Graduate Degree Program of Artificial Intelligence, National Yang Ming Chiao Tung University.

Digital Communication Integrated Circuits - Final Project

Low Latency Scaling-Free Pipeline CORDIC

313505012 人工智慧碩一 洪丞玄

Github of my Project

Table of Contents

1.	Introduction	1
2.	Proposed Algorithm	2
	> Background	2
	> Architecture	3
	> Datapath	4
3.	ASIC Implementation	9
	> Simulation	9
	> Timing&Power&Area	10
4.	FPGA Implementation	
	> Simulation	11
	> Timing&Power&Area	12
5.	Conclusion	15
6.	Reference	16

1. Introduction

CORDIC 是一種計算三角、雙曲或其他函數的有效方法,基本原理是利用預定義的基本角度(使用 ROM)組成目標角度,因為只需要 adder 和 shifter,所以利於硬體設計。本文將應用此演算法在直角座標轉換極座標。

在理解 CORDIC 前,先來探討旋轉公式。 假設從 X 旋轉到 Y

$$\begin{bmatrix} Y2 \\ X2 \end{bmatrix} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i \\ \sin\theta_i & \cos\theta_i \end{bmatrix} \begin{bmatrix} Y1 \\ X1 \end{bmatrix}$$

$$= cos\theta_i \begin{bmatrix} 1 & -tan\theta_i \\ tan\theta_i & 1 \end{bmatrix} \begin{bmatrix} Y1 \\ X1 \end{bmatrix}$$

假設固定旋轉倍率, $tan\theta_i = 2^{-i}$,並忽略 $cos\theta_i$,即可得偽長度

$$\begin{bmatrix} \widehat{Y2} \\ \widehat{X2} \end{bmatrix} = \begin{bmatrix} 1 & -2^{-i} \\ 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} Y1 \\ X1 \end{bmatrix}$$

$$\hat{\theta} = \theta_i - \mu_i tan^{-1}(2^{-i})$$

因此,可以利用此法從某一位置逐步旋轉到X軸,過程只需除以Z,對應硬體為移位,不需消耗資源,累積的 θ_i 即為與X軸的夾角,最後只需要將長度補償回來即可得到原長和角度。

i	2^i	rotate angle	scaling factor	CORDIC gain
0	1.0	45.000°	1.41421	1.41421
1	0.5	26.565°	1.11803	1.58114
2	0.25	14.036°	1.03078	1.62980
3	0.125	7.125°	1.00778	1.64248
4	0.0625	3.576°	1.00195	1.64569
5	0.03125	1.790°	1.00049	1.64649
6	0.015625	0.895°	1.00012	1.64669

可藉由上述旋轉角度累積轉到任意 $-99^\circ \sim 99^\circ$,誤差可自己來決定轉到多小的角度,所以只要在一開始將所有角度旋轉到第一或第四象限,並將起始角度設定成相對應 $\pm 90^\circ or\ 0^\circ$,即可抵達目的地。最後靠加法和移位即可除以 1.6 補償回原長。

$$\prod_{i=0}^{\infty} \frac{1}{\cos \theta_i} = \prod_{i=0}^{\infty} \sqrt{1 + 2^{-2i}} = 1.6468 \dots$$

2. Proposed Algorithm

由於 CORDIC 較省計算資源,且需要較大的 latency,假設要不失去太多精度,又會增加不少硬體資源。因此,在本文使用小角度近似的性質減少 latency 的同時又不會失去太多精度,最後的角度藉由判斷是否跨過 X 軸旋轉來微調。

因為小角度近似 $sin\theta_i \cong tan\theta_i = 2^{-i}$, $cos\theta_i \cong 1 - 2^{(2i+1)}$

可將旋轉公式以特定階數泰勒展開,以下為3階簡略版,係數與原式有差

$$\begin{bmatrix} Y2 \\ X2 \end{bmatrix} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i \\ \sin\theta_i & \cos\theta_i \end{bmatrix} \begin{bmatrix} Y1 \\ X1 \end{bmatrix} = \begin{bmatrix} 1-2^{(2i+1)} & -(2^{-i}-2^{-(3i+3)}) \\ 2^{-i}-2^{-(3i+3)} & 1-2^{(2i+1)} \end{bmatrix} \begin{bmatrix} Y1 \\ X1 \end{bmatrix}$$

藉由此法,就不需要補償長度,但是旋轉角度越大,需要越高階數才能近似,會增加不少硬體資源,所以我們不只旋轉到第一或第四象限,直接將範圍限縮至±45°,如此一來可忽略45°的旋轉,不只 latency 少一級,還能省去加法器和暫存器等資源。

上圖為指定角度範圍對應的起始角度,這樣便可以將所有角度先旋轉到±45°範圍內,查找表的角度從26°開始,之後再配合泰勒展開,便可以極大程度地減少硬體資源並減少 latency。

上圖為該演算法架構:

Stage0: 判斷 X,Y 座標以及絕對值大小關係來決定起始角度,轉 1 次。

Stage1: 對 $cos\theta$, $sin\theta$ 做 4 階泰勒展開,誤差到小數點 5th bit 以下,轉 1 次。

Stage2: 對 $cos\theta$, $sin\theta$ 做 3 階泰勒展開,誤差到小數點 5th bit 以下,轉 2 次。

Stage3: 對 $cos\theta$, $sin\theta$ 做 2 階泰勒展開,誤差到小數點 5th bit 以下,轉 2 次。

Stage4: 對 $cos\theta$, $sin\theta$ 做 1 階泰勒展開,誤差到小數點 10th bit 以下,藉由 Y 值更新前後的 sign 以及絕對值大小判斷,如果該次旋轉跨過 X 軸且與 X 軸距離較短,大幅旋轉 0.8° ,否則小幅旋轉 0.1° ,轉 1 次。此階段優化在長度越小的情況下效果更顯著。

上圖為 MATLAB 模擬小角度近似在不同階數展開的誤差

Stage0 Datapath

Stage1 Datapath

Stage2 Datapath(i=5,4)

Stage3 Datapath(i=3,2)

Stage4 Datapath

3. ASIC Implementation (UMC 180nm)

Simulation (Taylor CORDIC V.S. CORDIC)

RTL

GATE

Total pat: 1000 Error_rate_radius: 0.000080 Error_rate_angle: 0.048929

RTL

GATE

Total pat: 1000 Error_rate_radius: 0.017685 Error_rate_angle: 0.017748

	Error_rate_radius	Error_rate_angle	Latency
Taylor CORDIC	0.000080	0.048929	7
CORDIC	0.017685	0.017748	17

Timing & Power & Area (Taylor CORDIC V.S. CORDIC)

clock clk (rise edge)	50.00	50.00
clock network delay (ideal)	0.00	50.00
clock uncertainty	-0.10	49.90
y_reg[6][6]/CK (DFFRHQXL)	0.00	49.90 r
library setup time	-0.17	49.73
data required time		49.73
data required time		49.73
data arrival time		-45.49
slack (MET)		4.24

clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
input external delay	25.00	25.00 f
in_valid (in)	0.00	25.00 f
U8175/Y (INVXL)	1.52	26.52 r
U8166/Y (INVXL)	1.41	27.93 f
U8167/Y (INVXL)	1.87	29.80 r
U7136/Y (INVXL)	0.97	30.77 f
U7133/Y (INVXL)	1.75	32.52 r
U7150/Y (INVXL)	1.41	33.93 f
U7138/Y (INVXL)	1.64	35.57 r
U7752/Y (A0I22XL)	0.19	35.76 f
U13407/Y (OAI2BB1XL)	0.20	35.97 r
x_reg[16][14]/D (DFFRHQXL)	0.00	35.97 r
data arrival time		35.97
clock clk (rise edge)	50.00	50.00
clock network delay (ideal)	0.00	50.00
clock uncertainty	-0.10	49.90
x_reg[16][14]/CK (DFFRHQXL)	0.00	49.90 r
library setup time	-0.16	49.74
data required time		49.74
data required time		49.74
data arrival time		-35.97
slack (MET)		13.77

