

Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

## Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators
Section 15.247
Operation within the bands 902 - 928 MHz,
2400 - 2483.5 MHz, 5725 - 5875 MHz,
and 24.0 - 24.25 GHz.

#### THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

### FCC ID: 2AHBQX21FC38

Formal Name: X100G-Flash Tag

Kind of Equipment: Wireless sensor recording device. 2402 to

Frequency Range: 2480 MHz

Test Configuration: Tabletop

Model Number(s): MSC1277

Model(s) Tested: MSC1277

Serial Number(s): GT2382 (conducted), GT2383 (radiated)

Date of Tests: August 28-30, 2017

Test Conducted For: Wilson Sporting Goods Co.

8750 W Bryn Mawr Ave Chicago, IL 60631, USA

**NOTICE**: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 - 2017 D.L.S. Electronic Systems, Inc.

#### **COPYRIGHT NOTICE**

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.



Company: Wilson Sporting Goods

Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

SIGNATURE PAGE

Tested By:

Craig Brandt

Senior Test Engineer

Craig Brandt

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager



Wilson Sporting Goods

Company: Model Tested: MSC1277 Report Number: DLS Project: 23051 9121

## **Table of Contents**

| i.   | Cover Page                                         | 1  |
|------|----------------------------------------------------|----|
| ii.  | Signature Page                                     | 2  |
| iii. | Table of Contents                                  | 3  |
| iv.  | NVLAP Certificate of Accreditation                 | 5  |
| 1.0  | Summary of Test Report                             | 6  |
| 2.0  | Introduction                                       | 6  |
| 3.0  | Test Facilities                                    | 7  |
| 4.0  | Description of Test Sample                         | 7  |
| 5.0  | Test Equipment                                     | 9  |
| 6.0  | Test Arrangements                                  | 11 |
| 7.0  | Test Conditions                                    | 11 |
| 8.0  | Modifications Made To EUT For Compliance           | 12 |
| 9.0  | Additional Descriptions                            | 12 |
| 10.0 | FCC 15.31 (e) Supply Voltage Requirement statement | 12 |
| 11.0 | FCC 15.23 Antenna Requirement statement            | 13 |
| 12.0 | Results                                            | 13 |
| 13.0 | Conclusion                                         | 13 |
| App  | endix A – Test Setup Photos                        | 14 |
|      | endix B – Measurement Data                         |    |
| В    | 1.0 Duty Cycle during testing                      | 19 |
|      | B1.1 1 Mbps                                        |    |
| _    | B1.2 2 Mbps                                        |    |
| В    | 2.0 DTS Bandwidth (6 dB bandwidth)                 |    |
|      | B2.1 1 Mbps data rate                              |    |
| ъ    | B2.2 2 Mbps data rate                              |    |
| В    | 3.0 Output Power – RF conducted                    |    |
|      | B3.1 1 Mbps data rate                              |    |
| R    | 4.0 Maximum Power Spectral Density – RF Conducted  |    |
| D    | B4.1 1 Mbps data rate                              |    |
|      | B4.2 2 Mbps data rate                              |    |



Wilson Sporting Goods

Company: Model Tested: MSC1277 Report Number: DLS Project: 23051 9121

## **Table of Contents - continued**

| B5.0 Emissions in Non-Restricted Frequency Bands – RF Conducted      | 45  |
|----------------------------------------------------------------------|-----|
| B5.1 1 Mbps data rate                                                |     |
| B5.2 2 Mbps data rate                                                | 61  |
| B6.0 Emissions in Restricted Frequency Bands – Radiated with antenna | 76  |
| B6.1 30 – 1000 MHz, 1 & 2 Mbps data rates                            | 77  |
| B6.2 1 – 2.39 GHz, 1 Mbps data rate                                  |     |
| B6.3 2.4835 – 26 GHz, 1 Mbps data rate                               |     |
| B6.4 1 – 2.39 GHz, 2 Mbps data rate                                  | 103 |
| B6.5 2.4835 – 26 GHz, 2 Mbps data rate                               | 107 |
| B7.0 Operating Band-Edge – RF Conducted                              | 123 |
| B7.1 1 Mbps data rate                                                |     |
| B7.2 2 Mbps data rate                                                | 126 |
| B8.0 Restricted Band-Edge – Radiated with antenna                    | 128 |
| B8.1 1 Mbps data rate                                                |     |
| B8.1.a Lower Restricted Band Edge                                    | 129 |
| B8.1.b Upper Restricted Band Edge                                    | 133 |
| B8.2 2 Mbps data rate                                                | 137 |
| B8.2.a Lower Restricted Band Edge                                    |     |
| B8.2.b Upper Restricted Band Edge                                    | 141 |
| Appendix C – Measurement Uncertainty                                 | 145 |
|                                                                      |     |



Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

United States Department of Commerce National Institute of Standards and Technology



# Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.

Wheeling, IL

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

# Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2016-08-16 through 2017-09-30

Effective Dates



For the National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC
COMPATIBILITY &
TELECOMMUNICATIONS

**NVLAP LAB CODE 100276-0** 

**Emissions** 

**Designation** 

**Description** 

Off-site test location D.L.S. Electronics performs radiated emissions testing at an additional location, 166 South Carter Street, Genoa City, WI 53128.



Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## 1.0 Summary of Test Report

It was determined that the Wilson Sporting Goods Co., X100G-Flash Tag, model MSC1277 , complies with the requirements of CFR 47 Part 15 Subpart C Section 15.247.

## **Subpart C Section 15.247 Applicable Technical Requirements Tested:**

| Section      | Description                | Procedure                  | Note | <b>Compliant?</b> |
|--------------|----------------------------|----------------------------|------|-------------------|
| Informative  | Duty Cycle                 | ANSI C63.10-2013           | 1    | NA                |
|              |                            | Section 11.6(b)            |      |                   |
| 15.247(a)(2) | DTS Bandwidth              | ANSI C63.10-2013           | 1    | Yes               |
|              |                            | Sections 11.8 & 11.8.1     |      |                   |
| 15.247(b)(3) | Fundamental Emission       | ANSI C63.10-2013           | 1    | Yes               |
|              | Output Power               | Sections 11.9.1 & 11.9.1.1 |      |                   |
| 15.247(e)    | Maximum Power Spectral     | ANSI C63.10-2013           | 1    | Yes               |
|              | Density                    | Sections 11.10 & 11.10.2   |      |                   |
| 15.247(d)    | Emissions in Non-          | ANSI C63.10-2013           | 1    | Yes               |
|              | Restricted Frequency Bands | Sections 11.11, 11.11.2 &  |      |                   |
|              | - RF Conducted             | 11.11.3                    |      |                   |
| 15.247(d)    | Emissions in Restricted    | ANSI C63.10-2013           | 2    | Yes               |
| 15.205(a)    | Frequency Bands –          | Sections 11.12 & 11.12.1   |      |                   |
| 15.209(a)    | Radiated                   |                            |      |                   |
| 15.247(d)    | Operating Band-Edge        | ANSI C63.10-2013           | 1    | Yes               |
|              | Measurements               | Sections 11.11, 11.11.2 &  |      |                   |
|              | - RF Conducted             | 11.11.3                    |      |                   |
| 15.247(d)    | Restricted Band-Edge       | ANSI C63.10-2013           | 2    | Yes               |
| 15.205(a)    | Measurements - Radiated    | Sections 11.12, 11.12.1 &  |      |                   |
| 15.209(a)    |                            | 11.13.3.4                  |      |                   |

Note 1: RF conducted measurement.

Note 2: Radiated emission measurement.

