2.2 Resolution in der Aussagenlogik

Ein Kalkül K in der Aussagenlogik ist eine Menge von Regeln, welche aus einer Menge \mathcal{F} aussagenlogischer Formeln eine Menge ebensolcher Formeln ableiten, Zeichen $\vdash_{\mathbf{K}}$

Sinnvolle Eigenschaften eines (aus.-log.) Kalküls, vgl. Folie 26:

- Korrektheit: Nur folgerbare Formeln werden abgeleitet
- Vollständigkeit: Alle folgerbaren Formeln sind ableitbar

Vollständigkeit kann z.B. durch Verwendung eines vollständigen Suchverfahrens erzielt werden, vgl. Kapitel 3!

Der Resolutionskalkül

Resolution beruht auf Anwendung des Modus ponens ...

$$P \Rightarrow Q \qquad P$$

$$Q$$

... in der umgeformten, verallgemeinerten Variante

$$\neg P \lor A \qquad P \lor B$$

$$A \lor B$$

Wir benutzen die Darstellung von Formeln in KNF, d.h. A und B sind <u>Disjunktionen</u> von Literalen

J. Alan Robinson *1930

Die Resolutionsregel für KNF in Mengenform

Gegeben zwei Klauseln $K_1 = \{P\} \cup K'_1$ und $K_2 = \{\neg P\} \cup K'_2$, wobei P eine beliebige Aussagevariable ist $(P, \neg P \text{ sind also Literale})$.

Die Klausel $Res(K_1,K_2):=K'_1 \cup K'_2$ heißt Resolvente von K_1 und K_2 .

Stammbaum-Notation (von oben nach unten gerichtet zu lesen):

Beispiele (für KNF in Mengenform)

$$\{P,Q\}$$
 $\{R,\neg P\}$ $\{P\}$ $\{\neg P\}$ $\{P,Q,R\}$ $\{R,\neg P\}$ $\{P,Q,\neg R\}$ $\{R,\neg P\}$ $\{R,Q\}$ $\{R,Q\}$

Beispiel für Resolventenbildung

Klauselmenge

Behauptung: Alle Resolventen folgen aus ihren Elternklauseln! Wenn das so ist, dann ist diese Klauselmenge inkonsistent (wegen □)

Korrektheit d. aussagenlogischen Resolution

Die Resolvente $Res(K_1,K_2)$ zweier Klauseln $K_1=\{P\}\cup K'_1$ und $K_2=\{\neg P\}\cup K'_2$ ist eine logische Folgerung aus K_1 und K_2 :

$$\{K_1,K_2\} \models Res(K_1,K_2)$$

Beweis

Zeige: Jede Interpretation I, die K_1 und K_2 wahr macht, macht auch $Res(K_1,K_2)$ wahr.

I macht entweder *P* oder $\neg P$ falsch, nimm an es sei *P* (dann analog für $\neg P$). Folglich ist K_1 keine Einsklausel, folglich ist K'_1 wahr unter *I*. Folglich ist $K'_1 \cup K'_2 = Res(K_1, K_2)$ wahr unter *I*.

Anwendung von Resolution immer als Widerspruchsbeweis:

Statt $KB \models \alpha$ zeige, dass $\mathcal{F}=KB \land \neg \alpha$ inkonsistent ist! Das Zeichen dafür ist: Eine Resolvente irgendwann ist \square .

Algorithmus für Resolution in der AL

in R/N: englisch propositional logic!

```
function (PL) RESOLUTION (KB, \alpha) returns incons or consistent
   clauses \leftarrow the set of clauses in the CNF representation of KB \wedge \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_j in clauses do
              resolvents \leftarrow PL-Resolve(C_i, C_i)
              if resolvents contains the empty clause then return incons
              new \leftarrow new \cup resolvents
        if new \subseteq clauses then return consistent
        clauses \leftarrow clauses \cup new
```

... bildet, ggf. bis zum Auftauchen von \square , die vollständige inferenzielle Hülle von $\mathcal{F}=KB \land \neg \alpha$

Beispiel

(1,2)

(1,3)

(2,3)

(2,4)

(3,4)

Sei \mathcal{F} die KNF von $KB \land \neg \alpha$. Protokolliere nach Schleifendurchlauf für Klauselmenge \mathcal{F} : Resⁱ(\mathcal{F}): Klauseln im *i*-ten Durchlauf

$$Res^0(\mathcal{F}) = \mathcal{F}$$

$$(2) \{ \neg P, Q \}$$

$$(3) \{P, \neg Q\}$$

$$(4) \{\neg P, \neg Q\}$$

$Res^1(\mathcal{F})$

$$(5) \quad \{Q\}$$

$$(6) \{P\}$$

$$(7) \{Q, \neg Q\} (1,4)$$

(8)
$$\{P, \neg P\}$$
 (1,4)

(9)
$$\{Q, \neg Q\}$$

$$(10) \{P, \neg P\}$$

$$(11) \{ \neg P \}$$

$$(12) \{\neg Q\}$$

$$Res^2(\mathcal{F})$$

$$(13)$$
- (20) = (5) - (12)

$$(21) \{P, Q\} \qquad (1,7)$$

$$(22) \{P, Q\}$$
 $(1,8)$

$$(2,3)$$
 .

