Параллельное программирование Лабораторная работа №7. "Наиполезнейшая" Моделирование динамических систем

Цель работы

Использование MatLAB для моделирования и анализа динамических систем.

Задание

- 1. Задать передаточную функцию (tf) непрерывной динамической системы в соответствии с вариантом задания (коэффициенты числителя и знаменателя исходной системы). Соединение исходной системы с еще одной исходной системой реализовать через series и parallel, а обратную связь с соответствующим коэффициентом замкнуть через feedback. Вывести в командную строку значение нулей, полюсов и собственной частоты исходной системы (pole, zero, damp).
- 2. На одной канве построить шесть графиков переходных процессов динамической системы. Верхние три графика переходной процесс системы при входном воздействии типа "ступенька", а нижние при импульсном воздействии. Первый из трех графиков для "ступеньки" строится непосредственно через step, второй самостоятельно через plot по возвращаемым значениям функции step. Аналогично для импульсного воздействия, но с функцией impulse. Третьи графики строятся через plot по возвращаемым значениям функции lsim (см. следующий пункт).
- 3. Задать вектор времени t от 0 до 10 секунд, с шагом 0.01 секунды, вектор входных сигналов $u_1(t)$ представляющий из себя "ступеньку" начинающуюся с момента времени t=1 и $u_2(t)$ представляющим из себя импульсное воздействие при t=2.0 с (использовать векторную логику, можно через find). Провести моделирование (lsim) системы с $u_1(t)$ и $u_2(t)$ и по полученным переходным процессам $y_1(t)$ и $y_2(t)$ два графика к предыдущему заданию.
- 4. Построить аналогично шесть графиков частотной характеристики системы, где верхние графики AЧX, а нижние Φ ЧX. Первые два построить непосредственно функцией bode (займет два subplot'a), вторые построить самостоятельно (semilogx) по возвращаемым значениям функции bode, последние два аналогично, но использовать freqresp. В обязательном порядке задать вектор частот ω через logspace, учесть, что в дальнейшем графики будут строится в зависимости от частоты в Γ ц, а не в рад/с.
 - <u>Примечание:</u> полезные функции MatLAB: mag2db, abs, imag, real, atan2, unwrap, rad2deg, раздел документации: "Multidimensional Arrays".
- 5. Построить на одной канве три графика (для исходной системы). Слева годограф Найквиста-Михайлова (nyquist), справа два вертикально расположенных графика корневого годографа (rlocus) и "карта" нулей и полюсов системы (pzmap). Сравнить результаты с начальным пунктом лабораторной работы.

Варианты задания

#	Числитель	Знаменатель	Тип соединения	Обратная связь
1	[6]	[11, 4, 6]	Последовательное	-3
2	[2, 3, 2]	[12, 17, 3, 15]	Параллельное	-3
3	[9, 20]	[12, 18, 12, 15, 12]	Последовательное	-1
4	[10, 3]	[3, 17, 9, 7]	Последовательное	-1
5	[2]	[18, 15, 7, 11]	Последовательное	-4
6	[15]	[19, 16, 13, 7]	Параллельное	-3
7	[3, 15]	[15, 16, 12, 5, 13]	Последовательное	-4
8	[14, 1]	[13, 12, 4]	Параллельное	-1
9	[15, 3, 18]	[7, 17, 16, 10, 20, 5]	Последовательное	-1
10	[4]	[13, 13, 6]	Параллельное	-3
11	[5]	[16, 14, 15]	Параллельное	-4
12	[17, 15]	[14, 16, 6]	Последовательное	-1
13	[12, 11]	[11, 15, 2]	Параллельное	-3
14	[7]	[12, 17]	Параллельное	-4
15	[2, 20]	[5, 16, 5]	Последовательное	-3
16	[4, 1, 14]	[15, 4, 15, 2, 5, 16]	Параллельное	-2
17	[12, 18]	[15, 3, 18]	Параллельное	-3
18	[11]	[14, 5]	Параллельное	-1
19	[10, 4, 8]	[13, 8, 13, 16, 7, 3]	Последовательное	-3
20	[1, 7, 16]	[2, 11, 1, 2, 7, 15]	Параллельное	-3
21	[17, 2]	[4, 11, 15, 10]	Параллельное	-1
22	[4, 6, 7]	[20, 12, 7, 14, 14]	Параллельное	-2
23	[9, 9, 13]	[15, 16, 17, 11, 19, 19]	Параллельное	-3
24	[9, 7, 20]	[4, 9, 13, 10, 19]	Параллельное	-2
25	[12, 14, 11]	[15, 15, 19, 9, 5, 7]	Последовательное	-4
26	[20, 9]	[1, 6, 1, 11, 6]	Последовательное	-2
27	[5]	[5, 16]	Последовательное	-2
28	[12]	[18, 15]	Параллельное	-4
29	[19, 6, 4]	[3, 6, 13, 13]	Параллельное	-4
30	[7]	[6, 17]	Параллельное	-4