### **Difficulty**: Undergraduate Students

Multivariate calculus has always been a core part of any mathematics degree, but is often taught through computation or simplified assumptions instead of foundational abstractions. In this series of posts, I describe *a few* of the key concepts that were glanced over in my undergraduate studies, but carefully scrutinized during my graduate studies. I will assume that readers are familiar with the material in an introductory multivariate calculus class.

A good portion of the material below can be found in Chapter 3 of *Iterative solution of nonlinear equations in several variables* by J. M. Ortega and W. C. Rheinboldt. A more indepth presentation can be found in Appendix A of *Lectures on Modern Convex Optimization* by A. Ben-Tal and A. Nemirovski

### The Fréchet derivative: a robust standard

We start our series with the "canonical" definition of a derivative in higher dimensions. A function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is said to have a **Fréchet** (or **F-**) **derivative at**  $x \in \mathbb{R}^n$  for a given norm  $\|\cdot\|$  if there exists a (unique) linear operator  $\mathcal{A}_x^f: \mathbb{R}^n \to \mathbb{R}^m$ , called the F-derivative, that satisfies the relation

(\alpha) 
$$\lim_{\Delta \to 0} \frac{\left\| f(x+\Delta) - \left[ f(x) + \mathcal{A}_x^f(\Delta) \right] \right\|}{\|\Delta\|} = 0$$

where the limit is taken over all subsequences  $\{\Delta_n\} \subseteq \mathbb{R}^n$  tending to zero. Notice that this is a natural generalization of the one-dimensional case where we replace absolute value errors with norm errors.

Before giving more definitions, let us discuss some nuances and implications of the above definition.

- In general, the definition of  $\mathcal{A}_x^f$  is non-constructive.
- $\mathcal{A}_x^f$  is linear in its f parameter, i.e.,  $\mathcal{A}_x^{\lambda(f_1+f_2)} = \lambda(\mathcal{A}_x^{f_1} + \mathcal{A}_x^{f_2})$ .
- In the one-dimensional case (n=m=1), the F-derivative and derivative coincide in the sense that  $\mathcal{A}_x^f(\delta) = \delta f'(x)$  for  $\delta \in \mathbb{R}$ .
- The F-derivative is independent of different choices of the norm  $\|\cdot\|$ . This follows from the fact that for two norms  $\|\cdot\|$  and  $\|\cdot\|'$  in  $\mathbb{R}^n$ , there always exist constants  $c_1 > 0$  and  $c_2 \geq c_1$  such that

$$c_1||x|| \le ||x||' \le c_2||x|| \quad \forall x \in \mathbb{R}^n.$$

In other works of literature, we might see the following variations and applications.

• The definition in  $(\alpha)$  may be equivalently written as

$$\lim_{y \to x} \frac{\left\| f(y) - \left[ f(x) + \mathcal{A}_x^f(y - x) \right] \right\|}{\|y - x\|} = 0$$

where the limit is over all subsequences  $\{y_n\}$  going to x. (Prove this as a simple exercise!)

- $\mathcal{A}_x^f(\Delta)$  may be written as  $Df(x)[\Delta]$ ,  $Df_x(\Delta)$ , or  $f'(x)\Delta$  to emphasize the dependence on f and x.
- In optimization theory, the term  $f(x) + \mathcal{A}_x^f(\Delta)$  is often called the **first-order approximation of** f at x.

Once we have the above definition of a derivative, we can make the several follow-up definitions. The function f is **Fréchet** (or **F-**) **differentiable at** x if its F-derivative  $\mathcal{A}_x^f$  exists. Consequently, the function f is **Fréchet** (or **F-**) **differentiable** or has **Fréchet** (or **F-**) **differentiable** or has **Fréchet** (or **F-**)

Some important properties that are unique to F-differentiability are as follows.

- If f is F-differentiable at x then f is **continuous** at x, i.e.,  $\lim_{\bar{x}\to x} f(\bar{x}) = f(x)$ .
- The set  $\{f(x) + \mathcal{A}_x^f(\Delta) : \Delta \in \mathbb{R}^n\}$  is a tangent plane of f at x.

Finally, some important anti-properties of F-derivatives and F-differentiability are as follows.

