Fast sampling and counting k-SAT solutions in the local lemma regime

Weiming Feng Nanjing University

Joint work with: Heng Guo (University of Edinburgh)

Yitong Yin (Nanjing University)

Chihao Zhang (Shanghai Jiao Tong University)

Online Seminar
Institute of Computing Technology, Chinese Academy of Sciences

Conjunctive normal form (CNF)

• **Instance**: a formula $\Phi = (V, C)$, for example

$$\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$$
 clause

```
V = \{x_1, x_2, x_3, x_4, x_5\}: set of Boolean variables; C: set of clauses.
```

- **SAT solutions**: an assignment of variables in V s.t. $\Phi = true$.
- Fundamental computational tasks for CNF formula:
 - Decision: Does SAT solution exist?
 NP-Complete problem [Cook 1971, Levin 1973].
 - **Counting**: How many SAT solutions? #P-Complete problem [Valiant 1979].

$$(k, d)$$
-CNF formula $\Phi = (V, C)$

- Each clause contains *k* Boolean variables.
- Each variable belongs to at most d clauses, e.g. max degree $\leq d$.

Example: (3,2)-CNF formula $(x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$

Lovász Local Lemma (LLL)

Suppose a (k, d)-CNF formula satisfies $k \ge \log d$ $(k \ge \log d + \log k + C)$.

• Existence [Erdős, Lovász, 1975]

If each variable takes a value in {true,false} uniformly and independently

$$\Pr[\text{all clauses are satisfied}] \ge \left(1 - \frac{1}{2dk}\right)^{dn} > 0,$$

which implies the k-SAT solution $must\ exist$;

• Construction [Morse, Tardos, 2010] a k-SAT solution can be constructed in expected time O(ndk).

Sampling & counting *k*-SAT solutions

- **Input:** a (k, d)-CNF formula $\Phi = (V, C)$ with |V| = n, and error bound $\epsilon > 0$.
- Almost uniform sampling: generate a random SAT solution $X \in \{\text{true, false}\}^V$ s.t. the *total variation distance is at most* ϵ ,

$$d_{TV}(X,\mu) = \frac{1}{2} \sum_{\sigma \in \{\text{true}, \text{false}\}^V} |\Pr[X = \sigma] - \mu(\sigma)| \le \epsilon$$

 μ : the uniform distribution of all k-SAT solutions.

Sampling & counting *k*-SAT solutions

- **Input:** a (k, d)-CNF formula $\Phi = (V, C)$ with |V| = n, and error bound $\epsilon > 0$.
- Almost uniform sampling: generate a k-SAT solution $X \in \{\text{true, false}\}^V$ s.t. the *total variation distance* $d_{TV}(X, \mu) \leq \epsilon$,

 μ : the uniform distribution of all k-SAT solutions.

• **Approximate counting:** estimate the number of k-SAT solutions, e.g. output

$$(1 - \epsilon)Z \le \widehat{Z} \le (1 + \epsilon)Z,$$

Z = the number of k-SAT solutions.

Almost Uniform Sampling

Self-reduction [Jerrum, Valiant, Vazirani 1986]

Simulated annealing [Štefankovič et al. 2009]

Approximate Counting

Work	Regime	Running time/lower bound	Technique
Hermon et al.'19	Monotone $CNF^{[1]}$ $k \gtrsim 2 \log d$	$poly(dk)n \log n$	Markov chain Monte Carlo (MCMC)
Guo et al.'17	$s \ge \min(\log dk, k/2)^{[2]}$ $k \ge 2\log d$	poly(dk)n	Partial rejection sampling
Moitra'17	$k \gtrsim 60 \log d$	$n^{\operatorname{poly}(dk)}$	Linear programming
Bezáková et al.'15	$k \le 2\log d - C$	NP-hard	-

Table: previous results for sampling SAT solutions of (k, d)-CNF formulas

- [1] Monotone CNF: all variables appear **positively**, e.g. $\Phi = (x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_4 \lor x_5) \land (x_3 \lor x_4 \lor x_6)$.
- [2] s: two dependent clauses share at least s variables.

Open Problem: Can we sample *general* (k, d)-CNF solutions such that

- the threshold down to $k \gtrsim 2 \log d$;
- the running time $poly(dk)\tilde{O}(n)$.

Our result

Work	Regime	Running time/lower bound	Technique
Hermon et al.'19	$\begin{array}{c} \text{Monotone CNF} \\ k \gtrsim 2 \log d \end{array}$	$poly(dk)n \log n$	MCMC
Guo et al.'17	$s \ge \min(\log dk, k/2)$ $k \gtrsim 2 \log d$	poly(dk)n	Partial rejection sampling
Moitra'17	$k \gtrsim 60 \log d$	$n^{\operatorname{poly}(dk)}$	Linear programming
Bezáková et al.'15	$k \le 2\log d - C$	NP-hard	-
This work	$k \gtrsim 20 \log d$	$\tilde{o}(d^2k^3n^{1.000001})$	MCMC

Table: results for sampling SAT solutions of (k, d)-CNF formulas

Main theorem (this work)

```
For any sufficiently small \zeta < 2^{-20}, any (k,d)-CNF formula satisfying k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{\zeta},
```

- sampling algorithm (main algorithm) draw almost uniform random k-SAT solution in time $\tilde{O}(d^2k^3n^{1+\zeta})$;
- counting algorithm (by simulated annealing reduction) count #k-SAT solutions approximately in time $\tilde{O}(d^3k^3n^{2+\zeta})$;

Start from an arbitrary solution $Y \in \{T, F\}^V$;

- Pick $v \in V$ uniformly at random;
- Resample $Y_v \sim (\cdot | Y_{V \setminus v})$;

Start from an arbitrary solution $Y \in \{T, F\}^V$;

- Pick $v \in V$ uniformly at random;
- Resample $Y_v \sim (\cdot | Y_{V \setminus v})$;

Start from an arbitrary solution $Y \in \{T, F\}^V$;

- Pick $v \in V$ uniformly at random;
- Resample $Y_v \sim \mu_v(\cdot | Y_{V \setminus v})$;

Start from an arbitrary solution $Y \in \{T, F\}^V$;

- Pick $v \in V$ uniformly at random;
- Resample $Y_v \sim \mu_v(\cdot | Y_{V \setminus v})$;

Connectivity barrier (toy example)

• (k,d)-CNF formula $\Phi = (V,C)$ with $V = \{x_1,x_2,...x_k\}$: $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k.$ $C_1 = (\neg x_1 \vee x_2 \vee x_3 \vee \cdots \vee x_k) \text{ forbids } 100 \dots 0$ $C_2 = (x_1 \vee \neg x_2 \vee x_3 \vee \cdots \vee x_k) \text{ forbids } 010 \dots 0$ $C_k = (x_1 \vee x_2 \vee x_3 \vee \cdots \vee \neg x_k) \text{ forbids } 000 \dots 1$

- Any assignment $X \in \{0,1\}^V$ with $||X||_1 = 1$ is infeasible.
- All false solution **0** is **disconnected** with others.

- Glauber dynamics: random walk over solution space via local update.
- Local Markov chain: one of the *most fundamental* approach for sampling:

For sampling CNF solutions, the *MCMC approach* meets the *connectivity barrier*.

"the solution space (and hence the natural Markov chain) is not connected"

Mathematics and Computation [Wigderson'19]

Bypass the connectivity barrier

Work	Regime	Running time	Technique	
Hermon et al.'19	$\begin{array}{c} \text{Monotone CNF} \\ k \gtrsim 2 \log d \end{array}$	$poly(dk)n \log n$	MCMC	monotone CNF
Guo, Jerrum, Liu'17	$s \ge \min(\log dk, k/2)$ $k \ge 2\log d$	poly(dk)n	Partial rejection sampling	heavy intersection
Moitra'17	$k \gtrsim 60 \log d$	$n^{\mathrm{poly}(dk)}$	Linear programming	constant d and k
Non-MCMC approach			MC approach	

Technique Motivation:

Can MCMC approach bypass the connectivity barrier?

