

Designing Your Web Database

■ Relational Database Concepts

■ Web Database Architecture

Creating Your Web Database

■ How to Design Your Web Database

■ Why Database?

523313 Web Applications

523313 Web Applications

Relational Database Concepts

- of database.
- Table

MySQL I

Workshop

| CustomerID | Name            | Address            | City         |
|------------|-----------------|--------------------|--------------|
| 1          | Julie Smith     | 25 Oak Street      | Airport West |
| 2          | Alan Wong       | 1/47 Haines Avenue | Box Hill     |
| 3          | Michelle Arthur | 357 North Road     | Yarraville   |

- The table has a name (CUSTOMERS), a number of columns, each

## **Designing Your Web Database**

- - Relational databases are, by far, the most commonly used type
  - - Relational databases are made up of relations, more commonly called tables.

| CustomerID | Name            | Address            | City         |
|------------|-----------------|--------------------|--------------|
| 1          | Julie Smith     | 25 Oak Street      | Airport West |
| 2          | Alan Wong       | 1/47 Haines Avenue | Box Hill     |
| 3          | Michelle Arthur | 357 North Road     | Yarraville   |

Figure 7.1 Book-O-Rama's customer details are stored in a table.

corresponding to a different piece of data, and rows that correspond to individual customers.

## **Designing Your Web Database**

523313 Web Applications

- Why Database?
  - RDBMSs (Relational Database Management Systems ) can provide faster access to data than flat files.
  - RDBMSs can be easily queried to extract sets of data that fit certain criteria.
  - RDBMSs have built-in mechanisms for dealing with concurrent access so that you as a programmer don 't have to worry about it.
  - RDBMSs provide random access to your data.
  - RDBMSs have built-in privilege systems.

#### **Designing Your Web Database**

523313 Web Application

- Relational Database Concepts (cont.)
  - Column

| CustomerID | Name            | Address            | City         |
|------------|-----------------|--------------------|--------------|
| 1          | Julie Smith     | 25 Oak Street      | Airport West |
| 2          | Alan Wong       | 1/47 Haines Avenue | Box Hill     |
| 3          | Michelle Arthur | 357 North Road     | Yarraville   |

Figure 7.1 Book-O-Rama's customer details are stored in a table.

- Each column in the table has a unique name and contains different data.
- Each column has an associated data type.
  - For instance, in the CUSTOMERS table in Figure 7.1, you can see that CustomerID is an integer and the other three columns are strings
- Columns are sometimes called fields or attributes

5

#### **Designing Your Web Database**

523313 Web Applications

Relational Database Concepts (cont.)

#### ■ Row

| CustomerID | Name            | Address            | City         |
|------------|-----------------|--------------------|--------------|
| 1          | Julie Smith     | 25 Oak Street      | Airport West |
| 2          | Alan Wong       | 1/47 Haines Avenue | Box Hill     |
| 3          | Michelle Arthur | 357 North Road     | Yarraville   |

Figure 7.1 Book-O-Rama's customer details are stored in a table.

- Each row in the table represents a different customer.
- Because of the tabular format, they all have the same attributes.
- Rows are also called records or tuples.

#### Values

- Each row consists of a set of individual values that correspond to columns.
- Each value must have the data type specified by its column.

#### **Designing Your Web Database**

523313 Web Application

- Relational Database Concepts (cont.)
  - Keys
    - We need to have a way of identifying each specific customer by assigning a unique CustomerID e.g., bank account number or club membership number.
    - Databases usually consist of multiple tables and use a key as a reference from one table to another.
      - Each row in the ORDERS table represents a single order, placed by single customer.
      - We know who the customer is because we store their CustomerID.
      - The relational database term for this relationship is foreign key.
        - » CustomerID is the primary key in CUSTOMERS, but when it appears in another table, such as ORDERS, it is referred to as a foreign key



