## Konstruktion des MOHRschen Spannungskreises



Der MOHRsche Spannungskreis lässt sich einfach und ohne Berechnung mit Hilfe der Spannungen  $s_x$ ,  $s_y$  und  $t_{xy}$  konstruieren.

Zuerst trägt man den Punkt P mit den Koordinaten  $(s_x, t_{xy})$  und den Punkt P' mit den Koordinaten  $(s_y, -t_{xy})$  in das s, t-Koordinatensystem ein (Die Normalspannungen  $s_x$  und  $s_y$  werden unter Beachtung ihrer Vorzeichen eingezeichnet. Die Schubspannung  $t_{xy}$  wird vorzeichenrichtig über  $s_x$  und mit umgekehrten Vorzeichen über  $s_y$  aufgetragen). Die Verbindungslinie der beiden Punkte liefert einen Schnittpunkt mit der s-Achse, den Kreismittelpunkt  $s_M$ . Der Kreis lässt sich jetzt mit dem Radius s- zeichnen.

Der MOHRsche Spannungskreis beschreibt den Spannungszustand eines Punktes des betrachteten Körpers. Jeder der Punkte auf dem Kreis gehört zu einem Schnitt durch den Punkt unter einem bestimmten Winkel.

Der Punkt P gehört zu dem Schnitt parallel zur y-Achse, in diesem Schnitt wirken die Spannungen  $s_x$  und  $t_{xy}$ .

Der Punkt Q gehört zu einem Schnitt parallel zur h-Achse, in dem die Spannungen  $s_x$  und  $t_{xh}$  wirken. Das x,h-Koordinatensystem ist im Vergleich zum x,y-Koordinatensystem um den Winkel j gedreht, siehe Abbildung.

Im Spannungskreis hingegen wird immer der <u>doppelte Winkel in entgegengesetzter</u> <u>Richtung</u> angetragen.

In den Schnitten unter den Winkeln  $j^*$  und  $j^* + \frac{p}{2}$  werden die Normalspannungen extremal und die Schubspannungen verschwinden gleichzeitig. In diesem Fall erhält man die Hauptspannungen  $s_1$  und  $s_2$ . Die zugehörigen Richtungen werden als Hauptspannungsrichtungen bezeichnet.

Die Schnitte unter den Winkeln  $j^{**}$  und  $j^{**}+\frac{p}{2}$  kennzeichnen die Stellen an denen die Schubspannungen extremal werden und den Wert  $\pm t_{\max}$  annehmen. In diesem jeweiligen Schnitt verschwinden die Normalspannungen nicht, sondern betragen  $s_{\scriptscriptstyle M}$ .