Since the matrix $R^{\top}LR$ is symmetric, it has real eigenvalues. Actually, since L is positive semidefinite, so is $R^{\top}LR$. Then the trace of $R^{\top}LR$ is equal to the sum of its positive eigenvalues, and this is the energy $\mathcal{E}(R)$ of the graph drawing.

If R is the matrix of a graph drawing in \mathbb{R}^n , then for any $n \times n$ invertible matrix M, the map that assigns $\rho(v_i)M$ to v_i is another graph drawing of G, and these two drawings convey the same amount of information. From this point of view, a graph drawing is determined by the column space of R. Therefore, it is reasonable to assume that the columns of R are pairwise orthogonal and that they have unit length. Such a matrix satisfies the equation $R^{\top}R = I$.

Definition 21.3. If the matrix R of a graph drawing satisfies the equation $R^{\top}R = I$, then the corresponding drawing is called an *orthogonal graph drawing*.

This above condition also rules out trivial drawings. The following result tells us how to find minimum energy orthogonal balanced graph drawings, provided the graph is connected. Recall that

$$L1 = 0$$
,

as we already observed.

Theorem 21.2. Let G = (V, W) be a weighted graph with |V| = m. If L = D - W is the (unnormalized) Laplacian of G, and if the eigenvalues of L are $0 = \lambda_1 < \lambda_2 \le \lambda_3 \le \ldots \le \lambda_m$, then the minimal energy of any balanced orthogonal graph drawing of G in \mathbb{R}^n is equal to $\lambda_2 + \cdots + \lambda_{n+1}$ (in particular, this implies that n < m). The $m \times n$ matrix R consisting of any unit eigenvectors u_2, \ldots, u_{n+1} associated with $\lambda_2 \le \ldots \le \lambda_{n+1}$ yields a balanced orthogonal graph drawing of minimal energy; it satisfies the condition $R^T R = I$.

Proof. We present the proof given in Godsil and Royle [77] (Section 13.4, Theorem 13.4.1). The key point is that the sum of the n smallest eigenvalues of L is a lower bound for $\operatorname{tr}(R^{\top}LR)$. This can be shown using a Rayleigh ratio argument; see Proposition 17.25 (the Poincaré separation theorem). Then any n eigenvectors (u_1, \ldots, u_n) associated with $\lambda_1, \ldots, \lambda_n$ achieve this bound. Because the first eigenvalue of L is $\lambda_1 = 0$ and because we are assuming that $\lambda_2 > 0$, we have $u_1 = 1/\sqrt{m}$. Since the u_j are pairwise orthogonal for $i = 2, \ldots, n$ and since u_i is orthogonal to $u_1 = 1/\sqrt{m}$, the entries in u_i add up to 0. Consequently, for any ℓ with $2 \le \ell \le n$, by deleting u_1 and using (u_2, \ldots, u_ℓ) , we obtain a balanced orthogonal graph drawing in \mathbb{R}^{ℓ} using $(u_1, u_2, \ldots, u_{\ell})$. Conversely, from any balanced orthogonal drawing in $\mathbb{R}^{\ell-1}$ using (u_2, \ldots, u_{ℓ}) , we obtain an orthogonal graph drawing in \mathbb{R}^{ℓ} using $(u_1, u_2, \ldots, u_{\ell})$ with the same energy. Therefore, the minimum energy of a balanced orthogonal graph drawing in \mathbb{R}^n is equal to the minimum energy of an orthogonal graph drawing in \mathbb{R}^{n+1} , and this minimum is $\lambda_2 + \cdots + \lambda_{n+1}$.

Since 1 spans the nullspace of L, using u_1 (which belongs to Ker L) as one of the vectors in R would have the effect that all points representing vertices of G would have the same