第1章 函数

微积分包含微分、积分两个运算, 其作用对象是函数。

§ 1.1 绝对值. 区间. 邻域

狭义的说,函数就是将一个数集变为另一个数集的一个规则,因此我们首先回顾一下数集 相关概念。

有理数和无理数统称为实数. 全体实数所组成的集合称为实数系. 数轴是一条有原点、正方向和长度单位的直线. 实数和数轴上的点之间具有一一对应的关系. 通常, 我们不作严格区分,

图 1.1 实数与数轴

把点P与其坐标x视为等同,即点P也称为点x,数x 也称为点x.

定义 1.1 绝对值

设x 是一个实数,则x 的绝对值的定义为

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0. \end{cases}$$

注 1.1 绝对值的几何意义就是点P到原点的距离. |x-y| 则表示点x与点y之间的距离.

很多将要讲到的数集都是用绝对值的不等式表示的。

性质 1.1 设x 和y 是任意两个实数,则

1. $|x| \ge 0$; 2. |-x| = |x|; 3. $-|x| \le x \le |x|$ 4. $|x \pm y| \le |x| + |y|$;

5. $||x| - |y|| \le |x - y|;$ 6. |xy| = |x||y|; 7. $\left| \frac{x}{y} \right| = \frac{|x|}{|y|} (y \ne 0).$

证明 性质4的证明: 我们只就 $|x+y| \le |x| + |y|$ 来证. 由性质3 可得

$$-|x| \leqslant x \leqslant |x|, -|y| \leqslant y \leqslant |y|$$

因此

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

这等价于

$$|x+y| \leqslant |x| + |y|.$$

性质5的证明:由性质4得

$$|x| = |x - y + y| \le |x - y| + |y|$$

因此

$$|x| - |y| \leqslant |x - y|$$

在上式中交换x 与y 的位置可得

$$|y| - |x| \leqslant |y - x|$$

即

$$|x| - |y| \geqslant -|x - y|$$

从而证得

$$-|x-y|\leqslant |x|-|y|\leqslant |x-y|$$

即

$$||x| - |y|| \leqslant |x - y|.$$

数集就是一个集合。

定义 1.2 集合

具有某种特定性质的事物的总体称为集合. 组成这个集合的事物称为该集合的元素.

- 一般地,我们用大写英文字母表示集合,小写英文字母表示元素. $a \in A$ 表示元素a 在集合A中. $a \notin A$ 表示元素a 不在集合A中. $\exists x \in A$, 则必 $x \in B$, 就说A 是B 的子集或称作A 包含于B (B 包含A), 记作 $A \subset B$. 集合有两种表示方法: 枚举法和描述法。
 - 自然数的集: $\mathbf{N} = \{0, 1, 2, \dots, n, \dots\};$

- 整数集 $\mathbf{Z} = \{\cdots, -n, \cdots, -2, -1, 0, 1, 2, \cdots, n, \cdots\};$
- 有理数集 $\mathbf{Q} = \left\{ \frac{p}{q} \mid p \in \mathbf{Z}, q \in \mathbf{N}, q \neq \mathbf{0}, \exists p \exists q \exists \beta \right\};$
- 实数集R.

可以看到, $N \subset Z \subset Q \subset R$.

图 1.2 不同类型的区间

设 $\delta > 0, M > 0$ 我们称

- $O_{\delta}(x_0) = (x_0 \delta, x_0 + \delta)$ 为 x_0 的 δ 邻域
- $O_{\delta}(x_0)/\{x_0\} = (x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ 为 x_0 的 δ 去心邻域
- $(x_0 \delta, x_0)$ 为 x_0 的左邻域
- $(x_0, x_0 + \delta)$ 为 x_0 的右邻域
- $O_M(\infty) = \{x \mid |x| > M\} = (-\infty, -M) \cup (M, +\infty)$ 为 ∞ 点的M 邻域
- $(-\infty, -M)$ 是 ∞ 的左邻域
- $(M, +\infty)$ 是 ∞ 的右邻域

图 1.3 邻域

例 1.1 解不等式|x+2| < |x-1|, 并用区间表示该不等式的解集.

解 由绝对值的几何意义, 待解不等式要求的点x 的集合为: 到-2 的距离小于它到1 的距离. 当 $x<-\frac{1}{2}$ 时, x 到-2 的距离小于x 到1 的距离. 故所给不等式的解集为 $\left\{x\mid x<-\frac{1}{2}\right\}$, 用区间表示为 $\left(-\infty,-\frac{1}{2}\right)$.

例 1.2 证明 $|a-b| \le |a-c| + |c-b|$.

$$|a-b| = |a-c+c-b| \le |a-c| + |c-b|$$
 (由性质1.1 (4)).

例 1.3 证明:若 $|x-1| \le 1$, 则 $|x^4-1| \le 15|x-1|$.

解 由不等式 $|a+b| \le |a| + |b|$ 得

$$|x| = |(x-1) + 1| \le |x-1| + 1$$

证明: 由于 $|x| \le |x-1|+1 \le 2$, $(x^2+1)(|x|+1) \le 15$, 故

$$|x^4 - 1| = |x^2 + 1| \cdot |x + 1| \cdot |x - 1|$$

$$\leq (x^2 + 1)(|x| + 1)|x - 1| \leq 15|x - 1|.$$

§ 1.2 函数概念

在某一过程中不断变化的量称为变量. 例如

- 自由落体运动 $s = \frac{1}{2}gt^2$,
- 复利问题 $a_k = k_0 \cdot 1.02^t$, $t = 1, 2, 3, \cdots$
- 圆的面积 $S=\pi r^2$.

