3. Základy topologie

V této kapitole uvádíme nejzákladnější topologické pojmy nutné k porozumění následujícím kapitolám. Čtenář zde nalezne definice pojmů: topologie, indukovaná topologie, okolí bodu, kompaktní množina, spojité zobrazení, souvislá množina, homeomorfismus a další. Dále zde uvádíme některá základní tvrzení týkající se definovaných pojmů.

Příklady a cvičení k této kapitolce byly sloučeny s příklady a cvičeními v následující kapitole, neboť se týkají pouze přirozené topologie na \mathbb{R} .

- **3.1 Topologický prostor.** Na množině X je zadána *topologie*, je-li určen systém τ podmnožin X splňující podmínky ($axiomy\ topologie$):
- $1.\emptyset, X \in \tau$;
- 2. jsou-li $Y, Z \in \tau$ potom $Y \cap Z \in \tau$;
- 3. je-li $S \subset \tau$ potom $\cup S \in \tau$.

Prvkům systému τ říkáme *otevřené* množiny, množině, na níž je zadána topologie, *topologický* prostor. Otevřené množině obsahující bod $x \in X$ budeme říkat *okolí bodu* x. Množina $Y \subset X$ se nazývá *uzavřená*, pokud $X \setminus Y$ je otevřená.

Často používaným kritériem toho, zda množina Y je otevřená, je to, zda ke každému bodu $y \in Y$ existuje jeho okolí U takové, že $U \subset Y$. Důkaz tohoto tvrzení přenecháváme čtenáři.

Druhý axiom topologie lze snadno rozšířit na libovolný konečný systém množin. Tohoto faktu budeme využívat.

Příkladem topologického prostoru je $\mathbb R$ s přirozenou topologií. Tomuto prostoru je věnována následující kapitola, ale pro ilustraci si uvedeme definici přirozené topologie již nyní. Množina $U \subset \mathbb R$ se nazývá otevřená v přirozené topologii $\mathbb R$, jestliže ke každému bodu $x \in U$ existuje otevřený interval I takový, že $x \in I \subset U$.

Snadno zjistíme, že interval (0, 1) je otevřená množina, ale interval [0, 1] ani (0, 1] otevřenou množinou není.

Necht' $Y \subset X$ a τ je topologie na X. Položme

$$\tau_Y = \{ Y \cap U \mid U \in \tau \}. \tag{3.1.1}$$

Věta 3.1. *Vztah (3.1.1) definuje topologii na množině Y*.

D ů k a z. Ověříme postupně všechny axiomy topologie.

Axiom 1: V definici (3.1.1) jednou z množin U je i množina \emptyset (topologie na X přece splňuje první axiom topologie). Dostáváme, že $\emptyset \in \tau_Y$. Podobně jednou z množin U bude i X, máme tedy $Y \in \tau_Y$.

Axiom 2. Nechť $U, V \in \tau_Y$. Ze vztahu (3.1.1) plyne, že existují množiny $U', V' \in \tau$ takové, že $U = Y \cap U'$ a $V = Y \cap V'$. Máme

$$U \cap V = (Y \cap U') \cap (Y \cap V') =$$

$$= (Y \cap Y) \cap (U' \cap V') =$$

$$= Y \cap (U' \cap V') \in \tau_Y.$$
 (asociativita a komutativita)
$$(\text{definice } \tau_Y)$$

Axiom 3. Nechť $S \subset \tau_Y$, ukážeme, že $\cup S \in \tau_Y$. Ze vztahu (3.1.1) plyne, že existuje systém $S' \subset \tau$ takový, že $S = \{Y \cap U \mid U \in S'\}$.

$$\cup S = \cup \{Y \cap U \mid U \in S'\} =$$

$$= Y \cap (\cup \{U \mid U \in S'\}) =$$
 (ověřte!)
= $Y \cap (\cup S') \in \tau_Y$. $(\cup S' \in \tau)$

Topologii definované vztahem (3.1.1) se říká *indukovaná topologie* na *Y*. Množinu *Y* s touto topologií nazýváme *topologický podprostor* topologického prostoru *X*.

Nechť Y je podmnožinou X. Pak prvek $x \in X$ splňuje právě jednu z následujících podmínek:

- 1. existuje okolí U bodu x takové, že $U \subset Y$;
- 2. existuje okolí U bodu x takové, že $U \subset X \setminus Y$;
- 3. pro každé okolí U bodu x je splněno $U \cap Y \neq \emptyset$ a $U \cap (X \setminus Y) \neq \emptyset$.

Bod splňující první (resp. druhou, resp. třetí) podmínku se nazývá vnitřním (resp. vnějším, resp. hraničním) bodem množiny <math>Y. Množinu všech vnitřních bodů množiny Y nazýváme vnitřek množiny Y a značíme int Y. Obdobně definujeme vnějšek množiny Y, který značíme ext Y, a hranici množiny Y označovanou fr Y. Množinu cl $Y = Y \cup$ fr Y nazveme uzávěrem množiny Y. Množina $Y \subset X$ je hustá v X, pokud cl Y = X. Bod X je X0 je X1 jestliže v každém okolí X1 leží bod množiny Y2 různý od X3.

Jako lehké cvičení si zkuste dokázat, že pro každou uzavřenou množinu Y platí clY = Y.

To, že pro každý prvek $x \in X$ platí právě jedna z podmínek 1–3, vede k závěru, že máme-li libovolnou množinu $Y \subset X$ potom int $Y \cup \text{fr } Y \cup \text{ext } Y = X$ a že množiny int Y, fr Y, ext Y jsou po dvou disjunktní.

Z toho, jak jsou definovány, je vidět, že množiny int Y a ext Y jsou otevřené, a přidáme-li fakt, že sjednocení vnitřku, vnějšku a hranice je celý prostor, dostaneme, že hranice je uzavřená množina.

Topologický prostor X je nesouvislý, pokud existují neprázdné otevřené disjunktní množiny U, V takové, že $U \cup V = X$. Topologický prostor je souvislý, není-li nesouvislý. Podmnožina Y topologického prostoru X se nazývá souvislá, je-li souvislý topologický prostor Y s indukovanou topologií. Podobně pro nesouvislost.

Například množina $X=(0,1)\cup\{3\}$ je v $\mathbb R$ nesouvislá. (Množinami U a V jsou zde U=(0,1), $V=\{3\}^{1)}$)

Topologický prostor X se nazývá Hausdorffův, jestliže pro každé dva různé body $x, y \in X$ existují okolí U bodu x a okolí V bodu y taková, že $U \cap V = \emptyset$.

Řekneme, že systém S podmnožin X pokrývá množinu (je pokrytím množiny) $A \subset X$, jestliže $\cup S \supset A$. Pokrytí se nazývá konečné, jestliže systém S je konečný. Pokrytí je otevřené, jestliže všechny množiny z S jsou otevřené. Libovolnou podmnožinu $S' \subset S$ nazveme podpokrytím pokrytí S množiny S, jestliže S' je pokrytím S.

Podmnožina *A* topologického prostoru *X* se nazývá *kompaktní*, jestliže ke každému otevřenému pokrytí množiny *A* existuje jeho konečné podpokrytí množiny *A*.

Věta 3.2. V Hausdorffově topologickém prostoru je každá kompaktní množina uzavřená.

D ů k a z. Buďte X Hausdorffův topologický prostor, A jeho kompaktní podmnožina. Pokud $X \setminus A = \emptyset$, což je otevřená množina, je A uzavřená. Předpokládejme, že $X \setminus A \neq \emptyset$, a zvolme libovolné $x \in X \setminus A$. Ke každému bodu $a \in A$ existuje okolí U_a bodu x a okolí V_a bodu a takové, že $U_a \cap V_a = \emptyset$. Systém $\{V_a \mid a \in A\}$ je otevřeným pokrytím A, existuje tedy jeho konečné podpokrytí $S = \{V_{a_1}, \ldots, V_{a_n}\}$. Položíme $U = U_{a_1} \cap \ldots \cap U_{a_n}$; že se jedná o okolí bodu x je zřejmé, navíc U je disjunktní s $\cup S$, což je nadmnožina A. Tedy U je disjunktní s A, a proto $U \subset X \setminus A$. Dokázali jsme, že ke každému prvku $x \in X \setminus A$ existuje okolí U takové, že $U \subset X \setminus A$. To stačí k tomu (porovnej s poznámkou za definicí topologie), aby $X \setminus A$ byla otevřená.

Věta 3.3. *Uzavřená podmnožina kompaktní množiny je kompaktní*.

 $^{^{1)}}$ Ano správně, množina $V=\{2\}$ je v indukované topologii na X otevřená, protože $V=(2,4)\cap X$.

 $^{^{2)}}$ To znamená, že počet prvků množiny S je konečný.

³⁾ Jsme přece v Hausdorfově prostoru, ne?

D ů k a z. Nechť A je uzavřená podmnožina kompaktní množiny Y topologického prostoru X. Zvolme libovolné otevřené pokrytí S množiny A a pokusme se najít konečné podpokrytí A. Množina $X \setminus A$ je otevřená (doplněk uzavřené množiny) a systém $S' = S \cup \{X \setminus A\}$ je otevřeným pokrytím Y. Protože Y je kompaktní, existuje jeho konečné podpokrytí $T' \subset S'$ množiny Y, pokrytí $T = T' \setminus \{X \setminus A\}$ je konečným podpokrytím S množiny A.

Buďte X, Y topologické prostory. Řekneme, že zobrazení $f: X \to Y$ je *spojité* v *bodě* $x \in X$, jestliže pro každé okolí U bodu f(x) existuje okolí V bodu x takové, že $f(V) \subset U$. Zobrazení f je *spojité*, je-li spojité v každém bodě $x \in X$. Zobrazení f je *nespojité* v *bodě* $x \in X$, není-li v něm spojité. Zobrazení je *nespojité*, pokud není spojité v každém bodě $x \in X$.

Pokud budeme někdy hovořit o spojitosti zobrazení $f: X \to Y$ na množině $X' \subset X$, budeme tím mít na mysli spojitost zobrazení $f|_{X'}$ vzhledem k indukované topologii na X'.

Věta 3.4. Zobrazení $f: X \to Y$ je spojité, právě když vzorem každé otevřené množiny v Y je otevřená množina v X.

D ů k a z. Budiž f spojité a U otevřená množina v Y. Ukážeme, že $f^{-1}(U)$ je otevřená v X. Podle poznámky za definicí topologie stačí ukázat, že ke každému bodu $x \in f^{-1}(U)$ existuje jeho okolí V takové, že $V \subset U$. Množina U je otevřená a obsahuje bod f(x), je to tedy okolí f(x), k němu ze spojitosti f v bodě x existuje okolí U bodu x takové, že $f(U) \subset V$, to znamená, že $U \subset f^{-1}(V)$.

Předpokládejme nyní, že vzorem každé otevřené množiny je otevřená množina. Zvolme libovolný bod $x \in X$ a dokažme, že f je v něm spojité. Zvolme okolí U bodu f(x) libovolně, U je otevřená množina a podle předpokladu je její vzor $V = f^{-1}(U)$ otevřená množina. Protože $x \in V$ a $f(f^{-1}(U)) \subset U$, anašli jsme okolí V bodu X takové, že $f(V) \subset U$.

Obdobně lze dokázat, že pro spojité zobrazení platí, že vzor každé uzavřené množiny je uzavřená množina.

Věta 3.5. Buďie $f: X \to Y$, $g: Y \to Z$ spojitá zobrazení. Pak $g \circ f$ je spojité zobrazení. D ů k a z. Podle věty 3.4 stačí ukázat, že vzor libovolné otevřené množiny je otevřená množina. Nechť $V \subset Z$ je otevřená. Potom $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ (ověřte!), ale $U = g^{-1}(V)$ je podle věty 3.4 otevřená a podle stejné věty je otevřená i $f^{-1}(U) = f^{-1}(g^{-1}(V))$.

Věta 3.6. Spojitý obraz kompaktní množiny je kompaktní množina.

D ů k a z. Nechť $f: X \to Y$ je spojité zobrazení topologických prostorů a $A \subset X$ je kompaktní podmnožina. Ověříme, že f(A) je kompaktní podmnožina. Nechť S je otevřené pokrytí množiny f(A). Uvažujme systém $T = \{f^{-1}(U) \mid U \in S\}$, to je otevřené pokrytí A. (Že se jedná o pokrytí plyne z faktu, že pokud $f(A) \subset B$, potom $A \subset f^{-1}(B)$. Ověřte pro $B = \bigcup S!$ Otevřenost množin $f^{-1}(U)$ plyne z věty 3.4.) Pokrytí T má konečné podpokrytí $\{f^{-1}(U_1), \ldots, f^{-1}(U_n)\}$ množiny A. Hledaným podpokrytím S množiny f(A) je $\{U_1, \ldots, U_n\}$.

Věta 3.7. Spojitý obraz souvislé množiny je souvislá množina.

D ů k a z. Předpokládejme, že při spojitém zobrazení $f: X \to Y$ by obrazem souvislé množiny $A \subset X$ byla nesouvislá množina B = f(A). Pak musí existovat disjunktní otevřené množiny $U, V \subset Y$ takové, že ani jedna z množin $U \cap f(A)$ a $V \cap f(A)$ není prázdná a $(U \cap f(A)) \cup (V \cap f(A)) = f(A)$. Všimněme si množin $f^{-1}(U) \cap A$ a $f^{-1}(V) \cap A$. Jsou to otevřené množiny v indukované topologii na A (množiny $f^{-1}(U)$, $f^{-1}(V)$ jsou otevřené množiny v X jako vzory otevřených množin při spojitém zobrazení věta $f^{-1}(U)$ pále jsou to disjunktní množiny, protože $f^{-1}(U) \cap f^{-1}(V) \cap f^$

⁴⁾Ověřte!

⁵⁾Zde jsme využili toho faktu, že máme-li $f: X \to Y$ a $X_1, \ldots, X_n \subset X$ potom $f(X_1 \cup \ldots \cup X_n) = f(X_1) \cup \ldots \cup f(X_n)$ (viz. příklad 1.2), a že pokud $Y' \subset f(X)$, potom $f(f^{-1}(Y')) = Y'$.

⁶⁾Indukovaná topologie na f(A)!

```
(f^{-1}(U) \cap A) \cup (f^{-1}(V) \cap A) =
= A \cap (f^{-1}(U) \cup f^{-1}(V)) =
= A \cap f^{-1}(U \cup V) \supset
\supset A \cap f^{-1}(f(A)) =
= A.
(distributivita)
(cvičení 1.15.b))
(protože U \cup V \supset f(A))
= A.
(proč?)
```

To znamená, že $(f^{-1}(U) \cap A) \cup (f^{-1}(V) \cap A) = A$, a proto je A nesouvislá. To je spor, A má být podle předpokladu souvislá.

Bijektivní zobrazení $f: X \to Y$ topologických prostorů nazveme *homeomorfismus*, pokud f i f^{-1} jsou spojitá. Existuje-li mezi dvěma topologickými prostory homeomorfismus, říkáme, že jsou *homeomorfní*.

Užitím vět 3.6 a 3.7 dostáváme, že se souvislým (resp. kompaktním) prostorem může být homeomorfní pouze souvislý (resp. kompaktní) prostor. Například [0, 1] a $[0, 1) \cup 2$ nemohou být homeomorfní.

Věta 3.8. Kompozice dvou homeomorfismů je homeomorfismus.

D ů k a z. Plyne (jak?) z toho, že složení dvou bijekcí je bijekce (věta 1.6) a že složení dvou spojitých zobrazení je spojité (věta 3.5).

Kontrolní otázky

- 1. Jaký je rozdíl mezi topologií a topologickým prostorem.
- 2. Je vnitřek množiny vždy otevřená množina?
- 3. Je topologie množina?
- 4. Co jsou prvky topologie?
- 5. Lze na každé množině zadat nějakou topologii?

4. Topologické vlastnosti množiny reálných čísel

V této kapitole definujeme přirozenou topologii na množině reálných čísel a uvádíme její základní vlastnosti: charakterizujeme souvislé a kompaktní množiny v \mathbb{R} , uvádíme (jako důsledek obecných topologických tvrzení z předchozí kapitoly) Bolzanovu a Weierstrassovu větu.

Dále se zabýváme základními vlastnostmi spojitých funkcí reálné proměnné a definujeme pojem limity.

4.1 Přirozená topologie na \mathbb{R} . Množina $U \subset \mathbb{R}$ se nazývá *otevřená*, jestliže ke každému bodu $x \in U$ existuje otevřený interval I takový, že $x \in I \subset U$.

Věta 4.1. Systém všech otevřených množin $U \subset \mathbb{R}$ je topologie na \mathbb{R} .

D ů k a z. Pro prázdnou množinu a celé $\mathbb R$ definice platí, první axiom topologie je tedy splněn.

Necht' U, V jsou otevřené, pak pro bod $x \in U \cap V$ existují otevřené intervaly I, J takové, že $x \in I \subset U$ a $x \in J \subset V$. Ovšem $I \cap J$ je otevřený interval a platí $x \in I \cap J \subset U \cap V$, to znamená, že $U \cap J$ je otevřená a je splněn druhý axiom topologie.

Necht' S je systém otevřených množin, zvolme libovolný prvek $x \in \cup S$. Potom existuje $U \in S$ tak, že $x \in U$. Protože U je otevřená, existuje otevřený interval I tak, že $x \in I \subset U$. Z definice sjednocení systému víme, že $x \in I \subset U \subset \cup S$. To dokazuje platnost třetího axiomu topologie.

Nebude-li uvedeno jinak, budeme vždy množinu ℝ uvažovat s přirozenou topologií.

Snadno se lze přesvědčit, že $\mathbb R$ s přirozenou topologií je Hausdorffův topologický prostor.

Podívejme se, jak vypadají souvislé a kompaktní množiny v \mathbb{R} . Nejprve uvedeme jednoduché pomocné tvrzení:

Lemma 4.2. Necht' $X \subset \mathbb{R}$ je množina taková, že pro každé $x, y \in X$, x < y, platí $[x, y] \subset X$. Pak X je interval. $[x, y] \subset X$.

D ů k a z. Přenecháme čtenáři.

Věta 4.3. Nechť X je neprázdná podmnožina. Následující dvě podmínky jsou ekvivalentní: 1. X je souvislá,

2. X je interval.

D ů k a z. Předpokládejme, že množina X je souvislá a není interval. Podle předchozího lemmatu tedy existují body x, y, z takové, že $x < z < y, x, y \in X$ a $z \notin X$. Pak ale množiny $(-\infty, z) \cap X$ a $(z, \infty) \cap X$ jsou neprázdné, otevřené v X a tvoří rozklad množiny X. To ovšem znamená, že X není souvislá množina. Dokázali jsme tedy, že každá neprázdná souvislá množina je interval.

Nechť X je interval a předpokládejme, že je nesouvislý. Existují tedy disjunktní množiny U, V otevřené v $\mathbb R$ takové, že $U \cap X$ a $V \cap X$ jsou neprázdné a $X = (U \cap X) \cup (V \cap X)$. Zvolme tedy $x \in U \cap X$ a $y \in V \cap X$; můžeme předpokládat, že x < y. Protože X je interval, platí $[x, y] \subset X$. Položme $z = \sup(U \cap (x, y))$; to určitě existuje a platí pro ně, že x < z < y ($z \neq y$, protože V je otevřená množina, existuje otevřený interval J tak, aby $y \in J \subset V$). Bod z leží v $(x, y) \subset X$, leží tedy v jedné z množin $(x, y) \cap U$, $(x, y) \cap V$. V množině $(x, y) \cap U$ ale ležet nemůže, protože by existoval otevřený interval $I \ni z$ tak, že $I \subset (x, y) \cap U$, a z by nebylo horní závora $U \cap (x, y)$. V množině $V \cap (x, y)$ ležet také nemůže, protože by existoval otevřený interval

¹⁾Množina \mathbb{R} je ovšem taky interval (poopravte si definici uvedenou dříve).

 $J \ni z$ tak, že $J \subset (x, y) \cap V$, a z by nebylo nejmenší horní závora $U \cap (x, y)$. To je ale ve sporu s $X = (U \cap X) \cup (V \cap X)$.

Důsledek 4.4 (Bolzano). *Je-li I* $\subset \mathbb{R}$ *interval a* $f: I \to \mathbb{R}$ *spojitá funkce. Pak* f(I) *je interval.* D ů k a z. Plyne z předchozí věty a z věty 3.7.

Důsledek 4.5 (Darbouxova vlastnost). Necht' $f:[a,b] \to \mathbb{R}$ je spojitá a c takové, že f(a) < c < f(b) (případně f(a) > c > f(b)), pak existuje $x \in (a,b)$ takové, že f(x) = c. D ů k a z. Plyne přímo z Bolzanovy věty.

Darbouxovu vlastnost lze jednoduše popsat, řekneme-li, že spojitá funkce nabývá na intervalu všech mezihodnot.

Lemma 4.6 (Heine-Borel). *Každý interval* $[x, y] \subset \mathbb{R}$ *je kompaktní množina*.

- D ů k a z. Necht' S je otevřené pokrytí intervalu [x, y]. Označme A množinu všech $z \in [x, y]$ takových, že existuje konečné podpokrytí $T \subset S$ intervalu [x, z]. Jistě $x \in A$ a $y \ge A$. Existuje tedy $z_0 = \sup A$. Nyní ověříme dvě věci: $1. z_0 \in A, 2. z_0 = y$. Tím bude náhle tvrzení dokázáno.
- 1. Předpokládejme, že $z_0 \notin A$ a zvolme $U \in S$ tak, že $z_0 \in U$. Jelikož množina U je otevřená existuje otevřený interval $(a,b) \subset U$ obsahující z_0 . Protože $z_0 = \sup A$, existuje prvek $z \in A$, který leží v (a,b). Nechť $T \subset S$ je konečné pokrytí intervalu [x,z]. Pak $T \cup \{U\} \subset S$ je konečné pokrytí intervalu $[x,z_0]$, $z_0 \in A$ a dostáváme spor.
- 2. Předpokládejme, že $z_0 < y$ a označme $T \subset S$ konečné podpokrytí intervalu $[x,z_0]$. Množina $U \in T$, která obsahuje bod z_0 , obsahuje i nějaký otevřený interval $I \subset [x,y]$ takový, že $z_0 \in I$. Pro libovolný bod $z \in I$, $z > z_0$, nyní T pokrývá interval [x,z]. To znamená, že $z \in A$ a dostáváme spor s tím, že $z_0 = \sup A$.
- **Věta 4.7.** Necht' $X \subset \mathbb{R}$ je neprázdná podmnožina. Následující dvě podmínky jsou ekvivalentní: 1. X je kompaktní,
- 2. X je uzavřená a ohraničená.
- D ů k a z. Předpokládejme, že množina X je kompaktní. Podle věty 3.2 je X uzavřená. Předpokládejme, že množina X není ohraničená. Pak systém $\{(-n,n)\mid n\in\mathbb{N}\}$ je její otevřené pokrytí, které nemá konečné podpokrytí. To ale znamená, že je ohraničená.

Předpokládejme, že množina X je uzavřená a ohraničená. Pak existuje uzavřený interval $[x, y] \subset \mathbb{R}$ takový, že $X \subset [x, y]$. Tento interval je kompaktní (podle předchozího lemmatu), X je jeho uzavřená podmnožina, a podle věty 3.3 je tedy kompaktní.

Důsledek 4.8. Každá neprázdná kompaktní podmnožina \mathbb{R} má maximum a minimum.

D ů k a z. Plyne z předchozí věty a z toho, že každá neprázdná uzavřená ohraničená množina v \mathbb{R} má maximum a minimum (proč?).

Důsledek 4.9 (Weierstrass). *Každá spojitá funkce*, *definovaná na neprázdné kompaktní podmno- žině* \mathbb{R} *má maximum a minimum*.

D ů k a z. Plyne z toho, že spojitý obraz kompaktní množiny je kompaktní množina (věta 3.6), z věty 4.7 a předchozího důsledku.

- **4.2 Vlastnosti spojitých funkcí v** \mathbb{R} . Funkce $f: X \subset \mathbb{R} \to \mathbb{R}$ se nazývá *spojitá zleva* (případně *zprava*) v bodě $x_0 \in X$, je-li v tomto bodě spojité její zúžení na množinu $X \cap (-\infty, x_0]$ (případně $[x_0, \infty)$). Veškeré výsledky o spojitosti funkce v bodě, které uvedeme, se dají snadno převést na spojitost zprava a zleva. Následující tvrzení je jednoduchým důsledkem definic:
- **Věta 4.10.** Funkce $f: X \subset \mathbb{R} \to \mathbb{R}$ je spojitá v bodě $x_0 \in X$, právě když je v tomto bodě spojitá zleva i zprava.
- **Věta 4.11.** Funkce $f: X \subset \mathbb{R} \to \mathbb{R}$ je spojitá v bodě $x_0 \in X$, právě když ke každému otevřenému intervalu J se středem v bodě $f(x_0)$ existuje otevřený interval I se středem v bodě x_0 tak, že $f(I \cap X) \subset J$.

D ů k a z. Necht' f je spojitá v x_0 . Pak k otevřenému intervalu J se středem v bodě $f(x_0)$ existuje okolí U bodu x_0 v topologii $\mathbb R$ tak, že $f(U\cap X)\subset J$ (to plyne z definic indukované topologie a spojitosti). Podle definice přirozené topologie toto okolí ovšem obsahuje nějaký otevřený interval I se středem v x_0 . Platí $f(I\cap X)\subset J$.

Zvolme nyní naopak libovolné okolí V bodu $f(x_0)$. Podle definice přirozené topologie toto okolí obsahuje nějaký otevřený interval J se středem v $f(x_0)$. K němu ovšem podle předpokladu najdeme otevřený interval I se středem v bodě x_0 tak, že $f(I \cap X) \subset J \subset V$. Tím je dokázána spojitost funkce f v bodě x_0 .

Důsledek 4.12 (ε - δ kritérium spojitosti). Funkce $f: X \subset \mathbb{R} \to \mathbb{R}$ je spojitá v bodě x_0 , právě když ke každému číslu $\varepsilon > 0$ existuje číslo $\delta > 0$ takové, že pro každé $x \in X$, které splňuje $|x - x_0| < \delta$, platí $|f(x) - f(x_0)| < \varepsilon$.

D ů k a z. Stačí si uvědomit, že množina všech $x \in \mathbb{R}$ takových, že $|x - x_0| < \delta$, je interval $(x_0 - \delta, x_0 + \delta)$ a množina všech $y \in \mathbb{R}$ takových, že $|y - f(x_0)| < \varepsilon$, je interval $(f(x_0) - \varepsilon, f(x_0) + \varepsilon)$.

Dokažme spojitost funkce $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Zvolme $x_0 \in \mathbb{R}$, $\delta > 0$ a položme $\varepsilon = \delta$. Nyní pro každé $x \in \mathbb{R}$, pro které platí $|x - x_0| < \delta$, máme

$$|f(x) - f(x_0)| = ||x| - |x_0||$$

$$\leq |x - x_0|$$

$$< \delta = \varepsilon.$$
(cvičení 2.10 e))

Definujme funkci signum sgn: $\mathbb{R} \to \mathbb{R}$ předpisem

$$\operatorname{sgn}(x) = \begin{cases} -1, & \text{jestliže } x < 0, \\ 0, & \text{jestliže } x = 0, \\ 1, & \text{jestliže } x > 0. \end{cases}$$

Dokažme nespojitost funkce signum v bodě 0. Musíme najít okolí U bodu $\operatorname{sgn}(0) = 0$ tak, že pro každé okolí V bodu 0 neplatí $f(V) \subset U$. Položme $U = \left(-\frac{1}{2}, \frac{1}{2}\right)$, zvolme nyní libovolné okolí V bodu 0 a ukažme, že V obsahuje bod x takový, že $f(x) \notin \left(-\frac{1}{2}, \frac{1}{2}\right)$. Protože V je otevřená, obsahuje interval I se středem v 0. Zvolme $x \in I$, x > 0. Platí $\operatorname{sgn}(x) = 1 \notin \left(-\frac{1}{2}, \frac{1}{2}\right)$.

Věta 4.13. Funkce $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, f(x) = 1/x je spojitá.

D ů k a z. Nechť $x_0 \in \mathbb{R}, x_0 \neq 0$. K číslu $\varepsilon > 0$ zvolme δ tak, aby

$$0 < \delta < \min\left\{\frac{|x_0|}{2}, \frac{\varepsilon x_0^2}{2}\right\}. \tag{4.2.1}$$

Nyní ze vztahu $|x - x_0| < \delta$ plyne jednak

$$\delta > |x - x_0| = |x_0 - x| \ge$$

 $\geq ||x_0| - |x|| \ge$ (cvičení 2.10 e))
 $\geq |x_0| - |x|,$

což znamená, že

$$|x| > |x_0| - \delta > 0,$$
 (4.2.2)

jednak

$$\left|\frac{1}{x} - \frac{1}{x_0}\right| = \left|\frac{x_0 - x}{x x_0}\right| \le \frac{|x_0 - x|}{|x||x_0|} < \frac{|x_0 - x|}{(|x_0| - \delta)|x_0|} < \frac{\delta}{(|x_0| - \delta)|x_0|} < \frac{\delta}{\left(|x_0| - \frac{|x_0|}{2}\right)|x_0|}$$

$$=\frac{2\delta}{x_0^2}=\frac{2\delta}{\varepsilon x_0^2}\varepsilon<\frac{\delta}{\delta}\varepsilon=\varepsilon.$$

Věta 4.14. Necht' $f, g, h: X \subset \mathbb{R} \to \mathbb{R}$ jsou funkce spojité v bodě x_0 a $0 \notin h(X)$. Pak následující funkce jsou rovněž spojité v bodě x_0 :

1. f + g,

 $2. f \cdot g$,

3. f/*h*.

D ů k a z. 1. Zvolme $\varepsilon > 0$. Jelikož funkce f a g jsou spojité v x_0 , existují čísla $\delta_1, \delta_2 > 0$ taková, že pro $x \in (x_0 - \delta_1, x_0 + \delta_1)$ je $|f(x) - f(x_0)| < \varepsilon/2$ a pro $x \in (x_0 - \delta_2, x_0 + \delta_2)$ je $|g(x) - g(x_0)| < \varepsilon/2$. Položme $\delta = \min\{\delta_1, \delta_2\}$. Pro $x \in (x_0 - \delta, x_0 + \delta)$ nyní máme

$$|f(x) + g(x) - f(x_0) - g(x_0)| \le |f(x) - f(x_0)| + |g(x) - g(x_0)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

2. Zvolme $\varepsilon > 0$. Jelikož funkce f a g jsou spojité v x_0 , existují čísla $\delta_1, \delta_2, M > 0$ taková, že pro $x \in (x_0 - \delta_1, x_0 + \delta_1)$ je |f(x)| < M (každá funkce spojitá v bodě x_0 je na nějakém jeho okolí ohraničená — viz cvičení 37), $|f(x) - f(x_0)| < \varepsilon/(2|g(x_0)|)$ a pro $x \in (x_0 - \delta_2, x_0 + \delta_2)$ je $|g(x) - g(x_0)| < \varepsilon/(2M)$. Položme $\delta = \min\{\delta_1, \delta_2\}$. Pro $x \in (x_0 - \delta, x_0 + \delta)$ máme

$$|f(x)g(x) - f(x_0)g(x_0)| =$$

$$= |f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)| \le$$

$$\le |f(x)||g(x) - g(x_0)| + |g(x_0)||f(x) - f(x_0)| <$$

$$< M\frac{\varepsilon}{2M} + |g(x_0)|\frac{\varepsilon}{2|g(x_0)|} = \varepsilon.$$

3. Plyne (jak?) z důsledku 4.12, z věty 3.5, věty 4.13 a z bodu 2. této věty.

Důsledek 4.15. Pro každé $n \in \mathbb{N}$ je funkce pow_n spojitá.

D ů k a z. Plyne matematickou indukcí ze spojitosti funkce $id_{\mathbb{R}}$ (příklad 1 této kapitoly) a z bodu 2. věty 4.14.

Důsledek 4.16. Necht' $f, g: X \subset \mathbb{R} \to \mathbb{R}$ jsou spojité funkce, $a, b \in \mathbb{R}$. Pak funkce af + bg je spojitá.

D ů k a z. Plyne ze spojitosti konstantní funkce a z bodů 1. a 2. věty 4.14.

Důsledek 4.17. Každá afinní funkce je spojitá.

D ů k a z. Plyne ze spojitosti funkce id_ℝ a předchozího důsledku.

Věta 4.18. Necht' $f, g: X \subset \mathbb{R} \to \mathbb{R}$ jsou spojité funkce. Pak

1. Množina všech $x \in X$ takových, že f(x) = g(x), je uzavřená v X.

2. Množina všech $x \in X$ takových, že $f(x) \leq g(x)$, je uzavřená v X.

D ů k a z. Podle věty 4.14 je funkce h = f - g spojitá. První množina je rovna $h^{-1}\{0\}$, druhá $h^{-1}(-\infty, 0]$. Jsou to tedy vzory uzavřených množin při spojitém zobrazení.

Důsledek 4.19. Necht' $f, g: X \subset \mathbb{R} \to \mathbb{R}$ jsou spojité funkce, $A \subset X$ množina hustá v X. Pak $z \mid f \mid_A = g \mid_A plyne \mid f \mid g$.

D ů k a z. Podle předchozí věty je množina B všech $x \in X$, pro něž f(x) = g(x), uzavřená v X. Platí $X = \operatorname{cl} A \subset \operatorname{cl} B = B$, neboli B = X.

Důsledek 4.20. Necht' $f, g: X \subset \mathbb{R} \to \mathbb{R}$ jsou spojité funkce, $A \subset X$ množina hustá v X. Pak $z \mid f \mid_A \leq g \mid_A plyne \mid f \leq g$.

D ů k a z. Stejný jako důkaz předchozího důsledku.

Věta 4.21. Libovolný neprázdný otevřený interval v \mathbb{R} je homeomorfní s \mathbb{R} .

D ů k a z. Mějme dva otevřené intervaly (a_1, b_1) a (a_2, b_2) . Funkce $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \frac{x - b_1}{a_1 - b_1} a_2 + \frac{x - a_1}{b_1 - a_1} b_2$$

je afinní. Funkce f^{-1} existuje (jak se lze snadno přesvědčit) a je rovněž afinní. f je tedy homeomorfismus. Navíc, $f(a_1, b_1) = (a_2, b_2)$. Příslušným zúžením tedy dostaneme homeomorfismus intervalů (a_1, b_1) a (a_2, b_2) .

Definujme nyní zobrazení $g: \mathbb{R} \to (-1, 1)$ předpisem

$$g(x) = \frac{x}{1 + |x|}$$

(ověřte, že pro každé $x \in \mathbb{R}$ je $f(x) \in (-1, 1)$). Toto zobrazení má inverzi:

$$g^{-1}(x) = \frac{x}{1 - |x|}$$

(ověřte, že se jedná o inverzi). Zobrazení g i g^{-1} jsou spojitá (to plyne z věty 4.14 a spojitosti absolutní hodnoty) a g je homeomorfismus. Množina $\mathbb R$ je tedy homeomorfní s intervalem (-1,1), a tedy, podle toho, co jsme dokázali před chvílí, i s libovolným jiným ohraničeným otevřeným intervalem (kompozice dvou homeomorfismů je homeomorfismus! Věta 3.8).

Konečně pro intervaly $(-\infty, a)$ a (b, ∞) platí $g(-\infty, a) = (-1, a/(1 + |a|))$ a $g(b, \infty) = (b/(1 + |b|), 1)$.

Tím je celá věta dokázána.

Věta 4.22. Necht' I je interval. Libovolná rostoucí nebo klesající spojitá funkce f na intervalu I je homeomorfismus I a f(I). Libovolná prostá spojitá funkce f na intervalu I je rostoucí nebo klesající.

D ů k a z. 1. Předpokládejme například, že funkce f je spojitá a, řekněme, rostoucí. Pak f je bijekce mezi množinami I a f(I) a stačí dokázat, že zobrazení f^{-1} : $f(I) \to I^{2)}$ je spojité. Obrazem libovolného intervalu $[a,b] \subset I$ je podle důsledku 4.4 nějaký interval; jelikož funkce f je rostoucí, musí to být interval [f(a),f(b)]. Podobný výsledek získáme pro polootevřené a otevřené intervaly. Nyní již první část tvrzení (pro rostoucí funkci) plyne z důsledku 4.12. Pro klesající funkci lze tvrzení dokázat podobně.

2. Předpokládejme, že funkce f je spojitá a prostá a zvolme libovolně body $x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$. Snadno se vidí, že platí $f(x_1) < f(x_2) < f(x_3)$, nebo $f(x_1) > f(x_2) > f(x_3)$. Kdyby totiž bylo například $f(x_1) < f(x_2)$ a $f(x_3) < f(x_2)$, pak by podle důsledku 4.12 existoval bod $y \in f(x_1, x_2) \cap f(x_2, x_3)$, který by měl vzor jak v intervalu (x_1, x_2) , tak v intervalu (x_2, x_3) . To by byl spor s injektivností funkce f.

Zvolme nyní libovolné dva body $a,b \in I$, a < b, a předpokládejme, že f(a) < f(b). Z tohoto předpokladu odvodíme, že funkce f je rostoucí (z předpokladu f(a) > f(b) se dá stejným postupem odvodit, že je klesající). Připusťme, že funkce f není rostoucí, čili, že existují body $c,d \in I$, c < d, s vlastností f(c) > f(d). Nyní se snadno vidí, že ať je vzájemná poloha bodů a,b,c,d jakákoli, vždy z nich lze vybrat trojici $x_1 < x_2 < x_3$, která nesplňuje $f(x_1) < f(x_2) < f(x_3)$ ani $f(x_1) > f(x_2) > f(x_3)$.

Důkaz je hotov.

Kontrolní otázky

 $^{^{2)}}$ Přesně řečeno, udělali jsme tohle: vzali jsme funkci \bar{f} : $I \to f(I)$, definovanou stejným předpisem, jako funkce f (zúžení oboru hodnot) a zjistili, že je to bijekce. Našli jsme inverzní funkci \bar{f}^{-1} a označili ji f^{-1} . Je to určitá nepřesnost; proto je třeba, abys byl, milý čtenáři, při věci.

- 1. Můžeme hovořit o spojitosti nebo nespojitosti zobrazení $f: X \to Y$, kde X, Y jsou obecné množiny bez zadaných topologii?
- 2. Která z následujících definicí spojitosti funkce $f: \mathbb{R} \to \mathbb{R}$ je ekvivalentní s definicí z tohoto textu. Pravíme že $f: \mathbb{R} \to \mathbb{R}$ je je spojitá, jestliže
 - a) pro každý interval (a, b) je $f^{-1}(a, b)$ otevřená množina v \mathbb{R} ;
 - b) pro každý interval (a, b) je $f^{-1}(a, b)$ otevřený interval;
 - c) pro každé $x_0 \in \mathbb{R}$ existuje $\varepsilon > 0$ takové, že pro každé $\delta > 0$ platí: je-li $|x x_0| < \delta$, potom $|f(x) f(x_0)| < \varepsilon$;
 - d) pro každé $x_0 \in \mathbb{R}$ a pro každé $\varepsilon > 0$ existuje $\delta > 0$ takové, že platí: je-li $|x x_0| < \delta$, potom $|f(x) f(x_0)| < \varepsilon$.
- 3. Je-li f + g nespojitá funkce, znamená to, že f nebo g je nespojitá?
- 4. Je-li f + g spojitá funkce, znamená to, že f i g jsou spojité?
- 5. Je výrok "Funkce $f: X \subset \mathbb{R} \to \mathbb{R}$ není spojitá na X." ekvivalentní s výrokem "Existuje $x_0 \in X$ a $\varepsilon > 0$ tak, že pro každé $\delta > 0$ existuje $x \in X$ takové, že $|x x_0| < \delta$ a $|f(x) f(x_0)| \ge \varepsilon$ "?
- 6. Vyplývá z Bolzanovy věty (důsledek 4.4), že obraz otevřené množiny je opět otevřená množina?

4.3 Limita. Mějme topologický prostor X, Hausdorffův topologický prostor Y, zobrazení $f: A \subset X \to Y$ a bod x_0 hromadný bod množiny A. Limitou zobrazení f v bodě x_0 nazýváme prvek $y_0 \in Y$ takový, že zobrazení $f: A \cup \{x_0\} \to Y$, definované předpisem

$$\bar{f}(x) = \begin{cases} f(x), & \text{jestliže } x \neq x_0, \\ y_0, & \text{jestliže } x = x_0, \end{cases}$$

$$(4.3.1)$$

je spojité v x_0 .

Je-li y_0 limitou zobrazení f v bodě x_0 , píšeme $y_0 = \lim_{x \to x_0} f(x)$.

Dalo by se říci, že limita je takový prvek prostoru Y, kterým je třeba funkci f v bodě x_0 dodefinovat (předefinovat), aby byla v x_0 spojitá. Vyzkoušejte si to na funkci $|\operatorname{sgn}(x)|$.

Často budeme pracovat s limitou zobrazení f, zúženého na nějakou podmnožinu $A \cap B$, kde $B \subset A$. V takovém případě používáme tuto symboliku:

$$\lim_{x \to x_0} f|_{A \cap B}(x) = \lim_{\substack{x \to x_0 \\ x \in B}} f(x). \tag{4.3.2}$$

Věta 4.23. Necht' $f: A \subset X \to Y$. Pak $\lim_{\substack{x \to x_0 \\ x \in A}} f(x) = y_0$, právě když ke každému okolí V bodu y_0 existuje okolí U bodu x_0 tak, že $f((U \setminus \{x_0\}) \cap A) \subset V$.

D ů k a z. Věta je přímým důsledkem definic limity spojitého zobrazení a indukované topologie.

Důsledek 4.24 (ε - δ **kritérium limity**). Funkce $f: X \subset \mathbb{R} \to \mathbb{R}$ má v hromadném bodě x_0 množiny X limitu y_0 , právě když ke každému číslu $\varepsilon > 0$ existuje číslo $\delta > 0$ takové, že pro každé $x \in X$, $x \neq x_0$, které splňuje $|x - x_0| < \delta$, platí $|f(x) - y_0| < \varepsilon$.

Věta 4.25. Každé zobrazení má v daném bodě nejvýše jednu limitu.

D ů k a z. Nechť y_1, y_2 jsou dvě různé limity zobrazení $f: A \subset X \to Y$ v bodě $x_0 \in X, V_1$ a V_2 taková okolí bodů y_1 a y_2 , že $V_1 \cap V_2 = \emptyset$ (tato okolí existují — prostor Y je Hausdorffův). Podle věty 4.23 existují okolí U_1 a U_2 bodu x_0 taková, že $f(U_1 \cap A) \subset V_1$ a $f(U_2 \cap A) \subset V_2$. Jelikož x_0 je hromadný bod množiny A, existuje bod $x \in A, x \neq x_0$, který leží současně v množinách U_1 a U_2 . Pro tento bod ale platí $f(x) \in V_1 \cap V_2$, což je spor.

Věta 4.26 (limita složeného zobrazení). Buďie X, Y, Z topologické prostory, x_0 hromadný bod množiny $A \subset X$. Dále buďie $f: A \to Y$ zobrazení, které má limitu $y_0 = \lim_{x \to x_0} f(x)$, a $g: Y \to Z$ zobrazení spojité v y_0 . Pak zobrazení $g \circ f$ má limitu v bodě x_0 a platí

$$\lim_{x \to x_0} (g \circ f)(x) = g(y_0). \tag{4.3.3}$$

D ů k a z. Plyne přímo z definice limity a věty 3.5.

Než aplikujeme pojem limity na funkce reálné proměnné, zavedeme následující pomocný pojem: $Rozšířenou množinou reálných čísel nazýváme množinu <math>\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, kde $-\infty$ a ∞ jsou libovolné dva různé prvky, tzv. nevlastní body, které nejsou reálnými čísly.³⁾

Pro libovolné $x \in \mathbb{R}$ klademe $-\infty < x$ a $x < \infty$. Tím jsme rozšířili uspořádání na \mathbb{R} na množinu $\overline{\mathbb{R}}$.

Ověřte, že jsme na $\overline{\mathbb{R}}$ opravdu definovali uspořádání.

Věta 4.27 (zobecněná věta o supremu a infimu). $Každá\ množina\ X\subset\overline{\mathbb{R}}\ má\ v\ \overline{\mathbb{R}}\ supremum\ a$ infimum.

D ů k a z. Je-li množina X neohraničená shora (případně zdola), je sup $X=\infty$ (případně inf $X=-\infty$). Je-li $X=\emptyset$, je sup $X=-\infty$ a inf $X=\infty$. Pro ostatní množiny plyne existence suprema z věty 2.5 a infima z věty 2.6.

Topologii na $\overline{\mathbb{R}}$ definujeme pomocí topologie na \mathbb{R} takto: Množina $X \subset \overline{\mathbb{R}}$ je otevřená, jestliže jsou splněny následující podmínky:

- 1. množina $X \cap \mathbb{R}$ je otevřená v \mathbb{R} ,
- 2. jestliže $-\infty \in X$, pak pro nějaké $x \in \mathbb{R}$ platí $[-\infty, x) \subset X$,
- 3. jestliže $\infty \in X$, pak pro nějaké $x \in \mathbb{R}$ platí $(x, \infty] \subset X^{.5}$

Ověřte, že takto definovaný systém otevřených množin na $\overline{\mathbb{R}}$ je opravdu topologie.

Limity funkcí reálné proměnné vždy uvažujeme v množině $\overline{\mathbb{R}}$. V limitě $\lim_{x\to x_0} f(x)$ tedy může být $x_0=-\infty$ nebo $x_0=\infty$ (pokud je $-\infty$ nebo ∞ hromadným bodem definičního oboru funkce f) a může také vyjít $\lim_{x\to x_0} f(x)=-\infty$ nebo $\lim_{x\to x_0} f(x)=\infty$. V prvním případě pak hovoříme o *limitě* v nevlastním bodě, ve druhém o nevlastní limitě.

Následující věta je důsledkem definice limity a definice topologie na množině $\overline{\mathbb{R}}$.

Věta 4.28 (ε - δ **kritérium limity**). Bud' $X \subset \mathbb{R}$ množina taková, že ∞ je její hromadný bod, $f: X \subset \mathbb{R} \to \mathbb{R}$ funkce. Prvek $y_0 \in \overline{\mathbb{R}}$ je limitou f v bodě ∞ , právě když ke každému číslu $\varepsilon > 0$ existuje číslo $\delta > 0$ takové, že pro každé číslo $x \in X$, které splňuje $x > \delta$, platí $|f(x) - y_0| < \varepsilon$, je-li $y_0 \in \mathbb{R}$; případně $f(x) > \varepsilon$, je-li $y_0 = \infty$; případně $f(x) < -\varepsilon$, je-li $y_0 = -\infty$.

Podobná věta platí i pro limitu v bodě $-\infty$. Čtenář si ji může sám zformulovat.

Limity

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) \text{ a } \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$$

nazýváme limitou zleva a limita zprava. Značíme je $\lim_{x\to x_0^-} f(x)$ a $\lim_{x\to x_0^+} f(x)$.

Věta 4.29. Bud' $f: X \subset \mathbb{R} \to \mathbb{R}$ monotonní funkce. Je-li x_0 hromadný bod množiny $(-\infty, x_0) \cap X$, pak existuje limita

$$\lim_{x \to x_0^-} f(x). \tag{4.3.4}$$

 $^{^{3)}}$ Prvkům ∞ a $-\infty$ není třeba přikládat nějaký zvláštní význam. Jsou to prostě pomocné prvky.

⁴⁾Proč? Porovnejte vyslovená tvrzení s definicemi suprema, infima, horní a dolní závory.

⁵⁾Intervaly $[-\infty, x)$ a $(x, \infty]$ definujeme, jak čtenář předpokládá.

Je-li x_0 hromadný bod množiny $(x_0, \infty) \cap X$, pak existuje limita

$$\lim_{x \to x_0^+} f(x). \tag{4.3.5}$$

D ů k a z. Dokážeme existenci limity $\lim_{x\to x_0^-} f(x)$ pro případ, že funkce f je neklesající. Označme $y_0=\sup_{x< x_0} f(x)^{6}$ a zvolme libovolné okolí V bodu y_0 . Jistě pro každý bod $x\in X$, $x< x_0$, platí $f(x)\leq y_0$ a jistě existuje bod $x_1\in X$, $x_1< x_0$, takový, že $f(x_1)\in V$ (obojí plyne z věty 2.7). Pak ale $f((x_1,x_0)\cap X)\subset V$. Tím je tvrzení dokázáno. Kde jsme využili, že funkce f je neklesající?

Věta 4.30. Nechť $f: X \subset \mathbb{R} \to \mathbb{R}$ je funkce, $x_0 \in \mathbb{R}$ bod uzávěru množiny $(-\infty, x_0] \cap X$ i množiny $[x_0, \infty) \cap X$. Pak limita $\lim_{x \to x_0} f(x)$ existuje, právě když existují limity $\lim_{x \to x_0^-} f(x)$ a $\lim_{x \to x_0^+} f(x)$ a jsou si rovny. Platí

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$
(4.3.6)

D ů k a z. Důkaz přenecháme čtenáři.

V následující větě výjimečně předpokládáme, že funkce f, g, h mohou nabývat i nevlastních hodnot.

Věta 4.31 (o třech limitách). Budře $f, g, h: X \subset \mathbb{R} \to \overline{\mathbb{R}}$ funkce, $f \leq g \leq h$, $x_0 \in \operatorname{cl} X$. Existují-li limity $\lim_{x \to x_0} f(x)$ a $\lim_{x \to x_0} h(x)$ a platí-li

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = y_0, \tag{4.3.7}$$

pak existuje i limita $\lim_{x\to x_0} g(x)$ a je rovna y_0 .

D ů k a z. Nechť V je okolí bodu y_0 , $J \subset V$ interval, obsahující bod y_0 . Z existence limit funkcí f a h plyne, že existuje okolí U bodu x_0 takové, že $f(U \cap X) \subset J$ a také $h(U \cap X) \subset J$. Z předpokladu $f \leq g \leq h$ ovšem plyne, že i $g(U \cap X) \subset J$.

Nyní uvedeme několik základních pravidel pro počítání s limitami.

Věta 4.32. *Necht'* f_1 , f_2 : $X \subset \mathbb{R} \to \mathbb{R}$, $x_0 \in \operatorname{cl} X$. *Platí*:

- 1. Jestliže $\lim_{x\to x_0} f_1(x) = y_1 \in \mathbb{R}$ a $\lim_{x\to x_0} f_2(x) = y_2$, pak $\lim_{x\to x_0} (f_1 + f_2)(x) = y_1 + y_2$.
- 2. Jestliže $\lim_{x\to x_0} f_1(x) = \infty$ a funkce f_2 je zdola ohraničená, pak $\lim_{x\to x_0} (f_1+f_2)(x) = \infty$.
- 3. Jestliže $\lim_{x\to x_0} f_1(x) = -\infty$ a funkce f_2 je shora ohraničená, pak $\lim_{x\to x_0} (f_1 + f_2)(x) = -\infty$.

D ů k a z. 1. Jestliže $x_0 \in X$, pak funkce f_1 a f_2 jsou spojité v x_0 a $f_1(x_0) = y_1$, $f_2(x_0) = y_1$. To ale znamená, že funkce $f_1 + f_2$ je v tomto bodě také spojitá (věta 4.14.1.) a $(f_1 + f_2)(x_0) = y_1 + y_2$. V případě, že $x_0 \notin X$ použijeme tutéž argumentaci na funkce $\bar{f_1}$, $\bar{f_2}$ z definice limity.

2. Nechť m je dolní závora funkce f_2 . Buď M libovolné číslo a U takové okolí bodu x_0 , že $f_1(U) > M - m$. Pak pro každé $x \in U$ platí $(f_1 + f_2)(x) = f_1(x) + f_2(x) > (M - m) + m = M$. 3. Dokáže se podobně jako 2.

Věta 4.33. Necht' $f_1, f_2: X \subset \mathbb{R} \to \mathbb{R}, x_0 \in \operatorname{cl} X, m \in \mathbb{R}$. Platí:

- 1. Jestliže $\lim_{x \to x_0} f_1(x) = y_1 \in \mathbb{R}$ a $\lim_{x \to x_0} f_2(x) = y_2 \in \mathbb{R}$, pak $\lim_{x \to x_0} (f_1 \cdot f_2)(x) = y_1 y_2$.
- 2. *Jestliže* $\lim_{x \to x_0} f_1(x) = \infty \ a \ f_2 > m > 0$, *pak* $\lim_{x \to x_0} (f_1 \cdot f_2)(x) = \infty$.
- 3. Jestliže $\lim_{x \to x_0} f_1(x) = \infty$ a $f_2 < m < 0$, pak $\lim_{x \to x_0} (f_1 \cdot f_2)(x) = -\infty$.
- 4. Jestliže $\lim_{x \to x_0} f_1(x) = -\infty$ a $f_2 > m > 0$, pak $\lim_{x \to x_0} (f_1 \cdot f_2)(x) = -\infty$.
- 5. Jestliže $\lim_{x \to x_0} f_1(x) = -\infty \ a \ f_2 < m < 0, \ pak \lim_{x \to x_0} (f_1 \cdot f_2)(x) = \infty.$

 $^{^{6)}}$ Tím máme samozřejmě na mysli supremum funkce f, zúžené na množinu $(-\infty, x_0)$. Podobnou symboliku používáme i dále.

6. Jestliže $\lim_{x \to x_0} f_1(x) = 0$ a $|f_2| < m$, pak $\lim_{x \to x_0} (f_1 \cdot f_2)(x) = 0$.

D ů k a z. 1. Plyne z věty 4.14.2.

2. Buď M libovolné číslo a U takové okolí bodu x_0 , že $f_1(U) > M/m$. Pak pro každé $x \in U$ platí $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x) > (M/m) \cdot m = M$.

Body 3, 4, 5 se dokáží podobně jako bod 2.

6. Dokažte sami (viz cvičení).

Kontrolní otázky

- 1. Které z následujících definicí limity jsou ekvivalentní s definicí limity v tomto textu. Řekneme, že funkce $f: \mathbb{R} \to \mathbb{R}$ má v bodě $x_0 \in \overline{\mathbb{R}}$ limitu $a \in \mathbb{R}$ jestliže
 - a) existuje okolí U bodu a takové, že pro každé okolí V bodu x_0 platí $f(V \setminus \{x_0\}) \subset U$;
 - b) existuje okolí U bodu a takové, že existuje okolí V bodu x_0 platí $f(V \setminus \{x_0\}) \subset U$;
 - c) pro každé okolí V bodu x_0 existuje okolí U bodu a takové, že platí $f(V \setminus \{x_0\}) \subset U$;
 - d) pro každé okolí U bodu a existuje okolí V bodu x_0 takové, že platí $f(V \setminus \{x_0\}) \subset U$.
- 2. Je výrok "Funkce f nemá v bodě x_0 vlastní limitu." ekvivalentní s výrokem "Pro každé $a \in \mathbb{R}$, pro každé $\varepsilon > 0$ a pro každé $\delta > 0$ existuje $x \in \mathbb{R}$ takové, že $|x x_0| < \delta$ a $|f(x) f(x_0)| \ge \varepsilon$."?
- 3. Je-li $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \infty$, lze něco říci o limitách $\lim_{x\to x_0} f(x) + g(x)$ a $\lim_{x\to x_0} f(x)g(x)$?

Příklady

1. *Ukažte*, že $id_{\mathbb{R}}$ je homeomorfismus.

Řešení: Je nutné ukázat, že $\mathrm{id}_{\mathbb{R}}$ je spojité a že jeho inverze je spojitá. Vzhledem k tomu, že inverze k identitě je identita, stačí ukázat, že $\mathrm{id}_{\mathbb{R}}$ je spojitá. Musíme tedy ukázat, že je spojitá v každém bodě. Zvolme $x \in \mathbb{R}$ a ukážeme, že $\mathrm{id}_{\mathbb{R}}$ je v něm spojitá. Zvolme libovolné okolí U bodu $\mathrm{id}_{\mathbb{R}}(x)$ a za okolí V bodu x vezměme V = U. Snadno vidíme, že $\mathrm{id}_{\mathbb{R}}(V) = V = U \subset U$. Tím je důkaz ukončen.

- 2. Ukažte, že neexistuje homeomorfismus mezi množinami (a, b) a (c, d].
- Řešení: Předpokládáme, že existuje homeomorfismus $h:(c,d] \to (a,b)$. Potom ale $h(d) = r \in (a,b)$. Protože h je homeomorfismus, platí $h(c,d) = (a,b) \setminus \{r\}$. To znamená, že spojitým zobrazením h je souvislá množina zobrazena na nesouvislou, a to je spor s větou 3.7. Tím je důkaz ukončen.
- 3. Vypočítejte

$$\lim_{x \to \infty} \frac{2x^2 + 5x - 15}{3x^2 + 5}.$$

Řešení: Čitatel i jmenovatel podělíme nejvyšší mocninou jmenovatele, a využijeme pravidel pro počítání s limitami:

$$\lim_{x \to \infty} \frac{2x^2 + 5x - 15}{3x^2 + 5} = \lim_{x \to \infty} \frac{2 + \frac{5}{x} - \frac{15}{x^2}}{3 + \frac{5}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{5}{x} - \lim_{x \to \infty} \frac{15}{x^2}}{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{5}{x^2}} = \frac{2 + 0 - 0}{3 + 0} = \frac{3}{2}.$$

4. Vypočítejte

$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x^2 - 7x + 12}.$$

Řešení: Protože se jedná o limitu typu $\frac{0}{0}$, můžeme čitatele i jmenovatele upravit na součin kořenových činitelů a potom krátit a dále použít pravidla pro počítání s limitami. Tedy

$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x^2 - 7x + 12} = \lim_{x \to 4} \frac{(x - 4)^2}{(x - 4)(x - 3)} = \lim_{x \to 4} \frac{x - 4}{x - 3} = \frac{\lim_{x \to 4} x - 4}{\lim_{x \to 4} x - 3} = \frac{0}{1} = 0.$$

5. Buďte $f, g: \mathbb{R} \to \mathbb{R}$ a $x_0 \in \mathbb{R}$ takové, že $\lim_{x \to x_0} f(x) = 0$ a funkce g je ohraničená na nějakém okolí x_0 . Ukažte, že potom $\lim_{x \to x_0} f(x)g(x) = 0$.

Řešení: Protože g je ohraničená, existují čísla M a δ' taková, že |g(x)| < M pro každé x splňující $0 \le |x - x_0| < \delta'$.

Ověříme, že pro každé $\varepsilon>0$ existuje $\delta>0$ takové, že pokud $|x-x_0|<\delta$, potom $|f(x)g(x)-0|<\varepsilon$. Zvolme tedy $\varepsilon>0$. Položíme $\varepsilon'=\varepsilon/M$. Z toho že $\lim_{x\to x_0}f(x)=0$, plyne existence $\delta>0$ (může být $\delta'>\delta$) takového, že pokud $0<|x-x_0|<\delta$, potom $|f(x)-0|<\varepsilon'$. Je třeba ověřit, že $|f(x)g(x)-0|<\varepsilon$, máme-li x takové, že $0<|x-x_0|<\delta<\delta'$, platí pro něj $|f(x)g(x)-0|=|f(x)||g(x)|< M\varepsilon'=\varepsilon$. Tím je důkaz ukončen.

6. Vypočtěte

$$\lim_{x \to \infty} x \left(\sqrt{1 + x^2} - x \right).$$

Řešení: Výraz v limitě rozšíříme výrazem $\sqrt{1+x^2}+x$. Dostaneme

$$\lim_{x \to \infty} x \left(\sqrt{1 + x^2} - x \right) = \lim_{x \to \infty} x \left(\sqrt{1 + x^2} - x \right) \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2} + x} =$$

$$= \lim_{x \to \infty} \frac{x (1 + x^2 - x^2)}{\sqrt{1 + x^2} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x}}} = \frac{1}{2}.$$

7. Vypočtěte

$$\lim_{x \to 1} \frac{x^2 - x}{\sqrt{x} - 1}.$$

Řešení: Tentokráte rozšíříme funkci výrazem $\sqrt{x} + 1$. Máme

$$\lim_{x \to 1} \frac{x^2 - x}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{(x^2 - x)(\sqrt{x} + 1)}{x - 1} = \lim_{x \to 1} x(\sqrt{x} + 1) = 2.$$

8. Necht'n $\in \mathbb{N}$. Vypočtěte limitu

$$\lim_{x \to 1} \frac{x - 1}{x^n - 1}.$$

Řešení: Zlomek v limitě upravíme na tvar

$$\frac{x-1}{x^n-1} = \frac{x-1}{(x-1)(x^{n-1}+x^{n-2}+\dots+1)}.$$

Proto

$$\lim_{x \to 1} \frac{x-1}{x^n - 1} = \lim_{x \to 1} \frac{1}{x^{n-1} + x^{n-2} + \dots + 1} = \frac{1}{n}.$$

9. Vypočtěte limitu

$$\lim_{x \to 0} \frac{\sqrt[5]{x+1} - 1}{x}.$$

Řešení: Funkce v limitě je složenou funkcí $f \circ g$, kde $g(x) = \sqrt[5]{x+1}$ a f, kde

$$f(x) = \begin{cases} \frac{x-1}{x^5 - 1} & \text{pro } x \neq 1, \\ \frac{1}{5} & \text{pro } x = 1. \end{cases}$$

Funkce f je podle předchozího příkladu spojitá v bodě 1 (v předchozím příkladě nám vyšla limita horní větve rovna $\frac{1}{5}$). Jelikož

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \sqrt[5]{x+1} = 1$$

Podle věty o limitě složené funkce máme

$$\lim_{x \to 0} \frac{\sqrt[5]{x+1} - 1}{x} = \lim_{x \to 0} f(g(x)) = f(1) = \frac{1}{5}.$$

Cvičení

- 1. Dokažte: Buďte $A, B \subset X$. Pokud $A \subset B$, potom cl $A \subset$ cl B.
- 2. Dokažte: Nechť $f: X \to Z$ je spojité zobrazení a $Y \subset X$. Potom zobrazení $f|_Y$ je také spojité.
- 3. Uveďte příklad nekonečného systému otevřených množin v \mathbb{R} tak, aby jeho průnik nebyla otevřená množina.
- 4. Uveďte příklad nekonečného systému uzavřených množin v \mathbb{R} tak, aby jeho sjednocení nebyla uzavřená množina.
- 5. Je sjednocení (průnik) dvou souvislých množin v ℝ opět souvislá množina?
- 6. Je sjednocení (průnik) dvou kompaktních v ℝ množin opět kompaktní množina?

7. Nalezněte vnitřek, vnějšek, hranici, uzávěr a množinu hromadných bodů v $\mathbb R$ množin (ve všech

minima.

intervalu (a, b).

případech $a, b, c \in \mathbb{R}$ a $a < b < a$	(c):		
a) (a, b) ;	b) (<i>a</i> , <i>b</i>];	c) Q;	
d) ℕ;	e) $\{1/n \mid n \in \mathbb{N}\};$	f) $[a, b) \cup (b, c];$	
g) $(a, b) \cap \mathbb{Q}$; 8. Uvažujme \mathbb{R} s přirozenou topolo	h) $\{n/(n+1) \mid n \in \mathbb{N}\};$ ogií. Rozhodněte, zda	i) $[a, \infty)$.	
a) systém $S = \{(-5, 1), (-5,$	(0,3),[0,1],(2,5),(3,9) je	e otevřeným pokrytím množiny	
b) systém $S = \{(n-1, n + $ najděte konečné podpokry		pokrytím množiny $\{1\} \cup (2, 5]$, a	
9. Dokažte, že systém $S = \{(1/n, \text{ vybrat konečné podpokrytí.}\}$	1) $n \in \mathbb{N}$ } je otevřené pok	rytí intervalu (0, 1) a že z něj nelze	
10. Které z následujících podmnožii	n $\mathbb R$ jsou kompaktní a proč:		
a) {0};	b) $\{1,, n\}$;	c) (0, 1);	
d) (0, 1];	e) $\{1/n \mid n \in \mathbb{N}\} \cup \{0\};$	f) $\{1/n \mid n \in \mathbb{N}\}.$	
11. Ukažte, že množina $\overline{\mathbb{R}}$ je kompa	aktní.		
12. Které z následujících množin jso	ou okolím bodu ∞:		
a) \mathbb{R} ;	b) $(0, \infty)$;	c) N;	
$d) (0, \infty];$	e) $\overline{\mathbb{R}} \setminus \{0\};$	f) $\mathbb{N} \cup \{\infty\}$;	
g) $\overline{\mathbb{R}} \setminus (0,1)$;	h) $\overline{\mathbb{R}}$.		
13. Které z následujících podmnožii	n \mathbb{R} jsou souvislé a proč:		
a) {1, 2};	b) (0, 1);	c) [1, 2];	
d) $(0, 1) \cup (1, 2]$;	e) ℝ;	f) $\mathbb{R} \setminus \{0\}$;	
g) Q;	$h) \{1/n \mid n \in \mathbb{N}\}.$		
14. Přímo z definice nebo pomocí ε-			
15. Přímo z definice nebo pomocí ε-	-δ kritéria dokažte, že zobraze	ní $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ je spojité.	
16. Dokažte, že			
		b) χ je nespojitá v každém bodě;	
c) id _ℝ · χ je spojitá pouze v n	• • • • • • • • • • • • • • • • • • • •	spojitá;	
e) ϱ je spojitá pouze v iracion			
f) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{4} \operatorname{sgn}(x)$			
17. Zjistěte, kde jsou následující fur	· ·		
a) 7 <i>x</i> ;	b) $3x^2$;		
c) $x \cdot \operatorname{sgn}(x)$.			
18. Buďte $f, g: \mathbb{R} \to \mathbb{R}$ spojité funk spojité funkce.	tce a $a \in \mathbb{R}$. Dokažte, že poto	om $f + g$, $f - g$, $f \cdot g$ a $a \cdot f$ jsou	
19. Uveďte příklad nespojitých funk	cí tak, aby jejich součet (rozo	líl) byl spojitá funkce.	
20. Uveďte příklad spojité funkce ta	k, aby její inverze byla nespo	jitá.	

21. Nechť $a, b \in \mathbb{R}$, a < b. Uveďte příklad nespojité funkce, která nenabývá na [a, b] maxima ani

22. Nechť $a, b \in \mathbb{R}$, a < b. Uvedťe příklad spojité funkce, která nenabývá maxima (ani minima) na

23. Ukažte, že zobrazení $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x (resp. f(x) = -x) je homeomorfismus.

- 24. Ukažte, že jsou-li f, g spojité funkce na \mathbb{R} , pak množina $\{x \in \mathbb{R} \mid f(x) \neq g(x)\}$ (resp. $\{x \in \mathbb{R} \mid f(x) < g(x)\}\)$ je otevřená.
- 25. Vyvratte následující tvrzení: Buď A hustá množina v \mathbb{R} , f, g spojité funkce na \mathbb{R} takové, že $f|_A < g|_A$. Potom f < g.
- 26. Nechť $a, b, c, d \in \mathbb{R}$, a < b, c < d. Najděte nějaký homeomorfismus intervalů (a, b) a , (c, d).
- 27. Nechť $a, b, c, d, r, s \in \mathbb{R}$, a < b, c < d, r; s. Ukažte, že neexistuje homeomorfismus mezi množinami:

a)
$$(a, b)$$
 a $[c, d]$;

b)
$$(a, b) \cup (c, d)$$
 a (r, s) , kde $b \le c$.

- 28. Uveďte příklad funkcí $f, g: \mathbb{R} \to \mathbb{R}$ tak, aby
 - a) $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$ a $\lim_{x\to 0} f(x)/g(x) = 256$;
 - b) $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = \infty$ a $\lim_{x\to 0} f(x)/g(x) = 0$;
 - c) $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = \infty$ a $\lim_{x\to 0} f(x) g(x) = \infty$.
- 29. Nechť $\lim_{x\to 0} f(x) = \infty$ a $\lim_{x\to 0} f(x)g(x) = 1$. Vypočtěte $\lim_{x\to 0} g(x)$. Nechť $\lim_{x\to 0} f(x) = 1$ 0 a $\lim_{x\to 0} f(x)g(x) = 1$. Co platí pro limitu $\lim_{x\to 0} g(x)$?
- 30. Pomocí definice limity vypočtěte

a)
$$\lim_{x\to-\infty} 1/x$$
;

b)
$$\lim_{x\to\infty} 1/x$$
;

c)
$$\lim_{x\to 0^{-}} 1/x$$
;

d)
$$\lim_{x\to 0^+} 1/x$$
;

e)
$$\lim_{x\to 0} x \cdot \chi(x)$$
.

