2 插值与数值微分 Interpolation, Numerical Differentiation

何军辉 hejh@scut.edu.cn

背景

□ 在工程技术中,经常会遇到只给定一个函数表,要求根据该函数表求出某点上函数值的问题

			_	 _			-	_			_		 	_			_		_		_	_	-	$\overline{}$			_		_	-		_		_		_		_		_				-			_		_	_		_			-			_		_		-	_		_		_	_
																																																																				- 1
- 1																																																																				- 1
. 1																											· . I															1													1													. 1
· . I																											. 1															1													11.													
. 1																											· . I															1													1													. 1
																			•	•															•																									-	-							
- 1						. •													1/																							1													1 .					~ 1	_							- 1
							v ·																				- 1																																		•							
- 1							A .																													•						1							_						1 .													- 1
																			∕ 8.	, .							- 1																																	~		7/7						
- 1						_	•																																																						•							- 1
																											- 1																																									- 1
																																			-																				1								•					- 1
																											- 1																																									- 1
	_	_	-	-	_	_	-	-	_	_	-	_	 _	-	_	_	-	_	-	_	_	_		_	_	_	_		_	_	_		_	-	_	-	_	_	_	-	_	_	_	_	_	_	-	_		_	_		_	-	_	_	_		_	-	_	_	_	_	-	_	-	_
																											- 1																																									- 1
																																																																				- 4
																											- 1																																									- 1
								_				_																																																								- 4
												_															- 1																																									- 1
									•			- 1																																																								- 1
		•	-	 				_			•	. 1								•							- 1								•							1																		-								
				_					•		~								•															• •																																		- 1
													 								_																																															
					_	١.			•											_	_														_	•						Ι.																			Ⅵ.							- 1
. 1			<i>.</i>				·												v															v																					1						•	2						. 1
I							. "			_	•	•							7.								. 1							₽.		· .																			11.						Z	,						
									•										,																	•																			1 .													- 1
		_					_					_						_		٠,	_												۔ ب		_																												•					
- 1																																										1													1													- 1
																											- 1																																									
- 1																																										1													1													- 1
																											- 1																																									
- 1																																										1													1													- 1
																											- 1																																									- 1
																																																							1													- 1
												_	_						_		_	_	_	_	_	_	_	_	_	_	_	_		_			_	_				_							_		_																-	_

- 1. 根据上述表构造函数 $\varphi(x)$ 来近似代替f(x)
- 2. 给出任意点 x^* ,可计算 $\varphi(x^*)$ 来代替 $f(x^*)$
- 3. 为了方便计算,构造代数多项式 $p_n(x)$

□ 线性插值

- 给定y = f(x)的函数表,构造函数 $p_1(x)$ 满足下面条件:
- ① $p_1(x)$ 是一个不超过1次的代数多项式
- (2) $p_1(x_0) = y_0$, $p_2(x_1) = y_1$

																												-			-		-	-	-					_									-						-		-	7
- 1																																																										
																																								-																		-
- 1																																																										
- 1																																																										
									_																					_	-																	_										
- 1										•																				~ ■	~																	~	_									
									1	~																				- 24	/																		•									
- 1																					1.												•																	4								. н.
. в										ъ.											1.								. '	7	4	•	ъ.																4 :	1								
- 1									1	v											1.									<i>,</i> ,	~																. 1	•	U.									. н.
. в																					1.																																					
																					1.											•	,							. 1 .										_	_ ` .							. 1.
. Т.																					Ι.																			1											•							- 1
- 1	 _			-	-	-	-	_			-		-		_	-	-	-	-	-	-	-	_	_	_	_	_	_	_	_	_	-	-	-	-	-	-		-	 -			-	-		-	-		_	_	_	-	_	_	-	_	_	- 1.
. Т.																					Ι.																			1																		- 1
																					1.																			. 1 .																		. 1.
- 1																																																										- 11
																					1 1																			1																		-1
- 1											_		_			•					1.																																					- 11
																					1 1																																					
- 1			-	٠.	- '					- 24	_			_	-	. 1															_																	-	-									- 1
			•							. –				~	_	,					1 '								-	1										1								~										1
- 1			. 1												•																,	-																	•									- 1
				•								- 4		- 2	4.						1 .										,		٠.							1								-	•	4								1
- 1				v						•				./\	4 .																,																		,	-								- 1
				•											•																									1									, .									
- 1			- 4	•						•			١.			- 4																																•										
			$\boldsymbol{\nu}$							_						_					1								_	_		•	,							1							- 1	~		_	-							-1
- 1													-								1																			11																		- 1 -
	 _	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

 \square x_0 和 x_1 称为插值节点, f(x)被插值函数, $p_1(x)$ 称为线性插值函数, 条件①②称为插值条件

- □ 线性插值的Lagrange形式
 - 线性插值的几何意义是用通过 (x_0, y_0) 和 (x_1, y_1) 两点的直线 $y = p_1(x)$ 来近似曲线y = f(x)
 - 直线方程的两点公式:

$$p_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 = l_0(x) y_0 + l_1(x) y_1$$

- \square $p_1(x)$ 称为Lagrange型线性插值函数
- \square $p_1(x)$ 是两个线性函数 $l_0(x)$ 和 $l_1(x)$ 的线性组合, $l_i(x)$ 被称为一次插值基函数

$$l_{0(x)} = \frac{x - x_1}{x_0 - x_1}$$
$$l_{1(x)} = \frac{x - x_0}{x_1 - x_0}$$

	x_0	x_1
$l_0(x)$	1	0
$l_1(x)$	0	1

□ 线性插值函数的Newton形式

定义: 若记 $f(x_i, x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j}$, 则称 $f(x_i, x_j)$ 为 函数f(x)在节点 x_i 和 x_j 处的一阶差商, x_i 和 x_j 互异.

□ 一阶差商对称性:

$$f(x_i, x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j} = \frac{f(x_j) - f(x_i)}{x_j - x_i} = f(x_j, x_i)$$

例: 当
$$i = 0$$
和 $j = 1$ 时,有 $f(x_0, x_1) = f(x_1, x_0)$

□ 直线方程的点斜式:

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

$$= f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

$$= f(x_0) + f(x_0, x_1)(x - x_0)$$

称为Newton型线性插值公式,对应的 $p_1(x)$ 称为Newton型线性插值函数.

Lagrange型和Newton型式线性插值函数 $p_1(x)$ 的两种形式,尽管形式不同,但实质都一样,代表同一条直线.

