Devoir à la maison $n^{\circ}01$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I -

I.1 Soit $(s, t) \in \mathbb{R}^2$.

$$E(s)E(t) = \left(I + sA + \frac{s^2}{2}A^2\right)\left(I + tA + \frac{t^2}{2}A^2\right) = I + (s+t)A + \left(\frac{s^2}{2} + st + \frac{t^2}{2}\right)A^2 + \frac{st^2 + s^2t}{2}A^3 + \frac{s^2t^2}{2}A^4$$

Or $A^3 = 0$ et donc $A^4 = 0$. Finalement

$$E(s)E(t) = I + (s+t)A + \left(\frac{s^2}{2} + st + \frac{t^2}{2}\right)A^2 = I + (s+t)A + \frac{(s+t)^2}{2}A^2 = E(s+t)$$

I.2 Soit $t \in \mathbb{R}$. Alors $E(0 \times t) = E(0) = I = E(t)^0$. Supposons qu'il existe $n \in \mathbb{N}$ tel que $E(nt) = E(t)^n$. Alors, d'après la question **I.1**,

$$E((n+1)t) = E(nt+t) = E(nt)E(t) = E(t)^nE(t) = E(t)^{n+1}$$

Par récurrence, $E(nt) = E(t)^n$ pour tout $n \in \mathbb{N}$.

- **I.3** Soit $t \in \mathbb{R}$. D'après la question **I.1**, $E(t)E(-t) = E(0 \times t) = E(0) = I$. Ainsi E(t) est inversible et $E(t)^{-1} = E(-t)$.
- **I.4** Soit $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $\lambda I + \mu A + \nu A^2 = 0$. En multipliant cette égalité par A^2 , on obtient $\lambda A^2 + \mu A^3 + \nu A^4 = 0$ et donc $\lambda = 0$ puisque $A^2 \neq 0$ et $A^3 = A^4 = 0$. On a donc $\mu A + \nu A^2 = 0$. En multipliant cette égalité par A, on obtient $\mu A^2 + \nu A^3 = 0$ et donc $\mu = 0$ puisque $A^2 \neq 0$ et $A^3 = 0$. Il reste $\nu A^2 = 0$ et donc $\nu = 0$ puisque $A^2 \neq 0$. Finalement, $\lambda = \mu = \nu = 0$, ce qui prouve la liberté de (I, A, A^2) .
- **I.5** Les questions **I.1** et **I.3** montrent que E est un morphisme du groupe $(\mathbb{R}, +)$ dans le groupe $(GL_p(\mathbb{R}), \times)$. Il nous suffit donc de déterminer le noyau de E. Or

$$t \in \text{Ker E} \iff E(t) = I \iff I + tA + \frac{t^2}{2}A^2 = I \iff tA + \frac{t^2}{2}A^2 = 0 \iff t = 0$$

car (A, A^2) est libre comme sous-famille de la famille libre (I, A, A^2) . Ainsi Ker $E = \{0\}$ et donc E est injective. **Remarque.** Si on ne sait pas ce qu'est un morphisme de groupes, on montre l'injectivité «comme d'habitude». Soit $(s,t) \in \mathbb{R}^2$ tel que E(s) = E(t). On a donc $I + sA + \frac{s^2}{2}A^2 = I + tA + \frac{t^2}{2}A^2$. Comme la famille (I, A, A^2) est libre, on peut «identifier» les coefficients. Notamment s = t.

I.6 Remarquons que $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $A^3 = 0$. On est donc bien dans les conditions de cette partie. Pour tout $t \in \mathbb{R}$,

$$E(t) = I + tA + \frac{t^2}{2}A^2 = \begin{pmatrix} 1 & t & \frac{t^2}{2} \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

