

Segurança Computacional no Desenvolvimento de Web Services

Júlio Cézar Estrella, Douglas Rodrigues, Kalinka R. L. J. C. Branco, Regina H. C. Santana, Marcos José Santana

Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo

OWASP{jcezar,douglasr,kalinka,rcs,mjs}@icmc.usp.br

28/10/2009 APOIO: CNPq, OWASP Foundation

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

Roteiro

- 1. Introdução
 - Mudança de foco
 - Evolução dos negócios
 - ▶ Problemas
 - **SOA**
 - Web Services
- Segurança
 - Visão Geral
 - Vulnerabilidades
 - ▶ Pilha TCP/IP
 - Web Services
 - Políticas para Web Services

Roteiro

- 1. Axis2
 - Visão Geral
 - ▶ Componentes
 - ▶ Modelo de Processamento
 - ▶ Modelo de Implantação
 - ▶ Ciclo de vida de um serviço
 - ► Instalação e configuração do ambiente de programação com Axis2
 - Donwload dos fontes
 - Descompactação dos fontes
 - Configuração do classpath
 - Teste das configurações

Roteiro

- Desenvolvimento de aplicação segura com Axis2
 - Criação do serviço
 - Criação de políticas de segurança
 - ▶ Geração da WSDL
 - Geração do cliente a partir da WSDL
 - Compilação e geração do código
 - Discussões sobre a aplicação

Mudança de Foco

- A Internet mudou a maneira de se fazer negócios
- Facilidade para acesso às aplicações
- HTML e HTTP -> Padrão de troca de informção
- Navegadores Web tornaram a comunicação simples e possível

Evolução dos Negócios

- Evolução dos negócios
- Necessidade de novas soluções
- Transações e trocas de informações tornaram-se essenciais para os negócios
- Automatização nos dias atuais é mais que fundamental
- A segurança é um quesito fundamental nas transações Web

Evolução dos Negócios

Evolução dos Negócios

Problemas

- Há alguns problemas que são emergentes [Endrei et al., 2004]:
 - 1. Dificuldades para integrar sistemas heterogêneos;
 - Diferentes empresas utilizam diferentes tecnologias e soluções;
 - Variados domínios;
 - Muitos fabricantes;
 - Como integrar todas essas soluções de forma automatizada?
 - Uma solução para cada tecnologia é inviável!
 - Mudar de provedor de serviços pede nova implementação;
- 2. Crescente demanda por manutenção (evolutiva, adaptativa, corretiva)
 - Novos requisitos => mudanças constantes;
 - Novas tecnologias => reimplementação;
 - Problemas como => desempenho, composição de serviços;

SOA - Arquitetura Orientada a Serviços

- Service-Oriented Architecture
- "SOA e um estilo arquitetural para construção de aplicações de software que utilizam serviços disponíveis em uma rede como a Web" [Endrei et al., 2004].
- Mas o que é um serviço?
- "É a implementação de uma funcionalidade qualquer, bem definida, que pode ser utilizada por clientes em diferentes aplicações e processos de negócios" [Mahmoud, 2005].

SOA - Estrutura e Terminologia

■ Estrutura e terminologia básica [Endrei et al., 2004]:

SOA - Estrutura e Terminologia

- Papéis e colaborações [Endrei et al., 2004]:
 - Cliente do serviço: aplicação, componente ou outro serviço que requisita o serviço;
 - Provedor do serviço: entidade de rede endereçável que provê o serviço;
 - Registro de serviços: repositório que habilita a "descoberta" dos serviços.

Web Services

■ Web Service - WS

▶ É um sistema de software projetado para suportar interoperabilidade entre máquinas sobre uma rede. Web Services caracterizam-se por ser uma tecnologia para computação distribuída baseada na Web.

Web Services

- Tecnologia para comunicação entre aplicações via rede
- Independente de linguagem ou plataforma
 - Troca de mensagens XML
 - Descreve uma operação a ser executada ou dados a serem trocados

Web Services - Vantagens [Endrei et al., 2004]

- Permite diferentes serviços distribuídos executarem em uma variedade de plataformas e arquiteturas
- Integração com sistemas existentes
- Integrar processos de negócios com clientes e fornecedores com um custo menor. Web services permitem compartilhamento de processos sem compartilhar tecnologias

Web Services - Vantagens [Endrei et al., 2004]

- Oferecer serviços de negócio através da Web
- Liberdade de escolha de ferramentas, produtos e tecnologias
- Usam padrões e protocolos abertos
- Não fica preso a um middleware específico
 - Não importa se está utilizando Java, Microsoft ou CORBA
- Permite o reuso de serviços e componentes

Web Services - Vantagens [Endrei et al., 2004]

- Como oferecem essas vantagens?
 - Utilização de XML
 - Utilização de protocolos padrões amplamente utilizados pela indústria
 - HTTP, HTTPS, SOAP
 - ▶ A descrição dos serviços é disponibilizada através de um arquivo WSDL (formato XML)

Web Services - Desvantagens [Endrei et al., 2004]

- Integrar Web services dinamicamente requer que o conteúdo do registro UDDI seja confiável. Somente redes privadas UDDI podem promover controle sobre seu conteúdo.
- Problemas de desempenho
 - Custo maior para processar documentos XML
- Padrões para integração de processos de negócio e gerenciamento de transações ainda estão em desenvolvimento
- A segurança em Web Services ainda carece de melhorais, pois não há padrões de fato

- Mecanismos de segurança estão sendo propostos para Web Services
- No entanto, tais mecanismos ainda não contemplam todas as necessidades exigidas para segurança em servicos Web e alguns são propostas iniciais que ainda não se consolidaram como padrão de fato.

"A segurança é vista como um atributo de qualidade de serviço (QoS)".

- As propriedades de segurança computacional precisam ser aplicadas ao contexto dos Web Services:
 - Autenticidade (A) O parceiro da comunicação deve ser verdadeiro
 - Confidencialidade (C) Os dados transmitidos não devem ser espiados
 - Integridade (I) Os dados transmitidos não devem ser alterados
 - Disponibilidade (D) Os dados precisam estar disponíveis para o acesso.

- Vulnerabilidade em sistemas computacionais:
 - ▶ Erro de programação
 - ▶ Erro de configuração
 - ▶ Erro de operação

- A seguranca pode ser abordada em três níveis: física, lógica ou gerencial
- Ameaça
 - Uma possível ação que caso seja concretizada poderá produzir efeitos indesejados ao sistema
- Ataque
 - Concretização de uma ameaça através da exploração de alguma vulnerabilidade
- Ataques podem transpor a segurança em cada um dos níveis

- Os ataques podem ser de:
 - ▶ Interrupção
 - Interceptação
 - Modificação
 - Personicação

- Rede: IPSec
- Tranporte: TLS (Transport Layer Security). Segurança de sessões HTTP
- Aplicação:
 - Kerberos: Sistema de autenticação global, baseado em bilhetes. Chave privada (DES)
 - ▶ PGP (Pretty Good Privacy): Utilizado com email para (de)cifrar mensagens. Assinaturas digitais.
 - ▶ S/MIME: Cifragem de mensagens + assinaturas eletrônicas
 - SSH: Secure Shell. Substituto seguro do rsh/rlogin

Segurança em Web Services

- Não há soluções completas e concretas para a segurança de Web services e processos de negócios
- Os Web services estão suscetíveis à:
 - Negação de serviços
 - Estouro de pilha
 - Outros

