

Internet e IP

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

A.A. 2018-2019

I protocolli di Internet

Architettura

Application	Applicazioni e-mail,ftp,telnet,www	Strati superiori
Transport	TCP	Strato 4
Network	ICMP IP AR	Strato 3
Data Link	Non specificato (ad es. IEEE 802-Ethernet-X25-Aloha ecc	Strato 2
Phisical	Non specificato Collegamento fisico	Strato 1

- Progettato per funzionare a commutazione di pacchetto in modalità connectionless
- Si prende carico della trasmissione di datagrammi da sorgente a destinazione, attraverso reti eterogenee
- Identifica host e router tramite indirizzi di lunghezza fissa, ragruppandoli in reti IP
- Frammenta e riassembla i datagrammi quando necessario
- Offre un servizio di tipo best effort, cioè non sono previsti meccanismi per
 - aumentare l'affidabilità del collegamento end-to-end,
 - eseguire il controllo di flusso e della sequenza.

Struttura degli indirizzi IP

- Indirizzi di lunghezza fissa pari a 32 bit
- Scritti convenzionalmente come sequenza di 4 numeri decimali, con valori da 0 a 255, separati da punto (rappresentazione dotted decimal)

```
10001001.11001100.11010100.00000001
137.204.212.1
```

Numero teorico max. di indirizzi

$$2^{32} = 4.294.967.296$$

- In realtà si riesce a sfruttare un numero molto inferiore
- Assegnati dalla IANA (Internet Assigned Numbers Authority)

Byte 1		Byte 2	Byte 3		Byte 4	
Version	IHL	Type of Service	Total Length			
Identification		Flags	Fragment Offset			
ТТ	L	Flags	Header Cheksum		Header Cheksum	
Source Address						
DestinationAddress						
Options				Options		
User Data						

Significato delle PCI

- Version: indica il formato dell' intestazione, attualmente la versione in uso è la 4
- IHL: lunghezza dell' intestazione, espressa in parole di 32 bit; lunghezza minima = 5
- Type of service : indicazione sul tipo di servizio richiesto, usato anche come sorta di priorità
- Total length: lunghezza totale del datagramma, misurata in bytes; lunghezza masima = 65535 bytes, ma non è detto che tutte le implementazioni siano in grado di gestire questa dimensione

- Identification: valore intero che identifica univocamente il datagramma
 - Indica a quale datagramma appartenga un frammento (fragment)

• Flag: bit 0 sempre a 0

bit 1 don't fragment (DF)

DF = 0 si può frammentare

DF = 1 non si può frammentare

bit 2 more fragments (MF)

MF = 0 ultimo frammento

MF = 1 frammento intermedio

 Fragment offset: indica quale è la posizione di questo frammento nel datagramma, come distanza in unità di 64 bit dall' inizio

Fragment offset

- Il datagramma IP viene virtualmente suddiviso in sotto-blocchi di 8 byte (64 bit)
- Per l'IP che trasmette (non necessariamente la sorgente dei dati ma anche un nodo intermedio)
 - Il primo blocco del datagramma è il numero 0
 - I blocchi successivi sono logicamente numerati sequenzialmente
- Il numero logico del primo blocco viene scritto nel Fragment Offset del datagramma

Implementazione

- Chi frammenta i datagrammi?
 - Qualunque apparato di rete dotato di protocollo IP può frammentare un datagramma
 - Tipicamente i nodi intermedi non riassemblano, ma lo fa solamente il terminale ricevente
- Frammentazioni multiple
 - Un datagramma può essere frammentato a più riprese in nodi successivi
- La numerazione tramite "offset" permette di rinumerare facilmente frammenti di un frammento

Perché la segmentazione?

Calcolo dell'offset

- Time to live (TTL): max numero di nodi attraversabili
 - Il nodo sorgente attribuisce un valore maggiore di 0 a TTL (tipicamente TTL = 64, al massimo 255)
 - Ogni nodo che attraversa il datagramma pone TTL = TTL 1
 - Il primo nodo che vede TTL = 0 distrugge il datagramma
- Protocol: indica a quale protocollo di livello superiore appartengono i dati del datagramma
- Header checksum: controllo di errore della sola intestazione, viene ricalcolato da ogni nodo attraversato dal datagramma
- Source and Destination Address: indirizzi sorgente e destinazione

Formato del pacchetto IP (5)

- Options: contiene opzioni relative al trasferimento del datagramma (registrazione del percorso, meccanismi di sicurezza), è perciò di lunghezza variabile
- Padding: bit privi di significato aggiunti per fare in modo che l'intestazione sia con certezza multipla di 32 bit

L'instradamento IP

- La rete Internet è una rete a commutazione di pacchetto
 - Oggi un sistema molto complesso
- In generale esistono più modi per raggiungere una destinazione da una certa sorgente
- Chi decide quale percorso seguire e come lo fa?
- Si decide pacchetto per pacchetto o per flusso di dati applicativi?

• ...

- Internet è una grande "rete di reti"
- La componente elementare è la network IP
 - Ogni network IP è una sorta di isola
 - L'isola tipicamente contiene calcolatori che fungono da nodi terminali della rete detti host
 - Le isole sono interconnesse da apparati che svolgono la funzione di "ponte"
 - Si tratta di calcolatori specializzati detti router o gateway

Internet: reti di reti

Tante Network IP isolate

- Ogni network IP può essere implementata con una tecnologia specifica
- Esempio
 - Wi-Fi: Network realizzata con tecnologia wireless in area locale
 - ADSL e xDSL: Network realizzata con tecnologia a media distanza via cavo tramite infrastruttura di uno specifico fornitore di servizio pubblico
 - Ethernet: Network realizzata con tecnologia a breve distanza via cavo privata in area locale
 - GPRS/EDGE/LTE: Network realizzata con tecnologia radio a media distanza tramite infrastruttura di uno specifico fornitore di servizio pubblico

• I calcolatori di una network IP sono connessi dalla medesima infrastruttura di rete fisica (livelli 1 e 2)

- Ipotesi fondamentale
 - Tutti gli host appartenenti alla medesima network IP sono in grado di parlare tra loro grazie alla tecnologia con cui essa viene implementata

Internet: reti di reti

- Nella terminologia di Internet si definisce
 - Rete logica: la network IP a cui un Host appartiene logicamente
 - Rete fisica: la rete (tipicamente LAN) a cui un Host è effettivamente connesso
- La rete fisica normalmente ha capacità di instradamento e può avere indirizzi locali (es. indirizzi MAC)
- L'architettura a strati nasconde gli indirizzi fisici e consente alle applicazioni di lavorare solo con indirizzi IP

Interconnettere le isole

- Per far parlare tra loro le isole (network IP) è necessario che
 - Vi siano dei collegamenti fra le isole stesse, spesso realizzati con tecnologie diverse da quelle dell'isola
 - Vi siano degli apparati che permettono di usare questi collegamenti nel modo opportuno
 - Sia possibile scegliere il giusto collegamento verso l'isola che si vuole raggiungere

Irouter

Collegamento fra router:

Può essere una tecnologia simile a quella delle network oppure molto diversa

Il percorso end-to-end

- La tecnologia IP è agnostica rispetto alla tecnologia con cui sono realizzate le network
 - Il protocollo IP è concepito per lavorare indifferentemente su tecnologie diverse

 L'obiettivo di IP è quello di rendere possibile il dialogo fra network a prescindere dalla loro implementazione e localizzazione

La domanda cruciale

- Ogni nodo di Internet ha una base dati di destinazioni possibili
- Quando deve inviare un datagramma
 - Parte dall'indirizzo IP di destinazione
 - Legge la base dati
 - Decide quale azione intraprendere
- La tecnologia della propria network può essere utilizzata:
 - Per raggiungere la destinazione finale
 - Per raggiungere il primo ponte da attraversare

Le network fra i router

L'instradamento IP

Il singolo calcolatore terminale sceglie un router come ponte (gateway) verso le altre network IP

Instrada il datagramma verso il router

Il singolo salto viene solitamente detto **hop**

- L'indirizzo IP è logicamente suddiviso in due parti:
 - Network (Net) ID
 - Prefisso che identifica la Network IP a cui appartiene l'indirizzo
 - Tutti gli indirizzi di una medesima Network IP hanno il medesimo Network ID
 - Host ID
 - Identifica l' host (l' interfaccia) vero e proprio di una certa Network
- Per Net e Host ID vengono utilizzati bit contigui
 - Net ID occupa la parte sinistra dell' indirizzo
 - Host ID occupa la parte destra dell' indirizzo

Reti IP private (RFC 1918)

- Alcuni gruppi di indirizzi sono riservati a reti IP private
- Essi non sono raggiungibili dalla rete pubblica
- I router di Internet non instradano datagrammi destinati a tali indirizzi
- Possono essere riutilizzati in reti isolate

```
• da 10.0.0.0 a 10.255.255.255
```

• da 172.16.0.0 a 172.31.255.255

• da 192.168.0.0 a 192.168.255.255

Come si distingue net-ID da host-ID?

- Si usa la netmask
 - Al numero IP viene associata una maschera di 32 bit

```
137.204.191.25

10001001.11001100.10111111.00011001

11111111.11111111.11111111.11000000

Net-ID Host-ID
```

- I bit a 1 della netmask identificano i bit dell' indirizzo IP che fanno parte del net-ID
- La netmask si può rappresentare
 - In notazione dotted-decimal

- In notazione esadecimale
 - 11111111.11111111.11111111.11000000 = ff.ff.ff.c0
- Utilizzando la notazione abbreviata
 - \cdot 11111111.11111111.1111111.11000000 = /26

Netmask

Esempio:

- Network 192.168.1.0
 - Network privata con Net-ID = 3 byte = 24 bit
- Subnetting in 2 sottoreti
 - · Net-ID+subnet-ID = 25 bit
 - Netmask = 111111111. 11111111. 111111111.

- Notazione

- · Net-ID = 192.168.1.0 Netmask = 255.255.255.128
- Net-ID = 192.168.1.128 Netmask = 255.255.255.128
 - oppure
- · 192.168.1.0/25
- · 192.168.1.128/25

- Net ID = 137.204
 - La network corrispondente ha indirizzo 137.204.0.0
 - Tutti i numeri IP dell' Università di Bologna hanno il medesimo prefisso

Host ID

- Qualunque combinazione dei rimanenti 16 bit
 - · Escluso 137.204.0.0 e 137.204.255.255
- Server web UniBO
 - · 137.204.24.35
- Server web del DEIS
 - · 137.204.24.40
- Server web DEISNet
 - · 137.204.57.85

La domanda cruciale

Instradamento diretto e indiretto

Direct delivery :

- IP sorgente e IP destinatario sono sulla stessa network
- L'host sorgente spedisce il datagramma direttamente al destinatario

Indirect delivery :

- IP sorgente e IP destinatario non sono sulla stessa network
- L'host sorgente invia il datagramma ad un router intermedio

Routing: scelta del percorso su cui inviare i dati

- i router formano struttura interconnessa e cooperante:
 - i datagrammi passano dall'uno all'altro finché raggiungono quello che può consegnarli direttamente al destinatario

Direct Delivery

L2 ADDRESS: HOST3

IP ADDRESS: HOST3

DATI

Relazione Indirizzi Fisici – Indirizzi IP

- Software di basso livello nasconde gli indirizzi fisici e consente ai livelli superiori di lavorare solo con indirizzi IP
- Gli host comunicano attraverso una rete fisica (ad es. LAN) quindi devono conoscere reciprocamente gli indirizzi fisici
- L'host A vuole mandare datagrammi a B, che si trova sulla stessa rete fisica e di cui conosce solo l' indirizzo IP
- Come si ricava l' indirizzo fisico di B dato il suo indirizzo IP?

Address Resolution Protocol – ARP (RFC 826)

- Il nodo sorgente invia una trama broadcast (ARP request) contenente l'indirizzo IP del nodo destinazione
- Tutte le stazioni della rete locale leggono la trama broadcast

41

Address Resolution Protocol - ARP (3)

- Il destinatario risponde al mittente, inviando un messaggio (ARP reply) che contiene il proprio indirizzo fisico
- Con questo messaggio host sorgente è in grado di associare l'appropriato indirizzo fisico all' IP destinazione
- Ogni host mantiene una tabella (cache ARP) con le corrispondenze fra indirizzi logici e fisici

Comando ARP

arp -a

visualizza il contenuto della cache ARP con le diverse corrispondenze tra indirizzi IP e MAC

Comando ARP – Esempio

```
Command Prompt
C:∖>arp -a
Interface: 137.204.57.174 on Interface 0 \times 1000003
                        Physical Address
  Internet Address
                                               Type
 137.204.57.1
                        08-00-20-9c-9c-93
                                               dynamic
 137.204.57.88
                        00-60-b0-78-e8-fd
                                               dynamic
 137.204.57.180
                        00-10-4b-db-0a-3a
                                               dynamic
                        00-30-c1-d5-ee-9b
 137.204.57.181
                                              dynamic
 137.204.57.254
                        00-50-54-d9-ba-00
                                              dynamic
C:\>ping -n 1 137.204.57.177
Pinging 137.204.57.177 with 32 bytes of data:
Reply from 137.204.57.177: bytes=32 time<10ms TTL=128
Ping statistics for 137.204.57.177:
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = Oms, Average = Oms
C:∖>arp -a
Interface: 137.204.57.174 on Interface 0x1000003
                        Physical Address
  Internet Address
                                               Type
 137.204.57.1
                        08-00-20-9c-9c-93
                                               dunamic
 137.204.57.177
                        00-b0-d0-ec-46-62
                                               dynamic
 137.204.57.180
                        00-10-4b-db-0a-3a
                                               dynamic
 137.204.57.181
                                              dynamic
                        00-30-c1-d5-ee-9b
 137.204.57.254
                        00-50-54-d9-ba-00
                                              dynamic
C:\>_
```

Indirect Delivery

- C'è sempre una consegna diretta
- Può non esserci alcuna consegna indiretta
- Possono esserci una o più consegne indirette

Come scegliere?

