

MSEP for model selection

matthieu.lesnoff@cirad.fr Montpellier, 21 May 2019

Preliminary

Difficulties in the literature ...

- Non-trivial concepts behind the "push-button" rules
 - various theoretical frames (quadratic/non quadratic risks, discrepancy, Bayes, information theory, etc.)
- Non consistent vocabulary
- Fixed vs. Random parts (several random sources)
 - not often precisely detailed
 - "implicit" notations (ambiguity for non specialists)

Examples of introductory references

- Hastie, T., Tibshirani, R.J., 1990. Generalized Additive Models, Monographs on statistics and applied probablity. Chapman and Hall/CRC, New York, USA.
- Eubank, R.L., 1999. Nonparametric Regression and Spline Smoothing, 2nd ed,
 Statistics: Textbooks and Monographs. Marcel Dekker, Inc., New York, USA.
- Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Springer, New York, USA.
- ... (huge)

Two separate goals for MSEP statistics

 Model selection: estimating the performance of different models in order to choose the best one

 Model assessment: having chosen a final model, estimating its prediction (generalization) error on new data

(Hastie et al. 2009)

This presentation focuses on model selection

Statistical model

Joint distribution of the data $(x, y) \sim F_{x,y}$

x = set of covariablesy = output (scalar, category)

$$y|x = E_{x,y}(y|x) + \varepsilon$$
 Average relation between y and x

Relation not perfect

$$=g(x, \gamma) + \varepsilon$$

 $= g(x, \gamma) + \varepsilon$ $g(x, \gamma)$: "True" deterministic model (unknown form; γ may be very large; complex reality)

- ε independent of X
- $E(\varepsilon) = 0$
- $Var(\varepsilon) = Var_{\varepsilon}(y|x) = \sigma^2$
- $Cov(\varepsilon_i, \varepsilon_j) = 0$ $i \neq j$ i, j: 2 realizations of $F_{x,v}$

Training set
$$F_{x,y} \rightarrow \tau = (x,y) = \{(x_1,y_1), ..., (x_n,y_n)\}$$

 x_i = set of covariables for observation i y_i = output for observation i

New observation $F_{x,y} \rightarrow (x^*, y^*)$

$$y^*|x^* = g(x^*, \gamma) + \varepsilon^*$$

Same as for ε

- $E(\varepsilon^*) = 0$
- $Var(\varepsilon^*) = Var_{\varepsilon^*}(y^*|x^*) = \sigma^2$
- $Cov(\varepsilon_i^*, \varepsilon_j^*) = 0$ $i \neq j$

Test set $F_{x,y} \rightarrow \tau^* = (x^*, y^*) = \{(x_1^*, y_1^*), ..., (x_m^*, y_m^*)\}$

Let's \mathcal{M} be a given hypothetical model $\mathcal{M}: f(x, \theta)$

Training set
$$\tau = (x, y) \rightarrow \text{Estimate} \widehat{\mathcal{M}} : f(x, \hat{\theta})$$

Predictions
$$\hat{y}|x_i = f(x_i, \hat{\theta})$$

Residual
$$e | x_i = y | x_i - f(x_i, \hat{\theta})$$
 calibration error

New observation
$$y^*|x^*$$

non observable

Prediction
$$\hat{y}^*|x^* = f(x^*, \hat{\theta}) = \hat{y}|x^*$$

Prediction error
$$e^* | x^* = y^* | x^* - f(x^*, \hat{\theta})$$
 non-observable

- **Residual**
$$e \mid x_i = y \mid x_i - f(x_i, \hat{\theta})$$

$$= (g(x_i, \gamma) + \varepsilon_i) - f(x_i, \hat{\theta}) \qquad 1 \text{ variation source } (\varepsilon)$$

• $\varepsilon = \{\varepsilon_1, ..., \varepsilon_n\} \rightarrow \hat{\theta}$ infinity of training sets τ of size n, with x fixed

- Prediction error $e^*|x^* = y^*|x^* f(x^*, \hat{\theta})$ = $(g(x^*, \gamma) + \varepsilon^*) - f(x^*, \hat{\theta})$ 2 variation sources $(\varepsilon, \varepsilon^*)$
 - $\varepsilon = \{\varepsilon_1, ..., \varepsilon_n\} \rightarrow \hat{\theta}$ infinity of training sets τ of size n, with x fixed
 - $oldsymbol{arepsilon}^*$

