

	PHISICS 880:09: Problem Set #2 Solutions
	I. Stability and equilibrium conditions for uniform matter. We have N porticles in volume $\Omega \supseteq density g = N/2$. The energy per porticle is denoted E(g) = E/N. a) From Permodynanics, $P = -(E)_{n} = -(E/N)_{n} = (E/N)_{n}$
	which follows since N is held constant. $\Rightarrow \left[P = -\frac{\partial \in P}{\partial x/P}_{N} = +\frac{\partial}{\partial x}\frac{\partial \in P}{\partial y}\right] = \sin(\frac{\partial}{\partial x}) = \frac{\partial}{\partial y}\left(\frac{\partial e}{\partial y}\right) = \frac{\partial}{\partial y}\left(\frac$
· · · · · · · · · · · · · · · · · · ·	At equilibrium dinsity, the pressure is zero (no not force!). ⇒ 3€10) = 0 from part a) ⇒ E(g) is an extremum If E(g) is minimized, it must be a minimum
	b) The chemical potential at F=0,S=0 is found from
	$= \varepsilon(p) + \left(\frac{\partial \varepsilon}{\partial W} \right)_{V} = \varepsilon + p \frac{\partial \varepsilon}{\partial p}$ $= \varepsilon + \frac{1}{p} P \text{from a)},$ The 2rd line followed since V is held constant, Note Plate
	μ = E(NH) - EIN) N (2N-1)

<u>...</u>

or
$$8^{\circ}$$
: $\frac{1}{5}pe + \frac{1}{5}ge = ge$
 8° : $\frac{1}{5}pe + \frac{1}{5}ge = ge = 0$
 8° : $\frac{1}{5}pe + \frac{1}{5}ge = \frac{1}{5}ge = \frac{1}{5}ge = 0$
 8° : $\frac{1}{5}pe + \frac{1}{5}ge = \frac{1}{5}ge = \frac{1}{5}ge = \frac{1}{5}ge = \frac{1}{5}ge + \frac{1}{5}ge = \frac{1}{5}ge = \frac{1}{5}ge + \frac{1}{5}ge = \frac{1}{5}ge = \frac{1}{5}ge + \frac{1}{5}ge = \frac{1}$

The one-d result from done is $(x_g) = \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} (1 - \frac{1}{2}) g$ $\Rightarrow \frac{3}{4} \frac{1}{2} (x_g) = \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} (1 - \frac{1}{2}) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} (1 - \frac{1}{2}) g$

 $\frac{1}{2} \frac{1}{2} \frac{1}$

(if x>0, 30 gegioo always).

Since igent is greater flow this bound, it would appear to this order in perturbation flevry) flat the one-d saturation point is stable to very long wax long the fluctuations.

(Later well consider shorter wax longths!)

4	2. a) degeneracy factor $g = (spin up or spin down) \times (proton or neutron)$
,	b) R= (0A)13 with 10=1,2x10-13cm=1.2fm.
	The volume is \$\frac{4}{3}\tau R^3 = \frac{4}{3}\tau R^3 A so the density is \begin{aligned} & \frac{A}{3}\tau R^3 = \frac{4}{3}\tau R^3 & \frac{1}{3}\tau
,	g= 0.14 fm3 independent of A.
	Now $g = \frac{4k_f^3}{6\pi^2}$ or $k_f = \left(\frac{3\pi^2g}{2}\right)^{1/3} = \left(\frac{9\pi}{6}\right)^{1/3} \frac{1}{\Gamma_0} = 1.27 \text{ fm}$
	and [= = = = = = = = = = = = = = = = = =
	As noted, both to all Ex are independent of A.
	c) At this point, we have only the kinetic energy. Since these on Fermions, even at T=0 they must have not zero momentum because of the Pauli exclusion principle. The pressure is from momentum transfer to the halls of the container life there is no container, the gas expands!)
	The magnitude of the pressure can be found using P= = 300 with E= 3 kg/2m P= 9(9 \$= 1.85 MV/4m3)
	d). The binding energy for nuclear is about -16 MeV, and this must be the kiretic energy per nuclear = 3 Ec = 20 MeV dus the potential energy per nuclear. Thus [No.1 = 36 MeV) and the potential energy is regularie.
	e) Roughly speaking, the quantum statistics don't matter when the occupation number is much less than unity. Or effective). Let's arbitrarily pick-by=3. If we're in the classical limit, then py = ln [49(mT)) = [T=200 MeV] This is roughly the deconfirment temperature!

