ТАРИРОВКА ИЗМЕРИТЕЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ КАК ОДИН ИЗ ВАЖНЕЙШИХ ЭТАПОВ ПОДГОТОВКИ ЛАБОРАТОРНЫХ СТЕНДОВЫХ ИСПЫТАНИЙ РАБОЧИХ ОРГАНОВ ДОРОЖНЫХ МАШИН

Сатышев Антон Сергеевич, старший преподаватель, satushev@gmail.com¹, Ганжа Владимир Александрович, канд. техн. наук, доцент, vladimirganzha@yandex.ru¹

¹Институт нефти а газа «Сибирский Федеральный Университет», 660041, г. Красноярск, Свободный проспект, 82 ст. 6

Аннотация

Актуальность работы. Для выполнения программы «Социально-экономическое развитие Арктической зоны Российской Федерации на период до 2020 года» утвержденной постановлением правительства [1] необходимо реализовать стратегию [2]. Согласно которой предусмотрена интеграция Арктической зоны с основными районами России посредством:

- освоения и разработки месторождений углеводородов, цветных и драгоценных металлов;
- формирования современных транспортно-логистических узлов и опорной сети автомобильных дорог;
- развития, реконструкции и модернизации аэропортовой сети.

Это повлечет за собой необходимость содержания, вновь построенных и реконструированных, автомобильных дорог и аэродромов в зимний период. Длительность которого
в некоторых районах превышает 140 дней в году. Самые сложные и ответственные мероприятиями по содержанию дорожных покрытий, различного назначения, направлены на
разрушение и удаление снежно-ледяных образований (СЛО). Известны несколько способов борьбы со СЛО: химико-механический; фрикционный; тепловой; механический. Последний способ позволяет разрушать и удалять СЛО с дорожных покрытий не нанося вреда окружающей среде, а также: экономить на химических реагентах, топливе; сохранять
целостность дорожного полотна. Это закрепляет за механическим способом первенство
в разработке и проектировании новых рабочих органом дорожных машин.

Однако, существует ниша в которой данный способ является мало эффективным, а именно удаление прочных снежно-ледяных образований (ПСЛО). Это обусловлено тем что их прочность значительно выше Цыфры и существующие рабочие органы или не приспособленных для их разрушения или делают это мало эффективно. Для повышения эффективности и снижения энергоемкости при удалении ПСЛО предложено применение дискового режущего инструмента [3-5]. Однако, с применением дискового режущего инструмента встает вопрос создания высокоэффективных рабочих органов, на стадии проектирования которых необходимо знать силовые параметры, величина которых зависит от множества факторов. Например, таких, как: скорость резания; геометрические параметры инструмента; температура окружающей среды и разрушаемого материала; степени износа, обусловленная радиусом закругления рабочей кромки.

Цель работы: преследует выявление зависимости силовых параметров, а именно силы сопротивления резанию прочных снежно-ледяных образований, от таких факторов как радиус закругления рабочей кромки дискового режущего инструмента и шаг резания. Работа является продолжением серии экспериментальных исследований проводимых в Сибирском Федеральном Университете.

Методы исследования: При решении поставленной задачи применен комплексный подход, включающий: научный анализ и обобщение опыта проведенных ранее исследо-

ваний; экспериментальные лабораторные исследования процесса резания льда полноразмерными дисковыми режущими инструментами с различным радиусом закругления рабочей кромки; математическую и статистическую обработку результатов эксперимента.

Результаты: Были получены графические зависимости переходных процессов резания льда с различным радиусом закругления рабочей кромки и шагом резания. Проанализированы полученные зависимости и сделанны выводы о корректности проведения эксперимента. А также получены данные для дальнейшего анализа и построения математической модели процесса резания льда учитывающей влияние радиуса закругления рабочей кромки, дискового режущего инструмента и шага резания.

Ключевые слова: снежно-ледяные образования, дисковый режущий инструмент, силовые параметры, радиус закругления, лёд, радиус закругления рабой кромки.

1 Условия проведения эксперимента

В качестве режущего инструмента принят заостренный дисковый резец изображенный на рисунке 1.

t— шаг резания; D— диаметр дискового резца; δ — угол заострения; h— глубина резания; γ — задний угол.

Рис. 1. Схема взаимодействия дискового режущего инструмента с разрушаемым массивом

Для более объективного изучения процесса взаимодействия дискового инструмента с ПСЛО предлагается контролировать три составляющие силы резания: горизонтальную, боковую и вертикальную. Контроль этих составляющих непосредственно на рабочем органе мало эффективен, так как: требует больших трудозатрат и дорогостоящего оборудования (датчики силы, оснастка для их монтажа); невозможно изолировать влияние температуры окружающей среды, влажности, теплозапаса дорожного полотна и других факторов друг на друга; постоянно меняются физико-механические свойства ПСЛО (прочность, плотность, наличие абразивного материала). Поэтому, опираясь на работы по резанию мерзлых грунтов различными инструментами [6-9], целесообразно исследовать процесс взаимодействия полноразмерного дискового режущего инструмента с различным радиусом закругления рабочей кромки с разрушаемым массивом путем стендовых испытаний в лабораторных условиях.

