材料機械 第一次期中考考古題

1. 工程材料的性質與優缺點

	性質	優點	缺點	一易破壞
金屬及合金	金屬鍵	堅硬、強韌	易斷裂	71110120 32
		導電性	疲勞	
聚合物	共價鍵、次聚鍵	成本低、輕	不夠堅硬	
	鏈條狀	抗腐蝕	潛變	→易拉長
陶瓷與玻璃	離子鍵	堅硬、耐高溫	易脆	
	晶體/非晶體	抗腐蝕		
複合材料	各種鍵	堅硬	高成本	
	材料各自保有其基本特性	質量輕	分層、	

易脫層剝離

2. 材料施力製成

(1) 鍛造(forging):將材料放置模具中,以高壓壓擠材料成型。

(2) 軋製(rolling):將材料放置於上下滾筒中,以滾動壓擠材料成型。

(3) 擠壓(extruding):將材料放置模具中,以推擠材料出口成型。

(4) 拉伸(drawing): 將材料放置於上下模具中,以拉伸材料出口成型。

3. AISI 是美國鋼鐵協會對鋼、鐵的命名。

以四個號碼來命名,前兩個號碼是指除了碳以外的元素重量含量百分比,後 兩碼是指碳元素的重量含量百分比。

4. 因為鈦合金<mark>強度對重量的比值較高</mark>,高強度的鈦合金可與鋼媲美,加上熔點高,故為航太工業應用上的重要材料。

命名系統以簡單的重量百分比來識別它的合金元素,例如:Ti-6Al-4V。

5. 陶瓷材料

(1) 製成過程:

選擇混合物 → 磨成精細粉末 → 擠壓成所需的形狀 → 熱熔 → 冷卻

△(2) 孔隙的產生與解決:

熱熔時將粉末顆粒狀的混合物加熱至 70%的熔點溫度後,顆粒表面會部分溶解不完全,因此在冷卻後材料會形成某種程度的孔隙。

可選擇更精細的粉末顆粒或在熱熔的步驟中加入壓力以減少孔隙。

6. 不同型態的實驗測試圖

- (a) 張力實驗:對試件施予張力拉伸以求得應力及應變的關係
- (b) 壓力實驗 = "壓力壓縮"
- (c) 硬度實驗:从一个固定壓力施加於材料表面上,出現一凹槽,一

再求得硬度值。

- (d) 懸臂梁彎曲實驗
- (e) 三點彎曲實驗= / 彎曲的貝載,並測量其彎矩&撓度。
- (f) 四點彎曲實驗
- (g) 扭轉實驗 = "施予扭轉"剪應力&剪應變。

※三點彎曲實驗的彈性係數: $E = \frac{L^3}{48I} \left(\frac{dP}{dv}\right)$

7. 請填入以下空格

(a) Test Data			(b) Calculated Values					
Force P, kN	Engr. Strain ε	Diam.	Engr. Stress σ, MPa	True Strain ě	Raw True Stress \$\tilde{\sigma}\$, MPa	Corrected True Stress $\tilde{\sigma}_B$, MPa	True Plastic Strain $\tilde{\varepsilon}_p$	
0	0	9.11	0	0	0	0	0	
6.67	0.00050	_	102.3	0.00050	102.3	102.3	Ö	Bridgman 的修正方程式為>
13.34	0.00102		204.7	0.00102	204.7	204.7	0	$\tilde{\sigma}_{\bullet} = B\tilde{\sigma}$
19.13	0.00146	-	293.5	0.00146	293.5	293.5	0	
17.79	0.00230	-	272.9	0.00230	272.9	272.9	0	# + ·
17.21	0.00310	-	264.0	0.00310	264.0	264.0	0.00179	$B = 0.0684 x^3 + 0.0461 x^2 - 0.205 x + 0.82$
17.53	0.00500	-	268.9	0.00499	268.9	268.9	0.00366	
17.44	0.00700		267.6	0.00698	269.4	269.4	0.00564	il)-
17.21	0.01000		264.0	0.00995	266.7	266.7	0.00862	$x = \log_{10} \tilde{\varepsilon} (0.12 \le \tilde{\varepsilon} \le 3)$
20.77	0.0490	8.894	318.6	0.0478	334.3	334.3	0.0462	
24.25	0.1250	-	372.0	0.1178	418.5	418.5	0.1157	
25.71	0.2180	8.264	394.4	0.1972	480.4	465.3	0.1949	
25.751	0.2340	_	395.0	0.2103	487.5	469.8	0.2079	
25.04	0.3060	7.62	384.2	0.3572	549.1	505.0	0.3547	
23.49	0.3300	6.99	360.4	0.5298	612.1	540.9	0.5271	
21.35	0.3480	6.35	327.5	0.7218	674.2	576.2	0.7190	
18.90	0.3600	5.72						
17.392	0.3660	5.283	266.8	1.0909	794.2	649.1	1.0877	