□ 线性插值误差

定理: 设 $p_1(x)$ 是经过(x_0, y_0)和(x_1, y_1)两点的线性插值函数, [a, b]是包含[x_0, x_1]的任一区间,并设 $f(x) \in C^1[a, b]$, f''(x)在[a, b]上存在,则对任意给定的 $x \in [a, b]$, 总存在一点 $\xi \in (a, b)$, 使得

$$R(x) = f(x) - p_1(x) = \frac{f''(\xi)}{2!}(x - x_0)(x - x_1)$$

其中 ξ 依赖于x.

- Rolle (洛尔) 定理

相关定理

If a real-valued function f is continuous on a closed interval [a,b], differentiable on the open interval (a,b), and f(a)=f(b), then there exists a c in the open interval (a,b) such that : f'(c)=0.

Rolle's Theorem

For any function that is continuous on [a, b] and differentiable on (a, b) there exists some c in the interval (a, b) such that the secant joining the endpoints of the interval [a, b] is parallel to the tangent at c.

Mean Value Theorem

例:给定下面函数表,用Lagrange型线性插值公式求ln(11.75)的近似值,并估计误差.

		٠I
)		
)		-
7		-
		-
		-
-		
	_	
	X	
]	<u></u>	
ľ		
1		
<u> </u>		
(
λ		
(
\ \		
)		-
		-
_		
2		
)		-
		-
		-
		-
3	1	
)	1	
)		
	L	
	•	
/		
7		
(
)		
)		-
		-
		-
		-
		-
_		
2		
) -		
_		
1		-
	1	-
{	- i	-
	_	-
3	2	-
4		-
4		-
L		
(
)		-
		-
		-
		-
		1.

□ 二次插值

■ 给定函数表,构造函数p₂(x)满足条件:

1													<i>^</i>	•						•				1			^				
					<i>.</i>								v							v								v			
1				2									. A.	\sim	١.					A .	4.			1					~		
													/1 .		Α.													٠			
				_	•								, .						•	•				1			_	·	_		
																													<i>.</i>		
																					_			1							
										 _	 	 				 	 _	 	 			 	 	$\overline{}$	 					 	
										 -	 	 				 	 Т.	 	 			 	 		 					 	
									- :	 T	 	 				 	 T					 	 	Г	 	- ; -				 	
										Г																					
						, ,																									
					_	. /	•																								
					ſ	. (\ \																						
	1	7			f				7				1	,						7							1	7			
	1	7		-	f		1	_`	1				1	7 _					1	١,7							1	7			
	1	7			f	1	1		1				1	,					1	V	1						1	J	_		
	ι	7	=	-	f	1	1		1				u	' _C	1				1	V	1						1	J	つ		
	$\boldsymbol{\gamma}$	7				(7)				\mathcal{Y}						1	У	1)	7	2		
	$\boldsymbol{\gamma}$	7				(1)					' C)				1	У	1)	J:	2		
	$\boldsymbol{\gamma}$	7		-		(7))				7	y	1)	7	2		

- ① $p_2(x)$ 是一个不超过2次的代数多项式
- ② $p_2(x_0) = y_0, p_2(x_1) = y_1, p_2(x_2) = y_2$ 其中:
- x_0, x_1, x_2 称为插值节点
- f(x)称为被插值函数
- $p_2(x)$ 称为二次插值函数
- 条件①②称为插值条件

- □ 二次插值的目的是构造 $p_2(x)$ 来近似代替f(x).
 - 不妨假设

$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

其中 a_0 , a_1 和 a_2 为待定常数

■ 利用插值条件②得到方程组

$$\begin{cases} p_2(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 = y_0 \\ p_2(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 = y_1 \\ p_2(x_2) = a_0 + a_1 x_2 + a_2 x_2^2 = y_2 \end{cases}$$

■ 系数行列式为

余数(丁列工人)

$$\begin{vmatrix}
1 & x_0 & x_0^2 \\
1 & x_1 & x_1^2 \\
1 & x_2 & x_2^2
\end{vmatrix} = (x_1 - x_0)(x_2 - x_0)(x_2 - x_1)$$

□ 二次插值函数的Lagrange形式

■ 设 $p_2(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$, 其中 $l_0(x)$, $l_1(x)$, $l_2(x)$ 为不超过2次的代数多项式, 满足:

	x_0	x_1	x_2
$l_0(x)$	1	0	0
$l_1(x)$	0	1	0
$l_2(x)$	0	0	1

- 易验证 $p_2(x)$ 满足插值条件.
- 如何构造 $l_0(x), l_1(x), l_2(x)$?

□ 二次插值函数的Lagrange形式

$$\begin{aligned} p_2(x) \\ &= \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 \\ &+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2 \end{aligned}$$

其中

- 1. $l_0(x), l_1(x), l_2(x)$ 称为二次插值基函数
- 2. $p_2(x)$ 称为Lagrange型二次插值函数

□ 二次插值函数的Newton形式

定义: 若记 $f(x_i, x_j, x_k) = \frac{f(x_i, x_j) - f(x_j, x_k)}{x_i - x_k}$, 则称 $f(x_i, x_j, x_k)$ 为函数f(x)在节点 x_i, x_j, x_k 处的二阶差 商,其中 x_i, x_j, x_k 互异.

二阶差商对称性: 在求二阶差商时,无论 x_i, x_j, x_k 如何排列,它们的值是一样的.

$$p_2(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1)$$

称为Newton型二次插值函数.

□二次插值误差

定理: 设 $p_2(x)$ 是经过 (x_0,y_0) , (x_1,y_1) , (x_2,y_2) 三点的二次插值函数, [a,b]是包含 x_0,x_1,x_2 的任一区间,并设 $f(x) \in C^2[a,b]$, f'''(x)在[a,b]上存在,则对任意给定的 $x \in [a,b]$,总存在一点 $\xi \in (a,b)$,使得 $R(x) = f(x) - p_2(x)$ $= \frac{f'''(\xi)}{3!}(x-x_0)(x-x_1)(x-x_2)$

其中 ξ 依赖于x.

例:给定函数表,试用Newton型二次插值公式求 ln(11.75)的近似值,并估计误差.