3 The Feynman	rules for <x27< th=""><th>where</th><th></th></x27<>	where	
(x³7 =	Jdx x2 = 0x2/2-)	x ⁴ /4	
	Jdx e-ax8/2-x	x474	
tells us that he	- Find the 23 a	stribution by summ	, ≅
two external lin	is from all conn	ntribution by summer ected dragrams with rtices lone for each	λ
The disconnected	diagrams from	the numerator cancel o	Am
Three colums:	alayson, symmeth	y todar, and contribution	, m
	55×1×1	\$ (-6) 3 1	
08	52×5×1	\$ (-W)3 LA	
80		,	
	\$\frac{1}{52} \times \frac{1}{5} \times 1	\$(-61) 4	
	5×31×1	声(的) 苗	
	\$ × 31 × 1	ましめず 古る	
	\$ ×1× \frac{1}{5}	\$(-61)3 127	
	\$x(\$)° x 1	\$ (6)3 \$ \$ \$	
	1×(5)×1	1 FW) 3 + 07	
-8-	5x5×1	4(64)3 47	
	1×3+×支.	\$(-61)3 L	
		stal [-997]3/a7]	na da wasan j

to) We have $[N=Sf(x_1)f(x_1)d^3x_1=Su_1^4u_2dx_1]$ for short
and TH = Sax 2+ T(xs)2+ Sax ax 3 7+2+ V(xs, xs)2/32/2
where we've dropped the hots and simplified the organization. We'll also let the subscripts stand for spin.
We need to opply [[4,4] = [4t, 4t] = 0]
ad [[42,4]] = 812]
where $S_3 = S(x_1 - x_2)S_{\alpha_1 \alpha_2}$
Our goal is to show that [N, A]=0. The plan is to simply more 2/2/4 win the first term through the other field operators until me can cancel it with the 2rd term. Then we need to show that any terms generated on the way vanish a cancel.
We can simply our task by first calculating
[4444 = +44434 = 4244 - 4812]
a) Tyty y = + 4+4+ 4+ 812 = 7+ 2+4+ 4_812
So start with
NA = Sax, dx = 4+4 4+4 T(x2) = Sax, dx3 T(x3) (4+4+4+46,2)42
= Sax, dx = T(x s) (7 = (2 = 2+2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
= (dx, 45 Txs) Jdy 454, + (dx, Txx) 474, + 414)

=> NA_ = (dx2 45 Tx2)42 (dx,444 = AON or [N,A=7=0. Next, NHO = (dx, dx, dx, Tx1) V(2, x3) 2+4, 2+2+3 23212 = (4+4+4+45) x 4+4,249 = (4+ (4+4+4+813) - 4+4+812) 4342 = (4+7+ (4344-4813)+ 4+4+34,813-7++4+434,813 = (454343 1434 41-48 12) - 454744 313 + 4544 4 2 83 = (dx, dx, 7=14+ (x, x) 4, 24, (dx, 4+4) = Han => [R, A] =0

(家)(文学(文学(文学(文学(文学)))

where the spin indices as implicit.

5. a) The transition amplitude U is the matrix element of the evolution operator EiAt.
In particular, $U(x_{f}t_{f};x_{i}t_{i}) = \langle x_{f} e^{-i\hat{H}(t_{f}-t_{i})} x_{i}\rangle$ $= \langle x_{f} e^{-i\hat{H}(t_{f}-t_{i})} x_{i}\rangle$
but we can always with Emerican = emerican emerican and then insert a complete set of position states (dy lyxy) between the two operators. This yields:
W(xft; xti) = Say (xfleihltf-tm) y7 (y1ei H(tm-ti) x, >)
which is the composition rule,
 b) If we now fix x; and ti and identify
 Then the composition rule applied with to=t at te=t+E is
 $24(x,t+\epsilon) = \int dy \ U(x+\epsilon',y+) \ 2(y,t)$
 In which we can insert Feynman's path integral representation for U! U(x the ; yt) = Ae () = EV(x+y)
We'll take m=1 at h=1 from here on this is actually implied by the wording of the problems. The phase e 20 oscillates rapidly with y if (x-y)270 E.
The phase e 20 oscillates rapidly with y if (x-y)? >> E.

	his oscillation means that the integral will awage to zero since the remaining integrand voices smoothly) unless it exponent is order unity or smaller => (x-y) { \in \in \tau x - y \in \in \in \tau}
5	one can write $y=x+\eta$ with $\eta \sim O(\sqrt{\epsilon})$ and expand verything except the phase. This, the $y=\int_{-1}^{1} \frac{1}{\epsilon} \frac{x+\eta}{\epsilon} = $
	We get the lowest order term by setting $E=1=0$ everywhere except $e^{\frac{1}{2}n^{\frac{3}{2}}}$ $= \frac{1}{4}(x,t)$
Ь	O [A = Son e se] Odel terms in 2 will be integrated with the even term einek, and 50 average to 200.
à) Now expand to $g(\varepsilon) = g(m^2)$: $4(x,t) + \varepsilon \frac{\partial^2 f(x,t)}{\partial t} = \pm \left(g(x) \frac{\partial^2 f(x,t)}{\partial t} \right) + \pm \int_0^\infty \frac{\partial^2 f(x,t)}{\partial t} dx$ Cancelling the zeroth order terms:
outhor but	$ \begin{array}{ll} \mathcal{E} & = -izV(x)H(x,t) + \frac{1}{4}\left(\int_{0}^{2} \eta^{2} e^{3\frac{t}{2}}\eta^{2}\right) + \frac{3^{2}H(x,t)}{3^{2}} \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}\right) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}\right) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)}) & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H(x,t)} & \text{take } g = i\varepsilon \text{ to contact } \\ & = \varepsilon(-iV(x)H(x,t) + i\frac{1}{4}\frac{3^{2}H(x,t)}{3^{2}H$