

b) Eine Möglichkeit, dieses Problem zu lösen, ist dynamische Programmierung. Zur Vereinfachung nehmen wir an, dass die Intervalle bereits nach deren Ende sortiert sind.

Sei nun OPT(i) der bestmögliche Wert, der mit den ersten i Intervallen erreicht werden kann. Um OPT(i) zu berechnen, muss man zwei Fälle betrachten: (1) Intervall i wird nicht verwendet, (2) Intervall i wird verwendet.

- (i) Welchen Wert besitzt OPT(i), wenn Intervall I_i nicht verwendet wird?
- (ii) Angenommen, Intervall I_i wird benutzt. Wir sind an dem Index des Intervalls interessiert, welches das letzte Intervall vor I_i ist, das nicht mit I_i überlappt. Den Index dieses Vorgängers von I_i bezeichnen wir als pred(i). Sollte I_i keinen Vorgänger besitzen, gilt pred(i) = 0.

Gib einen mathematischen Ausdruck an, der pred(i) für beliebiges $1 \le i \le n$ bestimmt. $\begin{array}{c} \text{bestimmt.} \\ \text{(iii)} \end{array}$ Welchen Wert besitzt OPT(i), wenn Intervall I_i verwendet wird?

- (iv) Stelle eine Rekursionsgleichung auf, die OPT(i) für beliebiges $0 \le i \le n$ bestimmt.

1) Falls I; mill consider mid:

i genommen