

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0624 Laboratorio de Microcontroladores

EIE

Escuela de Ingeniería Eléctrica

GPIOs y el PIC12F629

MSc. Marco Villalta Fallas - marco.villalta@ucr.ac.cr

Il Ciclo 2021

Qué son los GPIOs?

- GPIO: General Purpose Input Output
- La gran mayoria de los pines en un uC son GPIOs
- Pines que no son GPIOs: Vdd, Vss, MCLR (Reset), entradas de reloj, etc.
- Pines asignados a GPIOs comparten otras funciones
- Se agrupan en puertos (En el caso del PIC12F675 solo tiene un puerto)

Como funciona un GPIO?

- Se operan muy similar entre ellos
- Generalmente se configura el funcionamiento de un GPIO a través de un registro
- Dependiendo del funcionamiento del uC puede ser necesario modificar mas de un registro de configuración (Importante: Leer la documentacion)
- Configuracion de registro permite indicar cuales son entradas o salidas.
- Si se configura como entrada se realiza la lectura con polling o por medio de interrupciones
- Si se configura como salida, se maneja el estado en el programa (1:Alto/0:Bajo)

Como se programa un GPIO en el PIC 12F675?

En el PIC 12F675 se utilizan varios registros para operarlos digitalmente.

- TRISIO: En este registro donde se indica el modo de operación de cada pin, un bit en alto(:1) lo pone como entrada y un bit en bajo(:0) lo pone como salida
- Con el registro GPIO se lee el estado del pin y se escribe al latch de salida
- Los registros ANSEL y/o CMCON debe de inicializarse para configurar un canal analógico como entrada digital.

Registro TRISIO

Registro para configurar flujo de datos

REGISTER 3-2: TRISIO — GPIO TRISTATE REGISTER (ADDRESS: 85h)

U-0	U-0	R/W-x	R/W-x	R-1	R/W-x	R/W-x	R/W-x
_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0
bit 7							bit 0

bit 7-6: **Unimplemented**: Read as '0'

bit 5-0: TRISIO<5:0>: General Purpose I/O Tri-State Control bit

1 = GPIO pin configured as an input (tri-stated)

0 = GPIO pin configured as an output.

Note: TRISIO<3> always reads 1.

Registro GPIO

Registro donde se guardo el estado del puerto GPIO

REGISTER 3-1: GPIO — GPIO REGISTER (ADDRESS: 05h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
bit 7	•				•		bit 0

Unimplemented: Read as '0'

GPIO<5:0>: General Purpose I/O pin.

1 = Port pin is >VIH 0 = Port pin is <VIL

bit 7-6:

bit 5-0:

Registro CMCON

Registro donde se configura el comparador analógico, se debe modificar si se utilizan los pines GP0,GP1 y GP2 como entradas.

REGISTER 6-1:	CMCON — COMPARATOR CONTROL REGISTER (ADDRESS: 19h)									
	U-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	COUT	_	CINV	CIS	CM2	CM1	CM0		
	bit 7							bit 0		
bit 7	Unimplemented: Read as '0'									
bit 6	t 6 COUT: Comparator Output bit									
	When CIN									
	1 = VIN+ >									
	0 = VIN+ < When CIN									
	1 = Vin+ <									
	0 = VIN+ >									
bit 5	Unimplemented: Read as '0'									
bit 4	CINV: Comparator Output Inversion bit									
	1 = Output									
		not inverte								
bit 3	CIS: Comparator Input Switch bit When CM2:CM0 = 110 or 101:									
		2:CM0 = 11 onnects to C								
		nnects to C								
bit 2-0	CM2:CM0: Comparator Mode bits									
Figure 6-2 shows the Comparator modes and CM2:CM0 bit settings										

Registro ANSEL

Registro donde se configura conversión y selección analógica, se debe modificar si se utiliza cualquier pin como entrada.

REGISTER 7-2: ANSEL - ANALOG SELECT REGISTER (ADDRESS: 9Fh)

U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/VV-1	R/W-1	R/W-1
_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0

bit 7 Unimplemented: Read as '0'.

hit 6.4 ADCS<2:0>: A/D Conversion Clock Select hits

- nnn = Enec/2
- 0.01 = Fosc/80.10 = Eosc/32
- x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max)
- 100 = Eosc/4101 = Fosc/16
- 110 = Fosc/64
- hit 3-0 ANS3:ANS0: Analog Select bits

(Between analog or digital function on pins AN<3:0>, respectively.)