Our technique: projection

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png

Projecting from a high dimension to a lower dimension to improve connectivity

Construct a *good subset* of variables $M \subseteq V$

Run Glauber dynamics on projected distribution μ_M to draw sample $X \sim \mu_M$

Start from a uniform random $X \in \{\text{true}, \text{false}\}^{M}$;

For each *t* from 1 to *T*

- Pick a variable $v \in M$ uniformly at random;
- Resample $X_v \sim \mu_v(\cdot | X_{M \setminus v})$;

Return $X \in \{\text{true,false}\}^{M}$.

Draw sample $Y \sim \mu_{V \setminus M}(\cdot \mid X)$ from the *conditional distribution*

There exists an *efficiently constructible subset* $M \subseteq V$ such that:

- the Glauber dynamics on μ_M is *rapidly mixing*,
- the Glauber dynamics on μ_M can be *implemented efficiently* (draw $X_v \sim \mu_v(\cdot | X_{M \setminus v}))$,
- sampling assignment for $V \setminus M$ can be *implemented efficiently* (draw $Y \sim \mu_{V \setminus M}(\cdot \mid X)$).

computing exact distr. can be #P-hard

$$\mu_{v}(\cdot | X_{M \setminus v}))$$

$$\mu_{V\setminus M}(\cdot | X)$$
).

Construct a *good subset* of variables $M \subseteq V$

Run Glauber dynamics on projected distribution μ_M to draw sample $X \sim \mu_M$

Start from a uniform random $X \in \{\text{true}, \text{false}\}^{M}$;

For each *t* from 1 to *T*

- Pick a variable $v \in M$ uniformly at random;
- Resample $X_v \sim \mu_v(\cdot | X_{M \setminus v})$;

Return *X*;

Draw sample $Y \sim \mu_{V \setminus M}(\cdot \mid X)$ from the *conditional distribution*

Our Tasks:

- Construct such a *good subset* $M \subseteq V$.
- Show that the Glauber dynamics on μ_M is *rapidly mixing*.
- Given assignment on M, draw samples **efficiently** from the conditional distribution.

Mark variables [Moitra' 17]

Mark a set of variables $M \subseteq V$ such that

- each clause contains *at least* $\alpha k \approx 0.11k$ marked variables;
- each clause contains *at least* $\beta k \approx 0.51k$ unmarked variables;

Mark each $v \in V$ independently w.p. $P = \frac{1+\alpha-\beta}{2}$ to construct a random set $\mathcal{M} \subseteq V$

by *LLL*, $Pr[\mathcal{M} \text{ satisfies above property}] > 0$

Lemma: marking (prove via LLL)

If
$$k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{\zeta}$$
, then

$$\Pr\left[\text{Morse-Tardos alg constructs } M \text{ in time } O\left(ndk \log \frac{1}{\epsilon}\right)\right] \ge 1 - \frac{\epsilon}{3}.$$

The rapid mixing of Glauber dynamics on μ_M

Start from a uniform random $X \in \{\text{true}, \text{false}\}^{M};$

For each *t* from 1 to *T*

- Pick a marked variable $v \in M$ u.a.r.;
- Resample $X_v \sim \mu_v(\cdot | X_{M \setminus v})$;

Return *X*;

Each clause has $\geq \beta k$ unmarked variables, by **LLL** [Haeupler, Saha, Srinivasan' 11]:

Property: local uniformity (proved via LLL [Haeupler, Saha, Srinivasan' 11])

For any assignment $X_{M\setminus v}$, the distribution $\mu_v(\cdot | X_{M\setminus v})$ is *close to uniform*:

$$\forall c \in \{\text{true,false}\}, \qquad \mu_v(c | X_{M \setminus v}) = \frac{1}{2} \pm \frac{1}{\text{poly}(dk)}.$$

- After each transition, $\Pr[X_v = \text{true}] \approx \frac{1}{2} > 0$ and $\Pr[X_v = \text{false}] \approx \frac{1}{2} > 0$.
- Local uniformity Glauber dynamics on μ_M is connected!

