线性回归

本章介绍用线性模型处理回归问题。从简单问题开始,先处理一个响应变量和一个解释变量的一元问题。然后,我们介绍多元线性回归问题(multiple linear regression),线性约束由多个解释变量构成。紧接着,我们介绍多项式回归分析(polynomial regression问题),一种具有非线性关系的多元线性回归问题。最后,我们介绍如果训练模型获取目标函数最小化的参数值。在研究一个大数据集问题之前,我们先从一个小问题开始学习建立模型和学习算法。

一元线性回归

上一章我们介绍过在监督学习问题中用训练数据来估计模型参数。训练数据由解释变量的历史观测值和对应的响应变量构成。模型可以预测不在训练数据中的解释变量对应的响应变量的值。回归问题的目标是预测出响应变量的连续值。本章我们将学习一些线性回归模型,后面会介绍训练数据,建模和学习算法,以及对每个方法的效果评估。首先,我们从简单的一元线性回归问题开始。

假设你想计算匹萨的价格。虽然看看菜单就知道了,不过也可以用机器学习方法建一个线性回归模型,通过分析匹萨的直径与价格的数据的线性关系,来预测任意直径匹萨的价格。我们先用scikit-learn写出回归模型,然后我们介绍模型的用法,以及将模型应用到具体问题中。假设我们查到了部分匹萨的直径与价格的数据,这就构成了训练数据,如下表所示:

训练样本	直径(英寸)	价格(美元)
1	6	7
2	8	9
3	10	13
4	14	17.5
5	18	18

我们可以用matplotlib画出图形:

In [1]:

```
%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"c:\windows\fonts\msyh.ttc", size=10)
```

In [2]:

```
def runplt():
    plt.figure()
    plt.title('匹萨价格与直径数据',fontproperties=font)
    plt.xlabel('直径(英寸)',fontproperties=font)
    plt.ylabel('价格(美元)',fontproperties=font)
    plt.axis([0, 25, 0, 25])
    plt.grid(True)
    return plt

plt = runplt()
X = [[6], [8], [10], [14], [18]]
y = [[7], [9], [13], [17.5], [18]]
plt.plot(X, y, 'k.')
plt.show()
```


上图中,'x'轴表示匹萨直径,'y'轴表示匹萨价格。能够看出,匹萨价格与其直径正相关,这与我们的日常经验也比较吻合,自然是越大越贵。下面我们就用scikit-learn来构建模型。

In [14]:

```
from sklearn.linear_model import LinearRegression
# 创建并拟合模型
model = LinearRegression()
model.fit(X, y)
print('预测一张12英寸匹萨价格: $%.2f' % model.predict([12])[0])
```

预测一张12英寸匹萨价格: \$13.68

一元线性回归假设解释变量和响应变量之间存在线性关系;这个线性模型所构成的空间是一个超平面(hyperplane)。超平面是n维欧氏空间中余维度等于一的线性子空间,如平面中的直线、空间中的平面等,总比包含它的空间少一维。在一元线性回归中,一个维度是响应变量,另一个维度是解释变量,总共两维。因此,其超平面只有一维,就是一条线。

上述代码中sklearn.linear_model.LinearRegression类是一个估计器(estimator)。估计器依据观测值来预测结果。在scikit-learn里面,所有的估计器都带有fit()和predict()方法。fit()用来分析模型参数,predict()是通过fit()算出的模型参数构成的模型,对解释变量进行预测获得的值。因为所有的估计器都有这两种方法,所有scikit-learn很容易实验不同的模型。

LinearRegression类的fit()方法学习下面的一元线性回归模型:

$$y = \alpha + \beta x$$

y表示响应变量的预测值,本例指匹萨价格预测值,x是解释变量,本例指匹萨直径。截距 α 和相关系数 β 是线性回归模型最关心的事情。下图中的直线就是匹萨直径与价格的线性关系。用这个模型,你可以计算不同直径的价格,8英寸\$7.33,20英寸\$18.75。

In [42]:

```
plt = runplt()
plt.plot(X, y, 'k.')
X2 = [[0], [10], [14], [25]]
model = LinearRegression()
model.fit(X, y)
y2 = model.predict(X2)
plt.plot(X, y, 'k.')
plt.plot(X2, y2, 'g-')
plt.show()
```


一元线性回归拟合模型的参数估计常用方法是普通最小二乘法(ordinary least squares)或线性最小二乘法(linear least squares)。首先,我们定义出拟合成本函数,然后对参数进行数理统计。

带成本函数的模型拟合评估

下图是由若干参数生成的回归直线。如何判断哪一条直线才是最佳拟合呢?

In [43]:

```
plt = runplt()
plt.plot(X, y, 'k.')
y3 = [14.25, 14.25, 14.25, 14.25]
y4 = y2 * 0.5 + 5
model.fit(X[1:-1], y[1:-1])
y5 = model.predict(X2)
plt.plot(X, y, 'k.')
plt.plot(X2, y2, 'g-.')
plt.plot(X2, y3, 'r-.')
plt.plot(X2, y4, 'y-.')
plt.plot(X2, y5, 'o-')
plt.show()
```


成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(training errors)。后面我们会用模型计算测试集,那时模型预测的价格与测试集数据的差异称为预测误差(prediction errors)或训练误差(test errors)。

模型的残差是训练样本点与线性回归模型的纵向距离,如下图所示:

In [64]:

```
plt = runplt()
plt.plot(X, y, 'k.')
X2 = [[0], [10], [14], [25]]
model = LinearRegression()
model.fit(X, y)
y2 = model.predict(X2)
plt.plot(X, y, 'k.')
plt.plot(X2, y2, 'g-')

# 残差预测值
yr = model.predict(X)
for idx, x in enumerate(X):
    plt.plot([x, x], [y[idx], yr[idx]], 'r-')
plt.show()
```


我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合。对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数。就是让所有训练数据与模型的残差的平方之和最小化,如下所示:

$$SS_{res} = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

其中, y_i 是观测值, $f(x_i)$ 是预测值。

残差平方和计算如下:

In [74]:

```
import numpy as np
print('残差平方和: %.2f' % np.mean((model.predict(X) - y) ** 2))
```

残差平方和: 1.75

有了成本函数,就要使其最小化获得参数。

解一元线性回归的最小二乘法

通过成本函数最小化获得参数,我们先求相关系数 β 。按照频率论的观点,我们首先需要计算x的方差和x与y的协方差。

方差是用来衡量样本分散程度的。如果样本全部相等,那么方差为0。方差越小,表示样本越集中, 反正则样本越分散。方差计算公式如下:

$$var(x) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

其中, \bar{x} 是直径x的均值, x_i 的训练集的第i个直径样本,n是样本数量。计算如下:

In [73]:

```
# 如果是Python2, 加from __future__ import division
xbar = (6 + 8 + 10 + 14 + 18) / 5
variance = ((6 - xbar)**2 + (8 - xbar)**2 + (10 - xbar)**2 + (14 - xbar)*
*2 + (18 - xbar)**2) / 4
print(variance)
```

23.2

Numpy里面有var方法可以直接计算方差,ddof参数是贝塞尔(无偏估计)校正系数(Bessel's correction),设置为1,可得样本方差无偏估计量。

In [72]:

```
print(np.var([6, 8, 10, 14, 18], ddof=1))
```

23.2

协方差表示两个变量的总体的变化趋势。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果两个变量不相关,则协方差为0,变量线性无关不表示一定没有其他相关性。协方差公式如下:

$$cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

其中, \bar{x} 是直径x的均值, x_i 的训练集的第i个直径样本, \bar{y} 是价格y的均值, y_i 的训练集的第i个价格样本,n是样本数量。计算如下:

In [75]:

```
ybar = (7 + 9 + 13 + 17.5 + 18) / 5
cov = ((6 - xbar) * (7 - ybar) + (8 - xbar) * (9 - ybar) + (10 - xbar) *
(13 - ybar) +
(14 - xbar) * (17.5 - ybar) + (18 - xbar) * (18 - ybar)) / 4
print(cov)
```

22.65

Numpy里面有cov方法可以直接计算方差。

In [76]:

```
import numpy as np
print(np.cov([6, 8, 10, 14, 18], [7, 9, 13, 17.5, 18])[0][1])
```

22.65

现在有了方差和协方差,就可以计算相关系统 β 了。

$$\beta = \frac{cov(x, y)}{var(x)}$$
$$\beta = \frac{22.65}{23.2} = 0.9762931034482758$$

算出 β 后,我们就可以计算 α 了:

$$\alpha = \bar{y} - \beta \bar{x}$$

将前面的数据带入公式就可以求出 α 了:

$$\alpha = 12.9 - 0.9762931034482758 \times 11.2 = 1.9655172413793114$$

这样就通过最小化成本函数求出模型参数了。把匹萨直径带入方程就可以求出对应的价格了,如11英寸直径价格\$12.70,18英寸直径价格\$19.54。

模型评估

前面我们用学习算法对训练集进行估计,得出了模型的参数。如何评价模型在现实中的表现呢?现在 让我们假设有另一组数据,作为测试集进行评估。

训练样本	直径(英寸)	价格(美元)	预测值(美元)
1	8	11	9.7759
2	9	8.5	10.7522
3	11	15	12.7048
4	16	18	17.5863
5	12	11	13.6811

有些度量方法可以用来评估预测效果,我们用R方(r-squared)评估匹萨价格预测的效果。R方也叫确定系数(coefficient of determination),表示模型对现实数据拟合的程度。计算R方的方法有几种。一元线性回归中R方等于皮尔逊积矩相关系数(Pearson product moment correlation coefficient或Pearson's r)的平方。

这种方法计算的R方一定介于0~1之间的正数。其他计算方法,包括scikit-learn中的方法,不是用皮尔逊积矩相关系数的平方计算的,因此当模型拟合效果很差的时候R方会是负值。下面我们用scikit-learn方法来计算R方。

首先,我们需要计算样本总体平方和, \bar{y} 是价格y的均值, y_i 的训练集的第i个价格样本,n是样本数量。

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SS_{tot} = (11 - 12.7)^2 + (8.5 - 12.7)^2 + \dots + (11 - 12.7)^2$$

= 56.8

然后,我们计算残差平方和,和前面的一样:

$$SS_{res} = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$SS_{res} = (11 - 9.7759)^2 + (8.5 - 10.7522)^2 + \dots + (11 - 13.6811)^2 = 19.19821359$$

最后用下面的公式计算R方:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$R^2 = 1 - \frac{19.19821359}{56.8} = 0.6620032818661972$$

R方是0.6620说明测试集里面过半数的价格都可以通过模型解释。现在,让我们用scikit-learn来验证一下。LinearRegression的score方法可以计算R方:

In [86]:

```
# 测试集
X_test = [[8], [9], [11], [16], [12]]
y_test = [[11], [8.5], [15], [18], [11]]
model = LinearRegression()
model.fit(X, y)
model.score(X_test, y_test)
```

Out[86]:

0.66200528638545175

多元线性回归

可以看出匹萨价格预测的模型R方值并不显著。如何改进呢?

回顾一下自己的生活经验,匹萨的价格其实还会受到其他因素的影响。比如,匹萨的价格还与上面的 辅料有关。让我们再为模型增加一个解释变量。用一元线性回归已经无法解决了,我们可以用更具一般性的模型来表示,即多元线性回归。

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

写成矩阵形式如下:

$$Y = X\beta$$

一元线性回归可以写成如下形式:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \alpha + \beta X_1 \\ \alpha + \beta X_2 \\ \vdots \\ \alpha + \beta X_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \times \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

其中,Y是训练集的响应变量列向量, β 是模型参数列向量。X称为设计矩阵,是 $m \times n$ 维训练集的解释变量矩阵。m是训练集样本数量,n是解释变量个数。增加辅料的匹萨价格预测模型训练集如下表所示:

训练样本	直径(英寸)	辅料种类	价格 (美元)
1	8	11	9.7759
2	9	8.5	10.7522
3	11	15	12.7048
4	16	18	17.5863
5	12	11	13.6811

我们同时要升级测试集数据:

1			
测试样本	直径(英寸)	辅料种类	价格(美元)
1	8	2	11
2	9	0	8.5
3	11	2	15
4	16	2	18
5	12	0	11

我们的学习算法评估三个参数的值:两个相关因子和一个截距。 β 的求解方法可以通过矩阵运算来实现。

$$Y = X\beta$$

矩阵没有除法运算(详见线性代数相关内容),所以用矩阵的转置运算和逆运算来实现:

$$\beta = (X^T X)^{-1} X^T Y$$

通过Numpy的矩阵操作就可以完成:

```
from numpy.linalg import inv
from numpy import dot, transpose
X = [[1, 6, 2], [1, 8, 1], [1, 10, 0], [1, 14, 2], [1, 18, 0]]
y = [[7], [9], [13], [17.5], [18]]
print(dot(inv(dot(transpose(X), X)), dot(transpose(X), y)))
```

```
[[ 1.1875 ]
[ 1.01041667]
[ 0.39583333]]
```

Numpy也提供了最小二乘法函数来实现这一过程:

In [4]:

```
from numpy.linalg import lstsq
print(lstsq(X, y)[0])
```

```
[[ 1.1875 ]
[ 1.01041667]
[ 0.39583333]]
```

有了参数,我们就来更新价格预测模型:

In [1]:

```
from sklearn.linear_model import LinearRegression
X = [[6, 2], [8, 1], [10, 0], [14, 2], [18, 0]]
y = [[7], [9], [13], [17.5], [18]]
model = LinearRegression()
model.fit(X, y)
X_test = [[8, 2], [9, 0], [11, 2], [16, 2], [12, 0]]
y_test = [[11], [8.5], [15], [18], [11]]
predictions = model.predict(X_test)
for i, prediction in enumerate(predictions):
    print('Predicted: %s, Target: %s' % (prediction, y_test[i]))
print('R-squared: %.2f' % model.score(X_test, y_test))
```

```
Predicted: [ 10.06250019], Target: [11]
Predicted: [ 10.28125019], Target: [8.5]
Predicted: [ 13.09375019], Target: [15]
Predicted: [ 18.14583353], Target: [18]
Predicted: [ 13.31250019], Target: [11]
R-squared: 0.77
```

增加解释变量让模型拟合效果更好了。后面我们会论述一个问题:为什么只用一个测试集评估一个模型的效果是不准确的,如何通过将测试集数据分块的方法来测试,让模型的测试效果更可靠。不过现在我们可以认为,匹萨价格预测问题,多元回归确实比一元回归效果更好。假如解释变量和响应变量的关系不是线性的呢?下面我们来研究一个特别的多元线性回归的情况,可以用来构建非线性关系模型。

多项式回归

上例中,我们假设解释变量和响应变量的关系是线性的。真实情况未必如此。下面我们用多项式回归,一种特殊的多元线性回归方法,增加了指数项(*x* 的次数大于1)。现实世界中的曲线关系都是通过增加多项式实现的,其实现方式和多元线性回归类似。本例还用一个解释变量,匹萨直径。让我们用下面的数据对两种模型做个比较:

训练样本	直径(英寸)	价格(美元)
1	6	7
2	8	9
3	10	13
4	14	17.5
5	18	18

测试样本	直径(英寸)	价格(美元)
1	6	7
2	8	9
3	10	13
4	14	17.5

二次回归(Quadratic Regression),即回归方程有个二次项,公式如下:

$$y = \alpha + \beta_1 x + \beta_2 x^2$$

我们只用一个解释变量,但是模型有三项,通过第三项(二次项)来实现曲线关系。PolynomialFeatures转换器可以用来解决这个问题。代码如下:

