Exploring the Hyperuniformity with Python

Diala Hawat

Guillaume Gautier, Rémi Bardenet and Raphaël Lachièze-Rey

Université de Lille, CNRS, Centrale Lille ; UMR 9189 – CRIStAL, F-59000 Lille, France. Université de Paris, Map5, Paris, France.

Contents

- 1 Hyperuniformity
- 2 Point Pattern
- 3 Estimators of the structure factor
- 4 Effective Hyperuniformity
- 5 Hyperuniformity's class
- 6 Python Package
- 7 Perspective

Hyperuniformity

Let $\mathcal X$ be a point process of $\mathbb R^d$ of intensity ho, $\mathcal X$ is hyperuniform iff¹

Variance:

$$\lim_{R \to \infty} \frac{\text{Var}(\text{Card}(\mathcal{X} \cap \textbf{B}(0,R)))}{\mathcal{L}^d(\textbf{B}(0,R))} = 0,$$

¹Tor:18

Let $\mathcal X$ be a point process of $\mathbb R^d$ of intensity ho, $\mathcal X$ is hyperuniform iff¹

Variance:

$$\lim_{R \to \infty} \frac{\mathsf{Var}(\mathsf{Card}(\mathcal{X} \cap \mathbf{B}(0,R)))}{\mathcal{L}^d(\mathbf{B}(0,R))} = 0,$$

Structure Factor:

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k}) \xrightarrow{|\mathbf{k}| \to 0} 0$$

¹Tor:18

Point Pattern

Point Pattern

Let
$$W = [-L/2, L/2]^d$$
 and $\mathcal{X} \cap W = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$,

Scattering intensity²

$$\widehat{S}_{\mathrm{SI}}(\mathbf{k}) \triangleq \frac{1}{N} \left| \sum_{j=1}^{N} e^{-i\langle \mathbf{k}, \mathbf{x}_j \rangle} \right|^2, \ \mathbf{k} \in \mathbb{R}^d.$$

²Kla+al:20.

Scattering intensity

Estimators of the structure factor

Let
$$W = [-L/2, L/2]^d$$
 and $X \cap W = \{x_1, ..., x_N\}$,

Scattering intensity²

$$\widehat{S}_{\mathrm{SI}}(\mathbf{k}) \triangleq \frac{1}{N} \left| \sum_{j=1}^{N} e^{-i\langle \mathbf{k}, \mathbf{x}_j \rangle} \right|^2, \ \mathbf{k} \in \mathbb{R}^d.$$

Allowed wavevectors

$$\mathbf{k} \in \{\frac{2\pi}{L}\mathbf{n}, \ \mathbf{n} \in (\mathbb{Z}^d)^*\}.$$

²Kla+al:20

Test the scattering intenisty

Test the scattering intenisty

Test the scattering intenisty

Test the scattering intenisty

Figure: Box window and allowed wavevectors

Figure: Box window and non allowed wavevectors.

Figure: Ball window.

Estimators using Hankel transform

Estimators of the structure factor

$$\mathbf{S}(\mathbf{k}) = 1 + \rho \quad \mathcal{F}(\underbrace{g}_{\mathbf{g(r)} = g(\|\mathbf{r}\|)} -1)(\mathbf{k}) \quad , \quad \mathbf{k} \in \mathbb{R}^d.$$
 Symmetric Fourier transform

- $S(k) = 1 + \rho \mathcal{F}_{s}(g-1)(k), \ k \in \mathbb{R}.$
- $F_s(f)(k) = \frac{(2\pi)^{d/2}}{k^{d/2-1}} \mathcal{H}_{d/2-1}(\tilde{f})(k), \quad \tilde{f}: x \mapsto f(x) x^{d/2-1}.$
- $S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \mathcal{H}_{d/2-1}(\tilde{g}-1)(k), \quad \tilde{g}: x \mapsto g(x) x^{d/2-1}.$

Method

Estimating the pcf \rightarrow Interpolation \rightarrow Estimating the Hankel transform

Method

Estimating the pcf \rightarrow Interpolation \rightarrow Estimating the Hankel transform

Estimators of the structure factor

For isotropic point processes:

R package spatstat .

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

Estimators of the structure factor

- R package spatstat .
- pcf.ppp: Direct kernel estimation.

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

- R package spatstat .
- pcf.ppp: Direct kernel estimation.

pcf.ppp

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

Estimators of the structure factor

- R package spatstat .
- pcf.ppp: Direct kernel estimation.
- pcf.fv:

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

Estimators of the structure factor

- R package spatstat .
- pcf.ppp: Direct kernel estimation.
- pcf.fv: $\widehat{g}(r) = \frac{K'(r)}{2\pi r}$.

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

Estimators of the structure factor

- R package spatstat .
- pcf.ppp: Direct kernel estimation.
- pcf.fv: Using the derivative of K.

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

- R package spatstat .
- pcf.ppp: Direct kernel estimation.
- pcf.fv: Using the derivative of K.

pcf.fv

A. Baddeley and E. Rubak and R. Turner, *Spatial Point Patterns Methodology and Applications with R.*

Clean and Interpolate

Estimators of the structure factor

Method

Estimate the pcf \rightarrow Clean and Interpolate \rightarrow Estimate the Hankel transform

Figure: pcf.ppp

Figure: pcf.fv

Hankel Transform

Estimators of the structure factor

Method

Estimate the pcf \rightarrow Clean and Interpolate \rightarrow Estimate the Hankel transform

Estimating the Hankel Transform

Estimators of the structure factor

 Using the Discret Hankel Transform.

$$\mathcal{H}_{\nu}(f)(k_m) pprox lpha \sum_{j=1}^{N-1} rac{2}{\eta_{\nu N} J_{
u+1}^2(\eta_{
u j})} J_{
u} \left(rac{\eta_{
u m} \eta_{
u j}}{\eta_{
u N}}\right) f(r_j).$$

N. Baddour and U. Chouinard, *Theory and operational rules for the discrete Hankel transform.*

 Using the Discret Hankel Transform.

Approximation using the DHT.

 Using the Discret Hankel Transform.

Approximation using the DHT.

Estimating the Hankel Transform

- Using the Discret Hankel Transform.
- Using Ogata quadrature.

$$\mathcal{H}_{\nu}(f)(k) \approx \pi \sum_{i=1}^{\infty} w_{\nu j} \frac{\pi}{k^2 h} \psi(h \xi_{\nu j}) f(\frac{\pi}{k h} \psi(h \xi_{\nu j})) J_{\nu}(\frac{\pi}{h} \psi(h \xi_{\nu j})) \psi'(h \xi_{\nu j}).$$

H. Ogata, A Numerical Integration Formula Based on the Bessel Functions.

- Using the Discret Hankel Transform.
- Using Ogata quadrature.

Approximation using Ogata quadrature.

- Using the Discret Hankel Transform.
- Using Ogata quadrature.

Approximation using Ogata quadrature.

Effective Hyperuniformity

$$\mathcal{X}$$
 is effectively hyperuniform $\iff H = \frac{\widehat{S}(0)}{\widehat{S}(k_{peak})} \le 10^{-3}$,

- $\widehat{S}(0)$ is a linear extrapolation of the estimated structure factor \widehat{S} in k=0.
- k_{peak} is the location of the first dominant peak value of \hat{S} .

S. Torquato, Hyperuniform States of Matter.

Effective Hyperuniformity

$$\mathcal{X}$$
 is effectively hyperuniform $\iff H = \frac{\widehat{S}(0)}{\widehat{S}(k_{peak})} \leq 10^{-3}$,

S. Torquato, Hyperuniform States of Matter.

Power decay of the structure factor

Hyperuniformity's class

 \mathcal{X} is hyperuniform with $|S(\mathbf{k})| \sim c ||\mathbf{k}||^{\alpha}$ in the neighborhood of 0 then,

α	$Var[Card(\mathcal{X} \cap B(0, R))]$	class
> 1	$O(R^{d-1})$	I
1	$O(R^{d-1}\log(R))$	П
]0, 1[$O(R^{d-\alpha})$	Ш

S. Cost, Order, Fluctuations, Rigidities.

Power decay of the structure factor

Hyperuniformity's class

α	$Var[Card(\mathcal{X} \cap B(0, R))]$	class
> 1	$O(R^{d-1})$	I
1	$O(R^{d-1}\log(R))$	П
]0, 1[$O(R^{d-\alpha})$	Ш

S. Cost, Order, Fluctuations, Rigidities.

structure-factor

Python Package

In [1]: !pip install structure-factor

Perspective

Perspective

Rajala 2020 Spectral EF.

THANK YOU.

Documentation

Personal webpage