MSBA 7004 Operations Analytics

Class 10-1: Revenue Management 2023

Learning Objectives

- Explain the concept of revenue management.
- Understand customer segmentation and price discrimination.
- Apply tools for capacity reservation and overbooking management.

Operations Management Options +++

MANAGING SUPPLY

Capacity management

Process (bottleneck) analysis

Queueing analysis

Inventory and supply chain management

4

Revenue management (a.k.a. yield management)

Matching Supply to Demand When Supply Is Fixed

Examples of fixed supply:

Travel industries (fixed number of seats, rooms, cars, etc.).

Advertising time (limited number of time slots).

Telecommunications bandwidth.

Size of the TPG program.

Doctor's appointments.

Revenue management is a solution:

- If adjusting supply is impossible – adjust the demand!
- Segment customers into high willingness to pay and low willingness to pay.
- Limit the number of tickets sold at a low price, that is, control the average price by changing the mix of customers.

Examples

Hotel Room Pricing

Airlines and Seat Pricing

Disneyland's Tiered Pricing

Uber Surge Pricing

eCommerce and Flash Sales

Cruise Line Cabin Upgrades

Streaming Services and Content Licensing

Online Advertising Auctions

Ride-Sharing Subscription Plans

"The process of allocating the right **type** of capacity, to the right kind of customer, at the right price and time, to maximize revenue or yield..."

The Art of Managing Yield, AmericanAirlines Annual Report, 1987

AmericanAirlines* VS **PEOPLExpress**

HOW SHOULD AA COMPETE?

Give up the low-end market?

Use price discrimination?

Increase routes or schedules?

Spin off a new budget airline?

Acquire People Express?

"Play dirty"?

THE DECISION

Ultimate Super Saver January 1985

70% of tickets with higher prices 30% of tickets with lower prices

Newsvendor Model?

RESULT - DOWNFALL OF PE

From US\$1 billion profit in 1985 to near-bankrupt in 1986

Acquired by Continental in 1987

- Price Control
 - Price customization
 - Dynamic pricing

- Capacity Control
 - Yield management
 - Service customization

Pricing

PRICING A PRODUCT/SERVICE

Intrinsic value

Classical economics: supply and demand

TRADITIONAL APPROACHES

Based on

Cost-plus

Costs

Market based

Competition

Value based

Customers

互动娱乐区 集发电 储电 充电于一 Model Y

China sales of electric vehicles by company

2022 🚘 2021

Sources: Company websites, Technode, Inside EVs, Electrek, Investor Insights, CNEV Post, CGTN, Moomoo, Auto China.

Some figures are company estimates.

Pricing: iPhone

- 2008: iPhone 3G only
- 2023: iPhone 15 Pro and many more..

Pricing: iPhone

IPHONES ON SALE IN 2008

iPhone 3G HK\$5,400 / HK\$6,200

IPHONES ON SALE IN 2023

iPhone 15 series HK\$6,899 – HK\$13,599

iPhone 14 (Plus) From HK\$5,999

iPhone 13 From HK\$5,099

iPhone SE From HK\$3,699

Pricing: An Important Tool

ONE PRICE DOES NOT FIT ALL

How much will you pay for an iPhone 15 Pro Max 256GB?

iPhone 15 Pro 6.1-inch display¹ iPhone 15 Pro Max 6.7-inch display¹ Need help choosing a model? Explore the differences in screen size and battery life.

Pricing: An Important Tool

ONE PRICE DOES NOT FIT ALL

Price Discrimination – Example

demand = 1000 – 100 * *price*

revenue = *price* * (1000 – 100 * *price*)

Demand for seats

Price Discrimination and Customization

- Other examples
 - Demographics: Age, gender
 - Brand, distribution channel
 - Order volume
 - Location
 - Service (warranty)
 - Look/color
- Ethic considerations
 - Privacy, anti-discrimination, fairness

Dynamic Pricing

For a single product, set price dynamically *over time*, and set one price for all the customers.

Dynamic Pricing

Rue La La

LOUIS VUITTON

just for NEW MEMBERS

Rue La La

- Price Optimization for first time offerings
 - Result: Overall 10% increase in total revenue

- Price Control
 - Price customization
 - Dynamic pricing

- Capacity Control
 - Yield management
 - Service customization

Reserving Capacity

 You manage a hotel with 200 rooms in Indianapolis, IN. The NCAA Championship Game is coming up. Sports fans either book a room in advance or wait until the last minute.

Advance booking: Bargain rate

– Late booking: Premium rate

- Suppose you can easily get 200 advance reservations and fill up your hotel.
 - Should you fill up rooms with advance customers? Why?
 - How many rooms should be set aside for last-minute customers? What information do you need?

The Classic Newsvendor Model

- A newsvendor stocks newspapers to sell that day
- Trade-offs:
 - If stocks too few newspapers sales.
 - If stocks too many newspape wasted on unsold newspapers.

How many newspapers should be stocked?

The Classic Newsvendor Model

Newsvendor Model

- A decision-making framework for Single period inventory decision.
- Uncertain Demand: Demand is random and follows a probability distribution.
- Perishable Inventory: Products are perishable or have a limited shelf life.
- Overage cost c_o (cost of ordering too much) versus Underage cost c_u (cost of ordering too little).
- Objective: Determine the optimal order quantity to minimize expected cost.

