<u>Dashboard</u> / <u>My courses</u> / <u>PSPP/PUP</u> / <u>Experiments based on Lists and its operations.</u> / <u>Week6 Coding</u>

Started on	Thursday, 23 May 2024, 2:29 PM
State	Finished
Completed on	Friday, 24 May 2024, 8:31 AM
Time taken	18 hours 2 mins
Marks	10.00/10.00
Grade	100.00 out of 100.00

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Complete the program to count frequency of each element of an array. Frequency of a particular element will be printed once.

Sample Test Cases

Test Case 1

Input

7

23

45

23

56

45

23 40

Output

23 occurs 3 times 45 occurs 2 times 56 occurs 1 times 40 occurs 1 times

```
1 ⋅ def count_freq(arr):
 2
        freq_dict={}
 3 ▼
        for element in arr:
 4 •
            if element in freq_dict:
 5
                freq_dict[element]+=1
 6 •
            else:
                freq_dict[element]=1
7
8 •
        for key in (freq_dict.keys()):
            print(f"{key} occurs {freq_dict[key]} times")
10 n=int(input())
11 | arr=[]
12 • for _ in range(n):
13
        arr.append(int(input()))
14
15 count_freq(arr)
```

	Input	Expected	Got	
~	7	23 occurs 3 times	23 occurs 3 times	~
	23	45 occurs 2 times	45 occurs 2 times	
	45	56 occurs 1 times	56 occurs 1 times	
	23	40 occurs 1 times	40 occurs 1 times	
	56			
	45			
	23			
	40			

Correct

Question 2 Correct

Given an array of numbers, find the index of the smallest array element (the pivot), for which the sums of all elements to the left and to the right are equal. The array may not be reordered.

Example

arr=[1,2,3,4,6]

Mark 1.00 out of 1.00

- the sum of the first three elements, 1+2+3=6. The value of the last element is 6.
- · Using zero based indexing, arr[3]=4 is the pivot between the two subarrays.
- The index of the pivot is 3.

Constraints

- $\cdot \qquad 3 \le n \le 10^5$
- $1 \le arr[i] \le 2 \times 10^4, \text{ where } 0 \le i < n$
- It is guaranteed that a solution always exists.

The first line contains an integer n, the size of the array arr.

Each of the next n lines contains an integer, arr[i], where $0 \le i < n$.

Sample Case 0

Sample Input 0

4

1

2

3

Sample Output 0

2

Explanation 0

- The sum of the first two elements, 1+2=3. The value of the last element is 3.
- Using zero based indexing, arr[2]=3 is the pivot between the two subarrays.
- The index of the pivot is 2.

Sample Case 1

Sample Input 1

3

1

2

1

Sample Output 1

1

Explanation 1

- The first and last elements are equal to 1.
- · Using zero based indexing, arr[1]=2 is the pivot between the two subarrays.
- · The index of the pivot is 1.

For example:

Input	Result
4	2
1	
2	
3	
3	
3	1
1	
2	
1	

Answer: (penalty regime: 0 %)

```
n = int(input())
2 | arr = []
3 | for _ in range(n):
        arr.append(int(input()))
 5
 6
7
        total_sum = sum(arr)
8
        left_sum = 0
9 •
        for i in range(len(arr)):
10
            total_sum -= arr[i]
11
             if (left_sum == total_sum and left_sum!=0):
12 -
13
14
                 print(i)
15
            left_sum += arr[i]
16
17
18
```

	Input	Expected	Got	
~	4	2	2	~
	1			
	2			
	3			
	3			
~	3	1	1	~
	1			
	2			
	1			

Passed all tests! 🗸

Correct

Question 3
Correct
Mark 1.00 out of 1.00
Consider a program to insert an element / item in the sorted array. Complete the logic by filling up required code in editable section. Consider an array of size 10. The eleventh item is the data is to be inserted.
Sample Test Cases
Test Case 1
Input
1 3 4 5 6 7 8 9 10 11 2
Output
ITEM to be inserted:2 After insertion array is: 1 2 3 4 5 6 7 8 9 10 11
Test Case 2
Input
11 22 33 55 66 77 88 99 110

Output

```
ITEM to be inserted:44
After insertion array is:
11
22
33
44
55
66
77
88
99
110
120
```

```
1 arr = []
   #print("Enter the sorted array (size 10):")
3 * for _ in range(10):
       arr.append(int(input()))
 6 item = int(input("ITEM to be inserted:"))
7 print(item)
8 index = 0
9 while index < len(arr) and arr[index] < item:
10
       index += 1
   arr.insert(index, item)
11
12
print("After insertion array is:")
14 v for element in arr:
       print(element)
```

	Input	Expected	Got	
~	1	ITEM to be inserted:2	ITEM to be inserted:2	~
	3	After insertion array is:	After insertion array is:	
	4	1	1	
	5	2	2	
	6	3	3	
	7	4	4	
	8	5	5	
	9	6	6	
	10	7	7	
	11	8	8	
	2	9	9	
		10	10	
		11	11	

	Input	Expected	Got	
~	11	ITEM to be inserted:44	ITEM to be inserted:44	~
	22	After insertion array is:	After insertion array is:	
	33	11	11	
	55	22	22	
	66	33	33	
	77	44	44	
	88	55	55	
	99	66	66	
	110	77	77	
	120	88	88	
	44	99	99	
		110	110	
		120	120	

Correct

${\it Question}~4$

Correct

Mark 1.00 out of 1.00

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the <u>list</u>, sorted ascending. If there is no p^{th} element, return 0.

