Model Isinga

Aleksandra Baszak 236683 Kod pisany był w C++

1.a)Zaobserwowanie przejścia układu między stanami metastabilnymi ze średnią magnetyzacją +1 i -1

Dla temperatur niższych od Tc występuje zjawisko przejścia pomiędzy stanami metastabilnymi. Oznacza to, że średni spin przypadający na jedną cząstkę ma wartość 1 lub -1 i co jakiś czas losowo przeskakuje zmieniając polaryzacje całego układu.

Średnia magnetyzacja

Ilość kroków Monte Carl

1.b) Zaobserwowanie konfiguracji typowych dla temperatur: niskiej, wysokiej i w pobliżu Tc.

Temperatura niska T*=1.6 $L=200, MCS=10^{5}$

Temperatura w okolicach Tc

$$T*=2.1,L=200,MCS=10^5$$

 $T*=2.2,L=200,MCS=10^5$

Temperatura wysoka T*=3.0 L=200,MCS= 10^5

2.a) Zbadanie zależności magnetyzacji od zredukowanej temperatury.

Magnetyzacja dla niskiej temperatury T*=1.6

Średnia magnetyzacja

Magnetyzacja dla wysokiej temperatury T*=2.8

Średnia magnetyzacja

Średnia magnetyzacja w zależności od temperatury dla L=20,40 i 100

Średnia magnetyzacja

T*-temperatura zredukowana Kb*T/J

2. b) Podatność magnetyczna od temperatury.

Podatność magnetyczna dla L=20,40 i 100

Podatność X/Kb

T*-temperatura zredukowana Kb*T/J

Ten sam wykres z pominięciem podatności dla L=100.

Podatność X/Kb

T*-temperatura zredukowana Kb*T/J

2.c) Energia od temperatury.

E/(JN) zredukowana energia na cząstkę

T*-temperatura zredukowana Kb*T/J

2.d) Pojemność cieplna od temperatury.

C/J

T*-temperatura zredukowana Kb*T/J

3. Teoria skalowania. Zastosowanie teorii skalowania do wyników symulacji (β = 0.125, ν = 1).

Y=log(<m>*pow(L;0.125))

4. Wyznaczenie temperatury krytycznej metodą kumulantów Bindera.

T*-temperatura zredukowana Kb*T/J

Ten sam wykres ale zrobiony z większą dokładnością. Za pomocą regresji liniowej można obliczyć temperaturę przejścia fazowego Tc. Wynosi ona T*=2,26±0,012.

T*-temperatura zredukowana Kb*T/J