

Search for associated ttH production in the H → bb decay channel at CMS using the Matrix Element Method

Daniel Salerno
on behalf of the CMS Collaboration

Reference

SPS Annual Meeting 2014

CMS PAS: HIG-14-010 1 July 2014, Université de Fribourg

Standard model ttH production

Motivation

- Higgs boson with 125 GeV mass discovered by CMS and ATLAS
 - Focus now on studying its properties
- ttH provides a direct probe of the Higgs/top Yukawa coupling y_t
 - Most important fermion coupling
 - Only one with $y_t \sim 1$
 - Provides insight to possible new physics
- This search is at CMS
 - Multipurpose detector at the LHC

Production cross section at LHC

ttH (H→bb) channel

Feynman diagram

- 4 b jets (2 from H, 1 from each top)
- 2 (0) light flavour jets (from W)
- 1 (2) leptons μ or e (from W)
- Missing energy (from v)

Characteristics

- H→bb has largest BR (≈58%)
 - Fully reconstructed final state
- Leptonic final state
 - Greatly reduced background

Background processes

Data and preselection

Data

- **19.5 fb**⁻¹: 8 TeV 2012 data sample
- Single-electron trigger: isolated, p_T > 27 GeV (e)
- Single-muon trigger: isolated, p_T > 24 GeV (μ, μμ, μe)
- Double-electron trigger: isolated, $p_T > 17$, 8 GeV (ee)

Preselection

- Jets
 - $p_T > 30 \text{ GeV}, |\eta| < 2.5$
 - 2 b-tagged jets
- Single lepton (SL)
 - $p_T > 30 \text{ GeV}$, $|\eta| < 2.5 (e)$, $|\eta| < 2.1 (\mu)$
- Double lepton (DL)
 - $p_T > 20 \text{ GeV}$, $|\eta| < 2.5 (e)$, $|\eta| < 2.4 (\mu)$

4 event categories

SL - Category 3: 5j, 4b, 1ℓ

SL – Category 2: ≥6j, 4b, 1ℓ

Double Lepton: ≥4j, 4b, 2ℓ

b-tag likelihood ratio

- Events further selected based on a b-tag likelihood ratio discriminant b
 - For each jet, b-tagging algorithm combines information from track IP and secondary vertex: CSV parameter (ζ)
 - $ightharpoonup \zeta_1,...,\zeta_{\text{niets}}$ used in a likelihood function for 4 b- and 2 b-quark hypotheses

$$b_{LR} = \frac{\mathcal{L}_{bbbb}(\zeta_1, ..., \zeta_n)}{\mathcal{L}_{bbbb}(\zeta_1, ..., \zeta_n) + \mathcal{L}_{bbqq}(\zeta_1, ..., \zeta_n)}$$

► A cut on b_{IR} is made in each category to define high (H) and low (L) purity subcategories

b_{LR} discriminant

- SL events
- 5 jets

The Matrix Element Method

Overview

- Provides optimal separation of signal and background
- Reduces combinatorial self-background
- Calculates the probability of an event being signal/background

The final discriminant

Calculation

- For each event P_S and P_B are calculated
- Final discriminant is built

$$P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \mathcal{P}_B}$$

Expected distribution

The final picture

Systematic uncertainties

- Signal and background predictions affected by experimental and theoretical uncertainties
- Dominant systematics are
 - Jet energy resolution
 - CSV uncertainty
 - tt+bb uncertainty
- Systematic uncertainties constrained by fitting the MC to the observed distributions
- Ultimately the uncertainty is dominated by the limited data

Post-fit distribution of P_{s/b} (DL)

- Events in the first bin are split into 2 bins based on P_{b/i}:
 - Separates tt+bb and tt+lf

Post-fit discriminant distribution

NEW RESULT! – Presented for the first time...

SL category 1

SL category 2

SL category 3

Signal expected to peak towards the right 2 rightmost bins provide the best signal/background discrimination

Exclusion limits

NEW RESULT! – Presented for the first time...

Statistical interpretation

- Insufficient data for discovery
 - Analysis limited by statistics
- An upper limit can be placed on the ttH cross section
 - Signal strength modifier: $\mu = \sigma_{ttH}/\sigma_{SM}$
- Best fit value of μ after combining all categories is μ = 0.7 ± 1.4
 - Large uncertainty due to limited statistics

95% CL Upper limits on μ = σ/σ_{SM}

Expected (observed) limit is μ < 2.9 (3.3)

Conclusion

Summary

- Defined a signal/background discriminant based on the MEM
- Set an upper limit on the ttH cross section ($\mu = \sigma_{ttH}/\sigma_{SM}$)
- Expected upper limit is μ < 2.9, observed limit is μ < 3.3

Comparison

- This analysis represents ~30% improvement over the previous CMS MVA analysis (HIG-13-019)
 - Expected upper limit of μ < 4.1, observed limit of μ < 5.2
- Improvement mostly due to better discrimination against tt+bb

Next steps

- Expansion of current analysis
 - ► Include all hadronic and boosted final states, and $H \rightarrow \tau\tau$
- Looking forward to run at 13 TeV
 - More data will provided a stronger result

Backup

The CMS detector

- Located at the LHC a proton-proton collider
 - Centre-of-mass energy of 8 TeV in 2012

Coordinate system

Useful variables

E_T and p_T defined in the x-y plane Pseudorapidity:

$$\eta = -\ln(\tan(\theta/2))$$

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Inner detector (ID)

Calorimeters

Solenoid magnet

Muon detectors

Samples used in analysis

7 TeV 2011 sample not considered in this analysis.

■ **19.5 fb**⁻¹: 8 TeV 2012 data sample

	7 16 V 20 11 Sumple flot Softslacied in this analysis		
Data	Data ■ Single-electron trigger: isolated, p _T > 27 GeV (e)		
	 Single-muon trigger: isolated, p_T > 24 GeV (μ, μμ, μe) 		
	 Double-electron trigger: isolated, p_T > 17, 8 GeV (ee) 		
	■ Signal: $gg \to t \bar{t} H \to t \bar{t} b \bar{b}$ with M _H = 125 GeV	(PYTHIA)	
Monte Carlo	• tt+jets: $gg o t ar{t} q ar{q} \;, q = b, c, s, u, d$	(MadGraph)	
	• ttV: $t\bar{t}+W,Z$	(MadGraph)	
	■ Single top: $t, tW, \bar{t}, \bar{t}W$	(POWHEG)	
	■ EWK : $q\bar{q} \to Z/\gamma^* \to \ell^+\ell^-$ and $W \to \ell\nu$	(MadGraph)	
	• W: WW WZ ZZ	(PVTHIA)	

b-tag likelihood ratio

b-tag likelihood ratio

- Events selected based on the b-tag likelihood ratio discriminant
 - Jets sorted by CSV value (ζ)
 - A variable used to identify b jets
 - ► Top 4 to 6 jets used to calculate b_{ip}:

$$b_{LR} = \frac{\sum_{i} P(\zeta_{1},...,\zeta_{6} | \{bbbbqq\}_{i})}{\sum_{i} P(\zeta_{1},...,\zeta_{6} | \{bbbbqq\}_{i}) + \sum_{i} P(\zeta_{1},...,\zeta_{6} | \{bbqqqq\}_{i})}$$

Note: Sum is over all possible permutations of jet-quark matching

- SL events

low (L) purity

subcategories

The Matrix Element Method

Overview

- Provides optimal separation of signal and background
- Reduces combinatorial self-background
 - Matching jets to the four b quarks from top and Higgs decays
- Calculates the likelihood of an event being signal/background
 - Assigns probabilities (weights) to events under the competing hypothesis
 - Uses the theoretical Standard Model matrix element for ttH and tt+bb
 - Other hypothesis not considered due to computational limitations

Method

- Measured kinematical variables (y) used as input
 - Integration over poorly measured variables (E_{iet}, p_v)
- Sum over all possible permutations of jet-quark matching

$$w_i(\mathbf{y}) = \frac{1}{\sigma_i} \sum_{\text{perm}} \int_{\Omega} d\mathbf{x} \int dx_a dx_b \Phi(x_a, x_b) \delta^4 \{ (x_a P_a + x_b P_b) - \sum_i p(\mathbf{x}) \} |\mathcal{M}_i(\mathbf{x})|^2 W(\mathbf{y}|\mathbf{x})$$

- Ω = phase space volume of final particles **x**, $x_{a,b}$ = parton momentum fraction
- Φ = parton flux factor, \mathcal{M}_{i} = scattering amplitude of process i (i = ttH, tt+bb)
- W = transfer function: probability of measuring y given x

The final discriminant

Calculation

- 3 different probabilities are determined
 - $P_{S}(\mathbf{y}) = W_{S}(\mathbf{y}) \mathcal{L}_{bbbb}(\zeta)$
 - $P_{B1}(\mathbf{y}) = W_{B}(\mathbf{y}) \mathcal{L}_{bbbb}(\zeta)$
 - $P_{B2}(\mathbf{y}) = W_{B}(\mathbf{y}) \mathcal{L}_{bbqq}(\zeta)$
 - Where $\mathcal{L}_{bbqq} = \sum_i P(\zeta_1,...,\zeta_6|\{bbqqqq\}_i)$ is the b-tag likelihood
- Final discriminant is built

$$P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \lambda_{b/j} \mathcal{P}_{B1} + (1 - \lambda_{b/j}) \mathcal{P}_{B2}}$$

 λ_{b/j} sets the relative ratio between tt+bb and tt+jj backgrounds

Expected distribution

Systematics and the fit

Systematic uncertainties

 Signal and background predictions affected by experimental and theoretical uncertainties

Luminosity	2.6%
Pile-up	omitted
Trigger and ID efficiency	2.0%
Jet energy scale and resolution	shape
b-tagging	shape
tt+jets modelling	shape
tt+ heavy flavour	50%
Parton density function	3-9%
QCD scale	1-20%
Limited MC statistics	bin-by-bin

- MC simulations are fitted to data allowing the systematics to float
 - Background shape and normalisations change depending on data
 - Constrains systematics, improves the power of the analysis

Post-fit distribution of P_{s/b}

- Events in the first bin are split into 2 bins based on: $P_{b/j} = \frac{\mathcal{P}_{B1}}{\mathcal{P}_{B1} + \mathcal{P}_{B2}}$
 - Value chosen to get ~50% tt+lf in each