P(x=k) Jondan (Poisson wenderly)
$$2 = 9$$
 $P(x = k) = \frac{2^k}{k!} \cdot x^2$

- max $\{P(x=k)\} = 2$ (headolinest)

P(x=k-1) $\leq p(x=k-1) \leq p(x=k-1) \leq 1$

P(x=k-1) $\leq p(x=k) \Leftrightarrow \frac{P(x=k-1)}{P(x=k)} \leq 1$
 $\frac{N^2}{P(x-k-1)} = \frac{2^{k-1}}{2^k} \cdot x^k = \frac{k}{2}$
 $\Rightarrow \frac{k}{2} \leq 1 \Rightarrow k \leq 2$

P(x=k+1) $\leq P(x=k) \Leftrightarrow \frac{P(x=k+1)}{P(x=k)} \leq 1$
 $\frac{N^2}{P(x=k)} = \frac{2^{k-1}}{P(x-k)} \cdot x^k = \frac{2^{k-1}}{P(x-k)} \cdot x^k$
 $\Rightarrow \frac{2^k}{P(x-k-1)} = \frac{2^{k-1}}{P(x-k)} \cdot x^k = \frac{2^{k+1}}{P(x-k)} \cdot x^k$
 $\Rightarrow \frac{2^k}{P(x-k-1)} \leq 1 \Rightarrow 2 \leq k+1 \Rightarrow 2-1 \leq k$
 $\Rightarrow 2 \leq k \leq 4 \Rightarrow k \leq 3, 4 \leq 1$

Di Welno be with the sum of length and 3 ade 4.

d.)
$$U = x^3$$
 $\times \sim Gleid(a, b) \Rightarrow 1_{x = b-a} \text{ in } \times e^{(c, a)}$
 $E(u) = \int_{0}^{a} x^3 \cdot \frac{1}{b-a} dx = \int_{0}^{a} x^3 \cdot \frac{1}{a-a} dx = \int_{0}^{a} \frac{1}{a} \cdot \frac{x^4 \cdot a}{x^4 \cdot a} = \int_{0}^{a} \frac{1}{a} \cdot \frac{1}{a} dx = \int_{0}^{a} \frac{$