GBI-Tutorium 10

Tristan Schnell

12. Januar 2012

Inhaltsverzeichnis

Master-Theorem

2 Automaten

Quicksort

```
quicksort(links, rechts)
if (links < rechts) do
    teiler := teile(links, rechts)
    quicksort(links, teiler-1)
    quicksort(teiler+1, rechts)
od</pre>
```

Master-Theorem

Bietet

Einfache Lösung für Gleichungen der Form:

$$a \cdot T(n/b) + f(n)$$

Master-Theorem

Bietet

Einfache Lösung für Gleichungen der Form:

$$a \cdot T(n/b) + f(n)$$

Geht leider nicht immer

Master-Theorem

Ein paar Aufgaben

•
$$T(n) = 9 \cdot T(n/3) + n^2 + 2n + 1$$

•
$$T(n) = \sqrt{3} \cdot T(n/2) + \log n$$

•
$$T(n) = 4 \cdot T(n/4) + n \log n$$

•
$$T(n) = 2^n \cdot T(n/2) + n^n$$

Automaten

Mealy Automaten

- eine endliche Zustandsmenge Z
- einen Anfangszustand $z_0 \in Z$
- ein Eingabealphabet X
- ullet eine Zustandsüberführungsfunktion f: $Z \times X \rightarrow Z$
- ein Ausgabealphabet Y
- eine Ausgabefunktion g : $Z \times X \rightarrow Y^*$

Automaten

Moore Automaten

- eine endliche Zustandsmenge Z
- ullet einen Anfangszustand $z_0 \in Z$
- ein Eingabealphabet X
- ullet eine Zustandsüberführungsfunktion f: $Z \times X \rightarrow Z$
- ein Ausgabealphabet Y

Automaten

Akzeptoren

Akzeptoren haben einen oder mehrere Akzeptierte Zustände, endet der Automat nach der Eingabe an einem dieser Zustände ist das Eingabewort akzeptiert. Diese Zustände werden mit einem doppelten Kreis gekennzeichnet und werden akzeptierende Zustände genannt.

Mit einem solchen Akzeptor können Formale Sprachen überprüft werden.

Ende

Noch Fragen?

Unnützes Wissen

Das Pfeifen unter Wasser ist in Florida verboten.