Total: 14 marks

Name: Goh Wei Zhe

1. Consider the following graph:

ABCADEG APT 6 PT C PT E PT C PT

a. List the order of nodes traversed using BFS starting from node A. [2 marks]

b. Represent the adjacency list representation of the graph. [2 marks]

A JBI JUZIN
B HCI3 > HIB -> A
C >1813 > M1 1 > 1017 1 > 16120 }
D > [12] -> [5] 11 -> [6] 18 -> Ø
€ >1020 -> 10128 -> 151 12 1->1618 -> B
F 70111 / ET12 / 16110 / 1415/ >
G 761 7 10 14 14 17 0
M -> a -> -0.5

2. Given the following Max-Heap

a. Perform Heap::push(25), followed by Heap::push(3) and then followed by Heap::push(39). Show the resulting heap after each push operation. [3 marks]

b. Perform TWO Heap::pop() operations. Show the resulting array representations of the heap after each pop operation. [2 marks]

3. Fill in the details for Dijkstra's Algorithm to find the shortest path from vertex 1 to all the other nodes in the following graph. [5 marks]

$$ad_{1}[i] = 2, 4$$
 $d_{1}[i] + c(1,2) < d_{1}[i]$

$$d_{1}[i] + c(1,4) < d_{1}[i]$$

		55	
1	60	2 30 3	
10 10	25	20 35 20	
4	5	5 6	

[i]

Previous[2]	NAX2 X 5
Previous[3]	MT 3 XI
Previous[4]	WK 1 /
Previous[5]	D# 4
Previous[6]	NAS XN.A

	T
Distance[2]	90 60 35 4
Distance[3]	v x 4
Distance[4]	90 10
Distance[5]	95 15
Distance[6]	W