-1-

PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVE

TECHNICAL FIELD

The present invention relates to novel pyrazolo[1,5-a]pyrimidine derivatives.

PRIOR ART

The pyrazolo[1,5-a]pyrimidine derivatives of the invention are novel compounds which have never been published in the literature.

DISCLOSURE OF THE INVENTION

The object of the invention is to provide compounds of value as medicines as will be described hereinafter.

The present invention provides a novel pyrazolo[1,5-a]pyrimidine derivative of the following formula (1):

$$\begin{array}{c}
R^{6} \\
N - (NH) \\
R^{5} \\
N - N \\
R^{1} \\
N \\
R^{4}
\end{array}$$
(1)

wherein R¹ is hydrogen, lower alkyl which may have thienyl, lower alkoxy, lower alkylthio, oxo or hydroxyl as a substituent, cycloalkyl, thienyl, furyl, lower alkenyl, or phenyl which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, phenylthio and halogen; R² is naphthyl,

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-2-

cycloalkyl, furyl, thienyl, optionally halogensubstituted pyridyl, optionally halogen-substituted phenoxy, or phenyl which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, halogen, nitro, halogen-substituted lower alkyl, halogen-substituted lower alkoxy, lower alkoxycarbonyl, hydroxyl, phenyl(lower)alkoxy, amino, cyano, lower alkanoyloxy, phenyl and di(lower)alkoxyphosphoryl(lower)alkyl; R³ is hydrogen, phenyl or lower alkyl; R4 is hydrogen, lower alkyl, lower alkoxycarbonyl, phenyl(lower)alkyl, optionally phenylthio-substituted phenyl, or halogen; R⁵ is hydrogen or lower alkyl; R⁶ is hydrogen, lower alkyl, phenyl(lower)alkyl, or benzoyl having 1 to 3 substituents selected from the group consisting of lower alkoxy, halogen-substituted lower alkyl and halogen; R¹ and R⁵ may conjointly form lower alkylene; Q is carbonyl or sulfonyl; A is a single bond, lower alkylene or lower alkenylene; and n is 0 or 1.

Examples of the groups in the above formula (1) are as follows. The lower alkyl group includes straight- or branched-chain lower alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, and the like.

The cycloalkyl group includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl,

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-3-

cyclooctyl, and the like.

The lower alkoxy group includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentyloxy, hexyloxy, and the like.

The lower alkylthio group includes methylthio, ethylthio, propylthio, butylthio, pentylthio, hexylthio, and the like.

The halogen atom includes fluorine, chlorine, bromine and iodine.

The halogen-substituted lower alkyl group includes trifluoromethyl, pentafluoroethyl, heptafluoropropyl, nonafluorobutyl, undecafluoropentyl, tridecafluorohexyl, and the like.

The halogen-substituted lower alkoxy group includes trifluoromethoxy, pentafluoroethoxy, heptafluoropropoxy, nonafluorobutoxy, undecafluoropentyloxy, tridecafluorohexyloxy, and the like.

The lower alkoxycarbonyl group includes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, and the like.

The di(lower)alkoxyphosphoryl(lower)alkyl group includes dimethoxyphosphorylmethyl, diethoxyphosphorylmethyl, dipropoxyphosphorylmethyl, dibutoxyphosphorylmethyl,

-4-

dipentyloxyphosphorylmethyl, dihexyloxyphosphorylmethyl, 2-(dimethoxyphosphoryl)ethyl, 2-(diethoxyphos-phoryl)ethyl, 3-(diethoxyphosphoryl)propyl, and the like.

The naphthyl group includes 1-naphthyl, 2-naphthyl, and the like.

The lower alkylene group includes methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, and the like.

The lower alkenylene group includes vinylene, propenylene, and the like.

The optionally halogen-substituted pyridyl group includes 2-pyridyl, 3-pyridyl, 4-pyridyl, 6-chloro-2-pyridyl, 5-chloro-2-pyridyl, 4-chloro-2-pyridyl, 3-chloro-2-pyridyl, 6-chloro-3-pyridyl, 5-chloro-3-pyridyl, 4-chloro-3-pyridyl, 2-chloro-4-pyridyl, 3-chloro-4-pyridyl, 6-fluoro-3-pyridyl, 6-bromo-3-pyridyl, 6-iodo-3-pyridyl, and the like.

The optionally halogen-substituted phenoxy group includes phenoxy, 2-chlorophenoxy, 3-chlorophenoxy, 4-chlorophenoxy, 4-fluorophenoxy, 4-bromophenoxy, 4-iodophenoxy, and the like.

The thienyl group includes 2-thienyl and 3-thienyl, and the furyl group includes 2-furyl and 3-furyl.

The lower alkenyl group includes vinyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl,

2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, and the like.

The phenyl(lower)alkyl group includes benzyl, 1phenylethyl, 2-phenylethyl, 3-phenylpropyl, 4phenylbutyl, 5-phenylpentyl, 6-phenylhexyl, and the like.

The phenyl(lower)alkoxy group includes benzyloxy, 2-phenylethoxy, 3-phenylpropoxy, 4-phenylbutoxy, 5-phenylpentyloxy, 6-phenylhexyloxy, and the like.

The lower alkanoyloxy group includes acetoxy, propionyloxy, butyryloxy, valeryloxy, pivaloyloxy, hexanoyloxy, heptanoyloxy, and the like.

The lower alkyl group which may have thienyl, lower alkoxy, lower alkylthio, oxo or hydroxyl as a substituent includes not only the above-mentioned non-substituted lower alkyl groups but also 2-thienylmethyl, 3-thienylmethyl, 1-(2-thienyl)ethyl, 1-(3-thienyl)ethyl, 2-(2-thienyl)ethyl, 2-(3-thienyl)ethyl, 3-(2-thienyl)propyl, 4-(2-thienyl)butyl, 5-(2-thienyl)pentyl, 6-(2-thienyl)hexyl, methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, pentyloxymethyl, hexyloxymethyl, 1-methoxyethyl, 2-methoxyethyl, 3-methoxypropyl, 4-methoxybutyl, 5-methoxypentyl, 6-methoxyhexyl, hydroxymethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl, 4-hydroxypentyl, 5-

WQ 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-6-

hydroxyhexyl, methylthiomethyl, ethylthiomethyl, propylthiomethyl, butylthiomethyl, pentylthiomethyl, hexylthiomethyl, 2-methylthioethyl, 3-methylthiopropyl, 4-methylthiobutyl, 5-methylthiopentyl, 6-methylthiohexyl, formyl, formylmethyl, acetyl, 2-formylethyl, 2-oxopropyl, propionyl, 3-formylpropyl, 3-oxobutyl, 2-oxobutyl, butyryl, 4-formylbutyl, 4-oxopentyl, 3-oxopentyl, 2-oxopentyl, valeryl, 5-formylpentyl, 5-oxohexyl, 4-oxopentyl, 3-oxohexyl, 4-oxopentyl, hexanoyl, and the like.

The phenyl group which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, phenylthio and halogen includes phenyl, 2methylphenyl, 3-methylphenyl, 4-methylphenyl, 4ethylphenyl, 4-propylphenyl, 4-butylphenyl, 4-tbutylphenyl, 4-pentylphenyl, 4-hexylphenyl, 2,3dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5dimethylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4methoxyphenyl, 4-ethoxyphenyl, 4-propoxyphenyl, 4butoxyphenyl, 4-pentyloxyphenyl, 4-hexyloxyphenyl, 2,3dimethoxyphenyl, 2,4-dimethoxyphenyl, 2,5dimethoxyphenyl, 2,6-dimethoxyphenyl, 3,4dimethoxyphenyl, 3,5-dimethoxyphenyl, 3,4,5trimethoxyphenyl, 2-chlorophenyl, 3-chlorophenyl, 4chlorophenyl, 4-bromophenyl, 4-iodophenyl, 4-

-7-

fluorophenyl, 4-(phenylthio)phenyl, 3-(phenylthio)phenyl, 2-(phenylthio)phenyl, and the like.

The phenyl group which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, halogen, nitro, halogen-substituted lower alkyl, halogen-substituted lower alkoxy, lower alkoxycarbonyl, hydroxyl, phenyl(lower)alkoxy, amino, cyano, lower alkanoyloxy, phenyl and di(lower)alkoxyphosphoryl-(lower)alkyl include the following groups:

phenyl, 2-methylphenyl, 3-methylphenyl, 4methylphenyl, 4-ethylphenyl, 4-propylphenyl, 4butylphenyl, 4-t-butylphenyl, 4-pentylphenyl, 4hexylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4methoxyphenyl, 4-ethoxyphenyl, 4-propoxyphenyl, 4butoxyphenyl, 4-pentyloxyphenyl, 4-hexyloxyphenyl, 2,3dimethoxyphenyl, 2,4-dimethoxyphenyl, 2,5dimethoxyphenyl, 2,6-dimethoxyphenyl, 3,4dimethoxyphenyl, 3,5-dimethoxyphenyl, 2,3,4trimethoxyphenyl, 2,3,5-trimethoxyphenyl, 2,3,6trimethoxyphenyl, 2,4,5-trimethoxyphenyl, 2,4,6trimethoxyphenyl, 3,4,5-trimethoxyphenyl, 3,4,5triethoxyphenyl, 2-fluorophenyl, 3-fluorophenyl, 4fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4chlorophenyl, 2-bromophenyl, 3-bromophenyl, 4bromophenyl, 4-iodophenyl, 2,3-dichlorophenyl, 2,4-

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-8-

dichlorophenyl, 2-nitrophenyl, 3-nitrophenyl, 4nitrophenyl, 2-trifluoromethylphenyl, 3trifluoromethylphenyl, 4-trifluoromethylphenyl, 4pentafluoroethylphenyl, 4-heptafluoropropylphenyl, 4nonafluorobutylphenyl, 4-undecafluoropentylphenyl, 4tridecafluorohexylphenyl, 2-methoxycarbonylphenyl, 3methoxycarbonylphenyl, 4-methoxycarbonylphenyl, 4ethoxycarbonylphenyl, 4-propoxycarbonylphenyl, 4butoxycarbonylphenyl, 4-pentyloxycarbonylphenyl, 4hexyloxycarbonylphenyl, 2-biphenyl, 3-biphenyl, 4biphenyl, 2-(diethoxyphosphorylmethyl)phenyl, 3-(diethoxyphosphorylmethyl)phenyl, 4-(diethoxyphosphorylmethyl)phenyl, 4-(dimethoxyphosphorylmethyl)phenyl, 4-(diisopropoxyphosphorylmethyl)phenyl, 3,5-dimethoxy-4ethoxyphenyl, 3,5-dimethoxy-4-propoxyphenyl, 4-butoxy-3,5-dimethoxyphenyl, 3,5-dimethoxy-4-pentyloxyphenyl, 3,5-dimethoxy-4-hexyloxyphenyl, 2,3-bis(trifluoromethyl)phenyl, 2,4-bis(trifluoromethyl)phenyl, 2,5bis(trifluoromethyl)phenyl, 2,6-bis(trifluoromethyl)phenyl, 3,4-bis(trifluoromethyl)phenyl, 3,5bis(trifluoromethyl)phenyl, 3,5-dimethoxy-4hydroxyphenyl, 3,5-diethoxy-4-hydroxyphenyl, 3,5dipropoxy-4-hydroxyphenyl, 4-benzyloxy-3,5dimethoxyphenyl, 4-benzyloxy-3,5-diethoxyphenyl, 3,5dimethoxy-4-(2-phenylethoxy)phenyl, 4-acetoxy-3,5dimethoxyphenyl, 3,5-dimethoxy-4-propionyloxyphenyl, 2-chloro-3,5-dimethoxyphenyl, 4-chloro-3,5-dimethoxyphenyl, 4-bromo-3,5-dimethoxyphenyl, 3,5-dimethoxy-4-iodophenyl, 3,5-dichloro-4-methoxyphenyl, 3,5-dichloro-4-ethoxyphenyl, 2-aminophenyl, 3-aminophenyl, 4-aminophenyl, 2-cyanophenyl, 3-cyanophenyl, 4-cyanophenyl, 4-trifluoromethoxyphenyl, 3-trifluoromethoxyphenyl, 2-trifluoromethoxyphenyl, 4-pentafluoroethoxyphenyl, 4-heptafluoropropoxyphenyl, 4-nonafluorobutoxyphenyl, 4-undecafluoropentyloxyphenyl, 4-tridecafluorohexyloxyphenyl, 3,5-bis(trifluoromethoxy)phenyl, 3,4,5-tris(trifluoromethoxy)phenyl, and the like.

The optionally phenylthio-substituted phenyl group includes phenyl, 4-(phenylthio)phenyl, 3(phenylthio)phenyl, 2-(phenylthio)phenyl, and the like.

The benzoyl group having 1 to 3 substituents selected from the group consisting of lower alkoxy, halogen-substituted lower alkyl and halogen include 2-chlorobenzoyl, 3-chlorobenzoyl, 4-chlorobenzoyl, 2-fluorobenzoyl, 2-bromobenzoyl, 2-iodobenzoyl, 2,4-dichlorobenzoyl, 2,5-dichlorobenzoyl, 3,4-dichlorobenzoyl, 2,5-dichlorobenzoyl, 2,6-dichlorobenzoyl, 2-trifluoromethylbenzoyl, 3-trifluoromethylbenzoyl, 4-trifluoromethylbenzoyl, 3,5-bis(trifluoromethyl)benzoyl, 3,4,5-tris(trifluoromethyl)benzoyl, 2-methoxybenzoyl, 3-

-10-

methoxybenzoyl, 4-methoxybenzoyl, 2,3-dimethoxybenzoyl, 2,4-dimethoxybenzoyl, 3,5-dimethoxybenzoyl, 3,4,5-trimethoxybenzoyl, 2-ethoxylbenzoyl, 2-propoxybenzoyl, 2-butoxybenzoyl, 2-pentyloxybenzoyl, 2-hexyloxybenzoyl, and the like.

The pyrazolo[1,5-a]pyrimidine derivatives of formula (1) according to the invention have potent analgesic effects and are useful as analgesics to relieve pains such as postoperative pain, migraine, gout, cancer pain, chronic pain and neuropathic pain. Furthermore, the derivatives of the invention are free of side effects typical of conventional analgesics, do not cause hallucination or derangement and are not addictive.

Examples of preferred pyrazolo[1,5-a]pyrimidine derivatives of the invention for use as the analgesics are: compounds of formula (1) wherein Q is carbonyl and n is 0; compounds wherein Q is carbonyl, n is 1, R¹ is lower alkyl or phenyl, R² is phenyl having 1 to 3 substituents selected from the group consisting of lower alkoxy and halogen-substituted lower alkyl, R³, R⁴, R⁵ and R⁶ are each hydrogen, and A is a single bond; and compounds wherein Q is sulfonyl, n is 0, R¹ is lower alkyl, R² is phenyl which may have 1 to 3 halogens, R³, R⁴, R⁵ and R⁶ are each hydrogen, and A is a single bond.

Of these preferred pyrazolo[1,5-a]pyrimidine

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-11-

derivatives, the following compounds are more preferable.

(1) Compounds wherein R¹ is optionally lower alkylthic-

- (1) Compounds wherein R¹ is optionally lower alkylthiosubstituted lower alkyl or optionally phenylthiosubstituted phenyl, R² is phenyl having 1 to 3 substituents selected from the group consisting of lower alkoxy, halogen and halogen-substituted lower alkyl, R³ is hydrogen or phenyl, R⁴ is hydrogen, halogen or phenyl, R⁵ is hydrogen, R⁶ is hydrogen or benzoyl having halogen-substituted lower alkyl as a substituent, Q is carbonyl and A is a single bond;
- (2) compounds wherein R^3 , R^4 and R^6 are each hydrogen, n is 0, R^1 is n-butyl and R^2 is phenyl having either 2 to 3 lower alkoxy groups or 1 to 2 halogen-substituted lower alkyl groups, or R^1 is phenyl and R^2 is phenyl having 3 lower alkoxy groups; and
- (3) compounds wherein R² is 2,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2-trifluoromethylphenyl or 2,5-bis(trifluoromethyl)phenyl.

Examples of most preferred pyrazolo[1,5-a]pyrimidine derivatives of the invention are 5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine and 5-n-butyl-7-(2-trifluoromethylbenzoylamino)pyrazolo[1,5-a]pyrimidine.

The derivatives of formula (1) according to the invention can be produced by various processes. Some

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-12-

exemplary processes are schematically shown hereinafter. [Reaction Scheme-1]

$$Y-Q-A-R^{2} \qquad HN (NH) _{n}-Q-A-R^{2}$$

$$(7) \qquad R^{5} \qquad N-N$$

$$R^{1a} \qquad R^{4a}$$

$$(1 a)$$

wherein R^2 , R^3 , R^5 , n, Q and A are as defined above, R^{1a} is hydrogen, lower alkyl which may have thienyl, lower alkoxy or lower alkylthio as a substituent, cycloalkyl, thienyl, furyl, lower alkenyl, or phenyl which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, phenylthio and halogen, R^{1a} and R^5 may conjointly form lower alkylene, R^{4a} is

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-13-

hydrogen, lower alkyl, lower alkoxycarbonyl, phenyl(lower)alkyl, or optionally phenylthio-substituted phenyl, X and Y are each halogen, and Z is lower alkyl.

The condensation of the compounds (2) and (3) in Reaction Scheme-1 is carried out in a suitable inert solvent at room temperature to the boiling point of the solvent. Examples of useful inert solvents are acetic acid, ethanol, benzene, toluene, xylene and tetrahydrofuran (THF). The compounds (2) and (3) are preferably used in an approximately equimolar proportion. The reaction is carried out for about 2-5 hours to provide the desired compound (4).

The subsequent halogenation of the compound (4) is carried out using a halogenating agent such as phosphorus oxychloride and phosphorus oxybromide in the presence of a suitable acid acceptor such as N,N-dimethylaniline, N,N-diethylaniline and triethylamine. Since the said halogenating agents also function as solvents, there is no need to use other solvents in this reaction but an inert solvent such as benzene, toluene and xylene may be optionally used. The acid acceptor is preferably used in an amount of about 1-10 equivalents relative to the compound (4). The reaction is carried out at approximately room temperature to 150°C for about 0.5-12 hours.

-14-

The halide (5) obtained by this reaction is treated with aqueous ammonia or hydrazine to convert the halide into the compound (6). This treatment requires no solvents and is generally carried out by heating the compound (5) with an excess of aqueous ammonia at about 100-150°C for about 1-12 hours or treating the compound (5) with an excess of hydrazine at about 0°C to room temperature for about 5-30 hours.

The compound (6) thus obtained is reacted with acid halide (7) to convert the compound (6) into the compound (1) of the invention. This reaction can be carried out in a suitable solvent in the presence of an acid acceptor. Examples of useful solvents are aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene and petroleum ether; chain or cyclic ethers such as diethylether, dimethoxyethane, tetrahydrofuran (THF) and 1,4-dioxane; ketones such as acetone, ethylmethylketone and acetophenone; hydrocarbon halides such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane. Examples of useful acid acceptors are tertiary amines such as triethylamine, N,N-diethylamiline, N-methylmorpholine, pyridine and 4-methylaminopyridine.

There is no specific limitation on the amounts of the acid halide (7) and the acid acceptor relative to the compound (6) in this reaction. It is, however, preferable that the acid halide be used in an approximately equimolar proportion and the acid acceptor in an approximately equimolar to excessive amount. The reaction goes to completion at room temperature to reflux temperature of the solvent in about 0.5-20 hours.

Compound (6'), i.e., the compound (6) wherein n=0 can be produced by the process shown in Reaction Scheme-1'.

[Reaction Scheme-1']

wherein R^{1a} , R^{3} , R^{4a} and R^{5} are as defined above.

The condensation of the nitrile derivative (2') and the compound (3) in this scheme is carried out in an inert solvent such as benzene, toluene, xylene, acetic acid and ethanol at room temperature to reflux temperature of the solvent for about 2-10 hours. These two compounds are generally used in an approximately equimolar proportion.

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-16-

[Reaction Scheme-2]

OH

$$R^5$$
 $N-N$
 R^3
 R^{4b}
 R^{4b}
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4

-17-

wherein R^2 , R^3 , R^5 , X, Y, A, Q, Z and n are as defined above, Ψ is lower alkyl having protected oxo, Φ is lower alkyl having oxo, Σ is lower alkyl having acyloxy, Ω is lower alkyl having tri(lower)alkyl-silyloxy, R^{1b} is hydroxy(lower)alkyl, R^{4b} is hydrogen, lower alkyl, phenyl(lower)alkyl or optionally phenylthio-substituted phenyl.

The condensation of the compounds (8) and (9) in Reaction Scheme-2 can be carried out in the same manner as the condensation of the compounds (2) and (3) in Reaction Scheme-1.

Examples of the lower alkyl having protected oxo and represented by Ψ in the compound (8) include lower alkyl groups having as protected oxo the residue of di(lower)alkyl acetal such as dimethylacetal, methylethylacetal, diethylacetal, dipropylacetal, dibutylacetal, dipentylacetal and dihexylacetal or the residue of cyclic acetal such as ethylene acetal, trimethylene acetal and tetramethylene acetal.

The subsequent hydrolysis of the compound (10) according to Reaction Scheme-2 can be carried out using an organic acid such as acetic acid, propionic acid and p-toluenesulfonic acid. Of these organic acids, carboxylic acids such as acetic acid and propionic acid function as solvents. When such a carboxylic acid is

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-18-

used, no other solvents are necessary. Other suitable inert solvents such as benzene, toluene and xylene may be optionally used even when a carboxylic acid is used as the organic acid. The reaction goes to completion at approximately room temperature to reflux temperature of the solvent for about 10-80 hours to provide the compound (11).

Examples of the lower alkyl having oxo and represented by Φ in the compound (11) include those prepared by eliminating protective groups from the corresponding "lower alkyl having protected oxo" and represented by Ψ. Specific examples are formyl, formylmethyl, acetyl, 2-formylethyl, 2-oxopropyl, propionyl, 3-formylpropyl, 3-oxobutyl, 2-oxobutyl, butyryl, 4-formylbutyl, 4-oxopentyl, 3-oxopentyl, 2-oxopentyl, valeryl, 5-formylpentyl, 5-oxohexyl, 4-oxohexyl, 3-oxohexyl, 2-oxohexyl, hexanoyl, and the like.

The subsequent reduction of the compound (11) can be carried out using a suitable reducing agent in an inert solvent. Examples of useful reducing agents are borohydride compounds such as sodium borohydride, potassium borohydride, lithium borohydride, sodium cyanoborohydride and sodium triethylborohydride, and lithium aluminum hydride compounds such as lithium aluminum hydride and lithium tributoxyaluminohydride.

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-19-

When a borohydride compound is used as the reducing agent, the inert solvent is preferably either an alcohol solvent such as methanol and ethanol or a mixed solvent of said alcohol and another solvent such as dichloromethane and diethyl ether. When a lithium aluminum hydride compound is used as the reducing agent, the solvent is preferably diethyl ether, THF or like ethers. The reducing agent is preferably used in at least approximately equimolar proportion relative to the compound (11). The reaction goes to completion at approximately 0°C to room temperature in about 0.5-3 hours.

Acylation of the compound (12) thus obtained can be carried out using an acylating agent in the absence of solvents or in an inert solvent such as pyridine, lutidine, N,N-dimethylformamide (DMF) and N,N-dimethylacetoamide (DMA). Examples of useful acylating agents are acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, hexanoic anhydride and heptanoic anhydride. These are generally used in an amount of 1-10 equivalents relative to the compound (12). In order not to acylate hydroxyl at 7 position of the compound (12), the reaction conditions are preferably selected within the ranges of approximately 0°C to room temperature and of about 0.5 to

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-20-

2 hours.

Halogenation of the compound (13) thus obtained can be carried out in the same manner as the halogenation of the compound (4) in Reaction Scheme-1.

Conversion of the compound (14) thus obtained to the compound (15) can be carried out under the same conditions as in the conversion of the compound (5) to the compound (6) in Reaction Scheme-1. The lower alkyl having acyloxy and represented by Σ in the compound (14) is hydrolyzed to form hydroxy(lower)alkyl by this reaction.

Silylation of the compound (15) thus obtained can be carried out using halotrialkylsilane in the presence of an acid acceptor in a suitable inert solvent such as THF and dichloromethane. Examples of useful acid acceptors are sodium carbonate, potassium carbonate, triethylamine and N,N-dimethylaminopyridine. Examples of useful halotrialkylsilane are chlorotrimethylsilane, chlorotriethylsilane, chlorotripropylsilane, chlorotributylsilane and chlorobutyldiethylsilane. These are normally used in an approximately equimolar to excessive amount relative to the compound (15). The reaction goes to completion at approximately room temperature in about 5-30 hours.

Lastly the compound (16) thus obtained is reacted

with acid halide (7) to provide the desired compound (1b) of the invention. This reaction can be carried out in the same manner as the reaction using acid halide (7) in Reaction Scheme-1. The substituent Ω at position 5 of the compound (16) can be easily converted to the corresponding R^{1b} group (hydroxy(lower)alkyl) by this reaction or the subsequent hydrolysis.

