CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019 - 2020)

LEADER & ACHIEVER COURSE

PHASE: MLM,N,R,S,MAZI,L,T,U,M2AP1A, M2AP1B, M4AA2A TARGET: PRE-MEDICAL 2020

Test Type: MAJOR Test Pattern: NEET(UG)

TEST DATE: 24 - 02 - 2020

TEST SYLLABUS: 02

HINT - SHEET

1. Work done does not depend on time.

3.
$$_{Z}X^{A} \longrightarrow _{Z-2}X^{A-4} + _{2}He^{4}$$

$$\overrightarrow{P}_{\cdot} = \overrightarrow{P}_{\cdot}$$

$$0 = (A - 4) \vec{v}_1 + 4\vec{v}$$

$$\vec{\mathbf{v}}_1 = -\frac{4\vec{\mathbf{v}}}{\mathbf{A} - 4}$$

So relative velocity of separation

$$= \mathbf{v} + \mathbf{v}_1$$

$$= v + \frac{4v}{A-4} = \frac{Av}{A-4}$$

4.
$$L = MVR + \left(\frac{2}{3}MR^2\right)\left(\frac{V}{R}\right)$$

$$=\frac{5}{3}$$
 MVR

5. Given that; $T_A = 8T_B$ According to Kepler's law : $T^2 \propto R^3$

$$\frac{T_{A}^{2}}{T_{B}^{2}} = \frac{R_{A}^{3}}{R_{B}^{3}}$$

$$\frac{(8T_{\rm B})^2}{T_{\rm B}^2} = \frac{R_{\rm A}^3}{R_{\rm B}^3}$$

$$R_A = 4R_B$$

6.
$$W = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2} \times 800 \times (15^2 - 5^2) \times 10^{-4}$$

$$= 8 J$$

7.
$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\theta_1 = \frac{1}{2} \times \alpha \times (2)^2 = 2\alpha$$

$$\theta_1 + \theta_2 = \frac{1}{2}\alpha \times (4)^2 = 8\alpha$$

$$\theta_2 = 6\alpha \qquad \theta_2 = \frac{6\alpha}{2\alpha} = \frac{3}{1}$$

8.
$$\overrightarrow{P}_i = \overrightarrow{P}_e$$

$$0 = -2P\hat{i} + P\hat{j} + \vec{P}$$

$$\vec{P} = -2P\hat{i} - P\hat{j}$$

$$\left| P \right| = \sqrt{4P^2 + P^2} = \sqrt{5}P$$

9.
$$\frac{KE_R}{KE_T} = \frac{1}{1 + \frac{K^2}{R^2}}$$

10.
$$\Delta L = \frac{WL}{2AY} = \frac{\rho A L g L}{2AY} = \frac{\rho g L^2}{2Y}$$

11.
$$w = \int \vec{F} \cdot d\vec{s}$$

$$w = \int x^2 dy + \int y dx$$

$$w = \int_{0}^{1} y^{2} dy + \int_{0}^{1} x dx$$
 (as $x = y$

$$w = \frac{5}{6}J$$

12. KE =
$$\frac{1}{2}$$
mv² = $\frac{p^2}{2m}$ (1)

$$\frac{mv^2}{r} = f_{cp} \qquad \dots (2)$$

13. Loss in K.E. =
$$\frac{m_1 m_2}{2(m_1 + m_2)} (u_1 - u_2)^2$$

= $\frac{4 \times 6}{2 \times 10} \times (12 - 0)^2 = 172.8 \text{ J}$

14.
$$\frac{1}{2}$$
mv² $\left[1 + \frac{K^2}{R^2}\right]$ = mgh

$$v^2 \left[1 + \frac{1}{2} \right] = 2gh$$

$$h = \frac{3}{4} \frac{v^2}{g}$$

15. In the region OA, the graph is linear showing that stress is proportional to the strain. Is proportional to the strain. Thus, in this region Hooke's law is obeyed.

The point D on the graph is known as ultimate tensile strength.

The point E on the graph is known as fracture point.

16. Work done = area under F-x graph= area of rectangle ABCD + area of rectangle LCEF+ area of rectangle GFIH + area of triangle IJK

$$= (2-1) \times (10-0) + (3-2)(5-0) + (4-3)(-5-0)$$

$$+\frac{1}{2}(5-4)(10-0) = 15 \text{ J}$$

17.
$$v = \sqrt{rg \frac{\tan \theta + \mu}{1 - \tan \theta(\mu)}}$$

$$= \sqrt{10^4 \left[\frac{1 + 0.5}{1 - 0.5} \right]}$$

$$= 100\sqrt{3}$$

18.
$$\vec{v}_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) \vec{u}_2 + \frac{2m_1 \vec{u}_1}{m_1 + m_2}$$

