

Mware UAT CIS L1 3/12/2024

Report generated by Tenable Nessus $^{\mathrm{TM}}$

Wed, 26 Mar 2025 07:12:35 EDT

TABLE OF CONTENTS

Vulnerabilities by Host	
• 192.168.40.33	12
Compliance 'FAILED'	
• 1.6.1 Ensure message of the day is configured properly	140
• 1.6.2 Ensure local login warning banner is configured properly	142
• 1.6.3 Ensure remote login warning banner is configured properly	144
• 2.1.18 Ensure web server services are not in use	146
• 4.1.7 Ensure ufw default deny firewall policy	148
• 5.1.20 Ensure sshd PermitRootLogin is disabled	151
• 5.3.1.1 Ensure latest version of pam is installed	153
• 5.3.1.2 Ensure libpam-modules is installed	155
• 5.4.1.1 Ensure password expiration is configured	157
• 5.4.1.3 Ensure password expiration warning days is configured	160
• 5.4.1.5 Ensure inactive password lock is configured	
• 5.4.2.6 Ensure root user umask is configured	166
• 5.4.3.3 Ensure default user umask is configured	170
• 6.2.1.2.2 Ensure systemd-journal-remote authentication is configured	175
• 6.2.2.1 Ensure access to all logfiles has been configured	178
• 7.1.11 Ensure world writable files and directories are secured	184
• 7.1.12 Ensure no files or directories without an owner and a group exist	188
Compliance 'SKIPPED'	
Compliance 'PASSED'	
• 1.1.1.1 Ensure cramfs kernel module is not available	194
• 1.1.1.2 Ensure freevxfs kernel module is not available	197
• 1.1.1.3 Ensure hfs kernel module is not available	200
• 1.1.1.4 Ensure hfsplus kernel module is not available	203

• 1.1.1.5 Ensure jffs2 kernel module is not available	206
• 1.1.1.8 Ensure usb-storage kernel module is not available	209
• 1.1.2.1.1 Ensure /tmp is a separate partition	212
• 1.1.2.1.2 Ensure nodev option set on /tmp partition	215
• 1.1.2.1.3 Ensure nosuid option set on /tmp partition	217
• 1.1.2.1.4 Ensure noexec option set on /tmp partition	220
• 1.1.2.2.1 Ensure /dev/shm is a separate partition	223
• 1.1.2.2.2 Ensure nodev option set on /dev/shm partition	225
• 1.1.2.2.3 Ensure nosuid option set on /dev/shm partition	228
• 1.1.2.2.4 Ensure noexec option set on /dev/shm partition	231
• 1.1.2.3.2 Ensure nodev option set on /home partition	234
• 1.1.2.3.3 Ensure nosuid option set on /home partition	237
• 1.1.2.4.2 Ensure nodev option set on /var partition	240
• 1.1.2.4.3 Ensure nosuid option set on /var partition	243
• 1.1.2.5.2 Ensure nodev option set on /var/tmp partition	246
• 1.1.2.5.3 Ensure nosuid option set on /var/tmp partition	249
• 1.1.2.5.4 Ensure noexec option set on /var/tmp partition	252
• 1.1.2.6.2 Ensure nodev option set on /var/log partition	255
• 1.1.2.6.3 Ensure nosuid option set on /var/log partition	258
• 1.1.2.6.4 Ensure noexec option set on /var/log partition	261
• 1.1.2.7.2 Ensure nodev option set on /var/log/audit partition	264
• 1.1.2.7.3 Ensure nosuid option set on /var/log/audit partition	267
• 1.1.2.7.4 Ensure noexec option set on /var/log/audit partition	270
• 1.2.2.1 Ensure updates, patches, and additional security software are installed	273
• 1.3.1.1 Ensure AppArmor is installed	276
• 1.3.1.2 Ensure AppArmor is enabled in the bootloader configuration	279
• 1.3.1.3 Ensure all AppArmor Profiles are in enforce or complain mode	282
• 1.4.1 Ensure bootloader password is set	286
• 1.4.2 Ensure access to bootloader config is configured	290

• 1.5.1 Ensure address space layout randomization is enabled	293
• 1.5.2 Ensure ptrace_scope is restricted	295
• 1.5.3 Ensure core dumps are restricted	297
• 1.5.4 Ensure prelink is not installed	300
• 1.5.5 Ensure Automatic Error Reporting is not enabled	303
• 1.6.4 Ensure access to /etc/motd is configured	305
• 1.6.5 Ensure access to /etc/issue is configured	308
• 1.6.6 Ensure access to /etc/issue.net is configured	311
• 1.7.2 Ensure GDM login banner is configured	314
• 1.7.3 Ensure GDM disable-user-list option is enabled	317
• 1.7.4 Ensure GDM screen locks when the user is idle	320
• 1.7.5 Ensure GDM screen locks cannot be overridden	323
1.7.6 Ensure GDM automatic mounting of removable media is disabled	326
• 1.7.7 Ensure GDM disabling automatic mounting of removable media is not overridden	329
• 1.7.8 Ensure GDM autorun-never is enabled	331
• 1.7.9 Ensure GDM autorun-never is not overridden	334
• 1.7.10 Ensure XDCMP is not enabled	336
• 2.1.1 Ensure autofs services are not in use	338
• 2.1.2 Ensure avahi daemon services are not in use	340
• 2.1.3 Ensure dhcp server services are not in use	342
• 2.1.4 Ensure dns server services are not in use	344
• 2.1.5 Ensure dnsmasq services are not in use	346
• 2.1.6 Ensure ftp server services are not in use	348
• 2.1.7 Ensure Idap server services are not in use	350
• 2.1.8 Ensure message access server services are not in use	352
• 2.1.9 Ensure network file system services are not in use	354
• 2.1.10 Ensure nis server services are not in use	356
• 2.1.11 Ensure print server services are not in use	358
• 2.1.12 Ensure rpcbind services are not in use	360

• 2.1.13 Ensure rsync services are not in use	362
• 2.1.14 Ensure samba file server services are not in use	364
• 2.1.15 Ensure snmp services are not in use	366
• 2.1.16 Ensure tftp server services are not in use	368
• 2.1.17 Ensure web proxy server services are not in use	370
• 2.1.19 Ensure xinetd services are not in use	372
• 2.1.21 Ensure mail transfer agent is configured for local-only mode	374
• 2.2.1 Ensure NIS Client is not installed	376
• 2.2.2 Ensure rsh client is not installed	378
• 2.2.3 Ensure talk client is not installed	380
• 2.2.4 Ensure telnet client is not installed	382
• 2.2.5 Ensure Idap client is not installed	384
• 2.2.6 Ensure ftp client is not installed	386
• 2.3.1.1 Ensure a single time synchronization daemon is in use	388
• 2.3.2.1 Ensure systemd-timesyncd configured with authorized timeserver	391
• 2.3.2.2 Ensure systemd-timesyncd is enabled and running	393
• 2.3.3.1 Ensure chrony is configured with authorized timeserver	395
• 2.3.3.2 Ensure chrony is running as user _chrony	398
• 2.3.3.3 Ensure chrony is enabled and running	400
• 2.4.1.1 Ensure cron daemon is enabled and active	402
• 2.4.1.2 Ensure permissions on /etc/crontab are configured	404
• 2.4.1.3 Ensure permissions on /etc/cron.hourly are configured	407
• 2.4.1.4 Ensure permissions on /etc/cron.daily are configured	410
• 2.4.1.5 Ensure permissions on /etc/cron.weekly are configured	413
• 2.4.1.6 Ensure permissions on /etc/cron.monthly are configured	416
• 2.4.1.7 Ensure permissions on /etc/cron.d are configured	419
• 2.4.1.8 Ensure crontab is restricted to authorized users	422
• 2.4.2.1 Ensure at is restricted to authorized users	426
3.1.2 Ensure wireless interfaces are disabled	429

• 3.1.3 Ensure bluetooth services are not in use	431
• 3.3.1 Ensure ip forwarding is disabled	433
3.3.2 Ensure packet redirect sending is disabled	435
• 3.3.3 Ensure bogus icmp responses are ignored	437
• 3.3.4 Ensure broadcast icmp requests are ignored	439
• 3.3.5 Ensure icmp redirects are not accepted	441
• 3.3.6 Ensure secure icmp redirects are not accepted	444
• 3.3.7 Ensure reverse path filtering is enabled	446
• 3.3.8 Ensure source routed packets are not accepted	448
• 3.3.9 Ensure suspicious packets are logged	451
• 3.3.10 Ensure tcp syn cookies is enabled	454
• 3.3.11 Ensure ipv6 router advertisements are not accepted	456
• 4.1.1 Ensure ufw is installed	458
• 4.1.2 Ensure iptables-persistent is not installed with ufw	461
• 4.1.3 Ensure ufw service is enabled	463
4.1.4 Ensure ufw loopback traffic is configured	466
4.1.6 Ensure ufw firewall rules exist for all open ports	469
• 4.2.1 Ensure nftables is installed	472
• 4.2.2 Ensure ufw is uninstalled or disabled with nftables	474
• 4.2.3 Ensure iptables are flushed with nftables	476
• 4.2.4 Ensure a nftables table exists	478
• 4.2.5 Ensure nftables base chains exist	480
4.2.6 Ensure nftables loopback traffic is configured	483
• 4.2.7 Ensure nftables outbound and established connections are configured	485
4.2.8 Ensure nftables default deny firewall policy	487
• 4.2.9 Ensure nftables service is enabled	490
• 4.2.10 Ensure nftables rules are permanent	492
• 4.3.1.1 Ensure iptables packages are installed	494
• 4.3.1.2 Ensure nftables is not installed with iptables	496

• 4.3.1.3 Ensure ufw is uninstalled or disabled with iptables	498
• 4.3.2.1 Ensure iptables default deny firewall policy	500
• 4.3.2.2 Ensure iptables loopback traffic is configured	502
• 4.3.2.3 Ensure iptables outbound and established connections are configured	504
• 4.3.2.4 Ensure iptables firewall rules exist for all open ports	507
• 4.3.3.1 Ensure ip6tables default deny firewall policy	509
• 4.3.3.2 Ensure ip6tables loopback traffic is configured	511
• 4.3.3.3 Ensure ip6tables outbound and established connections are configured	513
• 4.3.3.4 Ensure ip6tables firewall rules exist for all open ports	515
• 5.1.1 Ensure permissions on /etc/ssh/sshd_config are configured	517
• 5.1.2 Ensure permissions on SSH private host key files are configured	520
• 5.1.3 Ensure permissions on SSH public host key files are configured	524
• 5.1.4 Ensure sshd access is configured	528
• 5.1.5 Ensure sshd Banner is configured	532
• 5.1.6 Ensure sshd Ciphers are configured	534
• 5.1.7 Ensure sshd ClientAliveInterval and ClientAliveCountMax are configured	538
• 5.1.10 Ensure sshd HostbasedAuthentication is disabled	541
• 5.1.11 Ensure sshd IgnoreRhosts is enabled	543
• 5.1.12 Ensure sshd KexAlgorithms is configured	545
• 5.1.13 Ensure sshd LoginGraceTime is configured	549
• 5.1.14 Ensure sshd LogLevel is configured	551
• 5.1.15 Ensure sshd MACs are configured	554
• 5.1.16 Ensure sshd MaxAuthTries is configured	558
• 5.1.17 Ensure sshd MaxSessions is configured	561
• 5.1.18 Ensure sshd MaxStartups is configured	563
• 5.1.19 Ensure sshd PermitEmptyPasswords is disabled	565
• 5.1.21 Ensure sshd PermitUserEnvironment is disabled	567
• 5.1.22 Ensure sshd UsePAM is enabled	569
• 5.2.1 Ensure sudo is installed	571

• 5.2.2 Ensure sudo commands use pty	574
• 5.2.3 Ensure sudo log file exists	577
• 5.2.5 Ensure re-authentication for privilege escalation is not disabled globally	580
• 5.2.6 Ensure sudo authentication timeout is configured correctly	582
• 5.2.7 Ensure access to the su command is restricted	584
• 5.3.1.3 Ensure libpam-pwquality is installed	587
• 5.3.2.1 Ensure pam_unix module is enabled	589
• 5.3.2.2 Ensure pam_faillock module is enabled	593
• 5.3.2.3 Ensure pam_pwquality module is enabled	596
• 5.3.2.4 Ensure pam_pwhistory module is enabled	598
• 5.3.3.1.1 Ensure password failed attempts lockout is configured	600
• 5.3.3.1.2 Ensure password unlock time is configured	602
• 5.3.3.2.1 Ensure password number of changed characters is configured	605
• 5.3.3.2.2 Ensure minimum password length is configured	607
• 5.3.3.2.3 Ensure password complexity is configured	609
• 5.3.3.2.4 Ensure password same consecutive characters is configured	612
• 5.3.3.2.5 Ensure password maximum sequential characters is configured	614
• 5.3.3.2.6 Ensure password dictionary check is enabled	616
• 5.3.3.2.7 Ensure password quality checking is enforced	618
• 5.3.3.2.8 Ensure password quality is enforced for the root user	620
• 5.3.3.3.1 Ensure password history remember is configured	622
• 5.3.3.3.2 Ensure password history is enforced for the root user	624
• 5.3.3.3 Ensure pam_pwhistory includes use_authtok	626
• 5.3.3.4.1 Ensure pam_unix does not include nullok	628
• 5.3.3.4.2 Ensure pam_unix does not include remember	630
• 5.3.3.4.3 Ensure pam_unix includes a strong password hashing algorithm	632
• 5.3.3.4.4 Ensure pam_unix includes use_authtok	635
• 5.4.1.4 Ensure strong password hashing algorithm is configured	638
• 5.4.1.6 Ensure all users last password change date is in the past	641

• 5.4.2.1 Ensure root is the only UID 0 account	643
• 5.4.2.2 Ensure root is the only GID 0 account	645
• 5.4.2.3 Ensure group root is the only GID 0 group.	648
• 5.4.2.4 Ensure root password is set	651
• 5.4.2.5 Ensure root path integrity	654
• 5.4.2.7 Ensure system accounts do not have a valid login shell	656
• 5.4.2.8 Ensure accounts without a valid login shell are locked	659
• 5.4.3.2 Ensure default user shell timeout is configured	662
6.1.1 Ensure AIDE is installed	665
6.1.2 Ensure filesystem integrity is regularly checked	668
• 6.2.1.1.1 Ensure journald service is enabled and active	671
6.2.1.1.4 Ensure journald ForwardToSyslog is disabled	673
6.2.1.1.5 Ensure journald Storage is configured	676
6.2.1.1.6 Ensure journald Compress is configured	679
• 6.2.1.2.1 Ensure systemd-journal-remote is installed	682
6.2.1.2.3 Ensure systemd-journal-upload is enabled and active	684
• 6.2.1.2.4 Ensure systemd-journal-remote service is not in use	686
• 7.1.1 Ensure permissions on /etc/passwd are configured	688
• 7.1.2 Ensure permissions on /etc/passwd- are configured	691
• 7.1.3 Ensure permissions on /etc/group are configured	694
• 7.1.4 Ensure permissions on /etc/group- are configured	697
• 7.1.5 Ensure permissions on /etc/shadow are configured	700
• 7.1.6 Ensure permissions on /etc/shadow- are configured	703
• 7.1.7 Ensure permissions on /etc/gshadow are configured	706
• 7.1.8 Ensure permissions on /etc/gshadow- are configured	709
• 7.1.9 Ensure permissions on /etc/shells are configured	712
• 7.1.10 Ensure permissions on /etc/security/opasswd are configured	715
• 7.2.1 Ensure accounts in /etc/passwd use shadowed passwords	718
• 7.2.2 Ensure /etc/shadow password fields are not empty	720

• 7.2.3 Ensure all groups in /etc/passwd exist in /etc/group	722
• 7.2.4 Ensure shadow group is empty	725
• 7.2.5 Ensure no duplicate UIDs exist	728
• 7.2.6 Ensure no duplicate GIDs exist	730
• 7.2.7 Ensure no duplicate user names exist	732
• 7.2.8 Ensure no duplicate group names exist	734
• 7.2.9 Ensure local interactive user home directories are configured	736
• 7.2.10 Ensure local interactive user dot files access is configured	740
• CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit from CIS Ubuntu Linux 22.04 LTS Benchmark v2.0.0.	744
Compliance 'INFO', 'WARNING', 'ERROR'	
• 1.2.1.1 Ensure GPG keys are configured	746
• 1.2.1.2 Ensure package manager repositories are configured	749
• 2.1.22 Ensure only approved services are listening on a network interface	752
• 3.1.1 Ensure IPv6 status is identified	754
• 4.1.5 Ensure ufw outbound connections are configured	756
• 6.2.1.1.2 Ensure journald log file access is configured	759
• 6.2.1.1.3 Ensure journald log file rotation is configured	762
• 7.1.13 Ensure SUID and SGID files are reviewed	765
Remediations	
Suggested Remediations	770

192.168.40.33

Scan Information

Start time: Wed Mar 26 07:01:16 2025 End time: Wed Mar 26 07:12:32 2025

Host Information

IP: 192.168.40.33

MAC Address: CE:65:2B:31:80:7C C2:F2:9B:88:8E:4F 56:B9:56:FD:E2:F2 76:48:23:43:9A:BF

F2:89:CC:24:0B:D7 EE:E6:13:B0:5C:4C 6A:46:04:F4:7C:99 EA:6C:D3:78:B3:66 06:FD:1F:D9:17:5B 12:CA:45:6D:B2:D0 56:85:69:75:46:EF 22:E1:BC:0A:3C:90 4E:6C:7B:D2:8A:38 7E:81:E7:C6:AF:5B 22:2F:27:DF:62:51 00:0C:29:BD:3E:7B 76:7F:A8:FC:9A:85 1A:06:74:2E:17:E0 F2:1F:18:CE:EF:98 92:81:88:63:6A:D0 42:05:60:B9:F3:A0 06:E9:94:4C:41:BC 8A:13:C7:A3:95:73 22:E6:DB:62:5B:9A

OS: Linux Kernel 6.8.0-52-generic on Ubuntu 22.04

Vulnerabilities

33851 - Network daemons not managed by the package system

Synopsis

Some daemon processes on the remote host are associated with programs that have been installed manually.

Description

Some daemon processes on the remote host are associated with programs that have been installed manually.

System administration best practice dictates that an operating system's native package management tools be used to manage software installation, updates, and removal whenever possible.

Solution

Use packages supplied by the operating system vendor whenever possible.

And make sure that manual software installation agrees with your organization's acceptable use and security policies.

isk Factor
one
lugin Information
ublished: 2008/08/08, Modified: 2024/03/06
lugin Output
:p/0

The following running daemon is not managed by dpkg :

/usr/lib/systemd/systemd-resolved

34098 - BIOS Info (SSH)

Synopsis

BIOS info could be read.

Description

Using SMBIOS and UEFI, it was possible to get BIOS info.

Solution

N/A

Risk Factor

None

Plugin Information

Published: 2008/09/08, Modified: 2024/02/12

Plugin Output

tcp/0

Version : 6.00 Vendor : Phoenix Technologies LTD

Release Date : 11/12/2020

UUID : fbb04d56-60f3-576b-53bf-c946aebd3e7b Secure boot : disabled

45590 - Common Platform Enumeration (CPE)

Synopsis

It was possible to enumerate CPE names that matched on the remote system.

Description

By using information obtained from a Nessus scan, this plugin reports CPE (Common Platform Enumeration) matches for various hardware and software products found on a host.

Note that if an official CPE is not available for the product, this plugin computes the best possible CPE based on the information available from the scan.

See Also

http://cpe.mitre.org/

https://nvd.nist.gov/products/cpe

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2010/04/21, Modified: 2025/03/13

Plugin Output

tcp/0

```
The remote operating system matched the following CPE:

cpe:/o:canonical:ubuntu_linux:22.04.5 -> Canonical Ubuntu Linux

Following application CPE's matched on the remote system:

cpe:/a:docker:docker:28.0.4 -> Docker
cpe:/a:gnupg:libgcrypt:1.9.4 -> GnupG Libgcrypt
cpe:/a:haxx:curl:7.81.0 -> Haxx Curl
cpe:/a:haxx:libcurl:7.81.0 -> Haxx libcurl
cpe:/a:igor_sysoev:nginx:1.26.3 -> Nginx
cpe:/a:igor_sysoev:nginx:1.26.3 -> Nginx
cpe:/a:mysql:mysql:8.0.41-Oubuntu0.22.04.1 -> MySQL MySQL
cpe:/a:mysql:mysql:8.0.41-Oubuntu0.22.04.1_ -> MySQL MySQL
cpe:/a:nginx:nginx:1.26.3 -> Nginx
cpe:/a:openbsd:openssh:9.9 -> OpenBSD OpenSSH
cpe:/a:openssd:openssl:3.0.2 -> OpenBSD Project OpenSSL
cpe:/a:oracle:openjdk:11.0.26 -> Oracle OpenJDK -
```

cpe:/a:tukaani:xz:5.2.5 -> Tukaani XZ
cpe:/a:vim:vim:8.2 -> Vim

cpe:/a:vmware:open_vm_tools:12.3.5 -> VMware Open VM Tools

x-cpe:/a:java:jre:11.0.26

182774 - Curl Installed (Linux / Unix)

Synopsis

Curl is installed on the remote Linux / Unix host.

Description

Curl (also known as curl and cURL) is installed on the remote Linux / Unix host.

Additional information:

- More paths will be searched and the timeout for the search will be increased if 'Perform thorough tests' setting is enabled.
- The plugin timeout can be set to a custom value other than the plugin's default of 30 minutes via the 'timeout.182774' scanner setting in Nessus 8.15.1 or later.

Please see https://docs.tenable.com/nessus/Content/SettingsAdvanced.htm#Custom for more information.

See Also

https://curl.se/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/10/09, Modified: 2025/03/19

Plugin Output

tcp/0

Path : /usr/bin/curl

Version : 7.81.0

Associated Package : curl 7.81.0-lubuntu1.20

Managed by OS : True

55472 - Device Hostname

Synopsis

It was possible to determine the remote system hostname.

Description

This plugin reports a device's hostname collected via SSH or WMI.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2011/06/30, Modified: 2025/03/11

Plugin Output

tcp/0

Hostname : mware-uat
 mware-uat (hostname command)

54615 - Device Type

Synopsis

It is possible to guess the remote device type.

Description

Based on the remote operating system, it is possible to determine what the remote system type is (eg: a printer, router, general-purpose computer, etc).

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2011/05/23, Modified: 2025/03/12

Plugin Output

tcp/0

Remote device type : general-purpose Confidence level : 100

111529 - Docker Container Number of Changed Files

Synopsis

Checks for changes in running Docker containers and reports how many files changed.

Description

This plugin checks the docker diff information for each container and reports the number of changed files.

See Also

https://www.docker.com/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2018/08/03, Modified: 2025/03/19

Plugin Output

tcp/0

Docker container 0d0a19a138317e59007d290a6c422da5c6236b16203dd7f15b1e749dff60c87c has 16 changed files

Docker container 1b588dbc2323b4b5211249d30e26399243e25f46ec648839b4c8566f45f12f91 has 19 changed files

Docker container 8ce138dc92fbad65b4e227015a0225594df91618d72e5756d961fc194b84d57d has 23 changed files

Docker container 8ea16050853f7d91a53f67550086fb9f6d0fb9a27f612fbbc3ce8f1dd30ed4da has 19 changed files

Docker container c81d22a0d359fd2063eadcc8aa113b78909f7d3c0c185fddfa12996b61b53042 has 43 changed files

Docker container d74551e4debb655e5328e956fdb2dbb45cc9f5203bae43ff175c122d82356a0c has 101936 changed files

Docker container 15933f7b680324c4ad7c3e4edd49daa3496ef37baaa5867eaaf88237c179ce1e has 25 changed files

Docker container d5ea02fc030b26a2fb38b899e2cda2eecf6dc0701873bb948770f93a578f0741 has 7 changed files

Docker files	container	6fe07787eb83ac46ab833ddd2e712b6726080018ef9c2747a9c96685849e34a1	has	34 changed
Docker files	container	2d7dad0c62555f2b2771b0b4c6fb0dc4043f9e44a4b9037335a78e522542c431	has	139653 changed
Docker files	container	f3e25c43689ea685197ac3f5ae3da16de068b77241fc5c0a155a647b3a74820b	has	34 changed
Docker files	container	90d7571bf1c3c1deb2e424ba2ad5548fed38fb300f7187bc65d772535f9316ef	has	34 changed
Docker files	container	2d1cd75164b08582cb97046c4bceaaf0f76b665c764dd7675ebfe5f13ad9aaef	has	35 changed
Docker files	container	3546df7c420924ea475f801e4abe3b385a68e87492836280653e44b738129b87	has	139648 changed
Docker files	container	48b207ccbce9afd74c56decb2481449d25e5c5fdfa6a419c486317dc0b8f47ec	has	34 changed
Docker files	container	75868a2d9cc745af9bb44d4774fc3b3f3bbb3026c88f57fa95d2e3922d1cb4ff	has	139619 changed
Docker files	container	4e9e5916db3adb0486bc8f27f53d167d925d89b12c1d3317237c025f9fc6e723	has	34 changed
Docker files	container	5cbe9ed773b148fa8a22c896c596b1d31c63b3169fdba7b98072e6cb32bec6e8	has	34 changed
Docker files	container	430f20cf84008e91c22892428de6e6b00cc37f75bb8fcb51bbcbd8ffbbd4d28b	has	34 changed
Docker	container	771ff0661c2e60e671e7e76dfb77eef20a217862e []		

192.168.40.33 21

159488 - Docker Installed (Linux)

Synopsis

Docker was detected on the remote host.

Description

A container virtualization suite is installed on the remote host.

See Also

https://www.docker.com/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2022/04/04, Modified: 2025/03/19

Plugin Output

tcp/0

Path : /usr/bin/docker
Version : 28.0.4
Build : 6430e49 Managed by OS : True

93561 - Docker Service Detection

Synopsis

Docker was detected on the remote host.

Description

The Docker service is running on the remote host. Docker is an open-source project that automates the deployment of applications inside software containers.

See Also

https://www.docker.com/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2016/09/16, Modified: 2025/03/19

Plugin Output

tcp/0

```
Version: 28.0.4
 Version: 28.0.4
 Version: 1.7.26
 Version: 1.2.5
 Version: 0.19.0
The following containers were detected running on the remote Docker host :
Name:
          /ekyc
         gauriab/ekyc
Image ID : sha256:471d7648e4bcf3e6628d53d8349a519e493cc4e6050e9088e73909cc283c5751
Tag:
ID:
          0d0a19a138317e59007d290a6c422da5c6236b16203dd7f15b1e749dff60c87c
Ports:
         n/a
Name:
          /mware
          gauriab/mware
Image:
Image ID : sha256:ccffd0b9a9b264463c146ddf64f18e5cea923addeb85b6fc40b7b66576e51ac2
Tag:
          1b588dbc2323b4b5211249d30e26399243e25f46ec648839b4c8566f45f12f91
ID:
Ports:
         n/a
Name:
          /techexcel
        gauriab/techexcel
```

Image ID : sha256:fb5cc3e7c02c56879449ab58b094bc63a0f72447c4d7dfa0ba2fa3b189a08d63

Tag: uat

ID: 8ce138dc92fbad65b4e227015a0225594df91618d72e5756d961fc194b84d57d

Ports: n/a

Name: /mware-techexcel
Image: gauriab/mware-techexcel

Image ID : sha256:2201dledd4a164e12e800cd8bd52d399bb423b39d9cc31cca469ee76e22e4009

Tag: uat

ID: 8ea16050853f7d91a53f67550086fb9f6d0fb9a27f612fbbc3ce8f1dd30ed4da

Ports: n/a

Name: /hdfc

Image: gauriab/hdfc

Image ID : sha256:f8ff84b10729c64b385cf1b832d7c9a709cfa60f784b96df7ee6801d937a698f

Tag: uat

ID: c81d22a0d359fd2063eadcc8aa113b78909f7d3c0c185fddfa12996b61b53042

Ports: n/a

Name: /dw-primary
Image: gauriab/dw-primary

Image ID : sha256:914813f02197c185b63824a1deb20c35b2955166f9d5e2033de87fd44ad39dc2

Tag: uat

ID: d74551e4debb655e5328e956fdb2dbb45cc9f5203bae43ff175c122d82356a0c

Ports: n/a

Name: /gateway

Image: gauriab/gateway

Image ID : sha256:76ed69037857dc0b6bab135c48b0a9eee6239978238e2478e616d121ecb12c99

Tag: uat

ID: 15933f7b680324c4ad7c3e4edd49daa3496ef37baaa5867eaaf88237c179ce1e

Ports: 8443/tcp -> 0.0.0.0:8181

8443/tcp -> :::8181

8181/tcp

Name: /redis

Image: redis/redis-stack

 ${\tt Image\ ID\ :\ sha256:7592dd0ad72716bc7c9f00ed6c645e7c068d12bfbb6f0c0b7aa294540b74\ [\dots]}$

25203 - Enumerate IPv4 Interfaces via SSH

Synopsis

Nessus was able to enumerate the IPv4 interfaces on the remote host.

Description

Nessus was able to enumerate the network interfaces configured with IPv4 addresses by connecting to the remote host via SSH using the supplied credentials.

Solution

Disable any unused IPv4 interfaces.

Risk Factor

None

Plugin Information

Published: 2007/05/11, Modified: 2024/11/20

Plugin Output

tcp/0

The following IPv4 addresses are set on the remote host :

- 172.18.0.1 (on interface br-c0c82e61301e)
- 172.17.0.1 (on interface docker0) 192.168.40.33 (on interface ens160)
- 127.0.0.1 (on interface lo)

25202 - Enumerate IPv6 Interfaces via SSH

Synopsis

Nessus was able to enumerate the IPv6 interfaces on the remote host.

Description

Nessus was able to enumerate the network interfaces configured with IPv6 addresses by connecting to the remote host via SSH using the supplied credentials.

Solution

Disable IPv6 if you are not actually using it. Otherwise, disable any unused IPv6 interfaces.

Risk Factor

None

Plugin Information

Published: 2007/05/11, Modified: 2024/11/20

Plugin Output

tcp/0

```
The following IPv6 interfaces are set on the remote host:
 - fe80::747f:a8ff:fefc:9a85 (on interface br-c0c82e61301e)
 - fe80::20c:29ff:febd:3e7b (on interface ens160)
 - ::1 (on interface lo)
 - fe80::1806:74ff:fe2e:17e0 (on interface veth0889108)
 - fe80::cc65:2bff:fe31:807c (on interface veth0354fc2)
 - fe80::9081:88ff:fe63:6ad0 (on interface veth1b8ef42)
 - fe80::8813:c7ff:fea3:9573 (on interface veth27abc83)
 - fe80::6846:4ff:fef4:7c99 (on interface veth2c3d8ba)
 - fe80::4e9:94ff:fe4c:41bc (on interface veth406c7ce)
 - fe80::202f:27ff:fedf:6251 (on interface veth4c5a966)
 - fe80::c0f2:9bff:fe88:8e4f (on interface veth4fb48c0)
 - fe80::4fd:1fff:fed9:175b (on interface veth54deaac)
 - fe80::e86c:d3ff:fe78:b366 (on interface veth6560a2b)
 - fe80::54b9:56ff:fefd:e2f2 (on interface veth7ce7ld5)
 - fe80::f089:ccff:fe24:bd7 (on interface veth7faaf1b)
 - fe80::20e1:bcff:fe0a:3c90 (on interface veth8ba31f8)
 - fe80::f01f:18ff:fece:ef98 (on interface vethb27628b)
 - fe80::4005:60ff:feb9:f3a0 (on interface vethc361ede)
 - fe80::5485:69ff:fe75:46ef (on interface vethc7d3f3e)
 - fe80::10ca:45ff:fe6d:b2d0 (on interface vethd0b0ab4)
 - fe80::4c6c:7bff:fed2:8a38 (on interface vethd5811f7)
 - fe80::20e6:dbff:fe62:5b9a (on interface vethe76d99a)
 - fe80::ece6:13ff:feb0:5c4c (on interface vethea345ab)
 - fe80::7c81:e7ff:fec6:af5b (on interface vethef27ab7)
```

192.168.40.33 26

33276 - Enumerate MAC Addresses via SSH

Synopsis

Nessus was able to enumerate MAC addresses on the remote host.

Description

Nessus was able to enumerate MAC addresses by connecting to the remote host via SSH with the supplied credentials.

Solution

Disable any unused interfaces.

Risk Factor

None

Plugin Information

Published: 2008/06/30, Modified: 2022/12/20

Plugin Output

tcp/0

```
The following MAC addresses exist on the remote host :
  - ce:65:2b:31:80:7c (interface veth0354fc2)
  - c2:f2:9b:88:8e:4f (interface veth4fb48c0)
  - 56:b9:56:fd:e2:f2 (interface veth7ce71d5)
  - 76:48:23:43:9a:bf (interface docker0)
  - f2:89:cc:24:0b:d7 (interface veth7faaf1b)
  - ee:e6:13:b0:5c:4c (interface vethea345ab)
  - 6a:46:04:f4:7c:99 (interface veth2c3d8ba)
  - ea:6c:d3:78:b3:66 (interface veth6560a2b)
  - 06:fd:1f:d9:17:5b (interface veth54deaac)
  - 12:ca:45:6d:b2:d0 (interface vethd0b0ab4)
  - 56:85:69:75:46:ef (interface vethc7d3f3e)
  - 22:e1:bc:0a:3c:90 (interface veth8ba31f8)
  - 4e:6c:7b:d2:8a:38 (interface vethd5811f7)
  - 7e:81:e7:c6:af:5b (interface vethef27ab7)
  - 22:2f:27:df:62:51 (interface veth4c5a966)
  - 00:0c:29:bd:3e:7b (interface ens160)
  - 76:7f:a8:fc:9a:85 (interface br-c0c82e61301e)
  - la:06:74:2e:17:e0 (interface veth0889108)
  - f2:1f:18:ce:ef:98 (interface vethb27628b)
  - 92:81:88:63:6a:d0 (interface veth1b8ef42)
  - 42:05:60:b9:f3:a0 (interface vethc361ede)
  - 06:e9:94:4c:41:bc (interface veth406c7ce)
  - 8a:13:c7:a3:95:73 (interface veth27abc83)
  - 22:e6:db:62:5b:9a (interface vethe76d99a)
```

170170 - Enumerate the Network Interface configuration via SSH

Synopsis

Nessus was able to parse the Network Interface data on the remote host.

Description

Nessus was able to parse the Network Interface data on the remote host.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/01/19, Modified: 2025/02/11

Plugin Output

tcp/0

```
veth8ba31f8:
 MAC : 22:e1:bc:0a:3c:90
    - Address : fe80::20e1:bcff:fe0a:3c90
       Prefixlen: 64
       Scope : link
       ScopeID : 0x20
veth406c7ce:
 MAC : 06:e9:94:4c:41:bc
 IPv6:
    - Address : fe80::4e9:94ff:fe4c:41bc
       Prefixlen: 64
       Scope : link
       ScopeID : 0x20
veth7faaf1b:
 MAC : f2:89:cc:24:0b:d7
    - Address : fe80::f089:ccff:fe24:bd7
       Prefixlen: 64
        Scope : link
        ScopeID : 0x20
vethea345ab:
 MAC : ee:e6:13:b0:5c:4c
 IPv6:
    - Address : fe80::ece6:13ff:feb0:5c4c
        Prefixlen: 64
        Scope : link
       ScopeID : 0x20
veth7ce71d5:
 MAC : 56:b9:56:fd:e2:f2
    - Address : fe80::54b9:56ff:fefd:e2f2
```

```
Prefixlen: 64
        Scope : link
        ScopeID : 0x20
veth4fb48c0:
 MAC : c2:f2:9b:88:8e:4f
 IPv6:
    - Address : fe80::c0f2:9bff:fe88:8e4f
        Prefixlen: 64
        Scope : link
        ScopeID : 0x20
vethc361ede:
 MAC : 42:05:60:b9:f3:a0
  IPv6:
    - Address : fe80::4005:60ff:feb9:f3a0
        Prefixlen: 64
        Scope : link
       ScopeID : 0x20
veth6560a2b:
 MAC : ea:6c:d3:78:b3:66
 IPv6:
    - Address : fe80::e86c:d3ff:fe78:b366
       Prefixlen: 64
       Scope : link
       ScopeID : 0x20
vethe76d99a:
 MAC : 22:e6:db:62:5b:9a
 IPv6:
    - Address : fe80::20e6:dbff:fe62:5b9a
        Prefixlen : 64
        Scope : link
        ScopeID : 0x20
veth2c3d8ba:
 MAC : 6a:46:04:f4:7c:99
  IPv6:
    - Address : fe80::6846:4ff:fef4:7c99
        Prefixlen : 64
        Scope : link
        ScopeID : 0x20
veth0889108:
 MAC : 1a:06:74:2e:17:e0
 IPv6:
    - Address : fe80::1806:74ff:fe2e:17e0
        Prefixlen: 64
       Scope : link
       ScopeID : 0x20
br-c0c82e61301e:
 MAC : 76:7f:a8:fc:9a:85
  IPv4:
    - Address : 172.18.0.1
       Netmask: 255.255.0.0
        Broadcast : 172.18.255.255
 IPv6:
    - Address : fe80::747f:a8ff:fefc:9a85
        Prefixlen: 64
       Scope : link
       ScopeID : 0x20
veth27abc83:
 MAC : 8a:13:c7:a3:95:73
  IPv6:
   - Address : fe80::8813:c7 [...]
```

179200 - Enumerate the Network Routing configuration via SSH

Synopsis

Nessus was able to retrieve network routing information from the remote host.

Description

Nessus was able to retrieve network routing information the remote host.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/08/02, Modified: 2023/08/02

Plugin Output

tcp/0

```
Gateway Routes:
 ens160:
   ipv4_gateways:
      192.168.40.5:
        subnets:
         - 0.0.0.0/0
Interface Routes:
 br-c0c82e61301e:
   ipv4_subnets:
     - 172.18.0.0/16
   ipv6_subnets:
     - fe80::/64
  docker0:
    ipv4_subnets:
     - 172.17.0.0/16
  ens160:
   ipv4_subnets:
     - 192.168.40.0/24
   ipv6_subnets:
     - fe80::/64
  veth0354fc2:
    ipv6_subnets:
     - fe80::/64
  veth1b8ef42:
    ipv6_subnets:
     - fe80::/64
  veth27abc83:
   ipv6_subnets:
     - fe80::/64
  veth2c3d8ba:
    ipv6_subnets:
    - fe80::/64
```

```
veth3723b67:
  ipv6_subnets:
  - fe80::/64
veth406c7ce:
 ipv6_subnets:
  - fe80::/64
veth4224c91:
 ipv6_subnets:
  - fe80::/64
veth4c5a966:
 ipv6_subnets:
   - fe80::/64
veth4fb48c0:
 ipv6_subnets:
   - fe80::/64
veth54deaac:
 ipv6_subnets:
  - fe80::/64
veth6560a2b:
 ipv6_subnets:
   - fe80::/64
veth7ce71d5:
 ipv6_subnets:
  - fe80::/64
veth7faaf1b:
 ipv6_subnets:
  - fe80::/64
veth8ba31f8:
 ipv6_subnets:
  - fe80::/64
vethb3d36f9:
 ipv6_subnets:
  - fe80::/64
vethc361ede:
  ipv6_subnets:
  - fe80::/64
vethc7d3f3e:
  ipv6_subnets:
  - fe80::/64
vethd0b0ab4:
 ipv6_subnets:
  - fe80::/64
vethd5811f7:
 ipv6_subnets:
  - fe80::/64
vethef27ab7:
 ipv6_subnets:
   - fe80::/64
vethf89c24f:
 ipv6_subnets:
   - fe80::/64
```

168980 - Enumerate the PATH Variables

Synopsis

Enumerates the PATH variable of the current scan user.

Description

Enumerates the PATH variables of the current scan user.

Solution

Ensure that directories listed here are in line with corporate policy.

Risk Factor

None

Plugin Information

Published: 2022/12/21, Modified: 2025/03/19

Plugin Output

tcp/0

```
Nessus has enumerated the path of the current scan user :

/usr/local/bin
/usr/sbin
/usr/bin
/sbin
/bin
/usr/games
/usr/local/games
/usr/local/games
```

35716 - Ethernet Card Manufacturer Detection

Synopsis The manufacturer can be identified from the Ethernet OUI. Description Each ethernet MAC address starts with a 24-bit Organizationally Unique Identifier (OUI). These OUIs are registered by IEEE. See Also https://standards.ieee.org/faqs/regauth.html http://www.nessus.org/u?794673b4 Solution n/a Risk Factor None Plugin Information Published: 2009/02/19, Modified: 2020/05/13 Plugin Output tcp/0

The following card manufacturers were identified:

00:0C:29:BD:3E:7B: VMware, Inc.

86420 - Ethernet MAC Addresses

Synopsis

This plugin gathers MAC addresses from various sources and consolidates them into a list.

Description

This plugin gathers MAC addresses discovered from both remote probing of the host (e.g. SNMP and Netbios) and from running local checks (e.g. ifconfig). It then consolidates the MAC addresses into a single, unique, and uniform list.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2015/10/16, Modified: 2020/05/13

Plugin Output

tcp/0

```
The following is a consolidated list of detected MAC addresses:
  - CE:65:2B:31:80:7C
  - C2:F2:9B:88:8E:4F
  - 56:B9:56:FD:E2:F2
  - 76:48:23:43:9A:BF
  - F2:89:CC:24:0B:D7
  - EE:E6:13:B0:5C:4C
  - 6A:46:04:F4:7C:99
  - EA:6C:D3:78:B3:66
  - 06:FD:1F:D9:17:5B
  - 12:CA:45:6D:B2:D0
  - 56:85:69:75:46:EF
  - 22:E1:BC:0A:3C:90
  - 4E:6C:7B:D2:8A:38
  - 7E:81:E7:C6:AF:5B
  - 22:2F:27:DF:62:51
  - 00:0C:29:BD:3E:7B
  - 76:7F:A8:FC:9A:85
  - 1A:06:74:2E:17:E0
  - F2:1F:18:CE:EF:98
  - 92:81:88:63:6A:D0
  - 42:05:60:B9:F3:A0
  - 06:E9:94:4C:41:BC
  - 8A:13:C7:A3:95:73
  - 22:E6:DB:62:5B:9A
```

168982 - Filepaths contain Dangerous characters (Linux)

Synopsis

This Tenable product detected files or paths on the scanned Unix-like system which contain characters with command injection or privilege escalation potential.

Description

This Tenable product detected files or paths on the scanned Unix-like system which contain characters with command injection or privilege escalation potential. Although almost any character is valid for an entry in this kind of filesystem, such as semicolons, use of some of them may lead to problems or security compromise when used in further commands.

This product has chosen in certain plugins to avoid digging within those files and directories for security reasons.

These should be renamed to avoid security compromise.

Solution

Rename these files or folders to not include dangerous characters.

Risk Factor

None

Plugin Information

Published: 2022/12/21, Modified: 2024/07/24

Plugin Output

tcp/22/ssh

The following files and directories contain potentially dangerous characters such as brackets, ampersand, or semicolon.

This scanner avoided access to these files when possible for safety:

/lib/node_modules/@angular/cli/lib/config

192.168.40.33 35

84502 - HSTS Missing From HTTPS Server

Synopsis

The remote web server is not enforcing HSTS.

Description

The remote HTTPS server is not enforcing HTTP Strict Transport Security (HSTS). HSTS is an optional response header that can be configured on the server to instruct the browser to only communicate via HTTPS. The lack of HSTS allows downgrade attacks, SSL-stripping man-in-the-middle attacks, and weakens cookie-hijacking protections.

See Also

https://tools.ietf.org/html/rfc6797

Solution

Configure the remote web server to use HSTS.

Risk Factor

None

Plugin Information

Published: 2015/07/02, Modified: 2024/08/09

Plugin Output

tcp/443/www

```
HTTP/1.1 200 OK
Server: nginx/1.26.3
Date: Wed, 26 Mar 2025 11:03:59 GMT
Content-Type: text/html
Content-Length: 38069
Last-Modified: Thu, 20 Mar 2025 12:06:41 GMT
Connection: close
ETag: "67dc04d1-94b5"
Access-Control-Allow-Origin: *
Accept-Ranges: bytes

The remote HTTPS server does not send the HTTP
"Strict-Transport-Security" header.
```

10107 - HTTP Server Type and Version

Synopsis
A web server is running on the remote host.
Description
This plugin attempts to determine the type and the version of the remote web server.
Solution
n/a
Risk Factor
None
References
XREF IAVT:0001-T-0931
Plugin Information
Published: 2000/01/04, Modified: 2020/10/30
Plugin Output
tcp/80/www
The remote web server type is :
nginx/1.26.3

10107 - HTTP Server Type and Version

Synopsis
A web server is running on the remote host.
Description
This plugin attempts to determine the type and the version of the remote web server.
Solution
n/a
Risk Factor
None
References
XREF IAVT:0001-T-0931
Plugin Information
Published: 2000/01/04, Modified: 2020/10/30
Plugin Output
tcp/443/www
The remote web server type is :
nginx/1.26.3

24260 - HyperText Transfer Protocol (HTTP) Information

Synopsis

Some information about the remote HTTP configuration can be extracted.

Description

This test gives some information about the remote HTTP protocol - the version used, whether HTTP Keep-Alive is enabled, etc...

This test is informational only and does not denote any security problem.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/01/30, Modified: 2024/02/26

Plugin Output

tcp/80/www

```
Response Code : HTTP/1.1 301 Moved Permanently
Protocol version : HTTP/1.1
HTTP/2 TLS Support: No
HTTP/2 Cleartext Support: No
Keep-Alive : no
Options allowed : (Not implemented)
Headers :
  Server: nginx/1.26.3
 Date: Wed, 26 Mar 2025 11:04:13 GMT
 Content-Type: text/html
 Content-Length: 169
 Connection: keep-alive
 Location: https://192.168.40.33/
Response Body :
<html>
<head><title>301 Moved Permanently</title></head>
<center><h1>301 Moved Permanently</h1></center>
<hr><center>nginx/1.26.3</center>
</html>
```

192.168.40.33

24260 - HyperText Transfer Protocol (HTTP) Information

Synopsis

Some information about the remote HTTP configuration can be extracted.

Description

This test gives some information about the remote HTTP protocol - the version used, whether HTTP Keep-Alive is enabled, etc...

This test is informational only and does not denote any security problem.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/01/30, Modified: 2024/02/26

Plugin Output

tcp/443/www

```
Response Code : HTTP/1.1 200 OK
Protocol version : HTTP/1.1
HTTP/2 TLS Support: No
HTTP/2 Cleartext Support: No
Keep-Alive : no
Options allowed : (Not implemented)
Headers :
  Server: nginx/1.26.3
 Date: Wed, 26 Mar 2025 11:04:13 GMT
 Content-Type: text/html
 Content-Length: 38069
 Last-Modified: Thu, 20 Mar 2025 12:06:41 GMT
 Connection: keep-alive
 ETag: "67dc04d1-94b5"
 Access-Control-Allow-Origin: *
 Accept-Ranges: bytes
Response Body :
<!doctype html>
<html lang="en" data-critters-container>
  <meta charset="utf-8">
 <title>Client360</title>
```

```
<base href="/">
    <meta name="viewport" content="width=device-width, initial-scale=1">
     <link rel="icon" type="image/x-icon" href="favicon.ico">
     <link rel="preconnect" href="https://fonts.gstatic.com">
     <style type="text/css">@font-face{font-family:'Roboto';font-style:normal;font-
weight:300; font-stretch:100%; font-display:swap; src:url(https://fonts.gstatic.com/s/roboto/v47/
KFO7CnqEu92Fr1ME7kSn66aGLdTylUAMa3GUBHMdazTgWw.woff2) format('woff2');unicode-range:U+0460-052F,
 U+1C80-1C8A, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F;}@font-face{font-family:'Roboto';font-
style:normal;font-weight:300;font-stretch:100%;font-display:swap;src:url(https://fonts.gstatic.com/
{\tt s/roboto/v47/KF07CnqEu92Fr1ME7kSn66aGLdTyluAMa3iUBHMdazTgWw.woff2)} \ \ for {\tt mat('woff2'); unicode-local contents} if {\tt mat('woff2'); unicode-loca
range:U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116;}@font-face{font-family:'Roboto';font-
style:normal;font-weight:300;font-stretch:100%;font-display:swap;src:url(https://
fonts.gstatic.com/s/roboto/v47/KF07CnqEu92Fr1ME7kSn66aGLdTylUAMa3CUBHMdazTgWw.woff2)\\
 format('woff2');unicode-range:U+1F00-1FFF;}@font-face{font-family:'Roboto';font-style:normal;font-
weight:300;font-stretch:100%;font-display:swap;src:url(https://fonts.gstatic.com/s/roboto/v47/
KFO7CnqEu92Fr1ME7kSn66aGLdTylUAMa3-UBHMdazTgWw.woff2) format('woff2');unicode-range:U+0370-0377,
 U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF;}@font-face{font-family:'Roboto';font-
style:normal;font-weight:300;font-stretch:100%; [...]
```

171410 - IP Assignment Method Detection

Synopsis

Enumerates the IP address assignment method(static/dynamic).

Description

Enumerates the IP address assignment method(static/dynamic).

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/02/14, Modified: 2025/03/19

Plugin Output

tcp/0

```
+ 10
 + IPv4
   - Address : 127.0.0.1
     Assign Method : static
 + IPv6
   - Address
    Assign Method : static
+ ens160
 + IPv4
   - Address
                : 192.168.40.33
     Assign Method : static
               : fe80::20c:29ff:febd:3e7b
   - Address
     Assign Method : static
 + IPv4
                : 172.17.0.1
   - Address
    Assign Method : static
+ br-c0c82e61301e
 + IPv4
                : 172.18.0.1
   - Address
     Assign Method : static
 + IPv6
   - Address
                 : fe80::747f:a8ff:fefc:9a85
     Assign Method : static
+ veth4fb48c0@if2
 + IPv6
   - Address
                 : fe80::c0f2:9bff:fe88:8e4f
    Assign Method : static
+ vethef27ab7@if2
              : fe80::7c81:e7ff:fec6:af5b
   - Address
```

```
Assign Method : static
+ veth7ce71d5@if2
 + IPv6
    - Address
               : fe80::54b9:56ff:fefd:e2f2
     Assign Method : static
+ veth27abc83@if2
 + IPv6
                 : fe80::8813:c7ff:fea3:9573
   - Address
     Assign Method : static
+ vethc361ede@if2
 + IPv6
                 : fe80::4005:60ff:feb9:f3a0
   - Address
    Assign Method : static
+ veth4c5a966@if2
 + IPv6
                 : fe80::202f:27ff:fedf:6251
   - Address
    Assign Method : static
+ veth1b8ef42@if2
 + IPv6
   - Address
              : fe80::9081:88ff:fe63:6ad0
     Assign Method : static
+ veth54deaac@if2
 + IPv6
   - Address : fe80::4fd:1fff:fed9:175b
     Assign Method : static
+ veth0354fc2@if2
 + IPv6
             : fe80::cc65:2bff:fe31:807c
   - Address
    Assign Method : static
+ veth406c7ce@if2
 + IPv6
   - Address
                  : fe80::4e9:94ff:fe4c:41bc
     Assign Method : static
+ veth7faaf1b@if2
 + IPv6
   - Address
                 : fe80::f089:ccff:fe24:bd7
     Assign Method : static
+ vethd0b0ab4@if2
 + IPv6
                : fe80::10ca:45ff:fe6d:b2d0
   - Address
    Assign Method : static
+ veth2c3d8ba@if2
 + IPv6
              : fe80::6846:4ff:fef4:7c99
   - Address
     Assign Method : static
+ veth8ba31f8@if2
 + IPv6
              : fe80::20e1:bcff:fe0a:3c90
    - Address
     Assign Method : static
+ veth6560a2b@if2
 + IPv6
   - A [...]
```

147817 - Java Detection and Identification (Linux / Unix)

Synopsis

Java is installed on the remote Linux / Unix host.

Description

One or more instances of Java are installed on the remote Linux / Unix host. This may include private JREs bundled with the Java Development Kit (JDK).

Notes:

- This plugin attempts to detect Oracle and non-Oracle JRE instances such as Zulu Java, Amazon Corretto, AdoptOpen|DK, IBM Java, etc
- To discover instances of JRE that are not in PATH, or installed via a package manager, 'Perform thorough tests' setting must be enabled.

See Also

https://en.wikipedia.org/wiki/Java_(software_platform)

Solution

n/a

Risk Factor

None

References

XREF

IAVT:0001-T-0690

Plugin Information

Published: 2021/03/16, Modified: 2025/03/19

Plugin Output

tcp/0

Path : /usr/lib/jvm/java-11-openjdk-amd64/

Version : 11.0.26
Application : OpenJDK Java

Binary Location : /usr/lib/jvm/java-11-openjdk-amd64/bin/java

Details : This Java install appears to be OpenJDK due to the install directory

name (high confidence).

Detection Method : "find" utility

Managed by OS : True

Note: readlink command was unable to be executed, because of this it is not possible to determine symlink java binaries. Duplicate instances may be reported.

151883 - Libgcrypt Installed (Linux/UNIX)

Synopsis

Libgcrypt is installed on this host.

Description

Libgcrypt, a cryptography library, was found on the remote host.

See Also

https://gnupg.org/download/index.html

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2021/07/21, Modified: 2025/03/19

Plugin Output

tcp/0

Nessus detected 4 installs of Libgcrypt:

Path : /usr/lib/x86_64-linux-gnu/libgcrypt.so.20

Version : 1.9.4

Path : /usr/lib/x86_64-linux-gnu/libgcrypt.so.20.3.4

Version : 1.9.4

Path : /lib/x86_64-linux-gnu/libgcrypt.so.20

Version : 1.9.4

Path : /lib/x86_64-linux-gnu/libgcrypt.so.20.3.4

Version : 1.9.4

157358 - Linux Mounted Devices

Synopsis

Use system commands to obtain the list of mounted devices on the target machine at scan time.

Description

Report the mounted devices information on the target machine at scan time using the following commands.

/bin/df -h /bin/lsblk /bin/mount -l

This plugin only reports on the tools available on the system and omits any tool that did not return information when the command was ran.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2022/02/03, Modified: 2023/11/27

Plugin Output

tcp/0

```
$ df -h
Filesystem
                                                                                             Size Used Avail Use% Mounted on
tmpfs 3.2G 3.1M 3.2G 1% /run /dev/mapper/ubuntu--vg-ubuntu--lv 472G 114G 334G 26% /
                                                                                             16G 0 16G 0% /dev/shm
5.0M 0 5.0M 0% /run/lock
tmpfs
tmpfs
                                                                                              4.0G 4.0K 4.0G 1% /tmp
tmpfs
                                                                                             2.0G 376M 1.5G 21% /boot
/dev/sda2
                                                                                             3.2G 4.0K 3.2G 1% /run/user/1001
472G 114G 334G 26% /var/lib/docker/overlay2/
tmpfs
overlay
c47e564049ad73dae3723792f3984aac99d00d9bef6981ccbd74c1d6002c8b0b/merged
                                                                                            472G 114G 334G 26% /var/lib/docker/
overlay 2/03 a 9 baab b 1b b 645 a a 5661 e 9 e cale 256 b 9 b 15c 949 a 64f cef 76d b 343 e 5d a ce 90 b f/merged between the contraction of th
                                                                                             472G 114G 334G 26% /var/lib/docker/overlay2/
overlay
\tt d59139fd6d665e0453f28fe5a80e307f5903cf0a673c25e211f340c28eb41653/merged
                                                                                              472G 114G 334G 26% /var/lib/docker/
overlay2/528f7c5ef96a2ef14f6ee8a966d49644ea7c804279fe8eed0fdd721cfb9b3c06/merged
                                                                                             472G 114G 334G 26% /var/lib/docker/overlay2/
\tt d8564c0ea759532d6f97034a39a72d94a15568752b2c4314c7e851740d69fa82/merged
overlay
                                                                                              472G 114G 334G 26% /var/lib/docker/
overlay2/2c37cb43aa4af40c16915b4ef32e4f9a028e82a996841afb1330cb60c5ac1272/merged
                                                                                            472G 114G 334G 26% /var/lib/docker/overlay2/
overlav
\tt d63ea2af29984d1b43463838fad3aae33efe9b8c485f70262912c859bab8b4fc/merged
                                                                                             472G 114G 334G 26% /var/lib/docker/overlay2/
f1a555a7741e6c5ea37404a3e0ef6edd7c57c95c85d0c9f9af4296af110919bf/merged
```

overlay 472G 114G 334G 26% /var/lib/docker/
overlay2/8677e6762f0ca7ec0d69d525f6d8d56fdade74b88b762a950bf380da0blc7133/merged
overlay 472G 114G 334G 26% /var/lib/docker/
overlay2/2073bfa95b6e37776645145db850fa79b952998643cdfa42178331 [...]

193143 - Linux Time Zone Information

Synopsis

Nessus was able to collect and report time zone information from the remote host.

Description

Nessus was able to collect time zone information from the remote Linux host.

Solution

None

Risk Factor

None

Plugin Information

Published: 2024/04/10, Modified: 2024/04/10

Plugin Output

tcp/0

Via date: IST +0530 Via timedatectl: Time zone: Asia/Kolkata (IST, +0530) Via /etc/timezone: Asia/Kolkata Via /etc/localtime: IST-5:30

95928 - Linux User List Enumeration

Synopsis

Nessus was able to enumerate local users and groups on the remote Linux host.

Description

Using the supplied credentials, Nessus was able to enumerate the local users and groups on the remote Linux host.

Solution

None

Risk Factor

None

Plugin Information

Published: 2016/12/19, Modified: 2024/11/26

Plugin Output

tcp/0

```
-----[ User Accounts ]-----
User : c0863
Home folder : /home/c0863
Start script : /bin/bash
            : lxd
Groups
               cdrom
               docker
               c0863
               plugdev
               dip
               adm
User : mware
Home folder : /home/mware
Start script : /bin/bash
Groups : mware
               docker
User : C3673
Home folder : /home/C3673
Start script : /bin/bash
Groups
            : C3673
               docker
               mware
-----[ System Accounts ]-----
User : root
```

Home folder : /root Start script : /bin/bash

Groups : root

User : daemon Home folder : /usr/sbin

Start script : /usr/sbin/nologin

Groups : daemon

User : bin Home folder : /bin

Start script : /usr/sbin/nologin

Groups : bin

User : sys Home folder : /dev

Start script : /usr/sbin/nologin

Groups : sys

User : sync
Home folder : /bin
Start script : /bin/sync
Groups : nogroup

User : games Home folder : /usr/games

Start script : /usr/sbin/nologin

Groups : games

User : man

Home folder : /var/cache/man
Start script : /usr/sbin/nologin

Groups : man

User : lp

Home folder : /var/spool/lpd
Start script : /usr/sbin/nologin

Groups : lp

User : mail
Home folder : /var/mail

Start script : /usr/sbin/nologin

Groups : mail

User : news

Home folder : /var/spool/news
Start script : /usr/sbin/nologin

Groups : news

User : uucp

Home folder : /var/spool/uucp
Start script : /usr/sbin/nologin

Groups : uucp

User : proxy Home folder : /bin

Start script : /usr/sbin/nologin

Groups : proxy

User : www-data Home folder : /var/www

Start script : /usr/sbin/nologin

Groups : www-data

User : backup Home folder : /var/backups Start script : /usr/sbin/nologin

Groups : backup

User : list

Home folder : /var/list Start script : /usr/sbin/nologin Groups : list

User [...]

192.168.40.33 53

45433 - Memory Information (via DMI)

Synopsis

Information about the remote system's memory devices can be read.

Description

Using the SMBIOS (aka DMI) interface, it was possible to retrieve information about the remote system's memory devices, such as the total amount of installed memory.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2010/04/06, Modified: 2018/03/29

Plugin Output

tcp/0

Total memory : 32768 MB

10719 - MySQL Server Detection

Synopsis

A database server is listening on the remote port.

Description

The remote host is running MySQL, an open source database server.

Solution

n/a

Risk Factor

None

References

XREF IAVT:0001-T-0802

Plugin Information

Published: 2001/08/13, Modified: 2022/10/12

Plugin Output

tcp/3306/mysql

```
Version : 8.0.41-0ubuntu0.22.04.1
Protocol: 10
Server Status : SERVER_STATUS_AUTOCOMMIT
Server Capabilities :
 CLIENT_LONG_PASSWORD (new more secure passwords)
 CLIENT_FOUND_ROWS (Found instead of affected rows)
 CLIENT_LONG_FLAG (Get all column flags)
  CLIENT_CONNECT_WITH_DB (One can specify db on connect)
  CLIENT_NO_SCHEMA (Don't allow database.table.column)
 CLIENT_COMPRESS (Can use compression protocol)
  CLIENT_ODBC (ODBC client)
  CLIENT_LOCAL_FILES (Can use LOAD DATA LOCAL)
  CLIENT_IGNORE_SPACE (Ignore spaces before "(")
  CLIENT_PROTOCOL_41 (New 4.1 protocol)
  CLIENT_INTERACTIVE (This is an interactive client)
  CLIENT_SSL (Switch to SSL after handshake)
  CLIENT_SIGPIPE (IGNORE sigpipes)
  CLIENT_TRANSACTIONS (Client knows about transactions)
  CLIENT_RESERVED (Old flag for 4.1 protocol)
  CLIENT_SECURE_CONNECTION (New 4.1 authentication)
```

129468 - MySQL Server Installed (Linux)

Synopsis

MySQL Server is installed on the remote Linux host.

Description

MySQL Server is installed on the remote Linux host.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2019/09/30, Modified: 2025/01/21

Plugin Output

tcp/0

Path : /usr/sbin/mysqld Version : 8.0.41-0ubuntu0.22.04.1

19506 - Nessus Scan Information

Synopsis

This plugin displays information about the Nessus scan.

Description

This plugin displays, for each tested host, information about the scan itself:

- The version of the plugin set.
- The type of scanner (Nessus or Nessus Home).
- The version of the Nessus Engine.
- The port scanner(s) used.
- The port range scanned.
- The ping round trip time
- Whether credentialed or third-party patch management checks are possible.
- Whether the display of superseded patches is enabled
- The date of the scan.
- The duration of the scan.
- The number of hosts scanned in parallel.
- The number of checks done in parallel.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2005/08/26, Modified: 2024/12/31

Plugin Output

tcp/0

```
Information about this scan :

Nessus version : 10.8.3
Nessus build : 20010
Plugin feed version : 202503251052
Scanner edition used : Nessus
Scanner OS : LINUX
Scanner distribution : es8-x86-64
Scan type : Normal
Scan name : Mware UAT CIS L1 3/12/2024
```

```
Scan policy used : Advanced Scan
Scanner IP : 192.168.40.34
Port scanner(s) : netstat
Port range : default
Ping RTT : Unavailable
Thorough tests : no
Experimental tests : no
Scan for Unpatched Vulnerabilities : no
Plugin debugging enabled : no
Paranoia level : 1
Report verbosity : 1
Safe checks : yes
Optimize the test : yes
Credentialed checks : yes, as 'root' via ssh
Attempt Least Privilege : no
Patch management checks : None
Display superseded patches : yes (supersedence plugin did not launch)
CGI scanning : disabled
Web application tests : disabled
Max hosts : 100
Max checks : 5
Recv timeout : 5
Backports : None
Allow post-scan editing : Yes
Nessus Plugin Signature Checking : Enabled
Audit File Signature Checking : Disabled
Scan Start Date : 2025/3/26 7:01 EDT (UTC -04:00)
Scan duration : 655 sec
Scan for malware : no
```

64582 - Netstat Connection Information

Plugin Output

tcp/0

Synopsis
Nessus was able to parse the results of the 'netstat' command on the remote host.
Description
The remote host has listening ports or established connections that Nessus was able to extract from the results of the 'netstat' command.
Note: The output for this plugin can be very long, and is not shown by default. To display it, enable verbose reporting in scan settings.
Solution
n/a
Risk Factor
None
Plugin Information
Published: 2013/02/13, Modified: 2023/05/23

Port 22/tcp was found to be open

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/22/ssh

192.168.40.33

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/80/www Port 80/tcp was found to be open

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/443/www Port 443/tcp was found to be open

192.168.40.33

Port 3306/tcp was found to be open

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/3306/mysql

Port 6379/tcp was found to be open

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/6379

Port 8082/tcp was found to be open

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/8082

192.168.40.33

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/8181

Port 8181/tcp was found to be open

Port 8761/tcp was found to be open

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/8761

Synopsis Remote open ports can be enumerated via SSH. Description Nessus was able to run 'netstat' on the remote host to enumerate the open ports. If 'netstat' is not available, the plugin will attempt to use 'ss'. See the section 'plugins options' about configuring this plugin. Note: This plugin will run on Windows (using netstat.exe) in the event that the target being scanned is localhost. See Also https://en.wikipedia.org/wiki/Netstat Solution n/a Risk Factor None Plugin Information Published: 2004/08/15, Modified: 2025/02/19 Plugin Output tcp/33060

Port 33060/tcp was found to be open

192.168.40.33

209654 - OS Fingerprints Detected

Synopsis

Multiple OS fingerprints were detected.

Description

Using a combination of remote probes (TCP/IP, SMB, HTTP, NTP, SNMP, etc), it was possible to gather one or more fingerprints from the remote system. While the highest-confidence result was reported in plugin 11936, "OS Identification", the complete set of fingerprints detected are reported here.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2025/02/26, Modified: 2025/03/03

Plugin Output

tcp/0

```
Following OS Fingerprints were found
Remote operating system : Linux Kernel 6.8.0-52-generic
Confidence level: 99
Method : uname
Type : general-purpose
Fingerprint : uname:Linux mware-uat 6.8.0-52-generic #53~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jan
15 19:18:46 UTC 2 x86_64 x86_64 x86_64 GNU/Linux
Remote operating system : Linux Kernel 6.8.0-52-generic on Ubuntu 22.04
Confidence level: 100
Method : LinuxDistribution
Type : general-purpose
Fingerprint : unknown
Following fingerprints could not be used to determine OS:
SSH:!:SSH-2.0-OpenSSH_9.9
HTTP:!:Server: nginx/1.26.3
SinFP:!:
  P1:B10113:F0x12:W64240:O0204ffff:M1460:
   P2:B10113:F0x12:W65160:O0204fffff0402080affffffff4445414401030307:M1460:
  P3:B00000:F0x00:W0:00:M0
  P4:191003_7_p=22
SSLcert:!:i/CN:Go Daddy Secure Certificate Authority - G2i/O:GoDaddy.com, Inc.i/OU:http://
certs.godaddy.com/repository/s/CN:*.aliceblueonline.com
ea51929e61f33b80f22e897d5584b2df21648f05
```

11936 - OS Identification

Synopsis

It is possible to guess the remote operating system.

