

26th annual **INCOSE**
international symposium

Edinburgh, UK
July 18 - 21, 2016

Efficiency Management in Spaceflight Systems

Karen Murphy

Jacobs Technology, Inc.

NASA Marshall Space Flight Center/EO40

Huntsville, Alabama USA

Defining System Efficiency

Systems transform resource inputs into functional output.

- Spaceflight system resources:
 - payload,
 - launch vehicle,
 - ground-based launch operations.
- Functional output: successful spaceflight mission.

Process efficiency is maximized when the inputs used are the minimum required to create the maximum output, in this case mission success.

Three items are tracked to determine this efficiency:

- cost,
- schedule,
- technical feasibility.

Mathematical Modeling of Spaceflight Missions

The dynamic of functional performance for a mission can be described as:

$$dF/dt = \delta * F + \alpha * I * R$$

- where δ , rate of function degradation, day $^{-1}$;
- F , function provided by space system, function m $^{-3}$ day $^{-1}$ (for example life support, rate of materials consumption/recirculation, kg m $^{-3}$ day $^{-1}$);
- α , efficiency of resource support for considered system function, day $^{-1}$;
- I , resource concentration/conversion infrastructure efficiency (such as efficiency of getting supplies from Earth), function kg $^{-1}$ day $^{-1}$;
- R , concentration of support resources (raw materials) in surrounding environment, kg m $^{-3}$.

Therefore the level of functional performance under steady state or long-term conditions becomes

$$F = \alpha * I * R / \delta$$

Mathematical Modeling of System Efficiency

This gives us a mathematical definition of efficiency for spaceflight systems:

$$\alpha = \frac{F\delta}{IR}$$

Up to launch, $\delta=1$ and $R=1$, so:

$$\alpha = \frac{F}{I}$$

Spaceflight missions (S) occur with a system of systems:

- Payload (P)
- Vehicle (V)
- Launch or Ground Operations (O)

So maximum efficiency requires optimized efficiency across these three systems:

$$\alpha_S = \alpha_O \alpha_P \alpha_V \text{ or } \alpha_S = \frac{F_S}{I_S} = \frac{F_O F_P F_V}{I_O I_P I_V}$$

Functional Definitions

While functions may be moved among the systems, the flexibility of each **26th annual INCOSE**
operations group to trade functionality varies:

Edinburgh, UK
July 18 - 21, 2016

- Launch Operations: Changes to launch infrastructure are extremely expensive in schedule and funding, requires significant advanced planning.
- Payload: Tremendous flexibility in how it can accomplish its tasks once in orbit and generally has the shortest design schedule, but very limited in the functions it can do prior to launch.
- Launch vehicle: Ends up as the most flexible of the three operations groups. Can have a vehicle ‘family’ (multiple configurations from the same hardware) or variable staging/booster options. With a mid-length design schedule, the vehicle has the most places where changes can be made relatively quickly and with significant functional effect.

26th annual INCOSE
international symposium

Edinburgh, UK
July 18 - 21, 2016

Functional Efficiency: Launch Operations

Launch Operations Process Efficiency, F_O/I_O	How does it interact with other operations groups?	
	Associated Vehicle Resources, I_V	Associated Payload Resources, I_P
Processing/Integration	Number of segments at turnover from manufacturing	Number of segments at turnover from manufacturing
	Checkout process required	Checkout process required
	Number of propellants	Any propellants
	Hazards related to propellants	Pre-launch active stage
	Cryogenics	Cryogenics
	Number and type of consumables	Number and type of consumables
	Integrated transportation options	Number of external interfaces
	Number of spare parts to store	Storage prior to integration
	Pre-launch maintenance	Pre-launch maintenance
	Water suppression system	Shroud – ascent release
Logistics	Lightning protection	Pre-launch activation
	Shroud – launch release	Data management
	Data management (bandwidth and amount of sensor data)	On-pad consumables
	On-pad consumables	
	Number and type of segments to retrieve	NA
Post-Launch Retrieval/Refurbishment	Air or sea retrieval	
	Number and type of segments to refurbish	

Functional Efficiency: Payload

Edinburgh, UK
July 18 - 21, 2016

Payload Functional Efficiencies, F_P/I_P		How does it affect other operations groups?	
		Associated Vehicle Resources, I_V	Associated Launch Operations Resources, I_O
Access to Orbit	Size	Mass-to-orbit capability	Integration
	Number	Mass-to-orbit capability	Number of launches
	Manufacturing rate		Flight availability
	Time Constraints	Manufacturing rate	Number of launches
		Integration time	Flight availability
Type	Cargo	Induced environments limitations	
		Shroud – launch release	
		On-pad access	
	Human	Abort system	Shroud – launch release
		Steering capability	Pad-stay times
		Data system access	Number of launch attempts
		Induced environments limitations	Late-pad access
Activity Level	Pre-launch consumables		Pre-launch consumables
	Data management		Data management

