(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 October 2004 (14.10.2004)

PCT

(10) International Publication Number WO 2004/086995 A1

(51) International Patent Classification7:

A61B 18/14

(21) International Application Number:

PCT/US2004/009620

(22) International Filing Date: 29 March 2004 (29.03.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/458,489 28 March 2003 (28.03.2003) US 60/458,490 28 March 2003 (28.03.2003) US 60/458,491 28 March 2003 (28.03.2003) US 60/458,643 28 March 2003 (28.03.2003) US 60/458,856 28 March 2003 (28.03.2003) US

- (71) Applicant (for all designated States except US): C.R. BARD, INC. [US/US]; 730 Central Avenue, Murray Hill, NJ 07974 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): STEVENS-WRIGHT, Debbie [US/US]; 175 Candlestick Road, North Andover, MA 01845 (US).
- (74) Agent: MORRIS, James, H., Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES. FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR SELECTING OPERATING PARAMETER VALUES IN ELECTROPHYSIOL-**OGY PROCEDURES**

(57) Abstract: Methods of selecting operating parameter values for tissue ablation procedures are disclosed. Energy supply parameters may be selected based on inputs such as fluid flow rate, impedance, and the distance from an ablation electrode surface to a target tissue surface. The distance to place an ablation electrode surface from a target tissue surface may be selected based on various operating parameter values and/or operating condition values. Operating curves, lookup tables, or processors may be used to select operating parameter values.

This Page Blank (uspto)

5

15

30

10/551294 JC09 Rec'd PCT/PTO 28 SEP 2009

-1-

METHOD AND APPARATUS FOR SELECTING OPERATING PARAMETER VALUES IN ELECTROPHYSIOLOGY PROCEDURES

RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Serial No. 60/458,489, entitled "Electrode for Electrophysiology Catheter Having an Eccentric Surface", filed on March 28, 2003, U.S. Provisional Application Serial No. 60/458,490, entitled "Electrophysiology Catheter Allowing Adjustment Between Electrode and Tissue Gap", filed on March 28, 2003, U.S. Provisional 10 Application Serial No. 60/458,491, entitled "Shape Shifting Electrode Geometry for Electrophysiology Catheters", filed on March 28, 2003, U.S. Provisional Application Serial No. 60/458,643, entitled "Method and Apparatus for Selecting Temperature/Power Set Points in Electrophysiology Procedures", filed on March 28, 2003, and U.S. Provisional Application Serial No. 60/458,856, entitled "Catheter Tip/Electrode Junction Design for Electrophysiology Catheters" filed on March 28, 2003, all five of which are each incorporated herein by reference in their entireties.

BACKGROUND OF INVENTION

20 1. Field of Invention

The invention relates to medical devices and methods for performing ablation procedures. More particularly, the invention relates to methods and apparatus for selecting operating parameter values for the performance of ablation procedures.

25 2. Discussion of Related Art

The human heart is a very complex organ, which relies on both muscle contraction and electrical impulses to function properly. The electrical impulses travel through the heart walls, first through the atria and then the ventricles, causing the corresponding muscle tissue in the atria and ventricles to contract. Thus, the atria contract first, followed by the ventricles. This order is essential for proper functioning of the heart.

Over time, the electrical impulses traveling through the heart can begin to travel in improper directions, thereby causing the heart chambers to contract at improper times. Such a condition is generally termed a cardiac arrhythmia, and can take many different forms. When the chambers contract at improper times, the amount of blood pumped by the heart decreases, which can result in premature death of the person.

5

10

15

20

25

30

Techniques have been developed which are used to locate cardiac regions responsible for the cardiac arrhythmia, and also to disable the short-circuit function of these areas. According to these techniques, electrical energy is applied to a portion of the heart tissue to ablate that tissue and produce scars which interrupt the reentrant conduction pathways or terminate the focal initiation. The regions to be ablated are usually first determined by endocardial mapping techniques. Mapping typically involves percutaneously introducing a catheter having one or more electrodes into the patient, passing the catheter through a blood vessel (e.g. the femoral vein or artery) and into an endocardial site (e.g., the atrium or ventricle of the heart), and deliberately inducing an airhythmia so that a continuous, simultaneous recording can be made with a multichannel recorder at each of several different endocardial positions. When an arrythormogenic focus or inappropriate circuit is located, as indicated in the electrocardiogram recording, it is marked by various imaging or localization means so that cardiac arrhythmias emanating from that region can be blocked by ablating tissue. An ablation catheter with one or more electrodes can then transmit electrical energy to the tissue adjacent the electrode to create a lesion in the tissue. One or more suitably positioned lesions will typically create a region of necrotic tissue which serves to disable the propagation of the errant impulse caused by the arrythromogenic focus. Ablation is carried out by applying energy to the catheter electrodes. The ablation energy can be, for example, RF, DC, ultrasound, microwave, or laser radiation.

Atrial fibrillation together with atrial flutter are the most common sustained arrhythmias found in clinical practice.

Another source of arrhythmias may be from reentrant circuits in the myocardium itself. Such circuits may not necessarily be associated with vessel ostia, but may be interrupted by means of ablating tissue either within the circuit or

circumscribing the region of the circuit. It should be noted that a complete 'fence' around a circuit or tissue region is not always required in order to block the propagation of the arrhythmia; in many cases simply increasing the propagation path length for a signal may be sufficient. Conventional means for establishing such lesion 'fences' include a multiplicity of point-by-point lesions, dragging a single electrode across tissue while delivering energy, or creating an enormous lesion intended to inactivate a substantive volume of myocardial tissue.

5

10

15

20

25

30

In creating lesions, care is taken to limit blood coagulation and tissue charring and desiccation. These undesirable effects can occur if temperatures in the tissue or blood rise to 100°C. In addition to effects on the blood and tissue, temperatures of 100°C or more at the electrode-tissue interface can foul an electrode due to tissue charring. Various strategies are employed to maintain temperatures below 100°C. Electrode cooling (active and/or passive) is one strategy employed in an attempt to cool the tissue at the tissue surface where temperatures can often be the highest, thereby allowing a more even temperature distribution in the tissue. Other strategies include limiting the power applied to the electrode based on pre-determined estimates of appropriate power levels, and reducing the power applied to the electrode in response to feedback signals from the electrode or other sensors. Reduced power application, however, is balanced with the desirability of raising the temperature of an adequate volume of tissue above its viability temperature and the benefits of reducing total procedure time.

There exists a need to improve the delivery of energy to tissue to form lesions without exceeding temperatures that result in charring, desiccation or blood coagulation.

SUMMARY OF INVENTION

Embodiments of the present invention encompass apparatus and method for creating lesions in heart tissue (ablating) to create a region of necrotic tissue which serves to disable the propagation of errant electrical impulses caused by an arrhythmia. Embodiments of the present invention also encompass apparatus and

methods for selecting values for operating parameters to be used in systems and apparatus configured to create lesions in heart tissue.

5

10

15

20

25

30

According to one embodiment, a method of selecting an operating parameter value for supplying energy to an ablation electrode comprises receiving a first signal representing a value of a fluid flow rate, receiving a second signal representing a value of an impedance, receiving a third signal representing a value of a distance from an ablation electrode surface to a target tissue surface, and selecting a value for an operating parameter for supplying energy to the ablation electrode as a function of the first, second and third signals.

According to another embodiment, a method of ablating biological tissue to form a lesion comprises positioning an ablation electrode having a surface at an ablation site, receiving a first signal representing a value of a fluid flow rate, receiving a second signal representing a value of an impedance, receiving a third signal representing a value of a distance from the ablation electrode surface to a target tissue surface, selecting a value for an ablation operating parameter as a function of the first, second and third signals, and operating the ablation electrode at the selected operating parameter value to ablate biological tissue.

According to a further embodiment, a system comprises a catheter having a shaft, an ablation electrode positioned on the shaft, an energy supply, and an input interface. The input interface is configured to receive a signal representing a value of a fluid flow rate, a signal representing a value of an impedance, and a signal representing a value of a distance from an electrode surface to a target tissue surface. The system also comprises a processor operatively connected to the input interface and programmed to select an operating parameter value for supplying energy to the ablation electrode with the energy supply, the selection being a function of the three signals received by the input interface, and an output interface operatively connected to the processor and configured to provide the selected operating parameter value.

According to another embodiment, a computer-readable medium has instructions stored thereon that, as a result of being executed by a computer, instruct the computer to perform a method comprising receiving a first signal representing a value of a fluid flow rate, receiving a second signal representing a value of an

impedance, receiving a third signal representing a value of a distance from an ablation electrode surface to a target tissue surface, and selecting a value for an operating parameter for supplying energy to the ablation electrode as a function of the first, second and third signals.

5

10

15

20

25

30

According to a further embodiment, a system comprises a catheter having a shaft, an ablation electrode positioned on the shaft, an energy supply, and an input interface. The input interface is configured to receive a first signal representing a value of a fluid flow rate, a second signal representing a value of an impedance, and a third signal representing a value of a distance from an electrode surface to a target tissue surface. The system further comprises means for selecting an operating parameter value for supplying energy to the ablation electrode with the energy supply, the means for selecting using the first, second and third signals, and an output interface configured to provide the selected operating parameter value.

According to another embodiment, a method of selecting an operating parameter value for transmitting energy to tissue comprises receiving a first signal representing a value of a fluid flow rate near the tissue, receiving a second signal representing a value of an impedance, and selecting a value for a distance to set an ablation electrode surface apart from a target tissue surface as a function of the first and second signals.

According to a further embodiment, a method of selecting an operating parameter value for transmitting energy to tissue comprises receiving a first signal representing a value of a fluid flow rate near the tissue, and selecting a value for a distance to set an ablation electrode surface apart from a target tissue surface as a function of the first signal.

According to another embodiment, a method of selecting an operating parameter value for supplying energy to an ablation electrode comprises receiving a first signal representing a value of a fluid flow rate near the tissue, receiving a second signal representing a value of a distance from an ablation electrode surface to a target tissue surface, and selecting a value for an operating parameter for supplying energy to an ablation electrode as a function of the first and second signals.

- 6 -

According to a further embodiment, a method of selecting an operating parameter value for transmitting energy to tissue comprises receiving a first signal representing a value of a fluid flow rate near the tissue, receiving a second signal representing a value of a distance from an ablation electrode surface to a target tissue surface, and selecting a value for an electrode impedance as a function of the first and second signals.

5

10

15

20

25

30

According to another embodiment, a method of establishing a relationship between operating condition values and a value for an ablation operating parameter comprises: providing a plurality of data sets comprising a value of fluid flow, a value of impedance, and a value of distance from an ablation electrode surface to a target tissue surface; for each of the plurality of data sets, performing at least two analyses of an ablation electrode transmitting energy to biological tissue using a numerical model, the at least two analyses corresponding to at least two different values of an ablation operating parameter, and wherein the numerical model uses each of the three values of the data set; and based on the results of the at least two analyses for each data set, establishing a relationship between each data set and a corresponding value for the ablation operating parameter.

According to a further embodiment, a method of establishing a relationship between operating condition values and values for ablation operating parameters comprises providing a data set comprising values of operating conditions, and performing a first analysis of a numerical model, the numerical model modeling transmission of energy to biological tissue and the first analysis using the values of the operating conditions, a first value for an energy supply operating parameter and a first value for a distance from an ablation electrode surface to a target tissue surface. The method further comprises performing a second analysis of the numerical model using the values of the operating conditions and a second value for the distance from the ablation electrode surface to the target tissue surface. The method further comprises, based on the results of the first and second analyses, establishing a relationship between the data set and corresponding values for the energy supply operating parameter and the distance from the ablation electrode surface to the target tissue surface.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, like components that are illustrated in various figures are represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:

- Fig. 1 illustrates a catheter system in accordance with embodiments of the present invention;
- Fig. 2 illustrates details of a control system according to one embodiment of the invention;
 - Fig. 3 illustrates a ring electrode positioned at a distance from a tissue surface;
- Fig. 4 illustrates a distal tip electrode positioned at a distance from a tissue surface;
- Fig. 5 illustrates one embodiment of a method of performing an ablation procedure;
- Fig. 6 illustrates one example of dataflow in a control system according to one embodiment of the invention;
- Fig. 7 illustrates one embodiment of a method of establishing relationships between operating condition values and operating parameter values;
- Fig. 8 illustrates components modeled in one embodiment of an ablation procedure model;
- Fig. 9 illustrates a portion of a mesh used in one embodiment of a finite element model;
- Fig. 10 illustrates results of model analyses for an exemplary ablation procedure model;
- Fig. 11 illustrates further results of model analyses for an exemplary ablation procedure model;
- Figs. 12A and 12B illustrates exemplary operation curves generated from model analyses; and

-8-

Fig. 13 illustrates a format for lookup tables according to one embodiment of the invention.

DETAILED DESCRIPTION

5

10

15

20

25

30

This invention is not limited in its application to the details of construction and the arrangement of components and acts set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing", "involving", and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

During ablation procedures, one objective is to raise tissue temperatures above the tissue's viability temperature without allowing the temperatures to exceed a temperature of approximately 100°C. As described above, excessive temperatures can cause tissue charring, tissue desiccation, and/or blood coagulation. The shape and impedance of an electrode selected to perform ablation and the characteristics of the energy supplied to the electrode significantly affect the result of an ablation procedure. Difficulties associated with monitoring the ablation procedure and the different operating conditions encountered during ablation procedures can, in some cases, limit the ability to produce a sizeable lesion without risking undesirable temperatures.

Modeling of ablation procedures, such as numerical modeling, may be used to estimate the outcomes of using selected values for various operating parameters of an ablation process. By performing analyses of a numerical model, different values of electrode power or electrode voltage can be tested for the effects on tissue or blood temperature and lesion size. By analyzing the model for multiple operating parameter values, relationships can be established between operating conditions, such as blood flow rate, and operating parameter values, such as the power to be applied to the electrode.

Applicants have recognized that in many instances positioning the ablation electrode at a distance from the target tissue surface can improve lesion size by forming a more even distribution of temperature within the tissue. Modeling of tissue ablation including the modeling of a distance between an ablation electrode and a target tissue surface can provide improved ablation procedure control. By allowing the distances from the electrode to the tissue surface to be factored into ablation modeling, improved ablation results may be obtained by selecting more appropriate operating parameter values. In one embodiment of the invention, values for blood flow rate, impedance and distance from an electrode to a target tissue surface are used to select an operating parameter value for energy supply to the electrode.

Optimization strategies also may be employed in conjunction with multiple analyses of the model to determine improved operating parameter values.

System Overview

10

15

20

25

Reference is now made to Fig. 1, which figure illustrates an overview of an ablation catheter system in accordance with embodiments of the present invention. The system includes a catheter 10 having a shaft portion 12, a control handle 14, and a connector portion 16. A control module 8 is connected to connector portion 16 via cable 6. Ablation energy supply 4 may be connected to control module 8 via cable 3. Control module 8 is used to control ablation energy provided by ablation energy supply 4 to catheter 10. Although illustrated as separate devices, ablation energy supply 4 and control module 8 could be incorporated into a single device.

In this description, various aspects and features of embodiments of the present invention will be described. The various features of the embodiments of the invention are discussed separately for clarity. One skilled in the art will appreciate that the features may be selectively combined in a device depending upon the particular application. Furthermore, any of the various features may be incorporated in a catheter and associated methods of use for ablation procedures.

- 10 -

Catheter Overview

5

10

15

20

25

30

Catheter 10 may include a distal tip electrode 18 and/or one or more ring electrodes 20. Ring electrodes 20 may be arranged on shaft 12 such that their outer surfaces are flush with the catheter surface, or they may be arranged such that the electrode outer surfaces have diameters that are larger or smaller than the shaft diameter. In some embodiments, ring electrodes 20 may be adjustable in size or shape, may be moveable along shaft 12, or may be asymmetric with respect to shaft 12.

Distal tip electrode 18 may be affixed to the distal tip of shaft 12 such that it does not move relative to the distal tip, or distal tip electrode 18 may be moveable relative to shaft 12. Catheter 10 may be a steerable device. Fig. 1 illustrates the distal tip portion 18 being deflected by the mechanism contained within control handle 14. Control handle 14 may include a rotatable thumb wheel (not shown) which can be used by a user to deflect the distal end of the catheter. The thumb wheel (or any other suitable actuating device) is connected to one or more pull wires which extend through shaft portion 12 and are connected to the distal end 18 of the catheter at an off-axis location, whereby tension applied to one or more of the pull wires causes the distal portion of the catheter to curve in a predetermined direction or directions.

Referring now to Fig. 2, one embodiment of a control system 21 is illustrated. The various modules of control system 21 may be combined in a single device or unit, or various modules may be separate units that communicate with one another either automatically or with human intervention.

An ablation energy supply 4 is provided to supply the electrode(s) 18, 20 with energy in the form of, for example, RF, microwave, DC, ultrasound, or laser radiation.

Control module 8 controls the energy supplied to the electrode(s)18, 20 by regulating various energy supply parameters. For example, for some ablation procedures, control module 8 may sustain the supplied energy at a constant power, a constant voltage or a constant current. In some embodiments, control module 8 may receive feedback (such as electrode temperature) from electrode(s) 18, 20 and vary the energy supplied based on the feedback. In other ablation procedures, control module 8 may vary any of the above parameters or control other parameters such as

frequency, pulse rate, amplitude, duty cycle, wave shape, or any other suitable parameter. Control module 8 may be embodied in hardware, firmware, software, or any suitable combination thereof. Control system 21 may be attachable to catheter 10 via cable 6 and connector portion 16, or portions of control system 21 may be physically incorporated into control handle 14.

5

10

15

20

25

30

A user interface 26 may be provided to facilitate user interaction with control module 8. User interface 26 may include a keypad, a touch screen, a set of input buttons or switches, a voice-activated interface, or any other suitable interface for accepting input from a user or for providing output to a user. User interface 8 may be an operative connection to a separate device (not shown) such that control module 8 is able to communicate with the separate device.

As illustrated in Fig. 3, ring electrode 20 may be arranged on shaft 12 such that it is held a distance D from a tissue surface 31. With applied RF energy, ring electrode 20 generates a potential field around ring electrode 20 and heats the surrounding material, such as blood 33 and tissue 35, based on the properties of that material. Blood flow, if present, may cool tissue surface 31 and ring electrode 20.

In this embodiment, shaft 12 is configured with a bent shaft to provide a distance D between electrode 20 and tissue surface 31, but in other embodiments, ring electrode 20 itself may be constructed and arranged to provide a distance between tissue surface 31 and ring electrode 20 on a straight shaft. In some embodiments, distance D is fixed for a given electrode or shaft, and in other embodiments, the electrode, shaft, or other control device may be used to adjust distance D. In further embodiments, movement of ring electrode 20 along shaft 12 may adjust distance D.

Fig. 4 illustrates distal tip electrode 18 separated by distance D from tissue surface 31. With a shaft 12 that is steerable, distance D may be varied. In other embodiments, other suitable mechanisms for controlling distance D may be employed. For example, distal tip electrode 18 or ring electrode 20 may be configured for shape changes which allow for adjustment of distance D. Changes to the shapes of electrodes 18, 20 also may alter electrode impedance values and therefore the electric fields generated by the electrodes.

In some embodiments, a distance sensor (not shown) may provide feedback to control module 8 or a user. Other sensors may be used, such as fluid flow sensors or impedance sensors, so that operating conditions can be measured and reported, in some cases to allow for changes to operating parameter values.

Distance D is not necessarily a positive distance in all ablation procedure models or ablation procedures. In some instances, electrode 18 or electrode 20 may be embedded in tissue 35 such that distance D has a negative value. In other ablation procedures, electrode 18 or electrode 20 may be held at the tissue surface such that distance D has a value of zero.

5

10

15

20

25

30

Referring now to Fig. 5, one embodiment of a method of performing an ablation procedure is illustrated. In act 40, values of one or more operating conditions are received. In some embodiments, the values are represented by signals, such as electrical signals, which are input into a processor, a computer, or a control module. In other embodiments, the operating condition values are received visually by a user who may enter the values into a processor, a computer, or a control module. The user also may use the values in conjunction with charts, graphs, or tables without entering the values into a processor.

The values of the operating conditions may include values that attribute a certain level to an operating condition. For example, the operating condition value of "blood flow rate" may be "2.9 liters/minute." The values of the operating conditions also may include values that represent a selection from among a plurality of options. For example, the operating condition value of "electrode used" may be "7", which could represent a specific type or size of electrode having certain properties.

In act 42, values for one or more operating parameters are selected. The operating parameter values may be selected by a processor, a computer, a control module, or any other suitable device or set of instructions. In other embodiments, the operating parameter values may be selected by a user consulting charts, graphs or tables such as, for example, operation curves or lookup tables (see Figs. 12 and 13).

A single value for a single operating parameter may be selected in act 42 in some embodiments of the method. In other embodiments, single values for more than one operating parameter may be selected substantially simultaneously. In still further

embodiments, the selection of certain operating parameter values may be dependent on the value or values selected for other operating parameter(s).

Instead of a single value for an operating parameter being selected, a plurality of values may be selected such that each value corresponds to a different time during the ablation procedure. In some embodiments, the plurality of values may take the form of a continuum of values that vary over time. For example, a plurality of values for an operating parameter of electrode power may comprise a steadily decreasing power level over a period of sixty seconds.

10

15

20

25

30

In act 44, the selected operating parameter values are used in performing an ablation procedure. In some embodiments, not all of the selected values are used, particularly if certain operating parameters are not controllable or adjustable. In such embodiments, these operating parameters may instead be treated as operating conditions. In other embodiments, operating conditions that typically are not adjustable, but indeed are adjustable for a certain device or method, may be treated instead as operating parameters such that a value may be selected. For example, in one embodiment, the distance from a ring electrode surface to a tissue surface may not be adjustable, and thus the distance value is treated as an operating condition. In a different embodiment, the distance may be adjustable and thus may be treated as an operating parameter for which a value may be selected within certain boundaries.

Optionally, feedback 46 may be provided such that act 42 of selecting operating parameter values may be updated. For example, during act 44, the temperature of an ablation electrode may be measured. If the ablation electrode reaches a temperature of concern, based on the measurements, the power level being applied to the ablation electrode may be reduced. This act may take place automatically or with user intervention.

Referring now to Fig. 6, one embodiment of a control system 21 for a catheter is illustrated. User interface module 26 is operatively connected to control module 8. Signals 47 representing operating parameter values and/or operating condition values are input at the user interface module and sent to a processor 48 for selection of a value for one or more operating parameters. A signal representing the selected value (operating parameter signal 49) is then output by processor 48. The selected value

signal may be sent directly to the catheter, or the value may be displayed to the user such that the catheter may be controlled manually. Processor 48 may include operation curves or lookup tables, as described below. Processor 48 may interpolate when input values do not match the values present in a lookup value. Alternatively, processor 48 may include an equation or other algorithm to select an operating parameter value as a function of operating condition values.

Turning now to the groundwork for selecting suitable operating parameter values, one embodiment of a method of establishing a relationship between operating conditions and selected values for operating parameters is illustrated in Fig. 7. A model, such as a numerical model, may be used to estimate the results of an ablation procedure based on at least some of the following: values of various material characteristics; values of operating conditions and operating parameters; and electrical, thermal and flow equations.

Based on the results obtained by performing analyses of the model, values for adjustable operating parameters may be selected as a function of operating conditions or assumptions. For example, a certain blood flow rate, an electrode geometry and a distance from an electrode to a tissue surface may be provided as operating conditions for a series of model analyses. The results of selecting an initial value for an operating parameter, such as a power level applied to the electrode, may be modeled using the model and the operating condition values. After a first model analysis, results are recorded and a different power level may be used in a second model analysis. Based on the results of the two (or more) model analyses, a power level may be selected for use in an ablation procedure when the modeled operating conditions are encountered. This selection process is described in more detail below with reference to Figs. 10 and 11.

Model Overview

5

10

15

20

25

30

To model an ablation procedure, a finite element model may be constructed. In one exemplary model, the model includes an electrode 50, a plastic tip 52 of a catheter, epoxy 54 at the interface of electrode 50 and plastic tip 52, a tissue block 56 and a blood field 58 (see Fig. 8). Material properties are used as shown below by way

of example in Table 1. Of course Table 1 shows just one example of a set of material properties that may be modeled and any suitable combination of various material properties may be modeled.

5 TABLE 1

10

15

20

Part	Material	Density	Specific Heat	Thermal Conductivity	Electrical Conductivity	Thermal Diffusivity
	-	J/mm³*K	g/mm³	W/mm*K	S/mm	mm²/s
Blood	Blood (viscosity 0.001 g/s mm)	0.0010	4.180	0.000543	6.670E-=04	0.13
Epoxy		0.0013	1.500	0.00130	1.000E-13	0.07
Tip	Pebax ¹	0.0010	5.500	0.000290	1.072E-17	0.05
Electrode	Platinum	0.0215	0.132	0.071000	4.000E+3	25.02
Tissue	Cardiac Muscle	0.0012	3.220	0.0005367	2.220E-04	0.14

1-80% Pebax 6333 / 20% Barium Sulfate, Panton 548C

Boundary conditions may be set as follows: outer surface – zero volts and 37°C; electrode surface – 25 volts to 75 volts; tissue fluid interface – no slip (U=0, V=0); electrode fluid interface – no slip (U=0, V=0); inlet flow – U=10.4 mm/sec, 30 mm/sec, or 52 mm/sec depending on flow conditions, V=0, V=0; outer boundaries – no slip (U=0, V=0, V=0). The initial temperature of the model is set to 37°C. The above boundary conditions are assumptions and different assumptions may be used for various models.

The model includes a finite element mesh that is partitioned along the catheter length with a finer mesh in the area of the electrode. An illustration of a portion of the mesh is shown in Fig. 9. The mesh grading in this illustration is 3.00mm x 1.00mm x 0.30mm and includes 22,914 nodes. Because of the geometry symmetry, half of the geometry may be used. As is known to one of ordinary skill in the art, various mesh gradations may be used in constructing a finite element model.

- 16 -

In the model, the electric potential φ is solved at each time step using Laplace's equation:

$$\nabla \bullet \sigma \nabla \varphi = 0 \tag{1}$$

The joule heat generation term,

5

15

20

$$J \bullet E = \sigma \bullet \|\nabla \varphi\|^2, \tag{2}$$

is calculated and added to the right hand side of the energy equation:

$$\rho c \left(\frac{\delta T}{\delta t} + U \frac{\delta T}{\delta x} + V \frac{\delta T}{\delta y} + W \frac{\delta T}{\delta z} \right) = \nabla \bullet (k \nabla T) + J \bullet E$$
(3)

To model the fluid flow, the velocity distribution was solved using the momentum equations:

10
$$\rho \left(\frac{\delta U}{\delta t} + U \frac{\delta U}{\delta x} + V \frac{\delta U}{\delta y} + W \frac{\delta U}{\delta z} \right) = -\frac{\delta P}{\delta x} + \mu \left(\frac{\partial^{2} U}{\partial x^{2}} + \frac{\partial^{2} U}{\partial y^{2}} + \frac{\partial^{2} U}{\partial z^{2}} \right)$$
(4)
$$\rho \left(\frac{\delta V}{\delta t} + U \frac{\delta V}{\delta x} + V \frac{\delta V}{\delta y} + W \frac{\delta V}{\delta z} \right) = -\frac{\delta P}{\delta y} + \mu \left(\frac{\partial^{2} V}{\partial x^{2}} + \frac{\partial^{2} V}{\partial y^{2}} + \frac{\partial^{2} V}{\partial z^{2}} \right)$$
(5)
$$\rho \left(\frac{\delta W}{\delta t} + U \frac{\delta W}{\delta x} + V \frac{\delta W}{\delta y} + W \frac{\delta W}{\delta z} \right) = -\frac{\delta P}{\delta z} + \mu \left(\frac{\partial^{2} W}{\partial x^{2}} + \frac{\partial^{2} W}{\partial y^{2}} + \frac{\partial^{2} W}{\partial z^{2}} \right)$$
(6)

and the continuity equation:

$$\frac{\delta U}{\delta x} + \frac{\delta U}{\delta y} + \frac{\delta U}{\delta z} = 0 \tag{7}$$

The energy equation (Eq. 3) is then solved for the temperature distribution in the tissue.

In the above equations:

 ρ represents density (k/mm³);

c represents specific heat (J/g*K)

k represents thermal conductivity (W/mm*K)

J represents current density (A/mm²)

E represents electric field density (V/mm²)

- 17 -

T represents temperature

U, V, W represent fluid velocity components (mm/sec) σ represents electrical conductivity S/mm φ represents electrical potential.

5

10

15

20

25

30

Model Results

A graph showing the results of examples of model analyses is shown in Fig. 10. The y-axis shows the modeled power level (watts) and the x-axis shows the maximum tissue temperature (degrees C) reached during the model analysis. This model had a blood flow rate operating condition of 30 mm/sec and a distance of D of -0.009 inches. Ten different electrodes were analyzed, each at four different power levels.

By fitting a curve to the results for each electrode, a power level at which the maximum tissue temperature will reach a pre-determined level may be estimated. For example, according to a curve 62 fit to the model analysis results, a 7F Distal Morgan 8mm electrode sustained at a power level of approximately 41 watts or less for 60 seconds will result in a maximum tissue temperature of approximately 95°C or less. A modeled temperature such as 95°C or 90°C may be used as a cutoff to allow for a safety factor below 100°C. Typically, a higher maximum tissue temperature results in a larger lesion. Thus, to achieve maximum lesion size within the operating conditions of a blood flow rate of 30 mm/sec, a distance D of -0.009 inches, and a 7F Distal Morgan 8mm electrode, a power level of 41 watts is selected, which is predicted to result in a maximum tissue temperature of approximately 95°C.

Fig. 11 illustrates a graph that plots another operating parameter value versus maximum tissue temperature. This graph shows model analysis results for different maximum electrode temperature levels. Instead of having its power level controlled, an ablation electrode can have its maximum temperature controlled. Based on a curve 64 fit to the model analysis results shown in Fig. 11, a maximum electrode temperature of approximately 53°C is selected to maximize lesion size while keeping the modeled maximum tissue temperature below 95°C when operating conditions of a

- 18 -

blood flow rate of 30 mm/sec, a distance D of -0.009 inches and a 7F Distal Morgan 8mm electrode are present.

5

10

15

20

25

30

Once analyses have been performed for several different values of an operating condition and operating parameter values have been selected for these operating conditions, operation curves may be generated, such as the ones shown by way of example in Figs. 12A and 12B. Graph 66 plots electrode power vs. flow, and graph 68 plots maximum electrode temperature vs. flow. When performing an ablation procedure, a user may refer to an operation curve to select an appropriate power level as a function of a given blood flow rate, a given distance from electrode to tissue surface, and a selected electrode. If instead the user decides to control voltage or maximum electrode temperature, those curves could be provided on a separate graph or could be provided on the same graph. It is important to note that for purposes herein, the phrase "as a function of" certain values does not preclude the use of further values. For example, "as a function of a blood flow rate" does not preclude the use of other values such as impedance, voltage, etc.

In an alternative embodiment, lookup tables may be provided instead of operation curves. An example of a lookup table 70 is shown in Fig. 13. Table 70 is titled, "Electrode A", and using a given flow rate and distance, an appropriate operating parameter value (represented by lower case letters a-p) may be selected. Of course, lookup tables may be arranged by flow or distance or other operating condition and the assignment of parameters and conditions to columns and rows may vary.

An automated optimization scheme may be employed to systematically analyze different types of modeled electrodes and different modeled distances between the electrode and the tissue surface. For each set of values for operating conditions (such as blood flow rate) and operating parameters (such as power level or distance from electrode to tissue surface), a model analysis provides a lesion size. Based on the results of the model analysis, an optimization module may select a new set of operating parameter values and determine whether the model predicts a larger or smaller lesion size. Any suitable optimization scheme known in the art may be used to complete the optimization process. As is known to those of ordinary skill in

the art, many optimization schemes do not necessarily produce a single optimal result, but rather attempt to locate a result as close as possible to an optimal result given computational constraints.

For a given operating condition (such as blood flow rate), a number of sets of 5 · operating parameter values can be selected. For example, for a given operating condition valve, a first set of operating parameter values such as a first electrode, a first distance D, and a second power level may be presented as a suitable option. The presentation of multiple suitable sets operating parameter values may be desirable when certain electrodes are not available or other restrictions are present. Attributes of the model analysis results could also be presented for each set, such as robustness in light of perturbations.

Instead of, or in addition to model analysis, actual experiments can be used to generate the operating curves and/or lookup tables for various combinations of the input values. In some embodiments, in vitro experiments may be used to generate data for the operating curves.

Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.

What is claimed is:

10

15

- 20 -

CLAIMS

1. A method of selecting an operating parameter value for supplying energy to an ablation electrode, comprising:

5

10

15

20

- (a) receiving a first signal representing a value of a fluid flow rate;
- (b) receiving a second signal representing a value of an impedance;
- (c) receiving a third signal representing a value of a distance from an ablation electrode surface to a target tissue surface; and
- (d) selecting a value for an operating parameter for supplying energy to the ablation electrode as a function of the first, second and third signals.
- 2. The method according to claim 1 wherein (d) comprises selecting the operating parameter value based on relationships established between (1) values of the operating parameter and (2) fluid flow rate values, impedance values and distance values.
- 3. The method according to claim 2, wherein the relationships are established with analyses of a numerical model of transmission of energy to biological tissue by an ablation electrode.
- 4. The method according to claim 3 wherein the numerical model comprises a finite element model.
- 5. The method according to claim 4 wherein, to model a tissue temperature distribution, the numerical model comprises equations for modeling an electric field created by the ablation electrode, heat generated by the electric field, and a velocity field of the fluid flow.
- 6. The method according to claim 5 wherein the numerical model comprises the following equations to model tissue temperature distribution:

10

$$\nabla \bullet \sigma \nabla \varphi = 0 ;$$

$$\rho c \left(\frac{\delta T}{\delta t} + U \frac{\delta T}{\delta x} + V \frac{\delta T}{\delta y} + W \frac{\delta T}{\delta z} \right) = \nabla \bullet (k \nabla T) + J \bullet E ;$$

$$\rho \left(\frac{\delta U}{\delta t} + U \frac{\delta U}{\delta x} + V \frac{\delta U}{\delta y} + W \frac{\delta U}{\delta z} \right) = -\frac{\delta P}{\delta x} + \mu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right) ;$$

$$\rho \left(\frac{\delta V}{\delta t} + U \frac{\delta V}{\delta x} + V \frac{\delta V}{\delta y} + W \frac{\delta V}{\delta z} \right) = -\frac{\delta P}{\delta y} + \mu \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \right) ;$$

$$\rho \left(\frac{\delta W}{\delta t} + U \frac{\delta W}{\delta x} + V \frac{\delta W}{\delta y} + W \frac{\delta W}{\delta z} \right) = -\frac{\delta P}{\delta z} + \mu \left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2} \right) ; \text{ and }$$

$$\frac{\delta U}{\delta x} + \frac{\delta U}{\delta y} + \frac{\delta U}{\delta z} = 0 .$$

- 7. The method according to claim 2, wherein the relationships are established with analyses of an *in vitro* model of transmission of energy to biological tissue by an ablation electrode.
 - 8. The method according to claim 1, wherein the second signal, representing the value of the impedance, comprises a signal representing an electrode geometry.
 - 9. The method according to claim 1, wherein the second signal, representing the value of the impedance, represents an impedance into which energy is supplied.
- 20 10. The method according to claim 1, wherein (d) comprises selecting a plurality of values for an operating parameter, each value corresponding to a separate time during the supplying of energy to the ablation electrode.

- 22 -

- 11. The method according to claim 1, wherein (d) comprises selecting only one value for an operating parameter, the operating parameter to remain constant during the supplying of energy to the ablation electrode.
- The method according to claim 1, wherein (d) comprises selecting a value for each of a plurality of operating parameters.
 - 13. The method according to claim 1, wherein (d) comprises selecting a plurality of values for each of a plurality of operating parameters, wherein for each of the plurality of operating parameters, each value corresponds to a separate time during the supplying of energy to the ablation electrode.
 - 14. The method according to claim 1, wherein the operating parameter is a maximum temperature allowed for the ablation electrode.
 - 15. The method according to claim 1, wherein the operating parameter is power applied to the ablation electrode.
- 16. The method according to claim 1, wherein the operating parameter is voltage of the energy supplied to the ablation electrode.
 - 17. The method according to claim 1, wherein the operating parameter is current supplied to the ablation electrode.
- 25 The method according to claim 1, wherein the operating parameter is a wave shape of the energy supplied to the ablation electrode.
 - 19. The method according to claim 1, wherein the operating parameter is a frequency of the energy supplied to the ablation electrode.

10

- 20. The method according to claim 1, wherein (d) comprises selecting the operating parameter value using a processor programmed with an algorithm.
- 21. The method according to claim 1, wherein (d) comprises selecting the operating parameter value using an operating curve.
 - 22. The method according to claim 1, wherein (d) comprises selecting the operating parameter value using a lookup table.
- 10 23. The method according to claim 1, wherein (a) comprises receiving the first signal from a fluid flow sensor.
 - 24. The method according to claim 1, wherein the first signal is generated by an input entered by a user.
 - 25. The method according to claim 1, wherein (b) comprises receiving the second signal from an impedance sensor.
- 26. The method according to claim 1, wherein the second signal is generated by an input entered by a user.
 - 27. The method according to claim 1, wherein (c) comprises receiving the third signal from a distance sensor.
- 28. The method according to claim 1, wherein the third signal is generated by an input entered by a user.
 - 29. The method according to claim 1, wherein the first signal represents a value of a blood flow rate.

WO 2004/086995

- 30. A method of supplying energy to an ablation electrode comprising the method of claim 1 and further comprising:
 - (e) controlling an energy supply such that energy is supplied to the ablation electrode at the selected operating parameter value.

5

- 31. A method of ablating biological tissue to form a lesion comprising:
- (a) positioning an ablation electrode having a surface at an ablation site;
 - (b) receiving a first signal representing a value of a fluid flow rate;

10

- (c) receiving a second signal representing a value of an impedance;
- (d) receiving a third signal representing a value of a distance from the ablation electrode surface to a target tissue surface;
- (e) selecting a value for an ablation operating parameter as a function of the first, second and third signals; and
- (f) operating the ablation electrode at the selected operating parameter value to ablate biological tissue.
- 32. The method according to claim 31 wherein the value for the ablation operating parameter selected in (e) is for an energy operating parameter.

20

15

- 33. The method according to claim 31 wherein the operating parameter is maximum electrode temperature.
 - 34. A system comprising

25

- a catheter having a shaft;
- an ablation electrode positioned on the shaft;
- an energy supply;
- an input interface configured to receive a signal representing a value of a fluid flow rate, a signal representing a value of an impedance, and a signal representing a value of a distance from an electrode surface to a target tissue surface;

5

10

15

20

25

30

a processor operatively connected to the input interface and programmed to select an operating parameter value for supplying energy to the ablation electrode with the energy supply, the selection being a function of the three signals received by the input interface; and

an output interface operatively connected to the processor and configured to provide the selected operating parameter value.

- 35. A computer-readable medium having instructions stored thereon that, as a result of being executed by a computer, instruct the computer to perform a method comprising:
 - (a) receiving a first signal representing a value of a fluid flow rate;
 - (b) receiving a second signal representing a value of an impedance;
 - (c) receiving a third signal representing a value of a distance from an ablation electrode surface to a target tissue surface; and
 - (d) selecting a value for an operating parameter for supplying energy to the ablation electrode as a function of the first, second and third signals.
 - 36. A system comprising:
 - a catheter having a shaft;
 - an ablation electrode positioned on the shaft;
 - an energy supply;

an input interface configured to receive a first signal representing a value of a fluid flow rate, a second signal representing a value of an impedance, and a third signal representing a value of a distance from an electrode surface to a target tissue surface;

means for selecting an operating parameter value for supplying energy to the ablation electrode with the energy supply, the means for selecting using the first, second and third signals; and

an output interface configured to provide the selected operating parameter value.

- 37. The system according to claim 36, wherein the operating parameter is maximum electrode temperature.
- 38. A method of selecting an operating parameter value for transmitting energy to tissue, comprising:
 - (a) receiving a first signal representing a value of a fluid flow rate near the tissue;
 - (b) receiving a second signal representing a value of an impedance; and
 - (c) selecting a value for a distance to set an ablation electrode surface apart from a target tissue surface as a function of the first and second signals.
 - 39. The method according to claim 38, further comprising:

10

15

(d) selecting a value for an operating parameter for supplying energy to an ablation electrode.

40. The method according to claim 39, wherein the operating parameter is a maximum temperature allowed for the ablation electrode.

- 41. The method according to claim 39, wherein the operating parameter is power applied to the ablation electrode.
 - 42. The method according to claim 39, wherein the operating parameter is voltage of the energy supplied to the ablation electrode.
- 25 43. The method according to claim 39, wherein (d) comprises selecting a value for an operating parameter as a function of the first and second signals and the selected distance value.
- 44. A method of selecting an operating parameter value for transmitting energy to tissue, comprising:

- 27 -

- (a) receiving a first signal representing a value of a fluid flow rate near the tissue; and
- (b) selecting a value for a distance to set an ablation electrode surface apart from a target tissue surface as a function of the first signal.

5

- 45. The method according to claim 44, further comprising:
- (c) selecting a value for an operating parameter for supplying energy to an ablation electrode.
- 10 46. The method according to claim 45, wherein the operating parameter is a maximum temperature allowed for the ablation electrode.
 - 47. The method according to claim 45, wherein the operating parameter is power applied to the ablation electrode.

