#### 1

Import the Data File (teachfac.csv) from CANVAS



### 2 Load the necessary packages

- > library('GPArotation')
- > library('psych')



## Define data with suitable name

> df<-teachfac</p>



> head(df)

This reveals the data frame to consists of 28 variables:



**Note:** For this exercise, we are only interested in the *wen* items (variable 3 to 23)

|        |      |      | •     |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       | •     |        |       |        |       |        |
|--------|------|------|-------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|--------|
| V1     | V2   | 2    | V3    | V4   | V5   | V6   | V7   | v8   | v9   | V10  | V11  | V12   | V13   | V14   | V15   | V16   | V17   | V18   | V19   | V20   | V21   | V22   | V23   | V24    | V25   | V26    | V27   | V28    |
| sector | tsex | x we | en1 w | ven2 | wen3 | wen4 | wen5 | wen6 | wen7 | wen8 | wen9 | wen10 | wen11 | wen12 | wen13 | wen14 | wen15 | wen16 | wen17 | wen18 | wen19 | wen20 | wen21 | strain | watts | energy | order | warmth |
| 3      | 3 1  | 1    | 5     | 5    | 4    | 5    | 4    | 5    | 4    | 5    | 5    | 5     | 4     | 5     | 5     | 5     | 4     | 5     | 5     | 5     | 5     | 5     | 5     | 1.271  | -1    | 6.371  | 6     | 6.384  |
| 1      | . 1  | 1    | 4     | 3    | 3    | 2    | 2    | 2    | 3    | 2    | 3    | 4     | 2     | 3     | 3     | 4     | 2     | 4     | 2     | 3     | 3     | 4     | 4     | 1.664  | 2.763 | 5      | 3.296 | 5.472  |
|        |      |      |       |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |        |       |        |       | -1     |
| 2      | 2 1  | 1    | 4     | 4    | 3    | 4    | 2    | 4    | 3    | 4    | 4    | 2     | 2     | 4     | 5     | 4     | 4     | 3     | 2     | 4     | 4     | 4     | 4     | 2.459  | 3.437 | 5.459  | 4.76  | 4.991  |
| 1      | . (  | 0    | 5     | 4    | 2    | 4    | 1    | 5    | 3    | 5    | 5    | 5     | 2     | 4     | 5     | 5     | 5     | 5     | 4     | 5     | 5     | 4     | 5     | 2.94   | 3.674 | 5.584  | 6     | 6.225  |

```
Redefine data frame for variables of interest only (3:23)
```

> df<-df[ ,3:23]



## Determine number of missing cases

> sum(is.na(df))

Here we can see that it's seven



# 7 Check how many missing cases there are in Column 1

> sum(is.na(df[ ,<mark>1</mark>]))

Here we can see that it's zero



```
8
```

# Repeat for all 21 columns to find columns with missing

```
> sum(is.na(df[ ,1]))
> sum(is.na(df[ ,2]))
> sum(is.na(df[ ,3]))
> sum(is.na(df[ ,4]))
> sum(is.na(df[ ,5]))
> ...
> sum(is.na(df[ ,21]))
```

Here we can stop at column 5 because all seven were found in the same column



Bonus task (for later): write a code that loops through all columns

Replace the missing 9 values from column 5 with the median

temp





Recheck the number of missing cases (should be zero now)

> sum(is.na(df))

Here we can see that it's zero after replacing with the median



#### Check the correlation matrix



Do all variables have at

correlation

**least one** correlation with another variable that is larger than .30?

Console Terminal ~/ @ 0.56 0.62 0.55 0.00 0.67 0.40 0.37 -0.12 0.41 -0.33 0.48 -0.05 0.46 0.63 0.53 -0.15 0.63 0.50 > correlation<-round(cor(df),2) > correlation wen5 wen6 wen8 wen9 wen10 wen11 wen12 wen13 wen14 wen15 wen16 wen17 wen18 wen19 wen20 wen21 wen7 0.46 0.64 -0.09 0.42 0.32 0.65 0.43 0.59 -0.03 0.38 0.55 0.03 0.50 - 0.160.43 0.010.41 0.48 0.40 -0.06 0.40 0.36 0.39 0.36 0.37 0.02 0.35 0.34 -0.14 0.56 -0.14 -0.16 -0.20 0.42 -0.12 -0.06 -0.20 -0.25 -0.21 0.47 -0.19 -0.13 -0.03 -0.12 1.00 -0.20 0.42 0.01 0.48 0.48 0.42 -0.07 0.42 0.44 0.40 0.38 0.37 0.03 0.40 1.00 - 0.350.31 -0.31 -0.33 -0.48 0.26 -0.29 -0.18 -0.49 -0.35 -0.44 1.00 - 0.120.48 0.53 0.59 -0.18 0.46 0.41 0.58 0.51 -0.05 -0.08 -0.11 0.49 -0.06 -0.13 -0.24 -0.14 -0.040.48 - 0.310.48 - 0.051.00 0.52 0.55 -0.14 0.45 0.38 0.60 0.41 0.52 - 0.020.48 -0.33 0.53 -0.08 0.52 1.00 0.56 -0.20 0.61 0.49 0.61 0.66 0.42 - 0.480.59 -0.11 0.55 0.56 1.00 -0.12 0.50 0.36 0.72 0.53 0.26 -0.180.49 -0.14 -0.20 -0.12 1.00 -0.12 -0.12 -0.19 -0.250.45 0.61 0.50 -0.12 1.00 0.42 - 0.290.46 - 0.060.48 0.54 0.610.44 - 0.180.41 - 0.040.38 0.49 0.36 -0.12 0.48 1.00 0.43 0.43 0.40 - 0.490.58 - 0.130.60 0.61 0.72 -0.19 0.54 0.43 1.00 0.58 0.36 -0.25 0.38 -0.35 0.66 0.53 - 0.250.61 0.58 0.51 - 0.240.41 0.43 1.00 0.58 - 0.16-0.44 0.52 -0.14 0.52 0.54 0.72 -0.15 0.50 0.38 0.21 - 0.080.52 -0.02 -0.08 -0.04 0.47 0.00 0.01 -0.08 -0.16 -0.05 0.40 -0.32 0.43 -0.15 0.43 0.62 0.48 - 0.180.67 0.49 0.53 0.66 0.45 0.52 -0.13 0.47 - 0.280.53 - 0.090.51 0.73 0.52 - 0.220.59 0.57 0.60 0.62 0.53 - 0.060.37 0.53 -0.03 0.46 -0.19 0.47 0.02 0.57 0.47 - 0.090.48 0.53 0.46 0.43 0.46 0.03 0.52  $0.40 \quad 0.37 \quad -0.12 \quad 0.41 \quad -0.33 \quad 0.48 \quad -0.05 \quad 0.46 \quad 0.63 \quad 0.53 \quad -0.15 \quad 0.63 \quad 0.50 \quad 0.56 \quad 0.62 \quad 0.55 \quad 0.00 \quad 0.67 \quad 0.65 \quad 0.52 \quad 1.00$ 

## 12 Check sampling accuracy with KMO

> kmo(df)

The overall MSA is larger than 0.60



# Compare correlation matrix to identity matrix

> bartlett.test(df)

Bartlett's test is significant so FA is suitable



# Obtain the initial (un-rotated) factor loadings



> m1<-fa(df, nfactors = 21, rotate="none")</p>



### Determine a suitable number of factors

> fa.parallel(df, fa="fa")



m2<-fa(df, nfactors = 4, rotate="none")

m2\$loadings

This is not a simple structure (where each variable loads highly onto one and only one factor) so rotation is required





RStudio

m3\$loadings

Item 20 is still loading highly across multiple factors (we should remove this item)



| > | df<-dfl. | -201 |
|---|----------|------|

> m4<-fa(df, nfactors = 4, rotate="oblimin")</p>

RStudio

> m4\$loadings

Here factor 4 only has two items loading highly onto it. We need to decide whether or not to remove it (for this example we will remove)





- m5<-fa(df, nfactors = 3, rotate="oblimin")
- m5\$loadings

Much better:

```
\bigcirc m5
                                                                                                        List of 51
                                                                                                                                           Q
                                                                                                        1097 obs. of 28 variables
                                                                                        1 teachfac
                                                                                        Values
                                                                                          temp
                                                                                                        num [1:1097] 4 2 3 2 1 1 1 4 2 2 ...
                                                                                          temp1
Cumulative var 0.19/ 0.304 0.408 0.30/
> m5<-fa(df, nfactors = 3, rotate="oblimin")
> m5$loadings
                                                                                                  Packages

∠ Zoom ∠ Export → □

                                                                                                                                       - - | €
Loadings:
                    MR2
             MR3
              0.848
wen1
                                                                                                      Parallel Analysis Scree Plots
       0.389 0.245 0.158
wen2
wen3
             -0.138
                    0.690
       0.402 0.258 0.150
wen4
             -0.537 0.312
wen5
                                                                                                                   FA Actual Data
                                                                                        principal factors
       0.268 0.473
wen6
                                                                                             \infty
                                                                                                                   FA Simulated Data
                     0.781
wen7
                                                                                                                  FA Resampled Data
       0.200 0.546
wen8
wen9
       0.726 0.123
                                                                                             9
wen10
              0.861
wen11 -0.171
                    0.609
wen12 0.741
                                                                                        ð
wen13
      0.662
       0.157
             0.720
                                                                                        eigen values
wen14
       0.665
                    -0.177
wen15
       0.122 0.690
wen16
                                                                                             2
wen17
                     0.684
wen18 0.867 -0.102
wen19
       0.833
                                                                                                       wen21 0.747
                       MR3
                                                                                                                                      20
               4.470 3.458 2.124
SS loadings
Proportion Var 0.224 0.173 0.106
Cumulative Var 0.224 0.396 0.503
                                                                                                               Factor Number
```





