An Analytical Introduction to Probability Theory

9. Weak Convergence

DASN, NTU

https://personal.ntu.edu.sg/wptay/

9.1 Weak Convergence

Let (Ω, d) be a metric space with probability measure $\mathbb{P} : \mathcal{B} \mapsto [0, 1]$, where \mathcal{B} is the Borel σ -algebra. Since \mathcal{B} defines \mathbb{P} , one may want to define the convergence of a sequence of probability distributions $\mathbb{P}_n \to \mathbb{P}$ as $\mathbb{P}_n(B) \to \mathbb{P}(B)$ for all $B \in \mathcal{B}$. However, this definition is too strong as can be seen from this example: Let δ_x be the probability measure with $\delta_x(\{x\}) = 1$. Then we desire that $\delta_{1/n} \to \delta_0$ but $\delta_{1/n}((0,1)) = 1$ and $\delta_0((0,1)) = 0$.

Let $C_b(\Omega)$ be the set of continuous and bounded functions $f: \Omega \to \mathbb{R}$.

Lemma 9.1. \mathbb{P} on (Ω, \mathcal{B}) is uniquely determined by $\int_{\Omega} f d\mathbb{P}$, $f \in C_b(\Omega)$.

Proof. We show that $\int_{\Omega} f \, d\mathbb{P}_1 = \int_{\Omega} f \, d\mathbb{P}_2$, $\forall f \in C_b(\Omega) \implies \mathbb{P}_1 = \mathbb{P}_2$. For any open set $U \subset \Omega$, we have

$$d(\omega, U^c) = \begin{cases} 0, & \text{if } \omega \in U^c, \\ > 0, & \text{if } \omega \in U. \end{cases}$$

Let $f_m(\omega) = \min \{1, md(\omega, U^c)\} \in C_b(\Omega)$. We have

$$\lim_{m \to \infty} f_m(\omega) = \mathbf{1}_U(\omega).$$

From MCT, we obtain

$$\lim_{m \to \infty} \int_{\Omega} f_m \, \mathrm{d}\mathbb{P}_1 = \int_{\Omega} \lim_{m \to \infty} f_m \, \mathrm{d}\mathbb{P}_1 = \int_{\Omega} \mathbf{1}_U(\omega) \, \mathrm{d}\mathbb{P}_1(\omega) = \mathbb{P}_1(U).$$

Since

$$\int_{\Omega} f_m \, \mathrm{d}\mathbb{P}_1 = \int_{\Omega} f_m \, \mathrm{d}\mathbb{P}_2,$$

 $\mathbb{P}_1(U) = \mathbb{P}_2(U)$ for all open U. Since the open sets generate \mathcal{B} and $\{B \in \mathcal{B} : \mathbb{P}_1(B) = \mathbb{P}_2(B)\}$ is a λ -system, the $\pi - \lambda$ theorem completes the proof.

Definition 9.1 (Weak convergence or Convergence in distribution). We say that $\mathbb{P}_n \stackrel{d}{\longrightarrow} \mathbb{P}$ if

$$\int_{\Omega} f \, \mathrm{d}\mathbb{P}_n \to \int_{\Omega} f \, \mathrm{d}\mathbb{P}, \ \forall f \in C_b(\Omega).$$

Similarly, we say that $X_n \stackrel{d}{\longrightarrow} X$ if $\mathbb{P}_{X_n} \stackrel{d}{\longrightarrow} \mathbb{P}_X$, i.e.,

$$\mathbb{E}f(X_n) = \int_{\Omega} f \, d\mathbb{P}_{X_n} \to \int_{\Omega} f \, d\mathbb{P}_X = \mathbb{E}f(X), \ \forall f \in C_b(\Omega).$$

In the sequel, we restrict $\Omega = \mathbb{R}$. All results can be extended to \mathbb{R}^k with trivial modifications. We denote $F(t) = \mathbb{P}((\infty, t])$ as the cdf of \mathbb{P} and $F_n(t)$ as the cdf of \mathbb{P}_n .

Theorem 9.1. $\mathbb{P}_n \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P} \iff F_n(t) \to F(t) \text{ for all continuity points } t \text{ of } F(\cdot).$

Proof. Let Φ be the set of continuity points of F(t).

