Diagonalization and decidability problems

Textbook: Chapter 4

 $s = 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \dots$

Sizing infinite sets

- ▶ The size of a finite set is the number of elements in it
- ▶ What about infinite sets?
- ► We can show that a set A is the same size as another, B, by making a **1-to-1 mapping** from each element of A to B
- ► This works even for infinite sets!

Examples

Ex: An infinite amount of \$100 bills and an infinite amount of \$1 bills **are worth the same amount.**

Ex: Are there more integers (\mathbb{Z}) or even integers $(2\mathbb{Z})$? It would seem that, since only half of all integers are even, that there would be more of them. However, **this isn't true!**

Let $f: \mathbb{Z} \to 2\mathbb{Z}$ be the function f(k) = 2k. This is a **bidirectional** mapping, so the sets it maps to and from must be the same size!

Different infinity sizes

Ex: Is the set of all natural numbers $\{0,1,2,3,\ldots\}$ the same size as the set of all real numbers (EG $\pi,4,\frac{1}{2},e,\ldots$)? They are both infinite, so one would assume so.

As it turns out, no! Some infinities are larger than others.

Cantor's diagonalization proof for $\mathbb N$ and $\mathbb R$

Thm: There are more real numbers between 0 and 1 than natural numbers 0 to ∞ .

Pf: We will try to construct an arbitrary-order table where the first column is an increasing integer index starting at 0 and the second column is a list of all the real numbers from 0 to 1. If there are the same number, all reals will be contained in this list.

Real number
$c_0 = 0.12345678\dots$
$c_1 = 0.31415926\dots$
$c_2 = 0.27182818\dots$
$c_3 = 0.00000000$
$c_4 = 0.99999999$
:

Cantor pt. 2

Now we construct a new number c'. The i-th decimal digit of c' will be one more than the i-th digit of c_i (or 0 if it was 9). By definition, c' is not in our list (it is different from every element in at least one digit)!

```
c_0 = 0.12345...

c_1 = 0.31415...

c_2 = 0.27182...

c_3 = 0.00000...

c_4 = 0.99999...

:

:

:

:
```

Since we already used every natural number for indices, **there must be more real numbers than natural ones.** End of proof.

Note: We used the range [0,1], but this holds for any $[a,b]:a,b\in\mathbb{R}!$ There are more real numbers between any two real numbers than there are natural numbers.

Infinity sizes

Def: An infinite set is said to be **countable** iff there exists a correspondence between it and the natural numbers.

Def: An infinite set is said to be **uncountable** iff there exists a correspondence between it and the real numbers.

Corollary: Any uncountable set is larger than any countable set. Any countable set is larger than any finite set.

Proving unrecognizable languages exist

Thm: There are more languages on any Σ than there are Turing machines.

Pf: We will prove the set of all Turing machines is countably infinite, while the set of all languages on Σ is uncountably infinite. Therefore, there are undecidable languages on every alphabet.

Encoding TMs in finite binary strings

Def: An **encoding** onto alphabet Σ of a TM M is some finite string $\langle M \rangle \in \Sigma^*$ which can be used by a UTM to simulate M.

This is intentionally vague! Just convince yourself that such a string exists and is finite for all valid TMs.

Def: A binary encoding of a TM encodes it onto alphabet $\{0,1\}$.

Language characteristic strings

- A language on an alphabet Σ is some (possibly infinite) subset of $Σ^*$
- \blacktriangleright Without loss of generality, let us assume $\Sigma=\{0,1\}$ (the smallest useful alphabet)
- ► Then $Σ^*$ is $\{\epsilon, 0, 1, 01, 10, 11, ...\}$
- Let σ_i be the *i*-th element of Σ^* (0-indexed)
- **Note:** Every σ_i is of finite length!

Def: The characteristic string c_L of language L on alphabet Σ is an **infinite** binary string $c = c_0c_1c_2\cdots c_i\cdots$ where $c_i = 1$ iff $\sigma_i \in L$.

- ► Ex: $c_{\emptyset} = 0000000 \cdots$
- ► Ex: $c_{\Sigma^*} = 11111111 \cdots$
- Ex: $c_{\{\epsilon\}} = 1000000 \cdots$
- ightharpoonup Ex: $c_{\{1,11\}} = 0010001 \cdots$

Diagonalizing the TMs

Create a table such that:

- ▶ Every TM M_i 's binary encoding a_i is in one column
- ▶ The characteristic string c_i of $\mathcal{L}(M_i)$ (the set all strings recognized by M_i) is in the other
- By convention, let any invalid TM encoding have a characteristic string of all 0 (follows from UTM def.)

TM Binary encoding	Characteristic string
$a_0 = 00000$	$c_0 = 01010101$
$a_1 = 1111111111$	$c_1 = 111111111\dots$
$a_2 = 0$	$c_2 = 00000000$
$a_3 = 1111 \dots 1111$	$c_3 = 101011111$
:	:

Every TM is listed in the left column.

Diagonalization pt. 2

Let c' be an infinite binary characteristic string. Let the *i*-th bit of c' be the negation of the *i*-th bit of c_i .

TM Binary encoding	Characteristic string
$a_0 = 0000 \dots 0000$	$c_0 = 0101\dots$
$a_1 = 111111111$	$c_1 = 1$ 1 11
$a_2 = 0$	$c_2 = 0000 \dots$
$a_3 = 1111 \dots 1111$	$c_3 = 1010$
:	÷

$$c' = 1011...$$

The language of c' is not recognized by the list! Since the list has every TM, no TM recognizes c': It is said to be unrecognizable.

Therefore, some languages are not recognizable.

Proving the halting problem is recognizable

Def: The halting problem / entscheidungsproblem. Given some TM M and input w, does M ever halt? We define the language A_{TM} (A for "accept") to be:

$$A_{TM} = \{\langle M, w \rangle : M \text{ is a TM and accepts } w\}$$

Thm: The halting problem (A_{TM}) is *recognizable* (a positive answer can be given, but not always in finite time).

Pf: By construction. Let A be a UTM taking input $\langle M, w \rangle$ and accepting only if M(w) halts. Being a UTM, it can simulate M(w). If M(w) ever halts, A accepts. By definition, A recognizes (but doesn't decide) A_{TM} . End of proof.

Proving the halting problem is undecidable

Thm: A_{TM} is undecidable.

Pf: By contradiction. Assume A_{TM} is decidable. Then there exists a TM H deciding A_{TM} . We will derive a contradiction similar to Russell's paradox.

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ rejects or loops on } w \end{cases}$$

Let D be a new TM using H as a subroutine (this is legal). Since H is a decider, it always completes in finite time. We will design D to be a decider as well.

Halting problem undecidability pt. 2

D = "On input $\langle M \rangle$, where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$ (determine whether M halts when given its own description)
- 2. If *H* accepted, **reject**. If *H* rejected, **accept**."

This means that $D(\langle M \rangle)$ accepts if $M(\langle M \rangle)$ rejects or loops and rejects if $M(\langle M \rangle)$ accepts.

What happens if we run $D(\langle D \rangle)$?

Halting problem undecidability pt. 3

$$D(\langle D \rangle) = egin{cases} ext{accept} & ext{if D rejects or loops on $\langle D \rangle$} \ ext{reject} & ext{if D accepts $\langle D \rangle$} \end{cases}$$

- ▶ If $D(\langle D \rangle)$ accepts:
 - ▶ By definition, this means it must reject
 - Contradiction!
- ▶ If $D(\langle D \rangle)$ rejects:
 - By definition, this means it must accept
 - Contradiction!

Therefore, $D(\langle D \rangle)$ accepts if and only if it does not: A contradiction. The assumption that A_{TM} is decidable must be false. End of proof.

Proven by Church and Turing in 1936.

Co-Turing-recognizability

Def: A language L is said to be **co-Turing-recognizable** if \overline{L} is Turing-recognizable.

Thm: A language is decidable iff it is Turing-recognizable and co-Turing-recognizable. (pf excluded)

Corollary: A language is undecidable iff it or its complement are not Turing-recognizable.

Note: All languages which are Turing *decidable* are trivially co-Turing-decidable and vice versa.

A Turing-unrecognizable language

Thm: $\overline{A_{TM}}$ is not Turing-recognizable.

Pf: Since A_{TM} is undecidable, either it or its complement must be Turing-unrecognizable. We already proved A_{TM} is Turing-recognizable. Therefore, $\overline{A_{TM}}$ must be Turing-unrecognizable. End of proof.

Next time: Reducibility