A Book of Abstract Algebra (2nd Edition)

Constructible point is the end point of given unit segment or it is intersection of two lines

determined by constructional points.			
Step 3 of 5			
		Step 3 of 5	

Consider the below figure:

Consider, the angles α , β are constructible from $\{O, I\}$

Then the lengths $\cos \alpha, \cos \beta$ are constructible.

If $(\cos \alpha, 0), (\cos \beta, 0)$ are constructible, then $\sin \alpha, \sin \beta$ are constructible, by using the identities

$$\sin \alpha = 1 - \cos^2 \alpha$$

$$\sin \beta = 1 - \cos^2 \beta$$

The lengths

 $\sin \alpha, \sin \beta$ is constructible.

Comment

Step 4 of 5

Consider

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

So,

 $\cos(\alpha + \beta), \cos(\alpha - \beta)$ are constructible from $\cos \alpha, \cos \beta$ and $\sin \alpha, \sin \beta$.

Then draw the perpendicular lines from $(\cos(\alpha+\beta),0),(\cos(\alpha-\beta),0)$ to circumference of unit circle and draw the line joining from origin. The angles making with x-axis are $\alpha+\beta,\alpha-\beta$.

Therefore, $\alpha + \beta, \alpha - \beta$ are also constructible.

.....

Comment

Step 5 of 5

If α is constructible, then bisecting the angle we will construct $\frac{\alpha}{2}$

Similarly, $n\alpha$ is also constructible by multiplication of angle with any integer.

Therefore, $\alpha + \beta, \alpha - \beta, \frac{1}{2}\alpha$ ans $n\alpha$ for any integer n are constructible, if α, β are constructible.

Hence, proved

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Honor Shield

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy