Decisioni di investimento con il VAN

Professore a contratto di Finanza Aziendale Università di Bologna

http://www.unibo.it/docenti/emilio.tomasini

ARGOMENTI TRATTATI

- Che cosa scontare: il flusso di cassa
- □ Inflazione no è si
- Costo annuo equivalente
- Le assunzioni del costo annuo equivalente

CHE COSA SCONTARE

1. Solo il flusso di cassa è rilevante e non il reddito contabile!

CHE COSA SCONTARE

- 1. Non confondete il rendimento medio e il rendimento marginale di un progetto (esempio del ponte linea ferroviaria) ovvero logica incrementale.
- 2. Tenete conto di tutti **gli effetti collaterali** (Coca Cola Zero rispetto alla Coca Cola tradizionale)
- 3. Non dimenticare le necessità di capitale circolante.
- 4. Dimenticate i costi sommersi (il latte versato ...)
- 5. Tenete conto dei **costi opportunità** anche se non si trasformano in flussi monetari (es. terreno)
- 6. Prestate attenzione all'allocazione dei costi comuni.
- 7. Ricordatevi **i valori di realizzo e/o di smantellamento**

INFLAZIONE

- ☐ Trattate l'inflazione in modo coerente ovvero o considerate l'inflazione o non la considerate
- ☐ Per attualizzare i flussi di cassa nominali, usate i tassi di interesse nominali.
- ☐ Per attualizzare i flussi di cassa reali, usate i tassi di interesse reali.
- Che adottiate dati reali o nominali, otterrete gli stessi risultati MA NON MISCHIATE I DATI (PRINCIPIO DELLA CONSISTENCY)

Inflazione prevista e reale: esempio

L'anno prossimo il vostro contratto di locazione vi costerà 8.000 euro, con un aumento da contratto del 3% annuo nominale (tasso di inflazione previsto) per altri tre anni (totale 4 anni). Se il tasso di sconto (inflazione reale) si appalesa del 10%, qual è il costo del valore attuale del contratto di locazione?

1+tasso di interesse reale =
$$\frac{1}{1 + \text{tasso di interesse nominale}}$$

INFLAZIONE

Esempio: valori nominali

Anno	Flusso di cassa Valore a	attuale al 10%
1	8000	$\frac{8000}{1.10} = 727273$
2	$8000 \times 1,03 = 8240$	$\frac{8240}{1.10^2} = 6809,92$
3	$8000 \times 1,03^2 = 8487,20$	$\frac{8487,20}{1,10^3} = 637656$
4	$8000 \times 1,03^3 = 8741,82$	$\frac{874182}{110^4} = 5970,78$
		€26429,99

INFLAZIONE

Esempio: valori reali

<u>Anno</u>	Flusso di cas	ssa VA al 6,7961%
1	$\frac{8000}{1,03} = 7766,99$	$\frac{7766,99}{1.068} = 7272,73$
2	$\frac{8240}{1,03^2} = 7766,99$	$\frac{7766,99}{1.068^2} = 680992$
3	$\frac{8487.20}{1,03^3} = 7766,99$	$\frac{7766,99}{1.068^3} = 637656$
4	$\frac{8741.82}{1,03^4} = 7766,99$	$\frac{7766,99}{1.068^4} = 597078$
		= €26 429,99

COSTO ANNUO EQUIVALENTE

Costo annuo equivalente: il costo periodale che fornisce lo stesso valore attuale pari al costo di acquisto e ai costi operativi di un macchinario.

Serve quando due progetti di investimento hanno una durata diversa e li voglio normalizzare rispetto al tempo per poterli confrontare! ATTENZIONE PERO' CHE L'ORIZZONTE DI TEMPO E' ILLIMITATO E NON COME SEMBRA DAL LIBRO LIMITATO AD UN PERIODO

Rendite: valore attuale di una rendita annua di euro 1 per t anni

$$\left(\frac{C}{r}\right) - \left(\frac{C}{r}\right) \left(\frac{1}{(1+r)^t}\right)$$

Numero	nero Tasso di interesse								
di periodi	1%	2%	3%	4%	5%	6%	7%	8%	9%
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833	1.7591
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771	2.5313
4	3.9020	3.8077	3.7171	3.6299	3.5460	3.4651	3.3872	3.3121	3.2397
5	4.8534	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897
6	5.7955	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229	4.4859
7	6.7282	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064	5.0330
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466	5.5348
9	8.5660	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469	5.9952
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177
11	10.3676	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052
12	11.2551	10.5753	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607
13	12.1337	11.3484	10.6350	9.9856	9.3936	8.8527	8.3577	7.9038	7.4869
14	13.0037	12.1062	11.2961	10.5631	9.8986	9.2950	8.7455	8.2442	7.7862
15	13.8651	12.8493	11.9379	11.1184	10.3797	9.7122	9.1079	8.5595	8.0607
16	14.7179	13.5777	12.5611	11.6523	10.8378	10.1059	9.4466	8.8514	8.3126
17	15.5623	14.2919	13.1661	12.1657	11.2741	10.4773	9.7632	9.1216	8.5436
18	16.3983	14.9920	13.7535	12.6593	11.6896	10.8276	10.0591	9.3719	8.7556
19	17.2260	15.6785	14.3238	13.1339	12.0853	11.1581	10.3356	9.6036	8.9501
20	18.0456	16.3514	14.8775	13.5903	12.4622	11.4699	10.5940	9.8181	9.1285
21	18.8570	17.0112	15.4150	14.0292	12.8212	11.7641	10.8355	10.0168	9.2922
22	19.6604	17.6580	15.9369	14.4511	13.1630	12.0416	11.0612	10.2007	9.4424
23	20.4558	18.2922	16.4436	14.8568	13.4886	12.3034	11.2722	10.3741	9.5802
24	21.2434	18.9139	16.9355	15.2470	13.7986	12.5504	11.4693	10.5288	9.7066
25	22.0232	19.5235	17.4131	15.6221	14.0939	12.7834	11.6536	10.6748	9.8226
30	25.8077	22.3965	19.6004	17.2920	15.3725	13.7648	12.4090	11.2578	10.2737
40	32.8347	27.3555	23.1148	19.7928	17.1591	15.0463	13.3317	11.9246	10.7574
50	39.1961	31.4236	25.7298	21.4822	18.2559	15.7619	13.8007	12.2335	10.9617

COSTO ANNUO EQUIVALENTE

Esempio

Dati i seguenti costi di utilizzo (acquisto e manutenzione) di due macchinari che hanno la stessa capacità produttiva e fanno lo stesso lavoro e un costo del capitale del 6%, scegliete il macchinario dal costo inferiore mediante il metodo del costo annuo equivalente. Una diversa durata significa che B deve essere sostituita in anticipo rispetto ad A.

Anno						
<u>Macchinario</u>	1	2	3	4	VA al 6%	$\overline{\text{CAE}}$
A	15	5	5	5	28,37	10,61
В	10	6	6		21,00	11,45

	C0	C1	C2	C3	VA 6%
Macchina A	15	5	5	5	28.37
Costo annuo equivalente		10.61	10.61	10.61	28.37

VA RENDITA = VA DEI COSTI DI A = 28.37 = valore annuo rendita X fattore rendita a 3 anni

Valore annuo rendita = 28.37 / 2.673 = 10.61

	C0	C1	C2	C3	VA 6%
Macchina B	10	6	6	0	21
Costo annuo		11 48	11 45		0.1
equivalente		11.45	11.45		21

VA RENDITA = VA DEI COSTI DI A = 21 = valore annuo rendita X fattore rendita a 2 anni

Valore annuo rendita = 21.00 / 1.8334 = 11.45

La macchina A è l'investimento migliore in quanto il suo costo annuo equivalente (10.61) è inferiore a quello di B (11.45)

ASSUNZIONI IMPLICITE

- Non si considera il beneficio fiscale
- Non si considera l'impatto dell'innovazione tecnologica sull'efficienza delle macchine: se le macchine ogni anno si evolvono e guadagnano in produttività ed efficienza allora conviene cambiarle più spesso anche a maggior costo
- Non si considera l'inflazione e i costi annui equivalenti sono sempre reali in base ad assunzioni di partenza. Ma cosa succede se i periodi sono lunghi e l'inflazione cambia nel corso del tempo?
- Si assume che la macchina (esempio precedente) venga sostituita al periodo 4 e così via per sempre (perpetuità). Attenzione perché questo non traspare dal libro