

Lecture 11

Antoine Abi Chakra

Overview

- Animated Circular Object and Stationary Circular Object
- Collision Response (Reflection)

Modeling Pinball Animation as Ray

- Located at center point B_s at top of frame
- Moving in direction given by normalized vector v and speed k units
- In other words, k is the magnitude of the vector v

$$B(t) = B_s + \vec{v}(t)$$

$$\Rightarrow B(t) = B_s + k\hat{v}(t) \qquad t \in [0,1]$$

Circular Pillars

- Circular pillars are stationary and defined by center point C and radius r
- Boundary of circle defined as all points *P* whose distance from center *C* is equal to radius *r*

$$||C - P|| = r \implies ||C - P||^2 = r^2$$
$$\Rightarrow (C - P)^2 = r^2$$

Ray-Circle Intersection (1/6)

• To solve for intersection between ray B(t) and circle, replace P with $B(t_i)$ in circle equation

$$(C - B(t))^{2} = r^{2}$$

$$\Rightarrow (C - B_{s} - t\vec{v})^{2} = r^{2}$$

• Note: $C - B_s = \overrightarrow{B_s C}$

$$\Rightarrow t^{2}(\vec{v} \bullet \vec{v}) - 2t(\overline{B_{s}C}) \bullet \vec{v} + (\overline{B_{s}C}) \bullet (\overline{B_{s}C}) - r^{2} = 0$$

Ray-Circle Intersection (2/6)

$$\Rightarrow$$
 at² + bt + c = 0

where

$$a = \vec{v} \bullet \vec{v}$$

$$b = -2(\overrightarrow{B_s C}) \bullet \overrightarrow{v}$$

$$c = \left(\overrightarrow{B_s C}\right) \bullet \left(\overrightarrow{B_s C}\right) - r^2$$

Ray-Circle Intersection (3/6)

Solve for t,

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ray-Circle Intersection (4/6)

Given:
$$\mathbf{a} = \vec{v} \bullet \vec{v}$$
, $\mathbf{b} = -2(C - B_s) \bullet \vec{v}$, and

$$c = (C - B_s) \bullet (C - B_s) - r^2$$

If $b^2 - 4ac < 0 \Rightarrow$ ray misses circle

Ray-Circle Intersection (5/6)

If $b^2 - 4ac \equiv 0 \Rightarrow$ ray grazes circle

$$t_i = \frac{-b}{2a} \in [0,1]$$

$$\boldsymbol{B}_{i} = \boldsymbol{B}(\boldsymbol{t}_{i}) = \boldsymbol{B}_{s} + \vec{v}\boldsymbol{t}_{i}$$

Ray-Circle Intersection (6/6)

If $b^2 - 4ac > 0 \Rightarrow$ ray intersects circle at B_{i0} and B_{i1}

$$t_{i0} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$t_{i1} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$t_i = \min(t_{i0}, t_{i1}) \text{ and } t_i \in [0,1]$$

$$\boldsymbol{B}(t_i) = \boldsymbol{B}_i = \boldsymbol{B}_s + \vec{v}t_i$$

Test for Non-Collision (1/3)

Compute projection of $\overrightarrow{B_sC}$ onto \hat{v}

Test for Non-Collision (2/3)

$$m = \overrightarrow{B_s C} \bullet \frac{\overrightarrow{v}}{\|\overrightarrow{v}\|}$$

If $m < 0 & B_s$ outside circle

⇒ circle behind ray origin

Test for Non-Collision (3/3)

Compute:
$$n^2 = ||B_s C||^2 - m^2$$

If $n^2 > r^2$ ray will miss the circle

... Otherwise: Compute t_i

(1/2)

- There are two ways to compute the time of intersection:
 - Using the quadratic equation

$$t_{i0} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$t_{i1} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$t_{i} = \min(t_{i0}, t_{i1}) \text{ and } t_{i} \in [0,1]$$

(Or make sure that the intersection point is between B_s and B_e)

Compute t_i (2nd method) (2/2)

Compute: $s^2 = r^2 - n^2$

Since $n^2 \le r^2 \Rightarrow s^2 \ge 0 \Rightarrow s \ge 0$

$$t_{i0} = \frac{m - s}{\|\vec{v}\|}$$

$$t_{i1} = \frac{m+s}{\|\vec{v}\|}$$

(Make sure that the intersection point is between B_s and B_e)

Overview

- Animated Circular Object and Stationary Circular Object
- Collision Response (Reflection)

Reflection (1/4)

Compute: $\mathbf{B}_i = \mathbf{B}_s + \vec{\mathbf{v}}\mathbf{t}_i$

Compute: $\vec{n} = \overrightarrow{CB_i}$

$$\hat{n} = \frac{\overrightarrow{CB_i}}{\left\| \overrightarrow{CB_i} \right\|}$$

Reflection (2/4)

$$\vec{m} = \overrightarrow{B_i B_s} = B_s - B_i$$

Reflection (3/4)

$$\vec{u} + \vec{s} = \vec{m}$$

$$\vec{u} - \vec{s} = \vec{r}$$

$$2\vec{u} = \vec{m} + \vec{r} \implies \vec{r} = 2\vec{u} - \vec{m}$$

$$\vec{u} = (\vec{m} \cdot \hat{n})\hat{n}$$

Reflection: $\vec{r} = 2(\vec{m} \cdot \hat{n})\hat{n} - \vec{m}$

Reflection (4/4)

Given: B_s , B_i , t_i and \vec{n}

$$\vec{m} = \overrightarrow{B_i B_s} = B_s - B_i$$

$$\vec{r} = 2(\vec{m} \bullet \hat{n})\hat{n} - \vec{m} \qquad \hat{r} = \frac{1}{\|\vec{r}\|}$$

$$\Rightarrow B_e' = B_i + k\hat{r}(1 - t_i)$$

(k is the length of the original vector v. Refer to slide 4)

Pinball-Circular Pillar Collision (1/2)

- Animated pinball modeled by a circle with center B_s and radius r_s
- Stationary circular pillar defined by center point C and radius r_c

Pinball-Circular Pillar Collision (2/2)

• Similar to intersection tests between ray from B_s to B_e and circle of radius $(r_s + r_c)$

