Lucerne University of Applied Sciences

Time Series Analysis
Final Exam

Last name:	Answer K	Key	
Given name	•		

 ${\rm mscbf}_{\text{-}} \ {\rm rm}01_{\text{-}} \ {\rm tsa}, \ {\rm Fall} \ {\rm term}$

Time Series Analysis Fall term

Final Exam

Last name: Answer Key

 $mscbf_- rm01_- tsa$

 ${\bf Question} \,\, {\bf 0}$

1. Hi

0 pts

0	1	(07	:)
Questi	ion 1	(ZI)	pomts

1. I have simulated 1000 observations $\{y_t\}$ from an ARMA(p, q) model. Figure 2 on Page 8 shows a plot of the correlogram. Based on it, what do you think p and q are, and why?

6 pts

Solution: The PACF becomes insignificant after 2 lags, whereas the ACF decays exponentially. This is indicative of an AR(2) process.

2. The 11th sample autocorrelation (not shown in the graph) is $\hat{\tau}_{11} = -0.045$. Test if $\hat{\tau}_{11}$ is significantly different from zero.

6 pts

Solution:

- The hypotheses are $H_0: \tau_{11} = 0$ vs. $H_a: \tau_{11} \neq 0$.
- The test statistic is $\hat{\tau}_{11}$.
- Its distribution is N(0, 1/T) under H_0 .
- The critical value is thus $1.96/\sqrt{1000} = 0.062$.
- The observed test statistic is $\hat{\tau}_{11} = -0.045$.
- Since |-0.045| < 0.062, we do not reject H_0 .
- Conclusion: τ_{11} is not significantly different from zero.
- 3. The output in Figure 3 on Page 8 shows the results of regressing Δy_t (y) on y_{t-1} (x1) and Δy_{t-1} (x2). Use it to test if the data are integrated.

6 pts

Solution:

- The hypotheses are $H_0: y_t$ is integrated of order 1 vs. $H_a: y_t$ is stationary.
- The test statistic is the estimated coefficient on the lagged level, y_{t-1} (x1).
- Its follows a Dickey-Fuller distribution under H_0 .
- The critical value is -2.86, because a constant has been included.
- The observed test statistic is -6.52.
- Since -6.52 < -2.86, we reject H_0 .
- Conclusion: the data are stationary.
- **4.** I have estimated a particular ARMA model. The estimation output is shown in Figure 4 on Page 9. Write down the estimated model in equation form.

 $3\,\mathrm{pts}$

Solution: The estimated AR(2) model is

$$y_t = 0.2158 \cdot (1 - 0.5236 - 0.3595) + 0.5236 \cdot y_{t-1} + 0.3595 \cdot y_{t-2}.$$

Note archmodel's peculiar interpretation of the intercept, const: in our notation, it corresponds to $\hat{\alpha}/(1-\hat{\phi}_1-\hat{\phi}_2)$, so that $\hat{\alpha}=\text{const}\cdot(1-\hat{\phi}_1-\hat{\phi}_2)$. See the exercises.

5. Use the estimated model from the previous question to forecast the value of the series at t = 1001. You may need some of the values below.

6 pts

Solution: The forecast is

$$\begin{split} \widehat{y}_{1001} &= \mathsf{const} \cdot (1 - \widehat{\phi}_1 - \widehat{\phi}_2) + \widehat{\phi}_1 \cdot y_{1000} + \widehat{\phi}_2 \cdot y_{999} \\ &= 0.2158 \cdot (1 - 0.5236 - 0.3595) + 0.5236 \cdot (-0.75) + 0.3595 \cdot (-0.77) \\ &= -0.644. \end{split}$$

Question 2 (27 points) In this exercise, we analyze the daily returns on Tesla stock between 6/29/2010 and 12/14/2022. The returns are shown in Figure 1.

Figure 1: Returns on Tesla stock

The data clearly display volatility clustering, which we want to model using a GARCH model. The output is shown in Figure 5 on Page 9.

1. Write the model down as an equation (only the volatility equation). Solution:

3 pts

$$\sigma_{t+1}^2 = 0.14 + 0.0323 \cdot u_t^2 + 0.9564 \cdot \sigma_t^2.$$

2. Does your model incorporate a leverage effect? Justify your answer.

6 pts

Solution: No. Since u_t (the demeaned return) only enters as its square, the news impact curve is symmetric: volatility reacts equally strongly to a positive and negative shock of the same magnitude.

3. Explain what the standardized residuals from a GARCH model are, ideally with an equation. Also, explain what their properties should be if the volatility model is correct.

6 pts

Solution: The standardized residuals are defined as $\hat{z}_t = \frac{r_t - \hat{\mu}_t}{\hat{\sigma}_t}$. If the model for σ_t is correct, then they should no longer display volatility clustering. This means that there should be no autocorrelation in their squares.

