OUTLINE

- Phenomenological description of ferromagnets:
 Ginzburg-Landau theory
- Anisotropic ferromagnetic materials: ferromagnetic domains, hysteresis loops, engeneering domain structures
- Origin of domains: energetics of domain walls. Single-domain particles.

ENTROPY OF A PARTIALLY POLARIZED STATE

$$\begin{cases} N = N_{\uparrow} + N_{\downarrow} \\ \langle s_{z} \rangle = \frac{1}{2} \frac{N_{\uparrow} - N_{\downarrow}}{N} \end{cases} \Rightarrow \begin{cases} \frac{N_{\uparrow}}{N} = \frac{1}{2} + \langle s_{z} \rangle \\ \frac{N_{\downarrow}}{N} = \frac{1}{2} - \langle s_{z} \rangle \end{cases}$$

Entropy (relative to the $\langle s_z \rangle = 0$ state)

$$S = k_B \ln \mathbb{P}$$

$$\mathbb{P} = \frac{1}{2^N} C_N^{N_{\uparrow}} = \frac{1}{2^N} \frac{N!}{N_{\uparrow}! N_{\downarrow}!}$$

If $\langle s_z \rangle \to -\langle s_z \rangle$, then $N_\uparrow \longleftrightarrow N_\downarrow$ and $S = \mathrm{inv}$. Entropy is thus an even function of $\langle s_z \rangle$, and for $\langle s_z \rangle \to 0$

$$S = a\langle s_z \rangle^2 + b\langle s_z \rangle^4 + \dots$$

SPONTANEOUS SYMMETRY BREAKING IN MAGNETIC PHASE TRANSITIONS

Order parameter:

"Paramagnetic" phase: $\mathbf{M} = 0$

Ferromagnetic phase: $\mathbf{M} \neq 0$

Thermodynamically, "PM" phase is *more* symmetric then FM phase: having finite **M** breaks *rotational invariance* and *time-inversion symmetry*.

Indeed, as $t \to -t$, $\mathbf{v} \to -\mathbf{v}$, and $(\mathbf{M} = n_{\mathrm{at}}\mathbf{m})$

$$\mathbf{m} \equiv \frac{e}{2c} \sum_{i} \mathbf{r}_{i} \times \mathbf{v}_{i} \to -\mathbf{m}$$

But the free energy (as a function of the order parameter) must respect these symmetries.

THE THE TER E 990

GINZBURG-LANDAU THEORY I

Free energy =

interaction energy — temperature \times entropy

For $|T - T_c| \ll T_c$ magnetization is small, $\mathbf{M}^2 \ll 1$

Ginzburg-Landau ansatz: $F = F_0(T) + a \mathbf{M}^2 + b \mathbf{M}^4 + \dots$

Here $F_0(T) \equiv F(T; \mathbf{M} = 0)$

NB: F and M are the free energy and magnetization *per unit volume*.

Require that:
$$\begin{cases} T > T_c & \mathbf{M} = 0 \text{ is stable} \\ T < T_c & \mathbf{M} \neq 0 \text{ is stable} \end{cases} \Rightarrow \text{ at } T = T_c : \begin{cases} a = 0 \\ b > 0 \end{cases}$$

Thus, assume $a = \alpha (T - T_c)$ and b = const.

GINZBURG-LANDAU THEORY II

$$F(T) = F_0(T) + \alpha (T - T_c) \mathbf{M}^2 + b \mathbf{M}^4$$

 $\alpha > 0, \qquad b > 0$

The phenomenological constants α and b are input parameters in the GL theory. To fix them, use experiment or microscopic theory.

Equilibrium value of spontaneous magnetization for $T < T_c$:

$$0 = \frac{\partial F}{\partial M} = 2M \left[\alpha (T - T_c) + 2b M^2 \right]$$

 $\Rightarrow M_{\rm eq} = \sqrt{\alpha/2b} (T_c - T)^{1/2}$ —in agreement with microscopics!

GINZBURG-LANDAU THEORY III

Magnetic susceptibility for $T > T_c$ (PM phase)

In the PM phase expect $\mathbf{M} \uparrow \uparrow \mathbf{H}$ and M small (neglect the M^4 term):

$$F = F_0 - \mathbf{H} \cdot \mathbf{M} + \alpha (T - T_c) \mathbf{M}^2 + b \mathbf{M}^4$$

$$\approx F_0 - H M + \alpha (T - T_c) M^2$$

$$0 = \frac{\partial F}{\partial M} = -H + 2\alpha (T - T_c)M \qquad \Rightarrow \quad M = \frac{1}{2\alpha} \frac{H}{T - T_c} \equiv \chi H$$

$$\chi_{
m ferro}(T>T_c) \propto rac{1}{T-T_c} \ \chi_{
m Curie} \propto rac{1}{T}$$

Anisotropy of Ferromagnetic materials

Crystals have lattice symmetry (not rotationally invariant)

$$F - F_0 = \alpha (T - T_c) \mathbf{M}^2 + b \mathbf{M}^4 + \kappa M_z^2$$

 $\kappa < 0$: easy axis $\qquad \kappa > 0$: easy plane ($\kappa \neq 0$ due to $\it eg$ spin-orbit coupling)

Cubic crystals (eg, Fe): several anisotropy axes

$$F - F_0 = \alpha (T - T_c) \mathbf{M}^2 + b \mathbf{M}^4 + \kappa \left(M_x^4 + M_y^4 + M_z^4 \right)$$
(since $M_x^2 + M_y^2 + M_z^2 = \mathbf{M}^2$)

FERROMAGNETIC DOMAINS

Upon cooling a ferromagnet, spontaneous magnetization forms below T_c .

