14.581 International TradeLecture 10: Ricardo-Roy Model —

Today's Plan

- Overview
- 2 Log-supermodularity
- R-R model
- Oross-sectional predictions
- Omparative static predictions

1. Overview

Assignment Models in the Trade Literature

- Small but rapidly growing literature using assignment models in an international context:
 - Trade: Grossman Maggi (2000), Grossman (2004), Yeaple (2005), Ohnsorge Trefler (2007), Costinot (2009), Costinot Vogel (2010), Sampson (2014), Grossman Helpman Kircher (2013)
 - Offshoring: Kremer Maskin (2003), Antras Garicano Rossi-Hansberg (2006), Nocke Yeaple (2008), Costinot Vogel Wang (2013)
- What do these models have in common?
 - Factor allocation can be summarized by an assignment function
 - Large number of factors and/or goods
- What is the main difference between these models?
 - Matching: Two sides of each match in finite supply (as in Becker 1973)
 - Sorting: One side of each match in infinite supply (as in Roy 1951)

14.581 (Week 5) R-R Model (Theory) Fall 2018 4 / 37

This Lecture

- I will restrict myself to sorting models, e.g. Ohnsorge and Trefler (2007), Costinot (2009), and Costinot and Vogel (2010)
 - Production functions are linear, as in Ricardian model
 - But more than one factor per country, as in Roy model
 - Ricardo-Roy model
- Objectives:
 - Oescribe how these models relate to "standard" neoclassical models
 - Introduce simple tools from the mathematics of complementarity
 - Use tools to derive cross-sectional and comparative static predictions
- This is very much a methodological lecture. If you are interested in more specific applications, read the papers...

2. Log-Supermodularity

- **Definition 1** A function $g: X \to \mathbb{R}^+$ is log-supermodular if for all $x, x' \in X$, $g(\max(x, x')) \cdot g(\min(x, x')) \ge g(x) \cdot g(x')$
- Bivariate example:
 - ullet If $g:X_1 imes X_2 o \mathbb{R}^+$ is log-spm, then $x_1'\geq x_1''$ and $x_2'\geq x_2''$ imply

$$g(x_1',x_2')\cdot g(x_1'',x_2'') \geq g(x_1',x_2'')\cdot g(x_1'',x_2',).$$

• If g is strictly positive, this can be rearranged as

$$g(x_1', x_2') / g(x_1'', x_2') \ge g(x_1', x_2'') / g(x_1'', x_2'')$$
.

Results

- Lemma 1. $g, h: X \to \mathbb{R}^+$ log-spm \Rightarrow gh log-spm
- Lemma 2. $g:X \to \mathbb{R}^+$ log-spm $\Rightarrow G\left(x_{-i}\right) = \int_{X_i} g\left(x\right) dx_i$ log-spm
- Lemma 3. $g: T \times X \to \mathbb{R}^+ \ log\text{-spm} \Rightarrow x^*(t) \equiv \arg\max_{x \in X} g(t, x) \ increasing \ in \ t$

3. R-R Model

Basic Environment

- Consider a world economy with:
 - **1** Multiple countries with characteristics $\gamma \in \Gamma$
 - $oldsymbol{ ilde{Q}}$ Multiple goods or sectors with characteristics $\sigma \in \Sigma$
 - **1** Multiple factors of production with characteristics $\omega \in \Omega$
- Factors are immobile across countries, perfectly mobile across sectors
- Goods are freely traded at world price $p(\sigma) > 0$

Technology

Within each sector, factors of production are perfect substitutes

$$Q(\sigma, \gamma) = \int_{\Omega} A(\omega, \sigma, \gamma) L(\omega, \sigma, \gamma) d\omega,$$

- $A(\omega, \sigma, \gamma) \geq 0$ is productivity of ω -factor in σ -sector and γ -country
- A1 $A(\omega, \sigma, \gamma)$ is log-supermodular
- A1 implies, in particular, that:
 - **1** High- γ countries have a comparative advantage in high- σ sectors
 - 2 High- ω factors have a comparative advantage in high- σ sectors

