О задаче поиска объектов на изображении

Евгений Борисов

ML обработка изображений

цели обработки изображений

Полиграфия, дизайн — улучшение качества, ретушь, изменение размера и формы, композиция.

Спецэффекты в кино - композиция, монтаж фонов, захват движения.

Интернет — поиск, аннотация, поиск дубликатов, распознавание объектов.

Промышленные системы — диагностика, контроль качества.

Роботы и видеонаблюдение — поиск и локализация объектов, отслеживание, распознавание объектов, распознавание жестов и событий.

ML обработка изображений

задачи обработки изображений

сравнение изображений классификатор изображений

коррекция изображения сегментация изображения

стилизация изображений локализация объектов

генератор изображений сопровождение объектов

реконструкция сцены

распознавание событий

Задача поиска объектов на изображении

Classification — классификация изображения по типу объекта, которое оно содержит;

Semantic segmentation — определение всех пикселей объектов определённого класса или фона на изображении. Если несколько объектов одного класса перекрываются, их пиксели никак не отделяются друг от друга;

Object detection — обнаружение всех объектов указанных классов и определение охватывающей рамки для каждого из них;

Instance segmentation — определение пикселей, принадлежащих каждому объекту каждого класса по отдельности;

Модель объекта

- необходимо понимать что хотим найти

Цветовые фильтры

Выделение и анализ контуров

Сопоставление с шаблоном

Работа с особыми точками

Методы машинного обучения

Модель фона

- камера неподвижна

Усреднённый фон

Модель фона по Гауссу

Смесь гауссиан как модель фона

Модель фона

- камера неподвижна

Усреднённый фон

Модель фона по Гауссу

Смесь гауссиан как модель фона

Модель фона / Усреднённый фон

Соберём историю из n кадров, вычислим среднее значение и будем использовать этот результат как фон

$$B = \frac{1}{n} \sum_{i=1}^{n} C_i$$

работает удовлетворительно только в условиях стабильного освещения и отсутствия шума

Модель фона / Модель фона по Гауссу

состояние точек фона находится в окрестности определённого значения фон задаётся нормальными распределениями яркостей точек

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$
; $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Модель фона / Смесь гауссиан

фон задаётся смесью нормальных распределений яркостей точек позволяет формировать несколько кластеров для значений яркости

$$p(x) = \sum_{j=1}^{K} w_j \varphi_j(x)$$
$$\varphi(x; \mu, \Sigma) = \frac{\exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)}{\sqrt{(2\pi)^n \det \Sigma}}$$

устойчивей к шуму и изменениям освещения чем простые модели

Модель объекта

- необходимо понимать что хотим найти

Цветовые фильтры

Выделение и анализ контуров

Сопоставление с шаблоном

Работа с особыми точками

Методы машинного обучения

Модель объекта / Цветовые фильтры

объект существенно отличаться от фона по цвету, Имеет однородную раскраску освещение равномерно и не изменяется

Модель объекта / Выделение и анализ контуров

выделяем границы на изображении (метод Canny)

проверить выделенные линии-границы на соответствие геометрическим контурам объекта (метод Хафа / Hough Transform)

Модель объекта / Сопоставление с шаблоном ищем на большом изображении области совпадающие с изображением объекта

Поворот и масштабирование могут сильно портить результат

Модель объекта / Работа с особыми точками

особая точка - небольшая область, которая существенным образом выделяется на изображении (углы).

по окрестности особой точки вычисляют дескриптор (SIFT, SURF, ORB)

- 1. На картинке с объектом ищем особые точки/дескрипторы.
- 2. На анализируемом изображении тоже ищем особые точки/дескрипторы.
- 3. Сравниваем два набора дескрипторов.

Модель объекта

- необходимо понимать что хотим найти

Цветовые фильтры

Выделение и анализ контуров

Сопоставление с шаблоном

Работа с особыми точками

Методы машинного обучения

ML обработка изображений

Модель объекта средствами ML

методы извлечения признаков из картинки

Гистограммы направленных градиентов (HOG)

Признаки Хаара

«Визуальные» слова (BoW)

Свёрточные нейросети

ML обработка изображений

HOG - гистограммы направленных градиентов

Картинка разделяется на части (ячейки), для каждой ячейки строим гистограмму направлений градиента яркости, далее гистограммы ячеек нормируются по контрасту и объединяются

Input image

Histogram of Oriented Gradients

Извлечение признаков из картинки

Признаки Xaapa (Haar-like features)

Выбираем прямоугольную область на изображении, разбиваем её на несколько смежных прямоугольных частей, в каждой части суммируем яркость точек, вычисляем разность между этими суммами.

