Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers

Tomer Bar Natan, Gilad Deutch, Nadav Magar Supervised by Guy Dar Tel-Aviv University

Abstract

Large pretrained language models have shown surprising In-Context Learning (ICL) ability. With a few demonstration input-label pairs, they can predict the label for an unseen input without additional parameter updates. Despite the great success in performance, the working mechanism of ICL still remains an open problem. In order to better understand how ICL works, this paper explains language models as meta-optimizers and understands ICL as a kind of implicit finetuning. Theoretically, we figure out that the Transformer attention has a dual form of gradient descent based optimization. On top of it, we understand ICL as follows: GPT first produces meta-gradients according to the demonstration examples, and then these meta-gradients are applied to the original GPT to build an ICL model. Experimentally, we comprehensively compare the behavior of ICL and explicit finetuning based on real tasks to provide empirical evidence that supports our understanding. The results prove that ICL behaves similarly to explicit finetuning at the prediction level, the representation level, and the attention behavior level. Further, inspired by our understanding of meta-optimization, we design a momentum-based attention by analogy with the momentum-based gradient descent algorithm. Its consistently better performance over vanilla attention supports our understanding again from another aspect, and more importantly, it shows the potential to utilize our understanding for future model designing.

1 Introduction

In recent studies (Von Oswald et al., 2023; Dai et al., 2023), attempts have been made to establish a link between in-context learning (ICL) and the fine-tuning process using gradient descent (GD) in transformer models. One common conclusion that researchers frequently derive from these studies is that "ICL essentially enacts gradient descent." Nevertheless, it's worth noting that much of the

analysis in these investigations focused on models with linear attention, which can be considered as a simplified setting.

In their study, (Dai et al., 2023) expand their findings from linear attention to conventional attention mechanisms, relying on empirical evidence to support their assertions. Their experiments convincingly demonstrate that a model fine-tuned through gradient descent steps and a model prompted with in-context examples appear to execute similar functions. In simpler terms, they exhibit analogous behaviors when processing inputs. Furthermore, they observe a substantial overlap in the internal behaviors of these two models. Yet, it remains unclear how a transformer's forward pass calculates its backward pass, even if it's done in a clever way involving a smaller transformer embedded within the weights of the original transformer, as suggested by some. Even if this is theoretically achievable, it's a complex concept to put into practice. In contrast, when it comes to linear models, the gradient step has a straightforward mathematical formula, making it much simpler to handle.

In (Von Oswald et al., 2023), they put forth a less ambitious idea. They suggest that the model essentially carries out a kind of gradient descent on a simple linear model applied to the original deep representations calculated during the forward pass. Using linear models with detailed feature representations is known to be highly effective in accomplishing various tasks.

In this study, our goal is to demonstrate that this principle holds true in this context as well. This can support our argument that extensive fine-tuning is not required, and a basic linear model that uses the original hidden states as inputs suffices. To do so, we perform three experiments:

• **Linearization**: We replicated the similarities results of (Dai et al., 2023) and compared them with a simplified version the function we optimize by linearization (Ortiz-Jimenez

et al., 2023).

- Per Layer Training: We trained the GPT model while detaching the output of each layer from the computational graph, meaning that each layer does not propagate the gradient back to previous layers.
- Labels Switching: To further confirm the results of (Dai et al., 2023), motivated by textbfTODO: add relevant labels experiments papers, we evaluated the change in similarity when providing false labels both in FT and ICL.

2 Background and Preliminaries

2.1 Dual Form Between Attention and Linear Layers Optimized by Gradient Descent

The view of language models as meta-optimizers originates from the presentation of the dual and primal forms of the perceptron (Aizerman et al., 2019). This notion was later expressed in terms key/value/query-attention operation by by (Irie et al., 2022; Dai et al., 2023; Von Oswald et al., 2023) which apply it apply it in the modern context of deep neural networks. They show that linear layers optimized by gradient descent have a dual representation as linear attention.

