Análisis Numérico

Examen I: Aritmética de Punto Flotante.

Nombre:		
Mail:		

Instrucciones:

Definamos x, y números binarios de la siguiente forma: toma tu nombre para identificar a x y tu apellido paterno para y.

Los binarios x y y estarán construidos bajo las siguientes reglas:

• Longitud de los binarios:

$$longitud(x) = longitud(nombre), longitud(y) = longitud(apellido)$$

• Dada una consonante en tu nombre/apellido se cambiara por un 1 y dada una vocal en tu nombre/apellido se cambiara por un 0.

	С	é	s	a	r		С	a	r	r	е	ó	n
x =	1	0	1	0	1	y =	1	0	1	1	0	0	1

Sean x, y definidos previamente y $x, y \in \mathbb{F}(2, 53, -1022, 1023)$

- 1. Normalizar x y y.
- 2. Expresar x y y en el formato "extendido", es decir,

$$\pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_{p-1}}{\beta^{p-1}} \right) * \beta^E$$
 (1)

3. Dar la cadena binaria que representa el almacenamiento de x y y para los 64 bits.

Usar representación parcial para almacenar los enteros en el campo del exponente.

4. Calcular $x \oplus y$, expresarlo en el formato de la ecuación (??) y normalizarlo.

PUNTO EXTRA:

En formato simple, ¿existe $x \neq 0$ tal que 1 + x = 1?. Justificar respuesta.