

PIXELPLUS CO., LTD.

PO3030K Data sheet

PO3030K 1/6.2 Inch VGA Single Chip CMOS IMAGE SENSOR

Rev 1.06

Last update: 12. May. 2006

Caution: This datasheet can be changed without prior notice!!

If you want to get up-to-date version,

please send a mail to support@pixelplus.com.

5th Floor, Intellige I, KINS Tower, 25-1 Jeongja-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-811, Korea Tel: 82-31-600-5300, FAX: 82-31-600-5379

Copyright @2005, Pixelplus Co.,Ltd ALL RIGHTS RESERVED

Revision History

Version	Date [D/M/Y]	Notes	Writer
0.0	19/10/2004	(Preliminary)	Shin Jong Ho
0.1	28/10/2004	Repair Inch	Shin Jong Ho
0.2	30/11/2004	Repair p.4 (Inch)	Shin Jong Ho
0.3	05/12/2004	Repair P.26, P.30, P.41(table), etc.	Shin Jong Ho
0.4	08/12/2004	Repair P.29 table	Shin Jong Ho
0.5	13/12/2004	Repair P.39	Shin Jong Ho
0.6	17/02/2005	Added the Application Note	Sung Je Cheon
0.7	14/03/2005	Modified the Application Note	Sung Je Cheon
0.8	15/03/2005	Updated for PO3030K (Rev.1)	Sung Je Cheon
0.9	26/03/2005	Modified the Application Note and Register table	SungJe Cheon
0.91	28/03/2005	Modified the Register table	SungJe Cheon
0.92	06/04/2005	Modified the application note Updated the AC Characteristics	SungJe Cheon
0.93	19/05/2005	Modified Features	SungJe Cheon
0.94	23/05/2005	Added typical parameters of P.3 Updated Electro- Optical Characteristics	DS Min
0.95	05/07/2005	Features	Shin Jong Ho
0.96	12/07/2005	Modified Features Modified the power consumption Modified the pin description Added I2C timing, power on/off sequence	SungJe Cheon
0.97	18/07/2005	Modified I2C timing	SungJe Cheon
0.98	08/09/2005	Modified the application note	SungJe Cheon
0.99	22/09/2005	Modified 1Dh register description Modified the application note	BJ Lee
1.00	12/10/2005	Modified Table1 and the Application note	BJ Lee
1.01	04/11/2005	Repair P.18, P.30, P.36, P.46	Park Kwang Ho
1.02	07/11/2005	Added the trade mark (CrystalImage & ImagingInovation)	Taek Jin Oh
1.03	29/12/2005	Modified the application note	BJ Lee
1.04	03/01/2005	Modified the application note	SungJe Cheon
1.05	09/05/2006	Modified Table of Contents & p44, p68, p70, p73	YouSu Song
1.06	12/05/2006	p73 changed	SungJe Cheon

Caution: This datasheet can be changed without prior notice!! If you want to get up-to-date version, please send a mail to support@pixelplus.com.

Table of Contents

Features	 4
PIN Descriptions	 5
Signal Environment	 7
Chip Architecture	 7
Frame Structure and Windowing	 8
Data Formats	 9
Data and Synchronization Timing	 10
Video Mode and Still Image Capture Mode	12
Scaling	 13
I2C Description	 14
I2C Functional Description	 15
Register Table	16
Register Descriptions	 19
Electrical Characteristics	 51
CLCC40Pin Package Specification	 56
Application Note	 57

§ This document is an initial draft. It will be revised on without prior notice. Contact Pixelplus for up-to-date information.

Features

- 1/6.2 inch 640 X 480 effective pixel array with color filters and micro-lens.
- Power supply 1.8V for core and 1.8 ~ 3.3V for I/O.
- · Power down mode through pin or I2C register setting.
- · Output formats: 8bit YCbCr / 8Bit Bayer data / 5:6:5 RGB / 8bit Y, CCIR 656
- 30 frames/sec progressive scan @27 MHz master clock.
- Image processing on chip: lens shading, gamma correction, defect correction, low pass filter, color interpolation, edge enhancement, color correction, brightness, contrast, saturation, auto white balance, auto exposure control and back light compensation.
- · Still image capture with electrical shutter.
- Frame size, window size and position controllable through a serial interface bus.
- VGA / QVGA / QQVGA Scaling.
- · Horizontal / Vertical mirroring.
- · 50Hz, 60Hz flicker cancellation.
- · Package: 40 pin CLCC, 32 pin CSP

35 34 33 32 31 30 29 28 27 26 SDA 25 D4 36 24 SCL D3 37 D7 23 D2 38 22 D6 D1 39 PO3030K 21 D5 D0 40 **VSYNC** 20 **HVDD** 1 40 pin CLCC DVDD 19 **DGND** 2 **DGND** 18 DVDD 3 **HVDD** 17 MCLK 4 **PCLK** 16 **HSYNC** 5 6 7 8 9 10 11 12 13 14 15

Table 1. Typical Parameters

Total Pixel Array	648 X 488
Pixel Size	3.6um X 3.6um
Image Area	2.30 mm X 1.72 mm
Clock Rate	27MHz (Max.)
Frame rate	Variable up to 30fps
Dark Signal	9.24mV/sec
Sensitivity	1.9 V/Lux.sec
	@15fps,IR cut filter
Saturation Level	780 mV
Fill Factor	40 %
Supply voltage	1.8~3.3V I/O,1.8V Core
Power consumption	23 mA @30fps, 2.5V I/O, active
	10 uA @ standby
Operation Temp.	-30 ~ 50 ℃
Dynamic Range	62 dB
SNR	TBD dB
Package	40 pin CLCC, 32 pin CSP

< Figure. 1> Pin Diagram

PIN Descriptions

Pin No.	Name	I/O Type	Functions / Descriptions
1	HVDD	P	Digital vdd for I/O: DC 1.8~3.3V. Voltage range for all output signals is 0V ~ HVDD.
2	DGND	P	Digital ground. Core and I/O circuits share the ground pads.
3	DVDD	P	Digital vdd for core logic: 1.8V DC. 100nF capacitor to DGND.
4	MCLK	I	Master clock input pad.
5	HSYNC	0	Horizontal synchronization pulse. HSYNC is high (or low) for the horizontal window of interest. It can be programmed to appear or not outside the vertical window of interest.
6 - 15	N.C.	-	No Connection.
16	PCLK	О	Pixel clock. Data can be latched by external devices at the rising or falling edge of PCLK. The polarity can be controlled anyway.
17	HVDD	P	Digital vdd for I/O: DC 1.8~3.3V. Voltage range for all output signals is 0V ~ HVDD.
18	DGND	P	Digital ground. Core and I/O circuits share the ground pads.
19	DVDD	P	Digital vdd for core logic: 1.8V DC. 100nF capacitor to DGND.
20	VSYNC	О	Vertical sync : Indicates the start of a new frame.
21	D5	О	Bit 5 of data output.
22	D6	О	Bit 6 of data output.
23	D7	0	Bit 7 of data output.
24	SCL	I	I2C serial clock input.
25	SDA	I/O	I2C serial data bus.
26	N.C.	-	No Connection.
27	RSTB	I	System reset must remain low for at least 8 master clocks after power is stabilized. When the sensor is reset, all registers are set to their default values.
28	AVDD	P	Analog vdd: 1.8V DC. 100nF capacitor to AGND.
29	AGND	P	Analog ground.
30	AGND	P	Analog ground.
31	AVDD	P	Analog vdd: 1.8V DC. 100nF capacitor to AGND.

Table 2-1. PIN Descriptions

Pin No.	Name	I/O Type	Functions / Descriptions
32	VREFN	0	ADC reference voltage. 100nF capacitor to AGND. ADC assumes VREFP – VREFN is the minimum input voltage that will be converted to 1FFh.
33	VREFP	О	ADC reference voltage. 100nF capacitor to AGND.
34	STDBY	I	Power standby mode. When STDBY='1' there's no current flow in any analog circuit branch, neither any beat of digital clock. D<7:0> and PCLK, HSYNC, VSYNC pins can be programmed to tri-state (Hi-Z). But it is possible to control internal registers through I2C bus interface in STDBY mode. All registers retain their current values.
35	N.C.	-	No Connection.
36	D4	О	Bit 4 of data output.
37	D3	О	Bit 3 of data output.
38	D2	О	Bit 2 of data output.
39	D1	О	Bit 1 of data output.
40	D0	О	Bit 0 of data output.

Table 2-2. PIN Descriptions

Signal Environment

PO3030K has 3.3V tolerant Input pads. Input signals must be higher than or equal to HVDD but cannot be higher than 3.3V. PO3030K input pad has built in reverse current protection circuit, which makes it possible to apply input voltage even if the HVDD is disconnected or floating. Voltage range for all output signals is 0V ~ HVDD.

Chip Architecture

PO3030K has 648 x 488 effective pixel array and column/row driver circuits to read out the pixel data progressively. CDS circuit reduces noise signals generated from various sources mainly resulting from process variations. Pixel output is compared with the reset level of its own and only the difference signal is sampled, thus reducing fixed error signal level. Each of R, G, B pixel output can be multiplied by different gain factors to balance the color of images in various light conditions. The analog signals are converted to digital forms one line at a time and 1 line data are streamed out column by column. The Bayer RGB data are passed through a sequence of image signal processing blocks to finally produce YCbCr 4:2:2 output data. Image signal processing includes such operations as gamma correction, defect correction, low pass filter, color interpolation, edge enhancement, color correction, contrast stretch, color saturation, white balance, exposure control and back light compensation. Internal functions and output signal timing can be programmed simply by modifying the register files through I²C serial interface.

<Figure. 2> Block Diagram

Frame Structure and Windowing

Origin (0,0) of the frame is at the upper right corner. Size of the frame is determined by two registers: FrameWidth and FrameHeight. One frame consists of FrameWidth + 1 columns and FrameHeight + 1 rows. FrameWidth and FrameHeight can be programmed to be larger than physical array size. Physical array of 640×480 pixels is positioned at (210,7). It is possible to define a specific region of the frame as a window. Pixel scanning begins from (0,0) and proceeds row by row downward, and for each line scan direction is from right to the left. HSYNC signal indicates if the output is from a pixel that belongs to the window or not. There are two counters to indicate the present coordinate of frame scanning: Frame row counter and frame column counter. Counter values repeat the cycle of 0 to FrameHeight, and 0 to FrameWidth respectively. The counter values increase at the pace of pixel clock (PCLK), which does not change as the frame size is altered. (ref. regA5h ~ AAh) The pixel data rate is fixed and is independent of frame size (frame rate.)

< Fig. 3 > Default structure of frame and window. (Top view)

Data Formats

Pixel array is covered by Bayer color filters as can be seen in the figure below. Since each pixel can have only one type of filter on it, only one color component can be produced by a pixel. PO3030K provides this Bayer pattern RGB data through an 8bit channel. But since it is necessary to know all 3 color components R, G, B to produce a color for a pixel, the other two components must be inferred from other pixel data. For example, G component for a B pixel is calculated as an average of its four nearest G neighbors, and its R component as

G1	R	G1	R
В	G2	В	G2
G1	R	G1	R
В	G2	В	G2

< Fig. 4> Bayer filter pattern

an average of its four nearest R neighbors. This operation of inferring missing data from existing ones is called the color interpolation. Color interpolation produces an undesirable artifact in image. Sampling nature of color filter can leave an interference pattern around an area with repetitive fine lines. PO3030K adopts a low pass filter to prevent the interference patterns(called Moire pattern) from degrading the image quality too much.