' \Rightarrow ': Fix $\epsilon > 0$ and $t \in \Phi$. Let $\varphi_1(x)$ and $\varphi_2(x)$ be the continuous bounded functions shown in Fig. 1, i.e.,

$$\varphi_i(x) = \begin{cases} 1, & \text{if } x \le t - \epsilon, \\ \text{linear}, & \text{if } t - \epsilon < x \le t, \\ 0, & \text{if } x > t. \end{cases}$$

The function φ_2 is defined similarly.

Fig. 1: Approximation of $\mathbf{1}_{(-\infty,t]}(x)$.

Then we can approximate $\mathbf{1}_{(-\infty,t]}(x)$ as

$$\mathbf{1}_{(-\infty,t-\epsilon]}(x) \le \varphi_1(x) \le \mathbf{1}_{(-\infty,t]}(x) \le \varphi_2(x) \le \mathbf{1}_{(-\infty,t+\epsilon]}(x).$$

By taking the expectation of the above inequality, we obtain

$$F(t - \epsilon) \leq \int \varphi_1 d\mathbb{P}$$

$$= \lim_{n \to \infty} \int \varphi_1 d\mathbb{P}_n$$

$$\leq \liminf_{n \to \infty} F_n(t)$$

$$\leq \lim_{n \to \infty} \sup F_n(t)$$

$$\leq \lim_{n \to \infty} \int \varphi_2 d\mathbb{P}_n$$

$$= \int \varphi_2 \, \mathrm{d}\mathbb{P}$$

$$\leq F(t+\epsilon).$$

By taking $\epsilon \to 0$, since $t \in \Phi$, we have

$$\lim_{n \to \infty} F_n(t) = F(t).$$

Remark 9.1. Similar proof steps as above hold if $C_b(\mathbb{R})$ is replaced with $C_b^k(\mathbb{R})$, the set of k-differentiable bounded functions for $k \geq 1$.

'\(\phi'\): We first show that $\mathbb{R}\setminus\Phi$ (the set of discontinuity points) is countable. Suppose $x\in\mathbb{R}\setminus\Phi$. Let

$$a(x) = \sup\{F(y) : y < x\},\$$

 $b(x) = \inf\{F(y) : y > x\}.$

Because the set of rational numbers \mathbb{Q} is dense in \mathbb{R} , $\exists r_x \in (a(x), b(x))$, s.t. $r_x \in \mathbb{Q}$. Since the intervals (a(x), b(x)) are disjoint for all $x \in \mathbb{R} \setminus \Phi$, the mapping $x \mapsto r_x$ is one-to-one. Therefore, $\mathbb{R} \setminus \Phi$ is countable and the claim is proved. This implies that Φ is dense.

Note that $\mathbb{P}((-a,a]^c) = F(-a) + 1 - F(a)$. We then have $\forall \epsilon > 0$,

$$\exists \pm M(\epsilon) \in \Phi$$
, s.t. $\mathbb{P}((-M(\epsilon), M(\epsilon)]^c) \leq \epsilon$.

Furthermore, we have

$$F_n(M(\epsilon)) \to F(M(\epsilon)),$$

 $F_n(-M(\epsilon)) \to F(-M(\epsilon)).$

Therefore, $\forall n$ sufficiently large, $\mathbb{P}_n\left((-M(\epsilon), M(\epsilon)]^c\right) \leq 2\epsilon$. Choose $-M(\epsilon) = x_1^k \leq x_2^k \leq \ldots \leq x_k^k = M(\epsilon), \ x_i^k \in \Phi$ such that $\lim_{k \to \infty} \max |x_{i+1}^k - x_i^k| = 0$. For $f \in C_b(\mathbb{R})$, let

$$f_k(x) = \sum_{1 < i \le k} f(x_i^k) \mathbf{1}_{(x_{i-1}^k, x_i^k]}(x) \in C_b(\mathbb{R}).$$

