

Proses Stokastik

Pendahuluan, Pengenalan Proses Stokastik, Review Probabilitas, Review Distribusi Diskrit dan Kontinu

Pengenalan proses stokastik

Definisi proses stokastik:

adalah suatu keluarga peubah acak X_t atau X(t), di mana $t \in T$ dengan $T = \{1, 2, 3, ...\}$ untuk t diskrit, kemudian $T = [0,\infty)$ untuk t kontinu.

Proses Stokastik dibedakan oleh *state space* mereka atau kisaran nilai yang mungkin untuk variable random X oleh himpunan indeksnya T dan oleh hubungan ketergantungan diantara variabel random X

Ruang Parameter dan Ruang Keadaan

Koleksi atau barisan peubah acak $\aleph = (X_t : t \in T, dan\ T\ h\ himpunan\ indeks)$ dinamakan proses stokastik.

- T adalah himpunan indeks. Selanjutnya disebut dengan ruang parameter atau ruang indeks.
- Dalam terapannya, seringkali t dianggap menyatakan waktu dan dianggap diskrit. Selanjutnya t dinamakan parameter.
- Jika T terbilang, maka \aleph dinamakan proses stokastik dengan parameter (waktu) diskrit. Sebagai contoh $T = N = \{1,2,3,...\}$ maka $\aleph = \{X_1, X_2, X_3, ...\}$ adalah barisan peubah acak.
- Jika T tak terbilang, maka \aleph dinamakan proses stokastik dengan parameter (waktu) kontinu.
- Setiap $t \in T$, maka peubah acak X_t menyatakan keadaan pada saat t, dan himpunan nilai X_t yang mungkin yaitu range X_t dinamakan ruang keadaan dari proses stokastik \aleph

Contoh

Contoh 1

Perhatikan banyaknya kelahiran di suatu tempat pada suatu hari. Bila X_t adalah banyaknya kelahiran pada (0,t) dengan $t \in [0,1440]$, maka kumpulan dari X_t adalah proses stokastik.

Contoh 2

Pada percobaan pelemparan mata uang berkali - kali

X₁ adalah peubah acak yang berhubungan dengan pelemparan pertama
X₂ adalah peubah acak yang berhubungan dengan pelemparan kedua
:

 X_n adalah peubah acak yang berhubungan dengan pelemparan ke-n X_1 sampai X_n ini disebut keluarga peubah acak yang dapat juga disebut proses stokastik.

Review Probabilitas

Aksioma

Misalkan S adalah ruang sampel, yaitu himpunan semua hasil suatu percobaan. Probabilitas yang dilambangkan dengan P memenuhi kondisi berikut atau biasanya disebut sebagai aksioma:

- P(A) ≥ 0 untuk setiap kejadian A
- P(S)=1
- $P(A_1 \cup A_2 \cup \cdots) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$

untuk setiap deret kejadian A1, A2, ... mutually exclusive, yaitu $A_i \cap A_j = \emptyset$ untuk semua $i \neq j$

Teorema

Misalkan S adalah ruang sampel, yaitu himpunan semua hasil suatu percobaan.

- Untuk setiap kejadian $C \in S$, maka $P(C) = 1 P(C^c)$
- Peluang dari himpunan kosong adalah 0, atau dapat ditulis $P(\emptyset) = 0$
- Iika C_1 dan C_2 adalah himpunan-himpunan di S, dengan $C_1 \subset C_2$, maka $P(C_1) \leq P(C_2)$
- Untuk setiap $C \in S$, maka $0 \le P(C) \le 1$
- Jika C_1 dan C_2 adalah himpunan-himpunan di S, maka $P(C_1 \cup C_2) = P(C_1) + P(C_2) P(C_1 \cap C_2)$

Probabilitas Bersyarat

Misalkan B dan A adalah kejadian dengan P(A) > 0. Kemudian peluang terjadinya kejadian B jika diketahui suatu kejadian lain A yang telah terjadi dapat dinyatakan dengan

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \qquad P(A \cap B) = P(A)P(B \mid A)$$

Independensi

Apabila terdapat suatu kondisi dimana probabilitas P(A|B) menjadi bernilai sama dengan P(A), maka dalam hal ini peristiwa B tidak mempunyai pengaruh terhadap terjadinya peristiwa A, sehingga :

P(A|B)=P(A)Atau P(B|A)=P(B)

dinamakan sebagai peristiwa yang saling bebas (independent)

Review Distribusi Diskrit

Distribusi Bernoulli

Adalah distribusi peluang dari sebuah variabel random yang memiliki 2 luaran. Misalkan sukses adalah 1 dengan peluang p dan gagal adalah 0 dengan peluang q = 1 - p.

Distribusi Binomial

Adalah distribusi peluang dari sebuah variabel random yang menyatakan banyaknya p sukses dari n kali percobaan

Distribusi Geometri

Adalah distribusi peluang dari sebuah variabel random yang menyatakan banyaknya percobaan hingga terjadi sukses pertama

Distribusi Binomial Negatif

Adalah distribusi peluang dari sebuah variabel random yang menyatakan banyaknya percobaan hingga terjadi sukses ke-k

Distribusi Poisson

Adalah distribusi peluang dari sebuah variabel random yang menyatakan banyaknya kejadian pada rentang waktu tertentu atau pada area tertentu.

Review Distribusi Kontinu

Distribusi Normal

$$\phi(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad -\infty < x < \infty$$

Distribusi Log Normal

$$f_{\nu}(\nu) = \frac{1}{\sqrt{2\pi} \sigma \nu} \exp\left\{-\frac{1}{2} \left(\frac{\ln \nu - \mu}{\sigma}\right)^{2}\right\}, \quad \nu \ge 0$$

Distribusi Eksponensial

$$f_T(t) = \begin{cases} \lambda e^{-\lambda t} & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

Distribusi Uniform

$$f_{U}(u) = \begin{cases} \frac{1}{b-a} & \text{for } a \le u \le b, \\ 0 & \text{elsewhere.} \end{cases}$$

Distribusi Gamma

$$f(x) = \frac{\lambda}{\Gamma(\alpha)} (\lambda x)^{\alpha - 1} e^{-\lambda x}$$
 for $x > 0$

Distribusi Beta

$$f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Terimakasih !!!