The last element in the third period is argon, Ar, which is a noble gas. As in neon, the highest-occupied energy level of argon has an octet of electrons, [Ne] $3s^23p^6$. In fact, each noble gas other than He has an electron octet in its highest energy level. A **noble-gas configuration** refers to an outer main energy level occupied, in most cases, by eight electrons.

Elements of the Fourth Period

The electron configurations of atoms in the fourth-period elements are shown in **Table 5.** The period begins by filling the 4s orbital, the empty orbital of lowest energy. Thus, the first element in the fourth period is potassium, K, which has the electron configuration $[Ar]4s^1$. The next element is calcium, Ca, which has the electron configuration $[Ar]4s^2$.

With the 4s sublevel filled, the 4p and 3d sublevels are the next available vacant orbitals. **Figure 16** shows that the 3d sublevel is lower in

Name	Symbol	Atomic number	Number of electrons in sublevels above 2 <i>p</i>					Noble-gas
			35	3 <i>p</i>	3 <i>d</i>	45	4 <i>p</i>	notation
Potassium	K	19	2	6		1		*[Ar]4s ¹
Calcium	Ca	20	2	6		2		$[Ar]4s^2$
Scandium	Sc	21	2	6	1	2		$[Ar]3d^{1}4s^{2}$
Titanium	Ti	22	2	6	2	2		$[Ar]3d^24s^2$
Vanadium	V	23	2	6	3	2		$[Ar]3d^34s^2$
Chromium	Cr	24	2	6	5	1		$[Ar]3d^54s^1$
Manganese	Mn	25	2	6	5	2		$[Ar]3d^54s^2$
Iron	Fe	26	2	6	6	2		$[Ar]3d^64s^2$
Cobalt	Со	27	2	6	7	2		$[Ar]3d^74s^2$
Nickel	Ni	28	2	6	8	2		$[Ar]3d^84s^2$
Copper	Cu	29	2	6	10	1		$[Ar]3d^{10}4s^1$
Zinc	Zn	30	2	6	10	2		$[Ar]3d^{10}4s^2$
Gallium	Ga	31	2	6	10	2	1	$[Ar]3d^{10}4s^24p$
Germanium	Ge	32	2	6	10	2	2	$[Ar]3d^{10}4s^24p$
Arsenic	As	33	2	6	10	2	3	$[Ar]3d^{10}4s^24p$
Selenium	Se	34	2	6	10	2	4	$[Ar]3d^{10}4s^24p$
Bromine	Br	35	2	6	10	2	5	$[Ar]3d^{10}4s^24p$
Krypton	Kr	36	2	6	10	2	6	$[Ar]3d^{10}4s^24p$