При проведении экспериментальных исследований использовались дисковые резцы с различным радиусом закругления рабочей кромки. R = [0.5; 1.5; 2.5; 3.5; 4.5] мм.

Данный диапазон значений обусловлен исследованиями изнашивания режущей кромки проведенными в работе [7]

Рис. 2. Радиус закругления рабочей кромки

Остальные параметры дискового режущего инструмента приняты следующими:

- диаметр: D = 200 мм.;
- угол заострения: $\delta = 30^{\circ}$;
- глубина резания: h = 60 мм.;
- шаг резания: t = [10; 20; 30; 40; 50] мм.;
- задний угол: $\gamma = 3^{\circ} \div 5^{\circ}$;
- температура окружающего воздуха: $-2^{\circ}C \div -7^{\circ}C$;
- скорость резания: $0.51 \, \text{M/c} \, (1.84 \, \text{kM/q})$.

Для проведения эксперимента использовался механизированный лабораторный стенд описанный в работе [10] конструкция которого защищена патентом на изобретение № 2429459 [11]. Для фиксирования и записи информации

применен измерительный комплекс описанный в статье [12].

2 Тензометрический измерительный элемент

Тензометрическая балка представляет собой тонкостенную круглую бобышку (рисунок 3) с прямоугольным основанием, служащим креплением к лабораторному стенду.

Рис. 3. Схема наклейки тензорезисторов

Изделие выполнено из стали марки 55С2. При приложении усилий к такой балке происходит её упругая деформация, которую фиксируют наклеенные на неё тензорезистивные элементы. На рисунке 3 приведена схема наклейки чувствительных элементов.

Для измерения горизонтальной составляющей приложенного усилия используется полу мостовая схема включения, с избирательной чувствительностью, тензорезистор $R_{\Gamma I}$ включён в первое плечо измерительного моста, а $R_{\Gamma 2}$ – в четвёртое. Такая схема позволяет обеспечить избирательную чувствительность тензометрического моста к деформации изгиба (не чувствительна к деформации растяжения-сжатия), возникающей в след-

ствии действия горизонтальной составляющей силы резания. Для боковой составляющей используется схема включения тензорезисторов аналогичная приведённой выше. Тензорезистор R_{BI} включён в первое плечо измерительного моста, а R_{B2} — в четвёртое. Для измерения вертикальной составляющей, диаметрально расположенные тензорезисторы R_{B1} и R_{B2} необходимо включить в одно плечо полумоста. Во второе плечо включаются компенсационные тензорезисторы R_{B3} и R_{B4} , обеспечивающие также термокомпенсацию. Все схемы включения обеспечивают термокомпенсацию и компенсацию сопротивления соединительных проводов.

3 Тарирование тензометрического звена

Для тарирования тензометрического звена, описанного выше, применялся стенд, конструкция которого защищена патентом на изобретение № 2500983 [13], позволяющий закреплять звено в различных пространственных положения и соответственно создавать требуемый вектор нагрузки. Тарирование производилось с помощью: одного измерительного прибора — динамометра растяжения ДПУ-5-2 5033 второго класса точности; талрепа и вспомогательной оснастки для крепежа тензометрического звена.

Нагрузка звена осуществлялась ступенчато, с шагом 500 H, до предельного значения в 2 500 H. Разгрузка производилась с тем же шагом до нулевого значения. На рисунке 4 приведены графики переходных процессов возникающих во время тарирования. Из графиков явно видно, что исключено взаимное влияние составляющих друг на друга.

С веху вниз: горизонтальная, боковая, вертикальная составляющие усилия резания Рис. 4. Графики переходных процессов при тарировании горизонтальной составляющей усилия резания

Таблица. 1. Зависимость напряжения на каналах оцифровки от приложенной силы в процессе тарирования горизонтальной составляющей усиля резания

Сила, Н	Канал измерения		
	горизонтальный, мВ	боковой, мВ	вертикальный, мВ
0	0.0687	0.175	0.325
500	5.19	0.769	0.406
1000	11.5	0.212	0.456
1500	18.2	0.919	0.106
2000	24.9	0.438	0.787
2500	32.1	0.25	0.412

Используя данные графиков переходных процессов можно получить зависимости изображенные на рисунке 5. Из них видно что силы возникающие на тензометрическом звене имеют линейную зависимость от напряжения получаемого с тензометрических мостов.

1,2,3 — горизонтальная, бокова, вертикальная составляющие усилия резания соответственно при тарировании горизонтальной составляющей; 4,5,6 — аналогично при тарировании боковой составляющей; 7,8,9 — аналогично при тарировании вертикальной составляющей.

Рис. 5. Графики тарирования тензометрического звена

Эти графики можно представить в виде уравнений:

$$y_{\text{rop}} = 80074.568 \cdot x \tag{1}$$

$$y_{\text{бок}} = 140953.396 \cdot x \tag{2}$$

$$y_{\text{BEDT}} = 51338.284 \cdot x$$
 (3)

Из уравнений 1—3 получим тарировочные коэффициенты: $8~0074.568~^{\text{H}}\!/_{\!B}$, $140~953.396~^{\text{H}}\!/_{\!B}$, $51~338.284~^{\text{H}}\!/_{\!B}$ для горизонтальной, боковой и вертикальной составляющей усилия резания соответственно.

4 Выволы

Тарирование следует проводить перед каждой серией экспериментов. Точность тарирования влияет на точность будущих измерений, так как все измерения будут домножены на тарировочный коэффициент. Также в процессе тарирования измерительного преобразователя могут быть выявленны сбои в его работе, поломки. Что позволит своевременно их устранить и обеспечить целостность экспериментальных данных.

Тарирование тензометрического звена является одним из важнейших факторов успешности проведения экспериментальных исследований. Известно, что на показания измерительного преобразователя может оказывать влияние множество различных переменных, например: электро магнитные поля; сопротивление проводов; температура окружающей среды. Выявление таких влияний на этапе тарирования измерительного преобразователя, позволяет или полностью их устранить или заложить в тарировочный коэффициент, что в свою очередь сказывается на данных полученных в ходе экспериментальных исследований.

Список литературы

- 1. Постановление Правительства РФ от 21.04.2014 № 366 (ред. от 17.12.2014) «Об утверждении государственной программы Российской Федерации "Социально-экономическое развитие Арктической зоны Российской Федерации на период до 2020 года"». 36 с.
- 2. Стратегия развития арктической зоны российской федерации и обеспечения национальной безопасности на период до 2020 года : утв. Президентом РФ 08.02.13 Пр- 232.-11 с.
- 3. Дисковый режущий инструмент для разрушения снежно-ледяных образований / В. А. Ганжа [и др.] // Наука и техника в дорожной отрасли. 2012. № 2. 34а 37.
- 4. Разрушение прочных снежно-ледяных образований / В. А. Ганжа [и др.] // Наука и техника в дорожной отрасли. 2015. № 3.
- 5. *Пат. 2487970 Рос. федерация, МПК*⁷ *Е 01 Н 5/12*. Рабочий орган для удаления снежно-ледяного наката с поверхности дорог и аэродромов [Текст] / В. А. Ганжа [и др.] (Рос. федерация) ; заявитель и патентообладатель ФГАОУ ВПО «Сибирский федеральный университет». № 2012109412/13 ; заявл. 10.03.2012 ; опубл. 20.07.2013, Бюл. № 20.
- 6. *Желукевич Р. Б.* Разработка мерзлых грунтов землеройными маши нами с дисковым инструментом: Монография. Красноярск: Сиб. федер. ун-т, 2012. 196 с.
- 7. *Барон Л. И.* Разрушение горных пород проходческими комбайнами : Разрушение тангенциальными инструментами. Москва : Наука, 1973. 172 с.
- 8. *Барон Л. И.*, *Глатман Л. Б.*, *Загорский С. Л.* Разрушение горных пород проходческими комбайнами: Разрушение шарошками. Москва: Наука, 1969. 146 с.
- 9. Зеленин А. Н., Карасев Г. Н., Красильников Л. В. Лабораторный практикум по резанию грунтов: Учебное пособие для студентов инженерно-строительных и автомобильно-дорожных вузов. М.: Высш. школа, 1969. 310 с.
- 10. Модернизация стенда для испытания режущего инструмента рабочих органов строительных и дорожных машин / В. Г. Шрам [и др.] // Вестник Кузбасского государственного технического университета. 2013. № 3.
- 11. *Пат. 2429459 Рос. федерация, МПК*⁷ *G 01 M 13/00*. стенд для испытания рабочих органов землеройных машин [Текст] / В. А. Ганжа, Р. Б. Желукевич, Ю. Н. Безбородов (Рос. федерация) ; заявитель и патентообладатель ФГАОУ ВПО «Сибирский федеральный университет». № 2010116560/28 ; заявл. 26.04.2010 ; опубл. 20.09.2011, Бюл. № 26.
- 12. Измерительный комплекс для контроля силы сопротивления снежно ледяных образований резанию дисковым инструментом / А. С. Сатышев [и др.] // Измерение, контроль, информатизация : Материалы XVII международной научно-технической конференции / под ред. Л. И. Сучковой. Барнаул, 2016. С. 155 158.
- 13. *Пат. 2500983 Рос. федерация, МПК*⁷ *G 01 В 7/16*. стенд для градуировки тензоэлементов [Текст] / В. А. Ганжа [и др.] (Рос. федерация) ; заявитель и патентообладатель ФГАОУ ВПО «Сибирский федеральный университет». № 2012121697/28 ; заявл. 25.05.2012 ; опубл. 10.12.2013, Бюл. № 34.