Homework 3

Mark Petersen

Exercise 1. Let $F: \mathbb{R}^{n+1} \to \mathbb{R}$ be C^r for some $r \geq 1$. Assume that $c \in \mathbb{R}$ such that $df_p \neq 0$ for all $p \in F^{-1}(c)$. Prove that $F^{-1}(c)$ is a smooth C^r manifold.

Proof: We assume directly that $F: \mathbb{R}^{n+1} \to \mathbb{R}$ be C^r for some $r \geq 1$. We assume also that for $c \in \mathbb{R}$, $df_p \neq 0$ for all $p \in F^{-1}(c)$. We note that \mathbb{R}^{n+1} and \mathbb{R}^n are smooth manifolds that have charts $(\mathbb{R}^{n+1}, \varphi)$ and (\mathbb{R}, ψ) . Since the codomain of F has rank 1, df_p has rank 1 for all $p \in F^{-1}(c)$. According to the implicit function theorem, for every p = (x, y), where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$, there exists open neighborhoods V_x and V_y , where $x \in V_x$ and $y \in V_y$, and a smooth map $f_{V_x}: V_x \to V_y$ such that for every $x \in V_x$ we have $F(x, f_{V_x}(x)) = c$. We also note that since F is smooth the preimage is a Hausdorff and 2nd countable.

We can form charts on $F^{-1}(c)$ at p using the charts on \mathbb{R}^{n+1} . By restricting the domain of φ do $V_x \times V_y$ we get $\varphi|_{V_x \times V_y}(x,y) = (x,f_{V_x}(x))$. With the domain restricted to V_x , the y component is known from the function f_{V_x} . Let $\pi_{V_x}: V_x \times V_y \to V_x$ be the projection function such that $\pi_{V_x} \circ \varphi|_{V_x \times V_y}(x,y) = x$ whose inverse is $\pi_{V_x}^{-1}: V_x \to V_x \times V_y$ defined as

$$\pi_{V_{x}}^{-1} = (x, f_{V_{x}}(x)).$$

Since f_{V_x} is smooth, the projection π_{V_x} and its inverse are smooth maps. We can define new charts on V_x which are $(V_x, \tilde{\varphi}_{V_x})$ with $\tilde{\varphi}_{V_x} = \varphi|_{V_x}$ where $\varphi|_{V_x}$ is the part of φ that only operates on V_x . Since $\varphi|_{V_x \times V_y}$ is smooth, the chart $(V_x, \tilde{\varphi}_{V_x})$ is smooth.

Now suppose that we have two charts $(V_x, \tilde{\varphi}_{V_x})$ and $(U_x, \tilde{\varphi}_{U_x})$ where $p \in V_x \times V_y$, $p \in U_x \times U_u$, $(V_x \times V_y) \cap (U_x \times U_y) \neq \emptyset$ and smooth maps f_{V_x} and f_{U_x} such that every $x \in V_x$ we have $F(x, f_{V_x}(x)) = c$ and for every $x \in U_x$ we have $F(x, f_{U_x}(x)) = c$. The existence of the smooth functions f_{V_x} and f_{U_x} are guaranteed by the implicit function theorem. We can construct the map between charts $\Phi: \tilde{\varphi}_{V_x}(V_x \cap U_x) \to \tilde{\varphi}_{U_x}(V_x \cap U_x)$ defined as

$$\Phi = \tilde{\varphi}_{V_x} \circ \pi_{V_x} \circ \pi_{U_x}^{-1} \circ \tilde{\varphi}_{U_x}^{-1}$$

which is smooth since f_{V_x} and f_{U_x} are smooth. Therefore, the preimage of F is Hausdorff, 2nd countable and has compatible smooth C^r charts; hence, it is a C^r manifold.

Exercise 2. Let M be a k-dimensional manifold and TS be the set of all points $(x, v) \in TM$ such that |v| = 1. Prove that S(M) is a 2k - 1-dimensional subbundle of TM called the sphere bundle of M.

Proof: We suppose directly that M is a k-dimensional smooth manifold and TS is the set previously described. Let $v=(v_{1:k^-},v_k)$ where $v_{1:k^-}=(v_1,\ldots,v_{k-1})$ and let $\Phi:\mathbb{R}^{k-1}\times\mathbb{R}\to\mathbb{R}$ be a smooth map defined as $\Phi(v)=\sqrt{1-\sum_{j=1}^{k-1}v_j^2}$. The partial derivative is

$$\frac{\partial \Phi}{\partial v} = \alpha \begin{bmatrix} -v_1 & \cdots & -v_{k-1} & 0 \end{bmatrix},$$

with $\alpha = \left(1 - \sum_{j=1}^{k-1} v_j^2\right)^{\frac{-1}{2}}$. Under the constraint |v| = 1, the rank of $\frac{\partial \Phi}{\partial v}$ is always 1. Therefore, according to the implicit function theorem, there exists a neighborhood V_0 containing $v_{1:k^-}$, a neighborhood V_1 containing v_k and a smooth map $f: V_0 \to V_1$ with constant rank 1. According to exercise 1, we then know that TS is a manifold. Let $F: TS \to TM$ defined as $F(x, v_{1:k^-}) = F\left(x, (v_{1:k^-}, f\left(v_{1:k^-}, f\left(v_{1:$

$$N = \{F(x, (v_{1:k^-}, 1)) : (x, v_{1:k^-}) \in TS\}.$$

Note that N inherits a subspace topology from TM; therefore, for every open set $U \in TM$ the set $N \cap U$ is open in N. Let $V \times \{1\}$ be open in N, then $F^{-1}(V \times \{1\}) = V$ which is open in TS; hence, F is also a homeomorphism. Therefore, F is an embedding.