Example

```
n = 20
```

p = 3

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Constraints

```
1 \le n \le 10^{15}
```

$$1 \le p \le 10^9$$

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

Sample Case 0

Sample Input 0

10

3

Sample Output 0

5

Explanation 0

Factoring n = 10 results in $\{1, 2, 5, 10\}$. Return the $p = 3^{rd}$ factor, 5, as the answer.

Sample Case 1

Sample Input 1

10

5

Sample Output 1

0

Explanation 1

Factoring n = 10 results in $\{1, 2, 5, 10\}$. There are only 4 factors and p = 5, therefore 0 is returned as the answer.

Sample Case 2

Sample Input 2

1

1

Sample Output 2

1

Explanation 2

Factoring n = 1 results in {1}. The p = 1st factor of 1 is returned as the answer.

For example:

Input	Result
10	5
10 5	0
1	1

```
1 v def factors_sorted(n, p):
2
       factors = []
        for i in range(1, int(n ** 0.5) + 1):
3 ▼
            if n % i == 0:
4 ▼
               factors.append(i)
5
               if i != n // i:
6 ₹
7
                   factors.append(n // i)
       factors.sort()
8
9 •
       if p > len(factors):
10
           return 0
11
       return factors[p - 1]
   n = int(input())
12
p = int(input())
print(factors_sorted(n, p))
```

	Input	Expected	Got	
~	10	5	5	~
~	10 5	0	0	~
~	1	1	1	~

Passed all tests! 🗸

Correct

Qu	estion 5
	rrect
Ма	rk 1.00 out of 1.00
(Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i!= j.
I	nput Format
-	. First line is number of test cases T. Following T lines contain:
2	2. N, followed by N integers of the array
3	3. The non-negative integer k
(Dutput format
F	Print 1 if such a pair exists and 0 if it doesn't.
E	example exampl
I	nput
-	
3	
-	
3	
5	
2	l e e e e e e e e e e e e e e e e e e e
(Dutput:
-	
I	nput
-	
3	
-	
3	
ç	99
(Dutput

For example:

0

Input	Result
1	1
3	
1	
3	
5	
4	
1	0
3	
1	
3	
5	
99	

```
1 v def find_pair_with_difference(arr, k):
 2
        seen = set()
3 ▼
        for num in arr:
            if num - k in seen:
4 ▼
5
               return 1
6
            seen.add(num)
7
        return 0
8
9
    T = int(input())
10
11 v for _ in range(T):
12
        N = int(input())
13
        arr = []
14 🔻
        for _ in range(N):
15
           arr.append(int(input()))
        k = int(input())
16
17
        # Check if pair with difference k exists
18
19
        result = find_pair_with_difference(arr, k)
        print(result)
20
```

	Input	Expected	Got	
~	1	1	1	~
	3			
	1			
	3			
	5			
	4			
~	1	0	0	~
	3			
	1			
	3			
	5			
	99			
	1	I	1	1

Passed all tests! ✓

Correct

```
Question 6
Correct
Mark 1.00 out of 1.00
```

```
Write a Python program to Zip two given lists of lists.
Input:
m:row size
n: column size
list1 and <u>list</u> 2: Two lists
Output
Zipped <u>List</u>: <u>List</u> which combined both list1 and list2
Sample test case
Sample input
2
2
1
3
5
7
2
4
6
8
Sample Output
[[1, 3, 2, 4], [5, 7, 6, 8]]
```

```
1 v def zip_lists(list1, list2):
        zipped_list = list(zip(list1, list2))
 2
 3
        return [sum(sublist, []) for sublist in zipped_list]
 4
 5
    # Input
 6
   m = int(input())
 7
    n = int(input())
8
   list1 = []
9
10 v for _ in range(m):
        sublist = []
11
12 •
        for _ in range(n):
13
            sublist.append(int(input()))
14
        list1.append(sublist)
15
16
    list2 = []
17 •
    for _ in range(m):
18
        sublist = []
        for _ in range(n):
19
            sublist.append(int(input()))
20
21
        list2.append(sublist)
22
23
   # Output
24  zipped_list = zip_lists(list1, list2)
25 print(zipped_list)
```

	Input	Expected	Got	
~	2	[[1, 2, 5, 6], [3, 4, 7, 8]]	[[1, 2, 5, 6], [3, 4, 7, 8]]	~
	2			
	1			
	2			
	3			
	4			
	5			
	6			
	7			
	8			

Correct

```
Question 7
Correct
Mark 1.00 out of 1.00
```

Write a Python program to check if a given <u>list</u> is strictly increasing or not. Moreover, If removing only one element from the <u>list</u> results in a strictly increasing <u>list</u>, we still consider the <u>list</u> true