- fra instradamento diretto e indiretto?
- il gateway giusto qualora ve ne siano molteplici?

La tabella di instradamento IP

- Base dati in forma di tabella
 - Righe (dette anche route, rotte, entry, record)
 - · Insieme di informazioni relative alla singola informazione di instradamento
 - Colonne (dette campi)
 - · Informazioni del medesimo tipo relative a diverse opzioni di instradamento

- Formato della tabella
 - Dipende dal sistema operativo e dall'implementazione
 - · Le informazioni sono le medesime
 - · Il modo di presentarle ed elaborarle può essere diverso

Route

- Tipici campi della singola rotta sono:
 - Destinazione (D): numero IP valido
 - · Può essere un indirizzo di network o di host
 - Netmask (N): maschera di rete valida
 - · Identifica il Net-ID
 - Gateway (G): numero IP a cui consegnare il datagramma
 - · Indica il tipo di consegna da effettuare
 - Interfaccia di rete (IF): interfaccia di rete utilizzare (loopback compreso) per la consegna del datagramma
 - Seleziona il dispositivo hardware da utilizzare per l'invio del datagramma
 - Metrica (M): specifica il "costo" di quel particolare route
 - · Possono esistere più route verso una medesima destinazione

Destination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.10.1	ppp0	1
137.204.64.0	255.255.255.0	137.204.64.254	en0	1
137.204.65.0	255.255.255.0	137.204.65.254	en1	1
137.204.66.0	255.255.255.0	137.204.66.254	en2	1
137.204.67.0	255.255.255.0	137.204.67.254	en3	1
192.168.10.0	255.255.255.252	192.168.10.2	ррр0	1

Uso della tabella di instradamento

- Il singolo nodo riceve un datagramma:
 - Estrae dall' intestazione IP_D = indirizzo IP di destinazione
 - Seleziona il route per tale IP_D, confrontandolo con i campi D presenti nella tabella
 - Processo di "table lookup"
 - Se il route esiste
 - Esegue l'azione di instradamento suggerita dai campi G e
 - Se il route non esiste genera un messaggio di errore
 - Tipicamente notificato all' indirizzo sorgente (ICMP -Destination Unreachable)

Table lookup

- La ricerca nella tabella avviene confrontando
 - Indirizzo IP di destinazione IP_D del datagramma
 - Destinazione (D) di ciascun route
 - Utilizzando la netmask (N) del route
- La procedura viene detta di "longest prefix match"
 - IP_D **AND** N = R
 - · Indirizzo di destinazione del datagramma e netmask di ciascuna riga
 - R = D ?
 - SI : la route viene selezionata e il processo termina
 - · NO : si passa al route successivo
- In quale ordine leggere i route
 - dalla riga che presenta una netmask con un numero maggiore di bit a uno

Destination	Netmask	Gateway	Interface	Metric					
0.0.0.0	0.0.0.0	192.168.10.1	ppp0	1					
137.204.64.0	255.255.255.0	137.204.64.254	en0	1					
137.204.65.0	255.255.255.0	137.204.65.254	en1	1	Versi on	IHL	Type of Service		Total Length
137.204.66.0	255.255.255.0	137.204.66.254	en2	1		Identif	ication	Flags	Fragment Offset
137.204.67.0	255.255.255.0	137.204.67.254	en3	1	T	ΓL	Flags		Header Cheksum
192.168.10.0	255.255.255.252	192.168.10.2	ppp0	1				Address	
								onAddress	
	\ \\					_		niAddress	
							Options		Options
	\ 								
	// //								
	// //							Data	
		Dantina	ماد د د د د د					Data	
		Destina	ation Add	lress				Data	
					D			Data	
		Destina Netma		lress AN	D			Data	
		Netma:			D			Data	
					D			Data	
		Netma:	sk		D			Data	
		Netma: 	sk		D			Data	
		Netma: 	sk ation		D			Data	

Esempio di lookup – 1

	Destinazione	Netmask	Etc.
1	0.0.0.0	0.0.0.0	
2	192.168.2.0	255.255.255.0	
3	192.168.2.18	255.255.255.255	

- Datagramma con IP dest. = 192.168.2.18
- Confronto prima con riga 3, poi con riga 2 e poi riga 1

```
192.168.002.018 bitwise AND \underline{255.255.255.255} 192.168.002.018 \rightleftharpoons 192.168.002.018
```

La riga 3 è quella giusta (host specific)

Esempio di lookup – 2

	Destinazione	Netmask	Etc.
1	0.0.0.0	0.0.0.0	
2	192.168.2.0	255.255.255.0	
3	192.168.2.18	255.255.255.255	

• Datagramma con IP dest. = 192.168.2.22

```
192.168.002.022

255.255.255.255

192.168.002.022 != 192.168.002.018

192.168.002.022

255.255.255.000

192.168.002.000 == 192.168.002.000
```

La riga 2 è quella giusta (network specific)

Esempio di lookup – 3

	Destinazione	Netmask	Etc.
1	0.0.0.0	0.0.0.0	
2	192.168.2.0	255.255.255.0	
3	192.168.2.18	255.255.255.255	

Datagramma con IP dest. = 80.48.15.170

```
080.048.015.170

255.255.255.255

080.048.015.170 != 192.168.002.018

080.048.015.170

255.255.255.000

080.048.015.000 != 192.168.002.000

080.048.015.170

000.000.000.000

000.000.000.000 == 000.000.000.000
```

La riga 1 è quella giusta (default gateway)

- Nella tabella di instradamento compaiono
 - Gateway
 - Interfaccia
- Perché due informazioni distinte?
- Chi è il gateway?