#### =COUNTIF(B2:U2,">.05")

Consider removing item 4

| 1  | Α     | В     | С     | D     | E     | F     | G     | Н     | I     | J     | K     | L     | М     | N     | 0     | Р     | Q     | R     | S     | Т     | U     | W | X   |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|-----|
| 1  |       | wen1  | wen2  | wen3  | wen4  | wen5  | wen6  | wen7  | wen8  | wen9  | wen10 | wen11 | wen12 | wen13 | wen14 | wen15 | wen16 | wen17 | wen18 | wen19 | wen21 |   |     |
| 2  | wen1  | 0.39  | 0.06  | 0     | 0.06  | 0.02  | 0     | -0.01 | 0.03  | -0.01 | -0.03 | 0     | 0     | -0.01 | 0.01  | -0.01 | -0.02 | -0.03 | 0     | 0     | -0.03 | 3 | 16% |
| 3  | wen2  | 0.06  | 0.66  | 0.03  | 0.14  | 0.05  | 0.05  | -0.03 | 0.03  | 0.02  | -0.03 | -0.03 | -0.02 | 0.01  | -0.05 | -0.04 | -0.04 | -0.05 | -0.06 | 0.06  | -0.06 | 4 | 21% |
| 4  | wen3  | 0     | 0.03  | 0.49  | 0.01  | 0.01  | 0.02  | 0.01  | -0.03 | -0.01 | -0.01 | -0.02 | -0.01 | . 0   | 0.02  | 0     | 0     | 0     | -0.02 | 0.01  | . 0   | 1 | 5%  |
| 5  | wen4  | 0.06  | 0.14  | 0.01  | 0.63  | 0.03  | 0.02  | -0.02 | 0.08  | 0.01  | -0.03 | -0.03 | -0.03 | 0.07  | -0.06 | -0.04 | -0.06 | -0.03 | -0.04 | -0.01 | -0.04 | 5 | 26% |
| 6  | wen5  | 0.02  | 0.05  | 0.01  | 0.03  | 0.62  | 0.01  | 0     | 0.03  | 0     | -0.02 | -0.01 | -0.02 | 0.01  | -0.03 | 0.01  | -0.01 | -0.03 | -0.03 | 0.02  | -0.04 | 1 | 5%  |
| 7  | wen6  | 0     | 0.05  | 0.02  | 0.02  | 0.01  | 0.51  | -0.01 | 0     | 0     | 0.01  | -0.02 | -0.02 | 0.03  | -0.01 | 0.01  | -0.02 | -0.02 | -0.04 | 0.01  | -0.01 | 1 | 5%  |
| 8  | wen7  | -0.01 | -0.03 | 0.01  | -0.02 | . 0   | -0.01 | 0.39  | 0.01  | 0.03  | 0     | 0     | 0     | -0.02 | 0.02  | -0.01 | 0     | 0     | -0.01 | 0     | 0.02  | 1 | 5%  |
| 9  | wen8  | 0.03  | 0.03  | -0.03 | 0.08  | 0.03  | 0     | 0.01  | 0.52  | 0.01  | -0.03 | -0.03 | -0.01 | 0.01  | 0.02  | -0.05 | -0.02 | -0.01 | -0.01 | 0.01  | -0.02 | 2 | 11% |
| 10 | wen9  | -0.01 | 0.02  | -0.01 | 0.01  | . 0   | 0     | 0.03  | 0.01  | 0.33  | 0     | -0.01 | -0.01 | -0.03 | 0     | 0.03  | -0.01 | -0.02 | -0.03 | 0.04  | -0.01 | 1 | 5%  |