Segurança em Web Services

Ataque	Impacto no Desempenho
DoS - Denial of Service	Sobrecarga cpu e memória
Coercive Parsing	Sobrecarga de cpu
SOAP Action Spoofing	Sobrecarga de cpu
XML Injection	Acesso a conteúdo proibido
WSDL Scanning	Acesso a conteúdo proibido
Metadata Spoofing	Escuta ou modificação de dados
Attack Obfuscation	Sobrecarga de cpu
Oversized Cryptography	Sobrecarga cpu e memória
BPEL State Deviation	Sobrecarga de cpu
Instantiation Flooding	Sobrecarga de cpu
Indirect Flooding	Sobrecarga cpu e memória
Workflow Engine Hijacking DoS	Sobrecarga cpu e memória

- Atualmente estão disponíveis algumas especificações de segurança que podem ser aplicadas/utilizadas no contexto dos Web services:
 - XML Signature
 - XML Encryption
 - **▶** XACML
 - **SAML**
 - XMKS
 - WS-Security

- XML Signature
 - Gera e valida assinaturas digitais expressas em XML
 - XML Canonical: Define meios para representar documentos XML na forma canônica (documentos que sejam sintaticamente diferentes, porém logicamente equivalentes, serão representados por uma mesma forma canônica)
- Não define novos algoritmos, mas faz uso dos algoritmos existentes
- Formas de assinatura:
 - Enveloped
 - Enveloping
 - Detached Assignature

- XML Encryption
 - Visa prover segurança fim-a-fim no nível de mensagem
 - Apresenta de forma estruturada dados cifrados e permite cifrar documentos XML ou não
 - Oferece confidencialidade persistente, garantindo assim a confidencialidade dos dados mesmo após o término da sessão

■ XACML

Descreve uma linguagem para políticas de controle de acesso e também um formato de mensagens de solicitação e resposta

■ SAML

- ▶ Conjunto de especificações e esquema XML que juntos definem uma forma padrão para criar, trocar e interpretar asserções de segurança entre entidades de uma mesma aplicação distribuída
- Primeira versão: Permitia a transferência de autenticação e autorização entre aplicações Web
- Segunda versão: Melhora a interoperabilidade e garante uma melhor interação com o XMLDSign
- Um emissor SAML pode conceder asserções de segurança. Asserções são um conjunto de afirmações concedidas por um emissor. Três tipos de asserções possíveis:
 - Autenticação
 - Atributo de um sujeito
 - Autorização

XMKS

▶ Especificação que define interfaces baseadas em Web services, retirando dos desenvolvedores a complexidade em se trabalhar com infra-estrutura de chave-pública (X509, PGP, SPKI)

- WS-Security
 - ▶ Propõe extensões ao SOAP para permitir a construção de Web services seguros. A especificação tem como objetivo garantir a segurança fim-a-fim no nível de mensagem e não somente no nível de transporte.
 - Principais pontos da WS-Security:
 - Credenciais de segurança
 - Integridade da mensagem
 - Confidencialidade da mensagem
 - ▶ A WS-Security padroniza as informações relacionadas a assinatura e à cifragem dos dados da mensagem SOAP e suporta credenciais de segurança (UsernameToken e BinarySecureToken)

WS-Policy

A WS-Policy define uma gramática para especificar políticas, mas não especifica como associar tais políticas aos Web services, ou mesmo como divulgá-los. Separa a definição das políticas com a associação aos recursos.

WS-Policy

- **Política**: Expressa um conjunto de alternativas de políticas válidas
- Asserção de Política: Expressa a habilidade do recurso, específica a um domínio
- Alternativas de Políticas: Descreve as combinações aceitáveis de obrigações e requisitos
 - Operadores de Políticas
 - ExactlyOne: Somente uma das asserções contidas na política poderá fazer parte de uma alternativa de política
 - All: Permite a combinação de todas as asserções apresentadas como uma alternativa de política

Axis2 - Visão Geral

■ Axis2

Uma API (dentre muitas) utilizada para o desenvolvimento de Web services. E desenvolvida e mantida pela Apache Software Foundation.

- O Axis2 é a evolução natural da mais conhecida
 API Application Programming Interface para
 Web Services nos dias atuais.
- Diferentemente do Axis 1.0, o Axis2 apresenta diversas melhorias, principalmente em relação ao desempenho e também em relação à modularidade. A arquitetura do Axis2 é separada em componentes (módulos), e subdivide-se em componentes do núcleo e componentes não pertencentes ao núcleo.

- Dentre as principais funcionalidades do Axis2 destacam-se:
 - Mecanismo de implantação (deployment) com base na plataforma Java 2 Enterprise Edition (J2EE) - (baseado em arquivo):
 - Recursos, arquivos de configuração e binários todos em um único arquivo que descreve o serviço.
 - ▶ Hot deployment e hot update: Possibilidade de implantar atualizar serviços sem reiniciar o servidor de aplicação. No caso da atualização é recomendável somente o uso em ambientes de teste.
 - Presença de um repositório (onde se localizam os serviços e módulos): Onde ficam armazenados os serviços que devem ser acessados pelos clientes.
 - Mudanças na implantação de manipuladores (módulos): Como a arquitetura do Axis2 é modular, tudo que não é necessário estar no núcleo é disponibilizado como módulo. Esses módulos implementam as especificações de Web Services (WS-Policy, WS-Reliable, WS-Security).

■ Novos descritores de implantação:

- Descritor Global (axis2.xml)
- Descritor do Serviço (services.xml)
- Descritor do Módulo (module.xml)

- O arquivo **axis2.xml** deve apresentar:
 - ▶ Parâmetros do serviço
 - ▶ Tipo de Transporte do Rementente
 - ▶ Tipo de Transporte do Emissor
 - Fases
 - Módulo Global

- O arquivo services.xml deve ser caracterizado com as opções abaixo:
 - ▶ Parâmetros de Nível de Serviço
 - Descrição do Serviço
 - Receptores de Mensagem
 - Operação necessária para expor o serviço como uma operação web
 - Módulos de Nível de Serviços

- O arquivo module.xml deve apresentar os seguintes parâmetros:
 - Manipuladores e suas regras de fases
 - Parâmetros do módulo
 - Descrição sobre o módulo
 - ▶ Pontos finais (Endpoints) No caso de utilização de mensagens confiáveis, este parâmetro é fundamental

Axis2 - Componentes

O Axis2 é um motor de processamento de mensagens SOAP bastante modular. Sua divisão é baseada em componentes, como pode ser descrito na figura a seguir:

Axis2 - Componentes

■ Componentes do núcleo:

- AXIOM Axis Object Model: Modelo de Objetos em XML
- ▶ Módulo de Processamento SOAP: Framework Manipulador
- Modelo de Processamento de Informações: Contextos e Descrições

■ Outros componentes:

- ▶ Modelo de Deploy
- ▶ Transportes
- ▶ API Cliente
- ▶ Modelo de Geração de Código

Axis2 - Modelo de Processamento

- Modelo mais adequado que a versão 1.0 do Axis
- Inicialmente baseada em DOM Document Object Model
- Atualmente baseado em modelo de objetos próprio denominmado AXIOM (Axis2 Object Model)

■ DOM x AXIOM

- ▶ DOM: Problema de manter a hierarquia completa dos objetos em memória
- ▶ AXIOM: Representa qualquer mensagem do framework (entrada e saída)

■ Técnicas Pull x Push

- ▶ Pull: O invocador tem o controle completo sobre o parser e pode perguntar sobre o próximo evento. O objeto é construído sob demanda (SAX)
- ▶ Push: O parser procede até atingir o final do documento (StAX).

Axis2 - Modelo de Implantação

 Um mecanismo de implantação de aplicações (deployment) baseada em repositórios. As principais partes desta arquitetura são evidenciadas na figura a seguir

Axis2 - Modelo de Implantação

- **Escalonador**: Componente que informa ao listener para procurar por serviços no repositório Listener: Busca por atualizações no repostório de serviços
- **Descritor do Parser**: Um componente para processar os serviços e descritores de módulos para deploy: O componente central da implantação (deployment}) que faz todo o processamento lógico
- Núcleo do Axis2: O Axis2 é independente da implantação e vice-versa
- **Repositório**: Um diretório no sistema de arquivos que armazena os serviços implantados (deployed)

Com a utilização do Axis2 é possível construir serviços que se comunicam através de trocas de mensagens no formato XML, utilizando como protocolo de transporte o HTTP.

- O Axis2 executa as seguintes tarefas:
 - Cria mensagens SOAP
 - ▶ Recebe e processa mensagens SOAP
 - Cria um Web Service a partir de uma classe Java
 - ▶ Cria classes de implementação para o servidor e o cliente, usando a WSDL
 - ▶ Recupera facilmente a WSDL para um serviço
 - ▶ Envia e recebe mensagens SOAP com anexos
 - Cria ou utiliza serviços que tiram a vantagem dos padrões WS-Security, WS-ReliableMessaging, WS-Addressing, WS-Coordination e WS-AtomicTransaction

- Assumindo-se que o Axis2 execute tanto no cliente quanto no provedor de serviços, a interação entre cliente e provedor deve seguir algumas fases:
 - ▶ O cliente (emissor) envia uma mensagem SOAP
 - ▶ O manipulador do Axis2 realiza ações necessárias de acordo com o que foi definido pelo usuário
 - ▶ O módulo responsável pelo transporte envia a mensagem
 - ▶ Do lado do receptor (provedor) a detecção da mensagem é feita pelo módulo responsável por este finalidade
 - ▶ O responsável pelo trasporte (transport listener) passa a mensagem para um dos manipuladores do receptor (provedor)
 - ▶ Uma vez processada, a mensagem é entregue à aplicação

Manipulação de mensagens

- O Axis2 permite quebrar as ações na transmissão de mensagens em várias fases. Essas fases são definidas como:
 - Fases Pré-Definidas
 - Pré-Despacho
 - Despacho
 - Processamento de Mensagens
 - ▶ Fases definidas pelo usuário: As fases pré-definidas são invocadas independente do serviço especificado. As fases definidas pelo usuário são invocadas quando o despachante encontrar uma operação. Cada fase possui uma coleção de manipuladores. O Axis2 permite controlar quais manipuladores estarão em quais fases e a ordem em que tais manipuladores são executados dentro de cada fase. O mais interessante é que pode ser adicionada uma nova fase juntamente com seus respectivos manipuladores. Entenda-se por manipuladores os módulos componentes do Axis2. Exemplos:
 - WS-Security
 - WS-Reliability

Desenvolvimento de Aplicação Segura com Axis2

- Este tópico deve ser discutido no dia do evento
 - A construção da aplicação deve ser feita passo-a-passo

Referências

- Introduction to Web services and the WSDK v5.1.
- Disponível em www.ibm.com/developerWoks último acesso em 30/09/2009.
- Web services and CORBA.
- Disponível em
 - www.xs4all.nl/~irmen/comp/CORBA_vs_SOAP.html último acesso em 30/09/2009.
- Web services and SOAP.
- Disponível em www.w3c.org/2002/ws último acesso em 30/09/2009.
- Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2003).
- Web services: Concepts, architectures, and applications.
- V. Springer Verlag.

Referências

■ Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., and Newling, T. (2004).

Patterns: Service-Oriented Architecture and Web Services.

IBM Redbooks Series. IBM Corporation.

Disponível em

www.redbooks.ibm.com/abstracts/sg246303.html - último acesso em 30/09/2009.

Mahmoud, Q. H. (2005).

Service-oriented architecture (SOA) and Web services: The road to enterprise application integration (EAI).

Sun Technical Articles.

Disponível em

http://java.sun.com/developer/technicalArticles/WebServices/soa/index.html

- último acesso em 30/09/2009.