

## **MOOC** Econometrics

## Training Exercise 4.3

## Questions

Consider the linear model  $y=X\beta+\varepsilon$ , where some variable in the  $n\times k$  matrix X may be correlated with  $\varepsilon$ . As a result X may be endogenous. Denote by Z an  $m\times n$  matrix of instruments. In general the 2SLS estimator is given by

$$b_{2SLS} = (X'H_ZX)^{-1}X'H_Zy$$

with  $H_Z = Z(Z'Z)^{-1}Z'$ .

- (a) Show that if m = k we can rewrite the 2SLS estimator to  $b_{2SLS} = (Z'X)^{-1}Z'y$ . Clearly give the steps that you take and the assumptions that you use.
- (b) Suppose that there is only a single explanatory variable, that is, the model equals  $y = \beta x + \varepsilon$  and that there is only a single instrument z (m = k = 1). Furthermore suppose that the means of x, y and z over the sample are equal to 0. Show that we can write the 2SLS estimator of  $\beta$  as

$$b_{2SLS} = \frac{\mathsf{Cov}(y, z)}{\mathsf{Cov}(z, x)}.$$

Cov(u, v) denotes the (sample) covariance between u and v, which is defined as

$$Cov(u, v) = \frac{1}{n-2} \sum_{i=1}^{n} (u_i - \bar{u})(v_i - \bar{v}),$$

where  $\bar{u}$  and  $\bar{v}$  denote the sample mean of u and v, respectively.

(c) Use the formula in (b) to explain what happens to the 2SLS estimator when the correlation between instruments and the endogenous variable is very small.

Erafus,