MA571 Homework 8

Carlos Salinas

October 23, 2015

Problem 8.1 (Munkres §46, Ex. 6)

Show that the compact-open topology, $\mathcal{C}(X,Y)$ is Hausdorff if Y is Hausdorff, and regular if Y is regular. [Hint: If $\overline{U} \subset V$, then $\overline{S(C,U)} \subset S(C,V)$.]

Proof. Suppose that Y is Hausdorff. Let f and g be distinct continuous functions from X to Y. Then there exists a point $x_0 \in X$ such that $f(x_0) \neq g(x_0)$. Since Y is Hausdorff there exists disjoint neighborhoods U and V of $f(x_0)$ and $g(x_0)$, respectively. Now, we claim that

Claim. If $C \subset X$ is finite, C is compact.

Proof. Write $C = \{x_1, ..., x_n\}$. Let \mathcal{A} be an open cover of C. Then since $C \subset \bigcup_{U_\alpha \in \mathcal{A}} U_\alpha$ we can choose A_i containing x_i for every $1 \leq i \leq n$. Thus, the subcollection $\{U_i\}_{i=1}^n$ covers C.

Let $U' = S(\{x_0\}, U)$ and $V' = S(\{x_0\}, V)$. Note that U' and V' are nonempty since $f \in U'$ and $g \in V'$. Moreover, their intersection is empty for suppose $h \in U' \cap V'$, then $h(x_0) \in U \cap V$, but $U \cap V = \emptyset$. Then, since U' and V' are subbasis elements for the compact-open topology on C(X, Y) and they "separate" f and g, it follows that C(X, Y) is Hausdorff.

Now, suppose that Y is regular. We shall proceed by the hint and Lemma 31.1(b). Consider the subbasis element S(C,U). Since Y is regular, there exists a neighborhood $V\supset U$ such that $V\supset \overline{U}$. Let $f\in \overline{S(C,U)}$. Then, we claim that $f\in S(C,V)$. For suppose not, then there exists an element $x_0\in C$ such that $f(x_0)\notin V$. Then, since $\overline{U}\subset V$, by hypothesis, $f(x_0)\notin \overline{U}$. Consider the subbasic neighborhood $S\left(\{x_0\},Y-\overline{U}\right)$ of f. Then, $S\left(\{x_0\},Y-\overline{U}\right)\cap S(C,U)$ is nonempty. Let g be in the aforementioned intersection. Then $g(x_0)\in g(C)\subset U$, but $g(x_0)\in Y-\overline{U}$. This is a contradiction. It follows by Lemma 31.1(b) that $\mathcal{C}(X,Y)$ is regular.

PROBLEM 8.2 (MUNKRES §46, Ex. 7)

Show that if Y is locally compact Hausdorff, then composition of maps

$$C(X,Y) \times C(Y,Z) \longrightarrow C(X,Z)$$

is continuous, provided the compact-open topology is used throughout. [Hint: If $g \circ f \in S(C, U)$, find V such that $f(C) \subset V$ and $g(\overline{V}) \subset U$.]

Proof. Let $F: \mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$ given by $(f,g) \mapsto g \circ f$. Suppose $g \circ f \in S(C,U)$. Then $g(f(C)) \subset U$ and since is continuous, we have that $g^{-1}(U)$ is an open set containing f(C). Thus, by theorem 29.2, for every $x \in f(C)$ there exists an open neighborhood V_x of x such that $\overline{V_x} \subset g^{-1}(U)$ is compact. Then the collection of all such open neighborhoods, $\{V_x\}_{x \in f(C)}$, forms an open cover of f(C). Since f(C) is compact, by Theorem 26.5 since C is compact and f is continuous, then by Lemma 26.1 there exists a finite subcollection, say $\{V_i\}_{i=1}^n$, that covers C. Let $V = \bigcup_{i=1}^n V_i$. We claim that $\overline{V} \subset U$ and is compact. More generally, we have

Lemma 16 (Munkres §26, Ex. 3). A finite union of compact subspaces of X is compact.

Proof of lemma. Suppose $C_1, ..., C_n \subset X$ are compact and write $C = \bigcup_{i=1}^n C_i$. Let $\mathcal{A} = \{U_\alpha\}$ be an open cover of C. Then $C_i \subset \bigcup U_\alpha$ so, since C_i is compact, there exists a finite subcollection $\mathcal{A}_i = \{U_j^i\}_{j=1}^{n_i}$ that covers C_i . Then $\mathcal{B} = \bigcup_{i=1}^n \mathcal{A}_i$ is a finite subcollection of \mathcal{A} that covers C, i.e., C is compact.

By Lemma 16, \overline{V} is compact since, by induction on Problem 2.2 (Munkres §17, Ex. 6(b)), it is the union of finitely many compact sets $\overline{V} = \bigcup_{i=1}^n \overline{V_i}$. Moreover, by Lemma 5 (from HW # 2¹) we have that $f(C) \subset V \subset \overline{V} \subset g^{-1}(U)$. At last, tying these results together, we have

$$F(S(C,V)\times(\overline{V},U))\subset S(C,U),$$

since $f' \in S(C, V)$ if $f'(C) \subset V$ and $g' \in S(\overline{V}, U)$ if $g'(\overline{V}) \subset U$ so $g'(f'(C)) \subset g'(\overline{V}) \subset U$ so $g' \circ f' \in S(C, U)$. It follows, by Theorem 18.1(4), that F is continuous.

¹This states that if $A_{\alpha} \subset C$ then $\bigcup A_{\alpha} \subset C$.

PROBLEM 8.3 (MUNKRES §46, Ex. 8)

Let $\mathcal{C}'(X,Y)$ denote the set $\mathcal{C}(X,Y)$ in some topology \mathcal{T} . Show that if the evaluation map

$$e: X \times \mathcal{C}'(X,Y) \longrightarrow Y$$

is continuous, then \mathcal{T} contains the compact-open topology. [Hint: The induced map $E: \mathcal{C}'(X,Y) \to \mathcal{C}(X,Y)$ is continuous.]

Proof. Suppose that the evaluation map $e: X \times \mathcal{C}'(X,Y) \longrightarrow Y$ is continuous. Then, by Theorem 46.11 the induced map $E: \mathcal{C}'(X,Y) \to \mathcal{C}(X,Y)$ in

$$X \times \mathcal{C}'(X,Y) \xrightarrow{(\mathrm{id}_X,E)} X \times \mathcal{C}(X,Y) \xrightarrow{e'} Y$$

is continuous. In fact, it is easy to see that the induced map E is the identity map on $\mathcal{C}(X,Y)$ for e(x,f)=f(x)=f'(x)=e'(f',x)=e'(E(f),x) for all x so f=f'. Now, let S(C,U) be a subbasic open set in $\mathcal{C}(X,U)$. Then $E^{-1}(S(C,U))=S(C,U)$ is open in $\mathcal{C}'(X,Y)$. Thus \mathcal{T} is finer than the compact-open topology.

 $CARLOS \ SALINAS$ PROBLEM 8.4((A))

PROBLEM 8.4 ((A))

Definition 1. Definition. If X is a locally compact Hausdorff space then the space Y given by Theorem 29.1 is called the *one-point compactification* of X.

Let X be a compact Hausdorff space and let W be an open subset of X (so W is locally compact by Corollary 29.3) with $W \neq X$. Prove that the one-point compactification of W is homeomorphic to the quotient space X/(X-W).

Proof. Let W_{∞} denote the one-point compactification of W and define the map $p: X \to W_{\infty}$ by

