

ad-NILPOTENT IDEALS CONTAINING A FIXED NUMBER OF SIMPLE ROOT SPACES

PAOLA CELLINI
PIERLUIGI MÖSENER FRAJRIA
PAOLO PAPI

ABSTRACT. We give formulas for the number of *ad*-nilpotent ideals of a Borel subalgebra of a Lie algebra of type B or D containing a fixed number of root spaces attached to simple roots. This result solves positively a conjecture of Panyushev [12, 3.5] and affords a complete knowledge of the above statistics for any simple Lie algebra. We also study the restriction of the above statistics to the abelian ideals of a Borel subalgebra, obtaining uniform results for any simple Lie algebra.

1. INTRODUCTION

Let \mathfrak{g} be a complex finite-dimensional simple Lie algebra. Fix a Borel subalgebra \mathfrak{b} of \mathfrak{g} , and let \mathfrak{n} be its nilradical. If \mathfrak{g} is of type X , denote by $\mathcal{I}(X)$ denote the set of *ad*-nilpotent ideals \mathfrak{b} , i.e. the ideals of \mathfrak{b} which are contained in \mathfrak{n} . Let Δ^+ , Π denote respectively the positive and simple systems of the root system Δ of \mathfrak{g} corresponding to \mathfrak{b} . Then $\mathfrak{i} \in \mathcal{I}(X)$ if and only if $\mathfrak{i} = \bigoplus_{\alpha \in \Phi_i} \mathfrak{g}_\alpha$, where \mathfrak{g}_α is the root space attached to α and $\Phi_i \subseteq \Delta^+$ is a dual order ideal of Δ^+ (w.r.t. the usual order: $\alpha < \beta$ is $\beta - \alpha$ is a sum of positive roots). *ad*-nilpotent ideals have been intensively investigated in recent literature: see references in [12]. The first goal of this short paper is to solve positively conjecture 3.5 of [12]. This conjecture regards the following statistics on $\mathcal{I}(X)$:

$$P_X(j) = |\{\mathfrak{i} \in \mathcal{I}(X) : |\Pi \cap \Phi_i| = j\}|$$

($0 \leq j \leq n$). The formulas expressing $P_X(j)$ for the classical Lie algebras are given in the following theorem. The result in type A has been proved in [12, Theorem 3.4], together with the equality $P_{B_n} = P_{C_n}$. The formulas for types B , D are conjecture 3.5 of the same paper.

1991 *Mathematics Subject Classification.* 17B20, 17B56.

Key words and phrases. *ad*-nilpotent ideal, Lie algebra, lattice path.

Theorem 1.1. *For $0 \leq j \leq n$ we have*

$$\begin{aligned} P_{A_n}(j) &= \frac{j+1}{n+1} \binom{2n-j}{n}, \\ P_{B_n}(j) = P_{C_n}(j) &= \binom{2n-j-1}{n-1}, \\ P_{D_n}(j) &= \begin{cases} \binom{2n-2}{n-2} + \binom{2n-3}{n-3} & \text{if } j=0 \\ \binom{2n-2-j}{n-2} + \binom{2n-3-j}{n-2} & \text{if } 1 \leq j \leq n. \end{cases} \end{aligned}$$

We remark that the numerical values of $P_X(j)$ in the exceptional cases are easily calculated from the knowledge of $P_X(0)$ using the inclusion-exclusion principle: see [12, §3]. On the other hand, the number $P_X(0)$ can be uniformly described: see Remark 2.1.

The relevance of the statistics P_X is motivated by the following discussion. It is known [4] that the cardinality of \mathcal{I} is given by the generalized Catalan number $\frac{1}{|W|} \prod_{i=1}^n (e_i + h + 1)$ (see Remark 2.1 for undefined notation) as well as that of *clusters*, certain subsets of $\Delta^+ \cup -\Pi$ which play a major role in Zelevinsky's theory of cluster algebras [7]. Panyushev noticed that $P_X(j)$ also counts the number of clusters having j elements in $-\Pi$. Looking for a conceptual explanation of the interplay between *ad*-nilpotent ideals and clusters is an interesting open problem.

Theorem 1.1 is proved in the next section. The final section deals with a formula for the same statistics on the subset \mathcal{I}^{ab} of \mathcal{I} consisting of abelian ideals. The study of \mathcal{I}^{ab} , pursued by Kostant, started an intense research activity which was later extended by considering *ad*-nilpotent ideals. Abelian ideals turn out to appear in several contexts, ranging from the structure of the exterior algebra of \mathfrak{g} [9], to affine algebras [2] and to difficult problems in classical invariant theory [11]. The key fact originating this activity is the following celebrated enumerative result by Dale Peterson, which we are going to exploit:

$$(1.1) \quad |\mathcal{I}^{ab}| = 2^{rk(\mathfrak{g})}.$$

Regarding our statistics, we obtain the following “uniform” result. Let P, Q denote the weight and root lattice of Δ and let $z(\mathfrak{g}) = |P/Q|$ be the connection index.

Theorem 1.2. *The number $P_X^{ab}(j)$ of abelian ideals of \mathfrak{b} in a Lie algebra \mathfrak{g} of type X and rank n containing j simple roots is given by*

$$P_X^{ab}(j) = \begin{cases} 2^n - z(\mathfrak{g}) + 1 & \text{if } j=0, \\ z(\mathfrak{g}) - 1 & \text{if } j=1, \\ 0 & \text{if } j > 1. \end{cases}$$

2. PROOF OF THEOREM 1.1

Our approach to Panyushev's conjecture is based on Shi's encoding [13] of *ad*-nilpotent ideals for classical Lie algebras via (possibly shifted) shapes as formulated in [3]. More precisely, consider a staircase diagram T_X of shape $(n, n-1, \dots, 1)$ in type A_n (respectively a shifted staircase diagram of shape $(2n-1, 2n-3, \dots, 1)$ for B_n and C_n , and of shape $(2n-2, 2n-4, \dots, 2)$ for D_n). Arrange in the diagram the positive roots of Δ according to the formulas

$$\tau_{i,j} = \alpha_i + \dots + \alpha_{n-j+1} \quad 1 \leq i \leq j \leq n.$$

$$\tau_{i,j} = \begin{cases} \alpha_i + \dots + \alpha_{j-1} + 2(\alpha_j + \dots + \alpha_{n-1}) + \alpha_n & \text{if } j \leq n-1, \\ \alpha_i + \dots + \alpha_{2n-j} & \text{if } n \leq j \leq 2n-i. \end{cases}$$

$$\tau_{i,j} = \begin{cases} \alpha_i + \dots + \alpha_j + 2(\alpha_{j+1} + \dots + \alpha_n) & \text{if } j \leq n-1, \\ \alpha_i + \dots + \alpha_{2n-j} & \text{if } n \leq j \leq 2n-i. \end{cases}$$

$$\tau_{i,j} = \begin{cases} \alpha_i + \dots + \alpha_j + 2(\alpha_{j+1} + \dots + \alpha_{n-2}) + \alpha_{n-1} + \alpha_n & \text{if } j \leq n-2, \\ \alpha_i + \dots + \alpha_{n-2} + \alpha_n & \text{if } j = n-1, \\ \alpha_i + \dots + \alpha_{2n-j-1} & \text{if } n \leq j \leq 2n-1-i. \end{cases}$$

in types A_n, C_n, B_n, D_n respectively. E.g., in types A_4, C_3, B_3, D_4 we have, respectively

$$\begin{array}{ccccc} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 & \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 & \alpha_1 \\ \alpha_2 + \alpha_3 + \alpha_4 & \alpha_2 + \alpha_3 & \alpha_2 \\ \alpha_3 + \alpha_4 & \alpha_3 \\ \alpha_4 \end{array}$$

$$\begin{array}{ccccc} 2\alpha_1 + 2\alpha_2 + \alpha_3 & \alpha_1 + 2\alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 & \alpha_1 \\ & 2\alpha_2 + \alpha_3 & \alpha_2 + \alpha_3 & \alpha_2 \\ & & \alpha_3 \end{array}$$

$$\begin{array}{ccccc} \alpha_1 + 2\alpha_2 + 2\alpha_3 & \alpha_1 + \alpha_2 + 2\alpha_3 & \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 & \alpha_1 \\ & \alpha_2 + 2\alpha_3 & \alpha_2 + \alpha_3 & \alpha_2 \\ & & \alpha_3 \end{array}$$

$$\begin{array}{cccccc} \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 & \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 & \alpha_1 + \alpha_2 + \alpha_4 & \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 & \alpha_1 \\ & \alpha_2 + \alpha_3 + \alpha_4 & \alpha_2 + \alpha_4 & \alpha_2 + \alpha_3 & \alpha_2 \\ & & \alpha_4 & \alpha_3 \end{array}$$

Then $\mathcal{I}(X)$ is in bijection with the set \mathcal{S}_X of subdiagrams of T_X when $X = A, B, C$ whereas in type D one has to consider also the sets of boxes of T_D which become subdiagrams of T_D upon switching columns $n-1, n$ (see [13] or [3]).

In turn to each subdiagram we can associate a lattice path of length $2n$, starting from the origin and never going under the x -axis, with step vectors $(1, 1)$, $(1, -1)$ (see [10]). The correspondence between subdiagrams and paths is best explained with an example at hand. Let $n = 9$ and consider, for type B_n or C_n , the shifted partition $(16, 13, 11, 8, 7, 5, 3)$, see Figure 1 (here, as in Figure 3, the origin coincides with the left upper corner of the diagram, and the y -axis points downwards). Connect the point $(2n, 0)$ to the border of the subdiagram with an horizontal segment, and consider the zig-zag line formed by the horizontal segment and the right border of the subdiagram. Rotate the figure by 45° in the positive direction and then flip it across a vertical line. After rescaling (in the obvious way) we obtain the desired lattice path. See Figure 2 for the path corresponding to the partition of Figure 1. (To make a comparison easy, the steps which correspond to thick segments in Figure 1 are also made thick in Figure 2.)

Figure 1

Figure 2

So we have associated to any subdiagram of T_{B_n} (or T_{C_n}) a lattice path of length $2n$. In a similar way we can associate to any subdiagram of T_{D_n} a lattice path of length $2n - 1$. Slight modifications are needed to define a correspondence in type A_n . Start from the point $(n + 1, 0)$, reach and follow the right border of the diagram. End in the point

$(0, n+1)$: see Figures 3,4 for the case of the partition $(5, 3, 1, 1, 1, 0, 0)$, relative to A_7 .

Figure 3

Figure 4

In type A_n this correspondence turns out to be a bijection between $\mathcal{I}(A_n)$ and the set of Dyck paths of length $2n+2$, whereas in types B_n, C_n one gets a bijection with the set of paths of length $2n$ not necessarily ending on the x -axis.

Remark that in cases B_n, C_n our statistics P_X translates into the one which counts the number of *returns* of the paths, i.e. the number of contact points of the path with the x -axis minus one. In type A_n the statistics P_X counts the number of returns minus one (so the statistics has value 0 for the path of Figure 4).

Denote by $\mathcal{B}_{n,h,j}$ the set of paths of the previous type having length n , ending in the point (n, h) and having exactly j returns. The enumeration of such objects has been known since a long time (see [8, §2] for historical details and generalizations). As usual we set $\binom{n}{m} = 0$ if $m < 0$.

Proposition 2.1. [6, 13, Cor. 3.2] *Assume $n \equiv h \pmod{2}$. Then*

$$(2.1) \quad |\mathcal{B}_{n,h,j}| = \binom{n - (j+1)}{\frac{n+h}{2} - 1} - \binom{n - (j+1)}{\frac{n+h}{2}}.$$

Note that if a path has length n and ends at height j , then $n + j$ is even. In particular, if $n + h$ is odd then $\mathcal{B}_{n,h,j} = \emptyset$ for any j . We have immediately

$$P_{A_n}(j) = |\mathcal{B}_{2n+2,0,j+1}| = \frac{j+1}{n+1} \binom{2n-j}{n},$$

$$P_{B_n}(j) = P_{C_n}(j) = \sum_{h=0}^{2n} |\mathcal{B}_{2n,h,j}| = \binom{2n-j-1}{n-1}$$

which are the desired formulas in cases A_n , B_n , C_n .

For type D we argue as follows. First observe that, in the diagrammatic encoding, ideals can be counted as

$$(2.2) \quad 2|\mathcal{S}_{D_n}| - |\mathcal{D}_n|$$

\mathcal{D}_n being the set of subdiagrams of T_{D_n} having columns $n-1, n$ of equal length. So we have to understand our statistics on \mathcal{S}_{D_n} and on \mathcal{D}_n . Ideals corresponding to subdiagrams in \mathcal{S}_{D_n} give rise to paths starting from the origin and having length $2n-1$. The number of simple roots belonging to Φ_i for such an ideal i is exactly the number of returns of the corresponding path precisely when the ideal does not contain α_n . In this latter case to get the number of simple roots one has to add 1 to the number of returns. On the other hand the ideals containing α_n are exactly the ones giving rise to paths ending at height 1. Therefore the piece in degree j of our statistics coming from \mathcal{S}_{D_n} is

$$\begin{aligned} & \sum_{h=3}^{2n-1} |\mathcal{B}_{2n-1,h,j}| + |\mathcal{B}_{2n-1,1,j-1}| \\ &= \binom{2n-j-2}{n} + \binom{2n-j-1}{n-1} - \binom{2n-j-1}{n} \\ &= \binom{2n-j-2}{n-2}. \end{aligned}$$

We have used relation (2.1) to evaluate the left hand side of the previous expression.