在某一变化过程中始终保持不变的量称为**常量**,变量的取值范围称为该变量的变域.变量的变域是区间,称这种变量为连续取值变量,变量的变域不是区间,称这种变量为离散取值变量.

我们可以看出,在同一问题中所涉及的诸变量之间都按一定的规律相联系,其中一个变量的变化将会引起另一变量的变化,当前者(又称为自变量)的值确定后,后者(又称为因变量)的值按照一定的关系相应被确定.变量之间的这种相互确定的依赖关系抽象出来就是函数的概念.

定义 1.3 函数

设有两个变量x 与y, 变量x 属于某实数集合D. 如果存在一个确定的法则(也说对应规则) f,使得对于每一个 $x \in D$, 都有惟一的一个实数y 与之对应,则称这个对应法则f 为定义在实数集合D 上的一个一元函数,简称函数. D 称为f 的定义域.

函数f 的定义域D 通常记为D(f). 当 $x \in D(f)$ 时, 称函数f 在x 处有定义;否则称f 在x 处无定义. 对于每个 $x \in D(f)$, 由法则f 所对应的实数g 称为g 在点g 处的函数值,常记为g(g). 全体函数值的集合称为函数g 的值域,记为g(g), 即

$$R(f) = \{y \mid y = f(x), x \in D(f)\}.$$

注 1.2 函数的两要素为定义域和定义法则. 两个函数相同的充要条件是它们有相同的定义域和定于法则.

函数的表示方法共有三种:表格法,图示法和解析法.下面分别举例说明。

例 1.4 据统计20 世纪60 年代世界人口增长情况如下表所示:

年份t	1960	1961	1962	1963	1964	1965	1966	1967	1968
人口n/百万	2972	3061	3151	3213	3234	3285	3356	3420	3483

从表中可以看出,世界人口数n 是年份t 的函数,其定义域为 $\{1960,1961,\cdots\}$,值域为 $\{2972,3061,\cdots\}$.这种用表格表示函数关系的方法就称为**表格法**.

例 1.5 某气象站用温度自动记录仪记录某地的气温变化情况. 设某天24 小时的气温变化曲线如下图所示.

图中曲线描述了一天中的温度T 随时间t 变化的规律. T 是t 的函数. 曲线上点P 的横坐标为 t_0 , 纵坐标 T_0 就是曲线所描述的函数在点 t_0 的函数值. 其定义域为[0,24], 值域为[10,35]. 这种用图形表示函数的方法称为图示法.

例 1.6 设有一个半径为r 的半圆形铁皮,将此铁皮做成一个圆雉形容器,问该圆锥形容器的体积V 是多少?

解 易知圆锥形容器的底圆半径 $r_1 = \frac{1}{2}r$, 圆锥形容器的高 $h = \frac{\sqrt{3}}{2}r$, 故其容积

$$V = \frac{1}{3}\pi r_1^2 h = \frac{\sqrt{3}}{24}\pi r^3$$

上式表示了体积V 与r 之间的关系. V 随着r 的变化而变化. V 是r 的函数. 其定义域为[$0,\infty$), 值域为[$0,\infty$). 这种用**解析表达式**(简称为解析式) 表示函数关系的方法称为解析法.

如果解析表达式是从实际问题中得到的,其定义域根据实际含义来确定(如上例1.6 中的r). 如果仅仅给出一个具体的函数解析表达式,则称使函数表达式有意义的自变量取值的全体为该函数的**自然定义域**.

例 1.7 求函数 $f(x) = \ln(x-1) + \frac{1}{\sqrt{x^2-1}}$ 的定义域.

解 要使f(x)有意义,必须有

$$x-1 > 0 \perp x^2 - 1 > 0$$

由x-1>0 得x>1, 即 $x\in(1,+\infty)$. 由 $x^2-1>0$ 得x>1 或x<-1, 即 $x\in(-\infty,-1)\cup(1,+\infty)$. 综上可知,函数f(x) 的定义域为

$$D(f) = (1, +\infty) \cap [(-\infty, -1) \cup (1, +\infty)] = (1, +\infty).$$

在用解析法表示函数时,有一种特别的情形,即,有些函数在它的定义域的不同部分,其表达式不同,亦即用多个解析式表示一个函数,这类函数称为**分段函数**,如绝对值函数

$$y = |x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases}$$

取整函数 $y = [x] = n, n \le x < n+1, n = 0, \pm 1, \pm 2, \pm 3, \cdots$,即[x] 表示不超过x 的最大整数; 狄利克雷函数

$$y = D(x) = \begin{cases} 1 & x \in Q \\ 0 & x \notin Q \end{cases}$$

图 1.4 绝对值函数和取整函数

§ 1.3 函数的几何特征

函数的几何特性主要包括单调性,有界性,奇偶性,周期性等.

定义 1.4 单调性

设函数 f(x) 在实数集D 上有定义,对于D 内的任意两数 $x_1, x_2, x_1 < x_2$,

若总有 $f(x_1) \leq f(x_2)$ 成立, 则称f(x) 在D 内是单调递增(简称为单增)的:

若总有 $f(x_1) \ge f(x_2)$ 成立,则称f(x) 在D 内是单调递减(简称为单减)的:

若总有 $f(x_1) < f(x_2)$ 成立,则称f(x)在D内是严格单增的;

若总有 $f(x_1) > f(x_2)$ 成立,则称f(x)在D内是严格单减的.

