Generell Topologi — Exercise Sheet 2

Richard Williamson

February 11, 2013

Guide

To help you to decide which questions to focus on, I have made a few remarks below. A question which is important for one of you may however be less important for another of you — if you need to work on your geometric intuition, for example, prioritise Question 7.

I encourage you to attempt all the questions if you have time — they have all been included for different reasons, to help your understanding. When you come to revise, you should check that you understand all of the solutions that I give.

- (1) Questions 5 and 6 are essential, concerning constructions that we will make use of throughout the course.
- (2) Questions 1 and 2 will help familiarise you with the axioms of a topological space.
- (3) Question 3 tests your understanding of the part of Lecture 1 which approached the construction of a topology on \mathbb{R} , and the role of the completeness of \mathbb{R} in this. It also motivates Question 1.4.
- (4) Question 4 allows you to practise writing a proof which directly appeals to the axioms of a topological space. The argument is very typical of proofs in this early part of the course.
- (5) Question 7 will help develop your geometric intuition, which is a vital aspect of the course. It will also help improve your understanding of subspace and product topologies.
- (6) Question 8 and Question 9 give constructions of topological spaces different from those we have met in the lectures so far. Both will help with deepening your understanding of the axioms of a topological space. Both questions are also of wider significance. Questions on future Exercise Sheets will build upon Question 8.

Questions and Solutions

1

Question. Let $X := \{a, b, c, d\}$ be a set with four elements. Which of the following sets \mathcal{O} of subsets of X define a topology on X?

- (1) $\mathcal{O}_1 := \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, d\}, X\}.$
- (2) $\mathcal{O}_2 := \{\emptyset, \{a, c\}, \{d\}, \{b, d\}, \{a, c, d\}, X\}.$
- (3) $\mathcal{O}_3 := \{\emptyset, \{a\}, \{b,d\}, \{a,b,d\}, \{a,c,d\}, X\}.$

Solution. The set \mathcal{O}_2 defines a topology on X.

The set \mathcal{O}_1 does not define a topology on X, since for example $\{a\} \cup \{b,d\} = \{a,b,d\}$, which does not belong to \mathcal{O}_1 .

The set \mathcal{O}_3 also does not define a topology on X, since $\{b,d\} \cap \{a,c,d\} = \{d\}$, which does not belong to \mathcal{O}_3 .

2

Question.

- (a) Find five topologies on $X := \{a, b, c\}.$
- (b) Check whether any of these topologies are the same up to a bijection

$$X \longrightarrow X$$

namely a relabelling of the elements of X. If so, replace it by a different topology. Repeat until you end up with five topologies which are all distinct from each other up to a bijection

$$X \longrightarrow X$$
.

(c) Let \mathcal{O} be one of the five topologies that you ended up with in (b). Find all of the subsets of X which are closed with respect to \mathcal{O} . Do this for each of the five topologies that you ended up with in (b).

Solution. There are exactly nine topologies on X which are distinct from each other up to a bijection

$$X \longrightarrow X$$
.

These are listed below. After relabelling if necessary, your topologies should agree with five of those on this list.

- (1) $\mathcal{O}_1 := \{\emptyset, X\}$, the indiscrete topology.
- (2) $\mathcal{O}_2 := \{\emptyset, \{a\}, X\}.$
- (3) $\mathcal{O}_3 := \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}.$
- (4) $\mathcal{O}_4 := \{\emptyset, \{a\}, \{b, c\}, X\}.$
- (5) $\mathcal{O}_5 := \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, X\}.$
- (6) $\mathcal{O}_6 := \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}.$
- (7) $\mathcal{O}_7 := \{\emptyset, \{a, b\}, X\}.$
- (8) $\mathcal{O}_8 := \{\emptyset, \{a\}, \{a, b\}, X\}.$
- (9) $\mathcal{O}_9 := \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, \text{ the discrete topology.}$

The closed sets of X with respect to each of these topologies are as follows.

