Результаты измерений

Out[83]:

Напряжение на нити (В)		Сила тока на нити (А)	Температура (°С)	
0	0.596	2.470	1090.0	
1	0.641	2.935	1150.0	
2	0.668	3.222	1250.0	
3	0.673	3.280	1324.0	
4	0.707	3.658	1386.0	
5	0.740	4.030	1450.0	
6	0.833	5.185	1564.0	
7	0.909	6.190	1722.0	
8	0.855	5.465	1670.0	
9	0.883	5.830	1703.0	
10	0.813	4.930	1500.0	
11	0.927	6.438	1800.0	
12	1.010	7.635	1900.0	
13	1.070	8.560	1960.0	

Зависимость температуры от энергии

В теории должна описоваться согласно формуле

$$W = \varepsilon_T B T^n, \tag{1}$$

где n = 4

Результаты

Температура (°C)

Прологарифмировав обе части выражения (1) получим:

$$ln W = ln(\varepsilon_T B) + n ln T$$
(2)

Тогда коэффициент n может быть найден из метода наименьших квадратов как коэффициент наклона прямой

Коэффициент наклона прямой: 2.99±0.12

Логарифмическая зависимость мощности от температуры

Если выкинуть все значения меньше 1700К получим:

Коэффициент наклона прямой: 3.92±0.26

Логарифмическая зависимость мощности от температуры

Вычисление коэффициента постоянной Больцмана

Ясно, что в формуле (2)

$$B = S \cdot \sigma, \tag{3}$$

где S – эффективная площадь излучающей лампы при температуре более 1500°С, σ – постоянная Стефана-Больцмана; $S=0,36\mathrm{cm}^2$. Тогда:

$$\sigma = \frac{W}{\varepsilon_T S T^4}. (4)$$

Найдем ее значение для каждого измеренного значения T, превышающего 1700К. Будем считать, что значения коэффициента ε_t линейно зависит от температуры. Тогда:

```
Out[75]: array([3.76355322e-08, 3.80619728e-08, 3.96274037e-08, 3.45905427e-08, 3.51877822e-08, 3.64003727e-08])
```

Реальное зачение $\sigma = 5,670367(13) \times 10^{-8} \mathrm{Br} \cdot \mathrm{M}^{-2} \cdot \mathrm{K}^{-4}$

Вычисление постоянной планка

Постоянная планка может быть вычислена по формуле:

$$h = \sqrt[3]{\frac{2\pi^5 k_{\rm B}^4}{15c^2 \sigma}} \tag{5}$$

```
Out[79]: array([7.59264950e-34, 7.56418731e-34, 7.46324158e-34, 7.80920662e-34, 7.76477258e-34, 7.67757550e-34])
```

Реальное значение $h = 6,62607004 \times 10^{-34}$ Дж · К