知的情報処理論 第15回 2023年7月25日(火)

武田

各回の内容(予定) ここより右は 第9回 第12回 ・連続変数の状態推定 導入 パラメータ学習 音声認識 般化 第13回 第10回 第11回 再帰的な更新 状態空間モデル 状態空間モデル (逐次処理) 連続変数での 離散変数での状態推定 第15回 状態推定 パラメータ学習 リアルタイム処理 第14回 (ベイズ推定の観点) 離散変数 ・パラメータ学習

本日の内容: 音声認識

- 1. 言語モデル II (オマケ)
 - Neural 言語モデル (前半パートでもあったはずなので)
- 2. 探索 (メイン)
 - ビタビアルゴリズム
 - ビームサーチ
 - WFST
- 3. End-to-End 音声認識 (オマケ)

音声認識

音声信号をテキストに変換

音声認識

音響モデル: (Infinite) GMM

言語モデル: 教師なし単語分割

③ 言語モデル II

ニューラル言語モデル

言語モデルでやりたいこと

 $p(\mathbf{w}_n, \mathbf{w}_{n-1}, \mathbf{w}_{n-2}, \dots)$ のモデル化 $p(\mathbf{w}_n|\mathbf{w}_{n-1},\mathbf{w}_{n-2},\dots)$

自然言語などの記号の扱い ⊗ 難しい

- 背後に法則や原理があるのか/ないのか cf. 物理
- 履歴長・スパースネス問題 (古典 N-gram)

ニューラルネットワークの応用

- 大量のテキストデータを活用しとにかく学習
 - ※ 以降に登場するネットワーク構造自体は 言語モデルだけに適用されるものではない

基本的な NEURAL 言語モデル

補足: スコア計算と単語列生成

スコア計算

- 対象の単語列 **w**_n, **w**_{n-1}, ..., **w**₁ は **given**
- $-p(\mathbf{w}_1), p(\mathbf{w}_2|\mathbf{w}_1), \cdots p(\mathbf{w}_n|\mathbf{w}_{n-1}, \mathbf{w}_{n-2}, \dots)$ の値をモデルに従って計算

用途: 候補(仮説)集合からモデルに適合する文を選択

単語列生成

- サンプリング・探索のような手続き

例1. (前から) 順番に draw: $\widetilde{\mathbf{w}}_1 \sim p(\mathbf{w}_1)$, $\widetilde{\mathbf{w}}_2 \sim p(\mathbf{w}_2 | \widetilde{\mathbf{w}}_1), \dots, \widetilde{\mathbf{w}}_n \sim p(\mathbf{w}_n | \widetilde{\mathbf{w}}_{n-1}, \widetilde{\mathbf{w}}_{n-2}, \dots \widetilde{\mathbf{w}}_1)$ 例2. 高いスコアの系列を(スコア計算を行いなが

ら)優先的に生成(探索)cf. パーティクルフィルタ

フィードフォワード型

モデル: $P(\mathbf{w}_n \mid \mathbf{w}_{n-1}, \mathbf{w}_{n-2}, ...)$

入力: 過去 n-1 単語

語彙サイズ次元V(40k~200k) その単語の "ID" に該当する 次元部分のみ 1

表現 - one-hot vector $\mathbf{w}_n = [0,...,0,1,0,...,0]$

フィードフォワード型

補足: one-hot vector = 列ベクトルの抽出

$$\mathbf{w}_n = [0,...,0,1,0,...,0]$$
 k 番目の要素のみ 1 \mathbf{V}_1 次元: L \times V

フィードフォワード型

基本: 重み付き和+バイアス

 $\mathbf{x}_{i+1} = \mathbf{V}_i \mathbf{x}_i + \mathbf{b}_i$

i: 層インデックス

 X_i : i 層目への入力 $\mathbf{V}_i,\mathbf{b}_i$: i 層目の重み行列と バイアスベクトル

ノード毎の演算:

出力層: ソフトマックス演算

• 多クラスに対する確率を表現

中間層: 非線形変換

例: シグモイド関数

Projection layer: 恒等関数

リカレント型

モデル: $P(\mathbf{w}_n|\mathbf{s}_{n-1},\mathbf{w}_{n-1})$

- 1つ前の隠れ層の出力をフィードバック
- 仮想的に全ての履歴を考慮 = "状態"

リカレント型

モデル: $P(\mathbf{w}_n|\mathbf{s}_{n-1},\mathbf{w}_{n-1})$

- 1つ前の隠れ層の出力をフィードバック
- 仮想的に全ての履歴を考慮 = "状態"