(a)
$$\int = \frac{P}{A_{\bar{i}}} = \frac{P}{\frac{\pi d^2}{4}} = \frac{4 \times |9900}{\pi (9.11 \times 10^{-2})^2} = \frac{299.96 \text{ MPa } \#}{10.01 \times 10^{-2}}$$

(b)
$$\tilde{\epsilon} = h(H\tilde{\epsilon}) = - ??$$
 已發生頸縮 ; 霧卷量額面積的 change
$$\tilde{\epsilon} = h \frac{A\tilde{\epsilon}}{A} = h \frac{d\tilde{\epsilon}}{d^{2}} = 2h \frac{d\tilde{\epsilon}}{d} = 2h \frac{9111}{5172} = 0.9308 \pm (6) \approx \frac{P}{A} = \frac{4 \times 19400}{10(512 \times 10^{2})^{2}} = \frac{935.5 \text{ MPa}}{70.512 \times 10^{2}} = \frac{935.5 \text{ MPa}}{10} \pm \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10}$$

(d)
$$\chi = \log_{10} \overset{\sim}{\xi} = \log_{10} (0.9308)$$

$$\beta = 0.0684 \chi^{3} + 0.0461 \chi^{3} - 0.205 \chi + 0.825$$

$$= 0.83143$$

$$\widetilde{O_{B}} = \beta \widetilde{O} = 0.83143 \times 735.5 = 611.5 MPa.$$

(l)
$$\widetilde{\mathcal{E}}_{p} = \widetilde{\mathcal{E}} - \widetilde{\mathcal{E}}_{e} = 0.9308 - \frac{735.5 \text{ MPa}}{293.5 \text{MPa}} = 0.927.14_{\#}$$

8. (10pts)以上表的數據,假設實驗在到達一工程應變 ε = 0.007 時,實驗被干擾後卸載至力量為零。計算彈性應變的回復量、殘存的塑性應變量及標準長度50.8 mm 的最後長度?

$$\mathcal{O}$$
 $\mathcal{C}_{\theta} = \frac{\sigma}{E} = \frac{2b7.b \, \text{MPa}}{\frac{243.5 \, \text{MPa}}{0.0046b}} = \frac{0.00/33}{0.0046b} \#$

9. (10pts)根據金屬材料在張力實驗時的工真實應力-應變曲線,真實應力與真實塑性應變的可表示成何種關係式。利用所附上的實驗數據計算關係式中的常數。

- の開係式= ~=H谷#
- ② $469.8 \text{ MPa} = \text{H} \times (0.2079)^n \longrightarrow \text{log} (469.8) = \text{log} \text{H} + \text{n} \text{log} (0.2079)$

要用での表算 649:11 MPa= H×(1:0871) n→ log(649:1)= log H+n log(1:0871)

- ⇒ log (649:1) log (469:8)= n[log (1.0871) log (0:2079)]

- △ 10. (10pts)為何建立起彈塑性剪應力及剪應變的關係,扭轉實驗試件一般選用薄壁管?而平均剪應力τ_{ανg}及平均剪應變γ_{ανg}的值為何?
 - (1) 由於薄壁管管壁很薄,則由內壁分佈到外壁的剪廳力可視為平均剪廳力。

(2)
$$Tayg = \frac{T}{2\pi Vavg^2 t}$$
, $Yavg = \frac{Vavg \times 0}{L}$