Solution

- Critical Ratio (CR): $C_u/(C_o + C_u)$
- Optimal order quantity Q* satisfies $P(Demand \leq Q^*) = CR$

Reserving Capacity and Newsvendor

Room Reservation	Newsvendor Problem
Hotel rooms are "perishable"	Newspapers are "perishable"
Random last-minute demand	Random newspaper demand
Decide how many rooms to reserve for last-minute customers	Decide how many newspapers to purchase
If reserve too few rooms, miss potential premium customers	If stock too few newspapers, miss potential sales
If reserve too many rooms, revenue lost on empty rooms	If stock too many newspapers, money wasted on unsold newspapers

Reserving Capacity

- Assume
 - Number of last-minute customers is normally distributed with mean 75 and st dev 25
 - Advance booking: \$200/night
 - Late booking: \$500/night
- How many rooms should be set aside for last-minute customers?

$$C_u = \frac{$500 - $200}{$200} = $300$$
 $C_o = \frac{$200}{$200 + 300} = 0.6$
Critical ratio = 300 / (200+300) = 0.6 z = 0.25

Should reserve 82 rooms for last-minute customers (75+0.25*25 = 81.25, round up)

Overbooking

- Suppose you cannot charge latecomers a different rate because of a city ordinance that prohibits "price gouging" during the Final Four weekend
- You can easily get 200 reservations and fill up your hotel
- But you are afraid that some people with reservations may not show up
- How many reservations should you take?
 - More than 200?
 - How many more?
 - What information do you need?

Overbooking and Newsvendor

Overbooking	Newsvendor Problem				
Overbooks are "perishable"	Newspapers are "perishable"				
Random no-shows	Random newspaper demand				
Decide how many overbooks	Decide how many newspapers to purchase				
If too few overbooks, miss potential sales	If stock too few newspapers, miss potential sales				
If too many overbooks, incur loss of good-will	If stock too many newspapers, money wasted on unsold newspapers				

Overbooking

- Assume
 - The number of no-shows is distributed as follows:

- Room rate is \$200 per night
- It costs the hotel \$500 per night to book a room in a nearby hotel for an overbooked customer
- How many overbooks should you take?

$$C_{\text{II}} = \underline{}$$

Critical ratio = Should overbook

Overbooking

Leave your seats

Involuntary denials of boarding per 10,000 passengers for select airlines

When Overbooking Goes Wrong...

Travel » Aviation | Business Traveller | Destinations | Features | Food/Drink | Hotels | Partner Hotels

International Edition + $\wp \equiv$

Passenger dragged off overbooked United flight

By Christina Zdanowicz and Emanuella Grinberg, CNN (*) Updated 0658 GMT (1458 HKT) April 11, 2017

EXAMPLE - FLIGHT UA3411

- April 9, 2017, UA3411 from Chicago O'Hare to Louisville
- The plane was full, and everyone had boarded
- 4 crew members needed to fly to Louisville to work on a flight departing later from Louisville
- United asked for 4 volunteers
- Not enough volunteered despite increased perks, so UA subsequently randomly picked a passenger to deboard
- The passenger refused and....
- Can this incident change how airlines approach overbooking?

When Overbooking Goes Wrong...

Capacity segmentation and allocation

• r_i : class-i fare $(r_1>r_2>...>r_n)$

total number of available aircraft seats

Protection level for n-1 and lower Protection for n-2 and lower

nested booking limits

These fares of	do not include o	overnment fee	s and taxes.	More Fares 🛶	+	+	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104
2510	6:40am	8:45am	N/S	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0
1577/2126	12:55pm	4:00pm	RNO/1	0	0	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	c	0	Ö	0

These fares o	do not include o	overnment fee	s and taxes	. More Fares 🛶	-	-	-	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104	Internet One-way \$69
2510	6:40am	8:45am	N/S	0	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0	Unavailable
1577/2126	12:55pm	4:00pm	RNO/1	0	0	Unavallable	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	c	0	dnavatable	Unavailable	Unavailable

6 days later

These fares	do not include q	overnment fee	s and taxes.	More Fares 🔷	+	+	+	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104	Internet One-way \$69
2510	6:40am	8:45am	N/S	0	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0	Unavailable
1577/2128	12:55pm	4:00pm	RNO/1	0	Unavailable	Unavallable	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	0	0		Unavallable	Unavallable

9 days later

These fares do not include government fees and taxes.			More Fares 🔷	+	+	+	→ End	
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104	Internet One-way \$69
2510	6:40am	8:45am	N/S	0	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0	Unavailable
1577/2126	12:55pm	4:00pm	RNO/1	0	Unavailable	Unavallable	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	0	0	dnavallable	Unavailable	Unavallable

12 days later

Typical Pricing Curves

Three deciding factors:

- How many items are left, k
- How much time is left, t
- How demand will change
- As the number of remaining items decreases, price increases (price is higher if there are fewer items to sell)
- As time goes by, price decreases (price is higher if there is more time left to sell)
- As demand increases / decreases, so does the price

So, Revenue Management...

Segmentation Segmentation

Pricing

NEW TRICKS

Tactical applications of various concepts

Systematic/disciplined approaches

Data/IS-intensive nature

Challenges?

CHALLENGES

DATA

source of demand information

ANALYTICAL MODELS

Data collection

MSBA7012 Social Media & Digital Marketing Analytics

Forecasting

MSBA7013 Forecasting and Predictive Analytics

Real-time updates

MSBA7021 Prescriptive Analytics

Capable of deciding both pricing and capacity

Providing status updates

Dynamic programming required

Thank You

Huiyin Ouyang oyhy@hku.hku

