Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Тимофеева Екатерина Николаевна

Содержание

1	Цель работы	5									
2	Задание Выполнение лабораторной работы										
3											
	3.1 Постановка задачи	7									
	3.2 Построение модели	7									
	3.3 Оптимизация модели двух стратегий обслуживания	11									
4	Выводы	18									

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчет по модели второй стратегии обслуживания	10
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	12
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускны-	
	ми пунктами	13
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	14
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускны-	
	ми пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	15
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускны-	
	ми пунктами	16
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	16
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускны-	
	ми пунктами	17

Список таблиц

3 1	Сравнение стратегий	[#thl·strategy}·									1(n
J. I	Срависиис стратстии ј	#tbi.strategy (•	 •	•	 •	 •	•	•	•	т,	J

1 Цель работы

Реализовать с помощью gpss модели с одной и двумя очередями и в ходе изменения модели оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 3.1).

```
lab16 1.gps
 GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl 1,Obsl 2; длины очередей равны, ; выбираем произв. пункт пропуска
 ; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
 ; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней \times 24 часа \times 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 3.2).

■ lab16_1.1.1 - Ri	PORT						
ST	ART TIME	END	TIME BI	OCKS F	ACILITIES	STORAGES	
	0.000				2		
	NAME		VAI	UE			
OBS	L_1		5.	000			
OBS	L_2	11.000 10000.000					
OTH	ER1						
1	ER2		10001.				
1	KT1		10003.				
PUN	KT2		10002.	000			
LABEL	LOC B	LOCK TYPE	ENTR	Y COUNT	CURRENT C	COUNT RETRY	
	1 G	ENERATE	5				
	2 T	EST EST	5	853		0	
	3 T	SST	4	162	_	0	
oper 1	4 T	RANSFER JEUE	2	431	387	0	
OBSL_1				928			
	6 S:	EIZE EPART		541		0	
				541	_	. 0	
		OVANCE ELEASE		541) 0	
				540	_) 0	
OBSL 2	11 0	ERMINATE JEUE	2	925	388		
OB3L_2		EIZE		537) 0	
	13 D	EPART		537) 0	
	14 A	OVANCE		537	-	. 0	
		ELEASE		536) 0	
		ERMINATE		536	_) 0	
	17 G	ENERATE	_	1) 0	
		ERMINATE		1		0	
	10 1	INITIALL		-		,	
FACTITE	ENTRIES	1777 377	E TIVE		OWNED DEVI	THEED DESCRI	DELAY
PUNKT2							
PUNKT1	2537	0.990	3.95/	1	5070	0 0	388
FUNKII	2941	0.99/	3.955	, т	30/9 L	, 0 0	30/
OTTETTE	MAY CON	r FNTDV F	NTDV (O)	AUE CON	T 3175 TT	re ave (o)	DETDV
OTHER1	MAX CON	. ENIKI E	NIKI(U)	197 000	644 10	1E AVE.(-U) 07 646.758	KEIKI
OTHER1 OTHER2						17 646.758	
OINER2	393 38	2923	14	10/.114	077.02	.5 07/.7/9	U
FEC XN PRI	BDT	ACCEM	CHDDENT	NEVT	DADAMETER	NALUE	
5855 0				1	LARMIDIE	VALUE	
5079 0	10081.10			_			
3075	10000.31	. 5075					

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Модель для второй стратегии обслуживания, в которой прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 3.3, 3.4).

```
Punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

ENTER punkt,1; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE | punkt,1; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