Power Group	Internal Power	Switching Power	Leakage Power	Total Power (%) Attr	Power Group	Internal Power	Switching Power	Leakage Power	Total Power (%) Attrs
io_pad	0.0000	0.0000	0.0000	0.0000 (0.00	9%)	io_pad	0.0000	0.0000	0.0000	0.0000 (0.00%)
memory	0.0000	0.0000	0.0000	0.0000 (0.00	9%)	memory	0.0000	0.0000	0.0000	0.0000 (0.00%)
black_box	0.0000	0.0000	0.0000	0.0000 (0.00	9%)	black box	0.0000	0.0000	0.0000	0.0000 (0.00%)
clock_network	0.6715	0.0000	0.0000	0.0000 (0.00	%) i	clock_network	2.3263	0.0000	0.0000	0.0000 (0.00%) i
register	3.8657e-02	9.3046e-03	2.1957e+06	0.7217 (74.58	3%)	register	0.1204	1.4622e-02	7.5930e+06	2.4689 (86.97%)
sequential	0.0000	0.0000	0.0000	0.0000 (0.00	9%)	sequential	0.0000	0.0000	0.0000	0.0000 (0.00%)
combinational	0.1707	6.5612e-02	9.6610e+06	0.2460 (25.42	2%)	combinational	0.1788	0.1676	2.3402e+07	0.3698 (13.03%)
Total	0.8809 mW	7.4917e-02 mW	1.1857e+07 pW	0.9677 mW		Total	2.6254 mW	0.1822 mW	3.0995e+07 pW	2.8386 mW

		_	
Number of ports:	109	Number of ports:	109
Number of nets:	5360	Number of nets:	15443
Number of cells:	4564	Number of cells:	13158
Number of combinational cell	.s: 4134	Number of combinational cells:	11671
Number of sequential cells:	430	Number of sequential cells:	1487
Number of macros/black boxes	: 0	Number of macros/black boxes:	0
Number of buf/inv:	412	Number of buf/inv:	1384
Number of references:	45	Number of references:	38
Combinational area:	102433.164048	Combinational area:	291063.333314
Buf/Inv area:	4128.062549	Buf/Inv area:	13814.539702
Noncombinational area:	30034.065872	Noncombinational area:	103873.493744
Macro/Black Box area:	0.000000	Macro/Black Box area:	0.000000
Net Interconnect area:	undefined (No wire load specified)	Net Interconnect area: un	ndefined (No wire load specified)
Total cell area:	132467.229920	Total cell area:	394936.827058

	Period(ns)	Power(mW)	Area(μm^2)
Taylor CORDIC	50	0.9677	132467
CORDIC	50	2.8386	394936

4. FPGA Implementation (Zedboard: Xilinx Zynq-7000)

Simulation (Taylor CORDIC V.S. CORDIC)

RTL

Total pat: 1000 Error_rate_radius: 0.000080 Error_rate_angle: 0.048929

RTL

GATE

Total pat: 1000 Error_rate_radius: 0.017685 Error_rate_angle: 0.017748

	Error_rate_radius	Error_rate_angle	Latency
Taylor CORDIC	0.000080	0.048929	7
CORDIC	0.017685	0.017748	17

Timing & Power & Area (Taylor CORDIC V.S. CORDIC)

Name 1	Slice LUTs (53200)	Slice Registers (106400)	Bonded IOB (200)	BUFGCTRL (32)
N R2P	1687	437	109	1

Name 1	Slice LUTs	Slice Registers	Bonded IOB	BUFGCTRL
	(53200)	(106400)	(200)	(32)
N R2P	2976	1502	109	1

	Period(ns)	Power(W)	Slice LUTs
Taylor CORDIC	50	0.117	1687
CORDIC	50	0.121	2976

RTL elaboration & Logic synthesis (Taylor CORDIC V.S. CORDIC)

Taylor CORDIC

CORDIC

Implementation (Taylor CORDIC V.S. CORDIC)

Taylor CORDIC

CORDIC

5. Conclusion

Taylor CORDIC 在每一級使用泰勒展開,只需要付出額外一些加法器電路便可在 low latency 得到 scaling-free 的長度,在最後一級甚至只加入一階展開即可得到 誤差在小數點 5th bit 以下,雖然 critical path 相對傳統方法更長,但是可以使 用特定加法器去彌補 timing issue,而傳統方法需要更多硬體補償回原長。在 角度誤差方面,由於藉由泰勒展開加速收斂,角度相對傳統方法容易失真,所 以在最後一級的地方用簡易的邏輯判斷來減少一點誤差。未來會朝角度誤差改善,在泰勒展開時,使用較精準的角度更新判斷,期望能設計出誤差小, latency 更低的電路。

6. Reference

S. S. Wadkar, B. P. Das and P. K. Meher, "Low Latency Scaling-Free Pipeline CORDIC Architecture Using Augmented Taylor Series," *2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)*, Rourkela, India, 2019, pp. 312-315, doi: 10.1109/iSES47678.2019.00077.