Proof Ideas

 Suffices to produce a distribution of instances for which there is no deterministic algorithm

• Sample $u,v\in\mathbb{R}^n$ and $G\in\mathbb{R}^{n imes n}$ all with independent Gaussian coordinates

 $-uv^1+G$

1/n

$$||G||_2 \le 2\sqrt{n}$$

• If lpha large, say > 10, algorithm must approximate u and v to output LRA

Proof Ideas

- Suffices to produce a distribution of instances for which there is no deterministic algorithm
- Sample $u, v \in \mathbb{R}^n$ and $G \in \mathbb{R}^{n \times n}$ all with independent Gaussian coordinates

$$A = \frac{\alpha}{\sqrt{n}} u v^T + G + \text{Noise}$$

•
$$||G||_2 \le 2\sqrt{n}$$

• If α large, say > 10, algorithm must approximate u and v to output LRA

What can a deterministic algorithm do?