

Description

Features

- 30V, 13A
 - $R_{DS(ON)}$ < 12m Ω @ V_{GS} = 10V
 - $R_{DS(ON)} < 18m\Omega$ @ $V_{GS} = 4.5V$
- Advanced Trench Technology
- Provide Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM13N03-S8	VSM13N03	TAPING	SOP-8	13inch	4000	48000

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _A = 25℃	13	Α
		T _A = 100℃	8.5	Α
I_{DM}	Pulsed Drain Current note1		52	Α
E _{AS}	Single Pulsed Avalanche Energy note2		33	mJ
P_D	Power Dissipation	T _A = 25℃	3.5	W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		35.7	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units			
Off Characteristic									
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30	-	-	V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V,	-	-	1.0	μA			
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA			
On Characteristics									
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.5	2.5	V			
	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =13A	-	8.8	12				
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =10A	-	13	18	mΩ			
Dynamic Characteristics									
C_{iss}	Input Capacitance	\/ -45\/ \/ -0\/	-	1011	-	pF			
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V,	-	142	-	pF			
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	119	-	pF			
Qg	Total Gate Charge	\/ 45\/ L 0A	-	19	-	nC			
Q _{gs}	Gate-Source Charge	V_{DS} =15V, I_{D} =6A, V_{GS} =10V	-	6.3	-	nC			
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	-	4.5	-	nC			
Switching	Characteristics								
$t_{d(on)}$	Turn-on Delay Time	45)/	-	6	-	ns			
t _r	Turn-on Rise Time	V _{DS} =15V,	-	5	-	ns			
t _{d(off)}	Turn-off Delay Time	$I_D=13A$, $R_{GEN}=3\Omega$,	-	25	-	ns			
t _f	Turn-off Fall Time	V _{GS} =10V	-	7	-	ns			
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings							
	Maximum Continuous Drain to Source Diode Forward Current			-	13	А			
Is									
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	52	Α			
V_{SD}	Drain to Source Diode Forward	V _{GS} =0V, I _S =13A			1.2	V			
	Voltage	VGS-UV, IS-13A	-	-	1.2	V			
trr	Body Diode Reverse Recovery Time Body Diode Reverse Recovery I _F =13A,dI/dt=100A/µs		-	7	-	ns			
Qrr			_	6.3	_	nC			
	Charge		_	0.0	_	110			

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\mathrm{C}$, VGs=15V, RG=25 Ω , L=0.5mH, IAs=11.5A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms