```
#include <stdlib.h>
#include <string.h>
#define MAXPAROLA 30
#define MAXRIGA 80
 nt main(int arge, char "argv[])
   int freq[ALAXPAROLA] : /* vetfore di confutori
delle frequenze delle lunghezze delle perole
   char nga[MAXRIGA] ;
Int i, inizio, lunghezza ;
```

Symbol Tables

Hash Tables

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Definition

Hash-tables

- An ADT used to insert, search, delete, **not** to order or to select keys
- Reduce the storage requirements of direct-access tables from $\theta(|U|)$ to $\theta(|K|)$

Efficiency

Memory usage in the order of the number of keys stored in that table (not in the order of |U|)

$$\bullet M(K) = \theta(|K|)$$

Average access is constant time

$$T(K) = O(1)$$

|K| = Forecast number of keys to be stored |U| = Number of keys in the key universe Usually $|K| \ll |U|$

Definition

It uses

Previously **st**

Previously **getindex**

- > A table (an array) to store the data
 - A function to transform each key into its position (index) into an array
- The table
 - \triangleright Has size M and stores |K| elements
 - \bullet $|K| \ll |U|$
 - \triangleright Has addresses (indices) in the range [0, M-1]

The mapping between $k \in U$ and elements in the table is |U|: M (not 1:1)

- The function used to map a key into an array index (position) is called hash function
 - It transforms the search key into a table index, i.e., it creates a correspondence between a key k and a table address h(k)

$$h: U \to \{0, 1, 2, \dots, M-1\}$$

- Each element of key k is stored at the address h(k)
- As $|K| \ll |U|$ the hash function creates a mapping which is n: 1, no more 1: 1 as in the direct access tables

- Every time two different keys are placed in the same table element we have a conflict
 - > Such a conflict is called a collision
- Collisions may always happen as the
 - \triangleright Hash tables map |U| elements into |M| slots
 - The table cannot contain all keys within the U
 - No hash function is perfect
 - The mapping may always create conflicts

- Collisions in hash tables imply
 - Designing proper hash functions to minimize collisions we must
 - > Dealing with the remaining collisions

Problem # 1

Problem # 2

Problem 1: Designing a hash function

- If the k keys are equiprobable, then the h(k) values must be equiprobable
 - Practically, the k keys are not equiprobable, as they are correlated
- To make the h(k) values equiprobable it is necessary to
- For example, Italian first names

- \triangleright Distribute h(k) in a uniform way
- \rightarrow Make $h(k_i)$ uncorrelated from $h(k_i)$
- \triangleright Uncorrelate h(k) from k
- "Amplify" differences
- Hash function can be designed in different ways

The Multiplication Method

 \clubsuit If keys k are floating point numbers

Key's range

$$h(k) = \left| \frac{(k-s)}{(t-s)} \cdot M \right|$$

Example

[] = floor =
largest integer smaller than

$$M = 97$$

$$k \in [0,1.0] = 0.513871$$

$$h(k) = \left[\frac{(k-s)}{(t-s)} \cdot M \right] = \left[\frac{(0.513871 - 0)}{(1.0-0)} \cdot 97 \right] = 49$$

(note that in reality, the numbers used are on a much greater scale)

The Multiplication Method

Implementation

```
int hash (float k, int M) {
  return ( ((k-s)/(t-s)) * M);
}
```

The Module Method

If keys k are integer numbers

Fast and easy to compute

$$k \in integers$$

 $h(k) = k \% M$

Alternative method

or

$$k \in integers$$

$$h(k) = 1 + k \% \widehat{M} \quad with \quad \widehat{M} < M$$

Examples

$$M = 19$$

 $k = 11 \rightarrow h(k) = 11 \% 19 = 11$
 $k = 31 \rightarrow h(k) = 31 \% 19 = 12$
 $k = 29 \rightarrow h(k) = 29 \% 19 = 10$

The Module Method

Implementation

```
int hash (int k, int M) {
  return (k%M);
}
```

- It is convenient to use prime numbers for M to consider all digits/bits
 - > If
 - $M = 2^n$ we use only the last n bits
 - $M = 10^n$ we use only the last n decimal digits
 - Keys will not evenly distribute