[Reaction Scheme-3]

$$\begin{array}{c|c}
 & NH_2 \\
 & R5 \\
 & N-N \\
 & R^{1c} \\
 & R^{3} \\
 & R^{4a} \\
 & (20) \\
\end{array}$$

$$\begin{array}{c}
 & Y-Q-A-R^2 \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 & (7) \\
 &$$

wherein R^2 , R^3 , R^{4a} , R^5 , X, Y, Z, Q, A, n and Ψ are as

-22-

defined above and R^{1c} is lower alkyl having oxo.

The reaction of the compound (17) and the nitrile derivative (18) in Reaction Scheme-3 can be carried out in an inert solvent such as DMF, DMA and dimethyl sulfoxide (DMSO) in the presence of a base such as sodium hydride and potassium hydride. The nitrile derivative (18) and the base are preferably used in an amount of 1 to an excessive equivalent relative to the compound (17) respectively. The reaction goes to completion at approximately 0°C to room temperature in 2-10 hours.

The subsequent condensation of the compounds (2") and (3) can be carried out in the same manner as the condensation in Reaction Scheme-1'.

Hydrolysis of the compound (19) can be carried out in the same manner as the hydrolysis in Reaction Scheme2.

The reaction of the compounds (20) and (7) can be carried out in the same manner as the reaction in Reaction Scheme-1.

[Reaction Scheme-4]

$$R^{2}-A-Q-OH \xrightarrow{\text{Halogenation}} R^{2}-A-Q-Y$$
(21) (7)

wherein R^2 , A, Q and Y are as defined above.

As shown in Reaction Scheme-4, acid halide (7) to be

-23-

used in Reaction Schemes-1, 2 and 3 can be prepared by halogenating the compound (21). The halogenation can be carried out by a conventional method. For example, the compound (21) is reacted with a halogenating agent such as thionyl chloride and thionyl bromide in the absence of solvents or in an inert solvent such as chloroform and diethylether. In this method, an excess of the halogenating agent is generally used. The reaction can be carried out at approximately room temperature to 150°C for about 0.5-5 hours.

[Reaction Scheme-5]

wherein R², R³, R⁵, A and n are as defined above, R^{1d} is hydrogen, lower alkyl which may have lower alkyoxy or lower alkylthio as a substituent, cycloalkyl, thienyl, furyl, or phenyl which may have 1-3 substituents selected from the group consisting of lower alkyl, lower alkoxy, phenylthio and halogen, R^{1d} and R⁵ may conjointly form lower alkylene and R^{4c} is halogen.

The halogenation of the compound (1d) in Reaction

Scheme-5 can be carried out using a halogenating agent such as N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in an inert solvent such as benzene, carbon tetrachloride and chloroform. The halogenating agent is normally used in an amount of 1 equivalent to a slightly excessive amount relative to the compound (1d). The reaction can be carried out at approximately room temperature to reflux temperature of the solvent for 0.5-5 hours.

[Reaction Scheme-6]

wherein R³, R⁴, R⁵ and Y are as defined above, R^{1e} is hydrogen, lower alkyl which may have thienyl, lower alkoxy, lower alkylthio or oxo as an substituent, cycloalkyl, thienyl, furyl, lower alkenyl, or phenyl which may have 1-3 substituents selected from the group consisting of lower alkyl, lower alkoxy, phenylthio and halogen, R^{1e} and R⁵ may conjointly form lower alkylene, R^{2a} is naphthyl, cycloalkyl, furyl, thienyl, optionally halogen-substituted pyridyl, optionally halogen-

WQ 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-25-

substituted phenoxy, or phenyl which may have 1-3 substituents selected from the group consisting of lower alkyl, lower alkoxy, halogen, nitro, halogen-substituted lower alkyl, halogen-substituted lower alkoxy, lower alkoxycarbonyl, phenyl(lower)alkoxy, cyano, lower alkanoyloxy, phenyl and di(lower)alkoxyphosphoryl-(lower)alkyl, and R^{6a} is phenyl(lower)alkyl, or benzoyl having 1-3 substituents selected from the group consisting of lower alkoxy, halogen-substituted lower alkyl and halogen.

In Reaction Scheme-6, the compound (1f) is reacted with the compound (22) in an inert solvent in the presence of a base to provide the compound (1g). When R^{6a} is a phenyl(lower)alkyl, suitable inert solvents are DMF, DMA, DMSO, etc. and suitable bases are sodium hydride, potassium hydride, etc. When R^{6a} is a benzoyl having 1-3 substituents selected from the group consisting of lower alkoxy, halogen-substituted lower alkyl and halogen, suitable inert solvents are chloroform, dichloromethane, etc. and suitable bases are triethylamine, N,N-dimethylaniline, etc. The compound (22) is normally used in an amount of 1 to a slightly excessive equivalent. The base is preferably used in an amount of 1 to an excessive equivalent. The reaction is carried out at approximately 0°C to room temperature for

-26-

3-30 hours.

[Reaction Scheme-7]

wherein R^{1a} , R^{2} , R^{3} , R^{4a} , R^{5} , X, Y, Q and A are as defined above and R^{6b} is lower alkyl or phenyl(lower)alkyl.

The reaction of the compounds (5) and (23) in Reaction Scheme-7 is carried out in an inert solvent such as methanol and ethanol in the presence of an acid acceptor such as sodium hydrogen carbonate, sodium carbonate and potassium carbonate at reflux temperature of the solvent for about 1-5 hours.

The reaction of the compounds (24) and (7) can be carried out in the same manner as the corresponding reaction in Reaction Scheme-1, thus giving the compound

-27-

(1h).

[Reaction Scheme-8]

wherein R^{1e}, R³, R^{4a}, R⁵ and Y are as defined above, R^{2b} is phenyl having 1-3 substituents selected from the group consisting of lower alkoxy, halogen, halogen-substituted lower alkyl and R^{6c} is benzoyl having 1 to 3 substituents selected from the group consisting of lower alkoxy, halogen-substituted lower alkyl and halogen.

The reaction of the compounds (25) and (26) in Reaction Scheme-8 can be carried out in the same manner as the reaction of the compounds (6) and (7) in Reaction Scheme-1. A by-product (1j) is obtained together with the main product (1i) by this reaction.

The compounds of the invention can be formed into pharmaceutically acceptable acid addition salts, which are also included among the compounds of the invention. The acid for use to form such salts includes inorganic acids such as hydrochloric acid, hydrobromic acid and sulfuric acid and organic acids such as oxalic acid,

WQ 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-28-

fumaric acid, maleic acid, tartaric acid and citric acid.

The reaction for forming such salts can be performed by conventional methods.

The object compound in each of the above processes can be easily isolated by conventional separation and purification means. Examples of useful isolation means include various conventional means such as adsorption chromatography, preparative thin-layer chromatography, recrystallization and solvent extraction.

Some compounds of formula (1) according to the invention, wherein A is alkenylene or R¹ is lower alkenyl, may be cis- or trans-isomers. Of course, these isomers are included in the invention.

Compounds of the formula (1) according to the invention may exist as optical isomers having an carbon atom as a stereogenic center. Such optically active substances and racemic derivatives are included in the invention.

The compound of the invention can be made into usual dosage forms of pharmaceutical compositions using suitable non-toxic pharmaceutically acceptable carriers. The present invention provides such pharmaceutical compositions, especially analgesics.

Examples of useful pharmaceutically acceptable carriers include conventional diluents or excipients such

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-29-

as fillers, volume builders, binders, humectants, disintegrators, surfactants, lubricants, and the like. These carriers are selectively used according to the desired unit dosage form.

The unit dosage form of said pharmaceutical composition can be selected from a broad variety of forms according to the intended medical treatment. Typical examples are tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, etc.), ointments, and the like.

The tablets can be molded using as pharmaceutically acceptable carriers excipients such as lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid and potassium phosphate, binders such as water, ethanol, propanol, simple syrup, glucose syrup, starch solution, gelatin solution, carboxymethyl cellulose, hydroxypropyl cellulose, methyl cellulose and polyvinyl pyrrolidone, disintegrators such as sodium carboxymethyl cellulose, calcium carboxymethyl cellulose, low-substituted hydroxypropyl cellulose, dry starch, sodium alginate, agar powder, laminaran powder, sodium hydrogen carbonate and calcium carbonate, surfactants such as polyoxyethylene sorbitan fatty acid ester, sodium lauryl

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-30-

sulfate and stearyl monoglyceride, disintegration inhibitors such as sucrose, stearin, cacao butter and hydrogenated oil, absorption promoters such as quaternary ammonium base and sodium lauryl sulfate, humectants such as glycerin and starch, adsorbents such as starch, lactose, kaolin, bentonite and colloidal silicic acid, and lubricants such as purified talc, stearic acid salt, boric acid powder and polyethylene glycol. Furthermore, such tablets may be optionally coated to provide sugarcoated tablets, gelatin-coated tablets, enteric tablets, film-coated tablets, etc. or be processed into double-layer or multiple-layer tablets.

The pills can be molded using as pharmaceutically acceptable carriers excipients such as glucose, lactose, starch, cacao butter, hydrogenated vegetable oil, kaolin and talc, binders such as gum arabic powder, tragacanth powder, gelatin and ethanol, and disintegrators such as laminaran and starch.

The suppositories can be molded using as pharmaceutically acceptable carriers polyethylene glycol, cacao butter, higher alcohols or their esters, gelatin, semisynthetic glycerides, and the like.

The capsules can be manufactured by mixing the active ingredient compound of the invention with pharmaceutically acceptable carriers as mentioned above

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-31-

and filling the mixture into hard gelatin capsule shells, soft capsule shells, etc. according to conventional methods.

The injections in the form of solutions, emulsions, suspensions, etc. can be manufactured using diluents such as water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxyisostearyl alcohol and polyoxyethylene sorbitan fatty acid ester and are preferably sterilized and rendered isotonic with respect to the blood. In order to provide such an isotonic solution, a sufficient amount of sodium chloride, glucose or glycerin may be added to the pharmaceutical composition of the invention. Conventional solubilizers, buffers, local anesthetics, etc. may also be added.

Further, coloring agents, preservatives, perfumes, flavors, sweeteners, or other pharmaceutical compositions may be optionally incorporated in the pharmaceutical compositions of the invention.

The ointments in the form of paste, cream, gel, etc. can be manufactured using diluents such as white vaseline, paraffin, glycerin, cellulose derivatives, polyethylene glycol, silicone and bentonite.

The proportion of the active ingredient compound of formula (1) of the invention in the pharmaceutical composition of the invention is not so critical but can

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-32-

be liberally selected from a broad range. Generally, the active ingredient compound preferably accounts for about 1 to 70 weight % of the final composition.

There is no specific limitation on the administration method for the pharmaceutical composition of the invention. The proper method can be determined according to the dosage form, patient's age, sex or other conditions, severity of disease, etc. For example, the tablets, pills, solutions, suspensions, emulsions, granules and capsules are orally administered. The injections are intravenously administered singly or in admixture with a conventional infusion such as glucose and amino acid, and optionally administered singly by the intramuscular, intradermal, subcutaneous or intraperitoneal route. The suppositories are intrarectally administered.

The dosage of the pharmaceutical composition is suitably selected according to the administration method, patient's age, sex or other conditions, severity of disease, etc. The dosage of the compound of the invention as the active ingredient is preferably about 0.5-20 mg per kg body weight a day and this amount can be administered once or in 2-4 divided doses.

BEST MODE FOR PRACTICING THE INVENTION

Preparation examples for starting compounds to

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-33-

produce compounds of the invention are given below as

Reference Examples, and preparation examples for

compounds of the invention are given below as Examples to

clarify the present invention in more detail.

Reference Example 1

Preparation of 7-amino-5-n-butylpyrazolo[1,5-a]pyrimidine
Step (1)

A solution of 100 g of 3-aminopyrazole and 190 g of methyl 3-oxoheptanoate in 120 ml of toluene was refluxed with heating at 100°C for 3 hours and then cooled.

Toluene was distilled off under reduced pressure and diethyl ether was added to the residue. The crystals precipitated were collected and washed with diethyl ether and acetonitrile to provide 184 g of 5-n-butyl-7-hydroxypyrazolo[1,5-a]pyrimidine as colorless crystals.

Step (2)

Phosphorus oxychloride (80 ml) and triethylamine (44 ml) were added to a toluene suspension (400 ml) containing 40 g of the crystals obtained in step (1). The reaction mixture was refluxed with heating for 4 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure and the residue was poured into ice water. The mixture was neutralized with sodium acetate and extracted with ethyl acetate. The organic layer was collected, washed with a

-34-

saturated saline solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: ethyl acetate:n-hexane=1:9) to provide 41 g of 5-n-butyl-7-chloropyrazolo[1,5-a]pyrimidine as a light yellow oily compound.

Step (3)

The compound prepared in the above step (2) (21 g) and 25% aqueous ammonia (100 ml) were enclosed in a stainless steel sealed tube, heated at 110°C for 12 hours and cooled. The crystals precipitated were collected by filtration, washed with water and recrystallized from chloroform-n-hexane to provide 18.4 g of 7-amino-5-n-butylpyrazolo[1,5-a]pyrimidine as colorless crystals (melting point: 124-126°C).

The following compounds were prepared in the same manner as above.

- (1) 7-Amino-5-ethylpyrazolo[1,5-a]pyrimidine (melting point: 175-177°C, recrystallization solvent: ethyl acetate-n-hexane)
- (2) 7-Amino-5-n-propylpyrazolo[1,5-a]pyrimidine
 (melting point: 138-140°C, recrystallization
 solvent: ethyl acetate-n-hexane)
- (3) 7-Amino-5-cyclopropylpyrazolo[1,5-a]pyrimidine (melting point: 206-209°C, recrystallization

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-35-

- solvent: chloroform-n-hexane)
- (5) 7-Amino-5-phenylpyrazolo[1,5-a]pyrimidine (melting point: 207-209°C, recrystallization solvent: ethyl acetate-n-hexane)
- (6) 7-Amino-5-(4-methoxyphenyl)pyrazolo[1,5a]pyrimidine (melting point: 194-196°C,
 recrystallization solvent: ethanol-n-hexane)
- (7) 7-Amino-5-(2-thienyl)pyrazolo[1,5-a]pyrimidine
 (melting point: 227-229°C, recrystallization
 solvent: ethanol-n-hexane)
- (8) 7-Amino-5-(3-thienyl)pyrazolo[1,5-a]pyrimidine
 (melting point: 203-205°C, recrystallization
 solvent: ethanol-n-hexane)
- (10) 7-Amino-5-n-butyl-2-methylpyrazolo[1,5-a]pyrimidine
 (melting point: 176-178°C, recrystallization
 solvent: chloroform-n-hexane)
- (11) 7-Amino-5-(2,4-dimethylphenyl)pyrazolo[1,5a]pyrimidine (melting point: 168-170°C,
 recrystallization solvent: chloroform-n-hexane)

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-36-

- (12) 7-Amino-5-(3,5-dimethylphenyl)pyrazolo[1,5a]pyrimidine (melting point: 180-182°C,
 recrystallization solvent: ethanol-n-hexane)
- (13) 7-Amino-5-(2-methoxyphenyl)pyrazolo[1,5a]pyrimidine (melting point: 201-203°C,
 recrystallization solvent: ethanol-n-hexane)
- (14) 7-Amino-5-(3-methoxyphenyl)pyrazolo[1,5a]pyrimidine (melting point: 195-197°C,
 recrystallization solvent: ethanol-n-hexane)
- (15) 7-Amino-5-(3,4,5-trimethoxyphenyl)pyrazolo[1,5a]pyrimidine (melting point: 198-200°C,
 recrystallization solvent: ethanol-n-hexane)
- (16) 7-Amino-5-(2-chlorophenyl)pyrazolo[1,5-a]pyrimidine
 (melting point: 208-210°C, recrystallization
 solvent: chloroform-n-hexane)
- (18) 7-Amino-5-(3-furyl)pyrazolo[1,5-a]pyrimidine
 (melting point: 208-210°C, recrystallization
 solvent: ethanol-n-hexane)
- (19) 7-Amino-5-(2-thienylmethyl)pyrazolo[1,5a]pyrimidine (melting point: 188-190°C,
 recrystallization solvent: ethanol-n-hexane)
- (20) 7-Amino-5-(3,5-dimethoxyphenyl)pyrazolo[1,5-

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-37-

a]pyrimidine (melting point: 207-209°C, recrystallization solvent: ethanol-n-hexane)

The following compounds were also prepared in the same manner as above.

- (21) 7-Amino-5-(3-butenyl)pyrazolo[1,5-a]pyrimidine
- (22) 7-Amino-5-ethoxymethylpyrazolo[1,5-a]pyrimidine
- (23) 7-Amino-5-(2-methylphenyl)pyrazolo[1,5-a]pyrimidine
- (24) 7-Amino-5-(3-methylphenyl)pyrazolo[1,5-a]pyrimidine
- (25) 7-Amino-5-(4-methylphenyl)pyrazolo[1,5-a]pyrimidine
- (26) 7-Amino-5-(3-chlorophenyl)pyrazolo[1,5-a]pyrimidine
- (27) 7-Amino-5-(4-chlorophenyl)pyrazolo[1,5-a]pyrimidine
- (28) 7-Aminopyrazolo[1,5-a]pyrimidine
- (30) 7-Amino-2,5-di-n-butyl-3-methylpyrazolo[1,5a]pyrimidine (melting point: 123-125°C,
 recrystallization solvent: diethyl ether-n-hexane)
- (31) 7-Amino-5-n-butyl-2-phenylpyrazolo[1,5-a]pyrimidine
 (melting point: 206-208°C, recrystallization
 solvent: ethyl acetate-n-hexane)
- (32) 7-Amino-3-benzyl-5-n-butyl-2-phenylpyrazolo[1,5a]pyrimidine (melting point: 106-108°C,
 recrystallization solvent: chloroform-n-hexane)

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-38-

- (34) 7-Amino-3,5-di-n-butylpyrazolo[1,5-a]pyrimidine

 (melting point: 58-60°C, recrystallization solvent: ethyl acetate-n-hexane)
- (35) 7-Amino-5-n-butyl-3-phenylpyrazolo[1,5-a]pyrimidine
 (melting point: 113-115°C, recrystallization
 solvent: ethyl acetate-n-hexane)
- (36) 7-Amino-5-[(ethylthio)methyl]pyrazolo[1,5a]pyrimidine (melting point: 109-111°C,
 recrystallization solvent: chloroform-n-hexane)
- (37) 7-Amino-5-[2-(methylthio)ethyl]pyrazolo[1,5a]pyrimidine (melting point: 77-79°C,
 recrystallization solvent: ethyl acetate-n-hexane)
- (38) 7-Amino-5-[4-(phenylthio)phenyl]pyrazolo[1,5-a]pyrimidine (melting point: 182-184°C, recrystallization solvent: chloroform-diethyl ether)
- (39) 9-Amino-5,6,7,8-tetrahydropyrazolo[5,1-b]quinazoline (melting point: 230-233°C, recrystallization solvent: ethyl acetate-n-hexane)
 - (40) 7-Amino-2,5-di-n-butylpyrazolo[1,5-a]pyrimidine
 (melting point: 105-107°C, recrystallization

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-39-

solvent: diethyl ether-n-hexane)
Reference Example 2

Preparation of 5-n-butyl-7-hydrazinopyrazolo[1,5-a]pyrimidine

Hydrazine monohydrate (50 ml) was slowly added dropwise to 21.0 g of 5-n-butyl-7-chloropyrazolo[1,5-a]pyrimidine prepared in step (2) of Reference Example 1 at room temperature and stirred at room temperature for 10 hours. After completion of the reaction, the crystals precipitated were collected, washed with water and recrystallized from chloroform-n-hexane to provide 12.6 g of the object compound as colorless crystals (melting point: 126-129°C).

7-Hydrazino-5-phenylpyrazolo[1,5-a]pyrimidine was prepared in the same manner as above.

Reference Example 3

Preparation of 7-amino-5-(3-oxobutyl)pyrazolo[1,5-a]pyrimidine

An acetonitrile solution (10 ml) containing 5.0 g of methyl 2-methyl-1,3-dioxolane-2-propionate was added dropwise to 10 ml of a DMF suspension containing 2.3 g of 60% sodium hydride, and stirred at room temperature for 4 hours. The reaction mixture was poured into ice water, acidified with a saturated citric acid solution and extracted with ethyl acetate. The organic layer was

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-40-

washed with water and a saturated saline solution and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: n-hexane:ethyl acetate=3:2) to provide 3.0 g of 2-methyl- β -oxo-1,3-dioxolane-2-pentanenitrile as oil.

Subsequently, a toluene solution (1.6 ml) containing 3.0 g of the compound thus obtained and 1.4 g of 3-aminopyrazole was stirred at 115°C for 10 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: chloroform: methanol = 20:1) and recrystallized from chloroform-n-hexane to provide 2.1 g of 7-amino-5-[2-(2-methyl-1,3-dioxolane-2-yl)ethyl]pyrazolo[1,5-a]pyrimidine as colorless crystals.

Then 1.0 g of the crystals thus obtained were dissolved in 500 ml of acetic acid-water (4:1) and stirred at 80°C overnight. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The remaining acetic acid-water was azeotropically distilled off with benzene. The residue was recrystallized from ethanol-n-hexane to provide 0.7 g of the title object compound as colorless crystals.

Melting point: 164-166°C, recrystallization solvent: ethanol-n-hexane

Reference Example 4

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-41-

Preparation of 7-amino-5-n-butyl-6-methylpyrazolo[1,5-a]pyrimidine

A toluene solution (2.5 ml) containing 1.8 g of 3-aminopyrazole and 3 g of 2-methyl-3-oxoheptanenitrile was heated at 115°C for 3.5 hours. Toluene was distilled off under reduced pressure and the residue was recrystallized from ethyl acetate and washed with diethyl ether to provide 2.4 g of the title object compound as colorless crystals.

Melting point: 153-155°C, recrystallization solvent: ethyl acetate

Example 1

Preparation of 5-n-butyl-7-(3,4,5-

trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine

7-Amino-5-n-butylpyrazolo[1,5-a]pyrimidine (1.90 g) and pyridine (20 ml) were dissolved in 20 ml of dry dichloromethane. A dry dichloromethane solution (10 ml) containing 2.6 g of 3,4,5-trimethoxybenzoyl chloride was slowly added dropwise thereto and stirred at room temperature for 10 hours. After addition of 50 ml of a 10% aqueous sodium hydrogen carbonate solution, the reaction mixture was extracted with chloroform. The organic layer was collected, washed with 10% aqueous hydrochloric acid and water, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-42-

residue was purified by silica gel column chromatography (eluent: ethyl acetate:n-hexane=1:2) and recrystallized from diethyl ether-n-hexane to provide 2.4 g of the object compound as colorless crystals. Table 1 shows the structure and melting point of the compound obtained. Examples 2-46

The compounds set forth in Table 1 were prepared in the same manner as in Example 1. The structures and melting points of the compounds are also shown in Table 1. As to the oily compounds, data on the results of ¹H-NMR analysis are shown.

Examples 47-99

The compounds set forth in Table 2 were prepared in the same manner as in Example 1. The structures and melting points of the compounds are also shown in Table 2. As to the oily compounds, data on the results of ¹H-NMR analysis are shown.

Example 100

Preparation of 5-(3-hydroxybutyl)-7-(3,4,5trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine Step (1)

A toluene solution (2 ml) containing 0.90 g of 3-aminopyrazole and 1.90 g of methyl 2-methyl- β -oxo-1,3-dioxolane-2-valerate was refluxed with heating at 115°C for 1 hour, allowed to cool and then concentrated under

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-43-

reduced pressure. Diethyl ether was added to the residue. The crystals precipitated were collected and washed with diethyl ether to provide 1.85 g of 7-hydroxy-5-[2-(2-methyl-1,3-dioxolane-2-yl)ethyl]pyrazolo[1,5-a]pyrimidine as colorless crystals.

Step (2)

The crystals thus obtained (2.2 g) were dissolved in 500 ml of acetic acid-water (4:1) and stirred at 50°C for 3 days. After completion of the reaction, the reaction mixture was concentrated under reduced pressure and the remaining acetic acid-water was azeotropically distilled off with benzene. The residue was recrystallized from ethanol-n-hexane to provide 11.0 g of 7-hydroxy-5-(3-oxobutyl)pyrazolo[1,5-a]pyrimidine as colorless crystals.

Step (3)

The crystals obtained in step (2) (5.7 g) were dissolved in 120 ml of methanol. Sodium borohydride (0.53 g) was added under ice-cooling and stirred at 0°C for 2 hours. After completion of the reaction, the reaction mixture was acidified by adding dilute aqueous hydrochloric acid dropwise and then extracted with chloroform. The organic layer was collected, washed with a saturated saline solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-44-

residue was recrystallized from ethanol-n-hexane to provide 4.16 g of 7-hydroxy-5-(3-hydroxybutyl)pyrazolo[1,5-a]pyrimidine as colorless crystals.

