Netmanias Technical Document: Network Architecture for LTE and Wi-Fi Interworking

www.netmanias.com

Network Architecture for LTE and Wi-Fi Interworking

August 16, 2012

Chris Yoo

+82-2-3444-5747, +82-10-3229-1852

cmyoo@netmanias.com

www.netmanias.com

www.nmcgroups.com

About NMC Consulting Group

NMC Consulting Group was founded on year 2002 and is advanced, professional network consulting company which is specialized for IP Network area like FTTH, Metro Ethernet and IP/MPLS, Service area like IPTV, IMS and CDN lastly, Wireless network area like Mobile WiMAX, LTE and Wi-Fi.

Copyright © 2002-2012 NMC Consulting Group. All rights reserved.

Table of Contents

- LTE Overview
 - Network Reference Model
 - Authentication and Security
 - EPS Bearer
 - QoS
 - Handover
- Wi-Fi Overview
 - Network Architecture
 - Handover
- Comparison (LTE vs. Wi-Fi)
- Tunneling Technology for Mobile Network
- LTE and Wi-Fi Interworking
 - Network Reference Model
 - Authentication and Security
 - IP Allocation
 - Traffic Selector
 - Status of KT, SKT & LG U+ and UE Requirements

LTE Overview: Network Reference Model

Related Blogs

- LTE = E-UTRN: eNB
- **EPC = SAE**: MME, S-GW, P-GW, HSS, PCRF, SPR, OFCS, OCS
- EPS = LTE + EPC
- LTE: Long Term Evolution
- E-UTRAN: Evolved-UTRAN (Universal Terrestrial Radio Access Network)
- EPC: Evolved Packet Core
- **SAE**: System Architecture Evolution
- EPS: Evolved Packet System
- **UE**: User Equipment
- eNB: Evolved Node B
- S-GW: Serving-Gateway
- P-GW: PDN-Gateway
- MME: Mobility Management Entity
- HSS: Home Subscriber Server
- PCRF: Policy and Charging Rule Function
- SPR: Subscriber Profile Repository
- OFCS: Offline Charging System
- OCS: Online Charging System
- PDN: Packet Data Network

UE

- User device which has LTE chip, antenna and USIM card (ex. Smartphone, USB modem, Router (Egg))
- S-GW
- Local mobility anchor point of the data connections for intereNB handover and inter-3GPP handover

MME

- Main control entity for the E-UTRAN (brain of EPS)
- User authentication
- UE mobility management: UE location, UE state (ECM/EMM)

PCRF

 It makes policy decision for UE and provides PCC rules (QoS and charging rules) to P-GW

OFCS

 It manages offline charging data (CDR) per UE/per SDF, which provided by P-GW

eNB

- Base station which provides wireless connection between UE and EPC
- Encryption and integrity protected of control/data packet between UE and eNB

P-GW

- It provides PDN access for UE
- Mobility anchor point for inter S-GW handover
- IP address assignment to UE
- Online/Offline ChargingQoS Enforcement

HSS

- Central DB holding user profile: user ID(IMSI), authentication key, QoS profile, etc
- User profile is provisioned by B/OSS when user subscription

SPR

- Database for PCRF, which maintains policy and charging rule of user
- It is provisioned by B/OSS when user subscription

OCS

 It manages data volume (UL/DL bytes), time (connection time) and event based online charging data per UE/per SDF, which provided by P-GW

LTE Overview: Authentication and Security

Related Blogs

User Authentication

- User Identification: IMSI (International Mobile Subscriber Identity)
 - Global Uniqueness
 - PLMN ID (MCC + MNC) + MSIN
- Stored at USIM (UE) and HSS (E-UTRAN)
- Authentication Key: LTE K
 - Stored at USIM (UE) and HSS (E-UTRAN)
- User Authentication Protocol: EPS-AKA
- User Authentication Process
 - 1. When UE requests to attach LTE network
 - 2. MME obtains authentication vectors (RAND, AUTN, XRES, K_{ASME}) from the HSS
 - 3. Mutual authentication between UE and MME
 - UE authenticates LTE network (MME)
 - MME authenticates UE

Security for Radio Interface

- After success of mutual authentication, security for radio interface is provided based on master key (K_{ASMF})
 - 1. Control message between UE and MME: Encrypted (optional) and Integrity Protected (mandatory)
 - 2. Control message between UE and eNB: Encrypted (optional) and Integrity Protected (mandatory)
- 3. User data between UE and eNB: Encrypted (optional)

