3. Крайни представяния на езици. Регулярни изрази.

Def. (Регулярен израз в азбуката Σ - инд.)

- а) \emptyset и всеки елемент $a \in \Sigma$ е регулярен израз;
- b) Ако α и β са регулярни изрази, то $\alpha \circ \beta$, $\alpha \cup \beta$ и α^* са регулярни изрази;

Def. (Регулярен език $\mathcal{L}[\alpha]$ за регулярен израз α)

- a) Ako $\alpha = \emptyset$, To $\mathcal{L}[\alpha] = \emptyset$;
- b) Ako $\alpha = a \in \Sigma$, to $\mathcal{L}[\alpha] = \{a\}$;
- c) Ako $\alpha = (\alpha_1, \beta_1)$, to $\mathcal{L}[\alpha] = \mathcal{L}[\alpha_1] \circ \mathcal{L}[\beta_1]$;
- d) Ako $\alpha = (\alpha_1 \cup \beta_1)$, to $\mathcal{L}[\alpha] = \mathcal{L}[\alpha_1] \cup \mathcal{L}[\beta_1]$;
- e) Ako $\alpha = \alpha^*$, to $\mathcal{L}[\alpha] = (\mathcal{L}[\alpha_1])^*$.

Пример 1:

$$\alpha = ((a \cup b)^* \circ c^*)$$

$$\mathcal{L}[\alpha] = \mathcal{L}[(a \cup b)^*] \circ \mathcal{L}[c^*] =$$

$$= (\mathcal{L}[(a \cup b)])^* \circ (\mathcal{L}[c])^* =$$

$$= (\mathcal{L}[a] \cup \mathcal{L}[b])^* \circ \{c\}^* =$$

$$= (\{a\} \cup \{b\})^* \circ \{c\}^* =$$

$$= \{a, b\}^* \circ \{c\}^*$$

Пример 2:

```
L = \{w | w \text{ е редица от 0 и 1, такива, че в } w \text{ участват 2 или 3 единици} \} \{0\}^* \circ \{1\} \circ \{0\}^* \circ \{1\} \circ \{0\}^* \circ ((\{1\} \circ \{0\}^*) \cup \emptyset^0)
```

<u>Def.</u> Един език L се нарича регулярен, ако съществува регулярен израз α : $L = \mathcal{L}[\alpha]$.