The Newton's second law is F=ma. The Newton's second law is F = ma.

The Newton's second law is

$$F = ma$$

The Newton's second law is

$$F = ma$$

Greek Letters η and μ

Fraction $\frac{a}{ab}$ Power a^b

Subscript $a_b, \mu_{max}, \mu_{min}$ Derivate $\frac{\partial y}{\partial t}$

Vector \vec{n}

Bold \mathbf{n}

To time differential \dot{F}

Funktionaler Bereich: $\forall x \in X, \quad \exists y \le \epsilon$

Greek letters: $\alpha, A, \beta, B, \gamma, \Gamma, \pi, \Pi, \phi, \varphi, \mu, \Phi$

Operator:

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\lim_{x \to \infty} f(x) = 0$$

Power and indices: $k_{n+1} = n^2 + k_n^2 - k_{n-1}$

$$f(n) = n^5 + 4n^2 + 2|_{n=17}$$

Matrix (lcr here means left, center or right for each column)

$$\left[\begin{array}{ccc} a1 & b22 & c333 \\ d444 & e555555 & f6 \end{array}\right]$$

Equations(here & is the symbol for aligning different rows)

$$a+b=c (1)$$

$$d = e + f + g \tag{2}$$

$$\begin{cases} a+b=c\\ d=e+f+g \end{cases}$$