For low grade display devices, it is not necessary to have 3 RGB data of all 8bit precision. PO3030K provides lower precision RGB data such that, 5bit R data and upper 3 bits of 6bit precision G data are passed first to output pins, and then the remaining 3 bits of G and 5 bit B data are routed outward. It takes two PCLK's to get 5:6:5 RGB data for each pixel.

It is possible to extract monochrome luminance data from RGB color components and the conversion equation is : Y = 0.299R + 0.587G + 0.114B where R,G and B are gamma corrected color components. And the color information is separated from luminance information according to following equations.

$$U = 0.492 (B - Y)$$

$$V = 0.877 (R - Y)$$

Since human eyes are less sensitive to color variation than to luminance, color components can be sub-sampled to reduce the amount of data to be transmitted, but preserving almost the same image quality.

< Fig. 5> 4:2:2 YUV data sequence.

PO3030K supports 4:2:2 YUV data format where U and V components are horizontally sub-sampled such that U and V for every other pixel are omitted. PO3030K also supports ITU-R BT.601 YC_BC_R format which is a scaled, offset version of YUV. Y is the same in both formats but the C_BC_R is formed as follows.

$$C_B = 0.564 (B - Y) + 128$$

$$C_R = 0.713 (R - Y) + 128$$

Data and Synchronization Timing

In <Fig.6>, HSYNC / VSYNC / PCLK polarity can have any combinations possible (Except for RGB Bayer). Data can be latched at the rising or falling edge of PCLK. HSYNC and VSYNC can be set to be active high or active low. Every type of data (RGB or YUV) comes out at the fixed rate of PCLK, which can have the same or $\frac{1}{2} \sim 1/128$ the frequency of MCLK. The sequence RGB Raw Bayer data for even rows is RGRGRG... and for odd rows is GBGBGB....

PCLK⁽¹⁾: clk for YCbCr, RGB565, RGB888 data format PCLK⁽²⁾: clk for Bayer, Mono data format

< Figure. 6 > Timing diagram for HSYNC, PCLK and data

< Figure. 7> Timing diagram for VSYNC and HSYNC

In <Fig.7>, The width of VSYNC can be controlled by VsyncStart/VsyncStop registers: Vsync Width =

(VsyncStop - VsyncStart). The width of Hsync can be controlled by windowX1/X2 registers: Hsync Width =

WindowX2 - WindowX1

(ref. reg08h ~ 0Fh, regA5h ~AAh descriptions)

In <Fig. 8>, EAV(End of Active Video) and SAV(Start of Active Video) signals are inserted for synchronization purposes. EAV is a 4 byte sequence of "FF 00 00 9D" for active lines, and "FF 00 00 B6" for blank lines. SAV is a 4 byte sequence of "FF 00 00 80" for active lines, and "FF 00 00 AB" for vertical blank lines. HSYNC signal is asserted right after the SAV sequence and de-asserted right before the EAV sequence. Horizontal and vertical blank area is repeatedly filled with "80 10".

< Figure 8 > Frame data sequence including EAV and SAV.

Video Mode(Preview Mode) and Still Image Capture Mode

PO3030K normally operates in video mode. If you want to capture still image, User must do as follows.

step1 : set register #20h (set appropriate register value : image resolution) step2 : set register #1Fh bit7 to '1'.

When bit7 of register 31d (1Fh) is set to '1', Sensor is under still state using electrical rolling shutter. After Still state, video mode may follow immediately or the sensor may be in idle state until an appropriate bit(reg_SN) is reset in the I²C register file. While the sensor is in idle state, there's no HSYNC or VSYNC pulse. Image resolution switch between video and still mode (for example, video in QVGA resolution and still image in VGA resolution) can be done manually or automatically.

< Figure 9 > Sensor state transition diagram

<Figure 10> Still image capture with electrical shutter (register 1Eh bit5 = '0')

Scaling

PO3030K supports four modes of scaling: 1/4 scaling, 1/16 scaling. Figure 12 shows the scaling four modes.

(Ref. reg20h)

I2C Description

The registers of PO3030K are written and read through the I^2C interface. The PO3030K has I^2C slave. The PO3030K is controlled by the I^2C clock (SCL), which is driven by the I^2C master. Data is transferred into and out of the PO3030K through the I^2C data (SDA) line. The SCL and SDA lines are pulled up to VDD by a $2k\Omega$ off-chip resistor. Either the slave or master device can pull the lines down. The I^2C protocol determines which device is allowed to pull the two lines down at any given time.

Start bit

The start bit is defined as a HIGH to LOW transition of the data line while the clock line is HIGH.

Stop bit

The stop bit is defined as a LOW to HIGH transition of the data line while the clock line is HIGH.

Slave Address

The 8-bit address of an I²C device consists of 7 bits of address and 1 bit of direction. A 0 in the LSB of the address indicates write mode, and a 1 indicates read-mode.

Data bit transfer

One data bit is transferred during each clock pulse. The I²C clock pulse is provided by the master. The data must be stable during the HIGH period of the I²C clock: it can only change when the I²C clock is LOW. Data is transferred 8 bits at a time, followed by an acknowledge bit.

Acknowledge bit

The receiver generates the acknowledge clock pulse. The transmitter (which is the master when writing, or the slave when reading) releases the data line, and receiver indicates an acknowledge bit by pulling the data line low during the acknowledge clock pulse.

No-acknowledge bit

The no-acknowledge bit is generated when the data line is not pulled down by the receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate a read sequence.

Sequence

A typical read or write sequence begins by the master sending a start bit. After start bit, the master sends the slave device's 8-bit address. The last bit of the address determines if the request will be a read or a write, where a 0 indicates a write and a 1 indicates a read. The slave device acknowledges its address by sending an acknowledge bit back to the master.

If the request was a write, the master then transfers the 8-bit register address to which a write should take place. The slave sends an acknowledge bit to indicate that the register address has been received. The master then transfers the data 8 bits at a time, with the slave sending an acknowledge bit after each 8 bits. The PO3030K uses 8 bit data for its internal registers, thus requiring one 8-bit transfer to write to one register. After 8 bits are transferred, the register address is automatically incremented, so that the next 8 bits are written to the next register address. The master stops writing by sending a start or stop bit.

A typical read sequence is executed as follows. First the master sends the write-mode slave address and 8-bit register address just as in the write request. The master then sends a start bit and the read-mode slave address. The master then clocks out the register data 8 bits at a time. The master sends an acknowledge bit after each 8-bit transfer. The register address is auto-incremented after each 8 bit is transferred. The data transfer is stopped when the master sends a no-acknowledge bit.

I2C Functional Description Single Write Mode operation S W **SLAVE ADDRESS** Α REGISTER ADR. Α **DATA** P Multiple Write Mode (Register address is increased automatically)¹ operation S **SLAVE ADDRESS** W REGISTER ADR. DATA A **DATA DATA Single Read Mode operation** W S **SLAVE ADDRESS** REGISTER ADR. A Sr **SLAVE ADDRESS** R **DATA** NA Α Multiple Read Mode (Register address is increased automatically)¹ operation S **SLAVE ADDRESS** W A REGISTER ADR. Α Sr **SLAVE ADDRESS** R **DATA DATA DATA DATA** NA P From master to slave From slave to master

S: Start condition. Sr: Repeated Start (Start without preceding stop.)

SLAVE ADDRESS: write address = DCh = 11011100b

read address = DDh = 11011101b

R/W: Read/Write selection. High = read / LOW = write.

A: Acknowledge bit. NA: No Acknowledge.

DATA: 8-bit data P: Stop condition

Note 1: Continuous writing or reading without any interrupt increases the register address automatically. If the address is increased above valid register address range, further writing does not affect the chip operation in write mode. Data from invalid registers are undefined in read mode.

Register Table

Address	Name	R/W	Default Value		Description			
0 (00h)	DeviceID_H	R	00110000	(30h)	PO3030K Device ID			
1 (01h)	DeviceID_L	R	00110000	(30h)	1 COCCON Device 12			
2 (02h)	RevNumber	R	00000001	(01h)	Revision Number			
4 (04h)	FrameWidth_H	RW	xx000011	(03h)	Frame Width = 899d (0383h)			
5 (05h)	FrameWidth_L	RW	10000011	(83h)	Trame Width - 0990 (0000h)			
6 (06h)	FrameHeight_H	RW	xx000001	(01h)	Frame Height = 499d (01F3h)			
7 (07h)	FrameHeight_L	RW	11110011	(F3h)	Trame neight - 4990 (OTT Sh)			
8 (08h)	WindowX1_H	RW	00000000	(00h)	Window X1 = 209d (00D1h)			
9 (09h)	WindowX1_L	RW	11010001	(D1h)	Window X 1 = 2090 (00DTII)			
10 (0Ah)	WindowY1_H	RW	00000000	(00h)	Window Y1 = 7d (0007h)			
11 (0Bh)	WindowY1_L	RW	00000111	(07h)	Window + 1 = 10 (00011)			
12 (0Ch)	WindowX2_H	RW	00000011	(03h)	Minday V2 = 0404 (0254b)			
13 (0Dh)	WindowX2_L	RW	01010001	(51h)	Window X2 = 849d (0351h)			
14 (0Eh)	WindowY2_H	RW	00000001	(01h)	147-7-170 - 407-7 (04/571)			
15 (0Fh)	WindowY2_L	RW	11100111	(E7h)	Windov. Y2 = 487d (01E7h)			
18 (12h)	AmpBias	RW	xxxxx0010	(02h)	Glr bal Current Bias			
19 (13h)	PixelBias	RW	хооол0010	(02h)	Firel Array Current Bias			
21 (15h)	GlobalGain	RW	00000000	(00h)	Gain Factor that is Common to R, G, B			
22 (16h)	RedGain	RW	01000000	(ACh)	R Pixel Gain Factor			
23 (17h)	Green1Gain	RW	01000000	(-10h)	G1 Pixel Gain Factor			
24 (18h)	BlueGain	RW	010000 10	(30h)	B Pixel Gain Factor			
25 (19h)	Green2Gain	RW	01000000	(40h)	G2 Pixel Gain Factor			
26 (1Ah)	IntTime_H	RW	xx0000000	(00h)				
27 (1Bh)	IntTime_M	RW	1900 00 00	(80h)	Pixel Integration Time			
28 (1Ch)	IntTime_L	RW	00c300xx	(00h)				
29 (1Dh)	Tgcontrol1	RW	0000000	(00h)				
30 (1Eh)	Tgcontrol2	RW	00001010	(0Ah)	TG Control			
31 (1Fh)	Tgcontrol3	RW	00011011	(1Bh)				
32 (20h)	Tgcontrol4	RW	01000100	(44h)				
59 (3Bh)	ADCOffset	RW	00000000	(00h)	ADC offset			
70 (46h)	FdControl	RW	00000000	(00h)	Flicker Control Register			
72 (48h)	regclk167	RW	10101111	(AFh)	# master clock for flicker detection standard time			
73 (49h)	Period50H	RW	10010110	(96h)				
74 (4Ah)	Period50L	RW	00000000	(00h)	Flicker Period(50Hz)			
75 (4Bh)	Period60H	RW	01111101	(7Dh)				
76 (4Ch)	Period60L	RW	00000000	(00h)	Flicker Period(60Hz)			
78 (4Eh)	IspControl2	RW	00000000	(00h)				
79 (4Fh)	IspControl3	RW	00001010	(0Ah)	ISP Control Registers			
80 (50h)	IspControl4	RW	01110000	(70h)				
89 (59h)	LensRGain	RW	xxxx0000	(00h)	Lens Shading Red Gain			
90 (5Ah)	LensGGain	RW	xxxx0000	(00h)	Lens Shading Green Gain			
91 (5Bh)	LensBGain	RW	20000000	(00h)	Lens Shading Blue Gain			
92 (5Ch)	EdgeControl	RW	10101100	(ACh)	Moire Suppression & Edge Enhancement Factor			
93 (5Dh)	EdgeTh	RW	00000010	(02h)	Edge Enhancement Threshold			
118 (76h)	GmCoeff0	RW	00000000	(00h)	Lago Emanosmon Finosion			
119 (77h)	GmCoeff1	RW	00011010	(1Ah)				
120 (78h)	GmCoeff2	RW	00101010	(2Ah)				
120 (10h)	GmCoeff3	RW		(2An) (37h)	Gamma Coefficients			
121 (1911) 122 (7Ah)	GmCoeff4	RW	00110111		Gamma Goembleiks			
, ,	GmCoeff5	RW	01000010	(42h)				
123 (7Bh)			01010110	(56h)				
124 (7Ch)	GmCoeff6	RW	01101000	(68h)				

