Transfer learning

Data Mining

Ester Vidaña Vila

Transfer learning

Capacidad de utilizar conocimientos existentes, desarrollados para la resolución de problemas de datos, para resolver nuevos problemas.

TRAINING FROM SCRATCH CONVOLUTIONAL NEURAL NETWORK (CNN) LEARNED FEATURES PS% 3% : 2% TRUCK × BICYCLE × TRANSFER LEARNING TRAINED ON CATS AND DOGS TIME-TUNE NETWORK WEIGHTS NEW DATA

https://medium.com/towards-tech-intelligence/a-quick-overview-to-the-transfer-learning-and-its-significance-in-real-world-applications-790fb57debad

Transfer learning

Ventajas de aplicar transfer learning:

- 1. Se necesita menos tiempo para entrenar el modelo porque éste ya ha sido entrenado con otros datos.
- 2. Útil cuando disponemos de un dataset pequeño, ya que el modelo se ha entrenado con datos de un dataset más grande y los pesos han sido transferidos.

MBD Data Mining Page 3

Transfer Learning. ¿Cómo se hace?

https://dev.to/amananandrai/pretrained-models-for-transfer-learning-in-keras-for-computer-vision-5eei

Transfer Learning vs Fine-tuning

1. Transfer Learning:

 Reentrenamos únicamente la última capa del clasificador (fullyconnected) para clasificar los datos de nuestro dataset.

2. Fine-tuning:

 Continuamos el entrenamiento de la red neuronal (desde donde se dejó) con nuestros datos. En este caso, entrenamos TODAS las capas de la red.

MBD Data Mining Page 5

Transfer Learning vs Fine-tuning

Cuatro tipos de escenarios:

- 1. El dataset que vamos a utilizar es **pequeño** y **similar** al dataset original: en este caso, no es buena idea hacer fine-tuning ya que podríamos caer en overfitting. Sería mejor hacer transfer learning.
- 2. El dataset que vamos a utilizar es **grande** y **similar** al dataset original: en este caso, como tenemos muchos datos, será menos probable hacer overfitting. Así pues, podemos hacer fine-tuning de todo el modelo.
- 3. El dataset es **pequeño** y muy **diferente** al dataset original. Entrenaremos cuantas menos capas mejor.
- 4. El dataset es **grande** y muy **diferente** al original. Como el dataset es grande, podemos permitirnos entrenar la red desde cero. Sin embargo, en la práctica, normalmente es bueno entrenar la red a partir de pesos ya inicializados. En este caso, podríamos hacer fine-tuning.

Redes neuronales famosas

Ejemplo: caso de uso