результат работы детектора лиц Виолы-Джонса

ML обработка изображений

Извлечение признаков из картинки

Мешок слов (BoW)

похоже на частотный анализ текстов,

для каждого изображения, входящего в учебный набор, определяем особые точки/дескрипторы и объединяем похожие дескрипторы в группы (кластеризация)

кластер дескрипторов - «визуальное» слово

вектор BoW-признаков количество найденных «визуальных» слов

Методы машинного обучения и локализация объектов

метод скользящего окна

- 1.задать размер окна
- 2.пройти окном изображение
- 3.на каждом шаге выполняем классификацию содержимого окна
- 4.изменить размер окна и повторить процедуру с п.2
- 5.обрабатываем результаты

Локализация объектов: обработка результата

Non-maximum suppression (NMS)

оцениваем степень наложения фреймов друг на друга и выкидываем лишнее

Свёрточные сети

Fukushima, Neocognitron (1980). "A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". Biological Cybernetics. 36 (4): 193–202. doi:10.1007/bf00344251.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel: Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, 1(4):541-551, Winter 1989.

Модель фона с помощью нейросети

семантическая сегментация

Semantic segmentation

FCN: Fully Convolutional Networks

https://arxiv.org/pdf/1411.4038.pdf

выход — карты поточечной оценки

для каждого класса своя карта

размер входного изображения = размеру входной карты

сравниваем выходные карты поточечно, для каждой точки определяем карту-победителя

изображение обрабатывается свёрточными слоями на выходе выполняем обратную свёртку

https://vesnins.ru/vychislitelnaya-fotografiya-budushhee-fotografii-eto-kod

FCN: Fully Convolutional Networks

Пример — ищем людей на картинке (датасет Pascal VOC)

Модель объекта с помощью нейросети

Задача классификации

Object detection

Region Based Convolutional Neural Networks (R-CNN)

изображение разделяется на части

каждую часть проверяем классификатором

Faster-R-CNN

- принимаем картинку на вход
- картинка прогоняется через CNN, формируем feature maps
- определяем регионы-кандидаты (возможно содержащие объекты)
- выделяем эти регионы
- и применяем к ним классификатор картинок

Датасеты

MNIST (National Institute of Standards and Technology)

CIFAR-10 (Canadian Institute for Advanced Research)

Pascal VOC (Visual Object Classes)

ImageNet

MNIST (National Institute of Standards and Technology)

28x28 grayscale, 60K training images, 10K testing images, 10 classes

https://github.com/zalandoresearch/fashion-mnist

https://ru.wikipedia.org/wiki/MNIST (база данных)

pred: Pullover pred: T-shirt/top pred: T-shirt/top lbl: Ankle boot

lbl: Coat

lbl: Coat

lbl: Dress

pred: Bag lbl: Sneaker

pred: Ankle boot lbl: Sandal

 $\alpha \pi$

pred: Sandal

lbl: Coat

lbl: Sandal

pred: Sandal

Ibl: Trouser

pred: Trouser

pred: Pullover lbl: Trouser lbl: Ankle boot

pred: Sneaker lbl: Bag

pred: Bag

Ibl: Shirt

pred: Ankle boot pred: Bag lbl: Coat

pred: Bag

CIFAR-10 (Canadian Institute for Advanced Research)

32x32 color, 60K images, 10 classes

https://www.cs.toronto.edu/~kriz/cifar.html

ImageNet

14М изображений, 21К категорий

http://www.image-net.org

ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

Pascal VOC (Visual Object Classes)

11K images, 20 classes, 27K ROI annotated objects and 7K segmentations

http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf

Литература

Борисов E.C. Методы машинного обучения. 2024 https://github.com/mechanoid5/ml_lectorium_2024_I

Борисов E.C. Базовые методы обработки изображений. http://mechanoid.su/cv-base.html

Борисов E.C. О задаче поиска объекта на изображении. http://mechanoid.su/cv-image-detector.html

Конушин A.C. Введение в компьютерное зрение. 2015 https://www.youtube.com/playlist?list=PL-_cKNuVAYAXAnpy8RCV8UtFrFFLRa4rh

Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. - "Питер", 2018 г.

Fully Convolutional Networks for Semantic Segmentation https://arxiv.org/pdf/1411.4038.pdf

FCN — Fully Convolutional Network (Semantic Segmentation) https://towardsdatascience.com/review-fcn-semantic-segmentation-eb8c9b50d2d1