Medical/Bio Research Topics II: Week 10 (09.11.2023)

Brain age estimation artificial intelligence models (2): model construction (뇌나이 예측 인공지능 모델 개발 연습 (2): 예측 모델 구성)

Brain Ageing on MRI

- Study designs for assessing age effects
 - Group
 - Age-related differences
 - Cross-sectional
 - Age-related differences
 - Longitudinal
 - Age-related changes
 - Enables to assess the rate of change with inter-individual variability removed

[MacDonald and Pike, 2021]

Study designs for assessing age effects

Negative correlation between grey matter volume and age in the HCP Aging dataset

Negative correlation between white matter volume and age in the HCP Aging dataset

	Mean (95% Confidence Interval)	
Region	Cross-sectional Data	Longitudinal Data
Whole brain*	0.33 (0.25-0.41)	0.32 (0.10-0.54)
Temporal lobes*	0.35 (0.20-0.51)	0.68 (0.42-0.93)
Hippocampi*	0.35 (0.13-0.57)	0.82 (0.53-1.11)
Lateral ventricles, mm ³ /y	521 (323-719)	650 (333-968)

[Schhill et al., 2003]

Morphological changes

- Shrinkage of brain volume
 - Continuous decline throughout the lifespan
 - With annual reductions of between 0.5% and 1.0% in most brain areas [Fjell and Walhovd, 2010]
 - For both grey matter and white matter
 - Slower rate of shrinkage for white matter [Ge et al., 2002]
 - Highly heterogenenous in the pattern of changes

[Hedman et al., 2012]

Brain volume changes with age

[Fjell and Walhovd, 2010]

Percentage changes in cortical thickness over one and two years

[DeCarli et al., 2005]

Regional differences in yearly brain volume changes

- Enlargement of ventricular size
 - Increase in cerebrospinal fluid volume
 - With most marked changes occurring after 70 years of age [Schhill et al., 2003]

[MacDonald and Pike, 2021]

Ventricular size changes with age

Cross-sectional volume and longitudinal rate of volume changes in the whole brain and ventricles

Accrual of silent lesions

- White matter hyperintensities
 - Focal white matter spots that are hyperintense on T2-weighted MRI
- Cerebral micorbleeds
 - Small hemorrhages caused by rupture of small vessels in basal ganglia or subcortical white matter
- Lacunar infarcts
 - Small noncortical infarcts caused by occlusion of a single penetrating branch of a large cerebral artery

[[MacDonald and Pike, 2021]

Examples of silent lesions

Normative Model

- Reference model for population variation [Rutherford et al., 2022]
 - Enables to quantify individual variation against centiles of variation in a reference population
 - Shifts focus away from group-level (e.g., case-control) inferences to the level of an individual
 - The ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of clinical conditions

- Framework for mapping population-level trajectories of the relationships between health-related variables while simultaneously preserving individual-level information [Rutherford et al., 2023]
 - Health-related variables may involve:
 - Demographics (i.e. age and gender)
 - Simple (i.e. height and weight) or complex (i.e. brain structure and function, genetics) biological measures
 - Environmental factors (i.e. urbanicity, pollution)
 - Self-report measures (i.e. social satisfaction, emotional experiences)
 - Behavioural tests (i.e. cognitive ability, spatial reasoning)

[Rutherford et al., 2022]

Prediction of cortical thickness and subcortical volume from age

- Deviation score [Rutherford et al., 2023]
 - Output of a normative model
 - Represents where an individual is in comparison to the population the model was estimated on
 - Positive deviation score: greater cortical thickness or subcortical volume than average
 - Negative deviation score: less cortical thickness or subcortical volume than average
 - Advantageous compared to using raw features in regression and classification tasks

[Rutherford et al., 2023]

Normative model-derived deviation scores that represent individual-level devations

Support Vector Classification: Schizophrenia vs. Controls

[Rutherford et al., 2023]

Comparison of classification accuracy between using deviation scores and using raw features

- Brain age estimation model as a normative model
 - Describes population-level trajectories of the relationship between brain structure and age
 - Prediction of age from brain structural features
 - Age ~ brain structural features
 - Deviation score
 - Brain age gap = brain age chronological age

Machine Learning for Brain Age Estimation

- Relevance vector regression
 - Franke et al., 2010
 - Input:
 - Voxel-wise values of grey matter probability → principal component analysis
 - Datasets:
 - Training: n = 410 (20-86 years)
 - Test: n = 137 (19-83 years)
 - External test: n = 108 (20-59 years)
 - Performance:
 - Test: mean absolute error (MAE) = 4.61 years
 - External test: MAE = 5.44 years

