目录

第三章	导数、微分、边际与弹性	3
3.1	导数的概念	3
	3.1.1 导数的引例	3
	3.1.2 导数的定义	4
	3.1.3 导数的几何意义	9
	3.1.4 函数可导性与连续性的关系	9
	3.1.5 小结	11
3.2	求导法则与基本初等函数求导公式	12
	3.2.1 函数的和、差、积、商的求导法则	12
	3.2.2 反函数的求导法则	15
	3.2.3 复合函数的导数	17
	3.2.4 小结	19
3.3	高阶导数	21
	3.3.1 高阶导数的定义	21
	3.3.2 高阶导数的求法	22
	3.3.3 小结	25
3.4	隐函数及由参数方程所确定的函数的导数	26

2				目录
		3.4.1	隐函数的导数	26
		3.4.2	由参数方程所确定的函数的导数	29
		3.4.3	小结	30
	3.5	函数的	微分	31
		3.5.1	微分的定义	31
		3.5.2	微分的几何意义	33
		3.5.3	基本初等函数的微分公式与微分运算法则	34
		3.5.4	微分在近似计算中的应用	36
		3.5.5	小结	37
	3.6	边际与	弹性	38
		3.6.1	边际的概念	38
		3.6.2	经济学中常见的边际函数	39
		3.6.3	弹性的概念	41
		3.6.4	经济学中常见的弹性函数	43
		3.6.5	· 小结	48

第三章 导数、微分、边际与弹性

3.1 导数的概念

3.1.1 导数的引例

例 **1.** 物体作变速直线运动,经过的路程 s 是时刻 t 的函数,s=f(t). 求在 t_0 时刻物体的瞬时速度.

• 从 t_0 到 $t_0 + \Delta t$ 的平均速度为

$$\frac{\Delta s}{\Delta t} = \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

• 在 t₀ 时刻的瞬时速度为

$$\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

例 **2.** 求曲线 y = f(x) 在点 $M(x_0, y_0)$ 处的切线斜率.

● 设 N 点在 M 点附近,则割线 MN 的斜率为

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

● 让 N 点往 M 点跑,则切线 MT 的斜率为

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

3.1.2 导数的定义

定义. 设 y = f(x) 在 x_0 的某邻域有定义. 若极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称此极限为 f(x) 在 x_0 处的导数(或微商).记为 $f'(x_0)$, $y'|_{x=x_0}$,或 $\frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}$,或

注记. 导数 $f'(x_0)$ 反映了 f(x) 在点 x_0 处的变化快慢,因此 $f'(x_0)$ 又称为 f(x) 在 x_0 点的变化率.

•
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 (定义)

3.1 导数的概念 5

•
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (\$\displant\text{ } h = \Delta x)

•
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ (\Leftrightarrow x = x_0 + h)$$

如果 f(x) 在 x_0 处有导数,则称函数 f(x) 在 x_0 点可导. 否则,称 f(x) 在 x_0 处不可导.

对于点 x_0 , 如果当 $\Delta x \to 0$ 时比值 $\frac{\Delta y}{\Delta x} \to \infty$, 此时函数 y = f(x) 在 x_0 处是不可导的, 但是为了方便,也往往说函数 y = f(x) 在 x_0 点处的导数为无穷大, 并记作 $f'(x_0) = \infty$.

如果 f(x) 在区间 I 内每一点都可导,则称 f(x) 在区间 I 内可导.

如果 f(x) 在区间 I 内可导,则每个 $x_0 \in I$ 都有一个导数值 $f'(x_0)$ 与之对应,从而得到一个函数 f'(x):

$$f': X_0 \longrightarrow f'(X_0)$$

f'(x) 称为 f(x) 在 I 内的导函数(简称导数),记为 f'(x),或 y',或 $\frac{dy}{dx}$,或 $\frac{df(x)}{dx}$.此时有 $f'(x_0) = f'(x)|_{x=x_0}.$

•
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 (定义)

•
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (\$\displies h = \Delta x)

在上式中虽然 x 可以取区间 I 内的任何数值, 但在取极限的过程中, x 是常量, Δx 是变量.

求导数的步骤

1. 求增量
$$\Delta y = f(x + \Delta x) - f(x)$$
;

2. 算比值
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
;

3. 求极限
$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
.

例 **3.** 求函数 f(x) = C(C) 为常数) 的导数.

解.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = 0.$$
 所以

$$(C)' = 0.$$

例 **4.** 求幂函数 $f(x) = x^n$ 的导数.

解。由条件得

$$(x^{n})' = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h}$$

$$= \lim_{h \to 0} \left[nx^{n-1} + \frac{n(n-1)}{2!} x^{n-2} h + \dots + h^{n-1} \right]$$

$$= nx^{n-1}$$

即 $(x^n)' = nx^{n-1}$.

更一般地,对于任意给定的实数 μ ,

$$(x^{\mu})' = \mu x^{\mu - 1}.$$

例 **5.** 求函数 $f(x) = \cos x$ 的导数.

解. 由条件得

$$(\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-2\sin\frac{2 + \Delta x}{2}\sin\frac{\Delta x}{2}}{\Delta x}$$

$$= -\lim_{\Delta x \to 0} \sin(x + \frac{\Delta x}{2})\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

$$= -\sin x$$

 $(\cos x)' = -\sin x$, $(\sin x)' = \cos x$.

例 **6.** 求函数 $f(x) = a^{x}(a > 0, a \neq 1)$ 的导数.

3.1 导数的概念 7

解。易知

$$(a^{x})' = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^{x}}{\Delta x}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{e^{\Delta x \ln a} - 1}{\Delta x}$$

$$= a^{x} \ln a$$

$$(a^{x})' = a^{x} \ln a$$
, $(e^{x})' = e^{x}$.

例 **7.** 求函数 $y = \log_a x (a > 0, a \neq 1)$ 的导数.

解。由条件知

$$(\log_{a} x)' = \lim_{\Delta x \to 0} \frac{\log_{a} (x + \Delta x) - \log_{a} x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\log_{a} (1 + \frac{\Delta x}{x})}{\frac{\Delta x}{x}} \cdot \frac{1}{x}$$

$$= \frac{1}{x} \lim_{\Delta x \to 0} \log_{a} (1 + \frac{\Delta x}{x})^{\frac{x}{\Delta x}}$$

$$= \frac{1}{x} \log_{a} e = \frac{1}{x \ln a}$$

利用导数的定义, 可以得到

$$(C)' = 0 (3.1.1)$$

$$(x^{\mu})' = \mu x^{\mu - 1} \tag{3.1.2}$$

$$(\cos x)' = -\sin x, \tag{3.1.3}$$

$$(\sin x)' = \cos x \tag{3.1.4}$$

利用导数的定义, 可以得到

$$(a^{x})' = a^{x} \cdot \ln a,$$
 $(e^{x})' = e^{x}$ (3.1.5)

$$(\log_a x)' = \frac{1}{x \cdot \ln a},$$
 $(\ln x)' = \frac{1}{x}.$ (3.1.6)

对于分段函数, 我们有(假定 g(x) 和 h(x) 总可导):

$$f(x) = \begin{cases} g(x), & x \le a \\ h(x), & x > a \end{cases} \Longrightarrow f'(x) = \begin{cases} g'(x), & x < a \\ h'(x), & x > a \end{cases}$$

注记. f'(a) 需要单独研究: 未必有 f'(a) = g'(a).

定义。设 f(x) 在 $(x_0 - \delta, x_0]$ 上有定义,若左极限

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

存在,则称它为 f(x) 在 x_0 处的左导数,记为 $f'(x_0)$.

定义. 设 f(x) 在 $[x_0, x_0 + \delta]$ 上有定义,若右极限

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

存在,则称它为 f(x) 在 x_0 处的右导数,记为 $f'(x_0)$.

注记. 导数存在 ⇔ 左导数和右导数都存在且相等.

左导数和右导数统称为单侧导数.

如果函数 f(x) 在开区间 (a,b) 内可导, 且 $f'_{+}(a)$ 及 $f'_{-}(b)$ 都存在, 就说 f(x) 在闭区间 [a,b] 上可导.

题型:

假定 g(x) 和 h(x) 总可导, 分段函数

$$f(x) = \begin{cases} g(x), & x \le a \\ h(x), & x > a \end{cases}.$$

讨论 f(x) 在 $x = \alpha$ 处的可导性. 解法: 求 $x = \alpha$ 处的左右导数,并比较它们是否相等.

3.1 导数的概念 9

例 **8.** 判断函数 $f(x) = \begin{cases} x^3, & x \le -1 \\ x^2, & x > -1 \end{cases}$ 在点 x = -1 的连续性与可导性. . . 不连续且不可导

例 **9.** 判断函数 $f(x) = \begin{cases} x^3, & x \le 1 \\ x^2, & x > 1 \end{cases}$ 在点 x = 1 处的连续性与可导性. 连续但不可导

例 **10.** 判断函数 $f(x) = \begin{cases} x^3, & x \le 0 \\ x^2, & x > 0 \end{cases}$ 在点 x = 0 处的连续性与可导性. 连续且可导

3.1.3 导数的几何意义

函数 f(x) 在 x_0 处的导数 $f'(x_0)$,就是曲线 y = f(x) 在点 (x_0, y_0) 处的切线斜率. 从而点 (x_0, y_0) 处的切线方程为

$$y-y_0 = f'(x_0)(x-x_0)$$

法线方程为

$$y-y_0 = -\frac{1}{f'(x_0)}(x-x_0)$$

例 **11.** 求 $f(x) = x^2$ 在点 (1,1) 处的切线方程和法线方程.

练习. 求 $f(x) = \frac{1}{x}$ 在点 $\left(2, \frac{1}{2}\right)$ 处的切线方程和法线方程.

答案. 切线方程为 x + 4y - 4 = 0.

法线方程为 8x - 2y - 15 = 0.

3.1.4 函数可导性与连续性的关系

定理. f(x) 在 x_0 点可导,则 f(x) 在 x_0 点连续.

证明. 设函数 f(x) 在点 x_0 可导,则有 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ 存在,故

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \cdot \Delta x \right)$$
$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta x = 0.$$

即 $\lim_{\Delta x_0 \to 0} f(x + \Delta x) = f(x_0)$. 所以函数 f(x) 在点 x_0 连续.

注意: f(x) 在 x_0 点连续 $\Longrightarrow f(x)$ 在 x_0 点可导.

例 **12.** f(x) = |x| 在 x = 0 处连续但不可导.

推论. f(x) 在 x_0 点不连续 $\Longrightarrow f(x)$ 在 x_0 点不可导.

例 **13.** 判断 $f(x) = \begin{cases} x^3, & x \le -1 \\ x^2, & x > -1 \end{cases}$, 在点 x = -1 处的连续性与可导性.

设函数 f(x) 在点 x_0 连续, 但

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \infty$$

称函数 f(x) 在点 x_0 有无穷导数(不可导).

例如,

$$f(x) = \sqrt[3]{x-1}$$

在 x = 1 处不可导.

函数 f(x) 在连续点的左右导数都不存在 (指摆动不定),则 x_0 点不可导.

例如,

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

在 x = 0 处不可导.

若 $f'(x_0) = \infty$, 且在点 x_0 的两个单侧导数符号相反,则称点 x_0 为函数 f(x) 的尖点 (不可导点).

3.1 导数的概念 11

3.1.5 小结

1. 导数的实质: 增量比的极限, 即瞬时变化率;

2.
$$f'(x_0) = a \iff f'_{-}(x_0) = f'_{+}(x_0) = a$$

- 3. 导数的几何意义: 切线的斜率;
- 4. 可导的函数一定连续, 但连续的函数不一定可导;
- 5. 求导数最基本的方法: 由定义求导数.

思考。函数 f(x) 在某点 x_0 处的导数 $f'(x_0)$ 与导函数 f'(x) 有什么区别与联系?

答案。由导数的定义知, $f'(x_0)$ 是一个具体的数值,f'(x) 是由于 f(x) 在某区间 I 上每一点都可导而定义在 I 上的一个新函数,即 $\forall x \in I$,有唯一值 f'(x) 与之对应,所以

两者的区别是:一个是数值,另一个是函数.

两者的联系是: 在某点 x_0 处的导数 $f'(x_0)$ 即是导函数 f'(x) 在 x_0 处的函数值.

3.2 求导法则与基本初等函数求导公式

3.2.1 函数的和、差、积、商的求导法则

定理 **1.** 如果函数 u(x), v(x) 在点 x 处可导,则它们的和、差、积、商 (除分母不为零外) 在 点 x 处也可导,并且

1.
$$[u(x) \pm v(x)]' = u'(x) \pm v'(x)$$
.

2.
$$[u(x) \cdot v(x)]' = u'(x)v(x) + u(x)v'(x)$$
.

3.
$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}, \ (v(x) \neq 0).$$

证明. 设
$$f(x) = \frac{u(x)}{v(x)}$$
. $(v(x) \neq 0)$, 则
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x+h)}{v(x+h)} - \frac{u(x)}{v(x)}}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h)v(x) - u(x)v(x+h)}{v(x+h)v(x)h}$$

$$= \lim_{h \to 0} \frac{[u(x+h) - u(x)]v(x) - u(x)[v(x+h) - v(x)]}{v(x+h)v(x)h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x+h) - u(x)}{h} \cdot v(x) - u(x) \cdot \frac{v(x+h) - v(x)}{h}}{v(x+h)v(x)}$$

$$= \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

所以 f(x) 在 x 处可导.

推论. 1.
$$\left[\sum_{i=1}^{n} f_i(x)\right]' = \sum_{i=1}^{n} f_i'(x)$$

2. [Cf(x)]' = Cf'(x), C 为常数.

3.

$$\left[\prod_{i=1}^{n} f_i(x)\right]' = f'_1(x)f_2(x)\cdots f_n(x)$$

$$+ \cdots + f_1(x)f_2(x)\cdots f'_n(x)$$

$$= \sum_{i=1}^{n} \prod_{k=1 \atop k \neq i}^{n} f'_i(x)f_k(x)$$

例 **1.** 求 $y = x^3 - 2x^2 + \sin x$ 的导数.

$$\mathbf{m} \cdot \mathbf{y}' = 3x^2 - 4x + \cos x$$

例 2. 求 $y = \sin 2x \cdot \ln x$ 的导数.

$$\mathbf{ML} : y = 2\sin x \cdot \cos x \cdot \ln x$$

$$\therefore y' = 2\cos x \cdot \cos x \cdot \ln x + 2\sin x \cdot (-\sin x) \cdot \ln x$$

$$+ 2\sin x \cdot \cos x \cdot \frac{1}{x}$$

$$= 2\cos 2x \ln x + \frac{1}{x}\sin 2x$$

例 **3.** 求 $y = \tan x$ 的导数.

解。由条件可得

$$y' = (\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

即 $(\tan x)' = \sec^2 x$. 同理可得 $(\cot x)' = -\csc^2 x$.

例 **4.** 求 $y = \sec x$ 的导数.

解。由条件知

$$y' = (\sec x)' = \left(\frac{1}{\cos x}\right)'$$
$$= \frac{-(\cos x)'}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \sec x \tan x$$

同理可得 $(\csc x)' = -\csc x \cot x$

例 **5.** 求 $y = \sinh x$ 的导数.

解。由条件

$$y' = (\sinh x)' = \left[\frac{1}{2}(e^x - e^{-x})\right]' = \frac{1}{2}(e^x + e^{-x}) = \cosh x$$

同理可得 $(\cosh x)' = -\sinh x$, $(\tanh x)' = \frac{1}{\cosh^2 x}$.

例 **6.** 设
$$f(x) = \begin{cases} x, & x < 0 \\ \ln(1+x), & x \ge 0 \end{cases}$$
, 求 $f'(x)$

解。分情况讨论

1. 当 x < 0 时,

$$f'(x) = 1$$
.

2. 当 x > 0 时

$$f'(x) = \lim_{h \to 0} \frac{\ln(1+x+h) - \ln(1+x)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \ln\left(1 + \frac{h}{1+x}\right)$$
$$= \frac{1}{1+x},$$

3. 当 x = 0 时,

所以 f'(0) = 1.

$$f'_{-}(0) = \lim_{h \to 0^{-}} \frac{(0+h) - \ln(1+0)}{h} = 1,$$

$$f'_{+}(0) = \lim_{h \to 0^{+}} \frac{\ln[1 + (0+h)] - \ln(1+0)}{h} = 1,$$

综上, 我们有

$$f'(x) = \begin{cases} 1, & x \le 0; \\ \frac{1}{1+x}, & x > 0. \end{cases}$$

练习。求下列函数的导数.

(1)
$$f(x) = x^5 - 4x^4 + x^2 + 3x + e$$

(2)
$$f(x) = (x + 2)(3x^3 + 2x)$$

答案。(1)
$$f'(x) = 5x^4 - 16x^3 + 2x + 3$$
;

(2)
$$f'(x) = 12x^3 + 18x^2 + 4x + 4$$
.

利用商的导数运算公式,可以得到:

$$(\tan x)' = \sec^2 x \tag{3.2.1}$$

$$(\cot x)' = -\csc^2 x \tag{3.2.2}$$

$$(\sec x)' = \sec x \cdot \tan x \tag{3.2.3}$$

$$(\csc x)' = -\csc x \cdot \cot x \tag{3.2.4}$$

其中,
$$\sec x = \frac{1}{\cos x}$$
, $\csc x = \frac{1}{\sin x}$.

3.2.2 反函数的求导法则

定理 **2.** 如果函数 $x = \varphi(y)$ 在某区间 I_y 内单调、可导且 $\varphi'(y) \neq 0$, 则它的反函数 y = f(x) 在对应区间 I_x 内也可导,且有

$$f'(x) = \frac{1}{\varphi'(y)}.$$

注记. 上式也可以写成
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$
.

证明. 任取 $x \in I_x$, 给 x 以增量 Δx ($\Delta x \neq 0$, $x + \Delta x \in I_x$). 由 y = f(x) 的单调性可知 $\Delta y \neq 0$, 于是有

$$\frac{\Delta y}{\Delta x} = \frac{1}{\frac{\Delta x}{\Delta y}},$$

由 f(x) 连续, 得 $\Delta y \rightarrow 0$ ($\Delta x \rightarrow 0$), 又知 $\varphi'(y) \neq 0$, 故

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{\varphi'(y)}$$

即

$$f'(x) = \frac{1}{\varphi'(y)}.$$

例 **7.** 求函数 $y = \arcsin x$ 的导数.

解. 易知 $X = \sin y$ 在 $I_y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 内单调、可导, 且

$$(\sin y)' = \cos y > 0,$$

于是在 $I_x \in (-1,1)$ 内有

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

同理可得

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

 $(\arctan x)' = \frac{1}{1+x^2}; \quad (\operatorname{arccot} x)' = -\frac{1}{1+x^2}$

例 **8.** 求函数 $y = \log_a x$ 的导数.

解. 易知 $x = \alpha^y$ 在 $I_v \in (-\infty, +\infty)$ 内单调、可导,且

$$(\alpha^y)' = \alpha^y \ln \alpha \neq 0$$

因此在 $I_x \in (0, +\infty)$ 内可导, 导函数为:

$$(\log_a x)' = \frac{1}{(a^y)'} = \frac{1}{a^y \ln a} = \frac{1}{x \ln a}.$$

特别地 $(\ln x)' = \frac{1}{2}$.

