# **BİLGİSAYAR MİMARİSİ**

### Yıliçi Sınavı - ÖRGÜN Eğitim

1) Aşağıdaki tabloda bulunan pseudo-komutlar için gerçek MIPS makine dili komutları karşılıklarını bulunuz? [20p]

\$at register, geçici değer atamaları için kullanılabilir...

|      | Pseudo-instruction | Solution |
|------|--------------------|----------|
| addi | \$t5, \$t3, imm32  |          |
| beq  | \$t5, imm32, Label |          |
| ble  | \$t5, \$t3, Label  |          |
| bgt  | \$t5, \$t3, Label  |          |

2) Aşağıda verilen MIPS yazılımının yaptığı fonksiyonun C dilindeki ifadesini yazınız? [20p]

\$a0: a dizisinin başlangıç adresini tutan register \$to: i değişkenini tutan register \$a1: b dizisinin başlangıç adresini tutan register \$So: c sabit değerini tutan register

```
addu
             $t0, $zero, $zero
             $t1, $a0, $zero
       addu
       addu
              $t2, $a1, $zero
       addiu $t3, $zero, 101
loop:
       lw
              $t4, 0($t2)
              $t5, $t4, $s0
       addu
              $t5, 0($t1)
       SW
       addiu $t0, $t0, 1
       addiu $t1, $t1, 4
       addiu $t2, $t2, 4
       bne $t0, $t3, loop
```

3) Tek Çevrimli (Single Cycle) Veriyolu yapısı üzerinde JALR komutu için üretilmesi gerekli kontrol işaretleri tablo 1 ve tablo 2 de görülmektedir. Buna göre şekilde verilen donanım üzerinde eksik bağlantıları gösteriniz? [20p]

Return Adress = PC + 4,

RA: Dönüş Adres Kontrol işareti

JREG: Jump Register (Rs) Kontrol İşareti

TABLO 1.. JALR Komutu için Kontrol İşaretleri

| Instr. | RegDst | RegWrite | ALUSrc            | ALUOp  | MemWrite | MemtoReg | Branch | Jump |
|--------|--------|----------|-------------------|--------|----------|----------|--------|------|
| JALR   | Rd = 1 | 1        | $\mathbf{Rt} = 0$ | R-type | 0        | 0        | 0      | 0    |

TABLO 2. ALU Kontrol İşaretleri

| ALUOp  | func | JReg | RA | ALUCtrl |
|--------|------|------|----|---------|
| R-type | JALR | 1    | 0  | X       |



| 4) | Tek Çevrimli (single cyle) CPU ile Çoklu Çevrir karşılaştırılmak isteniyor. [20p]       | mli (multi cyle) CPU performansları                                                                                  |
|----|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|    | Çeşitli işlem aşamalarında harcanan süreler a                                           | asağıda verilmektedir:                                                                                               |
|    | Instruction memory access time = 190 ps,<br>Register file read access time = 150 ps,    | Data memory access time = 190 ps<br>Register file write access = 150 ps<br>ALU delay for multiply or divide = 550 ps |
|    | Komut Seti içinde ALU komutları %30, Multip<br>komutları %30, Branch %15, Jump %10 oran |                                                                                                                      |
|    | Not: Mux, Sign-Ext , Kontrol Unitesi gecikme                                            | eleri ihmal edilecektir.                                                                                             |
|    | a) Tek Çevrimli CPU için <u>clock cyle time</u> değ                                     | ğerini bulunuz?                                                                                                      |
|    | b) Çoklu Çevrimli CPU için <u>clock cyle time</u> d                                     | eğerini bulunuz?                                                                                                     |

c) Performans iyileştirme oranını hesaplayınız (Speedup)?

**5)** Aşağıda 64 Register içeren MIPS 32 işlemcinin değiştirilmiş komut formatları görülmektedir. [20p]



Buna göre aşağıdaki komutların bu formatlara göre tanımlı olup olmadıklarını tartışınız.. Tanımlı değilse nedenini belirtiniz...

Tanımlı olmayan komutların yerine bu formata göre tanımlı MIPS komutları kullanarak aynı fonksiyonu gerçekleyiniz?

# **EK MIP KOMUT FORMATLARI**

| ]                                                              | Instr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uctio           | n For           | mats            |                    |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------|--|--|
| ❖ All instructions are 32-bit wide, Three instruction formats: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |                    |  |  |
| ❖ Register (R-                                                 | Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                 |                    |  |  |
| → Register-to                                                  | -register i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nstructio       | ns              |                 |                    |  |  |
| Op: operati                                                    | on code :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | specifies       | the forma       | t of the ins    | struction          |  |  |
| Op <sup>6</sup>                                                | Rs <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rt <sup>5</sup> | Rd <sup>5</sup> | sa <sup>5</sup> | funct <sup>6</sup> |  |  |
| ❖ Immediate (                                                  | l-Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                 |                 | j.                 |  |  |
| ↑ 16-bit imme                                                  | in the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of the latest of | nstant is       | part in the     | instructio      | n                  |  |  |
| Op <sup>6</sup>                                                | Rs <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rt <sup>5</sup> |                 | immediate       | 16                 |  |  |
| ❖ Jump (J-Typ                                                  | e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                 |                 |                    |  |  |
|                                                                | mp instru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctions          |                 |                 |                    |  |  |
| Op6 immediate <sup>26</sup>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |                    |  |  |

Çok Çevrimli MIPS Komut İşleme Aşamaları

| Step name                                              | Action for R-type instructions   | Action for memory-<br>reference instructions                                   | Action for branches         | Action for jumps                         |  |  |
|--------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|-----------------------------|------------------------------------------|--|--|
| Instruction fetch                                      | IR <= Memory[PC]<br>PC <= PC + 4 |                                                                                |                             |                                          |  |  |
| Instruction decode/register fetch                      |                                  | A <= Reg [IR[25:21]<br>B <= Reg [IR[20:16]<br>ALUOut <= PC + (sign-extend (IR[ |                             |                                          |  |  |
| Execution, address computation, branch/jump completion | ALUOut <= A op B                 | ALUOut <= A + sign-extend<br>(IR[15:0])                                        | if (A == B)<br>PC <= ALUOut | PC <= {PC [31:28],<br>(IR[25:0]],2'b00)} |  |  |
| Memory access or R-type completion                     | Reg [IR[15:11]] <=<br>ALUOut     | Load: MDR <= Memory[ALUOut]<br>or<br>Store: Memory [ALUOut] <= B               |                             |                                          |  |  |
| Memory read completion                                 |                                  | Load: Reg[IR[20:16]] <= MDR                                                    |                             |                                          |  |  |



| Category         | Instr                      | Op Code  | Example              | Meaning                              |
|------------------|----------------------------|----------|----------------------|--------------------------------------|
| Arithmetic       | add                        | 0 and 32 | add \$s1, \$s2, \$s3 | \$s1 = \$s2 + \$s3                   |
| (R & I           | subtract                   | 0 and 34 | sub \$s1, \$s2, \$s3 | \$s1 = \$s2 - \$s3                   |
| format)          | add immediate              | 8        | addi \$s1, \$s2, 6   | \$s1 = \$s2 + 6                      |
|                  | or immediate               | 13       | ori \$s1, \$s2, 6    | \$s1 = \$s2 v 6                      |
| Data             | load word                  | 35       | lw \$s1, 24(\$s2)    | \$s1 = Memory(\$s2+24)               |
| Transfer         | store word                 | 43       | sw \$s1, 24(\$s2)    | Memory(\$s2+24) = \$s1               |
| (I format)       | load byte                  | 32       | lb \$s1, 25(\$s2)    | \$s1 = Memory(\$s2+25)               |
|                  | store byte                 | 40       | sb \$s1, 25(\$s2)    | Memory(\$s2+25) = \$s1               |
|                  | load upper imm             | 15       | lui \$s1, 6          | \$s1 = 6 * 2 <sup>16</sup>           |
| Cond.            | br on equal                | 4        | beq \$s1, \$s2, L    | if (\$s1==\$s2) go to L              |
| Branch<br>(I & R | br on not equal            | 5        | bne \$s1, \$s2, L    | if (\$s1 !=\$s2) go to L             |
| format)          | set on less than           | 0 and 42 | slt \$s1, \$s2, \$s3 | if (\$s2<\$s3) \$s1=1 else<br>\$s1=0 |
|                  | set on less than immediate | 10       | slti \$s1, \$s2, 6   | if (\$s2<6) \$s1=1 else<br>\$s1=0    |
| Uncond.          | jump                       | 2        | j 2500               | go to 10000                          |
| Jump<br>(J & R   | jump register              | 0 and 8  | jr \$t1              | go to \$t1                           |
| format)          | jump and link              | 3        | jal 2500             | go to 10000; \$ra=PC+4               |

| 0 | \$zero constant 0 (Hdware)   |
|---|------------------------------|
| 1 | \$at reserved for assembler  |
| 2 | \$v0 expression evaluation & |
| 3 | \$v1 function results        |
| 4 | \$a0 arguments               |
| 5 | \$a1                         |
| 6 | \$a2                         |
| 7 | \$a3                         |
| 8 | \$t0 temporary: caller saves |
|   | (callee can clobber)         |