 $k\%2^n$ gets the n LSBs of k $k\%10^n$ gets the n LSDs of k

The Multiplication-Module Method

 \diamond If keys k are integer numbers

$$k \in integers$$

 $A \in]0,1[$
 $h(k) = [k \cdot A] \% M$

A is a constant value

> A good value for A is

$$A = \frac{(\sqrt{5} - 1)}{2} = 0.6180339887$$

The Multiplication-Module Method

Examples

```
M = 19
A = \frac{(\sqrt{5} - 1)}{2} = 0.6180339887
k = 11 \quad \rightarrow \quad h(k) = \lfloor 11 \cdot A \rfloor \% \ 19 = 6 \% \ 19 = 6
k = 31 \quad \rightarrow \quad h(k) = \lfloor 31 \cdot A \rfloor \% \ 19 = 19 \% \ 19 = 0
```

Implementation

```
int hash (int k, int M) {
  return (((int) (k*A))%M);
}
```

Hash functions for short strings

- If keys k are short alphanumeric strings
 - > The best strategy is to convert them into integers
 - Each string can be "evaluated" through a polinomial which "evalutes" the string as a number in a given base

$$N_{10} = 1234_{10} = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$$

Base b = 10, digits = [0,9]

$$N_2 = 101101_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

Base b = 2, digits = [0,1]

Once the integer is obtained one of the previous strategies (i.e., the module method) can be applied

Hash functions for short strings

Example

Polinomial interpretation of the string as a number in base b = 128

$$M = 19$$

$$h(k) = (p_{n-1} \cdot b^{n-1} + p_{n-2} \cdot b^{n-2} + \dots + p_1 \cdot b^1 + p_0 \cdot b^0) \% M$$

$$h("now") = (p_2 \cdot b^2 + p_1 \cdot b^1 + p_0 \cdot b^0) \% 19 =$$

$$= (n \cdot 128^2 + o \cdot 128^1 + w \cdot 128^0) \% 19 =$$

$$= (110 \cdot 128^2 + 111 \cdot 128^1 + 119 \cdot 128^0) \% 19 =$$

$$= 1816567 \% 19 = 15$$

k = now

For each character we may use the corresponding ASCII value

- If keys are long alphanumeric strings
 - The previous computation overflows
 - Intermediate computations and result cannot be represented on a reasonable number of bits
 - It is possible to use the Horner's method
 - We rule-out M multiples after each step, instead of doing that at the end

$$h(k) = (p_{n-1} \cdot b^{n-1} + p_{n-2} \cdot b^{n-2} + \dots + p_1 \cdot b^1 + p_0 \cdot b^0) \% M$$

$$h(k) = (\dots (p_{n-1} \cdot b + p_{n-2}) \cdot b + p_{n-3}) \cdot b + \dots + p_1) \cdot b + p_0) \% M$$

$$h(k) = (\dots (p_{n-1} \% M) \cdot b + p_{n-2}) \% M) \cdot b + p_{n-3}) \% M) \cdot b + \dots$$

$$\dots + p_1) \% M) \cdot b + p_0) \% M$$

Example

$$k = "averylongkey"$$

$$b = 128$$

$$h(k) = (p_{n-1} \cdot b^{n-1} + p_{n-2} \cdot b^{n-2} + \dots + p_1 \cdot b^1 + p_0 \cdot b^0) \% M$$

$$h(k) = (97 \cdot 128^{11} + 118 \cdot 128^{10} + 101 \cdot 128^9 + 114 \cdot 128^8 + \dots) \% M$$

$$h(k) = (\dots (97 \cdot 128 + 118) \cdot 128 + 101) \cdot 128 + 114) \cdot 128 + \dots) \% M$$

$$h(k) = (\dots (97 \% M) \cdot 128 + 118) \% M) \cdot 128 + 101) \% M) \cdot 128) + \dots (97 \% M) \cdot 128 + 114) \% M) \cdot 128 + \dots) \% M$$

Apply Horner's method

Implementation

```
int hash (char *v, int M) {
  int h = 0;
  int base = 128;

while (*v != '\0') {
   h = (h * base + *v) % M;
   v++;
  }

return h;
}
```

Polinomial interpretation of the string as a number base base = b = 128

- To obtain a uniform distribution we must have a collision probability for two different keys equal to $^{1}/_{M}$
 - \triangleright Base $b = 128 = 2^7$ is not a good base
- Rule of thumb to select b
 - A prime number
 - For example b = 127

```
int hash (char *v, int M) {
  int h = 0;
  int base = 127;
  while (*v != '\0') {
    h = (h * base + *v) % M;
    v++;
  }
  return h;
}
```

- Or even better random numbers different for each digit of the key
 - This approach is called universal hashing

```
int hash (char *v, int M) {
  int h = 0;
  int a = 31415, b = 27183;

while (*v != '\0') {
    h = (h * a + *v) % M;
    a = ((a*b) % (M-1));
    v++;
  }

return h;
}
```

Problem 2: Dealing with collisions

A collision happens when

$$k_i \neq k_j \quad \rightarrow \quad h(k_i) = h(k_j)$$

- When a collision occur, we can deal with it adopting
 - Linear chaining

basic

- For each hash table entry, a list of elements stores all data items having the same hash function value
- Open addressing

more complex

For each collision, it places the same element somewhere else, i.e., in another table entry within the same table

Colllision --> put that element in a list

- More elements are stored in the same table location
 - ➤ An element does not contain a key anymore, but is points to a linked list including all elements which has the same hash function value
 - ➤ Each operation (insert/search/delete) must take the list into consideration

Insert

- > We must insert an element in the list
- The most efficient approach is to insert new elements onto the list head

Search

To search an element we must apply the hash function first and a list search after but lists need to be very short (like 5 elements or so)

Delete

- > To delete an element we must search it
 - Lists are not usually sorted as insertions are on the head
 - Delete it from the list

- With linear chaining the hash table
 - Can be smaller than the number of elements |K| that have to be stored in it
 - The smaller the table the longer the linked lists
 - Too long lists imply inefficiency
 - It is a good rule of thumb to have lists with an average length varying from 5 to 10 elements
 - Select M as the smallest prime larger than the maximum number of keys divided by 5 (or 10) such that the average list length would be 5 (or 10)

We must know (guess) the number of keys we want to store in the hash table before allocating it!

- Given
 - $\triangleright N$ = number of stored elements
 - \rightarrow M = size of the hash table
- Wwe define load factor of the hash table

$$Load\ Factor = \alpha = \frac{N}{M}$$

With chaining, the load factor can be less, equal or

larger than 1

Complexity

- With unsorted lists and simple uniform hashing
 - \triangleright h(k) has the same probability to generate M output values
- \Rightarrow Time cost T(n)

	Average Case	Worst Case					
Insert	0(0(1)					
Search	$O(1+\alpha)$	$\theta(n)$					
Delete	$O(1+\alpha)$	$\theta(n)$					

In the worst case, the hash table degenerates into a list

Given the following set of keys (letters)

ASERCHINGXMP

Insert them into a hash table of size

$$M = 5$$

Using the module method for the hash function

$$h(k) = K \% M$$

➤ Where k is the **positional order** of the key within the English alphabet (starting from **1**)

Solution

Α	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	X	Y	Z	
1	2	3	4	5	6	7	8	9								1 7										

$$h(k) = k \% M$$
$$h(k) = k \% 5$$

key	Order	h(k)
Α	1	1
S	19	4
Е	5	0
R	18	3
С	3	3
Н	8	3
I	9	4

key	Order	h(k)
N	14	4
G	7	2
Χ	24	4
M	13	3
P	16	1

Solution

Order	h(k)
1	1
19	4
5	0
18	3
3	3
8	3
9	4
	1 19 5 18 3 8

key	Order	h(k)
N	14	4
G	7	2
X	24	4
M	13	3
P	16	1

Method 2: Open Addressing

- Each cell of the table T stores a single element
 - > All elements are stored in T
 - > The load factor must always be less than 1

$$N \ll M \rightarrow Load Factor = \alpha = \frac{N}{M}$$

- When a collision occurs, it is necessary to lookfor an empty cell
 - We generate a cell permutation, i.e., an order to search for an empty cell
 - We use the same order to insert and search the same key

Probing Functions

- We call the generation of the cell permutation probing
- There are several ways to perform probing
 - Linear probing
 - Quadratic probing
 - Double hashing
- A problem with open addressing is clustering
 - A cluster is a set of contiguous full cells which makes further collisions more probable in that area of the table

Linear Probing

❖ Given a key k

$$h'(k) = (h(k) + i) \% M$$

- Variable i is the attempt counter
 - Start with i = 0 and increase it after every collision

Algorithm

- \triangleright Set i=0
- \triangleright Compute h(k), then h'(k)
- > If the element is free, insert the key
- Otherwise, increase i and repeat until an empty cell is found

Linear Probing

- Linear probing suffers from primary clustering
 - Long runs of occupied slots build up, increasing the average search time
 - Primary clusters are likely to arise
 - > Runs of occupied slots tend to get longer
 - Unifor hashing is spoiled

Quadratic Probing

❖ Given a key k

$$h'(k) = (h(k) + c_1 \cdot i + c_2 \cdot i^2) \% M$$

- ➤ Variable i is the attempt counter
 - Start with i = 0 and increase it after every collision

Algorithm

- \triangleright Set i=0
- \triangleright Compute h(k), then h'(k)
- > If the element is free, insert the key
- ➤ Otherwise, increase *i* and repeat until an empty cell is found

M-1

Quadratic Probing

- * In quadratic probing constants c_1 and c_2 must be selected carefully
 - They must guarantee that h'(k) assumes distinct values for $1 \le i \le {(M-1)/2}$
 - > If $M = 2 \cdot k$, we can select $c_1 = c_2 = \frac{1}{2}$ to generate all indexes between 0 and M 1
 - > If M is prime and $\alpha < 1/2$, we can select the following values h(k)
 - $c_1 = \frac{1}{2}$ and $c_2 = \frac{1}{2}$
 - $c_1 = 1$ and $c_2 = 1$
 - $c_1 = 0$ and $c_2 = 1$

This condition must be avoided: The hashtable is partially empty but we scan the same elements over and over again

Quadratic Probing

- Quadratic probing suffers from secondary clustering
 logical continuity
 - > A milder form of clustering where clustered elements are not contiguous
 - The same considerations made for the primary clustering hold also for this case of clustering

Double Hashing

Given a key k

$$h'(k) = (h_1(k) + i \cdot h_2(k)) \% M$$

- Variable i is the attempt counter
 - Start with i = 0 and increase it after every collision

Algorithm

- \triangleright Set i=0
- \triangleright Compute $h_1(k)$, then h'(k)
- > If the element is free, insert the key
- \triangleright Otherwise, increase i, compute $h_2(k)$, and repeat until an empty cell is found

Double Hashing

- In double hashing we must guarantee that the new value of h'(k) differ from the previous one otherwise we enter an infinite loop
- To avoid this
 - h₂ should never return 0
- Examples

$$h_1(k) = k \% M$$
 with M prime $h_2(k) = 1 + k \% \widehat{M}$ with $\widehat{M} = 97$

 h_2 (k) never returns 0 and h_2 %M never returns 0 if M > 97

Double Hashing

- Double hashing represents an improvement over linear or quadratic probing
 - As we vary the key, the initial probing position and the offset may vary **independently**
 - As a result, the performance of double hashing appears to be very close of the ideal scheme of uniform hashing

Probing and Delete

- With probing (all strategies) delete a key is a complex operation
 - Each delete operation potentially breaks a collision chain
 - For that reason open addressing is often used only when it is not necessary to delete keys
 - Hash tables limited to insertions and searches

Probing and Delete

- To extend the approach to hash tables with delete operations we must
 - Either substitute the deleted key with a sentinel key
 - The sentinel key is considered as
 - A full element during search operations and
 - An empty element during insertion operations
 - Or re-adjust clustered keys, to move some key into the deleted element

Example: Delete with Probing

Delete E

We need to remind that keys E, S, R, and H collided into element 4

Given the following set of keys (letters)

ASERCHINGXMP

Insert them into a hash table of size

$$M = 13$$

Using the module method with linear probing for the hash function

$$h(k) = ((k \% M) + i)\%M$$

Where k is the **positional order** of the key within the English alphabet (starting from 1)

A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	X	Y	Z
1	2	3	4	5	6	7	8	9								1 7									

$$h(k) = k \% M = k \% 13$$

 $h'(k) = (k \% 13 + i) \% 13$

key	Order	h(k)
Α	1	1
S	19	6
Е	5	5
R	18	$5 \rightarrow 6 \rightarrow 7$
С	3	3
Н	8	8
I	9	9

key	Order	h(k)
N	14	$1 \rightarrow 2$
G	7	$7 \rightarrow 8 \rightarrow 9$ $\rightarrow 10$
X	24	11
M	13	0
Р	16	$3 \rightarrow 4$