#### 2.0 Introduction

During August 28-30, 2017, the X100G-Flash Tag, model MSC1277 , as provided by Wilson Sporting Goods Co. was tested to the requirements of CFR 47 Part 15 Subpart C Section 15.247. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.



Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

#### 3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at <a href="http://www.dlsemc.com/certificate">http://www.dlsemc.com/certificate</a>. Our facilities are registered with the FCC, Innovation Science and Economic Development Canada, and VCCI.

#### **Wisconsin Test Facility:**

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128 Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

FCC Registration #90531

### 4.0 Description of Test Sample

### **Description:**

Unit is a battery powered radio containing a microcontroller and accelerometers. Power is self-contained via internal CR2470 battery.

In end application: DUT interacts with an external BLE master (a pre-certified radio) which controls the operation of the unit. Unit records accelerometer data from on-board accelerometers and transmits the recorded session to the external BLE master.

In test mode: DUT is controlled prior to test by BLE enabled phone. Unit transmits psudo random string constantly on a single channel at a fixed bitrate and fixed output power.

### **Type of Equipment / Frequency Range:**

Hand-Held (portable) / 2402-2480 MHz

### **Physical Dimensions of Equipment Under Test:**

Length: 36 mm, Width: 33 mm, Height: 10 mm



Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

166 South Carter, Genoa City, WI 53128

|  | 0 | 0 | Description | of Test | Sample - | continue |
|--|---|---|-------------|---------|----------|----------|
|--|---|---|-------------|---------|----------|----------|

**Power Source:** 

3.0 VDC

## **Internal Frequencies:**

64 MHz, 32 MHz, 8 MHz, 4 MHz, 1 MHz, 32.768 kHz

### **Transmit / Receive Frequencies Used For Test Purpose:**

Low channel: 2402 MHz, Middle channel: 2440 MHz, High channel: 2480 MHz

## **Type of Modulation(s) / Antenna Type:**

GFSK Modulation / PCB Trace Antenna

## **Description of Circuit Board(s) / Part Number:**

| X100G-Flash Tag   | MSC1277  |
|-------------------|----------|
| A 1000-1 lash Tag | WISC1277 |



Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## 5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

**Radiated 30 – 1000 MHz (Site 2)** 

|               | 1            | Laulateu 30 = 100 | DO MILIZ (BILC 2 | 4)            |         |              |
|---------------|--------------|-------------------|------------------|---------------|---------|--------------|
|               |              | Model             | Serial           | Frequency     | Cal     | Cal Due      |
| Description   | Manufacturer | Number            | Number           | Range         | Date    | <b>Dates</b> |
| Receiver      | Rohde &      | ESI 40            | 837808/006       | 20 Hz – 40    | 4-6-17  | 4-6-18       |
|               | Schwarz      |                   |                  | GHz           |         |              |
| Preamplifier  | Rohde &      | TS-PR10           | 032001/004       | 9 kHz – 1 GHz | 12-2-16 | 12-2-17      |
|               | Schwarz      |                   |                  |               |         |              |
| Antenna       | EMCO         | 3104C             | 00054892         | 20 MHz – 200  | 3-11-16 | 3-11-18      |
|               |              |                   |                  | MHz           |         |              |
| Antenna       | EMCO         | 3146              | 1205             | 200 MHz – 1   | 3-23-16 | 3-23-18      |
|               |              |                   |                  | GHz           |         |              |
| Test Software | Rohde &      | ESK-1             | V1.7.1           | N/A           | N/A     | N/A          |
|               | Schwarz      |                   |                  |               |         |              |

#### Radiated 1-18 GHz (Site G1)

|                   |              | Model      | Serial     | Frequency   | Cal    | Cal Due      |
|-------------------|--------------|------------|------------|-------------|--------|--------------|
| Description       | Manufacturer | Number     | Number     | Range       | Date   | <b>Dates</b> |
| Receiver          | Rohde &      | ESI 40     | 837808/005 | 20  Hz - 40 | 4-6-17 | 4-6-18       |
|                   | Schwarz      |            |            | GHz         |        |              |
| Preamp            | Ciao         | CA118-4010 | 101        | 1GHz-18GHz  | 1-9-17 | 1-9-18       |
| Horn Antenna      | Com-Power    | AH-118     | 071127     | 1-18GHz     | 9-8-16 | 9-8-18       |
| Filter- High-Pass | Q-Microwave  | 100462     | 2          | 4.2GHz-     | 7-7-17 | 7-7-18       |
|                   |              |            |            | 18GHz       |        |              |
| Test Software     | Rohde &      | ESK-1      | V1.7.1     | N/A         | N/A    | N/A          |
|                   | Schwarz      |            |            |             |        |              |



Company: Wilson Sporting Goods

Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

# Radiated 18-26 GHz (Site 2)

**5.0** Test Equipment – continued

|                  |              | Model        | Serial     | Frequency   | Cal     | Cal Due      |
|------------------|--------------|--------------|------------|-------------|---------|--------------|
| Description      | Manufacturer | Number       | Number     | Range       | Date    | <b>Dates</b> |
| Receiver         | Rohde &      | ESI 40       | 837808/006 | 20 Hz – 40  | 4-6-17  | 4-6-18       |
|                  | Schwarz      |              |            | GHz         |         |              |
| Preamp           | Miteq        | AMF-8B-      | 438727     | 18GHz-26GHz | 5-11-17 | 5-11-18      |
|                  |              | 180265-40-   |            |             |         |              |
|                  |              | 10P-H/S      |            |             |         |              |
| Horn Antenna     | EMCO         | 3116         | 2549       | 18 – 40GHz  | 9-2-16  | 9-2-18       |
| High Pass Filter | K & L        | 50140        | 8          | 18-40 GHz   | 1-9-17  | 1-9-18       |
|                  |              | 11SH10-      |            |             |         |              |
|                  |              | 18000/T40000 |            |             |         |              |
|                  |              | -K-K         |            |             |         |              |
| Test Software    | Rohde &      | ESK-1        | V1.7.1     | N/A         | N/A     | N/A          |
|                  | Schwarz      |              |            |             |         |              |

## **RF Conducted / Other**

|                  |              | Model   | Serial    | Frequency   | Cal    | Cal Due      |
|------------------|--------------|---------|-----------|-------------|--------|--------------|
| Description      | Manufacturer | Number  | Number    | Range       | Date   | <b>Dates</b> |
| Receiver         | Rohde &      | ESI 40  | 837808/00 | 20  Hz - 40 | 4-6-17 | 4-6-18       |
|                  | Schwarz      |         | 6         | GHz         |        |              |
| 10 dB attenuator | Narda        | 4768-10 | 0702      | DC – 40 GHz | 5-3-17 | 5-3-18       |



Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

### 6.0 Test Arrangements

#### **Radiated Emissions Measurement Arrangement:**

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2013, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up. See Appendix C for measurement uncertainty.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

| Frequency Range   | Bandwidth (-6 dB) |
|-------------------|-------------------|
| 10 to 150 kHz     | 200 Hz            |
| 150 kHz to 30 MHz | 9 kHz             |
| 30 MHz to 1 GHz   | 120 kHz           |
| Above 1 GHz       | 1 MHz             |

#### **RF Conducted Emissions Measurement Arrangement:**

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2013, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up. See Appendix C for measurement uncertainty.

#### 7.0 Test Conditions

#### **Temperature and Humidity:**

74°F at 52% RH unless otherwise noted on test data

#### **Supply Voltage:**

3.0 VDC battery



Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

### **8.0** Modifications Made To EUT For Compliance

Changed power setting in test software from 4 to 0.

## 9.0 Additional Descriptions

The EUT was programmed for continuous transmission on Low, Mid, and High channels, with a 94.6% duty cycle at a 1 Mbps data rate, and a 89.8% duty cycle at a 2 Mbps data rate.

