0.1 Factorization (Multi Precision Quadratic Sieve)

- Algorithm: Fermat's method (algo. 1), Quadratic sieve (algo. 2)
- Input: A positive number needs to be factorized.
- Complexity: $e^{(1+\mathcal{O}(1))\sqrt{\ln n \ln \ln n}}$
- Data structure compatibility: N/A
- Common applications: Large number factorization, like RSA.

Problem. Factorization (Multi Precision Quadratic Sieve)

Given a positive number n, find its factorization using quadratic sieve.

Description

To clearly understand how the Quadratic sieve works, we should first look at Fermat's factorization method.

Fermat's factorization method

It is obvious that if an odd integer n can be represented by $n=a^2-b^2$, then it can be factorized as n=(a+b)(a-b). In this sense, if n=cd, where c and d are two odd numbers, n can be expressed as $n=(\frac{c+d}{2})^2-(\frac{c-d}{2})^2$, which is the general form [1]. However, it is similar to trivial division to some extent, so it takes a long time to finally find the square collision.

```
Algorithm 1: Fermat's method
   Input: A number n which needs factorization
   Output: a tuple (c, d), which satisfies n = cd
 1 Function FermatFact(n):
 2
        a \leftarrow \lceil \sqrt{n} \rceil;
 3
        b \leftarrow a^2 - n;
 4
        while b is not a square number do
            a \leftarrow a + 1;
 5
            b \leftarrow a^2 - n;
       end while
 7
        c \leftarrow a + \sqrt{b};
        d \leftarrow a - \sqrt{b};
       return (c, d)
10
11 end
```

Next, we need to know some basic knowledge about smooth numbers.

Smooth numbers

It is known that every positive integer can be represented as the multiplication of the power of prime numbers, in the form $n = \prod p_i^{e_i}$, where p_i and e_i denote for the prime number and its corresponding power. Then it comes to the definition of smooth numbers. A positive integer is called *B-smooth* if none of its prime factors exceeds B [2].

Quadratic sieve

Since it is quite slow to factorize a large integer using trivial division or Fermat's factorization method, the quadratic sieve was invented to make factorization faster. It first chooses a *B-smooth* bound where *B* is chosen to meet the requirement that the Legendre symbol $(\frac{n}{p_i}) = 1$, where p_i denotes for all the prime numbers that are not greater than *B*. Usually, *B* will not be greater than 40. Then, the number of primes less than *B*, often known as $\pi(B)$, is used to determine the interval to choose integers to try for square congruence modular *n*, commonly $I = [\lfloor \sqrt{n} \rfloor - \pi(B), \lfloor \sqrt{n} \rfloor + \pi(B)]$ [3].

Then we will try the squares of integers in the interval modular n, which each gives a congruence that can be represented by multiple of prime factors. Then using linear algebra, we can find some combination such that for $a \in I$, $b \in I$, $a^2 \cdot b^2 \equiv c \mod n$, where c is a square number and can be expressed as the multiplication of prime numbers each has an even power. By finding this, we can calculate the GCD (greatest common divisor) $\gcd(a+b,n)$ and $\gcd(a-b,n)$, the two numbers will be the factorization of n [3].

Take a very simple example, considering the number 1649. First take the floor of its square root, which is $\lfloor 1649 \rfloor = 40$. Then, $41^2 \equiv 32 \mod 1649$, $42^2 \equiv 115 \mod 1649$, $43^2 \equiv 200 \mod 1649$. We can find that $32*200 = 6400 = 80^2$ is a square, thus $41^2 \cdot 43^2 \equiv 114^2 \equiv 80^2 \mod 1649$. Hence, $(114-80) \cdot (114+80) \equiv 34 \cdot 194 \equiv 0 \mod 1649$, which means that there exists a positive integer k such that $34 \cdot 194 = k \cdot 1649$. Therefore, $1649 = \gcd(34, 1649) \cdot \gcd(194, 1649) = 17 \cdot 97$ [4].

Algorithm 2: Quadratic sieve

```
Input: A number n which needs factorization
    Output: a tuple (c, d), which satisfies n = cd
 1 Function QuadraticSieve(n):
 2
         Choose a smooth bound B;
         t \leftarrow \pi(B);
 3
         for i \leftarrow 1 to t + 1 do
 4
              choose an integer x from I = [-t, t];
 5
 6
              a_i \leftarrow x + \lfloor \sqrt{n} \rfloor;
                                                                                /* b_i = \prod_{i=1}^t p_i^{e_{i,j}} */;
              b_i \leftarrow a_i^2 - n
 7
              v_i \leftarrow (e_{i,1} \mod 2, e_{i,2} \mod 2, \dots, e_{i,t} \mod 2);
 8
              Let T \subseteq \{1, 2, ..., t+1\} such that \sum_{k \in T} v_k = 0 in \mathbb{F}_2;
 9
                                                /* \mathbb{F}_2 denotes for the finite field of base 2 */;
             x \leftarrow \prod_{k \in T} a_k;
y \leftarrow \prod_{j=1}^t p_j^{\sum_{k \in T} e_{k,j}};
10
11
              if x \not\equiv y \mod n and x \not\equiv -y \mod n then
12
                  continue:
13
              else
14
                   c \leftarrow gcd(x + y, n);
15
                   d \leftarrow gcd(x - y, n);
16
                   return (c, d);
17
              end if
18
         end for
19
20 end
```

References.

- [1] Sounak Gupta and Goutam Paul. Revisiting Fermat's Factorization for the RSA Modulus. 2009. arXiv: 0910.4179 [cs.CR] (cit. on p. 1).
- [2] Carl Pomerance. "The Role of Smooth Numbers in Number Theoretic Algorithms". In: *Proceedings of the International Congress of Mathematicians*. Ed. by S. D. Chatterji. Basel: Birkhäuser Basel, 1995, pp. 411–422. ISBN: 978-3-0348-9078-6 (cit. on p. 1).

- [3] Carl Pomerance and Paul Erdös. "A Tale of Two Sieves". In: 1998 (cit. on p. 2).
- [4] Jr Samuel S. Wagstaff. *The Joy of Factoring*. American Mathematical Society, 2013, pp. 195–202. ISBN: 978-1-4704-1048-3 (cit. on p. 2).