MATH 135 - Algebra for Honours Mathematics

Winter 2014

Contents

1	Inj∈	ective, Surjective and Bijections	3					
	1.1	Injective(One-to-One)	3					
		1.1.1 Definition	3					
		1.1.2 Simple Example	3					
		1.1.3 Hard Example	3					
	1.2	Surjective	3					
		1.2.1 Definition	3					
	1.3	Bijections	4					
		1.3.1 Definition	4					
		1.3.2 Simple Example	4					
	1.4	Summary	4					
		1.4.1 Frequently Asked Questions	4					
2	Cou	Counting						
	2.1	Bijection and Cardinality	5					
		2.1.1 Definition	5					
		2.1.2 Guidelines	5					
	2.2	Finite Sets	5					
		2.2.1 Definitions	5					
		2.2.2 Propositions	6					
		2.2.3 Example	6					
	2.3	Infinite Sets	6					
		2.3.1 Propositions	6					
		2.3.2 Example	7					
3	Cor	Complex Numbers 8						
	3.1	Complex Numbers	8					
		3.1.1 Definition	8					
		3.1.2 Properties	8					
	3.2	Polar Form	9					
		3.2.1 Definition	9					
		3.2.2 Properties	9					
		3.2.3 De Moivre's Theorem	9					
	3.3	Roots of Complex Numbers	9					
		3.3.1 Definition	9					
		3.3.2 Technique	9					

4	Polynomials					
	4.1	Polyno	omials	10		
		4.1.1	Definition	10		
		4.1.2	Proposition	1(
	4.2	4.2 Factoring Polynomials				
		4.2.1	Definition	10		
		4.2.2	Theorems	10		

Injective, Surjective and Bijections

1.1 Injective(One-to-One)

1.1.1 Definition

Injective: Let S and T be two sets. A function $f: S \to T$ is **one-to-one**(or **injective**) iff for every $x_1 \in S$, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$ and $|S| \leq |T|$. When trying to prove that a function is one-to-one, start off with $f(x_1) = f(x_2)$ and try to use algebraic manipulation to obtain $x_1 = x_2$.

1.1.2 Simple Example

Proposition: Let $m \neq 0$ and b be fixed real numbers. The function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = mx + b is one to one

Proof: Let $x_1, x_2 \in S$. Suppose that $f(x_1) = f(x_2)$. Now we show that $x_1 = x_2$. Since $f(x_1) = f(x_2)$, $mx_1 + b = mx_2 + b$. Subtracting b from both sides and dividing by m gives $x_1 = x_2$ as required.

1.1.3 Hard Example

Proposition: Let $f: T \to U$ and $g: S \to T$ be one-to-one functions. Then $f \circ g$ is a one-to-one function.

Proof: Let $x_1, x_2 \in S$. Suppose that $(f \circ g)(x_1) = (f \circ g)(x_2)$. Since $(f \circ g)(x_1) = (f \circ g)(x_2)$, we know that $f(g(x_1)) = f(g(x_2))$. Since f is one-to-one, we know that $g(x_1) = g(x_2)$. And since g is one-to-one, $x_1 = x_2$ as required.

1.2 Surjective

1.2.1 Definition

Surjective: A function $f: S \to T$ is **surjective**(or **onto**) if and only if for every $y \in T$ there exists an $x \in S$ so that f(x) = y. This implies that $|S| \ge |T|$.

When trying to prove that a function is onto, try to find a function g(x) such that f(g(x)) = y to prove that each y in the codomain is mapped to.

1.3 Bijections

1.3.1 Definition

Bijection: A function $f: S \to T$ is **bijective** iff f is both surjective and injective.

1.3.2 Simple Example

We have already shown that for $m \neq 0$ and b a fixed real number, the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = mx + b is both surjective and injective. Hence, f is bijective.

1.4 Summary

- $f: S \to T$ is a function iff $\forall s \in S \exists ! t \in T, f(s) = t$ where ! means unique
- $f: S \to T$ is surjective iff $\forall t \in T \exists s \in S, f(s) = t$, meaning for each element $t \in T$, there is at least one element $s \in S$ so that f(s) = t
- $f: S \to T$ is injective iff $\forall x_1 \in S \forall x_2 \in S, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ or $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, meaning for each element $t \in T$, there is at most one element $s \in S$ so that f(s) = t

1.4.1 Frequently Asked Questions

Questions to be added

Counting

2.1 Bijection and Cardinality

2.1.1 Definition

Cardinality: If there exists a bijection between the sets S and T, we say that the sets have the same and we write |S| = |T|.

Number of Elements, Finite, Infinite: If there exists a bijection between a set S and \mathbb{N}_n , we say that the number of elements in S is n and we write |S| = n. Moreover, we also say that S is a finite set. If no bijection exists between a set S and \mathbb{N}_n for any n, we say that S is an infinite set.

Countable: A set S is countable if there exists an injective function f from S to the natural numbers \mathbb{N}

2.1.2 Guidelines

Proposition: Let S = ... Let T = ... Then there exists a bijection $f: S \to T$. Hence, |S| = |T|.

To do this, we must prove that f is both surjective and injective.

Consider the function $f: S \to T$ defined by $f(s) = \dots$ We show that f is surjective. Let $t \in T$. Consider $s = \dots$ We show that $s \in S$ Now we show that f(s) = t.

We then show that f is injective. Let $s_1, s_2 \in S$ and suppose that $f(s_1) = f(s_2)$. Now we show that $s_1 = s_2$.

Hence, $f: S \to T$ is a bijection and |S| = |T|.

2.2 Finite Sets

2.2.1 Definitions

Disjoint: Set S and T are disjoint if $S \cap T = \emptyset$

2.2.2 Propositions

Cardinality of Intersecting Sets(CIS): If S and T are any finite sets, then $|S \cup T| = |S| + |T| - |S \cap T|$

Cardinality of Disjoint Sets(CDS): If S and T are disjoint finite sets, then $|S \cup T| = |S| + |T|$

2.2.3 Example

Proof of CDS:

- 1. Since S is a finite set, there exists a bijection $f: S \to \mathbb{N}_m$ for some non negative integer m, and |S| = m
- 2. Since T is a finite set, there exists a bijection $f: T \to \mathbb{N}_n$ for some non negative integer m, and |T| = n
- 3. Construct function $h: S \cup T \to \mathbb{N}_{m+n}$ as follows: h(x) = f(x) if $x \in S$ else g(x) + m if $x \in T$
- 4. To show that h is surjective, let $y \in \mathbb{N}_{m+n}$. If $y \leq m$, then because f is surjectivethere exists an element $x \in S$ so that f(x) = y, hence h(x) = y. If $m+1 \leq y \leq m+n$, then because g is surjective, there exists an element $x \in T$ so that g(x) = y m and so h(x) = (y m) + m = y.
- 5. To show that h is injective, let $x_1, x_2 \in S \cup T$ and suppose that $h(x_1) = h(x_2)$. If $h(x) \leq m$ then h(x) = f(x) so if $h(x_1) \leq m$ we have $h(x_1) = h(x_2) \Rightarrow f(x_1) = f(x_2)$

But since f is a bijection $f(x_1) = f(x_2)$ implies $x_1 = x_2$ as needed. If h(x) > m then h(x) = g(x) so if $h(x_1) > m$ we have

$$h(x_1) = h(x_2) \Rightarrow g(x_1) + m = g(x_2) + m \Rightarrow g(x_1) = g(x_2)$$

But since g is a bijectoin $g(x_2) = g(x_2)$ implies $x_1 = x_2$ as needed. Since h is a function which is both injective and surjective, h is bijective.

6. Thus

$$|S \cup T| = |\mathbb{N}_{m+n}| = m + n = |\mathbb{N}_m| + |\mathbb{N}_n| = |S| + |T|$$

If it wasn't clear, f(x) is mapped to 1,2..m and g(x) + m is mapped to m + 1, m + 2,...m + n.

2.3 Infinite Sets

2.3.1 Propositions

Cardinality of Subsets of Finite Sets(CSFS): If S and T are finite sets, and $S \subset T$, then |S| < |T|

 $|\mathbb{N}| = |2\mathbb{N}|$: Let $2\mathbb{N}$ be the set of positive even natural numbers. Then $|\mathbb{N}| = |2\mathbb{N}|$ $|\mathbb{N}x\mathbb{N}| = |\mathbb{N}|$

Even-Odd Factorization of Natural Numbers (EOFNN): Any natural number n can be written uniquely as $n = 2^i q$ where i is a non-negative integer and q is an odd natural number. Note: use EOFNN to prove $|\mathbb{N}x\mathbb{N}| = |\mathbb{N}|$. Note: Not all infinite sets have the same size

2.3.2 Example

Proof of $|\mathbb{N}| = |2\mathbb{N}|$

We want to prove that there's a bijection between both sets

- 1. Consider the function $f: \mathbb{N} \to 2\mathbb{N}$ defined by f(s) = 2s
- 2. We show that f is surjective. Let $t \in 2\mathbb{N}$. Consider $s = \frac{1}{2}t$. We show that $s \in \mathbb{N}$ since $f(\frac{1}{2}t) = t$ and therefore is surjective
- 3. We show that f is injective. Let $s_1, s_2 \in \mathbb{N}$ and suppose that $f(s_1) = f(s_2)$. Now we show that $s_1 = s_2$. Since $f(s_1) = 2s_1$ and $f(s_2) = 2s_2$, $s_1 = s_2$.
- 4. Hence, $f: \mathbb{N} \to 2\mathbb{N}$ is a bijection and $|\mathbb{N}| = |2\mathbb{N}|$.

Complex Numbers

3.1 Complex Numbers

3.1.1 Definition

Complex Number: A complex number z in standard form is an expression of the form x+yi where $x,y\in\mathbb{R}$. The set of all complex numbers is denoted by $\mathbb{C}=\{x+yi|x,y\in\mathbb{R}\}$

Real part and Imaginary part: For a complex number z = x + yi, the real number x is called the **real part** and is written $\Re(z)$ and the real number y is called the **imaginary part** and is written $\Im(z)$.

