Riddhi Mistry

IMT 572 Mini Final Project - Credit Card Clients Default Analysis

The following is the original dataset downloaded from the UCI Repository:

Modified Dataset:

- Converted the file into .csv from .xlsx
- Removed the first row (X1, X2,...)

Summary Statistics Table:					
ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE
Min. : 1	Min. : 10000	Min. :1.000	Min. :0.000 Mi	n. :0.000 Min	. :21.00
1st Qu.: 7501	1st Qu.: 50000	1st Qu.:1.000	1st Qu.:1.000 1s	st Qu.:1.000 1st	Qu.:28.00
Median :15000	Median : 140000	Median :2.000			ian :34.00
Mean :15000	Mean : 167484	Mean :1.604	Mean :1.853 Me	ean :1.552 Mea	n :35.49
3rd Qu.:22500	3rd Qu.: 240000	3rd Qu.:2.000	3rd Qu.:2.000 3r	d Qu.:2.000 3rd	Qu.:41.00
Max. :30000	Max. :1000000	Max. :2.000	Max. :6.000 Mc	x. :3.000 Max	. :79.00
PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6
Min. :-2.0000	Min. :-2.0000	Min. :-2.000	Min. :-2.000	00 Min. :-2.00	00 Min. :-2.0000
1st Qu.:-1.0000	1st Qu.:-1.0000	1st Qu.:-1.000	0 1st Qu.:-1.000	00 1st Qu.:-1.00	00 1st Qu.:-1.0000
Median: 0.0000	Median : 0.0000	Median : 0.000	Median : 0.000	00 Median: 0.00	00 Median: 0.0000
Mean :-0.0167	Mean :-0.1338	Mean :-0.166	2 Mean :-0.220	7 Mean :-0.26	62 Mean :-0.2911
3rd Qu.: 0.0000	3rd Qu.: 0.0000	3rd Qu.: 0.000	3rd Qu.: 0.000	00 3rd Qu.: 0.00	00 3rd Qu.: 0.0000
Max. : 8.0000	Max. : 8.0000	Max. : 8.000	Max. : 8.000	00 Max. : 8.00	00 Max. : 8.0000
BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6
Min. :-165580	Min. :-69777	Min. :-157264	Min. :-170000	Min. :-81334	Min. :-339603
1st Qu.: 3559	1st Qu.: 2985	1st Qu.: 2666	1st Qu.: 2327	1st Qu.: 1763	1st Qu.: 1256
Median : 22382	Median : 21200	Median : 20088	Median : 19052	Median : 18104	Median : 17071
Mean : 51223	Mean : 49179	Mean : 47013	Mean : 43263	Mean : 40311	Mean : 38872
3rd Qu.: 67091	3rd Qu.: 64006	3rd Qu.: 60165	3rd Qu.: 54506	3rd Qu.: 50190	3rd Qu.: 49198
Max. : 964511	Max. :983931	Max. :1664089	Max. : 891586	Max. :927171	Max. : 961664
PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6
Min. : 0	Min. : 0	Min. : 0	Min. : 0	Min. : 0.0	Min. : 0.0
1st Qu.: 1000	1st Qu.: 833	1st Qu.: 390	1st Qu.: 296	1st Qu.: 252.5	1st Qu.: 117.8
Median : 2100	Median: 2009	Median: 1800	Median: 1500	Median : 1500.0	Median : 1500.0
Mean : 5664	Mean : 5921	Mean : 5226	Mean : 4826	Mean : 4799.4	Mean : 5215.5
3rd Qu.: 5006	3rd Qu.: 5000	3rd Qu.: 4505	3rd Qu.: 4013	3rd Qu.: 4031.5	3rd Qu.: 4000.0
Max. :873552	Max. :1684259	Max. :896040	Max. :621000	Max. :426529.0	Max. :528666.0
default.payment.next.month					
Min. :0.0000					
1st Qu.:0.0000					
Median :0.0000					
Mean :0.2212					
3rd Qu.:0.0000					
Max. :1.0000					

Exploratory Data Analysis

- 1. Since the variables for Sex, Education, and Marriage are numeric, there is no need for factorization and the variables can be used in the regression models directly.
- 2. We check for missing values using any_missing <- any(is.na(d)) and it outputs FALSE. Which means there are no missing values in the dataset.
- 3. Plotting a histogram to understand age distribution of credit card clients.

