UCT0046P2 sequence.txt SEQUENCE LISTING

<110>	University of Connecticut Health Center Sarfarazi, Mansoor Rezaie, Tayebeh Child, Anne H											
<120>	Optineurin and Glaucoma											
<130>	UCT-0046P2	UCT-0046P2										
<150> <151>												
<150> <151>												
<150> <151>												
<150> <151>												
<160>	18											
<170>	PatentIn version 3.2											
<210> <211> <212> <213>	2077 DNA											
<300> <301>	Rezaie, T., Child, A., Hitchings, R., Brice, G., Miller, L., Coca-Prodos, M., Heon, E., Krupin, T., Ritch, R., Kreutzer, D., Crick, R.P., and Sarfarazi, M.	Coca-Prodos, M., Heon, E., Krupin, T., Ritch, R., Kreutzer, D., Crick, R.P., and Sarfarazi, M.										
<303> <304> <305> <306> <307> <308>	Optineurin Science 295 5557 1077-1079 2002 AF420371 2002-02-11											
<400> atccc	1 ggtcg ggagttctct ccaggcggca cgatgccgag gaaacagtga ccctgagcga	60										
agccaa	agccg ggcggcaggt gtggctttga tagctggtgg tgccacttcc tggccttgga	120										
tgagc	cgtac gcctctgtaa acccaacttc ctcacctttg aaacagctgc ctggttcagc	180										
attaa	tgaag attagtcagt gacaggcctg gtgtgctgag tccgcacata gaagaatcaa 2	240										
aaatg	tccaa aatgtaactg gagagaaagt gggcaacttt tggagtgact tttccacagg	300										
aactt	ctgca atgtcccatc aacctctcag ctgcctcact gaaaaggagg acagccccag 360											
tgaaa	gcaca ggaaatggac ccccccacct ggcccaccca aacctggaca cgtttacccc	420										
ggagga	agctg ctgcagcaga tgaaagagct cctgaccgag aaccaccagc tgaaagaagc 4 Page 1	480										

catgaagcta	aataatcaag	ccatgaaagg	gagatttgag	gagctttcgg	cctggacaga	540
gaaacagaag	gaagaacgcc	agttttttga	gatacagagc	aaagaagcaa	aagagcgtct	600
aatggccttg	agtcatgaga	atgagaaatt	gaaggaagag	cttggaaaac	taaaagggaa	660
atcagaaagg	tcatctgagg	accccactga	tgactccagg	cttcccaggg	ccgaagcgga	720
gcaggaaaag	gaccagctca	ggacccaggt	ggtgaggcta	caagcagaga	aggcagacct	780
gttgggcatc	gtgtctgaac	tgcagctcaa	gctgaactcc	agcggctcct	cagaagattc	840
ctttgttgaa	attaggatgg	ctgaaggaga	agcagaaggg	tcagtaaaag	aaatcaagca	900
tagtcctggg	cccacgagaa	cagtctccac	tggcacggca	ttgtctaaat	ataggagcag	960
atctgcagat	ggggccaaga	attacttcga	acatgaggag	ttaactgtga	gccagctcct	1020
gctgtgccta	agggaaggga	atcagaaggt	ggagagactt	gaagttgcac	tcaaggaggc	1080
caaagaaaga	gtttcagatt	ttgaaaagaa	aacaagtaat	cgttctgaga	ttgaaaccca	1140
gacagagggg	agcacagaga	aagagaatga	tgaagagaaa	ggcccggaga	ctgttggaag	1200
cgaagtggaa	gcactgaacc	tccaggtgac	atctctgttt	aaggagcttc	aagaggctca	1260
tacaaaactc	agcgaagctg	agctaatgaa	gaagagactt	caagaaaagt	gtcaggccct	13 <u>2</u> 0
tgaaaggaaa	aattctgcaa	ttccatcaga	gttgaatgaa	aagcaagagc	ttgtttatac	1380
taacaaaaag	ttagagctac	aagtggaaag	catgctatca	gaaatcaaaa	tggaacaggc	1440
taaaacagag	gatgaaaagt	ccaaattaac	tgtgctacag	atgacacaca	acaagcttct	1500
tcaagaacat	aataatgcat	tgaaaacaat	tgaggaacta	acaagaaaag	agtcagaaaa	1560
agtggacagg	gcagtgctga	aggaactgag	tgaaaaactg	gaactggcag	agaaggctct	1620
ggcttccaaa	cagctgcaaa	tggatgaaat	gaagcaaacc	attgccaagc	aggaagagga	1680
cctggaaacc	atgaccatcc	tcagggctca	gatggaagtt	tactgttctg	attttcatgc	1740
tgaaagagca	gcgagagaga	aaattcatga	ggaaaaggag	caactggcat	tgcagctggc	1800
agttctgctg	aaagagaatg	atgctttcga	agacggaggc	aggcagtcct	tgatggagat	1860
gcagagtcgt	catggggcga	gaacaagtga	ctctgaccag	caggcttacc	ttgttcaaag	1920
aggagctgag	gacagggact	ggcggcaaca	gcggaatatt	ccgattcatt	cctgccccaa	1980
gtgtggagag	gttctgcctg	acatagacac	gttacagatt	cacgtgatgg	attgcatcat	2040
ttaagtgttg	atgtatcacc	tccccaaaac	tgttggt			2077

<210> 2 <211> 577 <212> PRT <213> Homo sapiens

<300> <301> Rezaie et al.

```
UCT0046P2 sequence.txt
        Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in
<302>
        Optineurin
<303>
        Science
<304>
        295
        5557
<305>
<306>
        1077-1079
<307>
        2002
<308>
        AF420371
<309>
        2002-02-11
        (1)..(577)
<313>
<400>
        2
Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Glu Asp Ser Pro 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Ser Glu Ser Thr Gly Asn Gly Pro Pro His Leu Ala His Pro Asn Leu 20 25 30
Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 40 45
Thr Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala 50 55 60
Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys 65 70 75 80
Glu Glu Arg Gln Phe Phe Glu Ile Gln Ser Lys Glu Ala Lys Glu Arg
85 90 95
Leu Met Ala Leu Ser His Glu Asn Glu Lys Leu Lys Glu Glu Leu Gly
Lys Leu Lys Gly Lys Ser Glu Arg Ser Ser Glu Asp Pro Thr Asp Asp 115 120 125
Ser Arg Leu Pro Arg Ala Glu Ala Glu Gln Glu Lys Asp Gln Leu Arg
130 135 140
Thr Gln Val Val Arg Leu Gln Ala Glu Lys Ala Asp Leu Leu Gly Ile
145 150 155 160
145
Val Ser Glu Leu Gln Leu Lys Leu Asn Ser Ser Gly Ser Ser Glu Asp
Ser Phe Val Glu Ile Arg Met Ala Glu Gly Glu Ala Glu Gly Ser Val
```

Lys Glu Ile Lys His Ser Pro Gly Pro Thr Arg Thr Val Ser Thr Gly

205

Page 3

Thr Ala Leu Ser Lys Tyr Arg Ser Arg Ser Ala Asp Gly Ala Lys Asn 210 215 220 Tyr Phe Glu His Glu Glu Leu Thr Val Ser Gln Leu Leu Cys Leu 225 230 235 240 Arg Glu Gly Asn Gln Lys Val Glu Arg Leu Glu Val Ala Leu Lys Glu 245 250 255 Ala Lys Glu Arg Val Ser Asp Phe Glu Lys Lys Thr Ser Asn Arg Ser 260 265 270 Glu Ile Glu Thr Gln Thr Glu Gly Ser Thr Glu Lys Glu Asn Asp Glu 275 280 285 Glu Lys Gly Pro Glu Thr Val Gly Ser Glu Val Glu Ala Leu Asn Leu 290 295 300 Gln Val Thr Ser Leu Phe Lys Glu Leu Gln Glu Ala His Thr Lys Leu 305 310 315 Ser Glu Ala Glu Leu Met Lys Lys Arg Leu Gln Glu Lys Cys Gln Ala 325 330 335 Leu Glu Arg Lys Asn Ser Ala Ile Pro Ser Glu Leu Asn Glu Lys Gln 340 345 350 Glu Leu Val Tyr Thr Asn Lys Lys Leu Glu Leu Gln Val Glu Ser Met 355 360 365 Leu Ser Glu Ile Lys Met Glu Gln Ala Lys Thr Glu Asp Glu Lys Ser 370 375 380 Lys Leu Thr Val Leu Gln Met Thr His Asn Lys Leu Leu Gln Glu His 385 390 395 400 Asn Asn Ala Leu Lys Thr Ile Glu Glu Leu Thr Arg Lys Glu Ser Glu 405 410 415 Lys Val Asp Arg Ala Val Leu Lys Glu Leu Ser Glu Lys Leu Glu Leu 420 425 430 Ala Glu Lys Ala Leu Ala Ser Lys Gln Leu Gln Met Asp Glu Met Lys 435 440 445 Gln Thr Ile Ala Lys Gln Glu Glu Asp Leu Glu Thr Met Thr Ile Leu

Page 4

450 455 455 455 455 456 456 460 470 470 4662 sequence.txt

Arg Ala Gln Met Glu 470 7yr Cys Ser Asp Phe His Ala Glu Arg Ala Ala Arg Glu Lys Ala 610 Glu Glu Lys Glu Gln Leu Ala Leu Gln Leu Ala Leu Gln Leu Ala Leu Gln Leu Ala Leu Gln Ceu Ala Leu Gln Arg Glu Val Gln Glu Asp Gly Gly Arg Gln Ser Leu Met Glu Met Gln Ser Arg His Gly Ala Arg Thr Ser Asp Ser S30 Gln Gln Ala Tyr Leu Val Gln Arg Gly Ala Glu Asp Gly Arg Gly Arg Gln Gln Gln Gln Arg S50 Pro Lys Cys Gly Glu Val Leu Pro Asp S65 Asp Thr Leu Gln Tle His Ser Cys Pro Lys Cys Gly Glu S60 Val Leu Pro Asp Tle Asp Thr Leu Gln Tle His Val Met Asp Cys Tle

Ile

<210> 1856 <211> <212> DNA <213> Homo sapiens <300> <301> Rezaie et al. Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in <302> Optineurin <303> Science 295 <304> <305> 5557 <306> 1077-1079 <307> 2002 AF420372 <308> 2002-02-11 <309> (1)..(1856)<313> <400> atcccggtcg ggagttctct ccaggcggca cgatgccgag gaaacagtga ccctgagcga 60 agccaagccg ggcggcagga acttctgcaa tgtcccatca acctctcagc tgcctcactg 120 aaaaggagga cagccccagt gaaagcacag gaaatggacc cccccacctg gcccacccaa 180 acctggacac gtttaccccg gaggagctgc tgcagcagat gaaagagctc ctgaccgaga 240 accaccagct gaaagaagcc atgaagctaa ataatcaagc catgaaaggg agatttgagg 300 Page 5

agctttcggc	ctggacagag	aaacagaagg	aagaacgcca	gttttttgag	atacagagca	360
aagaagcaaa	agagcgtcta	atggccttga	gtcatgagaa	tgagaaattg	aaggaagagc	420
ttggaaaact	aaaagggaaa	tcagaaaggt	catctgagga	ccccactgat	gactccaggc	480
ttcccagggc	cgaagcggag	caggaaaagg	accagctcag	gacccaggtg	gtgaggctac	540
aagcagagaa	ggcagacctg	ttgggcatcg	tgtctgaact	gcagctcaag	ctgaactcca	600
gcggctcctc	agaagattcc	tttgttgaaa	ttaggatggc	tgaaggagaa	gcagaagggt	660
cagtaaaaga	aatcaagcat	agtcctgggc	ccacgagaac	agtctccact	ggcacggcat	720
tgtctaaata	taggagcaga	tctgcagatg	gggccaagaa	ttacttcgaa	catgaggagt	780
taactgtgag	ccagctcctg	ctgtgcctaa	gggaagggaa	tcagaaggtg	gagagacttg	840
aagttgcact	caaggaggcc	aaagaaagag	tttcagattt	tgaaaagaaa	acaagtaatc	900
gttctgagat	tgaaacccag	acagagggga	gcacagagaa	agagaatgat	gaagagaaag	960
gcccggagac	tgttggaagc	gaagtggaag	cactgaacct	ccaggtgaca	tctctgttta	1020
aggagcttca	agaggctcat	acaaaactca	gcgaagctga	gctaatgaag	aagagacttc	1080
aagaaaagtg	tcaggccctt	gaaaggaaaa	attctgcaat	tccatcagag	ttgaatgaaa	1140
agcaagagct	tgtttatact	aacaaaaagt	tagagctaca	agtggaaagc	atgctatcag	1200
aaatcaaaat	ggaacaggct	aaaacagagg	atgaaaagtc	caaattaact	gtgctacaga	1260
tgacacacaa	caagcttctt	caagaacata	ataatgcatt	gaaaacaatt	gaggaactaa	1320
caagaaaaga	gtcagaaaaa	gtggacaggg	cagtgctgaa	ggaactgagt	gaaaaactgg	1380
aactggcaga	gaaggctctg	gcttccaaac	agctgcaaat	ggatgaaatg	aagcaaacca	1440
ttgccaagca	ggaagaggac	ctggaaacca	tgaccatcct	cagggctcag	atggaagttt	1500
actgttctga	ttttcatgct	gaaagagcag	cgagagagaa	aattcatgag	gaaaaggagc	1560
aactggcatt	gcagctggca	gttctgctga	aagagaatga	tgctttcgaa	gacggaggca	1620
ggcagtcctt	gatggagatg	cagagtcgtc	atggggcgag	aacaagtgac	tctgaccagc	1680
aggcttacct	tgttcaaaga	ggagctgagg	acagggactg	gcggcaacag	cggaatattc	1740
cgattcattc	ctgccccaag	tgtggagagg	ttctgcctga	catagacacg	ttacagattc	1800
acgtgatgga	ttgcatcatt	taagtgttga	tgtatcacct	ccccaaaact	gttggt	1856

<210> 4 <211> 577 <212> PRT <213> Homo sapiens

<300> <301> <302> Rezaie et al. Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin

```
UCT0046P2 sequence.txt
<303>
        Science
<304>
        295
<305>
        5557
<306>
        1077-1079
        2002
<307>
        AF420372
<308>
       2002-02-11
(1)..(577)
<309>
<400>
Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Glu Asp Ser Pro
1 10 15
Ser Glu Ser Thr Gly Asn Gly Pro Pro His Leu Ala His Pro Asn Leu 20 25 30
Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 40 45
Thr Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala
50 60
Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys 65 70 75 80
Glu Glu Arg Gln Phe Phe Glu Ile Gln Ser Lys Glu Ala Lys Glu Arg
85 90 95
Leu Met Ala Leu Ser His Glu Asn Glu Lys Leu Lys Glu Glu Leu Gly
100 105 110
Lys Leu Lys Gly Lys Ser Glu Arg Ser Ser Glu Asp Pro Thr Asp Asp 115 120 125
Ser Arg Leu Pro Arg Ala Glu Ala Glu Gln Glu Lys Asp Gln Leu Arg
130 135 140
Thr Gln Val Val Arg Leu Gln Ala Glu Lys Ala Asp Leu Leu Gly Ile
145 150 155 160
Val Ser Glu Leu Gln Leu Lys Leu Asn Ser Ser Gly Ser Ser Glu Asp
165 170 175
```

Lys Glu Ile Lys His Ser Pro Gly Pro Thr Arg Thr Val Ser Thr Gly 195 200 205

Ser Phe Val Glu Ile Arg Met Ala Glu Gly Glu Ala Glu Gly Ser Val

UCT0046P2 sequence.txt
Thr Ala Leu Ser Lys Tyr Arg Ser Arg Ser Ala Asp Gly Ala Lys Asn
210 215 220 Tyr Phe Glu His Glu Glu Leu Thr Val Ser Gln Leu Leu Leu Cys Leu 225 230 235 240 Arg Glu Gly Asn Gln Lys Val Glu Arg Leu Glu Val Ala Leu Lys Glu 245 250 255 Ala Lys Glu Arg Val Ser Asp Phe Glu Lys Lys Thr Ser Asn Arg Ser 260 265 270 Glu Ile Glu Thr Gln Thr Glu Gly Ser Thr Glu Lys Glu Asn Asp Glu 275 280 285 Glu Lys Gly Pro Glu Thr Val Gly Ser Glu Val Glu Ala Leu Asn Leu 290 295 300 Gln Val Thr Ser Leu Phe Lys Glu Leu Gln Glu Ala His Thr Lys Leu 305 310 315 320 Ser Glu Ala Glu Leu Met Lys Lys Arg Leu Gln Glu Lys Cys Gln Ala 325 330 335 Leu Glu Arg Lys Asn Ser Ala Ile Pro Ser Glu Leu Asn Glu Lys Gln 340 345 350 Glu Leu Val Tyr Thr Asn Lys Lys Leu Glu Leu Gln Val Glu Ser Met 355 360 365 Leu Ser Glu Ile Lys Met Glu Gln Ala Lys Thr Glu Asp Glu Lys Ser 370 375 380 Lys Leu Thr Val Leu Gln Met Thr His Asn Lys Leu Leu Gln Glu His 385 390 395 400 Asn Asn Ala Leu Lys Thr Ile Glu Glu Leu Thr Arg Lys Glu Ser Glu 405 410 415 Lys Val Asp Arg Ala Val Leu Lys Glu Leu Ser Glu Lys Leu Glu Leu 425 430 Ala Glu Lys Ala Leu Ala Ser Lys Gln Leu Gln Met Asp Glu Met Lys 435 440 445 Gln Thr Ile Ala Lys Gln Glu Glu Asp Leu Glu Thr Met Thr Ile Leu 450 455 460

UC10046P2 Sequence.txt
Arg Ala Gln Met Glu Val Tyr Cys Ser Asp Phe His Ala Glu Arg Ala 465 470 475 480
Ala Arg Glu Lys Ile His Glu Glu Lys Glu Gln Leu Ala Leu Gln Leu 485 490 495
Ala Val Leu Leu Lys Glu Asn Asp Ala Phe Glu Asp Gly Gly Arg Gln 500 505 510
Ser Leu Met Glu Met Gln Ser Arg His Gly Ala Arg Thr Ser Asp Ser 515 520 525
Asp Gln Gln Ala Tyr Leu Val Gln Arg Gly Ala Glu Asp Arg Asp Trp 530 535 540
Arg Gln Gln Arg Asn Ile Pro Ile His Ser Cys Pro Lys Cys Gly Glu 545 550 555 560
Val Leu Pro Asp Ile Asp Thr Leu Gln Ile His Val Met Asp Cys Ile 565 570 575
Ile
<210> 5 <211> 2008 <212> DNA <213> Homo sapiens
<pre><300> <301> Rezaie et al. <302> Adult-Onset Primary Open-Angle Glauconma Caused by Mutations in</pre>
<400> 5 atcccggtcg ggagttctct ccaggcggca cgatgccgag gaaacagtga ccctgagcga 60
agccaagccg ggcggcaggt gtggctttga tagctggtgg tgccacttcc tggccttgga 120
tgagccgtac gcctctgtaa acccaacttc ctcacctttg aaacagctgc ctggttcagc 180
attaatgaag attagtcagt gacaggcctg gtgtgctgag tccgcacata gaacttctgc 240
aatgtcccat caacctctca gctgcctcac tgaaaaggag gacagcccca gtgaaagcac 300
aggaaatgga ccccccacc tggcccaccc aaacctggac acgtttaccc cggaggagct 360 Page 9

gctgcagcag	atgaaagagc	tcctgaccga	gaaccaccag	ctgaaagaag	ccatgaagct	420
aaataatcaa	gccatgaaag	ggagatttga	ggagctttcg	gcctggacag	agaaacagaa	480
ggaagaacgc	cagttttttg	agatacagag	caaagaagca	aaagagcgtc	taatggcctt	540
gagtcatgag	aatgagaaat	tgaaggaaga	gcttggaaaa	ctaaaaggga	aatcagaaag	600
gtcatctgag	gaccccactg	atgactccag	gcttcccagg	gccgaagcgg	agcaggaaaa	660
ggaccagctc	aggacccagg	tggtgaggct	acaagcagag	aaggcagacc	tgttgggcat	720
cgtgtctgaa	ctgcagctca	agctgaactc	cagcggctcc	tcagaagatt	cctttgttga	780
aattaggatg	gctgaaggag	aagcagaagg	gtcagtaaaa	gaaatcaagc	atagtcctgg	840
gcccacgaga	acagtctcca	ctggcacggc	attgtctaaa	tataggagca	gatctgcaga	900
tggggccaag	aattacttcg	aacatgagga	gttaactgtg	agccagctcc	tgctgtgcct	960
aagggaaggg	aatcagaagg	tggagagact	tgaagttgca	ctcaaggagg	ccaaagaaag	1020
agtttcagat	tttgaaaaga	aaacaagtaa	tcgttctgag	attgaaaccc	agacagaggg	1080
gagcacagag	aaagagaatg	atgaagagaa	aggcccggag	actgttggaa	gcgaagtgga	1140
agcactgaac	ctccaggtga [.]	catctctgtt	taaggagctt	caagaggctc	atacaaaact	1200
cagcgaagct	gagctaatga	agaagagact	tcaagaaaag	tgtcaggccc	ttgaaaggaa	1260
aaattctgca	attccatcag	agttgaatga	aaagcaagag	cttgtttata	ctaacaaaaa	1320
gttagagcta	caagtggaaa	gcatgctatc	agaaatcaaa	atggaacagg	ctaaaacaga	1380
ggatgaaaag	tccaaattaa	ctgtgctaca	gatgacacac	aacaagcttc	ttcaagaaca	1440
taataatgca	ttgaaaacaa	ttgaggaact	aacaagaaaa	gagtcagaaa	aagtggacag	1500
ggcagtgctg	aaggaactga	gtgaaaaact	ggaactggca	gagaaggctc	tggcttccaa	1560
acagctgcaa	atggatgaaa	tgaagcaaac	cattgccaag	caggaagagg	acctggaaac	1620
catgaccatc	ctcagggctc	agatggaagt	ttactgttct	gattttcatg	ctgaaagagc	1680
agcgagagag	aaaattcatg	aggaaaagga	gcaactggca	ttgcagctgg	cagttctgct	1740
gaaagagaat	gatgctttcg	aagacggagg	caggcagtcc	ttgatggaga	tgcagagtcg	1800
tcatggggcg	agaacaagtg	actctgacca	gcaggcttac	cttgttcaaa	gaggagctga	1860
ggacagggac	tggcggcaac	agcggaatat	tccgattcat	tcctgcccca	agtgtggaga	1920
ggttctgcct	gacatagaca	cgttacagat	tcacgtgatg	gattgcatca	tttaagtgtt	1980
gatgtatcac	ctccccaaaa	ctgttggt				2008

<210> 6 <211> 577 <212> PRT <213> Homo sapiens

```
<300>
<301>
       Rezaie et al.
       Adult Onset Primary Open-Angle Glaucoma Caused by Mutations in
<302>
       Optineurin
<303>
       Science
       295
<304>
<305>
       5557
<306>
       1077-1079
<307>
       2002
       AF420272
<308>
       2002-02-11
<309>
<313>
       (1)..(577)
<400> 6
Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Glu Asp Ser Pro
1 5 10 15
Ser Glu Ser Thr Gly Asn Gly Pro Pro His Leu Ala His Pro Asn Leu
20 25 30
Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 40 45
Thr Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala
50 55 60
Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys
Glu Glu Arg Gln Phe Phe Glu Ile Gln Ser Lys Glu Ala Lys Glu Arg
85 90 95
Leu Met Ala Leu Ser His Glu Asn Glu Lys Leu Lys Glu Glu Leu Gly
Lys Leu Lys Gly Lys Ser Glu Arg Ser Ser Glu Asp Pro Thr Asp Asp 115 120 125
Ser Arg Leu Pro Arg Ala Glu Ala Glu Gln Glu Lys Asp Gln Leu Arg
130 135 140
Thr Gln Val Val Arg Leu Gln Ala Glu Lys Ala Asp Leu Leu Gly Ile
145 150 155 160
Val Ser Glu Leu Gln Leu Lys Leu Asn Ser Ser Gly Ser Ser Glu Asp
165 170 175
Ser Phe Val Glu Ile Arg Met Ala Glu Gly Glu Ala Glu Gly Ser Val
180 185 190
```

UCT0046P2 sequence.txt
Lys Glu Ile Lys His Ser Pro Gly Pro Thr Arg Thr Val Ser Thr Gly
195 200 205 Thr Ala Leu Ser Lys Tyr Arg Ser Arg Ser Ala Asp Gly Ala Lys Asn 210 215 220 Tyr Phe Glu His Glu Glu Leu Thr Val Ser Gln Leu Leu Cys Leu 225 230 235 240 Arg Glu Gly Asn Gln Lys Val Glu Arg Leu Glu Val Ala Leu Lys Glu 245 250 255 Ala Lys Glu Arg Val Ser Asp Phe Glu Lys Lys Thr Ser Asn Arg Ser 265 270 Glu Ile Glu Thr Gln Thr Glu Gly Ser Thr Glu Lys Glu Asn Asp Glu 275 280 285 Glu Lys Gly Pro Glu Thr Val Gly Ser Glu Val Glu Ala Leu Asn Leu 290 295 300 Gln Val Thr Ser Leu Phe Lys Glu Leu Gln Glu Ala His Thr Lys Leu 305 310 315 320 Ser Glu Ala Glu Leu Met Lys Lys Arg Leu Gln Glu Lys Cys Gln Ala 325 330 335 Leu Glu Arg Lys Asn Ser Ala Ile Pro Ser Glu Leu Asn Glu Lys Gln 340 350 Glu Leu Val Tyr Thr Asn Lys Lys Leu Glu Leu Gln Val Glu Ser Met 355 360 365 Leu Ser Glu Ile Lys Met Glu Gln Ala Lys Thr Glu Asp Glu Lys Ser 370 375 380 Lys Leu Thr Val Leu Gln Met Thr His Asn Lys Leu Leu Gln Glu His 385 390 395 400 Asn Asn Ala Leu Lys Thr Ile Glu Glu Leu Thr Arg Lys Glu Ser Glu 405 410 415 Lys Val Asp Arg Ala Val Leu Lys Glu Leu Ser Glu Lys Leu Glu Leu 425 430 Ala Glu Lys Ala Leu Ala Ser Lys Gln Leu Gln Met Asp Glu Met Lys 435 440 445

