Exponential family

Dr. Qiuzhuang Sun STAT3023

Exponential family

A pdf or pmf is said to belong to an exponential family if it can be written in the form

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} w_i(\theta) t_i(x) - A(\theta)\right), \ x \in \mathbb{R},$$

with $h(\cdot), w_i(\cdot), t_i(\cdot), A(\cdot)$ being real-valued functions.

- h(x) often contains information about the support (or the range of X) through the use of indicator function.
 - An indicator function is of the form $I_{\mathcal{A}}(x)=1$ if $x\in\mathcal{A}$ and $I_{\mathcal{A}}(x)=0$ if $x\notin\mathcal{A}$.
- $A(\theta)$ is the normalizing constant to make f a valid pdf or pmf.
- Let d be the number of elements in θ . If d = k, the pdf or pmf belongs to a full exponential family; if d < k, it belongs to the curved exponential family.

1

Let X be a Poisson random variable with pmf $p_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$ for $x = 0, 1, 2, \dots$ Show X belongs to the exponential family.

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} w_i(\theta) t_i(x) - A(\theta)\right)$$

Let X be a binomial random variable with pmf $p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$ for $x=0,1,\ldots,n$. Show X belongs to the exponential family for known p and unknown p.

Let X be a normal random variable $N(\mu,\sigma^2)$ with pdf $f_X(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$. Assuming σ is known, show X belongs to the exponential family.

Let X be a normal random variable $N(\theta,\theta^2)$ with pdf $f_X(x)=\frac{1}{\sqrt{2\pi}\theta}\exp\left(-\frac{1}{2\theta^2}(x-\theta)^2\right)$ for some $\theta>0$. Show X belongs to the exponential family.

Again, let X be a normal random variable $N(\mu,\sigma^2)$ with pdf $f_X(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$. Assuming both μ and σ are unknown, show X belongs to the exponential family.

Natural parameters

The exponential family can be parameterized into the **canonical** form

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} \eta_i t_i(x) - A^*(\eta)\right)$$
$$= h(x) \exp\left(\eta^{\top} T(x) - A^*(\eta)\right), \ x \in \mathbb{R},$$

where $\eta = (\eta_1, \dots, \eta_k)$ is the set of natural parameters, and $T(x) = (t_1(x), \dots, t_k(x))^{\top}$ is the set of sufficient statistics (more on it later).

Compare the canonical form with

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} w_i(\theta) t_i(x) - A(\theta)\right), x \in \mathbb{R}.$$

7

Write down the canonical form for $X \sim \text{Bin}(n,p)$ for n known and p unknown.

Write down the canonical form for $X \sim \mathsf{Poisson}(\lambda)$.

Sometimes, we need to pay attention to the natural parameter space for the exponential family in the canonical form.

Write down the canonical form for $X \sim N(\theta, \theta^2)$ for $\theta > 0$.

Properties

•
$$E\{T(X)\} = \frac{\partial A^*}{\partial \eta^\top}$$

•
$$\operatorname{Var}\left\{T(X)\right\} = \frac{\partial^2 A^*}{\partial \eta \partial \eta^\top}$$

•
$$\log M_{T(X)}(s) = A^*(s+\eta) - A^*(\eta)$$

Proofs

Proofs

Verify the above three properties with Bin(n,p).

Verify the above three properties with Bin(n,p).

Verify the above three properties with $\mathsf{Poisson}(\lambda).$