

Description:

Suppose you have a four-diving wheel robot, you are required to design the system so that the robot avoid any object in front.

Figure 1: Object Detection Robot

Detailed Requirements

- 1. Read System Requirement Specifications
 - 1. Car Components:
 - 1. ATmega32 microcontroller
 - 2. Four motors (M1, M2, M3, M4)
 - 3. One button to change default direction of rotation (PBUTTONO)
 - 4. Keypad button 1 to start
 - 5. Keypad button 2 to stop
 - 6. One Ultrasonic sensor connected as follows
 - 1. Vcc to 5V in the Board
 - 2. GND to the ground In the Board
 - 3. Trig to PB3
 - 4. Echo to PB2
 - 7. **LCD**
 - 2. System Requirements:
 - 1. The car starts initially from 0 speed
 - 2. The default rotation direction is to the right
 - 3. Press PB2 to start or stop the robot
 - 4. After Pressing Start:
 - 1. The LCD will display a centered message in line 1 "Set Def. Rot."
 - 2. The LCD will display the selected option in line 2 "Right"
 - 3. The robot will wait for 5 seconds to choose between Right and Left
 - When PB1 is pressed once, the default rotation will be Left and the LCD line 2 will be updated
 - 2. When **PB1** is pressed **again**, the default rotation will be **Right** and the **LCD line 2 will be updated**
 - 3. For each press the default rotation will changed and the LCD line 2 is undated
 - 4. After the 5 seconds the default value of rotation is set
 - 4. The robot will move **after 2 seconds** from setting the default direction of rotation.

- 5. For No obstacles or object is far than 70 centimeters:
 - 1. The robot will move forward with 30% speed for 5 seconds
 - 2. After 5 seconds it will move with 50% speed as long as there was no object or objects are located at more than 70 centimeters distance
 - 3. The LCD will display the speed and moving direction in line 1: "Speed:00% Dir: F/B/R/S", F: forward, B: Backwards, R: Rotating, and S: Stopped
 - 4. The LCD will display Object distance in line 2 "Dist.: 000 Cm"
- 6. For Obstacles located between 30 and 70 centimeters
 - 1. The robot will decrease its speed to 30%
 - 2. LCD data is updated
- 7. For Obstacles located between 20 and 30 centimeters
 - The robot will stop and rotates 90 degrees to right/left according to the chosen configuration
 - 2. The LCD data is updated
- 8. For Obstacles located less than 20 centimeters
 - The robot will stop, move backwards with 30% speed until distance is greater than 20 and less than 30
 - 2. The LCD data is updated
 - 3. Then preform point 8
- 9. Obstacles surrounding the robot (Bonus)
 - 1. If the robot rotated for 360 degrees without finding any distance greater than 20 it will stop
 - 2. LCD data will be updated.
 - 3. The robot will frequently (each 3 seconds) check if any of the obstacles was removed or not and move in the direction of the furthest object

2. Prepare your design

- Please note that any functionality based on timers should be separated in a separate module, and all timers should be operating in **Normal mode, ICU** will be software implemented
- Create a PDF file with the name Obstacle Avoidance Robot V1.0 Design
- 3. The design document should contain the below fields
 - Cover Page
 - 2. Table of content
 - 3. Project introduction
 - 4. High Level Design
 - 1. Layered architecture
 - 2. Modules Descriptions
 - 3. Drivers' documentation
 - 5. Low Level Design
 - 1. Provide the flowchart for each function in each module
 - 2. Pre-compiling configurations for each module
 - 3. Linking configurations for each module

Delivery

- 1. Deliver the Design Document
- 2. English Video recording 5 minutes maximum discuss your design