« Forward Non-relational Finitary Static Analysis, Part I »

Patrick Couset

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation"

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: "Abstract interpretation", Tuesday April 26th. 2005

© P. Cousot, 2005

Design of a non-relational abstract interpreter for SIL

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

Non-relational abstraction

An abstraction $\langle \wp(\mathbb{V} \mapsto \mathcal{V}), \subseteq \rangle \xrightarrow{\gamma} \langle L, \sqsubseteq \rangle$ is non-rela*tional* if and only if for all $X \in \mathbb{V}$ there exists

$$\langle \wp(\mathcal{V}), \subseteq
angle \stackrel{\gamma_X}{ \longleftarrow_{lpha_X}} \langle L, \sqsubseteq
angle$$

such that

$$lpha(P) = igsqcup_{X \in \mathbb{V}} lpha_X(\{
ho(X) \mid
ho \in P\})$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

Also called "attribute independent" after Muchnick and Jones.

and so, α is the composition of a cartesian abstraction

$$\langle \wp(\mathbb{V} \mapsto \mathcal{V}), \subseteq \rangle \xrightarrow{\lambda R \cdot \{\rho | \forall X \in \mathbb{V} : \rho(X) \in R(X)\}} \langle \prod_{X \in \mathbb{V}} \wp(\mathcal{V}), \subseteq \rangle$$

and a componentwise abstraction

$$\langle \prod_{X \in \mathbb{V}} \wp(\mathcal{V}), \; \dot{\subseteq}
angle \stackrel{\lambda Q \cdot \lambda X \cdot \gamma_X(Q)}{\longleftarrow \lambda R \cdot \bigsqcup_{X \in \mathbb{V}} lpha_X(R(X))} \langle L, \; \sqsubseteq
angle$$

PROOF. – For all
$$P \in \wp(\mathbb{V} \mapsto \mathcal{V})$$
 and $R \in \wp(\mathcal{V})$

$$\lambda X \cdot \{\rho(X) \mid \rho \in P\} \subseteq R$$

$$\iff \forall X \in \mathbb{V}: \{\rho(X) \mid \rho \in P\} \subseteq R(X) \qquad \qquad \text{(pointwise def. of } \dot{\subseteq} \text{)}$$

$$= \lambda R \cdot \bigsqcup_{X \in \mathbb{V}} \alpha_X(R(X))(\lambda P' \cdot \lambda X' \cdot \{\rho(X') \mid \rho \in P'\}(P)) \text{ (def. composition }$$

$$\circ \hat{\mathcal{I}}$$

$$= \lambda R \cdot \bigsqcup_{X \in \mathbb{V}} \alpha_X(R(X))(\lambda X' \cdot \{\rho(X') \mid \rho \in P\}) \text{ (fonction application)}$$

$$= \bigsqcup_{X \in \mathbb{V}} \alpha_X(\lambda X' \cdot \{\rho(X') \mid \rho \in P\})(X)) \qquad \text{(fonction application)}$$

$$= \bigsqcup_{X \in \mathbb{V}} \alpha_X(\{\rho(X) \mid \rho \in P\}) \qquad \text{(fonction application)}$$

$$= \bigsqcup_{X \in \mathbb{V}} \alpha_X(\{\rho(X) \mid \rho \in P\})$$
 (fonction application)

- Relations between values of variables are lost by α

$$\iff \forall X \in \mathbb{V} : \forall \rho \in P : \rho(X) \in R(X)$$
 (def. \subseteq)

$$\iff \forall \rho \in P : \forall X \in \mathbb{V} : \rho(X) \in R(X)$$
 (def. $\forall \beta$)

$$\iff P \subseteq \{\rho \mid \forall X \in \mathbb{V} : \rho(X) \in R(X)\}$$
 (def. \subseteq)

– For all $R \in \prod_{X \in \mathbb{V}} \wp(\mathcal{V})$ and $Q \in L$

$$igsqcup_{X\in\mathbb{V}}lpha_X(R(X))\sqsubseteq Q$$

$$\iff orall X \in \mathbb{V}: lpha_X(R(X)) \sqsubseteq Q$$

$$\iff orall X \in \mathbb{V}: R(X) \subseteq \gamma_X(Q)$$
 (def. Galois connection)

$$\iff R \stackrel{.}{\subseteq} \lambda X \in \mathbb{V} \cdot \gamma_X(Q)$$
 \(\rangle \text{pointwise def. } \subseteq \rangle \)

- The composition is

$$\lambda R \cdot \bigsqcup_{X \in \mathbb{V}} lpha_X(R(X)) \circ \lambda P' \cdot \lambda X' \cdot \{
ho(X') \mid
ho \in P'\}(P)$$

7 def. lubs \

Example of relational abstraction

$$\begin{array}{l} \textbf{-} \ P = \{\{x \rightarrow 1, y \rightarrow 2\}, \{x \rightarrow 5, y \rightarrow 7\}\} \\ \textbf{-} \ \alpha(P) = \{\{x \rightarrow a, y \rightarrow b\} \mid 1 \leq a \leq 5 \land 2 \leq b \leq 7 \land a \leq b\} \end{array}$$

Example of non-relational abstraction

$$egin{aligned} -P &= \{\{x o 1, y o 2\}, \{x o 5, y o 7\}\} \ -lpha(P) &= \{\{x o a, y o b\} \mid 1 \le a \le 5 \land 2 \le b \le 7\} \ - ext{ of the form} \ P &\Longrightarrow \{x o \{1, 5\}, y o \{2, 7\}\}^2 \ &\simeq \{\{x o a, y o b\} \mid a \in \{1, 5\} \land b \in \{2, 7\}\} \ &= \{\{x o a, y o b\} \mid a \in \{1, 5\}\} \cap \ \{\{x o a, y o b\} \mid b \in \{2, 7\}\} \ &\Longrightarrow \{\{x o a, y o b\} \mid a \in [1, 5]\} \cap \ \{\{x o a, y o b\} \mid b \in [2, 7]\}^3 \ &= \{\{x o a, y o b\} \mid 1 \le a \le 5 \land 2 \le b \le 7\} \end{aligned}$$

² Cartesian abstraction

Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005

© P. Cousot, 2005

Forward non-relational finitary reachability static analysis of SIL

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

Cost/precision

- Relational abstractions of environment properties are usually precise but complex and costly
- Non-relational abstractions are simpler to program, cheaper but often too imprecise
- In practice a combination of global non-relational abstractions and local relational abstractions is used

Non-relational abstraction of sets of environments

- By definition, the non-relational abstractions are less precise than the Cartesian abstraction α_r :

$$\langle \wp(\mathbb{V} \mapsto \mathbb{I}_{\Omega}), \; \subseteq
angle \stackrel{\gamma_r}{ \underset{\alpha_r}{\longleftarrow}} \langle \mathbb{V} \mapsto \wp(\mathbb{I}_{\Omega}), \; \dot{\subseteq}
angle$$

by defining

$$egin{aligned} lpha_r(R) &= \lambda \mathtt{X} \in \mathbb{V} \cdot \{
ho(\mathtt{X}) \mid
ho \in R \}, \ \gamma_r(r) &= \{
ho \mid orall \mathtt{X} \in \mathbb{V} :
ho(\mathtt{X}) \in r(\mathtt{X}) \} \end{aligned}$$

and the pointwise ordering which is denoted with the dot notation

$$r \stackrel{.}{\subseteq} r' \stackrel{\mathrm{def}}{=} orall \mathtt{X} \in \mathbb{V} : r(\mathtt{X}) \subseteq r'(\mathtt{X})$$
 .

³ Interval abstraction

- Now any Galois connection (1)

$$\langle \wp(\mathbb{I}_{\Omega}), \subseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle L, \sqsubseteq \rangle$$
 (1)

can be used to approximate the codomain

$$\langle \mathbb{V} \mapsto \wp(\mathbb{I}_{\Omega}), \ \dot{\subseteq}
angle \stackrel{\gamma_c}{\longleftarrow} \langle \mathbb{V} \mapsto L, \ \dot{\sqsubseteq}
angle$$

as follows

$$egin{aligned} r \ oxdots \ r' & \stackrel{ ext{def}}{=} \ orall \mathtt{X} \in \mathbb{V} : r(\mathtt{X}) \sqsubseteq r'(\mathtt{X}), \ lpha_c(R) \ \stackrel{ ext{def}}{=} \ lpha \circ R, \ \gamma_c(r) \ \stackrel{ ext{def}}{=} \ \gamma \circ r, \end{aligned}$$

so that $\langle \mathbb{V} \mapsto L, \stackrel{.}{\sqsubseteq}, \stackrel{.}{\bot}, \stackrel{.}{\top}, \sqcup, \stackrel{.}{\sqcap} \rangle$ is a complete lattice for the pointwise ordering $\dot{\sqsubseteq}$.

Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005

@ P. Cousot. 2005

- If L has an infimum \perp such that $\gamma(\perp) = \emptyset$, we observe that if $r \in \mathbb{V} \mapsto L$ has $\rho(X) = \bot$ then $\dot{\gamma}(r) = \emptyset$.
- It follows that the abstract environments with some bottom component all represent the same concrete information (\emptyset) .
- The abstract lattice can then be reduced to eliminate equivalent abstract environments (i.e. with same meaning):

$$\langle \mathbb{V} \mapsto \mathbb{I}_{\Omega}, \; \dot{\subseteq} \rangle \stackrel{\dot{\gamma}}{\overset{\dot{\alpha}}{\Longleftrightarrow}} \langle \mathbb{V} \stackrel{\perp}{\mapsto} L, \; \dot{\sqsubseteq} \rangle$$
 (5)

where

where
$$\mathbb{V} \stackrel{\mathrm{def}}{\mapsto} L \stackrel{\mathrm{def}}{=} \{
ho \in \mathbb{V} \mapsto L \mid \forall \mathtt{X} \in \mathbb{V} :
ho(\mathtt{X})
eq \bot \} \cup \{ \lambda \mathtt{X} \in \mathbb{V} \cdot \bot \} \;.$$

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005

© P. Cousot, 2005

- We can now use the fact that the composition of Galois connections is a Galois connection, and so the composition of the nonrelational and codomain abstractions

where

$$\dot{\alpha}(R) \stackrel{\text{def}}{=} \alpha_{c} \circ \alpha_{r}(R)
= \lambda X \in \mathbb{V} \cdot \alpha(\{\rho(X) \mid \rho \in R\}),$$
(3)

$$egin{aligned} \dot{\gamma}(r) &\stackrel{ ext{def}}{=} \gamma_r \circ \gamma_c(r) \ &= \left\{
ho \mid orall \mathtt{X} \in \mathbb{V} :
ho(\mathtt{X}) \in \gamma(r(\mathtt{X}))
ight\}. \end{aligned}$$

Forward non-relational finitary reachability static analysis of arithmetic expressions

Definition of the forward collecting semantics of arithmetic expressions (lecture 14)

Recall the *forward/bottom-up collecting semantics* of an arithmetic expression from lecture 8:

Faexp
$$\in$$
 Aexp $\mapsto \wp(\operatorname{Env}\llbracket P \rrbracket) \stackrel{\sqcup}{\longmapsto} \wp(\mathbb{I}_{\Omega}),$
Faexp $\llbracket A \rrbracket R \stackrel{\text{def}}{=} \{ v \mid \exists \rho \in R : \rho \vdash A \mapsto v \} .$ (6) such that:

$$egin{aligned} \operatorname{Faexp} \llbracket A
rbracket \left(igcup_{k \in \mathcal{S}} R_k
ight) &= igcup_{k \in \mathcal{S}} \left(\operatorname{Faexp} \llbracket A
rbracket R_k
ight) \ &= \operatorname{Faexp} \llbracket A
rbracket \emptyset \ . \end{aligned}$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

17 — © P. Cousot, 2005

Non relational predicate transformer abstraction

- Knowing an abstraction (1) of value properties and (5) of environment properties, we use a functional abstraction of monotonic predicate transformers:

$$\alpha^{\triangleright}(\Phi) \stackrel{\text{def}}{=} \alpha \circ \Phi \circ \dot{\gamma}, \tag{7}$$

$$\gamma^{\triangleright}(\varphi) \stackrel{\text{def}}{=} \gamma \circ \varphi \circ \dot{\alpha}$$

so that 5

$$\langle \wp(\mathbb{V} \mapsto \mathbb{I}_{\Omega}) \stackrel{\mathrm{m}}{\longmapsto} \wp(\mathbb{I}_{\Omega}), \stackrel{\dot{\subseteq}}{\subseteq} \rangle \stackrel{\gamma^{
ho}}{\stackrel{}{\swarrow}} \langle (\mathbb{V} \mapsto L) \stackrel{\mathrm{m}}{\longmapsto} L, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \rangle \ . \ (8)$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

9 — © P. Cousot, 2005

Structural specification of the forward collecting semantics of arithmetic expressions (lecture 14)

$$\begin{aligned} \operatorname{Faexp} \llbracket \mathbf{n} \rrbracket R &= \{ \underline{\mathbf{n}} \}^4 \\ \operatorname{Faexp} \llbracket \mathbf{x} \rrbracket R &= R(\mathbf{X}) \end{aligned} & \text{where } R(\mathbf{X}) \overset{\operatorname{def}}{=} \{ \rho(\mathbf{X}) \mid \rho \in R \} \\ \operatorname{Faexp} \llbracket \mathbf{n} \rrbracket &= \mathbb{I} \\ \operatorname{Faexp} \llbracket \mathbf{u} A' \rrbracket R &= \underline{\mathbf{u}}^{\mathcal{C}} (\operatorname{Faexp} \llbracket A' \rrbracket R) \\ & \text{where } \underline{\mathbf{u}}^{\mathcal{C}}(V) \overset{\operatorname{def}}{=} \{ \mathbf{u}(v) \mid v \in V \} \end{aligned}$$

$$\operatorname{Faexp} \llbracket A_1 \text{ b } A_2 \rrbracket R &= \underline{\mathbf{b}}^{\mathcal{C}} (\operatorname{Faexp} \llbracket A_1 \rrbracket, \operatorname{Faexp} \llbracket A_2 \rrbracket) R \\ \text{where } \underline{\mathbf{b}}^{\mathcal{C}}(F_1, F_2) R \overset{\operatorname{def}}{=} \{ v_1 \underline{\mathbf{b}} v_2 \mid \exists \rho \in R : v_1 \in F_1(\{\rho\}) \land v_2 \in F_2(\{\rho\}) \} \end{aligned}$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

8 — © P. Cousot, 2005

PROOF.

- Choosing $\varphi \stackrel{\text{def}}{=} \alpha^{\triangleright}(\Phi)$ is therefore the best of the possible sound choices since it always provides the strongest abstract postcondition, whence, by monotony, the strongest concrete one.

⁵ The intuition is that for any abstract precondition $p \in L$, or its concrete equivalent $\dot{\gamma}(p) \in \wp(\mathbb{V} \mapsto \mathbb{I}_{\Omega})$, the abstract predicate transformer φ should provide an overestimate $\varphi(p)$ of the postcondition $\Phi(\gamma(p))$ defined by the concrete predicate transformer Φ .

⁴ For short, the case Faexp $[A]\emptyset = \emptyset$ is not recalled.

Generic forward/top-downnon relational abstract semantics of arithmetic expressions

- The generic forward/top-down nonrelational abstract semantics of arithmetic expressions overapproximates the forward collecting semantics:

$$\operatorname{Faexp}^{\triangleright} \llbracket A \rrbracket \stackrel{\dot{}}{=} \alpha^{\triangleright} (\operatorname{Faexp} \llbracket A \rrbracket) . \tag{10}$$

- We distinguish two cases:

$$\operatorname{Faexp}^{\scriptscriptstyle{
ho}} \in \operatorname{Aexp} \mapsto (\mathbb{V} \longmapsto L) \stackrel{\operatorname{m}}{\longmapsto} L, \qquad \operatorname{when} \ \gamma(\bot) \neq \emptyset;$$
 $\operatorname{Faexp}^{\scriptscriptstyle{
ho}} \in \operatorname{Aexp} \mapsto (\mathbb{V} \stackrel{\scriptscriptstyle{\perp}}{\mapsto} L) \stackrel{\operatorname{m}}{\longmapsto} L, \qquad \operatorname{when} \ \gamma(\bot) = \emptyset$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005 — 21 — © P. Cousot, 2005

parameterized by the following forward abstract operations

$$\mathbf{n}^{\triangleright} = \alpha(\{\underline{\mathbf{n}}\}) \tag{12}$$

$$?^{\triangleright} \supseteq \alpha(\mathbb{I}) \tag{13}$$

$$\mathbf{u}^{\triangleright}(p) \supseteq \alpha(\{\underline{\mathbf{u}}\,v \mid v \in \gamma(p)\}) \tag{14}$$

$$\texttt{b}^{^{\triangleright}}(p_1,p_2) \sqsupseteq \alpha(\{v_1 \, \underline{\texttt{b}} \, v_2 \mid v_1 \in \gamma(p_1) \wedge v_2 \in \gamma(p_2)\}) \quad \ (15)$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005 @ P. Cousot, 2005

Structural definition of the generic forward/top-down nonrelational abstract semantics of arithmetic expressions

$$\begin{aligned} \operatorname{Faexp}^{\triangleright} \llbracket A \rrbracket (\lambda \mathsf{Y} \cdot \bot) & \stackrel{\operatorname{def}}{=} \bot & \operatorname{if} \gamma(\bot) = \emptyset \\ \operatorname{Faexp}^{\triangleright} \llbracket \mathsf{n} \rrbracket r & \stackrel{\operatorname{def}}{=} \mathsf{n}^{\triangleright} \\ \operatorname{Faexp}^{\triangleright} \llbracket \mathsf{X} \rrbracket r & \stackrel{\operatorname{def}}{=} r(\mathsf{X}) \\ \operatorname{Faexp}^{\triangleright} \llbracket ? \rrbracket r & \stackrel{\operatorname{def}}{=} ?^{\triangleright} \\ \operatorname{Faexp}^{\triangleright} \llbracket \mathsf{u} A' \rrbracket r & \stackrel{\operatorname{def}}{=} \mathsf{u}^{\triangleright} (\operatorname{Faexp}^{\triangleright} \llbracket A' \rrbracket r) \\ \operatorname{Faexp}^{\triangleright} \llbracket A_1 \ \mathsf{b} A_2 \rrbracket r & \stackrel{\operatorname{def}}{=} \ \mathsf{b}^{\triangleright} (\operatorname{Faexp}^{\triangleright} \llbracket A_1 \rrbracket r, \operatorname{Faexp}^{\triangleright} \llbracket A_2 \rrbracket r) \end{aligned}$$

© P. Cousot, 2005

Calculational design of the structural definition of the generic forward/top-down nonrelational abstract semantics of arithmetic expressions

PROOF. Starting from the formal specification $\alpha^{\triangleright}(\text{Faexp}[A])$, we derive an algorithm Faexp||A|| satisfying (10) by calculus

$$\alpha^{\triangleright}(\operatorname{Faexp}\llbracket A \rrbracket)$$

$$= \alpha \circ \operatorname{Faexp}\llbracket A \rrbracket \circ \dot{\gamma} \qquad \qquad (\operatorname{def.} (7) \text{ of } \alpha^{\triangleright})$$

$$= \lambda r \cdot \alpha(\operatorname{Faexp}\llbracket A \rrbracket (\dot{\gamma}(r))) \qquad \qquad (\operatorname{def.} \text{ of composition } \circ)$$

$$= \lambda r \cdot \alpha(\{v \mid \exists \rho \in \dot{\gamma}(r) : \rho \vdash A \mapsto v\}) \qquad \qquad (\operatorname{def.} (6) \text{ of } \operatorname{Faexp}\llbracket A \rrbracket)$$
If r is the infimum $\lambda Y \cdot \bot$ where the infimum \bot of L is such that $\gamma(\bot) = \emptyset$, then $\dot{\gamma}(r) = \emptyset$ whence:
$$\alpha^{\triangleright}(\operatorname{Faexp}\llbracket A \rrbracket)(\lambda Y \cdot \bot)$$

© P. Cousot, 2005

Course 16 399: "Abstract interpretation" Tuesday April 26th 2005

```
= \alpha(\emptyset)
                                                                                                                 7 \operatorname{def.} (4) \operatorname{of} \dot{\gamma}
= |
                                                                ? Galois connection (1) so that \alpha(\emptyset) = \bot.
When r \neq \lambda Y \cdot \bot or \gamma(\bot) \neq \emptyset, we have
      \alpha^{\triangleright}(\operatorname{Faexp}[\![A]\!])r
= (\lambda r \cdot \alpha(\{v \mid \exists \rho \in \dot{\gamma}(r) : \rho \vdash A \Rightarrow v\}))r
= \alpha(\{v \mid \exists \rho \in \dot{\gamma}(r) : \rho \vdash A \Rightarrow v\})
                                                                                      7 def. lambda expression \
and we proceed by induction on the arithmetic expression A.
   1 — When A = n \in Nat is a number, we have
      \alpha^{\triangleright}(\operatorname{Faexp}[\![\mathbf{n}]\!])r
= \alpha(\{\underline{n}\})
                                                                                                def. \alpha^{\triangleright} and Faexp[n]\
= n<sup>▷</sup>
                                                                                            7 by defining n^{\triangleright} = \alpha(\{n\})
Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005
                                                                                                                      @ P. Cousot. 2005
```

```
7 by defining Faexp||r| \stackrel{\text{def}}{=} ?
= \operatorname{Faexp}^{\triangleright} [\![?]\!]r
     4 — When A = u A' is a unary operation, we have
        \alpha^{\triangleright}(\operatorname{Faexp}\llbracket\operatorname{u} A'\rrbracket)r
= \alpha(\operatorname{Faexp}[u A'](\dot{\gamma}(r)))
                                                                                                                                               7 def. (7) of \alpha^{\triangleright}
= \alpha(\mathbf{u}^{\mathcal{C}}(\operatorname{Faexp}[A'](\dot{\gamma}(r)))
                                                                                                               fstructural def. Faexpfu f
                  7 by monotony and (10) so that \alpha^{\triangleright}(\operatorname{Faexp}[A']) \stackrel{.}{\sqsubset} \operatorname{Faexp}^{\triangleright}[A'] by induc-
                    tion hypothesis, by def. of Galois connections so that Faexp[A'] \dot{\subseteq}
                    \gamma^{\triangleright}(\operatorname{Faexp}^{\triangleright} \llbracket A' \rrbracket), def. \gamma^{\triangleright}(\varphi) \stackrel{\text{def}}{=} \gamma \circ \varphi \circ \dot{\alpha} so that \operatorname{Faexp} \llbracket A' \rrbracket \stackrel{\dot{}}{\subset} \gamma \circ
                     Faexp\|A'\| \circ \dot{\alpha} and monotony with \dot{\alpha} \circ \dot{\gamma} is reductive by (2) so that
                     \operatorname{Faexp} \llbracket A' 
rbracket (\dot{\gamma}(r)) \subset \gamma \circ \operatorname{Faexp} \llbracket A' 
rbracket \circ \dot{\gamma}(r) \subset \gamma \circ \operatorname{Faexp} \llbracket A' 
rbracket (r) 
ceil
= \alpha(\mathbf{u}^{\mathcal{C}}(\gamma \circ \operatorname{Faexp}^{\triangleright} [\![A']\!](r)))
                  by defining u^{\triangleright} such that u^{\triangleright}(p) \supseteq \alpha(\{u \ v \mid v \in \gamma(p)\}) = \alpha(u(\gamma(p)))
        \mathbf{u}^{\triangleright}(\operatorname{Faexp}^{\triangleright} \llbracket A' \rrbracket r)
Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005 — 27 —
                                                                                                                                                       @ P. Cousot. 2005
```

```
7 by defining Faexp[n]r \stackrel{\text{def}}{=} n
= \operatorname{Faexp}^{\triangleright} \llbracket \mathbf{n} \rrbracket r
    2 — When A = X \in \mathbb{V} is a variable, we have
      \alpha^{\triangleright}(\operatorname{Faexp}[X])r
= \alpha(\{\rho(\underline{X}) \mid \rho \in \dot{\gamma}(r)\})
                                                                                                            \partial \operatorname{def.} \alpha^{\triangleright} \text{ and } \operatorname{Faexp}[X] 
= \alpha(\gamma(r(X)))
                                                                                                                             \partial def. (4) of \dot{\gamma}
\sqsubseteq r(X)
                                                       Galois connection (1) so that \alpha \circ \gamma is reductive
                                                                                          by defining Faexp|X||r \stackrel{\text{def}}{=} r(X)
= \operatorname{Faexp}^{\triangleright} [\![X]\!]r
    3 — When A = ? is random, we have
      \alpha^{\triangleright}(\text{Faexp}[?])r
= \alpha(\mathbb{I})
                                                                                                            \partial def. \alpha^{\triangleright}  and Faexp[?]
□ ?
                                                                                                           \{ \text{by defining } ? \  \  \, \supseteq \alpha(\mathbb{I}) \}
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                                                                                    © P. Cousot, 2005
```

```
7 by defining Faexp^{\triangleright} [[\mathbf{u} A']]r \stackrel{\text{def}}{=} \mathbf{u}^{\triangleright} (Faexp^{\triangleright} [[A']]r)
= \operatorname{Faexp}^{\triangleright} \llbracket \operatorname{u} A' \rrbracket r
     5 — When A = A_1 b A_2 is a binary operation, we have
       \alpha^{\triangleright}(\operatorname{Faexp}[A_1 \ \mathrm{b} \ A_2])r
= \alpha(\operatorname{Faexp}[A_1 \bowtie A_2](\dot{\gamma}(r)))
                                                                                                                                        7 by def. \alpha^{\triangleright}
= \alpha(b^{\mathcal{C}}(\operatorname{Faexp}[A_1], \operatorname{Faexp}[A_2])(\dot{\gamma}(r))) by structural def. of Faexp[A_1 \ b \ A_2]
= \alpha(\{v_1 \underline{b} v_2 \mid \exists \rho \in \dot{\gamma}(r) : v_1 \in \operatorname{Faexp}[A_1](\{\rho\}) \land v_2 \in \operatorname{Faexp}[A_2](\{\rho\})\}) \quad \text{(by)}
       def. b<sup>C</sup> \
7bv
       monotonv \
                by monotony and \operatorname{Faexp}[A_i](\dot{\gamma}(r)) \subset \gamma \circ \operatorname{Faexp}[A_i](r), as above
       \alpha(\{v_1 \text{ b } v_2 \mid v_1 \in \gamma(\operatorname{Faexp}^{\triangleright} \llbracket A_1 \rrbracket r) \wedge v_2 \in \gamma(\operatorname{Faexp}^{\triangleright} \llbracket A_2 \rrbracket r)\})
                (by defining b such that \operatorname{b}^{\triangleright}(p_1,p_2) \square \alpha(\{v_1 \operatorname{b} v_2 \mid
                  v_1 \in \gamma(p_1) \wedge v_2 \in \gamma(p_2) \}) \langle
       \texttt{b}^{\triangleright}(\operatorname{Faexp}^{\triangleright} \llbracket A_1 \rrbracket r, \operatorname{Faexp}^{\triangleright} \llbracket A_2 \rrbracket r)
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005 — 28 —
                                                                                                                                           © P. Cousot, 2005
```

 $\partial by \text{ defining Faexp}^{\triangleright} \llbracket A_1 \text{ b } A_2 \rrbracket r \stackrel{\text{def}}{=} \text{b}^{\triangleright} (\text{Faexp}^{\triangleright} \llbracket A_1 \rrbracket r, \text{Faexp}^{\triangleright} \llbracket A_2 \rrbracket r)$ $\operatorname{Faexp}^{\triangleright} \llbracket A_1 \operatorname{b} A_2 \rrbracket r$.

In conclusion, we have designed the forward abstract interpretation Faexp of arithmetic expressions in such a way that it satisfies the soundness requirement (10) as summarized in (11).

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

Definition of the forward collecting semantics of boolean expressions (lecture 14)

Recall the *collecting semantics* Cbexp[B]R of a boolean expression B from course 8:

$$\begin{array}{c} \text{Cbexp} \in \text{Bexp} \mapsto \wp(\text{Env}\llbracket P \rrbracket) \stackrel{\sqcup}{\longmapsto} \wp(\text{Env}\llbracket P \rrbracket), \\ \text{Cbexp}\llbracket B \rrbracket R \stackrel{\text{def}}{=} \{ \rho \in R \mid \rho \vdash B \mapsto \text{tt} \} . \end{array} \tag{16}$$

such that:

$$ext{Cbexp} \llbracket B
rbracket \left(igcup_{k \in \mathcal{S}} R_k
ight) = igcup_{k \in \mathcal{S}} (ext{Cbexp} \llbracket B
rbracket R_k
ight) = eta \ .$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

@ P. Cousot. 2005

Forward non-relational finitary reachability static analysis of boolean expressions

Structural specification of the forward collecting semantics of boolean expressions (lecture 14)

```
Cbexp[true]R = R
         Cbexp[false]R = \emptyset
        \operatorname{Cbexp}[\![A_1 \circ A_2]\!] = \underline{\operatorname{c}}^{\mathcal{C}} \left( \operatorname{Faexp}[\![A_1]\!], \operatorname{Faexp}[\![A_2]\!] \right) R
where \underline{c}^{\mathcal{C}}\left(F,G\right)R\stackrel{\mathrm{def}}{=}\left\{
ho\in R\mid\ \exists v_1\in F(\left\{
ho\right\})\cap\mathbb{I}:\exists v_2\in G(\left\{
ho\right\})\cap\mathbb{I}:\right.
  \operatorname{Cbexp}[B_1 \& B_2]R = \operatorname{Cbexp}[B_1]R \cap \operatorname{Cbexp}[B_2]R
      \operatorname{Cbexp}[B_1 \mid B_2][R] = (\operatorname{Cbexp}[B_1][R] \cap (\operatorname{Cbexp}[B_2][R] \cup \operatorname{Cbexp}[T(\neg B_2)][R])
                                                          \cup \left(\operatorname{Cbexp}[B_2]R \cap \left(\operatorname{Cbexp}[B_1]R \cup \operatorname{Cbexp}[T(\neg B_1)]R\right)\right)
```

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

Course 16,399; "Abstract interpretation", Tuesday April 26th, 2005

Non-relational abstraction of the forward collecting semantics of boolean expressions

- Knowing abstractions (1) of value properties and (5) of environment properties, we use a functional abstraction of monotonic predicate transformers:

$$\ddot{\alpha}(\Phi) \stackrel{\text{def}}{=} \dot{\alpha} \circ \Phi \circ \dot{\gamma}, \qquad (17)$$

$$\ddot{\gamma}(\varphi) \stackrel{\text{def}}{=} \dot{\gamma} \circ \varphi \circ \dot{\alpha}.$$

so that $(\mathbb{R} \stackrel{\mathrm{def}}{=} \mathbb{V} \mapsto \mathbb{I}_{\Omega})$

$$\langle \wp(\mathbb{R}) \stackrel{\sqcup}{\longmapsto} \wp(\mathbb{R}), \stackrel{\dot{\subseteq}}{\subseteq} \rangle \stackrel{\stackrel{\dot{\gamma}}{\longleftarrow}}{\stackrel{\dot{\alpha}}{\rightleftarrows}} \langle (\mathbb{V} \mapsto L) \stackrel{\mathrm{m}}{\longmapsto} (\mathbb{V} \mapsto L), \stackrel{\ddot{\sqsubseteq}}{\sqsubseteq} \rangle \quad (18)$$

$$\varPhi \stackrel{\dot{\subset}}{=} \Psi \stackrel{\mathrm{def}}{=} \forall R \in \wp(\mathbb{R}) : \varPhi(R) \subset \varPsi(R)$$

 $\varphi \overset{...}{\sqsubseteq} \psi \overset{\mathrm{def}}{=} \forall r \in \mathbb{V} \mapsto L : \varphi(r) \overset{\dot{}}{\sqsubseteq} \psi(r)$

Structural definition of the generic forward/top-down nonrelational abstract semantics of boolean expressions

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005

@ P. Cousot. 2005

Generic forward/top-down non-relational abstract semantics of boolean expressions

We now consider the calculational design of the generic nonrelational abstract semantics of boolean expressions

$$\mathsf{Abexp} \in \mathsf{Bexp} \mapsto (\mathbb{V} \mapsto L) \overset{\mathtt{m}}{\longmapsto} (\mathbb{V} \mapsto L)$$

which is a sound overapproximation in that

$$Abexp[B] \stackrel{\sim}{=} \ddot{\alpha}(Cbexp[B]) \tag{19}$$

Course 16.399: "Abstract interpretation". Tuesday April 26th 2005

Calculational design of the structural definition of the generic forward/top-down nonrelational abstract semantics of boolean expressions

PROOF. We derive Abexp[B] as follows

$$\begin{split} \ddot{\alpha}(\operatorname{Cbexp}[\![B]\!]) &= \lambda r \in \mathbb{V} \mapsto L \cdot \dot{\alpha}(\operatorname{Cbexp}[\![B]\!]\dot{\gamma}(r)) & \text{(def. (17) of } \ddot{\alpha}\text{)} \\ &= \lambda r \in \mathbb{V} \mapsto L \cdot \dot{\alpha}(\{\rho \in \dot{\gamma}(r) \mid \rho \vdash B \mapsto \operatorname{tt}\}) & \text{(def. (16) of Cbexp)} \end{split}$$

If r is the infimum $\lambda Y \cdot \bot$ and the infimum \bot of L is such that $\gamma(\bot) = \emptyset$ then $\dot{\gamma}(r) = \emptyset$. In this case

$$\ddot{\alpha}(\operatorname{Cbexp}[\![B]\!]\lambda Y \cdot \bot)$$

$$= \dot{\alpha}(\emptyset) \qquad \qquad \langle \operatorname{def.} (4) \operatorname{of} \dot{\gamma} \rangle$$

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005

```
= \lambda Y.
                                                                                                 7 def. (3) of \dot{\alpha}
Otherwise r \neq \lambda Y \cdot \bot or \gamma(\bot) \neq \emptyset, and we proceed by induction on the boolean
expression B.
   6 — When B = \text{true} is true, we have
     \ddot{\alpha}(\text{Cbexp[true]})r
=\dot{\alpha}(\operatorname{Cbexp[true]}(\dot{\gamma}(r)))
                                                                                               7 \operatorname{def.} (17) \text{ of } \ddot{\alpha} 
=\dot{\alpha}(\dot{\gamma}(r))
                                                               by structural def. of Cbexp[true]
\dot{\sqsubseteq} r
                                                                                 \partial \dot{\alpha} \circ \dot{\gamma} is reductive (18)
                                                                     by defining Abexp[true]r \stackrel{\text{def}}{=} r
= Abexp[true]r
   7 — When B = false is false, we have
     \ddot{\alpha}(\text{Cbexp[false]})r
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                                                                     @ P. Cousot, 2005
```

```
7 def. (7) of \gamma^{\triangleright} \stackrel{\text{def}}{=} \gamma \circ \varphi \circ \dot{\alpha}
          \dot{\alpha}(\{\rho\in\dot{\gamma}(r)\mid\exists v_1\in\gamma\circ\operatorname{Faexp}^{\triangleright}\llbracket A_1\rrbracket\circ\dot{\alpha}(\{\rho\})\cap \rrbracket:\exists v_2\in\gamma\circ\operatorname{Faexp}^{\triangleright}\llbracket A_2\rrbracket\circ
          \dot{\alpha}(\{\rho\}) \cap \mathbb{I} : v_1 \in v_2 = \mathsf{tt}\})
                      \emptyset monotony and \{\rho\} \subseteq \dot{\gamma}(r)
          \dot{lpha}(\{
ho\in\dot{\gamma}(r)\mid\exists v_1\in\gamma\circ \mathrm{Faexp}^{	riangle} \llbracket A_1
Vert \circ\dot{lpha}(\dot{\gamma}(r))\cap \mathbb{I}:\exists v_2\in\gamma\circ \mathrm{Faexp}^{	riangle} \llbracket A_2
Vert \circ
           \dot{\alpha}(\dot{\gamma}(r)) \cap \mathbb{I} : v_1 \in v_2 = \mathsf{tt}\}
                       \partial \dot{\alpha} \circ \dot{\gamma} reductive and monotony
          \dot{\alpha}(\{\rho\in\dot{\gamma}(r)\mid\exists v_1\in\gamma\circ\operatorname{Faexp}^{\triangleright}\llbracket A_1\rrbracket\circ(r)\cap\mathbb{I}:\exists v_2\in\gamma\circ\operatorname{Faexp}^{\triangleright}\llbracket A_2\rrbracket(r)\cap\mathbb{I}:
           v_1 \, c \, v_2 = \mathsf{tt} \})
= (\exists v_1 \in \gamma \circ \mathsf{Faexp}^{\triangleright} \llbracket A_1 \rrbracket \circ (r) \cap \mathbb{I} : \exists v_2 \in \gamma \circ \mathsf{Faexp}^{\triangleright} \llbracket A_2 \rrbracket (r) \cap \mathbb{I} : v_1 \in v_2 = \mathsf{tt} ?
           \dot{\alpha}(\dot{\gamma}(r)) : \dot{\alpha}(\emptyset)
                       \partial \dot{\alpha} \circ \dot{\gamma} reductive
 = (\exists v_1 \in \gamma \circ \operatorname{Faexp}^{\triangleright} \llbracket A_1 \rrbracket \circ (r) \cap \mathbb{I} : \exists v_2 \in \gamma \circ \operatorname{Faexp}^{\triangleright} \llbracket A_2 \rrbracket (r) \cap \mathbb{I} : v_1 \in v_2 = \operatorname{\mathsf{tt}} ?
          r:\dot{\perp}
 \dot{\sqsubseteq} č(Faexp^{\triangleright} \llbracket A_1 \rrbracket, Faexp^{\triangleright} \llbracket A_2 \rrbracket)r
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                                                                                                                                                                        @ P. Cousot. 2005
```

```
=\dot{\alpha}(\operatorname{Cbexp}[false](\dot{\gamma}(r)))
                                                                                                                                    \partial def. (17) of \ddot{\alpha}
= \dot{\alpha}(\emptyset)
                                                                                                                                      \partial def. (2) of \dot{\alpha}
                                                                                                                                      \partial def. (3) of \dot{\alpha}
= \lambda Y \cdot |
                                                                                    by defining Abexp[false]r \stackrel{\text{def}}{=} \lambda Y \cdot \bot 
= Abexp[false]r
    8 — When B = A_1 \, c \, A_2 is an arithmetic comparison, we have
       \ddot{\alpha}(\operatorname{Cbexp}[A_1 \subset A_2])r
=\dot{\alpha}(\operatorname{Cbexp}[A_1 \subset A_2](\dot{\gamma}(r)))
                                                                                                                                   7 def. (17) of \ddot{\alpha}
=\dot{\alpha}(\underline{c}^{\mathcal{C}}(\text{Faexp}[A_1], \text{Faexp}[A_2])(\dot{\gamma}(r))) (structural def. of Cbexp[A_1 \in A_2])
= \dot{\alpha}(\{\rho \in \dot{\gamma}(r) \mid \exists v_1 \in \operatorname{Faexp}[A_1](\{\rho\}) \cap \mathbb{I} : \exists v_2 \in \operatorname{Faexp}[A_2](\{\rho\}) \cap \mathbb{I} :
       v_1 \, c \, v_2 = \text{tt} \})
                by (10) so that \alpha^{\triangleright}(\operatorname{Faexp}[A_i]) \stackrel{.}{\sqsubset} \operatorname{Faexp}[A_i] by induction hypothesis,
                  (8) whence Faexp[A] \subset \gamma^{\triangleright}(\text{Faexp}^{\triangleright}[A]) and by monotony of \dot{\alpha}
       \dot{\alpha}(\{\rho\in\dot{\gamma}(r)\mid\exists v_1\in\gamma^{^{\triangleright}}(\operatorname{Faexp}^{^{\triangleright}}\llbracket A_1\rrbracket)(\{\rho\})\cap\mathbb{I}:\exists v_2\in\gamma^{^{\triangleright}}(\operatorname{Faexp}^{^{\triangleright}}\llbracket A_2\rrbracket)(\{\rho\})\cap
      \mathbb{I}: v_1 \in v_2 = \mathsf{tt}\}
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                                                                                             © P. Cousot, 2005
```

```
Where \check{\mathsf{c}}(p_1,p_2)r\ \dot{\exists}\ (\exists v_1\in\gamma(p_1):\exists v_2\in\gamma(p_2)\cap\mathbb{I}:v_1\ \mathsf{c}\ v_2=\mathsf{tt}\ ?\ r
                 ) (<u>L</u>
    9 — When B = B_1 \& B_2 is a conjunction, we have
       \ddot{\alpha}(\operatorname{Cbexp}[B_1 \& B_2])r
=\dot{\alpha}(\operatorname{Cbexp}[B_1 \& B_2])(\dot{\gamma}(r))
                                                                                                                    ? def. (17) of \ddot{\alpha}
               \partial def. Cbexp[B_1 \& B_2]
      \dot{lpha}(\operatorname{Cbexp}\llbracket B_1 
rbracket(\dot{\gamma}(r)) \cap \operatorname{Cbexp}\llbracket B_2 
rbracket)(\dot{\gamma}(r)))
              7by monotony \
= \dot{\alpha}(\operatorname{Cbexp}[B_1](\dot{\gamma}(r))) \dot{\cap} \dot{\alpha}(\operatorname{Cbexp}[B_2](\dot{\gamma}(r)))
              7 def. (17) of \ddot{\alpha}
       \ddot{\alpha}(\operatorname{Cbexp}[B_1])r \ \dot{\alpha}(\operatorname{Cbexp}[B_2])r
               7 induction hypothesis (19) and ¬ monotone \
       Abexp[B_1]r \dot{\sqcap} Abexp[B_2]r
Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005
                                                                                                                            © P. Cousot, 2005
```

by defining Abexp $[B_1 \& B_2]r \stackrel{\text{def}}{=} Abexp[B_1]r \dot{\sqcap} Abexp[B_2]r$ Abexp $[B_1 \& B_2]r$.

10 — The case $B = B_1 \mid B_2$ of disjunction is similar by first overapproximating $\operatorname{Cbexp}[B_1|B_2]R = (\operatorname{Cbexp}[B_1]R \cap (\operatorname{Cbexp}[B_2]R \cup \operatorname{Cbexp}[T(\neg B_2)]R)) \cup$ $(\operatorname{Cbexp}[B_2][R \cap (\operatorname{Cbexp}[B_1][R \cup \operatorname{Cbexp}[T(\neg B_1)][R))])$ by $\operatorname{Cbexp}[B_1][R \cup \operatorname{Cbexp}[B_2][R]$.

In conclusion, we have designed the abstract interpretation Abexp of boolean expressions in such a way that it satisfies the soundness requirement (19) as summarized in (20).

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005

@ P. Cousot, 2005

Definition of the forward reachability collecting semantics of commands (lecture 14)

The forward reachability collecting semantics $\mathbb{R}_{\mathbb{C}}$ \mathbb{R} of a command $C \in Com$ (of a given program P) specifies the set of reachable states during any execution of C starting at its starting point in any of the environments satisfying the precondition R.

$$egin{aligned} \operatorname{Rcom} \; &\in \; \operatorname{Com} \mapsto \wp(\operatorname{Env}\llbracket P \rrbracket) \stackrel{\sqcup}{\longmapsto} (\operatorname{in}_P \llbracket C \rrbracket \mapsto \wp(\operatorname{Env}\llbracket P \rrbracket)) \ \operatorname{Rcom}\llbracket C \rrbracket R \ell \stackrel{\operatorname{def}}{=} \; \{
ho \; | \; \exists
ho' \in R : \langle \langle \operatorname{at}_P \llbracket C \rrbracket, \;
ho'
angle, \; \langle \ell, \;
ho
angle \rangle \in au^\star \llbracket C \rrbracket \} \end{aligned}$$

Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005

@ P. Cousot. 2005

Forward non-relational finitary reachability static analysis of commands

Structural specification of the forward reachability collecting semantics of commands (lecture 14)

```
Rcom[skip]R\ell = R
Rcom[X := A]R\ell = match \ell with
 |\operatorname{at}_{\mathcal{P}}[\bar{X} := A]| \to R
  \{ \text{after}_{\mathcal{P}} \llbracket \mathtt{X} := A \rrbracket \to \{ 
ho [\mathtt{X} := i] \mid 
ho \in R \land i \in (\mathrm{Faexp} \llbracket A \rrbracket \{ 
ho \}) \cap \mathbb{I} \}
\operatorname{Rcom} \llbracket C 
rbracket R\ell where C = \operatorname{if} B then S_t else S_f fi =
     match \ell with
            |\operatorname{at}_P[\![C]\!] \to R
             \|\operatorname{in}_P \llbracket S_t 
Vert 	o \operatorname{Rcom} \llbracket S_t 
Vert (\operatorname{Cbexp} \llbracket B 
Vert R) \ell
            \|\operatorname{in}_P \llbracket S_f 
Vert 	o \operatorname{Rcom} \llbracket S_f 
Vert (\operatorname{Cbexp} \llbracket T(\neg(B)) 
Vert R) \ell
             \|\operatorname{after}_P \llbracket C 
Vert 	o \operatorname{Rcom} 
Vert S_t 
Vert (\operatorname{Cbexp} 
Vert B 
Vert R) (\operatorname{after}_P 
Vert S_t 
Vert)
                       \cup \operatorname{Rcom}[S_f](\operatorname{Cbexp}[T(\neg(B))]R)(\operatorname{after}_P[S_f])
```

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

```
\operatorname{Rcom} \llbracket C \rrbracket R \ell where C = \text{while } B \text{ do } S \text{ od } =
      let I = \operatorname{lfp}_{0}^{\subseteq} \lambda X \cdot R \cup \operatorname{Rcom}[S](\operatorname{Cbexp}[B]X)(\operatorname{after}_{P}[S]) in
              match ℓ with
                |\operatorname{at}_{\mathcal{P}}\llbracket C
rbracket 	o I
                \operatorname{in}_P \llbracket S 
rbracket \to \operatorname{Rcom} \llbracket S 
rbracket (\operatorname{Cbexp} \llbracket B 
rbracket I)(\ell)
                 \operatorname{after}_P \llbracket C \rrbracket \to \operatorname{Cbexp} \llbracket T(\neg(B)) \rrbracket R) I
\operatorname{Rcom} \mathbb{I}C : S\mathbb{I}R\ell = \operatorname{match} \ell \text{ with }
         |\operatorname{in}_P \llbracket C 
rbracket 	o \operatorname{Rcom} \llbracket C 
rbracket R\ell
         \| \operatorname{in}_P \llbracket S 
\| 	o \operatorname{Rcom} \llbracket S 
\| (\operatorname{Rcom} \llbracket C 
\| R(\operatorname{after}_P \llbracket C 
\|)) \ell
Rcom[S]; R\ell = Rcom[S]R\ell
```

```
Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005
```

© P. Cousot, 2005

```
\iff \lambda r \cdot \lambda \ell \cdot \dot{\alpha}(\varphi(\dot{\gamma}(r))(\ell)) \stackrel{..}{\sqsubseteq} \psi
   \iff \forall r : \forall \ell : \dot{\alpha}(\varphi(\dot{\gamma}(r))(\ell)) \stackrel{..}{\sqsubseteq} \psi(r)(\ell)
   \iff \forall r : \forall \ell : \varphi(\dot{\gamma}(r))(\ell) \subseteq \dot{\gamma}(\psi(r)(\ell))
   \implies \forall R : \forall \ell : \varphi(\dot{\gamma}(\dot{\alpha}(R)))(\ell) \subseteq \dot{\gamma}(\psi(\dot{\alpha}(R))(\ell))
   \implies \dot{\gamma} \circ \dot{\alpha} is extensive, \varphi is monotone.
                 \forall R : \forall \ell : \varphi(R)(\ell) \subset \dot{\gamma}(\psi(\dot{\alpha}(R))(\ell))
  \iff \varphi \stackrel{\sim}{\subset} \lambda R \cdot \lambda \ell \cdot \dot{\gamma}(\psi(\dot{\alpha}(R))(\ell))
   \iff \varphi \overset{.}{\subset} \gamma \llbracket C \rrbracket (\psi)
   \implies \forall R : \forall \ell : \varphi(R)(\ell) \subseteq \dot{\gamma}(\psi(\dot{\alpha}(R))(\ell))
   \implies \forall r : \forall \ell : \varphi(\dot{\gamma}(r))(\ell) \subseteq \dot{\gamma}(\psi(\dot{\alpha}(\dot{\gamma}(r)))(\ell))
   \implies \forall r : \forall \ell : \dot{\alpha}(\varphi(\dot{\gamma}(r))(\ell)) \stackrel{.}{\sqsubset} \psi(\dot{\alpha}(\dot{\gamma}(r)))(\ell)
                            \partial \dot{\alpha} \circ \dot{\gamma} is reductive and \psi monotone
                 \forall r: \forall \ell: \dot{lpha}(\varphi(\dot{\gamma}(r))(\ell)) \stackrel{.}{\sqsubset} \psi(r)(\ell)
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                                                                                                                                                  © P. Cousot, 2005
```

Nonrelational abstraction of the forward reachability collecting semantics of commands

$$\begin{split} \langle \wp(\mathbb{R}) & \stackrel{\sqcup}{\longmapsto} (\operatorname{in}_P \llbracket C \rrbracket \mapsto \wp(\mathbb{R})), \; \dot{\sqsubseteq} \rangle \\ & \stackrel{\gamma \llbracket C \rrbracket}{\varprojlim} \langle (\mathbb{V} \mapsto L) \stackrel{\operatorname{m}}{\longmapsto} (\operatorname{in}_P \llbracket C \rrbracket \mapsto (\mathbb{V} \mapsto L)), \; \dot{\dot{\sqsubseteq}} \rangle \\ \text{where } \mathbb{R} \overset{\operatorname{def}}{=} \mathbb{V} \mapsto \mathbb{I}_{\Omega} \text{ and } \\ & \alpha \llbracket C \rrbracket \varphi \overset{\operatorname{def}}{=} \lambda r \cdot \lambda \ell \cdot \dot{\alpha} (\varphi(\dot{\gamma}(r))(\ell)) \\ & \gamma \llbracket C \rrbracket \psi \overset{\operatorname{def}}{=} \lambda R \cdot \lambda \ell \cdot \dot{\gamma} (\psi(\dot{\alpha}(R))(\ell)) \end{split}$$

PROOF.

$$lpha \llbracket C
rbracket arphi \stackrel{\dot{arphi}}{=} \psi$$
Course 16.399: "Abstract interpretation", Tuesday Ap

$$\implies \forall r : \forall \ell : \alpha \llbracket C \rrbracket (\varphi)(r)(\ell) \stackrel{.}{\sqsubseteq} \psi(r)(\ell) \\ \implies \alpha \llbracket C \rrbracket (\varphi) \stackrel{.}{\sqsubseteq} \psi$$

П

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

Generic non-relational forward reachability abstract semantics of commands

We can now define the generic 6 non-relational forward reachability abstract semantics of commands C by

$$Acom[C] \stackrel{\dot{=}}{=} \alpha[C](Rcom[C])$$
 (21)

```
6 i.e. parameterized by \langle \wp(\mathbb{V} \mapsto \mathcal{V}), \subseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle L, \sqsubseteq \rangle.
Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005
                                                                                                                                                                    @ P. Cousot. 2005
```

```
Acom \llbracket C \rrbracket R\ell where C = while B do S od =
    let I \stackrel{\dot}{\sqsupset} Ifp^{\stackrel{\vdash}{=}} \lambda X \cdot R \stackrel{\dot}{\i} Acom[S](Abexp[B]X)(after_P[S]) in
           match & with
            |\operatorname{at}_{\mathcal{D}}\llbracket C
rbracket 	o I
             \lim_{P} \overline{\llbracket S 
rbracket} 	o \operatorname{Acom} \overline{\llbracket S 
rbracket} (\operatorname{Abexp} \overline{\llbracket B 
rbracket} I) \ell
             \operatorname{after}_P \llbracket C 
rbracket 	o \operatorname{Abexp} \llbracket T(\lnot(B)) 
rbracket I
Acom \mathbb{I}C; S\mathbb{I}R\ell = match \ell with
       |\inf_P \llbracket C \rrbracket \to \operatorname{Acom} \llbracket C \rrbracket R \ell
      \lim_{P} \|S\| \to \operatorname{Acom} \|S\| (\operatorname{Acom} \|C\| R(\operatorname{after}_{P} \|C\|)) \ell
Acom[S;]R\ell = Acom[S]R\ell
```

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005 © P. Cousot, 2005

Structural definition of the generic non-relational forward reachability abstract semantics of commands

```
Rcom[skip]R\ell = R
         Acom[X := A]R\ell = match \ell with
          |\operatorname{at}_{P}[\bar{X} := A]| \to R
           |\operatorname{after}_P[X := A]| \to R[X := \operatorname{Faexp}[A](R) \cap ?^{\triangleright}]
         Acom[C]R\ell where C=if\ B then S_t else S_f fi =
              match ℓ with
                    \operatorname{at}_P \llbracket C 
rbracket \to R
                    \operatorname{in}_{P}[S_{t}] \to \operatorname{Acom}[S_{t}](\operatorname{Abexp}[B]R)\ell
                    \operatorname{in}_P \llbracket S_f \rrbracket \to \operatorname{Acom} \llbracket S_f \rrbracket (\operatorname{Abexp} \llbracket T(\neg(B)) \rrbracket R) \ell
                    \operatorname{after}_P \llbracket C 
Vert 	o \operatorname{Acom} 
Vert S_t 
Vert (\operatorname{Abexp} 
Vert B 
Vert R) (\operatorname{after}_P 
Vert S_t 
Vert)
                            \sqcup Acom[S_f](Abexp[T(\neg(B))]R)(after_P[S_f])
Course 16,399; "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
```

Calculational design of the structural definition of the generic nonrelational forward reachability abstract semantics of commands

```
PROOF.
```

```
-\alpha[skip](Rcom[skip])R\ell
                                                                                                                                ?def. Acom[skip]∫
= \dot{\alpha}(\text{Rcom}[skip](\dot{\gamma}(R))(\ell))
                                                                                                                                        \langle \operatorname{def.} \alpha [\operatorname{skip}] \rangle
= match ℓ with
         \operatorname{\mathsf{at}}_P \llbracket \operatorname{\mathsf{skip}} 
rbrack 	o \dot{lpha}(\dot{\gamma}(R))
         	ext{after}_P \llbracket 	ext{skip} 
rbrack 	o \dot{lpha}(\dot{\gamma}(R))
                                                                                                                               ?def. Rcom[skip]\
i match ℓ with
         \operatorname{\mathsf{at}}_P \llbracket \operatorname{\mathsf{skip}} 
rbracket 	o R
        |\operatorname{after}_P[\![\operatorname{skip}]\!] \to R
                                                                                                                             \partial \dot{\alpha} \circ \dot{\gamma} is reductive
def Acom[skip]
                                                                                                                                                    {Q.E.D.∫
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
```

```
- \alpha [X := A] (Rcom[X := A]) R\ell
                                                                                         \frac{1}{2} \operatorname{def. Acom} [X := A] 
=\dot{\alpha}(\operatorname{Rcom}[X := A](\dot{\gamma}(R))(\ell))
                                                                                                \partial \operatorname{def.} \alpha [X := A] 
= match \ell with
      \|\operatorname{at}_{P}[X:=A]\| \to \dot{\alpha}(\dot{\gamma}(R))
      ||\operatorname{after}_P[\![\mathsf{X} := A]\!] \to \dot{\alpha}(\{\rho[\mathsf{X} := i] \mid \rho \in \dot{\gamma}(R) \land i \in (\operatorname{Faexp}[\![A]\!]\{\rho\}) \cap \mathbb{I}\})|||\hat{\gamma}|| \text{def.}
     Rcom[X := A]
   match \ell with
      |\operatorname{at}_P[X:=A]] 	o R
      reductive
We consider the second term
```

```
match & with
          \operatorname{\mathsf{at}}_P \llbracket \mathtt{X} := A 
rbracket \to R
          \operatorname{after}_P \llbracket \mathsf{X} := A \rrbracket \to R [\mathsf{X} := \operatorname{Faexp} \llbracket A \rrbracket (R) \sqcap ?^{\triangleright}]
                                                                                                                                                                                             25
\stackrel{\text{def}}{=} \text{Acom}[X := A]
                                                                                                                                                                            7Q.E.D.\
— \alpha \llbracket C \rrbracket (\operatorname{Rcom} \llbracket C \rrbracket) R \ell where C = \operatorname{if} B then S_t else S_f fi
                                                                                                                                                           def. Acom [C]
= \dot{\alpha}(\operatorname{Rcom} \mathbb{C} \mathbb{I}(\dot{\gamma}(R))(\ell))
                                                                                                                                                                      7 \operatorname{def.} \alpha \mathbb{C} 
= match \ell with
          \operatorname{\mathsf{at}}_{P} \llbracket C 
Vert 	o \dot{lpha}(\dot{\gamma}(R))
          \operatorname{in}_P \llbracket S_t \rrbracket \to \dot{\alpha}(\operatorname{Rcom} \llbracket S_t \rrbracket (\operatorname{Cbexp} \llbracket B \rrbracket \dot{\gamma}(R)) \ell)
          \inf_{P} \llbracket S_f 
rbracket 	o \dot{lpha}(	ext{Rcom} \llbracket S_f 
rbracket (	ext{Cbexp} \llbracket T(\lnot(B)) 
rbracket \dot{\gamma}(R))\ell)
          \cup \operatorname{Rcom}[S_f](\operatorname{Cbexp}[T(\neg(B))]\dot{\gamma}(R))(\operatorname{after}_P[S_f]))
                                                                                                                                                           \frac{1}{2} \operatorname{def.} \operatorname{Rcom} \mathbb{C} \mathbb{C}
```

 $\dot{\alpha}(\{\rho[\mathtt{X}:=i]\mid \rho\in\dot{\gamma}(R)\land i\in(\mathtt{Faexp}[\![A]\!]\{\rho\})\cap\mathbb{I}\})$ $\dot{\Box} \quad \dot{\alpha}(\{\rho[\mathtt{X}:=i] \mid \rho \in \dot{\gamma}(R) \land i \in (\gamma \circ \alpha(\mathtt{Faexp}\llbracket A \rrbracket(\dot{\gamma}(R)))) \cap \rrbracket\})$ $\gamma \circ \alpha$ is extensive and monotony with $\{\rho\} \subseteq \dot{\gamma}(R)$ $= \dot{\alpha}(\{\rho[\mathtt{X} := i] \mid \rho \in \dot{\gamma}(R) \land i \in \gamma(\alpha^{\triangleright}(\mathtt{Faexp}[\![A]\!])R) \cap \mathbb{I}\})$ 7 def. (7) of $\alpha^{\triangleright}(\Phi) \stackrel{\text{def}}{=} \alpha \circ \Phi \circ \dot{\gamma} \langle$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005 @ P. Cousot, 2005

```
\dot{\sqsubseteq} \ \dot{\alpha}(\{\rho[\mathtt{X}:=i] \mid \rho \in \dot{\gamma}(R) \land i \in \gamma(\mathtt{Faexp}^{\triangleright}\llbracket A \rrbracket R) \cap \mathbb{I}\})
                                                                                                                                         7 def. (10) of
       Faexp||A|| \stackrel{\dot}{\supseteq} \alpha^{\triangleright} (Faexp||A||) and monotony
                                                                                                                                                                                                            We now prove a lemma for S \in \{S_t, S_t\} and more generally for any immediate
=\lambda Y \cdot \alpha(\{\rho[X:=i](Y) \mid \rho \in \dot{\gamma}(R) \land i \in \gamma(\text{Faexp}^{\triangleright}[A]R) \cap \mathbb{I}\}) \(\rangle\) pointwise def. \(\delta\cdot\)
                                                                                                                                                                                                            subcomponent of the command C so that \alpha ||C|| (R\text{com}||S||) (A\text{bexp}||B||R) \ell \dot{\square}
= \lambda \mathbf{Y} \cdot (\mathbf{Y} \neq \mathbf{X} ? \alpha(\{\rho(\mathbf{Y}) \mid \rho \in \dot{\gamma}(R)\}) * \alpha(\{i \mid i \in \gamma(\mathrm{Faexp}^{\triangleright} \llbracket A \rrbracket R) \cap \mathbb{I}\})) \quad \text{? def.}
                                                                                                                                                                                                            Acom[S](Abexp[B]R)\ell by induction hypothesis. We have
=\lambda Y \cdot (Y \neq X ? \alpha(\{\rho(Y) \mid \forall Z \in Var[P] : \rho(Z) \in \gamma(R(Z))\})
                                                                                                                                                                                                                   \dot{\alpha}(\operatorname{Rcom}[S](\operatorname{Cbexp}[B]\dot{\gamma}(R))\ell)
                                                                                                                              ?pointwise def. γ\
       \alpha(\gamma(\operatorname{Faexp}^{\triangleright} \llbracket A \rrbracket R) \cap \mathbb{I}))
= \lambda \mathbf{Y} \cdot (\mathbf{Y} \neq \mathbf{X} ? \alpha(\{\rho(\mathbf{Y}) \mid \rho(\mathbf{Y}) \in \gamma(R(\mathbf{Y}))\}) : \alpha(\gamma(\mathbf{Faexp}^{\triangleright} \llbracket A \rrbracket R) \cap \mathbb{I}))
                                                                                                                                                                                                           \stackrel{.}{\sqsubseteq} \dot{\alpha}(\operatorname{Rcom}[S](\dot{\gamma}(\dot{\alpha}(\operatorname{Cbexp}[B]\dot{\gamma}(R))))\ell)
       constraints on \rho(Z), Z \neq Y
                                                                                                                                                                                                           = \dot{\alpha}(\operatorname{Rcom}[S](\dot{\gamma}(\ddot{\alpha}(\operatorname{Cbexp}[B])R))\ell)
= \lambda Y \cdot (Y \neq X ? \alpha(\gamma(R(Y))) : \alpha(\gamma(Faexp^{\square} A R)) \cap \alpha(I))
                                                                                                                                     \alpha monotone
                                                                                                                                                                                                           \dot{\Box} \quad \dot{\alpha}(\operatorname{Rcom}[S](\dot{\gamma}(\operatorname{Abexp}[B]R))\ell) \qquad \text{?def. (19) of } \operatorname{Abexp}[B] \ \ddot{\Box} \ \ddot{\alpha}(\operatorname{Cbexp}[B])
\dot{\Box} \lambda Y \cdot (Y \neq X ? R(Y) : Faexp <math>A R \cap ?
                                                                                           \partial \alpha \circ \gamma reductive, (13) so that
```

Grouping the two cases, we get

 $= R[X := \operatorname{Faexp}[A](R) \cap ?^{\triangleright}]$

 $?^{\triangleright} \supseteq \alpha(\mathbb{I})$, monotony of $\sqcap \mathcal{I}$

assignment \

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

and monotony \

 $= \alpha \|C\| (\text{Rcom} \|S\|) (\text{Abexp} \|B\|R) \ell$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

 $i\dot{\gamma} \circ \dot{\alpha}$ extensive and monotony

 $\partial \operatorname{def.} \alpha \llbracket C \rrbracket \varphi \stackrel{\operatorname{def}}{=} \lambda r \cdot \lambda \ell \cdot \dot{\alpha} (\varphi (\dot{\gamma}(r))(\ell))$

 $\partial \operatorname{def.} (17) \text{ of } \ddot{\alpha}(\Phi) \stackrel{\operatorname{def}}{=} \dot{\alpha} \circ \Phi \circ \dot{\gamma}$

© P. Cousot, 2005

7 def. assignment \

```
\stackrel{.}{\sqsubset} Acom [S](Abexp[B]R)\ell
                                                                  by induction hypothesis?
```

