

Prior Art:

for Publication No.: DE 103 17 794.9-16:

Examination Report:

DE 197 29 891 A1

This equipment modifies plastic surfaces. It is novel in that a material flowing at constant speed (the medium), is accelerated onto the plastic surface, to improve adhesion to other materials. Also claimed is the corresponding process.

DE 17 59 021 U

The invention relates to a resinous tool for the production of stampings and essentially provides a tool with a die surface that comprises an aligned metal layer. In a further embodiment of the invention the metallic layer is connectect with a high adherence, e.g. by gluing, onto the surface of the tool. Practically, a sheet metal stamping formed with the resinous tool is used as a metallic layer.

DE 31 37 598 A1

The invention relates to the production process for producing inexpensive moulds from non-ferrous metals which can be produced rapidly and altered rapidly. Hitherto, a multiplicity of processes have been available for injection mould production. The extension of the process range by this process is intended to expand the application range of the plastics processing moulds which shape by a non-cutting method in small and medium-sized production runs in series production. This is achieved by the fact that the moulds can be produced rapidly and also by their low investment costs, mould costs and labour costs and their rapid alterability and adaptability, compromises having to be made in the lifetime and cycle time in the injection moulding process. It is known to produce moulds from non-ferrous metals for plastics processing by various processes, however a simple, tried and tested process, which can be rapidly used in practice, is lacking for potential users. The invention therefore demonstrates a process which is tried and tested in practice for the production of prototype moulds within 8-16 working hours.

JP 63-238 284 AA (Patent Abstracts of Japan)

PURPOSE: To improve the adhesion of a metallic film to the body of a resin mold by coating the body with a coating material contg. Pd and Cu dispersed in bisphenol A type epoxy resin before the formation of the film on the body electroless plating. **CONSTITUTION:** When the least the split surfaces of the body of a resin mold and the surface of the cavity of a product are covered with metallic films, the body is first degreased by washing with methanol or the like. The degreased body is coated with a coating material contg. Pd and Cu dispersed in

BEST AVAILABLE COPY

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Offenlegungsschrift
(10) DE 197 29 891 A 1

(51) Int. Cl.⁶:
B 29 C 59/00
C 25 D 5/56
C 23 C 18/31
B 60 B 5/02
B 60 B 21/08
B 24 C 1/06
A 63 C 5/12

(21) Aktenzeichen: 197 29 891.5
(22) Anmeldetag: 12. 7. 97
(23) Offenlegungstag: 14. 1. 99

DE 197 29 891 A 1

(71) Anmelder: Sauer, Hartmut, 57076 Siegen, DE	DE 28 44 425 A1 DE 94 02 776 U1 CH 4 08 397 FR 15 32 534 US 51 84 874 US 51 76 924 US 24 48 316 EP 07 61 415 A2 EP 00 23 240 A1
(72) Erfinder: gleich Anmelder	REININGER,Hans: Haftgrundbehandlungsvorschläge vor der Flammenspritzbeschichtung mit nichtmetallischen Stoffen. In: Maschinenmarkt, 71. Jg., 1965, Nr. 13, S.33-35;
(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften: DE 196 20 935 A1 DE 195 38 531 A1 DE 44 38 791 A1 DE 43 06 971 A1 DE 29 20 633 A1	

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Verfahren zur gezielten Aufrauhung von Kunststoffoberflächen als Grundlage für eine verbesserte Haftung von Schichten und Schichtsystemen auf dem aufgerauhten Substrat

(57) Anwendungsbereiche:

1. Metallisierung von CFK-Leichtwalzen für die Papierindustrie
2. Metallisierung von CFK-Ringen für den Einsatz korrosionsbeständiger Bauteile in Turbomolekularpumpen
3. Metallisierung von Leiterplattenmaterial
4. Innen- und Außenmetallisierung von Polyamid-Rohren

Stand der Technik

Thermatischer Hintergrund

Metallbeschichtete Kunststoffe gewinnen als Hochleistungswerkstoffe in der industriellen Anwendung zunehmend an Bedeutung. Durch die Kombination von Metall und Kunststoff versucht man die hohe Verschleißfestigkeit, die hohe Resistenz gegenüber chemisch aggressiven Medien und die gute elektrische Leitfähigkeit von metallischen Schichten mit den Eigenschaften der Kunststoffe zu vereinen. Eine wesentliche Rolle für den Einsatz der Verbundwerkstoffe (Metallschicht auf Kunststoff) spielt die Haftung zwischen Metall und Kunststoff. Hierbei lassen sich die Haftungsmechanismen in drei Gruppen einteilen:

chemische Bindungen,
physische Bindungen,
mechanische Verklammerungen.

