

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Ин</u>	форматика и систем	ы управления»	
КАФЕДРА «Прог	раммное обеспечение	е ЭВМ и информационны	е технологии»
		Отчёт	
		OTACI	
	по лаборат	горной работе №	19
	•		
Название: <u>О</u>	бработка списков	в на Prolog	
Цисциплина:	Функционально	е и логическое програ	аммирование
	III/7 (5D		T.D. C
Студент	<u>ИУ7-65Б</u>		Д.В. Сусликов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Н.Б. Толпинская

(Подпись, дата)

(И.О. Фамилия)

Задание

Используя хвостовую рекурсию, разработать эффективную программу, позволяющую:

- 1. Найти длину списка (по верхнему уровню);
- 2. Найти сумму элементов числового списка
- 3. Найти сумму элементов числового списка, стоящих на нечетных позициях исходного списка (нумерация от 0)

Убедиться в правильности результатов.

Для одного из вариантов вопроса и одного из заданий составить таблицу, отражающую конкретный порядок работы системы.

Листинг:

```
domains
list = integer*
predicates
    len(list, integer)
    len(list, integer, integer)
    sum(list, integer)
    sum(list, integer, integer)
    sum2(list, integer)
    sum2(list, integer, integer)
clauses
    len([], R, R):- !.
    len([_|T], R, Res):-R1 = R + 1, len(T, R1, Res).
    len([H|T], Res):-len([H|T], 0, Res).
    sum([], R, R):- !.
    sum([H|T], R, Res):-R1 = R + H, sum(T, R1, Res).
```

```
sum([H|T], Res):- sum([H|T], 0, Res).

sum2([], R, R):- !.

sum2([_, H|T], R, Res):- R1 = R + H, sum2(T, R1, Res).

sum2([H|T], Res):- sum2([H|T], 0, Res).

goal

%len([1,2,3,4], Res).
%sum([1,2,3,5], Res).
```

Результаты работы:

sum2([1,2,3,11], Res).

Res=4 Res=11 Res=13
1 Solution 1 Solution 1 Solution

Пример len Пример sum Пример sum2

Приведем таблицу для нахождения суммы.

sum([1,2,4], Res)

Текст процедуры:

```
1: sum([], R, R):-!.

2: sum([H|T], R, Res):- R1 = R + H, sum(T, R1, Res).

3: sum([H|T], Res):- sum([H|T], 0, Res).
```

№ шага	Текущая резольвента - ТР	ТЦ, выбираемые правила: сравниваемые термы, подстановка	Дальнейшие действия с комментариями
1	sum([1,2], 0, Res).	ТЦ: sum([1,2], 0, Res)	Поиск знания с начала БЗ
	sum([1,2], 0, Res).	ПР1: [] = [1,2] R = 0 R = Res Неудача	Переход к следующему заголовку БЗ
	sum([1,2], 0, Res).	ПР2: H T] = [1,2] R = 0 Res = Res Успех H = 1 T = [2] R = 0 Res = Res	Тело ПР2 заменяет цель в резольвенте
2	R1 = 0 + 1, sum([2], R1, Res)	R1 = 1	R1 = 0 + 1 заменяется на пустое тело

3	sum([2], 1, Res)	ТЦ: sum([2],1,Res)	Поиск знания с начала БЗ
	sum([2], 1, Res)	ПР1: [] = [2] R = 1 R = Res Неудача	Переход к следующему заголовку БЗ
	sum([2], 1, Res).	ПР2: HIT] = [2] R = 1 Res = Res Успех H = 2 T = [] R = 1 Res = Res	Тело ПР2 заменяет цель в резольвенте
4	R1 = 1 + 2, sum([], R1, Res)	R1 = 3	R1 = 1 + 2 заменяется на пустое тело в резольвенте
5	sum([], 3, Res)	ТЦ: sum([],3,Res)	Поиск знания с начала БЗ
	sum([], 3, Res)	ПР1: [] = [] R = 3 R = Res Успех [] = [] R = 3 R = Res = 3	Тело ПР1 заменяет цель в резольвенте

6	!	!. Истина	Отсечение. ! заменяется на пустое в резольвенте
7	Резольвента пуста		Выводится Res = 3 Откат
8	!	! Завершение процедуры	! заменяется на пустое в резольвенте
7	Резольвента пуста		Завершение работы программы

Вывод

Эффективность работы системы может быть достигнута за счет хвостовой рекурсии и использования отсечения в тех случаях, где заведомо известна единственность ответа на вопрос.

Ответы на вопросы

1) Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?

Рекурсия – определение объекта через ссылку на самого себя. Один из способов организации повторных вычислений. Для организации хвостовой рекурсии необходимо, чтобы рекурсивный вызов был последним в теле рекурсивного правила, и не оставалось других точек выбора. Выход из рекурсии осуществляется либо достижением базиса рекурсии, либо условием в теле правила.

2) Какое первое состояние резольвенты?

Исходная резольвента содержит вопрос.

3) В каких пределах программы уникальны переменные?

Именованные переменные уникальны в рамках предложения, анонимные - уникальны везде.

- 4) В какой момент, и каким способом системе удается получить доступ к голове списка? Получить доступ к голове списка можно при его унификации со списком вида [H | T], где H голова, T хвост.
- Каково назначение использования алгоритма унификации?
 Алгоритм унификации необходим для того, чтобы подобрать знание, положительно отвечающее на поставленный вопрос.
- 6) Каков результат работы алгоритма унификации?

Результатом работы алгоритма является значение переменной «неудача». Если неудача = 1, то унификация невозможна; если неудача = 0, то унификация прошла успешно, а побочным действием работы алгоритма является содержимое результирующей ячейки – результирующая подстановка.

7) Как формируется новое состояние резольвенты?

Резольвента меняется в 2 этапа:

Редукция (замена вопроса на тело правила, заголовок которого был успешно унифицирован);

- Применение подстановки.
- 8) Как применяется подстановка, полученная с помощью алгоритма унификации как глубоко?
 - В результате подстановки связываются переменные, которые еще не были связаны. После связывания всех утверждений, будет напечатано значение связанных переменных.
- В каких случаях запускается механизм отката?
 В случае, когда унификация на текущем шаге завершается тупиковой ситуацией, или был получен ответ «да».
- 10) Когда останавливается работа системы? Как это определяется на формальном уровне?
 Когда резольвента пуста и все указатели находятся в конце БЗ.