# **Designing Your Web Database**

523313 Web Applications

- Relational Database Concepts (cont.)
  - Schemas
    - The complete set of the table designs for a database is called the database schema.
      - Akin to a blueprint for the database.
      - Show the tables along with their columns, the data types of the columns and indicate the primary key of each table and any foreign keys.
        - » CUSTOMERS(CustomerID, Name, Address, City)
        - » ORDERS(OrderID, CustomerID, Amount, Date)
  - Relationship
    - Foreign keys represent a relationship between data in two tables.
    - Three basic kinds of relationships exist in a relational database.
    - Relationships can be either one-to-one, one-to-many, or many-to-many.
      - one-to-one relationship: there is one of each thing in the relationship.
      - one-to-many relationship: one row in one table is linked to many rows in another
      - many-to-many relationship: many rows in one table are linked to many rows in another table.

#### **Designing Your Web Database**

523313 Web Applications

- How to Design Your Web Database
  - Think About the Real World Objects You Are Modeling
    - For example: In the Book-O-Rama
      - We want to store information about our customers, the books that we sell, and details of the orders.
        - » The customers all have name and address.
        - » The books have an ISBN, an author, a title, and a price.
        - » The orders have date, total amount, and a set of books that were ordered.
  - Avoid Storing Redundant Data
    - Waste of space and Update anomalies
      - Modification anomaly
        - » Occur when we are trying to modify the database.
      - Insertion anomaly
        - » Occur when we are trying to insert information into a database
        - » For example, one row might tell us that Julie lives in Airport West, and another might tell us she lives in Airport.
      - Deletion anomaly
        - » Occur when we are deleting rows from the database.
        - » For example, when an order has been shipped, we delete it from the database.

9

#### **Designing Your Web Database**

523313 Web Applications

- How to Design Your Web Database (cont.)
  - Use Atomic Column Values
    - Each attribute in each row, we store only one thing.
      - For example, we need to know what books make up each order. There are several ways we could do this.
        - » We could add a column to the Orders table which lists all the books that have been ordered, as shown in Figure 7.5, but this is not a good idea for a few reasons.



10

## **Designing Your Web Database**

523313 Web Applications

- How to Design Your Web Database (cont.)
  - Choose Sensible Keys
    - Make sure that the keys you choose are unique, e.g., CustomerID, etc.
  - Think About the Questions You Want to Ask the Database
    - Make sure that the database contains all the data required, and that the appropriate links exist between tables to answer the questions you have.
  - Avoid Designs with Many Empty Attributes



# **Designing Your Web Database**

523313 Web Applications

- Web Database Architecture
  - Basic Operation of the Web Server
    - Delivering a static page



Figure 7.8 The client/server relationship between a Web browser and Web server requires communication.

■ Delivering a dynamic page



Figure 7.9 The basic Web database architecture consists of the Web browser, Web server, scripting engine, and database server.

523313 Web Applications

- A Note on Using the MySQL Monitor (XAMPP)
- Introduction to MySQL's Privilege System
- Setting Up a User for the Web
- Using the Right Database
- Creating Database Tables
- Getting into MySQL Prompt

#### **Creating Your Web Database**

523313 Web Applications

- A Note on Using the MySQL Monitor (XAMPP)
  - SQL statements end each command with a semicolon (;).
  - If you leave off the semicolon, nothing will happen.
    - For example:

```
MariaDB [(none)]> grant select
->
```

- This means MySQL is expecting more input.
- SQL statements are not case sensitive, but database and table names are case sensitive in Linux.

13

#### **Creating Your Web Database**

523313 Web Applications

- Introduction to MySQL's Privilege System
  - Principle of Least Privilege
    - A privilege is the right to perform a particular action on a particular object, and is associated with a particular user.
    - The concept is very similar to file permissions.
    - When you create a user within MySQL, you grant her a set of privileges to specify what she can and cannot do within the system.
    - A user (or process) should have the lowest level of privilege required in order to perform his assigned task.

# **Creating Your Web Database**

523313 Web Applications

- Introduction to MySQL's Privilege System (cont.)
  - The GRANT command is used to create users and give them privileges.
  - The general form of the GRANT command is as follows:

```
GRANT privileges [columns]ON item
TO user_name [IDENTIFIED BY 'password']
[WITH GRANT OPTION]
```

Note: WITH GRANT OPTION allows the specified user to grant her own privileges to others

- Types and Levels of Privilege
  - Three basic types of privileges exist in MySQL.
    - Privileges suitable for granting to regular users.
    - Privileges suitable for administrators.
    - A couple of special privileges.

523313 Web Applications

Introduction to MySQL's Privilege System (cont.)

■ Privileges suitable for granting to regular users.

| Privilege | Applies To | Description                                   |
|-----------|------------|-----------------------------------------------|
| SELECT    | tables,    | Allows users to select rows                   |
|           | columns    | (records) from tables.                        |
| INSERT    | tables,    | Allows users to insert new rows               |
|           | columns    | into tables.                                  |
| UPDATE    | tables,    | Allows users to modify values in              |
|           | columns    | existing table rows.                          |
| DELETE    | tables     | Allows users to delete existing table rows.   |
| INDEX     | tables     | Allows users to create and drop indexes on    |
|           |            | particular tables.                            |
| ALTER     | tables     | Allows users to alter the structure of        |
|           |            | existing tables by, for example, adding       |
|           |            | columns, renaming columns or tables, and      |
|           |            | changing data types of columns.               |
| CREATE    | databases, | Allows users to create new databases          |
|           | tables     | or tables. If particular database or table is |
|           |            | specified in the GRANT they can only CREATE   |
|           |            | that database or table, which means they will |
|           |            | have to DROP it first.                        |
| DROP      | databases, | Allows users to drop (delete)                 |
|           | tables     | databases or tables.                          |

#### **Creating Your Web Database**

523313 Web Applications

Introduction to MySQL's Privilege System (cont.)

Privileges suitable for administrators.

| Privilege | Description                                                   |
|-----------|---------------------------------------------------------------|
| RELOAD    | Allows an administrator to reload grant tables and flush      |
|           | privileges, hosts, logs, and tables.                          |
| SHUTDOWN  | Allows an administrator to shut down the MySQL server.        |
| PROCESS   | Allows an administrator to view server processes and kill     |
|           | them.                                                         |
| FILE      | Allows data to be read into tables from files and vice versa. |

A couple of special privileges.

| Privilege | Description                                                     |
|-----------|-----------------------------------------------------------------|
| ALL       | Grants all the privileges listed in Tables 8.1 and 8.2. You can |
|           | also write ALL PRIVILEGES instead of ALL.                       |
| USAGE     | Grants no privileges. This will create a user and allow her to  |
|           | log on, but it won 't allow her to do anything. Usually you     |
|           | will go on to add more privileges later.                        |

#### **Creating Your Web Database**

523313 Web Applications

- Introduction to MySQL's Privilege System (cont.)
  - The REVOKE Command
    - It is used to take privileges away from user. It is very similar to GRANT in

```
REVOKE privileges [(columns)]
ON item
FROM user name
```

■ Example Using GRANT and REVOKE

```
MariaDB [(none)]> grant all
    -> on
    -> to fred identified by 'mnb123'
    -> with grant option;
MariaDB [(none)]> revoke all
    -> on *
    -> from fred;
```

# **Creating Your Web Database**

523313 Web Applications

- Setting Up a User for the Web
  - In most cases they'll only need to SELECT INSERT DELETE and UPDATE rows from tables. You can set this up as follows:

```
MariaDB [(none)] > grant select, insert, delete, update
    -> on books.*
    -> to bookorama identified by 'bookorama123';
```

- Grant select, insert, delete, update on all tables in a database called "books" to user "bookorama" with password "bookorama123".
- Logging Out as root
  - You can log out of the MySQL monitor by typing quit or exit.

