Missing Data 2

MSBBSS01: Survey data analysis - SGG C128

Stef van Buuren, Gerko Vink

Nov 20, 2023

Generating imputations, multivariate

Three general strategies

- ► Monotone data imputation
- ► Joint modeling
- ► Fully conditional specification (FCS)

 $Generating\ imputations,\ multivariate$

Workflow after generating imputation

Special topic 1: Practicalities

Special topic 2: Multilevel data

Wrap up

Issues in multivariate imputation

- ▶ The predictors Y_{-j} themselves can contain missing values;
- $lackbox{ "Circular" dependence can occur, where $Y_j^{
 m mis}$ depends on $Y_h^{
 m mis}$, and vice versa;}$
- Variables are often of different types (e.g., binary, unordered, ordered, continuous);
- Especially with large p and small n, collinearity or empty cells can occur;
- ► The ordering of the rows and columns can be meaningful, e.g., as in longitudinal data;
- ► The relation between Y_j and predictors Y_{-j} can be complex, e.g., nonlinear, or subject to censoring processes;
- Imputation can create impossible combinations, such as pregnant grandfathers.

Imputation of monotone pattern

Schedule

Slot	Time	What	Topic
Α	16.30-17.30	L	Generating imputations
	17.30-17.45		COFFEE/TEA
В	17.45-18.15	L	Workflows, special topics
C	18.15-19.00	Р	Three vignettes

Missing data patterns

Imputation of monotone pattern

Imputation by fully conditional specification

Imputation by fully conditional specification

Imputation by fully conditional specification

Imputation by fully conditional specification

Imputation by fully conditional specification - next iteration

Imputation by fully conditional specification - next iteration

How many iterations?

- ► Quick convergence
- ▶ 5–10 iterations is adequate for most problems
- ▶ More iterations is λ is high
- ► Inspect the generated imputations
- ► Monitor convergence to detect anomalies

Non-convergence

Convergence

Number of iterations

Watch out for situations where

- \triangleright the correlations between the Y_i 's are high;
- the missing data rates are high; or
- constraints on parameters across different variables exist.

Workflow after generating imputation

```
incomplete data imputed data analysis results pooled results

mice() with() pool()

data frame mids mira migo
```

Workflow 1: mids workflow using saved objects

```
# mids workflow using saved objects
library(mice)
imp <- mice(nhanes, seed = 123, print = FALSE)
fit <- with(imp, lm(chl ~ age + bmi + hyp))
est1 <- pool(fit)</pre>
```

Workflow 2: mids workflow using pipes

```
# mids workflow using pipes
library(magrittr)
est2 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  with(lm(chl ~ age + bmi + hyp)) %>%
  pool()
```

Workflow3: mild workflow using base::lapply

Multiple imputation in mice

```
# mild workflow using base::lapply
est3 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  lapply(lm, formula = chl ~ age + bmi + hyp) %>%
  pool()
```

Workflow4: mild workflow using pipes and base::Map

```
# mild workflow using pipes and base::Map
est4 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  Map(f = lm, MoreArgs = list(f = chl ~ age + bmi + hyp)) ;
  pool()
```

Workflow5: mild workflow using purrr::map

```
# mild workflow using purrr::map
library(purrr)
est5 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  map(lm, formula = chl ~ age + bmi + hyp) %>%
  pool()
```

Workflow6: long workflow using base::by

```
# long workflow using base::by
est6 <- nhanes %>%
mice(seed = 123, print = FALSE) %>%
mice::complete("long") %>%
by(as.factor(.$.imp), lm, formula = chl ~ age + bmi + hypool()
```

Workflow7: long workflow using a dplyr list-column

```
# long workflow using a dplyr list-column
library(dplyr)
est7 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("long") %>%
group_by(.imp) %>%
do(model = lm(formula = chl ~ age + bmi + hyp, data = .))
as.list() %>%
.[[-1]] %>%
pool()
```

Special topic 1: Practicalities

Which predictors?

- Include all variables that appear in the complete-data model, including transformations and interactions
- ▶ Include the variables that are related to the nonresponse
- Include variables that explain a considerable amount of variance
- ► Remove variables that have too many missing values within the subgroup of incomplete cases

Functions mice::quickpred() and mice::flux()

Special topic 2: Multilevel data

Derived variables

- ratio of two variables
- sum score
- ▶ index variable
- quadratic relations
- interaction term
- conditional imputation
- compositions

Imputation of multilevel data

- ► Avoid multilevel imputation . . . if you can
- ► Considerably more complex than *flat-file* imputation
- ▶ One of the hot spots in statistical technology
- Standard multilevel model does not deal with missing predictors
- ► Know the complete-data statistical analysis

How to set up the imputation model

- 1. MAR or MNAR
- 2. Form of the imputation model
- 3. Which predictors
- 4. Derived variables
- 5. What is m?
- 6. Order of imputation
- 7. Diagnostics, convergence

Derived variables: summary

- Derived variables pose special challenges
- ▶ Plausible values should respect data dependencies
- ▶ If you can, create derived variables after imputation
- ▶ Best option: Probably model-based imputation
- ► More work needed to verify

brandsma data

- Brandsma and Knuver. Int J Ed Res. 1989.
- Extensively discussed in Snijders and Bosker (2012), 2nd ed.
- ▶ 4106 pupils, 216 schools, about 4% missing values

```
library(mice)
head(brandsma[, c(1:6, 9:10, 13)], 3)
```

```
## sch pup iqv iqp sex ses lpr lpo den
## 1 1 1 -1.35 -3.72 1 -17.67 33 NA 1
## 2 1 2 2.15 3.28 1 NA 44 50 1
## 3 1 3 3.15 1.27 0 -4.67 36 46 1
```

brandsma data subset

d <- brandsma[, c("sch", "lpo", "sex", "den")] head(d, 2)</pre>

- ## sch lpo sex den ## 1 1 NA 1 1 ## 2 1 50 1 1
- \triangleright sch: School number, cluster variable, C=216;
- ▶ 1po: Language test post, outcome at pupil level;
- ▶ sex: Sex of pupil, predictor at pupil level (0-1);
- ▶ den: School denomination, predictor at school level (1-4).