利用反函数的求导法则可得

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 (3.2.5)

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 (3.2.6)
 $(\arctan x)' = \frac{1}{1+x^2}$ (3.2.7)

$$(\arctan x)' = \frac{1}{1+x^2}$$
 (3.2.7)

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$
 (3.2.8)
 $(\log_a x)' = \frac{1}{x \ln a}$ (3.2.9)

$$(\log_a x)' = \frac{1}{x \ln a} \tag{3.2.9}$$

3.2.3 复合函数的导数

例 **9.** [f(g(x))]' = f'[g(x)] 一般不成立. 比如

 $(\sin 2x)' \neq \cos 2x$.

实际上, 我们有

$$(\sin 2x)' = (2\sin x \cos x)' = 2(\sin x \cos x)'$$

$$= 2[(\sin x)' \cdot \cos x + \sin x \cdot (\cos x)']$$

$$= 2[\cos x \cdot \cos x + \sin x \cdot (-\sin x)]$$

$$= 2[\cos^2 x - \sin^2 x]$$

$$= 2\cos 2x$$

定理 **3.** 设 y = f(u), u = g(x), 则它们的复合函数 y = f[g(x)] 的导数公式为:

$$y_x' = y_u' \cdot u_x'$$

或者

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

或者

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

证明. 由 y = f(u) 在点 u_0 可导, 得 $\lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} = f'(u_0)$. 故

$$\frac{\Delta y}{\Delta u} = f'(u_0) + \alpha \quad \left(\lim_{\Delta u \to 0} \alpha = 0\right)$$

所以 $\Delta y = f'(u_0)\Delta u + \alpha \Delta u$. 因此

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[f'(u_0) \frac{\Delta u}{\Delta x} + \alpha \frac{\Delta u}{\Delta x} \right]$$

$$= f'(u_0) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \alpha \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$

$$= f'(u_0) \varphi'(x_0)$$

例 10. 求复合函数的导数:

(1)
$$y = (1 + 2x)^6 \dots 12(1 + 2x)^5$$

(2)
$$y = e^{3x^2+1}$$
 $6xe^{3x^2+1}$

(4)
$$y = \sqrt{x^2 + 1}$$
 ... $\frac{x}{\sqrt{x^2 + 1}}$

练习 1. 求复合函数的导数:

(1)
$$y = e^{2x^2-6x}$$

(2)
$$y = \sqrt{2x^2 - 4x + 1}$$

$$(3) \quad y = \frac{\sin 3x}{x^2}$$

推论. 设 y = f(u), u = g(v), v = h(x). 则复合函数 y = f(g(h(x))) 的导数公式为:

$$y'_{x} = y'_{u} \cdot u'_{v} \cdot v'_{x}$$

或者

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}v} \cdot \frac{\mathrm{d}v}{\mathrm{d}x}.$$

3.2 求导法则与基本初等函数求导公式

19

例 11. 求三重复合函数的导数:

(1)
$$y = e^{\sqrt{-2x+1}}$$

(2)
$$y = \ln(\cos(3x + 1))$$

练习 2. 求三重复合函数的导数:

(1)
$$y = e^{\sqrt{x^2-1}}$$

(2)
$$y = \tan^2(3x^2 + 1)$$

3.2.4 小结

$$(C)' = 0 (x^{\mu})' = \mu x^{\mu - 1}$$

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x (\cot x)' = -\csc^2 x$$

$$(\sec x)' = \sec x \tan x (\csc x)' = -\csc x \cot x$$

$$(a^{x})' = a^{x} \ln a (e^{x})' = e^{x}$$

$$(\log_{a} x)' = \frac{1}{x \ln a} (\ln x)' = \frac{1}{x}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} (\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arccos} x)' = \frac{1}{1 + x^2} (\operatorname{arccot} x)' = -\frac{1}{1 + x^2}$$

设 u = u(x), v = v(x) 可导,则

1.
$$(u \pm v)' = u' \pm v'$$

3.
$$(uv)' = u'v + uv'$$

$$4. \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} (v \neq 0)$$

设函数 x = f(y) 在某区间 I_y 内单调、可导且 $f'(y) \neq 0$, 那么它的反函数 $y = f^{-1}(x)$ 在对应区间 $I_x = f(I_y)$ 内也可导, 且有

$$f'(x) = \frac{1}{\varphi'(y)}.$$

设 y = f(u), 而 $u = \varphi(x)$ 则复合函数 $y = f[\varphi(x)]$ 的导数为

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

或

$$y'(x) = f'(u) \cdot \varphi'(x)$$
.

- 1. 利用上述公式及法则, 初等函数求导问题可完全解决.
- 2. 注意: 初等函数的导数仍为初等函数.

注意:

1. $[u(x) \cdot v(x)]' \neq u'(x) \cdot v'(x)$;

$$2. \left[\frac{u(x)}{v(x)} \right]' \neq \frac{u'(x)}{v'(x)};$$

- 3. 分段函数求导时, 分界点导数用左右导数求;
- 4. 反函数的求导法则 (注意成立条件):
- 5. 复合函数的求导法则 (注意函数的复合过程, 合理分解正确使用链导法).

已能求导的函数: 可分解成基本初等函数, 或常数与基本初等函数的和、差、积、商.

选择. 若 f(u) 在 u_0 不可导, u = g(x) 在 x_0 可导, 且 $u_0 = g(x_0)$. 则 f[g(x)] 在 x_0 处 ()

(1) 必可导 (2) 必不可导 (3) 不一定可导

答案。正确地选择是 (3)

- (1) 反例: f(u) = |u| 在 u = 0 处不可导,取 $u = g(x) = \sin x$ 在 x = 0 处可导, $f[g(x)] = |\sin x|$ 在 x = 0 处不可导.
- (2) 反例: 取 $u = g(x) = x^4$ 在 x = 0 处可导, $f[g(x)] = |x^4| = x^4$ 在 x = 0 处可导.

3.3 高阶导数 21

思考。求曲线 $y = 2x - x^3$ 上与 x 轴平行的切线方程.

答案. 易知 $y' = 2 - 3x^2$, 令 y' = 0 得

$$x_1 = \sqrt{\frac{2}{3}}, \ x_2 = -sqrt\frac{2}{3}$$

故切点为

$$(\sqrt{\frac{2}{3}}, \frac{4\sqrt{6}}{9}), (-\sqrt{\frac{2}{3}}, -\frac{4\sqrt{6}}{9})$$

所求切线方程为 $y = \frac{4\sqrt{6}}{9}$ 和 $y = -\frac{4\sqrt{6}}{9}$

3.3 高阶导数

3.3.1 高阶导数的定义

问题 (变速直线运动的加速度). 设 s = f(t), 则瞬时速度为 v(t) = f'(t). 因为加速度 α 是速度 ν 对时间 t 的变化率, 因此

$$a(t) = v'(t) = [f'(t)]'$$

定义。如果函数 f(x) 的导数 f'(x) 在点 x 处可导, 即

$$(f'(x))' = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

存在,则称 $(f'(x))^{\prime}$ 为函数 f(x) 在点 x 处的二阶导数,记作

$$f''(x), y'', \frac{d^2y}{dx^2} \stackrel{\text{d}}{\otimes} \frac{d^2f(x)}{dx^2}.$$

类似地,我们可以定义:

- 二阶导数的导数称为三阶导数, $f'''(x), y''', \frac{d^3y}{dx^3}$.
- 三阶导数的导数称为四阶导数, $f^{(4)}(x)$, $y^{(4)}$, $\frac{d^4y}{dx^4}$.
- 一般地, 函数 f(x) 的 n-1 阶导数的导数称为函数 f(x) 的 n 阶导数, 记作

$$f^{(n)}(x), y^{(n)}, \frac{d^n y}{dx^n} \stackrel{\text{def}}{=} \frac{d^n f(x)}{dx^n}$$

二阶和二阶以上的导数统称为<mark>高阶导数</mark>. 相应地, f(x) 称为零阶导数; f'(x) 称为一阶导数.

3.3.2 高阶导数的求法

高阶导数的求法主要有

- 1. 直接法: 由高阶导数的定义逐步求高阶导数.
- 2. 间接法: 利用已知的高阶导数公式, 通过四则运算, 变量代换等方法, 求出 n 阶导数.
- 例 **1.** 设 $y = \arctan x$, 求 f''(0), f'''(0).

解。易知

$$y' = \frac{1}{1+x^2}, \ y'' = \left(\frac{1}{1+x^2}\right)' = \frac{-2x}{(1+x^2)^2},$$
$$y''' = \left(\frac{-2x}{(1+x^2)^2}\right)' = \frac{2(3x^2-1)}{(1+x^2)^3}.$$

因此

$$f''(0) = \frac{-2x}{(1+x^2)^2}\bigg|_{x=0} = 0; \ f'''(0) = \frac{2(3x^2-1)}{(1+x^2)^3}\bigg|_{x=0} = -2.$$

例 **2.** 设 $y = x^{\alpha} (\alpha \in R)$, 求 $y^{(n)}$.

解. 由条件易得

$$y' = \alpha x^{\alpha - 1} y'' = (\alpha x^{\alpha - 1})' = \alpha(\alpha - 1)x^{\alpha - 2} y''' = (\alpha(\alpha - 1)x^{\alpha - 2})' = \alpha(\alpha - 1)(\alpha - 2)x^{\alpha - 3} \dots y^{(n)} = \alpha(\alpha - 1) \dots (\alpha - n + 1)x^{\alpha - n} (n \ge 1)$$

若 α 为自然数n,则

$$y^{(n)} = (x^n)^{(n)} = n!, \quad y^{(n+1)} = (n!)' = 0$$

3.3 高阶导数 23

求 n 阶导数时, 求出 1-3 或 4 阶后, 不要急于合并, 分析结果的规律性, 写出 n 阶导数.(可用数学归纳法证明)

例 **3.** 设 $y = \ln(1+x)$, 求 $y^{(n)}$.

解。由条件易得

$$y' = \frac{1}{1+x}, \ y'' = -\frac{1}{(1+x)^2},$$

$$y''' = \frac{2!}{(1+x)^3}, \ y^{(4)} = -\frac{3!}{(1+x)^4},$$

......

$$y^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}, \ (n \ge 1, 0! = 1)$$

例 **4.** 设 $y = \sin x$, 求 $y^{(n)}$.

