Target Network & Double DQN

Shusen Wang

Bootstrapping

Bootstrapping: To lift oneself up by his bootstraps.

TD Learning for DQN

- In RL, bootstrapping means "using an estimated value in the update step for the same kind of estimated value".
- Use a transition, (s_t, a_t, r_t, s_{t+1}) , to update **w**.
 - TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$
 - TD error: $\delta_t = Q(s_t, a_t; \mathbf{w}) y_t$.
 - SGD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$.

TD Learning for DQN

- In RL, bootstrapping means "using an estimated value in the update step for the same kind of estimated value".
- Use a transition, (s_t, a_t, r_t, s_{t+1}) , to update w.
 - TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$

TD target y_t is partly an estimate made by the DQN Q.

• SGD:
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

TD Learning for DQN

- In RL, bootstrapping means "using an estimated value in the update step for the same kind of estimated value".
- Use a transition, (s_t, a_t, r_t, s_{t+1}) , to update w.
 - TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$

TD target y_t is partly an estimate made by the DQN Q.

• SGD:
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot (Q(s_t, a_t; \mathbf{w}) - y_t) \cdot \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

We in use y_t , which is partly based on Q, to update the DQN itself, $Q(s_t, a_t; \mathbf{w})$.

Problem of Overestimation

Problem of Overestimation

- TD learning makes DQN overestimate action-values. (Why?)
- Reason 1: The maximization.
 - TD target: $y_t = r_t + \gamma \left(\max_a Q(s_{t+1}, a; \mathbf{w}) \right)$.
 - TD target is bigger than the real action-value.
- Reason 2: Bootstrapping propagates the maximization.

Reason 1: Maximization

- Let x_1, x_2, \dots, x_n be observed real numbers.
- Add zero-mean random noise to x_1, \dots, x_n and obtain Q_1, \dots, Q_n .
- The zero-mean noise does not affect the mean:

$$\mathbb{E}[\operatorname{mean}_{i}(Q_{i})] = \operatorname{mean}_{i}(x_{i}).$$

• The zero-mean noise increases the maximum:

$$\mathbb{E}[\max_i(Q_i)] \geq \max_i(x_i).$$

• The zero-mean noise decreases the minimum:

$$\mathbb{E}[\min_i(Q_i)] \leq \min_i(x_i).$$

Reason 1: Maximization

- Let $x(a_1), \dots, x(a_n)$ be the true action-values.
- $Q(s, a_1; \mathbf{w}), \dots, Q(s, a_n; \mathbf{w})$ be noisy estimates made by DQN.
- Suppose the estimate is unbiased:

$$\operatorname{mean}_{a}(\mathbf{x}(a)) = \operatorname{mean}_{a}(Q(s, a; \mathbf{w})).$$

• $q = \max_{a} Q(s, a; \mathbf{w})$, is typically an overestimate:

$$q \geq \max_{a} (x(a)).$$

Reason 1: Maximization

- We conclude that $q_{t+1} = \max_{a} Q(s_{t+1}, a; \mathbf{w})$ is an overestimate of the true action-value at time t+1.
- The TD target, $y_t = r_t + \gamma \cdot q_{t+1}$, is thereby an overestimate.
- TD learning pushes $Q(s_t, a_t; \mathbf{w})$ towards the TD target which overestimates the true action-value.

Reason 2: Bootstrapping

- TD learning is bootstrapping.
 - TD target in part uses $q_{t+1} = \max_{a} Q(s_{t+1}, a; \mathbf{w})$.
 - Use the TD target for updating $Q(s_t, a_t; \mathbf{w})$.
- Suppose DQN overestimates the action-value.
- Then $Q(s_{t+1}, a; \mathbf{w})$ is an overestimation.

Reason 2: Bootstrapping

- TD learning is bootstrapping.
 - TD target in part uses $q_{t+1} = \max_{a} Q(s_{t+1}, a; \mathbf{w})$.
 - Use the TD target for updating $Q(s_t, a_t; \mathbf{w})$.
- Suppose DQN overestimates the action-value.
- Then $Q(s_{t+1}, a; \mathbf{w})$ is an overestimation.
- The maximization further pushes q_{t+1} up.
- When q_{t+1} is used for updating $Q(s_t, a_t; \mathbf{w})$, overestimation is propagated to DQN.