Description

Using a combination of remote probes (e.g., TCP/IP, SMB, HTTP, NTP, SNMP, etc.), it is possible to guess the name of the remote operating system in use. It is also possible sometimes to guess the version of the operating system.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2003/12/09, Modified: 2024/10/14

Plugin Output

tcp/0

```
Remote operating system : Linux Kernel 6.8.0-52-generic on Ubuntu 22.04
Confidence level : 100
Method : LinuxDistribution
Not all fingerprints could give a match. If you think that these
signatures would help us improve OS fingerprinting, please submit
them by visiting https://www.tenable.com/research/submitsignatures.
SSH:!:SSH-2.0-OpenSSH_9.9
uname:Linux mware-uat 6.8.0-52-generic #53~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jan 15 19:18:46
UTC 2 x86_64 x86_64 x86_64 GNU/Linux
HTTP:!:Server: nginx/1.26.3
SinFP:!:
  P1:B10113:F0x12:W64240:O0204ffff:M1460:
   P2:B10113:F0x12:W65160:O0204ffff0402080affffffff4445414401030307:M1460:
  P3:B00000:F0x00:W0:O0:M0
  P4:191003_7_p=22
SSLcert:!:i/CN:Go Daddy Secure Certificate Authority - G2i/O:GoDaddy.com, Inc.i/OU:http://
certs.godaddy.com/repository/s/CN:*.aliceblueonline.com
ea51929e61f33b80f22e897d5584b2df21648f05
The remote host is running Linux Kernel 6.8.0-52-generic on Ubuntu 22.04
```

97993 - OS Identification and Installed Software Enumeration over SSH v2 (Using New SSH <u>Library)</u>

Synopsis

Information about the remote host can be disclosed via an authenticated session.

Description

Nessus was able to login to the remote host using SSH or local commands and extract the list of installed packages.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2017/05/30, Modified: 2025/02/11

Plugin Output

tcp/0

```
It was possible to log into the remote host via SSH using 'password' authentication.

The output of "uname -a" is:
Linux mware-uat 6.8.0-52-generic #53~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jan 15 19:18:46 UTC 2 x86_64 x86_64 x86_64 GNU/Linux

Local checks have been enabled for this host.
The remote Debian system is:
bookworm/sid

This is a Ubuntu system

OS Security Patch Assessment is available for this host.
Runtime: 4.633126 seconds
```

117887 - OS Security Patch Assessment Available

Synopsis

Nessus was able to log in to the remote host using the provided credentials and enumerate OS security patch levels.

Description

Nessus was able to determine OS security patch levels by logging into the remote host and running commands to determine the version of the operating system and its components. The remote host was identified as an operating system or device that Nessus supports for patch and update assessment. The necessary information was obtained to perform these checks.

Solution

n/a

Risk Factor

None

References

XREF IAVB:0001-B-0516

Plugin Information

Published: 2018/10/02, Modified: 2021/07/12

Plugin Output

tcp/0

OS Security Patch Assessment is available.

Account : root Protocol : SSH

192.168.40.33 73

148373 - OpenJDK Java Detection (Linux / Unix)

Synopsis

A distribution of Java is installed on the remote Linux / Unix host.

Description

One or more instances of OpenJDK Java are installed on the remote host. This may include private JREs bundled with the Java Development Kit (JDK).

Notes:

- Addition information provided in plugin Java Detection and Identification (Unix)
- Additional instances of Java may be discovered by enabling thorough tests

See Also

https://openjdk.java.net/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2021/04/07, Modified: 2025/02/12

Plugin Output

tcp/0

: /usr/lib/jvm/java-11-openjdk-amd64/
: 11.0.26 Path

Binary Location : /usr/lib/jvm/java-11-openjdk-amd64/bin/java

Managed by OS : True

181418 - OpenSSH Detection

Synopsis

An OpenSSH-based SSH server was detected on the remote host.

Description

An OpenSSH-based SSH server was detected on the remote host.

See Also

https://www.openssh.com/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/09/14, Modified: 2025/03/19

Plugin Output

tcp/22/ssh

Service : ssh Version : 9.9

Banner : SSH-2.0-OpenSSH_9.9

192.168.40.33 75

168007 - OpenSSL Installed (Linux)

Synopsis

OpenSSL was detected on the remote Linux host.

Description

OpenSSL was detected on the remote Linux host.

The plugin timeout can be set to a custom value other than the plugin's default of 15 minutes via the 'timeout.168007' scanner setting in Nessus 8.15.1 or later.

Please see https://docs.tenable.com/nessus/Content/SettingsAdvanced.htm#Custom for more information.

Note: This plugin leverages the '-maxdepth' find command option, which is a feature implemented by the GNU find binary. If the target does not support this option, such as HP-UX and AIX devices, users will need to enable 'thorough tests' in their scan policy to run the find command without using a '-maxdepth' argument.

See Also

https://openssl.org/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2022/11/21, Modified: 2025/03/19

Plugin Output

tcp/0

Nessus detected 2 installs of OpenSSL:

: /usr/lib/x86_64-linux-gnu/libcrypto.so.3

Version : 3.0.2 Associated Package : libssl3

Path : /usr/bin/openssl : 3.0.2

Version

Associated Package : openssl 3.0.2-Oubuntul.19

Managed by OS : True

We are unable to retrieve version info from the following list of OpenSSL files. However, these installs may include their version within the filename or the filename of the Associated Package.

e.g. libssl.so.3 (OpenSSL 3.x), libssl.so.1.1 (OpenSSL 1.1.x)

/usr/lib/x86_64-linux-gnu/libssl.so.3

192.168.40.33 77

179139 - Package Manager Packages Report (nix)

Synopsis
Reports details about packages installed via package managers.
Description
Reports details about packages installed via package managers
Solution
n/a
Risk Factor
None
Plugin Information
Published: 2023/08/01, Modified: 2025/03/03
Plugin Output
tcp/0

Successfully retrieved and stored package data.

192.168.40.33 78

45432 - Processor Information (via DMI)

Synopsis

Nessus was able to read information about the remote system's processor.

Description

Nessus was able to retrieve information about the remote system's hardware, such as its processor type, by using the SMBIOS (aka DMI) interface.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2010/04/06, Modified: 2016/02/25

Plugin Output

tcp/0

```
Nessus detected 15 processors :
Current Speed : 2800 MHz
Version : Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz Manufacturer : GenuineIntel
External Clock : Unknown
Status : Populated, Enabled
Family
               : Unknown
                : Central Processor
Type
Current Speed : 2800 MHz
Version : Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz Manufacturer : GenuineIntel
External Clock : Unknown
Status : Populated, Enabled Family : Unknown
               : Central Processor
Type
Current Speed : 2800 MHz
Version : Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz Manufacturer : GenuineIntel
External Clock : Unknown
                : Populated, Enabled
Status
               : Unknown
Family
               : Central Processor
Current Speed : 2800 MHz
Version : Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz
Manufacturer : GenuineIntel
```

External Clock : Unknown

Status : Populated, Enabled Family : Unknown

: Central Processor Type

Current Speed : 2800 MHz

External Clock : Unknown

: FOF... : Unknown : Populated, Enabled Status

Family

: Central Processor Type

Current Speed : 2800 MHz

External Clock : Unknown

Status : Populated, Enabled

: Unknown Family

Type : Central Processor

Current Speed : 2800 MHz

Version : Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz Manufacturer : GenuineIntel

 ${\tt External\ Clock\ :\ Unknown}$

Status : Populated, Enabled Family : Unknown

: Central Processor Type

Current Speed : 2800 MHz

Version : Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz Manufacturer : GenuineIntel

External Clock : Unknown

Status : Populated, Enabled

Family : Unknown

: Central Processor Type

Current Speed : 2800 MHz

Version [...]

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/22/ssh

Process ID : 3627724

Executable : /usr/sbin/sshd

Command line : sshd: /usr/sbin/sshd -D [listener] 2 of 10-60 startups

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/80/www

Process ID : 1139

Executable : /usr/sbin/nginx

 ${\tt Command \ line : nginx: master \ process \ /usr/sbin/nginx -c \ /etc/nginx/nginx.conf}$

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/443/www

Process ID : 1139

Executable : /usr/sbin/nginx

 ${\tt Command \ line : nginx: master \ process \ /usr/sbin/nginx -c \ /etc/nginx/nginx.conf}$

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/3306/mysql

Process ID : 1339

Executable : /usr/sbin/mysqld
Command line : /usr/sbin/mysqld

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/6379

Process ID : 3747217

Executable : /usr/bin/docker-proxy

Command line : /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 6379 -container-ip

172.18.0.16 -container-port 6379 -use-listen-fd

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/8082

Process ID : 3746991

Executable : /usr/bin/docker-proxy

Command line : /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 8082 -container-ip

172.18.0.12 -container-port 8082 -use-listen-fd

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/8181

Process ID : 3747231

Executable : /usr/bin/docker-proxy

Command line : /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 8181 -container-ip

172.18.0.15 -container-port 8443 -use-listen-fd

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/8761

Process ID : 3747437

Executable : /usr/bin/docker-proxy

Command line : /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 8761 -container-ip

172.18.0.20 -container-port 8761 -use-listen-fd

Synopsis

Using the supplied credentials, it was possible to identify the process listening on the remote port.

Description

By logging into the remote host with the supplied credentials, Nessus was able to obtain the name of the process listening on the remote port.

Note that the method used by this plugin only works for hosts running Linux or AIX.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/05/16, Modified: 2024/07/05

Plugin Output

tcp/33060

Process ID : 1339 Executable : /usr/sbin/mysqld Command line : /usr/sbin/mysqld

70657 - SSH Algorithms and Languages Supported

Synopsis

An SSH server is listening on this port.

Description

This script detects which algorithms and languages are supported by the remote service for encrypting communications.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2013/10/28, Modified: 2025/01/20

Plugin Output

tcp/22/ssh

```
Nessus negotiated the following encryption algorithm(s) with the server :
  Client to Server: aes256-ctr
 Server to Client: aes256-ctr
The server supports the following options for compression_algorithms_server_to_client :
 none
 zlib@openssh.com
The server supports the following options for mac_algorithms_client_to_server :
 hmac-sha1
 hmac-sha2-256
 hmac-sha2-512
 umac-128@openssh.com
The server supports the following options for server_host_key_algorithms :
 ecdsa-sha2-nistp256
 rsa-sha2-256
 rsa-sha2-512
 ssh-ed25519
The server supports the following options for encryption_algorithms_client_to_server :
  aes128-ctr
  aes128-gcm@openssh.com
 aes192-ctr
```

```
aes256-ctr
  aes256-gcm@openssh.com
  chacha20-poly1305@openssh.com
The server supports the following options for mac_algorithms_server_to_client :
 hmac-shal
 hmac-sha2-256
  hmac-sha2-512
  umac-128@openssh.com
The server supports the following options for kex_algorithms :
  curve25519-sha256
  curve25519-sha256@libssh.org
 diffie-hellman-group-exchange-sha256
 diffie-hellman-group14-sha256
 diffie-hellman-group16-sha512
 diffie-hellman-group18-sha512
 ecdh-sha2-nistp256
  ecdh-sha2-nistp384
 ecdh-sha2-nistp521
 ext-info-s
 kex-strict-s-v00@openssh.com
 mlkem768x25519-sha256
 sntrup761x25519-sha512
 sntrup761x25519-sha512@openssh.com
The server supports the following options for compression_algorithms_client_to_server :
  none
  zlib@openssh.com
The server supports the following options for encryption_algorithms_server_to_client :
  aes128-ctr
  aes128-gcm@openssh.com
 aes192-ctr
 aes256-ctr
 aes256-gcm@openssh.com
 chacha20-poly1305@openssh.com
```

149334 - SSH Password Authentication Accepted

Synopsis
The SSH server on the remote host accepts password authentication.
Description
The SSH server on the remote host accepts password authentication.
See Also
https://tools.ietf.org/html/rfc4252#section-8
Solution
n/a
Risk Factor
None
Plugin Information
Published: 2021/05/07, Modified: 2021/05/07
Plugin Output
tcp/22/ssh

192.168.40.33 92

10881 - SSH Protocol Versions Supported

Synopsis A SSH server is running on the remote host. Description This plugin determines the versions of the SSH protocol supported by the remote SSH daemon. Solution n/a Risk Factor None Plugin Information Published: 2002/03/06, Modified: 2024/07/24 Plugin Output tcp/22/ssh

```
The remote SSH daemon supports the following versions of the SSH protocol:
- 1.99
- 2.0
```

90707 - SSH SCP Protocol Detection

Synopsis
The remote host supports the SCP protocol over SSH.
Description
The remote host supports the Secure Copy (SCP) protocol over SSH.
See Also
https://en.wikipedia.org/wiki/Secure_copy
Solution
n/a
Risk Factor
None
Plugin Information
Published: 2016/04/26, Modified: 2024/07/24
Plugin Output
tcp/22/ssh

192.168.40.33 94

153588 - SSH SHA-1 HMAC Algorithms Enabled

Synopsis

The remote SSH server is configured to enable SHA-1 HMAC algorithms.

Description

The remote SSH server is configured to enable SHA-1 HMAC algorithms.

Although NIST has formally deprecated use of SHA-1 for digital signatures, SHA-1 is still considered secure for HMAC as the security of HMAC does not rely on the underlying hash function being resistant to collisions.

Note that this plugin only checks for the options of the remote SSH server.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2021/09/23, Modified: 2022/04/05

Plugin Output

tcp/22/ssh

The following client-to-server SHA-1 Hash-based Message Authentication Code (HMAC) algorithms are supported:

hmac-sha1

The following server-to-client SHA-1 Hash-based Message Authentication Code (HMAC) algorithms are supported :

hmac-shal

10267 - SSH Server Type and Version Information

Synopsis

An SSH server is listening on this port.

Description

It is possible to obtain information about the remote SSH server by sending an empty authentication request.

Solution

n/a

Risk Factor

None

References

XREF IAVT:0001-T-0933

Plugin Information

Published: 1999/10/12, Modified: 2024/07/24

Plugin Output

tcp/22/ssh

SSH version : SSH-2.0-OpenSSH_9.9

SSH supported authentication : publickey,password

SSH banner :

This system is restricted to authorized users only. Unauthorized access, use, or modification is strictly prohibited and may result in disciplinary action or legal prosecution. Action performed on this system are monitored and logged. By accessing this system, you consent to monitoring and agree to abide by organizational policies.

56984 - SSL / TLS Versions Supported

Synopsis

The remote service encrypts communications.

Description

This plugin detects which SSL and TLS versions are supported by the remote service for encrypting communications.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2011/12/01, Modified: 2023/07/10

Plugin Output

tcp/443/www

This port supports TLSv1.3/TLSv1.2.

10863 - SSL Certificate Information

Synopsis

This plugin displays the SSL certificate.

Description

This plugin connects to every SSL-related port and attempts to extract and dump the X.509 certificate.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2008/05/19, Modified: 2021/02/03

Plugin Output

tcp/443/www

```
Subject Name:
Common Name: *.aliceblueonline.com
Issuer Name:
Country: US
State/Province: Arizona
Locality: Scottsdale
Organization: GoDaddy.com, Inc.
Organization Unit: http://certs.godaddy.com/repository/
Common Name: Go Daddy Secure Certificate Authority - G2
Serial Number: 29 9D 74 4D 91 B7 AB 01
Version: 3
Signature Algorithm: SHA-256 With RSA Encryption
Not Valid Before: Jun 29 11:09:24 2024 GMT
Not Valid After: Jul 31 11:09:24 2025 GMT
Public Key Info:
Algorithm: RSA Encryption
Key Length: 2048 bits
Public Key: 00 A6 3C 30 E1 72 F8 48 C4 AE D5 DF C3 EB B2 1D 9C FD 22 8A
            7D 32 4D 38 69 C8 4D 42 82 F5 C4 9A 60 F0 6A 39 EF 4C 57 17
            9A 6B D9 32 E6 0B FA B0 4E 71 25 EB C4 F3 CD 3A FF E5 C7 13
            CB 6E 93 3B 3F 77 C7 30 70 6E EB 71 72 89 6D A3 54 07 12 8E
            D2 3D 98 23 95 BB 3D 7C 69 41 B5 63 6E 0F D2 8A F4 37 13 2D
            FF C3 B9 11 7B EF 63 11 5E 28 A1 1A 57 B0 1D F9 7A 42 67 C1
```

```
69 D9 C0 CA AD 22 27 OB 76 CB 60 ED 66 94 AF A7 58 24 8C 2B
            A5 BA E3 DE C8 19 1B E1 59 D5 B8 82 0E CD 5F 55 9D 15 E5 64
            A4 F1 93 95 26 34 5F 5D 2D 80 42 B5 E3 E0 A2 3D 1A AF 73 33
            90 DF 4D 5D 3F 98 2E F6 03 C2 2C DF 84 37 E0 88 DA 51 B8 61
            D8 B0 BB A4 8F 5B 0B 9D 51 D8 B3 91 36 BC AE CE 9F 42 98 41
            61 23 20 2C 2C 06 04 16 DD F3 91 4A 81 E6 93 33 33 58 21 75
            95 F9 F9 11 3B BF BA A1 94 39 B9 A9 EA 66 78 F7 53
Exponent: 01 00 01
Signature Length: 256 bytes / 2048 bits
Signature: 00 A9 04 0B 0A 4D 59 28 48 CA 22 DE 2A 66 38 8C DA 1E EB AB
           37 9A EF CA 14 68 1E CB 53 2C FE E9 45 1F 58 FB C7 9F 32 05
            \verb|F1 C6 80 04 32 ED DD 6D 1C 01 B8 B7 78 17 F5 B7 8C ED 14 E4 | \\
           DC 68 55 71 49 F7 1E 97 88 CB 3C 84 FD D6 80 11 5F 95 A5 16
           FA 8E AO 52 AE 28 86 68 4F 3C C8 7B EB CC CO 95 DO 05 1E 42
           2F 17 DE A2 3F 33 87 CF E6 F6 8A 4B C0 92 3B A1 4C D4 0F DC
           82 4E 7E 0B 23 65 67 29 B4 F1 CE C1 C8 5D A3 91 01 CD 3E 14
           6B D8 91 [...]
```

95631 - SSL Certificate Signed Using Weak Hashing Algorithm (Known CA)

Synopsis

A known CA SSL certificate in the certificate chain has been signed using a weak hashing algorithm.

Description

The remote service uses a known CA certificate in the SSL certificate chain that has been signed using a cryptographically weak hashing algorithm (e.g., MD2, MD4, MD5, or SHA1). These signature algorithms are known to be vulnerable to collision attacks (CVE-2004-2761, for example). An attacker can exploit this to generate another certificate with the same digital signature, allowing the attacker to masquerade as the affected service.

Note that this plugin reports all SSL certificate chains signed with SHA-1 that expire after January 1, 2017 as vulnerable. This is in accordance with Google's gradual sunsetting of the SHA-1 cryptographic hash algorithm.

Note that this plugin will only fire on root certificates that are known certificate authorities as listed in Tenable Community Knowledge Article 000001752. That is what differentiates this plugin from plugin 35291, which will fire on any certificate, not just known certificate authority root certificates.

Known certificate authority root certificates are inherently trusted and so any potential issues with the signature, including it being signed using a weak hashing algorithm, are not considered security issues.

See Also

http://www.nessus.org/u?ae636e78

https://tools.ietf.org/html/rfc3279

http://www.nessus.org/u?9bb87bf2

Solution

Contact the Certificate Authority to have the certificate reissued.

Risk Factor

None

References

BID 11849 BID 33065 XREF CWE:310

Plugin Information

Published: 2016/12/08, Modified: 2022/10/12

tcp/443/www

```
The following known CA certificates were part of the certificate
chain sent by the remote host, but contain hashes that are considered
to be weak.
            : C=US/O=The Go Daddy Group, Inc./OU=Go Daddy Class 2 Certification Authority
Signature Algorithm : SHA-1 With RSA Encryption
Valid From : Jun 29 17:06:20 2004 GMT
            : Jun 29 17:06:20 2034 GMT
Valid To
Raw PEM certificate :
----BEGIN CERTIFICATE--
+vXX0iG6r7d/+TvZxz0ZWizV3GgXne77ZtJ6XCAPVYYYwhv2vLM0D9/AlQiVBDYsoHUwHU9S3/
Hd8M+eKsaA7Ugay9qK7HFiH7Eux6wwdhFJ2+qN1j3hybX2C32qRe3H3I2TqYXP2WYktsqbl2i/
+ \texttt{qta/KFApMoZFv6yy09ecw3ud72a9nmYvLEHZ6IVDd2gWMZEewo+YihfukEHU1jPEX44dMX4/7VpkI} \\
+EdOqXG68CAQOjgcAwgb0wHQYDVR0OBBYEFNLEsNKR1EwRcbNhyz2h/
t2oatTjMIGNBgNVHSMEgYUwgYKAFNLEsNKR1EwRcbNhyz2h/
+gciKqdiOFuFskg5YmezTvacPd+mSYgFFQlq25zheabIZ0KbIIOqPjCDPoQHmyW74cNxA9hi63ugyuV+16ShHI56yDqg
+2DzZduCLzrTia2cyvk0/ZM/iZx4mERdEr/
----END CERTIFICATE----
```

21643 - SSL Cipher Suites Supported

Synopsis

The remote service encrypts communications using SSL.

Description

This plugin detects which SSL ciphers are supported by the remote service for encrypting communications.

See Also

https://www.openssl.org/docs/man1.0.2/man1/ciphers.html

http://www.nessus.org/u?e17ffced

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2006/06/05, Modified: 2024/09/11

Plugin Output

tcp/443/www

```
Here is the list of SSL ciphers supported by the remote server :
Each group is reported per SSL Version.
SSL Version : TLSv13
 High Strength Ciphers (>= 112-bit key)
                                                                   Encryption
                                                KEX
                                                             Auth
                                                                                            MAC
   TLS_AES_128_GCM_SHA256
                               0x13, 0x01
                                                                     AES-GCM(128)
                              0x13, 0x02
   TLS_AES_256_GCM_SHA384
                                                                     AES-GCM(256)
   TLS_CHACHA20_POLY1305_SHA256 0x13, 0x03
                                                                      ChaCha20-Poly1305(256)
AEAD
SSL Version : TLSv12
 High Strength Ciphers (>= 112-bit key)
                                                            Auth Encryption
                                                             ----
   ECDHE-RSA-AES128-SHA256
                              0xC0, 0x2F
                                                ECDH
                                                             RSA AES-GCM(128)
```

0xC0, 0x30 ECDHE-RSA-AES256-SHA384 ECDH RSA AES-GCM(256) SHA384 ECDHE-RSA-CHACHA20-POLY1305 0xCC, 0xA8 ECDH RSA ChaCha20-Poly1305(256) SHA256 The fields above are : {Tenable ciphername} {Cipher ID code} Kex={key exchange} Auth={authentication} Encrypt={symmetric encryption method}
MAC={message authentication code} {export flag}

57041 - SSL Perfect Forward Secrecy Cipher Suites Supported

Synopsis

The remote service supports the use of SSL Perfect Forward Secrecy ciphers, which maintain confidentiality even if the key is stolen.

Description

The remote host supports the use of SSL ciphers that offer Perfect Forward Secrecy (PFS) encryption. These cipher suites ensure that recorded SSL traffic cannot be broken at a future date if the server's private key is compromised.

See Also

https://www.openssl.org/docs/manmaster/man1/ciphers.html https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

https://en.wikipedia.org/wiki/Perfect_forward_secrecy

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2011/12/07, Modified: 2021/03/09

Plugin Output

tcp/443/www

```
Here is the list of SSL PFS ciphers supported by the remote server :
 High Strength Ciphers (>= 112-bit key)
                                 Code
                                                  KEX
                                                                Auth
                                                                         Encryption
                                                                                                MAC
   ECDHE-RSA-AES128-SHA256
                                 0xC0, 0x2F
                                                                        AES-GCM(128)
   ECDHE-RSA-AES256-SHA384
                                 0xC0, 0x30
                                                  ECDH
                                                                RSA
                                                                        AES-GCM(256)
   ECDHE-RSA-CHACHA20-POLY1305 0xCC, 0xA8
                                                  ECDH
                                                                RSA
                                                                        ChaCha20-Poly1305(256)
 SHA256
The fields above are :
  {Tenable ciphername}
  {Cipher ID code}
```

Kex={key exchange}
Auth={authentication}
Encrypt={symmetric encryption method}
MAC={message authentication code}
{export flag}

94761 - SSL Root Certification Authority Certificate Information

Synopsis

A root Certification Authority certificate was found at the top of the certificate chain.

Description

The remote service uses an SSL certificate chain that contains a self-signed root Certification Authority certificate at the top of the chain.

See Also

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc778623(v=ws.10)

Solution

Ensure that use of this root Certification Authority certificate complies with your organization's acceptable use and security policies.

Risk Factor

None

Plugin Information

Published: 2016/11/14, Modified: 2018/11/15

Plugin Output

tcp/443/www

The following root Certification Authority certificate was found :

|-Subject : C=US/O=The Go Daddy Group, Inc./OU=Go Daddy Class 2 Certification Authority |-Issuer : C=US/O=The Go Daddy Group, Inc./OU=Go Daddy Class 2 Certification Authority |-Valid From : Jun 29 17:06:20 2004 GMT

|-Valid To : Jun 29 17:06:20 2034 GMT |-Signature Algorithm : SHA-1 With RSA Encryption

22964 - Service Detection

Synopsis

The remote service could be identified.

Description

Nessus was able to identify the remote service by its banner or by looking at the error message it sends when it receives an HTTP request.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/08/19, Modified: 2024/03/26

Plugin Output

tcp/22/ssh

An SSH server is running on this port.

22964 - Service Detection

Synopsis

The remote service could be identified.

Description

Nessus was able to identify the remote service by its banner or by looking at the error message it sends when it receives an HTTP request.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/08/19, Modified: 2024/03/26

Plugin Output

tcp/80/www

A web server is running on this port.

22964 - Service Detection

Synopsis

The remote service could be identified.

Description

Nessus was able to identify the remote service by its banner or by looking at the error message it sends when it receives an HTTP request.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2007/08/19, Modified: 2024/03/26

Plugin Output

tcp/443/www

A TLSv1.2 server answered on this port.

tcp/443/www

A web server is running on this port through TLSv1.2.

11153 - Service Detection (HELP Request)

Synopsis The remote service could be identified. Description It was possible to identify the remote service by its banner or by looking at the error message it sends when it receives a 'HELP' request. Solution n/a Risk Factor None Plugin Information Published: 2002/11/18, Modified: 2024/11/19 Plugin Output tcp/3306/mysql

22869 - Software Enumeration (SSH)

Synopsis

It was possible to enumerate installed software on the remote host via SSH.

Description

Nessus was able to list the software installed on the remote host by calling the appropriate command (e.g., 'rpm -ga' on RPM-based Linux distributions, gpkg, dpkg, etc.).

Solution

Remove any software that is not in compliance with your organization's acceptable use and security policies.

Risk Factor

None

References

XREF

IAVT:0001-T-0502

Plugin Information

Published: 2006/10/15, Modified: 2025/01/13

Plugin Output

tcp/0

Here is the list of packages installed on the remote Debian Linux system :

- ii adduser 3.118ubuntu5 all add and remove users and groups
- ii aide 0.17.4-lubuntu0.1 amd64 Advanced Intrusion Detection Environment dynamic binary
- aide-common 0.17.4-lubuntu0.1 all Advanced Intrusion Detection Environment Common files
- alsa-topology-conf 1.2.5.1-2 all ALSA topology configuration files
- ii alsa-ucm-conf 1.2.6.3-lubuntu1.12 all ALSA Use Case Manager configuration files
- ii amd64-microcode 3.20191218.1ubuntu2.3 amd64 Processor microcode firmware for AMD CPUs
- ii apparmor 3.0.4-2ubuntu2.4 amd64 user-space parser utility for AppArmor
- ii apparmor-utils 3.0.4-2ubuntu2.4 all utilities for controlling AppArmor ii apport 2.20.11-Oubuntu82.6 all automatically generate crash reports for debugging
- ii apport-symptoms 0.24 all symptom scripts for apport
- ii apt 2.4.13 amd64 commandline package manager
- apt-transport-https 2.4.13 all transitional package for https support
- apt-utils 2.4.13 amd64 package management related utility programs
- ii ii at-spi2-core 2.44.0-3 amd64 Assistive Technology Service Provider Interface (dbus core)
- base-files 12ubuntu4.7 amd64 Debian base system miscellaneous files
- ii base-passwd 3.5.52build1 amd64 Debian base system master password and group files
- ii bash 5.1-6ubuntul.1 amd64 GNU Bourne Again SHell
- ii bash-completion 1:2.11-5ubuntul all programmable completion for the bash shell
- bc 1.07.1-3build1 amd64 GNU bc arbitrary precision calculator language
- bcache-tools 1.0.8-4ubuntu3 amd64 bcache userspace tools

```
ii bind9-dnsutils 1:9.18.30-0ubuntu0.22.04.2 amd64 Clients provided with BIND 9
```

- ii bind9-host 1:9.18.30-0ubuntu0.22.04.2 amd64 DNS Lookup Utility
 ii bind9-libs 1:9.18.30-0ubuntu0.22.04.2 amd64 Shared Libraries used by BIND 9
 ii binutils 2.38-4ubuntu2.7 amd64 GNU assembler, linker and binary utilities
 ii binutils-common [...]

35351 - System Information Enumeration (via DMI)

Synopsis

Information about the remote system's hardware can be read.

Description

Using the SMBIOS (aka DMI) interface, it was possible to retrieve information about the remote system's hardware, such as its product name and serial number.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2009/01/12, Modified: 2025/03/18

Plugin Output

tcp/0

Chassis Information Serial Number : None Version : N/A

Manufacturer : No Enclosure Lock : Not Present
Type : Other

System Information

Serial Number: VMware-56 4d b0 fb f3 60 6b 57-53 bf c9 46 ae bd 3e 7b

Version : None
Manufacturer : VMware, Inc.
Product Name : VMware Virtual Platform
Family : Not Specified

84821 - TLS ALPN Supported Protocol Enumeration

Synopsis
The remote host supports the TLS ALPN extension.
Description
The remote host supports the TLS ALPN extension. This plugin enumerates the protocols the extension supports.
See Also
https://tools.ietf.org/html/rfc7301
Solution
n/a
Risk Factor
None
Plugin Information
Published: 2015/07/17, Modified: 2024/09/11
Plugin Output
tcp/443/www
http/1.1

136318 - TLS Version 1.2 Protocol Detection

Synopsis
The remote service encrypts traffic using a version of TLS.
Description
The remote service accepts connections encrypted using TLS 1.2.
See Also
https://tools.ietf.org/html/rfc5246
Solution
N/A
Risk Factor
None
Plugin Information
Published: 2020/05/04, Modified: 2020/05/04
Plugin Output
tcp/443/www

TLSv1.2 is enabled and the server supports at least one cipher.

138330 - TLS Version 1.3 Protocol Detection

Companying
Synopsis
The remote service encrypts traffic using a version of TLS.
Description
The remote service accepts connections encrypted using TLS 1.3.
See Also
https://tools.ietf.org/html/rfc8446
Solution
N/A
N/A
Risk Factor
None
Notice
Plugin Information
Published: 2020/07/09, Modified: 2023/12/13
Plugin Output
tcp/443/www

TLSv1.3 is enabled and the server supports at least one cipher.

110095 - Target Credential Issues by Authentication Protocol - No Issues Found

Synopsis

Nessus was able to log in to the remote host using the provided credentials. No issues were reported with access, privilege, or intermittent failure.

Description

Valid credentials were provided for an authentication protocol on the remote target and Nessus did not log any subsequent errors or failures for the authentication protocol.

When possible, Nessus tracks errors or failures related to otherwise valid credentials in order to highlight issues that may result in incomplete scan results or limited scan coverage. The types of issues that are tracked include errors that indicate that the account used for scanning did not have sufficient permissions for a particular check, intermittent protocol failures which are unexpected after the protocol has been negotiated successfully earlier in the scan, and intermittent authentication failures which are unexpected after a credential set has been accepted as valid earlier in the scan. This plugin reports when none of the above issues have been logged during the course of the scan for at least one authenticated protocol. See plugin output for details, including protocol, port, and account.

Please note the following:

Published: 2018/05/24, Modified: 2024/03/25

- This plugin reports per protocol, so it is possible for issues to be encountered for one protocol and not another.

For example, authentication to the SSH service on the remote target may have consistently succeeded with no privilege errors encountered, while connections to the SMB service on the remote target may have failed intermittently.

- Resolving logged issues for all available authentication protocols may improve scan coverage, but the value of resolving each issue for a particular protocol may vary from target to target depending upon what data (if any) is gathered from the target via that protocol and what particular check failed. For example, consistently successful checks via SSH are more critical for Linux targets than for Windows targets, and likewise consistently successful checks via SMB are more critical for Windows targets than for Linux targets.

Solution				
n/a				
Risk Factor				
None				
References				
XREF	IAVB:0001-B-0520			
Plugin Informa	tion			

Plugin Output

tcp/22/ssh

Nessus was able to log into the remote host with no privilege or access problems via the following :

User: 'root'
Port: 22
Proto: SSH
Method: password

141118 - Target Credential Status by Authentication Protocol - Valid Credentials Provided

Synopsis

Valid credentials were provided for an available authentication protocol.

Description

Nessus was able to determine that valid credentials were provided for an authentication protocol available on the remote target because it was able to successfully authenticate directly to the remote target using that authentication protocol at least once. Authentication was successful because the authentication protocol service was available remotely, the service was able to be identified, the authentication protocol was able to be negotiated successfully, and a set of credentials provided in the scan policy for that authentication protocol was accepted by the remote service. See plugin output for details, including protocol, port, and account.

Please note the following:

- This plugin reports per protocol, so it is possible for valid credentials to be provided for one protocol and not another. For example, authentication may succeed via SSH but fail via SMB, while no credentials were provided for an available SNMP service.
- Providing valid credentials for all available authentication protocols may improve scan coverage, but the value of successful authentication for a given protocol may vary from target to target depending upon what data (if any) is gathered from the target via that protocol. For example, successful authentication via SSH is more valuable for Linux targets than for Windows targets, and likewise successful authentication via SMB is more valuable for Windows targets than for Linux targets.

Solution
n/a

Risk Factor

None

Plugin Information

Published: 2020/10/15, Modified: 2024/03/25

tcp/22/ssh

Plugin Output

```
Nessus was able to log in to the remote host via the following:

User: 'root'
Port: 22
Proto: SSH
Method: password
```

56468 - Time of Last System Startup

Synopsis

The system has been started.

Description

Using the supplied credentials, Nessus was able to determine when the host was last started.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2011/10/12, Modified: 2018/06/19

Plugin Output

tcp/0

```
reboot system boot 6.8.0-52-generic Thu Mar 20 18:17 still running reboot system boot 6.8.0-52-generic Tue Mar 4 15:08 - 17:56 (16+02:47) reboot system boot 6.8.0-52-generic Mon Mar 3 10:02 - 15:08 (1+05:05) reboot system boot 6.8.0-51-generic Wed Feb 12 05:31 - 10:02 (19+04:31) reboot system boot 6.8.0-51-generic Wed Feb 12 04:28 - 10:02 (19+05:34) reboot system boot 6.8.0-51-generic Tue Feb 4 07:07 - 10:02 (27+02:54) reboot system boot 6.8.0-51-generic Mon Jan 13 17:23 - 10:02 (48+16:39) reboot system boot 6.8.0-51-generic Mon Jan 13 17:19 - 17:23 (00:03) reboot system boot 6.8.0-51-generic Thu Jan 9 17:41 - 17:19 (3+23:37) reboot system boot 6.8.0-51-generic Thu Jan 9 17:41 - 17:19 (3+23:37) reboot system boot 6.8.0-45-generic Wed Jan 8 11:10 - 16:22 (1+05:12) reboot system boot 6.8.0-45-generic Wed Jan 8 10:58 - 11:10 (00:12) reboot system boot 6.8.0-40-generic Thu Sep 19 09:41 - 10:58 (111+01:16) reboot system boot 6.8.0-40-generic Thu Sep 19 09:41 - 10:58 (111+01:16) reboot system boot 6.8.0-40-generic Wed Sep 4 17:51 - 12:24 (7+18:32) reboot system boot 6.8.0-40-generic Thu Aug 29 14:48 - 17:51 (6+03:02)
```

10287 - Traceroute Information

Synopsis

It was possible to obtain traceroute information.

Description

Makes a traceroute to the remote host.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 1999/11/27, Modified: 2023/12/04

Plugin Output

udp/0

```
For your information, here is the traceroute from 192.168.40.34 to 192.168.40.33: 192.168.40.34
192.168.40.33

Hop Count: 1
```

192709 - Tukaani XZ Utils Installed (Linux / Unix)

Synopsis

Tukaani XZ Utils is installed on the remote Linux / Unix host.

Description

Tukaani XZ Utils is installed on the remote Linux / Unix host.

XZ Utils consists of several components, including:

- liblzma
- XZ

Additional information:

- More paths will be searched and the timeout for the search will be increased if 'Perform thorough tests' setting is enabled.
- The plugin timeout can be set to a custom value other than the plugin's default of 30 minutes via the 'timeout.192709' scanner setting in Nessus 8.15.1 or later.

Please see https://docs.tenable.com/nessus/Content/SettingsAdvanced.htm#Custom for more information.

See Also

https://xz.tukaani.org/xz-utils/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2024/03/29, Modified: 2025/03/19

Plugin Output

tcp/0

Nessus detected 2 installs of XZ Utils:

Path : /usr/lib/x86_64-linux-gnu/liblzma.so.5.2.5

Version : 5.2.5

Associated Package: liblzma5 5.2.5-2ubuntu1

Confidence : High

Managed by OS : True Version Source : Package

Path : /usr/bin/xz Version : 5.2.5

Associated Package : xz-utils 5.2.5-2ubuntu1

Confidence : High
Managed by OS : True
Version Source : Package

198218 - Ubuntu Pro Subscription Detection

Synopsis

The remote Ubuntu host has an active Ubuntu Pro subscription.

Description

The remote Ubuntu host has an active Ubuntu Pro subscription.

See Also

https://documentation.ubuntu.com/pro/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2024/05/31, Modified: 2024/07/05

Plugin Output

tcp/0

```
This machine is attached to an Ubuntu Pro subscription.

Subscription Contract Type : Ubuntu Pro - free personal subscription

Binary Path : /var/lib/ubuntu-advantage

Binary Version : 34~22.04

Enabled Ubuntu Pro Services :
- esm-apps
- esm-infra
- livepatch
```

83303 - Unix / Linux - Local Users Information : Passwords Never Expire

Synopsis

At least one local user has a password that never expires.

Description

Using the supplied credentials, Nessus was able to list local users that are enabled and whose passwords never expire.

Solution

Allow or require users to change their passwords regularly.

Risk Factor

None

Plugin Information

Published: 2015/05/10, Modified: 2023/11/27

Plugin Output

tcp/0

Nessus found the following unlocked users with passwords that do not expire :

- root
- c0863
- mware
- C3673

110483 - Unix / Linux Running Processes Information

Synopsis

Uses /bin/ps auxww command to obtain the list of running processes on the target machine at scan time.

Description

Generated report details the running processes on the target machine at scan time.

This plugin is informative only and could be used for forensic investigation, malware detection, and to confirm that your system processes conform to your system policies.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2018/06/12, Modified: 2023/11/27

Plugin Output

tcp/0

ISER	PID	%CPU		VSZ		TTY	STAT	START		COMMAND
oot	1	0.2		168328			Ss	Mar20	17:41	/sbin/init
root	2	0.0	0.0	0		?	S	Mar20		[kthreadd]
root	3	0.0	0.0	0	0	?	S	Mar20	0:00	[pool_workqueue_release]
root	4	0.0	0.0	0	0	?	I<	Mar20	0:00	[kworker/R-rcu_g]
root	5	0.0	0.0	0	0	?	I<	Mar20	0:00	[kworker/R-rcu_p]
root	6	0.0	0.0	0	0		I<	Mar20	0:00	[kworker/R-slub_]
root	7	0.0	0.0	0	0	?	I<	Mar20	0:00	[kworker/R-netns]
root	9	0.0	0.0	0	0	?	I<	Mar20	0:00	[kworker/0:0H-events_highpri]
root	12	0.0	0.0	0	0	?	I<	Mar20	0:00	[kworker/R-mm_pe]
root	13	0.0	0.0	0	0	?	I	Mar20	0:00	[rcu_tasks_kthread]
root	14	0.0	0.0	0	0	?	I	Mar20	0:00	[rcu_tasks_rude_kthread]
root	15	0.0	0.0	0	0	?	I	Mar20	0:00	[rcu_tasks_trace_kthread]
root	16	0.0	0.0	0	0	?	S	Mar20	0:05	[ksoftirqd/0]
root	17	0.0	0.0	0	0	?	I	Mar20	1:48	[rcu_preempt]
root	18	0.0	0.0	0	0	?	S	Mar20	0:01	[migration/0]
root	19	0.0	0.0	0	0	?	S	Mar20	0:00	[idle_inject/0]
root	20	0.0	0.0	0	0	?	S	Mar20	0:00	[cpuhp/0]
root	21	0.0	0.0	0	0	?	S	Mar20	0:00	[cpuhp/1]
root	22	0.0	0.0	0	0	?	S	Mar20	0:00	[idle_inject/1]
coot	23	0.0	0.0	0	0	?	S	Mar20	0:01	[migration/1]
coot	24	0.0	0.0	0	0	?	S	Mar20	0:04	[ksoftirqd/1]
coot	26	0.0	0.0	0	0	?	I<	Mar20	0:00	[kworker/1:0H-events_highpri]
coot	27	0.0	0.0	0	0	?	S	Mar20	0:00	[cpuhp/2]
root	28	0.0	0.0	0	[]					

152742 - Unix Software Discovery Commands Available

Synopsis

Nessus was able to log in to the remote host using the provided credentials and is able to execute all commands used to find unmanaged software.

Description

Nessus was able to determine that it is possible for plugins to find and identify versions of software on the target host. Software that is not managed by the operating system is typically found and characterized using these commands. This was measured by running commands used by unmanaged software plugins and validating their output against expected results.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2021/08/23, Modified: 2021/08/23

Plugin Output

tcp/0

Unix software discovery checks are available.

Account : root Protocol : SSH

11154 - Unknown Service Detection: Banner Retrieval

Synopsis

There is an unknown service running on the remote host.

Description

Nessus was unable to identify a service on the remote host even though it returned a banner of some type.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2002/11/18, Modified: 2022/07/26

Plugin Output

tcp/33060

186361 - VMWare Tools or Open VM Tools Installed (Linux)

Synopsis

VMWare Tools or Open VM Tools were detected on the remote Linux host.

Description

VMWare Tools or Open VM Tools were detected on the remote Linux host.

See Also

https://kb.vmware.com/s/article/340

http://www.nessus.org/u?c0628155

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/11/28, Modified: 2025/03/19

Plugin Output

tcp/0

Path : /usr/bin/vmtoolsd

Version : 12.3.5

20094 - VMware Virtual Machine Detection

Synopsis

The remote host is a VMware virtual machine.

Description

According to the MAC address of its network adapter, the remote host is a VMware virtual machine.

Solution

Since it is physically accessible through the network, ensure that its configuration matches your organization's security policy.

Risk Factor

None

Plugin Information

Published: 2005/10/27, Modified: 2019/12/11

Plugin Output

tcp/0

The remote host is a VMware virtual machine.

189731 - Vim Installed (Linux)

Synopsis

Vim is installed on the remote Linux host.

Description

Vim is installed on the remote Linux host.

See Also

https://www.vim.org/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2024/01/29, Modified: 2025/03/19

Plugin Output

tcp/0

Nessus detected 2 installs of Vim:

Path : /usr/bin/vim.tiny

Version : 8.2

Path : /usr/bin/vim.basic

Version : 8.2

10386 - Web Server No 404 Error Code Check

Synopsis

The remote web server does not return 404 error codes.

Description

The remote web server is configured such that it does not return '404 Not Found' error codes when a nonexistent file is requested, perhaps returning instead a site map, search page or authentication page.

Nessus has enabled some counter measures for this. However, they might be insufficient. If a great number of security holes are produced for this port, they might not all be accurate.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2000/04/28, Modified: 2022/06/17

Plugin Output

tcp/80/www

CGI scanning will be disabled for this host because the host responds to requests for non-existent URLs with HTTP code 301 rather than 404. The requested URL was :

http://192.168.40.33/v4i0KiZjoGwA.html

10386 - Web Server No 404 Error Code Check

Synopsis

The remote web server does not return 404 error codes.

Description

The remote web server is configured such that it does not return '404 Not Found' error codes when a nonexistent file is requested, perhaps returning instead a site map, search page or authentication page.

Nessus has enabled some counter measures for this. However, they might be insufficient. If a great number of security holes are produced for this port, they might not all be accurate.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2000/04/28, Modified: 2022/06/17

Plugin Output

tcp/443/www

The following title tag will be used : Client360

182848 - libcurl Installed (Linux / Unix)

Synopsis

libcurl is installed on the remote Linux / Unix host.

Description

libcurl is installed on the remote Linux / Unix host.

Additional information:

- More paths will be searched and the timeout for the search will be increased if 'Perform thorough tests' setting is enabled.
- The plugin timeout can be set to a custom value other than the plugin's default of 30 minutes via the 'timeout.182848' scanner setting in Nessus 8.15.1 or later.

Please see https://docs.tenable.com/nessus/Content/SettingsAdvanced.htm#Custom for more information.

See Also

https://curl.se/

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2023/10/10, Modified: 2025/03/19

Plugin Output

tcp/0

```
Nessus detected 2 installs of libcurl:

Path : /usr/lib/x86_64-linux-gnu/libcurl.so.4.7.0

Version : 7.81.0
Associated Package : libcurl4 7.81.0-lubuntu1.20

Managed by OS : True

Path : /usr/lib/x86_64-linux-gnu/libcurl-gnutls.so.4.7.0

Version : 7.81.0
Associated Package : libcurl3-gnutls 7.81.0-lubuntu1.20

Managed by OS : True
```

106375 - nginx HTTP Server Detection

Synopsis

The nginx HTTP server was detected on the remote host.

Description

Nessus was able to detect the nginx HTTP server by looking at the HTTP banner on the remote host.

See Also

https://nginx.org/

Solution

n/a

Risk Factor

None

References

XREF IAVT:0001-T-0677

Plugin Information

Published: 2018/01/26, Modified: 2023/05/24

Plugin Output

tcp/80/www

URL : http://192.168.40.33/

Version : 1.26.3

source : Server: nginx/1.26.3

106375 - nginx HTTP Server Detection

Synopsis

The nginx HTTP server was detected on the remote host.

Description

Nessus was able to detect the nginx HTTP server by looking at the HTTP banner on the remote host.

See Also

https://nginx.org/

Solution

n/a

Risk Factor

None

References

XREF IAVT:0001-T-0677

Plugin Information

Published: 2018/01/26, Modified: 2023/05/24

Plugin Output

tcp/443/www

URL : https://192.168.40.33/

Version : 1.26.3

source : Server: nginx/1.26.3

136340 - nginx Installed (Linux/UNIX)

Synopsis

NGINX is installed on the remote Linux / Unix host.

Description

NGINX, a web server with load balancing capabilities, is installed on the remote Linux / Unix host.

See Also

https://www.nginx.com

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2020/05/05, Modified: 2025/03/19

Plugin Output

tcp/0

Nessus detected 2 installs of nginx:

Path : nginx (via package manager)

Version : 1.26.3-1

Path : /usr/sbin/nginx Version : 1.26.3

Associated Package : nginx: /usr/sbin/nginx

Detection Method : Running Process

Full Version : 1.26.3
Managed by OS : True
Nginx Plus : False

1.6.1 Ensure message of the day is configured properly

Info

The contents of the /etc/motd file are displayed to users after login and function as a message of the day for authenticated users.

Unix-based systems have typically displayed information about the OS release and patch level upon logging in to the system. This information can be useful to developers who are developing software for a particular OS platform. If mingetty(8) supports the following options, they display operating system information: m - machine architecture r - operating system release s - operating system name v - operating system version

Warning messages inform users who are attempting to login to the system of their legal status regarding the system and must include the name of the organization that owns the system and any monitoring policies that are in place. Displaying OS and patch level information in login banners also has the side effect of providing detailed system information to attackers attempting to target specific exploits of a system. Authorized users can easily get this information by running the " uname -a " command once they have logged in.

Solution

Edit the /etc/motd file with the appropriate contents according to your site policy, remove any instances of m r s v or references to the OS platform

- OR -
- IF the motd is not used, this file can be removed.

Run the following command to remove the motd file:

rm /etc/motd

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.9
800-53	AC-8a.
800-53R5	AC-8a.
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	AC-8a.
LEVEL	1A
NESA	M5.2.5
NESA	T5.5.1
NIAV2	AM10a
NIAV2	AM10b
NIAV2	AM10c

NIAV2 AM10d NIAV2 AM10e TBA-FIISB 45.2.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

FAILED

Hosts

1.6.2 Ensure local login warning banner is configured properly

Info

The contents of the /etc/issue file are displayed to users prior to login for local terminals.

Unix-based systems have typically displayed information about the OS release and patch level upon logging in to the system. This information can be useful to developers who are developing software for a particular OS platform. If mingetty(8) supports the following options, they display operating system information: m - machine architecture r - operating system release s - operating system name v - operating system version - or the operating system's name

Warning messages inform users who are attempting to login to the system of their legal status regarding the system and must include the name of the organization that owns the system and any monitoring policies that are in place. Displaying OS and patch level information in login banners also has the side effect of providing detailed system information to attackers attempting to target specific exploits of a system. Authorized users can easily get this information by running the " uname -a " command once they have logged in.

Solution

Edit the /etc/issue file with the appropriate contents according to your site policy, remove any instances of m r s v or references to the OS platform

Example:

echo "Authorized users only. All activity may be monitored and reported." > /etc/issue

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

3.1.9
AC-8
AC-8
32.1.b
164.306(a)(1)
AC-8
1A
M1.3.6
45.2.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Pο	licv	Va	lue
	11 C y	٧u	ıuc

FAILED

Hosts

```
All of the following must pass to satisfy this requirement:

FAILED - banner text

First ERROR: This system != All activities

This system is restricted to authorized users only. Unauthorized access, use, or modification is strictly prohibited and may result in disciplinary action or legal prosecution. Action performed on this system are monitored and logged. By accessing this system, you consent to monitoring and agree to abide by organizational policies.

PASSED - mrsv not included in /etc/issue

The following file(s) do not contain "\\[mrsv]":
    /etc/issue
```

1.6.3 Ensure remote login warning banner is configured properly

Info

The contents of the /etc/issue.net file are displayed to users prior to login for remote connections from configured services.

Unix-based systems have typically displayed information about the OS release and patch level upon logging in to the system. This information can be useful to developers who are developing software for a particular OS platform. If mingetty(8) supports the following options, they display operating system information: m - machine architecture r - operating system release s - operating system name v - operating system version

Warning messages inform users who are attempting to login to the system of their legal status regarding the system and must include the name of the organization that owns the system and any monitoring policies that are in place. Displaying OS and patch level information in login banners also has the side effect of providing detailed system information to attackers attempting to target specific exploits of a system. Authorized users can easily get this information by running the " uname -a " command once they have logged in.

Solution

Edit the /etc/issue.net file with the appropriate contents according to your site policy, remove any instances of m r s v or references to the OS platform

Example:

echo "Authorized users only. All activity may be monitored and reported." > /etc/issue.net

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.9
800-53	AC-8
800-53R5	AC-8
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	AC-8
LEVEL	1A
NESA	M1.3.6
TBA-FIISB	45.2.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Pο	licv	Va	lue
	11 C y	٧u	ıuc

FAILED

Hosts

2.1.18 Ensure web server services are not in use

Info

Web servers provide the ability to host web site content.

Unless there is a local site approved requirement to run a web server service on the system, web server packages should be removed to reduce the potential attack surface.

Solution

Run the following commands to stop httpd.socket httpd.service and nginx.service and remove httpd and nginx packages:

systemctl stop apache2.socket httpd.service nginx.service # apt purge apache2 nginx

- OR -
- IF a package is installed and is required for dependencies:

Run the following commands to stop and mask apache2.socket apache2.service and nginx.service:

systemctl stop apache2.socket apache2.service nginx.service # systemctl mask apache2.socket apache2.service

Note: Other web server packages may exist. If not required and authorized by local site policy, they should also be removed. If the package is required for a dependency, the service and socket should be stopped and masked.

Impact:

Removal of web server packages will remove that ability for the server to host web services.

- IF - the web server package is required for a dependency, any related service or socket should be stopped and masked.

Note: If the remediation steps to mask a service are followed and that package is not installed on the system, the service and/or socket will still be masked. If the package is installed due to an approved requirement to host a web server, the associated service and/or socket would need to be unmasked before it could be enabled and/or started.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7

800-53R5 CM-6
800-53R5 CM-7
CSCV7 9.2
CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

FAILED

Hosts

```
All of the following must pass to satisfy this requirement:

FAILED - active

The command '/bin/systemctl is-active apache2.socket apache2.service nginx.service 2>/dev/null | /bin/grep '^active' | /bin/awk '{print} END {if (NR == 0) print "pass" ; else print "fail"}'' returned:

active fail

PASSED - enabled

The command '/bin/systemctl is-enabled apache2.socket apache2.service nginx.service 2>/dev/null | /bin/grep 'enabled' | /bin/awk '{print} END {if (NR == 0) print "pass" ; else print "fail"}'' returned:

pass
```

4.1.7 Ensure ufw default deny firewall policy

Info

A default deny policy on connections ensures that any unconfigured network usage will be rejected.

Note: Any port or protocol without a explicit allow before the default deny will be blocked

With a default accept policy the firewall will accept any packet that is not configured to be denied. It is easier to white list acceptable usage than to black list unacceptable usage.

Solution

Run the following commands to implement a default

deny

policy:

ufw default deny incoming # ufw default deny outgoing # ufw default deny routed

Impact:

Any port and protocol not explicitly allowed will be blocked. The following rules should be considered before applying the default deny.

ufw allow out http ufw allow out https ufw allow out ntp # Network Time Protocol ufw allow out to any port 53 # DNS ufw allow out to any port 853 # DNS over TLS ufw logging on

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5

CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b
GDPR	32.1.d
GDPR	32.2
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3

ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25

1.1

PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 6.2 QCSC-V1 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1

Audit File

TBA-FIISB

PCI-DSSV3.2.1

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

43.1

Policy Value

cmd: /sbin/ufw status verbose | /bin/grep 'Default:'

 $expect: \begin{tabular}{l} expect: \begin{tabu$

Hosts

```
The command '/sbin/ufw status verbose | /bin/grep 'Default:'' returned :

Default: deny (incoming), allow (outgoing), disabled (routed)
```

5.1.20 Ensure sshd PermitRootLogin is disabled

Info

The PermitRootLogin parameter specifies if the root user can log in using SSH. The default is prohibit-password

Disallowing root logins over SSH requires system admins to authenticate using their own individual account, then escalating to root This limits opportunity for non-repudiation and provides a clear audit trail in the event of a security incident.

Solution

Edit the /etc/ssh/sshd_config file to set the PermitRootLogin parameter to no above any Include and Match entries as follows:

PermitRootLogin no

Note: First occurrence of an option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.5	
800-171	3.1.6	
800-53	AC-6(2)	
800-53	AC-6(5)	
800-53R5	AC-6(2)	
800-53R5	AC-6(5)	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.10.6(a)	
CSCV7	4.3	
CSCV8	5.4	
CSF	PR.AC-4	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
ISO/IEC-27001	A.9.2.3	
ITSG-33	AC-6(2)	
ITSG-33	AC-6(5)	

LEVEL	1A
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.6.1
NIAV2	AM1
NIAV2	AM23f
NIAV2	AM32
NIAV2	AM33
NIAV2	SS13c
NIAV2	SS15c
NIAV2	VL3a
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	5.2.2
QCSC-V1	6.2
SWIFT-CSCV1	1.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

FAILED

Hosts

```
All of the following must pass to satisfy this requirement:

FAILED - sshd -T permitrootlogin
The command script with multiple lines returned:

port 22: permitrootlogin yes
Fail

FAILED - config file permitrootlogin setting
Non-compliant file(s):
    /etc/ssh/sshd_config - regex '^[\s]*(?i)PermitRootLogin(?-i)[\s]' found - expect '^[\s]*(?i)PermitRootLogin(?-i)[\s]' found - expect '^[\s]*(?i)PermitRootLogin(?-i)[\s]+"?no"?[\s]*$' not found in the following lines:
    127: PermitRootLogin yes
```

5.3.1.1 Ensure latest version of pam is installed

Info

Updated versions of PAM include additional functionality

To ensure the system has full functionality and access to the options covered by this Benchmark the latest version of libpam-runtime should be installed on the system

Solution

- IF - the version of libpam-runtime on the system is less that version 1.5.2-6:

Run the following command to update to the latest version of PAM:

apt upgrade libpam-runtime

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s libpam-runtime | /bin/grep -E '(Status: | Version)'

expect: ^Version: ([1-9]|[1-9][0-9])\.([5-9]|[1-9][0-9])\.([2-9]|[1-9][0-9])-([6-9]|[1-9][0-9])

Hosts

192.168.40.33

The command '/bin/dpkg -s libpam-runtime | /bin/grep -E '(Status:|Version)'' returned :

Status: install ok installed Version: 1.4.0-11ubuntu2.5

5.3.1.2 Ensure libpam-modules is installed

Info

Pluggable Authentication Modules for PAM

To ensure the system has full functionality and access to the PAM options covered by this Benchmark

Solution

- IF - the version of libpam-modules on the system is less that version 1.5.2-6:

Run the following command to update to the latest version of PAM:

apt upgrade libpam-modules

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s libpam-modules | /bin/grep -E '(Status:|Version)' expect: ^Version: (1\.5\.([2-9]|[1-9][0-9])\.[[1-9][0-9])\.[[1-9][0-9]\.]

Hosts

192.168.40.33

The command '/bin/dpkg -s libpam-modules | /bin/grep -E '(Status:|Version)'' returned :

Status: install ok installed Version: 1.4.0-11ubuntu2.5

5.4.1.1 Ensure password expiration is configured

Info

The PASS_MAX_DAYS parameter in /etc/login.defs allows an administrator to force passwords to expire once they reach a defined age.

PASS_MAX_DAYS

<N>

- The maximum number of days a password may be used. If the password is older than this, a password change will be forced. If not specified, -1 will be assumed (which disables the restriction).

The window of opportunity for an attacker to leverage compromised credentials or successfully compromise credentials via an online brute force attack is limited by the age of the password. Therefore, reducing the maximum age of a password also reduces an attacker's window of opportunity.

We recommend a yearly password change. This is primarily because for all their good intentions users will share credentials across accounts. Therefore, even if a breach is publicly identified, the user may not see this notification, or forget they have an account on that site. This could leave a shared credential vulnerable indefinitely. Having an organizational policy of a 1-year (annual) password expiration is a reasonable compromise to mitigate this with minimal user burden.

Solution

Set the PASS_MAX_DAYS parameter to conform to site policy in /etc/login.defs:

PASS_MAX_DAYS 365

Modify user parameters for all users with a password set to match:

chage --maxdays 365 <user>

Edit /etc/login.defs and set PASS_MAX_DAYS to a value greater than 0 that follows local site policy:

Example:

PASS MAX DAYS 365

Run the following command to modify user parameters for all users with a password set to a maximum age no greater than 356 or less than 1 that follows local site policy:

chage --maxdays <N> <user>

Example:

awk -F: $'($2~/^s.+$/) \{ if($5 > 365 \mid | $5 < 1) \}$ / etc/shadow

Impact:

The password expiration must be greater than the minimum days between password changes or users will be unable to change their password.

Excessive password expiration requirements do more harm than good, because these requirements make users select predictable passwords, composed of sequential words and numbers that are closely

related to each other. In these cases, the next password can be predicted based on the previous one (incrementing a number used in the password forexample). Also, password expiration requirements offer no containment benefits because attackers will often use credentials as soon as they compromise them. Instead, immediate password changes should be based on key events including, but not limited to:

- Indication of compromise
- Change of user roles
- When a user leaves the organization.

Not only does changing passwords every few weeks or months frustrate the user, it's been suggested that it does more harm than good, because it could lead to bad practices by the user such as adding a character to the end of their existing password.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

FAILED

Hosts

```
All of the following must pass to satisfy this requirement:
FAILED - shadow password max days
Non-compliant file(s):
     \frac{-(-1)^{2}}{2}
3[0-5][0-9] | 36[0-5]): not found in the following lines:
        1: root:$y$j9T$V24d/UK7MIC3r5Pzzy1qz/$trFlZWHWJh3fv/
RMF38ReqwJrV35XQZE.HooBJSYHx2:20173:0:99999:7:::
        33: c0863:$y$j9T$JiVcs4/t0pHL2YhYuhJZW.$xqDz9hZXXMZsNUT8MXu8GRCOKVDfjAv/
GHFzs7psqr9:20156:0:99999:0:::
        36: mware:$y$j9T$9LN.gNH1TlM2sL/aeNJFV1$Tz/
CNzXVw8Z0LYowQxG2ThHqKDMKYaGAkiO9AmOULB6:20156:0:99999:0:45::
         39: C3673:$y$j9T$5fUGVuAgR5Vv9mIMcj44i0$w14J0eSxwXzOLmQBwHD/
yUbk8qPv8w2Ea0v4TKVyLF4:20151:0:99999:10:90::
PASSED - login.defs
Compliant file(s):
     /etc/login.defs - regex '(?i)^[\s]*PASS_MAX_DAYS[\s]' found - expect '(?
i)^[\s]*PASS_MAX_DAYS[\s]+([1-9]|[1-9]|[0-9]|[12][0-9]\{2\}|3[0-5][0-9]|36[0-5])[\s]*$' found in the
following lines:
        164: PASS_MAX_DAYS30
```

5.4.1.3 Ensure password expiration warning days is configured

Info

The PASS_WARN_AGE parameter in /etc/login.defs allows an administrator to notify users that their password will expire in a defined number of days.

PASS_WARN_AGE

<N>

- The number of days warning given before a password expires. A zero means warning is given only upon the day of expiration, a negative value means no warning is given. If not specified, no warning will be provided.

Providing an advance warning that a password will be expiring gives users time to think of a secure password. Users caught unaware may choose a simple password or write it down where it may be discovered.

Solution

Edit /etc/login.defs and set PASS_WARN_AGE to a value of 7 or more that follows local site policy:

Example:

PASS_WARN_AGE 7

Run the following command to modify user parameters for all users with a password set to a minimum warning to 7 or more days that follows local site policy:

chage --warndays <N> <user>

Example:

awk -F: $'($2~/^{.+})$ {if(\$6 < 7)system ("chage --warndays 7 " \$1)}' /etc/shadow

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.1
800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-171	3.13.1
800-171	3.13.2
800-53	CM-1
800-53	CM-2
800-53	CM-6

800-53	CM-7
800-53	CM-7(1)
800-53	CM-9
800-53	SA-3
800-53	SA-8
800-53	SA-10
800-53R5	CM-1
800-53R5	CM-2
800-53R5	CM-6
800-53R5	CM-7
800-53R5	CM-7(1)
800-53R5	CM-9
800-53R5	SA-3
800-53R5	SA-8
800-53R5	SA-10
CSCV7	4.4
CSCV8	4.1
CSF	DE.AE-1
CSF	ID.GV-1
CSF	ID.GV-3
CSF	PR.DS-7
CSF	PR.IP-1
CSF	PR.IP-2
CSF	PR.IP-3
CSF	PR.PT-3
GDPR	32.1.b
GDPR	32.4
HIPAA	164.306(a)(1)
ITSG-33	CM-1
ITSG-33	CM-2
ITSG-33	CM-6
ITSG-33	CM-7
ITSG-33	CM-7(1)
ITSG-33	CM-9
ITSG-33	SA-3
ITSG-33	SA-8
ITSG-33	SA-8a.
ITSG-33	SA-10
LEVEL	1A
NESA	M1.2.2
NESA	T1.2.1
NESA	T1.2.2

T3.2.5

NESA

NESA	T3.4.1
NESA	T4.5.3
NESA	T4.5.4
NESA	T7.2.1
NESA	T7.5.1
NESA	T7.5.3
NESA	T7.6.1
NESA	T7.6.2
NESA	T7.6.3
NESA	T7.6.5
NIAV2	GS8b
NIAV2	SS3
NIAV2	SS15a
NIAV2	SS16
NIAV2	VL2
NIAV2	VL7a
NIAV2	VL7b
PCI-DSSV3.2.1	2.2.2
QCSC-V1	3.2
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	7.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

FAILED

Hosts

5.4.1.5 Ensure inactive password lock is configured

Info

User accounts that have been inactive for over a given period of time can be automatically disabled.

INACTIVE - Defines the number of days after the password exceeded its maximum age where the user is expected to replace this password.

The value is stored in the shadow password file. An input of 0 will disable an expired password with no delay. An input of -1 will blank the respective field in the shadow password file.

Inactive accounts pose a threat to system security since the users are not logging in to notice failed login attempts or other anomalies.

