Difference-in-Difference Models

Performance on Exam Measuring Proficiency in Arithmetic

Using the diagram above calculate the following:

- (1) Trend (C2 C1):
- (2) The Counterfactual: T1 + Trend
- (3) Total Treatment Gains (T2 T1):
- (4) Program Effects: Total Gains Trend

$$Y = b_0 + b_1 \cdot Treat + b_2 \cdot Post + b_3 \cdot Treat \cdot Post + e$$

	Dependent variable:	
	moxy	
b0: Intercept (A)	20***	65 A+B+C+D
	(0)	
o1: Treatment Group (B)	15***	
	(0)	45 A + B + C (counte
o2: Post-Period (C)	10***	
	(0)	A+B (35) A+C
3: Treat x Post (D)	20***	30) N. V
	(0)	A 20
Observations	400	
Note:	<i>p<0.1; p<0.05; p<0.01</i>	Before Intervention (Time=1) After Intervention (Time=2)

Use the results from the difference-in-difference regression table above to answer the following:

- (1) What is the group mean for C1?
- (2) What is the group mean for T1?
- (3) What is the group mean for C2?
- (4) What is the counterfactual?
- (5) Does this program have an impact, and if so how much (effect size)?

Regressions with Interaction Effects

Model 1: Do men and women earn different wages, on average?

Model: $Wages = b_0 + b_1 * Female$

Test: If b0 is significant, Men's wages are different than zero. If b1 is significant, Women's wages are different than Men's.

Note: This is an unconditional average, so it might be explained by other factors like differences in experience between men and women

Model 2: What is the wage gain related to an extra year of experience?

Model: $Wages = b_0 + b_1 * Years$

Test: If b1 is significant then it is different than zero, experience does impact wages.

Model 3: Do men and women have different initial wages at the start of their careers?

 $\textbf{Model: } Wages = b_0 + b_1 * Years + b_2 * Female$

Test: If b2 is significant then the Female intercept (b0+b2) is different than the Male intercept (b0).

Model 4: Are the gains in wages related to experience the same for men and women?

 $\textbf{Model: } Wages = b_0 + b_1 * Years + b_2 * Female + b_3 * Years * Female$

Test: If b3 is significant then the slope for Women (b1+b3) is different than the slope for Men (b1).

Note: If b3 is not significant it is better to use the model with one slope for both groups.

	Dependent variable: wages				
	(1)	(2)	(3)	(4)	
Constant	22,969***	9,584***	6,323***	7,847***	
	(493)	(365)	(339)	(421)	
female	6,711***		6,598***	3,565***	
	(698)		(309)	(595)	
years:female				200***	
				(34)	
years		1,104***	1,102***	1,001***	
		(21)	(17)	(24)	
Observations	1,000	1,000	1,000	1,000	
Note:	<i>p<0.1; p<0.05; p<0.01</i>				

Use Model 4 to answer the following questions:

- (1) How much do men earn in their first job (zero years of experience)?
- (2) How much do women earn in their first job?
- (3) What is the average raise men receive each year?
- (4) Do men and women receive different raises? How do we know?
- (5) What is the average raise women receive each year?

Use the table below to answer the following questions:

- (1) What is the average height of Hybrid A corn?
- (2) What is the average height of Hybrid A without fertilizer?
- (3) For each unit of fertilizer added, how much will Hybrid A grow?
- (4) Which hybrid grows best at low levels of fertilizer? High levels?

	Dependent variable:				
	height				
	(1)	(2)	(3)	(4)	
Constant		70.80***	79.78***	49.74***	
		(2.05)	(2.05)	(2.05)	
fertilizer	0.11***	-0.19***	0.003	0.51***	
	(0.03)	(0.04)	(0.04)	(0.04)	
dumA	74.51***	8.98***		30.03***	
	(1.89)	(2.90)		(2.90)	
dumB	70.09***	-21.05 ^{***}	-30.03***		
	(1.89)	(2.90)	(2.90)		
dumC	55.72***		-8.98***	21.05***	
	(1.89)		(2.90)	(2.90)	
fertilizer:dumA		0.19***		-0.51***	
		(0.05)		(0.05)	
fertilizer:dumB		0.70***	0.51***		
		(0.05)	(0.05)		
fertilizer:dumC			-0.19***	-0.70***	
			(0.05)	(0.05)	
Observations	300	300	300	300	
R^2	0.97	0.59	0.59	0.59	
N 1-4	= 40 4: = 40 0F: = 40 04				

Note:

p<0.1; p<0.05; p<0.01