Bayesian Estimation of a TVP-VAR Model

Thomas Stockwell

5/30/2018

NORMAL VAR MODEL

► The normal VAR is expressed in this way:

$$Y_t = Y_{t-1}\beta + \epsilon_t$$

- where:
 - $ightharpoonup Y_t$ is a Mx1 vector of our data
 - $ightharpoonup Y_{t-1}$ is a Mxk matrix containing exogenous explanatory variables (contains lagged values of Y and the constant term)
 - \blacktriangleright β is a Mx1 vector of parameters to be estimated
 - Assumed to be constant over time
 - $ightharpoonup \epsilon_t$ is a Mx1 vector of disturbance terms
 - ▶ Assume: $\epsilon_t \sim N(0, \Sigma)$
 - ightharpoonup is assumed constant over time

SHORTCOMING OF A VAR MODEL

- ► In practice, the VAR model may not be very practical
- Its restrictive in two main ways:
 - ► The parameters of the model may vary over time
 - ► The variance of the exogenous shocks may vary over time
- ► Example: US Monetary Policy and the high inflation and low growth in the 1970's
 - ► Changing parameters: The Fed may have changed its response to inflation during this time
 - ► Changing variance: The '70's had high volatility whereas later policy makers experienced the Great Moderation

THE TVP-VAR MODEL

- ▶ We can use the TVP-VAR to address both of these issues
- ► TVP: Time Varying Parameters
- ► We can allow the parameters of the model to change over time or the variance of the disturbance term (or both)
- ► We will assume that errors are homoskedastic for simplicity and only focus on the time varying parameters

THE TVP-VAR MODEL

► The TVP-VAR is expressed in this way:

$$Y_t = Y_{t-1}\beta_t + \epsilon_t$$

 \blacktriangleright We let the parameters evolve according to an AR(1) process:

$$\beta_t = \beta_{t-1} + u_t$$

- ► All the variables have the same definitions that we saw in the normal VAR case
- ▶ The new variable is $u_t \sim N(0, Q)$
- ▶ Do you notice anything familiar about the setup of this model?

THE TVP-VAR MODEL

- ► This is a state-space model:
 - ▶ The measurement equation is: $Y_t = Y_{t-1}\beta_t + \epsilon_t$
 - ▶ The transition equation is: $\beta_t = \beta_{t-1} + u_t$
- ► When we think of Bayesian estimation of this model, we can use the same techniques that we learned in class when estimating state-space models

BAYESIAN ESTIMATION

- ightharpoonup Our parameters for this model: Σ , Q
 - ightharpoonup Well call these θ
- ► Unknown objects of interest:
 - **▶** €
 - \triangleright β_t
- ▶ Our goal is to sample from $P(\theta, \tilde{\beta}_T | \tilde{Y}_T)$

MCMC ALGORITHM

- ▶ We will use a 3-step Gibbs sampler to accomplish our goal:
 - ► Step 1: Draw Σ from $P(Σ|\tilde{\beta}_T^{g-1}, \tilde{Y}_T)$, gives us $Σ^g$
 - ► Step 2: Draw Q from $P(Q|\tilde{\beta}_T^{g-1}, \tilde{Y}_T)$, gives us Q^g
 - ► Step 3: Draw $\tilde{\beta}_T$ from $P(\tilde{\beta}_T | \theta^g, \tilde{Y}_T)$, gives us $\tilde{\beta}_T^g$
- ► Step 3 is exactly what Jeremy did in the state-space model notes
- ► Steps 1 and 2 are the ones we did not do in class, but the Koop and Korobilis book goes over this
 - ► Start with step 1:

Sampling $P(\theta|\tilde{\beta}_T^{g-1}, \tilde{Y}_T)$

- ► For Σ^{-1} , our prior is a Wishart(S, v)
- ► After combining this with the marginal likelihood, the conditional posterior is:

$$P(\Sigma^{-1}| ilde{eta}_{T}, ilde{Y}_{T}) \sim \textit{Wishart}(ar{S}^{-1},ar{v})$$
 $ar{v} = v + T$ $ar{S}^{-1} = S + \sum_{t=2}^{T} (Y_{t} - Y_{t-1}'eta_{t})(Y_{t} - Y_{t-1}'eta_{t})'$

"v" and "S" are hyperparameters

Sampling $P(\theta|\tilde{\beta}_T^{g-1}, \tilde{Y}_T)$

- ► For Q^{-1} , our prior is also a Wishart (S_Q, v_Q)
- ► After combining this with the marginal likelihood, the conditional posterior is:

$$P(Q^{-1}| ilde{eta}_T, ilde{Y}_T) \sim extit{Wishart}(ar{S}_Q^{-1},ar{v}_Q)$$
 $ar{v}_Q = v_Q + T$ $ar{S}_Q^{-1} = S_Q + \sum_{t=1}^T (eta_{t+1} - Ieta_t)(eta_{t+1} - Ieta_t)'$

 \triangleright " v_Q " and " S_Q " are hyperparameters

► To sample this distribution, we will follow the Carter and Kohn (1994) that we did in the state-space model notes

$$\begin{split} P(\tilde{\beta}_T|\theta,\tilde{Y}_T) &= P(\beta_1,...,\beta_T|\theta,\tilde{Y}_T) \\ &= P(\beta_1|\beta_2,...,\beta_T,\theta,\tilde{Y}_T)...P(\beta_{T-1}|\beta_T,\theta,\tilde{Y}_T)P(\beta_T|\theta,\tilde{Y}_T) \end{split}$$

- ▶ Recall that β_t is an AR(1) process with an iid disturbance vector, therefore:
 - ▶ Given β_{t+1} , the pdf of β_t does not depend on $\beta_{t+2},...,\beta_T$
 - ► Conditional on Y_T , then $Y_{t+1},...,Y_T$ contains no additional information about β_t
- ► This means that:

$$P(\tilde{\beta}_T|\theta,\tilde{Y}_T) = P(\beta_1|\beta_2,\theta,\tilde{Y}_1)...P(\beta_{T-1}|\beta_T,\theta,\tilde{Y}_{T-1})P(\beta_T|\theta,\tilde{Y}_T)$$

- ► This means we can draw from $P(\tilde{\beta}_T|\theta, \tilde{Y}_T)$ as follows:
 - ► Step 1: Draw β_T from $P(\beta_T | \theta, \tilde{Y}_T)$
 - ► Step 2: Draw β_{T-1} from $P(\beta_{T-1}|\beta_T, \theta, \tilde{Y}_{T-1})$

:

- ► Step T: Draw β_1 from $P(\beta_1|\beta_2, \theta, \tilde{Y}_1)$
- ▶ If we need it, we can also draw β_0 from $P(\beta_0|\beta_1, \theta, \tilde{Y}_0)$

- ► How do we take these draws?
- ► From our time-series class, we know that:

$$P(\beta_t|\theta, \tilde{Y}_t) = N(\beta_{tt}, V_{tt})$$

 $\beta_{tt} = E(\beta_t|\theta, \tilde{Y}_t)$
 $V_{tt} = Var(\beta_t|\theta, \tilde{Y}_t)$

- $ightharpoonup eta_{tt}$ and V_{tt} we get from the Kalman Filter
 - ► Therefore, we can get β_{TT} and V_{TT} from the final step of the Kalman Filter and then draw X_T from $N(\beta_{TT}, V_{TT})$

► What about the rest of the steps 2-T?

$$P(\beta_t|\beta_{t+1}, \theta, \tilde{Y}_t) = N(E(\beta_t|\beta_{t+1}, \theta, \tilde{Y}_t), Var(\beta_t|\beta_{t+1}, \theta, \tilde{Y}_t))$$

$$E(\beta_t|\beta_{t+1}, \theta, \tilde{Y}_t) = \beta_{tt} + V_{tt}(V_{tt} + Q)^{-1}(\beta_{t+1} - \beta_{tt})$$

$$Var(\beta_t|\beta_{t+1}, \theta, \tilde{Y}_t) = V_{tt} - V_{tt}(V_{tt} + Q)^{-1}$$

OTHER ITEMS OF NOTE

- ► Training Sample
 - Designating an early part of your data to estimate what your priors should be
- ► Minnesota Prior
 - ► Rather than have the TE be AR(1), we can combine it with the Minnesota Prior:

$$\beta_t = A_0 \beta_{t-1} + (I - A_0) \bar{\beta}_0 + u_t$$

➤ "A" is something we can set or we could add another block into our Gibbs sampler