

Marine Blanchard

Tuteurs : Christophe Duhamel Philippe Lacomme

Modélisation et résolution d'un problème de planification de production d'énergie

Introduction

Planification d'unité de production

Unit commitment problem

Objectif: Minimiser les couts de production

Enjeu : Respecter la demande et les contraintes du système

Comment minimiser les coûts de production et satisfaire les contraintes?

Plan

I. Contexte du projet

- 1. Le enjeux
- 2. Organisation
- 3. Outils

II. Réalisation

- 1. Instances
- 2. Modèle mathématique
- 3. Implémentation en C++

III. Résultats et discussion

- 1. Résultats et analyse
- 2. Les difficultés
- 3. Améliorations / Critique

1. Contexte du projet

Enjeux de la planification

- Impact economique important
- Probleme NP-complet

Enjeux de la planification

Méthode de résolution déterministes

- Relaxation Lagrangienne
- Programmation dynamique
- Liste de priorité
- Meta heuristique
- Programmation linéaire en nombres entiers

Modèle conventionnel

- Minimiser les coûts
- Contraintes globales:
- Satisfaire les demande
- Reserve opérationel
 - Contraintes techniques:
- Capacités de production
- Temps d'arrêt et d'activité minimum
- Rampes

Extensions

Contrainte des émissions

Modèle stochastique

Contrainte liée au réseau

Organisation

- 1. Etude d'articles scientifiques
- 2. Choix d'un modèle mathématique
- 3. Implémentation en c++
- 4. Analyse des resultats

Outils de résolution

- Concert Technology

\problem

Min 4x1 + 5x2Subject To $2x1 + x2 \le 800$ $X1 + 2x2 \le 700$ Bounds $X1 \ge 0$ $X1 \ge 0$

Programme linéaire standard

2. Réalisation

Modèle mathématique et instance

Article de Kazarlis (1996)

Les instances

Table II. Problem data for the 10-unit base UC problem.

	Unit 1	Unit 2	Unit3	Unit 4	Unit 5
Pmax (MW)	455	455	130	130	162
Pmin (MW)	150	150	20	20	25
a (\$/h)	1000	970	700	680	450
b (\$/MWh)	16.19	17.26	16.60	16.50	19.70
c (\$/MW ² -h)	0.00048	0.00031	0.002	0.00211	0.00398
min up (h)	8	8	5	5	6
min dn (h)	8	8	5	5	6
hot start cost (\$)	4500	5000	550	560	900
cold start cost(\$)	9000	10000	1100	1120	1800
cold start hrs (h)	5	5	4	4	4
initial status (h)	8	8	-5	-5	-6

		Unit 6	Unit 7	Unit 8	Unit 9	Unit 10
Pmax (M)	N)	80	85	55	55	55
Pmin (M)	N)	20	25	10	10	10
a (\$/I	٦)	370	480	660	665	670
b (\$/MV	Vh)	22.26	27.74	25.92	27.27	27.79
c (\$/MW	^{/2} -h)	0.00712	0.00079	0.00413	0.00222	0.00173
min up (h)	3	3	1	- 1	1
min dn (h)	3	3	. 1	- 1	. 1
hot start cos	t (\$)	170	260	30	30	30
cold start co	st(\$)	340	520	60	60	60
cold start hr	s (h)	2	2	0	0	0
initial status	(h)	-3	-3	-1	-1	-1

