Álgebra homológica, día 15

Alexey Beshenov (cadadr@gmail.com)

26 de agosto de 2016

1. Límites directos

Nuestra introducción a la teoría de categorías tiene una omisión importante: no hemos definido límites y colímites en general. Vamos a necesitar un caso especial de los colímites que se llama el límite directo; dedicamos esta sección a las definiciones y propiedades básicas.

1.1. Definición. Supongamos que I es un conjunto con una relación \leq que es reflexiva $(i \leq i)$, transitiva $(i \leq j, j \leq k \Rightarrow i \leq k)$, y además para cada $i, j \in I$ existe $k \in I$ tal que $i \leq k$ y $j \leq k$.

Sea X_i una familia de objetos de alguna categoría indexada por $i \in I$, y que para cada $i \leq j$ tenemos un morfismo $f_{ij} \colon X_i \to X_j$. Supongamos que

- 1) $f_{ii} = \operatorname{id}_{X_i}$ para cada $i \in I$,
- 2) $f_{ik} = f_{jk} \circ f_{ij}$ para cada $i \leq j \leq k$.

Los objetos X_i con morfismos $f_{ij} \colon X_i \to X_j$ forman un **sistema directo**. El **límite directo** correspondiente es un objeto $\varinjlim_i X_i \in \mathbb{C}$ con morfismos $\phi_i \colon X_i \to \varinjlim_i X_i$ tales que $\phi_i = \phi_j \circ f_{ij}$ para cada $i \preceq j$:

Además, se pide la siguiente propiedad universal: si X es otro objeto con flechas $\psi_i \colon X_i \to X$ tales que $\psi_i = \psi_j \circ f_{ij}$ para cada $i \preceq j$, entonces existe un único morfismo $\varinjlim_i X_i \to X$ que conmuta con los morfismos ϕ_i y ψ_i :

- **1.2. Ejercicio.** La propiedad universal implica que si $\lim_{i \to \infty} X_i$ existe, este es único salvo isomorfismo.
- **1.3. Ejemplo.** Si la relación \leq sobre los elementos de I es trivial, es decir tenemos $i \leq i$ para cada $i \in I$ y ninguna relación entre $i \neq j$, entonces $\varinjlim_i X_i$ es simplemente el coproducto $\coprod_i X_i$.

1.4. Ejercicio. En la categoría de conjuntos **Set** todos los límites directos existen. A saber, si tenemos una colección de conjuntos X_i con morfismos $f_{ij} \colon X_i \to X_j$ como arriba, entonces

$$\varinjlim_{i} X_{i} \cong \coprod_{i} X_{i} \middle/ \sim,$$

donde \sim es la relación de equivalencia definida por

$$X_i \ni x_i \sim x_j \in X_j \iff f_{ik}(x_i) = f_{jk}(x_j)$$
 para algún $k \in I$.

Los morfismos canónicos $\phi_i \colon X_i \to \varinjlim_i X_i$ aplican cada elemento $x_i \in X_i$ en su clase de equivalencia. En la categoría de R-Mód los límites directos tienen la misma descripción:

$$\lim_{i \to i} M_i \cong \bigoplus_i M_i / \sim .$$

(El ejercicio consiste en verificar que todo esto está bien definido y satisface la propiedad universal del límite directo.)

1.5. Observación (Funtorialidad de los límites directos). Supongamos que hay dos sistemas directos

$$(\{X_i\}_{i\in I}, \{X_i \to X_j\}_{i\leq j}) \quad y \quad (\{Y_i\}_{i\in I}, \{Y_i \to Y_j\}_{i\leq j})$$

y que los límites directos correspondientes $\varinjlim_i X_i$ y $\varinjlim_i Y_i$ existen, junto con sus familias de morfismos canónicos $\{X_i \to \varinjlim_i X_i\}_{i \in I} \ y \ \{Y_i \to \varinjlim_i Y_i\}_{i \in I}.$ Sea $\{f_i \colon X_i \to Y_i\}_{i \in I}$ una familia de morfismos que conmutan con los morfismos $X_i \to X_j \ y \ Y_i \to Y_j$:

$$X_{i} \xrightarrow{f_{i}} Y_{i}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{j} \xrightarrow{f_{j}} Y_{j}$$