Gln Thr Ile Ala Lys Gln Glu Glu Asp Leu Glu Thr Met Thr Ile Leu 450 460

Arg Ala Gln Met Glu Val Tyr Cys Ser Asp Phe His Ala Glu Arg Ala 465 470 475 480

Ala Arg Glu Lys Ile His Glu Glu Lys Glu Gln Leu Ala Leu Gln Leu 485 490 495

Ala Val Leu Leu Lys Glu Asn Asp Ala Phe Glu Asp Gly Gly Arg Gln 500 510

Ser Leu Met Glu Met Gln Ser Arg His Gly Ala Arg Thr Ser Asp Ser 515 520 525

Asp Gln Gln Ala Tyr Leu Val Gln Arg Gly Ala Glu Asp Arg Asp Trp 530 540

Arg Gln Gln Arg Asn Ile Pro Ile His Ser Cys Pro Lys Cys Gly Glu 545 550 555 560

Val Leu Pro Asp Ile Asp Thr Leu Gln Ile His Val Met Asp Cys Ile 565 570 575

Ile

<210> 7

<211> 18 <212> PRT

<213> Homo sapiens

<400> 7

Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Glu Asp Ser Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Glu

<210> 8

<211> 18

<212> PRT <213> Homo sapiens

<400> 8

Glu Val Leu Pro Asp Ile Asp Thr Leu Gln Ile His Val Met Asp Cys $1 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Ile

```
<210>
       2023
<211>
      DNA
      Mus musculus
<300>
<308>
      AY071834
<309>
      2002-07-06
<313>
      (1)..(2023)
<400> 9
cgggtcgcga ggccgcgct caccgtccag ctgcccggtc gccgccccc ggctggtccc
                                                                       60
tggcgggcgt cggcatccag agctttggga caaaatacca acgaagcagt gacctaagag
                                                                      120
                                                                      180
gagaggatcc ctgtggccgg acctgttacc atgtcccatc aacctctgag ctgcctgact
                                                                      240
gagaaggggg acagcccttg tgagacccca ggaaatggac cctccaatat ggttcacccc
agcctggaca cattcacccc tgaggagctg ctgcagcaaa tgaaggaact cctggttgag
                                                                      300
                                                                      360
aaccaccagc tgaaagaagc catgaagcta aataatcaag ctatgaaagg gcgatttgag
gagctgtccg cctggacaga gaagcagaag gaagagcgcc tgttgtttga gatgcaaagc
                                                                      420
                                                                      480
aaagaggtta aggagcgcct taaggccctg actcatgaaa atgagaggct gaaggaagag
                                                                      540
cttggaaaat tcaaagagaa atcagaaaag ccattggaag acctcacagg tggctacagg
                                                                      600
tatcccagag ccttggagga ggaagtggag aagctgaaga cccaggtgga gcaggaagtg
                                                                      660
gagcatctga agatccaggt gatgcgcctt cgggctgaaa aggcagacct gctgggcatc
                                                                      720
qtctcagaac tqcagctcaa actcaactcc ggcggctcct cggaagactc cttcgttgag
atcaggatga ccgaaggaga gactgaaggg gcaatgaagg agatgaagaa ctgccctaca
                                                                      780
                                                                      840
cccacaagaa cagaccccat cagcttgagc aactgtacag aggatgccag gagttgtgcg
                                                                      900
gagtttgaag aactgactgt gagccagctt ctgctttgcc taagggaagg aaaccaaaag
                                                                      960
gtggagagac ttgaagtcgc cctcagagaa gccaaagaaa gaatttcaga ttttgaaaag
                                                                     1020
aaagcaaatg gccattcttc tactgagaag cagacagcga ggagagcaga cagagagaag
                                                                     1080
gaggacaaag gccaagagag tgttggaagc gaagtggaaa cactgagcat tcaagtgacc
tctctgttta aggagcttca agaggcacac acaaaactca gtgaggctga gctgatgaag
                                                                     1140
                                                                     1200
aagagacttc aagaaaagtg tcaggctctg gagaggaaga actctgcaac accatcagag
                                                                     1260
ctgaatgaaa agcaagagct cgtttacagt aacaagaagt tagagctgca ggtggagagc
                                                                     1320
atgcgctccg aaatcaagat ggagcaggcc aagacagagg aggagaagtc caggttagcc
actctgcagg caactcacaa caagctcctt caagaacata ataaggcact gaaaacaatt
                                                                     1380
                                                                     1440
gaagaactaa ccaagcaaca ggcagaaaag gtggacaaga tgttgctgca ggagctcagc
```

gagaagctgg	agctggcaga	gcaggctctg	gcatccaaac	agctccagat	ggatgagatg	1500
aagcagacgc	tcgctaagca	ggaggaagac	ctggagacca	tggccgtcct	cagggctcag	1560
atggaggtgt	actgctcaga	ttttcacgct	gagagagcag	caagagagaa	gattcatgaa	1620
gaaaaggagc	agctggcctt	gcagctcgcg	attttgctga	aagagaacaa	tgacattgaa	1680
gagggaggca	gtagacagtc	cctgatggaa	atgcagtgcc	gacacggggc	aagaaccagt	1740
gactctgacc	agcagactta	cctgtttcaa	agaggagccg	aggacaggag	ctggcagcac	1800
gggcagcagc	ctcgcagtat	tccgattcac	tcctgcccca	agtgcgggga	ggtcctgccg	1860
gacatcgaca	cgcttcagat	ccatgtgatg	gactgcatca	tttgagtgtt	ctctccagtc	1920
cccaaagctc	ttggtaaatg	ccagatttct	cctccaacac	ttgtacttct	gtcttcttta	1980
ttgtcacata	tatcacaaat	atttttgaca	cactgtaccc	ctc		2023

<210> 10 <211> 584

<212> PRT

<213> Mus musculus

<300>

<308> AY071834

<309> 2002-07-06 <313> (1)..(584)

<400> 10

Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Gly Asp Ser Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Glu Thr Pro Gly Asn Gly Pro Ser Asn Met Val His Pro Ser Leu 20 25 30

Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 40 45

Val Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala 50 55 60

Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys 65 70 75 80

Glu Glu Arg Leu Leu Phe Glu Met Gln Ser Lys Glu Val Lys Glu Arg 85 90 95

Leu Lys Ala Leu Thr His Glu Asn Glu Arg Leu Lys Glu Glu Leu Gly
100 105 110

Lys Phe Lys Glu Lys Ser Glu Lys Pro Leu Glu Asp Leu Thr Gly Gly 115 120 125 Page 15

Tyr Arg Tyr Pro Arg Ala Leu Glu Glu Glu Val Glu Lys Leu Lys Thr 130 135 140 Gln Val Glu Gln Glu Val Glu His Leu Lys Ile Gln Val Met Arg Leu 145 150 155 160 Arg Ala Glu Lys Ala Asp Leu Leu Gly Ile Val Ser Glu Leu Gln Leu 165 170 175 Lys Leu Asn Ser Gly Gly Ser Ser Glu Asp Ser Phe Val Glu Ile Arg 180 185 190 Met Thr Glu Gly Glu Thr Glu Gly Ala Met Lys Glu Met Lys Asn Cys 195 200 205 Pro Thr Pro Thr Arg Thr Asp Pro Ile Ser Leu Ser Asn Cys Thr Glu 210 215 Asp Ala Arg Ser Cys Ala Glu Phe Glu Glu Leu Thr Val Ser Gln Leu 225 230 235 240 Leu Leu Cys Leu Arg Glu Gly Asn Gln Lys Val Glu Arg Leu Glu Val 245 250 255 Ala Leu Arg Glu Ala Lys Glu Arg Ile Ser Asp Phe Glu Lys Lys Ala 260 270 Asn Gly His Ser Ser Thr Glu Lys Gln Thr Ala Arg Arg Ala Asp Arg 275 280 285 Glu Lys Glu Asp Lys Gly Gln Glu Ser Val Gly Ser Glu Val Glu Thr 290 295 300 Leu Ser Ile Gln Val Thr Ser Leu Phe Lys Glu Leu Gln Glu Ala His 305 310 315 320 Thr Lys Leu Ser Glu Ala Glu Leu Met Lys Lys Arg Leu Gln Glu Lys 325 330 335 Cys Gln Ala Leu Glu Arg Lys Asn Ser Ala Thr Pro Ser Glu Leu Asn 340 350 Glu Lys Gln Glu Leu Val Tyr Ser Asn Lys Lys Leu Glu Leu Gln Val 355 360 365 Glu Ser Met Arg Ser Glu Ile Lys Met Glu Gln Ala Lys Thr Glu Glu Page 16