We have $\dot{\alpha}(\dot{\gamma}(R)) \stackrel{.}{\sqsubset} R$. Applying the lemma to S_t and S_f and observing that the last case is a combination of the two using the fact that $\dot{\alpha}$ is a complete join morphism, we get

```
\dot{\sqsubseteq} match \ell with
             \operatorname{\mathsf{at}}_P \llbracket C 
rbracket 	o R
             \operatorname{in}_P \llbracket S_t \rrbracket \to \operatorname{Acom} \llbracket S_t \rrbracket (\operatorname{Abexp} \llbracket B \rrbracket R) \ell
             [\operatorname{in}_P \llbracket S_f \rrbracket \to \operatorname{Acom} \llbracket S_f \rrbracket (\operatorname{Abexp} \llbracket T(\neg(B)) \rrbracket R) \ell]
             \operatorname{after}_{P} \llbracket C \rrbracket \to \operatorname{Acom} \llbracket S_t \rrbracket (\operatorname{Abexp} \llbracket B \rrbracket R) (\operatorname{after}_{P} \llbracket S_t \rrbracket)
          \sqcup Acom \llbracket S_f \rrbracket (Abexp \llbracket T(\neg(B)) \rrbracket R) (after \llbracket S_f \rrbracket)
\overset{\text{def}}{=} \operatorname{\mathsf{Acom}} \llbracket C 
rbracket
                                                                                                                                                                                                                      7Q.E.D.\
— \alpha \llbracket C \rrbracket (\operatorname{Rcom} \llbracket C \rrbracket) R \ell where C = \text{while } B \text{ do } S \text{ od }
                                                                                                                                                                                                 def. Acom [C]
=\dot{\alpha}(\operatorname{Rcom}[C](\dot{\gamma}(R))(\ell))
                                                                                                                                                                                                             \partial def. \alpha \mathbb{C}
```

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005 @ P. Cousot. 2005

```
To overestimate \dot{\alpha}(\mathsf{lfp}^{\subseteq}_{a}\lambda X \cdot \dot{\gamma}(R) \cup \mathsf{Rcom}[S](\mathsf{Cbexp}[B]X)(\mathsf{after}_{P}[S])) in fix-
point form, we use the least fixpoint abstraction theorem of course 15. To
compute the abstract transformer, we compute:
```

```
\dot{\alpha}(\dot{\gamma}(R) \cup \operatorname{Rcom}[S](\operatorname{Cbexp}[B]X)(\operatorname{after}_P[S]))
= \dot{\alpha}(\dot{\gamma}(R)) \dot{\sqcup} \dot{\alpha}(\operatorname{Rcom}[S](\operatorname{Cbexp}[B]X)(\operatorname{after}_P[S]))
                                                                                                                              i\dot{\alpha} is a complete join
        morphism (
\vdash R \sqcup \dot{\alpha}(\operatorname{Rcom}[S](\operatorname{Cbexp}[B]X)(\operatorname{after}_P[S]))
                                                                                                                     \partial \dot{\alpha} \circ \dot{\gamma} is reductive and \dot{\Box}
        monotone
\vdash R \sqcup Acom[S](Abexp[B]X(after_P[S]))
                                                                                                            by the previous lemma with
        \ell = \operatorname{after}_{\mathcal{D}} [S] 
and so
\stackrel{\sqsubseteq}{\sqsubseteq} \mathbf{lfp}_{A(A)}^{\stackrel{\sqsubseteq}{}} \lambda X \cdot R \stackrel{\sqcup}{\cup} \mathrm{Acom} \llbracket S \rrbracket (\mathrm{Abexp} \llbracket B \rrbracket X (\mathrm{after}_{P} \llbracket S \rrbracket))
                                                                                                                                                   7 by fixpoint
        approximation \
```

@ P. Cousot. 2005

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005.

```
= let I = \mathbf{lfp}_{a}^{\subseteq} \lambda X \cdot \dot{\gamma}(R) \cup \mathbf{Rcom}[S](\mathbf{Cbexp}[B]X)(\mathbf{after}_{P}[S]) in
           match \ell with
            |\operatorname{at}_P \llbracket C 
rbracket 	o \dot{lpha}(I)|
            \lim_{P} \llbracket S 
rbracket \to \dot{lpha}(\mathrm{Rcom} \llbracket S 
rbracket (\mathrm{Cbexp} \llbracket B 
rbracket I)(\ell))
            \|\operatorname{after}_P \llbracket C 
Vert 	o \dot{lpha}(\operatorname{Cbexp} \llbracket T(\lnot(B)) 
Vert R)I)\|
                                                                                                                                                                                     def. \operatorname{Rcom}[C]
\vdash let \overline{I} \stackrel{.}{\supset} \dot{\alpha}(\mathsf{lfp}^{\subseteq} \lambda X \cdot \dot{\gamma}(R) \cup \mathsf{Rcom}[S](\mathsf{Cbexp}[B]X)(\mathsf{after}_P[S])) in
           match \ell with
            \mid \operatorname{at}_{P}\llbracket C 
Vert 
ightarrow \dot{lpha}(\dot{\gamma}(\overline{I}))
            \|\operatorname{in}_P \llbracket S \rrbracket 	o \dot{lpha}(\operatorname{Rcom} \llbracket S \rrbracket (\operatorname{Cbexp} \llbracket B \rrbracket \gamma(\overline{I}))(\ell))\|
            \|\operatorname{after}_P \llbracket C 
Vert 	o \dot{lpha}(\operatorname{Cbexp} \llbracket T(\lnot(B)) 
Vert R) \gamma(\overline{I}))\|
                                                                                                                                                                                      by monotony \
\stackrel{.}{\sqsubseteq} \ \text{let} \ \overline{I} \stackrel{.}{\supseteq} \dot{\alpha}(\mathsf{lfp}_{a}^{\subseteq} \lambda X \cdot \dot{\gamma}(R) \cup \mathsf{Rcom}[S](\mathsf{Cbexp}[B]X)(\mathsf{after}_{P}[S])) \ \text{in}
           match \ell with
            \mid \operatorname{at}_{P} \llbracket C 
rbracket 
ightarrow \overline{I}
             \operatorname{in}_P \llbracket S 
rbracket 	o \dot{lpha}(\operatorname{Rcom} \llbracket S 
rbracket (\operatorname{Cbexp} \llbracket B 
rbracket \gamma(\overline{I}))(\ell))
             \operatorname{after}_P \llbracket C 
Vert 	o \dot{lpha}(\operatorname{Cbexp} \llbracket T(\neg(B)) 
Vert R) \gamma(\overline{I}))
                                                                                                                                                                          \partial \dot{\alpha} \circ \gamma is reductive
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
```

```
= \mathbf{lfp}^{\mathbb{L}} \lambda X \cdot R \dot{\sqcup} \operatorname{Acom}[S](\operatorname{Abexp}[B]X(\operatorname{after}_{P}[S]))  (by def. (3)
         of \dot{\alpha}(R) \stackrel{\mathrm{def}}{=} \alpha_c \circ \alpha_r(R) = \lambda \mathtt{X} \in \mathbb{V} \cdot \alpha(\{\rho(\mathtt{X}) \mid \rho \in R\} \text{ so that } \dot{\alpha}(R) = \lambda \mathtt{X} \cdot \alpha(\emptyset).
         But \emptyset \subseteq \gamma(\bot) implies by (1) that \alpha(\emptyset) \sqsubseteq \bot whence \alpha(\emptyset) = \bot by def.
         infimum and so pointwise \dot{\alpha}(\emptyset) = \dot{\bot} \hat{\ }
If we let \overline{I} be an overapproximation of the abstract fixpoint, that is
           \mathsf{lfp}^{\sqsubseteq} \lambda X \cdot \dot{\gamma}(R) \, \dot{\sqcup} \, \mathsf{Acom} \llbracket S \rrbracket (\mathsf{Abexp} \llbracket B \rrbracket X) (\mathsf{after}_P \llbracket S \rrbracket) \, \dot{\sqsubseteq} \, \overline{I}
then \dot{\alpha}(\mathbf{lfp}_{a}^{\subseteq}\lambda X \cdot \dot{\gamma}(R) \cup \mathrm{Rcom}[S](\mathrm{Cbexp}[B]X)(\mathrm{after}_{P}[S])) \stackrel{.}{\sqsubseteq} \overline{I} by transitivity
and so
         \dot{\alpha}(\operatorname{Rcom}[S_t](\operatorname{Cbexp}[B]\dot{\gamma}(R))\ell)
\vdash let \overline{I} \stackrel{.}{\supseteq} \mathsf{lfp}^{\sqsubseteq} \lambda X \cdot \dot{\gamma}(R) \stackrel{.}{\sqcup} \mathsf{Acom}[S](\mathsf{Abexp}[B]X)(\mathsf{after}_P[S]) in
         match ℓ with
           \mid \operatorname{at}_{P} \llbracket C 
rbracket 
ightarrow \overline{I}
           \operatorname{in}_P \llbracket S 
Vert 	o \dot{lpha}(\operatorname{Rcom} \llbracket S 
Vert (\operatorname{Cbexp} \llbracket B 
Vert \gamma(\overline{I}))(\ell))
           \operatorname{after}_P \llbracket C 
rbracket 	o \dot{lpha}(\operatorname{Cbexp} \llbracket T(\lnot(B)) 
rbracket R) \gamma(\overline{I}))
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                                                                                                                         © P. Cousot, 2005
```

```
= let \overline{I} \stackrel{.}{\supseteq} \mathbf{lfp}^{\sqsubseteq} \lambda X \cdot \dot{\gamma}(R) \stackrel{.}{\sqcup} \mathbf{Acom} [S] (\mathbf{Abexp} [B] X) (\mathbf{after}_{P} [S]) in
          match \ell with
           |\operatorname{at}_{P}\llbracket C
rbracket 	o \overline{I}|
           [\inf_{P} \|S\| \to \operatorname{Acom} \|S\| (\operatorname{Abexp} \|B\| \overline{I}) \ell
           |\operatorname{after}_P \llbracket C 
rbracket 	o \operatorname{Abexp} \llbracket T(\lnot(B)) 
rbracket \overline{I}
                                                                                                                         by the lemma and hyp. (19) on
         Abexp\llbracket B \rrbracket \stackrel{\sim}{\supset} \overset{\sim}{\alpha}(\operatorname{Cbexp} \llbracket B \rrbracket) \setminus
\stackrel{	ext{def}}{=} \operatorname{Acom} \llbracket C 
rbracket
                                                                                                                                                                                       7Q.E.D.\
-\alpha \mathbb{C} ; S \mathbb{C} (Rcom \mathbb{C} ; S \mathbb{I}) R \ell
                                                                                                                                                          \{ \operatorname{def. Acom} [C ; S] \}
 =\dot{\alpha}(\operatorname{Rcom} \mathbb{I}C ; S\mathbb{I}(\dot{\gamma}(R))(\ell))
                                                                                                                                                                       \partial def. \ \alpha \mathbb{C} \ ; \ S \mathbb{I} 
 = match \ell with
           |\inf_P \llbracket C \rrbracket \to \dot{lpha}(\mathrm{Rcom} \llbracket C \rrbracket \dot{\gamma}(R) \ell)
           \lim_{P} \|S\| 	o \dot{lpha}(\mathrm{Rcom} \|S\|(\mathrm{Rcom} \|C\|\dot{\gamma}(R)(\mathrm{after}_P \|C\|))\ell) \(\rangle \, \text{def. } \, \text{Rcom} \|C\| \, \)
\stackrel{\dot{}}{\sqsubset} match \stackrel{\dot{}}{\ell} with
           \|\operatorname{in}_P \llbracket C 
Vert 	o \dotlpha(\operatorname{Rcom} \llbracket C 
Vert \dot\gamma(R)\ell)\|
           \|\operatorname{in}_P \llbracket S 
Vert 	o \dot{lpha}(\operatorname{Rcom} \llbracket S 
Vert (\dot{\gamma}(\dot{lpha}(\operatorname{Rcom} \llbracket C 
Vert \dot{\gamma}(R)(\operatorname{after}_P \llbracket C 
Vert))\ell)))\|
                                                                                                                                                                                                7 γ ∘ à
          extensive and monotonv \
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                                                                                                                                  © P. Cousot, 2005
```

```
\stackrel{\text{def}}{=} \text{Acom}[S;]
                                                                                                              7Q.E.D. \
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                                                                           © P. Cousot, 2005
```

```
\dot{\sqsubseteq} match \ell with
           |\operatorname{in}_P \llbracket C 
rbracket 	o lpha \llbracket C 
rbracket (\operatorname{Rcom} \llbracket C 
rbracket)(R)\ell)
          |\inf_P \llbracket S \rrbracket \to \alpha \llbracket C \rrbracket (\operatorname{Rcom} \llbracket S \rrbracket) (\alpha \llbracket C \rrbracket (\operatorname{Rcom} \llbracket C \rrbracket) (R) (\operatorname{after}_P \llbracket C \rrbracket)) \ell)) \text{ (def. (21)}
         of \alpha \llbracket C \rrbracket \varphi \stackrel{\text{def}}{=} \lambda r \cdot \lambda \ell \cdot \dot{\alpha} (\varphi(\dot{\gamma}(r))(\ell)) \rangle
⊏ match ℓ with
           |\inf_P \llbracket C \rrbracket 	o \operatorname{Acom} \llbracket C \rrbracket R\ell
           \|\operatorname{in}_P \|S\| 	o lpha \|C\| (\operatorname{Rcom} \|S\|) (\operatorname{Acom} \|C\|R(\operatorname{after}_P \|C\|)) \ell) \|
                                                                                                                                                              7 ind. hyp. and
         monotony
 = match \ell with
           |\operatorname{in}_P \llbracket C 
rbracket 	o \operatorname{Acom} \llbracket C 
rbracket R\ell
          |\operatorname{in}_P \llbracket S \rrbracket \to \operatorname{Acom} \llbracket S \rrbracket (\operatorname{Acom} \llbracket C \rrbracket R (\operatorname{after}_P \llbracket C \rrbracket)) \ell
                                                                                                                                                                               ind. hyp.
\stackrel{\mathrm{def}}{=} \operatorname{Acom}\llbracket C \; ; \; S 
Vert
                                                                                                                                                                                     {Q.E.D.∫
                                                                                                                                                           \langle \operatorname{def. Acom} [S ; ] \rangle
 -\alpha \mathbb{C}[(Rcom S; ])R\ell
= \dot{\alpha}(\text{Rcom}[S;]](\dot{\gamma}(R))(\ell))
                                                                                                                                                                        \partial \operatorname{def.} \alpha S ; || S
= \dot{\alpha}(\operatorname{Rcom}[S]\dot{\gamma}(R)\ell)
                                                                                                                                                             \frac{1}{2} \operatorname{def.} \operatorname{Rcom} [S] : \mathbb{R}
\dot{\sqsubseteq} \operatorname{Acom}[S]R\ell
                                                                                                                                       by induction hypothesis?
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                                                                                                                                 © P. Cousot, 2005
```

Example: initialization and simple sign analysis

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

Peter Naur Michel Sintzoff Ben Wegbreit

- [1] Naur P.. "Checking of operand types in ALGOL compilers". BIT 5 (1965), 151-163.
- [2] M. Sintzoff. "Calculating properties of programs by valuations on specific models". Proceedings of ACM conference on Proving assertions about programs, Las Cruces, New Mexico, USA, pp. 203-207, 1972
- [3] Ben Wegbreit. "Property Extraction in Well-Founded Property Sets". IEEE Trans. Software Eng. 1(3): 270-285 (1975)

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

@ P. Cousot, 2005

- NEGZ, NZERO and POSZ such that $\gamma(\text{NEGZ}) \stackrel{\text{def}}{=} [\text{min_int}, 0] \cup$ $\{\Omega_{\mathtt{a}}\},\; \gamma(\mathtt{NZERO}) \stackrel{\mathrm{def}}{=} [\mathtt{min_int}, -1] \cup [\mathtt{1}, \mathtt{max_int}] \cup \{\Omega_{\mathtt{a}}\}$ and $\gamma(\texttt{POSZ}) \stackrel{\text{def}}{=} [\texttt{0}, \texttt{max_int}] \cup \{\Omega_{\texttt{a}}\}$ not included to illustrate losses of information
- if we had defined $\gamma(ERR) \stackrel{\text{def}}{=} \{\Omega_i\}$ then γ would not be monotone (hence we would not have a Galois connection)
- Another abstract value would be needed to discriminate the initialization and arithmetic errors:

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005

© P. Cousot, 2005

Initialization and simple sign abstraction

- Abstraction: record initialization and sign only
- Abstract lattice:

Concretization:

$$\begin{array}{ll} \gamma(\text{BOT}) \stackrel{\text{def}}{=} \{\Omega_{\text{a}}\} & \gamma(\text{INI}) \stackrel{\text{def}}{=} \mathbb{I} \cup \{\Omega_{\text{a}}\}, \\ \gamma(\text{NEG}) \stackrel{\text{def}}{=} [\min_\text{int}, -1] \cup \{\Omega_{\text{a}}\} & \gamma(\text{ERR}) \stackrel{\text{def}}{=} \{\Omega_{\text{i}}, \Omega_{\text{a}}\} \text{ (22)} \\ \gamma(\text{ZERO}) \stackrel{\text{def}}{=} \{0, \Omega_{\text{a}}\} & \gamma(\text{TOP}) \stackrel{\text{def}}{=} \mathbb{I}_{\Omega} \\ \gamma(\text{POS}) \stackrel{\text{def}}{=} [1, \max_\text{int}] \cup \{\Omega_{\text{a}}\} \end{array}$$

- Another possible definition of γ would have been (22) but with $\gamma(BOT) \stackrel{\text{def}}{=} \emptyset$.

