5. Defibrilatori

- **ventrikularna fibrilacija** asinkrone kontrakcije srčanih stanica
- srčani izlaz opada i približava se nuli
- **ireverzibilna oštećenja mozga** uslijed prekida krvotoka i posljedično nedostatka opskrbe stanica kisikom nastupaju nakon ~5 min
- terapija: prekid fibrilacije srca defibrilacija
- načelo: **električni udar** (šok) zaustavlja rad svih stanica srčanog mišića, koje sve odjednom ulaze u refraktorni period
- tako je omogućen (i vjerojatan) ponovni početak sinusnog ritma srca
- vanjski defibrilatori električni udar izvodi se transtorakalno, preko velikih površinskih elektroda smještenih na prsni koš; jedna elektroda smješta se desno iznad prsne kosti (lat. sternum) a druga bočno, ispod pazuha, u visini vrha srca (lat. apex)
- načelo rada: pražnjenje visokonaponskog kondenzatora
- energija pohranjena na kondenzatoru je do 400 J (E = CU²/2)
- makimalni napon: 2 kV do 9 Kv
- shema: salid 6.

Bifazni defibrilator

- imaju **dvostruko manje razine izlaznih energija** (u usporedbi s monopolarnim impusima)

Prijenos

- izvode se kao prijenosni uređaji radi lakše intervencije u slučaju nesreće
- glavni zahtjevi: smanjenje mase i dimenzija, vizualno praćenje EKG-a i mogućnost elektrosimulacije (pacinga) srca

Elektrode defibrilatora

- a) žličaste elektrode za defibrilaciju na otvorenom srcu
- b) **površinske** elektrode s kontrolnim tipkalima

Automatski vanjski defibrilator

- mogu ih primijeniti i osobe bez medicinskog obrazovanja u hitnim slučajevima na javnim mjestima
- primjenjuje se samoljepljive elektrode velike površine, uz jasne oznake mjesta primjene

Implantabilni kardioverteri/defibrilatori

- indikacije: profilaksa nagle srčane smrti (sudden cardiac death SCD)
- populacija srednja dob (stres) menađeri
- funkcije:
 - 1) kardioverzija primjena električnog udara za prekid abnormalnih tahikardija
 - 2) **defibrilacija** primjena električnog udara za prekid fibrilacije i uspostavu sinusnog ritma
- prikaz EKG-a slajdovi 16. i 17.

Značajke izvora napajanja ICD-a

- mala unutarnja impedancija struja punjenja kondenzatora je oko 2-3 A
- značajno unaprjeđenje značajki u odnosu na baterije za pacemakere
- kapacitet baterije može dati ~200 električnih udara (**9 godina**)

Visoki napon

- u implantiranom uređaju treba iz napona baterije dobiti napon do 750 V
- visokonaponski kondenzator: posebne izvedbe aluminijskih elektrolitskih kondenzatora
- volumen kondenzatora je cca 30% volumena ICD-a

ICD osigurava terapiju:

- ventrikularnih tahikardija
- ventrikularne fibrilacije
- supraventrikularnih aritmija

Postupak implantacije

- lokalna anestezija
- **kratka** postoperacijska njega (1 dan u bolnici)
- 55,000 implantacija godišnje u SAD-u

Dijagnostika tahikardija zasnovana je na:

- a) analizi PR intervala
- b) analizi srčane frekvencije (HR)

Implantabilni elektrodni kateteri

- složenija struktura od pacemakera

u prošlosti:

- implementacija uređaja u abdomen
- opća anestezija
- dug post-operativan boravak u bolnici
- post-operacijska smrtnost do 9%
- nisu programirljivi (samo visokonaponski udari)
- trajnost ~1,5 godina
- manje od 1000 implementacija godišnje

danas:

- mali uređaji
- implantirani pektoralno
- transvenska implantacija jedan rez
- lokalna anestezija
- post operacijska smrtnost < 1%
- programirljivi
- jedno i dvokomorske izvedbe
- trajnost do 9 godina

- vrste:
- a) endokardijalni
- b) intramiokardijalni

Programator

- telemetrija i programiranje putem RF impulsa
- analiza intrakardijalnih signala
- terapija: pacing i električni udari
- ispitivanje implantiranog ICD-a

6. Ugradbeni (implantabilni) medicinski uređaji

- funkcije: zamjena bioloških struktura, podrška oštećenoj biološkoj strukturi i pojačanje postojeće biološke strukture
- izvedba: transplantirano biološko tkivo, umjetno uzgojeno tkivo, pasivni implantanti, aktivni medicinski uređaji

Pasivne naprave

- a) ortoza ortopedska naprava ili uređaj za potporu, poravnanje, sprječavanje ili ispravljanje deformacije, ili poboljšavanje funkcije pokretnih dijelova tijela (npr. naočale, štapovi...)
- b) proteza umjetna naprava koja zamjenjuje nestali ili ozlijeđeni dio tijela

Aktivni ugradbeni elektronički uređaji

- funkcije:
 - 1) **terapija** najčešće elektroterapija putem električkih impulsa predanih tkivu ili organu
 - 2) **monitoriranje** (praćenje) signala ili drugih fizioloških veličina radi:
- smanjenja rizika za pacijenta (pad kod starijih)
- optimiranja liječenja (regulacija lučenja inzulina kod dijabetesa)

Električka simulacija

- **jednostavnost**: najčešće pravokutni valni oblik, konstantni napon ili struja, parametri impulsa jednostavno se kontroliraju
- ciljno tkivo: mišići, živci, ostala tkiva
- funkcije:
 - 1) **dijagnostika** mjerenje brzine provođenja živcima, osjetljivost...
 - 2) **terapija** rehabilitacija, el. stimulacija skeletnih mišića, el. stimulacija srca, defibrilacija...
- trajanje simulacije:
 - a) **privremeno** kratkotrajno ili periodički (rehabilitacija, defibrilacija, potiskivanje bola; površinske i potkožne elektrode)
 - b) **trajno** održavanje vitalnih funkcija (rad srca, disanje), poboljšanje kvalitete života (duboka stimulacija mozga, fiziološka elektrostimulacija srca, potiskivanje bola...); implantirane elektrode
- stimulatori
 - 1) vanjski (eksterni)
 - 2) unutarnji (implantirani)

Električka stimulacija – sistematizacija po stimuliranom organu

- srce povremena ili trajna aritmija, prekid rada srca, fibrilacija
- mišići omogućiti kontrakciju mišića radi ostvarivanja pokreta udova, ošita, terapija inkontinencije
- mozak i živčani sustav zamjena ili pojačavanje osjeta, terapija bolesti (epilepsija, hipertenzija) ili simptoma (bol, tremor, disanje)
- kosti ubrzavanje zacjeljivanja kostiju nakon prijeloma
- ostali organi

Električki stimulatori

- stimulacija mišića električkim impulsima
- postizanje kontrakcije mišića
 - a) rehabilitacija

- b) prevencija slabljenja (atrofije) mišića kod dugotrajne imobilizacije
- c) ispitivanje mišića i/ili živaca
- d) sport trening i jačanje mišića
- električni impulsi su zamjena za akcijske potencijale iz središnjeg živčanog sustava
- površinske elektrode, iglaste elektrode ili implantabilne elektrode

Modeliranje električke simulacije

- za opisivanje podražljivosti tkiva, koristi se krivulja koja opisuje odnos amplitude impulsa i njegovog trajanja (**I-t krivulja**)
- matematički se opisuje kao hiperbola
- temelji se na podacima dobivenima empirijski
- za beskonačno duge pravokutne impulse intenzitet podražaja mora postići vrijednost $I_0 = V_T/R$ ta struja naziva se **struja reobaze**
- trajanje impulsa koje na I-t krivulji odgovara dvostrukoj struji reobaze naziva se vrijeme kronaksije

Modeliranje podražljivosti

- drugi model podražljivosti temelji se na električkim svojstvima stanice
- stanična membrana može se modelirati linearnim električkim sklopom koji se sastoji od paralelnog spoja otpornosti r i kapacitivnost c membrane
- slajd 12.

Intenzitetno-vremenska krivulja

- normalizirana na vrijeme kronaksije za struju, naboj i energiju
- najmanja energija impulsa potrebna za ostvarivanje nekog efekta stimulacije je pri trajanju impulsa t=1,25*Te; gdje je Te vrijeme kronaksije

Valni oblici stimulusa

- najčešće **pravokutni** oblici impulsa
- trajanje i amplituda impulsa izabiru se sukladno vremensko inenzitetskoj krivulji za pojedini mišić/skupinu mišića ili živac

Frekvencija impulsa stimulacije

- prilikom stimulacije niskim frekvencijama impulsa, može se razlikovati svaki pojedinačni pokret kao posljedica stimulusa
- povećanjem frekvencije dolazi do trzanja mišića, a pri frekvencijama od 40-80 Hz dolazi do glatkog pokreta
- takva kontrakcija mišića naziva se **tetanička kontrakcija**

Električki stimulatori srca

- ugradbeni ili implantabilni
- prva humana ugradnja 1958.
- funkcije: stimulacija srčanog mišića, senziranje intrakardijalnog EKG-a, senziranje okoline, komunikacija s programatorom/medicinskim osobljem
- temeljen na mikroračunalu

Srčana podražljivost i provodni sustav srca

- **sinusno-atrijski** (**SA**) čvor primarni predvodnik srčanog ritma (pacemaker)
- specijalizirano mišićno tkivo sa svojstvom samopodražljivosti (spontano stvara impulse)
- impuls se širi kroz atrije brzinom 1 m/s prema atrioventrikulskom čvoru (AV)
- AV čvor je jedina provodna veza između atrija i ventrikula
- slika na slajdu 22.

Elektrokardiogram

- zapis električke aktivnosti srca
- značajan za utvrđivanje električke aktivnosti srca
- pokazuje abnormalnosti srčanog ritma
- omogućuje dijagnostiku stanja srčanog mišića

Akcijski potencijal srčanih mišićnih vlakana

- razlikuje se od akc. potencijala ostalih ekscitabilnih stanica (postojanje platoa, tj. zadržavanje u hiperpolariziranom stanju nekoliko stotina ms)
- različiti tipovi srčanih stanica različite karakteristike (različit prag podražljivosti, različita frekvencija otkucaja, različit valni oblik)

Vrste pacemakera

- pacemaker se sastoji od elektroničkog uređaja koji se ugrađuje pod kožu te jedne ili više elektroda postavljenih na elektrodne katetere, a koje se putem vena postavljaju u srčane komore
- vrste:
 - a) **jednokomorni pacemakeri** stimulira se jedna srčana komora (najčešće desna klijetka)
 - b) **dvokomorni** elektrode se postavljaju u dvije srčane komore (desna pretklijetka i klijetka)
 - c) **trokomorni ili uređaji za resinkronizaciju srca** desna pretklijetka te desna i lijeva klijetka
 - d) suvremeni srčani kardioverter defibrilatori (u sebi sadrže i funkciju pacemakera)
- pacemakeri se koriste u liječenju sporih srčanih ritmova (**bradiaritmija**)
- **bradikardija** srčani ritam koji je niži od 60 otkucaja u minuti

Dijelovi srčanog stimulatora

- slika na slajdu 37.
- kućište, izvor napajanja, konektor, kateter, elektroda, elektronički sklopovi

Načini rada

- 1) **asinkroni** (kompetitivni)
- 2) **na zahtjev** (nekompetitivni)
 - a) sinkroni: na R zubac ili na P val
 - b) inhibirajući na R zubac
- 3) **fiziološki** (engl. rate responsive) frekvencija se pomoću različitih algoritama postavlja na fiziološku to jest pretpostavljenu razinu fizičke aktivnosti

Vremenski dijagram jednog ciklusa

- 3 vremenska razdoblja:
 - a) Tr refraktorno vrijeme
 - b) **Tn vrijeme osluškivanja** (engl. noise sampling period)
 - c) **Ta vrijeme sinkronizacije** (engl. alert period)
- prikaz na slajdu 40.