Entonces estos morfismos inducen un morfismo canónico entre los límites directos

$$f : \underset{i}{\underline{\lim}} X_i \to \underset{i}{\underline{\lim}} Y_i$$

que hace conmutar los morfismos f_i :

$$X_{i} \xrightarrow{f_{i}} Y_{i}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underset{i \to i}{\underline{\lim}} X_{i} \xrightarrow{f} \underset{i}{\underline{\lim}} Y_{i}$$

En las categorías como **Set**, R**-Mód**, etc., en términos de clases de equivalencia, este morfismo está definido por

$$[x_i] \mapsto [f_i(x_i)].$$

Demostración. Podemos considerar la familia de morfismos $\{X_i \xrightarrow{f_i} Y_i \to \varinjlim_i Y_i\}_{i \in I}$, y por la propiedad universal del límite directo $\varinjlim_i X_i$, tenemos un morfismo canónico $\varinjlim_i X_i \to \varinjlim_i Y_i$ que hace conmutar ... los diagramas:

1.6. Observación. \varinjlim es un funtor exacto. A saber, si tenemos sistemas directos de R-módulos (M'_i, h'_{ij}) , (M_i, h_{ij}) , (M''_i, h''_{ii}) y sucesiones exactas

$$M_i' \xrightarrow{f_i} M_i \xrightarrow{g_i} M_i''$$

que para cada i que conmutan con los morfismos de los sistemas directos

$$M'_{i} \xrightarrow{f_{i}} M_{i} \xrightarrow{g_{i}} M''_{i} \qquad para \ cada \ i \leq j,$$

$$\downarrow h'_{ij} \qquad \downarrow h_{ij} \qquad \downarrow h''_{ij}$$

$$M'_{j} \xrightarrow{f_{j}} M_{j} \xrightarrow{g_{j}} M''_{j}$$

entonces la sucesión correspondiente

$$\varinjlim_{i} M'_{i} \xrightarrow{f} \varinjlim_{i} M_{i} \xrightarrow{g} \varinjlim_{i} M''_{i}$$

es también exacta.

Demostración. Los morfismos $f : \varinjlim_i M'_i \to \varinjlim_i M_i$ y $g : \varinjlim_i M_i \to \varinjlim_i M''_i$ están definidos por 1.5. Tenemos que demostrar que $\liminf_i f = \ker g$. Antes de todo, $\liminf_i f \subseteq \ker g$ porque para cada $m'_i \in M'_i$ tenemos

$$g \circ f([m'_i]) = g([f_i(m'_i)]) = [g_i \circ f_i(m'_i)] = [0] = 0.$$

Para ver que ker $g \subseteq \operatorname{im} f$, supongamos que $[m_i] \in \varinjlim_i M_i$ es un elemento tal que $g([m_i]) = [g_i(m_i)] = 0$, es decir $g_i(m_i) \sim 0$. Por la definición de \sim , esto significa que para algún $k \in I$ tenemos $h''_{ik} \circ g_i(m_i) = g_k \circ h_{ik}(m_i) = 0$. Pero ker $g_k = \operatorname{im} f_k$, entonces $h_{ik}(m_i) = f_k(m'_k)$ para algún $m'_k \in M'_k$. Entonces $f([m'_k]) = [f_k(m'_k)] = [m_i]$.

Los límites directos \varinjlim también se conocen como **límites inductivos**, y son casos particulares de **colímites**.

Hay otra noción que es dual al límite directo \varinjlim : el **límite inverso** \varprojlim (también conocido como **límite proyectivo**, un caso particular de **límites**). Es un funtor exacto por la izquierda pero no exacto por la derecha; en consecuencia existen los funtores derivados por la derecha R^n \varprojlim . Es importante no confundir lim con \liminf ; no vamos a usar este último en nuestro curso.

Los límites directos fueron definidos por primera vez en 1931 por el topólogo soviético Lev Pontria-Guin, que no se dio cuenta del concepto dual del límite inverso, que fue introducido por el topólogo checo Eduard Čech en 1932 (*J. Dieudonné*, "A History of Algebraic and Differential Topology, 1900–1960", p. 72–74).

2. Localización

En esta sección voy a revisar una construcción muy importante del álgebra conmutativa: la localización.

- **2.1. Definición.** Sea R un anillo conmutativo y $S \subset R$ un subconjunto. La **localización** $S^{-1}R$ es una R-álgebra conmutativa junto con un morfismo de R-álgebras $\theta \colon R \to S^{-1}R$ tal que
 - 1) $\theta(s)$ es invertible para cada $s \in S$.
 - 2) $S^{-1}R$ tiene la siguiente propiedad universal: si R' es otra R-álgebra conmutativa y θ' : $R \to R'$ es un morfismo de R-álgebras tal que $\theta'(s)$ es invertible in R' para cada $s \in S$, entonces θ' se factoriza de modo único por $S^{-1}R$:

2.2. Ejercicio.

- 1) Si la localización existe, es única salvo isomorfismo.
- 2) Se puede siempre reemplazar S por el **monoide** \overline{S} **generado por** S. A saber, \overline{S} es el subconjunto minimal de R tal que $\overline{S} \supseteq S$ y para cualesquiera $x, y \in \overline{S}$ tenemos $xy \in \overline{S}$ y $1 \in \overline{S}$. Entonces $S^{-1}R \cong \overline{S}^{-1}R$. (Demuestre que ambas localizaciones satisfacen la misma propiedad universal.)

Cuando $S = \overline{S}$, se dice que S es multiplicativamente cerrado.

- 3) Si $S = \{s\}$ contiene un elemento, entonces la localización se denota por $R[s^{-1}]$ o R_s . Es la misma cosa que la localización respecto a $S = \{1, s, s^2, \ldots\}$.
 - $Si\ S = \{s_1, \dots, s_n\}$ es un conjunto finito, entonces $S^{-1}R$ es la misma cosa que $R_{s_1 \cdots s_n}$. (Note que $Si\ s_1 \cdots s_n$ es invertible, entonces $s_i^{-1} = (s_1 \cdots s_n)^{-1} \cdot (s_1 \cdots \widehat{s_i} \cdots s_n)$).
- 4) Si $\mathfrak{p} \subset R$ es un ideal primo, entonces $S := R \setminus \mathfrak{p}$ es un conjunto multiplicativamente cerrado. La localización correspondiente se denota por $R_{\mathfrak{p}}$.
- **2.3. Proposición.** La localización $S^{-1}R$ existe para cualquier $S \subset R$.

Demostración. Sin pérdida de generalidad, supongamos que S es multiplicativamente cerrado.

Consideramos la R-álgebra conmutativa libre generada por los elementos de S. En otras palabras, es el anillo de polinomios R[X] en variables $X = \{X_s \mid s \in S\}$. Sea I el ideal de R[X] generado por todos los elementos de la forma $s \mid X_s \mid 1$ y sea $S^{-1}R := R[X]/I$. Tenemos el morfismo

$$\theta: R \hookrightarrow R[X] \twoheadrightarrow R[X]/I$$
.

Por la definición de I, para cada $s \in S$ el elemento $\theta(s)$ es invertible en $S^{-1}R$; el elemento inverso s^{-1} es precisamente X_s (mód I).

Ahora supongamos que hay otra R-álgebra conmutativa R' con morfismo $\theta'\colon R\to R'$ tal que $\theta'(s)$ es invertible para cada $s\in S$. Tenemos que ver que hay un único morfismo de R-álgebras $R[X]/I\to R'$ que da el diagrama conmutativo

$$R \xrightarrow{\theta} R[X]/I$$

$$R' \xrightarrow{???}$$

Para tener diagrama conmutativo, la flecha punteada debe enviar cada elemento $X_s\pmod{I}$ a $\theta'(s)^{-1}$. Y de hecho, puesto que R[X] es la R-álgebra libre generada por X_s , entonces existe un único morfismo de R-álgebras $R[X] \to R'$ tal que $X_s \mapsto \theta'(s)^{-1}$, que a su vez induce un morfismo $R[X]/I \to R'$ porque $\theta'(s)$ es invertible para cada $s \in S$.

