

Best Practices using Synopsys Fusion Technology to Achieve High-performance, Energy Efficient implementations of the latest Arm® Processors in TSMC 7-nanometer FinFET (7FF) Process Technology

Leah Schuth - Arm Mike Montana - Synopsys October 2019

Agenda

Challenges on the Horizon

Synopsys Fusion Compiler

Deploying Fusion Compiler for Arm CPU

Technology trends that will redefine all industries

Industry key words: AI and 5G

Industry landscape: What trends will drive the industry

A

- Al is everywhere!
- Al cuts across applications spaces
- Projected continued growth across all applications

Source : Tractica (2018)

5**G**

- Still in early phase of deployment
 - Starting with 5G infrastructure
- Initial 5G smartphones from 2019
 - With a slow ramp to follow

5G connections worldwide, 2018-2025 Source: CCS Insight Market Forecast: 5G Connections, Worldwide, 2018-2015

Breakthrough performance for always-on, always-connected

Continuing the trajectory of increased compute performance for AI, ML and premium mobile

Cortex-A76: High Performance Implementation: 3+ GHz in 7nm

Cortex-A77: Up to 20% improved IPC performance

Hercules: Continuing performance and efficiency leadership

Supports the flexibility of Arm® DynamIQTM big.LITTLETM

Infrastructure: 5G, cloud to edge foundation

Arm NeoverseTM N1 CPU: Significantly exceeding performance commitments

^{*}Spec int 2017 estimate, base, rate=1

Infrastructure: 5G, cloud to edge foundation

Arm NeoverseTM N1 CPII. Significantly exceeding performance commitments

News Release

Synopsys and Arm Collaborate to Enable Tapeouts by Early **Adopters of Arm's Latest Premium Mobile Processors**

Synopsys Design and Verification Platforms and DesignWare Interface IP Enable Optimized PPA and Faster Time-to-Market for Smartphones, Laptops, and Other Mobile Devices

MOUNTAIN VIEW, Calif., May 26, 2019

Highlights:

- Synopsys' Fusion Design Platform enables faster implementation with optimized PPA for Arm processors
- QuickStart Implementation Kit (QIK) using Arm Artisan Physical IP and POP IP, including scripts and reference guide. available today from Synopsys for new Arm Cortex-A77 processor in 7nm process technology
- Tapeout success by early adopters of Arm Cortex-A77 CPU and Mali-G77 GPU
- Synopsys' Verification Continuum Platform accelerates verification closure and quality for Arm-based designs
- DesignWare Interface IP, including controllers and PHY for USB, DDR, PCI Express, MIPI, and mobile storage, enables rapid development of mobile Arm-based SoCs

Synopsys' Fusion Design Platform Enables Successful **Tapeouts of Arm's Latest CPU and GPU**

© 2019 Synopsys, Inc. 41

Arm + Synopsys Collaborating for 25+ Years

arm

Building on the previous successes of the Cortex-A76 and the Neoverse N1 platform, early engagement with Synopsys on our new suite of IP has delivered complete solutions to enable the next generation of Armbased mobile devices.

> Ian Smythe Vice President of Marketing Client Line of Business

e, Secure IP

and

perscale to

VERSE

© 2019 Synopsys, Inc. 41

16nm

Cosmos

Platform

*Spec int 2017 estimate, base, rate=1

Each generatio 2018

Translating Arm RTL benefits into silicon

HOW TO

Translate
the year-over-year
performance
improvements of
>15% for compute
through 2020 in silicon

?

Optimize implementation for new cores and advanced process nodes

Ensure fast turnaround time such that increased productivity of new Arm cores

?

Arm POP IP is optimized Arm core implementation

POP IP Components

Comprehensive support and services

Transforming markets with optimized Arm Physical IP

Mobile and Consumer

- High performance
- Low power
- Cost (area) sensitive

Flexible performance requirements

Mainstream

- 16/12nm
- 28/22nm

Premium

• 7/5nm

Networking and Servers

- High performance
- Fault tolerance
- Long lifetime
- Continuous operation

Networking

- 7/5nm
- 16nm
- 28/22nm

Server

• 7/5nm

Arm Artisan on TSMC 7FF platform

Engineered for Success

- POP IP for best-in-class PPA for Cortex-55, Cortex-A75, Cortex-A76 and Neoverse N1
- Optimized Fast Cache Memory
 Instances for highest performance
- Memory IP designed to minimize variation
- Flexible power grids to reduce IR drop and improve quality of implementation
- Small footprint programmable GPIO

Arm differentiation in logic

M0 input pins

• Allows easy connection from M1/M2 to cell input (M0) pin

Focus on pin-access

• At least two hit-points per pin

Support for multiple colored EEq GDS variants

- Allows closer cell-placement increasing utilization
- One common liberty file

Flexible power-grid

 Multiple M1/M2/M3 power-grids options supported to trade-off routing density and EM/IR requirements

Benefits of Arm memory compilers

Design Considerations

Internal routing optimized for 7FF technology overcomes increased via resistivity

Cell-based memory development methodology reduces variation and improves manufacturability

Compile-time features

Dual operation mode to trade-off performance and power

Multiple progressive power modes including retention

Full scan on input pins to improve testability for high reliability applications

Post silicon assistance

Programmable Extra Margin Adjust pins to tune post-silicon performance

Implementation challenges

Challenges present for advanced nodes and cores

colorless routing

Advanced nodes 16nm FinFETs Placement rules **DPT-aware**

Latest Arm Cores

- Concurrent configuration of CPU with DynamIQ™ Shared Unit (DSU)
- Asynchronous configuration

7nm

Via ladders

rules

Power grid

Addressing

variation

challenges

New placement

- Long channels between
 DSU and CPU slaves
- Private L2 cache
- Architectural clock gating

Arm IP enables designs using Synopsys' Fusion Design PlatformTM

Translate Arm RTL benefits into silicon

Arm POP IP and Artisan physical IP

 Deliverables support Fusion Design Platform ...and more

Simulation	VCS			
Synthesis	Design Compiler family			
Design planning, P&R	ICC, ICCII			
STA and SI/noise signoff	PrimeTime			
Power Analysis & IR drop signoff	Power Compiler, PrimeTime PX, RedHawk			
DFT	TetraMAX, SMS			
Power intent	UPF			

Fusion Design Platform

Agenda

Challenges on the Horizon

Synopsys Fusion Compiler

Deploying Fusion Compiler for Arm CPU

Introducing Fusion Compiler

Architected to Deliver Fastest Convergence and Best QoR

Innovative RTL-to-GDSII product with fusion of Synthesis and Place-and-Route

Unified Data Model, Single Cockpit and
Infused Industry Golden Sign-off delivers most
Convergent Design Flow Possible

20% Better Quality-of-Results Faster Convergence and TAT

Fusion Compiler on Arm's Latest Performance-Optimized CPUs

Design Details				
Routing	13 Layer + AP w/ routing on M1-M11			
Libraries/ memories	Arm POP IP with Artisan 7nm SVT/LVT/ULVT C11/C8 standard cell libs			
PVT corners MCMM	1 or 2 setup corners, power corner, hold corner			
DFT Strategy	DFT with scan compression			
UPF	3 power domains with level shifters and enable level shifter required			

Hercules

Arm Neoverse N1 CPU

Deimos

Fusion Compiler Highlights

The Fastest and Most Convergent RTL-to-GDSII Design Solution

LEADING FOUNDATIONAL TECHNOLOGIES

COMMON OPTIMIZATION

THE FUSION DIFFERENTIATION

Ultra-Scalable Data-Model
Common Engines
Golden Sign-off Backbone

- Reduced logic levels
- New placement technology
- Ram/Register skewing
- CCD everywhere

Platform-Wide Technology Infusions for OOTB QoR and Productivity: ECO, Signoff, IR, Test

Deployment of Fast, Novel Synthesis Technologies

Physically Optimized Synthesis to Deliver Optimum Throughput and Highest PPA

Congestion-Aware Mux Re-synthesis

- ► Automatically restructures AO-based trees using mux cells
- ► Defers the decode/recode logic along the mux tree
- ▶ Delivers faster TTR and improved DRC convergence

PPA-Aware DesignWare Re-selection

- ► Post-placement architecture re-selection based on design context
- ▶ Delivers optimum PPA

Technologies to Reduce Logic Depth of Complex Datapath

- Map to speed from elaborate and "preserve" through flow
- Intentional skew on multiplier sum registers
- Intelligent path groups created on sub-hierarchies of VX multiplier
 allow optimizer to work on overlapping paths to final SUM registers
- Logic level costing prototype in FC RTL Synthesis (wns gain vs logic level change)
- Additional compile directives for Arm critical RTL modules
 - infer muxops, 1-bit adders, use wide cells

Better in every

Block Level Testcase	Run Time	Inst CNT	Area	WNS	TNS	% long paths	Top 500 Paths
Baseline	2:52	572k	89932	-28p	-10335n	19.86	20.60
New	3:13	537k	85773	-1p	-61n	18.26	17.61

Presented at SNUG 2018

Arm Core-Specific Placement Challenges

Sub-module Data Flow

Use DFA to Identify Data Flow & Guide Placement to Get Best FMAX

- For absolute best FMAX look into processor data flow
 - OOTB placement is good, but can be further tuned
 - Guide module placement to better align with expected data flow
- Use ICC II Data Flow Analysis (DFA) to visualize connectivity
 - Infer relative locations of cell groups with respect to RAMs and main functional modules
 - Memory-aligned sequential groups
 - Floating Point Unit (FPU) sub-modules
 - Instruction Execution pipeline
 - L1 Data Load and Store registers

arm synopsys

SNUG 2018

Copyright © 2018 by Synopsys. All rights reserved.

