Informed Search

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Main messages

A*. Always be optimistic.

A* search

- Same as A search, but the heuristic function h() has to satisfy $h(s) \le h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.
- Such heuristic function h() is called admissible.
 - An admissible heuristic never over-estimates

It is always optimistic

• A search with admissible h() is called A^* search.

Q1: When should A* stop?

• Idea: as soon as it generates the goal state?

- h() is admissible
- The goal G will be generated as path A→B→G, with cost 1000.

Q1: The correct A* stop rule

 A* should terminate only when a goal is popped from the priority queue

- If you have exceedingly good memory, you'll remember this is the same rule for uniform cost search on cyclic graphs.
- Indeed A* with h()≡0 is exactly uniform cost search!

Q2: A* revisiting expanded states

 One more complication: A* can revisit an expanded state, and discover a shorter path

Can you find the state in question?

Q2: A* revisiting expanded states

 One more complication: A* can revisit an expanded state, and discover a shorter path

Can you find the state in question?

Q3: What if A* revisits a state in the PQ?

- We've seen this before, with uniform cost search
- 'promote' D in the queue with the smaller cost

The A* algorithm

- 1. Put the start node S on the priority queue, called OPEN
- 2. If OPEN is empty, exit with failure
- 3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum
- 4. If n is a goal node, exit (trace back pointers from n to S)
- 5. Expand n, generating all its successors and attach to them pointers back to n. For each successor n' of n
 - 1. If n' is not already on OPEN or CLOSED estimate h(n'),g(n')=g(n)+c(n,n'), f(n')=g(n')+h(n'), and place it on OPEN.
 - 2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so, then:
 - Redirect pointers backward from n' along path yielding lower g(n').
 - 2. Put n' on OPEN.
 - 3. If g(n') is not lower for the new version, do nothing.
- 6. Goto 2.

A*: the dark side

- A* can use lots of memory.
 O(number of states)
- For large problems A* will run out of memory
- We'll look at two alternatives:
 - IDA*
 - Beam search

IDA*: iterative deepening A*

- Memory bounded search. Assume integer costs
 - Do path checking DFS, do not expand any node with f(n)>0. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>1. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>2. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>3. Stop if we find a goal.
 - ... repeat this, increase threshold by 1 each time until we find a goal.
- This is complete, optimal, but more costly than A* in general.

Beam search

- Very general technique, not just for A*
- The priority queue has a fixed size k. Only the top k nodes are kept. Others are discarded.
- Neither complete nor optimal, nor can maintain an <u>'expanded' node list, but memory efficient.</u>
- Variation: The priority queue only keeps nodes that are at most ε worse than the best node in the queue.
 ε is the beam width.
- Beam search used successfully in speech recognition.

Example

(All edges are directed, pointing downwards)

Example

OPEN	CLOSED
S(0+8)	-
A(1+8) B(5+4) C(8+3)	S(0+8)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)	S(0+8) A(1+8)
C(8+3) D(4+inf) E(8+inf) G(10+0) G(9+0)	S(0+8) A(1+8) B(5+4)
C(8+3) D(4+inf) E(8+inf) G(10+0)	S(0+8) A(1+8) B(5+4) G(9+0)

Backtrack: $G \Rightarrow B \Rightarrow S$.

What you should know

- Know why best-first greedy search is bad.
- Thoroughly understand A*
- Trace simple examples of A* execution.
- Understand admissible heuristics.

Appendix: Proof that A* is optimal

- Suppose A* finds a suboptimal path ending in goal G', where $f(G') > f^* = \cos t$ of optimal path
- Let's look at the first unexpanded node n on the optimal path (n exists, otherwise the optimal goal would have been found)
- f(n)>f(G'), otherwise we would have expanded n
- f(n) = g(n) + h(n) by definition $= g^*(n) + h(n)$ because n is on the optimal path $\le g^*(n) + h^*(n)$ because h is admissible $= f^*$ because n is on the optimal path
- $f^* \ge f(n) > f(G')$, contradicting the assumption at top