14.581 (Week 5) R-R Model (Theory) Fall 2018 11 / 37

Factor Endowments

- $V(\omega, \gamma) \ge 0$ is inelastic supply of ω -factor in γ -country
- **A2** $V(\omega, \gamma)$ is log-supermodular
- A2 implies that: High- γ countries are relatively more abundant in high- ω factors
- Preferences will be described later on when we do comparative statics

14.581 (Week 5) R-R Model (Theory) Fall 2018 12 / 37

4. Cross-Sectional Predictions

4.1 Competitive Equilibrium

- We take the price schedule $p(\sigma)$ as given [small open economy]
- In a competitive equilibrium, L and w must be such that:
 - Firms maximize profit

$$\begin{array}{l} p\left(\sigma\right)A\left(\omega,\sigma,\gamma\right)-w\left(\omega,\gamma\right)\leq0,\,\text{for all }\omega\in\Omega\\ p\left(\sigma\right)A\left(\omega,\sigma,\gamma\right)-w\left(\omega,\gamma\right)=0,\,\text{for all }\omega\in\Omega\,\,\text{s.t.}\,\,L\left(\omega,\sigma,\gamma\right)>0 \end{array}$$

Pactor markets clear

$$V\left(\omega,\gamma
ight)=\int_{\sigma\in\Sigma}L\left(\omega,\sigma,\gamma
ight)d\sigma$$
, for all $\omega\in\Omega$

14.581 (Week 5) R-R Model (Theory) Fall 2018 14 / 37

Predictions

- Let $\Sigma(\omega, \gamma) \equiv \{\sigma \in \Sigma | L(\omega, \sigma, \gamma) > 0\}$ be the set of sectors in which factor ω is employed in country γ
- Theorem [PAM] $\Sigma(\cdot,\cdot)$ is increasing
- Proof:
 - **1** Profit maximization $\Rightarrow \Sigma(\omega, \gamma) = \arg\max_{\sigma \in \Sigma} p(\sigma) A(\omega, \sigma, \gamma)$
 - 2 A1 \Rightarrow $p(\sigma) A(\omega, \sigma, \gamma)$ log-spm by Lemma 1
 - **3** $p(\sigma) A(\omega, \sigma, \gamma)$ log-spm $\Rightarrow \Sigma(\cdot, \cdot)$ increasing by Lemma 3
- Corollary High- ω factors specialize in high- σ sectors
- Corollary High- γ countries specialize in high- σ sectors

4.2 Patterns of Specialization

Relation to the Ricardian literature

- Ricardian model \equiv Special case w/ $A(\omega, \sigma, \gamma) \equiv A(\sigma, \gamma)$
- Previous corollary can help explain:
 - **1** Multi-country-multi-sector Ricardian model; Jones (1961)
 - According to Jones (1961), efficient assignment of countries to goods solves $\max \sum \ln A(\sigma, \gamma)$
 - According to Corollary, $A(\sigma, \gamma)$ log-spm implies PAM of countries to goods; Becker (1973), Kremer (1993), Legros and Newman (1996).
 - Institutions and Trade; Acemoglu Antras Helpman (2007), Costinot (2006), Cuñat Melitz (2006), Levchenko (2007), Matsuyama (2005), Nunn (2007), and Vogel (2007)
 - \bullet Papers vary in terms of source of "institutional dependence" σ and "institutional quality" γ
 - ...but same fundamental objective: providing micro-theoretical foundations for the log-supermodularity of $A\left(\sigma,\gamma\right)$

14.581 (Week 5) R-R Model (Theory) Fall 2018 16 / 37

4.3 Aggregate Output, Revenues, and Employment

- Previous results are about the set of goods that each country produces
- Question: Can we say something about how much each country produces? Or how much it employs in each particular sector?
- **Answer:** Without further assumptions, the answer is no