	START	TIME		END	TIME	BLOCK	S F	ACILITIES	STORAGES	
	0	.000		10080	0.000	9		0	1	
	NAM	E				VALUE				
	OTHER				100	001.000				
	PUNKT				100	000.000				
LABEL		LOC	BLO	CK TYPE	E	NTRY C	OUNT	CURRENT C	OUNT RETRY	
		1	GEN	ERATE		5719		0	0	
		2	QUE	UE		5719		668	0	
		3	ENT	ER		5051		0	0	
		4	DEP	ART		5051		0	0	
		5	ADV	ANCE		5051		2	0	
		6	LEA	VE		5049		0	0	
		7	TER	MINATE		5049		0	0	
		_		ERATE		1		0		
		9	TER	MINATE		1		0	0	
QUEUE		MAX (CONT.	ENTRY E	ENTRY	(0) AVE	.con	r. AVE.TIM	ME AVE.(-0)	RET
OTHER		668	668	5719	4	344	.466	607.13	88 607.562	. (
STORAGE		CAP.	REM.	MIN. MZ	AX. E	ENTRIES	AVL	. AVE.C.	UTIL. RETRY	DELA
PUNKT		2	0	0	2	5051	1	2.000	1.000 0	668
FEC XN	PRI	BD:	r	ASSEM	CURE	RENT N	EXT	PARAMETER	VALUE	
5721	0	10080	.466	5721	0)	1			
5051	0	10081	.269	5051	5	5	6			
5052	0	10083	.431	5052	5	5	6			
5722	0	20160	.000	5722	0)	8			

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. ??).

Таблица 3.1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	

Показатель	стратегия 1			стратегия 2
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, мы видим, что первая модель позволяет обслужить большее число автомобилей. Однако разница между обслуженными и поступившими автомобилями меньше для второй модели — следовательно, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 — значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 3.5).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей QUEUE Other; присоединение к очереди 1 SEIZE punkt; занятие пункта 1 DEPART Other; выход из очереди 1 ADVANCE 4,3; обслуживание на пункте 1 RELEASE punkt; освобождение пункта 1 TERMINATE; автомобиль покидает систему; задание условия остановки процедуры моделирования GENERATE 10080; генерация фиктивного транзакта,; указывающего на окончание рабочей недели; (7 дней х 24 часа х 60 мин = 10080 мин) TERMINATE 1; остановить моделирование START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 3.5).

Tab16_2.6.1	l - REPOR	Т						
		TIME				FACILITIES		
	(0.000	10080	.000	9	1	0	
•	NAI			V	AT HE			
	OTHER	1E		1000				
PUNKT				1000				
LABEL		LOC	BLOCK TYPE	EN	TRY COUN	NT CURRENT C	OUNT RETRY	
		1	GENERATE		5744	0	0	
		2	QUEUE		5744	3233	0	
		3	SEIZE		2511	0	0	
		4	DEPART		2511	0	0	
		5	ADVANCE		2511	1	0	
		6	RELEASE		2510	0	0	
		7	TERMINATE		2510	0	0	
		8	GENERATE		1	0	0	
		9	TERMINATE		1	0	0	
FACILITY PUNKT							INTER RETRY 0 0	
QUEUE OTHER							E AVE.(-0) 9 2839.313	
FEC XN	DDT	227	3 C C EM	CUDDE	ur Neve	r parameter	TAT IIP	
2512			255 2512			FARAPETER	VALUE	
5746	-		255 2512 384 5746		1			
	0		384 5746 000 5747	0	8			
3/17/	•	20100.	000 3/1/	0	o o			

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 3.7, 3.8).

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL		YPE ENTRY COUN		
	1 GENERAT		0	0
	2 TRANSFE		0	0
GO	3 TRANSFE		0	0
OBSL_1	4 QUEUE	1853	1	0
	5 SEIZE	1852	0	0
	6 DEPART	1852	0	0
	7 ADVANCE	1852	1	0
	8 RELEASE		0	0
	9 TERMINA	ATE 1851	0	0
OBSL_2	10 QUEUE	1829	0	0
	11 SEIZE	1829	0	0
	12 DEPART	1829	0	0
	13 ADVANCE	1829	0	0
	14 RELEASE	1829	0	0
	15 TERMINA	TE 1829	0	0
OBSL 3	16 QUEUE	1865	3	0
_	17 SEIZE	1862	0	0
	18 DEPART	1862	0	0
	19 ADVANCE	1862	1	0
	20 RELEASE	1861	0	0
	21 TERMINA	TE 1861	0	0
	22 GENERAT	E 1	0	0
	23 TERMINA	ATE 1	0	0
FACILITY	ENTRIES UTIL.	AVE. TIME AVAIL	. OWNER PEND IN	ITER RETRY DELAY
PUNKT2	1829 0.717		0 0	0 0 0
PUNKT3	1862 0.740	4.006 1	5534 0	0 0 3
PUNKT1	1852 0.727		5546 0	
				-
OUEUE	MAX CONT. FNT	RY ENTRY(0) AVE.CO	ONT. AVE.TIME	AVE.(-0) RETRY
OTHER2			12 6.126	
OTHER3		65 513 1.13		
OTHER1	9 1 18		29 5.055	7.075 0
OTHERI	9 1 10	329 0.92	3.033	7.073
FEC XN PRI	BDT AS	SEM CURRENT NEXT	r parameter	VALUE
5549 0	10081.799 55			
5534 0	10082.440 55			
5546 0	10085.099 55			
5550 0	20160.000 55			

