

计算机组成原理课程组

(刘旭东、高小鹏、肖利民、牛建伟、栾钟治)

gg 北京航空航天大学

流水线设计的一般方法

- ❖单周期数据通路和控制信号为基础
 - 先不考虑转发、暂停和分支等
- ❖考虑转发
 - > 增加转发控制单元,处理ALU和MEM转发
- ❖考虑因Load导致的数据冒险
 - > 增加冒险检测单元
- ❖考虑分支
 - >缩短分支延迟,分支比较前移

第六讲 MIPS处理器设计

一. 处理器设计概述
二. MIPS模型机
三. MIPS单周期处理器设计
四. MIPS多周期处理器设计
五. MIPS流水线处理器设计
1. 流水线及其冒险
2. 流水线设计的工程化方法

流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖暂停机制生成方法**
- ❖转发机制生成方法
- ❖控制冒险处理机制

3. 北京航空航天大学

4

O 北京航空航天大学

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖暂停机制生成方法**
- ❖转发机制生成方法
- ❖控制冒险处理机制

对 北京航空航天大学

三控制器架构

- ❖功能部件控制器: 就是书中的控制器
 - > 译码指令,控制各个功能部件
 - >属于功能性设计范畴: 即与指令的功能相关, 与性能无关
 - 无论单周期还是流水线,设计思路相同
- ❖暂停控制器
 - >将IF/ID指令与前序指令(位于后序流水段)分析,决定是否暂停
 - >属于性能设计范畴
- ❖转发控制器

On 北京航空航天大学

- >分析各级指令的相关性, 决定如何转发
- > 属于性能设计范畴
- ❖三控制器架构特点
 - >结构清晰, 易于理解
 - > 暫停控制器、转发控制器: 独立, 相互不干扰

基础指令集与标准流水线

◇流水线: 以性能为目标的标准流水线

》数据冒险: 转发、暂停

> 控制冒险: 分支比较前移、转发、暂停

流水线功能部件

- ❖延用单周期数据通路功能部件
- ❖按流水段分类,便于理解和记忆
- ❖RF在2个阶段均被使用
 - > 译码/读操作数阶段;结果回写寄存器阶段

阶段	部件	输入	輸出	描述
	PC	D	Q	程序计数器
取指令	ADD4	PC, +4	PC4	完成PC+4
	IM	Α	D	指令存储器
	RF	A1, A2, A3, WD	RD1, RD2	寄存器堆
译码/读	EXT	116	IMM32	立即数扩展
操作数	NPC	PC, 126	NextPC	为B类/J计算下条地址
	CMP	D1, D2	Result	比较2个数
计算	ALU	A, B	ALU	算数/逻辑运算
访存	DM	A, WD	RD	数据存储器
回写	RF			
《天大學				

流水线寄存器

- ❖需要设置4级流水线寄存器
 - ▶5级流水线的最后一级寄存器为RF
- ❖标记X: 代表对应流水级需要设置相应寄存器
 - ▶IR: 4个流水级均需要
 - ▶AO: 仅M级和W级需要

名称	功能	D级 IF/ID	E级 ID/EX	M级 EX/MEM	W级 MEM/WB
IR	传递指令	Χ	Χ	Χ	Χ
PC4	下一条指令地址	Χ	Χ	Χ	Χ
RS	RF的RS值(RD1输出)		X		
RT	RF的RT值(RD2输出)		Χ	Χ	
EXT	扩展后的32位立即数		X		
AO	ALU计算结果			Χ	Χ
DR	DM读出结果				Χ
gg 北京航空航天	太学				13