For radiated emissions, the EUT with was rotated through 3 orthogonal axis to find worst-case.

### 10.0 FCC 15.31 (e) Supply Voltage Requirement statement

FCC 15.31 (e) - For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

| Compliance Statement: This device complies with the requirements of Part 15.31(e):                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This device is battery operated. All tests were performed using a new (or fully charged) battery.                                                                                         |
| This device provides a constant regulated voltage to the RF circuitry regardless of supply voltage (see schematic diagrams).                                                              |
| This device does not provide a constant regulated voltage to the RF circuitry regardless of supply voltage. Data has been supplied in this test report that supports compliance. Details: |



Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## 11.0 FCC 15.23 Antenna Requirement statement

## **SECTION 15.203 ANTENNA REQUIREMENT**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.... This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221.

| <b>Statement:</b> This wireless device (Intentional Radiator) meets the requirements of FCC Part 15.203:                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ∑ The antenna is permanently attached                                                                                                                                                         |
| The antenna has a unique coupling to the intentional radiator.  Description of coupling:                                                                                                      |
| ☐ This intentional radiator is professionally installed                                                                                                                                       |
| ☐ This intentional radiator, in accordance with Section 15.31(d), must be measured at the installation site.                                                                                  |
| 12.0 Results                                                                                                                                                                                  |
| Measurements were performed in accordance with CFR 47 Part 15 Subpart C Section 15.247 and ANSI C63.10-2013. Graphical and tabular data can be found in Appendix B at the end of this report. |

#### 13.0 Conclusion

The X100G-Flash Tag, model MSC1277 , as provided by Wilson Sporting Goods Co., tested during August 28-30, 2017 **meets** the requirements of CFR 47 Part 15 Subpart C Section 15.247.



Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

# Appendix B – Measurement Data

### **B1.0** Duty Cycle during testing

**Rule Part:** Informative

**Test Procedure:** ANSI 63.10-2013, section 11.6(b)

**Limit:** Average emission limits are lowered by the value of the duty cycle correction

factor.

**Results:** 1 Mbps data rate:

Duty Cycle = 94.6%

Duty Cycle Correction = 0.48 dB (for voltage measurements)

2 Mbps data rate: Duty Cycle = 89.8%

Duty Cycle Correction = 0.93 dB (for voltage measurements)

**Sample Equations:** Total on Time = 2.104208 ms

Total on + off Time = 2.224449 ms

Duty cycle x = (2.104208 ms / 2.224449 ms) = 0.946 = 94.6%Voltage Duty Cycle Correction Factor =  $20 \log (1/0.946) = 0.48 \text{ dB}$ 

EUT: X100G-Flash Tag

Test: Duty Cycle - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz

ON + OFF time = 2.224449 ms

Duty cycle x = (2.104208 ms / 2.224449 ms) = 0.946 = 94.6%Voltage Duty Cycle Correction Factor =  $20 \log (1/0.946) = 0.48 \text{ dB}$ 

## One cycle: 2.224449 ms



Date: 28.AUG.2017 09:40:03

EUT: X100G-Flash Tag

Test: Duty Cycle - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz

ON + OFF time = 2.224449 ms

Duty cycle x = (2.104208 ms / 2.224449 ms) = 0.946 = 94.6%Voltage Duty Cycle Correction Factor =  $20 \log (1/0.946) = 0.48 \text{ dB}$ 

## ON time during one cycle = 2.104208 ms



Date: 28.AUG.2017 09:41:26

EUT: X100G-Flash Tag

Test: Duty Cycle - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz

ON + OFF time = 2.224449 ms

Duty cycle x = (1.062124 ms / 1.182365 ms) = 0.898 = 89.8%Voltage Duty Cycle Correction Factor =  $20 \log (1/0.898) = 0.93 \text{ dB}$ 

# One cycle: 1.182365 ms



Date: 28.AUG.2017 09:48:24

EUT: X100G-Flash Tag

Test: Duty Cycle - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz

ON + OFF time = 2.224449 ms

Duty cycle x = (1.062124 ms / 1.182365 ms) = 0.898 = 89.8%Voltage Duty Cycle Correction Factor =  $20 \log (1/0.898) = 0.93 \text{ dB}$ 

## ON time during one cycle = 1.062124 ms



Date: 28.AUG.2017 09:49:25



Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## Appendix B

### **B2.0** DTS Bandwidth (6 dB bandwidth)

**Rule Part:** FCC 15.247(a)(2)

**Test Procedure:** ANSI C63.10-2013, sections 11.8 & 11.8.1

**Limit:** Minimum 6 dB bandwidth must be at least 500 kHz

**Results:** Compliant

Minimum 6 dB bandwidth = 725 kHz

**Notes:** The EUT was tested at the low, middle, and high channels of operation.

The output power setting was set to 4 for this test.

(The power setting was later changed to 0 meet the radiated restricted band

limits.)

EUT: X100G-Flash Tag

DTS (6 dB) Bandwidth - Conducted Test:

Operator: Craig B

Comment:

Data rate: 1 Mbps Low Channel: 2402 MHz

#### 6 dB Bandwidth = 725 kHz



Date: 28.AUG.2017 10:23:17

EUT: X100G-Flash Tag

Test: DTS (6 dB) Bandwidth - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz

#### 6 dB Bandwidth = 754 kHz



Date: 28.AUG.2017 10:36:16

EUT: X100G-Flash Tag

DTS (6 dB) Bandwidth - Conducted Test:

Operator: Craig B

Comment:

Data rate: 1 Mbps High Channel: 2480 MHz

#### 6 dB Bandwidth = 733 kHz



Date: 28.AUG.2017 10:38:13

EUT: X100G-Flash Tag

Test: DTS (6 dB) Bandwidth - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

#### 6 dB Bandwidth = 1.19 MHz



Date: 28.AUG.2017 10:51:21

EUT: X100G-Flash Tag

Test: DTS (6 dB) Bandwidth - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz

#### 6 dB Bandwidth = 1.23 MHz



Date: 28.AUG.2017 10:48:50

EUT: X100G-Flash Tag

Test: DTS (6 dB) Bandwidth - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

#### 6 dB Bandwidth = 1.21 MHz



Date: 28.AUG.2017 10:53:58



166 South Carter, Genoa City, WI 53128 Appendix B

# Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

## **B3.0** Output Power – RF conducted

**Rule Part:** FCC 15.247(b)(3)

**Test Procedure:** ANSI C63.10-2013, sections 11.9.1 & 11.9.1.1

Limit: 1 Watt

**Results:** Compliant

Maximum peak conducted output power = -0.79 dBm = 0.834 mW

**Notes:** This was an RF conducted measurement. The EUT was connected to the

measuring equipment through a temporary external antenna connector. Cable loss and attenuation were accounted for in the transducer factors set in the

analyzer.

The EUT was tested at the low, middle, and high channels of operation.

The output power setting was set to 0 for this test. Peak Output power was

measured with a spectrum analyzer.

