

物理化学实验报告

题目: 稀溶液法测定极性分子的偶极矩

姓	名:	王宇哲			
学	号:	1800011828			
组	别:	11 组 3 号			
实验日期:		2020.12.30			
室	温:	289.75 K			
大气压强:		103.43 kPa			

摘 要 本实验通过稀溶液法测定正丁醇的偶极矩,通过测定不同浓度正丁醇-环己烷溶液密度、介电常数和正丁醇折射率,计算正丁醇摩尔极化度 $\overline{P}_2^\infty=(81.3\pm0.5)~\mathrm{mL\cdot mol^{-1}}$,最终计算正丁醇偶极矩 $\mu=(1.68\pm0.01)~\mathrm{D}$,与文献值的相对偏差 $\xi=1.2\%$,并讨论了温度变化对实验结果的影响。

关键词 偶极矩; 电子极化; 介电常数; 正丁醇-环己烷体系

1 引言

略

2 实验部分

2.1 仪器和试剂

正丁醇 (AR), 环己烷 (AR), 丙酮 (AR), 乙醇 (AR), 去离子水。

PCM-1A 型精密电容测量仪,电容池,玻璃注射器,洗耳球,50 mL 磨口锥形瓶,滴管,吸量管,比重管,DE45 型数字密度计,烧杯(200 mL 两个),电子天平,阿贝折射仪,循环水真空泵。

2.2 实验内容1

2.2.1 溶液的配制

取 2 个磨口锥形瓶用于盛正丁醇和环己烷,另外 5 个用于配制摩尔分数分别为 0.05、 0.08、0.10、0.12、0.15 的正丁醇/环己烷溶液各 15 mL。根据预定摩尔分数算出每份溶液所需的正丁醇和环己烷的体积,按计算结果用移液管从锥形瓶中移取环己烷和正丁醇,用电子天平准确称出空锥形瓶的质量 m_0 、加入正丁醇后质量 m_1 、加入环己烷后质量 m_2 ,摇晃均匀,算出各自的摩尔分数,塞好盖子防止挥发。

2.2.2 介电常数的测定

打开精密电容测定仪电源,预热 $\sim 20~\text{min}$ 。拔下电容池与测定仪的连接插头使电路断开,按下"校零"按钮使仪表读数为 000.00。保证电容池内干净干燥,将插头重新插入仪器面板插座内,记录测定仪示数,即为该电容池以空气为介质的电容值 C_F' (E即 Empty)。

取下电容池上盖,放在专用支架上,用干燥的滴管吸取环己烷 $\sim 2\,$ mL 加入电容池内至满池。轻放电容池上盖盖好电容池,读取电容值 $C_S'=C_{Cv}'(S\,$ 即 Sample)。

用胶头滴管吸出电容池腔中的液体,再用吹风机冷风吹干电容池腔和上盖,使电容池内干净干燥,盖上池盖,记录 $C'_{\rm E}$,重新装样再测电容值 $C'_{\rm S}=C'_{\rm Cy}$,直到两次测定数据差不大于 $0.01~{\rm pF}$ 。

用同样的方法测定各溶液的电容 C'_s ,同样要求两次测定数据差不大于 0.01~pF。

2.2.3 密度的测定

用注射器吸取 ~ 7 mL 环己烷,向 DE45 型数字密度计样品池中注入 ~ 5 mL 环己烷,排出气泡,按下"MEASURE"键测量环己烷密度;记录读数后再向样品池中注入 ~ 1 mL

环己烷,重复测量过程,共进行3次密度测量。测量完毕后排空样品池,长按"PUMP"键吹气除去样品池中剩余溶液。用同样的方法测定其余5种溶液及正丁醇的密度。

练习使用比重管,向比重管中注入去离子水,定容至刻度线,小心擦干比重管外壁,用电子天平称量比重管质量。倒干比重管中去离子水,重复上述测量过程,直至两次测定比重管质量差 < 2 mg。用同样的方法测定装入正丁醇的比重管质量,只测一次。用乙醇洗涤比重管,在循环水泵上抽干,用电子天平称量空比重管的质量。根据实验数据计算正丁醇的密度。

2.2.4 折射率的测定

利用阿贝折射仪测定正丁醇的折射率。

3 数据与结果

3.1 实验数据记录及处理

3.1.1 溶液的配制及 χ_{BuOH} 的计算

配制 5 个不同浓度的正丁醇-环己烷溶液,分别用电子天平准确称出空锥形瓶的质量 m_0 、加入正丁醇后质量 m_1 、加入环己烷后质量 m_2 ,计算加入正丁醇的质量

$$m_{\text{BuOH}} = m_1 - m_0$$

加入环己烷的质量

$$m_{\rm Cv} = m_2 - m_1$$

则正丁醇的摩尔分数 χ_{BuOH} 可由下式求算:

$$\chi_{\rm BuOH} = \frac{m_{\rm BuOH}/M_{\rm BuOH}}{m_{\rm Cy}/M_{\rm Cy} + m_{\rm BuOH}/M_{\rm BuOH}}$$

以溶液 1 为例, 计算

$$m_{\text{BuOH}} = m_1 - m_0 = 49.142 \text{ g} - 48.639 \text{ g} = 0.503 \text{ g}$$

$$m_{\text{Cy}} = m_2 - m_1 = 60.269 \text{ g} - 49.142 \text{ g} = 11.127 \text{ g}$$

故

$$\chi_{\rm BuOH} = \frac{m_{\rm BuOH}/M_{\rm BuOH}}{m_{\rm Cy}/M_{\rm Cy} + m_{\rm BuOH}/M_{\rm BuOH}} = \frac{0.503/74.121}{0.503/74.121 + 11.127/84.16} = 0.0488$$

配制 5 个不同浓度的正丁醇溶液的相关实验数据及 χ_{RIOH} 的计算值如表 1 所示。

表 1 正丁醇溶液配制相关实验数据及 χ_{BuOH} 计算值

Table 1 Correlative experimental data of n - BuOH solution preparation and χ_{BuOH} calculated value

编号	$V_{ m BuOH}/{ m mL}$	$V_{\mathrm{Cy}}/\mathrm{mL}$	$m_0/{ m g}$	m_1/g	$m_2/{ m g}$	$m_{ m BuOH}/{ m g}$	$m_{ m Cy}/{ m g}$	$\chi_{ m BuOH}$
1	0.64	1.36	48.639	49.142	60.269	0.503	11.127	0.0488
2	1.03	0.97	46.923	47.711	58.558	0.788	10.847	0.0762
3	1.29	0.71	37.675	38.679	49.326	1.004	10.647	0.0967
4	1.55	0.45	64.419	65.614	76.081	1.195	10.467	0.1148
5	1.95	0.05	43.249	44.793	54.860	1.544	10.067	0.1483

3.1.2 介电常数的测定

用精密电容测量仪测量环己烷及 5 个不同浓度的正丁醇溶液对应的电容值,直至相邻两次测定数据差不大于 0.01~pF,分别计算电容池以空气为介质的电容值的平均值 $\overline{C_{\rm S}}$,相关数据如表 $2~{\rm fm}$ 所示。

表 2 各溶液电容值测定相关实验数据

Table 2 Correlative experimental data of determination of capacitance of each solution

编号	$C_{ m E1}^{\prime}/{ m pF}$	$C_{\mathrm{S1}}^{\prime}/\mathrm{pF}$	$C_{ m E2}^{\prime}/{ m pF}$	$C_{\mathrm{S2}}^{\prime}/\mathrm{pF}$	$C_{\mathrm{E3}}^{\prime}/\mathrm{pF}$	$C_{\mathrm{S3}}^{\prime}/\mathrm{pF}$	$\overline{C_{\rm E}'}/{ m pF}$	$\overline{C_{\mathrm{S}}'}/\mathrm{pF}$
Су	4.38	7.02	4.29	6.91	4.30	6.92	4.30	6.92
1	4.30	7.07	4.30	7.07			4.30	7.07
2	4.30	7.21	4.30	7.21			4.30	7.21
3	4.30	7.33	4.29	7.33			4.30	7.33
4	4.29	7.49	4.29	7.45	4.29	7.45	4.29	7.45
5	4.29	7.77	4.30	7.78			4.30	7.78

3.1.3 密度的测定及计算

用 DE45 型数字密度计准确测定各溶液的密度,计算溶液密度平行测定值的平均值 $\bar{\rho}$,结果如表 **3** 所示。

表 3 各溶液密度测定相关实验数据

Table 3 Correlative experimental data of determination of density of each solution

编号	$ ho_1/\mathrm{g}\cdot\mathrm{m}\mathrm{L}^{-1}$	$ ho_2/\mathrm{g}\cdot\mathrm{m}\mathrm{L}^{-1}$	$ ho_3/\mathrm{g}\cdot\mathrm{m}\mathrm{L}^{-1}$	$\overline{ ho}/\mathrm{g}\cdot\mathrm{m}\mathrm{L}^{-1}$
Су	0.77859	0.77859	0.77859	0.77859
1	0.77889	0.77890	0.77890	0.77890
2	0.77930	0.77930	0.77930	0.77930
3	0.77964	0.77960	0.77962	0.77962
4	0.77994	0.77994	0.77994	0.77994
5	0.78057	0.78055	0.78056	0.78056
BuOH	0.80964	0.80964	0.80964	0.80964

练习使用比重管测定液体密度,相关数据如表 4 所示,其中 M_1 、 M_2 为加入去离子水后比重管质量的两次测量结果, M_{BuOH} 为加入 BuOH 后比重管质量的测量结果、 M_0 为空比

重管质量的测量结果。

表 4 使用比重管测定液体密度相关实验数据

Table 4 Correlative data of determination of liquid density using pycnometer

M_1/g	M_2/g	$M_{ m BuOH}/{ m g}$	M_0/g
30.105	30.107	29.238	25.400

故两次测量时水的质量

$$m_1 = M_1 - M_0 = 4.705 \text{ g}$$

$$m_2 = M_2 - M_0 = 4.707$$
 g

水的质量的平均值

$$m = \frac{m_1 + m_2}{2} = 4.706 \text{ g}$$

测量正丁醇密度时,正丁醇的质量

$$m_{\rm BuOH} = M_{\rm BuOH} - M_0 = 3.838 \ {\rm g}$$

查手册知室温 T=18.9 °C 下水的密度 $\rho=0.99845$ g·mL⁻¹, 故计算正丁醇的密度

$$\rho_{\text{BuOH}} = \frac{m_{\text{BuOH}}}{m} \rho = \frac{3.838 \times 0.99845}{4.706} = 0.81429 \text{ g} \cdot \text{mL}^{-1}$$

3.1.4 折射率的测定

使用阿贝折射仪测定正丁醇的折射率

$$n_{\text{BuOH}} = 1.4011$$

并记录阿贝折射仪上温度计示数为 12.7°C。

3.2 数据处理结果与分析

3.2.1 介电常数的计算

环己烷的介电常数 ε_{Cv} 与温度 T 的关系为

$$\varepsilon_{\text{Cy}} = 2.023 - 0.0016 \ (\frac{T}{\text{K}} - 293)$$

室温 T = 289.15 K, 故计算

$$\varepsilon_{\text{Cy}} = 2.023 - 0.0016 \times (289.15 - 293) = 2.029$$

电容器的电容 C_0 可由下式求算:

$$C_0 = \frac{C'_{\rm Cy} - C'_{\rm E}}{\varepsilon_{\rm Cy} - 1}$$

分布电容 $C_D(D$ 即 Distribution) 可由下式求算:

$$C_{\rm D} = C_{\rm E}' - C_0$$

则样品的介电常数 $\varepsilon_{\rm S}$ 可由下式求算:

$$\varepsilon_{\rm S} = \frac{C_{\rm S}}{C_0}$$

其中

$$C_{\rm S} = C_{\rm S}' - C_{\rm D}$$

根据表 2 数据,以 $C_{\rm E}'$ 、 $C_{\rm S}'$ 的平均值作为真实值,计算各溶液的介电常数 $\varepsilon_{\rm S}$ 。首先根据环己烷的相关数据,计算

$$C_0 = \frac{C'_{\text{Cy}} - C'_{\text{E}}}{\varepsilon_{\text{Cy}} - 1} = \frac{6.92 - 4.30}{2.029 - 1} \text{pF} = 2.55 \text{ pF}$$

$$C_{\rm D} = C_{\rm E}' - C_0 = 4.30~{\rm pF} - 2.55~{\rm pF} = 1.75~{\rm pF}$$

可以近似认为分布电容 C_D 为常数,在实验过程中保持不变,以溶液1为例,计算

$$C_0 = C_{\rm E}' - C_{\rm D} = 4.30~{\rm pF} - 1.75~{\rm pF} = 2.55~{\rm pF}$$

$$C_{\rm S}=C_{\rm S}'-C_{\rm D}=7.07~{
m pF}-1.75~{
m pF}=5.32~{
m pF}$$

$$\varepsilon_{\rm S}=\frac{C_{\rm S}}{C_0}=2.086$$

类似地,计算各溶液的介电常数 $\varepsilon_{\rm S}$,结果如表 ${\bf 5}$ 所示。

3.2.2 正丁醇折射度 R 的计算

正丁醇的折射度 R 可由下式求算:

$$R = \frac{n_{\rm BuOH}^2 - 1}{n_{\rm BuOH}^2 + 2} \times \frac{M_{\rm BuOH}}{\rho_{\rm BuOH}}$$

表 5 各溶液介电常数 $\varepsilon_{\rm S}$ 计算数据

Table 5 Calculation data of dielectric constant ε_S of each solution

编号	$\chi_{ m BuOH}$	C_0/pF	$C_{\rm S}/{ m pF}$	$arepsilon_{ ext{S}}$
1	0.0488	2.55	5.32	2.086
2	0.0762	2.55	5.46	2.143
3	0.0967	2.55	5.58	2.190
4	0.1148	2.54	5.70	2.246
5	0.1483	2.55	6.03	2.367

由 3.1.4 知正丁醇的折射率 $n_{\text{BuOH}}=1.4011$,由 3.1.3 知正丁醇的密度 $\rho_{\text{BuOH}}=0.80964~\text{g}\cdot\text{mL}^{-1}$, $M_{\text{BuOH}}=74.12~\text{g}\cdot\text{mol}^{-1}$,代入公式计算得

$$R = \frac{n_{\rm BuOH}^2 - 1}{n_{\rm BuOH}^2 + 2} \times \frac{M_{\rm BuOH}}{\rho_{\rm BuOH}} = \frac{1.4011^2 - 1}{1.4011^2 + 2} \times \frac{74.12~{\rm g \cdot mol^{-1}}}{0.80964~{\rm g \cdot mL^{-1}}} = 22.247~{\rm mL \cdot mol^{-1}}$$

3.2.3 $\varepsilon_{\rm S} - \chi_{\rm BuOH}$ 图

根据表 **5** 数据,作出 $\varepsilon_{\rm S}$ — $\chi_{\rm BuOH}$ 关系的散点图,并用 python SciPy lingress 进行线性拟合,作出拟合直线,如图 **1** 所示。

Fig. 1 $\varepsilon_{\rm S} - \chi_{\rm BuOH}$ diagram and linear fit

拟合直线的方程为

$$\varepsilon_{\rm S} = (2.8 \pm 0.2) \chi_{\rm BuOH} + (1.94 \pm 0.02), R = 0.9898$$

故直线截距

$$\varepsilon_1 = 1.94 \pm 0.02$$

直线斜率

$$a = 2.8 \pm 0.2$$

3.2.4 $\overline{\rho} - \chi_{\text{BuOH}}$ 图

根据表 1 及表 3 数据,作出 $\bar{\rho} - \chi_{\text{BuOH}}$ 关系的散点图,并用 python SciPy lingress 进行线 性拟合,作出拟合直线,如图2所示。

图 2 $\bar{\rho} - \chi_{\text{BuOH}}$ 关系图及线性拟合

Fig. 2 $\overline{\rho} - \chi_{\text{BuOH}}$ diagram and linear fit

拟合直线的方程为

$$\overline{\rho}/g \cdot mL^{-1} = (0.0167 \pm 0.0005)\chi_{BuOH} + (0.77804 \pm 0.00005), R = 0.9984$$

故直线截距

$$\rho_1 = (0.77804 \pm 0.00005) \text{ g} \cdot \text{mL}^{-1}$$

直线斜率

$$b = (0.0167 \pm 0.0005) \text{ g} \cdot \text{mL}^{-1}$$

3.2.5 \overline{P}_2^{∞} 的计算

正丁醇的摩尔极化度 \overline{P}_2^{∞} 可由下式近似求算:

$$\overline{P}_2^{\infty} = A(M_2 - bB) + aC$$

其中,

$$A = \frac{\varepsilon_1 - 1}{\varepsilon_1 + 2} \times \frac{1}{\rho_1}$$
$$B = \frac{M_1}{\rho_1}$$
$$C = \frac{3M_1}{(\varepsilon_1 + 2)^2 \rho_1}$$

由 3.2.3 和 3.2.4 知 $\varepsilon_1 = 1.94 \pm 0.02$, $a = 2.8 \pm 0.2$, $\rho_1 = (0.77804 \pm 0.00005)$ g·mL⁻¹, $b = (0.0167 \pm 0.0005)$ g·mL⁻¹,代入计算得

$$A = \frac{2.10 - 1}{2.10 + 2} \times \frac{1}{0.77804 \text{ g} \cdot \text{mL}^{-1}} = 0.307 \text{ mL} \cdot \text{mol}^{-1}$$

$$B = \frac{84.16 \text{ g} \cdot \text{mol}^{-1}}{0.77804 \text{ g} \cdot \text{mL}^{-1}} = 108.169 \text{ mL} \cdot \text{mol}^{-1}$$

$$C = \frac{3 \times 84.16 \text{ g} \cdot \text{mol}^{-1}}{(1.94 + 2)^2 \times 0.77804 \text{ g} \cdot \text{mL}^{-1}} = 21.1 \text{ mL} \cdot \text{mol}^{-1}$$

故

$$\overline{P}_2^\infty = (0.307 \times (74.12 - 0.0167 \times 108.169) + 2.8 \times 21.1) \ \text{mL} \cdot \text{mol}^{-1} = 81.3 \ \text{mL} \cdot \text$$

不确定度

$$\sigma_A = \sqrt{(\frac{3}{(\varepsilon_1+2)^2} \times \frac{1}{\rho_1})^2 \times \sigma_{\varepsilon_1}^2 + (\frac{\varepsilon_1-1}{\varepsilon_1+2} \times \frac{1}{\rho_1})^2 \sigma_{\rho_1}^2} = 0.005 \text{ mL} \cdot \text{mol}^{-1}$$

$$\sigma_B = B \frac{\sigma_{\rho_1}}{\rho_1} = \frac{108.2 \times 0.00005}{0.77804} \text{ g} \cdot \text{mol}^{-1} = 0.007 \text{ mL} \cdot \text{mol}^{-1}$$

$$\sigma_C = C \sqrt{(\frac{\sigma_{\varepsilon_1}}{\varepsilon_1+2})^2 + (\frac{\sigma_{\rho_1}}{\rho_1})^2} = 19.3 \times \sqrt{(\frac{0.02}{1.94+2})^2 + (\frac{0.00005}{0.77804})^2} \text{ mL} \cdot \text{mol}^{-1} = 0.1 \text{ mL} \cdot \text{mol}^{-1}$$
 故

$$A = (0.307 \pm 0.005) \text{ mL} \cdot \text{mol}^{-1}$$

$$B = (108.169 \pm 0.007) \text{ mL} \cdot \text{mol}^{-1}$$

$$C = (21.1 \pm 0.1) \text{ mL} \cdot \text{mol}^{-1}$$

故 $\overline{P}_{2}^{\infty}$ 的不确定度

$$\sigma_{\overline{P}_2^\infty} = \sqrt{(M_2 - bB)^2 \sigma_A^2 + A^2 B^2 \sigma_b^2 + A^2 b^2 \sigma_B^2 + C^2 \sigma_a^2 + a^2 \sigma_C^2} = 0.5 \ \mathrm{mL} \cdot \mathrm{mol}^{-1}$$

故

$$\overline{P}_2^{\infty} = (81.3 \pm 0.5) \text{ mL} \cdot \text{mol}^{-1}$$

3.2.6 正丁醇偶极矩 μ 的计算

正丁醇的偶极矩 μ 可由下式求算:

$$\mu = 12.81 \sqrt{\left(\frac{\overline{P}_2^{\infty}}{\mathrm{m}^3 \cdot \mathrm{mol}^{-1}} - \frac{R}{\mathrm{m}^3 \cdot \mathrm{mol}^{-1}}\right)\left(\frac{T}{K}\right)} \ \ \mathrm{D}$$

由 3.2.5 知 $\overline{P}_2^\infty=(81.3\pm0.5)~\text{mL}\cdot\text{mol}^{-1}$,由 3.2.2 知 $R=22.247~\text{mL}\cdot\text{mol}^{-1}$,T=289.75~K,代入公式计算得

$$\mu = 12.81 \times \sqrt{(81.3 - 22.247) \times 289.75}$$
 D = 1.68 D

考虑室温的波动,取 $\sigma_T = 1$ K, 计算 μ 的不确定度

$$\sigma_{\mu} = \frac{12.81^2}{2} \sqrt{(\frac{T}{\mu})^2 \sigma_{\overline{P}_2^{\infty}}^2 + (\frac{\overline{P}_2^{\infty} - R}{\mu})^2 \sigma_T^2} = 0.01 \text{ D}$$

故

$$\mu = (1.68 \pm 0.01) \text{ D}$$

查阅 CRC Handbook of Chemistry and Physics²,知正丁醇偶极矩的文献值 $\mu = (1.66 \pm 0.03)$ D,故实验测得正丁醇偶极矩落在参考值范围内,与参考值很好地吻合,相对误差

$$\xi = \frac{1.68 - 1.66}{1.66} \times 100\% = 1.2\%$$

4 讨论与结论

4.1 实验讨论

4.1.1 温度 T 对实验误差的影响

本实验在数据处理过程中,以实验室内的大气压-温度仪示数 t=18.9 °C 作为实际的温度 T,代入公式中进行计算。但在实验过程中,使用阿贝折射仪测定正丁醇的折射率时,由于阿贝折射仪放置于实验室背阴角落处,阿贝折射仪上温度示数仅为 t=12.7 °C; 在使用吹风机冷风吹干电容池时,明显可感觉到电吹风出风温度不同于室温,估测出风温度 t=25 °C。

温度变化对折光率和介电常数测定造成了一定的影响,查阅手册知正丁醇在 20 °C 下折射率 $n_{\text{BuOH}} = 1.3993$,该温度与室温接近,依此计算实验测量的折射率与实际的折射率的相对偏差

$$\xi_n = \frac{1.4011 - 1.3993}{1.3993} \times 100\% = 0.13\%$$

按照参考值计算正丁醇折射度

$$R = \frac{1.3993^2 - 1}{1.3993^2 + 2} \times \frac{74.12}{0.80964} \text{ mL} \cdot \text{mol}^{-1} = 22.159 \text{ mL} \cdot \text{mol}^{-1}$$

实验测量的折射度的相对偏差

$$\xi_R = \frac{22.247 - 22.159}{22.159} \times 100\% = 0.40\%$$

而如前文所述,吹风机出风温度高于室温,电容池内温度高于 20 °C,故温度对折射度 R 带来的相对偏差甚至大于上述结果。

环己烷的介电常数根据公式

$$\varepsilon_{\text{Cy}} = 2.023 - 0.0016 \ (\frac{T}{\text{K}} - 293)$$

得到,取实际温度为25°C,计算

$$\varepsilon_{\rm Cv} = 2.015$$

故室温下的计算值相对上述实际值的相对偏差

$$\xi_{\varepsilon} = \frac{2.029 - 2.015}{2.015} \times 100\% = 0.7\%$$

可见温度的不同对实验过程中大量物理量的测量引入了误差,最终导致 μ 的实验值偏离参考值。

4.1.2 实验改进

根据以上讨论,对实验的改进建议如下:

控制实验室恒温,或在实验的主要仪器加装恒温水浴装置,避免不同测量仪器处温度不同,从而减少温度变化对各物理量测量的影响。

4.2 实验报告勘误

在撰写最初的实验报告时,由于数据誊抄错误,造成计算值出现严重错误。经张洁老师指出后,重新绘制了实验报告中的拟合曲线图,计算了各物理量的数值,得到了与文献参考值相一致的结果。本人在此对该错误深感抱歉,并对张老师表示由衷感谢。

4.3 实验结论

本实验通过稀溶液法测定正丁醇的偶极矩,通过测定不同浓度正丁醇-环己烷溶液密度、介电常数和正丁醇折射率,计算正丁醇摩尔极化度 $\overline{P}_2^{\infty}=(81.3\pm0.5)~\mathrm{mL\cdot mol^{-1}}$,最终计算正丁醇偶极矩 $\mu=(1.68\pm0.01)~\mathrm{D}$,与文献值的相对偏差 $\xi=1.2\%$,并讨论了温度变化对实验结果的影响。

经计算,温度变化为正丁醇折射率 n_{BuOH} 、正丁醇折射度 R、介电常数 ε 等物理量的测量都引入了一定的误差,从而最终导致实验测得正丁醇偶极矩偏离文献值。控制实验室恒温能够有效减小实验误差。

参考文献

- [1] 北京大学化学与分子工程学院物理化学实验教学组,物理化学实验;2020.
- [2] Haynes, W. M. CRC handbook of chemistry and physics; CRC press, 2014.