

• Graph

- \approx In the graph, t_1 is some a random point in time when we want to check the reliability of our systems two cars driven in different environments.
- æ Green denotes car driven in Germany, and red in Sahara desert.
- \mathfrak{E} @t₁, car driven in Germany has higher reliability (0,5) than that of the car driven in Sahara desert (0,4).
- æ In general, the car in Germany has higher reliability than the one driven in desert.

• Timeline

- \mathbf{z} In the timeline below the graph, system begins funtioning at t_0
- æ Thick lines represent the time when the system is functioning.
- $\mathbf{æ}$ @t₁ system fails for the first time. Δt_1 is the time taken to repair it. At @t_{1+\Delta t1} it is back to functioning.
- \approx @t₂ system fails again, and gets repaired in Δ t₂ time.
- $\approx \Delta t_1$ and Δt_2 represent **Mean Time To Repair -** MTTR.
- pprox 0 to t_1 , $t_{1+\Delta t1}$ to t_2 and $t_{2+\Delta t2}$ to t_3 represent **Mean Time Between Failures MTBF**.

Reliability = MTBF Availability = MTBF / (MTBF+MTTR)