EUT: X100G-Flash Tag

Output power - Conducted Test:

Operator: Craig B

Comment:

Data rate: 1 Mbps Low Channel: 2402 MHz

## Peak Output Power = -0.93 dBm = 0.807 mW



Date: 29.AUG.2017 16:21:19

EUT: X100G-Flash Tag

Test: Output power - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz

# Peak Output Power = -1.04 dBm = 0.787 mW



Date: 29.AUG.2017 16:23:23

EUT: X100G-Flash Tag

Output power - Conducted Test:

Operator: Craig B

Comment:

Data rate: 1 Mbps High Channel: 2480 MHz

# Peak Output Power = -0.91 dBm = 0.811 mW



Date: 29.AUG.2017 16:25:07

EUT: X100G-Flash Tag

Test: Output power - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

## Peak Output Power = -0.93 dBm = 0.807 mW



Date: 28.AUG.2017 10:12:12

EUT: X100G-Flash Tag

Test: Output power - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz

# Peak Output Power = -1.04 dBm = 0.787 mW



Date: 29.AUG.2017 16:29:00

EUT: X100G-Flash Tag

Output power - Conducted Test:

Operator: Craig B

Comment:

Data rate: 2 Mbps High Channel: 2480 MHz

# Peak Output Power = -0.79 dBm = 0.834 mW



Date: 29.AUG.2017 16:27:18



Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## **Appendix B**

### **B4.0** Maximum Power Spectral Density – RF Conducted

**Rule Part:** FCC 15.247(e)

**Test Procedure:** ANSI C63.10-2013, sections 11.10 & 11.10.2

**Limit:** 8 dBm in any 3 kHz band during continuous transmission

**Results:** Compliant

Maximum Power Spectral Density measured -11.42 dBm/3kHz

**Notes:** This was an RF conducted measurement. The EUT was connected to the

measuring equipment through a temporary external antenna connector. Cable loss and attenuation were accounted for in the transducer factors set in the

analyzer.

The EUT was tested at the low, middle, and high channels of operation.

The output power setting was set to 4 for this test.

(The power setting was later changed to 0 meet the radiated restricted band

limits.)

EUT: X100G-Flash Tag

Test: Power Spectral Density - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz

#### Power in 3 kHz Bandwidth = -11.42 dBm



Date: 28.AUG.2017 11:05:25

EUT: X100G-Flash Tag

Test: Power Spectral Density - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz

#### Power in 3 kHz Bandwidth = -12.47 dBm



Date: 28.AUG.2017 11:07:49

EUT: X100G-Flash Tag

Test: Power Spectral Density - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz

#### Power in 3 kHz Bandwidth = -12.88 dBm



Date: 28.AUG.2017 11:09:28

EUT: X100G-Flash Tag

Test: Power Spectral Density - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

#### Power in 3 kHz Bandwidth = -14.81 dBm



Date: 28.AUG.2017 11:03:45

EUT: X100G-Flash Tag

Test: Power Spectral Density - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz

#### Power in 3 kHz Bandwidth = -14.81 dBm



Date: 28.AUG.2017 11:01:41

EUT: X100G-Flash Tag

Test: Power Spectral Density - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

#### Power in 3 kHz Bandwidth = -14.46 dBm



Date: 28.AUG.2017 10:59:15



Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

#### Appendix B

#### **B5.0** Emissions in Non-Restricted Frequency Bands – RF Conducted

**Rule Part:** FCC 15.247(d)

**Test Procedure:** ANSI C63.10-2013, sections 11.11, 11.11.2 & 11.11.3

**Limit:** 20 dB down from the highest emission level within the authorized band as

measured with a 100 kHz RBW.

**Results:** Compliant

**Notes:** This was an RF conducted measurement. The EUT was connected to the

measuring equipment through a temporary external antenna connector. Cable loss and attenuation were accounted for in the transducer factors set in the

analyzer.

The EUT was tested at the low, middle, and high channels of operation.

The output power setting was set to 4 for this test.

(The power setting was later changed to 0 meet the radiated restricted band

limits.) A peak detector was used for this test.

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz
Reference Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm



Date: 28.AUG.2017 12:30:10

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

# Frequency Range: 30 – 1000 MHz



Date: 28.AUG.2017 12:35:02

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: 1 – 7 GHz



Date: 28.AUG.2017 12:31:51

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz
Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: 7 – 18 GHz



Date: 28.AUG.2017 12:33:13

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: 18 – 26 GHz



Date: 28.AUG.2017 12:34:04

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz
Reference Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm



Date: 28.AUG.2017 13:12:15

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

# Frequency Range: 30 – 1000 MHz



Date: 28.AUG.2017 13:17:30

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

## Frequency Range: 1 – 7 GHz



Date: 28.AUG.2017 13:14:04

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

## Frequency Range: 7 – 18 GHz



Date: 28.AUG.2017 13:15:05

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

## Frequency Range: $18 - 26 \, \text{GHz}$



Date: 28.AUG.2017 13:16:13

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz
Reference Level measurement

Reference Level = 0.73 dBm

Limit= 0.73 dBm - 20 dB = -19.27 dBm



Date: 28.AUG.2017 13:20:37

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.73 dBm

Limit= 0.73 dBm - 20 dB = -19.27 dBm

# Frequency Range: 30 – 1000 MHz



Date: 28.AUG.2017 13:31:00

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.73 dBm

Limit= 0.73 dBm - 20 dB = -19.27 dBm

## Frequency Range: 1 – 7 GHz



Date: 28.AUG.2017 13:22:43

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.73 dBm

Limit= 0.73 dBm - 20 dB = -19.27 dBm

## Frequency Range: 7 – 18 GHz



Date: 28.AUG.2017 13:27:34

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.73 dBm

Limit= 0.73 dBm - 20 dB = -19.27 dBm

## Frequency Range: $18 - 26 \, \text{GHz}$



Date: 28.AUG.2017 13:28:53

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz
Reference Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm



Date: 28.AUG.2017 12:14:55

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: 30 - 1000 MHz



Date: 28.AUG.2017 12:28:12

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: 1 – 7 GHz



Date: 28.AUG.2017 12:23:02

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: 7 – 18 GHz



Date: 28.AUG.2017 12:24:25

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz Emission Level measurement

Reference Level = 1.02 dBm

Limit= 1.02 dBm - 20 dB = -18.98 dBm

## Frequency Range: $18 - 26 \, \text{GHz}$



Date: 28.AUG.2017 12:26:13

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz
Reference Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm



Date: 28.AUG.2017 12:02:11

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

# Frequency Range: 30 – 1000 MHz



Date: 28.AUG.2017 12:12:43

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

## Frequency Range: 1 - 7 GHz



Date: 28.AUG.2017 12:05:01

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

## Frequency Range: 7 – 18 GHz



Date: 28.AUG.2017 12:09:06

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Mid Channel: 2440 MHz
Emission Level measurement

Reference Level = 0.66 dBm

Limit= 0.66 dBm - 20 dB = -19.34 dBm

## Frequency Range: $18 - 26 \, \text{GHz}$



Date: 28.AUG.2017 12:11:03

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz
Reference Level measurement

Reference Level = 0.72 dBm

Limit= 0.72 dBm - 20 dB = -19.28 dBm



Date: 28.AUG.2017 11:31:40

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.72 dBm

Limit= 0.72 dBm - 20 dB = -19.28 dBm

# Frequency Range: 30 – 1000 MHz



Date: 28.AUG.2017 11:47:57

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.72 dBm

Limit= 0.72 dBm - 20 dB = -19.28 dBm

# Frequency Range: 1 – 7 GHz



Date: 28.AUG.2017 11:39:42

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.72 dBm

Limit= 0.72 dBm - 20 dB = -19.28 dBm

## Frequency Range: 7 – 18 GHz



Date: 28.AUG.2017 11:43:04

EUT: X100G-Flash Tag

Test: Emissions in Non-Restricted frequency bands - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz Emission Level measurement

Reference Level = 0.72 dBm

Limit= 0.72 dBm - 20 dB = -19.28 dBm

## Frequency Range: 18 – 26 GHz



Date: 28.AUG.2017 11:46:10



Company: Wilson Sporting Goods

Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## Appendix B

## **B6.0** Emissions in Restricted Frequency Bands – Radiated with antenna

**Rule Part:** FCC 15.247(d), 15.205(a), 15.209(a)

**Test Procedure:** ANSI C63.10-2013, sections 11.12 & 11.12.1

**Limit:** FCC 15.209

**Results:** Compliant

**Notes:** The EUT was set to transmit continuously at the low, middle, and high

channels, with a 94.6% duty cycle at a 1 Mbps data rate, and an 89.8% duty

cycle at a 2 Mbps data rate.

