

Módulo 11: endereçamento IPv4

Versão original: Cisco Network Academy Versão modificada: Eduardo Costa

Introdução às redes v7.0 (ITN)

Objetivos do módulo

Título do módulo: Endereçamento IPv4

Objetivo do módulo: Calcular um esquema de sub-rede IPv4 para segmentar com eficiência sua rede.

Título do Tópico	Objetivo do Tópico
Estrutura do endereço IPv4	Descrever a estrutura de um endereço IPv4,
	incluindo a parte de rede, a parte de host e a
	máscara de sub-rede.
Unicast, broadcast e multicast IPv4	Comparar as características e os usos dos
	endereços IPv4 unicast, multicast e broadcast.
Tipos de endereços IPv4	Explicar os endereços IPv4 públicos, privados e
	reservados.
Segmentação de rede	Explicar como a divisão em sub-redes segmenta
	uma rede para facilitar a comunicação.
Sub-rede de uma rede IPv4	Calcular sub-redes IPv4 para um prefixo /24.

Objetivos do módulo (Cont.)

Título do módulo: Endereçamento IPv4

Objetivo do módulo: Calcular um esquema de sub-rede IPv4 para segmentar com eficiência sua rede.

Título do Tópico	Objetivo do Tópico
Dividir em sub-redes de prefixos /16 e /8	Calcular sub-redes IPv4 para um prefixo /16 e /8.
Divisão em Sub-Redes para Atender a	Dado um conjunto de requisitos para divisão de
Requisitos	sub-redes, implementar um esquema de
	endereçamento IPv4.
Divisão em Sub-Redes de Tamanho Variável	Explicar como criar um esquema de
(VLSM)	endereçamento flexível usando VLSM (máscaras
	de sub-rede com tamanho variável).
Projeto estruturado	Implementar um esquema de endereçamento
	VLSM.

11.1 Estrutura de endereço IPv4

Estrutura do endereço IPv4 Partes de rede e host

- Um endereço IPv4 é um endereço hierárquico de 32 bits, composto por uma parte de rede e uma parte do host.
- Ao determinar a parte da rede versus a parte do host, você deve observar o fluxo de 32 bits.
- Uma máscara de sub-rede é usada para determinar as partes da rede e do host.

Estrutura de endereço IPv4 A máscara de sub-rede

- Para identificar as partes da rede e do host de um endereço IPv4, a máscara de subrede é comparada com o endereço IPv4 bit por bit, da esquerda para a direita.
- O processo usado para identificar as partes da rede e do host é chama-se operação AND.

O comprimento do prefixo

 O comprimento de prefixo é um método menos complicado usado para identificar um endereço de máscara de sub-rede.

- O comprimento do prefixo é o número de bits definido como 1 na máscara de sub-rede.
- Está escrito em "notação de barra", portanto, conte o número de bits na máscara de sub-rede e adicione-a com uma barra.

Máscara de Sub- Rede	Endereço de 32 bits	Prefixo Tamanho
255.0.0.0	11111111.00000000.00000000.000000000	/8
255.255.0.0	111111111111111111100000000000000000000	/16
255.255.255.0	11111111.111111111.11111111.000000000	/24
255.255.255.128	11111111.111111.11111111.10000000	/25
255.255.255.192	11111111.11111111.11111111.11000000	/26
255.255.255.224	11111111.11111111.11111111.11100000	/27
255.255.255.240	11111111.11111111.11111111.11110000	/28
255.255.255.248	11111111.11111111.111111111.11111000	/29
255.255.255.252	11111111.111111111.11111111111100	/30

Estrutura de Endereços IPv4

Determinar a Rede: AND Lógico

- Uma operação lógica AND booleana é usada na determinação do endereço de rede.
- O AND Lógico é a comparação de dois bits onde apenas um 1 AND 1 produz um 1 e qualquer outra combinação resulta em um 0.
- 1 AND 1 = 1, 0 AND 1 = 0, 1 AND 0 = 0, 0 AND 0 = 0
- 1 = Verdadeiro e 0 = Falso
- Para identificar o endereço de rede, o endereço IPv4 do host é usado a operação de AND lógico, bit a bit, com a máscara de sub-rede para identificar o endereço de rede.

