

Objectives

- Describe how decision tree models work
- Define the concept of purity and information gain
- Describe how model ensembles lead to better performance
- Define boosting and model aggregation (aka bagging)
- Build decision tree and random forest models in sklearn
- Add ensemble bagging to any classification model in sklearn

Guess what animal I am thinking of.

Intro to CARTS

CART = Classification and Regression Tree

CART = Decision Tree

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	???

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	???

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	???

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	spam

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	spam

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	spam
2	true	true	false	spam
3	true	true	true	spam
4	false	true	true	legit
5	false	false	false	legit
6	false	false	false	legit

Each new node generates a subset of the data.

Susp. words	1 · · · · · · · · · · · · · · · · · · ·	Contains images	Classifi- cation	Which remaining feature best discriminates the data?
true	true false	true	spam	uiscriminates the data:
true	true true	false	spam	
true	true true	true	spam	
false	false true	true	legit	
false	false false	false	legit	Contains Images
false	false false	false	legit	true
ore DCI EACT 1	undore DSL EAST 1			Unknown Sender false spam
	unders, DSI-			

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	spam
2	true	true	false	spam
3	true	true	true	spam
4	false	true	true	legit
5	false	false	false	legit
6	false	false	false	legit

We can stop here!

What would happen if we picked a different feature for the root node?

4 J. Pounders, DSI-EAST-1

Contains

Practice

Which feature *best* discriminates the data?

Draw the decision tree starting with this feature as the root.

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	spam
2	true	true	false	spam
3	true	true	true	spam
4	false	true	true	legit
5	false	false	false	legit
6	false	false	false	legit

ID	Susp. words	Unknown sender	Contains images	Classifi- cation
1	true	false	true	spam
2	true	true	false	spam
3	true	true	true	spam
4	false	true	true	legit
5	false	false	false	legit
6	false	false	false	legit

Building Decision Trees

- You've seen that decision trees split the data at each node
- For each split we can calculate purity

Building Decision Trees

purity of class
$$i = p(\text{class i}|\text{data at node})$$

= $p(i \mid D)$

- For binary classification:
 - Worst case, purity = 0.5
 - Best case, purity = 1.0

Generalizing Purity

Impurity measures for a node with data D

$$ext{Entropy} = -\sum_{i=1}^{classes} p(i \mid D) \ log_2 \ p(i \mid D)$$

$$ext{Gini} = \sum_{i=1}^{classes} p(i \mid D)(1-p(i \mid D)) = 1 - \sum_{i=1}^{classes} p(i \mid D)^2$$

Information Gain

Goal: determine how good a split is

Solution: gain

$$ext{gain} = I(ext{parent}) - \sum_{ ext{children}} rac{N_j}{N} I(ext{child}_j)$$

where I is the impurity measure, N_j is the number of observations at child node j, and N is the number of observations at the parent node.

Full CARTs

- So far we've seen trees for classification
- Decision trees can be used for regression too

Decision Trees

Notes and Observations

- Decision trees are hierachical
 - Sequence of "if-this-than-that" conditions
- Decision trees are non-parametric
 - No β coefficients!
 - No assumption on distributions

Decision Trees

Notes and Observations

CART advantages

- Simple to understand and interpret.
- Requires little data preparation.
- Able to handle both numerical and categorical data.
- Possible to validate a model using statistical tests.
- Once trained can be implemented on hardware and has extremely fast (real-time) execution.

Decision Trees

Notes and Observations

CART disadvantages

- Locally-optimal.
- Overfitting.
- There are concepts that are hard to learn (XOR, parity or multiplexer problems)
- Decision trees can be biased if some classes dominate.