Expected values and variances of the residual $e|x_i|$ (1 variation source = ε)

•
$$E_{\varepsilon}(e|x_i)$$
 = $E_{\varepsilon}(y|x_i - f(x_i, \hat{\theta}))$
= $E_{\varepsilon i}(y|x_i) - E_{\varepsilon}(f(x_i, \hat{\theta}))$
= $g(x_i, \gamma) - E_{\varepsilon}(f(x_i, \hat{\theta}))$ Bias term

•
$$Var_{\varepsilon}(e|x_{i}) = E_{\varepsilon}(y|x_{i} - f(x_{i}, \hat{\theta}))$$

$$= Var_{\varepsilon i}(y|x_{i}) + Var_{\varepsilon}(f(x_{i}, \hat{\theta})) - 2 \times Cov_{\varepsilon}(y|x_{i}, f(x_{i}, \hat{\theta}))$$

$$= \sigma^{2} + Var_{\varepsilon}(f(x_{i}, \hat{\theta})) - 2 \times Cov_{\varepsilon}(y|x_{i}, f(x_{i}, \hat{\theta}))$$

Expected values and variances of the prediction error $e^*|x_0$ on a given point x_0 (2 variation sources = \mathcal{E} , \mathcal{E}^*)

- Conditional to the training set $\tau = (x, y)$ (τ , and then $\hat{\theta}$, fixed)
 - $E_{\varepsilon^*}\left(\left(e^*|x_0|x_0\right)|\tau\right) = g(x_0, \gamma) f(x_0, \hat{\theta}) = v(x_0)$ Bias term
 - $Var_{\varepsilon^*}((e^*|x_0)|\tau) = \sigma^2$
- Marginalized over an infinity of training sets τ of size n, with x fixed
 - $E_{\varepsilon, \varepsilon*}(e^*|x_0)$ = $E_{\varepsilon}E_{\varepsilon*}((e^*|x_0)|\tau)$ = $g(x_0, \gamma) - E_{\varepsilon}(f(x_0, \hat{\theta})) = \alpha(x_0)$ Bias term
 - $Var_{\varepsilon, \varepsilon*}(e^*|x_0) = E_{\varepsilon}Var_{\varepsilon*}((e^*|x_0)|\tau) + Var_{\varepsilon}E_{\varepsilon*}((e^*|x_0)|\tau)$ $= \sigma^2 + Var_{\varepsilon}(f(x_0, \hat{\theta})) = \sigma^2(x_0)$

$$Var_{\varepsilon,\varepsilon*}(e^*|x_0) = \sigma_*^2(x_0) = \sigma^2 + Var_{\varepsilon}(f(x_0,\hat{\theta}))$$

irreducible error

If x_0 is set to x_i

$$E_{\varepsilon}(e|x_i) = g(x_i, \gamma) - E_{\varepsilon}(f(x_i, \hat{\theta}))$$

$$E_{\varepsilon, \varepsilon^*}(e^*|x_i) = g(x_i, \gamma) - E_{\varepsilon}(f(x_i, \hat{\theta}))$$

$$Var_{\varepsilon}(e|x_i) = \sigma^2 + Var_{\varepsilon}(f(x_i, \hat{\theta})) - 2 \times Cov_{\varepsilon}(y|x_i, f(x_i, \hat{\theta}))$$

$$Var_{\varepsilon, \varepsilon^*}(e^*|x_i) = \sigma_*^2(x_i) = \sigma^2 + Var_{\varepsilon}(f(x_i, \hat{\theta}))$$

Expected square prediction error = expected value of $(e^*|x_0)^2$

Conditional

•
$$E_{\varepsilon*}((e^*|x_0)^2|\tau) = \sigma^2 + (g(x_0, \gamma) - f(x_0, \hat{\theta}))^2$$

= $\sigma^2 + \nu(x_0)^2$

Marginal

- $E_{\varepsilon}E_{\varepsilon*}((e^*|x_0)^2|\tau) = MSEP(x_0) = PR(x_0) = EPE(x_0) = PSE(x_0) = ...$
 - = Mean square error of prediction, Predictive risk, Expected square error, Predictive square error, ...

