Day 9 Date: April 22, 2018

Complex Curves (paths)

Definition: A curve (path) in \mathbb{C} is a continuous function $\gamma : [a, b] \to \mathbb{C}$. The real numbers have an orientation (from negative to positive). This gives curves a direction in \mathbb{C} , beginning at $\gamma(a)$ and ending at $\gamma(b)$.

A few examples: $\gamma:[0,2]\to\mathbb{C}$, s.t. $\gamma(t)=(1+2i)t$. This is the parametrization of a straight line.

Figure 1: $\gamma(t) = (1 + 2i)t$

In general, to parametrize the **line segment** from z_1 to z_2 use: $\gamma(t) = (1-t)z_1 + tz_2$ where $\gamma: [0,1] \to \mathbb{C}$.

Now lets let $\gamma:[0,1]\to\mathbb{C}$ s.t. $\gamma(t)=t+it^2$. This is a parametrization of the graph $y(t)=t^2$.

Figure 2: $\gamma(t) = t + it^2$

Here's a circle: $\gamma:[0,2\pi]\to\mathbb{C}$ by $\gamma(t)=3+2e^{it}$.

Figure 3: $\gamma(t) = 3 + 2e^{it}$

Thus in general we have that a **Circle** of radius r centered at z_0 is given by: $\gamma(t) = z_0 + re^{it}$ This parametrization is **positively oriented** i.e. counterclockwise. For negative orientation, let $t \mapsto -t$.

Properties of curves in \mathbb{C}

Remark: All curves can be assumed to be piecewise differentiable for finitely many jumps... i.e. only finitely many sharp corners.

Definition The derivative of a complex curve f(t) is accomplished componentwise i.e. if f(t) = x(t) + iy(t) then f'(t) = x'(t) + iy'(t).

Definition A curve is Simple if $\gamma(t) \neq \gamma(tz)$ whenever $a \leq t_1 < t_2 \leq b$, except possible when $t_1 = a$ and $t_2 = b$. (Curves shouldn't intersect itself except at the end points).

Definition A curve is *Closed* if $\gamma(a) = \gamma(b)$. Think circle.

Complex integration

If $g:[a,b]\to\mathbb{C}$, then we can write g(t)=x(t)+iy(t) for real valued functions $x,y:\mathbb{R}\to\mathbb{R}$. Then the integral

$$\int_{a}^{b} g(t)dt = \int_{a}^{b} x(t)dt + i \int_{a}^{b} y(t)dt$$

Definition let $\gamma:[a,b]\to\mathbb{C}$ be a curve. Let f(z) be a complex valued function which is continuous on the path γ . Then we define the integral of f(z) over the path γ as the following:

$$\int_{\gamma} f = \int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Example: $\gamma:[0,1]\to\mathbb{C}$ s.t. $\gamma(t)=(1-t)+(2+i)t.$ Let $f(z)=z^2.$

$$\gamma(t) = (1-t) + (2+i)t$$

$$= 1+t+it$$

$$\gamma'(t) = 1+i$$

$$\Rightarrow \int_{\gamma} f(z)dz = \int_{0}^{1} f(1+t+it)(1+i)dt$$

$$= \int_{0}^{1} (1+t+it)^{2}(1+i)dt$$

$$= (1+i) \int_{0}^{1} (1+(1+i)t)^{2}dt$$

$$= (1+i) \int_{0}^{1} (1+2(1+i)t+(1+i)^{2}t^{2})dt$$

$$= (1+i) \left[t+(1+i)t^{2}+\frac{(1+i)^{2}}{3}t^{3}\right]_{0}^{1}$$

$$= (1+i) \left[1+(1+i+\frac{(1+i)^{2}}{3}t^{3}\right]_{0}^{1}$$

Example Integrate the function $f(z) = z^2$ over the positively oriented unit circle $\gamma(t) = e^{it}$.

$$\gamma(t) = e^{it}$$

$$\gamma'(t) = ie^{it}$$

$$\Rightarrow \int_{\gamma} f(z)dz = \int_{0}^{2\pi} (e^{it})^{2} ie^{it} dt$$

$$= i \int_{0}^{2\pi} e^{3it} dt$$

$$= i \left[\frac{1}{3i} e^{3it} \right]_{0}^{2\pi}$$

$$= 0$$