Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	
1.2 Описание выходных данных	
2 МЕТОД РЕШЕНИЯ	
3 ОПИСАНИЕ АЛГОРИТМОВ	
3.0 Алгоритм функции main	
3.1 Алгоритм конструктора класса cl	
3.2 Алгоритм метода unroll класса cl	
3.3 Алгоритм метода print класса cl	
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	
5 КОД ПРОГРАММЫ	
5.0 Файл cl.cpp	13
5.1 Файл cl.h	
5.2 Файл main.cpp	14
6 ТЕСТИРОВАНИЕ	
	16

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который обрабатывает массив целых чисел не более 10 элементов.

Количество элементов определяются в момент конструирования объекта.

Объект обладает следующей функциональностью:

- в конструкторе считывает значение количества элементов массива, выводит значение количества элементов;
 - считывает значения элементов массива;
 - выводит значения элементов массива;
 - разворачивает последовательность значений элементов массива.

Написать программу, которая:

- 1. Создает объект и в конструкторе считывает количество элементов массива;
 - 2. Считывает элементы массива;
- 3. Выводит значения элементов массива согласно исходной последовательности;
 - 4. Разворачивает элементы массива;
- 5. Выводит значения элементов массива согласно новому их порядку следования.

1.1 Описание входных данных

Первая строка:

целое число в десятичном формате.

Вторая строка:

последовательность целых чисел в десятичном формате разделенных пробелом.

1.2 Описание выходных данных

Первая строка:

N = «количество элементов»

Вторая строка (исходный порядок следования элементов):

Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

Третья строка (порядок следования элементов после разворота):

Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

2 МЕТОД РЕШЕНИЯ

Для решения задачи понадобится: используется оператор функции new оператор for функция swap массив array библиотека iomanip (функция setw)

Класс cl

Поля:

скрытые элементы:

int n = 0

int* array указатель массива

Методы:

Открытые:

cl() - конструктор класса

unroll() - разворот массива

print() - вывод массива

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.0 Алгоритм функции main

Функционал: главный метод программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

№ Предикат Действия		Действия	No
			перехода
1		создание объекта класса	2
2		вызов метода заполнения массива	3
3		вызов метода вывода массива	4
4		переход на новую строку	5
5		вызов метода разворота массива	6
6		вызов метода вывода массива	Ø

3.1 Алгоритм конструктора класса сl

Функционал: ввод и вывод количество чисел массива, заполнения массива.

Параметры: нет.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl

No	Предикат	Действия	No
			перехода
1		ввод количество элементов	2
2		создание массива	3
3		приравнивание счетчика с нулем	4
4	счетчик меньше количество	ввод значение элемента	5
	элементов		
			Ø
5		увеличение счетчика на 1	5

3.2 Алгоритм метода unroll класса cl

Функционал: разворот массива.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода unroll класса cl

No	Предикат	Действия	No
			перехода
1		приравнивание счетчика с нулем	2
2	счетчик меньше количество	обмен значения (array[i], array[n - 1 - i])	3
	элементов деленное на 2		
			Ø
3		увеличение счетчика на 1	3

3.3 Алгоритм метода print класса cl

Функционал: вывод значения массива.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода print класса cl

No	Предикат	Действия	No
			перехода
1		приравнивание счетчика с нулем	2
2	счетчик меньше количество	вывод значения массива	3
	элементов		
			Ø
3		увеличение счетчика на 1	3

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.0 Файл cl.cpp

Листинг 1 – cl.cpp

```
#include <iostream>
#include <iomanip>
#include "cl.h"
using namespace std;
cl::cl()
{
      cin >> n;
      array = new int[n];
      for (int i = 0; i < n; i++)
            cin >> array[i];
      cout << "N = " << n << endl;
}
void cl::unroll()
{
      for (int i = 0; i < n / 2; i++)
            swap(array[i], array[n - 1 - i]);
      }
}
void cl::print()
      for (int i = 0; i < n; i++)
            cout << setw(5) << array[i];</pre>
      }
```

5.1 Файл cl.h

Листинг 2 - cl.h

```
#ifndef __CL_H
#define __CL_H

using namespace std;

class cl
{
  private:
        int n = 0;
        int* array;
  public:
        cl();
        void print();
        void unroll();
};

#endif
```

5.2 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <iomanip>
#include "cl.h"

using namespace std;

int main()
{
    cl object;
    object.print();
    cout << endl;
    object.unroll();
    object.print();
    return(0);
}</pre>
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные				Фактические выходные					
	данные				данные					
5	N = 5					N = 5				
10 12 31 8 3	10	12	31	8	3	10	12	31	8	3
	3	8	31	12	10	3	8	31	12	10
1	N = 1					N = 1				
7	7					7				
	7					7				

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).