MapReduce в Hadoop

Графы

Граф как структура данных

$$G = (V,E)$$

- V представляет собой множество вершин (nodes)
- Е представляет собой множество ребер (edges/links)
- Ребра и вершины могут содержать дополнительную информацию

$$V = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{[1,2], [1,4], [1,6], [3,1], ...\}$
 $W_{1,2} = 3, W_{1,4} = 2, W_{1,6} = 7, W_{3,1} = 8, ...$

Виды графов

Неориентированный

Ориентированный

Полный

Двудольный

Дерево

Графы на практике

Структура компьютеров и серверов сети

Социальные сети

Схема метро

Структура дорог

Задачи и проблемы на графах

Поиск кратчайшего пути

- Роутинг траффика
- Навигация маршрута

• Телекоммуникационные компании

Поиск максимального потока (Max Flow)

• Структура компьютеров и серверов Интернет

Алгоритмы ссылочного ранжирования

- PageRank
- HITS

Проблема семи мостов Кёнигсберга

Леонард Эйлер

Графы и MapReduce

• Вычисления на каждой вершине

• Обход графа

Ключевые вопросы:

– Как обходить граф в MapReduce?

– Как представить граф в MapReduce?

Матрица смежности

Граф представляется как матрица *M* размером *n x n*

$$-n=|V|$$

Міј = 1 означает наличие ребра между і и ј

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Матрица смежности

Плюсы

- Удобство математических вычислений
- Перемещение по строкам и колонкам соответствует переходу по входящим и исходящим ссылкам

Минусы

- Матрица разреженная, множество лишних нулей
- Расходуется много лишнего места

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Списки смежности

Берем матрицу смежности и убираем все нули

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

: 2, 4

: 1, 3, 4

: 1

: 1, 3

Списки смежности

• Плюсы

- Намного более компактная реализация
- Легко найти все исходящие ссылки для вершины

• Минусы

– Намного сложнее подсчитать входящие ссылки

Поиск кратчайшего пути в графе

Алгоритм Дейкстры

Алгоритм Дейкстры

```
Dijkstra(V, s, w)
    for all vertex v E V do
        d[V] \leftarrow \infty
    d[s] \leftarrow 0
    O \leftarrow \{V\}
    while Q != \emptyset do
         u ←ExtractMin(0)
        for all vertex v \in u. AdjacencyList do
             if d[v] > d[u] + w(u, v) then
                 d[v] \leftarrow d[u] + w(u, v)
```

Поиск кратчайшего пути

- Пусть веса ребер равны 1
- Решение по индукции:
 - DISTANCETO(s) = 0
 - DISTANCETO(s p) = 1
 - DISTANCETO(n) = $1 + min(DISTANCETO(m), m \in M)$

Параллельный поиск в ширину (BFS)

Breadth First Search: представление данных

- Кеу: вершина п
- Value: d (расстояние от начала), adjacency list (вершины, доступные из n)
- Инициализация: для всех вершин, кроме начальной, $d = \infty$

Breadth First Search: Mapper

```
mapper(key, value):
emit(key, value)
\forall m \in \text{value.adjacency\_list: emit } (m, \text{value.} d + 1)
```

Breadth First Search: Mapper


```
Mapper 1

1 -> [0, {2, 3, 4}]

2 -> [1, {} ]

3 -> [1, {} ]

4 -> [1, {} ]
```

Mapper 2

$$2 \rightarrow [\infty, \{5, 6\}]$$

Breadth First Search: Reducer

Sort/Shuffle

- Сгруппировать расстояния по достижимым вершинам

Reducer:

- Выбрать путь с минимальным расстоянием для каждой достижимой вершины
- Сохранить структуру графа

Breadth First Search: Reducer

Reduce In:

$$2 \rightarrow \{[1, \{\}], [\infty, \{5, 6\}]\}$$

Reduce Out:

BFS: псевдокод

```
class Mapper
  method Map(nid n, node N)
    d ← N.Distance
    Emit(nid n,N) // Pass along graph structure
  for all nodeid m ∈ N.AdjacencyList do
        Emit(nid m, d + 1) // Emit distances to
reachable nodes
```

BFS: псевдокод

```
class Reducer
    method Reduce (nid m, [d1, d2, . . .])
         dmin ← ∞
         M \leftarrow \emptyset
         for all d \in counts [d1, d2, ...] do
              if IsNode(d) then
                  M \leftarrow d // Recover graph structure
              else if d < dmin then
                  dmin \leftarrow d
        M.Distance \leftarrow dmin // Update shortest distance
         Emit(nid m, node M)
```

Input

- -> [0, {2, 3, 4}]
- $[\infty, \{5, 6\}]$
- ∞ ,
- $[\infty, \{7, 8\}]$
- $[\infty, \{9,$ 10}]

•••

Iteration 1

- [**1**, {5, 6}]

- $[\infty, \{9, 10\}]$

Result

-> [0, {2, 3, 4}]

[1, {5, 6}]

[2, {9,

•••

Iteration 2

- [1, {5, 6}]

- [**2**, {9, 10}]