Da zwischen Kunststoffen und Metallen keine chemischen Bindungen vorhanden und die physikalischen Bindungskräfte nur schwach ausgeprägt sind [Zeitschrift Galvanotechnik, 86/1995, Nr. 1, Technische und wissenschaftliche Aspekte der Metallisierung von Polymeren, Dr. Dr. habil. Heinrich Meyer], muß den mechanischen Verklammerungen eine bedeutende Funktion im Bereich der Haftungssteigerung zugesprochen...

DE 197 29 891 A 1

Beschreibung

Grundsätzlich sind zwei Verfahren zum Aufrauhen oder Abtragen von Materialien bekannt: Zum einen das Injektorstrahlverfahren (Fig. 3 und Fig. 4) und zum Zweiten das Strahlen mit einem Drucksystem (Fig. 5).

Injektorprinzip

Bei diesem Verfahren werden Beschleunigungsmedien wie z. B. Druckluft oder Flüssigkeiten in einer Düse unmittelbar vor dem Austritt so beschleunigt, daß in einer zweiten Zuführung ein Unterdruck entsteht. Durch diesen Unterdruck wird das Strahlmittel aus der Vorratskammer angezogen, in der Düse mitgerissen und beschleunigt. Die Mischung von Beschleunigungsmedium und Strahlmedium findet unmittelbar vor dem Austritt statt. [Firmenprospekt der Firma Nakonssen].

Strahlen mit einem Drucksystem

Hierbei wird das Strahlmittel in der Vorratskammer mit einem Medium druckbeaufschlagt. Dieses Medium hat die Aufgabe, das Strahlmittel zum Düsenkopf zu transportieren und zu beschleunigen. Die Mischung beider Medien (Strahlmittel und Transport-Beschleunigungsmedium) findet in der Vorratskammer statt.

Diese Verfahren können neben der Aufrauung und Abtragung von Material, z. B. Metalle, Beton, Maurerwerk, usw. auch für die Modifikation von Kunststoffen verwendet werden.

Nachteile der vorgestellten Systeme (Stand der Technik)**1. Volumenstromschwankungen****Injektorprinzip**

Durch die Erhöhung der Strömungsgeschwindigkeit des Beschleunigungsmediums in der Düse wird ein Unterdruck von maximal 0,4 bar erzielt (ein hoher Druck des Beschleunigungsmediums hat einen höheren Unterdruck im Zuführungsschlauch zur Folge). Dieser Unterdruck bezogen auf den Querschnitt des Zuführungsschlauches ergibt eine Kraft, die der gesamten Reibung des Strahlmittels im Schlauch entgegensteht. Da Haftereibung und Gleitreibung des Strahlmittels im Schlauch voneinander variieren und die geringe Kraft (erzeugt durch den geringen Unterdruck) nicht ausreicht, um das Strahlmittel im Schlauch gleichmäßig strömen zu lassen, kommt es zu starken Volumenstromschwankungen. Des Weiteren findet eine starke Veränderung der Strömungsgeschwindigkeit des Strahlmediums mit der Konsistenz des Strahlmittels statt. Faktoren sind hierbei der Feuchtigkeitsgehalt des Strahlmittels und der Abnutzungsgrad der Strahlkörper.

Strahlen mit einem Drucksystem

Hierbei wird das Strahlmittel direkt hinter der Vorratskammer mit dem Transport- und Beschleunigungsmedium gemischt. Um die nötige Austrittsgeschwindigkeit zu erreichen, muß ein bestimmtes Verhältnis zwischen dem Strahlmittel und dem Transport- und Beschleunigungsmedium eingestellt werden. Bei zu geringem Druck oder zu hohem Strahlmittelstrom kommt es zu Strömungsbedingungen im Zuführungsschlauch, die zur Folge haben, daß das Strahlmittel am Austrittspunkt (Strahldüse) nicht genügend Energie besitzt, um die Kunststoffoberfläche optimal aufzurau-

hen. Aus den genannten Gründen ist es mit diesem Verfahren nicht möglich, bei kleinen Strahldrücken hohe Strahlmittelströme zu realisieren.

2. Druckbereich**Injektorprinzip**

Da der Unterdruck im Zuführungsschlauch von der Strömungsgeschwindigkeit der Beschleunigungsmedien abhängt, können hohe Strahlmittelströme nur mit einem sehr hohen Druck in der Zuführung des Beschleunigungsmediums realisiert werden. Weiterhin sind die Strahlmittelströme bei geringeren Drücken der Beschleunigungsmedien für eine optimale Kunststoffoberflächenrauung zu niedrig.

Strahlen mit einem Drucksystem

Da das Strahlmittel mit den Transport- und Beschleunigungsmedium unmittelbar hinter der Vorratskammer gemischt wird, ist es unmöglich mit sehr kleinen Drücken des Transport- und Beschleunigungsmediums, das Strahlmittel durch den gesamten Strahlmittelschlauch zu transportieren. Arbeitsbereiche von 6 bis 25 bar sind für solche Systeme signifikant.

3. Abtragsrate**Injektorprinzip**

Der Strahlmittelvolumenstrom bei kleinen Drücken (< 1 bar) ist aufgrund einer niedrigen Strömungsgeschwindigkeit des Beschleunigungsmediums sehr gering. Daraus folgt, daß eine Aufrauung nur mit deutlich längeren Strahlzeiten erreicht werden kann. Durch diese erhöhte Strahldauer pro Flächeneinheit nimmt die Oberflächenzerstörung deutlich zu. Diese hat bei bestimmten Kunststoffen drastischen Einfluß auf das Verhalten dieser Werkstoffe (insbesondere auf laserverstärkte oder lasergesetzte Kunststoffe).

Strahlen mit einem Drucksystem

Dieses Verfahren mit einem Arbeitsbereich von 6 bis 25 bar beschleunigt das Strahlmittel mit einer für die Kunststoffrauung zu hohen Energie. Daraus resultiert eine Aufrauung, die stets mit einer extrem hohen Abtragsrate verbunden ist. Zusätzlich wird der Werkstoff im hohen Maß durch Oberflächenzerstörung beeinträchtigt. Die hohen Abtragsraten haben weiterhin zur Folge, daß die Formgenauigkeit der Ausgangsteile nicht gewährleistet werden kann.

4. Einstellbarkeit der Parameter**Injektorprinzip**

Bei diesem Verfahren hängt der Strahlmittelvolumenstrom von der Geometrie des Injektorkopfes und der Höhe des Unterdrucks im Strahlmittelschlauch ab. Eine Änderung des Strahlmittelvolumenstroms über die Geometrie des Strahlkopfes ist nur in gewissen Grenzen möglich und sehr kostenintensiv. Die Änderung des Unterdrucks ist abhängig von der Strömungsgeschwindigkeit des Beschleunigungsmediums und somit vom Druck dieses Mediums. Es ist nicht möglich, Strahlmittelvolumenstrom und Druck des Beschleunigungsmediums getrennt und unabhängig voneinander zu variieren.

Strahlen mit einem Drucksystem

Der Strahlmittelstrom ist innerhalb bestimmter Grenzen vom Druck des Beschleunigungsmediums abhängig, da dieses Verfahren nur unter bestimmten Strömungsbedingungen im Zuführungsschlauch funktioniert. Daher ist hier keine unabhängige stufenlose Einstellung des Druck des Beschleunigungsmediums und Strahlmittelstroms möglich.

Aufgaben der Erfindung

bulenzen im Transportschlauch entstehen. Der Querschnitt wird erst unmittelbar vor der Düse auf den gewünschten Strahlmittolvolumenstrom reduziert. Damit kann stets ein konstanter Strahlmittolvolumenstrom gewährleistet werden. Die Transportgeschwindigkeit und die Energie des Strahlmittels, das nur durch das Transportmedium auf die Probe auftrifft, sind sehr gering und können deshalb vernachlässigt werden.

10

Zu 2.

