CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Today's Objectives

 A comprehensive coverage of related SBU exam problems in 2020 & 2021

2021 Final

Problem 1. [5 points]

Construct a truth table for the following statement form: $p \land (q \lor r) \leftrightarrow p \land (q \land r)$.

+++	p AND (q AND r)	p AND (q OR r) <==> p AND (q AND r)
++	T T F F	T T T T F
	F F	T T

Errata: row #2 (T T F row), column "p AND (q AND r)" should be F, and the last column should be F too.

2021 Final

Problem 2. [5 points]

Construct a truth table for the following statement form: $(p \to q) \lor ((q \oplus r) \to \sim p)$.

p 0	q r	p->q	q xor r	(q xor r) -> ~p	(p -> q) \/ ((q xor r) -> ~p)
t	t t	t	f	t	t
t '	[f	t	f	t f
t 1	f f t t	f t	f	t	t t
f 1	t i fi	t +			i t i +
f -	fff	t			t

2021 Final

Problem 3. [5 points]

Verify using truth tables if the following two logical expressions are equivalent. $(p \to q) \land (\sim p \to \sim q)$ and $\sim p \leftrightarrow \sim q$

p	q	p->q	~p -> ~q	(p->q) /\ (~p ->~q)	~p <-> ~q
t	t f	t f	t	t f	t
f f	t f	t t	f t	f t	f

2020 Final-a

Problem 1. [5 points]

Determine if the following deduction rule is valid.

$$\begin{array}{l} p \to (q \lor r) \\ \sim (p \to q) \\ \therefore r \end{array}$$

p, q, r	p -> (q \/ r)	~ (p -> q)	r
t t t t t f	t t	 f f	t f
t f t t f f f t t	t f t	t t f	t f t
f t f f f t	t l t	· f f	f t
f f f	t	f	f

So, it is valid — the critical row being Row #3 where premises are true and conclusion is true

2020 final-b

Problem 2. [5 points]

Is conditional operator \to an associative operator? That is, is $(p \to q) \to r$ logically equivalent to $p \to (q \to r)$? Prove your answer.

So, the two are not equivalent, considering the rows with p,q,r being f, t, f or f, f,

Alternative solution with logical equivalence

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer.

- $(p->q)->r = (\sim p \lor q)->r = \sim (\sim p \lor q) \lor r = (p \land \sim q) \lor r$
- $p \rightarrow (q \rightarrow r) = p \lor (q \rightarrow r)$
- To show the two differ, consider r=false, ~q=false, p = false

2020-final-b

Problem 3. [5 points]

Verify using truth tables if the following two logical expressions are equivalent. $\sim p \leftrightarrow \sim q \text{ and } \sim (p \oplus q)$

Thus, the two are equivalent.

Summary

Check validity and equivalence using truth tables