Lab 6: Optimizers & Visualization tools

<삼성 AI전문가 교육과정> 실습 서울대학교 바이오지능 연구실 (장병탁 교수) 최원석, 김윤성 2022.06.09

Biointelligence Laboratory

Dept. of Computer Science and Engineering

Seoul National University

Contents

- Optimizers
 - Optimizing methods
 - Weight initialization

- Visualization tools
 - tensorboard

SGD, AdaGrad, Adam, Xavier

Optimizers

Optimization

Optimization

■ 주어진 입력 X에 대해 함수 J(cost, loss, etc.)의 값을 최소로 만드는 weight들의 집합(w)를 찾는 과정

$$w_{opt} = argmin_w J(X; w)$$

- 일반적으로 J로 형성된 함수는 w에 대해 매우 복잡하므로 수식 전개로 global optima(가장 최소의 값)을 찾는 것은 거의 불가능
- Hill climbing algorithm의 방식으로 local optima을 찾음

2

Optimization 방식

Optimization methods

- Batch 방식 : 모든 데이터를 넣고 계산하여 한번 업데이트
- Stochastic(online) 방식 : 하나의 데이터를 sampling하고, 한번 업데이트
- Mini-batch 방식 : 전체에서 적절한 개수의 데이터를 sampling하고 한번 업데이트
- 왜 stochastic하여야 하는가? : 데이터 편향 최소화

Optimization 과정에서의 문제들

- 언덕 문제
 - 더 낮은 optima로 이동하여야 하는데 낮은 언덕으로 인해 업데이트 하지 못하는 경우

Optimization 과정에서의 문제들

- 절벽으로 인한 gradient exploding 문제
 - 너무 급한 경사가 존재하는 경우, gradient 값이 너무 커져 지나치게 많이 이동하는 경우
 - Cf) gradient vanishment

Optimizer의 종류들

- GD(Gradient Descent) : 이론 시간에 다룸
- SGD(Stochastic Gradient Descent)
- Ada- (Adaptive-)
 - Adagrad
 - AdaDelta
 - Adam
- RMSProp

산 내려오는 작은 오솔길 잘찾기(Optimizer)의 발달 계보

SGD

Stochastic Gradient Descent

- Mini-batch Learning
- Gradient descent와 과정은 동일하나 sampling으로 인해 더 좋은 성능
- 화살표 하나 : 한번의 학습, SGD의 경우 1epoch이 수 회의 batch (GD는 1 batch)

Stochastic Gradient Descent

Gradient Descent

SGD

Stochastic Gradient Descent

- Mini-batch Learning
- Gradient descent와 과정은 동일하나 sampling으로 인해 더 좋은 성능
- 화살표 하나 : 한번의 학습, SGD의 경우 1epoch이 수 회의 batch (GD는 1 batch)

```
Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})

Apply update: \underline{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}

end while
```

AdaGrad

- Adaptive Gradient~
 - Rare한 정보(변수)에 대해서 더 많은 가중치를, common한 정보에 대해서 더 적은 가중치를 할당하여 gradient에 적용
 - 데이터에 대해서 Adaptive

```
Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate \epsilon

Require: Initial parameter \boldsymbol{\theta}

Require: Small constant \delta, perhaps 10^{-7}, for numerical stability

Initialize gradient accumulation variable \boldsymbol{r} = \boldsymbol{0}

while stopping criterion not met \boldsymbol{do}

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Accumulate squared gradient: \boldsymbol{r} \leftarrow \boldsymbol{r} + \boldsymbol{g} \odot \boldsymbol{g}

Compute update: \Delta \boldsymbol{\theta} \leftarrow \frac{\epsilon}{\delta + \sqrt{r}} \odot \boldsymbol{g}. (Division and square root applied element-wise)

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}

end while
```

AdaDelta

Ada+Delta

■ 다른 모델들이 first-order optimization(gradient)를 활용할 때, AdaDelta 는 second-order까지 확인하여 optimization 진행

$$\Delta x \propto H^{-1}g \propto \frac{\frac{\partial f}{\partial x}}{\frac{\partial^2 f}{\partial x^2}} \propto \text{units of } x \qquad \qquad \Delta x = \frac{\frac{\partial f}{\partial x}}{\frac{\partial^2 f}{\partial x^2}} \Rightarrow \frac{1}{\frac{\partial^2 f}{\partial x^2}} = \frac{\Delta x}{\frac{\partial f}{\partial x}}$$

Algorithm 1 Computing ADADELTA update at time t

Require: Decay rate ρ , Constant ϵ

Require: Initial parameter x_1

- 1: Initialize accumulation variables $E[g^2]_0 = 0$, $E[\Delta x^2]_0 = 0$
- 2: for t = 1: T do %% Loop over # of updates
- Compute Gradient: q_t
- Accumulate Gradient: $E[g^2]_t = \rho E[g^2]_{t-1} + (1-\rho)g_t^2$ Compute Update: $\Delta x_t = -\frac{\text{RMS}[\Delta x]_{t-1}}{\text{RMS}[g]_t} g_t$
- Accumulate Updates: $E[\Delta x^2]_t = \rho E[\Delta x^2]_{t-1} + (1-\rho)\Delta x_t^2$
- Apply Update: $x_{t+1} = x_t + \Delta x_t$
- 8: end for

RMSProp

- AdaGrad + exponential moving avg.
 - \blacksquare AdaGrad의 r가 무한히 커지는 것을 방지
 - Exponential moving average를 활용하여 convex한 부분에 대해 더 빠르게 학습을 진행
 - 초반 학습의 정도가 빠르다.

```
Algorithm 8.5 The RMSProp algorithm Require: Global learning rate \epsilon, decay rate \rho. Require: Initial parameter \boldsymbol{\theta} Require: Small constant \delta, usually 10^{-6}, used to stabilize division by small numbers. Initialize accumulation variables \boldsymbol{r}=0 while stopping criterion not met \boldsymbol{do} Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}. Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)}) Accumulate squared gradient: \boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho)\boldsymbol{g} \odot \boldsymbol{g} Compute parameter update: \Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta+r}} \odot \boldsymbol{g}. (\frac{1}{\sqrt{\delta+r}} applied element-wise) Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta} end while
```

Adam

RMSProp + momentum

■ Momentum : 학습 방향의 관성(이전의 gradient가 반영)

Algorithm 8.7 The Adam algorithm Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1).

(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization. (Suggested default: 10^{-8}

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$

Update biased first moment estimate: $s \leftarrow \rho_1 s + (1 - \rho_1) g$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise) Apply update: $\theta \leftarrow \theta + \Delta \theta$

end while

Optimizer 문제별 성능 비교

■ Convex한 경우

- RMSprop 및 Adaptive한 optimizer 들이 높은 성능
- Momentum만을 활용할 경우 학습 이 잘 진행되지 않음

Optimizer 문제별 성능 비교

- Non-Convex한 경우
 - Saddle-point problem
 - 생성된 지형이 안장점의 형태일때
 - E.g. GAN 등
 - SGD 및 momentum으로 학습시 매우 비효율적
 - RMSProp이나 Adam이 좋은 성능

Weight initialization

- Naïve initialization
 - 모두 0으로 초기화
 - 모든 가중치의 값이 똑같이 갱신됨
 - 정규분포로 랜덤하게 초기화
 - Activation sigmoid
 - 표준편차가 1일 때
 - 표준편차가 0.01일 때

Weight initialization

- Xavier Initialization (Xavier Glorot & Yoshua Bengio)
 - activation이 sigmoid일 때, 실험적으로 증명된 weight initialization 방식
 - m: input dim, n: output dim, U: uniform distribution

$$W_{i,j} \sim U(-\frac{6}{\sqrt{m+n}}, \frac{6}{\sqrt{m+n}})$$

- He(Kaiming) Initialization (Kaiming He)
 - activation이 ReLu일 때, 실험적으로 증명된 weight initialization 방식

$$W \sim U(-\sqrt{\frac{6}{n_{in}}}, + \sqrt{\frac{6}{n_{in}}})$$

$$\text{ReLU: Xavier}$$

$$\frac{8000}{4000} \frac{1-\text{layer}}{2000} \frac{2-\text{layer}}{4000} \frac{3-\text{layer}}{2000} \frac{4-\text{layer}}{4-\text{layer}} \frac{5-\text{layer}}{4-\text{layer}} \frac{8000}{4000} \frac{1-\text{layer}}{2000} \frac{2-\text{layer}}{4000} \frac{3-\text{layer}}{4-\text{layer}} \frac{4-\text{layer}}{4-\text{layer}} \frac{5-\text{layer}}{4-\text{layer}} \frac{3-\text{layer}}{4-\text{layer}} \frac{3-\text{layer}}{4-\text{layer}} \frac{4-\text{layer}}{4-\text{layer}} \frac{5-\text{layer}}{4-\text{layer}} \frac{3-\text{layer}}{4-\text{layer}} \frac{3-\text{l$$

tensorboard, visdom

Visualization tools

Visualization tools

tensorboard

- The computations you'll use TensorFlow can be complex and confusing.
- To make it easier to understand, debug, and optimize TensorFlow programs, we've included a suite of visualization tools called TensorBoard.
- You can use TensorBoard to visualize your TensorFlow graph, plot quantitative metrics about the execution of your graph, and show additional data like images that pass through it.

Visualization tools

Tensorboard

- TensorFlow 개발을 위해 개발된 visualization tool
- Pytorch에서는 tensorboardX라는 패키지를 통해 간접적으로 지원하다가
- 1.1버전부터 공식적인 지원 (natively supported)
 - pip install tensorboard

Visdom

- (pytorch를 개발한) Facebook 개발팀에서 개발한 visualization tool
 - pip install visdom

Visualization tools

tensorboard

visdom

- Tensorboard vs Visdom
 - Tensorboard 공식 지원 이후 대부분 tensorboard 사용을 선호하는 추세

TensorBoard

TensorBoard

- 시각화 할 특정 event를 지정
- 해당 event의 log를 SummaryWriter가 logfile(summary)에 저장
- 해당 summary 을 읽어서 웹페이지 형태로 게시
 - In terminal tensorboard -log_dir=/path/to/root_log_dir

SummaryWriter

- Logging할 event를 저장하는 class
- 초기화
 - from torch.utils.tensorboard import SummaryWriter
 - writer = SummaryWriter(log_dir)

TensorBoard

- SummaryWriter
 - Adding events
 - writer.add_scalar(tag, scalar_value, global_step=None, walltime=None)
 - step(혹은 시간) 에 따른 어떤 scalar값의 변화량을 표시
 - writer.add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')
 - step(혹은 시간) 에 따른 이미지 데이터를 표시
 - writer.add_scalars
 - writer.add_images
 - writer.add_figure
 - writer.add_histograms
 - https://pytorch.org/docs/stable/tensorboard.html?highlight=tensorboard

TensorBoard

add_scalar

add_images

Tensorboard on Colab

■ 터미널에서 tensorboard 명령어 실행이 불가능

- Magic words
 - Colab cell 내부에 tensorboard 창 생성
- Using tensorboardcolab
 - tb = TensorBoardColab()
 - Tensorboard 링크를 자동 생성해서 제공
 - Colab 전용 라이브러리를 써야 하므로 추천하지 않음