		3-61	
		部件 PC	输入
流水线数据通路构造表格	F级功能部件	ADD4	
派小线 数据	「級人以肥品中门	IM	
	D級更新PC →	PC	
■ 每级由寄存器和功能部件组成	D级流水线寄存器	IR@D	
4-8V EL 4 11 HR 10-74 HG HP 11 827/94	THE CLUMPS COUNTY OF	PC4@D	
□ 按流水线5个阶段划分		RF	A1 A2
DANIMASIS I PI POZDA		EXT	A2
■ X@Y: 代表Y阶段的X寄存器	D级功能部件		D1
· AUT: 八次I则权的A时行奋	- 42. 32 NO AP 11	CMP	D2
		NPC	PC4
□ IR@W: W级的IR		****	I26
	E级更新PC ──→	PC	
■ PC: 出现在3个阶段	[]	IR@E	_
	E级流水线寄存器	PC4@E RS@E	
□ F级:取指令		RT@E	
	L	EXT@E	
□ D 级:保存 PC+4	E级功能部件	ALU	A
	「級切肥即什 」		В
□ E级:保存B/J/JAL/JALR的值		IR@M	_
	M级流水线寄存器	PC4@M AO@M	
■ RF: 出现在2个阶段		RT@M	
- кг: щжитг М 1	M级功能部件		A
□ D阶段:准备操作数	₩級切肥那什	DM	WD
。 DN 权: 在首果作数		IR@W	
□ W阶段:回写结果	W级流水线寄存器	PC4@W	_
· W例仅: 四刁幼术		AO@W DR@W	<u> </u>
	Arri -ul. Air star Air.		A3
	W级功能部件	RF	WD

流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

60° 北京航空航天大学

and a second that the controls	部件	输入	LW
S1: LW的数据通路	PC		
	ADD4		PC
	IM PC		PC ADD4
❖根据RTL描述建立各级流水线寄存器、功能部件	IR@D		IM
	PC4@D		11-1
间连接关系	RF	A1	IR@D[rs]
≻LW: 5缀		A2	
	EXT		IR@D[i16]
❖IR必填	NPC	PC4 I26	
▼	PC	126	
> 采用分布式译码	IR@E		IR@D
❖指令不涉及的不需要填:如PC4	PC4@E		
VII () C Z VIII () III Z VII VII	RS@E		RF.RD1
❖X[y]: 代表X部件的y域	RT@E		
	EXT@E		EXT RS@E
❖IR@D[i16]: D级IR的16位立即数	ALU	A B	EXT@E
	IR@M		IR@E
	PC4@M		
	AO@M		ALU
	RT@M		10.011
	DM	A WD	AO@M
	IR@W	WD	IR@M
	PC4@W		11.6014
	AO@W		
	DR@W		DM
	RF	A3	IR@W[rt]
ca 此京航空航天大学		WD	DR@W

	部件	输入	LW	SW	ADDU	SUBU	ORI	BEO		IAL	IALR
ŀ	PC							ьсу		JAL	JALK
ì	ADD4	-4	識排	≙ &b	t tilkt	計画	PC PC	PC	PC.	PC.	PC.
ì	IM	7	- His 31	 	1 7 C	PC PC	PC	PC	PC	PC	PC
ŀ	PC		ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4
ŀ	IR@D		IM	IM	IM	IM	IM	IM	IM	IM	IM
۲	PC4@D		11-1	11/1	11/1	11/1	11-1	ADD4	ADD4	ADD4	ADD4
		A1	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	11001	IR@D[r
	RF	A2	ING D[15]	menting	IR@D[rt]	IR@D[rt]	ING D[15]	IR@D[rt]	IR@D[rt]		me b _[
ŀ	EXT	-112	IR@D[i16]	IR@D[i16]	mespire	merajiej	IR@D[i16]	ne z [rej	me b[n]		
ŀ		D1	ING D 11201	INC D 110			INC D 110	RERD1			
	CMP	D2						RF.RD2			
ŀ		PC4						PC4@D	PC4@D	PC4@D	
	NPC	I26						IR@D[i16]	IR@D[i26]	IR@D[i26]	
	PC							NPC	NPC	NPC	RERD:
ľ	IR@E		IR@D	IR@D	IR@D	IR@D	IR@D			IR@D	IR@D
	PC4@E									PC4@D	PC4@I
ľ	RS@E		RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1				
ľ	RT@E			RF.RD2	RF.RD2	RF.RD2					
ľ	EXT@E		EXT	EXT			EXT				
	ALU	Α	RS@E	RS@E	RS@E	RS@E	RS@E				
	ALU	В	EXT@E	EXT@E	RT@E	RT@E	EXT@E				
	IR@M		IR@E	IR@E	IR@E	IR@E	IR@E			IR@E	IR@E
	PC4@M									PC4@E	PC4@I
L	AO@M		ALU	ALU	ALU	ALU	ALU				
L	RT@M			RT@E							
ľ	DM	Α	AO@M	AO@M							
L		WD		RT@M							
L	IR@W		IR@M		IR@M	IR@M	IR@M			IR@M	IR@M
L	PC4@W									PC4@M	PC4@N
L	A0@W				AO@M	AO@M	AO@M				
L	DR@W		DM								
ı	RF	A3	IR@W[rt]		IR@W[rd]		IR@W[rt]			0x1F	IR@W[r
Ł	KI	WD	DR@W		AO@W	AO@W	AO@W			PC4@W	PC4@V

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖暂停机制生成方法**
- ❖转发机制生成方法
- ❖控制冒险处理机制

S2: 综合全部指令的数据通路 新典 Na ❖水平方向归并 PC > 去除冗余输入来源 ADD4 IM ❖在每个输入来源个数大于1的输 ADD4 IR@D[rs] RF A1 IR@D[rt] 入端前增加1个MUX EXT IR@D[i16] >注意: 同时需要产生相应的控制信号 CMP D1 RERD1
D2 RERD2 ❖特例: NPC的i16和i26归并为 NPC PC4 PC4@D IR@D[i26] IR@D i26 IR@E PC4@E PC4@D RS@E RERD1 RT@E RERD2 EXT@E EXT RS@E ALU EXT@E RT@E M2 BSel IR@M IR@E PC4@E PC4@M ALU AO@M RT@M RT@E DM A AO@M WD RT@M IR@W IR@M PC4@W PC4@M AO@M RF A3 IR@W[rt] IR@W[rd] 0x1F M3 WRSe **为 北京航空航天大学**

功能部件控制信号构造方法

- ❖控制信号产生基本原理: 与单周期相同
- ❖分歧点:集中式译码?分布式译码?
 - >集中式:

19

- 与单周期控制器设计完全相同
- 流水控制信号
- >分布式: 多个小控制器
 - 每个小控制器的设计思路与单周期相同
 - 流水指令

2 北京航空航天大学

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

15. 北京航空航天大学

21

需求者的最晚时间模型

- ❖ T_{use}(time-to-use): 指令进入IF/ID寄存器后,其后的某个功能 部件再经过多少cycle就必须要使用相应的寄存器值
 - >特点1:是读取操作数的时间上限
 - ▶特点2: 同一条指令可以有2个不同的Tuse
 - ▶例如,R型计算类指令的T_{use}为1
 - rs/rt值: 最晚被ID/EX寄存器驱动
 - ▶例如,store型计算类指令的Tuse分别为1和2
 - rs值:最晚被ID/EX寄存器驱动
 - rt值: 最晚被EX/MEM寄存器驱动

数据冒险:需求与供给能否匹配?

- ❖需求者:需要引用reg值的component
 - >由于req值最终被某个component使用,因此那个component才是需求者
 - ▶例如: 所有运算类指令的需求在E级的ALU
 - ▶例如:i指令不需要读取任何GPR,因此i指令没有需求
- ❖供给者:保存有req新结果的流水线寄存器
 - ▶例如: 所有运算类指令的供给者是EX/MEM、MEM/WB
 - ▶例如: load类指令的供给者是MEM/WB
- ❖数据冒险可以转化为:需求与供给的匹配
 - ▶无法匹配: 暫停
 - >可以匹配: 转发

