International Roadmap Devices & Systems (IRDS) More Moore Update for Defect Definitions at the Yield Workshop

November 7, 2023 ROADMAP SUMMARIES

IRDS MORE MOORE ROADMAP

Cloud and edge computing w/ intelligent connectivity at all levels driving System Scaling

- Device-interconnect-memory technologies for mobile and cloud+HPC computing
 - Mobile computing additional functionality, biometrics, and display/camera/sensing for increased consumer value
 - Cloud+HPC computing 2.5D/3D integration to scale memory bandwidth / power and latency
- Convergence of edge and cloud computing by 5G/6G and distributed AI

Big Data and abundant computing power are pushing computing to the Cloud

Micro (data)
servers
Increasing data
on cloud requires
high-density
memories

Instant Data

generated by sensors and users are pushing computing to the **Edge**

Mobile computing

Al at edge requires fast and high-density memories

Source: 5G At the Edge, 5G Americas, 2019

Growing need for memory bandwidth and capacity and efficient data transfer

Source: AWS@2022

- ChatGPT Token ~ Word,
- Basic chat: 5 tokens/sec (~reading speed), requiring delivering 175B int8 parameters in 200ms
- BW=875GB/sec required
 - Capacity: 8 HBM3 memories needed
 - Bandwidth: 8*819GB/sec (8192 IOs)
- Need for memory and compute coherency

Source: Samsung

Memory wall addressed by SLI: Protocol, I/O, and interconnect

IO speed and bandwidth scaling much faster than CPU speed

Reasons of memory gabine

- 1. Power wall (energy/bit delta in compute and DRAM)
- 2. Slow IO bandwidth scaling vs compute area efficiency
- 3. DRAM data re-use in compute getting worse Mitigation:
- 1,2: Compute-in/near-memory
- 2 => High-bandwidth memory
- 3 => Large cache such as 3D-SRAM and novel NoC fabrics

Source: SK Hynix and Rambus

2 complementing routes for system scaling

COMPUTER

Buried power rail by >2025 and CFET by >2028

- Front-side and back-side wafer processing
- High-aspect ratio vias and metallization at the backside

Logic ground rules – IRDS More Moore Logic

VELD OF DESCRIPTION			0.00	8354	8324	
YEAR OF PRODUCTION	2022	2025	2028	2031	2034	2037
	G48M24	G45M20	G42M16	G40M16/T2	G38M16/T4	G38M16/T6
Logic industry "Node Range" Labeling	"3nm"	"2nm"	'4.5nm"	"1.0nm eq"	"0.7nm eq"	"0.5nm eq"
Fine-pitch 3D integration scheme	Stacking	Stacking	Stacking	3DVLSI	3DVLSI	3DVLSI
Logic device structure options	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D	LGAA-3D
Logio dello condotale optiono	LGAA	201111	CFET-SRAM	CFET-SRAM	CFET-SRAM	CFET-SRAM
Platform device for logic	finFET	LGAA	LGAA CFET-SRAM	LGAA-3D CFET-SRAM-3D	LGAA-3D CFET-SRAM-3D	LGAA-3D CFET-SRAM-3D
	Cxide	Oxide	Cxide	tier tier tier tier	tier tier tier tier tier oxyge	tier tier tier tier tier
LOGIC DEVICE GROUND RULES						
Mx pitch (nm)	32	24	20	16	16	16
M1 pitch (nm)	32	23	21	20	19	19
M0 pitch (nm)	24	20	16	16	16	16
Gate pitch (nm)	48	45	42	40	38	38
Lo: Gate Lenoth - HP (nm)	16	14	12	12	12	12
Lg: Gate Length - HD (nm)	18	14	12	12	12	12
Channel overlap ratio - two-sided	0.20	0.20	0.20	0.20	0.20	0.20
Spacer width (nm)	6	6	5	5	4	4
Spacer k value	3.5	3.3	3.0	3.0	2.7	2.7
Contact CD (nm) - finFET, LGAA	20	19	20	18	18	18
Device architecture key ground rules						
Device lateral pitch (nm)	24	26	24	24	23	23
Device height (nm)		52	48	64	60	56
FinFET Fin width (nm)						
Footprint drive efficiency - finFET						
	4.21	40.0	40.0	40.0	15.0	
Lateral GAA vertical pitch (n.n)	4.21	18.0	16.0	16.0	15.0	14.0
Lateral GAA vertical pitch (n n) Lateral GAA (nanosneet) unckness (nin)	4.21	6.0	6.0	6.0	5.0	4.0
Lateral GAA vertical pitch (n n) Lateral GAA (nanosneet) unconess (nin) Number of vertically stacked nanosheets on one device		6.0 3	6.0 3	6.0 4	5.0 4	4.0 4
Lateral GAA vertical pitch (n n) Lateral GAA (namosneet) uncorness (nm) Number of vertically stacked nanosheets on one device LGAA width (nm) - HP	1	6.0 3 30	6.0 3 30	6.0 4 20	5.0 4 15	4.0 4 15
Lateral GAA vertical pitch (n n) Lateral GAA (namosneety michness (min) Number of vertically stacked nanosheets on one device LGAA width (nm) - HP LGAA width (nm) - HD	1	6.0 3 30 15	6.0 3 30 10	6.0 4 20 10	5.0 4 15 6	4.0 4 15 6
Lateral GAA vertical pitch (n n) Lateral GAA (namosneet) michness (min) Number of vertically stacked nanosheets on one device LGAA width (nm) - HP LGAA width (nm) - HD LGAA width (nm) - SRAM	1	6.0 3 30 15 7	6.0 3 30 10 6	6.0 4 20 10 6	5.0 4 15 6	4.0 4 15 6
Lateral GAA vertical pitch (n n) Lateral GAA vertical pitch (n n) Number of vertically stacked nanosheets on one device LGAA width (nm) - HD LGAA width (nm) - SRAM Footprint give emclency - lateral GAA - FIP		6.0 3 30 15 7 4.41	6.0 3 30 10 6 4.50	6.0 4 20 10 6 5.47	5.0 4 15 6 6 5.00	4.0 4 15 6 6 4.75
Lateral GAA vertical pitch (n n) Lateral GAA vertical pitch (n n) Number of vertically stacked nanosheets on one device LGAA width (nm) - HD LGAA width (nm) - SRAM Footprint give entirency - lateral GAA - PP Device effective width (nm) - HP	101.0	6.0 3 30 15 7 4.41 216.0	6.0 3 30 10 6 4.50 216.0	6.0 4 20 10 6 5.47 208.0	5.0 4 15 6 6 5.00 160.0	4.0 4 15 6 6 4.75 152.0
Lateral GAA vertical pitch (n n) Lateral GAA vertical pitch (n n) Number of vertically stacked nanosheets on one device LGAA width (nm) - HD LGAA width (nm) - SRAM Footprint give emclency - lateral GAA - FIP		6.0 3 30 15 7 4.41	6.0 3 30 10 6 4.50	6.0 4 20 10 6 5.47	5.0 4 15 6 6 5.00	4.0 4 15 6 6 4.75

- M0 pitch critical to sustain cell area scaling
- Lg scaling saturating around 10-12nm
- 3 discrete GAA widths in SoC: HP, HD, SRAM but choosing which width to assign still flexible in GAA
- Device height, device width, and device vertical pitch critical for overall PPA scaling

Device technology roadmaps

Samsung roadmap, Source: WikiChip

Intel roadmap

ARM A715

Backside power connection schemes

Two different Back Side Power (BSP) schemes as focal point: (a) BPR+nTSV, (b) BSC (Back Side Contact)

Critical dimensions across 2022-2037

Source: TEL@IEDM-2021

Source: imec@IEEE J. EDS-2020

Yield implications on GAA+Backside Metallization

- Local Interconnect
- STI di-electric
- Inner spacer
- Source/drain EPI
- Gate stack
- Water thinning
- **BEOL**
- Bottom transistor isolation

Buried rail

>2025

GAA with bottom device isolation

Source: IBM

STI SIO.