严格单增(单减) 也是单增(单减).当f(x) 在D 内是单调递增(单调递减)时,又称f(x) 是D 内的单调递增(单调递减)函数.单调递增函数或单调递减函数统称为单调函数.

例 1.8 函数 $f(x) = x^3$ 在 $(-\infty, +\infty)$ 上是严格单调递增的.

解 因为

$$x_1^3 - x_2^3 = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2)$$
$$= (x_1 - x_2)\left((x_1 + \frac{1}{2}x_2)^2 + \frac{3}{4}x_2^2\right).$$

当 $x_1 < x_2$ 时, $f(x_1) < f(x_2)$.

例 1.9 用单调函数的定义证明:函数 $f(x) = \sqrt{4x - x^2}$ 在区间[2,4] 为严格单减函数.

解 任取 $x_1, x_2 \in [2, 4]$, 且设 $x_1 < x_2$,

$$f(x_1) - f(x_2) = \sqrt{4x_1 - x_1^2} - \sqrt{4x_2 - x_2^2} = \frac{\left(4x_1 - x_1^2\right) - \left(4x_2 - x_2^2\right)}{\sqrt{4x_1 - x_1^2} + \sqrt{4x_2 - x_2^2}}$$
$$= \frac{4\left(x_1 - x_2\right) - \left(x_1^2 - x_2^2\right)}{\sqrt{4x_1 - x_1^2} + \sqrt{4x_2 - x_2^2}} = \frac{\left(x_1 - x_2\right)\left[4 - \left(x_1 + x_2\right)\right]}{\sqrt{4x_1 - x_1^2} + \sqrt{4x_2 - x_2^2}}.$$

因为 $2 \le x_1 \le 4, 2 \le x_2 \le 4, x_1 < x_2$, 所以

$$4 < x_1 + x_2 < 8, x_1 - x_2 < 0, (x_1 - x_2)(4 - (x_1 + x_2)) > 0,$$

故 $f(x_1) - f(x_2) > 0$ 亦即 $f(x_1) > f(x_2)$. 由定义知: f(x) 在[2,4] 上为严格单减函数.

定义 1.5 有界性

设函数f(x) 在集合D 内有定义, 若存在正数M, 使得对每一个 $x \in D$, 都有

$$|f(x)| \le M$$

成立,则称f(x) 在D 内有界,或称f(x) 为D 内的有界函数;否则称f(x) 在D 内无界,或称f(x) 为D 内的无界函数.

定义 1.6 上界,下界

设函数f(x) 在集合D 内有定义, 若存在数A(或B), 使得对每一个 $x \in D$, 都有

成立,则称f(x) 在D内有上界(或有下界),也称f(x) 是D内有上界(或有下界)的函数.

性质 1.2 有界的函数必有上界和下界, 反之亦然.

证明 若函数f(x) 有界,则存在M>0 满足 $|f(x)|\leq M$,因此 $f(x)\geq -M$ 且 $f(x)\leq M$,即函数f(x) 有下界和上界.

反之,若函数f(x) 有下界和上界,则存在 $A,B \in \mathbf{R}$ 满足 $f(x) \geq B$ 且 $f(x) \leq A$. 取 $M = \max\{|A|,|B|\}$,则

$$-M \le B \le f(x) \le A < M.$$

有界函数的几何图形完全落在两条平行于x轴的直线之间,见图1.5.

图 1.5 有界函数几何特征

例 1.10 函数 $y = \sin x$ 在 $(-\infty, +\infty)$ 内有界, 函数 $y = x^2$ 在 $(-\infty, +\infty)$ 内有下界但无上界, 因此 $y = x^2$ 在 $(-\infty, +\infty)$ 内是无界函数. 但函数 $y = x^2$ 在 $x \in [-1, 1]$ 上是有界函数.

定义 1.7 奇偶性

设函数f(x) 在一个关于原点对称的实数集合D 内有定义,若对每一个 $x \in D$ (此时必有 $-x \in D$),都有

$$f(-x) = -f(x)(\, \not \! \Delta f(-x) = f(x))$$

则称 f(x) 为 D 内的奇(或偶)函数.

性质 1.3 奇函数的图形关于原点对称, 偶函数的图形关于y 轴对称.

图 1.6 奇偶函数的几何图形

例 1.11 $y = x^{2k+1}$ (k 为整数) 为奇函数, $y = x^{2k}$ (k 为整数) 为偶函数, $y = \sin x$ 是奇函数, $y = \cos x$ 是偶函数, y = C(C) 为非零常数) 是偶函数, y = 0 既是奇函数又是偶函数, $y = x^2 + x$ 既不是奇函数也不是偶函数.

例 1.12 判断下列函数的奇偶性:

(1)
$$f(x) = \ln\left(x + \sqrt{1 + x^2}\right);$$
 (2) $g(x) = \begin{cases} 1 - e^{-x}, x \leq 0 \\ e^x - I, & x > 0 \end{cases}$

解

(1)
$$f(-x) = \ln\left(-x + \sqrt{1 + (-x)^2}\right) = \ln\left(-x + \sqrt{1 + x^2}\right)$$

= $\ln\frac{1}{x + \sqrt{1 + x^2}} = -\ln\left(x + \sqrt{1 + x^2}\right) = -f(x)$

所以 $f(x) = \ln(x + \sqrt{1 + x^2})$ 是奇函数.