Die Aufgabe der Erfindung ist es, ein Verfahren zu schaffen, Kunststoffoberflächen reproduzierbar, gleichmäßig, verbunden mit einem geringen Materialabtrag und mit einer sehr geringen Oberflächenzerrüttung so zu rauhstrahlen, daß sich beim Beschichten eine optimale Haltung zwischen Kunststoff und Schicht ergibt. Kunststoffverarbeitende Industriezweige werden in der Lage sein, Kunststoffe haftfest zu beschichten und damit ihr Lieferprogramm zu erweitern, da mit diesem Verfahren die Kunststoffoberfläche gegen chemische, mechanische, und thermische Beanspruchung geschützt werden können; dies gilt auch für Bauteile, die starken Belastungen ausgesetzt sind.

Lösung der Aufgabe

Ein weiterer Vorteil ist die unabhängige Einstellung der Beschleunigung des Strahlmittels in der Düse. In einem zweiten Druckkreislauf kann der Druck des Beschleunigungsmediums reguliert werden, mit dem das anstehende Strahlmittel in der Düse beschleunigt wird. Ein wesentlicher Vorteil hierbei ist die Tatsache, daß Beschleunigungsdrücke im Bereich von 0,1 bis 6 bar realisiert werden können (Optimale Aufrauhung von Kunststoffen vorzugsweise 0,1 bis 6 bar).

20

Zu 3.

Vorteile des Verfahrens

Da der Druck des Transportmediums vorzugsweise auf 25 3 bar festgesetzt ist, wird ein kontinuierlicher Strahlmittolvolumenstrom gewährleistet. Ein Vorteil des Verfahrens ist die hohe Prozeßsicherheit auch bei kleinen Beschleunigungsdrücken des Strahlmittels. Mit diesem Verfahren ist es möglich, Bauteile mit großen Abmessungen rauhzustrahlen 30 (vzw. bis 8 m Länge bei 1 m Breite), da auch über sehr lange Strahlzeiten keine Schwankungen im Strahlmittolvolumenstrom und/oder im Strom des Beschleunigungsmediums auftreten.

35

Zu 4.

Diese Aufgaben werden durch das Verfahren des Anspruchs I gelöst:

Übergeordnete Vorteile

Ein weiterer Vorteil des Verfahrens besteht darin, daß das Strahlmittel durch den Druck des Transportmediums durch die Düse gedrückt wird. Da die Querschnittsreduktion vzw. direkt vor der Düse erfolgt, besteht eine gleichmäßige Strahlteilchendichte über den Querschnitt der Düse. Wenn das Strahlmittel dann durch das Beschleunigungsmedium beschleunigt wird, besteht die gleiche Teilchendichte über den Strahlkegelquerschnitt. Dies ermöglicht ein gleichmäßiges Rauhstrahlen von großen Bauteilen, indem der Strahlkopf mit einer konstanten Vorschubsgeschwindigkeit über das Werkstück geführt wird.

50

Erweiterte Lösung der Aufgabe

Zusatz I

Vorteile des Verfahrens

Dies wird realisiert, indem ein Zweikreissystem entwickelt wurde.

Die Funktionsweise stellt sich wie folgt dar:
Es stehen zwei unabhängige regelbare Druckkreisläufe zur Verfügung. Der Erste hat die Aufgabe, das Strahlmittel zur Düse zu transportieren und der zweite, das Strahlmittel zu beschleunigen Fig 6.

Vorteile und technische Details

Diese Aufgaben werden durch das Verfahren des Anspruchs I und II gelöst:

Zu 1.

Haftfestigkeitssteigerung durch ein Kombination aus Rauhstrahlen nach Anspruch I und einer Kunststoffoberflächenplasmamodifikation. Hierbei wird die Oberfläche durch 60 ein anschließend an den Rauhstrahlprozeß, durch ein Plasma chemisch modifiziert und bietet dadurch der Metallschicht eine höhere Haftungscigung.

