The unique prime factorization provides a family of functions

$$\nu_{\mathbf{p}}\colon \mathbb{Z}_{+} \longrightarrow \mathbb{N},$$

where p is a prime number, mapping each positive integer n to the exponent e_p of p in its prime factorization. These functions provide a translator between the following two worlds:

- positive integers, equipped with multiplication and ordered by the divisibility |,
- 2. natural numbers, equipped with additions and ordered by the natural order \leq .

Theorem 2.3.1

Let a, b be two positive integers.

- 1. a = 1 if and only if for all prime p, $v_p(a) = 0$.
- 2. a = b if and only if for all prime p, $v_p(a) = v_p(b)$.
- 3. For all prime p, $v_p(ab) = v_p(a) + v_p(b)$.
- 4. $a \mid b$ if and only if for all prime $p, v_p(a) \leq v_p(b)$.
- 5. For all prime p, $v_p(\gcd(a, b)) = \min\{v_p(a), v_p(b)\}$.
- 6. For all prime p, $v_p(\operatorname{lcm}(a, b)) = \max\{v_p(a), v_p(b)\}$.

1. a = 1 if and only if for all prime p, $v_p(a) = 0$. **Proof.** Follows by the prime factorization of 1.

1. a = 1 if and only if for all prime p, $v_p(a) = 0$. **Proof.** Follows by the prime factorization of 1.

2. a = b if and only if for all prime p, $v_p(a) = v_p(b)$.

Proof. Follows by the uniqueness of prime factorization.

1. a = 1 if and only if for all prime p, $v_p(a) = 0$. **Proof.** Follows by the prime factorization of 1.

2. a = b if and only if for all prime p, $v_p(a) = v_p(b)$.

Proof. Follows by the uniqueness of prime factorization.

3. For all prime p, $v_p(ab) = v_p(a) + v_p(b)$.

Proof. Follows by the prime factorization and the power rule.

$$P^{(a)} + V^{(b)} = P^{(a)} + V^{(b)}$$

4. $a \mid b$ if and only if for all prime p, $v_p(a) \leq v_p(b)$. **Proof.** (\Longrightarrow) Suppose $a \mid b$, say b = ac. By 3, for all prime p, $v_p(b) = v_p(a) + v_p(c) \geq v_p(a)$.

4. $a \mid b$ if and only if for all prime p, $v_p(a) \leq v_p(b)$. **Proof.** (\Longrightarrow) Suppose $a \mid b$, say b = ac. By 3, for all prime p,

$$\nu_{\mathbf{p}}(b) = \nu_{\mathbf{p}}(a) + \nu_{\mathbf{p}}(c) \geqslant \nu_{\mathbf{p}}(a).$$

(\Leftarrow) Conversely, suppose for all prime p, $v_p(a) \leq v_p(b)$, say $v_p(b) = v_p(a) + e_p$. Note that there are only finitely many positive e_p , otherwise there will be infinitely many prime divisors of b, which is impossible.

4. $a \mid b$ if and only if for all prime p, $v_p(a) \leq v_p(b)$. **Proof.** (\Longrightarrow) Suppose $a \mid b$, say b = ac. By 3, for all prime p,

$$\nu_{p}(b) = \nu_{p}(a) + \nu_{p}(c) \geqslant \nu_{p}(a).$$

(\iff) Conversely, suppose for all prime $p, v_p(a) \le v_p(b)$, say $v_p(b) = v_p(a) + e_p$. Note that there are only finitely many positive e_p , otherwise there will be infinitely many prime divisors of b, which is impossible.

Let $c = \prod_{p} p^{e_p}$, then $v_p(c) = e_p$. By 3, for all prime p,

$$v_p(b) = v_p(a) + e_p = v_p(a) + v_p(c) = v_p(ac).$$

By 2, b = ac. Namely, $a \mid b$.

5. For all prime p, $v_p(\gcd(a,b)) = \min\{v_p(a), v_p(b)\}$. **Proof.** Let $g = \gcd(a,b)$. The first defining property says that $g \mid a$ and $g \mid b$. By 4, for all prime p, $v_p(g) \le v_p(a)$ and $v_p(g) \le v_p(b)$.

5. For all prime p, $v_p(\gcd(a,b)) = \min\{v_p(a), v_p(b)\}$.

Proof. Let $g = \gcd(a,b)$. The first defining property says that $g \mid a$ and $g \mid b$. By 4, for all prime p, $v_p(g) \leq v_p(a)$ and $v_p(g) \leq v_p(b)$.

Conversely, suppose e is any natural number smaller than both $v_p(a)$ and $v_p(b)$. By 4, $p^e \mid a$ and $p^e \mid b$. By the second defining property of \gcd , $p^e \mid g$. By 4, $e \leq v_p(g)$.

5. For all prime p, $v_p(\gcd(a,b)) = \min\{v_p(a), v_p(b)\}$. **Proof.** Let $g = \gcd(a,b)$. The first defining property says that $g \mid a$ and $g \mid b$. By 4, for all prime p, $v_p(g) \leq v_p(a)$ and $v_p(g) \leq v_p(b)$.

Conversely, suppose e is any natural number smaller than both $v_p(a)$ and $v_p(b)$. By 4, $p^e \mid a$ and $p^e \mid b$. By the second defining property of \gcd , $p^e \mid g$. By 4, $e \leq v_p(g)$.

Therefore, $\min\{v_p(a), v_p(b)\} = v_p(g)$.

5. For all prime p, $v_p(\gcd(a,b)) = \min\{v_p(a), v_p(b)\}$. **Proof.** Let $g = \gcd(a,b)$. The first defining property says that $g \mid a$ and $g \mid b$. By 4, for all prime p, $v_p(g) \leq v_p(a)$ and $v_p(g) \leq v_p(b)$.

Conversely, suppose e is any natural number smaller than both $v_p(a)$ and $v_p(b)$. By 4, $p^e \mid a$ and $p^e \mid b$. By the second defining property of \gcd , $p^e \mid g$. By 4, $e \leq v_p(g)$.

Therefore, $\min\{v_p(a), v_p(b)\} = v_p(g)$.

6. For all prime p, $v_p(\text{lcm}(a, b)) = \max\{v_p(a), v_p(b)\}$.

Proof. Similar to 5.

Moreover, the family of functions $v_p: \mathbb{Z}_+ \to \mathbb{N}$ ($p \in \mathbb{P}$) decomposes the Hasse diagram of divisibility of positive integers into individual dimensions: the value of $v_p(n)$ can be viewed as the coordinate of n on the p-axis.

This is analogous to the decomposition of the usual Euclidean space into (three) individual dimensions via the x, y, z-axises.

