Com	oito di Reti Logiche	24/7/2014.	Nome e Cognome	Matricola

Esercizio 1 Sintetizzare in forma SP a costo minimo (a diodi) un sommatore/sottrattore ad una cifra in base due. Individuare, classificare e rimuovere eventuali alee.

Esercizio 2

Descrivere il circuito *XXX* che si evolve all'infinito come segue:

- 1) preleva un *campione* dal Convertitore A/D;
- 2) se i bit del campione in posizione pari (bit n.0, bit n.2, ..., bit n. 6) valgono **tutti** 1, notifica ciò tenendo *notifica* a 1 per un ciclo di clock, altrimenti torna immediatamente al punto 1.

Per verificare se il campione è o non è quello da notificate, si introduca una variabile *test* in accordo al seguente schema:

wire test; assign test=...; che vale 1 se il test ha successo, 0 altrimenti.

Fare un diagramma temporale che illustri due cicli completi di evoluzione di XXX, supponendo che il Convertitore presenti 'B00111111 al primo ciclo e 'B01010101 al secondo ciclo. Affinché il diagramma sia di dimensioni accettabili, supporre anche che la risposta Convertitore, una volta iniziato l'handshake, sia abbastanza veloce (tra uno e due cicli del clock di XXX).

Sintetizzare *XXX* fornendo per test una **espressione booleana** ed evitando di fare elencazioni

Esercizio 1 - Soluzione

Il sommatore/sottrattore ha quattro ingressi: x, y, c_in e cmd, e due uscite, s e c_out. Se cmd=0 s è la somma modulo due di x, y e c_in, e c_out il riporto uscente, altrimenti s è la differenza modulo due di x-y-c_in, e c_out è il prestito uscente. La mappa di Karnaugh è la seguente:

cmd, x	y s, cout 11 10				
cin 00	00	10	01	10	
01	10	01	11	01	
11	11	01	11	00	
10	00	11	00	10	

La sintesi di costo minimo in forma SP è la seguente (tutti gli IP sono essenziali):

$$c_{out} = c_{in} \cdot y + cmd \cdot c_{in} \cdot \overline{x} + \overline{cmd} \cdot x \cdot y + \overline{cmd} \cdot c_{in} \cdot x + cmd \cdot \overline{x} \cdot y$$

$$s = c_{in} \cdot \overline{x} \cdot \overline{y} + c_{in} \cdot x \cdot y + \overline{c_{in}} \cdot \overline{x} \cdot y + \overline{c_{in}} \cdot x \cdot \overline{y}$$

Non ci sono alee di nessun tipo.

Esercizio 2 - Una Semplice Soluzione

```
module XXX(campione, soc, eoc, notifica, p, reset );
            p,reset ;
  input [7:0] campione;
  input
             eoc;
 output
             soc;
 output
             notifica;
          SOC; assign soc=SOC;
 reg NOTIFICA; assign notifica=NOTIFICA;
 reg [1:0] STAR;
                      parameter[1:0] S0=0, S1=1, S2=2, S3=3;
 wire test=&(campione|8'B10101010);
  always @(posedge p or negedge reset )
  if (reset ==0) begin SOC<=0; NOTIFICA<=0; STAR=S0; end else #3
  casex (STAR)
   S0: begin NOTIFICA<=0; SOC<=1; STAR<=(eoc==1)?S0:S1; end
   S1: begin SOC<=0; STAR<=(eoc==0)?S1:S2; end
   S2: begin NOTIFICA<=test; STAR<=S0; end
  endcase
endmodule
```