15

- 48. The method according to claim 45, wherein the operating parameter is voltage of the energy supplied to the ablation electrode.
- 49. The method according to claim 45, wherein (c) comprises selecting the value for the operating parameter for supplying energy to the ablation electrode as a function of the first signal and the selected distance value.
 - 50. The method according to claim 44, wherein (b) comprises selecting the distance based on relationships established between (1) values of the distance and (2) fluid flow rate values.
 - 51. The method according to claim 50, wherein the relationships are established with analyses of a numerical model of transmission of energy to biological tissue by the ablation electrode.

- 52. The method according to claim 51, wherein the numerical model comprises a finite element model.
- 53. The method according to claim 52 wherein, to model a tissue temperature distribution, the numerical model comprises equations for modeling an electric field created by the ablation electrode, heat generated by the electric field, and a velocity field of the fluid flow.
- 54. The method according to claim 53 wherein the numerical model comprises the following equations to model tissue temperature distribution:

$$\nabla \bullet \sigma \nabla \varphi = 0 ;$$

$$\rho c \left(\frac{\delta T}{\delta t} + U \frac{\delta T}{\delta x} + V \frac{\delta T}{\delta y} + W \frac{\delta T}{\delta z} \right) = \nabla \bullet (k \nabla T) + J \bullet E ;$$

$$\rho \left(\frac{\delta U}{\delta t} + U \frac{\delta U}{\delta x} + V \frac{\delta U}{\delta y} + W \frac{\delta U}{\delta z} \right) = -\frac{\delta P}{\delta x} + \mu \left(\frac{\partial^{2} U}{\partial x^{2}} + \frac{\partial^{2} U}{\partial y^{2}} + \frac{\partial^{2} U}{\partial z^{2}} \right) ;$$

$$\rho \left(\frac{\delta V}{\delta t} + U \frac{\delta V}{\delta x} + V \frac{\delta V}{\delta y} + W \frac{\delta V}{\delta z} \right) = -\frac{\delta P}{\delta y} + \mu \left(\frac{\partial^{2} V}{\partial x^{2}} + \frac{\partial^{2} V}{\partial y^{2}} + \frac{\partial^{2} V}{\partial z^{2}} \right) ;$$

$$\rho \left(\frac{\delta W}{\delta t} + U \frac{\delta W}{\delta x} + V \frac{\delta W}{\delta y} + W \frac{\delta W}{\delta z} \right) = -\frac{\delta P}{\delta z} + \mu \left(\frac{\partial^{2} W}{\partial x^{2}} + \frac{\partial^{2} W}{\partial y^{2}} + \frac{\partial^{2} W}{\partial z^{2}} \right) ; \text{ and }$$

$$\frac{\delta U}{\delta x} + \frac{\delta U}{\delta y} + \frac{\delta U}{\delta z} = 0 .$$

- 55. The method according to claim 50, wherein the relationships are established with analyses of an *in vitro* model of transmission of energy to biological tissue by an ablation electrode.
 - 56. A method of selecting an operating parameter value for supplying energy to an ablation electrode, comprising:
- (a) receiving a first signal representing a value of a fluid flow rate near the tissue;

- (b) receiving a second signal representing a value of a distance from an ablation electrode surface to a target tissue surface; and
- (c) selecting a value for an operating parameter for supplying energy to an ablation electrode as a function of the first and second signals.

5

- 57. The method according to claim 56, further comprising:
- (d) receiving a third signal representing a value of an impendence, wherein (c) comprises selecting a value for the operating parameter as a function of the third signal.

10

- 58. A method of selecting an operating parameter value for transmitting energy to tissue, comprising:
 - (a) receiving a first signal representing a value of a fluid flow rate near the tissue;

15

- (b) receiving a second signal representing a value of a distance from an ablation electrode surface to a target tissue surface; and
- (c) selecting a value for an electrode impedance as a function of the first and second signals.

- 59. The method according to claim 58, further comprising:
- (d) selecting a value for an operating parameter for supplying energy to an ablation electrode.
- 60. The method according to claim 59, wherein the operating parameter is a maximum temperature allowed for the ablation electrode.
 - 61. The method according to claim 59, wherein the operating parameter is power applied to the ablation electrode.
- The method according to claim 59, wherein the operating parameter is voltage of the energy supplied to the ablation electrode.

63. The method according to claim 59, wherein (d) comprises selecting a value for an operating parameter as a function of the first signal, the second signal and the selected electrode impedance.

5

10

15

20

The method according to claim 58, wherein (c) comprises selecting an 64. electrode from a plurality of electrodes.

- 65. The method according to claim 58, wherein (c) comprises selecting a size for an ablation electrode having an adjustable size.
- 66. A method of establishing a relationship between operating condition values and a value for an ablation operating parameter, the method comprising:

(a) providing a plurality of data sets comprising a value of fluid flow, a value of impedance, and a value of distance from an ablation electrode surface to a target tissue surface;

(b) for each of the plurality of data sets, performing at least two

analyses of an ablation electrode transmitting energy to biological tissue using a numerical model, the at least two analyses corresponding to at least two different values of an ablation operating parameter, and wherein the numerical

model uses each of the three values of the data set; and

(c) based on the results of the at least two analyses for each data set, establishing a relationship between each data set and a corresponding value for

the ablation operating parameter.

25

The method according to claim 66 wherein (c) comprises calculating 67. one of a maximum and a minimum value for the ablation operating parameter at which a maximum tissue temperature does not exceed a pre-selected temperature.

30

68. The method according to claim 67, further comprising associating the calculated ablation operating parameter value with the data set.

- 69. The method according to claim 67, wherein the pre-selected temperature is approximately 95 degrees Centigrade.
- The method according to claim 66 wherein (c) comprises calculating a value for the operating parameter at which a lesion size is maximized without a maximum tissue temperature exceeding a pre-selected temperature.
- 71. The method according to claim 70, wherein the pre-selected temperature is approximately 95 degrees Centigrade.

15

- 72. The method according to claim 66, wherein the established relationship comprises an equation relating (1) a value of fluid flow, a value of impedance, and a value of distance from an ablation electrode surface to a target tissue surface to (2) an operating parameter value.
- 73. The method according to claim 66, wherein the established relationship comprises an operating curve.
- The method according to claim 66, wherein the established relationship comprises a lookup table.
 - 75. The method according to claim 66, wherein the numerical model comprises a finite element model.
 - 76. The method according to claim 66, wherein the at least two analyses comprise at least two computer simulations.
- 77. The method according to claim 66, wherein the ablation operating parameter is a power level.

