Homework o 1. y= F w* + E define $l(w) = \frac{1}{2} \| y - Fw \|^2$ using gradient descent $\frac{\partial l}{\partial w} = 2 \cdot \frac{1}{2} (y - Fw)^{\top} \frac{\partial (y - Fw)}{\partial w}$ $= (y - Fw)^{T}(-F)$ therefore, Wt = Wt1 - 1 = Wt1 + 1F (y-FWt1) $\frac{1-\eta F^{\dagger}F}{Wt1-\eta F^{\dagger}FWt1-\eta}$ F'F is the inner correlation matrix of F FF= VÎÛÎÛÎVT = VÊZVT Herefore $\phi = I - \eta F^T P = V I V^T - \eta V \hat{\Sigma}^2 V^T = V (I - \eta \hat{\Sigma}^2) V^T$ $\phi V = V (I - \eta \hat{\Sigma}) = VD$, which means the eigenvalue is $I - \eta \hat{\Sigma}$ given that n is a learning rate small enough, each item of D > 0 $F'y = V \sum_{i=1}^{T} U^{T} y = [v_{i} v_{i} - v_{i}] \begin{cases} \alpha_{i} u_{i}^{2} y \\ \alpha_{i} u_{i}^{2} y \end{cases} = [v_{i} v_{i} - v_{i}] \begin{cases} \alpha_{i} u_{i}^{2} y \\ \vdots \\ \alpha_{n} u_{n}^{2} y \end{cases} = \sum_{i=1}^{n} v_{i} \cdot \alpha_{i} u_{i}^{2} y$ therefore, $|Nt = (I - \eta F^T F) W_{t-1} + \eta F^T y = V D V^T W_{t-1} + \eta \sum_{i=1}^{n} di vi wi y$?

therefore $\|Wt\|_{\mathcal{L}} \leq \|Wt\|_{\mathcal{L}} + \eta d \|y\|_{\mathcal{L}}$ $\|Wt\|_{\mathcal{L}} \leq \|Wt\|_{\mathcal{L}} + \eta d \|y\|_{\mathcal{L}}$ $\|Wt\|_{\mathcal{L}} - \|Wt\|_{\mathcal{L}} \leq na \|y\|_{\mathcal{L}}$ $\|Wt\|_{\mathcal{L}} - \|Wo\|_{\mathcal{L}} \leq k \eta d \|y\|_{\mathcal{L}}$ $\|Wt\|_{\mathcal{L}} \leq k \eta d \|y\|_{\mathcal{L}}$ therefore, $\|Wt - W^t\|_{\mathcal{L}} \leq \|Wt\|_{\mathcal{L}} + \|W^t\|_{\mathcal{L}} = k\eta \alpha \|y\|_{\mathcal{L}} + \|W^t\|_{\mathcal{L}}$

Singular vector decomposition $\sigma_i \vec{u} \vec{v}_i^T + \sigma_i \vec{u}_i \vec{v}_i^T + \sigma_i \vec{u}_i^T + \sigma_i \vec{u}_$

AT = VI TUT

Notes about Matrix Differential

$$\frac{\partial -(Ax)}{\partial x} = A$$

$$\frac{\partial (y^T Ax)}{\partial y} = \chi A^T$$
 proof is:

$$\frac{\partial(x^2Ax)}{\partial x} = \frac{\partial \sum_{i} \sum_{i} \alpha_{ij} x_{i} x_{j}}{\partial x}$$

$$\frac{J(XAX)}{JXk} = \sum_{i=1}^{m} \alpha_{ik} \chi_{i} + \sum_{j=1}^{n} \alpha_{kj} \chi_{j}$$

$$\frac{\partial \alpha}{\partial x} = \frac{\partial (x^T A x)}{\partial x} = x^T A + (A x)^T$$
$$= x^T A + \vec{\lambda} A^T = x^T (A + A^T)$$

$$\frac{\int (y^T A x)}{\partial z} = y^T A \frac{\partial x}{\partial z} + x^T A^T \frac{\partial y}{\partial z}$$

$$\frac{\partial(A^{T}A)}{\partial\alpha} = \frac{\partial(A^{T})}{\partial\alpha}A + A^{T}\frac{\partial(A)}{\partial\alpha} = 0$$

$$\frac{\partial(A^{T})}{\partial\alpha} = A^{T}\frac{\partial A}{\partial\alpha}A^{T}$$
Scalar

2, Regularization from the Augumentation Perspective

given that for $y = X\beta$ $\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} |y_i - \sum_{i=1}^{n} |y_i|^2 = \underset{\beta}{\operatorname{argmin}} ||y - X\beta||_2^2 = (X^TX)^T X^T y$

Set $X = \hat{X} = \begin{bmatrix} X \\ T \end{bmatrix}$ $y := \hat{y} = \begin{bmatrix} y \\ Q_x \end{bmatrix}$ $w := \beta$ therefore. $argmin || \hat{y} - \hat{X}w ||_{Y}^2 = (\hat{X}^T \hat{X})^T \hat{X}^T \hat{y}$ $= (X^T X + T^T \Gamma)^T X y$ $= (X^T X + \Sigma^T)^T X y$

(a)
$$\frac{\partial}{\partial x}(x^Tc) = \frac{\partial}{\partial x}(c^Tx) = c^T$$

(b)
$$\frac{\partial}{\partial x} ||x||^2 = \frac{\partial}{\partial x} (x^T x) = x^T \frac{\partial x}{\partial x} + x^T \frac{\partial x}{\partial x} = 2x^T$$

$$y:=\sum_{k=1}^{n}a_{ik}\chi_{k}$$

$$\frac{\partial y}{\partial x_{j}}=a_{ij}$$

(d)
$$d = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_{i} x_{j}$$
 $\frac{\partial \alpha}{\partial x_{k}} = \sum_{j=1}^{n} a_{kj} x_{j} + \sum_{i=1}^{n} a_{ik} x_{i}$
therefore $\frac{\partial \alpha}{\partial x} = x^{T}A^{T} + x^{T}A = x^{T}(A^{T}+A)$

$$(9) \quad A = A^{T}$$

(C) (d)

5. Using Pytorch to Learn the Color Organ
(a) find that R value is 200
ch, R value should be near 200
cutoff-frequency should be 792 Hz
Wir initial final time
200 300 3:5
mo mo b le reduce
200 100 198 3:01 the learning time
2NO 1000 2NO 14:37
(d) the leaned resistor value is 309 (wrong)
and it varied to the Ir or inital R
(E) the binary data is not proper for the
prévisus loss function
prévious loss function We can change the loss function by converting
negtive samples from 0 to 0.3
which raise the mean expectation
in directly right drag the curve
thus converging R to (196). If) Lowpass: H= inc/(inc+k) = 1/1+jwR
1H1 = 1/1+ wire
highpass: H= p/(jnc+R) = jwcR/1+jwRC
$ H = WCR / \sqrt{1 + w^2 c^2 k^2}$
use the train data penerated by new high Pass mode, and find that R is 34 sl (I think correct)
and Ind will 1- 15 34 30 (I Think correct)

(g) the result is that $R-l_{ew}=V_{ew}$ $R_{ew}=V_{ew}$ $R_{ew}=V_{ew}$

6.6	tome war	k Pho	cess and	d Studi	y Gir	oup		
			Process and Study Group Stackoverflow. Wikipedia					
			•			classmates	04	discussion
			finishing			·		
5	about 16	•	y ,					