第五周

第6章 刚体力学

§ 6.1, § 6.2, § 6.3 (1, 2, 3, 4)

作业: P80

6-2, 6-6, 6-7, 6-9, 6-12

第三章 刚公分學基础

刚体模型: 在任何外力作用下,形状和大小均不 发生改变的物体。

说明: (1) 理想模型;

- (2) 在外力作用下,任意两点间均不发 生位移;
- (3) 内力无穷大的特殊质点系。

§ 3.1 刚体运动的描述

一、平动和转动

1. 刚体的平动

刚体上任意两点的连线始终保持平行,这种运动称为平动。如电梯的升降,活塞的往返等都是刚体的平动。

刚体上各质点的运动相同, 因而刚体的平动可用质心运 动描述, 刚体的平动就可归 结为质点运动问题。

2. 刚体的定轴转动

刚体中各质点都绕 某一直线做圆周运 动,这种运动称为 定轴转动。

刚体的一般运动可看作平动和转动的合成。

由于转轴位置的选择 不同,可以有多种平 动和转动的分解方式, 但转动的角位移总是 相同的,和转轴位置 无关。

二、刚体定轴转动的描述

刚体内取一点P,做转轴的垂 足O,通过OP并与转轴垂直 的平面, 称为转动平面。刚 体绕转轴转动时,质点P在转 动平面内做圆周运动,可用 圆周运动的角量描述。刚体 中任意一点的角位移、角速 度、角加速度,可代表整个 刚体的角量运动。角量与线 量基本关系:

$$\upsilon = \frac{dl}{dt} = \frac{R \cdot d\theta}{dt} = \omega R$$

$$a_{\tau} = \frac{dv}{dt} = \beta R$$

$$a_{n} = \frac{v^{2}}{R} = \omega^{2} R$$

$$a_n = \frac{v^2}{R} = \omega^2 R$$

匀变速定轴转动:

$$\begin{cases} \omega = \omega_0 + \beta t \\ \theta = \theta_0 + \omega_0 t + \frac{1}{2} \beta t^2 \\ \omega^2 - \omega_0^2 = 2\beta(\theta - \theta_0) \end{cases}$$

刚体转动方向的正负规定: 逆时针转为角坐标 θ 的正方向。 $\omega>0$,表示逆时针方向转动; $\omega<0$,表示顺时针方向转动。 $\beta>0$,角加速度为正方向; $\beta<0$,角加速度为负方向。

例: 刚体做定轴转动,角速度为 $\omega = 6t^2$ 。求: (1) t=1s 时的角加速度; (2) 在 t=1s 到 t=2s 这段时间内,刚体转过的角度。

解: (1) 按定义:
$$\beta = \frac{d\omega}{dt} = 12t$$
 $t=1s$ 时, $\beta = 12$ rad/s²

(2) 按角速度定义:

$$\theta - \theta_0 = \int_{\theta_0}^{\theta} d\theta = \int_1^2 \omega dt = \int_1^2 6t^2 dt$$

可解得这段时间内刚体转过的角度: $\theta - \theta_0 = 14 \text{(rad)}$

§ 3.2 刚体定轴转动的转动定律

一、对轴的力矩

对于有固定转轴的刚体,平行于转轴或作用线通过转轴的力,都不能使刚体转动。设力F作用于刚体中的质点P,且在转动平面内,则力F对转轴的力矩定义为:

$$M = Fd$$

d 称为力臂, d与位矢的关系为:

$$d = r \sin \varphi$$

因而上式可写为:

$$M = Fr \sin \varphi = F_{\tau}r$$

上式用矢量表示式为:

$$M = r \times F$$

- 若力不在转动平面内,则可将此力分解为与转轴的平行分量和垂直分量,其中平行分量不产生力矩。
- 刚体所受的合力矩等于各力对转轴力矩的和:

$$M = \sum F_i d_i, \quad M = \sum r_i \times F_i$$

•可以证明,内力的合力矩为零,刚体所受的合力矩指外力的合力矩。

二、刚体定轴转动的转动定律

设质点 m_i 离转轴的垂直距离为 r_i ,受到外力 F_i 和内力 f_i 的作用,运动方程为:

$$\boldsymbol{F_i} + \boldsymbol{f_i} = m_i \boldsymbol{a_i}$$

切向分量式为: $F_{i\tau} + f_{i\tau} = m_i a_{i\tau}$

根据线量与角量的关系,

$$a_{i\tau} = \beta r_i$$

上式可写为:

$$F_{i\tau} + f_{i\tau} = m_i r_i \beta$$

在上式两边同乘 r_i 得:

$$F_{i\tau}r_i + f_{i\tau}r_i = m_i r_i^2 \beta$$

因法向分量 F_{in} 和 f_{in} 均通过转轴,不产生力矩,则 $f_{i\tau}r_i$ 、 $F_{i\tau}r_i$ 分别表示内力、外力对转轴的力矩。对上式求和:

$$\sum F_{i\tau}r_i + \sum f_{i\tau}r_i = (\sum m_i r_i^2)\beta$$

外力对转轴 力矩的代数 和,M

内力力矩 求和为零 刚体本身的性质 和转轴位置有关 称 **转动惯量**

即: $M = J\beta$

用矢量表示:

 $M = J\beta$

刚体定轴转动时,角加速度与<u>合外力矩</u>成正比, 与转动惯量成反比—刚体定轴转动定律。

三、刚体定轴转动的转动定律与质点系角动量定理的关系

刚体定轴转动是刚体转动的最简形式,其一般形式为定点转动。质点系角动量定理对刚体的定轴、 定点转动都适用,而定轴转动定律只是角动量定理沿转轴的一个分量式(坐标原点在转轴上)。

设刚体绕 z 轴定轴转动,现求质点系角动量定理 M=dL/dt 在 z 轴的分量式: 首先求合外力矩,设 F_i 为质点 m_i 所受外力的垂直分量(外力可分解为与转轴的平行分量和垂直分量,其中平行分量不产生力矩),则 F_i 对o点的力矩:

$$\boldsymbol{M}_{i} = \boldsymbol{R}_{i} \times \boldsymbol{F}_{i} = \boldsymbol{R}_{i} \times (\boldsymbol{F}_{i\tau} + \boldsymbol{F}_{in})$$

上式中 F_{in} 产生的力矩沿z轴的分量为零。 $(R_i \times F_{i\tau})$ 在质点与z轴组成的平面内,并与 R_i 垂直,力矩沿z轴的分量为:

$$M_{iz} = R_i F_{i\tau} \sin \varphi = F_{i\tau} r_i$$

力矩在z轴的分量的总和:

$$M_z = \sum F_{i\tau} r_i$$

再求角动量L沿z轴的分量 L_z ,

$$\boldsymbol{L}_i = \boldsymbol{R}_i \times (m_i \boldsymbol{v}_i)$$

 L_i 在质点与z轴组成的平面内,并与 R_i 垂直,沿z轴的分量为:

$$L_{iz} = m_i R_i v_i \sin \varphi = m_i r_i^2 \omega$$

刚体总角动量L在z轴分量为所有质点的 L_{iz} 的总和:

$$L_z = \sum m_i r_i^2 \omega$$

刚体绕 z 轴转动时,质点系角动量定理沿 z 轴的分量式:

$$M = \sum F_{i\tau} r_i = \left[M_z = \frac{dL_z}{dt} \right] = \sum m_i r_i^2 \beta = J \beta$$

即为刚体定轴转动定律。

§ 3.3 转动惯量

一、转动惯量的物理意义

将刚体定轴转动定律与质心运动定律比较:

$$\mathbf{M} = J\mathbf{\beta}$$
; $\mathbf{F} = m\mathbf{a}_c$

质量m是刚体平动惯性大小的量度,与此相比, 转动惯量J是刚体转动惯性大小的量度。

二、转动惯量的计算

刚体对转轴的转动惯量J等于刚体上各质点的质量 m_i 与各质点到转轴垂直距离平方 r_i^2 乘积之和。

$$J = \sum m_i r_i^2$$

$$J = \int r^2 dm$$

转动惯量的单位: kg·m²。

三、平行轴定理和垂直轴定理

1. 平行轴定理

刚体对任意转轴的转动惯量 J等于对通过质心的平行轴 的转动惯量J_C加上刚体质量 与两平行轴间距离的平方乘 积:

证明: 刚体对oz轴的转动惯量J为:

$$J = \sum m_i r_i^2 = \sum m_i (r_i'^2 + h^2 - 2r_i' h \cos \alpha_i) z'$$

上式右边第一项为刚体通过质心的平行轴的转动惯量

$$J_C = \sum m_i r_i'^2$$

第二项为: mh^2

以质心C为原点,做Cx'轴,按质心定义:

$$x_C' = \frac{\sum m_i x_i'}{\sum m_i} = \frac{\sum m_i r_i' \cos \alpha_i}{\sum m_i} = 0$$

故第三项为零,因此证得: $J = J_C + mh^2$

2. 垂直轴定理

若刚体薄板在xy平面内对x轴和y轴的转动惯量分别为 J_x 和 J_y ,则薄板对z轴的转动惯量为:

$$J_z = J_x + J_y$$

证明: 薄板对z轴的转动惯量为:

$$J_z = \sum m_i r_i^2 = \sum m_i (x_i^2 + y_i^2)$$

上式中:
$$\sum m_i x_i^2 = J_y$$
 $\sum m_i y_i^2 = J_x$

故证得: $J_z = J_x + J_y$

刚体的转动惯量与三个因素有关:

刚体的总质量;质量分布;转轴的位置。

同一刚体对不同转轴的转动惯量不同,凡是提到转动惯量,必须指明它是对哪个轴才有意义。

在计算刚体的转动惯量时,首先要会计算刚体 某一部分的质量元dm。由分布的不同,质量元 的计算为: 质量为线分布

$$dm = \lambda(l)dl$$

质量为面分布

$$dm = \sigma(\mathbf{r})ds$$

质量为体分布

$$dm = \rho(\mathbf{r})dV$$

其中λ、σ、ρ分别为质量的线密度、面密度和体 密度。

线分布

体分布

例: 求质量为*m*、半径为*R*的均匀圆环的转动惯量。轴与圆环平面垂直并通过圆心。

$$I = \int R^2 dm = R^2 \int dm = mR^2$$

J是可加的,所以若为薄圆筒(不计厚度)结果相同。

例:求质量为m、半径为R、厚为l 的均匀圆盘的转动惯量。

轴与盘平面垂直并通过盘心。

解:取半径为r宽为dr的薄圆筒,

$$dm = \rho \cdot 2\pi r dr \cdot l$$

$$dJ = r^2 dm = \rho \cdot 2\pi l r^3 dr$$

$$J = \int dJ = \int_0^R \rho \cdot 2\pi l r^3 dr = \frac{1}{2} \rho \pi R^4 l$$

$$\therefore \rho = \frac{m}{\pi R^2 l} \therefore J = \frac{1}{2} m R^2$$

例: 求长为L, 质量为m的均匀细棒对图中不同轴的转动惯量。

解: 取如图坐标, $dm = \lambda dx$

$$J_A = \int_0^L x^2 \lambda dx = mL^2 / 3$$

$$J_C = \int_{-\frac{L}{2}}^{\frac{L}{2}} x^2 \lambda dx$$
$$= mL^2 / 12$$

例: 计算右图所示刚体对经过棒端且与棒垂直的轴的转动惯量。(棒长为*L*、圆半径为*R*)

解:棒绕端点: $J_{L_1} = \frac{1}{3} m_L L^2$

圆盘绕轴心: $J_o = \frac{1}{2} m_o R^2$

圆盘绕棒的端点: $J_{L2} = J_0 + m_0 d^2 = J_0 + m_0 (L+R)^2$

$$J = \frac{1}{3} m_L L^2 + \frac{1}{2} m_o R^2 + m_o (L + R)^2$$

一些即於的转動假量

1. 匀质直杆对垂直 于杆的转轴的转动 惯量(杆长为 <i>l</i> ,质 量为 <i>M</i>)	1) 垂直于杆、通过杆中 心的轴 <i>J</i> = 1/12 <i>M l</i> ²	0
	2) 垂直于杆、通过杆端 点的轴 <i>J</i> = 1/3 <i>M l</i> ²	0
	3) 垂直于杆、通过杆1/4 处的轴 <i>J</i> = 7/48 <i>M l</i> ²	0

2. 匀质圆盘的转动惯量(圆盘质量为M,半径为R)

通过盘心、垂直盘面的转轴

 $J = 1/2 MR^2$

3. 挂钟摆锤的转动惯量 (杆长为l,质量为 m_1 ;摆锤半径为R,质量为 m_2)

$$J = \frac{1}{3}m_1l^2 + \frac{1}{2}m_2R^2 + m_2(l+R)^2$$

4. 挂在光滑钉子 上的匀质圆环摆动 的转动惯量(圆环质 量为m, 半径为R)

$$J=mR^2+mR^2=2mR^2$$

5. 半径为 <i>R</i> 的球体,转轴沿直径的转动惯量	$J = \frac{2}{5}mR^2$	
6. 半径为R的球壳,转轴沿直径的转动惯量	$J = \frac{2}{3}mR^2$	

四、回转半径

若刚体对转轴的转动惯量为J,则回转半径定义为:

$$R_G = \sqrt{\frac{J}{m}}$$

从而刚体的转动惯量为:

$$J = mR_G^2$$

若把刚体全部质量都分布在半径为R_G的圆周上,这时的转动惯量就等于刚体的转动惯量。

即徐定镇的领围

思考题、1、2、3

例题一、悬挂两重物的塔形滑轮的运动

<u>例题二、</u>滑轮上悬挂软绳的运动

例题三、打击中心问题

例题四、斜面、滑轮与弹簧组成系统的运动

- 1. 刚体绕定轴作匀变速转动时,刚体上距转轴任一点的
- (A) 切向、法向加速度的大小均随时间变化
- (B) 切向、法向加速度的大小均保持恒定
- (C) 切向加速度的大小恒定, 法向加速度的大小变化
- (D) 法向加速度的大小恒定,切向加速度的大小变化

答案

$$C$$
 $a_{\tau} = \beta R(常量); \ a_{n} = \omega^{2} R(变化)$

2. 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m,此时滑轮的角加速度为β。若将物体卸掉,而用大小等于mg、方向向下的力拉绳子,则滑轮的角加速度将:

- (A) 变大 (B) 不变
- (C) 变小 (D) 无法判断

答案

A

mg - T = ma, M = mg > T

3. 一圆盘绕过盘心且与盘面垂直的轴 O 以角

速度w按图示方向转动,若如图所示的情况那样,将两个 大小相等方向相反但不在同一条直线的力F沿盘面同时作

用到圆盘上,则圆盘的角速度ω

- (A) 必然增大
- (B) 必然减少
- (C) 不会改变
- (D)如何变化,不能确定

答案

A 合力矩与ω方向相同,ω增加

例题1:悬挂两重物的塔形滑轮的运动

如图所示,一个组合滑轮由两个匀质的圆盘固接而成,大盘质量 M_1 =6kg,半径R=0.10m,小盘质量 M_2 =4kg,半径r=0.05m。两盘边缘上分别绕有细绳,细绳的下端各悬挂质量 m_1 = m_2 =2kg的物体。两物体由静止释放,求:

- (1) 两物体 m_1 、 m_2 的加速度大小;
- (2) 两绳中的张力。

圆岩与分银。

这是一个由质点和刚体组成的系统,首先要明确,处理 这类问题的基本方法是隔离体法。对质点分析受力,应 用牛顿定律。对刚体要分析所受力矩和角加速度,应用 转动定律。然后通过角量与线量的关系,把质点的加速 度与刚体的角加速度联系起来。

图智 8

解:对质点 m_1 : $m_1g - T_1 = m_1a_1$ (1)

对质点 m_2 : $T_2 - m_2 g = m_2 a_2$ (2)

对于滑轮:

分析它受几个力? 画出受力图

其中
$$G=(M_1+M_2)g$$

1. 四个力对转轴的力矩的大小和方向:

 $M_N = M_G = 0$, 理由: 作用线通过转轴

$$M_{T1} = RT_1$$
 方向 $\mathbf{R} \times \mathbf{T}_1$, \otimes

$$M_{T2} = rT_2$$
 方向 $r \times T_2$, \odot

2. 设 \otimes 方向为正(与 m_1 , m_2 正方向一致),由转动定律:

$$RT_1 - rT_2 = (J_1 + J_2)\beta = (\frac{1}{2}M_1R^2 + \frac{1}{2}M_2r^2)\beta$$
 (3)

3. m_1 的加速度 a_1 ,即为大盘边缘处的切向加速度:

$$a_1 = R\beta$$
 (4)

同样
$$a_2 = r\beta$$
 (5)

由(1)式—(5)式解得: $(\beta \ a_1 \ a_2 \ T_1 \ T_2)$

$$\beta = \frac{(Rm_1 - rm_2)g}{M_1'R^2 + M_2'r^2} = \frac{5}{3}g = 16.3rad/s^2$$

其中
$$M_1' = m_1 + 1/2M_1$$
 $M_2' = m_2 + 1/2M_2$

$$a_1 = R\beta = 1.63 \text{ m/s}^2$$

$$a_2 = r\beta = 0.817 \text{ m/s}^2$$

$$T_1 = m_1(g - a_1) = 16.3 \text{ N}$$

$$T_2 = m_2(g + a_2) = 21.2 \text{ N}$$

