Construction de \mathcal{A}_{Φ} - 1

Etant donnée une formule de LTL ϕ , on veut construire un automate \mathcal{A}_{ϕ} qui reconnait le langage $\operatorname{mod}(\phi)$.

𝔄₀→ = (Q,q₀,→,𝑣) sera un automate de Büchi généralisé.
kesako?

Un automate de Büchi reconnait des mots infinis: un mot w est accepté si il existe un chemin dans l'automate dont l'étiquetage correspond à w et si le chemin passe infiniment souvent par un des états acceptants (un sous-ensemble de Q).

Dans un automate de Büchi généralisé, les états acceptants sont donnés par un ensemble de sou-ensemble $\mathcal{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_k\}$: un « bon » chemin doit passer infiniment souvent par un des états de chaque \mathcal{F}_i ...

Construction de \mathcal{A}_{Φ} - 2

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$$

Chaque état de Q sera associé (défini) par un sous-ensemble de sous-formules de φ.

idée de la construction: depuis un état associé à l'ensemble de sous-formules $\{\psi_1,...,\psi_n\}$, on reconnait des mots vérifiant chacune de ses sous-formules.

Comme \mathcal{A}_{φ} doit reconnaître les modèles de φ , l'ensemble des états initiaux Q_0 contiendra tous les états de Q contenant la sous-formule φ ...

Construction de \mathcal{A}_{Φ} - 3

$$\mathcal{A}_{\Phi} = (\mathsf{Q}, \mathsf{Q}_0, \rightarrow, \mathscr{F})$$

Comment définir les états Q ? Quels ensembles de sous-formules de φ choisir ?

On va choisir des sous-ensembles cohérents (logiquement), maximaux et conforme à la sémantique de LTL.

Soit S_{ϕ} l'ensemble des sous-formules de ϕ et leur négation.

Exemple:

$$\Phi = \mathbf{a} \mathbf{U} (\mathbf{X} b)$$

$$S_{\Phi} = \{ \mathbf{a}, \neg \mathbf{a}, \mathbf{b}, \neg \mathbf{b}, \mathbf{X} \mathbf{b}, \neg \mathbf{X} \mathbf{b}, \mathbf{a} \mathbf{U} (\mathbf{X} \mathbf{b}), \neg (\mathbf{a} \mathbf{U} (\mathbf{X} \mathbf{b})) \}$$

Construction de \mathcal{A}_{Φ} - 4

Comment définir les états Q?

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$$

Les états q sont des sous-ensembles cohérents, maximaux et conforme à la sémantique de LTL...

► Cohérents:

Si
$$\psi_1 \land \psi_2 \in Q \Rightarrow \psi_1$$
, $\psi_2 \in Q$,

$$si \neg (\psi_1 \land \psi_2) \in q \Rightarrow (\psi_1 \notin q \text{ ou } \psi_2 \notin q),$$

Si
$$\psi_1 \lor \psi_2 \in q \Rightarrow (\psi_1 \in q \text{ ou } \psi_2 \in q),$$

$$si \neg (\psi_1 \lor \psi_2) \in q \Rightarrow (\psi_1 \not\in q \text{ et } \psi_2 \not\in q),$$

Si $\psi \in q$, alors $\neg \psi \notin q$.

Maximaux:

Dans tout état, pour chaque sous-formule ψ , on met soit ψ , soit $\neg \psi$.

Construction de \mathcal{A}_{Φ} - 5

Comment définir les états Q?

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$$

Les états q sont des sous-ensembles cohérents, maximaux et conforme à la sémantique de LTL...

► Conforme à la sémantique de LTL:

Dans tout état q, si la sous-formule $\psi_1 U \psi_2$ est présente, alors on a soit ψ_1 , soit ψ_2 dans l'état q.

Si $\psi_1 U \psi_2 \in S\varphi$, alors si ψ_2 est dans un état q, $\psi_1 U \psi_2 \in q$

Et les états initiaux Q₀ sont ceux contenant φ.

Construction de \mathcal{A}_{Φ} - 6

Comment définir les états Q?

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$$

Ce sont des sous-ensembles cohérents, maximaux et conforme à la sémantique de LTL...

Exemple:

$$\begin{split} &\varphi=a~\mathbf{U}~(b~\wedge~c)\\ &S_{\varphi}=\{a,~\neg a,~b,~\neg b,~c,~\neg c,~b\wedge c,\neg (b\wedge c),~a~\mathbf{U}~(b\wedge c),~\neg (a~\mathbf{U}~(b\wedge c))\}\\ &q=\{a,\neg b,c,\neg (b\wedge c),a~\mathbf{U}~(b\wedge c)\}~ou\\ &q'=\{a,\neg b,c,\neg (b\wedge c),\neg~(a~\mathbf{U}~(b\wedge c))\}~~sont~ok~!\\ &Mais~r=\{a,b,\neg b,c,\neg (b\wedge c),a~\mathbf{U}~(b\wedge c)\},\\ &r'=\{a,b,c,\neg (b\wedge c),a~\mathbf{U}~(b\wedge c)\}~ou\\ &r''=\{a,b,c,(b\wedge c),\neg (a~\mathbf{U}~(b\wedge c))\}~ne~sont~pas~bien~formés~!\\ \end{split}$$

Construction de
$$\mathcal{A}_{\Phi}$$
 - 7

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathscr{F})$$

Comment définir les transitions de l'automate \mathcal{A}_{Φ} ?

On met une transition $(q,\sigma,q') \in Qx2^{AP}xQ$ si et seulement si:

- σ = q ∩ AP (*ie* les prop. atomiques de q)
- **-** \forall **X** ψ ∈ S_φ, **X** ψ ∈ q \iff ψ ∈ q
- $\forall \psi_1 \cup \psi_2 \in S_{\Phi}$, $\psi_1 \cup \psi_2 \in Q \iff (\psi_2 \in Q \vee (\psi_1 \in Q \land \psi_1 \cup \psi_2 \in Q'))$

Exemple:

$$\begin{split} &\varphi=a~\mathbf{U}~(b~\wedge~c)\\ &S_{\varphi}=\{a,~\neg a,~b,~\neg b,~c,~\neg c,~b\wedge c,\neg (b\wedge c),~a~\mathbf{U}~(b\wedge c),~\neg (a~\mathbf{U}~(b\wedge c))~\}\\ &q=\{a,\neg b,c,\neg (b\wedge~c),a~\mathbf{U}~(b\wedge c)\}\\ &q'=\{\neg a,b,c,(b\wedge~c),(a~\mathbf{U}~(b\wedge c))\} \end{split}$$

Construction de \mathcal{A}_{Φ} - 8 $\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$

Comment définir les conditions d'acceptation F?

Pour chaque sous-formule $\psi_1 U \psi_2$, on a un ensemble $\mathcal{F}_{\psi^1 U \psi^2}$ défini par:

$$\mathcal{F}_{\psi^1 \mathbf{U} \psi^2} = \{ \mathbf{q} \in \mathbf{Q} \mid \psi_1 \mathbf{U} \psi_2 \notin \mathbf{q} \lor \psi_2 \in \mathbf{q} \}$$

idée: un état contenant $\psi_1 U \psi_2$ doit reconnaître les modèles de $\psi_1 U \psi_2$ et donc visiter un jour un état contenant ψ_2 .

Pour en être sûr, on impose de visiter infiniment souvent des états contenant $\psi_2...$ ou infiniment souvent des états contenant $\neg \psi_1 \mathbf{U} \psi_2...$

Dans les deux cas, on est sûr de ne pas attendre indéfiniment la satisfaction de ψ_2 .

\mathcal{A}_{Φ} et les modèles de Φ

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathscr{F})$$

Prenons un chemin dans \mathcal{A}_{Φ} $q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow \dots$ étiqueté par le mot $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \dots$ de $(2^{AP})^{\omega}$

Alors on a:

$$\forall \psi \in Q_i, \quad \sigma_i \sigma_{i+1} \sigma_{i+2} \dots \models \psi$$

Construction de \mathcal{A}_{Φ} - exemple

$$\Phi = \mathbf{X} \text{ a}$$

$$\mathcal{A}_{\Phi} = (Q, Q_0, \rightarrow, \mathcal{F})$$

$$\mathcal{F} = \{Q\}$$

$$q_{1} = \{a, Xa\},$$

$$q_{2} = \{a, \neg Xa\}$$

$$q_{3} = \{\neg a, Xa\}$$

$$q_{4} = \{\neg a, \neg Xa\}$$

$$q_{4} = \{\neg a, \neg Xa\}$$

$$\{a\}\{a\}\{\neg a\}\dots \{\neg a\}\{a\}\{a\}\dots \{a\}\{a\}\{a\}\dots$$

Construction de \mathcal{A}_{Φ} - exemple

Construction de \mathcal{A}_{Φ} - exemple

Construction de \mathcal{A}_{Φ} - exemple

On remarque ici que on ne peut jamais aller d'un état contenant φ à un état contenant ¬φ...

Construction de \mathcal{A}_{Φ} - exemple

(version simplifiée)

$$\phi = \mathbf{G} \ (a \Rightarrow \mathbf{F} \ b)$$

 $\{a,b\}(a,b)\{a,\neg b\}\{a,\neg b\}\{a,\neg b\}\{\neg a,\neg b\}\{\neg a,b\}\dots$

Correction de la construction

Théorème 1:

soit $w=w_0w_1... \in (2^{AP})^{\omega}$ et $\rho=q_0q_1...$ une exécution acceptante de \mathcal{A}_{Φ} sur le mot w, alors on a:

 $\forall i \ge 0, \forall \psi \in S_{\varphi}, \quad (\psi \in q_i \iff w, i \models \psi)$

(Preuve par induction structurelle sur ψ)

Corolaire: $\mathscr{L}(\mathscr{A}_{\Phi}) \subseteq \mathsf{mod}(\Phi)$

Théorème 2:

soit $w=w_0w_1... \in (2^{AP})^{\omega}$ t.q. $w,0 \models \varphi$, alors on a: $w \in \mathcal{L}(\mathcal{A}_{\varphi})$.

(Preuve: on construit une exécution acceptante sur w...)

Corolaire: $mod(\phi) \subseteq \mathcal{L}(\mathcal{A}_{\phi})$

Problèmes de vérification pour LTL

1)
$$\mathbf{S} \vDash \phi$$
? Traces(\mathbf{S}) $\subseteq \operatorname{mod}(\phi)$

$$\mathscr{L}(\mathscr{A}_{\mathbf{S}}) \cap \mathscr{L}(\mathscr{A}_{\neg \phi}) = \varnothing$$
?

3) Est-ce que ϕ est satisfaisable? $\mathscr{L}(\mathscr{A}_{\phi}) \neq \varnothing$

Problèmes de vérification pour LTL

La taille de l'automate \mathcal{A}_{φ} est exponentiel dans $|\varphi|$! Ces problèmes sont donc difficiles !

 \rightarrow Tester si $\mathbf{S} \models \varphi$ ou si φ est satisfaisable sont des problèmes PSPACE-complet.

Problèmes de vérification pour LTL

NuSMV

 $\mathbf{S} \models \varphi$?

Oui. On définit S et φ...

Est-ce que φ est satisfaisable ? Avec NuSMV, on peut tester si une formule est valide (ie vraie pour tout modèle).

φ est satisfaisable ssi ¬φ n'est pas valide (c'est-àdire si il existe des modèles où ¬φ n'est pas vraie, donc où φ est vraie)...

Problèmes de vérification pour LTL NuSMV

$$\phi = \mathbf{G} \ (a \Rightarrow \mathbf{F} \ b)$$

```
MODULE main
VAR
   etat: {q0, q1, q2};
ASSIGN
   init(etat) := q0;
   next(etat) :=
          case
           etat=q0 : \{q1,q2\};
           etat=q1:q1;
           etat=q2 : \{q1, q2\};
          esac;
DEFINE
   a := (etat = q0) \mid (etat = q2);
   b := (etat = q0) | (etat = q1);
LTLSPEC NAME
prop := G(a \rightarrow Fb)
```

Problèmes de vérification pour LTL NuSMV

$$\models \varphi$$
?

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{a} \wedge \mathbf{G} \mathbf{F} \mathbf{b}$$

Problèmes de vérification pour LTL Model-checking

 $\mathbf{S} \models \phi$?

$$\phi = \mathbf{G} \ (a \Rightarrow \mathbf{F} \ b)$$

mdp

label "a" =
$$(q=0 \mid q=2)$$
;
label "b" = $(q=0) \mid (q=1)$;

module K

q: $[0..2]$ init 0;
[] $q=0 \rightarrow (q'=1)$;
[] $q=0 \rightarrow (q'=2)$;
[] $q=1 \rightarrow true$;
[] $q=2 \rightarrow true$;
[] $q=2 \rightarrow (q'=1)$;
endmodule

$$A [G («a» => (F «b»))]$$

Problèmes de vérification pour LTL Prism

$$\models \varphi$$
?

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{a} \wedge \mathbf{G} \mathbf{F} \mathbf{b}$$

E[X((GF « a ») & (GF « b »))]

Problèmes de vérification pour LTL

Prism

i pour Li L

705

 $\mathbf{S} \models \phi$?


```
mdp
label "a" = (q=2 | q=5);
label "b" = (q=3 | q=4 | q=5);
module General
         q:[0..5];
    [] (q=0) \rightarrow (q'=1);
    [] (q=0) \rightarrow (q'=2);
    [] (q=0) \rightarrow (q'=4);
    [] (q=1) \rightarrow (q'=3);
    [] (q=3) \rightarrow (q'=3);
    [] (q=3) \rightarrow (q'=1);
    [] (q=2) \rightarrow (q'=5);
    [] (q=4) \rightarrow (q'=0);
    [] (q=4) \rightarrow (q'=4);
    [] (q=4) \rightarrow (q'=5);
    [] (q=5) \rightarrow (q'=4);
    [] (q=5) \rightarrow (q'=5);
endmodule
```