(2) 因

$$g(-x) = \begin{cases} 1 - e^{-(-x)}, & -x \le 0 \\ e^{-x} - 1, & -x > 0 \end{cases} = \begin{cases} 1 - e^x, x \ge 0 \\ e^{-x} - 1, x < 0 \end{cases} = -g(x)$$

因此g(x) 为奇函数.

定义 1.8 周期性

设函数f(x) 在集合D 内有定义,如果存在非零常数T,使得对任. 意的 $x \in D$, 恒有 $x + T \in D$, 且

$$f(x+T) = f(x)$$

成立,则称f(x) 为周期函数. 满足上式的最小正数 T_0 ,称为f(x) 的基本周期,简称周期.

例 1.13 函数 f(x) = C 是周期函数,但它没有基本周期;

三角函数 $\sin x$ 和 $\cos x$, $x \in (-\infty, +\infty)$, 是以 2π 为周期的周期函数:

 $\tan x, x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$, 是以 π 为周期的周期函数;

函数 $f(x) = x - [x], x \in (-\infty, +\infty)$ 是以1 为周期的周期函数.

注1.3 有的周期函数不存在基本周期,如常数函数,狄利克雷函数.

例 1.14 设f(x) 是以T(T > 0) 为周期的周期函数,若 $x \in [a, a + T)$ 时f(x) = 3x + 2, 求f(x) 在[a + T, a + 3T] 内的表达式.

解 当 $x \in [a + T, a + 2T)$ 时, $x - T \in [a, a + T)$, 这时

$$f(x-T) = 3(x-T) + 2$$

由于f(x-T) = f(x), 故

$$f(x) = 3(x - T) + 2, x \in [a + T, a + 2T)$$

当 $x \in [a+2T,a+3T)$ 时, $x-2T \in [a,a+T)$, 这时

$$f(x - 2T) = 3(x - 2T) + 2$$

由于f(x-2T)=f(x),故

$$f(x) = 3(x - 2T) + 2, x \in [a + 2T, a + 3T)$$

当x = a + 3T 时, f(a + 3T) = f(a) = 3a + 2. 综上所述

$$f(x) = \begin{cases} 3(x-T)+2, & x \in [a+T, a+2T) \\ 3(x-2T)+2, & x \in [a+2T, a+3T) \\ 3a+2, & x = a+3T. \end{cases}$$

§ 1.4 反函数

反函数的定义如下:

定义 1.9 反函数

设函数y=f(x) 的定义域是D(f),值域是R(f),如果对每一个 $y\in R(f)$,都有惟一确定的 $x\in D(f)$ 与之对应且满足y=f(x),则x 是定义在. R(f) 上以y 为自变量的函数,记此函数为

$$x = f^{-1}(y), y \in R(f)$$

并称其为函数y = f(x) 的反函数.

注 1.4 $x = f^{-1}(y)$ 与y = f(x) 互为反函数,且 $x = f^{-1}(y)$ 的定义域和值域分别为y = f(x) 的值域和定义域.

注 1.5 y = f(x)反函数存在的充要条件是定义域和值域上的点是一一对应的.

注 1.6 习惯上, 我们记y = f(x) 的反函数为 $y = f^{-1}(x)$, 因此我们有,

$$f^{-1}[f(x)] = x, x \in D(f)$$

$$f\left[f^{-1}(x)\right] = x, x \in R(f)$$

注 1.7 在平面直角坐标系xOy 中,函数y = f(x) 的图形与其反函数 $y = f^{-1}(x)$ 的图形关于直线y = x 对称.

性质 1.4 $y = f^{-1}(x)$ 与y = f(x)具有相同的单调性.

证明 假设y = f(x) 单调递增,往证 $y = f^{-1}(x)$ 单调递增. 任取 $y_1 < y_2 \in R(f)$, 令 $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2)$, 则 $y_1 = f(x_1), y_2 = f(x_2)$,因为y = f(x) 单调递增且 $x_1 < x_2$,故 $y = f^{-1}(x)$ 单调递增.

例 1.15 函数 $y = kx + b(k \neq 0)$ 的反函数为 $y = \frac{x-b}{k}$; 函数 $y = a^x(a > 0, a \neq 1)$ 的反函数是 $y = \log_\alpha x$; 函数 $y = x^2, x \in (0, +\infty)$ 的反函数是 $y = \sqrt{x}$. 而函数 $y = x^2, x \in (-\infty, 0)$ 的反函数是 $y = -\sqrt{x}$. 这几个函数及其反函数的图形见图1.7.

图 1.7 几个反函数

例 1.16 求下面函数的反函数: (1) $y = \frac{e^x - e^{-x}}{2}$; (2) $y = \ln\left(x + \sqrt{x^2 + 1}\right)$; (3) $y = \frac{2x - 1}{x + 1}$.

解 (1) 由
$$y = \frac{e^x - e^{-x}}{2}$$
 得

$$e^{2x} - 2ye^x - 1 = 0$$

解之得

$$e^x = y \pm \sqrt{y^2 + 1}$$

因 $\mathbf{e}^x > 0$, 故 $\mathbf{e}^x = y - \sqrt{y^2 + 1}$ 应舍去. 从而有 $\mathbf{e}^x = y + \sqrt{y^2 + 1}$, 求得 $x = \ln(y + \sqrt{y^2 + 1})$.