Hour	Demand (MW)	Hour	Demand (MW)
1 .	700	13	1400
2	750	14	1300
. 3	850	15	1200
4	950	. 16	1050
5	1000	17	1000
6	1100	18	1100
7	1150	19	1200
8	1200	20	1400
9	1300	21	1300
10	1400	22	1100
- 11	1450	23	900
12	1500	24	800

$$F(p_{ut}) = a_u + b_u p_{ut} + c_u p_{ut}^2$$

Fonction quadratique des coûts liés au carburant

14

- Pas de coût d'extinction
- Reserve = 10% Demande

Instance de Kazarlis

Modèle mathématique

Variables de decision

y_{ut}: état de l'unité u à la période t (0 ou 1)

p_{ut}: production de l'unité u à la période t

Variables auxiliaires

s_{hot}, s_{cold}: démarrage à chaud/froid (0 ou 1)

 x_{on}, x_{off} : mise sous tension/hors tension (0 ou 1)

p_{max}: puissance maximale

Contraintes systèmes

Demande

$$\sum_{\mathbf{u}\in\mathbf{U}}p_{ut}=D_t$$

Réserve tournante

$$\sum_{\mathbf{u} \in \mathbf{U}} p_{ut}^{max} \geq D_t + R_t$$

Contraintes techniques

Temps minimum d'arrêt et d'activité

Limite de puissance

$$P_u^{min} y_{ut} \le p_{ut} \le P_u^{max} y_{ut}.$$

| 1, 1) 2) 3) | | | 1, 1) 2) 3) | | | 1, 1) 2) 3)

Contraintes techniques

Rampes

$$r_u^{up} = r_u^{down} = P_u^{min}$$

1. 1) 2) 3)

II. 1) **2)** 3)

III. 1) 2) 3)

La fonction objectif

Minimiser
$$\sum_{t \in T} \sum_{u \in U} (F(p_{ut}) + S(x_{ut}^{off}, y_{ut}) + Hu_t)$$

Coût du carburant

Coût de démarrage

Coût de d'extinction

$$F(p_{ut}) = a_u + b_u p_{ut} + c_u p_{ut}^2$$

Linéarisation par morceaux

1. 1) 2) 3)

II. 1) **2)** 3)

III. 1) 2) 3)

Linéarisation par morceaux

Coût lié au carburant pour l'unité 4 en fonction de la puissance

Implementation en C++

- 1. Lecture de l'instance
- 2. Génération du fichier LP
- 3. Optimisation
- 4. Affichage de la solution

Architecture du programme

l. 1) 2) 3)

23

III. 1) 2) 3)

Implementation en C++

cplex.importModel(model, nom.c_str(), obj, var, rng);
cplex.solve();

Appel du solveur Cplex

Résultat de l'exécution du programme

1. 1) 2) 3)

II. 1) 2) 3)

III. 1) 2) 3)

Implementation en C++

Résultat de l'optimisation

3. Résultats et discussion

Résultats

Histogramme empilé des puissances fournis

l. 1) 2) 3)

1. 1) 2) 3)

III. 1) 2) 3)

Les performances

```
Etat de la solution = Optimal
Cout total de production = 6.46024e+06 $
temps CPU = 0.33 s
```

Etat de la solution pour 10 unités

Les performances

Nombre d'unité	Temps CPU (s)	Cout (\$)
10	0.32	6.5 . 10 ⁶
20	1.4	8.1 . 10 ⁶
40	3.7	1.6 . 10 ⁷
80	17.4	3.4 . 10 ⁷
160	183.4	6.8 . 10 ⁷

Coût de production en fonction du nombre de machine

Les performances

Nombre d'unité	Temps CPU (s)	Cout (\$)
10	0.32	6.5 . 10 ⁶
20	1.4	8.1 . 10 ⁶
40	3.7	1.6 . 10 ⁷
80	17.4	3.4 . 10 ⁷
160	183.4	6.8 . 10 ⁷

Temps CPU en fonction du nombre de machine

Difficultés

- ▶ Travail en monôme
- Appréhension du problème
- Cplex : récupération des résultats

Discussion

Plusieurs approches de résolution :

- Programmation dynamique
- Liste de priorité ...

→ Meilleure solution

Conclusion

Conclusion

Modéliser et résoudre un problème de planification de production d'énergie

- Sujet aux enjeux multiples
- Compétences techniques
- Projet enrichissant

Merci de votre attention