Analyse fonctionnelle du besoin

Fonctions principales

- FP1 Arriver à la bonne destination en toute sécurité
- FP2 Colis livré

Fonctions de contrainte

- FC1 Respecter les contraintes imposées par l'environnement (suivre la route)
- FC2 Gérer les objets mobiles
- FC3 Gérer les obstacles fixes
- FC4 Respecter le code de la route

SIMULATION D'UN SCÉNARIO DE LIVRAISON URBAINE

- Objectif: conception d'un système de livraison multi-robots dans un environnement complexe
- Scénario : chemins A -> C -> A et B-> D-> B
- 3 paramètres : vitesse V, nombre de voitures N, T temps d'échantillonnage
- Deux solutions possibles : centralisée et distribuée

1ère piste : parcours de graphe (centralisée)

- Quadrillage en tant que graphe, les intersections sont les nœuds
- Parcours testés : Dijkstra, A*, DFS
- Avantages:
 - chemin optimal calculé donc gain de temps
 - applicable pour n'importe quel point de départ ou d'arrivée
- Inconvénient : si densité de robot trop élevée (N>5), l'algorithme ne marche plus.

DEMONSTRATION

2ème piste : un seul chemin (centralisée)

- Chemin invariable prédéterminé
- Priorité par ordre de départ
- Distance de sécurité : 2,5*v*T
- Si risque de collisions, arrêt des deux voitures immédiat : la moins prioritaire recule
- Pour éviter les bouchons, si une voiture est arrêtée depuis longtemps, elle recule petit à petit pour débloquer la situation

Taux de perte

Robot

Architecture de contrôle

Serveur central

Raspberry

Arduino

Architecture de contrôle

Serveur central

- Pathfinding
- Gestion des obstacles
- Tooling de debug

Raspberry

- Gestion de la position
- Gestion des collisions
- Tooling de debug

Arduino

- Feedback des mouvements
- Feedback des capteurs

Recherche de chemin

- Reprise du travail de simulation
- Recherche de chemin optimal par Dijkstra
- Quand un obstacle est détecté, calcul d'un nouveau chemin avec suppression du point de l'obstacle dans le graphe
- Par défaut, tous les obstacles ont un temps de vie (obstacles mobiles)

Vision par ordinateur

Image d'origine

Pré-traitement : seuillages, ouverture

Détection des contours

Calcul du centroïde des surfaces des lignes

Suivi de ligne

Détection d'intersection

Détection d'intersection

Navigation entre les lignes

Navigation entre les lignes

Merci de votre attention!

Avez-vous des questions?