> Then γ would not preserve meets (since e.g. $\gamma(NEG \sqcap POS) =$ $\gamma(\text{BOT}) = \emptyset \neq \{\Omega_a\} = \gamma(\text{NEG}) \sqcap \gamma(\text{POS})$. It would then follow that $\langle \alpha, \gamma \rangle$ is not a Galois connection since best approximations may not exist. For example $\{\Omega_a\}$ would be upper approximable by the minimal ERR, NEG, ZERO or POS, none of which being more precise than the others in all contexts.

- Another completely different choice of γ would be

$$\begin{array}{ll} \gamma(\text{BOT}) \stackrel{\text{def}}{=} \emptyset, & \gamma(\text{INI}) \stackrel{\text{def}}{=} \mathbb{I}, \\ \gamma(\text{NEG}) \stackrel{\text{def}}{=} [\text{min_int}, -1], & \gamma(\text{ERR}) \stackrel{\text{def}}{=} \{\Omega_{\text{i}}, \Omega_{\text{a}}\}, \\ \gamma(\text{ZERO}) \stackrel{\text{def}}{=} \{0\}, & \gamma(\text{TOP}) \stackrel{\text{def}}{=} \mathbb{I}_{\varOmega}. \end{array}$$

$$\gamma(\text{POS}) \stackrel{\text{def}}{=} [1, \text{max_int}]\},$$

- With such a definition of γ for a program analysis taking arithmetic overflows into account, the usual rule of signs POS+POS = POS would not hold since the sums of large positive machine integers may yield an arithmetic error Ω_a such that $\Omega_a \notin \gamma(POS)$. The correct version of the rule of sign would be POS+POS = TOP, which is too imprecise.
- A similar error $(\gamma(\text{NEG}) \stackrel{\text{def}}{=} \{z \in \mathbb{N} \mid z < 0\}$ and $\gamma(\text{POS}) \stackrel{\text{def}}{=} \{z \in \mathbb{N} \mid z \geq 0\})$ is done in [2], the first attempt to apply the rule of signs to programs (\bot, \top) , the lattice structure of abstract values [3], fixpoints and soundness criteria were also missing, indeed the sign analysis of [2] is erroneous)

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

69 — © P. Cousot, 2005

Initialization and simple sign abstract forward arithmetic operations

Considering the initialization and simple sign abstraction (23), the calculational design of the forward abstract operations proceeds as follows

Initialization and simple sign abstraction

The abstraction of $P \in \wp(\mathbb{I}_{\Omega})$ is

$$\alpha(P) \stackrel{\mathrm{def}}{=} (P \subseteq \{\Omega_{\mathbf{a}}\} \ \text{? BOT}$$

$$\parallel P \subseteq [\min_\mathrm{int}, -1] \cup \{\Omega_{\mathbf{a}}\} \ \text{? NEG}$$

$$\parallel P \subseteq \{0, \Omega_{\mathbf{a}}\} \ \text{? ZERO}$$

$$\parallel P \subseteq [1, \max_\mathrm{int}] \cup \{\Omega_{\mathbf{a}}\} \ \text{? POS}$$

$$\parallel P \subseteq \mathbb{I} \cup \{\Omega_{\mathbf{a}}\} \ \text{? INI}$$

$$\parallel P \subseteq \{\Omega_{\mathbf{i}}, \Omega_{\mathbf{a}}\} \ \text{? ERR}$$

$$\parallel \text{TOP}) .$$

$$(23)$$

so that (1) holds:
$$\langle \wp(\mathbb{I}_{\Omega}), \subseteq \rangle \xrightarrow{\gamma} \langle L, \sqsubseteq \rangle$$
.

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

— © P. Cousot, 200

$$\alpha(\mathbb{I})$$
= INI
 $\stackrel{\text{def}}{=} ?^{\triangleright}$.

We design $-{}^{\triangleright}(p) \stackrel{\text{def}}{=} \alpha(\{-v \mid v \in \gamma(p)\})$ by case analysis. Recall the definition of bounded machine integers.

$$\max_{i=1}^{n} n + i = 0$$
 greatest machine integer; min_int $i = 0$ max_int $i = 0$ smallest machine integer; (24) $i \in \mathbb{I} = 0$ mathematical integers; $i \in \mathbb{I} = 0$ machine integers.

We have

Course 16,399; "Abstract interpretation". Tuesday April 26th, 2005

⁷ following the pionner work of [1]

$$\begin{array}{lll} -^{\triangleright}(\text{BOT}) &= \alpha(\{-v \mid v \in \gamma(\text{BOT})\}) & \text{\langle def. (14) of $-^{\triangleright}$} \\ &= \alpha(\{_v \mid v \in \{\Omega_{\text{A}}\}\}) & \text{\langle def. (22) of γ} \\ &= \alpha(\{\Omega_{\text{A}}\}) & \text{\langle def. $-^{\triangle}$} \\ &= \text{BOT} & \text{\langle def. (23) of α} \\ -^{\triangleright}(\text{POS}) &= \alpha(\{-v \mid v \in \gamma(\text{POS})\}) & \text{\langle def. (14) of $-^{\triangleright}$} \\ &= \alpha(\{_v \mid v \in [1, \text{max_int}] \cup \{\Omega_{\text{A}}\}\}) & \text{\langle def. (22) of γ} \\ &= \alpha([-\text{max_int}, -1] \cup \{\Omega_{\text{A}}\}) & \text{\langle def. (23) of α} \\ &= \text{NEG} & \text{\langle def. (23) of α} \\ -^{\triangleright}(\text{ERR}) &= \alpha(\{-v \mid v \in \gamma(\text{ERR})\}) & \text{\langle def. (14) of $-^{\triangleright}$} \\ &= \alpha(\{\Omega_{\text{I}}, \Omega_{\text{A}}\}) & \text{\langle def. (22) of γ} \\ &= \alpha(\{\Omega_{\text{I}}, \Omega_{\text{A}}\}) & \text{\langle def. (23) of α} \\ &= \text{ERR} & \text{\langle def. (23) of α} \\ \end{array}$$

The calculational design of the abstract binary operators is also similar and will not be fully detailed. For division, we get

		q							
/	(p,q)	BOT	NEG	ZERO	POS	INI	ERR	TOP	
p	BOT	BOT	BOT	BOT	BOT	BOT	BOT	BOT	
	NEG	BOT	BOT	BOT	BOT	BOT	BOT	BOT	
	ZERO	BOT	BOT	BOT	ZERO	POS	ERR	TOP	
	POS	BOT	BOT	BOT	INI	INI	ERR	TOP	
	INI	BOT	BOT	BOT	INI	INI	ERR	TOP	
	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	TOP	ERR	ERR	ERR	TOP	TOP	ERR	TOP	

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005 — 73 —

© P. Cousot, 2005

Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005 — 75 —

© P. Cousot, 2005

The calculational design for the other cases of - and that of +is similar and we get

Let us consider a few typical cases. First division by a negative number always leads to an arithmetic error

$$\begin{array}{ll} /^{\triangleright}(\operatorname{POS},\operatorname{NEG}) &=& \alpha(\{v_1 \ / \ v_2 \ | \ v_1 \in \gamma(\operatorname{POS}) \land v_2 \in \gamma(\operatorname{NEG})\}) & \text{ (def. (15) of } /^{\triangleright} \text{)} \\ &=& \alpha(\{v_1 \ / \ v_2 \ | \ v_1 \in [\operatorname{l,max_int}] \cup \{\Omega_{\mathtt{a}}\} \land & \text{ (def. (22) of } \gamma\text{)} \\ & v_2 \in [\operatorname{min_int}, -1] \cup \{\Omega_{\mathtt{a}}\})\}) & \text{ (def. } / \text{)} \\ &=& \alpha(\{\Omega_{\mathtt{a}}\}) & \text{ (def. } / \text{)} \\ &=& \operatorname{BOT} & \text{ (def. } / \text{)} \end{aligned}$$

No abstract property exactly represents non-negative numbers which yields imprecise results

$$/^{\triangleright}(\texttt{POS}, \texttt{POS}) \ = \ \alpha(\{v_1 \ / \ v_2 \ | \ v_1 \in \gamma(\texttt{POS}) \land v_2 \in \gamma(\texttt{POS})\}) \qquad \text{\langle def. (15) of $/^{\triangleright}$} \}$$

$$= \ \alpha(\{v_1 \ / \ v_2 \ | \ v_1 \in [1, \texttt{max_int}] \cup \{\Omega_a\} \land \qquad \text{\langle def. (22) of γ} \}$$

$$= \ \alpha([0, \texttt{max_int}] \cup \{\Omega_a\}) \qquad \text{\langle def. \langle 23) of α}$$

$$= \ \texttt{INI} \qquad \text{\langle def. (23) of α}$$

Because of left to right evaluation, left errors are propagated first

$$\begin{array}{lll} &=& \alpha(\{v_1 \slash v_2 | v_1 \in \{\Omega_a\} \land v_2 \in \{\Omega_i, \Omega_a\}) & \text{ (def. (22) of } \gamma) \\ &=& \alpha(\{\Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \operatorname{BOT} & \text{ (def. } \slash \zeta) \\ &=& \operatorname{BOT} & \text{ (def. (23) of } \alpha) \\ & \text{ (def. (23) of } \alpha) \\ & \text{ (def. (23) of } \alpha) \\ & \text{ (def. (15) of } \slash \zeta) \\ &=& \alpha(\{v_1 \slash v_2 | v_1 \in \{\Omega_i, \Omega_a\} \land v_2 \in \{\Omega_a\}) & \text{ (def. (22) of } \gamma) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \operatorname{ERR} & \text{ (def. (23) of } \alpha) \\ & \text{ (def. (25) of } \gamma) \\ &=& \alpha(\{v_1 \slash v_2 | v_1 \in \operatorname{p(TOP)} \land v_2 \in \gamma(\operatorname{BOT})\}) & \text{ (def. (22) of } \gamma) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) \wedge v_2 \in \{\Omega_a\}) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta) \\ &=& \alpha(\{\Omega_i, \Omega_a\}) & \text{ (def. } \slash \zeta$$

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

© P. Cousot, 2005

Initialization and simple sign abstract forward arithmetic comparison operations

The abstract strict comparison for initialization and simple sign analysis is as follows

		p_2						
$\check{<}(p_1,p_2)R$		BOT, ERR	NEG	ZERO	POS	INI, TOP		
	BOT, ERR	ВОТ	В о Т	вот	В о Т	В о Т		
p_1	NEG	BÓT	R	R	R	R		
	ZERO	BÓT	В О Т	BŌT	R	R		
	POS	BÓT	В О Т	BŌT	R	R		
	INI, TOP	BÓT	R	R	R	R		

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

= ERR. $\partial def.$ (23) of α The other forward abstract binary arithmetic operators for initialization and

simple sign analysis are as follows

_		-						
					q			
+	(p,q)	BOT	NEG	ZERO	POS	INI	ERR	TOP
	BOT	BOT	BOT	BOT	BOT	BOT	BOT	BOT
	NEG	BOT	NEG	NEG	INI	INI	ERR	TOP
p	ZERO	BOT	NEG	ZERO	POS	INI	ERR	TOP
	POS	BOT	INI	POS	POS	INI	ERR	TOP
	INI	BOT	INI	INI	INI	INI	ERR	TOP
	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	TOP	ERR	TOP	TOP	TOP	TOP	ERR	TOP

		1			q			
$-^{^{\triangleright}}(p,q)$		BOT	NEG	ZERO	POS	INI	ERR	TOP
	BOT	BOT	BOT	BOT	BOT	BOT	BOT	BOT
	NEG	BOT	INI	NEG	NEG	INI	ERR	TOP
	ZERO	BOT	POS	ZERO	NEG	INI	ERR	TOP
p	POS	BOT	POS	POS	INI	INI	ERR	TOP
	INI	BOT	INI	INI	INI	INI	ERR	TOP
	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	TOP	ERR	TOP	TOP	TOP	TOP	ERR	TOP

		q								
$*^{\triangleright}(p,q)$		BOT	NEG	ZERO	POS	INI	ERR	TOP		
	BOT	BOT	BOT	BOT	BOT	BOT	BOT	BOT		
	NEG	BOT	POS	ZERO	NEG	INI	ERR	TOP		
	ZERO	BOT	ZERO	ZERO	ZERO	ZERO	ERR	TOP		
p	POS	BOT	NEG	ZERO	POS	INI	ERR	TOP		
	INI	BOT	INI	ZERO	INI	INI	ERR	TOP		
	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR		
	TOP	ERR	TOP	TOP	TOP	TOP	ERR	TOP		

PROOF. - If $p_i \in \{\text{BOT}, \text{ERR}\}, i = 1 \text{ or } i = 2 \text{ then } \gamma(p_i) \subseteq \{\Omega_i, \Omega_a\} \text{ so that }$ $\gamma(p_i) \cap \mathbb{I} = \emptyset$ and we get $\check{\leq}(p_1, p_2)R = \lambda \mathsf{X} \cdot \mathsf{BOT} \stackrel{\mathrm{def}}{=} \mathsf{BOT}$.

- If $p_1 = \text{POS}$ and $p_2 \in \{\text{NEG}, \text{ZERO}\}\ \text{then}\ \forall v_1 \in \gamma(p_1) \cap \mathbb{I} = \{x \in \mathbb{I} \mid x > 0\}$: $\forall v_2 \in \gamma(p_2) \cap \mathbb{I} = \{x \in \mathbb{I} \mid x < 0\} \text{ or } \{0\}: \neg(v_1 < v_2) \text{ and so } \check{<}(p_1, p_2)R = BOT.$
- If $p_1, p_2 = \text{POS}$ then $\exists v_1 \in \gamma(p_1) \cap \mathbb{I} = \{x \in \mathbb{I} \mid x > 0\}: \exists v_2 \in \gamma(p_2) \cap \mathbb{I} = 1\}$ $\{x \in \mathbb{I} \mid x > 0\}$: $(v_1 < v_2)$ (for example $v_1 = 1$ and $v_2 = 2$). So, by (21), $\check{\mathtt{c}}(p_1,p_2)R\stackrel{.}{\supseteq}(\exists v_1\in\gamma(p_1):\exists v_2\in\gamma(p_2)\cap\mathbb{I}:v_1\underline{\ \mathtt{c}}\ v_2=\mathtt{tt}\ ?\ R:\dot{\bot})=R$
- The other cases are handled in a similar way.

П

Similarly,

		p_2						
$ = (p_1,p_2)R$		BOT, ERR	NEG	ZERO	POS	INI, TOP		
	BOT, ERR	BÓT	В о Т	BŌT	BOT	BÓT		
p_1	NEG	BÓT	R	BOT	В О Т	R		
	ZERO	BÓT	В О Т	R	В О Т	R		
	POS	BÓT	В О Т	BŌT	R	R		
	INI, TOP	BÓT	R	R	R	R		

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

© P. Cousot, 2005

Implementation: abstract domain of sets of values

```
1 (* avalues.mli *)
 2 (* abstraction of sets of machine integers by initialization *)
 3 (* and simple sign
 4 type t
 5 val bot : unit -> t
 6 val isbotempty : unit -> bool
 7 val initerr : unit -> t
 8 val top : unit -> t
 9 val join : t -> t -> t
10 val meet : t -> t -> t
11 val leg : t -> t -> bool
12 val eq : t -> t -> bool
13 val in_errors : t -> bool
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005 — 83 —
                                                              © P. Cousot, 2005
```

```
Implementation
of the abstract interpreter
```

```
14 val print : t -> unit
15 (* forward abstract semantics of arithmetic expressions *)
16 val f_NAT : string -> t
17 val f_RANDOM : unit -> t
18 val f_UMINUS : t -> t
19 val f_UPLUS : t -> t
20 val f_PLUS : t \rightarrow t \rightarrow t
21 val f MINUS : t -> t -> t
22 val f_TIMES : t \rightarrow t \rightarrow t
23 val f_DIV : t \rightarrow t \rightarrow t
24 val f_MOD : t \rightarrow t \rightarrow t
25 (* forward abstract semantics of boolean expressions *)
26 val f_EQ : t \rightarrow t \rightarrow bool
27 val f_LT : t -> t -> bool
 Course 16,399; "Abstract interpretation", Tuesday April 26th, 2005 — 84 —
                                                                       © P. Cousot, 2005
```

```
28 (* avalues.ml *)
29 open Values
30 (* abstraction of sets of machine integers by initialization *)
31 (* and simple sign *)
32 (* complete lattice *)
33 type t = BOT | NEG | ZERO | POS | INI | ERR | TOP
34 \ (* \gamma BOT) = \{ 0 \ (a) \}
35 (* \gamma(NEG) = [min_int,-1] U \{0_(a)\}
36 (*\gamma(POS) = [1.max int] U \{ 0 (a) \}
37 (* \gamma(ZERO) = \{0, 0_{a}\}
38 (* \gamma(INI) = [min_int,max_int] U {_0(a)}
39 (* \gamma(ERR) = \{ 0 (i), 0 (a) \}
40 (* \gamma(TOP) = [min_int, max_int] U {_0_(a),_0_(i)}
41 (* infimum *)
42 let bot () = BOT
43 (* bottom is emptyset? *)
44 let isbotempty () = false (* \gamma = \{0_(a)\} < \gamma > 
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                             © P. Cousot, 2005
```

```
63 (*NEG*) [| NEG ; NEG ; INI ; INI ; TOP ; TOP |];
   (*ZERO*) [| ZERO : INI : ZERO : INI : INI : TOP : TOP |]:
65 (*POS*) [| POS ; INI ; INI ; POS ; INI ; TOP ; TOP |];
66 (*INI*) [| INI : INI : INI : INI : TOP : TOP |]:
   (*ERR*) [| ERR; TOP; TOP; TOP; TOP; ERR; TOP|];
   (*TOP*) [| TOP; TOP; TOP; TOP; TOP; TOP; TOP |]|]
69 let join u v = select join_table u v
70 (* greatest lower bound *)
71 let meet table =
              BOT NEG ZERO POS
                                    INI ERR TOP
73 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT ; BOT ; BOT ; BOT ]];
74 (*NEG*) [| BOT; NEG; BOT; NEG; BOT; NEG
   (*ZERO*) [| BOT ; BOT ; ZERO ; BOT ; ZERO ; BOT ; ZERO |];
76 (*POS*) [| BOT : BOT : BOT : POS : POS : BOT : POS
77 (*INI*) [| BOT ; NEG ; ZERO ; POS ; INI ; BOT ; INI
78 (*ERR*) [| BOT ; BOT ; BOT ; BOT ; ERR ; ERR
79 (*TOP*) [| BOT; NEG; ZERO; POS; INI; ERR; TOP |]|]
80 let meet u v = select meet_table u v
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                       @ P. Cousot. 2005
```

```
45 (* uninitialization *)
46 let initerr () = ERR
47 (* supremum *)
48 let top () = TOP
   (* least upper bound *)
50 let nat_of_lat u =
51
          match u with
52
          I BOT -> 0
53
          | NEG -> 1
54
          | ZERO -> 2
55
          I POS -> 3
56
          | INI -> 4
57
          | ERR. -> 5
          I TOP -> 6
59 let select t u v = t.(nat_of_lat u).(nat_of_lat v)
60 let join_table =
                 BOT
                       NEG ZERO POS INI ERR TOP *)
62 (*BOT*)[|[| BOT ; NEG ; ZERO ; POS ; INI ; ERR ; TOP |];
 Course 16.399: "Abstract interpretation". Tuesday April 26<sup>th</sup>, 2005
                                                              @ P. Cousot, 2005
```

```
81 (* approximation ordering *)
82 let leg table =
                                                              TOP *)
               BOT
                       NEG
                               ZER.O
                                      POS
                                              INI
84 (*BOT*)[|[| true ; true ; true ; true ; true ; true ; true ];
85 (*NEG*) [| false ; true ; false ; true ; false ; true |];
86 (*ZERO*) [| false ; false ; true ; false ; true ; false ; true |];
87 (*POS*) [| false ; false ; true ; true ; false ; true |];
   (*INI*) [| false : false : false : true : false : true |]:
89 (*ERR*) [| false ; false ; false ; false ; true ; true |];
90 (*TOP*) [| false ; false ; false ; false ; false ; true |]|]
91 let leq u v = select leq_table u v
92 (* equality *)
93 let eq u v = (u = v)
94 (* included in errors? *)
95 let in_errors v = (leg v ERR)
96 (* printing *)
97 let print u =
     match u with
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                         © P. Cousot, 2005
```

```
| BOT -> (print_string "BOT")
      | NEG -> (print string "NEG")
      | ZERO -> (print_string "ZERO")
101
102
       | POS -> (print string "POS")
103
      | INI -> (print_string "INI")
       | ERR -> (print_string "ERR")
104
       | TOP -> (print_string "TOP")
105
     (* forward abstract semantics of arithmetic expressions *)
107 let f_NAT s =
        match (machine_int_of_string s) with
109
        | (ERROR NAT INITIALIZATION) -> ERR
110
        | (ERROR_NAT ARITHMETIC) -> BOT
        | (NAT i) -> if i = 0 then ZERO else if i > 0 then POS else NEG
111
112 let f RANDOM () = INI
113 let f UMINUS a =
114
        match a with
        I BOT -> BOT
115
116
      I NEG -> POS
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                              © P. Cousot, 2005
```

```
135 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT ; BOT ; BOT ; BOT |];
136 (*NEG*) [| BOT : INI : NEG : NEG : INI : ERR : TOP |]:
137 (*ZERO*) [| BOT ; POS ; ZERO ; NEG ; INI ; ERR ; TOP |];
138 (*POS*) [| BOT : POS : POS : INI : INI : ERR : TOP |]:
139 (*INI*) [| BOT; INI; INI; INI; ERR; TOP |];
140 (*ERR*) [| ERR ; ERR ; ERR ; ERR ; ERR ; ERR |];
141 (*TOP*) [| ERR; TOP; TOP; TOP; TOP; ERR; TOP|]|]
142 let f MINUS u v = select f MINUS table u v
143 let f_TIMES_table =
144 (* * BOT NEG
                            ZERO POS
                                        INI
                                               ERR TOP *)
145 (*BOT*)[|[| BOT; BOT; BOT; BOT; BOT; BOT; BOT]];
146 (*NEG*) [| BOT ; POS ; ZERO ; NEG ; INI ; ERR ; TOP |];
147 (*ZERO*) [| BOT ; ZERO ; ZERO ; ZERO ; ERR ; TOP |];
148 (*POS*) [| BOT : NEG : ZERO : POS : INI : ERR : TOP |]:
149 (*INI*) [| BOT ; INI ; ZERO ; INI ; INI ; ERR ; TOP |];
150 (*ERR*) [| ERR : ERR : ERR : ERR : ERR : ERR | ]:
151 (*TOP*) [| ERR; TOP; TOP; TOP; TOP; ERR; TOP|]|]
152 let f_TIMES u v = select f_TIMES_table u v
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                        © P. Cousot, 2005
```

```
117
       | ZERO -> ZERO
        | POS -> NEG
118
119
      | INI -> INI
       | ERR. -> ERR.
120
       | TOP -> TOP
121
122 let f_{UPLUS} a = a
123 let f_PLUS_table =
         + BOT NEG ZERO POS INI
                                              ERR TOP *)
125 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT ; BOT ; BOT ; BOT |];
    (*NEG*) [| BOT ; NEG ; NEG ; INI ; INI ; ERR ; TOP |];
    (*ZERO*) [| BOT ; NEG ; ZERO ; POS ; INI ; ERR ; TOP |];
    (*POS*) [| BOT ; INI ; POS ; POS ; INI ; ERR ; TOP |];
129 (*INI*) [| BOT ; INI ; INI ; INI ; ERR ; TOP |];
130 (*ERR*) [| ERR ; ERR ; ERR ; ERR ; ERR ; ERR ; ERR |];
131 (*TOP*) [| ERR ; TOP ; TOP ; TOP ; TOP ; ERR ; TOP |]|]
132 let f_PLUS u v = select f_PLUS_table u v
133 let f MINUS table =
134 (* - BOT NEG ZERO POS INI
                                             ERR TOP *)
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                          © P. Cousot, 2005
```

```
153 let f_DIV_table =
           / BOT NEG ZERO POS INI
                                            ERR TOP *)
155 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT ; BOT ; BOT ]];
156 (*NEG*) [| BOT ; BOT ; BOT ; BOT ; BOT ; BOT |];
157 (*ZERO*) [| BOT ; BOT ; BOT ; ZERO ; POS ; ERR ; TOP |];
158 (*POS*) [| BOT ; BOT ; BOT ; INI ; INI ; ERR ; TOP |];
159 (*INI*) [| BOT ; BOT ; BOT ; INI ; INI ; ERR ; TOP |];
160 (*ERR*) [| ERR : ERR : ERR : ERR : ERR : ERR | ]:
161 (*TOP*) [| ERR ; ERR ; TOP ; TOP ; ERR ; TOP |] |]
162 let f_DIV u v = select f_DIV_table u v
163 let f MOD table =
164 (* mod BOT NEG ZERO POS
                                      INI
                                              ERR TOP *)
165 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT ; BOT ; BOT |];
166 (*NEG*) [| BOT ; BOT ; BOT ; BOT ; BOT ; BOT |];
167 (*ZERO*) [| BOT ; BOT ; ZERO ; ZERO ; ERR ; TOP |];
168 (*POS*) [| BOT ; BOT ; BOT ; INI ; INI ; ERR ; TOP |];
169 (*INI*) [| BOT; BOT; BOT; INI; INI; ERR; TOP|];
170 (*ERR*) [| ERR ; ERR ; ERR ; ERR ; ERR ; ERR ; ERR |];
 Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                        © P. Cousot, 2005
```

```
171 (*TOP*) [| ERR ; ERR ; TOP ; TOP ; ERR ; TOP |]|]
172 let f MOD u v = select f MOD table u v
173 (* forward abstract semantics of boolean expressions *)
174 let f EQ table =
         mod BOT
                       NEG
                               ZERO
                                     POS
                                              TNT
    (*BOT*)[|[| false ; false ; false ; false ; false ; false |];
177 (*NEG*) [| false : true : false : true : false : true |]:
178 (*ZERO*) [| false : false : true : false : true : false : true |]:
179 (*POS*) [| false ; false ; true ; true ; false ; true |];
180 (*INI*) [| false : true : true : true : true : false : true |]:
181 (*ERR*) [| false : false : false : false : false : false : false |]:
182 (*TOP*) [| false ; true ; true ; true ; true ; false ; true |]|]
183 (* Are there integer values in gamma(u) equal to values in gamma(v)? *)
184 let f EQ u v = select f EQ table u v
185 let f LT table =
186 (* mod BNT
                       NEG
                               ZERO POS
                                             TNT
                                                            TOP *)
187 (*BOT*)[|[| false ; false ; false ; false ; false ; false ; false |];
188 (*NEG*) [| false ; true ; true ; true ; true ; false ; true |];
 Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005 — 93 —
                                                        @ P. Cousot. 2005
```

Implementation: abstract domain of sets of environments

```
The remaining files are (essentially 8) unchanged
```

```
197 (* a.env.mli *)
198 open Abstract Syntax
199 open Avalues
200 (* set of environments *)
201 type t
202 (* infimum *)
203 val bot : unit -> t
204 (* check for infimum *)
205 val is_bot : t -> bool
206 (* uninitialization *)
207 val initerr : unit -> t
208 (* supremum *)
  8 apart from trivial module renaming
 Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005
                                                                  @ P. Cousot. 2005
```

```
189 (*ZERO*) [| false ; false ; true ; true ; false ; true |];
190 (*POS*) [| false : false : true : true : false : true |]:
191 (*INI*) [| false; true ; true ; true ; false; true |];
192 (*ERR*) [| false ; false ; false ; false ; false ; false |];
   (*TOP*) [| false; true; true; true; true; false; true |]|]
    (* Are there integer values in gamma(u) less than or equal to (<=) *)
    (* integer values in gamma(v)?
196 let f LT u v = select f LT table u v
```

```
209 val top : unit -> t
210 (* copv *)
211 val copy : t -> t
212 (* least upper bound *)
213 val join : t -> t -> t
214 (* greatest lower bound *)
215 val meet : t -> t -> t
216 (* approximation ordering *)
217 val leg : t -> t -> bool
218 (* equality *)
219 val eq : t \rightarrow t \rightarrow bool
220 (* printing *)
221 val print : t -> unit
222 (*r(X) = \{e(X) \mid X \text{ in } r\} *)
223 val get : t -> variable -> Avalues.t
224 (*r[X \leftarrow v] = \{e[X \leftarrow i] \mid e \text{ in } r / \text{ } i \text{ in } v\}
                                                                                      *)
225 val set : t -> variable -> Avalues.t -> t
226 (* collecting semantics of assignment
  Course 16 399: "Abstract interpretation" Tuesday April 26th 2005
                                                                      © P. Cousot, 2005
```

```
227 (* f_ASSIGN x f r = {e[x <- i] | e in r /\ i in f({e}) cap I } *)

228 val f_ASSIGN: variable -> (t -> Avalues.t) -> t -> t

229 (* collecting semantics of boolean expressions *)

230 (* f_EQ f g r = *)

231 (* {e in R | exists v1 in f({e}) cap I: exists v2 in g({e}) cap I: *)

232 (* v1 = v2 } *)

233 val f_EQ: (t -> Avalues.t) -> (t -> Avalues.t) -> t -> t

234 (* f_LT f g r = *)

235 (* {e in R | exists v1 in f({e}) cap I: exists v2 in g({e}) cap I: *)

236 (* v1 < v2 } *)

237 val f_LT: (t -> Avalues.t) -> (t -> Avalues.t) -> t -> t
```

```
255 let copy = copy (* implementation without side-effects *)
256 (* least upper bound *)
257 let join r1 r2 =
    let f i v = (Avalues.join (get r1 i) v) in
           mapi f r2
260 (* greatest lower bound *)
261 let meet r1 r2 =
        let f i v = (Avalues.meet (get r1 i) v) in
263
             mapi f r2
264 (* approximation ordering *)
265 exception NotTrue
266 let leg r1 r2 =
       trv
268
           let f x =
269
              if not (Avalues.leq (get r1 x) (get r2 x)) then
                 raise NotTrue
270
271
              in for all variables f:
272
              true
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                             @ P. Cousot. 2005
```

```
238 (* aenv.ml *)
239 open Variables
240 open Avalues
241 open Array
242 type t = Avalues.t array
243 (* infimum *)
244 let bot () = Array.create (number_of_variables ()) (Avalues.bot ())
245 (* check for infimum *)
246 let is bot r =
        let f \times v = x or (Avalues.eq v (Avalues.bot ())) in
247
           Array.fold_left f false r
248
249 (* uninitialization *)
250 let initerr () =
251 Array.create (number_of_variables ()) (Avalues.initerr ())
252 (* supremum *)
253 let top () = Array.create (number_of_variables ()) (Avalues.top ())
254 (* copy *)
 Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                               © P. Cousot, 2005
```

```
273
        with
274
           NotTrue -> false
275 (* equality *)
276 let eq r1 r2 =
277
      try
          let f i =
279
              if not (Avalues.eq (get r1 i) (get r2 i)) then
280
                  raise NotTrue
281
           in for_all_variables f;
282
           true
283
        wit.h
284
           NotTrue -> false
285 (* printing *)
286 let print r =
     let p v = Avalues.print (get r v) in
           print_map_variables p
289 (*r(X) = \{e(X) \mid eo in r\}
                                                      *)
290 (* val get : t -> variable -> Cvalues.t
 Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                   — 100 —
                                                                © P. Cousot, 2005
```

```
291 let get r x = (get r x)
292 (*r[X < -v] = \{e[X < -i] \mid e \text{ in } r / \ i \text{ in } v\} *)
293 (* val set : t \rightarrow variable \rightarrow Cvalues.t \rightarrow t *)
294 let set r \times v =
        if (Avalues.eq v (Avalues.bot ())) & (Avalues.isbotempty ()) then
            (bot ()) (* reduce *)
296
297
        else
           (let r' = copy r in (set r' x v; r'))
299 (* f_ASSIGN x f r = {e[x <- i] | e in r /\ i in f({e}) cap I }
300 let f ASSIGN x f r = set r x (Avalues.meet (f r) (Avalues.f RANDOM ()))
301 (* f_EQ f g r =
302 (* {e in R | exists v1 in f(\{e\}) cap I: exists v2 in g(\{e\}) cap I: *)
                     v1 = v2 }
304 let f_EQ f g r = if (Avalues.f_EQ (f r) (g r)) then r else (bot ())
305 (* f_LT f g r =
306 (* {e in R | exists v1 in f({e}) cap I: exists v2 in g({e}) cap I: *)
                     v1 < v2 }
308 let f_LT f g r = if (Avalues.f_LT (f r) (g r)) then r else (bot ())
 Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005 — 101 —
                                                                 @ P. Cousot, 2005
```

```
315 (* aaexp.ml *)
316 open Abstract_Syntax
317 (* Abstract interpretation of arithmetic operations *)
318 let rec a_aexp a r =
     if (Aenv.is_bot r) && (Avalues.isbotempty()) then Avalues.bot() else
       match a with
     | (Abstract_Syntax.NAT i) -> (Avalues.f_NAT i)
322
     l (VAR. v)
                      -> (Aenv.get r v)
     I RANDOM
                      -> Avalues.f RANDOM ()
     (UPLUS a1) -> (Avalues.f_UPLUS (a_aexp a1 r))
     | (UMINUS a1) -> (Avalues.f_UMINUS (a_aexp a1 r))
     (PLUS (a1, a2)) -> (Avalues.f PLUS (a aexp a1 r) (a aexp a2 r))
326
     | (MINUS (a1, a2)) -> (Avalues f_MINUS (a_aexp a1 r) (a_aexp a2 r))
     (TIMES (a1, a2)) -> (Avalues.f_TIMES (a_aexp a1 r) (a_aexp a2 r))
     | (DIV (a1, a2)) -> (Avalues.f_DIV (a_aexp a1 r) (a_aexp a2 r))
      | (MOD (a1, a2)) \rightarrow (Avalues.f_MOD (a_aexp a1 r) (a_aexp a2 r))
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                             @ P. Cousot. 2005
```

Implementation: abstract interpretation of arithmetic operations

```
309 (* aaexp.mli *)
310 open Abstract_Syntax
311 open Avalues
312 open Aenv
313 (* evaluation of arithmetic operations *)
314 val a_aexp : aexp -> Aenv.t -> Avalues.t
```

Implementation: abstract interpretation of boolean operations

```
331 (* abexp.mli *)
332 open Abstract_Syntax
333 open Avalues
334 open Aenv
335 (* abstract interpretation of boolean operations *)
336 val a_bexp : bexp -> Aenv.t -> Aenv.t
```

```
337 (* abexp.ml *)
338 open Abstract_Syntax
339 open Avalues
340 open Aenv
341 open Aaexp
342 (* abstract interpretation of boolean operations *)
343 let rec a_bexp b r =
      match b with
344
     I TRUE
                  -> r
     I FALSE
                     -> (Aenv.bot ())
346
     | (EQ (a1, a2)) -> f_EQ (a_aexp a1) (a_aexp a2) r
     | (LT (a1. a2)) -> f LT (a aexp a1) (a aexp a2) r
     | (AND (b1, b2)) -> Aenv.meet (a_bexp b1 r) (a_bexp b2 r)
350
    | (OR (b1, b2)) \rightarrow Aenv.join (a_bexp b1 r) (a_bexp b2 r)
 Course 16,399: "Abstract interpretation". Tuesday April 26th, 2005 — 105 —
                                                            @ P. Cousot. 2005
```

```
357 (* a.com.ml *)
358 open Abstract_Syntax
359 open Labels
360 open Aenv
361 open Aaexp
362 open Abexp
363 open Fixpoint
364 (* forward abstract semantics of commands *)
366 exception Error of string
367 let rec acom c r l =
368 match c with
369 | (SKIP (1', 1'')) ->
     if (l = l') then r
370
371 else if (l = l), then r
         else (raise (Error "SKIP incoherence"))
373 | (ASSIGN (1',x,a,1'')) ->
 Course 16.399: "Abstract interpretation" . Tuesday April 26th, 2005 — 107 —
                                                            @ P. Consot. 2005
```

Implementation: abstract interpretation of commands

```
351 (* acom.mli *)
352 open Abstract_Syntax
353 open Labels
354 open Aenv
355 (* forward abstract interpretation of commands *)
356 val acom : com -> Aenv.t -> label -> Aenv.t
```

```
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
```

```
© P. Cousot, 2005
```

```
374
          if (1 = 1') then r
375
          else if (1 = 1), then
376
                    f_ASSIGN x (a_aexp a) r
          else (raise (Error "ASSIGN incoherence"))
     | (SEQ (1', s, 1'')) ->
          (acomseg s r 1)
    | (IF (1', b, nb, t, f, 1'')) ->
         (if (1 = 1)) then r
382
          else if (incom 1 t) then
383
             (acom t (a_bexp b r) 1)
384
          else if (incom 1 f) then
385
           (acom f (a_bexp nb r) 1)
          else if (1 = 1), then
386
387
             (join (acom t (a_bexp b r) (after t))
              (acom f (a_bexp nb r) (after f)))
388
          else (raise (Error "IF incoherence")))
     | (WHILE (1', b, nb, c', 1'')) ->
        let f x = join r (acom c' (a_bexp b x) (after c'))
 Course 16,399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                               © P. Cousot, 2005
```

```
in let i = lfp (bot ()) leg f in
392
393
      (if (1 = 1)) then i
394
           else if (incom l c') then (acom c' (a_bexp b i) l)
          else if (l = l'') then (a_bexp nb i)
395
           else (raise (Error "WHILE incoherence")))
396
     and acomseg s r l = match s with
     | [] -> raise (Error "empty SEQ incoherence")
     | [c] \rightarrow if (incom l c) then (acom c r l)
                else (raise (Error "SEQ incoherence"))
400
     | h::t \rightarrow if (incom l h) then (acom h r l)
402
                else (acomseg t (acom h r (after h)) 1)
403
```

Course 16.399: "Abstract interpretation". Tuesday April 26th, 2005

Implementation: makefile

```
419 # makefile
420
421 SOURCES = \
422 symbol_Table.mli \
423 symbol_Table.ml \
424 variables.mli \
425 variables.mli \
426 abstract_Syntax.ml \
427 concrete_To_Abstract_Syntax.mli \
428 concrete_To_Abstract_Syntax.ml \
429 labels.mli \
430 labels.mli \
431 parser.mli \
432 parser.mli \
432 parser.mli \
433 parser.mli \
```

Implementation: abstract interpreter

```
404 (* main.ml *)
405 open Program_To_Abstract_Syntax
406 open Labels
     open Pretty_Print
408 open Aenv
     open Acom
      let arg = if (Array.length Sys.argv) = 1 then ""
411
412
                  else Sys.argv.(1) in
413
          Random.self init ():
         let p = (abstract_syntax_of_program arg) in
414
           (print (initerr ());
415
416
            pretty_print p;
            print (acom p (initerr ()) (after p));
417
418
             print_newline ())
 Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                 © P. Cousot, 2005
```

```
433 lexer.ml \
434 program_To_Abstract_Syntax.mli \
435 program_To_Abstract_Syntax.ml \
436 pretty_Print.mli \
437 pretty_Print.ml \
438 values.mli \
439 values.ml \
440 avalues.mli \
441 avalues.ml \
442 aenv.mli \
443 aenv.ml \
444 aenv.mli \
445 aenv.ml \
446 aaexp.mli \
447 aaexp.ml \
448 abexp.mli \
449 abexp.ml \
450 fixpoint.mli \
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                               © P. Cousot, 2005
```

```
451 fixpoint.ml \
452 acom.mli \
453 a.com.ml \
454 main.ml
455
    .PHONY : help
457
    help :
        @echo ""
458
        @echo "make help
                                 : this help"
459
                                 : trace fixpoint iterates"
        @echo "make trace
461
        @echo "make untrace
                                 : don't trace fixpoint iterates"
462
        @echo "make compile
                                : compile"
463
        @echo "./a.out filename : execute"
                                : execute the examples"
464
        @echo "make examples
465
                                 : execute the examples with runtime errors"
        @echo "make errors
        @echo "make clean
                                 : remove auxilairy files"
466
        @echo ""
467
468
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                               @ P. Cousot. 2005
```

```
@ln -s aaexp-untrace.ml aaexp.ml
487
488
        @/bin/rm -f abexp.ml
489
        @ln -s abexp-untrace.ml abexp.ml
490
     .PHONY : compile
491
492 compile:
493
        ocamlyacc parser.mly
        ocamllex lexer.mll
495 # ocamlc -i $(SOURCES) # to print types
        ocamlc $(SOURCES)
497
     .PHONY : examples
     examples :
500
        ./a.out ../Examples/example00.sil
     ./a.out ../Examples/example01.sil
501
./a.out ../Examples/example02.sil
       ./a.out ../Examples/example03.sil
503
       ./a.out ../Examples/example04.sil
504
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                              © P. Cousot, 2005
```

```
.PHONY : trace preparetrace
470 trace: preparetrace compile
        @echo "fixpoint tracing mode"
472 preparetrace:
473
        @/bin/rm -f fixpoint.ml
474
        @ln -s fixpoint_printing_iterates.ml fixpoint.ml
475
        @/bin/rm -f aaexp.ml
476
        @ln -s aaexp-trace.ml aaexp.ml
477
        @/bin/rm -f abexp.ml
478
        @ln -s abexp-trace.ml abexp.ml
479
480 .PHONY : untrace prepareuntrace
     untrace: prepareuntrace compile
482
        @echo "no fixpoint tracing, recompile!"
483 prepareuntrace:
484
        @/bin/rm -f fixpoint.ml
        @ln -s fixpoint_no_printing.ml fixpoint.ml
485
486
        @/bin/rm -f aaexp.ml
 Course 16.399: "Abstract interpretation" , Tuesday April 26<sup>th</sup>, 2005
                                                 — 114 —
                                                                © P. Cousot, 2005
```

```
./a.out ../Examples/example05.sil
505
506
         ./a.out ../Examples/example07.sil
507
508 .PHONY : errors
509 errors:
        ./a.out ../Examples/example06.sil
        ./a.out ../Examples/example08.sil
511
        ./a.out ../Examples/example09.sil
513
         ./a.out ../Examples/example10.sil
514
         ./a.out ../Examples/example11.sil
515
516 . PHONY :
517
518
        /bin/rm -f *.cmi *.cmo *~ a.out lexer.ml parser.mli parser.ml
  Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                  © P. Cousot, 2005
```

Implementation: examples without runtime errors

```
Script started on Fri Apr 15 16:49:58 2005
     Initialization-Simple-Sign % make clean
     Initialization-Simple-Sign % make untrace
 5
     Initialization-Simple-Sign % make compile
 6
 7
     Initialization-Simple-Sign % make examples
 8
 9
10
     ./a.out ../Examples/example0.sil
11
12
     0:
13
        skip
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                               — 117 —
                                                                 © P. Cousot, 2005
```

```
32
     x := (-1073741823 - 1):
    y := (x - 1)
35
36
     2:
37
     { x:NEG; y:NEG }
    ./a.out ../Examples/example3.sil
    { x:ERR; y:ERR }
     x := 0;
43 1:
     y := 1
45
     2:
46
   { x:ZERO; y:POS }
    ./a.out ../Examples/example4.sil
49 { x:ERR }
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                            — 119 —
                                                              © P. Cousot, 2005
```

```
1:
14
15
16
     ./a.out ../Examples/example1.sil
17
     { x:ERR }
18
20
      x := 1;
22
       while (x < 100) do
23
         x := (x + 1)
24
25
        od \{((100 < x) | (x = 100))\}
27
     4:
28
     { x:POS }
     ./a.out ../Examples/example2.sil
31 { x:ERR; y:ERR }
 Course 16.399: "Abstract interpretation" , Tuesday April 26<sup>th</sup>, 2005
                                                                   © P. Cousot, 2005
```

```
50
     if true then
     1:
53
         x := 1
54
       else {false}
56
         3:
         x := 0
58
          4:
59
       fi
60
     5:
61
     ./a.out ../Examples/example5.sil
    { x:ERR }
        if false then
67
Course 16.399: "Abstract interpretation" , Tuesday April 26<sup>th</sup>, 2005
                                                                     © P. Cousot, 2005
```

```
68
           x := 1
69
        else {true}
70
71
72
        x := 0
73
         4:
74
       fi
75
     5:
76
     { x:INI }
     ./a.out ../Examples/example7.sil
79
     { x:ERR }
80
    0:
81
     x := 1:
      while ((x < 10) | (x = 10)) do
84
         x := (x + 1)
85
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                              — 121 —
                                                                 © P. Cousot, 2005
```

Implementation: examples with runtime errors

```
Script started on Fri Apr 15 16:51:19 2005
    Initialization-Simple-Sign % make errors
    . /a.out ../Examples/example6.sil
    { x:ERR }
     0:
       x := -1073741824
 8
    { x:BOT }
    ./a.out ../Examples/example8.sil
11 { x:ERR }
12 0:
13
      x := 1073741823
Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                             — 123 —
                                                               © P. Cousot, 2005
```

```
86
         3:
       od \{(10 < x)\}
88
    4:
89
     { x:POS }
     Initialization-Simple-Sign % ^Dexit
     Script done on Fri Apr 15 16:50:42 2005
```

```
14 1:
15
   { x:POS }
     ./a.out ../Examples/example9.sil
     { x:ERR; y:ERR; z:ERR; t:ERR }
20
       x := (-536870912 * 2);
22
     y := (536870912 * 2);
24
      z := ((-1073741823 - 1) * 1);
25 3:
     t := ((-1073741823 - 1) * 1073741823)
27 4:
28
    { x:NEG; y:POS; z:NEG; t:NEG }
    ./a.out ../Examples/example10.sil
31 { x:ERR }
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                               © P. Cousot, 2005
```

```
32
      x := ?:
       if (x < (-1073741823 - 1)) then
35
36
37
         x := 1
38
        else \{(((-1073741823 - 1) < x) \mid (x = (-1073741823 - 1)))\}
40
41
        x := 0
42
         5:
43
       fi
44
     6.
45
     { x:INI }
     ./a.out ../Examples/example11.sil
    { x:ERR }
49
    0.
 Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005
                                                                 © P. Cousot, 2005
```

Personal project: homework 1

- Change file avalues.ml to implement a finitary analysis of your choice (e.g. initialization analysis, Killdall's constant propagation, parity analysis, enriched sign analysis, etc.).
- Provide the abstraction and concretization functions for sets of concrete values.
- The main design criteria are originality and soundness

```
Course 16.399: "Abstract interpretation", Tuesday April 26<sup>th</sup>, 2005
                                                                                                              © P. Cousot, 2005
```

```
50
       x := 1;
51 1:
       while (0 < 1073741824) do
53
54
        x := (x + 1)
       od \{((1073741824 < 0) | (1073741824 = 0))\}
56
57
58
    { x:BOT }
    Initialization-Simple-Sign % ^Dexit
    Script done on Fri Apr 15 16:51:42 2005
 On example 10. sil, observe that the test yields \{x : BOT\}, but
 since \gamma(BOT) \neq \emptyset, the assignments respectively yield \{x : POS\} and
 \{x : ZERO\} whence the join \{x : INI\} on exit of the test.
```

Course 16.399: "Abstract interpretation", Tuesday April 26th, 2005

Bibliography

- [4] P. Cousot. "The Calculational Design of a Generic Abstract Interpreter". In M. Broy and R. Steinbrüggen (eds.): Calculational System Design. NATO ASI Series F. Amsterdam: IOS Press, 1999.
- Marktober-[5] P. Consot. "The dorf'98 Generic Abstract Interpreter". http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml.