- $(1) \emptyset, X.$
- (2) \emptyset , $\{b, c\}$, X.
- (3) \emptyset , $\{b, c\}$, $\{a, c\}$, $\{c\}$, X.
- $(4) \ \emptyset, \{b,c\}, \{a\}, X.$
- (5) \emptyset , $\{b, c\}$, $\{c\}$, $\{b\}$, X.
- (6) \emptyset , $\{b,c\}$, $\{a,c\}$, $\{c\}$, $\{b\}$, X.
- $(7) \ \emptyset, \{c\}, X.$
- (8) \emptyset , $\{b, c\}$, $\{c\}$, X.
- (9) \emptyset , $\{b,c\}$, $\{a,c\}$, $\{a,b\}$, $\{c\}$, $\{b\}$, $\{a\}$, X.

3

Question.

- (a) Let $\{[a_j, b_j]\}_{j \in J}$ be a set of (possibly infinitely many) closed intervals in \mathbb{R} . Prove that $\bigcap_{j \in J} [a_j, b_j]$ is either a closed interval in \mathbb{R} or \emptyset .
- (b) Let $a, a', b, b' \in \mathbb{R}$. Find a condition to express exactly when $[a, b] \cup [a', b']$ is disjoint, namely when $[a, b] \cap [a', b'] = \emptyset$. Suppose that $[a, b] \cup [a', b']$ is not disjoint. Prove that in this case $[a, b] \cap [a', b']$ is a closed interval in \mathbb{R} .
- (c) Let $\{[a_j, b_j]\}_{j \in J}$ be a set of (possibly infinitely many) closed intervals in \mathbb{R} . Give an example to show that $\bigcup_{j \in J} [a_j, b_j]$ need not be a closed interval, even if this union cannot be expressed as a disjoint union of a pair of subsets of \mathbb{R} .

Solution.

(a) We claim that

$$\bigcap_{j \in J} [a_j, b_j] = \begin{cases} [\sup a_j, \inf b_j] & \text{if } \sup a_j \leq \inf b_j, \\ \emptyset & \text{otherwise.} \end{cases}$$

Let us prove this. If $x \in \bigcap_{j \in J} [a_j, b_j]$, then by definition we have the following.

- (1) $x \ge a_j$ for all $j \in J$,
- (2) $x \leq b_j$ for all $j \in J$.

By definition of $\sup a_j$, it follows from (1) that $x \ge \sup a_j$. By definition of $\inf b_j$, it follows from (2) that $x \le \inf b_j$ for all $j \in J$. Thus if $\sup a_j \le \inf b_j$, we have that $x \in [\sup a_j, \inf b_j]$. We deduce that $\bigcap_{j \in J} [a_j, b_j] \subset [\sup a_j, \inf b_j]$.

Conversely, suppose that $\sup a_j \leq \inf b_j$, and that $x \in [\sup a_j, \inf b_j]$, Then in particular $x \geq \sup a_j$ and $x \leq \inf a_j$. By definition of $\sup a_j$, we deduce that $x \geq a_j$ for all $j \in J$, and by definition of $\inf b_j$, we deduce that $x \leq b_j$ for all $j \in J$. Thus $x \in \bigcap_{i \in J} [a_j, b_j]$, and hence $[\sup a_j, \inf b_j] \subset \bigcap_{i \in J} [a_j, b_j]$.

This proves that if $\sup a_j \leq \inf b_j$, then $\bigcap_{j \in J} [a_j, b_j] = [\sup a_j, \inf b_j]$. Suppose now that $\sup a_j > \inf b_j$. As above, if $x \in \bigcap_{j \in J} [a_j, b_j]$, then:

- (1) $x \ge \sup a_i$,
- (2) $x \leq \inf b_j$.

But if $\sup a_j > \inf b_j$, then by (1) we have that $x > \inf b_j$. This contradicts (2). We deduce that if $\sup a_j > \inf b_j$, then $\bigcap_{i \in J} [a_i, b_j] = \emptyset$.

(b) We claim that $[a,b] \cup [a',b']$ is disjoint if and only if $\sup\{a,a'\} > \inf\{b,b'\}$, and that if $[a,b] \cup [a',b']$ is not disjoint, then $[a,b] \cup [a',b'] = [\inf a_j,\sup b_j]$.

Let us prove this. Without loss of generality (we may relabel a as a' and b as b' if necessary), suppose that $\sup\{a,a'\}=a$ and $\sup\{b,b'\}=b$. Then $\inf\{a,a'\}=a'$, and $\inf\{b,b'\}=b'$.

Suppose that $x \in [a, b] \cup [a', b']$. By definition of $[a, b] \cup [a', b']$, either $x \in [a, b]$ or $x \in [a', b']$. If $x \in [a, b]$, then $x \ge a$. Since $a' = \inf\{a, a'\}$, we have that $a \ge a'$, and we deduce that $x \ge a'$. If $x \in [a', b']$, then again we have that $x \ge a'$.

In addition, if $x \in [a', b']$, then $x \le b'$. Since $b = \sup\{b, b'\}$, we have that $b \ge b'$, and we deduce that $x \le b$. If $x \in [a, b]$, then again we have that $x \le b$.

Putting this together, we have proven that if $x \in [a, b] \cup [a', b']$, then $x \in [a', b]$.

Suppose that $a \leq b'$, and that $x \in [a', b]$. If $x \leq b'$, then $x \in [a', b']$. If $b' < x \leq b$, then $a \leq x < b$, so that $x \in [a, b]$. We have proven that if $x \in [a', b]$, then $x \in [a, b] \cup [a', b]$. We conclude that if $a \leq b'$, then $[a, b] \cup [a', b'] = [a', b]$, as claimed.

Suppose now that a > b', and that $x \in [a, b] \cap [a', b']$. Then in particular $x \leq b'$. But also $x \geq a$, so that x > b'. Thus we have a contradiction. We conclude that if a > b', we have that $[a, b] \cap [a', b'] = \emptyset$, as claimed.

(c) We have that $\bigcup_{n\in\mathbb{N}}[-1+1/n,1-1/n]=(-1,1)$. Check that you understand where the proof given in (b) breaks down!

4

Question. Motivated by Question 3, consider a pair (X, \mathcal{C}) of a set X and a set \mathcal{C} of subsets of X such that the following conditions are satisfied.

- (1) \emptyset belongs to \mathcal{C} .
- (2) X belongs to \mathcal{C} .
- (3) An intersection of (possibly infinitely many) subsets of X belonging to \mathcal{C} belongs to \mathcal{C} .
- (4) Let V and V' be subsets of X belonging to C. Then $V \cup V'$ belongs to C.

Then:

- (i) Let (X, \mathcal{O}) be a topological space. Let \mathcal{C} denote the set of closed subsets of X with respect to \mathcal{O} . Prove that (X, \mathcal{C}) satisfies the four conditions above.
- (ii) Suppose that (X, \mathcal{C}) satisfies the four conditions above. Let \mathcal{O} denote the set of subsets U of X such that $X \setminus U$ belongs to \mathcal{C} . Prove that (X, \mathcal{O}) defines a topological space.

Solution.

- (i) (1) Since $X \in \mathcal{O}$, we have that $\emptyset = X \setminus X$ belongs to \mathcal{C} .
 - (2) Since $\emptyset \in \mathcal{O}$, we have that $X = X \setminus \emptyset$ belongs to \mathcal{C} .
 - (3) Let $\{V_j\}_{j\in J}$ be a set of closed subsets of X. Since V_j is a closed subset of X, $X\setminus V_j$ belongs to \mathcal{O} for every $j\in J$. Since \mathcal{O} defines a topology on X in the sense of the lectures, we deduce that $\bigcup_{i\in J}(X\setminus V_j)$ belongs to \mathcal{O} .

Now
$$X \setminus \left(\bigcap_{j \in J} V_j\right) = \bigcup_{j \in J} (X \setminus V_j)$$
. Thus $X \setminus \left(\bigcap_{j \in J} V_j\right)$ belongs to \mathcal{O} , so $\bigcap_{j \in J} V_j$ is a closed subset of X .

- (4) Since V and V' are closed subsets of X, we have that $X \setminus V$ and $X \setminus V'$ belong to \mathcal{O} . Since \mathcal{O} defines a topology on X, we deduce that $(X \setminus V) \cap (X \setminus V')$ belongs to \mathcal{O} .
 - Now $X \setminus (V \cup V') = (X \setminus V) \cap (X \setminus V')$. Thus $X \setminus (V \cup V')$ belongs to \mathcal{O} , so $V \cup V'$ is a closed subset of X.
- (ii) (1) Since X belongs to \mathcal{C} , we have that $\emptyset = X \setminus X$ belongs to \mathcal{O} .

- (2) Since \emptyset belongs to \mathcal{C} , we have that $X = X \setminus \emptyset$ belongs to \mathcal{O} .
- (3) Let $\{U_j\}_{j\in J}$ be a set of subsets of X such that $X\setminus U_j$ belongs to \mathcal{C} for every $j\in J$. By the third condition which (X,\mathcal{C}) satisfies, $\bigcap_{j\in J}(X\setminus U_j)$ belongs to \mathcal{C} .

Now $X \setminus (\bigcup_{j \in J} U_j) = \bigcap_{j \in J} (X \setminus U_j)$. Thus $X \setminus (\bigcup_{j \in J} U_j)$ belongs to \mathcal{C} , so $\bigcup_{j \in J} U_j$ belongs to \mathcal{O} .

(4) Let U and U' be subsets of X such that $X \setminus U$ and $X \setminus U'$ belong to \mathcal{C} . By the fourth condition which (X,\mathcal{C}) satisfies, $(X \setminus U) \cup (X \setminus U')$ belongs to \mathcal{C} . Now $X \setminus (U \cap U') = (X \setminus U) \cup (X \setminus U')$. Thus $X \setminus (U \cap U')$ belongs to \mathcal{C} , so $U \cap U'$ belongs to \mathcal{C} .

5

Let (Y, \mathcal{O}_Y) be a topological space, and let X be a subset of Y. Prove that (X, \mathcal{O}_X) defines a topological space, where

$$\mathcal{O}_X := \{ X \cap U \mid U \in \mathcal{O}_Y \}.$$

Solution. (1) We have that $X \cap \emptyset = \emptyset$, so that $\emptyset \in \mathcal{O}_X$.

- (2) We have that $X \cap Y = X$, so that $X \in \mathcal{O}_X$.
- (3) Let $\{U_j\}_{j\in J}$ be a set of subsets of Y belonging to \mathcal{O}_Y . Since \mathcal{O}_Y defines a topology on Y, $\bigcup_{j\in J} U_j$ belongs to \mathcal{O}_Y . Thus $X\cap \left(\bigcup_{j\in J} U_j\right)$ belongs to \mathcal{O}_X .

Now
$$\bigcup_{j\in J}(X\cap U_j)=X\cap\Big(\bigcup_{j\in J}U_j\Big)$$
. Hence $\bigcup_{j\in J}(X\cap U_j)$ belongs to \mathcal{O}_X .

(4) Let U and U' be subsets of Y belonging to \mathcal{O}_Y . Since \mathcal{O}_Y defines a topology on $Y, U \cap U'$ belongs to \mathcal{O}_Y . Thus $X \cap (U \cap U')$ belongs to \mathcal{O}_X .

Now
$$(X \cap U) \cap (X \cap U') = X \cap (U \cap U')$$
. Hence $(X \cap U) \cap (X \cap U')$ belongs to \mathcal{O}_X .

6

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Prove that $(X \times Y, \mathcal{O}_{X \times Y})$ defines a topological space, where $\mathcal{O}_{X \times Y}$ denote the set of subsets W of $X \times Y$ such that for every $(x, y) \in W$ there exist $U \in \mathcal{O}_X$ and $U' \in \mathcal{O}_Y$ with $x \in U, y \in U'$, and $U \times U' \subset W$.

Solution. The following argument is quite general. We will see another manifestation of it in Question 8 (a).

(1) We have that \emptyset belongs to $\mathcal{O}_{X\times Y}$. Indeed in this case the defining condition holds vacuously.