| 11 | wen10 | -0.03 | -0.03 | -0.01 | -0.03 | -0.02 | 0.01  | 0     | -0.03 | 0     | 0.26  | 0.03  | 0.01  | -0.02 | 0     | 0.01  | 0.05  | 0.02  | 0.02  | -0.01 | 0.02  | 1 | 5%  |
| 12 | wen11 | 0     | -0.03 | -0.02 | -0.03 | -0.01 | -0.02 | 0     | -0.03 | -0.01 | 0.03  | 0.59  | 0.03  | -0.02 | -0.01 | 0.02  | 0.02  | 0.05  | 0.04  | -0.03 | 0     | 1 | 5%  |
| 13 | wen12 | 0     | -0.02 | -0.01 | -0.03 | -0.02 | -0.02 | 0     | -0.01 | -0.01 | 0.01  | 0.03  | 0.41  | -0.01 | 0.01  | 0.03  | 0.01  | 0.02  | 0.06  | -0.06 | 0.03  | 2 | 11% |
| 14 | wen13 | -0.01 | 0.01  | 0     | 0.07  | 0.01  | 0.03  | -0.02 | 0.01  | -0.03 | -0.02 | -0.02 | -0.01 | 0.59  | 0.01  | -0.05 | -0.01 | 0     | -0.02 | 0.03  | 0     | 2 | 11% |
| 15 | wen14 | 0.01  | -0.05 | 0.02  | -0.06 | -0.03 | -0.01 | 0.02  | 0.02  | 0     | 0     | -0.01 | 0.01  | 0.01  | 0.28  | 0.01  | 0.01  | 0.01  | 0.01  | 0.02  | 0     | 1 | 5%  |
| 16 | wen15 | -0.01 | -0.04 | 0     | -0.04 | 0.01  | 0.01  | -0.01 | -0.05 | 0.03  | 0.01  | 0.02  | 0.03  | -0.05 | 0.01  | 0.38  | 0.05  | 0.01  | 0.03  | -0.03 | 0.02  | 1 | 5%  |
| 17 | wen16 | -0.02 | -0.04 | 0     | -0.06 | -0.01 | -0.02 | 0     | -0.02 | -0.01 | 0.05  | 0.02  | 0.01  | -0.01 | 0.01  | 0.05  | 0.38  | 0.03  | 0.01  | -0.01 | 0.04  | 1 | 5%  |
| 18 | wen17 | -0.03 | -0.05 | 0     | -0.03 | -0.03 | -0.02 | 0     | -0.01 | -0.02 | 0.02  | 0.05  | 0.02  | 0     | 0.01  | 0.01  | 0.03  | 0.54  | 0.03  | -0.01 | 0.03  | 1 | 5%  |
| 19 | wen18 | 0     | -0.06 | -0.02 | -0.04 | -0.03 | -0.04 | -0.01 | -0.01 | -0.03 | 0.02  | 0.04  | 0.06  | -0.02 | 0.01  | 0.03  | 0.01  | 0.03  | 0.34  | -0.01 | 0.04  | 2 | 11% |
| 20 | wen19 | 0     | 0.06  | 0.01  | -0.01 | 0.02  | 0.01  | 0     | 0.01  | 0.04  | -0.01 | -0.03 | -0.06 | 0.03  | 0.02  | -0.03 | -0.01 | -0.01 | -0.01 | 0.28  | -0.02 | 2 | 11% |
| 21 | wen21 | -0.03 | -0.06 | 0     | -0.04 | -0.04 | -0.01 | 0.02  | -0.02 | -0.01 | 0.02  | 0     | 0.03  | 0     | 0     | 0.02  | 0.04  | 0.03  | 0.04  | -0.02 | 0.38  | 1 | 5%  |



- df<-df[,-4]
- m6<-fa(df, nfactors = 3, rotate="oblimin")

RStudio

m6\$loadings

Factor loadings are still good:



#### =COUNTIF(B2:U2,">.05")

#### Much better:

- > temp<-round(m6\$residual,2)</p>
- > write.csv(temp, file="residual2.csv"

| 1 2 \    |       | 17    | 0     | 0.02  | 0.01  | 0     | 0.04  | -0.01 | -0.02 | 0     | 0     | 0     | 0.01  | -0.01 | -0.02 | -0.02 | 0     | 0     | -0.03 | - | 2 0.105263 |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|------------|
| l,2)     |       | 58    | 0.04  | 0.02  | 0.01  | -0.02 | 0.04  | 0.03  | -0.02 | -0.02 | -0.01 | 0.02  | -0.05 | -0.01 | -0.02 | -0.02 | -0.05 | 0.07  | -0.05 |   | 4 0.210526 |
|          |       | и     | 0.49  | 0.02  | 0.02  | 0.01  | -0.02 | 0.05  | -0.01 | -0.02 | -0.02 | 0.02  | 0.01  | 0.03  | -0.01 | -0.01 | -0.02 | 0.01  | 0.05  |   | 1 0.052632 |
|          |       | 74    | 0.02  | 0.62  | 0.02  | 0.01  | 0.03  | 0     | -0.01 | -0.02 | -0.02 | 0.02  | -0.03 | 0.01  | -0.01 | -0.01 | -0.02 | 0.01  | -0.04 |   | 1 0.052632 |
| lual2.   | רכע") | 15    |       |       |       |       |       | 0     |       |       |       |       |       |       |       |       |       |       |       |   |            |
| iuuiz.   |       | )6    | 0.02  | 0.01  | 0.52  | -0.01 | 0.01  | 0     | 0.01  | -0.02 | -0.02 | 0.04  | -0.01 | 0.01  | -0.02 | -0.02 | -0.04 | 0.01  | -0.01 |   | 2 0.105263 |
|          |       | )2    | 0.01  | 0.01  | -0.01 | 0.39  | 0.01  | 0.03  | 0     | 0     | -0.01 | -0.02 | 0.01  | -0.01 | -0.01 | -0.01 | -0.01 | 0     | 0.02  |   | 1 0.052632 |
| 0 110    | 0.0-7 | J.J4  | -0.02 | 0.03  | 0.01  | 0.01  | 0.53  | 0.02  | -0.03 | -0.03 | -0.01 | 0.02  | 0.02  | -0.05 | -0.02 | -0.01 | -0.01 | 0.02  | -0.02 |   | 1 0.052632 |
| 9 wen9   | -0.01 | 0.03  | 0     | 0     | 0     | 0.03  | 0.02  | 0.33  | 0     | -0.01 | -0.01 | -0.02 | 0     | 0.03  | -0.01 | -0.03 | -0.04 | 0.04  | -0.02 |   | 1 0.052632 |
| 10 wen10 | -0.02 | -0.02 | -0.01 | -0.02 | 0.01  | 0     | -0.03 | 0     | 0.26  | 0.02  | 0     | -0.02 | -0.01 | 0.01  | 0.04  | 0.01  | 0.02  | -0.01 | 0.02  |   | 1 0.052632 |
| 11 wen11 | 0     | -0.02 | -0.02 | -0.01 | -0.02 | 0     | -0.03 | -0.01 | 0.02  | 0.59  | 0.03  | -0.01 | -0.01 | 0.02  | 0.02  | 0.04  | 0.03  | -0.03 | 0     |   | 1 0.052632 |
| 12 wen12 | 0     | -0.01 | -0.02 | -0.02 | -0.02 | -0.01 | -0.01 | -0.01 | 0     | 0.03  | 0.41  | 0     | 0     | 0.02  | 0     | 0.02  | 0.06  | -0.06 | 0.02  |   | 2 0.105263 |
| 13 wen13 | 0     | 0.02  | 0     | 0.02  | 0.04  | -0.02 | 0.02  | -0.02 | -0.02 | -0.01 | 0     | 0.6   | 0.01  | -0.04 | -0.01 | 0     | -0.02 | 0.04  | 0     |   | 1 0.052632 |
| 14 wen14 | 0.01  | -0.05 | 0.01  | -0.03 | -0.01 | 0.01  | 0.02  | 0     | -0.01 | -0.01 | 0     | 0.01  | 0.27  | 0     | 0     | 0     | 0     | 0.01  | 0     |   | 1 0.052632 |
| 15 wen15 | -0.01 | -0.03 | 0     | 0.01  | 0.01  | -0.01 | -0.05 | 0.03  | 0.01  | 0.02  | 0.02  | -0.04 | 0     | 0.38  | 0.05  | 0     | 0.03  | -0.03 | 0.01  |   | 1 0.052632 |
| 16 wen16 | -0.02 | -0.03 | -0.01 | -0.01 | -0.02 | -0.01 | -0.02 | -0.01 | 0.04  | 0.02  | 0     | -0.01 | 0     | 0.05  | 0.37  | 0.02  | 0     | -0.02 | 0.03  |   | 1 0.052632 |
| 17 wen17 | -0.02 | -0.04 | -0.01 | -0.03 | -0.02 | -0.01 | -0.01 | -0.03 | 0.01  | 0.04  | 0.02  | 0     | 0     | 0     | 0.02  | 0.53  | 0.03  | -0.02 | 0.02  |   | 1 0.052632 |
| 18 wen18 | 0     | -0.05 | -0.02 | -0.03 | -0.04 | -0.01 | -0.01 | -0.04 | 0.02  | 0.03  | 0.06  | -0.02 | 0     | 0.03  | 0     | 0.03  | 0.33  | -0.01 | 0.04  |   | 2 0.105263 |
| 19 wen19 | 0     | 0.07  | 0.01  | 0.03  | 0.01  | 0     | 0.02  | 0.04  | -0.01 | -0.03 | -0.06 | 0.04  | 0.01  | -0.03 | -0.02 | -0.02 | -0.01 | 0.28  | -0.02 |   | 2 0.105263 |
| 20 wen21 | -0.03 | -0.05 | 0     | -0.04 | -0.01 | 0.02  | -0.02 | -0.02 | 0.02  | 0     | 0.02  | 0     | 0     | 0.01  | 0.03  | 0.02  | 0.04  | -0.02 | 0.37  |   | 1 0.052632 |
| 21       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |   |            |

### 24

Obtain a summary factor diagram to see which items load where

> fa.diagram(m6)



# Recount the column numbers for the remaining variables



Define the three factors based upon the variable's column N



- > factor1<-df[ , c(2,8,11,12,14,17,18,19)]</pre>
- > factor2<-df[ , c(1,4,5,7,9,13,15)]</pre>
- > factor3<-df[ , c(3, 6, 10, 16)]</pre>



### Assess the reliability for factor 1

> Alpha(factor1)

