BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement de Spécialité

Durée de l'épreuve : 4 heures

Coefficient: 9

Ce sujet comporte 7 pages numérotées de 1 à 7

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (4 points)

(Commun à tous les candidats)

Sofia souhaite se rendre au cinéma. Elle peut y aller à vélo ou en bus.

Partie A: en utilisant le bus

On suppose dans cette partie que Sofia utilise le bus pour se rendre au cinéma. La durée du trajet entre son domicile et le cinéma (exprimée en minutes) est modélisée par la variable aléatoire T_B qui suit la loi uniforme sur [12; 15].

- 1) Démontrer que la probabilité que Sofia mette entre 12 et 14 minutes est de $\frac{2}{3}$.
- 2) Donner la durée moyenne du trajet.

Partie B: en utilisant son vélo

On suppose à présent que Sofia choisit d'utiliser son vélo.

La durée du parcours (exprimée en minutes) est modélisée par la variable aléatoire T_V qui suit la loi normale d'espérance $\mu=14$ et d'écart-type $\sigma=1,5$.

- 1) Quelle est la probabilité que Sofia mette moins de 14 minutes pour se rendre au cinéma?
- 2) Quelle est la probabilité que Sofia mette entre 12 et 14 minutes pour se rendre au cinéma? On arrondira le résultat à 10^{-3} .

Partie C: en jouant aux dés

Sofia hésite entre le bus et le vélo. Elle décide de lancer un dé équilibré à 6 faces. Si elle obtient 1 ou 2, elle prend le bus, sinon elle prend son vélo. On note :

- B l'événement « Sofia prend le bus » ;
- V l'événement « Sofia prend son vélo » ;
- C l'événement « Sofia met entre 12 et 14 minutes pour se rendre au cinéma ».
- 1) Démontrer que la probabilité, arrondie à 10^{-2} , que Sofia mette entre 12 et 14 minutes est de 0, 49.
- 2) Sachant que Sofia a mis entre 12 et 14 minutes pour se rendre au cinéma, quelle est la probabilité, arrondie à 10^{-2} , qu'elle ait emprunté le bus?

EXERCICE 2 (5 points)

(commun à tous les candidats)

On considère la fonction f définie sur]0; $+\infty[$ par

$$f(x) = \frac{(\ln x)^2}{x}.$$

On note $\mathscr C$ la courbe représentative de f dans un repère orthonormé.

- 1) Déterminer la limite en 0 de la fonction f et interpréter graphiquement le résultat.
- 2) a) Démontrer que, pour tout x appartenant à]0; $+\infty[$,

$$f(x) = 4\left(\frac{\ln(\sqrt{x})}{\sqrt{x}}\right)^2.$$

- **b)** En déduire que l'axe des abscisses est une asymptote à la courbe représentative de la fonction f au voisinage de $+\infty$.
- 3) On admet que f est dérivable sur]0; $+\infty[$ et on note f' sa fonction dérivée.
 - a) Démontrer que, pour tout x appartenant à $]0\ ;\ +\infty[$,

$$f'(x) = \frac{\ln(x)(2 - \ln(x))}{x^2}.$$

- b) Etudier le signe de f'(x) selon les valeurs du nombre réel x strictement positif.
- c) Calculer f(1) et $f(e^2)$.

On obtient alors le tableau de variations ci-dessous.

4) Démontrer que l'équation f(x)=1 admet une unique solution α sur]0; $+\infty[$ et donner un encadrement de α d'amplitude 10^{-2} .

EXERCICE 3 (3 points)

(Commun à tous les candidats)

Les deux parties de cet exercice sont indépendantes.

Partie A:

Soit la fonction f définie sur l'ensemble des nombres réels par

$$f(x) = 2e^x - e^{2x}$$

et ${\mathscr C}$ sa représentation graphique dans un repère orthonormé.

On admet que, pour tout x appartenant à $[0 ; \ln(2)]$, f(x) est positif.

Indiquer si la proposition suivante est vraie ou fausse en justifiant votre réponse.

Proposition A:

L'aire du domaine délimité par les droites d'équations x=0 et $x=\ln(2)$, l'axe des abscisses et la courbe $\mathscr C$ est égale à 1 unité d'aire.

Partie B:

Soit n un entier strictement positif.

Soit la fonction f_n définie sur l'ensemble des nombres réels par

$$f_n(x) = 2ne^x - e^{2x}$$

et \mathscr{C}_n sa représentation graphique dans un repère orthonormé.