3.1.2 Properties

Complex Conjugate: The complex conjugate of z = x + yi is

$$\bar{z} = x - yi$$

This implies that:

- $z + \bar{w} = \bar{z} + \bar{w}$
- $z\bar{w} = \bar{z}\bar{w}$
- \bullet $\bar{\bar{z}} = z$
- $z + \bar{z} = 2\Re(z)$
- $z \bar{z} = 2\Im(z)$

Modulus: The modulus of the complex number z = x + yi is the non-negative real number:

$$|z| = |x + yi| = \sqrt{x^2 + y^2}$$

3.2 Polar Form

3.2.1 Definition

Polar Form: The polar form of a complex number z is

$$z = r(\cos\theta + i\sin\theta)$$

where r is the modulus of z and the angle θ is called an argument of z Complex

Exponential: By analogy, we define the complex exponential function by

$$e^{i\theta} = \cos\theta + i\sin\theta$$

3.2.2**Properties**

Polar Multiplication of Complex Numbers(PMCN): If $z_1 = r_1(\cos\theta_1 +$ $i\sin\theta_1$) and $z_2=r_2(\cos\theta_2+i\sin\theta_2)$ are two complex numbers in polar form, then $z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$

De Moivre's Theorem 3.2.3

De Moivre's Theorem(DMT): If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$ then

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

3.3 Roots of Complex Numbers

3.3.1 Definition

Complex Roots: If a is a complex number, then the complex numbers that solve

$$z^n = a$$

are called the complex nth roots. De Moivre's Theorem gives us a straightforward way to find complex nth roots of a.

Nth root of unity: z is an nth root of unity if $z^n = 1$.

3.3.2 **Technique**

Complex nth Roots Theorem (CNRT): If $r(\cos\theta + i\sin\theta)$ is the polar form of a complex number a, then the solutions to $z^n = a$ are:

$$\sqrt[n]{r}(\cos(\frac{\theta+2k\pi}{n}) + i\sin(\frac{\theta+2k\pi}{n}))$$

where k = 0, 1, 2, 3, ...

Finding coefficients of all $x^n k$ for $k \in \mathbb{N}$:

$$1, w = e^{i\frac{2\pi}{n}}, w = e^{i\frac{4\pi}{n}}$$

9

 $1, w = e^{i\frac{2\pi}{n}}, w = e^{i\frac{4\pi}{n}}$ Let's let n = 3. $1+w+w^2=0$. $\frac{f(1)+f(w)+f(w^2)}{3}$ is the sum we want.

Polynomials

4.1 Polynomials

4.1.1 Definition

Polynomial: A polynomial in x over a field \mathbb{F} (eg $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}_p$ for prime p, any number system that is closed under +-*/) has the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $n \geq 0$ is an integer and $a_i \in \mathbb{F}$ for each i. The set of all polynomials in x over \mathbb{F} is denoted $\mathbb{F}[x]$

4.1.2 Proposition

Division Algorithm for Polynomials (DAP): If f(x) and g(x) are polynomials in $\mathbb{F}[x]$ and g(x) is not the zero polynomial, then there exist unique polynomials g(x) and g(x) in $\mathbb{F}[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$

where deg r(x) < deg g(x) or r(x) = 0

q(x) is the quotient polynomial and r(x) is called the remainder polynomial. If r(x) = 0, then q(x)|f(x)

4.2 Factoring Polynomials

4.2.1 Definition

Root: An element $c \in \mathbb{F}$ is called a root or zero of the polynomial f(x) if f(c) = 0.

4.2.2 Theorems

Fundamental Theorem of Algebra(FTA): For all complex polynomials f(z) with $deg(f(z)) \ge 1$, there exists a $z_0 \in \mathbb{C}$ so that $f(z_0) = 0$.

Remainder Theorem: The remainder when the polynomial f(x) is divided by (x-c) is f(c).

Factor Theorem 1(FT 1): The linear polynomial (x-c) is a factor of the

polynomial f(x) iff f(c) = 0.

Factor Theorem 2(FT 2): The linear polynomial (x - c) is a factor of the polynomial f(x) iff c is a root of the polynomial f(x).

Complex Polynomials of Degree n Have n Roots(CPN): If f(x) is a complex polynomial of degree $n \ge 1$, then f(x) has n roots and can be written as the products of n linear factors. The n roots and factors may not be distinct.

Rational Roots Theorem(RRT): Let f(x) be a polynomial of degree n. If $\frac{p}{q}$ is a rational root with gcd(p,q) = 1, then $p|a_0$ and $q|a_n$.

Note: If asked for a rational root, find all divisors of a_n and a_0 and find all different combinations and evaluate whether they're roots.

Conjugate Roots Theorem(CJRT): Let f(x) be a polynomial of degree n with real coefficients. If $c \in \mathbb{C}$ is a root of f(x), then $\bar{c} \in \mathbb{C}$ is a root of f(x).