

Árvores

- Terminologia
- Travessias
- Árvores Binárias
- Estruturas de dados para representar árvores

Árvores (Matemática)

- Um conceito matemático parte da teoria de grafos
- Neste contexto, chama-se árvore a um grafo que tem quaisquer dois nós ligados por um único caminho

Árvores (Computação)

- Na computação, as árvores têm adicionalmente uma raiz
- Permitem representar elementos de uma forma hierárquica
 - sistema de ficheiros
 - organogramas
 - tipos Java

modules X11 lib bin papers music homework X11R6 bin allen adm cdrom lydia spool mnt carlos aron home one per Linux system

 Permitem representar expressões, até programas

Exemplos

Árvores

- Características:
 - uma árvore tem um conjunto de nós
 - uma árvore com um conjunto de nós não vazio tem um nó distinguido a que se chama raiz
 - com excepção da raiz, cada nó na árvore tem um único pai
 - cada nó tem zero ou mais filhos
- Se adicionalmente a ordem dos filhos em cada nó é relevante então temos uma árvore ordenada (ordered tree)
- Uma árvore binária (binary tree) é uma árvore ordenada em que cada nó tem no máximo dois filhos, sendo que cada um desses filhos é identificado como sendo o filho esquerdo ou direito.

Terminologia e Propriedades

Terminologia:

- Nó externo ou folha: nó sem filhos
- Nó interno: tem pelo menos um filho
- Nós irmãos: têm o mesmo pai
- Antepassados: o próprio, o pai, o pai do pai, ...
- Descendentes: o próprio, os filhos, os filhos dos filhos,...
- Profundidade de um nó: número de antepassados
- Altura da árvore: profundidade máxima dos nós
- Aresta: um par de nós (u,v) em que u é pai de v
- Caminho: sequência de nós ligados por arestas
- Sub-árvore: uma árvore consistindo num nó e todos os seus descendentes
- Seja *n* o número de nós e *h* a altura. Numa <u>árvore binária</u> temos:

$$h \le n \le 2^{h-1}$$

Árvores Binárias Cheias

Seja *n* o número de nós, *f* o número de folhas e *h* a altura

• Uma árvore binária é cheia se cada nó tem 0 ou 2 filhos

$$- n = 2*f-1$$

 Uma árvore cheia é perfeita se todas as folhas têm a mesma profundidade

$$- n = 2^{h-1}$$

$$- f = 2^{h-1}$$

 Uma árvore binária é completa se é perfeita até ao nível h-1 e o nível h está preenchido a partir da esquerda

- Muitos algoritmos sobre árvores recorrem à travessia dos nós de uma forma sistemática, seguindo uma determinada ordem
- Exemplo:

$$[(5+z)/(-8)] * 4^2$$

- Entre as travessias em profundidade (depth-first) temos:
 - Travessia prefixa (*preorder traversal*): cada nó é visitado antes dos seus descendentes

```
Algorithm preOrder(v) {
   visit(v)
   for each child w of v
      preOrder(w)
}
```


 Travessia sufixa (postorder traversal): cada nó é visitado depois dos seus descendentes

```
Algorithm postOrder(v) {
   for each child w of v
     postOrder(w)
   visit(v)
}
```


- No caso de árvores binárias temos ainda outra travessia:
 - Travessia infixa (*inorder traversal*): visitada a sub-árvore esquerda, a raiz, depois a sub-árvore direita

```
Algorithm inOrder(v) {
   if v has a left child l
     inOrder(l)
   visit(v)
   if v has a right child r
     inOrder(r)
}
```


Existe ainda a travessia em largura (breadh-first):

```
Algorithm breadth(tree) {
    q = empty queue
    enqueue root(tree) in q
    while (q is not empty)
    v = dequeue q
    visit(v)
    for each child w of v
        enqueue w in q
}
```


Árvores Binárias

- A partir de agora vamos concentrar-nos no ADT árvore binária (binary tree) e suas implementações
- Exemplos de aplicação:
 - Expressões aritméticas
 - nós internos são operadores
 - folhas são operandos
 - Processos de decisão

nós internos são perguntas de resposta sim/não

Árvore Binária

Este ADT pode ser definido recursivamente:

- uma árvore binária é vazia ou
- consiste num nó a raiz uma sub-árvore direita e uma subárvore esquerda

com as operações

- empty: constrói BT vazia
- make(e,l,r): constrói uma árvore tendo
 - na raiz um nó com o elemento e e
 - I, r como sub-árvores esquerda e direita, respectivamente
- leftSubtree: indica a sub-árvore esquerda
- rightSubtree: indica a sub-árvore direita
- data: indica o elemento que está na raiz
- isEmpty: indica se é a BT vazia

Binary Tree: Especificação

```
specification BinaryTree[Element]
 sorts
   BinaryTree[Element]
  constructors
   empty: --> BinaryTree[Element];
   make: Element BinaryTree[Element] BinaryTree[Element] --> BinaryTree[Element];
 observers
   isEmpty: BinaryTree[Element];
   data: BinaryTree[Element] -->? Element;
   leftSubtree: BinaryTree[Element] -->? BinaryTree[Element];
   rightSubtree: BinaryTree[Element] -->? BinaryTree[Element];
  domains
   T: BinaryTree[Element];
   data(T) if not isEmpty(T);
   leftSubtree(T) if not isEmpty(T);
   rightSubtree(T) if not isEmpty(T);
 axioms
   T, T1, T2: BinaryTree[Element]; E: Element;
   data(make(E, T1, T2)) = E;
    leftSubtree(make(E, T1, T2)) = T1;
   rightSubtree(make(E, T1, T2)) = T2;
   isEmpty(empty());
   not isEmpty(make(E, T1, T2));
end specification
```

Binary Tree: Especificação

```
others
 isLeaf: BinaryTree[Element];
  height: BinaryTree[Element] --> int;
 occurrences: BinaryTree[Element] Element --> int;
 isBalanced: BinaryTree[Element];
 isPerfect: BinaryTree[Element];
 isComplete: BinaryTree[Element];
axioms
 T, T1, T2: BinaryTree[Element]; E: Element;
  isLeaf(T) iff not isEmpty(T) and isEmpty (leftSubtree(T)) and
         isEmpty(rightSubtree (T));
  height(empty()) = 0;
  height(make(X, T1, T2)) = 1 + max (height(T1), height(T2));
  isBalanced(empty());
  isBalanced(make(E, T1, T2)) if isBalanced(T1) and isBalanced(T2) and
               abs(height(T1) - height(T2)) \ll 1;
  isPerfect(empty());
  isPerfect(make(E, T1, T2)) if height(T1) = height(T2) and isPerfect(T1) and
             isPerfect(T2);
  isComplete (empty());
  isComplete (make(E, T1, T2)) if height(T1) = height(T2) and isPerfect(T1) and
            isComplete(T2) or height(T1) = height(T2) + 1 and isComplete(T1) and
            isPerfect(T2):
```

Exemplo

Construção de uma Árvore de Expressões

Algoritmo que, recorrendo a uma pilha, constrói uma árvore que representa uma expressão

Uma expressão é vista como uma sequência de *tokens* que se dividem em três tipos: números, operadores e parêntesis curvos.

Hipótese: a sequência representa efectivamente uma expressão.

Exemplo

```
Algorithm buildExpression(X,n) {
  S = make() // stack of binary trees
  for i=0 to n-1 do
     if X[i] is a number or operator then
       T = make(X[i], empty(), empty())
       S = push(S,T)
     else if X[i] is ")" then
       T2 = peek(S); S = pop(S)
       T = peek(S); S = pop(S)
       T1 = peek(S); S = pop(S)
       T = make(data(T), T1, T2)
       S = push(S,T)
  return peek(S)
```

Binary Tree: Interface para Implementações Imutáveis

```
interface BinaryTree<E> {
   /** @return the data in the root node
    * @requires !isEmpty()
    * /
  public E data();
   /** @return the left subtree
    * @requires !isEmpty()
    * /
  public BinaryTree<E> leftSubtree();
   /** @return the right subtree
    * @requires !isEmpty()
    * /
   public BinaryTree<E> rightSubtree();
   /** @return If the tree is empty */
   public boolean isEmpty();
   /** @return The height of the tree */
   public int height();
   /** @param e an element
    * @return The number of times e occurs in this tree
    * /
   public int occurrences(E e);
```

- Escolhendo uma estrutura ligada a ideia é:
 - ter nós ligados às sub-árvores direita e esquerda
 - manter em *root* uma referência para o nó raiz da estrutura

 LinkedBinaryTree: implementação de árvores binárias imutáveis com uma estrutura ligada

```
//class Node
private static class Node<E> {
    E data;
    Node<E> left;
    Node<E> right;
    private Node(E data, Node<E> left, Node<E> right) {
        this.data = data;
        this.left = left;
        this.right = right;
}
```

```
//the root node
private Node<E> root;
```



```
// Constructors
public LinkedBinaryTree () {
  this.root = null;
//@requires left!=null && right!=null
public LinkedBinaryTree (E data, LinkedBinaryTree<E> left,
                                  LinkedBinaryTree<E> right) {
  this.root = new Node < E > (data, left.root, right.root);
//additional constructor
public LinkedBinaryTree (E data) {
  this.root = new Node < E > (data, null, null);
//auxiliary private construtor
private LinkedBinaryTree (Node<E> root) {
  this.root = root;
```

```
// Observers
public boolean isEmpty() {
  return root == null;
//@ requires !isEmpty()
public E data() {
  return root.data;
//@ requires !isEmpty()
public LinkedBinaryTree<E> leftSubtree() {
  return new LinkedBinaryTree<E> (root.left);
```

```
// The number of times an element occurs in this tree
public int occurrences(E element) {
  return occurrences (element, root);
private int occurrences(E element, Node<E> node) {
  if (node == null)
    return 0:
  else if (Objects.equals(element, node.data))
    return 1 + occurrences(element, node.left) +
               occurrences (element, node.right);
  else
    return occurrences (element, node.left) +
           occurrences (element, node.right);
```


Espaço ocupado é O(n)

Method	Time
data	O(1)
left/rightSubtree	O(1)
isEmpty	O(1)
height	O(n)*
occurrences	O(n)

^{*} O(1) se for usado atributo

Binary Tree: Implementação baseada num vector

- Escolhendo um vector a ideia é baseada numa forma de numerar os nós da árvore.
- Para todo o nó v, seja p(v) tal que
 - p(v)=1 se v é a raiz
 - p(v)=2*p(u) se v é o filho esquerdo de u
 - p(v)=2*p(u)+1 se $v \in o$ filho direito de u

1

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	F	В	G	Α	D		1			С	Ε			Н	