- 1 = Analog input: pin is assigned as analog input(1)
- 0 = Digital I/O: pin is assigned to port or special function

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry. weak pull-ups, and interrupt-on-change. The corresponding TRISIO bit must be set to Input mode in order to allow external control of the voltage on the pin.

Como se configuran los GPIOs?

- Antes de usar un pin se debe configurar como entrada o salida.
- Es posible configurar los pines bit a bit o todos a la vez

```
TRISIO = 0x00; //Se configuran todos como salidas GPIO = 0x00; //Se ponen todas las salidas en bajo
```

Escritura de bits/registros en C?

Existen varios métodos para escribir registros en C:

 Método de sobreescritura de registro. No es muy recomendado porque puede sobreescribir configuraciones previas realizadas en el mismo programa, propenso a provocar pulgas

Método de enmascarado de bits. Buena forma para no modificar bits

previamente configurados.

GPIO &= (0b11111000); //se limpian los 3 bits mas bajos sin afectar

• Método por campo de bit. Se modifica el bit o bits uno a uno

```
GPIObits.GPO = 0 //Tambien se puede hacer con GPO = 0;
```

Se recomienda realizar la siguiente lectura sobre operaciones básicas a nivel de bit: https://blog.podkalicki.com/microcontrollers-and-basic-bit-level-operations/

- Luego de configurar los pines se pueden leer/escribir sus estados, lo que requiere agregar componentes para garantizar un comportamiento estable.
- Siempre es importante revisar las capacidades eléctricas de los puertos.

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†	
Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR with respect to Vss	0.3 to +13.5V
Voltage on all other pins with respect to Vss	
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, lik (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, lox (Vo < 0 or Vo >VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	
Maximum current sunk by all GPIO	
Maximum current sourced all GPIO	125 mA

Lectura digital - Pull-up

- Un pin puede estar en Alto, Bajo o flotando, no se recomienda (usar pull o/v down resistors)
- En configuracion pull-up el estado es en alto hasta que ocurre un evento que lo pone en bajo
- El estado logico del pin es 1 hasta que el boton se presiona. Se conoce como entrada con logica negativa.

Lectura digital - Pull-down

- En configuración pull-down el estado es en bajo hasta que ocurre un evento que lo pone en alto
- El estado lógico del pin es 0 hasta que el botón se presiona. Se conoce como entrada con lógica positiva.
- En los uC algunos pines vienen con estas resistencias configurables con un registro. Se debe revisar bien el valor y la carga que pueden llevar.

Escritura digital - Current sourcing

- Corriente va de Vdd (+5V), pasa por pin y llega a GND.
- Cuando pines de salida estan como current source el pin esta como fuente (+5V) manejando la carga
- En un uC los pines pueden manejar cargas pequeñas (20mA)

Escritura digital - Current sinking

- Corriente va de Vss (0V), pasa por pin y llega a Vss.
- Cuando pines de salida están como current sink el pin esta como drenaje (GND) manejando la carga
- En un uC los pines pueden manejar cargas pequeñas (20mA)

Manejo de rebotes

- Switches tienen efecto de rebote
- Rebotes generan falsas lecturas
- Deben filtrarse por HW o SW
- https://www.allaboutcircuits.com/technical-articles/ switch-bounce-how-to-deal-with-it/

Flujo de un programa de un MCU

Usualmente un programa para un microcontrolador esta compuesto por dos partes:

- Inicializacion de periféricos y uC: Se establecen los modos de operación del microcontrolador y sus periféricos antes de usarse.
- Ejecución de acciones: Son las instrucciones que realiza el microcontrolador de forma cíclica.

Generación de números aleatorios

Existen varios métodos con los microcontroladores para generar números aleatorios:

- Con una unidad RNG.
- Lectura de convertidores A/D.
- Con Ifsr (linear-feedback shift register)
- Por software con contadores

Hola PIC

```
#include <pic14/pic12f675.h>
void delay (unsigned int flempo);
void main(void)
    TRISIO = 0x00;//Poner todos los pines como salidas
    GPIO = 0x00;//Poner todos en bajo
    unsigned int time = 100:
    //Loop forever
    while (1){
                GPO = 0x00; //Esto se puede hacer tmb con GPIOO = 0x00 o enmascarando
                delay(time);
                GPO = ~GPO; //Esto es con el metodo de campo de bit
                delay(time);
void delay(unsigned int tiempo)
        unsigned int 1;
        unsigned int 1;
        for(i=0;i<tiempo;i++)</pre>
          for(j=0;j<1275;j++);
```

Recomendaciones para el laboratorios

- Leer con calma la hoja de datos del microcontrolador
- Leer documentación de librería/archivos de encabezado
- Ir paso por paso
- Preguntar