

Mechatronics Engineering

Lecture (1)

Faculty of Engineering

Chapter (1) Interpolation

الاستكمال

interpolation الإستكمال

Equal interval الفروق المتساوية

Un equal interval الفروق غير المتساوية

In the equal interval:

$$x_1 - x_o = x_2 - x_1 = \dots = h$$

In the unequal interval:

$$x_1 - x_0 \neq x_2 - x_1 \neq \dots$$

تعتمد الفكرة على:

x	x_o	x_1	x_{n-1}	\boldsymbol{x}_n
y = f(x)	y _o	<i>y</i> _o	y_{n-1}	y_n

ومطلوب إيجاد قيمة غير موجودة بالجدول:

عدد القراءات في الجدول ناقص 1

الحل:

1. نكون كثيرة حدود من الدرجة n

Polynomial of degree n

$$P_n(x) = \dots$$

Page 1 of 26

Dr. Ashraf Almahalawy

Mechatronics Engineering

Lecture (1)

Faculty of Engineering

Figure (the equal interval

2. ثم بعد ذلك نوجد أي قيمة لل (x) مطلوبة

The unequal interval:

$$x_1 - x_0 \neq x_2 - x_1 \neq \dots$$

un equal interval الفروق غير المتساوية

Lagrange interpolation

Newton divied deferance

Mechatronics Engineering

Faculty of Engineering

Tanta University

Lagrange interpolation:

$$P_{n}(x) = \frac{(x - x_{1})(x - x_{2}).....(x - x_{n})}{(x_{o} - x_{1})(x_{o} - x_{2}).....(x_{o} - x_{n})} y_{o} + \frac{(x - x_{o})(x - x_{2}).....(x - x_{n})}{(x_{1} - x_{o})(x_{1} - x_{2}).....(x_{1} - x_{n})} y_{1} + \frac{(x - x_{o})(x - x_{1}).....(x - x_{n-1})}{(x_{n} - x_{0})(x_{n} - x_{1}).....(x_{n} - x_{n-1})} y_{n}$$

Where:

$$L_{o}(x) = \frac{(x - x_{1})(x_{1} - x_{2}).....(x - x_{n})}{(x_{o} - x_{1})(x_{o} - x_{2}).....(x_{o} - x_{n})}$$

$$L_{1}(x) = \frac{(x - x_{o})(x - x_{2}).....(x - x_{n})}{(x_{1} - x_{o})(x_{1} - x_{2}).....(x_{1} - x_{n})}$$

$$L_{n}(x) = \frac{(x - x_{o})(x - x_{1}).....(x - x_{n-1})}{(x_{n} - x_{0})(x_{n} - x_{1}).....(x_{n} - x_{n-1})}$$

$$P_{n}(x) = \sum_{i=0}^{n} L_{i}(x)y_{i} = \sum_{i=0}^{n} L_{i}(x)f(x_{i})$$

Where:

 $L_i(x)$ Is agrange coefficient polynomial

Error terms and error bounds:

For unequal interval:

Error term:

$$E_{n}(x_{i}) = f(x_{i}) - P_{n}(x_{i})$$

$$E_{n}(x) = \frac{(x - x_{o})(x - x_{1}).....(x - x_{n})}{(n+1)!} f^{(n+1)}(c) \to c \in [a,b]$$

Mechatronics Engineering

Lecture (1

Tanta University

Faculty of Engineering

Erro bounds:

$$E_{n}(x) \leq \frac{\left| (x - x_{o})(x - x_{1})....(x - x_{n}) \right|}{(n+1)!}$$

$$M_{n+1} = \max_{a \leq c \leq b} \left| f^{(n+1)}(c) \right|$$

- . الجديدة $P_n(x)$ الجديدة $P_n(x)$ الجديدة $P_n(x)$ الجديدة الخديدة المكن حذف أو إضافة أي قيمة داخل الجدول لأن ذلك يستلزم البدء من الاول لحساب

For equal interval:

Error bounds:

$$E_{1}(x) \leq \frac{h^{2}}{8} M_{2}, x \in [x_{o}, x_{1}]$$

$$E_{2}(x) \leq \frac{h^{3}}{9\sqrt{3}} M_{3}, x \in [x_{o}, x_{2}]$$

$$E_{1}(x) \leq \frac{h^{4}}{24} M_{4}, x \in [x_{o}, x_{3}]$$

Example (1):

Derive the LaGrange polynomial that interpolates

X	-1	0	3
Y	8	-2	4

Solution:

Therefore it follows that we need to compute

$$P_2(x) = f(-1)L_o(x) + f(0)L_1(x) + f(3)L_2(x) \leftrightarrow (1)$$

$$L_o(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0)(x - 3)}{(-1 - 0)(-1 - 3)} = \frac{1}{4}x(x - 3)$$

Department of Physics and Engineering Mathematics Numerical analysis (BAS12 Mechatronics Engineering

cnatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

$$L_1(x) = \frac{(x - x_o)(x - x_2)}{(x_1 - x_o)(x_1 - x_2)} = \frac{(x - (-1))(x - 3)}{(0 - (-1))(0 - 3)} = \frac{(x + 1)(x - 3)}{(0 + 1)(0 - 3)} = \frac{1}{3}(x + 1)(x - 3)$$

$$L_2(x) = \frac{(x - x_o)(x - x_1)}{(x_2 - x_1)(x_2 - x_1)} = \frac{(x - (-1))(x - 0)}{(3 - (-1))(3 - 0)} = \frac{(x + 1)(x - 0)}{(3 - (-1))(3 - 0)} = \frac{1}{12}x(x + 1)$$

Substitute in the equation (1)

The Lagrange interpolating polynomial is given by

$$P_2(x) = f(-1)L_o(x) + f(0)L_1(x) + f(3)L_2(x)$$

$$P_2(x) = 2x(x-3) + \frac{2}{3}(x+1)(x-3) + \frac{1}{3}x(x+1)$$

Example (2):

Determine the coefficients of the Lagrange interpolating polynomial that interpolates the following data, and evaluate it at (x=2.12)

X	2	2.1	2.2
Y	0.69315	0.74194	0.78846

Solution:

$$P_2(x) = f(2)L_2(x) + f(2.1)L_1(x) + f(2.2)L_2(x)$$

Therefore it follows that we need to compute

$$P_{2}(2.12) = f(2)L_{o}(2.12) + f(2.1)L_{1}(2.12) + f(2.2)L(2.12) \rightarrow (1)$$

$$L_{o}(2.12) = \frac{(x - x_{1})(x - x_{2})}{(x_{o} - x_{1})(x_{o} - x_{2})} = \frac{(2.12 - 2.1)(2.12 - 2.2)}{(2 - 2.1)(2 - 2.2)} = -0.08$$

$$L_{1}(2.12) = \frac{(x - x_{o})(x - x_{2})}{(x_{1} - x_{o})(x_{1} - x_{2})} = \frac{(2.12 - 2)(2.12 - 2.2)}{(2.1 - 2)(2.1 - 2.2)} = 0.96$$

$$L_{2}(2.12) = \frac{(x - x_{o})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} = \frac{(2.12 - 2)(2.12 - 2.1)}{(2.2 - 2)(2.2 - 2.1)} = 0.12$$

Substitute in the equation (1)

Department of Physics and Engineering Mathematics Numerical analysis (BAS12 Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

The Lagrange interpolating polynomial is given by

$$P_2(2.12) = f(2)L_o(2.12) + f(2.1)L_1(2.12) + f(2.2)L(2.12)$$

$$P_2(2.12) = 0.619315(-0.08) + 0.74194(0.69) + 0.78846(0.12) = 0.75142$$

Example (3):

Consider $f(x) = \cos(x)$ over [0,1.2] the following table Determine the error bounds for Lagrange interpolating polynomial $P_2(x)$

X	0	0.6	1.2
Y	1	0.825336	0.362358

Solution:

First, w determine abound of Error

$$\left| E_2(x) \right| \le \frac{h^3}{9\sqrt{3}} M_3$$

Where:

$$M_3 = |f^{(3)}(x)| = |\sin(x)| \le |\sin(1.2)| = 0.932039$$

The spacing of the nodes h = 0.6 and its error bound is

$$|E_2(x)| \le \frac{(0.6)^3 (0.932039)}{9\sqrt{3}} = 0.012915$$

Example (4):

Find the polynomial of degree ≤ 3 that interpolates the following data using Lagrange interpolation.

X	1.2	2.1	3	3.6
y	0.7	8.1	27.7	45.1

Solution:

Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

$$P_n(x) = \sum_{i=0}^n L_i(x) * y_i$$

$$L_0(x) = \frac{(x-2.1)(x-3)(x-3.6)}{(1.2-2.1)(1.2-3)(1.2-3.6)} = -0.257(x-2.1)(x-3)(x-3.6)$$

$$L_1(x) = \frac{(x - 1.2)(x - 3)(x - 3.6)}{(2.1 - 1.2)(2.1 - 3)(2.1 - 3.6)} = 0.823(x - 1.2)(x - 3)(x - 3.6)$$

$$L_2(x) = \frac{(x - 1.2)(x - 2.1)(x - 3.6)}{(3 - 1.2)(3 - 2.1)(3 - 3.6)} = -1.029(x - 1.2)(x - 2.1)(x - 3.6)$$

$$L_3(x) = \frac{(x - 1.2)(x - 2.1)(x - 3)}{(3.6 - 1.2)(3.6 - 2.1)(3.6 - 3)} = 0.463(x - 1.2)(x - 2.1)(x - 3)$$

Then

$$P_3(x) = -0.18(x - 2.1)(x - 3)(x - 3.6) + 6.67(x - 1.2)(x - 3)(x - 3.6)$$

$$-28.49(x - 1.2)(x - 2.1)(x - 3.6)$$

$$+20.8(x - 1.2)(x - 2.1)(x - 3)$$

Example (5):

Let $f(x) = 2x^2 e^x + 1$ construct a Lagrange polynomial of degree two using $x_0 = 0$, $x_1 = 0.5$ and $x_2 = 1$ hence find the value of f(0.8) and its error.

Solution:

From the giving data we can form the following table

X	0	0.5	1
Y	1	1.824	6.437

Then

$$P_n(x) = \sum_{i=0}^{n} L_i(x) * y_i$$
 , n = 2

$$P_2(x) = L_0(x) y_0 + L_1(x) y_1 + L_2(x) y_2$$

$$P_2(x) = \frac{(x - 0.5)(x - 1)}{(0 - 0.5)(0 - 1)}(1) + \frac{(x - 0)(x - 1)}{(0.5 - 0)(0.5 - 1)}(1.824) + \frac{(x - 0)(x - 0.5)}{(1 - 0)(1 - 0.5)}(6.437)$$

$$P_2(x) = 2(x - 0.5)(x - 1) - 7.296 x(x - 1) + 12.8 x(x - 0.5)$$

Mechatronics Engineering

Lecture (1

Tanta University Faculty of Engineering

At
$$x = 0.8$$

$$P_2(0.8) = 2 * (0.8 - 0.5) * (0.8 - 1) - 7.296 * 0.8 * (0.8 - 1) + 12.8 * 0.8$$

* $(0.8 - 0.5) \approx 4.1$

Error calculation

$$|Error| \le \frac{M_{n+1}}{(n+1)!} |(x - x_0) (x - x_1) ... (x - x_n)|, n = 2$$

$$f(x) = 2 x^2 e^x + 1 >>> \frac{d^3 f}{dx^3}(x) = 2 x^2 e^x + 12 x e^x + 12 e^x$$

$$\frac{d^3f}{dx^3}(0) = 12$$
 And $\frac{d^3f}{dx^3}(1) = 70.68 >>> M_{n+1} = 70.$

Then
$$|Error| \le \frac{70.68}{(3)!} |(0.8 - 0) (0.8 - 0.5) (0.8 - 1)| = 0.56544$$

The newton divided difference form:

تعتمد الفكرة على عمل جدول الفروق:

