

Cours Réseaux locaux Module 3:Les VLAN

M.-Bassem BEN SALAH (INSAT)

Commutation, Routage et Les essentiels du sans fil v7.0 (SRWE)

Objectifs de ce module

Titre du module: Protocoles et modèles

Module Objective: Expliquer comment les protocoles réseau permettent aux périphériques d'accéder aux ressources de réseau locales et distantes.

Titre du rubrique	Objectif du rubrique
Présentation des VLAN	Expliquer l'objectif du VLAN dans un réseau commuté.
VLAN dans un environnement à commutateurs multiples	Expliquer comment un commutateur transmet des trames en fonction de la configuration du VLAN dans un environnement à commutateurs multiples.
Configuration du VLAN	Configurer un port de commutateur à attribuer à un VLAN en fonction des conditions requises.
Trunks de VLAN	Configurer un port trunk sur un commutateur LAN.
Protocole DTP (Dynamic Trunking Protocol)	Configurer le protocole DTP (Dynamic Trunking Protocol).

Définitions des VLAN

Les VLAN sont des connexions logiques avec d'autres périphériques similaires.

Le placement de périphériques dans divers VLAN présente les caractéristiques suivantes:

- Fournir la segmentation des différents groupes de périphériques sur les mêmes commutateurs
- Fournir une organisation plus facile à gérer
 - Les diffusions, les multidiffusions et les monodiffusions sont isolées dans le VLAN individuel
 - Chaque VLAN aura sa propre plage d'adressage IP unique
 - Domaines de Diffusion Plus Petits

Définitions des VLAN (suite)

- Les VLANs permettent à un administrateur de segmenter les réseaux en fonction de facteurs tels que la fonction, l'équipe de projet ou l'application, quel que soit l'emplacement physique de l'utilisateur ou de l'appareil. Chaque VLAN est considéré comme un réseau logique distinct. Les appareils d'un VLAN se comportent comme s'ils se trouvaient chacun sur leur propre réseau indépendant, même s'ils partagent une infrastructure commune avec d'autres VLAN. N'importe quel port du commutateur peut appartenir à un VLAN.
- Les paquets de monodiffusion, de diffusion et de multidiffusion ne sont transférés et diffusés que vers les terminaux appartenant au VLAN d'où ils proviennent. Les paquets destinés à des périphériques qui n'appartiennent pas au VLAN doivent être transférés via un périphérique qui prend en charge le routage.
- Plusieurs sous-réseaux IP peuvent exister sur un réseau commuté, sans l'utilisation de plusieurs VLAN. Les diffusions de la couche 2, telles qu'une demande ARP, seront reçues par tous les périphériques du réseau commuté, même par ceux non prévus pour recevoir la diffusion!!!!
- Un VLAN crée un domaine de diffusion logique qui peut s'étendre sur plusieurs segments de réseau local physique. Les VLANs améliorent les performances réseau en divisant de vastes domaines de diffusion en domaines plus petits.
- Grâce aux VLANs, les administrateurs de réseau peuvent mettre en œuvre des politiques d'accès et de sécurité en fonction de groupes d'utilisateurs spécifiques. Chaque port de commutateur peut être attribué à un seul VLAN (à l'exception des ports connectés à un téléphone IP ou à un autre commutateur).

Avantages du concept de VLAN

Les avantages des VLAN sont les suivants:

Avantages	Description
Domaines de Diffusion Plus Petits	La division du réseau local réduit le nombre de domaines de diffusion
Sécurité optimisée	Seuls les utilisateurs du même VLAN peuvent communiquer ensemble
Efficacité accrue des IT	Les VLAN peuvent regrouper des appareils ayant des exigences similaires, par exemple professeurs contre étudiants
Réduction des coûts	Un commutateur peut prendre en charge plusieurs groupes ou VLAN
Meilleures performances	Les domaines de diffusion plus petits réduisent le trafic et améliorent la bande passante
Gestion simplifiée	Des groupes similaires auront besoin d'applications similaires et d'autres ressources réseau

Présentation des VLAN Types de VLAN

Les VLAN sont utilisés pour différentes raisons dans les réseaux modernes. Certains types de VLAN sont définis par les classes de trafic. D'autres types de VLAN sont définis par leur fonction spécifique.

VLAN par défaut

Le VLAN par défaut sur un commutateur Cisco est le VLAN 1. Par conséquent, tous les ports de commutateur sont sur le VLAN 1, sauf s'il est explicitement configuré pour être sur un autre VLAN. Par défaut, tout le trafic de contrôle de couche 2 est associé au VLAN 1.

Les faits importants à retenir à propos du VLAN 1 sont les suivants :

- Tous les ports sont attribués à VLAN 1 par défaut.
- Le VLAN natif est le VLAN 1 par défaut.
- Le VLAN de gestion est le VLAN 1 par défaut.
- Le VLAN 1 ne peut pas être renommé ni supprimé.

```
default
                                Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                Gi0/1, Gi0/2
1002 fddi-default
                                      act/unsup
1003 token-ring-default
                                      act/unsup
1004 fddinet-default
                                      act/unsup
1005 trnet-default
                                      act/unsup
```

Par exemple, dans la sortie show vlan brief, tous les ports sont actuellement attribués au VLAN 1 par défaut. Aucun VLAN natif n'est explicitement attribué et aucun autre VLAN n'est actif ; par conséquent, le VLAN natif est défini comme VLAN de gestion. Il s'agit d'un risque de sécurité!

Types de VLAN (Suite)

VLAN de données

• Les VLANs de données sont des VLAN configurés pour séparer le trafic généré par l'utilisateur. Les VLANs de données sont utilisés pour diviser un réseau en groupes d'utilisateurs ou de périphériques. Un réseau moderne aurait de nombreux VLANs de données en fonction des besoins de l'organisation. Notez que le trafic de gestion vocale et réseau ne doit pas être autorisé sur les VLANs de données.

VLAN natif

- Le trafic utilisateur à partir d'un VLAN doit être marqué avec son ID VLAN lorsqu'il est envoyé à un autre commutateur. Les **ports de trunk** sont utilisés entre les commutateurs pour prendre en charge la transmission du trafic balisé. Un port de trunk 802.1Q insère une balise de 4 octets dans l'en-tête de trame Ethernet pour identifier le VLAN auquel appartient la trame.
- Un commutateur peut également avoir à envoyer du trafic non balisé à travers un lien de trunk. Le trafic non marqué est généré par un commutateur et peut également provenir de périphériques hérités. Le port de Trunk 802.1Q place le trafic non étiqueté sur le VLAN natif. Le VLAN natif sur un commutateur Cisco est VLAN 1 (VLAN par défaut).
- Il est généralement recommandé de configurer le VLAN natif en tant que VLAN inutilisé, distinct du VLAN 1 et des autres VLAN. En fait, il n'est pas rare de dédier un VLAN fixe jouant le rôle de VLAN natif pour tous les ports trunk du domaine commuté..

Types de VLAN (Suite)

VLAN voix

- Un VLAN distinct est nécessaire pour prendre en charge la voix sur IP (VoIP). Le trafic VoIP requiert les éléments suivants :
 - bande passante consolidée pour garantir la qualité de la voix;
 - priorité de transmission par rapport aux autres types de trafic réseau ;
 - possibilité de routage autour des zones encombrées du réseau ;
 - délai inférieur à 150 ms sur tout le réseau.
- Pour remplir ces conditions, le réseau entier doit être conçu pour prendre en charge la voix sur IP.
- Dans la figure, le VLAN 150 est conçu pour acheminer le trafic vocal. L'ordinateur étudiant PC5 est connecté au téléphone IP Cisco et ce dernier est connecté au commutateur S3. L'ordinateur PC5 se trouve dans le VLAN 20 qui est utilisé pour les données des étudiants.

Types de VLAN (Suite)

VLAN de gestion

 Un VLAN de gestion est un VLAN de données configuré spécifiquement pour le trafic de gestion réseau, y compris SSH, Telnet, HTTPS, HHTP et SNMP. Par défaut, le VLAN 1 est configuré comme VLAN de gestion sur un commutateur de couche 2.

Définir les trunks de VLAN

Les VLAN ne seraient pas très utiles sans les trunks de VLAN. Les trunks VLAN permettent à tout le trafic VLAN de se propager entre les commutateurs. Cela permet aux périphériques connectés à différents commutateurs mais dans le même VLAN de communiquer sans passer par un routeur.