The output power setting was set to 0 for this test.

#### FCC 15.209

#### Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 63 deg. F; 66% R.H.

Test Site: DLS Site 2 Operator: Craig B; #9121

Test Specification: Radiated emissions with antenna Comment: Tx L,M,H channels, 1 Mbps & 2 Mbps

Date: 08-30-2017

#### TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector



# MEASUREMENT RESULT: "A830a\_F1V\_Final"

| 2017 9:40 | бАМ      |                                        |                                                                                         |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|----------|----------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| equency   | Level    | Antenna                                | System                                                                                  | Total                                                                                                                                                                                                                                            | Limit                                                                                                                                                                                                                                                                         | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EuT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Final                                                                                                                                                                                                                                                                                                                                                                                                                           | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |          | Factor                                 | Loss                                                                                    | Level                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MHz       | dΒμV     | dBμV/m                                 | dB                                                                                      | dBμV/m                                                                                                                                                                                                                                           | dBμV/m                                                                                                                                                                                                                                                                        | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .570000   | 34.19    | 7.57                                   | -23.1                                                                                   | 18.7                                                                                                                                                                                                                                             | 40.0                                                                                                                                                                                                                                                                          | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OUASI-PEAK                                                                                                                                                                                                                                                                                                                                                                                                                      | noise floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .720000   | 16.54    | 21.31                                  | -18.9                                                                                   | 18.9                                                                                                                                                                                                                                             | 46.0                                                                                                                                                                                                                                                                          | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QUASI-PEAK                                                                                                                                                                                                                                                                                                                                                                                                                      | noise floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .560000   | 17.40    | 14.87                                  | -20.9                                                                                   | 11.3                                                                                                                                                                                                                                             | 46.0                                                                                                                                                                                                                                                                          | 34.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QUASI-PEAK                                                                                                                                                                                                                                                                                                                                                                                                                      | noise floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | requency | MHz dBµV 3.570000 34.19 2.720000 16.54 | Tequency Level Antenna Factor MHz dBμV dBμV/m  3.570000 34.19 7.57 2.720000 16.54 21.31 | Level         Antenna         System           Factor         Loss           MHz         dBμV         dBμV/m         dB           3.570000         34.19         7.57         -23.1           2.720000         16.54         21.31         -18.9 | requency         Level Antenna Factor ABμV         System Fotal Loss Level ABμV/m         Loss ABμV/m         Level ABμV/m           8.570000         34.19         7.57         -23.1         18.7           2.720000         16.54         21.31         -18.9         18.9 | requency         Level Antenna Factor MHz         System Total Limit Factor Loss Level dBμV/m         Loss Level dBμV/m         Loss ABμV/m         Level dBμV/m         ΔθμV/m         ΔθμV/m <th< td=""><td>requency         Level Antenna Factor MHz         System Total Limit Margin Loss Level ABμV/m         Level ABμV MBμV/m         Level ABμV/m         Level ABμV/m         Level ABμV/m         ABμV/m</td><td>requency         Level Antenna Factor MHz         System Total Limit Margin Factor Loss Level Ant. MHz         Loss Level MBμV/m         Level MBμV/m         Ant. MBμV/m</td><td>requency         Level Antenna Factor MHz         System Total Limit Margin Height EuT Factor Loss Level MHz         Level Ant. Angle MBμV/m dB MBμV/m dBμV/m dB M M deg           8.570000         34.19         7.57         -23.1         18.7         40.0         21.3         1.00         0           8.720000         16.54         21.31         -18.9         18.9         46.0         27.1         1.00         270</td><td>requency         Level         Antenna         System         Total         Limit         Margin         Height         EuT         Final           MHz         dBμV         dBμV/m         dBμV/m</td></th<> | requency         Level Antenna Factor MHz         System Total Limit Margin Loss Level ABμV/m         Level ABμV MBμV/m         Level ABμV/m         Level ABμV/m         Level ABμV/m         ABμV/m | requency         Level Antenna Factor MHz         System Total Limit Margin Factor Loss Level Ant. MHz         Loss Level MBμV/m         Level MBμV/m         Ant. MBμV/m | requency         Level Antenna Factor MHz         System Total Limit Margin Height EuT Factor Loss Level MHz         Level Ant. Angle MBμV/m dB MBμV/m dBμV/m dB M M deg           8.570000         34.19         7.57         -23.1         18.7         40.0         21.3         1.00         0           8.720000         16.54         21.31         -18.9         18.9         46.0         27.1         1.00         270 | requency         Level         Antenna         System         Total         Limit         Margin         Height         EuT         Final           MHz         dBμV         dBμV/m         dBμV/m |

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 63 deg. F; 66% R.H.

Test Site: DLS Site 2 Operator: Craig B; #9121

Test Specification: Radiated emissions with antenna Comment: Tx L,M,H channels, 1 Mbps & 2 Mbps

Date: 08-30-2017

### TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector



# MEASUREMENT RESULT: "A830a\_F1H\_Final"

| 8/30/2017 10: | 09AM  |         |        |        |        |        |        |       |            |             |
|---------------|-------|---------|--------|--------|--------|--------|--------|-------|------------|-------------|
| Frequency     | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final      | Comment     |
|               |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector   |             |
| MHz           | dΒμV  | dBμV/m  | dB     | dBμV/m | dBμV/m | dB     | m      | deg   |            |             |
| 897.380000    | 16.58 | 23.30   | -17.6  | 22.3   | 46.0   | 23.7   | 1.50   | 225   | QUASI-PEAK | noise floor |
| 85.820000     | 25.84 | 7.25    | -22.8  | 10.3   | 40.0   | 29.7   | 2.00   | 180   | QUASI-PEAK | noise floor |
| 392.360000    | 15.94 | 15.70   | -20.7  | 10.9   | 46.0   | 35.1   | 2.00   | 180   | QUASI-PEAK | noise floor |
|               |       |         |        |        |        |        |        |       |            |             |

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 29.AUG.2017 11:53:40

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 29.AUG.2017 11:54:25

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 29.AUG.2017 11:36:28

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 29.AUG.2017 11:37:14

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 29.AUG.2017 11:02:58

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 29.AUG.2017 11:03:37

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 29.AUG.2017 11:20:39

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 29.AUG.2017 11:21:14

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 74 deg C 52% R.H.

Test Site: DLS O.F. Gl Operator: Craig B

Test Specification: Radiated in Restricted Bands

Comment: L,M,H channels; 1 Mbps

Date: 08-29-2017

### TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)



# MEASUREMENT RESULT: "A828e\_sv\_Final"

| 8/29/2017 12: | 47PM  |         |        |        |        |        |        |       |          |         |
|---------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
| Frequency     | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|               |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz           | dΒμV  | dBµV/m  | dB     | dBμV/m | dBμV/m | dB     | m      | deg   |          |         |
| 7439.340000   | 46.98 | 37.07   | -33.5  | 50.5   | 53.5   | 3.0    | 1.49   | 184   | AVERAGE  | High ch |
| 7319.348635   | 46.54 | 37.17   | -33.8  | 50.0   | 53.5   | 3.6    | 1.46   | 167   | AVERAGE  | Mid ch  |
| 4804.010000   | 43.92 | 33.04   | -36.5  | 40.5   | 53.5   | 13.0   | 1.40   | 186   | AVERAGE  | Low ch  |
| 7439.340000   | 55.38 | 37.07   | -33.5  | 58.9   | 74.0   | 15.1   | 1.49   | 184   | MAX PEAK | High ch |
| 7319.348635   | 55.38 | 37.17   | -33.8  | 58.8   | 74.0   | 15.2   | 1.46   | 167   | MAX PEAK | Mid ch  |
| 4880.010000   | 40.71 | 33.02   | -36.5  | 37.2   | 53.5   | 16.3   | 1.48   | 180   | AVERAGE  | Mid ch  |
| 4959.990000   | 39.96 | 33.20   | -36.6  | 36.6   | 53.5   | 17.0   | 1.55   | 183   | AVERAGE  | High ch |
| 4804.010000   | 52.74 | 33.04   | -36.5  | 49.3   | 74.0   | 24.7   | 1.40   | 186   | MAX PEAK | Low ch  |
| 4880.010000   | 50.99 | 33.02   | -36.5  | 47.5   | 74.0   | 26.5   | 1.48   | 180   | MAX PEAK | Mid ch  |
| 4959.990000   | 50.47 | 33.20   | -36.6  | 47.1   | 74.0   | 26.9   | 1.55   | 183   | MAX PEAK | High ch |

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 74 deg C 52% R.H.

Test Site: DLS O.F. G1 Operator: Craig B

Test Specification: Radiated in Restricted Bands

Comment: L,M,H channels; 1 Mbps

Date: 08-29-2017

### TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)



# MEASUREMENT RESULT: "A828e\_sh\_Final"

| 8/29/2017 1:3 | 32PM  |         |        |        |        |        |        |       |          |         |
|---------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
| Frequency     | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|               |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz           | dΒμV  | dBµV/m  | dВ     | dBμV/m | dBμV/m | dВ     | m      | deg   |          |         |
| 7319.340000   | 47.36 | 37.17   | -33.8  | 50.8   | 53.5   | 2.7    | 1.08   | 177   | AVERAGE  | Mid ch  |
| 7439.320000   | 46.94 | 37.07   | -33.5  | 50.5   | 53.5   | 3.0    | 1.81   | 177   | AVERAGE  | High ch |
| 7319.340000   | 55.91 | 37.17   | -33.8  | 59.3   | 74.0   | 14.7   | 1.08   | 177   | MAX PEAK | Mid ch  |
| 7439.320000   | 55.65 | 37.07   | -33.5  | 59.2   | 74.0   | 14.8   | 1.81   | 177   | MAX PEAK | High ch |
| 4804.000000   | 40.24 | 33.04   | -36.5  | 36.8   | 53.5   | 16.7   | 1.56   | 181   | AVERAGE  | Low ch  |
| 4879.990000   | 40.15 | 33.02   | -36.5  | 36.6   | 53.5   | 16.9   | 1.19   | 177   | AVERAGE  | Mid ch  |
| 4959.990000   | 39.64 | 33.20   | -36.6  | 36.2   | 53.5   | 17.3   | 1.47   | 176   | AVERAGE  | High ch |
| 4804.000000   | 50.86 | 33.04   | -36.5  | 47.4   | 74.0   | 26.6   | 1.56   | 181   | MAX PEAK | Low ch  |
| 4879.990000   | 50.60 | 33.02   | -36.5  | 47.1   | 74.0   | 26.9   | 1.19   | 177   | MAX PEAK | Mid ch  |
| 4959.990000   | 50.33 | 33.20   | -36.6  | 46.9   | 74.0   | 27.1   | 1.47   | 176   | MAX PEAK | High ch |
|               |       |         |        |        |        |        |        |       |          |         |

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 63 deg. F; 66% R.H.

Test Site: DLS Site 2 Operator: Craig B; #9121

Test Specification: Radiated emissions with antenna

Comment: Tx L,M,H channels, 1 Mbps

Date: 08-30-2017

### TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector



# MEASUREMENT RESULT: "A830b\_sv\_Final"

| 8/30/2017 11: | 06AM  |         |        |        |        |        |        |       |          |         |
|---------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
| Frequency     | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|               |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz           | dΒμV  | dBμV/m  | dB     | dBμV/m | dBμV/m | dB     | m      | deg   |          |         |
| 19518.038000  | 39.54 | 45.93   | -36.8  | 48.6   | 63.1   | 14.4   | 1.70   | 270   | AVERAGE  | Mid ch  |
| 19214.100000  | 39.54 | 45.53   | -37.0  | 48.0   | 63.1   | 15.0   | 1.60   | 250   | AVERAGE  | Low ch  |
| 19838.110000  | 37.84 | 46.31   | -36.3  | 47.8   | 63.1   | 15.2   | 1.50   | 275   | AVERAGE  | High ch |
| 19518.038000  | 52.11 | 45.93   | -36.8  | 61.2   | 83.5   | 22.4   | 1.70   | 270   | MAX PEAK | Mid ch  |
| 19214.100000  | 52.63 | 45.53   | -37.0  | 61.1   | 83.5   | 22.4   | 1.60   | 250   | MAX PEAK | Low ch  |
| 19838.110000  | 51.08 | 46.31   | -36.3  | 61.1   | 83.5   | 22.5   | 1.50   | 275   | MAX PEAK | High ch |
|               |       |         |        |        |        |        |        |       |          |         |

# Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 63 deg. F; 66% R.H.

Test Site: DLS Site 2 Operator: Craig B; #9121

Test Specification: Radiated emissions with antenna

Comment: Tx L,M,H channels, 1 Mbps

Date: 08-30-2017

### TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector



# MEASUREMENT RESULT: "A830b\_sh\_Final"

| 8/30/2017 11:3 | 21AM  |         |        |                                 |        |        |        |       |          |         |
|----------------|-------|---------|--------|---------------------------------|--------|--------|--------|-------|----------|---------|
| Frequency      | Level | Antenna | System | Total                           | Limit  | Margin | Height | EuT   | Final    | Comment |
|                |       | Factor  | Loss   | Level                           |        |        | Ant.   | Angle | Detector |         |
| MHz            | dΒμV  | dBμV/m  | dB     | $\text{dB}\mu\text{V}/\text{m}$ | dBμV/m | dB     | m      | deg   |          |         |
| 19214.020000   | 40.63 | 45.53   | -37.0  | 49.1                            | 63.1   | 14.0   | 1.60   | 90    | AVERAGE  | Low ch  |
| 19518.090000   | 39.30 | 45.93   | -36.8  | 48.4                            | 63.1   | 14.7   | 1.60   | 100   | AVERAGE  | Mid ch  |
| 19838.080000   | 37.36 | 46.31   | -36.3  | 47.4                            | 63.1   | 15.7   | 1.40   | 100   | AVERAGE  | High ch |
| 19214.020000   | 53.03 | 45.53   | -37.0  | 61.5                            | 83.5   | 22.0   | 1.60   | 90    | MAX PEAK | Low ch  |
| 19518.090000   | 51.97 | 45.93   | -36.8  | 61.1                            | 83.5   | 22.5   | 1.60   | 100   | MAX PEAK | Mid ch  |
| 19838.080000   | 50.16 | 46.31   | -36.3  | 60.2                            | 83.5   | 23.4   | 1.40   | 100   | MAX PEAK | High ch |
|                |       |         |        |                                 |        |        |        |       |          |         |

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 29.AUG.2017 09:42:08

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 29.AUG.2017 09:43:14

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 29.AUG.2017 10:04:56

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 29.AUG.2017 10:05:50

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 29.AUG.2017 10:44:38

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 29.AUG.2017 10:45:22

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Average (linear) Detector (max hold)

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 29.AUG.2017 10:24:54

EUT: X100G-Flash Tag

Test: Unwanted Emissions in Restricted Bands – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low, Mid, High Channels: 2402 MHz, 2440 MHz, 2480 MHz

Peak Detector (max hold)

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 29.AUG.2017 10:25:45

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 74 deg C 52% R.H.