Solution

Run the following command to set the default password inactivity period to 45 days or less that meets local site policy:

useradd -D -f <N>

Example:

useradd -D -f 45

Run the following command to modify user parameters for all users with a password set to a inactive age of 45 days or less that follows local site policy:

chage --inactive <N> <user>

Example:

awk -F: $'($2~/^$.+$/) \{if($7 > 45 \mid | $7 < 0) \text{ system ("chage --inactive 45" $1)}' / etc/shadow$

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)

ITSG-33 IA-5(1)
LEVEL 1A

NESA T5.2.3

QCSC-V1 5.2.2

QCSC-V1 13.2

SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

FAILED

Hosts

```
All of the following must pass to satisfy this requirement:
FAILED - useradd
The command '/sbin/useradd -D | /bin/grep 'INACTIVE'' returned :
INACTIVE=90
FAILED - shadow inactive password lock
Non-compliant file(s):
                      \label{eq:condition} $$ \ensuremath{\text{det}} = \ensuremath{\text{det}} - \ensuremath{\text{det}} = \ensuremath{\textdet} = \ens
  found in the following lines:
                                   36: mware:$y$j9T$9LN.gNH1TlM2sL/aeNJFV1$Tz/
CNzXVw8Z0LYowQxG2ThHqKDMKYaGAkiO9AmOULB6:20156:0:99999:0:45::
                    \ensuremath{\text{detc/shadow}} - regex '^[^:]+:[^!*]' found - expect '^([^:]*:){6}([1-9]|[123][0-9]|4[0-5]):' not
    found in the following lines:
                                   1: root:$y$j9T$V24d/UK7MIC3r5Pzzylqz/$trFlZWHWJh3fv/
RMF38ReqwJrV35XQZE.HooBJSYHx2:20173:0:99999:7:::
                                   33: c0863:$y$j9T$JiVcs4/t0pHL2YhYuhJZW.$xqDz9hZXXMZsNUT8MXu8GRCOKVDfjAv/
GHFzs7psqr9:20156:0:99999:0:::
                                    39: C3673:$y$j9T$5fUGVuAgR5Vv9mIMcj44i0$w14J0eSxwXzOLmQBwHD/
yUbk8qPv8w2Ea0v4TKVyLF4:20151:0:99999:10:90::
```

5.4.2.6 Ensure root user umask is configured

Info

The user file-creation mode mask (umask) is used to determine the file permission for newly created directories and files. In Linux, the default permissions for any newly created directory is 0777 (rwxrwxrwx), and for any newly created file it is 0666 (rw-rw-rw-). The umask modifies the default Linux permissions by restricting (masking) these permissions. The umask is not simply subtracted, but is processed bitwise. Bits set in the umask are cleared in the resulting file mode.

umask can be set with either Octal or Symbolic values:

- Octal (Numeric) Value Represented by either three or four digits. ie umask 0027 or umask 027 If a four digit umask is used, the first digit is ignored. The remaining three digits effect the resulting permissions for user, group, and world/other respectively.
- Symbolic Value Represented by a comma separated list for User u group g and world/other o The permissions listed are not masked by umask ie a umask set by umask u=rwx,g=rx,o= is the Symbolic equivalent of the Octal umask 027 This umask would set a newly created directory with file mode drwxr-x--- and a newly created file with file mode rw-r----

root user Shell Configuration Files:

- /root/.bash_profile Is executed to configure the root users' shell before the initial command prompt. Is only read by login shells.
- /root/.bashrc Is executed for interactive shells. only read by a shell that's both interactive and non-login

umask is set by order of precedence. If umask is set in multiple locations, this order of precedence will determine the system's default umask

Order of precedence:

- /root/.bash profile
- /root/.bashrc
- The system default umask

Setting a secure value for umask ensures that users make a conscious choice about their file permissions. A permissive umask value could result in directories or files with excessive permissions that can be read and/or written to by unauthorized users.

Solution

Edit /root/.bash_profile and /root/.bashrc and remove, comment out, or update any line with umask to be 0027 or more restrictive.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171

3.1.1

800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1

T4.2.1
T5.1.1
T5.2.2
T5.4.1
T5.4.4
T5.4.5
T5.5.4
T5.6.1
T7.5.2
T7.5.3
AM1
AM3
AM23f
SS13c
SS15c
SS29
7.1.2
7.2.1
7.2.2
3.2
5.2.2
6.2
13.2
5.1
31.1
31.4.2
31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

Hosts

192.168.40.33

Non-compliant file(s):

 $\label{eq:control_co$

5.4.3.3 Ensure default user umask is configured

Info

The user file-creation mode mask (umask) is used to determine the file permission for newly created directories and files. In Linux, the default permissions for any newly created directory is 0777 (rwxrwxrwx), and for any newly created file it is 0666 (rw-rw-rw-). The umask modifies the default Linux permissions by restricting (masking) these permissions. The umask is not simply subtracted, but is processed bitwise. Bits set in the umask are cleared in the resulting file mode.

umask can be set with either Octal or Symbolic values:

- Octal (Numeric) Value Represented by either three or four digits. ie umask 0027 or umask 027 If a four digit umask is used, the first digit is ignored. The remaining three digits effect the resulting permissions for user, group, and world/other respectively.
- Symbolic Value Represented by a comma separated list for User u group g and world/other o The permissions listed are not masked by umask ie a umask set by umask u=rwx,g=rx,o= is the Symbolic equivalent of the Octal umask 027 This umask would set a newly created directory with file mode drwxr-x--- and a newly created file with file mode rw-r----

The default umask can be set to use the pam_umask module or in a System Wide Shell Configuration File The user creating the directories or files has the discretion of changing the permissions via the chmod command, or choosing a different default umask by adding the umask command into a User Shell Configuration File (bash_profile orbashrc), in their home directory.

Setting the default umask:

- pam umask module:
- will set the umask according to the system default in /etc/login.defs and user settings, solving the problem of different umask settings with different shells, display managers, remote sessions etc.
- umask=<mask> value in the /etc/login.defs file is interpreted as Octal
- Setting USERGROUPS_ENAB to yes in /etc/login.defs (default):
- will enable setting of the umask group bits to be the same as owner bits. (examples: 022 -> 002, 077 -
- > 007) for non-root users, if the uid is the same as gid and username is the same as the <primary group name>
- userdel will remove the user's group if it contains no more members, and useradd will create by default a group with the name of the user
- System Wide Shell Configuration File :
- /etc/profile used to set system wide environmental variables on users shells. The variables are sometimes the same ones that are in thebash_profile however this file is used to set an initial PATH or PS1 for all shell users of the system. is only executed for interactive

login

shells, or shells executed with the --login parameter.

- /etc/profile.d /etc/profile will execute the scripts within /etc/profile.d/*.sh It is recommended to place your configuration in a shell script within /etc/profile.d to set your own system wide environmental variables.
- /etc/bashrc System wide version ofbashrc In Fedora derived distributions, etc/bashrc also invokes /etc/profile.d/*.sh if

non-login

shell, but redirects output to /dev/null if

non-interactive.

Is only executed for

interactive

shells or if BASH ENV is set to /etc/bashrc

User Shell Configuration Files:

- ~/.bash_profile Is executed to configure your shell before the initial command prompt. Is only read by login shells.
- ~/.bashrc Is executed for interactive shells. only read by a shell that's both interactive and non-login

umask is set by order of precedence. If umask is set in multiple locations, this order of precedence will determine the system's default umask

Order of precedence:

- A file in /etc/profile.d/ ending insh This will override any other system-wide umask setting
- In the file /etc/profile
- On the pam_umask.so module in /etc/pam.d/postlogin
- In the file /etc/login.defs
- In the file /etc/default/login

Setting a secure default value for umask ensures that users make a conscious choice about their file permissions. A permissive umask value could result in directories or files with excessive permissions that can be read and/or written to by unauthorized users.

Solution

Run the following script and perform the instructions in the output:

#!/usr/bin/env bash

{ | output="" | output2="" | out=""

 $file_umask_chk() \ \{ if grep - Psiq -- '^h*umaskh + (0?[0-7][2-7]7 \ | \ u(=[rwx]\{0,3\}), g=([rx]\{0,2\}), o=)(h*\#.*)?$' \ "$l_file"; then l_out="$l_out"$

- umask is set correctly in \"\$1 file\""

- \"\$l_file\""

fi } while IFS= read -r -d 0' | _file; do file_umask_chk done < <(find /etc/profile.d/ -type f -name '*.sh' -print0) [-n "\$l_out"] && l_output="\$l_out"

l_file="/etc/profile" & amp; & amp; & file_umask_chk l_file="/etc/bashrc" & amp; & file_umask_chk l_file="/etc/bash.bashrc" & amp; & file_umask_chk l_file="/etc/pam.d/postlogin"

- \"\$I file\""

fi l_file="/etc/login.defs" & amp; & amp; file_umask_chk l_file="/etc/default/login" & amp; & amp; file_umask_chk if [-z "\$l_output2"]; then echo -e " - No files contain a UMASK that is not restrictive enough No UMASK updates required to existing files"

else echo -e "

- UMASK is not restrictive enough in the following file(s):\$I_output2
- Remediation Procedure:
- Update these files and comment out the UMASK line or update umask to be "0027" or more restrictive" fi if [-n "\$l_output"]; then echo -e "\$l_output"

else echo -e " - Configure UMASK in a file in the \"/etc/profile.d/\" directory ending in \".sh\"

Example Command (Hash to represent being run at a root prompt):

printf '%s\ ' \"umask 027\" > /etc/profile.d/50-systemwide_umask.sh "
fi }

Notes:

- This method only applies to bash and shell. If other shells are supported on the system, it is recommended that their configuration files also are checked
- If the pam_umask.so module is going to be used to set umask ensure that it's not being overridden by another setting. Refer to the PAM_UMASK(8) man page for more information

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)

CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

SS15c

SS29

NIAV2

NIAV2

PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned :

- Audit Result:
    ** FAIL **
- * Reasons for audit failure * :

- umask is incorrectly set in "/etc/profile.d/50-systemwide_umask.sh"
- umask is incorrectly set in "/etc/login.defs"
```

6.2.1.2.2 Ensure systemd-journal-remote authentication is configured

Info

Journald systemd-journal-upload supports the ability to send log events it gathers to a remote log host.

Storing log data on a remote host protects log integrity from local attacks. If an attacker gains root access on the local system, they could tamper with or remove log data that is stored on the local system.

Solution

Edit the /etc/systemd/journal-upload.conf file or a file in /etc/systemd/journal-upload.conf.d ending inconf and ensure the following lines are set in the [Upload] section per your environment:

[Upload] URL=192.168.50.42 ServerKeyFile=/etc/ssl/private/journal-upload.pem ServerCertificateFile=/etc/ssl/ca/trusted.pem TrustedCertificateFile=/etc/ssl/ca/trusted.pem

Restart the service:

systemctl restart systemd-journal-upload

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1	
800-171	3.3.2	
800-171	3.3.6	
800-53	AU-2	
800-53	AU-7	
800-53	AU-12	
800-53R5	AU-2	
800-53R5	AU-7	
800-53R5	AU-12	
CN-L3	7.1.2.3(c)	
CN-L3	8.1.4.3(a)	
CSCV7	6.2	
CSCV7	6.3	
CSCV8	8.2	
CSF	DE.CM-1	
CSF	DE.CM-3	
CSF	DE.CM-7	
CSF	PR.PT-1	
CSF	RS.AN-3	
GDPR	32.1.b	

HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-2 ITSG-33 AU-7 ITSG-33 AU-12 LEVEL 1M **NESA** M1.2.2 **NESA** M5.5.1 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e SS30 NIAV2 NIAV2 VL8 PCI-DSSV3.2.1 10.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

FAILED

Hosts

```
Non-compliant file(s):
             /etc/systemd/journal-upload.conf - regex '^[\s]*ServerCertificateFile[\s]*=[\s]*' found -
   \verb|expect '^[\s]*ServerCertificateFile[\s]*=[\s]*/etc/ssl/certs/journal-upload.pem[\s]*$' not found in the property of the pr
   the following lines:
                                22: ServerCertificateFile=/etc/ssl/certs/certs.pem
FAILED - URL
Non-compliant file(s):
                  /etc/systemd/journal-upload.conf - regex '^[\s]*URL[\s]*=[\s]*' found - expect
   20: URL=https://mfdev.aliceblueonline.com:19532
FAILED - Key
Non-compliant file(s):
                  /etc/systemd/journal-upload.conf - regex '^[\s]*ServerKeyFile[\s]*=[\s]*' found - expect
   following lines:
                                21: ServerKeyFile=/etc/ssl/certs/private.key
```

6.2.2.1 Ensure access to all logfiles has been configured

Info

Log files contain information from many services on the the local system, or in the event of a centralized log server, others systems logs as well.

In general log files are found in /var/log/ although application can be configured to store logs elsewhere. Should your application store logs in another, ensure to run the same test on that location.

It is important that log files have the correct permissions to ensure that sensitive data is protected and that only the appropriate users / groups have access to them.

Solution

Run the following script to update permissions and ownership on files in /var/log

Although the script is not destructive, ensure that the output of the audit procedure is captured in the event that the remediation causes issues.

```
#!/usr/bin/env bash
```

```
{ I_op2="" I_output2=""
```

l_uidmin="\$(awk '/^s*UID_MIN/{print \$2}' /etc/login.defs)"

file_test_fix() { l_op2=""

I fuser="root"

I_fgroup="root"

if [\$((\$l_mode & amp; \$perm_mask)) -gt 0]; then l_op2="\$l_op2

- Mode: \"\$I mode\" should be \"\$maxperm\" or more restrictive
- Removing excess permissions"

chmod "\$I_rperms" "\$I_fname"

fi if [[!"\$l_user" =~ \$l_auser]]; then l_op2="\$l_op2

- Owned by: \" $|_user$ " and should be owned by \" $|_user$ " or $|_user$ "
- Changing ownership to: \"\$l_fuser\""

chown "\$l_fuser" "\$l_fname"

fi if [[!"\$l_group" =~ \$l_agroup]]; then l_op2="\$l_op2

- Group owned by: \"\$|_group\" and should be group owned by \"\${|_agroup//|/ or }\"
- Changing group ownership to: \"\$I_fgroup\""

chgrp "\$I fgroup" "\$I fname"

fi [-n "\$l_op2"] && l_output2="\$l_output2

- File: \"\$| fname\" is:\$| op2 "

} unset a_file & amp; & a_file=() # clear and initialize array # Loop to create array with stat of files that could possibly fail one of the audits while IFS= read -r -d \$'0' l_file; do [-e "\$l_file"] & amp; & a_file+=("\$(stat -Lc '\%n^\%#a^\%U^\%u^\%G^\%g' "\$l_file")") done < <(find -L /var/log -type f (-perm /0137 - o ! -user root -o ! -group root) -print0) while IFS="^" read -r l_fname l_mode l_user l_uid l_group l_gid; do l bname="\$(basename "\$l fname")"

```
case "$I_bname" in lastlog | lastlog.* | wtmp | wtmp.* | wtmp-* | btmp | btmp.* | btmp-* | README)
perm mask='0113'
maxperm="$( printf '%o' $(( 0777 & amp; ~ $perm_mask)) )"
I_rperms="ug-x,o-wx"
I_auser="root"
l_agroup="(root|utmp)"
file_test_fix ;;
secure | auth.log | syslog | messages) perm_mask='0137'
maxperm="$( printf '%o' $(( 0777 & amp; ~ $perm_mask)) )"
I rperms="u-x,g-wx,o-rwx"
l_auser="(root|syslog)"
l_agroup="(root|adm)"
file_test_fix ;;
SSSD | sssd) perm_mask='0117'
maxperm="$( printf '%o' $(( 0777 & amp; ~ $perm_mask)) )"
I_rperms="ug-x,o-rwx"
l_auser="(root|SSSD)"
l_agroup="(root|SSSD)"
file_test_fix ;;
gdm | gdm3) perm_mask='0117'
I_rperms="ug-x,o-rwx"
maxperm="$( printf '%o' $(( 0777 & amp; ~ $perm_mask)) )"
I auser="root"
l_agroup="(root|gdm|gdm3)"
file_test_fix ;;
*.journal | *.journal~) perm_mask='0137'
maxperm="$( printf '%o' $(( 0777 & amp; ~ $perm_mask)) )"
I_rperms="u-x,g-wx,o-rwx"
I auser="root"
l_agroup="(root|systemd-journal)"
file test fix;;
*) perm_mask='0137'
maxperm="$( printf '%o' $(( 0777 & amp; ~ $perm mask)) )"
I_rperms="u-x,g-wx,o-rwx"
l_auser="(root|syslog)"
l_agroup="(root|adm)"
if [ "$l_uid" -lt "$l_uidmin" ] & & [ -z "$(awk -v grp="$l_group" -F: '$1==grp {print $4}' /etc/group)" ];
then if [[! "$l_user" =~ $l_auser]]; then l_auser="(root|syslog|$l_user)"
fi if [[!"$l_group" =~ $l_agroup]]; then l_tst=""
while I out3="" read -r I duid; do [ "$I duid" -ge "$I uidmin" ] & amp; & amp; I tst=failed done <<< "$(awk -F:
'$4=='"$| gid"' {print $3}' /etc/passwd)"
```

```
[ "$l_tst" != "failed" ] && l_agroup="(root|adm|$l_group)" fi fi file_test_fix ;; esac done <<< "$(printf '%s ' "${a_file[@]}")"
```

unset a_file # Clear array # If all files passed, then we report no changes if [-z "\$l_output2"]; then echo -e "- All files in \"/var/log/\" have appropriate permissions and ownership

- No changes required "

else # print report of changes echo -e "

\$l_output2"

fi }

Note: You may also need to change the configuration for your logging software or services for any logs that had incorrect permissions.

If there are services that log to other locations, ensure that those log files have the appropriate permissions.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1

NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.1. TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$ timeout: 7200

Hosts

```
The command script with multiple lines returned :
- Audit Results:
** Fail **
 - File: "/var/log/apt/history.log" is:
  - Mode: "0644" should be "640" or more restrictive
 - File: "/var/log/apt/eipp.log.xz" is:
  - Mode: "0644" should be "640" or more restrictive
 - File: "/var/log/nginx/error.log.7.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/error.log.15.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.16.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.19.gz" is:
 - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/error.log.13.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.1" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.3.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.17.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.7.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.23.gz" is:
  - Owned by: "nginx" and should be owned by "(root or syslog)"
 - File: "/var/log/nginx/access.log.10.gz" is:
- Owned by: "nginx" and should be owned by "(root or syslog)"
```

```
- File: "/var/log/nginx/access.log" is:
    Owned by: "nginx" and should be owned by "(root or syslog)"
- File: "/var/log/nginx/error.log.8.gz" is:
    Owned by: "nginx" and should be owned by "(root or syslog)"
- File: "/var/log/nginx/access.log.2.gz" is:
    Owned by: "nginx" and should be owned by "(root or syslog)"
- File: "/var/log/nginx/access.log.18.gz" is:
    Owned by: "nginx" and should be owned by "(root or syslog)"
- File: "/var/log/nginx/access.log.14.gz" is:
    Owned by: "nginx" and should be owned by "(root or syslog)"
- File: "/var/log/nginx/access.log.14.gz" is:
    Owned by: "nginx" and should be owned by "(root or syslog)"
```

7.1.11 Ensure world writable files and directories are secured

Info

World writable files are the least secure. Data in world-writable files can be modified and compromised by any user on the system. World writable files may also indicate an incorrectly written script or program that could potentially be the cause of a larger compromise to the system's integrity. See the chmod(2) man page for more information.

Setting the sticky bit on world writable directories prevents users from deleting or renaming files in that directory that are not owned by them.

Data in world-writable files can be modified and compromised by any user on the system. World writable files may also indicate an incorrectly written script or program that could potentially be the cause of a larger compromise to the system's integrity.

This feature prevents the ability to delete or rename files in world writable directories (such as /tmp) that are owned by another user.

Solution

- World Writable Files:
- It is recommended that write access is removed from other with the command (chmod o-w <filename>), but always consult relevant vendor documentation to avoid breaking any application dependencies on a given file.
- World Writable Directories:
- Set the sticky bit on all world writable directories with the command (chmod a+t <directory_name>)

Run the following script to:

- Remove other write permission from any world writable files
- Add the sticky bit to all world writable directories

#!/usr/bin/env bash

```
{ | smask='01000'
```

a_file=(); a_dir=() # Initialize arrays a_path=(! -path "/run/user/*" -a ! -path "/proc/*" -a ! -path "*/containerd/
" -a ! -path "/kubelet/pods/*" -a ! -path "*/kubelet/plugins/*" -a ! -path "/sys/*" -a ! -path "/snap/*") while
IFS= read -r l_mount; do while IFS= read -r -d \$'0' l_file; do if [-e "\$l_file"]; then l_mode="\$(stat -Lc '%#a'
"\$l_file")"

if [-f "\$|_file"]; then # Remove excess permissions from WW files echo -e " - File: \"\$|_file\" is mode: \"\$| mode\"

- removing write permission on \"\$l_file\" from \"other\""

chmod o-w "\$I_file"

fi if [-d "\$l_file"]; then # Add sticky bit if [! \$((\$l_mode & amp; \$l_smask)) -gt 0]; then echo -e " - Directory: \"\$l file\" is mode: \"\$l mode\" and doesn't have the sticky bit set

- Adding the sticky bit"

chmod a+t "\$1 file"

fi fi fi done < <(find "\$l_mount" -xdev ("\${a_path[@]}") (-type f -o -type d) -perm -0002 -print0 2> /dev/null) done < <(findmnt -Dkerno fstype,target | awk '(\$1 !~ /^s*(nfs|proc|smb|vfat|iso9660|efivarfs|selinuxfs)/ & & !~ /^(/run/user/|/tmp|/var/tmp)/){print \$2}') }

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

References		
800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	
CSCV7	14.6	
CSCV8	3.3	
CSF	PR.AC-4	
CSF	PR.DS-5	
CSF	PR.PT-2	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
ISO/IEC-27001	A.6.1.2	
ISO/IEC-27001	A.9.4.1	
ISO/IEC-27001	A.9.4.5	

ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: find_world_writeable_files timeout: 7200

```
The following 46 files are world writeable:
     /var/lib/docker/overlay2/3c19a95ae9bcb7dfee0f5c77eabb8721d2ad5315311906e1d05c454cdb3684f4/diff/
opt/redis-stack/share/redisinsight/api/dist/defaults/content/recommendations.json
              owner: nobody, group: 128, permissions: 0666
     /var/lib/docker/overlay 2/3 c 19 a 95 a e 9 b c b 7 d fee 0 f 5 c 77 e a b b 8 7 2 1 d 2 a d 5 3 1 5 3 1 1 9 0 6 e 1 d 0 5 c 4 5 4 c d b 3 6 8 4 f 4 / diff/discourse for the contraction of the contract
opt/redis-stack/share/redisinsight/api/dist/defaults/content/create-redis.json
              owner: nobody, group: 128, permissions: 0666
      /var/lib/docker/overlay2/3c19a95ae9bcb7dfee0f5c77eabb8721d2ad5315311906e1d05c454cdb3684f4/diff/
opt/redis-stack/share/redisinsight/api/dist/defaults/content/guide-links.json
              owner: nobody, group: 128, permissions: 0666
     /var/lib/docker/overlay2/3c19a95ae9bcb7dfee0f5c77eabb8721d2ad5315311906e1d05c454cdb3684f4/diff/
opt/redis-stack/share/redisinsight/api/dist/defaults/tutorials/vss/vectors-basic.md
               owner: nobody, group: 128, permissions: 0666
     /var/lib/docker/overlay 2/3 c 19 a 95 a e 9 b c b 7 d fee 0 f 5 c 77 e a b b 8 7 2 1 d 2 a d 5 3 1 5 3 1 1 9 0 6 e 1 d 0 5 c 4 5 4 c d b 3 6 8 4 f 4 / diff/discourse for the contraction of the contract
opt/redis-stack/share/redisinsight/api/dist/defaults/tutorials/vss/intro.md
               owner: nobody, group: 128, permissions: 0666
      /var/lib/docker/overlay2/3c19a95ae9bcb7dfee0f5c77eabb8721d2ad5315311906e1d05c454cdb3684f4/diff/
opt/redis-stack/share/redisinsight/api/dist/defaults/tutorials/vss/vectors-adv-hash.md
              owner: nobody, group: 128, permissions: 0666
     /var/lib/docker/overlay2/3c19a95ae9bcb7dfee0f5c77eabb8721d2ad5315311906e1d05c454cdb3684f4/diff/
\verb|opt/redis-stack/share/redisinsight/api/dist/defaults/tutorials/vss/learn-more.md| \\
              owner: nobody, group: 128, permissions: 0666
      opt/redis-stack/share/redisinsight/api/dist/defaults/tutorials/ds/sets.md
               owner: nobody, group: 128, permissions: 0666
     /var/lib/docker/overlay2/3c19a95ae9bcb7dfee0f5c77eabb8721d2ad5315311906e1d05c454cdb3684f4/diff/
opt/redis-stack/share/redisinsight/api/dist/defaults/tutorials/ds/lists.md
              ow [...]
```

7.1.12 Ensure no files or directories without an owner and a group exist

Info

Administrators may delete users or groups from the system and neglect to remove all files and/or directories owned by those users or groups.

A new user or group who is assigned a deleted user's user ID or group ID may then end up "owning" a deleted user or group's files, and thus have more access on the system than was intended.

Solution

Remove or set ownership and group ownership of these files and/or directories to an active user on the system as appropriate.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	
CSCV7	14.6	

CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

164.312(a)(1)

HIPAA ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 T5.4.4 T5.4.5

NESA NESA NESA T5.5.4 T5.6.1 NESA NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1

PCI-DSSV4.0

QCSC-V1

QCSC-V1

QCSC-V1

QCSC-V1

7.2.2

5.2.2

3.2

6.2

13.2

 SWIFT-CSCV1
 5.1

 TBA-FIISB
 31.1

 TBA-FIISB
 31.4.2

 TBA-FIISB
 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: find orphan files timeout: 7200

Hosts

```
32036 files are orphaned.
The results have been truncated in order to avoid long scan times.
The following 1000 files are orphaned:
    /var/lib/docker/overlay2/e7574b6842755214a2f421e00efb149bcc14139e3fa52a1b9f48910b40adfb01/diff/
var/cache/apt/archives/partial
          owner: 42, group: root, permissions: 0700
   /var/lib/docker/overlay2/2fa11e4c3f7184ab2839f1c2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/
          owner: nobody, group: 128, permissions: 0755
    /var/lib/docker/overlay2/2falle4c3f7184ab2839f1c2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/2bc2a2eb0946d82ee86adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f014e66adab96f06adab96f06adab96f06adab96f06adab96f06adab96f06adab96f06adab6f0
opt/redis-stack/share
          owner: nobody, group: 128, permissions: 0755
    /var/lib/docker/overlay2/2fa11e4c3f7184ab2839f1c2bc2a2eb0946d82ee86adab96f014e5c1e37ea4da/diff/
opt/redis-stack/share/redisinsight
          owner: nobody, group: 128, permissions: 0755
    /var/lib/docker/overlay2/72245b6909294c8dc9705a5lef49d5e636bf0df60f632810c6f99372bf7aa317/diff/
opt/redis-stack
          owner: nobody, group: 128, permissions: 0755
   /var/lib/docker/overlay2/72245b6909294c8dc9705a5lef49d5e636bf0df60f632810c6f99372bf7aa317/diff/
opt/redis-stack/share
          owner: nobody, group: 128, permissions: 0755
    /var/lib/docker/overlay2/72245b6909294c8dc9705a5lef49d5e636bf0df60f632810c6f99372bf7aa317/diff/
opt/redis-stack/share/APACHE_LICENSE
          owner: nobody, group: 128, permissions: 0644
    /var/lib/docker/overlay2/72245b6909294c8dc9705a51ef49d5e636bf0df60f632810c6f99372bf7aa317/diff/
opt/redis-stack/share/RSALv2.txt
          owner: nobody, group: 128, permissions: 0644
    /var/lib/docker/overlay2/72245b6909294c8dc9705a5lef49d5e636bf0df60f632810c6f99372bf7aa317/diff/
opt/redis-stack/share/SSPLv1.txt
          owner: nobody, group: 128, permissions: 0644
    /var/lib/docker/overlay2/72245b6909294c8dc9705a5lef49d5e636bf0df60f632810c6f99372bf7aa317/diff/
opt/redis-stack/lib
          owner: nobody, group: 128, permissions: 0755
```

/var/lib/docker/overlay2/72245b6909294c8dc9705a5lef49d5e636bf0df60f632810c6f99372bf7aa317/diff/opt/redis-stack/lib/rejson.so owner: nobody, group: 128, permissions: 07 [...]

1.1.1.1 Ensure cramfs kernel module is not available

Info

The cramfs filesystem type is a compressed read-only Linux filesystem embedded in small footprint systems. A cramfs image can be used without having to first decompress the image.

Removing support for unneeded filesystem types reduces the local attack surface of the system. If this filesystem type is not needed, disable it.

Solution

Run the following script to disable the cramfs module:

- -IF- the module is available in the running kernel:
- Create a file ending inconf with install cramfs /bin/false in the /etc/modprobe.d/ directory
- Create a file ending inconf with blacklist cramfs in the /etc/modprobe.d/ directory
- Unload cramfs from the kernel
- -IF- available in ANY installed kernel:
- Create a file ending inconf with blacklist cramfs in the /etc/modprobe.d/ directory
- -IF- the kernel module is not available on the system or pre-compiled into the kernel:
- No remediation is necessary

#!/usr/bin/env bash

{ l_mname="cramfs" # set module name l_mtype="fs" # set module type l_mpath="/lib/modules/**/kernel/\$l_mtype"

l_mpname="\$(tr '-' '_' <<< "\$l_mname")"</pre>

l_mndir="\$(tr '-' '/' <<< "\$l_mname")"</pre>

module_loadable_fix() { # If the module is currently loadable, add "install {MODULE_NAME} /bin/false" to a file in "/etc/modprobe.d"

I loadable="\$(modprobe -n -v "\$1 mname")"

["\$(wc -l <<< "\$l_loadable")" -gt "1"] && l_loadable="\$(grep -P -- "(^h*install|b\$l_mname)b" <<< "\$l loadable")"

if! grep -Pq -- '^h*install /bin/(true | false)' <<< "\$|_loadable"; then echo -e "

- setting module: \"\$I_mname\" to be not loadable"

echo -e "install $l_m = /bin/false" >> /etc/modprobe.d/" l_mpname".conf fi \ module_loaded_fix() { # If the module is currently loaded, unload the module if lsmod | grep "l_mname" > /dev/null 2>&1; then echo -e "$

- unloading module \"\$1 mname\""

modprobe -r "\$1 mname"

fi } module_deny_fix() { # If the module isn't deny listed, denylist the module if ! modprobe --showconfig | grep -Pq -- "^h*blacklisth+\$| mpnameb"; then echo -e "

- deny listing \"\$l_mname\""

echo -e "blacklist \$l_mname" >> /etc/modprobe.d/"\$l_mpname".conf fi } # Check if the module exists on the system for l_mdir in \$l_mpath; do if [-d "\$l_mdir/\$l_mndir"] & amp;& amp; [-n "\$(ls -A \$l_mdir/\$l_mndir)"]; then echo -e "

- module: \"\$l_mname\" exists in \"\$l_mdir\"
- checking if disabled..."

module_deny_fix if ["\$l_mdir" = "/lib/modules/\$(uname -r)/kernel/\$l_mtype"]; then module_loadable_fix module loaded fix fi else echo -e "

- module: \"\$l_mname\" doesn't exist in \"\$l_mdir\"

11

fi done echo -e "

- remediation of module: \"\$I_mname\" complete "

}

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

-- INFO --
- module: "cramfs" exists in:
- "/lib/modules/6.8.0-51-generic/kernel/fs"
- "/lib/modules/6.8.0-52-generic/kernel/fs"

- Audit Result:
** PASS **

- module: "cramfs" is deny listed in: "/etc/modprobe.d/cramfs.conf"
- module: "cramfs" is not loadable: "install /bin/false "
- module: "cramfs" is not loaded
```

1.1.1.2 Ensure freevxfs kernel module is not available

Info

The freevxfs filesystem type is a free version of the Veritas type filesystem. This is the primary filesystem type for HP-UX operating systems.

Removing support for unneeded filesystem types reduces the local attack surface of the system. If this filesystem type is not needed, disable it.

Solution

Run the following script to disable the freevxfs module:

- -IF- the module is available in the running kernel:
- Create a file ending inconf with install freevxfs /bin/false in the /etc/modprobe.d/ directory
- Create a file ending inconf with blacklist freevxfs in the /etc/modprobe.d/ directory
- Unload freevxfs from the kernel
- -IF- available in ANY installed kernel:
- Create a file ending inconf with blacklist freevxfs in the /etc/modprobe.d/ directory
- -IF- the kernel module is not available on the system or pre-compiled into the kernel:
- No remediation is necessary

#!/usr/bin/env bash

{ l_mname="freevxfs" # set module name l_mtype="fs" # set module type l_mpath="/lib/modules/**/ kernel/\$l_mtype"

l_mpname="\$(tr '-' '_' <<< "\$l_mname")"</pre>

l_mndir="\$(tr '-' '/' <<< "\$l_mname")"</pre>

module_loadable_fix() { # If the module is currently loadable, add "install {MODULE_NAME} /bin/false" to a file in "/etc/modprobe.d"

I loadable="\$(modprobe -n -v "\$1 mname")"

["\$(wc -l <<< "\$l_loadable")" -gt "1"] && l_loadable="\$(grep -P -- "(^h*install|b\$l_mname)b" <<< "\$l_loadable")"

if! grep -Pq -- '^h*install /bin/(true | false)' <<< "\$|_loadable"; then echo -e "

- setting module: \"\$I_mname\" to be not loadable"

echo -e "install $l_m = /bin/false" >> /etc/modprobe.d/" l_mpname".conf fi \ module_loaded_fix() { # If the module is currently loaded, unload the module if lsmod | grep "l_mname" > /dev/null 2>&1; then echo -e "$

- unloading module \"\$1 mname\""

modprobe -r "\$1 mname"

fi } module_deny_fix() { # If the module isn't deny listed, denylist the module if ! modprobe --showconfig | grep -Pq -- "^h*blacklisth+\$| mpnameb"; then echo -e "

- deny listing \"\$l_mname\""

echo -e "blacklist \$l_mname" >> /etc/modprobe.d/"\$l_mpname".conf fi } # Check if the module exists on the system for l_mdir in \$l_mpath; do if [-d "\$l_mdir/\$l_mndir"] & amp;& amp; [-n "\$(ls -A \$l_mdir/\$l_mndir)"]; then echo -e "

- module: \"\$l_mname\" exists in \"\$l_mdir\"
- checking if disabled..."

module_deny_fix if ["\$l_mdir" = "/lib/modules/\$(uname -r)/kernel/\$l_mtype"]; then module_loadable_fix module loaded fix fi else echo -e "

- module: \"\$l_mname\" doesn't exist in \"\$l_mdir\"

11

fi done echo -e "

- remediation of module: \"\$l_mname\" complete "

}

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

-- INFO --
- module: "freevxfs" exists in:
- "/lib/modules/6.8.0-51-generic/kernel/fs"
- "/lib/modules/6.8.0-52-generic/kernel/fs"

- Audit Result:
** PASS **

- module: "freevxfs" is deny listed in: "/etc/modprobe.d/freevxfs.conf"
- module: "freevxfs" is not loadable: "install /bin/false "
- module: "freevxfs" is not loaded
```

1.1.1.3 Ensure hfs kernel module is not available

Info

The hfs filesystem type is a hierarchical filesystem that allows you to mount Mac OS filesystems.

Removing support for unneeded filesystem types reduces the local attack surface of the system. If this filesystem type is not needed, disable it.

Solution

Run the following script to disable the hfs module:

- -IF- the module is available in the running kernel:
- Create a file ending inconf with install hfs /bin/false in the /etc/modprobe.d/ directory
- Create a file ending inconf with blacklist hfs in the /etc/modprobe.d/ directory
- Unload hfs from the kernel
- -IF- available in ANY installed kernel:
- Create a file ending inconf with blacklist hfs in the /etc/modprobe.d/ directory
- -IF- the kernel module is not available on the system or pre-compiled into the kernel:
- No remediation is necessary

#!/usr/bin/env bash

{ l_mname="hfs" # set module name l_mtype="fs" # set module type l_mpath="/lib/modules/**/kernel/\$l_mtype"

l_mpname="\$(tr '-' '_' <<< "\$l_mname")"</pre>

l mndir="\$(tr '-' '/' <<< "\$1 mname")"</pre>

module_loadable_fix() { # If the module is currently loadable, add "install {MODULE_NAME} /bin/false" to a file in "/etc/modprobe.d"

I loadable="\$(modprobe -n -v "\$1 mname")"

[" $(wc - l <<< "\\l_loadable")" -gt "1"] && l_loadable="<math>(grep - P -- "(^h*install | b\\l_mname)b" <<< "\\l_loadable")"$

if! grep -Pq -- '^h*install /bin/(true|false)' <<< "\$l_loadable"; then echo -e "

- setting module: \"\$I_mname\" to be not loadable"

echo -e "install $l_m = /bin/false" >> /etc/modprobe.d/" l_mpname".conf fi \ module_loaded_fix() { # If the module is currently loaded, unload the module if lsmod | grep "l_mname" > /dev/null 2>&1; then echo -e "$

- unloading module \"\$I_mname\""

modprobe -r "\$1 mname"

- fi } module_deny_fix() { # If the module isn't deny listed, denylist the module if ! modprobe --showconfig | grep -Pq -- h *blacklisth+\$|_mpnameb"; then echo -e "
- deny listing \"\$1 mname\""

echo -e "blacklist $l_m = > /etc/modprobe.d/"| l_mpname".conf fi \ # Check if the module exists on the system for l_mdir in <math>l_m = | l_m | l_m$

- module: \"\$l_mname\" exists in \"\$l_mdir\"
- checking if disabled..."

module_deny_fix if ["\$l_mdir" = "/lib/modules/\$(uname -r)/kernel/\$l_mtype"]; then module_loadable_fix module_loaded_fix fi else echo -e "

- module: \"\$l_mname\" doesn't exist in \"\$l_mdir\"

1

fi done echo -e "

- remediation of module: \"\$l_mname\" complete "

}

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

-- INFO --
- module: "hfs" exists in:
- "/lib/modules/6.8.0-51-generic/kernel/fs"
- "/lib/modules/6.8.0-52-generic/kernel/fs"

- Audit Result:
** PASS **

- module: "hfs" is deny listed in: "/etc/modprobe.d/hfs.conf"
- module: "hfs" is not loadable: "install /bin/false "
- module: "hfs" is not loaded
```

1.1.1.4 Ensure hfsplus kernel module is not available

Info

The hfsplus filesystem type is a hierarchical filesystem designed to replace hfs that allows you to mount Mac OS filesystems.

Removing support for unneeded filesystem types reduces the local attack surface of the system. If this filesystem type is not needed, disable it.

Solution

Run the following script to disable the hfsplus module:

- -IF- the module is available in the running kernel:
- Create a file ending inconf with install hfsplus /bin/false in the /etc/modprobe.d/ directory
- Create a file ending inconf with blacklist hfsplus in the /etc/modprobe.d/ directory
- Unload hfsplus from the kernel
- -IF- available in ANY installed kernel:
- Create a file ending inconf with blacklist hfsplus in the /etc/modprobe.d/ directory
- -IF- the kernel module is not available on the system or pre-compiled into the kernel:
- No remediation is necessary

#!/usr/bin/env bash

{ l_mname="hfsplus" # set module name l_mtype="fs" # set module type l_mpath="/lib/modules/**/kernel/\$l_mtype"

l_mpname="\$(tr '-' '_' <<< "\$l_mname")"</pre>

l_mndir="\$(tr '-' '/' <<< "\$l_mname")"</pre>

module_loadable_fix() { # If the module is currently loadable, add "install {MODULE_NAME} /bin/false" to a file in "/etc/modprobe.d"

I loadable="\$(modprobe -n -v "\$1 mname")"

["\$(wc -l <<< "\$l_loadable")" -gt "1"] && l_loadable="\$(grep -P -- "(^h*install|b\$l_mname)b" <<< "\$l_loadable")"

if! grep -Pq -- '^h*install /bin/(true | false)' <<< "\$|_loadable"; then echo -e "

- setting module: \"\$I_mname\" to be not loadable"

echo -e "install $l_m = /bin/false" >> /etc/modprobe.d/" l_mpname".conf fi \ module_loaded_fix() { # If the module is currently loaded, unload the module if lsmod | grep "l_mname" > /dev/null 2>&1; then echo -e "$

- unloading module \"\$1 mname\""

modprobe -r "\$1 mname"

fi } module_deny_fix() { # If the module isn't deny listed, denylist the module if ! modprobe --showconfig | grep -Pq -- "^h*blacklisth+\$| mpnameb"; then echo -e "

- deny listing \"\$l_mname\""

echo -e "blacklist \$l_mname" >> /etc/modprobe.d/"\$l_mpname".conf fi } # Check if the module exists on the system for l_mdir in \$l_mpath; do if [-d "\$l_mdir/\$l_mndir"] & amp;& amp; [-n "\$(ls -A \$l_mdir/\$l_mndir)"]; then echo -e "

- module: \"\$l_mname\" exists in \"\$l_mdir\"
- checking if disabled..."

module_deny_fix if ["\$l_mdir" = "/lib/modules/\$(uname -r)/kernel/\$l_mtype"]; then module_loadable_fix module loaded fix fi else echo -e "

- module: \"\$I_mname\" doesn't exist in \"\$I_mdir\"

11

fi done echo -e "

- remediation of module: \"\$l_mname\" complete "

}

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

-- INFO --
- module: "hfsplus" exists in:
- "/lib/modules/6.8.0-51-generic/kernel/fs"
- "/lib/modules/6.8.0-52-generic/kernel/fs"

- Audit Result:
** PASS **

- module: "hfsplus" is deny listed in: "/etc/modprobe.d/hfsplus.conf"
- module: "hfsplus" is not loadable: "install /bin/false "
- module: "hfsplus" is not loaded
```

1.1.1.5 Ensure jffs2 kernel module is not available

Info

The jffs2 (journaling flash filesystem 2) filesystem type is a log-structured filesystem used in flash memory devices.

Removing support for unneeded filesystem types reduces the local attack surface of the system. If this filesystem type is not needed, disable it.

Solution

Run the following script to disable the jffs2 module:

- -IF- the module is available in the running kernel:
- Create a file ending inconf with install jffs2 /bin/false in the /etc/modprobe.d/ directory
- Create a file ending inconf with blacklist jffs2 in the /etc/modprobe.d/ directory
- Unload jffs2 from the kernel
- -IF- available in ANY installed kernel:
- Create a file ending inconf with blacklist jffs2 in the /etc/modprobe.d/ directory
- -IF- the kernel module is not available on the system or pre-compiled into the kernel:
- No remediation is necessary

#!/usr/bin/env bash

{ l_mname="jffs2" # set module name l_mtype="fs" # set module type l_mpath="/lib/modules/**/kernel/\$l_mtype"

l_mpname="\$(tr '-' '_' <<< "\$l_mname")"</pre>

l_mndir="\$(tr '-' '/' <<< "\$l_mname")"</pre>

module_loadable_fix() { # If the module is currently loadable, add "install {MODULE_NAME} /bin/false" to a file in "/etc/modprobe.d"

I loadable="\$(modprobe -n -v "\$1 mname")"

["\$(wc -l <<< "\$l_loadable")" -gt "1"] && l_loadable="\$(grep -P -- "(^h*install|b\$l_mname)b" <<< "\$l_loadable")"

if! grep -Pq -- '^h*install /bin/(true | false)' <<< "\$|_loadable"; then echo -e "

- setting module: \"\$I_mname\" to be not loadable"

echo -e "install $l_m = /bin/false" >> /etc/modprobe.d/" l_mpname".conf fi \ module_loaded_fix() { # If the module is currently loaded, unload the module if lsmod | grep "l_mname" > /dev/null 2>&1; then echo -e "$

- unloading module \"\$1 mname\""

modprobe -r "\$1 mname"

fi } module_deny_fix() { # If the module isn't deny listed, denylist the module if ! modprobe --showconfig | grep -Pq -- h *blacklisth+\$l_mpnameb"; then echo -e "

- deny listing \"\$l_mname\""

echo -e "blacklist \$l_mname" >> /etc/modprobe.d/"\$l_mpname".conf fi } # Check if the module exists on the system for l_mdir in \$l_mpath; do if [-d "\$l_mdir/\$l_mndir"] & amp;& amp; [-n "\$(ls -A \$l_mdir/\$l_mndir)"]; then echo -e "

- module: \"\$l_mname\" exists in \"\$l_mdir\"
- checking if disabled..."

module_deny_fix if ["\$l_mdir" = "/lib/modules/\$(uname -r)/kernel/\$l_mtype"]; then module_loadable_fix module loaded fix fi else echo -e "

- module: \"\$l_mname\" doesn't exist in \"\$l_mdir\"

11

fi done echo -e "

- remediation of module: \"\$I_mname\" complete "

}

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

-- INFO --
- module: "jffs2" exists in:
- "/lib/modules/6.8.0-51-generic/kernel/fs"
- "/lib/modules/6.8.0-52-generic/kernel/fs"

- Audit Result:
    ** PASS **

- module: "jffs2" is deny listed in: "/etc/modprobe.d/jffs2.conf"
- module: "jffs2" is not loadable: "install /bin/false "
- module: "jffs2" is not loaded
```

1.1.1.8 Ensure usb-storage kernel module is not available

Info

USB storage provides a means to transfer and store files ensuring persistence and availability of the files independent of network connection status. Its popularity and utility has led to USB-based malware being a simple and common means for network infiltration and a first step to establishing a persistent threat within a networked environment.

Restricting USB access on the system will decrease the physical attack surface for a device and diminish the possible vectors to introduce malware.

Solution

Run the following script to disable the usb-storage module:

- -IF- the module is available in the running kernel:
- Create a file ending inconf with install usb-storage /bin/false in the /etc/modprobe.d/ directory
- Create a file ending inconf with blacklist usb-storage in the /etc/modprobe.d/ directory
- Unload usb-storage from the kernel
- -IF- available in ANY installed kernel:
- Create a file ending inconf with blacklist usb-storage in the /etc/modprobe.d/ directory
- -IF- the kernel module is not available on the system or pre-compiled into the kernel:
- No remediation is necessary

#!/usr/bin/env bash

{ l_mname="usb-storage" # set module name l_mtype="drivers" # set module type l_mpath="/lib/modules/ **/kernel/\$l_mtype"

```
l_mpname="$(tr '-' '_' <<< "$l_mname")"</pre>
```

```
l_mndir="$(tr '-' '/' <<< "$l_mname")"</pre>
```

 $module_loadable_fix() \ \{ \ \# \ If \ the \ module \ is \ currently \ loadable, \ add \ "install \ \{MODULE_NAME\} \ /bin/false" \ to \ a \ file \ in \ "/etc/modprobe.d"$

I loadable="\$(modprobe -n -v "\$1 mname")"

["\$(wc -l <<< "\$l_loadable")" -gt "1"] && l_loadable="\$(grep -P -- "(^h*install|b\$l_mname)b" <<< "\$l loadable")"

if! grep -Pq -- '^h*install /bin/(true | false)' <<< "\$|_loadable"; then echo -e "

- setting module: \"\$l_mname\" to be not loadable"

echo -e "install $l_m = \frac{\sin \frac{1}{2} mname / \sin \frac{1}{2}}{\sinh \frac{1}{2}}$ when the module is currently loaded, unload the module if $l_m = \frac{1}{2} \frac{1}{2}$ when the module is currently loaded, unload the module if $l_m = \frac{1}{2} \frac{1}{2}$ when the module is currently loaded, unload the module if $l_m = \frac{1}{2} \frac{1}{2} \frac{1}{2}$ when the module is currently loaded, unload the module if $l_m = \frac{1}{2} \frac{1}{2} \frac{1}{2}$ when the module is currently loaded, unload the module if $l_m = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ when the module is currently loaded, unload the module if $l_m = \frac{1}{2} \frac{1}{2$

- unloading module \"\$I_mname\""

modprobe -r "\$I_mname"

fi } module_deny_fix() { # If the module isn't deny listed, denylist the module if ! modprobe --showconfig | grep -Pq -- "^h*blacklisth+\$|_mpnameb"; then echo -e "

- deny listing \"\$1 mname\""

echo -e "blacklist \$l_mname" >> /etc/modprobe.d/"\$l_mpname".conf fi } # Check if the module exists on the system for l_mdir in \$l_mpath; do if [-d "\$l_mdir/\$l_mndir"] && [-n "\$(ls -A \$l_mdir/\$l_mndir)"]; then echo -e "

- module: \"\$l_mname\" exists in \"\$l_mdir\"
- checking if disabled..."

module_deny_fix if ["\$l_mdir" = "/lib/modules/\$(uname -r)/kernel/\$l_mtype"]; then module_loadable_fix module loaded fix fi else echo -e "

- module: \"\$I_mname\" doesn't exist in \"\$I_mdir\"

11

fi done echo -e "

- remediation of module: \"\$l_mname\" complete "

}

Impact:

Disabling the usb-storage module will disable any usage of USB storage devices.

If requirements and local site policy allow the use of such devices, other solutions should be configured accordingly instead. One example of a commonly used solution is USBGuard

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.8.7
800-53	MP-7
800-53R5	MP-7
CN-L3	8.5.4.1(c)
CSCV7	13.7
CSCV8	10.3
CSF	PR.PT-2
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.8.3.1
ISO/IEC-27001	A.8.3.3
LEVEL	1A
NESA	T1.4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

-- INFO --
- module: "usb-storage" exists in:
- "/lib/modules/6.8.0-51-generic/kernel/drivers"
- "/lib/modules/6.8.0-52-generic/kernel/drivers"

- Audit Result:
** PASS **

- module: "usb-storage" is deny listed in: "/etc/modprobe.d/usb-storage.conf"
- module: "usb-storage" is not loadable: "install /bin/false "
- module: "usb-storage" is not loaded
```

1.1.2.1.1 Ensure /tmp is a separate partition

Info

The /tmp directory is a world-writable directory used for temporary storage by all users and some applications.

- IF - an entry for /tmp exists in /etc/fstab it will take precedence over entries in systemd default unit file.

Note: In an environment where the main system is diskless and connected to iSCSI, entries in /etc/fstab may not take precedence.

/tmp can be configured to use tmpfs

tmpfs puts everything into the kernel internal caches and grows and shrinks to accommodate the files it contains and is able to swap unneeded pages out to swap space. It has maximum size limits which can be adjusted on the fly via mount -o remount

Since tmpfs lives completely in the page cache and on swap, all tmpfs pages will be shown as "Shmem" in /proc/meminfo and "Shared" in free Notice that these counters also include shared memory. The most reliable way to get the count is using df and du

tmpfs has three mount options for sizing:

- size : The limit of allocated bytes for this tmpfs instance. The default is half of your physical RAM without swap. If you oversize your tmpfs instances the machine will deadlock since the OOM handler will not be able to free that memory.
- nr blocks: The same as size, but in blocks of PAGE SIZE.
- nr_inodes: The maximum number of inodes for this instance. The default is half of the number of your physical RAM pages, or (on a machine with highmem) the number of lowmem RAM pages, whichever is the lower.

These parameters accept a suffix k, m or g and can be changed on remount. The size parameter also accepts a suffix % to limit this tmpfs instance to that percentage of your physical RAM. The default, when neither size nor nr blocks is specified, is size=50%

Making /tmp its own file system allows an administrator to set additional mount options such as the noexec option on the mount, making /tmp useless for an attacker to install executable code. It would also prevent an attacker from establishing a hard link to a system setuid program and wait for it to be updated. Once the program was updated, the hard link would be broken, and the attacker would have his own copy of the program. If the program happened to have a security vulnerability, the attacker could continue to exploit the known flaw.

This can be accomplished by either mounting tmpfs to /tmp or creating a separate partition for /tmp

Solution

First ensure that systemd is correctly configured to ensure that /tmp will be mounted at boot time.

systemctl unmask tmp.mount

For specific configuration requirements of the /tmp mount for your environment, modify /etc/fstab

Example of using tmpfs with specific mount options:

tmpfs/tmptmpfs defaults,rw,nosuid,nodev,noexec,relatime,size=2G 0 0

Note: the size=2G is an example of setting a specific size for tmpfs

Example of using a volume or disk with specific mount options. The source location of the volume or disk will vary depending on your environment:

<device> /tmp <fstype> defaults,nodev,nosuid,noexec 0 0

Impact:

By design files saved to /tmp should have no expectation of surviving a reboot of the system. tmpfs is ram based and all files stored to tmpfs will be lost when the system is rebooted.

If files need to be persistent through a reboot, they should be saved to /var/tmp not /tmp

Since the /tmp directory is intended to be world-writable, there is a risk of resource exhaustion if it is not bound to tmpfs or a separate partition.

Running out of /tmp space is a problem regardless of what kind of filesystem lies under it, but in a configuration where /tmp is not a separate file system it will essentially have the whole disk available, as the default installation only creates a single / partition. On the other hand, a RAM-based /tmp (as with tmpfs) will almost certainly be much smaller, which can lead to applications filling up the filesystem much more easily. Another alternative is to create a dedicated partition for /tmp from a separate volume or disk. One of the downsides of a disk-based dedicated partition is that it will be slower than tmpfs which is RAM-based.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2

SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/findmnt -nk /tmp expect: $^{\s]*/tmp[\s]+$

Hosts

192.168.40.33

```
The command '/bin/findmnt -nk /tmp' returned :
```

/tmp tmpfs tmpfs rw,nosuid,nodev,noexec,relatime,size=4194304k,inode64

1.1.2.1.2 Ensure nodev option set on /tmp partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /tmp filesystem is not intended to support devices, set this option to ensure that users cannot create a block or character special devices in /tmp

Solution

- IF - a separate partition exists for /tmp

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /tmp partition.

Example:

<device> /tmp <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /tmp with the configured options:

mount -o remount /tmp

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/tmp[\s]+ required: NO

Hosts

```
Compliant file(s):
    /proc/self/mountinfo - regex '[\s]+/tmp[\s]+' found - expect 'nodev' found in the following lines:
    27: 50 30 0:36 / /tmp rw,nosuid,nodev,noexec,relatime shared:27 - tmpfs tmpfs rw,size=4194304k,inode64
```

1.1.2.1.3 Ensure nosuid option set on /tmp partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Since the /tmp filesystem is only intended for temporary file storage, set this option to ensure that users cannot create setuid files in /tmp

Solution

- IF - a separate partition exists for /tmp

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /tmp partition.

Example:

<device> /tmp <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /tmp with the configured options:

mount -o remount /tmp

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA

164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/tmp[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.1.4 Ensure noexec option set on /tmp partition

Info

The noexec mount option specifies that the filesystem cannot contain executable binaries.

Since the /tmp filesystem is only intended for temporary file storage, set this option to ensure that users cannot run executable binaries from /tmp

Solution

- IF - a separate partition exists for /tmp

Edit the /etc/fstab file and add noexec to the fourth field (mounting options) for the /tmp partition.

Example:

<device> /tmp <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /tmp with the configured options:

mount -o remount /tmp

Impact:

Setting the noexec option on /tmp may prevent installation and/or updating of some 3rd party software.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)

CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

SS15c

NIAV2

NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: noexec file: /proc/self/mountinfo regex: [\s]+/tmp[\s]+ required: NO

Hosts

192.168.40.33

```
Compliant file(s):
    /proc/self/mountinfo - regex '[\s]+/tmp[\s]+' found - expect 'noexec' found in the following lines:
    27: 50 30 0:36 / /tmp rw,nosuid,nodev,noexec,relatime shared:27 - tmpfs tmpfs rw,size=4194304k,inode64
```

1.1.2.2.1 Ensure /dev/shm is a separate partition

Info

The /dev/shm directory is a world-writable directory that can function as shared memory that facilitates inter process communication (IPC).

Making /dev/shm its own file system allows an administrator to set additional mount options such as the noexec option on the mount, making /dev/shm useless for an attacker to install executable code. It would also prevent an attacker from establishing a hard link to a system setuid program and wait for it to be updated. Once the program was updated, the hard link would be broken and the attacker would have his own copy of the program. If the program happened to have a security vulnerability, the attacker could continue to exploit the known flaw.

This can be accomplished by mounting tmpfs to /dev/shm

Solution

For specific configuration requirements of the /dev/shm mount for your environment, modify /etc/fstab

Example:

tmpfs/dev/shmtmpfs defaults,rw,nosuid,nodev,noexec,relatime,size=2G 0 0

Impact:

Since the /dev/shm directory is intended to be world-writable, there is a risk of resource exhaustion if it is not bound to a separate partition.

/dev/shm utilizing tmpfs can be resized using the size={size} parameter in the relevant entry in /etc/fstab

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: [\s]+/dev/shm[\s]+ file: /proc/self/mountinfo regex: [\s]+/dev/shm[\s]+ required: NO

Hosts

192.168.40.33

```
Compliant file(s):
    /proc/self/mountinfo - regex '[\s]+/dev/shm[\s]+' found - expect '[\s]+/dev/shm[\s]+' found in the following lines:
    8: 32 26 0:27 / /dev/shm rw,nosuid,nodev,noexec,relatime shared:4 - tmpfs tmpfs rw,inode64
```

1.1.2.2.2 Ensure nodev option set on /dev/shm partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /dev/shm filesystem is not intended to support devices, set this option to ensure that users cannot attempt to create special devices in /dev/shm partitions.

Solution

- IF - a separate partition exists for /dev/shm

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /dev/shm partition. See the fstab(5) manual page for more information.

Example:

tmpfs /dev/shm tmpfs defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /dev/shm with the configured options:

mount -o remount /dev/shm

Note: It is recommended to use tmpfs as the device/filesystem type as /dev/shm is used as shared memory space by applications.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)

CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

SS15c

NIAV2

SS29
7.1.2
7.2.1
7.2.2
3.2
5.2.2
6.2
13.2
5.1
31.1
31.4.2
31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/dev/shm[\s]+ required: NO

Hosts

192.168.40.33

```
Compliant file(s):
    /proc/self/mountinfo - regex '[\s]+/dev/shm[\s]+' found - expect 'nodev' found in the following lines:
    8: 32 26 0:27 / /dev/shm rw,nosuid,nodev,noexec,relatime shared:4 - tmpfs tmpfs rw,inode64
```

1.1.2.2.3 Ensure nosuid option set on /dev/shm partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Setting this option on a file system prevents users from introducing privileged programs onto the system and allowing non-root users to execute them.

Solution

- IF - a separate partition exists for /dev/shm

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /dev/shm partition. See the fstab(5) manual page for more information.

Example:

tmpfs /dev/shm tmpfs defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /dev/shm with the configured options:

mount -o remount /dev/shm

Note: It is recommended to use tmpfs as the device/filesystem type as /dev/shm is used as shared memory space by applications.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)

CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

SS15c

NIAV2

SS29
7.1.2
7.2.1
7.2.2
3.2
5.2.2
6.2
13.2
5.1
31.1
31.4.2
31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/dev/shm[\s]+ required: NO

Hosts

192.168.40.33

```
Compliant file(s):
    /proc/self/mountinfo - regex '[\s]+/dev/shm[\s]+' found - expect 'nosuid' found in the following lines:
    8: 32 26 0:27 / /dev/shm rw,nosuid,nodev,noexec,relatime shared:4 - tmpfs tmpfs rw,inode64
```

1.1.2.2.4 Ensure noexec option set on /dev/shm partition

Info

The noexec mount option specifies that the filesystem cannot contain executable binaries.

Setting this option on a file system prevents users from executing programs from shared memory. This deters users from introducing potentially malicious software on the system.

Solution

- IF - a separate partition exists for /dev/shm

Edit the /etc/fstab file and add noexec to the fourth field (mounting options) for the /dev/shm partition.

Example:

tmpfs /dev/shm tmpfs defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /dev/shm with the configured options:

mount -o remount /dev/shm

Note: It is recommended to use tmpfs as the device/filesystem type as /dev/shm is used as shared memory space by applications.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	

CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

SS15c

NIAV2

SS29
7.1.2
7.2.1
7.2.2
3.2
5.2.2
6.2
13.2
5.1
31.1
31.4.2
31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: noexec file: /proc/self/mountinfo regex: [\s]+/dev/shm[\s]+ required: NO

Hosts

192.168.40.33

```
Compliant file(s):
    /proc/self/mountinfo - regex '[\s]+/dev/shm[\s]+' found - expect 'noexec' found in the following lines:
    8: 32 26 0:27 / /dev/shm rw,nosuid,nodev,noexec,relatime shared:4 - tmpfs tmpfs rw,inode64
```

1.1.2.3.2 Ensure nodev option set on /home partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /home filesystem is not intended to support devices, set this option to ensure that users cannot create a block or character special devices in /home

Solution

- IF - a separate partition exists for /home

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /home partition.

Example:

<device> /home <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /home with the configured options:

mount -o remount /home

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/home[\s]+ required: NO

Hosts

192.168.40.33

No matching files were found

1.1.2.3.3 Ensure nosuid option set on /home partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Since the /home filesystem is only intended for user file storage, set this option to ensure that users cannot create setuid files in /home

Solution

- IF - a separate partition exists for /home

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /home partition.

Example:

<device> /home <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /home with the configured options:

mount -o remount /home

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 **NESA** T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

1.1.2.3.3 Ensure nosuid option set on /home partition

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/home[\s]+ required: NO

Hosts

192.168.40.33

No matching files were found

1.1.2.4.2 Ensure nodev option set on /var partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /var filesystem is not intended to support devices, set this option to ensure that users cannot create a block or character special devices in /var

Solution

- IF - a separate partition exists for /var

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /var partition.

Example:

<device> /var <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var with the configured options:

mount -o remount /var

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 **NESA** T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c

SS15c

SS29

7.1.2

7.2.1

NIAV2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/var[\s]+ required: NO

Hosts

192.168.40.33

No matching files were found

1.1.2.4.3 Ensure nosuid option set on /var partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Since the /var filesystem is only intended for variable files such as logs, set this option to ensure that users cannot create setuid files in /var

Solution

- IF - a separate partition exists for /var

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /var partition.

Example:

<device> /var <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var with the configured options:

mount -o remount /var

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29

7.1.2

7.2.1

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/var[\s]+ required: NO

Hosts

192.168.40.33

No matching files were found

1.1.2.5.2 Ensure nodev option set on /var/tmp partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /var/tmp filesystem is not intended to support devices, set this option to ensure that users cannot create a block or character special devices in /var/tmp

Solution

- IF - a separate partition exists for /var/tmp

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /var/tmp partition.

Example:

<device> /var/tmp <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/tmp with the configured options:

mount -o remount /var/tmp

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA

164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c

NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/var/tmp[\s]+ required: NO

Hosts

192.168.40.33

No matching files were found

1.1.2.5.3 Ensure nosuid option set on /var/tmp partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Since the /var/tmp filesystem is only intended for temporary file storage, set this option to ensure that users cannot create setuid files in /var/tmp

Solution

- IF - a separate partition exists for /var/tmp

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /var/tmp partition.

Example:

<device> /var/tmp <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/tmp with the configured options:

mount -o remount /var/tmp

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29

7.1.2

7.2.1

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/var/tmp[\s]+ required: NO

Hosts

192.168.40.33

No matching files were found

1.1.2.5.4 Ensure noexec option set on /var/tmp partition

Info

The noexec mount option specifies that the filesystem cannot contain executable binaries.

Since the /var/tmp filesystem is only intended for temporary file storage, set this option to ensure that users cannot run executable binaries from /var/tmp

Solution

- IF - a separate partition exists for /var/tmp

Edit the /etc/fstab file and add noexec to the fourth field (mounting options) for the /var/tmp partition.

Example:

<device> /var/tmp <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/tmp with the configured options:

mount -o remount /var/tmp

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c

SS15c

SS29

7.1.2

7.2.1

NIAV2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: noexec file: /proc/self/mountinfo regex: [\s]+/var/tmp[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.6.2 Ensure nodev option set on /var/log partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /var/log filesystem is not intended to support devices, set this option to ensure that users cannot create a block or character special devices in /var/log

Solution

- IF - a separate partition exists for /var/log

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /var/log partition.

Example:

<device> /var/log <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/log with the configured options:

mount -o remount /var/log

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA

164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29

7.1.2

7.2.1

PCI-DSSV3.2.1

DCI DCCV4 0	7 2 2
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/var/log[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.6.3 Ensure nosuid option set on /var/log partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Since the /var/log filesystem is only intended for log files, set this option to ensure that users cannot create setuid files in /var/log

Solution

- IF - a separate partition exists for /var/log

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /var/log partition.

Example:

<device> /var/log <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/log with the configured options:

mount -o remount /var/log

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

1.1.2.6.3 Ensure nosuid option set on /var/log partition

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/var/log[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.6.4 Ensure noexec option set on /var/log partition

Info

The noexec mount option specifies that the filesystem cannot contain executable binaries.

Since the /var/log filesystem is only intended for log files, set this option to ensure that users cannot run executable binaries from /var/log

Solution

- IF - a separate partition exists for /var/log

Edit the /etc/fstab file and add noexec to the fourth field (mounting options) for the /var/log partition.

Example:

<device> /var/log <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/log with the configured options:

mount -o remount /var/log

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA

164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: noexec file: /proc/self/mountinfo regex: [\s]+/var/log[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.7.2 Ensure nodev option set on /var/log/audit partition

Info

The nodev mount option specifies that the filesystem cannot contain special devices.

Since the /var/log/audit filesystem is not intended to support devices, set this option to ensure that users cannot create a block or character special devices in /var/log/audit

Solution

- IF - a separate partition exists for /var/log/audit

Edit the /etc/fstab file and add nodev to the fourth field (mounting options) for the /var/log/audit partition.

Example:

<device> /var/log/audit <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/log/audit with the configured options:

mount -o remount /var/log/audit

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nodev file: /proc/self/mountinfo regex: [\s]+/var/log/audit[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.7.3 Ensure nosuid option set on /var/log/audit partition

Info

The nosuid mount option specifies that the filesystem cannot contain setuid files.

Since the /var/log/audit filesystem is only intended for variable files such as logs, set this option to ensure that users cannot create setuid files in /var/log/audit

Solution

- IF - a separate partition exists for /var/log/audit

Edit the /etc/fstab file and add nosuid to the fourth field (mounting options) for the /var/log/audit partition.

Example:

<device> /var/log/audit <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/log/audit with the configured options:

mount -o remount /var/log/audit

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: nosuid file: /proc/self/mountinfo regex: [\s]+/var/log/audit[\s]+ required: NO

Hosts

192.168.40.33

1.1.2.7.4 Ensure noexec option set on /var/log/audit partition

Info

The noexec mount option specifies that the filesystem cannot contain executable binaries.

Since the /var/log/audit filesystem is only intended for audit logs, set this option to ensure that users cannot run executable binaries from /var/log/audit

Solution

- IF - a separate partition exists for /var/log/audit

Edit the /etc/fstab file and add noexec to the fourth field (mounting options) for the /var/log/audit partition.

Example:

<device> /var/log/audit <fstype> defaults,rw,nosuid,nodev,noexec,relatime 0 0

Run the following command to remount /var/log/audit with the configured options:

mount -o remount /var/log/audit

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

1.1.2.7.4 Ensure noexec option set on /var/log/audit partition

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: noexec file: /proc/self/mountinfo regex: [\s]+/var/log/audit[\s]+ required: NO

Hosts

192.168.40.33

1.2.2.1 Ensure updates, patches, and additional security software are installed

Info

Periodically patches are released for included software either due to security flaws or to include additional functionality.

Newer patches may contain security enhancements that would not be available through the latest full update. As a result, it is recommended that the latest software patches be used to take advantage of the latest functionality. As with any software installation, organizations need to determine if a given update meets their requirements and verify the compatibility and supportability of any additional software against the update revision that is selected.

Solution

Run the following command to update all packages following local site policy guidance on applying updates and patches:

apt update

apt upgrade

- OR - # apt dist-upgrade

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.11.2
800-171	3.11.3
800-171	3.14.1
800-53	RA-5
800-53	SI-2
800-53	SI-2(2)
800-53R5	RA-5
800-53R5	SI-2
800-53R5	SI-2(2)
CN-L3	8.1.4.4(e)
CN-L3	8.1.10.5(a)
CN-L3	8.1.10.5(b)
CN-L3	8.5.4.1(b)
CN-L3	8.5.4.1(d)
CN-L3	8.5.4.1(e)
CSCV7	3.4
CSCV7	3.5
CSCV8	7.3

CSCV8	7.4
CSF	DE.CM-8
CSF	DE.DP-4
CSF	DE.DP-5
CSF	ID.RA-1
CSF	PR.IP-12
CSF	RS.CO-3
CSF	RS.MI-3
GDPR	32.1.b
GDPR	32.1.d
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.12.6.1
ITSG-33	RA-5
ITSG-33	SI-2
ITSG-33	SI-2(2)
LEVEL	1M
NESA	M1.2.2
NESA	M5.4.1
NESA	T7.6.2
NESA	T7.7.1
NIAV2	PR9
PCI-DSSV3.2.1	6.1
PCI-DSSV3.2.1	6.2
PCI-DSSV4.0	6.3
PCI-DSSV4.0	6.3.1
PCI-DSSV4.0	6.3.3
QCSC-V1	3.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2

SWIFT-CSCV1

SWIFT-CSCV1

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

cmd: /bin/apt-get -s upgrade | /bin/grep -Ev '(Reading | Building | Calculating)' expect: ^[\s]*0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded

2.2

2.7

Hosts

192.168.40.33

The command '/bin/apt-get -s upgrade | /bin/grep -Ev '(Reading|Building|Calculating)'' returned:

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

1.3.1.1 Ensure AppArmor is installed

Info

AppArmor provides Mandatory Access Controls.

Without a Mandatory Access Control system installed only the default Discretionary Access Control system will be available.

Solution

Install AppArmor.

apt install apparmor apparmor-utils

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6

 CSCV8
 3.3

 CSF
 PR.AC-4

 CSF
 PR.DS-5

 CSF
 PR.PT-2

 CSF
 PR.PT-3

 GDPR
 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

HIPAA ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 MP-2 ITSG-33 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1

7.2.2

5.2.2

3.2

6.2

13.2

PCI-DSSV4.0

QCSC-V1

QCSC-V1

QCSC-V1

QCSC-V1

 SWIFT-CSCV1
 5.1

 TBA-FIISB
 31.1

 TBA-FIISB
 31.4.2

 TBA-FIISB
 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

1.3.1.2 Ensure AppArmor is enabled in the bootloader configuration

Info

Configure AppArmor to be enabled at boot time and verify that it has not been overwritten by the bootloader boot parameters.

Note: This recommendation is designed around the grub bootloader, if LILO or another bootloader is in use in your environment enact equivalent settings.

AppArmor must be enabled at boot time in your bootloader configuration to ensure that the controls it provides are not overridden.

Solution

Edit /etc/default/grub and add the apparmor=1 and security=apparmor parameters to the GRUB_CMDLINE_LINUX= line

GRUB_CMDLINE_LINUX="apparmor=1 security=apparmor"

Run the following command to update the grub2 configuration:

update-grub

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)

CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c

SS29

7.1.2

NIAV2

PCI-DSSV3.2.1

7.2.1
7.2.2
3.2
5.2.2
6.2
13.2
5.1
31.1
31.4.2
31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

