Re-analysis of Acemoglu

```
# Re-analysis of Acemoglu et al.
require(haven)
## Loading required package: haven
require(readxl)
## Loading required package: readxl
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
require(magrittr)
## Loading required package: magrittr
require(tidyr)
## Loading required package: tidyr
## Attaching package: 'tidyr'
## The following object is masked from 'package:magrittr':
##
       extract
require(ggplot2)
## Loading required package: ggplot2
require(modelr)
## Loading required package: modelr
require(broom)
## Loading required package: broom
##
## Attaching package: 'broom'
## The following object is masked from 'package:modelr':
##
##
       bootstrap
```

```
require(purrr)
## Loading required package: purrr
##
## Attaching package: 'purrr'
## The following object is masked from 'package:magrittr':
##
##
       set_names
## The following objects are masked from 'package:dplyr':
##
##
       contains, order_by
require(pbapply)
## Loading required package: pbapply
require(parallel)
## Loading required package: parallel
fiveyear <- read_dta("Acemoglu one year panel.dta")</pre>
oneyear <- read_excel("Income and Democracy Data AER adjustment.xls",</pre>
sheet = "Annual Panel")
oneyear <- oneyear %>% group_by(country) %>% mutate(l1_fhpolrigaug=lag(fhpolrigaug,order_by=year),
                                                     11 lrgdpch=lag(lrgdpch,order by=year)) %>%
 filter(!(is.na(fhpolrigaug)) & !(is.na(lrgdpch))) %>% mutate(panel_balance=n())
```

The issue with the DV

One un-noticed issue in the data is that the DV is fixed within countries. We have been focusing on IVs that could be fixed within or between, but not DVs. Of course, the model can't drop the DV, so it seems like it can screw up the 2-way estimate when there isn't enough variance in the DV either in the cross-section or the over-time effect.

I haven't figured out yet how to reproduce this; you might want to run a simulation to test it more accurately.

First we look at the distribution of the DV in the Acemoglu dataset. We see that there are spikes at 0 and 1, and that in general there isn't a whole lot of variation in the DV even though it is being treated as continuous.

```
ggplot(oneyear,aes(x=fhpolrigaug)) + geom_bar(fill='blue') + theme_minimal()
```


Now to illustrate the problem, I use the dataset only with Canada and the United States.

```
data3 <- filter(oneyear,country %in% c('United States','Canada')) %>% select(country,year,fhpolrigaug,
twoway <- round(coef(lm(data=data3,formula=fhpolrigaug~ lrgdpch+ factor(year) + factor(country)))['lrgd
pooled <- round(coef(lm(data=data3,formula=fhpolrigaug~ lrgdpch))['lrgdpch'],3)
time <- round(coef(lm(data=data3,formula=fhpolrigaug~ lrgdpch+ factor(year)))['lrgdpch'],3)
case <- round(coef(lm(data=data3,formula=fhpolrigaug~ lrgdpch+ factor(country)))['lrgdpch'],3)</pre>
```

In this situation with these two countries, the 2-way effect is -0.02, the pooled estimate is 0.015, the time estimate is -0.028 and the case estimate is 0.019. Thus 2-way estimate is between the pooled and case estimate, although it is converging to the time estimate.

However, when we look at the distribution of the DV in this dataset, we see a lot of 1s:

print(as.data.frame(data3))

##		country	woor	fhpolrigaug	lradnah	11_fhpolrigaug	ll lradnah
##		country	year	Inputingang	rrgupen	11_111polligaug	TI_TIEGPCH
##	1	Canada	1950	0.99	9.115211	NA	NA
##	2	Canada	1955	1.00	9.205848	NA	9.150495
##	3	Canada	1960	1.00	9.247975	NA	9.251952
##	4	Canada	1965	1.00	9.429002	NA	9.380478
##	5	Canada	1972	1.00	9.625804	NA	9.581972
##	6	Canada	1973	1.00	9.689451	1	9.625804
##	7	Canada	1974	1.00	9.720343	1	9.689451
##	8	Canada	1975	1.00	9.719351	1	9.720343
##	9	Canada	1976	1.00	9.764153	1	9.719351
##	10	Canada	1977	1.00	9.779172	1	9.764153
##	11	Canada	1978	1.00	9.810351	1	9.779172
##	12	Canada	1979	1.00	9.853029	1	9.810351

##	13		Canada	1000	1.00	9.851376	1	9.853029
	14		Canada		1.00	9.880587	1	9.851376
	15		Canada		1.00	9.817758	1	9.880587
	16		Canada		1.00	9.840611	1	9.817758
	17		Canada		1.00	9.897246	1	9.840611
	18		Canada		1.00	9.937892	1	9.897246
	19		Canada		1.00	9.952429	1	9.937892
	20		Canada		1.00	9.986536	1	9.952429
	21		Canada			10.027080	1	9.986536
	22		Canada			10.036050	1	10.027080
	23		Canada			10.014570	1	10.036050
	24		Canada	1991	1.00	9.973947	1	10.014570
	25		Canada	1992	1.00	9.967081	1	9.973947
##	26		Canada	1993	1.00	9.980831	1	9.967081
##	27		Canada	1994	1.00	10.021720	1	9.980831
##	28		Canada	1995	1.00	10.040930	1	10.021720
##	29		Canada	1996	1.00	10.047190	1	10.040930
##	30		Canada	1997	1.00	10.089140	1	10.047190
##	31		Canada	1998	1.00	10.118300	1	10.089140
##	32		Canada	1999	1.00	10.161900	1	10.118300
##	33		${\tt Canada}$	2000	1.00	10.200050	1	10.161900
##	34	${\tt United}$	States	1950	0.99	9.278240	NA	NA
##	35	${\tt United}$	States	1955	0.98	9.389680	NA	9.331630
##	36	${\tt United}$	States	1960	0.95	9.415136	NA	9.406607
##	37	${\tt United}$	States	1965	0.92	9.594625	NA	9.541778
##	38	${\tt United}$	States	1972	1.00	9.780488	NA	9.730689
##	39	${\tt United}$	States	1973	1.00	9.834690	1	9.780488
##	40	United	States	1974	1.00	9.827986	1	9.834690
##	41	United	States	1975	1.00	9.800418	1	9.827986
##	42	United	States	1976	1.00	9.855587	1	9.800418
##	43	United	States	1977	1.00	9.903549	1	9.855587
##	44	United	States	1978	1.00	9.952475	1	9.903549
##	45	United	States	1979	1.00	9.977451	1	9.952475
##	46	United	States	1980	1.00	9.968130	1	9.977451
##	47	United	States	1981	1.00	9.983500	1	9.968130
##	48	United	States	1982	1.00	9.940727	1	9.983500
##	49	United	States	1983	1.00	9.974105	1	9.940727
##	50	United	States	1984	1.00	10.045710	1	9.974105
##	51	United	States	1985	1.00	10.070010	1	10.045710
##	52	United	States	1986	1.00	10.092960	1	10.070010
##	53	United	States	1987	1.00	10.119860	1	10.092960
##	54	United	States	1988	1.00	10.150640	1	10.119860
##	55	United	States	1989	1.00	10.176520	1	10.150640
##	56	United	States	1990	1.00	10.183310	1	10.176520
##	57	United	States	1991	1.00	10.161920	1	10.183310
##	58	United	States	1992	1.00	10.184470	1	10.161920
##	59	United	States	1993	1.00	10.201960	1	10.184470
##	60	United	States	1994		10.235590	1	10.201960
##	61	United	States	1995		10.254460	1	10.235590
##			States			10.281720	1	10.254460
##			States			10.315280	1	10.281720
##			States			10.344660	1	10.315280
##			States			10.377480	1	10.344660
##			States			10.413100	1	10.377480
	-			-			_	•

Canada apparently went from .99 to 1 between 1950 to 1955. They must have given the Mounties the right to vote.

Given our framework, this dataset is particularly problematic for two-way estimation because there isn't much variation in the DV, and the 2-way estimate has to combine variation along several dimensions. To test this, I run a simulation in which I replace the 1s with a random number between 0.99 and .9999. It is a very small difference in the variation, but it can lead to startling results.

```
tw_coef <- 1:1000
f1 coef <- 1:1000
c1_coef <- 1:1000
p_coef <- 1:1000
m_replace <- 1:1000
m_diff <- 1:1000
for(i in 1:1000) {
data3 <- filter(oneyear,country %in% c('United States', 'Canada')) %>% select(country, year, fhpolrigaug,
replacement <- runif(nrow(data3),0.99,.9999)
data3 <- ungroup(data3) %>% mutate(fhpolrigaug2 = ifelse(fhpolrigaug==1,replacement,fhpolrigaug))
tw_coef[i] <- coef(lm(data=data3,formula=fhpolrigaug2~ lrgdpch+ factor(year) + factor(country)))['lrgdp</pre>
f1_coef[i] <- coef(lm(data=data3,formula=fhpolrigaug2~ lrgdpch+ factor(year)))['lrgdpch']</pre>
c1_coef[i] <- coef(lm(data=data3,formula=fhpolrigaug2~ lrgdpch+ factor(country)))['lrgdpch']</pre>
p_coef[i] <- coef(lm(data=data3,formula=fhpolrigaug2~ lrgdpch))['lrgdpch']</pre>
m_replace[i] <- mean(ifelse(data3$fhpolrigaug==1,replacement,data3$fhpolrigaug),na.rm=TRUE)
out_diff <- data3 %>% group_by(country) %>% summarize(mean_countries=mean(fhpolrigaug2))
m_diff[i] <- (out_diff$mean_countries[1] - out_diff$mean_countries[2])^2</pre>
}
```

Then we can look at the distribution of coefficients across the different models. The black bars on either side of the graph indicate the maximum and minimum observed coefficient from the two-way FE model. As can be seen, the 1-way and pooled estimates (c1,f1 and p) are largely stable, but the two_way estimate (tw_coef) has a greater range and much, much wider variance than any of the other models. The 1-way estimates are largely immune to the small amount of random noise injected into the model, but the 2-way estimates are highly influenced by it.

```
data_frame(tw_coef,f1_coef,c1_coef,p_coef) %>% gather(model_type,estimate) %>%
    ggplot(aes(x=estimate,fill=model_type,alpha=0.5)) + geom_density() + theme_minimal() +
    geom_vline(xintercept=c(min(tw_coef),max(tw_coef)))
```


We can see if small differences in the uniform random values may have driven the change in the 2-way coefficient by comparing mean values of the random numbers to the 2-way coefficients:

data_frame(m_replace,tw_coef) %>% ggplot(aes(y=m_replace,x=tw_coef)) + geom_point() + stat_smooth(metho

It is not related to the small differences in the sampling error of the random uniform numbers. We can also look at mean differences in the DV between the US and Canada:

As can be seen, it is difficult to predict when and on what side the two-way coefficient will fall even given minute levels of random noise. It seems we should warn the reader of this problem, and also mention it in the simulations.