LTE Overview: EPS Bearer

Related Blogs

5

EPS Bearer

- Logical transport channel between UE and the PDN for transporting UE IP traffic
- EPS Bearer =
 Data Radio Bearer (between UE and eNB) +
 S1 Bearer (GTP tunnel between eNB and S-GW) +
 S5 Bearer (GTP tunnel between S-GW and P-GW)
- eNB can distinguish UE by DRB ID in EPS bearer
- S-GW can distinguish UE by Tunnel Endpoint ID (TEID)
- P-GW can distinguish UE by TEID or UE IP address
- At least one EPS bearer per UE, and it may also have multiple EPS bears per UE in order to provide QoS differentiation (ex. Internet bearer and VoLTE bearer)

Two Types of EPS Bearer

- Default EPS Bearer
- Dedicated EPS Bearer

LTE Overview: QoS

Related Blogs

QCI: QoS Class Identifier

ARP: Allocation and Retention Priority

GBR: Guaranteed Bit Rate

MBR: Maximum Bit Rate

APN-AMBR: Access Point Name-Aggregate Maximum Bit Rate

UE-AMBR: User Equipment-Aggregate Maximum Bit Rate

■ Common QoS Parameter (Resource Type, QCI, ARP)

Resource Type

- GBR (Guaranteed Bit Rate): A certain amount of bandwidth is reserved for this bearer
- Non-GBR: It does not have a fixed (reserved) bandwidth allocated for this bearer (Best Effort)

QCI

- The class-based QoS concept (such as IP DSCP) where each EPS bearer is assigned a QCI (1 ~ 9)
- It defines packet forwarding treatment
- QoS characteristics which defines below parameters:
- Resource Type (GBR or Non-GBR)
- Packet Delay Budget (30ms ~ 300ms)
- Packet Error Loss Rate (10⁻² ~ 10⁻⁶)

ARP

- Priority for the allocation and retention of bearers, defined by 0 ~ 15
- Bearers with high ARP are assigned low ARP value, and vice versa (ex. VoIP emergency call service has low ARP value)
- In resource limitation situation, LTE network use the ARP to prioritize establishment and modification of bearers with a high ARP over bears with a low ARP
- It also uses ARP to decide which existed bearers to drop in case of resource limitation

■ QoS Parameter for GBR Bearer

GBR (UL/DL)

Guaranteed (Reserved) bandwidth (bps) for GBR bearer

MBR (UL/DL)

- Maximum allowed bandwidth (bps) for GBR bearer
- Any traffic in excess of the MBR may be discarded

■ QoS Parameter for Non-GBR Bearer

APN-AMBR (UL/DL)

 Maximum allowed bandwidth (bps) for all non-GBR bearers associated with a specific APN

UE-AMBR (UL/DL)

 Maximum allowed bandwidth (bps) for all non-GBR bearers of a UE

LTE Overview: Handover

moving

Basic Requirement of Handover

- UE IP address should not be changed
- Packet loss and reordering should be minimized during handover

Handover Decision

- Handover decision is performed by serving eNB (In case of Wi-Fi, UE(STA) performs handover decision)
- Handover Decision Process
- 1. UE sends Measurement Report message to serving eNB periodically (or event triggered)
- 2. Measurement Report message includes
 - · Radio signal strength from serving cell to UE
 - Radio signal strength from neighbor cells to UE
- 3. Serving ENB decides handover based on information of Measurement Report message

Type of Handover

- Intra E-UTRAN: eNB relocated, without changing MME and S-GW
- Inter E-UTRAN and MME: eNB and MME relocated, without changing S-GW
- Inter E-UTRAN and S-GW: eNB and S-GW relocated, without changing MME
- Inter E-UTRAN and MME and S-GW: eNB, S-GW and MME relocated
- Inter RAT (E-UTRAN and GERAN/UTRAN): Handover between 3G and LTE

moving

Wi-Fi Overview: Network Architecture

Related Blogs

Wi-Fi Hotspot Service in Korea : EAP based or Non Standard MAC/Web based Authentication