Why does overestimation happen?

Maximization leads to overestimation

DQN overestimates action-value TD target is a worse overestimate

Bootstrapping propagates the overestimation back to DQN

The agent is controlled by the DQN: $a_t = \underset{a}{\operatorname{argmax}} Q(s_t, a; \mathbf{w})$.

Uniform overestimation is not a problem.

The agent is controlled by the DQN: $a_t = \underset{a}{\operatorname{argmax}} Q(s_t, a; \mathbf{w})$.

Uniform overestimation is not a problem.

- $Q^*(s, a_1) = 200$, $Q^*(s, a_2) = 100$, and $Q^*(s, a_3) = 230$.
- Action a_3 will be selected.
- Suppose $Q(s, \mathbf{a_i}; \mathbf{w}) = Q^*(s, \mathbf{a_i}) + 100$, for all $\mathbf{a_i}$.
- Then a_3 still has the highest value and will be selected.

The agent is controlled by the DQN: $a_t = \underset{a}{\operatorname{argmax}} Q(s_t, a; \mathbf{w})$.

Uniform overestimation is not a problem.

Non-uniform overestimation is problematic.

- $Q^*(s, a_1) = 200$, $Q^*(s, a_2) = 100$, and $Q^*(s, a_3) = 230$.
- $Q(s, \mathbf{a_1}; \mathbf{w}) = 280$, $Q(s, \mathbf{a_2}; \mathbf{w}) = 300$, and $Q(s, \mathbf{a_3}; \mathbf{w}) = 240$,.
- Then a_2 (which is not good) will be selected.

Unfortunately, the overestimation is non-uniform.

- Use a transition, (s_t, a_t, r_t, s_{t+1}) , to update **w**.
- The TD target, y_t , overestimates $Q^*(s_t, a_t)$.
- TD algorithm pushes $Q(s_t, a_t; \mathbf{w})$ towards y_t .
- Thus, $Q(s_t, a_t; \mathbf{w})$ overestimates $Q^*(s_t, a_t)$.

Unfortunately, the overestimation is non-uniform.

- Use a transition, (s_t, a_t, r_t, s_{t+1}) , to update **w**.
- The TD target, y_t , overestimates $Q^*(s_t, a_t)$.
- TD algorithm pushes $Q(s_t, a_t; \mathbf{w})$ towards y_t .
- Thus, $Q(s_t, a_t; \mathbf{w})$ overestimates $Q^*(s_t, a_t)$.

The more frequently (s, a) appears in the replay buffer, the more $Q(s, a; \mathbf{w})$ overestimates $Q^*(s, a)$.

Solutions

- **Problem:** DQN trained by TD overestimates action-values.
- **Solution 1:** Use a target network [1] to compute TD targets. (Address the problem caused by bootstrapping.)
- **Solution 2:** Use double DQN [2] to alleviate the overestimation caused by maximization.

Reference:

- 1. Mnih et al. Human-level control through deep reinforcement learning. *Nature*, 2015.
- 2. Van Hasselt, Guez, & Silver. Deep reinforcement learning with double Q-learning. In AAAI, 2016.

Using Target Network

Reference:

1. Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015.

Target Network

- Target network: $Q(s, a; \mathbf{w}^-)$
 - The same network structure as the DQN, $Q(s, a; \mathbf{w})$.
 - Different parameters: $\mathbf{w}^- \neq \mathbf{w}$.
- Use $Q(s, a; \mathbf{w})$ to control the agent and collect experience:

$$\{(s_t, a_t, r_t, s_{t+1})\}_{t=1}^T$$
.