- II table look-up sceglie la D i-esima = D_i
- La funzione di instradamento invia il datagramma a IF_i
- Con l'obiettivo di consegnarlo al gateway G_i
- Perché non è sufficiente IF_i?
- L'instradamento IP è basato sull'appartenenza alla network
 - Host della medesima network possono comunicare direttamente
 - Host di network diverse comunicano tramite gateway
- Gateway = responsabile della consegna del datagramma

- Il campo gateway della tabella di routing serve per specificare il tipo di instradamento
 - Instradamento diretto: la sintassi dipende dall'implementazione
 - In Windows: instradamento diretto se gateway = IP locale
 - In Linux/Unix: instradamento diretto se gateway = 0.0.0.0
 - Instradamento indiretto
 - Gateway = numero IP del router da contattare

ppp0

ppp0

ppp0

ppp0

192.168.10.2

192.168.10.2

192.168.10.2

192.168.10.1

137.204.65.0

137.204.66.0

255.255.255.0

255.255.255.0

255.255.255.0

255.255.255.252

D (NI (I	0.1	1 (6	137.204.67.0
Dest	Netmask	Gateway	Interface	192.168.10.0
0.0.0.0	0.0.0.0	192.168.10.1	ррр0	
137.204.64.0	255.255.255.0	137.204.64.254	en0	
137.204.65.0	255.255.255.0	137.204.65.254	en1	
137.204.66.0	255.255.255.0	137.204.66.254	en2	
137.204.67.0	255.255.255.0	137.204.67.254	en3	
192.168.10.0	255.255.255.252	192.168.10.2	ррр0	

137.204.66.254

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	137.205.64.254	en0
137.204.64.0	255.255.255.0	137.204.64.10	en0

137.204.67.254

137.204.67.0/24

137.204.66.254

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	-,-,-,-	ppp1
137.204.64.0	255.255.255.0	192.168.10.2	ppp0
137.204.65.0	255.255.255.0	192.168.10.2	ррр0
137.204.66.0	255.255.255.0	192.168.10.2	ррр0
137.204.67.0	255.255.255.0	192.168.10.2	ррр0
192.168.10.0	255.255.255.252	192.168.10.1	ррр0

Dest	Netmask	Gateway
0.0.0.0	0.0.0.0	192.168.10.1
137.204.64.0	255.255.255.0	137.204.64.254
137.204.65.0	255.255.255.0	137.204.65.254
137.204.66.0	255.255.255.0	137.204.66.254
137.204.67.0	255.255.255.0	137.204.67.254
192.168.10.0	255.255.255.252	192.168.10.2

- Longest prefix match

Interface

ppp0

- 192.168-10.2 AND - 255.255.255.252 = - 192.168.10.0 Gateway 192.168.10.1 = me stesso

Consegna diretta a 192.168.10.2 sulla network **192.168.10.0/30** Direct delivery su **ppp0**

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	137.205.64.254	en0
137.204.64.0	255.255.255.0	137.204.64.10	en0
101.201.01.0	200.200.200.0	101.201.01110	0.10

137.204.67.254

137.204.67.0/24

137.204.66.254

54	Dest	Netmask	Gateway	Interface
54	0.0.0.0	0.0.0.0		ppp1
	137.204.64.0	255.255.255.0	192.168.10.2	ррр0
	137.204.65.0	255.255.255.0	192.168.10.2	ррр0
	137.204.66.0	255.255.255.0	192.168.10.2	ppp0
Interface	137.204.67	255.255.255.0	192.168.10.2	ppp0
	192.168.10.0	255.255.255.252	192.168.10.1	ppp0
^l 0ac		·		

Dest	Netmask	Gateway
0.0.0.0	0.0.0.0	192.168.10.1
137.204.64.0	255.255.255.0	137.204.64.254
137.204.65.0	255.255.255.0	137.204.65.254
137.204.66.0	255.255.255.0	137.204.66.254
137.204.67.0	255.255.255.0	137.204.67.254
192.168.10.0	255.255.255.252	192.168.10.2

- Longest prefix match

ppp0

- 137.204.65.210 AND - 255.255.255.0 = - 137.204.65.0 Gateway 192.168.10.2

Consegna indiretta tramite 192.168.10.2 sulla network **192.168.10.0/30** utilizzando **ppp0**

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	137.205.64.254	en0
137.204.64.0	255.255.255.0	137.204.64.10	en0

137.204.65.0

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	192.168.10.1	ррр0
137.204.64.0	255.255.255.0	137.204.64.254	en0
137.204.65.0	255.255.255.0	137.204.65.254	en1
137.204.66.0	255.255.255.0	137.204.66.254	en2
137.204.67.0	255.255.255.0	137.204.67.254	en3
192.168.10.0	255.255.255.252	192.168.10.2	ррр0

Gateway 137.204.65.254 me stesso

Consegna indiretta tramite sulla network **137.204.65.0/24** utilizzando **en1**

Analizziamo gli indirizzi delle 4 reti

- 137.204.64.0 il terzo byte è 01000000
- 137.204.65.0 il terzo byte è 01000001
- 137.204.66.0 il terzo byte è 01000010
- 137.204.67.0 il terzo byte è 01000011
 - I primi 2 byte ed i primi 6 bit del terzo byte sono comuni a tutte e quattro le network. Se usiamo NETMASK=255.255.250

```
10001001.11001100.01000000.xxxxxxx
                                          10001001.11001100.01000001.xxxxxxx
11111111.11111111.11111100.0000000
                                          11111111.11111111.11111100.00000000
10001001.11001100.01000000.00000000
                                          10001001.11001100.01000000.00000000
           204
                    64
                                             137
                                                      204
                                                               65
  137
10001001.11001100.01000010.xxxxxxx
                                          10001001.11001100.01000011.xxxxxxx
11111111.11111111.11111100.0000000
                                          11111111.11111111.111111100.00000000
10001001.11001100.01000000.00000000
                                          10001001,11001100,01000000,00000000
  137
           204
                    66
                                             137
                                                      204
                                                               67
```

- Otteniamo il medesimo risultato in tutti e quattro i casi:
 - Il prefisso di rete è sempre 137.204.64.0

Un altro esempio

- È necessario che R2 conosca il dettaglio di come le reti sono connesse a R1?
 - R2 invia comunque i datagrammi tramite R1
 - È sufficiente un' informazione più "riassuntiva"
- I route verso le 4 network possono essere aggregate in una sola
- R2 vede le 4 reti come una sola
 - Il gateway verso quelle destinazioni è R1

Dest	Netmask	Gateway	Interfa
0.0.0.0	0.0.0.0	192.168.10.1	ррр0
137.204.64.0	255.255.255.0	137.204.64.254	en0
137.204.65.0	255.255.255.0	137.204.65.254	en1
137.204.66.0	255.255.255.0	137.204.66.254	en2
137.204.67.0	255.255.255.0	137.204.67.254	en3
192.168.10.0	255.255.255.252	192.168.10.2	ррр0

Le network
137.204.64.0/24
137.204.65.0/24
137.204.66.0/24
137.204.66.0/24

Vengono aggregate in un'unica destinazione 137.204.64.0/22

Perché ordinare i route?