4. Regressing the squared standardized residuals on an intercept and 5 of their own lags results in an R^2 of 0.00364. Use this to test if the GARCH model has successfully removed the volatility clustering.

6 pts

Solution: This is an ARCH-LM test.

- The hypotheses are H_0 : no remaining volatility clustering vs. H_a : there is remaining volatility clustering.
- The test statistic is $T \cdot R^2$ in the auxiliary regression.
- Its distribution is $\chi^2(5)$ under H_0 .
- The critical value is thus 11.07.
- The observed test statistic is $3138 \cdot 0.00364 = 11.42$.

- Since 11.42 > 11.07, we reject H_0 (although barely).
- Conclusion: Some volatility clustering remains.
- **5.** Use the model to predict the variance σ_{t+1}^2 for 12/15/2022, using the following values on 12/14/2022: $\hat{u}_t = -2.72$ and $\sigma_t^2 = 15.198$. Solution:

 $6\,\mathrm{pts}$

$$\widehat{\sigma}_{t+1}^2 = 0.14 + 0.0323 \cdot u_t^2 + 0.9564 \cdot \sigma_t^2$$

$$= 0.14 + 0.0323 \cdot (-2.72)^2 + 0.9564 \cdot 15.198$$

$$= 14.91.$$

Question 3 (18 points) We now turn our attention to Value at Risk forecasting.

1. Use the model from the previous question to predict the 1% Value at Risk for 12/15/2022. Note: If you weren't successful in predicting the variance in the previous question, you can use the value $\hat{\sigma}_{t+1}^2 = 15.00$.

Solution: The VaR forecast is

$$VaR_{t+1}^{0.01} = -\mu_{t+1} - \sigma_{t+1} \cdot \Phi_{0.01}^{-1}$$

$$= -\mu_{t+1} - \sigma_{t+1} \cdot \Phi_{0.01}^{-1}$$

$$= -0.1118 - \sqrt{14.91} \cdot (-2.326)$$

$$= 8.87.$$

2. In a backtesting exercise, we have created 1% VaR forecasts for the entire sample. From this and the returns, we have created the hit series $\{I_t\}$.

(a) (6 pts) Explain how the hit series is defined, and how many times you expect it to equal 1 if the VaR model is correct.

Solution: The hit series equals 1 whenever a VaR violation occurs, i.e.,

$$I_{t+1} = \begin{cases} 1, & \text{if } R_{t+1} < -VaR_{t+1}^p, \\ 0, & \text{if } R_{t+1} > -VaR_{t+1}^p. \end{cases}$$

If the model is correct, we would expect a violation 1% of the time. Since T=3138, we would therefore expect around 31 VaR violations.

(b) (6 pts) Figure 6 on page 10 shows the result of regressing $(I_t-0.01)$ on an intercept and I_{t-1} . Use it to test the independence of the VaR violations.

Solution:

- The hypotheses are H_0 : the VaR violations are independent vs. H_a : they are not.
- The test statistic is the t statistic for the lagged hit series.
- Its distribution is (asymptotically) standard normal under H_0 .
- The critical value is thus 1.96.
- The observed test statistic is 1.187.
- Since |1.187| < 1.96, we do not reject H_0 .
- Conclusion: there is no evidence of dependence between the VaR violations.

Note: in this case, since I didn't delete the p-value, you could alternatively have answered as follows.

- The hypotheses are H_0 : the VaR violations are independent vs. H_a : they are not.
- \bullet The test statistic is the t statistic for the lagged hit series.
- The observed p-value is 0.235 > 0.05, so we do not reject H_0 .
- Conclusion: there is no evidence of dependence between the VaR violations.

 $18\,\mathrm{pts}$

Questi	on 4 (18 points) Answer t	he questions below.
1.		
(a)	(3 pts) Spurious regression	as can occur between cointegrated variables.
	☐ True	✓ False
(b)	(3 pts) In a stationary time of the series.	e series, shocks U_t have a transitory effect on the future
	✓ True	☐ False
(c)	(3 pts) An ARCH (q) mod squared returns.	del for the returns corresponds to an $AR(q)$ for the
	✓ True	☐ False
(d)	(3 pts) The order q of an N	MA(q) model can be determined from the correlogram.
	✓ True	☐ False
(e)	(3 pts) In the presence of the right of the origin that	the leverage effect, the news impact curve is steeper to n to the left.
	☐ True	✓ False
(f)	(3 pts) A VaR model is co	rrectly specified if no VaR violations occur.
	☐ True	✓ False

End of exam.

Figure 2: Correlogram of simulated data.