```
All of the following must pass to satisfy this requirement:
PASSED - grub.cfg security=apparmor
Compliant file(s):
             /boot/grub/grub.cfg - regex '^[\s]*linux[\s]*' found - expect '(?i)security=apparmor(?-i)' found - expect '(?i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?-i)security=apparmor(?
  found in the following lines:
                      170: linux/vmlinuz-6.8.0-52-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro apparmor=1
  security=apparmor
                      189: linux/vmlinuz-6.8.0-52-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro apparmor=1
  security=apparmor
                      207: linux/vmlinuz-6.8.0-52-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro recovery
  nomodeset dis_ucode_ldr apparmor=1 security=apparmor
                      226: linux/vmlinuz-6.8.0-51-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro apparmor=1
  security=apparmor
                      244: linux/vmlinuz-6.8.0-51-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro recovery
  nomodeset dis_ucode_ldr apparmor=1 security=apparmor
PASSED - grub.cfg apparmor=1
Compliant file(s):
             /boot/grub/grub.cfg - regex '^[\s]*linux[\s]*' found - expect '(?i)apparmor=1(?-i)' found in
  the following lines:
                     170: linux/vmlinuz-6.8.0-52-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro apparmor=1
  security=apparmor
                      189: linux/vmlinuz-6.8.0-52-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro apparmor=1
  security=apparmor
                      207: linux/vmlinuz-6.8.0-52-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro recovery
  nomodeset dis_ucode_ldr apparmor=1 security=apparmor
                      226: linux/vmlinuz-6.8.0-51-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro apparmor=1
  security=apparmor
                      244: linux/vmlinuz-6.8.0-51-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro recovery
  nomodeset dis_ucode_ldr apparmor=1 security=apparmor
```

1.3.1.3 Ensure all AppArmor Profiles are in enforce or complain mode

Info

AppArmor profiles define what resources applications are able to access.

Security configuration requirements vary from site to site. Some sites may mandate a policy that is stricter than the default policy, which is perfectly acceptable. This item is intended to ensure that any policies that exist on the system are activated.

Solution

Run the following command to set all profiles to enforce mode:

aa-enforce /etc/apparmor.d/*

OR

Run the following command to set all profiles to complain mode:

aa-complain /etc/apparmor.d/*

Note: Any unconfined processes may need to have a profile created or activated for them and then be restarted

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)

CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c

SS29

NIAV2

PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

```
All of the following must pass to satisfy this requirement:
PASSED - apparmor_status - processes are confined
The command '/sbin/apparmor_status' returned :
apparmor module is loaded.
52 profiles are loaded.
52 profiles are in enforce mode.
   /snap/snapd/23545/usr/lib/snapd/snap-confine
   /snap/snapd/23545/usr/lib/snapd/snap-confine//mount-namespace-capture-helper
   /snap/snapd/23771/usr/lib/snapd/snap-confine
   /snap/snapd/23771/usr/lib/snapd/snap-confine//mount-namespace-capture-helper
   /usr/bin/man
   /usr/lib/NetworkManager/nm-dhcp-client.action
   /usr/lib/NetworkManager/nm-dhcp-helper
   /usr/lib/connman/scripts/dhclient-script
   /usr/lib/snapd/snap-confine
   /usr/lib/snapd/snap-confine//mount-namespace-capture-helper
   /usr/sbin/mysqld
   /{,usr/}sbin/dhclient
   docker-default
   lsb_release
   man_filter
   man_groff
   nvidia_modprobe
   nvidia_modprobe//kmod
   rsyslogd
   snap-update-ns.canonical-livepatch
   snap-update-ns.lxd
   snap.canonical-livepatch.canonical-livepatch
   snap.canonical-livepatch.canonical-livepatchd
   snap.canonical-livepatch.hook.configure
```

```
snap.canonical-livepatch.hook.connect-plug-etc-update-motd-d
   snap.canonical-livepatch.hook.disconnect-plug-etc-update-motd-d
   snap.canonical-livepatch.hook.post-refresh
   snap.canonical-livepatch.hook.remove
  snap.lxd.activate
  snap.lxd.benchmark
  snap.lxd.buginfo
  snap.lxd.check-kernel
  snap.lxd.daemon
   snap.lxd.hook.configure
  snap.lxd.hook.install
  snap.lxd.hook.remove
  snap.lxd.lxc
  snap.lxd.lxc-to-lxd
   snap.lxd.lxd
  snap.lxd.migrate
  snap.lxd.user-daemon
  tcpdump
  ubuntu_pro_apt_news
  ubuntu_pro_esm_cache
  ubuntu_pro_esm_cache//apt_methods
  ubuntu_pro_esm_cache//apt_methods_gpgv
  ubuntu_pro_esm_cache//cloud_id
  ubuntu_pro_esm_cache//dpkg
  ubuntu_pro_esm_cache//ps
  ubuntu_pro_esm_cache//ubuntu_distro_info
  ubuntu_pro_esm_cache_systemctl
  ubuntu_pro_esm_cache_systemd_detect_virt
O profiles are in complain mode.
O profiles are in kill mode.
0 pro [...]
```

1.4.1 Ensure bootloader password is set

Info

Setting the boot loader password will require that anyone rebooting the system must enter a password before being able to set command line boot parameters

Requiring a boot password upon execution of the boot loader will prevent an unauthorized user from entering boot parameters or changing the boot partition. This prevents users from weakening security (e.g. turning off AppArmor at boot time).

Solution

Create an encrypted password with grub-mkpasswd-pbkdf2:

grub-mkpasswd-pbkdf2 --iteration-count=600000 --salt=64

Enter password: <password>
Reenter password: <password>

PBKDF2 hash of your password is <encrypted-password>

Add the following into a custom /etc/grub.d configuration file:

cat <<EOF exec tail -n +2 \$0 set superusers="<username>" password_pbkdf2 <username> <encrypted-password> EOF

The superuser/user information and password should not be contained in the /etc/grub.d/00_header file as this file could be overwritten in a package update.

If there is a requirement to be able to boot/reboot without entering the password, edit /etc/grub.d/10_linux and add --unrestricted to the line CLASS=

Example:

CLASS="--class gnu-linux --class gnu --class os --unrestricted"

Run the following command to update the grub2 configuration:

update-grub

Impact:

If password protection is enabled, only the designated superuser can edit a GRUB 2 menu item by pressing "e" or access the GRUB 2 command line by pressing "c"

If GRUB 2 is set up to boot automatically to a password-protected menu entry the user has no option to back out of the password prompt to select another menu entry. Holding the SHIFT key will not display the menu in this case. The user must enter the correct username and password. If unable to do so, the configuration files will have to be edited via a LiveCD or other means to fix the problem

You can add --unrestricted to the menu entries to allow the system to boot without entering a password. A password will still be required to edit menu items.

More Information:

https://help.ubuntu.com/community/Grub2/Passwords

See Also

https://workbench.cisecurity.org/benchmarks/17074

References	
800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5

ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

1.4.2 Ensure access to bootloader config is configured

Info

The grub configuration file contains information on boot settings and passwords for unlocking boot options.

Setting the permissions to read and write for root only prevents non-root users from seeing the boot parameters or changing them. Non-root users who read the boot parameters may be able to identify weaknesses in security upon boot and be able to exploit them.

Solution

Run the following commands to set permissions on your grub configuration:

chown root:root /boot/grub/grub.cfg # chmod u-x,go-rwx /boot/grub/grub.cfg

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 T5.1.1 T5.2.2 T5.4.1 T5.4.4

NESA NESA NESA NESA NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2

5.2.2

6.2

QCSC-V1

QCSC-V1

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /boot/grub/grub.cfg group: root mask: 7177 owner: root

Hosts

192.168.40.33

The file /boot/grub/grub.cfg with fmode owner: root group: root mode: 0600 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/boot/grub/grub.cfg

1.5.1 Ensure address space layout randomization is enabled

Info

Address space layout randomization (ASLR) is an exploit mitigation technique which randomly arranges the address space of key data areas of a process.

Randomly placing virtual memory regions will make it difficult to write memory page exploits as the memory placement will be consistently shifting.

Solution

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- kernel.randomize_va_space = 2

Example:

printf "%s " "kernel.randomize_va_space = 2" >> /etc/sysctl.d/60-kernel_sysctl.conf

Run the following command to set the active kernel parameter:

sysctl -w kernel.randomize_va_space=2

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-53	SI-16
800-53R5	SI-16
CSCV7	8.3
CSCV8	10.5
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	SI-16
LEVEL	1A

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "kernel.randomize_va_space" is correctly set to "2" in the running configuration
    - "kernel.randomize_va_space" is correctly set to "2" in "/etc/sysctl.conf"
```

1.5.2 Ensure ptrace_scope is restricted

Info

The ptrace() system call provides a means by which one process (the "tracer") may observe and control the execution of another process (the "tracee"), and examine and change the tracee's memory and registers.

If one application is compromised, it would be possible for an attacker to attach to other running processes (e.g. Bash, Firefox, SSH sessions, GPG agent, etc) to extract additional credentials and continue to expand the scope of their attack.

Enabling restricted mode will limit the ability of a compromised process to PTRACE_ATTACH on other processes running under the same user. With restricted mode, ptrace will continue to work with root user.

Solution

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- kernel.yama.ptrace_scope = 1

Example:

printf "%s " "kernel.yama.ptrace_scope = 1" >> /etc/sysctl.d/60-kernel_sysctl.conf

Run the following command to set the active kernel parameter:

sysctl -w kernel.yama.ptrace_scope=1

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "kernel.yama.ptrace_scope" is correctly set to "1" in the running configuration
    - "kernel.yama.ptrace_scope" is correctly set to "1" in "/etc/sysctl.d/10-ptrace.conf"
```

1.5.3 Ensure core dumps are restricted

Info

A core dump is the memory of an executable program. It is generally used to determine why a program aborted. It can also be used to glean confidential information from a core file. The system provides the ability to set a soft limit for core dumps, but this can be overridden by the user.

Setting a hard limit on core dumps prevents users from overriding the soft variable. If core dumps are required, consider setting limits for user groups (see limits.conf(5)). In addition, setting the fs.suid_dumpable variable to 0 will prevent setuid programs from dumping core.

Solution

Add the following line to /etc/security/limits.conf or a /etc/security/limits.d/* file:

* hard core 0

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- fs.suid_dumpable = 0

Example:

printf "%s " "fs.suid_dumpable = 0" >> /etc/sysctl.d/60-fs_sysctl.conf

Run the following command to set the active kernel parameter:

sysctl -w fs.suid_dumpable=0

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

-IF- systemd-coredump is installed:

edit /etc/systemd/coredump.conf and add/modify the following lines:

Storage=none ProcessSizeMax=0

Run the command:

systemctl daemon-reload

See Also

https://workbench.cisecurity.org/benchmarks/17074

3.1.7
AC-6(10)
AC-6(10)
7.1.3.2(b)

```
CN-L3
                            7.1.3.2(g)
CN-L3
                            8.1.4.2(d)
CN-L3
                            8.1.10.6(a)
CSF
                            PR.AC-4
GDPR
                            32.1.b
HIPAA
                            164.306(a)(1)
HIPAA
                           164.312(a)(1)
ITSG-33
                           AC-6
LEVEL
                           1A
NESA
                           T5.1.1
                           T5.2.2
NESA
NESA
                           T5.4.1
NESA
                           T5.4.4
NESA
                           T5.4.5
NESA
                           T5.5.4
NESA
                           T5.6.1
NESA
                           T7.5.3
NIAV2
                           AM1
NIAV2
                           AM23f
NIAV2
                           SS13c
NIAV2
                           SS15c
PCI-DSSV3.2.1
                           7.1.2
PCI-DSSV4.0
                           7.2.1
PCI-DSSV4.0
                           7.2.2
QCSC-V1
                            5.2.2
QCSC-V1
                            6.2
SWIFT-CSCV1
                            5.1
TBA-FIISB
                           31.4.2
TBA-FIISB
                            31.4.3
Audit File
CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit
Policy Value
PASSED
Hosts
192.168.40.33
 All of the following must pass to satisfy this requirement:
 PASSED - hard core 0
```

1.5.4 Ensure prelink is not installed

Info

prelink is a program that modifies ELF shared libraries and ELF dynamically linked binaries in such a way that the time needed for the dynamic linker to perform relocations at startup significantly decreases.

The prelinking feature can interfere with the operation of AIDE, because it changes binaries. Prelinking can also increase the vulnerability of the system if a malicious user is able to compromise a common library such as libc.

Solution

Run the following command to restore binaries to normal:

prelink -ua

Uninstall prelink using the appropriate package manager or manual installation:

apt purge prelink

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.7	
800-171	3.3.1	
800-171	3.3.2	
800-53	AC-6(9)	
800-53	AU-2	
800-53	AU-12	
800-53R5	AC-6(9)	
800-53R5	AU-2	
800-53R5	AU-12	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.3(a)	
CN-L3	8.1.10.6(a)	
CSCV7	14.9	
CSCV8	3.14	
CSF	DE.CM-1	
CSF	DE.CM-3	
CSF	DE.CM-7	
CSF	PR.AC-4	

CSF PR.PT-1 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(1) HIPAA 164.312(b) ISO/IEC-27001 A.12.4.3 ITSG-33 AC-6 ITSG-33 AU-2 ITSG-33 AU-12 LEVEL 1A NESA M1.2.2 NESA M5.5.1 NESA T5.1.1 NESA T5.2.2 **NESA** T5.5.4 NESA T7.5.3 NIAV2 AM1 AM7 NIAV2 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS30 NIAV2 VL8 PCI-DSSV3.2.1 7.1.2 PCI-DSSV3.2.1 10.1 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 5.2.2 QCSC-V1 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 13.2 SWIFT-CSCV1 5.1 SWIFT-CSCV1 6.4 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s prelink 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s prelink 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'prelink' is not installed and no information is available

1.5.5 Ensure Automatic Error Reporting is not enabled

Info

The Apport Error Reporting Service automatically generates crash reports for debugging

Apport collects potentially sensitive data, such as core dumps, stack traces, and log files. They can contain passwords, credit card numbers, serial numbers, and other private material.

Solution

Edit /etc/default/apport and add or edit the enabled parameter to equal 0:

enabled=0

Run the following commands to stop and mask the apport service

systemctl stop apport.service # systemctl mask apport.service

- OR -

Run the following command to remove the apport package:

apt purge apport

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a

PCI-DSSV3.2.1 2.2.2 SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

1.6.4 Ensure access to /etc/motd is configured

Info

The contents of the /etc/motd file are displayed to users after login and function as a message of the day for authenticated users.

- IF - the /etc/motd file does not have the correct access configured, it could be modified by unauthorized users with incorrect or misleading information.

Solution

Run the following commands to set mode, owner, and group on /etc/motd:

chown root:root \$(readlink -e /etc/motd) # chmod u-x,go-wx \$(readlink -e /etc/motd)

- OR -

Run the following command to remove the /etc/motd file:

rm /etc/motd

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA

164.312(a)(1) ISO/IEC-27001 A.6.1.2

ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 **NESA** T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c

SS29

7.1.2

7.2.1

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/motd group: root mask: 133 owner: root required: NO

Hosts

192.168.40.33

The file /etc/motd with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/motd

1.6.5 Ensure access to /etc/issue is configured

Info

The contents of the /etc/issue file are displayed to users prior to login for local terminals.

- IF - the /etc/issue file does not have the correct access configured, it could be modified by unauthorized users with incorrect or misleading information.

Solution

Run the following commands to set mode, owner, and group on /etc/issue:

chown root:root \$(readlink -e /etc/issue) # chmod u-x,go-wx \$(readlink -e /etc/issue)

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6

CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b
HIPAA 164.306(a)(1)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1

NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2

QCSC-V1 6.2 QCSC-V1 13.2

3.2

5.2.2

QCSC-V1

QCSC-V1

 SWIFT-CSCV1
 5.1

 TBA-FIISB
 31.1

 TBA-FIISB
 31.4.2

 TBA-FIISB
 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/issue group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/issue with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/issue

1.6.6 Ensure access to /etc/issue.net is configured

Info

The contents of the /etc/issue.net file are displayed to users prior to login for remote connections from configured services.

- IF - the /etc/issue.net file does not have the correct access configured, it could be modified by unauthorized users with incorrect or misleading information.

Solution

Run the following commands to set mode, owner, and group on /etc/issue.net:

chown root:root \$(readlink -e /etc/issue.net) # chmod u-x,go-wx \$(readlink -e /etc/issue.net)

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b
HIPAA 164.306(a)(1)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1

7.2.2 3.2

5.2.2

6.2

PCI-DSSV4.0

QCSC-V1 QCSC-V1

QCSC-V1

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/issue.net group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/issue.net with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/issue.net

1.7.2 Ensure GDM login banner is configured

Info

GDM is the GNOME Display Manager which handles graphical login for GNOME based systems.

Warning messages inform users who are attempting to login to the system of their legal status regarding the system and must include the name of the organization that owns the system and any monitoring policies that are in place.

Solution

- IF - GDM is installed:

Run the following script to set and enable the text banner message on the login screen:

#!/usr/bin/env bash

{ l_pkgoutput=""

if command -v dpkg-query & amp; > /dev/null; then I_pq="dpkg-query -s"

elif command -v rpm & amp; > /dev/null; then l_pq="rpm -q"

fi l_pcl="gdm gdm3" # Space separated list of packages to check for l_pn in \$l_pcl; do \$l_pq "\$l_pn" & amp;>/dev/null & amp;& amp; l_pkgoutput="\$l_pkgoutput"

- Package: \"\$l_pn\" exists on the system
- checking configuration"

done if [-n "\$1 pkgoutput"]; then

l_gdmprofile="gdm" # Set this to desired profile name IaW Local site policy l_bmessage="'Authorized uses
only. All activity may be monitored and reported'" # Set to desired banner message if [! -f "/etc/dconf/
profile/\$| gdmprofile"]; then echo "Creating profile \"\$| gdmprofile\""

echo -e "user-db:user system-db: $l_gdmprofile$ file-db:/usr/share/ $l_gdmprofile$ /greeter-dconf-defaults" > /etc/dconf/profile/ $l_gdmprofile$ fi if [! -d "/etc/dconf/db/ $l_gdmprofile$.d/"]; then echo "Creating dconf database directory \"/etc/dconf/db/ $l_gdmprofile$.d/\""

mkdir /etc/dconf/db/\$l_gdmprofile.d/ fi if ! grep -Piq '^h*banner-message-enableh*=h*trueb' /etc/dconf/db/\$l_gdmprofile.d/*; then echo "creating gdm keyfile for machine-wide settings"

if! grep -Piq -- '^h*banner-message-enableh*=h*' /etc/dconf/db/\$l_gdmprofile.d/*; then l_kfile="/etc/dconf/db/\$l_gdmprofile.d/01-banner-message"

echo -e "

[org/gnome/login-screen] banner-message-enable=true" >> "\$I_kfile"

else l_kfile="\$(grep -Pil -- '^h*banner-message-enableh*=h*' /etc/dconf/db/\$l_gdmprofile.d/*)"

! grep -Pq '^h*[org/gnome/login-screen]' "\$l_kfile" & amp; & amp; sed -ri '/^s*banner-message-enable/ i[org/gnome/login-screen]' "\$l_kfile"

! grep -Pq '^h*banner-message-enableh*=h*trueb' "\$|_kfile" && sed -ri 's/^s*(banner-message-enables*=s*)(S+)(s*.*\$)/1true 3//' "\$| kfile"

sed -ri '/^s*[org/gnome/login-screen]/ a banner-message-enable=true' "\$l_kfile"

fi fi if ! grep -Piq " $h*banner-message-text=['\"]+S+" "$l_kfile"; then sed -ri "/<math>h*banner-message-enable/abanner-message-text=$ l_bmessage" "\$l_kfile"

fi dconf update else echo -e "

- GNOME Desktop Manager isn't installed
- Recommendation is Not Applicable
- No remediation required "

fi }

Notes:

- There is no character limit for the banner message. gnome-shell autodetects longer stretches of text and enters two column mode.
- The banner message cannot be read from an external file.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.9
800-53	AC-8
800-53R5	AC-8
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	AC-8
LEVEL	1A
NESA	M1.3.6
TBA-FIISB	45.2.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- GNOME Desktop Manager isn't installed
- Recommendation is Not Applicable
- Audit result:
   *** PASS ***
```

1.7.3 Ensure GDM disable-user-list option is enabled

Info

GDM is the GNOME Display Manager which handles graphical login for GNOME based systems.

The disable-user-list option controls if a list of users is displayed on the login screen

Displaying the user list eliminates half of the Userid/Password equation that an unauthorized person would need to log on.

Solution

- IF - GDM is installed:

Run the following script to enable the disable-user-list option:

Note: the l_gdm_profile variable in the script can be changed if a different profile name is desired in accordance with local site policy.

#!/usr/bin/env bash

{ | gdmprofile="gdm"

if [!-f "/etc/dconf/profile/\$| gdmprofile"]; then echo "Creating profile \"\$| gdmprofile\""

echo -e "user-db:user system-db:\$l_gdmprofile file-db:/usr/share/\$l_gdmprofile/greeter-dconf-defaults" > /etc/dconf/profile/\$l_gdmprofile fi if [!-d "/etc/dconf/db/\$l_gdmprofile.d/"]; then echo "Creating dconf database directory \"/etc/dconf/db/\$l_gdmprofile.d/\""

mkdir /etc/dconf/db/\$l_gdmprofile.d/ fi if ! grep -Piq '^h*disable-user-listh*=h*trueb' /etc/dconf/db/\$l_gdmprofile.d/*; then echo "creating gdm keyfile for machine-wide settings"

if! grep -Pig -- '^h*[org/gnome/login-screen]' /etc/dconf/db/\$| gdmprofile.d/*; then echo -e "

[org/gnome/login-screen] # Do not show the user list disable-user-list=true" >> /etc/dconf/db/ $\globel{login-screen}$ # Do not show the user list disable-user-list=true' \$(grep -Pil -- '^h*[org/gnome/login-screen]' /etc/dconf/db/\$l_gdmprofile.d/*) fi fi dconf update }

Note: When the user profile is created or changed, the user will need to log out and log in again before the changes will be applied.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.1
800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-171	3.13.1

800-171	3.13.2
800-53	CM-1
800-53	CM-2
800-53	CM-6
800-53	CM-7
800-53	CM-7(1)
800-53	CM-9
800-53	SA-3
800-53	SA-8
800-53	SA-10
800-53R5	CM-1
800-53R5	CM-2
800-53R5	CM-6
800-53R5	CM-7
800-53R5	CM-7(1)
800-53R5	CM-9
800-53R5	SA-3
800-53R5	SA-8
800-53R5	SA-10
CSF	DE.AE-1
CSF	ID.GV-1
CSF	ID.GV-3
CSF	PR.DS-7
CSF	PR.IP-1
CSF	PR.IP-2
CSF	PR.IP-3
CSF	PR.PT-3
GDPR	32.1.b
GDPR	32.4
HIPAA	164.306(a)(1)
ITSG-33	CM-1
ITSG-33	CM-2
ITSG-33	CM-6
ITSG-33	CM-7
ITSG-33	CM-7(1)
ITSG-33	CM-9
ITSG-33	SA-3
ITSG-33	SA-8
ITSG-33	SA-8a.
ITSG-33	SA-10
LEVEL	1A

M1.2.2

T1.2.1

NESA

NESA

NESA	T1.2.2
NESA	T3.2.5
NESA	T3.4.1
NESA	T4.5.3
NESA	T4.5.4
NESA	T7.2.1
NESA	T7.5.1
NESA	T7.5.3
NESA	T7.6.1
NESA	T7.6.2
NESA	T7.6.3
NESA	T7.6.5
NIAV2	GS8b
NIAV2	SS3
NIAV2	SS15a
NIAV2	SS16
NIAV2	VL2
NIAV2	VL7a
NIAV2	VL7b
PCI-DSSV3.2.1	2.2.2
QCSC-V1	3.2
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	7.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

192.168.40.33

The command script with multiple lines returned:

- GNOME Desktop Manager isn't installed
- Recommendation is Not Applicable
- Audit result:
*** PASS ***

1.7.4 Ensure GDM screen locks when the user is idle

Info

GNOME Desktop Manager can make the screen lock automatically whenever the user is idle for some amount of time.

Setting a lock-out value reduces the window of opportunity for unauthorized user access to another user's session that has been left unattended.

Solution

Run the following commands to enable screen locks when the user is idle:

gsettings set org.gnome.desktop.screensaver lock-delay 5 # gsettings set org.gnome.desktop.session idle-delay 900

- OR-
- Create or edit the user profile in the /etc/dconf/profile/ and verify it includes the following:

user-db:user system-db:{NAME_OF_DCONF_DATABASE}

Note: local is the name of a dconf database used in the examples.

<xhtml:ol start="2"> -

Create the directory /etc/dconf/db/local.d/ if it doesn't already exist:

_

Create the key file /etc/dconf/db/local.d/00-screensaver to provide information for the local database:

Example key file:

- # Specify the dconf path [org/gnome/desktop/session]
- # Number of seconds of inactivity before the screen goes blank # Set to 0 seconds if you want to deactivate the screensaver.

idle-delay=uint32 180

- # Specify the dconf path [org/gnome/desktop/screensaver]
- # Number of seconds after the screen is blank before locking the screen lock-delay=uint32 0

Note: You must include the uint32 along with the integer key values as shown.

- <xhtml:ol start="4"> Run the following command to update the system databases:
- # dconf update <xhtml:ol start="5"> Users must log out and back in again before the system-wide settings take effect.

Note: Users must log out and back in again before the system-wide settings take effect.

See Also

References	
800-171	3.1.1
800-171	3.1.10
800-171	3.1.11
800-53	AC-2(5)
800-53	AC-11
800-53	AC-11(1)
800-53	AC-12
800-53R5	AC-2(5)
800-53R5	AC-11
800-53R5	AC-11(1)
800-53R5	AC-12
CN-L3	7.1.2.2(d)
CN-L3	7.1.3.2(d)
CN-L3	7.1.3.7(b)
CN-L3	8.1.4.1(b)
CSCV7	16.11
CSCV8	4.3
CSF	PR.AC-1
CSF	PR.AC-4
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
HIPAA	164.312(a)(2)(iii)
ISO/IEC-27001	A.9.2.1
ISO/IEC-27001	A.11.2.8
ITSG-33	AC-2(5)
ITSG-33	AC-11
ITSG-33	AC-11(1)
ITSG-33	AC-12
LEVEL	1A
NIAV2	AM23c
NIAV2	AM23d
NIAV2	AM28
NIAV2	NS5j
NIAV2	NS49
NIAV2	SS14e
PCI-DSSV3.2.1	8.1.8
PCI-DSSV4.0	8.2.8
QCSC-V1	5.2.2
QCSC-V1	8.2.1

QCSC-V1	13.2		
QCSC-V1	15.2		
TBA-FIISB	36.2.1		
TBA-FIISB	37.1.4		
Audit File			
CIS_Ubuntu_Linux_2	2.04_LTS_v2.0.0_L1_Serve	er.audit	
Policy Value			
PASSED			

Hosts

1.7.5 Ensure GDM screen locks cannot be overridden

Info

GNOME Desktop Manager can lock down specific settings by using the lockdown mode in dconf to prevent users from changing specific settings.

To lock down a dconf key or subpath, create a locks subdirectory in the keyfile directory. The files inside this directory contain a list of keys or subpaths to lock. Just as with the keyfiles, you may add any number of files to this directory.

Setting a lock-out value reduces the window of opportunity for unauthorized user access to another user's session that has been left unattended.

Without locking down the system settings, user settings take precedence over the system settings.

Solution

- To prevent the user from overriding these settings, create the file /etc/dconf/db/local.d/locks/screensaver with the following content:

Lock desktop screensaver settings /org/gnome/desktop/session/idle-delay /org/gnome/desktop/screensaver/lock-delay <xhtml:ol start="2"> - Update the system databases:

dconf update

Note: Users must log out and back in again before the system-wide settings take effect.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.10	
800-171	3.1.11	
800-53	AC-2(5)	
800-53	AC-11	
800-53	AC-11(1)	
800-53	AC-12	
800-53R5	AC-2(5)	
800-53R5	AC-11	
800-53R5	AC-11(1)	
800-53R5	AC-12	
CN-L3	7.1.2.2(d)	
CN-L3	7.1.3.2(d)	
CN-L3	7.1.3.7(b)	
CN-L3	8.1.4.1(b)	

CSCV7 16.11 CSCV8 4.3 CSF PR.AC-1 PR.AC-4 CSF **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(1) HIPAA 164.312(a)(2)(iii) ISO/IEC-27001 A.9.2.1 ISO/IEC-27001 A.11.2.8 ITSG-33 AC-2(5) ITSG-33 AC-11 ITSG-33 AC-11(1) ITSG-33 AC-12 **LEVEL** 1A NIAV2 AM23c NIAV2 AM23d NIAV2 AM28 NIAV2 NS5j NIAV2 **NS49** NIAV2 SS14e PCI-DSSV3.2.1 8.1.8 PCI-DSSV4.0 8.2.8 QCSC-V1 5.2.2 QCSC-V1 8.2.1 QCSC-V1 13.2 QCSC-V1 15.2 TBA-FIISB 36.2.1 TBA-FIISB 37.1.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned :

- Audit Result:

** PASS **
```

- GNOME Desktop Manager package is not installed on the system Recommendation is not applicable

1.7.6 Ensure GDM automatic mounting of removable media is disabled

Info

By default GNOME automatically mounts removable media when inserted as a convenience to the user.

With automounting enabled anyone with physical access could attach a USB drive or disc and have its contents available in system even if they lacked permissions to mount it themselves.

Solution

- IF - GDM is installed:

Run the following script to disable automatic mounting of media for all GNOME users:

#!/usr/bin/env bash

{ l_pkgoutput=""

l_gpname="local" # Set to desired dconf profile name (default is local) # Check if GNOME Desktop Manager is installed. If package isn't installed, recommendation is Not Applicable

determine system's package manager if command -v dpkg-query > /dev/null 2>&1; then l_pq="dpkg-query -s"

elif command -v rpm > /dev/null 2>&1; then l_pq="rpm -q"

fi # Check if GDM is installed l_pcl="gdm gdm3" # Space seporated list of packages to check for l_pn in \$l_pcl; do \$l_pq "\$l_pn" > /dev/null 2>&1 && l_pkgoutput="\$l_pkgoutput

- Package: \"\$ pn\" exists on the system
- checking configuration"

done # Check configuration (If applicable) if [-n "\$| pkgoutput"]; then echo -e "\$| pkgoutput"

Look for existing settings and set variables if they exist $l_k = "\$(grep - Prils -- '^h *automountb' / etc/dconf/db/*.d)"$

| kfile2="\$(grep -Prils -- '^h*automount-openb' /etc/dconf/db/*.d)"

Set profile name based on dconf db directory ({PROFILE_NAME}.d) if [-f "\$l_kfile"]; then l_gpname=" $(wk -F' (split((NF-1),a,"."); print a[1])' <<< "$l_kfile")"$

echo " - updating dconf profile name to \"\$l_gpname\""

elif [-f "\$| kfile2"]; then |_gpname="\$(awk -F/ '{split(\$(NF-1),a,".");print a[1]}' <<< "\$|_kfile2")"

echo " - updating dconf profile name to \"\$I gpname\""

fi # check for consistency (Clean up configuration if needed) if [-f "\$l_kfile"] & amp; & amp; ["\$(awk -F/ '{split(\$(NF-1),a,".");print a[1]}' <<< "\$l_kfile")" != "\$l_gpname"]; then sed -ri "/^s*automounts*=/s/^/# /" " sl_kfile "

l_kfile="/etc/dconf/db/\$l_gpname.d/00-media-automount"

 $fi if [-f"$l_kfile2"] & amp; & amp; & ["$(awk -F/ '{split($(NF-1),a,"."); print a[1]}' <<< "$l_kfile2")" != "$l_gpname"]; then sed -ri "//s*automount-opens*=/s//# /" "$l_kfile2"$

fi [-z "\$l_kfile"] & amp; & amp; \lambda kfile="/etc/dconf/db/\$l_gpname.d/00-media-automount"

Check if profile file exists if grep -Pq -- "^h*system-db:\$| gpnameb" /etc/dconf/profile/*; then echo -e "

- dconf database profile exists in: \"\$(grep -Pl -- "^h*system-db:\$|_gpnameb" /etc/dconf/profile/*)\""

else if [!-f"/etc/dconf/profile/user"]; then l_gpfile="/etc/dconf/profile/user"

else l_gpfile="/etc/dconf/profile/user2"

fi echo -e " - creating dconf database profile"

{ echo -e "

user-db:user"

echo "system-db:\$1 gpname"

} >> "\$l_gpfile"

fi # create dconf directory if it doesn't exists l_gpdir="/etc/dconf/db/\$l_gpname.d"

if [-d "\$l_gpdir"]; then echo " - The dconf database directory \"\$l_gpdir\" exists"

else echo " - creating dconf database directory \"\$l_gpdir\""

mkdir "\$l_gpdir"

fi # check automount-open setting if grep -Pqs -- '^h*automount-openh*=h*falseb' "\$l_kfile"; then echo " - \"automount-open\" is set to false in: \"\$l_kfile\""

else echo " - creating \"automount-open\" entry in \"\$l_kfile\""

! grep -Psq -- '^h*[org/gnome/desktop/media-handling]b' "\$l_kfile" && echo '[org/gnome/desktop/media-handling]' >> "\$l_kfile"

sed -ri '/^s*[org/gnome/desktop/media-handling]/a automount-open=false' "\$l_kfile"

fi # check automount setting if grep -Pqs -- '^h*automounth*=h*falseb' "\$|_kfile"; then echo " - \"automount\" is set to false in: \"\$| kfile\""

else echo " - creating \"automount\" entry in \"\$l_kfile\""

! grep -Psq -- '^h*[org/gnome/desktop/media-handling]b' "\$l_kfile" && echo '[org/gnome/desktop/media-handling]' >> "\$l_kfile"

sed -ri '/^s*[org/gnome/desktop/media-handling]/a automount=false' "\$l_kfile"

fi # update dconf database dconf update else echo -e "

- GNOME Desktop Manager package is not installed on the system
- Recommendation is not applicable"

fi }

Impact:

The use of portable hard drives is very common for workstation users. If your organization allows the use of portable storage or media on workstations and physical access controls to workstations is considered adequate there is little value add in turning off automounting.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.8.7
800-53	MP-7
800-53R5	MP-7
CN-L3	8.5.4.1(c)
CSCV7	8.5

CSCV8 10.3 CSF PR.PT-2 GDPR 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.8.3.1 ISO/IEC-27001 A.8.3.3 LEVEL 1A NESA T1.4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
   ** PASS **

- GNOME Desktop Manager package is not installed on the system
   - Recommendation is not applicable
```

1.7.7 Ensure GDM disabling automatic mounting of removable media is not overridden

Info

By default GNOME automatically mounts removable media when inserted as a convenience to the user.

By using the lockdown mode in dconf, you can prevent users from changing specific settings. To lock down a dconf key or subpath, create a locks subdirectory in the keyfile directory. The files inside this directory contain a list of keys or subpaths to lock. Just as with the keyfiles, you may add any number of files to this directory.

With automounting enabled anyone with physical access could attach a USB drive or disc and have its contents available in system even if they lacked permissions to mount it themselves.

Solution

- To prevent the user from overriding these settings, create the file /etc/dconf/db/local.d/locks/00-media-automount with the following content:

[org/gnome/desktop/media-handling] automount=false automount-open=false <xhtml:ol start="2"> - Update the systems databases:

dconf update

Impact:

The use of portable hard drives is very common for workstation users

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	MP-2
800-53R5	MP-2
CSF	PR.PT-2
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3

NESA T1.4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
   ** PASS **

- GNOME Desktop Manager package is not installed on the system
   - Recommendation is not applicable
```

1.7.8 Ensure GDM autorun-never is enabled

Info

The autorun-never setting allows the GNOME Desktop Display Manager to disable autorun through GDM.

Malware on removable media may taking advantage of Autorun features when the media is inserted into a system and execute.

Solution

- IF - GDM is installed:

Run the following script to set autorun-never to true for GDM users:

#!/usr/bin/env bash

```
{ l_pkgoutput="" l_output="" l_output2=""
```

l_gpname="local" # Set to desired dconf profile name (default is local) # Check if GNOME Desktop Manager is installed. If package isn't installed, recommendation is Not Applicable

determine system's package manager if command -v dpkg-query & amp; > /dev/null; then I_pq="dpkg-query -s"

elif command -v rpm & amp; > /dev/null; then l_pq="rpm -q"

fi # Check if GDM is installed l_pcl="gdm gdm3" # Space separated list of packages to check for l_pn in \$l_pcl; do \$l_pq "\$l_pn" &> /dev/null && l_pkgoutput="\$l_pkgoutput

- Package: \"\$ pn\" exists on the system
- checking configuration"

done echo -e "\$1 pkgoutput"

Check configuration (If applicable) if [-n "\$l_pkgoutput"]; then echo -e "\$l_pkgoutput"

Look for existing settings and set variables if they exist I_kfile="\$(grep -Prils -- '^h*autorun-neverb' /etc/dconf/db/*.d)"

Set profile name based on dconf db directory ({PROFILE_NAME}.d) if [-f "\$l_kfile"]; then l_gpname=" $(wk -F' (split((NF-1),a,"."); print a[1])' <<< "$l_kfile")"$

echo " - updating dconf profile name to \"\$l_gpname\""

fi [!-f"\$|_kfile"] && |_kfile="/etc/dconf/db/\$|_gpname.d/00-media-autorun"

Check if profile file exists if grep -Pq -- "^h*system-db:\$1 gpnameb" /etc/dconf/profile/*; then echo -e "

- dconf database profile exists in: \"\$(grep -Pl -- "^h*system-db:\$l_gpnameb" /etc/dconf/profile/*)\""

echo -e " - creating dconf database profile"

{ echo -e "

user-db:user"

echo "system-db:\$l_gpname"

} >> "\$| gpfile"

fi # create dconf directory if it doesn't exists l_gpdir="/etc/dconf/db/\$l_gpname.d"

if [-d "\$l_gpdir"]; then echo " - The dconf database directory \"\$l_gpdir\" exists"

else echo " - creating dconf database directory \"\$l_gpdir\""

mkdir "\$1 gpdir"

fi # check autorun-never setting if grep -Pqs -- '^h*autorun-neverh*=h*trueb' "\$l_kfile"; then echo " - \"autorun-never\" is set to true in: \"\$l_kfile\""

else echo " - creating or updating \"autorun-never\" entry in \"\$l_kfile\""

if grep -Psq -- '^h*autorun-never' "\$l_kfile"; then sed -ri 's/(^s*autorun-nevers*=s*)(S+)(s*.*)\$/1true 3/' "\$l_kfile"

else! grep -Psq -- '^h*[org/gnome/desktop/media-handling]b' "\$l_kfile" && echo '[org/gnome/desktop/media-handling]' >> "\$l_kfile"

sed -ri '/^s*[org/gnome/desktop/media-handling]/a autorun-never=true' "\$l_kfile"

fi fi else echo -e "

- GNOME Desktop Manager package is not installed on the system
- Recommendation is not applicable"

fi # update dconf database dconf update }

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.8.7
800-53	MP-7
800-53R5	MP-7
CN-L3	8.5.4.1(c)
CSCV7	8.5
CSCV8	10.3
CSF	PR.PT-2
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.8.3.1
ISO/IEC-27001	A.8.3.3
LEVEL	1A
NESA	T1.4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

```
The command script with multiple lines returned:

- Audit Result:
   ** PASS **

- GNOME Desktop Manager package is not installed on the system
   - Recommendation is not applicable
```

1.7.9 Ensure GDM autorun-never is not overridden

Info

The autorun-never setting allows the GNOME Desktop Display Manager to disable autorun through GDM.

By using the lockdown mode in dconf, you can prevent users from changing specific settings.

To lock down a dconf key or subpath, create a locks subdirectory in the keyfile directory. The files inside this directory contain a list of keys or subpaths to lock. Just as with the keyfiles, you may add any number of files to this directory.

Malware on removable media may taking advantage of Autorun features when the media is inserted into a system and execute.

Solution

- To prevent the user from overriding these settings, create the file /etc/dconf/db/local.d/locks/00-media-autorun with the following content:

[org/gnome/desktop/media-handling] autorun-never=true <xhtml:ol start="2"> - Update the systems databases:

dconf update

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.8.7
800-53	MP-7
800-53R5	MP-7
CN-L3	8.5.4.1(c)
CSCV7	8.5
CSCV8	10.3
CSF	PR.PT-2
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.8.3.1
ISO/IEC-27001	A.8.3.3
LEVEL	1A
NESA	T1.4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned :

- Audit Result:
   ** PASS **

- [org/gnome/desktop/media-handling] setting not found in /etc/dconf/db/*
```

1.7.10 Ensure XDCMP is not enabled

Info

X Display Manager Control Protocol (XDMCP) is designed to provide authenticated access to display management services for remote displays

XDMCP is inherently insecure.

- XDMCP is not a ciphered protocol. This may allow an attacker to capture keystrokes entered by a user
- XDMCP is vulnerable to man-in-the-middle attacks. This may allow an attacker to steal the credentials of legitimate users by impersonating the XDMCP server.

Solution

Edit all files returned by the audit and remove or commend out the Enable=true line in the [xdmcp] block:

Example file:

GDM configuration storage # # See /usr/share/gdm/gdm.schemas for a list of available options.

[daemon] # Uncomment the line below to force the login screen to use Xorg #WaylandEnable=false

Enabling automatic login # AutomaticLoginEnable = true # AutomaticLogin = user1

Enabling timed login # TimedLoginEnable = true # TimedLogin = user1 # TimedLoginDelay = 10

[security]

[xdmcp] # Enable=true <- **This line should be removed or commented out**

[chooser]

[debug] # Uncomment the line below to turn on debugging # More verbose logs # Additionally lets the X server dump core if it crashes #Enable=true

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8

CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

192.168.40.33

The command script with multiple lines returned :

Pass

2.1.1 Ensure autofs services are not in use

Info

autofs allows automatic mounting of devices, typically including CD/DVDs and USB drives.

With automounting enabled anyone with physical access could attach a USB drive or disc and have its contents available in the filesystem even if they lacked permissions to mount it themselves.

Solution

Run the following commands to stop autofs.service and remove the autofs package:

systemctl stop autofs.service # apt purge autofs

- OR -
- IF the autofs package is required as a dependency:

Run the following commands to stop and mask autofs.service:

systemctl stop autofs.service # systemctl mask autofs.service

Impact:

The use of portable hard drives is very common for workstation users. If your organization allows the use of portable storage or media on workstations and physical access controls to workstations is considered adequate there is little value add in turning off automounting.

There may be packages that are dependent on the autofs package. If the autofs package is removed, these dependent packages will be removed as well. Before removing the autofs package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the autofs.service leaving the autofs package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.8.7
800-53	MP-7
800-53R5	MP-7
CN-L3	8.5.4.1(c)
CSCV7	8.5
CSCV8	10.3
CSF	PR.PT-2
GDPR	32.1.b
HIPAA	164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.8.3.1 ISO/IEC-27001 A.8.3.3 LEVEL 1A NESA T1.4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s autofs 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s autofs 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned : dpkg-query: package 'autofs' is not installed and no information is available

2.1.2 Ensure avahi daemon services are not in use

Info

Avahi is a free zeroconf implementation, including a system for multicast DNS/DNS-SD service discovery. Avahi allows programs to publish and discover services and hosts running on a local network with no specific configuration. For example, a user can plug a computer into a network and Avahi automatically finds printers to print to, files to look at and people to talk to, as well as network services running on the machine.

Automatic discovery of network services is not normally required for system functionality. It is recommended to remove this package to reduce the potential attack surface.

Solution

Run the following commands to stop avahi-daemon.socket and avahi-daemon.service and remove the avahi-daemon package:

systemctl stop avahi-daemon.socket avahi-daemon.service # apt purge avahi-daemon

- OR -
- IF the avahi-daemon package is required as a dependency:

Run the following commands to stop and mask the avahi-daemon.socket and avahi-daemon.service:

systemctl stop avahi-daemon.socket avahi-daemon.service # systemctl mask avahi-daemon.socket avahi-daemon.service

Impact:

There may be packages that are dependent on the avahi package. If the avahi package is removed, these dependent packages will be removed as well. Before removing the avahi package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the avahi-daemon.socket and avahi-daemon.service leaving the avahi package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7

CSCV7 9.2
CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

cmd: /bin/dpkg -s avahi-daemon 2>&1 | /bin/grep -E '(^Status: |not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s avahi-daemon 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned : dpkg-query: package 'avahi-daemon' is not installed and no information is available

2.1.3 Ensure dhcp server services are not in use

Info

The Dynamic Host Configuration Protocol (DHCP) is a service that allows machines to be dynamically assigned IP addresses. There are two versions of the DHCP protocol DHCPv4 and DHCPv6 At startup the server may be started for one or the other via the -4 or -6 arguments.

Unless a system is specifically set up to act as a DHCP server, it is recommended that this package be removed to reduce the potential attack surface.

Solution

Run the following commands to stop isc-dhcp-server.service and isc-dhcp-server6.service and remove the isc-dhcp-server package:

systemctl stop isc-dhcp-server.service isc-dhcp-server6.service # apt purge isc-dhcp-server

- OR -
- IF the isc-dhcp-server package is required as a dependency:

Run the following commands to stop and mask isc-dhcp-server.service and isc-dhcp-server6.service:

systemctl stop isc-dhcp-server.service isc-dhcp-server6.service # systemctl mask isc-dhcp-server isc-dhcp-server6.service

Impact:

There may be packages that are dependent on the isc-dhcp-server package. If the isc-dhcp-server package is removed, these dependent packages will be removed as well. Before removing the isc-dhcp-server package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the isc-dhcp-server.service and isc-dhcp-server6.service leaving the isc-dhcp-server package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8

CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s isc-dhcp-server 2>&1 | /bin/grep -E '(^Status: |not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s isc-dhcp-server 2>&1 | /bin/grep -E '(^Status:|not installed)''
returned:

dpkg-query: package 'isc-dhcp-server' is not installed and no information is available
```

2.1.4 Ensure dns server services are not in use

Info

The Domain Name System (DNS) is a hierarchical naming system that maps names to IP addresses for computers, services and other resources connected to a network.

Unless a system is specifically designated to act as a DNS server, it is recommended that the package be deleted to reduce the potential attack surface.

Solution

Run the following commands to stop bind9.service and remove the bind9 package:

systemctl stop bind9.service # apt purge bind9

- OR -
- IF the bind9 package is required as a dependency:

Run the following commands to stop and mask bind9.service:

systemctl stop bind9.service # systemctl mask bind9.service

Impact:

There may be packages that are dependent on the bind9 package. If the bind9 package is removed, these dependent packages will be removed as well. Before removing the bind9 package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the bind9.service leaving the bind9 package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s bind9 2>&1 | /bin/grep -E '(^Status:|not installed)'

expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s bind9 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'bind9' is not installed and no information is available
```

2.1.5 Ensure dnsmasq services are not in use

Info

dnsmasq is a lightweight tool that provides DNS caching, DNS forwarding and DHCP (Dynamic Host Configuration Protocol) services.

Unless a system is specifically designated to act as a DNS caching, DNS forwarding and/or DHCP server, it is recommended that the package be removed to reduce the potential attack surface.

Solution

Run the following commands to stop dnsmasq.service and remove dnsmasq package:

systemctl stop dnsmasq.service # apt purge dnsmasq

- OR -
- IF the dnsmasq package is required as a dependency:

Run the following commands to stop and mask the dnsmasq.service:

systemctl stop dnsmasq.service # systemctl mask dnsmasq.service

Impact:

There may be packages that are dependent on the dnsmasq package. If the dnsmasq package is removed, these dependent packages will be removed as well. Before removing the dnsmasq package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the dnsmasq.service leaving the dnsmasq package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3

GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s dnsmasq 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s dnsmasq 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'dnsmasq' is not installed and no information is available

2.1.6 Ensure ftp server services are not in use

Info

The File Transfer Protocol (FTP) provides networked computers with the ability to transfer files.

FTP does not protect the confidentiality of data or authentication credentials. It is recommended SFTP be used if file transfer is required. Unless there is a need to run the system as a FTP server (for example, to allow anonymous downloads), it is recommended that the package be deleted to reduce the potential attack surface.

Solution

Run the following commands to stop vsftpd.service and remove the vsftpd package:

systemctl stop vsftpd.service # apt purge vsftpd

- OR -
- IF the vsftpd package is required as a dependency:

Run the following commands to stop and mask the vsftpd.service:

systemctl stop vsftpd.service # systemctl mask vsftpd.service

Note: Other ftp server packages may exist. If not required and authorized by local site policy, they should also be removed. If the package is required for a dependency, the service should be stopped and masked.

Impact:

There may be packages that are dependent on the vsftpd package. If the vsftpd package is removed, these dependent packages will be removed as well. Before removing the vsftpd package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the vsftpd.service leaving the vsftpd package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2

 CSCV8
 4.8

 CSF
 PR.IP-1

 CSF
 PR.PT-3

 GDPR
 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s vsftpd 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s vsftpd 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'vsftpd' is not installed and no information is available

2.1.7 Ensure Idap server services are not in use

Info

The Lightweight Directory Access Protocol (LDAP) was introduced as a replacement for NIS/YP. It is a service that provides a method for looking up information from a central database.

If the system will not need to act as an LDAP server, it is recommended that the software be removed to reduce the potential attack surface.

Solution

Run the following commands to stop slapd.service and remove the slapd package:

systemctl stop slapd.service # apt purge slapd

- OR -
- IF the slapd package is required as a dependency:

Run the following commands to stop and mask slapd.service:

systemctl stop slapd.service # systemctl mask slapd.service

Impact:

There may be packages that are dependent on the slapd package. If the slapd package is removed, these dependent packages will be removed as well. Before removing the slapd package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the slapd.service leaving the slapd package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s slapd 2>&1 | /bin/grep -E '(^Status:|not installed)'

expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s slapd 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'slapd' is not installed and no information is available
```

2.1.8 Ensure message access server services are not in use

Info

dovecot-imapd and dovecot-pop3d are an open source IMAP and POP3 server for Linux based systems.

Unless POP3 and/or IMAP servers are to be provided by this system, it is recommended that the package be removed to reduce the potential attack surface.

Note: Several IMAP/POP3 servers exist and can use other service names. These should also be audited and the packages removed if not required.

Solution

Run one of the following commands to remove dovecot-imapd and dovecot-pop3d:

Run the following commands to stop dovecot.socket and dovecot.service and remove the dovecot-imapd and dovecot-pop3d packages:

systemctl stop dovecot.socket dovecot.service # apt purge dovecot-imapd dovecot-pop3d

- OR -
- IF a package is installed and is required for dependencies:

Run the following commands to stop and mask dovecot.socket and dovecot.service:

systemctl stop dovecot.socket dovecot.service # systemctl mask dovecot.socket dovecot.service

Impact:

There may be packages that are dependent on dovecot-imapd and/or dovecot-pop3d packages. If dovecot-imapd and dovecot-pop3d packages are removed, these dependent packages will be removed as well. Before removing dovecot-imapd and/or dovecot-pop3d packages, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask dovecot.socket and dovecot.service leaving dovecotimapd and/or dovecot-pop3d packages installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7

CSCV7 9.2
CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:

PASSED - dpkg check dovecot-pop3
The command '/bin/dpkg -s dovecot-pop3 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned:

dpkg-query: package 'dovecot-pop3' is not installed and no information is available

PASSED - dpkg check dovecot-imapd
The command '/bin/dpkg -s dovecot-imapd 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned:

dpkg-query: package 'dovecot-imapd' is not installed and no information is available
```

2.1.9 Ensure network file system services are not in use

Info

The Network File System (NFS) is one of the first and most widely distributed file systems in the UNIX environment. It provides the ability for systems to mount file systems of other servers through the network.

If the system does not export NFS shares, it is recommended that the nfs-kernel-server package be removed to reduce the remote attack surface.

Solution

Run the following command to stop nfs-server.service and remove nfs-kernel-server package:

systemctl stop nfs-server.service # apt purge nfs-kernel-server

- OR -
- IF the nfs-kernel-server package is required as a dependency:

Run the following commands to stop and mask the nfs-server.service:

systemctl stop nfs-server.service # systemctl mask nfs-server.service

Impact:

There may be packages that are dependent on the nfs-kernel-server package. If the nfs-kernel-server package is removed, these dependent packages will be removed as well. Before removing the nfs-kernel-server package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the nfs-server.service leaving the nfs-kernel-server package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1

CSF PR.PT-3 GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s nfs-kernel-server 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s nfs-kernel-server 2>&1 | /bin/grep -E '(^Status:|not installed)''
returned:

dpkg-query: package 'nfs-kernel-server' is not installed and no information is available
```

2.1.10 Ensure nis server services are not in use

Info

The Network Information Service (NIS) (formally known as Yellow Pages) is a client-server directory service protocol for distributing system configuration files. The NIS server is a collection of programs that allow for the distribution of configuration files. The NIS client (ypbind) was used to bind a machine to an NIS server and receive the distributed configuration files.

ypserv.service is inherently an insecure system that has been vulnerable to DOS attacks, buffer overflows and has poor authentication for querying NIS maps. NIS generally has been replaced by such protocols as Lightweight Directory Access Protocol (LDAP). It is recommended that ypserv.service be removed and other, more secure services be used

Solution

Run the following commands to stop ypserv.service and remove ypserv package:

systemctl stop ypserv.service # apt purge ypserv

- OR -
- IF the ypserv package is required as a dependency:

Run the following commands to stop and mask ypserv.service:

systemctl stop ypserv.service # systemctl mask ypserv.service

Impact:

There may be packages that are dependent on the ypserv package. If the ypserv package is removed, these dependent packages will be removed as well. Before removing the ypserv package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the ypserv.service leaving the ypserv package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	

 CSCV8
 4.8

 CSF
 PR.IP-1

 CSF
 PR.PT-3

 GDPR
 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s ypserv 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s ypserv 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :
dpkg-query: package 'ypserv' is not installed and no information is available

2.1.11 Ensure print server services are not in use

Info

The Common Unix Print System (CUPS) provides the ability to print to both local and network printers. A system running CUPS can also accept print jobs from remote systems and print them to local printers. It also provides a web based remote administration capability.

If the system does not need to print jobs or accept print jobs from other systems, it is recommended that CUPS be removed to reduce the potential attack surface.

Solution

Run the following commands to stop cups.socket and cups.service and remove the cups package:

systemctl stop cups.socket cups.service # apt purge cups

- OR -
- IF the cups package is required as a dependency:

Run the following commands to stop and mask the cups.socket and cups.service:

systemctl stop cups.socket cups.service # systemctl mask cups.socket cups.service

Impact:

Removing the cups package, or disabling cups.socket and/or cups.service will prevent printing from the system, a common task for workstation systems.

There may be packages that are dependent on the cups package. If the cups package is removed, these dependent packages will be removed as well. Before removing the cups package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask cups.socket and cups.service leaving the cups package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2

CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s cups 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s cups 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'cups' is not installed and no information is available
```

2.1.12 Ensure rpcbind services are not in use

Info

The rpcbind utility maps RPC services to the ports on which they listen. RPC processes notify rpcbind when they start, registering the ports they are listening on and the RPC program numbers they expect to serve. The client system then contacts rpcbind on the server with a particular RPC program number. The rpcbind.service redirects the client to the proper port number so it can communicate with the requested service.

Portmapper is an RPC service, which always listens on tcp and udp 111, and is used to map other RPC services (such as nfs, nlockmgr, quotad, mountd, etc.) to their corresponding port number on the server. When a remote host makes an RPC call to that server, it first consults with portmap to determine where the RPC server is listening.

A small request (~82 bytes via UDP) sent to the Portmapper generates a large response (7x to 28x amplification), which makes it a suitable tool for DDoS attacks. If rpcbind is not required, it is recommended to remove rpcbind package to reduce the potential attack surface.

Solution

Run the following commands to stop rpcbind.socket and rpcbind.service and remove the rpcbind package:

systemctl stop rpcbind.socket rpcbind.service # apt purge rpcbind

- OR -
- IF the rpcbind package is required as a dependency:

Run the following commands to stop and mask the rpcbind.socket and rpcbind.service:

systemctl stop rpcbind.socket rpcbind.service # systemctl mask rpcbind.socket rpcbind.service

Impact:

Many of the libvirt packages used by Enterprise Linux virtualization, and the nfs-utils package used for The Network File System (NFS), are dependent on the rpcbind package. If the rpcbind package is removed, these dependent packages will be removed as well. Before removing the rpcbind package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the rpcbind.socket and rpcbind.service leaving the rpcbind package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6

800-53 CM-7 800-53R5 CM-6 800-53R5 CM-7 CSCV7 9.2 CSCV8 4.8 CSF PR.IP-1 CSF PR.PT-3 **GDPR** 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s rpcbind 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s rpcbind 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'rpcbind' is not installed and no information is available
```

2.1.13 Ensure rsync services are not in use

Info

The rsync service can be used to synchronize files between systems over network links.

rsync.service presents a security risk as the rsync protocol is unencrypted.

The rsync package should be removed to reduce the attack area of the system.

Solution

Run the following commands to stop rsync.service and remove the rsync package:

systemctl stop rsync.service # apt purge rsync

- OR -
- IF the rsync package is required as a dependency:

Run the following commands to stop and mask rsync.service:

systemctl stop rsync.service # systemctl mask rsync.service

Impact:

There may be packages that are dependent on the rsync package. If the rsync package is removed, these dependent packages will be removed as well. Before removing the rsync package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask rsync.service leaving the rsync package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

2.1.14 Ensure samba file server services are not in use

Info

The Samba daemon allows system administrators to configure their Linux systems to share file systems and directories with Windows desktops. Samba will advertise the file systems and directories via the Server Message Block (SMB) protocol. Windows desktop users will be able to mount these directories and file systems as letter drives on their systems.

If there is no need to mount directories and file systems to Windows systems, then this service should be deleted to reduce the potential attack surface.

Solution

Run the following commands to stop smbd.service and remove samba package:

systemctl stop smbd.service # apt purge samba

- OR -
- IF the samba package is required as a dependency:

Run the following commands to stop and mask the smbd.service:

systemctl stop smbd.service # systemctl mask smbd.service

Impact:

There may be packages that are dependent on the samba package. If the samba package is removed, these dependent packages will be removed as well. Before removing the samba package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the smbd.service leaving the samba package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	

CSF PR.PT-3 GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s samba 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s samba 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :
dpkg-query: package 'samba' is not installed and no information is available
```

2.1.15 Ensure snmp services are not in use

Info

Simple Network Management Protocol (SNMP) is a widely used protocol for monitoring the health and welfare of network equipment, computer equipment and devices like UPSs.

Net-SNMP is a suite of applications used to implement SNMPv1 (RFC 1157), SNMPv2 (RFCs 1901-1908), and SNMPv3 (RFCs 3411-3418) using both IPv4 and IPv6.

Support for SNMPv2 classic (a.k.a. "SNMPv2 historic" - RFCs 1441-1452) was dropped with the 4.0 release of the UCD-snmp package.

The Simple Network Management Protocol (SNMP) server is used to listen for SNMP commands from an SNMP management system, execute the commands or collect the information and then send results back to the requesting system.

The SNMP server can communicate using SNMPv1 which transmits data in the clear and does not require authentication to execute commands. SNMPv3 replaces the simple/clear text password sharing used in SNMPv2 with more securely encoded parameters. If the the SNMP service is not required, the snmpd package should be removed to reduce the attack surface of the system.

Note: If SNMP is required:

- The server should be configured for SNMP v3 only. User Authentication and Message Encryption should be configured.
- If SNMP v2 is absolutely necessary, modify the community strings' values.

Solution

Run the following commands to stop snmpd.service and remove the snmpd package:

systemctl stop snmpd.service # apt purge snmpd

- OR - If the package is required for dependencies:

Run the following commands to stop and mask the snmpd.service:

systemctl stop snmpd.service # systemctl mask snmpd.service

Impact:

There may be packages that are dependent on the snmpd package. If the snmpd package is removed, these packages will be removed as well.

Before removing the snmpd package, review any dependent packages to determine if they are required on the system. If a dependent package is required, stop and mask the snmpd.service leaving the snmpd package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s snmpd $2>&1 \mid$ /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s snmpd 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'snmpd' is not installed and no information is available
```

2.1.16 Ensure tftp server services are not in use

Info

Trivial File Transfer Protocol (TFTP) is a simple protocol for exchanging files between two TCP/IP machines. TFTP servers allow connections from a TFTP Client for sending and receiving files.

Unless there is a need to run the system as a TFTP server, it is recommended that the package be removed to reduce the potential attack surface.

TFTP does not have built-in encryption, access control or authentication. This makes it very easy for an attacker to exploit TFTP to gain access to files

Solution

Run the following commands to stop tftpd-hpa.service and remove the tftpd-hpa package:

systemctl stop tftpd-hpa.service # apt purge tftpd-hpa

- OR -
- IF the tftpd-hpa package is required as a dependency:

Run the following commands to stop and mask tftpd-hpa.service:

systemctl stop tftpd-hpa.service # systemctl mask tftpd-hpa.service

Impact:

TFTP is often used to provide files for network booting such as for PXE based installation of servers.

There may be packages that are dependent on the tftpd-hpa package. If the tftpd-hpa package is removed, these dependent packages will be removed as well. Before removing the tftpd-hpa package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask tftpd-hpa.service leaving the tftpd-hpa package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2

 CSCV8
 4.8

 CSF
 PR.IP-1

 CSF
 PR.PT-3

 GDPR
 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s tftpd-hpa 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s tftpd-hpa 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :
dpkg-query: package 'tftpd-hpa' is not installed and no information is available
```

2.1.17 Ensure web proxy server services are not in use

Info

Squid is a standard proxy server used in many distributions and environments.

Unless a system is specifically set up to act as a proxy server, it is recommended that the squid package be removed to reduce the potential attack surface.

Note: Several HTTP proxy servers exist. These should be checked and removed unless required.

Solution

Run the following commands to stop squid.service and remove the squid package:

systemctl stop squid.service # apt purge squid

- OR - If the squid package is required as a dependency:

Run the following commands to stop and mask the squid.service:

systemctl stop squid.service # systemctl mask squid.service

Impact:

There may be packages that are dependent on the squid package. If the squid package is removed, these dependent packages will be removed as well. Before removing the squid package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the squid.service leaving the squid package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s squid 2>&1 | /bin/grep -E '(^Status: |not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s squid 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned : dpkg-query: package 'squid' is not installed and no information is available

2.1.19 Ensure xinetd services are not in use

Info

The X Window System provides a Graphical User Interface (GUI) where users can have multiple windows in which to run programs and various add on. The X Windows system is typically used on workstations where users login, but not on servers where users typically do not login.

Unless your organization specifically requires graphical login access via X Windows, remove it to reduce the potential attack surface.

Solution

Run the following commands to stop xinetd.service and remove the xinetd package:

systemctl stop xinetd.service # apt purge xinetd

-OR-

-IF- the xinetd package is required as a dependency:

Run the following commands to stop and mask the xinetd.service:

systemctl stop xinetd.service # systemctl mask xinetd.service

Impact:

There may be packages that are dependent on the xinetd package. If the xinetd package is removed, these dependent packages will be removed as well. Before removing the xinetd package, review any dependent packages to determine if they are required on the system.

-IF- a dependent package is required: stop and mask xinetd.service leaving the xinetd package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3

GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s xinetd 2>&1 | /bin/grep -E '(^Status:|not installed)'

expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s xinetd 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'xinetd' is not installed and no information is available

2.1.21 Ensure mail transfer agent is configured for local-only mode

Info

Mail Transfer Agents (MTA), such as sendmail and Postfix, are used to listen for incoming mail and transfer the messages to the appropriate user or mail server. If the system is not intended to be a mail server, it is recommended that the MTA be configured to only process local mail.

