Video 43: Understanding Complexity

- Complexity Classes
- Tractable Problems
- Untractable Problems

Complexity Classes

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.

Complexity	Terminology		
$\Theta(1)$	Constant complexity		
$\Theta(\log n)$	Logarithmic complexity		
$\Theta(n)$	Linear complexity		
$\Theta(n \log n)$	Linearithmic complexity		
$\Theta(n^b)$	Polynomial complexity		
$\Theta(b^n)$, where $b > 1$	Exponential complexity		
$\Theta(n!)$	Factorial complexity		

Effect of Complexity

TABLE 2 The Computer Time Used by Algorithms.							
Problem Size	Bit Operations Used						
n	$\log n$	n	$n \log n$	n^2	2^n	n!	
10	$3 \times 10^{-11} \text{ s}$	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10^{-9} s	10^{-8} s	$3 \times 10^{-7} \text{ s}$	
10^{2}	$7 \times 10^{-11} \text{ s}$	10^{-9} s	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$4 \times 10^{11} \text{ yr}$	*	
10^{3}	$1.0 \times 10^{-10} \text{ s}$	10^{-8} s	$1 \times 10^{-7} \text{ s}$	10^{-5} s	*	*	
10^{4}	$1.3 \times 10^{-10} \text{ s}$	10^{-7} s	$1 \times 10^{-6} \text{ s}$	10^{-3} s	*	*	
10^{5}	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	$2 \times 10^{-5} \text{ s}$	0.1 s	*	*	
10 ⁶	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \text{ s}$	0.17 min	*	*	

A bit operation is assumed to take 10^{-11} seconds, i.e., in one second we perform 100 billion bit operations. Times of more than 10^{100} years are indicated with an *.

Tractable Problems

Commonly, a problem is considered **tractable**, if there exists an algorithm and some d such that the algorithm can for input of size n produce the result with $O(n^d)$ operations.

This is the class **P** of **polynomial complexity**.

If such an algorithm does not exist, the problem is considered intractable.

- For large d and large inputs, it is often not so clear that the problem is really tractable in a practical sense
- Example: multiplying two very large matrices

The Class NP

- The class NP consists of those problems for which the correctness of a proposed solution can be verified in polynomial time
- NP stands for nondeterministic polynomial time
 - Every problem in **NP** can be solved in exponential time
 - Open problem (since 50 years): **P** = **NP**?
 - General assumption: **P** ≠ **NP**
 - The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.

Example of an NP Problem

Knapsack Decision Problem: Given a set S of n items, each item with a value and a weight, find the subset of items that exceeds a minimal value while fitting a maximal weight.

- No polynomial algorithm is known
- Checking correctness of solution is easy
- Exponential algorithm: try out all possible subsets

NP-Complete Problems

NP-complete problems are problems in NP, such that if a polynomial algorithm is found for the problem, all other problems in NP can also be solved in polynomial time.

Examples

- Knapsack Decision Problem
- 3-SAT

3-SAT

Satisfiability of Propositional Statements: NP-complete

3-SAT is a more special problem:

 Deciding satisfiability for formulas in conjunctive normal form, where each clause has at most 3 variables is NP-complete

Example: $(p \lor p \lor q) \land (\neg p \lor \neg q \lor \neg q) \land (\neg p \lor q \lor q)$ is a formula from the set of 3-SAT formulas

Summary

Tractable Problem: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the **Class P**.

Intractable Problem: There does not exist a <u>polynomial time algorithm</u> to solve this problem.

Unsolvable Problem: There does not exist <u>any algorithm</u> to solve the problem, e.g., halting problem.

Class NP: Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.

NP Complete Class: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.