Universidade Tecnológica Federal do Paraná (UTFPR) Departamento Acadêmico de Informática (DAINF)

Introdução à Criptografia Professor: Rodrigo Minetto

Lista de exercícios (escolha três exercícios para entregar)

- 1) Calcule as expressões abaixo **SEM** utilizar uma calculadora. Dica: utilize, se necessário, a decomposição rápida do expoente.
 - (a) $2 \times 5 \mod 13$
 - (b) $2 \times 29 \mod 13$
 - (c) $20 \times 29 \mod 13$
 - (d) $-11 \times 3 \mod 13$
 - (e) $3^2 \mod 13$
 - (f) $7^2 \mod 13$
 - (g) $3^{10} \mod 13$
 - (h) $5^{-1} \mod 13$
 - (i) $5^{-1} \mod 7$
- 2) Nesse exercício você irá combinar uma chave com um colega na sala por e-mail (e somente por e-mail) utilizando o protocolo DHKE (qualquer conversa pessoal sobre dados necessários para a troca de chaves não é permitida). Esse exercício é MUITO importante pois ele mostra um aspecto bem inconveniente do DHKE. Para realizá-lo primeiramente codifique o algoritmo DHKE para facilitar os cálculos. Primeiramente escolha um número primo de 6 dígitos que será utilizado na comunicação e ache um número q aleatoriamente no intervalo de $\{2, \ldots, p-2\}$. As chaves privadas podem ser achadas da mesma maneira que o valor q. Note que você pode testar o programa localmente antes de iniciar a comunicação para ver se está tudo funcionando.

Primos com 6 dígitos:

https://primes.utm.edu/curios/index.php?start=6&stop=6

.

3) Suponha que $y = q^x \mod n$. Indique o valor de y e tempo de execução dos algoritmos para exponenciação modular Naive, Improved e Square-Mult para os seguintes valores:

- q = 5, x = 6 e n = 23.
- q = 5, x = 15 e n = 23.
- q = 5, x = 36 e n = 97.
- q = 5, x = 58 e n = 97.
- q = 98, x = 1000000000 e n = 65.
- 4) Neste exercício vamos testar a confiabilidade do DHKE. Suponha que Eva interceptou as seguintes informações:
 - p = 211, q = 199, A = 58 e B = 171. Qual a chave trocada entre Alice e Bob?
 - p=6547, q=5747, A=4571 e B=2393. Qual a chave trocada entre Alice e Bob?
 - p=12889, q=260, A=4176 e B=6598. Qual a chave trocada entre Alice e Bob?
- 5) Veja se é possível implementar um algoritmo que calcule corretamente o valor de $a \mod n$, retornando sempre um valor no intervalo $0, \ldots, n-1$, independentemente de a ser positivo ou negativo. Por exemplo:
 - mod(-5,3) = 1
 - $\bullet \mod(7,5) = 2$
 - mod(-1,4) = 3

Observe que simplesmente utilizar o operador módulo pode não resolver o problema acima.