Taking the expectation over \mathbb{P}_n , we obtain

$$\int f_k d\mathbb{P}_n = \sum_{1 < i \le k} f(x_i^k) \left(F_n(x_i^k) - F_n(x_{i-1}^k) \right)$$

$$\xrightarrow{n \to \infty} \sum_{1 < i \le k} f(x_i^k) \left(F(x_i^k) - F(x_{i-1}^k) \right)$$

$$= \int f_k d\mathbb{P}. \tag{1}$$

Let

$$\eta_k(M(\epsilon)) = \sup_{|x| \le M(\epsilon)} |f_k(x) - f(x)|.$$

Since $f \in C_b(\mathbb{R})$ is continuous, it is uniformly continuous on $[-M(\epsilon), M(\epsilon)]$ and we have $\lim_{k\to\infty} \eta_k(M(\epsilon)) = 0$. We have

$$\left| \int f \, d\mathbb{P} - \int f_k \, d\mathbb{P} \right| \le 2 \|f\|_{\infty} \mathbb{P} \left((-M(\epsilon), M(\epsilon)]^c \right) + \eta_k(M(\epsilon))$$

$$\le 2 \|f\|_{\infty} \epsilon + \eta_k(M(\epsilon)), \tag{2}$$

and for n large,

$$\left| \int f \, d\mathbb{P}_n - \int f_k \, d\mathbb{P}_n \right| \le 2 \|f\|_{\infty} \mathbb{P}_n \left((-M(\epsilon), M(\epsilon)]^c \right) + \eta_k(M(\epsilon))$$

$$\le 2 \|f\|_{\infty} \epsilon + \eta_k(M(\epsilon)). \tag{3}$$

From (1) to (3), we therefore obtain

$$\begin{split} & \left| \int f \, \mathrm{d} \mathbb{P}_n - \int f \, \mathrm{d} \mathbb{P} \right| \\ & \leq \left| \int f \, \mathrm{d} \mathbb{P}_n - \int f_k \, \mathrm{d} \mathbb{P}_n \right| + \left| \int f_k \, \mathrm{d} \mathbb{P}_n - \int f_k \, \mathrm{d} \mathbb{P} \right| + \left| \int f_k \, \mathrm{d} \mathbb{P} - \int f \, \mathrm{d} \mathbb{P} \right| \to 0, \end{split}$$

as $n \to \infty$, then $k \to \infty$ and finally $\epsilon \to 0$.

Lemma 9.2. If $\mathbb{P}_n \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}$, g is a continuous mapping, then

$$\mathbb{P}_n \circ g^{-1} \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}_n \circ g^{-1},$$

or in other words,

$$X_n \xrightarrow{\mathrm{d}} X \implies g(X_n) \xrightarrow{\mathrm{d}} g(X).$$

Proof. Since $f \in C_b(\mathbb{R}) \implies f \circ g \in C_b(\mathbb{R})$, the result follows.

Lemma 9.3. If $\mathbb{P}_n \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}$, then $\exists r.v.s \ Y_n \sim \operatorname{cdf} F_n, \ Y \sim \operatorname{cdf} F$, s. t. $Y_n \to Y$ a.s.

Proof. From Lemma 8.2, we know that, for the probability space $((0,1), \mathcal{B}(0,1), \lambda)$, where λ is Lebesgue measure, we have r.v.s

$$F_n^{-1}(\omega) = \inf \{ y : F_n(y) \ge \omega \} \sim \operatorname{cdf} F_n,$$

 $F^{-1}(\omega) = \inf \{ y : F(y) \ge \omega \} \sim \operatorname{cdf} F.$

Let Ω_0 be the set of continuity points of F^{-1} . A similar argument as that in the proof of Theorem 9.1 shows that Ω_0^c is countable, hence $\lambda(\Omega_0) = 1$. In the following, we show that $F_n^{-1}(\omega) \to F^{-1}(\omega)$ for all $\omega \in \Omega_0$.

For any continuity point y of F such that $y < F^{-1}(\omega)$, we have $F(y) < \omega$ (cf. Week 8), hence for all n sufficiently large, $F_n(y) < \omega$ since $F_n(y) \to F(y)$ from Theorem 9.1. Thus,

 $F_n^{-1}(\omega) \geq y$ and $\liminf_{n\to\infty} F_n^{-1}(\omega) \geq F^{-1}(\omega)$ by taking $y\to F^{-1}(\omega)$ (note that set of continuity points of F is dense).

