Relatório de Desempenho: Análise e Comparação dos Algoritmos de Ordenação

ALUNO: Allan Pedro da Silva Costa **DATA:** 12/03/2025

CURSO: ciência da computação

1. Introdução

Este relatório apresenta a análise do desempenho de três algoritmos de ordenação: Bubble Sort, Quick Sort e Merge Sort. Os testes foram realizados em diferentes cenários para avaliar a eficiência de cada algoritmo.

2. Metodologia

Os algoritmos foram implementados em Python e testados com diversos tipos de dados:

- Listas já ordenadas.
- Listas quase ordenadas (apenas o último elemento fora de ordem).
- Listas inversamente ordenadas.
- · Listas vazias.
- Listas com elementos repetidos.
- Listas aleatórias de tamanhos 1000, 10000 e 100000 elementos.

O tempo de execução foi medido usando a biblioteca time do Python.

3. Resultados

3.1 Testes Unitários

Todos os algoritmos passaram nos testes unitários, demonstrando que estão corretamente implementados. As listas foram ordenadas conforme esperado em todos os casos.

3.2 Medição do Tempo de Execução

Os tempos de execução para as listas aleatórias de diferentes tamanhos são mostrados abaixo:

TAMANHO DA LISTA	BUBBLE SORT (S)	QUICK SORT (S)	MERGE SORT (S)
1000	0.0706	0.0000	0.0128
10000	4.8851	0.0371	0.0246
400000	540.0400	0.0004	0.0470
100000	512.8139	0.2394	0.3172

4. Análise e Comparação dos Resultados

4.1 Análise Geral

A partir dos resultados obtidos, é possível observar uma grande diferença no desempenho entre os algoritmos. O Bubble Sort apresentou tempos de execução significativamente maiores que os outros dois algoritmos, especialmente para listas maiores. Já o Quick Sort e o Merge Sort se mostraram muito mais eficientes.

4.2 Comparação Detalhada

4.2.1 Listas Pequenas (1000 elementos)

Para listas pequenas, todos os algoritmos apresentaram tempos de execução relativamente baixos. No entanto, o Quick Sort e o Merge Sort foram ligeiramente mais rápidos que o Bubble Sort.

4.2.2 Listas Médias (10000 elementos)

Neste caso, a diferença de desempenho ficou mais evidente. O Bubble Sort levou cerca de 4.88 segundos para ordenar a lista, enquanto o Quick Sort e o Merge Sort levaram apenas 0.0371 e 0.0246 segundos, respectivamente.

4.2.3 Listas Grandes (100000 elementos)

Para listas grandes, o desempenho do Bubble Sort se tornou impraticável, com um tempo de execução de aproximadamente 512.81 segundos. Em contraste, o Quick Sort e o Merge Sort continuaram sendo eficientes, com tempos de 0.2349 e 0.3172 segundos, respectivamente.

5. Identificação dos Algoritmos Mais Eficientes

5.1 Para Listas Pequenas

Para listas pequenas, tanto o Quick Sort quanto o Merge Sort se mostraram eficientes, com tempos de execução similares. O Bubble Sort também é viável, mas menos eficiente.

5.2 Para Listas Médias e Grandes

Para listas médias e grandes, o Quick Sort e o Merge Sort são claramente os algoritmos mais eficientes. O Quick Sort tende a ser ligeiramente mais rápido que o Merge Sort, mas ambos são significativamente melhores que o Bubble Sort.

6. Conclusão

Em resumo, o Quick Sort e o Merge Sort são os algoritmos mais recomendados para ordenação de listas, especialmente para listas médias e grandes. O Bubble Sort, embora seja simples de implementar, não é adequado para aplicações que requerem desempenho eficiente.

7. Gráficos

Os gráficos abaixo visualizam os tempos de execução para cada algoritmo e tamanho de lista:

