

Comparação de dois grupos (qualitativo) Testes para proporções

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Comparação de dois grupos (qualitativo)

Felipe

Figueiredo

1 amostra

2 amostras

Aprolundamen

Sumário

- Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostra

Aprofundam

Discussão da aula passada

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

i amostra

2 amostras

Aprofundamento

Discussão da leitura obrigatória da aula passada

Sumário

- Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Objetivo da aula
Teste qui-quadrad

2 amostras

Aprofundame

Objetivo da aula

Considere a seguinte tabela de contingência:

	Lesão	Não tem lesão
Alongou-se	18	22
Não se alongou	211	189

Fonte: Larson & Farber 2013

- 4% dos que se alongaram tiveram lesão
- 48% dos que não se alongaram tiveram lesão

Pergunta

Como determinar se existe alguma relação entre as variáveis?

Isto é: o desfecho é independente da exposição?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

Objetivo da aula Teste qui-quadrado para 1 proporção

Z amostras

Aprofundamento

Quais são as variáveis?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Obietivo da aula

Teste qui-quadrad para 1 proporção

2 amostras

Aprofundament

Dependente: desfecho (categórica)

Independente: exposição (categórica)

Esta relação pode ser expressa como

desfecho \sim exposição

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

i amostra

Objetivo da aula Teste qui-quadrado para 1 proporção

2 amostras

profundamer

Mas antes vamos ver o caso de uma única variável.

Sumário

- Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- 2 Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra
Objetivo da aula
Teste qui-quadrado

para 1 proporção

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Objetivo da aula Teste qui-quadrado

para 1 proporção

2 amostras

Aprofundament

Exemplo 1

Considere que 10% dos pacientes morrem após uma operação arriscada. Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação.

Como comparar o número de óbitos osbervado e o número esperado?

Fonte: Motulsky, 1995

Quais são as variáveis?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Objetivo da aula Teste qui-quadrad

Teste qui-quadrado para 1 proporção

2 amostras

Aprofundament

Dependente: mortalidade (categórica)

Independente: parâmetro fixo

Esta relação pode ser expressa como

mortalidade $\sim 10\%$

Exemplo 1

Exemplo 1

Considere que 10% dos pacientes morrem após uma operação arriscada.

Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação.

O número observado de óbitos em 75 pacientes foi 16.

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra
Objetivo da aula
Teste qui-quadrado

para 1 proporção

2 411031143

Aprofundament

Exemplo 1

Exemplo 1

Considere que 10% dos pacientes morrem após uma operação arriscada.

Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação.

de dois grupos (qualitativo)

Comparação

Felipe Figueiredo

1 amostra
Objetivo da aula

Objetivo da aula Teste qui-quadrado para 1 proporção

2 amostras

- O número observado de óbitos em 75 pacientes foi 16.
- O número esperado seria $75 \times 10\% = 7.5$

Exemplo 1

Comparação de dois grupos (qualitativo) Felipe

Exemplo 1

Considere que 10% dos pacientes morrem após uma operação arriscada.

Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação.

1 amostra Objetivo da aula

Objetivo da aula Teste qui-quadrado para 1 proporção

Figueiredo

z amostras

- O número observado de óbitos em 75 pacientes foi 16.
- O número esperado seria $75 \times 10\% = 7.5$
- A discrepância nos óbitos foi 16 7.5 = 8.5

Observação

Se as frequências observadas forem iguais:

- diferença entre ambas (discrepância) = 0
- •
- •

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra
Obietivo da aula

Objetivo da aula

Teste qui-quadrado
para 1 proporção

2 amostras

Aprofundamen

Questões

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Obietivo da aula Teste qui-quadrado para 1 proporção

Esse aumento reflete uma mudança real na mortalidade?

- Em uma amostra qualquer com 75 pacientes esperaríamos observar 7.5 óbitos
- Em uma amostra específica poderíamos observar mais ou menos que isso
- Provavelmente algo próximo de 7.5

Pergunta

Se a mortalidade for 10%, qual é a probabilidade de se observar 16 ou mais óbitos em uma amostra de 75 pacientes?

Roteiro

 Podemos representar as contagens observadas e esperadas em uma tabela

 H₀: observamos uma amostra de uma população com 10% de mortalidade.

