ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

SUMMER SEMESTER, 2017-2018

DURATION: 3 Hours

FULL MARKS: 200

Math 4241: Integral Calculus and Differential Equations

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 8 (eight) questions. Answer any 6 (six) of them.

		There are <u>8 (eight)</u> questions. Answer any <u>6 (six)</u> of them. Give figure(s) where necessary. Figures in the right margin indicate marks.	
1.	a)	Write the fundamental theorem of Calculus. Find dy/dx of $y = \int_0^{\sin x} \frac{dt}{\sqrt{1-t^2}}$ i. by using	5+16.33
	b)	Fundamental theorem, ii. by evaluating the integral and then differentiating the result. Find the total area between the region and the x-axis formed by the curve $y = 3x^2 - 3$, $-2 \le x \le 2$	12
2	۵)	Evaluate the followings:	3×5
2.	a) b)	i. $\int_{-4}^{4} x-2 dx$, ii. $\int_{1}^{e^{\pi/4}} \frac{4}{x(1+ln^2x)} dx$, iii. $\int_{-1}^{-1/2} x^{-2} \sin^2(1+\frac{1}{x}) dx$ Find the area of the regions enclosed by the lines and the curves as follows:	9÷9.33
		ii. $x - y^2 = 0$ and $x + 2y^2 = 3$	
3.	a)	The solid lies between the planes perpendicular to the x-axis at $x = -1$ and $x = 1$. The cross-sections perpendicular to the x-axis are circular disks whose diameter run from the parabola $y = x^2$ to the parabola $y = 2 - x^2$. Find the volume of the solid.	18.33
	b)	the parabola $y = x^2$ to the parabola $y = 2 - x$. This die volume of the solid generated by revolving the regions bounded by the given curve and the lines $y = 2\sqrt{x}$, $y = 2$, $x = 0$ about x-axis.	15
4.	a) b)	Define length of curve. Find the length of the curve $y = (x/2)^{2/3}$ from $x=0$ to $x=2$. Find the surface area generated by revolving the curve $x = \left(\frac{1}{3}\right)y^{3/2} - y^{1/2}$, $1 \le y \le 3$,	5.33+7 10
	c)	about y- axis. Find the lateral surface area of the cone generated by revolving the line segment $y = x/2$, $0 \le x \le 4$, about y-axis. Check your answer with the following formula: Lateral surface area = $(1/2) \times$ base circumference \times slant height.	7+4
·	(۵)	Using Transzoidal and Simpson's rules with $n = 4$ and 8, find the approximate value of	10+5.33

- Using Trapezoidal and Simpson's rules with n = 4 and 8, find the approximate value of 10+5.33 $\int_0^3 \sqrt{x+1} dx$. Finally compare your results with true value and comments on it.
 - b) Define proper and improper integrals with examples. Evaluate the following integrals and then state whether they are convergent or not:

 i. $\int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} dx$, ii. $\int_{0}^{\ln 2} x^{-2} e^{-1/x} dx$

- 6. a) Define ordinary and partial differential equations with examples. Form an ordinary differential equation corresponding to the family of curves $y = k(x k)^2$, where k is an arbitrary constant. Finally, identify it.
- 4+10+3

2×8

- b) Define is exact differential equation and write its necessary condition. Test whether the following differential equations are exact or not.
 - i. $(2y \sin x \cos x + y^2 \sin x) dx + (\sin^2 x + 2y \cos x) dy = 0$, ii. $(y^2 + 2xy) dx x^2 dy = 0$ iii. $(4x + 3y^2) dx + 2xy dy = 0$, iv. $(\frac{x}{v^2} + x) dx + (\frac{x^2}{v^3} + y) dy = 0$
- 7. a) Determine the constant A such that the given equation is an exact differential equation 5.33+12 (DE) and then solve it.

$$\left(\frac{Ay}{x^3} + \frac{y}{x^2}\right)dx + \left(\frac{1}{x^2} - \frac{1}{x}\right)dy = 0$$

- b) Solve the following DEs: i. $4xy dx + (x^2 + 1)dy = 0$, ii. $(x^2 + 3y^2)dx - 2xydy = 0$
- 8. a) What is first order linear differential equation? Explain with examples, when 4.33+2 Bernoulli's DE becomes a first order linear DE.
 - Bemoulli's DE becomes a first order linear DE.

 b) Solve the following initial value problems:

 i. $x \frac{dy}{dx} 2y = 2x^4$, y(2)=8, ii. $\frac{dy}{dx} y = \sin 2x$, y(0)=0 iii. $\frac{dy}{dx} + y = xy^3$, y(0)=1

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE) WESTER FINAL EXAMINATION

SUMMER SEMESTER, 2016-2017

MITION: 3 Hours

FULL MARKS:200

Math 4241: Integral Calculus and Differential Equations

There are 8(eight) questions. A new of the first on the question paper. There are 8(eight) questions. Answer any 6(six) of them.

```
Figures in the right margin indicate marks.
 Evaluate the following integrals and then graph the integrands. Finally find the area using
                                                                                                               20
 appropriate formula from geometry:
 period appropriate formula to a geometry.

i. \int_{-1}^{1} (1-|x|) dx ii. \int_{-3}^{3} \sqrt{9-x^2} dx

Define average value of a function f(x) on [a, b]. Graph the functions and find its average 13.33
 value over the given intervals:
                                    ii. f(x) = (x-1)^2 on [0, 3]
        f(x) = -3x^2 - 1 on [0,1]
t = \int_0^{tanx} \frac{dt}{1+t^2} i) by using Fundamental theorem, ii) by evaluating the
                                                                                                                12
 integral and then differentiating the result.
Evaluate the integral i) \int_{-4}^{4} |x| dx, ii) \int_{0}^{1/2} \frac{4}{\sqrt{1-x^2}} dx
                                                                                                                10
Find the total area between the region and the x-axis formed by the curve y = -x^2 - 2x, -3 \le x
 x≤2
Define even and odd functions with examples. If f is a continuous function on the 17.33
 symmetric interval [-a, a] then prove that:
        \int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx, for even function,
       \int_{-a}^{a} f(x) dx = 0, for odd function.
                                                                                                                16
Find the area of the regions enclosed by the lines and the curves as follows:
      y = x^2 and y = -x^2 + 4x

x - y^2 = 0 and x + 2y^2 = 3
Find the volume of the given pyramid which has a square base of area 9 square meter and 18.33
 height 5 meters.
If the solid is generated by revolving the regions bounded by the given curves y = x^2 and
                                                                                                                 15
 the lines y = 0, x = 2 about x-axis then find its volume.
Find the length of the curve y = (x/2)^{2/3} from x = 0 to x = 2.
                                                                                                                 15
```

Find the surface area generated by revolving the curve $y = \sqrt{x+1}$, $1 \le x \le 5$, about x-axis.

Define proper and improper integrals with examples. Evaluate the following integrals and then state whether they are convergent or not:

$$\int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} dx ,$$

$$\int_{0}^{\ln 2} \frac{1}{x^{-2} e^{-1/x}} dx$$

- Define ordinary and partial differential equations. Explain with examples, order and non-linear ordinary differential equations, order and degree the curve $v = \frac{A}{1 + R} + \frac{A}{1 + R}$ 6.
 - Define ordinary and positive of a differential equation, linear and non-uncar ordinary differential equation from the curve $v = \frac{A}{r} + B$, where A and B
 - c) Find the DE of the family of circles of variable radii r with center on x-axis.
- 7. a) What is exact differential equation and write its necessary condition. Determine Whether

 $(2y \sin x \cos x + y^2 \sin x) dx + (\sin^2 x + 2y \cos x) dy = 0$

- ii. (2y sinx cosx + y sinx) (3... x = 5... b) Determine the constant k such that the given equation is an exact DE and then solve it.
- Solve the following differential equations:

(y+2)dx + y(x+4)dy = 0, y(-3) = -1

 $(x^2 + 3y^2)dx - 2xydy = 0$, y(2) = 6ii.

b) What is Bernoulli's differential equation? In what conditions, it becomes a first order line. DE, explain with examples. Is Bernoulli's DE linear or not? Finally, solve the IVP $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}, y(1) = 2$

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

SUMMER SEMESTER, 2015-2016

puration: 3 Hours

integer.

FULL MARKS: 200

Math 4241: Integral Calculus and Differential Equations

programmable calculators are not allowed. Do not write anything on the question paper.

There are 8 (cight) questions. Answer any 6 (six) of them.

Figures in the right margin indicate marks

	1	Figures in the right margin indicate marks.											
a	What is the physical meaning of $\int_a^b f(x)dx$? Find the area under the curve represented by the following data:												
	X	(:	5	10	15	20	25	30					
	18	<u>'</u> :	1.5	5.12	4.25	6.65	5.75	2.45					
b	n an	Evaluate and sketch the region whose area is represented by the integral $\int_{-a}^{a} \sqrt{a^2 - x^2} dx$ and then verify it using appropriate formula from geometry.											
c	Fi	Find the total area between the curve $y = 1-x^2$ and the x-axis over the interval [0, 2] by using anti-derivative method.											
. 3) W	Write the properties of improper integral with examples. Evaluate the integrals and state whether they are divergent or convergent:											
		i. $\int_0^1 \frac{1}{\sqrt{x}(x+1)} dx$, ii. $\int_{-1}^\infty \frac{x}{1+x^2} dx$											
t				and hence sho			i diciti.		10 8.33				
	, E,	vajuai	$c J_0 e ax$	and hence sno	w that $\frac{1}{2} - \sqrt{n}$		•						
i, e) Fi												
1 3	ci	Define the arc length for a curve and for parametric equations. Find the circumference of a circle of radius 15 meters from the parametric equations $x = 15 \cos\theta$ and $y = 15 \sin\theta$,											
1) Fi	$0 \le \theta \le 2\pi$.											
Landar	d												
	b) D	arbitrary constant.											
6	a) V	Vhat i	s integrating to	factor? Consider for which the	er the DE (y² - e given DE trai	+ $2xy$) $dx + x^2$ Instructions and $dx + x^2$	$d^2dy = 0$, find an exact DE,	the integrating where <i>n</i> is an	13.33				

Solve the following differential equations:

i.
$$(xy + 2x + y + 2)dx + (x^2 + 2x)dy = 0$$

ii. $(2xy + 3y^2)dx - (2xy + x^2)dy = 0$

ii.
$$(2xy + 3y^2)dx - (2xy + x^2)dy = 0$$

- Define Bernoulli's DE. State in what conditions the Bernoulli's DE reduces to a first order
 - Solve the following initial value problems:

i.
$$x \frac{dy}{dx} - 2y = 2x^4$$
, $y(2) = 8$

i.
$$x \frac{dy}{dx} - 2y = 2x^4$$
, $y(2) = 8$
ii. $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$, $y(1) = 2$

Define partial differential equation and solve the following PDE:

i.
$$(y+z)\frac{\partial z}{\partial x} + (z+x)\frac{\partial z}{\partial y} = x+y$$

i.
$$(y+z)\frac{\partial z}{\partial x} + (z+x)\frac{\partial z}{\partial y} = x+y$$

ii. $(x^2-yz)\frac{\partial z}{\partial x} + (y^2-zx)\frac{\partial z}{\partial y} = z^2-xy$

Find the integral surface of the linear partial differential equation $x(y^2 + z) \frac{\partial z}{\partial x}$ $y(x^2 + z)\frac{\partial z}{\partial y} = (x^2 - y^2)z$, which passes through the curve $xz = a^3$, y = 0.