Indian Institute of Information Technology, Vadodara

Course - Data Structures Course Code - CS102 Prof. P Majumdar

ENDSEM

There are 10 quest	tions. Each question provid	es 4 options. Choose co	orrect option A/B/C/D.
1 The complexity	g of push operation in Stack	structure is	
(A) O(1)	$(B) \ O(\log n)$	(C) $O(n)$	(D) None of these
2 A sorting algor	rithm is stable if		
(A) its time com	plexity is constant irrespect	ive of the nature of inp	ut.
(B) its space con	nplexity is constant irrespec	tive of the nature of inp	put.
(C) preserves the	e original order of records u	with equal keys.	
(D) it sorts any	volume of data in a constar	at time.	
3 The running ti	ime complexity for creating	a heap of size n is	
(A) O(n)	$(B) \ O(\log n)$	(C) $O(n \log n)$	$(D) O(n^2)$
	ngly) linked list of n elemen in element pointed by some		g time complexity to inse
(A) O(1)	$(B) \ O(\log n)$	(C) $O(n)$	(D) None of these
5 A full binary to	ree with $2n+1$ nodes contain	is	
(A) n leaf nodes		(B) n non-leaf nodes	
(C) n-1 leaf node	es	(D) n-1 non-leaf nodes	
6 A (2,4)-tree is	a		
(A) Balanced Binary tree		(B) Skewed Binary tree	
(C) Unordered tree		(D) Multi-way Search tree	
7 A technique for	r direct search is		
(A) Binary Sear	ch (B) Linear Search	(C) Tree Search	(D) Hashing

Data Structures EndSem

- (A) 1, -1 or 2
- (B) 1, 0 or -1
- (C) 0, 2 or 4
- (D) None of these

- **9** A graph can be implemented by
- (A) adjacency matrix

(B) incidence matrix

(C) adjacency list

- (D) all of these
- 10 Minimum Spanning Tree of a graph is a tree that
- (A) covers all the edges of the graph
- (B) covers all the vertices of the graph
- (C) covers all the edges and vertices of the graph (D) None of these
- 2. A stack is to be implemented using an array. The associated declared are: int stack[50];

int top = 0;

Write the statement to preform push operation.

Explain how stack is used in function call. How do you implement three stacks in single array?

- 3. What is heap? How to build a heap? Write the algorithm for Heap sort. Comment on running time complexity of the heapsort?
- 4. Write an algorithm for postorder traversal of a tree.

 Let T be a tree with more than one node. Is it possible that the preorder traversal of T visits the nodes in the same order as the postorder traversal of T? If so, give an example; otherwise, argue why this cannot occur. Likewise, is it possible that the preorder traversal of T visits the nodes in the reverse order of the postorder of the postorder traversal of T? If so, give an example; otherwise, argue why this cannot occur.
- 5. What is an AVL tree? Explain how a node can be inserted into an AVL tree. You must consider different cases as appropriate. Calculate the complexity of the node insertion operation?
- 6. Why hashing is important? Explain the method of Separate Chaining(Open Hashing). How this method avoids collision? What is the exact complexity of the search operation in separate chaining?
- 7. How is Breadth-First search different from Depth-First search? Write an algorithm to implement Breadth-First search? Illustrate the algorithm with following graph.

8. What is Topological ordering? What is the application of topological ordering? Write an algorithm to find a Topological ordering. Using the algorithm find a topological ordering of the following graph. Comment on running time complexity of the algorithm that you use to find a topological ordering.

All human things are subject to decay, and when fate summons, Monarchs must obey

Mac Flecknoe

Answers