Fair Colorful k-Center Clustering

Xinrui Jia, Kshiteej Sheth, Ola Svensson

EPFL

A Technique for Obtaining True Approximations for k-Center with Covering Constraints

Georg Anegg, Haris Angelidakis, Adam Kurpisz, Rico Zenklusen

ETH zürich

IPCO XXI 2020-06-09

k-Center Problem:

k-Center Problem:

A finite metric space P and integer k, find $C \subseteq P$, |C| = k, minimize the maximum distance of $p \in P$ to C.

k-Center Problem:

A finite metric space P and integer k, find $C \subseteq P$, |C| = k, minimize the maximum distance of $p \in P$ to C.

▶ Version with outliers: only *m* of the points need to be covered

Colorful *k*-Center Problem:

Colorful k-Center Problem:

- ▶ Points are colored red, R, or blue, B
- ightharpoonup Coverage requirements r and b for each color

Colorful k-Center Problem:

- ▶ Points are colored red, R, or blue, B
- Coverage requirements r and b for each color
- ► Generalizes to more colors
- ▶ Better than 2-approx is NP-hard

Motivation

- 1) Fairness
 - ► Each type of element has some service guarantee

Motivation

- 1) Fairness
 - ► Each type of element has some service guarantee
- 2) Clustering
 - ► Generalizes *k*-center with outliers problem

Motivation

1) Fairness

► Each type of element has some service guarantee

2) Clustering

- ► Generalizes k-center with outliers problem
- ► A novel algorithmic consideration: involves k-subset sum problem

Past Work and Results

Problem introduced in ¹

- ightharpoonup 2-pseudo approximation opening (k+1) centers
- ightharpoonup Constant-factor for 2 colors in \mathbb{R}^2

S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: A Constant Approximation for Colorful k-Center. In: ESA, pp. 12:1-12:14 (2019).

Past Work and Results

Problem introduced in ¹

- ightharpoonup 2-pseudo approximation opening (k+1) centers
- ightharpoonup Constant-factor for 2 colors in \mathbb{R}^2

Our Results

- ▶ 3-approximation for γ number of colors in $|P|^{O(\gamma^2)}$
- Unbounded integrality gap for a linear number of rounds of the Lasserre/Sum-of-Squares hierarchy

¹S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: A Constant Approximation for Colorful k-Center. In: ESA, pp. 12:1–12:14 (2019).

Past Work and Results

Problem introduced in ¹

- ightharpoonup 2-pseudo approximation opening (k+1) centers
- ightharpoonup Constant-factor for 2 colors in \mathbb{R}^2

Our Results

- ▶ 3-approximation for γ number of colors in $|P|^{O(\gamma^2)}$
- Unbounded integrality gap for a linear number of rounds of the Lasserre/Sum-of-Squares hierarchy

Second Half

- 4-approximation in time $|P|^{O(\gamma)}$
- Assuming $P \neq NP$, inapproximable for unbounded γ
- Assuming ETH, inapproximable for $\gamma = \omega(\log |P|)$

¹S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: *A Constant Approximation for Colorful k-Center.* In: ESA, pp. 12:1–12:14 (2019).

Challenges

Standard linear programming relaxation has unbounded integrality gap after a linear number of rounds of the Lasserre/Sum-of-Squares hierarchy 2 .

$$\sum_{i=1}^{n} 2y_i = k, \quad k \in \mathbb{Z} \text{ odd}$$
 $y_i \in \{0,1\}$

²Grigoriev, D.: Complexity of Positivstellensatz Proofs for the Knapsack. Comput. Complex. 10(2), 139–154 (2001).

Challenges

Standard linear programming relaxation has unbounded integrality gap after a linear number of rounds of the Lasserre/Sum-of-Squares hierarchy 2 .

$$\sum_{i=1}^{n} 2y_i = k, \quad k \in \mathbb{Z} \text{ odd}$$
 Flow 1 Flow 2

Adding flow-based inequalities to solve a subset-sum problem also does not work.

²Grigoriev, D.: Complexity of Positivstellensatz Proofs for the Knapsack. Comput. Complex. 10(2), 139–154 (2001).

S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: A Constant Approximation for Colorful k-Center. In: ESA, pp. 12:1-12:14 (2019).