The rapid mixing of Glauber dynamics on μ_M

Start from a uniform random $X \in \{\text{true}, \text{false}\}^{M};$

For each t from 1 to $T = 2n \log \frac{4n}{\epsilon}$

- Pick a marked variable $v \in M$ u.a.r.;
- Resample $X_v \sim \mu_v(\cdot | X_{M \setminus v})$;

Return *X*;

Lemma: rapid mixing

If $T = 2n \log \frac{4n}{\epsilon}$, then the returned random assignment *X* satisfies

$$d_{TV}(X,\mu_M) \leq \frac{\epsilon}{3}.$$

- Use *path coupling* [Bubley, Dyer'97] to bound the mixing time.
- Use "disagreement coupling" [Moitra'17, Guo et al.' 18] to bound the discrepancy of path coupling.
- Use local uniformity property (LLL) to show the small discrepancy of "disagreement coupling".

Implementation of the algorithm

Transition of Glauber dynamics

resample $X_v \sim \mu_v(\cdot | X_{M \setminus v})$

Sample unmarked variable in last step

sample $Y \sim \mu_{V \setminus M}(\cdot | X)$

Challenge: computing the *exact* conditional distributions can be #P-hard.

$$\begin{split} & Z_T = \#\{Y \in \{T,F\}^V \text{is a SAT solution} \mid Y_v = T, Y_{M \setminus v} = X_{M \setminus v}\} \\ & Z_F = \#\{Y \in \{T,F\}^V \text{is a SAT solution} \mid Y_v = F, Y_{M \setminus v} = X_{M \setminus v}\} \end{split}$$

$$\mu_{v}(T|X_{M\setminus v}) = \frac{Z_{T}}{Z_{T} + Z_{F}}$$

$$\mu_{v}(F|X_{M\setminus v}) = \frac{Z_{F}}{Z_{T} + Z_{F}}$$

remove satisfied clauses

$$(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4)$$

 $x_1 = \text{true or } x_4 = \text{false}$

resample X_v from $\mu_v(\cdot | X_{M \setminus v})$

C: connected component containing *v*

Key Property: w.h.p., the graph is deconstructed into *small components* of size $O\left(dk\log\frac{n}{\epsilon}\right)$

Start from a **uniform random** $X \in \{\text{true,false}\}^{M}$;

$$\forall u \in M, \ \Pr[X_u = T] = \frac{1}{2}, \Pr[X_u = F] = \frac{1}{2}$$

For each *t* from 1 to *T*

- Pick a marked variable $v \in M$ u.a.r.;
- Resample $X_v \sim \mu_v(\cdot | X_{M \setminus v})$; by local uniformity $\Pr[X_v = T] \approx \frac{1}{2}$, $\Pr[X_v = F] \approx \frac{1}{2}$

Return X;

at any time, any mark variable takes an almost uniform value. Pr[each clause is removed] $\gtrsim 1 - \left(\frac{1}{2}\right)^{\alpha k}$ each clause contains $\geq \alpha k$ marked variables;

remove satisfied clauses

$$(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4)$$

$$x_1 = \text{true}, x_4 = \text{false}$$

C: connected component containing *v*

Key Property: w.h.p., the graph is deconstructed into *small components* of size $O\left(dk\log\frac{n}{\epsilon}\right)$

Our solution: try *rejection sampling* on v and other unmarked variables in component C by *LLL*, if $k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{7}$, then

$$\Pr\left[\text{all clauses in } C \text{ are satisfied } | \#C = O\left(dk \log \frac{n}{\epsilon}\right)\right] \ge \left(\frac{\epsilon}{n}\right)^{\zeta};$$

try rejection sampling for $R = \tilde{O}\left((n/\epsilon)^{\zeta}\right)$ times, then we can draw $X_v \sim \mu_v(\cdot | X_{M\setminus v})$ w.h.p.

$$\Pr\left[\text{rejection sampling draw } X_v \sim \mu_v(\cdot \mid X_{M \setminus v}), \text{ namely } \begin{cases} |C| = O\left(dk \log \frac{n}{\epsilon}\right) \\ \text{one of } R \text{ tires succeeds} \end{cases} \geq 1 - 2\left(\frac{\epsilon}{n}\right)^3 \right]$$

remove satisfied clauses

$$(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4)$$

$$x_1 = \text{true}, x_4 = \text{false}$$

C: connected component containing *v*

Key Property: w.h.p., the graph is deconstructed into *small components* of size $O\left(dk\log\frac{n}{\epsilon}\right)$

Our solution: try *rejection sampling* on v and other unmarked variables in component C

by **LLL**, if $k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{\zeta}$, then

$$\Pr\left[\text{all clauses in } C \text{ are satisfied } | \#C = O\left(dk \log \frac{n}{\epsilon}\right)\right] \ge \left(\frac{\epsilon}{n}\right)^{\zeta};$$

try rejection sampling for $R = \tilde{O}\left((n/\epsilon)^{\zeta}\right)$ times, then we can draw $X_v \sim \mu_v(\cdot | X_{M\setminus v})$ w.h.p.

