ENSA d'AI-HOCEIMA ANALYSE 3

CP-II

Semestre 1

Exercice 1:

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par:

$$f(x,y) = (x + y, xy)$$

- 1- Donner le domaine de définition D de f et étudier sa différentiabilité sur D.
- 2- Déterminer la matrice jacobienne $J_f(x,y)$ de f et son jacobien $j_f(x, y)$.
- 3- Montrer que la restriction de f à l'ouvert

$$U = \{(x, y) \in \mathbb{R}^2 / x < |y|\}$$

est un C^1 -difféomorphisme sur son image.

Exercice 2:

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par:

$$f(x,y,z) = (e^{2x} + e^{2z}, e^{2x} - e^{2z}, x - y)$$

Montrer que f est un C^1 -difféomorphisme de \mathbb{R}^3 sur un ouvert V.

Exercice 3:

Montrer qu'il existe une fonction

$$f: \mathbb{R} \to \mathbb{R}$$
, $x \mapsto y = f(x)$

de classe C^{∞} au voisinage de 0 telle que f(0) = 0et définie implicitement par l'équation:

$$Arctan(xy) + 1 = e^{x+y}.$$

Exercice 4:

1- Montrer qu'au voisinage de (1,2), l'ensemble:

$$\Gamma_1 = \{(x, y) \in \mathbb{R}^2 : x \ln y + y \ln x = \ln 2\}$$

est un arc paramétré.

2- Montrer qu'au voisinage de (1,2,0), l'ensemble:

$$\Gamma_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + \sin(xyz) + e^z = 2\}$$

est un graphe fonctionnel.

3- Montrer qu'au voisinage de (1,1) l'équation:

$$x^y - y^x = 0$$

définit implicitement y comme une fonction de x de classe C^1 .

Exercice 5:

Série: N4

Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}^n$ une fonction de classe C^1 telle que:

$$\forall a \in U: j_f(a) \neq 0.$$

- 1- Montrer que f est un C^1 -difféomorphisme local de U dans \mathbb{R}^n .
- 2- Montrer que f(U) est un ouvert.
- 3- Si de plus f est injective, montrer que f est un C^1 -difféomorphisme global.

4- Application:

Considérons la fonction: $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par:

$$f(r,\theta) = (r\cos\theta, r\sin\theta)$$

- a- Montrer que f est de classe C^1 sur \mathbb{R}^2 et déterminer sa matrice jacobienne.
- b- Montrer que f est un C^1 -difféomorphisme local sur $]0, +\infty[\times \mathbb{R}]$.
- c- Déterminer un ouvert U, pour que f soit un C¹-difféomorphisme global sur U.