HW 2 problems

- 1. Chap 1, #4, second part in slightly modified form. That is, compute the dimension of the vector space of homogeneous polynomials in n variables of degree exactly equal to d.
- 2. Consider the morphism of affine spaces given by $\phi: \mathbb{A}^2 \to \mathbb{A}^4$ where

$$(u,v) \mapsto (u+v, u+2v, u-v, 2u-v).$$

- (a) Using ideas we developed in class, solve the implicitization problem for this morphism. That is, find the polynomial equations in y_1, y_2, y_3, y_4 such that any point $p = (y_1, y_2, y_3, y_4) \in \text{Image}(\phi)$ must satisfy.
- (b) Informally but with justification, answer the following question

"What is the dimension of $Image(\phi)$?"

3. Use the multivariate division algorithm developed in class to express $f=x^2y^2+xy^3$ in the form

$$f = a_1 f_1 + a_2 f_2 + r$$

for $f_1 = xy^2 - 1$ and $f_2 = y + 1$ under the lexicographic ordering $>_{\text{lex}}$.

- (a) Do this with the divisors ordered by (f_1, f_2) .
- (b) Do this with the divisors ordered by (f_2, f_1) .
- (c) Indeed, $f \in I = \langle f_1, f_2 \rangle$. Express f as a linear combination of f_1 and f_2 , if you can.
- 4. Order the following monomials with respect to the $>_{\text{lex}}$, $>_{\text{grlex}}$, and $>_{\text{grevlex}}$ monomial orderings. In your answer, justify one of the inequalities (e.g. $f>_{\text{grevlex}} g$ since) for each monomial order, and just report the others.

$$x^{8}$$
, xyz , $x^{2}y$, xz , xy , z^{5} , $x^{5}yz^{2}$, $x^{4}y^{2}z^{2}$

- 5. Sort the following polynomial with respect to the $>_{\text{lex}}$, $>_{\text{grlex}}$, and $>_{\text{grevlex}}$ monomial orderings.
 - (a) $f(x, y, z) = 2x + 3y + z + x^2 z^2 + x^3$
 - (b) $g(x, y, z) = 5x^2yx x^5yz^4 + 3xyz^3 xy^4$
- 6. Using $>_{\text{grlex}}$, find an element $g \in \langle f_1, f_2 \rangle = \langle 2xy^2 x, 3x^2y y 1 \rangle \subset \mathbb{R}[x]$ whose remainder on division by (f_1, f_2) is nonzero. *Hint*: you can find such a g where the remainder is g itself.

1