4. Plotting a graph to understand the distribution of the level of education.

Choosing predictor variables:

LIMIT_BAL: Credit card limit balance tells how likely people are to default, as clients with higher credit limits might be more likely.

EDUCATION: Education level can also be a crucial factor. Higher education level might correlate with lower default rates.

AGE: Age can also be an important factor since younger individuals might default more while older clients can have lower default rates with experience.

PAY_0 to PAY_6: These variables are repayment status numbered by month. They can be a strong predictor since clients with a greater number of delayed months or consistently delayed payments can be more likely to default.

BILL_AMT1 to BILL_AMT6: Higher bill amount can lead to more chances of default since it means higher financial stress. Hence it is a strong predictor too.

PAY_AMT1 to PAY_AMT6: Monthly payment amounts can also talk strongly about the possibility of default for a client. If the client has had consistently low payments or shows a trend of decreasing monthly payment amounts, they have higher chances of default.

Thus, the above variables will be used in the models.

Logit Regression

Summary:

```
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.253e+00 6.694e-02 -18.725 < 2e-16 ***
LIMIT_BAL -7.163e-07 1.560e-07 -4.592 4.39e-06 ***
EDUCATION -9.491e-02 2.080e-02 -4.564 5.03e-06 ***
           1.128e-02 1.629e-03 6.924 4.38e-12 ***
           5.779e-01 1.768e-02 32.681 < 2e-16 ***
PAY 0
           8.548e-02 2.016e-02 4.239 2.25e-05 ***
PAY 2
           7.247e-02 2.258e-02
                                 3.209 0.00133 **
PAY 3
PAY_4
           2.419e-02
                      2.499e-02
                                 0.968 0.33305
PAY 5
           3.500e-02
                      2.687e-02 1.303 0.19260
PAY_6
           7.074e-03 2.212e-02
                                 0.320 0.74912
BILL_AMT1 -5.475e-06
                      1.136e-06 -4.817 1.46e-06 ***
BILL AMT2
           2.388e-06
                      1.501e-06 1.590 0.11177
BILL_AMT3
           1.324e-06
                      1.322e-06 1.002 0.31654
BILL_AMT4
           -1.832e-07
                      1.350e-06 -0.136 0.89208
BILL_AMT5
           6.161e-07 1.518e-06
                                 0.406 0.68488
BILL_AMT6
           3.715e-07 1.192e-06
                                 0.312 0.75534
PAY_AMT1
          -1.363e-05 2.306e-06 -5.912 3.38e-09
PAY_AMT2
          -9.612e-06 2.098e-06 -4.580 4.64e-06 ***
PAY_AMT3
          -2.755e-06 1.726e-06 -1.596 0.11045
PAY_AMT4
          -4.013e-06 1.790e-06 -2.243 0.02493
PAY_AMT5
          -3.415e-06 1.777e-06 -1.921 0.05469
PAY_AMT6
          -2.101e-06 1.300e-06 -1.616 0.10602
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 31705 on 29999 degrees of freedom
Residual deviance: 27911 on 29978 degrees of freedom
AIC: 27955
Number of Fisher Scoring iterations: 6
```

According to the logistic regression summary, coefficients like LIMIT_BAL, EDUCATION, AGE, payment history (PAY_0, PAY_2) bill amount for first month (BILL_AMT1) and payment amounts for first two months (PAY_AMT1, PAY_AMT2) are significant.

AIC Score is 27955, which is reasonable for the model.

