External

Registers

GICC_IIDR, CPU Interface Identification Register

The GICC IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the CPU interface.

Configuration

This register is present only when FEAT_GICv3_LEGACY is implemented. Otherwise, direct accesses to GICC_IIDR are res0.

Attributes

GICC IIDR is a 32-bit register.

Field descriptions

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15 14 13 12	11 10 9	8 7	6	5	4	3	2	1	0
ProductID	Architecture Reveission		Imp	oler	ne	nte	r			

ProductID, bits [31:20]

Product Identifier.

This field has an implementation defined value.

Access to this field is **RO**.

Architecture version, bits [19:16]

The version of the GIC architecture that is implemented.

Architecture_version	Meaning
0b0001	GICv1.
0b0010	GICv2.

0b0011 0b0100	FEAT_GICv3 memory- mapped interface supported. Support for the System register interface is discoverable from PE registers ID_PFR1 and ID_AA64PFR0_EL1. FEAT_GICv4 memory- mapped interface supported. Support for the System register interface is discoverable from PE registers ID_PFR1 and ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

Revision number for the CPU interface.

This field has an implementation defined value.

Access to this field is **RO**.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

- Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0×4 .
- Bit [7] is always 0.
- Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore 0x3B.

Accessing GICC_IIDR

GICC_IIDR can be accessed through the memory-mapped interfaces:

Component	Offset	Instance
GIC CPU interface	0x00FC	GICC_IIDR

This interface is accessible as follows:

- When GICD CTLR.DS == 0, accesses to this register are **RO**.
- When an access is Secure, accesses to this register are **RO**.
- When an access is Non-secure, accesses to this register are **RO**.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.