Devoir d'informatique

Exercice 0

Question 1 Ecrire la fonction somme (L:[int]) -> int permettant de renvoyer la somme des éléments d'une liste d'entiers L.

```
Correction
def somme(L:[int]) -> int :
    res = 0
    for e in L :
       res = res + e
    return res
```

Question 2 Ecrire la fonction mult (L1:[int],L2:[int]) -> [int] permettant de renvoyer la liste des produits terme à terme de deux listes de même taille.

```
def mult(L1:[int],L2:[int]) -> [int] :
    L3 = []
    for i in range(len(L)) :
        L3.append(L1[i]*L2[i])
    return L3
```

Exercice 1

On rappelle que pour $n \in \mathbb{N}^*$, la factorielle de n est donnée par $n! = \prod_{1 \le i \le n} i$. Par convention 0! = 1. On donne la fonction suivante permettant de calculer n!.

```
def factorielle(n:int) -> int :
    p = 1
    i = 1
    while i<=n:
        p = p*i
        i = i+1
    return p</pre>
```

Question 3 Donner 2 assertions permettant de vérifier que l'argument de la fonction est compatible avec le calcul de n!.

```
Correction

def factorielle(n:int) -> int :
   assert type(n) == type(0)
```

1

Informatique


```
assert n >= 0
p = 1
i = 1
while i <= n:
    p = p * i
    i = i + 1
return p</pre>
```

Question 4 Donner l'évolution des variables p et i lorsque on calcule factorielle (4). On pourra recopier et remplir le tableau de la forme suivante.

Question 5 *Montrer que* n - i *est un variant de boucle.*

Correction Avant d'entrée dans la boucle : si n est un entier (condition nécessaire pour calculer n!), i=1 est un entier. Il en résulte que n-i est un entier.

Considérons que qu'au ième tour de boucle, n-i est un entier positif.

À la fin du tout de boucle suivant, i' = i + 1 est un entier. n - i' est un entier. De plus i' > i; donc n - i' < n - i. la quantité n - i est donc strictement décroissante.

n-i est donc un variant de boucle et la fonction termine.

Question 6 *Montrer que la proporiété* $p_k = k!$ *est un invariant de boucle.*

Correction

```
En entrant dans la boucle, i=1 et p=1; donc 1=1!.
 A la fin de la kieme itération, considérons que p_k=k! et i_k=k+1.
 À la fin de la k+1ieme itération, p_{k+1}=p_k\times i_k=k(k+1)=(k+1)! et i_{k+1}=k+2.
 La propriété d'invariance est bien démontrée.
```

Question 7 Déterminer la complexité algorithmique de cette fonction.

Correction

Chacune des instructions à une complexité que l'on peut considérer constante. La boucle while s'exécute n fois. L'algorithme est en $\mathcal{O}(n)$.

Exercice 2 - Traitement d'une image

Question 8 Ecrire la fonction taille(im:[[int]]) -> int, int renvoyant le nombre de lignes et de colonnes de l'image im.

```
Correction

def taille(im:[[int]]) -> (int,int):
    return len(im),len(im[0])
```

Question 9 Ecrire les lignes de code permettant d'ajouter dans imc les n lignes permettant de former la partie

supérieure du cadre. Donner la complexité de l'algorithme proposé.

```
Correction

# On ajoute le cadre du haut
L = []
for i in range(co+2*n):
    L.append(0)
for i in range(n):
    imc.append(L)
```

Question 10 Ecrire les lignes de code permettant d'ajouter dans imc les lignes provenant de im en leur ajoutant les bords latéraux.

```
Correction

# On ajoute les bordures latérales :
   for i in range(li):
        L = []
        for j in range(n):
            L.append(0)
        for j in range(co):
            L.append(im[i][j])
        for j in range(n):
            L.append(0)
        imc.append(L)
```

Question 11 Ecrire la fonction conversion_nb(im:[[int]], n:int) -> [[int]] renvoyant une image convertie en noir et blanc en utilisant un seuil n. Donner la complexité de l'algorithme proposé.

```
Correction

def convertir_nb(im:[[int]], n:int) -> [[int]] :
    li,co = taille(im)
    for i in range(li) :
        for j in range (co) :
            if im[i][j] > n :
                  im[i][j] = 255
        else :
                  im[i][j] = 0
    return im
```

Question 12 Ecrire la fonction moyenne (im: [[int]]) -> float permettant de calculer la valeur moyenne des niveaux de gris de l'image.

```
Correction

def moyenne(im:[[int]]) -> float :
    li,co = taille(im)
    m = 0
    for i in range(li) :
        for j in range (co) :
            m = m+im[i][j]
    return m/li/co
```

Une autre méthode pour calculer le seuil est de déterminer une valeur de gris qui permettrait d'avoir autant de pixels blancs que de pixels gris.

Question 13 Écrire la fonction effectifs (im: [[int]]) -> [int], qui prend en paramètre une image et qui renvoie une liste de longueur 256. Chaque élément i de la liste devra contenir le nombre de pixels de couleur i.


```
Correction

def effectifs(im:[[int]]) -> [int] :
    eff = 256*[0]
    li,co = taille(im)

for i in range(li) :
    for j in range (co) :
        pix = im[i][j]
        eff[pix] += 1
    return eff
```

Question 14 Ecrire la fonction valeur_de_partage(im:[[int]]) -> float permettant de mettre en œuvre l'algorithme précédent.

```
Correction
def valeur_de_partage(im:[[int]]) -> float:
   L = effectifs(im)
    """ L est une liste d'entiers naturels : pour tout indice i, L[i] est l'effectif de la \angle
        valeur i """
   n = len(L)
   i = 0
    j = n - 1
   S1 = L[i]
   S2 = L[j]
   while i+1 < j:
       if S1 < S2:
            i = i + 1
            S1 = S1 + L[i]
        else:
            j = j - 1
            S2 = S2 + L[j]
    # i est égal àj-1
   m = (i+j) / 2
   \texttt{return} \ \underline{\texttt{m}}
```


Image en niveau de gris.

Image en noir et blanc – Seuils 127.

Image en noir et blanc – Seuil moyenne.

Image en noir et blanc – Seuil médiane.