBSET-SUM

- Para cada variável v_i e v'_i colocamos o valor 1 no dígito identificado por x_i e 0 nos outros dígitos;
- ➤ Se o literal x_i aparece na cláusula C_j, então o dígito identificado por C_j em v_i contém valor 1;
- ➤ Se o literal ~x_i aparece na cláusula C_j, então o dígito identificado por C_i em v_i contém valor 0;
- ▶ Para cada s_j e s'_j colocamos valor 0 em todos os dígitos, com duas exceções:

em s_j colocamos 1 no dígito C_j em s'_j colocamos 2 no dígito C_j

SUBSET-SUM ∈ NP-Completo

$$(\sim x_1 \lor x_2 \lor \sim x_3) \land (x_1 \lor x_2 \lor \sim x_3)$$

$$t = 11144$$

S' = { 10001, 1011, 111, 20, 1 } {
$$v_1, v_2, v_3', s_1', s_2$$
 }

$$X_1 = V$$
, $X_2 = V$, $X_3 = F$

	x_1	x_2	x_3	C_1	C_2
v_1	1	x_2	0	0	1
$ v'_1 $	1	0	0	1	0
v_2 v_2'	0	1	0	1	1
v_2'	0	1	0	0	0
v_3 v'_3	0	0	1	0	0
v' ₃	0	0	1	1	1
s_1	0	0	0	1	0
s' ₁	0	0	0	2	0
S_2	0	0	0	0	1
s'_2	0	0	0	0	2
$\begin{array}{c c} s_2 \\ s'_2 \\ \hline t \end{array}$	1	1	1	4	4

SUBSET-SUM ∈ NP-Completo

Note que a maior soma de cada coluna (dígito) é no máximo 6. Assim, para esta conversão devemos usar uma base ≥ 7.

A redução de 3-CNF-SAT para SUBSET-SUM acontece em tempo polinomial.

Resolvendo SUBSET-SUM

É possível resolver o problema do SUBSET-SUM usando programação dinâmica com complexidade de tempo e espaço O(nt), onde n é o número de elementos no conjunto e t o valor do somatório que se deseja alcançar!!

Isso significa então que **P = NP**? (e só agora você me fala isso?!)

Resolvendo SUBSET-SUM

É possível resolver o problema do SUBSET-SUM usando programação dinâmica com complexidade de tempo e espaço O(nt), onde n é o número de elementos no conjunto e t o valor do somatório que se deseja alcançar!!

Isso significa então que **P = NP**? (e só agora você me fala isso?!) **R: Não**. Existe um detalhe importante que não está sendo considerado

Programação Dinâmica (Subset-Sum)

Dado um conjunto de inteiros positivos, representados como um arranjo S[1..n], e um inteiro t, existe algum subconjunto de S tal que a soma de seus elementos seja t.

$$SubsetS(i,t) = \begin{cases} Verdade & \text{se } t = 0 \\ Falsidade & \text{se } t < 0 \lor i > n \\ SubsetS(i+1,t) \lor SubsetS(i+1,t-x[i]) \end{cases}$$

Exemplo: $x = \{2, 3, 5\}$ e t = 8.

Programação Dinâmica (Subset-Sum)

```
SubsetSum (x[1..n], t)
          S[n+1,0] \leftarrow Verdade
          para j \leftarrow 1 até t
                     S[n+1,j] \leftarrow Falso
          para i \leftarrow n até 1
                     S[i, 0] \leftarrow Verdade
                     para i \leftarrow 1 até x[i] - 1
                                S[i, j] \leftarrow S[i+1, j]
                     para j \leftarrow x[i] até t
                                S[i, j] \leftarrow S[i+1, j] \vee S[i+1, j-x[i]]
          retorne S[1,t]
```


Programação Dinâmica (Subset-Sum)

Exemplo: $x = \{1, 3, 5, 7\}$ e t = 9.

	0	1	2	3	4	5	6	7	8	9
1	V	V	F	V	V	V	V	V	V	V
2	V	F	F	V	F	V	F	V	V	F
3	V	F	F	F	F	V	F	V	F	F
4	V	F	F	F	F	F	F	V	F	F
5	V	F	F	F	F	F	F	F	F	F

Algoritmos que Executam em Tempo Pseudo-Polinomial

Usando programação dinâmica podemos implementar um algoritmo **pseudo-polinomial** com complexidade O(nt), onde n é o número de elementos no conjunto e t o valor do somatório que se deseja alcançar!!

Como assim pseudo-polinomial?

Se o valor de t é limitado por um polinômio existe uma solução eficiente. Mas, se o valor de t for muito grande (e.g. $t = 2^n$), a solução deixa de ser eficiente, se tornando exponencial ou pior.

(Números pequenos [64 bits] vs. BigInt [n bits])

Algoritmos que Executam em Tempo Pseudo-Polinomial

A restrição de *t* pequeno pode ser bastante razoável na prática:

- Problemas onde é impossível a ocorrência de números muito grandes (*e.g.* problemas de escalonamento);
- Problemas onde o tamanho do número possa ser restrito ao tamanho da palavra do processador.

Note contudo que esse não é o caso da redução do 3-CNF-SAT ao SUBSET-SUM, onde o valor de **t** cresce exponencialmente em relação ao número de variáveis e cláusulas presentes na fórmula booleana.

Reduções

Resumindo, quais reduções de problemas foram feitas:

Exercícios

1) Reduzir a seguinte instância de SAT em uma instância 3-CNF-SAT:

$$\phi = x_1 \land (x_2 \lor \sim x_1)$$

2) Reduzir a seguinte instância de VERTEX-COVER em uma instância de CLIQUE. Mostre uma solução equivalente para ambos os problemas:

Exercícios

Reduzir a seguinte instância do problema CLIQUE para uma instância do SUBSET-SUM (CLIQUE => 3-CNF-SAT => SUBSET-SUM). Para a instância do 3-CNF-SAT, elabore uma solução válida (resultado = verdade) e outra não válida (resultado = falsidade) e as soluções correspondentes na instância do SUBSET-SUM.