Hash-table configuration after each insertion

0	1	2	3	4	5	6	7	8	9	10	11	12
	A											
	A					S						
	A				E	S						
	A				E	S	R					
	A		С		E	S	R					
	A		С		E	S	R	Н				
	A		С		E	S	R	Н	I			
	A	N	С		E	S	R	H	I			
	A	N	С		E	S	R	Н	I	G		
	A	N	С		E	S	R	H	I	G	X	
M	A	N	С		E	S	R	Н	I	G	X	
M	A	N	С	P	E	S	R	H	I	G	X	

Given the following set of keys (letters)

ASERCHINGXMP

Insert them into a hash table of size

$$M = 13$$

Using the module method with quadratic probing for the hash function

$$h(k) = ((k \% M) + 0.5 \cdot i + 0.5 \cdot i^{2}) \% M$$

➤ Where k is the **positional order** of the key within the English alphabet (starting from **1**)

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
										0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5

$$h(k) = (h(k) + c_1 \cdot i + c_2 \cdot i^2) \% M$$

$$h(k) = (k \% M + 0.5 \cdot i + 0.5 \cdot i^2) \% 13$$

key	Order	h(k)
Α	1	1
S	19	6
Е	5	5
R	18	$5 \rightarrow 6 \rightarrow 8$
С	3	3
Н	8	8 → 9
I	9	9 → 10

key	Order	h(k)
N	14	1 → 2
G	7	7
X	24	11
M	13	0
P	16	3 → 4

Hash-table configuration after each insertion

0	1	2	3	4	5	6	7	8	9	10	11	12
	A											
	A					S						
	A				E	S						
	A				E	S		R				
	A		С		E	S		R				
	A		С		E	S		R	Н			
	A		С		E	S		R	Н	I		
	A	N	С		E	S		R	Н	I		
	A	N	С		E	S	G	R	Н	I		
	A	N	С		E	S	G	R	Н	I	X	
M	A	N	С		E	S	G	R	Н	I	X	
M	A	N	С	P	E	S	G	R	Н	I	X	

Given the following set of keys (letters)

ASERCHINGXMP

Insert them into a hash table of size

$$M = 13$$

Using the module method with double hashing

$$h(k) = k \% M$$
 and $h'(k) = 1 + k \% 97$

➤ Where k is the **positional order** of the key within the English alphabet (starting from **1**)

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9							1 6									

$$h(k) = (h(k) + i \cdot h'(k)) \% M$$

$$h(k) = (k \% 13 + i \cdot (1 + k \% 97)) \% 13$$

Order	h(k)
1	1
19	6
5	5
18	5 → 11
3	3
8	8
9	9
	1 19 5 18 3 8

key	Order	h(k)
N	14	$1 \rightarrow 3 \rightarrow 5 \rightarrow 7$
G	7	7 → 2
X	24	11 → 10
M	13	0
P	16	$3 \rightarrow 7 \rightarrow 11 \rightarrow$ $2 \rightarrow 6 \rightarrow 10 \rightarrow 1 \rightarrow$ $5 \rightarrow 9 \rightarrow 0 \rightarrow 4$

Hash-table configuration after each insertion

0	1	2	3	4	5	6	7	8	9	10	11	12
	A											
	A					S						
	A				E	S						
	A				E	S					R	
	A		С		E	S					R	
	A		С		E	S		Н			R	
	A		С		E	S		Н	I		R	
	A		С		E	S	N	H	I		R	
	A	G	С		E	S	N	Н	I		R	
	A	G	С		E	S	N	H	I	X	R	
M	A	G	С		E	S	N	H	I	X	R	
M	A	G	С	P	E	S	N	H	I	X	R	

Re-Hashing

- Hash tables offer exceptional performance when they are not overly full
 - The table size is the traditional dilemma of all array-based data structures
 - If we make the table too small, performance degrades and the table may overflow
 - If we make the table too big, memory gets wasted
- Rehashing or variable hashing attempts to circumvent this dilemma by expanding the hash table size whenever it gets too full

Re-Hashing

Rehashing strategy

- For every new entry into the map, check the load factor α
- If, for example, $\alpha \ge 0.75$ then start **rehash**
 - For Rehashing, initialize a new tabler of a size about twice as large the previous one
 - Extract all elements from the original table and copy them into the new one

Final Considerations

Hash Tables

- Unique solution when keys do not have an ordering relation
- Much faster on the average case
- The hash table size must be forecast or the table may be re-allocated
- Trees (BST and variants)
 - Better worst-case performances when balanced trees are used
 - Easier to create with unknown or highly-variable number of keys
 - > Allow operations on keys with an ordering relation