Compressed Sparse Column (CSC) Storage

Kalyani Gadgil

December 4, 2017

Need for Hypersparse Matrices

Matrix is hypersparse if number of non-zero elements is much less than the dimensions of the matrix

Hypersparse matrices arise after 2-dimensional block data decomposition of matrices for parallel processing like in SUMMA.

Storage Complexity of Sparse Matrices for SUMMA

- ① Blocks of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ where n matrix dim and p number of processors
- ② Storing each of these submatrices in CSC format $O(n\sqrt{p} + + nnz)$
- **Storing whole matrix** O(n + nnz) on single processor
- **Storing matrix in DCSC format requires** O(nnz)

CSC example - Column Major

Column-major

$$nnz = 4$$

 $NUM = [1, 2, 3, 4]$
 $row idx (IR) = [0, 3, 2, 5]$
 $col idx = [1, 1, 2, 5]$

CSC - Walkthrough

JC stores indices of NUM where column changes idx of NUM = [0]

$$\mathsf{NUM} = [\quad \boxed{-} \quad]$$

Column changed, so idx stored $JC = \begin{bmatrix} 0 \end{bmatrix}$

		Ма	trix	κA		
	0	(1)	2	3	4	5
0	/0	(1)	0	0	0	0\
1	0	0	0	0	0	0
2	0	0	3	0	0	0
3	0	2	0	0	0	0
4	0	0	0	0	0	0
5	/0	0	0	0	0	4/

JC stores indices of NUM where column changes idx of val = [0]

$$\mathsf{NUM} = [\qquad \boxed{1} \qquad]$$

$$IR = [0]$$

Column changed, so idx stored JC = [0, 0]

JC stores indices of NUM where column changes idx of val = [0, 1]

$$\mathsf{NUM} = [1, \quad \boxed{2}]$$

$$IR = [0, \quad \boxed{3} \quad]$$

Column not changed, so idx not stored

$$\mathsf{JC} = [0, \, 0, \qquad \bigcirc \qquad]$$

JC stores indices of NUM where column changes idx of val = [0, 1, 2]

$$NUM = [1, 2, 3]$$

$$IR = [0, 3, 2]$$

Column changed, so idx stored JC = [0, 0, 2]

$$\begin{array}{c} & \text{Matrix A} \\ 0 & 1 & 2 & \boxed{3} & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 3 & 0 & 0 & 0 \\ 3 & 0 & 2 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 4 \\ \end{array}$$

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$\mathsf{NUM} = [1, 2, 3, \quad \boxed{-} \quad]$$

$$IR = [0, 3, 2, -]$$

Column changed, so idx stored JC = [0, 0, 2, 3]

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$IR = [0, 3, 2,$$

Column changed, so idx stored JC = [0, 0, 2, 3, 3]

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$NUM = [1, 2, 3, (4)]$$

$$IR = [0, 3, 2, 5]$$

Column changed, so idx stored JC = [0, 0, 2, 3, 3,

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$NUM = [1, 2, 3, 4]$$

$$IR = [0, 3, 2, 5]$$

NNZ stored as the n+1 element

$$\mathsf{JC} = [0, 0, 2, 3, 3, 3, 4]$$

CSC example - Column Major

1 O(n + nnz) comes from JC array of size n + 1

⁰[1] Buluc, A., & Gilbert, J. R. (2008). On the Representation and Multiplication of Hypersparse Matrices. https://doi.org/10.1109/IPDPS.2008.4536313

References

[1] Buluc, A., & Gilbert, J. R. (2008). On the Representation and Multiplication of Hypersparse Matrices.

https://doi.org/10.1109/IPDPS 2008.4536313