Exercise 3. Let $G: \mathbb{R}^2 \to \mathbb{R}^4$ be given by

$$G\left(x,y\right) = \left(\left(r\cos y + 1\right)\cos x, \left(r\cos y + 1\right)\sin x, r\sin y\cos\frac{x}{2}, r\sin y\sin\frac{x}{2}\right).$$

Show this gives an embedding of the Klein bottle.

Proof: Let $M = [0, 2\pi] \times [0, 2\pi] \subsetneq \mathbb{R}^2$ be the subset of \mathbb{R}^2 on which the Klein bottle is defined. That is every $(0, y) \in M$ is identified with $(2\pi, y)$ and every $(x, 2\pi) \in M$ is identified with $(2\pi - x, 0)$. We suppose by contradiction that $G|_M$ is not injective, then there exists a $a = (x_1, y_1)$, $b = (x_2, y_2) \in M$ such that $a \neq b$ and G(a) = G(b).

$$G(a) = \left((r\cos y_1 + 1)\cos x_1, (r\cos y_1 + 1)\sin x_1, r\sin y_1\cos \frac{x_1}{2}, r\sin y_1\sin \frac{x_1}{2} \right)$$

and

$$G(b) = \left((r\cos y_2 + 1)\cos x_2, (r\cos y_2 + 1)\sin x_2, r\sin y_2\cos\frac{x_2}{2}, r\sin y_2\sin\frac{x_2}{2} \right).$$

By assumption

$$(r\cos y_1 + 1)\cos x_1 = (r\cos y_2 + 1)\cos x_2$$

$$(r\cos y_1 + 1)\sin x_1 = (r\cos y_2 + 1)\sin x_2$$

$$r\sin y_1\cos\frac{x_1}{2} = r\sin y_2\cos\frac{x_2}{2}$$

$$r\sin y_1\sin\frac{x_1}{2} = r\sin y_2\sin\frac{x_2}{2}.$$

Note that the last term divided by the third term is

$$\frac{r\sin y_1 \sin \frac{x_1}{2}}{r\sin y_1 \cos \frac{x_1}{2}} = \frac{r\sin y_2 \sin \frac{x_2}{2}}{r\sin y_2 \cos \frac{x_2}{2}}$$

which simplifies to

$$\tan\left(\frac{x_1}{2}\right) = \tan\left(\frac{x_2}{2}\right),\,$$

which can only be possible if $x_1 = x_2$. Thus $\cos x_1 = \cos (x_2)$. Rearranging the first term and substituting in $\alpha = \cos (x_1) = \cos (x_2)$ we get that

$$(r\cos y_1 + 1)\alpha = (r\cos y_2 + 1)\alpha$$

which is simplified to

$$\cos y_1 = \cos y_2,$$

which con only be possible if $y_1 = y_2$. This is a contradiction; hence, $G|_M$ is injective.

Next we take the partial derivative of G

$$\frac{\partial G}{\partial \left(x,y\right)} = \begin{bmatrix} -\left(r\cos y + 1\right)\sin x & -r\sin y\cos x\\ \left(r\cos y + 1\right)\cos x & -r\sin y\sin x\\ -\frac{1}{2}r\sin y\sin\frac{x}{2} & r\cos y\cos\frac{x}{2}\\ \frac{1}{2}r\sin y\cos\frac{x}{2} & r\cos y\sin\frac{x}{2} \end{bmatrix}.$$

For every $p \in M$, the partial derivative of G is rank 2; hence, G gives an immersion of the Klein bottle. Since $G|_M$ is a smooth injective immersion whose domain is compact, $G|_M$ is an embedding; therefore, G is an embedding of the Klein bottle.

Exercise 4. Show that $f: S^1 \to \mathbb{R}$ given by $f(t) = (\sin(2t)\cos(t), \sin(2t)\sin(t))$ is an immersion. Explain why $f(S^1)$ is not a submanifold of \mathbb{R}^2 .

Proof: The partial derivative of f is

$$\frac{\partial f}{\partial t} = \begin{bmatrix} 2\cos\left(2t\right)\cos\left(t\right) - \sin\left(2t\right)\sin\left(t\right) & 2\cos\left(2t\right)\sin\left(t\right) + \sin\left(2t\right)\cos\left(t\right) \end{bmatrix},$$

which can be simplified to

$$\frac{\partial f}{\partial t} = \begin{bmatrix} 6\cos^3(t) - 4\cos(t) & 2\cos(2t)\sin(t) + \sin(2t)\cos(t) \end{bmatrix}$$

For the partial derivative to be injective we need it to be rank 1 for all $t \in S^1$. Essentially, we must show that $\frac{\partial f}{\partial t} \neq 0$ for all $t \in S^1$. We suppose by contradiction that there exists a $t \in S^1$ such that $\frac{\partial f}{\partial t} = 0$, then there exists a $t \in S^1$ such that the first and second terms are zero. Setting the first term to zero and solving for t yields

$$t = \pm \arccos\left(\sqrt{\frac{2}{3}}\right),$$

plugging these values of t into the second term yields ≈ 0.6367 and ≈ 0.817 which are not zero; thus the partial derivative of f has rank 1 for all values of $t \in S^1$; hence f is an immersion. However, at $t = k\frac{\pi}{2}$ where $k \in \mathbb{Z}$, f(t) = 0 so it is not injective and cannot be a homeomorphism. Thus f is not an embedding which means that $f(S^1)$ is not a submanifold of \mathbb{R}^2 .