A PUSHOUT OF SETS OVER AN INJECTION IS A SET

1. The 'pushout is a set' theorem presented

Theorem 1. Given mere sets A, B, and C configured in a span

$$\mathtt{C} \xleftarrow{g} \mathtt{A} \xrightarrow{f} \mathtt{B}$$

where f is monic, then the pushout $B +_A C$ is a mere set.

DANIEL: In the following paragraph, we define P which encodes those id-types of $B +_A C$ that are propositions. The pushout $B +_A C$ is a set when P contains all id-types in the pushout. So we define Q to encode all id-types of $B +_A C$, which means that showing that $B +_A C$ is a set is the same as showing that Q is equivalent to P.

Denote the canonical pushout maps as inl: $B \to B +_A C$ and inr: $C \to B +_A C$. Consider the types

$$P := \{(x, y) : (B +_A C) \times (B +_A C) | x =_{B+_A C} y \text{ is a mere proposition} \}$$

and

$$Q := (B +_A C) \times (B +_A C).$$

To prove the theorem, it is sufficient to show that the inclusion $P \hookrightarrow Q$ is an equivalence.

Lemma 1. The inclusion $P \to Q$ is an embedding.

Proof. We need to show that, for each (x_0, y_0) : Q, the homotopy fibre

$$F := \sum_{(x,y) \colon P} (x,y) =_{\mathbb{Q}} (x_0, y_0)$$

is a mere proposition. Any p: F, is a pair of paths p_x : $x =_{B+AC} x_0$ and p_y : $y =_{B+AC} y_0$. The existance of such a p implies that (x_0, y_0) : P by β -reducing (x, y) to (x_0, y_0) . Therefore, $\text{refl}_{(x_0, y_0)}$: F. The cube of paths

commutes trivially and is filled because $B +_A C$ is at most a 1-type. Hence, we have that $p =_F refl_{(x_0,y_0)}$ and F is contractible.

DANIEL: Where do we use that 'being a proposition' is a proposition?

To prove that $P \hookrightarrow \mathbb{Q}$ is an equivalnece, it remains to show that P contains a point in every connected component of \mathbb{Q} . Note that every connected component of $\mathbb{B} +_{\mathbb{A}} \mathbb{C}$ contains a point of form $\mathtt{inl}b$ or $\mathtt{inr}c$. Therefore, if $\mathtt{inl}b =_{\mathbb{B}+_{\mathbb{A}}\mathbb{C}} x$ and $\mathtt{inr}c =_{\mathbb{B}+_{\mathbb{A}}\mathbb{C}} x$ are always mere propositions, then P contains a point in every component of \mathbb{Q} as desired.

To actually do this, we employ the *encode-decode method*. The strategy is to introduce types

$$\prod_{x \colon \mathtt{B} + \mathtt{A} \mathtt{C}} \mathtt{code}(\mathtt{inl} b, x) \text{ and } \prod_{x \colon \mathtt{B} + \mathtt{A} \mathtt{C}} \mathtt{code}(\mathtt{inl} c, x).$$

After showing these are mere propositions—an easier task than proving the identity types in $B +_A C$ are mere propositions—we build an equivalence between

$$\prod_{x \colon \mathtt{B} + \mathtt{AC}} \mathtt{code}(\mathtt{inl}b, x) \text{ and } \prod_{x \colon \mathtt{B} + \mathtt{AC}} \mathtt{inl}b =_{\mathtt{B} + \mathtt{AC}} x,$$

and likewise between

$$\prod_{x \colon \mathtt{B} + \mathtt{AC}} \mathtt{code}(\mathtt{inr}c, x) \text{ and } \prod_{x \colon \mathtt{B} + \mathtt{AC}} \mathtt{inr}c =_{\mathtt{B} + \mathtt{AC}} x.$$

1.1. **Defining** $\prod_{x \in B+_{A}C} code(inlb, x)$. To define

$$\prod_{x \colon \mathtt{B} + \mathtt{AC}} \mathtt{code}(\mathtt{inl}b, x),$$

we use structural induction on x. Thus we compute the values

- code(inlb, inlb'),
- code(inlb, inrc), and
- code(inlb, gluea).

We also show that the first two are mere propositions.

Define code(inlb, inlb') as the pushout of the span

$$\begin{array}{c|c} \sum_{a,a' \in \mathtt{A}} (b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa') \times (b =_{\mathtt{B}} b') & (p,q,r) \stackrel{\alpha}{\longmapsto} r \\ & \beta \\ & \downarrow \\ \sum_{a,a' \in \mathtt{A}} (b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa') \times (ga =_{\mathtt{C}} ga') & (p,q,\operatorname{ap}_g(p^{-1};r;q)) \end{array}$$

where p^{-1} ; r; q is the preimage of the path p^{-1} ; r; q: $fa =_{\mathbf{B}} fa'$ Its existance and uniqueness follows from the injectivity of f.

To distinguish these pushout maps from those associated to $B +_A C$, we denote them by inl' and inr' .

In the following lemma, we use the denotation $\mathtt{X} \coloneqq \sum_{a,a':\mathtt{A}} (b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa') \times (ga =_{\mathtt{C}} ga')$, $\mathtt{Y} \coloneqq \sum_{a,a':\mathtt{A}} (b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa') \times (b =_{/} Bb')$, and $\mathtt{Z} \coloneqq b =_{\mathtt{B}} b'$.

Lemma 2. The type code(inlb, inlb') is a mere proposition.

Proof. The feet of the span are mere propositions; Z trivially so. Showing that X is also a mere proposition requires some work. Pick (r, s, t): $(b =_B fa) \times (b' =_B fa') \times (ga =_C ga')$ and (r', s', t'): $(b =_B fa'') \times (b' =_B fa''') \times (ga'' =_C ga'''')$. Then r^{-1} ; r': $fa =_B fa''$ and s^{-1} ; s': $fa' =_B fa'''$, along with the injectivity of f, ensure the existance of paths \hat{r} : $a =_A a''$ and \hat{s} : $a' =_A a'''$. Beta-reduction provides that $(b =_B fa) \times (b' =_B fa') \times (ga =_C ga')$ is equivalent to $(b =_B fa'') \times (b' =_B fa''') \times (ga'' =_C ga'''')$, both of which are contractable because B and C are mere sets. It follows that (r, s, t) = (r', s', t').

If code(inlb, inlb') is not empty, then one of the span's feet must also be non-empty. This leads to three cases:

- X is empty and Z is non-empty. This forces Y to also be empty and so the lemma holds;
- \bullet X is non-empty and (Z) is empty. This again forces Y to be empty, so the lemma holds:
- X and Z are non-empty. It is quick to check that this forces Y to be non-empty. We dedicate the remainder of this proof to showing code(inlb, inlb') is a proposition in this case.

A point in the apex of the span provides a witness to $fa =_{\mathtt{B}} fa'$ which in turn provides a witness to $a =_{\mathtt{A}} a'$. Beta-reduction plus univalence equates

$$\mathbf{Y} = \sum_{a \in \mathbf{A}} (b =_{\mathbf{B}} fa) \times (b' =_{\mathbf{B}} fa) \times (b =_{\mathbf{B}} b')$$

and also

$$\mathtt{X} = \sum_{a \in \mathtt{A}} (b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa) \times (ga =_{\mathtt{C}} ga)$$

The third terms of each of these types are redudant because B and C are mere sets. Applying beta-reduction and univalence again equates

$$\mathbf{Y} = \sum_{a \in \mathbf{A}} (b =_{\mathbf{B}} fa) \times (b' =_{\mathbf{B}} fa)$$

and

$$\mathtt{X} = \sum_{a \in \mathtt{A}} (b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa),$$

hence X = Y. It follows that code(inlb, inlb') is equivalent to the pushout of the span

which is a mere set.

This completes our current work with code(inlb, inlb').

Next, define

$$\operatorname{code}(\operatorname{inl} b,\operatorname{inr} c)\coloneqq \sum_{a:\mathtt{A}}(b=_{\mathtt{B}}fa)\times (c=_{\mathtt{C}}ga).$$

Proposition 1. code(inlb, inrc) is a mere proposition.

Proof. Indeed, if there does not exist an a:A such that $b=_B f(a)$ and $c'=_C g(a)$ are both populated, then $\operatorname{code}(\operatorname{inl}(b),\operatorname{inr}(c'))$ is empty. If there exists a single a:A such that $b=_B f(a)$ and $c'=_C g(a)$ are both populated, then because they are each equivalent to 1, $\operatorname{code}(\operatorname{inl}(b),\operatorname{inr}(c'))$ is also equivalent to 1. If there is a,a':A such that $b=_B f(a)$ and $c'=_C g(a)$, and also $b=_B f(a')$ and $c'=_C g(a')$, then the injectivity of f and $f(a)=_B b=_B f(a')$ implies that $a=_A a'$ which also gives us that $\operatorname{code}(\operatorname{inl}(b),\operatorname{inr}(c'))$ is equivalent to 1.

Finally, we need to construct a witness to

$$code(inlb, ap_{glue}a): code(inlb, inlfa) = code(inlb, inrga).$$

Because both sides of the equation are mere propositions, it suffices to show that they are simultaneously empty or populated.

Lemma 3. There exist functions $code(inlb, inlfa) \rightarrow code(inlb, inrga)$ and $code(inlb, inlfa) \rightarrow code(inlb, inrga)$. Moreover, they form an equivalence.

Proof. Suppose code(inlb, inlga) is inhabited. This point is equal $(p, refl_{ga})$ and p is pushed forward to populate code(inlb, inlfa).

suppose that code(inlb, inlfa) is inhabited. This implies that either $p: b =_B fa$ or $(q, r, s): (b =_B fa') \times (fa =_B fa'') \times (ga' =_C ga'')$ in the first case, $(p, refl_{ga}): code(inlb, inrga)$ in the second case, the injectivity of f allows us to beta-reduce a to a''. That is, we actually have that $(q, r, s): (b =_B fa') \times (fa =_B fa) \times (ga' =_C ga)$ hence $(q, s^{-1}): code(inlb, inrga)$.

the functions form an equivalence because both code(inlb, inlfa) and code(inlb, inrga) are propositions.

1.2. **Define** $\prod_{x: B+AC} \operatorname{code}(\operatorname{inr}c, x)$. To define $\prod_{x: B+AC} \operatorname{code}(\operatorname{inr}c, x)$ requires us to compute three values:

- code(inrc, inlb),
- code(inrc, inrc'), and
- code(inrc, gluea).

the first two of which we show are mere propositions.