Estrutura de endereço IPv4 Endereços de rede, host e broadcast

- Dentro de cada rede há três tipos de endereços IP:
- Endereço de rede
- Endereços de host
- Endereço de broadcast

	Parte de rede	Parte de host	Bitsde host
Máscara de sub-rede 255.255.255. 0 ou /24	255 255 255 11111111 111111 111111	0	
Endereço de rede 192.168.10.0 ou /24	192 168 10 11000000 10100000 00001010	0	Todos os 0
Primeiro endereço 192.168.10.1 ou /24	192 168 10 11000000 10100000 00001010	1 00000001	Todos os 0s e um 1
Último endereço 192.168.10.254 ou /24	192 168 10 11000000 10100000 00001010	254 11111110	Todos os 1s e um 0
Endereço de broadcast 192.168.10.255 ou /24	192 168 10 11000000 10100000 00001010	255 11111111	Todos os 1s

11.2 IPv4 Unicast, broadcast e multicast

IPv4 Unicast, Broadcast e Multicast Unicast

- A transmissão unicast envia um pacote para um endereço IP de destino.
- Por exemplo, o PC com o IP 172.16.4.1 envia um pacote unicast para a impressora com o IP 172.16.4.253.

IPv4 Unicast, Broadcast e Multicast Broadcast

- Transmissão broadcast envia um pacote para todos os outros endereços IP de destino.
- Por exemplo, o PC com o IP 172.16.4.1 envia um pacote de broadcast para todos os hosts IPv4.

IPv4 Unicast, transmissão e multicast **Multicast**

- A transmissão multicast envia um pacote para um grupo de endereços multicast.
- Por exemplo, o PC com o IP 172.16.4.1 envia um pacote multicast para o endereço de grupo de multicast com o IP 224.10.10.5.

11.3 Tipos de endereços IPv4

Endereços IPv4 públicos e privados

- Conforme definido no RFC 1918, os endereços IPv4 públicos são encaminhados globalmente entre os routers do fornecedor de serviços de Internet (ISP).
- Endereços privados são blocos comuns de endereços usados pela maioria das organizações para atribuir endereços IPv4 a hosts internos.
- Os endereços IPv4 privados não são

exclusivos e podem ser usados
internamente em qualquer rede.
No entanto, os endereços privados não são globalmente encaminháveis.

Endereço de rede e prefixo	RFC 1918 Intervalo de endereços privados
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

Tipos de Endereços IPv4 Encaminhamento para a Internet

- A conversão de endereços de rede (NAT Network Address Translation) converte endereços IPv4 privados em endereços IPv4 públicos.
- Normalmente, o NAT é ativado no router de fronteira que se liga à Internet.
- Converte o endereço privado interno num endereço IP global público.

Tipos de endereços IPv4

Endereços IPv4 de uso especial

Endereços de loopback

- 127.0.0.0 / 8 (127.0.0.1 a 127.255.255.254)
- Comumente identificado como apenas 127.0.0.1
- Usado num host para testar se o TCP / IP está operacional.

Endereços locais de link

- 169.254.0.0 / 16 (169.254.0.1 a 169.254.255.254)
- Comumente conhecido como endereços APIPA (Automatic Private IP Addressing) ou endereços auto-atribuídos.
- Usado pelos clientes DHCP do Windows para se autoconfigurar quando nenhum servidor DHCP está disponível.

C:\Users\NetAcad> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128</pre>

Endereçamento em Classes (Legacy Classful Addressing)

O RFC 790 (1981) aloca endereços IPv4 em classes

- Classe A (0.0.0/8 a 127.0.0.0/8)
- Classe B (128.0.0.0 /16 191.255.0.0 /16)
- Classe C (192.0.0.0 /24 223.255.255.0 /24)
- Classe D (224.0.0.0 a 239.0.0.0)
- Classe E (240.0.0.0 255.0.0.0)
- Endereços em classe desperdiçaram muitos endereços IPv4.

A alocação de endereços em classe foi substituída por endereçamento sem classe que ignora as regras das classes (A, B, C).

Tipos de endereço IPv4 Atribuição de endereços IP

- A IANA (Internet Assigned Numbers Authority) gere e aloca blocos de endereços IPv4 e IPv6 a cinco RIRs (Registros Regionais da Internet).
- Os RIRs são responsáveis pela alocação de endereços IP aos ISPs que fornecem blocos de endereços IPv4 a ISPs e organizações menores.