• Une agrégation est une liaison point à point entre deux périphériques réseau qui porte plusieurs VLAN. Un trunk de VLAN permet d'étendre les VLAN à l'ensemble d'un réseau. Cisco prend en charge la norme IEEE 802.1Q pour la coordination des trunks sur les interfaces Fast Ethernet,

Gigabit Ethernet et 10 Gigabit Ethernet.

 Un trunk VLAN n'appartient pas à un VLAN spécifique. Il s'agit d'un canal pour plusieurs VLAN entre les commutateurs et les routeurs.

Identification du VLAN avec une étiquette

- L'en-tête IEEE 802.1Q est de 4 octets
- Lorsque l'étiquette est créée, le FCS doit être recalculé.
- Lorsqu'elle est envoyée aux périphériques terminaux, cette étiquette doit être supprimée et le FCS doit être recalculé pour retourner à son numéro d'origine.

Champ d'étiquette VLAN 802.1Q	Fonction
Туре	 Champ de 2 octets avec hexadécimal 0x8100 Ceci est appelé TPID (Tag Protocol ID)
Priorité Utilisateur	Valeur de 3 bits prenant en charge
CFI (Canonical Format Identifier)	Identificateur de 1 bit qui prend en charge les trames Token Ring sur des liaisons Ethernet
ID de VLAN (VID)	 Numéro d'identification VLAN de 12 bits qui prend en charge jusqu'à 4096 ID de VLAN.

VLAN natifs et étiquetage 802.1Q

La norme IEEE 802.1Q spécifie un VLAN natif pour les liaisons de trunk, qui est par défaut VLAN 1. Lorsqu'une trame non balisée arrive sur un port de trunk, elle est attribué au VLAN natif. Les trames de gestion envoyées entre les commutateurs sont un exemple de trafic généralement non balisé. Si la liaison entre deux commutateurs est un trunk, le commutateur envoie le trafic non marqué sur le VLAN natif.

Trames marquées sur le VLAN natif

Certains périphériques prenant en charge le système de trunk ajoutent une étiquette VLAN au trafic VLAN natif. Le trafic de contrôle envoyé sur le VLAN natif ne doit pas être étiqueté. Si un port agrégé 802.1Q reçoit une trame étiquetée avec un ID de VLAN identique à celui du VLAN natif, il abandonne la trame. Par conséquent, lorsque vous configurez un port sur un commutateur Cisco, configurez les périphériques de sorte qu'ils n'envoient pas de trames étiquetées sur le VLAN natif. Les périphériques tiers qui prennent en charge les trames étiquetées sur le VLAN natif comprennent des téléphones IP, des serveurs, des routeurs et des commutateurs non-Cisco.

VLAN natifs et étiquetage 802.1Q

Trames non marquées sur le VLAN natif

Lorsqu'un port trunk du commutateur reçoit des trames non étiquetées (qui sont peu communes dans un réseau bien conçu), il transfère ces trames au VLAN natif. S'il n'existe aucun périphérique associé au VLAN natif et aucun autre port trunk, la trame est abandonnée. Le VLAN natif par défaut est le VLAN 1. Lorsque vous configurez un port trunk 802.1Q, un ID de VLAN (PVID) de port par défaut se voit attribuer la valeur de l'ID du VLAN natif. Tout le trafic non étiqueté entrant par le port 802.1Q ou en sortant est transféré en fonction de la valeur PVID. Par exemple, si le VLAN 99 est configuré en tant que VLAN natif, le PVID est 99 et tout le trafic non étiqueté est transféré au VLAN 99. Si le VLAN natif n'a pas été reconfiguré, la valeur PVID est définie sur le VLAN 1.

Exemple de vérification d'un VLAN voix

La commande **show interfaces fa0/18 switchport** peut nous montrer à la fois les VLAN de données et de voix attribués à l'interface.

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 20 (student)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: 150 (voice)
```


Configuration de VLAN Plages de VLAN sur les commutateurs Catalyst

Les commutateurs Catalyst 2960 et 3560 prennent en charge plus de 4000 VLAN.

Swit	ch# show vlan brie	f	
VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4
			Fa0/5, Fa0/6, Fa0/7, Fa0/8
			Fa0/9, Fa0/10, Fa0/11, Fa0/12
			Fa0/13, Fa0/14, Fa0/15, Fa0/16
			Fa0/17, Fa0/18, Fa0/19, Fa0/20
			Fa0/21, Fa0/22, Fa0/23, Fa0/24
			Gi0/1, Gi0/2
1002	fddi-default		act/unsup
1003	token-ring-default	t	act/unsup
1004	fddinet-default		act/unsup
1005	trnet-default		act/unsup

VLAN à gamme normale compris entre 1 et 1005	VLAN à gamme étendue compris entre 1006 et 4095
Utilisé dans les petites et moyennes entreprises	Utilisé par les Fournisseurs de Services
la plage entre 1002 et 1005 sont réservés aux VLAN anciens (Token Ring et FDDI)	Sont dans running-config
La plage entre 1, 1002 et 1005 sont créés automatiquement et ne peuvent pas être supprimés	Prend en charge moins de caractéristiques de VLAN
Stocké dans le fichier vlan.dat en flash	Configuration VTP requise
VTP peut synchroniser entre les commutateurs	

Commandes de création de VLAN

Les détails du VLAN sont stockés dans le fichier vlan.dat. Vous créez des VLAN en mode de configuration globale.

Tâche	Commande IOS
Passez en mode de configuration globale.	Switch# configure terminal
Créez un VLAN avec un numéro d'identité valide.	Switch(config)# vlan vlan-id
Indiquez un nom unique pour identifier le VLAN.	Switch(config-vlan)# name vlan-name
Repassez en mode d'exécution privilégié.	Switch(config-vlan) # end
Passez en mode de configuration globale.	Switch# configure terminal

Configuration de VLAN **Exemple de création de VLAN**

- Si le PC d'étudiant doit être en VLAN 20, nous allons d'abord créer le VLAN, puis le nommer.
- Si vous ne le nommez pas, le Cisco IOS lui donnera un nom par défaut de vlan et le numéro à quatre chiffres du VLAN. Par exemple, vlan 0020 pour VLAN 20.

Invite	Commande
S1#	Configure terminal
S1(config)#	vlan 20
S1(config-vlan)#	name student
S1(config-vlan)#	end

Commandes d'attribution de port à des VLAN

Une fois le VLAN est créé, nous pouvons alors l'attribuer aux interfaces correctes.

Tâche	Commande
Passez en mode de configuration globale.	Switch# configure terminal
Passez en mode de configuration d'interface.	Switch(config)# interface interface-id
Définissez le port en mode d'accès.	Switch(config-if)# switchport mode access
Affectez le port à un réseau local virtuel.	Switch(config-if)# switchport access vlan vlan-id
Repassez en mode d'exécution privilégié.	Switch(config-if)# end

Exemples d'attribution de port à des VLAN

Nous pouvons attribuer le VLAN à l'interface du port.

- Une fois le VLAN est attribué au périphérique, le périphérique final aura besoin des informations d'adresse IP pour ce VLAN
- Ici, le PC de l'étudiant reçoit 172.17.20.22

Invite	Commande
S1#	Configure terminal
S1(config)#	Interface fa0/18
S1(config-if)#	Switchport mode access
S1(config-if)#	Switchport access vlan 20
S1(config-if)#	end

VLAN de données et de voix

Un port d'accès ne peut être attribué qu'à un seul VLAN. Cependant, il peut également être attribué à un VLAN voix lorsqu'un téléphone et un périphérique terminal sont hors du même port de commutation.

Switchport must support VLAN traffic for:

- · Voice traffic to the IP phone
- · Data traffic to PC5

Exemple de VLAN de données et de voix

- Nous voulons créer et nommer à la fois les VLAN de données et de voix.
- En plus d'attribuer le VLAN de données, nous allons également attribuer le VLAN de voix et activer la QoS pour le trafic de voix à l'interface.
- Le commutateur catalyst le plus récent crée automatiquement le VLAN, s'il n'existe pas déjà, lorsqu'il est affecté à une interface.

Remarque: l'implémentation de la QoS dépasse le cadre de ce cours. lci, nous montrons l'utilisation de la commande mls qos trust [cos | device cisco-phone | dscp | ipprecedence].

```
S1(config) # vlan 20
S1(config-vlan) # name student
S1(config-vlan) # vlan 150
S1(config-vlan) # name VOICE
S1(config-vlan) # exit
S1(config-vlan) # exit
S1(config) # interface fa0/18
S1(config-if) # switchport mode access
S1(config-if) # switchport access vlan 20
S1(config-if) # mls qos trust cos
S1(config-if) # switchport voice vlan 150
S1(config-if) # end
```

```
% Access VLAN does not exist. Creating vlan 30
```

Vérifier les informations sur les VLAN

Utiliser la commande **show vlan** . La syntaxe complète est :

show vlan [brief | id vlan-id | name vlan-name | summary]

```
S1# show vlan summary
Number of existing VLANs : 7
Number of existing VTP VLANs : 7
Number of existing extended VLANS : 0
```

```
S1# show interface vlan 20
Vlan20 is up, line protocol is up
  Hardware is EtherSVI, address is 001f.6ddb.3ec1 (bia 001f.6ddb.3ec1)
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set

(Output omitted)
```

Tâche	Option de commande
Afficher une ligne pour chaque VLAN comportant le nom du VLAN, son état et ses ports.	brief
Afficher des informations sur un VLAN identifié par un ID de VLAN.	id vlan-id
Afficher des informations sur un VLAN identifié par un nom de VLAN. Le <i>nom de VLAn</i> est une chaîne ASCII de 1 à 32 caractères de long.	name vlan-name
Afficher les informations récapitulatives sur le VLAN.	summary

Modification de l'appartenance des ports aux VLAN

Il existe plusieurs façons de modifier l'appartenance des ports aux VLAN:

- saisissez à nouveau la commande switchport access vlan vlan-id
- utilisez la commande no switchport access vlan pour replacer l'interface sur VLAN 1

Utilisez les commandes show vlan brief ou show interface fa0/18 switchport pour vérifier l'association correcte de VLAN.

```
S1(config) # interface fa0/18
S1(config-if) # no switchport access vlan
S1(config-if)# end
S1#
S1# show vlan brief
VLAN Name
                          Status
                                     Ports
     default
                        active
                                  Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                  Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                  Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                  Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                  Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                  Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                  Gi0/1, Gi0/2
     student
                        active
1002 fddi-default
                        act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default
                        act/unsup
1005 trnet-default
                        act/unsup
```

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
```

Suppression de VLAN

Supprimez les VLAN avec la commande **no vlan** *vlan-id*.

Attention: Avant de supprimer un VLAN, réaffectez tous les ports membres à un autre VLAN.

- Supprimez tous les VLAN avec les commandes delete flash:vlan.dat ou delete vlan.dat.
- Rechargez le commutateur lors de la suppression de tous les VLAN.

Remarque: Pour restaurer la valeur par défaut d'usine, débranchez tous les câbles de données, effacez la configuration de démarrage et supprimez le fichier vlan.dat, puis rechargez le périphérique.

Commandes de configuration de trunk

Configurez et vérifiez les trunks VLAN. Les trunks sont de couche 2 et transportent le trafic pour tous les VLAN.

Tâche	Commande IOS
Passez en mode de configuration globale.	Switch# configure terminal
Passez en mode de configuration d'interface.	Switch(config)# interface interface-id
Réglez le port en mode de liaison permanent.	Switch(config-if)# switchport mode trunk
Choisissez un VLAN natif autre que le VLAN 1	Switch(config-if)# switchport trunk native vlan vlan-id
Indiquez la liste des VLAN autorisés sur la liaison trunk.	Switch(config-if)# switchport trunk allowed vlan <i>vlan-list</i>
Repassez en mode d'exécution privilégié.	Switch(config-if)# end

Exemple de configuration de trunk

Les sous-réseaux associés à chaque VLAN sont:

- VLAN 10 Faculté/Personnel -172.17.10.0/24
- VLAN 20 Étudiants 172.17.20.0/24
- VLAN 30 Invités 172.17.30.0/24
- VLAN 99 Natif 172.17.99.0/24

Le port F0/1 sur S1 est configuré en tant que port de trunk.

Remarque: Ceci suppose un commutateur 2960 utilisant l'étiquetage 802.1q. Les commutateurs de couche 3 nécessitent que l'encapsulation soit configurée avant le mode trunk.

Invite	Commande
S1(config)#	Interface fa0/1
S1(config-if)#	Switchport mode trunk
S1(config-if)#	Switchport trunk native vlan 99
S1(config-if)#	Switchport trunk allowed vlan 10,20,30,99
S1(config-if)#	end

Vérifier la configuration du trunk

Définissez le mode de trunk et le vlan natif.

Remarquez la commande **show interface fa0/1 switchport** :

- Est défini sur le trunk administrativement
- Est défini comme trunk opérationnel (fonctionnement)
- L'encapsulation est dot1q
- VLAN natif défini sur VLAN 99
- Tous les VLAN créés sur le commutateur transmettront le trafic sur ce trunk

```
S1(config) # interface fa0/1
S1(config-if) # switchport mode trunk
S1(config-if) # no switchport trunk native vlan 99
S1(config-if)# end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

Réinitialisation du trunk à l'état par défaut

- Réinitialisez les paramètres de trunk par défaut avec la commande "no".
 - Tous les VLAN sont autorisés à transmettre le trafic
 - VLAN natif = VLAN 1
- Vérifiez les paramètres par défaut à l'aide du commande show interface fa0/1 switchport.

```
S1(config) # interface fa0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if) # end
```

```
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1g
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

Réinitialisation du trunk à l'état par défaut (Suite)

Réinitialisez le trunk à un mode d'accès à l'aide de la commande **switchport mode access** :

- Est défini sur une interface d'accès administrativement
- Est défini comme une interface d'accès opérationnelle (fonctionnement)

```
S1(config) # interface fa0/1
S1(config-if) # switchport mode access
S1(config-if)# end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1g
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
(output omitted)
```


3.5 Protocole DTP (Dynamic Trunking Protocol)

Présentation au protocole DTP

Le protocole DTP (Dynamic Trunking Protocol) est un protocole de Cisco propriétaire.

Les caractéristiques de protocole DTP sont les suivantes:

- Activé par défaut sur les commutateurs Catalyst 2960 et 2950
- Dynamic-auto est par défaut sur les commutateurs 2960 et 2950
- Peut être désactivé avec la commande nonegotiate
- Peut être réactivé en réglant l'interface sur dynamic-auto
- La définition d'un commutateur sur un trunk statique ou un accès statique évitera les problèmes de négociation avec la commande switchport mode trunk ou switchport mode access.

```
S1(config-if) # switchport mode trunk
S1(config-if) # switchport nonegotiate
```

```
S1(config-if) # switchport mode dynamic auto
```

Modes d'interface négociés

La commande **switchport mode** comporte des options supplémentaires.

Utilisez la commande de configuration d'interface **switchport nonegotiate** pour arrêter la négociation DTP.

Option	Description		
access	Mode d'accès permanent et négocie pour convertir le lien voisin en un lien d'accès		
dynamic auto	l'interface devient un trunk si l'interface voisine est configurée en mode trunk inconditionnel ou souhaitable.		
dynamic desirable	Cherche activement à devenir un trunk en négociant avec d'autres interfaces automatiques ou souhaitables		
trunk	Mode de trunking permanent avec négociation pour convertir le liaison voisin en liaison trunk		

Résultats d'une configuration du protocole DTP

Les options de configuration du protocole DTP sont les suivantes:

	dynamic auto	dynamic desirable	Trunk	Acces
dynamic auto	Acces	Trunk	Trunk	Acces
dynamic desirable	Trunk	Trunk	Trunk	Accès
Trunk	Trunk	Trunk	Trunk	Connectivité limitée
Acces	Acces	Acces	Connectivité limitée	Acces

Vérifier le mode du protocole DTP

La configuration du protocole DTP par défaut dépend de la version et de la plateforme de Cisco IOS.

- Utilisez la commande show dtp interface pour déterminer le mode DTP actuel.
- La meilleure pratique recommande que les interfaces soient configurées pour l'accès ou le trunk et pour passer au PAO

```
S1# show dtp interface fa0/1
DTP information for FastEthernet0/1:
TOS/TAS/TNS: ACCESS/AUTO/ACCESS
TOT/TAT/TNT: NATIVE/NEGOTIATE/NATIVE
Neighbor address 1: C80084AEF101
Neighbor address 2: 000000000000
Hello timer expiration (sec/state): 11/RUNNING
Access timer expiration (sec/state): never/STOPPED
Negotiation timer expiration (sec/state): never/STOPPED
Multidrop timer expiration (sec/state): never/STOPPED
FSM state: S2:ACCESS
# times multi & trunk 0
Enabled: yes
In STP: no
```