

Review of 5th course/第五次课复习

CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS

第八章 正激波及有关问题

Presented by Wenping Song E-mail: wpsong@nwpu.edu.cn 2019年10月23日 Wednesday

Department of Fluid Mechanics, School of Aeronautics, Northwestern Polytechnical University, Xi'an, China

8. 3 Speed of Sound/声速(音速)

- フ Key points of this section / 本节复习要点:
 - フ Physical mechanism of propagation of sound waves 声波传播的物理机理
 - フ Calculation of the speed of sound/ 声速的计算
 - フ Speed of sound depends on local temperature of gas 声速由气体的当地温度决定
 - フ Relationship between speed of sound and compressibility 声速与压缩性的关系
 - フ Physical meaning of Mach number 马赫数的物理意义?

1) Physical mechanism of the propagation of sound waves声波传播的物理机理

7 Summary

- The physical mechanism of sound propagation in a gas is based on molecular motion.
- 声音在气体中的传播是基于分子的运动,是由分子碰撞引起的。

2) Calculation of Sound of Speed/声速的计算

(b) A stationary sound wave in a moving gas; the upstream velocity relative to the wave is a

图8.4b 运动气体 中的静止声波

声波波动的特点

- **7** 首先,声波波动的过程可视为绝 热过程;
- 其次,声波波动过程可以进一步 视为等熵过程;

声速计算公式

$$a^2 = \frac{dp}{d\rho}$$

$$or \quad a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_s}$$

$$a = \sqrt{\frac{\gamma p}{\rho}}$$

3) What properties of the gas does it depend on? 声速由气体的什么特性决定?

$$a = \sqrt{\gamma RT} \tag{8.25}$$

- Eq. 8.25 is our final expression for the speed of sound; it clearly states that *the speed of sound in a calorically perfect* gas is a function of temperature only.
- 我们得到的声速计算公式的表达式清楚地表明,对于量热完全气体,声速是温度的唯一函数。

4) Speed of Sound and Compressibility 声速与压缩性的关系?

$$a = \sqrt{\frac{1}{\rho \tau_s}} \tag{8.27}$$

- The lower of compressibility, the higher the speed of sound/压缩性越小,声速越大;
 - (空气约340m/s,海水约1500m/s,钢铁约5200m/s)
- → The speed of sound in the theoretically incompressible flow is infinite/理论上不可缩流动中声速为无穷大(不可压流动 Ma=V/a=0只是一种合理近似而已)。

5) Physical Meaning of Mach Number

马赫数的物理意义?

$$\frac{V^2/2}{e} = \frac{V^2/2}{c_v T} = \frac{V^2/2}{RT/(\gamma - 1)} = \frac{(\gamma/2)V^2}{a^2/(\gamma - 1)} = \frac{\gamma(\gamma - 1)}{2} M^2$$

- > Square of Mach number is proportional to the ratio of kinetic and interval energies.
- **一** 马赫数的平方正比于气体动能与内能之比。

$$M=0.3$$
 $\xrightarrow{V^2/2} = 2.52\%$
 $M=2.0$ $\xrightarrow{V^2/2} = 1.12$
 $M=7.0$ $\xrightarrow{V^2/2} = 13.72$

· 马赫数的平方为气体惯性力与弹性力之比。

8. 4 Special Form of Energy Equation 能量方程特殊形式

- フ Key points of this section/本节复习要点:
 - ァ 能量方程的各种特殊表达形式
 - マ 总温的计算公式
 - マ 总压、总密度的计算公式
 - マ 临界参数的定义与计算公式
 - 7 特征马赫数(速度系数)M*的定义及计算公式

8. 4 Special Form of Energy Equation 能量方程特殊形式

マ 写成温度形式

$$c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2}$$

(8.30)

マ 写成声速形式

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2}$$

(8.32)

8. 4 Special Form of Energy Equation

能量方程特殊形式(续)

引入 a_0 、 a^* 的定义

滞止声速定义

$$\frac{a^2}{\gamma - 1} + \frac{u^2}{2} = \frac{a_0^2}{(\gamma - 1)}$$

(8.33)

临界声速定义

$$\frac{a^2}{\gamma - 1} + \frac{u^2}{2} = \frac{(\gamma + 1)a^{*2}}{2(\gamma - 1)}$$

(8.35)

マ 写成滞止声速形式

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2} = \frac{a_0^2}{\gamma - 1} = \text{const}$$
 (8.34)

マ 写成临界声速形式

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2} = \frac{(\gamma + 1)a^{*2}}{2(\gamma - 1)} = \text{const}$$
 (8.36)

对于定常、无粘、绝热、忽略体积力的流动,沿 流线成立的能量方程可以用如下方程表示:

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2} = \frac{(\gamma + 1)}{2(\gamma - 1)} a^{*2} = const.$$

$$c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2}$$

Definition of Total Properties & Physical Meanings 总参数定义及其物理意义(复习)

フ T₀定义:

- で ではできます。で では、で できます。で できますする。で できますする。で できまする。で でき
- フ T₀的物理意义:
 - 表征了流体具有的总能量的大小,同时也代表了绝热流动中流体微团可能出现的最高温度
- - **フ** 当流体微元被*等熵地*减速至静止时对应的压强和密度
- $p_0 和 p_0 的 物理意义$
 - p_0 代表了流体做有用功的能力。 p_0 , ρ_0 分别代表了等熵流动中流体微团可能出现的最大压强和最大密度。

Calculation of Total Temperature

总温计算

マ 总温计算

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M^2$$

(8.40)

总压和总密度计算

$$\frac{p_0}{p} = (1 + \frac{\gamma - 1}{2} M^2)^{\gamma/(\gamma - 1)}$$
$$\frac{\rho_0}{\rho} = (1 + \frac{\gamma - 1}{2} M^2)^{1/(\gamma - 1)}$$

(8.42)

$$\frac{\rho_0}{\rho} = (1 + \frac{\gamma - 1}{2} M^2)^{1/(\gamma - 1)}$$

(8.43)

参照总参数定义,临界参数 Γ*、ρ*和 ρ *的定义为:

フ *T**定义:

一 假想亚声速运动流体微团被*绝热地*加速到声速、或超声速运动流体微团被*绝热地*减速到声速所对应的温度

フ *p**、ρ*定义:

一 假想亚声速运动流体微团被等熵地加速到声速、或超声速运动流体微团被等熵地减速到声速所对应的 压强、密度

Calculation of critical properties

临界参数的定量值计算

$$\gamma = 1.4$$

$$\frac{T^*}{T_0} = \frac{2}{\gamma + 1} = 0.833$$

$$\frac{p^*}{p_0} = \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)} = 0.528$$

$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma + 1}\right)^{1/(\gamma - 1)} = 0.634$$
(8.44)
$$(8.45)$$

特征马赫数(速度系数)M*的定义及计算公式

つ "Characteristic" Mach number, M*, defined as: 特征马赫数(也被内流计算人员称为速度系数),其定义如下:

$$M^* = \frac{u}{a^*}$$

ァ 特征马赫数计算:

$$M^{2} = \frac{2}{(\gamma+1)/M^{2} - (\gamma-1)}$$
 (8.47)

$$M^{*2} = \frac{(\gamma + 1)M^2}{2 + (\gamma - 1)M^2}$$
 (8.48)

例8.7 用本节推导出的公式解例7.6

例7.6: 气流中一点处的压强、温度和速度分别为1atm, 320K,1000m/s。计算这一点的总温和总压。例8.2算出M=2.79)

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M^2 = 1 + \frac{0.4}{2}(2.79)^2 = 2.557$$

$$T_0 = 2.557T = 2.557 \times 320(K) = 818(K)$$

$$\frac{p_0}{p} = (1 + \frac{\gamma - 1}{2}M^2)^{\gamma/(\gamma - 1)} = (2.557)^{\frac{1.4}{0.4}} = 26.7$$

$$p_0 = 26.7 p = 26.7 \times 1(atm) = 26.7(atm)$$

Example 8.8 Consider a point in an airflow where local Mach number, static pressure, static temperature are 3.5, 0.3atm, and 180K, respectively. Calculate the local values of p_0 , T_0 , T^* , a^* , and M^* at this point.

$$p_0 = (1 + \frac{\gamma - 1}{2}M^2)^{\frac{\gamma}{\gamma - 1}}p = 22.9atm$$
 $T_0 = (1 + \frac{\gamma - 1}{2}M^2)T = 621K$

$$T^* = \frac{2}{\gamma + 1} T_0 = 517.5K$$
 $a^* = \sqrt{\gamma RT^*} = 456m/s$

$$a = \sqrt{\gamma RT} = 268.9 m/s$$
 $V = M \cdot a = 941 m/s$ $M^* = \frac{V}{a^*} = 2.06$