$$= \sigma^{2} + E_{\varepsilon}((g(x_{0}, \gamma) - f(x_{0}, \hat{\theta}))^{2})$$

$$= \sigma^{2} + MSE(x_{0}) = \sigma^{2} + Risk(x_{0})$$

$$= \sigma^{2} + Var_{\varepsilon}(f(x_{0}, \hat{\theta})) + (g(x_{0}, \gamma) - E_{\varepsilon}(f(x_{0}, \hat{\theta}))^{2})$$

$$= \sigma^{2} + Var_{\varepsilon}(x_{0}, \hat{\theta}) + \alpha(x_{0})^{2}$$

• $MSEP(x_0) = \sigma_*^2(x_0) + \alpha(x_0)^2$

The bias term $\alpha(x_0)^2$ can be split into two terms representing a model bias $(f(x_0, \theta) \text{ vs. } g(x_0, \gamma))$ and a statistical bias $(f(x_0, \hat{\theta}) \text{ vs. } f(x_0, \theta))$

Model performances

Loss function

In this presentation: theoretical framework based on a loss function L

• $L(y|x, f(x, \hat{\theta}))$: Quantity of loss when prediction $\hat{y}|x = f(x, \hat{\theta})$ is used instead of the realization y|x from $F_{x,y}$

Example: quadratic loss function

•
$$L(y|x, f(x, \hat{\theta})) = (y|x - f(x, \hat{\theta}))^2$$

Two main types of performance measures

Definitions and notations of Hastie et al. 2009 p.220

- Conditional test (or generalization) error Err_{τ}
- Expected prediction (or test) error Err

Err also used in Efron 1983

• Efron, B., 1983. Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation. Journal of the American Statistical Association 78, 316–331

Most statistical methods estimate *Err*

Estimating Err from the training set \rightarrow model selection: model(s) with the lowest Err estimate(s)

Conditional test error

Here the training set τ is fixed (therefore $\hat{\theta}$ also) Test error refers to the error for this specific training set (Hastie *et al.* 2019 p. 220)

Expected prediction error

• $Err = E_{\tau}(Err_{\tau})$ Marginal expectation over an infinity of τ (size n) $=E_{\tau}E_{x^*,y^*}\left(L(y^*|x^*,f(x,\hat{\theta}))\mid \tau\right)$ training observations set of size *n* $= E_{x,y} E_{x^*,y^*} (L(y^*|x^*,f(x^*,\hat{\theta})) | \tau)$ $= E_{x,\varepsilon} E_{x^*,y^*} \left(L(y^*|x^*,f(x^*,\hat{\theta})) \mid \tau \right)$

Average training error \overline{err} as an estimate of Err?

•
$$\overline{err} = \frac{1}{n} \sum_{i=1}^{n} L(y|x_i, f(x_i, \hat{\theta}))$$

Example for a quadratic loss function

•
$$\overline{err} = \frac{1}{n} \sum_{i=1}^{n} (y|x_i - f(x_i, \hat{\theta}))^2 = ASR = RSS/n$$

Unfortunately, \overline{err} is generally biased downward as an estimate of Err

Hastie et al 2009 Fig 7.1 p. 220

Simulation of 100 training set τ_j j = 1, ..., 100Known true model $g(x, \gamma)$

Estimation of Err from the training set τ

- Formal: Parsimony criterions (Mallows's Cp, Akaike AIC, etc.)
 - \rightarrow Estimates of a particular case of Err $(E_{\tau}(Err_{in}))$ see later)
- Simulations
 - \rightarrow Direct estimates of Err
 - Bootstrap (e.g. ".632 estimate")
 - Cross-validation
 - K-Fold
 - LOO

For linear smoothers: (1) LOO can be calculated without simulation, (2) Alternative: Generalized cross-validation (approximation of LOO)

Examples of formal estimation of *Err*

Background

• Conditional test error $Err_{\tau} = E_{x^*,y^*} \left(L(y^*|x^*,f(x,\hat{\theta})) \mid \tau \right)$ $= E_{x^*,\varepsilon^*} \left(L(y^*|x^*,f(x,\hat{\theta})) \mid \tau \right)$

Here the test input vector \mathbf{x}^* does not need to coincide with the training input vector \mathbf{x}

⇒ Conditional *extra-sample* test error (Hastie *et al.* 2009 p. 228)