(k+1)-pseudo approx. algorithm¹:

Use feasible point to natural LP relaxation to get clustering

S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: A Constant Approximation for Colorful k-Center. In: ESA, pp. 12:1–12:14 (2019).

- Use feasible point to natural LP relaxation to get clustering
- Extreme point to simplified LP has at most 2 strictly fractional variables

¹S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: A Constant Approximation for Colorful k-Center. In: ESA, pp. 12:1–12:14 (2019).

- Use feasible point to natural LP relaxation to get clustering
- Extreme point to simplified LP has at most 2 strictly fractional variables
- ▶ Open both to get k+1 centers

¹S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: *A Constant Approximation for Colorful k-Center.* In: ESA, pp. 12:1–12:14 (2019).

- Use feasible point to natural LP relaxation to get clustering
- Extreme point to simplified LP has at most 2 strictly fractional variables
- ▶ Open both to get k+1 centers
- Assume OPT radius is 1

¹S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: *A Constant Approximation for Colorful k-Center.* In: ESA, pp. 12:1–12:14 (2019).

(k+1)-pseudo approx. algorithm¹:

- Use feasible point to natural LP relaxation to get clustering
- Extreme point to simplified LP has at most 2 strictly fractional variables
- ▶ Open both to get k+1 centers
- Assume OPT radius is 1

Idea: Expand balls to cover enough red points, to close fractional center with fewer blue points.

¹S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan.: *A Constant Approximation for Colorful k-Center.* In: ESA, pp. 12:1–12:14 (2019).

Intuition:

▶ OPT solution not *well-separated*: easy

Intuition:

▶ OPT solution not *well-separated*: easy

▶ OPT solution well-separated: subset-sum problem

Well-Separated Instances

Phase I: Guess points in an OPT solution, that maximizes the number of red points in a *flower* structure.

Well-Separated Instances

Phase I: Guess points in an OPT solution, that maximizes the number of red points in a *flower* structure.

Key Point:

▶ Separatedness ensures that no ball of OPT intersects expanded region

Well-Separated Instances

Phase I: Guess points in an OPT solution, that maximizes the number of red points in a *flower* structure.

Key Point:

► Separatedness ensures that no ball of OPT intersects expanded region

Phase II:

- ▶ Remove subsets of remaining points that are *dense*
- ▶ Run pseudo-approx. on remaining *sparse* points

Required: Removed sets shouldn't "interact" with balls in OPT

Required: Removed sets shouldn't "interact" with balls in OPT

Dynamic program on sets D_j :

ightharpoonup Guess number of red and blue points covered by D_j 's, and verify with dynamic program

Required: Removed sets shouldn't "interact" with balls in OPT

Dynamic program on sets D_j :

- ightharpoonup Guess number of red and blue points covered by D_j 's, and verify with dynamic program
- Can run pseudo-approx on remaining points, and close center with fewer blue points

Required: Removed sets shouldn't "interact" with balls in OPT

Dynamic program on sets D_j :

- ightharpoonup Guess number of red and blue points covered by D_j 's, and verify with dynamic program
- ► Can run pseudo-approx on remaining points, and close center with fewer blue points

⇒ covered all required points to get poly-time 2-approximation for well-separated instances!

Result:

ightharpoonup Easily generalizes to γ color classes

Result:

- ightharpoonup Easily generalizes to γ color classes
- ▶ 3-approximation with running time having $|P|^{O(\gamma^2)}$ term
- ▶ 2-approximation for well-separated instances

Result:

- ightharpoonup Easily generalizes to γ color classes
- ▶ 3-approximation with running time having $|P|^{O(\gamma^2)}$ term
- ▶ 2-approximation for well-separated instances

Open Questions:

▶ 2-approximation for all instances?

Result:

- ightharpoonup Easily generalizes to γ color classes
- ightharpoonup 3-approximation with running time having $|P|^{O(\gamma^2)}$ term
- ▶ 2-approximation for well-separated instances

Open Questions:

- ▶ 2-approximation for all instances?
- Lasserre hierarchy with flow-based inequalities?

Result:

- ightharpoonup Easily generalizes to γ color classes
- ▶ 3-approximation with running time having $|P|^{O(\gamma^2)}$ term
- ▶ 2-approximation for well-separated instances

Open Questions:

- ▶ 2-approximation for all instances?
- ► Lasserre hierarchy with flow-based inequalities?

And now...