现代数据库系统概论 Project 1 实验报告

网络爬虫与信息抽取

聂浩 2017312153

任务一 网络爬虫

本实验使用 python 3.5 完成, 依赖的包有 re,bs4, urllib3, json, xmltodict。

其中使用 urllib3 获取 html 信息(没有考虑 js 的解析问题),使用 beautiful soup 进行 htnl 解析,再利用 re 进行正则匹配,最后将类转换为 dict 并存储为 json。

整个流程中先从网站(戏考网)获取艺术家列表,之后遍历列表进行爬取。由于网站会将大量爬取视为恶意流量,因此实验中分七次进行爬取,获得的数据 data1.json~data7.json 可见 json/目录,代码可见 分任务代码/spider,py。

最后通过 分任务代码/Xmlgen.py 进行合并,并通过 xmltodict 转换为 xml 文件,生成的 data.json 和 data.xml 分别可见 json 和 xml 文件夹。

任务二 命名实体识别

本实验使用 python 3.5 和 Stanford CoreNlp 完成。依赖于

python 包 stanfordcorenlp ,同时需要将 corenlp (https://github.com/Lynten/stanford-corenlp)对应的三个 jar 文件放在 lib 文件夹下(这一 python 接口对中文包名的匹配规则为 stanford-chinese-corenlp-YYYY-MM-DD-models.jar ,必须 改为这一形式)。

该任务通过调用 corenlp 的 ner 模块实现,可见 分任务代码/name.py,生成的 name.json 与 name.xml 分别可见 json 和 xml 文件夹。

Stanford CoreNIp 基于 java 构建而成,因此在前期,我基于maven 进行了相程序,但是 java 版本使用 annotators 进行解析时,会执行已定义的所有解析方法,效率很低;与之相对的是,python接口可以一次只调用一种解析方法。同时 java 的 xml 和 json 的解析速度也原逊于 python,最后不得不换成 python 环境,这浪费了大量的时间。这部分工作可以参见 java 文件夹。

任务三 实体关系抽取

本实验仍基于 python 3.5 和 CoreNLP。

这里使用了一种较为笨拙的方案——使用正则表达进行关键字过滤,再通过 CoreNLP 识别相应词性 (ner 方法)的词语,以此获得目标关系。有趣的是,在学校/科班信息处理时,由于 CoreNLP 的组织名识别能力很差,但是考虑到大部分的学校名中不含有动词和助

词,通过 CoreNLP 的 pos 方法可以很大程度提高过滤的准确性。实现代码见 分任务代码/relate.py,相应 relate.json 和 relate.xml 可见 json 和 xml 文件夹。

CoreNLP 提供了 parse 功能 ,通过 parse 树进行语义判断显然会有更高的准确度。然而 CoreNlp 提供的 parse tree 转换成了字符串 ,难以进行解析 ,由于时间所限 ,没有进行进一步的研究。

根目录下的 test.py 即为测试程序。

心得

目前开源 NLP 项目并不是非常成熟,CoreNLP 准确性较高,但是内存、CPU 占用非常大; NLPIR 开发难度较高; 它们的 API 和 wiki 文档建设都有待提高。这一专业方向还有很大的发展空间。

京剧是我国国粹,但是通过各网站可以看出名家在300~500人左右(本实验中抽取的大部分为业余票友),传统文化的脆弱远胜于我们的想象。

最后,在程序开发中平台的选区很重要,良好高效的开发环境可以事半功倍,前期的调研非常重要。