Let $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ be the weight matrix of a linear layer initialized at W_0 , and let $\mathbf{x}, \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{d_{\text{in}}}$ be the input and training examples representation respectively. One step of gradient descent on the loss function \mathcal{L} with learning rate η yields the weight update ΔW . This update can be written as the outer products of the training examples $\mathbf{x}_1, \dots, \mathbf{x}_n$ and the gradients of their corresponding outputs $\mathbf{e}_i = -\eta \nabla_{W_0 x_i} \mathcal{L}$

$$\Delta W = \sum_{i} \mathbf{e}_{i} \otimes \mathbf{x}_{i}^{\prime T}.$$
 (1)

Thus the computation of the optimized linear layer can be formulated as

$$\mathcal{F}(\mathbf{x}) = (W_0 + \Delta W) \mathbf{x}$$

$$= W_0 \mathbf{x} + \Delta W \mathbf{x}$$

$$= W_0 \mathbf{x} + \sum_i (\mathbf{e}_i \otimes \mathbf{x}_i) \mathbf{x}$$

$$= W_0 \mathbf{x} + \sum_i \mathbf{e}_i (\mathbf{x}_i^T \mathbf{x})$$

$$= W_0 \mathbf{x} + \text{LinearAttn}(E, X, \mathbf{x}),$$
(2)

where $\operatorname{LinearAttn}(V, K, \mathbf{q})$ denotes the linear attention operation. From the perspective of attention we regard training examples X as keys, their corresponding gradients as values, and the current input \mathbf{x} as the query.

2.2 Understanding Transformer Attention as Meta-Optimization

In this section we explain the simplified mathematical view of in-context learning as a process of meta-optimization presented in (Dai et al., 2023). For the purpose of analysis, it is useful to view the change to the output induced by attention to the demonstration tokens as equivalent parameter update $\Delta W_{\rm ICL}$ that take effect on the original attention parameters.

Let $\mathbf{x} \in \mathbb{R}^d$ be the input representation of a query token t, and $\mathbf{q} = W_Q \mathbf{x} \in \mathbb{R}^{d'}$ be the attention query vector. We use the relaxed linear attention model, whereby the softmax operation and the scaling factor are omitted:

$$\mathcal{F}_{ICL}(\mathbf{q}) = \text{LinearAttn}(V, K, \mathbf{q})$$

$$= W_V[X'; X] \left(W_K[X'; X] \right)^T \mathbf{q}$$
(3)

where $W_Q, W_K, W_V \in \mathbb{R}^{d' \times d}$ are the projection matrices for computing the attention queries, keys, and values, respectively; X denotes the input representations of query tokens before t; X' denotes the input representations of the demonstration tokens; and [X'; X] denotes the matrix concatenation.

They define $W_{\rm ZSL} = W_V X (W_K X)^T$ as the initial parameters of a linear layer that is updated by attention to in-context demonstrations. To see this, note that $W_{\rm ZSL}$ is the attention result in the zero-shot learning setting where no demonstrations are given (Equation 3). Following the reverse direction of Equation (2), you arrive at the dual form of the Transformer attention:

$$\mathcal{F}_{ICL}(\mathbf{q}) = W_{ZSL}\mathbf{q} + \text{LinearAttn} \left(W_{V}X', W_{K}X', \mathbf{q}\right)$$

$$= W_{ZSL}\mathbf{q} + \sum_{i} W_{V}\mathbf{x}'_{i} \left(\left(W_{K}\mathbf{x}'_{i}\right)^{T}\mathbf{q}\right)$$

$$= W_{ZSL}\mathbf{q} + \sum_{i} \left(W_{V}\mathbf{x}'_{i} \otimes \left(W_{K}\mathbf{x}'_{i}\right)\right)\mathbf{q}$$

$$= W_{ZSL}\mathbf{q} + \Delta W_{ICL}\mathbf{q}$$

$$= \left(W_{ZSL} + \Delta W_{ICL}\right)\mathbf{q}.$$
(4)

By analogy with Equation(2), we can regard $W_K \mathbf{x}_i'$ as the training examples and $W_V X'$ as their corresponding meta-gradients.

2.3 Linearization of a Model

Resent works suggest a function we optimize can significantly simplify by a method called linearization (Lee et al., 2019; Ortiz-Jimenez et al., 2023). Specifically, these works suggest that it is possible to approximate the linearity of a pre-trained model in the vicinity of its initial parameters:

$$f_{\theta_0 + \delta\theta}(x) \approx f_{\theta_0}(x) + \delta\theta^{\mathrm{T}} \nabla_{\theta_0} f(x) := f_{\delta\theta}^{\mathrm{lin}}(x; \theta_0)$$
(5)

where θ_0 represents the pre-trained model's parameters, $\delta\theta$ indicates the change in parameters during fine-tuning, and x denotes an input sequence (fixed with respect to $\delta\theta$). In this linear model across deep representations, denoted as $\phi_i(x) = \nabla_{\theta_0} f(x)$, there is no need to compute gradients throughout the entire network; we only require the coefficients. We then perform the following gradient step:

$$\theta \leftarrow \theta - \eta \nabla \mathcal{L}(f^{\text{lin}}(x), y) \cdot \phi(x)$$

Given that we utilize the KL divergence loss, this expression can be simplified to $\theta - \eta \left[\log f^{\text{lin}}(x)\right]_y \cdot \phi(x)$, where y represents the token index of the target label, and $[\cdot]_i$ denotes the i-th coordinate of the expression within the brackets.