对 北京航空航天大学

供给者的最早时间模型

- ❖ T_{new}(time-to-new): 位于ID/EX及其后各流水线的指令,再经过多少周期能够产生要写入寄存器的结果
 - >特点1: 动态值,随着指令的流动,该值在不断减小,直至0
 - ▶特点2: 一条指令可以有多个不同的Tnew
 - ▶例如,R型计算类指令的T.....为1或0
 - 1: 指令位于ID/EX, ALU正在计算。
 - 0: 指令位于EX/MEM和MEM/WB
 - ▶例如,load型计算类指令的T_{new}为2,1,0
 - 2: 指令位于ID/EX,尚未读取存储器。
 - 1: 指令位于EX/MEM,正在读取存储器
 - 0: 指令位于MEM/WB, 包含了结果

on 共京航空航天大学

(3) 北京航空航天大学

24

22

数据冒险的策略分析

- □ T_{new} = 0: 表明结果已经产生
 - 指令位于MEM/WB:那么虽然结果尚未最终写入RF,但RF设计使得W结果可以被正确的读出。因此无需任何操作
 - 指令位于其他位置:通过转发解决数据相关
- □ Tnew ≠ 0: 表明结果尚未产生
 - * Tnew > Tuse: 不可能及时供给数据。只能暂停流水线
 - T_{new} ≤ T_{use}: 由于结果产生时间短于读取时间,因此当结果产生后可以通过 转发解决数据冒险
- □ **暂停:** T_{new} > T_{use}
- 转发: T_{new} = 0&指令不在MEM/WB 或 T_{new} ≤ T_{use}

3. 北京航空航天大学

25

流水线设计的工程化方法

- ❖集中式译码与分布式译码
- *形式建模综合方法概述
- ❖基础指令集与流水线设计规划
- ❖ 无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖暂停机制生成方法**
- ❖转发机制生成方法
- ❖控制冒险处理机制

***** 北京航空航天大学**

27

数据冒险的策略分析

- ❖ 暂停:由于在IF/ID就能决定是否需要暂停,因此分析量少 ▶ 只需将指令的T_{Ise}与各级的T_{Ise}进行对比即可决定是否需要暂停
- ❖转发:由于在ID级、EX级、MEM级均涉及操作数读取,因此分析量大
 - >需要将各级指令与其后的各级指令进行对比
- ❖思路: 先解决暂停, 再解决转发
 - ▶先易后难
 - >去除暂停部分后,有助于减少转发的分析量

,此章就章就是大学 26

构造T_{use}表和T_{new}表

❖示例指令集

▶add, sub: cal_r类,即R型计算类指令

▶andi, ori: cal_i类,即I型计算类指令

▶beq: b_type类

≻lw: ld类

- ≻sw: st类
- ❖会产生结果的指令: cal r类, cal i类, load类
- ❖用指令分类可以大幅度简化分析工作量

3. 北京航空航天大学

2

ADD

SUB andi

ori

LW

SW

BEQ

构造Tuse表和Tnew表

- ❖Tuse表: 以指令位于IF/ID来分析
 - >流水线在指令被存储在IF/ID后就决定是否需要暂停
- ❖Tnew表:只需分析处于ID/EX和EX/MEM这2种情况
 - ▶IF/ID: 无任何结果
 - ▶MEM/WB:如果结果到达该阶段,则通过RF设计可以消除数据冒险

IF/	ID当前	
指令 类型	源寄 存器	Tuse
beq	rs/rt	0
cal_r	rs/rt	1
cal_i	rs	1
load	rs	1
store	rs	1
store	rt	2

	ID/EX (Tnew)			X/ME Tnew	 MEM/WB (Tnew)			
cal_r 1/rd				cal_i 0/rt			load 0/rt	

(5) 北京航空航天大学

29

暂停控制信号

❖建立分类指令的暂停条件

❖建立最终的暂停条件

stall = stall b + ...

- □ 建立控制信号
- ☐ PC.en = !stall
- ☐ IR D

IE/IE	当前担	L٨		EX/MEM		
IF/IL	/ 	日マ		(T _{new})		
指令	源寄	т.	cal_r	cal_i	load	load
类型	存器	T _{use}	1/rd	1/rt	2/ rt	1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	rs/rt	1			暫停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

加 財宗航空航天大學

构造阻塞矩阵

- ❖凡是T_{new}> T_{use} 的指令序列,都需要阻塞
- ❖示例
 - ▶序列1 cal_r beq: 由于cal_r需要1个cycle后才能得到结果,而beq现在就需要 读取寄存器,因此只能暂停
 - ▶ 序列2 load store。store要读取的rs将在1个cycle后必须使用,而位于ID/EX的load必须经过2个cycle后才能读出DM的数据,因此只能暂停

IF/IC	IF/ID当前指令			ID/EX (T _{new})				
指令 类型	源寄 存器	T _{use}	cal_r 1/rd	cal_i 1/rt	load 2/rt	load 1/rt		
beq	rs/rt	0	暂停	暂停	暂停	暂停		
cal_r	rs/rt	1			暂停			
cal_i	rs	1			暂停			
load	rs	1			暂停			
store	rs	1			暂停			

为 北京航空航天大学

30

暂停控制信号

- ❖执行动作:
 - ▶①冻结IF/ID: sub继续被保存
 - ▶②清除ID/EX:指令全为0,等价于插入NOP
 - ▶③禁止PC:防止PC继续计数,PC应保持为PC+4

IR_D.en = !stall
IR_E.clr = stall

PC.en = !stall

2. 北京航空航天大学

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- ❖暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

15. 北京航空航天大学

33

根据Tuse和Tnew构造每个转发MUX

- ❖按照指令分类,梳理指令在各级流水线的rs或rt读需求
- ❖每个读需求对应1个转发MUX
- ❖转发MUX的输入0:必然是本级流水线寄存器
 - ▶对于IF/ID级来说,输入0则来自是RF的输出
- ❖【建议】命名应遵循一定的规则

流水级	源寄 存器	涉及指令			
IR@D	rs	beq	MFRSD	ForwardRSD	RF.RD1
	rt	beq	MFRTD	ForwardRTD	RF.RD2
IR@E	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E
IR@M	rt	st	MFRTM	ForwardRTM	RT@M
			转发MUX	控制信号	输入0

2. 此京航空航天大学

转发机制生成方法

❖S1: 根据Tuse和Tnew构造每个转发MUX

❖S2: 构造每个转发MUX的控制信号表达式

对,北京航空航天大学

根据Tuse和Tnew构造每个转发MUX

❖用Tnew中剔除非0后的表项,来分析转发MUX的后续输入 ▶注意: 并非有N个0项就有N个后续输入

	ID/EX (Tnew)			X/ME Tnew	 MEM/WB (Tnew)			
cal_r 1/rd			cal_r 0/rd					

	源寄					EX/MEM (Tnew)		MEM/WB (Tnew)		
流水级	存器	涉及指令				cal r	<u> </u>	cal r	cal i	load
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	0/rd	0/rt	0/rd	0/rt	0/rt
	rt	beq	MFRTD	ForwardRTD	RF.RD2					
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E					
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E					
EX/MEM	rt	st	MFRTM	ForwardRTM	RT@M					
			转发MUX	控制信号	输入0					
				•	•					
公 共京航空 航	政宗航空航天表学 36									

根据Tuse和Tnew构造每个转发MUX

- ❖构造每个转发MUX的后续输入
- ❖示例: MFRSD
 - ➤ EX/MEM: cal_r和cal_i指令都是计算类,结果必然由ALU产生,因此均填入AO。即代表MFRSD的输入来自EX/MEM中的AO寄存器
 - AO: 代表ALUOut
 - > MEM/WB:由于这是最后一级,即所有指令的结果都通过M4(MUX)回写,因此均填入M4。

						EX/N (Tn	ИЕМ ew)		EM/W Tnew	
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2					
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E					
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E					
EX/MEM	rt	st	MFRTM	ForwardRTM	RT@M					
			转发MUX	控制信号	输入0					
內 北京航空航	M************************************									37

根据Tuse和Tnew构造每个转发MUX

- ❖对于MFRSD来说,其最终有效输入为3个
 - ▶输入0~RF.RD1;输入1~AO;输入2~M4
- ❖实现转发MUX时,需要剔除每级中的重复项
- ❖在表格中保留重复项的目的: 有利于建立后续的控制信号方程

MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
MFRSE	ForwardRSE	RS@E	AO	AO	M4	M4	M4
MFRTE	ForwardRTE	RT@E	AO	AO	M4	M4	M4
MFRTM	ForwardRTM	RT@M			M4	M4	M4
转发MUX	控制信号	输入0					
MFRSD	ForwardRSD	RF.RD1	AO(@M	M4	ļ.	
MEDTO	ForwardDTD	DE DD2	100	201	NAA		

	来源
0	RF.RD1
1	AO@M
2	M4@W

根据Tuse和Tnew构造每个转发MUX

- ❖根据前例,可以构造出全部的转发MUX
 - >当store类指令位于EX/MEM时,不可能再有同级的指令了
 - ▶因此有2项空白
- ❖构造更大指令集时,需求项及供给项可能均需要调整
 - >但由于MIPS的指令功能到格式映射的相对统一,因此调整不会剧烈
 - >再次从一个侧面反映出MIPS指令集设计的水平!

						l	ИЕМ ew)		EM/W Tnew	_
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E	AO	AO	M4	M4	M4
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E	AO	AO	M4	M4	M4
EX/MEM	rt	st	MFRTM	ForwardRTM	RT@M			M4	M4	M4
			转发MUX	控制信号	输入0					
Autoren	天大学							•		38

Mr. 122 VSC 1944 134-1	部件	输入		渝入来源		MUX	控制
数据通路增加转发MUX	PC						
27411-2-11 11	ADD4		PC				
❖遍历数据通路的功能部件,找	IM		PC				
	PC		ADD4	NPC	RF.RD1	M1	PCSel
到所有出现rs和rt的需求点	IR@D		IM				
TIVE DESCRIPTION OF THE PROPERTY OF THE PROPER	PC4@D		ADD4				
❖注意ALU.B和RT@M,这两个	RF	A1	IR@D[rs]				
		A2	IR@D[rt]				
rt需求是相同的!	EXT		IR@D[i16]				
	CMP	D1	RF.RD1				
▶这意味着它们应该来自同一个转发		D2	RF.RD2				
MUX	NPC	PC4 12.6	PC4@D				
MOX	IR@E	126	IR@D[i26] IR@D				-
	PC4@E		PC4@D				-
	RS@E		RERD1				-
	RT@E		RERD2				-
	EXT@E		EXT				-
		Α	RS@E				
	ALU	B	EXT@E	RT@E		M2.	BSel
	IR@M		IR@E				
	PC4@M		PC4@E				
	AO@M		ALU				
	RT@M		RT@E				
	DM	Α	AO@M				
	DM	WD	RT@M				
	IR@W		IR@M				
	PC4@W		PC4@M				
	AO@W		AO@M				
	DR@W		DM				
5. 北京航空航天大学	RF	A3		IR@W[rd]	0x1F		WRSel
A proposition		WD	DR@W	AO@W	PC4@W	M4	WDSel

数据通路增加转发MUX

- ❖遍历数据通路的功能部件,找 到所有出现rs和rt的需求点
- ❖将对应的输入替换为转发MUX 的输出
 - ▶注意ALU.B和RT@M,这两个rt需求 是相同的,因此应该用同一个转发
 - ▶注意:对于PC,由于构造转发MUX 的示例指令集中没有jal/jalr指令,因 此缺乏相应的转发MUX与之对应

MFRSD	RF.RD1	AO@M	M4
MFRTD	RF.RD2	AO@M	M4
MFRSE	RS@E	AO@M	M4
MFRTE	RT@E	AO@M	M4
MFRTM	RT@M	M4	
转发MUX	输入0	输入1	输入2

部件	输入	1	渝入来源		MUX	控制
PC						
ADD4		PC				
IM		PC				
PC		ADD4	NPC	RF.RD1	M1	PCSel
IR@D		IM				
PC4@D		ADD4				
RF	A1	IR@D[rs]				
	A2	IR@D[rt]				
EXT		IR@D[i16]				
CMP	D1	MFRSD				
CMP	D2	MFRTD				
NPC	PC4	PC4@D				
NPC	I26	IR@D[i26]				
IR@E		IR@D				
PC4@E		PC4@D				
RS@E		RF.RD1				
RT@E		RF.RD2				
EXT@E		EXT				
ALU	Α	MFRSE				
ALU	В	EXT@E	MFRTE		M2	BSel
IR@M		IR@E				
PC4@M		PC4@E				
AO@M		ALU				
RT@M		MFRTE				
DM-	Α	AO@M				
DM	WD	MFRTM				
IR@W		IR@M				
PC4@W		PC4@M				
AO@W		AO@M				
DR@W		DM				
RF	A3	IR@W[rt]	IR@W[rd]		М3	WRSel
Kr	WD	DR@W	AO@W	PC4@W	M4	WDSel