因此 $y = \frac{e^x - e^{-x}}{2}$ 的反函数为

$$y = \ln\left(x + \sqrt{x^2 + 1}\right), x \in (-\infty, +\infty)$$

(2) 由(1) 可知 $y = \ln \left(x + \sqrt{x^2 + 1} \right)$ 的反函数为

$$y = \frac{e^x - e^{-x}}{2}, x \in (-\infty, +\infty)$$

(3) 由 $y = \frac{2x-1}{x+1}$ 得

$$xy + y = 2x - 1$$

整理得

$$x(y-2) = -y - 1$$

于是

$$x = \frac{y+1}{2-y}$$

故所求反函数为

$$y = \frac{x+1}{2-x}(x \neq 2).$$

KAIIU, KAU

§ 1.5 复合函数

复合函数的定义如下:

定义 1.10 复合函数

已知函数

$$y = f(u), u \in D(f), y \in R(f)$$

$$u = g(x), x \in D(g), u \in R(g)$$

如果 $D(f) \cap R(g) \neq \emptyset$ (空集),则称函数

$$y = f[g(x)], x \in \{x \mid g(x) \in D(f)\}$$

为由函数y = f(u) 和u = g(x) 复合而成的复合函数. 其中y 称为因变量x 称为自变量,而u 称为中间变量. 集合 $\{x|g(x)\in D(f)\}$ 即为复合函数y = f[g(x)] 的定义域.

注 1.8 复合函数中, $D(f) \cap R(g)$ 必须非空.

注 1.9 可以多个函数依次复合,如y=f(u), u=g(v), v=h(x), 则f(g(h(x))) 为三个函数的复合.

例 1.17 设 $f(x) = \frac{1-x}{1+x}$, 求f[1+f(x)].

解

$$f[1+f(x)] = \frac{1-(1+f(x))}{1+(1+f(x))} = \frac{-f(x)}{2+f(x)} = -\frac{1-x}{1+x} / \left(2 + \frac{1-x}{1+x}\right)$$
$$= \frac{x-1}{x+3}.$$

例 1.18 己知 $f(\ln x) = \begin{cases} x-1, & x>1, \\ \ln x, & 0 < x \le 1, \end{cases}$ 求f(x).

解 令 $u = \ln x$. 则 $x = e^u$. 因此,

$$f(u) = \begin{cases} e^{v} - 1, & e^{u} > 1 \\ u, & 0 < e^{1} \le 1 \end{cases}$$
$$= \begin{cases} e^{u} - 1, & u > 0 \\ u, & u \le 0 \end{cases}$$

由此可得

$$f(x) = \begin{cases} e^x - 1, & x > 0 \\ x, & x \le 0 \end{cases}$$

注 1.10 由 f(g(x))的表达式求 f(x)的一般方法是令u=g(x) 从中解出 $x=g^{-1}(u)$,将它带入 f(g(x)) 可得 f(u).

LAIII, AAU

§ 1.6 初等函数

常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数称为基本初等函数.

定义 1.11 初等函数

由基本初等函数经过有限次四则运算和有限次复合,并且在其定义域内具有统一的解析表达式,这样的函数统称为初等函数.

注 1.11 若f(x),g(x) 为基本初等函数,则幂指函数 $[f(x)]^{g(x)}$ 是初等函数,因为 $[f(x)]^{g(x)}=\mathrm{e}^{g(x)\ln f(x)}.$

例 1.19 $x^x = e^{x \ln x} (x > 0)$, $(1+x)^{\frac{1}{x}} = e^{\frac{1}{x} \ln(1+x)} (1+x > 0)$, $x^{\sin x} = e^{\sin x \ln x} (x > 0)$ 均为幂指函数.

形如

$$y = x^2, y = \ln x, y = \arcsin \frac{2x}{1 + x^2}$$

的函数称为显函数.

定义 1.12 隐函数

若二元方程F(x,y)=0 对于某一实数集合D 内的每一个x, 均有惟一确定的y 与之对应(此处的y 与x 一起满足方程),则称由方程F(x,y)=0 确定了一个定义在D 上的隐函数.

性质 1.5 若形式地记此隐函数为 $y = f(x), x \in D$, 则必有恒等式 $F(x, f(x)) \equiv 0, x \in D$.

例 1.20 由方程 $x^2 + 2xy - 1 = 0$ 可确定一个定义在 $(-\infty, 0) \cup (0, +\infty)$ 内的隐函数y = f(x). 解方程可得

$$y = f(x) = \frac{1 - x^2}{2x}, x \neq 0.$$

六大基本初等函数图像及其性质

一、常值函数(也称常数函数) y = C(其中 C 为常数);

二、幂函数 $y = x^{\alpha}$, x是自变量, α 是常数;

1. 幂函数的图像:

2. 幂函数的性质:

性质 函数	y = x	$y = x^2$	$y = x^3$	$y = x^{\frac{1}{2}}$	$y = x^{-1}$
定义域	R	R	R	[0,+∞)	$\{x x\neq 0\}$
值域	R	[0,+∞)	R	[0,+∞)	{y y≠0}
奇偶性	奇	偶	奇	非奇非偶	奇
单调性	增	[0,+∞) 增	增	增	(0,+∞) 减
		(-∞,0] 减			(-∞,0) 减
公共点			(1,1)		

