Exercise 1. Let $\varphi \colon A \to B$ be morphism of commutative rings and $f \colon Y \to X$ the induced morphism of affine schemes. Let J be an ideal of B.

- (i) Show that $V(\varphi^{-1}J)$ is the closure of f(V(J)).
- (ii) Let I be an ideal of A. Let $T = \operatorname{Spec}(B/J)$ and $Z = \operatorname{Spec}(A/I)$. We assume that f(Z) = T (viewing Z, resp. T, as a closed subset of Y, resp. X). We assume that B/J is reduced. Show that there is a unique morphism of schemes $T \to Z$ fitting into the commutative square of schemes

- Exercise 2. (i) We say that a scheme is *noetherian* if it admits a finite open covering by spectra of noetherian rings. Show that a commutative ring A is noetherian if and only if the scheme Spec A is noetherian.
 - (ii) We say that a scheme is reduced if it admits an open covering by spectra of reduced rings. Show that a commutative ring A is reduced if and only if the scheme Spec A is reduced.
- (iii) Show that a scheme X is reduced if and only if the ring $\mathcal{O}_{X,x}$ is reduced for every $x \in X$.