Pritam Prakash Shete

Computer Division, BARC

Centre for Excellence in Basic Sciences

Topics

- Supervised learning Binary classification
- Sigmoid function
- Logistic regression
- Gradient descent
- Regularization
- Confusion matrix
- Applications
- Advantages
- Disadvantages

Supervised Learning

- Training set $-\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
- Labeled dataset

Binary Classification

- Classify elements of given set into two groups
 - Classify dog and non-dog images

Dog

Non-dog

Sigmoid Function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Function

- $\sigma(Z) \sim 1 \text{For } Z >> 0$
- $\sigma(Z) \sim 0 \text{For } Z << 0$
- $\sigma(Z) = 0.5 \text{For } Z = 0$

Z	σ(Z)
-2	0.12
-1.5	0.18
-1	0.27
-0.5	0.38
0	0.50
0.5	0.62
1	0.73
1.5	0.82
2	0.88

- Input − X
 - Vector
 - $-X \in R$
 - Dimension n_x
- Output ŷ
 - Scalar
 - $-0 \le \hat{y} \le 1.0$

Linear Regression

- Weights W
 - Vector
 - $-W \epsilon R$
 - Dimension n_x
- Bias b
 - Scalar
 - $-b\epsilon R$
- $y = W^TX + b$

- Weights W
 - Vector
 - $-W \in R$
 - Dimension n_x
- Bias b
 - Scalar
 - $-b\epsilon R$
- \bullet $y = W^TX + b$

- Weights W
 - Vector
 - $-W \epsilon R$
 - Dimension n_x
- Bias b
 - Scalar
 - $-b\epsilon R$
- $Z = W^{T}X + b$
- $\hat{y} = \sigma(Z)$ Activation (sigmoid) function

- Weights W
 - Vector
 - $-W \in R$
 - Dimension n_x
- Bias b
 - Scalar
 - $-b\epsilon R$
- $Z = W^{T}X + b$
- $\hat{y} = P(y=1 | X)$

Input dataset

$$-\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$$

Equations

$$-Z = W^TX + b$$

$$-\hat{y} = \sigma(Z) = y_p$$

Output

$$-\hat{y}^{(i)} \sim y^{(i)}$$

W and b

• $L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$

```
• L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})
    y = 1
    L(\hat{y}, y) = -\log(\hat{y})
    -\log(\hat{y}) – Minimize
    log(\hat{y}) - Maximize
    ŷ – Maximize
    \hat{y} - 1.0
```

```
• L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})
    v = 0
    L(\hat{y}, y) = -\log(1 - \hat{y})
    -\log(1-\hat{y}) – Minimize
    log(1 - \hat{y}) - Maximize
    1 - \hat{y} - Maximize
    ŷ – Minimize
    \hat{y} - 0.0
```

- Loss function
 - One sample ith sample

$$-L(\hat{y}^{(i)}, y^{(i)}) = -y^{(i)} * log(\hat{y}^{(i)}) - (1 - y^{(i)}) * log(1 - \hat{y}^{(i)})$$

- Cost function
 - Average of loss function for all samples

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, y_p^{(i)})$$

$$J(W,b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} * \log(y_p^{(i)}) + (1 - y^{(i)}) * \log(1 - y_p^{(i)}) \right]$$

- Input dataset { $(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), ..., (x^{(m)},y^{(m)})$ }
- Equations $-Z = W^TX + b$ and $\hat{y} = \sigma(Z) = y_p$
- Loss function $L(\hat{y}, y) = -y^* \log(\hat{y}) (1-y)^* \log(1-\hat{y})$
- Cost function $J(W,b) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, y_p^{(i)})$

$$J(W,b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} * \log(y_p^{(i)}) + (1 - y^{(i)}) * \log(1 - y_p^{(i)}) \right]$$

- Output
 - $-\hat{y}^{(i)} \sim y^{(i)}$
 - W and b Minimize J(W, b)

- Convex function
- Global optimum

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

$$-L(\hat{y}^{(i)}, y^{(i)})$$

$$-J(W^{[1]}, b^{[1]})$$

$$dW^{[1]} = \frac{\partial J}{\partial W^{[1]}}$$

$$db^{[1]} = \frac{\partial J}{\partial b^{[1]}}$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

- $-L(\hat{y}^{(i)}, y^{(i)})$
- $-J(W^{[1]}, b^{[1]})$

Backward pass

$$dW^{[1]} = \frac{\partial J}{\partial W^{[1]}}$$

$$db^{[1]} = \frac{\partial J}{\partial b^{[1]}}$$

$$W^{[1]} = W^{[1]} - \alpha * dW^{[1]}$$

 $b^{[1]} = b^{[1]} - \alpha * db^{[1]}$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

$$-L(\hat{y}^{(i)}, y^{(i)})$$

$$-J(W^{[1]}, b^{[1]})$$

$$da^{[1]} = \frac{\partial L}{\partial a^{[1]}}$$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

- $-L(\hat{y}^{(i)}, y^{(i)})$
- $-J(W^{[1]}, b^{[1]})$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

$$-L(\hat{y}^{(i)}, y^{(i)})$$

$$-J(W^{[1]}, b^{[1]})$$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$
$$dZ^{[1]} = \frac{\partial L}{\partial Z^{[1]}} = \frac{\partial L}{\partial a^{[1]}} \frac{\partial a^{[1]}}{\partial Z^{[1]}}$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

$$-L(\hat{y}^{(i)}, y^{(i)})$$

$$-J(W^{[1]}, b^{[1]})$$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$
$$dZ^{[1]} = \left(\frac{-y}{a} + \frac{1-y}{1-a}\right)(a(1-a))$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

- $-L(\hat{y}^{(i)}, y^{(i)})$
- $-J(W^{[1]}, b^{[1]})$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$
$$dZ^{[1]} = a - y$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

$$-L(\hat{y}^{(i)}, y^{(i)})$$

$$-J(W^{[1]}, b^{[1]})$$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$

$$dZ^{[1]} = a - y$$

$$dW^{[1]} = \frac{\partial L}{\partial W^{[1]}} = \frac{\partial L}{\partial a^{[1]}} \frac{\partial a^{[1]}}{\partial Z^{[1]}} \frac{\partial Z^{[1]}}{\partial W^{[1]}}$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

- $-L(\hat{y}^{(i)}, y^{(i)})$
- $-J(W^{[1]}, b^{[1]})$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$
$$dZ^{[1]} = a - y$$
$$dW^{[1]} = a(a - y)$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

- $-L(\hat{y}^{(i)}, y^{(i)})$
- $-J(W^{[1]}, b^{[1]})$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$

$$dZ^{[1]} = a - y$$

$$dW^{[1]} = a(a - y)$$

$$db^{[1]} = \frac{\partial L}{\partial b^{[1]}} = \frac{\partial L}{\partial a^{[1]}} \frac{\partial a^{[1]}}{\partial Z^{[1]}} \frac{\partial Z^{[1]}}{\partial b^{[1]}}$$

Forward pass

$$-Z^{[1]}=W^{[1]}a^{[0]}+b^{[1]}$$

$$-\hat{y} = a^{[1]} = \sigma(Z^{[1]})$$

- $-L(\hat{y}^{(i)}, y^{(i)})$
- $-J(W^{[1]}, b^{[1]})$

$$da^{[1]} = \frac{-y}{a} + \frac{1-y}{1-a}$$
$$dZ^{[1]} = a - y$$
$$dW^{[1]} = a(a - y)$$
$$db^{[1]} = a - y$$

Regularization

- Lasso regression
- Ridge Regression
- Elastic Net Regression

Lasso Regression

- Least Absolute Shrinkage Selector Operator
- L1 regularization technique
- Reduce coefficients
- Feature selection
 - Select important features
 - Reduce coefficients of others to zero
- Suitable for more number of features

Ridge Regression

- L2 regularization technique
- Reduce coefficients
- Reduce model complexity
- Prevent multicollinearity

Elastic Net Regression

L1 and L2 regularization technique

Confusion Matrix

Confusion Matrix

- True positive
 - Actual positive
 - Predicted positive
- False positive Type 1 error
 - Actual negative
 - Predicted positive
- False negative Type 2 error
 - Actual positive
 - Predicted negative
- True negative
 - Actual negative
 - Predicted negative

Confusion Matrix

- Accuracy
 - -(TP + TN)/(TP + TN + FP + FN)
- Recall
 - -(TP)/(TP + FN)
- Precision
 - -(TP)/(TP + FP)
- F1 score
 - (2 × Recall × Precision) / (Recall + Precision)

Applications

- Binary classification
- Positive class and negative class

Advantages

- Easy to implement and interpret
- Efficient to train
- No assumptions about distributions of classes
- Can be extended to multiple classes
- Good accuracy for linearly separable dataset

Disadvantages

- Overfit for small dataset
- Construct linear boundaries
- Assumption of linearity
 - Independent variables
 - Dependent variables
- Cannot solve non linear problems

Questions?

Thank you