- 1) 当 α 为正整数时,函数的定义域为区间为 $x \in (-\infty, +\infty)$,他们的图形都经过原点,并当 $\alpha > 1$ 时在原点处与 x 轴相切。且 α 为奇数时,图形关于原点对称; α 为偶数时图形关于 y 轴对称;
 - 2) 当 α 为负整数时。函数的定义域为除去 x=0 的所有实数;
- 3)当 α 为正有理数 $\frac{m}{n}$ 时,n 为偶数时函数的定义域为(0,+ ∞),n 为奇数时函数的定义域为(∞ ,+ ∞),函数的图形均经过原点和(1,1);
- 4)如果 m>n 图形于 x 轴相切,如果 m<n,图形于 y 轴相切,且 m 为偶数时,还跟 y 轴对称; m, n 均为奇数时,跟原点对称;
- 5) 当 α 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数; n 为奇数时,定义域为去除 x=0 以外的一切实数。

三、指数函数 $y = a^x$ (x 是自变量, a 是常数且 a > 0 , $a \ne 1$),定义域是 R ; [无界函数]

1. 指数函数的图象:

2. 指数函数的性质;

性质 函数	$y = a^x (a > 1)$	$y = a^x (0 < a < 1)$	
定义域	I	2	
值域	(0, +∞)		
奇偶性	非奇非偶		
公共点	过点 $(0, 1)$, 即 $x = 0$ 时, $y = 1$		
单调性	在(-∞,+∞)是增函数	在(-∞,+∞)是减函数	

- 1) 当 a > 1时函数为单调增,当 0 < a < 1时函数为单调减;
- 2) 不论 x 为何值, v 总是正的, 图形在 x 轴上方;
- 3) 当 x = 0时, v = 1, 所以它的图形通过 (0, 1)点。

3. (选,补充)指数函数值的大小比较 $a \in \mathbb{N}^*$,

a. 底数互为倒数的两个指数函数

$$f(x) = a^x$$
, $f(x) = \left(\frac{1}{a}\right)^x$

的函数图像关于v轴对称。

b.1.当a > 1时,a 值越大, $y = a^x$ 的图像越靠近 y 轴:

b.2.当0 < a < 1时,a 值越大, $y = a^x$ 的图像越远离 y 轴。

4. 指数的运算法则(公式);

a. 整数指数幂的运算性质 $(a \ge 0, m, n \in Q)$;

(1)
$$a^m \cdot a^n = a^{m+n}$$

$$(2) \quad a^m \div a^n = a^{m-n}$$

$$(3) \left(a^{m}\right)^{n} = a^{nm} = \left(a^{n}\right)^{m}$$

$$_{(4)} (ab)^n = a^n b^n$$

b. 根式的性质;

$$(1)$$
 $\left(\sqrt[n]{a}\right)^n = a$; (2) 当 n 为奇数时, $\sqrt[n]{a^n} = a$

当 n 为偶数时,
$$\sqrt[n]{a^n} = |a| = \begin{cases} a & (a \ge 0) \\ -a(a < 0) \end{cases}$$

c. 分数指数幂;

(1)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} (a > 0, m, n \in Z^*, n > 1)$$

(2)
$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}} (a > 0, m, n \in Z^*, n > 1)$$

四、对数函数 $y = \log_a x$ (a 是常数且 $a > 0, a \ne 1$), 定义域 $x \in (0, +\infty)$ [无界]

1. 对数的概念: 如果 $a(a>0, a\ne 1)$ 的 b 次幂等于 N,就是 $a^b=N$,那么数 b 叫做以 a 为底 N 的对数,记作 $\log_a N=b$,其中 a 叫做对数的底数,N 叫做真数,式子 $\log_a N$ 叫做对数式。

对数函数 $y=\log_a x$ 与指数函数 $y=a^x$ 互为反函数,所以 $y=\log_a x$ 的图象与 $y=a^x$ 的图象 关于直线 y=x 对称。

- **2. 常用对数:** $\log_{10} N$ 的对数叫做常用对数,为了简便,N 的常用对数记作 $\log N$ 。
- 3. 自然对数: 使用以无理数 e=2.7182 为底的对数叫做自然对数,为了简便,N 的自然对数 $\log_e N$ 简记作 $\ln N$ 。

4. 对数函数的图象:

5. 对数函数的性质;

性质	$y = \log_a x$	$y = \log_a x$	
函数	(a>1)	(0 < a < 1)	
定义域	(0, +∞)		
值域	R		
奇偶性	非奇非偶		
公共点	过点 $(1, 0)$, 即 $x=1$ 时, $y=0$		
单调性	在(0,+∞)上是增函数	在(0,+∞)上是减函数	

- 1) 对数函数的图形为于 y 轴的右方, 并过点(1,0);
- 2)当a>1时,在区间(0,1),y的值为负,图形位于 x 的下方;在区间 $(1,+\infty)$,y 值为正,图形位于 x 轴上方,在定义域是单调增函数。a<1在实际中很少用到。