Define

$$\mathtt{code}(\mathtt{inr} c,\mathtt{inl} b) \coloneqq \sum_{a:\mathtt{A}} (c =_{\mathtt{C}} ga) \times (b =_{\mathtt{B}} fa).$$

Lemma 4. The type code(inrc, inlb) is a proposition.

Proof. See lemma 4.
$$\Box$$

Define

$$\operatorname{code}(\operatorname{inr} c,\operatorname{inr} c')\coloneqq \sum_{a,a':a}(c=_{\operatorname{C}}ga)\times (c'=_{\operatorname{C}}ga')\times (fa=_{\operatorname{B}}fa').$$

Lemma 5. The type code(inrc, inrc') is a mere proposition.

Proof. Because f is in injection, a = A' is populated so code(inrc, inrc') beta-reduces to

$$\sum_{a \ a' \cdot \mathbf{A}} (c =_{\mathbf{C}} ga) \times (c' =_{\mathbf{C}} ga) \times (a =_{\mathbf{A}} a)$$

which further reduces to

$$\mathtt{X} \coloneqq \sum_{a \in \mathtt{A}} (c =_{\mathtt{C}} ga) \times (c' =_{\mathtt{C}} ga)$$

because A is a set. Let (p,q) and (p',q') be in X. The cube

commutes and is filled because C is a set. Therefore (p,q)=(p',q')

DANIEL: Is the lemma below sufficient? It says the two codes are equivalent, but couldn't they still be empty?

We now construct a point

$$code(inrc, ap_{\sigma lue}a): code(inrc, inlfa) = code(inrc, inlga).$$

because both sides of the equality are propositions, a unique definition for $code(inrc, ap_{glue}a)$ exists if we construct an equivalnce.

Lemma 6. The functions

$$code(inrc, inlfa) \rightarrow code(inrc, inrga), (p, q) \mapsto p$$

and

$$code(inrc, inrga) \rightarrow code(inrc, inlfa), r \mapsto (r, refl_{inlfa})$$

form an equivalence.

Proof. First, let us show these actually are functions.

Let (p,q): code(inrc, inlfa). since f is injective, we have that a = A a'. beta-reducing ga' to ga, gives us that p: code(inrc, inrga). this provides the first function.

Given r: code(inrc, inrga), r is equal to a point in $c =_{\mathbb{C}} ga$. this provides a point $(r, refl_{fa}): code(inrc, inl fa)$. this gives the second function.

The functions form an equivalence because both code(inrc, inlfa) and code(inrc, inrga) are propositions.

The next stage in proving theorem 1 is showing that $\mathtt{inl}b =_{\mathtt{B+aC}} x$ and $\mathtt{inr}c =_{\mathtt{B+aC}} x$ are mere propositions for any x. To do so, we construct equivalences between, respectively, $\mathtt{code}(\mathtt{inl}b,x)$ and $\mathtt{code}(\mathtt{inr}c,x)$ which we know are mere propositions. Specifically, we define maps

$$\begin{split} &\operatorname{encode}(\operatorname{inl} b) \colon \prod_{x \colon \operatorname{B} +_{\operatorname{A}} \operatorname{C}} (\operatorname{inl} b =_{\operatorname{B} +_{\operatorname{A}} \operatorname{C}} x) \to \operatorname{code}(\operatorname{inl} b, x) \\ &\operatorname{encode}(\operatorname{inr} c) \colon \prod_{x \colon \operatorname{B} +_{\operatorname{A}} \operatorname{C}} (\operatorname{inr} c =_{\operatorname{B} +_{\operatorname{A}} \operatorname{C}} x) \to \operatorname{code}(\operatorname{inr} c, x) \\ &\operatorname{decode}(\operatorname{inl} b) \colon \prod_{x \colon \operatorname{B} +_{\operatorname{A}} \operatorname{C}} \operatorname{code}(\operatorname{inl} b, x) \to (\operatorname{inl} b =_{\operatorname{B} +_{\operatorname{A}} \operatorname{C}} x) \\ &\operatorname{decode}(\operatorname{inr} c) \colon \prod_{x \colon \operatorname{B} +_{\operatorname{A}} \operatorname{C}} \operatorname{code}(\operatorname{inr} c, x) \to (\operatorname{inr} c =_{\operatorname{B} +_{\operatorname{A}} \operatorname{C}} x) \end{split}$$

with corresponding encode and decode pairs forming mutual equivalences.

1.3. defining encode. We define encode(in1b) and encode(inrc) by inducting on $x: B+_A C$. In doing so, we make use of path induction.

Define

$$\mathtt{encode}(\mathtt{inl}(b)) \colon \prod_{x \colon \mathtt{B} + \mathtt{AC}} (\mathtt{inl}(b) =_{\mathtt{B} + \mathtt{AC}} x) \to \mathtt{code}(\mathtt{inl}(b), x)$$

by the $refl_{inlb} \mapsto refl_{inl'b}$. Recall, inl corresponds to the pushout map into $B +_A C$ and inl' to the pushout map into code(inlb, inlb').

Define

$$\mathtt{encode}(\mathtt{inr}c) \colon \prod_{x \colon \mathtt{B} + \mathtt{AC}} (\mathtt{inr}c =_{\mathtt{B} + \mathtt{AC}} x) \to \mathtt{code}(\mathtt{inr}c, x)$$

by the assignemnt $refl_{inrc} \mapsto refl_c$. Note, we use that code(inrc, inrc) is equivalent to c = c as shown in Lemma 5.

Define

$$\operatorname{ap}_{\operatorname{encode}(\operatorname{inl}b)} \colon ((b =_{\operatorname{B+_AC}} fa) \to \operatorname{code}(\operatorname{inl}b, \operatorname{inl}fa)) = ((b =_{\operatorname{B+_AC}} ga) \to \operatorname{code}(\operatorname{inl}b, \operatorname{inr}ga))$$
 to be the diagram

$$(b =_{\mathtt{B+AC}} fa) \xrightarrow{\qquad \qquad } \mathtt{code}(\mathtt{inl}b)(\mathtt{inl}fa) \\ (-); \mathtt{glue}a \middle\downarrow \qquad \qquad & \downarrow \mathtt{code}(\mathtt{inl}b,\mathtt{inl}fa) \\ (b =_{\mathtt{B+AC}} ga) \xrightarrow{\qquad \qquad } \mathtt{code}(\mathtt{inl}b)(\mathtt{inr}ga) \\ \rightarrow \mathtt{code}(\mathtt{inl}b,\mathtt{inr}ga)$$

which commutes because code(inlb, ga) is a mere proposition.

Define

$$\operatorname{ap}_{\operatorname{encode}(\operatorname{inr} c)} \colon ((c =_{\operatorname{B+AC}} fa) \to \operatorname{code}(\operatorname{inr} c, \operatorname{inl} fa)) = ((c =_{\operatorname{B+AC}} ga) \to \operatorname{code}(\operatorname{inr} c, \operatorname{inr} ga))$$
 to be the diagram

which commutes because code(inrc, ga) is a mere proposition.

1.4. **Defining decode.** To define the map

$$(1) \qquad \qquad \operatorname{decode}(\operatorname{inl} b) \colon \prod_{x \colon \mathtt{B} +_{\mathtt{A}}\mathtt{C}} \operatorname{code}(\operatorname{inl} b, x) \to (\operatorname{inl} b =_{\mathtt{B} +_{\mathtt{A}}\mathtt{C}} x)$$

we use induction on $x: B +_A C$ which, in practice, means that we need two function types

- $decode(inlb)(inlb'): code(inlb, inlb') \rightarrow (inlb =_{B+AC} inlb')$
- decode(inlb)(inrc): $code(inlb, inrc) \rightarrow (inlb =_{B+aC} inrc)$

and a witness

$$\begin{split} \mathrm{ap}_{\mathtt{decode}(\mathtt{inl}b)}(\mathtt{glue}a) \colon (\mathtt{code}(\mathtt{inl}b,\mathtt{inl}fa) \to (\mathtt{inl}b =_{\mathtt{B+AC}} \mathtt{inl}fa) \\ &= (\mathtt{code}(\mathtt{inl}b,\mathtt{inr}ga) \to (\mathtt{inl}b =_{\mathtt{B+AC}} \mathtt{inr}ga) \end{split}$$

Define

$$decode(inlb): code(inlb, inlb') \rightarrow (inlb =_{B+AC} inlb')$$

by inducting on code(inlb, inlb') This requires three values.

- $\bullet \ \operatorname{Let} \ \operatorname{decode}(\mathtt{inl} b)(\mathtt{inl} b')(\mathtt{inl}' p) \colon (\mathtt{inl} b =_{\mathtt{B}+\mathtt{AC}} \mathtt{inl} b'), \ \operatorname{where} \ p \colon b =_{\mathtt{B}} b', \ \underline{\ be} \ \mathtt{ap}_{\mathtt{inl}}(p);$
- Let $\operatorname{decode}(\operatorname{inl} b)(\operatorname{inr} c)(\operatorname{inr} p)$. (into $-\mathsf{B}+\mathsf{AC}$ into $-\mathsf{BC}$ into -

$$(b' =_{\mathtt{B}} fa') \times (ga =_{\mathtt{C}} ga')$$
, be $ap_{\mathtt{inl}}q; \mathtt{glue}a; \mathtt{ap}_{\mathtt{inr}}s; \mathtt{glue}^{-1}a'; r^{-1}$ and

• The path

$$\begin{split} \mathrm{ap}_{\mathtt{decode}(\mathtt{inl}b)}(\mathtt{glue}(t,u,v)) \colon (\mathtt{decode}(\mathtt{inl}b)(\mathtt{inl}'(\alpha(t,u,v))) =_{\mathtt{inl}b = \mathtt{B} + \mathtt{A}\mathtt{Cinl}b'} \\ \mathtt{decode}(\mathtt{inl}b)(\mathtt{inr}'(\beta(t,u,v))), \end{split}$$

where (t, u, v): $(b =_{\mathtt{B}} fa) \times (b' =_{\mathtt{B}} fa') \times (b =_{\mathtt{B}} b')$, is trivial because $\mathtt{code}(\mathtt{inl}b, \mathtt{inl}b')$ is a mere set.

To define

$$decode(inlb): code(inlb, inrc) \rightarrow (inlb =_{B+aC} inrc),$$

recall that

$$\mathtt{code}(\mathtt{inl}b,\mathtt{inr}c) = \sum_{a \colon \mathtt{A}} (b =_{\mathtt{B}} fa) \times (c =_{\mathtt{C}} ga)$$

Define

$$decode(inlb)(p,q) := inlp; gluea; inrq$$

Right now, we define

$$\begin{split} \operatorname{ap}_{\mathtt{decode}(\mathtt{inl}b)}(\mathtt{glue}a) \colon (\mathtt{code}(\mathtt{inl}b,\mathtt{inl}fa) \to (\mathtt{inl}b =_{\mathtt{B+AC}} \mathtt{inl}fa) \\ &= (\mathtt{code}(\mathtt{inl}b,\mathtt{inl}ga) \to (\mathtt{inl}b =_{\mathtt{B+AC}} \mathtt{inl}ga) \end{split}$$

To define this is to construct a commuting square

$$\gcd(\mathtt{inl}b,\mathtt{inl}fa) \xrightarrow{\gcd(\mathtt{inl}b)(\mathtt{inl}b')} (\mathtt{inl}b =_{\mathtt{B+AC}} \mathtt{inl}fa)$$

We have already defined the two decode maps. The map θ' is post-composition by gluea. The map θ requires induction to define because we are mapping out of a pushout. Therefore, we need the following three values to define θ :

- $\theta(\text{inl'}p)$ for $p : b =_{\mathtt{B}} fa$
- $\bullet \ \theta(\mathtt{inr'}(q,r,s)) \ \text{for} \ (q,r,s) \colon \sum_{a',a'' \colon \mathtt{A}} (b =_{\mathtt{B}} fa') \times (fa =_{B} fa'') \times (ga' =_{C} ga'')$
- $\operatorname{ap}_{\theta}(\operatorname{glue}(t, u, v)) : \theta(\operatorname{inl}'(\alpha(t, u, v))) = \theta(\operatorname{inr}'(\beta(t, u, v))).$

A quick remark on notation: since f is monic and B is a set, we can pull back any path of form r: $fa =_{B} fa'$ to a determined path \hat{r} : $a =_{A} a'$.

Define $\theta(\mathtt{inl'}p)$ for $p: b =_{\mathtt{B}} fa$ to be (p, \mathtt{refl}_{ga}) . Define $\theta(q, r, s)$ to be $(q, \mathtt{ap}_{g}(\hat{r}); s^{-1})$.

Now we know that $\operatorname{ap}_{\theta}(\operatorname{glue}(t,u,v))$ is a path from $\theta(\operatorname{inl}'(v)) = (v,\operatorname{refl}_{ga})$ to $\theta(\operatorname{inr}'(\beta(t,u,v)))$ But that can be reduced:

$$\begin{split} \theta(\text{inr}'(t, u, \text{ap}_g(\hat{v}))) &= (t, \text{ap}_g(\hat{u}); \text{ap}_g(\hat{v})^{-1}) \\ &= (t, \text{ap}_g(\hat{u}; \hat{v}^{-1})). \end{split}$$

With this in mind, we define $ap_{\theta}(glue(t, u, v))$ to be post-composition by

$$(ap_f(\hat{u}; \hat{v}^{-1}), ap_g(\hat{u}; \hat{v}^{-1})).$$

Now we need to check that the diagram commutes. Since code(inlb, inlfa) is a set, it suffices to check that

$$\theta'(\texttt{decode}(\texttt{inl}b)(\texttt{inl}fa)(x)) =_{\texttt{inl}b = \texttt{B} + \texttt{A}\texttt{cinr}ga} \texttt{decode}(\texttt{inl}b)(\texttt{inr}ga)(\theta(x))$$

where x: code(inlb, inlfa) takes values

- inl'p for $p: b =_{\mathtt{B}} fa$, and
- $\operatorname{inr}'(q,r,s)$ for (q,r,s): $\sum_{a',a'' \in A} (b =_{\mathsf{B}} fa') \times (fa =_{\mathsf{B}} fa'') \times (ga' =_{\mathsf{C}} ga'')$.

We also need to check that

$$\operatorname{ap}_{\theta';\operatorname{decode}(\operatorname{inl}b)(\operatorname{inl}fa))}(\operatorname{glue}(t,u,v)) =_{\operatorname{inl}b = \operatorname{B+}_{\operatorname{A}}\operatorname{Cinr}ga} \operatorname{ap}_{\operatorname{decode}(\operatorname{inl}b)(\operatorname{inr}ga);\theta}(\operatorname{glue}(t,u,v))$$

Set $x \coloneqq \operatorname{inl}'p$. Then

$$\begin{aligned} \theta'(\texttt{decode}(\texttt{inl}b)(\texttt{inl}fa)(\texttt{inl}'p)) &= \theta'((\texttt{ap}_{\texttt{inl}'}p)) \\ &= \texttt{ap}_{\texttt{inl}'}p; \texttt{glue}a \end{aligned}$$

Also,

$$\begin{split} \operatorname{decode}(\operatorname{inl}b)(\operatorname{inr} ga)(\theta(\operatorname{inl}'p)) &= \operatorname{decode}(\operatorname{inl}b)(\operatorname{inr} ga)((p,\operatorname{refl}_{ga})) \\ &= \operatorname{ap_{inl'}}p; \operatorname{glue}a; \operatorname{ap_{inr'}}\operatorname{refl}_{ga} \\ &= \operatorname{ap_{inl'}}p; \operatorname{glue}a; \operatorname{refl_{inr'}}ga \\ &= \operatorname{ap_{inl'}}p; \operatorname{glue}a \end{split}$$

Therefore, the square commutes on inl'p

Set
$$x := inr'(q, r, s)$$
. Then

$$\begin{aligned} \theta'(\mathsf{decode}(\mathsf{inl}b)(\mathsf{inl}fa)(\mathsf{inr}'(q,r,s))) &= \theta'(\mathsf{ap}_{\mathsf{inl}}q;\mathsf{glue}a';\mathsf{ap}_{\mathsf{inr}}s;\mathsf{glue}a'';\mathsf{ap}_{\mathsf{inl}}r^{-1}) \\ &= \mathsf{ap}_{\mathsf{inl}}q;\mathsf{glue}a';\mathsf{ap}_{\mathsf{inr}}s;\mathsf{glue}^{-1}a'';\mathsf{ap}_{\mathsf{inl}}r^{-1};\mathsf{glue}a \\ &= \mathsf{ap}_{\mathsf{inl}}q;\mathsf{glue}a';\mathsf{ap}_{\mathsf{inr}}s;\mathsf{glue}^{-1}a'';\mathsf{ap}_{\mathsf{inl}}\mathsf{ap}_{f}\hat{r}^{-1};\mathsf{glue}a \end{aligned}$$

Also,

$$\begin{split} \operatorname{decode}(\operatorname{inl}b)(\operatorname{inr}ga)(\theta(\operatorname{inr}'(q,r,s))) &= \operatorname{decode}(\operatorname{inl}b)(\operatorname{inr}ga)(q,\operatorname{ap}_g(\hat{r};s^{-1})) \\ &= \operatorname{ap}_{\operatorname{inl}}q; \operatorname{glue}a'; (\operatorname{ap}_{\operatorname{inr}}(\operatorname{ap}_g\hat{r};s^{-1})^{-1}) \\ &= \operatorname{ap}_{\operatorname{inl}}q; \operatorname{glue}a'; \operatorname{ap}_{\operatorname{inr}}(\operatorname{ap}_g(\hat{r}); (\operatorname{ap}_g(s^{-1}))^{-1}) \\ &= \operatorname{ap}_{\operatorname{inl}}q; \operatorname{glue}a'; \operatorname{ap}_{\operatorname{inr}}(s^{-1})^{-1}; \operatorname{ap}_g(\hat{r})^{-1} \\ &= \operatorname{ap}_{\operatorname{inl}}q; \operatorname{glue}a'; \operatorname{ap}_{\operatorname{inr}}(s^{-1})^{-1}; \operatorname{ap}_g(\hat{r})^{-1} \\ &= \operatorname{ap}_{\operatorname{inl}}q; \operatorname{glue}a'; \operatorname{ap}_{\operatorname{inr}}s; \operatorname{ap}_g(\hat{r})^{-1} \end{split}$$

We just need to check that

$$\operatorname{ap}_{a}(\hat{r})^{-1} = \operatorname{glue}^{-1}a''; \operatorname{ap}_{\operatorname{inl}}\operatorname{ap}_{f}\hat{r}^{-1}; \operatorname{glue}a$$

But this follows from the continuity of glue, that is, it preserves paths. Therefore, the square commutes on inr'(q, r, s).

It remains to check that

$$\begin{split} \mathrm{ap}_{\theta';\mathtt{decode}(\mathtt{inl}b)(\mathtt{inl}fa))}(\mathtt{glue}(t,u,v)) =_{\mathtt{inl}b = \mathtt{B} + \mathtt{A}\mathtt{Cinr}ga} \mathtt{ap}_{\mathtt{decode}(\mathtt{inl}b)(\mathtt{inr}ga);\theta}(\mathtt{glue}(t,u,v)) \\ \mathrm{for}\ (t,u,v) \colon \sum_{a',a'' \colon \mathtt{A}} (b =_\mathtt{B} fa') \times (fa =_\mathtt{B} fa'') \times (b =_\mathtt{B} fa). \ \mathrm{Here, \ we \ make \ some \ reductions.} \end{split}$$

- Because f is monic, we get that $fa =_{\mathtt{B}} fa''$ reduces to $fa =_{\mathtt{B}} fa$. Since B is a set, we can take $u = \mathtt{refl}_{fa}$.
- The type $b =_{\mathtt{B}} fa'$ reduces to $fa =_{\mathtt{B}} fa$ because B is monic, so $t = \mathtt{refl}_{fa}$..
- The type $b =_{\mathtt{B}} fa$ reduces to $fa =_{\mathtt{B}} fa$ because B is monic, so $v = \mathtt{refl}_{fa}$.