Hierbei wird eine vorzugsweise rauhgestrahlte Kunststoffoberfläche mit einem zusätzlichen Plasmaätzungsvorgang modifiziert Fig. 9. Bei diesem Verfahren wird die Oberfläche aktiviert und oxidiert das bei vorzugsweise CFK (Kohlenstofffaserverstärkten Kunststoffen), GFK (Glasfaser verstärkten Kunststoffen), Polypropylen, Polystyrol, Acryl Bu-

Das Strahlmittel befindet sich in einer Vorratskammer und wird mit einem Transportmedium (Druckluft, Wasser, Öl, u.s.w.) zum Düsenkopf (vorzugsweise 8 mm Durchmesser) transportiert. Querschnitt und Druck sind so gewählt, daß sich im Transportschlauch eine schlüpfende Strömung ausbildet. Daraus folgt, daß keine oder nur sehr geringe Tur-

tadien Styrol, Polyäthylen in Verbindung mit einer Metallbeschichtung eine wesentlich höhere Haftfestigkeit ergibt.

Zusatz II

Vorteile des Verfahrens

Diese Aufgaben werden durch das Verfahren des Anspruchs I und III gelöst:

In vielen Fällen ist es notwendig schwerzugängliche und oder inwendig befindliche Flächen mit einer Metallschicht zu schützen. Dieses Verfahren wird hier auf folgende Kunststoffe angewendet: CFK (Kohlenstofffaserverstärkten Kunststoffen), GFK (Glasfaserverstärkten Kunststoffen). Polypropylen, Polystyrol, Acryl Butadien Styrol, Polyäthylen. Um dies Stellen erreichen zu können ist es notwendig den Strahlmittelstrahl umzulenken. Die damit verbundenen Reibung an der Umlenkvorrichtung hat eine geringe Standzeit zur Folge. Die Vorrichtung nach Anspruch III zeichnet sich dadurch aus, daß der Strahlmittelstrom auf einem Polster aus vorzugsweise Druckluft umgelenkt wird (Fig. 10.). Damit ist ausgeschlossen, daß das Strahlmittel mit dem Werkstoff der Umlenkteinrichtung in Kontakt treten kann. Damit ist der abrasive Verschleiß der Umlenkseinheit abgestellt und sehr hohe Standzeiten sind realisierbar.

Beschreibung der Erfindung

Fig. 1

Ausgehend von einer mit chemisch modifizierten Oberfläche ergeben sich nach dieser Behandlung zwar eine Oberflächenvergrößerung, aber es werden keine oder nur sehr wenige Hinterschneidungen erzeugt.

Fig. 2

Ausgehend von einer faserverstärkten und einer nichtfaserverstärkten Kunststoffoberfläche wird die Änderung der Oberflächentopographie durch das Verfahren nach Anspruch I gezeigt. Hier wird verdeutlicht, daß die mechanischen Verankerungen die für eine erhöhte Haftung zu aufgebrachten Schichten notwendig sind, deutlich vorhanden sind.

Fig. 3

Es wird verdeutlicht, daß sowohl Massenstrom des Strahlmittels und Strahlmittelbeschleunigung nur allein von der Einstellung der Druckluftzufuhr abhängt. Folglich ist keine unabhängige Regelung der Parameter, Strahlmittelmassenstrom und Strahlmittelbeschleunigung gewährleistet.

Fig. 4

Durch die Strömungsgeschwindigkeit des Druckluftstroms wird im Bereich A ein Unterdruck erzeugt, welcher das Strahlmittel ansaugt und in den Druckluftstrom mitreißt.

Fig. 5

Bei dem hier vorgestellten Drucksystem, besteht die Möglichkeit den Massenstrom zu regulieren, aber dieser ist in jedem Fall immer abhängig vom anstehenden Druck auf das gesamte System. Im begrenzten Bereich ist hier eine Einstellung des Massenstroms möglich.

Fig. 6

Zweikreissystem

Der Strahlkopf des Zweikreissystems mischt die beiden Massenströme in der Form, daß das Strahlmittel seine Beschleunigung (Energie) erst ab dem Punkt A erhält. Der Massenstrom 1 besteht aus Druckluft wobei auch andere Medien denkbar wären. Der Massenstrom 2 besteht aus einem Gemisch aus Strahlmittel vorzugsweise SiC P80 und zumeist Druckluft. Andere Medien wie Öl, Wasser, Stickstoff, Sauerstoff sind denkbar. Besonders gut eignen sich Düsen aus kubischem Bornitrid. Die unmittelbare Massen-

stromeinstellung vor der Mischdüse (ca. 40 mm vor Punkt A) ermöglicht einen konstanten Massenstrom des Strahlmittels über der Zeit. Das System besteht aus zwei unabhängig voneinander regelbaren Kreisläufen.