解。由条件易得

$$y' = \cos x = \sin \left(x + \frac{\pi}{2} \right),$$

 $y'' = \cos \left(x + \frac{\pi}{2} \right) = \sin \left(x + \frac{\pi}{2} + \frac{\pi}{2} \right) = \sin \left(x + 2 \cdot \frac{\pi}{2} \right),$
 $y''' = \cos \left(x + 2 \cdot \frac{\pi}{2} \right) = \sin \left(x + 3 \cdot \frac{\pi}{2} \right),$
......
 $(\sin x)^{(n)} = \sin \left(x + n \cdot \frac{\pi}{2} \right).$

同理可得 $(\cos x)^{(n)} = \cos \left(x + n \cdot \frac{\pi}{2}\right)$

例 **5.** 设 $y = e^{ax} \sin bx (a, b)$ 为常数), 求 $y^{(n)}$.

解。由条件知

$$y' = ae^{ax} \sin bx + be^{ax} \cos bx$$

$$= e^{ax} (a \sin bx + b \cos bx)$$

$$= e^{ax} \cdot \sqrt{a^2 + b^2} \sin(bx + \varphi) \quad \left(\varphi = \arctan \frac{b}{a} \right)$$

$$y'' = \sqrt{a^2 + b^2} \cdot [ae^{ax} \sin(bx + \varphi) + be^{ax} \cos(bx + \varphi)]$$

$$= \sqrt{a^2 + b^2} \cdot e^{ax} \cdot \sqrt{a^2 + b^2} \sin(bx + 2\varphi)$$

$$y^{(n)} = (a^2 + b^2)^{\frac{n}{2}} \cdot e^{ax} \sin(bx + n\varphi) \quad \left(\varphi = \arctan \frac{b}{a} \right)$$

设函数 u 和 v 具有 n 阶导数,则

1.
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$
;

2.
$$(Cu)^{(n)} = Cu^{(n)}$$

3.
$$(u \cdot v)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v''$$

$$+ \frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)}$$

$$+ \cdots + uv^{(n)}$$

$$= \sum_{k=0}^{n} C_{n}^{k}u^{(n-k)}v^{(k)}$$
莱布尼茨公式

例 **6.** 设 $y = x^2 e^{2x}$, 求 $y^{(20)}$.

解。设 $u = e^{2x}$. $v = x^2$. 则由莱布尼兹公式知

$$y^{(20)} = (e^{2x})^{(20)} \cdot x^2 + 20 (e^{2x})^{(19)} \cdot (x^2)'$$

$$+ \frac{20(20-1)}{2!} (e^{2x})^{(18)} \cdot (x^2)'' + 0$$

$$= 2^{20}e^{2x} \cdot x^2 + 20 \cdot 2^{19}e^{2x} \cdot 2x$$

$$+ \frac{20 \cdot 19}{2!} 2^{18}e^{2x} \cdot 2$$

$$= 2^{20}e^{2x} (x^2 + 20x + 95)$$

利用已知的高阶导数公式,通过四则运算,变量代换等方法,求出 n 阶导数.

常用高阶导数公式

(1)
$$(a^{x})^{(n)} = a^{x} \cdot \ln^{n} \alpha(a > 0)$$
 $(e^{x})^{(n)} = e^{x}$
(2) $(\sin kx)^{(n)} = k^{n} \sin \left(kx + n \cdot \frac{\pi}{2}\right)$
(3) $(\cos kx)^{(n)} = k^{n} \cos \left(kx + n \cdot \frac{\pi}{2}\right)$
(4) $(x^{\alpha})^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)x^{\alpha - n}$
(5) $(\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^{n}} \left(\frac{1}{x}\right)^{(n)} = (-1)^{n} \frac{n!}{x^{n+1}}$

3.3 高阶导数 25

例 **7.** 设 $y = \frac{1}{x^2-1}$, 求 $y^{(5)}$.

解。由

$$y = \frac{1}{x^2 - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)$$

得

$$y^{(5)} = \frac{1}{2} \left[\frac{-5!}{(x-1)^6} - \frac{-5!}{(x+1)^6} \right]$$
$$= 60 \left[\frac{1}{(x+1)^6} - \frac{1}{(x-1)^6} \right]$$

例 **8.** 设 $y = \sin^6 x + \cos^6 x$, 求 $y^{(n)}$.

解。由条件可得

$$y = (\sin^2 x)^3 + (\cos^2 x)^3$$

$$= (\sin^2 x + \cos^2 x) (\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x)$$

$$= (\sin^2 x + \cos^2 x)^2 - 3\sin^2 x \cos^2 x$$

$$= 1 - \frac{3}{4}\sin^2 2x = 1 - \frac{3}{4} \cdot \frac{1 - \cos 4x}{2}$$

$$= \frac{5}{8} + \frac{3}{8}\cos 4x$$

于是 $y^{(n)} = \frac{3}{8} \cdot 4^n \cdot \cos\left(4x + n \cdot \frac{\pi}{2}\right)$.

3.3.3 小结

- 1. 高阶导数的定义及物理意义
- 2. 高阶导数的运算法则 (莱布尼兹公式);
- 3. 高阶导数的求法
 - 直接法: 由高阶导数的定义逐步求高阶导数.
 - 间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法,求出 n 阶导数.

思考. 设 g'(x) 连续, 且 $f(x) = (x - a)^2 g(x)$, 求 f''(a).

答案。由 g(x) 可导, 可得

$$f'(x) = 2(x-a)g(x) + (x-a)^2g'(x)$$
.

又 g''(x) 不一定存在, 故 f''(a) 需用定义求.

$$f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a}$$
$$= \lim_{x \to a} \frac{f'(x)}{x - a} = \lim_{x \to a} [2g(x) + (x - a)g'(x)] = 2g(a)$$

3.4 隐函数及由参数方程所确定的函数的导数

3.4.1 隐函数的导数

• 显函数: 由 y = f(x) 直接确定的函数关系.

• 隐函数:由 F(x,y) = 0 所确定的函数 y = y(x) 称为隐函数.

$$F(x,y) = 0 \Longrightarrow y = f(x)$$
 隐函数的显化

问题。隐函数不易显化或不能显化如何求导?

答案. 利用复合函数求导法则,将 y 看成 x 的函数,方程两边同时对 x 求导.

例 **1.** 求由方程 $xy - e^x + e^y = 0$ 所确定的隐函数 y 的导数 $\frac{dy}{dx}, \frac{dy}{dx}\Big|_{x=0}$

解。方程两边对 x 求导,

$$y + x \frac{dy}{dx} - e^x + e^y \frac{dy}{dx} = 0$$

解得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x - y}{x + \mathrm{e}^y},$$

故

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x=0} = \left. \frac{\mathrm{e}^x - y}{x + \mathrm{e}^y} \right|_{x=0} = 1.$$

例 **2.** 设曲线 C 的方程为 $x^3+y^3=3xy$, 求过 C 上点 $\left(\frac{3}{2},\frac{3}{2}\right)$ 的切线方程, 并证明曲线 C 在该点的法线通过原点.

解。方程两边对 x 求导得

$$3x^2 + 3y^2y' = 3y + 3xy'$$

故

$$y'|_{\left(\frac{3}{2},\frac{3}{2}\right)} = \frac{y-x^2}{y^2-x}\Big|_{\left(\frac{3}{2},\frac{3}{2}\right)} = -1$$

所求切线方程为

$$y - \frac{3}{2} = -\left(x - \frac{3}{2}\right)$$
, $||x + y - 3| = 0$.

法线方程为 $y-\frac{3}{2}=x-\frac{3}{2}$, 即 y=x, 显然通过原点.

例 3. 设 $x^4 - xy + y^4 = 1$, 求 y'' 在点 (0,1) 处的值.

解。方程两边对 x 求导得

$$4x^3 - y - xy' + 4y^3y' = 0 (1)$$

代入 x = 0, y = 1 得 $y'|_{(0,1)} = \frac{1}{4}$. 将方程 (1) 两边再对 x 求导得

$$12x^2 - 2y' - xy'' + 12y^2(y')^2 + 4y^3y'' = 0.$$

代入 $x = 0, y = 1, y'|_{(0,1)} = \frac{1}{4}$ 得

$$y''|_{(0,1)} = -\frac{1}{16}.$$

练习 **1.** 求由方程确定的隐函数的导数 y'_{\downarrow} :

- (1) $e^y + e^x 3x + 4y^2 = 0$;
- (2) $x^3y + 2x^2y^2 + 4 = 0$.

对于多个函数相乘除或者幂指数函数 $(u(x))^{v(x)}$ 的情形,可以先在方程两边取对数,然后利用隐函数的求导方法求出导数.

例 **4.** 设
$$y = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x}$$
, 求 y'

例子。设
$$y = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x}$$
,求 y' .

解。等式两边取对数得

$$\ln y = \ln(x+1) + \frac{1}{3}\ln(x-1) - 2\ln(x+4) - x$$

上式两边对 x 求导得

$$\frac{y'}{y} = \frac{1}{x+1} + \frac{1}{3(x-1)} - \frac{2}{x+4} - 1,$$

因此

$$y' = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x} \left[\frac{1}{x+1} + \frac{1}{3(x-1)} - \frac{2}{x+4} - 1 \right].$$

例 **5.** 设 $y = x^{\sin x}(x > 0)$, 求 y'.

