### Relation between Permutation and Combination

Mathematical Relation:

Total count of characters in power set: power St = (1+1) = 2

$$2^{n} = n_{c_{\frac{1}{2}}} + n_$$

Since there are 2<sup>n</sup> terms, and 2 terms togeter gives 'n' char.

So, total number of chars in power set =  $((2^n)/2)^n = 2^n(n-1)^n$ 

Permuation and combination in terms of arranament:

Permuation: Arranging 'r' distinct items at 'n' positions. Eg. Arranging 2 distinct items(a,b) at 3 positions.  $3_{\frac{1}{2}} = 6$ Combination: Arranging 'r' identical items at 'n' positions. Eg. Arranging 2(i,i) at 3 positions  $3c_2 = 3$ 

permutation of 2 identical items at 3 positions nCr
$$\frac{\dot{\nu}}{2c_{1}} = \frac{\dot{\nu}}{\dot{\nu}} - \frac{\dot{\nu}}{\dot{\nu}}$$

$$\frac{\dot{\nu}}{\dot{\nu}} = \frac{\dot{\nu}}{\dot{\nu}} + \frac{\dot{\nu}}{\dot{\nu}} = \frac{\dot{\nu}}{\dot{\nu}}$$

Since r = 2, it means against each combination there will be r! copies(2!=2) of permuation.

### Approach for permuation tree formation:

- 1. By fixing the position and taking input elements as options
- 2.By fixing the input elemnt and taking pisitions as options
- 1A. By fixing the position and taking input elements as options where input\_count == position\_count
- Since ab acb bc-ca-cb-
- 2.By fixing the input elemnt and taking pisitions as options where input\_count <= position\_count</pre>



#### 1B. By fixing the position and taking input elements as options where input\_count < position\_count



EMPTY\_COUNT = POSITION\_COUNT - INPUT\_COUNT

## Approaches for Combination tree formation:

- 1. Pascal\_Identity based Include\_Exclude\_Tree tree by fixing position
- 2. Pascal\_Identity\_Expansion based Include\_Tree by fixing position
- Pascal\_Identity based Include\_Exclude\_Tree tree by fixing position where input\_count <= postion\_count</li>

Note: Position is fixed at each level, and include(i) & exclude(i) are taken as options i.e. branches



1. Pascal\_Identity based Include\_Exclude\_Tree tree by fixing position where input\_count <= postion\_count

power set by placing 'i' on n given position



2. Pascal\_Identity\_Expansion based Include\_Tree by fixing position where input\_count <= position\_count

# Power set by placing 'i' at 'n' given positions

In pascal identity Expansion strategy position is used for both:



## Relation between Permutation and Combination

Question: Print combination using prermuation strategy of fixing input and taking position as options

Note: If we allow only to place the input in lexicographic order, then we will get combinations from permutation strategy.