\boldsymbol{x}	11 12 13	3
$y = \ln(x)$	2.3979 2.4849 2.56	549

- □ n次插值
 - 给定函数表,构造函数 $p_n(x)$ 满足条件:

																																																																										\neg
																																- 1															- 1																											
																																. п.																																										
																																- 1															-1-																											- 1
- 1																																																																										
																																- 1															-1-																											- 1
- 1									_	_													-																_	-																										_	-							- 1
									~															•								- 1							\sim	_							- 4																											- 1
																								~															··															•	•												•							
																								ъ.	_	•						- 1									4						- 1						•	•	_												١.							
									_																							. п.								. •	1																										A	~	•					
1									•	,													~	\mathbf{v}															/\	_																										┏.	•	•						
								_																								- 1															- 1																											- 1
- 1																										,																																																
																										•						- 1									_						- 1																						_					- 1
- 1																																																																										- 1
- 1									-		-	-						-	-	_		-		-		-	-		_			_			-			-	-	_	_				-		_		-		-					-		-		-			-		-								-	_
																																- 1															- 1																											
																																. п.																																										
											_				_																																																											
										_	•	_			•																	- 1															- 1																											- 1
- 1										•		•																																																														
				_						_			_	-									-		-							- 1								_							- 1																				_							- 1
- 1		•								_			7	_																								•	-																											~								- 1
																																- 1															- 4						•	•	•																			- 4
						_																			_	•														,	4												. •.	•	•																			- 1
						_	_	•		•				١.												n .						- 1							-11/	, ,	1						- 1																				W .		٠.					
			v								1	١	•	_										v.								. Г.							· v																												•	•						- L
												A . '	_	-																		- 1															- 1																			. 4								
		-	,									•			_								-		•	,						- 1															- 1																											- 1
- 1												•			_										•	_													•		_																																	
																																- 1															- 1																											- 1
- 1																																																																										- 1
																																- 1															- 1																											
- 1																																															- 1-																											- 1
																																- 1															- 1																											- 4
																																- 1															- 1																											
	_	_	_	_	_	_		_		_	_	_	_	_	_	_	_	-	_	_	_	-	_	-	_	_		_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_		_		_	_	_	_		_	_	_	_	-	_		_		_		_	_	_	_	

- ① $p_n(x)$ 是一个不超过n次的代数多项式
- ② $p_n(x_i) = y_i (i = 0,1,\dots,n)$
- □ x_i 称为插值节点,f(x)称为被插值函数, $p_n(x)$ 称为n次插值函数.

- □ n次插值的目的是构造 $p_n(x)$ 来近似代替f(x).
 - 不妨假设

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

其中 a_0, a_1, \cdots, a_n 为待定常数

■ 利用插值条件②得到方程组

$$\begin{cases} p_n(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0 \\ p_n(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1 \\ \vdots \\ p_n(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_n \end{cases}$$

■ 系数行列式为Vandermonde范德蒙行列式

$$\begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & 2 & 2 & 2 & \cdots & x_n^n \\ 1 & 2 & 2 & 2 & 2 & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le j < i \le n} (x_i - x_j)$$

- □ n次插值函数的Lagrange形式
 - 设 $p_n(x) = l_0(x)y_0 + l_1(x)y_1 + \cdots + l_n(x)y_n$, 其中 $l_i(x)$ 为不超过n次的代数多项式,且满足表

	x_0	x_1	•	x_n
$l_0(x)$	1	0	• • •	0
$l_1(x)$	0	1		0
•	•	•		•
$l_n(x)$	0	0		1

- 容易验证 $p_n(x)$ 满足插值条件.
- 如何构造*l_i(x)*?

□ n次插值函数的Lagrange形式

$$l_i(x) = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x - x_{i+1}) \cdots (x_i - x_n)}$$

其中 $i=0,1,2,\cdots,n$

- $l_i(x)$ 称为n次插值基函数
- 满足插值条件的Lagrange型n次插值函数

$$p_n(x) = \sum_{i=0}^n l_i(x) y_i, \quad p_n(x) = \sum_{i=0}^n \frac{\omega(x)}{(x-x_i)\omega'(x_i)} y_i$$

其中

$$\omega(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

$$\omega'(x_i) = (x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)$$

- □ Lagrange型n次插值算法
 - ① 读入插值节点 $x_i, y_i (i = 0, 1, \dots, n)$ 和点xx
 - $\bigcirc yy = 0$
 - ③ 对 $i=0,1,\cdots,n$ 做如下工作
 - \Box t=1
 - \square 对 $k=0,1,\cdots,i-1,i+1,\cdots,n$ 做
 - $\Box \quad t = t \times \frac{xx x_k}{x_i x_k}$
 - ④ 输出点xx相应的函数近似值yy

□ n次插值函数的Newton形式

定义:一般地, n阶差商的定义为

$$f(x_{i_0}, x_{i_1}, \dots, x_{i_n}) = \frac{f(x_{i_0}, x_{i_1}, \dots, x_{i_{n-1}}) - f(x_{i_1}, x_{i_2}, \dots, x_{i_n})}{x_{i_0} - x_{i_n}}$$

特别地,当
$$i_0 = 0, i_1 = 1, \dots, i_n = n$$
时有
$$f(x_0, x_1, \dots, x_n) = \frac{f(x_0, x_1, \dots, x_{n-1}) - f(x_1, x_2, \dots, x_n)}{x_0 - x_n}$$

■ 由归纳法可证

$$f(x_0, x_1, \dots, x_k) = \sum_{i=0}^k \frac{f(x_i)}{\omega'_k(x_i)}$$

其中 $\omega_k'(x_i) = (x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_k)$

□ 差商直接计算公式:

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_0)}{(x_0 - x_1)} + \frac{f(x_1)}{(x_1 - x_0)}$$

$$f[x_0, x_1, x_2] = \frac{f(x_0)}{(x_0 - x_1) \cdot (x_0 - x_2)} + \frac{f(x_1)}{(x_1 - x_0) \cdot (x_1 - x_2)} + \frac{f(x_2)}{(x_2 - x_0) \cdot (x_2 - x_1)}$$

$$f[x_0, x_1, x_2, x_3] = \frac{f(x_0)}{(x_0 - x_1) \cdot (x_0 - x_2) \cdot (x_0 - x_3)} + \frac{f(x_1)}{(x_1 - x_0) \cdot (x_1 - x_2) \cdot (x_1 - x_3)} + \frac{f(x_2)}{(x_2 - x_0) \cdot (x_2 - x_1) \cdot (x_2 - x_3)} + \frac{f(x_3)}{(x_3 - x_0) \cdot (x_3 - x_1) \cdot (x_3 - x_2)}$$

$$f[x_0, \dots, x_n] = \sum_{j=0}^{n} \frac{f(x_j)}{\prod_{k \in \{0, \dots, n\} \setminus \{j\}} (x_j - x_k)}$$

□ n次插值函数的Newton形式

$$f(x) = N_n(x) + R_n(x)$$

其中

 $N_n(x)$

$$= f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + f(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1}) R_n(x) = f(x_0, x_1, \dots, x_n, x)(x - x_0)(x - x_1) \dots (x - x_n) N_n(x_i) = f(x_i) = y_i (i = 0, 1, \dots, n)$$

- \square $N_n(x)$ 称为满足插值条件的Newton型n次插值函数
- □ 在实际问题中,为了得到Newton型n次插值函数,通常需要构造一个差商表.

