

Funkcijų aproksimavimas: *Aproksimavimas daugianariais*

Funkcijų aproksimavimas. Uždavinio formuluotė

Aproksimavimas – tai funkcijos, kurios reikšmės aproksimavimo taškuose būtų kiek galima mažiau nutolusios nuo duotųjų reikšmių, radimas.

- 1. Kreivė y=f(x) neprivalo praeiti per duotus taškus (x_i,y_i) , t. y. $f(x_i)=y_i$, i=1, 2, ..., n;
- 2. funkcijos *f*(*x*) analitinė išraiška neturi būti labai sudėtinga;
- 3. funkcija *f*(*x*) turi būti nesunkiai integruojama ir diferencijuojama;
- 4. funkcija *f*(*x*) turi būti nesunkiai surandama (pvz., jos parametrai apskaičiuojami pagal žinomas formules, arba sprendžiant tiesinių lygčių sistemą).

Funkcijų aproksimavimas *mažiausių kvadratų* metodu

Taškų seka, kurią reikia aproksimuoti:

Aproksimacijos

kokybės įverčio

funkcija

$$(x_i, y_i), \quad i=1,...,n$$

$$\Psi = \frac{1}{2} \sum_{j=1}^{n} (f(x_j) - y_j)^2$$

$$\min_{f} \Psi$$
ieškoma funkcija

Funkcijų *interpoliavimas* yra atskiras funkcijų *aproksimavimo* uždavinio atvejis

Aproksimavimas daugianariais *vienanarių bazėje*

Taškų seka, kurią reikia aproksimuoti: (x_i, y_i) , i = 1,...,n

Duotų taškų skaičius ir aproksimuojančių funkcijų skaičius gali nesutapti: $m \leq n$

$$f(x) = [g_1(x) \quad g_2(x) \quad \dots \quad g_{m-1}(x)]$$

koeficientai

Aproksimavimo kokybės įverčio funkcija užrašoma matricomis

$$f(x_j) - y_j$$

$$\begin{cases}
f(x_1) - y_1 \\
f(x_2) - y_2 \\
\vdots \\
f(x_n) - y_n
\end{cases} =
\begin{bmatrix}
g_1(x_1) & g_2(x_1) & \cdots & g_m(x_1) \\
g_1(x_2) & g_2(x_2) & \cdots & g_m(x_2) \\
\vdots & \vdots & \ddots & \vdots \\
g_1(x_n) & g_2(x_n) & \cdots & g_m(x_n)
\end{bmatrix}
\begin{cases}
c_1 \\
c_2 \\
\vdots \\
c_m
\end{cases} -
\begin{cases}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{cases} =
[\mathbf{G}]_{n \times m} \{\mathbf{c}\}_{m \times 1} - \{\mathbf{y}\}_{n \times 1}$$

$$\min_{\mathbf{c}} \Psi = \frac{1}{2} (\mathbf{G} \mathbf{c} - \mathbf{y})^{T} (\mathbf{G} \mathbf{c} - \mathbf{y})$$

ieškomi koeficientai

$$\left(\frac{\partial \Psi}{\partial \mathbf{c}}\right)^T = 0$$

Pagal priimtus žymėjimus, skaliarinės funkcijos išvestinė pagal vektorinį argumentą (gradientas) yra matrica-eilutė. Standartinio pavidalo lygčių sistemą gausime, jį pateikę stulpeliu, t.y. transponuodami

Pagalbinė medžiaga: matricų ir vektorių išraiškų diferencijavimo formulės

$$f = \mathbf{x}^T \mathbf{x} = \sum_{i=1}^n x_i^2;$$

$$\begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}} \end{bmatrix} = \begin{cases} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{cases} = 2 \left\{ x_1 \quad x_2 \quad \cdots \quad x_n \right\} = 2 \mathbf{x}^T; \quad \longleftarrow \quad \text{gradientas}$$

gradientas

$$f = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j;$$

$$\begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}} \end{bmatrix} = \begin{cases} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{cases} = \begin{bmatrix} \sum_{j=1}^n (a_{1j} + a_{j1}) x_j & \sum_{j=1}^n (a_{2j} + a_{j2}) x_j & \cdots & \sum_{j=1}^n (a_{nj} + a_{jn}) x_j \end{bmatrix} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T)$$

f = Ax

$$\left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right] = \left[\frac{\partial (\mathbf{A}\mathbf{x})}{\partial \mathbf{x}}\right] = \mathbf{A} \begin{bmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{x}} \end{bmatrix} = \mathbf{A} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \mathbf{A};$$
 Jakobio matrica

Aproksimavimo kokybės įverčio minimumo sąlyga

$$\Psi = \frac{1}{2} (\mathbf{G} \mathbf{c} - \mathbf{y})^T (\mathbf{G} \mathbf{c} - \mathbf{y})$$

$$\frac{\partial (\mathbf{x}^T \mathbf{x})}{\partial \mathbf{x}} = 2\mathbf{x}^T$$

$$\frac{\partial (\mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{A}$$

$$\frac{\partial \Psi}{\partial \mathbf{c}} = \frac{\partial \Psi}{\partial (\mathbf{G} \mathbf{c} - \mathbf{y})} \frac{\partial (\mathbf{G} \mathbf{c} - \mathbf{y})}{\partial \mathbf{c}} = (\mathbf{G} \mathbf{c} - \mathbf{y})^T \mathbf{G}$$
Pagal priimtus žymėjimus, skaliarinės funkcijos išvestinė pagal vektorinį argumentą yra matrica-eilutė

$$\left(\frac{\partial \Psi}{\partial \mathbf{c}}\right)^T = \mathbf{G}^T \left(\mathbf{G} \mathbf{c} - \mathbf{y}\right) = 0$$
Gautą priklausomybę laikysime lygčių sistema, todėl standartinis jos pavidalas gaunamas transponuojant

pavidalas gaunamas transponuojant

$$\left(\left(\mathbf{G}^{T}\right)_{m\times n}\mathbf{G}_{n\times m}\right)_{m\times m}\mathbf{c}_{m\times 1}=\left(\mathbf{G}^{T}\right)_{m\times n}\mathbf{y}_{n\times 1}$$

Lygčių skaičius toks, kiek yra bazinių funkcijų, t.y. *m*. Jis nepriklauso nuo duotų aproksimavimo taškų skaičiaus

Koeficientų apskaičiavimas aproksimavimo ir interpoliavimo atveju

aproksimavimas

$$\left(\left(\mathbf{G}^{T}\right)_{m\times n}\mathbf{G}_{n\times m}\right)_{m\times m}\mathbf{c}_{m\times 1}=\left(\mathbf{G}^{T}\right)_{m\times n}\mathbf{y}_{n\times 1}$$
 Kairiojo matricinio daugiklio negalima išbraukti, kadangi

$$\left(\mathbf{G}^{T}\right)_{n\times n}\mathbf{G}_{n\times n}\mathbf{c}_{n\times 1} = \left(\mathbf{G}^{T}\right)_{n\times n}\mathbf{y}_{n\times 1}$$

Kairįjį daugiklį atmetus, lygčių skaičius nepakinta, o sistema išlieka išsprendžiama

pasikeistų lygčių skaičius

$$\mathbf{G}_{n \times n} \mathbf{c}_{n \times 1} = \mathbf{y}_{n \times 1}$$
 interpoliavimas

Aproksimavimo vienanariais eiga

G=base(m,X(1:n))

Duoti aproksimavimo taškai X

$$\mathbf{G} = \begin{bmatrix} g_{1}(x_{1}) & g_{2}(x_{1}) & \cdots & g_{m}(x_{1}) \\ g_{1}(x_{2}) & g_{2}(x_{2}) & \cdots & g_{m}(x_{2}) \\ \vdots & \vdots & \ddots \vdots & \vdots \\ g_{1}(x_{n}) & g_{2}(x_{n}) & \cdots & g_{m}(x_{n}) \end{bmatrix} = \begin{bmatrix} 1 & x_{1} & \cdots & x_{1}^{m-1} \\ 1 & x_{2} & \cdots & x_{2}^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & \cdots & x_{n}^{m-1} \end{bmatrix}$$

Aproksimuojančios funkcijos vaizdavimas:

$$f(x) = [\mathbf{g}(x)] \{\mathbf{c}\}$$

Vaizdavimo taškai (linspace)

Aproksimavimas daugianariais vienanarių bazėje

Pvz_SMA_9_1_aproksimavimas_vienanariu_baze

 $(x_i, y_i), i = 1,...,n$ Taškų seka, kurią reikia aproksimuoti: $x \setminus x^2 \quad \dots \quad x^{m-1}$ Bazinės funkcijos: duoti taskai duoti taskai oo. | oo. $f(x) = 1.5 + 1.1x^{1} + -0.2x^{2} - 0.0082x^{3} + 0.0057x^{4} + 7e - 0.05x^{5} - 4.8e - 0.05x^{6}$ $f(x) = 1.7 + 0.8x^{1} - 0.037x^{2}$ 00 .0.0 00,00 -10 K 10 -10

$$\mathbf{G}^T\mathbf{G}\mathbf{c} = \mathbf{G}^T\mathbf{y}$$

Gc

Kai bazinių funkcijų skaičius ir aproksimuojamų taškų skaičius sutampa (n=m), aproksimuojanti kreivė praeina per visus taškus: $\min \Psi = 0$

Interpoliavimo uždavinys yra aproksimavimo uždavinio atskiras atvejis, kai *n=m*

 Mažiausių kvadratų būdu sukurta aproksimuojanti kreivė dar vadinama regresijos kreive

Regresijos terminas yra naudojamas kaip antonimas žodžiui progresuoti (tobulėti, išsiskirti iš vidurkio). Regresuoti – prarasti gerąsias savybes, artėti prie vidurkio. Regresijos kreivė aprašo taškų vidurines padėtis;

 Aproksimavimui apibūdinti dar naudojamas terminas kreivės pritaikymas (curve fitting)

Vektorinio argumento funkcijų aproksimavimas

Taškų aibė, kurią reikia aproksimuoti:

$$(x_i, y_i, z_i), \quad i=1,...,n$$

$$\Psi = \frac{1}{2} \sum_{j=1}^{n} \left(f(x_{j}, y_{j}) - z_{j} \right)^{2}$$

Aproksimacijos kokybės įverčio funkcija min Y

argumento vektorius

ieškoma funkcija

$$f(x,y) = \begin{bmatrix} g_1(x,y) & g_2(x,y) & \dots \end{bmatrix} \begin{cases} c_1 \\ c_2 \\ \vdots \end{cases} = \begin{bmatrix} \mathbf{g}(x,y) \end{bmatrix} \{ \mathbf{c} \}$$
Bazinių funkcijų koeficientai

vektorius

Vienanarių bazinių funkcijų matrica vektorinio argumento atveju

$$\mathbf{g}(x,y) = \begin{bmatrix} 1 & x & \cdots & x^{m-1} & y & \cdots & y^{m-1} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{m-1} & y_1 & \cdots & y_1^{m-1} \\ 1 & x_2 & \cdots & x_2^{m-1} & y_2 & \cdots & y_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{m-1} & y_n & \cdots & y_n^{m-1} \end{bmatrix}$$

$$\mathbf{G}^T \mathbf{G} \mathbf{c} = \mathbf{G}^T \mathbf{z}$$

$$\mathbf{f}(x,y) = \begin{bmatrix} 1 & x & \cdots & x^{m-1} & y & \cdots & y^{m-1} \end{bmatrix} \mathbf{c}$$

- Parodėme, kad vektorinio argumento aproksimuojanti funkcija randama panašiai, kaip ir vieno argumento aproksimuojanti funkcija;
- Vieno argumento aproksimuojanti funkcija yra regresijos kreivė f(x)
- Vektorinio argumento atveju aproksimuojanti funkcija yra regresijos paviršius f(x,y), kai kintamieji du) arba "hiperpaviršius" f(x₁,x₂,...), kai kintamųjų daugiau nei du;
- Taikydami vektorinio argumento taškų aibės aproksimavimą galime išspręsti klasifikavimo uždavinį, kai apytiksliai randama kreivė, plokštumoje atskirianti vieną nuo kitos dvi skirtingai pažymėtas taškų aibės dalis

Klasifikavimo uždavinio sprendimas (1)

pavyzdys Pvz_SMA_9_01x_klasifikavimas_mouse.m

- Plokštumoje duota taškų aibė, kuri susideda iš pagal dviejų aprašančiųjų
 požymių (descriptive features) reikšmes atskirtų klasių (pavyzdžiui, skritulių
 ir trikampių);
- Čia aprašantieji požymiai yra taškų x ir y koordintės;

Reikia apytiksliai nustatyti klases atskiriančią liniją

Klasifikavimo uždavinio sprendimas (2)

- Išplečiame duotųjų taškų (t.y. apmokančios aibės, training set) vaizdavimą į 3D erdvę;
- Skirtingoms klasėms priklausantiems taškams suteikiame z koordinates 0 ir 1 atitinkamai:

Klasifikavimo uždavinio sprendimas (3)

Parinkę aproksimavimo eilę (pavyzdžiui, m-1=3) randame aproksimuojantį paviršių: $\mathbf{g}(x,y) = \begin{bmatrix} 1 & x & x^2 & x^3 & y & y^2 & y^3 \end{bmatrix}$

$$\mathbf{G}^T\mathbf{G}\mathbf{c} = \mathbf{G}^T\mathbf{z}$$

$$\mathbf{f}(x,y) = \begin{bmatrix} 1 & x & x^2 & x^3 & y & y^2 & y^3 \end{bmatrix} \mathbf{c}$$

Klasifikavimo uždavinio sprendimas (4)

- Taškų klases skiria linija, kuria gautas paviršius kerta plokštumą
 z=0.5 (kadangi klasėrns buvome parinkę reikšmes z=0 ir z=1);
- Rezultatą patogiau interpretuoti nagrinėjant projekciją, statmeną ašiai Oz

Klasifikavimo uždavinio sprendimas (5)

• Naujai duotas taškas (x_k, y_k) priklauso trikampiams, jeigu $f(x_k, y_k) >= 0.5$. Priešingu atveju jis priklausytų skrituliams;

 Analogiškai skaičiuotume ir esant didesniam aprašančiųjų požymių skaičiui, tačiau rezultatą grafiškai pavaizduoti būtų keblu

SMA_09-1_Klausimai savikontrolei:

- Suformuluokite funkcijos aproksimavimo uždavinį;
- Naudodamiesi literatūra paaiškinkite, kaip aproksimavimo uždavinys sprendžiamas mažiausių kvadratų metodu;
- 3. Koks yra ryšys tarp aproksimuojamų taškų ir bazinių funkcijų skaičiaus;
- 4. Kokiu atveju aproksimavimo ir interpoliavimo uždaviniai yra tapatūs;
- 5. Kokia problema iškyla, jeigu bazinių funkcijų parenkame daugiau, nei yra aproksimuojamų taškų;