

In my project Microsoft wants to start a movie studio and my analysis is based on my objectives, which will enable microsoft to come up with a profitable competative movie studio.

Objectives

- Find the top movie genre
- Find the most popular genre
- Calculate profit and loss for a movie
- Find Distribution locally and worldwide
- Find which is the best movie and what are the features of the Movie

2.Data Understanding

In my project i need to get data that shows movie categories and sales

Collecting Our Data

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sqlite3 %matplotlib inline import csv

2.1 Loading The data sets to see which datasets suits our project.

2.1.1 bom.movie_gross.csv File

df = pd.read_csv('bom.movie_gross.csv') df.head()

df.shape

df.isna().sum()

2.1.2 tn.movie_budgets.csv File

df2 = pd.read_csv('tn.movie_budgets.csv',index_col=0) df2.head()

Convert "\$" amounts to int64

```
df2["production_budget"] = df2.production_budget.str.replace('[$,]',"").astype("int64")
df2["domestic_gross"] = df2.domestic_gross.str.replace('[$,]',"").astype("int64")
df2["worldwide_gross"] = df2.worldwide_gross.str.replace('[$,]',"").astype("int64")
df2.head()
df2.isna().sum()
```

2.1.3 tmdb.movies.csv File

```
df3 = pd.read_csv('tmdb.movies.csv',index_col=0) df3.head()

df3.rename(columns= {'id':'movie_id','title':'movie_title'}, inplace=True) df3.head()

df3.isna().sum()
```

2.1.4 rt.movie_info.tsv File

```
df4 = pd.read_csv('rt.movie_info.tsv', sep='\t') df4.head()
df4.isna().sum()
```

2.1.5 im.db File

```
conn =sqlite3.connect("im.db")
```

Selected data data files for my analysis.

- tmdb.movies.csv
- tn.movie budgets.csv
- im.db
- bom.movie_gross.csv

2.2 Cleaning the selected data

2.2.1 cleaning tmdb.movies.csv (df3)

```
df3.tail() df3["vote_average"] df3.drop(index=df3[df3["vote_average"] == 0.0].index,inplace=True) df3.drop(index=df3[df3["vote_count"] < 2].index,inplace=True) df3.tail()
```

df3 df3.isna().sum()

```
df3['release_date'] = pd.to_datetime(df3['release_date']) df3['release_year'] = df3['release_date'].dt.year df3.head()
```

2.2.2 tn.movie_budgets.csv AS (df2)

```
df2.isna().sum() df2.tail()
df2.info()

df2['release_date'] = pd.to_datetime(df2['release_date']) df2['release_year'] =
df2['release_date'].dt.year
```

2.2.3: bom.movie_gross.csv (df)

```
df.head()

df.tail()

df.isna().sum()

df['foreign_gross'] = df['foreign_gross'].replace(np.nan, 0) df['domestic_gross'] = df['domestic_gross'].replace(np.nan, 0) df['studio'] = df['studio'].replace(np.nan, "no_studio")
```

checking for changes made

```
df.isna().sum()
df.info()
```

changing foreign gross to int64

Removing the ","

df["foreign_gross"] = df['foreign_gross'].str.replace(',',"")

Replace "nan" with 0

df['foreign_gross'] = df['foreign_gross'].replace(np.nan, 0)

Change type to float64

df['foreign_gross'] = df['foreign_gross'].astype("float64")
df.info()

3.1 Analysing tmdb.movies.csv AS df3

Viewing the data once again

df3.head()

Describing our data

df3.describe()

view the shape of the data

df3.shape

Questions for the data set df3

3.1.1 Which Movies has the highest vote_rating?

df3.sort_values(by="vote_average", ascending=False)[:10]

Does the movie average vote affected by it's popularity?

df3["popularity"].corr(df3["vote_average"])

The relationship is a very week positive correlation, so it doesn't affect.

Does the the vote count affect the rating?

df3["vote_count"].corr(df3["vote_average"])

The movie rating of a movie is not affected by vote count

3.1.2: Which movie has the highest popularity?

Finding the most watched movie

df3.sort_values(by="popularity", ascending=False)[:10]

df3["vote_count"].corr(df3["vote_average"])

3.1.3: Which movie has the highest vote count?

df3.sort_values(by="vote_count", ascending=False)[:10]

3.1.4: What is the distribution vote_count and year?

sns.set(style="whitegrid") sns.lineplot(data=df3, x="release_year", y="vote_count", ci=None) plt.title("vote count by year",fontsize=18) plt.xlabel("year",fontsize=15) plt.ylabel("votes",fontsize=15) plt.show()

3.2: Analysing tmdb.movies.csv (df2)

df2.head()

3.2.1: Which movie has the highest Worldwide gross?

df2.sort_values(by="worldwide_gross", ascending=False) df2.head()

3.2.2: Which movies made the highest gross profit world_wide and locally?

Calculating and creating a new column "world_wide_gross_profit"

df2['world_wide_gross_profit'] = df2['worldwide_gross']-df2['production_budget']

Calculating and creating a new column "worldwide_percentage-profit"

df2['worldwide_percentage_profit'] = (df2['world_wide_gross_profit']/df2['production_budget'])*100

Sorting the data to view the movies with the highest worldwide profit

df2.sort_values(by="worldwide_percentage_profit", ascending=False)[:10]

Calculating and creating a new column "domestic_gross_profit"

df2['domestic_gross_profit'] = df2['domestic_gross']-df2['production_budget']

Calculating and creating a new column "domestic_percentage-profit"

df2['domestic_percentage_profit'] = df2['domestic_gross']/df2['production_budget']*10

Sorting the data to view the movies with the highest domestic profit

df2.sort_values(by="domestic_percentage_profit", ascending=False)[:10]

3.2.3: What is the relationship between a movie budget and the reception it gets?

Finding the relationship between a movies' production budget and how it sells world

wide

df2['production_budget'].corr(df2['world_wide_gross_profit'])

There is a positive relationship between a movies budget and the reception it gets worldwide

The higher the movie budget the high positive reception it gets.

Plotting a scatter plot to visualize

plt.scatter(df2.world_wide_gross_profit, df2.production_budget)
plt.title('Production_budget vs world_wide_profit',fontsize=16)
plt.xlabel("world_wide_gross_profit",fontsize=15)
plt.ylabel("production_budget",fontsize=15) plt.show();

Finding the relationship between a movies' production budget and how it sells locally

df2['production_budget'].corr(df2['domestic_gross_profit'])

We can interprate this to movies with high budget do not do sell domestically

Plotting a scatter plot to visualize

plt.scatter(df2.domestic_gross_profit, df2.production_budget) plt.xlabel("domestic_gross_profit") plt.ylabel("production_budget") plt.show();

3.3 Analysing bom.movie_gross.csv AS df

df.tail()

How many studios does the data set have?

df['studio'].nunique()

3.3.1: Which studios generates the highest gross?

Studio with the heighest Domestic gross

studio_with_highest_dom_gross = df.groupby(['studio'])["domestic_gross"].sum()
studio_with_highest_dom_gross.sort_values(ascending=False)

Studio with the heighest foreign gross

studio_with_highest_for_gross = df.groupby(['studio'])["foreign_gross"].sum() studio_with_highest_for_gross.sort_values(ascending=False)

3.3.2: Whats the gross distribution per year?

Finding the years in the dataset

df['year'].unique()

domestic gross

sns.barplot(x="year", y="domestic_gross", data=df, ci=None)
plt.title("domestic_gross_by_year",fontsize=18) plt.xlabel("year",fontsize=15)
plt.ylabel("domestic_gross",fontsize=15) plt.show()

foreign gross

sns.barplot(x="year", y="foreign_gross", data=df, ci=None)
plt.title("domestic_gross_by_year",fontsize=18) plt.xlabel("year",fontsize=15)
plt.ylabel("foreign_gross",fontsize=15) plt.show()

3.4: Analysing im.db tables

conn = sqlite3.connect('im.db')

Selecting the table names

```
tables_name = """SELECT name AS 'Table Names' FROM sqlite_master WHERE type='table';"""

pd.read_sql(tables_name, conn)
```

lets see how many genre do we have do we have

```
genres = """ SELECT genres FROM movie_basics GROUP BY genres
; """ data = pd.read_sql(genres ,conn).dropna() data.count()
```

3.4.1: Which Are The Top Genres?

genre_ratings = """ SELECT genres,avg(averagerating) AS average_ratings FROM movie_basics JOIN movie_ratings USING(movie_id) GROUP BY genres ORDER BY average_ratingS DESC

```
; """ pd.read_sql(genre_ratings, conn).dropna()
```

3.4.2: Which are the most viewed genres?

genre_ratings = """ SELECT genres,sum(numvotes) AS People_viewed FROM movie_basics JOIN movie_ratings USING(movie_id) GROUP BY genres ORDER BY people_viewed desc

```
; """ pd.read_sql(genre_ratings, conn).dropna()
```

3.4.1: Does the numbers of viewers relate with the ratings?

genre_counts = """ SELECT genres, sum(numvotes) AS people_viewed, avg(averagerating) as average_rating FROM movie_basics JOIN movie_ratings USING(movie_id) GROUP BY genres HAVING people_viewed between 1000 and 50000 AND average_rating between 5.5 and 8 ORDER BY people_viewed desc

; """ pd.read_sql(genre_counts, conn) data = pd.read_sql(genre_counts, conn).dropna() data

Find outliers from ratings

data["average_rating"].plot(kind='box',vert=False,showfliers=False);

find outliers from people viewed

plt.boxplot(x=data['people_viewed'], vert=False,showfliers=False); plt.semilogy()

data["average_rating"].corr(data["people_viewed"])

plt.scatter(data.people_viewed, data.average_rating) plt.xlabel("people_viewed") plt.ylabel("average_rating") plt.show();

There is no relationship between number of people viewing a genre and it's rating

3.4.2: Does a movie length affect its rating?

movie_length = """ SELECT movie_id, runtime_minutes AS length, averagerating AS rating FROM movie_basics JOIN movie_ratings USING(movie_id) GROUP BY movie_id HAVING length < 200 LIMIT 1000

""" data2 = pd.read_sql(movie_length, conn).dropna() data2

data2.describe()

Finding relationship between movie rating and legnth

data = pd.read_sql(movie_length,conn).dropna() data2["rating"].corr(data2["length"])

Plotting a scatter plot

plt.scatter(data2.length, data2.rating) plt.xlabel("length",fontsize=15) plt.ylabel("rating",fontsize=15) plt.title("Movie_length and Rating",fontsize=20)

A movie legnth does not affect its rating

3.4.3: Who are the best directors?

first lets find how many directors we have

directors_details = """ SELECT person_id AS director_id, primary_name AS director_name FROM directors JOIN persons USING(person_id) GROUP BY person_id; """ data3 = pd.read_sql(directors_details,conn) data3.count()

data3.info()

We have 109,251 directors is our data set.

3.4.4: Out of the Director Movie rated which director has the heighest rating?

directors_ratings = """ SELECT person_id AS director_id, primary_name As director_name, COUNT(movie_id) AS movies_rated, avg(averagerating) AS director_movies_average_rating FROM directors LEFT JOIN persons USING(person_id) JOIN movie_ratings USING(movie_id) GROUP BY director_id HAVING movies_rated > 5 ORDER BY director_movies_average_rating DESC

; """ data4 = pd.read_sql(directors_ratings,conn) data4

3.4.5: Out of the Director Movie rated which director has the heighest number of movies?

directors_ratings = """ SELECT person_id AS director_id, primary_name As director_name, COUNT(movie_id) AS movies_rated, avg(averagerating) AS director_movies_average_rating FROM directors LEFT JOIN persons USING(person_id) JOIN movie_ratings USING(movie_id) GROUP BY director_id HAVING movies_rated > 5 ORDER BY movies_rated desc

; """ data6 = pd.read_sql(directors_ratings,conn) data6

3.4.6: Do we have a relationship between movie ratings and number of movie rated?

data5["director_movies_average_rating"].corr(data5["movies_rated"])

No relationship between directors_movies_rated and the movies rating

plt.scatter(data5.movies_rated, data5.director_movies_average_rating) plt.xlabel("movies_rated") plt.ylabel("average_rating")

3.4.7: What is the average movie length?

movie_durations = """ SELECT movie_id,avg(runtime_minutes) AS average_runtime,start_year FROM movie_basics GROUP BY start_year

; """ data7 = pd.read_sql(movie_durations,conn) data7.dropna()

runtime by movies

plt.hist(data7['average_runtime'],range=(40,200),bins=30)
plt.title("Movie_runtime",fontsize=20) plt.xlabel("movie_length_in_mins",fontsize=15)
plt.ylabel("number_of_movies",fontsize=15)

Create year range of 5 years

runtime_by_year = data7.copy() runtime_by_year["start_year"] = ((runtime_by_year['start_year']//5)*5).astype("int64")

Plotting boxplot to visualize

sns.boxplot(x="start_year",y="average_runtime",data=runtime_by_year,
palette='colorblind', showfliers=False)

Releases

No releases published Create a new release

Packages

No packages published Publish your first package

Languages

Jupyter Notebook 100.0%