Linear Regression (Revisited): Multiple Regression

STAT 245

Sept. 12, 2024

Multiple regression

- Rarely does our response variable really depend on only one predictor.
- Can we expand our formulation to include more predictors? (Example: normDS also predicts AssR?)
- In R, it's super easy:

Summary + Equation

```
##
## Call:
## lm(formula = AssR ~ fWHR + normDS, data = bonobos)
##
## Residuals:
               10 Median
##
      Min
                              30
                                     Max
## -2.9993 -0.7592 0.1832 0.8279
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                 2.966
## (Intercept) 2.53889
                       0.85610
                                         0.00369 **
              1.40331 0.62298 2.253 0.02622 *
## fWHR
## normDS -0.09918 0.09687 -1.024 0.30810
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.094 on 113 degrees of freedom
    (1 observation deleted due to missingness)
## Multiple R-squared: 0.04403, Adjusted R-squared: 0.02711
## F-statistic: 2.602 on 2 and 113 DF, p-value: 0.07855
```

Prediction Practice

Prediction Practice

Show 10 v entries Search:

	fWHR	AssR	normDS
1	1.880866426	4.74	3.035
2	1.798387097	5.38	4.421
3	1.591439689	3.97	4.453
4	1.545018647	4.87	3.044

Showing 1 to 4 of 4 entries

Previous

Next 5 / 20

Choosing Predictors, Again

- Here: build simple -> complex to show math machinery
- In practice: Think before you model
 - \circ Rule of thumb (from Harrell): $p < rac{n}{15}$
 - \circ p is number of parameters want to estimate; n is sample size (rows in data)

How Fitting Happened

Simple Linear Regression Residuals

Least Squares Estimation

Minimize:

$$SSE = \sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Multiple Predictors?

- Harder to draw
- Just as easy to compute \hat{y} ...
- ullet and thus compute the observed residuals e_i
- and the sum of squared residuals

See: https://setosa.io/ev/ordinary-least-squares-regression/

Predictors with 2 categories

Predictors with 2 categories

```
## (Intercept) fWHR normDS SexMale
## 2.07913144 1.89581129 -0.01849396 -1.11030054
```

Predictors with 2 categories - Summary, Equation

```
##
## Call:
## lm(formula = AssR \sim fWHR + normDS + Sex. data = bonobos)
##
## Residuals:
##
       Min
               10 Median
                                  30
                                          Max
## -2.47788 -0.61852 0.09069 0.73386 1.59519
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                         0.75375 2.758 0.006786 **
## (Intercept) 2.07913
              1.89581 0.55186 3.435 0.000831 ***
## fWHR
## normDS -0.01849 0.08592 -0.215 0.829962
          -1.11030 0.18681 -5.943 3.22e-08 ***
## SexMale
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9581 on 112 degrees of freedom
    (1 observation deleted due to missingness)
## Multiple R-squared: 0.2732, Adjusted R-squared: 0.2538
```

More categories

More Categories

```
m3_2q2c <- lm(AssR ~ fWHR + normDS + Sex + Group, data = bonobos)
```

More Categories: Summary, Equation

```
##
## Call:
## lm(formula = AssR \sim fWHR + normDS + Sex + Group, data = bonobos)
##
## Residuals:
      Min
                10 Median
##
                                30
                                       Max
## -2.5148 -0.5901 -0.0118 0.6610
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                                 0.79783
                                           2.717
                      2.16779
                                                  0.00768 **
                      1.65461
                                 0.56485 2.929
                                                  0.00415 **
## fWHR
## normDS
                      0.07067
                                 0.08782
                                                  0.42277
                                           0.805
                                          -6.643 1.32e-09 ***
## SexMale
                     -1.23398
                                 0.18576
## GroupFrankfurt
                     -0.61604
                                 0.34951
                                          -1.763
                                                  0.08083 .
## GroupPlanckendael
                      0.35141
                                 0.31958
                                           1.100
                                                  0.27398
## GroupTwycross
                      0.09313
                                 0.30547
                                           0.305
                                                  0.76105
## GroupWilhelma -0.08112
                                 0.33549
                                          -0.242
                                                  0.80940
## GroupWuppertal
                      0.47304
                                 0.32545
                                           1.453
                                                  0.14901
## ---
```

15 / 20

Predictions by Hand

What is the expected AssR (according to this model) for 30 kg female bonobos at the Wilhelma zoo with fWHR of 1.5 and normDS of 2.5?

Predictions in R

Caution: missing data

```
bonobos <- bonobos |>
  mutate(preds = predict(m3_2q2c))

## Error in `mutate()`:

## i In argument: `preds = predict(m3_2q2c)`.

## Caused by error:

## ! `preds` must be size 117 or 1, not 116.
```

Predictions in R

For ALL data points in model

```
b2 <- bonobos |>
  select(fWHR, normDS, AssR, Sex, Group) |>
  na.omit() |>
  mutate(preds = predict(m3_2q2c))
```

Plotting Predictions

Uh-oh, SO USELESS. Why should you never do this?

gf_lm(): NEVER Do This Either

well, almost never -- why?

```
gf_point(AssR ~ fWHR, data = b2) |>
  gf_lm()
```

