MATHEMATICAL METHODS (CAS)

Unit 1 – Written examination 2

2009 Trial Examination

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: E

Explanation:

$$-\frac{15000}{3} = -5000L/h$$

Question 2

Answer: C

Explanation:

$$m_n = -\frac{1}{3}$$

$$y - 5 = -\frac{1}{3}(x + 6)$$

$$y = -\frac{1}{3}x + 3$$

Question 3

Answer: A

Explanation:

R \ the interval (-3,7].

Question 4

Answer: B

Explanation:

Local maxima occurs on the x-axis when y = 0, $x = -\frac{3}{2}$ and x = 1

Question 5

Answer: E

Explanation:

Point of inflection at (3,1) and y intercept at (0,2)

Question 6

Answer: D

Explanation:

horizontal line cuts once, vertical line crosses twice or more.

Question 7

Answer: B

Explanation: from graph

Question 8

Question 9

Answer: A

Explanation:

$$\Delta = 25 - 4 \times 2 \times 1 = 17 > 0$$

Therefore 2 real solutions exist.

Question 10

Answer: D

Explanation:

for..y,
$$x = 0$$
 : $y = 2$
for..x, $y = 0$: $x = 4,-7$

Question 11

Answer: E

Explanation:

if P(a) = 0 then (x - a) is a factor therefore, (x + 3) is the factor of P(x)

Question 12

Answer: E

Explanation:

gradient is positive **above** the *x* axis x < -10 or x > -1

Question 13

Answer: B

Explanation:

$$\frac{3(a^{-2})^{-1}b}{(5ab^{2})^{3}} \div \frac{9(a^{2}b^{-1})^{3}}{25b^{2}}$$

$$= \frac{3a^{2}b}{125a^{3}b^{6}} \times \frac{25b^{2}}{9a^{6}b^{-3}}$$

$$= \frac{a^{2}b^{3}}{15a^{9}b^{3}}$$

$$= \frac{1}{15a^{7}}$$

Question 14

Answer: C

Explanation:

$$5^{-(2x-1)} = 5^{3}$$
$$-(2x-1) = 3$$
$$-2x+1 = 3$$
$$x = -1$$

Question 15

Answer: D

Explanation:

$$\frac{\log_2 7^2}{\log_2 7}$$

$$= \frac{2\log_2 7}{\log_2 7}$$

$$= 2$$

Question 16

Answer: B

Explanation:

$$2 \times 2^{2x} - 9 \times 2^x + 4 = 0$$

Let
$$y = 2^x$$

$$\Rightarrow 2y^2 - 9y + 4 = 0$$

$$\Rightarrow$$
 $(2y-1)(y-4)=0$

$$\Rightarrow y = \frac{1}{2} \text{ or } y = 4$$

$$2^x = 2^{-1}, \quad 2^x = 2^2$$

$$x = -1$$
 $x = 2$

Question 17

Answer: D

Explanation:

$$(x-k)^2 + (y-h)^2 = r^2$$

$$k = -2, h = 1, r = \sqrt{16} = 4$$

$$(x+2)^2 + (y-1)^2 = 16$$

Question 18

Answer: A

Explanation:

Start:
$$x = 0$$
, $y = 0$ and after 4 hours: $x = 4$, $y = 128$

$$m = \frac{128 - 0}{4 - 0}$$
 therefore average rate = 32 km/h

Question 19

Answer: D

Explanation:

$$(x^{2} - 4)(9x^{2} - 24x + 16)$$

$$= 9x^{4} - 24x^{3} + 16x^{2} - 36x^{2} + 96x - 64$$

$$= 9x^{4} - 24x^{3} - 20x^{2} + 96x - 64$$

Question 20

Answer: E

Explanation:

Find Pr (A
$$\cap$$
 B) first: Pr (A \cap B) = Pr (A) \times Pr (B | A) = 0.2 \times 0.35 = 0.07 Pr (B) = Pr (A \cup B) - Pr(A) + Pr (A \cap B) = 0.56 - 0.2 + 0.07 = 0.43

Question 21

Answer: A

Explanation:

Question 22

Answer: A

Explanation:

	R	R	
P	21	27	48
P	18	34	52
	39	61	100

SECTION 2 - Analysis Questions

Question 1

a.
$$f(x) = x^2 + 6x + 9 - 9 - 7 = (x+3)^2 - 16$$

M1 + A1

2 marks

b. let
$$x = 0$$
: $y = -7$ let $y = 0$: $x = -7$, $x = 1$

A2

2 marks

c. Show turning point, intercepts and endpoints

Endpoints are (3,20) and (-10, 33), x – intercepts (-7, 0), (1, 0) and y –intercept (0, -7)

d. range [-16,33)

