Lecture #1: Credence & Evidential Probability

Branden Fitelson¹

Rutgers Philosophy &

MCMP @ LMU

branden@fitelson.org
http://fitelson.org/

¹These lectures draw on joint work with Rachael Briggs (ANU), Fabrizio Cariani (NU), Kenny Easwaran (USC), and David McCarthy (HKU).

Branden Fitelson

Lecture #1: Credence & Evidential Probability

1

Stage-Setting

de Finetti & Joyce 000000

de Finetti & Joyce

The seminar will meet three times this first week (1-3pm, T/W/R). I'll give 3 lectures—an overview of my book project.
Next week, we will have (a) a Q&A session on Tuesday (1-3),

and then (b) a "project pitch" session on Thursday (1-3).

you to ask questions to help shape your projects.

• The Q&A session (Tuesday 6/10) will be an opportunity for

• Then, on Thursday 6/12, individuals (or project groups of

• Finally, we will have (c) 45-minute presentations of student

last class day (6/26). We have two options regarding (c).

projects, and (d) 10-page project reports will be due on the

 (c_1) Some presentations on 6/17-6/18 & some in the final week.

2) will give a 15-minute "pitch" of their project proposals.

Joyce & Predd et. al.

D - f -

gistics Stage-Setting de Finetti & Joyce Joyce & Predd et. al. Three Worries Refs

- In these lectures, I will layout a general framework for grounding *formal*, *synchronic*, *epistemic coherence requirements* for various types of judgment sets.
- *Formal* coherence is to be distinguished from more substantive types of "coherence" in epistemology [1].
 - Our notions of coherence will (like deductive consistency) supervene on *logical* properties of judgment sets.
- *Synchronic* coherence has to do with the coherence of a set of judgments held by an agent *S* at a single time *t*.
- *Epistemic* coherence involves *distinctively* epistemic values (specifically: *accuracy* [14] and *evidential support* [8]).
 - Not to be confused with *pragmatic* coherence [25, 13].
- *Coherence* has to do with how a set of judgments "hangs together". CRs are *wide-scope* [2], non-local requirements.
- *Requirements* are *evaluative*; they give *necessary* conditions for (ideal) epistemic rationality of a doxastic state [27].

(c₂) Or, we could use 6/18 (Wed) as a "discussion section" in which we talk about projects and project preparations, informally. And then we could have all the presentations

informally. And, then, we could have all the presentations in four meetings held during the final week (6/23-6/26).

Branden Fitelson

Logistics

Lecture #1: Credence & Evidential Probability

d et. al. Three Worries

Three Worries

- Our framework is a generalization of Joycean [16, 15] arguments for *probabilism* as a coherence requirement for sets of numerical confidence judgments (*viz.*, credences).
- These arguments trace back to de Finetti [9] and they have recently culminated in a vast generalization [24] which forms the basis of our approach to numerical credence.
- Before discussing credences, however, I want to talk about *evidential probabilities*. It will be a basic slogan of our approach that "probabilities reflect evidence". That is:
 - **Probabilities Reflect Evidence** (PRE). For each epistemic context (where a context is determined by a body of total evidence E), there exists a probability function $\Pr_E(\cdot)$ which measures the degree of evidential support in that context.
- In this first lecture, I will explain how Joycean arguments allow us to provide a (partial) justification of (PRE). Then, we will use (PRE) as a key premise in our later arguments.

Logistics o	Stage-Setting ○○●	de Finetti & Joyce 000000	Joyce & Predd et. al. 0000	Three Worries	Refs
			vill be applicable following four co	· · · -	
	condition	ns under which th	ideal for a set of jone set is perfectly and the truth-values	accurate (in a	
	is the con total evid	nditions under w dence (in a contex	lential ideal for a s hich the set is supp t of epistemic eval I have a probabilist	ported by the uation).	
	to be fac	tive. That is, one	nents in question a may (sometimes) i irate (<i>i.e.</i> , they may	rationally hold	
	One may	(sometimes) rati	s are not assumed onally hold judgm dence (they may f	ents that aren't	
			rity + fallibility w incoherent doxas		
Branden Fitelso	on	Lecture #1: Cred	lence & Evidential Probabili	ty	5

de Finetti & Joyce • I will look at the simplest instance of de Finetti's Theorem, which involves an agenda $\{P, \neg P\}$ for some contingent P. • Let us suppose (as a matter of convention) that $s(\cdot, E)$ takes values on the unit interval [0, 1], with 0 corresponding to minimal support and 1 corresponding to maximal support. • Now, let's consider assignments of *credences* (degrees of confidence) to $\{P, \neg P\}$. We'll represent credal assignments $b(\cdot) \in [0,1]$ on $\{P, \neg P\}$, as: b(P) = x and $b(\neg P) = y$. • This allows us to visualize the salient space of possible credence functions on $\{P, \neg P\}$ via a simple Cartesian plot (of the unit square), with abscissa b(P) and ordinate $b(\neg P)$. • Next, we assume the following alethic and evidential *ideals*. • Alethic Ideal. As an *alethic ideal*, $b(\cdot)$ should assign a value of 1 to all (actual) truths and 0 to all (actual) falsehoods. • Evidential Ideal. As an evidential ideal, $b(\cdot)$ should be *equal to* $s(\cdot, E)$, where E is the (actual) total evidence.

ogistics	Stage-Setting ooo	de Finetti & Joyce ●○○○○	Joyce & Predd et. al. 0000	Three Worries	Refs
•			pproach traces ba nt of de Finetti [9		
•	-		erpretation of de ent arguments in		
•	least) a parti	al justification	on, these argumen for (PRE). They re egrees of evident	veal some nice	
•	a finite <i>agen</i>	da of n proposi	I setup. Let $\mathcal{A} = \{$ itions (think of the positional languary)	ese p_i 's as	
•	evidence E),	each propositio	n epistemic content $p \in \mathcal{A}$ will be se, which we denot	supported by E	
•	probability f	unction. We car	to argue that $s(p, 0)$ use Joyce-style [g traces back to d	15] reasoning	
Branden Fit	elson	Lecture #1: Cre	edence & Evidential Probabili	ity	6

Joyce & Predd et. al. Of course, credence functions which satisfy the evidential ideal will *not* typically satisfy the alethic ideal. The total evidence is *rarely* conclusive (for all p's in any given A). • But, the evidential ideal should only conflict with the alethic ideal up to a point. Sufficiently radical conflicts between the alethic and the evidential ideals should be prohibited (or, following the evidence could lead us *too* far astray). If a credence function $b(\cdot)$ is radically inaccurate, then it must not reflect the total evidence. The Joycean explication of "radically inaccurate" involves *gradational inaccuracy*. • The (gradational) inaccuracy of a credal assignment b(p) at a possible world w is some function i_b of b(p) and the value assigned to p by the indicator function $v_w(p) \in [0,1]$, which assigns 1 (0) to all truths (falsehoods) in w. • Let $i_h(b(p), v_w(p)) \stackrel{\text{def}}{=} (v_w(p) - b(p))^2$. [Note: this yields Euclidean distance I_h between the vectors $b(\cdot)$ and $v_w(\cdot)$.

de Finetti & Joyce

• The plot on the left (right) explains the \Rightarrow (\Leftarrow) direction.

Branden Fitelson

• We weren't clear on Step 3 in our presentation of de Finetti's argument. The *fundamental epistemic principle* there was:

Lecture #1: Credence & Evidential Probability

Weak Accuracy-Dominance Avoidance (WADA). $b(\cdot)$ should *not be weakly dominated* in inaccuracy (according to \mathcal{I}_b). More formally, there should *not* exist a $b'(\cdot)$ (on \mathcal{A}) s.t.

- (i) $(\forall w) [\mathcal{I}_b(b'(\cdot), v_w(\cdot)) \leq \mathcal{I}_b(b(\cdot), v_w(\cdot))]$, and
- (ii) $(\exists w) [\mathcal{I}_b(b'(\cdot), v_w(\cdot)) < \mathcal{I}_b(b(\cdot), v_w(\cdot))]^2$
- Weak dominance principles are typically assumed to be requirements of rationality in the context of decision theory (think of \mathcal{I}_b as an alethic measure of *epistemic* (*dis*)utility).
- If (a) we assume our inaccuracy measure I_b is *Euclidean distance*, and (b) we assume that *violating* (WADA) entails that b is "*radically* inaccurate," then we can conclude that $s(\cdot, E)$ *must be a probability function*. What justifies (a)?

de Finetti & Joyce Three Worries • More generally, applying our Joycean strategy (to judgment sets J of type J) involves going through *Three Steps*. • **Step 1**: Identify a precise sense in which *individual* judgments j of type \mathfrak{J} can be (qualitatively) *inaccurate* (or *alethically defective/imperfect*) at a possible world w. • In the case of credences, Joyce assumes that b(p) is inaccurate at a possible world w just in case $b(p) \neq v_w(p)$. • Step 2: Define an *inaccuracy score* i(j, w) for individual judgments *i* of type J. This is a numerical measure of *how inaccurate* (in the sense of Step 1) j is (at w). For each set $J = \{j_1, \dots, j_n\}$, we define its *total inaccuracy* at w as the *sum* of the *i*-scores of its members: $\mathcal{I}(\mathbf{J}, w) \stackrel{\text{def}}{=} \sum_{i} i(j_{i}, w)$. • In the case of credences, Joyce assumes that $I_h(b(\cdot), v_w(\cdot))$ is the *Euclidean distance* between $b(\cdot)$ and $v_w(\cdot)$ on A.

Branden Fitelson

Lecture #1: Credence & Evidential Probability

• **Step 3**: Adopt a fundamental epistemic principle, which uses

I(J, w) to ground a (formal, synchronic, epistemic) coherence requirement for judgment sets J of type J.

ΤO

- We assumed that I_b was *Euclidean distance*. And, the de Finetti/Joyce argument for probabilism depends sensitively on this choice. Why not some other inaccuracy measure?
 - Maher [19] wonders, specifically, why the *Manhattan* distance (a.k.a., the L_1 -norm) isn't a perfectly good inaccuracy measure (it doesn't yield probabilism via WADA).
 - Joyce [15] gives an interesting "evidentialist" response. The argument concerns a simple agenda involving a 3-sided die.
 - Let $P_i \triangleq$ a fair, 3-sided die comes up "i". Suppose S has the credence function $b(P_i) = 1/3$. And, suppose S knows only that the die is fair (i.e., S has no other P_i -relevant evidence).
 - Joyce claims that such an *S* clearly has "evidentially correct/ideal" credences. Here, Joyce appeals to *The Principal Principle* (PP) [18] to motivate this claim.
 - So far, so good. But, bad news lurks for Manhattan distance.

11

²Weak and strict dominance are *equivalent* for Euclidean distance [26].

Logistics o	Stage-Setting	de Finetti & Joyce 000000	Joyce & Predd et. al. ○●○○	Three Worries	Refs	
•	• $b'(P_i) = 0$ strictly dominates $b(P_i) = 1/3$, according to the Manhattan distance measure of credal inaccuracy.					
R	Assuming that violations of (WADA) constitute "radically inaccurate" credences, using the Manhattan distance rules out $b(P_i) = 1/3$ as a candidate for $s(P_i, E)$ in this context.					
•		0	1/3 seems like a g Moreover, (PP) <i>en</i>			
•	• This "evidentialist" reply to Maher leads Joyce to endorse a more general claim, which we call <i>Probabilistic Admissibility</i> .					
	measure	I_b is probabilist	ity (PA). A credal in its ideal in its ideal in its ideal $admissible$ is $admissible$ in $admissible$ in $admissible$ in its ideal $admissible$ in	ist in case it <i>fails</i>		
•	Joyce's ratio	nale for (PA) res	sts on the assum	ption that		
(P	some (po	ossible) context.	n will correspond Thus, assuming (P <i>e possible support</i>	P), every		
Branden Fitel	son	Lecture #1: Cred	lence & Evidential Probabil	ity	13	

Joyce & Predd et. al. de Finetti & Joyce Three Worries • (PA) suffices to disqualify the Manhattan distance, but it not known whether it ensures that (WADA) entails probabilism. • *Predd et. al.* [24] have given the most general Joyce-style argument to date. They show that (WADA) entails probabilism, provided only that i_h is a proper scoring rule. **Propriety.** A measure $i_h(b(p), v_w(p))$ of the inaccuracy of an individual credal judgment b(p) is *proper* just in case every *probabilistic* credence function $b(\cdot)$ minimizes expected i_b -inaccuracy, according to itself. • It is easy to show that the Euclidean distance is proper. Let $b(\cdot)$ be a probabilistic credence function. Then, the b-expected value of $i_h(b'(p), v_w(p))$ is given by $b(p) \cdot (b'(p) - 1)^2 + (1 - b(p)) \cdot b'(p)^2$ which achieves a (unique) minimum at b'(p) = b(p). Propriety of I_h ensures that probabilistic b's never expect other b''s to be more I_h -accurate than themselves. Lecture #1: Credence & Evidential Probability Branden Fitelson

Joyce & Predd et. al. • It is easy to show that propriety entails probabilistic admissibility (minimization of I_h -expectation entails non- I_b -dominance). But, the converse is an open question. • *I.e.*, it is open whether propriety can be replaced by the (seemingly) weaker assumption of (PA) in the argument of Predd *et. al.* Pettigrew [23] discusses this conjecture.³ • In any case, it seems likely that any inaccuracy measure which runs afoul of (PA) will prove to be inadequate because it rules out some possible evidential support functions. • If this proves to be right, then we would have a (partial) justification of (PRE), which makes use of the (prima facie more plausible) assumption (PRE') + a (WADA)-based argument for probabilism, as the evidential ideal for $b(\cdot)$. ³Strictly speaking, we need to assume truth-directedness (i.e., that uniform decreases in *point-wise* i_h -inaccuracy entail a decrease in *overall* I_b -inaccuracy) in addition to propriety/probabilistic admissibility (see [23]).

Logistics o	Stage-Setting	de Finetti & Joyce 000000	Joyce & Predd et. al.	Three Worries •○○	Re
	 Joyce faces a 	a potential "evic	lentialist" objecti	on [10].	
	and $b(\neg P) =$	= 0.3. Thus, by o	oabilistic credenc de Finetti's theor an distance) by so	em, b will be	
	0,		which \mathcal{I}_b -dominaws from a more g		
	·-	· =	nates b , then eith $< b'(P)$ and $b(\neg P)$		
			ctly) that her tota following credal		
	$(\dagger) \ b(P) \le 0$).3.			
R	Constraint (†) rules out all l	$ ho'$'s which I_b -don	ninate S's b.	
	J	•	d by something t ide, epistemic) de	•	

Branden Fitelson

15

Logistics o	Stage-Setting	de Finetti & Joyce 000000	Joyce & Predd et. al. 0000	Three Worries ○•○	Refs
	• Caie [4] disc	usses the follow	ring self-referenti	al claim.	
	(P) S assign	s a credence $b(P)$) < 1/2.		
	$non-I_b$ -domi	inated credal as:	stance, it seems to signment S can as stic: $b(P) = 1/2$; b	dopt on	
	ruled out by	the very act of	wise) "possible we S 's adopting certar P) $\geq 1/2$, then P is	in credences.	
	• See Cam	apbell-Moore's [6,	5] for more on Cai	e-type cases.	
	been assum	ing a kind of <i>act</i>	e of a more gener E/state independer Eindependence br	nce in our	
	reasons). Gr	eaves [11] and C	emantic reasons (Carr [7] discuss su a possible Joyce	ich cases. And,	

