2. INTERFACES AND CABLES

SWITCHES

- Typically provide multiple PORTS for connectivity, usually 24.
- These PORTS are commonly RJ-45 (Registered Jack) ports.

WHAT IS ETHERNET?

• Ethernet refers to a set of network protocols and standards.

Why do we need network protocols and standards?

- To establish common communication standards across networks.
- To ensure hardware compatibility and connectivity between devices.

Connection Speeds

- Device connections operate at defined speeds, measured in "bits per second" (bps).
- A bit is a value of "0" or "1," while a byte equals 8 bits.

Size	Number of Bits
1 kilobit (Kb)	1,000
1 megabit (Mb)	1,000,000
1 gigabit (Gb)	1,000,000,000
1 terabit (Tb)	1,000,000,000,000

Ethernet Standards

- Defined by the IEEE 802.3 standard in 1983.
- IEEE stands for Institute of Electrical and Electronics Engineers.

ETHERNET STANDARDS (COPPER)

Speed	Common Name	Standard	Cable Type	Max Transmission Distance
10 Mbps	Ethernet	802.3i	10BASE-T	100 meters
100 Mbps	Fast Ethernet	802.3u	100BASE-T	100 meters
1 Gbps	Gigabit Ethernet	802.3ab	1000BASE-T	100 meters
10 Gbps	10 Gigabit	802.3an	10GBASE-T	100 meters

• BASE: Indicates Baseband Signaling.

• **T**: Refers to Twisted Pair cabling.

UTP (Unshielded Twisted Pair)

- Commonly used copper cable.
- Does not include a metallic shield.
- Twisted design protects against EMI (Electromagnetic Interference).
- Usually contains 8 wires (4 pairs), but some standards use fewer wires:
 - o **10/100BASE-T** uses 2 pairs (4 wires).

DEVICE COMMUNICATION VIA CONNECTIONS

RJ-45 Pins

• Ethernet cables have RJ-45 plugs with 8 pins.

Device	Transmit (TX) Pins	Receive (RX) Pins
PCs/Firewalls	Pins 1 and 2	Pins 3 and 6
Switches	Pins 3 and 6	Pins 1 and 2

UTP Cables (10BASE-T, 100BASE-T)

This configuration allows for **Full-Duplex** data transmission.

Connecting Similar Devices

- For connections between similar devices (e.g., Router to Router), a Crossover Cable is required.
- Crossover cables swap the pin assignments:
 - PIN#1 → PIN#3
 - o PIN#2 → PIN#6
 - \circ PIN#3 \rightarrow PIN#1

UTP Cables (10BASE-T, 100BASE-T)

Crossover cable

Modern Equipment

 Most modern devices support AUTO MDI-X, which automatically adjusts pins for compatibility, removing the need for crossover cables.

Higher Speed Standards (1000BASE-T/10GBASE-T)

• Use 4 pairs (8 wires) where each wire pair is bidirectional, allowing faster transmission compared to 10/100BASE-T.

FIBER-OPTIC CONNECTIONS

- Governed by the IEEE 802.3ae standard.
- SFP (Small Form-Factor Pluggable) transceivers enable fiber-optic cables to connect to switches or routers.
- Fiber-optic cables use separate lines for transmitting and receiving.

Types of Fiber-Optic Cables

1. Single-Mode Fiber:

- Narrower core for laser-based transmission.
- Supports longer distances than UTP or multimode.
- More expensive due to laser-based SFP transmitters.

2. Multimode Fiber:

- Wider core for LED-based transmission.
- Supports multiple light wave angles (modes).
- Cheaper but shorter distance compared to single-mode.