Mass Discharge - Outlet Alteck. 2016

PAZ

27 octobre 2016

Purpose

This file computes the discharged mass observed at the outlet. To do that it imports the weekly discharge summary and lab results for isotopes (^{13}C) and s-metolachlor concentrations.

Imports:

- WeeklyHydro_R.csv (R generated)
- fluxAlteck2016_R.csv (R generated)
- $\bullet \ \ Outlet Conc_W0 to W17.csv$
- MESAlteckWater.csv (Concentration in filters)
- $\bullet \ \ Outlet_Isotopes_W0toW17.csv$
- MESAlteck_FilterIsotopes.csv (Isotopes in filters)
- Outlet_ESAOXA_W0toW17.csv
- AO-Hydrochem.csv

Generates:

• WeeklyHydroContam_R.csv

Required R-packages:

```
library("stringr")
library("plyr")
library("dplyr")
library("zoo")
library("ggplot2")
library("plotly")
```

Working directory

```
# setwd("D:/Documents/these_pablo/Alteckendorf2016/R")
# setwd("/Users/DayTightChunks/Documents/PhD/Routput/Alteck/R")
# setwd("D:/Documents/these_pablo/Alteckendorf2016/00_TransparencyFolder")
getwd()
```

[1] "/Users/DayTightChunks/Documents/PhD/HydrologicalMonitoring"