Divided difference table

X	У	First divided difference $1^{\rm st}$ DD δ	Second divided difference 2^{nd} DD δ^2	Third divided difference 3^{rd} DD δ^3
x_o	<i>y</i> _o	$\left \frac{\left(y_1 - y_o \right)}{\left(x_1 - x_o \right)} \right = \delta_o$		
<i>x</i> ₁	<i>y</i> ₁	$\frac{\left(y_2 - y_1\right)}{\left(x_2 - x_1\right)} = \delta_1$	$\frac{\left(\delta_{1} - \delta_{o}\right)}{\left(x_{2} - x_{o}\right)} = \delta_{o}^{2}$	
x 2	<i>y</i> ₂			
X_n	y_n			i i

Department of Physics and Engineering Mathematics Numerical analysis (BAS127 Mechatronics Engineering

Lecture (1

Tanta University

Faculty of Engineering

$$P_{n}(x) = y_{o} + (x - x_{o})\delta_{o} + (x - x_{o})(x - x_{1})\delta_{o}^{2} + \dots (x - x_{o})\dots(x - x_{n})\delta_{o}^{n}$$

Example (6):

From a divided –difference table for the following data and obtain Newton's interpolating polynomial

X	0	4	6	8
Y	4	8	14	16

Solution:

Divided difference table

X	$F[x_i]$	$F[x_i, x_{i+1}]$	$F[x_i, x_{i+1}, x_{i+2}]$	$F[x_{i},x_{i+1},x_{i+2},x_{i+3}]$
0	4	1		No. 1
М		$\frac{\left(8-4\right)}{\left(4-0\right)}=1$		
4	8	-	$\frac{(3-1)}{(6-0)} = \frac{1}{3}$	15
		$\frac{(14-8)}{(6-4)} = 3$	3	$\frac{\left(-\frac{1}{2} - \frac{1}{3}\right)}{(8 - 0)} = \frac{-5}{48}$
6	14	1	$\frac{(1-3)}{(8-4)} = \frac{-1}{2}$	
		$\frac{\left(16-4\right)}{\left(8-6\right)}=1$		
8	16			

From the diagonal Newton's interpolating polynomial is then

Department of Physics and Engineering Mathematics Numerical analysis (BAS12 Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

$$P_3(x) = 4 + x + \frac{1}{3}x(x-4) - \frac{5}{48}x(x-4)(x-6)$$

Example (7):

From a divided –difference table for the following data and obtain Newton's interpolating polynomial

X	1	2	3	5	7
Y	3	5	9	11	15

Solution:

Divided difference table

X	y	8	δ^2	δ^3	δ^4
1	3	(5-3)		N.	
		$\frac{\left(5-3\right)}{\left(2-1\right)} = 2$		W	
2	5	19/13	$\frac{(4-2)}{(3-1)} = 1$	1.70	
	n	$\frac{(9-5)}{(3-2)} = 4$		$\frac{(-1-1)}{(5-1)} = \frac{-1}{2}$	
3	9		$\frac{(1-4)}{(5-2)} = -1$		$\frac{\left(\frac{1}{4} + \frac{1}{2}\right)}{(7-1)} = \frac{1}{8}$
		(11 0)			$(7-1)$ $=$ $\frac{1}{8}$
		$\frac{(11-9)}{(5-3)} = 1$		$\frac{\left(\frac{1}{4}+1\right)}{\left(7-2\right)} = \frac{1}{4}$	
5	11		$\frac{(2-1)}{(7-3)} = \frac{1}{4}$		
		$\frac{\left(15-11\right)}{\left(7-5\right)}=2$			
7	15				

Mechatronics Engineering

Lecture (1

Faculty of Engineering

Tanta University

From the diagonal Newton's interpolating polynomial is then

$$P_4(x) = 3 + 2(x - 1) + (x - 1)(x - 2) - \frac{1}{2}x(x - 1)(x - 2)(x - 3) + \frac{1}{8}x(x - 1)(x - 2)(x - 3)(x - 5)$$

Example (8):

Determine the polynomial of degree ≤ 5 using Newton's divided difference that interpolates the following data, hence use the result to estimate the value of y at x = 4.5 and compare it with the exact value71.375.

