Документация к "Моделирование и визуализация динамических электромагнитных полей"

30 ноября 2020 г.

Оглавление

1	Мат	ематическая модель	2
	1.1	Моделирование движения	2
	1.2	Тела	3
	1.3	Поля	4
		1.3.1 Электрическое поле	4
		1.3.2 Магнитное поле	4
		1.3.3 Гравитационное поле	5

Глава 1

Математическая модель

В данной програме происходит симуляция движения материальных точек в различных полях с возможностью добваления связей между исследуемыми материальными точками.

Реализовано три вида полей: электрическое, магнитное и гравитационное. Каждое из полей влияет на все тела, присутсвующие в симуляции, а также этображаются диаграммы напряженностей этих полей.

Движение всех материальных точек ограничивается одной плоскостью, однако пространство счиитается трёхмерным, за счёт чего реализовано векторное умножение и магнитное поле.

1.1 Моделирование движения

Каждая материальная точка в симуляции имеет набр параметров:

масса (m), заряд (q), положение (\bar{x}) , скорость (\bar{v}) , ускорение (\bar{a}) .

Симуляция происходит с наперёд заданным шагов по времени dt. Изменение кинематических величин свобоных материальных точек задаётся следующими уравнениями:

$$\bar{x}_{i+1} = \bar{x}_i + \bar{v}_{i+1} \cdot dt$$
$$\bar{v}_{i+1} = \bar{v}_i + \bar{a}_{i+1} \cdot dt$$

Если же на точку действует сила \bar{F} , то

$$\bar{a}_{i+1} = \bar{a}_i + \bar{F} \cdot dt$$

где подстрочные индексы i обозначают значения параметров на предыдущем шаге, i+1 - на данном (рассчитываемые)

1.2 Тела

В симулции имеется возможность объединять материальные точки в тела. Допустим материальные точки с номерами $1, 2, \ldots, n$ объединены в тело. Тогда положение центра масс тела определяется слеующим образом:

$$\bar{x}_{\mathbf{u}} = \frac{\sum m_k \bar{x}_k}{\sum m_k}$$

У тела также имеются следующий параметры: линейная (\bar{v}_n) , угловая (ω) скорости, линейное (\bar{a}_n) и угловое (ϵ) ускорения, момент инерции.

Момент инерции вычисляется следующим образом:

$$I = \sum m_k r_k^2$$

где r_k - расстояние от k-ой материальной точки данного тела до центра масс.

1.3 Поля

1.3.1 Электрическое поле

Электрическое взаимодействие реализовано следующим образом: Каждая материальная точка, находящаяся на сцене, обладает зарядом и создаёт электрическое поле, напряженность которого задаётся формулой:

$$\bar{E} = k \frac{q}{|\bar{r}|^3} \cdot \bar{r}$$

где E - напряженность поля в данной точке, создаваемая данным заярдом; k - электричсекая постоянная; q - величина звряда; r - вектор с началом в точке с зарядом и концом в исследуемой точке пространства.

При это сила, действиующая на заряд q_1 со стороны поля равна

$$\bar{F} = \bar{E}q_1$$

где E - напряженность электрического поля в данной точке

1.3.2 Магнитное поле

Магнитное поле реализовано анологично: каждая материальная точка, участвующая в симуляции создаёт напряжённость магнитного поля по всей плоскости симуляции. Вектор наряжённости магнитного поля:

$$\bar{B} = \frac{\mu_0}{4\pi} \frac{q(\bar{v} \times \bar{r})}{|\bar{r}|^3}$$

При этом на движущийся со скоростья v_1 заряд q_1 со стороны поля действует сила:

$$\bar{F} = \bar{v_1} \times \bar{B}q_1$$

1.3.3 Гравитационное поле

$$\bar{g} = G \frac{m}{|\bar{r}|^3} \cdot \bar{r}$$