SCC0202 – Algoritmos e Estruturas de Dados I

Árvores Binárias

Prof.: Dr. Rudinei Goularte

(rudinei@icmc.usp.br)

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 4-229

Conteúdo

- Conceitos Básicos
- Implementação
- Percurso em Árvore Binária
- Outras Operações sobre Árvores Binárias

Árvore Binária

- Uma Árvore Binária (AB) T é um conjunto finito de elementos, denominados nós ou vértices, tal que
 - 1. Se $T = \emptyset$, a árvore é dita vazia, ou
 - T contém um nó especial r, chamado raiz de T, e os demais nós podem ser subdivididos em dois sub-conjuntos distintos T_E e T_D, os quais também são árvores binárias (possivelmente vazias)
 - T_E e T_D são denominados sub-árvore esquerda e subárvore direita de T, respectivamente

Árvore Binária

- A raiz da sub-árvore esquerda (direita) de um nó
 v, se existir, é denominada filho esquerdo (direito)
 de v
 - Pela natureza da árvore binária, o filho esquerdo pode existir sem o direito, e vice-versa

Árvore Estritamente Binária

 Uma Árvore Estritamente Binária (ou Árvore Própria) tem nós com 0 (nenhum) ou 2 (dois) filhos

Nós interiores (não folhas) sempre têm 2

filhos

Árvore Binária Completa

- Árvore Binária Completa (ABC)
 - Se a profundidade da árvore é d, então cada nó folha está no nível d 1 ou no nível d
 - O nível *d* 1 está totalmente preenchido
 - Os nós folha no nível d estão todos mais à esquerda possível

- Árvore Binária Completa Cheia (ABCC)
 - É uma Árvore Estritamente Binária
 - Todos os seus nós-folha estão no mesmo nível

Qual é o número total de nós de uma ABCC de profundidade d?

 Dada uma ABCC e sua profundidade d, podese calcular o número total de nós na árvore

```
□ d = 0: 1 nó (total 1 nó)
```

- □ *d* = 1 : 2 nós (total 3 nós)
- □ *d* = 2 : 4 nós (total 7 nós)
- □ Profundidade *d : 2^d* nós (total 2^{d+1} 1 nós)

 Portanto, se o número de nós, n, para uma árvore binária completa cheia de profundidade d é

$$n = 2^{d+1} - 1$$

 Então, n nós podem ser distribuídos em uma árvore binária completa cheia de profundidade

. . .

 Portanto, o número de nós, n, para uma árvore binária completa cheia de profundidade d é

$$n = 2^{d+1} - 1$$

Então n nós podem ser distribuídos em uma árvore binária completa cheia de profundidade:

- $n = 2^{d+1} 1$
- $\log_2(n + 1) = \log_2(2^{d+1})$
- \Box d = $\log_2(n + 1) 1$

Árvore Binária Balanceada

- Árvore Binária Balanceada
 - Para cada nó, as alturas de suas duas subárvores diferem de, no máximo, 1

Árvore Binária Perfeitamente Balanceada

- Árvore Binária Perfeitamente Balanceada
 - Para cada nó, o número de nós de suas subárvores esquerda e direita difere em, no máximo, 1
 - Toda Árvore Binária Perfeitamente Balanceada é Balanceada, mas o inverso não é necessariamente verdade

- Toda árvore balanceada é completa?
- E o inverso?
- Toda árvore perfeitamente balanceada é completa?
- □ E o inverso?

Qual a altura máxima de uma AB com n nós?

- Qual a altura máxima de uma AB com n nós?
 - Resposta: n 1
 - Árvore degenerada
 Lista

Qual a altura mínima de uma AB com n nós?

- Qual a altura mínima de uma AB com n nós?
 - Resposta: a mesma de uma AB Perfeitamente Balanceada com n nós

$$H_{\min} = \lfloor \log_2 n \rfloor$$

Implementação de ABCC (organização sequencial)

Armazenar os nós, por nível, em um array

0	1	2	3	4	5	6	n
а	b	С	d	е	f	g	

Implementação de ABC (organização sequencial)

- Para um vetor indexado a partir da posição 0, se um nó está na posição i, seus filhos diretos estão nas posições
 - 2_i + 1 : filho da esquerda
 - 2_i + 2 : filho da direita
- Vantagem: espaço só p/ armazenar conteúdo; ligações implícitas
- Desvantagem: espaços vagos se árvore não é completa por níveis, ou se sofrer eliminação

Implementação de AB (Encadeada)

Para qualquer árvore, cada nó é do tipo

```
//.h
#include "item.h"
typedef struct arv_bin AB;
//.c
typedef struct No NO;
struct No {
   ITEM *item;
   NO *esq;
   NO *dir;
};
struct arv bin {
   NO *raiz;
   int profundidade;
};
//main.c
AB *T;
T= ab criar();
```


Operações do TAD AB I

- Criar árvore
 - Pré-condição: nenhuma
 - Pós-condição: inicia a estrutura de dados

Operações do TAD AB II

- Inserir um nó filho
 - Pré-condição: nó pai não nulo.
 - Pós-condição: dado um nó pai, cria seu nó filho e o insere à direita ou esquerda do pai. Retorna VERDADEIRO se o pode ser criado, FALSO caso contrário.

Operações do TAD AB (Criar)

```
1 AB *ab_criar(void) {
2    AB *r = (AB *) malloc(sizeof(AB));
3    if (r != NULL) {
4        r->raiz = NULL;
5        r->profundidade = -1;
6    }
7    return (r);
8  }
9
```

AB - Percursos

- Percorrer uma AB "visitando" cada nó uma única vez
 - "Visitar" um nó pode ser
 - Mostrar o seu valor
 - Modificar o valor do nó
 - ____
- Um percurso gera uma sequência linear de nós, e podemos então falar de nó predecessor ou sucessor de um nó, segundo um dado percurso
- Não existe um percurso único para árvores (binárias ou não): diferentes percursos podem ser realizados, dependendo da aplicação

AB - Percursos em Árvores

- 3 percursos básicos para AB's:
 - pré-ordem (Pre-order)
 - visita a raiz
 - percorre a subárvore a esquerda em pré-ordem
 - percorre a subárvore a direita em pré-ordem
 - em-ordem (In-order)
 - percorre e subárvore a esquerda em-ordem
 - visita a raiz
 - percorre a subárvore a direita em-ordem
 - pós-ordem (Post-order)
 - percorre e subárvore a esquerda em pós-ordem
 - percorre a subárvore a direita em pós-ordem
 - visita a raiz
- A diferença entre eles está, basicamente, na ordem em que os nós são "visitados"

AB - Percurso Pré-Ordem

AB - Percurso Pré-Ordem

```
void ab_preordem(NO *raiz) {
  if (raiz != NULL) {
    item_imprimir(raiz->item);
    ab_preordem(raiz->esq);
    ab_preordem(raiz->dir);
  }
}
```


Resultado: ABDGCEHIF

AB - Percurso Em-Ordem

AB - Percurso Em-Ordem

```
void ab_emordem(NO *raiz) {
  if (raiz != NULL) {
    ab_emordem(raiz->esq);
    item_imprimir(raiz->item);
    ab_emordem(raiz->dir);
  }
}
```


Resultado:
DGBAHEICF

AB - Percurso Pós-Ordem

AB - Percurso Pós-Ordem

```
void ab_posordem(NO *raiz) {
  if (raiz != NULL) {
    ab_posordem(raiz->esq);
    ab_posordem(raiz->dir);
    item_imprimir(raiz->item);
  }
}
```


Resultado:
GDBHIEFCA

AB - Percursos

- Percurso para expressões aritméticas
 - Em-ordem: a+(b*c)
 - □ Pré-ordem: +a*bc
 - □ Pós-ordem: abc*+

- Qual percurso utilizar?
- Como calcular?

AB - Percursos

- Percurso para expressões aritméticas
 - Pré-ordem: +a*bc
 - Em-ordem: a+(b*c)
 - Pós-ordem: abc*+

Algoritmos para cálculo podem usar pilhas.

Operações do TAD AB (Inserção)

Operações do TAD AB (Inserção)

```
1 /* .h: #define FILHO ESO 0 #define FILHO DIR 1 */
3 NO *ab inserir no(NO *raiz, NO *no, int lado, int chave) {
    if (raiz != NULL) {
      raiz->esq = ab inserir no(raiz->esq, no, lado, chave);
      raiz->dir = ab inserir no(raiz->dir, no, lado, chave);
6
      if (chave == item get chave(raiz->item)){
8
          if (lado == FILHO ESQ)
9
              raiz→esq = no;
10
           else if (lado == FILHO DIR)
11
               raiz→dir = no;
12
13
14
    return(raiz);
15 }
16
17 bool ab inserir(AB *T, ITEM *item, int lado, int chave){
     if (T->raiz == NULL)
18
       return((T->raiz = ab_cria_no(item)) != NULL);
19
     else {
20
21
        NO *novo no = ab cria no(item);
22
        if(novo no != NULL){
23
           T \rightarrow raiz = ab inserir no(T \rightarrow raiz, novo no, lado, chave);
24
            return(true);
25
26
         return(false);
27
     }
28 }
```

Exercícios

- Toda árvore binária completa cheia é uma árvore binária completa?
- Toda árvore estritamente binária é uma árvore binária completa?
- Escreva um procedimento recursivo que calcula a profundidade de uma AB
- Escreva um procedimento recursivo que apaga uma árvore

Função recursiva para calcular profundidade de uma árvore

```
int ab_profundidade(NO *no) {
  if (no == NULL) return -1;
  int e = ab_profundidade(no->esq);
  int d = ab_profundidade(no->dir);
  return ((e > d) ? e : d) + 1;
}
```

Procedimento recursivo p/ destruir árvore, liberando o espaço alocado

```
void apagar arvore(NO **raiz) {
     if (*raiz != NULL) {
3
       apagar arvore(&(*raiz)->esq);
4
       apagar arvore(&(*raiz)->dir);
5
6
       item apagar(&(*raiz)->item));
       free(*raiz);
       *raiz = NULL;
8
9
10
   void ab apagar arvore(AB **T) {
     apagar arvore(&(*T)->raiz);
12
13 free(*T);
14 *T = NULL;
15 }
```

Exercícios

- Considerando uma árvore que armazene inteiros
 - Implemente um método que retorne a quantidade de elementos em uma árvore
 - Implemente um método que retorne o maior elemento de uma árvore
 - Implemente um método que retorne o menor elemento de uma árvore
 - Implemente um método que retorne a soma de todos elementos de uma árvore