Encoder-Decoder 型

モデル: $P(\mathbf{w}_m, ..., \mathbf{w}_1 | x_n, ..., x_1)$

- $-x_n,...,x_1$: 条件部分の変数 e.g. context の単語列, 音声信号, etc…
- エンコーダ: 特徴表現の生成
- $y_h, ..., y_1 = f(x_n, ..., x_1)$ - デコーダ: 条件付き分布の表現

 $P(\mathbf{w}_{n},...,\mathbf{w}_{1}|\mathbf{y}_{h},...,\mathbf{y}_{1})$ $= P(\mathbf{w}_1|\mathbf{y}_h, \dots, \mathbf{y}_1)P(\mathbf{w}_2|\mathbf{w}_1, \mathbf{y}_h, \dots, \mathbf{y}_1) \cdots$ $P(\mathbf{w}_{m}|\mathbf{w}_{m-1},...,\mathbf{w}_{1},\mathbf{y}_{h},...,\mathbf{y}_{1})$

Encoder-Decoder 型

モデル: $P(\mathbf{w}_m, ..., \mathbf{w}_1 | \mathbf{x}_n, ..., \mathbf{x}_1)$

- エンコーダ: 特徴表現の牛成

- デコーダ: 条件付き分布の表現

系列変換の例: End-to-End なんちゃってカナ漢字変換

T5 small + Tokenizer: Rinna Ja neox 3.6b 音声Corpus書き起こし+Wiki40B: 約1500万文

おおよその文は変換できているが…

注意: 大枠の構造と細かい構造

大枠の構造: 確率モデル・概念レベル

- 自己回帰, 条件付き分布, etc… (ガラフィカルモデルレベルなども)
- 正規化, 再帰型, エンコーダ・デコーダ, etc…
- → 詳細は "細かい構造" で具体化

細かい構造: 具体化したネットワーク

- 非線形関数, LSTM, attention, etc..
 - LSTM, transformer などは中規模ぐらいか?
- layer norm., positional encoding, etc···

細かいレベル: 次から次に新しいものが出現 ® 大枠レベル: 基本的なモデルや概念に基づいたり 問題に合わせて設計

④ 探索(デコーダ)

モデルは構築済み=パラメータは学習済み

リアルタイム音声認識

元々の定式化

$$\hat{W} = \arg\max_{W} p(\mathbf{x}_{1:T} \mid W) p(W)$$

$$= \arg\max_{W} p(W) \sum_{s_{1:T}} p(\mathbf{x}_{1:T} \mid s_{1:T}, W) p(s_{1:T} \mid W)$$
音響モデル (HMM)

② 文毎の全状態を列挙&スコア計算は非現実的

→ 何かしらの効率化が不可欠

① スコア関数の近似: ビタビサーチ

② 探索の工夫: ビームサーチ (枝刈り) ※列データ処理

③ 探索(状態)空間のコンパクト化: WFST

① スコア関数の近似

再定式化: 最尤な「系列」の探索

- 興味のあること: 尤もらしい音素列, 単語列
- ◎ 尤もスコアが高い系列 (パス) の計算 sum → max 演算

$$\hat{W} = \arg\max_{W} p(W) \sum_{s_{1:T}} p(\mathbf{x}_{1:T} \mid s_{1:T}, W) p(s_{1:T} \mid W)$$

 $\hat{W} = \arg\max_{W} p(W) \max_{s_{1:T}} p(\mathbf{x}_{1:T} \mid s_{1:T}, W) p(s_{1:T} \mid W)$

ビタビアルゴリズムで効率的に計算

HMM の最尤パスの計算(1)

入力: 信号/特徴量の系列 **x**_{1.7}

出力: 最も高い確率で出力する状態遷移系列(パス)

(HMM: 同じ出力を行う経路が複数存在する)

$$\begin{split} \hat{s}_{1:T} &= \arg \max_{s_{1:T}} \ p(\mathbf{x}_{1:T} \mid s_{1:T}) p(s_{1:T}) \\ &= \arg \max_{s_{1:T}} \left[\ln p(\mathbf{x}_{1:T} \mid s_{1:T}) + \ln p(s_{1:T}) \right] \end{split} W: 省略$$

HMM の最尤パスの計算(2)

ビタビアルゴリズム (Viterbi algorithm)

- ある状態に至る最も確からしい系列を算出
- 時刻 t に関して再帰的にスコア計算が可能

$$\max_{s_{1:t}} \left[\ln p(\mathbf{x}_{1:t}, s_{1:t}) \right] = \max_{s_{1:t}} \left[\ln p(\mathbf{x}_{1:t} \mid s_{1:t}) + \ln p(s_{1:t}) \right]$$

$$= \max_{s_{kt}} \left[\sum_{k=1}^{t} \left[\ln p(\mathbf{x}_k \mid s_k) + \ln p(s_k \mid s_{k-1}) \right] \right]$$

$$= \max_{s_{t}} \left[\ln p(\mathbf{x}_{t} \mid s_{t}) + \max_{s_{tt-1}} \left\{ \ln p(s_{t} \mid s_{t-1}) + \sum_{k=1}^{t-1} \ln p(\mathbf{x}_{k} \mid s_{k}) p(s_{k} \mid s_{k-1}) \right\} \right]$$

$$= \max_{s_t} \left[\ln p(\mathbf{x}_t \mid s_t) + \max_{s_{t-1}} \left\{ \ln p(s_t \mid s_{t-1}) + \max_{s_{t-2}} \left[\ln p(\mathbf{x}_{1:t-1}, s_{1:t-1}) \right] \right]$$
step データとの適合度 state 状態遷移コスト

HMM の最尤パスの計算(2)

ビタビアルゴリズム (Viterbi algorithm)

- ある状態に至る最も確からしい系列を算出
- 時刻 t に関して再帰的にスコア計算が可能

$$\begin{split} D(s_{t}) &= \max_{s_{t-1}} \ln p(\mathbf{x}_{1:t}, s_{1:t}) \quad \text{と定義 (状態 } s_{t} \text{ の関数)} \\ &= \ln p(\mathbf{x}_{t} \mid s_{t}) + \max_{s_{t-1}} \{ \ln p(s_{t} \mid s_{t-1}) + \max_{s_{t-2}} \ln p(\mathbf{x}_{1:t-1}, s_{1:t-1}) \} \\ &= \ln p(\mathbf{x}_{t} \mid s_{t}) + \max_{s_{t-1}} \{ \ln p(s_{t} \mid s_{t-1}) + D(s_{t-1}) \} \end{split}$$

初期値 $D(s_1) = \ln p(\mathbf{x}_1 | s_1) + \ln(s_1)$

最大値 $\max D(s_T)$

HMM の最尤パスの計算(2)

ビタビアルゴリズム (Viterbi algorithm)

- ある状態に至る最も確からしい系列を算出
- 時刻 t に関して再帰的にスコア計算が可能

初期値 $D(s_1) = \ln p(\mathbf{x}_1 \mid s_1) + \ln(s_1)$ $D(s_t) = \ln p(\mathbf{x}_t \mid s_t) + \max_{s} \{ \ln p(s_t \mid s_{t-1}) + D(s_{t-1}) \}$

HMM の最尤パスの計算(2)

ビタビアルゴリズム (Viterbi algorithm)

- ある状態に至る最も確からしい系列を算出
- 時刻 t に関して再帰的にスコア計算が可能
- 選択されたパスをそれぞれ記録
- ightarrow 最後に辿る(バックトラック)= 最尤パス $\max_{s_{\tau}} D(s_{\tau})$

HMM の最尤パスの計算(3)

単純な計算例

- 離散的な「記号」が観測される場合 入力: "abb", 隠れ状態数: 2

状態遷移図

トレリス(縦が時刻)

Mini Quiz #1

- 与えられた観測列 aab (3フレーム)が 1音素だとして、これに対する最尤の音素 はどちらか
 - 簡単化のために、1フレームあたりの尤度計算の代わりに、観測されたシンボルとその尤度を与えている。本来これらは多次元GMM などで計算される

デコーダの役割

入力に対し最も尤もらしい単語系列を得る

- ナイーブな計算法: 単語認識の場合

※単語認識: P(W)=等確率(1/N)

② 探索の工夫

デコーダの役割

単語認識

例: 語彙サイズ: 20000語

⇒ 20000語に対して P(X|単語) を計算

連続文認識

例: 1文が平均10単語からなる場合

全探索: 20000¹⁰ ≒ 10⁴³ 通りの組み合わせ 各時点での候補を10単語に絞っても 10¹⁰ 通り

リアルタイム処理: 解の探索を動的に制御する必要

膨大な探索空間

- 単語は任意の位置から始まり得る
- 全探索は不可能

デコーダの役割

⊗ できるだけ早く解を得たい

- リアルタイム性は重要: not batch
- 「制約を満たす解を一つ求めればよい」問題ではない
- → 「最も良い(尤もらしい)解を求める問題|

🛭 全探索は不可能

→ 仮説を動的に展開しながら探索を行い, 解がある可能性の高い部分だけ尤度を計算

② 探索の工夫: ビームサーチ

処理量を削減

- 最尤系列以外は余分な計算 ⇒ 削減可能
- ある時点でスコアがかなり低いノードは 最終的な最尤パスの一部になる見込みが薄い

尤度上位から一定数のノードのみ計算 下位のノードを計算から除外(枝刈り)

- 仮説集合(系列群)を作成して管理
- パーティクルフィルタにイメージが近い(非確率的)

② 探索の工夫: ビームサーチ

補足: 仮説の展開(フレーム同期の場合)

- 仮説: ある時刻 t における認識結果の候補など

- 仮説の展開: 次の時刻の状態へ遷移(場合分け)
 - HMM 状態: 停留 or 次状態 ○• ○
 - ・後続の単語接続:

② 探索の工夫: ビームサーチ

ビームの性質

狭くするほど

- ② 計算量削減の効果大
- ☺ 最尤パスが途中で枝刈りの危険性大

広くするほど

- ② 計算量削減の効果小
- ② 最尤パスの枝刈りの危険性小

ビーム幅 ⇔ 認識率: トレードオフ

Julius の認識アルゴリズムの場合 2パス構成

第1パス: フレーム同期ビーム探索

- 粗く探索し、候補単語とその位置を出力
 - 音響モデル: 単語間 tri-phone の計算を簡略化
 - 言語モデル: 単語2-gram

第2パス

- 第1パスの結果をヒューリスティックとした A*探索
- 第1パスよりも精細なモデルで尤度を計算
 - 言語モデル: 単語3-gram

第1パス フレーム同期ビーム探索

演算順序が単語単位の場合

For all w (辞書中の単語) For all T (入力フレーム) Proceed Viterbi

第1パス フレーム同期ビーム探索

演算順序がフレーム単位の場合

For all T (入力フレーム) For all w (辞書中の単語) Proceed Viterbi

音声が入力されれば 逐次的に尤度計算 オンライン処理可能

スコアの低いパス (文候補 W) → 探索候補から除外

第2パス: 逆向きA*探索

発話の終端から始端に向けて精細に探索

ある種のリスコアリング (スムージング)

第1パスの結果を未探索部分のヒューリス ティック(推定値)として、より詳細に計算

- 第1パスのビーム内に残った単語 (とその位置)を利用
- 最良優先探索
- 評価関数

f(n) = g(n) + h*(n) h*(n): 未展開部の推定スコア 第1パスでの近似尤度 ③ 探索空間のコンパクト化

③ 探索空間のコンパクト化

探索と音響スコア計算を効率化

- 似たような文は共通のHMMを包含
- 候補の文が有限なら共通化可能

探索空間のマージにより音響スコア共有実装も容易

※ 探索の履歴は別々で保持

③ 探索空間のコンパクト化

探索と音響スコア計算を効率化

- 似たような文は共通のHMMを包含
- 候補の文が有限なら共通化可能
- → 認識 = 静的な巨大ネットワーク上のパス探索

有限状態トランスデューサの演算で効率的に合成 プログラムがシンプルに & 探索漏れも削減

③ 探索空間のコンパクト化

特徴量1フレーム目の入力

③ 探索空間のコンパクト化

特徴量2フレーム目の入力

ネットワーク上を「分裂する"すごろくのコマ"」で1つずつ進める。 その際, 言語スコア, 遷移スコア, 尤度スコアを(対数上で)加算していく.

③ 探索空間のコンパクト化

特徴量3フレーム目の入力

ネットワーク上を「分裂する"すごろくのコマ"」で1つずつ進める。 その際, 言語スコア, 遷移スコア, 尤度スコアを(対数上で)加算していく.

③ 探索空間のコンパクト化

特徴量Nフレーム目の入力(枝刈りなし)

③ 探索空間のコンパクト化

特徴量Nフレーム目の入力(枝刈りあり)

③ 探索空間のコンパクト化

特徴量最終フレーム目の入力

(理想的には) 「文末」の状態 (ノード) に存在している仮説=受理すべきもの. バスを逆にたどる(バックトラック) or メモったバスを参照し, 「単語列」を出カ.

WFST: Weighted Finite State Transducer

有限状態マシン

- 入力/出力シンボル,重み,状態で定義
- 入力シンボル列の受理と出力系列を評価可能

強力な演算 → コンパクトな探索空間を構築可

- ◎ WFSTの冗長性削除(状態数などの最小化)
- © 2つのWFSTの合成

状態ネットワークの構築

大まかな作業の流れ

- 1. 各WFSTの構築
 - ・ 単語 or N-gram WFST: 単語 → 単語の変換
 - 発音 WFST: 音素 → 単語の変換
 - HMM WFST: HMM状態 → 発音の変換
- 2. 各WFSTを合成・最適化(tool: OpenFST)

WFST: 単語 N-gram

p(天気 | 今日,の)

N-gram 確率の条件部分が状態 N-gram 確率(対数)が"重み"

WFST: 単語 N-gram

WFST: 発音 → 単語

WFST: HMM → 発音

WFST の規模感

	N-garm	Pruning 有無	アーク数	ノード数
単語	3		19,224,912	8,886,764
	3	V	11,900,930	5,684,430
音素	8	V	9,028,531	1,525,901
	5	V	3,269,557	568,224
	3	V	342,751	59,737
音節接続			75,958	19,225

単語認識: ノード数500万~のグラフ上の探索

処理量と精密度はトレードオフ

- Pruining: N-gram 確率が低い遷移を除去

END-TO-END 音声認識

End-to-End音声認識

End-to-End モデル

入力から出力への写像をそのまま学習

入力: 音響特徴量の系列 $\mathbf{x}_{1:T} = [\mathbf{x}_1, ..., \mathbf{x}_T]$

出力: 音素/文字/単語等の記号列 $c_{1:L}$ = $[c_1,...,c_L]$

(1 hot vector; embedding)

・ 最終層は大体 softmax 関数

$$\hat{c}_{1:T} = \arg\max_{c_{1:T}} \left[p(c_{1:T} \mid \mathbf{x}_{1:T}) \right]$$
ここを直接モデル化

End-to-End音声認識

学習時の設定

入力: 音響特徴量の系列 $\mathbf{x}_{1:T} = [\mathbf{x}_1,...,\mathbf{x}_T]$ ラベル: 音素/文字/単語等の記号列 $c_{1:L} = [c_1,...,c_L]$ (長さは fix)

添え字に注意 時間スケールが異なる

このズレの吸収が必要

ラベル あらゆる現実をすべて… $c_{1:L}=[c_1,c_2,c_3,c_4,...,c_L]$

End-to-End音声認識: I

CTC (Connectionist Temporal Classification)

$$p(c_{1:T} \mid \mathbf{X}_{1:T}) = \sum_{\pi \in \Omega(c_{1:T})} \prod_{t} p(\pi_{t} \mid \mathbf{X}_{t})$$
 $\frac{\Omega(c_{1:T})}{\pi}$ 記号列 $c_{1:T}$ の 元 空白込みのパス π_{t} パス上の t での文字

- HMM なしで系列を変換
 - \mathbf{x}_{ι} に対して, π_{ι} の事後確率を計算し、同じ記号に縮約されるものの総和を計算
 - ・例: 以下の記号列は全て "hai" に集約

End-to-End音声認識: II

注意機構 (Attention) モデル

そのほかのトピック

ダイアリゼーション

- (長時間の)録音データから,「誰がいつ話したのか」などを推定するタスク
- 音声区間検出, 話者クラスタリング, おーば ラップ区間処理, etc… を行う必要
- → End-to-end アプローチも適用

自己教師あり学習モデル: 音響的なモデル

- 大量のラベルなしデータから汎用的なネット ワーク(特徴表現)を学習
- Denoising, 自己回帰的な予測などのタスク

全体の補足

ニューラル時代でも生き残っているもの

- 問題(タスク)設定・本質的な問題
 - (潜在的に) 重要な問題・課題, (意義のある)新しい問題/立て付けを発見することの価値
- 基本的な, モデル・概念・理論・確率モデル
 - ・ 物事や事象の性質・本質・メカニズムを捉えたもの
- <u>学習・探索などにおけるアルゴリズム</u>

e.g. SGD, ビタビアルゴリズム, ビームサーチ, etc..

- (一部の)特徴量の知見
 - e.g. メルフィルタバンク特徴量
 - 膨大なデータ利用時にどうなるかは…?

参考文献

- C.M.ビショップ「パターン認識と機械学習 上下」
- 河原達也 「音声認識システム」
- 安藤彰男「リアルタイム音声認識」
- 岡崎, 他「自然言語処理の基礎」
- 増村 亮: "深層学習に基づく言語モデルと音声言語理解", 日本音響学会誌 73 巻 1 号 (2017), pp. 39-46. https://www.jstage.jst.go.jp/article/jasj/73/1/73_ 39/_pdf