Oblig 4 - INF2080

runehovd

11. mai 2018

Problem 1 (Sipser 8.14)

An undirected graph is bipartite if its nodes may be divided into two sets so that all edges go from a node in one set to a node in the other set. A graph is bipartite if and only if it does not contain a cycle that has an odd number of nodes. Using this fact, show that the language $BIP = \{G \mid G \text{ is a bipartite graph}\}$ is in NL.

Since NL = coNL, we can show that BIP is in NL by proving that \overline{BIP} is in NL. $\overline{BIP} = \{G \mid G \text{ is a graph that contains a cycle that has an odd number og nodes}\}$, or:

 $\overline{BIP} = \{G \mid G \text{ is not a bipartite graph}\}$ An NL machine M for \overline{BIP} : M on input $\langle G \rangle$:

- 1. Choose a node nondeterministically and store it as v
 - Let max be number of nodes i G
 - Set counter to 1
 - \bullet Choose a neighborhood to v nondeterministically as u
- 2. if v = u and counter is odd, accept
- 3. nondeterministically choose a neighborhood to u as u and increase counter by 1
- 4. if counter < max, go to 2. Else, reject.

We can see that the space required to store this is in log-space. This proves that \overline{BIP} is in NL, and BIP is in coNL, but since NL = coNL, BIP is also in NL.

Problem 2 (Sipser 9.20)

Describe the error in the following fallacious "proof" that $P \neq NP$. Assume for contradiction that P = NP. Then $SAT \in P$ and so for some k, $SAT \in TIME(n^k)$. Because every language in NP is polynomial time reducible to SAT, we have that $NP \subseteq TIME(n^k)$. Therefore, $P \subseteq TIME(n^k)$. But by the time hierarchy theorem, $TIME(n^{k+1})$ contains a language that isn't in $TIME(n^k)$, which contradicts $P \subseteq TIME(n^k)$. Therefore, $P \neq NP$.

The error in the proof is the line Because every language in NP is polynomial time reducible to SAT, we have that $NP \subseteq TIME(n^k)$.

The problem is that even though some problem is reducible to SAT in polynomial time, it does not mean that it is in $TIME(n^k)$.

If you have a problem that takes polynomial time to reduce to SAT, and also runs the SAT algorithm n times, then it will be in $TIME(n^{k+1})$ because you have $n*TIME(n^k)$.

Problem 3

Show that $P \neq SPACE(n)$. Hint: Assume that they are equal, and look for a contradiction involving the space hierarchy theorem.

Assume that P = SPACE(n).

Then there exists an algorithm to simulate a Turing machine that uses SPACE(n) and $TIME(n^c)$ for some constant. That also means there exists an algorithm that uses $SPACE(n^2)$ and uses $TIME(n^{2c})$.

If this is the case, it contradicts the Space Hierarchy Theorem, because that would mean:

 $SPACE(n) = SPACE(n^2).$