

МЕТАЛЛООБРАБОТКА НА СТАНКАХ С ЧПУ: КАК НАЧАТЬ ВЫПУСКАТЬ ПРОДУКЦИЮ МИРОВОГО УРОВНЯ?

редставляем вашему вниманию статью на тему цифровизации производства и выпуска продукции нового поколения. В материале пойдет речь о САD/ САМ-системе как важной составляющей конкурентоспособного производства. В качестве примера расскажем об одной из таких систем: Solid Edge + Solid Edge CAM Pro.

Металлообработка в XXI веке вызовы и возможности

Согласно данным аналитиков, продукция российского машиностроения характеризуется низким уровнем конкурентоспособности на мировом рынке. Причины – в проблемах, которые испытывает отрасль. Перечислим основные:

- спад потребления на внутреннем рынке, начавшийся в 2014 году;
- увеличение доли изношенных стан-
- отставание от развитых стран по доле станков с ЧПУ;
- низкий уровень оптимизации и автоматизации производственных и бизнес-процессов предприятий.

При этом технологические инициативы промышленно развитых стран, как указано в том же аналитическом отчете, направлены в первую очередь на то, чтобы ускорить переход к производству продукции нового поколения, которое основано на технологии интернета вещей (ІоТ), внедрения систем автоматизации и анализа больших данных.

Ведущие предприятия отрасли направляют инвестиции в технологии - передовое оборудование и технологии обработки - и в системы управления производственными процессами (MES-системы). За последние три года наиболее эффективными вложениями в промышленном секторе стали инвестиции в:

- многофункциональные обрабатывающие центры;
- пятиосевую/универсальную обработку, используемую на рынке высокоточной обработки;
- быстросменные инструмент/крепле-
- высокоскоростную механическую обработку (HSM);
- программное обеспечение для создания, симуляции и проверки управля-

ющих программ для станков с ЧПУ (далее - УП).

Цифровизация машиностроения и переход на контракты жизненного цикла позволят предприятиям увеличить долю конкурентоспособной продукции. Согласно оценкам, при новом подходе выпуск такой продукции возрастет с нынешних 16% до 30% к 2025 году и до как минимум $50\% - \kappa 2030$ -му.

Высокоавтоматизированная CAD/CAM-система для решения задач машиностроения

Мировой промышленный концерн Siemens AG реализует свою стратегию цифровизации с помощью программного обеспечения от компании Siemens PLM Software. По мнению специалистов последней, для повышения конкурентоспособности машиностроительное предприятие должно решить следующие задачи:

- обеспечить максимальную загрузку оборудования и сократить время наладки;
- внедрить сбор информации о продуктах и процессах для контроля и управления инструментальной ос-

Драйверы повышения эффективности производства

насткой и приспособлениями совместно с деталями изделия на основе шаблонов;

- внедрить симуляцию траектории обработки 3D-модели для симуляции кинематики станка и моделирования траектории движения инструмента;
- сократить время программирования, внедрить автоматизацию этапов создания УП для обработки стандартных элементов (таких, например, как отверстия);
- сократить время обработки, внедрить ее новые стратегии.

Как показала практика ведущих компаний отрасли, последовательно решать эти задачи — неэффективный и долгий процесс. Требуется комплексный подход и внедрение CAD/CAM-системы, которая управляет всеми этапами изготовления изделия: от проектирования до готовой летали.

Ключевая особенность цифровизации производственного процесса — возможность проектировать под требования рынка не только технические и функциональные характеристики продукта, но и процессы производства и эксплуатации. Для этого одновременно разрабатываются физический продукт и его

математическая (программная) модель (так называемый цифровой двойник, digital twin) для управления производством продукта и автоматического мониторинга.

В результате внедрения системы процесс разработки становится более гибким: инженеры-конструкторы совершенствуют изделия, специалисты оптимизируют управляющие процессы, технологи-программисты проверяют стратегии и выбирают оптимальный способ изготовления изделий.

Преимущества использования CAD/CAM-системы

Рассмотрим основные драйверы, которые снижают трудоемкость программирования, сокращают время обработки и износ станков с ЧПУ и, как следствие, ведут к росту выпуска продукции.

