ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Прикладная математика и информатика»

Отчет об исследовательском проекте

на тему Изучение свойств сборных графов – палиндромов и полупалиндромов

(промежуточный, этап 1)

Выполнен студентом:	
Группы #БПМИ <u>231</u>	Горохов Дмитрий Александрович
	ФИО студента
Проверен руководителем п	роекта:
Ma	аксаев Артем Максимович, к. фм. н.
	ФИО, научная степень (если есть)
	Доцент
	Должность
	Факультет компьютерных наук / Департамент больших данных и информационного поиска

Место работы (организация или департамент НИУ ВШЭ)

Содержание

1	Аннотация	2
2	Обзор источников	2
3	Полученные результаты	7
	3.1 Теоретические	7
	3.2 Практические	7
\mathbf{C}_{1}	писок литературы	9

1 Аннотация

Проект посвящен 2-словам, которые играют важную роль в генетике при описании эпигенетических геномных перестроек. Удобным геометрическим представлением 2-слов являются так называемые сборные графы. Среди их характеристик выделяется сборное число — минимальное количество полигональных путей, покрывающих все 4-валентные вершины графа. В данном проекте будет сделан упор на 2-слова, являющиеся палиндромами и полупалиндромами: будут исследоваться их комбинаторные свойства и характеристики. Один из интересующих вопросов таков: верно ли, что сборное число любого полупалиндрома равно 1?

2 Обзор источников

П содержит определение таких понятий, как сборный граф, изоморфизм сборных графов, трансверсаль, простой сборный граф, слово, сборное слово или 2-слово, разложимый и неразложимый сборный граф, Гамильтоново множество путей, полигональный путь, сборное число, реализуемый и нереализуемый сборный граф, минимальное реализующее число, а также некоторые теоремы.

2 же определяет такие понятия, как 2-слово в порядке возрастания, палиндром, сильно-неразложимый сборный граф, а также выводит формулы для подсчета всех, неразложимых и сильно-неразложимых 2-слов, а также всех, неразложимых и сильно-неразложимых палиндромов.

Рассматриваются конечные графы $\Gamma = (V, E)$, где V — множество вершин, а $E \subseteq V \times V$ — множество ребер. Граф может содержать петли и кратные ребра.

Определение 1. Степень вершины $v \in V$ — число ребер, инцидентных данной вершине

Определение 2. Циклический порядок для кортежа из k элементов $(x_1, x_2, x_3, \ldots, x_{k-1}, x_k)$ — множество

$$(x_1, x_2, x_3, \dots, x_{k-1}, x_k)^{cyc} = \{(x_1, x_2, x_3, \dots, x_{k-1}, x_k), (x_2, x_3, \dots, x_{k-1}, x_k, x_1), (x_3, \dots, x_{k-1}, x_k, x_1, x_2), \dots, (x_k, x_1, x_2, x_3, \dots, x_{k-1}), (x_k, x_{k-1}, x_{k-2}, \dots, x_2, x_1), (x_{k-1}, x_{k-2}, \dots, x_2, x_1, x_k), (x_{k-2}, \dots, x_2, x_1, x_k, x_{k-1}), \dots, (x_1, x_k, x_{k-1}, x_{k-2}, \dots, x_2)\}$$

то есть все циклические сдвиги кортежа и все циклические сдвиги кортежа, записанного в обратном порядке.

Чтобы задать циклический порядок, достаточно одного элемента множества $(x_1, x_2, x_3, \dots, x_{k-1}, x_k)^{cyc}$

Определение 3. Вершина v — упорядоченная (или, иногда, регулярная), если циклический порядок ребер, инцидентных ей, зафиксирован

Замечание 4. Для каждого из ребер упорядоченной вершины корректно определены его соседи

Определение 5. Сборный граф — конечный связный граф, в котором все вершины упорядоченные и имеют степени 1 или 4.

Определение 6. Концевая вершина — вершина степени 1

Определение 7. Порядок Γ (обозначение $|\Gamma|$) — количество вершин, степени 4 сборного графа Γ

Определение 8. Тривиальный сборный граф — сборный граф Γ , что $|\Gamma| = 0$

Определение 9. Графы Γ_1 и Γ_2 изоморфны, если $|\Gamma_1| = |\Gamma_2|$ и существует изоморфизм $\phi: V_1 \to V_2$, такой, что

- 1. для любых $u,v\in V_1$ ребро $(u,v)\in E_1$ тогда и только тогда, когда $(\phi(u),\phi(v))inE_2;$
- 2. для любой $u \in V_1$ циклический порядок ребер в u совпадает с циклическим порядком их ϕ -образов в $\phi(u)$.

Определение 10. Последовательность вершин и ребер $(v_0, e_1, v_1, e_2, \ldots, e_n, v_n)$ — путь в графе, если $v_i \in V, e_i \in E, e_i$ — ребро между v_{i-1} и v_i

Определение 11. Трансверсаль $(v_0, e_1, v_1, e_2, \ldots, e_n, v_n)$ — путь, что каждая вершина встречается максимум два раза, все ребра различны, а ребра e_i и e_{i+1} не являются соседними в v_i .

Определение 12. Эйлеров путь в Γ — путь, содержащий каждое ребро ровно один раз.

Определение 13. Простой сборный граф — сборный граф, содержащий эйлерову трансверсаль.

Определение 14. Две трансверсали эквивалентны, или если они равны, или если одна является другой в обратном порядке.

Лемма 15. В простом сборном графе существует единственный класс эквивалентности трансверсалей.

Пемма 16. Два простых сборных графа Γ_1 и Γ_2 с трансверсалями γ_1 и γ_2 изоморфны если и только если существует отображение $\Phi = (\Phi_v, \Phi_e) : \Gamma_1 \to \Gamma_2$ с биекциями $\Phi_v : V_1 \to V_2$ и $\Phi_e : E_1 \to E_2$, что $\Phi(\gamma_1)$ эквивалентна γ_2

Сборные графы естественным образом связаны со специальным классом слов.

Определение 17. Сборное слово или 2-слово — это слово в некотором алфавите $S = \{a_1, a_2, \dots\}$, что каждая буква a_i либо содержится в слове ровно два раза, либо не содержится вовсе

Определение 18. Обратное слово к слову $w = a_{i_1} \dots a_{i_k}$ (обозначение $w^R) - a_{i_k} \dots a_{i_1}$

Определение 19. Два 2-слова эквивалентны, если после переименования некоторых букв они или совпадают, либо являются обратными друг для друга.

Лемма 20. Классы эквивалентности 2-слов находятся в биективном соответствии с классами изоморфизма простых сборных графов.

Определение 21. Композиция $\Gamma_1 \circ \Gamma_2$ двух ориентированных простых сборных графов Γ_1 и Γ_2 — это граф, который получается, если отождествить конечную вершину Γ_1 и начальную вершину Γ_2 , после чего забыть об этой вершине.

Замечание 22. Композиция простых сборных графов — простой сборный граф.

Определение 23. Разложимое 2-слово w — такое 2-слово, которое может быть записано как произведение w = uv двух непустых 2-слов u, v. Аналогично, разложимый простой сборный граф Γ — такой сборный граф, что $\Gamma = \Gamma_1 \circ \Gamma_2$ для непустых простых сборных графов Γ_1, Γ_2 . В противном случае и 2-слово, и простой сборный граф — неразложимые.

Определение 24. Простой путь — путь, не содержащий какую-либо вершину дважды.

Определение 25. Множество попарно непересекающихся простых путей $\{\gamma_1, \ldots, \gamma_k\}$ — гамильтоново, если их объединение содержит все вершины степени 4 графа Γ .

Определение 26. Полигональный путь — путь $(v_0, e_1, v_1, e_2, \dots, e_n, v_n)$, что $e_i e_{i+1}$ — соседи для v_i для $i \in \{1, \dots, n-1\}$

Определение 27. Сборное число простого сборного графа Γ (обозначение $\operatorname{An}(\Gamma)$), определяется как $\operatorname{An}(\Gamma) = \min\{k | \text{ существует гамильтоново множество полигональных путей } \{\gamma_1, \ldots, \gamma_k\} \$ в Γ $\}$

Определение 28. Реализумый простой сборный граф — простой сборный граф, со сборным числом 1. Иначе — нереализуемый.

Лемма 29. Для любой пары ориентированных простых сборных графов Γ_1 и Γ_2 , одно из двух равенств выполнено: $\operatorname{An}(\Gamma_1 \circ \Gamma_2) = \operatorname{An}(\Gamma_1) + \operatorname{An}(\Gamma_2)$, или $\operatorname{An}(\Gamma_1 \circ \Gamma_2) = \operatorname{An}(\Gamma_1) + \operatorname{An}(\Gamma_2) - 1$

Предложение 30. $\forall n \in \mathbb{N}$

- 1. Существует разложимый сборный граф Γ , что $\operatorname{An}(\Gamma) = n$
- 2. Существует неразложимый сборный граф Γ , что $\operatorname{An}(\Gamma) = n$

Определение 31. Минимальное реализующее число для натурального числа n (обозначение $R_{\min}(n)$) определяется как $R_{\min}(n) = \min\{|\Gamma| : An(\Gamma) = n\}$. Граф Γ , такой что $R_{\min}(n) = |\Gamma|$, — реализация $R_{\min}(n)$

Предложение 32. Следующие свойства выполняются для R_{\min}

- 1. $\forall n \in \mathbb{N}, R_{\min}(n) < R_{\min}(n+1)$
- 2. Если $R_{\min}(n)=k$, то $\forall s\geq k$ существует сборный граф Γ , что $|\Gamma|=s, \operatorname{An}(\Gamma)=n$
- 3. $\forall n \in \mathbb{N}, R_{\min}(n) < 3(n-1)+1$

Предложение 33. Существует константа N такая, что для любого реализуемого 2-слова w, существует нереализуемое неразложимое v, что $w \subset v$ u |v| - |w| < N

Предложение 34. Для любого нереализуемого 2-слова v, что |v|=m, существует константа N(m) и реализуемое 2-слово w, что $v \subset w$ и $|w|-|v| \leq N(m)$.

Определение 35. Пусть слова записаны над алфавитом линейно сравнимых элементов. Тогда говорят, что слово записано в порядке возрастания, если i-ая буква в слове по величине встречается в слове первый раз только после всех букв, меньших ее

Далее мы отождествляем 2-слово и его запись в возрастающем порядке.

Лемма 36. Мощность множества 2-слов на п буквах есть

$$W_n = (2n-1)!!$$

Определение 37. Палиндром — такое 2-слово, что его обратное (записанное в возрастающем порядке) равно ему.

Лемма 38. Количество палиндромов на п буквах есть

$$P_n = \sum_{k=\lfloor n/2 \rfloor}^n \binom{k}{n-k} \frac{n!}{k!}$$

Лемма 39. Количество неразложимых 2-слов на п буквах есть

$$I_1 = 1;$$

$$I_n = W_n - \sum_{k=1}^{n-1} W_k I_{n-k}$$

Лемма 40. Количество неразложимых палиндромов на п буквах есть

$$J_1 = 1;$$
 $J_n = P_n - \sum_{k=1}^{\lfloor n/2 \rfloor} W_k J_{n-2k}$

Определение 41. Сильно-неразложимое 2-слово — такое 2-слово, что оно не содержит никакого собственного 2-подслова.

Пемма 42. Количество сильно-неразложимых 2-слов на п буквах есть

$$S_1 = 1;$$
 $S_n = (n-1)\sum_{i=1}^{n-1} S_i S_{n-i}$

Пемма 43. Количество сильно-неразложимых палиндромов на п буквах есть

$$T_0 = -1; \ T_1 = 1; \ T_n = (n-1) \sum_{i=1}^{n-2} T_i T_{n-i} + \sum_{i=1}^{\lfloor n/2 \rfloor} (2n - 4i - 1) S_i T_{n-2i}$$

3 Полученные результаты

3.1 Теоретические

Определение 44. 2-слово w на n буквах в возрастающем порядке — полупалиндром, если $\forall i \in \{1, \ldots, 2n\} : w_{2n-i+1} = n - w_i + 1$.

Пример 45. 1122 и 1212 — полупалиндромы, а 1221 — нет.

Предложение 46. Количество полупалиндромов на n буквах есть $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$

Предложение 47. Количество неразложимых полупалиндромов на п буквах равно количеству сильно-неразложимых полупалиндромов на п буквах

Предложение 48. Не у всех полупалиндромов сборное число равно единице, в частности 112345234566 имеет сборное число 2 и является самым коротким, наравне с 112342534566, полупалиндромом со сборным числом 2.

3.2 Практические

https://github.com/didedoshka/double_occurrence_words

Была разработана библиотека на языке C++ для работы с 2-словами и представлении их в виде сборных графов. Язык C++ был выбран из-за его быстродействия, так как алгоритм поиска сборного числа работает экспоненциально долго.

Библиотека peaлизует функции is_double_occurrence_word, to_ascending_order, is_in_ascending_order, reverse, is_palindrome, equal_as_double_occurrence_words, is_semi_palindrome, is_reducible, is_strongly_reducible, next_in_ascending_order, next_palindrome, next_semi_palindrome, assembly_number,

 $minimal_realization_number_and_its_realization, функциональность которых следует из названия.$

Реализована функция draw_as_graph, которая изображает 2-слово в виде сборного графа (смотри 1). На рисунке соблюден порядок ребер в каждой вершине, идя каждый раз прямо, можно пройти по трансверсали.

Алгоритм для поиска сборного числа использует структуру данных "система непересекающихся множеств", что позволяет сократить ассимптотику до $\mathcal{O}(\binom{2n}{n}n\alpha(n))$, где $\alpha(n)$ — обратная функция Аккермана.

1 1 2 3 4 5 2 3 4 5 6 6
A double occurrence word
Already in ascending order
Palindrome: yes
Semi-palindrome: yes
Irreducible: no
Strongly-irreducible: no
Assembly number: 2
Unrealizable

Рис. 1: Результат работы программы

Список литературы

- [1] M. S. Angela Angeleska, Nataša Jonoska. Dna recombination through assembly graphs. *Discrete Applied Mathematics*, 2009.
- [2] N. J. T. M. M. S. Jonathan Burns, Egor Dolzhenko. Four-regular graphs with rigid vertices associated to dna recombination. *Discrete Applied Mathematics*, 2013.