Without loss of generality, we can take $(t, u, v) = (\text{refl}_{fa}, \text{refl}_{fa}, \text{refl}_{fa})$. Therefore, it suffices to check that

$$\begin{split} & \mathsf{ap}_{\theta'; \mathsf{decode}(\mathsf{inl}b)(\mathsf{inl}fa))}(\mathsf{glue}(\mathsf{refl}_{fa}, \mathsf{refl}_{fa}, \mathsf{refl}_{fa})) \\ &=_{\mathsf{inl}b = \mathsf{B+ACinr}ga} \, \mathsf{ap}_{\mathsf{decode}(\mathsf{inl}b)(\mathsf{inr}ga); \theta}(\mathsf{glue}(\mathsf{refl}_{fa}, \mathsf{refl}_{fa}, \mathsf{refl}_{fa})). \end{split}$$

But because the square commutes on points as shown above, the two paths on the left and right of the above equation are certainly parallel. Then functorality gives us that $refl_{fa}$ is preserved. Hence the square commutes.

To define the map

$$\operatorname{decode}(\operatorname{inr} c) \colon \prod_{x \colon \operatorname{B+_{AC}}} \operatorname{code}(\operatorname{inr} c, x) \to \operatorname{inr}(c =_{\operatorname{B+_{AC}}} x)$$

we use induction on B + A C which, in practice, means that we require the two function types

- decode(inrc)(inlb): $code(inrc, inlb) \rightarrow (inrc =_{B+_AC} inlb)$
- decode(inrc)(inrc'): $code(inrc, inrc') \rightarrow (inrc =_{B+AC} inrc')$

and a witness

$$\begin{split} \operatorname{ap}_{\mathtt{decode}(\mathtt{inr}c)}(\mathtt{glue}a) \colon (\mathtt{code}(\mathtt{inr}c,\mathtt{inl}fa) &\to (\mathtt{inr}c =_{\mathtt{B+AC}} \mathtt{inl}fa) \\ &= (\mathtt{code}(\mathtt{inr}c,\mathtt{inl}ga) &\to (\mathtt{inr}c =_{\mathtt{B+AC}} \mathtt{inl}ga) \end{split}$$

First, let us define the map

$$\mathtt{decode}(\mathtt{inr}c)(\mathtt{inl}b) \colon \mathtt{code}(\mathtt{inr}c,\mathtt{inl}b) \to (\mathtt{inr}c =_{\mathtt{B+aC}} \mathtt{inl}b).$$

Recall that $code(inrc, inlb) := \sum_{a: A} (c =_{C} ga) \times (b =_{B} fa)$. Thus for any (p, q) in code(inrc, inlb), we define a path decode(inrc)(inlb)(p, q) in $B +_{A} C$ from inrc to inlb. Take this path to be inrp; $glue^{-1}a$; $inlq^{-1}$.

Next, we define

$$decode(inrc)(inrc'): code(inrc, inrc') \rightarrow (inrc =_{B+AC} inrc').$$

Recall that

$$\mathtt{code}(\mathtt{inr}c,\mathtt{inr}c')\coloneqq \sum_{a\colon \mathtt{A}}(c=_{\mathtt{C}}ga)\times (c'=_{\mathtt{C}}ga')\times (fa=_{\mathtt{B}}fa').$$

Thus for any (p, q, r) in code(inrc, inrc'), we define a path decode(inrc)(inrc')(p, q, r) in $B +_A C$ from inrc to inrc'. Take this path to be inrp; $glue^{-1}a$; inlrgluea'; $inrq^{-1}$.

Finally, we define a path

$$\begin{split} \operatorname{ap}_{\mathtt{decode}(\mathtt{inr}c)}(\mathtt{glue}a) \colon (\mathtt{code}(\mathtt{inr}c,\mathtt{inl}fa) &\to (\mathtt{inr}c =_{\mathtt{B+_AC}} \mathtt{inl}fa) \\ &= (\mathtt{code}(\mathtt{inr}c,\mathtt{inl}ga) &\to (\mathtt{inr}c =_{\mathtt{B+_AC}} \mathtt{inl}ga). \end{split}$$

Replacing the two code expressions with their definitions, this path is constructed as a commuting square

$$\begin{array}{c} \sum\limits_{a':\: \mathtt{A}} (c =_{\mathtt{C}} ga') \times (fa =_{\mathtt{B}} fa') & \underline{\qquad} \operatorname{decode} \\ & \theta \bigg| & \bigg| \theta' \\ \sum\limits_{a',a'':\: \mathtt{A}} (c =_{\mathtt{C}} ga') \times (ga =_{\mathtt{C}} ga') \times (fa' =_{\mathtt{B}} fa'') & \underline{\qquad} \operatorname{decode} \\ & \inf c =_{\mathtt{B+AC}} \operatorname{inl} fa) \end{array}$$

The easier map to define is θ' which concatenates with glue a. Then θ is given by $(p,q) \mapsto (p, \text{refl}_{ga}, q)$. Now we check whether the square commutes. We have

$$\begin{aligned} \theta'(\texttt{decode}(\texttt{inr}c, -)(\texttt{inl}fa)(p, q)) &= \theta'(\texttt{inr}p; \texttt{glue}^{-1}a'; \texttt{inl}q^{-1}) \\ &= \texttt{inr}p; \texttt{glue}^{-1}a'; \texttt{inl}q^{-1}; \texttt{glue}a. \end{aligned}$$

We also have that

$$\begin{aligned} \operatorname{decode}(\operatorname{inr} c, -)(\operatorname{inl} ga)(\theta(p,q)) &= \operatorname{decode}(\operatorname{inr} c, -)(\operatorname{inl} ga)(p, \operatorname{refl}_{ga}, q) \\ &= \operatorname{inr} p; \operatorname{glue}^{-1} a'; \operatorname{inl} q^{-1}; \operatorname{glue} a; \operatorname{inrrefl}_{ga} \\ &= \operatorname{inr} p; \operatorname{glue}^{-1} a'; \operatorname{inl} q^{-1}; \operatorname{glue} a \end{aligned}$$

Hence the square commutes.

1.5. Composing encode and decode. Consider the composite

$$\texttt{encode}; \texttt{decode} \colon \prod_{x,y \colon \mathtt{B} + \mathtt{AC}} x =_{\mathtt{B} + \mathtt{AC}} yx =_{\mathtt{B} + \mathtt{AC}} y$$

To show that this map is the identity up to homotopy, we compute both

$$\bullet \ \operatorname{encode} ; \operatorname{decode}(\operatorname{inl} b) \colon \prod_{x \colon \operatorname{B} +_{\mathtt{A}} \mathsf{C}} (\operatorname{inl} b =_{\mathtt{B} +_{\mathtt{A}} \mathsf{C}} x) \to (\operatorname{inl} b =_{\mathtt{B} +_{\mathtt{A}} \mathsf{C}} x), \ \operatorname{and}$$

 $\bullet \ \operatorname{encode} ; \operatorname{decode} (\operatorname{inr} c) \colon \prod_{x \colon \operatorname{B} +_{\mathtt{A}} \operatorname{C}} \operatorname{inr} c =_{\operatorname{B} +_{\mathtt{A}} \operatorname{C}} x \to (\operatorname{inr} c =_{\operatorname{B} +_{\mathtt{A}} \operatorname{C}} x).$

But computing these values actually requires the computation of the following four maps:

• encode; decode(inlb)(inlb'): code(inlb, inlb') \rightarrow (inlb =_{B+AC} inlb'). By path induction, it suffices to check refl_{inlb}:

$$\begin{split} \texttt{encode}; \texttt{decode}(\texttt{inl}b)(\texttt{inl}b')(\texttt{refl}_{\texttt{inl}b}) &= \texttt{encode}(\texttt{ap}_{\texttt{inl}'}\texttt{refl}_{\texttt{inl}b}) \\ &= \texttt{encode}(\texttt{refl}_{\texttt{inl}'b}) \\ &= \texttt{ap}_{\texttt{inl}}\texttt{refl}_{\texttt{inl}'b} \\ &= \texttt{refl}_{\texttt{inl}b}. \end{split}$$

So this one checks out.

• encode; decode(inlb)(inrc): code(inlb, inrc) \rightarrow (inlb =_{B+AC} inlc). **DANIEL**: glue(a) *is* the only thing to check here, right? This is only non-trivial when $b =_{B} fa$ and $c =_{C} ga$. Hence

encode; $decode(inlb)(inrc)(gluea) = decode(inlb)(inrc)(refl_{fa}, refl_{ga}) = ap_{inr}refl_{ga}$; gluea; $ap_{in1}refl_{ga}$; $ap_$

- encode; decode(inrc, -)(inlb): code(inrc, inlb) \rightarrow (inr $c =_{\mathtt{B+AC}}$ inlb). This is symmetric to the above case, so checks out.
- encode; decode(inrc, -)(inrc'): code(inrc, inrc') \rightarrow (inr $c =_{B+AC}$ inrc') is, by path induction,

 $\texttt{encode}; \texttt{decode}(\texttt{inr}c, -)(\texttt{inr}c')(\texttt{refl}_{\texttt{inr}c}) = \texttt{decode}(\texttt{inr}c, -)(\texttt{inr}c')(\texttt{refl}_c) = \texttt{ap}_{\texttt{inr}}\texttt{refl}_c = \texttt{refl}_{\texttt{inr}c}$

And so, we have proved that decode is a section for encode. The opposite direction remains.

Now, we look at the composite

$$\texttt{decode}; \texttt{encode} \colon \prod_{x,y \colon \mathtt{B} +_{\mathtt{A}}\mathtt{C}} \mathtt{code}(x,y) \to \mathtt{code}(x,y)$$

We can compute this composite by computing the values

- decode; encode(inlb)(inlb'): code(inlb, inlb') \rightarrow code(inlb, inlb'),
- decode; encode(inlb)(inrc): code(inlb, inrc) \rightarrow code(inlb, inrc),
- decode; encode(inrc)(inlb): code(inrc, inlb) \rightarrow code(inrc, inlb), and
- decode; encode(inrc)(inrc'): code(inrc, inrc') \rightarrow code(inrc, inrc')

But these maps are all identity since code(x, y) is a proposition for x, y : B + A C.

We now know that encode and decode are mutual inverses. Therefore, $\mathtt{inl}b =_{\mathtt{B}+\mathtt{AC}} x$ and $\mathtt{inr}c =_{\mathtt{B}+\mathtt{AC}} x$ are mere propositions for any $x \colon \mathtt{B}+\mathtt{A} \mathtt{C}$. As discussed above, the embedding $\mathtt{P} \hookrightarrow \mathtt{Q}$ is actually an equivlance. Theorem 1 follows.