In our work, we emphasize the intuition that it is worth exploring variations that enable the implementation of functions with reduced complexity when studding the backlogs of ICL. This is due to the limitation on the complexity of functions expressible by the forward pass, which must be tied to the network's depth. Hence, a linearized variation of the model has been explored.

3 Experiments

3.1 Per-Layer Training

We fine-tune the GPT model with two changes: (1) we feed the output of each attention layer to the projection head and subsequently compute the cross entropy loss on it (2) we detach the output of each layer from the computational graph, meaning that each layer does not propagate the gradient back to previous layers. Figure 1 illustrates the process.

3.2 Evaluation Metrics

In the following sections we describe the evaluation metrics used to compare the behavior of ICL and finetuning. To ensure an optimal comparison, we have adopted the identical metrics as introduced in (Dai et al., 2023): We design three metrics to

measure the similarity between ICL and finetuning at three different levels: the prediction level, the representation level, and the attention behavior level.

Prediction Recall From the perspective of model prediction, models with similar behavior should have aligned predictions. We measure the recall of correct ICL predictions to correct finetuning predictions. Given a set of test examples, we count the subsets of examples correctly predicted by each model: $C_{\rm ZSL}$, $C_{\rm ICL}$, $C_{\rm FT}$. To compare the update each method induces to the model's prediction we subtract correct predictions made in the ZSL setting. Finally we compute the **Rec2FTP** score as: $\frac{|(C_{\rm ICL} \cap C_{\rm FT}) \setminus C_{\rm ZSL}|}{|C_{\rm FT} \setminus C_{\rm ZSL}|}$. A higher Rec2FTP score suggests that ICL covers more correct behavior of finetuning from the perspective of the model prediction.

Attention Output Direction In the context of an attention layer's hidden state representation space within a model, we analyze the modifications made to the attention output representation (**SimAOU**).

For a given query example, let $h_X^{(l)}$ represent the normalized output representation of the last token at the l-th attention layer within setting X. The alterations introduced by ICL and finetuning in comparison to ZSL are denoted as $h_{ICL}^{(l)} - h_{ZSL}^{(l)}$ and $h^{(l)}FT - h_{ZSL}^{(l)}$, respectively. We calculate the cosine similarity between these two modifications to obtain SimAOU (ΔFT) at the l-th layer. A higher SimAOU (ΔFT) indicates that ICL is more inclined to adjust the attention output in the same direction as finetuning. For the sake of comparison, we also compute a baseline metric known as SimAOU (Random Δ), which measures the similarity between ICL updates and updates generated randomly.

Attention Map Similarity We use SimAM to measure the similarity between attention maps and query tokens for ICL and finetuning. For a query example, let $m_X^{(l,h)}$ represent the attention weights before softmax in the h-th head of the l-th layer for setting X. In ICL, we focus solely on query token attention weights, excluding demonstration tokens. Initially, before finetuning, we compute the cosine similarity between $m_{ICL}^{(l,h)}$ and $m_{ZSL}^{(l,h)}$, averaging it across attention heads to obtain SimAM (Before Finetuning) for each layer. Similarly, after finetuning, we calculate the cosine similarity

Figure 1: Per-layer training. The output of each layer is fed to the projection head and the loss is computed on it. The losses are then summed to create the loss of a single training step.

between $m_{ICL}^{(l,h)}$ and $m_{FT}^{(l,h)}$ to obtain SimAM (After FT). A higher SimAM (After FT) relative to SimAM (Before FT) indicates that ICL's attention behavior aligns more with a finetuned model than a non-finetuned one.

3.3 Results

Accuracy

4 Discussions

5 Related Work

In-context learning (ICL) is a machine learning approach where a model fine-tunes its knowledge and adapts its behavior based on specific contextual information or examples, allowing it to perform better on tasks related to that context. It enables models to leverage domain-specific or task-specific knowledge without extensive retraining, making them more versatile and adaptable. In their work, (Brown et al., 2020) explores the remarkable ability of language models, particularly GPT-3, to learn and perform tasks with minimal examples, demonstrating their potential as versatile few-shot learners. The authors showcase the models' impressive performance across a wide range of tasks and

emphasize their capacity to generalize from limited data, highlighting the transformative impact of these models on various natural language processing applications.

In recent research, there has been a growing interest in understanding the relationship between two key concepts: in-context learning (ICL) and gradient descent (GD)-based fine-tuning, particularly in the context of transformer models ((Von Oswald et al., 2023; ?)). This research seeks to uncover how ICL, which involves adapting and learning in specific contexts, can be effectively integrated with the iterative optimization process of GD, especially when fine-tuning transformer models. However, the majority of the examination was on models that had relaxed constraints and featured linear attention mechanisms:

$$LinearAttn(K, V, q) = KV^q$$
 (6)

The paper (Von Oswald et al., 2023), develops an explicit weight values for a linear self-attention layer, achieving an update equivalent to a single iteration of gradient descent (GD) aimed at minimizing mean squared error. Moreover, the authors demonstrate how multiple self-attention layers can progressively execute curvature adjustments, lead-

ing to enhancements over standard gradient descent. They proposed the following:

Given a 1-head linear attention layer and the tokens $e_j = (x_j, y_j)$, for j = 1, ..., N, one can construct key, query and value matrices W_K , W_Q , W_V as well as the projection matrix P such that a Transformer step on every token e_j is identical to the gradient-induced dynamics $e_j \rightarrow (x_j, y_j) + (0, -\delta W x_j) = (x_j, y_j) + PVK^T q_j$ such that $e_j = (x_j, y_j - \delta y_j)$. For the test data token (x_{N+1}, y_{N+1}) the dynamics are identical.

By doing so, they demonstrate the capability of linear attention to execute gradient descent on the deep representations constructed by the transformer.

Another paper ((?)) expand the findings from linear attention to conventional attention mechanisms, substantiating their claims with empirical data. Inspired by (Aizerman et al., 2019) and (?), the idea in this is paper to explain language models as meta-optimizers.

Consider W_0 and ΔW , both belonging to $\mathbb{R}^{d_{out} \times d_{in}}$, where W_0 represents the initial parameter matrix, and ΔW signifies the updating matrix. Additionally, let x be a member of $\mathbb{R}^{d_{in}}$, serving as the input representation. A linear layer, subject to optimization via gradient descent, can be articulated as follows:

$$\mathcal{F}(x) = (W_0 + \Delta W)x\tag{7}$$

In the context of the back-propagation algorithm, the determination of ΔW entails the aggregation of outer products derived from historical input representations $x_i' \in \mathbb{R}^{d_{in}}$ and their corresponding error signals $e_i \in \mathbb{R}^{d_{out}}$:

$$\Delta W = \sum_{i} e_i \otimes x_i' \tag{8}$$

Notably, e_i is the result of scaling historical output gradients by $-\gamma$, the negative learning rate.

By equations equation 7 and equation 8, we can derive the dual manifestation of linear layers, optimized through gradient descent, as follows:

$$\mathcal{F}(x) = (W_0 + \Delta W)x$$

$$= W_0 x + \Delta W x$$

$$= W_0 x + \sum_i (e_i \otimes x_i')x$$

$$= W_0 x + \sum_i e_i (x_i'^T x)$$

$$= W_0 x + \text{LinearAttn}(E, X', x)$$
(9)

Here, E denotes historical output error signal values, X^\prime corresponds to historical inputs employed as keys, and x serves as the current input, operating as the query.

Their experiments convincingly reveal that a model fine-tuned through gradient steps and a model prompted with in-context examples appear to perform analogous functions, exhibiting similar behaviors on inputs. Additionally, they observe significant similarities in the internal behaviors of these two models.

6 Conclusion

References

Mark A. Aizerman, E. M. Braverman, and Lev I. Rozonoer. 2019. Theoretical foundation of potential functions method in pattern recognition.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. 2023. Why can gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. 2022. The dual form of neural networks revisited: Connecting test time predictions to training patterns via spotlights of attention. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 9639–9659. PMLR.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. 2019. Wide Neural Networks of Any Depth Evolve as Linear Models under Gradient Descent. Curran Associates Inc., Red Hook, NY, USA.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. 2023. Task arithmetic in the tangent space: Improved editing of pre-trained models.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. 2023.

Transformers learn in-context by gradient descent. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 35151–35174. PMLR.