10.4 Магнитные моменты легких ядер

Описание работы: В работе вычисляются магнитные моменты протона, дейтрона и ядра фтора на основе изменения их g-факторов методом ядерного магнитного резонанса (ЯМР). Полученные данные сравниваются с вычислениями магнитных моментов на основе кварковой модели адронов и одночастичной оболочечной модели ядер.

Теория:

Полный момент ядра:

$$I=L+S$$
,

где ${f L}$ - полный орбитальный момент нуклонов, ${f S}$ - собственная часть момента количества движения, спин. (Для четного числа нуклонов ${f I}$ целое, для нечетного полуцелое.) Отношение дипольного момента μ ядра к механическому моменту называется гиромагнитным соотношением:

$$\gamma = g\gamma_0$$
,

где g - фактор Ланде, а за единицу γ_0 принимается гиромагнитное отношение для орбитального движения электрона в атоме:

$$\gamma_0 = -\frac{e}{2m_e c}$$

• Аналогично, в ядерной физике:

$$\gamma_n = \frac{e}{2Mc}$$

• Магнитный момент ядра:

$$\mu = \gamma_n \hbar I = g_{\scriptscriptstyle \rm S} \mu_{\scriptscriptstyle \rm S} I$$

Ядерный магнитный резонанс. ЯМР - это резонансной поглощение электромагнитной энергии в веществах, обусловленное ядерным перемагничиванием. ЯМР наблюдается в постоянном магнитном поле \mathbf{H}_0 при одновременном воздействии на образец радиочастотного магнитного поля, перпендикулярного \mathbf{H}_0 , и обнаруживается по поглощению излучения.

В магнитном поле ядреные уровни расщепляются и под действием внешнего высокочастотного поля могут происходить электромагнитные переходы между компонентами расщепившегося уровня, это явление носит резонансный характер. Различие по энергии между двумя соседними компонентами:

$$\$$
 \$\$\Delta E = g\mu {\$\mathre{H}\$} B 0 = h f 0\$\$

Частота квантов:

$$f_0 = \frac{B_0}{h} = \frac{g_n\mu_{g_n}}{h}$$

Константы:

$$h = 6.626070040 \cdot 10^{-27} \text{эрг} \cdot c$$

 $\mu_{\text{g}} = 0.505 \cdot 10^{-23} \text{эрг} \cdot \Gamma \text{c}^{-1}$

```
In [8]:
```

Out[8]:

0.342268278052223

In [22]:

```
import numpy as np
import scipy
import matplotlib.pyplot as plt
import pandas as pd
from scipy.optimize import minimize
from IPython.display import display
```

Результаты:

In [29]:

	Материал	Ядра	B_0 м T л	<i>f</i> ₀ МГц
0	Вода	Водород	231	9.7981
1	Резина	Водород	230	9.7700
2	Тефлон	Фтор	241	9.8100

Посчитаем g факторы для каждого материала.

Протон и фтор могут находиься только в двух состояниях ($\mathbf{I} = 1/2$).

In [40]:

	Материал	Ядра	g	μ	μ_t
0	Вода	Водород	5.5895	2.79475 _{µя}	2.79276 _{µ я}
1	Резина	Водород	5.5735	2.78675 _{µ_я}	2.79276 _{µ я}
2	Тефлон	Фтор	5.3409	2.67045 $\mu_{\mathfrak{A}}$	

Вывод:

- Методом ядерного агнитного резонанса измерили магнитный момент протона и фтора.
- Для протона получили значения очень похожие на табличные. Можно сделать вывод, что этим методом можно узнавать информацию о ядре с очень хорошей точностью.

In []: