Listado de formulas de Física II - Segundo parcial

CORRADI, Joaquín I.

Tercer semestre

Índice general

Campos magnéticos	2
Fuerza magnética	2
Interacción de B con una corriente I	2
Radio de la trayectoria circular de una particula en un campo	2
uentes de campos magnéticos	2
Conductor corto	3
Conductor largo	
Espira	
Bobina toroidal	
Solenoide	
Fuerza entre dos conductores paralelos	
Flujo magnético	
ey de Faraday	4
Definición	5
Ley de Faraday para N espiras	
F.E.M. de movimiento	
Lev de Ohm	

Campos magnéticos

Fuerza magnética

$$\vec{F}_B = q\vec{v} \times \vec{B}$$
 $F_B = qvB\sin\theta$

Siendo \vec{B} el vector de campo magnético, quna partícula cargada y v la velocidad de esta.

B se mide en Tesla.

Interacción de B con una corriente I

$$d\vec{F}_B = Id\vec{s} \times \vec{B}$$
$$F_B = IsB\sin\theta$$

Radio de la trayectoria circular de una particula en un campo

$$r = \frac{mv}{qB}$$

Donde m es la masa de la partícula y q su carga.

Fuente de campos magnéticos

Conductor corto

$$B_P = \frac{\mu_0 I}{4\pi a} (\cos \theta_1 - \cos \theta_2)$$

Siendo a la distancia del conductor al punto.

Conductor largo

$$B_P = \frac{\mu_0 I}{2\pi a}$$

Siendo a la distancia del conductor al campo.

Espira

$$B_O = \frac{\mu_0 I}{4\pi R} \theta$$

Bobina toroidal

$$B = \frac{\mu_0 NI}{2\pi r}$$

Siendo r el radio varible.

Solenoide

$$B_P = \frac{\mu_0 NI}{2l} (\operatorname{sen} \theta_2 - \operatorname{sen} \theta_1)$$

En caso de ser un solenoide largo la formula es la siguiente

$$B = \frac{\mu_0 NI}{l}$$
$$= \mu_0 nI$$

Si el punto P se encuentra en el extremo superior de un solenoide largo entonces $\theta_2=0$ y $\theta_1=-90$.

$$B_{extremo} = \frac{\mu_0 nI}{2}$$

Fuerza entre dos conductores paralelos

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi a}$$

Siendo a la distancia entre los dos conductores y l la longitud de los conductores.

Flujo magnético

$$\Phi_m = \int \vec{B} \cdot d\vec{A}$$
$$= \int BA \cos \theta$$

Ley de Faraday

Definición

$$\mathcal{E} = -\frac{d}{dt}\Phi_m$$

Siedo $\mathcal E$ la F.E.M inducida en una espira.

Ley de Faraday para N espiras

$$\mathcal{E} = -N\frac{d}{dt}\Phi_m$$

F.E.M. de movimiento

$$\mathcal{E} = -Blv$$

Ley de Ohm

$$I = \frac{\mathcal{E}}{R}$$

Siendo R la resistencia.