San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Formal Languages

(Part 2)

Lecture 05 Day 05/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 05

- Rollcall Form and Your List Number
- Summary of Lecture 04
- Quiz 1
- Lecture 05: Teaching ...
 - Formal Languages (Part 2)

Summary of Lecture 04: We learned ...

Alphabets & Strings

- Alphabet is ...
 - a nonempty and finite set of symbols, denoted by Σ.
- String is ...
 - a finite sequence of symbols from the alphabet.
- Length of string w is ...
 - ... the number of symbols in the string, denoted by |w|.
- Empty string is ...
 - ... A string with no symbol, denoted by λ
 - $-|\lambda|=0$

Operations on Strings

- Concatenation of u and v is uv.
 - $\lambda w = w\lambda = w$ (neutral element)
- Reverse of w is denoted by w^R. (easy!)
- Substring (easy!)
- Prefix and Suffix
 - w = uv, u=prefix, v=suffix
 - λ is suffix and prefix of every string
 because: w = λ w = w λ
- Exponent operator
 - $w^{n} = w w w ... w$
 - $w w^n = w^n w = w^{n+1}$
 - $w^0 = \lambda$

Summary of Lecture 04: We learned ...

Formal Languages

- Star operator: Σ*
 - The set of all possible strings obtained by concatenating zero or more symbols from Σ.
 - Universal set of all strings over Σ.
- Plus operator: Σ+
 - The set of all possible strings obtained by concatenating one or more symbols from Σ.
 - $\Sigma^+ = \Sigma^* \{\lambda\}$
 - $\Sigma^* = \Sigma^+ \cup \{\lambda\}$
- Formal language is ...
 - ... any subset of Σ^*
- Special cases:
 - { } and { λ }

- Formal languages are sets, so, they have all sets properties.
- Formal languages can be finite or infinite.
- This is the first categorization of languages:

U = All Formal Languages

Any question?

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	1
DATE	09/05/2019	PERIOD	1/2/3

TEST RECORD		
PART 1	123	
PART 2		
TOTAL		

Take-Home Exam! Quiz 1 **Use Scantron**

Your list # goes here!

Formal Languages Exercises

Example 21

Given the following languages by set-builder over $\Sigma = \{a, b\}$.

Represent them by using roster method (enumerate the strings):

This is our celebrity language!

2.
$$L_2 = \{a^nb^{2n} : n \ge 0\}$$

3.
$$L_3 = \{a^{n+2}b^n : n \ge 0\}$$

① 4.
$$L_4 = \{a^nb^m : n \ge 0, m \ge 0\}$$

Objective of This Lecture

- Last time, we started our journey with "Formal Languages"!
 - We introduced alphabets.
 - We defined strings as mathematical objects.
 - We defined some operations on strings.
 - And finally, we introduced formal languages.
- Now, we have new objects: "Languages"
- So, we need to define some operations on this new objects.
- After that, we put on new glasses through which we look at the strings and languages.
- And finally, we'll examine some familiar sets through our new glasses!

Operations on Languages

Regular Set Operations

Since languages are sets,
 we can apply all regular set operations on them.

Union

$$\{a, aa, ab\} \cup \{a, ab, bbb, bba, b\} = \{a, aa, ab, bbb, bba, b\}$$

Intersection

$$\{a, aa, ab\} \cap \{a, ab, bbb, bba, b\} = \{a, ab\}$$

Minus

$${a, aa, ab} - {a, ab, bbb, bba, b} = {aa}$$

 Note that the result of operations on languages is always a language.

1

Complement of Languages

Definition

- Let L be a language over Σ.
- Complement of L, denoted by \overline{L} , is defined as:

$$\overline{L} = U - L = \Sigma^* - L$$

Complement of Languages

Example 22

Let
$$L = \{\lambda, b, aa, aab\}$$
 over $\Sigma = \{a, b\}$; $\overline{L} = ?$

Solution

```
\overline{L} = \Sigma^* - L
\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}
\overline{L} = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}
= \{a, ab, ba, bb, aaa, ...\}
```

Homework

- Given following languages over Σ = {a, b},
 - a. Represent L by set builder
 - b. Represent L by set builder
- Set of all strings that contains at least one a
- 2. Set of all strings that contains more than one a
- 3. Set of all strings that contains exactly one a

Reverse of Languages

Definition

- Reverse of language L is obtained by reversing all of its strings.
- It is denoted by L^R. (pronounced L-reverse)
- Set builder definition:

$$L^R = \{w : w^R \in L\}$$

Example 23

```
Let L = \{b, ab, aab, abab\}; L^R = ?

L^R = \{b, ba, baa, baba\}
```

Example 24


```
Let L = \{a^nb^n : n \ge 0\}; L^R = ?

L^R = \{b^na^n : n \ge 0\}
```

Concatenation of Languages

Definition

- Let L_1 and L_2 be two languages over Σ_1 and Σ_2 .
- The concatenation of L₁ and L₂, denoted by L₁L₂, is a language defined as:

$$L = L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$
 over $\Sigma = \Sigma_1 \cup \Sigma_2$

Example 25

```
Let L_1 = {a, ab} over \Sigma_1 = {a, b} and L_2 = {c, ca, caa} over \Sigma_2 = {a, c}; L_1L_2 = ? 
 L = L_1L_2 = {a, ab} {c, ca, caa} 
 = {ac, aca, acaa, abc, abca, abcaa} 
 Over \Sigma = \Sigma_1 \cup \Sigma_2 = {a, b} U {a, c} = {a, b, c}
```


Concatenation of Languages: Notes

- 1. The concatenation of two languages looks like Cartesian product of two sets.
 - Instead of ordered-pair, we concatenate two strings.
- 2. $\phi L = L \phi = \phi$ (prove it!)
 - $-\phi$ has the same role as 0 (zero) for multiplication.

- 3. $\{\lambda\} L = L \{\lambda\} = L$
 - $\{\lambda\}$ is the neutral language for concatenation operation.
 - $\{\lambda\}$ has the same role as number 1 (one) for multiplication.
- 4. Properties of concatenation:

$$L (L_1 \cup L_2) = L L_1 \cup L L_2$$

 $(L_1 \cup L_2) L = L_1 L \cup L_2 L$
 $L (L_1 \cap L_2) = L L_1 \cap L L_2$
 $(L_1 \cap L_2) L = L_1 L \cap L_2 L$

Exponential Operator

Definition

- Let L be a language and n be a natural number.
- Lⁿ is defined as concatenation of n copies of L's.

$$L^n = L L L ... L$$
n times

Example 26

```
Let L = {a, ab}; L<sup>2</sup> = ?; L<sup>3</sup> = ?

L<sup>2</sup> = {a, ab} {a, ab}

= {aa, aab, aba, abab}

L<sup>3</sup> = L L<sup>2</sup> = {a, ab} {aa, aab, aba, abab}

= {aaa, aaab, aaba, aabab, abaa, abaab, ababab, ababab}
```

Exponential Operator

In general L Lⁿ = Lⁿ L = Lⁿ⁺¹
 where n ∈ N (natural numbers).

Example 27

Let
$$L = \{a^nb^n : n \ge 0\}$$
; $L^2 = ?$

- ① $L^2 = \{a^nb^n \ a^mb^m : n \ge 0, m \ge 0\}$
 - Note that n and m are independent.
 - For example abaabb (n=1, m=2) belongs to L².
 - What would be L³ = ?

Homework

O Special cases

- $L^0 = ?$
- $L^0 = {\lambda}$ (prove it!)
- $\phi^0 = ?$

Homework

- Enumerate at least 5 elements of the following languages:
 - 1. $L_1 = \{w \in \{a, b\}^+\}$
 - 2. $L_2 = \{ w \in \{ a, b \}^+ : |w| = 2k, K \ge 0 \}$
 - 3. $L_3 = \{w \in \{a, b\}^+ : |w| = 2k+1, K \ge 0\}$
 - 4. $L_4 = \{1^{2k} : k \ge 1\}$ over $\Sigma = \{1\}$
 - 5. $L_5 = \{w \in \{a, b\}^+ : n_a(w) = n_b(w)\}$ //number of a's = number of b's
 - 6. $L_6 = \{a^n b^n c^n : n \ge 1\}$
 - 7. $L_7 = \{a^n b^m c^{nm} : n, m \ge 1\}$
 - 8. $L_8 = \{w#w : w \in \{a, b\}^+\}$; What is the alphabet of L_8 ?
 - 9. $L_9 = \{w \in \{a, b\}^+ : |w| = 2k+1, K \ge 0, w \text{ contains at least one a} \}$
 - 10. $L_{10} = \{ww : w \in \{a, b\}^+\}$

Objective of This Section

- In this section, first we'll look at some familiar sets through our new glasses.
 - We were familiar with these sets for a long time.
- Then, we'll introduce a new set of numbers called "Unary Numbers".

Example 28 : Natural Numbers

Consider the set of natural numbers:

$$\mathbb{N} = \{0, 1, 2, 3, 4, ..., 123, ..., 456, ..., 5908764, ...\}$$

Provided Provided Representation Can we consider \mathbb{R} as a formal language over $\Sigma = \{0, 1, ..., 9\}$?

Yes, numbers are just sequence of digits (symbols) that can be considered as strings!

Example 29 : Binary⁺ Numbers

Consider the set of positive binary numbers:

$$B = \{0, 1, ..., 1010, ..., 10000001, ..., 111100001, ...\}$$

Can we consider B as a formal language over $\Sigma = \{0, 1\}$?

Yes, for the same reason we saw for natural numbers!

How about the following sets?

Example 30: Prime Numbers

$$\Sigma = \{0, 1, 2, ..., 9\}$$

L = $\{2, 3, 5, 7, 11, 13, 17, ...\}$

Example 31: Even and Odd Numbers

$$\Sigma = \{0, 1, 2, ..., 9\}$$
 $L_1 = \{0, 2, 4, 6, 8, ...\}$
 $L_2 = \{1, 3, 5, 7, 9, ...\}$

Yes, for the same reasons!

Introducing Unary Numbers

Definition

- Let $\Sigma = \{1\}$.
- We define the following set as "unary numbers":

This is our celebrity numbers!

- Equivalent natural numbers: {1, 2, 3, 4, 5, ... }
- How can we represent the unary numbers by set builder?

Unary Numbers: Operations

Example 32: Addition of Unary Numbers

L =
$$\{1^n+1^m=1^{n+m} : n \ge 1, m \ge 1\}$$

Over $\Sigma = \{1, +, =\}$

Membership: L contains strings like:

Not Membership: L doesn't contain strings like:

Homework

Square of Unary Numbers

L =
$$\{1^n \# = 1^k : k = n^2, n \ge 1\}$$

Over $\Sigma = \{1, \#, =\}$

Membership: L contains strings like:

?

Not Membership: L doesn't contain strings like:

??

Final Words ...

- This week we introduced formal languages.
- This was our first round of lectures about formal languages.
- We'll get back to this topic several times during semester.

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790
- Alfred S. Posamentier, "Math Wonders," Association for Supervision and Curriculum Development, Alexandria, Virginia, USA, 2003 ISBN-13: 0-87120-775-3