•
$$Err_{\tau} = E_{x^*, \varepsilon^*} \left(L(y^* | x^*, f(x, \hat{\theta})) \mid \tau \right)$$

= Conditional *extra-sample* test error

For model selection, we need to estimate $Err = E_{\tau}(Err_{\tau})$ from the training set $\tau = (x, y) \rightarrow \ln Err_{\tau}$, we force the test input vector x to coincide with x

•
$$Err_{in}$$
 = $\frac{1}{n} \sum_{i=1}^{n} E_{\varepsilon*}(L(y^*|x_i, f(x_i, \hat{\theta})) \mid \tau)$

= Conditional *in-sample* test error (Hastie et al. 2009 p. 228)

= Plug-in of
$$Err_{\tau}$$
 on \mathbf{x} : $F_{\mathbf{x}} \sim x^*$ is replaced by the empirical distribution \mathbf{x}

 Err_{in} is a special case of Err_{τ}

We are going to estimate $E_{\tau}(Err_{in})$ in place of $E_{\tau}(Err_{\tau}) = Err$

•
$$Err_{in}$$
 = $\frac{1}{n} \sum_{i=1}^{n} E_{\varepsilon*}(L(y^*|x_i, f(x_i, \hat{\theta})) \mid \tau)$

•
$$E_{\tau}(Err_{in}) = \frac{1}{n} \sum_{i=1}^{n} E_{\tau} E_{\varepsilon*}(L(y^*|x_i, f(x_i, \hat{\theta})) \mid \tau)$$

The estimation of $E_{\tau}(Err_{\rm in})$ is simplified under another hypothesis: For the variations of τ , the training input \boldsymbol{x} is set fixed (only ε varies)

$$= \frac{1}{n} \sum_{i=1}^{n} E_{\varepsilon} E_{\varepsilon*} (L(y^* | x_i, f(x_i, \hat{\theta})) \mid \tau)$$

= the Err criterion to be estimated

Case of a quadratic loss function

$$E_{\varepsilon}(Err_{\text{in}}) = \frac{1}{n} \sum_{i=1}^{n} E_{\varepsilon} E_{\varepsilon*} ((y^*|x_i - f(x_i, \hat{\theta}))^2 | \tau)$$

$$= \frac{1}{n} \sum_{i=1}^{n} E_{\varepsilon} E_{\varepsilon*} ((e^*|x_i)^2 | \tau)$$

$$= \frac{1}{n} \sum_{i=1}^{n} MSEP(x_i)$$

$$= MSEP(\mathbf{x})$$
To be estimated

•
$$MSEP(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} MSEP(x_i)$$

$$= \sigma^2 + \frac{1}{n} \sum_{i=1}^{n} MSE(x_i) = \sigma^2 + MSE(\mathbf{x})$$

$$= \sigma^2 + \frac{1}{n} \sum_{i=1}^{n} Var_{\varepsilon}(f(x_i, \hat{\theta})) + \frac{1}{n} \sum_{i=1}^{n} \alpha(x_i)^2 \quad \text{with } \alpha(x_i) = g(x_i, \gamma) - E_{\varepsilon}(f(x_i, \hat{\theta}))$$

$$= \overline{\sigma}_*^2(\mathbf{x}) + \frac{1}{n} \alpha(\mathbf{x})'\alpha(\mathbf{x}) \quad \text{with } \overline{\sigma}_*^2(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \sigma_*^2(x_i)$$

Minimizing MSEP(x) is the same as minimizing MSE(x)

Minimization of a "variance-bias" compromise

- When the dimension of $\hat{\theta}$ (model) increases, the bias term decreases but the mean variance of the prediction errors $\overline{\sigma}_*^2(x)$ increases
- When n increases, the training set au allows higher $\hat{ heta}$ dimensions

An example of MSEP(x) estimation: The Mallows's Cp approach

•
$$MSEP(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} E_{\varepsilon} E_{\varepsilon*} ((y|x_i - f(x_i, \hat{\theta}))^2 | \tau)$$

•
$$\overline{err}$$
 = $\frac{1}{n} \sum_{i=1}^{n} (y|x_i - f(x_i, \hat{\theta}))^2 = RSS/n$

As before, we could consider $\overline{err} = RSS/n$ as an estimate of MSEP(x)

But in general RSS/n is biased for MSEP(x) : $E_{\varepsilon}(RSS/n) < MSEP(x)$

Important hypothesis for the Cp approach

For all the next calculations, we consider that the models $f(x, \hat{\theta})$ are linear in their parameters

$$\widehat{\mathbf{y}} \mid \mathbf{x} = f(\mathbf{x}, \widehat{\theta}) = H\mathbf{y}$$

where \boldsymbol{H} does not depend on \boldsymbol{y}

∈ *Linear smoothers* (Hastie & Tibshirani 1990) (linear models, ridge regression, PCR, cubic splines, ...)