也可以用公式 (8.48) 计算M*:

$$M^{*2} = \frac{(\gamma + 1)M^2}{2 + (\gamma - 1)M^2} = \frac{2.4(3.5)^2}{2 + 0.4(3.5)^2} = 4.26 \qquad M^* = \sqrt{4.26} = 2.06$$

Example 8.9 如图8.5所示翼型流动,假设流动为等熵流动, 计算点1处的当地马赫数。

Figure 8.5 Figure for Example 8.2.

$$p_{0,\infty} = \frac{p_{0,\infty}}{p_{\infty}} p_{\infty} = 1.276 \times 1 = 1.276 atm$$

$$p_{0,1} = p_{0,\infty}$$

$$\therefore \frac{p_{0,1}}{p_1} = \frac{1.276}{0.7545} = 1.691$$
 查表A: 得 $M = 0.9$

Example 8.10 如图8.5所示翼型流动,假设流动为等熵流动,当自由来流的温度 $T_{\infty}=59^{\circ}F$ 时,计算点1处的速度。

Figure 8.5 Figure for Example 8.2.

$$T_{\infty} = 460 + 59 = 519^{0} R = (519 / 1.8) K = 288.33 K$$

$$\therefore \frac{p_{1}}{p_{\infty}} = \left(\frac{T_{1}}{T_{\infty}}\right)^{\frac{\gamma}{\gamma - 1}} \quad \therefore T_{1} = T_{\infty} \left(\frac{p_{1}}{p_{\infty}}\right)^{\frac{\gamma - 1}{\gamma}} = 288.33 \times 0.7545^{\frac{1.4 - 1}{1.4}} = 265.11 K$$

$$a_{1} = \sqrt{\gamma R T_{1}} = \sqrt{1.4(287)(265.11)} = 326.4 m / s$$

$$V_{1} = M_{1} a_{1} = 0.9 \times 326.4 = 293.76 m / s$$

前一次课的掌握情况投票

- A 完全掌握了这部分知识内容
- B 掌握了大部分
- 掌握了一小部分
- **完全不懂**

提交

End of Review of 5th course! Thank you for your attention!

Lecture #6

CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS 第八章 正激波及有关问题

Presented by Wenping Song E-mail: wpsong@nwpu.edu.cn

2019年10月23日 Wednesday

Department of Fluid Mechanics, School of Aeronautics, Northwestern Polytechnical University, Xi'an, China

Road Map

8.2 Derivation of the basic normal shock equations

8.3 Speed of sound

8.4 Special form of the energy equation

8.5 When is a flow compressible

8.6 Derivation of detailed equations for the calculation of changes across a normal shock wave: discussion of physical trends

8.7 Compressible airspeed measurements by means of a Pitot tube

8.5 WHEN IS A FLOW COMPRESSIBLE?

什么条件下流动是可压缩的?

We have stated several times in the preceding that a flow can be reasonably assumed to be incompressible when M<0.3, whereas it should be considered compressible when M>0.3. Why?

$$\frac{\rho_0}{\rho} = (1 + \frac{\gamma - 1}{2}M^2)^{1/(\gamma - 1)} \qquad \text{RD} \qquad \frac{\rho}{\rho_0} = (1 + \frac{\gamma - 1}{2}M^2)^{-1/(\gamma - 1)}$$

8.5 WHEN IS A FLOW COMPRESSIBLE?

什么条件下流动是可压缩的?

フ 结论:

If
$$M < 0.32$$
, $\frac{\Delta \rho}{\rho_0} < 5\%$

Figure 8.6 Isentropic variation of density with Mach number.

对于一个给定的速度变化, $\frac{ ho_0}{ ho}$ 的变化对压强的影响:

$$dp = -\rho V dV$$

$$\frac{dp}{p} = -\frac{\rho}{p}V^2 \frac{dV}{V}$$

$$\left(\frac{dp}{p}\right)_0 = -\frac{\rho_0}{p}V^2 \frac{dV}{V}$$

$$\frac{dp/p}{(dp/p)_0} = \frac{\rho}{\rho_0}$$

(3.12)

Figure 8.6 Isentropic variation of density with Mach number.

Hence, the degree by which ρ/ρ_0 deviates from unity as shown in Fig.8.6 is related to the same degree by which the fractional pressure change for a given dV/V.

补充: 澄清一个关于可压与不可压的概念

• 流体介质的压缩性?

流体介质自身的性质

• 流动是否可压?