Partie II -

- **II.1** La matrice de $f-2\operatorname{Id}_{\mathbb{R}^2}$ dans \mathcal{B}_0 est $\begin{pmatrix} 2 & -6 \\ 1 & -3 \end{pmatrix}$. On trouve alors $F=\operatorname{Ker}(f-2\operatorname{Id}_{\mathbb{R}^2})=\operatorname{vect}(u)$ avec u=(3,1). La matrice de $f-\operatorname{Id}_{\mathbb{R}^2}$ dans \mathcal{B}_0 est $\begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$. On trouve alors $G=\operatorname{Ker}(f-\operatorname{Id}_{\mathbb{R}^2})=\operatorname{vect}(v)$ avec v=(2,1). F et G sont bien des droites vectorielles. Comme u et v sont non colinéaires, $\mathcal{B}=(u,v)$ est libre et est donc une base de \mathbb{R}^2 puisque dim $\mathbb{R}^2=2$. Ceci prouve que $F\oplus G=\mathbb{R}^2$.
- **II.2** Puisque $u \in \text{Ker}(f 2 \operatorname{Id}_{\mathbb{R}^2})$, f(u) = 2u. De même, $v \in \text{Ker}(f \operatorname{Id}_{\mathbb{R}^2})$ donc f(v) = v. Par conséquent, la matrice de f dans la base \mathcal{B} est $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.
- **II.3** En notant P la matrice de passage de la base \mathcal{B}_0 vers la base \mathcal{B} et D la matrice de f dans la base \mathcal{B} , on a bien $A = PDP^{-1}$. On a vu à la question **II.2** que $D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. De plus, $P = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$. Un calcul simple montre que $P^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$.
- **II.4** Puisque le produit de deux matrices diagonales est une matrice diagonale dont les coefficients diagonaux sont les produits des coefficients diagonaux, $D^n = \begin{pmatrix} 2^n & 0 \\ 0 & 1 \end{pmatrix}$.

On a clairement $PD^0P^{-1} = I = A^0$. Supposons qu'il existe $n \in \mathbb{N}$ tel que $A^n = PD^nP^{-1}$. Alors

$$A^{n+1} = AA^n = PDP^{-1}PD^nP^{-1} = PDD^nP^{-1} = PD^{n+1}P^{-1}$$

Par récurrence, $A^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$.

Un calcul donne alors, $A^n = \begin{pmatrix} 3.2^n - 2 & 6 - 6.2^n \\ 2^n - 1 & 3 - 2^{n+1} \end{pmatrix}$.

Partie III -

III.1 Soit $t \in \mathbb{R}$ et $n \in \mathbb{N}$. La fonction exponentielle est de classe \mathcal{C}^{n+1} sur \mathbb{R} . On peut donc appliquer l'inégalité de Taylor-Lagrange à la fonction exponentielle entre 0 et t à l'ordre n et on obtient

$$\left| e^t - \sum_{k=0}^n \frac{t^k}{k!} \right| \le \frac{M_n |t|^{n+1}}{(n+1)!}$$

où $\mathbf{M}_n = \sup_{[0,t]} |\exp^{(n+1)}|$. Or $\exp^{(n+1)} = \exp$ et exp est positive donc $\mathbf{M}_n = \sup_{[0,t]} \exp$; en particulier, \mathbf{M}_n ne dépend

pas de n. Ainsi $\lim_{n \to +\infty} \frac{M_n |t|^{n+1}}{(n+1)!} = 0$ et le théorème des gendarmes permet alors d'affirmer que $\lim_{n \to +\infty} e^t - \sum_{k=0}^n \frac{t^k}{k!} = 0$

0 ou encore $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{t^k}{k!} = e^t$.

Remarque. Rigoureusement, il faudrait écrire [t,0] au lieu de [0,t] lorsque t est négatif.

III.2 A l'aide de la question II.4,

$$a_n(t) = 3 \sum_{k=0}^{n} \frac{(2t)^k}{k!} - 2 \sum_{k=0}^{n} \frac{t^k}{k!}$$

$$b_n(t) = 6 \sum_{k=0}^{n} \frac{t^k}{k!} - 6 \sum_{k=0}^{n} \frac{(2t)^k}{k!}$$

$$c_n(t) = \sum_{k=0}^{n} \frac{(2t)^k}{k!} - \sum_{k=0}^{n} \frac{t^k}{k!}$$

$$d_n(t) = 3 \sum_{k=0}^{n} \frac{t^k}{k!} - 2 \sum_{k=0}^{n} \frac{(2t)^k}{k!}$$

III.3 En utilisant III.1, on obtient

$$a(t) = 3e^{2t} - 2e^t$$
 $b(t) = 6e^t - 6e^{2t}$ $c(t) = e^{2t} - e^t$ $d(t) = 3e^t - 2e^{2t}$

III.4 Il suffit de poser
$$Q = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$$
 et $R = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$.

III.5 On a $Q^2 = Q$, $R^2 = R$ et QR = RQ = 0. q et r sont des projecteurs.

