PORTFOLIO THEORY NOTES

Contents

1.	Risk Measures	1
1.1.	. Value at Risk	1
1.2.	2. Sampling the Value at Risk	1
1.3.	3. Average Value at Risk	1
1.4.	Sampling the Average Value at Risk	2

Note 0.1. In these notes we will mostly consider random variables X that model returns. As such we may assume that $F_X : \mathbb{R} \to (0,1)$ is bijective and continuous.

1. Risk Measures

1.1. Value at Risk.

Definition 1.1. Let X be a random variable and $\epsilon > 0$. Assume that F_X is bijective. We define the value at risk of X at confidence level $1 - \epsilon$, denoted by $VaR_{\epsilon}(X)$, to be

$$VaR_{\epsilon}(X) = -F_X^{-1}(\epsilon)$$

Note 1.2. If X represents the return of a portfolio, then $Var_{\epsilon}(X)$ is just a bound such that with probability ϵ , the loss of the portfolio is not less than the bound.

1.2. Sampling the Value at Risk.

1.3. Average Value at Risk.

Definition 1.3. Let X be a random variable and $\epsilon > 0$. Assume that F_X is bijective. We define the average value at risk of X with tail probability ϵ , denoted by $AVaR_{\epsilon}(X)$, to be

$$AVaR_{\epsilon}(X) = \frac{1}{\epsilon} \int_{(0,\epsilon]} VaR_p(X) dm(p)$$

Note 1.4. If X represents the return on a portfolio, then $AVaR_{\epsilon}(X)$ is just the average of the $VaR_p(X)$ over all $p < \epsilon$.

Exercise 1.5. Let X be a random variable and $\epsilon > 0$. Suppose that $F_X : \mathbb{R} \to (0,1)$ is continuous and bijective. Then $AVaR_{\epsilon}(X) = \mathbb{E}[-X|-X \geq VaR_{\epsilon}(X)]$.

Proof. Recall that for measurable spaces $(X, \mathcal{A}), (Y, \mathcal{B})$, measurable $f: X \to Y$, measure $\mu: \mathcal{A} \to [0, \infty]$, we may form the push-foreward measure of μ by $f, f_*\mu: \mathcal{B} \to [0, \infty]$ with the folling property: for each $g: Y \to \mathbb{C}$, $g \in L^1(f_*\mu)$ iff $g \circ f \in L^1(\mu)$ and for each $B \in \mathcal{B}$,

$$\int_{f^{-1}(B)} g \circ f d\mu = \int_B g df_* \mu$$

Note that

$$\begin{split} \mathbb{E}[-X|-X \geq -F_X^{-1}(\epsilon)] &= -\mathbb{E}[X|X \leq F_X^{-1}(\epsilon)] \\ &= -\frac{1}{\epsilon} \mathbb{E}[X\mathbf{1}_{\{X \leq F_X^{-1}(\epsilon)\}}] \\ &= -\frac{1}{\epsilon} \int_{\{X \leq F_X^{-1}(\epsilon)\}} X dP \\ &= -\frac{1}{\epsilon} \int_{(-\infty, F_X^{-1}(\epsilon)]} x dF_X(x) \end{split}$$

Let μ be the Lebesgue-Stieltjes measure obtained from F_X (i.e. $d\mu = dF_X$). Consider F_X : $\mathbb{R} \to (0,1)$ as in the theorem recalled above. Then for each $(a,b] \subset [0,1]$ with $a' = F_X^{-1}(a)$ (could be $-\infty$) and $b' = F_X^{-1}(b)$, we have that

$$F_{X*}\mu((a,b]) = \mu(F_X^{-1}((a,b]))$$

$$= \mu((a',b'])$$

$$= F_X(b') - F_X(a')$$

$$= b - a$$

So $F_{X*}\mu = m$. Hence

$$\int_{(-\infty, F_X^{-1}(\epsilon)]} x dF_X(x) = \int_{(-\infty, F_X^{-1}(\epsilon)]} (F_X^{-1} \circ F_X)(x) dF_X(x)$$
$$= \int_{(0, \epsilon]} F_X^{-1}(x) dm(x)$$

Note 1.6. If X represents the return of a portfolio. We may define the **loss of** X, denoted by L_X , to be $L_X = -X$. Then $AVaR_{\epsilon}(X) = \mathbb{E}[L|L > VaR_{\epsilon}(X)]$.

Theorem 1.7. Let X be random variable and $\epsilon > 0$. Suppose that X is "nice". Then

$$AVaR_{\epsilon}(X) = \min_{\theta \in \mathbb{R}} (\theta + \frac{1}{\epsilon} \mathbb{E}[(-X - \theta)^{+}])$$

Proof. ??? I have no clue

1.4. Estimating the Average Value at Risk.