FinFET with buried rail

Source: IMEC

Critical modules and steps in the GAA w/ BS metal

- MOL (middle-of-line) direct metal etch
- MOL ILD fill
- STI di-electric fill
- Inner spacer
- GAA bottom transistor isolation
- Source drain module front and back side
- Gate stack
- Extension and junction engineer
- Backside surface control

Blue: Impacting device reliability as well

Defect mechanism analysis

- Critical module
- Critical process step
- Characterization of module: 1) Materials/physics, 2) Material property, 3) Integration in process/device, 4) Image reference
- Litho mask layer
- Failure mechanism definition
- Condition under which failure might occur: 1) Surface chemistry, 2) Environment, 3)
 Contaminant type
- Potential causes of failure
- Defect density
- Facility related (yes/no)

Yield defect definition and failure mode/mechanism

	(1) Critical Module, Unit	(2) Critical															Defect Density		A M	Chemis	UP	
	Step	Process		(3) CI	haracterization (of Module				(6) Conditio	ns under whic	h failure may occur					as	Comments	C Gas		₩ Potential fail	re mechanism
Process	with high chance of	Step			Material Property			1	(5) Failure Mechanism				(7) Potential							\top		
Defectivity Risk Analysis	failure due to defectivity caused	in which defect may	Material s/Physic		(if failure is materia selectivity	Integration in		(4) Litho mask	Definition (e.g. Electrical, reliability,				causes of failure under conditions of	(8) Defect	(9) Is it facility-							
Steps:	by contamination	occur	srenysic	Dimensions	concerned)	process/device	Image Ref. #		material selectivity, obstruction]	Surface Chemistry	Environment	Contaminant Tupe	manufacturing process	Density	related?							
Information	by contamination	0000		- Cilinain Cilis	concerned	processing				MM/Tool or Unit	Unit Step	- Contaminant Type	manaractaning process	- Deadley	Turicu.							
Source:	MM	MM	MM	MM	MM	MM	MM	MM	MM	Step Experts	Experts	MM	Process Experts	Process Experts	Process Experts							
	1 11-1					Ru/W patterning						ivietal particle or metal	snort between two	· ·	· ·			oxygen and moisture in the ambient			0	ardmask (SiN to O2
	Local Interconnect (MOL), Subtractive			3nm CD, 54nm		etch, RIE plasma		Metal mask	Creating opens, hardmask (SiN			ions/Contaminant at bottom and top of the	metal lines due to particle or dielectric				1e10	air. Si-O-Si, Si-H and Si-OH species. very dilute solutions of HF, in de-			selectivity) oxidation	
	Etch	Etch		tall		etch, CI2/O2	1	(M0)	to O2 selectivity) oxidation	CVD/PVD, CMP	Wet+Dry	trench	impurity		Chemical purity		at/cm2	ionized water, DI, or dilute			only CL2	O2 etchant
								T	<i>"</i>				<u> </u>		<u> </u>							
									Reliability - Leakage, Creating													
	STI di-electric fill	Flowable CVD		40nm gap, 90nm tall		STI Gap Fill in GAA	2	Active/OD mask (OD)	leakage source, low-quality STI, height variation in di-electric		Wet+Dry	Halide anion, metallic ion										urce, low-quality STI, on in di-electric
1	311 di-electric fili	CVD	+	tall		900	-	mask (OD)	neight variation in di-electric		weterbry	natide anion, metallic ion	Changing width of	+			<u> </u>		_	+	neight variation	on in direfectric
									Reliability - TDDB				inner spacer (defect	Contamination	Possibly, complex	This problem is						
									Creating leakage source, low-				induced depth	affects process	sources, difficult to	likely going to be						
		Flowable		6nm tall, 5nm				S/D mask	quality STI, height variation in di-			Halide anion, metalic ion	variation), Excessive	control (etch	control affecting	resolved via litho					Creating leakage so	urce, low-quality STI,
	GAA Inner Spacer	CVD	_	gap space		Inner spacer	3/3Ь	(MetalC)	electric		Wet or Dry		Etch	effectiveness)	material selectivity	complex solutions				_	height variation	on in di-electric
						1								challenges to remove			1					
														contamination	No. lower risk for							
		Flowable		6nm tall, 5nm				S/D mask	Electrical - Failed EPI to Si				Contaminant prevents	without affecting	gas contamination							
