CS475m - Computer Graphics

Lecture 3 : Clipping

Image Formation

CS475m: Lecture 3 ag Chaudhuri

Camera Model

Pinhole Camera

CS475m: Lecture 3 Parag Chaudhuri

Is the Eye, Lookat and Up Vector is enough to define the cs475 camera?

Parag Chaudhuri

The *field of view* (Θ) is also needed alongwith the window cs475 Π aspect ratio (w/h).

What if the window is shifted?

CS475m: Lecture 3 Parag Chaudhuri

If the window is shifted the the scene gets *clipped* at the window edges.

CS475m: Lecture 3

- Divide the plane into 9 regions.
- Each region has its own 4 bit outcode.
- Compute the outcodes OC₀ and OC₁ for the vertices of the line segment.
- Trivially accept if OC₀ v OC₁ = 0
 (TA)
- Trivially reject if OC₀ Λ OC₁ = 1 (TR)
- If cannot TA/TR, subdivide line into two segments at a clip edge and TA/TR one or both segments.

Repeat until entire line has been

Cohen – Sutherland Algorithm

CS475m: Lecture 3

Cohen – Sutherland Algorithm

```
clipline(x<sub>0</sub>, y<sub>0</sub>,x<sub>1</sub>, y<sub>1</sub>)
{
  ComputeOutcode(x<sub>0</sub>, y<sub>0</sub>, OC<sub>0</sub>);
  ComputeOutcode(x<sub>1</sub>, y<sub>1</sub>, OC<sub>1</sub>);
  repeat
  Check for TA and TR. If either happens then done.
```

Choose a vertex that is outside the clip rectangle.

If (vertex lies over TOP edge)
then

$$x = x_0 + 1/\text{slope} * (y_{\text{max}} - y_0)$$

 $y = y_{\text{max}}$

. . . .

Cohen – Sutherland Algorithm

else if (vertex lies below BOTTOM edge**) then**

$$x = x_0 + 1/\text{slope} * (y_{min} - y_0)$$

 $y = y_{min}$

else if (vertex lies to right of RIGHT edge) **then**

$$y = y_0 + slope * (x_{max} - x_0)$$

 $x = x_{max}$

else if (vertex lies to left of LEFT edge) **then**

$$y = y_0 + slope * (x_{min} - x_0)$$

 $x = x_{min}$

Cohen – Sutherland Algorithm

else if (vertex lies below BOTTOM edge**) then**

$$x = x_0 + 1/\text{slope} * (y_{min} - y_0)$$

 $y = y_{min}$

else if (vertex lies to right of RIGHT edge) **then**

$$y = y_0 + slope * (x_{max} - x_0)$$

 $x = x_{max}$

else if (vertex lies to left of LEFT edge) **then**

$$y = y_0 + slope * (x_{min} - x_0)$$

 $x = x_{min}$

Cohen – Sutherland Algorithm

if (x_0, y_0) was the outer point then $x_0 = x, y_0 = y$ ComputeOutcode (x_0, y_0, OC_0) else $x_1 = x, y_1 = y$ ComputeOutcode (x_1, y_1, OC_1)

until (done)

Issues in

- Clipping
 - Scan Conversion and Clipping

Read notes on **Cyrus-Beck**Parametric Line Clipping
Parag Chaudhuri
Algorithm.

CS475m: Lecture 3

CS475m: Lecture 3

Parag Chaudhuri

