waves of both these longitudinal studies are underway to assess the predictive power of plasma biomarkers for cognitive decline from MCI to AD.

P1-242

PLASMA BETA-AMYLOID CORRELATES WITH COGNITION AND BRAIN VOLUMETRICS IN MILD COGNITIVE IMPAIRMENT

Anne Poljak¹, John Crawford², Melissa Slavin³, Nicole Kochan⁴, Julian Trollor⁵, Wei Wen⁶, Karen Mather⁵, Arezoo Assareh⁷, George A. Smythe⁸, Henry Brodaty⁹, Pek C. Ng¹⁰, Perminder Sachdev¹¹, ¹University of New South Wales, Sydney, Australia; ²Centre for Healthy Brain Ageing, Sydney, Australia; ³University of New South Wales, Sydney, Australia; ⁴Centre for Healthy Brain Ageing, School of Psychiatry UNSW Medicine, Sydney, Australia; ⁵University of New South Wales, Randwick, Australia; ⁶Prince of Wales Hospital, Randwick-Sydney, Australia; ⁷Neuroscience Research Australia, Sydney, Australia; ⁸School of Medical Sciences, Faculty of Medicine, Sydney, Australia; ⁹Dementia Collaborative Research Centre, Sydney, Australia; ¹⁰Bioanalytical Mass Spectrometry Facility, Sydney, Australia; ¹¹University of New South Wales, Randwick-Sydney, Australia. Contact e-mail: a.poljak@unsw.edu.au

Background: A β peptides are hallmark features of Alzheimer's disease (AD), and their potential for use as biomarkers of disease onset, progression, response to treatment or population based screening is of considerable interest. While $A\beta$ expression in CSF over the course of AD is reasonably well established, levels in plasma and their relevance to cognitive and brain volumetric changes are less well defined, particularly at prodromal stages such as amnestic mild cognitive impairment (aMCI). We report plasma A β 1-40 and A β 1-42 levels in a population based cohort study, to determine whether: (1) plasma $A\beta$ peptide levels correlate cross-sectionally with brain volumetrics and cognitive performance in elderly individuals with and without aMCI, (2) there is a differential effect of plasma $A\beta$ peptide levels in APOE e 4 carrier vs non-carrier subjects. Methods: Subjects with aMCI (n = 89) and controls (n = 126) were drawn from wave 1 of the Sydney Memory and Aging Study (MAS), a population based study of nondemented 70-90 year old adults. AD patients (n=39) were included from a memory disorders clinic. MAS participants underwent brain MRI scans and were assessed on 10 cognitive tests. Plasma levels of A\beta 1-40 and 1-42 were quantified using sandwich ELISA and comparisons corrected for age, sex, education and APOE e 4 carrier status. Results: Baseline plasma levels of A β 1-42 and A β 1-42/1-40 ratio were reduced in aMCI and AD, and were positively associated with cognitive performance, total grey matter volume and hippocampal volume and negatively with white matter hyperintensity volume. Baseline levels of A β 1-40 were also lower in aMCI and AD but significant associations with general cognition and brain volumetric measures only appear in APOE e 4 carriers. By contrast the effects of $A\beta$ 1-42 are predominantly expressed in non-carriers of the e 4 allele. **Con**clusions: These data show that plasma A β 1-42 and the A β 1-42/A β 1-40 ratio reflect the trends predicted by the $A\beta$ sink model of pathology, and may serve as blood biomarkers of AD at a pre-dementia stage. Significant cognitive and brain volumetric associations were observed with A β 1-40 in APOE e 4 carriers and with A β 1-42 in APOE e 4 non-carriers.

P1-243

THE COMPARISON OF OLIGOMERIC BETA-AMYLOID AND TOTAL BETA-AMYLOID IN PEOPLE WITH ALZHEIMER'S DISEASE AND COGNITIVELY NORMAL INDIVIDUALS

Seong Soo A. An¹, Ji Sun Yu², Kuntaek Lim², Byoung Sub Lee², Gwang Je Kim², Sung Min Kang², Young Ho Park³, Jae-Won Jang⁴, Young Chul Yoon⁵, Sang Yun Kim⁶, ¹Gachon University, Department of BioNano Technology, Sungnam-si, South Korea; ²PeopleBio Inc., Seoul, South Korea; ³Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea; ⁴Seoul National University Bundang Hospital, Sungnam, South Korea; ⁵Chungang University School of Medicine, Seoul, South Korea; ⁶Seoul National University School of Medicine, Seongnam-si, South Korea. Contact e-mail: seong.an@gmail.com

Background: Amyloid- β (A β) peptide is the main component of amyloid plaques that is recognized as a neuropathological hallmark of Alzheimer's disease (AD). Studies on total A β in plasma as biomarkers for AD have been contradictory. Here, we have compared level of A β oligomers as major toxic species of AD, with total A β . **Methods:** For evaluation of A β oligomers, Multimer Detection System (MDS) was used. In MDS, epitope-overlapping N-terminal A β antibodies were used for capturing and detecting of antigen. Using this system, we tested A β oligomers in samples from 20 patients with clinically diagnosed AD and 20 healthy normal. For quantitation of total $A\beta$ in samples, a commercially available kit was used. **Results:** We confirmed A β oligomersdifferentiated AD and healthy normal clearly in comparison to total A β in the samples. On the other hand, data did not show clear difference in concentrations of total A β between healthy normal group and AD patients. Conclusions: In comparison of total A β levels an $dA\beta$ oligomerslevels between AD patients and healthy normal, our findings show that the level of A β oligomersis more effective in differentiation of AD patients from healthy normal, possibility of serving as a more powerful biomarker for AD diagnosis than total A β in samples.

P1-244

VALIDATION OF BETA-AMYLOID TEST AS A RELIABLE TOOL FOR QUANTIFYING BETA-AMYLOID 1-40 AND BETA-AMYLOID 1-42 IN BLOOD

Virginia Pérez¹, Noelia Fandos², **Pedro Pesini²**, Manuel Sarasa², ¹Araclon Biotech, Logroño, Spain; ²Araclon Biotech Ltd., Zaragoza, Spain. Contact e-mail: pedropesini@araclon.com

Background: Owing to the urgent requirement of easily accessible biomarkers for a wide-population screening of people at risk of suffering Alzheimer's disease (AD), there is increasing interest in blood AD biomarkers. The aim of this study was to validate two ELISA tests, ABtest40 and ABtest42, as reliable and sensitive tools for the quantification of A β 1-40 and $A\beta$ 1-42 at levels as low as those present in blood. **Methods:** Inter and intra-assay precision was evaluated by repeated testing of 3 samples covering the whole range of quantification within 3 independent runs. Sensitivity of the assay was assessed by the estimation of the LLOQ (lower limit of quantification) and specificity was established by confirming absence of cross-reactivity with other $A\beta$ species. Evaluation of relative error (RE) in quantification at LLOQ and ULOQ (upper limit of quantification) allowed the test accuracy assessment. Results: Intra and inter-assay coefficients of variation were below 8% for both ABtest40 and ABtest42. The estimated LLOQ was 4.68pg/ml regarding ABtest40 and 11.95pg/ml for ABtest42. Accuracy of A β 1-40 and A β 1-42 quantification at LLOQ and ULOQ provided a relative error below 16% in all cases. Assays demonstrated very high affinity for their target analytes; cross reactivity was less than 3.35% for all the similar $A\beta$ species tested at the ULOQ (N-terminal specificity assessed using A β 2-40 and A β 3-40 and C-terminal with A β 1-38, A β 1-43 and either A β 1-40 or A β 1-42). **Conclusions:** ABtest40 and ABtest42 proved to be accurate, specific and sensible enough to give a reliable quantification of low levels of A β 1-40 and A β 1-42.

P1-245

THE EFFECT OF ANTICOAGULANT AND SAMPLE PREPARATION METHOD ON BETA-AMYLOID OLIGOMER DETECTION IN BLOOD

SangYun Kim¹, So Young Park², Ji Sun Yu³, Kuntaek Lim³, Byoung Sub Lee⁴, Gwang Je Kim³, Sung Min Kang³, Young Ho Park⁵, Jae-Won Jang⁶, Young Chul Yoon⁷, Seong Soo A. An⁸, ¹Seoul National University Bundang Hospital, Seongnam-si, South Korea; ²Seoul National University Bundang Hospital, Sungnam-si, South Korea; ³PeopleBio Inc., Seoul, South Korea; ⁴PepoleBio Inc., Seoul, South Korea; ⁵Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea; ⁶Seoul National University Bundang Hospital, Sungnam, South Korea; ⁷Chungang University School of Medicine, Seoul, South Korea; ⁸Gachon University, Department of BioNano Technology, Sungnam-si, South Korea. Contact e-mail: neuroksy@snu.ac.kr

Background: Recent studies suggest that soluble amyloid- β (A β) oligomers are major toxic species responsible for Alzheimer's disease (AD)