On a Ker Q =
$$\operatorname{vect}\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 et $\operatorname{Im} Q = \operatorname{vect}\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ et donc $\operatorname{Ker} q = \operatorname{vect}(v) = G$ et $\operatorname{Im} q = \operatorname{vect}(u) = F$. q est donc le projecteur sur F parallèlement à G.

On a Ker R =
$$\operatorname{vect}\left(\begin{pmatrix} 3 \\ 1 \end{pmatrix}\right)$$
 et Im R = $\operatorname{vect}\left(\begin{pmatrix} 2 \\ 1 \end{pmatrix}\right)$ et donc Ker $r = \operatorname{vect}(u) = F$ et Im $r = \operatorname{vect}(v) = G$. r est donc le projecteur sur G parallèlement à F.

Remarque. On aurait aussi pu remarquer que Q + R = I et donc que $q + r = Id_{\mathbb{R}^2}$, ce qui aurait permis de conclure directement quant à la nature de r.

III.6 Soit $(s, t) \in \mathbb{R}^2$.

$$E(s)E(t) = (e^{2s}Q + e^{s}R)(e^{2t}Q + e^{t}R)$$

$$= e^{2s+2t}Q^{2} + e^{s+t}R^{2} + e^{2s+t}QR + e^{s+2t}RQ$$

$$= e^{2(s+t)}Q + e^{s+t}R = E(s+t)$$

$$car Q^2 = Q, R^2 = R et QR = RQ = 0.$$

On prouve alors comme à la question **I.1** que $E(t)^n = E(nt)$ pour tout $(t, n) \in \mathbb{R} \times \mathbb{N}$ et que E(t) est inversible d'inverse E(-t) pour tout $t \in \mathbb{R}$.

A nouveau E est un morphisme du groupe $(\mathbb{R}, +)$ dans $(GL_2(\mathbb{R}), \times)$. Soit $t \in \text{Ker E}$. On a donc $e^{2t}Q + e^tR = I$. En multipliant par Q, on obtient $e^{2t}Q = Q$ car $Q^2 = Q$ et QR = 0. Comme $Q \neq 0$, $e^{2t} = 1$ et t = 0. Ainsi Ker $E = \{0\}$ et E est injectif.

REMARQUE. A nouveau, si on ne sait pas ce qu'est un morphisme de groupes, on se donne $(s,t) \in \mathbb{R}^2$ tel que E(s) = E(t). On a donc $e^{2s}Q + e^sR = e^{2t}Q + e^tR$. En multipliant par Q, on ontient $e^{2s}Q = e^{2t}Q$ puis $e^{2s} = e^{2t}$ car $Q \neq 0$ et enfin s = t par injectivité de l'exponentielle.

Problème 2

Partie I – Résolution d'une première équation différentielle

- **I.1** Les solutions de l'équation caractéristique associée à (E_1) sont évidemment 2i et -2i. Les solutions de l'équation différentielle (E₁) sont les fonctions $t \mapsto \lambda \cos(2t) + \mu \sin(2t)$ avec $(\lambda, \mu) \in \mathbb{R}^2$.
- I.2 Les solutions de l'équation caractéristique associée à (E_2) sont évidemment 2 et -2. Les solutions de l'équation différentielle (E₂) sont les fonctions $t \mapsto \lambda e^{2t} + \mu e^{-2t}$ avec $(\lambda, \mu) \in \mathbb{R}^2$.
- I.3 On a montré que l'ensemble des solutions de (E₂) était

$$\mathcal{S} = \left\{ t \mapsto \lambda e^{2t} + \mu e^{-2t}, \ (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

On veut montrer que c'est également

$$S' = \{t \mapsto \lambda \operatorname{ch}(2t) + \mu \operatorname{sh}(2t), \ (\lambda, \mu) \in \mathbb{R}^2 \}$$

Soit donc $f \in \mathcal{S}$. Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que $f(t) = \lambda e^{2t} + \mu e^{-2t}$ pour tout $t \in \mathbb{R}$. En posant $A = \frac{\lambda + \mu}{2}$ et

 $B = \frac{\lambda - \mu}{2}, f(t) = A \operatorname{ch}(2t) + \mu \operatorname{sh}(2t) \text{ pour tout } t \in \mathbb{R} \text{ donc } f \in \mathcal{S}'.$ Réciproquement, soit $f \in \mathcal{S}'$. Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que $f(t) = \lambda \operatorname{ch}(2t) + \mu \operatorname{sh}(2t)$ pour tout $t \in \mathbb{R}$. En posant $A = \frac{\lambda + \mu}{2}$ et $B = \frac{\lambda - \mu}{2}, f(t) = Ae^{2t} + Be^{-2t}$ pour tout $t \in \mathbb{R}$ donc $f \in \mathcal{S}$. Par double inclusion, $\mathcal{S} = \mathcal{S}'$.