Rev 1.00 16/78

Address	Name	R/W	Default Va	lue	Description
125 (7Dh)	GmCoeff7	RW	10000111	(87h)	
126 (7Eh)	GmCoeff8	RW	10100011	(A3h)	
127 (7Fh)	GmCoeff9	RW	101111100	(BCh)	Gamma Coefficients
128 (80h)	GmCoeff10	RW	11010100	(D4h)	
129 (81h)	GmCoeff11	RW	11101010	(EAh)	
142 (8Eh)	ColorMatrix11	RW	00111000	(38h)	
143 (8Fh)	ColorMatrix12	RW	10100101	(A5h)	
144 (90h)	ColorMatrix13	RW	00001101	(ODh)	
145 (91h)	ColorMatrix21	RW	10010011	(93h)	
146 (92h)	ColorMatrix22	RW	00101101	(2Dh)	Color Correction Coefficients
147 (93h)	ColorMatrix23	RW	00000110	(06h)	
148 (94h)	ColorMatrix31	RW	10000011	(83h)	
149 (95h)	ColorMatrix32	RW	10101010	(AAh)	
150 (96h)	ColorMatrix33	RW	01001101	(4Dh)	
151 (97h)	CG11C	RW	00100101	(25h)	Cb Color Gain
152 (98h)	CG22C	RW	00100101	(25h)	Cr Colo Gan
155 (9Bh)	Bright	RW	00000000	(00h)	Y 2rightness
156 (9Ch)	Contrast	RW	10010110	(96h)	V ∫ontrast.
159 (9Fh)	CbTone	RW	10000000	(80h)	Cb sepia Data
160 (A0h)	CrTone	RW	10000000	(80h)	Cr sepia Data
161 (A1h)	BlankEAV	RW	10110110	(Eor)	
162 (A2h)	ActiveEAV	RW	10011101	(9.7h)	CC/D 858 symphysmization numbers
163 (A3h)	BlankSAV	RW	101010 1	'ABh)	CCIR 656 synchronization purposes
164 (A4h)	ActiveSAV	RW	10000000	(80h)	
165 (A5h)	VsyncStart_H	RW	00000000	(00h)	O.4 V O Ct4 - 7./ (2007k)
166 (A6h)	VsyncStart_L	RW	60000111	(07h)	Out Vsync Row Start = 7d (0007h)
167 (A7h)	VsyncStop_H	RW	20000001	(01h)	Out Verma Daw Ston = 4974 (004 E7k)
168 (A8h)	VsyncStop_L	RW	71100111	(E7h)	Out Vsync Row Stop = 487d (001E7h)
169 (A9h)	VsyncColumn_H	RW	00000000	(00h)	Out Verma Caliman Start - 4.4 (0004k)
170 (AAh)	VsyncColumn_L	RW	00000001	(01h)	Out Vsync Column Start = 1d (0001h)
173 (ADh)	ww control	RW	10011111	(9Fh)	weight window control
174 (AEh)	AE_lock	RW	00100010	(22h)	Auto Exposure Lock range
175 (AFh)	AE_speed	RW	10001100	(8Ch)	Auto Exposure speed
176 (B0h)	Exposure_H	RW	00000000	(00h)	
177 (B1h)	Exposure_M	RW	10000000	(80h)	Exposure
178 (B2h)	Exposure_L	RW	00000000	(00h)	
179 (B3h)	TargetExp	RW	01110000	(70h)	Y Bright Target
185 (B9h)	MaxFrmHeight_H	RW	00000011	(03h)	Maximum Frame Height
186 (BAh)	MaxFrmHeight_L	RW	11100110	(E6h)	waxiiiuii i iaile neigii.
187 (BBh)	MaxExp_H	RW	00000111	(07h)	Maximum Exposure Time
188 (BCh)	MaxExp_M	RW	11001100	(CCh)	Maximum Exposure Time
189 (BDh)	MinExp_M	RW	00000000	(00h)	Minimum Exposure Time
190 (BEh)	MinExp_L	RW	00001100	(0Ch)	·
193 (C1h)	RMinAwb	RW	00010000	(10h)	Minimum AWB R Gain
194 (C2h)	RMaxAwb	RW	11100000	(E0h)	Maximum AWB R Gain
195 (C3h)	BMinAwb	RW	00010000	(10h)	Minimum AWB B Gain
196 (C4h)	BMaxAwb	RW	11100000	(E0h)	Maximum AWB B Gain
197 (C5h)	Awb_rgratio	RW	10000000	(80h)	AWB Red Gain ratio
198 (C6h)	Awb_bgratio	RW	10000000	(80h)	AWB Blue Gain ratio
199 (C7h)	weightx1_H	RW	00000001	(01h)	Weight Window : X1 = 421d(01A5h)
200 (C8h)	weightx1_L	RW	10100101	(A5h)	Freign Frindow . AT - 4210(DTADII)
201 (C9h)	weightx2_H	RW	00000010	(02h)	Weight Window : X2 = 634d(027Ah)
202 (CAh)	weightx2_L	RW	01111010	(7Ah)	Troight Trindom. The Gordioe Triny

Rev 1.00 17/78

Address	Name	R/W	Default Value		Description		
203 (CBh)	weighty1_H	RW	00000000	(00h)	Weight Window: Y1 = 167d(00A7h)		
204 (CCh)	weighty1_L	RW	10100111	(A7h)	vveignt vvinuow . + r = roru(ooArm)		
205 (CDh)	weighty2_H	RW	00000001	(01h)	Weight Window : Y2 = 327d(0147h)		
206 (CEh)	weighty2_L	RW	01000111	(47h)	vveignt vvindow . 12 – 3210(01411)		
212 (D4h)	Auto Control	RW	00111100	(3Ch)	AE / AWB enable		
216 (D8h)	Gamma control	RW	10000000	(80h)	Gamma curve selection		

Jiasino.Rro

Rev 1.00 18/78

Register Descriptions

Register names are written in *slanted* characters. To differentiate between decimal, binary, and hexa numbers, (d, b, and h) are appended. The sensor should be reset by RSTB pin set low, after power is up, for at least 8 master clock periods. This will initialize all of the registers to their default values.

(0-2) DeviceID, RevNumber

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
00h	0	0	1	1	0	0	0	0	
01h	0	0	1	1	0	0	0	0	R
02h	X	X	X	X	0	0	0	1	

Default: 00h = 30h, 01h = 30h, 02h = 01h

Description:

Indicate PO3030K (Rev.1) device ID, reversion number.

(4-5) Frame Width

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
04h	X	X	0	0	0	0	1	1	DW
05h	1	0	0	0	0	0	1	1	RW

Default: 04h = 03h, 05h = 83h Frame Width = 899d

Description:

Frame Width is the number of columns to be counted during one line time. Column counter value is incremented 1 by 1 until it reaches *Frame Width*, then it is reset to 0. It can be larger than physical frame width but cannot be smaller.

Frame Height and Frame Width determines the frame rate. Frame rate is given

as

freq(MCLK) / ((Frame Height +1) x (Frame Width+1) x 2)

For example, freq.MCLK = 27 MHz, $Frame\ Height$ = 499 and $Frame\ Width$ = 899. then, the frame rate is 30 fps. If you double the $Frame\ Width$, you cut the frame rate by half. $Frame\ Width$ value must be set with respect to the full sampling mode. Changing to 1/4 or 1/16 sub-sampling mode does not require any change in $Frame\ Width$.

(6-7) Frame Height

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
06h	X	X	0	0	0	0	0	1	DW
07h	1	1	1	1	0	0	1	1	RW

Default: 06h = 01h, 07h = F3h Frame Height = 499d

Description:

Frame Height is the number of rows to be counted during one frame time. Row counter value is incremented 1 by 1 until it reaches *Frame Height*, then it is reset to 0. It can be larger than physical frame height but cannot be smaller.

Frame Height and Frame Width determines the frame rate. Frame rate is given as

For example, freq.MCLK = 27 MHz, *Frame Height* = 499 and *Frame Width* = 899. then, the frame rate is 30 fps. If you double the *Frame Height*, you cut the frame rate by half, and the vertical blank time is increased, but the PCLK rate does not change.

(8-9) WindowX1

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
08h	0	0	0	0	0	0	0	0	DW
09h	1	1	0	1	0	0	0	1	RW

Default: 08h = 00h, 09h = D1h WindowX1 = 209d

Description:

Window can be defined by 4 parameters: *WindowX1*, *WindowY1*, *WindowX2*, and *WindowY2*. Serial image data stream out pixel by pixel. Window specifies the area of pixels that we are interested in. HSYNC signal indicates if the image data output is from a pixel that lies within the window area or not.

Output data stream does not stop for pixels lying outside the window: just the HSYNC signal is de-asserted. The actual window position in the frame is given as

upper right corner =
$$(Window X1 + 1, Window Y1)$$

lower left corner = (Window X2, Window Y2 - 1)

All the coordinates are with respect to the maximum window origin (0, 0) of Figure 3. Window position and size is with respect to the full sampling mode. It is not necessary to change the window parameters when sampling mode is switched between one and another.

(10-11) WindowY1

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
0Ah	0	0	0	0	0	0	0	0	DW
0Bh	0	0	0	0	0	1	1	1	RW

Default: 0Ah = 00h, 0Bh = 07h WindowY1 = 7d

Description: refer to Window X1

(12-13) WindowX2

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
0Ch	0	0	0	0	0	0	1	1	DW
0Dh	0	1	0	1	0	0	0	1	RW

Default: 0Ch = 03h, 0Dh = 51h Window X2 = 849d

Description: refer to Window X1

(14-15) WindowY2

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
0Eh	0	0	0	0	0	0	0	1	DW
0Fh	1	1	1	0	0	1	1	1	RW

Default: 0Eh = 01h, 0Fh = E7h WindowY2 = 487d

Description: refer to Window X1

(Frame Width, Frame Height)

(18) Amp Bias

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
12h	X	X	X	X	0	0	1	0	RW

Default: 12h = 02h

Description:

All analog circuits such as opamp or reference voltage generators are biased using current mirrors. Current flowing in every branch of analog circuits is an integral multiple of 1uA.