Test Site: DLS O.F. Gl Operator: Craig B

Test Specification: Radiated in Restricted Bands

Comment: L,M,H channels; 2 Mbps

Date: 08-29-2017

### TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

24.6 = 35.51 + (-22.1) + 11.20

Margin(dB) = Limit(dB $\mu$ V/m) - Total Level(dB $\mu$ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)



# MEASUREMENT RESULT: "B828f\_sv\_Final"

| 8/29/2017 3:0 | 5PM   |         |        |        |        |        |        |       |          |         |
|---------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
| Frequency     | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|               |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz           | dΒμV  | dBμV/m  | dВ     | dBμV/m | dBμV/m | dB     | m      | deg   |          |         |
| 7441.220000   | 44.94 | 37.07   | -33.5  | 48.5   | 53.1   | 4.6    | 1.49   | 186   | AVERAGE  | High ch |
| 7318.760000   | 44.83 | 37.17   | -33.8  | 48.2   | 53.1   | 4.8    | 1.44   | 193   | AVERAGE  | Mid ch  |
| 7441.220000   | 54.03 | 37.07   | -33.5  | 57.6   | 74.0   | 16.4   | 1.49   | 186   | MAX PEAK | High ch |
| 7318.760000   | 54.03 | 37.17   | -33.8  | 57.4   | 74.0   | 16.6   | 1.44   | 193   | MAX PEAK | Mid ch  |
| 4803.020000   | 38.84 | 33.04   | -36.5  | 35.4   | 53.1   | 17.7   | 1.44   | 203   | AVERAGE  | Low ch  |
| 4879.030000   | 38.62 | 33.02   | -36.5  | 35.1   | 53.1   | 17.9   | 1.46   | 185   | AVERAGE  | Mid ch  |
| 4960.930000   | 38.24 | 33.20   | -36.6  | 34.8   | 53.1   | 18.2   | 1.52   | 183   | AVERAGE  | High ch |
| 4803.020000   | 51.13 | 33.04   | -36.5  | 47.7   | 74.0   | 26.3   | 1.44   | 203   | MAX PEAK | Low ch  |
| 4879.030000   | 50.47 | 33.02   | -36.5  | 47.0   | 74.0   | 27.0   | 1.46   | 185   | MAX PEAK | Mid ch  |
| 4960.930000   | 50.20 | 33.20   | -36.6  | 46.8   | 74.0   | 27.2   | 1.52   | 183   | MAX PEAK | High ch |

#### FCC 15.209

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 74 deg C 52% R.H.

Test Site: DLS O.F. Gl Operator: Craig B

Test Specification: Radiated in Restricted Bands

Comment: L,M,H channels; 2 Mbps

Date: 08-29-2017

#### TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)



# MEASUREMENT RESULT: "B828f\_sh\_Final"

| 8/29/2017 3: | 06PM  |         |        |        |        |        |        |       |          |         |
|--------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
| Frequency    | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|              |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz          | dΒμV  | dBµV/m  | dB     | dBμV/m | dBμV/m | dB     | m      | deg   |          |         |
| 7318.796208  | 45.66 | 37.17   | -33.8  | 49.1   | 53.1   | 4.0    | 1.84   | 181   | AVERAGE  | Mid ch  |
| 7438.780000  | 45.51 | 37.07   | -33.5  | 49.1   | 53.1   | 4.0    | 1.86   | 178   | AVERAGE  | High ch |
| 7438.780000  | 54.71 | 37.07   | -33.5  | 58.3   | 74.0   | 15.7   | 1.86   | 178   | MAX PEAK | High ch |
| 7318.796208  | 54.71 | 37.17   | -33.8  | 58.1   | 74.0   | 15.9   | 1.84   | 181   | MAX PEAK | Mid ch  |
| 4804.920000  | 38.78 | 33.04   | -36.5  | 35.3   | 53.1   | 17.7   | 1.56   | 182   | AVERAGE  | Low ch  |
| 4880.990000  | 38.73 | 33.02   | -36.5  | 35.2   | 53.1   | 17.8   | 1.55   | 183   | AVERAGE  | Mid ch  |
| 4960.990000  | 38.35 | 33.20   | -36.6  | 34.9   | 53.1   | 18.1   | 1.49   | 181   | AVERAGE  | High ch |
| 4880.990000  | 50.86 | 33.02   | -36.5  | 47.4   | 74.0   | 26.6   | 1.55   | 183   | MAX PEAK | Mid ch  |
| 4960.990000  | 50.73 | 33.20   | -36.6  | 47.3   | 74.0   | 26.7   | 1.49   | 181   | MAX PEAK | High ch |
| 4804.920000  | 50.47 | 33.04   | -36.5  | 47.0   | 74.0   | 27.0   | 1.56   | 182   | MAX PEAK | Low ch  |

#### FCC 15.209

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 70 deg. F; 64% R.H.

Test Site: DLS Site 2 Operator: Craig B; #9121

Test Specification: Radiated emissions with antenna

Comment: Tx L,M,H channels, 2 Mbps

Date: 08-30-2017

#### TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector



# MEASUREMENT RESULT: "A830c\_sv\_Final"

| 8/30/2017 12: | 34PM  |         |        |        |        |        |        |       |          |         |
|---------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
| Frequency     | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|               |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz           | dΒμV  | dBμV/m  | dB     | dBμV/m | dBμV/m | dB     | m      | deg   |          |         |
| 19219.980000  | 40.01 | 45.53   | -37.0  | 48.5   | 62.6   | 14.1   | 1.60   | 85    | AVERAGE  | Low ch  |
| 19523.980000  | 38.84 | 45.94   | -36.8  | 47.9   | 62.6   | 14.7   | 1.50   | 95    | AVERAGE  | Mid ch  |
| 19836.040000  | 37.72 | 46.31   | -36.3  | 47.7   | 62.6   | 14.9   | 1.50   | 80    | AVERAGE  | High ch |
| 19523.980000  | 52.11 | 45.94   | -36.8  | 61.2   | 83.5   | 22.3   | 1.50   | 95    | MAX PEAK | Mid ch  |
| 19219.980000  | 52.63 | 45.53   | -37.0  | 61.1   | 83.5   | 22.4   | 1.60   | 85    | MAX PEAK | Low ch  |
| 19836.040000  | 50.42 | 46.31   | -36.3  | 60.4   | 83.5   | 23.1   | 1.50   | 80    | MAX PEAK | High ch |

#### FCC 15.209

## Electric Field Strength

EUT: X100G-Flash Tag

Manufacturer: Wilson

Operating Condition: 70 deg. F; 64% R.H.