The software for all Mail Transfer Agents is complex and most have a long history of security issues. While it is important to ensure that the system can process local mail messages, it is not necessary to have the MTA's daemon listening on a port unless the server is intended to be a mail server that receives and processes mail from other systems.

Solution

Edit /etc/postfix/main.cf and add the following line to the RECEIVING MAIL section. If the line already exists, change it to look like the line below:

inet_interfaces = loopback-only

Run the following command to restart postfix:

systemctl restart postfix

Note:

- This recommendation is designed around the postfix mail server.
- Depending on your environment you may have an alternative MTA installed such as exim4. If this is the case consult the documentation for your installed MTA to configure the recommended state.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- Port "25" is not listening on a non-loopback network interface
    - Port "465" is not listening on a non-loopback network interface
    - Port "587" is not listening on a non-loopback network interface
```

2.2.1 Ensure NIS Client is not installed

Info

The Network Information Service (NIS), formerly known as Yellow Pages, is a client-server directory service protocol used to distribute system configuration files. The NIS client was used to bind a machine to an NIS server and receive the distributed configuration files.

The NIS service is inherently an insecure system that has been vulnerable to DOS attacks, buffer overflows and has poor authentication for querying NIS maps. NIS generally has been replaced by such protocols as Lightweight Directory Access Protocol (LDAP). It is recommended that the service be removed.

Solution

Uninstall nis:

apt purge nis

Impact:

Many insecure service clients are used as troubleshooting tools and in testing environments. Uninstalling them can inhibit capability to test and troubleshoot. If they are required it is advisable to remove the clients after use to prevent accidental or intentional misuse.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	2.6
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2

SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s nis 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s nis 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'nis' is not installed and no information is available
```

2.2.2 Ensure rsh client is not installed

Info

The rsh-client package contains the client commands for the rsh services.

These legacy clients contain numerous security exposures and have been replaced with the more secure SSH package. Even if the server is removed, it is best to ensure the clients are also removed to prevent users from inadvertently attempting to use these commands and therefore exposing their credentials. Note that removing the rsh-client package removes the clients for rsh rcp and rlogin

Solution

Uninstall rsh:

apt purge rsh-client

Impact:

Many insecure service clients are used as troubleshooting tools and in testing environments. Uninstalling them can inhibit capability to test and troubleshoot. If they are required it is advisable to remove the clients after use to prevent accidental or intentional misuse.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2

SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s rsh-client $2>&1 \mid /bin/grep$ -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s rsh-client 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'rsh-client' is not installed and no information is available

2.2.3 Ensure talk client is not installed

Info

The talk software makes it possible for users to send and receive messages across systems through a terminal session. The talk client, which allows initialization of talk sessions, is installed by default.

The software presents a security risk as it uses unencrypted protocols for communication.

Solution

Uninstall talk:

apt purge talk

Impact:

Many insecure service clients are used as troubleshooting tools and in testing environments. Uninstalling them can inhibit capability to test and troubleshoot. If they are required it is advisable to remove the clients after use to prevent accidental or intentional misuse.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s talk 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s talk 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'talk' is not installed and no information is available

2.2.4 Ensure telnet client is not installed

Info

The telnet package contains the telnet client, which allows users to start connections to other systems via the telnet protocol.

The telnet protocol is insecure and unencrypted. The use of an unencrypted transmission medium could allow an unauthorized user to steal credentials. The ssh package provides an encrypted session and stronger security and is included in most Linux distributions.

Solution

Uninstall telnet:

apt purge telnet

Impact:

Many insecure service clients are used as troubleshooting tools and in testing environments. Uninstalling them can inhibit capability to test and troubleshoot. If they are required it is advisable to remove the clients after use to prevent accidental or intentional misuse.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2

SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s telnet 2>&1 | /bin/grep -E '(c) expect: (c) deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s telnet 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'telnet' is not installed and no information is available

2.2.5 Ensure ldap client is not installed

Info

The Lightweight Directory Access Protocol (LDAP) was introduced as a replacement for NIS/YP. It is a service that provides a method for looking up information from a central database.

If the system will not need to act as an LDAP client, it is recommended that the software be removed to reduce the potential attack surface.

Solution

Uninstall Idap-utils:

apt purge Idap-utils

Impact:

Removing the LDAP client will prevent or inhibit using LDAP for authentication in your environment.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s ldap-utils $2>&1 \mid$ /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

The command '/bin/dpkg -s ldap-utils 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned : dpkg-query: package 'ldap-utils' is not installed and no information is available

2.2.6 Ensure ftp client is not installed

Info

FTP (File Transfer Protocol) is a traditional and widely used standard tool for transferring files between a server and clients over a network, especially where no authentication is necessary (permits anonymous users to connect to a server).

FTP does not protect the confidentiality of data or authentication credentials. It is recommended SFTP be used if file transfer is required. Unless there is a need to run the system as a FTP server (for example, to allow anonymous downloads), it is recommended that the package be removed to reduce the potential attack surface.

Solution

Run the following command to uninstall ftp:

apt purge ftp

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s ftp 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s ftp 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :

dpkg-query: package 'ftp' is not installed and no information is available
```

2.3.1.1 Ensure a single time synchronization daemon is in use

Info

System time should be synchronized between all systems in an environment. This is typically done by establishing an authoritative time server or set of servers and having all systems synchronize their clocks to them.

Notes:

- On virtual systems where host based time synchronization is available consult your virtualization software documentation and verify that host based synchronization is in use and follows local site policy. In this scenario, this section should be skipped
- Only one time synchronization method should be in use on the system. Configuring multiple time synchronization methods could lead to unexpected or unreliable results

Time synchronization is important to support time sensitive security mechanisms and ensures log files have consistent time records across the enterprise, which aids in forensic investigations.

Solution

On physical systems, and virtual systems where host based time synchronization is not available.

Select one of the two time synchronization daemons; chrony (1) or systemd-timesyncd (2) and following the remediation procedure for the selected daemon.

Note: enabling more than one synchronization daemon could lead to unexpected or unreliable results:

- chrony

Run the following command to install chrony:

apt install chrony

Run the following commands to stop and mask the systemd-timesyncd daemon:

systemctl stop systemd-timesyncd.service

systemctl mask systemd-timesyncd.service

Note:

- Subsection:

Configure chrony

should be followed

- Subsection:

Configure systemd-timesyncd

should be skipped

<xhtml:ol start="2"> - systemd-timesyncd

Run the following command to remove the chrony package:

apt purge chrony # apt autoremove chrony

Note:

- Subsection:

Configure systemd-timesyncd

should be followed

- Subsection:

Configure chrony

should be skipped

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.6
800-171	3.3.7
800-53	AU-7
800-53	AU-8
800-53R5	AU-7
800-53R5	AU-8
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(b)
CSCV7	6.1
CSCV8	8.4
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-7
ITSG-33	AU-8
LEVEL	1A
NESA	T3.6.2
QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2
QCSC-V1	13.2
SWIFT-CSCV1	6.4
TBA-FIISB	37.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- Only one time sync daemon is in use on the system

- Daemon: "systemd-timesyncd.service" is enabled on the system

- Daemon: "systemd-timesyncd.service" is active on the system

- Daemon: "chrony.service" is not enabled and not active on the system
```

2.3.2.1 Ensure systemd-timesyncd configured with authorized timeserver

Info
NTP=
- A space-separated list of NTP server host names or IP addresses. During runtime this list is combined with any per-interface NTP servers acquired from systemd-networkd.service(8). systemd-timesyncd will contact all configured system or per-interface servers in turn, until one responds. When the empty string is assigned, the list of NTP servers is reset, and all prior assignments will have no effect. This setting defaults to an empty list.
FallbackNTP=
- A space-separated list of NTP server host names or IP addresses to be used as the fallback NTP servers. Any per-interface NTP servers obtained from systemd-networkd.service(8) take precedence over this setting, as do any servers set via NTP= above. This setting is hence only relevant if no other NTP server information is known. When the empty string is assigned, the list of NTP servers is reset, and all prior assignments will have no effect. If this option is not given, a compiled-in list of NTP servers is used.
Time synchronization is important to support time sensitive security mechanisms and to ensure log files have consistent time records across the enterprise to aid in forensic investigations
Solution
Set NTP and/or FallbackNPT parameters to local site approved authoritative time server(s) in /etc/systemd/timesyncd.conf or a file in /etc/systemd/timesyncd.conf.d/ ending inconf in the [Time] section:
Example file:
[Time] NTP=time.nist.gov # Uses the generic name for NIST's time servers FallbackNTP=time-a-g.nist.gov time-b-g.nist.gov time-c-g.nist.gov # Space separated list of NIST time servers
Example script to create systemd drop-in file:
#!/usr/bin/env bash
{ [!-d/etc/systemd/timesyncd.conf.d/] & mp; & mkdir/etc/systemd/timesyncd.conf.d/ printf'%s' "[Time]" "NTP=time.nist.gov" "FallbackNTP=time-a-g.nist.gov time-b-g.nist.gov time-c-g.nist.gov" >> /etc/systemd/timesyncd.conf.d/60-timesyncd.conf }
Note: If this setting appears in a canonically later file, or later in the same file, the setting will be overwritten
Run to following command to update the parameters in the service:
systemctl reload-or-restart systemd-journald
See Also
https://workbench.cisecurity.org/benchmarks/17074
References
800-171 3.3.6

800-171 3.3.7 800-53 AU-7 800-53 AU-8 800-53R5 AU-7 800-53R5 AU-8 CN-L3 7.1.2.3(c) CN-L3 8.1.4.3(b) CSCV7 6.1 CSCV8 8.4 CSF PR.PT-1 RS.AN-3 CSF **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-7 ITSG-33 AU-8 LEVEL 1A NESA T3.6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 11.2 QCSC-V1 QCSC-V1 13.2 SWIFT-CSCV1 6.4 TBA-FIISB 37.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "NTP" is correctly set to "time.nist.gov" in "/etc/systemd/timesyncd.conf"

- "FallbackNTP" is correctly set to "time-a-g.nist.gov" in "/etc/systemd/timesyncd.conf"
```

2.3.2.2 Ensure systemd-timesyncd is enabled and running

Info

systemd-timesyncd is a daemon that has been added for synchronizing the system clock across the network

systemd-timesyncd needs to be enabled and running in order to synchronize the system to a timeserver.

Time synchronization is important to support time sensitive security mechanisms and to ensure log files have consistent time records across the enterprise to aid in forensic investigations

Solution

- IF - systemd-timesyncd is in use on the system, run the following commands:

Run the following command to unmask systemd-timesyncd.service:

systemctl unmask systemd-timesyncd.service

Run the following command to enable and start systemd-timesyncd.service:

systemctl --now enable systemd-timesyncd.service

- OR -

If another time synchronization service is in use on the system, run the following command to stop and mask systemd-timesyncd :

systemctl --now mask systemd-timesyncd.service

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.6
800-171	3.3.7
800-53	AU-7
800-53	AU-8
800-53R5	AU-7
800-53R5	AU-8
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(b)
CSCV7	6.1
CSCV8	8.4
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-7 ITSG-33 AU-8 LEVEL 1M NESA T3.6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4 TBA-FIISB 37.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

2.3.3.1 Ensure chrony is configured with authorized timeserver

Info

server

- The server directive specifies an NTP server which can be used as a time source. The client-server relationship is strictly hierarchical: a client might synchronize its system time to that of the server, but the server's system time will never be influenced by that of a client.
- This directive can be used multiple times to specify multiple servers.
- The directive is immediately followed by either the name of the server, or its IP address.

pool

- The syntax of this directive is similar to that for the server directive, except that it is used to specify a pool of NTP servers rather than a single NTP server. The pool name is expected to resolve to multiple addresses which might change over time.
- This directive can be used multiple times to specify multiple pools.
- All options valid in the server directive can be used in this directive too.

Time synchronization is important to support time sensitive security mechanisms and to ensure log files have consistent time records across the enterprise to aid in forensic investigations

Solution

Edit /etc/chrony/chrony.conf or a file ending insources in /etc/chrony/sources.d/ and add or edit server or pool lines as appropriate according to local site policy:

<[server|pool]> <[remote-server|remote-pool]>

Examples:

pool directive:

pool time.nist.gov iburst maxsources 4 #The maxsources option is unique to the pool directive

server directive:

server time-a-g.nist.gov iburst server 132.163.97.3 iburst server time-d-b.nist.gov iburst

Run one of the following commands to load the updated time sources into chronyd running config:

systemctl restart chronyd

- OR if sources are in a .sources file -

chronyc reload sources

- OR -

If another time synchronization service is in use on the system, run the following command to remove chrony from the system:

apt purge chrony # apt autoremove chrony

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.3.6
800-171	3.3.7
800-53	AU-7
800-53	AU-8
800-53R5	AU-7
800-53R5	AU-8
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(b)
CSCV7	6.1
CSCV8	8.4
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-7
ITSG-33	AU-8
LEVEL	1M
NESA	T3.6.2
QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2
QCSC-V1	13.2
SWIFT-CSCV1	6.4
TBA-FIISB	37.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

2.3.3.2 Ensure chrony is running as user _chrony

Info

The chrony package is installed with a dedicated user account _chrony This account is granted the access required by the chronyd service

The chronyd service should run with only the required privlidges

Solution

Add or edit the user line to /etc/chrony/chrony.conf or a file ending inconf in /etc/chrony/conf.d/:

user _chrony

- OR -

If another time synchronization service is in use on the system, run the following command to remove chrony from the system:

apt purge chrony # apt autoremove chrony

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.6	
800-171	3.3.7	
800-53	AU-7	
800-53	AU-8	
800-53R5	AU-7	
800-53R5	AU-8	
CN-L3	7.1.2.3(c)	
CN-L3	8.1.4.3(b)	
CSCV7	6.1	
CSCV8	8.4	
CSF	PR.PT-1	
CSF	RS.AN-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(b)	
ITSG-33	AU-7	
ITSG-33	AU-8	
LEVEL	1A	
NESA	T3.6.2	

QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2
QCSC-V1	13.2
SWIFT-CSCV1	6.4
TBA-FIISB	37.4

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

2.3.3.3 Ensure chrony is enabled and running

Info

chrony is a daemon for synchronizing the system clock across the network

chrony needs to be enabled and running in order to synchronize the system to a timeserver.

Time synchronization is important to support time sensitive security mechanisms and to ensure log files have consistent time records across the enterprise to aid in forensic investigations

Solution

- IF - chrony is in use on the system, run the following commands:

Run the following command to unmask chrony.service:

systemctl unmask chrony.service

Run the following command to enable and start chrony.service:

systemctl --now enable chrony.service

- OR -

If another time synchronization service is in use on the system, run the following command to remove chrony:

apt purge chrony # apt autoremove chrony

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.6	
800-171	3.3.7	
800-53	AU-7	
800-53	AU-8	
800-53R5	AU-7	
800-53R5	AU-8	
CN-L3	7.1.2.3(c)	
CN-L3	8.1.4.3(b)	
CSCV7	6.1	
CSCV8	8.4	
CSF	PR.PT-1	
CSF	RS.AN-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	

HIPAA 164.312(b) ITSG-33 AU-7 AU-8 ITSG-33 LEVEL 1A NESA T3.6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4 TBA-FIISB 37.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

2.4.1.1 Ensure cron daemon is enabled and active

Info

The cron daemon is used to execute batch jobs on the system.

While there may not be user jobs that need to be run on the system, the system does have maintenance jobs that may include security monitoring that have to run, and cron is used to execute them.

Solution

- IF - cron is installed on the system:

Run the following commands to unmask, enable, and start cron:

systemctl unmask "\$(systemctl list-unit-files | awk '\$1~/^crond?.service/{print \$1}')"

systemctl --now enable "\$(systemctl list-unit-files | awk '\$1~/^crond?.service/{print \$1}')"

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2
800-53	CM-6b.
800-53R5	CM-6b.
CN-L3	8.1.10.6(d)
CSF	PR.IP-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6b.
LEVEL	1A

NESA T3.2.1 SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

2.4.1.2 Ensure permissions on /etc/crontab are configured

Info

The /etc/crontab file is used by cron to control its own jobs. The commands in this item make sure that root is the user and group owner of the file and that only the owner can access the file.

This file contains information on what system jobs are run by cron. Write access to these files could provide unprivileged users with the ability to elevate their privileges. Read access to these files could provide users with the ability to gain insight on system jobs that run on the system and could provide them a way to gain unauthorized privileged access.

Solution

- IF - cron is installed on the system:

Run the following commands to set ownership and permissions on /etc/crontab:

chown root:root /etc/crontab # chmod og-rwx /etc/crontab

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)

CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29

PCI-DSSV3.2.1 PCI-DSSV4.0

PCI-DSSV4.0

7.1.2

7.2.1

7.2.2

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/crontab group: root mask: 177 owner: root

Hosts

192.168.40.33

The file /etc/crontab with fmode owner: root group: root mode: 0600 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/crontab

2.4.1.3 Ensure permissions on /etc/cron.hourly are configured

Info

This directory contains system cron jobs that need to run on an hourly basis. The files in this directory cannot be manipulated by the crontab command, but are instead edited by system administrators using a text editor. The commands below restrict read/write and search access to user and group root, preventing regular users from accessing this directory.

Granting write access to this directory for non-privileged users could provide them the means for gaining unauthorized elevated privileges. Granting read access to this directory could give an unprivileged user insight in how to gain elevated privileges or circumvent auditing controls.

Solution

- IF - cron is installed on the system:

Run the following commands to set ownership and permissions on the /etc/cron.hourly directory:

chown root:root /etc/cron.hourly/ # chmod og-rwx /etc/cron.hourly/

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	

CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29

7.1.2

7.2.1

7.2.2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/cron.hourly group: root mask: 077 owner: root

Hosts

192.168.40.33

The file /etc/cron.hourly with fmode owner: root group: root mode: 0700 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/cron.hourly

2.4.1.4 Ensure permissions on /etc/cron.daily are configured

Info

The /etc/cron.daily directory contains system cron jobs that need to run on a daily basis. The files in this directory cannot be manipulated by the crontab command, but are instead edited by system administrators using a text editor. The commands below restrict read/write and search access to user and group root, preventing regular users from accessing this directory.

Granting write access to this directory for non-privileged users could provide them the means for gaining unauthorized elevated privileges. Granting read access to this directory could give an unprivileged user insight in how to gain elevated privileges or circumvent auditing controls.

Solution

- IF - cron is installed on the system:

Run the following commands to set ownership and permissions on the /etc/cron.daily directory:

chown root:root /etc/cron.daily/ # chmod og-rwx /etc/cron.daily/

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	

CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29

7.1.2

7.2.1

7.2.2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/cron.daily group: root mask: 077 owner: root

Hosts

192.168.40.33

The file /etc/cron.daily with fmode owner: root group: root mode: 0700 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value $\frac{1}{2}$

/etc/cron.daily

2.4.1.5 Ensure permissions on /etc/cron.weekly are configured

Info

The /etc/cron.weekly directory contains system cron jobs that need to run on a weekly basis. The files in this directory cannot be manipulated by the crontab command, but are instead edited by system administrators using a text editor. The commands below restrict read/write and search access to user and group root, preventing regular users from accessing this directory.

Granting write access to this directory for non-privileged users could provide them the means for gaining unauthorized elevated privileges. Granting read access to this directory could give an unprivileged user insight in how to gain elevated privileges or circumvent auditing controls.

Solution

- IF - cron is installed on the system:

Run the following commands to set ownership and permissions on the /etc/cron.weekly directory:

chown root:root /etc/cron.weekly/ # chmod og-rwx /etc/cron.weekly/

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	

CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29

7.1.2

7.2.1

7.2.2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/cron.weekly group: root mask: 077 owner: root

Hosts

192.168.40.33

The file /etc/cron.weekly with fmode owner: root group: root mode: 0700 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/cron.weekly

2.4.1.6 Ensure permissions on /etc/cron.monthly are configured

Info

The /etc/cron.monthly directory contains system cron jobs that need to run on a monthly basis. The files in this directory cannot be manipulated by the crontab command, but are instead edited by system administrators using a text editor. The commands below restrict read/write and search access to user and group root, preventing regular users from accessing this directory.

Granting write access to this directory for non-privileged users could provide them the means for gaining unauthorized elevated privileges. Granting read access to this directory could give an unprivileged user insight in how to gain elevated privileges or circumvent auditing controls.

Solution

- IF - cron is installed on the system:

Run the following commands to set ownership and permissions on the /etc/cron.monthly directory:

chown root:root /etc/cron.monthly/ # chmod og-rwx /etc/cron.monthly/

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	

CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29

7.1.2

7.2.1

7.2.2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/cron.monthly group: root mask: 077 owner: root

Hosts

192.168.40.33

The file /etc/cron.monthly with fmode owner: root group: root mode: 0700 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

 $/ \verb|etc/cron.monthly|$

2.4.1.7 Ensure permissions on /etc/cron.d are configured

Info

The /etc/cron.d directory contains system cron jobs that need to run in a similar manner to the hourly, daily weekly and monthly jobs from /etc/crontab but require more granular control as to when they run. The files in this directory cannot be manipulated by the crontab command, but are instead edited by system administrators using a text editor. The commands below restrict read/write and search access to user and group root, preventing regular users from accessing this directory.

Granting write access to this directory for non-privileged users could provide them the means for gaining unauthorized elevated privileges. Granting read access to this directory could give an unprivileged user insight in how to gain elevated privileges or circumvent auditing controls.

Solution

- IF - cron is installed on the system:

Run the following commands to set ownership and permissions on the /etc/cron.d directory:

chown root:root /etc/cron.d/ # chmod og-rwx /etc/cron.d/

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29

2.4.1.7 Ensure permissions on /etc/cron.d are configured

7.1.2

7.2.1

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/cron.d group: root mask: 077 owner: root

Hosts

192.168.40.33

The file /etc/cron.d with fmode owner: root group: root mode: 0700 uid: 0 gid: 0 uneven permissions : FALSE is compliant with the policy value

/etc/cron.d

2.4.1.8 Ensure crontab is restricted to authorized users

Info

crontab is the program used to install, deinstall, or list the tables used to drive the cron daemon. Each user can have their own crontab, and though these are files in /var/spool/cron/crontabs they are not intended to be edited directly.

If the /etc/cron.allow file exists, then you must be listed (one user per line) therein in order to be allowed to use this command. If the /etc/cron.allow file does not exist but the /etc/cron.deny file does exist, then you must not be listed in the /etc/cron.deny file in order to use this command.

If neither of these files exists, then depending on site-dependent configuration parameters, only the super user will be allowed to use this command, or all users will be able to use this command.

If both files exist then /etc/cron.allow takes precedence. Which means that /etc/cron.deny is not considered and your user must be listed in /etc/cron.allow in order to be able to use the crontab.

Regardless of the existence of any of these files, the root administrative user is always allowed to setup a crontab.

The files /etc/cron.allow and /etc/cron.deny if they exist, must be either world-readable, or readable by group crontab If they are not, then cron will deny access to all users until the permissions are fixed.

There is one file for each user's crontab under the /var/spool/cron/crontabs directory. Users are not allowed to edit the files under that directory directly to ensure that only users allowed by the system to run periodic tasks can add them, and only syntactically correct crontabs will be written there. This is enforced by having the directory writable only by the crontab group and configuring crontab command with the setgid bid set for that specific group.

Note:

- Even though a given user is not listed in cron.allow cron jobs can still be run as that user
- The files /etc/cron.allow and /etc/cron.deny if they exist, only controls administrative access to the crontab command for scheduling and modifying cron jobs

On many systems, only the system administrator is authorized to schedule cron jobs. Using the cron.allow file to control who can run cron jobs enforces this policy. It is easier to manage an allow list than a deny list. In a deny list, you could potentially add a user ID to the system and forget to add it to the deny files.

Solution

- IF - cron is installed on the system:

Run the following script to:

- Create /etc/cron.allow if it doesn't exist
- Change owner or user root
- Change group owner to group root
- Change mode to 640 or more restrictive

#!/usr/bin/env bash

{ [!-e "/etc/cron.allow"] & amp; & amp; touch /etc/cron.allow chown root:root /etc/cron.allow chmod u-x,g-wx,o-rwx /etc/cron.allow }

- IF /etc/cron.deny exists, run the following commands to:
- Change owner or user root
- Change group owner to group root
- Change mode to 640 or more restrictive

[-e "/etc/cron.deny"] & amp; & am

See Also

https://workbench.cisecurity.org/benchmarks/17074

References	
800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2

CSF	PR.PT-3
GDPR	32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2
ISO/IEC-27001 A.9.4.1
ISO/IEC-27001 A.9.4.5
ITSG-33 AC-3
ITSG-33 AC-6
ITSG-33 MP-2
ITSG-33 MP-2a.

ITSG-33 LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 T4.2.1 NESA NESA T5.1.1 **NESA** T5.2.2 T5.4.1

NESA NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f

SS13c

NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2

NIAV2

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

All of the following must pass to satisfy this requirement:

PASSED - /etc/cron.deny file permissions

PASSED - /etc/cron.allow file permissions

The file /etc/cron.allow with fmode owner: root group: root mode: 0640 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/cron.allow

2.4.2.1 Ensure at is restricted to authorized users

Info

at allows fairly complex time specifications, extending the POSIX.2 standard. It accepts times of the form HH:MM to run a job at a specific time of day. (If that time is already past, the next day is assumed.) You may also specify midnight, noon, or teatime (4pm) and you can have a time-of-day suffixed with AM or PM for running in the morning or the evening. You can also say what day the job will be run, by giving a date in the form month-name day with an optional year, or giving a date of the form MMDD[CC]YY, MM/DD/[CC]YY, DD.MM.[CC]YY or [CC]YY-MM-DD. The specification of a date must follow the specification of the time of day. You can also give times like now + count time-units, where the time-units can be minutes, hours, days, or weeks and you can tell at to run the job today by suffixing the time with today and to run the job tomorrow by suffixing the time with tomorrow.

The /etc/at.allow and /etc/at.deny files determine which user can submit commands for later execution via at or batch. The format of the files is a list of usernames, one on each line. Whitespace is not permitted. If the file /etc/at.allow exists, only usernames mentioned in it are allowed to use at. If /etc/at.allow does not exist, /etc/at.deny is checked, every username not mentioned in it is then allowed to use at. An empty /etc/ at.deny means that every user may use at. If neither file exists, only the superuser is allowed to use at.

On many systems, only the system administrator is authorized to schedule at jobs. Using the at allow file to control who can run at jobs enforces this policy. It is easier to manage an allow list than a deny list. In a deny list, you could potentially add a user ID to the system and forget to add it to the deny files.

Solution

-IF- at is installed on the system:

Run the following script to:

- /etc/at.allow:
- Create the file if it doesn't exist
- Change owner or user root
- If group daemon exists, change to group daemon else change group to root
- Change mode to 640 or more restrictive
- -IF- /etc/at.deny exists:
- Change owner or user root
- If group daemon exists, change to group daemon else change group to root
- Change mode to 640 or more restrictive

#!/usr/bin/env bash

{ grep -Pq -- '^daemonb' /etc/group & & Lgroup="daemon" | | Lgroup="root"

[!-e "/etc/at.allow"] & amp; & amp; & touch /etc/at.allow chown root: "\$|_group" /etc/at.allow chmod u-x,g-wx,o-rwx /etc/at.allow [-e "/etc/at.deny"] & amp; & amp; & chown root: "\$|_group" /etc/at.deny [-e "/etc/at.deny"] & amp; & am

See Also

References	
800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.

LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

PASSED

Hosts

192.168.40.33

3.1.2 Ensure wireless interfaces are disabled

Info

Wireless networking is used when wired networks are unavailable.

-IF- wireless is not to be used, wireless devices can be disabled to reduce the potential attack surface.

Solution

Run the following script to disable any wireless interfaces:

#!/usr/bin/env bash

{ module_fix() { if ! modprobe -n -v "\$l_mname" | grep -P -- '^h*install /bin/(true|false)'; then echo -e " - setting module: \"\$l_mname\" to be un-loadable"

echo -e "install \$l_mname /bin/false" >> /etc/modprobe.d/"\$l_mname".conf fi if lsmod | grep "\$l_mname" > /dev/null 2>&1; then echo -e " - unloading module \"\$l_mname\""

modprobe -r "\$l_mname"

fi if ! grep -Pq -- "^h*blacklisth+\$l_mnameb" /etc/modprobe.d/*; then echo -e " - deny listing \"\$l_mname\"" echo -e "blacklist \$l_mname" >> /etc/modprobe.d/"\$l_mname".conf fi } if [-n "\$(find /sys/class/net/*/ -type d -name wireless)"]; then l_dname=\$(for driverdir in \$(find /sys/class/net/*/ -type d -name wireless | xargs -0 dirname); do basename "\$(readlink -f "\$driverdir"/device/driver/module)";done | sort -u) for l_mname in \$l_dname; do module_fix done fi }

Impact:

Many if not all laptop workstations and some desktop workstations will connect via wireless requiring these interfaces be enabled.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	15.4
CSCV7	15.5
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3

GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: $(?i)^[\s]^*\$ timeout: 7200

Hosts

192.168.40.33

```
The command script with multiple lines returned:

- Audit Result:
   ** PASS **

- System has no wireless NICs installed
```

3.1.3 Ensure bluetooth services are not in use

Info

Bluetooth is a short-range wireless technology standard that is used for exchanging data between devices over short distances. It employs UHF radio waves in the ISM bands, from 2.402 GHz to 2.48 GHz. It is mainly used as an alternative to wire connections.

An attacker may be able to find a way to access or corrupt your data. One example of this type of activity is bluesnarfing which refers to attackers using a Bluetooth connection to steal information off of your Bluetooth device. Also, viruses or other malicious code can take advantage of Bluetooth technology to infect other devices. If you are infected, your data may be corrupted, compromised, stolen, or lost.

Solution

Run the following commands to stop bluetooth.service and remove the bluez package:

systemctl stop bluetooth.service # apt purge bluez

- OR -
- IF the bluez package is required as a dependency:

Run the following commands to stop and mask bluetooth.service:

systemctl stop bluetooth.service # systemctl mask bluetooth.service

Note: A reboot may be required

Impact:

Many personal electronic devices (PEDs) use Bluetooth technology. For example, you may be able to operate your computer with a wireless keyboard. Disabling Bluetooth will prevent these devices from connecting to the system.

There may be packages that are dependent on the bluez package. If the bluez package is removed, these dependent packages will be removed as well. Before removing the bluez package, review any dependent packages to determine if they are required on the system.

-IF- a dependent package is required: stop and mask bluetooth.service leaving the bluez package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
	· · ·

800-53R5 CM-6
800-53R5 CM-7
CSCV7 9.2
CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s bluez 2>&1 | /bin/grep -E '(^Status: | not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

192.168.40.33

```
The command '/bin/dpkg -s bluez 2>&1 | /bin/grep -E '(^Status:|not installed)'' returned :
dpkg-query: package 'bluez' is not installed and no information is available
```

3.3.1 Ensure ip forwarding is disabled

Info

The net.ipv4.ip_forward and net.ipv6.conf.all.forwarding flags are used to tell the system whether it can forward packets or not.

Setting net.ipv4.ip_forward and net.ipv6.conf.all.forwarding to 0 ensures that a system with multiple interfaces (for example, a hard proxy), will never be able to forward packets, and therefore, never serve as a router.

Solution

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- $net.ipv4.ip_forward = 0$

Example:

printf '%s ' "net.ipv4.ip_forward = 0" >> /etc/sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.ip_forward=0 sysctl -w net.ipv4.route.flush=1 }

- IF - IPv6 is enabled on the system:

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv6.conf.all.forwarding = 0

Example:

printf '%s ' "net.ipv6.conf.all.forwarding = 0" >> /etc/sysctl.d/60-netipv6_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv6.conf.all.forwarding=0 sysctl -w net.ipv6.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

Impact:

IP forwarding is required on systems configured to act as a router. If these parameters are disabled, the system will not be able to perform as a router.

Many Cloud Service Provider (CSP) hosted systems require IP forwarding to be enabled. If the system is running on a CSP platform, this requirement should be reviewed before disabling IP forwarding.

See Also

References

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.ip_forward" is correctly set to "0" in the running configuration
- "net.ipv4.ip_forward" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv6.conf.all.forwarding" is correctly set to "0" in the running configuration
- "net.ipv6.conf.all.forwarding" is correctly set to "0" in "/etc/sysctl.conf"
```

3.3.2 Ensure packet redirect sending is disabled

Info

ICMP Redirects are used to send routing information to other hosts. As a host itself does not act as a router (in a host only configuration), there is no need to send redirects.

An attacker could use a compromised host to send invalid ICMP redirects to other router devices in an attempt to corrupt routing and have users access a system set up by the attacker as opposed to a valid system.

Solution

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- net.ipv4.conf.all.send redirects = 0
- net.ipv4.conf.default.send redirects = 0

Example:

printf '%s ' "net.ipv4.conf.all.send_redirects = 0" "net.ipv4.conf.default.send_redirects = 0" >> /etc/ sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.conf.all.send_redirects=0 sysctl -w net.ipv4.conf.default.send_redirects=0 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

Impact:

IP forwarding is required on systems configured to act as a router. If these parameters are disabled, the system will not be able to perform as a router.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	

CSCV7 9.2
CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.conf.all.send_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.all.send_redirects" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv4.conf.default.send_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.default.send_redirects" is correctly set to "0" in "/etc/sysctl.conf"
```

3.3.3 Ensure bogus icmp responses are ignored

Info

Setting net.ipv4.icmp_ignore_bogus_error_responses to 1 prevents the kernel from logging bogus responses (RFC-1122 non-compliant) from broadcast reframes, keeping file systems from filling up with useless log messages.

Some routers (and some attackers) will send responses that violate RFC-1122 and attempt to fill up a log file system with many useless error messages.

Solution

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- net.ipv4.icmp_ignore_bogus_error_responses = 1

Example:

printf '%s ' "net.ipv4.icmp_ignore_bogus_error_responses = 1" >> /etc/sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.icmp_ignore_bogus_error_responses" is correctly set to "1" in the running configuration
    - "net.ipv4.icmp_ignore_bogus_error_responses" is correctly set to "1" in "/etc/sysctl.conf"
```

3.3.4 Ensure broadcast icmp requests are ignored

Info

Setting net.ipv4.icmp_echo_ignore_broadcasts to 1 will cause the system to ignore all ICMP echo and timestamp requests to broadcast and multicast addresses.

Accepting ICMP echo and timestamp requests with broadcast or multicast destinations for your network could be used to trick your host into starting (or participating) in a Smurf attack. A Smurf attack relies on an attacker sending large amounts of ICMP broadcast messages with a spoofed source address. All hosts receiving this message and responding would send echo-reply messages back to the spoofed address, which is probably not routable. If many hosts respond to the packets, the amount of traffic on the network could be significantly multiplied.

Solution

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv4.icmp_echo_ignore_broadcasts = 1

Example:

printf '%s ' "net.ipv4.icmp_echo_ignore_broadcasts = 1" >> /etc/sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	

GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.icmp_echo_ignore_broadcasts" is correctly set to "1" in the running configuration
    - "net.ipv4.icmp_echo_ignore_broadcasts" is correctly set to "1" in "/etc/sysctl.conf"
```

3.3.5 Ensure icmp redirects are not accepted

Info

ICMP redirect messages are packets that convey routing information and tell your host (acting as a router) to send packets via an alternate path. It is a way of allowing an outside routing device to update your system routing tables.

ICMP redirect messages are packets that convey routing information and tell your host (acting as a router) to send packets via an alternate path. It is a way of allowing an outside routing device to update your system routing tables. By setting net.ipv4.conf.all.accept_redirects net.ipv4.conf.default.accept_redirects net.ipv6.conf.all.accept_redirects and net.ipv6.conf.default.accept_redirects to 0 the system will not accept any ICMP redirect messages, and therefore, won't allow outsiders to update the system's routing tables.

Solution

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv4.conf.all.accept redirects = 0
- net.ipv4.conf.default.accept redirects = 0

Example:

printf '%s ' "net.ipv4.conf.all.accept_redirects = 0" "net.ipv4.conf.default.accept_redirects = 0" >> /etc/ sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

 $\{ \ sysctl \ -w \ net.ipv4.conf. default. accept_redirects=0 \ sysctl \ -w \ net.ipv4.conf. defa$

- IF - IPv6 is enabled on the system:

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv6.conf.all.accept redirects = 0
- net.ipv6.conf.default.accept_redirects = 0

Example:

printf '%s ' "net.ipv6.conf.all.accept_redirects = 0" "net.ipv6.conf.default.accept_redirects = 0" >> /etc/ sysctl.d/60-netipv6_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv6.conf.all.accept_redirects=0 sysctl -w net.ipv6.conf.default.accept_redirects=0 sysctl -w net.ipv6.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.conf.all.accept_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.all.accept_redirects" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv4.conf.default.accept_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.default.accept_redirects" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv6.conf.all.accept_redirects" is correctly set to "0" in the running configuration
```

- "net.ipv6.conf.all.accept_redirects" is correctly set to "0" in "/etc/sysctl.conf"
- "net.ipv6.conf.default.accept_redirects" is correctly set to "0" in the running configuration "net.ipv6.conf.default.accept_redirects" is correctly set to "0" in "/etc/sysctl.conf"

3.3.6 Ensure secure icmp redirects are not accepted

Info

Secure ICMP redirects are the same as ICMP redirects, except they come from gateways listed on the default gateway list. It is assumed that these gateways are known to your system, and that they are likely to be secure.

It is still possible for even known gateways to be compromised. Setting net.ipv4.conf.all.secure_redirects and net.ipv4.conf.default.secure_redirects to 0 protects the system from routing table updates by possibly compromised known gateways.

Solution

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv4.conf.all.secure_redirects = 0
- net.ipv4.conf.default.secure_redirects = 0

Example:

printf '%s ' "net.ipv4.conf.all.secure_redirects = 0" "net.ipv4.conf.default.secure_redirects = 0" >> /etc/ sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.conf.all.secure_redirects=0 sysctl -w net.ipv4.conf.default.secure_redirects=0 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	

CSF PR.PT-3 GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.conf.all.secure_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.all.secure_redirects" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv4.conf.default.secure_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.default.secure_redirects" is correctly set to "0" in the running configuration
    - "net.ipv4.conf.default.secure_redirects" is correctly set to "0" in "/etc/sysctl.conf"
```

3.3.7 Ensure reverse path filtering is enabled

Info

Setting net.ipv4.conf.all.rp_filter and net.ipv4.conf.default.rp_filter to 1 forces the Linux kernel to utilize reverse path filtering on a received packet to determine if the packet was valid. Essentially, with reverse path filtering, if the return packet does not go out the same interface that the corresponding source packet came from, the packet is dropped (and logged if log_martians is set).

Setting net.ipv4.conf.all.rp_filter and net.ipv4.conf.default.rp_filter to 1 is a good way to deter attackers from sending your system bogus packets that cannot be responded to. One instance where this feature breaks down is if asymmetrical routing is employed. This would occur when using dynamic routing protocols (bgp, ospf, etc) on your system. If you are using asymmetrical routing on your system, you will not be able to enable this feature without breaking the routing.

Solution

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv4.conf.all.rp_filter = 1
- net.ipv4.conf.default.rp filter = 1

Example:

printf '%s ' "net.ipv4.conf.all.rp_filter = 1" "net.ipv4.conf.default.rp_filter = 1" >> /etc/sysctl.d/60-netipv4 sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.conf.all.rp_filter=1 sysctl -w net.ipv4.conf.default.rp_filter=1 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

Impact:

If you are using asymmetrical routing on your system, you will not be able to enable this feature without breaking the routing.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6

800-53 CM-7 800-53R5 CM-6 800-53R5 CM-7 CSCV7 9.2 CSCV8 4.8 CSF PR.IP-1 CSF PR.PT-3 **GDPR** 32.1.b

HIPAA 164.306(a)(1)

ITSG-33 CM-6 ITSG-33 CM-7 LEVEL 1A NIAV2 SS15a PCI-DSSV3.2.1 2.2.2 SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned :
- Audit Result:
 ** PASS **
- "net.ipv4.conf.all.rp_filter" is correctly set to "1" in the running configuration
- "net.ipv4.conf.all.rp_filter" is correctly set to "1" in "/etc/sysctl.conf"
 - "net.ipv4.conf.default.rp_filter" is correctly set to "1" in the running configuration
 - "net.ipv4.conf.default.rp_filter" is correctly set to "1" in "/etc/sysctl.conf"
```

3.3.8 Ensure source routed packets are not accepted

Info

In networking, source routing allows a sender to partially or fully specify the route packets take through a network. In contrast, non-source routed packets travel a path determined by routers in the network. In some cases, systems may not be routable or reachable from some locations (e.g. private addresses vs. Internet routable), and so source routed packets would need to be used.

Setting net.ipv4.conf.all.accept_source_route net.ipv4.conf.default.accept_source_route net.ipv6.conf.all.accept_source_route and net.ipv6.conf.default.accept_source_route to 0 disables the system from accepting source routed packets. Assume this system was capable of routing packets to Internet routable addresses on one interface and private addresses on another interface. Assume that the private addresses were not routable to the Internet routable addresses and vice versa. Under normal routing circumstances, an attacker from the Internet routable addresses could not use the system as a way to reach the private address systems. If, however, source routed packets were allowed, they could be used to gain access to the private address systems as the route could be specified, rather than rely on routing protocols that did not allow this routing.

Solution

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- net.ipv4.conf.all.accept_source_route = 0
- net.ipv4.conf.default.accept_source_route = 0

Example:

printf '%s ' "net.ipv4.conf.all.accept_source_route = 0" "net.ipv4.conf.default.accept_source_route = 0" >> /
etc/sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.conf.all.accept_source_route=0 sysctl -w net.ipv4.conf.default.accept_source_route=0 sysctl -w net.ipv4.route.flush=1 }

- IF - IPv6 is enabled on the system:

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv6.conf.all.accept source route = 0
- net.ipv6.conf.default.accept_source_route = 0

Example:

printf '%s ' "net.ipv6.conf.all.accept_source_route = 0" "net.ipv6.conf.default.accept_source_route = 0" >> / etc/sysctl.d/60-netipv6_sysctl.conf

Run the following command to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv6.conf.all.accept_source_route=0 sysctl -w net.ipv6.conf.default.accept_source_route=0 sysctl -w net.ipv6.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.4.2	
800-171	3.4.6	
800-171	3.4.7	
800-53	CM-6	
800-53	CM-7	
800-53R5	CM-6	
800-53R5	CM-7	
CSCV7	9.2	
CSCV8	4.8	
CSF	PR.IP-1	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
ITSG-33	CM-6	
ITSG-33	CM-7	
LEVEL	1A	
NIAV2	SS15a	
PCI-DSSV3.2.1	2.2.2	
SWIFT-CSCV1	2.3	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned :
- Audit Result:
** PASS **
```

```
- "net.ipv4.conf.all.accept_source_route" is correctly set to "0" in the running configuration
- "net.ipv4.conf.all.accept_source_route" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv4.conf.default.accept_source_route" is correctly set to "0" in the running configuration
- "net.ipv4.conf.default.accept_source_route" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv6.conf.all.accept_source_route" is correctly set to "0" in the running configuration
- "net.ipv6.conf.all.accept_source_route" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv6.conf.default.accept_source_route" is correctly set to "0" in the running configuration
- "net.ipv6.conf.default.accept_source_route" is correctly set to "0" in the running configuration
```

3.3.9 Ensure suspicious packets are logged

Info

When enabled, this feature logs packets with un-routable source addresses to the kernel log.

Setting net.ipv4.conf.all.log_martians and net.ipv4.conf.default.log_martians to 1 enables this feature. Logging these packets allows an administrator to investigate the possibility that an attacker is sending spoofed packets to their system.

Solution

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- net.ipv4.conf.all.log martians = 1
- net.ipv4.conf.default.log_martians = 1

Example:

printf '%s ' "net.ipv4.conf.all.log_martians = 1" "net.ipv4.conf.default.log_martians = 1" >> /etc/sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.conf.all.log_martians=1 sysctl -w net.ipv4.conf.default.log_martians=1 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-3
800-53	AU-3(1)
800-53	AU-7
800-53	AU-12
800-53R5	AU-3
800-53R5	AU-3(1)
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(a)

CN-L3	7.1.2.3(b)
CN-L3	7.1.2.3(c)
CN-L3	7.1.3.3(a)
CN-L3	7.1.3.3(b)
CN-L3	8.1.4.3(b)
CSCV7	6.2
CSCV7	6.3
CSCV8	8.5
CSF	DE.CM-1
CSF	DE.CM-3
CSF	DE.CM-7
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-3
ITSG-33	AU-3(1)
ITSG-33	AU-7
ITSG-33	AU-12
LEVEL	1A
NESA	T3.6.2
NIAV2	AM34a
NIAV2	AM34b
NIAV2	AM34c
NIAV2	AM34d
NIAV2	AM34e
NIAV2	AM34f
NIAV2	AM34g
PCI-DSSV3.2.1	10.1
PCI-DSSV3.2.1	10.3
PCI-DSSV3.2.1	10.3.1
PCI-DSSV3.2.1	10.3.2
PCI-DSSV3.2.1	10.3.3
PCI-DSSV3.2.1	10.3.4
PCI-DSSV3.2.1	10.3.5
PCI-DSSV3.2.1	10.3.6
PCI-DSSV4.0	10.2.2

3.2

6.2

8.2.1

10.2.1

11.2

QCSC-V1

QCSC-V1

QCSC-V1

QCSC-V1

QCSC-V1

QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.conf.all.log_martians" is correctly set to "1" in the running configuration
    - "net.ipv4.conf.all.log_martians" is correctly set to "1" in "/etc/sysctl.conf"

- "net.ipv4.conf.default.log_martians" is correctly set to "1" in the running configuration
    - "net.ipv4.conf.default.log_martians" is correctly set to "1" in "/etc/sysctl.conf"
```

3.3.10 Ensure tcp syn cookies is enabled

Info

When tcp_syncookies is set, the kernel will handle TCP SYN packets normally until the half-open connection queue is full, at which time, the SYN cookie functionality kicks in. SYN cookies work by not using the SYN queue at all. Instead, the kernel simply replies to the SYN with a SYN | ACK, but will include a specially crafted TCP sequence number that encodes the source and destination IP address and port number and the time the packet was sent. A legitimate connection would send the ACK packet of the three way handshake with the specially crafted sequence number. This allows the system to verify that it has received a valid response to a SYN cookie and allow the connection, even though there is no corresponding SYN in the queue.

Attackers use SYN flood attacks to perform a denial of service attacked on a system by sending many SYN packets without completing the three way handshake. This will quickly use up slots in the kernel's half-open connection queue and prevent legitimate connections from succeeding. Setting net.ipv4.tcp_syncookies to 1 enables SYN cookies, allowing the system to keep accepting valid connections, even if under a denial of service attack.

Solution

Set the following parameter in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf :

- net.ipv4.tcp_syncookies = 1

Example:

printf '%s ' "net.ipv4.tcp_syncookies = 1" >> /etc/sysctl.d/60-netipv4_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv4.tcp_syncookies=1 sysctl -w net.ipv4.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7

CSCV7 9.2
CSCV8 4.8
CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv4.tcp_syncookies" is correctly set to "1" in the running configuration
    - "net.ipv4.tcp_syncookies" is correctly set to "1" in "/etc/sysctl.conf"
```

3.3.11 Ensure ipv6 router advertisements are not accepted

Info

This setting disables the system's ability to accept IPv6 router advertisements.

It is recommended that systems do not accept router advertisements as they could be tricked into routing traffic to compromised machines. Setting hard routes within the system (usually a single default route to a trusted router) protects the system from bad routes. Setting net.ipv6.conf.all.accept_ra and net.ipv6.conf.default.accept_ra to 0 disables the system's ability to accept IPv6 router advertisements.

Solution

- IF - IPv6 is enabled on the system:

Set the following parameters in /etc/sysctl.conf or a file in /etc/sysctl.d/ ending inconf:

- net.ipv6.conf.all.accept_ra = 0
- net.ipv6.conf.default.accept ra = 0

Example:

printf '%s ' "net.ipv6.conf.all.accept_ra = 0" "net.ipv6.conf.default.accept_ra = 0" >> /etc/sysctl.d/60-netipv6_sysctl.conf

Run the following script to set the active kernel parameters:

#!/usr/bin/env bash

{ sysctl -w net.ipv6.conf.all.accept_ra=0 sysctl -w net.ipv6.conf.default.accept_ra=0 sysctl -w net.ipv6.route.flush=1 }

Note: If these settings appear in a canonically later file, or later in the same file, these settings will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8

CSF PR.IP-1
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1A

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "net.ipv6.conf.all.accept_ra" is correctly set to "0" in the running configuration
    - "net.ipv6.conf.all.accept_ra" is correctly set to "0" in "/etc/sysctl.conf"

- "net.ipv6.conf.default.accept_ra" is correctly set to "0" in the running configuration
    - "net.ipv6.conf.default.accept_ra" is correctly set to "0" in the running configuration
    - "net.ipv6.conf.default.accept_ra" is correctly set to "0" in "/etc/sysctl.conf"
```

4.1.1 Ensure ufw is installed

Info

The Uncomplicated Firewall (ufw) is a frontend for iptables and is particularly well-suited for host-based firewalls. ufw provides a framework for managing netfilter, as well as a command-line interface for manipulating the firewall

A firewall utility is required to configure the Linux kernel's netfilter framework via the iptables or nftables back-end.

The Linux kernel's netfilter framework host-based firewall can protect against threats originating from within a corporate network to include malicious mobile code and poorly configured software on a host.

Note: Only one firewall utility should be installed and configured. UFW is dependent on the iptables package

Solution

Run the following command to install Uncomplicated Firewall (UFW):

apt install ufw

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5

4.1.1 Ensure ufw is installed 458

```
CSF
                            PR.PT-4
GDPR
                           32.1.b
GDPR
                           32.1.d
GDPR
                            32.2
HIPAA
                           164.306(a)(1)
ISO/IEC-27001
                           A.13.1.3
ITSG-33
                           SC-7
ITSG-33
                           SC-7(5)
LEVEL
                           1A
NESA
                           T4.5.4
NIAV2
                           GS1
NIAV2
                            GS2a
NIAV2
                           GS2b
NIAV2
                           GS7b
NIAV2
                           NS25
PCI-DSSV3.2.1
                           1.1
PCI-DSSV3.2.1
                           1.2
PCI-DSSV3.2.1
                           1.2.1
PCI-DSSV3.2.1
                            1.3
PCI-DSSV4.0
                           1.2.1
PCI-DSSV4.0
                           1.4.1
QCSC-V1
                           4.2
QCSC-V1
                           5.2.1
QCSC-V1
                           5.2.2
QCSC-V1
                           5.2.3
QCSC-V1
                           6.2
QCSC-V1
                           8.2.1
SWIFT-CSCV1
                            2.1
TBA-FIISB
                           43.1
```

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s ufw 2>&1 | /bin/grep -E '(Status: | not installed)' expect: ^Status: install ok

expect. Status. Install o

Hosts

192.168.40.33

```
The command '/bin/dpkg -s ufw 2>&1 | /bin/grep -E '(Status:|not installed)'' returned :
```

4.1.1 Ensure ufw is installed 459

Status: install ok installed

4.1.1 Ensure ufw is installed 460

4.1.2 Ensure iptables-persistent is not installed with ufw

Info

The iptables-persistent is a boot-time loader for netfilter rules, iptables plugin

Running both ufw and the services included in the iptables-persistent package may lead to conflict

Solution

Run the following command to remove the iptables-persistent package:

apt purge iptables-persistent

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b
GDPR	32.1.d
GDPR	32.2
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7

ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s iptables-persistent 2>&1 | /bin/grep -E '(^Status: |not installed)' expect: (^Status: deinstall ok | not installed)

Hosts

```
The command '/bin/dpkg -s iptables-persistent 2>&1 | /bin/grep -E '(^Status:|not installed)''
returned:

dpkg-query: package 'iptables-persistent' is not installed and no information is available
```

4.1.3 Ensure ufw service is enabled

Info

UncomplicatedFirewall (ufw) is a frontend for iptables. ufw provides a framework for managing netfilter, as well as a command-line and available graphical user interface for manipulating the firewall.

Note:

- When running ufw enable or starting ufw via its initscript, ufw will flush its chains. This is required so ufw can maintain a consistent state, but it may drop existing connections (eg ssh). ufw does support adding rules before enabling the firewall.
- Run the following command before running ufw enable

ufw allow proto tcp from any to any port 22

- The rules will still be flushed, but the ssh port will be open after enabling the firewall. Please note that once ufw is 'enabled', ufw will not flush the chains when adding or removing rules (but will when modifying a rule or changing the default policy)
- By default, ufw will prompt when enabling the firewall while running under ssh. This can be disabled by using ufw --force enable

The ufw service must be enabled and running in order for ufw to protect the system

Solution

Run the following command to unmask the ufw daemon:

systemctl unmask ufw.service

Run the following command to enable and start the ufw daemon:

systemctl --now enable ufw.service

active

Run the following command to enable ufw:

ufw enable

Impact:

Changing firewall settings while connected over network can result in being locked out of the system.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6

800-53 CA-9 800-53 SC-7 800-53 SC-7(5) 800-53R5 CA-9 800-53R5 SC-7 800-53R5 SC-7(5) CN-L3 7.1.2.2(c) CN-L3 8.1.10.6(j) CSCV7 9.4 CSCV8 4.4 4.5 CSCV8 CSF DE.CM-1

CSF DE.CM-1
CSF ID.AM-3
CSF PR.AC-5
CSF PR.DS-5
CSF PR.PT-4
GDPR 32.1.b
GDPR 32.1.d
GDPR 32.2

HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2

8.2.1

2.1

QCSC-V1

SWIFT-CSCV1

TBA-FIISB 43.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:

PASSED - check if ufw is enabled
The command '/bin/systemctl is-enabled ufw' returned:

enabled

PASSED - check if ufw is active
The command '/bin/systemctl is-active ufw' returned:

active

PASSED - ufw status
The command '/sbin/ufw status | /bin/grep 'Status: active'' returned:

Status: active
```

4.1.4 Ensure ufw loopback traffic is configured

Info

Configure the loopback interface to accept traffic. Configure all other interfaces to deny traffic to the loopback network (127.0.0.0/8 for IPv4 and ::1/128 for IPv6).

Loopback traffic is generated between processes on machine and is typically critical to operation of the system. The loopback interface is the only place that loopback network (127.0.0.0/8 for IPv4 and ::1/128 for IPv6) traffic should be seen, all other interfaces should ignore traffic on this network as an anti-spoofing measure.

Solution

Run the following commands to implement the loopback rules:

ufw allow in on lo # ufw allow out on lo # ufw deny in from 127.0.0.0/8 # ufw deny in from ::1

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	
CSF	ID.AM-3	
CSF	PR.AC-5	
CSF	PR.DS-5	
CSF	PR.PT-4	
GDPR	32.1.b	
GDPR	32.1.d	
GDPR	32.2	

HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
То
                                                                                                        Action
                                                                                                                                                  From
  ___
                                                                                                                                            Anywhere
  22
                                                                                                      ALLOW IN
  80
                                                                                                     ALLOW IN
                                                                                                                                                   Anywhere
                                                                                                 ALLOW IN Anywhere
ALLOW IN Anywhere
  443
  6379
                                                                                                 ALLOW IN Anywhere
  8181
                                                                                                ALLOW IN Anywhere
                                                                                                 ALLOW IN Anywhere
  8761
                                                                                               ALLOW IN Anywhere
ALLOW IN Anywhere
ALLOW IN Anywhere
  3306
  8082
 Anywhere on lo
Anywhere
Anywhere on lo

Anywhere

Anywhere

Anywhere

DENY IN

127.0.0.0/8

6379

ALLOW IN

127.0.0.1

3306/tcp

ALLOW IN

Anywhere

33060/tcp

ALLOW IN

Anywhere

ALLOW IN

Anywhere

22 (v6)

ALLOW IN

Anywhere (v6)

80 (v6)

ALLOW IN

Anywhere (v6)

443 (v6)

ALLOW IN

Anywhere (v6)

6379 (v6)

ALLOW IN

Anywhere (v6)

8181 (v6)

ALLOW IN

Anywhere (v6)

8761 (v6)

3306 (v6)

ALLOW IN

Anywhere (v6)

3306 (v6)

ALLOW IN

Anywhere (v6)

ALLOW IN

Anywhere (v6)

ALLOW IN

Anywhere (v6)

ALLOW IN

Anywhere (v6)

ANywhere (v6)

ALLOW IN

Anywhere (v6)
  Anywhere
                                                   [...]
```

4.1.6 Ensure ufw firewall rules exist for all open ports

Info

Services and ports can be accepted or explicitly rejected.

Note:

- Changing firewall settings while connected over network can result in being locked out of the system
- The remediation command opens up the port to traffic from all sources. Consult ufw documentation and set any restrictions in compliance with site policy

To reduce the attack surface of a system, all services and ports should be blocked unless required.

- Any ports that have been opened on non-loopback addresses need firewall rules to govern traffic.
- Without a firewall rule configured for open ports, the default firewall policy will drop all packets to these ports.
- Required ports should have a firewall rule created to allow approved connections in accordance with local site policy.
- Unapproved ports should have an explicit deny rule created.

Solution

For each port identified in the audit which does not have a firewall rule, evaluate the service listening on the port and add a rule for accepting or denying inbound connections in accordance with local site policy:

Examples:

ufw allow in <port>/<tcp or udp protocol>

ufw deny in <port>/<tcp or udp protocol>

Note: Examples create rules for from any, to any. More specific rules should be concentered when allowing inbound traffic e.g only traffic from this network.

Example to allow traffic on port 443 using the tcp protocol from the 192.168.1.0 network:

ufw allow from 192.168.1.0/24 to any proto tcp port 443

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7

800-53 SC-7(5) 800-53R5 CA-9 800-53R5 SC-7 SC-7(5) 800-53R5 CN-L3 7.1.2.2(c) CN-L3 8.1.10.6(j) CSCV7 9.4 CSCV8 4.4 CSF DE.CM-1 CSF ID.AM-3 PR.AC-5 CSF CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1

Audit File

TBA-FIISB

43.1

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^none\$

Hosts

192.168.40.33

The command script with multiple lines returned : $\\ \label{eq:command}$ none

4.2.1 Ensure nftables is installed

Info

nftables provides a new in-kernel packet classification framework that is based on a network-specific Virtual Machine (VM) and a new nft userspace command line tool. nftables reuses the existing Netfilter subsystems such as the existing hook infrastructure, the connection tracking system, NAT, userspace queuing and logging subsystem.

Notes:

- nftables is available in Linux kernel 3.13 and newer
- Only one firewall utility should be installed and configured
- Changing firewall settings while connected over the network can result in being locked out of the system

nftables is a subsystem of the Linux kernel that can protect against threats originating from within a corporate network to include malicious mobile code and poorly configured software on a host.

Solution

Run the following command to install nftables:

apt install nftables

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5

CSF PR.PT-4 GDPR 32.1.b GDPR 32.1.d GDPR 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 TTSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NIAV2 GS1 NIAV2 GS2 NIAV2 GS2a NIAV2 GS2b NIAV2 SS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 5.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Holicy Value PASSED	CSF	PR.DS-5
GDPR 32.1.d GDPR 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS2 NIAV2 GS2a NIAV2 GS2b NIAV2 SS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.2.1 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File Clis_Ubuntu_Linux_22.04_LTs_v2.0.0_L1_Server.audit Policy Value		
GDPR 32.1.d GDPR 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7(S) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 SS2b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Hosts		
GDPR 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA 74.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED		
ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-333 SC-7(5) LEVEL 1A NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 SS25 NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.2 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 5.2.3 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0_L1_Server.audit Policy Value PASSED		32.2
ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 SS25 NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 5.2.3 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value		164.306(a)(1)
ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED	ISO/IEC-27001	
LEVEL 1A NESA 74.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2. PCI-DSSV3.2.1 1.3 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 AUGIT FIBS 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	ITSG-33	SC-7
NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 SWIFT-CSCV1 2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	ITSG-33	SC-7(5)
NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	LEVEL	1A
NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 5.2.3 QCSC-V1 43.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	NESA	T4.5.4
NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 6.2 NIFT-CSCV1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	NIAV2	GS1
NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit PASSED Hosts	NIAV2	GS2a
NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit PASSED Hosts	NIAV2	GS2b
PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	NIAV2	GS7b
PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit POlicy Value PASSED Hosts	NIAV2	NS25
PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	PCI-DSSV3.2.1	1.2
PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	PCI-DSSV3.2.1	1.2.1
PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit POlicy Value PASSED Hosts	PCI-DSSV3.2.1	1.3
QCSC-V1	PCI-DSSV4.0	1.2.1
QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	PCI-DSSV4.0	1.4.1
QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	QCSC-V1	4.2
QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts		5.2.1
QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	QCSC-V1	5.2.2
QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	QCSC-V1	5.2.3
SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	QCSC-V1	6.2
Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts		
Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	SWIFT-CSCV1	2.1
CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts	TBA-FIISB	43.1
Policy Value PASSED Hosts	Audit File	
PASSED Hosts	CIS_Ubuntu_Linux_22.04_	LTS_v2.0.0_L1_Server.audit
Hosts	Policy Value	
	PASSED	
192.168.40.33	Hosts	
	192.168.40.33	

4.2.1 Ensure nftables is installed

4.2.2 Ensure ufw is uninstalled or disabled with nftables

Info

Uncomplicated Firewall (UFW) is a program for managing a netfilter firewall designed to be easy to use.

Running both the nftables service and ufw may lead to conflict and unexpected results.

Solution

Run one of the following to either remove ufw or disable ufw and mask ufw.service:

Run the following command to remove ufw:

apt purge ufw

-OR-

Run the following commands to disable ufw and mask ufw.service:

ufw disable # systemctl stop ufw.service # systemctl mask ufw.service

Note: ufw disable needs to be run before systemctl mask ufw.service in order to correctly disable UFW

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5

CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) **LEVEL** 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 6.2 QCSC-V1 QCSC-V1 8.2.1 2.1 SWIFT-CSCV1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

4.2.3 Ensure iptables are flushed with nftables

Info

nftables is a replacement for iptables, ip6tables, ebtables and arptables

It is possible to mix iptables and nftables. However, this increases complexity and also the chance to introduce errors. For simplicity flush out all iptables rules, and ensure it is not loaded

Solution

Run the following commands to flush iptables:

For iptables:

iptables -F

For ip6tables:

ip6tables -F

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b

GDPR 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1M NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 5.2.3 QCSC-V1 6.2 QCSC-V1 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED**

Hosts

4.2.4 Ensure a nftables table exists

Info

Tables hold chains. Each table only has one address family and only applies to packets of this family. Tables can have one of five families.

nftables doesn't have any default tables. Without a table being build, nftables will not filter network traffic.

Solution

Run the following command to create a table in nftables

nft create table inet

Example:

nft create table inet filter

Impact:

Adding rules to a running nftables can cause loss of connectivity to the system

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	
CSF	ID.AM-3	
CSF	PR.AC-5	
CSF	PR.DS-5	
CSF	PR.PT-4	

GDPR 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) **LEVEL** 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 8.2.1 QCSC-V1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

4.2.5 Ensure nftables base chains exist

Info

Chains are containers for rules. They exist in two kinds, base chains and regular chains. A base chain is an entry point for packets from the networking stack, a regular chain may be used as jump target and is used for better rule organization.

If a base chain doesn't exist with a hook for input, forward, and delete, packets that would flow through those chains will not be touched by nftables.

Solution

Run the following command to create the base chains:

nft create chain inet <base chain name> { type filter hook <(input|forward|output)>
priority 0; }

Example:

nft create chain inet filter input { type filter hook input priority 0; }

nft create chain inet filter forward { type filter hook forward priority 0; }

nft create chain inet filter output { type filter hook output priority 0; }

Impact:

If configuring nftables over ssh, creating a base chain with a policy of drop will cause loss of connectivity.

Ensure that a rule allowing ssh has been added to the base chain prior to setting the base chain's policy to drop

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)

CSCV7 9.4 CSCV8 4.4 CSCV8 4.5 CSF DE.CM-1 CSF ID.AM-3 CSF PR.AC-5 CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d 32.2

GDPR HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2

QCSC-V1 4.2
QCSC-V1 5.2.1
QCSC-V1 5.2.2
QCSC-V1 5.2.3
QCSC-V1 6.2
QCSC-V1 8.2.1
SWIFT-CSCV1 2.1
TBA-FIISB 43.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

1 1		١_
п	()51	S

4.2.6 Ensure nftables loopback traffic is configured

Info

Configure the loopback interface to accept traffic. Configure all other interfaces to deny traffic to the loopback network

Loopback traffic is generated between processes on machine and is typically critical to operation of the system. The loopback interface is the only place that loopback network traffic should be seen, all other interfaces should ignore traffic on this network as an anti-spoofing measure.

Solution

Run the following commands to implement the loopback rules:

nft add rule inet filter input iif lo accept # nft create rule inet filter input ip saddr 127.0.0.0/8 counter drop

-IF- IPv6 is enabled on the system:

Run the following command to implement the IPv6 loopback rule:

nft add rule inet filter input ip6 saddr ::1 counter drop

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5

CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) **LEVEL** 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 6.2 QCSC-V1 QCSC-V1 8.2.1 2.1 SWIFT-CSCV1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED**

Hosts

4.2.7 Ensure nftables outbound and established connections are configured

Info

Configure the firewall rules for new outbound, and established connections

If rules are not in place for new outbound, and established connections all packets will be dropped by the default policy preventing network usage.

Solution

Configure nftables in accordance with site policy. The following commands will implement a policy to allow all outbound connections and all established connections:

nft add rule inet filter input ip protocol tcp ct state established accept

nft add rule inet filter input ip protocol udp ct state established accept

nft add rule inet filter input ip protocol icmp ct state established accept

nft add rule inet filter output ip protocol tcp ct state new,related,established accept

nft add rule inet filter output ip protocol udp ct state new,related,established accept

nft add rule inet filter output ip protocol icmp ct state new,related,established accept

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3

CSF PR.AC-5 CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1M NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 **NS25** PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 1.4.1 PCI-DSSV4.0 4.2 QCSC-V1 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts 192.168.40.33

4.2.8 Ensure nftables default deny firewall policy

Info

Base chain policy is the default verdict that will be applied to packets reaching the end of the chain.

There are two policies: accept (Default) and drop. If the policy is set to accept the firewall will accept any packet that is not configured to be denied and the packet will continue transversing the network stack.

It is easier to white list acceptable usage than to black list unacceptable usage.

Note: Changing firewall settings while connected over network can result in being locked out of the system.

Solution

Run the following command for the base chains with the input, forward, and output hooks to implement a default DROP policy:

nft chain <chain name> { policy drop ; }

Example:

```
# nft chain inet filter input { policy drop ; }
```

nft chain inet filter forward { policy drop ; }

nft chain inet filter output { policy drop ; }

Impact:

If configuring nftables over ssh, creating a base chain with a policy of drop will cause loss of connectivity.

Ensure that a rule allowing ssh has been added to the base chain prior to setting the base chain's policy to drop

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	

8.1.10.6(j)
9.4
4.4
4.5
DE.CM-1
ID.AM-3
PR.AC-5
PR.DS-5
PR.PT-4
32.1.b
32.1.d
32.2
164.306(a)(1)
A.13.1.3
SC-7
SC-7(5)
1A
T4.5.4
GS1
GS2a
GS2b
GS7b
NS25
1.1
1.2
1.2.1
1.3
1.2.1
1.4.1
4.2
5.2.1
5.2.2
5.2.3
6.2
8.2.1
2.1

Audit File

TBA-FIISB

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

43.1

Policy Value

Р	ASSED
H	losts
	92.168.40.33

4.2.9 Ensure nftables service is enabled

Info

The nftables service allows for the loading of nftables rulesets during boot, or starting on the nftables service

The nftables service restores the nftables rules from the rules files referenced in the /etc/nftables.conf file during boot or the starting of the nftables service

Solution

Run the following command to enable the nftables service:

systemctl enable nftables

See Also

https://workbench.cisecurity.org/benchmarks/17074

References		
800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	
CSF	ID.AM-3	
CSF	PR.AC-5	
CSF	PR.DS-5	
CSF	PR.PT-4	
GDPR	32.1.b	
GDPR	32.1.d	
GDPR	32.2	
HIPAA	164.306(a)(1)	

ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

PASSED

Hosts

4.2.10 Ensure nftables rules are permanent

Info

nftables is a subsystem of the Linux kernel providing filtering and classification of network packets/datagrams/frames.

The nftables service reads the /etc/nftables.conf file for a nftables file or files to include in the nftables ruleset.

A nftables ruleset containing the input, forward, and output base chains allow network traffic to be filtered.

Changes made to nftables ruleset only affect the live system, you will also need to configure the nftables ruleset to apply on boot

Solution

Edit the /etc/nftables.conf file and un-comment or add a line with include <Absolute path to nftables rules file> for each nftables file you want included in the nftables ruleset on boot

Example:

vi /etc/nftables.conf

Add the line:

include "/etc/nftables.rules"

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1

CSF ID.AM-3 CSF PR.AC-5 CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 8.2.1 QCSC-V1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

4.3.1.1 Ensure iptables packages are installed

Info

iptables is a utility program that allows a system administrator to configure the tables provided by the Linux kernel firewall, implemented as different Netfilter modules, and the chains and rules it stores. Different kernel modules and programs are used for different protocols; iptables applies to IPv4, ip6tables to IPv6, arptables to ARP, and ebtables to Ethernet frames.

A method of configuring and maintaining firewall rules is necessary to configure a Host Based Firewall.

Solution

Run the following command to install iptables and iptables-persistent

apt install iptables iptables-persistent

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	
CSF	ID.AM-3	
CSF	PR.AC-5	
CSF	PR.DS-5	
CSF	PR.PT-4	
GDPR	32.1.b	
GDPR	32.1.d	
GDPR	32.2	
HIPAA	164.306(a)(1)	

ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

PASSED

Hosts

4.3.1.2 Ensure nftables is not installed with iptables

Info

nftables is a subsystem of the Linux kernel providing filtering and classification of network packets/datagrams/frames and is the successor to iptables.

Running both iptables and nftables may lead to conflict.

Solution

Run the following command to remove nftables:

apt purge nftables

See Also

https://workbench.cisecurity.org/benchmarks/17074

References		
800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	
CSF	ID.AM-3	
CSF	PR.AC-5	
CSF	PR.DS-5	
CSF	PR.PT-4	
GDPR	32.1.b	
GDPR	32.1.d	
GDPR	32.2	
HIPAA	164.306(a)(1)	
ISO/IEC-27001	A.13.1.3	

ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

4.3.1.3 Ensure ufw is uninstalled or disabled with iptables

Info

Uncomplicated Firewall (UFW) is a program for managing a netfilter firewall designed to be easy to use.

- Uses a command-line interface consisting of a small number of simple commands
- Uses iptables for configuration

Running iptables.persistent with ufw enabled may lead to conflict and unexpected results.

Solution

Run one of the following commands to either remove ufw or stop and mask ufw

Run the following command to remove ufw:

apt purge ufw

- OR -

Run the following commands to disable ufw:

ufw disable # systemctl stop ufw # systemctl mask ufw

Note: ufw disable needs to be run before systemctl mask ufw in order to correctly disable UFW

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	

CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b
GDPR	32.1.d
GDPR	32.2
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1
Audit File	
CIS_Ubuntu_Linux_22.	.04_LTS_v2.0.0_L1_Server.audit
Policy Value	
PASSED	
1,13520	
Hosts	

4.3.2.1 Ensure iptables default deny firewall policy

Info

A default deny all policy on connections ensures that any unconfigured network usage will be rejected.

Notes:

_

Changing firewall settings while connected over network can result in being locked out of the system

-

Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well

With a default accept policy the firewall will accept any packet that is not configured to be denied. It is easier to white list acceptable usage than to black list unacceptable usage.

Solution

Run the following commands to implement a default DROP policy:

iptables -P INPUT DROP # iptables -P OUTPUT DROP # iptables -P FORWARD DROP

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3

CSF PR.AC-5 CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NS25 NIAV2 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 4.2 QCSC-V1 QCSC-V1 5.2.1 5.2.2 QCSC-V1 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value PASSED Hosts 192.168.40.33

4.3.2.2 Ensure iptables loopback traffic is configured

Info

Configure the loopback interface to accept traffic. Configure all other interfaces to deny traffic to the loopback network (127.0.0.0/8).

Notes:

_

Changing firewall settings while connected over network can result in being locked out of the system

_

Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well

Loopback traffic is generated between processes on machine and is typically critical to operation of the system. The loopback interface is the only place that loopback network (127.0.0.0/8) traffic should be seen, all other interfaces should ignore traffic on this network as an anti-spoofing measure.

Solution

Run the following commands to implement the loopback rules:

iptables -A INPUT -i lo -j ACCEPT # iptables -A OUTPUT -o lo -j ACCEPT # iptables -A INPUT -s 127.0.0.0/8 -j DROP

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5

CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b
GDPR	32.1.d
GDPR	32.2
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1A
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1
Audit File	
	C v2 0 0 1 1 Compar availt
CIS_Ubuntu_Linux_22.04_LT	S_V2.U.U_L1_Server.audit
Policy Value	
PASSED	
Hosts	

4.3.2.3 Ensure iptables outbound and established connections are configured

Info

Configure the firewall rules for new outbound, and established connections.

Notes:

_

Changing firewall settings while connected over network can result in being locked out of the system

-

Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well

If rules are not in place for new outbound, and established connections all packets will be dropped by the default policy preventing network usage.

Solution

Configure iptables in accordance with site policy. The following commands will implement a policy to allow all outbound connections and all established connections:

iptables -A OUTPUT -p tcp -m state --state NEW,ESTABLISHED -j ACCEPT # iptables -A OUTPUT -p udp -m state --state NEW,ESTABLISHED -j ACCEPT # iptables -A OUTPUT -p icmp -m state --state NEW,ESTABLISHED -j ACCEPT # iptables -A INPUT -p udp -m state --state ESTABLISHED -j ACCEPT # iptables -A INPUT -p udp -m state --state ESTABLISHED -j ACCEPT # iptables -A INPUT -p icmp -m state ESTABLISHED -j ACCEPT

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4

CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b
GDPR	32.1.d
GDPR	32.2
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1M
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1
Audit File	
CIS_Ubuntu_Linux_22.04_LT	S_v2.0.0_L1_Server.audit
Policy Value	
PASSED	
Hosts	

4.3.2.4 Ensure iptables firewall rules exist for all open ports

Info

Any ports that have been opened on non-loopback addresses need firewall rules to govern traffic.

Note:

- Changing firewall settings while connected over network can result in being locked out of the system
- Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well
- The remediation command opens up the port to traffic from all sources. Consult iptables documentation and set any restrictions in compliance with site policy

Without a firewall rule configured for open ports default firewall policy will drop all packets to these ports.

Solution

For each port identified in the audit which does not have a firewall rule establish a proper rule for accepting inbound connections:

iptables -A INPUT -p rotocol> --dport <port> -m state --state NEW -j ACCEPT

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5

CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) **LEVEL** 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 6.2 QCSC-V1 QCSC-V1 8.2.1 2.1 SWIFT-CSCV1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

4.3.3.1 Ensure ip6tables default deny firewall policy

Info

A default deny all policy on connections ensures that any unconfigured network usage will be rejected.

Note:

- Changing firewall settings while connected over network can result in being locked out of the system
- Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well

With a default accept policy the firewall will accept any packet that is not configured to be denied. It is easier to white list acceptable usage than to black list unacceptable usage.

Solution

IF IPv6 is enabled on your system:

Run the following commands to implement a default DROP policy:

ip6tables -P INPUT DROP # ip6tables -P OUTPUT DROP # ip6tables -P FORWARD DROP

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5

CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) **LEVEL** 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 6.2 QCSC-V1 QCSC-V1 8.2.1 2.1 SWIFT-CSCV1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

4.3.3.2 Ensure ip6tables loopback traffic is configured

Info

Configure the loopback interface to accept traffic. Configure all other interfaces to deny traffic to the loopback network (::1).

Note:

- Changing firewall settings while connected over network can result in being locked out of the system
- Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well

Loopback traffic is generated between processes on machine and is typically critical to operation of the system. The loopback interface is the only place that loopback network (::1) traffic should be seen, all other interfaces should ignore traffic on this network as an anti-spoofing measure.

Solution

Run the following commands to implement the loopback rules:

ip6tables -A INPUT -i lo -j ACCEPT # ip6tables -A OUTPUT -o lo -j ACCEPT # ip6tables -A INPUT -s ::1 -j DROP

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1	
800-171	3.13.5	
800-171	3.13.6	
800-53	CA-9	
800-53	SC-7	
800-53	SC-7(5)	
800-53R5	CA-9	
800-53R5	SC-7	
800-53R5	SC-7(5)	
CN-L3	7.1.2.2(c)	
CN-L3	8.1.10.6(j)	
CSCV7	9.4	
CSCV8	4.4	
CSCV8	4.5	
CSF	DE.CM-1	
CSF	ID.AM-3	
CSF	PR.AC-5	

CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 4.2 QCSC-V1 QCSC-V1 5.2.1 QCSC-V1 5.2.2 5.2.3 QCSC-V1 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

4.3.3.3 Ensure ip6tables outbound and established connections are configured

Info

Configure the firewall rules for new outbound, and established IPv6 connections.

Note:

- Changing firewall settings while connected over network can result in being locked out of the system
- Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well

If rules are not in place for new outbound, and established connections all packets will be dropped by the default policy preventing network usage.

Solution

Configure iptables in accordance with site policy. The following commands will implement a policy to allow all outbound connections and all established connections:

ip6tables -A OUTPUT -p tcp -m state --state NEW,ESTABLISHED -j ACCEPT # ip6tables -A OUTPUT -p udp -m state --state NEW,ESTABLISHED -j ACCEPT # ip6tables -A OUTPUT -p icmp -m state --state NEW,ESTABLISHED -j ACCEPT # ip6tables -A INPUT -p tcp -m state --state ESTABLISHED -j ACCEPT # ip6tables -A INPUT -p icmp -m state --state ESTABLISHED -j ACCEPT # ip6tables -A INPUT -p icmp -m state --state ESTABLISHED -j ACCEPT # ip6tables -A INPUT -p icmp -m state --state

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3

CSF	PR.AC-5
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.b
GDPR	32.1.d
GDPR	32.2
HIPAA	164.306(a)(1)
ISO/IEC-27001	A.13.1.3
ITSG-33	SC-7
ITSG-33	SC-7(5)
LEVEL	1M
NESA	T4.5.4
NIAV2	GS1
NIAV2	GS2a
NIAV2	GS2b
NIAV2	GS7b
NIAV2	NS25
PCI-DSSV3.2.1	1.1
PCI-DSSV3.2.1	1.2
PCI-DSSV3.2.1	1.2.1
PCI-DSSV3.2.1	1.3
PCI-DSSV4.0	1.2.1
PCI-DSSV4.0	1.4.1
QCSC-V1	4.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	5.2.3
QCSC-V1	6.2
QCSC-V1	8.2.1
SWIFT-CSCV1	2.1
TBA-FIISB	43.1
Audit File	
CIS_Ubuntu_Linux_22.04_LTS	5_v2.0.0_L1_Server.audit
Policy Value	
PASSED	
Hosts	
192.168.40.33	
132.100.40.33	

4.3.3.4 Ensure ip6tables firewall rules exist for all open ports

Info

Any ports that have been opened on non-loopback addresses need firewall rules to govern traffic.

Note:

- Changing firewall settings while connected over network can result in being locked out of the system
- Remediation will only affect the active system firewall, be sure to configure the default policy in your firewall management to apply on boot as well
- The remediation command opens up the port to traffic from all sources. Consult iptables documentation and set any restrictions in compliance with site policy

Without a firewall rule configured for open ports default firewall policy will drop all packets to these ports.

Solution

For each port identified in the audit which does not have a firewall rule establish a proper rule for accepting inbound connections:

ip6tables -A INPUT -p rotocol> --dport <port> -m state --state NEW -j ACCEPT

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5
CSF	PR.DS-5

CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) **LEVEL** 1A NESA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 5.2.2 QCSC-V1 QCSC-V1 5.2.3 6.2 QCSC-V1 QCSC-V1 8.2.1 2.1 SWIFT-CSCV1 TBA-FIISB 43.1 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts

5.1.1 Ensure permissions on /etc/ssh/sshd_config are configured

Info

The file /etc/ssh/sshd_config and files ending inconf in the /etc/ssh/sshd_config.d directory, contain configuration specifications for sshd

configuration specifications for sshd need to be protected from unauthorized changes by non-privileged users.

Solution

Run the following script to set ownership and permissions on /etc/ssh/sshd_config and files ending inconf in the /etc/ssh/sshd_config.d directory:

#!/usr/bin/env bash

{ chmod u-x,og-rwx /etc/ssh/sshd_config chown root:root /etc/ssh/sshd_config while IFS= read -r -d 0' l_file; do if [-e "\$l_file"]; then chmod u-x,og-rwx "\$l_file"

chown root:root "\$I_file"

fi done < <(find /etc/ssh/sshd_config.d -type f -print0 2>/dev/null) }

- IF - other locations are listed in an Include statement, *.conf files in these locations access should also be modified.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)

CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

NIAV2

SS15c

NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    *** PASS ***

- * Correctly set *:

- File: "/etc/ssh/sshd_config":
    - Correct: mode (0600), owner (root), and group owner (root) configured
```

5.1.2 Ensure permissions on SSH private host key files are configured

Info

An SSH private key is one of two files used in SSH public key authentication. In this authentication method, the possession of the private key is proof of identity. Only a private key that corresponds to a public key will be able to authenticate successfully. The private keys need to be stored and handled carefully, and no copies of the private key should be distributed.

If an unauthorized user obtains the private SSH host key file, the host could be impersonated

Solution

Run the following script to set mode, ownership, and group on the private SSH host key files:

#!/usr/bin/env bash

```
{| output=""| output2=""
```

| ssh group name="\$(awk -F: '(\$1 ~ /^(ssh keys| ?ssh)\$/) {print \$1}' /etc/group)"

FILE_ACCESS_FIX() { while IFS=: read -r l_file_mode l_file_owner l_file_group; do echo "File: \"\$l_file\" mode: \"\$l file mode\" owner \"\$l file own\" group \"\$l file group\""

I out2=""

["l_file_group" = "\$l_ssh_group_name"] & amp; & amp; & l_pmask = "0137" | | l_pmask = "0177"

l_maxperm="\$(printf '%o' \$((0777 & amp; ~\$l_pmask)))"

if [\$((\$l_file_mode & amp; \$l_pmask)) -gt 0]; then l_out2="\$l_out2

- Mode: \"\$l_file_mode\" should be mode: \"\$l_maxperm\" or more restrictive
- updating to mode: :\$I_maxperm\""

["l_file_group" = "\$l_ssh_group_name"] & amp; & amp; & chmod u-x,g-wx,o-rwx "\$l_file" || chmod u-x,go-rwx fi if ["\$l_file_owner"! = "root"]; then l_out2="\$l_out2

- Owned by: \"\$I_file_owner\" should be owned by \"root\"
- Changing ownership to \"root\""

chown root "\$I file"

fi if [[!"\$l_file_group" =~ (\$l_ssh_group_name|root)]]; then [-n "\$l_ssh_group_name"] & amp; & amp; & l new group="\$l ssh group name" | | l new group="root"

l_out2="\$l_out2

- Owned by group \"\$I_file_group\" should be group owned by: \"\$I_ssh_group_name\" or \"root\"
- Changing group ownership to \"\$I_new_group\""

chgrp "\$1 new group" "\$1 file"

fi if [-n "\$l_out2"]; then l_output2="\$l_output2

- File: \"\$| file\"\$| out2"

else l_output="\$l_output

- File: \"\$1 file\"
- Correct: mode: \"\$|_file_mode\", owner: \"\$|_file_owner\", and group owner: \"\$|_file_group\" configured"

fi done < <(stat -Lc '%#a:%U:%G' "\$l_file") } while IFS= read -r -d \$'0' l_file; do if ssh-keygen -lf &>/ dev/null "\$l_file"; then file "\$l_file" | grep -Piq -- 'bopensshh+([^# r]+h+)?privateh+keyb' && FILE_ACCESS_FIX fi done < <(find -L /etc/ssh -xdev -type f -print0 2>/dev/null) if [-z "\$l_output2"]; then echo -e "

- No access changes required "

else echo -e "

- Remediation results:

\$I output2"

fi }

See Also

https://workbench.cisecurity.org/benchmarks/17074

References		
800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	
CSCV7	14.6	
CSCV8	3.3	
CSF	PR.AC-4	
CSF	PR.DS-5	
CSF	PR.PT-2	

CSF	PR.PT-3
GDPR	32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2
ISO/IEC-27001 A.9.4.1
ISO/IEC-27001 A.9.4.5
ITSG-33 AC-3
ITSG-33 AC-5
ITSG-33 AC-6
ITSG-33 MP-2

 ITSG-33
 MP-2a.

 LEVEL
 1A

 NESA
 T1.3.2

 NESA
 T1.4.1

 NESA
 T4.2.1

 NESA
 T5.1.1

NESA T5.2.2 T5.4.1 NESA NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3

NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 7.2.2 PCI-DSSV4.0 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2 QCSC-V1 13.2 SWIFT-CSCV1 5.1

NIAV2

NIAV2

 TBA-FIISB
 31.1

 TBA-FIISB
 31.4.2

 TBA-FIISB
 31.4.3

AM23f

SS13c

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:

** PASS **

- * Correctly configured *:

- File: "/etc/ssh/ssh_host_ecdsa_key"

- Correct: mode: "0600", owner: "root", and group owner: "root" configured

- File: "/etc/ssh/ssh_host_rsa_key"

- Correct: mode: "0600", owner: "root", and group owner: "root" configured

- File: "/etc/ssh/ssh_host_ed25519_key"

- Correct: mode: "0600", owner: "root", and group owner: "root" configured
```

5.1.3 Ensure permissions on SSH public host key files are configured

Info

An SSH public key is one of two files used in SSH public key authentication. In this authentication method, a public key is a key that can be used for verifying digital signatures generated using a corresponding private key. Only a public key that corresponds to a private key will be able to authenticate successfully.

If a public host key file is modified by an unauthorized user, the SSH service may be compromised.

Solution

Run the following script to set mode, ownership, and group on the public SSH host key files:

#!/usr/bin/env bash

```
{ l_output="" l_output2=""
```

l_pmask="0133" & amp; & amp; & amp; & l_maxperm="\$(printf '%o' \$((0777 & amp; ~\$l_pmask)))"

FILE ACCESS FIX() { while IFS=: read -r | file mode | file owner | file group; do | out2=""

if [\$((\$l_file_mode & \$l_pmask)) -gt 0]; then l_out2="\$l_out2

- Mode: \"\$l_file_mode\" should be mode: \"\$l_maxperm\" or more restrictive
- updating to mode: :\$I_maxperm\""

chmod u-x,go-wx fi if ["\$l_file_owner" != "root"]; then l_out2="\$l_out2

- Owned by: \"\$I_file_owner\" should be owned by \"root\"
- Changing ownership to \"root\""

chown root "\$I_file"

fi if ["\$I file group" != "root"]; then I out2="\$I out2

- Owned by group \"\$I_file_group\" should be group owned by: \"root\"
- Changing group ownership to \"root\""

chgrp root "\$I_file"

fi if [-n "\$| out2"]; then | output2="\$| output2

- File: \"\$l_file\"\$l_out2"

else l_output="\$l_output

- File: \"\$I_file\"
- Correct: mode: \"\$l_file_mode\", owner: \"\$l_file_owner\", and group owner: \"\$l_file_group\" configured"

fi done < <(stat -Lc '%#a:%U:%G' "\$l_file") } while IFS= read -r -d \$'0' l_file; do if ssh-keygen -lf &>/ dev/null "\$l_file"; then file "\$l_file" | grep -Piq -- 'bopensshh+([^# r]+h+)?publich+keyb' && FILE_ACCESS_FIX fi done < <(find -L /etc/ssh -xdev -type f -print0 2>/dev/null) if [-z "\$l_output2"]; then echo -e "

- No access changes required "

else echo -e "

- Remediation results:

\$I_output2"

fi }

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6

ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:

** PASS **

- * Correctly configured *:

- File: "/etc/ssh/ssh_host_ecdsa_key.pub"

- Correct: mode: "0644", owner: "root", and group owner: "root" configured

- File: "/etc/ssh/ssh_host_rsa_key.pub"

- Correct: mode: "0644", owner: "root", and group owner: "root" configured

- File: "/etc/ssh/ssh_host_ed25519_key.pub"

- Correct: mode: "0644", owner: "root", and group owner: "root" configured
```

5.1.4 Ensure sshd access is configured

Info

There are several options available to limit which users and group can access the system via SSH. It is recommended that at least one of the following options be leveraged:

- AllowUsers:
- The AllowUsers variable gives the system administrator the option of allowing specific users to ssh into the system. The list consists of space separated user names. Numeric user IDs are not recognized with this variable. If a system administrator wants to restrict user access further by only allowing the allowed users to log in from a particular host, the entry can be specified in the form of user@host.
- AllowGroups:
- The AllowGroups variable gives the system administrator the option of allowing specific groups of users to ssh into the system. The list consists of space separated group names. Numeric group IDs are not recognized with this variable.
- DenyUsers:
- The DenyUsers variable gives the system administrator the option of denying specific users to ssh into the system. The list consists of space separated user names. Numeric user IDs are not recognized with this variable. If a system administrator wants to restrict user access further by specifically denying a user's access from a particular host, the entry can be specified in the form of user@host.
- DenyGroups:
- The DenyGroups variable gives the system administrator the option of denying specific groups of users to ssh into the system. The list consists of space separated group names. Numeric group IDs are not recognized with this variable.

Restricting which users can remotely access the system via SSH will help ensure that only authorized users access the system.

Solution

Edit the /etc/ssh/sshd_config file to set one or more of the parameters above any Include and Match set statements as follows:

AllowUsers <userlist>

- AND/OR - AllowGroups <grouplist>

Note:

- First occurrence of a option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in aconf file in a Include directory.
- It is easier to manage an allow list than a deny list. In a deny list, you could potentially add a user or group and forget to add it to the deny list.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	
CSCV7	4.3	
CSCV8	3.3	
CSF	PR.AC-4	
CSF	PR.DS-5	
CSF	PR.PT-2	
CSF	PR.PT-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
ISO/IEC-27001	A.6.1.2	
ISO/IEC-27001	A.9.4.1	
ISO/IEC-27001	A.9.4.5	
ITSG-33	AC-3	
ITSG-33	AC-5	
ITSG-33	AC-6	
ITSG-33	MP-2	
ITSG-33	MP-2a.	
LEVEL	1A	
NESA	T1.3.2	

NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

```
The command script with multiple lines returned :

port 22: allowusers root
allowusers audit
```

allowusers c0863 allowusers mware allowusers C3673 Pass

5.1.5 Ensure sshd Banner is configured

Info

The Banner parameter specifies a file whose contents must be sent to the remote user before authentication is permitted. By default, no banner is displayed.

Banners are used to warn connecting users of the particular site's policy regarding connection. Presenting a warning message prior to the normal user login may assist the prosecution of trespassers on the computer system.

Solution

Edit the /etc/ssh/sshd_config file to set the Banner parameter above any Include and Match entries as follows:

Banner /etc/issue.net

Note: First occurrence of a option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.9
800-53	AC-8
800-53R5	AC-8
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	AC-8
LEVEL	1A
NESA	M1.3.6
TBA-FIISB	45.2.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.1.6 Ensure sshd Ciphers are configured

Info

This variable limits the ciphers that SSH can use during communication.

Notes:

- Some organizations may have stricter requirements for approved ciphers.
- Ensure that ciphers used are in compliance with site policy.
- The only "strong" ciphers currently FIPS 140 compliant are:

aes256-gcm@openssh.com

-

aes128-gcm@openssh.com

- aes256-ctr
- aes192-ctr
- aes128-ctr

Weak ciphers that are used for authentication to the cryptographic module cannot be relied upon to provide confidentiality or integrity, and system data may be compromised.

- The Triple DES ciphers, as used in SSH, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain clear text data via a birthday attack against a long-duration encrypted session, aka a "Sweet32" attack.
- Error handling in the SSH protocol; Client and Server, when using a block cipher algorithm in Cipher Block Chaining (CBC) mode, makes it easier for remote attackers to recover certain plain text data from an arbitrary block of cipher text in an SSH session via unknown vectors.

Solution

Edit the /etc/ssh/sshd_config file and add/modify the Ciphers line to contain a comma separated list of the site unapproved (weak) Ciphers preceded with a - above any Include entries:

Example:

Ciphers -3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,chacha20-poly1305@openssh.com

- IF - CVE-2023-48795 has been addressed, and it meets local site policy, chacha20-poly1305@openssh.com may be removed from the list of excluded ciphers.

Note: First occurrence of an option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.13	
800-171	3.5.2	
800-171	3.13.8	
800-53	AC-17(2)	
800-53	IA-5	
800-53	IA-5(1)	
800-53	SC-8	
800-53	SC-8(1)	
800-53R5	AC-17(2)	
800-53R5	IA-5	
800-53R5	IA-5(1)	
800-53R5	SC-8	
800-53R5	SC-8(1)	
CN-L3	7.1.2.7(g)	
CN-L3	7.1.3.1(d)	
CN-L3	8.1.2.2(a)	
CN-L3	8.1.2.2(b)	
CN-L3	8.1.4.1(c)	
CN-L3	8.1.4.7(a)	
CN-L3	8.1.4.8(a)	
CN-L3	8.2.4.5(c)	
CN-L3	8.2.4.5(d)	
CN-L3	8.5.2.2	
CSCV7	14.4	
CSCV8	3.10	
CSF	PR.AC-1	
CSF	PR.AC-3	
CSF	PR.DS-2	
CSF	PR.DS-5	
CSF	PR.PT-4	
GDPR	32.1.a	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
HIPAA	164.312(a)(2)(i)	
HIPAA	164.312(d)	
HIPAA	164.312(e)(1)	
HIPAA	164.312(e)(2)(i)	
ISO/IEC-27001	A.6.2.2	
ISO/IEC-27001	A.10.1.1	
ISO/IEC-27001	A.13.2.3	
ITSG-33	AC-17(2)	

ITSG-33	IA-5
ITSG-33	IA-5(1)
ITSG-33	SC-8
ITSG-33	SC-8a.
ITSG-33	SC-8(1)
LEVEL	1A
NESA	T4.3.1
NESA	T4.3.2
NESA	T4.5.1
NESA	T4.5.2
NESA	T5.2.3
NESA	T5.4.2
NESA	T7.3.3
NESA	T7.4.1
NIAV2	AM37
NIAV2	IE8
NIAV2	IE9
NIAV2	IE12
NIAV2	NS5d
NIAV2	NS6b
NIAV2	NS29
NIAV2	SS24
PCI-DSSV3.2.1	2.3
PCI-DSSV3.2.1	4.1
PCI-DSSV4.0	2.2.7
PCI-DSSV4.0	4.2.1
QCSC-V1	3.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	2.1
SWIFT-CSCV1	2.6
SWIFT-CSCV1	4.1
TBA-FIISB	29.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

```
The command script with multiple lines returned:

awk: cmd. line:1: warning: escape sequence `\.' treated as plain `.'

port 22: ciphers chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-
gcm@openssh.com,aes256-gcm@openssh.com

Pass
```

5.1.7 Ensure sshd ClientAliveInterval and ClientAliveCountMax are configured

Info

Note: To clarify, the two settings described below are only meant for idle connections from a protocol perspective and are not meant to check if the user is active or not. An idle user does not mean an idle connection. SSH does not and never had, intentionally, the capability to drop idle users. In SSH versions before 8.2p1 there was a bug that caused these values to behave in such a manner that they were abused to disconnect idle users. This bug has been resolved in 8.2p1 and thus it can no longer be abused disconnect idle users.

The two options ClientAliveInterval and ClientAliveCountMax control the timeout of SSH sessions. Taken directly from man 5 sshd_config:

-

ClientAliveInterval Sets a timeout interval in seconds after which if no data has been received from the client, sshd(8) will send a message through the encrypted channel to request a response from the client. The default is 0, indicating that these messages will not be sent to the client.

_

ClientAliveCountMax Sets the number of client alive messages which may be sent without sshd(8) receiving any messages back from the client. If this threshold is reached while client alive messages are being sent, sshd will disconnect the client, terminating the session. It is important to note that the use of client alive messages is very different from TCPKeepAlive. The client alive messages are sent through the encrypted channel and therefore will not be spoofable. The TCP keepalive option en-abled by TCPKeepAlive is spoofable. The client alive mechanism is valuable when the client or server depend on knowing when a connection has become unresponsive. The default value is 3. If ClientAliveInterval is set to 15, and ClientAliveCountMax is left at the default, unresponsive SSH clients will be disconnected after approximately 45 seconds. Setting a zero ClientAliveCountMax disables connection termination.

In order to prevent resource exhaustion, appropriate values should be set for both ClientAliveInterval and ClientAliveCountMax Specifically, looking at the source code, ClientAliveCountMax must be greater than zero in order to utilize the ability of SSH to drop idle connections. If connections are allowed to stay open indefinitely, this can potentially be used as a DDOS attack or simple resource exhaustion could occur over unreliable networks.

The example set here is a 45 second timeout. Consult your site policy for network timeouts and apply as appropriate.

Solution

Edit the /etc/ssh/sshd_config file to set the ClientAliveInterval and ClientAliveCountMax parameters above any Include and Match entries according to site policy.

Example:

ClientAliveInterval 15 ClientAliveCountMax 3

Note: First occurrence of a option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.11	
800-53	AC-12	
800-53R5	AC-12	
CN-L3	7.1.2.2(d)	
CN-L3	7.1.3.7(b)	
CN-L3	8.1.4.1(b)	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(2)(iii)	
ITSG-33	AC-12	
LEVEL	1A	
NIAV2	NS49	

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.1.10 Ensure sshd HostbasedAuthentication is disabled

Info

The HostbasedAuthentication parameter specifies if authentication is allowed through trusted hosts via the user ofrhosts or /etc/hosts.equiv along with successful public key client host authentication.

Even though therhosts files are ineffective if support is disabled in /etc/pam.conf disabling the ability to userhosts files in SSH provides an additional layer of protection.

Solution

Edit the /etc/ssh/sshd_config file to set the HostbasedAuthentication parameter to no above any Include and Match entries as follows:

HostbasedAuthentication no

Note: First occurrence of a option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.6
800-171	3.4.7
800-53	CM-7b.
800-53R5	CM-7b.
CN-L3	7.1.3.5(c)
CN-L3	7.1.3.7(d)
CN-L3	8.1.4.4(b)
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-7a.
LEVEL	1A
NIAV2	SS13b
NIAV2	SS14a
NIAV2	SS14c
PCI-DSSV3.2.1	2.2.2
PCI-DSSV4.0	2.2.4
QCSC-V1	3.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.1.11 Ensure sshd IgnoreRhosts is enabled

Info

The IgnoreRhosts parameter specifies thatrhosts and shosts files will not be used in RhostsRSAAuthentication or HostbasedAuthentication

Setting this parameter forces users to enter a password when authenticating with SSH.

Solution

Edit the /etc/ssh/sshd_config file to set the IgnoreRhosts parameter to yes above any Include and Match entries as follows:

IgnoreRhosts yes

Note: First occurrence of a option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.1.12 Ensure sshd KexAlgorithms is configured

Info

Key exchange is any method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm. If the sender and receiver wish to exchange encrypted messages, each must be equipped to encrypt messages to be sent and decrypt messages received

Notes:

- Kex algorithms have a higher preference the earlier they appear in the list
- Some organizations may have stricter requirements for approved Key exchange algorithms
- Ensure that Key exchange algorithms used are in compliance with site policy
- The only Key Exchange Algorithms currently FIPS 140 approved are:
- ecdh-sha2-nistp256
- ecdh-sha2-nistp384
- ecdh-sha2-nistp521
- diffie-hellman-group-exchange-sha256
- diffie-hellman-group16-sha512
- diffie-hellman-group18-sha512
- diffie-hellman-group14-sha256

Key exchange methods that are considered weak should be removed. A key exchange method may be weak because too few bits are used, or the hashing algorithm is considered too weak. Using weak algorithms could expose connections to man-in-the-middle attacks

Solution

Edit the /etc/ssh/sshd_config file and add/modify the KexAlgorithms line to contain a comma separated list of the site unapproved (weak) KexAlgorithms preceded with a - above any Include entries:

Example:

KexAlgorithms -diffie-hellman-group1-sha1,diffie-hellman-group14-sha1,diffie-hellman-group-exchange-sha1

Note: First occurrence of an option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.13
800-171	3.5.2
800-171	3.13.8

800-53	AC-17(2)
800-53	IA-5
800-53	IA-5(1)
800-53	SC-8
800-53	SC-8(1)
800-53R5	AC-17(2)
800-53R5	IA-5
800-53R5	IA-5(1)
800-53R5	SC-8
800-53R5	SC-8(1)
CN-L3	7.1.2.7(g)
CN-L3	7.1.3.1(d)
CN-L3	8.1.2.2(a)
CN-L3	8.1.2.2(b)
CN-L3	8.1.4.1(c)
CN-L3	8.1.4.7(a)
CN-L3	8.1.4.8(a)
CN-L3	8.2.4.5(c)
CN-L3	8.2.4.5(d)
CN-L3	8.5.2.2
CSCV7	14.4
CSCV8	3.10
CSF	PR.AC-1
CSF	PR.AC-3
CSF	PR.DS-2
CSF	PR.DS-5
CSF	PR.PT-4
GDPR	32.1.a
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
HIPAA	164.312(e)(1)
HIPAA	164.312(e)(2)(i)
ISO/IEC-27001	A.6.2.2
ISO/IEC-27001	A.10.1.1
ISO/IEC-27001	A.13.2.3
ITSG-33	AC-17(2)
ITSG-33	IA-5
ITSG-33	IA-5(1)

SC-8

SC-8a.

ITSG-33

ITSG-33

ITSG-33	SC-8(1)
LEVEL	1A
NESA	T4.3.1
NESA	T4.3.2
NESA	T4.5.1
NESA	T4.5.2
NESA	T5.2.3
NESA	T5.4.2
NESA	T7.3.3
NESA	T7.4.1
NIAV2	AM37
NIAV2	IE8
NIAV2	IE9
NIAV2	IE12
NIAV2	NS5d
NIAV2	NS6b
NIAV2	NS29
NIAV2	SS24
PCI-DSSV3.2.1	2.3
PCI-DSSV3.2.1	4.1
PCI-DSSV4.0	2.2.7
PCI-DSSV4.0	4.2.1
QCSC-V1	3.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	2.1
SWIFT-CSCV1	2.6
SWIFT-CSCV1	4.1
TBA-FIISB	29.1

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

192.168.40.33

The command script with multiple lines returned :

 $\verb|port 22: kexalgorithms sntrup761x25519-sha512, sntrup761x25519-sha512@openssh.com, mlkem768x25519-sha256, curve25519-sha256, curve25519-sha256@libssh.org, ecdh-sha2-nistp256, ecdh-sha2-nistp384, ecdh-sha2-nistp521, diffie-hellman-group-exchange-sha256, diffie-hellman-group16-sha512, diffie-hellman-group18-sha512, diffie-hellman-group14-sha256\\ \verb|Pass||$

5.1.13 Ensure sshd LoginGraceTime is configured

Info

The LoginGraceTime parameter specifies the time allowed for successful authentication to the SSH server. The longer the Grace period is the more open unauthenticated connections can exist. Like other session controls in this session the Grace Period should be limited to appropriate organizational limits to ensure the service is available for needed access.

Setting the LoginGraceTime parameter to a low number will minimize the risk of successful brute force attacks to the SSH server. It will also limit the number of concurrent unauthenticated connections While the recommended setting is 60 seconds (1 Minute), set the number based on site policy.

Solution

Edit the /etc/ssh/sshd_config file to set the LoginGraceTime parameter to 60 seconds or less above any Include entry as follows:

LoginGraceTime 60

Note: First occurrence of a option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.11
800-53	AC-10
800-53	AC-12
800-53R5	AC-10
800-53R5	AC-12
CN-L3	7.1.2.2(d)
CN-L3	7.1.3.7(b)
CN-L3	8.1.4.1(b)
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(iii)
ITSG-33	AC-10
ITSG-33	AC-12
LEVEL	1A
NESA	T5.5.1
NIAV2	NS49
QCSC-V1	5.2.1
QCSC-V1	5.2.2

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

192.168.40.33

The command script with multiple lines returned :

port 22: logingracetime 60

Pass

5.1.14 Ensure sshd LogLevel is configured

Info

SSH provides several logging levels with varying amounts of verbosity. The DEBUG options are specifically not recommended other than strictly for debugging SSH communications. These levels provide so much data that it is difficult to identify important security information, and may violate the privacy of users.

The INFO level is the basic level that only records login activity of SSH users. In many situations, such as Incident Response, it is important to determine when a particular user was active on a system. The logout record can eliminate those users who disconnected, which helps narrow the field.

The VERBOSE level specifies that login and logout activity as well as the key fingerprint for any SSH key used for login will be logged. This information is important for SSH key management, especially in legacy environments.

Solution

Edit the /etc/ssh/sshd_config file to set the LogLevel parameter to VERBOSE or INFO above any Include and Match entries as follows:

LogLevel VERBOSE

- OR - LogLevel INFO

Note: First occurrence of an option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-2
800-53	AU-7
800-53	AU-12
800-53R5	AU-2
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(a)
CSCV7	6.2
CSCV7	6.3
CSCV8	8.2

CSF DE.CM-1 CSF DE.CM-3 CSF DE.CM-7 CSF PR.PT-1 CSF RS.AN-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-2 ITSG-33 AU-7 ITSG-33 AU-12 LEVEL 1A NESA M1.2.2 NESA M5.5.1 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 SS30 NIAV2 VL8 PCI-DSSV3.2.1 10.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4 Audit File CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit Policy Value **PASSED** Hosts 192.168.40.33 All of the following must pass to satisfy this requirement:

5.1.15 Ensure sshd MACs are configured

Info

This variable limits the types of MAC algorithms that SSH can use during communication.

Notes:

- Some organizations may have stricter requirements for approved MACs.
- Ensure that MACs used are in compliance with site policy.
- The only "strong" MACs currently FIPS 140 approved are:
- HMAC-SHA1
- HMAC-SHA2-256
- HMAC-SHA2-384
- HMAC-SHA2-512

MD5 and 96-bit MAC algorithms are considered weak and have been shown to increase exploitability in SSH downgrade attacks. Weak algorithms continue to have a great deal of attention as a weak spot that can be exploited with expanded computing power. An attacker that breaks the algorithm could take advantage of a MiTM position to decrypt the SSH tunnel and capture credentials and information.

Solution

Edit the /etc/ssh/sshd_config file and add/modify the MACs line to contain a comma separated list of the site unapproved (weak) MACs preceded with a - above any Include entries:

Example:

MACs -hmac-md5,hmac-md5-96,hmac-ripemd160,hmac-sha1-96,umac-64@openssh.com,hmac-md5-etm@openssh.com,hmac-md5-96-etm@openssh.com,hmac-ripemd160-etm@openssh.com,hmac-sha1-96-etm@openssh.com,umac-64-etm@openssh.com,umac-128-etm@openssh.com

- IF - CVE-2023-48795 has not been reviewed and addressed, the following etm MACs should be added to the exclude list:

hmac-sha1-etm@openssh.com

hmac-sha2-256-etm@openssh.com

hmac-sha2-512-etm@openssh.com

Note: First occurrence of an option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.13	
800-171	3.5.2	
800-171	3.13.8	
800-53	AC-17(2)	
800-53	IA-5	
800-53	IA-5(1)	
800-53	SC-8	
800-53	SC-8(1)	
800-53R5	AC-17(2)	
800-53R5	IA-5	
800-53R5	IA-5(1)	
800-53R5	SC-8	
800-53R5	SC-8(1)	
CN-L3	7.1.2.7(g)	
CN-L3	7.1.3.1(d)	
CN-L3	8.1.2.2(a)	
CN-L3	8.1.2.2(b)	
CN-L3	8.1.4.1(c)	
CN-L3	8.1.4.7(a)	
CN-L3	8.1.4.8(a)	
CN-L3	8.2.4.5(c)	
CN-L3	8.2.4.5(d)	
CN-L3	8.5.2.2	
CSCV7	14.4	
CSCV7	16.5	
CSCV8	3.10	
CSF	PR.AC-1	
CSF	PR.AC-3	
CSF	PR.DS-2	
CSF	PR.DS-5	
CSF	PR.PT-4	
GDPR	32.1.a	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
HIPAA	164.312(a)(2)(i)	
HIPAA	164.312(d)	
HIPAA	164.312(e)(1)	
HIPAA	164.312(e)(2)(i)	
ISO/IEC-27001	A.6.2.2	
ISO/IEC-27001	A.10.1.1	
ISO/IEC-27001	A.13.2.3	
ISO/IEC-27001	A.10.1.1	

ITSG-33	AC-17(2)
ITSG-33	IA-5
ITSG-33	IA-5(1)
ITSG-33	SC-8
ITSG-33	SC-8a.
ITSG-33	SC-8(1)
LEVEL	1A
NESA	T4.3.1
NESA	T4.3.2
NESA	T4.5.1
NESA	T4.5.2
NESA	T5.2.3
NESA	T5.4.2
NESA	T7.3.3
NESA	T7.4.1
NIAV2	AM37
NIAV2	IE8
NIAV2	IE9
NIAV2	IE12
NIAV2	NS5d
NIAV2	NS6b
NIAV2	NS29
NIAV2	SS24
PCI-DSSV3.2.1	2.3
PCI-DSSV3.2.1	4.1
PCI-DSSV4.0	2.2.7
PCI-DSSV4.0	4.2.1
QCSC-V1	3.2
QCSC-V1	5.2.1
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	2.1
SWIFT-CSCV1	2.6
SWIFT-CSCV1	4.1
TBA-FIISB	29.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

```
The command script with multiple lines returned :

port 22: macs umac-128@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1
Pass
```

5.1.16 Ensure sshd MaxAuthTries is configured

Info

The MaxAuthTries parameter specifies the maximum number of authentication attempts permitted per connection. When the login failure count reaches half the number, error messages will be written to the syslog file detailing the login failure.

Setting the MaxAuthTries parameter to a low number will minimize the risk of successful brute force attacks to the SSH server. While the recommended setting is 4, set the number based on site policy.

Solution

Edit the /etc/ssh/sshd_config file to set the MaxAuthTries parameter to 4 or less above any Include and Match entries as follows:

MaxAuthTries 4

Note: First occurrence of an option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1	
800-171	3.3.2	
800-171	3.3.6	
800-53	AU-3	
800-53	AU-3(1)	
800-53	AU-7	
800-53	AU-12	
800-53R5	AU-3	
800-53R5	AU-3(1)	
800-53R5	AU-7	
800-53R5	AU-12	
CN-L3	7.1.2.3(a)	
CN-L3	7.1.2.3(b)	
CN-L3	7.1.2.3(c)	
CN-L3	7.1.3.3(a)	
CN-L3	7.1.3.3(b)	
CN-L3	8.1.4.3(b)	
CSCV7	16.13	
CSCV8	8.5	

CSF DE.CM-1 CSF DE.CM-3 CSF DE.CM-7 CSF PR.PT-1 CSF RS.AN-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-3 ITSG-33 AU-3(1) ITSG-33 AU-7 ITSG-33 AU-12 **LEVEL** 1A NESA T3.6.2 NIAV2 AM34a NIAV2 AM34b NIAV2 AM34c NIAV2 AM34d NIAV2 AM34e NIAV2 AM34f NIAV2 AM34g PCI-DSSV3.2.1 10.1 PCI-DSSV3.2.1 10.3 PCI-DSSV3.2.1 10.3.1 PCI-DSSV3.2.1 10.3.2 PCI-DSSV3.2.1 10.3.3 PCI-DSSV3.2.1 10.3.4 PCI-DSSV3.2.1 10.3.5 PCI-DSSV3.2.1 10.3.6 PCI-DSSV4.0 10.2.2 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.1.17 Ensure sshd MaxSessions is configured

Info

The MaxSessions parameter specifies the maximum number of open sessions permitted from a given connection.

To protect a system from denial of service due to a large number of concurrent sessions, use the rate limiting function of MaxSessions to protect availability of sshd logins and prevent overwhelming the daemon.

Solution

Edit the /etc/ssh/sshd_config file to set the MaxSessions parameter to 10 or less above any Include and Match entries as follows:

MaxSessions 10

Note: First occurrence of an option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-53	AC-10
800-53R5	AC-10
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	AC-10
LEVEL	1A
NESA	T5.5.1
QCSC-V1	5.2.1
QCSC-V1	5.2.2

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.1.18 Ensure sshd MaxStartups is configured

Info

The MaxStartups parameter specifies the maximum number of concurrent unauthenticated connections to the SSH daemon.

To protect a system from denial of service due to a large number of pending authentication connection attempts, use the rate limiting function of MaxStartups to protect availability of sshd logins and prevent overwhelming the daemon.

Solution

Edit the /etc/ssh/sshd_config file to set the MaxStartups parameter to 10:30:60 or more restrictive above any Include entries as follows:

MaxStartups 10:30:60

Note: First occurrence of a option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-53	AC-10
800-53R5	AC-10
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	AC-10
LEVEL	1A
NESA	T5.5.1
QCSC-V1	5.2.1
QCSC-V1	5.2.2

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

The command script with multiple lines returned :

port 22: maxstartups 10:30:60

Pass

5.1.19 Ensure sshd PermitEmptyPasswords is disabled

Info

The PermitEmptyPasswords parameter specifies if the SSH server allows login to accounts with empty password strings.

Disallowing remote shell access to accounts that have an empty password reduces the probability of unauthorized access to the system.

Solution

Edit /etc/ssh/sshd_config and set the PermitEmptyPasswords parameter to no above any Include and Match entries as follows:

PermitEmptyPasswords no

Note: First occurrence of an option takes precedence, Match set statements withstanding. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value	Pol	licv	Val	lue
--------------	-----	------	-----	-----

PASSED

Hosts

5.1.21 Ensure sshd PermitUserEnvironment is disabled

Info

The PermitUserEnvironment option allows users to present environment options to the SSH daemon.

Permitting users the ability to set environment variables through the SSH daemon could potentially allow users to bypass security controls (e.g. setting an execution path that has SSH executing trojan'd programs)

Solution

Edit the /etc/ssh/sshd_config file to set the PermitUserEnvironment parameter to no above any Include entries as follows:

PermitUserEnvironment no

Note: First occurrence of an option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.6
800-171	3.4.7
800-53	CM-7b.
800-53R5	CM-7b.
CN-L3	7.1.3.5(c)
CN-L3	7.1.3.7(d)
CN-L3	8.1.4.4(b)
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-7a.
LEVEL	1A
NIAV2	SS13b
NIAV2	SS14a
NIAV2	SS14c
PCI-DSSV3.2.1	2.2.2
PCI-DSSV4.0	2.2.4
QCSC-V1	3.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

192.168.40.33

The command script with multiple lines returned :

port 22: permitemptypasswords no

Pass

5.1.22 Ensure sshd UsePAM is enabled

Info

The UsePAM directive enables the Pluggable Authentication Module (PAM) interface. If set to yes this will enable PAM authentication using ChallengeResponseAuthentication and PasswordAuthentication directives in addition to PAM account and session module processing for all authentication types.

When usePAM is set to yes PAM runs through account and session types properly. This is important if you want to restrict access to services based off of IP, time or other factors of the account. Additionally, you can make sure users inherit certain environment variables on login or disallow access to the server

Solution

Edit the /etc/ssh/sshd_config file to set the UsePAM parameter to yes above any Include entries as follows:

UsePAM yes

Note: First occurrence of an option takes precedence. If Include locations are enabled, used, and order of precedence is understood in your environment, the entry may be created in a file in Include location.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^Pass\$

Hosts

```
The command script with multiple lines returned :

port 22: usepam yes
Pass
```

5.2.1 Ensure sudo is installed

Info

sudo allows a permitted user to execute a command as the superuser or another user, as specified by the security policy. The invoking user's real (not effective) user ID is used to determine the user name with which to query the security policy.

sudo supports a plug-in architecture for security policies and input/output logging. Third parties can develop and distribute their own policy and I/O logging plug-ins to work seamlessly with the sudo front end. The default security policy is sudoers which is configured via the file /etc/sudoers and any entries in / etc/sudoers.d

The security policy determines what privileges, if any, a user has to run sudo The policy may require that users authenticate themselves with a password or another authentication mechanism. If authentication is required, sudo will exit if the user's password is not entered within a configurable time limit. This limit is policy-specific.

Solution

First determine is LDAP functionality is required. If so, then install sudo-ldap else install sudo

Example:

apt install sudo

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.5
800-171	3.1.6
800-53	AC-6(2)
800-53	AC-6(5)
800-53R5	AC-6(2)
800-53R5	AC-6(5)
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.10.6(a)
CSCV7	4.3
CSCV8	5.4
CSF	PR.AC-4
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)

5.2.1 Ensure sudo is installed 571

ITSG-33 AC-6(2) ITSG-33 AC-6(5) LEVEL 1A NESA T5.1.1 NESA T5.2.2 NESA T5.6.1 NIAV2 AM1 NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.3	ISO/IEC-27001	A.9.2.3
LEVEL 1A NESA T5.1.1 NESA T5.2.2 NESA T5.6.1 NIAV2 AM1 NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	ITSG-33	AC-6(2)
NESA T5.1.1 NESA T5.2.2 NESA T5.6.1 NIAV2 AM1 NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	ITSG-33	AC-6(5)
NESA T5.2.2 NESA T5.6.1 NIAV2 AM1 NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	LEVEL	1A
NESA T5.6.1 NIAV2 AM1 NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NESA	T5.1.1
NIAV2 AM1 NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NESA	T5.2.2
NIAV2 AM23f NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NESA	T5.6.1
NIAV2 AM32 NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	AM1
NIAV2 AM33 NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	AM23f
NIAV2 SS13c NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	AM32
NIAV2 SS15c NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	AM33
NIAV2 VL3a PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	SS13c
PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	SS15c
PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	NIAV2	VL3a
PCI-DSSV4.0 7.2.2 QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	PCI-DSSV3.2.1	7.1.2
QCSC-V1 5.2.2 QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	PCI-DSSV4.0	7.2.1
QCSC-V1 6.2 SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	PCI-DSSV4.0	7.2.2
SWIFT-CSCV1 1.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	QCSC-V1	5.2.2
SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2	QCSC-V1	6.2
TBA-FIISB 31.4.2	SWIFT-CSCV1	1.2
	SWIFT-CSCV1	5.1
TBA-FIISB 31.4.3	TBA-FIISB	31.4.2
	TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /usr/bin/dpkg -s sudo sudo-ldap 2>&1 expect: install[\s]+ok[\s]+installed

Hosts

192.168.40.33

```
The command '/usr/bin/dpkg -s sudo sudo-ldap 2>&1' returned :

dpkg-query: package 'sudo-ldap' is not installed and no information is available
Package: sudo
Status: install ok installed
Priority: optional
Section: admin
Installed-Size: 2508
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Architecture: amd64
Version: 1.9.9-lubuntu2.4
Replaces: sudo-ldap
Depends: libaudit1 (>= 1:2.2.1), libc6 (>= 2.34), libpam0g (>= 0.99.7.1), libselinux1 (>= 3.1~),
zliblg (>= 1:1.2.0.2), libpam-modules, lsb-base
```

5.2.1 Ensure sudo is installed 572

```
Conflicts: sudo-ldap
Conffiles:
/etc/pam.d/sudo b3a1b916bf62a2cc3280f7f9b94844ff
/etc/pam.d/sudo-i ce9740f66cedf7716e26950abfe556fa
 /etc/sudo.conf efb56b1b282fa4cad1b6c0f05137bb08
/etc/sudo_logsrvd.conf 09ceda2c98f43e0fbb79bed7c82dba45
/etc/sudoers 791aa979aa5e859f9ba0112a9512158c
 /etc/sudoers.d/README 44c75ff004a18eeefdde4c998914d6d3
Description: Provide limited super user privileges to specific users
 Sudo is a program designed to allow a sysadmin to give limited root
privileges to users and log root activity. The basic philosophy is to give
as few privileges as possible but still allow people to get their work done.
This version is built with minimal shared library dependencies, use the
sudo-ldap package instead if you need LDAP support for sudoers.
Homepage: https://www.sudo.ws/
Original-Maintainer: Sudo Maintainers <sudo@packages.debian.org>
Use dpkg --info (= dpkg-deb --info) to examine archive files.
```

5.2.1 Ensure sudo is installed 573

5.2.2 Ensure sudo commands use pty

Info

sudo can be configured to run only from a pseudo terminal (pseudo-pty).

Attackers can run a malicious program using sudo which would fork a background process that remains even when the main program has finished executing.

Solution

Edit the file /etc/sudoers with visudo or a file in /etc/sudoers.d/ with visudo -f <PATH TO FILE> and add the following line:

Defaults use_pty

Edit the file /etc/sudoers with visudo and any files in /etc/sudoers.d/ with visudo -f <PATH TO FILE> and remove any occurrence of !use_pty

Note:

- sudo will read each file in /etc/sudoers.d skipping file names that end in \sim or contain a character to avoid causing problems with package manager or editor temporary/backup files.
- Files are parsed in sorted lexical order. That is, /etc/sudoers.d/01_first will be parsed before /etc/sudoers.d/10_second
- Be aware that because the sorting is lexical, not numeric, /etc/sudoers.d/1_whoops would be loaded after /etc/sudoers.d/10 second
- Using a consistent number of leading zeroes in the file names can be used to avoid such problems.

Impact:

WARNING: Editing the sudo configuration incorrectly can cause sudo to stop functioning. Always use visudo to modify sudo configuration files.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.5	
800-171	3.1.6	
800-53	AC-6(2)	
800-53	AC-6(5)	
800-53R5	AC-6(2)	
800-53R5	AC-6(5)	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	

CN-L3	8.1.10.6(a)
CSCV7	5.1
CSCV8	5.4
CSF	PR.AC-4
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.9.2.3
ITSG-33	AC-6(2)
ITSG-33	AC-6(5)
LEVEL	1A
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.6.1
NIAV2	AM1
NIAV2	AM23f
NIAV2	AM32
NIAV2	AM33
NIAV2	SS13c
NIAV2	SS15c
NIAV2	VL3a
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	5.2.2
QCSC-V1	6.2
SWIFT-CSCV1	1.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3
Audit File	
CIC Liburatu Lipux 22.04 Li	TS v2 0.0 L1 Server audit
CIS_Ubuntu_Linux_22.04_L	TS_VZ.U.U_LT_Server.audit
Policy Value	
PASSED	
Hosts	
192.168.40.33	
All of the following mus	t pass to satisfy this requirement:
	-

5.2.3 Ensure sudo log file exists

Info

sudo can use a custom log file

A sudo log file simplifies auditing of sudo commands

Solution

Edit the file /etc/sudoers or a file in /etc/sudoers.d/ with visudo or visudo -f <PATH TO FILE> and add the following line:

Example:

Defaults logfile="/var/log/sudo.log"

Note:

- sudo will read each file in /etc/sudoers.d skipping file names that end in ~ or contain a character to avoid causing problems with package manager or editor temporary/backup files.
- Files are parsed in sorted lexical order. That is, /etc/sudoers.d/01_first will be parsed before /etc/sudoers.d/10_second
- Be aware that because the sorting is lexical, not numeric, /etc/sudoers.d/1_whoops would be loaded after /etc/sudoers.d/10_second
- Using a consistent number of leading zeroes in the file names can be used to avoid such problems.

Impact:

WARNING: Editing the sudo configuration incorrectly can cause sudo to stop functioning. Always use visudo to modify sudo configuration files.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-3
800-53	AU-3(1)
800-53	AU-7
800-53	AU-12
800-53R5	AU-3
800-53R5	AU-3(1)
800-53R5	AU-7
800-53R5	AU-12

CN-L3	7.1.2.3(a)
CN-L3	7.1.2.3(b)
CN-L3	7.1.2.3(c)
CN-L3	7.1.3.3(a)
CN-L3	7.1.3.3(b)
CN-L3	8.1.4.3(b)
CSCV7	6.3
CSCV8	8.5
CSF	DE.CM-1
CSF	DE.CM-3
CSF	DE.CM-7
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-3
ITSG-33	AU-3(1)
ITSG-33	AU-7
ITSG-33	AU-12
LEVEL	1A
NESA	T3.6.2
NIAV2	AM34a
NIAV2	AM34b
NIAV2	AM34c
NIAV2	AM34d
NIAV2	AM34e
NIAV2	AM34f
NIAV2	AM34g
PCI-DSSV3.2.1	10.1
PCI-DSSV3.2.1	10.3
PCI-DSSV3.2.1	10.3.1
PCI-DSSV3.2.1	10.3.2
PCI-DSSV3.2.1	10.3.3
PCI-DSSV3.2.1	10.3.4
PCI-DSSV3.2.1	10.3.5
PCI-DSSV3.2.1	10.3.6
PCI-DSSV4.0	10.2.2
QCSC-V1	3.2
QCSC-V1	6.2
QCSC-V1	8.2.1
QCSC-V1	10.2.1

11.2

QCSC-V1

QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i)^\h*Defaults\h+([^#]+,\h*)?logfile\h*=\h*(\"|\')?\H+(\"|\')?(,\h*\H+\h*)*\h*(#.*)?\$ file: /etc/ sudoers /etc/sudoers.d/* min_occurrences: 1 regex: (?i)^\h*Defaults\h+([^#]+,\h*)?logfile\h*=\h*(\"|\')?\H+(\"|\')?\H+\h*)*\h*(#.*)?\$ string_required: NO

Hosts

```
Compliant file(s):
    /etc/sudoers - regex '(?i)^\h*Defaults\h+([^#]+,\h*)?logfile\h*=\h*(\"|\')?\H+(\"|\')?(,\h*\H+\h*)*\h*(#.*)?$' found - expect '(?i)^\h*Defaults\h+([^#]+,\h*)?logfile\h*=\h*(\"|\')?\H+(\"|\')?(,\h*\H+\h*)*\h*(#.*)?$' found in the following lines:
    13: Defaultslogfile="/var/log/sudo.log"
    /etc/sudoers.d/README - regex not found
```

5.2.5 Ensure re-authentication for privilege escalation is not disabled globally

Info

The operating system must be configured so that users must re-authenticate for privilege escalation.

Without re-authentication, users may access resources or perform tasks for which they do not have authorization.

When operating systems provide the capability to escalate a functional capability, it is critical the user reauthenticate.

Solution

Configure the operating system to require users to reauthenticate for privilege escalation.

Based on the outcome of the audit procedure, use visudo -f <PATH TO FILE> to edit the relevant sudoers file.

Remove any occurrences of !authenticate tags in the file(s).

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.5
800-171	3.1.6
800-53	AC-6(2)
800-53	AC-6(5)
800-53R5	AC-6(2)
800-53R5	AC-6(5)
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.10.6(a)
CSCV7	4.3
CSCV8	5.4
CSF	PR.AC-4
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.9.2.3
ITSG-33	AC-6(2)
ITSG-33	AC-6(5)
LEVEL	1A

NESA	T5.1.1
NESA	T5.2.2
NESA	T5.6.1
NIAV2	AM1
NIAV2	AM23f
NIAV2	AM32
NIAV2	AM33
NIAV2	SS13c
NIAV2	SS15c
NIAV2	VL3a
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	5.2.2
QCSC-V1	6.2
SWIFT-CSCV1	1.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: ^[^#].*!authenticate file: /etc/sudoers /etc/sudoers.d/* regex: ^[^#].*!authenticate

Hosts

```
The following file(s) do not contain "^[^#].*!authenticate":
    /etc/sudoers
    /etc/sudoers.d/README
```

5.2.6 Ensure sudo authentication timeout is configured correctly

Info

sudo caches used credentials for a default of 15 minutes. This is for ease of use when there are multiple administrative tasks to perform. The timeout can be modified to suit local security policies.

This default is distribution specific. See audit section for further information.

Setting a timeout value reduces the window of opportunity for unauthorized privileged access to another user.

Solution

If the currently configured timeout is larger than 15 minutes, edit the file listed in the audit section with visudo -f <PATH TO FILE> and modify the entry timestamp_timeout= to 15 minutes or less as per your site policy. The value is in minutes. This particular entry may appear on it's own, or on the same line as env_reset See the following two examples:

Defaults env_reset, timestamp_timeout=15 Defaults timestamp_timeout=15 Defaults env_reset

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.5
800-171	3.1.6
800-53	AC-6(2)
800-53	AC-6(5)
800-53R5	AC-6(2)
800-53R5	AC-6(5)
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.10.6(a)
CSCV7	4.3
CSCV8	5.4
CSF	PR.AC-4
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.9.2.3
ITSG-33	AC-6(2)
ITSG-33	AC-6(5)
LEVEL	1A

NESA	T5.1.1
NESA	T5.2.2
NESA	T5.6.1
NIAV2	AM1
NIAV2	AM23f
NIAV2	AM32
NIAV2	AM33
NIAV2	SS13c
NIAV2	SS15c
NIAV2	VL3a
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	5.2.2
QCSC-V1	6.2
SWIFT-CSCV1	1.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
One of the following must pass to satisfy this requirement:

PASSED - sudo timeout
The command '/bin/sudo -V | /bin/grep 'Authentication timestamp timeout:'' returned:

Authentication timestamp timeout: 15.0 minutes

PASSED - On disk timestamp_timeout
No matching files were found
```

5.2.7 Ensure access to the su command is restricted

Info

The su command allows a user to run a command or shell as another user. The program has been superseded by sudo which allows for more granular control over privileged access. Normally, the su command can be executed by any user. By uncommenting the pam_wheel.so statement in /etc/pam.d/ su the su command will only allow users in a specific groups to execute su This group should be empty to reinforce the use of sudo for privileged access.

Restricting the use of su and using sudo in its place, provides system administrators better control of the escalation of user privileges to execute privileged commands. The sudo utility also provides a better logging and audit mechanism, as it can log each command executed via sudo whereas su can only record that a user executed the su program.

Solution

Create an empty group that will be specified for use of the su command. The group should be named according to site policy.

Example:

groupadd sugroup

Add the following line to the /etc/pam.d/su file, specifying the empty group:

auth required pam_wheel.so use_uid group=sugroup

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)

CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f

SS13c

NIAV2

NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: sugroup= $(/bin/grep - Pi '^h*auth)h+(?:required|requisite))h+pam_wheel.so\h+(?:[^# \r]+\h+)?((?! \2)(use_uid\b|group=\H+\b))\h+(?:[^# \r]+\h+)?((?!\1)(use_uid\b|group=\H+\b))(\h+.*)?<math>(-P)$ / etc/pam.d/su | / bin/awk 'BEGIN { FS = "="}; { print \$2 }'); if [!-z \$sugroup]; then /bin/grep \$sugroup /etc/group | /bin/awk 'BEGIN { FS = ":"}; { print \$4 }' | /bin/awk '{print} END {if (NF == 0) print "pass - group empty"; else print "fail - group not empty"}'; else echo "fail - sugroup not found in /etc/pam.d/su"; fi expect: pass - group empty

Hosts

192.168.40.33

The command 'sugroup=\$(/bin/grep -Pi '^h*auth\h+(?:required|requisite)\h+pam_wheel\.so\h+(?:[^#\n\r]+\h+)?((?!\2)(use_uid\b|group=\H+\b))\h+(?:[^#\n\r]+\h+)?((?!\1)(use_uid\b|group=\H+\b))(\h++.*)?\$' /etc/pam.d/su | /bin/awk 'BEGIN { FS = "="} ; { print \$2 }'); if [! -z \$sugroup]; then / bin/grep \$sugroup /etc/group | /bin/awk 'BEGIN { FS = ":"}; { print \$4 }' | /bin/awk '{print} END { if (NF == 0) print "pass - group empty"; else print "fail - group not empty"}'; else echo "fail - sugroup not found in /etc/pam.d/su"; fi' returned :

pass - group empty

5.3.1.3 Ensure libpam-pwquality is installed

Info

libpwquality provides common functions for password quality checking and scoring them based on their apparent randomness. The library also provides a function for generating random passwords with good pronounceability.

This module can be plugged into the password stack of a given service to provide some plug-in strength-checking for passwords. The code was originally based on pam_cracklib module and the module is backwards compatible with its options.

Strong passwords reduce the risk of systems being hacked through brute force methods.

Solution

Run the following command to install libpam-pwquality:

apt install libpam-pwquality

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s libpam-pwquality 2>&1 \mid /bin/grep -E '(Status: \mid not installed)' expect: ^Status: install ok

Hosts

```
The command '/bin/dpkg -s libpam-pwquality 2>&1 | /bin/grep -E '(Status:|not installed)''
returned :
Status: install ok installed
```

5.3.2.1 Ensure pam_unix module is enabled

Info

pam_unix is the standard Unix authentication module. It uses standard calls from the system's libraries to retrieve and set account information as well as authentication. Usually this is obtained from the /etc/passwd and if shadow is enabled, the /etc/shadow file as well.