解。等式两边取对数得 $\ln y = \sin x \cdot \ln x$. 上式两边对 x 求导得

$$\frac{1}{y}y' = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}$$

从而

$$y' = y \left(\cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \right)$$
$$= x^{\sin x} \left(\cos x \cdot \ln x + \frac{\sin x}{x} \right)$$

一般地, 对于函数 $f(x) = u(x)^{v(x)}$ (u(x) > 0), 因为

$$\ln f(x) = v(x) \cdot \ln u(x),$$

并且

$$\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \cdot \frac{d}{dx} f(x)$$

所以

$$f'(x) = f(x) \cdot \frac{d}{dx} \ln f(x),$$

从而

$$f'(x) = u(x)^{v(x)} \left[v'(x) \cdot \ln u(x) + \frac{v(x)u'(x)}{u(x)} \right].$$

3.4.2 由参数方程所确定的函数的导数

若参数方程 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ 确定 y = x 间的函数关系,称此为由参数方程所确定的函数.

例 **6.** 参数方程 $\begin{cases} x = 2t, \\ y = t^2, \end{cases}$ 消去参数 t 可得

$$y = t^2 = \left(\frac{x}{2}\right)^2 = \frac{x^2}{4}.$$

显然, $y' = \frac{1}{2}x$

问题。消参困难或无法消参如何求导?

答案. 考察方程 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$,假设函数 $x = \varphi(t)$ 具有单调连续的反函数 $t = \varphi^{-1}(x)$,则

$$y = \psi \left[\varphi^{-1}(x) \right]$$

再设函数 $x = \varphi(t), y = \psi(t)$ 都可导, 且 $\varphi(t) \neq 0$, 由复合函数及反函数的求导法则得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)}$$

$$\mathbb{P} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}.$$

若函数
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
 二阶可导,则

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \cdot \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{\psi'(t)}{\varphi'(t)}\right) / \frac{dx}{dt}$$
$$= \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\varphi'^2(t)} \cdot \frac{1}{\varphi'(t)}$$

即

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\left[\varphi'(t)\right]^3}$$

例 7. 求摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 在 $t = \frac{\pi}{2}$ 处的切线方程.

解。由条件可得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{a\sin t}{a - a\cos t} = \frac{\sin t}{1 - \cos t},$$

于是

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{t=\frac{\pi}{2}} = \frac{\sin\frac{\pi}{2}}{1-\cos\frac{\pi}{2}} = 1.$$

当 $t = \frac{\pi}{2}$ 时, $x = a\left(\frac{\pi}{2} - 1\right)$, y = a, 故所求切线方程为

$$y-a=x-a\left(\frac{\pi}{2}-1\right)$$
, $\mathbb{P} y=x+a\left(2-\frac{\pi}{2}\right)$

例 **8.** 求由方程 $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$ 表示的函数的二阶导数.

解. 由条件可得

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3a\sin^2 t \cos t}{3a\cos^2 t(-\sin t)} = -\tan t,$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{(-\tan t)'}{(a\cos^3 t)'} = \frac{-\sec^2 t}{-3a\cos^2 t \sin t}$$

$$= \frac{\sec^4 t}{3a\sin t}$$

3.4.3 小结

- 1. 隐函数求导法则: 直接对方程两边求导;
- 2. 对数求导法: 对方程两边取对数, 按隐函数的求导法则求导;
- 3. 参数方程求导: 实质上是利用复合函数求导法则;

思考。设
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
,由 $y'_x = \frac{\psi'(t)}{\varphi'(t)}$ $(\varphi'(t) \neq 0)$ 可知 $y''_x = \frac{\psi''(t)}{\varphi''(t)}$,对吗?

答案. 不对.

$$y_x'' = \frac{d}{dx} (y_x') = \frac{dy_x'}{dt} \cdot \frac{dt}{dx} = \left(\frac{\psi'(t)}{\varphi'(t)}\right)_t' \cdot \frac{1}{\varphi'(t)}$$

3.5 函数的微分 31

3.5 函数的微分

3.5.1 微分的定义

例 **1.** 一块正方形金属薄片受热后, 其边长由 x_0 增加到 $x_0 + \Delta x$. 求此薄片面积的改变量 Δy .

解。正方形面积为 $y = f(x) = x^2$. 则面积改变量为

$$\Delta y = (x_0 + \Delta x)^2 - x_0^2 = 2x_0 \Delta x + (\Delta x)^2.$$

比如, 当 $x_0 = 1$, $\Delta x = 0.1$ 时,

$$\Delta y = 2 \cdot 1 \cdot 0.1 + 0.1^2 = 0.2 + 0.01.$$

注记. 若 Δx 很小,则 $2x_0\Delta x$ 远比 $(\Delta x)^2$ 大. 因此

定义 **1.** 对于自变量在点 x_0 处的改变量 Δx ,如果函数 y = f(x) 的相应改变量 Δy 可以表示为

$$\Delta y = A\Delta x + o(\Delta x) \qquad (\Delta x \to 0)$$

其中 A 与 Δx 无关,则称 y = f(x) 在点 x_0 处可微,并称 $A\Delta x$ 为函数 y = f(x) 在点 x_0 处 (相应于自变量增量 Δx) 的微分,记为

$$dy|_{x=x_0}$$
 或 $df(x_0)$,

即

$$dy|_{x=x_0} = A\Delta x$$
.

注记。 微分 dy 叫做函数增量 Δy 的线性主部.

由定义知:

- 1. dy 是自变量的改变量 Δx 的线性函数;
- 2. $\Delta y dy = o(\Delta x)$ 是 Δx 的高阶无穷小;

3. 当 $A \neq 0$ 时,有

$$\frac{\Delta y}{dy} = 1 + \frac{o(\Delta x)}{A \cdot \Delta x} \to 1 \quad (\Delta x \to 0),$$

即 dy 与 Δy 是等价无穷小;

- 4. A 是与 Δx 无关的常数, 但与 f(x) 和 x_0 有关;
- 5. 当 $|\Delta x|$ 很小时, $\Delta y \approx dy$ (线性主部).

定理. y = f(x) 在点 x_0 处可微 $\iff y = f(x)$ 在点 x_0 处可导,且 $A = f'(x_0)$.

证明. (\Longrightarrow) 由 f(x) 在点 x_0 可微可得

$$\Delta y = A \cdot \Delta x + o(\Delta x)$$

所以

$$\frac{\Delta y}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}.$$

于是

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A + \lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} = A$$

即函数 f(x) 在点 x_0 可导, 且 $A = f'(x_0)$.

(←) 因为函数 f(x) 在点 x_0 可导,因此

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) \Longrightarrow \frac{\Delta y}{\Delta x} = f'(x_0) + \alpha$$

其中 $\alpha \rightarrow 0$ (Δx \rightarrow 0), 从而

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot (\Delta x) = f'(x_0) \cdot \Delta x + o(\Delta x).$$

由可微的定义可知函数 f(x) 在点 x_0 可微, 且 $A = f'(x_0)$.

函数 y = f(x) 在任意点 x 的微分, 称为函数的微分, 记作 dy 或 df(x), 即 dy = $f'(x)\Delta x$.

1. 函数 f(x) 在点 x_0 处的导数是一个定数 $f'(x_0)$, 而微分 $dy = f'(x_0)(x - x_0)$ 是 $x - x_0$ 的线性函数, 它的定义域是 R. 注意到

$$\lim_{x \to x_0} dy = \lim_{x \to x_0} f'(x_0)(x - x_0) = 0,$$

因此, dy 是当 $x \rightarrow x_0$ 时的无穷小.

3.5 函数的微分 33

2. 从几何意义上来看, $f'(x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处切线的斜率, 而微分 $dy = f'(x_0)$ $(x - x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程在点 x_0 的纵坐标增量.

例 **2.** 求 $y = x^2$ 当 x = 2, $\Delta x = 0.01$ 时的微分.

解. $dy = (x^2)' \Delta x = 2x \Delta x$,所以

$$dy \Big|_{\substack{x=2\\ \Delta x = 0.01}} = 2 \times 2 \times 0.01 = 0.04.$$

通常把自变量 x 的增量 Δx 称为自变量的微分记作 dx, 即 $dx = \Delta x$. 于是我们有

$$dy = f'(x)dx \Longrightarrow \frac{dy}{dx} = f'(x)$$

即函数的微分 dy 与自变量的微分 dx 之商等于该函数的导数. 导数也叫"微商".

练习 1. 求下列函数的微分:

(1)
$$y = xe^x$$
 (2) $y = \sin(3x + 2)$

答案. (1)
$$dy = y'_x dx = (xe^x)'_x dx = (x+1)e^x dx$$
.

(2)
$$dy = y'_x dx = (\sin(3x + 2))'_x dx$$
.
= $3\cos(3x + 2) dx$

3.5.2 微分的几何意义

当 Δx 很小时,切线纵坐标对应的增量 dy 可以近似替代曲线纵坐标对应的增量 Δy .

3.5.3 基本初等函数的微分公式与微分运算法则

由 dy = f'(x)dx 可知,要计算函数的微分,只需计算函数的导数,然后再乘以自变量的 微分.

1. 基本初等函数的微分公式

$$d(C) = 0 d(x^{\mu}) = \mu x^{\mu-1} dx$$

$$d(\sin x) = \cos x dx d(\cos x) = -\sin x dx$$

$$d(\tan x) = \sec^2 x dx d(\cot x) = -\csc^2 x dx$$

$$d(\sec x) = \sec x \tan x dx d(\csc x) = -\csc x \cot x dx$$

$$\begin{split} \mathrm{d}\left(a^{x}\right) &= a^{x} \ln a \mathrm{d}x & \mathrm{d}\left(e^{x}\right) &= e^{x} \mathrm{d}x \\ \mathrm{d}\left(\log_{a}x\right) &= \frac{1}{x \ln a} \mathrm{d}x & \mathrm{d}(\ln x) &= \frac{1}{x} \mathrm{d}x \\ \mathrm{d}(\arcsin x) &= \frac{1}{\sqrt{1 - x^{2}}} \mathrm{d}x & \mathrm{d}(\arccos x) &= -\frac{1}{\sqrt{1 - x^{2}}} \mathrm{d}x \\ \mathrm{d}(\arctan x) &= \frac{1}{1 + x^{2}} \mathrm{d}x & \mathrm{d}(\arccos x) &= -\frac{1}{1 + x^{2}} \mathrm{d}x \end{split}$$

2. 函数和、差、积、商的微分法则

$$d(u \pm v) = du \pm dv$$

$$d(Cu) = Cdu$$

$$d(uv) = vdu + udv$$

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

3. 复合函数的微分法则

3.5 函数的微分 35

- 1. 若 y = f(u), 则有 dy = f'(u) du;
- 2. 若 y = f(u), u = g(x), 则仍有 dy = f'(u) du.

无论 u 是自变量还是中间变量,函数 y = f(u) 的微分形式总是 dy = f'(u) du, 称为一阶微分的形式不变性.

例 3. $[\sin x]' = \cos x$,但是 $[\sin 2x]' \neq \cos 2x$.

 $d(\sin x) = \cos x dx \implies d(\sin 2x) = \cos 2x d(2x).$

例 **4.** 设
$$y = \ln(x + e^{x^2})$$
, 求 dy.

$$\text{ML.} : y' = \frac{1 + 2xe^{x^2}}{x + e^{x^2}}, \quad \therefore dy = \frac{1 + 2xe^{x^2}}{x + e^{x^2}} dx$$

例 **5.** 设 $y = e^{1-3x} \cos x$, 求 dy.

解. 易知
$$dy = \cos x \cdot d(e^{1-3x}) + e^{1-3x} \cdot d(\cos x)$$
. 因为
$$(e^{1-3x})' = -3e^{1-3x}, (\cos x)' = -\sin x$$

所以

$$dy = \cos x \cdot (-3e^{1-3x}) dx + e^{1-3x} \cdot (-\sin x) dx$$

= $-e^{1-3x} (3\cos x + \sin x) dx$

例 **6.** 设 $y = \sin(2x + 1)$, 求 dy.

解。因为 $y = \sin u, u = 2x + 1$. 所以

$$dy = \cos u \, du = \cos(2x+1) \, d(2x+1)$$
$$= \cos(2x+1) \cdot 2 \, dx = 2 \cos(2x+1) \, dx$$

例 **7.** 设 $y = e^{-ax} \sin bx$, 求 dy.

解。由条件易知

$$dy = e^{-ax} \cdot \cos bx \, d(bx) + \sin bx \cdot e^{-ax} \, d(-ax)$$
$$= e^{-ax} \cdot \cos bx \cdot b \, dx + \sin bx \cdot e^{-ax} \cdot (-a) \, dx$$
$$= e^{-ax} (b \cos bx - a \sin bx) \, dx$$

例 8. 在下列等式左端的括号中填入适当的函数, 使等式成立.

(1) d() =
$$\cos \omega t dt$$
 (2) d $(\sin x^2) = ($) d (\sqrt{x})

 \mathbf{ML} (1) 因为 $\mathbf{d}(\sin \omega t) = \omega \cos \omega t \, dt$, 所以

$$\cos \omega t \, dt = \frac{1}{\omega} \, d(\sin \omega t) = d\left(\frac{1}{\omega} \sin \omega t\right)$$

从而 d $\left(\frac{1}{\omega}\sin\omega t + C\right) = \cos\omega t \,dt$ (2) 因为 $\frac{d\left(\sin x^2\right)}{d(\sqrt{x})} = \frac{2x\cos x^2 \,dx}{\frac{1}{2\sqrt{x}}\,dx} = 4x\sqrt{x}\cos x^2$ 故 d $\left(\sin x^2\right) = \left(4x\sqrt{x}\cos x^2\right) d(\sqrt{x})$

3.5.4 微分在近似计算中的应用

若 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\Delta x|$ 很小时,

$$\Delta y|_{x=x_0} \approx dy|_{x=x_0} = f'(x_0) \cdot \Delta x.$$

1. 求 f(x) 在点 $x = x_0$ 附近的近似值 由 $\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$ 得:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$

2. 求 f(x) 在点 x = 0 附近的近似值 令 $x_0 = 0$, $\Delta x = x$, 则由上式可得

$$f(x) \approx f(0) + f'(0) \cdot x$$

例 9. 计算 cos60°30′的近似值.

解。设 $f(x) = \cos x$, 则 $f'(x) = -\sin x$, (x) 为弧度). 于是

$$\cos 60^{\circ} 30' = \cos \left(\frac{\pi}{3} + \frac{\pi}{360}\right) \approx \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \cdot \frac{\pi}{360}$$
$$= \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\pi}{360} \approx 0.4924$$

例 10. 半径 10 厘米的金属圆片加热后, 半径伸长了 0.05 厘米, 问面积增大了多少?

解。设
$$A = \pi r^2$$
, $r = 10$ 厘米, $\Delta r = 0.05$ 厘米. 则

$$\Delta A \approx dA = 2\pi r \cdot \Delta r = 2\pi \times 10 \times 0.05 = \pi (\mathbb{R}^2).$$

3.5 函数的微分

37

当 |x| 很小时, 有

1.
$$\sqrt[n]{1+x} \approx 1 + \frac{1}{n}x$$
;

- 2. $\sin x \approx x (x 为弧度);$
- 3. $tan x \approx x (x 为弧度);$
- 4. $e^x \approx 1 + x$
- 5. $ln(1+x) \approx x$

例 11. 计算下列各数的近似值,

- 1. $\sqrt[3]{998.5}$
- $2. e^{-0.03}$

 $\mathbf{m} \cdot (1) \sqrt[3]{998.5} = \sqrt[3]{1000 - 1.5}$

$$= \sqrt[3]{1000 \left(1 - \frac{1.5}{1000}\right)} = 10 \sqrt[3]{1 - 0.0015}$$

$$\approx 10 \left(1 - \frac{1}{3} \times 0.0015\right) = 9.995$$

(2) $e^{-0.03} \approx 1 - 0.03 = 0.97$.

3.5.5 小结

微分学所要解决的两类问题:

函数的变化率问题 ⇒ 导数的概念函数的增量问题 ⇒ 微分的概念

求导数与微分的方法, 叫做微分法. 研究微分法与导数理论及其应用的科学, 叫做微分学.

导数与微分的联系: 可导 ← 可微.

若 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\Delta x|$ 很小时,

$$\Delta y|_{x=x_0} \approx dy|_{x=x_0} = f'(x_0) \cdot \Delta x.$$

1. f(x) 在点 $x = x_0$ 附近的近似值为:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0)$$

2. f(x) 在点 x = 0 附近的近似值为:

$$f(x) \approx f(0) + f'(0) \cdot x$$

思考。某家有一机械挂钟,钟摆的周期为 1 秒. 在冬季,摆长缩短了 0.01 厘米,这只钟每天大约快多少? (单摆的周期公式为: $T=2\pi\sqrt{\frac{l}{g}}$ (l 为摆长,单位: cm, g 取 980 cm/s^2 .)

答案。由
$$T=2\pi\sqrt{\frac{l}{g}}$$
,可得 $\frac{\mathrm{d}T}{\mathrm{d}l}=\frac{\pi}{\sqrt{gl}}$. 当 $|\Delta l|<< l$ 时,
$$\Delta T \approx \mathrm{d}T=\frac{\pi}{\sqrt{gl}}\Delta l.$$

据题设,摆的周期是 1 秒,由此可知摆的原长为 $\frac{g}{(2\pi)^2}$ (cm). 现摆长的改变量 $\Delta l = -0.01$ cm,于是周期的改变量为

$$\Delta T \approx dT = \frac{\pi}{\sqrt{g \cdot \frac{g}{(2\pi)^2}}} \times (-0.01)$$
$$= \frac{2\pi^2}{g} \times (-0.01) \approx -0.0002(s)$$

也就是说,由于摆长缩短了 0.01cm,钟摆的周期便相应缩短了大约 0.0002 秒,即每秒约快 0.0002 秒,从而每天约快 $0.0002 \times 24 \times 60 \times 60 = 17.289(s)$.

3.6 边际与弹性

3.6.1 边际的概念

定义 **1.** 设函数 y = f(x) 在 x 处可导,则称导数 f'(x) 为 f(x) 的边际函数. f'(x) 在 x_0 处的值 $f'(x_0)$ 为边际函数值.

当 $x = x_0$ 时, x 改变一个单位, y 改变 $f'(x_0)$ 个单位.

例 **1.** 设函数 $y = 2x^2$, 试求 y 在 x = 5 时的边际函数值.

解. 因为 y' = 4x, 所以 $y'|_{x=5} = 20$.

该值表明: 当 x = 5 时, x 改变 1 个单位 (增加或减少 1 个单位), y 改变 20 个单位 (增加或减少 20 个单位).

3.6.2 经济学中常见的边际函数

- 1. 边际成本
- 2. 边际收益
- 3. 边际利润
- 1. 边际成本: 总成本函数 C(Q) 的导数, 记为 MC(Q) = C'(Q).

边际成本的含义:假定已经生产了 Q 件产品,再生产一件产品所增加的成本.

注记。当边际成本小于平均成本 $\frac{C(Q)}{Q}$ 时,应增加产量,反之,应减小产量.

例 2. 设某产品生产 Q 单位的总成本为

$$C(Q) = 1100 + \frac{Q^2}{1200}$$

求:

- (1) 生产 900 个单位的总成本和平均成本;
- (2) 生产 900 个单位到 1000 个单位时的总成本的平均变化率;
- (3) 生产 900 个单位的边际成本, 并解释其给济意义.
- 解。(1) 生产 900 个单位时的总成本为

$$C(Q)|_{Q=900} = 1100 + \frac{900^2}{1200} = 1775$$

解(续)。平均成本为

$$\overline{C}(Q)\Big|_{Q=900} = \frac{1775}{900} = 1.99.$$

(2) 生产 900 个单位到 1000 个单位时总成本的平均变化率为

$$\frac{\Delta C(Q)}{\Delta O} = \frac{C(1000) - C(900)}{1000 - 900} = \frac{1993 - 1775}{100} = 1.58.$$

(3) 边际成本函数

$$C'(Q) = \frac{2Q}{1200} = \frac{Q}{600},$$

当 Q = 900 时的边际成本为 $C'(Q)|_{Q=900} = 1.5$.

