Problem Set 1 ECON8825

Federico Rodari

October 1, 2022

1. The following table provides standard summary statistics about the variables in the data. The main

	Male	Female		Male	Female		Male	Female		Male	Female
Mean Lnw	2.909	2.648	Mean Hsd911	0.028	0.015	Mean We	0.208	0.188	Mean Married	0.742	0.657
Std Lnw	0.668	0.625	Std Hsd911	0.164	0.121	Std We	0.406	0.391	Std Married	0.438	0.475
Min Lnw	-7.470	-7.247	Min Hsd911	0.000	0.000	Min We	0	0	Min Married	0	0
Max Lnw	5.971	5.876	Max Hsd911	1.000	1.000	Max We	1	1	Max Married	1	1
Skewness Lnw	-0.882	-1.064	Skewness Hsd911	5.751	8.045	Skewness We	1.439	1.593	Skewness Married	-1.105	-0.664
Mean Widowed	0.003	0.014	Mean Hsg	0.270	0.217	Mean Exp1	18.910	18.553	Mean Ne	0.227	0.225
Std Widowed	0.056	0.119	Std Hsg	0.444	0.412	Std Exp1	8.608	8.971	Std Ne	0.419	0.417
Min Widowed	0	0	Min Hsg	0	0	Min Exp1	0	0	Min Ne	0	0
Max Widowed	1	1	Max Hsg	1	1	Max Exp1	43.500	42.500	Max Ne	1	1
Skewness Widowed	17.661	8.161	Skewness Hsg	1.038	1.370	Skewness Exp1	-0.053	-0.087	Skewness Ne	1.305	1.320
Mean Divorced	0.088	0.147	Mean Cg	0.275	0.294	Mean Exp2	4.317	4.247	Mean Sc	0.276	0.302
Std Divorced	0.283	0.354	Std Cg	0.447	0.456	Std Exp2	3.301	3.349	Std Sc	0.447	0.459
Min Divorced	0	0	Min Cg	0	0	Min Exp2	0	0	Min Sc	0	0
Max Divorced	1	1	Max Cg	1	1	Max Exp2	18.923	18.063	Max Sc	1	1
Skewness Divorced	2.911	1.990	Skewness Cg	1.005	0.904	Skewness Exp2	0.600	0.560	Skewness Sc	1.003	0.861
Mean Separated	0.013	0.021	Mean Ad	0.146	0.169	Mean Exp3	10.931	10.802	GroupCount	16690	12527
Std Separated	0.115	0.143	Std Ad	0.353	0.375	Std Exp3	11.119	11.126	-		
Min Separated	0	0	Min Ad	0	0	Min Exp3	0	0			
Max Separated	1	1	Max Ad	1	1	Max Exp3	82.313	76.766			
Skewness Separated	8.457	6.710	Skewness Ad	2.006	1.767	Skewness Exp3	1.112	1.064			
Mean Nevermarried	0.154	0.160	Mean Mw	0.285	0.301	Mean Exp4	29.529	29.249			
Std Nevermarried	0.361	0.367	Std Mw	0.451	0.459	Std Exp4	36.701	36.395			
Min Nevermarried	0	0	Min Mw	0	0	Min Exp4	0	0			
Max Nevermarried	1	1	Max Mw	1	1	Max Exp4	358.061	326.254			
Skewness Nevermarried	1.921	1.855	Skewness Mw	0.955	0.868	Skewness Exp4	1.593	1.534			
Mean Hsd08	0.005	0.003	Mean So	0.281	0.286	Mean Weight	1508.918	1520.404			
Std Hsd08	0.072	0.050	Std So	0.449	0.452	Std Weight	1006.623	1014.047			
Min Hsd08	0	0	Min So	0	0	Min Weight	106.790	125.180			
Max Hsd08	1	1	Max So	1	1	Max Weight	6444.150	5939.720			
Skewness Hsd08	13.663	19.710	Skewness So	0.977	0.947	Skewness Weight	0.734	0.629			

Table 1: Summary Statistics

takeaways are:

- Men have higher salaries on average.
- There are not substantial differences across the whole spectrum of educational attainment and experience.
- Males are relatively more represented in the sample.

2. The moments conditions are

$$F_{j}(y_{ij} \mid x_{ij}) = \Phi(x_{ij}\beta_{jk})$$

$$\mathbb{E}\left[1(y_{ij} \leq \tau) - \Phi(x'_{ij}\beta_{jk}) \mid x_{ij}\right] = 0$$

$$\mathbb{E}\left[1(y_{ij} \leq \tau) - \Phi(x'_{ij}\beta_{jk})m(x_{ij})\right] = 0$$

$$\mathbb{E}\left[\frac{\phi(x'_{ij}\beta_{jk})}{\Phi(x'_{ij}\beta_{jk})\left[1 - \Phi(x'_{ij}\beta_{jk})\right]}\left(1(y_{ij} \leq \tau) - \Phi(x'_{ij}\beta_{jk})\right)x_{ij}\right] = 0_{K\times 1}$$

$$\mathbb{E}\left[s(y_{ij}, x_{ij}) \mid \beta_{jk}\right] = 0_{K\times 1}$$

The unconditional moment condition is equivalent to the identification condition for MLE. It is computationally convenient to use MLE to estimate the Probit model.

Let K be the number of regressors, J the number of genders and T the number of quantiles at which the model is estimated. We have $K \times J \times T$ moments conditions to estimate $K \times J \times T$ parameters, therefore the model is exactly identified. On top of that, given the equivalence between GMM and MLE and given that MLE attains the Cramer-Rao lower bound, the moments conditions are efficient.

3. I report the difference of each coefficient x quantile between males and females

Figure 1: Distribution of $\Delta(\beta)$ Between Males and Females

By looking at the range of each coefficients, it is possible to see that there is substantial variation for each variable. At a first glance, there is a relatively symmetric distribution of the difference for each predictor.

4. We can use the following approximation

$$F(y)_{m|w} = \int_{x_w} F(y \mid x_w) dF_w(x_w)$$

$$= \int_{x_w} \Phi(x'_{iw}\beta_{my}) dF_w(x_w)$$

$$= \int_{x_w} \Phi(x'_{iw}\beta_{my}) f_w(x_w) dx_w$$

$$\approx \frac{1}{n_w} \sum_{x_w} \Phi(x'_{iw}\beta_{my})$$

and similarly for m|m and w|w, the unconditional

Figure 2: Counterfactual Distributions

5. The estimated price and composition effects are

Figure 3: Price and Composition Effects

We can see that the main driver is the price effect, namely the coefficients drive most of the variation between male and female wages.

6. I chose B = 100 to speed-up on computational time.

Figure 4: Bootstrap CDFs

7. The confidence bands around the price and the composition effects look like the following

Figure 5: Bootstrap CDFs

Given the small size of bootstrap replications, we might still observe a lot of noise in the confidence bands. From these results we can conclude that for low and high wages we cannot disentangle the price and the composition effect and moreover we cannot infer there is actually a statistical difference between male and females. The decomposition looks robust for wages in the middle of the distribution.