Domande pre-test

Domanda 1. Qual è uno degli algoritmi più noti nel campo del calcolo quantistico?

- A. Algoritmo di Schrödinger
- B. Algoritmo di Shor
- C. Algoritmo di Turing
- D. Algoritmo di Huffman

Domanda 2. Come viene rappresentato un bit 0 in notazione vettoriale?

A. $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

B. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $\mathbf{C}. \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

D. $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Domanda 3. Quale delle seguenti operazioni su un bit è reversibile?

- A. Negation
- B. Constant Zero
- C. Constant One
- D. Tutte le precedenti

Domanda 4. Nella notazione di Dirac, come viene rappresentato un vettore colonna $[1,0]^T$?

- A. $|0\rangle$
- B. $|1\rangle$
- C. $|2\rangle$
- D. $|3\rangle$

Domanda 5. Cosa rappresenta il "limite di von Neumann-Landauer"?

- A. La massima quantità di energia che un computer può utilizzare
- B. La minima quantità di energia necessaria per un calcolo che cancella informazioni
- C. La velocità massima di un computer quantistico
- D. La quantità di qubit in un computer quantistico

Domanda 6. Che cos'è il prodotto tensore tra due vettori?

- A. La somma dei vettori
- B. Il prodotto scalare dei vettori
- C. Un nuovo vettore ottenuto moltiplicando ogni elemento del primo vettore con ogni elemento del secondo
- D. La differenza tra i vettori

Domanda 7. Cosa fa l'operazione CNOT (Conditional NOT)?

- A. Inverte sempre il bit di controllo
- B. Inverte il bit target se il bit di controllo è 1
- C. Inverte il bit target se il bit di controllo è 0
- D. Inverte sempre entrambi i bit

Domanda 8. Qual è la differenza fondamentale tra un qubit e un bit classico?

- A. Un qubit può rappresentare più di due stati alla volta
- B. Un qubit può essere in una sovrapposizione di stati 0 e 1
- C. Un qubit può memorizzare più informazioni di un bit classico quando misurato
- D. Un qubit è più veloce di un bit classico nell'eseguire calcoli

Domanda 9.	Quale delle seguenti porte è considerata la porta quantistica universale, cioè una porta da cui possono essere costruite tutte le altre porte?
	A. Porta Pauli-X
	B. Porta Hadamard
	C. Porta Toffoli
	D. Porta C-NOT

- **Domanda 10.** Quanti "uno" possono essere presenti nel vettore dopo la misurazione di più qubit in sovrapposizione?
 - A. Uno
 - B. Due
 - C. Tre
 - D. Quattro
- Domanda 11. È possibile eseguire calcoli classici su un computer quantistico?
 - A. No, un computer quantistico può solo eseguire algoritmi quantistici
 - B. Sì, ma solo per algoritmi che possono essere quantizzati
 - C. Sì, un computer quantistico può simulare un computer classico
 - D. No, poiché i computer quantistici utilizzano qubit invece di bit
- Domanda 12. Cosa succede se applichiamo la porta Hadamard a un qubit in sovrapposizione?
 - A. Il qubit viene distrutto
 - B. Il qubit rimane in sovrapposizione
 - C. Il qubit viene misurato
 - D. Il qubit torna a uno stato classico
- **Domanda 13.** Cosa rappresenta $|10\rangle$ nel quantum computing?
 - A. Un singolo qubit nello stato $|1\rangle$
 - B. Un sistema di due qubit, dove il primo è nello stato $|1\rangle$ e il secondo nello stato $|0\rangle$
 - C. Una sovrapposizione dei stati $|1\rangle$ e $|0\rangle$
 - D. Un sistema di due qubit entangled in uno stato particolare
- Domanda 14. Quale delle seguenti affermazioni descrive correttamente l'entanglement quantistico?
 - A. Due qubit entangled condividono informazioni tra di loro, ma possono essere separati spazialmente.
 - B. L'entanglement significa che due qubit sono nello stesso stato fisico.
 - C. L'entanglement si verifica quando due qubit hanno la stessa frequenza di oscillazione.
 - D. Due qubit entangled devono sempre essere fisicamente vicini tra loro.
- Domanda 15. Chi è che ha raggiunto la "quantum supremacy" nel 2019?
 - A. Microsoft
 - B. Google
 - C. Apple
 - D. IBM