Since there are several energetically equivalent magnetization directions, specimen splits into *domains*: distant parts of the crystal are essentially independent, and phase transition develops simultaneously.

Domain walls (DWs)—the boundaries between domains—are *topological defects*: they cannot be eliminated by a smooth local changes of $\mathbf{M}(\mathbf{r})$.

DOMAIN WALLS

DWs are topological defects. The way of re-magnetizing the sample is to move the DWs so that unfavorably oriented domains shrink [\Leftrightarrow domain walls annihilate.]

In a field, magnetization can proceed by two mechanisms: DW displacement and/or domain rotation (usually: strong fields).

Hysteresis loop

Crystalline defects pin the DWs. \Rightarrow moving the DWs dissipates energy. The area of the hysteresis loop (in the M-H) plane gives the total work agains the friction due to defects.

Coercivity H_c : reduces the induction B to zero starting from saturation B_s . Or, H_{ci} : reduces magnetization to zero starting from saturation M_s . Remanence B_r : the value of B at H=0.

Representative values of T_c and M_s

Magnetization	M_s ,	gauss
---------------	---------	-------

substance	(T = 300 K)	(T=0 K)	T_c , K	$T_{ m melt}$, K
Fe	1707	1740	1043	1810
Co	1400	1446	1388	1768
Ni	485	510	627	1726
MnAs	670	870	318	1209

Halbach arrays

J.C. Mallinson, 1973; K. Halbach, 1980: "one-sided" magnetic flux structures

image (c) Wikipedia

image (c) NASA

Used in

- fridge magnets
- focusing electron beams in accelerators
- maglev levitating trains (google for "inductrack")
- axial magnetic bearings (NASA)

MAGNETIC FORCE MICROSCOPY (MFM)

image (c) AppNano

MAGNETIC FORCE MICROSCOPY

Origin of domains

Domain structure is a consequence of an interplay between several contributions to the energy— exchange, anisotropy and magnetic— of a magnetic body.

Magnetic energy

Magnetic energy of a sample with N domains is roughly 1/N of an energy of a saturated sample. For two rightmost sketches: magnetic energy is zero due to the *domains of closure* .

Origin of domains: exchange energy

Bloch wall: spins tilt out-of-plane

much cheaper

$$\varepsilon_{12} = -J\mathbf{S}_1 \cdot \mathbf{S}_2 = -JS^2 \cos \varphi \approx -JS^2 \left(1 - \varphi^2/2\right)$$

 \Rightarrow energy cost per pair $w_{\rm ex} = JS^2 \varphi^2/2$

For $N\gg 1$ spins along a chain: $\varphi=\pi/N$

$$Nw_{\rm ex} = NJS^2(\pi/N)^2/2 = (\pi^2/2)JS^2/N \to 0$$

as $N \to \infty$

The wall would thicken without limit. Limiting the thickness is the anisotropy energy.

TURTURE TERTER E 990

Origin of domains: Anisotropy energy

As a rough estimate, the anisotropy energy is proportional to the number of spins tilted away from an easy axis:

$$U_{
m anis} \sim K imes {
m area} imes {
m wall}$$
 thickness

Here K has units of energy per unit volume, $\mathrm{erg}/\mathrm{cm}^3$.

Consider a wall parallel to the face of a sc lattice and separating the domains of the opposite magnetization.

Energy per unit area:
$$\sigma_{\text{wall}} = \sigma_{\text{exch}} + \sigma_{\text{anis}}$$

$$\sigma_{
m anis} pprox \textit{KNa}$$

$$\sigma_{\rm exch} = Nw_{\rm ex} \times 1/a^2 = (\pi^2/2)JS^2/N \times 1/a^2$$

(there are $1/a^2$ chains per unit area)

Origin of domains: Anisotropy energy II

The wall energy per unit area:

$$\sigma_{\mathrm{wall}} = \frac{\pi^2}{2} \frac{JS^2}{a^2} \frac{1}{N} + KNa$$

Minimize σ_{wall} with respect to N:

$$0 = \frac{\partial \sigma_{\text{wall}}}{\partial N} = -\frac{\pi^2}{2} \frac{JS^2}{a^2} \frac{1}{N^2} + Ka$$

At a minimim

$$N = \left(\frac{\pi^2}{2} \frac{JS^2}{Ka^3}\right)^{1/2} \qquad \qquad \sigma_{\text{wall}} = \left(2\pi^2 \frac{JS^2 K}{a}\right)^{1/2}$$

Representative values: Fe: $N \approx 300$ $\sigma_{\rm wall} \approx 1~{\rm erg/cm^2}$ Co: $\sigma_{\rm wall} \approx 3~{\rm erg/cm^2}$ (due to higher anisotropy const)

SINGLE-DOMAIN PARTICLES

Consider a small spherical particle of a uniaxial ferromagnet.

Single domain:

Two domains, a DW in the equatorial plane:

As a *very* rough estimate: magnetic energy $\sim M_s^2 \times \text{volume} \sim M_s^2 \, d^3$ wall energy $\sim \sigma_{\text{wall}} \times \text{area} \sim \sigma_{\text{wall}} \, d^2$

Two-domain structure has twice lower magn energy.

 \Rightarrow the *critical* diameter is s.t. $M_s^2 d_c^3 \sim \sigma_{\rm wall} d_c^2$.

For $d < d_c = \sigma_{\text{wall}}/M_s^2$ single domain is favourable.

