Programming Assignment 1 VLSI Floorplanner

Design Flow of Integrated Circuits (IC)

Floorplan Model – Slicing Floorplan

Floorplan Model – Non-slicing Floorplan

A non-slicing floorplan.

Slicing Tree Representation of Slicing Floorplan

.Properties

- —A binary tree (complete)
- —Modules on leave nodes & Cutlines on internal nodes
- —1D expression by postfix traversal

Postfix expression: 12H345HHV

Packing from a Postfix Expression

.Binary operator

- —H: maximum on width and summation on height
- —V: maximum on height and summation on width

$$W_{12} = max(W_1, W_2)$$

 $H_{12} = H_1 + H_2$

(a) Postfix expression: 12H

$$W_{34} = W_3 + W_4$$

 $H_{34} = max(H_3, H_4)$

(b) Postfix expression: 34V

Packing Two Sub-floorplans Recursively (I)

.Binary operator

- —H: maximum on width and summation on height
- _V: maximum on height and summation on width

$$W_{1234} = W_{12} + W_{34}$$

 $H_{1234} = max(H_{12}, H_{34})$

(c) Postfix expression: 12H34VV

Packing Two Sub-floorplans Recursively (II)

.Binary operator

- —H: maximum on width and summation on height
- –V: maximum on height and summation on width

(d) Postfix expression: 12H34VH

$$W_{1234} = max(W_{12} + W_{34})$$

 $H_{1234} = H_{12} + H_{34}$

Floorplan Optimization

- .Area minimization is the top priority!
- .Simulated Annealing (SA)
 - Randomly modify the slicing tree and select the one with the minimum floorplan area
- 1. Generate an initial slicing tree T
- 2. Calculate the area of the slicing tree *T*
- 3. Generate a random neighboring solution by changing the tree
- 4. Calculate the cost of the new neighboring solution
- 5. Compare them:
 if new_area < old_area, then move to the new solution
 else accept the new solution with a user-defined probability
- 6. Repeat steps 3-5 above until an acceptable solution is found

We have provided you this optimization engine

TODO Task 1: Generating an Initial Slicing Tree

.init_slicing_tree

—Initialize a left-skewed slicing tree

```
typedef struct NODE {
  module_t* module;
  cutline_t cutline;
  struct NODE* parent;
  struct NODE* left;
  struct NODE* right;
}node_t;
```


Node address	left	right	parent	module	cutline
0x10	0x20	0x30	NULL	NULL	V
0x20	0x40	0x50	0x10	NULL	V
0x30	NULL	NULL	0x10	1	UNDEFINED_CUTLINE
0x40	0x60	0x70	0x20	NULL	V
0x50	NULL	NULL	0x20	2	UNDEFINED_CUTLINE

Initial Floorplan

TODO Task 2: Postfix Traversal Algorithm

Postfix traversal algorithm

- 1. Traverse the left subtree by recursively calling the Postfix function.
- 2. Traverse the right subtree by recursively calling the Postfix function.
- 3. Process the data part of root element (or current element).

nth	0	1	2	3	4	5	6
Expression unit	1	2	Η	3	4	V	V
Node address	0x40	0x50	0x20	0x60	0x70	0x30	0x10

TODO Task 3: Tree Modifier – rotate and recut

.rotate

- —Swap the height and the width of a module from a leave node .recut
 - —Change the cutline of an internal node

Operation: recut

TODO Task 3: Tree Modifier – swap_module

.swap_module

- _Swap two modules from two leave nodes
- _Simply swap the pointer value
- _Do not modify the node links

Operation: swap_module

TODO Task 4: Tree Modifier – swap_topology

.swap_topology

- _Swap two subtrees rooted at two given node pointers
- Modify the node links appropriately

Operation: swap_topology

Example of swap_topology

Node address	left	right	parent	module	cutline
0x10	0x20	0x40	NULL	NULL	V
0x20	0x30	0x50	0x10	NULL	Н
0x30	0x60	0x70	0x20	NULL	V
0x40	NULL	NULL	0x10	1	UNDEFINED_CUTLINE
0x60	NULL	NULL	0x30	3	UNDEFINED_CUTLINE

Example of a Sequence of Tree Modifiers

TODO Items

- 1. log in the CADE server: lab2-20.eng.utah.edu
 - CADE server has all required files installed already
 - You may use NoMachine or SSH
 - If you want to work on your own "Linux" machine, install cairo library following instructions at: https://www.cairographics.org/download/
- 2. Clone the class github
 - git clone https://github.com/tsung-wei-huang/ece5960
- 3. Enter the folder ece5960/hw/hw1/
- 4. Hit "make" to compile all sources
- 5. An executable "floorplan" will be present in the folder
- 6. Usage: ./floorplan circuits/circuit1.txt circuit1.png
 - Replace the number "1" with others to run different circuits
- 7. A default scoring output will be printed in the console
 - Maximum score is 90
 - 10 points are saved for documentation
- 8. Finish all TODO sections in floorplan.c; this is the only file you need to work on
- 9. Email me your **floorplan.c** together with your **uid** and **name** by 3:30 PM 2/27 (before class)

Demo

- ~\$ git clone https://github.com/tsung-wei-huang/ece5960.git
- ~\$ cd ece5960/hw/hw1
- ~\$ make
- ~\$./floorplan circuits/circuit1.txt circuit.png

```
Initial slicing tree: Root=0xa7d0d0, num nodes=7, num modules=4
Initial expression: 32V1V0V
Initial area: 498760.000000
Perform optimization...
Module 0 is placed at (0, 0) with height=280 and width=296
Module 1 is placed at (523, 296) with height=188 and width=333
Module 2 is placed at (0, 296) with height=192 and width=523
Module 3 is placed at (296, 0) with height=296 and width=549
Packing area = 417728.000000 (has overlapped? 0 (1:yes, 0:no))
Draw floorplan to circuit1.png
Circuit: 4 golden modules, slicing tree size = 4 leaves and 3 internals
(1) Function 'init_slicing_tree': correct! +25
(2) Function 'is leave' : correct! +5
(3) Function 'is internal' : correct! +5
(4) Function 'is in subtree' : correct! +10
(5) Procedure 'rotate' : correct! +5
(6) Procedure 'recut' : correct! +5
(7) Procedure 'swap_module' : correct! +5
(8) Procedure 'swap_topology' : correct! +10
(9) Procedure 'get expression' : correct! +20
Your final score for this MP : 90
```