CS471: Operating System Concepts Fall 2007

Sample questions/answers from Chapter 8

Question 1 Exercise 8.3

Five partitions are 100 KB, 500 KB, 200 KB, 300 KB and 600 KB

<u>First Fit:</u> This algorithm allocates the first hole that is big enough.

 $212 \text{ K} \rightarrow 500 \text{ K}$

 $417 \text{ k} \rightarrow 600 \text{ K}$

 $112 \text{ K} \rightarrow 288 \text{ K} (500 \text{K} - 212 \text{k} = 288 \text{ K})$

426 K \rightarrow Can't be placed.

<u>Best Fit:</u> This algorithm allocates the smallest hole that is big enough.

212 K → 300 K

 $417 \text{ k} \rightarrow 500 \text{ K}$

 $112 \text{ K} \rightarrow 200 \text{ K}$

 $426 \text{ K} \rightarrow 600 \text{ K}$

Worst Fit: This algorithm allocates the largest hole.

212 K → 600 K

 $417 \text{ k} \rightarrow 500 \text{ K}$

 $112 \text{ K} \rightarrow 388 \text{ K} (600 \text{K} - 212 \text{k} = 388 \text{ K})$

426 K \rightarrow Can't be placed.

Best fit makes efficient use of memory.

Question 2 Exercise 8.9

- a) 400 ns (200 ns to access page table + 200 ns to access memory)
- b) 75 % of page table references are found in TLB. 25 % page references end up referring page table for memory address.

75 % page references take 200 ns and 25 % page references take 400 ns.

Therefore, effective memory access time = (.75) * 200 + (.25) * 400 = 250 ns

Question 3 Exercise 8.12

Physical address = Base address + offset (offset < length)

```
a) 0.430 \rightarrow 219 + 430 = 649 \text{ (base} = 219)
```

- b) $1{,}10 \rightarrow 2300 + 10 = 2310 \text{ (base= } 2300)$
- c) $2,500 \rightarrow 90 + 500 = 590$ Illegal ref. because offset 500 is greater than length 100
- d) $3,400 \rightarrow 1327 + 400 = 1727$ (base= 1327)
- e) $4{,}112 \rightarrow 1952 + 112 = 2064$ Illegal ref. because offset 112 is greater than length 96

Question 4 Exercise 8.5

a) External Fragmentation:

Contiguous memory allocation and pure segmentation has external fragmentation. There is no external fragmentation in pure paging.

b) Internal Fragmentation:

There is internal fragmentation in pure paging and pure segmentation. There is no internal fragmentation in contiguous memory allocation.

c) Ability to share code across processes.

Contiguous memory allocation is ineffective to share code. Both paging and segmentation has the ability to share code across processes.