Remarque. Si on a déjà vu la structure d'espace vectoriel, on peut raisonner de manière plus élégante. On constate que S = vect(f, g) avec $f: t \mapsto e^{2t}$ et $g: t \mapsto e^{-2t}$. Posons également $h: t \mapsto \text{ch}(2t)$ et $k: t \mapsto \text{sh}(2t)$. Puisque $f = h + k \in \text{vect}(h, k)$ et $g = h - k \in \text{vect}(h, k)$, $\text{vect}(f, g) \subset \text{vect}(h, k)$. De même, $h = \frac{1}{2}(f + g) \in \text{vect}(f, g)$ et $k = \frac{1}{2}(f - g)$ donc $\text{vect}(h, k) \subset \text{vect}(f, g)$. Par double inclusion, $\mathcal{S} = \text{vect}(f, g) = \text{vect}(h, k)$.

Partie II - Résolution d'une seconde équation différentielle par changement de variable

- II.4 cos est deux fois dérivable sur $]0, \pi[$ à valeurs dans]-1, 1[et f est deux fois dérivable sur]-1, 1[donc $g = f \circ \arccos$ est deux fois dérivable sur $]0, \pi[$.
- **II.5** Puisque g est deux fois dérivable sur $]0,\pi[$, on montre successivement que pour tout $x \in]-1,1[$,

$$f(x) = g(\arccos(x))$$

$$f'(x) = -(1 - x^2)^{-\frac{1}{2}} g'(\arccos(x))$$

$$f''(x) = -x(1 - x^2)^{-\frac{3}{2}} g'(\arccos(x)) + (1 - x^2)^{-1} g''(\arccos(x))$$

f est solution de (F) sur]-1,1[si et seulement si

$$\forall x \in]-1,1[, (1-x^2)f''(x)-xf'(x)+4f(x)=0$$

Or d'après ce qui précède, pour tout $x \in]-1,1[$,

$$xf'(x) = -x(1-x^2)^{-\frac{1}{2}}g'(\arccos(x))$$
$$(1-x^2)f''(x) = -x(1-x^2)^{-\frac{1}{2}}g'(\arccos(x)) + g''(\arccos(x))$$

Ainsi f est-elle solution de (F) sur]-1,1[si et seulement si

$$\forall x \in]-1,1[, g''(\arccos(x)) + 4g(\arccos(x)) = 0$$

Puisque $\arccos(]-1,1[)=]0,\pi[$, cette dernière condition équivaut à

$$\forall t \in]0,\pi[,\ g''(t)+4g(t)=0$$

Pour résumer, f est solution de (F) sur] – 1, 1[si et seulement si g est solution de (E₁) sur]0, π [.

II.6 On a déterminé à la question **I.1** les solutions de (E_1) sur \mathbb{R} et donc a fortiori sur $]0,\pi[$. On en déduit que les solutions de (F) sur]-1,1[sont les fonctions

$$x \mapsto \lambda \cos(2\arccos(x)) + \mu \sin(2\arccos(x))$$

avec $(\lambda, \mu) \in \mathbb{R}^2$. Or pour tout $x \in]-1, 1[$,

$$\cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1$$

$$\sin(2\arccos(x)) = 2\cos(\arccos(x))\sin(\arccos(x)) = 2x\sqrt{1 - x^2}$$

Les solutions de (F) sur]-1,1[sont donc les fonctions

$$x \mapsto \lambda(2x^2 - 1) + 2\mu x\sqrt{1 - x^2}$$

Partie III - La fonction argument cosinus hyperbolique

- III.7 La fonction ch est strictement croissante et continue sur \mathbb{R}_+ . De plus, ch(0) = 1 et $\lim_{+\infty}$ ch = $+\infty$ donc ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$.
- **III.8** Soit $x \in [1, +\infty[$. Posons $\theta = \operatorname{argch}(x)$. On sait que $\operatorname{sh}^2(\theta) = \operatorname{ch}^2(\theta) 1 = x^2 1$. De plus, $\theta \in \mathbb{R}_+$ par définition de argch. Ainsi $\operatorname{sh} \theta \geq 0$. Finalement, $\operatorname{sh}(\operatorname{argch}(x)) = \operatorname{sh}(\theta) = \sqrt{x^2 1}$.
- III.9 La fonction ch est dérivable sur \mathbb{R}_+^* et sa dérivée sh ne s'annule pas sur cet intervalle. En tant que bijection réciproque de la bijection induite par ch de \mathbb{R}_+ sur $[1, +\infty[$, argch est dérivable sur $\mathrm{ch}(\mathbb{R}_+^*) =]1, +\infty[$. De plus, pour tout $x \in]1, +\infty[$,

