

Taller: Completitud en \mathbb{R} y finitud

10 de Agosto de 2022

Indicaciones generales

- o El taller es una evaluación, por lo tanto se debe entregar en físico y de manera presencial.
- o La fecha de entrega es el Miércoles 17 de Agosto al inicio de la clase.
 - 1. Considere el conjunto $A = \{\frac{1}{2^{n-1}} : n \in \mathbb{Z}^+\}$. Demuestre que Inf(A) = 0.
 - 2. Sea E un subconjunto no vacío y acotado superiormente de los números reales y considere el conjunto $U = \{x \in \mathbb{R} : x \text{ es cota superior de } E\}$. Demuestre que Sup(E) = Inf(U).
- 3. Sea $f:A\to B$ una función inyectiva. Muestre que si B es finito, entonces A es finito.
- 4. Sea A un conjunto no finito y B un subconjunto finito de A. Muestre que A-B no es finito y en consecuencia $A-B\neq\emptyset$.

inf(A)=x to, x e IR

(USO1) X>0 = x~f(A)>0

for prop argumediana dudo que XEIR Subenos que existe un nein tal que X

 $\gamma \leq \Lambda \leq 2$ $\gamma \in \mathbb{N} \subseteq \mathbb{Z}$ $\begin{array}{c} \chi \leq 2 \\ \frac{1}{2} + \frac{1}{2^{n-1}}, \quad \chi \in \mathbb{R}^{+} \end{array}$

 $\chi > \frac{1}{\chi} > \frac{1}{2^{n-1}} \qquad (=) <=)$

esto es para valquer X70 jago yurantitudo que habrá un a EA jal que ±nf(A) = X7a.

Contradicaion que surge de asumir que X 20.

(aso 2) $\chi < 0 = Inf(A) < 0$ No Sigurdo (a estrutura de) caso 1 con la prop. arguinediangi

$$-\chi = \frac{1}{2} \qquad \frac{1}{2^{n-1}}$$

$$\chi = \frac{1}{2^{n-1}} \qquad \frac{1}{2^{n-1}} \qquad \frac{1}{2^{n-1}}$$

$$\chi = \frac{1}{2^{n-1}} \qquad \frac{1}{2^{n-1}} \qquad \frac{1}{2^{n-1}}$$

$$\chi = \frac{1}{2^{n-1}} \qquad \frac$$

grande gre of infino.