Dr. RamManohar Lohia Avadh University, Ayodhya U.P. Study and Evaluation Scheme

MCA (Master of Computer Applications)
(Effective From Session 2020-21)
Year – I Semester – I

MCA 102 - Computer Organization & Architecture

Course Details

• Paper No.: II

• Course Code: MCA 102

• Course Title: Computer Organization & Architecture (Theory)

• Marks Distribution: Internal = 50, External = 100, Total = 150

6 Goal

To learn the basic methods and provide the fundamental concepts used in the design of digital systems.

OUTCOMES

At the end of the course the student should be able to:

- 1. Understand the functions of a digital computer.
- 2. Reduce complex logical expressions using **Boolean algebra**.
- 3. Use graphical methods for simplification of logic expressions (e.g., **K-maps**).
- 4. Apply **design methodology** for combinational logic circuits.
- 5. Use **design concepts** of sequential circuits.
- 6. Understand structure of various **semiconductor storage devices**.
- 7. Illustrate basic **arithmetic and logic operations** in the computer.
- 8. Explain memory organization.
- 9. Describe **I/O** interfacing.
- 10. Explain device subsystems.

UNIT I — Computer Fundamentals, Data Representation & Arithmetic

- **Introduction to Computer Fundamentals:** Evolution, generations, classification, applications, components (hardware & software), booting.
- **Data Representation:** Positional numbering systems, base conversion, signed integer representation, **IEEE floating-point**, character codes.
- **Arithmetic:** Overview of fixed point and floating point addition, subtraction, multiplication, division.
- Boolean Algebra & Digital Logic: Boolean algebra, expressions & identities, K-maps & minimization, logic gates, digital components, combinational & sequential circuits.

UNIT II — Register Transfer, Memory & Arithmetic Algorithms

- **Registers & Register Transfer:** Register transfer language, bus & memory transfers, bus architecture, bus arbitration.
- **Arithmetic & Shift Micro-operations:** Arithmetic logic shift unit, design of fast adders, arithmetic algorithms (addition, subtraction, **Booth multiplication**).
- **Memory Hierarchy:** Main memory (RAM/ROM), auxiliary memory, **cache memory**, virtual memory, memory management hardware.

UNIT III — Control Design

- **Control Unit Design:** Hardwired vs microprogrammed control.
- **Fundamentals:** Register transfers, performing arithmetic/logic ops, fetch/store operations, execution of complete instruction.
- **Organizations:** Multiple-bus organization, hardwired control, **microprogramming** (microinstructions, sequencing, wide-branch addressing, next-address field, prefetching).

UNIT IV — **Processor & I/O Organization**

- **Processor Design / Organization:** General register organization, stack organization, addressing modes, instruction formats, data transfer & manipulation, program control, **RISC** concepts.
- I/O Organization: I/O interfaces, modes of transfer, interrupts & handling, programmed I/O, DMA, I/O processors, serial communication.

UNIT V — Device Subsystems, Pipelining & Advanced Topics

- **Device Subsystems:** External storage systems (disk/optical), organization of disk drives, basic I/O controllers (keyboard/mouse), **RAID architectures**, video controllers, I/O performance, SMART & fault detection, processor-to-network interfaces.
- **Advanced Architectures:** RISC & CISC, basic **MIPS** implementation, **pipelining**, instruction-level parallelism, parallel processing challenges, Flynn's classification, hardware multithreading, multicore processing.