Elektrode

- postavljanje:
 - 1) **epikardijalno** na površinu srca
 - 2) intramiokardijalno pričvršena u srčani mišić
 - 3) **endokardijalno** ili intraluminarno pritisnuta na stijenku srčanog mišića s unutrašnje strane
- polaritet pri stimulaciji:
 - a) **monopolarna** (unipolarna) referentna elektroda je kućište stimulatora
 - b) bipolarna dvije elektrode na elektrodnom kateteru
- **pasivno pričvršćivanje elektrode** četiri hvataljke uhvate se za fibrozna vlakna u unutrašnjosti srca
- **aktivno pričvršćivanje** helikoidalni dio elektrode ugradi se u srčani mišić, pozicioniranje bilo gdje u srcu
- materijali od kojih se izrađuju elektrode **plemenite kovine**:
 - 1) platina i njene slitine
 - 2) titan i njegove slitine
 - 3) iridij
 - 4) nehrđajuće željezo
 - 5) kompozitni materijal vitreous (staklo+kovina+ugljik)
- značajke materijala:
 - a) **biokompatibilnost** biološka prihvatljivost i podnošljivost materijala korištenih u medicini i stomatologiji
 - b) **inertnost** ne otpušta čestice materijala u tijelo
 - c) otpornost na koroziju
- površina elektrode:
 - 1) **hrapava** radi povećanja efektivne površine (smanjenja gustoće struje)
 - 2) **porozna** omogućuje otpuštanje lijeka (steroida) radi smanjenja upalnog procesa nakon ugradnje elektrode (1 mg pohranjen u vrh elektrode)

Elektrodni kablovi

vodič:

- isprepleteni spiralni višežični vodič
- mali otpor
- materijal: slitina više kovina (Co, 35% Ni, 20% Cr, 10% Mo) s jezgrom od srebra
- čvrstina, savitljivost, elastičnost dugotrajnost

izolator:

- velika impedancija
- biokompatibilnost
- materijal: silikonska guma i poliuretane
- čvrstina, savitljivost, elastičnost dugotrajnost
- za vrijeme ugradnje mjeri se **prag podražljivosti** srčanog mišića pacijenta
- magnituda impulsa namješta se na **dvostruku vrijednost praga stimulacije**, radi veće pouzdanosti

Izvor napajanja

- baterija: primarni članak temeljen na litiju: litij (-) / jodid -poli-2-vinilpiridin (+)
- velika gustoća energije
- napon praznog hoda: 2,8 V stabilan za vrijeme višegodišnje uporabe
- dva do tri članka serijski vezana
- kapacitet baterije 1 Ah do 3 Ah
- zamjena stimulatora kad kapacitet baterije padne na 0,09 Ah
- baterija za vrijeme rada ne proizvodi plinove
- relativno visok izlazni otpor baterije

Senzori u fiziološkim pacemakerima

- **akcelerometar** pokreti, tjelesna aktivnost
- **mikrofon** disanje

- **električna impedancija** pletismografija (promjena intrakardijalnog volumena, disanje)
- intrakardijalni ECG (analiza QT segmenta, površina R zupca)
- mjerilo krvnog tlaka
- **termistor** temperatura krvi
- pH
- dvostruko senziranje za povećanje pouzdanosti

Akcelerometri – MEMS

- osjećaju promjene nastale uslijed pomicanja
- prikaz piezoelektričkog kristala za mjerenje akceleracije u pacemakeru

Pletismografija

- promjene impedancije prsnog koša mjere se između elektrode u srcu i kućišta pacemakera

Modeliranje

- proces stvaranja modela
- model reprezentacija strukture i rada nekog sustava
- jednostavniji je od sustava kojeg reprezentira
- svrha: omogućiti analizu sustava pri promjeni utjecajnih veličina
- kompromis između realističnosti i jednostavnosti
- vrste: fizički, konceptualni, matematički, deskriptivni i eksplanatorni
- u biomedicinskim znanostima:
 - 1) in vivo organizmi za proučavanje koji će dati uvid i razumijevanje sveobuhvatnijih pojava
 - medicina koristi modelske organizme prije kliničkih pokusa na ljudima (minimizacija rizika)

o npr. vinska mušica (genetičari, miševi, štakori, bakterije...)

2) ex vivo

o eksperimentira se na stanicama, tkivima ili organima izvađenim iz organizma, u vanjskom okruženju s minimalnim izmjenama prirodnih uvjeta

3) in vitro

 izolira se specifični živi proces i reproducira u laboratorijskim uvjetima (u epruveti, u Petrijevim posudama)

4) in silico

o računalni modeli izraženi algoritmima u obliku računalnih programa (simulacijski modeli)

Vrste simulacijskih modela

- 1) statički i dinamički modeli
- statički: opisuju sustave u stacionarnom stanju
- dinamički: postoji vremenski promjenjiva interakcija među varijablama
- 2) deterministički i stohastički modeli
- stohastički: sadrže bar jednu slučajnu varijablu
- 3) linearni i nelinearni modeli