$$p(x) = \begin{cases} x, & x \in W \\ \infty, & x \in X - W. \end{cases}$$

We claim that p is continuous. It suffices to show that the preimage of a basic open set in W_{∞} is open in X. Suppose U is a type 1 open subset of W_{∞} , that is, U does not contain the point at infinity. Then $U \subset W$ so is open in X by Theorem 16.2. Suppose that U is a type 2 open subset of W_{∞} . Then $C = W_{\infty} - U$ is a compact subset of W_{∞} . Moreover $C \subset W$ so C is a compact subset of X, that is to say, if $\{U_{\alpha}\}$ is an open cover of C in X, then $\{U_{\alpha} \cap W\}$ is an open cover of C in W and since C is compact in W, there exists a finite subcollection $\{U_i \cap W\}_{i=1}^n$ in Y that covers C hence, the collection $\{U_i\}_{i=1}^n$ is a finite subcollection in X that covers C. It follows by Theorem 26.3 that C is closed so $p^{-1}(U) = X - C$ is open in X. Thus, p is continuous. By Theorem Q.3, it follows that the induced map $\bar{p}: X/(X-W) \to W_{\infty}$ is continuous. Moreover, p preserves the equivalence relation: Suppose $x \sim y$ then either $x = y \in W$ or $x, y \in X - W$; in the former we have p(x) = x = y = p(y); in the latter we have $p(x) = \infty = p(y)$.

By Theorem 26.6, since the quotient X/(X-W) is compact and W_{∞} is Hauusdorff, it suffices to show that \bar{p} is bijective. It is clear that \bar{p} is surjective since p is surjective $(p(X) = p(W \cup (X-W)) = p(W) \cup p(X-W) = W \cup \{\infty\} = W_{\infty})$. To see that \bar{p} is injective suppose p([x]) = p([y]). Then $p([x]) = \infty$ or $p([x]) \neq \infty$. If $p([x]) \neq \infty$, then p([x]) = x = y = p([x]) or $p([x]) = \infty = p([y])$. In either case, $x \sim y$ so [x] = [y]. Thus, \bar{p} is bijective. It follows that \bar{p} is a homeomorphism.

 $CARLOS\ SALINAS$ PROBLEM 8.5((B))

PROBLEM 8.5 ((B))

Let X be a compact Hausdorff space, let Y be a topological space, and let $p: X \to Y$ be a closed surjective continuous map. Prove that Y is Hausdorff. [Hint: one ingredient in the proof is p. 171 # 5.]

Note: combining this with HW 4 Problem E and HW 6 Problem A gives a necessary and sufficient condition for a quotient of a compact Hausdorff space to be Hausdorff.

Proof. Let x and y be distinct points in Y. Since p is surjective, there exist x_0 and y_0 in X such that $p(x_0) = x$ and $p(y_0) = y$. Then, since X is Hausdorff, by Theorem 17.8, x_0 and y_0 are closed in X so x and y are closed in Y. Then $p^{-1}(x)$ and $p^{-1}(y)$ are closed since

$$X - p^{-1}(x) = p^{-1}(Y - x)$$

which is open in X since Y-x is open in Y and p is continuous. Moreover, $p^{-1}(x)$ and $p^{-1}(y)$ are clearly disjoint for otherwise p(z)=x=y, but $x\neq y$. Now, by Theorem 32.3, X is normal since it is a compact Hausdorff space (alternatively we may appeal to Theorem 26.3 and Munkres §26, Ex. 5 as suggested in the hint) so there exist disjoint open sets U and V containing $p^{-1}(x)$ and $p^{-1}(y)$, respectively. Then X-U and X-V are closed so p(X-U) and p(X-V) are closed in Y. Then, we claim U'=Y-p(X-U) and V'=Y-p(X-V) are disjoint neighborhoods of x and y, respectively. It is clear that U' and V' are open, since their complements are closed. Moreover, $U'\ni x$ and $V'\ni y$ since Y-U'=p(X-U) does not contain x and Y-V'=p(X-V) does not contain y. Lastly, $U'\cap V'=\emptyset$ for otherwise there is $z\in U'\cap V'$ so $z\notin p(X-U)$ and $z\notin p(X-V)$ so $z\in Y-(p(X-U)\cup p(X-V))$, but $p(X-U)\cup p(X-V)\supset p((X-U)\cup p(X-V))=p(X)$ so $z\in\emptyset$, this is a contradiction. Thus, Y is Hausdorff.

 $CARLOS\ SALINAS$ PROBLEM 8.6((C))

PROBLEM 8.6 ((C))

Let $S^2 \subset \mathbf{R}^3$ be the subspace

$$\{(x,y,z) \mid x^2 + y^2 + z^2 = 1\}.$$

Prove that S^2 is a 2-manifold. (The definition of *m*-manifold, where *m* is a positive whole number, is given at the top of page 225.)

