

Week 10.2: Collaborative filters

DS-GA 1004: Big Data

Collaborative filtering

• **Utility matrix** (R): feedback for sparsely observed interactions

	Items							
Users			1			1		
					0	0		1
		1	1			1		
			1		0			

- Task: predict the missing entries
- Evaluation: depends on the feedback mechanism

Neighborhood models

User-based model:

- Given a user u, find the most similar users $\{u'\}$
- (Similar rows of the utility matrix)
- Predict items v with high feedback by similar users, not yet consumed by u

Neighborhood models

User-based model:

- Given a user u, find the most similar users $\{u'\}$
- (Similar rows of the utility matrix)
- Predict items v with high feedback by similar users, not yet consumed by u

• Item-based model:

- Find items v' similar to those consumed by u
- (Similar columns of the utility matrix)
- Predict those which have not yet been consumed by u

Neighborhood models

- Conceptually simple, but the details matter!
 - How do you define similarity between users? Between items?
 - O How do you aggregate feedback over the neighborhood?
- Depending on feedback type, can be difficult to scale
 - Binary feedback ⇒ Jaccard similarity, MinHash+LSH will work
 - Otherwise ... ? Most spatial data structures are not robust to missing features!

Latent factor models

- Flexible framework for feedback modeling
 - Objective can be tuned to match feedback mechanism (e.g., $\star \star \star \star \star \star$ vs play counts)
 - Secondary objectives can be added (item bias, regularization, etc)
- Usually easy to parallelize and scale up training
 - E.g.: alternating least squares.
 - Users are independent (conditional on items), and vice versa
- Learned representation is low-rank and dense
 - Integrates well with spatial data structures
 - Rank parameter provides control on complexity ⇔ expressivity

Modeling implicit feedback

- Count data is informative, but hard to predict
 - And we don't really care about that anyway!
- Instead, predict binary interaction, but use counts to weight terms!

$$egin{pmatrix} \min_{U,V} \sum_{(i,j)\in\Omega} c_{ij}(p_{ij} - \langle U_i,V_j
angle)^2 & p_{ij} = egin{cases} 1 & R_{ij} > 0 \ 0 & R_{ij} = 0 \end{cases} \ c_{ij} = 1 + lpha R_{ij} & \end{pmatrix}$$

Modeling implicit feedback

- Count data is informative, but hard to predict
 - And we don't really care about that anyway!
- Instead, predict binary interaction, but use counts to weight terms!

$$egin{pmatrix} \min_{U,V} \sum_{(i,j) \in \Omega} c_{ij} (p_{ij} - \langle U_i, V_j
angle)^2 & p_{ij} = egin{cases} 1 & R_{ij} > 0 \ 0 & R_{ij} = 0 \end{cases} \ c_{ij} = 1 + lpha R_{ij} & \end{pmatrix}$$

- You don't have to use R directly...
 - Drop low counts
 - Compress large values $R_{ij} \rightarrow \log(1 + R_{ij})$

Handling new items

- CF gives no representation to items with no interactions
- → A new item will never be recommended until it has representation!
- This is known as the cold-start problem
- Solutions typically involve
 - Active promotion / manual curation
 - Content-based modeling

Content-based models

Suppose you have observed features x_i for each item

- News ⇒ topics, location, source
- Movies ⇒ genre, year, length, language, director, actors, ...
- Music ⇒ metadata + acoustic attributes

Content-based model

- Each user i gets their own interaction model u_i $R_{ii} \approx \langle u_i, x_i \rangle$
- Like LF model, but the item factors are explicit
- Can be limiting / over-constrained

Content-based models

Suppose you have observed features x_i for each item

- News ⇒ topics, location, source
- Movies ⇒ genre, year, length, language, director, actors, ...
- Music ⇒ metadata + acoustic attributes

Content-based model

- Each user *i* gets their own interaction model u_i $R_{ii} \approx \langle u_i, x_i \rangle$
- Like LF model, but the item factors are explicit
- Can be limiting / over-constrained

Content cold-start

- \circ Train a LF model as before, item $j \to V_j$
- Then regress item factors from features

$$V_j \approx f(x_j)$$

A new item can map into embedding space by learned mapping $f(x_k)$ (e.g. linear regression)

User warm-start

- What happens when a new user enters a system?
- Typical systems request some demographic data, and ask for examples of things you like
- These data are used to position you in the collaborative filter

Summary

part 2

- Collaborative filtering algorithms estimate the missing entries of the utility matrix R
- Recommendations are (usually)
 formed by selecting interactions
 with high (estimated) utility
- How do we know if it works?

... come back for part 3!