根据实际流动中密度的变化而言。 空气的不可压缩流动是一种特殊的假设,假设密度不变,内 能不变

举例1: 储气室中 $p_0 = 1.0132 \times 10^5 N/m^2$, $T_0 = 288K$ 的气体在管道出 口处等熵加速到106.7m/s, 出口处压力用不可压假设和可压流假 设的计算结果分别为:

不可压:
$$\rho = \rho_0 = \frac{p_0}{RT_0} = 1.226(Kg/m^3)$$

$$p = p_0 - \frac{1}{2}\rho V^2 = 1.0132 \times 10^5 - 0.5(1.226)(106.7)^2 = 9.4341 \times 10^4 (N/m^2)$$

フ 可压

$$T = T_0 - \frac{V^2}{2c_p} = 288 - \frac{106.7^2}{2 \times 1004.5} = 282.3(K)$$

$$p = \left(\frac{T}{T_0}\right)^{\frac{\gamma}{\gamma - 1}} p_0 = \left(\frac{282.3}{288}\right)^{3.5} (1.0132 \times 10^5) = 9.4473 \times 10^4 (N/m^2)$$

相对误差:
$$\frac{9.4473\times10^4 - 9.4341\times10^4}{9.4473\times10^4} = 0.13\%$$

此时的马赫数: $M = \frac{106.7}{\sqrt{1.4 \times 287 \times 282.3}} = 0.317$

举例2: 储气室中 $p_0 = 1.0132 \times 10^5 N/m^2$, $T_0 = 288K$ 的气体在管道出口处等熵加速到274.3m/s, 出口处压力用不可压假设和可压流假设的计算结果分别为:

一 不可压:
$$\rho = \rho_0 = \frac{p_0}{RT_0} = 1.226(Kg/m^3)$$

$$p = p_0 - \frac{1}{2}\rho V^2 = 1.0132 \times 10^5 - 0.5(1.226)(274.3)^2 = 5.5198 \times 10^4 (N/m^2)$$

フ 可压

$$T = T_0 - \frac{V^2}{2c_p} = 288 - \frac{274.3^2}{2 \times 1004.5} = 250.55(K)$$

$$p = \left(\frac{T}{T_0}\right)^{\frac{\gamma}{\gamma - 1}} p_0 = \left(\frac{250.55}{288}\right)^{3.5} (1.0132 \times 10^5) = 6.2223 \times 10^4 (N/m^2)$$

相对误差:
$$\frac{6.2223\times10^4 - 5.5198\times10^4}{6.2223\times10^4} = 11.3\%$$

此时的马赫数:
$$M = \frac{274.3}{\sqrt{1.4 \times 287 \times 250.55}} = 0.864$$

8.6 Calculation of Normal Shock Wave Properties 正激波特性的计算

本节的要点

计算通过正激波后流动参数的变化

$$M_2 = ?$$
 $\frac{p_2}{p_1} = ?$ $\frac{\rho_2}{\rho_1} = ?$ $\frac{u_2}{u_1} = ?$ $\frac{T_2}{T_1} = ?$ $s_2 - s_1 = ?$ $\frac{T_{0,2}}{T_{0,1}} = ?$ $\frac{p_{0,2}}{p_{0,1}} = ?$

问题: 已知激波前区域1的流 动参数, 计算激波后区域2的流 动参数。

正激波示意图 图8.3

正激波基本方程回顾:

$$ightharpoonup$$
 连续方程: $\rho_1 u_1 = \rho_2 u_2$ (8.2)

$$ightharpoonup$$
 动量方程: $p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$ (8.6)

》能量方程:
$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$
 (8.10)

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2} = \frac{(\gamma + 1)a^{*2}}{2(\gamma - 1)} = const.$$

$$ightharpoonup$$
 状态方程: $p_2 = \rho_2 RT_2$ (8.36)

$$\triangleright$$
 焓: $h_2 = c_p T_2$

on Aerodynamic Design and Research

$$\rho_1 u_1 = \rho_2 u_2 \tag{8.2}$$

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \tag{8.6}$$

$$\frac{p_{1}}{\rho_{1}u_{1}} + u_{1} = \frac{p_{2}}{\rho_{2}u_{2}} + u_{2}$$

$$\stackrel{\longrightarrow}{\longrightarrow} \frac{p_{1}}{\rho_{1}u_{1}} - \frac{p_{2}}{\rho_{2}u_{2}} = u_{2} - u_{1}$$

$$\stackrel{(8.51)}{\longrightarrow}$$

因为
$$a = \sqrt{\gamma p/\rho}$$
 :

$$\frac{a_1^2}{\gamma u_1} - \frac{a_2^2}{\gamma u_2} = u_2 - u_1 \tag{8.52}$$

曲公式(8.36):
$$\frac{{a_1}^2}{\gamma - 1} + \frac{{u_1}^2}{2} = \frac{{a_2}^2}{\gamma - 1} + \frac{{u_2}^2}{2} = \frac{(\gamma + 1)a^{*2}}{2(\gamma - 1)} = const.$$
 可得:

$$a_1^2 = \frac{\gamma + 1}{2} a^{2} - \frac{\gamma - 1}{2} u_1^2$$
 (8.53)

$$a_2^2 = \frac{\gamma + 1}{2} a^{*2} - \frac{\gamma - 1}{2} u_2^2$$
 (8.54)

将(8.53),(8.54)式代入(8.52)式:

$$\frac{\gamma+1}{2}\frac{a^{*2}}{\gamma u_1} - \frac{\gamma-1}{2\gamma}u_1 - \frac{\gamma+1}{2}\frac{a^{*2}}{\gamma u_2} + \frac{\gamma-1}{2\gamma}u_2 = u_2 - u_1$$

整理为:
$$\frac{\gamma+1}{2\gamma u_1 u_2}(u_2-u_1)a^{*2}+\frac{\gamma-1}{2\gamma}(u_2-u_1)=u_2-u_1$$

两边同除以
$$u_2$$
- u_1 :
$$\frac{\gamma+1}{2\gamma u_1 u_2} a^{*2} + \frac{\gamma-1}{2\gamma} = 1$$

$$a^{*2} = u_1 u_2 \tag{8.55}$$

$$a^{*2} = u_1 u_2 \tag{8.55}$$

フ Equation (8.55) is called the *Prandtl relation* and is a useful intermediate relation for normal shock waves. 方程(8.55)被 称为*Prandtl* 关系式,是一个很有用的正激波中间关系式.

(8.55)式还可写成:
$$1 = \frac{u_1}{a^*} \frac{u_2}{a^*}$$
 (8.56)

由特征马赫数的定义:
$$M^* = \frac{u}{a^*}$$
 可得:

$$1 = M_1 * M_2 * \qquad M_2 * = \frac{1}{M_1 *}$$
 (8.57)

应用 (8.48)式:
$$M^{*2} = \frac{(\gamma+1)M^2}{2+(\gamma-1)M^2}$$

$$\frac{(\gamma+1)M_2^2}{2+(\gamma-1)M_2^2} = \left[\frac{(\gamma+1)M_1^2}{2+(\gamma-1)M_1^2}\right]^{-1}$$
 (8.58)

$$M_2^2 = \frac{1 + [(\gamma - 1)/2]M_1^2}{\gamma M_1^2 - (\gamma - 1)/2}$$
 (8.59)

T Equation (8.59) is our first major result for a normal shock wave. Examine Eq. (8.59) closely; it states that the Mach number behind the wave, M_2 , is a function only of the Mach number ahead of the wave, M_1 .

方程(8.59)是我们得到的第一个主要正激波关系式,表明 波后马赫数 M_2 是波前马赫数 M_4 的唯一函数.

$$M_2^2 = \frac{1 + [(\gamma - 1)/2]M_1^2}{\gamma M_1^2 - (\gamma - 1)/2}$$
 (8.59)

- Moreover, if $M_1=1$, then $M_2=1$. This is the case of an infinitely weak normal shock wave, defined as a *Mach wave*. 如果 $M_1=1$, 则 $M_2=1$ 。这种情况对应无限弱的正激波,我们定义为*马赫波*。
- Furthermore, if $M_1>1$, then $M_2<1$; i.e., the Mach number behind the normal shock wave is *subsonic*. 如果 $M_1>1$, 则 $M_2<1$; 也就是:正激波后的流动是*亚声速*的。

$$M_2^2 = \frac{1 + [(\gamma - 1)/2]M_1^2}{\gamma M_1^2 - (\gamma - 1)/2}$$
 (8.59)

- \neg As M_1 increases above 1, the normal shock wave becomes stronger, and M_2 becoming progressively less than 1. 当 M_1 由1逐渐增大时,正激波越来越强,激波后马赫数 M,越来越小(在小于1的范围内)。
- \neg However, in the limit as $M_1 \rightarrow \infty$, M_2 approaches a finite minimum value, $M_2 \rightarrow \sqrt{(\gamma-1)/2\gamma}$, which for air is 0.378.