Koraci u razvoju simulacijskih modela

- a) zahtjevi na model
- b) konceptualni model
- c) matematički model
- d) programska implementacija
- aproksimacija vremenski kontinuiranih sustava u vremenski diskretne
- algoritmi
- programska implementacija
- e) simuliranje rezultata
- f) validacija modela
- tehnike: simuliranje modela poznatim ulaznim signalima i usporedba izlaza s izlazom stvarnog sustava
- drugo: razdvoje se podatci u skup za učenje i skup za vrednovanje

Model srca kao strujnog dipola

- valni oblik EKG-a ovisio je o položaju elektroda i načinu mjerenja
- srce- izvor (generator) u volumnom vodiču
- srce modeliramo kao strujni dipol (=idealizirani model izvora u kojem struja izvire na jednom i ponire na drugom kraju)
- za vrijeme srčanog ciklusa dipol mijenja veličinu i orijentaciju
- napon koji mjerimo između nekog para elektroda proporcionalan je projekciji vektora dipola na pravac koji prolazi elektrodama

Hodgkin-Huxleyev model

- u izvanstaničnoj tekućini je velika koncentracija Na+ iona, a u citoplazmi K + iona
- u nepobuđenoj stanici ovi koncentracijski gradijenti čine membranu polarnom (negativnom iznutra)
- u pobuđenoj stanici dolazi do brze promjene polarnosti membrane mijenjanjem njene propusnosti za Na + i K + (nastanak i širenje akcijskog potencijala)
- 1945. Hodgkin i Huxley uvode mikroelektrodu u divovski akson lignje i pokazuju da tijekom akcijskog potencijala dolazi do obrata polariteta napona na membrani
- 1952. Hodgkin i Huxley postavljaju suvremenu teoriju nastanka i širenja akcijskog potencijala
- 1963. Hodgkin i Huxley dobivaju Nobelovu nagradu za teoriju nastanka i širenja akcijskog potencijala

Medicinsko oslikavanje

- koristi se u dijagnostičkim postupcima i intervencijskim postupcima
- osnovni principi za medicinsko oslikavanje (engl. medical imaging)
 - a) radiografija
 - b) računalna tomografija
 - c) magnetska rezonancija
 - d) ultrazvuk
 - e) nuklearna medicina
- proces: objekt snimanja -> uređaj za snimanje -> podatci -> algoritam -> rekonstrukcija presjeka objekta

RAČUNALNA TOMOGRAFIJA

- ideja: rekonstruirati presjek objekta iz velikog broja projekcija
- Radon otkrio matematički postupak rekonstrukcije iz projekcija (1917.)
- Cormack i Hounsfield, Nobelova nagrada za medicinu, 1979.
- rani CT uređaji: rezolucija slike 128*128 i lošija kvaliteta slike
- moderni CT uređaji: rezolucija slike 1024*1024 i sliku visoke kvalitete
- željena rezolucija i debljina sloja ovise o dijagnostičkim potrebama
- kompromis između rezolucije i doze radijacije
- radiološki standardi definiraju dozvoljene doze za snimanja pojedinih organa

VIRTUALNA STVARNOST

- koriste se za virtualnu endoskopiju
- endoskopija snimanje unutrašnjosti organizma kroz prirodni ili umjetni otvor na tijelu
- koristi 3D oslikavanje te analizu slike za vizualizaciju unutrašnjosti tijela bez umetanja klasičnog endoskopa
- virtualna bronhoskopija, virtualna kolonoskopija, odmotavanje crijeva

ULTRAZVUK

- prva dijagnostička uporaba ultrazvučnog oslikavanja u Austriji za dijagnostiku tumora mozga, 1942.
- Doppler oslikavanje, 1956.
- Beam forming metode (phased-array tehnologija), 1968.

- princip: emitirani zvuk se reflektira na mjestima gdje dolazi do promjene brzine zvuka u tkivu
- prijemnik registrira kašnjenje reflektiranog vala i uz poznatu brzinu širenja zvuka određuje dubinu na mjestu refleksije

MAGNETSKA REZONANCIJA

- Paul Lauerbur objavio prvu MR sliku, 1973.
- Lauterbur i Mensfield, Nobelova nagrada za medicinu, 2003.
- prvi komercijalni MR 1980-ih
- funkcionalni MR: 1993.
- princip: temeljen na mjerenju magnetskih svojstava atoma vodika u tkivu
- atomi vodika čine vodu tako da je MR oslikavanje pogodno za snimanje organa koji sadrže u sebi vodu
- dijelovi tijela u kojima je manje vode (npr. kosti) slabije se vide na MR slikama
- primjene:
- srčani MRI omogućuje analizu pokreta srca
- diffusion tensor imaging mjeri difuziju vode, omogućuje snimanje nervnih vlakana u mozgu
- funkcionalni MRI omogućuje oslikavanje aktivnosti mozga tijekom raznih aktivnosti
- MR spektroskopija mjeri distribuciju kemijskih tvari u svakom vokselu tkiva

11. Računalna tomografija (CT)

- engl. computed tomography (CT)
- modalitet snimanja koji generira slike **presjeka ljudskog tijela** koje prikazuju apsorpciju rendgenskih zraka
- ekstenzija klasične tomografije (rezanjem se dobivaju tanki slojevi tkiva preparati koji se gledaju na mikroskopu)
- izraz CT koristi se isključivo za **rendgensku** računalnu tomografiju
- prvi CT scanner Hounsfield 1972. godine
- CT uređaj mjeri **prigušenje rendgenskih zraka** uzduž velikog broja linija
- mjeri se prigušenje za veliki broj kutova i udaljenosti od centra
- na temelju mjerenja prigušenja rekonstruira se slika presjeka

Geometrija snimanja (slike predavanje 11. slajd 6)

- a) geometrija s paralelnim zrakama
- b) fan-beam geometrija točkasti izvor zračenja
- c) mjerenja iz drugog kuta

Hounsfieldova jedinica

- moderni CT skeneri daju slike u kojim se vrijednosti piksela izražavaju pomoću Hounsfieldovih jedinica (HU) definiranih kao:

$$CTnumber\ (in\ HU) = \frac{\mu - \mu_{H_2O}}{\mu_{H_2O}} * 1000$$

- gdje je μ linearni apsorpcijski koeficijent koji zauzima vrijednosti:

zrak	-1000 HU
voda	0 HU
kosti i druga tkiva	100-1000 HU

Detektori u CT uređajima

- sastoje se od scintilacijskog kristala i fotodiode
- scintilacijski kristal pretvara foton rendgenskog zračenja u vidljivo svjetlo
- fotodioda detektira vidljivo svjetlo i pretvara ga u električni naboj
- sustav za akviziciju podataka integrira struju iz fotodiode i konvertira ju u naponski signal te nakon A/D konverzije dobivamo numerički podatak

Rekonstrukcija slike iz projekcija

- pretpostavimo geometriju s paralelnim zrakama (pod a) gdje $\mu(x,y)$ predstavlja koeficijent gušenja na poziciji (x,y) i da je $\mu(x,y) = 0$ izvan područja dijametra FOV (field of view)
- jednadžbe: str.10-13
- projekciju je dovoljno mjeriti samo za raspon kuta Θ od 0 do pi

Sinogram

 mjerenje projekcija pod raznim kutevima i na raznim pozicijama zrake r i daje 2D skup mjerenja p(r, Θ)

- problem rekonstrukcije slike je iz izmjerenog sinograma p (r, Θ) izračunati $\mu(x,y)$
- to je inverzni problem

Diskretizacija prostora

- u praksi je moguće izmjeriti samo za konačni broj projekcija
- diskretni sinogram p($n*\Delta r$, $m\Delta\Theta$) je matrica s n stupaca i m redaka
- Δr je razmak između uzoraka u r dimenziji
- $\Delta\Theta$ je finoća uzorkovanja u dimenziji Θ

Radonova transformacija

- matematička transformacija neke funkcije f(x,y) u sinogram $p(r,\Theta)$
- za dani presjek računaju se transformacije
- slaid 16.
- inverzna Radonova transformacija rješava se problem rekonstrukcije slike iz projekcija može se riješiti na taj način

Projekcijski teorem

- neka je $F(k_x, k_x)$ 2D Fourierova transformacija slike f(x, y) slajd.18

Rekonstrukcija slike iz projekcija – Radonova transformacija

- neke metode za rekonstrukciju slike iz projekcija su temeljene na projekcijskom teoremu:
 - a) direktna Fourierova rekonstrukcija
 - b) metoda filtriranja povratne projekcije
 - c) pristupi temeljeni na linearnoj algebri

Fan beam geometrija

- prve genracije CT uređaja imale su paralelnu geometriju, dok su sljedeće generacije koristile su fan-beam geometriju
- bolje opisuje realnu situaciju gdje je izvor zračenja točkasti i zrake se šire radijalno iz jedne točke

- u praksi je teže dobiti paralelni snop zraka
- parametri zrake su β i γ , veza dana na slajdu 22.

Rekonstrukcija slike iz projekcija – fan-beam projekcija

- a) preslagivanje projekcija (engl. rebinning)
- preslagivanjem se za svaku fan-beam zraku identificira korespondentna zraka u paralelnoj geometriji
- nakon što su sve zrake presložene primjeni se bilo koji algoritam za rekonstrukciju u paralelnoj geometriji

CT oslikavanje u 3D

- a) cirkularni CT
- najjednostavniji način je oslikavanjem više 2D presjeka
- za svaku sljedeću 2D sliku stol na kojem leži pacijent pomiče se za neku udaljenost to se zove aksijalno skeniranje
- razmak između slojeva ovisi o dijagnostičkim potrebama i potrebi minimizacije radijacije
- kad su sve 2D slike prikupljene kombiniranjem 2D slika dobivamo jedan 3D volumen
 - b) spiralni CT
- engl. helical CT
- tehnika u kojoj se rendgenska cijev kontinuirano rotira oko pacijenta, a stol na kojem pacijent leži se pomiče jednolikom brzinom
- kvocijent aksijalnog pomaka stola za vrijeme jednog okreta izvora zračenja oko pacijenta i debljine sloja detektora zove se engl. pitch
- prednosti:
 - 1) stol ne treba naizmjence pokretati i zaustavljati te svaki put čekati da se tijelo pacijenta umiri
 - 2) povećava se brzina snimanja (važno kad pacijenti ne mogu dugo ostati mirni ili zadržati dah)
 - 3) smanjuje se vjerojatnost pojave artefakata uslijed pomicanja pacijenta (ili organa)

- c) multi-slice CT
- u modernim CT uređajima detektori su organizirani u više redova (ne samo u jednom)
- na taj način moguće je odjednom mjeriti zračenje u više slojeva
- moguća je još veća brzina pomaka stola na kojem leži pacijent
 - d) volumetrijski CT
- veći broj redova detektora omogućuje da se u jednom kruženju izvora zračenja snimi cijeli organ
- cone-beam geometrija
- tada se koriste 3D metode rekonstrukcije

Tipovi CT uređaja

- a) CT uređaji opće namjene
- FOV: 0,5 m
- 3 rotacije u sekundi
- b) multi-slice CT
- 320 redova detektora
- debljina reda: 0,5 mm
- c) namjenski CT uređaji
- intervencijski, za glavu, za dojku

Kliničke primjene

- glava i vrat, pluća, urogenitalni trak, abdomen, mišićno-skeletni sustav

Biološki efekti i sigurnost

- radijacijska doza je veća nego kod radiografije jer se snima više projekcija
- kompromis između radijacijske doze i dijagnostičke kvalitete

12. Magnetska rezonancija

- princip poznat od 1940., praktična primjena tek od 1973.
- Lauterbur i Mansfield Nobelova nagrada za medicinu 2003.

Fizikalni princip

- detektiraju se **atomi vodika** (a 2/3 ljudskog tijela sastoji se od vode)
- atom vodika ima jedan proton koji se vrti oko svoje osi i ponaša kao mali **magnet**
- određenim nizom pobuda magnetskim poljem može se **mjeriti magnetsko polje** koje protoni generiraju u svakoj prostornoj koordinati

MRI oslikavanja

- moguće je mjeriti prisutnost atoma vodika u svakom vokselu mjerenog volumena
- prednost : nije invazivan
- razne dijagnostičke primjene

Različite vrste slika:

- a) T1 slika (T1 weighted) bolje pokazuje anatomiju
- b) **T2** slika (T2 weighted) bolje pokazuje razne patologije
- c) **gustoća protona** (proton density) koristi se kad T1 i T2 daju slične slike
- moguće raditi **fuziju** više slika u jednu radi bolje vizualizacije sadržaja u slikama

MR sekvencije

- spin-echo
- gradient-echo
- 3D oslikavanje (dio volumena je selektiran a ne jedan tanak sloj)
- sekvencije za brza snimanja

Funkcionalna MRI snimanja

- koncentracija kisika u tkivu mijenja izmjereni signal
- **BOLD** efekt (blood oxygenetion level dependent)
- kad se neuroni u mozgu aktiviraju povećava se protok krvi i to se vidi na MRI slici
- pacijent leži u MRI uređaju i slika se snimi prije određene aktivnosti i nakon aktivnosti
- nakon oduzimanja slika možemo vidjeti **koji dio mozga** se aktivirao

Vrste MRI uređaja

a) zatvoreni MRI uređaj za dijagnostičku primjenu

- b) otvoreni MRI uređaj za intraoperativnu primjenu
- manji osjećaj klaustrofobije
- omogućuje operacije gdje se koristi navođenje pomoću MRI
- npr. navođenje igle za biopsiju, katetera za administraciju antibiotika ili sonde za termoterapiju

Problemi intraoperativne primjene

- moraju se koristiti **MRI kompatibilni materijali** (feromagnetski materijali su opasni jer ih privlači magnetsko polje uređaja i jer proizvode artefakte u slikama)
- svi elektronički uređaji koji proizvode EM zračenje moraju biti **oklopljeni** da ne smetaju MR uređaju koji detektira slaba magnetska polja
- mora se koristiti **tehnologija optičkih vlakana** umjesto običnih kablova

Konstrukcija MRI uređaja

- MRI moraju precizno generirati složena magnetska polja velike indukcije (do 10 T)
- takva jaka polja zahtijevaju **supravodljive magnete** skuplja konstrukcija uređaja
- uređaj mora biti u prostoriji koja je magnetski oklopljena da ne bi smetala vanjska polja

Ograničenja u uporabi

- može se provoditi samo na pacijentima koji nemaju nikakvih metalnih proteza, metalnih stranih tijela ili uređaja ugrađenih u tijelu
- jaka magnetska polja mogu pomaknuti metalni predmet u tijelu ozljede

13. Nuklearna medicina

- u pacijenta se unosi **radiofarmaceutik** koji sudjeluje u nekom metaboličkom procesu te emitira gama zrake
- uređajima za oslikavanje se mjeri emisija zračenja iz tijela pacijenta i tako se dobiva informacija o odabranom metaboličkom procesu
- kasne 1950-e: Hal Anger uvodi prvu gama kameru
- ta kamera koristi 2D detektor gama zračenja za generiranje 2D slike
- scintigrafija snimanje gama kamerom

Emisijska tomografija

- Angerova kamera može se koristiti za tomografiju
- sličan princip kao kod CT-a
- iz projekcija može se računati prostorna distribucija radiofarmaceutika
- **SPECT** (engl. single photon emission computed tomography)
- zračenje dolazi iz **tijela pacijenta**, a ne izvana kao kod CT-a
- Anger: korištenjem dvije scintilacijske kamere može se detektirati par fotona koji nastaju raspadom određenih radionuklida i istovremeno kreću u različitim smjerovima **PET** snimanje (pozitronska emisijska tomografija)
- u kliničkoj uporabi od 90-ih godina

Radionuklidi

- **nuklid**: atom sa karakterističnim brojem protona i neutrona te definiranim nuklearnim stanjem
- **radionuklidi**: nuklidi kod kojih postoji višak mase ili energije pa stabilnost postižu radioaktivnim raspadom
 - a) beta raspad (beta minus i beta plus)
 - b) gama zračenje metastabilno (izomerno) stanje
 - c) elektronski zahvat
 - d) alfa raspad
- radionuklidi se u nuklearnoj medicini koriste za :
 - 1) **dijagnostiku** (oslikavanje) kao označivači tehnecij, jod, talij
 - 2) **terapiju** (zračenje) kao ozračivači
- u dijagnostici se koriste za označavanje spojeva (farmaceutika) koji sudjeluju u određenom metaboličkom procesu
- radiofarmaceutik: spoj radionuklida i farmaceutika

Detekcija gama zračenja

- kod CT-a (transmisijska tomografija) veliki broj fotona se detektira u kratkom vremenskom intervalu
- u emisijskoj tomografiji: mali broj fotona se detektira u duljem vremenskom intervalu

Detektori gama zraka

- detektor se sastoji od fotomultiplikacijske cijevi spojene na scintilacijski kristal
- proces foto-električke apsorpcije: scintilacijski kristal apsorbira foton gama zraka
- elektron koji je nastao putuje kroz kristal i svoju kinetičku energiju distribuira tisućama drugih elektrona koji emitiraju fotone
- emitirani fotoni su vidljivo svjetlo koje se pojačava pomoću fotomultiplikacijske cijevi

Kolimatori gama zraka

- u radiografiji se točno zna iz kojeg smjera je došlo detektirano zračenje (poznata projekcijska linija)
- u emisijskoj tomografiji potrebna je **kalimacija** jer je nepoznata prostorna distribucija izvora zračenja (izvor je pacijent)
- kod gama kamere i SPECT snimanja kalimator je: debela olovna ploča s izbušenim rupama
- samo zrake okomite na ploču mogu proći
- problem: puno zraka (koje dolaze pod kutem) su apsorbirane te se tako smanjuje osjetljivost detekcije
- kod PET snimanja kalimator nije potreban istovremeno se detektira par fotona koji određuju projekcijsku liniju stoga PET ima veću osjetljivost

Uređaji

1) gama kamera

2) SPECT

koristi mehanički kolimator koji definira projekcijsku zraku koja odgovara pojedinom detektoru

3) PET

- projekcijska zraka je određena sklopom za detekciju koincidentnih udara fotona

Rekonstrukcija slike iz projekcija

- rezultat akvizicije podataka: izmjerene projekcije uzduž poznatih projekcijskih linija

- metodama rekonstrukcije slike se iz projekcija dobiva slika presjeka objekta ili slika određenog volumena

Broj detektiranih fotona - SPECT

- broj detektiranih fotona na mjestu d uzduž linije s dan je izrazom:

$$N(d) = \int_{-\infty}^{\infty} \lambda(s) \cdot e^{-\int_{s}^{d} \mu(\xi) d\xi} \cdot ds$$

- gdje je:

μ: koeficijent linearne apsorpcije

λ: prostorna distribucija radionuklida uzduž projekcijske linije

- problem: nepoznati su λ i μ - složeni problem rekonstrukcije

Broj detektiranih fotona – PET

- broj detektiranih fotona na pozicijama d1 i d2 uzduž linije s:

$$N(d_1, d_2) = e^{-\int_{d_1}^{d_2} \mu(s)ds} \int_{-\infty}^{\infty} \lambda(s)ds$$

- gdje je:

μ: koeficijent linearne apsorpcije

λ: prostorna distribucija radionuklida uzduž projekcijske linije

 koeficijent linearne apsorpcije μ (atenuacija) jednak je za svaku točku uzduž projekcijske linije – jednostavnija rekonstrukcija

Metode rekonstrukcije

- a) Fourierova rekonstrukcija
- b) Metoda filtrirane povratne projekcije
- c) Iterativne metode (Bayesova, MAP, ML)
- d) 3D rekonstrukcija (cone beam)
- **kontrast slike** je određen karakteristikama radionuklida i ograničen raspršenjem fotona

- **kvaliteta slike** (**rezolucija**) mjeri se širinom impulsnog odziva na polovici od maksimalne vrijenosti (full width at half maximum)
 - 1) za PET: 4-8 mm
 - 2) za SPECT: 10-15 mm

Uređaji

- danas praktički nema razlike između gama kamere i SPECT uređaja
- svaki SPECT uređaj može funkcionirati kao gama kamera ako se gleda iz samo jednog kuta
- rotacijom gama kamere i snimanjem iz više kutova moguće je napraviti SPECT rekonstrukciju slike
- a) PET
- ima jedan prsten kristalnih detektora promjera oko 1 m
- nije potrebna rotacija detektora **detektor je fiksni**
- postoji samo pomični stol na kojem leži pacijent
- detektori su kristali dimenzija 4mm * 4mm organizirani u 2D polje i spojeni na fotomultiplikacijsku cijev
- može imati više takvih prstenova čime se povećava širina pogleda (field of view)
- tri prstena od 13 x 4 mm svaki daju širinu pogleda od 16 cm

Hibridni uređaji

- a) SPECT-CT
- b) SPECT-MR
- c) PET-CT
- d) PET-MR
- prednost nije potrebna naknadna registracija slika

Klinička upotreba

- za SPECT kao radionuklid se najčešće koristi tehnecij (vrijeme poluraspada: 6h)

 za PET se koriste radionuklidi koji imaju vrijeme poluraspada od 2-20 min (zbog tog kratkog vremena poluraspada takvi radionuklidi moraju se proizvoditi u ciklotronu u blizini bolnice)

Kliničke primjene

- metabolizam kostiju
- miokardijalna perfuzija
- plućna embolija
- detekcija tumora
- snimanje funkcije štitne žlijezde
- neurološke bolesti demencija

FDG-PET studija

- FDG je molekula fluoro-deoksi-glukoze koja je odlična za **praćenje potrošnje glukoze** u tkivu
- otkriva tumore koji imaju **veću metaboličku aktivnost** (veću potrošnju glukoze)

Scintigrafija

- pri pogledu na pacijenta koji ima frakturu, vidi se veća metabolička aktivnost u području frakture

SPECT slika mozga

- snimanjem dopaminskih receptora (DAT, D2) u mozgu mogu se detektirati promjene nastale uslijed Parkinsonove bolesti

14. Ultrazvuk

- prvi put klinički primijenjen u Austriji 1942.
- prvi uređaj koji je mogao prikazivati sliku u stvarnom vremenu → izradio Siemens 1965.

