Course Handout (Part II)

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : EEE F111

Course Title : ELECTRICAL SCIENCES

Instructor-in-charge : HARI OM BANSAL (hbansal@pilani.bits-pilani.ac.in)

Instructors (Lecture) : Hari Om Bansal; Rajneesh Kumar; Dheerendra Singh; Syed Mohammad

Zafaruddin

Instructors (Tutorial) :Hari Om Bansal; Aditya Raw Gautam, Rajneesh Kumar; Dheerendra Singh;

Puneet Mishra; Pankaj Arora, Bijoy Krishna Mukherjee; Punam Tiwari;

Dated: 11/08/2023

Karunesh Kr Gupta; Sai Sesha Chalapathi Gattupalli; Rahul Kumar

1. Course Description: Course covers Basics of electrical circuit elements, Kirchhoff's law, Network analysis and Network theorems, Transient analysis of first order and second order circuits, Semiconductors and diodes, Basic operation and characterization of transistors (BJT and FET), Basics of operational amplifiers and its application, AC circuit analysis, Frequency response, Filters, Magnetic circuits and B-H curves, Transformer, Overview of electrical machines.

- 2. Scope and Objective of the course: The primary objective of this course is to teach the principles of three different aspects of electrical sciences: (1) Circuits Analysis (2) Electronic Devices and (3) Electromagnetics, to the students of mixed disciplines.
- **3. Text Book: Leonard S. Bobrow and Navneet Gupta,** Foundations of Electrical Engineering, Oxford University Press, Asian Edition, 2015.

Course Plan:

Module	Lec	Coverage	Ref. (TB)	Learning Outcome	
		Voltage and current sources, basic			
Basic		circuit components, Kirchhoff's	1.1-1.7	Students will learn basic circuit elements	
electrical	1-2	current law (KCL), Kirchhoff's and the laws of electrical sci		and the laws of electrical science to solve	
circuitlaws		voltage, law (KVL), Instantaneous		basic electrical circuits.	
and elements		power, Inductors, Capacitors			
	3	Independent and dependent	1.8, 2.4	Students will learn independent and	
		sources, Source transformation		dependent sources, source transformation.	
	4-5	Nodal analysis, Mesh analysis	2.1-2.3	Students will be able to solve circuits by	
Principles of				nodal and mesh analysis.	
circuit		Network theorems (Thevenin's		Students will be able to solve circuits using	
analysis	analysis 6-8 theorem, Norton's theorem, 2.4		2.4,2.6	network theorems.	
		Maximum power transfer theorem,			
		Superposition theorem)			
	9-12	Transientresponse of first and		Students will be able to perform time	
Time domain		second order circuits (natural and	3.2-3.5	domain analysis of first and second order	
analysis		forced response)		circuits.	
	13-	Time-domain analysis, Waveforms,	4.1-4.3	Students will learn concept of phasor,	
AC analysis	14	form factor, Phasor representation		phasor algebra, frequency domain analysis	
		of alternating quantities, <i>j</i> operator		of AC circuits.	
		and Phasor algebra, Frequency-			
		domain analysis			

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS-AGSR Division

	15-	Average power, apparent power	4.4-4.5	Students will learn concepts of power in AC
17		and complex power		circuits.
	18-	Three phase circuits (Y and Δ	4.6	Students will learn concepts of three phase
	19	connections)		circuits (Yand Δ connection).
Frequency	20-	Frequency response, Filters (Low	5.1-5.2	Students will be able to perform frequency
response and	22	Pass, High Pass and Band Pass),		domain analysis of circuits and learn
resonance		Resonance and Quality factor		resonance and filters.
		Basics of semiconductors, PN	6.2,	Students will study basics of
Semiconduct	23-	junction, Junction diode, Ideal	(partly)	semiconductors, diodes and their use in
or Devices -	25	diode and applications (rectifiers	6.3,6.4,	various electronic circuits.
		and clippers)		
Diodes	26-	Zener diode (its model and	6.6	Students will learn applications of Zener
	27	application as voltage regulator and		diodes in electronic circuits.
		clipper)		
Bipolar			7.1-7.3	Students will learn the construction and
Junction	28 -	Basic operation and characteristics		operation of bipolar junction transistors.
Transistors	30	of BJT		
(BJT)				
Field-Effect	31-	Operation and characteristics of	8.1-8.2	Students will learn construction and
Transistors	33	JFET and MOSFET		operation of field effect transistors.
(FET)				
Operational	34	Basics of operational amplifier and	10.1	Students will learn op-amp circuits and the
amplifier		its application		applications.
Magnetic	35-	Analogy between electrical and	13.1-	Students will learn the fundamental concept
circuits and	36	magnetic circuits, B-H curves	13.2	of electromechanics, magnetic circuits and
transformers			(partly)	transformers.
			13.3,	
			13.4	
	37-	Lenz's law, Transformers-Ideal	13.6-	Students will learn basic concepts of
	38	transformer	13.9	Transformers-ideal transformer.
Introduction	39-	Basics of rotating machines	15.1-	Students will learn construction and
to machines	40		15.2	operation of DC/AC machines.
			(partly)	

4. Evaluation Scheme:

S No.	Evaluation	Duration	Marks (300)	Weightage	Date & Time	Nature of Component
	Component					
1.	Quizzes	15 Min.	60	20%	During Tutorial Hr	Closed Book
2.	Mid-Sem. Exam	90 Min.	105	35%	09/10 AN2	Open Book
3.	Comprehensive Exam.	180 Min.	135	45%	07/12 AN	Closed Book

- 5. Chamber Consultation Hour: To be announced in the class.
- 6. Course Notices: All notices of this course will be displayed on the Nalanda only
- 7. Make-up Examination: No make-up will be given for quizzes, however for other components; make-up will be given ONLY in cases of sickness (hospitalization) or urgency for going out of station. In such case student must produce the sufficient proof or must have taken the prior permission from the IC.

Instructor-in-Charge

EEE F111