Ex: Usual OLS $H = X(X'X)^{-1}X'$

$$MSEP(\mathbf{x}) = \sigma^{2} + \frac{1}{n} \sum_{i=1}^{n} Var_{\varepsilon}(f(x_{i}, \hat{\theta})) + \frac{1}{n} \sum_{i=1}^{n} \alpha(x_{i})^{2}$$

$$= \sigma^{2} + \frac{1}{n} Tr(\mathbf{H}\mathbf{H}') \sigma^{2} + \frac{1}{n} \alpha(\mathbf{x})' \alpha(\mathbf{x})$$

$$= \sigma^{2} + \frac{1}{n} Tr(\mathbf{H}\mathbf{H}') \sigma^{2} + \frac{1}{n} \alpha(\mathbf{x})' \alpha(\mathbf{x}) - \frac{2}{n} Tr(\mathbf{H}) \sigma^{2}$$

$$= MSEP(\mathbf{x}) - \frac{2}{n} Tr(\mathbf{H}) \sigma^{2}$$

Bias of RSS/n for MSEP(x)Increases with the model dimension \Rightarrow One approach for estimating MSEP is correcting RSS/n by its bias

$$MSEP(\mathbf{x}) = E_{\varepsilon}(RSS/n) + \frac{2}{n}Tr(\mathbf{H})\sigma^{2}$$

$$M\hat{S}EP(\mathbf{x}) = \frac{1}{n}RSS + \frac{2}{n}Tr(\mathbf{H})\sigma^2$$
 = Mallows's Cp approach

This approach estimates MSEP(x) without estimating the bias α (which is very useful since $g(x, \gamma)$ is unknown)

... but an estimate of σ^2 is still needed

Usual recommendation:

Estimating σ^2 from an over-parameterized model ("little smoothing") \rightarrow having low bias

Let \mathcal{M}_0 be a model with low bias (in practice, often the maximal model)

$$E_{\varepsilon}(RSS_0/n) = \sigma^2 - \frac{1}{n}Tr(2\boldsymbol{H}_0 - \boldsymbol{H}_0\boldsymbol{H}_0')\sigma^2 + \frac{1}{n}\alpha_0'\alpha_0$$

$$\Rightarrow E_{\varepsilon}(RSS_0) = n \sigma^2 - Tr(2\boldsymbol{H}_0 - \boldsymbol{H}_0\boldsymbol{H}_0')\sigma^2 + \alpha_0'\alpha_0$$

Low bias $\Rightarrow \alpha_0' \alpha_0 \approx 0$

$$\Rightarrow E_{\epsilon}(RSS_0) \approx n \ \sigma^2 - Tr(2\mathbf{H}_0 - \mathbf{H}_0\mathbf{H}_0') \sigma^2$$

$$\Rightarrow \widehat{\sigma}_0^2 = RSS_0 / (n - Tr(2\mathbf{H}_0 - \mathbf{H}_0\mathbf{H}_0'))$$

→ Final estimate

$$M\hat{S}EP(\mathbf{x}) = \frac{1}{n} RSS + \frac{2}{n} Tr(\mathbf{H}) \hat{\sigma}_0^2$$

$$\overline{err}$$

Expected model optimism (ω ; Efron 1983, and Hastie et al. 2009 p. 229)

Penalty increasing with the model dimension

 $Tr(\mathbf{H}) = model \ df$ Effective number of parameters (Hastie et al. 2009 p. 231) Indication on the quantity of smoothing generated by \mathbf{H}

$$M\hat{S}EP(\mathbf{x}) = \frac{1}{n}RSS + \frac{2}{n}Tr(\mathbf{H})\widehat{\sigma}_0^2$$

If H is idempotent (HH = H projector)

$$M\hat{S}EP(\mathbf{x}) = \frac{1}{n} RSS + \frac{2}{n}r(\mathbf{H}) \widehat{\sigma}_0^2$$

For OLS models $H = X(X'X)^{-1}X'$, H symmetric (orthogonal projector) $\Rightarrow Tr(H) = r(H) = r(X) = p$

$$M\hat{S}EP(\mathbf{x}) = \frac{1}{n} RSS + \frac{2}{n} p \widehat{\sigma}_0^2$$

Original expression of the Mallows's Cp

• Mallows, C.L., 1973. Some Comments on Cp. Technometrics 15, 661–675

$$MSEP(\mathbf{x}) = \sigma^2 + MSE(\mathbf{x}) \implies MSE(\mathbf{x}) = MSEP(\mathbf{x}) - \sigma^2$$

 $\Rightarrow \frac{n}{\sigma^2} MSE(\mathbf{x}) = \frac{n}{\sigma^2} MSEP(\mathbf{x}) - n$ "Scaled risk" Mallows 1973

$$Cp = \frac{n}{\widehat{\sigma_0}^2} M \widehat{S} E(\mathbf{x}) \qquad Cp \text{ is an estimate of the scaled risk}$$

$$= \frac{n}{\widehat{\sigma_0}^2} M \widehat{S} E P(\mathbf{x}) - n$$

$$= \frac{1}{\widehat{\sigma_0}^2} RSS + 2Tr(\mathbf{H}) - n$$

$$= \frac{1}{\widehat{\sigma_0}^2} RSS + 2p - n \qquad \text{(OLS models)} \qquad \text{Eq.3 in Mallows 1973}$$

Examples of other parsimony criterions than Cp

$$AIC = n log(RSS/n) + 2 p$$
 Akaike criterion

Maximum likelihood estimation

Information theory

Akaike 1974, Burnham & Anderson 1998

$$FPE = \frac{n+p}{n-p}RSS$$
 Final prediction error
Akaike 1970, Shibata 1984

Cp is very similar (and asymptotically equivalent) to AIC and FPE

- Akaike, H., 1970. Statistical predictor identification. Ann Inst Stat Math 22, 203–217
- Akaike, H., 1974. A new look at statistical model identification. IEEE Transactions on Automatic Control AU-19, 716–722
- Burnham, K.P., Anderson, D.R., 1998. Model selection and inference. A practical information-theoretic approach. Springer, New York.
- Shibata, R., 1984. Approximate efficiency of a selection procedure for the number of regression variables. Biometrika 71, 43–49.

Ex:

For a linear model with p independent parameters

$$Cp(p) = \frac{1}{\widehat{\sigma}_0^2} RSS(p) + 2k - n$$

$$\frac{\mathit{FPE}(p)}{\widehat{\sigma}_p^2} = \frac{1}{\widehat{\sigma}_p^2} RSS(p) + 2p$$

Cp and FPE simply use two different estimates of σ^2

- Cp uses $\widehat{\sigma}_0^2$: estimate from the maximal (low biased) model
- FPE uses $\widehat{\sigma}_p^2$: estimate from the model under evaluation

Cp tends to overfit (non null asymptotic probability of overfitting)

$$M\widehat{S}EP(\mathbf{x}) = \frac{1}{n} RSS + \frac{2}{n} p \widehat{\sigma}_0^2$$

• Zhang, P., 1992. On the Distributional Properties of Model Selection Criteria. Journal of the American Statistical Association 87, 732–737

An approach is to increase the penalty \rightarrow generalized indicators

• Shibata, R., 1984. Approximate efficiency of a selection procedure for the number of regression variables. Biometrika 71, 43–49.

Ex:

$$M\hat{S}EP_g(\mathbf{x}) = \frac{1}{n} RSS + \frac{a}{n} p \widehat{\sigma}_0^2$$
 with $a > 2$

$$M\hat{S}EP_g(\mathbf{x}) = \frac{1}{n}RSS + \frac{\log(n)}{n}p \widehat{\sigma}_0^2$$
 BIC approach

Estimating Err by cross validation

K-Fold CV and LOO CV

Ex: *K* = 5 From Hastie *et al.* 2009

$$\hat{C}V_{\text{K-Fold}} = \frac{1}{n} \sum_{i=1}^{n} L(y|x_i, f(x_i, \hat{\theta}^{-\kappa(i)}))$$

$$K = n \implies \hat{C}V_{\text{LOO}} = \frac{1}{n} \sum_{i=1}^{n} L(y|x_i, f(x_i, \hat{\theta}^{-i}))$$

