Вероятности

Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Вероятности

Что такое вероятность?

Исходы, события, вероятность

Комбинаторика и подсчет вероятностей

Неравновероятная модель

Многошаговое задание распределений

• Что происходит, когда мы подбрасываем монетку?

wikimedia.org

- Что происходит, когда мы подбрасываем монетку?
- Теоретически мы можем все рассчитать и узнать, как она упадет

wikimedia.org

- Что происходит, когда мы подбрасываем монетку?
- Теоретически мы можем все рассчитать и узнать, как она упадет
- На практике это очень тяжело

wikimedia.org

• В такой ситуации мы говорим, что каждый исход происходит с той или иной вероятностью

wikimedia.org

- В такой ситуации мы говорим, что каждый исход происходит с той или иной вероятностью
- Это удобная модель в тех случаях, когда мы не можем просчитать все полностью

wikimedia.org

• Не всегда все так просто

- Не всегда все так просто
- В современных физических моделях положение электрона в пространстве считается принципиально случайным

Вероятность встречается повсюду в Computer Science и в Data Science:

Вероятность встречается повсюду в Computer Science и в Data Science:

 Это важнейший элемент в моделях, описывающих разные процессы и явления

Вероятность встречается повсюду в Computer Science и в Data Science:

- Это важнейший элемент в моделях, описывающих разные процессы и явления
- Это сильный инструмент в построении алгоритмов

Вероятность встречается повсюду в Computer Science и в Data Science:

- Это важнейший элемент в моделях, описывающих разные процессы и явления
- Это сильный инструмент в построении алгоритмов
- Это важный метод для анализа, в том числе ситуаций, где изначально никакой случайности нет

Вероятностная выборка в задачах машинного обучения:

 Трудно описать, как формируется обучающая выборка и что модель получит на вход при использовании

- Трудно описать, как формируется обучающая выборка и что модель получит на вход при использовании
- Распространенный подход: выборка выбирается случайно по неизвестному вероятностному распределению

- Трудно описать, как формируется обучающая выборка и что модель получит на вход при использовании
- Распространенный подход: выборка выбирается случайно по неизвестному вероятностному распределению
- При использовании модель получает входы, распределенные по тому же самому распределению

- Трудно описать, как формируется обучающая выборка и что модель получит на вход при использовании
- Распространенный подход: выборка выбирается случайно по неизвестному вероятностному распределению
- При использовании модель получает входы, распределенные по тому же самому распределению
- Распределение неизвестно, оно одинаково при обучении и при запуске

- Трудно описать, как формируется обучающая выборка и что модель получит на вход при использовании
- Распространенный подход: выборка выбирается случайно по неизвестному вероятностному распределению
- При использовании модель получает входы, распределенные по тому же самому распределению
- Распределение неизвестно, оно одинаково при обучении и при запуске
- Это позволяет анализировать качество модели

Вероятность как алгоритмический метод

Случайные блуждания:

• Моделируют многие естественные процессы

Вероятность как алгоритмический метод

Случайные блуждания:

- Моделируют многие естественные процессы
- Позволяют генерировать интересные распределения на объектах

Вероятность как алгоритмический метод

Случайные блуждания:

- Моделируют многие естественные процессы
- Позволяют генерировать интересные распределения на объектах
- Позволяют эффективно анализировать свойства объектов

Вероятностный метод в математике:

 Позволяет доказывать существование объектов, не предъявляя их явно

Вероятностный метод в математике:

- Позволяет доказывать существование объектов, не предъявляя их явно
- Нужен объект с определенными свойствами?

Вероятностный метод в математике:

- Позволяет доказывать существование объектов, не предъявляя их явно
- Нужен объект с определенными свойствами?
- Попробуем взять случайный объект

Вероятностный метод в математике:

- Позволяет доказывать существование объектов, не предъявляя их явно
- Нужен объект с определенными свойствами?
- Попробуем взять случайный объект
- Докажем, что он удовлетворяет свойствам с ненулевой вероятностью

Вероятности

Что такое вероятность?

Исходы, события, вероятность

Комбинаторика и подсчет вероятностей

Неравновероятная модель

Многошаговое задание распределений

 Мы будем рассматривать случайные события с конечным множеством возможных исходов

- Мы будем рассматривать случайные события с конечным множеством возможных исходов
- Это называется дискретной моделью

- Мы будем рассматривать случайные события с конечным множеством возможных исходов
- Это называется дискретной моделью
- Пример: подбрасывание монетки

- Мы будем рассматривать случайные события с конечным множеством возможных исходов
- Это называется дискретной моделью
- Пример: подбрасывание монетки
- Пример: бросание кубика

Подбрасывание монетки

• Два возможных исхода, орел и решка

Подбрасывание монетки

- Два возможных исхода, орел и решка
- Каждый происходит с вероятностью 1/2

Бросание кубика

• У кубика 6 граней, на них написаны число от 1 до 6

Бросание кубика

- У кубика 6 граней, на них написаны число от 1 до 6
- Шесть возможных исходов: выпадает 1, 2, 3, 4, 5 или 6

Бросание кубика

- У кубика 6 граней, на них написаны число от 1 до 6
- Шесть возможных исходов: выпадает 1, 2, 3, 4, 5 или 6
- Каждый происходит с вероятностью 1/6

Общая модель

- Конечное множество исходов $\Omega = \{u_1, \dots, u_n\}$

Общая модель

- Конечное множество исходов $\Omega = \{u_1, \dots, u_n\}$
- Равновероятная модель: все исходы равноправны

Общая модель

- Конечное множество исходов $\Omega = \{u_1, \dots, u_n\}$
- Равновероятная модель: все исходы равноправны
- Вероятность каждого исхода равна 1/n

Общая модель

- Конечное множество исходов $\Omega = \{u_1, \dots, u_n\}$
- Равновероятная модель: все исходы равноправны
- Вероятность каждого исхода равна 1/n
- Множество Ω с заданными вероятностями исходов называется вероятностным пространством

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

• Всего шесть исходов

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

- Всего шесть исходов
- Половина из них годится: 2, 4, 6

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

- Всего шесть исходов
- Половина из них годится: 2, 4, 6
- Разумно считать, что вероятность 1/2

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

• Всего шесть исходов

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

- Всего шесть исходов
- Треть из них годится: 3 и 6

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

- Всего шесть исходов
- Треть из них годится: 3 и 6
- Разумно считать, что вероятность 1/3

• Пусть задано вероятностное пространство Ω с равновероятными исходами

- Пусть задано вероятностное пространство Ω с равновероятными исходами
- Событием называется подмножество $A\subseteq \Omega$

- Пусть задано вероятностное пространство Ω с равновероятными исходами
- Событием называется подмножество $A\subseteq\Omega$
- Интуиция: событие это то, что может произойти или не произойти в результате случайного эксперимента

- Пусть задано вероятностное пространство Ω с равновероятными исходами
- Событием называется подмножество $A\subseteq\Omega$
- Интуиция: событие это то, что может произойти или не произойти в результате случайного эксперимента
- Пример события: выпадает число, делящееся на 3 при бросании кубика

- Пусть задано вероятностное пространство Ω с равновероятными исходами
- Событием называется подмножество $A\subseteq\Omega$
- Интуиция: событие это то, что может произойти или не произойти в результате случайного эксперимента
- Пример события: выпадает число, делящееся на 3 при бросании кубика
- A это множество тех исходов, при которых событие происходит; в примере $A = \{3, 6\}$

• Пусть задано вероятностное пространство Ω с равновероятными исходами и событие $A\subseteq \Omega$

- Пусть задано вероятностное пространство Ω с равновероятными исходами и событие $A\subseteq \Omega$
- Как определяется вероятность события A?

- Пусть задано вероятностное пространство Ω с равновероятными исходами и событие $A\subseteq \Omega$
- Как определяется вероятность события A?
- Вероятность A равна

$$\Pr[A] = \frac{|A|}{|\Omega|}$$

- Пусть задано вероятностное пространство Ω с равновероятными исходами и событие $A\subseteq \Omega$
- Как определяется вероятность события A?
- Вероятность A равна

$$\Pr[A] = \frac{|A|}{|\Omega|}$$

• Другими словами, $\Pr[A]$ равна доле исходов, лежащих в событии

 Наблюдение: вероятность события, равна сумме вероятностей исходов в нем

- Наблюдение: вероятность события, равна сумме вероятностей исходов в нем
- Пример: $\Omega = \{u_1, u_2, u_3, u_4, u_5\}$, $A = \{u_2, u_3, u_5\}$

- Наблюдение: вероятность события, равна сумме вероятностей исходов в нем
- Пример: $\Omega = \{u_1, u_2, u_3, u_4, u_5\}$, $A = \{u_2, u_3, u_5\}$
- $\Pr[A] = \frac{3}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$

- Наблюдение: вероятность события, равна сумме вероятностей исходов в нем
- Пример: $\Omega = \{u_1, u_2, u_3, u_4, u_5\}$, $A = \{u_2, u_3, u_5\}$
- $\Pr[A] = \frac{3}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$
- Если $A=\{a\}$, то сокращаем обозначение: вместо $\Pr[\{a\}]$ пишем $\Pr[a]$

Подбрасывание монеты три раза

Подбрасывание монеты три раза

Пусть мы подбрасываем монету три раза подряд. Какова вероятность, что орел выпадет ровно один раз?

 Сначала нужно формализовать задачу и указать вероятностное распределение

Подбрасывание монеты три раза

- Сначала нужно формализовать задачу и указать вероятностное распределение
- При каждом подбрасывании выпадает либо орел, либо решка

Подбрасывание монеты три раза

- Сначала нужно формализовать задачу и указать вероятностное распределение
- При каждом подбрасывании выпадает либо орел, либо решка
- Для удобства будем обозначать выпадение орла цифрой 1, а выпадение решки цифрой 0

Подбрасывание монеты три раза

- Сначала нужно формализовать задачу и указать вероятностное распределение
- При каждом подбрасывании выпадает либо орел, либо решка
- Для удобства будем обозначать выпадение орла цифрой 1, а выпадение решки цифрой 0
- Тогда $\Omega = \{0, 1\}^3$

Подбрасывание монеты три раза

Пусть мы подбрасываем монету три раза подряд. Какова вероятность, что орел выпадет ровно один раз?

• $\Omega = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Подбрасывание монеты три раза

- $\Omega = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- Всего 8 исходов

Подбрасывание монеты три раза

- $\Omega = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- Всего 8 исходов
- Нас интересует событие A «Выпал ровно один орел»

Подбрасывание монеты три раза

- $\Omega = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- Всего 8 исходов
- Нас интересует событие A «Выпал ровно один орел»
- $A = \{001, 010, 100\}$

Подбрасывание монеты три раза

- $\Omega = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- Всего 8 исходов
- Нас интересует событие A «Выпал ровно один орел»
- $A = \{001, 010, 100\}$
- Получаем $\Pr[A] = \frac{|A|}{|\Omega|} = \frac{3}{8}$

Вероятности

Что такое вероятность?

Исходы, события, вероятность

Комбинаторика и подсчет вероятностей

Неравновероятная модель

Многошаговое задание распределений

Бросание кубика два раза

Задача

Пусть мы бросаем кубик два раза. Какова вероятность, что сумма выпавших чисел равна 5?

Задача

Пусть мы бросаем кубик два раза. Какова вероятность, что сумма выпавших чисел равна 5?

• Множество исходов $\Omega = \{(i,j) \mid i,j=1,\dots,6\}$

Задача

- Множество исходов $\Omega = \{(i,j) \mid i,j=1,\dots,6\}$
- Исходы равновероятны

Задача

- Множество исходов $\Omega = \{(i,j) \mid i,j=1,\dots,6\}$
- Исходы равновероятны
- Исходов много, сложно выписать все

Задача

- Множество исходов $\Omega = \{(i,j) \mid i,j=1,\dots,6\}$
- Исходы равновероятны
- Исходов много, сложно выписать все
- Но можно посчитать!

Задача

- Множество исходов $\Omega = \{(i,j) \mid i,j=1,\dots,6\}$
- Исходы равновероятны
- Исходов много, сложно выписать все
- Но можно посчитать!
- $|\Omega| = 6 \times 6 = 36$

Задача

•
$$A = \{(i,j) \mid i,j = 1, \dots, 6, \ i+j = 5\}$$

Задача

- $A = \{(i, j) \mid i, j = 1, \dots, 6, i + j = 5\}$
- Сколько исходов в A?

