ME 3050 - DYNAMIC MODELING + CONTROLS LECTURE NOTES - FALL, 2013 - STEVEN R. ANTON

INTRODUCTION

(1.1) What is System Dynamics?

-> The study of modeling and analysis of dynamical systems as a function of time.

System Dynamics

Modeling

- · Differential Equations derived to describe time-varying behavior of the system
- · Free Body Diagrams (FBDs)
- · Newton's 2nd Law
- · Energy Methods

Analysis

- · Study of model to understand response of system
- Time-Domain analysis: examine how system responds in time to various inputs (Initial Conditions, Impulse, Step, etc.)
- · Frequency-Domain analysis: examine System response when subject to sinusoidal inputs.

Dynamics vs. System Dynamics

Dynamics: find state of object at specific instant in time

System Dynamics: find state of system as a function of time

Ly leads to use of Differential Equations ex: x+ax=b

x+ax+bx=c

Important Background to Review

- · Dynamics, EBDs, Equation of Motion (EOMs)
- · Differential Equations, haplace Transforms, Partial Fraction Expansions

Some Applications

- · Response of car driving over bumpy road.
- . Simulation + control of a robotic arm.
- · Design of vibration sensors + vibration absorbers.
- · Response of electric motors + circuits.

	SI	US (FPS - foot-pound-sec	end)
Time	second(s)	second (sec)	
Length	meter (m)	foot (ft)	Al Tour
Force	newton(N)	pound (1b)	Note: F=ma W=ma
Mass	Kilogram (kg)	sluq	Wama
Energy	joule (I)	foot-pound (Ft-16)	g = 9.81 m/s2 or 32.2 ft/s2
Power	watt (w)	ft-16/sec	
Temp.	°C, °K	of, or	

Oscillation Units

Frequency: f in cycles/second or Hz (1 Hz=1 cps)
w in radian/sec (angular frequency)

Conversion: 27 f = w

Period: $P = \frac{1}{f} = \frac{2\pi}{w}$ (seconds)

RPM: | RPM = $\frac{2\pi}{60}$ rad/sec