- (2) We have that $X \times Y$ belongs to $\mathcal{O}_{X \times Y}$. Indeed for every $(x, y) \in X \times Y$, the sets $X \in \mathcal{O}_X$ and $Y \in \mathcal{O}_Y$ have the property that $x \in X$, $y \in Y$, and certainly $X \times Y \subset X \times Y$. (Recall that our definition of \subset included the possibility of equality!).
- (3) Let $\{W_j\}_{j\in J}$ be a set of subsets of $X\times Y$ belonging to $\mathcal{O}_{X\times Y}$. Let $(x,y)\in\bigcup_{j\in J}W_j$. By definition of $\bigcup_{j\in J}W_j$, (x,y) belongs to W_j for some $j\in J$.
 - Since $W_j \in \mathcal{O}_{X \times Y}$, there exist $U \in \mathcal{O}_X$ and $U' \in \mathcal{O}_Y$ such that $x \in U$, $y \in U'$, and $U \times U' \subset W_j$. It remains only to note that $W_j \subset \bigcup_{j \in J} W_j$, so that $U \times U' \subset \bigcup_{j \in J} W_j$.
- (4) Let W and W' be subsets of $X \times Y$ belonging to $\mathcal{O}_{X \times Y}$. Let $(x, y) \in W \cap W'$. Since $(x, y) \in W$, there exist $U_0 \in \mathcal{O}_X$ and $U_1 \in \mathcal{O}_Y$ such that $x \in U_0$, $y \in U_1$, and $U_0 \times U_1 \subset W$.
 - Since $(x, y) \in W'$, there exist $U'_0 \in \mathcal{O}_X$ and $U'_1 \in \mathcal{O}_Y$ such that $x \in U'_0$, $y \in U'_1$, and $U'_0 \times U'_1 \subset W'$. We make the following observations.
 - (i) $U_0 \cap U_0' \in \mathcal{O}_X$, since \mathcal{O}_X defines a topology on X, and since $U_0, U_0' \in \mathcal{O}_X$.
 - (ii) $U_1 \cap U_1' \in \mathcal{O}_Y$, since \mathcal{O}_Y defines a topology on Y, and since $U_1, U_1' \in \mathcal{O}_Y$.
 - (iii) $x \in U_0 \cap U_0'$.
 - (iv) $y \in U_1 \cap U_1'$.
 - (v) $(U_0 \cap U_0') \times (U_1 \cap U_1') = (U_0 \times U_1) \cap (U_0' \times U_1') \subset W \cap W'$.

We deduce that $W \cap W'$ belongs to $\mathcal{O}_{X \times Y}$.

7

Question.

- (a) Equip the subset $X := [1,2] \cup [4,5)$ of \mathbb{R} with the subspace topology \mathcal{O}_X with respect to $\mathcal{O}_{\mathbb{R}}$. Give and draw an example of a subset U of X which belongs to \mathcal{O}_X in each of the following cases.
 - (i) $U \cap [4,5) = \emptyset$, and neither 1 nor 2 belongs to U.
 - (ii) $U \cap [1,2] = \emptyset$, and 4 does not belong to U.
 - (iii) $U \cap [4,5) = \emptyset$, and 1 belongs to U.
 - (iv) $U \cap [1,2] = \emptyset$, and 4 belongs to U.
 - (v) 2 and 4 both belong to U.
 - (vi) $U \cap [1,2] \neq \emptyset$, $U \cap [4,5] \neq \emptyset$, and 1, 2, and 4 all do not belong to U.
- (b) Let 0 < k < 1 be a real number. Recall the topological spaces (A_k, \mathcal{O}_{A_k}) and (I, \mathcal{O}_I) from Lecture 1. Equip $A_k \times I$ with the product topology $(A_k \times I, \mathcal{O}_{A_k \times I})$. Draw $A_k \times I$, and visualise (draw if you can!) some subsets of $A_k \times I$ belonging to $\mathcal{O}_{A_k \times I}$.

(c) Let X be a subset of \mathbb{R}^2 consisting of the red and blue parts of the Norwegian flag shown below.

Equip X with the subspace topology \mathcal{O}_X with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R} \times \mathbb{R}})$. Draw an example of a subset U of X belonging to \mathcal{O}_X in each of the following cases.

- (i) U is contained in the upper right red rectangle.
- (ii) U intersects all four red rectangles, and both of the blue rectangles.
- (iii) U intersects both of the blue rectangles, but none of the red rectangles.
- (iv) U intersects only the horizontal blue rectangle, the upper left red rectangle, and the lower left red rectangle.
- (v) U intersects only the vertical blue rectangle and the two upper red rectangles.
- (d) Let X be a subset of \mathbb{R}^2 as shown below, a 'blob' with two open discs cut out.

Equip X with the subspace topology \mathcal{O}_X with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R} \times \mathbb{R}})$. Draw an example of a subset U of X belonging to \mathcal{O}_X in each of the following cases.

- (i) U intersects part but not all of one of the circles, and does not intersect the other circle.
- (ii) U intersects all of one circle, and part but not all of the other.
- (iii) U intersects part but not all of both circles.
- (iv) U intersects neither of the two circles.
- (v) U intersects all of both circles, but not all of X.

Solution. Omitted for now as the pictures have not yet been typeset — to come!

A pre-order on a set X consists for every ordered pair (x, x') of distinct elements of X of either one or zero arrows from x to x'. We require that for any ordered triple (x, x', x'') of distinct elements of X, the following condition is satisfied: if there is an arrow from x to x', and an arrow from x' to x'', then there is an arrow from x to x''.

Examples.

(1) Let $X = \{0, 1\}$. There are four pre-orders on X, pictured below.

 $0 \longrightarrow 1$ $0 \longleftarrow 1$ $0 \longrightarrow 1$ 0

The rightmost pre-order should be interpreted as the case that there zero arrows from 0 to 1 and from 1 to 0.

(2) Let $X := \{0, 1, 2\}$. There are 29 possible pre-orders on X. A few of them are pictured below.

The following are not examples of pre-orders on X. Check that you understand why!

(3) Let $X := \mathbb{N}$, the set of natural numbers. The following defines a pre-order on X.

 $0 \longrightarrow 1 \longleftarrow 2 \longrightarrow 3 \longleftarrow 4 \longrightarrow 5 \longleftarrow 6 \longrightarrow$

Question. Let X be a set equipped with a pre-order. For a pair (x, x') of elements of X, we write x < x' if there is an arrow from x to x' or if x = x'. Let \mathcal{O}_X denote the set consisting of the subsets U of X with the property that if $x \in U$ and x' has the property that x < x', then $x' \in U$.

- (a) Prove that (X, \mathcal{O}_X) defines a topological space.
- (b) Which of the four pre-orders on $X := \{0, 1\}$ corresponds to the topology defining the Sierpiński interval? Which corresponds to the discrete topology? Which to the indiscrete topology?
- (c) Find a pre-order on $X := \{a, b, c\}$ which corresponds to the topology

$$\mathcal{O} := \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$$

on X.

(d) List all of the subsets of $X := \{a, b, c, d\}$ which belong to the topology \mathcal{O} on X corresponding to the following pre-order.

The topological space (X, \mathcal{O}) is sometimes known as the *pseudo-circle*.

(e) Let (X, <) be a set equipped with a pre-order, and let \mathcal{O}_X denote the corresponding topology on X. Prove that for any set $\{U_j\}_{j\in J}$ of subsets of X belonging to \mathcal{O}_X we have that $\bigcap_{j\in J} U_j \in \mathcal{O}_X$. In particular, this holds even if J is infinite.

Definition. A topological space (X, \mathcal{O}) is an Alexandroff space if for any set $\{U_j\}_{j\in J}$ if subsets of X belonging to \mathcal{O} we have that $\bigcap_{j\in J} U_j \in \mathcal{O}$. In particular this holds even if J is infinite.

Observation. Every finite space is an Alexandroff space.

By (a) and (e) we may cook up an Alexandroff space from a pre-order (X, <). We now proceed to establish a converse.

Let (X, \mathcal{O}) be an Alexandroff space. For any $x \in X$, let U_x denote the intersection of all subsets of X which contain x and which belong to \mathcal{O} . For any $x' \in X$, define x < x' if $U_x \subset U_{x'}$.

Question (continued).

- (f) Prove that < defines a pre-order on X.
- (g) Draw the pre-order corresponding to the topology on $X := \{a, b, c, d, e\}$ given by

$$\mathcal{O} := \{\emptyset, \{a, b\}, \{c\}, \{d, e\}, \{a, b, c\}, \{c, d, e\}, \{a, b, d, e\}, X\}.$$

Solution.

