РАСЧЁТ УРОВНЯ ШУМА В ЖИЛОЙ ЗАСТРОЙКЕ

1. ОБЩИЕ СВЕДЕНИЯ

В процессе разработки проектов генеральных планов городов и детальной планировки их районов предусматривают градостроительные меры по снижению транспортного шума в жилой застройке. При этом учитывают расположение транспортных магистралей, жилых и нежилых зданий, возможное наличие зелёных насаждений. Учёт этих факторов помогает в одних случаях обойтись без специальных строительно-акустических мероприятий по защите от шума, а в других – снизить затраты на их осуществление.

2. МЕТОДИКА РАСЧЕТА

Задача данного практического занятия – определить уровень звука в расчётной точке (площадка для отдыха в жилой застройке, см. рис. 1) от источника шума – автотранспорта, движущегося по уличной магистрали.

Уровень звука в расчётной точке, ∂EA ,

$$L_{pm} = L_{u.u.} - DL_{pac} - DL_{go3} - DL_{3e3} - DL_{3} - DL_{3d}, \qquad (2.1.)$$

где $L_{u.u.}$ – уровень звука от источника шума (автотранспорта); DL_{pac} – снижение уровня звука из-за его рассеивания в пространстве; ∂EA ; DL_{eo3} – снижение уровня звука из-за его затухания в воздухе, ∂EA , DL_{3ea} – снижение уровня звука зелёными насаждениями, ∂EA ; DL_{9} – снижение уровня звука экраном (зданием), ∂EA ;

В формуле влияние травяного покрытия и ветра на снижение уровня звука не учитывается.

Puc. 1 Расположение площадки для отдыха в жилой застройке.

Снижение уровня звука от его рассеивания в пространстве

$$DL_{pac} = 10 lg (r_n / r_o),$$
 (2.2.)

где r_n — кратчайшее расстояние от источника шума до расчётной точки, m; r_o — кратчайшее расстояние между точкой, в которой определяется звуковая характеристика источника шума, и источники шума; r_o =7,5 m.

Снижение уровня звука из-за его затухания в воздухе

$$DL_{603} = (a_{603} r_n)/100,$$
 (2.3.)

где a_{603} — коэффициент затухания звука в воздухе; $a_{603}=0.5~\partial EA/M$.

Снижение уровня звука зелёными насаждениями

$$DL_{gas} = a_{seg} \cdot B, \tag{2.4.}$$

где $a_{3e\pi}$ – постоянная затухания шума; $a_{3e\pi} = 0.1 \ \partial EA$; B – ширина полосы зелёных насаждений; B = 10м.

Снижение уровня звука экраном (зданием) DL_{603} зависит от разности длин путей звукового луча d, м.

Таблица 2.1. Зависимость снижение уровня звука экраном (зданием) от разности звукового луча.

δ	1	2	5	10	15	20	30	50	60
ΔLвоз	14	16,2	18,4	21,2	22,4	22,5	23,1	23,7	24,2

Расстоянием от источника шума и от расчётной точки до поверхности земли можно пренебречь.

Снижение шума за экраном (зданием) происходит в результате образования звуковой тени в расчётной точке и огибания экрана звуковым лучом.

Снижение шума зданием (преградой) обусловлено отражением звуковой энергии от верхней части здания:

$$DL_{603-30} = K \cdot W, \tag{2.5}$$

где K – коэффициент, $\partial EA/m$; K = 0,8...0,9; W – толщина (ширина) здания, M.

Допустимый уровень звука на площадке для отдыха – не более 45 дБА.

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

- 3.1. Выбрать вариант (см. табл. 2.3.).
- 3.2. Ознакомиться с методикой расчёта.
- 3.3.В соответствии с данными варианта определить снижение уровня звука в расчётной точке и, зная уровень звука от автотранспорта (источник шума), по формуле (2.1.) найти уровень звука в жилой застройке.
- 3.4. Определив уровень звука в жилой застройке, сделать вывод о соответствии расчётных данных допустимым нормам.
 - 3.5. Подписать отчёт и сдать преподавателю.

4. *Таблица 2.3.* ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ ПО ТЕМЕ «РАСЧЕТ УРОВНЯ ШУМА В ЖИЛОЙ ЗАСТРОЙКЕ».

Вариант	\mathbf{r}_{n} , \mathbf{M}	δ,м	W, M	L _{и. ш} , дБа	
1.	2.	3.	4.	5.	
01	70	5	10	70	
02	80	10	10	70	
03	85	15	12	70	
04	90	20	12	70	
05	100	30	14	70	

06	105	50	14	75
07	110	60	16	75
08	115	5	16	75
09	125	10	18	75
10	135	15	18	75

Продолжение табл. 2.3.

				прооблясение тиол. 2.3.
11	60	20	10	80
12	65	30	10	80
13	75	50	12	80
14	80	60	12	80
15	100	5	14	80
16	95	10	14	85
17	105	15	16	85
18	110	20	16	85
19	115	30	18	85
20	120	50	18	85
21	65	60	10	90
22	70	5	10	90
23	80	10	12	90
24	85	15	12	90
25	95	20	14	90
26	100	30	14	70
27	110	50	16	70
28	115	60	16	70
29	120	5	18	70
30	125	10	18	70

5. ПРИМЕР ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ «РАСЧЁТ УРОВНЯ ШУМА В ЖИЛОЙ ЗАСТРОЙКЕ»

1. Исходные данные:

Вариант	r_n , M	δ,м	W, M	L _{и. ш} , дБа
№ -	75	50	12	80

- 2. Цель работы: определить уровень звука в расчётной точке (площадка для отдыха в жилой застройке) от источника шума автотранспорта, движущегося по уличной магистрали и сравнить с допустимым.
- 3. Ход работы:

Рассчитаем уровень звука в расчетной точке по формуле (2.1.):

 $Lpt = Lu.ш. - \Delta Lpac - \Delta Lвоз - \Delta Lзел - \Delta Lэ - \Delta Lзд, \partial EA$,

где $L_{u.u.}$ – уровень звука от источника шума (автотранспорта); DL_{pac} – снижение уровня звука изза его рассеивания в пространстве; ∂EA ; ΔL_{603} – снижение уровня звука из-за его затухания в воздухе, ∂EA , DL_{3e3} – снижение уровня звука зелёными насаждениями, ∂EA ; DL_{9} – снижение уровня звука экраном (зданием), ∂EA .

Для этого нам необходимо рассчитать:

1. Снижение уровня звука из-за рассеивания в пространстве:

$$\Delta L_{pac} = 10 \cdot \lg (r_n/r_o)$$

$$\Delta L_{pac} = 10 \cdot \lg(75/7,5) = 10 \cdot \lg 10 = 10,$$

где R_n – кратчайшее расстояние от источника шума до расчетной точки, m; r_o – кратчайшее расстояние между точкой, в которой определяется звуковая характеристика источника шума, и источником шума r_o =7,5m.

2. Снижение уровня звука из-за его затухания в воздухе:

$$\Delta L_{\text{\tiny BO3}} = (L_{\text{\tiny BO3}} \cdot r_{\text{\tiny n}}) / 100$$

$$\Delta L_{BO3} = (0.5.75)/100 = 0.375$$

3. Снижение уровня шума зелёными насаждениями:

$$\Delta L_{\text{3en}} = \alpha_{\text{3en}} \cdot B$$

$$\Delta L_{3e\pi} = 0, 1.10 = 1,$$

где $L_{3e\pi}$ — постоянная затухания шума, $L_{3e\pi}$ = $0.1\partial\delta A/m$; B — ширина полосы зелёных насаждений, B=10м

4. Снижение уровня шума экраном DL_{603} зависит от разности длин путей звукового луча d, m. Находим из таблицы 2.1. по данным варианта (табл. 2.3.):

δ	1	2	5	10	15	20	30	50	60
ΔLвоз	14	16,2	18,4	21,2	22,4	22,5	23,1	23,7	24,2

Следовательно:

$$\Delta L = 23,7$$

5. Снижение шума зданием (преградой) обусловлено отражением звуковой энергии от верхней части здания:

$$\Delta$$
Lзд = K·W

$$\Delta L_{3A} = 12.0,85 = 10.2,$$

где K – коэффициент, $K = 0.8...0.9 \partial EA/M$

6. По формуле (2.1.) находим уровень звука в расчётной точке, подставив все вычисленные данные:

$$L_{DT} = 80 - 10 - 0.375 - 1 - 23.7 - 10.2 = 34.725 \ \partial EA.$$

Вывод: Рассчитанный уровень звука на площадке отдыха в жилой застройке равен $34,725 \ \partial EA$, что меньше допустимого, равного $45 \ \partial EA$. Следовательно, уровень звука соответствует нормам.

- 1. Охрана окружающей среды /С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др.; Под ред. С.В. Белова. -2-е изд., испр. И доп. М.: Высшая школа, 1991. -319 с.
- 2. Руководство по расчету и проектированию средств защиты застройки от транспортного шума/Г.Л. Осипов, В.Е. Коробков и др. М.: Стройиздат, 1982. 31с.