- 5 Das Strahlmittel in dem Vorratsbehälter wird mit einem konstanten Druck beaufschlagt (vorzugsweise 3 bar Überdruck). Das Strahlmittel wird aufgrund des Überdrucks durch den Zuführungsschlauch 2 gedrückt. Hierbei findet vom Vorratsbehälter bis zum Massenstromregelventil, welches unmittelbar vor der Mischdüse liegt, keine Querschnittsveränderung statt. Die Strömungsverhältnisse (hoher Massenstrom Strahlmittel, geringer Anteil Druckluft) gewährleisten im Schlauch eine schleichende Strömung.
- 10 Der zweite Kreislauf transportiert die Druckluft zum Anschluß 1 der Mischdüse. Der Druck ist hierbei von 0,1 bar bis 6 bar regelbar. Das Strahlmittel, welches mit einer sehr kleinen Strömungsgeschwindigkeit in der Mischdüse angelangt, wird durch die hohe Strömungsgeschwindigkeit der Druckluft beschleunigt.
- 15 Das beschleunigte Strahlmittel trifft auf die Kunststoffoberfläche auf, verändert die Oberflächentopographie und wird in einem Sammelbehälter aufgefangen. Der Sammelbehälter ist mit dem Vorratsbehälter durch ein Ventil verbunden, welches sich bei einem Druck von ca. 1 bar im Vorratsbehälter öffnet. Das Strahlmittel kann dann durch die Schwerkraft zum Sammelbehälter in den Vorratsbehälter rutschen.
- 20

Fig. 7

Diese Rasterelektronenmikroskopaufnahme zeigt einen Querschnitt durch eine metallbeschichtete CFK-Probe. Deutlich sind zu erkennen, daß die Kohlenstofffaser hier gezielt aus dem Matrixverbund heraus gelöst sind und nach der Beschichtung mit Nickel mechanisch verklammert ist.

Fig. 8

Die Vorbehandlung der Oberfläche verschiedener Bauteilgeometrien und Bauteilbereichen ist mit dem Verfahren nach Anspruch I folgendermaßen zu realisieren: Die Möglichkeit, den Strahlkopf in vier Achsen geregelt zu fahren, den Strahlkopfabstand und Strahlvorschub jeder Kontur und jedem Werkstoff anzupassen. Die Achse die für die Werkstückbewegung ermöglicht das Rauhstrahlen rotationssymmetrischer Bauteile.

Fig. 9

Der prinzipielle Ablauf einer Kunststoffoberfläche zu plasmamodifizieren ist in diesem Bild dargestellt. Die Elektronen werden, erzeugt durch ein Plasma, auf die Oberfläche geschossen, um dort neu funktionale Gruppen zu bilden. Dieser Vorgang hat zur Folge, daß die Haftung zu einer später aufgebrachten Metallschicht erhöht wird.

Fig. 10

Das Rauhstrahlen von Kunststoffoberflächen von Bauteilen mit einer Innenkontur wird mit einem Innenstrahlkopf realisiert, der mit dem Zweikreissystem adaptiert wird, mit dem die Innenfläche definiert aufgerauht wird. Der Druckluftstrom wird durch das Innenrohr auf den Streupilz geführt und dort umgelenkt. Der Strahlmittelstrom, vermischt mit einem zweiten Druckluftstrom, wird über des Strahlrohr zugeführt. Dieses Gemisch aus Druckluft und Strahlmittel wird am Strahlkopf teilweise umgelenkt. Da die Strömungsgeschwindigkeit hier noch sehr gering ist, ist der Verschleiß ebenfalls sehr gering. Die eigentliche Beschleunigung des Strahlmittel findet auf dem Druckluftpolster statt. Dieses Druckluftpolster hat zum einen die Aufgabe das Strahlmittel zu beschleunigen und zum anderen den Streupilz gegen abrasiven Verschleiß durch das Strahlmittel zu schützen.