$$\operatorname{argch}'(x) = \frac{1}{\operatorname{ch}'(\operatorname{argch}(x))} = \frac{1}{\operatorname{sh}(\operatorname{argch}(x))} = \frac{1}{\sqrt{x^2 - 1}}$$

III.10 C'est du calcul bête et méchant. Soit $\theta \in \mathbb{R}$.

$$2 \operatorname{ch}^{2}(\theta) - 1 = 2 \left(\frac{e^{\theta} + e^{-\theta}}{2} \right)^{2} - 1 = \frac{e^{2\theta} + e^{-2\theta} + 2}{2} - 1 = \frac{e^{2\theta} + e^{-2\theta}}{2} = \operatorname{ch}(2\theta)$$
$$2 \operatorname{ch}(\theta) \operatorname{sh}(\theta) = 2 \frac{e^{\theta} - e^{-\theta}}{2} \cdot \frac{e^{\theta} - e^{-\theta}}{2} = \frac{(e^{\theta})^{2} - (e^{-\theta})^{2}}{2} = \frac{e^{2\theta} - e^{-2\theta}}{2} = \operatorname{sh}(2\theta)$$

III.11 Par définition de la fonction argch, ch(argch x) = x pour tout $x \in [1, +\infty[$. Par ailleurs, on a vu que sh(argch(x)) = $\sqrt{x^2 - 1}$ pour tout $x \in [1, +\infty[$. On en déduit que pour tout $x \in [1, +\infty[$,

$$\operatorname{ch}(2\operatorname{argch}(x)) = 2\operatorname{ch}^{2}(\operatorname{argch}(x)) - 1 = 2x^{2} - 1$$

$$\operatorname{sh}(2\operatorname{argch}(x)) = 2\operatorname{ch}(\operatorname{argch}(x))\operatorname{sh}(\operatorname{argch}(x)) = 2x\sqrt{x^{2} - 1}$$

Partie IV - Un problème de raccord

IV.12 Soit f une fonction deux fois dérivable sur $]1, +\infty[$. Alors $g = f \circ ch$ est deux fois dérivable sur \mathbb{R}_+^* et, pour tout $x \in]1, +\infty[$, on a successivement

$$f(x) = g(\operatorname{argch}(x))$$

$$f'(x) = (x^2 - 1)^{-\frac{1}{2}} g'(\operatorname{argch}(x))$$

$$f''(x) = -x(x^2 - 1)^{-\frac{3}{2}} g'(\operatorname{arccos}(x)) + (x^2 - 1)^{-1} g''(\operatorname{arccos}(x))$$

Or f est solution de (F) sur]1, $+\infty$ [si et seulement si

$$\forall x \in]1, +\infty[, (1-x^2)f''(x) - xf'(x) + 4f(x) = 0$$

Or d'après ce qui précède, pour tout $x \in]1, +\infty[$,

$$xf'(x) = x(x^2 - 1)^{-\frac{1}{2}}g'(\operatorname{argch}(x))$$
$$(1 - x^2)f''(x) = -(x^2 - 1)f''(x) = x(x^2 - 1)^{-\frac{1}{2}}g'(\operatorname{argch}(x)) - g''(\operatorname{argch}(x))$$

Ainsi f est-elle solution de (F) sur $]1, +\infty[$ si et seulement si

$$\forall x \in]1, +\infty[, -g''(\operatorname{argch}(x)) + 4g(\operatorname{argch}(x)) = 0$$

Puisque $\operatorname{argch}(]1, +\infty[) = \mathbb{R}_+^*$, cette dernière condition équivaut à

$$\forall t \in \mathbb{R}_+^*, \ g''(t) - 4g(t) = 0$$

Pour résumer, f est solution de (F) sur $]1, +\infty[$ si et seulement si g est solution de (E_2) sur \mathbb{R}_+^* . La question **I.3** montre alors que les solutions de l'équation différentielle de (F) sur $]1, +\infty[$ sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda \operatorname{ch}(2\operatorname{argch}(x)) + \mu \operatorname{sh}(2\operatorname{argch}(x))$$

ou encore

$$x \in]1, +\infty[\mapsto \lambda(2x^2 - 1) + 2\mu x\sqrt{x^2 - 1}]$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