6. (选,补充) 对数函数值的大小比较 $a \in \mathbb{N}^*$:

a. 底数互为倒数的两个对数函数

$$y = \log_a x, \quad y = \log_{\frac{1}{a}} x$$

的函数图像关于 x 轴对称。

b. 2. 当(0 < a < 1) 时,a 值越大, $f(x) = \log_a x$ 的图像越远离 x 轴。

a. 如果 a>0, a≠1, M>0, N>0, 那么:

$$\log_a(MN) = \log_a M + \log_a N$$
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$\log_a M^n = n \log_a M$$

b. 对数恒等式:

$$a^{\log_a N} = N \quad (a > 0 \perp a \neq 1, N > 0)$$

 $f(x) = \log_3 x$ b. 1. 当a > 1时,a 值越大, $f(x) = \log_a x$ 的图像越靠近 x 轴;

c. 换底公式:

(1)
$$\log_b N = \frac{\log_a N}{\log_b b}$$
 ($a > 0, a \neq 1$, 一般常常

换为e或10为底的对数,即 $\log_b N = \frac{\ln N}{\ln b}$ 或

$$\log_b N = \frac{\lg N}{\lg b}$$

(2) 由公式和运算性质推倒的结论:

$$\log_{a^n} b^n = \frac{n}{m} \log_a b$$

- d. 对数运算性质
- (1)1的对数是零,即 $\log_a 1 = 0$;同理 $\ln 1 = 0$ 或 $\ln 1 = 0$
- (2) 底数的对数等于 1, 即 $\log_a a = 1$; 同理 $\ln e = 1$ 或 $\lg 10 = 1$

五、三角函数

1. 正弦函数 $y = \sin x$, 有界函数,定义域 $x \in (-\infty, +\infty)$,值域 $y \in [-1, +1]$

图象: 五点作图法:
$$0$$
, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π

2. 余弦函数 $y = \cos x$,有界函数,定义域 $x \in (-\infty, +\infty)$,值域 $y \in [-1, +1]$

图象: 五点作图法: 0,
$$\frac{\pi}{2}$$
, π , $\frac{3\pi}{2}$, 2π

3. 正、余弦函数的性质;

性质 函数	$y = \sin x \ (k \in \mathbb{Z})$	$y = \cos x_{(k \in Z)}$
定义域	R	
值域	[-1,1]	[-1,1]
奇偶性	奇函数	偶函数
周期性	$T = 2\pi$	$T = 2\pi$
对称中心	$(k\pi,0)$	$(k\pi\frac{\pi}{2},0)$
对称轴	$x = k\pi + \frac{\pi}{2}$	$(k\pi + \frac{\pi}{2}, 0)$
单调性	在 $x \in \left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right]$ 上是增函数 在 $x \in \left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right]$ 上是减函数	在 $x \in [2k\pi - \pi, 2k\pi]$ 上是增函数 在 $x \in [2k\pi, 2k\pi + \pi]$ 上是减函数
最值	$x = 2k\pi + \frac{\pi}{2}$ 时, $y_{\text{max}} = 1$ $x = 2k\pi + \frac{\pi}{2}$ 时, $y_{\text{min}} = -1$	$x = 2k\pi$ 时, $y_{\text{max}} = 1$ $x = 2k\pi + \pi$ 时, $y_{\text{min}} = -1$

4. 正切函数 $y=\tan x$, 无界函数,定义域 $\{x|x\neq k\pi+\frac{\pi}{2},(k\in Z)\}$,值域 $y\in(-\infty,+\infty)$

5. 余切函数 $y=\cot x$, 无界函数,定义域 $\{x|x\neq k\pi, k\in Z\}$, $y\in (-\infty,+\infty)$

6.正、余切函数的性质;

性质函数	$y = \tan x \ (k \in Z)$	$y = \cot x \ (k \in Z)$
定义域	$x \neq k\pi + \frac{\pi}{2}$	$x \neq k\pi$
值域	R	R
奇偶性	奇函数	奇函数
周期性	$T = \pi$	$T = \pi$
单调性	在 $\left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right)$ 上都是增函数	在(kπ,(k+1)π)上都是减函数
对称中心	$(\frac{k\pi}{2},0)$	$(\frac{k\pi}{2},0)$
零点	$(k\pi,0)$	$(k\pi + \frac{\pi}{2},0)$

 $y=\sec x$ 的图像 $y=\csc x=rac{1}{\sin x}$,无界函数,定义域 $\{x|x
eq k\pi,(k\in Z)\}$,值域 $|\csc x|\ge 1$

9. 正、余割函数的性质;

性质函数	$y = \sec x \ (k \in Z)$	$y = \csc x \ (k \in Z)$
定义域	$\left\{ x \middle x \neq \frac{\pi}{2} + k\pi \right\}$	$\left\{ x\big x\neq k\pi\right\}$
值域	$(-\infty,-1]\bigcup[1,+\infty)$	$(-\infty,-1]\bigcup[1,+\infty)$
奇偶性	偶函数	奇函数
周期性	$T = 2\pi$	$T=2\pi$
单调性	$(2k\pi - \frac{\pi}{2}, 2k\pi) \cup (2k\pi + \pi, 2k\pi + \frac{3\pi}{2})$ 减 $(2k\pi, 2k\pi + \frac{\pi}{2}) \cup (2k\pi + \frac{\pi}{2}, 2k\pi + \pi) $ 增	$(2k\pi, 2k\pi + \frac{\pi}{2}) \cup (2k\pi + \frac{3\pi}{2}, 2k\pi + 2\pi) \ \text{id}$ $(2k\pi + \frac{\pi}{2}, 2k\pi + \pi) \cup (2k\pi + \pi, 2k\pi + \frac{3\pi}{2})$
	$\frac{(2\kappa n, 2\kappa n + \frac{1}{2}) \cup (2\kappa n + \frac{1}{2}, 2\kappa n + n)}{2}$	增