Lemma: Each *transition step* of the Glauber dynamics and the *last step* (*i.e. sampling unmarked variables*) can be implemented using rejection sampling

$$\Pr\left[\operatorname{all} T + 1 = O\left(n\log\frac{n}{\epsilon}\right) \text{ rejection samplings succeed}\right] \ge 1 - \frac{\epsilon}{3}.$$

Input: a *k*-CNF formula $\Phi = (V, E)$ with maximum degree *d*, an error bound $\epsilon > 0$.

Output: a random sample $\sigma \in \{\text{true, false}\}^V$ s.t. $d_{TV}(\sigma, \mu) \leq \epsilon$.

- 1. Run *Morse-Tardos* algorithm to construct a set of marked variables $M \subseteq V$;
- 2. Run *Glauber dynamics* on projected distribution μ_M for $O\left(n\log\frac{n}{\epsilon}\right)$ steps to draw approximate sample $X \sim \mu_M$; (implemented using rejection sampling)
- 3. Run *rejection sampling* to draw $Y \sim \mu_{V \setminus M}(\cdot | X)$;
- 4. Return $X \cup Y$.

- *Marking lemma*: $\Pr\left[\text{MT-alg fails to find } M \text{ in time } O\left(ndk \log \frac{1}{\epsilon}\right)\right] \leq \frac{\epsilon}{3}$.
- Rapid mixing lemma: The X returned by Glauber dynamics satisfies $d_{TV}(X, \mu_M) \leq \frac{\epsilon}{3}$.
- **Rej. Sampling lemma:** $\Pr[\text{one of the } (T+1) \text{ rejection samplings fails}] \leq \frac{\epsilon}{3}$

Correctness of the algorithm: d_{TV} (output, μ) $\leq \epsilon$.

- The running time is dominated by simulating Glauber dynamics for $T = O\left(n\log\frac{n}{\epsilon}\right)$ steps;
- Each step is implemented using rejection sampling for $R = \tilde{O}\left(\left(\frac{n}{\epsilon}\right)^{\zeta}\right)$ times.

Efficiency of the algorithm: running time = $\tilde{O}(d^2k^3\epsilon^{-\zeta}n^{1+\zeta})$.

Simulated annealing counting [Štefankovič et al. 2009]

Randomized approximate counting

- **Input**: a (k, d) –CNF instance $\Phi = (V, E)$, an error bound $\epsilon > 0$.
- **Output**: a random number \hat{Z} , such that

$$\Pr[(1 - \epsilon)Z \le \hat{Z} \le (1 + \epsilon)Z] \ge \frac{3}{4}$$

Z = the number of k-SAT solutions.

Weighted CNF a CNF-formula $\Phi = (V, C)$ and parameter $\theta > 0$.

• for any $X \in \{T, F\}^V$, define the **weight**

$$w_{\theta}(X) = \exp(-\theta F(X)),$$

where F(X) is the **number** of clauses **NOT** satisfied by X.

induced Gibbs distribution

$$\forall X \in \{T, F\}^V \colon \quad \mu_{\theta}(X) = \frac{w_{\theta}(X)}{Z(\theta)}, \qquad Z(\theta) = \sum_{X \in \{T, F\}^V} w_{\theta}(X).$$

$$Z(\theta) = \sum_{X \in \{T,F\}^V} w_{\theta}(X) = \sum_{X \in \{T,F\}^V} \exp(-\theta F(X))$$

Properties:

- $\theta = 0$: $Z(0) = 2^n$ (easy to compute);
- $\theta \to \infty$: $\lim_{\theta \to \infty} Z(\theta) = Z = \#k$ -SAT solutions. (*target of counting*)

Lemma: counting (proved by LLL[Haeupler, Saha, Srinivasan' 11])

If $k \ge \log d + C$, it holds that

$$Z(\theta) \in \left(1 \pm \frac{\epsilon}{2}\right) Z$$
, where $\theta = O\left(\log \frac{nd}{\epsilon}\right)$.

