Testing Metrics: Classic AI vs Generative AI Models

Classification & Prediction Metrics

Metric	Classic Al	Generative Al	What It Measures	How It Works
Accuracy	Core metric for classification tasks	▲ Limited use, mainly for classification fine- tuning	Percentage of correct predictions	(True Positives + True Negatives) / Total Predictions
Precision	Essential for imbalanced datasets	⚠ Used in specific evaluation scenarios	Proportion of positive predictions that are correct	True Positives / (True Positives + False Positives)
Recall (Sensitivity)	Critical for detecting positive cases	▲ Applied to content generation evaluation	Proportion of actual positives correctly identified	True Positives / (True Positives + False Negatives)
F1-Score	Balances precision and recall	▲ Sometimes used for classification tasks	Harmonic mean of precision and recall	2 × (Precision × Recall) / (Precision + Recall)
AUC-ROC	Standard for binary classification	× Not applicable	Area under receiver operating characteristic curve	Plots True Positive Rate vs False Positive Rate
Mean Squared Error (MSE)	Standard for regression	X Not directly applicable	Average squared differences between predicted and actual values	Σ(y_actual - y_predicted)² / n

Language & Content Quality Metrics

Metric	Classic Al	Generative Al	What It Measures	How It Works
BLEU Score	× Not applicable	Translation and text generation quality	N-gram overlap between generated and reference text	Geometric mean of modified n- gram precisions with brevity penalty
ROUGE Score	X Not applicable	Summarization quality	Overlap of n-grams, word sequences, and word pairs	Compares generated text to reference summaries using recall-based metrics
METEOR	X Not applicable	✓ Machine translation evaluation	Alignment between generated and reference text	Uses exact, stem, synonym, and paraphrase matches with precision/recall
BERTScore	× Not applicable	Semantic similarity of generated text	Contextual embeddings similarity	Computes cosine similarity between BERT embeddings of generated and reference text
Perplexity	X Not applicable	Language model fluency	How well model predicts text sequences	2^(-1/N × Σlog₂P(word_i

Generative AI Specific Metrics

Metric	Classic Al	Generative Al	What It Measures	How It Works
Inception Score	X Not applicable	✓ Image generation quality	Quality and diversity of generated images	Measures KL divergence between conditional and marginal label distributions
Fréchet Inception Distance (FID)	X Not applicable	✓ Image generation quality	Statistical distance between real and generated images	Computes Fréchet distance between feature distributions from Inception network
CLIP Score	× Not applicable	✓ Text-to-image alignment	Semantic similarity between text and generated images	Uses CLIP model to measure cosine similarity between text and image embeddings
Human Evaluation	Occasionally used	Essential for quality assessment	Subjective quality ratings	Human annotators rate outputs on relevance, fluency, creativity, factuality
Diversity Metrics	× Not applicable	Output variety	Uniqueness across generated samples	Self-BLEU (lower is more diverse), distinct n-grams, semantic diversity

Metric	Classic Al	Generative Al	What It Measures	How It Works
Adversarial Robustness	✓ Important for security	Critical for safe deployment	Resistance to malicious inputs	Tests model performance under adversarial attacks and input perturbations
Bias Detection	Fairness evaluation	Essential for responsible Al	Unfair treatment across demographic groups	Statistical parity, equalized odds, demographic parity across protected attributes
Hallucination Rate	X Not applicable	Critical for factual accuracy	Frequency of generating false information	Automated fact-checking against knowledge bases or human annotation
Toxicity Detection	▲ For content moderation models	Essential for text generation	Harmful or inappropriate content generation	Uses toxicity classifiers (Perspective API, custom models) to score outputs
Calibration	Confidence accuracy	✓ Uncertainty quantification	Alignment between confidence and actual performance	Reliability diagrams, Expected Calibration Error (ECE)
4				•

Performance & Efficiency Metrics

Inference	Important for			
Speed	real-time applications	Critical for user experience	Time to generate predictions/outputs	Measures latency from input to output completion
Memory Usage	Resource optimization	☑ Deployment feasibility	RAM consumption during inference	Monitors peak memory usage during model execution
Energy Consumption	▲ Growing concern	Majorsustainabilitymetric	Power usage during training/inference	Measures GPU/CPU power draw, carbon footprint calculations
Scalability	System design metric	✓ Production deployment	Performance under increased load	Throughput vs latency trade-offs, concurrent user handling

Specialized Evaluation Approaches

Metric	Classic Al	Generative Al	What It Measures	How It Works
Cross-Validation	Standard practice	▲ Limited by computational cost	Model generalization	k-fold validation, stratified sampling, time-series splits
A/B Testing	Production evaluation	✓ User preference measurement	Real-world performance comparison	Randomized controlled trials with different model versions
Reinforcement Learning from Human Feedback (RLHF)	X Not applicable	Alignment optimization	Human preference learning	Trains reward models from human comparisons, optimizes policy with PPO
Constitutional Al Evaluation	X Not applicable	Ethical behavior assessment	Adherence to principles and values	Tests model responses against predefined constitutional principles
Red Team Testing	▲ Security testing	✓ Safety evaluation	Identification of harmful capabilities	Systematic attempts to elicit dangerous or inappropriate outputs

Key Differences Summary

Classic AI focuses on:

- Statistical accuracy and error metrics
- Performance on specific, well-defined tasks
- Quantitative evaluation with ground truth
- Computational efficiency

Generative AI emphasizes:

- Content quality and human preference
- Safety and alignment considerations
- Subjective evaluation methods
- Emergent capabilities assessment

Legend

- Primarily used and essential
- A Sometimes used or limited application

• X Not applicable or rarely used