

Statistiques descriptives

Résumé du cours

Présenté par: Mme BENAZZOU Salma

Le plan

Statistiques descriptives

Série statistique à une seule variable Série statistique à deux variables

Série statistique à deux variables

Vocabulaire statistique

- ✓ **Population ou univers** : L'ensemble de référence, l'ensemble des unités étudiées ou observées.
- ✓ Individu ou unité statistique : Tout élément de la population cible
- ✓ Caractère ou variable statistique: C'est l'aspect particulier auquel on s'intéresse, la statistique se réfère à deux grandes catégories de caractères :
- Qualitatif: couleur des yeux, nationalité,....
- Quantitatif : nombre d'étudiant, nombre de pièces fabriquées,...... (discret ou continue)
- ✓ **Modalité** (x_i): les différentes rubriques associées à un caractère, le nombre de modalité est généralement noté k .Exemple : pour le caractère état matrimonial, on pourra avoir 4 modalités (k=4) qui sont : célibataire, marié, divorcé, et veuf.
- ✓ Effectif ou fréquence absolue (n_i) : C'est le nombre de fois que la modalité xi est observée $\sum_{i=1}^k ni = N$
- ✓ Effectif relative (fi): C'est le pourcentage des individus ayant la modalité i dans la population étudiée on a : $fi = \frac{ni}{N}$ et $\sum_{i=1}^{k} fi = 1$

Série statistique à deux variables

Exemple 1

Les 33 élèves d'une classe ont obtenu les notes suivantes lors d'un devoir :

Note (xi)	5	8	10	11	12	14	15	18	20
Effectif (ni)	1	4	3	8	7	3	4	2	1

- ✓ **Population ou univers** : Les élèves d'une classe
- ✓ Individu ou unité statistique : Chaque étudiant représente un individu de la série statistique
- ✓ Caractère ou variable statistique: La note, son type est quantitatif discret
- ✓ Modalité (x_i): Ici on a 9 modalités
- ✓ Effectif relative (fi): C'est le pourcentage des individus ayant la modalité i dans la population étudiée on a : fi= $\frac{ni}{N}$ et $\sum_{i=1}^{k} fi = 1$

Série statistique à deux variables

Exemple 2

La répartition de 6920 supermarchés en France suivant la surface en m² :

Surface (xi)	[400 ;800[[800 ;1000[[1000 ;2500]
Effectif (ni)	2613	928	3379

- **✓ Population ou univers** : Les supermarchés en France
- ✓ Individu ou unité statistique : Chaque supermarché représente un individu de la série statistique
- ✓ Caractère ou variable statistique: La surface, son type est quantitatif continue
- \checkmark Modalité (x_i): Ici on a 3 modalités
- Effectif relative (fi): C'est le pourcentage des individus ayant la modalité i dans la population étudiée on a : $fi = \frac{ni}{N}$ et $\sum_{i=1}^{k} fi = 1$

Série statistique à deux variables

Exemple 3

La répartition de 1000 candidats convoqués pour participer au test d'admissibilité à la formation en management pour l'accession à l'ENCG

d'Agadir, selon la série de bac se présente comme suit :

La série de Bac (xi)	Le nombre des candidats (ni)
Science économique	250
Science mathématique	200
Science expérimentale	400
T.G.A	50
T.G.C	100

- ✓ Population ou univers : Les candidats convoqués pour participer au test d'admissibilité à la formation en management
- ✓ **Individu ou unité statistique :** Chaque candidat représente un individu de la série statistique
- ✓ Caractère ou variable statistique: La série de bac , son type est qualitatif
- ✓ Modalité (x_i): Ici on a 5 modalités
- Effectif relative (fi): C'est le pourcentage des individus ayant la modalité i dans la population étudiée on a : $fi = \frac{ni}{N}$ et $\sum_{i=1}^{k} fi = 1$