	SSID	Authentication
КТ	ollehWiFi (secure)	EAP-AKA
	NESPOT, ollehWiFi	MAC based authentication, Web (ID/PW) based authentication
SKT	T wifi zone (secure)	EAP-AKA
	T wifi zone	MAC based authentication, Web (ID/PW) based authentication
LG U+	U+ zone (secure)	MSCHAPv2 over PEAP (Very similar with EAP-TTLS)
	FREE U+ zone	Open Access (1 hour free access after Ad. watch)

■ WLAN/Wi-Fi Standard

IEEE (WLAN): http://www.ieee802.org/11

- IEEE 802.11 standards define MAC and PHY layer
- "Wireless LAN (WLAN)" term is used by IEEE 802.11

Wi-Fi Alliance (Wi-Fi): http://www.wi-fi.org

- Several AP vendors came together to form a global non-profit organization with the goal of driving adoption of high-speed wireless local area networking
- "Wi-Fi" term is used by Wi-Fi Alliance

WLAN(Wireless LAN) = Wi-Fi

• The term "Wi-Fi" is used in general as a synonym for "WLAN"

■ Wi-Fi Network Element (Entity)

STA (Station)

• Device which has Wi-Fi chip & antenna

AP (Access Point)

- It has IEEE 802.11 Wireless LAN interface for use-facing and IEEE 802.3 Ethernet interface for network-facing port
- It provides connection between STA and IP network

AAA (Authentication, Authorization, Accounting)

User authentication server

Authentication & Security for Radio Interface

- FAP based authentication
- User data encryption and integrity protected based on AES(CCMP)/TKIP/WEP

Wi-Fi Overview: Handover (Vendor Specific Solution)

Wi-Fi Handover

- AP Controller (APC, or Wireless LAN Controller(WLC)) will be required to support Inter-AP handover
- Major AP/APC providers such as Aruba, Avaya, Meru support vendor specific protocol between AP and APC (CAPWAP[RFC 5415, 5416] driven by Cisco, but other vendors still support their own methods http://community.arubanetworks.com/aruba/attachments/aruba/115/422/1/CAPWAP+Position.pdf)

■ Example: Handover Solution of the Meru Networks

Wi-Fi Inter-AP Handover

• Handover Time: 3ms

Wi-Fi Inter-APC Handover

Comparison

	LTE	Wi-Fi
Standard	• 3GPP	• IEEE 802.11/Wi-Fi Alliance
Standard Entity	 UE LTE (E-UTRAN): eNB EPC (SAE): S-GW, P-GW, MME, HSS, PCRF, SPR, OCS, OFCS 	• STA, AP, AP Controller(optional), AAA
User Authentication	• EPS-AKA	 EAP based Authentication (Standard) EAP-AKA/SIM EAP-TLS EAP-TTLS, etc Web based Authentication (WBA) ID/PW MAC based Authentication (Non Standard) STA MAC
Security for User Data	• Encryption	EAP based Authentication • Encryption/Integrity Protected Web/MAC based Authentication • None
QoS Support	Supported	Supported (WMM), but not guaranteed
Handover (User Mobility) Support	Supported	Supported, but vendor specific methodsAP Controller requiredPacket Loss during handover
Tunneling Protocol	• GTP	Vendor Specific
Frequency Interference	• None	Big issue (ISM band)
Frequency Band	KT: 1.8GHzSKT: 800MHz, 1.8GHzLG U+: 800MHz, 2.1GHz	• 2.4GHz/5GHz

Tunneling Technology for Mobile Network

Related Blogs

■ Wired Access Network (FTTH, DSL, Ethernet, HFC, etc)

■ Wireless/Mobile Access Network (3G, LTE, WiMAX, Wi-Fi, etc)

User Mobility in Wired Network

• If user moves to another location without changing IP address in wired access network, communication will be broken because IP routing network can not recognize user mobility

User Mobility in Wireless/Mobile Network

- The key requirement of user mobility is "User IP address should not be changed"
- IP Anchor should be existed in wireless/mobile network for supporting user mobility (3G: GGSN, LTE: P-GW, WiMAX: ASN-GW, Wi-Fi: AP Controller)
- Downstream traffic delivered process
- IP Anchor advertises user IP address prefix to IP routing network via OSPF, IS-IS or BGP
- 2. IP Anchor receives IP packet destined to user over the Internet
- 3. IP Anchor encapsulates the user IP packet with 'Tunnel header' and forwards the resulting outer IP packet to the Base Station(BS)
- 4. So, IP routing network between BS and IP Anchor has no chance to see user IP address, which means that IP routing network does not require to concern about user mobility

Tunneling Protocol in Wireless/Mobile Network

- 3G/LTE (standardized by 3GPP)
 - eNB ~ S-GW: GTP Tunnel (3GPP)
 - S-GW ~ P-GW: GTP Tunnel (3GPP)
- WiMAX (standardized by WiMAX Forum)
 - BS ~ ASN-GW: GRE Tunnel (RFC 1702)
 - ASN-GW ~ HA: IPinIP Tunnel (RFC 2003)
- Wi-Fi (standardized by IEEE/Wi-Fi Alliance)
- AP ~ AP Controller: Vendor Specific Tunnel

LTE and Wi-Fi Interworking: (1) Network Reference Model

Related Blogs

Mobile Data Offloading

- Data offloading is the <u>use of complementary network technologies</u> for delivering data originally targeted for cellular networks. The main complementary network technologies used for the mobile data offloading are Wi-Fi, Femtocell
- "Let's use cheaper Wi-Fi access instead of expensive cellular (LTE) network!"

Trust & Untrust Access Network

- Simply put, this is really an <u>indicator on if the 3GPP operator trust the</u> security of the non-3GPP access network
- If non-3GPP access network supports trust security level from the 3GPP core (EPC) viewpoint, it is interworked with S2a interface, otherwise S2b interface is used
 - Example of Trust network: WiMAX
 - Example of Untrust network: WLAN(Wi-Fi) in a public café

3GPP TS 23.402 Figure 4.2.2-1: Non-Roaming Architecture within EPS using S5, S2a, S2b

LTE and Wi-Fi Interworking: (2) Authentication and Security

Related Blogs

LTE and Wi-Fi Interworking: (2) Authentication and Security (cont)

Related Blogs

LTE and Wi-Fi Interworking: (3) IP Allocation

Related Blogs

LTE and Wi-Fi Interworking: (3) IP Allocation (cont)

Related Blogs

Example of IP address usage

LTE and Wi-Fi Interworking: (4) Traffic Selector

Related Blogs

WLAN 3GPP IP Access

- User Traffic Path: UE Wi-Fi AP ePDG P-GW Internet
- Traffic is passed through the 3GPP core, which means that it can support handover between LTE and Wi-Fi
- Use Case: Operator Service (example: KT olleh TV now). Operator can provide differentiated service (e.g., heterogeneous handover) to their subscriber

WLAN Direct IP Access

- User Traffic Path: UE Wi-Fi AP Internet
- Traffic is not passed through the 3GPP core, which means that it can not support handover between LTE and Wi-Fi
- Use Case: OTT service (example: YouTube)

Traffic Selector

- Traffic Selector can be used to distinguish between WLAN 3GPP IP Access and WLAN Direct IP Access
- UE gets Traffic Selector from the ePDG during the IKEv2 procedure
- Traffic Selector consists of TSi and TSr:
 - TSi = Source IP Address(SIP) range,
 Protocol range,
 Source Port Number(SP) range
 - TSr = Destination IP Address(DIP) range, → Server Identification
 Protocol range (same as TSi, → TCP or UDP

 Destination Port Number(DP) range → Service Identification
- Tsi + TSr = 5-tuple
- Based on 5-tuple, UE (IPSec driver) can determine whether application traffic (IP flow) is served by WLAN 3GPP IP Access or WLAN Direct IP Access

LTE and Wi-Fi Interworking: (4) Traffic Selector (cont)

Status of KT, SKT & LG U+ and UE Requirements

- KT, SKT: No plan
- LG U+: Deploy ePDG from Insprit (http://www.in-sprit.com/kr/content/main/index.php), but do not service yet

LG U+: The Purpose of ePDG Deployment

- Provides security when subscriber accesses LG U+ service via Wi-Fi network
- At this moment, there's no interworking (no PMIPv6/GTE tunnel) between P-GW and ePDG which means that it does not support handover between LTE and Wi-Fi

UE Software Requirement for LTE/Wi-Fi Interworking

- IPSec(MOBIKE) driver (Kernel Layer) is required
- Handover Manager (Kernel Layer) is required: Handover decision by monitoring LTE and Wi-Fi signal strength
- Big Issue: Apple willing to support "IPSec and Handover Manager" in iPhone/iPad???