Las propiedades básicas de $S^{-1}R$ pueden ser demostradas a partir de su propiedad universal, sin usar una construcción particular de $S^{-1}R$.

2.4. Observación. Supongamos que S es multiplicativamente cerrado. Sea $\theta: R \to S^{-1}R$ la localización de R respecto a $S \subset R$. Entonces cada elemento de $S^{-1}R$ puede ser escrito (no necesariamente de modo único) como

$$\theta(r) \theta(s)^{-1}$$
 para algunos $r \in R$, $s \in S$.

Demostración. Notamos que a priori todos los elementos que admiten tal factorización forman una R-subálgebra $A \subseteq S^{-1}R$ y la imagen de θ es una subálgebra de A. En particular, $\theta(s)$ es invertible en A para cada $s \in S$. Podemos aplicar a A la propiedad universal de $S^{-1}R$:

La flecha punteada $S^{-1}R \to S^{-1}R$ debe ser única; entonces es el morfismo identidad id. Esto implica que la inclusión $A \hookrightarrow S^{-1}R$ es sobreyectiva y $A = S^{-1}R$.

Es más fácil trabajar con localizaciones R_s en un elemento (es decir, respecto a $S=1,s,s^2,\ldots$) que con localizaciones arbitrarias $S^{-1}R$. De hecho, $S^{-1}R$ es el límite directo de los R_s :

2.5. Observación. Las localizaciones R_s forman un sistema directo indexado por $s \in S$, tal que

$$\varinjlim_{s\in S} R_s \cong S^{-1}R.$$

Demostración. Definimos el orden \leq sobre S como

$$s \leq t \iff s \mid t$$
, es decir $t = s u$ para algún $u \in R$.

Para cada $s \in R$ tenemos la localización R_s , que puede ser descrita como el álgebra R[X]/(sX-1). Para cada $s \le t$ tenemos morfismos de R-álgebras

$$f_{st}: R_s := R[X]/(sX-1) \to R_t := R[X]/(tX-1),$$

 $X \mapsto u X.$

Se ve que esta aplicación está bien definida, ya que t = s u, y que la selección de dicho u no afecta el resultado. Para cada s el morfismo f_{ss} es id $_{R_s}$, y para $s \leq s' \leq s''$ se ve que $f_{s's''} \circ f_{ss'} = f_{ss''}$. En fin, para todo $s, s' \in R$ existe un $t \in R$ tal que $s \leq t$ y $s' \leq t$ (se puede tomar $t := s \cdot s'$). Entonces tenemos un sistema directo y podemos tomar el límite directo (en la categoría de R-álgebras conmutativas)

$$\varinjlim_{s\in S} R_s$$
.

Los morfismos canónicos $\theta_s \colon R \to R_s$ inducen un morfismo

$$\theta \colon R \to \varinjlim_{s \in S} R_s$$
.

Para cada $s \in S$ el elemento $\theta(s)$ es invertible en $\varinjlim_{s \in S} R_s$ porque es invertible en la localización R_s .

Ahora supongamos que existe otra R-álgebra R' con morfismo $\theta' \colon R \to R'$ tal que $\theta'(s)$ es invertible para cada $s \in S$. Entonces por la propiedad universal de cada localización R_s tenemos diagramas conmutativos

Esto nos da la el morfismo único

Un elemento $\theta(r)\,\theta(s)^{-1}\in S^{-1}R$ se escribe normalmente como una "fracción" $\frac{r}{s}$. Notamos que si tenemos $x=\theta(r)\,\theta(s)^{-1}$ y $x'=\theta(r')\,\theta(s')^{-1}$, entonces $x\cdot x'=\theta(r\,r')\,\theta(s\,s')^{-1}$ y $x+x'=\theta(r\,s'+r'\,s)\,\theta(s\,s')$. En términos de fracciones, $\frac{r}{s}\cdot\frac{r'}{s'}=\frac{r\cdot r'}{s\,s'}$ y $\frac{r}{s}+\frac{r'}{s'}=\frac{r\,s'+r'\,s}{s\,s'}$.

Se puede construir la localización $S^{-1}R$ como el anillo formado por las fracciones $\frac{r}{s}$ para $r \in R$ y $s \in S$ y definir la aplicación canónica $R \to S^{-1}R$ como $r \mapsto \frac{r}{1}$. Pero hay que tener cuidado: para las fracciones normales (por ejemplo, números racionales) tenemos $\frac{r}{s} = \frac{r'}{s'}$ si y solamente si rs' - r's = 0. En nuestro caso esta condición no es suficiente: por ejemplo, si $0 \in S$, entonces en el anillo $S^{-1}R$ el cero es invertible y por lo tanto $S^{-1}R = 0$ y todas las fracciones son iguales. En particular, el morfismo $R \to S^{-1}R$ no es inyectivo en general.

2.6. Proposición. Como siempre, supongamos que S es multiplicativamente cerrado. Tenemos

$$\ker(\theta: R \to S^{-1}R) = \{r \in R \mid tr = 0 \text{ para algún } t \in S\}.$$

Demostración. Si t r = 0 para algún t ∈ S, entonces en $S^{-1}R$ tenemos $\theta(r) = \theta(t)^{-1}\theta(t)\theta(r) = \theta(t)^{-1}\theta(t)^{-1}\theta(t) = 0$. Esto demuestra la inclusión "⊇". Para ver la inclusión "⊆", primero notamos que límites directos \varinjlim son exactos y en particular preservan núcleos:

$$\ker(\theta\colon R\to \varinjlim_s R_s)=\varinjlim_s \ker(\theta_s\colon R\to R_s).$$

Entonces va a ser suficiente demostrar que para cada $s \in S$ tenemos

$$\ker(\theta_s \colon R \to R_s) = \{r \in R \mid s^n r = 0 \text{ para algún } n \in \mathbb{N}\}.$$

Vamos a usar la construcción particular de R_s como R[X]/(sX-1). Si tenemos $\theta_s(r)=0$, entonces

$$r = f(X) \cdot (sX - 1) \in (sX - 1),$$

donde $f(X) = \sum_{0 \le i \le d} r_i X^i$ es algún polinomio en R[X]. De la ecuación de arriba concluimos que

$$r = -r_0$$
, $sr_0 = r_1$, $sr_1 = r_2$, ..., $sr_{d-1} = r_d$, $sr_d = 0$,

y por lo tanto $s^{d+1} r = 0$.

- **2.7. Corolario.** El morfismo $R \to S^{-1}R$ es inyectivo si S no contiene divisores de cero.
- **2.8. Corolario.** Sin pérdida de generalidad, supongamos que S es multiplicativamente cerrado. En $S^{-1}R$ tenemos $\frac{r}{s} = \frac{r'}{s'}$ si y solamente si (rs' r's) t = 0 para algún $t \in S$.

Demostración. $\frac{r}{s} = \frac{r'}{s'}$ es equivalente a $\frac{r}{s} - \frac{r'}{s'} = \frac{rs' - r's}{ss'} = 0$. Pero ss^{-1} es invertible y tenemos $\frac{rs' - r's}{1} = 0$ y por lo tanto (rs' - r's) t = 0 para algún $t \in S$ por 2.6.

Si
$$(rs' - r's) t = 0$$
, entonces $\frac{rs' - r's}{ss'} = \frac{rs' - r's}{ss'} \frac{t}{1} \frac{1}{t} = \frac{(rs' - r's)t}{ss't} = 0$.

Esto nos da otra construcción de $S^{-1}R$ en términos de fracciones:

2.9. Ejercicio (Construcción alternativa de la localización: fracciones). Sin pérdida de generalidad, supongamos que S es multiplicativamente cerrado. Sobre el conjunto $R \times S$ consideramos la relación definida por

$$(r,s) \sim (r',s') \iff (rs'-r's) t = 0$$
 para algún $t \in S$

(t es necesario si S tiene divisores de cero).

- 1) \sim es una relación de equivalencia.
- 2) Escribamos las clases de equivalencia $[(r,s)] \in R \times S/\sim como \frac{r}{s}$. Estas "fracciones" forman un anillo conmutativo $S^{-1}R$ respecto a las operaciones habituales $\frac{r}{s} \cdot \frac{r'}{s'} := \frac{r \cdot r'}{s \cdot s'} y \frac{r}{s} + \frac{r'}{s'} := \frac{r \cdot s' + r' \cdot s}{s \cdot s'}$. La identidad es la fracción $\frac{1}{1}$ y el cero es la fracción $\frac{0}{1}$.
- 3) El morfismo

$$\theta \colon R \to S^{-1}R,$$
$$r \mapsto \frac{r}{1}.$$

satisface la propiedad universal de la localización.

2.10. Ejemplo. Si R es un dominio de integridad y $S = R \setminus \{0\}$, entonces $S^{-1}R \cong \operatorname{Frac} R$ y el morfismo canónico $R \to S^{-1}R$ es un monomorfismo. La construcción de arriba generaliza la construcción del cuerpo de fracciones al caso cuando S es un subconjunto arbitrario, posiblemente con divisores de cero.

Por ejemplo, la localización $\mathbb{Z}_{(p)} := (\mathbb{Z} \setminus (p))^{-1}\mathbb{Z}$ consiste de fracciones $\frac{m}{n}$ donde $p \nmid n$.

2.11. Definición. Si *M* es un *R*-módulo, su localización en *S* es el *R*-módulo

$$S^{-1}M := M \otimes_R S^{-1}R.$$

Notamos que cada elemento $\sum_i m_i \otimes \frac{r_i}{s_i} \in M \otimes_R S^{-1}R$ puede ser escrito como $m \otimes \frac{1}{s}$ para $m \in M$ y $s \in S$ porque

$$\sum_{i} m_{i} \otimes \frac{r_{i}}{s_{i}} = \sum_{i} r_{i} \cdot m_{i} \otimes \frac{1}{s_{i}} = \left(\sum_{i} (\prod_{j \neq i} s_{j}) \cdot r_{i} \cdot m_{i}\right) \otimes \frac{1}{\prod_{i} s_{i}}.$$

2.12. Proposición. La localización $-\otimes_R S^{-1}R$ es un funtor exacto R-**Mód** $\to S^{-1}R$ -**Mód**: cada sucesión exacta de R-módulos

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

induce una sucesión exacta de $S^{-1}R$ -módulos

$$0 \to S^{-1}M' \to S^{-1}M \to S^{-1}M'' \to 0$$

En otras palabras, $S^{-1}R$ es un R-módulo plano.

Demostración. El funtor $-\otimes_R S^{-1}R$ es automáticamente exacto por la derecha; entonces la parte no trivial es que $-\otimes_R S^{-1}R$ sea también exacto por la izquierda. Tenemos que demostrar que un monomorfismo $f: M' \to M$ induce un monomorfismo

$$f \otimes \mathrm{id} \colon M' \otimes_R S^{-1}R \to M \otimes_R S^{-1}R,$$

$$m' \otimes \frac{1}{s} \mapsto f(m') \otimes \frac{1}{s}.$$

Nos va a servir una generalización de 2.6:

2.13. Lema. Para el morfismo canónico

$$\theta_M \colon M \to M \otimes_R S^{-1}R,$$
 $m \mapsto m \otimes 1.$

tenemos

$$\ker \theta_M = \{ m \in M \mid t \cdot m = 0 \text{ para algun } t \in S \}$$

(como siempre, se asume que S es multiplicativamente cerrado).

