Application No.: 10/583,081

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): An electrolyte membrane comprising a fluoropolymer containing acid/acid salt groups and having -CF₂H groups at polymer chain terminals,

wherein said acid/acid salt groups are sulfonic acid groups, $-SO_2NR^1R^2$, $-SO_3NR^3R^4R^5R^6$, $-SO_3M^1_{1/L}$, phosphoric acid groups, $-PO_3(NR^7R^8R^9R^{10})_2$ and/or $-PO_3M^2_{2/L}$, in the formula R^1 represents H or $M^6_{1/L}$, R^2 represents H, $M^7_{1/L}$, an alkyl group or a sulfonyl-containing group, R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms, M^1 , M^2 , M^6 and M^7 are the same or different and each represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table.

wherein a Fenton's reagent-based stability test of said fluoropolymer gives a fluoride ion concentration of not higher than 12 ppm.

said Fenton's reagent-based stability test comprising:

preparing a membrane of said fluoropolymer,

immersing a 3 g-section of said membrane in a solution prepared by dissolving 1 mg of FeSO₄·7H₂O in 20 ml of a 30% aqueous solution of hydrogen peroxide,

maintaining at 85°C for 20 hours,

cooling to room temperature,

taking out said membrane, and

Application No.: 10/583,081

measuring the fluoride ion concentration in a liquid phase using a fluoride ion meter.

2. (previously presented): The electrolyte membrane according to Claim 1, said fluoropolymer being one obtained by subjecting a fluoropolymer precursor containing acid/acid salt groups and having –CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being as defined above, to heat treatment by which said –CF₂COOX groups can be converted to –CF₂H groups, X being as defined above.

- 3. (previously presented): The electrolyte membrane according to Claim 1, wherein said acid/acid salt groups are sulfonic acid groups, -SO₃NR³R⁴R⁵R⁶ and/or -SO₃M¹_{1/L}, R³, R⁴, R⁵, R⁶ and M¹ being as defined above.
- 4. (previously presented): A method of producing the electrolyte membrane according to Claim 1, by subjecting a fluoropolymer precursor containing acid/acid salt groups and having –CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table, to heat treatment for the conversion of said –CF₂COOX groups to CF₂H groups, X being as defined above,

wherein said fluoropolymer precursor is one obtained by polymerizing a perhalovinyl ether derivative represented by the general formula (I):

$$CF_2 = CF - O - (CF_2 CFY^1 - O)_n - (CFY^2)_m - SO_2 Z$$
 (I)

3

Attorney Docket No.: Q95054

AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/583,081

wherein Y¹ represents F, Cl or a perfluoroalkyl group, n represents an integer of 0 to 3, the n atoms/groups of Y¹ are the same or different, Y² represents F or Cl, m represents an integer of 1 to 5, the m atoms of Y² are the same or different and Z represents F, Cl, Br, I, -OM⁵_{1/L} or -ONR¹⁵R¹⁶R¹⁷R¹⁸; M⁵ represents a metal having a valence of L and the metal having a valence of L is as defined above, and R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms,

said fluoropolymer precursor constitutes a membrane-shaped molding,

when the group $-SO_2Z$ in the general formula (I) is not said acid/acid salt group but is a group convertible to such acid/acid salt group, said fluoropolymer precursor is one subjected to a conversion treatment, after the above-mentioned polymerization, for the conversion of said group $-SO_2Z$ to the above-mentioned acid/acid salt group, and

said heat treatment comprises heating said fluoropolymer precursor at 120 to 400°C.

5. (previously presented): The method of producing an electrolyte membrane according to Claim 4,

wherein the heat treatment comprises heating the fluoropolymer precursor at 120 to 200°C in the presence of water or an organic solvent having compatibility with water.

6. (previously presented): The method of producing an electrolyte membrane according to Claim 5,

wherein the organic solvent having compatibility with water is an organic liquid having a boiling point exceeding 100°C but not exceeding 300°C.

7. (previously presented): The method of producing an electrolyte membrane according to Claim 4,

Application No.: 10/583,081

wherein the fluoropolymer precursor is an at least binary copolymer obtained by polymerizing the perhalovinyl ether derivative and a monomer copolymerizable with said perhalovinyl ether derivative.

8. (previously presented): The method of producing an electrolyte membrane according to Claim 4,

wherein Y² is F, n is 0 or 1 and m is 2 or 3.

- 9-16. (canceled).
- 17. (previously presented): A solid polymer electrolyte fuel cell comprising the electrolyte membrane according to Claim 1.
- 18. (currently amended): An immobilized active substance material comprising a fluoropolymer and an active substance,

said-fluorocopolymer fluoropolymer containing acid/acid salt groups and having -CF₂H groups at polymer chain terminals,

wherein said acid/acid salt groups are sulfonic acid groups, $-SO_2NR^2R^2$, $-SO_3NR^3R^4R^5R^6$, $-SO_3M^1{}_{1/L}$, phosphoric acid groups, $-PO_3(NR^7R^8R^9R^{10})_2$ and/or $-PO_3M^2{}_{2/L}$, in the formula R^1 represents H or $M^6{}_{1/L}$, R^2 represents H, $M^7{}_{1/L}$, an alkyl group or a sulfonyl-containing group, R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms, M^1 , M^2 , M^6 and M^7 are the same or different and each represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table.

wherein a Fenton's reagent-based stability test of said fluoropolymer gives a fluoride ion concentration of not higher than 12 ppm,

said Fenton's reagent-based stability test comprising:

Application No.: 10/583,081

preparing a membrane of said fluoropolymer,

immersing a 3 g-section of said membrane in a solution prepared by dissolving 1 mg of FeSO₄:7H₂O in 20 ml of a 30% aqueous solution of hydrogen peroxide.

maintaining at 85°C for 20 hours,

cooling to room temperature,

taking out said membrane, and

measuring the fluoride ion concentration in a liquid phase using a fluoride ion meter.

19. (previously presented): The immobilized active substance material according to Claim 18,

said fluoropolymer being one obtained by subjecting a fluoropolymer precursor containing acid/acid salt groups and having -CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being as defined above, to heat treatment by which said -CF₂COOX groups can be converted to -CF₂H groups, X being defined above.

20. (currently amended): The immobilized active substance material according to Claim 13Claim 18,

wherein said acid/acid salt groups are sulfonic acid groups, $-SO_3NR^3R^4R^5R^6$ and/or $-SO_3M^1_{1/L}$, R^3 , R^4 , R^5 , R^6 and M^1 being defined above.

21. (previously presented): The immobilized active substance material according to Claim 18,

wherein the active substance is a catalyst.

Application No.: 10/583,081

22. (previously presented): The immobilized active substance material according to Claim 21,

wherein the catalyst is a platinum-containing metal.

- 23. (previously presented): A membrane-electrode assembly comprising the immobilized active substance material according to Claim 21.
- 24. (previously presented): A sold polymer electrolyte fuel cell comprising the membrane-electrode assembly according to Claim 23.