Lecture #1: Credence & Evidential Probability

Branden Fitelson

Logistics o	Stage-Setting	de Finetti & Joyce 000000	Joyce & Predd et. al.	Three Worries	Refs
[1]	L. Bonjour, <i>The C</i>	Coherence Theory of I	Empirical Knowledge, I	Phil. Studies, 1975.	
[2]	J. Broome, Wide o	or Narrow Scope, Min	d, 2007.		
[3]	M. Caie, Credence	e in the Image of Cha	<i>ince</i> , manuscript, 2014	l.	
[4]	, Rational	Probabilistic Incohere	ence, Philosophical Rev	iew, 2013.	
[5]	-	re, <i>How to Express Se</i> ces, manuscript, 2014	elf-Referential Probabil 4.	ity and Avoid the	
[6]	, Rational 2013.	Probabilistic Incohere	ence? A Reply to Micha	el Caie, manuscript,	
[7]	J. Carr, How to Ex	kpect When You're Ex	pecting, manuscript, 2	014.	
[8]	W. Clifford, The	ethics of belief, Conte	mporary Review, 1877		
[9]	B. de Finetti, <i>The</i>	Theory of Probability	<i>y</i> , Wiley, 1974.		
[10]	K. Easwaran and <i>Probabilism</i> , <i>Dial</i>	,	entialist" Worry about	Joyce's Argument fo	r
[11]	H. Greaves, Epist	emic Decision Theor	y, Mind, 2013.		
[12]	A. Hájek, <i>A Puzz</i>	e About Degree of Be	elief, manuscript, 2010		
[13]	, Argumen	ts for — or Against -	– Probabilism?, BJPS, 2	008.	
[14]	W. James, <i>The wi</i>	ll to believe, The New	World, 1896.		
Branden Fit	elson	Lecture #1: Cre	dence & Evidential Probabil	ity	19

tics	Stage-Setting	de Finetti & Joyce 000000	Joyce & Predd et. al.	Three Worries ○○●	Refs
,	questions wh	nether (a) creder	argument for pronces have an aleticles is that $b(p)$	hic (or	
,	$rb(p) = r^{\dagger} d$	lo not "aim at p	judgments of the 's truth' because he world as being	such	
	assign hi since thi	gher credence to s <i>supervenes on t</i>	at it is <i>epistemically</i> truths than falseh The truth-values (of (if not an "accurae	noods. And, it he p 's), it still	
,	function $f(\cdot)$	(on pain of <i>ind</i>	$(b(\cdot))$ should material street, you mind the chance funct	ght reject	
	an evider S doesn'i	ntial norm — it te t know the value	he. The Principal Particles you what $b(p)$ of $v_w(p)$. In fact, (en $b(p)$ should ma	should match <i>ij</i> PP) implies that	f

• See [12, 22, 21, 3] for further discussion of both (a) and (b).

Lecture #1: Credence & Evidential Probability

Branden Fitelson

Logistics o	Stage-Setting 000	de Finetti & Joyce 000000	Joyce & Predd et. al.	Three Worries	Refs
[15]			spects for an Alethic Ep idt-Petri (eds.), Degrees		
[16]	, A Nonpra	gmatic Vindication o	f Probabilism, Philosop	hy of Science, 1998.	
[17]	J.Konek and B. Le manuscript, 2014	•	itions of Epistemic Deci	sion Theory,	
[18]	D. Lewis, A Subject	ctivists's Guide to Ob	jective Chance, 1980.		
[19]	P. Maher, Joyce's	Argument for Probal	oilism, Philosophy of Sc	ience, 2002.	
[20]	R. Pettigrew, Acci	ıracy and Evidence, 1	Dialectica, 2014.		
[21]	, What Cha	nce-Credence Norms	Should Not Be, Noûs, 2	2013.	
[22]	, Accuracy, 2012.	Chance, and the Pri	ncipal Principle, Philoso	ophical Review,	
[23]	, Epistemic Philosophy, 2011.	Utility Arguments fo	r Probabilism, Stanford	l Encyclopedia of	
[24]	, ,	, , ,	son, H.V. Poor and S., I pring rules, IEEE Transa	*	
[25]	F. Ramsey, Truth	and Probability, 192	6.		
[26]	,	eidenfeld, J. Kadane, herence, Decision An	Proper Scoring Rules, alysis, 2009.	Dominated	
[27]	M. Titelbaum, <i>Qu</i>	itting Certainties, OU	P, 2013.		
Branden Fite	elson	Lecture #1: Cred	lence & Evidential Probabili	ty	20