Final Exam

Adv. Analytics and Metaheuristics

Daniel Carpenter

March 2022

Contents

1	- Question 1 (Version 1)	
	1.1 Mathematical Formulation	2
	1.2 Code	4
2	- Question 2 (Version 6)	5
3	- Question 3 (Version 2)	6
4	- Question 4 (Version 3)	7
5	- Question 5 (Version 2)	8

1 - Question 1 (Version 1)

1.1 Mathematical Formulation

1.1.1 Sets

NewBuildTypes: Set of new build types $b \in (Homes, Duplex, MiniPark)$

1.1.2 Parameters

Parameter	Description	Default Value
budget	Federal grant allocation to revitalize neighborhoods	\$15MM total budget
maxBuildingDemod	Max amount of buildings that can be demolished	300 total buildings
demoCost	Cost of demolishing a building	\$4,000 per building
freed Up Space	Acreage generated from demolishing a building	0.25 per building
$newBuildSpace_b \\$	Amount of acreage that a new building $(b \in NewBuildTypes)$ consumes	Homes: 0.2, Duplex: 0.4, MiniPark: 1.0
$newBuildTax_b$	Amount of tax dollars generated from a new building $(b \in NewBuildTypes)$	Homes: 1,500, Duplex: 2,750, MiniPark: 500
$newBuildCost_b$	Amount of dollars used to create a new building $(b \in NewBuildTypes)$	Homes: 150,000, Duplex: 190,000, MiniPark: 20,000
$newBuildPercShare_b$	Minimum required percentage share of new buildings $(b \in NewBuildTypes)$ created	Homes: 20%, Duplex: 10%, MiniPark: 5%

1.1.3 Decision Variables

Variable	Description
numOldBuildsDemod	Number of old buildings to demolish
$numNewBuilds_b$	Number of new buildings $(b \in NewBuildTypes)$ to produce

1.1.4 Objective

Maximize the tax revenue from the projects

$$maximize \ taxRevenue : \sum_{b \in NewBuildTypes} (numNewBuilds_b \times newBuildTax_b)$$

1.1.5 Constraints

C1 Spend less than or equal to the federal budget meetTheBudget:

$$\sum_{b \in NewBuildTypes} \left[(numNewBuilds_b \times newBuildCost_b) + (numOldBuildsDemod \times demoCost) \right] \leq budget$$

C2 Can only produce new builds using the demolished buildings land

$$useAvailLand: \sum_{b \in NewBuildTypes} (numNewBuilds_b \times newBuildSpace_b)$$

$$< numOldBuildsDemod \times freedUpSpace$$

C3 Can only clear a certain amount of old buildings

$$maxBuildingsCleared: numOldBuildsDemod \leq maxBuildingDemod$$

C4 For each new build type $(b \in NewBuildTypes)$, the percentage share of the new build type must meet the minimum required

$$share: numNewBuilds_b \geq newBuildPercShare_b \times \sum_{b \in NewBuildTypes} (numNewBuilds_b),$$

$$\forall b \in Businesses$$

C5 Non-negativity constraints

$$numOldBuildsDemod \ge 0$$

$$numNewBuilds_b \ge 0, \ \forall \ b \in NewBuildTypes$$

1.2 Code

1.2.1 AMPL Code

Code here

1.2.2 AMPL Solution

```
Defined on a directed network: G = (N, A)
where N is a set of n nodes: \{1, 2, ..., n\}
and A is a set of m arcs as a subset of N \times N
```

Each node i has an associated value b(i)

Arc (i, j) has certain characteristics:

- cost c_{ij} per unit of flow on arc (i,j)
- ullet upper bound on flow of u_{ij} (capacity)
- lower bound on flow of ℓ_{ij} (usually 0)
- multiplier $\mu_{ij} \geq 0$ such that if 1 unit of flow leaves node i, then μ_{ij} units arrive at node j

Figure 1: Problem 1 AMPL Output of Optimal Solution and Variables

2 - Question 2 (Version 6)

- Question 3 (Version 2)

- Question 4 (Version 3)

- Question 5 (Version 2)