Яндекс

ШАД

Применение методов анализа данных: «Антифрод»

Даниил Тарарухин dante@yandex-team.ru

Fraud в вебе: виды накруток

1. Баннерные сети

модель оплаты: CPM – cost per mille

2. Контекстная реклама в Yandex/Google/Begun

модель оплаты: CPC – cost per click

3. Спам

4. Эмулирование поведения пользователей

Эмулирование пользовательского поведения

Поиск Карты Маркет Новости Словари Картинки Видес

накрутка лайков

накрутка лайков вконтакте

накрутка лайков

накрутка подписчиков вконтакте

накрутка лайков в инстаграме

накрутка подписчиков в инстаграме

накрутка лайков в вк

накрутка подписчиков

накрутка

накрутка лайков вконтакте likest

накрутка друзей в контакте

Карта Москвы

Авиабилеты

Усложнение схем монетизации

- 1. Поставили баннер -> накликали
- 2. Создали сайт/приложение -> накликали лайки -> продвинулись -> собрали трафик -> открутили рекламу
- 3. Создали «фабрику накрутки» специализация на накрутке
- 4. «Биржи накруток» -> значительное снижение порога входа на накруточный рынок

Анекдот про хакера в столовой

По мотивам https://xakep.ru/2006/12/16/35784/

Мораль: атака всегда имеет преимущество над защитой.

Дополнение: вообще-то нет, не всегда.

Фрод как аномальное поведение

Злоумышленник не знает некоторых «эталонных» распределений, они известны только на стороне сервиса. Иногда можно подобрать параметры так, что злоумышленник будет аномальным по этим параметрам.

Realtime- и offline-системы

Realtime Offline

Realtime фильтрует на входе, offline добанивает остальных. Часто в realtime важна точность в ущерб полноте (нельзя забанить невиновного).

Часто realtime – какая-то подсистема offline, способная работать быстро и точно.

Метрики и КРІ

- 1. False-negative / полнота / recall
- 2. False-positive / точность / precision
- 3. Метрики денег
- 4. Метрики времени
- 5. Метрики производительности

Модельная задача

Модельная задача

Роботы – «тупые», мошенники – более умные, более похожие на настоящих пользователей.

Надо создать какой-то метод поимки мошенников или роботов, в предположении, что те и другие демонстрируют аномальное поведение, в чем-то отличающееся от поведения живых пользователей.

Первичная обработка данных

- 1. Проверка соответствия типов, чистка артефактов
- 2. Шкалирование, построение гистограмм, анализ распределений
- 3. Исключение низковариативных переменных
- 4. Исключение сильно скоррелированных переменных

Поиск закономерностей

- 1. Уменьшение размерности
- 2. Кластеризация
- 3. Дисперсионный анализ (ANOVA)
- 4. Ассоциативные правила
- 5. Машинное обучение
- 6. И др.

Примеры распределений в реальной жизни

Распределение Бернулли (0 или 1)

Равномерное на отрезке [a,b]

Нормальное $N(a, s^2)$: случайные независимые отклонения в обе стороны от среднего, от «нормы».

Экспоненциальное Exp(a): время жизни объекта, не обладающего свойством отсутствия памяти. «Тонкий хвост».

Лог-нормальное $\exp(N(a, s^2))$: интенсивность затухания луча, количество денег у домохозяйств

Частное двух величин

Корреляционный анализ

$$\mathbf{r}_{XY} = \frac{\mathbf{cov}_{XY}}{\sigma_X \sigma_Y} = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2 \sum (Y - \bar{Y})^2}}$$

где
$$\overline{X} = \frac{1}{n} \sum_{t=1}^n X_t$$
, $\overline{Y} = \frac{1}{n} \sum_{t=1}^n Y_t$ — среднее значение выборок.

Суть анализа: вычисляем матрицу попарных корреляций и пристально смотрим на нее.

Метод главных компонент

Principal component analysis (PCA)

Оно же – приведение эллипсоида к главным осям

- 1) Отбираем самые крупные компоненты (объясняющие много дисперсии)
- 2) Оставляем переменные, которые значимо участвуют в отобранных компонентах

Метод главных компонент

DA – матрица данных в базисе главных компонент

Кластерный анализ

Кластеризация:

- Иерархическая
- K-means
- Естественная (в качестве кластеров берем значения какой-то категориальной переменной. Или переменной, которая может быть воспринята как категориальная.)

Дисперсионный анализ (ANOVA)

$$\sum_{i=1}^{n_j} (x_{i,j} - M)^2 = \sum_{i=1}^{n_j} (M_j - M)^2 + \sum_{i=1}^{n_j} (x_{i,j} - M_j)^2,$$

где

$$SS_{total} = \sum_{i=1}^{n_j} (x_{i,j} - M)^2$$

$$SS_{BG} = \sum_{i=1}^{n_j} (M_j - M)^2$$

$$SS_{WG} = \sum_{i=1}^{n_j} (x_{i,j} - M_j)^2$$

Следовательно

$$SS_{total} = SS_{BG} + SS_{WG}$$
.

ANOVA – «плохие» кластеры

Figure 2: ANOVA : No fit

ANOVA

Figure 1: ANOVA : Fair fit

ANOVA – «хорошие» кластеры

Figure 3: ANOVA: very good fit

Конечно, самые «хорошие» кластеры, с максимальной межкластерной и минимальной внутрикластерной дисперсией получатся, если каждую точку выделять в свой кластер. Но это не имеет смысла. Надо искать кластеризации, когда кластеров относительно немного, а межкластерная дисперсия высокая.

Машинное обучение

Обучающее множество: матрица

$$X_{11}$$
, X_{12} , ..., X_{1m} , => Y_1

.. ..

$$X_{n1}$$
, X_{n2} , ..., X_{nm} , => Y_n

Генеральная совокупность: хотим подобрать Ү

Классификация: Үі = 0 или 1

Точность: частота правильного определения объекта

Полнота: % правильно определенных объектов

F1-мера: среднее гармоническое

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Bonus track

Можно отойти от представления данных в виде матрицы факторов для объектов. Либо переходить к анализу макро-объектов.

• разладки: данные как временные ряды

Допустим, мы можем наблюдать за каким-то объектом во времени. Изменение его поведения – возможно, признак того, что он стал аномальным.

• кластеризация для случая неразличимых объектов.

Настоящий пользователь, производящий мало действий, неотличим по логам от робота, производящего мало действий, т.к. никакие факторы, которые можно придумать, не различают две строчки в логе, состоящие из нулей.

Однако можно определить правильную долю таких «нулевых» пользователей, и затем искать кластера, в т.ч. «естественные кластеризации», в которых доля нулевых пользователей будет значительно выше ожидаемых значений.

Спасибо за внимание