If an opamp has 4 branches and *Global I Bias* is set to 2, then the amplifier consumes total current of 8uA . As the current increases, frequency response of opamp improves and better images can be obtained, but the power consumption also increases.

(19) Pixel Bias

Address	bit7	bit6	bit5	bit4 bit3	bit2	bit1	bit0	R/W
13h	X	X	X	X 0	0	1	0	RW

Default: 13h = 02h

Description:

Pixel array has a source follower circuit for each column to buffer the photo-diode signal voltage.

The source follower bias current is determined as an integral multiple of 1uA.

Ipixel = PixelBias * 1uA

(21) Global Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
15h	0	0	0	0	0	0	0	0	RW

Default: 15h = 00h

Description:

Global Gain has effect on all of R, G, and B pixel outputs. Raw R, G, B data are amplified by a common factor of *Global Gain*. The relation between *Global Gain* and amplification factor is shown in the picture below.

Maximum value of *Global Gain* is 1001111. Gain factors for *Global Gain* larger than or equal to 1010000 are not defined.

(22) Red Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
16h	0	1	0	0	0	0	0	0	RW

Default: 16h = 40h

Description:

RGain is the multiplication factor for red pixel output. Total gain factor for red pixels is (gain from $Global\ Gain$) * (gain from Rgain).

R / G / B gain can be used for white balance control. Bit7 of R/G/BGain is weighted by 2, bit6 by1 and the other consecutive bits are weighted by 1/2, 1/4, 1/8, ... respectively. That is, R/G/Bgain is a binary number with decimal point between bit6 and bit5.

(23) Green 1 Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
17h	0	1	0	0	0	0	0	0	RW

Default: 17h = 40h

Description:

G1 pixels are those green pixels whose nearest neighbors are red pixels.

Refer to Red Gain(16h) register description.

(24) Blue Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
18h	0	1	0	0	0	0	0	0	RW

Default: 18h = 40h

Description: refer to Red Gain(16h) register description.

(25) Green 2 Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
19h	0	1	0	0	0	0	0	0	RW

Default: 19h = 40h

Description:

G2 pixels are those green pixels whose nearest neighbors are blue pixels.

Refer to Red Gain(16h) register description.

(26-28) Integration Time

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
1Ah	X	X	0	0	0	0	0	0	
1Bh	1	0	0	0	0	0	0	0	RW
1Ch	0	0	0	0	0	0	X	X	

Default : 1Ah = 00h, 1Bh = 80h, 1Ch = 00h, Integration Time = 8192d Description :

There are 3 bytes of registers to control the photo-charge accumulation interval for each pixel. 1Ah and 1Bh registers indicate how many line times the integration will continue until they are all reset. 1Ch register further sub-divides one line time into 64 smaller intervals. Total integration time is the sum of the integral multiple and fractional parts of one line time. As the row counter value is incremented from 0 to Frame Height, each line relevant to the row count is selected and all pixel data of that line is read out all at once. The read- out operation involves pixel reset pulses, so all pixels that are selected and read out are reset to initial states. To control exposure time, there runs another counter to select and reset a line other than the one that is selected to be read out. The space between the two lines is equal to the number of integration lines. There are two possible situations concerning the position of selected line and reset line. The 1st case is where the pre-reset counter runs ahead of read-out counter. And the other case Is just the reverse of the 1st one. The number of integration lines is different for the two cases as is shown in the left figures. Since the basic unit of integration time for PO3030K is 1/64 line time, it is easy to implement Auto Exposure algorithms without worrying about strong light environment where the image may change abruptly in brightness or it may even blink.

Case 1. Reset line preceding select line

Case 2. Select line preceding reset line

(29) Timing Generator Control Register 1

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
101	Drop	CK2	CK1	CK0	X	X	X	X	DW
1Dh	0	0	0	0	X	X	X	X	RW

Default: 1Dh = 00h

Description:

Bit name	value	Description
Dron	0	Frame Drop Disable.
Drop	1	Frame Drop Enable.
	000	Internal clock = (external master clock) x 1/2 (Default)
	001	Internal clock = (external master clock) x 1/3
	010	Internal clock = (external master clock) x 1 / 4
CK(2:0)	011	Internal clock = (external master clock) x 1 / 8
CK(2.0)	100	Internal clock = (external master clock) x 1 / 16
	101	Internal clock = (external master clock) x 1 / 32
	110	Internal clock = (external master clock) x 1 / 64
	111	Internal clock = (external master clock) x 1 / 128

(30) Timing Generator Control Register 2

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
1 17.1	HM	VM	ST	SN	RSV	RSV	RSV	RSV	DW
1Eh	0	0	0	0	1	0	1	0	RW

Default : 1Eh = 0Ah

Description:

Bit name	value	Description
НМ	0 1	Horizontal Mirror Disable. (default) Horizontal Mirror Enable.
VM	0 1	Vertical Mirror Disable (default) Vertical Mirror Enable.
ST	0 1	Electrical Shutter Selection (default) Mechanical Shutter Selection (not available)
SN	0 1	single still image output disable (default) single still image output enable

(31) Timing Generator Control Register 3

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
1Fh	sync	stdby	X	RSV	RSV	RSV	RSV	RSV	DW
IFN	0	0	X	1	1	0	1	1	RW

Default : 1Fh = 1Bh

Description:

Bit name	value	Description					
sync	0	Sync input register					
stdby	0	Stdby input register					

(32) Timing Generator Control Register 4

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
20h	SM7	SM6	SM5	SM4	SM3	SM2	SM1	SM0	DW
2011	0	1	0	0	0	1	0	0	RW

Default: 20h = 44h

Description:

MSB 4 bits control sub sampling mode under Video State, while LSB 4bits under Still State.

Under Video State

- Sensor Full sampling mode. (frame rate constant)

sm(7:4): "X1XX" => VGA sm(7:4): "X001" => QVGA

sm(7 : 4) : "X011" => QQVGA

Under Still State,

- Sensor Full sampling mode. (frame rate constant)

sm(3:0): "X1XX" => VGA sm(3:0): "X001" => QVGA sm(3:0): "X011" => QQVGA

(59) ADC offset

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
3Bh	0	0	0	0	0	0	0	0	RW

Default: 3Bh = 00h

Description:

ADC offset value.

(70) Flicker Control Register

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
4.61-	AF	F5	F6	FDM	FK1	FK0	FL1	FL0	DW
46h	0	0	0	0	0	0	0	0	RW

Default: 46h = 00h Description:

Bit name	value	Description				
AF	0	Manual Flicker Detection Enable Mode.				
	1	Auto Flicker Detection Enable Mode				
F5	0	50Hz Flicker Detection Mode Disable				
13	1	50Hz Flicker Detection Mode Enable				
F6	0	60Hz Flicker Detection Mode Disable				
го	1	60Hz Flicker Detection Mode Enable				
EDM	0	Flicker Duration long lasting Mode				
FDM	1	Flicker Duration only while the flicker exists.				
	00	Flicker Count Increase/Decrease step '0'.				
FK (1:0)	01	Flicker Count Increase/Decrease step '1'.				
I'K (1.0)	10	Flicker Count Increase/Decrease step '2'.				
	11	Flicker Count Increase/Decrease step '3'.				
	00	Flicker Tolerance '0'				
FL(1:0)	01	Flicker Tolerance '1'				
1 L(1.0)	10	Flicker Tolerance '2'				
	11	Flicker Tolerance '3'				

FDM: flicker duration mode='0': long lasting mode

flicker duration mode='1': only while the flicker exists.

Auto Detect Setting: 60 or 50 Hz AF = '1', F6 = '0', F5 = '0'

60Hz: AF = '1', F6 = '1', F5 = '0'

50Hz: AF = '1', F6 = '0', F5 = '1'

Manual Setting 60Hz: AF = '0', F6 = '1', F5 = '0'

50Hz: AF = '0', F6 = '0', F5 = '1'

(72) Regclk167

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
48h	1	0	1	0	1	1	1	1	RW

Default: 48h = AFh

Description:

of Master clock for flicker detection standard time or 1.667 ms time ratio

Regclk167 = 1.667ms / (master clock period x 256)

(73-76) Flicker Free Mode Period

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
49h	1	0	0	1	0	1	1	0	
4Ah	0	0	0	0	0	0	0	0	DW
4Bh	0	1	1	4)	1	1	0	1	RW
4Ch	0	0	0	70	0	0	0	0	

Default: 49h = 96h, 4Ah = 00h, 4Bh = 7Dh, 4Ch = 00h

Description:

Address	Name	Function
49h	period50 (H)	Flicker Period Control register
4Ah	period50 (L)	for 50Hz light source
4Bh	period60 (H)	Flicker Period Control register
4Ch	period60 (L)	for 60Hz light source

Refer to the application note for the calculation method of flicker free period.

(78) Image Signal Processor control 2 : ISP Control 2

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
451	CEN	OCF2	OCF1	OCF0	ODF3	ODF2	ODF1	ODF0	DW
4Eh	0	0	0	0	0	0	0	0	RW

Default: 4Eh = 00h

Description:

Bit name	value	Description				
CEN	0	Normal condition. (default)				
CEN	1	Out Clock set to ground.				
		Out Clock format Control				
	000	Normal. (default)				
	001	Invert.				
	010	& H-ref				
OCF[6:4]	011	invert & H-ref				
	100	& V-ref				
	101	invert & V-ref				
	110	& H-ref & Vref				
	111	invert & H-ref & V-ref				
		Out Data Format				
	0000	CB Y CR Y (default)				
	0001	CR Y CB Y				
	0010	Y CB Y CR				
	0011	Y CR Y CB				
ODE[3:0]	0100	RGRGGBGB				
ODF[3:0]	0101	GBGBRGRG				
	0110	GRGRBGBG				
	0111	BGBGGRGR				
	1000	R5G3, G3B5				
	1001	B5G3, G3R5				
	1100	YYYY				

- OCF[6:4] : Out Clock Format

PC	CLK	Description		
Normal type	Complementary type	Description		
000 (default)	001	Normal Clock		
010	011	Valid in Hsync high.		
100	101	Valid in Active Window.		
110	111	Valid in Active Window and Hsync high.		

Rev 1.06

(79) Image Signal Processor control 3: ISP Control 3

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
4171	SCE	RSV	Vpol	Hpol	HD	RSV	RSV	RSV	DW
4Fh	0	0	0	0	1	0	1	0	RW

Default: 4Fh = 0Ah

Description:

Bit name	value	Description
SCE	0 1	Sepia Color Disable. (default) Sepia Color Enable.
Vpol	0 1	VSYNC. (default) Invert VSYNC
Hpol	0 1	HSYNC. (default) Invert HSYNC
HD	0 1	Only Active region HSYNC All region HSYNC (default)

(1) Vpol: VSYNC polarity.