Literaturangaben

- Atotech Deutschland GmbH: Zukunftsperspektiven für eine wirtschaftliche Galvanik, Galvanotechnik 84 (1993), Nr. 8, S. 2632-2636.
- H. Enger: Aufbereitung von Galvanikschrämmen, Galvanotechnik 84 (1993), Nr. 6, S. 1924-1926.
- EPA U363887, Mitsubishi Rayon Co. LTD.
- Galvano Dresden GmbH: Abwasserfreie Anlage zum galvanischen Vernickeln und Verchromen, Galvanotechnik 84 (1993), Nr. 9, S. 2966-2968.
- R.A. Haefer: Oberflächen- und Dünnschichttechnologie, Springer, 1987.
- D. Hoffmann: Laser-Veredelung von Plasma-Spritzschichten, Fortschr.-Berichte VDI, Reihe 5, Nr. 240, 1991.
- Kunststoff-Metallisierung, Handbuch für Theorie und Praxis, Leuze Verlag, Saulgau/Württ., 1991.
- F. Langenfeld, J. Pinter: Die Zielsetzung bestimmt die Technik, Galvanotechnik 84 (1993), Nr. 11, S. 3815-3823.
- H. Layain, K. Kuehn: Metallization of plastic objects, Vereinigte Flugtechnische Werke Fokker GmbH.
- H. Meyer: Technische und wissenschaftliche Aspekte der Metallisierung von Polymeren, Berichtsband über das Ulmer Gespräch, Leuze Verlag, Neu-Ulm, 1993, S. 74-88.
- J. Niestroj, Chr. Ruprich: Abfall- und abwasserwirtschaftliche Situation der Oberflächenbehandlungsbranche in Berlin und Brandenburg, Galvanotechnik 84 (1993), Nr. 10, S. 3422-3425.
- Max Schlötter GmbH & Co KG: Badbeschreibungen, Geislingen, 1992.
- M. Menningen: Untersuchungen zur haftfesten Metallisierung kohlenstoffaserverstärkten Kunststoffe, Schrifreihe Oberflächentechnik, Bericht Nr. LOT-01-04.95, Universität-GH-Siegen, Institut für Werkstofftechnik, Labor für Oberflächentechnik.

