$$) \times \Rightarrow \times$$

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$ $\frac{\text{Maybe}}{a)}$ Directly $X \Rightarrow Y$

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$
2) $Y \Rightarrow X$

nat can it mean if X is correlated.

1) $X \Rightarrow Y$ i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$ 2) $Y \Rightarrow X$ 1) $Y \Rightarrow X$ Maghe

a) Directly $X \Rightarrow Y$ b) Through mediating factor(5) $X \Rightarrow X \Rightarrow Y$

What can it mean if X is correlated (associated) with Y in a sample?

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$

2) $Y \Rightarrow X$

3) Z

What can it mean if X is correlated (associated) with Y in a sample?

Maybe

a) Directly $X \Rightarrow Y$

b) Through mediating factor (s)

 $X \Rightarrow X \Rightarrow Y \Rightarrow X$
 $X \Rightarrow X \Rightarrow Y \Rightarrow X$

What can it mean if X is correlated (associated) with Y in a sample?

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$
2) $\Delta \uparrow X \Rightarrow X$

2) $\Delta \uparrow X \Rightarrow X$

3) $\Delta \uparrow X \Rightarrow X$

Confounding factor(a) $\Delta \uparrow X \Rightarrow X \Rightarrow X$
 $\Delta \uparrow X \Rightarrow X \Rightarrow X$

Confounding factor(a) $\Delta \uparrow X \Rightarrow X \Rightarrow X \Rightarrow X \Rightarrow X$

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$ $\frac{maybe}{a}$ $\frac{maybe}{a}$ $\frac{1}{2}$ $\frac{1}$

1)
$$\times \Rightarrow \times$$
 i.e. $\Delta \uparrow \times \Rightarrow \uparrow E(Y)$ $\frac{maybe}{a)}$ Directly $\times \Rightarrow \times$

2) $Y \Rightarrow \times$

3) $Z \nearrow \times$ Confounding factor(a) $X \nearrow M_1 \Rightarrow Y$

a) $Z \not\models nown + measurable$

b) $Z \not\vdash u \not\models ut hard to measure$

c) $Z \not\models unknown$

1) X => Y i.e. DIX => TE(Y) a) Directly X=> Y b) Through mediating factor(5) λ) $\gamma \Rightarrow \chi$ 3) Z X Confounding factor (a) a) Z known & measurable b) Z 11 but hard to measure

c) Zunknown

d) There are clusters in which 2 is constant

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$ $\frac{\text{Maybe}}{a}$ Directly $X \Rightarrow Y$

2) $Y \Rightarrow X$ b) Through mediating factor(s)

3) $Z \Rightarrow X$ Confounding factor(a) $X \Rightarrow M_1 \Rightarrow Y$

a) $Z \neq M_1 \Rightarrow Y$

a) $Z \neq M_2 \Rightarrow Y$

b) Z " but hard to measure

c) Zunknown

d) There are clusters in which Z

1)
$$\times \Rightarrow \times$$
 i.e. $\Delta \uparrow \times \Rightarrow \uparrow E(Y)$ $\frac{maybe}{a)}$ $\frac{maybe}{a)}$ $\frac{1}{2}$ $\frac{$

4) Chance 5) Solection What can it mean if X is correlated (associated) with Y in a sample? 1) X => Y i.e. DTX => TE(Y) a) Directly X=> Y b) Through mediating factor(5) λ) $\lambda \Rightarrow \lambda$ 3) Z X Confounding factor(a) a) Z known & measurable but hard to measure c) Zunknown d) There are clusters in which Z 4) Chance Solection

1)
$$\times \Rightarrow \times$$
 i.e. $\Delta \uparrow \times \Rightarrow \uparrow E(Y)$ $\frac{\text{Maybe}}{a)}$ $\frac{\text{Confounding factor(a)}}{a)}$ $\frac{\text{Maybe}}{a)}$ $\frac{\text{Directly } \times \Rightarrow \times}{a)}$ $\frac{\text{Maybe}}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$ $\frac{\text{Directly } \times \Rightarrow \times}{\text{Directly } \times \Rightarrow \times}$

a) Z known & measurable
b) Z 11 but hard to measure
c) Z unknown

d) There are clusters in which 2 is constant

4) Chance 5) Selection To conclude that

X => Y

we need to be

willing to reject

the other possibilities.

1)
$$X \Rightarrow Y$$
 i.e. $\Delta \uparrow X \Rightarrow \uparrow E(Y)$

 χ) $\lambda \Rightarrow \chi$

3) Z X

Confounding factor(a)

a) Z known & measurable

- b) Z " but hard to measure
- c) Zunknown
- d) There are clusters in which Z

is constant

4) Chance

5) Selection

a) Directly X=> Y b) Through mediating factor (5)

-To conclude that $X \Rightarrow Y$ we need to be. willing to reject the other possibilities.

- Ordinary statistical analysis only helps with #4 via p-value.

The Fundamental 2 x 2 Table of Statistics

Statistical Reasoning with Ellipses: The Data Ellipse

Statistical Reasoning with Ellipses: The Beta Ellipse SCS 2017: Longitudinal and Nested Data

Day 1 – Part 4

Getting Started with R and R Studio

The Fundamental 2 x 2 Table of Statistics

The Fundamental 2 x 2 Table of Statistics

The Fundamental 2 x 2 Table of Statistics