LOA

Credit Risk Modeling

by Muhammad Noor Rizki Isya

Full Project:

Github/rizkyisya17/CreditRisk

Table of Contents

Data Understanding & EDA

01

data_raw.head()

data_ı data_ı ✓ 2.7s			csv('loan_da	ta_2007_201	4.csv')													Python
C:\Users\rizky\AppData\Local\Temp\ipykernel_22848\4200974262.py:1: DtypeWarning: Columns (20) have mixed types. Specify dtype option on import or set low_memory=False. data_raw = pd.read_csv('loan_data_2007_2014.csv')																		
Unna	med: 0	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade		total_bal_il	il_util	open_rv_12m	open_rv_24m	max_bal_bc	all_util	total_rev_hi_
		1077501	1296599	5000	5000	4975.0	36 months	10.65	162.87	В		NaN	NaN	NaN	NaN	NaN	NaN	N
		1077430	1314167	2500	2500	2500.0	60 months	15.27	59.83	С		NaN	NaN	NaN	NaN	NaN	NaN	N
		1077175	1313524	2400	2400	2400.0	36 months	15.96	84.33	С		NaN	NaN	NaN	NaN	NaN	NaN	N
		1076863	1277178	10000	10000	10000.0	36 months	13.49	339.31	С		NaN	NaN	NaN	NaN	NaN	NaN	N
4	4	1075358	1311748	3000	3000	3000.0	60 months	12.69	67.79	В		NaN	NaN	NaN	NaN	NaN	NaN	N
5 rows × 75	5 colum	nns																

data_raw.info()

```
data raw.info()
 ✓ 0.8s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 466285 entries, 0 to 466284
Data columns (total 75 columns):
# Column
                                Non-Null Count Dtype
0 Unnamed: 0
                                466285 non-null int64
                                466285 non-null int64
2 member id
                                466285 non-null int64
3 loan amnt
                                466285 non-null int64
   funded amnt
                                466285 non-null int64
5 funded amnt inv
                                466285 non-null float64
6 term
                                466285 non-null object
   int rate
                                466285 non-null float64
8 installment
                                466285 non-null float64
9 grade
                                466285 non-null object
 10 sub grade
                                466285 non-null object
11 emp title
                                438697 non-null object
12 emp length
                                445277 non-null object
13 home ownership
                                466285 non-null object
14 annual inc
                                466281 non-null float64
15 verification status
                                466285 non-null object
16 issue d
                                466285 non-null object
17 loan status
                                466285 non-null object
18 pymnt plan
                                466285 non-null object
19 url
                                466285 non-null object
73 total cu tl
                               0 non-null
                                                float64
74 ing last 12m
                               0 non-null
                                                float64
dtypes: float64(46), int64(7), object(22)
memory usage: 266.8+ MB
```

- Terdapat 76 kolom pada data degan 466285 baris
- Terdapat data object yang seharusnya int
- Terdapat data object yang seharusnya datetime

data_raw object

```
data_raw.select_dtypes(include='object').columns.to_list()
✓ 0.0s
'term',
'grade',
'sub grade',
'emp title',
'emp length',
'home ownership'.
'verification_status',
'issue d',
'loan status',
'pymnt plan',
'url'.
'desc'.
'purpose',
'title',
'zip code',
'addr state',
'earliest cr line'.
'initial list status',
'last pymnt d',
'next pymnt d',
'last credit pull d',
'application_type']
```

- Term, grade, emp_length, home ownership akan dirubah menjadi 'int'
- issue_d, last_pymnt_d, next_pymnt_d akan dirubah menjadi `datetime`
- loan_status akan menjadi dasar sumber dari target model

Loan_status

- Dapat dipastikan Fully paid (pembayaran lunas) akan menjadi nilai positif atau good loan.
- Charged Off (pembayaran macet) dan Default (gagal bayar) akan menjadi nilai negatif atau bad loan.
- Current (pembayaran lancar)
 dan status yang lain akan
 dipertanyakan, umumnya akan
 menjadi good loan namun saya
 akan membuat threshold
 beberapa data menjadi bad
 loan karena tujuan dari
 model ini untuk memprediksi
 risk dari loan tersebut.

Duplicate records

```
# Find duplicate records
duplicates = data_raw.duplicated()
# Print the number of duplicate records
print("Number of duplicate records:", duplicates.sum())

✓ 1.3s

Number of duplicate records: 0

print ("{:.0%} Data Unique".format(len(data_raw) / data_raw['member_id'].nunique()))

✓ 0.0s

100% Data Unique
```

Tidak ditemukan data duplicated dan dapat disimpulkan bahwa dataset benar merupakan data member loaners dan bukan data transaksi.

Home Ownership

- Home ownership tidak terlalu mempengaruhi loan_status
- Disamping itu karena data bad_loan sendiri juga tidak terlalu banyak dibandingkan good_loan dan status loan lainnya

```
data raw[data raw['home ownership']=='RENT'].groupby('loan status'
  ✓ 0.1s
 loan status
Current
                                                        85911
Fully Paid
                                                        76025
Charged Off
                                                        19906
Late (31-120 days)
                                                         3097
In Grace Period
                                                         1376
Does not meet the credit policy. Status: Fully Paid
                                                          911
Late (16-30 days)
                                                          483
Default
Does not meet the credit policy. Status: Charged Off
Name: loan status, dtype: int64
```

<pre>data_raw[data_raw['home_ownership']=='MORTGAGE'].</pre>	groupby('loan_status')
loan_status	
Current	117038
Fully Paid	93221
Charged Off	18799
Late (31-120 days)	3142
In Grace Period	1461
Does not meet the credit policy. Status:Fully Paid	908
Late (16-30 days)	607
Default	351
Does not meet the credit policy. Status:Charged Off Name: loan_status, dtype: int64	348

data_raw[data_raw['home_ownership']=='OWN'].group ✓ 0.0s	o by('loan_sta	atus
loan status		
Current	21272	
Fully Paid	15342	
Charged Off	3736	
Late (31-120 days)	661	
In Grace Period	309	
Does not meet the credit policy. Status:Fully Paid	138	
Late (16-30 days)	128	
Default	69	
Does not meet the credit policy. Status:Charged Off	49	
Name: loan_status, dtype: int64		

Data Preprocessing

02

Features Selection

 bad_loan: Charged Off dan Deafult

Feature Importance

- good_loan: Current
- bad_loan: Charged Off dan Deafult

Features Selection

Berdasarkan feature importance dan asumsi maka dipilih feature-feature berikut untuk membuat model.

mths_check

```
df_train['last_credit_pull_d'] = pd.to_datetime(df_train['last_credit_pull_d'], format='%b-%y')
df_train['last_pymnt_d'] = pd.to_datetime(df_train['last_pymnt_d'], format='%b-%y')
df_train['mths_check'] = round((df_train['last_credit_pull_d'] - df_train['last_pymnt_d'])/np.timedelta64(1, 'M'))

print(df_train[:1]['last_credit_pull_d'])
print(df_train[:1]['mths_check'])

0 2016-01-01
Name: last_credit_pull_d, dtype: datetime64[ns]
0 2015-01-01
Name: last_pymnt_d, dtype: datetime64[ns]
0 12.0
Name: mths_check, dtype: float64
```

Perbedaan jumlah bulan dari tgl pengecekan terakhir credit history dan tgl pembayaran terakhir.

finish_d

```
df_train['term'] = df_train['term'].str.replace(' months', '')
df_train['term'] = df_train['term'].astype('int')

df_train['issue_d'] = pd.to_datetime(df_train['issue_d'], format='%b-%y')
df_train['finish_d'] = ((df_train['issue_d'].dt.to_period('M')) + df_train['term']).dt.to_timestamp()
```

Tanggal dimana pembayaran seharusnya selesai sesuai term.

mths_remain

```
df_train['mths_remain'] = round((df_train['finish_d'] - df_train['last_pymnt_d'])/np.timedelta64(1, 'M'))

print(df_train[:1]['finish_d'])
print(df_train[:1]['last_pymnt_d'])
print(df_train[:1]['mths_remain'])

0 2014-12-01
Name: finish_d, dtype: datetime64[ns]
0 2015-01-01
Name: last_pymnt_d, dtype: datetime64[ns]
0 -1.0
```

Jumlah bulan yang tersisa untuk menyelesaikan pembayaran sesuai finish d.

paid_potention

Kemampuan loaners untuk membayar sisa pembayaran sampai tanggal penyelesaian sesuai dengan income.

emp_length

```
df_train = df_train.replace({'emp_length' : { '< 1 year' : '0 years', '1 year' : '1 years', '10+ years' : '10 years'})
df_train['emp_length'] = df_train['emp_length'].fillna('0 years')
df_train['emp_length'] = df_train['emp_length'].replace(' years', '', regex=True)
df_train['emp_length'] = df_train['emp_length'].astype('int')
df_train['emp_length'].unique()</pre>
array([10, 0, 1, 3, 8, 9, 4, 5, 6, 2, 7])
```

Cleaning feature emp_length menjadi
dtype int.

home_ownership

```
df_train = df_train.replace({'home_ownership' : { 'MORTGAGE' : 0, 'RENT' : 0, 'OWN' : 1, 'NONE': 1, 'ANY':1, 'OTHER':1}})

✓ 02s
```

Cleaning feature home_ownership: 0 (MORTGAGE, RENT) 1 (OWN, NONE, ANY, OTHER)

grade

```
from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

df_train['grade'] = le.fit_transform(df_train['grade'])

#df_train['verification_status']=le.fit_transform(df_train['verification_status'])

#df_train['initial_list_status']=le.fit_transform(df_train['initial_list_status'])
```

Cleaning feature grade menjadi dtype int dengan label encoder:

risk

```
df train['loan status'].unique()
array(['Fully Paid', 'Charged Off', 'Current', 'Default',
       'Late (31-120 days)', 'In Grace Period', 'Late (16-30 days)',
       'Does not meet the credit policy. Status: Fully Paid',
       'Does not meet the credit policy. Status: Charged Off'],
     dtype=object)
   bad = [
       'Charged Off',
       'Does not meet the credit policy. Status: Charged Off'
   df_train['risk'] = np.where(df_train['loan_status'].isin(bad), 1, 0)
   df train['risk'].value counts(normalize=True)*100
    90.622646
     9.377354
Name: risk, dtype: float64
```

- bad loan (Charged Off, Default, Does not meet the credit policy. Status: Charged Off) = 1
- good loan (Fully Paid, Current, In Grace Period, Late (16-30 days), Late (31-120 days), Does not meet the credit policy. Status: Fully Paid) = 0

risk

```
df_train.loc[((df_train['loan_status']=='Current') & ((df_train['mths_check']>=3) | (df_train['paid_potention']<0))), 'risk'] = 1
df_train.loc[((df_train['loan_status']=='Late (31-120 days)') & ((df_train['mths_check']>=3) | (df_train['paid_potention']<0))), 'risk'] = 1
df_train.loc[((df_train['loan_status']=='Late (16-30 days)') & ((df_train['mths_check']>=3) | (df_train['paid_potention']<0))), 'risk'] = 1
df_train.loc[((df_train['loan_status']=='In Grace Period') & ((df_train['mths_check']>=3) | (df_train['paid_potention']<0))), 'risk'] = 1

df_train['risk'].value_counts(normalize=True)*100</pre>
0 89.784638
1 10.215362
Name: risk, dtype: float64
```

Threshold good loan ke bad loan untuk status Current, Late, dan In Grace Period dengan parameter:

```
mths_check >= 3
paid potention <0</pre>
```

Feature Transformation

Split Dataset

Split dataset untuk keperluan modelling dengan 75% menjadi data training dan 25% menjadi data test

Feature Transformation

SMOTE Imbalanced Dataset

Feature Transformation

Standarization

Actual Data

	loan_amnt	funded_amnt	int_rate	installment	grade	emp_length	home_ownership	dti	delinq_2yrs	inq_last_6mths	
0	8400	8400	14.33	288.45				19.28	0.0	0.0	
1	7200	7200	19.52	265.83	4			27.19	1.0	0.0	
2	17000	17000	7.69	530.30				16.38	0.0	0.0	
3	18825	18825	16.59	463.71				10.20	0.0	1.0	
4	14000	14000	16.99	347.87				22.43	1.0	3.0	

	loan_amnt	funded_amnt	int_rate	installment	grade	emp_length	home_ownership	dti	delinq_2yrs	inq_last_6mths	
0	-0.725166	-0.723100	-0.106093	-0.608735	0.065672	-1.263566	-0.237779	0.218804	-0.381715	-0.840884	
1	-0.869809	-0.867986	1.136133	-0.701992	1.669180	-1.548559	-0.237779	1.297247	0.982888	-0.840884	
2	0.311445	0.315246	-1.695377	0.388361	-1.537836	-0.123595	-0.237779	-0.176580	-0.381715	-0.840884	
3	0.531423	0.535593	0.434838	0.113825	0.867426	0.731383	-0.237779	-1.019156	-0.381715	0.084014	
4	-0.050163	-0.046968	0.530578	-0.363759	0.867426	-0.978574	-0.237779	0.648272	0.982888	1.933809	

Data Modeling

03

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import classification_report
   rf = RandomForestClassifier()
   rf.fit(X smote, y smote)
   y_pred_rf = rf.predict(X_test)
   print(classification_report(y_test, y_pred_rf))
             precision
                          recall f1-score support
                  0.96
                           0.96
          0
                                     0.96
                                             104476
                  0.67
                           0.65
                                     0.66
                                              11991
                                             116467
   accuracy
                                     0.93
  macro avg
                                             116467
                  0.82
                            0.81
                                     0.81
weighted avg
                  0.93
                                             116467
                            0.93
                                     0.93
```


Logistic Regression

from sklearn.linear_model import LogisticRegression												
<pre>log = LogisticRegression() log.fit(X_smote, y_smote) y_pred_log = log.predict(X_test) print(classification_report(y_test, y_pred_log))</pre>												
	preci	sion	recall	f1-score	support							
	0	0.95	0.81	0.88	3 104476							
	1	0.29	0.65	0.46	11991							
accurac	y			0.86	9 116467							
macro av	g	0.62	0.73	0.64	1 116467							
weighted a	g	0.88	0.80	0.83	3 116467							

KNN

```
from sklearn.neighbors import KNeighborsClassifier
  knn = KNeighborsClassifier()
   knn.fit(X_smote, y_smote)
  y_pred_knn = knn.predict(X_test)
  print(classification_report(y_test, y_pred_knn))
             precision
                         recall f1-score support
                 0.95
                           0.80
                                    0.87
                                            104476
                 0.27
                           0.65
                                    0.38
                                             11991
   accuracy
                                    0.79
                                            116467
                           0.72
                                    0.63
                                            116467
  macro avg
                 0.61
weighted avg
                 0.88
                           0.79
                                    0.82
                                            116467
```


XGBoost

```
from xgboost import XGBClassifier
   xgb = XGBClassifier()
   xgb.fit(X_smote, y_smote)
   y pred xgb = xgb.predict(X test)
   print(classification_report(y_test, y_pred_xgb))
             precision
                          recall f1-score
          0
                  0.96
                            0.98
                                     0.97
                                             104476
                  0.77
                                     0.67
                            0.60
                                              11991
                                     0.94
                                             116467
   accuracy
  macro avg
                  0.86
                            0.79
                                     0.82
                                             116467
weighted avg
                  0.94
                            0.94
                                             116467
                                      0.94
```


Feature Importance & Remodeling

04

Features Importance

Model akan direbuild dengan feature berikut:

```
'mths_check',
'out_prncp_inv',
'inq_last_6mths',
'mths_remain',
'int_rate',
'paid_potention',
'emp_length',
'total_rec_late_fee',
'mths_since_last_delinq'
```

New Features: Outlier

Terdapat banyak sekali
outlier, namun apabila semua
outlier dihilangkan akan
membuat kehilangan banyak
data. Sehingga saya hanya
mencoba menghilangkan outlier
dengan threshold IQR biasa.

```
for x in X_importance:
    q1 = np.percentile(df_train_importance[x], 25)
    q3 = np.percentile(df_train_importance[x], 75)
    iqr = q3-q1
    lower_bound = q1 - (1.5*iqr)
    upper_bound = q3 + (1.5*iqr)
    df_train_new = df_train_importance[(df_train_importance[x] >= lower_bound) & (df_train_importance[x] <= upper_bound)]
    v 02s

print(len(df_train_importance))
    print(len(df_train_new))
    v 0.0s

465867
449104</pre>
```

New Features: Correlation

Correlation feature dengan target tidak terlalu besar, namun terdapat correlation antar feature yang bersifat multicollinearity sehingga column 'mths_remain' akan di drop pada modeling selanjutnya.

Remodeling + New Parameter

```
rf_new = RandomForestClassifier(n_estimators=400, max_depth=10,min_samples_leaf=1,max_features='sqrt',
                               min samples split=5, criterion='gini')
  rf new.fit(Xnew smote, ynew smote)
  y pred rf new = rf new.predict(Xnew test)
  print(classification report(ynew test, y pred rf new))

√ 6m 1.1s

             precision
                         recall f1-score support
                  0.98
                           0.88
                                     0.93
                                             104476
                  0.44
                           0.86
                                     0.59
                                              11991
                                     0.87
                                             116467
   accuracy
  macro avg
                  0.71
                           0.87
                                     0.76
                                             116467
weighted avg
                  0.93
                           0.87
                                     0.89
                                            116467
```

Model Evaluation

05

Evaluation: Confusion Matrix

What is the difference?

Model RF yang baru memiliki nilai recall yang lebih baik dimana lebih banyak loaners yang diprediksi Bad Loan, namun dengan mengorbankan beberapa True Good Loan menjadi Bad Loan. Tetapi bagi saya lebih baik memprediksi lebih banyak Bad Loan untuk menghindari kerugian yang lebih banyak sehingga saya lebih prefer ke model yang baru.

Evaluation: AUC

Berdasarkan nilai AUC, model Random Forests yang baru merupakan model dengan skor AUC tertinggi sebesar 0.87

Umumnya nilai AUC diatas 0.7 model dapat dikatakan memiliki performa yang cukup baik

Evaluation: KS

Evaluasi KS menjelaskan bagaimana berbedanya dua distribusi data satu sama lain. Pada RF new dengan evaluasi KS didapatkan nilai 0.7651

Model Deployment

06

Deployment on Streamlit

Thanks

Notebook details and project: Github/rizkyisya17/CreditRisk

Reach me on LinkedIn:

<u>Muhammad Noor Rizki Isya</u>
or Email:

rizkyisya@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

