Linguagem de Programação

5.2: CONTROLE ITERATIVO – LAÇO DEFINIDO – FOR

Nossos objetivos nesta aula são:

- Entender o conceito de laço definido em Python;
- Entender o uso da função range em Python, usada para criar intervalos definidos;
- Iniciar o exercício da habilidade de escrever programas que empregam estruturas de repetição definidas.

A referência para esta aula são as seções **3.4 (Controle de Seleção)** do **Capítulo 3 (Control Structures)** do livro:

DIERBACH, C. Introduction to Computer Science Using Python: A Computational Problem Solving Focus. 1st Edition, New York: Wiley, 2012.

INTRODUÇÃO

Vimos anteriormente a estrutura de repetição indefinida **while**, que é uma estrutura de controle iterativo que executa um bloco de instruções baseada em uma expressão booleana, a qual podemos chamar de condição do laço.

Nesta aula, vamos estudar a estrutura de repetição **for**, que é uma estrutura de controle iterativo que repete um bloco de instruções para cada valor em uma dada sequência de valores.

LAÇO DEFINIDO (for)

Usamos um laço definido quando sabemos previamente qual a sequência de dados que deverá ser percorrida ou quando precisamos executar um bloco de instruções um número conhecido de vezes, isto é, sabemos quando começa, como será incrementado e quando irá terminar.

A sintaxe do laço for em Python é:

for <variável> in <sequência>:

<blood de instruções>

O comando **for** irá então criar (ou sobrescrever, caso já exista) uma variável com o nome dado em <variável>, atribuindo o primeiro valor da <sequência> a esta variável, para então executar o bloco

de instruções. Em seguida o comando **for** irá atribuir os valores seguintes da <sequência> um a um, executando o bloco de instruções para cada valor, até chegar ao último valor.

Uma forma de ler o comando for é: "Para cada valor nesta sequência, faça: ... "

Falaremos mais sobre sequências nos próximos capítulos, mas podemos dizer por hora que uma string é uma sequência de caracteres, e portanto pode ser "percorrida" usando-se um comando **for** em python.

Vale ressaltar aqui que todo laço feito com o comando **for** pode ser traduzido para um laço equivalente feito com o comando **while**. Entretanto o contrário não é verdade.

Exemplo

O exemplo a seguir irá exibir na tela as letras da palavra Impacta uma a uma, pois em cada rodada, a variável letra recebe uma das letras da string dada, faça o teste e confira o resultado no Python.

```
for letra in 'Impacta':
  print(letra)
```

A FUNÇÃO DE INTERVALO (range)

Muitas vezes precisamos criar uma sequência que segue um intervalo de números inteiros, então para isso existe a função **range** no Python, que irá criar uma lista de números a partir de três valores da sequência:

- 1. início: é o primeiro valor da sequência;
- 2. fim: é o valor final da sequência, mas não está incluído nela;
- 3. passo: é a diferença entre um dado valor da sequência e o valor seguinte.

Exemplo

Vamos comparar a exibição dos números de 0 a 9 com um comando **while** e com o comando **for**, usando a função **range** para gerar a sequência:

Podemos observar no exemplo anterior que o **fim** não está incluído na sequência gerada, sendo análogo ao laço **while** feito com o operador **menor que** em sua condição. Quando usamos o comando **for** em combinação com a função **range**, definimos os três parâmetros necessários e não

precisamos nos preocupar com a inicialização da variável contadora nem com o momento em que ela é incrementada.

Podemos usar esta estrutura para exibir apenas os números pares ou para exibir os números em ordem decrescente, da mesma forma que podemos fazer tais operações com um laço **while.**

Por exemplo, para exibir os números pares de 0 a 20 (incluindo o 20), precisamos fazer o intervalo ir até o 21 para que o número 20 seja incluído pela função range na sequência:

```
x = 0 for x in range(0, 21, 2):
while x < 21: print(x) x = x + 2
```

E para exibir os números de 10 a 1 em ordem decrescente, basta colocar o valor inicial em 10, o valor final em 0 e o passo em -1, para que a cada rodada, o próximo número seja uma unidade menor que o número anterior:

```
 \begin{array}{c} x = x - 1 \\ x = 10 \\ \text{while } x > 0 \colon \text{print}(x) \end{array}
```

Execute os exemplos dados acima no Python e compare os resultados obtidos por cada um dos laços, **for** e **while**.

PARÂMETROS OPCIONAIS

A função **range** pode ser chamada de três formas diferentes, nas quais podemos omitir alguns dos parâmetros e eles irão assumir valores padrões.

