Class08

Nicholas Thiphakhinkeo A17686679

Save Input Data File

```
fna.data <- "WisconsinCancer.csv"</pre>
```

Storing

```
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis r	adius_mean	${\tt texture_mean}$	perimeter_mean	n area_mear	1
842302	М	17.99	10.38	122.80	1001.0)
842517	М	20.57	17.77	132.90	1326.0)
84300903	М	19.69	21.25	130.00	1203.0)
84348301	М	11.42	20.38	77.58	386.1	L
84358402	М	20.29	14.34	135.10	1297.0)
843786	М	12.45	15.70	82.57	7 477.1	L
	smoothness_	mean compac	ctness_mean co	oncavity_mean o	concave.poi	ints_mean
842302	0.1	1840	0.27760	0.3001	_	0.14710
842517	0.0	8474	0.07864	0.0869		0.07017
84300903	0.1	.0960	0.15990	0.1974		0.12790
84348301	0.1	4250	0.28390	0.2414		0.10520
84358402	0.1	.0030	0.13280	0.1980		0.10430
843786	0.1	.2780	0.17000	0.1578		0.08089
	symmetry_me	an fractal	_dimension_mea	an radius_se te	exture_se p	perimeter_se
842302	0.24	:19	0.0787	71 1.0950	0.9053	8.589
842517	0.18	312	0.0566	67 0.5435	0.7339	3.398
84300903	0.20	69	0.0599	99 0.7456	0.7869	4.585

84348301 0.2597		0.09744	0.4956	1.1560	3.445
84358402 0.1809		0.05883		0.7813	5.438
843786 0.2087		0.07613		0.8902	2.217
	nness_se compa				
	0.006399	0.04904	0.05373	-	0.01587
	0.005225	0.01308	0.01860		0.01340
	0.006150	0.04006	0.03832		0.02058
	0.009110	0.07458	0.05661		0.01867
	0.011490	0.02461	0.05688		0.01885
	0.007510	0.03345	0.03672		0.01137
	ractal_dimensi	on_se radi	ius_worst tex	ture_worst	
842302 0.03003	0.00	06193	25.38	17.33	
842517 0.01389	0.00	03532	24.99	23.41	
84300903 0.02250	0.00	04571	23.57	25.53	
84348301 0.05963	0.00	09208	14.91	26.50	
84358402 0.01756	0.00	05115	22.54	16.67	
843786 0.02165	0.00	05082	15.47	23.75	
perimeter_wor	st area_worst :	smoothness	s_worst compa	ctness_wors	st
842302 184.	2019.0		0.1622	0.665	56
842517 158.	30 1956.0		0.1238	0.186	36
84300903 152.	50 1709.0		0.1444	0.424	15
84348301 98.8	567.7		0.2098	0.866	33
84358402 152.5	20 1575.0		0.1374	0.205	50
843786 103.4	40 741.6		0.1791	0.524	19
concavity_wor	st concave.poi	nts_worst	symmetry_work	st	
842302 0.71	19	0.2654	0.46	01	
842517 0.24	16	0.1860	0.27	50	
84300903 0.45	04	0.2430	0.36		
84348301 0.68		0.2575	0.66		
84358402 0.40		0.1625	0.23		
843786 0.53		0.1741	0.39	85	
fractal_dimen	sion_worst				
842302	0.11890				
842517	0.08902				
84300903	0.08758				
84348301	0.17300				
84358402	0.07678				
843786	0.12440				

Remove 1st Column

```
wisc.data <- wisc.df[,-1]
```

Diagnosis Vector

```
diagnosis <- wisc.df[,1]
head(diagnosis)</pre>
[1] "M" "M" "M" "M" "M" "M"
```

Benign v Malignant Count

```
table(diagnosis)

diagnosis
B M
357 212
```

Q1. How Many Observations in this Dataset?

569 Observations

Q2. How many Malignant?

212 Cases

Q3. How many Variables in Data are Suffixed with '_mean'?

```
mean_check <- length(grep("_mean", colnames(wisc.data)))
mean_check</pre>
```

[1] 10

Checking Column Means and SD

colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	smoothness_mean	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
${\tt concavity_mean}$	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	${\tt compactness_worst}$	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

radius_mean	texture_mean	perimeter_mean
3.524049e+00	4.301036e+00	2.429898e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
3.519141e+02	1.406413e-02	5.281276e-02
concavity_mean	concave.points_mean	symmetry_mean
7.971981e-02	3.880284e-02	2.741428e-02
fractal_dimension_mean	radius_se	texture_se
7.060363e-03	2.773127e-01	5.516484e-01
perimeter_se	area_se	smoothness_se
2.021855e+00	4.549101e+01	3.002518e-03
compactness_se	concavity_se	concave.points_se
1.790818e-02	3.018606e-02	6.170285e-03
symmetry_se	fractal_dimension_se	radius_worst

```
8.266372e-03
                                2.646071e-03
                                                         4.833242e+00
       texture_worst
                             perimeter_worst
                                                           area_worst
        6.146258e+00
                                3.360254e+01
                                                         5.693570e+02
    smoothness_worst
                           compactness_worst
                                                      concavity_worst
        2.283243e-02
                                1.573365e-01
                                                         2.086243e-01
concave.points_worst
                              symmetry_worst fractal_dimension_worst
        6.573234e-02
                                6.186747e-02
                                                         1.806127e-02
```

PCA

```
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                         PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. What proportion of the original variance is captured by the first principal components (PC1)?

