演習問題 1.24

クラス分類問題を考え、クラス C_k から、入力ベクトルをクラス C_j と分類したときの損失行列を L_{kj} とし、棄却オプションを選んだときの損失を λ とする。このとき、期待損失を最小とする決定基準を見つけよ。損失行列が $L_{kj}=1-I_{kj}$ のときは、決定基準は、1.5.3 節で議論した棄却基準に帰着されることを確かめよ。また、 λ と棄却閾値 θ には、どのような関係があるか。

[期待損失]

$$\sum_{k} L_{kj} p(C_k \mid \mathbf{x})$$

... (1.81)

[決定基準]

演習問題 1.23 より、この期待損失を最小化する基準は、以下の式で一般化される。

$$j = \arg\min_{l} \sum_{k} L_{kl} p(C_k | \mathbf{x}) = \arg\min_{l} \sum_{k} L_{kl} p(\mathbf{x} | C_k) p(C_k)$$

··· (1.81)'

[解]

今、入力ベクトル \mathbf{x} の真のクラスが C_k であるものとする。つまり、 \mathbf{x} は正しくはクラス C_k に属している。 \mathbf{x} をクラス C_j に分類した際、 $\sum_k L_{kj} p(C_k | \mathbf{x})$ の損失を被るが、棄却オプションを選んだ場合は、その損失は λ となる。この状態での期待損失を最小とする決定基準は、以下のようになる。

₩

次に、損失行列が $L_{kj}=1-I_{kj}$ のときに、決定基準が、1.5.3 節で議論した棄却基準 θ に帰着されることを確かめる。損失行列が $L_{kj}=1-I_{kj}$ のとき、期待損失 (1.81) は、

$$\sum_{k} L_{kl} p(C_{k} | \mathbf{x}) = \sum_{k} (1 - I_{kl}) p(C_{k} | \mathbf{x})$$

$$= \sum_{k} p(C_{k} | \mathbf{x}) - \sum_{k} I_{kl} p(C_{k} | \mathbf{x})$$

$$= 1 - p(C_{l} | \mathbf{x})$$

となり、この $1-p(C_l|\mathbf{x})$ の値が λ 以上になるとき、クラス決定を棄却する。すなわち、

$$1 - p(C_1 | \mathbf{x}) \ge \lambda$$

$$p(C_l | \mathbf{x}) \leq 1 - \lambda$$

のときに乗却決定を行う。標準乗却基準では、事後確率が θ 以下のときにクラス決定の乗却を行うので、乗却基準の境界は、 $\theta=1-\lambda$ で与えられることとなる。ここで、 $\theta=1$ 、すなわち $\lambda=0$ のとき、決定基準 % より、

決定基準
$$\begin{cases} \min_{l} \sum_{k} L_{kl} p(C_{k} | \mathbf{x}) < 0 & \cdots & \text{クラス } C_{j} \text{ に分類} \\ \min_{l} \sum_{k} L_{kl} p(C_{k} | \mathbf{x}) \geq 0 & \cdots & \text{棄却} \end{cases}$$

であるため、すべての事例が棄却されていることがわかる。逆に、 $\theta = 0$ 、すなわち $\lambda = 1$ のとき、決定基準 x = 0、

決定基準
$$\begin{cases} \min_{l} \sum_{k} L_{kl} p(C_{k} | \mathbf{x}) < 1 & \cdots & \text{クラス } C_{j} \text{ に分類} \\ \min_{l} \sum_{k} L_{kl} p(C_{k} | \mathbf{x}) \geq 1 & \cdots & \text{棄却} \end{cases}$$

であるため、すべての事例において、棄却が為されないことがわかる。以上より、損失行列を $L_{kj}=1-I_{kj}$ としたとき、決定基準が、1.5.3 節で議論した棄却基準に帰着されることが確かめられた。