The account component performs the task of establishing the status of the user's account and password based on the following shadow elements: expire last_change max_change min_change warn_change In the case of the latter, it may offer advice to the user on changing their password or, through the PAM_AUTHTOKEN_REQD return, delay giving service to the user until they have established a new password. The entries listed above are documented in the shadow(5) manual page. Should the user's record not contain one or more of these entries, the corresponding shadow check is not performed.

The authentication component performs the task of checking the users credentials (password). The default action of this module is to not permit the user access to a service if their official password is blank.

The system should only provide access after performing authentication of a user.

Solution

Run the following command to enable the pam_unix module:

pam-auth-update --enable unix

Note: If a site specific custom profile is being used in your environment to configure PAM that includes the configuration for the pam_faillock module, enable that module instead

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2

CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3

AM23f

NIAV2

NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:
PASSED - common-password pam_unix.so
Compliant file(s):
                 /etc/pam.d/common-password - regex '^\h*password\h+[^#\n\r]+\h+pam_unix\.so\b' found - expect
   27: password[success=1 default=ignore]pam_unix.so obscure use_authtok try_first_pass
PASSED - common-account pam_unix.so
Compliant file(s):
                  /etc/pam.d/common-account - regex '^h*account h+[^#\n\r] + h+pam_unix \. so b' found - expect '^h*account h+ h+pam_unix \. so b' found - expect '^h*account h+pam_unix \. so b' found - expect ''h*account h+pam_unix \. so found -
\h*account\h+[^#\n\r]+\h+pam_unix\.so\b' found in the following lines:
                            17: account[success=1 new_authtok_reqd=done default=ignore]pam_unix.so
PASSED - common-session pam_unix.so
Compliant file(s):
               /etc/pam.d/common-session - regex '^\h*session\h+[^#\n\r]+\h+pam_unix\.so\b' found - expect '^
\h*session\h+[^\#\n\r]+\h+pam_unix\.so\b' found in the following lines:
                            28: sessionrequiredpam_unix.so
PASSED - common-auth pam_unix.so
Compliant file(s):
```

/etc/pam.d/common-auth - regex '^\h*auth\h+[^ $\#\n\r]$ +\h+pam_unix\.so\b' found - expect '^\h*auth\h+[^ $\#\n\r]$ +\h+pam_unix\.so\b' found in the following lines:
 18: auth[success=1 default=ignore]pam_unix.so

5.3.2.2 Ensure pam_faillock module is enabled

Info

The pam_faillock.so module maintains a list of failed authentication attempts per user during a specified interval and locks the account in case there were more than the configured number of consecutive failed authentications (this is defined by the deny parameter in the faillock configuration). It stores the failure records into per-user files in the tally directory.

Locking out user IDs after n unsuccessful consecutive login attempts mitigates brute force password attacks against your systems.

Solution

Create two pam-auth-update profiles in /usr/share/pam-configs/:

Create the first profile with the following lines:

Name: Enable pam_faillock to deny access Default: yes Priority: 0 Auth-Type: Primary Auth: [default=die] pam_faillock.so authfail

Example:

#!/usr/bin/env bash

{ arr=('Name: Enable pam_faillock to deny access' 'Default: yes' 'Priority: 0' 'Auth-Type: Primary' 'Auth:' [default=die] pam_faillock.so authfail') printf '%s ' "\${arr[@]}" > /usr/share/pam-configs/faillock }

Create the second profile with the following lines:

Name: Notify of failed login attempts and reset count upon success Default: yes Priority: 1024 Auth-Type: Primary Auth:

requisite pam_faillock.so preauth Account-Type: Primary Account:

required pam_faillock.so

Example:

#!/usr/bin/env bash

{ arr=('Name: Notify of failed login attempts and reset count upon success' 'Default: yes' 'Priority: 1024' 'Auth-Type: Primary' 'Auth:' ' requisite pam_faillock.so preauth' 'Account-Type: Primary' 'Account:' ' required pam_faillock.so') printf '%s ' "\${arr[@]}" > /usr/share/pam-configs/faillock_notify }

Run the following command to update the common-auth and common-account PAM files with the new profiles:

pam-auth-update --enable <profile_filename>

Example:

pam-auth-update --enable faillock # pam-auth-update --enable faillock_notify

Note:

- The name used for the file must be used in the pam-auth-update --enable command

- The Name: line should be easily recognizable and understood
- The Priority: Line is important as it effects the order of the lines in the /etc/pam.d/ files
- If a site specific custom profile is being used in your environment to configure PAM that includes the configuration for the pam_faillock module, enable that module instead

See Also

https://workbench.cisecurity.org/benchmarks/17074

References	
800-171	3.1.1
800-53	AC-1
800-53	AC-2
800-53	AC-2(1)
800-53R5	AC-1
800-53R5	AC-2
800-53R5	AC-2(1)
CN-L3	7.1.3.2(d)
CN-L3	8.1.4.2(e)
CN-L3	8.1.10.6(c)
CSCV7	16.7
CSCV8	6.2
CSF	DE.CM-1
CSF	DE.CM-3
CSF	ID.GV-1
CSF	ID.GV-3
CSF	PR.AC-1
CSF	PR.AC-4
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.9.1.1
ISO/IEC-27001	A.9.2.1
ITSG-33	AC-1
ITSG-33	AC-2
ITSG-33	AC-2(1)
LEVEL	1A
NESA	M1.2.2
NIAV2	AM28
NIAV2	AM29
NIAV2	AM30
NIAV2	NS5j
NIAV2	SS14e

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	8.2.1
QCSC-V1	13.2
OCSC-V1	15.2

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:
PASSED - account pam_faillock.so
Compliant file(s):
             /etc/pam.d/common-account - regex '(?i)^\h*account\h+([^#\n\r]+)\h+pam_faillock\.so\b' found -
  26: account required pam_faillock.so
PASSED - authfail
Compliant file(s):
               /etc/pam.d/common-auth - regex '(?i)^h*auth\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\.so\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pam_faillock\h+([^*|n\r]+)\h+pa
authfail\b' found in the following lines:
                          19: auth [default=die]
                                                                                                                                                   pam_faillock.so authfail
PASSED - preauth
Compliant file(s):
                +)?preauth\b' found - expect '(?i)^h*auth\h+([^\#\n\r]+)\h+pam_faillock\.so\h+([^\#\n\r]+\h+)?preauth
\b' found in the following lines:
                          17: auth required
                                                                                                                                                   pam_faillock.so preauth
```

5.3.2.3 Ensure pam_pwquality module is enabled

Info

The pam_pwquality.so module performs password quality checking. This module can be plugged into the password stack of a given service to provide strength-checking for passwords. The code was originally based on pam cracklib module and the module is backwards compatible with its options.

The action of this module is to prompt the user for a password and check its strength against a system dictionary and a set of rules for identifying poor choices.

The first action is to prompt for a single password, check its strength and then, if it is considered strong, prompt for the password a second time (to verify that it was typed correctly on the first occasion). All being well, the password is passed on to subsequent modules to be installed as the new authentication token.

Use of a unique, complex passwords helps to increase the time and resources required to compromise the password.

Solution

Run the following script to verify the pam_pwquality.so line exists in a pam-auth-update profile:

grep -P -- 'bpam_pwquality.sob' /usr/share/pam-configs/*

Output should be similar to:

/usr/share/pam-configs/pwquality: requisite pam_pwquality.so retry=3 /usr/share/pam-configs/pwquality: requisite pam_pwquality.so retry=3

- IF - similar output is returned:

Run the following command to update /etc/pam.d/common-password with the returned profile:

pam-auth-update --enable {PROFILE NAME}

Example:

pam-auth-update pwquality

- IF - similar output is NOT returned:

Run the following script to create a pam-auth-update profile for pwquality:

!#/usr/bin/env bash

{ arr=('Name: Pwquality password strength checking' 'Default: yes' 'Priority: 1024' 'Conflicts: cracklib' 'Password-Type: Primary' 'Password:' ' requisite pam_pwquality.so retry=3' 'Password-Initial:' 'requisite') printf '%s ' "\${arr[@]}" > /usr/share/pam-configs/pwquality }

Run the following command to update /etc/pam.d/common-password with the pwquality profile:

pam-auth-update --enable pwquality

Note:

- The name used for the file must be used in the pam-auth-update --enable command

- The Name: line should be easily recognizable and understood
- The Priority: Line is important as it effects the order of the lines in the /etc/pam.d/ files
- If a site specific custom profile is being used in your environment to configure PAM that includes the configuration for the pam_pwquality module, enable that module instead

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i) \h^* password \h^* (requisite|required) \h^* pam_pwquality \s^* (so\b file: /etc/pam.d/common-password regex: (?i) \h^* password \h^* (requisite|required) \h^* pam_pwquality \s^* (so\b

Hosts

```
Compliant file(s):
    /etc/pam.d/common-password - regex '(?i)^\h*password\h+(requisite|required)\h+pam_pwquality
\.so\b' found - expect '(?i)^\h*password\h+(requisite|required)\h+pam_pwquality\.so\b' found in the following lines:
    25: passwordrequisitepam_pwquality.so local_users_only retry=3 authtok_type= minlen=14 lcredit=-1 ucredit=-1 dcredit=-1 enforce_for_root
```

5.3.2.4 Ensure pam pwhistory module is enabled

Info

The pam_pwhistory.so module saves the last passwords for each user in order to force password change history and keep the user from alternating between the same password too frequently.

This module does not work together with kerberos. In general, it does not make much sense to use this module in conjunction with NIS or LDAP since the old passwords are stored on the local machine and are not available on another machine for password history checking.

Use of a unique, complex passwords helps to increase the time and resources required to compromise the password.

Solution

Run the following script to verify the pam_pwquality.so line exists in a pam-auth-update profile:

grep -P -- 'bpam_pwhistory.sob' /usr/share/pam-configs/*

Output should be similar to:

/usr/share/pam-configs/pwhistory: requisite pam_pwhistory.so remember=24 enforce_for_root try_first_pass use_authtok

- IF - similar output is returned:

Run the following command to update /etc/pam.d/common-password with the returned profile:

pam-auth-update --enable {PROFILE_NAME}

Example:

pam-auth-update pwhistory

- IF - similar output is NOT returned:

Run the following script to create a pam-auth-update profile for pwhistory:

!#/usr/bin/env bash

{ arr=('Name: pwhistory password history checking' 'Default: yes' 'Priority: 1024' 'Password-Type: Primary' 'Password:' ' requisite pam_pwhistory.so remember=24 enforce_for_root try_first_pass use_authtok') printf '%s' "\${arr[@]}" > /usr/share/pam-configs/pwhistory }

Run the following command to update /etc/pam.d/common-password with the pwhistory profile:

pam-auth-update --enable pwhistory

Note:

- The name used for the file must be used in the pam-auth-update --enable command
- The Name: line should be easily recognizable and understood
- The Priority: Line is important as it effects the order of the lines in the /etc/pam.d/ files

- If a site specific custom profile is being used in your environment to configure PAM that includes the configuration for the pam_pwhistory module, enable that module instead

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i) h password h (requisite|required) h pam_pwhistory.sob file: /etc/pam.d/common-password regex: (?i) h password h (requisite|required) h pam_pwhistory.sob

Hosts

```
Compliant file(s):
    /etc/pam.d/common-password - regex '(?i)^\h*password\h+(requisite|required)\h+pam_pwhistory
\.so\b' found - expect '(?i)^\h*password\h+(requisite|required)\h+pam_pwhistory\.so\b' found in the following lines:
    26: password required pam_pwhistory.so use_authtok
remember=24 enforce_for_root
```

5.3.3.1.1 Ensure password failed attempts lockout is configured

Info

The deny=<n> option will deny access if the number of consecutive authentication failures for this user during the recent interval exceeds

.

Locking out user IDs after

n

unsuccessful consecutive login attempts mitigates brute force password attacks against your systems.

Solution

Create or edit the following line in /etc/security/faillock.conf setting the deny option to 5 or less:

deny = 5

Run the following command:

grep -Pl -- 'bpam_faillock.soh+([^# r]+h+)?denyb' /usr/share/pam-configs/*

Edit any returned files and remove the deny=<N> arguments from the pam_faillock.so line(s):

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-53	AC-1
800-53	AC-2
800-53	AC-2(1)
800-53R5	AC-1
800-53R5	AC-2
800-53R5	AC-2(1)
CN-L3	7.1.3.2(d)
CN-L3	8.1.4.2(e)
CN-L3	8.1.10.6(c)
CSCV7	16.7
CSCV8	6.2
CSF	DE.CM-1
CSF	DE.CM-3
CSF	ID.GV-1
CSF	ID.GV-3

CSF PR.AC-1 CSF PR.AC-4 **GDPR** 32.1.b 164.306(a)(1) HIPAA HIPAA 164.312(a)(1) ISO/IEC-27001 A.9.1.1 ISO/IEC-27001 A.9.2.1 ITSG-33 AC-1 ITSG-33 AC-2 ITSG-33 AC-2(1) I FVFI 1A NESA M1.2.2 NIAV2 AM28 NIAV2 AM29 NIAV2 AM30 NIAV2 NS5j NIAV2 SS14e QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 8.2.1 QCSC-V1 13.2 QCSC-V1 15.2

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.1.2 Ensure password unlock time is configured

Info

unlock_time=<n> - The access will be re-enabled after

seconds after the lock out. The value 0 has the same meaning as value never - the access will not be reenabled without resetting the faillock entries by the faillock(8) command.

Note:

- The default directory that pam_faillock uses is usually cleared on system boot so the access will be also reenabled after system reboot. If that is undesirable a different tally directory must be set with the dir option.
- It is usually undesirable to permanently lock out users as they can become easily a target of denial of service attack unless the usernames are random and kept secret to potential attackers.
- The maximum configurable value for unlock_time is 604800

Locking out user IDs after

n

unsuccessful consecutive login attempts mitigates brute force password attacks against your systems.

Solution

Set password unlock time to conform to site policy. unlock_time should be 0 (never), or 900 seconds or greater.

Edit /etc/security/faillock.conf and update or add the following line:

unlock_time = 900

Run the following command: remove the unlock_time argument from the pam_faillock.so module in the PAM files:

grep -Pl -- 'bpam_faillock.soh+([^# r]+h+)?unlock_timeb' /usr/share/pam-configs/*

Edit any returned files and remove the unlock_time=<N> argument from the pam_faillock.so line(s):

Impact:

Use of unlock_time=0 may allow an attacker to cause denial of service to legitimate users. This will also require a systems administrator with elevated privileges to unlock the account.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-53	AC-1
800-53	AC-2

800-53 AC-2(1) 800-53R5 AC-1 800-53R5 AC-2 800-53R5 AC-2(1) CN-L3 7.1.3.2(d) CN-L3 8.1.4.2(e) CN-L3 8.1.10.6(c) CSCV7 16.7 CSCV8 6.2 CSF DE.CM-1 CSF DE.CM-3 CSF ID.GV-1 CSF ID.GV-3 CSF PR.AC-1 CSF PR.AC-4 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(1) ISO/IEC-27001 A.9.1.1 ISO/IEC-27001 A.9.2.1 ITSG-33 AC-1 ITSG-33 AC-2 ITSG-33 AC-2(1) LEVEL 1A NESA M1.2.2 NIAV2 AM28 NIAV2 AM29 NIAV2 AM30 NIAV2 NS5j NIAV2 SS14e QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 8.2.1

Audit File

QCSC-V1

QCSC-V1

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

13.215.2

Policy Value

PASSED

5.3.3.2.1 Ensure password number of changed characters is configured

Info

The pwquality difok option sets the number of characters in a password that must not be present in the old password.

Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Solution

Create or modify a file ending inconf in the /etc/security/pwquality.conf.d/ directory or the file /etc/security/pwquality.conf and add or modify the following line to set difok to 2 or more. Ensure setting conforms to local site policy:

Example:

#!/usr/bin/env bash

{ sed -ri 's/^s*difoks*=/# &/' /etc/security/pwquality.conf [!-d /etc/security/pwquality.conf.d/] && mkdir /etc/security/pwquality.conf.d/ printf '

%s' "difok = 2" > /etc/security/pwquality.conf.d/50-pwdifok.conf }

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?difokb' /usr/share/pam-configs/*

Edit any returned files and remove the difok argument from the pam_pwquality.so line(s):

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)

HIPAA 164.312(d)
ITSG-33 IA-5(1)
LEVEL 1A
NESA T5.2.3
QCSC-V1 5.2.2
QCSC-V1 13.2
SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.2.2 Ensure minimum password length is configured

Info

The minimum password length setting determines the lowers number of characters that make up a password for a user account. There are many different theories about how to determine the best password length for an organization, but perhaps "passphrase" is a better term than "password".

The minlen option sets the minimum acceptable size for the new password (plus one if credits are not disabled which is the default). Cannot be set to lower value than 6.

Strong passwords help protect systems from password attacks. Types of password attacks include dictionary attacks, which attempt to use common words and phrases, and brute force attacks, which try every possible combination of characters. Also attackers may try to obtain the account database so they can use tools to discover the accounts and passwords.

Solution

Create or modify a file ending inconf in the /etc/security/pwquality.conf.d/ directory or the file /etc/security/pwquality.conf and add or modify the following line to set password length of 14 or more characters. Ensure that password length conforms to local site policy:

Example:

#!/usr/bin/env bash

{ sed -ri 's/^s*minlens*=/# &/' /etc/security/pwquality.conf [! -d /etc/security/pwquality.conf.d/] && mkdir /etc/security/pwquality.conf.d/ printf '

%s' "minlen = 14" > /etc/security/pwquality.conf.d/50-pwlength.conf }

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?minlenb' /usr/share/pam-configs/*

Edit any returned files and remove the minlen argument from the pam_pwquality.so line(s):

Impact:

In general, it is true that longer passwords are better (harder to crack), but it is also true that forced password length requirements can cause user behavior that is predictable and undesirable. For example, requiring users to have a minimum 16-character password may cause them to choose repeating patterns like fourfourfour or passwordpassword that meet the requirement but aren't hard to guess. Additionally, length requirements increase the chances that users will adopt other insecure practices, like writing them down, re-using them or storing them unencrypted in their documents.

Having a reasonable minimum length with no maximum character limit increases the resultingaverage password length used (and therefore the strength).6

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171 3.5.2 800-53 IA-5(1) 800-53R5 IA-5(1) CSCV7 4.4 CSCV8 5.2 CSF PR.AC-1 32.1.b **GDPR** HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(d) ITSG-33 IA-5(1) LEVEL 1A **NESA** T5.2.3 QCSC-V1 5.2.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.2.3 Ensure password complexity is configured

Info

Password complexity can be set through:

- minclass The minimum number of classes of characters required in a new password. (digits, uppercase, lowercase, others). e.g. minclass = 4 requires digits, uppercase, lower case, and special characters.
- dcredit The maximum credit for having digits in the new password. If less than 0 it is the minimum number of digits in the new password. e.g. dcredit = -1 requires at least one digit
- ucredit The maximum credit for having uppercase characters in the new password. If less than 0 it is the minimum number of uppercase characters in the new password. e.g. ucredit = -1 requires at least one uppercase character
- ocredit The maximum credit for having other characters in the new password. If less than 0 it is the minimum number of other characters in the new password. e.g. ocredit = -1 requires at least one special character
- lcredit The maximum credit for having lowercase characters in the new password. If less than 0 it is the minimum number of lowercase characters in the new password. e.g. lcredit = -1 requires at least one lowercase character

Strong passwords protect systems from being hacked through brute force methods.

Requiring at least one non-alphabetic character increases the search space beyond pure dictionary words, which makes the resulting password harder to crack.

Forcing users to choose an excessively complex password, e.g. some combination of upper-case, lower-case, numbers, and special characters, has a negative impact. It places an extra burden on users and many will use predictable patterns (for example, a capital letter in the first position, followed by lowercase letters, then one or two numbers, and a "special character" at the end). Attackers know this, so dictionary attacks will often contain these common patterns and use the most common substitutions like, \$ for s, @ for a, 1 for l, 0 for o.

Solution

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?(minclass | [dulo]credit)b' /usr/share/pam-configs/*

Edit any returned files and remove the minclass dcredit ucredit lcredit and ocredit arguments from the pam_pwquality.so line(s)

Create or modify a file ending inconf in the /etc/security/pwquality.conf.d/ directory or the file /etc/security/pwquality.conf and add or modify the following line(s) to set complexity according to local site policy:

- minclass = N
- dcredit = _N_ # Value should be either 0 or a number proceeded by a minus () symbol
- ucredit = -1 # Value should be either 0 or a number proceeded by a minus () symbol
- ocredit = -1 # Value should be either 0 or a number proceeded by a minus () symbol
- lcredit = -1 # Value should be either 0 or a number proceeded by a minus () symbol

Example 1 - Set minclass = 3:

#!/usr/bin/env bash

{ sed -ri 's/^s*minclasss*=/# &/' /etc/security/pwquality.conf sed -ri 's/^s*[dulo]credits*=/# &/' / etc/security/pwquality.conf [! -d /etc/security/pwquality.conf.d/] && mkdir /etc/security/pwquality.conf.d/ printf '

%s' "minclass = 3" > /etc/security/pwquality.conf.d/50-pwcomplexity.conf }

Example 2 - set dcredit = -1 ucredit = -1 and lcredit = -1:

#!/usr/bin/env bash

{ sed -ri 's/^s*minclasss*=/# &/' /etc/security/pwquality.conf sed -ri 's/^s*[dulo]credits*=/# &/' / etc/security/pwquality.conf [!-d /etc/security/pwquality.conf.d/] && mkdir /etc/security/pwquality.conf.d/ printf '%s ' "dcredit = -1" "lcredit = -1" > /etc/security/pwquality.conf.d/50-pwcomplexity.conf }

Impact:

Passwords that are too complex in nature make it harder for users to remember, leading to bad practices. In addition, composition requirements provide no defense against common attack types such as social engineering or insecure storage of passwords

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1M
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:
PASSED - ocredit
Compliant file(s):
    /etc/security/pwquality.conf - regex '^[\s]*credit[\s]*=' found - expect
 '^[\s]*ocredit[\s]*=[\s]*-[1-9][\s]*$' found in the following lines:
         30: ocredit = -1
______
PASSED - ucredit
Compliant file(s):
     /etc/security/pwquality.conf - regex '^[\s]*ucredit[\s]*=' found - expect
 '^[\s]*ucredit[\s]*=[\s]*-[1-9][\s]*$' found in the following lines:
         20: ucredit = -1
PASSED - lcredit
Compliant file(s):
    /etc/security/pwquality.conf - regex '^[\s]*lcredit[\s]*=' found - expect
'^[\s]*lcredit[\s]*=[\s]*-[1-9][\s]*$' found in the following lines:
        25: lcredit = -1
PASSED - dcredit
Compliant file(s):
     /etc/security/pwquality.conf - regex '^[\s]*dcredit[\s]*=' found - expect
 '^[\s]*dcredit[\s]*=[\s]*-[1-9][\s]*$' found in the following lines:
         15: dcredit = -1
```

5.3.3.2.4 Ensure password same consecutive characters is configured

Info

The pwquality maxrepeat option sets the maximum number of allowed same consecutive characters in a new password.

Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Solution

Create or modify a file ending inconf in the /etc/security/pwquality.conf.d/ directory or the file /etc/security/pwquality.conf and add or modify the following line to set maxrepeat to 3 or less and not 0 Ensure setting conforms to local site policy:

Example:

#!/usr/bin/env bash

{ sed -ri 's/^s*maxrepeats*=/# &/' /etc/security/pwquality.conf [!-d /etc/security/pwquality.conf.d/] && mkdir /etc/security/pwquality.conf.d/ printf '

%s' "maxrepeat = 3" > /etc/security/pwquality.conf.d/50-pwrepeat.conf }

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?maxrepeatb' /usr/share/pam-configs/*

Edit any returned files and remove the maxrepeat argument from the pam_pwquality.so line(s):

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)

HIPAA 164.312(d)
ITSG-33 IA-5(1)
LEVEL 1A
NESA T5.2.3
QCSC-V1 5.2.2
QCSC-V1 13.2
SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.2.5 Ensure password maximum sequential characters is configured

Info

The pwquality maxsequence option sets the maximum length of monotonic character sequences in the new password. Examples of such sequence are 12345 or fedcb The check is disabled if the value is 0

Note: Most such passwords will not pass the simplicity check unless the sequence is only a minor part of the password.

Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Solution

Create or modify a file ending inconf in the /etc/security/pwquality.conf.d/ directory or the file /etc/security/pwquality.conf and add or modify the following line to set maxsequence to 3 or less and not 0 Ensure setting conforms to local site policy:

Example:

#!/usr/bin/env bash

{ sed -ri 's/^s*maxsequences*=/# &/' /etc/security/pwquality.conf [!-d /etc/security/pwquality.conf.d/] && mkdir /etc/security/pwquality.conf.d/ printf '

%s' "maxsequence = 3" > /etc/security/pwquality.conf.d/50-pwmaxsequence.conf }

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?maxsequenceb' /usr/share/pam-configs/*

Edit any returned files and remove the maxsequence argument from the pam_pwquality.so line(s):

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(d) ITSG-33 IA-5(1) LEVEL 1A NESA T5.2.3 QCSC-V1 5.2.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.2.6 Ensure password dictionary check is enabled

Info

The pwquality dictcheck option sets whether to check for the words from the cracklib dictionary.

If the operating system allows the user to select passwords based on dictionary words, this increases the chances of password compromise by increasing the opportunity for successful guesses, and brute-force attacks.

Solution

Edit any file ending inconf in the /etc/security/pwquality.conf.d/ directory and/or the file /etc/security/pwquality.conf and comment out or remove any instance of dictcheck = 0 :

Example:

 $\#\ sed\ -ri\ 's/^s*dictchecks*=/\#\ \&/'\ /etc/security/pwquality.conf\ /etc/security/pwquality.conf.d/*. \\$

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?dictcheckb' /usr/share/pam-configs/*

Edit any returned files and remove the dictcheck argument from the pam_pwquality.so line(s)

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.2.7 Ensure password quality checking is enforced

Info

The pam_pwquality module can be configured to either reject a password if it fails the checks, or only print a warning.

This is configured by setting the enforcing=<N> argument. If nonzero, a password will be rejected if it fails the checks, otherwise only a warning message will be provided.

This setting applies only to the pam_pwquality module and possibly other applications that explicitly change their behavior based on it. It does not affect pwmake(1) and pwscore(1).

Strong passwords help protect systems from password attacks. Types of password attacks include dictionary attacks, which attempt to use common words and phrases, and brute force attacks, which try every possible combination of characters. Also attackers may try to obtain the account database so they can use tools to discover the accounts and passwords.

Solution

Run the following command:

grep -Pl -- 'bpam_pwquality.soh+([^# r]+h+)?enforcing=0b' /usr/share/pam-configs/*

Edit any returned files and remove the enforcing=0 argument from the pam_pwquality.so line(s)

Edit /etc/security/pwquality.conf and all files ending inconf in the /etc/security/pwquality.conf.d/ directory and remove or comment out any line containing the enforcing = 0 argument:

Example:

sed -ri 's/^s*enforcings*=s*0/# & amp;/' /etc/security/pwquality.conf /etc/security/pwquality.conf.d/*.conf

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)

 LEVEL
 1A

 NESA
 T5.2.3

 QCSC-V1
 5.2.2

 QCSC-V1
 13.2

 SWIFT-CSCV1
 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

5.3.3.2.8 Ensure password quality is enforced for the root user

Info

If the pwquality enforce_for_root option is enabled, the module will return error on failed check even if the user changing the password is root.

This option is off by default which means that just the message about the failed check is printed but root can change the password anyway.

Note: The root is not asked for an old password so the checks that compare the old and new password are not performed.

Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Solution

Edit or add the following line in a *.conf file in /etc/security/pwquality.conf.d or in /etc/security/pwquality.conf:

Example:

#!/urs/bin/env bash

{ [!-d/etc/security/pwquality.conf.d/] & mp; & mkdir/etc/security/pwquality.conf.d/printf' %s' "enforce_for_root" > /etc/security/pwquality.conf.d/50-pwroot.conf}

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)

 LEVEL
 1A

 NESA
 T5.2.3

 QCSC-V1
 5.2.2

 QCSC-V1
 13.2

 SWIFT-CSCV1
 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i)^\h*enforce_for_root\b file: /etc/security/pwquality.conf /etc/security/pwquality.conf.d/*.conf min_occurrences: 1 regex: (?i)^\h*enforce_for_root\b string_required: NO

Hosts

```
Compliant file(s):
    /etc/security/pwquality.conf - regex '(?i)^\h*enforce_for_root\b' found - expect '(?i)^
\h*enforce_for_root\b' found in the following lines:
    74: enforce_for_root
```

5.3.3.3.1 Ensure password history remember is configured

Info

The /etc/security/opasswd file stores the users' old passwords and can be checked to ensure that users are not recycling recent passwords. The number of passwords remembered is set via the remember argument value in set for the pam pwhistory module.

- remember=<N> - <N> is the number of old passwords to remember

Requiring users not to reuse their passwords make it less likely that an attacker will be able to guess the password or use a compromised password.

Note: These change only apply to accounts configured on the local system.

Solution

Run the following command:

awk '/Password-Type:/{ f = 1;next } /-Type:/{ f = 0 } $f \{ if (/pam_pwhistory.so/) print FILENAME}' /usr/share/pam-configs/*$

Edit any returned files and edit or add the remember= argument, with a value of 24 or more, that meets local site policy to the pam_pwhistory line in the Password section:

Example File:

Name: pwhistory password history checking Default: yes Priority: 1024 Password-Type: Primary Password: requisite pam_pwhistory.so remember=24 enforce_for_root try_first_pass use_authtok # <- **ensure line includes remember=<N>**

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable < MODIFIED PROFILE NAME>

Example:

pam-auth-update --enable pwhistory

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1

GDPR 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(d) ITSG-33 IA-5(1) I FVFI 1A **NESA** T5.2.3 QCSC-V1 5.2.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i) h password $^+$ (requisite|required|sufficient) $^+$ pam_pwhistory $^.$ so $^+$ ([$^+$ r]+ $^+$)? remember=(2[4-9]|[3-9][0-9]|[1-9][0-9]{2,}) $^+$ file: /etc/pam.d/common-password regex: (?i) $^+$ h*password $^+$ +(requisite|required|sufficient) $^+$ pam pwhistory $^+$ so $^+$ +([$^+$ r]+ $^+$)?remember=

Hosts

```
Compliant file(s):
    /etc/pam.d/common-password - regex '(?i)^\h*password\h+(requisite|required|sufficient)\h
+pam_pwhistory\.so\h+([^#\r]+\h+)?remember=' found - expect '(?i)^\h*password\h+(requisite|required|
sufficient)\h+pam_pwhistory\.so\h+([^#\r]+\h+)?remember=(2[4-9]|[3-9][0-9]|[1-9][0-9]{2,})\b' found
in the following lines:
    26: password required pam_pwhistory.so use_authtok
remember=24 enforce_for_root
```

5.3.3.2 Ensure password history is enforced for the root user

Info

If the pwhistory enforce_for_root option is enabled, the module will enforce password history for the root user as well

Requiring users not to reuse their passwords make it less likely that an attacker will be able to guess the password or use a compromised password

Note: These change only apply to accounts configured on the local system.

Solution

Run the following command:

awk '/Password-Type:/{ f = 1;next } /-Type:/{ f = 0 } $f \{ if (/pam_pwhistory.so/) print FILENAME}' /usr/share/pam-configs/*$

Edit any returned files and add the enforce_for_root argument to the pam_pwhistory line in the Password section:

Example File:

Name: pwhistory password history checking Default: yes Priority: 1024 Password-Type: Primary Password: requisite pam_pwhistory.so remember=24 enforce_for_root try_first_pass use_authtok # <- **ensure line includes enforce for root**

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable <MODIFIED_PROFILE_NAME>

Example:

pam-auth-update --enable pwhistory

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2	
800-53	IA-5(1)	
800-53R5	IA-5(1)	
CSCV7	4.4	
CSCV8	5.2	
CSF	PR.AC-1	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(2)(i)	

HIPAA 164.312(d) ITSG-33 IA-5(1) LEVEL 1A **NESA** T5.2.3 QCSC-V1 5.2.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i)^\h*password\h+[^# \r]+\h+pam_pwhistory\.so\h+([^# \r]+\h+)?enforce_for_root\b file: /etc/ pam.d/common-password regex: $(?i)^h*passwordh+[^# \r]+h+pam_pwhistory\.soh+([^# \r]+h+)?$ enforce_for_root\b

Hosts

192.168.40.33

```
Compliant file(s):
```

 $/ \verb|etc/pam.d/common-password - regex '(?i)^h*password + [^*|n\r] + h+pam_pwhistory \cdot .soh+([^*|n\r] + h+pam_pwhistory$ $\n\r]+\h+)$?enforce_for_root\b' found in the following lines: required

26: password remember=24 enforce_for_root pam_pwhistory.so use_authtok

5.3.3.3 Ensure pam_pwhistory includes use_authtok

Info

use_authtok - When password changing enforce the module to set the new password to the one provided by a previously stacked password module

use_authtok allows multiple pam modules to confirm a new password before it is accepted.

Solution

Edit any returned files and add the use_authtok argument to the pam_pwhistory line in the Password section:

Example File:

Name: pwhistory password history checking Default: yes Priority: 1024 Password-Type: Primary Password: requisite pam_pwhistory.so remember=24 enforce_for_root try_first_pass use_authtok # <- **ensure line includes use_authtok**

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable <MODIFIED_PROFILE_NAME>

Example:

pam-auth-update --enable pwhistory

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-171	3.13.16
800-53	IA-5(1)
800-53	SC-28
800-53	SC-28(1)
800-53R5	IA-5(1)
800-53R5	SC-28
800-53R5	SC-28(1)
CN-L3	8.1.4.7(b)
CN-L3	8.1.4.8(b)
CSCV7	16.4
CSCV8	3.11
CSF	PR.AC-1
CSF	PR.DS-1

GDPR 32.1.a **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(a)(2)(iv) HIPAA 164.312(d) HIPAA 164.312(e)(2)(ii) ITSG-33 IA-5(1)

ITSG-33 SC-28 ITSG-33 SC-28a. ITSG-33 SC-28(1) **LEVEL** 1A **NESA** T5.2.3 PCI-DSSV3.2.1 3.4 PCI-DSSV4.0 3.3.2 PCI-DSSV4.0 3.5.1 QCSC-V1 5.2.2 QCSC-V1 6.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1 TBA-FIISB 28.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i)^\h*password\h+(requisite|required|sufficient)\h+pam_pwhistory\.so(\h+[^# \r]+)?\h +use_authtok\b file: /etc/pam.d/common-password regex: (?i)^\h*password\h+(requisite|required|sufficient)\h+pam_pwhistory\.so(\h+[^# \r]+)?\h+use_authtok\b

Hosts

```
Compliant file(s):
    /etc/pam.d/common-password - regex '(?i)^\h*password\h+(requisite|required|sufficient)\h
+pam_pwhistory\.so(\h+[^#\n\r]+)?\h+use_authtok\b' found - expect '(?i)^\h*password\h+(requisite|
required|sufficient)\h+pam_pwhistory\.so(\h+[^#\n\r]+)?\h+use_authtok\b' found in the following
lines:
    26: password required pam_pwhistory.so use_authtok
remember=24 enforce_for_root
```

5.3.3.4.1 Ensure pam_unix does not include nullok

Info

The nullok argument overrides the default action of pam_unix.so to not permit the user access to a service if their official password is blank.

Using a strong password is essential to helping protect personal and sensitive information from unauthorized access

Solution

Run the following command:

grep -PH -- '^h*([^# r]+h+)?pam_unix.soh+([^# r]+h+)?nullokb' /usr/share/pam-configs/*

Edit any files returned and remove the nullok argument for the pam_unix lines

Example File:

Name: Unix authentication Default: yes Priority: 256 Auth-Type: Primary Auth:

[success=end default=ignore] pam_unix.so try_first_pass # <- **ensure line does not include nullok nullok** Auth-Initial:

[success=end default=ignore] pam_unix.so # <- **ensure line does not include nullok nullok** Account-Type: Primary Account:

[success=end new_authtok_reqd=done default=ignore] pam_unix.so Account-Initial:

[success=end new_authtok_reqd=done default=ignore] pam_unix.so Session-Type: Additional Session: required pam_unix.so Session-Initial:

required pam unix.so Password-Type: Primary Password:

[success=end default=ignore] pam_unix.so obscure use_authtok try_first_pass yescrypt Password-Initial: [success=end default=ignore] pam_unix.so obscure yescrypt

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable <EDITED PROFILE NAME>

Example:

pam-auth-update --enable unix

Note: If custom files are being used, the corresponding files in /etc/pam.d/ would need to be edited directly, and the pam-auth-update --enable <EDITED_PROFILE_NAME> command skipped

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171

3.5.2

800-53IA-5(1)800-53R5IA-5(1)CSCV74.4CSCV85.2CSFPR.AC-1GDPR32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(d) ITSG-33 IA-5(1) I FVFI 1A **NESA** T5.2.3 QCSC-V1 5.2.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:
PASSED - common-session-noninteractive nullok
The following file(s) do not contain "(?i)^\h*\h*[^\#\n\r]+\h+pam_unix\.so\b[^\#\n\r]+nullok\b":
     /etc/pam.d/common-session-noninteractive
PASSED - common-password nullok
The following file(s) do not contain "(?i)^\h*^\h*[^\#\n\r]+\h+pam\_unix\.so\b[^<math>\#\n\r]+nullok\b":
      /etc/pam.d/common-password
PASSED - common-auth nullok
The following file(s) do not contain "(?i)^\h*^\h*[^\#\n\]+\h+pam_unix\.so\b[^\#\n\]+nullok\b":
     /etc/pam.d/common-auth
PASSED - common-account nullok
The following file(s) do not contain "(?i)^\h*\h*[^\#\n\r]+\h+pam_unix\.so\b[^\#\n\r]+nullok\b":
      /etc/pam.d/common-account
PASSED - common-session nullok
The following file(s) do not contain "(?i)^h*^h*[^\#\lnr]+h+pam\_unix\.so[^\#\lnr]+nullokb":
      /etc/pam.d/common-session
```

5.3.3.4.2 Ensure pam unix does not include remember

Info

The remember=n argument saves the last n passwords for each user in /etc/security/opasswd in order to force password change history and keep the user from alternating between the same password too frequently. The MD5 password hash algorithm is used for storing the old passwords. Instead of this option the pam_pwhistory module should be used. The pam_pwhistory module saves the last n passwords for each user in /etc/security/opasswd using the password hash algorithm set on the pam_unix module. This allows for the yescrypt or sha512 hash algorithm to be used.

The remember=n argument should be removed to ensure a strong password hashing algorithm is being used. A stronger hash provides additional protection to the system by increasing the level of effort needed for an attacker to successfully determine local user's old passwords stored in /etc/security/opasswd

Solution

Run the following command:

grep -PH -- '^h*([^# r]+h+)?pam_unix.soh+([^# r]+h+)?rememberb' /usr/share/pam-configs/*

Edit any files returned and remove the remember= <N> argument for the pam unix lines

Example output:

[success=end default=ignore] pam_unix.so obscure use_authtok try_first_pass yescrypt remember=5 # **<-remove remember=<N>** [success=end default=ignore] pam_unix.so obscure yescrypt remember=5 # **<- remove remember=<N>**

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable <EDITED PROFILE NAME>

Example:

pam-auth-update --enable unix

Note: If custom files are being used, the corresponding files in /etc/pam.d/ would need to be edited directly, and the pam-auth-update --enable <EDITED_PROFILE_NAME> command skipped

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1

GDPR 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(d) ITSG-33 IA-5(1) LEVEL 1A NESA T5.2.3 QCSC-V1 5.2.2 QCSC-V1 13.2

Audit File

SWIFT-CSCV1

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

4.1

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:
PASSED - common-session remember
The following file(s) do not contain "(?i)^\h*^\h*[^#\n\r]+\h+pam_unix\.so\b[^#\n\r]+remember=\b":
      /etc/pam.d/common-session
PASSED - common-password remember
The following file(s) do not contain "(?i)^h*^h[^{+}nr]+h+pam_unix\.sob[^{+}nr]+remember=b":
     /etc/pam.d/common-password
PASSED - common-session-noninteractive remember
The following file(s) do not contain "(?i)^h*^h[^{+}]+h+pam_unix\.so[^{+}]+remember=b":
      /etc/pam.d/common-session-noninteractive
PASSED - common-auth remember
The following file(s) do not contain "(?i)^h*^h[^{+}n\r]+h+pam\_unix\.sob[^{+}n\r]+remember=b":
      /etc/pam.d/common-auth
PASSED - common-account remember
The following file(s) do not contain "(?i)^\h*^\h*[^\#\n^r]+\h+pam_unix\.so\b[^\#\n^r]+remember=\b":
      /etc/pam.d/common-account
```

5.3.3.4.3 Ensure pam_unix includes a strong password hashing algorithm

Info

A cryptographic hash function converts an arbitrary-length input into a fixed length output. Password hashing performs a one-way transformation of a password, turning the password into another string, called the hashed password.

The pam_unix module can be configured to use one of the following hashing algorithms for user's passwords:

- md5 When a user changes their password next, encrypt it with the MD5 algorithm.
- bigcrypt When a user changes their password next, encrypt it with the DEC C2 algorithm.
- sha256 When a user changes their password next, encrypt it with the SHA256 algorithm. The SHA256 algorithm must be supported by the crypt(3) function.
- sha512 When a user changes their password next, encrypt it with the SHA512 algorithm. The SHA512 algorithm must be supported by the crypt(3) function.
- blowfish When a user changes their password next, encrypt it with the blowfish algorithm. The blowfish algorithm must be supported by the crypt(3) function.
- gost_yescrypt When a user changes their password next, encrypt it with the gost-yescrypt algorithm. The gost-yescrypt algorithm must be supported by the crypt(3) function.
- yescrypt When a user changes their password next, encrypt it with the yescrypt algorithm. The yescrypt algorithm must be supported by the crypt(3) function.

The SHA-512 and yescrypt algorithms provide a stronger hash than other algorithms used by Linux for password hash generation. A stronger hash provides additional protection to the system by increasing the level of effort needed for an attacker to successfully determine local user passwords.

Note: These changes only apply to the local system.

Solution

Run the following command:

awk '/Password-Type:/{ f = 1;next } /-Type:/{ f = 0 } f = 0 f = 0 } f = 0 } f = 0 f =

Edit any returned files and edit or add a strong hashing algorithm, either sha512 or yescrypt, that meets local site policy to the pam_unix lines in the Password section:

Example File:

Name: Unix authentication Default: yes Priority: 256 Auth-Type: Primary # <- Start of "Auth" section Auth: [success=end default=ignore] pam_unix.so try_first_pass Auth-Initial:

[success=end default=ignore] pam_unix.so Account-Type: Primary # <- Start of "Account" section Account: [success=end new_authtok_reqd=done default=ignore] pam_unix.so Account-Initial:

[success=end new_authtok_reqd=done default=ignore] pam_unix.so Session-Type: Additional # <- Start of "Session" section Session:

required pam unix.so Session-Initial:

required pam unix.so Password-Type: Primary # <- Start of "Password" section Password:

[success=end default=ignore] pam_unix.so obscure use_authtok try_first_pass yescrypt # <- **ensure hashing algorithm is either sha512 or yescrypt** Password-Initial:

[success=end default=ignore] pam_unix.so obscure yescrypt # <- **ensure hashing algorithm is either sha512 or yescrypt**

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable <MODIFIED_PROFILE_NAME>

Example:

pam-auth-update --enable unix

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-171	3.13.16
800-53	IA-5(1)
800-53	SC-28
800-53	SC-28(1)
800-53R5	IA-5(1)
800-53R5	SC-28
800-53R5	SC-28(1)
CN-L3	8.1.4.7(b)
CN-L3	8.1.4.8(b)
CSCV7	16.4
CSCV8	3.11
CSF	PR.AC-1
CSF	PR.DS-1
GDPR	32.1.a
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(a)(2)(iv)
HIPAA	164.312(d)
HIPAA	164.312(e)(2)(ii)
ITSG-33	IA-5(1)
ITSG-33	SC-28
ITSG-33	SC-28a.
ITSG-33	SC-28(1)
LEVEL	1A
NESA	T5.2.3
PCI-DSSV3.2.1	3.4

PCI-DSSV4.0	3.3.2
PCI-DSSV4.0	3.5.1
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1
TBA-FIISB	28.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: (?i)^\h*password\h+([^# \r]+)\h+pam_unix\.so\h+([^# \r]+\h+)?(SHA512|YESCRYPT)\b file: /etc/pam.d/common-password regex: (?i)^\h*password\h+([^# \r]+)\h+pam_unix\.so\h+([^# \r]+\h+)?(SHA512|YESCRYPT)\b

Hosts

```
Compliant file(s):
    /etc/pam.d/common-password - regex '(?i)^\h*password\h+([^#\n\r]+)\h+pam_unix\.so\h+([^#\n\r]+\h+)?(SHA512|YESCRYPT)\b' found - expect '(?i)^\h*password\h+([^#\n\r]+)\h+pam_unix\.so\h+([^#\n\r]+\h+)?(SHA512|YESCRYPT)\b' found in the following lines:
    27: password[success=1 default=ignore]pam_unix.so obscure use_authtok try_first_pass yescrypt
```

5.3.3.4.4 Ensure pam_unix includes use_authtok

Info

use_authtok - When password changing enforce the module to set the new password to the one provided by a previously stacked password module

use_authtok allows multiple pam modules to confirm a new password before it is accepted.

Solution

Run the following command:

awk '/Password-Type:/{ f = 1;next } /-Type:/{ f = 0 } f = 0 f = 0 } f = 0 f = 0 } f = 0 f = 0 f = 0 f = 0 } f = 0 f =

Edit any returned files add use_authtok to the pam_unix line in the Password section under Password: subsection:

Note: The if the file's Password section includes a Password-Initial: subsection, use_authtok should not be added to the pam_unix line in the Password-Initial: subsection

Example File:

Name: Unix authentication Default: yes Priority: 256 Auth-Type: Primary # <- Start of "Auth" section Auth: [success=end default=ignore] pam_unix.so try_first_pass Auth-Initial:

[success=end default=ignore] pam_unix.so Account-Type: Primary # <- Start of "Account" section Account: [success=end new_authtok_reqd=done default=ignore] pam_unix.so Account-Initial:

[success=end new_authtok_reqd=done default=ignore] pam_unix.so Session-Type: Additional # <- Start of "Session" section Session:

required pam_unix.so Session-Initial:

required pam_unix.so Password-Type: Primary # <- Start of "Password" section Password:

[success=end default=ignore] pam_unix.so obscure use_authtok try_first_pass yescrypt # <- **ensure line includes use_authtok** Password-Initial:

[success=end default=ignore] pam_unix.so obscure yescrypt # <- **Password-Initial: subsection does not include use_authtok

Run the following command to update the files in the /etc/pam.d/ directory:

pam-auth-update --enable <MODIFIED_PROFILE_NAME>

Example:

pam-auth-update --enable unix

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-171	3.13.16
800-53	IA-5(1)
800-53	SC-28
800-53	SC-28(1)
800-53R5	IA-5(1)
800-53R5	SC-28
800-53R5	SC-28(1)
CN-L3	8.1.4.7(b)
CN-L3	8.1.4.8(b)
CSCV7	16.4
CSCV8	3.11
CSF	PR.AC-1
CSF	PR.DS-1
GDPR	32.1.a
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(a)(2)(iv)
HIPAA	164.312(d)
HIPAA	164.312(e)(2)(ii)
ITSG-33	IA-5(1)
ITSG-33	SC-28
ITSG-33	SC-28a.
ITSG-33	SC-28(1)
LEVEL	1A
NESA	T5.2.3
PCI-DSSV3.2.1	3.4
PCI-DSSV4.0	3.3.2
PCI-DSSV4.0	3.5.1

Audit File

TBA-FIISB

QCSC-V1

QCSC-V1

QCSC-V1

SWIFT-CSCV1

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

5.2.2

6.2

13.2

4.1

28.1

Policy Value

5.4.1.4 Ensure strong password hashing algorithm is configured

Info

A cryptographic hash function converts an arbitrary-length input into a fixed length output. Password hashing performs a one-way transformation of a password, turning the password into another string, called the hashed password.

ENCRYPT_METHOD (string) - This defines the system default encryption algorithm for encrypting passwords (if no algorithm are specified on the command line). It can take one of these values:

- MD5 MD5-based algorithm will be used for encrypting password
- SHA256 SHA256-based algorithm will be used for encrypting password
- SHA512 SHA512-based algorithm will be used for encrypting password
- BCRYPT BCRYPT-based algorithm will be used for encrypting password
- YESCRYPT YESCRYPT-based algorithm will be used for encrypting password
- DES DES-based algorithm will be used for encrypting password (default)

Note:

- This parameter overrides the deprecated MD5_CRYPT_ENAB variable.
- This parameter will only affect the generation of group passwords.
- The generation of user passwords is done by PAM and subject to the PAM configuration.
- It is recommended to set this variable consistently with the PAM configuration.

The SHA-512 and yescrypt algorithms provide a stronger hash than other algorithms used by Linux for password hash generation. A stronger hash provides additional protection to the system by increasing the level of effort needed for an attacker to successfully determine local group passwords.

Solution

Edit /etc/login.defs and set the ENCRYPT_METHOD to SHA512 or YESCRYPT:

ENCRYPT METHOD < HASHING ALGORITHM>

Example:

ENCRYPT METHOD YESCRYPT

Note:

- This only effects local groups' passwords created after updating the file to use sha512 or yescrypt
- If it is determined that the password algorithm being used is not sha512 or yescrypt once it is changed, it is recommended that all group passwords be updated to use the stronger hashing algorithm.
- It is recommended that the chosen hashing algorithm is consistent across /etc/login.defs and the PAM configuration

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-171	3.13.16
800-53	IA-5(1)
800-53	SC-28
800-53	SC-28(1)
800-53R5	IA-5(1)
800-53R5	SC-28
800-53R5	SC-28(1)
CN-L3	8.1.4.7(b)
CN-L3	8.1.4.8(b)
CSCV7	16.4
CSCV8	3.11
CSF	PR.AC-1
CSF	PR.DS-1
GDPR	32.1.a
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(a)(2)(iv)
HIPAA	164.312(d)
HIPAA	164.312(e)(2)(ii)
ITSG-33	IA-5(1)
ITSG-33	SC-28
ITSG-33	SC-28a.
ITSG-33	SC-28(1)
LEVEL	1A
NESA	T5.2.3
PCI-DSSV3.2.1	3.4
PCI-DSSV4.0	3.3.2
PCI-DSSV4.0	3.5.1
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1
TBA-FIISB	28.1

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

expect: $\s^ENCRYPT_METHOD\s+(?i)(SHA512|YESCRYPT)(?-i)\s^$ file: /etc/login.defs regex: ^ \s^ENCRYPT_METHOD\s+$

Hosts

```
Compliant file(s):
    /etc/login.defs - regex '^\s*ENCRYPT_METHOD\s+' found - expect '^\s*ENCRYPT_METHOD\s+(?i)
(SHA512|YESCRYPT)(?-i)\s*$' found in the following lines:
    283: ENCRYPT_METHOD SHA512
```

5.4.1.6 Ensure all users last password change date is in the past

Info

All users should have a password change date in the past.

If a user's recorded password change date is in the future, then they could bypass any set password expiration.

Solution

Investigate any users with a password change date in the future and correct them. Locking the account, expiring the password, or resetting the password manually may be appropriate.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

192.168.40.33

The command script with multiple lines returned :

Pass

5.4.2.1 Ensure root is the only UID 0 account

Info

Any account with UID 0 has superuser privileges on the system.

This access must be limited to only the default root account and only from the system console. Administrative access must be through an unprivileged account using an approved mechanism as noted in Item 5.6 Ensure access to the su command is restricted.

Solution

Run the following command to change the root account UID to 0:

usermod -u 0 root

Modify any users other than root with UID 0 and assign them a new UID.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.5	
800-53	AC-6(5)	
800-53R5	AC-6(5)	
CN-L3	8.1.10.6(a)	
CSF	PR.AC-4	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
ISO/IEC-27001	A.9.2.3	
ITSG-33	AC-6(5)	
LEVEL	1A	
NESA	T5.1.1	
NESA	T5.2.2	
NESA	T5.6.1	
NIAV2	AM32	
NIAV2	AM33	
NIAV2	VL3a	
PCI-DSSV3.2.1	7.1.2	
PCI-DSSV4.0	7.2.1	
PCI-DSSV4.0	7.2.2	
QCSC-V1	5.2.2	
QCSC-V1	6.2	

SWIFT-CSCV1 1.2 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: passwd_zero_uid

Hosts

192.168.40.33

No issues found.

5.4.2.2 Ensure root is the only GID 0 account

Info

The usermod command can be used to specify which group the root account belongs to. This affects permissions of files that are created by the root account.

Using GID 0 for the root account helps prevent root -owned files from accidentally becoming accessible to non-privileged users.

Solution

Run the following command to set the root user's GID to 0:

usermod -g 0 root

Run the following command to set the root group's GID to 0:

groupmod -g 0 root

Remove any users other than the root user with GID 0 or assign them a new GID if appropriate.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29

7.1.2

7.2.1

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- * Correctly configured *:

- No unauthorized user's GID is: "0"

- User "root" GID is correctly set to: "0"
```

5.4.2.3 Ensure group root is the only GID 0 group

Info

The groupmod command can be used to specify which group the root group belongs to. This affects permissions of files that are group owned by the root group.

Using GID 0 for the root group helps prevent root group owned files from accidentally becoming accessible to non-privileged users.

Solution

Run the following command to set the root group's GID to 0:

groupmod -g 0 root

Remove any groups other than the root group with GID 0 or assign them a new GID if appropriate.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	

CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 PR.AC-4 CSF CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 AC-6 ITSG-33 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 T5.4.1 T5.4.4 T5.4.5 T5.5.4

NESA NESA NESA NESA NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1

7.2.2

5.2.2

3.2

PCI-DSSV4.0

QCSC-V1

QCSC-V1

QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: group_zero_gid

Hosts

192.168.40.33

No issues found.

5.4.2.4 Ensure root password is set

Info

There are a number of methods to access the root account directly. Without a password set any user would be able to gain access and thus control over the entire system.

Access to root should be secured at all times.

Solution

Run the following command to set a password for the root user:

passwd root

Impact:

If there are any automated processes that relies on access to the root account without authentication, they will fail after remediation.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	

CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 **NESA** T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1

7.2.2

3.2

PCI-DSSV4.0

QCSC-V1

QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

```
cmd: /bin/passwd -S root | /bin/awk '2 \sim /^P/ {print "User: \"" $1 "\" Password is set"}' expect: (?i)^User: "root" Password is set$
```

Hosts

```
The command '/bin/passwd -S root | /bin/awk '$2 ~ /^P/ {print "User: \"" $1 "\" Password is set"}''
returned:

User: "root" Password is set
```

5.4.2.5 Ensure root path integrity

Info

The root user can execute any command on the system and could be fooled into executing programs unintentionally if the PATH is not set correctly.

Including the current working directory (.) or other writable directory in root 's executable path makes it likely that an attacker can gain superuser access by forcing an administrator operating as root to execute a Trojan horse program.

Solution

Correct or justify any:

- Locations that are not directories
- Empty directories (::)
- Trailing (:)
- Current working directory ()
- Non root owned directories
- Directories that less restrictive than mode 0755

See Also

https://workbench.cisecurity.org/benchmarks/17074

3.4.7

References

800-171

800-53	CM-7(2)
800-53R5	CM-7(2)
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-7(2)
LEVEL	1A
NIAV2	SS15a
PCI-DSSV3.2.1	2.2.2
QCSC-V1	3.2
SWIFT-CSCV1	2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:

*** PASS ***

- Root's path is correctly configured
```

5.4.2.7 Ensure system accounts do not have a valid login shell

Info

There are a number of accounts provided with most distributions that are used to manage applications and are not intended to provide an interactive shell. Furthermore, a user may add special accounts that are not intended to provide an interactive shell.

It is important to make sure that accounts that are not being used by regular users are prevented from being used to provide an interactive shell. By default, most distributions set the password field for these accounts to an invalid string, but it is also recommended that the shell field in the password file be set to the nologin shell. This prevents the account from potentially being used to run any commands.

Solution

Run the following command to set the shell for any service accounts returned by the audit to nologin:

usermod -s \$(command -v nologin) <user>

Example script:

#!/usr/bin/env bash

 $\{ l_valid_shells = "^((awk -F/ 'NF != "nologin" {print}' /etc/shells | sed -rn '/^//{s,/,\V,g;p}' | paste -s -d '|' -))$

awk -v pat="\$|_valid_shells" -F: '(\$1!~/^(root|halt|sync|shutdown|nfsnobody)\$/ && (\$3<'"\$(awk '/^s*UID_MIN/{print \$2}' /etc/login.defs)"' || \$3 == 65534) && \$(NF) ~ pat) {system ("usermod -s ""\$(command -v nologin)"' " \$1)}' /etc/passwd }

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	

800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1

АМЗ

NIAV2

NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^pass\$

Hosts

```
The command script with multiple lines returned :
```

5.4.2.8 Ensure accounts without a valid login shell are locked

Info

There are a number of accounts provided with most distributions that are used to manage applications and are not intended to provide an interactive shell. Furthermore, a user may add special accounts that are not intended to provide an interactive shell.

It is important to make sure that accounts that are not being used by regular users are prevented from being used to provide an interactive shell. By default, most distributions set the password field for these accounts to an invalid string, but it is also recommended that the shell field in the password file be set to the nologin shell. This prevents the account from potentially being used to run any commands.

Solution

Run the following command to lock any non-root accounts without a valid login shell returned by the audit:

usermod -L <user>

Example script:

:

#!/usr/bin/env bash

```
\{ l_valid_shells = "^(s(awk -F/ 'sNF != "nologin" {print}' /etc/shells | sed -rn '/^//{s,/,\/,g;p}' | paste -s -d '|' - ))"
```

```
while IFS= read -r l_user; do passwd -S "l_user'' = awk '$2! \sim /^L/ {system ("usermod -L " $1)}' done << (awk -v pat="<math>l_user'' = awk -v pat="$1 valid shells" -F: '($1!= "root" &amp; &amp; $(NF)! \sim pat) {print $1}' /etc/passwd) }
```

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	

800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3

AM1

NIAV2

NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: ^pass\$

Hosts

192.168.40.33

The command script with multiple lines returned :

pass

5.4.3.2 Ensure default user shell timeout is configured

Info

TMOUT is an environmental setting that determines the timeout of a shell in seconds.

- TMOUT=

n

- Sets the shell timeout to

r

seconds. A setting of TMOUT=0 disables timeout.

- readonly TMOUT- Sets the TMOUT environmental variable as readonly, preventing unwanted modification during run-time.
- export TMOUT exports the TMOUT variable

System Wide Shell Configuration Files:

- /etc/profile - used to set system wide environmental variables on users shells. The variables are sometimes the same ones that are in thebash_profile however this file is used to set an initial PATH or PS1 for all shell users of the system. is only executed for interactive

login

shells, or shells executed with the --login parameter.

- /etc/profile.d /etc/profile will execute the scripts within /etc/profile.d/*.sh It is recommended to place your configuration in a shell script within /etc/profile.d to set your own system wide environmental variables.
- /etc/bashrc System wide version ofbashrc In Fedora derived distributions, /etc/bashrc also invokes /etc/profile.d/*.sh if

non-login

shell, but redirects output to /dev/null if

non-interactive.

Is only executed for

interactive

shells or if BASH_ENV is set to /etc/bashrc

Setting a timeout value reduces the window of opportunity for unauthorized user access to another user's shell session that has been left unattended. It also ends the inactive session and releases the resources associated with that session.

Solution

Review /etc/bashrc /etc/profile and all files ending in *.sh in the /etc/profile.d/ directory and remove or edit all TMOUT=_n_ entries to follow local site policy. TMOUT should not exceed 900 or be equal to 0

Configure TMOUT in one of the following files:

- A file in the /etc/profile.d/ directory ending insh
- /etc/profile
- /etc/bashrc

TMOUT configuration examples:

- As multiple lines:

TMOUT=900 readonly TMOUT export TMOUT

- As a single line:

readonly TMOUT=900; export TMOUT

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.10	
800-171	3.1.11	
800-53	AC-2(5)	
800-53	AC-11	
800-53	AC-11(1)	
800-53	AC-12	
800-53R5	AC-2(5)	
800-53R5	AC-11	
800-53R5	AC-11(1)	
800-53R5	AC-12	
CN-L3	7.1.2.2(d)	
CN-L3	7.1.3.2(d)	
CN-L3	7.1.3.7(b)	
CN-L3	8.1.4.1(b)	
CSCV7	16.11	
CSCV8	4.3	
CSF	PR.AC-1	
CSF	PR.AC-4	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(a)(1)	
HIPAA	164.312(a)(2)(iii)	
ISO/IEC-27001	A.9.2.1	
ISO/IEC-27001	A.11.2.8	
ITSG-33	AC-2(5)	

ITSG-33	AC-11
ITSG-33	AC-11(1)
ITSG-33	AC-12
LEVEL	1A
NIAV2	AM23c
NIAV2	AM23d
NIAV2	AM28
NIAV2	NS5j
NIAV2	NS49
NIAV2	SS14e
PCI-DSSV3.2.1	8.1.8
PCI-DSSV4.0	8.2.8
QCSC-V1	5.2.2
QCSC-V1	8.2.1
QCSC-V1	13.2
QCSC-V1	15.2
TBA-FIISB	36.2.1
TBA-FIISB	37.1.4

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: $(?i)^[\s]***[\s]*passed:?[\s]***$

Hosts

```
The command script with multiple lines returned:

grep: : No such file or directory

grep: : No such file or directory

PASSED

TMOUT is configured in: "/etc/profile"
```

6.1.1 Ensure AIDE is installed

Info

AIDE takes a snapshot of filesystem state including modification times, permissions, and file hashes which can then be used to compare against the current state of the filesystem to detect modifications to the system.

By monitoring the filesystem state compromised files can be detected to prevent or limit the exposure of accidental or malicious misconfigurations or modified binaries.

Solution

Install AIDE using the appropriate package manager or manual installation:

apt install aide aide-common

Configure AIDE as appropriate for your environment. Consult the AIDE documentation for options.

Run the following commands to initialize AIDE:

aideinit # mv /var/lib/aide/aide.db.new /var/lib/aide/aide.db

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.7
800-171	3.3.1
800-171	3.3.2
800-53	AC-6(9)
800-53	AU-2
800-53	AU-12
800-53R5	AC-6(9)
800-53R5	AU-2
800-53R5	AU-12
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.3(a)
CN-L3	8.1.10.6(a)
CSCV7	14.9
CSCV8	3.14
CSF	DE.CM-1
CSF	DE.CM-3

6.1.1 Ensure AIDE is installed 665

CSF DE.CM-7 CSF PR.AC-4 CSF PR.PT-1 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(1) HIPAA 164.312(b) ISO/IEC-27001 A.12.4.3 ITSG-33 AC-6 ITSG-33 AU-2 ITSG-33 AU-12 1A LEVEL NESA M1.2.2 NESA M5.5.1 NESA T5.1.1 NESA T5.2.2 T5.5.4 NESA NESA T7.5.3 NIAV2 AM1 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 AM23f

NIAV2 SS30 NIAV2 VL8 PCI-DSSV3.2.1 7.1.2 PCI-DSSV3.2.1 10.1 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 13.2 SWIFT-CSCV1 5.1 SWIFT-CSCV1 6.4 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

SS13c

SS15c

NIAV2

NIAV2

6.1.1 Ensure AIDE is installed 666

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

```
All of the following must pass to satisfy this requirement:

PASSED - dpkg check aide-common
The command '/bin/dpkg -s aide-common 2>&1 | /bin/grep -E '(Status:|not installed)'' returned:

Status: install ok installed

PASSED - dpkg check aide
The command '/bin/dpkg -s aide 2>&1 | /bin/grep -E '(Status:|not installed)'' returned:

Status: install ok installed
```

6.1.1 Ensure AIDE is installed 667

6.1.2 Ensure filesystem integrity is regularly checked

Info

Periodic checking of the filesystem integrity is needed to detect changes to the filesystem.

Periodic file checking allows the system administrator to determine on a regular basis if critical files have been changed in an unauthorized fashion.

Solution

If cron will be used to schedule and run aide check:

Run the following command:

crontab -u root -e

Add the following line to the crontab:

05 * * * /usr/bin/aide.wrapper --config /etc/aide/aide.conf --update

- OR - If aidecheck.service and aidecheck.timer will be used to schedule and run aide check:

Create or edit the file /etc/systemd/system/aidecheck.service and add the following lines:

[Unit] Description=Aide Check

[Service] Type=simple ExecStart=/usr/bin/aide.wrapper --config /etc/aide/aide.conf --update

[Install] WantedBy=multi-user.target

Create or edit the file /etc/systemd/system/aidecheck.timer and add the following lines:

[Unit] Description=Aide check every day at 5AM

[Timer] OnCalendar=*-*-* 05:00:00 Unit=aidecheck.service

[Install] WantedBy=multi-user.target

Run the following commands:

chown root:root /etc/systemd/system/aidecheck.* # chmod 0644 /etc/systemd/system/aidecheck.*

systemctl daemon-reload

systemctl enable aidecheck.service # systemctl --now enable aidecheck.timer

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2

800-171	3.3.6
800-53	AU-3
800-53	AU-3(1)
800-53	AU-7
800-53	AU-12
800-53R5	AU-3
800-53R5	AU-3(1)
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(a)
CN-L3	7.1.2.3(b)
CN-L3	7.1.2.3(c)
CN-L3	7.1.3.3(a)
CN-L3	7.1.3.3(b)
CN-L3	8.1.4.3(b)
CSCV7	14.9
CSCV8	8.5
CSF	DE.CM-1
CSF	DE.CM-3
CSF	DE.CM-7
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-3
ITSG-33	AU-3(1)
ITSG-33	AU-7
ITSG-33	AU-12
LEVEL	1A
NESA	T3.6.2
NIAV2	AM34a
NIAV2	AM34b
NIAV2	AM34c
NIAV2	AM34d
NIAV2	AM34e
NIAV2	AM34f
NIAV2	AM34g
PCI-DSSV3.2.1	10.1
PCI-DSSV3.2.1	10.3
PCI-DSSV3.2.1	10.3.1
PCI-DSSV3.2.1	10.3.2
PCI-DSSV3.2.1	10.3.3

PCI-DSSV3.2.1	10.3.4
PCI-DSSV3.2.1	10.3.5
PCI-DSSV3.2.1	10.3.6
PCI-DSSV4.0	10.2.2
QCSC-V1	3.2
QCSC-V1	6.2
QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2
QCSC-V1	13.2
SWIFT-CSCV1	6.4

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: $([^* \r]+\h+)?(\vsr\spin\)^{\h+(--(check\update)\)([^* \r]+\h+)?\$ \$AIDEARGS)\b file: /etc/cron.daily/* /etc/cron.hourly/* /etc/cron.monthly/* /etc/cron.weekly/* /var/spool/cron/crontabs/* /var/spool/cron/* /etc/crontab min_occurrences: 1 regex: $([^* \r]+\h+)?(\vsr\spin\)^{\h+(--(check\update)\)([^* \r]+\h+)?\$ \$AIDEARGS)\b string_required: NO

Hosts

```
Compliant file(s):
    /etc/cron.daily/aide - regex '^([^#\n\r]+\h+)?(\/usr\/s?bin\/|^\h*)aide(\.wrapper)?\h+(--
(check|update)|([^#\n\r]+\h+)?\$AIDEARGS)\b' found - expect '^([^#\n\r]+\h+)?(\/usr\/s?bin\/|^
\h*)aide(\.wrapper)?\h+(--(check|update)|([^#\n\r]+\h+)?\$AIDEARGS)\b' found in the following lines:
    814: aide --config="${CONFIG}" $AIDEARGS "--$COMMAND" >| "$ARUNLOG" 2>| "$AERRLOG" &&
ARETVAL="$?"
    /etc/cron.daily/apport - regex not found
    /etc/cron.daily/apt-compat - regex not found
    /etc/cron.daily/dpkg - regex not found
    /etc/cron.daily/dpkg - regex not found
    /etc/cron.daily/logrotate - regex not found
    /etc/cron.daily/man-db - regex not found
    /etc/cron.weekly/man-db - regex not found
    /etc/crontab - regex not found
```

6.2.1.1.1 Ensure journald service is enabled and active

Info

Ensure that the systemd-journald service is enabled to allow capturing of logging events.

If the systemd-journald service is not enabled to start on boot, the system will not capture logging events.

Solution

Run the following commands to unmask and start systemd-journald.service

systemctl unmask systemd-journald.service # systemctl start systemd-journald.service

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-2
800-53	AU-7
800-53	AU-12
800-53R5	AU-2
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(a)
CSCV7	6.2
CSCV7	6.3
CSCV8	8.2
CSF	DE.CM-1
CSF	DE.CM-3
CSF	DE.CM-7
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-2
ITSG-33	AU-7
ITSG-33	AU-12

LEVEL 1A NESA M1.2.2 NESA M5.5.1 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 SS30 NIAV2 VL8 10.1 PCI-DSSV3.2.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

```
All of the following must pass to satisfy this requirement:

PASSED - journald check - active
The command '/bin/systemctl is-active systemd-journald.service' returned:

active

PASSED - journald check - enabled
The command '/bin/systemctl is-enabled systemd-journald.service' returned:

static
```

6.2.1.1.4 Ensure journald ForwardToSyslog is disabled

Info

Data from journald should be kept in the confines of the service and not forwarded to other services.

Logs of the system should be handled by journald and not forwarded to other logging mechanisms.

Solution

Set the following parameter in the [Journal] section in /etc/systemd/journald.conf or a file in /etc/systemd/journald.conf.d/ ending inconf:

ForwardToSyslog=no

Example:

#!/usr/bin/env bash

{ [!-d/etc/systemd/journald.conf.d/] & mp; & mkdir /etc/systemd/journald.conf.d/ if grep -Psq -- '^h*[Journal] /etc/systemd/journald.conf.d/60-journald.conf; then printf '%s ' "ForwardToSyslog=no" >> /etc/systemd/journald.conf.d/60-journald.conf else printf '%s ' "[Journal]" "ForwardToSyslog=no" >> /etc/systemd/journald.conf.d/60-journald.conf fi }

Note: If this setting appears in a canonically later file, or later in the same file, the setting will be overwritten

Run to following command to update the parameters in the service:

systemctl reload-or-restart systemd-journald

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1	
800-171	3.3.2	
800-171	3.3.6	
800-53	AU-2	
800-53	AU-7	
800-53	AU-12	
800-53R5	AU-2	
800-53R5	AU-7	
800-53R5	AU-12	
CN-L3	7.1.2.3(c)	
CN-L3	8.1.4.3(a)	
CSCV7	6.3	
CSCV8	8.2	

CSF DE.CM-1 CSF DE.CM-3 CSF DE.CM-7 CSF PR.PT-1 CSF RS.AN-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-2 ITSG-33 AU-7 ITSG-33 AU-12 LEVEL 1A M1.2.2 NESA NESA M5.5.1 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 SS30 NIAV2 VL8 PCI-DSSV3.2.1 10.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

192.168.40.33

The command script with multiple lines returned :

- Audit Result:

```
** PASS **
```

- "ForwardToSyslog" is not set in an included file
 ** Note: "ForwardToSyslog" May be set in a file that's ignored by load procedure **

6.2.1.1.5 Ensure journald Storage is configured

Info

Data from journald may be stored in volatile memory or persisted locally on the server. Logs in memory will be lost upon a system reboot. By persisting logs to local disk on the server they are protected from loss due to a reboot.

Writing log data to disk will provide the ability to forensically reconstruct events which may have impacted the operations or security of a system even after a system crash or reboot.

Solution

Set the following parameter in the [Journal] section in /etc/systemd/journald.conf or a file in /etc/systemd/journald.conf.d/ ending inconf:

Storage=persistent

Example:

#!/usr/bin/env bash

{ [!-d/etc/systemd/journald.conf.d/] && mkdir/etc/systemd/journald.conf.d/ if grep-Psq--'^h*[Journal]'/etc/systemd/journald.conf.d/60-journald.conf; then printf'%s'"Storage=persistent">>/etc/systemd/journald.conf.d/60-journald.conf else printf'%s'"[Journal]""Storage=persistent">>/etc/systemd/journald.conf.d/60-journald.conf fi}

Note: If this setting appears in a canonically later file, or later in the same file, the setting will be overwritten

Run to following command to update the parameters in the service:

systemctl reload-or-restart systemd-journald

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-2
800-53	AU-7
800-53	AU-12
800-53R5	AU-2
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(a)

CSCV7	6.2
CSCV7	6.3
CSCV8	8.2
CSF	DE.CM-1
CSF	DE.CM-3
CSF	DE.CM-7
CSF	PR.PT-1
CSF	RS.AN-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(b)
ITSG-33	AU-2
ITSG-33	AU-7
ITSG-33	AU-12
LEVEL	1A
NESA	M1.2.2
NESA	M5.5.1
NIAV2	AM7
NIAV2	AM11a
NIAV2	AM11b
NIAV2	AM11c
NIAV2	AM11d
NIAV2	AM11e
NIAV2	SS30
NIAV2	VL8
PCI-DSSV3 2 1	10 1

PCI-DSSV3.2.1 10.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

 $CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit$

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **

- "Storage" is correctly set to "persistent" in "/etc/systemd/journald.conf"
```

6.2.1.1.6 Ensure journald Compress is configured

Info

The journald system includes the capability of compressing overly large files to avoid filling up the system with logs or making the logs unmanageably large.