On admet que f_n est dérivable et que \mathscr{C}_n admet une tangente horizontale en un unique point S_n . Indiquer si la proposition suivante est vraie ou fausse en justifiant votre réponse.

Proposition B:

Pour tout entier strictement positif n, l'ordonnée du point S_n est n^2 .

EXERCICE 4 (3 points)

(Commun à tous les candidats)

Les questions 1. et 2. de cet exercice pourront être traitées de manière indépendante.

On considère la suite des nombres complexes (z_n) définie pour tout entier naturel n par

$$z_n = \frac{1+i}{(1-i)^n}.$$

On se place dans le plan complexe d'origine O.

- 1) Pour tout entier naturel n, on note A_n le point d'affixe z_n .
 - a) Démontrer que, pour tout entier naturel $n, \frac{z_{n+4}}{z_n}$ est réel.
 - **b**) Démontrer alors que, pour tout entier naturel n, les points O, A_n et A_{n+4} sont alignés.
- 2) Pour quelles valeurs de n le nombre z_n est-il réel?

EXERCICE 5 (5 points)

(Candidats n'ayant pas suivi l'enseignement de spécialité)

Dans un territoire donné, on s'intéresse à l'évolution couplée de deux espèces : les buses (les prédateurs) et les campagnols (les proies).

Des scientifiques modélisent, pour tout entier naturel n, cette évolution par :

$$\begin{cases} b_0 = 1 \ 000 \\ c_0 = 1 \ 500 \\ b_{n+1} = 0, 3b_n + 0, 5c_n \\ c_{n+1} = -0, 5b_n + 1, 3c_n \end{cases}$$

où b_n représente approximativement le nombre de buses et c_n le nombre approximatif de campagnols le 1^{er} juin de l'année 2000 + n (où n désigne un entier naturel).

- 1) On note A la matrice $\begin{pmatrix} 0,3 & 0,5 \\ -0,5 & 1,3 \end{pmatrix}$ et, pour tout entier naturel n, U_n la matrice colonne $\begin{pmatrix} b_n \\ c_n \end{pmatrix}$.
 - a) Vérifier que $U_1=\left(\begin{array}{c} 1\ 050 \\ 1\ 450 \end{array}\right)$ et calculer $U_2.$
 - **b)** Vérifier que, pour tout entier naturel n, $U_{n+1} = AU_n$.

On donne les matrices $P=\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$, $T=\left(\begin{array}{cc} 0,8 & 0,5 \\ 0 & 0,8 \end{array}\right)$ et $I=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$.

- **2**) On admet que P a pour inverse une matrice Q de la forme $\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$ où a est un réel.
 - a) Déterminer la valeur de a en justifiant.
 - **b**) On admet que A = PTQ. Démontrer que, pour tout entier n non nul, on a

$$A^n = PT^nQ.$$

 \mathbf{c}) Démontrer à l'aide d'un raisonnement par récurrence que, pour tout entier n non nul,

$$T^{n} = \begin{pmatrix} 0, 8^{n} & 0, 5n \times 0, 8^{n-1} \\ 0 & 0, 8^{n} \end{pmatrix}.$$

3) Lucie exécute l'algorithme ci-dessous et obtient en sortie N=40. Quelle conclusion Lucie peut-elle énoncer pour les buses et les campagnols?

Initialisation: N prend la valeur 0

B prend la valeur 1 000

C prend la valeur 1 500

Traitement: Tant que B > 2 ou C > 2

N prend la valeur N+1

R prend la valeur B

B prend la valeur 0,3R+0,5C

C prend la valeur -0, 5R + 1, 3C

Fin Tant Que

Sortie: Afficher N

4) On admet que, pour tout entier naturel n non nul, on a

$$U_n = \begin{pmatrix} 1\ 000 \times 0, 8^n + \frac{625}{2}n \times 0, 8^n \\ 1\ 500 \times 0, 8^n + \frac{625}{2}n \times 0, 8^n \end{pmatrix}$$

et

$$n \leq 10 \times 1, 1^n$$
.

- a) En déduire les limites des suites (b_n) et (c_n) .
- **b)** Des mesures effectuées dans des territoires comparables montrent que la population de campagnols reste toujours supérieure à au moins 50 individus.

A la lumière de ces informations, le modèle proposé dans l'exercice vous paraît-il cohérent?