[Draft] On Kalmar Numbers and Arithmetic Terms

Joseph M. Shunia

August 13, 2024

Abstract

From the classes of Kalmar functions and arithmetic terms, we describe the class of Kalmar numbers, which is the subset of computable real numbers that can be represented as a limit of the quotient of two Kalmar functions. We give Kalmar numbers for many important mathematical constants and functions, such as e, π , $\sqrt[r]{n}$, $\log(n)$, $\exp(n)$, $\sin(n)$, $\cos(n)$, $\Gamma_k(q)$, $(q)_{n,k}$, $\psi^{(k)}(q)$.

DISCLAIMER: This paper is a work in progress. Many proofs and results are currently missing.

1 Kalmar Numbers

We define a **Kalmar number** as a computable real number which can be represented as a limit of the quotient of two Kalmar functions. That is, $r \in \mathbb{R}$ is a Kalmar number if there exists a limit

$$r = \lim_{n \to +\infty} \frac{f(n)}{g(n)} \quad \text{ or } \quad r = \lim_{n \to -\infty} \frac{f(n)}{g(n)} \quad \text{ or } \quad r = \lim_{n \to 0} \frac{f(n)}{g(n)}$$

where f(n), g(n) are Kalmar functions. This definition is due to Lorenzo Sauras-Altuzarra, who described it in a private correspondence.

2 Characterizing the Kalmar Numbers

An interesting question from Mihai Prunescu is:

Question 2.1. What is the subset of computable real numbers that are Kalmar numbers?

We offer a partial solution to the question.

Theorem 2.1. Let $r \in \mathbb{R}$ such that the ratios of consecutive terms for both the numerators and denominators of the n-th convergents in its generalized continued fraction representation are bounded by a tower of exponentials $2^{2^{\ldots^{2^n}}}$ with height n. Then, there exist Kalmar functions f(n) and g(n) such that

$$r = \lim_{n \to \infty} \frac{f(n)}{g(n)}.$$

Proof. The generalized continued fraction representation of r is given by

$$r = a_0 + \frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_3}{a_3 + \cdots}}},$$

where a_i and b_i are sequences of integers. The *n*-th convergents of the generalized continued fraction for r can be expressed using the recurrence relations

$$P_n = a_n P_{n-1} + b_n P_{n-2},$$

 $Q_n = a_n Q_{n-1} + b_n Q_{n-2},$

with initial starting conditions $P_{-1} = 1$, $P_0 = a_0$, $Q_{-1} = 0$, and $Q_0 = 1$.

The sequence of convergents $\frac{P_n}{Q_n}$ of the generalized continued fraction for r will approach r as $n \to \infty$. That is,

$$\lim_{n \to \infty} \frac{P_n}{Q_n} = r.$$

By the theorem's assumption, we have

$$\frac{P_n}{P_{n-1}} \leq 2^{2^{2^{\dots^n}}} \text{ and } \frac{Q_n}{Q_{n-1}} \leq 2^{2^{2^{\dots^n}}}.$$

This implies that for all $n \geq 1$,

$$P_n \le P_{n-1} 2^{2^{2^{\dots^n}}} \le P_{n-2} 2^{2^{2^{\dots^{n-1}}}} 2^{2^{2^{\dots^n}}} \le \dots \le$$

$$P_0 2^{2^{2^1}} 2^{2^{2^2}} \cdots 2^{2^{2^{\dots^n}}} = P_0 2^{2^1 + 2^2 + \dots + 2^{2^{\dots^n}}} = P_0 2^{2^{2^{\dots^{n+1}}} - 2}$$

$$= O(2^{2^{2^{\dots^n}}}),$$

and similarly for Q_n .

The set of rational numbers \mathbb{Q} is dense in \mathbb{R} . Thus, for any $r \in \mathbb{R}$ and any $\epsilon > 0$, there exists a rational number $q \in \mathbb{Q}$ such that $|r - q| < \epsilon$.

Define $\epsilon_n = \left| r - \frac{P_n}{Q_n} \right|$. Since $\lim_{n \to \infty} \frac{P_n}{Q_n} = r$, there exists an $N \in \mathbb{N}$ such that for all n > N, we have $\epsilon_n < \frac{P_n}{Q_n}$ and $\epsilon_{n+1} < \epsilon_n$. Furthermore, since P_n and Q_n are bounded by $O(2^{2^{n-2}})$ and their recursions require only elementary arithmetic operations to compute, there exists a pair of Kalmar functions f(n) and g(n) such that $f(n) = P_n$ and $g(n) = Q_n$. Therefore, we conclude

$$\lim_{n \to \infty} \left| r - \frac{f(n)}{g(n)} \right| = 0 \implies \lim_{n \to \infty} \frac{f(n)}{g(n)} = r.$$

