$= \left(\left(\ln \cos(\alpha) \right)' \cdot \sinh(\alpha) + \left(\ln \cos(\alpha) \right) \cdot \left(\sinh(\alpha)' \right) \cdot e^{\operatorname{nod}}$ $= \left(\cos(\alpha) \cdot \ln'(\cos(\alpha)) \cdot \sin(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \right) \cdot e^{\operatorname{nod}} \cdot e^{\operatorname{nod}}$ $= \left(-\sinh(\alpha) \cdot \cos(\alpha) \cdot \sin(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \right) \cdot e^{\operatorname{nod}} \cdot e^{\operatorname{nod}}$ $= \left(-\sinh^2(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \cdot \cos(\alpha) \right) \cdot e^{\operatorname{nod}} \cdot e^{\operatorname{nod}}$ $= \left(-\sinh^2(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \right) \cdot e^{\operatorname{nod}} \cdot e^{\operatorname{nod}}$ $= \left(-\sinh^2(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \right) \cdot \cos(\alpha) \cdot \sin(\alpha) \cdot \sin(\alpha)$ $= \left(-\sinh^2(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \right) \cdot \cos(\alpha) \cdot \sin(\alpha) \cdot \sin(\alpha)$ $= \left(-\sinh^2(\alpha) + \ln\cos(\alpha) \cdot \cos(\alpha) \right) \cdot \cos(\alpha) \cdot \sin(\alpha) \cdot \sin(\alpha) \cdot \sin(\alpha) \cdot \sin(\alpha)$