定理: 设 $p_n(x)$ 是过 (x_i, y_i) ($i = 0,1, \cdots, n$)的n次插值函数, [a,b]是包含 x_0, x_1, \cdots, x_n 的任一区间,并设 $f(x) \in C^n[a,b]$, $f^{(n+1)}(x)$ 在[a,b]上存在,则对任意给定的 $x \in [a,b]$, 总存在一点 $\xi \in (a,b)$, 使得 $R(x) = f(x) - p_n(x)$ $= \frac{p^{(n+1)}(\xi)}{(n+1)!}(x - x_0)(x - x_1)\cdots(x - x_n)$

其中 ξ 依赖于x.

例:已知函数表如下所示,求Newton型n次插值函数 $N_n(x)$,并计算f(0.6)的近似值.

				.			
			<u>_</u> <u>_</u>	<u> </u>	the contract of the contract o	<u>.</u> <u>.</u>	· · · · · · · · <u> </u>
				^ . F F			
			0.4		. N . /		
		<i>f</i>					
			\				
		•					
		·	I 	I 			l
							l
			1				l
							l
: I.							
ŀ		$C \left(\right)$	0 44000	0 55045	0.000	0.00044	4 00 (50
		f(a)	0.41075	0 57015	0.60675	0.00011	1 02652
	47 	f(v)	0.41075	057815	0.69675	0 88811	1 02652
	v =	f(x)	0.41075	0 57815	0.69675	0.88811	1 02652
	$\nu =$	f(x)	0.41075	0.57815	0.69675	0.88811	1.02652
	<i>y</i> =	f(x)	0.41075	0.57815	0.69675	0.88811	1.02652
	y = 1	f(x)	0.41075	0.57815	0.69675	0.88811	1.02652
	y = 1	f(x)	0.41075	0.57815	0.69675	0.88811	1.02652
	y = 1	f(x)	0.41075	0.57815	0.69675	0.88811	1.02652
	y = 1	f(x)	0.41075	0.57815	0.69675	0.88811	1.02652

例: 已知函数 $f(x) = x^3 - 4x$,插值节点为 $x_0 = 1, x_1 = 2, x_2 = 3$,求 Newton型2次插值.

- □ Newton型n次插值算法
 - ① 读入插值节点 $x_i, y_i (i = 0,1,\dots,n)$ 和点xx
 - ② $\omega = 1, V_0 = y_0, yy = y_0$
 - ③ 对 $k = 1,2,\cdots,n$ 做如下工作
 - \square $V_k = y_k$
 - □ 对 $i = 0,1,\cdots,k-1$ 做
 - $\square V_k = \frac{V_i V_k}{x_i x_k}$
 - $\square \ \omega = \omega \times (xx x_{k-1})$
 - \square $yy = yy + \omega \times V_k$
 - ④ 输出插值点xx相应的函数近似值yy

- □ 对于*n*次插值,随着插值节点的增加,插值多项 式的次数也会增加
- □ 但是当 $n \to \infty$ 时, $p_n(x)$ 不一定收敛到f(x),也就是 $p_n(x)$ 与f(x)的误差不一定越来越小

例: 给定函数

$$f(x) = \frac{1}{1 + 25x^2} \ (-1 \le x \le 1)$$

取等距插值节点 $x_i = -1 + \frac{1}{5}i(i = 0,1,\dots,n)$,试建立插值多项式 $p_n(x)$,并考察 $p_n(x)$ 与f(x)的误差情况.

□ Runge (龙格) 现象

- 红色: *f*(*x*)
- 蓝色: p₅(x)
- 绿色: *p*₉(*x*)

高次插值多项式并不一定很好近似被

插函数

- 1. 区间分段
- 2. 每分段低次插值

定义: 给定函数表,构造函数p(x)满足条件:

① p(x)在[x_i, x_{i+1}]($i = 0,1,\dots, n-1$)上为不超过一次的代数多项式

②
$$p(x_i) = y_i (i = 0,1,\dots,n).$$

其中p(x)称为分段线性插值函数.

$$p(x) = \begin{cases} \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 (x_0 \le x \le x_1) \\ \frac{x - x_2}{x_1 - x_2} y_1 + \frac{x - x_1}{x_2 - x_1} y_2 (x_1 < x \le x_2) \\ \vdots \\ \frac{x - x_n}{x_{n-1} - x_n} y_{n-1} + \frac{x - x_{n-1}}{x_n - x_{n-1}} y_n (x_{n-1} < x \le x_n) \end{cases}$$

- □ 分段线性插值函数表示为插值基函数的组合
 - 设 $l_0(x)$, $l_1(x)$, ..., $l_n(x)$ 为不超过1次的代数多项式,且满足表:

	x_0	x_1	• • •	x_n
$l_0(x)$	1	0		0
$l_1(x)$	0	1		0
$l_n(x)$	0	0		<u>+</u>

$$p(x) = \sum_{i=0}^{n} l_i(x)y_i; \qquad l_i(x_k) = \delta_{ik}$$

$$l_0(x) = \begin{cases} \frac{x - x_1}{x_0 - x_1} & (x_0 \le x \le x_1) \\ 0 & (x_1 < x \le x_n) \end{cases}$$

$$l_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}} & (x_{i-1} \le x \le x_i) \\ \frac{x - x_{i+1}}{x_i - x_{i+1}} & (x_i < x \le x_{i+1}) \\ 0 & x \in [a, b], x \notin [x_{i-1}, x_{i+1}] \end{cases}$$

$$\vdots$$

$$l_n(x) = \begin{cases} \frac{x - x_{n-1}}{x_n - x_{n-1}} & (x_{n-1} \le x \le x_n) \\ 0 & (x_0 \le x < x_{n-1}) \end{cases}$$

例: 给定函数y = f(x)的函数表, 试用分段线性插值法求y = f(x)在x = -0.9处的近似值.

					X																				()		3							C) .	6)				- 1	0		4	4					()			
	J	J		- · · · · · · · · · · · · · · · · · · ·	1	C ((.	X)		C).	()	3	8	3	4	1	6	C) _	.()	<u></u>	58	8	{	3	2)			0)	1						0		2						(),		5		

- □ 分段线性插值算法
 - ① 读入插值节点 $x_i, y_i (i = 0,1,\dots,n)$ 和点xx
 - ② 对 $i = 1, 2, \cdots, n$ 做:
 - □ 如果 $xx < x_i$ 则

 - □ 输出点xx相应的函数近似值yy
 - □ 转到③
 - ③ 结束

□ 分段线性插值误差

定理: 设给定y = f(x)函数表, 令 $a = x_0, b = x_n, f(x) \in C^1[a,b], f''(x)$ 在[a,b]上存在, p(x)是 f(x)的分段线性插值函数,则有

$$|R(x)| = |f(x) - p(x)| \le \frac{h^2}{8}M$$

其中
$$h = \max_{0 \le i \le n-1} |x_{i+1} - x_i|; M = \max_{a \le x \le b} |f''(x)|$$

2.4 Hermite插值

- □ 背景:
- □ 分段线性插值函数的导数是不连续的.
- 口 在某些实际问题中,为了保证插值函数更好地 逼近被插值函数f(x)
 - ① 插值函数在插值节点上的值与被插值函数f(x) 在插值节点上的值相等
 - ② 插值函数在插值节点上导数值与被插值函数 f(x)在插值节点上的导数值相等

□ 三次Hermite插值

定义: 根据给定的f(x)的函数表,构造函数H(x)

满足条件:

$\boldsymbol{\chi}$	x_0	χ_1
<i>f(</i>)		
y = f(x)	y_0	y_1
y'=f'(x)	m_0	m_1

① H(x)为不超过3次的代数多项式

② $H(x_0) = y_0, H(x_1) = y_1, H'(x_0) = m_0, H'(x_1) = m_1$ 其中H(x)称为三次Hermite插值函数.

□ 设 $H(x) = y_0 h_0(x) + y_1 h_1(x) + m_0 H_0(x) + m_1 H_1(x)$,其中 $h_0(x)$, $h_1(x)$, $H_0(x)$, $H_1(x)$ 为不超过3次的代数多项式,且满足:

	函	数值	Ş	数值
	x_0	x_1	x_0	x_1
$h_0(x)$	1	0	0	0
$h_1(x)$	0	1	0	0
$H_0(x)$	0	0	1	0
$H_1(x)$	0	0	0	1

□ 如何构造 $h_0(x), h_1(x), H_0(x), H_1(x)$?

$$h_0(x) = \left(1 + 2\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_1}{x_0 - x_1}\right)^2$$

$$h_1(x) = \left(1 + 2\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_0}{x_1 - x_0}\right)^2$$

$$H_0(x) = (x - x_0) \left(\frac{x - x_1}{x_0 - x_1}\right)^2$$

$$H_1(x) = (x - x_1) \left(\frac{x - x_0}{x_1 - x_0}\right)^2$$

$$H(x) = y_0 h_0(x) + y_1 h_1(x) + m_0 H_0(x) + m_1 H_1(x)$$

例: 给定函数y = f(x)的函数表,构造一个三次 Hermite插值函数,并求出 $f\left(\frac{1}{2}\right)$ 的近似值.

		<u>-</u>
.		
	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		
y = f(x)		
1 27 - + + 1 22 \		
		· · · · · · · · · · · · · · · · · · ·
	1	
y' = f'(x)		1
1 v 1 1 1		l
1 · · · · · · // · · · · · · · · · · · ·		1 -
.i		1
		1

□ Hermite插值误差

定理: 设H(x)是f(x)的三次Hermite插值函数, [a,b]是包含 x_0, x_1 的任一区间,并设 $f(x) \in C^3[a,b]$, $f^{(4)}(x)$ 在[a,b]上存在,则对任意给定的 $x \in [a,b]$,总存在一点 $\xi \in (a,b)$,使得

$$R(x) = f(x) - H(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)^2 (x - x_1)^2$$

其中 ξ 依赖于x.

- \square 2n + 1次Hermite插值
 - 给定y = f(x)函数表,构造函数H(x)满足条件:

x	x_0	x_1		x_n
y = f(x)	${\mathcal Y}_0$	y_1		\mathcal{Y}_n
y' = f'(x)	m_0	m_1	• •	m_n

- ① H(x)为不超过2n + 1次的代数多项式
- ② $H(x_i) = y_i, H'(x_i) = m_i \ (i = 0,1,\dots,n)$

H(x)称为2n + 1次Hermite插值函数.

$$H(x) = \sum_{i=1}^{n} [y_i h_i(x) + m_i H_i(x)]$$

\square $h_i(x)$ 和 $H_i(x)$ 取值

		函数	效值			导数	数值	
	x_0	x_1	•••	x_n	x_0	x_1		x_n
$h_0(x)$	1	0	•••	0	0	0	•••	0
$h_1(x)$	0	1	•	0	0	0	•••	0
	•	•		•	•	•		•
$h_n(x)$	0	0	•••	1	0	0	•••	0
$H_0(x)$	0	0	•••	0	1	0	•••	0
$H_1(x)$	0	0	•••	0	0	1	• • • •	0
•	•	•			•	•		•
$H_n(x)$	0	0	•••	0	0	0	• • •	1

- □ 分段线性插值函数在节点处的导数不连续
- □ 分段三次Hermite插值

定义: 给定函数y = f(x)的函数表,构造函数q(x)满足条件:

- ① q(x)在[x_i, x_{i+1}]($i = 0,1, \dots, n-1$)上为3次代数多项式
- ② $q(x_i) = y_i, q'(x_i) = m_i (i = 0,1,\dots,n)$
- ③ $q(x) \in C^1[a,b]$, 其中 $a = x_0, b = x_n$

其中q(x)称为分段三次Hermite插值函数.

\boldsymbol{x}	x_0	x_1	• • •	x_n
y = f(x)	y_0	y_1	•.•	y_n
y' = f'(x)	m_0	m_1		m_n

口 根据分段三次Hermite插值条件和三次Hermite 插值公式,区间[x_i , x_{i+}]上的q(x)为:q(x)

$$= \left(1 + 2\frac{x - x_i}{x_{i+1} - x_i}\right) \left(\frac{x - x_{i+1}}{x_i - x_{i+1}}\right)^2 y_i$$

$$+ \left(1 + 2\frac{x - x_{i+1}}{x_i - x_{i+1}}\right) \left(\frac{x - x_i}{x_{i+1} - x_i}\right)^2 y_{i+1}$$

$$+ (x - x_i) \left(\frac{x - x_{i+1}}{x_i - x_{i+1}}\right)^2 m_i$$

$$+ (x - x_{i+1}) \left(\frac{x - x_i}{x_{i+1} - x_i}\right)^2 m_{i+1}$$

- □ 分段三次Hermite插值函数*q*(*x*)也可以写成插值基函数加权和的形式.
 - 在插值区间[a,b]上定义一组分段三次Hermite 插值基函数 $h_i(x)$ 和 $H_i(x)(i=0,1,\cdots,n)$,则

$$q(x) = \sum_{i=0}^{n} [y_i h_i(x) + m_i H_i(x)]$$

■ 其中 $h_i(x)$ 和 $H_i(x)$ 形式见教材P.39

定理: 给定函数表如下, 令 $a = x_0, b = x_n, f(x) \in C^3[a,b], f^{(4)}(x) 在[a,b] 上存在, <math>q(x)$ 是f(x)的分段三次Hermite插值函数,则有

$$|R(x)| = |f(x) - q(x)| \le \frac{h^4}{384}M$$

其中

$$h = \max_{0 \le i \le n-1} |x_{i+1} - x_i|$$

$$M = \max_{a \le x \le b} |f^{(4)}(x)|$$

- □ 背景:
 - 高次插值多项式: 龙格现象
 - 分段线性插值: 节点处导数不连续
 - 分段三次Hermite插值: 节点处二阶导数不连续 ,并且实际问题中有时很难给出导数条件
- □ 如何提高插值函数在节点处的光滑度?
 - 插值函数在节点处连续
 - 其一阶导数节点处连续
 - 其二阶导数节点处连续
- □ 三次样条插值

定义: 给定y = f(x)的函数表如下所示,构造函数 s(x)满足条件:

- ① 在[x_i , x_{i+1}]($i = 0,1,\dots,n-1$)上为不超过3次的代数多项式.
- (2) $s(x_i) = y_i (i = 0,1,\dots,n).$
- ③ $s(x) \in C^2[a,b]$, 其中 $a = x_0, b = x_n$.

其中s(x)称为三次样条插值函数.

																				-																								 		 																							 	-
	_				-			-								-			_	-	_	-	-			-		-			-			-		-			_		-										-			-						-		-		-		-		_	 	_
	1																																																																					- 1
	1.																	н.																											. I.																									. н.
																																- 1																																						- 11
																		1														- 1													- 1																									- 1
	1																															- 1																																						- 11
																		1														- 1													- 1																									- 1
										_																						- 1						_	_																									_						
									ъ.															_								- 1						∕ ■	~						- 1																		~	<i>~</i> .						
									. •															- 1	~							- 1						···	/												•																			
	1								-																	_														-										•	. •.	•											- 3							- 1
	1.								_									н.									٠.												1	1					. I.																				_					. н.
- 1	1 .								/ L	,								1.						~	v		•					- 1						_,	•																								_	_	v I					- 11
																		1						_	_							- 1													- 1																			- 7						- 1
	1																															- 1																																						- 11
																		1														- 1								_					- 1																					•				- 1
	1																															- 1																																						- 1
1	_	_		_		_	_		_	_		_	_		_	_	_	_	_	_	_	_	_		_		_	_	_	_		_	_	_	_		_	_	-	_	_	_	_	 _	_		_	_	_	_		_	_		_	_	_	_	_		_		_		_		_	_	 	-
																																- 1																																						
																																- 1																																						- 4
																																																																						. н.
	Ι										_																																																											- 1
										_	•	_			•																	- 1													- 1																									- 1
	1 .									•		•				٠.																- 1																																						- 11
				_						_		,	_	-				1						_	_							- 1						_	_						- 1																		_	_						- 1
	1	• •	•		- 1					_			7	_		•								$\boldsymbol{\gamma}$								- 1					•	_	•																								~							- 11
														•				1														- 1													- 1					•		•											•							- 1
			•					_					- 4																			- 1								-										. •	•	. •																		
						-								٠.٠				4							•		١.					- 1						-10/	, .	7					- 1																		- 4	, ,	-					
			•										•	v																		- 1							/ -																										,					
	1		≠.									Δ.	_	-	- 4	, ,								. 4																																														- 1
	1.		•						. 4	٠.		•						н.						_														◢.							. I.																		✓.							. н.
	Ι	•							_			•			-									-		. ~											-	-		_	٠																						_		_					- 1
																																- 1													- 1																									- 1
	1 .																															- 1																																						- 11
																		1														- 1													- 1																									- 1
	1																															- 1													- 1																									- 1
																		1														- 1													- 1																									
																																- 1																																						
																																- 1													- 1																									

□ 设s(x)在点 $x_i(i = 0,1,\cdots,n)$ 处的微商为 $m_i(i = 0,1,\cdots,n)$,则s(x)在每个小区间[x_i,x_{i+1}]上有:

$$s(x_i) = y_i, s'(x_i) = m_i,$$

 $s(x_{i+1}) = y_{i+1}, s'(x_{i+1}) = m_{i+1}$

□ 满足三次Hermite插值的两个条件,根据三次Hermite插值公式,在区间[x_i , x_{i+1}]上有: s(x)

$$= \left(1 + 2\frac{x - x_i}{x_{i+1} - x_i}\right) \left(\frac{x - x_{i+1}}{x_i - x_{i+1}}\right)^2 y_i$$

$$+ \left(1 + 2\frac{x - x_{i+1}}{x_i - x_{i+1}}\right) \left(\frac{x - x_i}{x_{i+1} - x_i}\right)^2 y_{i+1} + (x - x_i) \left(\frac{x - x_{i+1}}{x_i - x_{i+1}}\right)^2 m_i$$

$$+ (x - x_{i+1}) \left(\frac{x - x_i}{x_{i+1} - x_i}\right)^2 m_{i+1}$$

- □ 为了求 m_i ,利用插值条件③,即利用s(x)在 $x_i(i=0,1,\cdots,n)$ 上具有连续的二阶微商的性质

$$= \left(1 + 2\frac{x - x_i}{h_i}\right) \left(\frac{x - x_{i+1}}{h_i}\right)^2 y_i$$

$$+ \left(1 - 2\frac{x - x_{i+1}}{h_i}\right) \left(\frac{x - x_i}{h_i}\right)^2 y_{i+1} + (x - x_i) \left(\frac{x - x_{i+1}}{h_i}\right)^2 m_i$$

$$+ (x - x_{i+1}) \left(\frac{x - x_i}{h_i}\right)^2 m_{i+1}$$

□ 对s(x)求二阶导数,从而得到在 $[x_i, x_{i+1}]$ 上有:s''(x)

$$= \left[\frac{6}{h_i^2} - \frac{12}{h_i^3}(x_{i+1} - x)\right] y_i + \left[\frac{6}{h_i^2} - \frac{12}{h_i^3}(x - x_i)\right] y_{i+1}$$

$$+ \left[\frac{2}{h_i} - \frac{6}{h_i^2}(x_{i+1} - x)\right] m_i - \left[\frac{2}{h_i} - \frac{6}{h_i^2}(x - x_i)\right] m_{i+1}$$

□ 将下标i换成i-1,则在区间[x_{i-1},x_i]上有:

$$S^{*}(x) = \left[\frac{6}{h_{i-1}^{2}} - \frac{12}{h_{i-1}^{3}} (x_{i} - x) \right] y_{i-1} + \left[\frac{6}{h_{i-1}^{2}} - \frac{12}{h_{i-1}^{3}} (x - x_{i-1}) \right] y_{i} + \left[\frac{2}{h_{i-1}} - \frac{6}{h_{i-1}^{2}} (x_{i} - x) \right] m_{i-1} - \left[\frac{2}{h_{i-1}} - \frac{6}{h_{i-1}^{2}} (x - x_{i-1}) \right] m_{i}$$

- □ 由 $x_i \in [x_i, x_{i+1}]$ 可得 $s''(x_i^+) = -\frac{6}{h_i^2} y_i + \frac{6}{h_i^2} y_{i+1} \frac{4}{h_i} m_i \frac{2}{h_i} m_{i+1}$
- □ 由 $x_i \in [x_{i-1}, x_i]$ 可得

$$s''(x_i^-) = \frac{6}{h_{i-1}^2} y_{i-1} - \frac{6}{h_{i-1}^2} y_i + \frac{2}{h_{i-1}} m_{i-1} + \frac{4}{h_{i-1}} m_i$$

□ 由s(x)在 x_i 上具有连续的二阶微商,则有 $s''(x_i^-) = s''(x_i^+)$

$$\frac{m_{i-1}}{h_{i-1}} + 2\frac{h_{i-1} + h_i}{h_{i-1}h_i} m_i + \frac{m_{i+1}}{h_i} = 3\left(\frac{y_i - y_{i-1}}{h_{i-1}^2} + \frac{y_{i+1} - y_i}{h_i^2}\right)$$

回 两边乘以
$$\frac{h_{i-1}h_i}{h_{i-1}+h_i}$$
, $令 \alpha_i = \frac{h_{i-1}}{h_{i-1}+h_i}$ 可得
$$(1-\alpha_i)m_{i-1} + 2m_i + \alpha_i m_{i+1}$$

$$= 3\left[\frac{1-\alpha_i}{h_{i-1}}(y_i - y_{i-1}) + \frac{\alpha_i}{h_i}(y_{i+1} - y_i)\right]$$

$$□ 令 \beta_i = 3\left[\frac{1-\alpha_i}{h_{i-1}}(y_i - y_{i-1}) + \frac{\alpha_i}{h_i}(y_{i+1} - y_i)\right], 可得$$

$$(1-\alpha_i)m_{i-1} + 2m_i + \alpha_i m_{i+1} = \beta_i$$

$$İ 中_i = 1, 2, \cdots, n-1$$

□ 三次样条关于m_i的方程组

$$\begin{cases} (1 - \alpha_1)m_0 + 2m_1 + \alpha_1 m_2 = \beta_1 \\ (1 - \alpha_2)m_1 + 2m_2 + \alpha_2 m_3 = \beta_2 \\ (1 - \alpha_3)m_2 + 2m_3 + \alpha_3 m_4 = \beta_3 \\ \vdots \\ (1 - \alpha_{n-2})m_{n-3} + 2m_{n-2} + \alpha_{n-2} m_{n-1} = \beta_{n-2} \\ (1 - \alpha_{n-1})m_{n-2} + 2m_{n-1} + \alpha_{n-1} m_n = \beta_{n-1} \end{cases}$$

□ 共有n+1个未知数, n-1个方程

□ 边界条件:

1. 已知两个端点 x_0 和 x_n 处的一阶导数值,即给定 $f'(x_0) = m_0 = s'(x_0)$

$$f'(x_n) = m_0 = s'(x_0)$$

 $f'(x_n) = m_n = s'(x_n)$

2. 已知两个端点 x_0 和 x_n 处的二阶导数值为0,即 $f''(x_0) = 0 = s''(x_0)$ $f''(x_n) = 0 = s''(x_n)$

■ 由 $s''(x_0^+) = 0$ 可得 $2m_0 + m_1 = \frac{3}{h_0}(y_1 - y_0)$

■ 由 $s''(x_n^-) = 0$ 可得 $m_{n-1} + 2m_n = 3\frac{y_n - y_{n-1}}{h_{n-1}}$

□ 统一三次样条关于m_i的方程组形式

$$\begin{cases} 2m_0 + \alpha_0 m_1 = \beta_0 \\ (1 - \alpha_1)m_0 + 2m_1 + \alpha_1 m_2 = \beta_1 \\ (1 - \alpha_2)m_1 + 2m_2 + \alpha_2 m_3 = \beta_2 \\ \vdots \\ (1 - \alpha_{n-1})m_{n-2} + 2m_n + \alpha_{n-1} m_n = \beta_{n-1} \\ (1 - \alpha_n)m_{n-1} + 2m_n = \beta_n \end{cases}$$

边界条件1:

$$\alpha_0=0$$
, $\beta_0=2m_0$, $\alpha_n=1$, $\beta_n=2m_n$

边界条件2:

$$\alpha_0 = 1, \beta_0 = \frac{3}{h_0}(y_1 - y_0), \alpha_n = 0, \beta_n = 3\frac{y_n - y_{n-1}}{h_{n-1}}$$

□追赶法求解三对角方程组

■ 由第一个方程得

$$m_0 = -\frac{\alpha_0}{2} m_1 + \frac{\beta_0}{2}$$

$$\Box \ \diamondsuit a_0 = -\frac{\alpha_0}{2}, b_0 = \frac{\beta_0}{2}$$

$$m_0 = a_0 m_1 + b_0$$

■ 代入第二个方程得

$$m_1 = -\frac{\alpha_1}{2 + (1 - \alpha_1)a_0} m_2 + \frac{\beta_1 - (1 - \alpha_1)b_0}{2 + (1 - \alpha_1)a_0}$$

$$\Box \Rightarrow a_1 = -\frac{\alpha_1}{2 + (1 - \alpha_1)a_0}, b_1 = \frac{\beta_1 - (1 - \alpha_1)b_0}{2 + (1 - \alpha_1)a_0}$$
$$m_1 = a_1 m_2 + b_1$$

□ 递推关系式

$$m_i = a_i m_{i+1} + b_i \ (i = 0, 1, \dots, n-1)$$

其中

$$a_0 = -\frac{\alpha_0}{2}, b_0 = \frac{\beta_0}{2},$$

$$a_i = -\frac{\alpha_i}{2 + (1 - \alpha_i)a_{i-1}}, b_i = \frac{\beta_i - (1 - \alpha_i)b_{i-1}}{2 + (1 - \alpha_i)a_{i-1}}$$

口 将 $m_{n-1} = a_{n-1}m_n + b_n$ 代入最后一个方程 $m_n = b_n$ $m_i = a_i m_{i+1} + b_i \ (i = n - 1, \dots, 1, 0)$

□ 三次样条插值算法

- ① 读入插值节点 $x_i, y_i (i = 0,1,\dots,n)$ 和点xx
- ② 对 $i = 0,1,\dots,n-1$ 计算 $h_i = x_{i+1} x_i$
- ③ 计算 α_i 和 β_i ($i = 0,1,\dots,n$)
 - □ 对第一种边界条件:

$$\alpha_0 = 0, \beta_0 = 2m_0;$$
 $\alpha_n = 1, \beta_n = 2m_n$

□ 对第二种边界条件:

$$\alpha_0 = 1, \beta_0 = \frac{3}{h_0} (y_1 - y_0);$$

$$\alpha_n = 0, \beta_n = \frac{3}{h_{n-1}} (y_n - y_{n-1})$$

□ 三次样条插值算法

 \square 对 $i=1,2,\cdots,n-1$ 做

$$\alpha_i = \frac{h_{i-1}}{h_{i-1} + h_i}; \beta_i = 3 \left[\frac{1 - \alpha_i}{h_{i-1}} (y_i - y_{i-1}) + \frac{\alpha_i}{h_i} (y_{i+1} - y_i) \right]$$

④ 计算 a_i 和 b_i ($i=0,1,\cdots,n$)

$$a_0 = -\frac{\alpha_0}{2}$$
; $b_0 = \frac{\beta_0}{2}$

□ 对 $i = 1,2,\cdots$,n做

$$a_i = -\frac{\alpha_i}{2 + (1 - \alpha_i)a_{i-1}}; \ b_i = \frac{\beta_i - (1 - \alpha_i)b_{i-1}}{2 + (1 - \alpha_i)a_{i-1}}$$

□ 三次样条插值算法

- ⑤ 计算 $m_i(i = 0,1,\dots,n)$ $m_n = b_n$ $m_i = a_i m_{i+1} + b_i \ (i = n-1,\dots,1,0)$
- ⑥ 判别点xx所在区间[x_i, x_{i+1}]($i = 0,1, \dots, n-1$), 然后求出s(x)的值并输出

$$yy = s(xx)$$

$$= \left(1 + 2\frac{xx - x_i}{x_{i+1} - x_i}\right) \left(\frac{xx - x_{i+1}}{x_i - x_{i+1}}\right)^2 y_i$$

$$+ \left(1 + 2\frac{xx - x_{i+1}}{x_i - x_{i+1}}\right) \left(\frac{xx - x_i}{x_{i+1} - x_i}\right)^2 y_{i+1} + (xx - x_i) \left(\frac{xx - x_{i+1}}{x_i - x_{i+1}}\right)^2 m_i$$

$$+ (xx - x_{i+1}) \left(\frac{xx - x_i}{x_{i+1} - x_i}\right)^2 m_{i+1}$$

例: 给定函数表如下,边界条件 $s''(x_0) = 0, s''(x_n) = 0$,求三次样条插值函数s(x),并求 f(3)的近似值.

x		4	5
y = f(x)	3	4	2

例:
$$s(x) = \begin{cases} x^3 + x^2, 0 \le x \le 1 \\ 2x^3 + ax^2 + bx - 1, 1 \le x \le 2 \end{cases}$$

- □ 背景:
- 对由表达式表示的函数求导数,大部分可直接 使用函数求导公式来求解.
- 口对由函数表格表示的函数求导数,只能使用近似方法来求f(x)的导数.
- □ 数值微分: 近似方法求解函数的导数.

□ 使用n次插值函数求导数

- 全 给定函数表的函数f(x)可用n次插值函数 $p_n(x)$ 来近似,则f'(x)可用 $p'_n(x)$ 来近似。 $f(x) \approx p_n(x) \Rightarrow f'(x) \approx p'_n(x)$
- ■误差

$$R(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x)$$

其中
$$\xi \in [a,b]$$
; $\omega(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$
 $R'(x) = f'(x) - p'_n(x)$
 $= \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega'(x) + \frac{\omega(x)}{(n+1)!}\frac{d}{dx}f^{(n+1)}(\xi)$
 $R'(x_k) = f'(x_k) - p'_n(x_k) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega'(x_k)$

- □ 两点公式 (等距节点)
 - 给定两点 (x_0, y_0) , (x_1, y_1) 可以构造线性插值函数 $p_1(x) = \frac{x x_1}{x_0 x_1} y_0 + \frac{x x_0}{x_1 x_0} y_1 \approx f(x)$
 - 两边求导, $h = x_1 x_0$ $p_1'(x) = \frac{1}{h}(y_1 y_0)$
 - 节点处导数估计

$$p_1'(x_0) = \frac{1}{h}(y_1 - y_0), \ p_1'(x_1) = \frac{1}{h}(y_1 - y_0)$$

□ 两点公式误差

$$R'(x_0) = f'(x_0) - p'_1(x_0) = \frac{f''(\xi_0)}{2!} (x_0 - x_1)$$

$$= -\frac{h}{2} f''(\xi_0) (x_0 < \xi_0 < x_1)$$

$$R'(x_1) = f'(x_1) - p'_1(x_1) = \frac{f''(\xi_1)}{2!} (x_1 - x_0)$$

$$= \frac{h}{2} f''(\xi_1) (x_0 < x < x_1)$$

- □ 三点公式 (等距节点)
 - 给定三点 (x_0, y_0) , (x_1, y_1) , (x_2, y_2) 可构造二次插值函数

$$\begin{aligned} p_2(x) \\ &= \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 \\ &+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2 \end{aligned}$$

■ 两边求导, $h = x_1 - x_0 = x_2 - x_1$ $p_2'(x_0) = \frac{1}{2h}(-3y_0 + 4y_1 - y_2)$ $p_2'(x_1) = \frac{1}{2h}(-y_0 + y_2)$

□ 三点公式误差

$$R'(x_0) = f'(x_0) - p_2'(x_0)$$

$$= \frac{f'''(\xi_0)}{3} h^2 (x_0 < \xi_0 < x_2)$$

$$R'(x_1) = f'(x_1) - p_1'(x_1)$$

$$= -\frac{f'''(\xi_1)}{6} h^2 (x_0 < x < x_2)$$

$$R'(x_2) = f'(x_2) - p_2'(x_2)$$

$$= \frac{f'''(\xi_2)}{3} h^2 (x_0 < \xi_2 < x_2)$$

□ 从误差估计式来看, h越小精度越高, 但实际计 算可能并非如此

- □ 使用三次样条插值函数求导数
 - *n*次插值函数求导不便于计算非节点处的导数值 ,也不能保证较小的误差.
 - 构造三次样条插值函数s(x)来近似f(x)
 - 用s'(x)来近似f'(x)
 - 当 $h = \max_{0 \le i \le n-1} |x_{i+1} x_i| \to 0$ 时,s(x), s'(x), s''(x)分别收敛于f(x), f'(x), f''(x)
 - 缺点: 当h较小时, 解方程组计算量大.

