命题:可以判断真假的陈述句。通常,我们用T表示真,用F表示假。

例.

- 1. 对任意的自然数a, b, c, (a + b) + c = a + (b + c)。 (真命题)
- 2. √2是无理数。(真命题)
- 3. √2是有理数。 (假命题)
- 4. 设 $f:[a,b]\to R$ 为一个Riemann可积函数, $F:[a,b]\to R$ 在[a,b]上满足F'(x)=f(x),那么 $\int_a^b f(x)dx=F(b)-F(a)$ 。(真命题)
- 5. 任何一幅地图都可以用四种颜色进行着色,使得相邻的区域着以不同的颜色。

谓词: 命题的谓语部分。

例.

P(x): x **是偶数** 这里P为一元谓词,表示"是偶数"。当x为某个确定的数字时,P(x)则对应一个命题。例如P(2)为真命题,P(1)为假命题。这里,P之所以被称为一元谓词,是因为P(x)只包含一个变量x。

P(x,y): x>y 这里P为二元谓词,表示>。当x和y为确定的数字时,P(x,y)则 对应一个命题。例如1>0为真命题,0>1为假命题。这里,P之所以被称为二元谓词,是因为P(x,y)包含两个变量x和y。

相应的,有三元谓词,四元谓词,

我们还可以用如下方式由谓词得到命题:

 $\forall x P(x)$: 对任意的x, P(x)。For All中的A上下颠倒可以得到 \forall 。

 $\exists x P(x)$: 存在x, P(x)。 There Exists中的E左右颠倒可以得到 \exists 。

命题可以由联结词¬, \land , \lor , →, ↔联结而构成复合命题。设p为命题,则¬p表示"p不成立"。

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

设p和q为两个命题,则 $p \wedge q$ 表示"p成立,并且q成立"。

$$\begin{array}{cccc} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

设p和q为两个命题,则 $p \vee q$ 表示"p成立,或者q成立"。

设p和q为两个命题,则 $p \to q$ 表示"如果p成立,那么q成立"。

p	\mathbf{q}	$p \rightarrow q$
Τ	Τ	Τ
\mathbf{T}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	Τ
\mathbf{F}	\mathbf{F}	${ m T}$

这里需要注意的是,当p为假时,则 $p \to q$ 一定为真,这是所有数学家共同的约定。 下面的例子可以帮助大家更好的理解其实我们已经用到了这个约定。

对任意的实数x,当x > 1时, $x^2 > 1$ 。该命题显然是真命题,可以符号化为 $\forall x \ x > 1 \rightarrow x^2 > 1$ 。那么,既然对于任意的x, $x > 1 \rightarrow x^2 > 1$ 成立,则

- 1) 当x = 2时, $2 > 1 \rightarrow 2^2 > 1$ 成立,这对应于以上真值表的第一行;
- 2) 当x = 0时, $0 > 1 \rightarrow 0^2 > 1$ 成立, 这对应于以上真值表的第四行;
- 3) 当x=-2时, $-2>1\to (-2)^2>1$ 成立,这对应于以上真值表的第三行。

设p和q为两个命题,则 $p \leftrightarrow q$ 表示"p等价于q"。

p	\mathbf{q}	$p \leftrightarrow q$
Т	Τ	Т
\mathbf{T}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$

请大家思考,设p, q, r为命题,则 $p \wedge (q \vee r)$ 所代表的命题的含义是什么? $(p \wedge q) \vee (p \wedge r)$ 所代表的命题的含义是什么?这两个命题是等价的吗? 我们可以通过枚举p,q,r依次取值为T和F时, $p \wedge (q \vee r)$ 和 $(p \wedge q) \vee (p \wedge r)$ 同时取值为T或F,从而验证这两个命题是等价的,如下所示:

p	q	r	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
Т	Τ	Τ	Т	Τ
\mathbf{T}	\mathbf{T}	\mathbf{F}	Γ	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{T}	Γ	${ m T}$
T	\mathbf{F}	F	F	\mathbf{F}
\mathbf{F}	T	T	F	\mathbf{F}
\mathbf{F}	\mathbf{T}	F	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	T	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}

用同样的方法我们可以验证:

 $p \lor (q \land r)$ 与 $(p \lor q) \land (p \lor r)$ 是等价的。

 $\neg (p \land q)$ 与 $\neg p \lor \neg q$ 是等价的。

p	q	$\neg (p \land q)$	$\neg p \vee \neg q$
\overline{T}	Τ	F	F
${ m T}$	\mathbf{F}	T	${ m T}$
\mathbf{F}	\mathbf{T}	T	${ m T}$
\mathbf{F}	F	Т	${ m T}$
		!	

 $\neg (p \lor q)$ 与 $\neg p \land \neg q$ 是等价的。

$$\begin{array}{c|cccc} p & q & \neg (p \lor q) & \neg p \land \neg q \\ \hline T & T & F & F \\ T & F & F & F \\ F & T & F & F \\ F & F & T & T \\ \end{array}$$

 $p \to q$ 与¬ $p \lor q$ 是等价的。

p	q	$p \rightarrow q$	$\neg p \vee q$
\overline{T}	Τ	Т	T
\mathbf{T}	\mathbf{F}	F	\mathbf{F}
F	\mathbf{T}	Т	${ m T}$
F	F	T	${ m T}$

我们还可以利用真值表检验 $(p \to q) \land (p \to \neg q) \to \neg p$ 是永真的。

$$\begin{array}{c|cc} p & q & (p \rightarrow q) \land (p \rightarrow \neg q) \rightarrow \neg p \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \end{array}$$

假设我约定"→"的真值表如下:

p	q	$p \rightarrow q$
\overline{T}	Т	Т
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	Τ	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$

我们会发现复合命题 $(p \to q) \land (p \to \neg q) \to \neg p$ 不是永真的,这将与我们关于"蕴含"的思维不相符。

同时我们还会发现 $p \to q$ 和 $q \to p$ 在逻辑上是等价的。

p	\mathbf{q}	$p \rightarrow q$	$\mathbf{q} \to \mathbf{p}$
\overline{T}	Τ	Т	Τ
${\rm T}$	\mathbf{F}	F	\mathbf{F}
F	\mathbf{T}	F	\mathbf{F}
F	\mathbf{F}	Τ	${ m T}$

这也与我们的思维习惯不相符。

有些逻辑术语从外文翻译成中文时产生了不同的称谓,在本门课程中关于逻 辑术语我们做如下的约定:

The negation of a proposition $P: \neg P$

命题P的否定: $\neg P$

The converse of $P \to Q$: $Q \to P$

命题 $P \to Q$ 的逆命题: $Q \to P$

The inverse of $P \to Q$: $\neg P \to \neg Q$

在较深入的探讨数理逻辑的教材中,该概念用的很少,因此我们不给出具体 的翻译称谓,在需要表达该概念时明确说明为 $\neg P \rightarrow \neg Q$ 即可。

The contrapositive of $P \to Q$: $\neg Q \to \neg P$ 命题 $P \to Q$ 的逆否命题: $\neg Q \to \neg P$

需要特别说明的是,命题 $P \to Q$ 的否定为 $\neg (P \to Q)$,而不是 $P \to \neg Q$ 。