续表:

-><-		
性质函数	$y = \sec x \ (k \in Z)$	$y = \csc x \ (k \in Z)$
对称中心	$(k\pi + \frac{\pi}{2}, 0)$	$(k\pi,0)$
对称轴	$x = k\pi$	$x = \frac{\pi}{2} + k\pi$
渐近线	$x = \frac{\pi}{2} + k\pi$	$x = k\pi$

六、反三角函数

1. 反正弦函数 $y = \arcsin x$, 无界函数,定义域[-1,1],值域 $[0,\pi]$

A. 反正弦函数的概念: 正弦函数 $y = \sin x$ 在区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的反函数称为反正弦函数,记为

 $y = \arcsin x$

2. 反余弦弦函数 $y = \arccos x$,无界函数,定义域[-1,1],值域 $[0,\pi]$

B. 反余弦函数的概念: 余弦函数 $y = \cos x$ 在区间 $[0,\pi]$ 上的反函数称为反余弦函数,记为

 $y = \arcsin x$ 的图像

 $y = \arccos x$ 的图像

3. 反正、余弦函数的性质;

性质函数	$y = \arcsin x$	$y = \arccos x$
定义域	[-1,1]	[-1,1]
值域	$[0,\pi]$	$[0,\pi]$
奇偶性	奇函数	非奇非偶函数
单调性	增函数	减函数

4. 反正切函数 $y=\arctan x$,有界函数,定义域 $x\in (-\infty,+\infty)$,值域 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

C. 反正切函数的概念: 正切函数 $y = \tan x$ 在区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的反函数称为反正切函数,记为

 $y = \arctan x$

5. 反余切函数 $y = arc \cot x$, 有界函数, 定义域 $x \in (-\infty, +\infty)$, 值域 $(0, \pi)$

D. 反余切函数的概念: 余切函数 $y=\cot x$ 在区间 $(0,\pi)$ 上的反函数称为反余切函数,记为 $y=arc\cot x$

6. 反正、余弦函数的性质;

函数性质	$y = \arctan x$	$y = arc \cot x$
定义域		R
值域	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$(0,\pi)$
奇偶性	奇函数	非奇非偶
单调性	增函数	减函数

三角函数公式汇总

一、任意角的三角函数

在角 α 的终边上任取一点P(x,y),记: $r = \sqrt{x^2 + y^2}$ 。

正弦:
$$\sin \alpha = \frac{y}{r}$$
 余弦: $\cos \alpha = \frac{x}{r}$

正切:
$$\tan \alpha = \frac{y}{x}$$
 余切: $\cot \alpha = \frac{x}{y}$

正割:
$$\sec \alpha = \frac{r}{r}$$
 余割: $\csc \alpha = \frac{r}{r}$

二、同角三角函数的基本关系式

倒数关系: $\sin \alpha \cdot \csc \alpha = 1$, $\cos \alpha \cdot \sec \alpha = 1$, $\tan \alpha \cdot \cot \alpha = 1$

商数关系:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$, $1 + \tan^2 \alpha = \sec^2 \alpha$, $1 + \cot^2 \alpha = \csc^2 \alpha$

三、诱导公式

x 轴上的角,口诀:函数名不变,符号看象限; y 轴上的角,口诀:函数名改变、符号看象限。

四、和角公式和差角公式

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}$$

五、二倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

二倍角的余弦公式常用变形: (规律:降幂扩角,升幂缩角)

$$1 + \cos 2\alpha = 2\cos^2 \alpha \qquad 1 - \cos 2\alpha = 2\sin^2 \alpha$$

$$1 + \sin 2\alpha = (\sin \alpha + \cos \alpha)^2 \qquad 1 - \sin 2\alpha = (\sin \alpha - \cos \alpha)^2$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$
, $\sin^2 \alpha = \frac{1 + \sin 2\alpha}{2}$, $\tan \alpha = \frac{1 - \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 + \cos 2\alpha}$

六、三倍角公式

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 = 4\sin \alpha \sin(\frac{\pi}{3} - \alpha)\sin(\frac{\pi}{3} + \alpha)$$

$$\cos 3\alpha = 4\cos^3 - 3\cos \alpha = 4\cos \alpha \cos(\frac{\pi}{3} - \alpha)\cos(\frac{\pi}{3} + \alpha)$$

$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha} = \tan \alpha \tan(\frac{\pi}{3} - \alpha)\tan(\frac{\pi}{3} + \alpha)$$

七、和差化积公式

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

八、辅助角公式

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$$

其中: 角 φ 的终边所在的象限与点(a,b)所在的象限相同,

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$
, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$

九、三角函数的周期公式

函数 $y = A\sin(\omega x + \varphi)$, $x \in R$ 及函数 $y = A\cos(\omega x + \varphi)$, $x \in R$ (A, ω, φ , 为常数, 且 $A \neq 0, \omega > 0$)

周期:
$$T = \frac{2\pi}{\omega}$$

函数 $y = A \tan(\omega x + \varphi)$, $x \neq k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$ (A, ω, φ , 为常数, 且 $A \neq 0$, $\omega > 0$)

周期:
$$T = \frac{\pi}{\omega}$$

十、正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \quad (R 为 \Delta ABC$$
外接圆半径)

十一、余弦定理

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$