Задача

- $A = \{(i, j) \mid i, j = 1, \dots, 6, i + j = 5\}$
- Сколько исходов в A?
- В качестве i подойдет любое число от 1 до 4; j определяется однозначно

Задача

- $A = \{(i, j) \mid i, j = 1, \dots, 6, i + j = 5\}$
- Сколько исходов в A?
- В качестве i подойдет любое число от 1 до 4; j определяется однозначно
- Получаем |A|=4

Задача

- $A = \{(i, j) \mid i, j = 1, \dots, 6, i + j = 5\}$
- Сколько исходов в A?
- В качестве i подойдет любое число от 1 до 4; j определяется однозначно
- Получаем |A|=4
- $\Pr[A] = \frac{|A|}{|\Omega|} = \frac{4}{36} = \frac{1}{9}$

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

• Множество исходов $\Omega = \{0,1\}^6$

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

- Множество исходов $\Omega = \{0,1\}^6$
- Исходы равновероятны

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

- Множество исходов $\Omega = \{0,1\}^6$
- Исходы равновероятны
- $|\Omega| = 2^6 = 64$

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

+
$$A=\{x\in\{0,1\}^6\mid \sum_i x_i=3\}$$
, где $x=(x_1,\dots,x_6)$

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

- $A = \{x \in \{0,1\}^6 \mid \sum_i x_i = 3\}$, где $x = (x_1,\dots,x_6)$
- Сколько исходов в A? Перебирать уже сложно

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

- $A = \{x \in \{0,1\}^6 \mid \sum_i x_i = 3\}$, где $x = (x_1,\dots,x_6)$
- Сколько исходов в А? Перебирать уже сложно
- Мы хотим выбрать из шести позиций три, в которые поместим 1

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

- $A=\{x\in\{0,1\}^6\mid \sum_i x_i=3\}$, где $x=(x_1,\dots,x_6)$
- Сколько исходов в А? Перебирать уже сложно
- Мы хотим выбрать из шести позиций три, в которые поместим 1
- Это сочетания!

Задача

Пусть мы подбрасываем монету шесть раз подряд. Какова вероятность, что орел выпадет ровно три раза?

- $A=\{x\in\{0,1\}^6\mid \sum_i x_i=3\}$, где $x=(x_1,\dots,x_6)$
- ullet Сколько исходов в A? Перебирать уже сложно
- Мы хотим выбрать из шести позиций три, в которые поместим 1
- Это сочетания!
- $|A| = {6 \choose 3} = 20$ и $\Pr[A] = \frac{20}{64} = \frac{5}{16}$

Задача

Задача

Пусть мы подбрасываем монету n раз подряд. Какова вероятность, что в i-ом подбрасывании выпадет орел?

• Интуитивно кажется, что важно только i-е подбрасывание и вероятность 1/2

Задача

- Интуитивно кажется, что важно только i-е подбрасывание и вероятность 1/2
- Но нужно быть аккуратными и разобраться формально

Задача

- Интуитивно кажется, что важно только i-е подбрасывание и вероятность 1/2
- Но нужно быть аккуратными и разобраться формально
- Множество исходов $\Omega = \{0,1\}^n$, все равновероятны

Задача

- Интуитивно кажется, что важно только i-е подбрасывание и вероятность 1/2
- Но нужно быть аккуратными и разобраться формально
- Множество исходов $\Omega = \{0,1\}^n$, все равновероятны
- $|\Omega| = 2^n$

Задача

Пусть мы подбрасываем монету n раз подряд. Какова вероятность, что в i-ом подбрасывании выпадет орел?

- $A=\{x\in\{0,1\}^n\mid x_i=1\}$, где $x=(x_1,\dots,x_n)\}$

Задача

- $A=\{x\in\{0,1\}^n\mid x_i=1\}$, где $x=(x_1,\dots,x_n)\}$
- $|A| = 2^{n-1}$

Задача

- $A=\{x\in\{0,1\}^n\mid x_i=1\}$, где $x=(x_1,\dots,x_n)\}$
- $|A| = 2^{n-1}$
- Получаем $\Pr[A] = \frac{|A|}{|\Omega|} = \frac{2^{n-1}}{2^n} = \frac{1}{2}$

Задача

- $A=\{x\in\{0,1\}^n\mid x_i=1\}$, где $x=(x_1,\dots,x_n)\}$
- $|A| = 2^{n-1}$
- Получаем $\Pr[A] = \frac{|A|}{|\Omega|} = \frac{2^{n-1}}{2^n} = \frac{1}{2}$
- Интуиция была правильной, мы это проверили

Задача

Задача

На стол случайно и равновероятно выкладывается последовательность из 4 карт из стандартной колоды из 36 карт. Какова вероятность, что две из них красные, а две черные?

• $\,\Omega$ — множество всех последовательностей из 4 карт

Задача

- $\,\Omega$ множество всех последовательностей из 4 карт
- $|\Omega| = 36 \times 35 \times 34 \times 33$

Задача

- Ω множество всех последовательностей из 4 карт
- $|\Omega| = 36 \times 35 \times 34 \times 33$
- A множество последовательностей из двух красных и двух черных карт

Задача

На стол случайно и равновероятно выкладывается последовательность из 4 карт из стандартной колоды из 36 карт. Какова вероятность, что две из них красные, а две черные?

- Способов выбрать две позиции для красных карт: $\binom{4}{2}$

Задача

- Способов выбрать две позиции для красных карт: $\binom{4}{2}$
- Способов выбрать последовательность из двух красных карт: 18×17

Задача

- Способов выбрать две позиции для красных карт: $\binom{4}{2}$
- Способов выбрать последовательность из двух красных карт: 18×17
- Способов выбрать последовательность из двух черных карт: 18×17

Задача

- Способов выбрать две позиции для красных карт: $\binom{4}{2}$
- Способов выбрать последовательность из двух красных карт: 18×17
- Способов выбрать последовательность из двух черных карт: 18×17

•
$$\Pr[A] = \frac{|A|}{|\Omega|} = \frac{18 \cdot 17 \cdot 18 \cdot 17 \cdot {4 \choose 2}}{36 \cdot 35 \cdot 34 \cdot 33} = \frac{153}{385} \approx 0.397 \dots$$

Вероятности

Что такое вероятность?

Исходы, события, вероятность

Комбинаторика и подсчет вероятностей

Неравновероятная модель

Многошаговое задание распределений

• Мы везде предполагали, что исходы равновероятны

- Мы везде предполагали, что исходы равновероятны
- Но равновероятной модели не всегда достаточно

- Мы везде предполагали, что исходы равновероятны
- Но равновероятной модели не всегда достаточно
- Что если мы подбрасываем несбалансированную или погнутую монету?

- Мы везде предполагали, что исходы равновероятны
- Но равновероятной модели не всегда достаточно
- Что если мы подбрасываем несбалансированную или погнутую монету?
- Как обсуждать вероятности, когда исходы, это выигрыш или не выигрыш в лотерею?

 Пусть наша монета не идеальна, и орел и решка неравноправны

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: $\Omega = \{0, 1\}$

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: $\Omega = \{0, 1\}$
- $\Pr[1] = p, \Pr[0] = 1 p$

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: $\Omega = \{0, 1\}$
- $\Pr[1] = p, \Pr[0] = 1 p$
- Здесь p может быть любым числом от 0 до 1

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: $\Omega = \{0, 1\}$
- $\Pr[1] = p, \Pr[0] = 1 p$
- Здесь p может быть любым числом от 0 до 1
- Случай p=1/2 отвечает равновероятному случаю

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: $\Omega = \{0, 1\}$
- $\Pr[1] = p, \Pr[0] = 1 p$
- Здесь p может быть любым числом от 0 до 1
- Случай p=1/2 отвечает равновероятному случаю
- Если p>1/2, выпадение орла более вероятно

• Исходы
$$\Omega = \{u_1, \dots, u_n\}$$

- Исходы $\Omega = \{u_1, \dots, u_n\}$
- Каждому исходу \boldsymbol{u}_i приписана его вероятность \boldsymbol{p}_i

- Исходы $\Omega = \{u_1, \dots, u_n\}$
- Каждому исходу \boldsymbol{u}_i приписана его вероятность \boldsymbol{p}_i
- При этом $0 \leq p_i \leq 1$ и $\sum_{i=1}^n p_i = 1$

- Исходы $\Omega = \{u_1, \dots, u_n\}$
- Каждому исходу \boldsymbol{u}_i приписана его вероятность \boldsymbol{p}_i
- При этом $0 \leq p_i \leq 1$ и $\sum_{i=1}^n p_i = 1$
- Множество Ω с заданными вероятностями исходов называется вероятностным пространством

События

• Событием называется подмножество $A\subseteq \Omega$

События

- Событием называется подмножество $A\subseteq \Omega$
- Вероятность A равна

$$\Pr[A] = \sum_{u_i \in A} p_i$$

События

- Событием называется подмножество $A\subseteq\Omega$
- Вероятность A равна

$$\Pr[A] = \sum_{u_i \in A} p_i$$

• Другими словами, $\Pr[A]$ равна сумме вероятностей исходов, лежащих в событии

Лотерея

Лотерея

Пусть вероятность выиграть в лотерее 1000 рублей равна 0.01, а вероятность выиграть 100 рублей равна 0.1. Какова вероятность выиграть хоть что-то?

• Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$
- $\bullet \ \Pr[c] = 1 \Pr[a] \Pr[b] = 0.89$

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$
- $\bullet \ \Pr[c] = 1 \Pr[a] \Pr[b] = 0.89$
- $A = \{a, b\}$

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}, \Pr[a] = 0.01, \Pr[b] = 0.1$
- $\Pr[c] = 1 \Pr[a] \Pr[b] = 0.89$
- $A = \{a, b\}$
- Pr[A] = 0.01 + 0.1 = 0.11

Вероятности

Что такое вероятность?

Исходы, события, вероятность

Комбинаторика и подсчет вероятностей

Неравновероятная модель

Многошаговое задание распределений

Сложные распределения

Задача

Случайная перестановка чисел 1, 2 и 3 выбирается следующим образом.

- Сначала выбирается случайно и равновероятно число на первую позицию
- Затем из двух оставшихся чисел случайно и равновероятно выбирается одно и ставится на вторую позицию
- Оставшееся число ставится на третью позицию

Какова вероятность, что на второй позиции стоит число 2?

Сложные распределения

 Прежде чем решать задачу, нам нужно разобраться, какое у нас задано вероятностное распределение

Сложные распределения

- Прежде чем решать задачу, нам нужно разобраться, какое у нас задано вероятностное распределение
- Распределение описано в виде процесса, с таким мы раньше не сталкивались

• Начинаем сверху

- Начинаем сверху
- Дальше три стрелки для шага 1

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2

Исходы — вершины внизу

Дальше по две стрелки

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Исходы вершины внизу
- Как посчитать вероятность каждого исхода?

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Исходы вершины внизу
- Как посчитать вероятность каждого исхода?
- Перемножить вероятности на стрелках

• Вероятность каждого исхода $rac{1}{3} \cdot rac{1}{2} \cdot 1 = rac{1}{6}$

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Вероятность каждого исхода $rac{1}{3} \cdot rac{1}{2} \cdot 1 = rac{1}{6}$
- Такая диаграмма называется деревом событий

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Вероятность каждого исхода $\frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{1}{6}$
- Такая диаграмма называется деревом событий
- Обсудим деревья подробнее позже в курсе

Задача

Случайная перестановка чисел 1, 2 и 3 выбирается следующим образом.

- Сначала выбирается случайно и равновероятно число на первую позицию
- Затем из двух оставшихся чисел случайно и равновероятно выбирается одно и ставится на вторую позицию
- Оставшееся число ставится на третью позицию

Какова вероятность, что на второй позиции стоит число 2?

- Вероятность каждого исхода равна 1/6

- Вероятность каждого исхода равна 1/6
- Исходов в событии два: 123, 321

- Вероятность каждого исхода равна 1/6
- Исходов в событии два: 123, 321
- Вероятность события $\frac{2}{6} = \frac{1}{3}$

 Аналогично можно задавать и неравновероятные распределения

- Аналогично можно задавать и неравновероятные распределения
- Вероятность получить 123 равна $\frac{1}{4}\cdot \frac{1}{3} = \frac{1}{12}$

- Аналогично можно задавать и неравновероятные распределения
- Вероятность получить 123 равна $\frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}$
- Вероятность получить 231 равна $\frac{1}{4} \cdot \frac{3}{4} = \frac{3}{16}$

 Как подобные распределения могут возникать на практике?

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз
- Получаем случайное распределение на объектах в наших данных

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз
- Получаем случайное распределение на объектах в наших данных
- Такой процесс называется случайным блужданием

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз
- Получаем случайное распределение на объектах в наших данных
- Такой процесс называется случайным блужданием
- Увидим примеры позже в курсе

• Мы разобрались как обсуждать вероятности

- Мы разобрались как обсуждать вероятности
- Комбинаторика полезна для подсчета вероятностей

- Мы разобрались как обсуждать вероятности
- Комбинаторика полезна для подсчета вероятностей
- Уже эти знания могут пригодиться на практике

- Мы разобрались как обсуждать вероятности
- Комбинаторика полезна для подсчета вероятностей
- Уже эти знания могут пригодиться на практике
- Дальше обсудим численные характеристики случайных объектов