Low Effort Bounds

Guiding Placement of Non-critical Logic

Non-critical debug logic being pulled into channel locate debug logic

Non-critical debug logic placed out of the channel

set DEBUG [filter_collection [get_cells -hier -filter "is_hierarchical == false"] "full_name =~ *DT*/*"]

create_bound -name DT_bound -type soft -boundary {{180.8 526.2} {242.1 562.8}} [get_cells \$ DEBUG] -effort low

New Technology For Guiding Placement

Placement Attractions, Available in 2019

- A new placement constraint that allows the user to tell the placer where groups of cells should be in respect to each other or a location
- Allows the user to have more particular control over general placement location
- Allows the user to prevent fragmentation of modules

Commands	Description
create_placement_attraction	Advise coarse placer on relative placement of modules
remove_placement_attraction	Removes placement attractions
add_to_placement_attraction	Assigns cells to a placement attraction
remove_from_placement_attraction	Unassigns cells from a placement attraction
get_placement_attractions	Find and return existing placement attraction objects
report_placement_attractions	Reports placement attractions

Placement Attractions on Arm CPU

Guiding Placement of Logic to Anchor Point

Critical RAM interface logic being pulled into channel

create_placement_attraction between RAM and logical module

Critical RAM interface logic now held closer to RAM

set abc_cells [get_flat_cells u_abc/*]

set abc_rams [get_flat_cells u_ram/* \
-filter "is_hard_macro==true"]

set ram_mask [create_geo_mask \$abc_rams]

create_placement_attraction -name abc_near_ram \
-region [get_attribute \$ram_mask bbox] \$abc_cells

Placement Attractions on Arm CPU

Guiding Relational Placement of Critical Logic

Default placement of complex arithmetic logic

Define placement attraction to hold modules together and relate them

set abc_cells [get_flat_cells u_add/u_abc/*]

set xyz_cells [get_flat_cells u_add/u_xyz/*]

create_placement_attraction -name abc_xyz \
"\$abc_cells \$xyz_cells"

set all_add [get_flat_cells u_add/*]

create_placement_attraction -name all_add \
-effort low \$all_add

Critical modules are held together and relationship between modules more regular

Benefits of Placement Attractions on Arm CPU Flows

- Placement of critical logic less sensitive to changes in the RTL or Floorplans
- Creation of placement attractions simplified
 - Exact size/shape not required
- "Bound management" is not required
 - Placement attractions can stay in place thru entire flow
 - Logic that needs to move to meet critical timing has the freedom to do so
- Placement attractions can be used starting at initial synthesis thru route_opt
- Placement attractions for Arm cores set automatically

Metric	Baseline	With Placement Attractions	% improvement after place_opt
WNS	-0.123	-0.083	32%
TNS	-296.3	-251.6	15%
NVP	22488	21157	5%

Optimize Timing and Power with CCD Everywhere

Improved Clock Trees with Arc-Based Global-CCD Engine

What...

- Useful skew variables are modeled on delay segments instead of clock end points
- Clock structural information is directly modeled in the problem formulation and solved naturally with CG solver

• Why...

- Easier to implement
 - Each arc variable can have its own implementable delay range, coming directly from CTS core engines
- Better power/timing tradeoff
 - Solver can minimize sum of arc delay changed, corresponding to clock power
- Better hand-shaking with core CTS engines
 - Support feedback loop from CTS engines, and incrementally refine solution

Optimize Timing and Power with CCD Everywhere

CCD Everywhere Results

- 11% lower leakage
- 2% lower utilization
- Similar runtime
- Similar area
- Similar utilization

Arm Roadmap Demanding More from Collaboration

Fusion Compiler Collaboration Technologies

Agenda

Challenges on the Horizon

Synopsys Fusion Compiler

Deploying Fusion Compiler for Arm CPU

Synopsys QIK

Complete Implementation & Static Verification Flow for Advanced Arm Processors

- Recommended flow with scripts
 - Implementation, ECO, signoff, formal verification
- Flat flow for CPU
- Hierarchical flow for sub-system
- Presentation/cookbooks
- Support for 7nm and below

QIKs for Advanced Arm® Cores

Synopsys Reference Flows and Guides to Meet PPA Targets using Arm Artisan® IP

QIKs available to Arm-Synopsys customers, go to www.synopsys.com/Arm

QIKs + Fusion
Design
Platform

Flexible and Complete implementation & static verification flows

Utilizing the most advanced technologies available in Synopsys Fusion Compiler

Providing optimal PPA on Arm's advanced processors with Arm Artisan IP

Grm + Synopsys®

Collaborating more than 25 years to benefit our customers