Série statistique à deux variables

La représentation graphique Les caractéristiques de position

Les caractéristiques de dispersion

Série statistique à deux variables

I- La représentation graphique

Série statistique à deux variables

Caractère qualitatif : diagramme en tuyaux d'orgue et diagramme circulaire

Série statistique Diagramme en tuyaux d'orgue Diagramme circulaire хi 4,5 α2 x1n1 α1 3,5 α4 α3 x2n2 2,5 1,5 n3 **x**3 $\begin{cases} N \to 360^{\circ} \\ n_i \to \alpha_i \end{cases} \Rightarrow \alpha_i = 360 \times \frac{n_i}{N} = 360 \times f_i$ 0,5 x4 n4 x1 x2x3 x4

Série statistique à deux variables

Caractère qualitatif : diagramme en tuyaux d'orgue et diagramme circulaire

Exemple

La répartition des candidats convoqués pour participer au test d'admissibilité à la formation en management pour l'accession à l'ENCG d'Agadir, selon la série de bac se présente comme suit :

série de	nbr des candidats	αi=ni/N*360	
Bac (xi)	(ni)		
Sc. eco	250	90°	
Sc. math	200	72°	
Sc. exp	400	144°	
T.G.A	50	18°	
T.G.C	100	36°	

Diagramme en tuyaux d'orgue

Diagramme circulaire

Série statistique à deux variables

Caractère quantitatif discret : diagramme en bâton et polygone de fréquence

Exemple Diagramme en bâton et polygone de fréquence 3,5 2,7 2,5 3,2 0,8 1,5 1 0,5 0,5

Série statistique à deux variables

Caractère quantitatif continue : Histogramme et polygone de fréquence

1 er cas : les amplitudes sont égales

On a relevé le taux d'hémoglobine chez 40 personnes adultes présumées en bonne santé. On obtient le tableau suivant:

Le taux: xi	Nbr de	ai=BS-BI
	personnes : ni	
105-115	4	10
115-125	4	10
125-135	8	10
135-145	8	10
145-155	16	10

Histogramme

Polygone de fréquence

Le polygone de fréquence joint les points : (c_i, n_i)

Le polygone de fréquence pour une variable continue, doit être toujours fermé avec l'axe des abscisses en prenant deux points aux deux extrémités de l'histogramme, ces deux points sont : (Borne inf₁ -a/2, 0) et (Borne supk+a/2, , 0)

-Le centre d'un intervalle est ci=(BS+BI)/2

Série statistique à deux variables

<u>Caractère quantitatif continue : Histogramme et polygone</u> <u>de fréquence</u>

2 Emme cas: les amplitudes changent

Le tableau suivant représente la distribution de 50 étudiants en fonction de leurs tailles.

Taille	Nbr	ai= BSi-BIi	nicorr=ni*aN/ai
en cm	d'étudi		Ici aN=5
	ant		
150-160	16	10 > 5	8
160-165	6	5 ≤5	6
165-170	12	5 ≤5	12
170-175	14	5 ≤5	14
175-180	2	5 ≤5	2

Histogramme

Polygone de fréquence

Le polygone de fréquence joint les points : (c_i, n_{icor}) pour les classes ayant une amplitude $a_i \le a_N$ (Borne $\inf_i + aN/2$, n_{icor}) et (Borne $\sup_i -aN/2$, n_{icor}) pour toutes les classes ayant une amplitude $a_i > a_N$ Le polygone de fréquence pour une variable continue, doit être toujours fermé avec l'axe des abscisses en prenant deux points aux deux extrémités de l'histogramme, ces deux points sont : (Borne $\inf_1 -aN/2$, 0) et (Borne $\sup_k +aN/2$, 0)

Série statistique à deux variables

II- Les caractéristiques de position et interprétations

Série statistique à deux variables

I- La moyenne : C'est la valeur que devrait avoir chaque individu de façon équitable

Caractère quantitatif discret

La moyenne est $\bar{X} = \frac{1}{N} \sum x_i n_i$

Exemple:

Les 33 élèves d'une classe ont obtenu les notes suivantes lors d'un devoir :

Note (xi)	5	8	10	11	12	14	15	18	20
Effectif (ni)	1	4	3	8	7	3	4	2	1

On a
$$\bar{X} = \frac{1}{N} \sum x_i n_i = \frac{1}{33}.397 = 12,03$$

Interprétation: Si tous les étudiants ont eu la même note, ca sera 12,03

Caractère quantitatif continue

La moyenne est $\bar{X} = \frac{1}{N} \sum c_i n_i$

Exemple:

Taille en cm	Nbr d'étudiant	Ci= (Bsi+Bii)/2
150-160	16	155
160-165	6	162,5
165-170	12	167,5
170-175	14	172,5
175-180	2	177,5

On a
$$\bar{X} = \frac{1}{N} \sum c_i n_i = \frac{1}{50}$$
. 8235 = 164,7 cm

Interprétation: Si tous les étudiants avait la même taille, ca sera 164,7 cm

Série statistique à deux variables

II- La médiane: Partage la population en 2

Caractère quantitatif discret

Avant de déterminer la valeur de la médiane, il faut classer la série statistique par ordre croissant. Deux cas de figure peuvent se présenter :

$$N=2p \qquad Me = \frac{x_p + x_{p+1}}{2}$$

$$N=2p+1 \qquad Me = x_{p+1}$$

Note (xi)	5	8	10	11	12	14	15	18	20
Effectif (ni)	1	4	3	8	7	3	4	2	1
Effectif cumulé	1	5	8	16	23	26	30	32	33

$$N=33=2*16+1$$
 alors $Me=Me=x_{16+1}$ Donc $=x_{17}=12$

5 8 8 8 8 10 10 10 11 11 11 1212 14 14 14

Caractère quantitatif continue

Etape 1 : La détermination de la classe médiane

La classe médiane est la première classe dont l'effectif cumulé croissant est supérieur ou égale à N/2

Etape 2 : La détermination de la médiane

Soit i l'indice de la classe médiane, on a alors :

Me= BIi+(BSi-BIi)
$$\frac{\frac{N}{2}-N_{i-1}}{N_i-N_{i-1}}$$

Taille	Nbr	ai	N
en cm	d'étudi		
	ant		
150-160	16	10	16
160-165	6	5	22
165-170	12	5	34
170-175	14	5	48
175-180	2	5	50

On a N=50 donc N/2=25 Donc la classe médiane est :165-170 Alors Me= $165+5\frac{25-22}{34-22}$

Me=166,25 cm

Série statistique à deux variables

I- Le mode : La modalité la plus fréquente

Caractère qualitatif ou quantitatif discret

La modalité xi dont l'effectif ni est le plus grand est le mode Mo=xi

Note (xi)	5	8	10	11	12	14	15	18	20
Effectif (ni)	1	4	3	8	7	3	4	2	1

L'effectif le plus grand est 7, donc le mode Mo=12

La série de Bac (xi)	Le nombre des
	candidats (ni)
Science économique	250
Science mathématique	200
Science expérimentale	250
T.G.A	50
T.G.C	100

Ici on a 2 modes : sc économique et sc expérimentale . C'est une série statistique bimodale

Caractère quantitatif continue

La classe modale i est celle dont l'effectif ni est le plus grand et on a : Mo= BIi+ai $\frac{n_i-n_{i-1}}{(n_i-n_{i-1})+(n_i-n_{i+1})}$

<u>Remarque</u> : Si les classes ont des amplitudes différentes, on travaillera avec les n_{icor} au lieu des n_i

Taille	Nbr	ai= BSi-BIi	nicorr=ni*aN/ai
en cm	d'étudi ant		Ici aN=5
150-160	16	10 > 5	8
160-165	6	5 ≤5	6
165-170	12	5 ≤5	12
170-175	14	5 55	14
175-180	2	5 ≤5	2

La classe modale est 170-175 Donc: Mo=170+5 14-12 (14-12)+(14-2)

$$Mo = 170,71 \text{ cm}$$

Série statistique à deux variables

II- Les caractéristiques de dispersion et interprétations

Les caractéristiques de dispersion

La variance

L'écart type

Coefficient de variation

Ecart absolue moyen

Série statistique à deux variables

Variance

- Var (X)= $\frac{1}{N}\sum n_i x_i^2 (\bar{X})^2$
- Var (X)= $\frac{1}{N}\sum n_i c_i^2 (\bar{X})^2$

Ecart type

• On a $\sigma_x = \sqrt{\operatorname{var}(X)}$

Coefficient de variation

• C.V=
$$\frac{\sigma_x}{\overline{X}} \times 100$$

Ecart absolue moyen

$$On a: E.A.M_{(\overline{X})} = \frac{1}{N} \sum_{i=1}^{k} n_i \left| c_i - \overline{X} \right|$$

$$E.A.M_{(Me)} = \frac{1}{N} \sum_{i=1}^{k} n_i \left| c_i - Me \right|$$

$$E.A.M_{(Mo)} = \frac{1}{N} \sum_{i=1}^{k} n_i \left| c_i - Mo \right|$$

Série statistique à deux variables

L'ajustement linéaire

Le modèle de Mayer Le modèle des moindre carrées

Le nuage de point

Série statistique à deux variables

Le nuage de point:

Le problème qui se pose dans les séries statistiques à deux variables est principalement celui du lien qui existe ou non entre chacune des variables. Exemple : Le tableau suivant donne l'évolution du nombre d'adhérents d'un club du rugby de 2001 à 2006.

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

Série statistique à deux variables

La modélisation

Série statistique à deux variables

Le point moyen:

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

Soit une série statistique à deux variables X et Y dont les valeurs sont les couples (xi, yi) On appelle point moyen de la série, le point G de coordonnées :

$$x_{G} = \frac{x_{1} + x_{2} + \dots + x_{n}}{n}$$
Et
$$y_{G} = \frac{y_{1} + y_{2} + \dots + y_{n}}{n}$$

Ici Le point moyen et $G(\bar{x}, \bar{y})$

$$\bar{x} = \frac{1+2+3+4+5+6}{6} = 3,5$$

$$\bar{y} = \frac{70 + 90 + 115 + 140 + 170 + 220}{6} = 134,16$$

Série statistique à deux variables

La méthode de Mayer: Y=aX+b

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

Consiste à déterminer la droite passant par 2 points moyen de nuage de points (le nuage est partagé suivant les valeurs croissantes des xi en 2 nuages d'égale importance).

$$\overline{x_{G1}} = \frac{1+2+3}{3} = 2$$

$$\overline{y_{G1}} = \frac{70+90+115}{3} = 91,66$$

$$\overline{x_{G2}} = \frac{4+5+6}{3} = 5$$

$$\overline{y_{G2}} = \frac{140 + 170 + 220}{3} = 176,66$$

G1
$$\in$$
 (D)donc $\overline{y_{G1}} = a\overline{x_{G1}} + b$

G2
$$\in$$
 (D)donc $\overline{y_{G2}} = a\overline{x_{G2}} + b$

$$91,66=2a+b$$

$$176,66=5a+b$$

Donc
$$a = 28,33$$
 et $b = 35$

Donc la droite de Mayer est Y=28,33 X + 35

Série statistique à deux variables

La méthode de Mayer: Prévisions

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

Donc la droite de Mayer est Y=28,33 X + 35 Combien d'adhérents s'inscrirai t- il en 2024 ? Pour X=24 on a Y = 28,33*24+35 = 714,92 En quel année s'inscrira t il 1000 adhérents

Pour Y=1000 on a X=(1000-35)/28,33 = 34

Série statistique à deux variables

La méthode de moindre carrées: Droite de régression de Y en X est Y=aX+b

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

Le coefficient de corrélation linéaire

•Le coefficient de corrélation linéaire est définit par la relation suivante : $r = \frac{\sigma_{xy}}{\sigma_x \times \sigma_y}$

On a
$$\sigma_{xy} = \frac{1}{n} \sum x_i y_i - \bar{x} \bar{y}$$
 et $(\sigma_x)^2 = \frac{1}{n} \sum x_i^2 - (\bar{x})^2$ et $(\sigma_y)^2 = \frac{1}{n} \sum y_i^2 - (\bar{y})^2$
Alors $\sigma_{xy} = \frac{1}{6} (1 \times 70 + 2 \times 90 + 3 \times 115 + 4 \times 140 + 5 \times 170 + 6 \times 220) - 3.5 \times 134.16 = 84.6$
 $\sigma_x = \sqrt{\frac{1}{n} \sum x_i^2 - (\bar{x})^2} = \sqrt{\frac{1}{6} (1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2) - (3.5)^2} = 1.7$
 $\sigma_y = \sqrt{\frac{1}{n} \sum y_i^2 - (\bar{y})^2} = \sqrt{\frac{1}{6} (70^2 + 90^2 + 115^2 + 140^2 + 170^2 + 220^2) - (134.16)^2} = 50.21$
Alors $r = \frac{84.6}{1.7 \times 50.21} = 0.99$

$$\sigma_{xy} = \frac{1}{n} \sum x_i y_i - \bar{x} \bar{y}$$

$$\sigma_x = \sqrt{\frac{1}{n}} \sum x_i^2 - (\bar{x})^2$$

$$\sigma_y = \sqrt{\frac{1}{n}} \sum y_i^2 - (\bar{y})^2$$

Série statistique à deux variables

La méthode de moindre carrées: Droite de régression de Y en X est Y=aX+b

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

Le coefficient de corrélation linéaire

- •Le coefficient de corrélation linéaire est définit par la relation suivante : $r = \frac{\sigma_{xy}}{\sigma_x \times \sigma_y}$
- •Plus le coefficient est proche de 1 en valeur absolue, meilleur est l'ajustement linéaire
- •Lorsque r=1 ou r=-1, la droite de régression passe par tous les points du nuage
- •Lorsque la corrélation est forte, le nuage de point peut être approximer par la droite de régression
- •Lorsque la corrélation est faible, le nuage de point ne peut pas être ajusté par une droite mais il se peut qu'une autre courbe permette un bon ajustement.
- •Dans l'exemple , on a r=0,99 donc |r| est très proche de 1 , alors on peut envisager une relation linéaire entre X et Y

Série statistique à deux variables

La méthode de moindre carrées: Droite de régression de Y en X est Y=aX+b

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

La droite de régression:

•La droite est Y=aX+b

•On a
$$a = \frac{\sigma_{xy}}{(\sigma_x)^2} = \frac{84.6}{(1.7)^2} = 29.27$$

•On a G $(\bar{x}, \bar{y}) \in (D)$ alors \bar{y} =a \bar{x} +b donc b = \bar{y} -a \bar{x}

•Alors b=
$$134,16-29,27*3,5 = 31,71$$

Série statistique à deux variables

La méthode de moindre carrées: Prévisions

Année	2001	2002	2003	2004	2005	2006
Rang (xi)	1	2	3	4	5	6
Nombre	70	90	115	140	170	220
d'adhérents (yi)						

La droite de régression:

La droite de régression est : Y=29,27 X+31,71

Combien d'adhérents s'inscrirai t- il en 2030 ?

Pour X=30 on a Y = 29,27*30+31,71 = 909,81

En quel année s'inscrira t il 2000 adhérents

Pour Y=2000 on a X=(2000-31,71)/29,27 = 67,24