- Dare priorità alle route più specifiche
- L' ordinamento in funzione della Netmask decrescente garantisce di considerare in ordine
 - singoli host
 - reti piccole
 - reti grandi
- È possibile implementare eccezioni a regole generali che possono convivere nella medesima tabella

Eccezioni

137.204.64.0

137.204.66.0

192.168.10.0

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	192.168.10.1	ррр0
137.204.64.0	255.255.255.0	137.204.64.254	en0
137.204.65.0	255.255.255.0	137.204.65.254	en1
137.204.67.0	255.255.255.0	137.204.67.254	en3
192.168.10.0	255.255.255.252	192.168.10.2	ррр0

La rotta per 137.204.66.0/24 viene cancellata e non è necessario modificarla perché adesso viene assorbita dalla rotta di default

255.255.252.0

255.255.255.0

255.255.255.252

-.-.-.

192.168.10.2

192.168.10.1

137.204.66.254

ppp0

en0

Ppp0

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	192.168.10.1	ррр0
137.204.64.0	255.255.255.0	137.204.64.254	en0
137.204.65.0	255.255.255.0	137.204.65.254	en1
137.204.67.0	255.255.255.0	137.204.67.254	en3
192.168.10.0	255.255.255.252	192.168.10.2	ррр0

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	evere.	ppp1
137.204.64.0	255.255.252.0	192.168.10.2	ppp0
137.204.66.0	255.255.255.0	137.204.66.254	en0
192.168.10.0	255.255.255.252	192.168.10.1	Ppp0
137.204.66.128	255.255.255.252	137.204.66.129	en1

Classless VS Classfull la logica degli indirizzi IP

- Il numero IP ha valore assoluto in rete
 - Un numero IP pubblico deve essere unico su Internet
 - I numeri IP sorgente e destinazione caratterizzano il datagramma in quanto parte della sua intestazione
- La netmask è relativa al singolo nodo
 - Non viene trasportata nell'intestazione del datagramma
 - È parte della tabella di routing dei singoli nodi
 - Ai medesimi indirizzi possono corrispondere netmask diverse in nodi diversi (route aggregation)
- È sempre stato così?
 - NO: inizialmente la suddivisione net-ID e host-ID era assoluta

- Durante la fase iniziale di Internet furono definite diverse "classi" di network differenziate per dimensione
 - La parte iniziale del Net-ID differenzia le classi
 - · 0 classe A
 - · 10 classe B
 - · 110 classe C
 - La definizione delle classi è standard e quindi nota a tutti
 - I router riconoscono la classe di una rete dai primi bit dell' indirizzo
 - · Ricavano di conseguenza il Net-ID

Network ID: identifica una rete IP

Host ID: identifica i singoli calcolatori della rete

- Classe A: da 0.0.0.0 a 127.255.255.255
- Classe B: da 128.0.0.0 a 191.255.255.255
- Classe C: da 192.0.0.0 a 223.255.255.255
- Classe D: da 224.0.0.0 a 239.255.255.255
- Classe E: da 240.0.0.0 a 255.255.255.255
- Indirizzi riservati (RFC 1700)
 - 0.0.0.0 indica l'host corrente senza specificarne l'indirizzo
 - Host-ID tutto a 0 viene usato per indicare la rete
 - Host-ID tutto a 1 è l'indirizzo di broadcast per quella rete
 - 0.x.y.z indica un certo Host-ID sulla rete corrente senza specificare il Net-ID
 - 255.255.255 è l' indirizzo di broadcast su Internet
 - 127.x.y.z è il loopback, che redirige i datagrammi agli strati superiori dell'host corrente

Le sottoreti

- A un'amministrazione è assegnata una network
 - L'amministrazione potrebbe essere suddivisa in sottoamministrazioni *logicamente separate*
 - Converrebbe "frammentare" la network in "sub-network" da assegnare alle sotto-amministrazioni
- Si decide localmente una sotto-ripartizione Net/Host ID indipendente dalle classi
- Si frammenta l' Host-ID in due parti:
 - la prima identifica la sottorete (subnet-ID)
 - la seconda identifica i singoli host della sottorete
- La ripartizione deve essere locale e reversibile
 - Tutta Internet vede comunque una certa network come un' entità unitaria

- La suddivisione è locale alla singola interfaccia
 - Deve essere configurabile localmente
- Si personalizza la Netmask

- Una network di classe B (137.204.0.0)
 - Numerose entità distinte nella stessa amministrazione
 - Facoltà, Dipartimenti, Centri di ricerca ecc.
 - Si suddivide la rete (network) in sottoreti (subnetwork)
- Il primo byte del Host-ID viene utilizzato come indirizzo di sottorete
 - Dalla network di classe B si ricavano 254 network della dimensione di una classe C

Netmask = 255.255.255.0

Subnetting

- Subnet diverse sono di fatto Network diverse e quindi non comunicano
- È necessario un gateway

• Il Gateway permette instradamento indiretto fra le Subnetwork

CIDR

- Con la grande diffusione di Internet la rigida suddivisione nelle 3 classi rendono l'instradamento poco flessibile e scalabile
- CIDR (RFC 1519) Classless InterDomain Routing
 - Si decide di rompere la logica delle classi nei router
 - La dimensione del Net-ID può essere qualunque
 - Le tabelle di routing devono comprendere anche le Netmask
 - Generalizzazione del subnetting/supernetting
 - · reti IP definite da Net-ID/Netmask

- Allocazione di reti IP di dimensioni variabili
 - utilizzo più efficiente dello spazio degli indirizzi
- Accorpamento delle informazioni di routing
 - più reti contigue rappresentate da un' unica riga nelle tabelle di routing
- Miglioramento di due situazioni critiche
 - Limitatezza di reti di classe A e B
 - Crescita esplosiva delle dimensioni delle tabelle di routing

- Raggruppare più reti con indirizzi consecutivi
 - Indicarle nelle tabelle di routing con una sola entry accompagnata dalla opportuna Netmask
- Es. Un ente ha bisogno di circa 2000 indirizzi IP
 - una rete di classe B è troppo grande (64K indirizzi)
 - meglio 8 reti di classe C (8 × 256 = 2048 indirizzi)
 dalla 194.24.0.0 alla 194.24.7.0
- Supernetting: si accorpano le 8 reti contigue in un' unica super-rete:

- Identificativo: 194.24.0.0/21

- Supernet mask: 255.255.248.0

- Indirizzi: 194.24.0.1 – 194.24.7.254

- Broadcast: 194.24.7.255

- Subnetting e Supernetting sono operazioni duali
 - Subnetting → n bit del Host-ID diventano parte del Net-ID
 - Supernetting → n bit del Net-ID diventano parte dell' Host-ID
 Supernetting ← Subnetting

Net-ID	Host-ID
--------	----------------

- Accorpamento di N reti IP (N = 2ⁿ)
 - contigue:
 - · 194.24.0.0/24 + 194.24.1.0/24 = 194.24.0.0/23
 - · 194.24.0.0/24 + 194.24.2.0/24 = non contigue
 - allineate secondo i multipli di 2ⁿ
 - · 194.24.0.0/24 + .1.0/24 + .2.0/24 + .3.0/24 = 194.24.0.0/22
 - \cdot 194.24.2.0/24 + .3.0/24 + .4.0/24 + .5.0/24 = non allineate

Oggi

- La distinzione fra Net-ID e Host-ID è locale funzione della Netmask
- Lo stesso indirizzo può essere interpretato in modo diverso in punti diversi della rete
- Tutte le tabelle di instradamento devo contenere la colonna delle Netmask

Esempio

Dest	Netmask	Gateway	Interface
0.0.0.0	0.0.0.0	192.168.10.1	ppp0
137.204.64.0	255.255.255.0	137.204.64.254	en0
137.204.65.0	255.255.255.0	137.204.65.254	en1
137.204.66.0	255.255.255.0	137.204.66.254	en2
137.204.67.0	255.255.255.0	137.204.67.254	en3
192.168.10.0	255.255.255.252	192.168.10.2	ррр0

Pianificare la numerazione di reti IP

Esempio

- Un'azienda possiede tre siti distribuiti su una grande area urbana: S1, S2, S3.
- Ciascun sito aziendale è dotato di infrastrutture informatiche comprendenti, tra l'altro, una LAN ed un router di uscita verso il mondo esterno. Tutti i siti devono essere interconnessi tra loro con una rete a maglia completa.
- I siti sono così divisi:

- S1, S2: 50 host

- S3: 20 host

• Si richiede di progettare una rete di classe C a cui viene assegnato l'indirizzo 196.200.96.0/24 comprensiva della numerazione dei router, definendo le relative netmask

Architettura

La scelta della netmask

Ultimo byte netmask	# host	# subnets
0000000	254	1
1000000	126	2
11000000	62	4
11100000	30	8
11110000	14	16
11111000	6	32
11111100	2	64

Soluzione 1

• Subnets: 196.200.96.0/26 (S1) 196.200.96.64/26 (S2)

196.200.96.128/26 (S3)

196.200.96.192/26 (M)

• Netmask: 255.255.25.192

• Broadcast: **196.200.96.63** (S1)

196.200.96.127 (S2)

196.200.96.191 (S3)

196.200.96.255 (M)

• Routers LAN: 196.200.96.62 (S1)

196.200.96.126 (S2)

196.200.96.190 (S3)

• Routers MAN: qualunque indirizzo tra:

196.200.96.193 e .254 (M)

• IP Hosts: qualunque indirizzo tra:

196.200.96.1 e .61 (S1)

196.200.96.65 e .125 (S2)

196.200.96.129 e .189 (S3)

Scelta di netmask diverse

Ultimo byte netmask	# host	# subnets
0000000	254	1
1000000	126	2
1100000	62	4
11100000	30	8
11110000	14	16
11111000	6	32
11111100	2	64

Soluzione 2

Subnet	# host	Indirizzi	Broadcast
196.200.96.0/26	62	1 – 62	63
196.200.96.64/26	62	65 – 126	127
196.200.96.128/27	30	129 – 158	159
196.200.96.160/27	30	161 – 190	191
196.200.96.192/27	30	193 – 222	223
196.200.96.224/28	14	225 – 238	239
196.200.96.240/30	2	241 – 242	243
196.200.96.244/30	2	245 – 246	247
196.200.96.248/30	2	249 – 250	251
196.200.96.252/30	2	253 – 254	255

Il protocollo ICMP

Il protocollo IP...

- offre un servizio di tipo best effort
 - non garantisce la corretta consegna dei datagrammi
 - se necessario si affida a protocolli affidabili di livello superiore (TCP)
- è comunque necessario un protocollo di controllo
 - gestione di situazioni anomale
 - notifica di errori o di irraggiungibilità della destinazione
 - scambio di informazioni sulla rete

→ ICMP (Internet Control Message Protocol)

- ICMP segnala solamente errori e malfunzionamenti, ma non esegue alcuna correzione
- ICMP non rende affidabile IP

ICMP

- Internet Control Message Protocol (RFC 792) svolge funzioni di controllo per IP
 - IP usa ICMP per la gestione di situazioni anomale, per cui ICMP offre un servizio ad IP
 - i pacchetti ICMP sono incapsulati in datagrammi IP, per cui ICMP è anche utente IP

IP header	20 - 60 byte
Message Type	1 byte
Message Code	1 byte
Checksum	2 byte
Additional Fields (optional)	variabile
Data	variabile

Type definisce il tipo di messaggio ICMP

- messaggi di errore
- messaggi di richiesta di informazioni
- Code descrive il tipo di errore e ulteriori dettagli
- Checksum controlla i bit errati nel messaggio ICMP
- Add. Fields dipendono dal tipo di messaggio ICMP
- Data intestazione e parte dei dati del datagramma che ha generato l'errore

Tipi di errori

- Destination Unreachable (Type = 3)
 - Generato da un gateway quando la sottorete o l'host non sono raggiungibili
 - Generato da un host quando si presenta un errore sull'indirizzo dell'entità di livello superiore a cui trasferire il datagramma
- Codici errore di Destination Unreachable
 - 0 = sottorete non raggiungibile
 - 1 = host non raggiungibile
 - 2 = protocollo non disponibile
 - 3 = porta non disponibile
 - 4 = frammentazione necessaria ma bit don't fragment settato

Tipi di errori

- Time Exceeded (Type = 11)
 - generato da un router quando il Time-to-Live di un datagramma si azzera ed il datagramma viene distrutto (Code = 0)
 - generato da un host quando un timer si azzera in attesa dei frammenti per riassemblare un datagramma ricevuto in parte (Code = 1)
- Source Quench (Type = 4)
 - i datagrammi arrivano troppo velocemente rispetto alla capacità di essere processati: l'host sorgente deve ridurre la velocità di trasmissione (obsoleto)
- Redirect (Type = 5)
 - generato da un router per indicare all'host sorgente un'altra strada più conveniente per raggiungere l'host destinazione