Quadratic loss

$$\hat{C}V_{\text{K-Fold}} = \frac{1}{n} \sum_{i=1}^{n} (y|x_i - f(x_i, \hat{\theta}^{-K(i)})^2$$
$$= M\hat{S}EP_{\text{CV}}$$

Both $\hat{C}V_{LOO}$ and $\hat{C}V_{K\text{-Fold}}$ estimate the expected prediction error Err (directly, since here the training set is varied, artificially)

$$Err = E_{\tau}(Err_{\tau})$$
 Marginal expectation over an infinity of τ (size n)
$$= E_{\tau}E_{x^*,y^*}(L(y^*|x^*,f(x,\hat{\theta})) \mid \tau)$$

but CV loses the training size constraint $n \rightarrow$ potential bias

- $\hat{C}V_{\text{LOO}} = \hat{E}rr_{\text{LOO}}$ Approximately unbiased but high variance (almost uses the full training sample to fit a new test point)
- $\hat{C}V_{\text{K-Fold}} = \hat{E}rr_{\text{K-Fold}}$ Lower variance but potentially biased Over-estimation of Err if the CV training is set too small

FIGURE 7.8. Hypothetical learning curve for a classifier on a given task: a plot of 1 — Err versus the size of the training set N. With a dataset of 200 observations, 5-fold cross-validation would use training sets of size 160, which would behave much like the full set. However, with a dataset of 50 observations fivefold cross-validation would use training sets of size 40, and this would result in a considerable overestimate of prediction error.

Usual recommendations: K = 5-10 (Hastie *et al.* 2009)

 $K \ge 20$ (Kohavi 1995)

... (lot of references with simulation studies)

No definitive rules

• Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection, International Joint Conference on Artificial Intelligence (IJCAI), pp. 1137–1143

Hastie et al 2009 Fig 7.14 p. 220

Simulation of 100 training set τ_i j = 1, ..., 100 with known true model $g(x, \gamma)$

On the example of Fig. 7.14

- Mean($\hat{E}rr_{\tau iCV}$) very different from $Err_{\tau i}$ (\rightarrow bias)
 - \Rightarrow CV does not estimate Err_{τ}

Surprisingly, even worst for $\hat{C}V_{LOO}$ than for $\hat{C}V_{K\text{-Fold}}$ (lower right panel).

- Mean $(\hat{E}rr_{\tau iCV}) \approx Err$ (see the red and black thick curves)
 - \Rightarrow $\hat{C}V_{\text{LOO}}$ and $\hat{C}V_{\text{K-Fold}}$ are approximately unbiased estimates of Err
- The variance of $\hat{E}rr_{ au_{i}CV}$ is globally higher for $\hat{C}V_{ ext{LOO}}$ than for $\hat{C}V_{ ext{K-Fold}}$

The "one standard-error" rule

Final selection of the most parsimonious model whose error is no more than one standard error above the error of the best model.

FIGURE 7.9. Prediction error (orange) and tenfold cross-validation curve (blue) estimated from a single training set, from the scenario in the bottom right panel of Figure 7.3.

Tibshirani et al. 2019 does not details the calculation of $\widehat{se}(CV)$

One approach is proposed in lecture notes of Tibshirani Jr 2013:

http://www.stat.cmu.edu/~ryantibs/datamining/lectures/18-val1.pdf http://www.stat.cmu.edu/~ryantibs/datamining/lectures/19-val2.pdf

$$\widehat{\operatorname{se}}(\widehat{C}V) = \sqrt{\widehat{V}ar\big(\{\widehat{C}V(1),\ldots,\widehat{C}V(K)\}\big)/K}$$

See also (p. 162): Filzmoser, P., Liebmann, B., Varmuza, K., 2009. Repeated double cross validation. Journal of Chemometrics 23, 160–171.