Here $m_1 = m$, $m_2 = 3m$, $\vec{u}_1 = ui$ and $\vec{u}_2 = 0$

19.
$$F_{12} = F_{21}$$

 $M_1 a_1 = M_2 a_2$

$$\frac{a_2}{a_1} = \frac{M_1}{M_2}$$

- 20. Conceptual
- **21.** According to the law of conservation of energy,

$$\frac{1}{2}$$
 mu² = $\frac{1}{2}$ $\left(\frac{1}{2}$ mu² $\right)$ + mgh

$$\Rightarrow 490 = 245 + 5 \times 9.8 \times h$$

$$h = \frac{245}{49} = 5 \,\mathrm{m}$$

$$\tan \theta = \frac{X^2}{pg} = \frac{H}{Q}$$

$$H = \frac{QX^2}{Pg}$$

23.
$$\omega = \omega_0 + \alpha t$$

$$\omega = 0 + \frac{1000}{200} \times 3 = 15 \text{ rad/s}$$
 (: $\alpha = \frac{\tau}{I}$)

25. By Bernaulli's theorem

$$3 \times 10^5 + \frac{1}{2} \rho v^2 = 3.5 \times 10^5 + 0$$

$$v = 10 \text{ m/s}$$

26.
$$P = F.v = mgv = 500 \times 10 \times 0.4 W$$

= 2000 W
= $\frac{2000}{750} hp = \frac{8}{3} hp$

27. Normal reaction at the highest point

$$R = \frac{mv^2}{r} - mg$$

Reaction is inversely proportional to the radius of the curvature of path and radius is minimum for path depicted in (a).

28. $I_{\text{hollow sphere}} > I_{\text{other body}}$

29.
$$g' = g \left(\frac{R}{R+h}\right)^2 = g \left(\frac{R}{R+\frac{R}{2}}\right)^2 = \frac{4}{9}g$$

$$W' = \frac{4}{9} \times W = \frac{4}{9} \times 72 = 32N$$

30.
$$V = \frac{4}{3}\pi r^3$$
, $A = 4\pi r^2 = \frac{3V}{r}$

$$W = AT = \frac{3V}{r}T$$

$$2V = \frac{4}{3}\pi R^3$$

$$2\left(\frac{4}{3}\pi r^3\right) = \frac{4}{3}\pi R^3$$

$$(2)^{1/3} r = R$$

$$A_0 = 4\pi R^2$$
$$= 4\pi r^2 (2)^{2/3}$$

$$W_0 = A_0 T = \frac{3V}{r} (2)^{2/3} T$$

31.
$$U_2 = (2x^2 + 3y^3 + 2z)$$

$$\Rightarrow \vec{F} = -\left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j} + \frac{\partial U}{\partial z}\hat{k}\right)$$
$$= -(4x\hat{i} + 9y^2\hat{j} + 2\hat{k})N$$

So,
$$\vec{F}_{(1,2,3)} = -(4\hat{i} + 36\hat{j} + 2\hat{k})N$$

32.
$$m(0,0)$$
 $x_{cm} = \frac{m \times 2L + m \times 2L + m \times L}{5m} = L$

m(2L,0)

$$m(2L,2L)$$
 $y_{cm} = \frac{m \times 2L + m \times 2L + m \times 4L}{5m} = \frac{8L}{5}$

m(0,2L)

m(L,4L)

33.
$$I = \frac{ML^2}{12} + M\left(\frac{L}{2} - \frac{L}{3}\right)^2$$

$$=\frac{ML^2}{12}+\frac{ML^2}{36}=\frac{ML^2}{9}$$

34.
$$\frac{GM_1}{x^2} = \frac{GM_2}{(d-x)^2} \Rightarrow \frac{d-x}{x} = \sqrt{\frac{M_2}{M_1}}$$

$$\Rightarrow \frac{d}{x} = 1 + \sqrt{\frac{M_2}{M_1}} \Rightarrow x = \frac{\sqrt{M_1}d}{\sqrt{M_1} + \sqrt{M_2}}$$

Now potential =
$$-\frac{GM_1}{x} - \frac{GM_2}{d-x}$$

$$= \frac{-G}{d} \left(\sqrt{M_1} + \sqrt{M_2} \right)^2$$

35.
$$P = P_0 - \frac{2T}{R}$$

$$Q = P_0$$

$$\Delta P = \frac{2T}{R}$$
 {R cos $\theta = r$ }

$$=\frac{2T}{r}\cos\theta$$

36.
$$\frac{1}{2}$$
 mv² = mgh

$$v = \sqrt{2gh} = \sqrt{2 \times 980 \times 10} \text{ cm/s}$$

$$= 140 \text{ cm/s} = 1.4 \text{ m/s}.$$

37.
$$dm = \lambda dx = (1 + 2x) dx$$

$$x_{cm} = \frac{\int_{0}^{1} (dm)x}{\int_{0}^{1} dm} = \frac{\int_{0}^{1} x(1+2x)dx}{\int_{0}^{1} (1+2x)dx} = \frac{7}{12}m$$