(2) Hpol: HSYNC polarity.

(80) Image Signal Processor control 4 : ISP Control 4

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
501	Hiz	SHiz	FY	FC	RSV	RGE	GGE	BGE	DW
50h	0	1	1	1	0	0	0	0	RW

Default: 50h = 70h Description:

Bit name	value	Description
Hiz 0		Normal condition (default) Out PAD set to Hi-z condition.
	1	
SHiz	0	Don't care STDBY in Hi-z condition
STILL	1	Out Pad set to Hi-z condition @ STDBY '1'
FY	0	Y Data range are 16 to 235
1 1	1	Y Data range are 1 to 254 (default)
FC	0	CbCr Data range are 16 to 240
	1	CbCr Data range are 1 to 254 (default)
RGE	0	Red Gamma operation Enable. (default)
KGE	1	Red Gamma operation Disable.
CCE	0	Green Gamma operation Enable. (default)
GGE	1	Green Gamma operation Disable.
BGE	0	Blue Gamma operation Enable. (default)
DGE	1	Blue Gamma operation Disable.

StdbyHiz(SHiz)	Hiz	Stdby	Out PAD condition
1	1	0 1	Normal Hi-Z
-	1	-	Hi-Z
0	1 0	-	Hi-Z Normal

(89-91) Lens Shading Gain (RGB)

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
59h	X	X	X	X	0	0	0	0	
5Ah	X	X	X	X	0	0	0	0	RW
5Bh	X	X	X	X	0	0	0	0	

Default: 59h = 00h, 5Ah = 00h, 5Bh = 00h

Description:

Address	Name	Description			
59h	LensRgain	Lens Gain for Red Pixel			
5Ah	LensGgain	Lens Gain for Green Pixel			
5Bh	LensBgain	Lens Gain for Blue Pixel			

(92) Edge Gain

Address	bit7	bit6	bit5 bit4	bit3	bit2	bit1	bit0	R/W
5Ch	1	0	1 0	1	1	0	0	RW

Default : 5Ch = ACh

Description:

Edge enhancement gain & moire suppression gain factor.

	Description				
[7:5]	RSV				
EdgeControl[4:0]	Edge enhancement gain $(0x08 = x1)$				

(93) Edge Threshold

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
5Dh	0	0	0	0	0	0	1	0	RW

Default : 5Dh = 02h

Description:

Edge Enhancement threshold.

(118-129) Gamma Correction Coefficients

Address	Name	Value	
76h	GC0	00000000	(00h)
77h	GC1	00011010	(1Ah)
78h	GC2	00101010	(2Ah)
79h	GC3	00110111	(37h)
7Ah	GC4	01000010	(42h)
7Bh	GC5	01010110	(56h)
7Ch	GC6	01101000	(68h)
7Dh	GC7	10000111	(87h)
7Eh	GC8	10100011	(A3h)
7Fh	GC9	10111100	(BCh)
80h	GC10	11010100	(D4h)
81h	GC11	11101010	(EAh)

Default: 00h, 1Ah, 2Ah, 37h, 42h, 56h, 68h, 87h, A3h, BCh, D4h, EAh

Description:

Related Register: Test Control6 (0xD8) bit6 | bit5 = Gamma Coefficient Selector

"00": Address 0x76 ~ 0x81 is Red Data Gamma Coefficient
"01": Green Data Gamma Coefficient

else : Blue Data Gamma Coefficient

Description:

Gamma Correction is applied to RGB signal which ranges from 0 to 255 to compensate non-linear characteristics of display brightness vs input brightness.

(142-150) Color Correction Coefficient

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
8Eh	0	0	1	1	1	0	0	0	
8Fh	1	0	1	0	0	1	0	1	
90h	0	0	0	0	1	1	0	1	
91h	1	0	0	1	0	0	1	1	
92h	0	0	1	0	1	1	0	1	RW
93h	0	0	0	0	0	1	1	0	
94h	1	0	0	0	0	0	1	1	
95h	1	0	1	0	1	0	1	0	
96h	0	1	0	0	1	1	0	1	

Default: 38h, A5h, 0Dh, 93h, 2Dh, 06h, 83h, AAh, 4Dh

Description:

Address	Name	Function
8Eh	СТО СТО	Color Correction Matrix Coefficient, m00
8Fh	CTI	Color Correction Matrix Coefficient, m01
90h	CT2	Color Correction Matrix Coefficient, m02
91h	CT3	Color Correction Matrix Coefficient, m10
92h	CT4	Color Correction Matrix Coefficient, m11
93h	CT5	Color Correction Matrix Coefficient, m12
94h	СТ6	Color Correction Matrix Coefficient, m20
95h	CT7	Color Correction Matrix Coefficient, m21
96h	CT8	Color Correction Matrix Coefficient, m22

- Color Coefficient : sign[7] | integer [6:5] | fractional [4:0]

$$\begin{bmatrix} 1.739627 & -1.14441 & 0.404786 \\ -0.60387 & 1.413677 & 0.190193 \\ -0.10247 & -1.30942 & 2.411888 \end{bmatrix} \times 32 = \begin{bmatrix} 55.66805 & -36.6212 & 12.95316 \\ -19.3239 & 45.23768 & 6.08619 \\ -3.27892 & -41.9015 & 77.18042 \end{bmatrix} = \begin{bmatrix} 38 & A5 & 0D \\ 93 & 2D & 06 \\ 83 & AA & 4D \end{bmatrix}$$

(151-152) Color Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
97h	0	0	1	0	0	1	0	1	DW
98h	0	0	1	0	0	1	0	1	RW

Default: 97h = 25h, 98h = 25h

Description:

Color Gain = Sign[7] | Integer[6:5] | fractional[4:0]

Address	Name	Value
97h	CG11C	0 0 1 0 0 1 0 1 (25h)
98h	CG22C	0 0 1 0 0 1 0 1 (25h)

$$Cr' = Cr * CG22C$$

(155-156) Brightness & Contrast

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
9Bh	0	0	0	0	0	0	0	0	DW
9Ch	1	0	0	1	0	1	1	0	RW

Default: 9Bh = 00h, 9Ch = 96h

Description:

$$Y' = Y \times (Y_cont/128) + Y_bright$$

* Brightness(9Bh) : (bit7) | (bit6 \sim bit0) = sign digit | magnitude

Contrast: 0x80 = x1

Address	Name	Value
9Bh	Brightness	0 0 0 0 0 0 0 0 (00h)
9Ch	Contrast	10010110 (96h)

(159-160) Cb Tone / Cr Tone

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
9Fh	1	0	0	0	0	0	0	0	DW
A0h	1	0	0	0	0	0	0	0	RW

Default: 9Fh = 80h, A0h = 80h

Description:

Cb/Cr Color Tone @ sepia color condition.(reg 4Fh[7])

Address	Name	Value
9Fh	Cb Tone	1 0 0 0 0 0 0 0 (80h)
A0h	Cr Tone	1 0 0 0 0 0 0 0 (80h)

(161-164) CCIR656 Sync Index Value

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
A1h	1	0	1	1	0	1	1	0	
A2h	1	0	0	1	1	1	0	1	DW
A3h	1	0	1	0	1	0	1	0	RW
A4h	1	0	0	0	0	0	0	0	

Default: B6h, 9Dh, ABh, 80h

Description:

EAV and SAV signals are inserted for synchronization purposes.

Address	Name	Description		
A1h	BlankEAV	Blank Range End of Video		
A2h	ActiveEAV	Active Range End of Video		
A3h	BlankSAV	Blank Range Start of Video		
A4h	ActiveSAV	Active Range Start of Video		

SinorPri

EAV : blank EAV, aEAV : Active EAV, SAV : blank SAV aSAV : Active SAV

(165-170) Pad Vsync Start / Stop

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
A5h	0	0	0	0	0	0	0	0	
A6h	0	0	0	0	0	1	1	1	
A7h	0	0	0	0	0	0	0	1	DW
A8h	1	1	1	0	0	1	1	1	RW
A9h	0	0	0	0	0	0	0	0	
AAh	0	0	0	0	0	0	0	1	

Default : A5h = 00h, A6h = 07h, A7h = 01h, A8h = E7h, A9h = 00h, AAh = 01h

Description: VSYNC positions.

There are two counters to indicate the present coordinate of frame scanning:

Frame row counter and frame column counter. Counter values repeat the cycle of 0 to *Frame Height*, and 0 to *Frame Width* respectively.

Address	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
A5h	VsyncStart (H)	0	0	0	0	0	0	0	0	(00h)
A6h	VsyncStart (L)	0	0	0	0	0	1	1	1	(07h)
A7h	VsyncStop (H)	0	0	0	0	0	0	0	1	(01h)
A8h	VsyncStop (L)	1	1	1	0	0	1	1	1	(E7h)
A9h	VsyncColumn (H)	0	0	0	0	0	0	0	0	(00h)
AAh	VsyncColumn (L)	0	0	0	0	0	0	0	1	(01h)

P = reg. Frame Height n = reg. Frame Width CLK*: Clock for Bayer Data

VSYNC rising : when (Row_counter = Reg. VsyncStart) & (Column_counter = Reg. VsyncColumn) falling : when (Row_counter = Reg. VsyncStop) & (Column_counter = Reg. VsyncColumn)

(For example) VsyncStart = 7d, VsyncStop = 487d, VsyncColumn = 1d.

Frame Width(reg.04h, 05h) = 899d, Frame Height(reg.06h, 07h) = 499d,

Window X1(reg. 08h, 09h) = 209d, Window X2(reg. 0Ch, 0Dh) = 849d.

(173) WW Control

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
A DI-	CW3	CW2	CW1	CW0	RSV	RSV	RSV	RSV	DW
ADh	1	0	0	1	1	1	1	1	RW

Default: ADh = 9Fh

Description:

Bit name	value	Description
CW[3:0]	1001	Center weight (Back Light compensation)

(174) AWB / AE Tolerance

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
AEh	0	0	1	0	0	0	1	0	RW

Default : AEh = 22h

Description:

[7:4] Set margin of AWB functions[3:0] Set margin of AE functions

(175) AE speed

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
AFh	1	0	0	0	1	1	0	0	RW

Default : AFh = 8Ch

Description:

AE speed[3:0]: "Ae Speed Gain factor B" AE speed applied when exposure time is decreasing.

AE speed[7:4]: "Ae Speed Gain factor D" AE speed applied when exposure time is increasing.

(176-178) Exposure

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
B0h	0	0	0	0	0	0	0	0	
B1h	1	0	0	0	0	0	0	0	RW
B2h	0	0	0	0	0	0	0	0	

Default : B0h = 00h, B1h = 80h, B2h = 00h

Exposure[23:0]: "Exposure" register means abstract exposure level of sensor. Larger the value of Exposure, effectively longer exposure time. LSB of Exposure corresponds to 1/64 line exposure time. User can write Exposure register only when AE function is disabled.