In [32]:

```
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
X_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]
X \text{ test} = [[6], [8], [11], [16]]
y \text{ test} = [[8], [12], [15], [18]]
regressor = LinearRegression()
regressor.fit(X_train, y_train)
xx = np.linspace(0, 26, 100)
yy = regressor.predict(xx.reshape(xx.shape[0], 1))
plt = runplt()
plt.plot(X train, y train, 'k.')
plt.plot(xx, yy)
quadratic featurizer = PolynomialFeatures(degree=2)
X train quadratic = quadratic featurizer.fit transform(X train)
X test quadratic = quadratic featurizer.transform(X test)
regressor quadratic = LinearRegression()
```

```
regressor_quadratic.fit(X_train_quadratic, y_train)
xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-')
plt.show()
print(X_train)
print(X_train_quadratic)
print(X_test)
print(X_test)
print(X_test_quadratic)
print('-元线性回归 r-squared', regressor.score(X_test, y_test))
print('二次回归 r-squared', regressor_quadratic.score(X_test_quadratic, y_test))
```



```
[[6], [8], [10], [14], [18]]
   1
        6
           36]
] ]
[
   1
        8
           64]
      10 100]
   1
[
   1
       14 196]
       18 324]]
    1
[[6], [8], [11], [16]]
   1
        6 361
] ]
        8 64]
   1
[
       11 121]
[
    1
   1
       16 256]]
一元线性回归 r-squared 0.809726832467
二次回归 r-squared 0.867544458591
```

效果如上图所示,直线为一元线性回归(R方0.81),曲线为二次回归(R方0.87),其拟合效果更佳。还有三次回归,就是再增加一个立方项($\beta_3 x^3$)。同样方法拟合,效果如下图所示:

```
plt = runplt()
plt.plot(X train, y train, 'k.')
quadratic featurizer = PolynomialFeatures(degree=2)
X train quadratic = quadratic featurizer.fit transform(X train)
X test quadratic = quadratic featurizer.transform(X test)
regressor quadratic = LinearRegression()
regressor quadratic.fit(X train quadratic, y train)
xx quadratic = quadratic featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor quadratic.predict(xx quadratic), 'r-')
cubic featurizer = PolynomialFeatures(degree=3)
X train cubic = cubic featurizer.fit transform(X train)
X test cubic = cubic featurizer.transform(X test)
regressor cubic = LinearRegression()
regressor cubic.fit(X train cubic, y train)
xx cubic = cubic featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor cubic.predict(xx cubic))
plt.show()
print(X train cubic)
print(X test cubic)
print('二次回归 r-squared', regressor quadratic.score(X test quadratic, y
test))
print('三次回归 r-squared', regressor cubic.score(X test cubic, y test))
```



```
[[
    1
         6
             36 216]
         8 64 512]
    1
[
        10 100 1000]
[
ſ
        14 196 2744]
        18 324 5832]]
    1
11
    1
         6 36 216]
            64 512]
    1
        8
[
    1
        11 121 1331]
[
[
        16 256 4096]]
 二次回归 r-squared 0.867544458591
三次回归 r-squared 0.835692454062
```

In [34]:

```
plt = runplt()
plt.plot(X train, y train, 'k.')
quadratic featurizer = PolynomialFeatures(degree=2)
X train quadratic = quadratic featurizer.fit transform(X train)
X_test_quadratic = quadratic_featurizer.transform(X_test)
regressor quadratic = LinearRegression()
regressor quadratic.fit(X train quadratic, y train)
xx quadratic = quadratic featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor quadratic.predict(xx quadratic), 'r-')
seventh featurizer = PolynomialFeatures(degree=7)
X train seventh = seventh featurizer.fit transform(X train)
X test seventh = seventh featurizer.transform(X test)
regressor seventh = LinearRegression()
regressor seventh.fit(X train seventh, y train)
xx seventh = seventh featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor seventh.predict(xx seventh))
plt.show()
print('二次回归 r-squared', regressor quadratic.score(X test quadratic, y
test))
print('七次回归 r-squared', regressor seventh.score(X_test_seventh, y_test
))
```


二次回归 r-squared 0.867544458591 七次回归 r-squared 0.487942421984

可以看出,七次拟合的R方值更低,虽然其图形基本经过了所有的点。可以认为这是拟合过度(overfitting)的情况。这种模型并没有从输入和输出中推导出一般的规律,而是记忆训练集的结果,这样在测试集的测试效果就不好了。

正则化(Regularization)是用来防止拟合过度的一堆方法。正则化向模型中增加信息,经常是一种对抗复杂性的手段。与奥卡姆剃刀原理(Occam's razor)所说的具有最少假设的论点是最好的观点类似。正则化就是用最简单的模型解释数据。

scikit-learn提供了一些方法来使线性回归模型正则化。其中之一是岭回归(Ridge Regression,RR,也叫Tikhonov regularization),通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法。岭回归增加L2范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和):

$$RSS_{ridge} = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

 λ 是调整成本函数的超参数(hyperparameter),不能自动处理,需要手动调整一种参数。 λ 增大,成本函数就变大。

scikit-learn也提供了最小收缩和选择算子(Least absolute shrinkage and selection operator, LASSO),增加L1范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和):

$$RSS_{lasso} = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j$$

LASSO方法会产生稀疏参数,大多数相关系数会变成0,模型只会保留一小部分特征。而岭回归还是会保留大多数尽可能小的相关系数。当两个变量相关时,LASSO方法会让其中一个变量的相关系数会变成0,而岭回归是将两个系数同时缩小。

scikit-learn还提供了弹性网(elastic net)正则化方法,通过线性组合L1和L2兼具LASSO和岭回归的内容。可以认为这两种方法是弹性网正则化的特例。

线性回归应用案例

前面我们通过一个小例子介绍了线性回归模型。下面我们用一个现实的数据集来应用线性回归算法。假如你去参加聚会,想喝最好的红酒,可以让朋友推荐,不过你觉得他们也不靠谱。作为科学控,你带了pH试纸和一堆测量工具来测酒的理化性质,然后选一个最好的,周围的小伙伴都无语了,你亮瞎了世界。

网上有相关的酒数据集可以参考,UCI机器学习项目的酒数据集收集了1599种酒的测试数据。收集完数据自然要用线性回归来研究一下,响应变量是0-10的整数值,我们也可以把这个问题看成是一个分类问题。不过本章还是把相应变量作为连续值来处理。

探索数据

scikit-learn作为机器学习系统,其探索数据的能力是不能与SPSS和R语言相媲美的。不过我们有 Pandas库,可以方便的读取数据,完成描述性统计工作。我们通过描述性统计来设计模型。Pandas 引入了R语言的dataframe,一种二维表格式异质(heterogeneous)数据结构。Pandas更多功能请见文档 (http://pandas.pydata.org),这里只用一部分功能,都很容易使用。

首先,我们读取.csv文件生成dataframe:

In [5]:

```
import pandas as pd
df = pd.read_csv('mlslpic/winequality-red.csv', sep=';')
df.head()
```

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	su
0	7.4	0.70	0.00	1.9	0.076	11	34	0.9978	3.51	0.5
1	7.8	0.88	0.00	2.6	0.098	25	67	0.9968	3.20	0.6
2	7.8	0.76	0.04	2.3	0.092	15	54	0.9970	3.26	0.6
3	11.2	0.28	0.56	1.9	0.075	17	60	0.9980	3.16	0.5
4	7.4	0.70	0.00	1.9	0.076	11	34	0.9978	3.51	0.5

In [6]:

df.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free diox
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.87
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.46
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.00
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.00
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.00

就这么简单,我们通过Dataframe.describe()方法获得了一堆描述性统计结果。pd.read_csv()读取.csv文件。下面我们在用matplotlib看看,获得更直观的认识:

In [11]:

```
plt.scatter(df['alcohol'], df['quality'])
plt.xlabel('Alcohol')
plt.ylabel('Quality')
plt.title('酒精度(Alcohol) 与品质( Quality)',fontproperties=font)
plt.show()
```


散点图显示酒精度(Alcohol)与品质有比较弱的正相关特性,整体呈左下-右上趋势,也就是说酒精度较高的酒具有较高的品质。挥发性酸度(volatile acidity)与品质呈现负相关特性:

In [12]:

```
plt.scatter(df['volatile acidity'], df['quality'])
plt.xlabel('Volatile Acidity')
plt.ylabel('Quality')
plt.title('挥发性酸度 (volatile acidity) 与品质 ( Quality) ',fontproperties=f
ont)
plt.show()
```


ᅂᆖᆸᇜᇬᇧᆇᄭᆈᇄᆇᅕᆂᄀᆄᆟᅕᆂᄞᇜᇧᇉ,ᆇᇖᇜᇩᄹᅟᅟᅡᄼᄱᇫᅹᇜᄼᄶᅩᆇᅅᅹᇨᆖᇜᇧ

性。如何决定哪个变量应该在模型中?哪个可以不在?通过Dataframe.corr()计算两两的关联矩阵(correlation matrix)。关联矩阵进一步确认了酒精度与品质的正相关性,挥发性酸度与品质的负相关性。挥发性酸度越高,酒喝着就越向醋。总之,我们就假设好酒应该具有酒精度高、挥发性酸度低的特点,虽然这和品酒师的味觉可能不太一致。

拟合与评估模型

现在,我们把数据分成训练集和测试集,训练回归模型然后评估预测结果:

In [39]:

```
import pandas as pd
import matplotlib.pylab as plt
from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import train_test_split
df = pd.read_csv('mlslpic/winequality-red.csv', sep=';')
X = df[list(df.columns)[:-1]]
y = df['quality']
X_train, X_test, y_train, y_test = train_test_split(X, y)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_predictions = regressor.predict(X_test)
print('R-squared:', regressor.score(X_test, y_test))
```

R-squared: 0.382777530798

开始和前面类似,加载数据,然后通过train_test_split把数据集分成训练集和测试集。两个分区的数据比例都可以通过参数设置。默认情况下,25%的数据被分配给测试集。最后,我们训练模型并用测试集测试。

R方值0.38表明38%的测试集数据都通过了测试。如果剩下的72%的数据被分到训练集,那效果就不一样了。我们可以用交叉检验的方法来实现一个更完善的效果评估。上一章我们介绍过这类方法,可以用来减少不同训练和测试数据集带来的变化。

In [33]:

```
from sklearn.cross_validation import cross_val_score
regressor = LinearRegression()
scores = cross_val_score(regressor, X, y, cv=5)
print(scores.mean(), scores)
```

```
0.290041628842 [ 0.13200871  0.31858135  0.34955348  0.369145  0.2809196 ]
```

这里cross_val_score函数可以帮助我们轻松实现交叉检验功能。cv参数将数据集分成了5份。每个分区都会轮流作为测试集使用。cross_val_score函数返回模拟器score方法的结果。R方结果是在0.13到0.37之间,均值0.29,是模拟器模拟出的结果,相比单个训练/测试集的效果要好。

让我们看看一些模型的预测品质与实际品质的图象显示结果:

```
plt.scatter(y_test, y_predictions)
plt.xlabel('实际品质',fontproperties=font)
plt.ylabel('预测品质',fontproperties=font)
plt.title('预测品质与实际品质',fontproperties=font)
plt.show()
```


和假设一致,预测品质很少和实际品质完全一致。由于绝大多数训练数据都是一般品质的酒,所以这个模型更适合预测一般质量的酒。

梯度下降法拟合模型

前面的内容都是通过最小化成本函数来计算参数的:

$$\beta = (X^T X)^{-1} X^T Y$$

这里X是解释变量矩阵,当变量很多(上万个)的时候, X^TX 计算量会非常大。另外,如果 X^TX 的行列式为0,即奇异矩阵,那么就无法求逆矩阵了。这里我们介绍另一种参数估计的方法,梯度下降法(gradient descent)。拟合的目标并没有变,我们还是用成本函数最小化来进行参数估计。

梯度下降法被比喻成一种方法,一个人蒙着眼睛去找从山坡到溪谷最深处的路。他看不到地形图,所以只能沿着最陡峭的方向一步一步往前走。每一步的大小与地势陡峭的程度成正比。如果地势很陡峭,他就走一大步,因为他相信他仍在高出,还没有错过溪谷的最低点。如果地势比较平坦,他就走一小步。这时如果再走大步,可能会与最低点失之交臂。如果真那样,他就需要改变方向,重新朝着溪谷的最低点前进。他就这样一步一步的走啊走,直到有一个点走不动了,因为路是平的了,于是他卸下眼罩,已经到了谷底深处,小龙女在等他。

通常,梯度下降算法是用来评估函数的局部最小值的。我们前面用的成本函数如下:

$$SS_{res} = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

可以用梯度下降法来找出成本函数最小的模型参数值。梯度下降法会在每一步走完后,计算对应位置的导数,然后沿着梯度(变化最快的方向)相反的方向前进。总是垂直于等高线。

需要注意的是,梯度下降法来找出成本函数的局部最小值。一个三维凸(convex)函数所有点构成的图行像一个碗。碗底就是唯一局部最小值。非凸函数可能有若干个局部最小值,也就是说整个图形看着像是有多个波峰和波谷。梯度下降法只能保证找到的是局部最小值,并非全局最小值。残差平方和构成的成本函数是凸函数,所以梯度下降法可以找到全局最小值。

梯度下降法的一个重要超参数是步长(learning rate),用来控制蒙眼人步子的大小,就是下降幅度。如果步长足够小,那么成本函数每次迭代都会缩小,直到梯度下降法找到了最优参数为止。但是,步长缩小的过程中,计算的时间就会不断增加。如果步长太大,这个人可能会重复越过谷底,也就是梯度下降法可能在最优值附近摇摆不定。

如果按照每次迭代后用于更新模型参数的训练样本数量划分,有两种梯度下降法。批量梯度下降(Batch gradient descent)每次迭代都用所有训练样本。随机梯度下降(Stochastic gradient descent,SGD)每次迭代都用一个训练样本,这个训练样本是随机选择的。当训练样本较多的时候,随机梯度下降法比批量梯度下降法更快找到最优参数。批量梯度下降法一个训练集只能产生一个结果。而SGD每次运行都会产生不同的结果。SGD也可能找不到最小值,因为升级权重的时候只用一个训练样本。它的近似值通常足够接近最小值,尤其是处理残差平方和这类凸函数的时候。

下面我们用scikit-learn的SGDRegressor类来计算模型参数。它可以通过优化不同的成本函数来拟合线性模型,默认成本函数为残差平方和。本例中,我们用波士顿住房数据的13个解释变量来预测房屋价格:

In [3]:

```
import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import SGDRegressor
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
data = load_boston()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.targe
t)
```

scikit-learn加载数据集的方法很简单。首先我们用train test split分割训练集和测试集。

In [4]:

```
X_scaler = StandardScaler()
y_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
y_train = y_scaler.fit_transform(y_train)
X_test = X_scaler.transform(X_test)
y_test = y_scaler.transform(y_test)
```

然后用StandardScaler做归一化处理,后面会介绍。最后我们用交叉验证方法完成训练和测试:

In [11]:

```
regressor = SGDRegressor(loss='squared_loss')
scores = cross_val_score(regressor, X_train, y_train, cv=5)
print('交叉验证R方值:', scores)
print('交叉验证R方均值:', np.mean(scores))
regressor.fit_transform(X_train, y_train)
print('测试集R方值:', regressor.score(X_test, y_test))
```

交叉验证R方值: [0.64102297 0.65659839 0.80237287 0.67294193

0.57322387]

交叉验证R方均值: 0.669232006274 测试集R方值: 0.787333341357

总结

本章我们介绍了三类线性回归模型。首先,通过匹萨价格预测的例子介绍了一元线性回归,一个解释变量和一个响应变量的线性拟合。然后,我们讨论了多元线性回归,具有更一般形式的若干解释变量和一个响应变量的问题。最后,我们讨论了多项式回归,一种特殊的多元线性模型,体系了解释变量和响应变量的非线性特征。这三种模型都是一般线性模型的具体形式,在第4章,从线性回归到逻辑回归(Logistic Regression)。

我们将残差平方差最小化为目标来估计模型参数。首先,通过解析方法求解,我们介绍了梯度下降 法,一种可以有效估计带许多解释变量的模型参数的优化方法。这章里的案例都很简单,很容易建 模。下一章,我们介绍处理不同类型的解释变量的方法,包括分类数据、文字、图像。