15 \$t7

| 16 | \$s0 callee saves           |
|----|-----------------------------|
|    | (caller can clobber)        |
| 23 | <b>\$</b> s7                |
| 24 | \$t8 temporary (cont'd)     |
| 25 | \$t9                        |
| 26 | \$k0 reserved for OS kernel |
| 27 | \$k1                        |
| 28 | \$gp pointer to global area |
| 29 | \$sp stack pointer          |
| 30 | \$fp frame pointer          |
| 31 | \$ra return address (Hdware |

### **YANITLAR**

# DRGEN OGRETIM BILGISAMAR MIMARISI GOZUMLER

addi \$ts, \$t3, 1mm 32 ori \$ at, \$at, lower 16 add \$ +5, \$ +3, \$ at beg \$ +5, inm 32, LabeL (B) lui Sat, opper 16 ort \$at, \$at, lower 16 beg \$ts, \$at, Label ble \$ts, \$t3, Label C Sl+ \$at, \$t3, \$t5 beg \$ at, \$ zero, Label bgt \$ +5, \$+3, Label sit \$at, \$ts, \$t3 bne pat, \$zero, Label

- 2) for (i=0, ik=100, i=i+1) 2 a [ ] = b[ ] + c ]
- a) addi \$56,\$9,4 Taninh bir komuttur
- ) \$56 ve \$9 = 6 bit ile kodlanabitir.
- imm data 4=> 14 bit ile kodlanabilir
  - 811 \$56, \$9, 4 Tanimli défildir. (Bu formation)
- Shift amount = 2 bit oldofundar) 4 déferi 2 bit le Lodlanama 2
  - SIL\$56,\$9,3 SLL \$56, \$56, L vega SLI \$ 56, \$9, 2 SLL \$56,\$54,2

4. (14.7665) We want to compare the performance of a single-cycle CPU design with a multicycle CPU. Suppose we add the multiply and divide instructions. The operation times are as follows:

Instruction memory access time = 190 ps, Register file read access time = 150 ps, ALU delay for basic instructions = 190 ps, Data memory access time = 190 ps Register file write access = 150 ps ALU delay for multiply or divide = 550 ps

Ignore the other delays in the multiplexers, control unit, sign-extension, etc.

Assume the following instruction mix: 30% ALU, 15% multiply & divide, 30% load & store, 15% branch, and 10% jump.

a) What is the total delay for each instruction class and the clock cycle for the singlecycle CPU design.

| Instruction<br>Class | Instruction<br>Memory | Register<br>Read | ALU    | Data<br>Memory | Register<br>Write | Total<br>Delay |
|----------------------|-----------------------|------------------|--------|----------------|-------------------|----------------|
| Basic ALU            | 190 ps                | 150 ps           | 190 ps |                | 150 ps            | 680 ps         |
| Mul & Div            | 190 ps                | 150 ps           | 550 ps |                | 150 ps            | 1040 ps        |
| Load                 | 190 ps                | 150 ps           | 190 ps | 190 ps         | 150 ps            | 870 ps         |
| Store                | 190 ps                | 150 ps           | 190 ps | 190 ps         |                   | 720 ps         |
| Branch               | 190 ps                | 150 ps           | 190 ps |                |                   | 530 ps         |
| Jump                 | 190 ps                | 150 ps           |        |                |                   | 340 ps         |

Clock cycle = max delay = 1040 ps.

b) Assume we fix the clock cycle to 200 ps for a multi-cycle CPU, what is the CPI for each instruction class and the speedup over a fixed-length clock cycle?

CPI for Basic ALU = 4 cycles

CPI for Multiply & Divide = 6 cycles (ALU takes 3 cycles)

CPI for Load = 5 cycles

CPI for Store = 4 cycles

CPI for Branch = 3 cycles

CPI for Jump = 2 cycles

I am going to assume that 30% for load and store is divided equally as 15% and 15%, because the problem does not separate their percentages.

Average CP1 = 0.3 \* 4 + 0.15 \* 6 + 0.15 \* 5 + 0.15 \* 4 + 0.15 \* 3 + 0.1 \* 2 = 4

Speedup of multi-cycle over single-cycle = (1040 \* 1) / (200 \* 1.1) = 1.27

(550 × XI) 049 (4 1010/(550 × 5,8) = 0,49

Prepared by Dr. Muhamed Mudawar