Test Site: DLS Site 2 Operator: Craig B; #9121

Test Specification: Radiated emissions with antenna

Comment: Tx L,M,H channels, 2 Mbps

Date: 08-30-2017

#### TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ )

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$ 

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector



# MEASUREMENT RESULT: "A830c\_sh\_Final"

| 8/30/2017 12: | 21PM  |         |        |        |                                   |        |        |       |          |         |
|---------------|-------|---------|--------|--------|-----------------------------------|--------|--------|-------|----------|---------|
| Frequency     | Level | Antenna | System | Total  | Limit                             | Margin | Height | EuT   | Final    | Comment |
|               |       | Factor  | Loss   | Level  |                                   |        | Ant.   | Angle | Detector |         |
| MHz           | dΒμV  | dBµV/m  | dВ     | dBµV/m | $d \text{B}\mu \text{V}/\text{m}$ | dВ     | m      | deg   |          |         |
|               |       |         |        |        |                                   |        |        |       |          |         |
| 19219.900000  | 39.20 | 45.53   | -37.0  | 47.7   | 62.6                              | 14.9   | 1.65   | 110   | AVERAGE  | Low ch  |
| 19516.140000  | 38.57 | 45.93   | -36.9  | 47.6   | 62.6                              | 15.0   | 1.70   | 90    | AVERAGE  | Mid ch  |
| 19836.125000  | 37.54 | 46.31   | -36.3  | 47.5   | 62.6                              | 15.1   | 1.60   | 125   | AVERAGE  | High ch |
| 19516.140000  | 51.59 | 45.93   | -36.9  | 60.7   | 83.5                              | 22.9   | 1.70   | 90    | MAX PEAK | Mid ch  |
| 19219.900000  | 51.97 | 45.53   | -37.0  | 60.5   | 83.5                              | 23.1   | 1.65   | 110   | MAX PEAK | Low ch  |
| 19836.125000  | 50.42 | 46.31   | -36.3  | 60.4   | 83.5                              | 23.1   | 1.60   | 125   | MAX PEAK | High ch |
|               |       |         |        |        |                                   |        |        |       |          |         |



Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## **Appendix B**

## **B7.0** Operating Band-Edge – RF Conducted

**Rule Part:** FCC 15.247(d)

**Test Procedure:** ANSI C63.10-2013, sections 11.11, 11.11.2 & 11.11.3

**Limit:** 20 dB down from the highest emission level within the authorized band as

measured with a 100 kHz RBW.

**Results:** Compliant

**Notes:** This was an RF conducted measurement. The EUT was connected to the

measuring equipment through a temporary external antenna connector. Cable loss and attenuation were accounted for in the transducer factors set in the

analyzer.

The EUT was tested at the low and high channels of operation.

The output power setting was set to 4 for this test.

(The power setting was later changed to 0 meet the radiated restricted band

limits.)

EUT: X100G-Flash Tag

Test: Lower Band Edge Compliance - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz

# Band-Edge Frequency = 2.4 GHz Limit at Band-Edge > 20 dB Below Peak In-Band Emission



Date: 28.AUG.2017 11:22:04

EUT: X100G-Flash Tag

Test: Upper Band Edge Compliance - Conducted

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz

Band-Edge Frequency = 2.4835 GHz Limit at Band-Edge > 20 dB Below Peak In-Band Emission



Dace. 20.A00.201/ 11.10.44

EUT: X100G-Flash Tag

Test: Lower Band Edge Compliance - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

Band-Edge Frequency = 2.4 GHz Limit at Band-Edge > 20 dB Below Peak In-Band Emission



Date: 28.AUG.2017 11:24:56

EUT: X100G-Flash Tag

Test: Upper Band Edge Compliance - Conducted

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

Band-Edge Frequency = 2.4835 GHz Limit at Band-Edge > 20 dB Below Peak In-Band Emission



Date: 28.AUG.2017 11:27:01



Company: Wilson Sporting Goods

Model Tested: MSC1277 Report Number: 23051 DLS Project: 9121

166 South Carter, Genoa City, WI 53128

## Appendix B

## **B8.0** Restricted Band-Edge – Radiated with antenna

**Rule Part:** FCC 15.247(d), 15.205(a), 15.209(a)

**Test Procedure:** ANSI C63.10-2013, sections 11.12, 11.12.1 & 11.13.3.4

**Limit:** FCC 15.209

**Results:** Compliant

**Notes:** The EUT was set to transmit continuously at the low, middle, and high

channels, with a 94.6% duty cycle at a 1 Mbps data rate, and an 89.8% duty

cycle at a 2 Mbps data rate.

The EUT was tested at the low and high channels of operation.

The output power setting was set to 4 for this test.

(The power setting was later changed to 0 meet the radiated restricted band

limits.)

The Average limit lines were reduced by a duty cycle correction factor to

compensate for a duty cycle less than 100%.

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 28.AUG.2017 14:19:09

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 28.AUG.2017 14:25:21

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 28.AUG.2017 14:45:47

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

Low Channel: 2402 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 28.AUG.2017 14:46:50

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 28.AUG.2017 15:18:36

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 28.AUG.2017 15:20:08

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.48 \text{ dB (duty cycle cor.)} = 53.52 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 28.AUG.2017 15:06:25

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 1 Mbps

High Channel: 2480 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 28.AUG.2017 15:07:54

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:



Date: 28.AUG.2017 16:42:35

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 28.AUG.2017 16:44:04

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:



Date: 28.AUG.2017 16:31:23

EUT: X100G-Flash Tag

Test: Lower Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

Low Channel: 2402 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 28.AUG.2017 16:32:43

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Vertical:

Using integration method:

Power measured in 1 MHz band at band edge = -64.63 dBm at 3 meters.

 $-64.63 \text{ dBm} + 107 = 42.37 \text{ dB}\mu\text{V}$ 

Average field strength =  $42.37 \text{ dB}\mu\text{V/m}$  at 3 meters.



Date: 28.AUG.2017 15:46:55

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Vertical:



Date: 28.AUG.2017 15:56:50

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

Average (linear) Detector

Limit:  $54 \text{ dB}\mu\text{V/m} - 0.93 \text{ dB (duty cycle cor.)} = 53.07 \text{ dB}\mu\text{V/m}$  @ 3meters

Horizontal:

Using integration method:

Power measured in 1 MHz band at band edge = -64.38 dBm at 3 meters.

 $-64.38 dBm + 107 = 42.62 dB\mu V$ 

Average field strength =  $42.62 \text{ dB}\mu\text{V/m}$  at 3 meters.



Date: 28.AUG.2017 16:19:40

EUT: X100G-Flash Tag

Test: Upper Restricted Band Edge – Radiated with antenna

Operator: Craig B

Comment: Data rate: 2 Mbps

High Channel: 2480 MHz

Peak Detector

Limit: 74 dBµV/m@ 3meters

Horizontal:



Date: 28.AUG.2017 16:14:33



Company: Wilson Sporting Goods

Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

166 South Carter, Genoa City, WI 53128

# Appendix C – Measurement Uncertainty

Compliance with the limits in this standard are based on the results of the compliance measurement. Our calculated measurement uncertainty including the measurement instrumentation, associated connections between the various instruments in the measurement chain, and other contributions, are provided in this section of the test report.

| Parameter                     | Expanded Uncertainty (K=2) |
|-------------------------------|----------------------------|
| Occupied Channel Bandwidth    | +/-1.14%                   |
| RF Output Power, Conducted    | +/-0.89dB                  |
| Unwanted Emissions, Conducted | +/-2.62dB                  |
| All Emissions, Radiated       | +/-4.95dB                  |
| DC and Low Frequency Voltages | +/-2.42%                   |
| Time                          | +/-0.01%                   |
| Duty Cycle                    | +/-0.05%                   |



166 South Carter, Genoa City, WI 53128

Company: Wilson Sporting Goods

Model Tested: MSC1277
Report Number: 23051
DLS Project: 9121

# **END OF REPORT**

| <b>Revision</b> # | Date            | Comments        | By |
|-------------------|-----------------|-----------------|----|
| 1.0               | August 31, 2017 | Initial Release | CB |
|                   |                 |                 |    |
|                   |                 |                 |    |
|                   |                 |                 |    |
|                   |                 |                 |    |