- The subsequences  $\{\Delta_n\}$  need not lie on a line, e.g., like in the definition of a partial derivative  $\partial f_i/\partial x_j$ .
- In fact, the existence of the partial derivatives at x is generally not sufficient to conclude F-differentiability at x.
  - Exercise. Consider the function

$$(\gamma_1) \qquad f(x_1, x_2) = \begin{cases} x_1, & \text{if } x_2 = 0, \\ x_2, & \text{if } x_1 = 0, \\ 1, & \text{otherwise,} \end{cases}$$

at zero. Show that the partial derivatives of f exist at zero, but the function itself is not F-differentiable.

### **Difficulty**: Undergraduate Students

Often, we do not need full F-differentiability of a multivariate function  $f : \mathbb{R}^n \to \mathbb{R}$  to derive interesting results about f. Below, we describe a weaker notion of differentiability and its intriguing properties.

# The Gateaux derivative: provably weaker, but more flexible

The next stop on our journey is a weaker, but related notion of a derivative. A function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is said to have a **Gateaux** (or **G-**) **derivative at**  $x \in \mathbb{R}^n$  for a given norm  $\|\cdot\|$  if there exists a (unique) linear operator  $\mathcal{B}_x^f: \mathbb{R}_+ \to \mathbb{R}^m$ , called the G-derivative, that satisfies the relation

(
$$\beta$$
) 
$$\lim_{t \downarrow 0} \frac{\left\| f(x + t\Delta) - \left[ f(x) + \mathcal{B}_x^f(\Delta) \right] \right\|}{t} = 0 \quad \forall \Delta \in \mathbb{R}^n$$

where the limit is taken over all positive subsequences  $\{t_n\}\subseteq \mathbb{R}_+$  tending to zero.

Like in the previous post, let us discuss a few nuances and implications of the above definition.

- In general, the definition of  $\mathcal{B}_x^f$  is non-constructive.
- $\mathcal{B}_x^f$  is linear in its f parameter, i.e.,  $\mathcal{B}_x^{\lambda(f_1+f_2)} = \lambda(\mathcal{B}_x^{f_1} + \mathcal{B}_x^{f_2})$ .
- Compared to the F-derivative, the subsequences in the G-derivative are restricted to subsequences  $\{t_n d\}$  which lie on a line emanating from the origin.
- In the one-dimensional case (n = m = 1), the F-derivative and G-derivative coincide.
- Similar to the F-derivative, the G-derivative is independent of different choices of the norm || ⋅ || (for the same reasons).

Some works may have the same notation for the Fréchet and Gateaux derivatives, while others may prefer  $D_x f(x)[\Delta]$  for Fréchet and  $Df(x)[\Delta]$  for Gateaux. The two notions may be related as follows.

- If f has an F-derivative  $\mathcal{A}_x^f$  at x then (i) it also has a G-derivative  $\mathcal{B}_x^f$  at x, and (ii)  $\mathcal{A}_x^f = \mathcal{B}_x^f$ .
- If f is convex, then the F-derivative  $\mathcal{A}_x^f$  exists at x if and only if the G-derivative  $\mathcal{B}_x^f$  exists at x.

We now make the corresponding follow-up definitions. The function f is **Gateaux** (or **G-**) **differentiable at** x if its G-derivative  $\mathcal{B}_x^f$  exists. Consequently, the function f is **Gateaux** (or **G-**) **differentiable** or has **Gateaux** (or **F-**) **differentiability** if it is G-differentiable at all points in  $\mathbb{R}^n$ .

With the above definitions in mind, we give a few properties that merely require G-differentiability (instead of F-differentiability).

- If f is G-differentiable at x, then f is **hemicontinuous** at x, i.e., for any  $\varepsilon > 0$  and  $\Delta \in \mathbb{R}^n$  there exists  $\delta = \delta(\varepsilon, \Delta)$  such that whenever  $|t| < \delta$  then  $||f(x+t\Delta) f(x)|| < \varepsilon$ .
  - Exercise. Consider the function

$$(\gamma_2) f(x_1, x_2) = \begin{cases} 0, & \text{if } x = 0, \\ \frac{x_2(x_1^2 + x_2^2)^{3/2}}{(x_1^2 + x_2^2)^2 + x_2^2}, & \text{otherwise.} \end{cases}$$

Show that f has a G-derivative at zero, but not an F-derivative at zero. Show, moreover, that the G-derivative is hemicontinuous at zero.

• If f is G-differentiable at x and  $||x|| = x^T x$  for every  $x \in \mathbb{R}^n$ , then the partial derivatives of f exist at x. Furthermore, the matrix representation of  $\mathcal{B}_x^f$  is given by the **Jacobian** 

$$\mathcal{B}_{x}^{f} \equiv \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial f_{1}}{\partial x_{m}}(x) \\ \vdots & & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}(x) & \cdots & \frac{\partial f_{n}}{\partial x_{m}}(x) \end{pmatrix} \in \mathbb{R}^{n \times m};$$

its transpose in the case of m = 1 is called the **gradient of** f **at** x, and is denoted by  $\nabla f(x) \in \mathbb{R}^n$ .

– More general versions of the Jacobian and gradient exist for other inner product spaces through the use the **Riesz-Fréchet representation** theorem. The (generalized) gradient is specifically defined as the unique element  $\nabla f(x) \in \mathbb{R}^{n \times m}$  satisfying

$$\langle (\mathcal{B}_x^f)^* \tau, \Delta \rangle = \langle \nabla f(x) \tau, \Delta \rangle$$

for every  $\tau \in \mathbb{R}^m$  and  $\Delta \in \mathbb{R}^n$ , where  $(\mathcal{B}_x^f)^*$  is the adjoint operator of  $\mathcal{B}_x^f$ .

• [Chain Rule] If  $f: \mathbb{R}^n \to \mathbb{R}^m$  has a G-derivative at x and  $g: \mathbb{R}^m \to \mathbb{R}^p$  has an F-derivative at f(x), then the composite function  $h:=g\circ f$  has a G-derivative at x where

$$\mathcal{B}_x^h = \mathcal{A}_{f(x)}^g \mathcal{B}_x^f.$$

If, in addition,  $\mathcal{B}_x^f$  is an F-derivative then  $\mathcal{B}_x^h$  is an F-derivative as well.

- Exercise. Let f be as in  $(\gamma_2)$  and let  $g: \mathbb{R}^2 \to \mathbb{R}$  be given by  $g(x) = (x_1, x_2^2)^T$ . Show that the composite function  $h = f \circ g$  does not have a G-derivative at zero.

Finally, some important anti-properties of G-derivatives and G-differentiability are as follows.

- Surprisingly, just like the F-derivative, the existence of the partial derivatives at x do not imply that the G-derivative exists at x.
  - Exercise. Consider the same function in equation  $(\gamma_1)$  of the previous post. Show that f is not G-differentiable at zero.
- The G-differentiability of f does not imply that f is continuous (unlike for F-differentiability).
  - Exercise. Consider the function

$$f(x_1, x_2) = \begin{cases} 0, & \text{if } x_1 = 0, \\ \frac{2x_2 \exp(-x_1^{-2})}{x_2^2 + \exp(-2x_1^{-2})}, & \text{otherwise,} \end{cases}$$

at zero. Show that the G-derivative of f exists at zero, but f is not continuous.

### **Difficulty**: Undergraduate Students

Sometimes notions in one-dimensional spaces are not easy to generalize to multi-dimensional spaces. I believe the notion of a differential (or the derivative in one-dimensional space) is one of them.

## Differentials: a useful, but naive surrogate

In one-dimensional calculus, students are typically introduced to the definition of the derivative of a function  $f : \mathbb{R} \to \mathbb{R}$  by constructive means. Specifically, if

$$(\theta) \qquad \lim_{t \downarrow 0} \frac{f(x+t) - f(x)}{t} = \lim_{t \uparrow 0} \frac{f(x+t) - f(x)}{t} = \lim_{t \to 0} \frac{f(x+t) - f(x)}{t} = f'(x)$$

then f'(x) is called the (univariate) **derivative of** f **at** x. In this special setting, the existence of f'(x) enjoys all the nice properties of the F-derivative (e.g., continuity and tangency) and G-derivative (e.g., chain rule) without the issues of construction.

It is then natural to ask whether  $(\theta)$  could be extended to the multivariate setting while simultaneously keeping (i) its constructive nature and (ii) the nice properties of the F-derivative (and G-derivative). Below, we show an approach of obtaining (i) which partially obtains (ii).

A function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is said to have a **Gateaux** (or **G-**) **differential at**  $x \in \mathbb{R}^n$  in the direction  $\Delta \in \mathbb{R}^n$  if the function

$$(\pi_1) \qquad V^f(x,\Delta) = \lim_{t \to 0} \frac{f(x+t\Delta) - f(x)}{t},$$

called the G-differential, is well-defined. Here, the limit is taken over all subsequences  $\{t_n\}\subseteq\mathbb{R}$ . If, in addition,

$$(\pi_2)$$
  $\lim_{\Delta \to 0} \frac{\|f(x+t\Delta) - f(x) - V^f(x,\Delta)\|}{\|\Delta\|} = 0$ 

where the limit is taken over all subsequences  $\{\Delta_n\} \subseteq \mathbb{R}^n$ , then f is also said to have a **Fréchet** (or **F-**) **differential at**  $x \in \mathbb{R}^n$  (also denoted by  $V^f(x, \Delta)$ ).

Let us now make a few glancing remarks.

- Unlike the definitions of an F-derivative or G-derivative, the definition of  $V^f$  in  $(\pi_1)$  is constructive.
- Similar to the one-dimensional case, the well-definedness of  $V^f(x, \Delta)$  equivalent to the left and right limits (in terms of t) being equal.

• In the one-dimensional case of n = m = 1, we have

$$V^f(x,1) = f'(x) = -V^f(x,-1).$$

• It is straightforward to see that if  $V^f(x, \Delta)$  exists for  $\Delta \in \mathbb{R}^n$  and is linear in  $\Delta$  then  $V^f(x, \Delta) = \mathcal{B}_x^f(\Delta)$ . Furthermore, if  $(\pi_2)$  holds then  $V^f(x, \Delta) = \mathcal{A}_x^f(\Delta)$ .

While we have fulfilled property (i), the following anti-properties (given as exercises) show that property (ii) cannot be fully realized.

• Exercise. Consider the function

$$f(x_1, x_2) = \begin{cases} 0, & \text{if } x = 0, \\ \frac{x_1 x_2^2}{x_1^2 + x_2^4}, & \text{otherwise.} \end{cases}$$

Show that  $V^f(0, \Delta)$  exists for every  $\Delta \in \mathbb{R}^2$ , but f does not have a G-derivative at zero. As a bonus, show that f is not continuous at zero.

• Consider the function

$$f(x_1, x_2) = \operatorname{sgn}(x_2) \min(|x_1|, |x_2|)$$

which is clearly continuous at zero. Show that  $V^f(0,\Delta)$  exists for every  $\Delta \in \mathbb{R}^2$ , but f does not have a G-derivative at zero.

On the other hand, the nice property about the G-differential (resp. F-differential) is that it gives a good initial estimate for the G-derivative (or F-derivative) if one can extract the appropriate linear form from it (and verify property ( $\pi_2$ ) in the case of the F-derivative) or we know that f is G-differentiable (resp. F-differentiable). A classic example of the utility of the differential is in deriving the derivative of the log determinant of a matrix, which we show below.

Let  $f: \mathcal{S}_{++}^n \to \mathbb{R}$  be given by  $f(M) = \log \det M$ , where  $\mathcal{S}_{++}^n$  denotes the space of positive definite matrices. Since  $\log(\cdot)$  is differentiable on  $\mathbb{R}_{++}$  and  $h(M) = \det(M)$  is a polynomial function of the components of M (and, hence differentiable) we can obtain the derivative of f by differentials and the chain rule. Using some standard linear algebra techniques, the F-differential of f (and, hence, the F-derivative of f) is then given by

$$V^{h}(M, \Delta) = \lim_{t \to 0} \frac{\det(M + t\Delta) - \det(M)}{t}$$

$$= \lim_{t \to 0} \frac{\det(M[I + tM^{-1}\Delta]) - \det(M)}{t}$$

$$= \det(M) \lim_{t \to 0} \frac{\det(I + tM^{-1}\Delta) - 1}{t}$$

$$= \det(M) \operatorname{tr}(M^{-1}\Delta) = \mathcal{A}_{M}^{h}(\Delta),$$

Hence, by the chain rule, we have

$$\mathcal{A}_{M}^{f}(\Delta) = \mathcal{A}_{\det M}^{\log(\cdot)} \mathcal{A}_{M}^{h}(\Delta) = \frac{\det(M) \operatorname{tr}(M^{-1}\Delta)}{\det(M)} = \operatorname{tr}(M^{-1}\Delta).$$

One can even obtain the gradient  $\nabla f(x) = M^{-T}$  by using the fact that

$$\mathcal{A}_{M}^{f}(\Delta) = \operatorname{tr}(M^{-1}\Delta) = \langle M^{-T}, \Delta \rangle.$$

To close, let us present this nice schematic of the various relations between G/F-derivatives and G/F-differentials in terms of the displacement variable  $\Delta$  that shows up in  $\mathcal{A}_x^f(\Delta)$ ,  $\mathcal{B}_x^f(\Delta)$ , and  $V^f(x,\Delta)$ .