Patentansprüche

1. Vorrichtung zum Modifizieren von Kunststoffoberflächen, die dadurch gekennzeichnet sind, daß ein Material mit konstanter Strömungsgeschwindigkeit auf die Kunststoffoberfläche beschleunigt wird. Dabei soll eine verbesserte Haftung zu anderen Materialien hergestellt werden.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Strahlsystem zum Aufrauhen der Kunststoffoberfläche zwei unabhängige, voneinander regelbare Systemkreisläufe aufweist. (Vorzugsweise im ersten Systemkreis Druckluft und im zweiten ein Druckluft/Strahlmittelgemisch)
3. Verfahren, dadurch gekennzeichnet, daß Kunststoffoberflächen nach einer kombinierten Modifikation durch die Vorrichtung nach Anspruch I, II und einer Plasmahandlung und einer anschließenden Metallisierung eine verbesserte Haftung aufweist.
4. Verfahren nach Anspruch 1 und 2 oder 3, dadurch gekennzeichnet, daß Kunststoffoberflächen innenseifig oder komplexe dreidimensionale Konturen modifiziert werden und nach einer Metallisierung eine verbesserte Haftung aufweisen.
5. Vorrichtung nach Anspruch 1 und 2 oder 3, dadurch gekennzeichnet, daß zum Aufrauhen vorzugsweise ein Strahlmittel SiC P80 verwendet wird.
6. Vorrichtung nach Anspruch 1 und 2 oder 3, dadurch gekennzeichnet, daß die Vorrichtung eine unabhängige Einstellung des Volumenstroms (Strahlmittelmassenstroms) vom Beschleunigungsstrom vorzugsweise Druckluft erlaubt.
7. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das Strahlmittel im Strahlmittelführungsschlauch bis zur Mischdüse eine niedrige Energiedichte besitzt. Das Strahlmittel besitzt ohne Beschleunigung durch das Beschleunigungsmedium eine Strömungsgeschwindigkeit von vorzugsweise 20 mm/sec bei einem Volumenstrom von 1 Liter/min.
8. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß bei dem Verfahren eingesetzten Strahldüse für Außenkonturen hat einen Durchmesser von vorzugsweise 8 mm.
9. Vorrichtung, dadurch gekennzeichnet, daß mit einer hier beschriebenen Innenstrahldüse Bauteile mit einer Innenkontur z. B. Rohre rauhgestrahlt werden können.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß durch die Vorrichtung zum Innenstrahlen (Fig. 10 Innenstrahldüse) längere Standzeiten realisieren lassen, da das Strahlmittel erst nach der Umlenkung vorzugsweise 90° beschleunigt wird.
11. Vorrichtung nach Anspruch 1 und 9, dadurch gekennzeichnet, daß mit dem Verfahren CFK-Rohre (Kohlenstoffaserverstärkter Kunststoff) innen rauhgestrahlt werden können, und mit einer Beschichtung vorzugsweise mit chemischem Nickel eine größere Haftung zwischen dem Kunststoff und dem Metall erreicht werden kann.
12. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß Kunststoffe wie CFK (Kohlenstoffaserverstärkter Kunststoff), GKF (Glasfaserverstärkter Kunststoff), CFK, Polyamid, Polystyrol, Polyäthylen, Polypropylen, Acryl Butadien Styrol, PMMA... rauhgestrahlt werden können, um bei einer anschließenden Beschichtung mit außenstromlosen oder elektrolytischen Metall eine bessere Haftung zu erzielen.
13. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß Kunststoffe wie CFK (Kohlenstoffaserverstärkter Kunststoff), GKF (Glasfaserverstärkter Kunststoff), CFK, Polyamid, Polystyrol, Polyäthylen, Polypropylen, Acryl Butadien Styrol, PMMA... rauhgestrahlt werden können, um bei einer anschließenden Beschichtung, hergestellt durch Kleben, thermischer Spritzen, galvanische Abscheidung oder chemische Abscheidung eine wesentlich größere Haftung der Beschichtung zum Kunststoff erzielt wird.
14. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß mit der Vorrichtung ein genauer Volumenstrom des Strahlmittels und eine konstante Auftreffgeschwindigkeit der Strahlteilchen auf die Kunststoffoberfläche gewährleistet wird.
15. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß Skier mit diesem Verfahren rauhgestrahlt werden, um dann mit einer Metallschicht haftfest beschichtet zu werden.
16. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß Skier mit diesem Verfahren rauhgestrahlt werden, um dann mit einer Teflonschicht haftfest beschichtet zu werden.
17. Vorrichtung nach Anspruch 1, das Snowboards mit diesem Verfahren rauhgestrahlt werden, um dann mit einer Metallschicht haftfest beschichtet zu werden.
18. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß Snowboards mit diesem Verfahren rauhgestrahlt werden um dann mit einer Teflonschicht oder einer Metallschicht haftfest beschichtet zu werden.
19. Vorrichtung nach Anspruch 1 und 2, dadurch ge-

kennzeichnet, daß Surfboogie mit diesem Verfahren rauhgestrahlt werden um dann mit einer Metallschicht haftfest beschichtet zu werden.

20. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß Surfboogie mit diesem Verfahren rauhgestrahlt werden, um dann mit einer Metallschicht oder einer Teflonschicht haftfest beschichtet zu werden.

21. Verfahren, dadurch gekennzeichnet, daß Kunststoffe wie: CFK (Kohlenstofffaserverstärkter Kunststoff), GKF (Glasfaserverstärkter Kunststoff), CFK, Polyanid, Polystyrol, Polyäthylen, Polypropylen, Acryl Butadien Styrol, und PMMA plasmamodifiziert werden, und durch eine anschließenden Beschichtung mit außenstromlosen oder elektrolytischen Metallbeschichtung eine bessere Haftung aufzuweisen.

22. Verfahren, dadurch gekennzeichnet, daß mit diesem Verfahren CFK-Fahrradfelgen rauhgestrahlt werden und dann in diesem Bereich der Brenzzone metallisiert werden, um in diesem Bereich den Verschleiß zu reduzieren.

Hierzu 5 Seite(n) Zeichnungen

25

30

35

40

45

50

55

60

65

- Leerseite -

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox