## 2019 真题

1. 当  $x \to 0$  时, $x - \tan x$  与  $x^k$  是同阶无穷小, 则 k = ( )

(C) 3

(D) 4

(A) 1

(B) 2

解: 当 
$$x \to 0$$
 时, $x - \tan x \sim -\frac{1}{3}x^3$ , 因此选 C.

2. 设函数 
$$f(x) = \begin{cases} x|x|, & x \leq 0 \\ x \ln x, & x > 0 \end{cases}$$
 则  $x = 0$  是  $f(x)$  的 (A) 可导点, 极值点 (B) 不可导点, 极值点

(C) 可导点, 非极值点 (D) 不可导点, 非极值 点

解: 
$$\lim_{x\to 0^-} x|x| = \lim_{x\to 0^+} x \ln x = f(0) = 0$$
,,因此  $f(x)$  在  $x = 0$  处连续. 且当  $x \in U$   $(x_0)$  时,  $f(x) < 0 = f(0)$ ,因此  $x = 0$  是  $f(x)$  的极大值点. 而极限  $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^+} \ln x$  不存在,因此不可导,选 B.

3. 设  $U_n$  是单调增加的有界数列,则下列级数中收敛的是 ( )

(A) 
$$\sum_{n=1}^{\infty} \frac{u_n}{n}$$
 (B)  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{u_n}$  (C)  $\sum_{n=1}^{\infty} \left(1 - \frac{u_n}{u_{n+1}}\right)$  (D)  $\sum_{n=1}^{\infty} \left(u_{n+1}^2 - u_n^2\right)$ 

解:正确答案选 D. 因为  $\mathcal{U}_n$  单调递增有界,故极限  $\lim_{n\to\infty}u_n=a$  存在, D 选项级数的部分和数列收敛, 因此级数收敛. A 和 B 中只要  $a\neq 0$  就发散. C 中可取反例  $u_n=-\frac{1}{n}$ ,则  $1-\frac{u_n}{u_{n+1}}=\frac{1}{n+1}$ ,调和级数发散.

4. 设函数  $Q(x,y) = \frac{x}{v^2}$ , 如果对上半平面 (y > 0)内的任意有向光滑闭曲线 C 都有  $\oint_C P(x,y) dx +$ Q(x,y)dy = 0, 那么函数可取为 (A)  $y - \frac{x^2}{y}$ (B)  $\frac{1}{v} - \frac{x^2}{v^2}$ 

(C)  $\frac{1}{x} - \frac{1}{y}$ (D)  $x - \frac{1}{y}$ 

解:由题意,应当选择函数 P(x,y) 使得在整个 上半平面上均有  $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial x} = \frac{1}{v^2}$  成立, 选 D(注 意 C 选项在 y 轴上偏导数不存在).

5. 设A 是 3 阶实对称矩阵,E 是 3 阶单位矩阵,  $\Xi A^2 +$ A = 2E, 且 |A| = 44, 则二次型  $x^{T}Ax$  的规范形 为

(A)  $y_1^2 + y_2^2 + y_3^2$ (B)  $y_1^2 + y_2^2 - y_3^2$ 

(C)  $y_1^2 - y_2^2 - y_3^2$ (D)  $-y_1^2 - y_2^2 - y_3^2$  解:由  $A^2 + A = 2E$  可知矩阵 A 的特征值  $\lambda$  满足  $\lambda^2 + \lambda = 2$ ,因此  $\lambda = 1$  或  $\lambda = 2$ . 再由 |A| = 4 可知 A 的特征值为 2, 2, 1. 因此二次型  $x^T Ax$  的正惯性指数为 1,负惯性指数为 2, 选 C.

6. 如图所示, 有 3 张平面两两相交, 交线相互平行, 它 们的方程  $a_{i1}x + a_{i1}y + a_{i3}z = d_i(i = 1, 2, 3)$ 

 $A, \overline{A}, \mathbb{M}$ 

(B) 
$$r(\mathbf{A}) = 2, r(\overline{\mathbf{A}}) = 2$$

(A)  $r(\mathbf{A}) = 2, r(\overline{\mathbf{A}}) = 3$ 

(C) 
$$r(\mathbf{A}) = 1, r(\overline{\mathbf{A}}) = 2$$

(D) 
$$r(\mathbf{A}) = 1, r(\overline{\mathbf{A}}) = 1$$



解: 令  $x = (x, y, z)^{T}$ ,  $b = (d_1, d_2, d_3)^{T}$ , 由于三个平面无交点, 因此方程组 Ax = bAx = b 无解. 即  $r(A) < r(\overline{A}) \le 3$ . 再根据任意两个平面都不重合或平行, 可知 A 的任意两行线性无关, 因此  $r(A) \ge 2$ . 因此只能是 r(A) = 2,  $r(\overline{A}) = 3$ , 洗 A.

7. 设 A, B 为随机事件, 则 P(A) = P(B) 的充分必要条件是 ( )

$$(A) P(A \cup B) = P(A) + P(B)$$

(B) 
$$P(AB) = P(A)P(B)$$

(C) 
$$P(A\overline{B}) = P(B\overline{A})$$

(D) 
$$P(AB) = P(\overline{AB})$$

解: 显然 
$$P(A) = P(B)$$
 等价于  $P(A) - P(AB) = P(B) - P(AB)$ , 即  $P(A\overline{B}) = P(B\overline{A})$ , 选  $C$ . 对于 选项  $A$  和  $D$ , 取  $A = B = \Omega$  可排除; 对于选项  $B$ , 取  $B = \overline{A}$  即可排除.

8. 设随机变量 X 与 Y 相互独立, 且都服从正态分布  $N(\mu, \sigma^2)$ , 则  $P\{|X - Y| < 1\}$ 

8. 反随机受量 
$$X = I$$
 相互独立,且都版外正芯分和  $N(\mu, \sigma^2)$ ,则  $P\{|X - Y| < 1\}$  (

$$(A)$$
 与  $\mu$  无关, 而与  $\sigma^2$  有关

(B) 与 
$$\mu$$
 有关, 而与  $\sigma^2$  无关

$$(C)$$
 与  $\mu$ ,  $\sigma^2$  都有关

(D) 与  $\mu$ ,  $\sigma^2$  都无关

解: 显然 
$$P(A) = P(B)$$
 等价于  $P(A) - P(AB) = P(B) - P(AB)$ , 即  $P(A\overline{B}) = P(B\overline{A})$ , 选  $C$ , 对于 选项  $A$  和  $D$ , 取  $A = B = \Omega$  可排除; 对于选项  $B$ , 取  $B = \overline{A}$  即可排除.

9. 由条件可知  $X - Y \sim N(0, 2\sigma^2)$ , 因此

$$P\{|X - Y| < 1\} = P\left\{ \left| \frac{X - Y}{\sqrt{2}\sigma} \right| < \frac{1}{\sqrt{2}\sigma} \right\}$$
$$= \Phi\left(\frac{1}{\sqrt{2}\sigma}\right) - \Phi\left(-\frac{1}{\sqrt{2}\sigma}\right), 此概率与$$
$$= 2\Phi\left(\frac{1}{\sqrt{2}\sigma}\right) - 1$$

 $\mu$  无关, 与  $\sigma^2$  有关, 冼 A.

10. 设函数 f(u) 可导 $z = f(\sin y - \sin x) + xy$ , 则  $\frac{1}{\cos x}$  ·  $\frac{\partial z}{\partial x} + \frac{1}{\cos x} \cdot \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 

解: 首先 
$$\frac{\partial z}{\partial x} = -\cos x f'(\sin y - \sin x) + y$$
,  $\frac{\partial z}{\partial y} = \cos y f'(\sin y - \sin x) + x$ , 因此  $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} = \frac{y}{\cos x} + \frac{x}{\cos y}$ .

11. 微分方程  $2yy' - y^2 - 2 = 0$  满足条件 y(0) = 1 的特解 y =

解: 方程变量分离可得 
$$\frac{2y}{y^2+2}$$
 dy = dx, 两边积分得  $y^2+2=Ce^x$ , 由  $y(0)=1$  可知  $C=3$ , 方程的解为  $y=\sqrt{3e^x-2}$  (注意初值条件, 要舍去负的解).

解: 
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (\sqrt{x})^{2n} = \cos(\sqrt{x})$$

12. 幂级数  $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n$  在  $(0,+\infty)$  内的和函数 S(x)=

13. 设  $\Sigma$  为曲面  $x^2 + y^2 + 4z^2 = 4(z \ge 0)$  的上侧,则  $\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} dx dy = \underline{\hspace{1cm}}.$ 

解: 
$$\Sigma$$
 在  $xOy$  面的投影区域为  $D = (x, y)|x^2 + y^2 \le 4$ , 因此
$$\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} dx dy$$

$$= \iint_{D} \sqrt{4 - x^2 - (4 - x^2 - y^2)} dx dy$$

$$= \iint_{D} |y| dx dy = 4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2} r^2 \sin\theta dr = \frac{32}{3}$$

14. 设  $A = (\alpha_1, \alpha_2, \alpha_3)$  为 3 阶矩阵, 若  $\alpha_1, \alpha_2$  线性无 关, 且  $\alpha_3 = -\alpha_1 + 2\alpha_2$ , 则线性程组 Ax = 0 的通解

解: 由条件可知 
$$A$$
 有且只有两个线性无关的列向量, 因此  $r(A)=2$ . 因为  $\alpha_3=-\alpha_1+2\alpha_2$ , 所 
$$\begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix} = \alpha_1-2\alpha_2+\alpha_3=0$$
, , 因此  $Ax=0$  的通解为  $x=k(1,-2,1)^{\mathrm{T}}, k\in\mathbb{R}$ .

15. 设随机变量 X 的概率密度为  $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2 \\ 0, & others \end{cases}$  F(x) 为 X 的分布函数,E(X) 为 X 的数学期望,则 P(F(X) > E(X) - 1) = .

解: 首先 
$$E(X) = \int_0^2 x \frac{x}{2} dx = \frac{4}{3}$$
. 再令  $Y = F(X)$ . 则当  $y \le 0$  时  $P(Y \le y) = 0$ ; 当  $y \ge 1$ 

时, $P(Y \le y) = 1$ (注意分布函数 F(X) 的取值范围). 当 0 < y < 1 时, $P(Y \le y) = P(F(X) \le y) = P\left(X \le F^{-1}(y)\right) = F\left(F^{-1}(y)\right) = y$ . 因此  $Y = F(X) \sim U(0,1), P(F(X) > E(X) - 1) = P\left(Y > \frac{1}{3}\right) = \frac{2}{3}$ . 注: 事实上我们在这里证明了一个很重要的结

注: 事实上我们在这里证明了一个很重要的结论: 如果 X 是一个连续型随机变量, F(X) 是它的分布函数, 则随机变量  $Y = F(X) \sim U(0,1)$ 

- 16. 设函数 y(x) 是微分方程  $y' + xy = e^{-\frac{x^2}{2}}$  满足条件 y(0) = 0 的特解 (1) 求 y(x).
  - (1) Ac y(x).
  - (2) 求曲线 y = y(x) 的凹凸区间及拐点.

解:
(1) 由条件可得 
$$\left(ye^{\frac{1}{2}x^2}\right)' = e^{\frac{1}{2}x^2} \left(y' + xy\right) = 1$$
, 于是  $ye^{\frac{1}{2}x^2} = x + C$ . 由  $y(0) = 0$  可知

(2) 计算可得 
$$y' = e^{-\frac{1}{2}x^2} (1 - x^2)$$
,

 $C = 0, y = xe^{-\frac{1}{2}x^2}$ .

 $y'' = e^{-\frac{1}{2}x^2}(x^3 - 3x), \Leftrightarrow y'' = 0 得 x = 0, \pm \sqrt{3}$ . 再根据二阶导数的符号可得凹

 $0, \pm \sqrt{3}$ . 再根据二阶导数的符号可得凹区间为  $(-\sqrt{3}, 0)$  和  $(\sqrt{3}, +\infty)$ , 凸区间为  $(-\infty, -\sqrt{3})$  和  $(0, \sqrt{3})$ .

拐点为(0,0), $\left(-\sqrt{3},-\sqrt{3}e^{-\frac{3}{2}}\right)$ , $\left(\sqrt{3},\sqrt{3}e^{-\frac{3}{2}}\right)$ 

17. 设 a,b 为实数, 函数  $z = 2 + ax^2 + by^2$  在点 (3,4) 处的方向导数中, 沿方向 l = -3i - 4j 的方向导数

(1)  $\vec{x} \, a, b$ ; (2)  $\vec{x} \, \text{th} \, \vec{x} \, = \, 2 + a x^2 + b x^2 (z > 0) \text{ th} \, \vec{x} \, \vec{x}$ 

最大,最大值为10.

(2) 求曲面  $z = 2 + ax^2 + by^2 (z \ge 0)$  的面积.

沿着梯度方向的方向导数, 且最大值等于 梯度的模. 由条件可得 grad z = (2ax, 2by), 于是 grad  $z|_{(3.4)} = (6a, 8b)$  , 因此  $\frac{6a}{3} =$  $\frac{8b}{4}$  且 a,b < 0,解得 a = b. 再由 10 = $\sqrt{(6a)^2 + (8b)^2}$  可得 a = b = -1(2) 记曲面  $z = 2 - x^2 - y^2$  在 xOy 面的投影区 域为  $D: x^2 + y^2 \le 2$ , 则曲面的面积为  $S = \iint_{\mathbb{R}} \sqrt{1 + (-2x)^2 + (-2y)^2} dxdy$  $= \iint_{\mathbb{R}} \sqrt{1 + 4x^2 + 4y^2} dxdy$  $= \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} \sqrt{1 + 4r^2} r dr = \frac{13}{2} \pi$ 

18. 求曲线 
$$y = e^{-x} \sin x (x \ge 0)$$
 与 x 轴之间图形的面积

积.

解: 利用首角坐标系下的面积公式可得所求面 积为  $S = \int_{0}^{+\infty} e^{-x} |\sin x| dx = \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} e^{-x} |\sin x| dx$  $=\sum_{n=0}^{\infty}\int_{0}^{\pi}e^{-(n\pi+t)}|\sin(n\pi+t)|dt$  $= \int_0^{\pi} e^{-t} \sin t dt \sum_{n=0}^{\infty} e^{-n\pi}$  $= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{e^{\pi} + 1}{2(e^{\pi} - 1)}$ 其中利用两次分部积分可得  $\int_0^{\pi} e^{-t} \sin x dt =$  $\frac{1+e^{-\pi}}{2}$ .

(1) 证明: 数列 
$$a_n$$
 单调减少, 且  $a_n = \frac{n-1}{n+2} a_{n-2} (n = 2, 3, \cdots)$ ;

(2) 
$$\Re \lim_{n\to\infty} \frac{a_n}{a_{n-1}}$$
.

解:

(1)  $\stackrel{\text{def}}{=} 0 < x < 1 \text{ jd}, x^n \sqrt{1 - x^2} > x^{n+1} \sqrt{1 - x^2}.$ 

因此由  $a_n$  的定义可知  $a_n > a_{n+1}$  , 即数列

 $2, 3, \cdots$ ).

a, 单调减少. 利用分部积分可得

 $= \int_0^1 x^n \sqrt{1 - x^2} dx$ 

 $=\frac{1}{n+1}x^{n+1}\sqrt{1-x^2}\Big|_0^1+\frac{1}{n+1}\int_0^1\frac{x^{n+2}}{\sqrt{1-x^2}}$ 

因此  $\frac{n+2}{n+1}a_n = \frac{n-1}{n+1}a_{n-2}$ , 即  $a_n = \frac{n-1}{n+2}a_{n-2}$   $(n = \frac{n-1}{n+2}a_n)$ 

(2) 由于  $\frac{n-1}{n+2} < \frac{a_n}{a_{n-2}} < \frac{a_n}{a_{n-1}} < \frac{a_n}{a_n} = 1$ , 由夹逼准

20. 设  $\Omega$  是锥面  $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$  与

 $=-\frac{1}{n+1}a_n-\frac{1}{n+1}\int_{0}^{1}d\sqrt{1-x^2}$ 

 $= -\frac{1}{n+1}a_n + \frac{n-1}{n+1}a_{n-2}$ 

则知  $\lim_{n\to\infty}\frac{a_n}{a_n}=1$ 

平面 z = 0 围成的锥体, 求  $\Omega$  的形心坐标.

解:这题并不是一般的圆锥面,为此我们给出锥面的一般定义:过定点 V 的动直线 L 沿着一条确定的曲线  $\Gamma$  移动所形成的曲面 S 叫做锥面.直线 L 称为 S 的母线,曲线  $\Gamma$  称为 S 的准线,而定点 V 则是 S 的顶点.在本题中,锥面与 xOy 面的交线  $x^2+y^2=1,z=0$  就是母线,顶点则是 (0,1,1),如右图.此锥面在 xOy 面的投影区域就是  $D=\{(x,y)|x^2+y^2\leq 1\}$ ,因此这题我们采用切片法 (先二后一) 计算.



设形心坐标为  $(\bar{x}, \bar{y}, \bar{z})$ , 由于  $\Omega$  是关于 yOz 面对称的,由对称性可知  $\bar{x} = 0$ . 对固定的 z, 记  $D_z = (x, y)|x^2 + (y - z)^2 \le (1 - z)^2$ , 利用切片法可得

$$\iiint_{\Omega} dV = \int_{0}^{1} dz \iint_{D_{z}} dx dy = \pi \int_{0}^{1} (1 - z)^{2} dz = \frac{\pi}{3}$$

$$\iiint_{\Omega} z dV = \int_{0}^{1} dz \iint_{D_{z}} z dx dy = \pi \int_{0}^{1} z (1-z)^{2} dz = \frac{\pi}{12} \iiint_{\Omega} y dV = \int_{0}^{1} dz \iint_{D_{z}} y dx dy = \pi \int_{0}^{1} z (1-z)^{2} dz = \frac{\pi}{12}$$
其中积分  $\iint_{D_{z}} y dx dy$  中, 令  $y - z = u$ ,  $dy = du$ , 则
$$\iint_{D_{z}} y dx dy = \iint_{X^{2} + u^{2} \leq (1-z)^{2}} (u+z) dx u = \pi z (1-z)^{2}$$
因此利用形心坐标公式得  $\bar{y} = \bar{z} = \frac{\pi/12}{\pi/3} = \frac{1}{4}$ , 形心坐标为  $\left(0, \frac{1}{4}, \frac{1}{4}\right)$ .

21. 设向量组  $\alpha_1 = (1,2,1)^T$ ,  $\alpha_2 = (1,3,2)^T$ ,  $\alpha_3 = (1,a,3)^T$  为  $\mathbb{R}^3$  的一组基,  $\boldsymbol{\beta} = (1,1,1)^T$  在这组基下的坐标为  $(b,c,1)^T$ .

- (1) 求 a,b,c;
   (2) 证明:α<sub>2</sub>,α<sub>3</sub>,β为ℝ<sup>3</sup> 的一组基,并求α<sub>2</sub>,α<sub>3</sub>,β到
  - $\alpha_1, \alpha_2, \alpha_3, \rho$  为 配 的一组基,开  $\alpha_2, \alpha_3, \rho$  里  $\alpha_1, \alpha_2, \alpha_3$  的过渡矩阵.

解:
(1) 由题意可知 
$$b\alpha_1 + c\alpha_2 + \alpha_3 = \beta$$
, 即
$$\begin{cases} b + c + 1 = 1 \\ 2b + 3c + a = 1 \end{cases}, 解得  $a = 3, b = 2, c = b + 2c + 3 = 1 \\ -2. \end{cases}$ 
(2) 由于  $|\alpha_2, \alpha_3, \beta| = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 3 & 3 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & 1 \\ 0 & 1 & -1 & 1 \end{vmatrix}$ 

$$2 \neq 0, 因此 r(\alpha_2, \alpha_2, \beta) = 3, 这说明$$

$$\alpha_2, \alpha_3, \beta \neq \mathbb{R}^3 \text{ 的一组基. 再由}$$

$$(\alpha_2, \alpha_3, \beta) = (\alpha_2, \alpha_3, 2\alpha_1 - 2\alpha_2 + \alpha_3) = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$$$

