Opracowanie: Dariusz Augustowski, Maciej Gala

Parametry: T=298K delta_E=0.1 start_cov=0 num_of_sites=100 num_of_steps=150

Wygeneruj łańcuch Markowa przy użyciu funkcji simul_chain() i wykonaj rysunki all_cov_plot():

Oszacuj wzrokowo średnią wartość obsadzenia w wysyconym łańcuchu

<u>Ilu kroków i jakiego czasu MC wymaga osiągnięcie wysycenia w algorytmie RTA</u>

Odp. Osiągnięcie wysycenia wymaga około 100 kroków w czasie 4 .

Które kroki są dłuższe pod względem czasu MC: na początku, czy w stanie wysycenia?

Na początku: ok. 25 kroki/jednostkę czasu -> krótsze kroki W stanie wysycenia: około 4 kroki/jednostkę czasu -> dłuższe kroki

delta t = tau / R => duże prawdopodobieństwo R to mały czas.

<u>Ilu kroków wymaga osiągnięcie wysycenia w przypadku algorytmu Metropolisa</u>

Odp: około 300

Który z algorytmów pozwala na szybsze osiągnięcie wysycenia? Czy wartości obsadzenia otrzymane obiema metodami "na oko" są równe?

Odp. Szybsze osiągnięcie wysycenia jest przy metodzie RTA. Wartości obsadzenia przy wysydzeniu są "na oko" równe.