• Use $Q(s, a; \mathbf{w}^-)$ to compute TD target:

$$y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}^-).$$

TD Learning with Target Network

- Use a transition, (s_t, a_t, r_t, s_{t+1}) , to update **w**.
 - TD target: $y_t = r_t + \gamma \left(\max_a Q(s_{t+1}, a; \mathbf{w}^-) \right)$
 - TD error: $\delta_t = Q(s_t, a_t; \mathbf{w}) y_t$.
 - SGD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$.

Update Target Network

- Periodically update w⁻:
- Option 1: $\mathbf{w}^- \leftarrow \mathbf{w}$.
- Option 2: $\mathbf{w}^- \leftarrow \tau \cdot \mathbf{w} + (1 \tau) \cdot \mathbf{w}^-$

Comparisons

TD learning with naïve update:

TD Target:
$$y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$$

TD learning with target network:

TD Target:
$$y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}^-).$$

 Though better than the naïve update, TD learning with target network nevertheless overestimate action-values.

Double DQN

Reference:

1. Van Hasselt, Guez, & Silver. Deep reinforcement learning with double Q-learning. In AAAI, 2016.

Naïve Update

TD Target:
$$y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$$

Reference:

1. Mnih et al. Playing Atari with deep reinforcement learning. In NIPS Workshop, 2013.

Naïve Update

Selection using DQN:

$$\mathbf{a^{\star}} = \underset{\mathbf{a}}{\operatorname{argmax}} Q(s_{t+1}, \underset{\mathbf{a}}{\mathbf{a}}; \mathbf{w}).$$

Evaluation using DQN:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, \boldsymbol{a}^*; \mathbf{w}).$$

• Serious overestimation.

Reference:

1. Mnih et al. Playing Atari with deep reinforcement learning. In NIPS Workshop, 2013.

Using Target Network

Selection using target network:

$$\mathbf{a}^{\star} = \underset{\mathbf{a}}{\operatorname{argmax}} Q(s_{t+1}, \mathbf{a}; \mathbf{w}^{-}).$$

Evaluation using target network:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, \boldsymbol{a}^*; \mathbf{w}^-).$$

Works better, but overestimation is still serious.

Reference:

1. Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015.

Double DQN

Selection using DQN:

$$a^* = \underset{a}{\operatorname{argmax}} Q(s_{t+1}, \underset{a}{a}; \mathbf{w}).$$

Evaluation using target network:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, \boldsymbol{a}^*; \mathbf{w}^-).$$

Works even better, but overestimation still happens.

Reference:

1. Van Hasselt, Guez, & Silver. Deep reinforcement learning with double Q-learning. In AAAI, 2016.

Why does double DQN work better?

- Double DQN decouples the selection from the evaluation.
- Selection using DQN: $a^* = \underset{a}{\operatorname{argmax}} Q(s_{t+1}, a; \mathbf{w}).$
- Evaluation using target network: $y_t = r_t + \gamma \cdot Q(s_{t+1}, a^*; \mathbf{w}^-)$.

Why does double DQN work better?

- Double DQN decouples the selection from the evaluation.
- Selection using DQN: $a^* = \underset{a}{\operatorname{argmax}} Q(s_{t+1}, a; \mathbf{w}).$
- Evaluation using target network: $y_t = r_t + \gamma \cdot Q(s_{t+1}, a^*; \mathbf{w}^-)$.
- Double DQN alleviates overestimation:

$$Q(s_{t+1}, \boldsymbol{a}^*; \mathbf{w}^-) \leq \max_{\boldsymbol{a}} Q(s_{t+1}, \boldsymbol{a}; \mathbf{w}^-).$$
Estimate by
$$\text{Estimate by}$$

$$\text{Double DQN}$$
Estimate by
$$\text{target network}$$

Summary

Problem of Overestimation

- Because of the maximization, the TD target overestimates the true action-value.
- By creating a "positive feedback loop", bootstrapping further exacerbates the overestimate.
- Target network can partly avoid bootstrapping. (Not completely, because w⁻ depends on w.)
- Double DQN alleviate the overestimate caused by the maximization.

Computing TD Targets

	Selection	Evaluation
Naïve Update	DQN	DQN
Heim - Toward		
Using Target Network	Target Network	Target Network
	Target Network	Target Network

Thank you!