Sperimentazioni di Fisica I

Esercizi di Algebra Booleana (versione corretta del 22/10/2015)

1. Scrivere la funzione di verità della negazione dell'or esclusivo tra due variabili $\overline{a\oplus b}$ e ricavare la forma analitica corrispondente

Soluzione: $ab + \overline{a}\overline{b}$

2. Semplificare la seguente espressione, utilizzando le regole dell'algebra booleana:

$$\overline{a \oplus \left(b + \overline{a \cdot d}\right)}$$

Soluzione: $a \cdot (b + \overline{d}) = ab + a\overline{d}$

3. Dimostrare la seguente identitá $\overline{a+b+c+d}=\overline{a}\overline{b}\overline{c}\overline{d}$. Suggerimento: applicare il teorema di De Morgan in modo ricorsivo.

4. Semplificare la seguente espressione, utilizzando le regole dell'algebra booleana:

$$\overline{cb\overline{d} + \overline{b}c\overline{d} + \overline{a}\overline{d} + a\overline{b}c + \overline{b}c + \overline{a}\overline{b}}$$

Soluzione: $a\overline{c} + bd$

5. Scrivere una funzione booleana di tre variabili a, b, c che ritorni il valore 1 quando almeno due delle tre variabili assumono il valore 0 e quando assumono tutte e tre lo stesso valore 0 oppure 1. Semplificare la funzione usando le regole dell'algebra booleana, ove possibile.

Soluzione: $\overline{a}\overline{b} + \overline{a}(\cdot)\overline{c} + \overline{b}\overline{c} + abc$.

É stato indicato il simbolo (·) per evitare di confondere le espressioni $\overline{a}(\cdot)\overline{c}$ e $\overline{ac} = \overline{(ac)} = \overline{a} + \overline{c}$.

6. Utilizzando le regole dell'algebra booleana, semplificare la seguente espressione:

$$\overline{(bd)}a + cda + dab + bc + \overline{c}a$$

Soluzione: a + bc

7. Sia data la seguente tabella di veritá:

a	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Utilizzando il teorema fondamentale dell'algebra booleana ricavare la corrispondente funzione booleana e semplificarla usando le regole dell'algebra booleana, ove possibile.

Soluzione: $b \oplus c$

8. Semplificare la seguente espressione, utilizzando le regole dell'algebra booleana:

$$a\overline{b} + a\overline{b}\overline{c} + \overline{b}a\overline{d} + a\overline{c} + \overline{a} + \overline{a}b\overline{c}$$

Soluzione: \overline{bc}

9. Semplificare la seguente espressione, utilizzando le regole dell'algebra booleana:

$$(a \oplus c) + \overline{a + bc}$$

Soluzione: $\overline{(ac)}$

10. Sia data la seguente tabella di veritá:

b	\mathbf{c}	f(a,b,c)
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Utilizzando il teorema fondamentale dell'algebra booleana ricavare la corrispondente funzione booleana e semplificarla usando le regole dell'algebra booleana, ove possibile.

Soluzione: ab + ac + bc

11. Scrivere una funzione booleana di tre variabili a, b, c che ritorni il valore 1 quando almeno due delle tre variabili assumono il valore 0. Semplificare la funzione usando le regole dell'algebra booleana, ove possibile.

Soluzione: $\overline{a}\overline{b} + \overline{a}(\cdot)\overline{c} + \overline{b}\overline{c}$

12. Semplificare la seguente espressione, utilizzando le regole dell'algebra booleana:

$$\overline{a}\overline{(b+c)} + \overline{a}b\overline{c} + abc + a\overline{b}\overline{c} + ab\overline{c}$$

Soluzione: $ab + \overline{c}$