1

Control Systems

G V V Sharma*

	Contents			7	L		
4	G•		1		7.1 Phase Lead	3	
1	Signal Flow Graph		1		7.2 Lag Lead	3	
	1.1	Mason's Gain Formula	1		7.3 Example	3	
	1.2	Matrix Formula	1	8	Gain Margin	3	
	1.3	Example	1	Ū	8.1 Introduction	3	
2	Bode Plot		1		8.2 Example	3	
	2.1 Introduction		1		8.3 Example	3	
	2.1				1		
		Example	1	9	Phase Margin	3	
	2.3	Phase	3		9.1 Intoduction	3	
3	Secon	nd order System	3		9.2 Example	3	
	3.1 Damping		3	10	10 Oscillator		
	3.2	Example	3	10	10.1 Introduction	3 3	
	3.3	Settling Time	3		10.1 Introduction	3	
	3.3	Setting Time	3		10.2 Example	3	
4	Routh	n Hurwitz Criterion	3	11	11 Root Locus		
	4.1	Routh Array	3		11.1 Introduction	3	
	4.2	Marginal Stability	3	4.7			
	4.3	Stability	3	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.			
	4.4	Example	3				
	4.5	Example	3		ownload python codes using		
						1 /	
5	State-Space Model 3		3	svn co https://github.com/gadepall/school/trunk/			
	5.1	Controllability and Observ-		control/codes			
		ability	3				
	5.2	Second Order System	3		1 Signal Flow Graph		
	5.3	Example	3				
	5.4	Example	3	I.I	Mason's Gain Formula		
	5.5	Example	3	1.2	Matrix Formula		
	5.6	Example	3	1.3	Example		
	5.7	Example	3		2 Bode Plot		
6	Nyquist Plot		3	2.1 Introduction			
	6.1	Introduction	3		Example		
	6.2	Example	3	۷.۷	•	statia	
	- y 		-	Question: Consider the following asymptotic Bode magnitude plot (ω is in rad/s).			
4 m		is with the Department of Electrical Engineer					

represented by the above Bode magnitude plot?

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 2.0: Plot of G(s)

$$(A)\frac{2s}{(1+0.5s)(1+0.25s)^2} \quad (B)\frac{4(1+0.5s)}{s(1+0.25s)}$$

$$(C)\frac{2s}{(1+2s)(1+4s)} \quad (D)\frac{4s}{(1+2s)(1+4s)^2}$$

By looking to the plot, we can say that since the initial slope is +20, there must be a zero at the origin. Let the corner frequencies of the plot be ω_{01} and ω_{02} . They can be calculated as follows:

$$slope = \frac{M_2 - M_1}{log\omega_2 - log\omega_1}$$

Therefore for
$$\omega_{02}$$
,
 $-40 = \frac{0 - 12}{log8 - log\omega_{02}}$
 $log8 - log\omega_{02} = \frac{12}{40}$
 $log\omega_{02} = log8 - \frac{12}{40}$
 $\omega_{02} = 4$

And for
$$\omega_{01}$$
,

$$20 = \frac{0 - 12}{\log 0.5 - \log \omega_{01}}$$

$$\log 0.5 - \log \omega_{01} = \frac{-12}{20}$$

$$\log \omega_{01} = \log 0.5 + \frac{12}{20}$$

$$\omega_{01} = 2$$

So, the corner frequencies are ω_{01} =2 and ω_{02} = 4. At ω_{01} , the change in slope is -20dB, so their exists one pole at this frequency and at ω_{02} , the change in slope is -40dB, so their exists two pole at this frequency.

The denominators have the form $(1 + \frac{s}{\omega})$ So, the denominator of the transfer function is $(1 + \frac{s}{2})(1 + \frac{s}{4})^2$ Therefore, the transfer function is,

$$\frac{cs}{(1+\frac{s}{2})(1+\frac{s}{4})^2}$$

here c is some constant The answer is therefore option (A)

$$\frac{2s}{(1+0.5s)(1+0.25s)^2}$$

We will now plot the bode plot of the given transfer function to verify it. The bode plot is:

Fig. 2.0: Plot of G(s)

The plot was plotted using the following code:

import numpy as np import control.matlab as ml import matplotlib.pyplot as plt

If using termux import subprocess import shlex #end if

num is the numerator of the trasfer function which is (2s)
dem is the denominator of the transfer function which is (0.25s + 1)(0.25s + 1)

```
(0.5s + 1)
num = np.array([2, 0])
den = np.polymul(np.array([0.5, 1]), np.array
    ([0.25, 1])
den = np.polymul(den, np.array([0.25, 1]))
# Generating the transfer function
g = ml.tf(num, den)
print("The transfer function is: ", g)
print("The poles of the above function are",
    ml.pole(g)
print("The zeros of the above function are",
    ml.zero(g)
# Generating the bode plot as well as plotting
mag, phase, w = ml.bode(g)
# If using termux
plt.savefig("./figs/ep18btech11016 plot.pdf")
plt.savefig("./figs/ep18btech11016 plot.eps")
subprocess.run(shlex.split("termux-open ./figs
    /ep18btech11016 plot.pdf"))
# else
plt.show()
```

- 2.3 Phase
- 3 Second order System
- 3.1 Damping
- 3.2 Example
- 3.3 Settling Time
 - 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 4.5 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 5.6 Example
- 5.7 Example
- 6 Nyquist Plot
- 6.1 Introduction
- 6.2 Example
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Lag Lead
- 7.3 Example
- 8 GAIN MARGIN
- 8.1 Introduction
- 8.2 Example
- 8.3 Example
- 9 Phase Margin
- 9.1 Intoduction
- 9.2 Example
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example
- 11 Root Locus
- 11.1 Introduction