Glu Lys Ser Arg Leu Ala Thr Leu Gln Ala Thr His Asn Lys Leu Leu 385 390 395 400

Gln Glu His Asn Lys Ala Leu Lys Thr Ile Glu Glu Leu Thr Lys Gln 405 410 415

Gln Ala Glu Lys Val Asp Lys Met Leu Leu Gln Glu Leu Ser Glu Lys 420 430

Leu Glu Leu Ala Glu Gln Ala Leu Ala Ser Lys Gln Leu Gln Met Asp 435 440 445

Glu Met Lys Gln Thr Leu Ala Lys Gln Glu Glu Asp Leu Glu Thr Met 450 455 460

Ala Val Leu Arg Ala Gln Met Glu Val Tyr Cys Ser Asp Phe His Ala 465 470 475 480

Glu Arg Ala Arg Glu Lys Ile His Glu Glu Lys Glu Gln Leu Ala 485 490 495

Leu Gln Leu Ala Ile Leu Leu Lys Glu Asn Asn Asp Ile Glu Glu Gly 500 505 510

Gly Ser Arg Gln Ser Leu Met Glu Met Gln Cys Arg His Gly Ala Arg 515 520 525

Thr Ser Asp Ser Asp Gln Gln Thr Tyr Leu Phe Gln Arg Gly Ala Glu 530 535 540

Asp Arg Ser Trp Gln His Gly Gln Gln Pro Arg Ser Ile Pro Ile His 545 550 560

Ser Cys Pro Lys Cys Gly Glu Val Leu Pro Asp Ile Asp Thr Leu Gln 565 570 575

Ile His Val Met Asp Cys Ile Ile 580

<210> 11

<211> 1925

<212> DNA <213> Macaca mulatta

<300>

<308> AY228373 <309> 2002-03-30 <313> (1)..(1925)

<400> 11 60 atcccggtcg ggagttctct ccaggcggca cgatgccaag gaagcagtga ccctgagcga 120 agccaagccg ggcggcagga acttctgcaa tgtcccatca acctctcagc tgcctcactg 180 aaaaggggga cagccccagt gaaagcacag gaaatggacc cccccatctg gcccacccaa acctggacac attcacccca gaggagctgc tgcagcagat gaaagagctc ctgaccgaga 240 300 accaccagct gaaagaagcc atgaagctaa ataaccaagc catgaaaggg cggtttgagg 360 agctttcggc ctggacagag aaacagaagg aagaacgcca gttttttgag acacagagca 420 aagaagccaa agagcgtctc atggccttga gtcacgagaa tgagaaattg aaggaagagc 480 ttggaaaact gaaagggaaa tcagaaaggt catctgagga ccccactgat gactccaggc 540 ttcccagggc agaagcggag caggaaaagg accagctcag gacccaggtg acgaggctac aagcagagaa ggcagacctg ttgggcattg tgtctgaact gcagctcaaa ctgaactcca 600 660 gcggctcctc agaagactcc tttgttgaaa ttaggatggc tgaaggagaa gcagaaggtt 720 cagtaaaaga aatcaagcat agtcctgggc ccacaagaac agtctccatt ggcacgagca 780 gatctgcaga gggggccaag aattacttgg aacatgagga gttaactgtg agccagctcc 840 tgctgtgcct aagagaaggg aatcagaagg tggagagact tgaaattgca ctcaaggagg 900 ccaaagaaag agtttcagat tttgaaaaga aagcaagtaa tcgctctgag attgaaaccc 960 agacagaggg gagcacagag aaagagaacg aggaagagaa aggcccagag actgttggaa 1020 gcgaagtgga agcattgaac cttcaggtga catctctgtt taaggagctt caagaggctc 1080 atacaaaact cagtgaagcc gagctaatga agaagagact tcaagaaaag tgtcaggccc 1140 ttgaaaggaa aaattctgca actccatcag agttgaatga aaagcaagag cttgtttata 1200 ctaacaaaaa gttagagcta caagtggaaa gcatgctctc ggaaatcaaa atggaacagg 1260 ctaaaacgga ggatgaaaag tccaaattag ccatgttaca gttgacacac aacaagcttc 1320 ttcaggaaca taatcatgca ttgaaaacga ttgaggagct aacaagaaaa gagtcagaaa 1380 aagtggacag ggcagtgcta aaggaactga gtgaaaaact ggaactggca gagaaggctc 1440 tggcttccaa acagctgcaa atggatgaga tgaagcaaac tattgccaag caggaggagg 1500 acctggaaac catgaccgtc ctcagggctc agatggaagt ttactgttct gattttcatg 1560 ctgaaagagc agcaagagag aaaattcatg aggaaaagga gcaactggca ttgcagctgg 1620 cagttttgct gaaagagaat gatgctttcg aagatggagg caggcagtcc ttgatggaga 1680 tgcagagtcg tcatggggcg agaacaagtg accccgacca gcaggcttac cttgttcaaa 1740 gaggaactga ggacagggac tggcagcaac agcggaatat tccgattcat tcctgcccca agtgtggaga ggttctgcct gacatcgaca cgctacagat tcacgtgatg gactgcatca 1800

UCTOO46P2 sequence.txt tttaggtgtt gatgtgtcac ctccccaaaa ctgttggtaa atgtcagatt ttttcctcca											
agagttgtcc ttctgtgtta tttgtttttc actcaaatat tttacctcat tattattgtt											
ttaaa											
<210> 12 <211> 571 <212> PRT <213> Macaca mulatta											
<300> <308> AY228373 <309> 2002-03-30 <313> (1)(571)											
<400> 12											
Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Gly Asp Ser Pro 1 5 10 15											
Ser Glu Ser Thr Gly Asn Gly Pro Pro His Leu Ala His Pro Asn Leu 20 25 30											
Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 40 45											
Thr Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala 50 . 60											
Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys 65 70 75 80											
Glu Glu Arg Gln Phe Phe Glu Thr Gln Ser Lys Glu Ala Lys Glu Arg 85 90 95											
Leu Met Ala Leu Ser His Glu Asn Glu Lys Leu Lys Glu Glu Leu Gly 100 105 110											
Lys Leu Lys Gly Lys Ser Glu Arg Ser Ser Glu Asp Pro Thr Asp Asp 115 120 125											
Ser Arg Leu Pro Arg Ala Glu Ala Glu Gln Glu Lys Asp Gln Leu Arg 130 135 140											
Thr Gln Val Thr Arg Leu Gln Ala Glu Lys Ala Asp Leu Leu Gly Ile 145 150 155 160											
Val Ser Glu Leu Gln Leu Lys Leu Asn Ser Ser Gly Ser Ser Glu Asp 165 170 175											

 UCT0046P2 sequence.txt
Ser Phe Val Glu Ile Arg Met Ala Glu Gly Glu Ala Glu Gly Ser Val Lys Glu Ile Lys His Ser Pro Gly Pro Thr Arg Thr Val Ser Ile Gly
195 200 205 Thr Ser Arg Ser Ala Glu Gly Ala Lys Asn Tyr Leu Glu His Glu Glu 210 220 Leu Thr Val Ser Gln Leu Leu Leu Cys Leu Arg Glu Gly Asn Gln Lys 225 230 235 240 Val Glu Arg Leu Glu Ile Ala Leu Lys Glu Ala Lys Glu Arg Val Ser 245 250 255 Asp Phe Glu Lys Lys Ala Ser Asn Arg Ser Glu Ile Glu Thr Gln Thr 260 265 270 Glu Gly Ser Thr Glu Lys Glu Asn Glu Glu Glu Lys Gly Pro Glu Thr 275 280 285 Val Gly Ser Glu Val Glu Ala Leu Asn Leu Gln Val Thr Ser Leu Phe 290 295 300 Lys Glu Leu Gln Glu Ala His Thr Lys Leu Ser Glu Ala Glu Leu Met 305 310 315 320 Lys Lys Arg Leu Gln Glu Lys Cys Gln Ala Leu Glu Arg Lys Asn Ser 325 330 335 Ala Thr Pro Ser Glu Leu Asn Glu Lys Gln Glu Leu Val Tyr Thr Asn 340 350 Lys Lys Leu Glu Leu Gln Val Glu Ser Met Leu Ser Glu Ile Lys Met 355 360 365 Glu Gln Ala Lys Thr Glu Asp Glu Lys Ser Lys Leu Ala Met Leu Gln 370 375 380 Leu Thr His Asn Lys Leu Leu Gln Glu His Asn His Ala Leu Lys Thr 385 390 395 400 Ile Glu Glu Leu Thr Arg Lys Glu Ser Glu Lys Val Asp Arg Ala Val 405 410 415 Leu Lys Glu Leu Ser Glu Lys Leu Glu Leu Ala Glu Lys Ala Leu Ala 420 425 430

Ser Lys Gln Leu Gln Met Asp Glu Met Lys Gln Thr Ile Ala Lys Gln 435 440 445	
Glu Glu Asp Leu Glu Thr Met Thr Val Leu Arg Ala Gln Met Glu Val 450 455 460	
Tyr Cys Ser Asp Phe His Ala Glu Arg Ala Ala Arg Glu Lys Ile His 465 470 475 480	
Glu Glu Lys Glu Gln Leu Ala Leu Gln Leu Ala Val Leu Leu Lys Glu 485 490 495	
Asn Asp Ala Phe Glu Asp Gly Gly Arg Gln Ser Leu Met Glu Met Gln 500 505 510	
Ser Arg His Gly Ala Arg Thr Ser Asp Pro Asp Gln Gln Ala Tyr Leu 515 520 525	
Val Gln Arg Gly Thr Glu Asp Arg Asp Trp Gln Gln Arg Asn Ile 530 535 540	
Pro Ile His Ser Cys Pro Lys Cys Gly Glu Val Leu Pro Asp Ile Asp 545 550 555 560	
Thr Leu Gln Ile His Val Met Asp Cys Ile Ile 565 570	
<210> 13 <211> 2076 <212> DNA <213> Macaca mulatta	
<300> <308> AY228374 <309> 2002-03-30 <313> (1)(2076)	
<400> 13 atcccggtcg ggagttctct ccaggcggca cgatgccaag gaagcagtaa ccctgagcga 6	0
agccaagccg ggcggcaggt gtggctttga cacctggtgg tgccacttcc tggtcttgga 12	0
tgagctgtac gcctctgtaa acccagcttc ctcacctata aacagctgcc tggttcagcg 18	0
ttaatgaaga ttagtcagtg acaggcctgg tgtgccgagt ccacacatag aacttctgca 24	0
atgtcccatc aacctctcag ctgcctcact gaaaaggggg acagccccag tgaaagcaca 30	0
ggaaatggac cccccatct ggcccaccca aacctggaca cattcacccc ggaggagctg 36	0
ctgcagcaga tgaaagagct cctgaccgag aaccaccagc tgaaagaagc catgaagcta 42	0
aataaccaag ccatgaaagg gcggtttgag gagctttcgg cctggacaga gaaacagaag 48 Page 21	0

gaagaacgcc	agttttttga	gacacagagc	aaagaagcca	aagagcgtct	catggccttg	540
agtcacgaga	atgagaaatt	gaaggaagag	cttggaaaac	tgaaagggaa	atcagaaagg	600
tcatctgagg	accccactga	tgactccagg	cttcccaggg	cagaagcgga	gcaggaaaag	660
gaccagctca	ggacccaggt	gacgaggcta	caagcagaga	aggcagacct	gttgggcatt	720
gtgtctgaac	tgcagctcaa	actgaactcc	agcggctcct	cagaagactc	ctttgttgaa	780
attaggatgg	ctgaaggaga	agcagaaggt	tcagtaaaag	aaatcaagca	tagtcctggg	840
cccacaagaa	cagtctccat	tggcacgagc	agatctgcag	agggggccaa	gaattacttg	900
gaacatgagg	agttaactgt	gagccagctc	ctgctgtgcc	taagagaagg	gaatcagaag	960
gtggagagac	ttgaaattgc	actcaaggag	gccaaagaaa	gagtttcaga	ttttgaaaag	1020
aaagcaagta	atcgctctga	gattgaaacc	cagacagagg	ggagcacaga	gaaagagaac	1080
gaggaagaga	aaggcccaga	gactgttgga	agcgaagtgg	aagcattgaa	ccttcaggtg	1140
acatctctgt	ttaaggagct	tcaagaggct	catacaaaac	tcagtgaagc	cgagctaatg	1200
aagaagagac	ttcaagaaaa	gtgtcaggcc	cttgaaagga	aaaattctgc	aactccatca	1260
gagttgaatg	aaaagcaaga	gcttgtttat	actaacaaaa	agttagagct	acaagtggaa	1320
agcatgctct	cggaaatcaa	aatggaacag	gctaaaacgg	aggatgaaaa	gtccaaatta	1380
gccatgttac	agttgacaca	caacaagctt	cttcaggaac	ataatcatgc	attgaaaacg	1440
attgaggagc	taacaagaaa	agagtcagaa	aaagtggaca	gggcagtgct	aaaggaactg	1500
agtgaaaaac	tggaactggc	agagaaggct	ctggcttcca	aacagctgca	aatggatgag	1560
atgaagcaaa	ctattgccaa	gcaggaggag	gacctggaaa	ccatgaccgt	cctcagggct	1620
cagatggaag	tttactgttc	tgattttcat	gctgaaagag	cagcaagaga	gaaaattcat	1680
gaggaaaagg	agcaactggc	attgcagctg	gcagttttgc	tgaaagagaa	tgatgctttc	1740
gaagatggag	gcaggcagtc	cttgatggag	atgcagagtc	gtcatggggc	gagaacaagt	1800
gaccccgacc	agcaggctta	ccttgttcaa	agaggaactg	aggacaggga	ctggcagcaa	1860
cagcggaata	ttccgattca	ttcctgcccc	aagtgtggag	aggttctgcc	tgacatcgac	1920
acgctacaga	ttcacgtgat	ggactgcatc	atttaggtgt	tgatgtgtca	cctccccaaa	1980
actgttggta	aatgtcagat	tttttcctcc	aagagttgtc	cttctgtgtt	atttgttttt	2040
cactcaaata	ttttacctca	ttattattgt	tttaaa			2076

<210> 14 <211> 571 <212> PRT <213> Macaca mulatta

<300> <308> AY228374

<309> 2002-03-30 <313> (1)..(571)

<400> 14

Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Gly Asp Ser Pro 1 5 10

Ser Glu Ser Thr Gly Asn Gly Pro Pro His Leu Ala His Pro Asn Leu 20 25 30

Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 45

Thr Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala 50 60

Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys 65 70 75

Glu Glu Arg Gln Phe Phe Glu Thr Gln Ser Lys Glu Ala Lys Glu Arg 85 90 95

Leu Met Ala Leu Ser His Glu Asn Glu Lys Leu Lys Glu Glu Leu Gly 100 105 110

Lys Leu Lys Gly Lys Ser Glu Arg Ser Ser Glu Asp Pro Thr Asp Asp 115 120 125

Ser Arg Leu Pro Arg Ala Glu Ala Glu Gln Glu Lys Asp Gln Leu Arg 130 135 140

Thr Gln Val Thr Arg Leu Gln Ala Glu Lys Ala Asp Leu Leu Gly Ile 145 150 150

Val Ser Glu Leu Gln Leu Lys Leu Asn Ser Ser Gly Ser Ser Glu Asp 165 170 175

Ser Phe Val Glu Ile Arg Met Ala Glu Gly Glu Ala Glu Gly Ser Val 180 185 190

Lys Glu Ile Lys His Ser Pro Gly Pro Thr Arg Thr Val Ser Ile Gly 195 200 205

Thr Ser Arg Ser Ala Glu Gly Ala Lys Asn Tyr Leu Glu His Glu Glu 210 215 220

Leu Thr Val Ser Gln Leu Leu Leu Cys Leu Arg Glu Gly Asn Gln Lys 235 240 Page 23

- Val Glu Arg Leu Glu Ile Ala Leu Lys Glu Ala Lys Glu Arg Val Ser 245 250 255
- Asp Phe Glu Lys Lys Ala Ser Asn Arg Ser Glu Ile Glu Thr Gln Thr 260 270
- Glu Gly Ser Thr Glu Lys Glu Asn Glu Glu Glu Lys Gly Pro Glu Thr 275 280 285
- Val Gly Ser Glu Val Glu Ala Leu Asn Leu Gln Val Thr Ser Leu Phe 290 295 300
- Lys Glu Leu Gln Glu Ala His Thr Lys Leu Ser Glu Ala Glu Leu Met 305 310 315
- Lys Lys Arg Leu Gln Glu Lys Cys Gln Ala Leu Glu Arg Lys Asn Ser 325 330 335
- Ala-Thr Pro Ser Glu Leu Asn Glu Lys Gln Glu Leu Val Tyr Thr Asn 340 345
- Lys Lys Leu Glu Leu Gln Val Glu Ser Met Leu Ser Glu Ile Lys Met 355 360 365
- Glu Gln Ala Lys Thr Glu Asp Glu Lys Ser Lys Leu Ala Met Leu Gln 370 375 380
- Leu Thr His Asn Lys Leu Leu Gln Glu His Asn His Ala Leu Lys Thr 385 390 395 400
- Ile Glu Glu Leu Thr Arg Lys Glu Ser Glu Lys Val Asp Arg Ala Val 405 410 415
- Leu Lys Glu Leu Ser Glu Lys Leu Glu Leu Ala Glu Lys Ala Leu Ala 420 425
- Ser Lys Gln Leu Gln Met Asp Glu Met Lys Gln Thr Ile Ala Lys Gln 435 440 445
- Glu Glu Asp Leu Glu Thr Met Thr Val Leu Arg Ala Gln Met Glu Val 450 455 460
- Tyr Cys Ser Asp Phe His Ala Glu Arg Ala Ala Arg Glu Lys Ile His 475 480
- Glu Glu Lys Glu Gln Leu Ala Leu Gln Leu Ala Val Leu Leu Lys Glu Page 24

Asn Asp Ala Phe Glu Asp Gly Gly Arg Gln Ser Leu Met Glu Met Gln 500 505 510

Ser Arg His Gly Ala Arg Thr Ser Asp Pro Asp Gln Gln Ala Tyr Leu 515 520 525

Val Gln Arg Gly Thr Glu Asp Arg Asp Trp Gln Gln Gln Arg Asn Ile 530 540

Pro Ile His Ser Cys Pro Lys Cys Gly Glu Val Leu Pro Asp Ile Asp 545 550 560

Thr Leu Gln Ile His Val Met Asp Cys Ile Ile 565 570

<210> 15 <211> 1787

<212> DNA <213> Rattus norvegicus

<300> <308> NM_145081 <309> 2003-04-06 <313> (1)..(1787)

<400> 15 60 tgatctctgt ggccggacct gttaccatgt cccatcaacc tctgagctgc ctgactgaga 120 agggggacag ctcctgtgag accccaggaa atggaccctc caatatggtt caccccaacc 180 tggacacatt cactcctgag gagctgctgc agcaaatgaa agaactcctg gtcgagaacc 240 accagetgaa agaagecatg aagetaaata atcaagetat gaaagggega tttgaggage 300 aggctaagga gcgcctcaag gccctgagtc atgaaaatga gaggctgaag gaagagcttg 360 420 qaaaactaaa aqaqaaatca qaaaqqccat ttqaaqacat cacaggtaga tgcgggtttc 480 ccagaaccga cttggagcag gaagtgggag caactgaaga ggcaggtgga gcaggaagtg 540 gagcatctga agatccaggt gaggcgcctt caggcttgag aaagcggacc ttgctggggc 600 attcgtctca gactgcagct caagctcaac tccggcggct cctcagaaga ctccttcgtg 660 gagacaggat gactgaagga gaggcggaag gggcaatgaa ggagatgagg aacagcgctg 720 gacccacaag gacagactcc atcatcatgg gcaaatgtac agaggacgcc aggacttgtg 780 tggagtttga ggaactgact gtgagccaac tcctgctttg cctcagggaa ggaaaccaaa aggtqqaqaq actcqagatc gcgctcagag aagccaaaga aagaatttca gattttgaaa 840 900 agaaagcaaa cggccattct gcgattgaaa cccagacaga ggggagcaca caaaaagaag Page 25

aggaggacaa	agacccagag	agtgtgggaa	tcgaagtgga	aactctgaac	gttcaagtgg	960
cctctctgtt	taaggggctt	caagaggcgc	acacaaagct	cagtgaggcc	gagctgatga	1020
agaagagact	tcaagaaaag	tgtcaggctc	tggaaaggaa	gaactctgca	accccatcgg	1080
agctgaatga	aaagcaagag	ctcgtttaca	gtaactggaa	gttagagctg	caggtggaga	1140
gcatgcgctc	ggaaatcaag	atggagcagg	ccaagacaga	ggaggagaaa	tccaggttag	1200
ccactcttca	ggcaacacac	gacaagctcc	ttcaggaaca	caataaagct	ctgagaacaa	1260
ttgaagaact	aaccaaacaa	caggcagaaa	aagtggacaa	ggtgcagctg	caggagctca	1320
gcgagaagct	ggagctggcg	gagcaggctc	tggcgtccaa	gcagctccag	atggatgaga	1380
tgaagcagac	catcgccaag	caggaggagg	acctggagac	catggccgtc	ctcagggctc	1440
agatggaggt	gtactgttca	gatttccatg	ctgagagggc	agcaagggag	aagatccatg	1500
aggaaaagga	gcagctggcc	ttgcagctcg	ccattttgct	gaaagagaac	aatgactttg	1560
aagatggagg	cagtaggcag	tccttgatgg	aaatgcagtg	ccggcacggg	gcgagaacca	1620
gcgactctga	ccagcaggct	tacctgtttc	aaagaggagc	caaggacatg	agctggcagc	1680
atgggcagca	gccccggagt	attcccattc	actcgtgccc	caagtgtggg	gaggtcctgc	1740
cggacattga	cacgcttcag	atacatgtga	tggactgtat	catctga		1787

```
<210> 16
<211> 586
<212> PRT
<213> Rattus norvegicus
<300>
```

<308> NM_145081 <309> 2003-04-06

<313> (1)..(586)

<400> 16

Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Gly Asp Ser Ser 10 15

Cys Glu Thr Pro Gly Asn Gly Pro Ser Asn Met Val His Pro Asn Leu 20 25 30

Asp Thr Phe Thr Pro Glu Glu Leu Leu Gln Gln Met Lys Glu Leu Leu 35 40 45

Val Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala 50 55 60

Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Arg Gln Lys 65 70 75 80

Slu (Glu	Arg	Gln	Leu 85	Phe	Glu	Ile	Gln	ser 90	Lys	Glu	Ala	Lys	Glu 95	Arg
Leu	Lys	Ala	Leu 100	Ser	His	Glu	Asn	Glu 105	Arg	Leu	Lys	Glu	Glu 110	Leu	Gly
Lys	Leu	Lys 115	Glu	Lys	ser	Glu	Arg 120	Pro	Phe	Glu	Asp	Ile 125	Thr	Gly	Arg
Cys	Gly 130	Phe	Pro	Arg	Thr	Asp 135	Leu	Glu	Gln	Glu	val 140	Gly	Ala	Thr	Glu
Glu 145	Ala	G٦y	Gly	Ala	Gly 150	Ser	Gly	Ala	Ser	Glu 155	Asp	Pro	Gly	Glu	Ala 160
Pro	Ser	Gly	Leu	Arg 165	Lys	Arg	Thr	Leu	Leu 170	Gly	His	Ser	Ser	Gln 175	Thr
Ala	Ala	Gln	Ala 180	G]n	Leu	Arg	Arg	Leu 185	Leu	Arg	Arg	Leu	Leu 190	Arg	Gly
Asp	Arg	меt 195	Thr	Glu	Gly	Glu	Ala 200	Glu	Gly	Ala	Met	Lys 205	Glu	Met	Arg
Asn	Ser 210	Ala	Gly	Pro	Thr	Arg 215	Thr	· Asp	Ser	·Ile	1le 220	Met	Gly	Lys	Cys
Thr 225	Glu	Asp	Ala	. Arg	Thr 230	Cys	۷a۱	Glu	ı Phe	e Glu 235	ı Glu	Leu	Thr	val	Ser 240
Gln	Leu	Leu	ı Lei	ı Cys 245	Leu	ı Arg	Glu	ı Gly	/ Asr 250	n Glr)	ı Lys	val	Glu	Arg 255	Leu
Glu	Ile	Ala	a Lei 260	ı Arg	g Glu	ıAla	Ly:	s Glu 265	ı Arç	g Ile	e Ser	· Asp	Phe 270	Glu	Lys
Lys	Ala	1 Ast 27:	n Gly 5	/ His	s Sei	- Ala	110 280	e Glu O	u Thi	r Gli	n Thr	Glu 285	i Gly	' Ser	Thr
G]n	Lys 290		u Gl	u Glu	ı Ası	295	AS	p Pro	o Gl	u Se	r Va ¹ 300	l Gly)	/ Ile	e Glu	ı Val
G] (ı Thi	r Le	u As	n Va	l Gli 31	n Va O	l al	a Se	r Le	u Ph 31	e Ly: 5	s Gly	/ Lei	ıGlı	n Glu 320
Ala	a Hi:	s Th	r Ly	s Le	u se 5	r Glu	IA L	a Gl	u Le 33	u Me O Page		s Ly:	s Ar	33!	u Gln 5

Glu Lys Cys Gln Ala Leu Glu Arg Lys Asn Ser Ala Thr Pro Ser Glu 340 345 350 Leu Asn Glu Lys Gln Glu Leu Val Tyr Ser Asn Trp Lys Leu Glu Leu 355 360 365 Gln Val Glu Ser Met Arg Ser Glu Ile Lys Met Glu Gln Ala Lys Thr 370 375 380 Glu Glu Glu Lys Ser Arg Leu Ala Thr Leu Gln Ala Thr His Asp Lys 385 390 395 400 Leu Leu Gln Glu His Asn Lys Ala Leu Arg Thr Ile Glu Glu Leu Thr 405 410 415 Lys Gln Gln Ala Glu Lys Val Asp Lys Val Gln Leu Gln Glu Leu Ser 420 425 430 Glu Lys Leu Glu Leu Ala Glu Gln Ala Leu Ala Ser Lys Gln Leu Gln
435 440 445 Met Asp Glu Met Lys Gln Thr Ile Ala Lys Gln Glu Glu Asp Leu Glu 450 460 Thr Met Ala Val Leu Arg Ala Gln Met Glu Val Tyr Cys Ser Asp Phe 465 470 475 480 His Ala Glu Arg Ala Ala Arg Glu Lys Ile His Glu Glu Lys Glu Gln 485 490 495 Leu Ala Leu Gln Leu Ala Ile Leu Leu Lys Glu Asn Asn Asp Phe Glu 500 510 Asp Gly Gly Ser Arg Gln Ser Leu Met Glu Met Gln Cys Arg His Gly 515 520 525 Ala Arg Thr Ser Asp Ser Asp Gln Gln Ala Tyr Leu Phe Gln Arg Gly 530 540 Ala Lys Asp Met Ser Trp Gln His Gly Gln Gln Pro Arg Ser Ile Pro 545 550 560 Ile His Ser Cys Pro Lys Cys Gly Glu Val Leu Pro Asp Ile Asp Thr 565 570 575 Leu Gln Ile His Val Met Asp Cys Ile Ile Page 28

```
<210>
       17
       1799
<211>
<212>
       DNA
       Sus scrofa
<300>
      AF513722
<308>
<309>
       2002-06-02
<313>
       (1)..(1799)
<400>
       17
                                                                       60
atgtcccatc aacctctgag ctgcctgact gagaaggggg acagccccac cgaaaccaca
                                                                      120
ggaaatggac ccccactct ggctcaccca aaccttgaca cgttcacccc acatgaactg
                                                                      180
ctgcagcaga tgagagagct tctaatcgag aaccatcagc tgaaagaagc catgaagcta
                                                                      240
aataatcaag ctatgaaagg gcgatttgag gagctttcag cctggacaga gaagcagaag
                                                                      300
gaagaacgcc ttttttttga gacccagagc aaagaagcca aagagcgcct aacggctctg
                                                                      360
agtcttgaaa atgaaaaact gaagcaagaa cttggaaaac taaaagggaa aactgaaagg
                                                                      420
tcatttgagg acctcactgg ggaccccagg gtccccaagg cggaagcaga acaggaagta
                                                                      480
gaacagctga agacccaggt ggcacgcctt caagctgaaa aggcggatct gctgggcatc
                                                                      540
gtgtctgaat tgcagctcaa gctgaactca ggtggcccct ctgaagactc ctttgttgaa
atcaggatgg ctgagggaga agcagatgca gcaatgaagg aaatcaagac aagtcctggg
                                                                      600
                                                                      660
cccataagaa ctgattccat tgacacgagc aaatctgcag aaggtaccag gaattatttg
                                                                      720
gaatttgagg aattaactgt gagccagctc ctgctgtgtc taagggaagg aaaccagaag
                                                                      780
gtggagagac ttgaaatcgc cctcaaggaa gccaaagaaa gaattttaga ttttgaaaag
                                                                      840
aaagccaagg atcgttctga gactgagacc cagacagaag agcacaaaga acaagagaaa
                                                                      900
gaaqaqqaqa aaagcccaga aactgttgga agtgaagtgg aaatgttaaa ccttcaggtg
acaaccctgt ttaaggagct tcaggaggct cacacgaaac tcagtgaagc tgagctcatg
                                                                      960
aagaagagac ttcaagaaaa atgtcaggca cttgaaagga aaaattctgc aaccccatca
                                                                     1020
                                                                     1080
gagctgaatg aaaagcaaga gcttctttat aataacaaaa agttggagct ccaagtggaa
                                                                     1140
agcatgagat cagaaattaa aatggagcaa gccaaaacag aagaggaaaa gtccaaatta
                                                                     1200
actactctac agttgaccca caacaggctt cttcaagaat acaataatgc actgaaaaca
                                                                     1260
attqaqqaac tqaaaaqaaq aqagtctqaa aaagtgqata aqgtgqtgct qcaggaactq
                                                                     1320
aatggaaagc tggaaatggc agagaaggcc ctggcttcca agcagctcca aatggatgag
                                                                     1380
atgaagcaga ccattgccaa gcaagagaag gacctggaaa ccatggctgt tctcagggct
cagatggagg tatactgttc tgactttcat gctgaaagag cagcaagaga gaagattcat
                                                                     1440
gaagaaaagg agcaactggc attgcagctg gcagttttgc tgaaagacga caatgctttt
                                                                     1500
                                       Page 29
```

gaagaggag	ccagcaggca	atccttgatg	gaaatgcaga	gccgtcatgg	ggcaagagca	1560
agtgatgctg	accagcaggc	ttttcttgtt	caaagaggag	ctgaggatag	aaactggctg	1620
caacagcaac	aacagaatat	tccaattcat	tcttgcccca	aatgtggaga	agttctgcct	1680
gacatagata	cactactgat	tcacgttacg	gactgcatca	tttaagtgct	gacattttac	1740
ttccccaaac	tgttggtaaa	tgtcagattt	ttttccccc	aaaaaaaaa	aaaaaaaa	1799

<210> 18 <211> 574 <212> PRT <213> Sus scrofa <300> <308> AF513722 <309> 2002-06-02

<313> (1)..(574)

<400> 18

Met Ser His Gln Pro Leu Ser Cys Leu Thr Glu Lys Gly Asp Ser Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Glu Thr Thr Gly Asn Gly Pro Pro Thr Leu Ala His Pro Asn Leu 20 25 30

Asp Thr Phe Thr Pro His Glu Leu Leu Gln Gln Met Arg Glu Leu Leu 40 45

Ile Glu Asn His Gln Leu Lys Glu Ala Met Lys Leu Asn Asn Gln Ala 50 60

Met Lys Gly Arg Phe Glu Glu Leu Ser Ala Trp Thr Glu Lys Gln Lys 65 70 75 80

Glu Glu Arg Leu Phe Phe Glu Thr Gln Ser Lys Glu Ala Lys Glu Arg 85 90 95

Leu Thr Ala Leu Ser Leu Glu Asn Glu Lys Leu Lys Gln Glu Leu Gly 100 105 110

Lys Leu Lys Gly Lys Thr Glu Arg Ser Phe Glu Asp Leu Thr Gly Asp 115 120 125

Pro Arg Val Pro Lys Ala Glu Ala Glu Gln Glu Val Glu Gln Leu Lys 130 135 140

Thr Gln Val Ala Arg Leu Gln Ala Glu Lys Ala Asp Leu Leu Gly Ile 145 150 155 160

Val Ser Glu Leu Gln Leu Lys Leu Asn Ser Gly Gly Pro Ser Glu Asp 165 170 175 Ser Phe Val Glu Ile Arg Met Ala Glu Gly Glu Ala Asp Ala Ala Met 180 185 190 Lys Glu Ile Lys Thr Ser Pro Gly Pro Ile Arg Thr Asp Ser Ile Asp 195 200 205 Thr Ser Lys Ser Ala Glu Gly Thr Arg Asn Tyr Leu Glu Phe Glu Glu 210 220 Leu Thr Val Ser Gln Leu Leu Cys Leu Arg Glu Gly Asn Gln Lys 225 230 235 Val Glu Arg Leu Glu Ile Ala Leu Lys Glu Ala Lys Glu Arg Ile Leu 245 250 255 Asp Phe Glu Lys Lys Ala Lys Asp Arg Ser Glu Thr Glu Thr Gln Thr 260 265 270 Glu Glu His Lys Glu Glu Glu Glu Glu Lys Ser Pro Glu Thr 275 280 285 Val Gly Ser Glu Val Glu Met Leu Asn Leu Gln Val Thr Thr Leu Phe 290 295 300 Lys Glu Leu Gln Glu Ala His Thr Lys Leu Ser Glu Ala Glu Leu Met 305 310 315 320 Lys Lys Arg Leu Gln Glu Lys Cys Gln Ala Leu Glu Arg Lys Asn Ser 325 330 335 Ala Thr Pro Ser Glu Leu Asn Glu Lys Gln Glu Leu Leu Tyr Asn Asn 340 345 350 Lys Lys Leu Glu Leu Gln Val Glu Ser Met Arg Ser Glu Ile Lys Met 355 360 365 Glu Gln Ala Lys Thr Glu Glu Glu Lys Ser Lys Leu Thr Thr Leu Gln 370 375 Leu Thr His Asn Arg Leu Leu Gln Glu Tyr Asn Asn Ala Leu Lys Thr 385 390 395 400 Ile Glu Glu Leu Lys Arg Arg Glu Ser Glu Lys Val Asp Lys Val Val 405 410 415 Page 31

- Leu Gln Glu Leu Asn Gly Lys Leu Glu Met Ala Glu Lys Ala Leu Ala 420 430
- Ser Lys Gln Leu Gln Met Asp Glu Met Lys Gln Thr Ile Ala Lys Gln 435 440 445
- Glu Lys Asp Leu Glu Thr Met Ala Val Leu Arg Ala Gln Met Glu Val 450 455 460
- Tyr Cys Ser Asp Phe His Ala Glu Arg Ala Arg Glu Lys Ile His 465 470 475 480
- Glu Glu Lys Glu Gln Leu Ala Leu Gln Leu Ala Val Leu Leu Lys Asp 485 490 495
- Asp Asn Ala Phe Glu Glu Gly Ala Ser Arg Gln Ser Leu Met Glu Met 500 505 510
- Gln Ser Arg His Gly Ala Arg Ala Ser Asp Ala Asp Gln Gln Ala Phe 515
- Leu Val Gln Arg Gly Ala Glu Asp Arg Asn Trp Leu Gln Gln Gln 530 540
- Gln Asn Ile Pro Ile His Ser Cys Pro Lys Cys Gly Glu Val Leu Pro 545 550 560
- Asp Ile Asp Thr Leu Leu Ile His Val Thr Asp Cys Ile Ile 565 570