Драйверы повышения ценности по всей технологической цепочке

Основные результаты применения эффективной CAD/CAM-системы:

- 1. Рост производительности и эффективности работы за счет:
 - шаблонов процессов и автоматизации:

- повторного применения инструментов и технологий обработки;
- прослеживаемости "деталь → процесс → изготовление".
- 2. Увеличение использования активов за счет:
 - сокращения времени наладки;
 - использования многофункциональных обрабатывающих центров, симуляции в G-кодах, взаимодействия со стойкой ЧПУ.
- 3. Оптимизация операционных расходов за счет:
 - сокращения складских запасов через управление инструментами;
 - сокращения затрат на инструмент:
 - применения инструмента в САМсистеме, отслеживания времени жизни инструмента.
- 4. Автоматизация и гибкость производства за счет:
 - поддержки безлюдных произволств:
 - использования систем анализа производственных данных.

Solid Edge + Solid Edge CAM Pro: CAD/CAM-система от Siemens PLM Software

Увидеть, как в Solid Edge CAM Pro создаются управляющие программы для токарной и фрезерной обработки, вы сможете, ознакомившись с записями недавно прошедших вебинаров.

Я же в общих чертах расскажу об особенностях и преимуществах этой САМ-системы.

Программное решение Solid Edge CAM Pro для обработки деталей

Solid Edge CAM Pro, основанный на NX CAM, входит вместе с Solid Edge в одну линейку решений Siemens PLM Software. Программное решение предоставляет широкий спектр функциональных возможностей — от двухосевого фрезерования и высокоскоростной обработки до программирования многофункциональных станков и пятиосевого фрезерования.

Программисты станков с ЧПУ могут использовать Solid Edge CAM Pro, чтобы решать задачи с различными требованиями к обработке (фрезерование, сверление, токарная и электроэрозионная обработка).

С помощью синхронной технологии можно напрямую редактировать модели деталей и подготавливать их к созданию программ для станков с ЧПУ, включая

Отображение РМІ

обработку глухих отверстий и зазоров, смещенных поверхностей, а также изменять размеры элементов детали.

Solid Edge CAM Pro использует концепцию мастер-модели с целью обеспечения сквозного проектирования и разработки программ для ЧПУ за счет привязки всех САМ-функций к единой модели, определяющей геометрию детали. В результате программист может начать разработку программы для станка с ЧПУ, не дожидаясь окончания работы конструктора. Полная ассоциативность обеспечивает последующее обновление операций управляющей программы для станка с ЧПУ при изменении геометрии молели.

Основные возможности Solid Edge **CAM Pro**

Работа с РМІ – конструкторско-технологической информацией 3D-модели

Product Manufacturing Information, РМІ – производственные данные, ассоциированные с трехмерной моделью изделия в САПР. РМІ-данные включают в себя геометрические размеры и допуски (GD&T), трехмерные аннотации (текстовые пометки), спецификации материалов и требования к качеству обработки поверхностей. Данные РМІ поддерживаются во многих форматах файлов, используемых для обмена и визуализации данных об изделии (например, в PDF и JT). Эти данные, если они заложены в модель инженером-конструктором, транслируются вместе с данными геометрии из Solid Edge в Solid Edge CAM Pro. Таким образом, программист станка ЧПУ получает от инженера-конструктора всю необходимую информацию. Это позволяет избежать ошибок и задержек, связанных с использованием 2D-чертежей, оптимизировать производственные процессы с помощью сквозного описания изделия, а также автоматизировать создание управляющей программы на основе этих данных.

Обработка на основе элементов (Feature-based Machining)

Модуль обработки на базе элементов обеспечивает распознавание отверстий, карманов, плоских граней (в том числе на моделях, импортированных из других САО-систем) и создание стратегии их обработки. Распознавание выполняется как по параметрам элементов построения, так и по их топологии. Этот модуль существенно ускоряет программирование призматических деталей, обеспечивает оптимизацию обработки, требует меньшей квалификации оператора. Модуль автоматически распознаёт конструкторско-технологическую информацию об изделии (РМІ) - допуски, 3D-аннотации, параметры чистоты поверхности при назначении технологии обработки. Например, для точных отверстий помимо сверления будут автоматически добавлены операции растачивания или развертывания (причем можно настроить предпочтительный тип операции).

