TP 5 - L'amplificateur opérationnel Montages de base à réaction positive et bascules

Connaissance des propriétés des montages de base de l'amplificateur opérationnel en réaction positive.

1. Comparateur simple

1.1 Schéma:

Dans l'application ci-dessous qui consiste à contrôler une température via une résistance NTC et une diode électroluminescente chargée de mimer les deux états V_H et V_L , on veut assurer une température maximale ambiante de 25° C.

- 1.2 Sachant que R_{NTC} = 33 $k\Omega$ à 25 $^{\circ}$ C, déterminer la tension $V_{réf}$ à imposer pour que la LED soit éteinte par défaut.
- 1.3 Déterminer la valeur de la résistance R_2 permettant d'obtenir un courant de 20 mA dans la LED (rouge) lorsque $V_{out} = V_L$.
- 1.4 Réaliser et tester le montage à la température ambiante de la salle puis à celle du corps en pinçant la résistance entre ses doigts ou en soufflant de l'air chaud.
- 1.5 Mesurer les tensions $V_{\mbox{\scriptsize NTC}}$ correspondant à ces deux températures.

2. Comparateur à seuils (bascule de Schmitt)

2.1 Comparateur à seuils non inverseur

2.1.1 Schéma:

2.1.2 Prévoir l'allure de la caractéristique de transfert $v_s = f(v_1)$ et calculer les tensions de seuil V_{T1} et V_{T2}

en supposant que $V_H = +15 \text{ V}$ et $V_L = -15 \text{ V}$.

2.1.3 Réaliser le montage.

Visualiser à l'oscilloscope et relever la caractéristique $v_s = f(v_1)$. Vérifier la valeur des tensions de seuil V_{T1} et V_{T2} . Expliquer les éventuelles différences avec les prévisions théoriques.

2.2 Comparateur à seuils inverseur

2.2.1 Schéma:

- 2.2.2 Prévoir l'allure de la caractéristique de transfert $v_s = f(v_1)$ et calculer les tensions de seuil V_{T1} et V_{T2} en supposant que $V_H = +15$ V et $V_L = -15$ V.
- 2.2.3 Réaliser le montage.

Visualiser à l'oscilloscope et relever la caractéristique $v_s = f(v_1)$. Vérifier la valeur des tensions de seuil V_{T1} et V_{T2} . Expliquer les éventuelles différences avec les prévisions théoriques.

3. Générateur de signal triangulaire

3.1 Dimensionner les éléments du circuit ci-dessous pour qu'il génère un signal triangulaire de 8 V_{crête}, centré autour de 0 V, avec une période de 1 ms.

Quels sont les critères de choix pour chacun des amplificateurs opérationnels ?

3.2 Réaliser le montage.

Visualiser à l'oscilloscope et relever les signaux $v_a(t)$ et $v_b(t)$. Mesurer l'amplitude et la fréquence du signal généré. Commenter.

4. Bascule astable à "timer" 555

4.1 Schéma:

- 4.2 Dimensionner les éléments pour obtenir les spécifications portées sur le schéma. Les éléments choisis garantiront un courant de charge et décharge de C₁ de l'ordre du milliampère.
- 4.3 Réaliser le montage et relever les signaux v_c(t) et v_{out}(t).

 Mesurer la fréquence et le rapport cyclique du signal v_{out}(t). Commenter les éventuelles différences observées avec les valeurs théoriques correspondantes.
- 4.4 Proposer une modification du circuit permettant d'obtenir un rapport cyclique inférieur à 50%.
- 4.5 Avec $C_1 = 100$ nF et $V_{CC} = 5V$, déterminer la valeur de R_B pour que la période T du signal v_{out} , qu'on se propose d'utiliser pour commander un servomoteur, ne dépasse pas 20 ms et pour que T_1 soit compris entre 0.56 ms et 2.41 ms. Le servomoteur utilisé ici doit être alimenté sous 5 V d'où la nécessité de réduire l'amplitude de v_{out} .
- 4.6 Déterminer les valeurs R_{Amin} et R_{Amax}.
- 4.7 Proposer un montage permettant de régler R_A avec un potentiomètre et indiquer la ou les valeurs normalisées des composants choisis.
- 4.8 Réaliser le montage et observer le signal v_{out}. Expliquer les éventuelles divergences le séparant du signal théorique.
- 4.9 Brancher un servomoteur et tester le circuit.