PRVI TEST

Novi Sad, 24. 11. 2019

1. Neka je dato 6 proizvoljnih prirodnih brojeva. Dokazati da bar dva od njih imaju isti ostatak pri deljenju sa 5.

Mogući ostaci pri deljenju celih brojeva sa 5 pripadaju skupu $\{0, 1, 2, 3, 4\}$. Kako je dato više brojeva nego ostataka, prema Dirihleovom principu, sledi da bar dva broja imaju isti ostatak.

2. Na koliko načina se 5 golubova može rasporediti u 3 jednaka kaveza, tako da nijedan kavez ne ostane prazan?

Broj načina da se 5 golubova rasporedi u 3 jednaka kaveza jednak je Stirlingovom broju druge vrste S(5,3). Ako formiramo tabelu za Stirlingove brojeve druge vrste

(n,m)	1	2	3
1	1		
2	1	1	
3	1	3	1
4	1	7	6
5	1	15	25

zaključujemo da je S(5,3) = 25.

3. Koliko sabiraka ima razvijeni oblik stepena trinoma $(x + y + z)^{199}$?

Broj sabiraka u razvijenom obliku datog stepena trinoma jedna je broju rešnja jednačine

$$i + j + k = 199, \quad i, j, k \ge 0$$

a to je

$$\binom{199+3-1}{3-1} = \binom{201}{2} = \frac{201 \cdot 200}{2} = 20100$$

4. Rešiti rekurentnu relaciju $a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$ ako je $a_0 = a_1 = 1$ i $a_2 = 3$.

Karakteristična jednačina: $x^3 - 3x^2 + 3x - 1 = 0 \Leftrightarrow (x - 1)^3 = 0 \Leftrightarrow x_{1,2,3} = 1$

Opšte rešenje: $a_n = (\alpha + n\beta + n^2\gamma)1^n = \alpha + n\beta + n^2\gamma$

Ako uvrstimo vrednosti za n = 0, 1, 2 dobijamo

Znači, $a_n = 1 - n + n^2, n \ge 0.$

5. Odrediti rekurentnu relaciju za broj reči dužine n nad azbukom $\{0,1\}$ koje sadrže podreč 01.

1. način

Konstatujmo prvo da za n = 1, 2, 3, 4 imamo sledeći broj reči sa datom osobinom:

$$a_1 = 0$$
 $a_2 = 1$ $a_3 = 4$ $a_4 = 11$

Razmatraćemo slučajeve kada reč počinje sa 1 i sa 0:

- Broj reči dužine n koje počinju sa 1 i sadrže 01 jednak je broju reči koje sadrže 01 iza te prve cifre 1, a taj broj je a_{n-1} .
- Broj reči koje počinju sa 0 i sadrže 01 jednak je broju svih reči dužine n-1 osim reči koja sadrži sve nule (jedina reč dužine n koja počinje sa 0 i ne sadrži 01 jeste 00...0). Takvih reč ima $2^{n-1} 1$.

Znači,
$$a_n = a_{n-1} + 2^{n-1} - 1, n \ge 1, \quad a_0 = 0.$$

2. način

Broj svih reči dužine n koje ne sadrže 01 jednak je broju svih reči dužine n minus broj reči dužine n koje sadrže 01. Ako sa a_n označimo broj reči koje sadrže 01, a sa b_n broj reči koje ne sadrže 01, onda je

$$b_n = 2^n - a_n, n \ge 0.$$

Odredićemo sada rekurentnu relaciju za broj reči koje ne sadrže 01:

- Ako reč počinje sa 1, onda je broj reči koje ne sadrži 01 jednak b_{n-1} .
- Ako reč počinje sa 0, onda imamo samo jednu takvu reč, a to je 00...0.

Tako dobijamo

$$b_n = b_{n-1} + 1, n \ge 0.$$

Sada je

$$2^{n} - a_{n} = 2^{n-1} - a_{n-1} + 1 \Leftrightarrow a_{n} = a_{n-1} + 2^{n-1} - 1, n \ge 1.$$

6. ("usmeni") Neka su n_1, n_2 i n_3 proizvoljni prirodni brojevi. Dokazati da važi

$$\binom{n_1 + n_2 + n_3}{n_1, n_2, n_3} = \binom{n_1 + n_2 + n_3}{n_1} \binom{n_2 + n_3}{n_2} \binom{n_3}{n_3}$$

Dokaz. Prema definiciji polinomnih koeficijenata, levu stranu možemo razviti na sledeći način

$$\binom{n_1 + n_2 + n_3}{n_1, n_2, n_3} = \frac{(n_1 + n_2 + n_3)!}{n_1! n_2! n_3!}$$

Prema definiciji i osobinama binomnih koeficijenata, desnu tranu možemo razviti na sledeći način

$$\binom{n_1 + n_2 + n_3}{n_1} \binom{n_2 + n_3}{n_2} \binom{n_3}{n_3} = \frac{(n_1 + n_2 + n_3)!}{n_1!(n_2 + n_3)!} \cdot \frac{(n_2 + n_3)!}{n_2!n_3!} \frac{n_3!}{n_3!}$$

$$= \frac{(n_1 + n_2 + n_3)!}{n_1!} \cdot \frac{1}{n_2!} \frac{1}{n_3!}$$