26th annual INCOSE
international symposium

Edinburgh, UK
July 18 - 21, 2016

Functional Efficiency: Vehicle

Vehicle Functional Efficiency, F_V/I_V	How does it affect other operations groups?			
	Associated Launch Operations Resources, I_O		Associated Payload Resources, I_P	
Propulsion	Engines	storage	Mass to orbit	
		integration		
		hazards		
		number		
	Propellants	storage	Induced environments	
		integration		
		hazards		
		number		
Configuration	Cryogenics		Trajectory	
	Number of stages		Number of flights per mission	
	Number of engines per stage		Induced environments	
	Natural environments		Natural environments	
Materials	Integration		Integration	
	Checkout process			
	Transport			

26th annual INCOSE
international symposium

Edinburgh, UK
July 18 - 21, 2016

Functional Efficiency: Vehicle

Vehicle Functional Efficiency, F_V/I_V		How does it affect other operations groups?	
		Associated Launch Operations Resources, I_O	Associated Payload Resources, I_P
Design Lifespan		Reusable/Refurbishable	Flight Rate
		Number and type of engines	Flight Availability
		Use of boosters	Planning time
		Additional DFI flights	Request upgrades
Optional	Ascent Only	NA	Additional bus capability
	Shroud	Launch release	Ascent release
	Steering	Data interface integration	Avionics integration
	Abort Response	Abort systems checkout	Data management
	Trans-lunar Injection	NA	Data management
	Trans-planetary Injection		Recovery capability
	GTO+ Kick stage	NA	Simplified bus
	Hold Attempt/ Launch Recycle	Consumables	Consumables
		Pad stay time	
		Transport	

Conclusions

- Spaceflight mission systems must move towards a balance of cost, schedule and technical reliability. Spaceflight is a system of systems and balance occurs across the entirety of the system.
- Setting minimum functions required for the mission and understanding the working interfaces can be done for larger and more complex programs by optimizing among the principle operational groups and their functions.
- Efficiency in the overall mission system means moving away from an absolute focus on maximum technical performance of each subsystem in favor of mission success. Mission efficiency means opting for balanced functionality among the payload, vehicle, and launch operations systems. Spaceflight systems of the 21st century can and should move towards an operational efficiency that is both flexible and sustainable.

Backup

Launch Ops: Tradeoffs

Vehicle and Payload Resource Tradeoffs (I_v, I_p)		Launch Operations: Integration/Processing Efficiencies (F_o/I_o)
Interface reduction	Minimize interface points across stages and with payload and ground.	Reduces mating and checkout time, and personnel required. Reduces number of parts and types of tools. Simplifies tracking of parts and tools. Reduces transport infrastructure and processes. Reduces hazard mitigation processes and equipment.
	Minimize sections/stages integrated at launch site	
	Minimize types of gases and fuels required.	
	Minimize connector types.	
Incorporate computer-aided checkout in interface certification.		Reduces checkout time and personnel required. Reduces launch interval time.
Separation of vehicle and payload.		Provides timeline options: payload integration on the launch pad or integration on a different vehicle.
Provide launch stress and natural environments mitigation.		Simplifies pad refit post-launch. Reduces launch interval time.
Limit data downlink volume and type.		Reduces data infrastructure and storage needs.

Launch Ops: Tradeoffs

Vehicle and Payload Resource Tradeoffs (I_v, I_p)		Launch Operations: Management Efficiencies (F_o/I_o)
Interface reduction	Minimize information required for launch success.	Reduces number of computers, operators and bandwidth required.
	Minimize data to be downlinked during launch.	

Vehicle and Payload Resource Tradeoffs (I_v, I_p)		Launch Operations: Production/Recovery Efficiencies (F_o/I_o)
Interface reduction	Minimize sections/stages.	Reduces number of personnel required.
	Minimize on-site integration.	Simplifies inventory management: storage, tracking, integration processing, hazard management.
	Provide in-line replacement of bad parts.	Speeds up launch retry due to a malfunctioning part.
	Minimize connector types.	
Incorporate computer-aided checkout in interface certification.		Reduces checkout time and personnel required.
Minimize refurbishment requirements.		Reduces time and personnel required.
Design for recovery: transport requirements, storage and hazard mitigation, and checkout.		Reduces time and personnel required.