For any continuity point y of F such that $y > F^{-1}(\omega)$, $F(y) > \omega$ since $\omega \in \Omega_0$ (cf. Week 8), hence for all n sufficiently large, $F_n(y) > \omega$. Thus, $F_n^{-1}(\omega) \leq y$ and $\limsup_{n \to \infty} F_n^{-1}(\omega) \leq F^{-1}(\omega)$.

Lemma 9.4. If for any subsequence $(n(k))_{k\geq 1}$, \exists subsubsequence $(n(k(r)))_{r\geq 1}$ s.t. $\mathbb{P}_{n(k(r))} \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}$, then

$$\mathbb{P}_n \xrightarrow{\mathrm{d}} \mathbb{P}$$
.

Proof. Suppose otherwise. Then $\exists f \in C_b(\mathbb{R}), \epsilon > 0$, sequence $(n(k))_{k \geq 1}$, such that

$$\left| \int f \, \mathrm{d} \mathbb{P}_{n(k)} - \int f \, \mathrm{d} \mathbb{P} \right| > \epsilon,$$

for all $k \geq 1$. Then, any subsequence of distributions indexed by $(n(k(r)))_{r\geq 1}$ cannot converge, a contradiction.

Lemma 9.5. $X_n \stackrel{p}{\longrightarrow} X \implies X_n \stackrel{d}{\longrightarrow} X$.

Proof. From Corollary 6.1, for any sequence $(n(k))_{k\geq 1}$, \exists subsequence $(n(k(r)))_{r\geq 1}$, s. t. $X_{n(k(r))} \to X$ a.s. Let $f \in C_b(\mathbb{R})$. By DCT, we obtain

$$\lim_{r \to \infty} \mathbb{E} \big[f(X_{n(k(r))}) \big] = \mathbb{E} \Big[\lim_{r \to \infty} f(X_{n(k(r))}) \Big] = \mathbb{E} [f(X)],$$

Therefore, $X_{n(k(r))} \stackrel{d}{\longrightarrow} X$. From Lemma 9.4, we have $X_n \stackrel{d}{\longrightarrow} X$.

In general, we can prove $\mathbb{P}_n \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}$ in two steps:

- (i) Show that for all sequences $(n(k))_{k\geq 1}$, $\exists (n(k(r)))_{r\geq 1}$, s.t. $\mathbb{P}_{n(k(r))}$ converges. This is done using the concept of uniform tightness, which we discuss below.
- (ii) Show that all subsequential distribution limits above are the same \mathbb{P} . This is done through the use of characteristic functions, which we discuss next week.

9.2 Uniform Tightness

Definition 9.2 (Uniform tightness). $(\mathbb{P}_n)_{n\geq 1}$ is uniformly tight if $\forall \epsilon > 0$, $\exists compact K \subset \mathbb{R}$ such that

$$\mathbb{P}_n(K) \ge 1 - \epsilon, \ \forall n \ge 1.$$

Theorem 9.2 (Helly's selection theorem). If $(\mathbb{P})_{n\geq 1}$ is uniformly tight, then $\exists (n(k))_{k\geq 1}$ such that

$$\mathbb{P}_{n(k)} \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}$$
, for some \mathbb{P} .

Lemma 9.6 (Cantor's Diagonalization). Suppose A is a countable set, and $f_n: A \mapsto \mathbb{R}$. Then, $\exists (n(k))_{k\geq 1}$, s.t. $f_{n(k)}(a)$ converges (or goes to $\pm \infty$), $\forall a \in A$.

Proof. Let $A = \{a_1, a_2, \ldots\}$. From Lemma 1.5, we have

$$\exists (n_1(k))_{k\geq 1}, \text{ s.t. } f_{n_1(k)}(a_1) \text{ converges},$$

 $\exists (n_2(k))_{k\geq 1} \subset (n_1(k))_{k\geq 1}, \text{ s.t. } f_{n_2(k)}(a_2) \text{ converges},$
...

