Proceeds Divided Between Two Parties with Recouped Costs

Jason Massey

August 17, 2020

Abstract

This article investigates mathematical principles when two parties agree to share proceeds in the sale of an asset, with one party wishing to recoup invested costs.

1 Setting

There exist two parties, L and J, being equal shareholders in an asset A to be sold. The proceeds P from the sale are to be divided evenly after L first recoups costs C (which were invested into A, presumably to increase A's presale value). The resultant proceeds belonging to L and J are denoted P_L and P_J , respectively.

Constraints

$$P \ge C \ge 0$$

$$P_L \ge P_J$$

2 Method to Calculate Proper Proceeds

- 1. Begin with total proceeds P.
- 2. Immediately subtract from P the costs C of L, allocating C to P_L .
- 3. The remaining proceeds, P-C, are to be divided equally with $\frac{P-C}{2}$ being allocated to both P_L and P_J .

3 Proper Proceeds

By following the aforementioned method, the respective *proper* proceeds are:

$$P_L = C + \frac{P - C}{2} \tag{1}$$

$$P_J = \frac{P - C}{2} \tag{2}$$

Note the following:

$$P_L = C + P_J \tag{3}$$

4 Relationships

4.1 Individual proceeds sum to P.

The sum of the individual proceeds for L and J equal total proceeds P:

$$P_L + P_J = P (4)$$

proof:

$$P_{L} + P_{J} =$$

$$\left(C + \frac{P - C}{2}\right) + \left(\frac{P - C}{2}\right) =$$

$$C + \frac{P - C}{2} + \frac{P - C}{2} =$$

$$C + 2\left(\frac{P - C}{2}\right) =$$

$$C + (P - C) =$$

$$C + P - C =$$

$$P \quad \blacksquare$$

4.2 Subtracting P_J from P_L leaves C.

To confirm that L recoups costs C entirely, it must be shown that:

$$P_L - P_J = C (5)$$

Although (5) follows naturally from (3), it is nevertheless proven below.

$$P_{L} - P_{J} =$$

$$\left(C + \frac{P - C}{2}\right) - \left(\frac{P - C}{2}\right) =$$

$$C + \frac{P - C}{2} - \frac{P - C}{2} =$$

$$C + \left(\frac{P - C}{2}\right)(1 - 1) =$$

$$C + \left(\frac{P - C}{2}\right)(0) =$$

$$C = C$$

4.3 When the costs to be recouped C are zero, P_L and P_J are both equal to split proceeds.

Given (5), it follows when C = 0 that:

$$P_L - P_J = 0$$

$$P_L = P_J$$

$$C + \frac{P - C}{2} = \frac{P - C}{2}$$

$$0 + \frac{P - 0}{2} = \frac{P - 0}{2}$$

$$\frac{P}{2} = \frac{P}{2} \quad \blacksquare$$

4.4 If L and J are forced to equally split P, then J shall owe to L exactly $\frac{C}{2}$.

Closing coordinators at title companies might not be aware of L and J's agreement to have L recoup costs C before evenly sharing the remaining proceeds P - C. In this case, L and J would be forced to split P in half, receiving improper proceeds P_i of:

$$P_i = \frac{P}{2} \tag{6}$$

with the notable property given C > 0:

$$P_i < P_L \tag{7}$$

In this situation, in order to make L's proceeds proper, J would need to pay a reconciliation R to L computed as:

$$R = P_L - P_i \tag{8}$$

namely,

$$R = P_L - P_i$$

$$= \left(C + \frac{P - C}{2}\right) - \left(\frac{P}{2}\right)$$

$$= C + \frac{P - C}{2} - \frac{P}{2}$$

$$= C + \frac{P - C - P}{2}$$

$$= C + \frac{-C}{2}$$

$$= \frac{2C}{2} + \frac{-C}{2}$$

$$= \frac{2C - C}{2}$$

$$= \frac{C}{2} \blacksquare$$