Step (4)

The crystals obtained in step (3) (4.16 g) were dissolved in 40 ml of acetic anhydride and 40 ml of pyridine and stirred at room temperature for 30 minutes. After completion of the reaction, the reaction mixture was concentrated under reduced pressure and the residue was recrystallized from methanol-diethyl ether to provide 4.2 g of 5-(3-acetoxybutyl)-7-hydroxypyrazolo[1,5-a]pyrimidine as colorless crystals.

Step (5)

Phosphorus oxychloride (6.4 ml) and triethylamine (3.5 ml) were added to 40 ml of a toluene suspension containing 4.2 g of the crystals obtained in step (4), and the mixture was refluxed with heating for 6 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure and the residue was poured into ice water. The mixture was neutralized with sodium acetate and extracted with ethyl acetate. The organic layer was collected, washed with a saturated saline solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-45-

purified by silica gel column chromatography (eluent: ethyl acetate:n-hexane = 4:1) to provide 4.3 g of 5-(3-acetoxybutyl)-7-chloropyrazolo[1,5-a]pyrimidine as a light yellow oily compound.

Step (6)

The compound prepared in step (5) (4.3 g) and 25% aqueous ammonia (50 ml) were enclosed in a stainless steel sealed tube, heated at 105°C for 14 hours and allowed to cool. The crystals precipitated were collected by filtration, washed with water and dried to provide 3.2 g of 7-amino-5-(3-hydroxybutyl)pyrazolo[1,5-a]pyrimidine as light yellow crystals.

Step (7)

Triethylamine (400 µ1) and chlorotrimethylsilane (680 µ1) were added to 5 ml of a THF solution containing 500 mg of the crystals obtained in step (6), and the mixture was stirred at room temperature for 12 hours. After completion of the reaction, a saturated aqueous NaHCO₃ solution was added and the reaction mixture was extracted with dichloromethane. The organic layer was collected, washed with water and a saturated saline solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure. n-Hexane was added to the residue. The crystals precipitated were collected by filtration to provide 520 mg of 7-amino-5-(3-

-46-

trimethylsilyloxybutyl)pyrazolo[1,5-a]pyrimidine as colorless crystals.

¹H-NMR (δ:ppm) [CDCl₃] 0.12(9H, s), 1.20(3H, d, J=5.9), 1.8-1.9(2H, m), 2.6-2.9 (2H, m), 3.8-3.9(1H, m), 5.61(2H, brs), 5.99(1H, s), 6.41(1H, d, J=2.0), 7.99(1H, d, J=2.0) Step (8)

A dry dichloromethane solution (5 ml) containing 650 mg of 3,4,5-trimethoxybenzoyl chloride was slowly added dropwise to 5 ml of a pyridine solution containing 520 mg of the crystals obtained in step (7), and stirred at room temperature for 2 hours. After completion of the reaction, a saturated aqueous NaHCO, solution was added and the reaction mixture was extracted with dichloromethane. The organic layer was collected and washed with a 1N aqueous hydrochloric acid until the pH of the water layer became about 1. The organic layer was allowed to stand for 2 hours, washed with water and a saturated saline solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure. residue was recrystallized from dichloromethane-n-hexane to provide 480 mg of the object compound as colorless crystals. Table 2 shows the structure and melting point of the compound obtained.

Examples 101 and 102

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-47-

The compounds set forth in Table 2 were prepared in the same manner as in Example 100. The structures and melting points of the compounds are also shown in Table 2.

Example 103

Preparation of 5-n-butyl-3-chloro-2-methyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine

5-n-Butyl-2-methyl-7-(3,4,5-trimethoxybenzoyl-amino)pyrazolo[1,5-a]pyrimidine (the compound of Example 53; 0.78 g) was dissolved in 10 ml of chloroform. After addition of 0.28 g of NCS, the mixture was refluxed with heating for 1 hour and allowed to cool. After addition of some water, the reaction mixture was extracted with chloroform. The organic layer was collected, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: ethyl acetate:n-hexane=1:2) and recrystallized from ethanol-n-hexane to provide 0.61 g of the object compound as colorless crystals. Table 3 shows the structure and melting point of the compound obtained. Examples 104-106

The compounds set forth in Table 3 were prepared in the same manner as in Example 103. The structures and melting points of the compounds are also shown in Table 3.

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-48-

Examples 107-128

The compounds set forth in Table 4 were prepared in the same manner as in Example 1. The structures and melting points of the compounds are also shown in Table 4.

Example 129

Preparation of 5-n-butyl-7-[N-methyl-N-(3,4,5-trimethoxybenzoyl)amino]pyrazolo[1,5-a]pyrimidine

5-n-Butyl-7-chloropyrazolo[1,5-a]pyrimidine (the compound prepared in step (2) of Reference Example 1; 8.60 g), sodium hydrogen carbonate (3.44 g) and 40% methylamine (3.18 g) were added to 50 ml of ethanol and heated at 120°C for 2 hours. After completion of the reaction, ethanol was distilled off under reduced pressure. After addition of some water, the residue was extracted with ethyl acetate. The organic layer was collected, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: ethyl acetate:n-hexane=1:2) to provide 2.33 g of 5-n-butyl-7-methylaminopyrazolo[1,5-a]pyrimidine as crystals.

The object compound was prepared using the crystals thus obtained and 3,4,5-trimethoxybenzoyl chloride in the same manner as in Example 1. The structure and melting point of the compound obtained are shown in Table 5.

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-49-

Example 130

The compound set forth in Table 5 was prepared in the same manner as in Example 129. The structure and melting point of the compound are also shown in Table 5. Example 131

Preparation of 5-n-butyl-7-[N,N-bis(3,4,5trimethoxybenzoyl)amino]pyrazolo[1,5-a]pyrimidine

The compound prepared in Example 1 (1.92 g) and triethylamine (1.02 g) were dissolved in 10 ml of chloroform. A chloroform solution (10 ml) containing 1.28 g of 3,4,5-trimethoxybenzoyl chloride was added to the solution at room temperature and the mixture was stirred at room temperature for 10 hours. After completion of the reaction, the organic layer was washed with dilute aqueous hydrochloric acid, dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (eluent: ethyl acetate:n-hexane = 1:2) and recrystallized from ethyl acetate-n-hexane to provide 1.10 g of the object compound as colorless crystals.

The structure and melting point of the compound obtained are shown in Table 5.

Example 132

Preparation of 5-n-butyl-7-[N,N-bis(2-chlorobenzovl)amino]pyrazolo[1,5-a]pyrimidine

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-50-

The former fractions obtained by silica gel column chromatography in Example 23 were purified by silica gel column chromatography again (eluent: dichloromethane), and recrystallized to provide the object compound as colorless crystals. Table 5 shows the structure and melting point of the compound obtained.

Examples 133-134

The former fractions obtained by silica gel column chromatography in Examples 32 and 52 were treated in the same manner as in Example 132, thus giving the compounds shown in Table 5. The structures and melting points of the compounds are also shown in Table 5.

The former fractions obtained by silica gel column chromatography in Example 1 were treated likewise, giving the same compound as in Example 131.

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

Me : methyl group, Et : ethyl group, nPr : n-propyl group, nBu : n-butyl group, nPe : n-pentyl group, Ph : phenyl group

	1 3 3000 1000 1000								
kample l	R 1	R 2	A	Melting point (℃) (Recrystallization solvent)					
1	n B u	0 M e 0 M e 0 M e	Single- bond	1 2 7 \sim 1 2 9 (Diethyl ether-n-hexane)					
2	пВи	P h _.	Single- bond	83~85 (Ethyl acetate-n-hexane)					
3	пВu	M e	Single- bond	1 0 2 ~ 1 0 4 (n-Hexane)					
4	n B u	→ M e	Single- bond	9 4 ~ 9 5 (n-Hexane)					
5	n B u	— М е	Single- bond	83~84 (n-Hexane)					
6	n B u	-C (Me) ₃	Single- bond	1H - NMR (CDC & 3) 0.97(3H,t,J=7.3), 1.37(9H,s), 1.4-1.5(2H,m), 1.7-1.9(2H,m), 2.86(2H,t,J=7.8), 6.57(1H,d,J= 2.3), 7.58(1H,d,J=8.7), 7.77 (1H,s), 7.97(1H,d,J=8.7), 8.03 (1H,d,J=2.3), 10.0(1H,brs)					
7	n B u	M e O	Single- bond	8 2 ~ 8 4 (n-Hexane)					
8	n B u	○ O M e	Single- bond	4 9 ~ 5 1 (n-Hexane)					

-52-Table 1 (continued)

		1 4 5 7 6 1		
tample	R 1	R 2	A	Melting point (℃) (Recrystallization solvent)
9	n B u	→ O M e	Single- bond	108~109 (n-Hexane)
0	пВи	МеО ОМе	Single- bond	129~132 (n-Hexane)
1	пВи	0 M e 0 M e	Single- bond	1 4 3 \sim 1 4 4 (Diethyl ether-n-hexane)
2	nВu	M e O	Single- bond	$101 \sim 103$ (Diethyl ether-n-hexane)
3	n B u	O M e	Single- bond	9 2 \sim 9 4 (Diethyl ether-n-hexane)
4	пВи	M e O O M e O M e	Single- bond	1 1 5 \sim 1 1 7 (Ethyl acetate-n-hexane)
5	E t	O M e O M e	Single- bond	141~143 (Ethyl acetate-n-hexane)
6	пРг	O M e O M e	Single- bond	$119 \sim 121$ (Diethyl ether-n-hexane)
7	<u>></u>	0 M e 0 M e 0 M e	Single- bond	1 9 8 ~ 2 0 1 (Ethyl acetate-n-hexane)
8	пРе	O M e O M e O M e	Single- bond	116~118 (n-Hexane)
9	Ρh	O M e O M e	Single- bond	185~187 (Ethyl acetate-n-hexane)

-53-Table 1 (continued)

:ample	R 1	R 2	A	Melting point (℃) (Recrystallization solvent)
0	n B u	$ \begin{array}{c} O E t \\ O E t \end{array} $	Single- bond	$100 \sim 102$ (Diethyl ether-n-hexane)
1	n B u	→ 0 - n B u	Single- bond	87~90 (n-Hexane)
2	n B u	F	Single- bond	9 9 ~ 1 0 0 (n-Hexane)
3	n B u	C &	Single- bond	$107 \sim 109$ (Diethyl ether)
4	n B u	~ C ℓ	Single- bond	81~82 (n-Hexane)
5	n B u	- c &	Single- bond	$92 \sim 94$ (Diethyl ether)
6	nBu	C & C &	Single- bond	97~99 (n-Hexane)
7	n B u	→ B r	Single- bond	93~95 (n-Hexane)
8	пВи	———— В r	Single- bond	97~99 (n-Hexane)
9	пВи	O ₂ N	Single- bond	133~135 (Ethyl acetate-n-hexane)
0	n B u	NO ₂	Single- bond	143~145 (Ethyl acetate-π-hexane)

-54-Table 1 (continued)

	lable I (continued)								
:ample	R 1	R 2	A	Melting point (\mathfrak{C}) (Recrystallization solvent)					
1	Εt	F ₃ C	Single- bond	1 2 5 \sim 1 2 7 (Diethyl ether-n-hexane)					
2	n B u	F ₃ C	Single- bond	84~87 (n-Hexane)					
3	n B u	- C F 3	Single- bond	95~97 (n-Hexane)					
4	n B u	———— СООМ e	Single- bond	1 2 2 ~ 1 2 3 (n-Hexane)					
5	n B u		Single- bond	1 3 9 \sim 1 4 1 (Ethyl acetate-n-hexane)					
6	n B u		Single- bond	$1\ 1\ 9 \sim 1\ 2\ 1$ (Ethyl acetate-n-hexane)					
7	n B u	CH ₂ -P(OEt) ₂	Single- bond	$5.7 \sim 6.0$ (Ethyl acetate-n-hexane)					
8	n B u	~~~	Single- bond	$82 \sim 84$ (Diethyl ether-n-hexane)					
9	n B u	C I_N	Single- bond	1 0 3 \sim 1 0 5 (Ethyl acetate-n-hexane)					
0	n B u	~	Single- bond	9 2 \sim 9 3 (Diethyl ether-n-hexane)					
1	n B u	P h	-сн ₂ -	$8.0 \sim 8.2$ (Diethyl ether-n-hexane)					

-55-Table 1 (continued)

ample	R 1	R 2	A	Melting point (°C) (Recrystallization solvent)
2	n B u	————— O M e	-сн ₂ -	$7.3 \sim 7.5$ (Diethyl ether-n-hexane)
3	n B u	Ρh	-C ₂ H ₄ -	$ \begin{array}{l} 1H-NMR & (CDC\ell_{3}) \\ 0.95(3H,t,J=7.3), \ 1.3-1.5 \\ (2H,m), \ 1.7-1.8(2H,m), \ 2.80 \\ (2H,t,J=7.8), \ 2.88(2H,t,J=7.5), \ 3.09(2H,t,J=7.5), \ 6.53 \\ (1H,d,J=2.2), \ 7.2-7.3(5H,m), \\ 7.60(1H,s), \ 7.95(1H,d,J=2.2), \\ 9.23(1H,brs) \end{array} $
4	n B u	P h O -	-CH ₂ -	108~109 (n-Hexane)
5	n B u	-o — c e	CH ₂ -	1 4 0 \sim 1 4 2 (Ethyl acetate-n-hexane)
6	n B u	O M e O M e	-СН≕СН-	1 3 4 \sim 1 3 7 (Ethyl acetate-n-hexane)

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-56-

Table 2

Me : methyl group, Et : ethyl group, nPr : n-propyl group, nBu : n-butyl group, tBu : t-butyl group, nPe : n-pentyl group, Ph : phenyl group, Ac : acetyl group

:-	R 1	R 2	R 3	Α	n	Melting point (\mathbb{C}) (Recrystallization solvent)
7	n B u	.—	Н	Single- bond	0	$\begin{array}{c} 1H-NMR\left(CDC\ell_{3}\right)\\ 0.95(3H,t,J=7.4),1.2-2.1\\ (14H,m),2.4-2.6(1H,m),2.81\\ (2H,t,J=7.8),6.54(1H,d,J=2.2),7.62(1H,s),8.00(1H,d,J=2.2),9.29(1H,brs) \end{array}$
8	n B u	MeO OMe	Н	Single- bond	0	1 4 1 ~ 1 4 2 (Ethanol-n-hexane)
9	MeO-	MeOOMe	Н	Single- bond	0	209~211 (Methylene chloride-ethyl acetate)
0	[s]	MeOOMe	н	Single- bond	0	2 0 6 ~ 2 0 8 (Methylene chloride-ethyl acetate)
1	n B u	MeO OMe	Н	Single- bond	0	1 3 6 ~ 1 3 7 (Ethanol-n-hexane)
2	Ме	MeO MeO MeO	Н	Single- bond	0	173~175 (Ethanol-n-hexane)
3	n B u	MeO MeO MeO	Me	Single- bond	0	1 2 7 ~ 1 2 9 (Ethanol-n-hexane)
4	СН ₂ -СН-С ₂ Н ₄ -	MeO MeO MeO	н	Single- bond	0	$104 \sim 106$ (Ethyl acetate-n-hexane)

-57-Table 2 (continued)

		Table	2	(CONT.	n u e	, u)
:.	R 1	R 2	R 3	A	n	Melting point (\mathcal{C}) (Recrystallization solvent)
5	Et-O-CH ₂ -	MeO MeO MeO	н	Single- bond	0	1 3 8 ~ 1 4 0 (Ethyl acetate-n-hexane)
6	Me	MeO MeO MeO	н	Single- bond	0	163~165 (Chloroform-ethyl acetate)
7	Me	MeO MeO MeO	Н	Single- bond	0	1 6 6 ~ 1 6 8 (Ethyl acetate-n-hexane)
8	Me-	Me0 Me0 Me0	Н	Single- bond	0	193~195 (Methylene chloride- diethyl ether)
9	Me Me	Me0 Me0 Me0	н	Single- bond	0	$174\sim176$ (Methylene chloride-diethyl ether)
0	Me Me	MeO MeO MeO	Н	Single- bond	0	203~205 (Methylene chloride- diethyl ether)
1	OMe	MeO MeO MeO	н	Single- bond	0	$175 \sim 177$ (Methylene chloride-ether acetate)
2	MeO	MeO MeO MeO	н	Single- bond	0	$192 \sim 194$ (Methylene chloride-diethyl ether)
. 3	MeO —	MeO MeO MeO	н	Single- bond	0	181~183 (Methylene chloride- diethyl ether)
. 4	Me0 Me0	MeO MeO MeO	н	Single- bond	0	224~226 (Methylene chloride- diethyl ether)
: 5	MeO MeO MeO	MeO MeO MeO	н	Single- bond	0	214~216 (Methylene chloride- diethyl ether)

-58-Table 2 (continued)

		lable	Z	(00111		
	R 1	R 2	R3	A	n	Melting point (°C) (Recrystallization solvent)
6	C1	Me0 Me0 Me0	Н	Single- bond	0	190~192 (Methylene chloride- diethyl ether)
7	C1	Me0 Me0 Me0	н	Single- bond	0	2 2 2 ~ 2 2 4 (Chloroform-ethyl acetate)
8	C1-	Me0 Me0 Me0	н	Single- bond	0	1 9 3 ~ 1 9 5 (Chloroform-ethyl acetate)
9		Me0 Me0 Me0	Н	Single- bond	0	$189 \sim 191$ (Methylene chloride-diethyl ether)
0		MeO MeO MeO	н	Single- bond	0	$174\sim176$ (Methylene chloride- ethyl acetate)
1		MeO MeO MeO	H	Single- bond	0	$191\sim193$ (Methylene chloride-diethyl ether)
2	[s]	MeO MeO MeO	Н	Single- bond	0	1 9 8 ~ 2 0 0 · (Methylene chloride- ethyl acetate)
3	CH ₂ —	MeO MeO MeO	Н	Single- bond	0	1 5 7 ~ 1 5 9 (Ethyl acetate)
4	n B u	Me0 HO Me0	Н	Single- bond	0	159~161 (Ethanol-n-hexane)
5	n B u	MeO EtO MeO	н	Single- bond	0	$7.9 \sim 8.1$ (Diethyl ether-n-hexane)
6	n B u	MeO nBuO MeO	н	Single- bond	0	98~100 (n-Hexane)

-59-Table 2 (continued)

		labie	2	(0 0 11 0 1		_ ,
:-	R 1	· R 2	R 3	A	n	Melting point (${\mathbb C}$) (Recrystallization solvent)
7	n B u	PhCH ₂ 0 Me0	н	Single- bond	0	8 2 ~ 8 5 (Ethanol-n-hexane)
8	nВų	Me0 Ac0 Me0	Н	Single- bond	0	158~160 (Ethyl acetate-n-hexane)
9	n B u	MeO Br MeO	Н	Single- bond	0	182~184 (Ethyl acetate-n-hexane)
0	n B u	C1 MeO-C1	Н	Single- bond	0	1 3 2 ~ 1 3 5 (Ethyl acetate-n-hexane)
1	n B u	Me0 C1	Н	Single- bond	0	$1\ 1\ 1 \sim 1\ 1\ 3$ (Diethyl ether-n-hexane)
2	Ме	CF ₃	Н	Single- bond	0	1 5 4 ~ 1 5 5 (Ethanol-n-hexane)
3	nPr	€ CF 3	Н	Single- bond	0	1 3 9 \sim 1 4 1 (Diethyl ether-n-hexane)
4	<u></u>	CF ₃	Н	Single- bond	0	1 0 2 ~ 1 0 4 (n-Hexane)
5	пРе	€ CF 3	Н	Single- bond	0	93~95 (n-Hexane)
6	Ph	€ CF 3	Н	Single- bond	0	1 4 3 ~ 1 4 5 (Diethyl ether-n-hexane)
7	n B u	F ₃ ^C	н	Single- bond	0	46~48 (Ethyl acetate-n-hexane)

-60-Table 2 (continued)

		1 4 5 1 4		, , , , , , , , , , , , , , , , , , , ,		,
ζ.	R 1	. R 2	R 3	A	n	Melting point (\mathfrak{C}) (Recrystallization solvent)
8	n B u	F ₃ C CF3	Н	Single- bond	0	108~110 (n-Hexane)
9	n B u	F ₃ C	Н	Single- bond	0	92. 5~94. 5 (n-Hexane)
1 0	n B u	NH ₂	Н	Single- bond	0	106~108 (n-Hexane)
1	n B u	NC —	Н	Single- bond	0	1 2 3 ~ 1 2 5 (Ethanol-n-hexane)
1 2	n B u		Н	Single- bond	0	$123 \sim 125$ (Diethyl ether-n-hexane)
13	n B u	N_	Н	Single- bond	0	$139 \sim 140$ (Ethanol-n-hexane)
) 4	пВи	MeO MeO MeO	Н	CH ₂	0	121~123 (ethyl acetate-n-hexane)
۱ 5	n B u	Ph —	Н	-сн=сн-	0	194~196 (Ethanol-n-hexane)
1 6	n B u	MeO MeO	Н	Single- bond	1	2 2 2 (Decomposition) (Ethanol-n-hexane)
۱ 7	Ρh	MeO MeO	Н	Single- bond	1	250 (Decomposition) (Methanol-n-hexane)
18	n B u	€ CF 3	Н	Single- bond	1	2 4 7 (Decomposition) (Ethanol-n-hexane)

-61-Table 2 (continued)

κ. 1	R 1	R ²	R3	A	n	Melting point (℃) (Recrystallization solvent)
9	Ρh	€ CF3	Н	Single- bond	1	2 6 3 (Decomposition) (Ethanol-n-hexane)
0 0	СН ₃ -СН-С ₂ Н ₄ - ОН	MeO MeO MeO	Н	Single- bond	0	1 2 8 ~ 1 3 0 (Methylene chloride- n-hexane)
0 1	СН ₃ -СН-С ₂ Н ₄ - ОН	MeO HO MeO	н	Single- bond	0	153~155 (Ethanol-n-hexane)
0 2	СН ₃ -СН-С ₂ Н ₄ - ОН	PhCH ₂ 0 MeO	Н	Single- bond	0	127~129 (Ethyl acetate-n-hexane)

WO 95/35298 Translation Supplied by Rising Sun Communications Ltd.

http://www.risingsun.co.uk

Table 3

HN (NH)
$$_{n}$$
 - $_{C}^{O}$ - A - R²
 $_{R}^{1}$ $_{N}^{N}$ $_{R}^{N}$ $_{R}^{3}$

Me : methy group, nBu : n-butyl group

ε.	R 1	R 2	R 3	R 4	A	n	Melting point (°C) (Recrystallization solvent)
0 3	n B u	Me0 Me0 Me0	Me	C1	Single- bond	0	1 0 6 ~ 1 0 8 (Ethanol-n-hexane)
0 4	n B u	MeO MeO MeO	н	C1	Single- bond	0	1 4 2 ~ 1 4 3 (Ethanol-n-hexane)
0 5	пВи	MeO MeO MeO	Н	Br	Single- bond	0	1 4 6 ~ 1 4 8 (Ethanol-n-hexane)
0 6	n B u	F ₃ C	н	Cl	Single- bond	0	133~135 (Diethyl ether-n-hexane)

WQ 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

 $$\rm R^{\,4}$$ Me : methyl group, Et : ethyl group, nBu : n-butyl group, Ph : phenyl group

				_	•		•	0	F F
:.	R1	R 5	R 2	R 3	R 4	Q	A *	n	Melting point (ኒ) (reclystallization solvent)
) 7	Н	Н	MeO MeO MeO	Н	Н	0=C	SB	0	185~187 (Methylene chloride -n-hexane)
) 8	пВu	Н	MeO MeO MeO	Me	O -COEt	0=0	SB	0	138~140 (Ethyl acetate- n-hexane)
19	nBu	Н	Me0 Me0 Me0	nBu	Н	0=0	SB	0	95~97 (Ethyl acetate- n-hexane)
ιο	nBu	Н	MeO MeO MeO	nBu	Me	0=0	SB	0	96~98 (Ethyl acetate- n-hexane)
: 1	nBu	Н	Me0 Me0 Me0	Ph	Н	0=0	SB	0	$190 \sim 192$ (Methylene chloride-diethyl ether)
. 2	пВи	Н	Me0 Me0 Me0	Ph	PhCH ₂ -	0=0	SB	0	1 4 9 ~ 1 5 1 (Ethyl acetate- n-hexane)
3	nBu	Н	Me0 Me0 Me0	Ph	PhS	0=0	SB	0	1 1 1 ~ 1 1 3 (Ethyl acetate- n-hexane)
4	nBu	Н	Me0 Me0 Me0	н	nBu	0=c	SB	0	8 1 ~ 8 3 (n-Hexane)
5	nBu	н	Me0 Me0 Me0	Н	Ph	0 = 0	SB	0	139~141 (Ethyl acetate- n-hexane)

-64-Table 4 (continued)

			table 4	()	on c	- 14 W	. u ,		
τ.	R 1	R 5	R 2	R ³	R4	Q	A *	n	Melting point (t) (reclystallization solvent)
1 6	nBu	Me	MeO MeO MeO	Н	н	0 == C	SB	0	1 4 5 ~ 1 4 7 (Methylene chloride -n-hexane)
17	-сн ₂ сн ₂ сн ₂ с	CH ₂ -	MeO MeO MeO	Н	Н	0 C	SB	0	1 0 2 ~ 1 0 4 (Methylene chloride -n-hexane)
18	Me-C-CH ₂ CH ₂ -	н	MeO MeO MeO	Н	Н	0 = C	SB	0	1 1 5 ~ 1 1 7 (Methylene chloride -n-hexane)
19	Et-S-CH ₂ -	Н	MeO MeO MeO	Н	Н	0 = C	SB	0	80~82 (Ethyl acetate- -n-hexane)
2 0	MeS-CH ₂ CH ₂ -	Н	MeO MeO MeO	Н	Н	0 = C	SB	0	1 1 3 ~ 1 1 5 (Methylene chloride -diethyl ether)
2 1	PhS-	Н	Me0 Me0 Me0	Н	Н	0=0	SB	0	1 7 9 ~ 1 8 1 (Methylene chloride -diethyl ether)
2 2	nBu	Н	Br———	Н	Н	0=0	SB	0	98~100 (Diethyl ether)
2 3	nBu	Н	- OCF 3	Н	H	0=0	SB	0	7 3 ~ 7 5 (n-Hexane)
2 4	nBu	Н	F ₃ C CF ₃	Н	Н	0=0	SB	0	1 2 9 ~ 1 3 1 (n-Hexane)
2 5	nBu	Н		Н	н	0=0	SB	0	9 1 ~ 9 3 (Diethyl ether- n-hexane)
2 6	nBu	Н	[s]	Н	Н	0=0	SB	0	9 1 ~ 9 3 (n-Hexane)

-65-Table 4 (continued)

x.	R ¹	R 5	R 2	R ³	R 4	Q	A *	n	Melting point (T) (Reclystallization solvent)
2 7	пВu	Н	Ρh	н	Н	so ₂	SB	0	> 3 0 0 °C (Ethyl acetate- n-hexane)
2 8	пВи	Н	C1 - C1	Н	н	so ₂	SB	0	> 3 0 0 °C (Ethyl acetate- n-hexane)

[:]In column A. "SB" means "Single bond".