Level 2 equations: interpretation

The first level-2 model

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \mathrm{den}_c + u_{0c},$$

describes the variation in the mean test score between schools as a function of

- ▶ the grand mean γ_{00} ,
- \blacktriangleright a school-level effect γ_{01} of denomination, and a
- **>** school-level random residual $u_{0c} \sim N(0, \sigma_{u_0}^2)$

The second level 2 model

$$\beta_{1c} = \gamma_{10}$$
,

specifies β_{1c} as a fixed effect equal in value to γ_{10}

Univariate missing, level-1 outcome

Model of scientific interest

Predict 1po from the

- ► level-1 predictor sex
- ▶ level-2 predictor den

Unknown parameters

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (4)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{5}$$

$$\beta_{1c} = \gamma_{10} \tag{6}$$

The unknowns to be estimated are the fixed parameters:

- γος
- $ightharpoonup \gamma_{01}$, and
- γ₁₀,

and the variance components:

- $ightharpoonup \sigma_{\epsilon}^2$ and
- $ightharpoonup \sigma_{u_0}^2$.

Univariate missing, level-1 predictor, sporadically missing

Level notation - Bryk and Raudenbush (1992)

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (1)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{2}$$

$$\beta_{1c} = \gamma_{10} \tag{3}$$

- ightharpoonup lpo_{ic} is the test score of pupil i in school c
- ightharpoonup sex_{ic} is the sex of pupil i in school c
- ightharpoonup den_c is the religious denomination of school c
- $\triangleright \beta_{0c}$ is a random intercept that varies by cluster
- \triangleright β_{1c} is a sex effect, assumed to be the same across schools.
- $ightharpoonup \epsilon_{ic} \sim \mathcal{N}(0,\sigma_{\epsilon}^2)$ is the within-cluster random residual at the pupil level

Where are the missings?

In single level data, missingness may be in the outcome and/or in the predictors $% \left(1\right) =\left(1\right) \left(1\right)$

With multilevel data, missingness may be in:

- 1. the outcome variable;
- 2. the level-1 predictors;
- the level-2 predictors;
- 4. the class variable.

Univariate missing, level-1 predictor, systematically missing

Univariate missing, level-2 predictor

Theoretical problem with FCS

Conditional expectation of sex_{ic} in a random effects model depends on

- ▶ lpo_{ic},
- ightharpoonup Tpo_i, the mean of cluster i, and
- n_i, the size of cluster i.

Resche-Rigon & White (2018) suggest the imputation model

- ▶ should incorporate the cluster means of level-1 predictors
- ▶ be heteroscedastic if cluster sizes vary

Methods for multilevel imputation in mice

Table 7.4: Overv	functions to perform univariate multilevel imputation.	
Package	Method	Description
Level-2		
mice	2lonly.mean	level-2 manifest class mean
miceadds	21.groupmean	level-2 manifest class mean
miceadds	21.latentgroupmean	level-2 latent class mean
mice	2lonly.norm	level-2 class normal
mice	2lonly.pmm	level-2 class pmm
miceadds	2lonly.function	level-2 class, generic
miceadds	ml.lmer	≥ 2 levels, generic

Multivariate missing

Methods for multilevel imputation in mice

Table 7.2: Overview of methods to perform univariate multilevel imputation of continuous data. Each of the methods is available as a function called mice.impute.[method] in the specified R package.

Package	Method	Description
Continuous		
mice	2l.lmer	normal, lmer
mice	21.pan	normal, pan
miceadds	21.continuous	normal, lmer , blme
micemd	21.jomo	normal, jomo
micemd	2l.glm.norm	normal, lmer
mice	21.norm	normal, heteroscedastic
micemd	21.2stage.norm	normal, heteroscedastic
Generic		
miceadds	21.pmm	pmm, homoscedastic, lmer
micemd	21.2stage.pmm	pmm, heteroscedastic, mymeta

Wrap up

Fully conditional specification

$$\dot{\text{1po}}_{ic} \sim N(\beta_0 + \beta_1 \text{den}_c + \beta_2 \text{sex}_{ic} + u_{0c}, \sigma_{\epsilon}^2)$$
 (7)

$$\dot{\text{sex}}_{ic} \sim N(\beta_0 + \beta_1 \text{den}_c + \beta_2 \text{lpo}_{ic} + u_{0c}, \sigma_{\epsilon}^2)$$
 (8)

Methods for multilevel imputation in mice

Table 7.3: Methods to perform univariate multilevel imputation of missing discrete outcomes. Each of the

Package	Method	Description
Binary		
mice	21.bin	logistic, glmer
miceadds	21.binary	logistic, glmer
micemd	21.2stage.bin	logistic, mvmeta
micemd	21.glm.bin	logistic, glmer
Count		
micemd	21.2stage.pois	Poisson, mvmeta
micemd	21.glm.pois	Poisson, glmer
countimp	21.poisson	Poisson, glmmPQL
countimp	21.nb2	negative binomial, glmmadmb
countimp	2l.zihnb	zero-infl neg bin, glmmadmb

Summary

- ► Impact of missing data
- Ad-hoc techniques
- ► Theory of multiple imputation
- Generating imputations
- Workflows
- ► Specification of imputation model
- ► Multilevel data