• Non-adaptive cooling schedule: define $\ell = O\left(nd\log\frac{nd}{\epsilon}\right)$ parameters

$$0 = \theta_0 < \theta_1 < \dots < \theta_\ell = O\left(\log \frac{nd}{\epsilon}\right),\,$$

where the adjacent parameters satisfies $\theta_i - \theta_{i-1} = \frac{1}{dn}$.

• **Telescoping product**: approximate Z = #k-SAT solutions using

$$Z \approx Z(\theta_{\ell}) = \frac{Z(\theta_{\ell})}{Z(\theta_{\ell-1})} \times \frac{Z(\theta_{\ell-1})}{Z(\theta_{\ell-2})} \times \dots \times \frac{Z(\theta_{1})}{Z(\theta_{0})} \times 2^{n}$$

• Estimate ratios: let $X \sim \mu_{\theta_{i-1}}$, define the random variable W_i as

$$W_i = \frac{w_{\theta_i}(X)}{w_{\theta_{i-1}}(X)}, \quad \text{then } E[W_i] = \frac{Z(\theta_i)}{Z(\theta_{i-1})}.$$

draw samples from μ_{θ_0} , μ_{θ_1} , ..., $\mu_{\theta_{\ell-1}}$ to estimate each ratio.

Proof of the rapid mixing

Start from a uniform random $Y \in \{\text{true,false}\}^{M}$;

For each *t* from 1 to $T = 2n \log \frac{4n}{\epsilon}$

- Pick a marked variable $v \in M$ u.a.r.;
- Resample $Y_v \sim \mu_v(\cdot | Y_{M \setminus v})$;

Return *Y*;

Lemma: mixing

The $Y = Y_T$ returned by Glauber dynamics satisfies

$$d_{TV}(Y,\mu_M) \leq \frac{\epsilon}{3}.$$

Path coupling [Bubley and Dyer' 97]

- Let $X, Y \in \{\text{true, false}\}^M$ be two assignments *disagree only at* v_0 .
- For each $u \in M$, we bound the *influence* on u from v_0 $I_u = d_{TV} \left(\mu_u (\cdot | X_{M \setminus u}), \mu_u (\cdot | Y_{M \setminus u}) \right).$
- Path Coupling: if $\sum_{u \in M \setminus v_0} I_u \le \frac{1}{2},$

then Glauber dynamics is rapid mixing.

Influence may percolate very far away through unmarked variables

Couple *unmarked variables* and u to generate $X,Y \in \{T,F\}^V$ s.t. $X \sim \mu(\cdot | X_{M \setminus u}), Y \sim \mu(\cdot | Y_{M \setminus u})$

 $I_u = d_{TV} \left(\mu_u \left(\cdot | X_{M \setminus u} \right), \mu_u \left(\cdot | Y_{M \setminus u} \right) \right) \le \Pr_{\text{Coupling}} [X_u \ne Y_u].$

The coupling sketch

- Let *D* be the *set of disagreements*, initially, $D = \{v_0\}$.
- Coupling variables in a BFS order.
- For each w, couple X(w) and Y(w) optimally.
 - If X(w) = Y(w), then remove all clauses satisfied by w;
 - If $X(w) \neq Y(w)$, then add u into D.
- Repeat until D and \overline{D} are **disconnected**.

Couple *unmarked variables* and u to generate $X,Y \in \{T,F\}^V$ s.t. $X \sim \mu(\cdot | X_{M \setminus u}), Y \sim \mu(\cdot | Y_{M \setminus u})$

$$I_u = d_{TV} \left(\mu_u \left(\cdot | X_{M \setminus u} \right), \mu_u \left(\cdot | Y_{M \setminus u} \right) \right) \le \Pr_{\text{Coupling}} [X_u \ne Y_u].$$

The coupling sketch

- Let *D* be the **set of disagreements**, initially, $D = \{v_0\}$.
- Coupling variables in a BFS order.
- For each w, couple X(w) and Y(w) optimally.
 - If X(w) = Y(w), then remove all clauses satisfied by w;
 - If $X(w) \neq Y(w)$, then add u into D.
- Repeat until D and \overline{D} are **disconnected**.

Couple *unmarked variables* and u to generate $X, Y \in \{T, F\}^V$ s.t. $X \sim \mu(\cdot | X_{M \setminus u}), Y \sim \mu(\cdot | Y_{M \setminus u})$

$$I_u = d_{TV} \left(\mu_u \left(\cdot | X_{M \setminus u} \right), \mu_u \left(\cdot | Y_{M \setminus u} \right) \right) \le \Pr_{\text{Coupling}} [X_u \ne Y_u].$$

The coupling sketch

- Let *D* be the **set of disagreements**, initially, $D = \{v_0\}$.
- Coupling variables in a BFS order.
- For each w, couple X(w) and Y(w) optimally.
 - If X(w) = Y(w), then remove all clauses satisfied by w;
 - If $X(w) \neq Y(w)$, then add u into D.
- Repeat until D and \overline{D} are **disconnected**.

Couple *unmarked variables* and *u* to generate $X, Y \in \{T, F\}^V$ s.t. $X \sim \mu(\cdot | X_{M \setminus u}), Y \sim \mu(\cdot | Y_{M \setminus u})$

$$I_u = d_{TV} \left(\mu_u \left(\cdot | X_{M \setminus u} \right), \mu_u \left(\cdot | Y_{M \setminus u} \right) \right) \le \Pr_{\text{Coupling}} [X_u \ne Y_u].$$

The coupling sketch

- Let *D* be the *set of disagreements*, initially, $D = \{v_0\}$.
- Coupling variables in a BFS order.
- For each w, couple X(w) and Y(w) optimally.
 - If X(w) = Y(w), then remove all clauses satisfied by w;
 - If $X(w) \neq Y(w)$, then add u into D.
- Repeat until *D* and \overline{D} are *disconnected*.

each clause contains sufficiently many *free* variables

$$Pr[X(w) = true] = \frac{1}{2} \pm \frac{1}{poly(dk)}$$
$$Pr[Y(w) = true] = \frac{1}{2} \pm \frac{1}{poly(dk)}$$

X(w) = Y(w) w.p. $1 - \frac{1}{\text{poly}(dk)}$

adaptive disagreement percolation coupling

local uniformity

coupling succeeds w.h.p.

Couple unmarked variables and \boldsymbol{u} to generate $X, Y \in \{T, F\}^V$ s.t. $X \sim \mu(\cdot | X_{M \setminus u}), Y \sim \mu(\cdot | Y_{M \setminus u})$ $I_u = d_{TV} \left(\mu_u(\cdot | X_{M \setminus u}), \mu_u(\cdot | Y_{M \setminus u})\right) \leq \Pr_{\text{Coupling}}[X_u \neq Y_u].$

The coupling sketch

- Let D be the **set of disagreements**, initially, $D = \{v_0\}$.
- Coupling variables in a BFS order.
- For each w, couple X(w) and Y(w) optimally.
 - If X(w) = Y(w), then remove all clauses satisfied by w;
 - If $X(w) \neq Y(w)$, then add u into D.
- Repeat until D and \overline{D} are **disconnected**.

with high probability, size of the disagreement set D is small

$$I_u \le \Pr_{\text{Couling}}(X_u \ne Y_u) \le \Pr_{\text{Coupling}}[u \notin D] \lesssim \left(\frac{1}{\text{poly}(dk)}\right)^{d_{pow}(v_0, u)}$$

Summary

- A close to linear time algorithm for sampling k-SAT solutions in LLL regime.
- A close to quadratic time algorithm for counting k-SAT solutions in LLL regime.
- Projection + LLL technique to bypass the connectivity barrier of MCMC method.

Open problems

- Sampling & counting k-SAT solutions when $k \gtrsim 2 \log d$.
- Extend the technique to more general distributions, e.g. hyper-graph coloring.

Thank you!