	GAA Inner Spacer	CVD		gap space		Inner spacer	3/3Ь	(MetalC)	connection	EPI to Si interface	TBC	Carbon, oxygen (for Si)	EPI growth	dielectric	than the process							
						selective SiGe			l													
	GAA Bottom					removal followed by			HCI - hot carrier injection (failure mode), metal contamination or			Any contamination will	Higher risk: mobile									
	Isolation	pre-epi gate clean		10nm thick		SiO2 deposition	9		uncontrolled doppost	SiO2 or different	Wet and Dry	impact	ions, (OH-) interface									
1	is ordinal.	414411		Tomas cancar		CIOL GEPOSITION			Reliability - TDDB	Old of different	ii ci and biy	impact.	Tons, (or) merrees							_		
						1			Creating leakage source, low-													
		Flowable		9nm CD, 54nm		High-AR metal		Metal mask	quality STI, height variation in di-													urce, low-quality STI,
	ILD fill	CVD	_	tall		gap fill	4	(M0)	electric		Wet	Halide anion, metallic ion		at all an annual a							height variation	on in di-electric
														challenges to remove							Deterioration of d	evice performance is
									Positively ionized carbons at the				residual from dry etch,	contamination with	h l							of which the positively
									interface acting as additional				leaving molecular	high efficiency	No, lower risk for							he interface acting as
	Source Drain			6nm tall, 5nm		Front and Back		S/D mask	positive charges affecting the				contamination - needs	without affecting	gas contamination		5e13	last step, air break after the				charges affecting the
	and Gate Stack	Dry Etch		gap space		Side EPI	5	(MetalC)	inversion to n-channel		Wet+Dry	Carbon, oxygen	to be removed pre epi		than the process		at/cm2	cleaning			inversion t	o n-channel.
													residual from dry etch,	challenges to remove								
													leaving molecular	contamination	No, lower risk for							
				14nm wide, 30nm		Front and Back		S/D mask	Flouride detoriating the silicide				contamination - needs	without affecting	gas contamination		5e10					
	Source Drain	Dry Etch		long		Side EPI	5	(MetalC)	quality		Wet+Dry	lonic (fluoride)	to be removed pre epi	i dielectric	than the process		at/cm2					
																						n enter the gate oxide ce between the gate
																					(usually metal or pol	
																					oxide (usually SiO2).	
																		1) gate or contact metallization; 2)				interface under the
																		oxidation and annealing furnaces				ic fields created by
						GAA RMG at narrower vertical							Treshold voltage, Reliability + Yield					and gases; 3) diffusion furnaces and gases; 4) photoresist bake; 5)			voltages applied to t mobility of these ions	
						space - Dipole			Reliability - BTI				risks; dilute HF pre-					incomplete resist stripping; and 6)				ance even at room
				12nm long * 15nm		(LaO2) +			Mobile ions in the gate di-			Mobile metallic ions,	gate clean - high risk	TBC based on the	UPW and DHF		2e10	contaminated chemicals used in			temperature. Na+ o	xhibits the greatest
	Gate stack	Std Clean		wide 6 nm thick		HfO2	6	Gate mask	electric causing Vt shift		Wet+Dry	organic contamination	of contamination.	reliability model	contamination risk		at/cm2	wafer cleaning.			mobility due to its sr	all atomic radius. K is
						1								1			1	Ca, Fe, Ni, Cu, Zn. One is direct				
						1								1			1	binding to the silicon surface by charge exchange between a metal				
						1								1			1	ion and a hydrogen atom attached				
			1			1		1						1			1	to the surface of the Si substrate;				
						1								1			1	this type of impurity is not easily				
						1								1			1	removed during the wet cleaning				
						1					surface prep			1			1	process. The other mechanism is				
			1			1		1			with HCI, clean		Air exposure in	1			1	that the oxide and metallic impurities form simultaneously on				
						GAA RMG st			Reliability - BTI (TDDB also?)		Wet + Dry		transition to ALD	1			1	the surface; such metallic impurities				
				12nm long * 15nm		vertical space -			Changing the k-value of gate di-	TiN, Aluminum,	deposition		(humidity/moisture	1			2e10	can be removed by etching the				
EEE	•		•	IFF	F V			I COMPLITED 6	- Albinos	2000000		•		•								

