Aula 3

3 Dia 3: Funções exponenciais e logaritmos.

Exercício 3.1. Identifique cada uma das funções abaixo no gráfico 1.

$$f(x) = \left(\frac{1}{2}\right)^x$$
, $g(x) = \left(\frac{4}{3}\right)^x$, $h(x) = 2^x$, $p(x) = 2\left(\frac{4}{3}\right)^x$, $q(x) = \left(\frac{9}{10}\right)^x$

Figure 1: Gráficos para o Exercício 3.1

Exercício 3.2. Sem utilizar calculadora, associe cada uma das funções

- (I) $f(x) = 2^x$
- (II) $g(x) = \frac{1}{3^x}$
- (III) $h(x) = 4^x$
- (IV) $p(x) = \left(\frac{5}{6}\right)^x$

à cada uma das linhas na tabela abaixo.

\boldsymbol{x}	0.1	0.5	2	3.4
(a) (b)	1.14			
(b)		0.91		0.53
(c)		1.41	4	
(d)				0.023

Exercício 3.3. The Walking Dead. Uma praga zumbi se espalhou na USP São Carlos. Uma enfermeira do pronto-atendimento da Universidade avistou o primeiro caso da praga, o paciente zero.

(a) Para monitorar o crescimento da população zumbi na USP São Carlos, a enfermeira coletou os seguintes dados:

Dias após o paciente zero	0	6	9	12
Número de zumbis	1	9	27	81

Uma função linear ou exponencial seria o melhor modelo? Por quê?

- (b) Escreva uma função Z(t) do tipo apropriado para modelar o crescimento da população zumbi, com t medido em dias após o paciente zero.
- (c) A população de São Carlos é de aproximadamente 280 000 pessoas. Usando seu modelo, quanto tempo levará até que todos, exceto uma pessoa, estejam infectados? Faça um chute "de cabeça", e depois calcule com auxílio de calculadora.

Exercício 3.4. Com o auxílio de uma calculadora, calcule vários valores das seguintes funções[†],

$$f(x) = \log_3(x), \quad g(x) = 3^x, \quad h(x) = \left(\frac{1}{2}\right)^x, \quad p(x) = \log_{1/2}(x),$$

e utilize esses valores para esboçar os gráficos dessas funções. Esboce também y=x; o que você observa?

[†]Lembre que $\log_b(x)$ só está definido para x>0, mas b^x está definido para $x\in\mathbb{R}$.

Exercício 3.5. Considere a seguinte tabela de valores aproximados das funções dadas

x	0.1	0.5	2	3.4
-2^x	1.1487	1.4142	4	10.5561
0.3^{x}	0.8865	0.5477	0.09	0.0166
$(3/2)^x$	1.0844	1.2247	2.25	3.9692

Utilizando somente a tabela acima e sem calculadora, você pode completar 1 valor por coluna na tabela abaixo. Complete-os.

t	0.5477	10.5561	1.4142	0.8865	1.2247	0.5477	1.0844
$\log_2 t$							
$\log_{0.3} t$							
$\log_{3/2} t$							

Exercício 3.6. Livros caros. Com o tempo, t, em anos desde o início de 1990, os preços dos livros didáticos aumentaram a uma taxa de 6.7% ao ano, enquanto a inflação foi de 3.3% ao ano (hipoteticamente, claro). Suponha que ambas as taxas sejam taxas de crescimento contínuo.

- (a) Encontre uma fórmula para B(t), o preço de um livro didático no ano t, se ele custava $R\$B_0$ em 1990.
- (b) Encontre uma fórmula para P(t), o preço de um item no ano t, se ele custava R\$ P_0 em 1990 e seu preço subiu de acordo com a inflação.
- (c) Em que ano o livro dobra de valor quando comparado ao ano inicial
- (d) Um livro didático custava R\$50 em 1990. Quando o preço previsto será o dobro do preço que teria resultado apenas da inflação?
- (e) Qual a taxa mensal de crescimento dos preços dos livros?

Exercício 3.7. Resolvendo equações. Resolva a equação e mostre cada etapa do seu trabalho.

- (a) $3^{2x-7} = 27$
- (b) $2^x = e^{x+1}$
- (c) $3^{2x} 3^x 6 = 0$
- (d) $\log_2(5-x) + \log_2(5+x) = 4$

Observação: Para o item (b), recorde que e ≈ 2.71828 é um valor numérico, chamado de número de Euler, assim como $\pi \approx 3.1415$ também é um valor numérico especial, conhecido como Pi. Em geral, denotamos $\log_{\rm e}(x) = \ln(x)$. Veremos no futuro porque esse número e ≈ 2.71828 é tão especial.

Exercício 3.8. Esboçando exponenciais e logaritmos. Esboce o gráfico da função e indique seu domínio e imagem.

(a)
$$f(x) = 2^{1-x}$$

(b)
$$f(x) = 3 + 2^x$$

20 semestre 2024 SMA0501: Cálculo I Guilherme Silva

(c)
$$f(x) = \log_3(x-1)$$

(d)
$$f(x) = 2 - \log_2(x)$$

Exercício 3.9. Encontre a inversa da função $f(x) = 2^{3^x}$ e indique seu domínio e imagem.

Principais perguntas pra ter em mente e fixar idéias sozinho/em casa:

- Que tipos de fenômenos as funções exponenciais modelam?
- Em que situações é natural ter que consider funções logarítmicas?
- Quais são as propriedades básicas das funções logarítmicas?