

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0971/41

Paper 4 Theory (Extended)

May/June 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

chlorine

diamond

ethanol

carbon dioxide

1 A list of substances is shown.

aluminium oxide

glucose	iron(III) oxide	limestone	nitrogen	oxygen
wer the questions ι	using the list of substa	nces.		
h substance may b	e used once, more tha	an once or not at	all.	
e which of the subs	stances:			
is a reactant in pho	otosynthesis			
				[1]
				F41
				[1]
are two products of	of fermentation			
		and		[2]
is used as a final				
is used as a luei				[41]
				[1]
is a gas used to co	nvert iron into steel			
				[1]
is a greenhouse gr	ne.			
is a greenhouse go				[11]
is a gas that is app	roximately 78% of cle	an, dry air		
				[1]
is a form of carbon				
is a form of carbon				[41
				[Total: 9]
	wer the questions to h substance may be the which of the substance is a reactant in photosis at the main constitution are two products of the substance is used as a fuel to consider the substance is a gas used to consider a greenhouse gas is a gas that is appointed to the substance of the substance is a gas that is appointed to the substance of	wer the questions using the list of substate h substance may be used once, more that e which of the substances: is a reactant in photosynthesis is the main constituent of bauxite are two products of fermentation is used as a fuel is a gas used to convert iron into steel is a greenhouse gas is a gas that is approximately 78% of cleaning is a form of carbon.	wer the questions using the list of substances. h substance may be used once, more than once or not at the which of the substances: is a reactant in photosynthesis is the main constituent of bauxite are two products of fermentation is used as a fuel is a gas used to convert iron into steel is a greenhouse gas is a gas that is approximately 78% of clean, dry air is a form of carbon.	wer the questions using the list of substances. h substance may be used once, more than once or not at all. e which of the substances: is a reactant in photosynthesis is the main constituent of bauxite are two products of fermentation is used as a fuel is a gas used to convert iron into steel is a greenhouse gas is a gas that is approximately 78% of clean, dry air

2	(a)	Atoms are made of protons, neutrons and electrons. Atoms of the same element are known as
		isotopes.

(i) Complete the table

particle	relative charge	relative mass
electron		1 1840
neutron		
proton	+1	

[2]

(ii) $^{24}_{12}$ Mg and $^{25}_{12}$ Mg are isotopes of magnesium.

Complete the table to show the numbers of electrons, neutrons and protons in these isotopes of magnesium.

isotope	number of electrons	number of neutrons	number of protons
²⁴ Mg			
²⁵ Mg			

[2	2]	

	(iii)	Explain why magnesium ions have a charge of 2+.	
			 [1]
(b)	Mg	²⁺ ions have the electronic structure 2,8.	
	Giv	re the formula of the following particles which have the same electronic structure as Ms.	g ²⁺
	•	a cation (positive ion)	
	•	an anion (negative ion)	
	•	an atom	
			[3]

[Total: 8]

This question is about sodium and compounds of sodium.

3

(a) (i)	Describe the bonding in a metallic element such as sodium.
	You may include a diagram as part of your answer.
	[3]
(ii)	Describe how solid sodium conducts electricity.
	[1]
(b) So	me properties of sodium chloride are shown:
•	melting point of 801 °C
•	non-conductor of electricity when solid conductor of electricity when molten
•	soluble in water.
(i)	Name the type of bonding in sodium chloride.
	[1]
(ii)	Explain why sodium chloride conducts electricity when molten.
	[1]

(c)	A student determines the concentration of a solution of dilute sulfuric acid, $\rm H_2SO_4$, by titrat with aqueous sodium hydroxide, NaOH.					
	ste	p 1	25.0 cm³ of 0.200 mol/dm³ NaOH is transferred into a conical flask.			
	ste	p 2	Three drops of methyl orange indicator are added to the conical flask.			
			A burette is filled with H ₂ SO ₄ .			
			The acid in the burette is added to the conical flask until the indicator changes colour. The volume of acid is recorded. This process is known as titration.			
	ste	p 5	The titration is repeated several times until a suitable number of results is obtained.			
	(i)		me the piece of apparatus used to measure exactly 25.0cm^3 of 0.200mol/dm^3 NaOH tep 1.			
			[1]			
	(ii)	Sta	te the colour change of the methyl orange indicator in step 4 .			
		fron	n to [1]			
((iii)	Sta	te how the student decides that a suitable number of results have been obtained.			
	/!\		[1]			
((iv)		Ocm ³ of H ₂ SO ₄ reacts with 25.0 cm ³ of 0.200 mol/dm ³ NaOH.			
		The	equation for the reaction is shown.			
			$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$			
		Cal	culate the concentration of H ₂ SO ₄ using the following steps.			
		•	Calculate the number of moles in 25.0 cm³ of 0.200 mol/dm³ NaOH.			
			mol			
		•	Determine the number of moles of H ₂ SO ₄ that react with the NaOH.			
			mol			
		•	Calculate the concentration of H ₂ SO ₄ .			
			mol/dm³ [3]			
			[Total: 12]			

4 This question is about compounds of sulfur.

(a)	Sulfuric acid, H ₂ SC	O ₄ , is manutactured	I using the Conta	act process. Thi	is manutacture i	nvolves
	four stages.					

stage 1 Molten sulfur burns in air to produce sulfur dioxide.

stage 2 Sulfur dioxide reacts with oxygen to form sulfur trioxide.

stage 3 Sulfur trioxide combines with concentrated sulfuric acid to form oleum, H₂S₂O₇.

stage 4 Oleum reacts to form concentrated sulfuric acid.

(i)	Write a chemica	I equation f	for the reaction	occurring in s	stage 1.	

(ii)	State the essential conditions that are necessary for stage 2 . Write an equation for the chemical reaction that occurs.

[4]	

.....[4]

(iii) Write a chemical equation for the reaction occurring in stage 3.

.....[1]

(iv) Name the substance that reacts with oleum in stage 4.

.....[1]

(b) Hydrogen sulfide has the formula H₂S.

(i) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of hydrogen sulfide. Show outer shell electrons only.

[2]

(ii) Balance the chemical equation for the reaction of hydrogen sulfide with sulfur dioxide shown.

....
$$H_2S + SO_2 \rightarrowS +H_2O$$
 [1]

[Total: 10]

Ethanoic acid is manufactured by the reaction of methanol with carbon monoxide.

5

An	equilibrium mixture is produ	ced.		
	CH ₃	$OH(g) + CO(g) \rightleftharpoons CH_3CC$	OOH(g)	
(a)	State two characteristics o	f an equilibrium.		
	1			
	2			
				[2]
(b)	The purpose of the industrion of reaction.	ial process is to produce a hi	gh yield of ethanoic acid at a h	igh rate
	The manufacture is carried	out at a temperature of 300	°C.	
	The forward reaction is exc	othermic.		
	Use this information to stat	e why the manufacture is no	t carried out at temperatures:	
	• below 300 °C			
	• above 300 °C.			
				[2
				[² .
(c)	Complete the table using of	only the words increases, dec	creases or no change.	
		effect on the rate of the forward reaction	effect on the equilibrium yield of CH ₃ COOH(g)	
	adding a catalyst		no change	
	decreasing the pressure			
		<u>I</u>		[3]
				[0]
(d)	Suggest which of the follow your answer.	ving metals is a suitable cata	alyst for the reaction. Give a rea	ason foi
	aluminium cald	cium cobalt magn	esium potassium	
	suitable catalyst			
	reason			[2]

(e)	Eth	anoic acid is a member of the homologous series of carboxylic acids.
	Sta	te the general formula of this homologous series.
		[1
(f)		w the structure of the carboxylic acid containing three carbon atoms. Show all of the atoms I all of the bonds.
		ro
		[2
(g)	Wh	en carboxylic acids react with alcohols, esters are produced.
	The	e formula of ester X is CH ₃ CH ₂ CH ₂ COOCH ₃ .
	(i)	Name ester X.
		[1
	(ii)	Give the name of the carboxylic acid and the alcohol that react together to produce ester X
		carboxylic acid
		alcohol
		[2
(h)	Est	er Y has the following composition by mass:
	C, 4	48.65%; H, 8.11%; O, 43.24%.
	Cal	culate the empirical formula of ester Y.
		empirical formula =[3

(i	Ester Z has the empirical formula C_2H_4O and a relative molecular mass of 88.
	Determine the molecular formula of ester Z .
	molecular formula =[1]
	[Total: 19]

6 This question is about zinc and its compound
--

(a)	Zinc is	extracted	from its	ore	which	is	mainly	zinc	sulfide.	ZnS.
-----	---------	-----------	----------	-----	-------	----	--------	------	----------	------

The steps for this extraction are shown.

step 1 Zinc sulfide is converted into zinc oxide.

step 2 The zinc oxide is then reduced to zinc in a furnace. The zinc formed becomes a gas.

step 3 The zinc gas is cooled to form molten zinc.

(i) Name the ore of zinc, which is mainly zinc sulfide.

.....[1]

(ii) Describe how zinc sulfide is converted into zinc oxide in step 1.

(iii) Name the reducing agent used in **step 2**.

.....[1]

(iv) Explain why the zinc forms a gas in step 2 inside the furnace.

.....[1]

(v) State the name of the physical change occurring when zinc gas is converted into molten zinc.

......[1]

(b) Zinc sulfate crystals, ZnSO₄•7H₂O, are hydrated.

Zinc sulfate crystals are made by reacting zinc carbonate with dilute sulfuric acid.

The equation for the overall process is shown.

$$ZnCO_3 + H_2SO_4 + 6H_2O \rightarrow ZnSO_4 \cdot 7H_2O + CO_2$$

step 1 Large pieces of solid zinc carbonate are added to dilute sulfuric acid until the zinc carbonate is in excess. This forms aqueous zinc sulfate.

step 2 The excess zinc carbonate is separated from the aqueous zinc sulfate.

step 3 The aqueous zinc sulfate is heated until a saturated solution is formed.

step 4 The saturated solution is allowed to cool and crystallise.

step 5 The crystals are removed and dried.

(i)	In step 1 , zinc carbonate is in excess when no more zinc carbonate dissolves.
	State one other observation that indicates the zinc carbonate is in excess in step 1 .
	[1]
(ii)	Name a different substance, other than zinc carbonate, that can be added to dilute sulfuric acid to produce aqueous zinc sulfate in step 1 .
	[1]
(iii)	Step 1 is repeated using powdered zinc carbonate instead of large pieces.
	All other conditions are kept the same.
	The rate of reaction increases.
	Give a reason why the rate of reaction increases. Explain your answer in terms of particles.
	[2]
(iv)	Suggest what is observed when the solution is saturated in step 3.
	[1]
(v)	The formula of zinc sulfate crystals is ZnSO ₄ •7H ₂ O.
	Give the formula of the solid formed if the crystals are heated to dryness in step 3 .
	[1]
	[Total: 11]

- 7 The Periodic Table can be used to classify elements.
 - (a) Group I elements react with cold water to form alkaline solutions.
 - (i) Place the Group I elements caesium, lithium, potassium, rubidium and sodium in their order of reactivity with water.

Put the most reactive element first.

mo	st reactive
	[1]
	(ii) Name the alkaline solution formed when caesium reacts with cold water.
	[1]
(b)	Group I elements have lower melting points than transition elements.
	Describe one other difference in the physical properties of Group I elements and transition elements.
	[1]
(c)	Group VII elements are known as the halogens.
	Astatine is below iodine in Group VII.
	Predict the physical state of astatine at room temperature and pressure.
	[1]
(d)	Some Group VII elements react with aqueous solutions containing halide ions.
	When aqueous chlorine is added to aqueous potassium bromide a reaction occurs.
	The ionic half-equations for the reaction are shown.
	$\mathrm{C}\mathit{l}_{2}(\mathrm{aq})$ + 2e ⁻ $ ightarrow$ 2C $\mathit{l}^{-}(\mathrm{aq})$
	$2Br^{-}(aq) \rightarrow Br_{2}(aq) + 2e^{-}$
	(i) Describe the colour change of the solution.
	original colour of potassium bromide solution

final colour of reaction mixture

[2]

(ii)	Identify the specie	es that is oxid	ised.	
	Explain your decis	sion.		
	species oxidised			
	explanation			
	охринации			[2]
			ade by the reaction betwe	en bromine and chlorine. The
		$Br_2(g)$	+ $Cl_2(g) \rightarrow 2BrCl(g)$	
		bond	bond energy in kJ/mol	
		Br–Br	190	
		Cl-Cl	242	
		Br–C1	218	
Cal	culate the overall e	energy change	e for the reaction using bon	d energies.
Use	e the following step	ıs		
•		amount of e	energy required to break the	e bonds in 1 mole of Br ₂ (g) and
				kJ
•	formed.	il amount of e	energy released when the b	onds in 2 moles of $BrCl(g)$ are
				kJ
•	Calculate the ove	rall energy ch	lange for the reaction.	
				kJ/mol [3]
				[Total: 11]
	Bro	Explain your decises species oxidised explanation Bromine monochloride chemical equation is seen to be seen the following step equation of Cl ₂ (g). Calculate the total of the following step equation of Cl ₂ (g).	Explain your decision. species oxidised	Explain your decision. species oxidised explanation

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	=	² H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	Ϋ́	krypton 84	54	Xe	xenon 131	98	R	radon			
				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	Αŧ	astatine -			
;	>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium –	116		livermorium –
;	>			7	z	nitrogen 14	15	凸	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209			
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	=			2	В	boron 11	13	<i>Y</i> 1	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204			
										30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
										59	D.	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
dn										28	z	nickel 59	46	Pd	palladium 106	78	₫	platinum 195	110	Ds	darmstadtium -
dnoıs										27	ပိ	cobalt 59	45	뫈	rhodium 103	77	Ļ	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1									iron 56		Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
				,						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					loc	ISS						chromium 52		Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	Op	dubnium –
				10	ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium -
							•			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			က	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	ВВ	rubidium 85	55	Cs	caesium 133	87	ъ́	francium –

7.1	Γn	Intetium	175	103	۲	lawrencium	ſ
	Υp	^				_	
69	Tm	thulium	169	101	Md	mendelevium	1
89	ш	erbinm	167	100	Fm	ferminm	1
29	웃	holmium	165	66	Es	einsteinium	1
99	۵	dysprosium	163	86	ర్	californium	1
65	Д	terbium	159	97	BK	berkelium	I
64	gq	gadolinium	157	96	Cm	curium	I
63	En	europium	152	92	Am	americium	ſ
62	Sm	samarium	150	94	Pn	plutonium	ſ
61	Pm	promethium	I	93	ď	neptunium	ſ
09	PN	neodymium	144	92	\supset	uranium	238
69	Ā	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	드	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	ſ

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).