COGNOMS:																											
NOM:															D	NI:] •	
empezar el que no hay bordes. Us de los reco automática	exame va tacho e un úni uadros,	n. Es ones ico co todo	crib ni b uadı o lo	a ur orro ro e qu	n solo ones n bla e ha	y qu nco ya f	rácto ue ca para uera	er p ada a se a d	oor car epar e el	recu ácto ar los	iadr er q os a es	o, e ued pell igno	n ma e enr idos y orado	yús nar / no . La	cula cad omb a id	as y lo d res enti	lo r entr con fica	nás o d npu ciói	clar e su esto n de	am reos si el al	ente cuad es e	e po dro el ca	osibl sin aso.	e. Es llega No e	s imp ar a t escri	oort oca ba f	tante ar los fuera
Problema	1. (3 p	unto	os)																								
Un procesa y una cache de instrucc es de 1 cicl	e de dat iones y	os de de 1	e 16 6by	KB o	cada para	una. la d	. Am le da	tos	s ca s. La	che:	s tie cuei	nen ncia	4 vía del p	s y	un t	tam	año	de	bloc	ļue	de c	ach	ne d	e 32	byte	s pa	ara la
Se ejecuta instruccion realizan un 1 ciclo y el	es de s acceso	altos a da	ni tos	llam y qu	nadas ie tod	s a s dos l	subr Ios a	utii cce	nas) esos	. Al sor	ana lec	aliza :tura	r el d as de	cód tan	igo nañ	obs o 4	erva byte	amo es. E	os q Il tie	ue (mp	el 30 o de	0% e ac	de ceso	las i o a la	nstru	ıcci	ones
b) Calcu	la la tas	a de	fallo	os p	ara la	as in	stru	cci	one	s de	l có	digo	C.														
Los accesos datos acces que no hay	didos es	tán d	distr	ibui	dos d	de fo	orma	qι	ue ta	amp	осо	es p	oosib	le a	pro				•								
c) Calcu	la el CPI	al e	jecu	tar	el có	digo	C.																				

Al medir la energía de conmutación consumida por los accesos a memoria de nuestro procesador obtenemos 1nJ por cada acceso a la cache (datos o instrucciones) y 10nJ extra por cada fallo de cache.
d) Calcula la energía de conmutación consumida por la jerarquía de memoria al ejecutar el código C.
e) Calcula la potencia media de conmutación de la jerarquía de memoria .
Hemos recompilado el código C activando una optimización que reordena los datos para mejorar la localidad. Para el caso del código C los ha podido reorganizar de forma que se explote el máximo de localidad espacial. Es decir siempre que se lleve un bloque a cache se usarán todos los datos del bloque antes de ser expulsado de la misma.
f) Calcula el speed-up (ganancia de tiempo de ejecución) que obtendremos con esta optimización.

COGNOMS:																
NOM:								DI	NI:					L		_

Problema 2. (3,6 puntos)

Una **CPU** está conectada a una cache de instrucciones (\$I) y una cache de datos (\$D). El conjunto formado por **CPU+\$I+\$D** esta conectado a una memoria principal formada por un único módulo DIMM estándar de 8 GBytes. Este DIMM tiene 8 chips de memoria **DDR**-SDRAM (**Double Data Rate** Synchronous DRAM) de 1 byte de ancho cada uno. El DIMM esta configurado para leer/escribir ráfagas de 64 bytes (justo el tamaño de bloque de las caches). La latencia de fila es de 4 ciclos, la latencia de columna de 3 ciclos y la latencia de precarga de 1 ciclo.

En los siguientes cronogramas, indica la ocupación de los distintos recursos de la memoria DDR: bus de datos, bus de direcciones y bus de comandos. En todos los cronogramas supondremos que no hay ninguna página de DRAM abierta.

a) Rellena el siguiente cronograma para una lectura de un bloque de 64 bytes de la DDR.

En ocasiones, es posible que el conjunto **CPU+\$I+\$D** solicite múltiples bloques a la DDR (por ejemplo porque se produzca un fallo simultáneamente en **\$I** y en **\$D**). El controlador de memoria envía los comandos necesarios a la DDR-SDRAM de forma que ambos bloques sean transferidos lo más rápidamente posible y se maximice el ancho de banda. Rellena los siguientes cronogramas para la lectura de dos bloques de 64 bytes en función de la ubicación de los dos bloques involucrados. El objetivo es minimizar el tiempo total.

b) Ambos bloques están ubicados en el mismo banco y en la misma página .

c) Ambos bloques están ubicados en el mismo banco pero en páginas distintas.

d) Ambos bloques están ubicados en bancos distintos.

El conjunto **CPU+\$I+\$D** funciona a una frecuencia interna mayor que la memoria SDRAM. Un ciclo de la SDRAM corresponde a múltiples ciclos de CPU por lo que los ciclos de los apartados siguientes no se corresponden a los cronogramas anteriores.

Un programa P realiza $5x10^9$ accesos a datos, todos de 8 bytes. Sabemos que **\$D** tiene bloques de 64 bytes y políticas de escritura **copy back** + **write allocate**. Hemos medido que, durante la ejecución de P, **\$D** tiene una tasa de fallos del 10% y que el 25% de los bloques reemplazados tenían el *dirty bit* a 1.

e)	Calcula cuantos bytes lee \$D desde la DDR y cuantos bytes escribe \$D en la DDR.
Dad	do el siguiente fragmento de código:
	for (i=0; i <n; i++)<="" th=""></n;>
	suma = suma + v[i]; // v[i] es un vector de doubles (8 bytes)
	ódigo está almacenado en \$I, las variables i, N y suma están en registros y \$D está inicialmente vacía. Los elementos vector v son de 8 bytes y los bloques de \$D son de 64 bytes. La capacidad de \$D es de 8 Kbytes.
	mos ejecutado 2 veces consecutivas el mismo fragmento de código (para N = 1000) y hemos medido los ciclos de CPU ambas ejecuciones:
•	En la 1a ejecución el bucle tarda 55.000 ciclos.
•	En la 2a ejecución el bucle tarda 30.000 ciclos.
f)	Calcula el tiempo de penalización medio (en ciclos) en caso de fallo en \$D.
	seamos ejecutar una sola copia del mismo fragmento de código para N muy muy grande (el vector recorrido es mucho yor que el tamaño de cache).
g)	Calcula en función de N los ciclos que tarda el fragmento de código anterior.
del	cache \$D le añadimos un mecanismo de <i>prefetch</i> hardware. Cuando se accede un bloque (i) se desencadena <i>prefetch</i> bloque siguiente (i+1) siempre que el bloque (i+1) no se encuentre ya en la cache o no haya un <i>prefecth</i> previo del que (i+1) pendiente de completar (en ambos casos es innecesario hacer prefecth de nuevo).
h)	Calcula el número máximo de ciclos que puede durar un prefetch para que el bucle se ejecute en 40*N ciclos.
<u>i)</u>	¿Es posible ejecutar el bucle en menos de 40*N haciendo el <i>prefetch</i> más rápido? (justifica la respuesta)

COGN	NOMS:																											
	NOM:																ONI:										L	
Prok	olema	3. (3,	4 pu	ntos	5)																							
-	onemo tes/s p										-		-			-								nda (efect	tivo	de	200
a)	Calcu	a la ca	ntida	ad de	e inf	orm	nacio	ón ú	til (d	dato	s) q	ue p	ouec	le al	mac	ena	ır el	sist	ema	RAI	D5							
b)	Dibuja	un es	quei	na y	des	crib	e cć	mo	se h	nace	una	eso	critu	ira a	leat	oria	de :	1 bl	oqu	e de	dis	со е	n el	disc	<u>o 3 c</u>	<u>Jel R</u>	AID	5.
El co	ntrola	dor de	l RAI	D, di	strik	ouye	e las	peti	icio	nes	alea	tori	as u	nifo	rme	mei	nte e	entr	e to	dos	los	disc	os d	lel si	sten	na.		
c)	Calcu	a el an	icho	de b	anda	a efe	ectiv	o cu	ianc	lo re	ealiz	amc	s le	ctura	as al	eat	oria	s y c	uan	do r	eali	zam	os e	scrit	uras	alea	atoı	rias.
	siguie o su pa																	de	los	bloq	ues	A, E	3,	Gi	—— Н, I,	M	, N	, así
COIII		DISCO 0	_	DISC				CO 2			sco:	_		isco	_	_	DISCO	0 5) (DISC	06) (DIS	CO 7				
		: A H		E			_	: C			D K		par	idad(A	-G)		E aridad(F			_	: G N				
		<u></u>						<u>.</u>			<u>:</u>			<u>:</u> :		þ	:			:	·		_	:				
d)	Supor D?.	iendo	que	el DI	sco	3, h	na de	ejad	o de	e fur	ncior	nar,	¿qu	é pa	sos	deb	e ha	icer	el si	ster	na F	RAID	par	a ob	tene	er el	blo	que

e)	Con los 8 discos del RAID 5 se quiere montar un RAID 51. Dibuja este esquema e indica el ancho de banda efectivo (datos útiles) máximo de lectura del RAID 51.
f)	Indica el ancho de banda efectivo máximo de escrituras aleatorias que puede conseguirse en el esquema RAID 51
1)	del apartado e) y justifica tu respuesta.
	a uno de los RAIDs 5 del apartado e) tiene una fuente de alimentación con un MTTF de 200.000 horas y un MTTR de loras. Suponiendo que los discos nunca fallarán y teniendo en cuenta exclusivamente las fuentes de alimentación.
g)	Calcula el MTTF del RAID 51.
Disp	onemos de una aplicación A que tiene dos fases de ejecución (lectura y cálculo) y se ejecuta en un solo procesador
Р со	n un único disco duro D en un tiempo T. La fase de lectura supone el 30% del tiempo de ejecución, y el 80% de la
	de cálculo es paralelizable. Ejecutamos la aplicación en un sistema multiprocesador MP que tiene 4 procesadores un RAID cuyo ancho de banda efectivo de lectura es 10 veces el del disco duro D. Suponiendo que la paralelización
	ace de forma perfecta.
h)	Calcula el speedup al ejecutar la aplicación A en el sistema MP.