MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 3 A – Solutions

- **1.** a) The area of the triangle is 2, so $\bar{y} = \frac{1}{2} \int_0^1 \int_{2y-2}^{2-2y} y \, dx \, dy$.
- b) By symmetry $\bar{x} = 0$.
- 2. $\delta = |x| = r|\cos\theta|$. $I_0 = \iint_D r^2 \, \delta \, r dr d\theta = \int_0^{2\pi} \int_0^1 r^2 |r\cos\theta| r dr d\theta = 4 \int_0^{\pi/2} \int_0^1 r^4 \cos\theta dr d\theta = 4 \int_0^{\pi/2} \frac{1}{5} \cos\theta d\theta = \frac{4}{5}$
- **3.** a) $N_x = 6x^2 + by^2$, $M_y = ax^2 + 3y^2$. $N_x = M_y$ provided a = 6 and b = 3.
- b) $f_x = 6x^2y + y^3 + 1 \implies f = 2x^3y + xy^3 + x + c(y)$. Therefore, $f_y = 2x^3 + 3xy^2 + c'(y)$. Setting this equal to N, we have $2x^3 + 3xy^2 + c'(y) = 2x^3 + 3xy^2 + 2$ so c'(y) = 2 and c = 2y. So

$$f = 2x^3y + xy^3 + x + 2y$$
 (+constant).

- c) C starts at (1,0) and ends at $(-e^{\pi},0)$, so $\int_{C} \vec{F} \cdot d\vec{r} = f(-e^{\pi},0) f(1,0) = -e^{-\pi} 1$.
- **4.** $\int_C yx^3 dx + y^2 dy = \int_0^1 x^2 x^3 dx + (x^2)^2 (2x dx) = \int_0^1 3x^5 dx = 1/2.$
- **5.** a) $\begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 2x/y & -x^2/y^2 \\ y & x \end{vmatrix} = 3x^2/y$. Therefore,

$$dudv = (3x^2/y)dxdy = 3u \ dxdy \implies dxdy = \frac{1}{3u}dudv.$$

- b) $\int_{2}^{4} \int_{1}^{5} \frac{1}{3u} du dv = \int_{2}^{4} \frac{1}{3} \ln 5 \ dv = \frac{2}{3} \ln 5.$
- **6.** a) $\oint_C M dx = \iint_R -M_y dA$.
- b) We want M such that $-M_y = (x+y)^2$. Use $M = -\frac{1}{3}(x+y)^3$.
- 7. a) div $\vec{F} = 2y$, so $\iint_R 2y \, dA = \int_0^1 \int_0^{x^3} 2y \, dy dx = \int_0^1 x^6 dx = \frac{1}{7}$.
- b) For the flux through C_1 , $\hat{\mathbf{n}} = -\hat{\mathbf{j}}$ implies $\vec{F} \cdot \hat{\mathbf{n}} = -(1+y^2) = -1$ where y = 0. The length of C_1 is 1, so the total flux through C_1 is -1.

The flux through C_2 is zero because $\hat{\mathbf{n}} = \hat{\mathbf{i}}$ and $\vec{F} \perp \hat{\mathbf{i}}$.

c)
$$\int_{C_3} \vec{F} \cdot \hat{\mathbf{n}} ds = \iint_R \operatorname{div} \vec{F} dA - \int_{C_1} \vec{F} \cdot \hat{\mathbf{n}} ds - \int_{C_2} \vec{F} \cdot \hat{\mathbf{n}} ds = \frac{1}{7} - (-1) - 0 = \frac{8}{7}.$$