38. Moment of 4N force

=
$$4 \times \frac{20}{100}$$
 N-m (anti-clockwise)

Moment of 8N force

=
$$8 \times \frac{20}{100} \times \sin 30^{\circ} \text{ N-m (clockwise)}$$

Moment of 9N force = $9 \times \frac{20}{100}$ N-m (clockwise)

Moment of 6N force = $6 \times \frac{20}{100} \times \sin 0^{\circ} = 0$

$$\therefore \quad \tau = \left(4 \times 0.2 - 8 \times 0.2 \times \frac{1}{2} - 9 \times 0.2\right) = -1.8 \text{ N-m}$$
$$= 1.8 \text{ N-m clockwise}$$

$$V_P = -\frac{GM}{a/2} - \frac{GM}{a} = -\frac{3GM}{a}$$

40. E =
$$2[4\pi(4r^2) - 4\pi r^2]$$
 T
= $24\pi r^2$ T

41. momentum half \rightarrow velocity half

so,
$$\frac{1}{2}m \times V^2 = \frac{1}{2}m \times \left(\frac{V}{2}\right)^2 + \frac{1}{2}k \times x^2$$

$$\Rightarrow \frac{1}{2} \times 1 \times (8)^2 = \frac{1}{2} \times 1 \times (4)^2 + \frac{1}{2} k \times (3)^2$$

$$\Rightarrow k = \frac{16}{3} N / m$$

43.
$$\tau = 31.4 = I\alpha = I \times 4\pi$$

$$I = \frac{31.4}{4\pi} = 2.5 \text{ kg-m}^2$$

44. A/c to COME

$$E_{c} = E_{c}$$

$$\frac{1}{2}$$
m $V_{\rm c}^2 + \left(\frac{-\text{GMm}}{\text{R}}\right) = 0 + 0$

$$KE = \frac{1}{2}mV_e^2 = \frac{GMm}{R} = mgR$$

45.
$$V_T = \frac{2}{9} \frac{(\sigma - \rho)r^2g}{n}$$

$$\frac{(v_T)_{gold}}{(v_T)_{silver}} = \frac{\sigma_{gold} - \rho}{\sigma_{silver} - \rho} = \frac{19.5 - 1.5}{10.5 - 1.5} = \frac{18}{9} = 2$$

$$(v_T)_s = \frac{(v_T)_g}{2} = \frac{0.5}{2} = 0.1 \text{ m/s}$$

47. According to molecular orbital theory

 $\rm O_2$ has bond order is equal to 2 KO₂ has K⁺O₂⁻ ions and O₂⁻ ion has bond order is equal to 1.5 BaO₂ has Ba⁺²O₂⁻² ions and bond order of O₂⁻² is 1.0

∴ Bond length
$$\propto \frac{1}{\text{Bond order}}$$

So order of O-O Bond length will be

$$\mathrm{O_2} < \mathrm{KO_2} < \mathrm{BaO_2}$$

48. BeF₂:- linear (planar)

PCl₅:- Trigonal bipyramidal (non-planar)

SF₄:- See-saw (non - planar)

ClF₃:- T-shape (planar)

50. He & Li⁺ Both have 1S² configuration but Zeff of Li⁺ is greater than the thus more I.P.

XeF₂ IBr₂⁻¹

Valence e s
$$\rightarrow$$
 22e (Linear) (Linear)

- 52. $LiNO_3 < NaNO < KNO_3 < RbNO_3$
 - ∴ Size of cation ↑
 - \therefore Polarisation \downarrow
 - ∴ Thermal stability ↑
- **54.** CaO \rightarrow 50% to 60%
- **55.** Ionic size order :- $Li^+ \ge Mg^{+2}$ due to diagonal relationship.

56.
$$XeF_2 \rightarrow \begin{bmatrix} lp = 3 \\ \sigma = 2 \end{bmatrix} sp^3 d$$
 $XeF_2 \rightarrow \begin{bmatrix} F \\ Xe \end{bmatrix}$

57.
$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

Basic Acidic

$$\begin{array}{c} \text{LiNO}_{3} \xrightarrow{\quad \Delta \quad} \text{Li}_{2}\text{O} + \text{NO}_{2} + \text{O}_{2} \\ \text{Basic Acidic} \end{array}$$

$$MgCO_3 \xrightarrow{\Delta} MgO + CO_2$$

Basic Acidic

$$ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2$$

Amphoteric Acidic

59. Due to more surface area BP of H₂ is greater than He.

61.
$$PH_3 \rightarrow \boxed{B.A \approx 90^\circ}$$
 Drago's rule

- **62.** If lattice energy < Hydration energy compound is water soluble
- 65. Given electronic configuration

[Xe]
$$6s^2 4f^{14} 5d^{10} 6p^3$$

$$period = n = 6$$

$$Block = p$$

Gp. no
$$\Rightarrow$$
 npe ^{Θ} +12
 \Rightarrow 6pe ^{Θ} +12
 \Rightarrow 3+12
 \Rightarrow 15

$$\therefore$$
 x is \Rightarrow Bi

83

66.
$$XeF_{6(s)} \longrightarrow \left[XeF_{5}^{\oplus}\right] + F^{\odot}$$

$$XeF_5^{\oplus} \rightarrow \begin{array}{c} \ell p = 1 \\ \sigma = 5 \end{array} sp^3 d^2$$

- **67.** Latlic energy ∝ Charge
- **68.** Due to high IP, be donot ionise in liq. NH₃

70.

(1)
$$_{29}$$
Cu = 1s² 2s² 2p⁶ 3s² 3p⁶ $[4s]$ 3d¹⁰

partial filled

(2)
$$_{24}$$
Cr = 1s² 2s² 2p⁶ 3s² 3p⁶ $\frac{4s^1}{2s^2}$ 3d⁵

Both s,d partially filled

(3)
$$_{26}$$
Fe = $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

only d partially filled

(4)
$$_{30}$$
Zn = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰

both fully filled subshells

71. Bond strength order

[Ion - Ion > Ion - dipole > Dipole - dipole] Polarity :-

$$[H_2O > HCl]$$

- 72. Solubility of Ionic componed ∞ polar solvent
- **73.** NCERT XI, Pg.# 307 (table 10.2), para 2 Pg. # 312-10.10
- **75.** ns² np³ Half filled stable

- Thus least E.A.

- **76.** According to M.O.T.
 - B₂ is paramagnetic having bond order is 1
 - ${\rm O}_2$ is paramagnetic having bond order is 2
 - C_2^{-2} is diamagnetic having bond order is 3
 - O_2^+ is paramagnetic havig bond order is 25
- 77. Lattice energy ∞ charge

$$\frac{1}{r \to \text{Inter ionic distance}}$$

order $Al_2O_3 > AlF_3 > NaF > KF$

78. due to basic nature, it absorb CO_2 and due to unstability KO_2 release O_2

80.
$$P^{\ominus} \xrightarrow{-e^{-}} P_{(g)} + e^{\ominus}$$

$$-3p^{4} - 3p^{3}$$

$$- partially - Half$$
filled filled configuration stable
$$P.F \text{ to H.F}$$

$$conversion$$

$$require least$$

energy

81. According to MOT

Bond order of B_2 is $1 \Rightarrow B \pi B$ only one π

Bond order of C_2 is $2 \Rightarrow C \frac{\pi}{\pi} C \ 2 \pi$ bonds

Bond order of N_2 is $3 \Rightarrow N \frac{\underline{\sigma}}{2\pi} N 1\sigma$, 2π bonds

Bond order of O_2 is $2 \Rightarrow O = 0$ T_0 T_0 T_0 bond

84. Atomic size of Li > I

and also top in a group Atomic size \uparrow sec \downarrow Bottom

thus order \Rightarrow [Li > I > F < Cl < Br]

85. Since
$$\begin{bmatrix} \text{Energy } \times \frac{1}{\text{wavelength } (\lambda)} \end{bmatrix}$$

 $\therefore \ \, \text{process} \, \, O^+ \to O^{+2} \, \text{requires more energy} \\ \text{thus least} \, \, \lambda$

- 86. According to M.O.T.
 Bond order of Li₂ is 1 so Li₂ exists
 Bond order of B₂ is 1 so B₂ exists
 Bond order of C₂ is 2 so C₂ exists
 Bond order of Be₂ is zero so Be₂ does not exists
- 87. $Li^+ \ge Mg^{2+} \text{ (size)}$
- **89.** size order \Rightarrow III B group

$$3d - Sc$$

$$\uparrow$$

$$4d - Y$$

$$5d - La \leftarrow$$

$$33$$

$$6d - \Delta C$$

$$L.C.$$
effec

90.
$$\begin{bmatrix} EA \propto Zeff \propto \frac{\oplus ve \ charge}{\ominus ve \ charge} \end{bmatrix}$$

- \therefore Highest EA \Rightarrow Li⁺
- \Rightarrow (small size & \oplus ve charge)
- **94.** NCERT XI, Pg # 146, table 9.3
- 115. NCERT XI, Pg # 144
- **124.** NCERT XI, Pg # 147, table 9.5
- **154.** NCERT XI, Pg # 149, 9.5(para)
- **163.** NCERT XI, Pg # 147, table 9.4
- **174.** NCERT XI, Pg # 143, table 9.1