Обработка на основе элементов – яркий пример автоматизации программирования, которая может привести к значительному сокращению времени на создание управляющей программы.

Постобработка и симуляция

Solid Edge CAM Pro включает в себя собственную систему постобработки, которая тесно взаимодействует с ядром САМ-системы. Это позволяет легко сгенерировать требуемый код управляющей программы для большинства типов конфигурации станков и контроллеров. Программа включает утилиту Post Builder, которая обеспечивает создание и редактирование постпроцессоров. Используя графический пользовательский интерфейс утилиты, можно задавать параметры требуемого кода программы для станка с ЧПУ.

Процесс распознавания элементов

Постпроцессирование

Имитационное моделирование

Пятиосевая обработка

Библиотека постпроцессора представляет собой интернет-ресурс, в котором содержится множество процессов, поддерживающих большое количество различных станков и инструментов.

Также Solid Edge CAM Pro включает оптимизированный постпроцессор Sinumerik, который автоматически выбирает основные настройки контроллера в соответствии с данными операции технологического процесса.

Моделирование обработки на станке

Одним из основных преимуществ системы Solid Edge CAM Pro являются интегрированные функции имитационного моделирования и верификации обработки, которые позволяют специалистам выполнять проверку траектории движения инструмента в процессе программирования станков с ЧПУ. При этом доступен многоуровневый процесс проверки. Например, имитационное моделирование на основе G-кода показывает движение, управляемое выходными данными кода программы станка с ЧПУ на встроенном постпроцессоре 3D-модель станка вместе с деталью, приспособлениями и инструментом перемещается в соответствии с движениями инструмента на основе G-кода.

Пятиосевая обработка

Основные преимущества:

- усовершенствованные стратегии обработки с гибкими вариантами управления осями инструмента;
- переменное профилирование оси автоматически обрабатывает сложные стенки на основе геометрии дна;
- обработка по Z-профилю с наклонным инструментом может уменьшить прогиб инструмента для лучшей чистоты поверхности.

Для сложных деталей, используемых в аэрокосмической и энергетической отраслях, Solid Edge CAM Рго предлагает гибкий подход и ряд вариантов управления осями инструмента для пятиосевой обработки. Например, при программировании детали с несколькими карманами со спроектированными стенками необходимо один раз выбрать дно кармана, и система создаст траектории чистовой обработки для стенок.

Высокоскоростная обработка (Highspeedmachining — HSM)

Высокоскоростная черновая обработка в Solid Edge CAM Рго поддерживает высокую скорость удаления материала при управлении нагрузками на инструмент.

Траектории пятиосевой обработки

Траектории обработки лопастей

Эффективные стратегии HSM для фрезерования с высокой скоростью позволяют сократить время обработки и повысить качество обрабатываемых поверхностей пресс-форм и штампов, призматических и сложных деталей. Пользователю доступен широкий выбор стратегий высокоскоростной обработки для эффективного фрезерования закаленных деталей с обеспечением плавного перемещения инструмента и постоянства силы резания.

Прикладное программирование. Фрезерование турбокомпонентов

Модуль Turbomachinery Milling предназначен для программирования станков с ЧПУ, которые обрабатывают многолопастные и многоосевые детали вращения. Предусмотрена возможность обработки лопаток с поднутрениями. Кроме того, поддерживается обработка нескольких рассекателей, что позволяет эффективнее работать с CAD-данными независимо от того, в какой системе они были созданы. Лопатки могут состоять из одной или нескольких поверхностей. Зазоры между поверхностями и наложения поверхностей исправляются автоматически. Система позволяет создавать плавные траектории движения инструмента на смежных поверхностях с несовместимыми параметрическими линиями. Определяет операции механообработки для одного элемента моноколеса или крыльчатки, а затем автоматически применяет их к остальным частям детали.

Цифровой цех с Solid Edge CAM Pro

Solid Edge CAM Pro — инструмент для производителей, которые "строят" цифровой цех или планируют обновлять оборудование. С помощью Solid Edge CAM Pro пользователь может создать оптимальные программы обработки на станках с ЧПУ для своих моделей Solid Edge и моделей в сторонних CADформатах, уменьшить производственные издержки, повысить качество выпускаемых изделий.