- široka raspoloživost od sredine 1970-ih

PREDNOSTI	MANE
neinvazivno	šum
nije skupo (kao CT i MR)	mala prostorna rezolucija
mogućnost prijenosa	
visoka vremenska rezolucija	

ULTRAZVUČNI VALOVI

- longitudinalni kompresijski valovi
- frekvencije korištene u medicini > 2.5 MHz
- generiraju se i detektiraju pomoću piezoelektričnih kristala

Piezoelektrični kristali

- deformiraju se pod utjecajem električnog polja i generiraju električno polje uslijed mehaničke deformacije
- kad se na takav kristal primijeni izmjenični napon generira se **mehanički val** iste frekvencije
- takav kristal zove se PRETVARAČ (engl. tranducer)

LINEARNA VALNA JEDNADŽBA

$$\nabla^2 \cdot \mathbf{p} - \frac{1}{\mathbf{c}} \cdot \frac{\partial^2 \mathbf{p}}{\partial \mathbf{t}^2} = 0$$

gdje je:

p – akustički pritisak

c – brzina širenja vala u mediju

Brzina zvuka u:

mekanom tkivu:	c=1540 m/s
kosti:	c=4000 m/s
zraku:	c=300 m/s

Propagacija u homogenom mediju

$$H(f,z)=e^{-\alpha_0\cdot f^n\cdot z}$$

gdje je:

H – atenuacija vala

α – koeficijent prigušenja

f – frekvencija

z – dubina u tkivu

- **nelinearnost**: linearna valna jednadžba vrijedi samo za male amplitude zvučnog vala
- **difrakcija**: pojava složenih uzoraka valova u blizini izvora zvuka

PROPAGACIJA U NEHOMOGENOM MEDIJU

- a) REFLEKSIJA
- Snellov zakon refleksija i transmisija vala

$$\frac{\sin \theta_i}{c_1} = \frac{\sin \theta_t}{c_2} = \frac{\sin \theta_r}{c_1}$$

Gdje je:

theta_i – ulazni kut

theta_r – kut refleksije

theta_t – kut transmisije

c1 i c2 – brzine zvuka u dva medija

- do refleksija dolazi na granici dvaju različitih tipova tkiva

- b) RASPRŠENJE
- do raspršenja dolazi zbog refleksija uslijed nehomogenosti tkiva (ne samo na granici između organa)

točkasta nehomogenost	točkasto raspršenje – generira val koji se iz
	točke širi u svim smjerovima

veće nehomogene regije	skup točkastih raspršenja čiji se efekti
	zbrajaju

Akvizicija podataka

1) A-mod

- odmah nakon emitiranja impulsa zvuka, pretvarač se koristi kao prijemnik za detekciju reflektiranog signala
- ako se objekt ne miče sva su mjerenja ista
- ako se miče svako je drugačije

2) *M-mod*

- dolazi od engl. motion
- visoka frekvencija mjerenja 1000 u sekundi
- linije odgovaraju ponovljenim mjerenjima

3) *B-mod*

- dolazi od engl. brightness
- slika se dobiva translacijom ili rotacijom pretvarača
- za svaki položaj pretvarača snima se jedna linija

Rekonstrukcija slike

Koraci:

- a) filtriranje reflektiranog signala (uklanjanje šuma)
- b) detekcija ovojnice reflektiranog signala
- služi za eliminaciju brzih fluktuacija amplitude RF signala, koje nisu bitne za vizualizaciju
- c) korekcija prigušenja

d) kompresija dinamičkog opsega vrijednosti

- na vrijednosti signala primjenjuje se log kompresija koja izdiže male vrijednosti signala relativno u odnosu na veće vrijednosti
- tako se postiže poboljšanje slike jer je moguće vidjeti veći dinamički opseg signala

e) konverzija skeniranih linija

Trajanje akvizicije i rekonstrukcije

- u medicinskim primjenama svaka linija na slici odgovara dubini od oko 20 cm

vrijeme akvizicije jedne linije: 0.267 ms

za sliku s 120 linija treba 32 ms

- brzina: 30 slika u sekundi

Doppler ultrazvuk

kontinuirani val (CW)	 u sondi se koriste dva pretvarača: jedan za generiranje UZ vala i drugi smješten u istoj sondi služi za prijem signala iz razlike poslane i primljene frekvencije izračunava se brzina snimljenog objekta ovaj način snimanja ne daje prostornu informaciju nego samo informaciju o brzini npr. mjerenje brzine krvi kroz srčani zalistak
pulsni val (PW)	 emitira se niz sinusoidalnih signala (impulse) te se analizom reflektiranih signala zaključuje o frekvenciji tj. brzini objekta koji se kreće
kolor Doppler	 izračunava brzinu objekta na temelju razlike u fazama primljenog signala

Ultrazvučni uređaji

- manjih dimenzija od drugih vrsta uređaja za oslikavanje
- sastoje se od:

- pretvarača (koji je spojen na sustav za obradu slike)
- ugrađenog računala
- monitora za prikaz slike
- postoje i portabilni UZ uređaji za spajanje na laptop

Pretvarač s linearnim poljem

- sadrži 1-D niz piezoelektričnih kristala koji se **sekvencijalno okidaju**
- koristi se za situacije kad je potrebno **šire područje snimanja** (npr. vaskularna snimanja)

Phased-array pretvarač

- kristali se **istovremeno okidaju** te se tako formira željeni oblik i smjer širenja akustičkog vala
- u obradi signala to se zove **formiranje snopa** (engl. beamforming)

Pretvarači za 3D snimanje

- a) mehaničko rotiranje koncencionalnog pretvarača
- b) bolje: korištenje 2D phased array pretvarača
 - o piezo kristali su organizirani u 2D polje
 - upravljanjem 2D polja pretvarača može se dobiti slika fokusirana na željeno područje
 - o mana: nije moguć rad u stvarnom vremenu
 - o problem kalibriranja zbog velikog broja senzora

Klinička primjena – glavne pretrage:

- glava (kod novorođenčadi)
- prsni koš
- dojka
- abdomen
- urogenitalni trakt
- fetus
- vaskularni sustav
- muskulo-skeletalni sustav
- srce