• Alternative idea: For a quadratic loss function, using the *Chi2* approximation (same principle as for the test set)

From Tibshirani Jr 2013 Smoothing spline

The one standard error rule selects a model with 9 degrees of freedom

The LOO "short-cut"

LOO-CV is very time consuming (or even impracticable) for large training set

But for some models, LOO-CV does not require simulation

In particular, for models linear in their parameters

$$\hat{y} \mid x = f(x, \hat{\theta}) = Hy$$
 where **H** does not depend on **y**

and constant preserving

H1=1
$$\sum_{j=1}^{n} h_{ij} = 1$$
 h_{ij} weight j for observation (row) i

Then

$$\hat{C}V_{\text{LOO}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y | x_i - f(x_i, \hat{\theta})}{1 - h_{ii}} \right)^2 = LOO \text{ short-cut}$$

For quadratic loss

$$E_{\varepsilon}(\hat{C}V_{\text{LOO}})$$
 $\approx MSEP(\mathbf{x}) + \frac{2}{n}\sum_{i=1}^{n}h_{ii}\alpha_{i}^{2}$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\sim Err \qquad \text{Bias term (> 0)}$$

We see again that $\hat{C}V_{\mathrm{LOO}}$ is a (low biased) estimate of Err

Generalized cross validation

Models linear in their parameters and constant preserving Quadratic loss

GCV can be considered as a simplification of CV-LOO

$$\hat{C}V_{\text{LOO}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y | x_i - f(x_i, \widehat{\theta})}{1 - h_{ii}} \right)^2$$

$$G\hat{C}V = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y|x_i - f(x_i, \hat{\theta})}{1 - Tr(\mathbf{H})/n} \right)^2 \qquad Tr(\mathbf{H})/n = \sum_{i=1}^{n} h_{ii}/n$$

 h_{ii} is replaced by the average of the values h_{ii} i = 1, ..., n

But $G\hat{C}V$ can also be used outside of the LOO short-cut

$$G\hat{C}V = \frac{1}{n} \sum_{i=1}^{n} (y|x_i - f(x_i, \hat{\theta}^{-i}))^2 \left(\frac{1 - hii}{1 - Tr(\mathbf{H})/n}\right)^2$$
 Eubank 1999
$$\hat{C}V_{\text{LOO}} \qquad \text{weight}$$

 $G\hat{C}V$ can be considered as a weighted version of $\hat{C}V_{\rm LOO}$ $G\hat{C}V$ often gives close results to $\hat{C}V_{\rm LOO}$

Relation between $G \hat{C} V$ and Cp

$$M\hat{S}EP(\mathbf{x}) = \frac{1}{n}RSS + \frac{2}{n}Tr(\mathbf{H})\hat{\sigma}_0^2$$
 Cp approach

$$G\hat{C}V = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y|x_i - f(x_i, \hat{\theta})}{1 - Tr(\mathbf{H})/n} \right)^2$$

$$\approx \frac{1}{n} RSS + \frac{2}{n} Tr(\mathbf{H}) RSS/n \qquad \text{Hastie & Tibshirani 1990}$$

Cp uses a low-biased estimate of σ^2 , while GCV uses RSS/n

Cp and GCV gives close results (Hastie & Tibshirani 1990)

Next

- Model selection bias (optimistic $Var(\hat{\theta})$) , model selection uncertainty, model averaging
 - Burnham, K.P., Anderson, D.R., 1998. Model selection and inference. A practical information-theoretic approach. Springer, New York
 - Chatfield, C., 1995. Model Uncertainty, Data Mining and Statistical Inference. Journal of the Royal Statistical Society: Series A (Statistics in Society) 158, 419–444
 - Zucchini, W., 2000. An Introduction to Model Selection. Journal of Mathematical Psychology 44, 41–61
 - Zhang, P., 1992. Inference after variable selection in linear regression models. Biometrika 79, 741–746
- Repeated double CV: model selection + uncertainty
 - Filzmoser, P., Liebmann, B., Varmuza, K., 2009. Repeated double cross validation. Journal of Chemometrics 23, 160–171
 - Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S., 2014. Cross-validation pitfalls when selecting and assessing regression and classification models. Journal of Cheminformatics 6, 10

- Degrees of freedom for PLSR $\hat{y} \mid x = H_y y$
 - Denham, M.C., 2000. Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction. Journal of Chemometrics 14, 351–361
 - Efron, B., 2004. The Estimation of Prediction Error. Journal of the American Statistical Association 99, 619–632
 - Krämer, N., Sugiyama, M., 2011. The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association 106, 697–705

KNN-LWPLSR

Automatization of model selection (k, ncomp, h) for each observation to predict