 As diferenças entre os dados observados e os esperados tem distribuição aproximadamente χ² (qui-quadrado)

Estatística de teste

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra
Objetivo da aula
Teste qui-quadrado
para 1 proporção

2 amostras

Aprofundamen

esperado

é um princípio central na Estatística1 A razão

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Obietivo da aula Teste qui-quadrado

para 1 proporção

¹Usada para comparação de valores quadráticos, incluindo variâncias

Observação

Se as frequências observadas forem iguais:

- diferença entre ambas (discrepância) = 0
- diferença² = 0

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostr

Objetivo da aula Teste qui-quadrado para 1 proporção

2 amostras

Aprofundamen

Observação

Se as frequências observadas forem iguais:

- diferença entre ambas (discrepância) = 0
- diferença² = 0
- $\chi^2 = 0$

Quanto maior o valor de de χ^2 , maior a discrepância

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostr

Objetivo da aula
Teste qui-quadrado
para 1 proporção

2 amostras

profundamen

Tabela de frequências

Exemplo 1

	Observado	Esperado
Óbito	16	7.5
Vivo	59	67.5
Total	75	75

Estatística de teste:

$$\chi^2 = \frac{(16 - 7.5)^2}{7.5} + \frac{(59 - 67.5)^2}{67.5} =$$
$$= \frac{(8.5)^2}{7.5} + \frac{(-8.5)^2}{67.5} \approx 10.70$$

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostr

Objetivo da aula Teste qui-quadrado para 1 proporção

2 amostras

\nrofundamon

Comparando as frequências

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra Objetivo da aula

Teste qui-quadrado para 1 proporção

2 amostras

Aprofundamento

H₀: não houve alteração da mortalidade do procedimento.

- Estatística de teste para a amostra: $\chi^2 = 10.7$.
- O teste χ^2 retorna p = 0.0011.

Resultado

(...) a mortalidade observada foi diferente de 10% (p = 0.0011).

Sumário

- 1 Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- 2 Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Tabelas 2x2 Na prática Tabelas maiores

Aprofundament

Tabelas de Contingência

Definição

Uma tabela de contingência mostra as frequências observadas para duas variáveis categóricas.

- Podemos calcular as frequências esperadas, baseado
 - no tamanho das amostras
 - na H₀
- Comparação: frequência observada × frequência esperada

A tabela do exemplo 1 (óbitos) não é uma tabela de contingência! (Por que?)

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Tabelas 2x2 Na prática

Tabelas maiores Resumo

Aprofundament

Exemplo 8.1

Frequências observadas:

·	doença progrediu	doença não progrediu
AZT	76	399
Placebo	129	332

Existe relação entre o uso do AZT e a progressão da doença?

 Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H₀)? Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

2 amostras

Na prática Tabelas maiores Resumo

Aprofundamento

Quais são as variáveis?

Dependente: desfecho (categórica)

Independente: tratamento (categórica)

Esta relação pode ser expressa como

progressão \sim grupo

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores Resumo

Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2 Na prática

Na pratica Tabelas maiores Resumo

Aprofundament

H₀: o AZT não é mais eficaz que o placebo

- Pergunta: assumindo a H₀, qual seria a frequência esperada para a progressão da doença?
- Em outras palavras: quantos pacientes tiveram progressão na doença, em relação ao total?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Tabelas 2x2 Na prática

Na prática Tabelas maiores Resumo

Aprofundamento

Vamos começar pela primeira célula da tabela

Exemplo 8.1

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

• Proporção esperada $E = \frac{205}{936} \approx 0.2190 = 21.90\%$

• Frequência esperada (número): $475 \times 0.2190 = 104.025 \approx 104.0$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Z amostras Tabelas 2x2 Na prática

Tabelas maiores Resumo

Aprofundament

Tabelas de contingência 2x2

 Se a H₀ fosse verdadeira, esperaríamos que 104.0 pacientes tivessem a progressão da doença, usando o AZT.