S2: 构造每个转发MUX的控制信号表达式

- ❖控制信号表达式构造的基本思路
 - >精确控制每个转发选择
 - ▶ 所有非转发的条件都用于选择输入0

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

						EX/N (Tn			EM/W	
流水级	源寄 存器	涉及指令				<u> </u>		<u> </u>	cal_i 0/rt	ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	ID/EX.R	AO	AO	M4	M4	M4
	rt	cal_r, st	L		S	AO	AO	M4	M4	M4
EX/MEM	rt	st	MFRTE	ForwardRTE	ID/EX.RT			M4	M4	M4
			MFRTM	ForwardRTM	EX/MEM. RT					
		ļ	转发MUX	控制信号	输入0					
企业主机金属	此京航空航车大学 43									

转发机制生成方法

- ❖S1: 根据Tuse和Tnew构造每个转发MUX
- ❖S2: 构造每个转发MUX的控制信号表达式

42 **对 北京航空航天大学**

示例: always语句建模MF_RS_D的控制信号表达式 □ 宏定义提高可读性和一致性 来源 输入 RF.RD1 • `define op 31:26 1 AO@M • `define rs 25:21 M4@W Hign assign ForwardRSD = IR D[`op] == beq & cal r M & IR D[`rs] == IR M[`rd] ? 1 :

IR D[`op]==beq & cal i M & IR D[`rs]==IR M[`rt] ? 1 : IR D[`op] == beq & cal r W & IR D[`rs] == IR W[`rd] ? 2 : IR D[`op] == beq & cal i W & IR D[`rs] == IR W[`rt] ? 2 : IR D[$\circ p$] == beq & load W & IR D[$\circ rs$] == IR W[$\circ rt$] ? 2 :

❖顺序代表优先级

>多条前序指令写同一/			个寄存器			EX/N (Tn	MEM ew)		EM/W	_
流水级	源寄 存器	涉及指令				cal_r 0/rd		cal_r 0/rd		ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
西非宗教全部	天大学		转发MUX	控制信号	输入0		-			44

- ❖集中式译码与分布式译码
- ❖形式建模综合方法概述
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖暂停机制生成方法**
- ❖转发机制生成方法
- ❖控制冒险处理机制

(2) 北京航空航天大学

45

总结

- ❖流水线设计的复杂性在于对冲突的覆盖性分析
 - > 覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
 - ▶分析避免了频繁的、无谓的试错
 - ▶提高开发效率,确保开发正确性
- ❖教科书中存在的不足
 - > 没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
 - ▶没有覆盖性分析,必然遗漏部分数据相关
 - 如lw~sw指令,必须暂停。但事实上可以通过增加转发MUX实现不停顿
 - 如cal~sw指令,未明确指出处理机制
 - >RF内部的数据转发语焉不详
 - 内部转发: 当读和写同一个寄存器时,读出的数据应该为要写入的数据

內 北京航空航天大学

47

控制冒险处理机制

- ❖分歧点1: 是否实现延迟槽
 - ▶如果实现,需要注意jal及jalr指令应保存PC+8(或者更多,取决于是否前移)
- ❖分歧点2: 执行是否前移至ID阶段
- ❖课程要求:实现延迟槽,并且前移至ID阶段

延迟槽前移	是	否
是	硬件无需处理	B类:有条件清除IF/ID J类:无条件清除IF/ID
否	编译调度指令	B类:有条件清除IF/ID、ID/EX J类:无条件清除IF/ID、ID/EX、 EX/MEM

Q: JAL、JALR的回写寄存器怎么处理呢?

A: 视同普诵的回写

69 北京航空航天大学