Cauchy-Riemann Conditions:

Having established complex functions of a complex variable, we now proceed to differentiate them. The derivative of f(z), like that of a real function, is defined by

$$\lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{(z + \delta z) - z} = \lim_{\delta z \to 0} \frac{\delta f(z)}{\delta z} = \frac{df}{dz} = f'(z)$$
 (1)

provided that the limit is independent of the particular approach to the point z. For real variables we require that the right-hand limit $(x \to x_0)$ from above and the left-hand limit $(x \to x_0)$ from below be equal for the derivative df(x)/dx to exist at $x = x_0$. Now, with z (or x_0) some point in the Argand plane, our requirement that the limit be independent of the direction of approach is very restrictive.

Consider increments δx and δy of the variables x and y, respectively. Then

$$\delta z = \delta x + i \delta y$$
.

Also, writing f = u + iv, $\delta f = \delta u + i\delta v$, so that

$$\frac{\delta f}{\delta z} = \frac{\delta u + i\delta v}{\delta x + i\delta y}.$$

Let us take the limit indicated by (1) from two different approaches, as shown in the figure below:

First, with $\delta y = 0$, we let $\delta x \to 0$. Equation (1) yields

$$\lim_{\delta z \to 0} \frac{\delta f}{\delta z} = \lim_{\delta x \to 0} \left(\frac{\delta u}{\delta x} + i \frac{\delta v}{\delta x} \right) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
 (2)

assuming that the partial derivatives exist.

For a second approach, we set $\delta x = 0$ and let $\delta y \to 0$. This leads to

$$\lim_{\delta z \to 0} \frac{\delta f}{\delta z} = \lim_{\delta y \to 0} \left(-i \frac{\delta u}{\delta y} + \frac{\delta v}{\delta y} \right) = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
 (3)

If we are to have a derivative $\frac{df}{dz}$, equations (2) and (3) must be identical. Equating their corresponding real and imaginary parts (like the components of a vector), we obtain

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{4}$$

These are the famous **Cauchy-Riemann** conditions. The were discovered by Cauchy and used extensively by Riemann in his development of complex variable theory. These Cauchy-Riemann conditions are necessary for the existence of a derivative of f(z). That is in order for $\frac{df}{dz}$ to exist, the Cauchy-Riemann conditions must hold.

Conversely, if the Cauchy-Riemann conditions are satisfied and the partial derivatives of u(x, y) and v(x, y) are continuous, the derivative $\frac{df}{dz}$ exists.

To show this, we start by writing

$$\delta f = \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right) \delta x + i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}\right) \delta y,$$

where the justification for this expression depends on the continuity of the partial derivatives of u and v. Using the Cauchy-Riemann equations,

$$\delta f = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)\delta x + \left(-\frac{\partial v}{\partial x} + i\frac{\partial u}{\partial x}\right)\delta y = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)(\delta x + i\delta y)$$

Replacing $\delta x + i \delta y$ by δz and bringing it to the left-hand side, we reach

$$\frac{\delta f}{\delta z} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x},$$

an equation whose right-hand side is independent of the direction of δz (i.e., the relative values of δx and δy). This independence of directionality meets the condition for the existence of the derivative, $\frac{df}{dz}$.