- 1. range(fim) se chamarmos a função range com apenas 1 parâmetro, ele será obrigatoriamente o valor final. Nesse caso o valor inicial assumirá o valor zero e o passo assumirá o valor 1, ou seja, equivalente a range(0, fim, 1);
- 2. range(inicio, fim) se chamarmos a função com dois parâmetros, eles serão obrigatoriamente os valores inicial e final, sendo que o passo irá assumir o valor 1, ou seja, equivalente a range(inicio, fim, 1);
 - 3. range(inicio, fim, passo) passando os três parâmetros, nenhum valor padrão será atribuído e cada parâmetro irá assumir o valor passado na chamada da função.

- 1) Que valores serão exibidos para em cada um dos seguintes itens:
 - a) for k in range(1,11):
 print(k)

c) for k in range(2,12,2):
 print(k)

b) for k in range(10):
 print(k)

d) for k in range(20,0,-2):
 print(k)

- 2) A série de Fibonacci é formada pela sequência 1, 1, 2, 3, 5, 8, 13, 21, 34, ... Escreva um programa que apresente a série de Fibonacci até o *n-ésimo* termo (n > 0).
- 3) Escreva um programa que apresente todos os ímpares de 1 até 99.
- 4) Escreva um programa que calcule o valor de **h**, dado pela somatória da série, usando um laço definido (for):

$$h = 1 + \frac{3}{2} + \frac{7}{4} + \frac{11}{6} + \frac{15}{8} + \dots + \frac{91}{46} + \frac{95}{48} + \frac{99}{509}$$

5) Elabore um programa que determine o de **s**, dado pela expressão a seguir, usando um laço definido (for):

$$h = 1 - {}_{4}^{2} + {}_{9}^{3} - {}_{16}^{4} + {}_{25}^{5} - {}_{36}^{6} + {}_{49}^{7} - {}_{64}^{8} + {}_{81}^{9} - {}_{100}^{100}$$

Resposta: 0.645635

6) Elabore um programa que receba um número inteiro N e calcule e apresente o valor de S, dado por:

$$S = \frac{1}{N} + \frac{2}{N}$$
 $N = \frac{N-1}{N} + \frac{N}{N}$
 $N = \frac{N-1}{N} + \frac{N}{N}$

Resposta: N=2 \rightarrow 2.5; N=3 \rightarrow 4.333; N=5 \rightarrow 8.7; N=1000 \rightarrow 6492.9563

7) Escreva um programa que calcule e apresente a soma dos 15 primeiros termos da série:

$$0! \frac{100}{1!} + \frac{99}{1!} + \frac{98}{2!} + \frac{97}{3!} + \cdots$$

Resposta: 1497.281718

- 8) Elabore um programa que verifica se um número natural é primo.
- 9) Elabore um programa que, dados dois números naturais n1 e n2, representando um intervalo fechado [n1, n2], exibe todos os números primos no intervalo.
- 10) Escreva um programa que apresente os *n* primeiros termos das sequências:

- 11) A conversão de graus Fahrenheit para Celsius é obtida pela fórmula: $C = (F\ 2)_9^5 3$ Escreva um programa que calcule e apresente uma tabela de graus Celsius em função de graus Fahrenheit que variem de 50 a 150, de 1 em 1.
- 12) Faça um programa que leia um número *n* (positivo), indicando quantos valores inteiros e no intervalo [1, 15[devem ser lidos a seguir. Para cada número lido, exiba uma linha com o valor lido e o fatorial desse valor.

Extra: construa a sua própria função fatorial ao invés de usar a função do módulo math.

13) Escreva um programa que calcule e escreva a soma dos **dez primeiros termos** da seguinte série:

$$h = \frac{2}{500} - \frac{5}{250} + \frac{2}{400} - \frac{5}{350} + \frac{2}{300} - \frac{5}{450} + \cdots$$

Resposta: -0.016513

- 14) Dado um número inteiro positivo, escreva um programa para calcular a **soma de seus dígitos**.
- 15) Escreva um algoritmo que, dados dois números inteiros positivos m e n, determine e escreva, entre todos os pares de números inteiros (x,y) tais que $x \le m$ e $y \le n$, o par para o qual o valor da expressão $xy x^2 + y$ seja máximo.
- 16) Faça um programa que receba idade, altura e peso de 30 pessoas, calcule e mostre:
 - a) a quantidade de pessoas com idade superior a 50 anos;
 - b) a média das alturas das pessoas com idade entre 10 e 20 anos;
 - c) a porcentagem de pessoas com peso inferior a 40 quilos entre todas as pessoas analisadas.
- 17) Escreva um programa que receba 50 números inteiros, calcule e mostre a soma dos pares positivos.
 - 18) Elabore um programa que calcule e apresente a soma dos inteiros existentes entre dois valores lidos. Considere que o segundo número lido deve ser maior que o primeiro.