A1

1 mark

e. Sketch of inverse should show: Reflected TP, intercepts and endpoints

A2 2 marks

f. the largest domain (-10,-3] makes it a one to one function

A1 1 mark

g.
$$f(x) = (x+3-3)^2 - 16 - 2 = x^2 - 18$$

M1 + A1 2 marks Total 13 marks

Question 2

a.

$$s(1) = -3 + 18 - 36 + 21 = 0$$

$$-3x^{2} + 15x - 21$$

$$(x-1) \overline{{\big)} - 3x^{3} + 18x^{2} - 36x + 21}$$

$$-3x^{3} + 3x^{2}$$

$$-35x^{2} - 36x$$

$$-35x^{2} - 36x$$

$$-21x + 21$$

$$-21x + 21$$

$$-21x + 21$$

$$-3x^{2} + 15x - 21 = -3(x^{2} - 5x + 7)$$

$$\therefore s(x) = -3(x-1)(x^{2} - 5x + 7)$$

M3 + A1 4 marks

b. Show correct intercepts and shape y –intercept (0, 21)

x –intercept (1,0)

A2 2 marks

c.

$$d = \sqrt{(-2-0)^2 + (0-21)^2}$$

$$d = \sqrt{4+441} = \sqrt{445}$$
 must include correct rounding $d = 21.10m$

M1 + A1 2 marks

d.

$$midpo$$
 int $=$ $\left(\frac{0-2}{2}, \frac{21-0}{2}\right) = \left(-1, 10\frac{1}{2}\right)$

M1 + A1 2 marks

e.

$$m = 0$$
$$y = 10\frac{1}{2}$$

M1 + A1 2 marks

f.

Centre of the circle =
$$(1+7+5,0) = (13,0)$$

Eqn of circle:

$$(x-k)^{2} + (y-h)^{2} = r^{2}$$

$$k = 13, h = 0, r = \sqrt{25} = 5$$

$$\therefore (x-13)^{2} + y^{2} = 25$$

M2 + A1 3 marks Total 15 marks

Question 3

a.

i.
$$0 \text{ s} < t < 20 \text{ s}$$

ii.
$$40 \text{ s} < t < 50 \text{ s}$$

iii.
$$60 \text{ s} < t < 70 \text{ s}$$

A3 marks

b.

- i. Bjiorn is stationary 50 m from the starting point about to go back to the initial position.
- ii. He is moving away from the starting point moving with a constant velocity.

A2 + A1 3 marks

c.

i.
$$\frac{55-40}{30-20} = 1.5m/\sec$$

ii.
$$\frac{0-55}{70-52} = -3.06m/\sec$$

A2

2 marks

d.
$$\frac{0-65}{70-60} = -6.5m/\sec$$

A1

1 mark Total 9 marks

Question 4

a.

$$5^{2x} - 20(5^x) - 125 = 0$$
 Let $a = 5^x \Rightarrow a^2 - 20a - 125 = 0$
 $(a+5)(a-25) = 0$
 $a = -5, a = 25$
 $5^x = -5$ (impossible) or $5^x = 5^2$
 $\therefore x = 2$

M3 + A1 4 marks

b. Use CAS or:

$$\log_{10} 3^{2x+1} = \log_{10} 12$$

$$(2x+1)\log_{10} 3 = \log_{10} 12$$

$$2x-1 = \frac{\log_{10} 12}{\log_{10} 3}$$

$$2x-1 = 2.2619$$

$$\therefore x = 1.6309$$

M3 + A1 4 marks Total 8 marks

Question 5

a. must realise that some of the branches are not needed

4 correct branches with correct values

A4 4 marks

b.
$$Pr(AA) = 0.7 \times 0.75$$

= 0.525

M1 + A1 2 marks

c.
$$Pr(AAN) + Pr(ANA) + Pr(NAA) = 0.7 \times 0.75 \times 0.25 + 0.7 \times 0.25 \times 0.65 + 0.30 \times 0.65 \times 0.75 = 0.39$$

M1+A1 2 marks

d.

	P	P'	
GM	0.55	0.25	0.8
GM'	0.1	0.1	0.2
	0.65	0.35	1

A2 2 marks

e.
$$Pr(P \cap GM') = 0.1$$

A1 1 mark

f.
$$Pr(\text{no As} \mid \text{no As in GM}) = \frac{Pr(GM' \cap P')}{Pr(GM')}$$
$$= \frac{0.10}{0.20}$$
$$= 0.5$$

 $\begin{array}{c} M1 + A1 \\ 2 \text{ marks} \\ Total \ 13 \text{ marks} \end{array}$