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 3.9, 3.10).

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

	26 ADV		14			1		0	
		EASE	14			0		0	
		MINATE	14			0		0	
	29 GEN	ERATE		1		0		0	
	30 TER	MINATE		1		0		0	
FACILITY	ENTRIES UT	TI. AVE	. TIME A	VATI. (WNER	PEND	INTER	RETRY	DELAY
PUNKT4	1413 0					0	0	0	0
PUNKT3	1378 0				0	0	0	0	0
PUNKT2	1366 0				0	0		0	0
PUNKT1	1465 0			-	•	_	_	0	0
OUTUT	Way cour		mp.:///						DD 2011
QUEUE	MAX CONT.								
OTHER4	7 0	1413							
OTHER3		1378							
OTHER2		1366						4.934	_
OTHER1	6 0	1465	590	0.492		3.385		5.667	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAM	ETER	VAI	LUE	
5624 0	10080.041	5624	0	1					
5621 0	10080.398	5621	8	9					
5623 0	10082.255	5623	26	27					
5625 0	20160.000	5625	0	29					

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *onmu-мальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
🥌 lab16_3.gps
 punkt STORAGE 3;
 GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
 ; моделирование работы пункта 1
 QUEUE Other ; присоединение к очереди 1
ENTER punkt ; занятие пункта 1
 DEPART Other ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 LEAVE punkt ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT	10001.000 10000.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 5683 0 0 2 QUEUE 5683 0 0 3 ENTER 5683 0 0 4 DEPART 5683 0 0 5 ADVANCE 5683 3 0 6 LEAVE 5680 0 0 7 TERMINATE 5680 0 0 8 GENERATE 1 0 0
OUEUE		9 TERMINATE 1 0 0 MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OTHER		12 0 5683 2521 1.063 1.885 3.388 0
STORAGE PUNKT		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 5683 1 2.243 0.748 0 0
	0 0 0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 10080.434 5680 5 6 10080.631 5683 5 6 10082.068 5685 0 1 10085.592 5684 5 6 20160.000 5686 0 8

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

LABEL		LOC	BLOC	K TYPE	EN	TRY COUNT	CURRENT	COUNT	RETRY	
		1	GENE	RATE		5719		0	0	
		2	QUEU	E		5719		0	0	
		3	ENTE	R		5719		0	0	
		4	DEPA	RT		5719		0	0	
		5	ADVA	NCE		5719		4	0	
		6	LEAV.	E		5715		0	0	
		7	TERM	INATE		5715		0	0	
		8	GENE	RATE		1		0	0	
		9	TERM	INATE		1		0	0	
QUEUE		MAX C	ONT.	ENTRY	ENTRY (0) AVE.CON	IT. AVE.T	IME .	AVE.(-0)	RETRY
OTHER		7	0	5719	4356	0.194	0.3	341	1.431	0
STORAGE		CAP.	REM.	MIN. M	IAX. EN	TRIES AVI	. AVE.C	. UTIL	. RETRY	DELAY
PUNKT							2.253			
FEC XN	PRI	BDT		ASSEM	1 CURRE	NT NEXT	PARAMETI	ER '	VALUE	
5718	0				5					
5717	0	10082.	412	5717	5	6				
5719	0	10083.	393	5719	5	6				
5721	0	10084.	393	5721	0	1				
5720	0	10085.	162	5720	5	6				
		20160.			0					

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.