Proof. Note that, by Problem 3.9 (A) from HW # 3, since \mathbf{Q}^3 is a dense countable subset of \mathbf{R}^3 , \mathbf{R}^3 has a countable basis so S^2 has a countable basis. Next, we define the following system of charts in S^2x with inverses

$$\varphi_{z}(x,y,z) = (x,y) \qquad \varphi_{z}^{-1}(x,y) = \left(x,y,\sqrt{1-x^{2}-y^{2}}\right) \qquad U_{z} = \left\{(x,y,z) \in S^{2} \mid z > 0\right\}$$

$$\varphi_{-z}(x,y,z) = (x,y) \qquad \varphi_{-z}^{-1}(x,y) = \left(x,y,-\sqrt{1-x^{2}-y^{2}}\right) \qquad U_{-z} = \left\{(x,y,z) \in S^{2} \mid z < 0\right\}$$

$$\varphi_{y}(x,y,z) = (x,z) \qquad \varphi_{y}^{-1}(x,z) = \left(x,\sqrt{1-x^{2}-z^{2}},z\right) \qquad U_{y} = \left\{(x,y,z) \in S^{2} \mid y > 0\right\}$$

$$\varphi_{-y}(x,y,z) = (x,y) \qquad \varphi_{-y}^{-1}(x,y) = \left(x,-\sqrt{1-x^{2}-z^{2}},z\right) \qquad U_{-y} = \left\{(x,y,z) \in S^{2} \mid y < 0\right\}$$

$$\varphi_{x}(x,y,z) = (x,y) \qquad \varphi_{x}^{-1}(x,y) = \left(\sqrt{1-y^{2}-z^{2}},y,z\right) \qquad U_{x} = \left\{(x,y,z) \in S^{2} \mid x > 0\right\}$$

$$\varphi_{-x}(x,y,z) = (x,y) \qquad \varphi_{-x}^{-1}(x,y) = \left(-\sqrt{1-y^{2}-z^{2}},y,z\right) \qquad U_{-x} = \left\{(x,y,z) \in S^{2} \mid x < 0\right\}$$

These maps are obviously continuous by Theorem 18.4 and 21.4, invertible, and they are is fact homeomorphisms by Theorem 26.6. Now, note that the open sets $\{U_x, U_{-x}, U_y, U_{-y}, U_z, U_{-z}\}$ cover S^2 so every point $(x, y, z) \in S^2$ is contained in one. Then, by the definition of m-manifold in Munkres §36, p. 225, it follows that S^2 is a 2-manifold, i.e, a surface.

 $CARLOS\ SALINAS$ PROBLEM 8.7((D))

PROBLEM 8.7 ((D))

Prove that the union of the x and y-axes in \mathbb{R}^2 is not a 1-manifold.

Proof. Let X denote the union of he x and y-axes, that is,

$$X = \{ (x,0) \} \cup \{ (0,x) \}$$

for $x \in \mathbf{R}$. Suppose X is a 1-manifold. Then around every open subset U of X, there exists a homeomorphism $\varphi \colon U \to V$ for some V open in \mathbf{R} . Without loss of generality, we may assume V = (a,b) for some real numbers a < b. Now, consider the open neighborhood $U = B((0,0),\varepsilon) \cap X = ((-\varepsilon,\varepsilon) \times 0) \cup (0 \times (-\varepsilon,\varepsilon))$. Since X is a 1-manifold, there exists a homeomorphism $\varphi \colon U \to (a,b)$. Then, by Lemma A, $\varphi(U - 0 \times 0) \approx (a,b) - \varphi(0 \times 0)$. However,

$$U - 0 \times 0 = ((-\varepsilon, 0) \times 0) \cup ((0, \varepsilon) \times 0) \cup (0 \times (-\varepsilon, 0)) \cup (0 \times (0, \varepsilon))$$

is a union of four disjoint open subsets of X, therefore, U consists of four connected components. However, $(a,b)-\varphi(0\times 0)=(a,\varphi(0\times 0))\cup(\varphi(0\times 0),b)$ consists of only two connected components. This is a contradiction. It follows that X is not a 1-manifold.