4.3 Aggregate Output, Revenues, and Employment Additional assumptions

- A3. The profit-maximizing allocation L is unique
- **A4.** Factor productivity satisfies $A(\omega, \sigma, \gamma) \equiv A(\omega, \sigma)$
- Comments:
 - **1** A3 requires $p(\sigma) A(\omega, \sigma, \gamma)$ to be maximized in a *single* sector
 - A3 is an implicit restriction on the demand-side of the world-economy
 - ... but it becomes milder and milder as the number of factors or countries increases
 - ... generically true if continuum of factors
 - 4 implies no Ricardian sources of CA across countries
 - Pure Ricardian case can be studied in a similar fashion
 - Having multiple sources of CA is more complex (Costinot 2009)

14.581 (Week 5) R-R Model (Theory) Fall 2018 18 / 37

4.3 Aggregate Output, Revenues, and Employment

Output predictions

- **Theorem** If A3 and 4 hold, then $Q(\sigma, \gamma)$ is log-spm.
- Proof:
 - $\textbf{ 1 Let } \Omega\left(\sigma\right) \equiv \left\{\omega \in \Omega \middle| p\left(\sigma\right) A(\omega,\sigma) > \max_{\sigma' \neq \sigma} p\left(\sigma'\right) A(\omega,\sigma')\right\}. \text{ A3 and A4 imply } Q(\sigma,\gamma) = \int \textbf{1}_{\Omega(\sigma)}(\omega) \cdot A(\omega,\sigma) V(\omega,\gamma) d\omega$

 - **3** A2 and $\widetilde{A}(\omega, \sigma)$ log-spm + Lemma 1 \Rightarrow $\widetilde{A}(\omega, \sigma)V(\omega, \gamma)$ log-spm
 - $\widetilde{A}(\omega,\sigma)V(\omega,\gamma)$ log-spm + Lemma 2 \Rightarrow $Q(\sigma,\gamma)$ log-spm
- Intuition:
 - **1** A1 \Rightarrow high ω -factors are assigned to high σ -sectors
 - 2 A2 \Rightarrow high ω -factors are more likely in high γ -countries

4.3 Aggregate Output, Revenues, and Employment Output predictions (Cont.)

• **Corollary.** Suppose that A3 and A4 hold. If two countries produce J goods, with $\gamma_1 \geq \gamma_2$ and $\sigma_1 \geq ... \geq \sigma_J$, then the high- γ country tends to specialize in the high- σ sectors:

$$\frac{Q\left(\sigma_{1},\gamma_{1}\right)}{Q\left(\sigma_{1},\gamma_{2}\right)}\geq...\geq\frac{Q\left(\sigma_{J},\gamma_{1}\right)}{Q\left(\sigma_{J},\gamma_{2}\right)}$$

4.3 Aggregate Output, Revenues, and Employment

Employment and revenue predictions

- \bullet Let $L\left(\sigma,\gamma\right)\equiv\int_{\Omega\left(\sigma\right)}V(\omega,\gamma)d\omega$ be aggregate employment
- Let $R\left(\sigma,\gamma\right)\equiv\int_{\Omega\left(\sigma\right)}r\left(\omega,\sigma\right)V(\omega,\gamma)d\omega$ be aggregate revenues
- Corollary. Suppose that A3 and A4 hold. If two countries produce J goods, with $\gamma_1 \geq \gamma_2$ and $\sigma_1 \geq ... \geq \sigma_J$, then aggregate employment and aggregate revenues follow the same pattern as aggregate output:

$$\frac{L\left(\sigma_{1},\gamma_{1}\right)}{L\left(\sigma_{1},\gamma_{2}\right)}\geq...\geq\frac{L\left(\sigma_{J},\gamma_{1}\right)}{L\left(\sigma_{J},\gamma_{2}\right)}\text{ and }\frac{R\left(\sigma_{1},\gamma_{1}\right)}{R\left(\sigma_{1},\gamma_{2}\right)}\geq...\geq\frac{R\left(\sigma_{J},\gamma_{1}\right)}{R\left(\sigma_{J},\gamma_{2}\right)}$$

4.3 Aggregate Output, Revenues, and Employment

Relation to the previous literature

Worker Heterogeneity and Trade

- Generalization of Ruffin (1988):
 - Continuum of factors, Hicks-neutral technological differences
 - Results hold for an arbitrarily large number of goods and factors
- Generalization of Ohnsorge and Trefler (2007):
 - No functional form assumption (log-normal distribution of human capital, exponential factor productivity)

Firm Heterogeneity and Trade

- Closely related to Melitz (2003), Helpman Melitz Yeaple (2004) and Antras Helpman (2004)
 - "Factors" \equiv "Firms" with productivity ω
 - ullet "Countries" \equiv "Industries" with characteristic γ
 - "Sectors" \equiv "Organizations" with characteristic σ
 - $Q(\sigma, \gamma) \equiv$ Sales by firms with " σ -organization" in " γ -industry"
- In previous papers, $f(\omega, \gamma)$ log-spm is crucial, Pareto is not

5. Comparative Static Predictions

- Assumptions A1-4 are maintained
- In order to do comparative statics, we also need to specify the demand side of our model:

$$U = \left\{ \int_{\sigma \in \Sigma} \left[C\left(\sigma, \gamma
ight)
ight]^{rac{arepsilon - 1}{arepsilon}} d\sigma
ight\}^{rac{arepsilon}{arepsilon - 1}}$$

- For expositional purposes, we will also assume that:
 - $A(\omega, \sigma)$ is *strictly* log-supermodular
 - $\bullet \ \ \text{Continuum of factors and sectors:} \ \ \Sigma \equiv [\underline{\sigma}, \overline{\sigma}] \ \ \text{and} \ \ \Omega \equiv [\underline{\omega}, \overline{\omega}]$

Autarky equilibrium is a set of functions (Q, C, L, p, w) such that:

Firms maximize profit

$$\begin{array}{l} p\left(\sigma\right)A\left(\omega,\sigma\right)-w\left(\omega,\gamma\right)\leq0,\,\text{for all }\omega\in\Omega\\ p\left(\sigma\right)A\left(\omega,\sigma\right)-w\left(\omega,\gamma\right)=0,\,\text{for all }\omega\in\Omega\,\,\text{s.t. }L\left(\omega,\sigma,\gamma\right)>0 \end{array}$$

Pactor markets clear

$$V\left(\omega,\gamma
ight)=\int_{\sigma\in\Sigma}L\left(\omega,\sigma,\gamma
ight)d\sigma$$
, for all $\omega\in\Omega$

Onsumers maximize their utility and good markets clear

$$C(\sigma, \gamma) = I(\gamma) \times p(\sigma)^{-\varepsilon} = Q(\sigma, \gamma)$$

- Lemma 1 In autarky equilibrium, there exists an increasing bijection $M:\Omega \to \Sigma$ such that $L(\omega,\sigma)>0$ if and only if $M(\omega)=\sigma$
- Lemma 2 In autarky equilibrium, M and w satisfy

$$\frac{dM(\omega,\gamma)}{d\omega} = \frac{A[\omega,M(\omega,\gamma)]V(\omega,\gamma)}{I(\gamma)\times\{p[M(\omega),\gamma]\}^{-\varepsilon}}$$
(1)

$$\frac{d \ln w (\omega, \gamma)}{d\omega} = \frac{\partial \ln A [\omega, M (\omega)]}{\partial \omega}$$
 (2)

with $M(\underline{\omega}, \gamma) = \underline{\sigma}$, $M(\overline{\omega}, \gamma) = \overline{\sigma}$, and $p[M(\omega, \gamma), \gamma] = w(\omega, \gamma) / A[\omega, M(\omega, \gamma)]$.

- **Proof of Lemma 1:** Similar to proof of PAM in 4.2
- Proof of Lemma 2:
 - Profit-maximization implies

$$\ln w(\omega, \gamma) = \max_{\sigma} \{ \ln p(\sigma) + \ln A(\omega, \sigma) \}$$

2 Thus envelope theorem gives

$$\frac{d \ln w (\omega, \gamma)}{d \omega} = \frac{\partial \ln A [\omega, M (\omega)]}{\partial \omega}$$

Factor market + good market clearing imply

$$\int_{\underline{\sigma}}^{M(\omega,\gamma)} \frac{I(\gamma) \times p(\sigma)^{-\varepsilon}}{A(\sigma,\gamma)} d\sigma = \int_{\underline{\omega}}^{\omega} V(v,\gamma) dv$$

1 Differentiating with respect to ω gives (1)

5.2 Changes in Factor Supply

- Question: What happens if we change country characteristics from γ to $\gamma' \leq \gamma$?
- If ω is worker "skill", this can be thought of as a change in terms of "skill abundance":

$$\frac{V\left(\omega,\gamma\right)}{V\left(\omega',\gamma\right)} \geq \frac{V\left(\omega,\gamma'\right)}{V\left(\omega',\gamma'\right)}, \text{ for all } \omega > \omega'$$

 \bullet If $V\left(\omega,\gamma\right)$ was a normal distribution, this would correspond to a change in the mean

14.581 (Week 5) R-R Model (Theory) Fall 2018 28 / 37

5.2 Changes in Factor Supply

Consequence for factor allocation

- Lemma $M(\omega, \gamma') \ge M(\omega, \gamma)$ for all $\omega \in \Omega$
- Intuition:
 - ullet If there are relatively more low- $\!\omega$ factors, more sectors should use them
 - From a sector standpoint, this requires factor downgrading

- **Proof:** If there is ω s.t. $M(\omega, \gamma') < M(\omega, \gamma)$, then there exist:

 - $② \ \, \mathsf{Equation} \,\, (1) \Longrightarrow \frac{V(\omega_2,\gamma')}{V(\omega_1,\gamma')} \frac{C(\sigma_1,\gamma')}{C(\sigma_2,\gamma')} \ge \frac{V(\omega_2,\gamma)}{V(\omega_1,\gamma)} \frac{C(\sigma_1,\gamma)}{C(\sigma_2,\gamma)}$

 - Equation (2) + zero profits $\Longrightarrow \frac{d \ln \rho(\sigma, \gamma)}{d\sigma} = -\frac{\partial \ln A[M^{-1}(\sigma, \gamma), \sigma]}{\partial \sigma}$

5.2 Changes in Factor Supply

Consequence for factor prices

• A decrease form γ to γ' implies pervasive rise in inequality:

$$\frac{w\left(\omega,\gamma'\right)}{w\left(\omega',\gamma'\right)}\geq\frac{w\left(\omega,\gamma\right)}{w\left(\omega',\gamma\right)}\text{, for all }\omega>\omega'$$

- The mechanism is simple:
 - Profit-maximization implies

$$\begin{array}{ccc} \frac{d \ln w \left(\omega,\gamma\right)}{d \omega} & = & \frac{\partial \ln A \left[\omega,M\left(\omega,\gamma\right)\right]}{\partial \omega} \\ \frac{d \ln w \left(\omega,\gamma'\right)}{d \omega} & = & \frac{\partial \ln A \left[\omega,M\left(\omega,\gamma'\right)\right]}{\partial \omega} \end{array}$$

Since A is log-supermodular, task upgrading implies

$$\frac{d\ln w\left(\omega,\gamma'\right)}{d\omega}\geq\frac{d\ln w\left(\omega,\gamma\right)}{d\omega}$$

- In Costinot Vogel (2010), we also consider changes in diversity
 - This corresponds to the case where there exists $\widehat{\omega}$ such that $V(\omega, \gamma)$ is log-supermodular for $\omega > \widehat{\omega}$, but log-submodular for $\omega < \widehat{\omega}$
- We also consider changes in factor demand (Computers? Robots?):

$$U = \left\{ \int_{\sigma \in \Sigma} B\left(\sigma, \gamma\right) \left[C\left(\sigma, \gamma\right) \right]^{\frac{\varepsilon-1}{\varepsilon}} d\sigma \right\}^{\frac{\varepsilon}{\varepsilon-1}}$$

- Two countries, Home (H) and Foreign (F), with $\gamma_H \geq \gamma_F$
- A competitive equilibrium in the world economy under free trade is s.t.

$$\frac{dM\left(\omega,\gamma_{T}\right)}{d\omega} = \frac{A\left[\omega,M\left(\omega,\gamma_{T}\right)\right]V\left(\omega,\gamma_{T}\right)}{I_{T}\times\left\{p\left[M\left(\omega,\gamma_{T}\right),\gamma_{T}\right]\right\}^{-\varepsilon}},$$

$$\frac{d\ln w\left(\omega,\gamma_{T}\right)}{d\omega} = \frac{\partial\ln A\left[\omega,M\left(\omega,\gamma_{T}\right)\right]}{\partial\omega},$$

where:

$$\begin{split} M\left(\underline{\omega},\gamma_{T}\right) &= \underline{\sigma} \text{ and } M\left(\overline{\omega},\gamma_{T}\right) = \overline{\sigma} \\ p\left[M\left(\omega,\gamma_{T}\right),\gamma_{T}\right] &= w\left(\omega,\gamma_{T}\right)A\left[\omega,M\left(\omega,\gamma_{T}\right)\right] \\ V\left(\omega,\gamma_{T}\right) &\equiv V\left(\omega,\gamma_{H}\right) + V\left(\omega,\gamma_{F}\right) \end{split}$$

• Key observation:

$$\frac{V(\omega,\gamma_H)}{V(\omega',\gamma_H)} \geq \frac{V(\omega,\gamma_F)}{V(\omega,\gamma_F)}, \text{ for all } \omega > \omega' \Rightarrow \frac{V(\omega,\gamma_H)}{V(\omega',\gamma_H)} \geq \frac{V(\omega,\gamma_T)}{V(\omega',\gamma_T)} \geq \frac{V(\omega,\gamma_F)}{V(\omega,\gamma_F)}$$

- Continuum-by-continuum extensions of two-by-two HO results:
 - Changes in skill-intensities:

$$M\left(\omega,\gamma_{H}\right)\leq M\left(\omega,\gamma_{T}\right)\leq M\left(\omega,\gamma_{F}\right)$$
 , for all ω

2 Strong Stolper-Samuelson effect:

$$\frac{w\left(\omega,\gamma_{H}\right)}{w\left(\omega',\gamma_{H}\right)}\leq\frac{w\left(\omega,\gamma_{T}\right)}{w\left(\omega',\gamma_{T}\right)}\leq\frac{w\left(\omega,\gamma_{F}\right)}{w\left(\omega',\gamma_{F}\right)},\text{ for all }\omega>\omega'$$

5.3 North South Trade

Other Predictions

- North-South trade driven by factor demand differences:
 - Same logic gets to the exact opposite results
 - Correlation between factor demand and factor supply considerations matters
- One can also extend analysis to study "North-North" trade:
 - It predicts wage polarization in the more diverse country and wage convergence in the other

Extensions

- Costinot and Vogel (2015, ARE) review a number of extensions:
 - Monopolistic competition (Sampson 2014, AEJ)
 - Vertical specialization (Costinot, Vogel and Wang 2013, RES)
 - 4 Heterogeneous preferences (Redding 2013)
 - Endogenous skills (Blanchard and Willman 2013)

14.581 (Week 5) R-R Model (Theory) Fall 2018 36 / 37

What's next?

- Theory:
 - Learning by doing (build on GRH 2010?)
 - Labor market frictions (build on Teulings 2003?)
 - Endogenous technology adoption
- Empirics:
 - Revisiting the consequences of trade liberalization (Adao 2016)
 - Parametric applications with extreme value distributions?
 - More flexible approaches?