Short Text Understanding Through Lexical-Semantic Analysis

Wen Hua §1, Zhongyuan Wang †2, Haixun Wang #3, Kai Zheng *4, Xiaofang Zhou *5

§ School of Information, Renmin University of China, Beijing, China

huawenr@ruc.edu.cn

† Microsoft Research, Beijing, China ² zhy.wang@microsoft.com

Google Research, U.S.A. haixun@google.com

* School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia

4 kevinz@itee.uq.edu.au 5 zxf@itee.uq.edu.au

What?

Short Text Understanding = Semantic Labeling

- Text Segmentation divide text into a sequence of terms in vocabulary
- Type detection determine the best type of each term
- Concept Labeling infer the best concept of each entity within context

watch eagles band

concept

Why?

- Applications
 - Web search, microblogging, ads matching, etc.
- Challenges
 - Incorrect syntax
 - Limited content
 - More ambiguous

Example 1 (Ambiguity in Text Segmentation):

- "april in paris lyrics" vs. "vacation april in paris"
- "book hotel california" vs. "hotel california eagles"

Example 2 (Ambiguity in Type Detection):

- "pink_{[e](singer)} songs" vs. "pink_[adj] shoes"
- "watch[v] free movie" vs. "watch[c] omega"

Example 3 (Ambiguity in Concept Labeling):

"hotel california eagles_{[e](band)}" vs. "jaguar_{[e](brand)} cars"

How?

- Traditional NLP approaches fail
 - Only lexical features
- Humans succeed
 - Semantic knowledge
- This work
 - Use **lexical-semantic** knowledge provided by a well-known semantic network for short text understanding

Outline

- Preliminaries
- Methods
 - Text Segmentation
 - Type Detection
 - Concept Labeling
- Experiments
- Conclusion

Preliminaries – Notations

	Definition	Example
S	short text	book hotel california
p	segmentation	{book hotel california}
t	term	hotel,california,hotel california
\bar{t}	typed-term	$book_{[v]},book_{[c]},book_{[e]}$
$\bar{t}.r$	type	v,adj,att,c,e
$\bar{t}.\vec{c}$	concept vector	(theme park,company,park)
$\bar{t}.\vec{C}$	concept cluster vector	({theme park,park},{company})

Preliminaries – Probase

- Is-A Network
 - Instance -> concept

$$\bar{t}.\vec{C} = \begin{cases}
\emptyset & \bar{t}.r \in \{v, adj, att\} \\
(< C, 1 > | \bar{t} \in C) & \bar{t}.r = c \\
(< C_i, W_i > | i = 1, ..., N) & \bar{t}.r = e
\end{cases}$$

- Co-occurrence Network
 - Node -> typed-term
 - Edge -> co-occurrence
 - Weight -> strength of relatedness

$$w(\bar{x}, \bar{y}) = \frac{f(\bar{x}, \bar{y})}{\sum_{\bar{z}} f(\bar{x}, \bar{z})} \cdot \log \frac{N}{N_{nei(\bar{y})}}$$

$$f(\bar{x}, \bar{y}) = \sum_{s} f_{s}(\bar{x}, \bar{y})$$

$$f_{s}(\bar{x}, \bar{y}) = n_{s} \cdot e^{-dist_{s}(\bar{x}, \bar{y})}$$

Preliminaries – Probase (Cont.)

- Compress co-occurrence network
 - K-Mediods

Preliminaries – Probase (Cont.)

read_{[v}

co-occur

article

review

book

- Scoring Semantic Coherence
 - Affinity Score (AS) -> measure semantic coherence between typed-terms

$$S(\bar{x}, \bar{y}) = \max(S_{sim}(\bar{x}, \bar{y}), S_{co}(\bar{x}, \bar{y}))$$

$$S_{co}(\bar{x}, \bar{y}) = \operatorname{cosine}(\bar{x}, \bar{C}, \bar{y}, \bar{C})$$

$$S_{co}(\bar{x}, \bar{y}) = \operatorname{cosine}(\bar{C}_{co(\bar{x})}, \bar{y}, \bar{C})$$

$$S_{sim}(\bar{x}, \bar{y}) = \mathbf{cosine}(\bar{x}.\vec{C}, \bar{y}.\vec{C})$$

Preliminaries – Problem Definition

Definition 6 (Short Text Understanding): For a short text s in natural language, generate a semantic interpretation of s, which is represented as a sequence of typed-terms, namely $\bar{s} = \{\bar{t}_i | i = 1, ..., l\}$.

- 1. **Text Segmentation**. Given a short text s, find the best segmentation p^* .
- 2. **Type Detection**. For term t, find the best typed-term \bar{t}^* in the context.
- 3. **Instance Disambiguation**. For any instance \bar{t} with possible senses (concept clusters) $\vec{C} = (C_1, C_2, ..., C_N)$, rank the senses with regard to the context.

Text Segmentation

- Good segmentation
 - Mutual Exclusion
 - Mutual Reinforcement
- Build Term Graph (TG)
 - Node -> candidate term
 - Weight -> coverage
 - Edge -> not mutually exclusive
 - Weight -> strength of mutual reinforcement

$$w(x,y) = \max(\epsilon, \max_{i,j} S(\bar{x}_i, \bar{y}_j))$$

Text Segmentation (Cont.)

- Finding the best segmentation
 - Retrieving a Maximal Clique with the largest average edge weight from the TG
- Brute Force Algorithm
 - NP-hard with exponential time complexity
- Randomized algorithm
 - Approximate solution with polynomial time complexity

Text Segmentation (Cont.)

Algorithm 1 Maximal Clique by Monte Carlo (MaxCMC)

```
Input:
    G = (V, E); W(E) = \{w(e) | e \in E\}
Output:
    G' = (V', E'); s(G')
 1: V' = \emptyset: E' = \emptyset
 2: while E \neq \emptyset do
       randomly select e = (u, v) from E with probability proportional
       to its weight
       V' = V' \cup \{u, v\}; E' = E' \cup \{e\}
     V = V - \{u, v\}; E = E - \{e\}
       for each t \in V do
       if e' = (u, t) \notin E or e' = (v, t) \notin E then
          V = V - \{t\}
              remove edges linked to t from E: E = E - \{e' = (t, *)\}
          end if
       end for
12: end while
13: calculate average edge weight: s(G') = \frac{e \in E'}{|E'|}
```

Algorithm 2 Chunking by Maximal Clique (CMaxC)

```
Input:

G = (V, E); W(E) = \{w(e) | e \in E\}

number of times to run Algorithm 1: k

Output:

G'_{best} = (V'_{best}, E'_{best})

1: s_{max} = 0

2: for i = 1; i \le k; i + + do

3: run Algorithm 1 with {}_{i}G'_{i} = (V'_{i}, E'_{i}), s(G'_{i})_{i}, as output

4: if s(G'_{i}) > s_{max} then

5: G'_{best} = G'_{i}; s_{max} = s(G'_{i})

6: end if

7: end for
```

Type Detection

- The preferred result of type detection
 - Considering traditional lexical features
 - Singleton Score (SS)
 - Semantically coherent
 - Affinity Score (AS)
- Graph
 - Node -> typed term
 - Edge
 - Adjacent terms -> Chain Model (CM)
 - Cross-term -> Pairwise Model (PM)
 - Weight

$$S_{sg}(\bar{x}) = \begin{cases} 1 + \theta & \bar{x}.r = pos(\bar{x}) \\ 1 & \text{otherwise} \end{cases}$$

$$w(\bar{x}, \bar{y}) = S_{sg}(\bar{x}) \cdot S(\bar{x}, \bar{y}) \cdot S_{sg}(\bar{y})$$

Type Detection (Cont.)

- Chain Model (CM)
 - Maximizes the total weight of the resulting sub-graph

- Pairwise Model (PM)
 - Maximum Spanning Tree (MST)
 of the resulting sub-graph
 has the largest weight.

(a) type detection result of "watch free movie using the *Chain Model* is {watch_[e], free_[adj], movie_[c]}.

(b) type detection result of "watch free movie using the *Pairwise Model* is $\{watch_{[v]}, free_{[adj]}, movie_{[c]}\}$.

Concept Labeling

- Appropriate concept clusters
 - Re-ranking concept clusters of the target instance based on context information in a short text
- Weighted-Vote approach
 - The most related term to help with disambiguation
 - Comparing weights of edges connecting to the target instance

$$\bar{x}.W_i' = V_{self}(C_i) \cdot V_{context}(C_i)$$

The original weight of concept cluster Ci

The weight of Ci in the most related term's co-occur concept cluster vector

Experiments

[27] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text conceptualization using a probabilistic knowledgebase. In *Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Three*, IJCAI'11, pages 2330–2336. AAAI Press, 2011.

Benchmark

[16] D. Kim, H. Wang, and A. Oh. Context-dependent conceptualization. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI'13, pages 2654–2661. AAAI Press, 2013.

• Data

- Manually picked 11 terms that have ambiguity
- Randomly selected 1100 queries (100 queries for each term)
- 400 queries without any restriction
- Removed 22 queries containing only one word
- Altogether 1478 queries

Evaluation

- 5 disjoint parts
- 15 colleagues to label them (3 for each part)

- Effectiveness of Text Segmentation
 - Longest-Cover
 - MaxCBF (Maximal Clique by Brute Force)
 - MaxCMC (Maximal Clique by Monte Carlo)

TABLE II
ACCURACY OF TEXT SEGMENTATION.

	Longest-Cover	MaxCBF	MaxCMC
accuracy	0.954	0.984	0.979

- Effectiveness of Type Detection
- Method
 - Stanford Tagger (ST)
 - Chain Model (CM)
 - Pairwise Model (PM)
- Level
 - Lexical (v, adj)
 - Semantic (attr, c, e)
 - Term
 - Query

TABLE III
Accuracy of type detection.

	ST	CM	PM
lexical-level	0.865	0.967	0.978
semantic-level	0.944	0.969	0.973
term-level	0.932	0.968	0.974
query-level	0.876	0.955	0.967

- Effectiveness of Short Text Understanding
- Method
 - Song ([27])
 - Kim ([16])
 - This work

TABLE	IV
ACCURACY OF SHORT TEX	T UNDERSTANDING

	Song	Kim	Our Approach
term-level	0.694	0.701	0.943
query-level	0.525	0.526	0.890

- Level
 - Term (whose top-1 concept cluster is correct)
 - Query (whose instances are all correct)

Efficiency of Short Text Understanding

Fig. 8. Average time requirement of short text understanding when length (number of words) increases.

Conclusion

- Propose a generalized framework to understand short texts effectively and efficiently
- Three steps of short text understanding, namely text segmentation, type detection, and concept labeling are actually related with each other
 - A better framework for short text understanding should be one with feedbacks

Thanks!