523313 Web Applications

Using the Right Database

■ The first thing you'll need to do when you log in is to specify which database you want to use. You can do this by typing:

```
MariaDB [(none)]> use dbname;
```

- where dbname is the name of your database.
- In this example, we'll use the books database:

```
MariaDB [(none)]> use books;
```

- When you type this command, MySQL should give you a response such as

```
Database changed
```

 If you don't select a database before starting work, MySQL will give you an error message such as

```
ERROR 1046: No Database Selected
```

 Alternatively, you can avoid the use command by specifying the database when you log in at the command line, as follows:

```
C:\xampp\mysql\bin> mysql.exe -D dbname -u username -p
```

21

#### **Creating Your Web Database**

523313 Web Application

- Creating Database Tables (cont.)
  - Here 's the Book-O-Rama schema:

```
create table Books
( ISBN char(13) not null primary key,
   Author char(30),
   Title char(60),
   Price float(4,2));

create table Order_Items
( OrderID int unsigned not null,
   ISBN char(13) not null,
   Quantity tinyint unsigned,
   Primary key (OrderID, ISBN));

create table Book_Reviews
( ISBN char(13) not null primary key,
   Review text);
```

#### **Creating Your Web Database**

523313 Web Applications

- Creating Database Tables
  - Here 's the Book-O-Rama schema:

```
Customers (CustomerID, Name, Address, City)
Orders (OrderID, CustomerID, Amount, Date)
Books (ISBN, Author, Title, Price)
Order_Items (OrderID, ISBN, Quantity)
Book_Reviews (ISBN, Review)
```

```
create table Customers
( CustomerID int unsigned not null auto_increment primary key,
  Name char(30) not null,
  Address char(40) not null,
  City char(20) not null);

create table Orders
( OrderID int unsigned not null auto_increment primary key,
  CustomerID int unsigned not null,
  Amount float(6,2),
  Date date not null);
  Format of data type "date" is YYYY-MM-DD
```

#### **Creating Your Web Database**

523313 Web Applications

- Getting into MySQL Prompt
  - Going to MySQL Console (XAMPP for Windows)

523313 Web Applications

- Getting int MySQL Prompt (cont.)
  - Creating a database and display all



#### **Creating Your Web Database**

523313 Web Applications

- Getting int MySQL Prompt (cont.)
  - Creating a database and display all



25

#### **Creating Your Web Database**

523313 Web Applications

- Getting int MySQL Prompt (cont.)
  - Using a database and create tables

```
Command Prompt - mysql.exe -u root -p
                                                                                   Step 1 MariaDB [(none)] use webapp;
          Database changed
Step 2 MariaDB [webapp] > create table student
             -> (studentid char(4) not null primary key,
             -> name char(30) not null,
             -> age tinyint not null,
             -> earn tinyint not null);
          Query OK, O rows affected (0.07 sec)
Step 3 MariaDB [webapp]> create table register
                (no tinyint not null auto_increment primary key,
             -> studentid char(4) not null,
               register tinvint not null,
             -> date date not null.
             -> paid bool not null);
          Query OK, O rows affected (0.10 sec)
          [webapp]> _
```

#### **Creating Your Web Database**

523313 Web Applications

- Getting int MySQL Prompt (cont.)
  - Displaying all tables and describe each table



523313 Web Applications

- Getting int MySQL Prompt (cont.)
  - Insert data into a table

```
MariaDB [abc]> show tables;
 Tables in abc |
 customers
 row in set (0.001 sec)
lariaDB [abc]> describe customers;
 CustomerID | int(10) unsigned | NO
              char (30)
                                  NO
              | char (40)
                                  NO
                                                NULL
 Address
              | char (20)
                                  | NO
                                                NULL
MariaDB [abc]> insert into customers values
-> (NULL, "Julie Smith", "25 Oak Street", "Airport West");
Query OK, 1 row affected (0.037 sec)
MariaDB [abc]>
```

# Workshop

523313 Web Applications

- MySQL I: Introduction to MySQL
  - Page 235 (1-10)