Marginal Effects Analysis:

```
Marginal Effects:
               dF/dx
                      Std. Err.
LIMIT_BAL -1.0932e-07 2.3760e-08 -4.6010 4.204e-06 ***
EDUCATION -1.4485e-02 3.1721e-03 -4.5663 4.964e-06 ***
         1.7208e-03 2.4856e-04 6.9232 4.415e-12 ***
          8.8185e-02 2.6838e-03 32.8579 < 2.2e-16 ***
PAY_0
          1.3044e-02 3.0812e-03 4.2334 2.301e-05 ***
PAY_2
PAY_3
         1.1059e-02 3.4464e-03 3.2090 0.001332 **
PAY_4
          3.6913e-03 3.8132e-03 0.9680 0.333035
PAY 5
          5.3420e-03 4.1002e-03 1.3029 0.192623
PAY_6
          1.0796e-03 3.3759e-03 0.3198 0.749119
BILL_AMT1 -8.3547e-07 1.7311e-07 -4.8261 1.392e-06 ***
BILL_AMT2 3.6436e-07 2.2900e-07 1.5911 0.111593
BILL_AMT3 2.0213e-07 2.0178e-07 1.0017 0.316475
BILL_AMT4 -2.7960e-08 2.0607e-07 -0.1357 0.892076
BILL_AMT5 9.4024e-08 2.3169e-07 0.4058 0.684871
BILL_AMT6 5.6695e-08 1.8194e-07 0.3116 0.755335
PAY AMT1 -2.0807e-06 3.4951e-07 -5.9533 2.627e-09 1
PAY_AMT2 -1.4668e-06 3.1852e-07 -4.6050 4.125e-06 ***
PAY_AMT3 -4.2040e-07 2.6325e-07 -1.5970 0.110275
PAY_AMT4 -6.1243e-07 2.7290e-07 -2.2442 0.024821
PAY_AMT5 -5.2115e-07 2.7111e-07 -1.9223 0.054571
PAY_AMT6 -3.2056e-07 1.9822e-07 -1.6172 0.105840
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

df/dx represents marginal effects or the change in probability for default.

According to the marginal effects table, the significant variables have the following interpretation:

- 1. LIMIT BAL: Decrease in credit limit balance shows increase in default probability.
- 2. EDUCATION: Lower level of education indicates increase in default probability.
- 3. AGE: Higher clients have slightly higher probability of default
- 4. PAY_0 to PAY_3: Higher chances of default for payments that are more delayed.
- 5. BILL_AMT1: Higher billing amounts are associated with higher probability of default in next month.
- 6. PAY_AMT1, PAY_AMT2, PAY_AMT4, PAY_AMT5: Higher pay amounts can show a decrease in the probability of default whereas lower can indicate higher default probability.

Probit Regression

Summary:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.649e-01 3.804e-02 -20.108 < 2e-16 ***
LIMIT_BAL -3.907e-07 8.600e-08 -4.543 5.56e-06 ***
EDUCATION -5.195e-02 1.166e-02 -4.457 8.29e-06 ***
            6.706e-03 9.340e-04 7.180 6.99e-13 ***
PAY_0
           3.120e-01 1.017e-02 30.675 < 2e-16 ***
           5.183e-02 1.184e-02 4.378 1.20e-05 ***
PAY_2
          3.891e-02 1.303e-02 2.986 0.00283 **
PAY_3
           1.113e-02 1.445e-02
PAY_4
                                 0.770
PAY_5
           2.026e-02 1.560e-02 1.298 0.19417
PAY_6
           3.086e-03 1.281e-02
                                 0.241 0.80970
BILL_AMT1 -2.612e-06 5.709e-07 -4.575 4.76e-06 ***
BILL_AMT2
           9.157e-07 7.765e-07
                                1.179 0.23828
BILL_AMT3
           5.731e-07 7.071e-07
                                 0.811 0.41761
BILL_AMT4
            3.304e-08 7.218e-07
                                 0.046
BILL_AMT5
           2.744e-07 8.120e-07
                                 0.338 0.73538
BILL_AMT6
           6.350e-08 6.355e-07
                                 0.100 0.92041
PAY_AMT1
          -6.204e-06 1.093e-06 -5.676 1.38e-08 ***
PAY_AMT2
          -4.207e-06 9.913e-07 -4.244 2.19e-05 ***
PAY_AMT3
          -1.454e-06 8.825e-07 -1.647 0.09954
PAY_AMT4
          -1.774e-06 9.029e-07 -1.965 0.04940
PAY_AMT5
          -1.452e-06 9.057e-07 -1.603 0.10891
          -8.820e-07 6.595e-07 -1.337 0.18110
PAY_AMT6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 31705 on 29999 degrees of freedom
Residual deviance: 28113 on 29978 degrees of freedom
ATC: 28157
Number of Fisher Scoring iterations: 6
```

Coefficients like LIMIT_BAL, EDUCATION, AGE, payment history (PAY_0, PAY_2) bill amount for first month (BILL_AMT1) and payment amounts for first two months (PAY_AMT1, PAY_AMT2) are highly significant here too, as in logit.

AIC Score is 28157, which is greater than logit.

Marginal Effects:

```
Marginal Effects:
dF/dx Std. Err. z P>|z|
LIMIT_BAL -1.0854e-07 2.3876e-08 -4.5460 5.468e-06 ***
EDUCATION -1.4435e-02 3.2375e-03 -4.4586 8.251e-06 ***
        1.8631e-03 2.5954e-04 7.1786 7.045e-13 *** 8.6682e-02 2.8238e-03 30.6968 < 2.2e-16 ***
PAY 0
PAY_2 1.4401e-02 3.2913e-03 4.3754 1.212e-05 ***
PAY_3 1.0811e-02 3.6209e-03 2.9858 0.002829 **
PAY_4 3.0934e-03 4.0156e-03 0.7704 0.441088
PAY_5 5.6275e-03 4.3344e-03 1.2983 0.194174
          8.5732e-04 3.5601e-03 0.2408 0.809701
BILL_AMT1 -7.2563e-07 1.5849e-07 -4.5785 4.684e-06 ***
BILL_AMT2 2.5442e-07 2.1571e-07 1.1795 0.238215
BILL_AMT3 1.5924e-07 1.9644e-07 0.8106 0.417591
BILL_AMT4 9.1784e-09 2.0054e-07 0.0458 0.963495
BILL_AMT5 7.6244e-08 2.2559e-07 0.3380 0.735377
BILL_AMT6 1.7643e-08 1.7657e-07 0.0999 0.920405
PAY_AMT1 -1.7237e-06 3.0274e-07 -5.6936 1.244e-08 ***
PAY_AMT2 -1.1689e-06 2.7479e-07 -4.2538 2.102e-05 ***
PAY_AMT3 -4.0385e-07 2.4513e-07 -1.6475 0.099455 .
PAY_AMT4 -4.9298e-07 2.5080e-07 -1.9656 0.049341 *
PAY_AMT5 -4.0341e-07 2.5160e-07 -1.6034 0.108855
PAY_AMT6 -2.4504e-07 1.8319e-07 -1.3376 0.181016
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The marginal effects for probit is very similar to logit. Positive value represents an increase in the probability of default (for example PAY 0 to PAY 6).

Prediction Model:

Dataset size = 30000 Predictors = 21 Cross validation number of folds = 5 tune length = 10

1. **KNN Model:** It gives an accuracy of 77.74% with the final value of k = 23.

```
k-Nearest Neighbors
30000 samples
  21 predictor
   2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 24000, 24000, 24000, 24000, 24000
Resampling results across tuning parameters:
 k Accuracy
                Kappa
  5 0.7531000 0.11605658
  7 0.7614667 0.11173715
  9 0.7660667 0.10847952
 11 0.7699333 0.10798225
 13 0.7717667 0.10205788
 15 0.7734000 0.10084118
 17 0.7747667 0.09925668
 19 0.7763333 0.09844912
 21 0.7768333 0.09391628
 23 0.7773667 0.09114417
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 23.
```

Plotting accuracy vs number of neighbors

2. **Naïve Bayes Model:** It gives an accuracy of 79.56% and the optimal model is chosen with laplace = 0, usekernel = TRUE and adjust = 1.

```
Naive Bayes
30000 samples
   21 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23999, 24001, 24000, 24000, 24000
Resampling results across tuning parameters:
  usekernel Accuracy
                       Kappa
  FALSE
             0.7098011 0.3106027
             0.7956000 0.1835265
Tuning parameter 'laplace' was held constant at a value of \boldsymbol{0}
Tuning parameter 'adjust' was
held constant at a value of 1
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were laplace = 0, usekernel = TRUE and adjust = 1.
```

Thus, based on the accuracy, Naïve Bayes will be the optimal model for predicting default for credit card clients.