Eigenschaften von PL-RESOLUTION

PL-Resolution macht praktisch Breitensuche durch alle Klauseln, die aus der gegebenen Klauselmenge erzeugbar sind.

Also:

- eta Speicherbedarf: $O(2^n)$ (n Var., Tautologien+Doubletten löschen)
- korrekt
- vollständig, s. folgender Satz: ...

Vollständigkeit der aussagenlog. Resolution

Sei
$$\mathcal{F}$$
 inkonsistente Formelmenge und $\operatorname{Res}^*(\mathcal{F}) = \bigcup_{i=0}^{i} \operatorname{Res}^i(\mathcal{F})$
Dann ist $\square \in \operatorname{Res}^*(\mathcal{F})$

Zusammen mit der Korrektheit ergibt sich:

Resolutionssatz der Aussagenlogik

Eine Klauselmenge \mathcal{F} ist inkonsistent, gdw. $\square \in Res^*(\mathcal{F})$

Beweis des Vollständigkeitssatzes

Zeige $\square \in \text{Res}^*(\mathcal{F})$ für inkonsistentes \mathcal{F} durch Induktion ü. Variablenzahl n. Induktionsanfang: *n*=0. Dann muss gelten $\square \in \mathcal{F}$, also auch $\square \in \text{Res}^*(\mathcal{F})$. **Induktionsschritt**: *n* beliebig fest, zeige Beh. für (n+1) Variable in \mathcal{F} . Für alle G inkonsistent, nur mit Variablen P_1, \ldots, P_n gilt: $\square \in \text{Res}^*(G)$. Enthalte \mathcal{F} die Variablen P_1, \dots, P_{n+1} . Konstruiere aus \mathcal{F} die Klauselmengen \mathcal{G}_0 , \mathcal{G}_1 mit Variablen P_1, \ldots, P_n : Für G_0 streiche P_{n+1} in allen Klauseln; streiche alle Klauseln mit $\neg P_{n+1}$. (Für G_1 analog mit $\neg P_{n+1}$, P_{n+1} vertauscht.) G_0 , G_1 sind beide inkonsistent. Denn Modell $\mathcal M$ für G_0 wäre erweiterbar zu \mathcal{F} -Modell $\mathcal{M}' := \mathcal{M} \cup \{P_{n+1} \rightarrow 0\}$, im Widerspruch zu Inkonsistenz von \mathcal{F} . (Analog für G_1 .) Nach Induktionsvoraussetzung also $\square \in \text{Res}^*(G_0)$ und $\square \in \text{Res}^*(G_1)$.

Vollständigkeitsbeweis, Fortsetzung

Folglich gibt es in G_0 eine Folge von Klauseln $K_1, ..., K_m$, wobei $K_m = \square$ und für i=1, ..., m: $K_i \in G_0$ oder K_i ist Resolvente von K_a, K_b mit a,b < i. Analog Folge $K'_1, ..., K'_k = \square$ von Resolventen in G_1 .

Sind alle Klauseln K_i oder alle Klauseln K'_j in \mathcal{F} , gilt $\square \in \text{Res}^*(\mathcal{F})$.

Andernfalls entstehen durch Wiedereinfügen der gestrichenen Literale P_{n+1} in die K_i und $\neg P_{n+1}$ in die K_j Ableitungen der Einsklauseln P_{n+1} und $\neg P_{n+1}$.

Durch einen weiteren Resolutionsschritt leite daraus \square ab, folglich \square \in Res $^*(\mathcal{F})$.

Spezialisierungen der Resolution

... sind effizienter als PL-RESOLUTION durch Beschränkung der Auswahlmöglichkeiten für die Elternklauseln K_i , K_j

Alle Spezialisierungen "erben" Korrektheit!

Zum Beispiel:

- Stützmengen-Resolution (nicht in dieser Vorlesung)
- Einsklausel/Unit-Resolution
- Input-Resolution
- SLD-Resolution

Unit- und Input-Resolution

Eine Resolvente $Res(K_1,K_2)$ ist eine **Unit-Resolvente**, wenn mindestens eines der K_i eine Einsklausel (Klausel aus 1 Literal) ist.

Eine Resolvente $Res(K_1,K_2)$ ist eine Input-Resolvente, wenn mindestens eines der K_i eine Klausel aus der Eingabe-Klauselmenge \mathcal{F} ist.

Unit- und Input-Resolution sind beide nicht vollständig!

Beispiel: $\{\{P,Q\}, \{\neg P,Q\}, \{\neg P,\neg Q\}\}\}$ ink., aber so nicht widerlegbar

Es gibt vollständige Einschränkungen der Resolution → hier ausgelassen!

Äquivalenz von Input- und Unit-Resolution

Sei \mathcal{F} eine inkonsistente Klauselmenge.

 \mathcal{F} ist unit-widerlegbar, gdw. \mathcal{F} ist input-widerlegbar.

Beweis: Induktion über die Zahl der Variablen in \mathcal{F} .