X	1	2	3	4	5	6
Y	14.5	19.5	30.5	53.5	94.5	159.5

Solution:

Form the difference table as below:

x_i	y_i	δ	δ^2	δ^3	δ^4	δ^5
1	14.5	$\frac{19.5 - 14.5}{2 - 1} = \boxed{5}$		M		
2	19.	$2 - 1$ $\frac{30.5 - 19.5}{3 - 2} = 11$	$\frac{11-5}{3-1} = 3$	$\frac{6-3}{4-1} = 1$		
3	30.5	$3-2$ $\frac{53.5-30.5}{4-3}=2$	$\frac{23 - 11}{4 - 2} = 6$	$\frac{4-1}{9-6} = 1$	$\frac{1-1}{5-1} = 0$	$\frac{0-0}{6-1} = 0$
4	53.	$\frac{4-3}{9453.5} = 41$	$\frac{41 - 23}{5 - 3} = 9$	$5 - 2$ $\frac{12 - 9}{6 - 3} = 1$	$\frac{1-1}{6-2}=0$	0-1
5	94.5	$5 - 4$ $\frac{159.5 - 30.5}{4 - 3} = 6$	$\frac{65 - 41}{6 - 3} = 1$	6-3		
6	159.5	4-3				

Using Newton's difference form gives

$$P_n(x) = y_0 + \delta(x - x_0) + \delta^2(x - x_0)(x - x_1) + \dots + \delta^n(x - x_0) \dots (x - x_{n-1}), n = 5$$

Then

Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

$$P(x) = 14.5 + 5(x - 1) + 3(x - 1)(x - 2) + (x - 1)(x - 2)(x - 3)$$

At
$$x = 4.5$$

$$P(4.5) = 14.5 + 5(4.5 - 1) + 3(4.5 - 1)(4.5 - 2) + (4.5 - 1)(4.5 - 2)(4.5 - 3)$$

P(4.5) = 71.375 Which equal to the exact value 71.375.

Example (9):

From the following table find the number of students who obtained <u>less than</u> 45 marks.

Marks	30 – 40	40 – 50	50 – 60	60 – 70	70 – 80
No. of Students	31	42	51	35	31

Solution

From the given data, we can form the less than marks table as bel

Marks	40	50	60	70	80
No. of Students	31	31 + 42 = 73	124	159	190

To obtain the students obtained less than 45 marks use Newton's forward method as follows:

x_i	y_i	Δ	Δ^2	Δ^3	Δ^4
40	31	72 21 42		- 18	
50	73	73 - 31 = 42 $124 - 73 =$	51 – 42 = 9	-16 - 9 = (-25)	
60	124		35 – 51 –16		12 + 25 = 37
70	15	159 – 124 = 35	31 – 35 –4	-4 + 16 = 12	
80	190	190 – 159 =			

From the table >> h = 1 and $s = \frac{45 - 40}{10} = 0.5$

Mechatronics Engineering

Lecture (1)

Tanta University

Faculty of Engineering

Using Newton's forward formula, we get:

$$P(45) = 31 + (0.5)(42) + \frac{(0.5)(0.5 - 1)}{2!}(9) + \frac{(0.5)(0.5 - 1)(0.5 - 2)}{3!}(-25) + \frac{(0.5)(0.5 - 1)(0.5 - 2)(0.5 - 3)}{4!}(37)$$

Then the number of students obtained less than 45 marks equal 48 students P(45) = 47.867

Equal interval:

الفروق المتساوية equal interval

Newton's forward

Newton's backward

Difference table:

X	y	Δy	$\Delta^2 y$	$\Delta^3 y$
<i>x</i> _o	(y _o)	$(y_1 - y_o) = \Delta y_o$	Newt	on s forward
x_1	<i>y</i> ₁	$(y_2 - y_1) = \Delta y_1$	$\Delta y_1 - \Delta y_o \neq \Delta^2 y_o$	$\Delta^2 y_1 - \Delta^2 y_0 = \Delta^3 y_0$
x 2	<i>y</i> ₂	$(y_3 - y_2) = \Delta y_2$	$\Delta y_2 - \Delta y_1 = \Delta^2 y_1$	
x_3	$\left(y_3\right)$. 3	Newton's backward	