№2SMPB-02E

MEMS絶対圧センサ

高精度・低消費電流の小型MEMS絶対圧センサ

- 気圧を高精度に測定
- ●低ノイズの24bit ADCを内蔵
- I2C/SPI インターフェースを通じたデジタル制御/出力
- 自動スリープモードによる低消費電流を実現
- 個別の補正係数はOTP*に格納
 - (* One Time Programmable ROM)

RoHS適合

24ペーシの

「正しくお使いください」をご覧ください。

アプリケーション例

- ・インドア・ナビゲーション (フロア検知)
- ・カー・ナビゲーション (高速道路と側道の判別)
- ・高度計
- ・活動量計 (階段の昇降検知)
- ・ライフ・ログ
- ・気象予測

ターゲットデバイス例

- ・スマートフォン/タブレットPC
- ・ウォッチ型/バンド型/クリップ型/グラス型などのウェアラブルデバイス
- ・GPSデバイス
- ・歩数計

梱包情報

構造	梱包形態	形式	最少梱包単位
LGA 9pin	テープリール	形2SMPB-02E	3,500

目次

定格/仕様/機能	ć
た竹/ 11塚/ 機能	
絶対最大定格 定格	
足性	
电对时任	
1/F 电式行性	
測定モート別特性 IIR フィルタ適用時 測定モード別 rms ノイズ仕様	
IIR フィルタ適用時 測定モード別 IIIS フィスは像	
フィルタ週	
用処別測定し 下放足別のあり III フィルク設定例	C
接続	Ε
ブロック図	E
端子図	E
推奨回路図	7
	_
外形寸法	
パッケージ	
実装 PAD 寸法	
マーク印字	8
オペレーション	c
通信モード	
### ### ### ### ### #################	
バン	
実装レジスター覧表	
レジスタ詳細	
PC プロトコル	
SPI プロトコル	
インターフェース特性	
リセット機能	
ラー・ ::::::::::::::::::::::::::::::::::::	
梱包・出荷形態	
出荷形態	21
テーピング	
リール	
個装	22
推奨リフロー条件	25
推奨はんだ付け方法	
1世光は707に当け 万広	ےےک
正しくお使いください	24

定格/仕様/機能

■使用条件および推奨動作条件

項目	内容	備考
圧力の種類	絶対圧	
圧力媒体	空気*	
測定圧力範囲	30k∼110kPa	

^{*} 空気以外の腐食性ガスは使用しないでください。

■絶対最大定格 (25℃)

項目	記号	Min.	Тур.	Max.	単位	備考
電源電圧	Vddmax	_	_	4.0	V	
その他の端子電圧	Vmax	-0.2	_	Vopr + 0.2	V	
最大印加圧力	Pmax	_	_	800	kPa	
保存温度範囲	Tstr	-40	_	85	°C	氷結・結露なきこと
保存湿度範囲	Hstr	10	_	95	%RH	氷結・結露なきこと
ESD HBM	Vhbm	_	_	2000	V	絶対値
ESD MM	Vmm	_	_	200	V	絶対値
ESD CDM	Vcdm	_	_	500	V	絶対値

■定格

項目	記号	Min.	Тур.	Max.	単位	備考
電源動作範囲	Vopr	1.71	1.8	3.6	V	VDD
	Vio	1.20	1.8	3.6	V	VDDIO
動作温度範囲	Topr	-40		85	°C	

■電気的特性(特に指定のない限り Ta=25℃、VDD=1.8Vとする)

項目	記号	条件	Min.	Тур.	Max.	単位
平均電流	Ihp	1Hz-Forced Mode Ultra High Accuracy	_	21.4	_	μΑ
動作時消費電流	Iddp	圧力測定時	_	640	800	μΑ
助作时 伯貨 电弧	Iddt	温度測定時	_	410	520	μΑ
スリープ時消費電流	Isleep		_	1.1	2.3	μΑ
圧力測定範囲	Popr		30	_	110	kPa
絶対圧力精度	Pabs1	30~110kPa,0~65℃	_	± 50	_	Pa
祀刈庄刀相及	Pabs2	30~110kPa、−20~0°C	_	±80	_	Pa
相対圧力精度	Prel1	Ultra High Accuracy	_	± 3.9	_	Pa
rmsノイズ	Pnois	Ultra High Accuracy	_	1.3	_	Pa
絶対温度精度	Tabs	30~110kPa、−20~65°C	-2	_	2	°C
圧力分解能	Pres		_	0.06	_	Pa
温度分解能	Tres		_	0.0002	_	°C
電源電圧変動	Ppsrr	101.3kPa,0~40℃,1.71~3.6V Base on VDD=1.8V	- 9.4	_	9.4	Pa

注1. Typ.で示された値は保証値ではありません。 注2. 上表はパッケージ単体(実装前)の特性になります。使用前に製品へ搭載した状態で十分な評価を実施してください。

■I/F 電気特性 (特に指定のない限り Ta=25℃、VDD=1.8Vとする。12CおよびSPIに対応する。設計保証項目とし、出荷テストの対象外とする。)

項目	記号	Min.	Тур.	Max.	単位	備考
デジタル入力L電圧	Vil_d	_	_	Vio×0.2	V	
デジタル入力H電圧	Vih_d	Vio×0.8	_	Vio + 0.2	V	
デジタルI/Oヒステリシス	Vidhys	Vio×0.1	_	_	V	
デジタル出力L電圧(I ² C)	Vol_d1	0	_	Vio×0.2	V	$I_0 = 3mA(SDI) *1$
デジタル出力L電圧(SPI)	Vol_d2	0	_	Vio×0.2	V	Io = 1mA(SDI,SDO) *1
デジタル出力H電圧1(SPI) (Vio>=1.62V)	Voh_d1	Vio×0.8	_	_	V	Io = 1mA (SDI, SDO) *1
デジタル出力H電圧2(SPI) (Vio>=1.2V)	Voh_d2	Vio×0.6	_	_	V	Io = 1mA (SDI, SDO) *1
出力OFF時のリーク電流	Ioff	-10	_	10	μΑ	SDI、SDO
内蔵プルアップ抵抗	Rpullup	70	120	190	kΩ	CSB
I ² C 負荷容量	Cb	_	_	400	pF	SDI and SCK
リセット端子負荷容量	Crst	_	_	20	pF	
非同期リセットパルス幅	Trst	100	_	_	μ sec	Positive logic
電源投入時のスタートアップ時間 *2	Tstart	_	_	10	msec	Vopr > 1.71V および Vio > 1.2V の電 圧印加後、通信を開始するまでに必要 な時間

 $http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf$

■測定モード別特性

(特に指定のない限り Ta=25℃、VDD=1.8V、内部CLK周波数=300kHzとする。設計保証項目とし、出荷テストの対象外とする。)

Mode	圧力平均回数	温度平均回数	変換時間 (Press.+Temp.) Typ.	平均電流 @1Hz-Forced Mode Typ.	ODR (Standby 1.0msec) Typ.	rmsノイズ Typ.
単位	_	_	msec	μΑ	Hz	Pa
High speed	2	1	5.5	4.1	153	5.2
Low power	4	1	7.2	5.2	121	3.7
Standard	8	1	10.6	7.3	86	2.6
High accuracy	16	2	18.3	12.0	51	1.8
Ultra High accuracy	32	4	33.7	21.4	28	1.3

■IIRフィルタ適用時 測定モード別rmsノイズ仕様

(特に指定のない限り Ta=25℃、VDD=1.8Vとする。設計保証項目とし、出荷テストの対象外とする。)

Mode			IIRフィルター係数別	msノイズ[Pa] Typ.値			
ivioue	OFF	2	4	8	16	32	
High speed	5.2	2.5	1.6	1.1	0.8	0.5	
Low power	3.7	1.8	1.1	8.0	0.5	0.4	
Standard	2.6	1.3	0.8	0.5	0.4	0.3	
High accuracy	1.8	0.9	0.6	0.4	0.3	0.3	
Ultra High accuracy	1.3	0.6	0.4	0.3	0.3	0.2	

^{*} IIR: Infinite Impulse Response

^{*1.} Ioは出力端子負荷電流。*2. スタートアップ期間は通信禁止。注. I²Cの詳細情報については、以下のURLをご覧ください。

■IIRフィルタ適用時 測定モード別バンド幅仕様

(特に指定のない限り Ta=25℃、VDD=1.8Vとする。設計保証項目とし、出荷テストの対象外とする。)

Mode			IIRフィルター係数別	バンド幅[Hz] Typ.値		
Wode	OFF	2	4	8	16	32
High speed	153.0	35.3	14.7	6.8	3.3	1.6
Low power	121.0	28.0	11.6	5.4	2.6	1.3
Standard	86.0	19.9	8.3	3.8	1.8	0.9
High accuracy	51.0	11.8	4.9	2.3	1.1	0.5
Ultra High accuracy	28.0	6.5	2.7	1.2	0.6	0.3

■用途別測定モード設定例およびIIRフィルタ設定例

(特に指定のない限り Ta=25℃、VDD=1.8Vとする。設計保証項目とし、出荷テストの対象外とする。)

使用例	Mode	圧力平均回数	温度平均回数		仕様値(Typ.值)	
	wode	上 八十岁回数 	<u> </u>	IIRフィルタ係数	消費電流[μA]	ODR[Hz]	rmsノイズ[Pa]
Weather monitoring	High speed	2	1	OFF	1.2	0.05	5.2
Drop detection	Low power	4	1	OFF	407	100	3.7
Elevator detection	Standard	8	1	4	63.4	10	0.8
Stair detection	High accuracy	16	2	8	219	20	0.4
Indoor navigation	Ultra high accuracy	32	4	32	570	28	0.2

接続

■ブロック図

■端子図

端子番号	端子名	端子	説明	
<u> </u>	 	SPI	I ² C	
1	RST	非同期リ	セット *1	
2	CSB	CSB	VDDIO	
3	SDI	SDI/SDO	SDA	
4	SCK	SCK	SCL	
5	SDO	SDO	ADDR	
6	VDDIO	デジタルI/	O電源端子	
7	GND	接地端子		
8	VDD	電源端子		
9	VPP	NVM書き込	.み用端子 *2	

- *1. リセット機能を必要としない場合は、PCB上で1番ピン (RST) と7番ピン (GND) の両端子をグランドへ接続するよう回路設計してください。またリセット機能を使用する場合は、20ページの「■リセット機能」を参照してください。
- 機能を使用する場合は、20ページの「■リセット機能」を参照してください。
 *2. 9番ピンはオムロンの内部のみで使用します。この端子はどこにも接続しないでください。
 9番ピンが電気的に他のピンに接続されている場合、センサが正常に動作しないことがあります。

■推奨回路図

本センサのデジタルインターフェースは3つのモードがあります。それぞれのモードの推奨回路図は以下のとおりです。

I2C 通信モード

100kbps (Standard Mode)、400kbps (Fast Mode)、3.4Mbps (High Speed Mode) に対応

SPI 通信モード(4-Wire)

10Mbpsに対応

SPI 通信モード(3-Wire)

10Mbpsに対応

外形寸法 (単位:mm)

■パッケージ

パッケージタイプ: LGA (Land Grid Array) 9 pin

パッケージサイズ: 2.00×2.50×0.85 mm

端子部表面材質:Au

■実装PAD寸法

Top View:推奨

■マーク印字

オペレーション

■通信モード

本センサはI²C およびSPI 通信に対応します。

それぞれの通信での各端子の役割は以下のとおりです。

通信方式	CSB	SDI	SCK	SD0	備考
I ² C	VDDIO	SDA	SCL		SDO 端子の入力電圧で、Device addressを設定できます。 SDOにGND接続時:70h SDOにVDDIO接続時:56h
SPI 3線	CSB	SDI/O	SCK	_	レジスタspi3wで切り替えます。
SPI 4線	CSB	SDI	SCK	SDO	spi3w = 1:3線通信 spi3w = 0:4線通信

インターフェースの切り替え

・I2Cへの切り替え

CSBをVDDIOにプルアップさせることでI²C通信が有効になります。

・SPIへの切り替え

CSBをLにすることでSPI通信が有効になります。

また、一度でもCSBをLにすると、パワーオンリセット、または非同期リセットをしない限りI²C通信モードになることはありません。

3/4wireの切り替えはレジスタ設定(spi3w)にて行います。

注. PORもしくはソフトリセット後は、I²Cになります。

ソフトリセットに関しては、15ページの「**■レジスタ詳細**」の項の「RESET」項目を参照してください。

■パワーモード

本センサはSleepモード、Forcedモード、Normalモードの3つの動作モードを備えており、CTRL_MEASレジスタにて切り替えることができます。(詳細は「CTRL_MEASレジスタ」の項を参照してください。) 各モードの遷移図は、以下のとおりです。

Sleepモード

消費電流削減モードです。

- ・I²C(SPI)インターフェース部は、Sleepモードとは無関係に動作します。
- ・各レジスタにはSleepモードでもアクセス可能です。

Forcedモード

設定に依存した測定完了後、測定値をレジスタに格納してSleepモードに移行します。

Normalモード

測定→スタンバイ→測定を繰り返すモードです。 スタンバイ時間は"t_stanby[2:0]"で設定します。

■圧力補正および温度補正方法

本センサは内部不揮発性メモリに補正係数を有しています。その補正係数を用いて、圧力および温度を算出することができます。

- ① IOモードの設定を構成します。詳細については、IO_SETUPのセクションを参照してください。
- ② NVMに保存されている補正係数を読み出してください。この手順では、POR後に一度だけで十分です。これらの値は、ステップ⑥、 ⑦の補正演算に使用されます。
 - 注. 補正係数読み出し直後は次の通信の前に1msec以上の待機時間を設けてください。
- ③ 平均化時間と電力モードを設定します。詳細については、CTRL_MEASレジスタのセクションを参照してください。
- ④ TEMP_TXDxレジスタに格納されている温度のraw Dataを読み込みます。
- ⑤ PRESS_TXDxレジスタに格納されている圧力のraw Dataを読み込みます。
- ⑥ 温度補正は、以下の式にステップ②、④の値を用いて算出できます。

$Tr = a0 + a1 \cdot Dt + a2 \cdot Dt^2$

Tr: Calculation Result of Temperature (Tr/256 = Temperature [degree C]) e.g) If Tr Value is 6400 LSB,

Temperature (degreeC) =
$$\frac{\text{Tr Value (LSB)}}{\text{Scaling Factor}} = \frac{6400 \text{ LSB}}{256 \text{ LSB/degree C}} = 25.00 \text{ degreeC}$$

Dt: Raw Temperature Data [digit] (20-24bits measurement value of TEMP_TXDx Reg.)

a0: Compensation Coefficient of PTAT (NVM resister: COE_a0_ex, COE_a0_0, COE_a0_1)

al: Compensation Coefficient of PTAT (NVM resister: COE_al_0, COE_al_1)

a2: Compensation Coefficient of PTAT (NVM resister: COE_a2_0, COE_a2_1)

⑦ 温度補正圧力は、以下の式に、ステップ②と⑤と⑥の値を用いて算出することができます。

$$Pr = b00 + bt1 \cdot Tr + bp1 \cdot Dp + b11 \cdot Dp \cdot Tr + bt2 \cdot Tr^2 + bp2 \cdot Dp^2 + b12 \cdot Dp \cdot Tr^2 + b21 \cdot Dp^2 \cdot Tr + bp3 \cdot Dp^3$$

Pr: Calculation Result of Pressure [Pa]

Tr: Calculation Result of Temperature (Tr/256 = Temperature [degreeC])

Dp: Raw Pressure Data [digit] (20-24bits measurement value of PRESS_TXDx Reg.)

b00: Compensation Coefficient of Pressure (NVM resister: COE_b00_ex, COE_b00_0, COE_b00_1)

bt1: Compensation Coefficient of Pressure (NVM resister: COE_bt1_0, COE_bt1_1)

bp1: Compensation Coefficient of Pressure (NVM resister: COE_bp1_0, COE_bp1_1)

b11: Compensation Coefficient of Pressure (NVM resister: COE_b11_0, COE_b11_1)

bt2: Compensation Coefficient of Pressure (NVM resister: COE_bt2_0, COE_bt2_1)

bp2: Compensation Coefficient of Pressure (NVM resister: COE_bp2_0, COE_bp2_1)

b12: Compensation Coefficient of Pressure (NVM resister: COE_b12_0, COE_b12_1)

b21: Compensation Coefficient of Pressure (NVM resister: COE_b21_0, COE_b21_1)

bp3: Compensation Coefficient of Pressure (NVM resister: COE_bp3_0, COE_bp3_1)

補正係数を取得する方法

各補正係数は、以下の式の変換係数を用いて算出することができます。

$$K = A + \frac{S \times OTP}{32767}$$
a1, a2, bt1, bt2, bp1, b11, bp2, b12, b21, bp3 $K = \frac{OTP}{16}$ a0, b00

K	Conversi	ion factor		OTP	
K	Α	S	23-16 bit	15-8 bit	7-0 bit
a1	-6.3E-03	4.3E-04	=	COE_a1_1	COE_a1_0
a2	-1.9E-11	1.2E-10	۰	COE_a2_1	COE_a2_0
bt1	1.0E-01	9.1E-02	=	COE_bt1_1	COE_bt1_0
bt2	1.2E-08	1.2E-06	-	COE_bt2_1	COE_bt2_0
bp1	3.3E-02	1.9E-02	=	COE_bp1_1	COE_bp1_0
b11	2.1E-07	1.4E-07	-	COE_b11_1	COE_b11_0
bp2	-6.3E-10	3.5E-10	=	COE_bp2_1	COE_bp2_0
b12	2.9E-13	7.6E-13	-	COE_b12_1	COE_b12_0
b21	2.1E-15	1.2E-14	=	COE_b21_1	COE_b21_0
bp3	1.3E-16	7.9E-17	-	COE_bp3_1	COE_bp3_0

I/	Conversion factor		OTP	
K	Conversion ractor	19-12 bit	11-4 bit	3-0 bit
a0	Offset value (20Q16)	COE_a0_1	COE_a0_0	COE_a0_ex
b00	Offset value (20Q16)	COE_b00_1	COE_b00_0	COE_b00_ex

■実装レジスター覧表

測定/制御用レジスタ

I²C通信時:Register AddressのCtl.は"1"で固定

	٨٨٨	rooo			Data							-		
Register Name	I ² C	ress SPI	Length	R/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	- Descriptions	Initial
TEMP_TXD0	FCh	7Ch	8bit	R/-					t_txd0[7:0]			Temperature DATA [8:1] in 24 bits	00h
TEMP_TXD1	FBh	7Bh	8bit	R/-					t_txd1[7:0]			Temperature DATA [16:9] in 24 bits	00h
TEMP_TXD2	FAh	7Ah	8bit	R/-					t_txd2[7:0]			Temperature DATA [24:17] in 24 bits (*)	00h
PRESS_TXD0	F9h	79h	8bit	R/-					p_txd0[7:0]			Pressure DATA [8:1] in 24 bits	00h
PRESS_TXD1	F8h	78h	8bit	R/-					p_txd1[7:0]			Pressure DATA [16:9] in 24 bits	00h
PRESS_TXD2	F7h	77h	8bit	R/-					p_txd2[7:0]			Pressure DATA [24:17] in 24 bits (*)	00h
IO_SETUP	F5h	75h	8bit	R/W	t_stanby[2:0]			-	spi3_sdim	-	spi3w	t_stanby[2:0]: Standby time setting spi3w: SPI mode setting (4 or 3 wire) spi3_sdim: Select output type of SDI terminal	00h	
CTRL_MEAS	F4h	74h	8bit	R/W	temp_average[2:0] press_average[age[2:0]	powe	er_mode[1:0]	temp_average[20]: Temperature Averaging Times press_average[20]: Pressure Averaging Times power_mode[1:0]: Power mode setting	00h		
DEVICE_STAT	F3h	73h	8bit	R/-	-	-	otp_update otp		measure : Status of measurement otp_update : Status of OTP data access	00h				
I ² C_SET	F2h	72h	8bit	R/W	_	-			Master code setting at I ² C HS mode	01h				
IIR_CNT	F1h	71h	8bit	R/W	-	_	-	_	-	1	filter[2	:0]	IIR filter co-efficient setting	00h
RESET	E0h	60h	8bit	W					reset[7	·:0]			When inputting "E6h", a software reset will be occurred.	00h
CHIP_ID	D1h	51h	8bit	R/-					chip_id[[7:0]			CHIP_ID: 5Ch	5Ch
COE_b00_a0_ex	B8h	38h	8bit	R/-	1 1				b00[3:0]			Compensation Coefficient	_	
COE_a2_0	B7h	37h	8bit	R/-)]	Compensation Coefficient	-		
COE_a2_1	B6h	36h	8bit	R/-		a2[15:8] Cc				8]	Compensation Coefficient (*)	-		
COE_a1_0	B5h	35h	8bit	R/-					a1[7:0)]			Compensation Coefficient	-
COE_a1_1	B4h	34h	8bit	R/-					a1[15:	8]			Compensation Coefficient (*)	_
COE_a0_0	B3h	33h	8bit	R/-					a0[11:	4]			Compensation Coefficient	-
COE_a0_1	B2h	32h	8bit	R/-					a0[19:1	.2]			Compensation Coefficient (*)	-
COE_bp3_0	B1h	31h	8bit	R/-					bp3[7:	0]			Compensation Coefficient	_
COE_bp3_1	B0h	30h	8bit	R/-					bp3[15	:8]			Compensation Coefficient (*)	-
COE_b21_0	AFh	2Fh	8bit	R/-					b21[7:	0]			Compensation Coefficient	-
COE_b21_1	AEh	2Eh	8bit	R/-					b21[15	:8]			Compensation Coefficient (*)	-
COE_b12_0	ADh	2Dh	8bit	R/-					b12[7:	0]			Compensation Coefficient	_
COE_b12_1	ACh	2Ch	8bit	R/-					b12[15	:8]			Compensation Coefficient (*)	_
COE_bp2_0	ABh	2Bh	8bit	R/-					bp2[7:	0]			Compensation Coefficient	-
COE_bp2_1	AAh	2Ah	8bit	R/-					bp2[15	:8]			Compensation Coefficient (*)	_
COE_b11_0	A9h	29h	8bit	R/-					b11[7:	0]			Compensation Coefficient	-
COE_b11_1	A8h	28h	8bit	R/-					b11[15				Compensation Coefficient (*)	-
COE_bp1_0	A7h	27h	8bit	R/-					bp1[7:	0]			Compensation Coefficient	-
COE_bp1_1	A6h	26h	8bit	R/-					bp1[15	:8]			Compensation Coefficient (*)	-
COE_bt2_0	A5h	25h	8bit	R/-			Compensation Coefficient	-						
COE_bt2_1	A4h	24h	8bit	R/-					Compensation Coefficient (*)	-				
COE_bt1_0	A3h	23h	8bit	R/-					bt1[7:0]		Compensation Coefficient	-		
COE_bt1_1	A2h	22h	8bit	R/-	bt1[15:8] Comper			Compensation Coefficient (*)	-					
COE_b00_0	A1h	21h	8bit	R/-					b00[11	:4]			Compensation Coefficient	-
COE_b00_1	A0h	20h	8bit	R/-					b00[19:	12]			Compensation Coefficient (*)	-

■レジスタ詳細

TEMP(PRESS)_TXDx: 温度(圧力)データ TXD0, TXD1 or TXD2

レジスタ名称	アド	レス	R/W				Da	ata				初期値	
レンスダ石物	I ² C	SPI	H/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	TU AU III	
TEMP_TXD0	FCh	7Ch	R/-		t_txd0[7:0]								
TEMP_TXD1	FBh	7Bh	R/-		t_txd1[7:0]								
TEMP_TXD2	FAh	7Ah	R/-				t_txc	12[7:0]				00h	
PRESS_TXD0	F9h	79h	R/-				p_txo	10[7:0]				00h	
PRESS_TXD1	F8h	78h	R/-		p_txd1[7:0]								
PRESS_TXD2	F7h	77h	R/-	p_txd2[7:0]								00h	

ADC出力を22~24bit精度のデータで保持しています。

データは24bit単位で取得できます。精度が余る場合、下位bitは"0"となります(下図、黄色部分が有効データです)。

bit	24	23	22	•••	5	4	3	2	1	備考
22bits出力	D21	D20	D19		D2	D1	D0	0	0	Temp/Press_ave = 001
23bits出力	D22	D21	D20		D3	D2	D1	D0	0	Temp/Press_ave = 010
24bits出力	D23	D22	D21		D4	D3	D2	D1	D0	Temp/Press_ave = 011~111

- 注1. Dn (D23~D0): Sensorデータn bit目の値 (1または0)
- 注2. 生の測定値は符号なしの24bit値です。24bitのアウトプットモードにおいて2²³で減算する必要があります。 以下はDpとDtの計算のプログラミング例です。

 $Dt = ((TEMP_TXD2) << 16) + ((TEMP_TXD1) << 8) + (TEMP_TXD0) - pow(2.23)$

Dp = ((PRESS_TXD2) <<16) + ((PRESS_TXD1) << 8) + (PRESS_TXD0) - pow(2,23)

IO_SETUP: I/O 設定用レジスタ

レジスタ名称	アド	レス	R/W		Data								
レンスタ石物	I ² C	SPI	H/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	初期値	
IO_SETUP	F5h	75h	R/W	t_stanby[2:0] spi3_sdim - spi3w						00h			

bit7~5 t_stanby[2:0] スタンバイ時間(Typ.)の設定

000	001	010	011	100	101	110	111
1ms	5ms	50ms	250ms	500ms	1s	2s	4s

注. スタンバイ時間は、ASIC内部スタンバイクロックをカウントすることで決定しています。 ASIC内部スタンバイクロックの周波数は、 $2kHz\pm100\%$ の範囲でバラつきます。 そのため、スタンバイ時間もスタンバイ時間(Typ.)の設定 $\pm100\%$ の範囲で時間がバラつきます。

bit4,3Reserved未使用です。書き込み時は0を設定してください。bit2spi3_sdimSPI3線通信時のSDI出力形式を切り替えます。

0: Lo / Hi-Z出力 (Default)

1: Lo / Hi出力

bit1 Reserved 未使用です。書き込み時は0を設定してください。

bit0 spi3w SPI通信時の3線/4線を切り替えます。

0: 4線(Default)

1: 3線

28MPB-02E

CTRL_MEAS: 測定条件設定用レジスタ

レジスタ名称	アド	レス	R/W		Data							
レンスダ石伽	I2C	SPI	H/VV	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	初期値
CTRL_MEAS	F4h	74h	R/W	ten	np_average[[2:0]	pre	ess_average	[2:0]	power_r	node[1:0]	00h

bit7~5 temp_average[2:0] 温度データの平均処理回数 (skipは測定を行わない。)

000	001	010	011	100	101	110	111
skip	1	2	4	8	16	32	64

bit4~2 press_average[2:0] 圧力データの平均処理回数 (skipは測定を行わない。)

000	001	010	011	100	101	110	111
skip	1	2	4	8	16	32	64

bit1~0 power_mode[1:0] 動作モードの設定

00: Sleepモード 01, 10: Forcedモード 11: Normalモード

DEVICE_STAT: デバイス状態確認用レジスタ

しぶてカタ新	レジスタ名称						初期値	分類					
レンスタ石物	I ² C	SPI	R/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	彻别恒	万秩
DEVICE_STAT	F3h	73h	R/-	-	-	-	-	measure	-	-	otp_update	00h	-

bit7~4 Reserved 未実装です。リード値は常に"0"を返します。

bit3 measure デバイスの動作状態を確認できます。値は自動的に切り替わります。

0: 測定完了~次回測定まで1: 測定~データ書込み完了まで

bit2~1 Reserved 未実装です。リード値は常に"0"を返します。

bit0 otp_update NVMへのデータアクセス状態を確認可能。値は自動で切り替わります。

0: NVMへアクセスしていない状態1: NVMへデータアクセス中

I²C_SET: I²Cマスターコード設定

レジスタ名称	アド	レス	R/W		Data							
レンスダ石伽	I ² C	SPI	H/VV	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	初期値
I2C SET	F2h	72h	R/W	_	_	_	_	_	m	aster_code[2	2:0]	01h

bit7~3 未実装 リード値は常に"0"を返します。書き込み時は"0"を設定してください。

bit2~0 master_code[2:0] I²C HSモード用のマスターコードを設定します。

000	001	010	011	100	101	110	111
08h	09h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh

IIR_CNT: IIR filterフィルタ係数設定

レジスタ名称	アド	レス	R/W		Data							
レンスタ石が	I ² C	SPI	H/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	初期値
IIR_CNT	F1h	71h	R/W	-	-	-	-	-		filter[2:0]		00h

bit $7\sim3$ Reserved 未使用です。書き込み時は0を設定してください。

bit2~0 filter[2:0] IIR filterの係数設定

初期値はOFF

通信で本アドレスにwriteアクセスすると、IIR filterはイニシャライズされます。

000	001	010	011	100	101	110	111
OFF	N = 2	N = 4	N = 8	N = 16	N = 32	N = 32	N = 32

RESET: リセット制御用レジスタ

レジスタ名称	アド	レス	R/W	Data								初期値
レンスタ石伽	I ² C	SPI	H/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	1/J 共J III
RESET	E0h	60h	-/W				rese	t[7:0]				00h

bit7 \sim 0 reset[7:0] "E6h"が入力されるとソフトリセットがかかります。

それ以外の入力では何も起きません。

注. ソフトリセット後の10ms期間は通信禁止となります。

CHIP_ID: CHIP_ID確認用レジスタ

レジスタ名称	アド	レス	R/W	Data								初期値
レノベメ石が	I ² C	SPI	n/ W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	7万舟1 爬
CHIP_ID	D1h	51h	R/-				chip_	id[7:0]				5Ch

 $bit7\sim0$ chip_id[7:0] 本レジスタをリードすると "5Ch" を返します。

■I2C プロトコル

(1)I2C スレーブアドレス

I²C スレーブアドレスは以下のとおりです。

SDO	I ² C Slave Address (7 bits)	Bit	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
300	IPC Slave Address (7 bits)	DIL	Add[6]	Add[5]	Add[4]	Add[3]	Add[2]	Add[1]	Add[0]	R/W
High(1)	56h + R/W	Value	1	0	1	0	1	1	0	1/0
Low(0)	70h + R/W	Value	1	1	1	0	0	0	0	1/0

例えばSDO = Low (0)の場合、

書き込み:スレープアドレスのLSBを "0" とセットすることで、アドレスはE0h (1110_0000b). (70h << 1+WR(0))となります。読み込み:スレープアドレスのLSBを "1" とセットすることで、アドレスはE1h (1110_0001b). (70h << 1+RD(1))となります。

(2)I2C Access Protocol Examples

Symbol	Condition
START	START condition
STOP	STOP condition
SACK	Acknowledge by Slave
MACK	Acknowledge by Master
MNACK	Not Acknowledge by Master

(3)I2C write

スタートコンディション後、Device Address(bit7~1)に書込み信号(= "0" at bit0)を加えたデータを送信し、writeモードに設定します。その後、ストップコンディションになるまで、書込み先のレジスタアドレスと書込むデータ(Register Address)を1セットとして、データを送信しつづけます。

黒字:マスタ→スレーブ 青字:スレーブ→マスタ

(4)I2C read

まずwriteモードにて、最初に読出すRegister Addressを送信します。

次に、ストップコンディション→スタートコンディションに切り替えるか、再度スタートコンディションにしてからreadモードに切り替えて、最初に書込んだRegister Addressのデータ値を出力します。

その後、NACKが入力されるまでは自動的にRegister Address+1のアドレスに移動し、データ値を出力する動作を繰り返します。 Register Address = "FFh" に到達するとデータ値は常に "00h" を出力します。

以下に "FAh" から3byteのデータを読み込む場合の例を記載します。

■SPI プロトコル

(1)SPI write

書き込みは、CSBを "L" にした状態でRegister Address(Ctl.= "0" +Address)と書き込みデータを1セットにして送信します。 (Ctl.信号は、Ctl.= "0" でwrite、Ctl.= "1" でread)

CSBが "L" の間は複数回の書き込みが可能であり、CSBが "H" になると通信が終了します。(I²C writeと同様)

(2)SPI read

読み込みは、まずCSBを "L" にした状態でRegister Address (Ctl.= "1"+Address) を送信します。

次に、指定されたRegister Addressのデータ値がSDO (3-wireモードではSDI) から出力されます。

その後、CSBが "H" になるまでは自動的にRegister Address+1のアドレスに移動し、データ値を出力する作業を繰り返します。 (I²C readと同様)

以下に、"FAh"から2byteのデータを読み込む場合の例を記載します。

■インターフェース特性

(1)I2C タイミング

100kbps (at Standard Mode)、400kbps (at Fast Mode)、3.4Mbps (at High Speed Mode) に対応。 I²Cタイミングについては、以下の略語を使用します。

S&F Mode = Standard and Fast Mode

Cb = bus capacitance on SDI line

HS Mode = High Speed Mode

他のすべてのネーミングは、I²C仕様2.1(2000年1月)を指します。

その他、明記ない項目、記号に関しては、I²Cの仕様に準じます。

項目	記号	条件		Min.	Тур.	Max.	単位	備考
		S&F Mode		160	_	_	ns	
SDIデータ セットアップ時間	$t_{ m SUDAT}$	HS Mode	Vio = 1.62 V	30	_	_	ns	
		HS Mode	Vio = 1.2 V	55	_	_	ns	
		S&F Mode, Cb ≤ 100 pF		80	_	_	ns	
		S&F Mode, Cb ≤ 400 pF	90	_	_	ns		
SDIデータ		HS Mode, Cb ≤ 100 pF	Vio = 1.62 V	18	_	115	ns	
ホールド時間	t _{HDDAT}		Vio = 1.2 V	25	_	140	ns	
		HC M-1- CL < 400 -E	Vio = 1.62 V	24	_	150	ns	
		HS Mode, Cb ≤ 400 pF	Vio = 1.2 V	45	_	170	ns	
SCKクロック		HS Mode, Cb ≤ 100 pF	Vio = 1.62 V	160	_	_	ns	
Lowパルス		ns wode, Cb ≤ 100 pr	Vio = 1.2 V	210	_	ı	ns	

(2)SPI タイミング

全てのタイミングは、SPIの4線式および3線式の両方に適用します。

- ハイインピーダンス状態における外部からのノイズ対策のため
- ・4線式SPIご使用時には、SDO端子に抵抗を介してVioにプルアップする
- ・3線式SPIご使用時には、SDI端子に抵抗を介してVioにプルアップする ことを推奨します。

例) $R_{pullup} = 3.6 k \Omega$ @ Vio = 1.8 V

項目	記号	条件	Min.	Тур.	Max.	単位	備考
SCK周波数	f_spi		-	-	10	MHz	
SCKパルスLow時間	t_low_sck		40	-	_	ns	
SCKパルスHigh時間	t_high_sck		40	-	_	ns	
SDIセットアップ時間	t_setup_sdi		20	-	_	ns	
SDIホールド時間	t_hold_sdi		20	-	_	ns	
ことの日子温は	4 1.1 1.	Cb = 25 pF, Vio = 1.62 V min	_	-	30	ns	
SDO出力遅延	t_delay_sdo	Cb = 25 pF, Vio = 1.2 V min	_	-	40	ns	
CSBセットアップ時間	t_setup_csb		40	-	_	ns	
CSBホールド時間	t_hold_csb		40	-	_	ns	
CSB_HI時間	t_csb_hi		100	-	_	ns	

■リセット機能

センサは、"非同期リセット端子 (RST端子)"を使用して操作をリセットすることが可能です。 手順は次のとおりです。

- ① リセット端子へHigh電圧を入力する(100μs ≥)
- ② 加えていた電圧を切り(Low電圧を入力し)10ms 待つ。

リセットシーケンス

■通信の推奨条件

共通のバスラインに本センサと他センサが接続されていて、かつ本センサを400kbit/sを超える通信速度で使用する場合、安定した通信 を確保するために、他センサとの通信後、本センサへの通信の前に 1msec 以上の待機時間を設けることを推奨します (下図参照)。

梱包・出荷形態

■出荷形態

種類	エンボステーピング
収納数	3.500個 / 1リール 1リール / 1内装箱 最大 20内装箱 / 1外装箱
リール	直径180mm
インサート方法	下記参照

注. テーピング&リールの仕様はJIS C 0806-3 (IEC 60286-3) に準拠

■テーピング

W	8.0 + 0.03/ - 0.1	キャリアテープ幅
E1	1.75 ± 0.1	送り穴の中心からテープ上端
E2		送り穴の中心からテープ下端(10.25mm以上)
F	3.50 ± 0.05	送り穴の中心からエンボス部中心(テープ幅方向)
F'	3.50 ± 0.05	送り穴の中心からエンボス部穴中心
G		テープの下端からエンボス部との間(0.75mm以上)
P0	4.0 ± 0.1	送り穴間のピッチ
P1	4.0 ± 0.1	エンボス間のピッチ
P2	2.00 ± 0.05	送り穴の中心からエンボス部中心(テープ取り出し方向)
P2 [']	2.00 ± 0.05	送り穴の中心からエンボス部穴中心

指定なきコーナーのRは0.2mm MAX.とする。 送り穴の累積ピッチの許容差は10ピッチで±0.2mmとする。 材質は、導電性ポリカーボネート樹脂とする。 指定なき寸法公差は±0.1mmとする。 すべての寸法は、送り穴の横軸および縦軸の中心線を基準とする。 ポケットの抜き勾配は、0°MIN.とする。

■リール

■個装

ラベルを貼り付けたリールをアルミラミネート袋に入れる。 (1袋につき1リールまでアルミラミネート袋へ入れることができる。) アルミラミネート袋にテープリール用ラベルを貼り付ける。

リールとのこすれ(輸送等で発生する)によるラベルの汚れについては不問とする。 (ただし、バーコードの読み取りの影響のないレベルであることとする。) アルミラミネート袋へシリカゲルを同封し、シールを行う。 (脱気シールは実施せず、熱シールのみとする。)

シール後、内箱へ収納する。 (内箱1箱につき1リールまで入れることができる。) アルミラミネートはシール部および4隅を下図のように折り込み、折り込み部を下にし、収納していく。

推奨リフロー条件

- (1)実装方法:エアリフロー*1
- (2)実装時の温度条件:最大260℃*2にて40秒以内
- *1. リフロー回数は2回までとする。大気開放型パッケージのためフラックス洗浄は適用不可とする。
- *2. パッケージ表面測定温度とする。

■推奨はんだ付け方法

リフローにおける温度プロファイルは以下の表に示すように温度条件を設定してください。また実際の温度が表のようになっていることを確認してください。

項目 プレヒーティング (T1~T2, t1) ソルダリング (T3, t2) ピーク値 (T4) 条件 150°C~200°C >217°C 260°C 60秒~180秒 60秒~150秒 20秒~40秒

正しくお使いください

使用上の注意

取り扱いについて

- (1) 製品に直接使用できる圧力媒体は空気のみです。腐食系ガス (有機溶剤ガス、亜硫酸系ガス、硫化水素ガスなど)や水分・ 異物を含む圧力媒体でのご使用は、故障の原因となりますの で避けてください。
- (2) 製品は防滴構造ではありません。水・薬品・溶剤・油などのかかる可能性のある場所でのご使用は避けてください。
- (3) 結露する環境でのご使用は避けてください。またセンサチップに付着した水分が凍結した場合、センサ出力の変動あるいは故障の原因となることがあります。
- (4) 使用圧力は定格圧力範囲内でご使用ください。範囲外のご使用は破損する原因となります。
- (5) 静電気によって破壊する場合がありますので、作業台、床などの帯電物および作業者は、アースを取るなど、静電気対策を行ってください。
- (6) 蒸気、ホコリなどの多いところでの取り扱いは避けてください。
- (7) 本製品を組立後に洗浄等の目的で溶剤を使用されますと故 障の原因になりますので、使用しないでください。
- (8) 圧力センサの端子接続は接続図に従って行ってください。
- (9) 超音波の使用においては、使用条件により製品が共振破壊される場合があります。当社にて使用条件詳細が特定できないため、超音波使用環境に対する保証はいたしかねます。やむを得ず使用される場合は、事前に必ず貴社にてご確認ください。
- (10) 本製品は、蓋の接着方法が落下等の耐衝撃性向上設計となっているため、弾性接着剤を採用しております。そのため、過度な引っ張りやねじれ方向の応力がかからないようにご注意ください。リワーク等のイレギュラーな作業を行う際は、蓋部に負荷がかからないようにお取り扱いください。
- (11) はんだ付けが適切でないと発熱・発火の恐れがありますので、23ページ「**推奨リフロー条件**」の範囲以外で実装される場合は、事前にご確認ください。
- (12) 本製品駆動中に周辺回路·実装基板が発熱する可能性がありますので、ご注意ください。
- (13) 本製品を分解しないでください。
- (14) 本製品は精密部品につき取り扱いにはご注意ください。
- (15) その他、本仕様書に記載されている条件以外でのご使用に関しましては、貴社にて事前にご確認の上ご使用ください。

輸送・保管について

- (1) 製品に悪影響をおよぼす腐食系ガス(有機溶剤ガス、亜硫酸 系ガス、硫化水素ガスなど)の存在する場所での保管は避け てください。
- (2) 製品は防滴構造ではありませんので、水などのかかる可能性のある場所での保管は避けてください。
- (3) 外装ダンボール箱は保管期間、保管場所の湿度、段積みなどにより強度劣化が進行しますので、先入れ先出しの原則を励行してください。また投げ下ろし、落下など手荒な荷扱いは避けてください。
- (4) 直射日光や紫外線の当たる場所での保管は禁止です。破損する原因になります。
- (5) 温度、湿度が適切な範囲内で保管ください。温度:10~30℃、湿度:30~70%RH
 - 注. 弊社推奨条件以外で保存される場合は、実際に保存される環境について、貴社にて評価いただいた上でご判断ください。
- (6) 端子部はめっき処理を行っており、保管状態により変色する 場合があります。納入後の変色は保証の対象外といたします ので、保管方法には十分にご注意ください。
- (7) 蒸気、ホコリなどの多いところでの保管は避けてください。

不具合に対する処置について

- (1) 納入後、貴工場の受け入れ検査において本仕様を満足しない 不具合が発生し、かつ、不具合の原因が当社側にある場合、 代替品を無償で提供いたします。この場合、不良と判断され たチップ等は当社に返却されるものとします。
- (2) 貴社の受け入れ検査以降において不具合が発生した場合、両者協議の上そのチップ等の処置を決めることができるものとします。なお、受け入れ不合格となったチップは原則として、受入日より14日以内にその不具合内容を明記の上、当社に返却をお願いいたします。

ご利用条件

- (1) 本項中の用語の定義は次のとおりです。
 - 1)「利用条件等」:本仕様書、取扱説明書、マニュアル等に 記載の、本製品の利用条件、定格、性能、動作環境、取 扱い方法、利用上の注意、禁止事項、その他
 - 2) 「お客様用途」: 本製品のお客様におけるご利用方法で あって、お客様が製造する部品、電子基板、機器、設備 またはシステム等への本製品の組み込み、または利用を 含みます。
 - 3) 「適合性等」: 「お客様用途」での本製品の(a)動作、(b)第 三者の知的財産の非侵害、(c) 法令の遵守および (d) 各 種規格の遵守
- (2) 記載事項のご注意

本仕様書の記載内容については次の点をご了解ください。

- 1) 定格値および性能値は単独試験における各条件のもとで 得られた値であり、各定格値および性能値の複合条件のも とで得られる値を同時に保証するものではありません。
- 2) 参考データはご参考として提供するもので、その範囲で常 に正常に動作することを保証するものではありません。
- 3) 利用事例はご参考ですので、当社は「適合性等」について 保証いたしかねます。
- 4) 当社は、改善や当社の都合等により、本製品の生産を中 止する、または本製品の仕様を変更させていただく場合 があります。
- (3) ご採用およびご利用に際しては次の点をご理解ください。
 - 1) 定格・性能ほか「利用条件等」を遵守しご利用ください。
 - 2) お客様ご自身にて「適合性等」をご確認いただき本製品の ご利用の可否をご判断ください。
 - 当社は「適合性等」は一切保証いたしかねます。
 - 3) 本製品がお客様のシステム全体の中で意図した用途に対 して、適切に配電・設置されていることをお客様ご自身 で必ず事前に確認してください。
 - 4) 本製品をご使用の際には、(i) 定格および性能に対し余 裕のある本製品のご利用、(ii) 冗長設計など、本製品が 故障しても「お客様用途」の危険を最小にする安全設計、 (iii) 利用者に危険を知らせる安全対策をシステム全体と して構築、(iv) 本製品および「お客様用途」の定期的な保 守の各事項を実施してください。
 - 5) 本製品は、一般工業製品向けの汎用品として設計製造さ れています。次に掲げる用途での使用は意図しておらず、 お客様が本製品をこれらの用途に使用される際には、当 社は本製品に対して一切保証をいたしません。
 - (a)高い安全性が必要とされる用途 (例:原子力制御設 備、燃焼設備、航空・宇宙設備、鉄道設備、昇降設 備、遊園地機械、医用機器、安全装置、その他生命・ 身体に危険が及びうる用途)
 - (b)高い信頼性が必要な用途 (例:ガス・水道・電気等 の供給システム、24時間連続運転システム、決済シス テムほか権利・財産を取扱う用途など)
 - (c) 厳しい条件または環境での用途 (例:屋外に設置す る設備、化学的汚染を被る設備、電磁的妨害を被る設 備、振動・衝撃を受ける設備、長時間連続稼動させる 設備など)
 - (d) 本仕様書に記載のない条件や環境での用途

- 6) 前項(a) から(d) に記載されている内容に加えて、本 製品は自動車(二輪車含む。以下同じ)向けではありま せん。自動車に搭載する用途には利用しないでください。 自動車搭載用商品については当社営業担当者にご相談く ださい。
- 7) 安全を確保する目的で直接的または間接的に人体を検出 する用途に、本製品を使用しないでください。同用途に は、当社センサカタログに掲載している安全センサをご 使用ください。
- (4) 本製品の保証条件は次のとおりです。
 - 1) 保証期間 ご購入後1年間といたします。
 - 2) 保証内容 故障した本製品について、以下のいずれかを 当社の任意の判断で実施します。
 - (a) 当社保守サービス拠点における故障した本製品の無 僧修理
 - (b) 故障した本製品と同数の代替品の無償提供
 - 3) 保証対象外 故障の原因が次のいずれかに該当する場合 は、保証いたしません。
 - (a) 本製品本来の使い方以外のご利用
 - (b)「利用条件等」から外れたご利用
 - (c) 当社以外による改造、修理による場合
 - (d) 当社以外の者によるソフトウェアプログラムの組み 込み又は使用
 - (e) 当社からの出荷時の科学・技術の水準では予見できな かった原因
 - (f) 上記のほか当社または本製品以外の原因(天災等の不 可抗力を含む)
- (5) 責任の制限

本ご利用条件に記載の保証が本製品に関する保証のすべてで す。本製品に関連して生じた損害について、当社および本製品 の販売店は責任を負いません。

(6) 輸出管理

本製品または技術資料を輸出または非居住者に提供する場合 は、安全保障貿易管理に関する日本および関係各国の法令・規 制を遵守ください。

お客様が、法令・規則に違反する場合には、本製品または技術 資料を提供できない場合があります。

ME	EMO
IVIL	-

MEMO

- ●本誌に記載の商品の価格は、お取引き商社にお問い合わせください。
- ●ご注文の際には下記URLに掲載の「ご承諾事項」を必ずお読みください。 適合用途の条件、保証内容などご注文に際してのご承諾事項をご説明しております。 www.omron.co.jp/ecb/support/order

オムロン株式会社 インダストリアルオートメーションビジネスカンパニー

●製品に関するお問い合わせ先 お客様相談室

国温 0120-919-066

携帯電話・PHS・IP電話などではご利用いただけませんので、下記の電話番号へおかけください

電話 055-982-5015(通話料がかかります)

■営業時間:8:00~21:00 ■営業日:365日

●FAXやWebページでもお問い合わせいただけます。

FAX 055-982-5051 / www.fa.omron.co.jp

●その他のお問い合わせ

納期・価格・サンプル・仕様書は貴社のお取引先、または貴社 担当オムロン販売員にご相談ください。

オムロン制御機器販売店やオムロン販売拠点は、Webページでご案内しています。

オムロン制御機器の最新情報をご覧いただけます。 **WWW.fa.omron.co.jp**

緊急時のご購入にもご利用ください。

オムロン商品のご用命は

© OMRON Corporation 2017-2018 All Rights Reserved. お断りなく仕様などを変更することがありますのでご了承ください