3 Pochhammer Symbol

The **Pochhammer** k-symbol is defined as the integer-valued function

$$(n)_{a,b} = \prod_{k=1}^{n} (a + (b-1)k).$$

Lemma 3.1. Let $a, b \in \mathbb{Z}$. For large n, the product

$$P_n = \prod_{k=0}^{n} (a + bk)$$

is approximated by

$$P_n \approx \frac{b^n n! (a/b+n)^n}{(a/b)^n}.$$

Proof. We begin by expressing the product P_n as

$$P_n = b^n \prod_{k=0}^n \left(\frac{a}{b} + k\right).$$

This can be rewritten using the Gamma function as

$$P_n = b^n \frac{\Gamma(a/b + n + 1)}{\Gamma(a/b)}.$$

Stirling's approximation for the Gamma function gives

$$\Gamma(z) \sim \sqrt{2\pi z} \left(\frac{z}{e}\right)^z$$
 as $z \to \infty$.

Applying the approximation, we have

$$\frac{\Gamma(a/b+n+1)}{\Gamma(a/b)} \sim \frac{\sqrt{2\pi(a/b+n+1)} \left(\frac{a/b+n+1}{e}\right)^{a/b+n+1}}{\sqrt{2\pi a/b} \left(\frac{a/b}{e}\right)^{a/b}}.$$

Simplifying this expression

$$\frac{\Gamma(a/b+n+1)}{\Gamma(a/b)} \sim \sqrt{\frac{a/b+n+1}{a/b}} \left(\frac{a/b+n+1}{a/b}\right)^{a/b} (a/b+n+1)^n e^{-n-1}.$$

For large n and a/b, $\frac{a/b+n+1}{a/b} \approx 1 + \frac{n+1}{a/b}$, so

$$\frac{\Gamma(x+n+1)}{\Gamma(x)} \sim n! \left(1 + \frac{n}{a/b}\right)^n \left(\frac{x+n}{x}\right)^n.$$

Hence, we find

$$P_n \approx b^n \frac{n!(a/b+n)^n}{(a/b)^n}.$$

Theorem 3.1. Let $n, a, b \in \mathbb{Z}$ such that n > 0 and $\log(n) > a$.

Define $\sigma(n, a, b) = \frac{b^n n! (a/b+n)^n}{(a/b)^n}$.

Set $\ell = \lfloor \log_b(\sigma(n, a, b) \rfloor + 1$.

Set $m = b^{\ell} + 1$.

Set $c = (ab^{-1}) \mod m$.

Then

$$(n)_{a,b} = \left| \frac{\left(\binom{n+c}{n+1} b^{n+1} (n+1)! \right) \mod m}{a+nb} \right|.$$

Further, $(n)_{a,b}$ is an arithmetic term.

Proof. From [6], for $a \equiv bc \pmod{m}$, we have

$$\prod_{k=0}^{n} (a+bk) \equiv \binom{n+c}{n+1} b^{n+1} (n+1)! \pmod{m}.$$
 (1)

We are given $m = b^{\ell} + 1$, thus m and b are coprime and $b^{-1} \pmod{m}$ exists. Therefore, $c = ab^{-1} \pmod{m}$ is valid. Hence, we have established a congruence of $\prod_{k=0}^{n} (a+bk) \pmod{m}$.

Now, since

$$\left(\prod_{k=0}^{n} (a+bk)\right)^{2} > m = b^{\ell} = b^{\lfloor \log_{b}((n)_{a,b}) \rfloor + 1} > \prod_{k=0}^{n} (a+bk),$$

it follows that

$$(n)_{a,b} = \left| \frac{\left(\binom{n+c}{n+1} b^{n+1} (n+1)! \right) \mod m}{a+nb} \right|.$$

Finally, due to Prunescu and Sauras-Altuzarra [3], we have an arithmetic term for the modular inverse $b^{-1} \pmod{m}$. Arithmetic terms for the factorial function, binomial coefficients, and roots are also known [2, 5, 1, 3]. Therefore, it follows that $(n)_{a,b}$ is an arithmetic term.

4 Generalized Binomial Coefficients

We define the generalized binomial coefficients as the coefficients of the form

$$\binom{\frac{a}{b}}{k} = \frac{\left(\frac{a}{b}\right)\left(\frac{a}{b}-1\right)\left(\frac{a}{b}-2\right)\cdots\left(\frac{a}{b}-(k-1)\right)}{k!}.$$
 (2)

Lemma 4.1.

$$\forall a, b, k \in \mathbb{Z}^+, \quad \begin{pmatrix} \frac{a}{b} \\ k \end{pmatrix} = \frac{(k)_{a,-b}}{b^k k!}.$$

Proof. We begin with our definition

$$\binom{\frac{a}{b}}{k} = \frac{\binom{\frac{a}{b}}{\frac{b}{a}} \binom{\frac{a}{b}-1}{\frac{a}{b}-2} \cdots \binom{\frac{a}{b}-(k-1)}{k!}}{k!}.$$

Expanding the terms and simplifying, we obtain

$$\begin{pmatrix} \frac{a}{b} \\ k \end{pmatrix} = \frac{\frac{a}{b} \frac{a-b}{b} \frac{a-2b}{b} \cdots \frac{a-(k-1)b}{b}}{k!}$$

$$= \frac{a(a-b)(a-2b) \cdots (a-(k-1)b)}{b^k k!}$$

$$= \frac{(k)_{a,-b}}{b^k k!}.$$

5 Beta Function

The **beta function** is defined as

$$\mathbf{B}(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$
 (3)

For all $a, b \in \mathbb{Z}^+$, we have

$$\mathbf{B}(a,b) = \frac{a+b}{ab} / \binom{a+b}{a}. \tag{4}$$

6 Gamma Function

The k-Gamma function [4] is defined as

$$\Gamma_k(q) = \lim_{n \to \infty} \frac{n! k^n (nk)^{q/k-1}}{(q)_{n,k}}.$$

Theorem 6.1. The function $\Gamma_k(q)$, where $q \in \mathbb{Q}$, is a Kalmar number.

Proof. From [4], we have

$$\Gamma_k(q) = \lim_{n \to \infty} \frac{n! k^n (nk)^{q/k-1}}{(q)_{n,k}}.$$

By Theorem 3.1, $(q)_{n,k}$ is an arithmetic term. Arithmetic terms for the factorial function and roots are also known [3, 1]. Therefore, it follows that $\Gamma_k(q)$ is a Kalmar number.

7 Polygamma Function

From our Kalmar number for $\Gamma(q)$, we can calculate $\psi(q)$.

$$\psi^{(0)}(q) = \psi(q) = \frac{\Gamma'(q)}{\Gamma(q)}.$$

8 Useful Kalmar Numbers

Roots

$$\sqrt[n]{a} = \lim_{k \to \infty} \frac{(k^{kn} + 1)^{kn+1} \bmod (k^{kn^2} - a)}{(k^{kn} + 1)^{kn} \bmod (k^{kn^2} - a)} - 1.$$
(5)

Derivatives

$$f'(x) = \lim_{b \to 0} \frac{f(a+b) - f(a)}{b} \tag{6}$$

Exponential Function

$$e = \lim_{k \to \infty} \frac{(k+1)^k}{k^k}$$

$$e^n = \lim_{k \to \infty} \frac{(k+1)^{nk}}{k^{nk}}$$

$$\exp(in) = \lim_{k \to \infty} \left(\left(1 + \frac{xn}{k} \right)^k \bmod (x^2 + 1) \right)$$

Natural Logarithm

$$\log(n) = \lim_{k \to \infty} k(\sqrt[k]{n} - 1).$$

Trigonometric Functions

$$\cos(n) = \lim_{k \to \infty} \left(\left(\left(1 + \frac{xn}{k} \right)^k \mod(x^2 + 1) \right) \mod x \right),$$

$$\sin(n) = \lim_{k \to \infty} \frac{\left(1 + \frac{xn}{k} \right)^k \mod(x^2 + 1)}{x}.$$

Mod One

$$a \mod b = b \left(\frac{a}{b} \mod 1 \right) = b \left(\frac{a}{b} - \left| \frac{a}{b} \right| \right)$$

 \mathbf{Pi}

$$\sqrt{2\pi} = \lim_{n \to \infty} \frac{n!}{\sqrt{n}n^n e^{-n}}$$

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{4^n n!^2}{\sqrt{n}(2n)!}$$

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{2^{4n} n!^4}{(2n)!^2 (2n+1)}$$

References

- [1] J. M. Shunia. Polynomial Quotient Rings and Kronecker Substitution for Deriving Combinatorial Identities, 2024. URL https://arxiv.org/abs/2404.00332.
- J. Robinson. Existential Definability in Arithmetic. Transactions of the American Mathematical Society, 72(3):437–449, 1952. ISSN 0002-9947.
- [3] M. Prunescu and L. Sauras-Altuzarra. An Arithmetic Term for the Factorial Function. Examples and Counterexamples, 5:100136, 2024. ISSN 2666-657X. URL https://sciencedirect.com/science/article/pii/S2666657X24000028.
- [4] R. Diaz and E. Pariguan. On Hypergeometric Functions and Pochhammer k-symbol, 2005. URL https://arxiv.org/abs/math/0405596.
- [5] J. M. Shunia. A Simple Formula for Single-Variable Multinomial Coefficients, 2023. URL https://arxiv.org/abs/2312.00301.
- [6] Y. Matiyasevich. Hilbert's Tenth Problem. MIT press, 1993. ISBN 0-262-13295-8.