Corso di Architettura degli Elaboratori

Anno Accademico 2020/2021 Esempio di compitino Seconda Parte

Istruzioni

- Scrivere *Nome*, *Cognome* e *Matricola* su **ogni** foglio (solo pagine **dispari**).
- Scrivere la risposta nello spazio bianco al di sotto della domanda; Non è possibile allegare fogli aggiuntivi, quindi cercate di essere chiari e non prolissi.
- In caso di errori indicate chiaramente quale parte della risposta deve essere considerata; annullate le parti non pertinenti.
- $\bullet\,$ Assicurarsi che non manchi alcun foglio al momento della consegna.

Domande a risposta multipla

es1

Quante volte la CPU deve accedere alla memoria quando **preleva ed esegue** un'istruzione che ha due operandi, uno con modo di indirizzamento registro indiretto e uno con modo di indirizzamento registro?

a 1 b 2

[c] 4

e nessuna delle risposte precedenti

es2

Si consideri il numero -7,2851562. Qual'è la sua rappresentazione in virgola mobile a singola precisione (IEEE 754) ?

e nessuna delle risposte precedenti

es3

Sia data la seguente sequenza di istruzioni MIPS e si consideri la pipeline a 5 stadi vista a lezione con possibilità di data forwarding e di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

LW \$3, 3(\$1) SUB \$1, \$4, \$3 SW \$1, 11(\$3) ADDI \$3, \$1, 24

Quale delle seguenti sequenze riordinate corrisponde ad un programma logicamente equivalente al precedente ed è completato in meno cicli di clock:

SW \$1, 11(\$3)
 LW \$3, 3(\$1)
 SUB \$1, \$4, \$3
 ADDI \$3, \$1, 24

LW \$3, 3(\$1)
 SW \$1, 11(\$3)
 SUB \$1, \$4, \$3
 ADDI \$3, \$1, 24

LW \$3, 3(\$1)
 ADDI \$3, \$1, 24
 SW \$1, 11(\$3)
 SUB \$1, \$4, \$3

LW \$3, 3(\$1)
 SUB \$1, \$4 \$3

ADDI \$3, \$1, 24
 SW \$1, 11(\$3)

e nessuna delle risposte precedenti

Domande a risposta libera

es4

Si spieghi in dettaglio lo schema per realizzare la divisione fra numeri a virgola mobile nello standard IEEE 754.

es5

Si illustri nel dettaglio l'indirizzamento con spiazzamento. Discuterne pregi e difetti.

Nome e Cognome:	Matricola:	Pagina
es6		
Spiegare perché è difficile confrontare	con precisione le prestazioni delle architett	ure CISC e RISC.
es7		
C91		

Nel contesto della pipeline del processore MIPS, spiegare nel dettaglio cos'è uno stallo e a cosa serve.

4

Nome e Cognome: Matricola: Pagina 5

Esercizio

es8

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

LW	\$1,	0(\$2)
ADD	\$2,	\$3, \$1
SW	\$2,	21(\$1)
BEQ	\$2,	\$1, 11
ADD	\$3,	\$2, \$2
ADD	\$1,	\$1, \$3
SW	\$3,	0(\$1)

Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di dataforwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• assumendo che la condizione di salto sia falsa, mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione (da compilare)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
LW \$1, 0(\$2)																				
ADD \$2, \$3, \$1																				
SW \$2, 21(\$1)																				
BEQ \$2, \$1, 11																				
ADD \$3, \$2, \$2																				
ADD \$1, \$1, \$3																				
SW \$3, 0(\$1)																				

Commenti alla soluzione: