Past Year JEE Questions

Questions

Quetion: 01

If the coefficients of x^{-2} and x^{-4} in the expansion of $\left(x^{\frac{1}{2}} + \frac{1}{2x^{\frac{1}{2}}}\right)^{18}$, (x > 0), are m and n

respectively, then $\frac{m}{n}$ is equal to :

A. 182

B. $\frac{4}{5}$ C. $\frac{5}{4}$

D. 27

Solutions

Solution: 01

Explanation

$$T_{r+1} = {}^{18}C_r \left(x^{\frac{1}{5}}\right)^{18-r} \cdot \left(\frac{1}{2x^{\frac{1}{5}}}\right)^r$$

$$= {}^{18}C_{r} \left(\frac{1}{2}\right)^{r} \cdot x^{\frac{10-2r}{3}}$$

For coefficient of x^{-2} ,

$$\frac{18-2r}{3} = -2$$

$$\Rightarrow$$
 r = 12

$$\therefore$$
 Coefficient of x^{-2} is (m) = ${}^{18}C_{12}$ $\left(\frac{1}{2}\right)^{12}$

For coefficient of x^{-4} ,

$$\frac{18-2r}{3} = -4$$

$$\Rightarrow$$
 r = 15

.. Coefficient of
$$x^{-4}$$
 is (n) = ${}^{18}C_{15} \left(\frac{1}{2}\right)^{15}$

$$\therefore \quad \frac{m}{n} = \frac{\frac{1811}{181} \frac{1}{2}}{\frac{181}{181} \frac{1}{2}} \frac{1}{15}$$

$$=\frac{{}^{1}66\times(2)}{{}^{1}63}$$