OLS Regression Results

========				=====	========		
Dep. Variabl	Le:		У	R-sq	uared:		0.208
Model:			OLS	Adj.	R-squared:		0.207
Method:		Least Squ	ares	F-st	atistic:		130.9
Date:	1	Mon, 16 Oct	2023	Prob	(F-statistic)	:	3.47e-51
Time:		15:0	4:00	Log-	Likelihood:		-2086.9
No. Observat	tions:		998	AIC:			4180.
Df Residuals	3:		995	BIC:			4195.
Df Model:			2				
Covariance 5	Гуре:	nonro	bust				
========				=====			
	coef				P> t 	[0.025	0.975]
x1	-0.1161				0.000		
x2	-0.3594	0.030	-12	.164	0.000	-0.417	-0.301
const	0.0309	0.062	0	.497	0.619	-0.091	0.153
Omnibus:	=======	 C	.529	==== Durb	======== in-Watson:	=======	2.023
Prob(Omnibus	s):	C	.768	Jarq	ue-Bera (JB):		0.404
Skew:		C	.003	Prob	(JB):		0.817
Kurtosis:		3	3.098	Cond	. No.		3.76
========		========		=====		=======	

Figure 3: Output for ADF test.

SARIMAX Results

Dep. Variable:	:		y No.	Observations:	;	1000		
Model:		ARIMA(2, 0,	0) Log	Likelihood		-2091.958		
Date:	Mo	n, 16 Oct 20)23 AIC			4191.917		
Time:		15:10:	43 BIC			4211.548		
Sample:			O HQIC	;		4199.378		
		- 10	000					
Covariance Typ	pe:	C	pg					
=========	coef	std err	z	P> z	[0.025	0.975]		
const	0.2158	0.528	0.409	0.683	-0.818	1.250		
ar.L1	0.5236	0.032	16.396	0.000	0.461	0.586		
ar.L2	0.3595	0.032	11.326	0.000	0.297	0.422		
sigma2	3.8369	0.169	22.770	0.000	3.507	4.167		
Ljung-Box (L1)	=======) (Q):	========	0.13	Jarque-Bera	(JB):	========	0.36	
Prob(Q):			0.71	Prob(JB):			0.83	
Heteroskedasti	icity (H):		0.86	Skew:			0.00	
Prob(H) (two-s	•		0.18	Kurtosis:			3.09	

Figure 4: Estimated ARMA model.

Constant Mean - GARCH Model Results

======	========	======	-=======	=======================================	
: TSLA			squared:	0.000	
	Constant Me	ean Adj	j. R-squared	0.000	
	GAI	RCH Log	g-Likelihood	-8267.70	
	Norn	nal AIO	: :	16543.4	
Max	imum Likelih	ood BIO	: :	16567.6	
		No	Observatio	ns: 3138	
M	on, Oct 16 20	023 Df	Residuals:	3137	
	15:33	:03 Df	Model:	1	
	Me	ean Model	L		
	========				
	5.774e-02	1.936	5.281e-02		
	Volat	tility Mo	odel		
coef	std err	 1	: ; P> t	95.0% Conf. Int.	
0.1400	0.117	1.196	0.232	[-8.938e-02, 0.369]	
0.0323	1.341e-02	2.409	1.599e-02	[6.024e-03,5.859e-02]	
	coef 0.1118 coef 0.1400 0.0323 0.9564	Constant Me GAN Norr Maximum Likeliho Mon, Oct 16 20 15:33 Me coef std err O.1118 5.774e-02 Volate coef std err 0.1400 0.117 0.0323 1.341e-02 0.9564 2.205e-02	Constant Mean Add GARCH Log Normal AIC Normal AIC No. Maximum Likelihood BIC No. Mon, Oct 16 2023 Df 15:33:03 Df Mean Model Coef std err to Volatility Model Coef Std err to C	Constant Mean Adj. R-squared GARCH Log-Likelihood Normal AIC:	

Figure 5: Estimated GARCH model.

OLS Regression Results

=========		=========		=====	:=======		========
Dep. Variable:	np.	<pre>subtract(I, 0</pre>	.01)	R-sc	quared:		0.000
Model:	1	OLS			R-squared:	0.000	
Method:		Least Squares			atistic:	1.409	
Date:		_		Prob	(F-statistic	0.235	
Time:		18:5			-Likelihood:		1976.8
No. Observation	ns:	3137		AIC			-3950.
Df Residuals:			3135	BIC			-3938.
Df Model:			1				
Covariance Type: nonrobust							
===========	======	=========		=====			=======
	coef	std err		t	P> t	[0.025	0.975]
ь0	0.0065	0.002	 2.	 817	0.005	0.002	0.011
<pre>I.shift(1)</pre>	0.0212	0.018	1.	187	0.235	-0.014	0.056
Omnibus:	:======	4069.6	= === 91	===== Durbir	========= n-Watson:		2.001
Prob(Omnibus):		0.0	00	Jarque	e-Bera (JB):		412759.104
Skew:		7.4	92	Prob(JB):		0.00
Kurtosis:		57.1	60	Cond.	No.		7.76
=========		=========		=====	.=======		========

Figure 6: Test regression for the Value at Risk backtest.