Now We can Distinguish between Reversible and Irreversible
Cold T Tot
Then heat flows from right to left increasing probability of entropy of universe;
$\frac{dS}{dt} = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) dE, \qquad \Delta E_1 = Q$ $\frac{dS}{dt} = \left(\frac{\Delta S}{T_1} - \frac{1}{T_2}\right) dE, \qquad \Delta E_2 = -Q_2$
$\Delta S_{univ} = \Delta S_{tot} = \frac{Q}{T_1} = \frac{Q}{T_2} > 0$
this is irreversible and DSuniverse = DS rot >0.
When T=Tz, then head can flow both ways reversibly:
T Q T AS = O
Example:

Ice and Water	
Ice cold air ~ 0° +	
cold air = 0 +	ttiny bit
4009	
• Ice of mass m' is surrounded	l by air only
slightly above o°C actring a	s a "resevoir" meaning
it is large enough so that it	can absorb heat wout
Changing themperature significant	
latent heat per kilo of Lm	= 334 J/kg meaning
it takes 334 I to melt o	one kilo of ice. The
temperature doesn't change	during the melting
process. Find the change	in entropy as the ice
melts of ice, air, and	universe
DSair = - Q = - mlm	
T freeze Trz	N.C.
	AS universe=0
$\Delta S_{ice} = + Q = + m L_m$ $T_{frz} = \frac{1}{1} f_{rz}$	
Tfrz Ifrz	J
	<u> </u>
If the air would drop to	just below treezing
The ice will slowly begin to	treeze, the process
is reversible AS universe	

1	Blundel;	E×	ample	14.2
	Take	a	large	res

•	Take	a	large	resevo	pir (eg. lo	ike)	and	
	5 mall	bal	1 with	Speci	fic	heat	C.	(The	
								5 mall	for
								TR	
	the ba	11	has,	tempera	ture	T	"syst	em " is	ball.
			init	ial		5 /	,		

Now

heat &Q

· Then in one step:

• The ball's change in temperature + ta = + CdTe: So we find

$$dS_s = + CdT$$
 \overline{T}

 $dS_s = + CdT$ $dS_R = - CdT$ T_R temperature

Integrating from T = Ts ... TR

$$\Delta S_S = C I_n \frac{T_R}{T}$$

$$\Delta S_R = -C T_R - T_S$$

$$T_R$$

Change in Entropy Ball in Lake: Blundell Example 14.1

 ${\it Reservoir} = {\it Lake}$ The reservoir has constant temperature T_R

Universe is the ball and lake

And

DSuniverse = DSs + DSR

$$\Delta S = C \ln \left(\frac{T_R}{T_S} \right) + C \left(\frac{T_S}{T_R} - 1 \right)$$

A plot of the US is shown on the next

- · As the temperature ratio deviates significantly from one the change in entropy as universe gets larger and larger. For Ts/TR=1, as is nearly zero, and the process is (almost) reversible
 - In home work you will show that if $T_s = T_R + \delta T$ with δT small then

$$\Delta S_{universe} = \frac{C(ST)^2}{2T^2}$$