•••

Breadth First Search: Итерации

- Каждая итерация задачи MapReduce смещает границу продвижения по графу (frontier) на один "hop"
 - Последующие операции включают все больше и больше посещенных вершин, т.к. граница (frontier) расширяется
 - Множество итераций требуется для обхода всего графа
- Сохранение структуры графа
 - Проблема: что делать со списком смежных вершин (adjacency list)?
 - Решение: Mapper также пишет (n, adjacency list)

BFS: критерий завершения

- Как много итераций нужно для завершения параллельного BFS?
- Когда первый раз посетили искомую вершину, значит найден самый короткий путь
- Равно диаметру графа
- Практическая реализация
 - Внешняя программа-драйвер для проверки оставшихся вершин с дистанцией ∞
 - Можно использовать счетчики из Hadoop MapReduce

BFS vs Дейкстра

- Алгоритм Дейкстры более эффективен
 - На каждом шаге используются вершины только из пути с минимальным весом
 - Нужна дополнительная структура данных (priority queue)
- MapReduce обходит все пути графа параллельно
 - Много лишней работы (brute-force подход)
 - Полезная часть выполняется только на текущей границе обхода

BFS: Weighted Edges

- Добавим положительный вес каждому ребру
- Простая доработка: добавим вес *w* для каждого ребра в список смежных вершин
 - В mapper, emit $(m, d + w_p)$ вместо (m, d + 1) для каждой вершины m

BFS Weighted: критерий завершения

- Как много итераций нужно для завершения параллельного BFS (взвешенный граф)?
- Когда первый раз посетили искомую вершину, значит найден самый короткий путь
- И это неверно!

BFS Weighted: сложности

BFS Weighted: критерий завершения

- В худшем случае: N − 1
- В реальном мире ~= диаметру графа
- Практическая реализация
 - Итерации завершаются, когда минимальный путь у каждой вершины больше не меняется
 - Для этого можно также использовать счетчики в MapReduce

PageRank

PageRank

- Определяет важность страницы
- Характеризует кол-во времени, которое пользователь провел на данной странице
- Модель блуждающего веб-серфера
 - Пользователь начинает серфинг на случайной веб-странице
 - Пользователь произвольно кликает по ссылкам, тем самым перемещаясь от страницы к странице

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Вычисление PageRank

- Свойства PageRank'a
 - Может быть рассчитан итеративно
 - Локальный эффект на каждой итерации
- Набросок алгоритма
 - Начать с некоторыми заданными значения PR_i
 - Каждая страница распределяет PR_i "кредит" всем страниц, на которые с нее есть ссылки
 - Каждая страница добавляет весь полученный "кредит" от страниц, которые на нее ссылаются, для подсчета PR_{i+1}
 - Продолжить итерации пока значения не сойдутся

Упрощения для PageRank

Рассмотрим простой случай

- Нет фактора случайного перехода (*random jump*)
- Нет "подвисших" вершин

Iteration 1

Iteration 2

PageRank: Mapper

PageRank: Reducer

```
class Reducer
       method Reduce (nid m, [p1, p2, . . .])
           M \leftarrow \emptyset
           for all p \in counts [p1, p2, ...] do
               if IsNode (p) then
                   M \leftarrow p
               else
                   S \leftarrow S + p
           M.PageRank \leftarrow s
           Emit (nid m, node M)
```

Полный PageRank

- Обработка "подвешенных" вершин
- Случайный переход (random jump)

$$p' = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \left(\frac{m}{N} + p\right)$$

Сходимость PageRank

- Продолжать итерации пока **значения** PageRank не перестанут изменяться
- Продолжать итерации пока **отношения** PageRank не перестанут изменяться
- Фиксированное число итераций

Проблемы MapReduce на графах

MapReduce на графах, проблемы

- Многословность Java
- Время запуска таска в Hadoop
- Медленные или зависшие таски
- Бесполезность фазы shuffle для графов
- Проверки на каждой итерации
- Итеративные алгоритмы на MapReduce неэффективны!

In-Mapper Combining

- Использование комбайнеров
 - Агрегирует данные на mapper
 - Но, промежуточные данные все равно обрабатываются
- In-mapper combining
 - Агрегируем сообщения в буффере
 - Но, требуется управление памятью

Улучшение партиционирования

- По-умолчанию: hash partitioning
- Наблюдение: много графов имеют локальную структуру
 - Например, коммьюнити в соц.сетях
 - Улучшение локальной агрегации
- Но, партиционирование довольно сложно!
 - Иногда простые эвристики помогают
 - Для веб-графа: использовать партиционирование на основе домена от URL

Schimmy Design Pattern

- Обычно два набора данных:
 - Messages (актуальные вычисления)
 - Graph structure (структура обрабатываемого графа)
- Schimmy: выполнять shuffle только для messages

Обе части (S и T) консистентно партиционированы и сортированы по join key

Эксперимент

- Cluster setup:
 - 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
 - Hadoop 0.20.0 on RHELS 5.3
- Dataset:
 - Первый сегмент английского текста из коллекции ClueWeb09
 - 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
 - Extracted webgraph: 1.4 Млрд ссылок, 7.0 GB
 - Dataset сортирован в порядке краулинга
- Setup:
 - Измерялось время выполнения по каждой итерации (5 итераций)
 - 100 партиций