Informazioni

- Echo (Type = 8)
- Echo Reply (Type = 0)
 - l'host sorgente invia la richiesta ad un altro host o ad un gateway
 - la destinazione deve rispondere immediatamente
 - metodo usato per determinare lo stato di una rete e dei suoi host, la loro raggiungibilità e il tempo di transito nella rete

Additional Fields:

- Identifier: identifica l'insieme degli echo appartenenti allo stesso test
- Sequence Number: identifica ciascun echo nell'insieme
- Optional Data: usato per inserire eventuali dati di verifica

Informazioni

- Timestamp Request (Type = 13)
- Timestamp Reply (Type = 14)
 - l'host sorgente invia all'host destinazione un Originate Timestamp che indica l'istante in cui la richiesta è partita
 - l'host destinazione risponde inviando un
 - Receive Timestamp che indica l'istante in cui la richiesta è stata ricevuta
 - Transmit Timestamp che indica l'istante in cui la risposta è stata inviata
 - serve per valutare il tempo di transito nella rete, al netto del tempo di processamento = T_{Transmit} -T_{Receive}

Informazioni

- Address Mask Request (Type = 17)
- Address Mask Reply (Type = 18)
 inviato dall'host sorgente all'indirizzo di broadcast
 (255.255.255.255) per ottenere la subnet mask da
 usare dopo aver ottenuto il proprio indirizzo IP
 tramite RARP o BOOTP

- Router Solicitation (Type = 10)
- Router Advertisement (Type = 9)
 utilizzato per localizzare i router connessi alla rete

Applicazioni di ICMP

ping DEST

Permette di controllare se l'host DEST è raggiungibile o meno da SORG

- SORG invia a DEST un pacchetto ICMP di tipo "echo"
- Se l'host DEST è raggiungibile da SORG, DEST risponde inviando indietro un pacchetto ICMP di tipo "echo reply"

Opzioni


```
-n N permette di specificare quanti pacchetti inviare (un pacchetto al secondo)
-l M specifica la dimensione in byte di ciascun pacchetto
-t esegue ping finché interrotto con
-t traduce l' indirizzo IP in nome DNS
-f setta il bit don 't fragment a 1
-i T setta time-to-live = T
-w T<sub>out</sub> specifica un timeout in millisecondi
```

Per maggiori informazioni consultare l'help: ping /?

Comando PING – Output

L'output mostra

- la dimensione del pacchetto "echo reply"
- l' indirizzo IP di DEST
- il numero di sequenza della risposta (solo UNIX-LINUX)
- il "time-to-live" (TTL)
- il "round-trip time" (RTT)
- alcuni risultati statistici: N° pacchetti persi, MIN, MAX e media del RTT

Comando TRACEROUTE

tracert DEST

Permette di conoscere il percorso seguito dai pacchetti inviati da SORG e diretti verso DEST

- SORG invia a DEST una serie di pacchetti ICMP di tipo ECHO con un TIME-TO-LIVE (TTL) progressivo da 1 a 30 (per default)
- Ciascun nodo intermedio decrementa TTL
- Il nodo che rileva TTL = 0 invia a SORG un pacchetto ICMP di tipo
 TIME EXCEEDED
- SORG costruisce una lista dei nodi attraversati fino a DEST
- L'output mostra il TTL, il nome DNS e l'indirizzo IP dei nodi intermedi ed il ROUND-TRIP TIME (RTT)

Gestione della numerazione

- DHCP
 - Permette ad un Host di ottenere una configurazione IP
- Packet Filter
 - Permette/blocca l'invio di pacchetti da/verso determinati indirizzi
 - Protegge la rete dal traffico "vagante"
- Application Layer Gateway (ALG) / Proxy
 - Controlla la comunicazione a livello applicativo
- Firewall
 - Combinazione dei dispositivi descritti sopra
 - Protegge le risorse interne da accessi esterni
- Network Address Translator (NAT)
 - Riduce la richiesta dello spazio di indirizzamento Internet
 - Nasconde gli indirizzi IP interni
 - Esegue un packet filtering per il traffico sconosciuto

DHCP – RFC 2131,2132 Dynamic Host Configuration Protocol

Configurazione automatica e dinamica di

- Indirizzo IP
- Netmask
- Broadcast
- Host name
- Default gateway
- Server DNS

Server su porta 67 UDP

 Quando un host attiva l'interfaccia di rete, invia in modalità broadcast un messaggio DHCPDISCOVER in cerca di un server DHCP

DHCP-2

 Ciascun server DHCP presente risponde all'host con un messaggio DHCPOFFER con cui propone un indirizzo IP

• L'host accetta una delle offerte proposte dai server e manda un messaggio **DHCPREQUEST** in cui richiede la configurazione, specificando il server

 Il server DHCP risponde all'host con un messaggio DHCPACK specificando i parametri di configurazione

Ulteriori dettagli

- Un'analisi dettagliata del protocollo DHCP che include:
 - Esempi operativi
 - Catture di traffico
- Si può trovare su virtuale

Packet Filter e Firewall

Metodologie di filtraggio dei datagrammi

- •Indirizzo IP sorgente e destinazione
- Protocollo (TCP, UDP, ICMP)
- •Porta sorgente e destinazione
- •Direzione del traffico

Può essere configurato dinamicamente

Instradamento selettivo: packet filter

Stateful Packet Inspection

Application Layer Gateway (Proxy)

Application Layer Gateway (Proxy)

Firewall

- Packet Filter: filtra i pacchetti seguendo la politiche stabilite
 - Filtri: generalmente configurati staticamente
 - La maggioranza delle configurazioni non permettono pacchetti per porte "non-standard" (Internet Assigned Numbers Authority – IANA)
- Stateful Packet Inspection
 - Mantiene il contesto dei pacchetti sia nel trasporto che nello strato applicativo
 - Adatta dinamicamente le specifiche dei filtri
- Application Layer Gateway (trasparente o proxy esplicito)
 - Monitora le connessioni: analizza il contenuto dei protocolli applicativi
 - · A scapito della sicurezza di comunicazione end-to-end
 - Adatta dinamicamente le specifiche dei filtri
- Per ogni strato (layer) dello stack possono essere applicate politiche (policies) differenti

Protezione di host: firewall

- Un firewall è un filtro software/hardware che serve a proteggersi da accessi indesiderati provenienti dall' esterno della rete
- Può essere semplicemente un programma installato sul proprio PC che protegge quest' ultimo da attacchi esterni
 - tipicamente usato in accessi domestici a larga banda (ADSL, FTTH)

 Oppure può essere una macchina dedicata che filtra tutto il traffico da e per una rete locale

- Tutto il traffico fra la rete locale ed Internet deve essere filtrato dal firewall
- Solo il traffico autorizzato deve attraversare il firewall
- Si deve comunque permettere che i servizi di rete ritenuti necessari siano mantenuti
- Il firewall deve essere per quanto possibile immune da problemi di sicurezza sull' host
- In fase di configurazione di un firewall, per prima cosa si deve decidere la politica di default per i servizi di rete
 - default deny: tutti servizi non esplicitamente permessi sono negati
 - default permit: tutti i servizi non esplicitamente negati sono permessi

- Un firewall può essere implementato come
 - packet filter
 - proxy server
 - application gateway
 - circuit-level gateway

Packet filter

- si interpone un router fra la rete locale ed Internet
- sul router si configura un filtro sui datagrammi IP da trasferire attraverso le varie interfacce
- il filtro scarta i datagrammi sulla base di
 - · indirizzo IP sorgente o destinazione
 - tipo di servizio a cui il datagramma è destinato (porta TCP/UDP)
 - · interfaccia di provenienza o destinazione

Proxy server

- nella rete protetta l'accesso ad Internet è consentito solo ad alcuni host
- si interpone un server apposito detto proxy server per realizzare la comunicazione per tutti gli host
- il proxy server evita un flusso diretto di datagrammi fra Internet e le macchine della rete locale

- application level

 viene impiegato un proxy server dedicato per ogni servizio che si vuole garantire

- circuit level gateway

• è un proxy server generico in grado di inoltrare le richieste relative a molti servizi

Configurazione di packet filter e

Network Address Translation

Network Address Translation (NAT)

- Tecnica per il filtraggio di pacchetti IP con sostituzione degli indirizzi (mascheramento)
 - Indirizzi e porte
- Definito nella RFC 3022 per permettere a reti IP private
 l'accesso a reti IP pubbliche tramite un apposito gateway
- Utile per il risparmio di indirizzi IP pubblici e il riutilizzo di indirizzi IP privati

- Efficiente uso della spazio degli indirizzi
- Condividere uno o pochi indirizzi
- Uso di indirizzi privati nella LAN locale (10.x.x.x, 192.168.x.x, ...)
- Security
 - Rendere gli host interni non accessibili dall' esterno
 - Nascondere gli indirizzi e la struttura della rete
- Include un packet filter, stateful packet inspection configurati dinamicamente

Network (+Port) Address Translator (NAT)

Basic NAT – Conversione di indirizzo

- Il NAT può fornire una semplice conversione di indirizzo IP (statica o dinamica)
- Conversioni contemporanee limitate dal numero di indirizzi IP pubblici a disposizione del gateway NAT

Conversione di indirizzo e porta

- Il NAT può fornire anche conversione di indirizzo IP e porta TCP o UDP
- Conversioni contemporanee possibili anche con un unico indirizzo IP pubblico del gateway NAT

Direzione delle connessioni

- Tipicamente da rete privata verso rete pubblica
 - Il NAT si preoccupa di effettuare la conversione inversa quando arrivano le risposte
 - Registra le corrispondenze in corso in una tabella
- E' possibile contattare dalla rete pubblica un host sulla rete privata?
 - Dipende dal tipo di NAT e dalla relativa configurazione

Port forwarding

• Il NAT permette l'ingresso di pacchetti destinati a porte specifiche effettuando la traduzione opportuna

Analisi di connessioni attraverso NAT

File	Edit Capt	ture <u>D</u> isplay <u>T</u> ools			<u>H</u> elp			
No	Time	Source	Destination	Protocol	Info			
1	0.000000	192.168.10.174	137.204.24.12	HTTP	GET /Ingegneria+Cesena/default.htm HTTP/1.			
2	0.034608	137.204.24.12	192.168.10.174	TCP	80 > 3770 [ACK] Seq=3665385073 Ack=46511275 Win=1			
		137.204.24.12	192.168.10.174	HTTP	HTTP/1.1 200 OK			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665387993 Win=6			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665389453 Win=6			
10		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665392373 Win=6			
11		137.204.24.12	192.168.10.174	HTTP	Continuation			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		137.204.24.12	192.168.10.174	HTTP	Continuation			
		192.168.10.174	137.204.24.12	HTTP	GET /NR/Custom/web/Common/css/stile_main.c			
		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665393833 Win=6			
		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665396753 Win=6			
		192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665398213 Win=6			
	0.905643	192.168.10.174	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665399673 Win=6]			

Analisi di connessioni attraverso NAT

(NA										
File	Edit Capt	ure <u>Display</u> Tool	s		Hel _l)				
No	Time	Source	Destination	Protocol	Info	Ā				
1	0.000000	137.204.57.76	137.204.24.12	HTTP	GET /Ingegneria+Cesena/default.htm HTTP/1.					
2	0.034559	137.204.24.12	137.204.57.76	TCP	80 > 3770 [ACK] Seq=3665385073 Ack=46511275 win=1128					
3	0.896736	137.204.24.12	137.204.57.76	HTTP	HTTP/1.1 200 OK	┙				
4	0.896859	137.204.24.12	137.204.57.76	HTTP	Continuation					
5	0.898045	137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665387993 win=6424					
6	0.899803	137.204.24.12	137.204.57.76	HTTP	Continuation					
		137.204.24.12	137.204.57.76	HTTP	Continuation					
		137.204.24.12	137.204.57.76	HTTP	Continuation					
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665389453 win=6424					
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665392373 win=6424					
		137.204.24.12	137.204.57.76	HTTP	Continuation					
		137.204.24.12		HTTP	Continuation					
		137.204.24.12	137.204.57.76		Continuation					
		137.204.24.12		HTTP	Continuation					
		137.204.24.12	137.204.57.76		Continuation					
		137.204.57.76	137.204.24.12	HTTP	GET /NR/Custom/web/Common/css/stile_main.c					
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665393833 Win=6424					
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665396753 Win=6424					
		137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665398213 Win=6424					
•	0.905619	137.204.57.76	137.204.24.12	TCP	3770 > 80 [ACK] Seq=46511275 Ack=3665399673 Win=6424	1				

- Il NAT è trasparente per l'applicazione
 - Modifica l'intestazione IP e TCP/UDP ma non il payload
- Questo è un problema in alcuni casi specifici
 - Applicazioni non sono trasparenti al NAT
 - · Contengono indirizzi IP e numeri di porta nel payload
 - · FTP utilizza due connessioni parallele
 - connessione per l'interazione con il server tramite linea di comando (porta TCP 21)
 - connessione per il trasferimento dei dati da e verso il server
 - i parametri della seconda sono specificati nei dati trasmessi dalla prima
 - Il tipo di traffico permesso dipende dal tipo di NAT
 - Full Cone NAT
 - · (Port) Restricted Cone NAT
 - Symmetric NAT