СЛОЕНИЯ, ВОЗНИКАЮЩИЕ ИЗ КОНФИГУРАЦИЙ ВЕКТОРОВ, ДВОЙСТВЕННОСТЬ ГЕЙЛА И МОМЕНТ-УГОЛ МНОГООБРАЗИЯ

Т. Е. ПАНОВ

Пусть $V \cong \mathbb{R}^k$ — вещественное векторное пространств и $\Gamma = \{\gamma_1, \dots, \gamma_m\}$ — последовательность (конфигурация) векторов в двойственном пространстве V^* , порождающая его. Рассмотрим экспоненциальное действие V на пространстве \mathbb{R}^m , заданное следующим образом:

(1)
$$V \times \mathbb{R}^m \longrightarrow \mathbb{R}^m \\ (\boldsymbol{v}, \boldsymbol{x}) \mapsto (x_1 e^{\langle \gamma_1, \boldsymbol{v} \rangle}, \dots, x_m e^{\langle \gamma_m, \boldsymbol{v} \rangle}).$$

Это классический пример динамической системы, восходящий к работам Пуанкаре. В то же время, действие (1), а также его голоморфные и алгебраические версии возникают в важных современных конструкциях алгебраической геометрии и топологии, среди которых

- полные пересечения вещественных и эрмитовых квадрик (mononorus u vono-морфная динамика);
- фактор-конструкция Батырева–Кокса торических многообразий (торическая геометрия);
- гладкие и комплексно-аналитические структуры на момент-угол-многообразиях и LVM-многообразиях (торическая топология и комплексная геометрия).

Имеется замечательная связь между линейными свойствами конфигурации Γ и топологией слоения \mathbb{R}^m орбитами действия (1). Наиболее эффективно эта связь описывается при помощи двойственной по Гейлу конфигурации векторов $\mathbf{A} = \{a_1, \dots, a_m\}$ в пространстве $W^* \cong \mathbb{R}^{m-k}$.

С геометрической точки зрения интерес представляют пространства nesuposcden-nux листов слоения, т. е. подмножества $U \subset \mathbb{R}^m$, ограничение действия (1) на которые свободно. Такие подмножества $U = U(\mathcal{K})$ представляют собой дополнения до наборов координатных подпространств в \mathbb{R}^m и задаются симплициальными комплексами \mathcal{K} на множестве [m]. Если действие V на $U(\mathcal{K})$ не только свободно, но и собственно (что влечёт замкнутость орбит), то пространство листов (орбит) $U(\mathcal{K})/V$ является гладким многообразием, а в случае голоморфного или алгебраического действия — комплексно-аналитическим и алгебраическим многообразием, соответственно.

Ключевой топологический факт заключается в том, что действие V на $U(\mathcal{K})$ свободно и собственно тогда и только тогда, когда данные $\{\mathcal{K}; \boldsymbol{a}_1, \ldots, \boldsymbol{a}_m\}$ задают симплициальный веер Σ в пространстве W^* . На основе двойственности Гейла критерий веера можно сформулировать непосредственно в терминах исходной конфигурации Γ , задающей действие. Кроме того, пространство орбит $U(\mathcal{K})/V$ компактно тогда и только тогда, когда веер Σ полный. В этом случае $U(\mathcal{K})/V$ отождествляется с вещественным момент-угол-многообразием $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$, а для голоморфного действия на \mathbb{C}^m с момент-угол-многообразием $\mathcal{Z}_{\mathcal{K}} = (D^2, S^1)^{\mathcal{K}}$. Наконец, если конфигурация Γ (или,

 \mathbf{T} . Е. ПАНОВ

эквивалентно, A) лежит в решётке, то веер Σ рационален, а действие (1) задаёт алгебраическое действие тора на $U(\mathcal{K}) \subset \mathbb{C}^m$, факторпространство которого — торическое многообразие X_{Σ} . (Это известно как фактор-конструкция Батырева–Кокса.)

Также интерес представляет класс действий, для которых соответствующий веер Σ является нормальным веером выпуклого многогранника. Здесь также имеется критерий в терминах конфигурации Γ на основе двойственности Γ ейла. (В рациональном случае это даёт критерий того, что торическое многообразие X_{Σ} является проективным.) В случае, когда веер Σ является нормальным, пространство орбит $U(\mathcal{K})/V$ отождествляется с невырожденным пересечением вещественных квадрик (а в случае голоморфного действия — с пересечением эрмитовых квадрик). Доказательство этого факта использует свойства многомерного преобразования Лежандра.

 $M\Gamma Y$, H M Y B Ш Э, $M \Pi \Pi M P A H$ Email~address: tpanov@mech.math.msu.su