進捗報告

表 1: 実験の設定

base model	VGG19	
Optim(w)	SGD(lr=0.01, momentum=0.9)	
$Optim(\alpha)$	Adam(lr=0.005, β =(0.5, 0.999))	
Loss	Cross Entropy Loss	
dataset	cifar10	
batch size	64	

1 今週やったこと

- 10回の探索実験
- optuna で scheduler 最適化

2 実験

統計的な評価を得るため、探索実験を複数回行った. 表1に探索時の実験設定を示した.

2.1 結果

性能の結果は来週.

図 1 に探索後のグラフの編集距離行列を示した. 0-9 が探索後のグラフ, 10-19 がランダムなグラフ. networkx の関数を使うと vgg19 は 1 時間以上かかるので, 辺の挿入と削除のコストが 1 の編集距離を求める関数を実装した.

3 実験

scheduler の探索を optuna でした. 表 2,3 に optuna の実験設定を示した.

4 考察

optuna は時間がかかるので、設定を最適化する optuna をうまく回す設定も難しい.

表 2: 実験 2の設定

model	VGG19	
Optim	SGD(momentum=0.9)	
Loss	Cross Entropy Loss	
dataset	cifar10	
train size	2000	
epoch	100	
batch size	64	

表 3: optuna の設定と結果

変数	探索空間	best
lr	$0.1 \sim 0.0001$	0.000101
schduler	step, exponential	step
step	30, 40, , 100	40

5 今後の予定

optuna の結果から得た設定で、評価段階の実験を 10 回行い、統計的な性能を評価する.

6 ソースコード

github の notebook リポジトリ参照.

図 1: 距離行列