Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Кафедра прикладной математики и информатики

Математическая статистика

Отчет по лабораторной работе №6

Выполнил студент гр. 5030102/20202

Тишковец С.Е.

Преподаватель

Баженов А.Н.

Санкт-Петербург

2025

Оглавление

1. Постановка задачи	3
2. Теоретическая информация	3
2.1. Доверительные интервалы для параметров нормального	
распределения	3
2.2. Доверительные интервалы для математического ожидания и	
среднего квадратического отклонения произвольного распределе	ния при
большом объёме выборки. Асимптотический подход	3
3. Результаты исследования	5
3.1. Доверительные интервалы для параметров нормального	
распределения	5
3.2. Доверительные интервалы для параметров произвольного	
распределения. Асимптотический подход	5
3.3. Результаты в виде твинов для нормального распределения	5
3.4. Результаты в виде твинов для произвольного распределения.	
Асимптотический подход	5
4. Выволы	6

1. Постановка задачи

Для выборок мощностью n = 20 и n = 100

- 1. Найти доверительные интервалы для параметров
 - нормального распределения и
 - произвольного распределения, используя асимптотический подход
- 2. Результаты представить в виде твинов с порядком по включению

2. Теоретическая информация

2.1. Доверительные интервалы для параметров нормального распределения

Математическое ожидание т:

Дана выборка $(x_1, x_2, ..., x_n)$ объёма n из нормальной генеральной совокупности. На её основе строим выборочное среднее \bar{x} и выборочное среднее квадратическое отклонение s. Параметры m и σ нормального распределения неизвестны. Доверительный интервал для m с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\bar{x} - \frac{sx}{\sqrt{n-1}} < m < \bar{x} + \frac{sx}{\sqrt{n-1}}\right) = 2F_T(x) - 1 = 1 - \alpha$$

Среднеквадратичное отклонение σ :

Дана выборка $(x_1, x_2, ..., x_n)$ объёма n из нормальной генеральной совокупности. На её основе строим выборочную дисперсию s^2 . Параметры m и σ нормального распределения неизвестны. Доверительный интервал для σ с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha$$

2.2. Доверительные интервалы для математического ожидания и среднего квадратического отклонения произвольного распределения при большом объёме выборки.

Асимптотический подход

Математическое ожидание т:

Предполагаем, что исследуемое генеральное распределение имеет конечные математическое ожидание m и дисперсию σ^2 .

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

Доверительный интервал для m с доверительной вероятностью $\gamma=1-\alpha$:

$$P\left(\bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \bar{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma$$

Среднеквадратичное отклонение σ :

Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента.

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

 $E=rac{\mu^4}{\sigma^4}-3$ - эксцесс генерального распределения, $e=rac{m_4}{s^4}-3$ - выборочный эксцесс; $m_4=rac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^4$ - четвёртый выборочный центральный момент.

$$s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2}$$
 где $U = u_{1-lpha/2} \sqrt{(e+2)/n}$

3. Результаты исследования

3.1. Доверительные интервалы для параметров нормального распределения

n	m	σ
20	-0.68 < m < 0.41	$0.88 < \sigma < 1.68$
100	-0.12 < m < 0.23	$0.73 < \sigma < 0.98$

 Таблица 1. Доверительные интервалы для параметров нормального распределения

3.2. Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

n	m	σ
20	-0.63 < m < 0.36	$0.93 < \sigma < 1.54$
100	-0.09 < m < 0.22	$0.75 < \sigma < 0.96$

Таблица 2. Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

3.3. Результаты в виде твинов для нормального распределения

n	x_{inner}	$x_{ m outer}$
20	[0.21, -0.47]	[-2.37, 2.11]
100	[0.64, -0.51]	[-1.07, 1.22]

Таблица 3. Результаты в виде твинов для нормального распределения

3.4. Результаты в виде твинов для произвольного распределения. Асимптотический подход

n	x_{inner}	$x_{ m outer}$
20	[0.31, -0.57]	[-2.17, 1.91]
100	[0.65, -0.52]	[-1.06, 1.22]

 Таблица 4. Результаты в виде твинов для произвольного распределения.

 Асимптотический подход

4. Выводы

На основании проведённого анализа доверительных интервалов для параметров нормального и произвольного распределений можно сделать следующие выводы:

- Для малых выборок предпочтительнее использовать точные методы (для нормального распределения)
- При больших объёмах данных асимптотический подход становится эквивалентным точным методам
- Увеличение объёма выборки закономерно приводит к уменьшению ширины доверительных интервалов