- (a) (1) Vacuously, we have that $\emptyset \in \mathcal{O}_X$.
 - (2) It is clear that $X \in \mathcal{O}_X$.
 - (3) Let $\{U_j\}_{j\in J}$ be a set of subsets of X belonging to \mathcal{O}_X . Let $x\in \bigcup_{j\in J}U_j$, and suppose that $x'\in X$ has the property that x< x'.

By definition of $\bigcup_{j\in J} U_j$, there is a $j\in J$ such that $x\in U_j$. By definition of U_j , we deduce that x' belongs to U_j . Thus x' belongs to $\bigcup_{j\in J} U_j$. We conclude that $\bigcup_{j\in J} U_j\in \mathcal{O}_X$.

(4) Let U and U' be subsets of X belonging to \mathcal{O}_X . Let $x \in U \cap U'$, and suppose that $x' \in X$ has the property that x < x'.

Since $x \in U$, we have that $x' \in U$. Since $x \in U'$, we have that $x' \in U'$. Thus $x' \in U \cap U'$. We conclude that $U \cap U' \in \mathcal{O}_X$.

(b) (1) The pre-order

$$0 \longrightarrow 1$$

corresponds to the Sierpiński interval.

(2) The pre-order

corresponds to the discrete topology.

(3) The pre-order

$$0 \longrightarrow 1$$

corresponds to the indiscrete topology.

(c) The pre-order shown below corresponds to \mathcal{O} .

(d) The topology \mathcal{O} on X is the set

$$\{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}.$$

- (e) Let $x \in \bigcap_{j \in J} U_j$, and suppose that $x' \in X$ has the property that x < x'. For every $j \in J$, we have that $x \in U_j$, and hence that $x' \in U_j$. Thus $x' \in \bigcap_{j \in J} U_j$. We deduce that $\bigcap_{j \in J} U_j$ belongs to \mathcal{O}_X .
- (f) We must prove that if x < x' and x' < x'', then x < x''. If x < x', we have that $U_x \subset U_{x'}$. If x' < x'', we have that $U_{x'} \subset U_{x''}$. Thus if both x < x' and x' < x'', we have that $U_x \subset U_{x''}$ as required.
- (g) The pre-order corresponding to (X, \mathcal{O}) is depicted below.

$$a \xrightarrow{\longrightarrow} b$$
 $c \qquad d \xrightarrow{\longleftarrow} e$

9

Question. Let \mathbb{Z} denote the set of integers. Let us denote the set of prime numbers by $\mathsf{Spec}(\mathbb{Z})$. For any integer n, let

$$V(n) := \{ p \in \mathbb{Z} \mid p \text{ is prime, and } p \mid n \}.$$

Prove that

$$\mathcal{O} := \{ \mathsf{Spec}(\mathbb{Z}) \setminus V(n) \mid n \in \mathbb{Z} \}$$

defines a topology on $Spec(\mathbb{Z})$. If you wish you may appeal to Question 4.

Remark. This topology is known as the *Zariski topology* on \mathbb{Z} . A generalisation defines a topology on the set of prime ideas in any commutative ring, which is the starting point of algebraic geometry.

Solution.

Let us prove that $\mathcal{C} := \{V(n) \mid n \in \mathbb{Z}\}$ satisfies conditions (1)-(4) of Question 4.

- (1) $V(1) = \emptyset$.
- (2) $V(0) = \operatorname{Spec}(\mathbb{Z}).$
- (3) Let J be a set of integers, which we allow to be infinite. Recall that the *greatest* common divisor of J is the largest positive integer m such that $m \mid z$ for every $z \in J$. Then $\bigcap_{n \in J} V(n) = V(m)$.

Indeed, if p is a prime which divides m, then $p \mid z$ for every $z \in J$. If $p \in \bigcap_{n \in J} V(n)$, then by definition $p \mid n$ for all $n \in J$. By the uniqueness of prime factorisation, this implies that $p \mid m$.

(4) Let n and n' be integers. Then $V(n) \cup V(n') = V(nm)$. Indeed, if $p \in V(n\mathbb{Z}) \cup V(n'\mathbb{Z})$, then $p \mid n$ or $p \mid n'$. Thus $p \mid nn'$. Conversely, if $p \mid nn'$ then the fact that p is prime implies that $p \mid n$ or $p \mid n'$.