(179) Reference Exposure

Address	bit7	bit6	bit5	bit4 bit3	bit2	bit1	bit0	R/W
B3h	0	1	1	1 0	0	0	0	RW

Default: B3h = 70h

Description:

Address	Name	Function
B0h	TargetExp	Target exposure level in auto-exposure mode

TargetExp determines target average brightness (Y target) for AE function. AE function controls Exposure register until captured image has brightness of target average brightness. The relationship between *TargetExp* and target average brightness is

target average brightness = TargetExp

(185-186) Maximum Frame Height

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
B9h	0	0	0	0	0	0	1	1	DW
BAh	1	1	1	0	0	1	1	0	RW

Default: B9h = 03h, BAh = E6h

Description:

Address	Name	Function
B9h	MaxFrmHeight (H)	Marianan Franciska
BAh	MaxFrmHeight (L)	Maximum Frame Height

During auto exposure mode, minimum frame rate is set by *MaxExpTime* register. If user set the *MaxExpTime* register larger value than *FrmHeight* register value so that *ExpTime* register have larger value than default(0413h), frame rate is automatically varied.

(187-188) Maximum Exposure

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
BBh	0	0	0	0	0	1	1	1	DW
BCh	1	1	0	0	1	1	0	0	RW

Default : BBh = 07h, BCh = CCh

Description:

Address	Name	Function
BBh	MaxExp (H)	Marianum Eurogua
BCh	MaxExp (M)	Maximum Exposure

During auto exposure mode, maximum global gain is set by *MaxExp* register. If user set the *MaxExp* register larger value than *MaxFrmHeight* register value, global gain is automatically varied.

(189-190) Minimum Exposure Time

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
BDh	0	0	0	0	0	0	0	0	DW
BEh	0	0	0	0	1	1	0	0	RW

Default: BDh = 00h, BEh = 0Ch

Description:

Address	Name	Function
BDh	MinExpTime (H)	Minimum Emparation Time
BEh	MinExpTime (L)	Minimum Exposure Time

Under auto exposure mode, minimum exposure time of a pixel is set by *MinExpTime* register. LSB of *MinExpTime* corresponds to time for reading 1/64 line in each frame.

(193-196) Minimum / Maximum AWB Gain

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
C1h	0	0	0	1	0	0	0	0	
C2h	1	1	1	0	0	0	0	0	DW
C3h	0	0	0	1	0	0	0	0	RW
C4h	1	1	1	0	0	0	0	0	

Default : C1h = 10h, C2h = E0h, C3h = 10h, C4h = E0h

Description:

During auto white balance, RedGain and BlueGain register value varies between MinAWB and MaxAWB

Address	Name	Function
C1h	Red Min Gain AWB	0001000
C2h	Red Max Gain AWB	1 1 1 0 0 0 0 0
C3h	Blue Min Gain AWB	0001000
C4h	Blue Max Gain AWB	11100000

(197-198) AWB RG / BG ratio

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
C5h	1	0	0	0	0	0	0	0	DW
C6h	1	0	0	0	0	0	0	0	RW

Default : C5h = 80h, C6h = 80h

Description:

Address	Name	Function
C5h	AWB RG ratio	AWD Calan Datia
C6h	AWB BG ratio	AWB Color Ratio

Red $Gm = Gm \times AWB RGratio$

Blue $Gm = Gm \times AWB BGratio$

(AWB RG / BG ratio x1 = 80h)

(199-206) Weighting Window

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
C7h	0	0	0	0	0	0	0	1	
C8h	1	0	1	0	0	1	0	1	
C9h	0	0	0	0	0	0	1	0	
CAh	0	1	1	1	1	0	1	0	RW
CBh	0	0	0	0	0	0	0	0	K W
CCh	1	0	1	0	0	1	1	1	
CDh	0	0	0	0	0	0	0	1	
CEh	0	1	0	0	0	1	1	1	

Default: 01h, A5h, 02h, 7Ah, 00h, A7h, 01h, 47h

Description: Refer to the description of WW bit of Auto Control [ADh].

WeightXI = 0x01A5h, WeightX2 = 0x027Ah, WeightYI = 0x00A7h, WeightY2 = 0x0147h

WeighteX1 > 421d, WeightedX2 < 634d WeighteY1 > 167d, WeightedY2 < 327d

Address	Name	Function
C7h	WeightX1 (H)	X1 coordination of weight window of auto-
C8h	WeightX1 (L)	exposure process
C9h	WeightX2 (H)	X2 coordination of weight window of auto-
CAh	WeightX2 (L)	exposure process
CBh	WeightY1 (H)	Y1 coordination of weight window of auto-
CCh	WeightY1 (L)	exposure process
CDh	WeightY2 (H)	Y2 coordination of weight window of auto-
CEh	WeightY2 (L)	exposure process

(212) Auto Control

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
D41-	X	X	AWBen	AEen	RSV	RSV	RSV	RSV	DW
D4h	X	X	1	1	1	1	0	0	RW

Default : D4h = 3Ch

Description:

Mnemonic	Description
AWBen	AWB enable
AEen	AE enable

(216) Gamma Control

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W
Dol	RSV	GMS1	GMS0	X	RSV	RSV	RSV	RSV	DW
D8h	1	0	0	X	0	0	0	0	RW

Default : D8h = 80h

Description:

Bit name	value	Description
		Gamma Coefficient(GC) select (0x76 ~ 0x81)
CMC[6.5]	00	Red Data GC
GMS[6:5]	01	Green Data GC
	Else	Blue Data GC

Electrical Characteristics

Absolute Maximum Ratings *

Table 4. DC Characteristics

Symbol	Descriptions	Min	Тур	Max	Unit
V_{DD}	Digital, Analog, Pixel VDD voltage relative to GND(DGND, AGND, PGND) level.	1.62	1.8	1.98	V
$\mathrm{HV}_{\mathrm{DD}}$	High VDD(HVDD) voltage relative to GND(DGND) level.	1.62	1.8 2.5 3.3	3.6	V
I _{DDD}	Supply current at 30 fps. Currents are programmable through I2C serial interface. @2.5V I/O		23	30	mA
I_{DDS}	Standby supply current		10	15	uA
V _{IL1}	Input voltage LOW level			0.2*HVDD	V
V _{IH1}	Input voltage HIGH level	0.8*HVDD			V
V _{IL2}	Input voltage LOW level for SCL, SDA.			0.2*HVDD	V
V _{IH2}	Input voltage HIGH level for SCL, SDA.	0.8*HVDD			V
C_{IN}	Input pin capacitance			10	pF
V _{OL1}	Output Voltage LOW			0.1*HVDD	V
V _{OH1}	Output Voltage HIGH	0.9*HVDD			V
V _{OL2}	Output Voltage LOW level for SCL, SDA.			0.2	V
V _{OH2}	Output Voltage HIGH level for SDA.	HVDD-0.2			V
I _{IN}	Input leakage current		0.005	1	uA
Iot	Output leakage current		0.005	1	uA

^{*} CAUTION !! : Excessive stresses may cause permanent damage to the device.

Table 5. AC Characteristics (Cout = 16pF, HVDD = 2.5V, MCLK = 27MHz, Output Format = YUV422)

Symbol	Descriptions		Тур	Max	Unit
f _{MCLK}	Master clock Frequency			27	MHz
duty	Master clock duty cycle		50		%
t1	Master clock rise/fall time		5		ns
t2	PCLK rise/fall time		5		ns
t3	PCLK rising edge to HSYNC		18		ns
t4	PCLK rising edge to digital output		19		ns
t5	MCLK rising edge to PCLK rising edge		15		ns

Fig. 14 Timing diagram of Clock, Data, and HSync

Table 6. I2C bus signal timing

Symbol	Descriptions	Min	Max	Unit
Tic	I2C Clock frequency		400	kHz
Ticl	I2C Clock Low period	1.3		us
Tich	I2C Clock High period	600		ns
Tiss	setup time for start condition	600		ns
This	hold time for start condition	600		ns
Tisd	setup time for input data	300		ns
Tihd	hold time for input data	50		ns
Tisp	setup time of stop conditon	600		ns
Tbuf	Bus free time between a stop and start condition	1.3		us

Table 7. Power ON,OFF Sequence

Symbol	Descriptions	Min	Тур	Max	Unit
t1	From HVDD rising to DVDD rising	0			ns
t2	From DVDD rising to AVDD rising	0			ns
t3	From AVDD rising to PVDD rising	0			ns
t4	From PVDD falling to AVDD falling	0			ns
t5	From AVDD falling to DVDD falling	0			ns
t6	From DVDD falling to HVDD falling	0			ns
t7	From DVDD rising to initial mclk rising	0			ns
t8	Minimum reset time	8 × ^(*) Tmclk			

((*)Tmclk = 1/fmclk, period time of mclk)

Power-On Sequence

Power-Off Sequence

Table 8. Electro- Optical Characteristics

Symbol	Parameter	Notes	Min	Тур	Max	Unit
Sens	Sensitivity	1)		1.9		V/Lux.sec
Vsat	Saturation Level	2)		780		mV
Vdrk	Dark Signal	3)		9.24		mV/sec
PSNU	PIXEL Signal NON- Uniformity	4)		3.5		%
DR	Dynamic range	5)		62		dB

Notes:

- 1) Measured sensitivity of Green pixel at 4lux illumination for 66ms integration time
- 2) For λ =550 wavelength
- 3) Measured at the zero illumination for 66ms at the 40 degree
- 4) For 16X16 pixel region under illumination with output signal equal to 50% of saturation signal.

5) For frame rate = 15fps, 40 degree 20*Log [Saturation Signal /Dark signal] [dB]

NOTE:

- 1. NI 2.0um + Au 0.5um MIN
- 2. NO METALLIZATION ON SEAL RING AND DIE ATTACH PAD.
- 3. UNIT: mm

Application Note

- Revision Number

Reg. Addr. (Hex)	Read Value (Hex)	Register Name	Descriptions
02	01	RevNum	Revision Number of PO3030K

- Recommended Register Values (Write I2C Addr. : 0xDC, Read I2C Addr. : 0xDD) Overview

• The better image can be acquired to set up recommended register value.

(1) Initial Setting

Address (Hex)	Recommended value (Hex)	Register Name	Default Value (Hex)	Descriptions
12	06	AmpBias	02	
13	08	PixelBias	02	
1E	06	TgControl2	0A	
21	00	Reserved	52	
24	02	Reserved	00	
32	69	Reserved	68	
36	35	Reserved	3C	
39	60	Reserved	30	
4D	FE	Reserved	DD	
53	1C	Reserved	04	
5C	70	EdgeGain	AC	
5D	04	EdgeThreshold	02	
5F	08	Reserved	00	
60	08	Reserved	08	
61	08	Reserved	10	
62	08	Reserved	1F	
63	00	Reserved	00	
64	00	Reserved	08	

continue...

Address (Hex)	Recommended value (Hex)	Register Name	Default Value (Hex)	Descriptions
65	10	Reserved	1B	
66	14	Reserved	1F	
73	68	Reserved	70	
82	01	Reserved	00	
83	80	Reserved	40	
85	0C	Reserved	00	
86	В6	Reserved	88	
89	00	Reserved	88	
AD	3F	WWControl	9F	
AE	24	AELock	22	
В3	68	RefExp	70	
B4	03	Reserved	00	
B8	10	Reserved	00	
В9	07	MaxFrmHeight(H)	03	
ВА	CC	MaxFrmHeight(L)	E6	
ВВ	1F	MaxExp(H)	07	
ВС	30	MaxExp(L)	CC	
BF	02	Reserved	08	
8E	42	ColorMatrix11	38	Color Matrix
8F	95	ColorMatrix12	A5	
90	8D	ColorMatrix13	0D	
91	89	ColorMatrix21	93	
92	3A	ColorMatrix22	2D	
93	90	ColorMatrix23	06	
94	84	ColorMatrix31	83	
95	89	ColorMatrix32	AA	
96	2D	ColorMatrix33	4D	

continue...