- Mas observamos 76.
- Discrepância |104.0 76| = 28 pacientes

• Faltam os 3 outros valores esperados e discrepâncias

Para simplificar, podemos usar a seguinte fórmula:

$$\textit{E} = \frac{\text{total por linha} \times \text{total por coluna}}{\text{total da tabela}}$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Tabelas 2x2 Na prática Tabelas maiores

Aprofundamento

Exemplo 8.1

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

• AZT + Progressão =
$$\frac{205 \times 475}{936} = 104.0$$

• AZT + Não progressão =
$$\frac{731 \times 475}{936}$$
 = 371.0

• Placebo + Progressão =
$$\frac{205 \times 461}{936} = 101.0$$

• Placebo + Não progressão =
$$\frac{731 \times 461}{936}$$
 = 360.0

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

amostra

Tabelas 2x2
Na prática
Tabelas majores

Tabelas maiores Resumo

Aprofundament

Colocando os valores em uma tabela semelhante:

Exemplo 8.1

Frequências esperadas:

·	progrediu	não progrediu	total
AZT	104.0	371.0	475.0
Placebo	101.0	360.0	461.0
total	205.0	731.0	936.0

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2 Na prática

Tabelas maiores Resumo

Aprofundamento

Observe que os totais esperados devem ser iguais aos observados!

Teste de Hipótese

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

o -----

Tabelas 2x2

Tabelas maiores Resumo

Aprofundamento

- H_0 : a progressão é independente do grupo de tratamento
- ou: não há relação entre o uso do AZT e a progressão da doença.
- Somamos as diferenças quadráticas entre o valor observado e o esperado

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

- Quanto maior o valor de de χ^2 , maior a discrepância
- Fazemos o teste χ^2 e julgamos o p-valor

Teste de Hipótese

Exemplo 8.1

• AZT + NP =
$$\frac{(399 - 371.0)^2}{371.0} = \frac{28^2}{371.0} \approx 2.11$$

• Placebo + P =
$$\frac{(129 - 101.0)^2}{101.0} = \frac{28^2}{101.0} \approx 7.76$$

• Placebo + NP =
$$\frac{(332 - 360.0)^2}{360.0} = \frac{28^2}{360.0} \approx 2.18$$

$$\chi^2 = 7.54 + 2.11 + 7.76 + 2.18 = 19.59$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Tabelas 2x2 Na prática Tabelas maiores

Aprofundament

O teste Qui-Quadrado

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2

Na prática Tabelas maiores Resumo

Aprofundamen

 Quanto maior for o valor da estatística de teste, menor será o p-valor.

- Calculamos a estatística de teste para a amostra e encontramos $\chi^2 = 19.59$
- O resultado deste teste é p < 0.0001.

O teste Qui-Quadrado

 Se a H₀ for verdadeira, temos uma chance menor que 0.01% de observar ao acaso uma discrepância tão grande entre os valores observados e os esperados.

Resultado: devemos rejeitar a H₀

Interpretação

Rejeitamos a hipótese de que o AZT não é mais eficiente que o placebo.

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2 Na prática Tabelas maiores

Aprofundamento

O teste Qui-Quadrado

• O teste χ^2 é apenas uma aproximação da distribuição dos dados, que pode ser usado para amostras grandes.

Vantagem: simples

Desvantagem: a aproximação é ruim para amostras pequenas

Nunca usar se alguma célula da tabela tiver valor < 5

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

2 amostras

Tabelas 2x2 Na prática Tabelas maiores

A f. -l - - ...

Aprofundament

O teste indicado para este cenário é o teste exato de Fisher

O teste exato de Fisher

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Z amostras Tabelas 2x2

Na prática Tabelas maiores Resumo

- Para as seguintes situações deve-se usar o teste exato de Fisher:
 - Quando se tem amostras pequenas
 - Quanto se tem amostras de tamanho moderado, e se tiver uma ferramenta computacional disponível

- Se sua amostra for enorme (milhares de dados), prefira o teste χ^2 , pois:
 - o cálculo do teste exato de Fisher pode ser lento
 - a aproximação será boa

- 1 Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Na prática Tabelas maiores

Tabelas maiore Resumo

Exemplo 8.1

Frequências observadas:

	doença progrediu	doença não progrediu
AZT	76	399
Placebo	129	332

Existe relação entre o uso do AZT e a progressão da doença?

 Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H_0)?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Na prática Tabelas maiores

Resumo

Saída típica de um programa

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2

Na prática Tabelas maiores

Tabelas maiore Resumo

Aprofundament

```
Teste Qui-quadrado
```

Pearson's Chi-squared test with Yates' continuity correction

```
data: exemplo8.1
X-squared = 18.944, df = 1,
p-value = 1.346e-05
```


Teste exato de Fisher

Fisher's Exact Test for Count Data

data: exemplo8.1
p-value = 9.24e-06
alternative hypothesis: true odds ratio
is not equal to 1
95 percent confidence interval:
 0.3512693 0.6818650
sample estimates:
odds ratio
 0.4905877

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Na prática Tabelas maiores

Visualização - gráfico de barra

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores Resumo

Atenção

NÃO use gráfico de pizza!

- É uma visualização ineficiente
- Nosso olho é "bom" para julgar distâncias/comprimentos
- Nosso olho é ruim para julgar áreas
- Indicado apenas quando as categorias são muito discrepantes

Cleveland (1985)

"Data that can be shown by pie charts always can be shown by a dot chart.

This means that judgements of position along a common scale can be made instead of the less accurate angle judgements."

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2

Na prática Tabelas maiores

Resumo

- Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Na pratica

Tabelas maiores

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores

Resumo

Aprofundament

E quando temos mais do que duas categorias?

E quando temos mais do que duas categorias?

• Resposta: procedemos como no caso anterior, mas precisamos considerar os graus de liberdade do teste χ^2

$$gl = (l-1)(c-1) = (linhas - 1) \times (colunas - 1)$$

• Obs: no caso 2×2 temos $gl = (2-1) \times (2-1) = 1 \times 1 = 1$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2
Na prática
Tabelas maiores

Exemplo 3

Em dois hospitais, os resultados de 575 autópsias foram comparados com as causas de morte listadas nos atestados. Um dos hospitais que participou do estudo era comunitário (A); o outro era universitário (B).

Hospital	Precisão confir-	Falta de	Recodificação
	mada	informações	incorreta
A	157	18	54
В	268	44	34

Os resultados sugerem práticas diferentes no preenchimento de atestados de óbito nos dois hospitais?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

2 amostras

Na prática Tabelas maiores

\ nrofundomon

Fonte: Aula Hacker & Simões (2008 - Fiocruz)

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Tabelas 2x2

Na prática
Tabelas maiores

Resumo

Aprofundament

 H₀: Dentro de cada categoria do status do atestado, as proporções de atestados de óbitos no hospital A são idênticas ao hospital B.

- H₁: As proporções não são idênticas
- Graus de liberdade:

$$(I-1)\times(c-1)=(2-1)\times(3-1)=1\times2=2$$

Quais são as variáveis?

Dependente: qualidade do preenchimento (categórica)

Independente: hospital (categórica)

Esta relação pode ser expressa como

preenchimento \sim hospital

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores Resumo

Teste exato de Fisher

Fisher's Exact Test for Count Data

data: exemplo3 p-value = 2.575e-05

alternative hypothesis: two.sided

Teste Qui-quadrado

Pearson's Chi-squared test

data: exemplo3

X-squared = 21.523, df = 2, p-value = 2.12e-05

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Na prática Tabelas maiores

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores

Resumo

Aprofundamen

• Estatística de teste $\chi^2 = 21.52$

● p-valor: p < 0.001</p>

• Rejeitamos H_0 ao nível de significância de $\alpha = 0.05$.

Resultado

Há associação entre o hospital e o status do atestado.

Conclusão

Parece que o hospital A tem maior proporção de atestados incorretos.

- Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Tabelas 2x2 Na prática Tabelas maiores

Resumo

Resumo

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores

Resumo

- O teste de Fisher é um teste de independência entre os grupos
- O teste Qui-quadrado é uma boa aproximação, para N grande

- 1 Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Aprofundamento

Aprofundamento

Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

Aprofundamer

Aprofundamento

Leitura obrigatória

- Capítulo 26.
- Capítulo 27, pular a seção: Calculando o poder

Leitura recomendada

- O Capítulo 29: Outros testes de tabelas de contingência
- O Capítulo 27, seção: Calculando o poder