Περιεχόμενα

1	$oldsymbol{\Delta}$ ιαφορική ${ m E}$ ξίσωση
2	Χαρακτηριστική Εξίσωση $2.1 \text{Απόδειξη περίπτωης } \Delta < 0 $
3	Παραδείγματα
	3.1 Λύστε τις αχόλουθες $\Delta.Ε.$
	$3.1.1 y'' - y' - 6y = 0 \dots \dots$
	$3.1.2 y'' - 4y' - 5y = 0 \dots \dots \dots \dots \dots$
	$3.1.3 y'' - 4y' - 4y = 0 \dots \dots$

Διάλεξη Πρώτη

1 Διαφορική Εξίσωση

$$\alpha y''(x) + \beta y'(x) + \gamma y = 0$$

Η συνήθης Δ .Ε. είναι γραμμική, δεύτερης τάξης, ομογενής, με α , β , γ σταθερούς συντελεστές.

2 Χαρακτηριστική Εξίσωση

$$\alpha r^2 + \beta r + \gamma = 0$$

 Γ ια την γενική λύση της X.E. διακρίνονται οι παρακάτω περιπτώσεις:

1. $\Delta > 0$:

$$r_1, r_2 \in \Re$$

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

$$y_1(x) = c_1 e^{r_1 x}$$

$$y_2(x) = c_2 e^{r_2 x}$$

$$c_1, c_2$$
 σταθερές

2. $\Delta = 0$:

$$r \in \Re$$
 $y(x) = c_1 e^{rx} + c_2 x e^{rx}$
 $y_1(x) = c_1 e^{rx}$
 $y_2(x) = c_2 x e^{rx}$
 c_1, c_2 σταθερές

3. $\Delta < 0$:

$$\begin{aligned} r_1 &= A + Bi \\ r_2 &= A - Bi \\ A &= \frac{-\beta}{2\alpha}, \ B = \frac{\sqrt{-\Delta}}{2\alpha} \\ y(x) &= c_1 e^{Ax} \sin Bx + c_2 e^{Ax} \cos Bx \\ y_3(x) &= c_1 e^{Ax} \sin Bx \\ y_4(x) &= c_2 e^{Ax} \cos Bx \\ c_1, c_2 \ \text{stanher} \\ c_1, c_2 \ \text{stanher} \\ \end{aligned}$$

2.1 Απόδειξη περίπτωης $\Delta < 0$

Είναι:

$$y_1(x) = e^{Ax}(\sin Bx + i\cos Bx) \tag{1}$$

$$y_2(x) = e^{Ax}(\sin Bx - i\cos Bx) \tag{2}$$

Έχουμε:

$$(1) + (2) = e^{Ax}(\sin Bx + i\cos Bx)$$

$$+ e^{Ax}(\sin Bx - i\cos Bx)$$

$$= e^{Ax}(\sin Bx + i\cos Bx + \sin Bx - i\cos Bx)$$

$$= e^{Ax}(2\sin Bx) \implies$$

$$y_1(x) + y_2(x) = 2e^{Ax}\sin Bx$$

$$\frac{1}{2}y_1(x) + \frac{1}{2}y_2(x) = e^{Ax}\sin Bx$$

$$y_3(x) = e^{Ax}\sin Bx$$

 $K\alpha\iota$:

$$(1) - (2) = e^{Ax}(\sin Bx + i\cos Bx)$$

$$- e^{Ax}(\sin Bx - i\cos Bx)$$

$$= e^{Ax}(\sin Bx + i\cos Bx - \sin Bx + i\cos Bx)$$

$$= e^{Ax}(2i\cos Bx) \implies$$

$$y_1(x) + y_2(x) = 2ie^{Ax}\cos Bx$$

$$\frac{1}{2i}y_1(x) + \frac{1}{2i}y_2(x) = e^{Ax}\cos Bx$$

$$y_4(x) = e^{Ax}\cos Bx$$

3 Παραδείγματα

3.1 Λύστε τις ακόλουθες $\Delta.E.$

$$3.1.1 \quad y'' - y' - 6y = 0$$

$$3.1.2 \quad y'' - 4y' - 5y = 0$$

$$3.1.3 \quad y'' - 4y' - 4y = 0$$