31. Vypočítejte

a)
$$\lim_{x \to \infty} \frac{-3x^2 + 2x^2 + x}{17x^3 - x^2 + 10}$$

a)
$$\lim_{x \to \infty} \frac{-3x^2 + 2x^2 + x}{17x^3 - x^2 + 10}$$
; b) $\lim_{x \to \infty} \frac{x^2 + 6x + 125}{-6x^3 + 4}$; c) $\lim_{x \to 0} \frac{x^2 + 6x}{-6x^3}$;

c)
$$\lim_{x \to 0} \frac{x^2 + 6x}{-6x^3}$$

d)
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$
;

e)
$$\lim_{x \to \infty} \frac{x^2 + 2x + 4}{x - 2}$$
;

f)
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x}$$
;

g)
$$\lim_{x \to \infty} \frac{1}{x} \sqrt{\frac{x^3}{x - 1}}$$
;

h)
$$\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}$$

g)
$$\lim_{x \to \infty} \frac{1}{x} \sqrt{\frac{x^3}{x-1}}$$
; h) $\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}$; i) $\lim_{x \to 0^+} \frac{x^3 + 6x}{5x^3 + x^2} + |x + 2|$;

$$j) \lim_{x \to \infty} \frac{x}{\sqrt{x+1}};$$

k)
$$\lim_{x \to 1} \frac{x - 1}{\sqrt[3]{x} - 1}$$
;

$$1) \lim_{x \to 0^+} \operatorname{sgn}(x);$$

m)
$$\lim_{x \to 1^+} \frac{2x - 1}{|x - 1|}$$
;

n)
$$\lim_{x \to 1^{-}} \frac{2x-1}{|x-1|}$$
;

o)
$$\lim_{x \to \infty} \frac{\sqrt{x+1} - 1}{\sqrt{x+1} + 1};$$

p)
$$\lim_{x \to 2} \frac{2x^2 - 10x + 12}{x^2 + 5x - 14}$$
; q) $\lim_{x \to 4} \frac{x^2 - 8x + 16}{x^2 - 7x + 12}$; r) $\lim_{x \to \infty} \frac{x^2 + 7x - 44}{x^2 - 6x + 8}$;

q)
$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x^2 - 7x + 12}$$

r)
$$\lim_{x \to \infty} \frac{x^2 + 7x - 44}{x^2 - 6x + 8}$$
;

s)
$$\lim_{x \to \infty} \sqrt{\frac{x^3}{x - 1}} - x$$
;

- t) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} \sqrt[5]{x^2 1}}{\sqrt[3]{x^3 + 1}} = \sqrt[4]{x^3 1}$.
- 32. Vypočítejte následující limity:

a)
$$\lim_{x \to 1} \frac{x}{1 - x};$$

c)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$
;

e)
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
;

g)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x}$$
;

b)
$$\lim_{x \to 1} \frac{1}{1 - x} - \frac{3}{1 - x^3}$$
;
d) $\lim_{x \to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$;

d)
$$\lim_{x \to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$$
;

f)
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
;

h)
$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x);$$

i)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 - 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}};$$
 j) $\lim_{x \to \infty} \frac{\sqrt[5]{x^7 + 3} + \sqrt[4]{2x^3 - 1}}{\sqrt[6]{x^8 + x^7 + 1} - x};$ k) $\lim_{x \to \infty} \sqrt{x^2 + 1} - \sqrt{x^2 - 1};$ l) $\lim_{x \to \infty} \sqrt[3]{x^3 + x^2 + 1} - \sqrt[3]{x^3 - x^2 + 1};$ m) $\lim_{x \to 2} \frac{1}{x(x - 2)^2} - x^2 - 3x + 2;$ n) $\lim_{x \to 1} \frac{x + 2}{x^2 - 5x + 4} + x - 43(x^2 - 3x + 2);$ o) $\lim_{x \to \infty} \sqrt[4]{x + \sqrt{x + \sqrt{x}}};$ p) $\lim_{x \to \infty} \sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x}.$

- 33. Nechť $f: \mathbb{R} \to \mathbb{R}$ je taková, že pro každé $x_0 \in \mathbb{R}$ je $\lim_{x \to x_0} f(x) = 0$. Rozhodněte zda platí:
 - a) $f(\mathbb{R}) = \{0\};$
 - b) f je spojitá na \mathbb{R} ;
 - c) f je omezená na \mathbb{R} ;
 - d) f je omezená na každém omezeném intervalu $J \subset \mathbb{R}$.
- 34. Dokažte, že existuje $x \in (0, 2)$ takové, že $x^6 + x^5 + x^4 + x^3 + x^2 x 1 = 0$. (Návod: Užijte Darbouxovu vlastnost.)
- 35. Dokažte, že každý polynom lichého stupně má alespoň jeden reálný kořen.
- 36. Vypočítejte následující limity, jestliže a > 0:

a)
$$\lim_{x\to\infty} 2^{-x}$$
;

b)
$$\lim_{x\to 0} 2^{-x}$$

c)
$$\lim_{x \to \infty} 2^{(x-1)/(x+2)}$$
;

a)
$$\lim_{x \to \infty} 2^{-x}$$
; b) $\lim_{x \to 0} 2^{-x}$; c) $\lim_{x \to \infty} 2^{(x-1)}$
d) $\lim_{x \to \infty} \left(\log_a (2x+1) - \log_a (x+2) \right)$; e) $\lim_{x \to \infty} \log_a x - \log_a (3x+2)$.

e)
$$\lim_{x \to \infty} \log_a x - \log_a (3x + 2)$$

37. Dokažte, že pokud existuje konečná limita funkce v nějakém bodě, potom existuje jeho okolí, na kterém je tato funkce ohraničená.

Výsledky

3. $\{(-1/n, 1+1/n)\}$. **4.** $\{[1/n, 1-1/n] \mid n \in \mathbb{N}\}$. **5.** Ne (ano). **6.** Ano (ano). **7.** a) int A = (-1/n, 1+1/n)(a,b), ext $A = (-\infty, a) \cup (b, \infty)$, fr $A = \{a,b\}$, cl A = [a,b]; b) int A = (a,b), ext A = (a,b) $(-\infty, a) \cup (b, \infty)$, fr $A = \{a, b\}$, cl A = [a, b]; c) int $A = \emptyset$, ext $A = \emptyset$, fr $A = \mathbb{R}$, cl $A = \mathbb{R}$; **d**) int $A = \emptyset$, ext $A = \mathbb{R} \setminus \mathbb{N}$, fr $A = \mathbb{N}$, cl $A = \mathbb{N}$; e) int $A = \emptyset$, ext $A = \mathbb{R} \setminus (A \cup \{0\})$, fr $A = A \cup \{0\}$, cl $A = A \cup \{0\}$; **f**) int $A = (a, b) \cup (c, d)$, ext $A = \mathbb{R} \setminus ([a, b] \cup [c, d])$, fr $A = \{a, b, c, d\}$, cl $A = [a, b] \cup [c, d]$; g) int $A = \emptyset$, ext $A = (-\infty, a) \cup (b, \infty)$, fr A = [a, b], $\operatorname{cl} A = [a, b]$; **h**) int $A = \emptyset$, ext $A = \mathbb{R} \setminus (A \cup \{1\})$, fr $A = A \cup \{1\}$, $\operatorname{cl} A = A \cup \{1\}$; **i**) int $A = \emptyset$ (a, ∞) , ext $A = (-\infty, a)$, fr $A = \{a\}$, cl $A = [a, \infty)$. 8. a) Není otevřené; b) je, například $\{(0, 2), (1, 3), (2, 4), (3, 5), (4, 6)\}$. **10.** a) Je; b) je; c) není; d) není; e) je; f) není. **12.** a) Není, neobsahuje bod ∞ ; **b**) není; **c**) není; **d**) je; **e**) je; **f**) není, neobsahuje žádný interval (a, ∞) ; **g**) není, $(\overline{\mathbb{R}} \setminus (0, 1)) \cap \mathbb{R}$ jení otevřená v \mathbb{R} h) je. 13. a) Není; b) je; c) je; d) není; e) je; f) není; g) není; **h**) není. 17. a) Všude; b) všude; c) jen v 0 19. sgn a - sgn, 20. $f:[0,1] \cup (2,3] \rightarrow f(x) = x$ pro $x \in [0, 1]$ a f(x) = x - 1 pro $x \in (2, 3]$. **21.** $f: [a, b] \to \mathbb{R}$, f(x) = x pro $x \in (a, b)$ a $f(x) = (a+b)/2 \text{ pro } x \in \{a,b\}. \ \mathbf{22.} \ f(x) = 1/((x-a)(x-b)). \ \mathbf{25.} \ \text{Protipříklad: } A = \mathbb{R} \setminus \{0\}$ a f(x) = 0, $g(x) = x^2$. **28.** a) f(x) = 256x, g(x) = x; b) $f(x) = 1/x^2$, $g(x) = 1/x^4$; c) $f(x) = 2/x^2$, $g(x) = 1/x^2$. **30.** a) 0; b) 0 c) $-\infty$; d) ∞ ; e) 0. **31.** a) 0; b) 0; c) $-\infty$; d) 0; e) ∞ ; f) $\sqrt{2}/4$; g) 1; h) 3; j) ∞ ; k) 3; l) 1; o) 1; p) $-\frac{2}{9}$; q) 0; r) 1; s) $\frac{1}{2}$; t) $-\infty$. **32.** a) Neexistuje; **b**) -1; **c**) $\frac{2}{3}$; **d**) $\frac{1}{4}$; **e**) $-\frac{1}{16}$; **f**) neexistuje; **g**) -1; **h**) $\frac{1}{2}$; **i**) 1; **j**) ∞ ; **k**) 0; **l**) $\frac{2}{3}$; **m**) ∞ ; **n**) neexistuje; **o**) 1; **p**) 2. **33. a**) ne; **b**) ne; **c**) ne; **d**) ano. **36. a**) 0; **b**) 1; **c**) 2; **d**) $\log_a(2)$; **e**) $-\log_a(3)$.