WQ 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

Me : methyl group, nBu : n-butyl group

:.	R1	R 5	R 2	R3	R 4	R 6	A *	Melting point (t) (Reclystallization solvent)
2 9	nBu	Н	Me0 Me0 Me0	н	Н	Ме	SB	93~95 (Ethyl acetate- n-hexane)
;0	nBu	н	MeO MeO MeO	н	Н	Ph-CH ₂ -	SB	1H-NMR(CDC1 ₃) 0.76(3H,t,J=7.2), 0.9-1.1(2H,m),1.3- 1.4(2H,m), 2.51(2H,t,J=7.4), 3.47(6H,s), 3.74(3H,s), 5.33(2H,brs), 5.83 (1H,s), 6.60(2H,s), 6.68(1H,d,J=2.0), 7.1-7.3(5H,m), 8.24(1H,d,J=2.0)
3 1	nBu	Н	Me0 Me0 Me0	Н	Н	OMe -C-OMe OMe	SB	127~129 (Ethyl acetate- n-hexane)
3 2	nBu	Н	-C1	Н	Н	0 -C1	SB	1 1 9 ~ 1 2 1 (Diethyl ether- n-hexane)
3 3	Me	н	Me0 Me0 Me0	н	н	O OMe OMe OMe	SB	180~182 (Methylene chloride- n-hexane)
3 4	nBu	Н	CF ₃	Н	н	0 -C- CF ₃	SB	1 1 1 ~ 1 1 3 (Diethyl ether- n-hexane)

In column A, "SB" means "Single bond".

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-67-

Given below are Pharmacological Test Examples for the compounds of the invention and Formulation Examples for pharmaceutical compositions containing the compounds of the invention.

Pharmacological Test Example 1

Six-week-old male Wistar rats were used as subjects (each group: 7 rats). The pain threshold of each rat's left hind paw was measured using Analgesy-Meter (Unicom) based on the method of Randall-Selitto [Randall, L.O. and Selitto, J.J., Arch. Int. Pharmacodyn., 111, 409 (1957)]. The value thus obtained was termed "pre-value".

After one hour from the measurement, 0.1 ml of a 20% yeast suspension was subcutaneously injected to the left hind paw of each rat. Immediately after the injection, a 5% gum arabic suspension containing the compound of the invention was orally given to the rats of test group in an amount of 10 ml/kg, whereas a 5% gum arabic suspension (free of the compound of the invention) was given to the rats of control group likewise.

The pain threshold of each rat's left hind paw was measured in the same manner as mentioned above every one hour after the yeast injection. The value thus obtained was termed "post-value".

The recovery rate of the pain threshold was calculated from these values (post-values) and the pre-

WQ 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-68-

values of the rats in each group, by means of the following formula.

Recovery rate of pain threshold (%) =

(Test group average post-value) - (Control group average post-value)

(Control group average pre-value) - (Control group average post-value)

Table 6 shows the results (the highest recovery rates).

-69-

Table 6

	I _	I _			
Ex. No.	Recovery rate	Dosage	Time to measure		
	(%)	(mg/kg)	(hours later)		
1	41.5	3	3		
7	44.1	3	3		
14	51.6	3	4		
19	53.9	3	3		
74	54.0	3	4		
23	45.1	3	1		
32	43.0	3	3		
36	32.7	1	3		
69	52.2	1	4		
52	79.6	3	3		
54	55.7	1	4		
55	73.7	3	3		
69	38.7	1	4		
70	·36.8	1	3		
74	43.9	1	2		
76	57.6	1	2		
77	41.6	1	3		
79	32.1	1 .	3		
88	76.4	3	4		

-70Table 6 (continued)

Ex. No.	Recovery rate	Dosage (mg/kg)	Time to measure (hours later)
92	39.7	1	3
93	32.6	1	4 .
94	31.3	1	3 .
96	35.0	1	2
97	51.5	1	3
121	78.5	3	3
111	62.0	3	4
115	61.0	3	4
120	63.8	3	4
121	46.2	3	3
127	36.4	1	3
134	115.4	3	3

Pharmacological Test Example 2

Using 6-week-old male Wistar rats (each group: 7 rats), the pain threshold of each rat's left hind paw was measured using Analgesy-Meter (Unicom) based on the method of Randall-Selitto [Randall, L.O. and Selitto, J.J., Arch. Int. Pharmacodyn., 111, 409 (1957)]. The value thus obtained was termed "pre-value".

After one hour from the measurement, a 5% gum arabic

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-71-

suspension containing the compound of the invention was orally given to the rats of test group in an amount of 10 ml/kg so that the dosage of the compound of the invention was 1 mg/kg, whereas a 5% gum arabic suspension (free of the compound of the invention) was given to the rats of control group likewise. One hour later, a physiological saline solution containing substance P (25 ng/0.1 ml) was subcutaneously injected to the left hind paw of each rat.

The pain threshold of each rat's left hind paw was measured in the same manner as above at a certain time after the injection of substance P. The value thus obtained was termed "post-value".

The recovery rate of the pain threshold was calculated from these values (post-values) and the prevalues of the rats in each group, by means of the following formula.

Recovery rate of pain threshold (%) =

(Test group average post-value) — (Control group average post-value) — x 100 (Control group average pre-value) — (Control group average post-value)

Table 7 shows the results (the highest recovery rates).

-72-

Table 7

c. No.	Recovery rate	Time to	Ex. No.	Recovery rate	Time to
	(%)	measure		(%)	measure
1	72.3	60 min. later	23	52.9	30 min. later
2	40.2	60 min. later	24	41.3	60 min. later
3	33.3	30 min. later	25	46.0	15 min. later
5	51.9	30 min. later	26	55.8	60 min. later
7	52.3	60 min. later	29	56.2	30 min. later
8	83.9	60 min. later	32	86.6	60 min. later
9	56.2	60 min. later	33	90.1	30 min. later
11	48.8	60 min. later	34	58.2	60 min. later
12	58.8	60 min. later	35	102.5	60 min. later
13	32.7	15 min. later	38	67.2	15 min. later
14	69.5	15 min. later	41*	67.4	30 min. later
16	35.1	30 min. later	42	51.8	60 min. later
17	95.9	60 min. later	44	44.1	30 min. later
19	91.7	60 min. later	45	54.8	15 min. later
20	33.8	30 min. later	46	109.0	30 min. later
21	81.3	60 min. later	48	80.4	60 min. later
22	54.4	60 min. later	50	53.0	30 min. later

dosage = 10 mg/kg

WO 95/35298 Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-73-

Table 7 (continued)

. No.	Recovery rate	Time to	Ex. No.	Recovery rate	Time to
	(%)	measure		(%)	measure
52	65.1	30 min. later	113	44.4	15 min. later
53	58.7	30 min. later	115	55.6	30 min. later
65	32.0	30 min. later	117	37.2	30 min. later
80	30.4	15 min. later	118	33.5	30 min. later
81	31.2	15 min. later	119	38.1	15 min. later
88	59.5	60 min. later	120	71.4	60 min. later
89	33.3	15 min. later	121	73.3	60 min. later
90	53.1	30 min. later	122	30.6	60 min. later
91	53.1	30 min. later	123	32.5	30 min. later
95	38.4	15 min. later	124	53.8	15 min. later
96	102.0	60 min. later	125	33.7	30 min. later
.03	35.0	30 min. later	129	39.7	60 min. later
.04	63.5	60 min. later	133	36.4	60 min. later
.11	62.1	30 min. later	134	100.7	60 min. later
.12	37.9	15 min. later			

WO 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-74-

As shown in Tables 6 and 7, the compounds of the invention produce excellent analgesic effects.

Formulation Example 1 Manufacture of tablets

Using the compound of the invention obtained in Example 1 as an active ingredient, tablets (2000 tables) each containing 300 mg of the active ingredient were manufactured according to the following formula:

Compound of Example 1	600 g			
Lactose (product of Japanese pharmacopoeia: JP)	67 g			
Corn starch (JP)	33 g			
Calcium carboxymethyl cellulose (JP)				
Methyl cellulose (JP)				
Magnesium stearate (JP)				

More specifically, the compound of Example 1, lactose, corn starch and calcium carboxymethyl cellulose according to the above formula were fully blended and granulated using an aqueous solution of methyl cellulose. The granulated mixture was passed through a 24-mesh sieve and the granules under the sieve were mixed with magnesium stearate and compression-molded into tablets to provide the object tablets.

Formulation Example 2 Manufacture of capsules

Using the compound of the invention obtained in Example 32 as an active ingredient, hard gelatin capsules (2000 units) each containing 200 mg of the active

WO 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-75-

ingredient were manufactured according to the following formula:

Compound of Example 32	400	g
Crystalline cellulose (JP)	60	g
Corn starch (JP)	34	g
Talc (JP)	4	g
Magnesium stearate (JP)	2	g

More specifically, the ingredients according to the above formula were finely pulverized and blended to give a homogeneous composition. This composition was filled into proper-sized gelatin capsule shells for oral administration to provide the object capsules.

Industrial Applicability

The pyrazolo[1,5-a]pyrimidine derivatives according to the present invention have potent analysesic effects and are useful as analysesics.

A pyrazolo[1,5-a]pyrimidine derivative of the following formula (1):

$$\begin{array}{c}
R6 \\
N-(NH) \\
R5 \\
N-N \\
R4
\end{array}$$
(1)

wherein R¹ is hydrogen, lower alkyl which may have thienyl, lower alkoxy, lower alkylthio, oxo or hydroxyl as a substituent, cycloalkyl, thienyl, furyl, lower alkenyl, or phenyl which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, phenylthio and halogen; R² is naphthyl, cycloalkyl, furyl, thienyl, optionally halogensubstituted pyridyl, optionally halogen-substituted phenoxy, or phenyl which may have 1 to 3 substituents selected from the group consisting of lower alkyl, lower alkoxy, halogen, nitro, halogen-substituted lower alkyl, halogen-substituted lower alkoxy, lower alkoxycarbonyl, hydroxyl, phenyl(lower)alkoxy, amino, cyano, lower alkanoyloxy, phenyl and di(lower)alkoxyphosphoryl(lower)alkyl; R³ is hydrogen, phenyl or lower alkyl; R4 is hydrogen, lower alkyl, lower alkoxycarbonyl, phenyl(lower)alkyl, optionally phenylthio-substituted

WO 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-77**-**

phenyl, or halogen; R⁵ is hydrogen or lower alkyl; R⁶ is hydrogen, lower alkyl, phenyl(lower)alkyl, or benzoyl having 1 to 3 substituents selected from the group consisting of lower alkoxy, halogen-substituted lower alkyl and halogen; R¹ and R⁵ may conjointly form lower alkylene; Q is carbonyl or sulfonyl; A is a single bond, lower alkylene or lower alkenylene; and n is 0 or 1.

- 2. A pyrazolo[1,5-a]pyrimidine derivative according to claim 1 which is selected from the group consisting of compounds of formula (1) wherein Q is carbonyl and n is 0, compounds wherein Q is carbonyl, n is 1, R¹ is lower alkyl or phenyl, R² is phenyl having 1 to 3 substituents selected from the group consisting of lower alkoxy and halogen-substituted lower alkyl, R³, R⁴, R⁵ and R⁶ are each hydrogen, and A is a single bond; and compounds wherein Q is sulfonyl, n is 0, R¹ is lower alkyl, R² is phenyl which may have 1 to 3 halogens, R³, R⁴, R⁵ and R⁶ are each hydrogen, and A is a single bond.
- 3. A pyrazolo[1,5-a]pyrimidine derivative according to claim 2 wherein R¹ is optionally lower alkylthio-substituted lower alkyl or optionally phenylthio-substituted phenyl, R² is phenyl having 1 to 3 substituents selected from the group consisting of lower alkoxy, halogen and halogen-substituted lower alkyl, R³ is hydrogen or phenyl, R⁴ is hydrogen, halogen or phenyl;

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-78-

 ${\tt R}^5$ is hydrogen; ${\tt R}^6$ is hydrogen or benzoyl having halogensubstituted lower alkyl as a substituent, Q is carbonyl and A is a single bond.

- 4. A pyrazolo[1,5-a]pyrimidine derivative according to claim 3 wherein R³, R⁴ and R⁶ are each hydrogen, n is 0, R¹ is n-butyl and R² is phenyl having either 2 to 3 lower alkoxy groups or 1 to 2 halogensubstituted lower alkyl groups, or R¹ is phenyl and R² is phenyl having 3 lower alkoxy groups.
- 5. A pyrazolo[1,5-a]pyrimidine derivative according to claim 4 wherein R² is 2,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2-trifluoromethylphenyl or 2,5-bis(trifluoromethyl)phenyl.
- 6. A pyrazolo[1,5-a]pyrimidine derivative according to claim 5 which is selected from 5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine and 5-n-butyl-7-(2-trifluoromethylbenzoyl-amino)pyrazolo[1,5-a]pyrimidine.
- 7. A pyrazolo[1,5-a]pyrimidine derivative according to claim 6 which is 5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine.
- 8. An analgesic composition which comprises an effective amount of a pyrazolo[1,5-a]pyrimidine derivative defined in one of claims 1-7 and a pharmaceutically acceptable carrier.

WO 95/35298

Translation Supplied by Rising Sun Communications Ltd. http://www.risingsun.co.uk

-79-

- 9. An analgesic composition according to claim 8 which comprises the pyrazolo[1,5-a]pyrimidine derivative defined in claim 7 as an active ingredient.
- 10. A method for relieving pain, which comprises administering to a patient an effective amount of the pyrazolo[1,5-a]pyrimidine derivative defined in claim 1.

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 487/04, A61K 31/505, 31/645

(11) 国際公開番号

WO95/35298

(43) 国際公開日

1995年12月28日(28.12.95)

(21) 国際出願番号

PCT/JP95/01104

A1

(22) 国際出願日

1995年6月5日(05.06.95)

(30) 優先権データ 特願平6/138635

1994年6月21日(21.06.94)

JP

特願平7/53997

1995年3月14日(14.03.95)

(71) 出願人 (米国を除くすべての指定国について)

株式会社 大塚製薬工場

(OTSUKA PHARMACEUTICAL FACTORY, INC.)[JP/JP] 〒772 徳島県鳴門市撫養町立岩字芥原115 Tokushima, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

小路恭生(SHOJI, Yasuo)[JP/JP]

〒772 徳島県鳴門市撫養町南浜字蛭子前東20-2

新星ビル302号 Tokushima, (JP)

安田恒雄(YASUDA, Tsuneo)[JP/JP]

〒772 徳島県鳴門市撫養町弁財天字ハマ43 Tokushima, (JP)

井上 誠(INOUE, Makoto)[JP/JP]

〒772徳島県鳴門市大津町木津野字野神ノ越122-3

Tokushima, (JP)

岡村隆志(OKAMURA, Takashi)[JP/JP]

〒772徳島県鳴門市撫養町立岩字五枚188番地

エディタウン五枚浜D-10 Tokushima, (JP)

橋本謹治(HASHIMOTO, Kinji)[JP/JP]

〒772徳島県鳴門市撫養町北浜字宮の東7番地の8

Tokushima, (JP)

小原正之(OHARA, Masayuki)

〒772徳島県板野郡松茂町中喜来字中瀬中ノ越11-28

Tokushima, (JP)

(74) 代理人

弁理士 三枝英二,外(SAEGUSA, Eiji et al.)

〒541 大阪府大阪市中央区道修町1-7-1

北浜TNKビル Osaka, (JP)

(81) 指定国

AU, CA, CN, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR,

GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title: PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVE

(54) 発明の名称 ピラゾロ[1,5-a]ピリミジン誘導体

$$\begin{array}{c|c}
R^6 \\
N - (NH)_n - Q - A - R^2 \\
R^5 \\
N - N \\
R^4 \\
R^3
\end{array}$$
(1)

(57) Abstract

A pyrazolo[1,5-a]pyrimidine derivative represented by general formula (1) and having such a potent analgesic effect that it is useful as an analgesic, wherein R¹ represents hydrogen, lower alkyl, cycloalkyl, thienyl, furyl, lower alkenyl or phenyl; R² represents naphthyl, cycloalkyl, furyl, thienyl, pyridyl, phenoxy or phenyl; R³ represents hydrogen, phenyl or lower alkyl; R⁴ represents hydrogen, lower alkyl, lower alkoxy-carbonyl, phenyl-substituted lower alkyl, phenyl or benzoyl; R⁵ represents hydrogen or lower alkyl; R⁶ represents hydrogen, lower alkyl, phenyl-substituted lower alkyl or benzoyl; Q represents carbonyl or sulfonyl; A represents a single bond, lower alkylene or lower alkylene; and n represents Q or 1 lower alkenylene; and n represents 0 or 1.

(57) 要約

本発明は、一般式

$$R^{6}$$
 $N - (NH)_{n} - Q - A - R^{2}$
 R^{5}
 $N - N$
 R^{1}
 R^{8}
 R^{8}

【式中、R¹ は水素原子、低級アルキル基、シクロアルキル基、チェール基、フリル基、低級アルケニル基又はフェニル基を、R² はナフチル基、シクロアルキル基、フリル基、チェニル基、ピリジル基、フェノキシ基又はフェニル基を、R³ は水素原子、フェニル基又は低級アルキル基を、R⁴ は水素原子、低級アルキル基、のロゲン原子を、R⁵ は水素原子又は低級アルキル基、フェニル基又はハロゲン原子を、R⁵ は水素原子又は低級アルキル基を、R⁶ は水素原子、低級アルキル基を、R⁶ は水素原子、低級アルキル基を、R⁶ は水素原子、低級アルキル基を、 A は単結合、低級アルキレン基又は低級アルケニレン基をそれぞれ示し、 n は 0 又は 1 を示す。〕で表されるピラゾロ〔1,5-8〕ピリミジン誘導体に係わり、該誘導体は、強い鎮痛作用を示し鎮痛剤として有用である。

情報としての用途のみ

			in the Co	-> / II AL: -> -/			
	D C T に 生づいて A	凹される	国際出願をパンフレット第	一頁にPC	T加盟国を同定するために	使用される	ンコード
			デンマーク	LK	スリランカ	РΤ	ホルトカル
AL	アルバニア	D K E E	エストニア	ĹŔ	リベリア	ŔŌ	ルーマニア
AM	アルメニア	ES	スペイン	ĹŜ	レソト	RU	ロシア連邦
ΑŢ	オーストリア	듣	フィンランド	ĪТ	リトアニア	SD	スーダン
A U A Z	オーストラリア	FR	プランス ·	ĹŪ	ルクセンブルグ	SE	スウェーデン
AZ	アゼルバイジャン バルバドス	GA	ガボン	ĪΥ	ラトヴィア	ŞĢ	シンガポール
BB	ベルギー	ĞΒ	イギリス	MС	モナコ	SI	スロヴェニア スロヴァキア共和国
B E B F	ブルギナ・ファソ	ĞĔ	グルジア	MD	モルドバ	SK	セネガル サイガル
BG	ブルガリア	ĞÑ	ギニア	MG	マダガスカル	SN	スワジランド
ΒĴ	ベチジン	GR	ギリシャ	МK	マケドニア旧ユーゴ スラヴィア共和国	ŤĎ	チャード
вĸ	ブラジル	HÜ IE IS	ハンガリー	3.55	スプリイノ共和国マリ	ΤĞ	~・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Β̈́Υ	ベラルーシ	ΙĒ	アイルランド	M L M N	モンゴル	ŤΪ	タジキスタン
CA	カナダ	Į S	アイスランド	MR MR	モーリタニア	ŤM	トルクメニスタン
CF	中央アフリカ共和国	įŢ	イタリー	MW	マラウイ	ŤŔ	トルコ
СG	コンゴー	JΡ	日本。	МX	メキシコ	ŤŤ	トリニダード・トバゴ
СH	スイス	K E K G	クー/ キルギスタン	ΝÉ	ニジェール	UA	ウクライナ
CI	コート・ジボアール	KP	朝鮮民主主義人民共和国	ΝĪ	オランダ	UG	ウガンダ
CM	カメルーン	KR	十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	MO	1 1 1 2	บร	米国
CN	中国	ΚZ	大韓民国 カザフスタン	ΝŽ	ニュー・ジーランド	ÜΖ	ウズベキスタン共和国
C Z D E	チェッコ共和国ドイツ	ŶΫ́	リ ピテンシュタイン	PL	ニュー・ジーランド ポーランド	VN	ヴィェトナム
1 J P.	ra /	5.0 L	/ - / / - / / - / - / - / - / -				

明 細 書

ピラゾロ〔1, 5-a〕ピリミジン誘導体

技 術 分 野

本発明は新規なピラゾロ〔1, 5 - a〕ピリミジン誘 5 導体に関する。

従 来 技 術

本発明のピラゾロ〔1, 5-a〕ピリミジン誘導体は 文献未載の新規化合物である。

発明の開示

10 本発明は後記するように医薬品として有用な化合物の提供を目的とする。

本発明によれば下記一般式(1)で表わされる新規な ピラゾロ[1, 5-a]ピリミジン誘導体が提供される。

15
$$\begin{array}{c}
R 6 \\
N - (N H) \\
R 5 \\
N - N \\
R 4
\end{array}$$
(1)

上記一般式(1)中、R¹ は水素原子、置換基として 20 チエニル基、低級アルコキシ基、低級アルキルチオ基、 オキソ基又はヒドロキシル基を有することのある低級ア ルキル基、シクロアルキル基、チエニル基、フリル基、

低級アルケニル基又は置換基として低級アルキル基、低 級アルコキシ基、フェニルチオ基及びハロゲン原子から 選ばれる基の1~3個を有することのあるフェニル基を、 R²はナフチル基、シクロアルキル基、フリル基、チエ ニル基、ハロゲン原子で置換されることのあるピリジル 5 基、ハロゲン原子で置換されることのあるフェノキシ基 又は置換基として低級アルキル基、低級アルコキシ基、 ハロゲン原子、ニトロ基、ハロゲン置換低級アルキル基、 ハロゲン置換低級アルコキシ基、低級アルコキシカルボ ニル基、ヒドロキシル基、フェニル低級アルコキシ基、 10 アミノ基、シアノ基、低級アルカノイルオキシ基、フェ ニル基及びジ低級アルコキシホスホリル低級アルキル基 から選ばれる基の1~3個を有することのあるフェニル 基を、R³は水素原子、フェニル基又は低級アルキル基 を、R⁴は水素原子、低級アルキル基、低級アルコキシ 15 カルボニル基、フェニル低級アルキル基、置換基として フェニルチオ基を有することのあるフェニル基又はハロ ゲン原子を、R⁵は水素原子又は低級アルキル基を、 R。は水素原子、低級アルキル基、フェニル低級アルキ ル基又は置換基として低級アルコキシ基、ハロゲン置換 20 低級アルキル基及びハロゲン原子から選ばれる基の1~ 3個を有するベンゾイル基を示し、また R¹ 及び R⁵ は

互いに結合して低級アルキレン基を形成してもよく、 Q はカルボニル基又はスルホニル基を、 A は単結合、 低級アルキレン基又は低級アルケニレン基をそれぞれ示し、 n は 0 又は 1 を示す。

- 5 上記一般式(1)中の各基としては、例えば次の各基 を例示できる。即ち、低級アルキル基としては、メチル、 エチル、プロピル、イソプロピル、ブチル、イソブチル、 tert-ブチル、ペンチル、ヘキシル基等の直鎖又は 分枝鎖状低級アルキル基を例示できる。
- 10 シクロアルキル基としては、シクロプロピル、シクロ ブチル、シクロペンチル、シクロヘキシル、シクロヘプ チル、シクロオクチル基等を例示できる。

低級アルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ基等を例示できる。

低級アルキルチオ基としては、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘキシルチオ基等を例示できる。

ハロゲン原子には、弗素、塩素、臭素及び沃素原子が 20 包含される。

ハロゲン置換低級アルキル基としては、トリフルオロメチル、ペンタフルオロエチル、ヘプタフルオロプロピ

ル、ノナフルオロブチル、ウンデカフルオロペンチル、 トリデカフルオロヘキシル基等を例示できる。

ハロゲン置換低級アルコキシ基としては、トリフルオロメトキシ、ペンタフルオロエトキシ、ヘプタフルオロ プロポキシ、ノナフルオロブトキシ、ウンデカフルオロペンチルオキシ、トリデカフルオロへキシルオキシ基等を例示できる。

低級アルコキシカルボニル基としては、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、 イソプロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、 ヘキシルオキシカルボニル基等を例示できる。

ジ低級アルコキシホスホリル低級アルキル基としては、 ジメトキシホスホリルメチル、ジエトキシホスホリルメ 15 チル、ジプロポキシホスホリルメチル、ジイソプロポキ シホスホリルメチル、ジブトキシホスホリルメチル、ジ ペンチルオキシホスホリルメチル、ジヘキシルオキシホ スホリルメチル、2-(ジメトキシホスホリル)エチル、 2-(ジエトキシホスホリル)エチル、3-(ジエトキ シホスホリル)プロピル基等を例示できる。

ナフチル基には、1-ナフチル、2-ナフチル基が包 含される。 低級アルキレン基としては、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン基等を例示できる。

低級アルケニレン基としては、ビニレン、プロペニレ 5 ン基等を例示できる。

ハロゲン原子で置換されることのあるピリジル基としては、2-ピリジル、3-ピリジル、4-ピリジル、6-クロロー2-ピリジル、5-クロロー2-ピリジル、4-クロロー2-ピリジル、3-クロロー2-ピリジル、10 6-クロロー3-ピリジル、5-クロロー3-ピリジル、4-クロロー3-ピリジル、2-クロロー3-ピリジル、2-クロロー4-ピリジル、6-フルオロー3-ピリジル、6-ブロモー3ーピリジル、6-ヨードー3-ピリジル基等を例示できる。

- 15 ハロゲン原子で置換されることのあるフェノキシ基としては、フェノキシ、2-クロロフェノキシ、3-クロロフェノキシ、4-フルオロフェノキシ、4-ブロモフェノキシ、4-ヨードフェノキシ基等を例示できる。
- 20 チエニル基には、2-チエニル及び3-チエニル基が 包含され、またフリル基には、2-フリル及び3-フリ ル基が包含される。

10

低級アルケニル基としては、ビニル、アリル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニル基等を例示できる。

フェニル低級アルキル基としては、ベンジル、1-フェニルエチル、2-フェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル、6-フェニルへキシル基等を例示できる。

フェニル低級アルコキシ基としては、ベンジルオキシ、 2-フェニルエトキシ、3-フェニルプロポキシ、4-フェニルブトキシ、5-フェニルペンチルオキシ、6-フェニルヘキシルオキシ基等を例示できる。

15 低級アルカノイルオキシ基としては、アセトキシ、プロピオニルオキシ、ブチリルオキシ、バレリルオキシ、ピバロイルオキシ、ヘキサノイルオキシ、ヘプタノイルオキシ基等を例示できる。

置換基としてチエニル基、低級アルコキシ基、低級ア 20 ルキルチオ基、オキソ基又はヒドロキシル基を有するこ とのある低級アルキル基としては、上記無置換の低級ア ルキル基に加えて、2-チエニルメチル、3-チエニル

メチル、1-(2-チエニル)エチル、1-(3-チエ ニル) エチル、2-(2-チエニル) エチル、2-(3 - チェニル) エチル、3 - (2 - チェニル) プロピル、 4-(2-チエニル)ブチル、5-(2-チエニル)ペ ンチル、6-(2-チエニル) ヘキシル、メトキシメチ 5 ル、エトキシメチル、プロポキシメチル、ブトキシメチ ル、ペンチルオキシメチル、ヘキシルオキシメチル、1 -メトキシエチル、2-メトキシエチル、3-メトキシ プロピル、4-メトキシブチル、5-メトキシペンチル、 6-メトキシヘキシル、ヒドロキシメチル、1-ヒドロ 10 キシエチル、2-ヒドロキシエチル、1-ヒドロキシプ ロピル、2-ヒドロキシプロピル、3-ヒドロキシプロ ピル、3-ヒドロキシブチル、4-ヒドロキシペンチル、 5-ヒドロキシヘキシル、メチルチオメチル、エチルチ オメチル、プロピルチオメチル、ブチルチオメチル、ペ 15 ンチルチオメチル、ヘキシルチオメチル、2-メチルチ オエチル、3-メチルチオプロピル、4-メチルチオブ チル、5-メチルチオペンチル、6-メチルチオヘキシ ル、ホルミル、ホルミルメチル、アセチル、2-ホルミ ルエチル、2-オキソプロピル、プロピオニル、3-ホ 20 ルミルプロピル、3-オキソブチル、2-オキソブチル、 ブチリル、4-ホルミルブチル、4-オキソペンチル、

3-オキソペンチル、2-オキソペンチル、バレリル、 5-ホルミルペンチル、5-オキソヘキシル、4-オキ ソヘキシル、3-オキソヘキシル、2-オキソヘキシル、 ヘキサノイル基等を例示できる。

置換基として低級アルキル基、低級アルコキシ基、フ 5 ェニルチオ基及びハロゲン原子から選ばれる基の1~3 個を有することのあるフェニル基としては、フェニル、 2-メチルフェニル、3-メチルフェニル、4-メチル フェニル、4-エチルフェニル、4-プロピルフェニル、 4 - ブチルフェニル、4 - t - ブチルフェニル、4 - ペ 10 ンチルフェニル、4-ヘキシルフェニル、2、3-ジメ チルフェニル、2.4-ジメチルフェニル、2.5-ジ メチルフェニル、2,6-ジメチルフェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、2-メ トキシフェニル、3-メトキシフェニル、4-メトキシ 15 フェニル、4-エトキシフェニル、4-プロポキシフェ ニル、4-ブトキシフェニル、4-ペンチルオキシフェ ニル、4-ヘキシルオキシフェニル、2,3-ジメトキ シフェニル、2, 4-ジメトキシフェニル、2, 5-ジ メトキシフェニル、2, 6-ジメトキシフェニル、3, 204-ジメトキシフェニル、3,5-ジメトキシフェニル、 3, 4, 5-トリメトキシフェニル、2-クロロフェニ

ル、3 - クロロフェニル、4 - クロロフェニル、4 - ブロモフェニル、4 - ヨードフェニル、4 - フルオロフェニル、4 - (フェニルチオ)フェニル、3 - (フェニルチオ)フェニル、2 - (フェニルチオ)フェニル基等を例示できる。

置換基として低級アルキル基、低級アルコキシ基、ハロゲン原子、ニトロ基、ハロゲン置換低級アルキル基、ハロゲン置換低級アルコキシカルボニル基、ヒドロキシル基、フェニル低級アルコキシ基、アミノ基、シアノ基、低級アルカノイルオキシ基、フェニル基及びジ低級アルコキシホスホリル低級アルキル基から選ばれる基の1~3個を有することのあるフェニル基としては、次の各基を例示できる。

2. 5-ジメトキシフェニル、2, 6-ジメトキシフェ ニル、3,4-ジメトキシフェニル、3,5-ジメトキ シフェニル、2,3,4-トリメトキシフェニル、2, キシフェニル、2,4,5-トリメトキシフェニル、2, 5 4. 6-トリメトキシフェニル、3, 4, 5-トリメト キシフェニル、3,4,5-トリエトキシフェニル、2 -フルオロフェニル、3-フルオロフェニル、4-フル オロフェニル、2-クロロフェニル、3-クロロフェニ ル、4-クロロフェニル、2-ブロモフェニル、3-ブ 10 ロモフェニル、4-ブロモフェニル、4-ヨードフェニ ル、2、3-ジクロロフェニル、2、4-ジクロロフェ ニル、2-ニトロフェニル、3-ニトロフェニル、4-ニトロフェニル、2-トリフルオロメチルフェニル、3 15 ートリフルオロメチルフェニル、4ートリフルオロメチ ルフェニル、4-ペンタフルオロエチルフェニル、4-ヘプタフルオロプロピルフェニル、4-ノナフルオロブ チルフェニル、4-ウンデカフルオロペンチルフェニル、 4-トリデカフルオロヘキシルフェニル、2-メトキシ カルボニルフェニル、3-メトキシカルボニルフェニル、 20 4-メトキシカルボニルフェニル、4-エトキシカルボ

ニルフェニル、4-プロポキシカルボニルフェニル、4

-ブトキシカルボニルフェニル、4-ペンチルオキシカ ルボニルフェニル、4-ヘキシルオキシカルボニルフェ ニル、2-ビフェニル、3-ビフェニル、4-ビフェニ ル、2-(ジエトキシホスホリルメチル)フェニル、3 - (ジエトキシホスホリルメチル)フェニル、4-(ジ 5 エトキシホスホリルメチル)フェニル、4-(ジメトキ シホスホリルメチル)フェニル、4-(ジイソプロポキ シホスホリルメチル)フェニル、3,5-ジメトキシー 4-エトキシフェニル、3,5-ジメトキシ-4-プロ ポキシフェニル、4-ブトキシ-3,5-ジメトキシフ 10 ェニル、3,5-ジメトキシ-4-ペンチルオキシフェ ニル、3,5-ジメトキシ-4-ヘキシルオキシフェニ ル、2,3-ビス(トリフルオロメチル)フェニル、2, 4-ビス(トリフルオロメチル)フェニル、2,5-ビ ス (トリフルオロメチル) フェニル、 2, 6 - ビス (ト 15 リフルオロメチル)フェニル、3,4-ビス(トリフル オロメチル)フェニル、3,5-ビス(トリフルオロメ チル)フェニル、3,5-ジメトキシ-4-ヒドロキシ フェニル、3,5-ジエトキシ-4-ヒドロキシフェニ ル、3,5-ジプロポキシ-4-ヒドロキシフェニル、 20 4-ベンジルオキシ-3, 5-ジメトキシフェニル、4 - ベンジルオキシ-3、5-ジエトキシフェニル、3,

5-ジメトキシ-4-(2-フェニルエトキシ)フェニ ル、4-アセトキシ-3,5-ジメトキシフェニル、3, 5-ジメトキシー4-プロピオニルオキシフェニル、2 - クロロー 3. 5 - ジメトキシフェニル、4 - クロロー 3. 5-ジメトキシフェニル、4-ブロモー3. 5-ジ 5 メトキシフェニル、 3. 5 - ジメトキシ - 4 - ヨードフ ェニル、3,5-ジクロロ-4-メトキシフェニル、3, 5-ジクロロー4-エトキシフェニル、2-アミノフェ ニル、3-アミノフェニル、4-アミノフェニル、2-シアノフェニル、3-シアノフェニル、4-シアノフェ 10 ニル、4-トリフルオロメトキシフェニル、3-トリフ ルオロメトキシフェニル、2-トリフルオロメトキシフ ェニル、4-ペンタフルオロエトキシフェニル、4-ヘ プタフルオロプロポキシフェニル、4-ノナフルオロブ トキシフェニル、4-ウンデカフルオロペンチルオキシ 15 フェニル、4-トリデカフルオロヘキシルオキシフェニ ル、3,5-ビス(トリフルオロメトキシ)フェニル、 3, 4, 5-トリス(トリフルオロメトキシ)フェニル 基等を例示できる。

20 置換基としてフェニルチオ基を有することのあるフェニル基としては、フェニル、4-(フェニルチオ)フェニル、3-(フェニルチオ)フェニル、2-(フェニル

チオ)フェニル基等を例示できる。

置換基として低級アルコキシ基、ハロゲン置換低級ア ルキル基及びハロゲン原子から選ばれる基の1~3個を 有するベンゾイル基としては、2-クロロベンゾイル、 3-クロロベンゾイル、4-クロロベンゾイル、2-フ 5 ルオロベンゾイル、2-ブロモベンゾイル、2-ヨード ベンゾイル、2, 4-ジクロロベンゾイル、3, 4-ジ クロロベンゾイル、2,5-ジクロロベンゾイル、2, 6-ジクロロベンゾイル、2-トリフルオロメチルベン ゾイル、3-トリフルオロメチルベンゾイル、4-トリ 10 フルオロメチルベンゾイル、3,5-ビス(トリフルオ ロメチル) ベンゾイル、3, 4, 5 - トリス (トリフル オロメチル) ベンゾイル、2-メトキシベンゾイル、3 -メトキシベンゾイル、4-メトキシベンゾイル、2, 3-ジメトキシベンゾイル、2, 4-ジメトキシベンゾ 15 イル、3,5-ジメトキシベンゾイル、3,4,5-ト リメトキシベンゾイル、2-エトキシベンゾイル、2-プロポキシベンゾイル、2-ブトキシベンゾイル、2-ペンチルオキシベンゾイル、2-ヘキシルオキシベンゾ

> 上記一般式(1)で表わされる本発明のピラゾロ〔1, 5-a〕ピリミジン誘導体は、強い鎮痛作用を有してお

イル基等を例示できる。

20

り、鎮痛剤として例えば術後疼痛、偏頭痛、痛風、癌性 疼痛、慢性疼痛、神経因性疼痛等の痛みの症状緩和に有 用である。しかも該誘導体は、従来の鎮痛剤にありがち な副作用もなく、幻覚や錯乱等をもたらしたり、耽溺性 や習慣性を起こしたりする虞もない。

上記鎮痛剤として好ましい本発明ピラゾロ〔1, 5 - a〕ピリミジン誘導体は、特に前記一般式(1)中、Qがカルボニル基で、nが0である化合物、Qがカルボニル基で、nが1であり且つR¹が低級アルキル基又はフェニル基、R²が置換基として低級アルコキシ基及びハロゲン置換低級アルキル基から選ばれる基の1~3個を有するフェニル基、R³、R⁴、R⁵及びR°がそれぞれ水素原子及びAが単結合を示す化合物、並びにQがスルホニル基でnが0であり且つR¹が低級アルキル基、R²がハロゲン原子の1~3個を有することのあるフェニル基、R³、R⁴、R⁵及びR°がそれぞれ水素原子及びAが単結合を示す化合物から選ばれる。

之等好ましいピラゾロ〔1, 5 - a〕ピリミジン誘導体の内でも特に以下のものはより好適である。

20 (1) R¹ が置換基として低級アルキルチオ基を有する ことのある低級アルキル基又は置換基としてフェニルチ オ基を有することのあるフェニル基で、 R² が置換基と

して低級アルコキシ基、ハロゲン原子及びハロゲン置換低級アルキル基から選ばれる基の1~3個を有するフェニル基で、R°が水素原子又はフェニル基で、R°が水素原子、ハロゲン原子又はフェニル基で、R°が水素原子で、R°が水素原子又は置換基としてハロゲン置換低級アルキル基を有するベンゾイル基で、Qがカルボニル基で、Aが単結合である化合物、

 (2) R³、R⁴及びR⁵がそれぞれ水素原子で、nが 0であって、R¹がn-ブチル基で且つR²が低級アル コキシ基の2~3個を有するフェニル基又はハロゲン置 換低級アルキル基の1~2個を有するフェニル基である か、或はR¹がフェニル基で且つR²が低級アルコキシ 基の3個を有するフェニル基である化合物、及び

(3) R² が 2, 4 - ジメトキシフェニル基、 3, 4,

15 5-トリメトキシフェニル基、2-トリフルオロメチルフェニル基又は2,5-ビス(トリフルオロメチル)フェニル基である化合物。

最も好ましい本発明ピラゾロ〔1, 5 - a〕ピリミジン誘導体の具体例としては、5 - n - ブチル-7 - (3,

20 4, 5-トリメトキシベンゾイルアミノ)ピラゾロ〔1, 5-a〕ピリミジン及び5-n-ブチル-7-(2-トリフルオロメチルベンゾイルアミノ)ピラゾロ〔1, 5

- a] ピリミジンを例示できる。

上記一般式(1)で表わされる本発明誘導体は、各種の方法により製造できる。その具体例を以下に反応工程式を挙げて説明する。

〔反応工程式-1〕

$$O$$
 R⁵ O H HN一N 縮合反応 R⁵ NーN R³ (2) (3) R^{4a} (4) R⁵ NーN R⁵ NーN

20 〔式中、R²、R³、R⁵、n、Q及びAは前記に同じ。 R¹aは水素原子、置換基としてチエニル基、低級アルコ キシ基又は低級アルキルチオ基を有することのある低級

15

アルキル基、シクロアルキル基、チエニル基、フリル基、 低級アルケニル基又は置換基として低級アルキル基、低 級アルコキシ基、フェニルチオ基及びハロゲン原子から 選ばれる基の1~3個を有することのあるフェニル基を 示し、またR¹゚はR゚と互いに結合して低級アルキレン 基を形成してもよく、R 4a は水素原子、低級アルキル基、 低級アルコキシカルボニル基、フェニル低級アルキル基 又は置換基としてフェニルチオ基を有することのあるフ ェニル基を、X及びYはそれぞれハロゲン原子を、Zは 低級アルキル基を、それぞれ示す。〕 10

上記反応工程式-1において、化合物(2)と化合物 (3)との縮合反応は、適当な不活性溶媒中、室温~溶 媒の沸点範囲の温度条件下で実施される。ここで用いら れる不活性溶媒としては、酢酸、エタノール、ベンゼン、 トルエン、キシレン、テトラヒドロフラン(THF)等 を例示できる。化合物(2)と化合物(3)との使用割 合は、一般にほぼ等モル量程度とするのがよく、反応は 約2~5時間を要して完了し、かくして所望の化合物 (4) を収得できる。

上記に引続く化合物(4)のハロゲン化反応は、適当 20 な脱酸剤、例えばN, N-ジメチルアニリン、N, N-ジエチルアニリン、トリエチルアミン等の存在下に、適

20

当なハロゲン化剤、例えばオキシ塩化リン、オキシ臭化リン等を用いて実施される。上記ハロゲン化剤は溶媒をも兼ねるので、該反応には特に溶媒を用いる必要はないが、例えばベンゼン、トルエン、キシレン等の他の不活性溶媒を用いることもできる。上記脱酸剤の使用量は、通常化合物(4)に対して1~10倍量程度とするのがよく、反応は室温~150℃程度の温度条件下に約0.5~12時間を要して実施される。

上記反応により得られるハロゲン化物(5)は、これ をアンモニア水又はヒドラジンで処理することにより化 合物(6)に変換できる。この処理は、特に溶媒を必要 とせず、通常化合物(5)を過剰量のアンモニア水と共 に約100~150℃で1~12時間程度加熱するか、 又は、化合物(5)を過剰量のヒドラジンと共に約0℃ ~室温下で5~30時間程度処理することにより実施で きる。

かくして得られる化合物(6)は、次いでこれを酸ハロゲン化物(7)と反応させることにより、本発明化合物(1)に変換できる。この反応は、適当な溶媒中、脱酸剤の存在下に実施できる。ここで溶媒としては例えばベンゼン、トルエン、キシレン、石油エーテル等の芳香族乃至脂肪族炭化水素類、ジエチルエーテル、ジメトキ

シエタン、テトラヒドロフラン(THF)、1,4-ジオキサン等の鎖状乃至環状エーテル類、アセトン、エチルメチルケトン、アセトフェノン等のケトン類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素等を例示できる。また脱酸剤としては、トリエチルアミン、N,N-ジエチルアニリン、N-メチルモルホリン、ピリジン、4-メチルアミノピリジン等の第3級アミン類を好ましく例示できる。

10 上記反応における化合物(6)に対する酸ハロゲン化物(7)及び脱酸剤の使用量は、特に限定的ではないが、通常酸ハロゲン化物は等モル量程度、脱酸剤は等モル量~過剰モル量程度とするのがよく、反応は室温~溶媒の還流温度の条件下に約0.5~20時間程度で終了する。

15 尚、上記化合物(6)のうち、nが0である化合物(6')は、下記反応工程式-1'に記載の方法によっても製造することができる。

[反応工程式-1']

[式中、R¹^a、R³、R⁴^a及びR⁵ は前記に同じ。]

上記において、ニトリル誘導体(2′)と化合物(3) との縮合反応は、ベンゼン、トルエン、キシレン、酢酸、 エタノール等の不活性溶媒中、室温~還流温度の条件下 にて2~10時間程度を要して行なわれる。尚、両化合 物の使用割合は、ほぼ当モル量程度とするのが一般的で ある。

〔反応工程式-2〕

加水分解
$$R^5$$
 R^5 R^5

OH
$$R5$$
 $N-N$ $N-N$ $R5$ $N-N$ $N-N$

「式中、R²、R³、R⁵、X、Y、A、Q、Z及びnは前記に同じ。Ψは保護されたオキソ基を有する低級アルキル基を、Φはオキソ基を有する低級アルキル基を、Σはアシルオキシ基を有する低級アルキル基を、Ωはトリ低級アルキルシリルオキシ基を有する低級アルキル基を、R¹bはヒドロキシ低級アルキル基を、R⁴bは水素原子、低級アルキル基、フェニル低級アルキル基又は置換基としてフェニルチオ基を有することのあるフェニル基を、それぞれ示す。〕

上記反応工程式-2における化合物(8)と化合物(9)との縮合反応は、前記反応工程式-1における化合物(2)と化合物(3)との反応と同様にして実施できる。

20 尚、化合物 (8) において、Ψで定義される保護され たオキソ基を有する低級アルキル基としては、例えばジ メチルアセタール、メチルエチルアセタール、ジエチル

10

15

20

アセタール、ジプロピルアセタール、ジブチルアセタール、ジペンチルアセタール、ジヘキシルアセタール等の ジ低級アルキルアセタールの残基を、保護されたオキソ 基として有する低級アルキル基や、エチレンアセタール、 トリメチレンアセタール、テトラメチレンアセタール等 の環状アセタールの残基を、同保護されたオキソ基とし て有する低級アルキル基を例示することができる。

次に、上記反応工程式 - 2に従う化合物(10)の加水分解反応は、酢酸、プロピオン酸、p - トルエンスルホン酸等の有機酸を用いて実施できる。上記有機酸の内で、酢酸、プロピオン酸等のカルボン酸は溶媒をも兼ねるので、之等を用いる場合は特に他の溶媒を用いる必要はないが、之等を用いる場合でも、他の有機酸を用いる場合と同様に、例えばベンゼン、トルエン、キシレン等の他の適当な不活性溶媒を用いることができる。反応は室温~溶媒の還流温度付近にて、10~80時間程度を要して実施でき、かくして化合物(11)を収得できる。

尚、上記化合物(11)において、 Φで定義されるオキソ基を有する低級アルキル基としては、 対応するΨで定義される「保護されたオキソ基を有する低級アルキル基」の有する保護基を脱離させたもの、 例えばホルミル、ホルミルメチル、アセチル、 2 - ホルミルエチル、 2 -

オキソプロピル、プロピオニル、3-ホルミルプロピル、3-オキソブチル、2-オキソブチル、ブチリル、4-ホルミルブチル、4-オキソペンチル、3-オキソペンチル、2-オキソペンチル、バレリル、5-ホルミルペンチル、5-オキソヘキシル、4-オキソヘキシル、3-オキソヘキシル、2-オキソヘキシル、ヘキサノイル基等を例示することができる。

上記に引続く化合物(11)の還元反応は、不活性溶 媒中、適当な還元剤を用いて実施できる。還元剤として は、例えば水素化硼素ナトリウム、水素化硼素カリウム、 10 水素化硼素リチウム、水素化シアノ硼素ナトリウム、水 素化トリエチル硼素ナトリウム等の水素化硼素化合物や、 水素化リチウムアルミニウム、水素化トリブトキシアル ミノリチウム等のリチウムアルミニウム水素化物等を例 示することができる。また、不活性溶媒としては、還元 15 剤として水素化硼素化合物を用いる場合は、メタノール、 エタノール等のアルコール系溶媒や該アルコール系溶媒 とジクロロメタン、ジエチルエーテル等との混合溶媒を 使用するのが好ましく、還元剤としてリチウムアルミニ ウム水素化物を用いる場合は、ジエチルエーテル、 20 THF等のエーテル類を用いるのが好ましい。上記還元 剤の使用量は、化合物(11)に対して少なくとも等モ

ル量程度とするのがよい。反応は、0℃~室温付近の温 度下に約30分~3時間程度を要して行ない得る。

かくして得られる化合物(12)のアシル化反応は、 無溶媒又はピリジン、ルチジン、N.N-ジメチルホル ムアミド(DMF)、N, N-ジメチルアセトアミド (D M A) 等の不活性溶媒中、アシル化剤を用いて実施 できる。アシル化剤としては、例えば無水酢酸、無水プ ロピオン酸、無水酪酸、無水吉草酸、無水ヘキサン酸、 無 水 へ プ タ ン 酸 等 の 酸 無 水 物 を 使 用 で き る。 之 等 は 通 常 10 化合物(12)に対して1~10倍当量で利用できる。 反応条件は、化合物(12)の7位のヒドロキシル基が アシル化されないように、0℃~室温付近の温度及び約 3 0 分~ 2 時間程度の時間から適宜選択するのが好まし 61

上記で得られる化合物(13)のハロゲン化反応は、 15 反応工程式-1における化合物(4)のハロゲン化反応 と同様にして実施することができる。

また、得られる化合物(14)の化合物(15)への 変換反応も、反応工程式-1における化合物(5)の化 20 合物(6)への変換反応と同様の条件下に実施できる。 尚、上記反応により、化合物(14)において∑で定義 されるアシルオキシ基を有する低級アルキル基は、加水

10

分解されてヒドロキシ低級アルキル基に変換される。

上記で得られる化合物(15)のシリル化反応は、例えばTHF、ジクロロメタン等の適当な不活性溶媒中、脱酸剤の存在下に、ハロゲン化トリアルキルシランを用いて実施できる。脱酸剤としては、例えば炭酸ナトリウム、炭酸カリウム、トリエチルアミン、N, Nージメチルアミノピリジン等を例示できる。またハロゲン化トリアルキルシラン、塩化トリメチルシラン、塩化トリエチルシラン、塩化トリプロピルシラン、塩化トリエチルシラン、塩化トリプチルシラン、塩化ブチルジエチルシラン等を例示できる。之等は一般に化合物(15)に対して約等モル量~過剰モル量用いることができ、反応は室温付近の温度条件下に5~30時間程度で完結する。

最後に、上記で得られる化合物(16)を酸ハロゲン 化物(7)と反応させることにより、所望の本発明化合物(1b)を収得できる。該反応も、反応工程式-1における酸ハロゲン化物(7)を用いた反応と同様にして行ない得る。尚、化合物(16)の5位の置換基Ωは、この反応中及びその後の加水分解処理により、対応する R 1b 基 (ヒドロキシ低級アルキル基)に容易に変換できる。

[反応工程式-3]

$$\begin{array}{c|c}
NH_2 & Y-Q-A-R^2 \\
R^5 & N-N \\
R^{1c} & R^3 \\
R^{4a} \\
(20) & & & & & \\
\end{array}$$

$$\begin{array}{c}
Y-Q-A-R^2 \\
(7) & & & \\
R^5 & N-N \\
R^{1c} & N-N \\
R^3 & & & \\
R^{4a} \\
(1c) & & & \\
\end{array}$$

15 〔式中、R²、R³、R⁴³、R⁵、X、Y、Z、Q、A、n及びΨは前記に同じ。R¹°はオキソ基を有する低級アルキル基を示す。〕

上記反応工程式 - 3において、化合物(17)とニトリル誘導体(18)との反応は、DMF、DMA、ジメ20 チルスルホキシド(DMSO)等の不活性溶媒中、水素化ナトリウム、水素化カリウム等の塩基の存在下に実施できる。上記ニトリル誘導体(18)及び塩基の使用量

は、通常化合物(17)に対してそれぞれ1~過剰当量 とされるのがよく、反応は0℃~室温付近の温度条件下 に2~10時間を要して行なわれる。

次に、化合物(2″)と化合物(3)との縮合反応は、 5 反応工程式-1′における反応と同様にして実施できる。 また、化合物(19)の加水分解反応は、反応工程式 -2における同反応と同様にして実施できる。

更に、化合物(20)と化合物(7)との反応は、反応工程式-1におけるそれと同様にして実施できる。

[反応工程式-4]

$$R^2 - A - Q - OH$$
 $\xrightarrow{\hspace{1cm}}$ \rightarrow $R^2 - A - Q - Y$ (21)

〔式中、R²、A、Q及びYは前記に同じ。〕

上記反応工程式 - 4に示すように、前記反応工程式 - 1、 - 2及び - 3において用いられる酸ハロゲン化物 (7)は、化合物 (21)をハロゲン化することにより 得ることができる。該ハロゲン化反応は、通常よく行なわれている方法に従うことができ、その例としては、例えば化合物 (21)を無溶媒又はクロロホルム、ジエチルエーテル等の不活性溶媒中で、塩化チオニル、臭化チオニル等のハロゲン化剤と反応させる方法を例示できる。

この方法において、ハロゲン化剤は過剰量用いられるのが一般的であり、反応は通常室温~150℃程度の温度下に約0.5~5時間を要して行ない得る。

〔反応工程式-5〕

〔式中、R²、R³、R⁵、A及びnは前記に同じ。

R¹dは、水素原子、置換基として低級アルコキシ基又は低級アルキルチオ基を有することのある低級アルキル基、シクロアルキル基、チエニル基、フリル基又は置換基として低級アルキル基、低級アルコキシ基、フェニルチオ基及びハロゲン原子から選ばれる基の1~3個を有することのあるフェニル基を示し、またR¹dとR⁵とは互いに結合して低級アルキレン基を形成してもよく、R⁴cはハロゲン原子を示す。〕

反応工程式-5に示す化合物(1d)のハロゲン化反応は、ベンゼン、四塩化炭素、クロロホルム等の不活性溶媒中、N-ブロモコハク酸イミド(NBS)、N-クロロコハク酸イミド(NCS)等のハロゲン化剤を用い

て実施できる。ハロゲン化剤の使用量は、化合物(1 d)に対して1当量~少過剰量とするのが一般的であり、反応は室温~溶媒の還流温度程度の温度条件下に、約0.5~5時間を要して行ない得る。

[反応工程式-6]

「式中、R³、R⁴、R⁵及びYは前記に同じ。R^{1°}は、水素原子、置換基としてチエニル基、低級アルコキシ基、低級アルキルチオ基又はオキソ基を有することのある低級アルキル基、シクロアルキル基、チエニル基、フリル基、低級アルケニル基又は置換基として低級アルキル基、のカるフェニルチオ基及びハロゲン原子ル基を示し、またR^{1°}とR⁵とは互いに結合して低級アルキレン基を形成してもよく、R^{2*}はナフチル基、シクロアルキレン基を形成してもよく、R^{2*}はナフチル基、シクロアルキレン基を形成してもよく、R^{2*}はナフチル基、シクロアルキレン基を形成してもよく、R^{2*}はナフチル基、シクロアルキレンを形成してもよく、R^{2*}はナフチルをで置換されることのあるピリジル基、ハロゲン原子で置換されることのあるピリジル基、ハロゲン原子で置換され

10

ることのあるフェノキシ基又は置換基として低級アルキル基、低級アルコキシ基、ハロゲン原子、ニトロ基、ハロゲン置換低級アルコキシ基、ハロゲン置換低級アルコキシ基、低級アルコキシカルボニル基、フェニル低級アルコキシ基、シアノ基、低級アルカノイルオキシ基、フェニル基及びジ低級アルコキシホスホリル低級アルキル基から選ばれる基の1~3個を有することのあるフェニル基を、R^{6*}はフェニル低級アルキル基又は置換基として低級アルコキシ基、ハロゲン置換低級アルキル基及びハロゲン原子から選ばれる基の1~3個を有するベンゾイル基を示す。〕

反応工程式 - 6において、化合物(1g)は、化合物(1f)を不活性溶媒中、塩基の存在下に化合物(22)と反応させることにより得ることができる。ここで、
15 R **がフェニル低級アルキル基の場合は、上記不活性溶媒としては、DMF、DMA、DMSO等を、また塩基としては、水素化ナトリウム、水素化カリウム等を例示できる。一方、R **が置換基として低級アルコキシ基、ハロゲン置換低級アルキル基及びハロゲン原子から選ばれる基の1~3個を有するベンゾイル基の場合は、上記不活性溶媒としては、クロロホルム、ジクロロメタン等を、塩基としては、トリエチルアミン、N,N-ジメチ

[反応工程式-7]

〔式中、R¹²、R²、R³、R⁴²、R⁵、X、Y、Q及びAは前記に同じ。R⁵bは低級アルキル基又はフェニル低級アルキル基を示す。〕

反応工程式-7における化合物(5)と化合物(23) との反応は、メタノール、エタノール等の不活性溶媒中、 炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム等

の脱酸剤の存在下に、還流温度程度の温度条件で1~5時間程度を要して実施される。

得られる化合物(24)と化合物(7)との反応は、 反応工程式-1に示した対応する反応と同様にして行な うことができ、かくして化合物(1h)を収得できる。

[反応工程式-8]

[式中、R¹°、R³、R⁴³、R⁵及びYは前記に同じ。R²°は置換基として低級アルコキシ基、ハロゲン原子及びハロゲン置換低級アルキル基から選ばれる基の1~3個を有するフェニル基を、R⁵°は置換基として低級アルコキシ基、ハロゲン置換低級アルキル基及びハロゲン原子から選ばれる基の1~3個を有するベンゾイル基を示す。]

20 反応工程式-8において、化合物(25)と化合物(26)との反応は、反応工程式-1に示した化合物(6)と化合物(7)との反応と同様にして実施できる。

この際、主生成物(1 i)と共に、副生成物(1 j)が得られる。

本発明化合物は、医薬的に許容される酸付加塩とすることができ、之等の塩も本発明化合物に包含される。上記酸付加塩を形成させ得る酸としては、例えば塩酸、臭化水素酸、硫酸等の無機酸、シュウ酸、フマル酸、マレイン酸、酒石酸、クエン酸等の有機酸を例示でき、この酸付加塩の形成反応は常法に従うことができる。

上記それぞれの工程により得られる目的化合物は、通常の分離、精製手段により容易に単離することができる。 該単離手段としては、一般に慣用される各種の手段のいずれをも採用することができ、その例としては、例えば、吸着クロマトグラフィー、プレパラティブ薄層クロマトグラフィー、再結晶、溶媒抽出等を例示できる。

- 15 尚、本発明の一般式(1)で表わされる化合物中、Aがアルケニレン基である化合物及びR¹が低級アルケニル基である化合物の一部は、シス、トランス異性体構造をとることができ、本発明は当然に之等の両者を包含する。
- 20 また、本発明の一般式(1)で表わされる化合物中の 一部の化合物は、炭素原子を不斉中心とした光学異性体 が存在し、本発明はかかる光学活性体及びラセミ体の両

10

15

20

者を包含する。

本発明化合物は、通常適当な無毒性製剤担体を用いて 一般的な医薬製剤組成物の形態とされ実用され、本発明 はかかる医薬製剤組成物、殊に鎮痛剤をも提供するもの である。

本発明医薬製剤に利用される上記製剤担体としては、 製剤の使用形態に応じて、通常使用される充填剤、増量 剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤等の 希釈剤あるいは賦形剤を例示でき、これらは得られる製 剤の投与単位形態に応じて適宜選択使用される。

上記医薬製剤の投与単位形態としては、各種の形態が 治療目的に応じて選択でき、その代表的なものとしては 錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプ セル剤、坐剤、注射剤(液剤、懸濁剤等)、軟膏剤等が 挙げられる。

錠剤の形態に成形するに際しては、上記製剤担体として例えば乳糖、白糖、塩化ナトリウム、ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸、リン酸カリウム等の賦形剤、水、エタノール、プロパノール、単シロツプ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリビニル

ピロリドン等の結合剤、カルボキシメチルセルロースナ トリウム、カルボキシメチルセルロースカルシウム、低 置換度ヒドロキシプロピルセルロース、乾燥デンプン、 アルギン酸ナトリウム、カンテン末、ラミナラン末、炭 酸水素ナトリウム、炭酸カルシウム等の崩壊剤、ポリオ キシエチレンソルビタン脂肪酸エステル類、ラウリル硫 酸ナトリウム、ステアリン酸モノグリセリド等の界面活 性剤、白糖、ステアリン、カカオバター、水素添加油等 の崩壊抑制剤、第4級アンモニウム塩基、ラウリル硫酸 ナトリウム等の吸収促進剤、グリセリン、デンプン等の 10 保湿剤、デンプン、乳糖、カオリン、ベントナイト、コ ロイド状ケイ酸等の吸着剤、精製タルク、ステアリン酸 塩、ホウ酸末、ポリエチレングリコール等の滑沢剤等を 使用できる。更に錠剤は必要に応じ通常の剤皮を施した 錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フイ 15 ルムコーテイング錠あるいは二重錠、多層錠とすること ができる。

丸剤の形態に成形するに際しては、製剤担体として例 えばブドウ糖、乳糖、デンプン、カカオ脂、硬化植物油、 カオリン、タルク等の賦形剤、アラビアゴム末、トラガ 20 ント末、ゼラチン、エタノール等の結合剤、ラミナラン、 カンテン等の崩壊剤等を使用できる。

坐剤の形態に成形するに際しては、製剤担体として例えばポリエチレングリコール、カカオ脂、高級アルコール、高級アルコールのエステル類、ゼラチン、半合成グリセライド等を使用できる。

5 カプセル剤は、常法に従い通常本発明の有効成分化合物を上記で例示した各種の製剤担体と混合して硬質ゼラチンカプセル、軟質カプセル等に充填して調整される。

液剤、乳剤、懸濁剤等の注射剤として調製される場合、 之等は殺菌され且つ血液と等張であるのが好ましく、之 等の形態に成形するに際しては、希釈剤として例えば水、 エチルアルコール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ 化イソステアリルアルコール、ポリオキシエチレンソル ビタン脂肪酸エステル類等を使用できる。尚、この場合 等張性の溶液を調整するに充分な量の食塩、ブドウ糖あるいはグリセリンを本発明薬剤中に含有させてもよく、 また通常の溶解補助剤、緩衝剤、無痛化剤等を添加して もよい。

更に、本発明薬剤中には、必要に応じて着色剤、保存 20 剤、香料、風味剤、甘味剤等や他の医薬品を含有させる こともできる。

ペースト、クリーム、ゲル等の軟膏剤の形態に成形す

10

15

るに際しては、希釈剤として例えば白色ワセリン、パラフイン、グリセリン、セルロース誘導体、ポリエチレングリコール、シリコン、ベントナイト等を使用できる。

本発明薬剤中に含有されるべき一般式(1)で表わされる本発明有効成分化合物の量は、特に限定されず広範囲より適宜選択されるが、通常医薬製剤中に約1~70 重量%程度含有されるものとするのがよい。

上記医薬製剤の投与方法は特に制限がなく、各種製剤 形態、患者の年齢、性別その他の条件、疾患の程度等に 応じて決定される。例えば錠剤、丸剤、液剤、懸濁剤、 乳剤、顆粒剤及びカプセル剤は経口投与され、注射剤は 単独で又はブドウ糖、アミノ酸等の通常の補液と混合し て静脈内投与され、更に必要に応じ単独で筋肉内、皮内、 皮下もしくは腹腔内投与され、坐剤は直腸内投与される。

上記医薬製剤の投与量は、その用法、患者の年齢、性別その他の条件、疾患の程度等により適宜選択されるが、通常有効成分である本発明化合物の量が1日当り体重1kg当り約0.5~20mg程度とするのがよく、該製剤は1日に1~4回に分けて投与することができる。

20 発明を実施するための最良の形態

以下、本発明を更に詳しく説明するため、本発明化合物の製造のための原料化合物の製造例を参考例として挙

げ、次いで本発明化合物の製造例を実施例として挙げる。 参考例 1

<u>7-アミノ-5-n-ブチルピラゾロ〔1, 5-a〕ピ</u>リミジンの製造

5 工程(1)

3-アミノピラゾール100gと3-オキソヘプタン酸メチルエステル190gのトルエン120m1溶液を100℃で3時間加熱還流した。冷後、トルエンを減圧留去し、残渣にジエチルエーテルを加え、析出した結晶を濾取し、ジエチルエーテル及びアセトニトリルで順次洗浄して、5-n-ブチル-7-ヒドロキシピラゾロ
〔1,5-a〕ピリミジンの無色結晶184gを得た。工程(2)

上記工程(1)で得られた結晶40gのトルエン
400m1懸濁液に、オキシ塩化リン80m1及びトリエチルアミン44m1を加え、4時間加熱還流した。反応終了後、減圧濃縮し、残渣を氷水中に注ぎ、混合物を酢酸ナトリウムで中和し、酢酸エチルで抽出し、有機層を集めた。これを飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出液;酢酸エチル:nーヘキサン=1:9)で精製して、5-nーブチルー7

- クロロピラゾロ〔1, 5 - a〕ピリミジンの淡黄色油 状物 4 1 g を得た。

工程(3)

上記工程 (2) で得られた化合物 2 1 gと 2 5 % アン 5 モニア水 1 0 0 m 1 とをステンレス密閉管中に封入し、 1 1 0 ℃で 1 2 時間加熱した。冷後、析出した結晶を濾取し、水洗後、クロロホルムーn ーヘキサンより再結晶して、7-アミノー5-n-ブチルピラゾロ〔1, 5-a〕ピリミジンの無色結晶 1 8. 4 g (融点: 1 2 4 ~ 10 1 2 6 ℃)を得た。

上記と同様にして、下記各化合物を製造した。

- (1) 7-アミノ-5-エチルピラゾロ〔1, 5-a〕ピリミジン(融点:175~177℃、再結晶溶媒:酢酸エチル-n-ヘキサン)
- (2) 7-アミノ-5-n-プロピルピラゾロ〔1, 5-a〕ピリミジン(融点:138~140℃、再結晶溶媒:酢酸エチル-n-ヘキサン)
 - (3) 7-アミノ-5-シクロプロピルピラゾロ〔1, 5-a] ピリミジン(融点:206~209℃、再結晶溶
- 20 媒:クロロホルム-n-ヘキサン)
 - (4) 7-アミノ-5-n-ペンチルピラゾロ〔1, 5-a] ピリミジン(融点:125~126℃、再結晶溶媒

- : 酢酸エチル-n-ヘキサン)
- (5) 7-アミノー5-フェニルピラゾロ〔1, 5-a〕ピリミジン(融点:207~209℃、再結晶溶媒:酢酸エチル-n-ヘキサン)
- 5 (6) 7-アミノ-5-(4-メトキシフェニル) ピラゾロ〔1, 5-a〕ピリミジン(融点:194~196℃、再結晶溶媒:エタノール-n-ヘキサン)
 - (7) 7-アミノ-5-(2-チエニル) ピラゾロ〔1,5-a〕ピリミジン(融点:227~229℃、再結晶
- 10 溶媒:エタノール-n-ヘキサン)
 - (8) 7-アミノー5-(3-チエニル) ピラゾロ〔1,5-a〕ピリミジン(融点:203~205℃、再結晶溶媒:エタノール-n-ヘキサン)
 - (9) 7-アミノ-5-メチルピラゾロ〔1, 5-a〕ピ
- 15 リミジン (融点: 2 2 0 ~ 2 2 2 ℃、再結晶溶媒: クロロホルム-n-ヘキサン)
 - (10) 7 アミノー 5 n ブチルー 2 メチルピラゾロ〔1, 5 a〕 ピリミジン(融点: 1 7 6 ~ 1 7 8 ℃、再結晶溶媒: クロロホルム n ヘキサン)
- 20 (11)7-アミノ-5-(2, 4-ジメチルフェニル)ピラゾロ〔1, 5-a〕ピリミジン(融点:168~
 170℃、再結晶溶媒:クロロホルム-n-ヘキサン)

- (12)7-アミノー5-(3, 5-ジメチルフェニル)ピラゾロ〔1, 5-a〕ピリミジン(融点:180~
- 182℃、再結晶溶媒:エタノール-n-ヘキサン)
- (13)7-アミノー5-(2-メトキシフェニル) ピラゾ
- 5 ロ〔1, 5-a〕ピリミジン(融点:201~203℃、再結晶溶媒:エタノール-n-ヘキサン)
 - (14) 7 アミノー 5 (3 メトキシフェニル) ピラゾロ [1, 5 a] ピリミジン(融点:195~197℃、再結晶溶媒:エタノール-n-ヘキサン)
- 10 (15)7-アミノ-5-(3, 4, 5-トリメトキシフェニル)ピラゾロ〔1, 5-a〕ピリミジン(融点: 198~200℃、再結晶溶媒:エタノールーn-ヘキサン)
- (16)7 アミノ 5 (2 クロロフェニル)ピラゾロ
- 15 〔1, 5-a〕ピリミジン(融点:208~210℃、 再結晶溶媒:クロロホルム-n-ヘキサン)
 - (17) 7 アミノ 5 (2 フリル) ピラゾロ〔1, 5 a〕 ピリミジン(融点:204~206℃、再結晶溶媒:エタノール-n-ヘキサン)
- 20 (18)7-アミノ-5-(3-フリル)ピラゾロ〔1, 5
 -a〕ピリミジン(融点:208~210℃、再結晶溶媒:エタノール-n-ヘキサン)

- (19)7-アミノ-5-(2-チエニルメチル) ピラゾロ[1, 5-a] ピリミジン(融点:188~190℃、
- 再結晶溶媒:エタノール-n-ヘキサン)
- 5 ピラゾロ〔1, 5-a〕ピリミジン(融点:207~
 - 2 0 9 °C、 再結晶溶媒: エタノールーn ヘキサン)

更に、上記と同様にして下記各化合物を製造した。

- (21)7 7 > 1 > 5 > 6 > 7 > 7 > 1
- 5 a] ピリミジン
- 10 (22)7-アミノ-5-エトキシメチルピラゾロ〔1, 5-a〕ピリミジン
 - (23)7-アミノ-5-(2-メチルフェニル) ピラゾロ [1, 5-a] ピリミジン
 - (24)7-アミノ-5-(3-メチルフェニル) ピラゾロ
- 15 [1, 5-a] ピリミジン
 - (25)7-アミノ-5-(4-メチルフェニル) ピラゾロ
 - [1, 5-a] ピリミジン
 - (26)7-アミノ-5-(3-クロロフェニル) ピラゾロ
- 20 (27)7-アミノ-5-(4-クロロフェニル) ピラゾロ [1.5-a] ピリミジン
 - (28)7-アミノピラゾロ〔1, 5-a〕ピリミジン

- (29)7-アミノ-5-n-ブチル-3-エトキシカルボニル-2-メチルピラゾロ〔1, 5-a〕ピリミジン(融点:178~180℃、再結晶溶媒:塩化メチレン-n-ヘキサン)
- 5 (30)7-アミノー2, 5-ジーn-ブチルー3-メチルピラゾロ[1, 5-a]ピリミジン(融点:123~125℃、再結晶溶媒:ジエチルエーテルーn-ヘキサン)
 - (31)7-アミノ-5-n-ブチル-2-フェニルピラゾ
- 10 ロ〔1, 5-a〕ピリミジン(融点:206~208℃、 再結晶溶媒:酢酸エチル-n-ヘキサン)
 - (32) 7 アミノ 3 ベンジル 5 n ブチル 2 フェニルピラゾロ〔1, 5 a〕ピリミジン(融点: 106~108℃、再結晶溶媒:クロロホルム n へ
- 15 キサン)
 - (33) 7 アミノー 5 n ブチルー 2 フェニルー 3 [4 (フェニルチオ) フェニル] ピラゾロ [1, 5 a] ピリミジン(融点: 139~141℃、再結晶溶媒: ジエチルエーテル-n ヘキサン)
- 20 (34)7-アミノ-3, 5-ジーn-ブチルピラゾロ〔1, 5-a〕ピリミジン(融点:58~60℃、再結晶溶媒:酢酸エチル-n-ヘキサン)

- (35)7-アミノ-5-n-ブチル-3-フェニルピラゾロ〔1,5-a〕ピリミジン(融点:113~115℃、再結晶溶媒:酢酸エチル-n-ヘキサン)
- $(36)7 7 \le 1 5 x \ne y \ne x \ne y \ne y = (1,$
- 5 5 a] ピリミジン (融点: 1 0 9 ~ 1 1 1 ℃、再結晶溶媒: クロロホルム n ヘキサン)
 - (37) 7 アミノ 5 (2 メチルチオエチル) ピラゾロ〔1, 5 a〕ピリミジン(融点:77~79℃、再結晶溶媒:酢酸エチル-n-ヘキサン)
- 10 (38)7-アミノ-5-〔4-(フェニルチオ)フェニル〕 ピラゾロ〔1, 5-a〕ピリミジン(融点:182~ 184℃、再結晶溶媒:クロロホルムージエチルエーテル)
 - (39)9-アミノー5, 6, 7, 8-テトラヒドロピラゾ
- 15 口〔5, 1-b〕キナゾリン(融点:230~233℃、 再結晶溶媒:酢酸エチル-n-ヘキサン)
 - (40) 7 アミノー 2, 5 ジー n ブチルピラゾロ〔1, 5 a〕 ピリミジン(融点:105~107℃、再結晶溶媒:ジエチルエーテルー n ヘキサン)
- 20 参考例 2

<u>5-n-ブチル-7-ヒドラジノピラゾロ〔1,5-a〕</u> ピリミジンの製造 参考例1の工程(2)で得られた5-n-ブチル-7-クロロピラゾロ[1, 5-a]ピリミジン21. 0gに、ヒドラジン一水和物50mlを室温でゆっくり滴下し、室温で10時間攪拌した。反応後、析出した結晶を 10、水洗後、クロロホルム-n-ヘキサンより再結晶して、目的化合物の無色結晶12.6gを得た(融点:126~129℃)。

また上記同様にして、 7 - ヒドラジノ - 5 - フェニル ピラゾロ〔1, 5 - a〕ピリミジンを製造した。

10 参考例3

<u>7-アミノ-5-(3-オキソブチル)ピラゾロ〔1,5-a〕ピリミジンの製造</u>

6 0 %水素化ナトリウム 2. 3 gの D M F 1 0 m 1 懸 濁液中に、2 - メチル-1, 3 - ジオキソラン-2 - プ 15 ロピオン酸メチルエステル 5. 0 gのアセトニトリル 1 0 m 1 溶液を滴下し、室温で 4 時間撹拌した。反応溶 液を氷水中に入れ、飽和クエン酸水溶液で酸性とし、酢 酸エチルで抽出した。有機層を水及び飽和食塩水で洗浄 し、減圧濃縮した。残渣をシリカゲルカラムクロマトグ ラフィー(溶出液… n - ヘキサン:酢酸エチル= 3 : 2) で精製して、油状の 2 - メチル-β-オキソ-1, 3 -ジオキソラン-2 - ペンタンニトリル 3. 0 gを得た。 次に、上記で得られた化合物 3. 0 g と 3 - アミノピラゾール 1. 4 g のトルエン 1. 6 m 1 溶液を 1 1 5 ℃で 1 0 時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出液・・・・クロロホルム・メタノール= 2 0 : 1) で精製し、更にクロロホルム- n - ヘキサンより再結晶して、 7 - アミノー 5 - [2 - (2 - メチル - 1, 3 - ジオキソラン - 2 - イル)エチル〕ピラゾロ〔1, 5 - a〕ピリミジンの無色結晶2. 1 g を得た。

- 次に、上記で得られた結晶 1. 0 gを酢酸ー水(4:1)500 m 1 に溶解し、80℃で一晩攪拌した。反応終了後、減圧濃縮し、残留する酢酸ー水をベンゼンと共沸留去し、残渣をエタノールーnーヘキサンより再結晶して、表記目的化合物の無色結晶 0. 7 gを得た。
- 15 融点:164~166℃、再結晶溶媒:エタノールー n-ヘキサン

参考例4

<u>7-アミノ-5-n-ブチル-6-メチルピラゾロ〔1,</u> 5-a〕ピリミジンの製造

20 3-アミノピラゾール1.8gと、2-メチル-3-オキソヘプタンニトリル3gのトルエン2.5ml溶液 を、115℃で3.5時間加熱した。トルエンを減圧留 去し、残渣を酢酸エチルで再結晶し、得られた結晶を更にジエチルエーテルで洗浄して、表記目的化合物の無色結晶 2. 4 g を得た。

融点:153~155°C、再結晶溶媒:酢酸エチル 5 実施例1

7 - r ミノ - 5 - n - ブチルピラゾロ〔1, 5 - a〕ピリミジン1. 90g及びピリジン20mlを乾燥ジク 10 ロロメタン20mlに溶解し、氷冷攪拌下、これに3, 4. 5-トリメトキシベンゾイル クロリド2. 6 gの 乾燥ジクロロメタン10ml溶液をゆっくりと滴下し、 室温で10時間撹拌した。反応混合液に10%炭酸水素 ナトリウム水溶液 5 0 m 1 を加え、クロロホルムで抽出 15 し、有機層を集めて10%塩酸及び水で順次洗浄し、無 水硫酸ナトリウムで乾燥して減圧濃縮した。残渣をシリ カゲルカラムクロマトグラフィー(溶出液;酢酸エチル : n - ヘキサン = 1 : 2) で精製し、更にジエチルエー テルーn-ヘキサンで再結晶して、目的化合物の無色結 20 晶 2. 4 g を得た。得られた化合物の構造及び融点を第 1 表に示す。

10

実施例2~実施例46

実施例1と同様にして第1表に示す各化合物を得た。 得られた各化合物の構造及び融点を第1表に併記する。 尚、油状物については H-NMRスペクトルデータを 示す。

実施例47~実施例99

実施例1と同様にして第2表に示す各化合物を得た。 得られた各化合物の構造及び融点を第2表に併記する。 尚、油状物については H-NMRスペクトルデータを 示す。

実施例100

5-(3-ヒドロキシブチル)-7-(3, 4, 5-トリメトキシベンゾイルアミノ)ピラゾロ[1, 5-a]ピリミジンの製造

15 工程(1)

3-アミノピラゾール 0. 90gと2-メチルーβーオキソー1, 3-ジオキソラン-2-ペンタン酸メチルエステル1. 90gのトルエン2m 1 溶液を、115℃で1時間加熱還流した。放冷後、減圧濃縮し、残渣にジェチルエーテルを加え、析出した結晶を濾取し、ジエチルエーテルで洗浄して、7-ヒドロキシ-5-〔2-(2-メチル-1, 3-ジオキソラン-2-イル)エチ

ル〕ピラゾロ〔1, 5-a〕ピリミジンの無色結晶1. 85gを得た。

工程(2)

上記で得られた結晶 2. 2 gを酢酸 - 水(4:1) 5 00 m 1 に溶解し、50℃で3日間攪拌した。反応終 了後、減圧濃縮し、残留する酢酸 - 水をベンゼンと共沸 させて留去し、残渣をエタノールーn - ヘキサンより再 結晶して、7 - ヒドロキシー5 - (3 - オキソブチル) ピラゾロ〔1,5 - a〕ピリミジンの無色結晶 1 1. 0 gを得た。

工程(3)

工程(2)で得られた結晶 5. 7gをメタノール
120m1に溶かし、氷冷下水素化硼素ナトリウム
0. 53gを加え、0℃で2時間攪拌した。反応終了後、
15 希塩酸を滴下して酸性とし、クロロホルムで抽出した。
有機層を集めて飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をエタノールーnーへ
キサンより再結晶して、7ーヒドロキシー5ー(3ーヒドロキシブチル)ピラゾロ〔1,5ーa〕ピリミジンの
20 無色結晶 4. 16gを得た。

工程(4)

工程(3)で得られた結晶4.16gを無水酢酸40

m 1 及びピリジン4 0 m 1 に溶かし、室温で3 0 分間攪拌した。反応終了後、減圧濃縮し、残渣をメタノールージエチルエーテルより再結晶して、5 - (3 - アセトキシブチル) - 7 - ヒドロキシピラゾロ〔1, 5 - a〕ピリミジンの無色結晶4. 2 gを得た。

工程(5)

工程(4)で得られた結晶4.2gのトルエン40m1懸濁液に、オキシ塩化リン6.4m1及びトリエチルアミン3.5mlを加え、6時間加熱還流した。反応10終了後、減圧濃縮し、残渣を氷水中に注ぎ込み、この混合物を酢酸ナトリウムで中和した後、酢酸エチルで抽出した。有機層を集め、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(溶出液…酢酸エチル:nーへキサン=4:1)で精製して、5-(3-アセトキシブチル)-7-クロロピラゾロ[1,5-a]ピリミジンの淡黄色油状物4.3gを得た。

工程(6)

工程(5)で得られた化合物 4. 3 g と 2 5 % アンモ 20 ニア水 5 0 m 1 とをステンレス製密閉管中に封入し、 1 0 5 ℃で 1 4 時間加熱した。 放冷後、 析出した結晶を 濾取し、水洗後、乾燥して、 7 - アミノ - 5 - (3 - ヒ ドロキシブチル) ピラゾロ〔1, 5-a〕ピリミジンの 淡黄色結晶3. 2gを得た。

工程(7)

- 工程(6)で得られた結晶 5 0 0 m g の T H F 5 m l 溶液に、トリエチルアミン 4 0 0 μ l 及び塩化トリメチルシラン 6 8 0 μ l を加え、室温で l 2 時間攪拌した。反応終了後、飽和重曹水を加え、ジクロロメタンで抽出し、有機層を集めて、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣に n ー 10 ヘキサンを加え、析出した結晶を濾取して、 7 ー アミノー 5 ー (3 ー トリメチルシリルオキシブチル)ピラゾロ [1,5 ー a] ピリミジンの無色結晶 5 2 0 m g を得た。 l H − N M R (δ:p p m) [C D C l 3]
 - 0. 12 (9 H, s), 1. 20 (3 H, d, J =
- 15 5. 9), 1. 8-1. 9 (2 H, m), 2. 6-1
 - 2. 9 (2 H, m), 3. 8 3. 9 (1 H, m),
 - 5. 61 (2H, brs), 5. 99 (1H, s),
 - 6. 41 (1 H, d, J = 2. 0), 7. 99 (1 H,
 - d, J = 2. 0

20 工程(8)

工程 (7) で得られた結晶 5 2 0 m g の ピリジン 5 m l 溶液に、3, 4, 5 - トリメトキシベンゾイルクロ

リド650mgの乾燥ジクロロメタン5m1溶液をゆっくりと滴下し、室温で2時間攪拌した。反応終了後、飽和重曹水を加え、ジクロロメタンで抽出し、有機層を集めて、1N塩酸で水層のpHが約1になるまで洗浄し、そのまま2時間放置した。有機層を水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮し、残渣をジクロロメタンーnーへキサンより再結晶して、目的化合物の無色結晶480mgを得た。得られた化合物の構造及び融点を第2表に示す。

10 実施例101及び実施例102

実施例100と同様にして第2表に示す各化合物を得た。得られた各化合物の構造及び融点を第2表に併記する。

実施例103

20

15 <u>5-n-ブチル-3-クロロ-2-メチル-7-(3,</u>
 4, 5-トリメトキシベンゾイルアミノ)ピラゾロ〔1,
 5-a〕ピリミジンの製造

5-n-ブチル-2-メチル-7-(3, 4, 5-トリメトキシベンゾイルアミノ) ピラゾロ〔1, 5-a〕 ピリミジン(実施例53の化合物) 0. 78gをクロロホルム10mlに溶かし、NCS0. 28gを加え、1時間加熱還流した。放冷後、反応液に水を加え、クロロ

ホルムで抽出した。有機層を集め、無水硫酸ナトリウムで乾燥し、減圧濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(溶出液…酢酸エチル:nーヘキサン=1:2)で精製し、更にエタノールーnーヘキサンより再結晶して、目的化合物の無色結晶0.61gを得た。得られた化合物の構造及び融点を第3表に示す。

実施例104~実施例106

実施例103と同様にして第3表に示す各化合物を得た。得られた各化合物の構造及び融点を第3表に併記する。

実施例107~実施例128

実施例1と同様にして第4表に示す各化合物を得た。 得られた各化合物の構造及び融点を第4表に併記する。 実施例129

15 <u>5-n-ブチル-7-[N-メチル-N-(3, 4, 5</u>
 <u>-トリメトキシベンゾイル)アミノ]ピラゾロ[1, 5</u>
 -a]ピリミジンの製造

5-n-ブチル-7-クロロピラゾロ〔1, 5-a〕 ピリミジン(参考例1の工程(2)で製造した化合物) 20 8. 60g、炭酸水素ナトリウム3. 44g及び40% メチルアミン3. 18gをエタノール50m1中に加え、 120℃で2時間加熱した。反応終了後、エタノールを 減圧留去し、残渣に水を加え、酢酸エチルで抽出した。 有機層を集め、無水硫酸マグネシウムで乾燥し、減圧濃 縮した後、残渣をシリカゲルカラムクロマトグラフィー (溶出液…酢酸エチル:n-ヘキサン=1:2)で精製 して、5-n-ブチル-7-メチルアミノピラゾロ〔1, 5-a〕ピリミジンの結晶 2. 33gを得た。

得られた結晶及び3,4,5-トリメトキシベンゾイル クロリドを用いて、実施例1と同様にして、目的化合物を得た。得られた化合物の構造及び融点を第5表に示す。

実施例130

10

実施例129と同様にして、第5表に示す化合物を得た。得られた化合物の構造及び融点を第5表に併記する。 実施例131

15 <u>5-n-ブチル-7-[N, N-ビス(3, 4, 5-ト</u> リメトキシベンゾイル)アミノ〕ピラゾロ[1, 5-a] ピリミジンの製造

実施例1で得られた化合物1. 92g及びトリエチルアミン1. 02gをクロロホルム10mlに溶かし、これに3, 4, 5-トリメトキシベンゾイルクロリド1. 28gのクロロホルム10ml溶液を室温で加え、混合液を室温で10時間攪拌した。反応後、有機層を希

塩酸で洗浄し、無水硫酸マグネシウムで乾燥して濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(溶出液…酢酸エチル: n - ヘキサン=1:2)で精製し、更に酢酸エチル-n-ヘキサンより再結晶して、目的化合物の無色結晶1.10gを得た。

得られた化合物の構造及び融点を第5表に併記する。 実施例132

10 製造

15

20

5

実施例23において、シリカゲルカラムクロマトグラフィーの前出画分を再度シリカゲルカラムクロマトグラフィー(溶出液…ジクロロメタン)で精製し、更に再結晶を行なって、目的化合物の無色結晶を得た。得られた化合物の構造及び融点を第5表に併記する。

実施例133及び134

実施例132と同様に、実施例32及び実施例52に おけるシリカゲルカラムクロマトグラフィーの前出画分より、第5表に示す各化合物を得た。得られた各化合物 の構造及び融点を第5表に併記する。

また、実施例1におけるシリカゲルカラムクロマトグラフィーの前出画分より、同様にして、実施例131の

化合物と同一化合物を得た。

Me:メチル基、Et:エチル基、nPr:n-プロピル基、 nBu:n-ブチル基、nPe:n-ペンチル基、Ph:フェニル基

	nbu.n //was nro.n w/was race						
実施 例No.	R ¹	R ²	Α	融 点 (℃) (再結晶溶媒)			
1	n B u	O M e O M e	単結合	127~129 (シェチルエーテルーn-ヘキサン)			
2	n B u	P h	単結合	83~85 (酢酸エチルーn-ヘキサン)			
3	n B u	Ме	単結合	102~104 (n-ヘキサン)			
4	пВи	→ M e	単結合	94~95 (n-ヘキサン)			
5	n B u	— M e	単結合	83~84 (n-ヘキサン)			
. 6	n B u	——————————————————————————————————————	単結合	$ \begin{array}{c} 1 H - N M R & (C D C \ell_{3}) \\ 0.97 (3 H, t, J = 7.3) , 1.37 (9 H, s) , \\ 1.4 - 1.5 (2 H, m) , 1.7 - 1.9 (2 H, m) , \\ 2.86 (2 H, t, J = 7.8) , 6.57 (1 H, d, J = 2.3) , 7.58 (1 H, d, J = 8.7) , 7.77 \\ (1 H, s) , 7.97 (1 H, d, J = 8.7) , 8.03 \\ (1 H, d, J = 2.3) , 10.0 (1 H, brs) \\ \end{array} $			
7	n B u	M e O	単結合	82~84 (n-ヘキサン)			
8	n B u	ОМ е	単結合	49~51 (n-ヘキサン)			

第 1 表 (続き)

実施 例No.	R ¹	R ²	A	融 点 (℃) (再結晶溶媒)
9	n B u	ОМ е	単結合	108~109 (n-ヘキサン)
10	пВи	M e O O O M e	単結合	129~132 (n-ヘキサン)
11	n B u	O M e O M e	単結合	143~144 (シュチルェーテルーnーヘキサン)
12	n B u	M e O M e O	単結合	101~103 (シェチルェーテルーn-ヘキサン)
13	n B u	ОМ е	単結合	92~94 (シエチルエーテルーnーヘキサン)
1 4	n B u	M e O O M e O M e	単結合	115~117 (酢酸エチルーn-ヘキサン)
1 5	E t	O M e O M e	単結合	141~143 (酢酸エチルーn – ヘキサン)
1 6	n P r	O M e O M e O M e	単結合	119~121 (ジェチルエーテルー n ーヘキサン)
1 7	<u></u>	O M e O M e O M e	単結合	198~201 (酢酸エチルーn-ヘキサン)
18	n P e	O M e O M e O M e	単結合	116~118 (n-ヘキサン)
1 9	Ρh	O M e O M e	単結合	185~187 (酢酸エチル-n-ヘキサン)

第 1 表 (続き)

実施 例No.	R1	R ²	A	融 点 (℃) (再結晶溶媒)
2 0	n B u	$ \begin{array}{c} O E t \\ O E t \end{array} $	単結合	100~102 (シエチルエーテルーnーヘキサン)
2 1	n B u	- O − n B u	単結合	87~90 (n-ヘキサン)
2 2	n B u	F	単結合	99~100 (n-ヘキサン)
23	n B u	C &	単結合	107~109 (ジェチルェーテル)
2 4	n B u	~ C ℓ	単結合	81~82 (n-ヘキサン)
2 5	n B u	-€ C ℓ	単結合	92~94 (ÿıfıı-fl)
26	n B u	C & C &	単結合	97~99 (n-ヘキサン)
2 7	n B u	—————————————————————————————————————	単結合	93~95 (n-ヘキサン)
2.8	n B u	— В r	単結合	97~99 (n-ヘキサン)
2 9	n B u	O ₂ N	単結合	133~135 (酢酸エチルーn -ヘキサン)
3 0	n B u	NO ₂	単結合	143~145 (酢酸エチル-n-ヘキサン)

第 1 表 (続き)

実施 例No.	R1	R ²	Α	融 点 (℃) (再結晶溶媒)
3 1	Εt	F ₃ C	単結合	125~127 (シェチルェーテルーnーヘキサン)
3 2	n B u	F ₃ C	単結合	84~87 (n-ヘキサン)
3 3	n B u	— C F ₃	単結合	95~97 (n-ヘキサン)
3 4	n B u	——————————————————————————————————————	単結合	122~123 (n-ヘキサン)
3 5	n B u		単結合	139~141 (酢酸エチルーn-ヘキサン)
3 6	n B u		単結合	119~121 (酢酸エチルーn-ヘキサン)
3 7	n B u	O CH ₂ -P(OEt) ₂	単結合	57~60 (酢酸エチルーn-ヘキサン)
3 8	n B u	— <u>N</u>	単結合	82~84 (シュチルューテルーnーヘキサン)
3 9	n B u	C l_N	単結合	103~105 (酢酸エチルーn-ヘキサン)
4 0	n B u	——N—C ℓ	単結合	92~93 (シェチルェーテルー n ーヘキサン)
4 1	n B u	Ρh	-CH ₂ -	80~82 (ジェチルェーテルー n ーヘキサン)

第 1 表 (続き)

実施 例No.	R1	R ²	Α	融 点 (℃) (再結晶溶媒)
4 2	n B u	———— O M e	-CH ₂ -	73~75 (シェチルエーテルーnーヘキサン)
4 3	n B u	· Ph	-С ₂ Н ₄ -	$ \begin{array}{c} 1 H - N M R & (C D C \ell _3) \\ 0.95 (3 H, t, J = 7.3) , 1.3 - 1.5 \\ (2 H, m) , 1.7 - 1.8 (2 H, m) , 2.80 \\ (2 H, t, J = 7.8) , 2.88 (2 H, t, J = 7.5) , 3.09 (2 H, t, J = 7.5) , 6.53 \\ (1 H, d, J = 2.2) , 7.2 - 7.3 (5 H, m) , \\ 7.60 (1 H, s) , 7.95 (1 H, d, J = 2.2) , \\ 9.23 (1 H, brs) \\ \end{array} $
4 4	n B u	P h O —	-сн ₂ -	108~109 (n-ヘキサン)
4 5	n B u	-o -C l	-сн ₂ -	140~142 (酢酸エチルーn-ヘキサン)
4 6	n B u	O M e O M e O M e	-СН=СН-	134~137 (酢酸エチルーn-ヘキサン)

Me:メチル基、Et:エチル基、nPr:n-プロピル基、 nBu:n-ブチル基、tBu:t-ブチル基、nPe:n-ペンチル基、 Ph:フェニル基、Ac:アセチル基

	111.712/28(1101.72)								
実施 例Na	R1	R ²	R ³	Α	n	融 点 (℃) (再結晶溶媒)			
47	n B u	→	Н	単結合	0	$1H - NMR (CDC\ell_3)$ 0.95(3H,t,J=7.4), 1.2-2.1 (14H,m), 2.4-2.6(1H,m), 2.81 (2H,t,J=7.8), 6.54(1H,d,J=2.2), 7.62(1H,s), 8.00(1H,d,J=2.2), 9.29(1H,brs)			
4 8	n B u	MeOOMe	Н	単結合	0	141~142 (エタノール-n-ヘキサン)			
4 9	MeO-	MeOOMe	Н	単結合	0	209~211 (塩化メチレン-酢酸エチル)			
5 0	T _S	MeOOMe	H	単結合	0	206~208 (塩化メチレン-酢酸エチル)			
5 1	n B u	Me0 OMe	Н	単結合	0	136~137 (エタノールーn-ヘキサン)			
5 2	M e	Me0 Me0 Me0	Н	単結合	0	173~175 (エタノールーn-ヘキサン)			
5 3	n B u	Me0 Me0 Me0	Me	単結合	0	127~129 (エタノールーn-ヘキサン)			
5 4	CH ₂ =CH-C ₂ H ₄	Me0 Me0 Me0	Н	単結合	0	104~106 (酢酸エチルーn -ヘキサン)			
		<u> </u>							

第 2 表 (続き)

実施 例Na.	R1	R ²	R3	A	n	融 点 (℃) (再結晶溶媒)
5 5	Et-O-CH ₂ -	Me0 Me0 Meo	Н	単結合	0	138~140 (酢酸エチル-n-ヘキサン)
5 6	Me	Me0 Me0 Me0	Н	単結合	0	163~165 (クロロホルムー酢酸エチル)
5 7	Me	Me0 Me0 Me0	Н	単結合	0	166~168 (酢酸エチル-n-ヘキサン)
5 8	Me-	MeO MeO MeO	Н	単結合	0	193~195 (塩化メチレンーヴェチルエーテル)
5 9	MeMe	MeO MeO MeO	Н	単結合	0	174~176 (塩化メチレンーシエチルエーテル)
6 0	Me Me	Me0 Me0 Me0	Н	単結合	0	203~205 (塩化メチレンーシエチルエーテル)
6 1	OMe	Me0 Me0 Me0	Н	単結合	0	175~177 (塩化メチレン-酢酸エチル)
6 2	MeO	Me0 Me0 Me0	Н	単結合	0	192~194 (塩化メチレンーシエチルエーテル)
6 3	MeO _	Me0 Me0 Me0	Н	単結合	0	181~183 (塩化メチレンーシェチルエーテル)
6 4	Me0 Me0	Me0 Me0 Me0	Н	単結合	0	224~226 (塩化メチレンージェチルェーテル)
6 5	Me0 Me0 Me0	Me0 Me0 Me0	Н	単結合	0	214~216 (塩化メチレンージェチルエーテル)

第 2 表 (続き)

実施 例No.	R1	R ²	R3	A	n	融 点 (℃) (再結晶溶媒)
6 6	C1	Me0 Me0 Meo	Н	単結合	0	190~192 (塩化メチレンーシエチルエーテル)
6 7	C1	Me0 Me0 Me0	Н	単結合	0	222~224 (クロロホルムー酢酸エチル)
68	C1	Me0 Me0 Me0	Н	単結合	0	193~195 (クロロホルムー酢酸エチル)
6 9		Me0 Me0 Me0	Н	単結合	0	189~191 (塩化メチレンーÿエチルエーテル)
7 0		Me0 Me0 Me0	Н	単結合	0	174~176 (塩化メチレン-酢酸エチル)
7 1	T _s	Me0 Me0 Me0	Н	単結合	0	191~193 (塩化メチレンーシェチルェーテル)
7 2	T _s	Me0 Me0 Me0	Н	単結合	0	198~200 (塩化メチレン-酢酸エチル)
7 3	S CH ₂ -	Me0 Me0 Me0	Н	単結合	0	157~159 (酢酸エチル)
7 4	n B u	Me0 H0 Me0	Н	単結合	0	159~161 (エタノールーn-ヘキサン)
7 5	n B u	Me0 Et0- Me0	Н	単結合	0	79~81 (シエチルエーテルーnーヘキサン)
7 6	n B u	MeO nBuO MeO	Н	単結合	0	98~100 (n-ヘキサン)

