#### **Cheat Sheet**

# **Arc Length and Circular Sector Area**



**Trigonometry** 



| α                    | $sin(\alpha)$ | $\cos(\alpha)$ | $tan(\alpha)$ |
|----------------------|---------------|----------------|---------------|
| 0°                   | 0             | 1              | 0             |
| $\pi/6 = 30^{\circ}$ | 1/2           | $\sqrt{3}/2$   | $1/\sqrt{3}$  |
| $\pi/4 = 45^{\circ}$ | $\sqrt{2}/2$  | $\sqrt{2}/2$   | 1             |
| $\pi/3 = 60^{\circ}$ | $\sqrt{3}/2$  | 1/2            | $\sqrt{3}$    |
| $\pi/2 = 90^{\circ}$ | 1             | 0              | DNE           |

Basic values of trigonometric functions

• 
$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\bullet \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}, \quad \cot(\alpha) = \frac{1}{\tan(\alpha)}, \quad \sec(\alpha) = \frac{1}{\cos(\alpha)}, \quad \csc(\alpha) = \frac{1}{\sin(\alpha)}$$

• 
$$\sin(\pi/2 - a) = \cos(a)$$
,  $\cos(\pi/2 - a) = \sin(a)$ 

• 
$$\sin(-\alpha) = -\sin(\alpha)$$
,  $\cos(-\alpha) = \cos(\alpha)$ 

$$\bullet \sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

• 
$$\sin(a - b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

• 
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

• 
$$cos(a + b) = cos(a) cos(b) - sin(b) sin(a)$$

$$\bullet \cos(a - b) = \cos(a)\cos(b) + \sin(b)\sin(a)$$

• 
$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)$$

$$\bullet \cos(\alpha/2) = \sqrt{\frac{1+\cos(\alpha)}{2}}, \ \sin(\alpha/2) = \sqrt{\frac{1-\cos(\alpha)}{2}}$$

• 
$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)$$

• 
$$1 + \tan^2(\alpha) = \sec^2(\alpha)$$

## **Inverse Trigonometric Functions**

| f(x)      | Domain             | Range            |  |
|-----------|--------------------|------------------|--|
| arcsin(x) | [-1, 1]            | $[-\pi/2,\pi,2]$ |  |
| arccos(x) | [-1, 1]            | $[0,\pi]$        |  |
| arctan(x) | $(-\infty,\infty)$ | $(-\pi/2,\pi,2)$ |  |

| χ  | arcsin(x) | arccos(x) | arctan(x) |
|----|-----------|-----------|-----------|
| 0  | 0         | $\pi/2$   | 0         |
| 1  | $\pi/2$   | 0         | $\pi/4$   |
| -1 | $-\pi/2$  | π         | $-\pi/4$  |

• 
$$\arcsin(x) + \arccos(x) = \pi/2$$

$$\bullet \cos(\arcsin(x)) = \sqrt{1-x^2}, \ \sin(\arccos(x)) = \sqrt{1-x^2}$$

$$\bullet \cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}}, \ \sin(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}$$

#### **Laws of Sines and Cosines**



$$\bullet \frac{\alpha}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

$$\bullet c^2 = a^2 + b^2 - 2ab\cos(C)$$

#### $\textbf{Polar Coordinates} \leftrightarrow \textbf{Cartesian Coordinates}$

• 
$$(x,y) \rightarrow (\sqrt{x^2 + y^2}, \arctan(y/x))$$
 if  $x > 0$ 

• 
$$(x,y) \rightarrow (\sqrt{x^2 + y^2}, \pi + \arctan(y/x))$$
 if  $x < 0$ 

• 
$$(0,y) \rightarrow (y,\pi/2)$$
 if  $y > 0$ 

• 
$$(0,y) \rightarrow (y,3\pi/2)$$
 if  $y < 0$ 

$$\bullet \ (r, \phi) \rightarrow (r \cos(\phi), r \sin(\phi))$$

### **Dot Product**

$$\mathbf{v} = (a, b), \mathbf{w} = (c, d), \text{ then } \mathbf{v} \cdot \mathbf{w} = ac + bd = |\mathbf{v}||\mathbf{w}|\cos(\mathbf{v}, \mathbf{w})$$

# **Complex numbers**

$$\bullet i^2 = -1$$

• 
$$r = |a + bi| = \sqrt{a^2 + b^2}$$

$$\bullet \ Polar \ form: \ \alpha + bi = r(cos(\phi) + i sin(\phi))$$

$$\bullet \overline{a + bi} = a - bi$$

## **Properties of Logarithms**

(1) 
$$log_{\alpha}(bc) = log_{\alpha}(b) + log_{\alpha}(c)$$

(2) 
$$log_{\alpha}(b/c) = log_{\alpha}(b) - log_{\alpha}(c)$$

(3) 
$$log_{\alpha}(b^c) = clog_{\alpha}(b)$$

$$\textbf{(4)} \ log_{\alpha}(b) = \frac{log_{c}(b)}{log_{c}(\alpha)}.$$