Внедрение связки "Solid Edge + Solid Edge CAM Pro" — значительный шаг к цифровизации бизнес-процессов и росту конкурентоспособности продукции.

Александр Лебедев, продакт-менеджер направления Siemens AO "Нанософт" E-mail: alebedev@nanocad.ru

Инженеры "Росатома" соревновались в создании сложных промышленных BIM-моделей на чемпионате AtomSkills

В Екатеринбурге прошел впечатляющий своими масштабами чемпионат профессионального мастерства AtomSkills-2019. Компании "Нанософт" и "Нормасофт" выступили генеральными партнерами и поставщиками программного обеспечения компетенции "Инженерное проектирование". В составе команды участники компетенции проектировали промышленные объекты, боролись за звание лучших ВІМ-проектировщиков и ценные призы.

AtomSkills – крупнейший в России отраслевой чемпионат, проводимый по международной методике WorldSkills. Участники состязания, призванного усовершенствовать профессиональные навыки молодых инженеров и рабочих атомной отрасли, не только определяют лучших в своих профессиональных областях, но и получают экспертную оценку выполненых работ, основанную на мировых стандартах. Организатор чемпионата – Госкорпорация "Росатом" – полностью воссоздает, а по ряду параметров и усложняет реальные производственные условия.

AtomSkills-2019 собрал более тысячи участников — представителей более чем 80 предприятий и опорных вузов "Росатома". Соревнования проходили в 31 профессиональной компетенции, многие из которых связаны с проектированием.

Компетенция "Инженерное проектирование" стала одной из самых популярных и сложных в рамках чемпионата. Участникам предстояло создать проект, включающий три промышленных объекта (котельную, эстакаду и склад,

расположенные на территории промышленной зоны), а также все коммуникации между ними. Команды должны были сформировать сводную ВІМ-модель, выполнить анализ и расчеты в системе Model Studio CS на базе САПР-платформы nanoCAD, разработать электротехническую часть с применением информационно-справочного сервиса ЭТМ іРRO. Для поиска нормативных документов использовалась информационно-поисковая система NormaCS.

Изначально компетенция была индивидуальной: каждый участник показывал свои знания во всех областях, от стройки до электроснабжения, то есть выполнял роль универсального ГИП. После первого конкурса стало очевидно, что намного более эффективной будет реализация проекта в команде. Сейчас команда состоит из четырех участников: специалистов по кабельному хозяйству, архитектурно-строительной части, трубопроводам и ВІМ-координатора.

"Только за последний год компетенция "Инженерное проектирование" выросла в два раза. Сегодня у нас 54 участника и 11 команд, каждая из которых представляет одно из предприятий "Росатома". В следующем году к нам планируют присоединиться команды "Ростеха" и "Роскосмоса" – это еще раз подтверждает, что крупнейшие российские корпорации заинтересованы в том, чтобы максимально быстро внедрить у себя технологии ВІМ-проектирования", – говорит Анна Волкова, заместитель главного инженера проекта УФ АО "ФЦНИВТ "СНПО "Элерон – "УПИИ "ВНИПИЭТ", технический эксперт компетен-

ции "Инженерное проектирование" AtomSkills-2019.

Компания "Нанософт" выступила поставщиком программного обеспечения и спонсором призов, а компания "Нормасофт" стала генеральным партнером и разработчиком задания компетенции.

"Задание разрабатывается в условиях строжайшей секретности. Мы специально делаем его максимально сложным, даже невыполнимым в отведенный промежуток времени. Задача стоит в том, чтобы участники научились работать в ВІМ-команде, распределять задачи и приоритеты. Еще сложнее разрабамы получаем всё больше опыта, чтобы делать задания еще более полезными для профессионального развития наших ВІМ-команд", – комментирует Сергей Савинков, директор центра средств автоматизации "Нормасофт".

Победители компетенции "Инженерное проектирование"

I место

Елена Онищук, Кристина Соловьева, Яна Кучукова, Сергей Миколаенко (Государственный специализированный проектный институт)

II место

Павел Коновалов, Анастасия Шитова, Дарья Бабошина, Светлана Шульга ("Маяк")

III место

Александр Мозжилин, Ксения Селитраль, Ксения Цыпышева, Анна Хакимуллина (Приборостроительный завод)

