1. A compound having the structural formula:

$$R_{2}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{2}$$

wherein:

 $R_1 = \text{COOCH}_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, CONHR₄, or

ÇØR₆;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃,

F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C = CX_1Y$ with the C, O or S^{V} atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $R_5 = Br$, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has a SERT/DAT selectivity ratio of at least 3.

- 2. The compound according to claim 1, wherein the SERT/DAT selectivity ratio is at least about 8.
- 3. The compound according to claim 1, wherein the SERT/DAT selectivity ratio is at least about 50.

4. The compound according to claim 1, wherein the C in the 3 position is in the α conformation.

5. A compound having the structural formula:

$$R_2$$

$$R_2$$
 R_1 R_2 R_1 R_2 R_1

 $R_1 = COOCH_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, $CONHR_4$, or COR_6 ;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH_3 , CF_3 , NO_2 , NH_2 , CN, $NHCOCH_3$, $N(CH_3)_2$, $(CH_2)_nCH_3$, $COCH_3$, or $C(CH_3)_3$;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

 $R_5 = Br$, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has an affinity (K_i) for the SERT of less than about 500

nM.

- 6. The compound according to claim 5, wherein the compound has an IC_{50} at the SERT of less than about 50 nM.
- 7. The compound according to claim 5, wherein the compound has an IC_{50} at the SERT of less than about 25 nM.
- 8. The compound according to claim 5, wherein the compound has an IC_{50} at the SERT of less than about 15 nM.
- 9. The compound according to claim 5, wherein the C in the 3 position is in the α conformation.
 - 10. The compound of claim 1, selected from the group consisting of:
 - a. 2β-carbomethoxy-3β-(4'-propynylphenyl))-8-oxabicyclo(3.2.1)octane;
- b. (1R, 1S)-2 β -carbomethoxy-3 α -(4'- propynylphenyl)-8-oxabicyclo(3.2.1)octane;
- c. 2β -carbomethoxy- 3α -(4-isopropenylphenyl)-8-oxabicyclo(3.2.1)octane;
- d. 2β -carbomethoxy- 3β -(4-isopropenylphenyl)-8-oxabicyclo(3.2.1)octane;
- e. 2β -carbomethoxy- 3β -(4-isopropenylphenyl)-8-oxabicyclo(3.2.1)octane.
 - 11. The compound of claim 5, selected from the group consisting of:
- a. $2-\beta$ -carbomethoxy- $3-\beta$ -(3,4-dichlorophenyl)-8-oxabicyclo(3.2.1)octane;
 - b. $2-\beta$ -carbomethoxy-3- β -(3,4-dichlorophenyl)bicyclo(3.2.1)octane;
 - c. 2β-carbomethoxy-3β-(4'-propynylphenyl))-8-oxabicyclo(3.2.1)octane;
 - d. 2β -carbomethoxy- 3α -(4'- propynylphenyl)-8-oxabicyclo(3.2.1)octane;
 - e. 2β -carbomethoxy- 3β -(2-naphthyl)-8-bicyclo(3.2.1)octane;

- g. 2β -carbomethoxy- 3α -(4-isopropenylphenyl)-8-oxabicyclo(3.2.1)octane;
- h. 2β -carbomethoxy- 3β -(4-isopropenylphenyl)-8-oxabicyclo(3.2.1)octane;
- i. 2β -carbomethoxy- 3β -(4-isopropenylphenyl)-8-oxabicyclo(3.2.1)octane.
- 12. The compound according to claim 1, wherein the compound has the structure:

 $X = O, CH_2, CHY, CYY_1, CO, or C=CX_1Y$;

 R_7 = lower alkenyl or lower alkynyl group having from about 2 to about 8 carbon atoms: and,

 $R_8 = H \text{ or Br, Cl, I, F, OH, OCH}_3, CF_3, NO_2, NH_2, CN, NHCOCH}_3, N(CH_3)_2,$ (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6.

13. The compound according to claim 12, wherein R₇ is selected from ethenyl, propenyl, butenyl, propynyl, butynyl and methylpropynyl.

14. The compound according to claim 5, wherein the compound has the structure:

wherein:

 $X = O, CH_2, CHY, CYY_1, CO, or C=CX_1Y;$

 R_7 = lower alkenyl or lower alkynyl group having from about 2 to about 8 carbon atoms: and,

 $R_8 = H \text{ or Br, Cl, I, F, OH, OCH}_3, CF_3, NO}_2, NH}_2, CN, NHCOCH}_3, N(CH_3)_2, (CH_2)_nCH_3, COCH_3, C(CH_3)_3 \text{ where } n=0-6.$

- 15. The compound according to claim 14, wherein R₇ is selected from ethenyl, propenyl, butenyl, propynyl, butynyl and methylpropynyl.
- 16. A pharmaceutical composition comprising a therapeutically effective amount of a pharmaceutically acceptable carrier and an effective amount of a compound having the structural formula:

$$R_2$$
 R_1

III
$$R_2$$
 R_1 Ar

 $R_1 = COOCH_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, $CONHR_4$, or COR_6 ;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

 $R_5 = Br, Cl, I, F, OH, OCH_3, CF_3, NO_2, NH_2, CN, NHCOCH_3, N(CH_3)_2,$ $(CH_2)_nCH_3, COCH_3, C(CH_3)_3$ where n=0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl,

3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

$$m = 0$$
 or 1; and

$$n = 0, 1, 2, 3, 4 \text{ or } 5;$$

wherein the compound has a SERT/DAT selectivity ratio of at least 3.

17. A pharmaceutical composition comprising a therapeutically effective amount of a pharmaceutically acceptable carrier and an effective amount of a compound having the structural formula:

$$R_2$$
 R_1
 $C(O)_m$ -Ar

$$R_2$$

III
$$R_2$$
 R_1

wherein:

 R_1 = COOCH₃, COR₃, lower alkyl, lower alkenyl, lower alkynyl, CONHR₄, or COR₆;

 R_2 = is a 6 α , 6 β , 7 α or 7 β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

R₅ = Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has an affinity (K_i) for the SERT of less than about 500 nM.

18. A method for inhibiting serotonin reuptake of a monoamine transporter in a mammal comprising administering to the mammal a serotonin reuptake inhibiting amount of a compound having the structural formula:

$$R_2$$
 R_1
 $CO)_m$ -Ar

$$R_2$$

$$R_2$$
 R_1 R_2 R_1

 $R_1 = COOCH_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, $CONHR_4$, or COR_6 ;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

R₅ = Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has a SERT/DAT selectivity ratio of at least 3.

19. A method for inhibiting serotonin reuptake of a monoamine transporter in a mammal comprising administering to the mammal a serotonin reuptake inhibiting amount of a compound having the structural formula:

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1

$$R_2$$
 R_1

$$R_2$$
 R_1 R_2 R_1

wherein:

 R_1 = COOCH₃, COR₃, lower alkyl, lower alkenyl, lower alkynyl, CONHR₄, or COR₆;

 $R_2 = is~a~6\alpha, 6\beta, 7\alpha~or~7\beta~substituent, which can be selected from~H,~OH,~OR_3,\\ F,~Cl,~Br,~and~NHR_3;$

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 $R_3 \!\!= H, (CH_2)_n C_6 H_4 Y, C_6 H_4 Y, CHCH_2, lower alkyl, lower alkenyl or lower alkynyl;$

Y and Y_1 = H, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl-R₅, anthracenyl-R₅, phenanthrenyl-R₅, or diphenylmethoxy-R₅;

 $R_5 = Br, Cl, I, F, OH, OCH_3, CF_3, NO_2, NH_2, CN, NHCOCH_3, N(CH_3)_2,$ (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has an affinity (K_i) for the SERT of less than about 500 nM.

20. A method of treating a mammal suffering from a serotonin related disorder comprising administering to the mammal an effective amount of a compound having the structural formula:

$$R_2$$
 R_1
 $C(O)_m$ -Ar

$$R_2$$

III
$$R_2$$
 R_1

wherein:

 $R_1 = COOCH_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, $CONHR_4$, or COR_6 ;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , CHCH₂, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

R₅ = Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has a SERT/DAT selectivity ratio of at least 3.

- 21. The method for treating according to claim 20, wherein the disorder is selected from depression, anxiety, eating disorders, and obsessive compulsive disorders.
- 22. A method of treating a mammal suffering from a serotonin related disorder comprising administering to the mammal an effective amount of a compound having the structural formula:

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2

$$R_2$$
 R_1

III
$$R_2$$
 R_1 A_1

 $R_1 = COOCH_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, $CONHR_4$, or COR_6 ;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

 $R_5 = Br, Cl, I, F, OH, OCH_3, CF_3, NO_2, NH_2, CN, NHCOCH_3, N(CH_3)_2,$ $(CH_2)_nCH_3, COCH_3, C(CH_3)_3$ where n=0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl,

3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

$$m = 0$$
 or 1; and

$$n = 0, 1, 2, 3, 4 \text{ or } 5;$$

wherein the compound has an affinity (K_i) for the SERT of less than about 500 nM.

- 23. The method for treating according to claim 22, wherein the disorder is selected from depression, anxiety, eating disorders, and obsessive compulsive disorders.
- 24. A method for treating a mammal suffering from depression comprising administering to the mammal an effective amount of a compound having the structural formula:

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_1

$$R_2$$

III
$$R_2$$
 R_1 Ar

wherein:

 $R_1 = COOCH_3$, COR_3 , lower alkyl, lower alkenyl, lower alkynyl, $CONHR_4$, or COR_6 ;

 R_2 = is a 6α , 6β , 7α or 7β substituent, which can be selected from H, OH, OR₃, F, Cl, Br, and NHR₃;

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 R_3 = H, $(CH_2)_nC_6H_4Y$, C_6H_4Y , $CHCH_2$, lower alkyl, lower alkenyl or lower alkynyl;

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $Ar = phenyl-R_5$, naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

 $R_5 = Br$, Cl, I, F, OH, OCH_3 , CF_3 , NO_2 , NH_2 , CN, $NHCOCH_3$, $N(CH_3)_2$, $(CH_2)_nCH_3$, $COCH_3$, $C(CH_3)_3$ where n=0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, $3,4-diOCH_3$, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has a SERT/DAT selectivity ratio of at least 3.

25. A method for treating a mammal suffering from depression comprising administering to the mammal an effective amount of a compound having the structural formula:

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2

$$R_2$$

III
$$R_2$$
 R_1

 $R_1 = COOCH_3, \ COR_3, \ lower \ alkyl, \ lower \ alkenyl, \ lower \ alkynyl, \ CONHR_4, \ or \ COR_6;$

 $R_2 = is~a~6\alpha,~6\beta,~7\alpha~or~7\beta~substituent,~which~can~be~selected~from~H,~OH,~OR_3,\\ F,~Cl,~Br,~and~NHR_3;$

 $X = CH_2$, CHY, CYY_1 , CO, O, S; SO, SO_2 , or $C=CX_1Y$ with the C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 $\label{eq:R3} R_3 \!\!= H, (CH_2)_n C_6 H_4 Y, C_6 H_4 Y, CHCH_2, lower alkyl, lower alkenyl or lower alkynyl;$

Y and $Y_1 = H$, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)_nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

 R_6 = morpholinyl or piperidinyl;

 $\label{eq:Ar} Ar = phenyl-R_5, naphthyl-R_5, anthracenyl-R_5, phenanthrenyl-R_5, or diphenylmethoxy-R_5;$

 $R_5 = Br, Cl, I, F, OH, OCH_3, CF_3, NO_2, NH_2, CN, NHCOCH_3, N(CH_3)_2, \\ (CH_2)_nCH_3, COCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, COCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, COCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, COCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 2\text{-}Cl, 2\text{-}I, 3\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{-}I, 2\text{-}F, 3\text{-}Cl, \\ (CH_2)_nCH_3, C(CH_3)_3 \text{ where } n=0\text{-}6, 4\text{-}F, 4\text{-}Cl, 4\text{$

3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

m = 0 or 1; and

n = 0, 1, 2, 3, 4 or 5;

wherein the compound has an affinity (K_i) for the SERT of less than about 500 nM.