Problem 1

Transform linear regression by Latex, from $t = y(x, w) + noise \Rightarrow w = (X^T X)^{-1} X^T t$

Solution

We have:

$$t = y(x, w) + noise = N(y(x, w), \beta^{-1})$$

$$\Rightarrow p(t|x, w, \beta) = N(t|y(x, w), \beta^{-1})$$

The likelihood function:

$$p(t|x, w, \beta) = \prod_{n=1}^{N} N(t_n|y(x_n, w), \beta^{-1})$$

It is convenient to maximize the logarithm of the likelihood function

$$\begin{split} \log \, p(t|x,w,\beta) &= \sum_{n=1}^{N} \log \, \left(N(t_n|y(x_n,w),\beta^{-1}) \right) \\ &= \frac{-\beta}{2} \sum_{n=1}^{N} (y(x_n,w) - (t_n)^2) + \frac{N}{2} \log \, \beta - \frac{N}{2} \log(2\pi) \\ \max \, \log \, p(t|x,w,\beta) &= -\max \, \frac{-\beta}{2} \sum_{n=1}^{N} (y(x_n,w) - (t_n)^2) \\ &= \min \, \frac{1}{2} \sum_{n=1}^{N} (y(x_n,w) - (t_n)^2) \end{split}$$

We minimize $P = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - (t_n)^2)$ to find w. Suppose:

$$X = \begin{bmatrix} 1 & x_1 \\ 2 & x_2 \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & x_n \end{bmatrix}, w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

$$\Rightarrow P = \|Xw - t\|_2^2$$

$$\nabla P_w = X^T (Xw - t) = X^T Xw - X^T t$$

Setting this gradient to zero, we have:

$$X^{T}Xw - X^{T}t = 0$$

$$\Leftrightarrow w = (X^{T}X)^{-1}X^{T}t$$

Problem 2

Prove that X^TX is invertible when X is full rank

Solution

We have : Suppose $X^T v = 0$.

Then, of course, $XX^Tv = 0$ too.

Conversely, suppose $XX^Tv = 0$.

Then $v^T X X^T v = 0$, so that $(X^T v)^T (X^T v) = 0$.

This implies $X^T v = 0$.

Hence, we have proved that $X^Tv=0$ if and only if v is in the nullspace of X^TX .

But $X^T v = 0$ and $v \neq 0$ if and only if X has linearly dependent rows.

Thus, X^TX is invertible if and only if X has full row rank.