GAA integration flow with inner spacer

integration Source/Drain material - High K material - Metal Si SiGe SiO₂ Spacer material EPI Drain **EPI Source** Spacer film deposition (b) (c) (d) (e) (a) Source-drain circuit (f) (g) (h) (i)

Source: Chinese Academy of Sciences@MDPI/Nanomaterials2020

SiGe side Etchback - CF4/O2/He gas ICP Inner spacer fill – LPCVD Depi Spacer etch back to reveal channel - CH2F2/O2/CH4/Ar gas ICP

Multiple depo/etchback steps
Inner spacer di-electric needs to
withstand multiple down-stream
process steps

Inner spacer defect definition

(1) Critical Module, Unit Step			(3	3) Characterization of N				
with high chance of	(2) Critical			Material Property (if				
failure due to	Process Step			failure is material				(5) Failure Mechanism Definition
defectivity caused by	in which defect	Materials		selectivity	Integration in		(4) Litho mask	(e.g. Electrical, reliability, material
contamination	may occur	/Physics	Dimensions	concerned)	process/device	Image Ref. #	reference	selectivity, obstruction)
								Deliebilite TDDD
								Reliability - TDDB
			6nm tall, 5nm gap				S/D mask	Creating leakage source, low-quality
GAA Inner Spacer	Flowable CVD		space		Inner spacer	3/3b	(MetalC)	STI, height variation in di-electric

(6) Condi	tions under which f	ailure may occur			_
Surface Chemistry	Environment	Contaminant Type	(7) Potential causes of failure under conditions of manufacturing process	(8) Defect Density	(9) Is it facility- related?
	Wet or Dry	Halide anion, metalicion	Changing width of inner spacer (defect induced depth variation), Excessive Etch	Contamination affects process control (etch effectiveness)	Possibly, complex sources, difficult to control affecting material selectivity

Deep-dive to GAA gate stack – IBM@IEDM2020

Fig. 2. Schematic for block FETs and open FETs in NS RMG patterning with soft mask (y-direction view).

Multi-Vt S	chemes	ULVT	SLVT	LVT	RVT
	nFET	nWFM+Dipole (t1+ t2+t3)	nWFM++Dipole (t2+t3)	nWFM+Dipole (t3)	nWFM
Α	pFET	pWFM	pWFM+Dipole (t3)	pWFM+Dipole (t2+t3)	pWFM+Dipole (t1+ t2+t3)
_	nFET	nWFM+Dipole (t1+t2)	nWFM+Dipole (t2)	nWFM	pWFM2+Dipole (t1+t2)
В	pFET	pWFM1	pWFM1+Dipole (t2)	pWFM1+Dipole (t1+t2)	pWFM2
	nFET	nWFM2+Dipole (t1)	nWFM2	nWFM1(t1)	nWFM1
С	pFET	pWFM1	pWFM1+Dipole (t1)	pWFM2	pWFM2+Dipole (t1)

Fig. 17. Nanosheet multi-Vt process flow with volumeless multi-Vt module and metal multi-Vt module for NS technology multi-Vt offering.

GAA gate stack defect definition

(1) Critical Module, Unit Step			(3) Characterization of N	<i>A</i> odule			
with high chance of	(2) Critical			Material Property (if				
failure due to	Process Step			failure is material				(5) Failure Mechanism Definition
defectivity caused by	in which defect	Materials/		selectivity	Integration in		(4) Litho mask	(e.g. Electrical, reliability, material
contamination	may occur	Physics	Dimensions	concerned)	process/device	Image Ref. #	reference	selectivity, obstruction)
					G∆∆ RMG at			
					narrower vertical			Reliability - BTI
			12nm long * 15nm		space - Dipole			Mobile ions in the gate di-electric
Gate stack	Std Clean		wide * 6 nm thick		(LaO2) + HfO2	6	Gate mask	causing ∨t shift

(6) Condi	tions under which f	ailure may occur	(7) Potential causes of		
Surface Chemistry	Environment	Contaminant Type	failure under conditions of manufacturing process	(8) Defect Density	(9) Is it facility- related?
			Treshold voltage,		
			Reliability + Yield risks;		
			dilute HF pre-gate clean -		
		Mobile metallicions,	high risk of	TBC based on the	UPW and DHF
	Wet+Dry	organic contamination	contamination.	reliability model	contamination risk

