Rotation Homework Problems:

p. 92: #37, 38, 39, 42, 43

Problems taken from the school's old textbook:

Giancoli, D. (1980). *Physics*, 2nd Ed. Englewood Cliffs, NJ: Prentice Hall.

Some helpful numbers and constants:

- $G = 6.67 \times 10^{-11} \text{ N}(\text{m}^2/\text{kg}^2)$
- Radius of the earth: 6.38x10⁶ meters
- Radius of the moon: 1.7x10⁶ meters
- Mean earth-sun distance: 1.50x10¹¹ meters
- Mass of the earth: 5.98x10²⁴ kg
 Mass of the moon: 7.4x10²² kg
- 37. A 15.0-kg monkey hangs from a cord suspended from the ceiling of an elevator. The cord can withstand a tension of 185 N, and breaks as the elevator accelerates upwards. What was the elevator's minimum acceleration (magnitude and direction)?
- 38. Calculate the speed of a satellite moving in a stable circular orbit about the earth at a height of 3200 km.
- 39. One of the moons of Jupiter discovered by Galileo has a rotational period of 1.44x10⁶ seconds and its average distance from the center of Jupiter is 1.9x10⁹ m. Using these facts, determine the mass of Jupiter.
- 42. At what height above the earth's surface must a satellite be placed if it is to remain over the same geographical point on the equator of the earth?
- 43. What is the apparent weight (include an indication of direction) of a 65-kg astronaut 4200 km from the center of the earth's moon in a space vehicle
 - a) moving at constant velocity
 - b) accelerating toward the moon at 3.6 m/s².

ANSWERS:

37. 2.53 m/s² upward

38. 6451 m/s

39. 1.96x10²⁷ kg

42. 3.59x10⁴ km

43a. 18.2 N, towards the moon

43b. 215.8 N away from the moon