然而,当 M_1 趋于无穷大, M_2 趋于一有限的最小值 $M_2 \rightarrow \sqrt{(\gamma-1)/2\gamma}$, 对于空气,当 $\gamma=1.4$ 时其值为0.378。

下面我们来推导通过正激波的热力学特性,即 ρ_2/ρ_1 、 p_2/p_1 、 T_2/T_1 的表达式:

ρ_2/ρ_1 的推导:

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{u_1^2}{u_1 u_2} = \frac{u_1^2}{a^{*2}} = M_1^{*2}$$

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma + 1)M_1^2}{2 + (\gamma - 1)M_1^2}$$
 (8.61)

p_2/p_1 的推导:

$$p_2 - p_1 = \rho_1 u_1^2 - \rho_2 u_2^2 = \rho_1 u_1 (u_1 - u_2) = \rho_1 u_1^2 (1 - \frac{u_2}{u_1})$$
 (8.62)

$$\frac{p_2 - p_1}{p_1} = \frac{\gamma p_1 u_1^2}{\gamma p_1} (1 - \frac{u_2}{u_1}) = \frac{\gamma u_1^2}{a_1^2} (1 - \frac{u_2}{u_1}) = \gamma M_1^2 (1 - \frac{u_2}{u_1})$$
 (8.63)

$$\frac{p_2 - p_1}{p_1} = \gamma M_1^2 \left[1 - \frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)M_1^2} \right]$$
 (8.64)

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} (M_1^2 - 1)$$
(8.65)

$\tau T_2/T_1$ 的推导:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right) \left(\frac{\rho_1}{\rho_2}\right) \tag{8.66}$$

$$\frac{T_2}{T_1} = \frac{h_2}{h_1} = \left[1 + \frac{2\gamma}{\gamma + 1} (M_1^2 - 1)\right] \frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)M_1^2}$$
(8.67)

- Equations (8.61), (8.65), and (8.67) are important. Examine them closely. Note that ρ_2/ρ_1 , ρ_2/ρ_1 and T_2/T_1 are functions of the upstream Mach number M_1 only. ρ_2/ρ_1 , ρ_2/ρ_1 和 T_2/T_1 只是上游马赫数 M_1 的函数。
- \square The upstream Mach Number M_1 is the determining parameter for changes across a normal shock wave in a calorically perfect gas.

正激波上游马赫数 M_1 是确定量热完全气体通过正激波特性变化的决定性参数。

读P578 " If M1 =1, · · · increase above 1

- 口 If M_1 =1, then $p_2/p_1 = \rho_2/\rho_1 = T_2/T_1 = 1$; i.e., we have the case of a normal shock wave of vanishing strength---a Mach wave. (如果 M_1 =1, 那么有 $p_2/p_1 = \rho_2/\rho_1 = T_2/T_1 = 1$; 即马赫波是无限弱的正激波。)
- □ As M_1 increases above 1, p_2/p_1 , ρ_2/ρ_1 , and T_2/T_1 progressively increase above 1. 当 M_1 大于1逐渐增加时, p_2/p_1 , ρ_2/ρ_1 , 和 T_2/T_1 也逐渐沿大于1的趋势增大。

$$\lim_{M_1 \to \infty} M_2 = \sqrt{\frac{\gamma - 1}{2\gamma}} = 0.378$$

$$\lim_{M_1 \to \infty} \frac{\rho_2}{\rho_1} = \frac{\gamma + 1}{\gamma - 1} = 6$$

$$\lim_{M_1 \to \infty} \frac{p_2}{p_1} = \infty$$

$$\lim_{M_1 \to \infty} \frac{T_2}{T_1} = \infty$$

- We have stated earlier that shock waves occur in supersonic flows; a stationary normal shock such as shown in Fig.8.3 does not occur in subsonic flow.
- □ That is , Eqs. (8.59),(8.61),(8.65), and (8.67), the upstream Mach number is supersonic, $M_1 \ge 1$.
- □ However, on a mathematical basis, these equations also allow solution for $M_1 \le 1$. These equations embody the continuity, momentum, and energy equations, which in principle do not care whether the value of M_1 is subsonic or supersonic.
- ☐ Here is an ambiguity which can only be resolved by second law of thermodynamics.

应用我们在第七章推导出的熵增公式,我们可以得到通过正激波的熵增计算公式:

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$
 (7.25)

$$s_{2} - s_{1} = c_{p} \ln \left\{ \left[1 + \frac{2\gamma}{\gamma + 1} (M_{1}^{2} - 1) \right] \frac{2 + (\gamma - 1)M_{1}^{2}}{(\gamma + 1)M_{1}^{2}} \right\}$$

$$-R \ln \left[1 + \frac{2\gamma}{(\gamma + 1)} (M_{1}^{2} - 1) \right]$$
(8.68)

From Eq. (8.68), we see that the entropy change s_2 - s_1 across the shock is a function of M_1 only. 由方程(8.68)可以看出,通过正激波的熵增 s_2 - s_1 只是波前马赫数 M_1 的函数。

The second law dictates that

$$s_2 - s_1 \ge 0$$

In Eq. (8.68), if $M_1=1$, $s_2=s_1$, and if $M_1>1$, then $s_2-s_1>0$, both of which obey the second law. However, if $M_1<1$, then Eq.(8.68) gives $s_2-s_1<0$, which is not allowed by the second law. Consequently, in nature, only cases involving $M_1\geq 1$ are valid, i.e., normal shock waves can occur only in supersonic flow.

译文:热力学第二定律指出:

$$s_2 - s_1 \ge 0$$

由方程(8.68)可以看出,如果 M_1 =1, s_2 = s_1 ; 如果 M_1 >1, then s_2 - s_1 >0, 两种情况都符合热力学第二定律。然而,如果 M_1 <1,则 (8.68) 式的结果为 s_2 - s_1 <0,其不符合热力学第二定律。因此,只有 M_1 ≥1的情况会发生,即,正激波只能在超声速流动中发生。

- □ Why does the entropy increase across the shock wave? The second law tells us that it must, but what's the mechanism?
- □ Recall that a shock wave is a very thin region (on the order of 10⁻⁵cm) across which some large changes occur almost discontinuously. Therefore, within the shock wave itself, large gradients in velocity and temperature occur; i.e., the mechanisms of friction and thermal conduction are strong. These are dissipative, irreversible mechanisms that always increase the entropy.
- □ Therefore, the precise entropy increase predicted by Eq.(8.68) for a given supersonic M_1 is appropriately provided by nature in the form of friction and thermal conduction within the interior of the shock wave itself.

- □译文: 为什么通过激波会出现熵增? 热力学第二定律告诉我们一定会有熵增, 但是这个熵增产生的机理是什么呢?
- □为了回答这些问题,让我们回忆第七章讨论过的内容:激波是非常薄的,厚度只有10⁻⁵cm,通过激波流动性质发生剧烈变化,几乎是不连续的。因此,在激波本身内部,有很大的速度梯度和温度梯度,即摩擦和热传导的作用是非常强的。
- 口这些耗散的、不可逆的机制总是引起熵增,因此,(8.68)式给出的超声速波前马赫数 M_1 对应的熵增实际是由于激波本身内部的摩擦与热传导引起的。

总参数T₀与p₀如何变化?

Figure 8.7 Total conditions ahead of and behind a normal shock wave.

首先回答T₀如何变化?

能量方程:

$$c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2}$$

(8.30)

(8.38)

总温定义:

$$c_p T_0 = c_p T + \frac{u^2}{2}$$

$$c_p T_{0,1} = c_p T_{0,2}$$

$$T_{0,1} = T_{0,2} \tag{8.39}$$

□ Equation (8.39) states that total temperature is constant across a stationary normal shock wave. 方程(8.39)表明: 通过静止正激波总温不变。

总压如何变化?可借助熵增计算公式求出:

$$s_{2a} - s_{1a} = c_p \ln \frac{T_{2a}}{T_{1a}} - R \ln \frac{p_{2a}}{p_{1a}}$$
 (8.70)

$$s_2 - s_1 = c_p \ln \frac{T_{0,2}}{T_{0,1}} - R \ln \frac{p_{0,2}}{p_{0,1}}$$
 (8.71)

$$s_2 - s_1 = -R \ln \frac{p_{0,2}}{p_{0,1}}$$
 (8.72)

$$\frac{p_{0,2}}{p_{0,1}} = e^{-(s_2 - s_1)/R} \tag{8.73}$$

□ From Eq. (8.68), we know that s_2 - s_1 >0 for a normal shock wave. Hence, Eq. (8.73) states that $p_{0.2}$ < $p_{0.1}$.

由公式(8.68),我们知道对于正激波 s_2 - s_1 >0,因此,式(8.73) 表明: $p_{0,2} < p_{0,1}$ 。

□ The total pressure decreases across a shock wave. The total pressure ratio $p_{0,2}/p_{0,1}$ across a normal shock wave is a function of M_1 only.

通过正激波总压降低,且正激波的波后波前总压比 $p_{0,2}/p_{0,1}$ 只是波前马赫数 M_1 的函数。

至此,我们已经全部回答了本节开始提出的问题:

$$M_2^2 = \frac{1 + [(\gamma - 1)/2]M_1^2}{\gamma M_1^2 - (\gamma - 1)/2}$$

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma + 1)M_1^2}{2 + (\gamma - 1)M_1^2}$$

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} (M_1^2 - 1)$$

$$\frac{T_2}{T_1} = \frac{h_2}{h_1} = \left[1 + \frac{2\gamma}{\gamma + 1}(M_1^2 - 1)\right] \frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)M_1^2}$$

$$s_{2} - s_{1} = c_{p} \ln \left\{ \left[1 + \frac{2\gamma}{\gamma + 1} (M_{1}^{2} - 1) \right] \frac{2 + (\gamma - 1)M_{1}^{2}}{(\gamma + 1)M_{1}^{2}} \right\} - R \ln \left[1 + \frac{2\gamma}{(\gamma + 1)} (M_{1}^{2} - 1) \right] \right\}$$

$$T_{0,1} = T_{0,2}$$

$$\frac{p_{0,2}}{p_{0,1}} = e^{-(s_2 - s_1)/R}$$

这些关系式在附录B中以列 表形式给出。

☐ In summary, we have now verified the qualitative changes across a normal shock wave as sketched in Fig.7.5b and as originally discussed in Sec. 7.6.

图7.5b

Figure 8.8 The variation of properties across a normal shock wave as a function of upstream Mach number: $\gamma = 1.4$.

下列表述正确的是

- 正激波上游马赫数M₁是确定量热完全气体 通过正激波特性变化的决定性参数。
- 正激波只能在超声速流动中发生,正激波 后的流动是亚声速的。
- **通过静止正激波总温不变。**
- **通过正激波熵增大、总压减小**

Example 8.11: Consider a normal shock wave in air where the upstream flow properties are u_1 =680m/s, T_1 =288k, and p_1 =1atm. Calculate the velocity, temperature, and pressure downstream of the shock.

Solution

$$a_1 = \sqrt{\gamma RT} = \sqrt{1.4(287)(288)} = 340(m/s)$$

$$M_1 = \frac{u_1}{a_1} = \frac{680}{340} = 2$$

查表B: 对于M₁=2, 有:

$$\frac{p_2}{p_1} = 4.5$$
, $\frac{T_2}{T_1} = 1.687$, $M_2 = 0.5774$

所以:
$$p_2 = \frac{p_2}{p_1} p_1 = 4.5 \text{(latm)} = 4.5 \text{atm}$$

$$T_2 = \frac{T_2}{T_1} T_1 = 1.687(288K) = 486K$$

$$a_2 = \sqrt{\gamma RT_2} = \sqrt{1.4(287)(486)} = 442(m/s)$$

$$u_2 = M_2 a_2 = 0.5774(442m/s) = 255m/s$$

例 8.12 超音速流中的正激波上游压强为1atm,计算在上游马赫数分别为(a) M_1 =2和(b) M_1 =4时,通过正激波的总压损失。比较两种结果并讨论

(a)
$$p_{0,1} = \frac{p_{0,1}}{p_1} p_1 = 7.824 \times 1 atm = 7.824 atm$$

 $p_{0,2} = \frac{p_{0,2}}{p_{0,1}} p_{0,1} = 0.7209 \times 7.824 atm = 5.64 atm$

$$p_{0.1} - p_{0.2} = 7.824atm - 5.64atm = 2.184atm$$

(b)
$$M_1 = 4$$

$$p_{0,1} = \frac{p_{0,1}}{p_1} p_1 = 151.8 \times 1 atm = 151.8 atm$$

$$p_{0,2} = \frac{p_{0,2}}{p_{0,1}} p_{0,1} = 0.1388 \times 151.8 atm = 21.07 atm$$

$$p_{0.1} - p_{0.2} = 151.8atm - 21.07atm = 130.7atm$$

Note: 在任何流动中,总压是宝贵的资源。流动总压的损失意味着流体做功能力的损失。总压的损失降低流体机械的性能。本例说明,当流动中出现正激波时,在其他条件相同的情况下,正激波前马赫数越小越好。

Problem 8.5, 8.6, 8.7, 8.8, 8.9, 8.10

The End! Thank you for your attention!

欢迎关注"气动与多学科优化" 课题组微信公众号