Outlet Data - Alteckendorf 2016

1. Hydrological data on a subweekly basis

```
weeklyhydro = read.csv2("Data/WeeklyHydro_R.csv", header = TRUE)
colnames(weeklyhydro)[colnames(weeklyhydro) == "ID"] <- "WeekSubWeek"</pre>
head(weeklyhydro)
     WeekSubWeek AveDischarge.m3.h Volume.m3 Sampled.Hrs
##
                                                               Sampled
## 1
           x0-0
                          1.204775 14.41714
                                                 11.96667 Not Sampled
## 2
            WO-1
                          1.213511 100.15508
                                                 82.53333
                                                               Sampled
## 3
           W0-2x
                          1.284719 48.34827
                                                 37.63333 Not Sampled
## 4
                         14.316647 390.36726
            W1 - 1
                                                 27.26667
                                                               Sampled
## 5
            W1-2
                         15.529299 359.24445
                                                 23.13333
                                                               Sampled
## 6
           W1-3x
                          9.107720 877.37700
                                                 96.33333 Not Sampled
weeklyflux = read.csv2("Data/fluxAlteck2016_R.csv", header = TRUE)
head(weeklyflux)
##
     WeekSubWeek
                                   ti
                                                        tf
                                                               iflux
                                                                         fflux
## 1
           WO-0x 2016-03-25 00:04:00 2016-03-25 12:02:00
                                                            1.248600
                                                                      1.129227
## 2
            WO-1 2016-03-25 12:04:00 2016-03-28 22:36:00
                                                           1.124382
                                                                      1.313125
## 3
           WO-2x 2016-03-28 22:38:00 2016-03-30 12:16:00 1.308100
                                                                      1.456349
            W1-1 2016-03-30 12:18:00 2016-03-31 15:34:00 1.456080 16.445436
## 4
## 5
            W1-2 2016-03-31 15:36:00 2016-04-01 14:44:00 16.334349 15.184536
## 6
           W1-3x 2016-04-01 14:46:00 2016-04-05 15:06:00 15.203629
##
     changeflux
                     maxQ
                                minQ Duration.Hrs chExtreme Event
                                                                     Markers
## 1 -0.1193728 1.248600
                           1.118296
                                         11.96667 -0.1303036
                                                                          NA
## 2 0.1887431 1.380388 1.082199
                                         82.53333 0.2560062
                                                                          NA
                                                                 NA
## 3 0.1482496 1.637782 0.929055
                                         37.63333 0.3296817
                                                                 NA
                                                                          NΑ
## 4 14.9893566 38.399790 1.448977
                                         27.26667 36.9437102
                                                                 1 16.88972
## 5 -1.1498131 18.668972 13.201113
                                         23.13333 -3.1332355
                                                                 NΑ
                                                                          NΑ
## 6 -9.3472489 15.895640 5.471042
                                         96.33333 -9.7325862
                                                                 NΑ
                                                                          NA
     TimeDiff
         <NA>
## 1
## 2
         <NA>
         <NA>
## 3
## 4
           24
## 5
         <NA>
## 6
         <NA>
  2. Concentration data (dissolved and suspended solids) on a subweekly basis
outletConc = read.csv2("Data/OutletConc WOtoW17.csv", header = T)
outletConc$ID4 <- as.character(outletConc$ID4)</pre>
outletConc <- outletConc[outletConc$ID4 != "J+7", ]</pre>
outletConc <- outletConc[,c("WeekSubWeek", "Conc.mug.L", "Conc.SD")]</pre>
head(outletConc)
##
     WeekSubWeek Conc.mug.L Conc.SD
## 1
            WO-1 0.2456594 0.01931
## 2
            W1-1 6.7882463 0.28942
## 3
            W1-2 6.5609982 0.19064
## 4
                  9.4443019 0.33354
            W2-1
## 5
                  1.0421883 0.03904
            W2 - 2
## 6
            W3-1 8.8357358 0.47086
filters = read.csv2("Data/MESAlteckWater.csv")
filters$MO.mg.L = ifelse(filters$MO.mg.L < 0, 0.0001, filters$MO.mg.L)
head(filters)
```

```
WeekSubWeek MES.mg.L MES.sd MO.mg.L Conc.Solids.mug.gMES
## 1
            WO-1 53.44444
                                NA 0.0000
                                                      0.64472899
                                NA 0.0010
                                                      0.12588974
## 2
            W1-1 62.50000
            W1-2 22.50000
                                NA 0.0001
## 3
                                                      0.43578716
## 4
            W2-1 22.50000
                                NA 0.0001
                                                      0.07935267
## 5
            W2-2
                   5.00000
                                NA 0.0001
                                                      0.05075270
            W3-1 197.50000
                                NA 0.0058
                                                      0.08177487
##
    Conc.Solids.ug.gMES.SD
## 1
                0.023237548
## 2
                0.027063685
## 3
                0.123237064
## 4
                0.004683719
## 5
                0.001027205
## 6
                0.001343089
# MESA/MOXA data cleaning
outletESAOXA = read.csv2("Data/Outlet_ESAOXA_WOtoW17.csv", header = T)
outletESAOXA$ID <- as.character(outletESAOXA$ID)</pre>
split <- strsplit(outletESAOXA$ID, "-", fixed = TRUE)</pre>
outletESAOXA$ESAOXA_SD <- sapply(split, "[", 4)</pre>
split_vor <- strsplit(outletESAOXA$ID, "-SD", fixed = TRUE)</pre>
outletESAOXA$ESAOXA_Mean <- sapply(split_vor, "[", 1)</pre>
means temp <- subset(outletESAOXA, is.na(outletESAOXA$ESAOXA SD))</pre>
sd_temp <- subset(outletESAOXA, !is.na(outletESAOXA$ESAOXA_SD))</pre>
means temp$ID <- NULL
sd temp$ID <- NULL
head(sd_temp)
        MOXA.ugL MESA.ugL ESAOXA_SD ESAOXA_Mean
##
       1.1414453 3.4972206
                                   SD
                                          A0-W0-1
## 4 10.1852510 3.0369845
                                   SD
                                          AO-W1-1
## 6
       0.2430544 0.8533820
                                   SD
                                          A0-W1-2
## A
       1.1526489 2.8261924
                                   SD
                                          A0-W2-1
## 10 0.6100011 0.1910419
                                   SD
                                          A0-W2-2
## 12 2.6589421 0.3268637
                                          A0-W3-1
                                   SD
head(means_temp)
##
        MOXA.ugL MESA.ugL ESAOXA_SD ESAOXA_Mean
## 1
        4.824094 18.05531
                                <NA>
                                         AO-WO-1
                                         AO-W1-1
## 3
       30.531235 45.98364
                                <NA>
## 5
       32.492465 41.28052
                                < NA >
                                         A0-W1-2
## 7 104.541255 98.56782
                                <NA>
                                         A0-W2-1
       26.885849 51.95245
                                <NA>
                                         A0-W2-2
## 11 45.080673 24.04717
                                <NA>
                                         AO-W3-1
outletESAOXA <- merge(means_temp, sd_temp, by = "ESAOXA_Mean", all = T)
outletESAOXA$ESAOXA_SD.x <- NULL
outletESAOXA$ESAOXA SD.y <- NULL
split ID <- strsplit(outletESAOXA$ESAOXA Mean, "AO-", fixed = T)</pre>
outletESAOXA$ID <- sapply(split_ID, "[", 2)</pre>
outletESAOXA$ESAOXA_Mean <- NULL
outletESAOXA <- outletESAOXA[ , c("ID", "MOXA.ugL.x", "MOXA.ugL.y", "MESA.ugL.x", "MESA.ugL.y")]
colnames(outletESAOXA) <- c("WeekSubWeek", "OXA_mean", "OXA_SD", "ESA_mean", "ESA_SD")
```

```
outletESAOXA$WeekSubWeek <- as.factor(outletESAOXA$WeekSubWeek)</pre>
head(outletESAOXA)
##
     WeekSubWeek OXA_mean
                                 OXA_SD ESA_mean
## 1
                  4.824094 1.14144531 18.05531 3.4972206
            WO-1
## 2
            W1-1 30.531235 10.18525095 45.98364 3.0369845
## 3
            W1-2 32.492465 0.24305444 41.28052 0.8533820
## 4
           W10-1 21.311423 0.05168437 82.87549 1.8167218
## 5
           W10-2 13.095046 0.17703516 12.02387 0.3057521
## 6
           W10-3 45.605808 1.92663562 11.31492 0.1763479
  3. Isotope data
Isotopes selected where cleaned according to the following rules:
  a) The isotope shift was not largely beyond (2x) Streitwieser theoretical limits (i.e. > 10)
  b) Isotope shift was non-negative
  c) Nanograms of carbon > 2.0.
# Outlet isotope data:
outletIso = read.csv2("Data/Outlet_Isotopes_W0toW17.csv", header = T)
head(outletIso)
##
     FileHeader..Filename ID Week Wnum SubWeek WeekSubWeek Repl d.13C.12C
## 1
            AO_WO_1-1.dxf AO
                                WO
                                       0
                                               1
                                                         WO-1
                                                                     -26.035
## 2
                                       0
                                                         WO-1
                                                                 2
                                                                     -27.740
            AO_WO_1-2.dxf AO
                                WO
                                               1
## 3
      AO_WO_1-3_-0001.dxf AO
                                WO
                                       0
                                               1
                                                         WO-1
                                                                 3
                                                                     -26.219
## 4
                                W2
                                       2
                                               2
                                                         W2-2
                                                                 1
           A0_W2_2-1_.dxf A0
                                                                     -28.609
                                       2
                                               2
                                                                 2
## 5
           AO_W2_2-2_.dxf AO
                                W2
                                                         W2-2
                                                                     -28.894
## 6
           A0_W2_2-3_.dxf A0
                                       2
                                               2
                                                                 3
                                                                     -28.503
                                W2
                                                         W2-2
##
     DD13...31.21. Ave...STDEV
                                    Rt Ampl..44 Std.Ampl.
                                                               ng..C.
## 1
             5.175
                      0.9357993 2651.2
                                             239
                                                        858 8.356643
## 2
             3.470
                             NA 2649.3
                                             296
                                                        858 10.349650
## 3
             4.991
                                                        858 10.559441
                             NA 2649.7
                                             302
             2.601
## 4
                      0.2022136 2656.2
                                             127
                                                        658
                                                            5.790274
## 5
             2.316
                             NA 2656.2
                                             163
                                                        658
                                                            7.431611
## 6
             2.707
                             NA 2655.3
                                             176
                                                        658 8.024316
colnames(outletIso) [colnames(outletIso) == "DD13...31.21."] <- "DD13"
colnames(outletIso)[colnames(outletIso) == "ng..C."] <- "ngC"</pre>
outletIso <- subset(outletIso, DD13 > 0 & DD13 < 10 & ngC >= 2)
# Filter isotope data:
filtersIso = read.csv2("Data/MESAlteck_FilterIsotopes.csv", header = T)
filtersIso$WeekSubWeek = paste(filtersIso$Week, filtersIso$Num, sep = "-")
filtersIso <- filtersIso[filtersIso$Levl != "J+7", ]
head(filtersIso)
##
      ID Week Wnum Num Levl Repl d.13C.12C WeekSubWeek
## 1 AFP
           W2
                  1
                      1
                                1
                                    -25.154
                                                     W2-1
                                2
## 2 AFP
           W2
                  1
                      1
                                    -28.187
                                                    W2-1
## 3 AFP
           W2
                  1
                      1
                                3
                                    -28.283
                                                    W2-1
## 4 AFP
           W2
                 2
                      2
                                    -30.618
                                1
                                                    W2-2
```

W2 4. Hydrochemistry Data

W2

2

2

2

2

2

3

-26.304

-26.024

5 AFP

6 AFP

W2-2

W2-2

```
hydroChem = read.csv2("Data/AO-Hydrochem.csv", header = T)
hydroChem = hydroChem[, c("WeekSubWeek",
                          "NH4.mM",
                          "TIC.ppm.filt",
                          "Cl.mM",
                          "NO3...mM",
                          "PO4..mM",
                          "NPOC.ppm",
                          "TIC.ppm.unfilt",
                          "TOC.ppm.unfilt" )]
head(hydroChem)
     WeekSubWeek NH4.mM TIC.ppm.filt
                                      Cl.mM NO3...mM PO4..mM NPOC.ppm
## 1
          W1-1
                 0.05
                                51.8
                                        1.48
                                               616.00
                                                           NA
                                                                   4.0
## 2
           W1-2
                    NA
                                44.8 1574.00
                                               778.00
                                                                   4.4
                                                           NA
## 3
          W10-1
                    NA
                                60.1
                                       1.17
                                               964.00
                                                           NA
                                                                   2.0
## 4
          W10-2
                 9.00
                                57.1 1013.00 1174.00
                                                           13
                                                                   5.2
## 5
          W10-3
                                58.2 858.00
                                               1.23
                                                           NA
                                                                   5.0
                    NA
## 6
          W10-4 15.00
                                26.4 355.00 1409.00
                                                           NA
                                                                   6.4
   TIC.ppm.unfilt TOC.ppm.unfilt
## 1
              44.8
                               4.7
## 2
              26.4
                               5.4
## 3
              63.2
                              2.0
## 4
              55.9
                               4.0
## 5
              60.4
                               4.3
## 6
              24.5
                               6.4
```

Summarizing IRMS data

```
isoOutSummary = ddply(outletIso, c("WeekSubWeek"), summarise,
                         N = length(d.13C.12C),
                         diss.d13C = mean(d.13C.12C),
                         SD.d13C = sd(d.13C.12C),
                         se.d13C = SD.d13C / sqrt(N))
head(isoOutSummary)
     WeekSubWeek N diss.d13C
##
                               SD.d13C
## 1
           W0-1 3 -26.66467 0.9357993 0.54028398
## 2
            W1-1 3 -30.46867 0.1060016 0.06120004
## 3
           W1-2 3 -30.61967 0.1513550 0.08738484
## 4
           W10-1 2 -29.47350 1.9905056 1.40750000
## 5
           W10-2 3 -29.27067 0.6003202 0.34659502
           W10-3 3 -29.76967 0.3411749 0.19697744
isoFiltSummary = ddply(filtersIso, c("WeekSubWeek"), summarise,
                              = length(d.13C.12C),
                         filt.d13C = mean(d.13C.12C),
                         filt.SD.d13C = sd(d.13C.12C),
                         filt.se.d13C = filt.SD.d13C / sqrt(N))
head(isoFiltSummary)
```

WeekSubWeek N filt.d13C filt.SD.d13C filt.se.d13C

```
## 1
          W2-1 3 -27.20800
                              1.779464
                                         1.0273738
                              2.575326
## 2
          W2-2 3 -27.64867
                                         1.4868653
## 3
          W6-3 3 -28.00667
                            1.593462 0.9199856
## 4
          W9-1 2 -26.79150
                              1.745847 1.2345000
## 5
          W9-2 3 -27.69633
                              2.013989
                                         1.1627772
## 6
          W9-3 3 -26.94633 1.685361 0.9730434
```

Merging and data wrangling stepts

1. Merge all data sets by the WeekSubWeek column ID, icluding:

```
# Dissolved
out.CoIs = merge(outletConc, outletESAOXA, by = "WeekSubWeek", all = T)
out.CoIs = merge(out.CoIs, isoOutSummary, by = "WeekSubWeek", all = T)
# Filters (MES, Conc.MES)
out.CoIs = merge(out.CoIs, filters, by = "WeekSubWeek", all = T)
out.CoIs = merge(out.CoIs, isoFiltSummary, by= "WeekSubWeek", all = T)
# Pure and cuve isotope average
d13Co = -31.21
# Lab enrichment:
\# epsilon = -1.61
# Lab enrichment:
# Alteck
epsilon_max = -1.5 \# +/- 0.3 (@ 20C, 20\% vwc)
epsilon_min = -2.0 \# +/- 0.2 (@ 20C, 40\% vwc)
epsilon_mean = -1.75
# Remaining fraction
out.CoIs$DD13C.diss <- (out.CoIs$diss.d13C - (d13Co))</pre>
out.CoIs$DD13C.filt <- (out.CoIs$filt.d13C - (d13Co))</pre>
out.CoIsf.diss <- (((10**(-3)*out.CoIs<math>diss.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_mean)))
out.CoIsf.filt <-(((10**(-3)*out.CoIsfilt.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_mean)))
out.CoIs$B.diss <- (1 - out.CoIs$f.diss)*100</pre>
out.CoIs$B.filt <- (1 - out.CoIs$f.filt)*100
#out.CoIs$invf <- 1/out.CoIs$f</pre>
# Discharge times
out.CoIs = merge(weeklyhydro, out.CoIs, by = "WeekSubWeek", all = T)
# Discharge summary
out.CoIs = merge(weeklyflux, out.CoIs, by = "WeekSubWeek", all = T)
# Hydrochemistrty
out.CoIs = merge(out.CoIs, hydroChem, by= "WeekSubWeek", all = T)
out.CoIs$tf <- as.POSIXct(out.CoIs$tf, "%Y-%m-%d %H:%M", tz = "EST")
out.CoIs$ti <- as.POSIXct(out.CoIs$ti, "%Y-%m-%d %H:%M", tz = "EST")
```

```
class(out.CoIs$tf)
## [1] "POSIXct" "POSIXt"
sum(is.na(out.CoIs$tf))
## [1] 7
# Temprarily remove Weeks 16 & 17 (need to get discharge data)
# No discharge data yet avaiable to multiply against...
out.CoIs <- out.CoIs[!is.na(out.CoIs$tf), ]</pre>
  2. Weekly Exported Solids (Kg)
# V[m3] * MES [mg/L] * 1000 [L/m3] * [1 Kg/10^6 mg]
out.CoIs$ExpMES.Kg = out.CoIs$Volume.m3*out.CoIs$MES.mg.L/1000
Fork! Prepare Data for C-Q Hysteresis curves
CQdata <- out.CoIs[with(out.CoIs, order(ti)), ]
CQdata$FlowType <- ifelse(is.na(CQdata$Event), "Fall", "Peak")
CQdata$Event[1:3]<- 0
CQdata$EventMark <- NA
CQdata$EventMark <- na.locf(CQdata$Event)
CQdata$EventMark <- ifelse(is.na(CQdata$Event), CQdata$EventMark, CQdata$EventMark*10)
CQdata$Row <- seq.int(nrow(CQdata))</pre>
cq1 <- subset(CQdata[1:6, ])</pre>
```

```
str(cq1)
## 'data.frame':
                  3 obs. of 54 variables:
## $ WeekSubWeek
                          : Factor w/ 58 levels "WO-Ox", "WO-1", ...: 2 4 5
## $ ti
                         : POSIXct, format: "2016-03-25 12:04:00" "2016-03-30 12:18:00" ...
## $ tf
                         : POSIXct, format: "2016-03-28 22:36:00" "2016-03-31 15:34:00" ...
## $ iflux
                         : num 1.12 1.46 16.33
                         : num 1.31 16.45 15.18
## $ fflux
## $ changeflux
                         : num 0.189 14.989 -1.15
## $ maxQ
                         : num 1.38 38.4 18.67
## $ minQ
                          : num 1.08 1.45 13.2
                         : num 82.5 27.3 23.1
## $ Duration.Hrs
                         : num 0.256 36.944 -3.133
## $ chExtreme
## $ Event
                         : num 0 1 NA
## $ Markers
                         : num NA 16.9 NA
                         : Factor w/ 18 levels "106", "136", "150", ...: NA 10 NA
## $ TimeDiff
## $ AveDischarge.m3.h : num 1.21 14.32 15.53
                         : num 100 390 359
## $ Volume.m3
## $ Sampled.Hrs
                         : num 82.5 27.3 23.1
## $ Sampled
                         : Factor w/ 2 levels "Not Sampled",..: 2 2 2
## $ Conc.mug.L
                         : num 0.246 6.788 6.561
                         : num 0.0193 0.2894 0.1906
## $ Conc.SD
```

cq1 <- cq1[cq1\$Sampled != 'Not Sampled',]</pre>

```
## $ OXA mean
                          : num 4.82 30.53 32.49
                          : num 1.141 10.185 0.243
## $ OXA SD
## $ ESA mean
                          : num 18.1 46 41.3
## $ ESA_SD
                          : num 3.497 3.037 0.853
## $ N.x
                          : int 3 3 3
## $ diss.d13C
                          : num -26.7 -30.5 -30.6
## $ SD.d13C
                          : num 0.936 0.106 0.151
## $ se.d13C
                          : num 0.5403 0.0612 0.0874
                          : num 53.4 62.5 22.5
## $ MES.mg.L
## $ MES.sd
                           : num NA NA NA
## $ MO.mg.L
                           : num 0e+00 1e-03 1e-04
                         : num 0.645 0.126 0.436
## $ Conc.Solids.mug.gMES
## $ Conc.Solids.ug.gMES.SD: num 0.0232 0.0271 0.1232
## $ N.y
                          : int NA NA NA
## $ filt.d13C
                           : num NA NA NA
## $ filt.SD.d13C
                          : num NA NA NA
## $ filt.se.d13C
                          : num NA NA NA
                          : num 4.545 0.741 0.59
## $ DD13C.diss
                          : num NA NA NA
## $ DD13C.filt
                          : num 0.0689 0.6459 0.706
## $ f.diss
                          : num NA NA NA
## $ f.filt
## $ B.diss
                          : num 93.1 35.4 29.4
## $ B.filt
                          : num NA NA NA
## $ NH4.mM
                          : num NA 0.05 NA
## $ TIC.ppm.filt
                          : num NA 51.8 44.8
## $ Cl.mM
                          : num NA 1.48 1574
## $ NO3...mM
                          : num NA 616 778
## $ PO4..mM
                          : int NA NA NA
## $ NPOC.ppm
                          : num NA 4 4.4
## $ TIC.ppm.unfilt
                          : num NA 44.8 26.4
                          : num NA 4.7 5.4
## $ TOC.ppm.unfilt
## $ ExpMES.Kg
                           : num 5.35 24.4 8.08
## $ FlowType
                           : chr "Fall" "Peak" "Fall"
## $ EventMark
                           : num 0 10 1
## $ Row
                           : int 2 4 5
p <- ggplot(cq1) +</pre>
  geom_point(aes(x=AveDischarge.m3.h, y=Conc.mug.L), colour="black") +
  geom_polygon(aes(x=AveDischarge.m3.h, y=Conc.mug.L), colour="black", fill = NA) +
  geom text(data = cq1,
           aes(x=AveDischarge.m3.h, y=Conc.mug.L, label=FlowType), hjust=1.5, vjust=0.5, size = 2)
p
```


Section to UPDATE!!!

3. Weekly exported S-metolachlor mass (mg)

This section converts the observed S-metolachlor concentrations to [mg] in dissolved water and suspended solids. For non-sampled subsets a linear interpolation value based on the trailing and leading observed concentrations was assumed. An approximative model will be tested at a later stage.

To revise: SD for filtered samples!!

```
# Assume first observation is equivalent to second for all measured values
out.CoIs[1, c("Conc.mug.L")] <- out.CoIs[2, c("Conc.mug.L")]
out.CoIs[1, c("Conc.SD")] <- out.CoIs[2, c("Conc.SD")]

out.CoIs[1, c("OXA_mean")] <- out.CoIs[2, c("OXA_mean")]
out.CoIs[1, c("OXA_SD")] <- out.CoIs[2, c("OXA_SD")]

out.CoIs[1, c("ESA_mean")] <- out.CoIs[2, c("ESA_mean")]
out.CoIs[1, c("ESA_SD")] <- out.CoIs[2, c("ESA_SD")]

out.CoIs[1, c("Conc.Solids.mug.gMES")] <- out.CoIs[2, c("Conc.Solids.mug.gMES")]
out.CoIs[1, c("Conc.Solids.ug.gMES.SD")] <- out.CoIs[2, c("Conc.Solids.ug.gMES.SD")]
out.CoIs[1, c("ExpMES.Kg")] <- out.CoIs[2, c("ExpMES.Kg")]</pre>
```

```
# Assign linear approximation of trailing and leading observed values
out.CoIs <- out.CoIs[with(out.CoIs , order(ti)), ]

out.CoIs$Conc.mug.L <- na.approx(out.CoIs$Conc.mug.L)
out.CoIs$Conc.SD <- na.approx(out.CoIs$Conc.SD)

out.CoIs$UXA_mean <- na.approx(out.CoIs$UXA_mean)
out.CoIs$UXA_SD <- na.approx(out.CoIs$UXA_SD)

out.CoIs$ESA_mean <- na.approx(out.CoIs$ESA_mean)
out.CoIs$ESA_SD <- na.approx(out.CoIs$ESA_SD)

out.CoIs$Conc.Solids.mug.gMES <- na.approx(out.CoIs$Conc.Solids.mug.gMES)
out.CoIs$Conc.Solids.ug.gMES.SD <- na.approx(out.CoIs$Conc.Solids.ug.gMES.SD)

out.CoIs$ExpMES.Kg <- na.approx(out.CoIs$ExpMES.Kg)</pre>
```

4. Add the application dates and merge the total mass to the nearest discharge event

The five application dates were:

- 2016-03-20
- 2016-04-05
- 2016-04-13 and 2016-04-14
- 2016-05-26

So the total applied mass mass is merged at the nearest sampling time marker available:

```
ti = c(as.POSIXct('2016-03-25~00:04:00', tz="EST"),
       as.POSIXct('2016-04-05 15:08:00', tz="EST"),
       as.POSIXct('2016-04-14 13:52:00', tz="EST"),
       as.POSIXct('2016-05-10 00:06:00', tz="EST"))
Appl.Mass.g = c(9497.87, 4744.571, 4982.038)
applics = as.data.frame(ti)
applics$Appl.Mass.g = Appl.Mass.g
out.CoIs = merge(out.CoIs, applics, by = "ti", all = T)
out.CoIs$Appl.Mass.g <- ifelse(is.na(out.CoIs$Appl.Mass.g), 0.0, out.CoIs$Appl.Mass.g)
out.CoIs$timeSinceApp <- NA
for (i in 1:length(out.CoIs$Duration.Hrs)){
  if (out.CoIs[i, ]['Appl.Mass.g'] != 0){
   out.CoIs[i,]['timeSinceApp'] = out.CoIs[i, ]['Duration.Hrs']
 } else {
    out.CoIs[i, ]['timeSinceApp'] = out.CoIs[i ,]['Duration.Hrs'] + out.CoIs[i-1,]['timeSinceApp']
}
out.CoIs$timeSinceApp <- round(out.CoIs$timeSinceApp/24, 1)</pre>
# Cumulative (Continous)
```

```
out.CoIs$CumAppMass.g = cumsum(out.CoIs$Appl.Mass.g)
```

Section to UPDATE!!!

5. This section is based on approximate carried-last-observation for the observed concentration data (if no model has been conducted yet).

```
# First simulate a mass out to deal with missing values
# Option 1, just assume 0.0
# Dissolved - [mg] S-metolachlor exported per sub-week
# Conc. [mu.q s-meto/L H20] * Vol[m3] * [10^3 L/m^3] * [1 mq/10^3 mu.q]
out.CoIs$DissSmeto.mg = out.CoIs$Conc.mug.L*out.CoIs$Volume.m3
out.CoIs$DissSmeto.mg.SD = out.CoIs$Conc.SD*out.CoIs$Volume.m3
out.CoIs$DissSmeto.g = out.CoIs$DissSmeto.mg/10^3
out.CoIs$DissSmeto.g.SD = out.CoIs$DissSmeto.mg.SD/10^3
out.CoIs$DissOXA.mg = out.CoIs$OXA_mean*out.CoIs$Volume.m3
out.CoIs$DissOXA.mg.SD = out.CoIs$OXA_SD*out.CoIs$Volume.m3
out.CoIs$DissOXA.g = out.CoIs$DissOXA.mg/10^3
out.CoIs$DissOXA.g.SD = out.CoIs$DissOXA.mg.SD/10^3
out.CoIs$DissESA.mg = out.CoIs$ESA_mean*out.CoIs$Volume.m3
out.CoIs$DissESA.mg.SD = out.CoIs$ESA SD*out.CoIs$Volume.m3
out.CoIs$DissESA.g = out.CoIs$DissESA.mg/10^3
out.CoIs$DissESA.g.SD = out.CoIs$DissESA.mg.SD/10^3
# Solids - [mg] S-metolachlor in solids exported per sub-week
# Conc. [mu.g s-meto / g MES] * Kg MES * [10^3 g/Kg] * [1 mg/10^3 mu.g]
out.CoIs$FiltSmeto.mg = out.CoIs$Conc.Solids.mug.gMES*out.CoIs$ExpMES.Kg
out.CoIs$FiltSmeto.mg.SD = out.CoIs$Conc.Solids.ug.gMES.SD*out.CoIs$ExpMES.Kg
out.CoIs$FiltSmeto.g = out.CoIs$FiltSmeto.mg/10^3
out.CoIs$FiltSmeto.g.SD = out.CoIs$FiltSmeto.mg.SD/10^3
# Total SM
out.CoIs$TotSMout.mg = out.CoIs$DissSmeto.mg + out.CoIs$FiltSmeto.mg
out.CoIs$TotSMout.mg.SD = sqrt(((out.CoIs$DissSmeto.mg.SD)^2 + (out.CoIs$FiltSmeto.mg.SD)^2)/2)
out.CoIs$TotSMout.g = out.CoIs$TotSMout.mg/10^3
out.CoIs$TotSMout.g.SD = out.CoIs$TotSMout.mg.SD/10^3
# Distribution dissolved vs suspended solids
out.CoIs$FracDiss = out.CoIs$DissSmeto.mg/out.CoIs$TotSMout.mg
out.CoIs$FracFilt = out.CoIs$FiltSmeto.mg/out.CoIs$TotSMout.mg
#out.CoIs$DissSmeto.g = ifelse(is.na(out.CoIs$DissSmeto.g), 0.0, out.CoIs$DissSmeto.g)
#out.CoIs$FiltSmeto.g = ifelse(is.na(out.CoIs$FiltSmeto.g), 0.0, out.CoIs$FiltSmeto.g)
#out.CoIs$TotSMout.q = out.CoIs$DissSmeto.q + out.CoIs$FiltSmeto.q
# Need to update this :
# out.CoIs$TotSMout.g.SD = out.CoIs$DissSmeto.g.SD
mw.SM <- 283.796 # q/mol
mw.MOXA <- 279.33 \# q/ml
```

```
mw.MESA <- 329.1 # g/mol
out.CoIs$MELsm.g <-</pre>
  out.CoIs$TotSMout.g +
  out.CoIs$DissOXA.g * (mw.SM/mw.MOXA) +
  out.CoIs$DissESA.g * (mw.SM/mw.MESA)
# How to sum a standard deviation
# http://stats.stackexchange.com/questions/25848/how-to-sum-a-standard-deviation
out.CoIs$MELsm.g.SD <-</pre>
  sqrt((out.CoIs$TotSMout.g.SD^2 +
     (out.CoIs$DissOXA.g.SD * (mw.SM/mw.MOXA))^2 +
     (out.CoIs$DissESA.g.SD * (mw.SM/mw.MESA))^2)/3)
# Cumulative OUT
out.CoIs$CumOutDiss.g = cumsum(out.CoIs$DissSmeto.g)
out.CoIs$CumOutFilt.g = cumsum(out.CoIs$FiltSmeto.g)
out.CoIs$CumOutSmeto.g = out.CoIs$CumOutDiss.g + out.CoIs$CumOutFilt.g
out.CoIs$CumOutMELsm.g = cumsum(out.CoIs$MELsm.g)
# Balance
out.CoIs$BalMassDisch.g = out.CoIs$CumAppMass.g - out.CoIs$CumOutMELsm.g
# Mass fraction
massOUT = tail(out.CoIs$CumOutSmeto.g, n=1)
MELsmOUT = tail(out.CoIs$CumOutMELsm.g, n=1)
TotAppl = tail(out.CoIs$CumAppMass.g, n=1)
out.CoIs$prctMassOut = (out.CoIs$TotSMout.g / massOUT)
out.CoIs$FracDeltaOut = (out.CoIs$TotSMout.g / massOUT)*out.CoIs$diss.d13C
out.CoIs$FracDeltaOut = ifelse(is.na(out.CoIs$FracDeltaOut), 0.0, out.CoIs$FracDeltaOut)
BulkDeltaOut = sum(out.CoIs$FracDeltaOut)
The total mass discharged (up to Week 15) and bulk isotope signature (up to week 11) was:
# Cummulative S-metolachlor [q] discharged (before correction)
cat("SM mass sampled: " , as.character(91.10687))
## SM mass sampled: 91.10687
# Cummulative S-metolachlor [q] discharged
cat("SM mass sampled and non-sampled: ", as.character(massOUT))
## SM mass sampled and non-sampled: 140.392784355072
# Cummulative MEL-sm [q] discharged
cat("MEL-sm [g] sampled and non-sampled: ", as.character(MELsmOUT))
## MEL-sm [g] sampled and non-sampled: 3096.82107110135
cat("% Mass applied in discahrge [MEL-sm]: ", (MELsmOUT/TotAppl)*100)
## % Mass applied in discahrge [MEL-sm]: 16.10874
# Bulk isotope signature
BulkDeltaOut
```

```
## [1] -18.24983
```

6. Testing a regression tree (ommitted for now)

Save files

```
names(out.CoIs)[names(out.CoIs) == "Event"] <- "Peak"</pre>
out.CoIs$Events <- as.factor(c("0-1", "0-2", "0-3",
                          "1-1", "1-2", "1-3",
                          "2-1", "2-2", "2-3",
                          "3-1",
                          "4-1", "4-2", "4-3", "4-4", "4-5",
                          "5-1",
                          "6-1", "6-2", "6-3",
                          "7-1",
                          "8-1", "8-2", "8-3",
                          "9-1", "9-2", "9-3", "9-4", "9-5",
                          "10-1", "10-2", "10-3", "10-4", "10-5",
                          "11-1",
                          "12-1", "12-2", "12-3",
                          "13-1",
                          "14-1",
                          "15-1", "15-2", "15-3", "15-4",
                          "16-1", "16-2",
                          "17-1", "17-2",
                          "18-1", "18-2", "18-3", "18-4"))
# Adding a Weeks column for labelling
out.CoIs$WeekSubWeek <- as.character(out.CoIs$WeekSubWeek)</pre>
Split <- strsplit(out.CoIs$WeekSubWeek, "-", fixed = TRUE)</pre>
out.CoIs$Weeks <- sapply(Split, "[", 1)</pre>
Split2 <- strsplit(as.character(out.CoIs$Events), "-", fixed = T)</pre>
out.CoIs$Event <- as.factor(sapply(Split2, "[", 1))</pre>
out.CoIs$WeekSubWeek <- factor(out.CoIs$WeekSubWeek, levels = unique(out.CoIs$WeekSubWeek))</pre>
out.CoIs$Weeks <- factor(out.CoIs$Weeks, levels = unique(out.CoIs$Weeks))</pre>
out.CoIs$Events <- factor(out.CoIs$Events, levels = unique(out.CoIs$Events))</pre>
out.CoIs$Event <- factor(out.CoIs$Event, levels = unique(out.CoIs$Event))</pre>
head(out.CoIs)
##
                      ti WeekSubWeek
                                                        t.f
                                                               iflux
                                                                          fflux
## 1 2016-03-25 00:04:00
                                WO-0x 2016-03-25 12:02:00 1.248600 1.129227
## 2 2016-03-25 12:04:00
                                W0-1 2016-03-28 22:36:00 1.124382 1.313125
## 3 2016-03-28 22:38:00
                                W0-2x 2016-03-30 12:16:00 1.308100 1.456349
## 4 2016-03-30 12:18:00
                                W1-1 2016-03-31 15:34:00 1.456080 16.445436
## 5 2016-03-31 15:36:00
                                W1-2 2016-04-01 14:44:00 16.334349 15.184536
## 6 2016-04-01 14:46:00
                                W1-3x 2016-04-05 15:06:00 15.203629 5.856380
                                minQ Duration.Hrs chExtreme Peak Markers
     changeflux
                     maxQ
## 1 -0.1193728 1.248600 1.118296
                                         11.96667 -0.1303036
                                                                          NA
                                                                NΑ
## 2 0.1887431 1.380388 1.082199
                                         82.53333 0.2560062
                                                                NA
                                                                          NA
```

```
## 3 0.1482496 1.637782 0.929055
                                        37.63333 0.3296817
## 4 14.9893566 38.399790 1.448977
                                        27.26667 36.9437102
                                                                1 16.88972
## 5 -1.1498131 18.668972 13.201113
                                        23.13333 -3.1332355
                                                               NA
                                                                        NA
## 6 -9.3472489 15.895640 5.471042
                                        96.33333 -9.7325862
                                                                        NΔ
                                                               NΔ
     TimeDiff AveDischarge.m3.h Volume.m3 Sampled.Hrs
                                                           Sampled Conc.mug.L
## 1
                      1.204775 14.41714
                                             11.96667 Not Sampled 0.2456594
## 2
         <NA>
                       1.213511 100.15508
                                              82.53333
                                                           Sampled 0.2456594
## 3
         <NA>
                       1.284719 48.34827
                                              37.63333 Not Sampled 3.5169528
                      14.316647 390.36726
## 4
           24
                                              27.26667
                                                           Sampled
                                                                    6.7882463
## 5
                      15.529299 359.24445
                                              23.13333
                                                           Sampled
         <NA>
                                                                   6.5609982
## 6
         <NA>
                       9.107720 877.37700
                                             96.33333 Not Sampled 8.0026500
                            ##
      Conc.SD
               \mathtt{OXA}_{\mathtt{mean}}
                                                                      SD.d13C
## 1 0.019310 4.824094 1.1414453 18.05531 3.497221 NA
                                                                 NA
## 2 0.019310 4.824094 1.1414453 18.05531 3.497221
                                                        3 -26.66467 0.9357993
## 3 0.154365 17.677665 5.6633481 32.01948 3.267103
                                                       NΑ
                                                                 NΑ
## 4 0.289420 30.531235 10.1852510 45.98364 3.036985
                                                        3 -30.46867 0.1060016
## 5 0.190640 32.492465 0.2430544 41.28052 0.853382
                                                        3 -30.61967 0.1513550
## 6 0.262090 68.516860 0.6978517 69.92417 1.839787
                                                      NA
        se.d13C MES.mg.L MES.sd MO.mg.L Conc.Solids.mug.gMES
## 1
             NA
                      NA
                             NA
                                     NA
                                                    0.6447290
                                  0e+00
## 2 0.54028398 53.44444
                             NA
                                                    0.6447290
                                                    0.3853094
             NΑ
## 4 0.06120004 62.50000
                             NA
                                  1e-03
                                                    0.1258897
## 5 0.08738484 22.50000
                             NA
                                  1e-04
                                                    0.4357872
## 6
                             NA
             NA
                      NA
                                      NA
                                                    0.2575699
     Conc.Solids.ug.gMES.SD N.y filt.d13C filt.SD.d13C filt.se.d13C
## 1
                 0.02323755
                            NA
                                       NA
                                                     NA
                 0.02323755
## 2
                             NA
                                       NA
                                                                  NΑ
## 3
                 0.02515062
                                       NA
                                                     NA
                                                                  NA
                 0.02706369 NA
                                       NA
                                                     NA
                                                                  NA
## 5
                 0.12323706
                             NA
                                       NA
                                                     NA
## 6
                 0.06396039
                             NΑ
                                       NΑ
                                                     NΑ
     DD13C.diss DD13C.filt
                               f.diss f.filt
                                                B.diss B.filt NH4.mM
                                           NA
                                                                  NA
## 1
             NA
                        NA
                                   NA
                                                    NA
                                                           NΑ
## 2
      4.5453333
                        NA 0.06892489
                                           NA 93.10751
                                                           NA
## 3
                                                           NA
                                                                  NA
             NΑ
                        NΑ
                                   NΑ
                                           NΑ
                                                    NΑ
     0.7413333
                        NA 0.64590754
                                           NA 35.40925
                                                           NA
                                                                0.05
## 5
     0.5903333
                        NA 0.70603206
                                           NA 29.39679
                                                           NΔ
                                                                  NΔ
## 6
                        NA
                                   NA
                                           NA
                                                    NA
                                                           NA
             NA
     TIC.ppm.filt
                    Cl.mM NO3...mM PO4..mM NPOC.ppm TIC.ppm.unfilt
                                        NA
               NA
                       NA
                                NA
                                                  NA
## 2
                                NA
                                        NΑ
                                                  NA
                                                                 NΑ
               NΑ
                       NΑ
## 3
               NA
                       NA
                                NA
                                        NA
                                                  NA
                                                                 NA
## 4
                                        NA
             51.8
                     1.48
                               616
                                                 4.0
                                                               44.8
                               778
             44.8 1574.00
                                        NA
                                                 4.4
                                                               26.4
## 6
                                NA
                                        NA
               NA
                       NA
                                                  NA
     TOC.ppm.unfilt ExpMES.Kg Appl.Mass.g timeSinceApp CumAppMass.g
## 1
                 NA 5.352733
                                9497.87
                                                    0.5
                                                             9497.87
## 2
                 NA 5.352733
                                     0.00
                                                    3.9
                                                             9497.87
## 3
                 NA 14.875343
                                      0.00
                                                    5.5
                                                             9497.87
## 4
                4.7 24.397953
                                      0.00
                                                    6.6
                                                             9497.87
## 5
                5.4 8.083000
                                      0.00
                                                    7.6
                                                             9497.87
## 6
                 NA 7.935755
                                      0.00
                                                   11.6
                                                             9497.87
## DissSmeto.mg DissSmeto.mg.SD DissSmeto.g DissSmeto.g.SD DissOXA.mg
```

```
## 1
         3.541705
                        0.2783949 0.003541705
                                                 0.0002783949
                                                                  69.54963
## 2
        24.604033
                        1.9339946 0.024604033
                                                 0.0019339946
                                                                 483.15756
                        7.4632812 0.170038598
                                                 0.0074632812
                                                                 854.68456
## 3
       170.038598
##
      2649.909084
                      112.9800910 2.649909084
                                                 0.1129800910 11918.39439
  4
##
  5
      2357.002211
                       68.4863626 2.357002211
                                                 0.0684863626 11672.73795
                      229.9517390 7.021341115
                                                 0.2299517390 60115.11746
##
  6
     7021.341115
##
     DissOXA.mg.SD
                     DissOXA.g DissOXA.g.SD DissESA.mg DissESA.mg.SD
## 1
          16.45637
                    0.06954963
                                  0.01645637
                                               260.3058
                                                             50.41991
##
  2
         114.32155
                    0.48315756
                                  0.11432155
                                              1808.3308
                                                             350.26441
## 3
         273.81310
                    0.85468456
                                  0.27381310
                                              1548.0863
                                                            157.95877
        3975.98846 11.91839439
                                  3.97598846 17950.5083
                                                            1185.53932
          87.31596 11.67273795
                                  0.08731596 14829.7964
## 5
                                                             306.57276
##
         612.27900 60.11511746
                                  0.61227900 61349.8588
                                                            1614.18699
      DissESA.g DissESA.g.SD FiltSmeto.mg FiltSmeto.mg.SD FiltSmeto.g
##
      0.2603058
                                  3.451062
                                                 0.1243844 0.003451062
## 1
                  0.05041991
## 2
      1.8083308
                  0.35026441
                                  3.451062
                                                 0.1243844 0.003451062
                                                 0.3741240 0.005731609
## 3
     1.5480863
                  0.15795877
                                  5.731609
                                  3.071452
## 4 17.9505083
                  1.18553932
                                                 0.6602985 0.003071452
## 5 14.8297964
                                                 0.9961252 0.003522468
                  0.30657276
                                  3.522468
## 6 61.3498588
                  1.61418699
                                  2.044012
                                                 0.5075740 0.002044012
##
     FiltSmeto.g.SD TotSMout.mg TotSMout.mg.SD TotSMout.g TotSMout.g.SD
       0.0001243844
                       6.992766
                                      0.2156098 0.006992766 0.0002156098
## 1
## 2
       0.0001243844
                      28.055095
                                      1.3703661 0.028055095
                                                             0.0013703661
       0.0003741240
                                      5.2839633 0.175770206
                    175.770206
                                                              0.0052839633
## 4
       0.0006602985 2652.980536
                                     79.8903528 2.652980536
                                                              0.0798903528
## 5
       0.0009961252 2360.524679
                                     48.4322936 2.360524679
                                                              0.0484322936
## 6
       0.0005075740 7023.385126
                                    162.6008301 7.023385126 0.1626008301
      FracDiss
                   FracFilt
                                MELsm.g MELsm.g.SD CumOutDiss.g CumOutFilt.g
## 1 0.5064812 0.4935188249
                               0.3021264 0.02689497 0.003541705
                                                                  0.003451062
## 2 0.8769898 0.1230101642
                               2.0783329 0.18683762
                                                     0.028145738
                                                                   0.006902124
## 3 0.9673915 0.0326085349
                               2.3790960 0.17885971
                                                     0.198184336
                                                                   0.012633733
## 4 0.9988423 0.0011577363
                             30.2413655 2.40621294
                                                    2.848093419
                                                                   0.015705185
## 5 0.9985078 0.0014922393
                             27.0082117 0.16340841 5.205095630
                                                                   0.019227652
## 6 0.9997090 0.0002910294 121.0040582 0.88525127 12.226436745
                                                                  0.021271664
     CumOutSmeto.g CumOutMELsm.g BalMassDisch.g prctMassOut FracDeltaOut
##
## 1
       0.006992766
                       0.3021264
                                        9497.568 4.980859e-05 0.000000000
## 2
       0.035047862
                       2.3804594
                                        9495.490 1.998329e-04 -0.005328477
## 3
       0.210818068
                       4.7595554
                                        9493.110 1.251989e-03 0.000000000
                      35.0009209
       2.863798604
                                        9462.869 1.889684e-02 -0.575761639
## 4
                                        9435.861 1.681372e-02 -0.514830439
## 5
       5.224323282
                      62.0091326
                                        9314.857 5.002668e-02 0.000000000
## 6
     12.247708409
                     183.0131909
##
     Events Weeks Event
## 1
        0-1
               WO
               WO
                      Λ
## 2
        0 - 2
## 3
        0-3
               WO
                      0
## 4
        1-1
               W1
                      1
## 5
        1-2
               W1
                      1
## 6
        1-3
               W1
                      1
write.csv2(out.CoIs,
           'Data/WeeklyHydroContam_R.csv', row.names = F)
# out.CoIs = read.csv2("Data/WeeklyHydroContam_R.csv")
# out.CoIs$ti = as.POSIXct(out.CoIs$ti, "%Y-\m-\d \H:\m'\, tz = "EST")
```