.4427

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

Cumulative proportion exceeds 70% at PC3 (0.72636). Therefore, three principal components (PC1, PC2, and PC3) are required to explain at least 70% of the original variance in the data.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

Cumulative proportion exceeds 90% at PC7 (0.91010). Therefore, seven principal components (PC1-PC7) are required to explain at least 90% of the original variance in the data

Biplot

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is a hot mess, need to generate our own plots for better understanding.

Main "PC Score Plot", "PC1vPC2 Plot"

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=as.factor(diagnosis), xlab="PC1",ylab="PC2")

Q8. Generating PC1 and PC3 Plot

plot(wisc.pr\$x[,1], wisc.pr\$x[,3], col=as.factor(diagnosis), xlab="PC1",ylab="PC3")

This plot is not as clearly separated as PC1 vs PC2

Creating Data.Frame for ggplot

```
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis</pre>
```

Making Scatterplot using ggplot2

```
library(ggplot2)
ggplot(df) +
  aes(PC1,PC2, col=df$diagnosis) +
  geom_point()
```

Warning: Use of `df\$diagnosis` is discouraged. i Use `diagnosis` instead.

Calculating Variance of Each Component

```
pr.var <- wisc.pr$sdev
head(pr.var)</pre>
```

[1] 3.644394 2.385656 1.678675 1.407352 1.284029 1.098798

Variance Explained by Each Principal Component: pve

```
pr.var <- wisc.pr$sdev^2
pve <- pr.var/sum(pr.var)
pve</pre>
```

- [1] 4.427203e-01 1.897118e-01 9.393163e-02 6.602135e-02 5.495768e-02
- [6] 4.024522e-02 2.250734e-02 1.588724e-02 1.389649e-02 1.168978e-02
- [11] 9.797190e-03 8.705379e-03 8.045250e-03 5.233657e-03 3.137832e-03
- [16] 2.662093e-03 1.979968e-03 1.753959e-03 1.649253e-03 1.038647e-03

```
[21] 9.990965e-04 9.146468e-04 8.113613e-04 6.018336e-04 5.160424e-04 [26] 2.725880e-04 2.300155e-04 5.297793e-05 2.496010e-05 4.434827e-06
```

```
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")
```


Alternative Scree Plot of Same Data

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
loadings <- wisc.pr$rotation[, 1]
concave_points_loading <- loadings[names(wisc.data) == "concave.points_mean"]
head(concave_points_loading)

concave.points_mean</pre>
```

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

-0.2608538

Cumulative proportion exceeds 80% at PC5 (0.84734). Therefore, seven principal components (PC1-PC5) are required to explain at least 80% of the original variance in the data.

Hierarchical Clustering

Scale Function

```
data.scaled <- scale(wisc.data)
data.dist <- dist(data.scaled)
wisc.hclust <- hclust(data.dist, method="complete")
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h = 19, col="red",lty = 2)
```


data.dist hclust (*, "complete")

h = 19

Selecting Number of Clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust, h = 19)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
\begin{array}{c|cccc} & \text{diagnosis} \\ \text{wisc.hclust.clusters} & \text{B} & \text{M} \\ & 1 & 12 & 165 \\ & 2 & 2 & 5 \\ & 3 & 343 & 40 \\ & 4 & 0 & 2 \end{array}
```

Q12. find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
diagnosis
wisc.hclust.clusters10
                 В
                    M
                 12 86
              1
              2 0 59
              3
                0
                    3
              4 331 39
                0 20
              6
                 2
              7 12 0
              8
                0 2
              9
                0 2
              10 0 1
```

Combining PCA and Clustering

```
d <- dist(wisc.pr$x[,1:3])
hc <-hclust(d, method="ward.D2")
plot(hc)</pre>
```


d hclust (*, "ward.D2")

Cutree into 2 groups/branches

```
grps <- cutree(hc,k=2)
plot(wisc.pr$x, col=grps)</pre>
```


Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

My favorite is ward.d2 it produces the cleanest and most balanced clustering. Single

```
wist.single.clust <- hclust(data.dist, method="single")
plot(wist.single.clust)</pre>
```


data.dist hclust (*, "single")

Average

```
wist.average.clust <- hclust(data.dist, method="average")
plot(wist.average.clust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "average")

```
wist.D2.clust <- hclust(data.dist, method="ward.D2")
plot(wist.D2.clust)</pre>
```


data.dist hclust (*, "ward.D2")