模块二 基本不等式

第1节 基本不等式的常见用法与拼凑技巧(★★☆)

强化训练

- 1. (2023 · 福建模拟 · ★) 函数 $y = x + \frac{1}{x+1}$ 在 $[0, +\infty)$ 上的最小值是 ()
- $(A) -2 \qquad (B) 1 \qquad (C) 2 \qquad (D) 3$

答案: B

解析:要求和的最小值,应凑"积定",分母为x+1,故将前面的x也凑成x+1,

由题意,
$$y=x+\frac{1}{x+1}=(x+1)+\frac{1}{x+1}-1\geq 2\sqrt{(x+1)\cdot\frac{1}{x+1}}-1=1$$
,取等条件是 $x+1=\frac{1}{x+1}$,即 $x=0$,

所以 $y = x + \frac{1}{x+1}$ 在 [0,+∞)上的最小值是 1.

2. (2023 · 全国模拟 · ★) 已知 0 < x < 1,则 x(4-3x)的最大值为_____.

答案: $\frac{4}{2}$

3 解析: 要求积的最大值, 考虑凑出和为定值, 在外面的 x 上乘以 3 即可,

由题意,
$$x(4-3x) = \frac{1}{3} \times 3x(4-3x) \le \frac{1}{3} \cdot \left[\frac{3x + (4-3x)}{2}\right]^2 = \frac{4}{3}$$

当且仅当 3x = 4 - 3x,即 $x = \frac{2}{3}$ 时取等号,所以 x(4 - 3x)的最大值为 $\frac{4}{3}$.

3. (★★) 设 0 < x < 2,则函数 $f(x) = x(2-x)^2$ 的最大值是_____.

答案: $\frac{32}{27}$

解析: 本题当然可以通过求导分析单调性来求最值,但若能凑成和为定值,则可快速求出积的最大值,

曲题意,
$$f(x) = x(2-x)^2 = \frac{1}{2} \times 2x(2-x)(2-x) \le \frac{1}{2} \times \left[\frac{2x+(2-x)+(2-x)}{3}\right]^3 = \frac{32}{27}$$
,

当且仅当 2x = 2 - x,即 $x = \frac{2}{3}$ 时取等号,所以 $f(x)_{max} = \frac{32}{27}$.

- 4. (★★) 已知 x, y 均为正数,且 $2^{x-6} = (\frac{1}{4})^y$,则 xy 的最大值为()
- (A) $\frac{9}{2}$ (B) $\frac{9}{8}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$

答案: A

解析: 题干给了一个等式,应先将其化简,可把右侧的底数化为2再看,

由题意, $2^{x-6} = (\frac{1}{4})^y = (2^{-2})^y = 2^{-2y}$,所以x-6=-2y,故x+2y=6①,

有了和为定值,要求积的最大值,直接用均值不等式即可,所以 $6=x+2y\geq 2\sqrt{x\cdot 2y}=2\sqrt{2}\cdot\sqrt{xy}$,

化简得: $xy \le \frac{9}{2}$, 当且仅当x = 2y时取等号,结合式①可得x = 3, $y = \frac{3}{2}$, 故xy的最大值为 $\frac{9}{2}$.

5. (2022 • 九江模拟 • ★★) 已知 a > 0 , b > 0 , a + b = 2 , 则 $\frac{1}{a} + \frac{4}{b}$ 的最小值为_____.

答案: $\frac{9}{2}$

解析:观察发现可用"1"的代换凑出积为定值,

$$\frac{1}{a} + \frac{4}{b} = (\frac{1}{a} + \frac{4}{b}) \cdot 1 = (\frac{1}{a} + \frac{4}{b}) \cdot 2 \times \frac{1}{2} = (\frac{1}{a} + \frac{4}{b})(a+b) \cdot \frac{1}{2} = \frac{1}{2}(1 + \frac{b}{a} + \frac{4a}{b} + 4) = \frac{1}{2}(\frac{b}{a} + \frac{4a}{b} + 5) \ge \frac{1}{2}(2\sqrt{\frac{b}{a} \cdot \frac{4a}{b}} + 5) = \frac{9}{2},$$

当且仅当
$$\frac{b}{a} = \frac{4a}{b}$$
时取等号,结合 $a+b=2$ 可得 $\begin{cases} a = \frac{2}{3} \\ b = \frac{4}{3} \end{cases}$,故 $\frac{1}{a} + \frac{4}{b}$ 的最小值为 $\frac{9}{2}$.

6. (2022・连云港模拟・★★) 已知 a>0, b>0, $a+\frac{1}{b}=1$,则 $\frac{b}{a}$ 的最小值为_____.

答案: 4

解析: 先将 $\frac{1}{b}$ 换元, 把已知的等式化简, 设 $c = \frac{1}{b}$, 则c > 0, 且 $a + \frac{1}{b} = 1$ 即为a + c = 1, $\frac{b}{a} = \frac{1}{ac}$,

故问题等价于求 ac 的最大值,已有和为定值,直接用均值不等式即可,

$$1 = a + c \ge 2\sqrt{ac}$$
,所以 $0 < ac \le \frac{1}{4}$,故 $\frac{1}{ac} \ge 4$,当且仅当 $a = c = \frac{1}{2}$ 时取等号,因为 $\frac{b}{a} = \frac{1}{ac}$,所以 $(\frac{b}{a})_{\min} = 4$.

7.
$$(2023 \cdot 全国模拟 \cdot \star \star \star \star)$$
 已知 $m > n > 0$,且 $m + n = 1$,则 $\frac{6}{m-n} + \frac{1}{3n}$ 的最小值为_____.

答案: $\frac{32}{3}$

解析:看到分子为两个正常数,想到将分母整体换元,看能否转化为"1"的代换基本模型来处理,

设
$$\left\{ egin{aligned} a &= m - n \\ b &= 3n \end{aligned}
ight.$$
,则 $\left\{ egin{aligned} m &= a + rac{b}{3} \\ n &= rac{b}{3} \end{aligned}
ight.$,由 $m > n > 0$ 可得 $a > 0$, $b > 0$,

因为m+n=1, 所以 $a+\frac{b}{3}+\frac{b}{3}=1$, 整理得: 3a+2b=3 ①,

$$= \frac{4b}{a} + \frac{a}{b} + \frac{20}{3} \ge 2\sqrt{\frac{4b}{a} \cdot \frac{a}{b}} + \frac{20}{3} = \frac{32}{3}, \quad \text{当且仅当} \frac{4b}{a} = \frac{a}{b} \text{时取等号,结合①可得此时} \ a = \frac{3}{4}, \quad b = \frac{3}{8},$$

代入
$$\begin{cases} m = a + \frac{b}{3} \\ n = \frac{b}{3} \end{cases}$$
 得
$$\begin{cases} m = \frac{7}{8} \\ n = \frac{1}{8} \end{cases}$$
 满足条件,所以 $\frac{6}{m-n} + \frac{1}{3n}$ 的最小值为 $\frac{32}{3}$.

【反思】涉及两个分式之和的最小值问题,尤其是分子均为正常数时,可尝试将分母整体换元,看能否转 化为"1"的代换基本模型来处理.

8.(2023•湖南株洲模拟•★★★)已知0<x<1,若关于x的不等式 $\frac{4}{x}$ + $\frac{1}{1-x}$ < m^2 -8m有解,则实数 m的取值范围是()

(A)
$$(-\infty -9)[1(1 + \infty)]$$

$$(B) (-1,9)$$

(A)
$$(-\infty, -9) \cup (1, +\infty)$$
 (B) $(-1, 9)$ (C) $(-\infty, -1) \cup (9, +\infty)$ (D) $(-\infty, -1] \cup [9, +\infty)$

(D)
$$(-\infty,-1] \cup [9,+\infty)$$

答案: C

解析: 问题等价于 $(\frac{4}{r} + \frac{1}{1-r})_{min} < m^2 - 8m$,故先求 $\frac{4}{r} + \frac{1}{1-r}$ 的最小值,注意到分母和为定值,故可将分母 换元,转化成"1"的代换基本模型来处理,

设a = x, b = 1 - x, 则0 < a < 1, 0 < b < 1, 且a + b = 1,

$$\text{FFU}\frac{4}{x} + \frac{1}{1-x} = \frac{4}{a} + \frac{1}{b} = (\frac{4}{a} + \frac{1}{b}) \cdot 1 = (\frac{4}{a} + \frac{1}{b})(a+b) = 4 + \frac{4b}{a} + \frac{a}{b} + 1 = \frac{4b}{a} + \frac{a}{b} + 5 \ge 2\sqrt{\frac{4b \cdot a}{a} \cdot \frac{a}{b}} + 5 = 9,$$

当且仅当
$$\frac{4b}{a} = \frac{a}{b}$$
时取等号,此时 $a = 2b$,结合 $a + b = 1$ 可得 $a = \frac{2}{3}$, $b = \frac{1}{3}$,故 $(\frac{4}{x} + \frac{1}{1-x})_{min} = 9$,

所以 $9 < m^2 - 8m$,故 $m^2 - 8m - 9 > 0$,解得:m < -1或m > 9.

9. (★★★) 已知正实数x, y满足x+y=1,则 $\log_2 x + \log_4 y$ 的最大值是_

答案: $1-\frac{3}{2}\log_2 3$

解析: $\log_2 x + \log_4 y = \log_2 x + \log_2 y = \log_2 x + \frac{1}{2} \log_2 y = \log_2 (x \sqrt{y}) = \log_2 \sqrt{x^2 y}$ ①,

先求 x^2y 的最大值,结合x+y=1知可将 x^2y 化为 $\frac{1}{2}x\cdot x\cdot 2y$,凑出和为定值,用三元均值不等式求最值,

$$x^{2}y = \frac{1}{2}x \cdot x \cdot 2y \le \frac{1}{2} \cdot (\frac{x + x + 2y}{3})^{3} = \frac{1}{2} \cdot [\frac{2(x + y)}{3}]^{3} = \frac{4}{27},$$
 取等条件是 $x = 2y$,又 $x + y = 1$,所以 $x = \frac{2}{3}$, $y = \frac{1}{3}$,

故
$$(x^2y)_{\text{max}} = \frac{4}{27}$$
,代入①知 $(\log_2 x + \log_4 y)_{\text{max}} = \log_2 \sqrt{\frac{4}{27}} = \log_2 \frac{2}{3\sqrt{3}} = \log_2 2 - \log_2 3^{\frac{3}{2}} = 1 - \frac{3}{2}\log_2 3$.

10. (2023・天津模拟・★★★) 若b>a>1,且 $3\log_a b+2\log_b a=7$,则 $a^2+\frac{3}{b-1}$ 的最小值为_____.

答案: $2\sqrt{3}+1$

解析:注意到 $\log_b a = \frac{1}{\log b}$,故所给等式可化为关于 $\log_a b$ 的方程,解出 $\log_a b$,将a和b的关系化简,

因为 $3\log_a b + 2\log_b a = 7$,所以 $3\log_a b + \frac{2}{\log_a b} = 7$,故 $3(\log_a b)^2 - 7\log_a b + 2 = 0$,解得: $\log_a b = 2$ 或 $\frac{1}{3}$,

又b>a>1,所以 $\log_a b>1$,从而 $\log_a b=2$,故 $a^2=b$,可用这一关系式将目标式消元,再凑积定,

所以
$$a^2 + \frac{3}{b-1} = b + \frac{3}{b-1} = (b-1) + \frac{3}{b-1} + 1 \ge 2\sqrt{(b-1) \cdot \frac{3}{b-1}} + 1 = 2\sqrt{3} + 1$$
,

取等条件是 $b-1=\frac{3}{b-1}$,解得: $b=\sqrt{3}+1$,满足题意,故 $(a^2+\frac{3}{b-1})_{\min}=2\sqrt{3}+1$.

11. (2022・广东湛江二模・★★★)若
$$a,b \in (0,+\infty)$$
,且 $\sqrt{a} + \frac{4}{b} = 9$,则 $b + \frac{\sqrt{a}}{a}$ 的最小值为_____.

答案: 1

解析: 所给等式为根式与分式的混合,结构较复杂,先通过换元将其化简,

设 $x = \sqrt{a}$, $y = \frac{4}{b}$, 则x > 0, y > 0, 且x + y = 9, $b + \frac{\sqrt{a}}{a} = \frac{4}{y} + \frac{1}{x}$, 这样就又变成了"1"的代换基础模型,

所以
$$b + \frac{\sqrt{a}}{a} = \frac{4}{y} + \frac{1}{x} = (\frac{4}{y} + \frac{1}{x}) \cdot 1 = (\frac{4}{y} + \frac{1}{x}) \cdot 9 \times \frac{1}{9} = (\frac{4}{y} + \frac{1}{x})(x + y) \times \frac{1}{9} = \frac{1}{9}(\frac{4x}{y} + 4 + 1 + \frac{y}{x})$$

$$= \frac{1}{9}(\frac{4x}{y} + \frac{y}{x} + 5) \ge \frac{1}{9}(2\sqrt{\frac{4x}{y} \cdot \frac{y}{x}} + 5) = 1,$$

取等条件是 $\frac{4x}{y} = \frac{y}{x}$, 结合 x + y = 9可得 $\begin{cases} x = 3 \\ y = 6 \end{cases}$, 从而 a = 9, $b = \frac{2}{3}$, 满足题意,故 $b + \frac{\sqrt{a}}{a}$ 的最小值为 1.

【反思】当所给条件较复杂,不易看出如何变形凑定值时,不妨换元,将条件化简,往往可使问题明朗化.

《一数•高考数学核心方法》