- 32 -

- 78. The method according to claim 66, wherein the ablation operating parameter is a maximum allowed electrode temperature.
- 79. The method according to claim 66, wherein the ablation operating parameter is a voltage level.
 - 80. The method according to claim 66, further comprising:

10

- (d) performing a plurality of model analyses using different values for impedance and distance from an ablation electrode surface to a target tissue surface; and
- (e) assigning a value for the operating parameter, a value for the distance, and a value for the impedance to the value for the fluid flow based on results of the model analyses.
- 15 81. The method according to claim 80, wherein (e) comprises optimizing the operating parameter value, the impedance value and the distance value for a maximum predicted lesion size without the model analysis indicating a tissue temperature exceeding a pre-selected temperature.
 - 82. The method according to claim 81, wherein the pre-selected temperature is approximately 95 degrees centigrade.
- 83. The method according to claim 80, wherein assigning a value for the impedance comprises assigning an electrode geometry selected from a plurality of electrode geometries.
 - 84. The method according to claim 66, wherein the numerical model comprises a finite element model.
- 30 85. The method according to claim 66 wherein, to model a tissue temperature distribution, the numerical model comprises equations for modeling an

- 33 -

electric field created by the ablation electrode, heat generated by the electric field, and a velocity field of the fluid flow.

86. The method according to claim 85 wherein the numerical model comprises the following equations to model temperature distribution:

$$\nabla \bullet \sigma \nabla \varphi = 0 ;$$

$$\rho \left(\frac{\delta T}{\delta t} + U \frac{\delta T}{\delta x} + V \frac{\delta T}{\delta y} + W \frac{\delta T}{\delta z} \right) = \nabla \bullet (k \nabla T) + J \bullet E ;$$

$$\rho \left(\frac{\delta U}{\delta t} + U \frac{\delta U}{\delta x} + V \frac{\delta U}{\delta y} + W \frac{\delta U}{\delta z} \right) = -\frac{\delta P}{\delta x} + \mu \left(\frac{\partial^{2} U}{\partial x^{2}} + \frac{\partial^{2} U}{\partial y^{2}} + \frac{\partial^{2} U}{\partial z^{2}} \right) ;$$

$$10 \qquad \rho \left(\frac{\delta V}{\delta t} + U \frac{\delta V}{\delta x} + V \frac{\delta V}{\delta y} + W \frac{\delta V}{\delta z} \right) = -\frac{\delta P}{\delta y} + \mu \left(\frac{\partial^{2} V}{\partial x^{2}} + \frac{\partial^{2} V}{\partial y^{2}} + \frac{\partial^{2} V}{\partial z^{2}} \right) ;$$

$$\rho \left(\frac{\delta W}{\delta t} + U \frac{\delta W}{\delta x} + V \frac{\delta W}{\delta y} + W \frac{\delta W}{\delta z} \right) = -\frac{\delta P}{\delta z} + \mu \left(\frac{\partial^{2} W}{\partial x^{2}} + \frac{\partial^{2} W}{\partial y^{2}} + \frac{\partial^{2} W}{\partial z^{2}} \right) ; \text{ and }$$

$$\frac{\delta U}{\delta x} + \frac{\delta U}{\delta y} + \frac{\delta U}{\delta z} = 0 .$$

87. A method of establishing a relationship between operating condition values and values for ablation operating parameters, the method comprising:

20

- (a) providing a data set comprising values of operating conditions;
- (b) performing a first analysis of a numerical model, the numerical model modeling transmission of energy to biological tissue, the first analysis using the values of the operating conditions, a first value for an energy supply operating parameter and a first value for a distance from an ablation electrode surface to a target tissue surface;
- (c) performing a second analysis of the numerical model using the values of the operating conditions and a second value for the distance from the ablation electrode surface to the target tissue surface; and
- (d) based on the results of the first and second analyses, establishing a relationship between the data set and corresponding values for the energy

- 34 -

supply operating parameter and the distance from the ablation electrode surface to the target tissue surface.

- 88. The method according to claim 87, wherein (d) comprises performing the second analysis using a second value for the energy operating parameter.
 - 89. The method according to 88, further comprising performing a plurality of additional analyses using the values of the operating conditions and additional values for the energy supply operating parameter and the distance from the ablation electrode surface to the target tissue surface.
 - 90. The method according to claim 89, wherein the energy supply operating parameter is maximum electrode temperature.

uns rage Blank (uspto)

FIG. 2

JC09 Rec'd PCT/PTO 28 SEP 2005.

and Page Blank (uspto)

mis Page Blank (uspto)

FIG. 5

rus rage Blank (uspio)

FIG. 6

This Page Blank (uspto)

and the first first first

FIG. 7

This page Blank (Uspto)

Fig. 9

This Page Blank (uspic)

Inis Page Blank (uspto)

10/551294

Maximum Electrode Temperature vs. Maximum Tissue Temperature 30 mm/sec(2.9 L/min)

RECTIFIED SHEET (RULE 91)

This Page Blank (uspic)

and the second of the second of

10/10

Fig. 12A

Fig. 128

Fig. 13

JC09 Rec'd PCT/PTO 28 SEP 2005

ge Blank (uspto)

INTERNATIONAL SEARCH REPORT

International Application No PCT/US2004/009620

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61B18/14 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 2002/002372 A1 (FRANCISCHELLI DAVID E 1-29.ET AL) 3 January 2002 (2002-01-03) 34 - 90paragraphs '0061!, '0102!, '0103! A US 2002/169445 A1 (JAIN MUDIT K ET AL) 1 - 2914 November 2002 (2002-11-14) 34 - 90paragraphs '0072!, '0073! A US 5 840 030 A (BREYER BRANKO ET AL) 1-2924 November 1998 (1998-11-24) 34 - 90column 6, line 47 - column 7, line 34 US 6 022 347 A (LINDENMEIER HEINZ ET AL) Α 1 - 298 February 2000 (2000-02-08) 34 - 90column 7, line 12 - line 39 WO 02/100255 A (ORTHO DEV CORP) 1-29 19 December 2002 (2002-12-19) 34 - 90page 9, line 3 - line 17 Further documents are listed in the continuation of box C. Patent family members are listed in annex. . Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-O' document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 17 August 2004 25/08/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Mayer-Martenson, E

l

International application No. PCT/US2004/009620

INTERNATIONAL SEARCH REPORT

box ii Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 30-33 because they relate to subject matter not required to be searched by this Authority, namely:
Rule 39.1(iv) PCT - Method for treatment of the human or animal body by surgery
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report
covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
·
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT Information on patent family members

International Application No PCT/US2004/009620

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2002002372	A1	03-01-2002	US AU JP WO US EP US	6514250 B1 5937101 A 2004500917 T 0180755 A2 2003167056 A1 1276423 A2 2003078575 A1	04-02-2003 07-11-2001 15-01-2004 01-11-2001 04-09-2003 22-01-2003 24-04-2003
US 2002169445	A1	14-11-2002	W0 US	02069822 A1 2002123749 A1	12-09-2002 05-09-2002
US 5840030	A	24-11-1998	HR HR DE DE EP WO ES	931513 A1 931514 A1 69417580 D1 69417580 T2 0735842 A1 9517131 A1 2129803 T3	30-04-1996 30-04-1996 06-05-1999 16-12-1999 09-10-1996 29-06-1995 16-06-1999
US 6022347	А	08-02-2000	DE DE WO DE DE EP	4126609 A1 4135185 A1 9303679 A1 59209932 D1 59209946 D1 0598778 A1 0978259 A2	18-02-1993 29-04-1993 04-03-1993 20-12-2001 28-03-2002 01-06-1994 09-02-2000
WO 02100255	Α	19-12-2002	MO	02100255 A2	19-12-2002

This Page Blank (uspto)