Input:

n: Number of elements

List1: List of values

Output

Print "True" if <u>list</u> is strictly increasing or decreasing else print "False"

Sample Test Case

Input

7

1

2

3

0

4

5 6

Output

True

```
1 v def is_strictly_increasing(lst):
 2 🔻
        for i in range(len(lst) - 1):
 3 ▼
            if lst[i] >= lst[i + 1]:
 4 🔻
                if i = 0 or lst[i - 1] < lst[i + 1] or i = len(lst) - 2 or lst[i] < lst[i + 2]:
 5
                    return True
 6 🔻
                else:
 7
                    return False
 8
        return True
    n = int(input())
10  lst = [int(input()) for _ in range(n)]
11 | if is_strictly_increasing(lst):
        print("True")
12
13 v else:
14
        print("False")
```

	Input	Expected	Got	
~	7	True	True	~
	1			
	2			
	3			
	0			
	4			
	5			
	6			
~	4	True	True	~
	2			
	1			
	0			
	-1			
			I	

Correct

Mark 1.00 out of 1.00 Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate) elements present in the given array. Input Format: First line take an Integer input from stdin which is array length n. Second line take n Integers which is inputs of array. Output Format: Print the Distinct Elements in Array in single line which is space Separated Example Input: 5 1 2 2 3 4 Output: 1234 Example Input: 6 1 1 2 2 3 3 Output: 123 For example:

Input	Result			
5	1	2	3	4
1				
2				
2				
3				
4				
6	1	2	3	
1				
1				
2				
2				
3				
3				

Question **8**Correct

	Input	Expected	Got	
~	5	1 2 3 4	1 2 3 4	~
	1			
	2			
	2			
	3			
	4			
~	6	1 2 3	1 2 3	~
	1			
	1			
	2			
	2			
	3			
	3			

Passed all tests! 🗸

Correct

```
Question 9
Correct
Mark 1.00 out of 1.00

Write a program to print all the locations at which a particular element (taken as input) is found in a <u>list</u> and also print the total number of times it occurs in the <u>list</u>. The location starts from 1.

For example, if there are 4 elements in the array:
```

5 6

If the element to search is 5 then the output will be:

5 is present at location 15 is present at location 35 is present 2 times in the array.

Sample Test Cases

Test Case 1

Input

4

5

5 7

6

5 7

5

Output

5 is present at location 1.
5 is present at location 3.
5 is present 3 times in the array

5 is present 2 times in the array.

Test Case 2

Input

5

67

80

45 97

100

50

Output

50 is not present in the array.

```
1 v def find_element_locations(lst, element):
2     locations = []
3     count = 0
```

```
for i, num in enumerate(lst, start=1):
5 🔻
            if num == element:
6
               locations.append(i)
7
                count += 1
8
       return locations, count
9
10
   n = int(input())
   lst = [int(input()) for _ in range(n)]
11
   element = int(input())
12
13
    locations, count = find_element_locations(lst, element)
14
15
16 v if count == 0:
       print(f"{element} is not present in the array.")
17
18 v else:
        for loc in locations:
19 🔻
            print(f"{element} is present at location {loc}.")
20
        print(f"{element} is present {count} times in the array.")
21
```

	Input	Expected	Got	
~	4	5 is present at location 1.	5 is present at location 1.	~
	5	5 is present at location 3.	5 is present at location 3.	
	6	5 is present 2 times in the array.	5 is present 2 times in the array.	
	5			
	7			
	5			
~	5	50 is not present in the array.	50 is not present in the array.	~
	67			
	80			
	45			
	97			
	100			
	50			

Correct

Marks for this submission: 1.00/1.00.

11

```
Question 10
Correct
Mark 1.00 out of 1.00
```

Output is a merged array without duplicates.

Input Format

N1 - no of elements in array 1

Array elements for array 1

N2 - no of elements in array 2

Array elements for array2

Output Format

Display the merged array

Sample Input 1

Sample Output 1

10

123456910

```
1 v def merge_and_remove_duplicates(arr1, arr2):
 2
        merged_set = set(arr1 + arr2)
 3
        merged_list = sorted(list(merged_set))
 4
        print(*merged_list)
5
6
   # Input
7
   n1 = int(input())
8
   arr1 = []
9 v for _ in range(n1):
10
        arr1.append(int(input()))
11
12 | n2 = int(input())
13 arr2 = []
14 v for _ in range(n2):
15
        arr2.append(int(input()))
16
    # Output
17
18 merge_and_remove_duplicates(arr1, arr2)
```

	Input	Expected Got		
~	5	1 2 3 4 5 6 9 10 1 2 3 4 5 6 9 10		~
	1			
	2			
	3			
	6			
	9			
	4			
	2			
	4			
	5			
	10			
~	7	1 3 4 5 7 8 10 11 12 13 22 30 35 1 3 4 5 7 8 10 11 12 13	22 30 35	~
	4			
	7			
	8			
	10			
	12			
	30			
	35			
	9			
	1			
	3			
	4			
	5			
	7			
	8 11			
	11			
	22			
	22			

Correct

Marks for this submission: 1.00/1.00.

■ Week6_MCQ

Jump to...

Tuples ►