GATE-ES.47

EE23BTECH11046 - Poluri Hemanth*

Question: Second order ordinary differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$ has values y = 2 and $\frac{dy}{dx} = 1$ at x = 0. The value of y at x = 1 is? (round of f to three decimal places) [GATE-ES 2023]

Solution:

We convert given second order differential equation to s domain using Laplace transform and solve for Y(s) and take inversion to get y(x).

Symbol	Values	Description
Y(s)	$\frac{2s-1}{s^2-s-2}$	y in s domain
y(x)	$e^{2x} + e^{-x}$	y in x domain
y(0)	2	y at x = 0
y'(0)	1	y'(x) at $x = 0$
u(x)	$u(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & o.w \end{cases}$	unit step function

TABLE I **PARAMETERS**

Fig. 1. Plot of y(x)

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y \stackrel{\mathcal{L}}{\longleftrightarrow} s^2Y(s) - sy(0) - y'(0) - sY(s) + y(0) - 2Y(s)$$
(1)

$$Y(s)(s^{2} - s - 2) = 2s - 1$$
 (2)

$$\Rightarrow Y(s) = \frac{2s - 1}{s^2 - s - 2} \tag{3}$$

$$\Rightarrow Y(s) = \frac{1}{s-2} + \frac{1}{s+1} \tag{4}$$

For inversion of Y(s) in partial fractions-

$$\frac{b}{s+a} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} be^{-ax} u(x) \tag{5}$$

Where b, a are real numbers, we invert Y(s) to get y(x):-

From (5)

$$Y(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} y(x)u(x) \tag{6}$$

$$y(x) = (e^{2x} + e^{-x})u(x)$$
 (7)

$$\Rightarrow y(1) = 7.757 \tag{8}$$