2. 边际收益: 总收益函数 R(Q) 的导数, 记为 MR(Q) = R'(Q).

假定已经销售了 Q 件产品, 再销售一个件产品所增加的总收益.

注记。若价格 P 为 Q 的函数,则

$$R(Q) = P(Q)Q \Longrightarrow R'(Q) = P(Q) + QP'(Q).$$

例 **3.** 设某产品的需求函数为 $P=20-\frac{Q}{5}$, 其中 P 为价格,Q 为销售量,求销售量为 15 个单位时的总收益,平均收益与边际收益.并求销售量从 15 个单位增加到 20 个单位时收益的平均变化率.

解。总收益为

$$R = QP(Q) = 20Q - \frac{Q^2}{5}.$$

销售 15 个单位时总收益为

$$R|_{Q=15} = \left(20Q - \frac{Q^2}{5}\right)\Big|_{Q=15} = 255.$$

解(续)。平均收益为

$$R|_{Q=15} = \frac{R(Q)}{Q}\Big|_{Q=15} = \frac{255}{15} = 17.$$

边际收益为

$$R(Q)|_{Q=15} = \left(20 - \frac{2}{5}Q\right)\Big|_{Q=15} = 14.$$

当销售量从 15 个单位增加到 20 个单位时收益的平均变化率为

$$\frac{\Delta R}{\Delta Q} = \frac{R(20) - R(15)}{20 - 15} = \frac{320 - 255}{5} = 13.$$

3. 边际利润: 总利润函数 L(Q) 的导数.

若已生产了 〇 件产品, 再生产一件产品增加的总利润.

注记. $L(Q) = R(Q) - C(Q) \Longrightarrow L'(Q) = R'(Q) - C'(Q)$.

$$R'(Q) \begin{cases} > C'(Q) \\ = C'(Q) \\ < C'(Q) \end{cases} \quad \exists f, \quad L'(Q) \begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$$

边际收益大于边际成本时,边际利润增加;反之,边际利润减小.

例 **4.** 某工厂对其产品的销售情况进行大量统计后分析后,得出总利润 L(Q) (元) 与每月产量 Q (吨) 的关系为 $L = L(Q) = 250Q - 5Q^2$, 试确定每月生产 20 吨,25 吨,35 吨的边际利润,并做出经济解释.

解. 边际利润为 L'(Q) = 250 - 10Q, 则

$$L'(Q)|_{Q=20} = L'(20) = 50,$$

 $L'(Q)|_{Q=25} = L'(25) = 0,$
 $L'(Q)|_{Q=35} = L'(35) = -100.$

上述结果表明当生产量为每月 20 吨时,再增加一吨,利润将增加 50 元,当产量为每月 25 吨时,再增加一吨,利润不变;当产量为 35 吨时,再增加一吨,利润将减少 100. 此处说明,对厂家来说,并非生产的产品越多,利润越高.

3.6.3 弹性的概念

例 **5.** 函数 $y = x^2$, 当 x 从 8 到 10 时, 相应的 y 从 64 增加到 100,即自变量 x 的绝对增量 $\Delta x = 2$,函数 y 绝对增量 $\Delta y = 36$ 又

$$\frac{\Delta x}{x} = \frac{2}{8} = 25\%, \quad \frac{\Delta y}{y} = \frac{36}{64} = 56.25$$

即当 x=8 增加到 x=1 时,x 增加了 25% 时,y 也相应的增加了 56.25%. 这里 $\frac{\Delta x}{x}$, $\frac{\Delta y}{y}$ 为自变量和函数的相对改变量(或相对增量).

在本例中, 再引入以下公式

$$\frac{\Delta y}{y} / \frac{\Delta x}{x} = \frac{56.25\%}{25\%} = 2.25.$$

该式表示在开区间 (8,10) 内, 从 x=8 时起, x 每增加 1%, 则相应的 y 便平均改变 2.25%, 这里称之为 x=8 增加到 x=10 时, 函数 $y=x^2$ 的平均相对变化率.

于是又有以下定义.

定义. 设函数 y = f(x) 在点 x_0 处可导,且 $x_0 \neq 0$,称函数的相对改变量

$$\frac{\Delta y}{y_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{f(x_0)}$$

与自变量的相对改变量 $\frac{\Delta x}{x_0}$ 之比 $\frac{\Delta y/y_0}{\Delta x/x_0}$ 为函数从 x_0 到 x_0 + Δx 两点间的平均相对变化率,或称为 x_0 与 x_0 + x_0 两点间的弹性或弧弹性.

当 $\Delta x \to 0$ 时,若 $\frac{\Delta y/y_0}{\Delta x/x_0}$ 的极限存在,则该极限称为函数 y=f(x) 在 $x=x_0$ 处的相对

变化率,也就是相对导数,或称为函数 y = f(x) 在 $x = x_0$ 处的点弹性. 记作 $\frac{Ey}{Ex}\Big|_{x=x_0}$ 或

$$\frac{E}{Ex}f(x_0)$$
 即

$$\frac{Ey}{Ex}\bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\Delta y/y_0}{\Delta x/x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \frac{x_0}{y_0}$$
$$= f'(x_0) \cdot \frac{x_0}{f(x_0)}$$

当 x_0 为定值时, $\frac{Ey}{Ex}\Big|_{x=x_0}$ 为定值,且当 $|\Delta x|$ 很小时,

$$\left. \frac{Ey}{Ex} \right|_{x=x_0} \approx \frac{\Delta y}{y_0} / \frac{\Delta x}{x_0}$$
 (= 弧弹性).

定义 (弹性函数的定义). 一般地,若函数 y = f(x) 在区间内 (a,b) 可导,且 $f(x) \neq 0$,则称

$$\frac{Ey}{Ex} = \lim_{\Delta x \to 0} \frac{\Delta y/y}{\Delta x/x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \frac{x}{y} = y' \cdot \frac{x}{y}$$

为函数 y = f(x) 在区间 (a, b) 内的点弹性函数,简称弹性函数.

函数的弹性 (点弹性或弧弹性)与量纲无关,函数 f(x) 在点 x 处的弹性 $\frac{E}{Ex}f(x)$ 反映了 x 的 变化幅度 $\frac{\Delta x}{x}$ 对 f(x) 变化幅度 $\frac{\Delta y}{y}$ 的大小影响, 也就是 f(x) 对 x 变化反应的强烈程度或灵 敏度. 由弹性的定义可知:

$$\frac{Ey}{Ex} = y' \cdot \frac{x}{y} = \frac{y'}{\frac{y}{y}} = \left(\frac{\text{边际函数}}{\text{平均函数}}\right)$$

这样,弹性在经济学上又可理解为边际函数与平均函数之比.

例 **6.** 求函数 $y = x^{\alpha}(\alpha)$ 为常数) 的弹性函数.

解。直接计算得到所求的弹性函数为

$$\frac{Ex}{Ey} = \frac{y}{x}y' = \frac{x}{x^{\alpha}}(x^{\alpha})' = \frac{x}{x^{\alpha}}\alpha x^{\alpha-1} = \alpha$$

由此例知,幂函数的弹性函数为常数,因此称为不变弹性函数.

边际函数 y = f(x) 的几何意义为所示曲线上 各点的切线斜率,即

$$\tan(\pi - \theta_m) = -\tan\theta_m.$$

又平均函数为 $\frac{f(x)}{x} = \tan \theta_{\alpha}$

又平均函数为 $\frac{f(x)}{x} = \tan \theta_{\alpha}$ $= \frac{\theta_{\alpha} \cdot \theta_{\alpha}}{x}$ 因而 $\frac{Ey}{Ex} = -\frac{\tan \theta_{m}}{\tan \theta_{\alpha}}$. 若考虑弹性的绝对值, 则 $\frac{Ey}{Ex} = \frac{\tan \theta_{m}}{\tan \theta_{\alpha}}$. 如果我们知道了一条函数

y = f(x) 所示的曲线,则在曲线上任一点 A 处对应的弹性,通过 A 作曲线 AB 的切线和线段 OA, 就可得夹角 θ_m 和 θ_α , 进而就可得 $\left| \frac{Ey}{Ex} \right|$.

3.6.4 经济学中常见的弹性函数

当弹性定义中的 y 被定义为需求量时就是需求弹性. 所谓需求的价格弹性是指当价格变化一 定的百分比以后引起的需求量的反应程度. 设需求函数 $Q_d = Q(P)$ 可导,则需求的价格弹性 可用公式表示为

$$E_d = \frac{EQ}{EP} = \lim_{\Delta P \to 0} \frac{\Delta Q}{\Delta P} \cdot \frac{P}{O} = \frac{dQ}{dP} \cdot \frac{P}{O}$$

而 $\frac{\Delta Q}{O} / \frac{\Delta P}{P}$ 称为该商品在 $P = P + \Delta P$ 两点间的需求价格弹性或弧弹性.

例 7. 某需求曲线为: Q = -100P + 3000, 求当 P = 20 时的弹性.

解.
$$\frac{dQ}{dP} = -100$$
 当 $P = 20$ 时, $Q = 1000$ 所以

$$E_d = -100 \times \frac{20}{1000} = -2.$$

一般来说,需求函数是价格的单调减函数,故需求函数的弧弹性为负值,从而当 $\Delta x \to 0$ 时,其极限值 E_d 总是小于或等于零,并且实际中一般取负值. 有时为讨论方便,将其取绝对值,也称之为需求的价格弹性,并记为 n, 即

$$\eta = \eta(P) = |E_d| = -\frac{P}{O} \cdot \frac{dQ}{dP}$$

$$\eta = \eta(P) = |E_d| = -\frac{P}{Q} \cdot \frac{dQ}{dP}$$

- 1. 若 $\eta = |E_d| = 1$,此时商品需求量变动的百分比与价格变动的百分比相等,称为单位弹性或单一弹性.
- 2. 若 $\eta = |E_d| < 1$ 即,此时商品需求量变动的百分比低于价格变动的百分比,价格的变动对需求量的影响不大,称为缺之弹性或低弹性.
- 3. 若 $\eta = |E_d| > 1$,此时商品需求量的变动的百分比高于价格变动的百分比,价格的变动对需求量的影响较大,称之为富于弹性或高弹性.
- 例 **8.** 设某产品的需求函数为 O = 100 2P.0 < P < 50. 其中 P 为价格,O 为需求量,
- (1) 当 P = 10,且价格上涨 1% 时,需求量 Q 是增加还是减少,变化百分之几?
- (2) 讨论商品价格变化时,需求量变化的情况.

解。(1) 由条件知

$$\eta(P) = -\frac{P}{O} \cdot \frac{dQ}{dP} = -\frac{P}{100 - 2P} \cdot (-2) = \frac{P}{50 - P}$$

故 $\eta(10) = 0.25$. 由于 P 和 Q 是按相反方向变化的,在 P = 10 ,且价格上涨 1% 时,需求量 Q 减少 $\eta\% = 0.25\%$ (注意:价格上涨 1%,需求量减少 $\eta\%$,因此不能误认为减少 0.25 = 25%).

- 1. 当 $0 < \eta < 1$, 即 $0 < \frac{P}{50-P} < 1$ 时, 即 0 < P < 25 时, 价格上涨 (下降) 1% 时, 需求量减少 (增加) η %,小于价格上涨(下降)的百分比(因 $\eta < 1$);
- 2. 当 $\eta = 1$, 即 $\frac{P}{50-P} = 1$, 得 P = 25, 这表明当 P = 25 时, 需求量的变动与价格变动按相同的百分比进行;
- 3. 当 $\eta > 1$, 即 $\frac{P}{50-P} > 1$ 时,得 P > 25, 于是当 25 < P < 50 且价格 P 上涨 (下降) 1% 时,需求量减少(增加) η %,大于价格上涨(下降)的百分比(因 $\eta > 1$).

在市场经济中,商品经营者关心的是提价 ($\Delta P > 0$) 或降价 ($\Delta P < 0$) 对总收益的影响. 利用需求弹性的概念, 可以分析价格变动是如何影响销售收益的.

总收益 R 是商品价格 P 与销售量 Q 的乘积, 即

$$R = P \cdot Q = PQ(P)$$

边际总收益

$$R' = PQ'(P) + Q(P) = Q(P) \left[1 + Q'(P) \cdot \frac{P}{Q(P)} \right]$$
$$= Q(P) \left[1 - |E_d| \right] = Q(P)(1 - \eta)$$

- 1. 若 η < 1 ,表示需求变动的幅度小于价格变动的幅度. 此时 R' > 0,即边际收益大于 0,价格上涨,总收益增加;价格下跌,总收益减少. 商品的价格和厂商的销售收入呈同方向变动.
- 2. 若 $\eta > 1$,表示需求变动的幅度大小于价格变动的幅度. 此时 R' < 0 ,即价格上涨,总收益减少;价格下跌,总收益增加. 商品的价格和厂商的销售收入呈反方向变动.

3. 若 $\eta = 1$,表示需求变动的幅度等于价格变动的幅度.降低价格或提高价格对厂商销售收益都没有影响.

综上所述,总收益的变化受需求弹性的制约,随商品需求弹性的变化而变化.

定义。供给弹性,通常指的是供给的价格弹性. 设供给函数 $Q_s = Q(P)$ 可导,则供给弹性

$$E_s = \frac{dQ}{dP} \cdot \frac{P}{Q}$$

式中 E_s 为供给的价格弹性.

例 **9.** 设某产品的供给函数为 $Q = 2e^{P}$, 求供给的价格弹性函数及当 P = 1 时的供给的价格弹性.

解。供给的价格弹性函数为

$$E_s(P) = \frac{P}{2e^p} (2e^p)' = \frac{P}{2e^p} 2e^p = P,$$

由此有当 P=1 时

$$E_{s}(P) = 1.$$

这表明当 P=1 时价格如果上涨 1%. 供给量也相应增加 1%.

例 **10.** 某商品的供给函数 Q = 2 + 3P 求供给弹性函数及当 P = 3 时供给弹性.

解。
$$\frac{dQ}{dP} = 3$$
,故

$$E_s = \frac{dQ}{dP} \cdot \frac{P}{Q} = \frac{3P}{2+3P}$$

当P = 3时,

$$E_s = \frac{3 \times 3}{2 + 3 \times 3} = \frac{9}{11}$$

例 11. 观察下列供给函数:

- (a) P = 3Q,
- (b) P = -2 + 5Q;

(c)
$$P = 3 + 4Q$$

试判断其供给弹性 E_s 大于,等于或小于 1.

解. (a) 等于, (b) 小于, (c) 大于

同理可得,收益的价格弹性、收益的销售弹性为:

$$\frac{ER}{EP} = \frac{dR}{dP} \cdot \frac{P}{R}, \quad \frac{ER}{EO} = \frac{dR}{dO} \cdot \frac{Q}{R}$$

其中:

 $\frac{ER}{FP}$ - 收益的价格弹性;

 $\frac{ER}{EO}$ – 收益的销售弹性.

例 **12.** 设 $P \times Q \times R$ 分别为商品价格,销售量,销售总收益,

- (1) 试分别找出收益的价格弹性 $\frac{ER}{FP}$, 收益的销售弹性 $\frac{ER}{FQ}$ 与需求的价格弹性 η 的关系.
- (2) 试分别解出关于价格 P 的边际收益 $\frac{dR}{dP}$, 关于需求 Q 的边际收益 $\frac{dR}{dQ}$ 与需求价格弹性 η 的 关系.

解. (1) 设
$$Q = f(P)$$
, $R = PQ$, 故
$$\frac{ER}{EP} = \frac{E(PQ)}{EP} = \frac{P}{PQ} \cdot \frac{d(PQ)}{dP} = \frac{1}{Q} \left(Q + P \frac{dQ}{dP} \right)$$
$$= 1 + \frac{P}{Q} \cdot \frac{dQ}{dP} = 1 - \left(-\frac{P}{Q} \cdot \frac{dQ}{dP} \right) = 1 - \eta,$$
$$\frac{ER}{EQ} = \frac{E(PQ)}{EQ} = \frac{Q}{PQ} \cdot \frac{d(PQ)}{dQ} = \frac{1}{P} \cdot \frac{d(PQ)}{dQ}$$
$$= \frac{1}{P} \left(P + Q \frac{dP}{dQ} \right) = 1 - \left(\frac{1}{-\frac{P}{Q} \cdot \frac{dQ}{dP}} \right) = 1 - \frac{1}{\eta}.$$

(2) 由 (1) 知 $\frac{ER}{EP} = 1 - \eta$, 故

$$\frac{ER}{EP} = \frac{P}{R} \cdot \frac{dR}{dP} = \frac{P}{PQ} \cdot \frac{dR}{dP} = 1 - \eta,$$

48

得

$$\frac{\mathrm{d}R}{\mathrm{d}P} = Q(1-\eta) = f(P)(1-\eta).$$

又由 (1) $\frac{ER}{EQ} = 1 - \frac{1}{\eta}$, 故

$$\begin{split} \frac{ER}{EQ} &= \frac{Q}{R} \cdot \frac{\mathrm{d}R}{\mathrm{d}Q} = \frac{Q}{PQ} \cdot \frac{\mathrm{d}R}{\mathrm{d}Q} = 1 - \frac{1}{\eta}, \\ \frac{\mathrm{d}R}{\mathrm{d}Q} &= P\left(1 - \frac{1}{\eta}\right). \end{split}$$

3.6.5 小结

- 边际的基本概念 边际函数的计算
 - 1. 边际成本
 - 2. 边际收益
 - 3. 边际利润
 - 4. 边际需求
- 弹性的基本概念 弹性函数的计算
 - 1. 需求弹性
 - 2. 供给弹性
 - 3. 收益弹性

思考。设某产品的需求函数为 Q=Q(P), 收益函数为 R=PQ,Q(P) 为单调减少函数. 如果当价格 P_0 时产量为 Q_0 , 边际收益 $\frac{dR}{dQ}\Big|_{Q=Q_0}=\alpha>0$, 收益对价格的边际效应为 $\frac{dR}{dP}\Big|_{P=P_0}=c<0$, 需求对价格的弹性 $\eta=b>1$, 求 P_0 与 Q_0

答案。按照需求对价格的弹性定义,分别将 $\frac{dR}{dO}$, $\frac{dR}{dP}$ 表示为

$$\eta = -\frac{P}{Q} \cdot \frac{dQ}{dP}$$

的函数得到

$$\frac{dR}{dQ} = \frac{d}{dQ}(PQ) = P + Q\frac{dP}{dQ} = P - \left[\frac{P}{-\frac{P}{Q} \cdot \frac{dQ}{dP}}\right]$$
$$= P\left(1 - \frac{1}{\eta}\right) = P\left(1 - \frac{1}{b}\right),$$
$$\frac{dR}{dQ}\Big|_{Q=Q_0} = P\left(1 - \frac{1}{b}\right)\Big|_{Q=Q_0} = p_0\left(1 - \frac{1}{b}\right) = a.$$

故
$$P_0 = \frac{ab}{b-1}$$
,又

$$\frac{dR}{dP} = Q + P \frac{dQ}{dP} = Q - \frac{P}{Q} \cdot \frac{dQ}{dP} (-Q) = Q(1 - \eta)$$
$$= Q(1 - b),$$

$$\frac{dR}{dP}\bigg|_{P=P_0} = Q(1-b)|_{p=p_0} = Q_0(1-b) = c.$$

故
$$Q_0 = \frac{c}{1-b}$$
.