Therefore, for the diagonal sequence $(n_k(k))_{k>1}$, $f_{n_k(k)}(a_l)$ converges $\forall l$.

Proof of Theorem 9.2. Since \mathbb{Q} is a dense subset of \mathbb{R} and countable, by Lemma 9.6, $\exists (n(k))_{k\geq 1}$,

s. t.
$$F_{n(k)}(q) \to F(q), \forall q \in \mathbb{Q}$$
.

Now we extend the definition of F on \mathbb{Q} to \mathbb{R} by defining $F(x) = \inf \{ F(q) : x < q, q \in \mathbb{Q} \}$. We prove that F(x) is a cdf.

- It is obvious F(x) is a non-decreasing function.
- It is right-continuous because

$$\lim_{x_n \downarrow x} F(x_n) = \lim_{n \to \infty} \inf \left\{ F(q) : x_n < q \in \mathbb{Q} \right\}$$

$$= \inf_{n \ge 1} \inf \left\{ F(q) : x_n < q \in \mathbb{Q} \right\}$$

$$= \inf \left\{ F(q) : x < q \in \mathbb{Q} \right\}$$

$$= F(x),$$

where the second equality follows because inf $\{F(q) : x_n < q \in \mathbb{Q}\}$ is a decreasing sequence for $x_n \downarrow x$.

• Since $(\mathbb{P}_n)_{n\geq 1}$ is uniformly tight, $\forall \epsilon > 0, \ \exists [-M, M],$

s. t.
$$1 - F_n(M) + F_n(-M) \le \epsilon, \ \forall n.$$

Choose $r < -M < M < s, r, s \in \mathbb{Q}$. We have

$$1 - F(s) + F(r) = \lim_{k \to \infty} \left(1 - F_{n(k)}(s) + F_{n(k)}(r) \right) \le \epsilon,$$

which implies

$$\lim_{x \to -\infty} F(x) = 0,$$

$$\lim_{x \to \infty} F(x) = 1.$$

Therefore, F(x) is a cdf.

Let x be a continuity point of F and $a, b \in \mathbb{Q}$, s.t. a < x < b. We have

$$F(a) = \lim_{k \to \infty} F_{n(k)}(a) \le \liminf_{k \to \infty} F_{n(k)}(x) \le \limsup_{k \to \infty} F_{n(k)}(x) \le \lim_{k \to \infty} F_{n(k)}(b) = F(b).$$

Taking $a \uparrow x$ and $b \downarrow x$, we obtain

$$\lim_{k \to \infty} F_{n(k)}(x) = F(x).$$

From Theorem 9.1, we have

$$\mathbb{P}_{n(k)} \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}.$$

Lemma 9.7. If $\mathbb{P}_n \stackrel{\mathrm{d}}{\longrightarrow} \mathbb{P}$, then $(\mathbb{P}_n)_{n \geq 1}$ is uniformly tight.

Proof. Let $\epsilon > 0$. Choose M > 0, s.t. $\mathbb{P}([-M, M]^c) \leq \epsilon$. Let

$$f(x) = \begin{cases} 0, & \text{if } |x| \le M, \\ \text{linear,} & \text{if } M < x < 2M, \text{or } -2M < x < -M, \\ 1, & \text{if } |x| \ge 2M. \end{cases}$$

Note that $f \in C_b(\mathbb{R})$. We have

$$\limsup_{n\to\infty} \mathbb{P}_n([-2M, 2M]^c) \le \limsup_{n\to\infty} \int f(x) \, \mathrm{d}\mathbb{P}_n(x) = \int f(x) \, \mathrm{d}\mathbb{P}(x) \le \mathbb{P}([-M, M]^c) \le \epsilon.$$

Therefore, $\exists n_0$, s.t. $\forall n \geq n_0, \mathbb{P}_n([-2M, 2M]^c) \leq 2\epsilon$. For each $n < n_0$, we choose M_n such that

$$\mathbb{P}_n([-M_n, M_n]^c) \le 2\epsilon.$$

Let $M^* = \max\{M_1, M_2, \dots, M_{n-1}, 2M\}$. We then have $\mathbb{P}_n([-M^*, M^*]^c) \leq 2\epsilon, \forall n \geq 1$.