11.4 Segmentação de rede

Segmentação de rede

Domínios de Broadcast e Segmentação

- Muitos protocolos usam broadcasts ou multicasts (por exemplo, ARP usam broadcasts para localizar outros dispositivos, hosts enviam broadcasts de descoberta DHCP para localizar um servidor DHCP).
- Os switches propagam broadcasts por todas as interfaces, exceto a interface em que foram recebidos.

- O único dispositivo que interrompe as transmissões é um router.
- Os routers não propagam broadcasts
- Cada interface do router conecta-se a um domínio de broadcast e os broadcasts são propagados apenas dentro desse domínio de broadcast

11 11 11

□ ESTIG – IPB :: Eduardo Costa (raposo@ipb.pt) específico.

Segmentação de rede

Problemas com grandes domínios de broadcast

- Um problema desse tipo de domínio é que os hosts podem gerar broadcasts em excesso e afetar a rede de forma negativa.
- A solução é reduzir o tamanho da rede para criar domínios de broadcast menores num processo denominado divisão em sub-redes.
- Dividindo o endereço de rede 172.16.0.0 / 16 em duas sub-redes de 200 utilizadores cada: 172.16.0.0 / 24 e 172.16.1.0 / 24.
- Os broadcasts são propagados apenas dentro dos domínios de broadcast menores.

Segmentação de rede

Razões para segmentar redes

- A divisão em sub-redes reduz o tráfego total da rede e melhora seu desempenho.
- Pode ser usado para implementar políticas de segurança entre sub-redes.
- A sub-rede reduz o número de dispositivos afetados pelo tráfego de broadcast anormal.
- As sub-redes são usadas por uma variedade de razões, incluindo:

11.5 Divisão em Sub-redes de uma rede IPv4

Divisão em Sub-Redes de uma rede IPv4 **Sub-rede com limite de octetos**

- É mais fácil dividir redes em sub-redes com limites dos octetos: /8, /16 e /24.
- Observe que o uso de prefixos mais longos diminui o número de hosts por sub-rede.

Comprimento do Prefixo		Máscara de sub-rede em binário (n = rede, h = host)	Nº de hosts
/8	255 .0.0.0	nnnnnnn.hhhhhhh.hhhhhhhh.hhhhhhhhhhhhh	16.777.214
/16	255.255 .0.0	nnnnnnn.nnnnnnn.hhhhhhhh.hhhhhhhh 1111111.11111111.00000000.00000000	65.534
/24	255.255.255 .0	nnnnnnn.nnnnnnn.nnnnnnn.hhhhhhh 1111111.1111111.1111111.0000000	254

Divisão em Sub-redes de uma rede IPv4 Sub-redes com limite de octetos (cont.)

 Na primeira tabela a rede 10.0.0.0/8 é dividida em sub-redes usando /16 e na segunda tabela, usando /24.

Endereço de sub-rede (256 possíveis sub-redes)	Intervalo de hosts (65.534 hosts possíveis por sub-rede)	Broadcast
10.0.0.0/16	10.0 .0.1 - 10.0 .255.254	10.0 .255.255
10.1.0.0/16	10.1 .0.1 - 10.1 .255.254	10.1 .255.255
10.2 .0.0/ 16	10.2 .0.1 - 10.2 .255.254	10.2 .255.255
10.3.0.0/16	10.3 .0.1 - 10.3 .255.254	10.3 .255.255
10.4 .0.0/ 16	10.4 .0.1 - 10.4 .255.254	10.4 .255.255
10.5 .0.0/ 16	10.5 .0.1 - 10.5 .255.254	10.5 .255.255
10.6 .0.0/ 16	10.6 .0.1 - 10.6 .255.254	10.6 .255.255
10.7.0.0/16	10.7 .0.1 - 10.7 .255.254	10.7 .255.255
10.255 .0.0/ 16	10.255 .0.1 - 10.255 .255.254	10.255 .255.255

Endereço de sub- rede (65.536 sub-redes possíveis)	Intervalo de hosts (254 hosts possíveis por sub- rede)	Broadcast
10.0.0.0/24	10.0.0 .1 - 10.0.0 .254	10.0.0 .255
10.0.1.0/24	10.0.1 .1 - 10.0.1 .254	10.0.1 .255
10.0.2.0/24	10.0.2 .1 - 10.0.2 .254	10.0.2 .255
10.0.255.0/24	10.0.255 .1 - 10.0.255 .254	10.0.255 .255
10.1.0.0/24	10.1.0 .1 - 10.1.0 .254	10.1.0 .255
10.1.1.0/24	10.1.1 .1 - 10.1.1 .254	10.1.1 .255
10.1.2.0/24	10.1.2 .1 - 10.1.2 .254	10.1.2 .255
10.100.0.0/24	10.100.0 .1 - 10.100.0 .254	10.100.0 .255
10.255.255.0/24	10.255.255 .1 - 10.2255.255 .254	10.255.255 .255

Divisão em Sub-redes de uma rede IPv4 Sub-rede dentro de um limite de octeto

Consulte a tabela para ver seis opções de divisão em sub-redes de uma rede /24.

Comprimento do Prefixo	Máscara de sub- rede	Máscara de Sub-Rede em Binário (n = rede, h = host)	Nº de subredes	Nº de hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhh 11111111.11111111.11111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhh 11111111.11111111.11111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.11111111.11111111. 111 00000	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnn.nnnnnnn. nnnn hhhh 11111111.11111111.11111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnn hhh 1111111.11111111.11111111. 11111 000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnn.nnnnnnn. nnnnnn hh 11111111.11111111.111111111. 111111 00	64	2

11.6 Sub-redes com prefixos / 16 e / 8

Criar sub-redes com um prefixo de barra 16

 A tabela destaca todos os cenários possíveis para a sub-rede de um prefixo /16.

Comprimento do Prefixo	Máscara de sub- rede	Endereço de rede (n = rede, h = host)	Nº de subredes	Nº de hosts
/17	255.255. 128 .0	nnnnnnn.nnnnnnnn. n hhhhhhh.hhhhhhh 11111111.11111111. 1 000000.0000000	2	32766
/18	255.255. 192 .0	nnnnnnn.nnnnnnn. nn hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	4	16382
/19	255.255. 224 .0	nnnnnnn.nnnnnnn. nnn hhhhhhhhhhh 11111111.111111. 111 00000.00000000	8	8190
/20	255.255. 240 .0	nnnnnnn.nnnnnnn. nnnn hhhhhhhhhhhh 11111111.111111. 1111 000.0000000	16	4094
/21	255.255. 248 .0	nnnnnnn.nnnnnnn. nnnnn hhh.hhhhhhh 11111111.111111. 11111 000.00000000	32	2046
/22	255.255. 252 .0	nnnnnnn.nnnnnnn. nnnnnn hh.hhhhhhh 11111111.1111111.11111100.00000000	64	1022
/23	255.255. 254 .0	nnnnnnn.nnnnnnn. nnnnnn h.hhhhhhh 11111111.1111111. 1111111 0.00000000	128	510
/24	255.255. 255 . 0	nnnnnnn.nnnnnnn. nnnnnnn .hhhhhhh 11111111.1111111. 11111111 .00000000	256	254
/25	255.255. 255 .1 28	nnnnnnn.nnnnnnn. nnnnnnn.n hhhhhhh 11111111.1111111.11111111.10000000	512	126
/26	255.255. 255 . 192	nnnnnnn.nnnnnnn. nnnnnnn.nn hhhhhh 11111111.1111111. 1111111111.1 000000	1024	62
/27	255.255. 255.224	nnnnnnn.nnnnnnn. nnnnnnn.nnn hhhhh 11111111.1111111.11111111.11100000	2048	30
/28	255.255 .255. 240	nnnnnnn.nnnnnnn. nnnnnnn.nnnn hhhh 11111111.1111111. 111111111.111 0000	4096	14
/29	255.255. 255.248	nnnnnnn.nnnnnnn. nnnnnnn.nnnnn hhh 11111111.1111111.11111111.11111000	8192	6
/30	255.255. 255.252	nnnnnnn.nnnnnnn. nnnnnnn.nnnnn hh 11111111.1111111. 1111111111.1111 00	16384	2

CISCO

47

Criar 100 sub-redes com um prefixo de /16

Considere uma empresa grande que precise de pelo menos 100 sub-redes e tenha escolhido o endereço privado 172.16.0.0/16 como endereço da rede interna.

- A figura apresenta o número de sub-redes que podem ser criadas ao emprestar bits do terceiro e do quarto octeto.
- Observe que agora existem até 14 bits de host que podem ser emprestados (ou seja, os últimos dois bits não podem ser emprestados).

Para satisfazer o requisito de 100 sub-redes para a empresa, 7 bits (ou seja, 2^7 = 128 sub-redes) precisariam ser emprestados (para um total de 128 sub-redes).

Sub-rede com prefixos /16 e /8 Criar 1000 sub-redes com um prefixo /8

Considere um pequeno ISP que requer 1000 subredes para seus clientes usando o endereço de rede 10.0.0.0/8, o que significa que há 8 bits na parte da rede e 24 bits de host disponíveis para empréstimo para sub-redes.

- A figura apresenta o número de sub-redes que podem ser criadas ao emprestar bits do segundo e terceiro octeto.
- Observe que há agora até 22 bits de host que podem ser emprestados (ou seja, os últimos dois bits não podem ser emprestados).

Para satisfazer o requisito de 1000 sub-redes para a empresa, 10 bits (ou seja, 2¹⁰= 1024 sub-redes) precisariam ser emprestados (para um total de 1024 sub-redes)

11.7 Sub-rede para atender aos requisitos

Sub-rede para atender aos requisitos Sub-rede Privada versus Espaço de Endereços IPv4 Público

As redes empresariais terão:

- Intranet rede interna de uma empresa normalmente usando endereços IPv4 privados.
- DMZ A empresas que têm servidores visíveis para a internet. Os dispositivos na DMZ usam endereços IPv4 públicos.
- A empresa poderia usar a rede 10.0.0.0/8 e subredes com prefixos /16 ou /24.
- Os dispositivos DMZ teriam que ser configurados com endereços IP públicos.

Sub-rede para atender aos requisitos Minimizar endereços IPv4 de host não utilizados e maximizar sub-redes

Há duas considerações no planeamento de sub-redes:

- O número de endereços de host necessários para cada rede
- O número de sub-redes individuais necessárias

			_	_
Comprimento do Prefixo	Máscara de sub- rede	Máscara de Sub-Rede em Binário (n = rede, h = host)	Nº de subredes	Nº de hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhh 11111111.11111111.11111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhh 11111111.11111111.11111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.11111111.11111111. 111 00000	8	30
/28	255.255.255.240	nnnnnnnn.nnnnnnnn.nnnnnnn. nnnn hhhh 11111111.11111111.11111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnnn.nnnnnnnn.nnnnnnn. nnnnn hhh 11111111.11111111.11111111. 11111 000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnnn hh 1111111.11111111.111111111. 111111 00	64	2

■ ESTIG – IPB :: Eduardo Costa (raposo@ipb.pt)

Sub-rede para atender aos requisitos Exemplo: sub-rede IPv4 eficiente

- Neste exemplo, a sede da empresa recebeu do seu ISP um endereço de rede pública 172.16.0.0/22 (10 bits de host), fornecendo 1.022 endereços de host.
- Existem cinco sites e, portanto, cinco conexões de internet, o que significa que a organização requer 10 sub-redes com a maior sub-rede requer 40 endereços.
- Foram alocadas 10 sub-redes com um prefixo de sub-rede /26 (ou seja, com a máscara de rede 255.255.255.192).

11.8 VLSM

Conservação de endereços IPv4

Dada a topologia, 7 sub-redes são necessárias (ou seja, quatro LANs e três links WAN) e o maior número de host está no Edifício D com 28 hosts.

 Um prefixo /27 forneceria 8 sub-redes de 30 endereços IP de host e, portanto, suportaria essa topologia.

VLSM

Conservação de endereços IPv4 (Cont.)

No entanto, os links WAN ponto a ponto exigem apenas dois endereços e, por isso são desperdiçados 28 endereços em cada um, resultando num total de 84 endereços não utilizados.

Host portion 2^5 - 2 = 30 host IP addresses per subnet 30 - 2 = 28 Each WAN subnet wastes 28 addresses 28 x 3 = 84 84 addresses are unused

- A aplicação de um esquema de divisão em sub-redes tradicional a esse cenário não é muito eficaz e resulta em desperdício.
- O VLSM foi desenvolvido para evitar o desperdício de endereços, permitindo-nos criar uma sub-rede de uma sub-rede.

VLSM VLSM

 O lado esquerdo exibe o esquema de sub-rede tradicional (ou seja, a mesma máscara de sub-rede), enquanto o lado direito ilustra como o VLSM pode ser usado para dividir em sub-redes uma sub-rede. Divisão da última sub-rede em oito sub-redes /30.

Ao usar o VLSM, comece sempre por satisfazer os requisitos do host da maior sub-rede e continue dividindo em sub-redes até que os requisitos do host da menor sub-rede sejam atendidos.

A topologia resultante com VLSM aplicada.

One subnet was further divided to create 8

naller subnets of 2 hosts each

Traditional Subnetting Creates Equal Sized Subnets

2 hosts

192.168.20.228/30

2 hosts

192.168.20.224/30

2 hosts

192.168.20.232/30

Subnets of Varying Sizes

Building A

192 168 20 0/27

25 hosts

VLSM Atribu

Atribuição de endereço de topologia VLSM

 Usando sub-redes VLSM, as redes LAN e inter-router podem ser endereçadas sem desperdício desnecessário, como mostrado no diagrama de topologia lógica.

11.9 Projeto estruturado

Projeto Estruturado Planeamento de endereços de rede IPv4

O planeamento de rede IP é crucial para desenvolver uma solução escalável para uma rede empresarial.

 Para desenvolver um esquema de endereçamento de toda a rede IPv4, você precisa saber quantas sub-redes são necessárias, quantos hosts uma sub-rede específica requer, quais dispositivos fazem parte da sub-rede, quais partes da rede usam endereços privados e quais as que usam endereços públicos e muitos outros fatores determinantes.

Examine as necessidades do uso da rede de uma organização e como as sub-redes serão estruturadas.

- Realize um estudo de requisitos de rede examinando toda a rede para determinar como cada área será segmentada.
- Determine quantas sub-redes são necessárias e quantos hosts por sub-rede.
- Determine pools de endereços DHCP e pools de VLAN de camada 2.

Projeto Estruturado Atribuição de endereço de dispositivo

Dentro de uma rede, existem diferentes tipos de dispositivos que exigem endereços:

- Clientes de utilizadores finais— A maioria usa DHCP para reduzir erros e sobrecarga na equipa de suporte à rede. Os clientes IPv6 podem obter informações de endereço usando DHCPv6 ou SLAAC.
- Servidores e periféricos Devem ter um endereço IP estático previsível.
- Servidores acessíveis a partir da Internet Os servidores devem ter um endereço IPv4 público, mais frequentemente acedido usando NAT.
- **Dispositivos intermediários** os dispositivos recebem endereços para gestão, monitorização e segurança de rede.
- Gateway Os routers e os dispositivos de firewall que são gateway por omissão para os hosts dessa rede.

Ao desenvolver um esquema de endereçamento IP, geralmente é recomendável que você tenha um padrão definido de como os endereços são alocados para cada tipo de dispositivo.

11.10 - Sumário

Sumário

O que aprendi neste módulo?

- A estrutura de endereçamento IP consiste num endereço de rede hierárquico de 32 bits que identifica a parte de rede e a parte de host. Os dispositivos de rede usam um processo chamado AND lógico usando o endereço IP e a máscara de sub-rede associada para identificar as partes da rede e do host.
- Os pacotes IPv4 de destino podem ser unicast, broadcast e multicast.
- Há endereços IP encaminháveis globalmente são atribuídos pela IANA e há três intervalos de endereços IP privados que não podem ser encaminhados globalmente, mas podem ser usados em todas as redes privadas internas.
- Reduzir grandes domínios de broadcast usando sub-redes para criar domínios de broadcast menores, reduzir o tráfego geral da rede e melhorar o desempenho da rede.
- Crie sub-redes IPv4 usando um ou mais bits do host como bits de rede. No entanto, as redes são mais facilmente divididas em sub-redes com limites de octeto de / 8, / 16 e / 24.
- Redes maiores podem ser sub-redes com prefixos /8 ou /16.
- Use o VLSM para reduzir o número de endereços de host não utilizados por sub-rede.

Sumário

O que aprendi neste módulo? (Cont.)

- O VLSM permite que um espaço de rede seja dividido em partes desiguais. Comece sempre por satisfazer os requisitos de host da maior sub-rede. Continue a divisão em sub-redes até atender aos requisitos de host da menor sub-rede.
- Ao projetar um esquema de endereçamento de rede, considere os requisitos internos, DMZ e externos. Use um esquema de endereçamento IP interno consistente com um padrão definido de como os endereços são alocados para cada tipo de dispositivo.

