1 Opakování teorie čísel

1.1 Základní pojmy

Bud'te $a, b \in \mathbb{Z}$.

- $n \in \mathbb{N}_0$ je společný dělitel čísel a, b, jestliže $n|a \wedge n|b$.
- gcd(a, b) je největší společný dělitel (greatest common divisor).
- a, b jsou nesoudělné, jestliže gcd(a, b) = 1.
- $n \in \mathbb{N}_0$ je společný násobek čísel a, b, jestliže $a|n \wedge b|n$.
- lcm(a,b) je nejmenší společný násobek (least common multiple).

1.2 Vztah gcd a lcm

$$gcd(a, b) \cdot lcm(a, b) = |a| \cdot |b|$$

1.3 Kongruence modulo m

$$\begin{array}{rcl} a & \equiv & b \pmod m \\ a \bmod m & = & b \bmod m \\ |a|_m & = & |b|_m \\ |a-b|_m & = & 0 \\ a & = & b+k\cdot m, \ k \in \mathbb{Z} \\ m & | & (a-b), \ \text{tzn.} \ m \ \text{dělí rozdíl} \ a-b \end{array}$$

1.4 Operace v modulu

Kongruence modulo m zachovává operace $+,-,\cdot$. Pro libovolné $c\in\mathbb{Z}$ a $k\in\mathbb{N}$ platí:

$$\begin{array}{ll} a+c & \equiv b+c & \pmod{m} \\ a-c & \equiv b-c & \pmod{m} \\ a\cdot c & \equiv b\cdot c & \pmod{m} \\ a^k & \equiv b^k & \pmod{m} \end{array}$$

Označíme-li $d = \gcd(c, m)$, pak lze i krátit:

$$a \cdot c \equiv b \cdot c \pmod{m} \iff a \equiv b \pmod{\frac{m}{d}}$$

1.5 Multiplikativní inverze

V \mathbb{Z}_m existuje multiplikativní inverze k a právě tehdy, když $\gcd(a,m)=1$, a lze najít pomocí EEA, případně Malou Fermatovou nebo Eulerovou větou.

1.6 Extended Euclidean algorithm

r_i	α_i	eta_i	q_i
\overline{a}	1	0	_
b	0	1	$q_2 = \lfloor \frac{a}{b} \rfloor$
$r_3 = a - q_2 \cdot b$	$1-q_2\cdot 0$	$0-q_2\cdot 1$	q_3
• • •		• • •	• • •
$r_k = \gcd(a, b)$	α	β	q_k
$r_{k+1} = 0$	_	_	_

1.7 Square and Multiply

$$\begin{aligned} \left| 6^{23} \right|_{13} &= \left| 6^{10111_2} \right|_{13} = ? \\ \left| 6^{1_2} \right|_{13} &= \left| 6 \right|_{13} &= 6 \\ \left| 6^{10_2} \right|_{13} &= \left| 6^2 \right|_{13} &= 10 \\ \left| 6^{100_2} \right|_{13} &= \left| 10^2 \right|_{13} &= 9 \\ \left| 6^{101_2} \right|_{13} &= \left| 9 \cdot 6 \right|_{13} &= 2 \\ \left| 6^{1010_2} \right|_{13} &= \left| 2^2 \right|_{13} &= 4 \\ \left| 6^{1011_2} \right|_{13} &= \left| 4 \cdot 6 \right|_{13} &= 11 \\ \left| 6^{10110_2} \right|_{13} &= \left| 11^2 \right|_{13} &= 4 \\ \left| 6^{10111_2} \right|_{13} &= \left| 4 \cdot 6 \right|_{13} &= 11 \end{aligned}$$

1.8 Eulerova věta

Pokud jsou $m \geq 2$ a $a \in \mathbb{N}$ nesoudělná, pak platí kongruence:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

1.9 Hodnoty Eulerovy funkce

Číslo p je prvočíslem, právě když $\varphi(p) = p - 1$, a platí:

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}$$

Jedná se o speciální případ rozkladu složeného čísla $m=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdots p_k^{\alpha_k}$:

$$\varphi(m) = m\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right)$$

Pokud jsou $m \in \mathbb{N}$ a $a \in \mathbb{Z}_m$ nesoudělné, pak $a^{\varphi(m)-1}$ je multiplikativní inverzí čísla $a \mod m$.

1.10 Malá Fermatova věta

Jedná se o speciální případ Eulerovy věty. Pokud jsou prvočíslo p a $a \in \mathbb{N}$ nesoudělné $(p \nmid a)$, potom platí kongruence:

$$\begin{array}{ccc} a^{p-1} & \equiv 1 & \pmod{p} \\ \text{a pro } a \in \mathbb{Z}_p \setminus \{0\} \colon & a^{p-2} & \equiv a^{-1} & \pmod{p} \end{array}$$