Shri Vile Parle Kelavani Mandal's

SHRI BHAGUBHAI MAFATLAL POLYTECHNIC

Course: Information technology Course Code: BEX238911

Subject: Basic Electronics Semester: II

Q. 1	Define the following terms:			4
	a) Signals b) Digital Signals	c) Analog Signals	d) Bit	
Q. 2	Convert the following number int	o decimal number system		4
	a) (01101) ₂ =() ₁₀ b)	(123) ₈ =() ₁₀	c) (FC) ₁₆ =() ₁₀	
Q. 3	Convert the following decimal nu	mber into its equivalent n	umber system	4
	a) (12.59) ₁₀ =() ₂ b)	(345.37) ₁₀ =() ₈	c) (45.76) ₁₀ =() ₁₆	
Q. 4	Convert the following			4
	a) (12.59) ₁₀ =() ₁₆ b)	(345.37) ₈ =() ₂	c) (45.76) ₁₆ =() ₈	
Q. 5	Perform the following binary add			4
	a) (1100) ₂ + (1011) ₂ = () ₂	b) (12) ₁₀ +(3	4) ₁₀	
Q. 6	Perform the following binary subt		, ,==	4
	a) (1100) ₂ - (1011) ₂ = () ₂	b) (52) ₁₀ -	(32) ₁₀	
Q. 7	Perform the following binary subt		•	4
-	a) (1100) ₂ - (1011) ₂ = () ₂	b) (52) ₁₀ -		
Q. 8	Perform the following binary subt		•	4
	a) (1100) ₂ - (1011) ₂ = () ₂	b) (52) ₁₀ -		
Q. 9	Obtain the 1's and 2's Compleme		(- /10	4
	a) 101101	b) 0111010		
Q. 10	Add (57) ₁₀ and (26) ₁₀ in BCD	,		4
Q. 11	Perform $(52)_{10} - (89)_{10}$ using 9's of	complement		6
Q. 12	Perform $(52)_{10} - (89)_{10}$ using 10's	•		6
Q. 13	State the following laws:	Complement		6
Q. 13		b) Associative law	c) Distributive law	Ü
		e) OR law	f) Inversion law	
Q. 14 Draw the logic symbol and truth table of following gates 8				
	a) AND gate	b) OR gate	c) NOT gate	
	d) NAND gate	e) NOR gate	f) EX-OR gate	
Q. 15	State and prove De Morgan's The	orem		6
Q. 16	Prove the following logic expressi	on using Boolean algebra		6
	a) $(A+B)(A+C) = A + BC$			
	b) $A + A'B + AB = A + B$			
Q. 17	For the Function F= A'B + AB' find the complement of F'			4
Q. 18	Explain the working of NAND as a	Universal Gate		8

Q. 19	Explain the working of NOR as a Universal Gate		
Q. 20	Construct logic circuit for following expression using basic gate	4	
	Y = AB + BC + AC		
Q. 21	Realize the following expression using (universal gates) NAND and NOR gates	8	
	a) (ABC + B'C') C		
Q. 22	Convert the expression Y = AB + AC' + BC into the canonical SOP form	4	
Q. 23	Convert the expression $Y = (A + B) (A + C) (B + C')$ into the canonical POS form	4	
Q.25	Define minterm and maxterm with example	4	
Q. 26	Define K-map and its structure	6	
Q. 27	Using K-map realize the following expression using minimum number of gates	8	
	a) $Y = \Sigma m(1,3,4,5,7,10,15)$		
	b) $Y = \Pi M(2,4,5,6)$		
Q. 28	Draw and explain the half adder circuit	6	
Q. 29	Design full adder circuit using K-map technique	8	
Q. 30	Design full adder circuit using half adder. Give the applications of full adder	4	
Q. 31	Explain the rules to simplify Boolean equation using K-Map	6	

	Flip Flops		
1.	Compare Combinational circuits and Sequential Circuits	4	
2.	Define Flip flop ,clock signal	4	
3.	Explain the working of Positive Edge triggered SR flip flop with Preset and Clear inputs	6	
4.	Differentiate between latch and flip flop	4	
5.	Describe various methods of triggering a flip flop	4	
6.	Draw the logic diagram of clock D flip flop and write truth table	4	
7.	Explain the working of Positive Edge triggered JK flip flop	6	
8.	Define race around condition. How can it be avoided	4	
9.	Describe the working of JK master slave truth table	6	
	Registers and Counters		
10.	Design a 3 bit asynchronous ripple counter with timing diagram	6	
11.	Design ripple counter using a 3 bit ripple counter	6	
12.	Draw the logic diagram of 4 bit up down ripple counter	4	
13.	Design a 3 bit synchronous up counter with timing diagram	8	
14.	Compare synchronous and asynchronous counter	4	
15.	State all Possible modes of operations of registers	4	
16.	Describe the function of 3 bit SISO / SIPO / PIPO / PISO registers	6	
17.			
18.			