可得
$$(\alpha_1, \alpha_2, \alpha_3) = (\alpha_2, \alpha_3, \beta) \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}^{-1} =$$

$$(\alpha_2, \alpha_3, \beta) \begin{pmatrix} 1 & 1 & 0 \\ -1/2 & 0 & 1 \\ 1/2 & 0 & 0 \end{pmatrix}, 所以 \alpha_2, \alpha_3, \beta$$

$$(\alpha_2, \alpha_3, \beta) \begin{pmatrix} 1 & 1 & 0 \\ -1/2 & 0 & 1 \\ 1/2 & 0 & 0 \end{pmatrix}.$$

(1) 由相似矩阵的性质可得

解得 x = 3, v = -2.

22. 已知矩阵 $A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 

(2) 
$$B$$
 是上三角矩阵, 因此  $A$ ,  $B$  的特征值均为 2, 1, 2. 对矩阵  $B$ , 当  $\lambda_1 = 2$  时, 由方程  $(2E - B)x = 0$  可得  $\lambda_1$  的一个特征向量

 $\begin{cases} |A| = |\mathbf{B}| \\ \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{B}) \end{cases} \Rightarrow \begin{cases} 4x - 8 = -2y \\ -2 + x - 2 = 2 - 1 + y \end{cases}$ 

$$\xi_1 = (1,0,0)^{\mathrm{T}}$$
; 当  $\lambda_2 = -1$  时,由方程  $(-E-B)x = 0$  可得  $\lambda_2$  的一个特征向量  $\xi_1 = (-1,3,0)^{\mathrm{T}}$ ; 当  $\lambda_3 = -2$  时,由方程  $(-2E-B)x = 0$  可得  $\lambda_3$  的一个特征向量  $\xi_1 = (0,0,1)^{\mathrm{T}}$ .

$$\mathbf{p}_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{p}_1 \mathbf{p}_1^{-1} \mathbf{B} \mathbf{p}_1$$

$$= \operatorname{diag}\{2, -1, -2\}.$$
同理对矩阵 A,我们也可求出一组线性无  $\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \mathbf{p}_4 \mathbf{p}_4 \mathbf{p}_5 \mathbf{p}_5 \mathbf{p}_5 \mathbf{p}_6 \mathbf{p}$ 

 $P_2^{-1}AP_2 = \text{diag}\{2, -1, -2\}, \text{ if } P_1^{-1}BP_1 =$  $P_2^{-1}AP_2 \Rightarrow (P_2P_1^{-1})^{-1}A(P_2P_1^{-1}) = B$ , 因此

当取  $P = P_2 P_1^{-1}$ 

$$= \begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -1 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$
时,则有  $P^{-1}AP = B$ .

- 23. 设随机变量 X 与 Y 相互独立, X 服从参数为 1 的 指数分布, Y 的概率分布为 P(Y = -1) = p, P(Y = 1) = 1 p(0 . 今 <math>Z = XY.
  - (1) 求 Z 的概率密度;
  - (2) p 为何值时, X 与 Z 不相关;
  - (3) X 与 Z 是否相互独立?

解:

(1) X的分布函数为 
$$F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$$

 $= P(XY \leq z)$ 

由 
$$X, Y$$
 的独立性可得  $Z$  的分布函数  $F_Z(z) = P(Z \le z)$ 

$$= P(X \ge -z, Y = -1) + P(X \le z, Y = 1)$$

$$= pP(X \ge -z) + (1 - p)P(X \le z)$$

 $= p (1 - F_X(-z)) + (1 - p)F_X(z)$   $= \begin{cases} pe^z, & z \le 0 \\ (1 - p) (1 - e^{-z}), & z > 0 \end{cases}$ 

$$Cov(X,Z) = E(XZ) - EX \cdot EZ = EX^2 \cdot EY - E^2X \cdot EY = DX \cdot EY = 1 - 2p$$
, 因此当  $p = \frac{1}{2}$ 

时, 
$$Cov(X,Z) = 0$$
, 即  $\rho_{XZ} = 0$ . 因此  $= \frac{1}{2}$ 时,  $X 与 Z 不相关.$ 

(3) 由 (2) 可知当 
$$p \neq \frac{1}{2}$$
 时, X 和 Z 是相关的, 从而不独立. 而当  $p = \frac{1}{2}$  时,

$$P\left(X \leq \frac{1}{2}, Z \leq \frac{1}{2}\right)$$

$$= P\left(X \leq \frac{1}{2}, XY \leq \frac{1}{2}\right)$$

$$= \frac{1}{2}P\left(X \leq \frac{1}{2}, X \geq -\frac{1}{2}\right) + \frac{1}{2}P\left(X \leq \frac{1}{2}, X \leq \frac{1}{2}\right)$$

$$= F\left(\frac{1}{2}\right) = 1 - e^{-\frac{1}{2}}$$

$$, \quad \exists P\left(X \leq \frac{1}{2}\right) = 1 - e^{-\frac{1}{2}}, P\left(Z \leq \frac{1}{2}\right) = \frac{1}{2}P\left(X \leq \frac{1}{2}\right)$$

$$\frac{1}{2}P\left(X \geq -\frac{1}{2}\right) = 1 - \frac{1}{2}e^{-\frac{1}{2}}, \quad \exists M$$

$$P\left(X \leq \frac{1}{2}, Z \leq \frac{1}{2}\right) \neq P\left(X \leq \frac{1}{2}\right)P\left(Z \leq \frac{1}{2}\right), \quad \exists P\left(X \leq \frac{1}{2}\right) \neq P\left(X \leq \frac{1}{2}\right)$$

X,Z 不独立. 综上所述, X, Z 不独立.

 $\sigma > 0$  是未知参数, A 是常数.  $X_1, X_2, \dots, X_n$  是来自总体 X 的简单随机样本.

(1) 求 A; (2) 求  $\sigma^2$  的最大似然估计量.

 $\int_{-\infty}^{+\infty} f(x) dx = 1, \, \, \text{即} \, \int_{\mu}^{+\infty} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$   $= \frac{A}{\sigma} \int_{0}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} dt$   $= \frac{\sqrt{2\pi}A}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} dt = A \sqrt{\frac{\pi}{2}} = 1, \, \, \text{得}$ 

$$= \frac{\sqrt{2\pi A}}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\Gamma}{2\sigma^2}} dt = A \sqrt{\frac{\pi}{2}} = 1, 得$$

$$A = \sqrt{\frac{2}{\pi}}.$$
(2) 设样本  $X_1, X_2, \dots, X_n$  对应的样本值为  $x_1, x_2, \dots$ 

,则似然函数
$$L(\sigma^2) = \prod_{i=1}^n f(x_i; \sigma^2)$$

$$= \begin{cases} \sqrt{\frac{2}{\pi}} \prod_{i=1}^{n} \frac{1}{\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}, & x_1, x_2 \cdots, x_n \geqslant \mu \\ 0 & \text{others} \end{cases}$$

$$\stackrel{\text{def}}{=} x_1, x_2, \cdots, x_n \geqslant \mu \text{ Be}, \text{ Restriction} L\left(\sigma^2\right) = \sum_{i=1}^{n} \left[ \ln \sqrt{\frac{2}{\pi}} - \frac{1}{2} \ln \sigma^2 - \frac{(x_i - \mu)^2}{2\sigma^2} \right], \quad \diamondsuit$$

$$\sum_{i=1}^{n} \left[ \ln \sqrt{\frac{2}{\pi}} - \frac{1}{2} \ln \sigma^2 - \frac{(x_i - \mu)^2}{2\sigma^2} \right], \quad \diamondsuit$$

$$\frac{d \ln L(\sigma^2)}{d\sigma^2} = \sum_{i=1}^{n} \left[ -\frac{1}{2\sigma^2} + \frac{(x_i - \mu)^2}{2\sigma^4} \right] = -\frac{n}{2\sigma^2} + \frac{n}{2\sigma^2}$$

$$\frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{2\sigma^{4}} = 0$$
解得  $\sigma^{2} = \frac{1}{n}\sum_{i=1}^{n}(x_{i}-\mu)^{2}$ , 因此  $\sigma^{2}$  的最大似然估计量为  $\hat{\sigma}^{2} = \frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}$ .