IV.13 Soit f une fonction deux fois dérivable sur $]-\infty,-1[$. Alors $g:x\mapsto f(-x)$ est deux fois dérivable sur $]1,+\infty[$. De plus, pour tout $x\in]1,+\infty[$, g'(x)=-f'(-x) et g''(x)=f''(-x). f est solution de (F) sur $]-\infty,-1[$ si et seulement si

$$\forall x \in]-\infty, -1[, (1-x^2)f''(x) - xf'(x) + 4f(x) = 0$$

Ceci équivaut à

$$\forall x \in]1, \infty[, (1 - (-x)^2)f''(-x) - (-x)f'(-x) + 4f(-x) = 0$$

ou encore à

$$\forall x \in]1, \infty[, (1-x^2)f''(-x) + xf'(-x) + 4f(-x) = 0$$

et finalement à

$$\forall x \in]1, \infty[, (1 - x^2)g''(x) - xg'(x) + 4g(x) = 0$$

Finalement f est solution de (F) sur $]-\infty,-1[$ si et seulement si g est solution de (E₂) sur $]1,+\infty[$. On en déduit que les solutions de (F) sur $]-\infty,-1[$ sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda(2(-x)^2 - 1) + 2\mu(-x)\sqrt{(-x)^2 - 1}]$$

avec $(\lambda, \mu) \in \mathbb{R}^2$. On peut également affirmer que ce sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda(2x^2 - 1) + 2\mu x\sqrt{x^2 - 1}]$$

avec $(\lambda, \mu) \in \mathbb{R}^2$ puisque $-\mu$ décrit \mathbb{R} lorsque μ décrit \mathbb{R} .

IV.14 Soit f une solution de (F) sur \mathbb{R} . Remarquons qu'alors f est deux fois dérivable sur \mathbb{R} . En particulier, f et f' sont continues sur \mathbb{R} .

D'après, les questions précédentes il existe $(\lambda_-, \mu_-, \lambda_0, \mu_0, \lambda_+, \mu_+) \in \mathbb{R}^6$ tel que

$$\forall x \in]-\infty, -1[, f(x) = \lambda_{-}(2x^{2} - 1) + 2\mu_{-}x\sqrt{x^{2} - 1}$$

$$\forall x \in]-1, 1[, f(x) = \lambda_{0}(2x^{2} - 1) + 2\mu_{0}x\sqrt{1 - x^{2}}$$

$$\forall x \in]1, \infty[, f(x) = \lambda_{+}(2x^{2} - 1) + 2\mu_{+}x\sqrt{x^{2} - 1}$$

Par continuité de f en -1, $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x)$ et donc $\lambda_- = \lambda_0$. De même, par continuité de f en 1, $\lambda_0 = \lambda_+$. Finalement, $\lambda_- = \lambda_0 = \lambda_+$.

$$\forall x \in]-\infty, -1[, f'(x) = 4\lambda_{-}x + 2\mu_{-}\frac{2x^{2} - 1}{\sqrt{x^{2} - 1}}$$

$$\forall x \in]-1, 1[, f'(x) = 4\lambda_{0}x + 2\mu_{0}x\frac{1 - 2x^{2}}{\sqrt{1 - x^{2}}}$$

$$\forall x \in]1, \infty[, f'(x) = 4\lambda_{+}x + 2\mu_{+}\frac{2x^{2} - 1}{\sqrt{x^{2} - 1}}$$

MP Dumont d'Urville © Laurent Garcin

Par continuité de f' en -1 et 1, on obtient $\mu_-=\mu_0=\mu_+=0$ (sinon f' admettrait des limites infinies à gauche ou à droite en -1 ou 1).

On en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que $f(x) = \lambda(2x^2 - 1)$ pour tout $x \in \mathbb{R}$. Réciproquement, toute fonction $x \mapsto \lambda(2x^2 - 1)$ est évidemment solution de (F) sur \mathbb{R} .

En conclusion, les solutions de (F) sur \mathbb{R} sont exactement les fonctions $x \mapsto \lambda(2x^2 - 1)$.