$\boldsymbol{x} \in \mathbb{R}^2$ with \boldsymbol{x} constrained to have exactly unit L^2 norm, we can instead minimize $g(\theta) = f([\cos \theta, \sin \theta]^\top)$ with respect to θ , then return $[\cos \theta, \sin \theta]$ as the solution to the original problem. This approach requires creativity; the transformation between optimization problems must be designed specifically for each case we encounter.

The **Karush–Kuhn–Tucker** (KKT) approach¹ provides a very general solution to constrained optimization. With the KKT approach, we introduce a new function called the **generalized Lagrangian** or **generalized Lagrange function**.

To define the Lagrangian, we first need to describe \mathbb{S} in terms of equations and inequalities. We want a description of \mathbb{S} in terms of m functions $g^{(i)}$ and n functions $h^{(j)}$ so that $\mathbb{S} = \{ \boldsymbol{x} \mid \forall i, g^{(i)}(\boldsymbol{x}) = 0 \text{ and } \forall j, h^{(j)}(\boldsymbol{x}) \leq 0 \}$. The equations involving $g^{(i)}$ are called the **equality constraints** and the inequalities involving $h^{(j)}$ are called **inequality constraints**.

We introduce new variables λ_i and α_j for each constraint, these are called the KKT multipliers. The generalized Lagrangian is then defined as

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = f(\boldsymbol{x}) + \sum_{i} \lambda_{i} g^{(i)}(\boldsymbol{x}) + \sum_{j} \alpha_{j} h^{(j)}(\boldsymbol{x}). \tag{4.14}$$

We can now solve a constrained minimization problem using unconstrained optimization of the generalized Lagrangian. Observe that, so long as at least one feasible point exists and f(x) is not permitted to have value ∞ , then

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda}} \max_{\boldsymbol{\alpha}, \boldsymbol{\alpha} \ge 0} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}). \tag{4.15}$$

has the same optimal objective function value and set of optimal points x as

$$\min_{\boldsymbol{x} \in \mathbb{S}} f(\boldsymbol{x}). \tag{4.16}$$

This follows because any time the constraints are satisfied,

$$\max_{\lambda} \max_{\alpha, \alpha \ge 0} L(x, \lambda, \alpha) = f(x), \tag{4.17}$$

while any time a constraint is violated,

$$\max_{\lambda} \max_{\alpha, \alpha \ge 0} L(x, \lambda, \alpha) = \infty. \tag{4.18}$$

¹The KKT approach generalizes the method of **Lagrange multipliers** which allows equality constraints but not inequality constraints.