第 2 表 (続き)

実施 例No.	R1	R2	R3	A	n	融 点 (℃) (再結晶溶媒)
77	n B u	PhCH ₂ 0 Me0	Н	単結合	0	82~85 (エタノールーn-ヘキサン)
78	n B u	Me0 Ac0- Me0	Н	単結合	0	158~160 (酢酸エチル-n-ヘキサン)
7 9	n B u	Me0 Br Me0	Н	単結合	0	182~184 (酢酸エチル-n-ヘキサン)
8 0	n B u	MeO C1	Н	単結合	0	132~135 (酢酸エチル-n-ヘキサン)
8 1	n B u	MeO C1	Н	単結合	0	111~113 (シェチルェーテルーn-ヘキサン)
8 2	Ме	CF ₃	Н	単結合	0	154~155 (エタノール-n-ヘキサン)
83	nPr	CF ₃	Н	単結合	0	139~141 (シェチルェ-テル- n - ヘキサン)
8 4	<u></u>	CF ₃	Н	単結合	0	102~104 (n-ヘキサン)
8 5	n P e	CF ₃	Н	単結合	0	93~95 (n-ヘキサン)
8 6	Ρh	CF ₃	Н	単結合	0	143~145 (シェチルェ-テルーnーヘキサン)
8 7	n B u	F ₃ C	Н	単結合	0	46~48 (酢酸エチル-n-ヘキサン)

第 2 表 (続き)

実施 例Na	R1	R ²	R3	А	n	融 点 (℃) (再結晶溶媒)
88	n B u	F ₃ C CF ₃	Н	単結合	0	108~110 (n-ヘキサン)
8 9	n B u	F ₃ C	Н	単結合	0	92. 5~94. 5 (n-ヘキサン)
90	n B u	NH ₂	Н	単結合	0	106~108 (n-ヘキサン)
91	n B u	NC —	Н	単結合	0	123~125 (エタノール-n-ヘキサン)
9 2	n B u		Н	単結合	0	123~125 (ジェチルエーテルー n ーヘキサン)
9 3	пВи	N	Н	単結合	0	139~140 (エタノールーn-ヘキサン)
9 4	n B u	Me0 Me0 Me0	Н	CH ₂	0	121~123 (酢酸エチル-n-ヘキサン)
9 5	n B u	Ph —	Н	-Сн=Сн-	0	194~196 (エタノール-n-ヘキサン)
9 6	n B u	Me0 Me0 Me0	Н	単結合	1	222 (分解) (エタノールーn -ヘキサン)
9 7	Ρh	Me0 Me0 Me0	Н	単結合	1	250 (分解) (メタノールーnーヘキサン)
98	n B u	CF ₃	Н	単結合	1	247 (分解) (エタノールーn -ヘキサン)

第 2 表 (続き)

実施 例Na	R ¹	R ²	R3	A	n	融 点 (℃) (再結晶溶媒)
9 9	P h	CF ₃	Н	単結合	1	263 (分解) (エタノールーn -ヘキサン)
100	СН ₃ -СН-С ₂ Н ₄ - ОН	Me0 Me0 Me0	Н	単結合	0	128~130 (塩化メチレン-n-ヘキサン)
101	СН ₃ -СН-С ₂ Н ₄ - ОН	MeO HO MeO	Н	単結合	0	153~155 (エタノールーn-ヘキサン)
102	СН ₃ -СН-С ₂ Н ₄ - ОН	PhCH ₂ 0—MeO	Н	単結合	0	127~129 (酢酸エチルーn-ヘキサン)

実施 例No.	R ¹	R ²	R3	R4	A	n	融 点 (℃) (再結晶溶媒)
103	n B u	Me0 Me0 Me0	Ме	C1	単結合	0	106~108 (エタノールーn-ヘキサン)
104	nВи	Me0 Me0 Me0	Н	C1	単結合	0	142~143 (エタノールーn-ヘキサン)
105	n B u	Me0 Me0 Me0	Н	Br	単結合	0	146~148 (エタノールーn-ヘキサン)
106	n B u	F ₃ C	Н	C1	単結合	0	133~135 (ヴェチルェーテルー n ーヘキサン)

第 表 $\begin{array}{cccc}
HN & (NH) & -Q-A-R^2 \\
R^5 & & & & \\
\end{array}$

R4 Me:メチル基、Et:エチル基、nBu:n-ブチル基、Ph:フェニル基

実施例No. R1 R5 R2 R3 R4 Q A n 融 点 (で (再結晶溶媒) 107 H H MeO — Me		· · · · · · · · · · · · · · · · ·	•••	, , , , ,	///æ\	, ,	141 C .	
108 nBu H MeO	実施 列No.	R4 Q A n 融 (再新	R3	R	R ²	R ⁵	R ¹	実施 例No.
109 nBu H MeO	107	H O 単 185 (塩/n-^	Н	→ H	MeO —	Н	Н	107
109 nBu H MeO	108	O 単 H	Me -	→ Me	MeO —	Н	n Bu	108
110 nBu H MeO nBu Me	109	H O 単 O (酢酯 n - ^	nBu) nl	MeO —	Н	nBu	109
111 nBu H MeO	110	Me	nBu	>_ n	MeO —	Н	n Bu	110
	111	H 結 O (塩化	Ph	> P	/	Н	nBu	111
112 nBu H MeO	112	PhCH ₂ - O 単 d	Ph Pl	>- P	MeO —	Н	nBu	112
113 nBu H MeO		PhS O 単 0 11 C 作的 C 合 C		>- P	MeO —	Н	nBu	1
114 nBu H MeO H nBu O 単 名 1~83 (n~~キサ)	114	nBu O 単 6 81~ C 合 O (n・	Н	>— I	MeO —	Н	nBu	114
115 nBu H MeO — H MeO — Me	115	Ph O 単 0 1.3 (酢) C 合 n	Н)— l	Me0	Н	nBu	115

第 4 表 (続き)

実施 例No.	R ¹	R5	R ²	R3	R4	Q	Α	n	融 点 (℃) (再結晶溶媒)
116	nBu	Ме	Me0 Me0 Me0	Н	Н	O C	単結合	0	145~147 (塩化メチレン- n-ヘキサン)
117	-сн ₂ сн ₂ сн ₂ с	H ₂ -	Me0 Me0 Me0	Н	Н	0=0	単結合	0	102~104 (塩化メチレン- n-ヘキサン)
118	Me-C-CH ₂ CH ₂ - 0	Н	Me0 Me0 Me0	Н	Н	0=0	単結合	0	115~117 (塩化メチレンー n-ヘキサン)
119	Et-S-CH ₂ -	Н	MeO MeO MeO	Н	Н	0=0	単結合	0	80~82 (酢酸エチルー n-ヘキサン)
120	MeS-CH ₂ CH ₂ -	Н	MeO MeO MeO	Н	Н	0=C	単結合	0	113~115 (塩化メチレン- ジエチルエーテル)
121	PhS-	H	MeO MeO MeO	Н	Н	O=C	単結合	0	179~181 (塩化メチレンー ジエチルエーテル)
122	nBu	Н	Br _	Н	Н	0=0	単結合	0	98~100 (ジェチルエーテノレ)
123	nBu	Н	-CD-OCF3	Н	Н	O=C	単結合	0	73~75 (n-ヘキサン)
124	nBu	Н	F3C CF3	Н	Н	O == C	単結合	0	129~131 (n-ヘキサン)
1 2 5	nBu	Н		Н	Н	0 II C	単結合	0	91~93 (ジエチルエーテル n-ヘキサン)
1 2 6	nBu	Н		Н	Н	0 C	単結合	0	91~93 (n-ヘキサン)

第 4 表 (続き)

実施 例No.	R ¹	R5	R ²	R3	R4	Q	Α	n	融 点(℃) (再結晶溶媒)
127	nBu	Н	Ρh	Н	Н	so ₂	単結合	0	300℃以上 (酢酸エチルー nーヘキサン)
128	nBu	H	C1 C1	Н	Н	so ₂	単結合	0	300℃以上 (酢酸エチルー nーヘキサン)

Me:メチル基、nBu:n-ブチル基

実施 例No.	R ¹	R5	R ²	R3	R4	R6	A	融 点 (℃) (再結晶溶媒)
129	nBu	Н	Me0 Me0 Me0	Н	Н	Me	単結合	93~95 (酢酸エチルー n-ヘキサン)
130	nBu	Н	Me0 Me0 Me0	Н	Н	Ph-CH ₂ -	単結合	1H-NMR(CDCl ₃) 0.76(3H,t,J=7.2), 0.9-1.1(2H,m),1.3- 1.4(2H,m), 2.51(2H, t,J=7.4), 3.47(6H, s), 3.74(3H,s), 5.33(2H,brs), 5.83 (1H,s), 6.60(2H,s), 6.68(1H,d,J=2.0), 7.1-7.3(5H,m), 8.24(1H,d,J=2.0)
131	nBu	Н	MeO MeO MeO	Н	Н	OMe -C	単結合	127~129 (酢酸エチルー n-ヘキサン)
132	nBu	Н	CI	Н	Н	0 -C- C1	単結合	119~121 (ジエチルエーテル -n-ヘキサン)
133	Me	Н	Me0 Me0 Me0	Н	·H	O OMe	単結合	180~182 (塩化メチレン- n-ヘキサン)
1 3 4	nBu	Н	CF ₃	Н	Н	0 -C- CF ₃	単結合	111~113 (ジエチルエーテル -n-ヘキサン)

以下、本発明化合物につき行なわれた薬理試験例及び本発明化合物を利用した医薬製剤の調整例を挙げる。 薬理試験例1

6 週齢ウィスター系雄性ラット1群7匹を用い、まず 5 各ラットの左後肢足蹠の疼痛閾値を圧刺激鎮痛効果測定 装置(ユニコム社製)を用いて、ランダール・セリット 法 [Randall, L. O. and Sellitto, J. J., Arch. Int. Pharmacodyn., 111, 409 (1957)] に準じて測定した。得

10 上記前値の測定1時間後に、20%イースト懸濁液を 各ラットの左後肢足蹠皮下に0.1mlずつ注射し、実 験群には、更に本発明化合物の5%アラビアゴム懸濁液 を、対照群にば5%アラビアゴム懸濁液(本発明化合物 を含まない)を、それぞれイースト注射直後に、10

られた値を「前値」とする。

ml/kgの割合で、経口投与した。

次に、イースト注射より1時間毎に、各群ラットの左 後肢足蹠の疼痛閾値を上記と同様にして測定して、これ を「後値」とした。

各群の測定値(後値)と前値より、疼痛閾値回復率 20 (%)を、次式に従って算出した。

得られた結果(最大の回復率)を下記第6表に示す。

第 6 表

		•					
多 JNo.	回復率	投与量	測定時	例No.	回復率	投与量	測定時
	(%)	(m g / k g)	(hr 後)		(%)	(mg/kg)	(hr後)
1	41. 5	3	3	77	41.6	1	3
7	44. 1	3	4	7 9	32.1	1	3
1 4	51.6	3	4	8 8	76.4	3	4
19	53. 9	3	3	9 2	39. 7	1	3
21	54.0	3	4	9 3	32.6	1	4
23	45. 1	3	1	9 4	31. 3	1	3
3 2	43.0	3	3	9 6	35.0	1	2
3 6	32. 7	1	3	9 7	51. 5	1	4
48	52. 2	1	3	104	78. 5	3	3
5 2	79.6	3	3	111	62.0	3	4
5 4	55.7	1	4	115	61.0	3	4
5 5	73.7	3	3	120	63.8	3	4
6 9	38.7	1	3	121	46.2	3	3
70	36.8	1	3	127	36.4	1	3
7 4	43.9	1.	2	134	1 1 5 . 4	3	3
7.6	57.6	1	2				

薬理試験例2

6 週齢ウィスター系雄性ラット 1 群 7 匹を用い、まず各ラットの左後肢足蹠の疼痛閾値を圧刺激鎮痛効果測定装置 (ユニコム社製)を用いて、ランダール・セリット法 (Randall, L. O. and Sellitto, J. J., Arch. Int. Pharmacodyn., 111, 409 (1957)) に準じて測定した。得られた値を「前値」とする。

上記前値の測定1時間後に、実験群には、更に本発明化合物の5%アラビアゴム懸濁液を、対照群には5%アラビアゴム懸濁液(本発明化合物を含まない)を、それぞれ10ml/kgの割合で、投与量が1mg/kgとなるように経口投与し、更にその1時間後にサブスタンスPの生理食塩水溶液(25ng/0.1ml)を、各ラットの左後肢足蹠皮下に注射した。

15 次にサブスタンスP注射の所定時間後に、各群ラット の左後肢足蹠の疼痛閾値を上記と同様にして測定して、 これを「後値」とした。

各群の測定値(後値)と前値より、疼痛閾値回復率 (%)を、次式に従って算出した。

得られた結果(最大の回復率)を下記第7表に示す。

第 7 表

			界	1	衣	_		
例No.	回復率	測定時	例No.	回復率	測定時	梦 JNo.	回復率	測定時
	(%)			(%)			(%)	
1	72. 3	60分後	29	56. 2	3 0 分後	91	53. 1	30分後
2	40. 2	60分後	3 2	86.6	60分後	9 5	38. 4	15分後
3	33. 3	3 0 分後	33	90.1	3 0 分後	96	1 0 2 . 0	60分後
5	51. 9	3 0 分後	3 4	58. 2	60分货	103	35. 0	30分後
7	52. 3	60分後	3 5	102.5	60分後	104	63.5	60分後
8	83. 9	60分後	38	67. 2	15分後	111	62.1	30分後
9	56. 2	60分後	41*	67.4	3 0 分後	1 1 2	37.9	15分後
11	48.8	60分後	42	51.8	6 0 分後	113	44.4	15分後
12	58.8	60分後	44	44. 1	3 0 分後	1 1 5	55.6	3 0 分後
13	32. 7	15分後	4 5	54.8	15分後	117	37. 2	30分後
1 4	69. 5	15分後	4 6	109.0	3 0 分後	1 1 8	33. 5	30分後
1 6	35. 1	3 0 分後	48	80.4	60分後	1 1 9	38. 1	15分後
17	95. 9	6 0 分後	5 0	53.0	30分货	1 2 0	71.4	60分後
1 9	91. 7	60分後	5 2	65. 1	30分货	1 2 1	73.3	60分後
2 0	33.8	3 0 分後	5 3	58. 7	30分後	1 2 2	30.6	60分後
2.1	81. 3	60分後	6 5	32. 0	3 0 分後	1 2 3	32. 5	30分後
2 2	54.4	60分後	8 0	30.4	15分後	1 2 4	53.8	15分後
2 3	52. 9	30分後	8 1	31. 2	15分後	1 2 5	33. 7	30分後
2 4	41. 3	60分後	8 8	59. 5	60分後	1 2 9	39. 7	60分後
2 5	46. 0	15分後	8 9	33. 3	15分後	1 3 3	36.4	60分货
2 6	55. 8	3 6 0 分後	9 0	53.	30分後	1 3 4	1 0 0 . 7	60分货

*:投与量=10mg/kg

上記第6表及び第7表より、本発明化合物は、優れた 鎮痛作用を奏することが明らかである。

製剤例1 錠剤の調製

有効成分として実施例1で得た本発明化合物を用いて、 5 1錠当りその300mgを含有する錠剤(2000錠) を、次の処方により調製した。

実施例1で得た本発明化合物 乳糖(日本薬局方品)

コーンスターチ (日本薬局方品) 33g

10 カルボキシメチルセルロースカルシウム (日本薬局方品)

2 5 g

6 0 0 g

6 7 g

メチルセルロース (日本薬局方品) 1 2 g ステアリン酸マグネシウム (日本薬局方品) 3 g

即ち、上記処方に従い、実施例1で得た本発明化合物、 乳糖、コーンスターチ及びカルボキシメチルセルロース カルシウムを充分混合し、メチルセルロース水溶液を用 いて混合物を顆粒化し、24メッシュの篩を通し、これ をステアリン酸マグネシウムと混合して、錠剤にプレス して、目的の錠剤を得た。

20 製剤例2 カプセル剤の調製

有効成分として実施例32で得た本発明化合物を用いて、1カプセル当りその200mgを含有する硬質ゼラ

チンカプセル(2000錠)を、次の処方により調製した。

4 0 0 g 実施例32で得た本発明化合物 6 0 g 結晶セルロース(日本薬局方品) コーンスターチ (日本薬局方品) 3 4 g 5 4 g タルク (日本薬局方品) ステアリン酸マグネシウム (日本薬局方品) 2 g 即ち、上記処方に従い、各成分を細かく粉末にし、均 一な混合物となるように混和した後、所望の寸法を有す る経口投与用ゼラチンカプセルに充填して、目的のカプ 10 セル剤を得た。

産業上の利用可能性

本発明に係わるピラゾロ〔1, 5 - a〕ピリミジン誘導体は、強い鎮痛作用を示し鎮痛剤として有用である。

15

20

請 求 の 範 囲

1. 一般式

$$\begin{array}{c}
R 6 \\
N - (N H) \\
R 5 \\
N - N \\
N - N \\
R 4
\end{array}$$
(1)

[式中、R¹は水素原子、置換基としてチエニル基、 低級アルコキシ基、低級アルキルチオ基、オキソ基 又はヒドロキシル基を有することのある低級アルキ ル基、シクロアルキル基、チエニル基、フリル基、 低級アルケニル基又は置換基として低級アルキル基、 低級アルコキシ基、フェニルチオ基及びハロゲン原 子から選ばれる基の1~3個を有することのあるフ ェニル基を、R²はナフチル基、シクロアルキル基、 フリル基、チエニル基、ハロゲン原子で置換される ことのあるピリジル基、ハロゲン原子で置換される ことのあるフェノキシ基又は置換基として低級アル キル基、低級アルコキシ基、ハロゲン原子、ニトロ 基、ハロゲン置換低級アルキル基、ハロゲン置換低 級アルコキシ基、低級アルコキシカルボニル基、ヒ ドロキシル基、フェニル低級アルコキシ基、アミノ

10

15

基、シアノ基、低級アルカノイルオキシ基、フェニ .ル基及びジ低級アルコキシホスホリル低級アルキル 基から選ばれる基の1~3個を有することのあるフ ェニル基を、R³は水素原子、フェニル基又は低級 アルキル基を、R⁴は水素原子、低級アルキル基、 低級アルコキシカルボニル基、フェニル低級アルキ ル基、置換基としてフェニルチオ基を有することの あるフェニル基又はハロゲン原子を、R®は水素原 子又は低級アルキル基を、R°は水素原子、低級ア ルキル基、フェニル低級アルキル基又は置換基とし て低級アルコキシ基、ハロゲン置換低級アルキル基 及びハロゲン原子から選ばれる基の1~3個を有す るベンゾイル基を示し、またR¹及びR⁵は互いに 結合して低級アルキレン基を形成してもよく、Qは カルボニル基又はスルホニル基を、Aは単結合、低 級アルキレン基又は低級アルケニレン基をそれぞれ 示し、nは0又は1を示す。].

で表わされるピラゾロ〔1, 5-a〕ピリミジン誘導体。

20 2. 請求項1に記載の一般式中、Qがカルボニル基で、 nが0である化合物、Qがカルボニル基で、nが1で あり且つR¹が低級アルキル基又はフェニル基、R²

が置換基として低級アルコキシ基及びハロゲン置換低級アルキル基から選ばれる基の1~3個を有するフェニル基、R³、R⁴、R⁵及びR゚がそれぞれ水素原子及びAが単結合を示す化合物、並びにQがスルホニル基でnが0であり且つR¹が低級アルキル基、R²がハロゲン原子の1~3個を有することのあるフェニル基、R³、R⁴、R⁵及びR゚がそれぞれ水素原子及びAが単結合を示す化合物から選ばれるピラゾロ〔1,5~a〕ピリミジン誘導体。

- 10 3. R¹が置換基として低級アルキルチオ基を有することのある低級アルキル基又は置換基としてフェニルチオ基を有することのあるフェニル基で、R²が置換基として低級アルコキシ基、ハロゲン原子及びハロゲン置換低級アルキル基から選ばれる基の1~3個を有するフェニル基で、R³が水素原子、ハロゲン原子又はフェニル基で、R³が水素原子で、R°が水素原子又は置換基としてハロゲン置換低級アルキル基を有するベンゾイル基で、Qがカルボニル基で、Aが単結合である請求項2に記載のピラゾロ〔1,5-a〕ピリミジン誘導体。
 - 4. R^3 、 R^4 及び R^6 がそれぞれ水素原子で、nが 0 であって、 R^1 がn ブチル基で且つ R^2 が低級ア

10

15

20

ルコキシ基の2~3個を有するフェニル基又はハロゲン置換低級アルキル基の1~2個を有するフェニル基であるか、或はR¹がフェニル基で且つR²が低級アルコキシ基の3個を有するフェニル基である請求項3に記載のピラゾロ[1,5-a]ピリミジン誘導体。

- 5. R²が2,4-ジメトキシフェニル基、3,4, 5-トリメトキシフェニル基、2-トリフルオロメチ ルフェニル基又は2,5-ビス(トリフルオロメチル) フェニル基である請求項4に記載のピラゾロ〔1,5 - a〕ピリミジン誘導体。
- 6. 5-n-ブチル-7-(3, 4, 5-トリメトキシベンゾイルアミノ)ピラゾロ[1, 5-a]ピリミジン及び5-n-ブチル-7-(2-トリフルオロメチルベンゾイルアミノ)ピラゾロ[1, 5-a]ピリミジンから選ばれる請求項5に記載のピラゾロ[1, 5-a]ピリミジン誘導体。
 - 7. 5-n-ブチル-7-(3, 4, 5-トリメトキ シベンゾイルアミノ)ピラゾロ〔1, 5-a〕ピリミ ジンである請求項6に記載のピラゾロ〔1, 5-a〕 ピリミジン誘導体。
 - 8. 請求項 1 ~ 7 のいずれかに記載のピラゾロ〔1, 5 - a〕ピリミジン誘導体の有効量を、製剤担体と共

に含有することを特徴とする鎮痛剤。

- 9. 有効成分が、請求項7に記載のピラゾロ〔1, 5 a〕ピリミジン誘導体である請求項8に記載の鎮痛剤。
- 5 10. 請求項1に記載のピラゾロ〔1, 5-a〕ピリミジン誘導体の有効量を患者に投与することを特徴とする鎮痛方法。

10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/01104

A. CLA	SSIFICATION OF SUBJECT MATTER									
Int.	C16 C07D487/04, A61K31/505	31/645	İ							
According to	o International Patent Classification (IPC) or to both n	ational classification and IPC								
B. FIELDS SEARCHED										
	cumentation searched (classification system followed by									
	Cl ⁶ C07D487/04, A61K31/505									
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)										
CAS ONLINE										
C. DOCU	MENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
Y	JP, 43-25504, B1 (Shionogi November 4, 1968 (04. 11.	& Co., Ltd.), 68)(Family: none)	1 - 9							
Y	1 - 9									
Y	JP, 61-57587, A (Shionogi & Co., Ltd.), March 24, 1986 (24. 03. 86) (Family: none)									
Y	JP, 204877, A (Otsuka Pharming.), September 6, 1991 (06. 09.		1 - 9							
		n e	ē							
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.								
"A" docume to be of "E" earlier of "L" docume	 Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is 									
special "O" docume means	cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "O" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art									
the pric	ority date claimed	"&" document member of the same pater								
	actual completion of the international search y 14, 1995 (14. 07. 95)	Date of mailing of the international se August 1, 1995 (0								
Name and r	mailing address of the ISA/	Authorized officer								
	anese Patent Office									
Facsimile N		Telephone No.								

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/01104

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 10 because they relate to subject matter not required to be searched by this Authority, namely: Claim 10 relates to methods for treatment of the human body
by	therapy.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. CL6 C07D487/04, A61K31/505, 31/645

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. CL6 C07D487/04, A61K31/505, 31/645

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 43-25504, B1(塩野義製薬株式会社)。 4. 11月, 1968(04, 11, 68)(ファミリーなし)	1 — 9
Y	JP, 48-64097, A(インターナショナル・ケミカル・ アンド・ニュークリア・コーポレイション), 5. 9月, 1973(05, 09, 73) &DE, 2257547, A&US, 3925385, A	1 — 9
Y	JP, 61-57587, A(塩野義製薬株式会社),	1 - 7

✔ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって出願と 矛盾するものではなく、発明の原理又は理論の理解のため に引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	24. 3月. 1986(24. 03. 86)(ファミリーなし)	
Y	JP, 3-204877, A(株式会社 大塚製薬工場), 6. 9月, 1991(06, 09, 91)(ファミリーなし)	1 — 9

第1個 請求の範囲の一部の調査ができないときの意見(第1ページの1の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. 10 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
人の身体の治療による処置方法である。
2. 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願 の部分に係るものである。つまり、
3. [請求の範囲 は、従属請求の範囲であってPCT規則 6.4 (a) の第2文及び第3文の規定に従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの2の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について 作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の 納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の 請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明 に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意