Este lema lo demuestra todo: si tenemos $f(m') \otimes \frac{1}{s} = 0$, entonces $f(m') \otimes 1 = s \cdot (f(m') \otimes \frac{1}{s}) = 0$, y por lo tanto $t \cdot f(m') = f(t \cdot m) = 0$ para algún $t \in S$. Pero f es mono, entonces $t \cdot m' = 0$. Por fin,

$$m' \otimes \frac{1}{\varsigma} = \frac{1}{t} \left(t \cdot m' \otimes \frac{1}{\varsigma} \right) = 0.$$

8

Ahora demostremos lema 2.13. Tenemos $S^{-1}M = \varinjlim_s M_s$ y los límites directos son exactos, de donde es suficiente analizar el caso cuando S contiene un elemento y demostrar que

$$\ker(M \to M_s) = \{ m \in M \mid s^n \cdot m = 0 \text{ para algún } n \in \mathbb{N} \}.$$

La inclusión obvia es " \supseteq " porque si $s^n \cdot m = 0$, entonces $m \otimes 1 = m \otimes (s^n \cdot \frac{1}{s^n}) = (s^n \cdot m) \otimes \frac{1}{s^n} = 0$. Para ver la otra inclusión, usamos la construcción $R_s \cong R[X]/(sX-1)$. Tenemos una sucesión exacta de R-módulos

$$0 \to (s x - 1) \xrightarrow{i} R[X] \xrightarrow{p} R_s \to 0$$

El funtor $M \otimes_R$ — es exacto por la derecha, entonces tenemos una sucesión exacta

$$M \otimes_R (s x - 1) \xrightarrow{id \otimes i} M \otimes_R R[X] \xrightarrow{id \otimes p} M_s \to 0$$

El morfismo $\theta_M \colon M \to M_s$ es la composición

$$M \xrightarrow{m \mapsto m \otimes 1} M \otimes_R R[X] \xrightarrow{\mathrm{id} \otimes p} M_s$$

y $M \to M \otimes_R R[X]$ es mono (porque R[X] es un R-módulo libre con base $1, X, X^2, \ldots$, de donde es un R-módulo proyectivo, en particular plano). Entonces

$$\ker \theta_M = \{ m \in M \mid m \otimes 1 \in \ker(\mathrm{id} \otimes p) = \mathrm{im}(\mathrm{id} \otimes i) \}.$$

Los elementos de $M \otimes_R R[X]$ pueden ser escritos de modo único como

$$x = \sum_{0 \le i \le d} m_i \otimes X^i.$$

Luego $m \in \ker \theta_M$ si y solamente si

$$m \otimes 1 = \left(\sum_{0 \le i \le d} m_i \otimes X^i\right) \cdot (s X - 1),$$

y esto implica que

$$m \otimes 1 = -m_0 \otimes 1$$
, $s \cdot m_0 \otimes X = m_1 \otimes X$, ..., $s \cdot m_{d-1} \otimes X^d = m_d \otimes X^d$, $s \cdot m_d \otimes X^{d+1} = 0$.

Finalmente tenemos $s^{d+1} \cdot m \otimes X^{d+1} = 0$ y por lo tanto $s^{d+1} \cdot m = 0$.

2.14. Ejemplo. T es un grupo abeliano de torsión (es decir, para cada elemento $x \in T$ existe $n \neq 0$ tal que $n \cdot x = 0$) si y solamente si $T \otimes_{\mathbb{Z}} \mathbb{Q} = 0$. En una dirección, si T es de torsión, se ve inmediatamente que $T \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ (jejercicio!). En otra dirección, si T no es de torsión, entonces T contiene un subgrupo cíclico isomorfo a \mathbb{Z} , y luego $\mathbb{Z} \rightarrowtail T$ induce un monomorfismo $\mathbb{Q} \rightarrowtail T \otimes_{\mathbb{Z}} \mathbb{Q}$, por la exactitud de localización. \blacktriangle