Uncompressed large files may unexpectedly fill a filesystem leading to resource unavailability. Compressing logs prior to write can prevent sudden, unexpected filesystem impacts.

Solution

Set the following parameter in the [Journal] section in /etc/systemd/journald.conf or a file in /etc/systemd/journald.conf.d/ ending inconf:

Compress=yes

Example:

#!/usr/bin/env bash

{ [!-d/etc/systemd/journald.conf.d/] & mkdir/etc/systemd/journald.conf.d/ if grep-Psq--'^h*[Journal]'/etc/systemd/journald.conf.d/60-journald.conf; then printf'%s'"Compress=yes">>/etc/systemd/journald.conf.d/60-journald.conf else printf'%s'"[Journal]""Compress=yes">>/etc/systemd/journald.conf.d/60-journald.conf fi}

Note: If this setting appears in a canonically later file, or later in the same file, the setting will be overwritten

Run to following command to update the parameters in the service:

systemctl reload-or-restart systemd-journald

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-2
800-53	AU-4
800-53	AU-7
800-53	AU-12
800-53R5	AU-2
800-53R5	AU-4
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(c)

CN-L3 8.1.4.3(a) CSCV7 6.2 CSCV7 6.3 CSCV7 6.4 CSCV8 8.2 CSCV8 8.3 CSF DE.CM-1 CSF DE.CM-3 CSF DE.CM-7 CSF PR.DS-4 CSF PR.PT-1 CSF RS.AN-3 GDPR 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-2 ITSG-33 AU-4 ITSG-33 AU-7 ITSG-33 AU-12 **LEVEL** 1A NESA M1.2.2 NESA M5.5.1 NESA T3.3.1 NESA T3.6.2 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 SS30 NIAV2 VL8 PCI-DSSV3.2.1 10.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 11.2 QCSC-V1

Audit File

QCSC-V1

SWIFT-CSCV1

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

13.2

6.4

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:
   ** PASS **

- "Compress" is correctly set to "yes" in "/etc/systemd/journald.conf"
```

6.2.1.2.1 Ensure systemd-journal-remote is installed

Info

Journald systemd-journal-remote supports the ability to send log events it gathers to a remote log host or to receive messages from remote hosts, thus enabling centralized log management.

Storing log data on a remote host protects log integrity from local attacks. If an attacker gains root access on the local system, they could tamper with or remove log data that is stored on the local system.

Solution

Run the following command to install systemd-journal-remote:

apt install systemd-journal-remote

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1	
800-171	3.3.2	
800-171	3.3.6	
800-53	AU-2	
800-53	AU-7	
800-53	AU-12	
800-53R5	AU-2	
800-53R5	AU-7	
800-53R5	AU-12	
CN-L3	7.1.2.3(c)	
CN-L3	8.1.4.3(a)	
CSCV7	6.2	
CSCV7	6.3	
CSCV8	8.2	
CSF	DE.CM-1	
CSF	DE.CM-3	
CSF	DE.CM-7	
CSF	PR.PT-1	
CSF	RS.AN-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(b)	
ITSG-33	AU-2	

ITSG-33	AU-7
ITSG-33	AU-12
LEVEL	1A
NESA	M1.2.2
NESA	M5.5.1
NIAV2	AM7
NIAV2	AM11a
NIAV2	AM11b
NIAV2	AM11c
NIAV2	AM11d
NIAV2	AM11e
NIAV2	SS30
NIAV2	VL8
PCI-DSSV3.2.1	10.1
QCSC-V1	3.2
QCSC-V1	6.2
QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2
QCSC-V1	13.2
SWIFT-CSCV1	6.4

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/dpkg -s systemd-journal-remote $2>&1 \mid /bin/grep$ -E '(Status: | not installed)' expect: ^Status: install ok

Hosts

```
The command '/bin/dpkg -s systemd-journal-remote 2>&1 | /bin/grep -E '(Status:|not installed)''
returned:
Status: install ok installed
```

6.2.1.2.3 Ensure systemd-journal-upload is enabled and active

Info

Journald systemd-journal-upload supports the ability to send log events it gathers to a remote log host.

Storing log data on a remote host protects log integrity from local attacks. If an attacker gains root access on the local system, they could tamper with or remove log data that is stored on the local system.

Solution

Run the following commands to unmask, enable and start systemd-journal-upload:

systemctl unmask systemd-journal-upload.service # systemctl --now enable systemd-journal-upload.service

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.3.1	
800-171	3.3.2	
800-171	3.3.6	
800-53	AU-2	
800-53	AU-7	
800-53	AU-12	
800-53R5	AU-2	
800-53R5	AU-7	
800-53R5	AU-12	
CN-L3	7.1.2.3(c)	
CN-L3	8.1.4.3(a)	
CSCV7	6.2	
CSCV7	6.3	
CSCV8	8.2	
CSF	DE.CM-1	
CSF	DE.CM-3	
CSF	DE.CM-7	
CSF	PR.PT-1	
CSF	RS.AN-3	
GDPR	32.1.b	
HIPAA	164.306(a)(1)	
HIPAA	164.312(b)	
ITSG-33	AU-2	

ITSG-33	AU-7
ITSG-33	AU-12
LEVEL	1A
NESA	M1.2.2
NESA	M5.5.1
NIAV2	AM7
NIAV2	AM11a
NIAV2	AM11b
NIAV2	AM11c
NIAV2	AM11d
NIAV2	AM11e
NIAV2	SS30
NIAV2	VL8
PCI-DSSV3.2.1	10.1
QCSC-V1	3.2
QCSC-V1	6.2
QCSC-V1	8.2.1
QCSC-V1	10.2.1
QCSC-V1	11.2
QCSC-V1	13.2
SWIFT-CSCV1	6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

6.2.1.2.4 Ensure systemd-journal-remote service is not in use

Info

Journald systemd-journal-remote supports the ability to receive messages from remote hosts, thus acting as a log server. Clients should not receive data from other hosts.

NOTE:

- The same package, systemd-journal-remote is used for both sending logs to remote hosts and receiving incoming logs.
- With regards to receiving logs, there are two services; systemd-journal-remote.socket and systemd-journal-remote.service

If a client is configured to also receive data, thus turning it into a server, the client system is acting outside it's operational boundary.

Solution

Run the following commands to stop and mask systemd-journal-remote.socket and systemd-journal-remote.service:

systemctl stop systemd-journal-remote.socket systemd-journal-remote.service # systemctl mask systemd-journal-remote.socket systemd-journal-remote.service

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2
CSCV8	4.8
CSF	PR.IP-1
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
ITSG-33	CM-6
ITSG-33	CM-7
LEVEL	1A

NIAV2 SS15a PCI-DSSV3.2.1 2.2.2 SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

7.1.1 Ensure permissions on /etc/passwd are configured

Info

The /etc/passwd file contains user account information that is used by many system utilities and therefore must be readable for these utilities to operate.

It is critical to ensure that the /etc/passwd file is protected from unauthorized write access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run the following commands to remove excess permissions, set owner, and set group on /etc/passwd:

chmod u-x,go-wx /etc/passwd # chown root:root /etc/passwd

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b
HIPAA 164.306(a)(3)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 MP-2 ITSG-33 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3

NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2

NIAV2

NIAV2

AM1

AM3

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/passwd group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/passwd with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/passwd

7.1.2 Ensure permissions on /etc/passwd- are configured

Info

The /etc/passwd- file contains backup user account information.

It is critical to ensure that the /etc/passwd- file is protected from unauthorized access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run the following commands to remove excess permissions, set owner, and set group on /etc/passwd-:

chmod u-x,go-wx /etc/passwd- # chown root:root /etc/passwd-

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 GDPR 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 MP-2 ITSG-33 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3

NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/passwd- group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/passwd- with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value $\frac{1}{2}$

/etc/passwd-

7.1.3 Ensure permissions on /etc/group are configured

Info

The /etc/group file contains a list of all the valid groups defined in the system. The command below allows read/write access for root and read access for everyone else.

The /etc/group file needs to be protected from unauthorized changes by non-privileged users, but needs to be readable as this information is used with many non-privileged programs.

Solution

Run the following commands to remove excess permissions, set owner, and set group on /etc/group:

chmod u-x,go-wx /etc/group # chown root:root /etc/group

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b
HIPAA 164.306(a)(7)

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 MP-2 ITSG-33 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2

NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/group group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/group with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/group

7.1.4 Ensure permissions on /etc/group- are configured

Info

The /etc/group- file contains a backup list of all the valid groups defined in the system.

It is critical to ensure that the /etc/group- file is protected from unauthorized access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run the following commands to remove excess permissions, set owner, and set group on /etc/group-:

chmod u-x,go-wx /etc/group- # chown root:root /etc/group-

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 MP-2 ITSG-33 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2

NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2

T7.5.3

AM1

NESA

NIAV2

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.1.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/group- group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/group- with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/group-

7.1.5 Ensure permissions on /etc/shadow are configured

Info

The /etc/shadow file is used to store the information about user accounts that is critical to the security of those accounts, such as the hashed password and other security information.

If attackers can gain read access to the /etc/shadow file, they can easily run a password cracking program against the hashed password to break it. Other security information that is stored in the /etc/shadow file (such as expiration) could also be useful to subvert the user accounts.

Solution

Run one of the following commands to set ownership of /etc/shadow to root and group to either root or shadow :

chown root:shadow /etc/shadow

-OR- # chown root:root /etc/shadow

Run the following command to remove excess permissions form /etc/shadow:

chmod u-x,g-wx,o-rwx /etc/shadow

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	

CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c

SS29

7.1.2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/shadow group: shadow mask: 137 owner: root

Hosts

192.168.40.33

The file /etc/shadow with fmode owner: root group: shadow mode: 0640 uid: 0 gid: 42 uneven permissions: FALSE is compliant with the policy value

/etc/shadow

7.1.6 Ensure permissions on /etc/shadow- are configured

Info

The /etc/shadow- file is used to store backup information about user accounts that is critical to the security of those accounts, such as the hashed password and other security information.

It is critical to ensure that the /etc/shadow- file is protected from unauthorized access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run one of the following commands to set ownership of /etc/shadow- to root and group to either root or shadow:

chown root:shadow/etc/shadow-

-OR- # chown root:root /etc/shadow-

Run the following command to remove excess permissions form /etc/shadow-:

chmod u-x,g-wx,o-rwx /etc/shadow-

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	

CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
110 112	

SS29

7.1.2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/shadow group: shadow mask: 137 owner: root

Hosts

192.168.40.33

The file /etc/shadow with fmode owner: root group: shadow mode: 0640 uid: 0 gid: 42 uneven permissions: FALSE is compliant with the policy value

/etc/shadow

7.1.7 Ensure permissions on /etc/gshadow are configured

Info

The /etc/gshadow file is used to store the information about groups that is critical to the security of those accounts, such as the hashed password and other security information.

If attackers can gain read access to the /etc/gshadow file, they can easily run a password cracking program against the hashed password to break it. Other security information that is stored in the /etc/gshadow file (such as group administrators) could also be useful to subvert the group.

Solution

Run one of the following commands to set ownership of /etc/gshadow to root and group to either root or shadow :

chown root:shadow /etc/gshadow

-OR- # chown root:root /etc/gshadow

Run the following command to remove excess permissions form /etc/gshadow:

chmod u-x,g-wx,o-rwx /etc/gshadow

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	

CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c

SS29

7.1.2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/gshadow group: root group: shadow mask: 137 owner: root

Hosts

192.168.40.33

The file /etc/gshadow with fmode owner: root group: shadow mode: 0640 uid: 0 gid: 42 uneven permissions: FALSE is compliant with the policy value

/etc/gshadow

7.1.8 Ensure permissions on /etc/gshadow- are configured

Info

The /etc/gshadow- file is used to store backup information about groups that is critical to the security of those accounts, such as the hashed password and other security information.

It is critical to ensure that the /etc/gshadow- file is protected from unauthorized access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run one of the following commands to set ownership of /etc/gshadow- to root and group to either root or shadow :

chown root:shadow /etc/gshadow-

-OR- # chown root:root /etc/gshadow-

Run the following command to remove excess permissions form /etc/gshadow-:

chmod u-x,g-wx,o-rwx /etc/gshadow-

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	

CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c

SS15c

SS29

7.1.2

NIAV2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/gshadow- group: root group: shadow mask: 137 owner: root

Hosts

192.168.40.33

The file /etc/gshadow- with fmode owner: root group: shadow mode: 0640 uid: 0 gid: 42 uneven permissions: FALSE is compliant with the policy value

/etc/gshadow-

7.1.9 Ensure permissions on /etc/shells are configured

Info

/etc/shells is a text file which contains the full pathnames of valid login shells. This file is consulted by chsh and available to be queried by other programs.

It is critical to ensure that the /etc/shells file is protected from unauthorized access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run the following commands to remove excess permissions, set owner, and set group on /etc/shells:

chmod u-x,go-wx /etc/shells # chown root:root /etc/shells

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	
CN-L3	8.5.4.1(a)	

CSCV7 14.6
CSCV8 3.3
CSF PR.AC-4
CSF PR.DS-5
CSF PR.PT-2
CSF PR.PT-3
GDPR 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 MP-2 ITSG-33 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1

NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2 QCSC-V1 3.2 QCSC-V1 5.2.2 QCSC-V1 6.2

T7.5.2

T7.5.3

AM1

NESA

NESA

NIAV2

QCSC-V1 13.2 SWIFT-CSCV1 5.1 TBA-FIISB 31.4.2 TBA-FIISB 31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

file: /etc/shells group: root mask: 133 owner: root

Hosts

192.168.40.33

The file /etc/shells with fmode owner: root group: root mode: 0644 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/shells

7.1.10 Ensure permissions on /etc/security/opasswd are configured

Info

/etc/security/opasswd and it's backup /etc/security/opasswd.old hold user's previous passwords if pam unix or pam pwhistory is in use on the system

It is critical to ensure that /etc/security/opasswd is protected from unauthorized access. Although it is protected by default, the file permissions could be changed either inadvertently or through malicious actions.

Solution

Run the following commands to remove excess permissions, set owner, and set group on /etc/security/ opasswd and /etc/security/opasswd.old is they exist:

[-e "/etc/security/opasswd"] & amp;& amp; chmod u-x, go-rwx /etc/security/opasswd # [-e "/etc/security/
opasswd"] & amp;& amp; chown root:root /etc/security/opasswd # [-e "/etc/security/opasswd.old"]
& amp;& amp; chmod u-x, go-rwx /etc/security/opasswd.old # [-e "/etc/security/opasswd.old"] & amp;& amp;
chown root:root /etc/security/opasswd.old

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)

CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2

7.2.1

7.2.2

PCI-DSSV4.0

PCI-DSSV4.0

QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

PASSED

Hosts

192.168.40.33

All of the following must pass to satisfy this requirement:

PASSED - etc/security/opasswd file permissions

The file /etc/security/opasswd with fmode owner: root group: root mode: 0600 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/security/opasswd

PASSED - /etc/security/opasswd.old file permissions

The file /etc/security/opasswd.old with fmode owner: root group: root mode: 0600 uid: 0 gid: 0 uneven permissions: FALSE is compliant with the policy value

/etc/security/opasswd.old

7.2.1 Ensure accounts in /etc/passwd use shadowed passwords

Info

Local accounts can uses shadowed passwords. With shadowed passwords, The passwords are saved in shadow password file, /etc/shadow encrypted by a salted one-way hash. Accounts with a shadowed password have an x in the second field in /etc/passwd

The /etc/passwd file also contains information like user ID's and group ID's that are used by many system programs. Therefore, the /etc/passwd file must remain world readable. In spite of encoding the password with a randomly-generated one-way hash function, an attacker could still break the system if they got access to the /etc/passwd file. This can be mitigated by using shadowed passwords, thus moving the passwords in the /etc/passwd file to /etc/shadow The /etc/shadow file is set so only root will be able to read and write. This helps mitigate the risk of an attacker gaining access to the encoded passwords with which to perform a dictionary attack.

Note:

- All accounts must have passwords or be locked to prevent the account from being used by an unauthorized user.
- A user account with an empty second field in /etc/passwd allows the account to be logged into by providing only the username.

Solution

Run the following command to set accounts to use shadowed passwords and migrate passwords in /etc/passwd to /etc/shadow :

pwconv

Investigate to determine if the account is logged in and what it is being used for, to determine if it needs to be forced off.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.5.2
800-171	3.13.16
800-53	IA-5(1)
800-53	SC-28
800-53	SC-28(1)
800-53R5	IA-5(1)
800-53R5	SC-28
800-53R5	SC-28(1)
CN-L3	8.1.4.7(b)
CN-L3	8.1.4.8(b)

CSCV7 16.4 CSCV8 3.11 CSF PR.AC-1 PR.DS-1 CSF **GDPR** 32.1.a GDPR 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(a)(2)(i) HIPAA 164.312(a)(2)(iv) HIPAA 164.312(d) HIPAA 164.312(e)(2)(ii) ITSG-33 IA-5(1) SC-28 ITSG-33 ITSG-33 SC-28a. ITSG-33 SC-28(1) **LEVEL** 1A NESA T5.2.3 PCI-DSSV3.2.1 3.4 PCI-DSSV4.0 3.3.2 PCI-DSSV4.0 3.5.1 5.2.2 OCSC-V1 QCSC-V1 6.2 QCSC-V1 13.2 SWIFT-CSCV1 4.1

Audit File

TBA-FIISB

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

28.1

Policy Value

cmd: /bin/awk -F: '(\$2 != "x") { print \$1 " is not set to shadowed passwords "}' /etc/passwd | /bin/awk '{print} END {if (NR == 0) print "none"}'

expect: ^none\$

Hosts

192.168.40.33

```
The command '/bin/awk -F: '($2 != "x" ) { print $1 " is not set to shadowed passwords "}' /etc/passwd | /bin/awk '{print} END {if (NR == 0) print "none"}'' returned :

none
```

7.2.2 Ensure /etc/shadow password fields are not empty

Info

An account with an empty password field means that anybody may log in as that user without providing a password.

All accounts must have passwords or be locked to prevent the account from being used by an unauthorized user.

Solution

If any accounts in the /etc/shadow file do not have a password, run the following command to lock the account until it can be determined why it does not have a password:

passwd -l <username>

Also, check to see if the account is logged in and investigate what it is being used for to determine if it needs to be forced off.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.2
800-53	IA-5(1)
800-53R5	IA-5(1)
CSCV7	4.4
CSCV8	5.2
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-5(1)
LEVEL	1A
NESA	T5.2.3
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	4.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/awk -F : '(2 == "") { print \$1 " does not have a password."}' /etc/shadow | /bin/awk '{print} END {if (NR == 0) print "none"}'

expect: ^none\$

Hosts

```
The command '/bin/awk -F : '($2 == "") { print $1 " does not have a password."}' /etc/shadow | /bin/awk '{print} END {if (NR == 0) print "none"}'' returned : none
```

7.2.3 Ensure all groups in /etc/passwd exist in /etc/group

Info

Over time, system administration errors and changes can lead to groups being defined in /etc/passwd but not in /etc/group

Groups defined in the /etc/passwd file but not in the /etc/group file pose a threat to system security since group permissions are not properly managed.

Solution

Analyze the output of the Audit step above and perform the appropriate action to correct any discrepancies found.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-2
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(d)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)

CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV8	3.3
CSCV8	14.6
CSF	DE.CM-1
CSF	DE.CM-3
CSF	PR.AC-1
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(1)
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.2.1
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-2
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2
NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3

AM1

AM3

AM23f

AM28

NS5j

NIAV2

NIAV2

NIAV2

NIAV2

NIAV2

NIAV2	SS13c
NIAV2	SS14e
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	8.2.1
QCSC-V1	13.2
QCSC-V1	15.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: passwd_invalid_gid

Hosts

192.168.40.33

No issues found.

7.2.4 Ensure shadow group is empty

Info

The shadow group allows system programs which require access the ability to read the /etc/shadow file. No users should be assigned to the shadow group.

Any users assigned to the shadow group would be granted read access to the /etc/shadow file. If attackers can gain read access to the /etc/shadow file, they can easily run a password cracking program against the hashed passwords to break them. Other security information that is stored in the /etc/shadow file (such as expiration) could also be useful to subvert additional user accounts.

Solution

Run the following command to remove all users from the shadow group

sed -ri 's/(^shadow:[^:]*:[^:]*:)([^:]+\$)/1/' /etc/group

Change the primary group of any users with shadow as their primary group.

usermod -g <primary group> <user>

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f

SS13c

SS15c

SS29

7.1.2

7.2.1

7.2.4 Ensure shadow group is empty

NIAV2

NIAV2

NIAV2

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/awk -F: 'FILENAME == "/etc/group" && \$1 == "shadow" { gid=\$3; if (\$4!="") { print "secondary "\$4; f=1 } } FILENAME == "/etc/passwd" && \$4 == gid { print "primary "\$1; f=1 } END { if (!f) print "shadow group empty" }' /etc/group /etc/passwd expect: s hadow group empty\$

Hosts

```
The command '/bin/awk -F: 'FILENAME == "/etc/group" && $1 == "shadow" { gid=$3; if ($4!="") { print "secondary "$4; f=1 } } FILENAME == "/etc/passwd" && $4 == gid { print "primary "$1; f=1 } END { if (!f) print "shadow group empty" }' /etc/group /etc/passwd' returned:

shadow group empty
```

7.2.5 Ensure no duplicate UIDs exist

Info

Although the useradd program will not let you create a duplicate User ID (UID), it is possible for an administrator to manually edit the /etc/passwd file and change the UID field.

Users must be assigned unique UIDs for accountability and to ensure appropriate access protections.

Solution

Based on the results of the audit script, establish unique UIDs and review all files owned by the shared UIDs to determine which UID they are supposed to belong to.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171 3.5.5	71	800-171
800-171 3.5.6	71	800-171
800-53 IA-4d.	3	800-53
800-53R5 IA-4d.	3R5	800-53R5
CN-L3 8.1.4.1(a)		CN-L3
CSF PR.AC-1		CSF
GDPR 32.1.b		GDPR
HIPAA 164.306(a)(1)		HIPAA
HIPAA 164.312(a)(2)(i)		HIPAA
HIPAA 164.312(d)		HIPAA
ITSG-33 IA-4d.	3	ITSG-33
LEVEL 1A		LEVEL
NESA T5.5.2		NESA
NIAV2 AM14a		NIAV2
QCSC-V1 5.2.2	V1	QCSC-V1
QCSC-V1 13.2	V1	QCSC-V1
SWIFT-CSCV1 5	-CSCV1	SWIFT-CSCV1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: passwd_duplicate_uid

Hosts

192.168.40.33

No duplicate User IDs detected

7.2.6 Ensure no duplicate GIDs exist

Info

Although the groupadd program will not let you create a duplicate Group ID (GID), it is possible for an administrator to manually edit the /etc/group file and change the GID field.

User groups must be assigned unique GIDs for accountability and to ensure appropriate access protections.

Solution

Based on the results of the audit script, establish unique GIDs and review all files owned by the shared GID to determine which group they are supposed to belong to.

See Also

https://workbench.cisecurity.org/benchmarks/17074

3.5.5

References

800-171

3.5.6
IA-4d.
IA-4d.
8.1.4.1(a)
PR.AC-1
32.1.b
164.306(a)(1)
164.312(a)(2)(i)
164.312(d)
IA-4d.
1A
T5.5.2
AM14a
5.2.2
13.2
5

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: group_duplicate_gid

Hosts

192.168.40.33

No duplicate Group IDs detected

7.2.7 Ensure no duplicate user names exist

Info

Although the useradd program will not let you create a duplicate user name, it is possible for an administrator to manually edit the /etc/passwd file and change the user name.

If a user is assigned a duplicate user name, it will create and have access to files with the first UID for that username in /etc/passwd For example, if "test4" has a UID of 1000 and a subsequent "test4" entry has a UID of 2000, logging in as "test4" will use UID 1000. Effectively, the UID is shared, which is a security problem.

Solution

Based on the results of the audit script, establish unique user names for the users. File ownerships will automatically reflect the change as long as the users have unique UIDs.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.5.5
800-171	3.5.6
800-53	IA-4d.
800-53R5	IA-4d.
CN-L3	8.1.4.1(a)
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-4d.
LEVEL	1A
NESA	T5.5.2
NIAV2	AM14a
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	5

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: passwd_duplicate_username

Hosts

192.168.40.33

No issues found.

7.2.8 Ensure no duplicate group names exist

Info

Although the groupadd program will not let you create a duplicate group name, it is possible for an administrator to manually edit the /etc/group file and change the group name.

If a group is assigned a duplicate group name, it will create and have access to files with the first GID for that group in /etc/group Effectively, the GID is shared, which is a security problem.

Solution

Based on the results of the audit script, establish unique names for the user groups. File group ownerships will automatically reflect the change as long as the groups have unique GIDs.

See Also

https://workbench.cisecurity.org/benchmarks/17074

3.5.5

References

800-171

800-171	3.5.6
800-53	IA-4d.
800-53R5	IA-4d.
CN-L3	8.1.4.1(a)
CSF	PR.AC-1
GDPR	32.1.b
HIPAA	164.306(a)(1)
HIPAA	164.312(a)(2)(i)
HIPAA	164.312(d)
ITSG-33	IA-4d.
LEVEL	1A
NESA	T5.5.2
NIAV2	AM14a
QCSC-V1	5.2.2
QCSC-V1	13.2
SWIFT-CSCV1	5

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: group_duplicate_name

Hosts

192.168.40.33

No issues found.

7.2.9 Ensure local interactive user home directories are configured

Info

The user home directory is space defined for the particular user to set local environment variables and to store personal files. While the system administrator can establish secure permissions for users' home directories, the users can easily override these. Users can be defined in /etc/passwd without a home directory or with a home directory that does not actually exist.

Since the user is accountable for files stored in the user home directory, the user must be the owner of the directory. Group or world-writable user home directories may enable malicious users to steal or modify other users' data or to gain another user's system privileges. If the user's home directory does not exist or is unassigned, the user will be placed in "/" and will not be able to write any files or have local environment variables set.

Solution

If a local interactive users' home directory is undefined and/or doesn't exist, follow local site policy and perform one of the following:

- Lock the user account
- Remove the user from the system
- create a directory for the user. If undefined, edit /etc/passwd and add the absolute path to the directory to the last field of the user.

Run the following script to:

- Remove excessive permissions from local interactive users home directories
- Update the home directory's owner

#!/usr/bin/env bash

```
{ l_output2=""
```

 $L_valid_shells = "^($(awk -F/ '$NF != "nologin" {print}' /etc/shells | sed -rn '/^//{s,/,\/,g;p}' | paste -s -d '|' -))$" unset a_uarr & amp; a_uarr =() # Clear and initialize array while read -r l_epu l_eph; do # Populate array with users and user home location a_uarr += ("$l_epu $l_eph") done <<< "$(awk -v pat = "$l_valid_shells" -F: '$(NF) ~ pat { print $1 " " $(NF-1) }' /etc/passwd)"$

<code>l_asize="\${#a_uarr[@]}" # Here if we want to look at number of users before proceeding ["\$l_asize " -gt "10000"] & amp; & amp; & echo -e "</code>

- ** INFO **
- \"\$l_asize\" Local interactive users found on the system
- This may be a long running process "

while read -r l_user l_home; do if [-d "\$l_home"]; then l_mask='0027'

l max="\$(printf '%o' \$((0777 & amp; ~\$1 mask)))"

while read -r | own | mode; do if ["\$| user" != "\$| own"]; then | output2="\$| output2

- User: \"\$l_user\" Home \"\$l_home\" is owned by: \"\$l_own\"
- changing ownership to: \"\$l_user\"

11

chown "\$l_user" "\$l_home"

fi if [\$((\$l_mode & amp; \$l_mask)) -gt 0]; then l_output2="\$l_output2"

- User: \"\$l_user\" Home \"\$l_home\" is mode: \"\$l_mode\" should be mode: \"\$l_max\" or more restrictive
- removing excess permissions "

chmod g-w,o-rwx "\$I_home"

fi done <<< "\$(stat -Lc '%U %#a' "\$I_home")"

else l_output2="\$l_output2

- User: \"\$l_user\" Home \"\$l_home\" Doesn't exist
- Please create a home in accordance with local site policy"

fi done <<< "\$(printf '%s ' "\${a_uarr[@]}")"

if [-z "\$l_output2"]; then # If l_output2 is empty, we pass echo -e " - No modification needed to local interactive users home directories"

else echo -e "

\$l_output2"

fi }

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	

CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1

(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 AC-3 ITSG-33 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1A NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 NESA T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2

7.2.1

7.2.2

3.2

PCI-DSSV4.0

PCI-DSSV4.0

QCSC-V1

QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$

Hosts

```
The command script with multiple lines returned:

- Audit Result:

** PASS **

- * Correctly configured *:

- All local interactive users:

- home directories exist

- own their home directory

- home directories are mode: "750" or more restrictive
```

7.2.10 Ensure local interactive user dot files access is configured

Info

While the system administrator can establish secure permissions for users' "dot" files, the users can easily override these.

- forward file specifies an email address to forward the user's mail to.
- rhost file provides the "remote authentication" database for the rcp, rlogin, and rsh commands and the rcmd() function. These files bypass the standard password-based user authentication mechanism. They specify remote hosts and users that are considered trusted (i.e. are allowed to access the local system without supplying a password)
- netrc file contains data for logging into a remote host or passing authentication to an API.
- bash history file keeps track of the user's commands.

User configuration files with excessive or incorrect access may enable malicious users to steal or modify other users' data or to gain another user's system privileges.

Solution

Making global modifications to users' files without alerting the user community can result in unexpected outages and unhappy users. Therefore, it is recommended that a monitoring policy be established to report user dot file permissions and determine the action to be taken in accordance with site policy.

The following script will:

- remove excessive permissions on dot files within interactive users' home directories
- change ownership of dot files within interactive users' home directories to the user
- change group ownership of dot files within interactive users' home directories to the user's primary group
- listforward andrhost files to be investigated and manually deleted

#!/usr/bin/env bash

 $\{ l_valid_shells = "^(s(awk -F/ 'sNF != "nologin" {print}' /etc/shells | sed -rn '/^//{s,/,\/,g;p}' | paste -s -d '|' -))$"$

unset a_uarr & amp; & a_uarr=() # Clear and initialize array while read -r l_epu l_eph; do # Populate array with users and user home location [[-n "\$l_epu" & amp; & amp; & amp; & amp; & amp; & a_uarr +=("\$l_epu \$l_eph") done <<< "\$(awk -v pat="\$l_valid_shells" -F: '\$(NF) ~ pat { print \$1 " " \$(NF-1) }' /etc/ passwd)"

l_asize="\${#a_uarr[@]}" # Here if we want to look at number of users before proceeding l_maxsize="1000"
Maximum number of local interactive users before warning (Default 1,000) ["\$l_asize " -gt "\$l_maxsize"]
&& echo -e "

- ** INFO **
- \"\$| asize\" Local interactive users found on the system
- This may be a long running check "

file_access_fix() { I_facout2=""

l_max="\$(printf '%o' \$((0777 & amp; ~\$l_mask)))"

if [\$((\$l_mode & amp; \$l_mask)) -gt 0]; then echo -e " - File: \"\$l_hdfile\" is mode: \"\$l_mode\" and should be mode: \"\$I max\" or more restrictive - Changing to mode \"\$I max\"" chmod "\$1 chp" "\$1 hdfile" fi if [[! "\$l_owner" =~ (\$l_user)]]; then echo -e " - File: \"\$l_hdfile\" owned by: \"\$l_owner\" and should be owned by \"\${I_user//|/ or }\"

- Changing ownership to \"\$l_user\"" chown "\$I user" "\$I hdfile"

fi if [[! "\$_gowner" =~ (\$_group)]]; then echo -e " - File: \"\$_hdfile\" group owned by: \"\$_gowner\" and should be group owned by \"\${|_group// | / or }\"

- Changing group ownership to \"\$l_group\""

chgrp "\$1 group" "\$1 hdfile"

fi } while read -r l_user l_home; do if [-d "\$l_home"]; then echo -e "

- Checking user: \"\$1 user\" home directory: \"\$1 home\""

l_group="\$(id -gn "\$l_user" | xargs)"

l_group="\${l_group// /|}"

while IFS= read -r -d \$'0' | hdfile; do while read -r | mode | owner | gowner; do case "\$(basename "\$| hdfile")" in .forward | .rhost) echo -e " - File: \"\$| hdfile\" exists

- Please investigate and manually delete \"\$I hdfile\""

```
.netrc ) | mask='0177'
I chp="u-x,go-rwx"
file_access_fix ;;
.bash_history ) l_mask='0177'
I_chp="u-x,go-rwx"
file_access_fix ;;
*) I mask='0133'
I chp="u-x,go-wx"
file access fix;;
```

esac done <<< "\$(stat -Lc '%#a %U %G' "\$I hdfile")"

done < <(find "\$I home" -xdev -type f -name '.*' -print0) fi done <<< "\$(printf '%s ' "\${a uarr[@]}")" unset a_uarr # Remove array }

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1

800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)
CN-L3	8.1.10.2(c)
CN-L3	8.1.10.6(a)
CN-L3	8.5.3.1
CN-L3	8.5.4.1(a)
CSCV7	14.6
CSCV8	3.3
CSF	PR.AC-4
CSF	PR.DS-5
CSF	PR.PT-2
CSF	PR.PT-3
GDPR	32.1.b
HIPAA	164.306(a)(1
HIPAA	164.312(a)(1
ISO/IEC-27001	A.6.1.2
ISO/IEC-27001	A.9.4.1
ISO/IEC-27001	A.9.4.5
ITSG-33	AC-3
ITSG-33	AC-5
ITSG-33	AC-6
ITSG-33	MP-2
ITSG-33	MP-2a.
LEVEL	1A
NESA	T1.3.2
NESA	T1.3.3
NESA	T1.4.1
NESA	T4.2.1
NESA	T5.1.1
NESA	T5.2.2

NESA	T5.4.1
NESA	T5.4.4
NESA	T5.4.5
NESA	T5.5.4
NESA	T5.6.1
NESA	T7.5.2
NESA	T7.5.3
NIAV2	AM1
NIAV2	AM3
NIAV2	AM23f
NIAV2	SS13c
NIAV2	SS15c
NIAV2	SS29
PCI-DSSV3.2.1	7.1.2
PCI-DSSV4.0	7.2.1
PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: multiple line script dont_echo_cmd: NO expect: (?i)^[\s]***[\s]*pass:?[\s]***\$ timeout: 7200

Hosts

```
The command script with multiple lines returned:

- Audit Result:
    ** PASS **
- * Correctly configured *:
- No local interactive users home directories contain:
- ".forward" or ".rhost" files
- ".netrc" files with incorrect access configured
- ".bash_history" files with incorrect access configured
- "dot" files with incorrect access configured
```

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit from CIS Ubuntu Linux 22.04 LTS Benchmark v2.0.0

See Also	
https://workbench.cisecurity.org/benchmarks/17074	
Audit File	
CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit	
Policy Value	
PASSED	
Hosts	
192.168.40.33	

1.2.1.1 Ensure GPG keys are configured

Info

Most package managers implement GPG key signing to verify package integrity during installation.

It is important to ensure that updates are obtained from a valid source to protect against spoofing that could lead to the inadvertent installation of malware on the system.

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Update your package manager GPG keys in accordance with site policy.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.11.2	
800-171	3.11.3	
800-171	3.14.1	
800-53	RA-5	
800-53	SI-2	
800-53	SI-2(2)	
800-53R5	RA-5	
800-53R5	SI-2	
800-53R5	SI-2(2)	
CN-L3	8.1.4.4(e)	
CN-L3	8.1.10.5(a)	
CN-L3	8.1.10.5(b)	
CN-L3	8.5.4.1(b)	
CN-L3	8.5.4.1(d)	
CN-L3	8.5.4.1(e)	
CSCV7	3.4	
CSCV7	3.5	
CSCV8	7.3	
CSCV8	7.4	
CSF	DE.CM-8	
CSF	DE.DP-4	
CSF	DE.DP-5	
CSF	ID.RA-1	

```
CSF
                            PR.IP-12
CSF
                            RS.CO-3
CSF
                            RS.MI-3
GDPR
                           32.1.b
GDPR
                           32.1.d
HIPAA
                           164.306(a)(1)
ISO/IEC-27001
                           A.12.6.1
ITSG-33
                           RA-5
ITSG-33
                           SI-2
ITSG-33
                           SI-2(2)
LEVEL
                            1M
NESA
                           M1.2.2
NESA
                           M5.4.1
NESA
                           T7.6.2
NESA
                           T7.7.1
NIAV2
                           PR9
PCI-DSSV3.2.1
                           6.1
PCI-DSSV3.2.1
                            6.2
PCI-DSSV4.0
                            6.3
PCI-DSSV4.0
                            6.3.1
PCI-DSSV4.0
                           6.3.3
QCSC-V1
                           3.2
QCSC-V1
                           5.2.1
QCSC-V1
                           5.2.2
QCSC-V1
                           5.2.3
QCSC-V1
                           8.2.1
QCSC-V1
                           10.2.1
QCSC-V1
                           11.2
SWIFT-CSCV1
                            2.2
SWIFT-CSCV1
                           2.7
```

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/apt-key list expect: ^Manual Review Required\$

Hosts

```
The command '/bin/apt-key list' returned:

Warning: apt-key is deprecated. Manage keyring files in trusted.gpg.d instead (see apt-key(8)).
```

```
/etc/apt/trusted.gpg
pub rsa4096 2016-06-30 [SC]
     4D1B B29D 63D9 8E42 2B21 13B1 9334 A25F 8507 EFA5
    [ unknown] Percona Development Team (Packaging key) <info@percona.com>
sub rsa4096 2016-06-30 [E]
/etc/apt/trusted.gpg.d/ubuntu-keyring-2012-cdimage.gpg
pub rsa4096 2012-05-11 [SC]
     8439 38DF 228D 22F7 B374 2BC0 D94A A3F0 EFE2 1092
            [ unknown] Ubuntu CD Image Automatic Signing Key (2012) <cdimage@ubuntu.com>
uid
/etc/apt/trusted.gpg.d/ubuntu-keyring-2018-archive.gpg
pub rsa4096 2018-09-17 [SC]
     F6EC B376 2474 EDA9 D21B 7022 8719 20D1 991B C93C
uid
            [ unknown] Ubuntu Archive Automatic Signing Key (2018) <ftpmaster@ubuntu.com>
/etc/apt/trusted.gpg.d/ubuntu-pro-esm-apps.gpg
pub rsa4096 2019-11-21 [SC]
    E8A4 43CE 3581 13D1 87BE E0E6 AB01 A101 DB53 907B
uid [ unknown] Ubuntu Apps Automatic Signing Key <esm@canonical.com>
sub rsa4096 2019-11-21 [E]
/etc/apt/trusted.gpg.d/ubuntu-pro-esm-infra.gpg
pub rsa4096 2019-04-17 [SC]
    56F7 650A 24C9 E9EC F87C 4D8D 4067 E403 13CB 4B13
uid
       [ unknown] Ubuntu Extended Security Maintenance Automatic Signing Key v2
<esm@canonical.com>
sub rsa4096 2019-04-17 [E]
```

1.2.1.2 Ensure package manager repositories are configured

Info

Systems need to have package manager repositories configured to ensure they receive the latest patches and updates.

If a system's package repositories are misconfigured important patches may not be identified or a rogue repository could introduce compromised software.

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Configure your package manager repositories according to site policy.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References		
800-171	3.11.2	
800-171	3.11.3	
800-171	3.14.1	
800-53	RA-5	
800-53	SI-2	
800-53	SI-2(2)	
800-53R5	RA-5	
800-53R5	SI-2	
800-53R5	SI-2(2)	
CN-L3	8.1.4.4(e)	
CN-L3	8.1.10.5(a)	
CN-L3	8.1.10.5(b)	
CN-L3	8.5.4.1(b)	
CN-L3	8.5.4.1(d)	
CN-L3	8.5.4.1(e)	
CSCV7	3.4	
CSCV7	3.5	
CSCV8	7.3	
CSCV8	7.4	
CSF	DE.CM-8	
CSF	DE.DP-4	
CSF	DE.DP-5	
CSF	ID.RA-1	

CSF PR.IP-12 CSF RS.CO-3 CSF RS.MI-3 **GDPR** 32.1.b **GDPR** 32.1.d HIPAA 164.306(a)(1) ISO/IEC-27001 A.12.6.1 ITSG-33 RA-5 ITSG-33 SI-2 ITSG-33 SI-2(2) LEVEL 1M M1.2.2 NESA NESA M5.4.1 **NESA** T7.6.2 **NESA** T7.7.1 NIAV2 PR9 PCI-DSSV3.2.1 6.1 PCI-DSSV3.2.1 6.2 PCI-DSSV4.0 6.3 PCI-DSSV4.0 6.3.1 PCI-DSSV4.0 6.3.3 QCSC-V1 3.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 8.2.1 QCSC-V1 10.2.1 QCSC-V1 11.2 SWIFT-CSCV1 2.2 SWIFT-CSCV1 2.7

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/apt-cache policy expect: ^Manual Review Required\$

Hosts

```
The command '/bin/apt-cache policy' returned :
Package files:
```

- 100 /var/lib/dpkg/status release a=now
- 510 https://esm.ubuntu.com/infra/ubuntu jammy-infra-updates/main amd64 Packages release v=22.04,o=UbuntuESM,a=jammy-infra-updates,n=jammy,l=UbuntuESM,c=main,b=amd64 origin esm.ubuntu.com
- 510 https://esm.ubuntu.com/infra/ubuntu jammy-infra-security/main amd64 Packages release v=22.04,o=UbuntuESM,a=jammy-infra-security,n=jammy,l=UbuntuESM,c=main,b=amd64 origin esm.ubuntu.com
- 510 https://esm.ubuntu.com/apps/ubuntu jammy-apps-updates/main amd64 Packages release v=22.04,o=UbuntuESMApps,a=jammy-apps-updates,n=jammy,l=UbuntuESMApps,c=main,b=amd64 origin esm.ubuntu.com
- 510 https://esm.ubuntu.com/apps/ubuntu jammy-apps-security/main amd64 Packages release v=22.04,o=UbuntuESMApps,a=jammy-apps-security,n=jammy,l=UbuntuESMApps,c=main,b=amd64 origin esm.ubuntu.com
- 500 http://repo.percona.com/tools/apt jammy/main amd64 Packages release v=1.0,o=Percona Development Team,n=jammy,l=percona,c=main,b=amd64 origin repo.percona.com
- 500 http://repo.percona.com/telemetry/apt jammy/main amd64 Packages release v=1.0,o=Percona Development Team,a=stable,n=jammy,l=percona,c=main,b=amd64 origin repo.percona.com
- 500 http://repo.percona.com/prel/apt jammy/main amd64 Packages release v=1.0,o=Percona Development Team,n=jammy,l=percona,c=main,b=amd64 origin repo.percona.com
- 500 https://deb.nodesource.com/node_18.x nodistro/main amd64 Packages release o=. nodistro,a=nodistro,n=nodistro,l=. nodistro,c=main,b=amd64 origin deb.nodesource.com
- 500 http://nginx.org/packages/ubuntu jammy/nginx amd64 Packages release o=nginx,a=stable,n=jammy,l=nginx,c=nginx,b=amd64 origin nginx.org
- 500 https://download.docker.com/linux/ubuntu jammy/stable amd64 Packages release o=Docker,a=jammy,l=Docker CE,c=stable,b=amd64 origin download.docker.com
- 500 http://in.archive.ubuntu.com/ubuntu jammy-security/multiverse amd64 Packages release v=22.04,o=Ubuntu [...]

2.1.22 Ensure only approved services are listening on a network interface

Info

A network port is identified by its number, the associated IP address, and the type of the communication protocol such as TCP or UDP.

A listening port is a network port on which an application or process listens on, acting as a communication endpoint.

Each listening port can be open or closed (filtered) using a firewall. In general terms, an open port is a network port that accepts incoming packets from remote locations.

Services listening on the system pose a potential risk as an attack vector. These services should be reviewed, and if not required, the service should be stopped, and the package containing the service should be removed. If required packages have a dependency, the service should be stopped and masked to reduce the attack surface of the system.

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Run the following commands to stop the service and remove the package containing the service:

systemctl stop <service_name>.socket <service_name>.service # apt purge <package_name>

- OR - If required packages have a dependency:

Run the following commands to stop and mask the service and socket:

systemctl stop <service_name>.socket <service_name>.service # systemctl mask <service_name>.socket <service name>.service

Note: replace <service_name> with the appropriate service name.

Impact:

There may be packages that are dependent on the service's package. If the service's package is removed, these dependent packages will be removed as well. Before removing the service's package, review any dependent packages to determine if they are required on the system.

- IF - a dependent package is required: stop and mask the <service_name>.socket and <service_name>.service leaving the service's package installed.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6

800-171 3.4.7 800-53 CM-6 800-53 CM-7 800-53R5 CM-6 800-53R5 CM-7 CSCV7 9.2 CSCV8 4.8 CSF PR.IP-1 CSF PR.PT-3 **GDPR** 32.1.b HIPAA

164.306(a)(1)

ITSG-33 CM-6 ITSG-33 CM-7 **LEVEL** 1M NIAV2 SS15a PCI-DSSV3.2.1 2.2.2 SWIFT-CSCV1 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/ss -plntu expect: ^Manual Review Required\$

Hosts

```
The command '/bin/ss -plntu' returned :
Netid State Recv-Q Send-Q Local Address:Port Peer Address:PortProcess
                 udp UNCONN 0 0
resolve",pid=1077,fd=13))
tcp LISTEN 0 100
                    127.0.0.1:25
                                  0.0.0.0:*
                                           users:(("master",pid=3538,fd=13))
tcp LISTEN 0
          11000
                  proxy",pid=3747437,fd=7))
                                 0.0.0.0:* users:(("systemd-r [...]
tcp LISTEN 0 4096 127.0.0.53%lo:53
```

3.1.1 Ensure IPv6 status is identified

Info

Internet Protocol Version 6 (IPv6) is the most recent version of Internet Protocol (IP). It's designed to supply IP addressing and additional security to support the predicted growth of connected devices. IPv6 is based on 128-bit addressing and can support 340 undecillion, which is 340 trillion3 addresses.

Features of IPv6

- Hierarchical addressing and routing infrastructure
- Stateful and Stateless configuration
- Support for quality of service (QoS)
- An ideal protocol for neighboring node interaction

IETF RFC 4038 recommends that applications are built with an assumption of dual stack. It is recommended that IPv6 be enabled and configured in accordance with Benchmark recommendations.

-IF- dual stack and IPv6 are not used in your environment, IPv6 may be disabled to reduce the attack surface of the system, and recommendations pertaining to IPv6 can be skipped.

Note: It is recommended that IPv6 be enabled and configured unless this is against local site policy

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Enable or disable IPv6 in accordance with system requirements and local site policy

Impact:

IETF RFC 4038 recommends that applications are built with an assumption of dual stack.

When enabled, IPv6 will require additional configuration to reduce risk to the system.

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.4.2
800-171	3.4.6
800-171	3.4.7
800-53	CM-6
800-53	CM-7
800-53R5	CM-6
800-53R5	CM-7
CSCV7	9.2

 CSCV8
 4.8

 CSF
 PR.IP-1

 CSF
 PR.PT-3

 GDPR
 32.1.b

HIPAA 164.306(a)(1)

 ITSG-33
 CM-6

 ITSG-33
 CM-7

 LEVEL
 1M

 NIAV2
 SS15a

 PCI-DSSV3.2.1
 2.2.2

 SWIFT-CSCV1
 2.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /bin/grep -Pqs '^\h*0\b' /sys/module/ipv6/parameters/disable && echo -e "

- IPv6 is enabled " || echo -e "
- IPv6 is not enabled "

expect: Manual Review Required

Hosts

192.168.40.33

The command '/bin/grep -Pqs '^\h*0\b' /sys/module/ipv6/parameters/disable && echo -e "\n - IPv6 is enabled\n" || echo -e "\n - IPv6 is not enabled\n"' returned :

- IPv6 is enabled

4.1.5 Ensure ufw outbound connections are configured

Info

Configure the firewall rules for new outbound connections.

Note:

- Changing firewall settings while connected over network can result in being locked out of the system.
- Unlike iptables, when a new outbound rule is added, ufw automatically takes care of associated established connections, so no rules for the latter kind are required.

If rules are not in place for new outbound connections all packets will be dropped by the default policy preventing network usage.

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Configure ufw in accordance with site policy. The following commands will implement a policy to allow all outbound connections on all interfaces:

ufw allow out on all

See Also

https://workbench.cisecurity.org/benchmarks/17074

800-171	3.13.1
800-171	3.13.5
800-171	3.13.6
800-53	CA-9
800-53	SC-7
800-53	SC-7(5)
800-53R5	CA-9
800-53R5	SC-7
800-53R5	SC-7(5)
CN-L3	7.1.2.2(c)
CN-L3	8.1.10.6(j)
CSCV7	9.4
CSCV8	4.4
CSCV8	4.5
CSF	DE.CM-1
CSF	ID.AM-3
CSF	PR.AC-5

CSF PR.DS-5 CSF PR.PT-4 **GDPR** 32.1.b **GDPR** 32.1.d **GDPR** 32.2 HIPAA 164.306(a)(1) ISO/IEC-27001 A.13.1.3 ITSG-33 SC-7 ITSG-33 SC-7(5) LEVEL 1M NFSA T4.5.4 NIAV2 GS1 NIAV2 GS2a NIAV2 GS2b NIAV2 GS7b NIAV2 NS25 PCI-DSSV3.2.1 1.1 PCI-DSSV3.2.1 1.2 PCI-DSSV3.2.1 1.2.1 PCI-DSSV3.2.1 1.3 PCI-DSSV4.0 1.2.1 PCI-DSSV4.0 1.4.1 QCSC-V1 4.2 QCSC-V1 5.2.1 QCSC-V1 5.2.2 QCSC-V1 5.2.3 QCSC-V1 6.2 QCSC-V1 8.2.1 SWIFT-CSCV1 2.1 TBA-FIISB 43.1

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

cmd: /sbin/ufw status numbered expect: ^Manual Review Required\$

Hosts

192.168.40.33

The command '/sbin/ufw status numbered' returned :

Status: active

6.2.1.1.2 Ensure journald log file access is configured

Info

Journald will create logfiles that do not already exist on the system. This setting controls what permissions will be applied to these newly created files.

It is important to ensure that log files have the correct permissions to ensure that sensitive data is archived and protected.

NOTE: Nessus has not performed this check. Please review the benchmark to ensure target compliance.

Solution

If the default configuration is not appropriate for the site specific requirements, copy /usr/lib/tmpfiles.d/ systemd.conf to /etc/tmpfiles.d/systemd.conf and modify as required. Requirements is either 0640 or site policy if that is less restrictive.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.1	
800-171	3.1.4	
800-171	3.1.5	
800-171	3.8.1	
800-171	3.8.2	
800-171	3.8.3	
800-53	AC-3	
800-53	AC-5	
800-53	AC-6	
800-53	MP-2	
800-53R5	AC-3	
800-53R5	AC-5	
800-53R5	AC-6	
800-53R5	MP-2	
CN-L3	7.1.3.2(b)	
CN-L3	7.1.3.2(g)	
CN-L3	8.1.4.2(d)	
CN-L3	8.1.4.2(f)	
CN-L3	8.1.4.11(b)	
CN-L3	8.1.10.2(c)	
CN-L3	8.1.10.6(a)	
CN-L3	8.5.3.1	

CN-L3 8.5.4.1(a) CSCV7 14.6 CSCV8 3.3 PR.AC-4 CSF CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b

HIPAA 164.306(a)(1) HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 AC-6 ITSG-33 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1M NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 T5.4.5 NESA T5.5.4 T5.6.1 T7.5.2

NESA NESA NESA NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29 PCI-DSSV3.2.1 7.1.2 PCI-DSSV4.0 7.2.1 PCI-DSSV4.0 7.2.2

QCSC-V1

QCSC-V1

3.2

5.2.2

QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

WARNING

Hosts

192.168.40.33

6.2.1.1.3 Ensure journald log file rotation is configured

Info

Journald includes the capability of rotating log files regularly to avoid filling up the system with logs or making the logs unmanageably large. The file /etc/systemd/journald.conf is the configuration file used to specify how logs generated by Journald should be rotated.

By keeping the log files smaller and more manageable, a system administrator can easily archive these files to another system and spend less time looking through inordinately large log files.

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Edit /etc/systemd/journald.conf or a file ending inconf the /etc/systemd/journald.conf.d/ directory. Set the following parameters in the [Journal] section to ensure logs are rotated according to site policy. The settings should be carefully understood as there are specific edge cases and prioritization of parameters.

The specific parameters for log rotation are:

SystemMaxUse= SystemKeepFree= RuntimeMaxUse= RuntimeKeepFree= MaxFileSec=

Note: If these settings appear in a canonically later file, or later in the same file, the setting will be overwritten

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.3.1
800-171	3.3.2
800-171	3.3.6
800-53	AU-2
800-53	AU-7
800-53	AU-12
800-53R5	AU-2
800-53R5	AU-7
800-53R5	AU-12
CN-L3	7.1.2.3(c)
CN-L3	8.1.4.3(a)
CSCV7	6.2
CSCV7	6.3
CSCV8	8.2
CSF	DE.CM-1

CSF DE.CM-3 CSF DE.CM-7 CSF PR.PT-1 CSF RS.AN-3 **GDPR** 32.1.b HIPAA 164.306(a)(1) HIPAA 164.312(b) ITSG-33 AU-2 ITSG-33 AU-7 ITSG-33 AU-12 I FVFI 1M NESA M1.2.2 NESA M5.5.1 NIAV2 AM7 NIAV2 AM11a NIAV2 AM11b

NIAV2 AM11c NIAV2 AM11d NIAV2 AM11e NIAV2 **SS30** NIAV2 VL8 PCI-DSSV3.2.1 10.1 QCSC-V1 3.2 QCSC-V1 6.2 QCSC-V1 8.2.1 QCSC-V1 10.2.1 11.2 QCSC-V1 QCSC-V1 13.2 SWIFT-CSCV1 6.4

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

expect: ^Manual Review Required\$ file: /etc/systemd/journald.conf /etc/systemd/journald.conf.d/* min_occurrences: 1 regex: ^[\s]*(SystemMaxUse|SystemKeepFree|RuntimeMaxUse|RuntimeKeepFree|MaxFileSec)[\s]*= required: NO

Hosts

192.168.40.33

No matching files were found

Less than 1 matches of regex found

7.1.13 Ensure SUID and SGID files are reviewed

Info

The owner of a file can set the file's permissions to run with the owner's or group's permissions, even if the user running the program is not the owner or a member of the group. The most common reason for a SUID or SGID program is to enable users to perform functions (such as changing their password) that require root privileges.

There are valid reasons for SUID and SGID programs, but it is important to identify and review such programs to ensure they are legitimate. Review the files returned by the action in the audit section and check to see if system binaries have a different checksum than what from the package. This is an indication that the binary may have been replaced.

NOTE: Nessus has provided the target output to assist in reviewing the benchmark to ensure target compliance.

Solution

Ensure that no rogue SUID or SGID programs have been introduced into the system. Review the files returned by the action in the Audit section and confirm the integrity of these binaries.

See Also

https://workbench.cisecurity.org/benchmarks/17074

References

800-171	3.1.1
800-171	3.1.4
800-171	3.1.5
800-171	3.8.1
800-171	3.8.2
800-171	3.8.3
800-53	AC-3
800-53	AC-5
800-53	AC-6
800-53	MP-2
800-53R5	AC-3
800-53R5	AC-5
800-53R5	AC-6
800-53R5	MP-2
CN-L3	7.1.3.2(b)
CN-L3	7.1.3.2(g)
CN-L3	8.1.4.2(d)
CN-L3	8.1.4.2(f)
CN-L3	8.1.4.11(b)

CN-L3 8.1.10.2(c) CN-L3 8.1.10.6(a) CN-L3 8.5.3.1 8.5.4.1(a) CN-L3 CSCV7 14.6 CSCV8 3.3 CSF PR.AC-4 CSF PR.DS-5 CSF PR.PT-2 CSF PR.PT-3 **GDPR** 32.1.b HIPAA 164.306(a)(1)

HIPAA 164.312(a)(1)

ISO/IEC-27001 A.6.1.2 ISO/IEC-27001 A.9.4.1 ISO/IEC-27001 A.9.4.5 ITSG-33 AC-3 ITSG-33 AC-5 ITSG-33 AC-6 ITSG-33 MP-2 ITSG-33 MP-2a. LEVEL 1M NESA T1.3.2 NESA T1.3.3 NESA T1.4.1 NESA T4.2.1 NESA T5.1.1 NESA T5.2.2 NESA T5.4.1 NESA T5.4.4 **NESA** T5.4.5 NESA T5.5.4 NESA T5.6.1 NESA T7.5.2 NESA T7.5.3 NIAV2 AM1 NIAV2 AM3 NIAV2 AM23f NIAV2 SS13c NIAV2 SS15c NIAV2 SS29

7.1.2

7.2.1

PCI-DSSV3.2.1

PCI-DSSV4.0

PCI-DSSV4.0	7.2.2
QCSC-V1	3.2
QCSC-V1	5.2.2
QCSC-V1	6.2
QCSC-V1	13.2
SWIFT-CSCV1	5.1
TBA-FIISB	31.1
TBA-FIISB	31.4.2
TBA-FIISB	31.4.3

Audit File

CIS_Ubuntu_Linux_22.04_LTS_v2.0.0_L1_Server.audit

Policy Value

name: find_suid_sgid_files timeout: 7200

Hosts

192.168.40.33

```
The following 73 files are SUID or SGID:
  /usr/sbin/pam_extrausers_chkpwd
     owner: root, group: shadow, permissions: 2755
  /usr/sbin/postdrop
    owner: root, group: postdrop, permissions: 2555
  /usr/sbin/unix_chkpwd
     owner: root, group: shadow, permissions: 2755
  /usr/sbin/postqueue
     owner: root, group: postdrop, permissions: 2555
  /usr/libexec/ssh-keysign
     owner: root, group: root, permissions: 4711
  /usr/libexec/polkit-agent-helper-1
     owner: root, group: root, permissions: 4755
  /usr/lib/openssh/ssh-keysign
     owner: root, group: root, permissions: 4755
  /usr/lib/snapd/snap-confine
     owner: root, group: root, permissions: 4755
  /usr/lib/dbus-1.0/dbus-daemon-launch-helper
     owner: root, group: messagebus, permissions: 4754
  /usr/lib/x86_64-linux-gnu/utempter/utempter
    owner: root, group: utmp, permissions: 2755
  /usr/bin/passwd
     owner: root, group: root, permissions: 4755
  /usr/bin/newgrp
    owner: root, group: root, permissions: 4755
```

```
/usr/bin/chsh
    owner: root, group: root, permissions: 4755
 /usr/bin/su
    owner: root, group: root, permissions: 4755
 /usr/bin/chage
    owner: root, group: shadow, permissions: 2755
 /usr/bin/umount
    owner: root, group: root, permissions: 4755
 /usr/bin/crontab
    owner: root, group: crontab, permissions: 2755
 /usr/bin/sudo
    owner: root, group: root, permissions: 4755
 /usr/bin/gpasswd
    owner: root, group: root, permissions: 4755
 /usr/bin/fusermount3
    owner: root, group: root, permissions: 4755
 /usr/bin/expiry
    owner: root, group: shadow, permissions: 2755
 /usr/bin/mount
    owner: root, group: root, permissions: 4755
    owner: root, group: root, permissions: 4755
 /usr/bin/dotlockfile
    owner: root, group: mail, permissions: 2755
 /usr/bin/pkexec
    owner: root, group: root, permissions: 4755
 usr/sbin/pam_extrausers_chkpwd
    owner: root [...]
```


Suggested Remediations

Suggested Remediations 770