Colles - Semaine 13

Planche 1

Exercice 1

Soit f la fonction définie pour tout couple (x,y) de \mathbb{R}^2 par : $f(x,y) = 2x^2 + 2y^2 + 2xy - x - y$.

- 1. a) Calculer les dérivées partielles premières de f.
 - b) En déduire que le seul point critique A de f.
- 2. Montrer que f présente un minimum global en A.
- 3. On considère la fonction q définie pour tout couple (x,y) de \mathbb{R}^2 par :

$$g(x,y) = 2e^{2x} + 2e^{2y} + 2e^{x+y} - e^x - e^y$$

- a) Utiliser la question 2 pour établir que : $\forall (x,y) \in \mathbb{R}^2, \ g(x,y) \geq -\frac{1}{6}$
- b) En déduire que g possède un minimum global sur \mathbb{R}^2 et préciser en quel point ce minimum est atteint.

Exercice 2

Soit E un \mathbb{K} -espace vectoriel où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On considère deux projecteurs p et q de E différents de l'identité idE et de l'application nulle; on suppose en outre que p et q commutent et que leur somme f n'est pas égale à l'identité.

- 1. Montrer que $p \circ q$ est un projecteur de E et calculer $f^3 3f^2 + 2f$. On note Sp(f) l'ensemble des valeurs propres de f.
- 2. a) Montrer que $0 \in \operatorname{Sp}(f)$ si et seulement si $\operatorname{Ker}(p) \cap \operatorname{Ker}(q) \neq \{0_E\}$.
 - b) Montrer que $2 \in \operatorname{Sp}(f)$ si et seulement si $\operatorname{Im}(p) \cap \operatorname{Im}(q) \neq \{0_E\}$.
 - c) Montrer que $\operatorname{Ker}(f) \oplus \operatorname{Ker}(f \operatorname{id}_E) \oplus \operatorname{Ker}(f 2\operatorname{id}_E) = E$.
- 3. En déduire que $[2 \notin \operatorname{Sp}(f)$ ou $0 \notin \operatorname{Sp}(f)]$ entraı̂ne que $1 \in \operatorname{Sp}(f)$ et $\operatorname{Sp}(f) \neq \{1\}$.

Planche 2

Soit E un \mathbb{K} -espace vectoriel de dimension finie (avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$). On note $\mathscr{L}(E)$ l'espace vectoriel des endomorphismes de E.

Soit p un projecteur de E tel que $p \neq 0$ et $p \neq \mathrm{id}_E$. Pour tout $f \in \mathcal{L}(E)$, on pose :

$$\varphi(f) = \frac{1}{2} \left(f \circ p + p \circ f \right)$$

- 1. Montrer que φ est un endomorphisme de $\mathcal{L}(E)$.
- 2. Calculer $(\varphi \circ \varphi)(f)$ et $(\varphi \circ \varphi \circ \varphi)(f)$; en déduire les valeurs propres possibles de φ .
- 3. Pour tout sous-espace vectoriel F de E, montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathcal{L}(E)$:

$$\mathcal{K}(F) = \{ f \in \mathcal{L}(E) \mid F \subset \mathrm{Ker}(f) \} \quad \text{et} \quad \mathcal{I}(F) = \{ f \in \mathcal{L}(E) \mid \mathrm{Im}(f) \subset F \}$$

- 4. Soient $f, g \in \mathcal{L}(E)$.
 - a) Calculer $f \circ g$ lorsque $f \in \mathcal{K}(\operatorname{Im}(g))$ ou lorsque $g \in \mathcal{I}(\operatorname{Ker}(f))$.
 - **b)** Calculer $p \circ f$ lorsque $f \in \mathcal{I}(\operatorname{Im}(p))$.
 - c) Montrer que $f \circ p = f$ lorsque $f \in \mathcal{K}(\mathrm{Ker}(p))$.
- 5. a) Pour chacun des sous-espaces vectoriels suivants, montrer que leurs éléments non nuls sont des vecteurs propres de φ et préciser les valeurs propres correspondantes :

$$\mathcal{A} = \mathcal{K}(\operatorname{Im}(p)) \cap \mathcal{I}(\operatorname{Ker}(p)), \quad \mathscr{B} = \mathcal{K}(\operatorname{Im}(p)) \cap \mathcal{I}(\operatorname{Im}(p)) \quad \text{ et } \quad \mathcal{C} = \mathcal{K}(\operatorname{Ker}(p)) \cap \mathcal{I}(\operatorname{Im}(p))$$

- b) Montrer que les sous-espaces \mathcal{A} , \mathscr{B} et \mathcal{C} sont en somme directe.
- c) Quelles sont les valeurs propres de φ ?

Planche 3

On note m un paramètre réel et on considère les matrices H_m définies par : $H_m = \begin{pmatrix} -1-m & m & 2 \\ -m & 1 & m \\ -2 & m & 3-m \end{pmatrix}$.

On note h_m l'endomorphisme de \mathbb{R}^3 ayant pour matrice H_m dans la base canonique de \mathbb{R}^3 .

- 1. On suppose dans cette question que m=2.
 - a) Écrire la matrice H_2 .
 - b) Déterminer les valeurs propres de l'endomorphisme h_2 et les sous-espaces propres associés.
 - c) L'endomorphisme h_2 est-il diagonalisable? Si oui, donner une base de vecteurs propres de h_2 .
- 2. Étudier de même les valeurs propres et les sous-espaces propres de h_0 . Cet endomorphisme est-il diagonalisable?
- 3. a) Montrer qu'il existe un réel a, qu'on déterminera, qui est valeur propre de l'endomorphisme h_m pour toutes les valeurs du paramètre m.
 - b) Déterminer, pour chaque valeur de m, le sous-espace propre de h_m associé à la valeur propre a. Montrer qu'on peut trouver un vecteur non nul v_1 appartenant à tous ces sous-espaces.
- 4. Soit F le sous-espace de \mathbb{R}^3 engendré par les vecteurs $v_2=(1,0,1)$ et $v_3=(1,1,0)$: $F=\operatorname{Vect}(v_2,v_3)$.

Déterminer les vecteurs $h_m(v_2)$ et $h_m(v_3)$ et montrer que ces vecteurs appartiennent à F pour tout m réel.

En déduire que le F est stable par h_m , c'est-à-dire que $h_m(F) \subset F$.

5. Montrer que (v_1, v_2, v_3) est une base de \mathbb{R}^3 . Écrire la matrice de h_m dans la base (v_1, v_2, v_3) . En déduire les valeurs de m pour lesquelles l'endomorphisme h_m est diagonalisable.