- Gamma Setting (Keep The Following Sequence)

Address (Hex)	Recommended value (Hex)	Register Name	Default Value (Hex)	Descriptions
D8	80	GammaSelect	80	Select R Gamma
76	00	GmCoeff0	00	R gamma
77	0D	GmCoeff1	1A	
78	18	GmCoeff2	2A	
79	22	GmCoeff3	37	
7A	2C	GmCoeff4	42	
7B	3E	GmCoeff5	56	
7C	4F	GmCoeff6	68	
7D	6F	GmCoeff7	87	
7E	8E	GmCoeff8	АЗ	
7F	AC	GmCoeff9	ВС	
80	C8	GmCoeff10	D4	
81	E5	GmCoeff11	EA	
D8	A0	GammaSelect	80	Select G Gamma
76	00	GmCoeff0	00	G Gamma
77	0D	GmCoeff1	1A	
78	18	GmCoeff2	2A	
79	22	GmCoeff3	37	
7A	2C	GmCoeff4	42	
7B	3E	GmCoeff5	56	
7C	4F	GmCoeff6	68	
7D	6F	GmCoeff7	87	
7E	8E	GmCoeff8	A3	
7F	AC	GmCoeff9	ВС	
80	C8	GmCoeff10	D4	
81	E5	GmCoeff11	EA	

continue...

Address (Hex)	Recommended value (Hex)	Register Name	Default Value (Hex)	Descriptions
D8	C0	GammaSelect	80	Select B Gamma
76	00	GmCoeff0	00	B Gamma
77	0D	GmCoeff1	1A	
78	18	GmCoeff2	2A]
79	22	GmCoeff3	37	
7A	2C	GmCoeff4	42]
7B	3E	GmCoeff5	56]
7C	4F	GmCoeff6	68	
7D	6F	GmCoeff7	87]
7E	8E	GmCoeff8	A3	
7F	AC	GmCoeff9	ВС	
80	C8	GmCoeff10	D4]
81	E5	GmCoeff11	EA]

Above recommended setting includes the following functions

Max.Frame Rate: VGA 30 fps. @ MCLK = 27 MHz,

Auto Frame Rate Control: Min.Frame Rate = Max.Frame Rate / 4

• Auto Gain Control: Max.Global Gain = 4X

• Output Format : YUV422 (1 ~ 254)

• Weight Window: 3X Center Weight

VSYNC (positive level), HSYNC (positive level), PCLK (positive edge)

Pixel Correction, Color Correction, Gamma Correction, AWB, AE

(2) Additional setting according to the resolution

PO3030K support the sub-sampling methods. Refer to Reg.20h description.

- VGA mode (640x480)

Address (Hex)	Recommended value (Hex)	Register Name	Default Value (Hex)	Descriptions
20	44	TgContol4	44	
5C	6C	EdgeControl	AC	

- QVGA mode (320x240)

20	14	TgContol4	44	
5C	66	EdgeControl	AC	

- QQVGA mode (160x120)

20	34	TgContol4	44	
5C	66	EdgeControl	AC	

- Flicker Free Mode

-Related Registers: Period50H (Reg.49h) ~ Period60L(Reg.4C), FdControl (Reg.46h)

(1) Manual Flicker Free Mode (50Hz / 60Hz)

Reg. Addr. (Hex)	Appropriate value (Hex)	Register Name	Default Value (Hex)	Descriptions
49	Refer to following example	Period50H	12	
4A	11	Period50L	E4	
4B	11	Period60H	13	
4C	11	Period60L	14	

Reg. Addr. (Hex)	Flicker On	Register Name	Flicker Off	Descriptions
46	20 / 40	FdControl	00	60Hz / 50Hz Flicker Free Enable

-Flicker Period Control Register Setting

Related Registers: Reg.49(h), Reg.4A(h) – for 50Hz light source.

Reg.4B(h), Reg.4C(h) – for 60Hz light source.

Flicker Period Reg. Value = 256*(MCLK Freq/(Frame Width * 2))/(Flicker Freq.*2)

ex) If you using 24\MHz MCLK,

- Flicker period for 60Hz (Reg.4Bh, 4Ch)

Frame Width = 900 column

Flicker Period = 256 * (24000000 / (900 * 2)) / (60 x 2) = 28444 = 0x6F1C

Reg.4B(h) = 0x6F; Reg.4C(h) = 0x1C;

- Flicker period for 50Hz (Reg.49h, 4Ah)

Frame Width = 900 column

Flicker Period = 256 * (24000000 / (900 * 2)) / (50 x 2) = 34133 = 0x8555

Reg.49(h) = 0x85; Reg.4A(h) = 0x55;

(2) Auto Flicker Detection Mode

PO3030K support auto flicker detection mode.

Reg. Addr. (Hex)	Appropriate value	Register Name	Default Value (Hex)	Descriptions
48	(1.667ms * MCLK freq.) / 256	Regclk	2C	
49	Refer to the example in the previous page.	Period50H	00	
4A	11	Period50L	В0	
4B	11	Period60H	00	
4C	"	Period60L	94	

Reg. Addr. (Hex)	Flicker On (Hex)	Register Name	Flicker Off (Hex)	Descriptions
46	8F	FdControl	00	50Hz / 60Hz flicker Auto Detection

- Output Format

Related Registers: ISPControl2 (Reg.4Eh), ISPControl4 (Reg.50), EdgeControl (Reg.5Ch), Brightness (Reg.9Bh), Y Contrast (Reg.9Ch), CG11C (Reg.97h), CG22C (Reg.98h)

1) YCbCr422 (8 Bit, Y range: 16 ~ 235, Cb & Cr range: 16 ~ 240) – CCIR.601

Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
4E	xxxx0000	ISPControl2	10	Cb Y Cr Y
	xxxx0001			Cr Y Cb Y
	xxxx0010			Y Cb Y Cr
	xxxx0011			Y Cr Y Cb

Reg. Addr. (Hex)	Setting value (Hex)	Register Name	Default Value (Hex)	Descriptions
50	40	Reserved	70	
9B	10	Brightness	00	
9C	80	Y Contrast	96	

2) YUV422 (8 Bit, Y range: 1 ~ 254, U & V range: 1 ~ 254)

4E xxxx0000 ISPControl2 10 UYVY xxxx0001 VYUY YUYV xxxx0010 YVYU	Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
xxxx0010 YUYV	4E	xxxx0000	ISPControl2	10	U Y V Y
		xxxx0001			V Y U Y
xxxx0011 Y V Y U		xxxx0010			Y U Y V
		xxxx0011			Y V Y U

Reg. Addr. (Hex)	Setting value (Hex)	Register Name	Default Value (Hex)	Descriptions
50	70	Reserved	70	
9B	00	Brightness	00	
9C	94	Y Contrast	96	

3) RGB565 (8 Bit)

Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
4E	xxxx1000	ISPControl2	00	R5G3, G3B5
	xxxx1001			B5G3, G3R5

5) ISP BAYER (8 Bit)

Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
4E	xxxx0100	ISPControl2	00	RGRGGBGB
	xxxx0101			GBGBRGRG
	xxxx0110			GRGRBGBG
	xxxx0111			BGBGGRGR

6) Raw RGB BAYER (8 Bit)

Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
4E	xxxx0100	ISPControl2	00	RGRGGBGB
	xxxx0101	Cill		GBGBRGRG
	xxxx0110			GRGRBGBG
	xxxx0111	0		BGBGGRGR
4D	E0	Reserved	DD	Color Correction Off
50	77	ISPControl4	70	Gamma Off
5C	00	EdgeControl	AC	Edge Enhancement Off

- 642 x 482

Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
09	D0	WiindowX1_L	D1	
0B	06	WindowYI_L	07	
0D	52	WindowX2_L	51	
0F	E8	WindowY2_L	E7	
A6	06	VsyncStart_L	07	
A8	E8	VsyncStop_L	E7	

- 644 x 484

Reg. Addr. (Hex)	Setting value (Bin)	Register Name	Default Value (Hex)	Descriptions
09	CF	WiindowX1_L	D1	D1
0B	05	WindowY1_L	07	07
0D	53	WindowX2_L	51	51
0F	E9	WindowY2_L	E7	E7
А3	05	VsyncStart_L	07	07
A5	E9	VsyncStop_L	E7	E7

- AE Control

(1) Internal AE Control

Related Registers: Int.Time(Reg.1Ah ~ 1Ch), GlobalGain(Reg.15h), AutoControl(Reg.D4h), TargetExp (Reg.B3h),

MaxFrmHeight (Reg.B9h, BAh), MaxExp (Reg.BB, BCh), MinExp (Reg.BDh, BEh), AutoLock

(Reg.AEh)

If AE of AutoControl(Reg.DDh) register is set to '1', $IntTime(Reg.1A\ h \sim 1Ch)$, GlbGain(Reg.15h) registers are automatically controlled by ISP to control overall brightness of sensor image. The target brightness level of image is set by TargetExp(Reg.B3h) register. During auto exposure process, the average brightness of image is controlled to get close to TargetExp register value with the margin set by AutoLock[3:0](Reg.AEh) register. IntTime registers are controlled, at first. If Integration Line is limited to the MaxFrmHeight(Reg.B9h, BAh), then Global Gain is controlled. Variation of GlbGain or IntTime register are limited by MaxExp, MinExp, MaxFrameHeight registers.

1) Auto Frame Control

Auto Frame Control Method can be used to get brighter image in dark condition. Frame rate is automatically controlled by ISP between Max.Frame Rate and Min.Frame Rate.

```
Max. Frame Rate = (MCLK frequency) / (Frame Height * Frame Width * 2)

Min. Frame Rate = (MCLK frequency) / (MaxFrmHeight * Frame Width * 2)

(Frame Height = FrameHeight (Reg. 06h, 07h) + 1

Frame Width = FrameWidth (Reg. 04h, 05h) + 1)
```

Min. Frame Rate is controlled by *MaxFrmHeight* register (Reg.B6h, B7h). *MaxFrmHeight* must be bigger than *FrameHeight*..(*MaxFrmHeight* >= *FrameHeight*)

2) Auto Gain Control

Auto Gain Control Method can be used to get brighter image in dark condition. Global gain is controlled automatically by ISP between Max.Global Gain and Min.Global Gain.

```
Max. Global Gain = (MaxExp / MaxFrmHeight) X
Min. Global Gain = MinGlbGain
```

MaxExp must be bigger than MaxFrmHeight. (MaxExp >= MaxFrmHeight)

(2) External AE Control

Related Registers: AutoControl(Reg.D4h), Exposure (Reg.B0h, B1h, B2h),

If you turn off internal AE function of PO3030K, you can control Integration line and Global gain through $Exposure\ (Reg.B0h \sim B2h)$ registers for implementing external Auto Exposure function. $IntTime\ (Reg.1Ah \sim 1Ch)$ and $GlobalGain\ (Reg.15h)$ registers aren't accessible by user. $Exposure\ (Reg.B0h \sim B2h)$ registers aren't controllable while internal AE is working.

- Disable Internal AE Function

Reg. Addr. (Hex)	Register Name	Descriptions	
D4	AutoControl	Set Bit 4 (AE) to '0' to turn off internal AE function.	
AF	AESpeed	Set this register to 00h	

- Registers for External AE Control

Reg. Addr. (Hex)	Register Name	Descriptions
В0	Exposure(H)	
B1	Exposure(M)	
B2	Exposure(L)	

- (1) $MinExp < Exposure \le FrameHeight$ (Int.Line Control Range)
- (2) $FrameHeight < Exposure \le MaxFrmHeight$ (Frame Rate Control Range)

Current Frame Rate = (MCLK frequency) / (*Exposure* * Frame Width * 2) Min. Frame Rate is limited by *MaxFrmHeight*.

(3) $MaxFrmHeight < Exposure \le MaxExp$ (Global Gain Control Range)

Current Global Gain = (*Exposure / MaxFrmHeight*) * *RefGain + MinGlbGain Exposure* is limited by *MaxExp*.

- AWB Control

(1) Internal AWB Control

Related Registers: RGain(Reg.16h), G1Gain(Reg.17h), BGain(Reg.18h), G2Gain(Reg.19h), AWBRratio(Reg.C5h), AWBBratio(Reg.C6h),

If AWB of *AutoControl*(*Reg.D4*h) register is set to '1', *RGain*(*Reg.16h*) and *BGain*(*Reg.18h*) registers are automatically controlled by ISP to control the RGB ratio of sensor image. The ratio of average of R, G, B components can be controlled by *AWBRratio* and *AWBBratio* registers. Those ratios are defined according to the following relation,

$$\overline{B} = \frac{AWBBratio}{128} \times \overline{G}$$
 $\overline{R} = \frac{AWBRratio}{128} \times \overline{G}$

(2) External AWB Control

If you turn off internal AWB function of PO3030K, you can control R, G and B gains through R, G1, B and G2 Gain ($Reg.16h \sim 19h$) registers for implementing external Auto White Balance function. R and B gain registers aren't controllable while internal AWB is working.

- Disable Internal AWB Function

Reg. Addr.	Register Name	Descriptions
(Hex) D4	AutoControl	Set Bit 5 (AWB) to '0' to turn off internal AWB function.

- Registers for external AWB control

Reg. Addr. (Hex)	Register Name	Default Value (Hex)	Descriptions
16	R Gain	40	1X R Gain = 0x40 (2X = 0x80)
17	G1 Gain	40	1X G1 Gain = 0x40
18	B Gain	40	1X B Gain = 0x40
19	G2Gain	40	1X G2 Gain = 0x40

- Backlight Compensation

Related Registers: WeightX1 (Reg.C7h, C8h), WeightX2 (Reg.C9h. CAh), WeightY1 (Reg.CBh, CCh),

WeightY2 (Reg.CDh, CEh), WeightControl (Reg.ADh),

1) Weight Window

Reg. Addr. (Hex)	Register Name	Default Value (Hex)	Description
C7	WeightX1(H)	03	Minimum:
C8	WeightX1(L)	14	WindowX1(Reg.08h, 09h)
C9	WeightX2(H)	05	Maximum:
CA	WeightX2(L)	28	WindowX2(Reg.0Ch, 0Dh)
СВ	WeightY1(H)	01	Minimum:
СС	WeightY1(L)	9A	WindowY1(Reg.0Ah, 0Bh)
CD	WeightY2(H)	03	Maximum:
CE	WeightY2(L)	33	WindowY2(Reg.0Eh, 0Fh)

2) Weight Factor

Weight Factor is controlled by CW[3..0] (bit 7 ~ 4) of WeightControl register (Reg.ADh).

$$0000b \le \text{Weight Factor}(CW[3..0]) \le 1111b$$

- Brightness / Y Contrast / Saturation (Only for YCbCr422 & YUV422)

-Related Registers: Brightness (Reg.9Bh), YContrast (Reg.9Ch), CG11C (CbGain, Reg.97h), CG22C (CrGain, Reg.98h)

(1) Brightness

Brightness is controlled by *Brightness* register (*Reg.9Bh*). The default value of this register is 00h.

* Brightness(9Bh) : (bit7) | (bit6 ~ bit0) = sign digit | magnitude

(2) Y Contrast

Contrast is controlled by Y Contrast register (Reg.9Ch). The default value of this register is 96h.

(3) Saturation

Saturation is controlled by *CG11C* (*CbGain*) and *CG22C* (*CrGain*) registers (*Reg.97h*, *98h*) with the same values. The default value of these registers are 25h and these are controllable separately for adjusting color tone.

- Color Correction Matrix

Related Registers: ColorMatrix11 (Reg.8Eh) ~ ColorMatrix33 (Reg.96h)

Color correction can be accomplished by color transform registers ($Reg.8Eh \sim 96h$) by means of the following equation, where CC is 3x3 color correction matrix.

$$\left(\begin{array}{cccc} CT0 & CT1 & CT2 \\ CT3 & CT4 & CT5 \\ CT6 & CT7 & CT8 \end{array} \right) = \left(\begin{array}{ccccc} m00 & m01 & m02 \\ m10 & m11 & m12 \\ m20 & m21 & m22 \end{array} \right) = 32 *CC$$

* $m00 \sim m22$: (bit7) | (bit6 ~ bit0) = sign digit | magnitude

 $\langle Ex. \rangle$

$$\left(\begin{array}{cccc} m00 & m01 & m02 \\ m10 & m11 & m12 \\ m20 & m21 & m22 \\ \end{array} \right) \ = 32 * \left(\begin{array}{ccccc} 1.7396 & -1.1444 & 0.4048 \\ -0.6039 & 1.4137 & 0.1902 \\ -0.1025 & -1.3094 & 2.4119 \\ \end{array} \right)$$

$$\begin{bmatrix} 55.6672 & -36.6208 & 12.9536 \\ -19.3248 & 45.2384 & 6.0864 \\ -3.28 & -41.9008 & 77.1808 \end{bmatrix} = \begin{bmatrix} 38h & A5h & 0Dh \\ 93h & 2Dh & 06h \\ 83h & AAh & 4Dh \end{bmatrix}$$

- Y target Control

Related Registers: TargetExp (Reg.B3h, Reg.73h)

Y target is controlled by TargetExp register (Reg.B3h, Reg.73h).

 $\langle Ex. \rangle$

LEVEL	1	2	3	4	5	6	7	8	9
Reg.B3h	30	40	50	60	70	80	90	A0	В0
Reg.73h									

- Sharpness Control

Related Registers: EdgeControl (Reg.5Ch), EdgeThreshold (Reg.5Dh)

Sharpness is controlled by *EdgeControl* (Reg.5Ch) and *EdgeThreshold* register (Reg.5Dh). All three values have the following Min. and Max. value.

$$00000b \le EdgeGain (EdgeControl[4..0]) \le 11111b$$

 $00h \le EdgeThreshold \le FFh$

The lowest sharpness level can be gotten by setting registers as follows.

$$EdgeGain = 00000b, EdgeThreshold = FFh$$

And, the highest sharpness level can be gotten by setting registers as follows.

$$EdgeGain = 11111b$$
, $EdgeThreshold = 00h$

But, we recommend to set EdgeThreshold register value greater than 01h

Ex.)

Sharpness Level	Reg. Addr. (Hex)	Recommended value	Register Name	Default Value
0	5C	xxx00000 (b)	EdgeControl	xxx01100 (b)
	5D	04 (h)	EdgeThreshold	02 (h)
1	5C	xxx00100 (b)		
	5D	04 (h)		
2	5C	xxx01000 (b)		
	5D	04 (h)		
3	5C	xxx01100 (b)		
	5D	04 (h)		
4	5C	xxx10000 (b)		
	5D	04 (h)		
5	5C	xxx10100 (b)		
	5D	04 (h)		
6	5C	xxx11000 (b)		
	5D	04 (h)		

- Vertical / Horizontal Mirror

Related Registers: TgControl1(Reg.1Dh), TgControl2(Reg.1Eh)

(1) Vertical Mirror

Vertical Mirror is controlled by VM bit (Bit 6 of Reg. 1Eh).

(2) Horizontal Mirror

Horizontal Mirror is controlled by *HM* bit (Bit 7 of *Reg.1Eh*).

- Lens shading Compensation

Related Registers: LensRGain (Reg.59h), LensGGain (Reg.5Ah), LensBGain (Reg.5Bh)

- Color Tone

Related Registers: ISPControl3 (Reg.4Fh), CbTone (Reg.9Fh), CrTone (Reg.A0h)

Reg. Addr. (Hex)	Setting value (Hex)	Register Name	Default Value (Hex)	Descriptions
4F	4F 1xxxxxx		0xxxxxxx (b)	
9F	Appropriate Value	CbTone	00	
A0	Appropriate Value	CrTone	00	

Sepia (Reg.9Fh = 98h, Reg.A0h = 1Ch)

Green (Reg.9Fh = 98h, Reg.A0h = 98h)

Aqua (Reg.9Fh = 28h, Reg.A0h = A0h)

Red (Reg.9Fh = 80h, Reg.A0h = 28h)

Cool (Reg.9Fh = 20h, Reg.A0h = 98h)

Warm (Reg.90h = 9Fh, Reg.A0h = 28h)

BW (Reg.9Fh = 80h, Reg.A0h = 80h)

Antique (Reg.9Fh = 10h, Reg.A0h = 90h)

- PC Board Layout Considerations

It is important that care be given to the PC board layout to reduce power noise. Figure 1 shows a recommended connection diagram for the PO3030K.

Figure 1. PO3030xC module typical connection diagram

Figure 2. PO3030xC CLCC typical connection diagram

Ground Planes

The ground plain should connect to the regular PCB ground plane at a single point

Power Planes

The PC board layout should have the distinct power plane for PO3030xC. This power plane should have the separate regulator or be connected to the regular PCB power plane(VCC) at a single point through a ferrite bead, as illustrated in Figure 2. This power plane also has two distinct power planes, one for analog pins and one for digital pins. The analog power plane should encompass AVDD and PVDD pins, and the digital power plane should encompass DVDD pin.

Supply Decoupling

Noise on the PO3030xC power plane can be reduced by the use of multiple decoupling capacitors. (See Figure 2.) Optimum performance is achieved by the use of 0.1uF ceramic capacitors. Each of the power pins should be individually decoupled to ground. This should be done by placing the capacitors as close as possible to power pins with the capacitor leads as short as possible, thus minimizing lead inductance.

- Stand-by method

1. Power cut-off

- ⇒ Sensor reset can be controlled by power cut-off by connecting RSTB pin to HVDD not other VDD using 10K resister and 1uF capacitor as shown in above Figure 1.
- => STDBY pin must be connected to DGND
- ⇒ CAMERA_EN signal can be controlled by Backend chip or MCU.

2. Standby pin

⇒ You can control stand-by mode by using STDBY pin.

'0': normal mode

'1': stand-by (sleep) mode

3. I2C Stand-by

- \Rightarrow You can control stand-by mode by setting STDBY bit (bit 6) of Reg. 1Fh.
- ⇒ STDBY pin must be connected to DGND

'0': normal mode

'1': stand-by (sleep) mode