Esercizio 1. Sia G un grafo bipartito di densità α con insiemi di vertici A e B. Dimostrare che il numero di quadruple (x_1, y_1, x_2, y_2) che formano un percorso circolare, è almeno $\alpha^4 |A|^2 |B|^2$.

Per un suggerimento rimando a quanto ha scritto Tim Gowers. Esercizio 3 in https://drive.google.com/file/d/18GLulBmZdPpwnesry2uUHfoCbZ4EIxpC/view

Il suggerimento viene esplicitato in questo post https://gowers.wordpress.com/2015/11/18/entropy-and-sidorenkos-conjecture-after-szegedy/. Anche se qui usa la formula esplicita dell'entropia, al risultato si arriva anche direttamente dagli assiomi.

Nella soluzione si usa ripetutamente il seguente fatto:

Se X è una v.a. discreta e $A\subseteq\Omega$ è un evento, scriveremo X|A per una qualsiasi v.a. con distribuzione $\Pr(X=x\mid A)$. Si osservi che se $X=(X_1,X_2)$ con X_1 e X_2 indipendenti allora possiamo assumere che X|A abbia la stessa distribuzione di $(X_1|A,X_2|A)$ e che $X_1|A$ e $X_2|A$ siano indipendenti.