Now remark that the contribution to the piece of degree j of our statistics coming from \mathcal{D}_n is

$$P_{B_{n-1}}(j) - P_{A_{n-2}}(j-1) + P_{A_{n-2}}(j-2).$$

Note in fact that to any diagram in \mathcal{D}_n we can associate a diagram in $T_{B_{n-1}}$ by deleting the n -th column. In so doing our statistics counts:

- (a) all paths for type B_{n-1} having j returns and end point not lying on the x -axis;
- (b) all paths for type B_{n-1} having $j-1$ returns and end point on the x -axis.

It is clear that paths for B_{n-1} having k returns and end point on the x -axis are the same as paths for A_{n-2} with $k-1$ returns. Hence

contribution (a) is $P_{B_{n-1}}(j) - P_{A_{n-2}}(j-1)$, and contribution (b) is $P_{A_{n-2}}(j-2)$. Relation (2.2) and some elementary calculations yield the last formula in the Theorem.

Remark 2.1. It is worth recalling that the value $P_X(0)$ has a special geometric meaning. Indeed, ad-nilpotent ideals correspond to connected components in the dominant chamber of $\mathfrak{h}_{\mathbb{R}}$ (\mathfrak{h} being a Cartan subalgebra of \mathfrak{g}) determined by the hyperplanes $(\alpha, x) = 0$, $(\alpha, x) = 1$, $\alpha \in \Delta^+$. More precisely, the open region associated to the ideal \mathfrak{i} is determined by the inequalities $0 < (\alpha, x) < 1$ if $\mathfrak{g}_\alpha \not\subset \mathfrak{i}$, and $(\alpha, x) > 1$ if $\mathfrak{g}_\alpha \subset \mathfrak{i}$. Panyushev proved that an ideal in \mathcal{I} does not contain a simple root space if and only if the corresponding region is bounded (see [12, Proposition 3.7]). He also found the following remarkable formula (see [12, Proposition 3.10]):

$$P_X(0) = \frac{1}{|W|} \prod_{i=1}^n (h + e_i - 1).$$

Here W is the Weyl group, h the Coxeter number and e_1, \dots, e_n the exponents of \mathfrak{g} . $P_X(0)$ is also the number of positive clusters.

3. PROOF OF THEOREM 1.2

Lemma 3.1. *An abelian ideal $\mathfrak{i} \in \mathcal{I}^{ab}$ may contain at most one simple root space.*

Proof. Let $\alpha, \alpha' \in \Pi$ such that $\mathfrak{g}_\alpha, \mathfrak{g}_{\alpha'} \subset \mathfrak{i}$. Consider a minimal length path from α to α' in the Dynkin diagram of \mathfrak{g} . By Corollaire 3 in [1, VI, 1.7] the sum γ of the simple roots in the path belongs to Δ^+ as well as $\gamma - \alpha$. Moreover $\gamma > \alpha$, $\gamma - \alpha > \alpha'$. Therefore $\mathfrak{g}_\gamma \subset \mathfrak{i}$, $\mathfrak{g}_{\gamma-\alpha} \subset \mathfrak{i}$. But $[\mathfrak{g}_\alpha, \mathfrak{g}_{\gamma-\alpha}] = \mathfrak{g}_\gamma$, hence \mathfrak{i} is not abelian. \square

Recall that an ad-nilpotent ideal is nilpotent, i.e. its descending central series

$$\mathfrak{i} \supset [\mathfrak{i}, \mathfrak{i}] \supset [[\mathfrak{i}, \mathfrak{i}], \mathfrak{i}] \supset [[[\mathfrak{i}, \mathfrak{i}], \mathfrak{i}], \mathfrak{i}] \supset \dots$$

has a finite number $n(\mathfrak{i})$ of non zero terms. In particular, \mathfrak{i} is an abelian ideal if and only if $n(\mathfrak{i}) \leq 1$. Also recall that ad-nilpotent ideals are in canonical bijection with antichains (i.e., subset formed by mutually non-comparable elements) in the root poset. The correspondence is given by mapping an ideal to its minimal roots w.r.t $<$, and the inverse map associates to an antichain A the ideal $\bigoplus_{\beta \in A} \bigoplus_{\alpha \geq \beta} \mathfrak{g}_\alpha$.

If $\Pi = \{\alpha_1, \dots, \alpha_n\}$, denote by $\theta = \sum_{i=1}^n a_i \alpha_i$ the highest root of Δ .

Lemma 3.2. *Let $\mathfrak{i}_j = \bigoplus_{\beta \geq \alpha_j} \mathfrak{g}_\alpha$, $1 \leq j \leq n$. Then*

$$n(\mathfrak{i}_j) = a_j.$$

Proof. We use the following result of Chari, Dolbin and Ridenour [5, Theorem 1]. Let \mathfrak{i} an *ad*-nilpotent ideal corresponding to the antichain $A = \{\beta_1, \dots, \beta_k\}$. Then $n(\mathfrak{i}) = s$ if and only if s is the minimal non-negative integer such that $\beta_{i_1} + \dots + \beta_{i_{s+1}} \not\leq \theta$ (repetitions in the β are allowed). The claim follows immediately, because the antichain attached to \mathfrak{i}_j consists only of α_j , and $\theta - a_j \alpha_j = \sum_{i=1}^{j-1} a_i \alpha_i + \sum_{i=j+1}^n a_i \alpha_i$ belongs to the positive root lattice, whereas

$$\theta - (a_j + 1) \alpha_j = \sum_{i=1}^{j-1} a_i \alpha_i - \alpha_j + \sum_{i=j+1}^n a_i \alpha_i$$

does not. \square

We are ready to prove Theorem 1.2. The result follows combining (1.1) and Lemma 3.1 if we prove that $P_X^{ab}(1) = z(\mathfrak{g}) - 1$. On the other hand Lemma 3.2 implies that $P_X^{ab}(1)$ equals the number of indices i such that $a_i = 1$. The latter number is known to coincide with $z(\mathfrak{g}) - 1$ (see [1, VI, §2.3]).

Acknowledgment

The authors wish to thank Christian Krattenthaler for a useful remark on the paper.

REFERENCES

- [1] N. Bourbaki *Groupes et algèbres de Lie, Chapitres 4-6* Hermann, Paris 1968.
- [2] P. Cellini, V. G. Kac, P. Möseneder Frajria and P. Papi, *Decomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of \mathbb{Z}_2 -graded Lie algebras*, Adv. Math. **207** (2006), 156–204.
- [3] P. Cellini and P. Papi *ad-nilpotent ideals of a Borel subalgebra* J. Algebra **225** (2000), 130–141.
- [4] P. Cellini and P. Papi *ad-nilpotent ideals of a Borel subalgebra II* J. Algebra **258** (2002), 112–121.
- [5] V. Chari, R. J. Dolbin and T. Ridenour *Ideals in Parabolic Subalgebras of Simple Lie Algebras*, arXiv:0809.0245 (2008).
- [6] O. Engelberg *On some problems concerning a restricted random walk* J. Appl. Probab. **2** (1965), 396–404.
- [7] S.V. Fomin, A.V. Zelevinsky *Y-system and generalized associahedra*, Ann. Math. **158** (2003), 977–1018.
- [8] C. Krattenthaler *Watermelon configurations with wall interaction: exact and asymptotic results* J. Physics Conf. Series **42** (2006), 179–212.
- [9] B. Kostant *The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations*. Internat. Math. Res. Notices , (1998), no. 5, 225–252.
- [10] C. Krattenthaler, L. Orsina, P. Papi *Enumeration of ad-nilpotent \mathfrak{b} -ideals for simple Lie algebras* Adv. Appl. Math. **28** (2002), 478–522.
- [11] S. Kumar *On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras*. J. Amer. Math. Soc. **21** (2008), no. 3, 797–808.

- [12] D. Panyushev *ad-nilpotent ideals: generators and duality* J. Algebra **274** (2004), 822-846.
- [13] J. Shi *The number of \oplus -sign types* Quart. J. Math. Oxford **48** (1997), 93–105.

P.C.: Dipartimento di Scienze, Università di Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, ITALY;

cellini@sci.unich.it

P.M.F.: Politecnico di Milano, Polo regionale di Como, Via Valleggio 11, 22100 Como, ITALY;

pierluigi.moseneder@polimi.it

P.P.: Dipartimento di Matematica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma , ITALY;

papi@mat.uniroma1.it