[Franke et al., 2010]

Influences of various parameters on the performance of brain age estimation

AD, Alzheimer's disease

[Franke et al., 2010]

Comparison of brain age gap

- 3D convolutional neural networks (CNN)
 - Cole et al., 2017
 - Input:
 - T1-weighted brain image (T1)
 - Grey matter probability image (GM)
 - White matter probability image (WM)
 - Datasets (18-90 years):
 - Training: n = 1,601
 - Validation: n = 200
 - Test: n = 200
 - Performance:
 - Test: MAE = 4.16 (GM), 4.34 (GM + WM), 4.65 (T1), 5.14 (WM) years

– Jonsson et al., 2019

• Input:

- T1-weighted brain image (T1)
- Jacobian map (JM)
- Grey matter probability image (GM)
- White matter probability image (WM)
- Individuals' sex and MRI scanner type

• Datasets (18-75 years):

- Training: n = 809 (1,171 images)
- Validation: n = 202 (298 images)
- Test: n = 253 (346 images)

Performance

- Validation: MAE = 3.581 (T1, JM, GM, and WM composition), 3.996 (T1), 4.676 (WM),
 4.766 (GM), 4.801 (JM) years
- Test: MAE = 3.388 (T1, JM, GM, and WM composition), 4.006 (T1), 4.189 (WM), 4.641 (GM), 4.804 (JM) years

[Jonsson et al., 2019]

3D CNN that employed residual blocks

[Jonsson et al., 2019]

Combination of predictions from multiple CNNs by training a linear regression blender

Peng et al., 2021

 Based on approaches that achieved the first place in the Predictive Analytic Challenge (PAC) 2019

• Input:

- Linearly registered T1-weighted brain image (T1Lin)
- Nonlinearly registered T1-weighted brain image (T1Nonlin)
- Grey matter probability image (GM)
- White matter probability image (WM)

• Datasets (44-80 years):

- Training: n = 12,949
- Validation: n = 518
- Test: n = 1,036

Data augmentation

- Randomly shifted by 0, 1, or 2 voxels along every axis
- Mirrored with a probability of 50% about the sagittal plane

Ensemble strategy

 5 (identical network structure but randomly-initialised parameters) models trained on each of the 4 input data types

Performance

- Simple fully convolutional network (SFCN) with data augmentation and regularization
 - » Train: MAE = 1.36 years (T1Lin)
 - » Validation: MAE = 2.18 years (T1Lin)
 - \rightarrow Test: MAE = 2.14 years (T1Lin)
- Model ensemble (n = 2,590 for training)
 - » Test: MAE = 2.58 (T1Lin + T1Nonlin + GM + WM ensemble), 2.62 (T1Nonlin ensemble), 2.71 (T1Lin ensemble), 2.72 (GM ensemble), 2.78 (WM ensemble) years
- https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain/

- Lee et al., 2022
 - Input:
 - T1-weighted image
 - Datasets: n = 1,805 (20-98 years)
 - 5-fold cross validation
 - » Training: 60%
 - » Validation: 20%
 - » Test: 20%
 - Performance
 - Test: MAE = 4.2055 years
 - Interpretability
 - Through occlusion sensitivity analysis with occlusion masks of 11³ mm³
 - https://github.com/Neurology-AI-Program/Brain_age_prediction.git

[Lee et al., 2022]

[Lee et al., 2022]

[Lee et al., 2022]

MCI, mild cognitive impairment AD, Alzheimer's disease FTD, frontotemporal dementia DLB, dementia with Lewy bodies

– Yin et al., 2023

- Input:
 - T1-weighted image (brain.mgz from FreeSurfer)
- Datasets:
 - Training: n = 4,681 (22-95 years)
 - Test: n = 1,170 (22-95 years)
 - External test: n = 650 (18-88 years)

Performance

- Test: MAE = 2.41 (males), 2.23 (females) years
- External test: MAE = 3.01 (males), 4.71 (females) years

[Yin et al., 2023]

- Interpretability
 - Through occlusion sensitivity analysis with occlusion masks of 1 mm³
 - Reveals typical neuroanatomic patterns of aging
 - » Ventricular enlargement
 - » Atrophy of frontal, temporal, and hippocampal cortices
 - » Cortical thinning
- https://github.com/irimia-laboratory/USC_BA_estimator

[Yin et al., 2023]

Comparison of brain saliency maps between sexes

Females Males

metric	dataset	status	3D-CNN	SFCN	$\Delta [\%]$
	UKBB	CN	2.27	2.14	6.07
MAE	CamCAN	CN	4.71	8.17	-29.87
IVIAL	ADNI	MCI	5.26	7.50	-42.35
	ADNI	AD	6.48	8.65	-25.08
	UKBB	CN	0.85	0.84	1.19
R^2	CamCAN	CN	0.95	0.67	41.79
R^{-}	ADNI	MCI	0.44	0.05	780.00
	ADNI	AD	0.21	0.05	320.00

metric	dataset	status	3D-CNN	SFCN	Δ [%]
MAE	UKBB	CN	2.31	2.14	7.94
	CamCAN	CN	3.01	9.90	-69.59
	ADNI	MCI	4.33	7.72	-43.91
	ADNI	AD	5.98	8.24	-27.42
R^2	UKBB	CN	0.83	0.84	1.19
	CamCAN	CN	0.90	0.66	36.36
	ADNI	MCI	0.31	0.15	106.67
	ADNI	AD	0.17	0.12	41.67

Brain age gap across testing cohorts

Bias in Brain Age Estimation

- Tendency to be biased towards the mean age of the total cohort
 - Overestimated brain age in younger individuals, but underestimated brain age in older individuals
- Induces the correlation between chronological age and brain age gap
 - Impacts the relationship between brain age gap and other variables of interest when they are also related to age

- Explained by the concept of 'regression to the mean' (RTM) in statistics
 - For values observed with random error
 - Neither data-dependent nor specific to particular methods including deep learning
- Needs to be adjusted by regressing chronological age on brain age or brain age gap to provide corrected brain age gap
 - (brain age) $\sim a \times$ (chronological age) + $b_{\text{[Liang et al., 2019]}}$
 - (brain age gap) $\sim a \times$ (chronological age) + $b_{\text{[Le et al., 2018]}}$

[Peng et al., 2021]

[Lee et al., 2022]

Effects of Age Range and Sample Size on Brain Age Estimation

- Better performance in samples with a narrower age range
 - Due to smaller error when predictions are closer to the mean age of the total cohort
- Better performance for larger sample sizes across different age ranges

With bias adjustment

[de Lange et al., 2022]

Comparison of performance for different age ranges and sample sizes

Relationship between sample size and performance

Hands on Machine Learning Modelling for Brain Age Estimation

Predictor

Support vector regressor

Response

- Features [https://github.com/hauin/MedicalBioResearchTopics2/blob/main/10_20231109/X_train.txt]

	Age	TIV	Sex	Region 1 GM volume		Region 60 GM volume
Subject 1	-	-	-	-	-	-
Subject 2	-	-	-	-	-	-
Subject 3	-	-	-	-	-	-
:	-	-	-	-	-	-

Confounding

Performance in 5-fold cross validation

Input	Training	Test
GM (60 features)	6.5±0.3 years	7.2±0.2 years
WM (48 features)	6.3±0.2 years	5.8±0.2 years
GM + WM (108 features)	5.4±0.3 years	5.8±0.2 years
GM (60 features) and WM (48 features) combination	5.5±0.3 years	5.6±0.3 years

• 3D CNN

– Regressor in MONAI

[https://github.com/hauin/MedicalBioResearchTopics2/blob/main/10_20231109/Age_Regressor.ipynb]

======================================	Output Shape	======================================
======================================	======================================	
├Sequential: 1-1	[5, 128, 4, 4, 4]	
└─ResidualUnit: 2-1	[5, 16, 32, 32, 32]	
│	[5, 16, 32, 32, 32]	448
│ │ │ └Sequential: 3-2	[5, 16, 32, 32, 32]	7,378
└─ResidualUnit: 2-2	[5, 32, 16, 16, 16]	
│	[5, 32, 16, 16, 16]	13,856
└─Sequential: 3-4	[5, 32, 16, 16, 16]	41,538
└─ResidualUnit: 2-3	[5, 64, 8, 8, 8]	
│	[5, 64, 8, 8, 8]	55,360
└─Sequential: 3-6	[5, 64, 8, 8, 8]	166,018
└─ResidualUnit: 2-4	[5, 128, 4, 4, 4]	
└─Conv3d: 3-7	[5, 128, 4, 4, 4]	221,312
└─Sequential: 3-8	[5, 128, 4, 4, 4]	663,810
—Sequential: 1-2	[5, 1]	
└─Flatten: 2-5	[5, 8192]	
└─Linear: 2-6	[5, 1]	8,193
Reshape: 1-3	[5, 1]	
	=======================================	=======================================

Performance

Input	Validation	Test
T1	5.3 years	5.5 years
GM	4.9 years	6.0 years
WM	4.7 years	4.7 years