Payload: Tradeoffs

Vehicle and Launch Ops Resource Tradeoffs (I_v, I_o)		Payload: Orbit Efficiencies (F_p/I_p)
Increase orbit reached at launch.		Reduces number of transport systems and fuel required.
Optimize launch site.		Reduces fuel required to reach orbit.
Optimize facilities capabilities and accommodations.	Various sizes of vehicle and payload	Increases mission options.
	Propellant types	
	Abort requirements	
	Integration requirements	
Maximize orbits from location.		Reduces energy to orbit.

Vehicle and Launch Ops Resource Tradeoffs (I_v, I_o)		Payload: Flight Rate Efficiencies (F_p/I_p)
Reduce vehicle inspection/checkout time.		Reduces time between launch attempts.
Minimize effect of natural environments.		Reduces need for non-mission systems (such as shroud).
Increase vehicle availability.		Improves flight availability.
Increase pad availability.		Adds schedule flexibility.
Increase infrastructure for vehicle refit (transport, storage, assembly structure).		Improves flight availability. Reduces time between launch attempts.

Vehicle and Launch Ops Resource Tradeoffs (I_v, I_o)		Payload: Data Management Efficiencies (F_p/I_p)
Limit data required from payload.		Reduces power and bandwidth usage.

Vehicle: Tradeoffs

Payload and Launch Ops Resource Tradeoffs (I_p , I_o)		Vehicle: Propulsion Efficiencies (F_v/I_v)
Minimize I_{sp} required.		Reduces number and size of engines required.
Minimize engine requirements.	Type(s)	Reduces interface points.
	Fuel used.	
	Number of stages.	
Provide for various propellant types.		Increases mission options.

Payload and Launch Ops Resource Tradeoffs (I_p , I_o)		Vehicle: Configuration Efficiencies (F_v/I_v)
Minimize trajectory/orbit required.		Reduces required vehicle robustness.
Minimize interfaces.	Internal systems	Reduces interface points, simplifying integration requirements.
	Induced environments	
	Natural environments	Minimizes effects of internal and external systems on vehicle, improving reliability and mitigation requirements.
	Software.	
	Stages.	
	Operations groups.	
Provide orbital stage.		Reduces propellant and stages required.

26th annual INCOSE
international symposium

Edinburgh, UK
July 18 - 21, 2016

Vehicle: Tradeoffs

Payload and Launch Ops Resource Tradeoffs (I_p, I_o)		Vehicle: Natural Environments Efficiencies (F_v/I_v)
Minimize exposure.	Limit rollout time.	Reduces required vehicle robustness, improves reliability.
	Limit pad-stay time.	
	Electrically isolate payload.	
Mitigate natural environments effects.	Lightning protection systems	Reduces vehicle exposure to specific natural environments.
	Precipitation shield	
	Fauna shield	
	Neutral gas purges	

Payload and Launch Ops Resource Tradeoffs (I_p, I_o)		Vehicle: Avionics Efficiencies (F_v/I_v)
Minimize vehicle data bandwidth.	Amount of data.	Reduces number of transmitting systems, including video, system health, and vehicle-to-payload. Reduces required bandwidth and storage space.
	Type of data.	
	Data routing.	

Vehicle: Tradeoffs

Payload and Launch Ops Resource Tradeoffs (I_p , I_o)	Vehicle: Lifespan Efficiencies (F_v/I_v)
Optimize infrastructure for propulsion and configuration set.	Create family of vehicles using the same engines and initial stages, and/or boosters.
Increase flexibility in payload deployment.	
Extend mission planning time.	Provide block upgrade options for existing vehicles. Extend cost and schedule options. Incorporate required upgrades earlier in planning.

Optional Functionality	Efficiency
Ascent only (not orbit insertion)	Reduces I_{SP} required, vehicle stages, and fuel.
Shroud	Reduces vehicle and launch operations mitigation of natural environments.
Steering	Reduces vehicle avionics requirements. Provides for human-guided abort.
Abort response	Provides for recovery of payload.
Trans-lunar/-planetary injection	Additional stage on vehicle.
Geostationary Transitional Orbit kick	Reduces boost system and fuel required on payload.
Hold and launch recycle	Minimize consumable usage prior to launch. Minimize pad damage prior to launch. Minimize hazard mitigation to transport off the pad.