ECE 417/598: Direct Linear Transform

Vikas Dhiman

March 23, 2022

Homography

Examples of Homography

Computing Homography

Find H such that $\underline{\mathbf{u}}' = H\underline{\mathbf{u}}$ for any point on one image to another image, where $\mathbf{u}', \mathbf{u} \in \mathbb{P}^2$

2D homography

Given a set of points $\underline{\mathbf{u}}_i \in \mathbb{P}^2$ and a corresponding set of points $\underline{\mathbf{u}}_i' \in \mathbb{P}^2$, compute the projective transformation that takes each $\underline{\mathbf{u}}_i$ to $\underline{\mathbf{u}}_i'$. In a practical situation, the points $\underline{\mathbf{u}}_i$ and $\underline{\mathbf{u}}_i'$ are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

Solving for Homography

Solving for Homography

Solving for Homography

```
Eigen::Matrix3d
findHomography(const std::vector<Eigen::Vector3d>& us,
                const std::vector<Eigen::Vector3d>& ups)
    Eigen::MatrixXd A(8, 9); A.setZero();
    for (int i = 0; i < us.size(); ++i) {
        // [[0^T - w'i ui^T vi' ui^T]]
        // [w_i^{\dagger}u_i^{\dagger} \quad \theta^{\dagger} - x_i^{\dagger}u_i^{\dagger}]
        A.block(2*i, 3, 1, 3) = -ups[i](2)*us[i].transpose();
        A.block(2*i, 6, 1, 3) = ups[i](1)*us[i].transpose();
        A.block(2*i+1, 0, 1, 3) = ups[i](2)*us[i].transpose();
        A.block(2*i+1, 6, 1, 3) = -ups[i](0)*us[i].transpose();
    auto svd = A.jacobiSvd(Eigen::ComputeFullV);
    Eigen::Matrix3d H;
    Eigen::VectorXd nullspace = svd.matrixV().col(8);
    H.row(0) = nullspace.block(0, 0, 3, 1).transpose();
    H.row(1) = nullspace.block(3, 0, 3, 1).transpose();
    H.row(2) = nullspace.block(6, 0, 3, 1).transpose();
    return H;
```

Apply homography

3D to 2D camera projection matrix estimation

Given a set of points X_i in 3D space, and a set of corresponding points x_i in an image, find the 3D to 2D projective P mapping that maps X_i to $x_i = PX_i$.