

Dataset Analysis and Cleaning

Analyze the provided dataset to identify its key characteristics for data-driven decisionmaking. Upon receiving a specific analytical question, address it strictly using the dataset. Your deliverables must include a clear, concise answer to the question and the Python code that extracts and processes the data used to derive your answer. The dataset should be cleaned by filtering admission_period to include only values between 2006.1 and 2019.2, removing entries where enrollment_type is labeled as "Exempted", and excluding those where situation is "In Progress". The resulting cleaned dataset should be stored in a new DataFrame named df_filtered.

qwen-max-latest

To address your request. I will outline the key characteristics of the dataset and then proceed to clean it according to the specified criteria. Once the dataset is cleaned, I will store it in a new DataFrame named df_filtered. Below is the step-bystep process:

Key Characteristics of the Dataset

1. Columns and Data Types:

- The dataset contains numerous columns, including identifiers like id, temporal data such as admission_period and enrollment_period, categorical data like situation, enrollment_type, and quota, and numerical data such as
- Columns like admission_period and enrollment_period appear to be in a "year.semester" format (e.g., 2006.1 for the first semester of 2006)

2. Temporal Scope :

• The dataset spans multiple years, with admission_period ranging from the 1980s to 2019.

3. Categorical Variables

- situation: Indicates the student's academic status (e.g., Graduate, Dropout, Reentry).
- enrollment_type: Describes the type of enrollment (e.g., Regular, Exempted).
- quota : Specifies whether the student benefited from quota reservation.

4. Numerical Variables:

- grade: Represents the grade obtained in a specific course.
- credits: Indicates the number of credits associated with a course.

5. Missing Values

• Some columns contain missing values (e.g., race , school_type).

6. Potential Use Cases:

- · Analyzing trends in academic performance, dropout rates, or graduation rates over time.
- · Investigating the impact of quotas or enrollment types on student outcomes.

Data Cleaning and Filtering

The dataset needs to be cleaned based on the following criteria:

- 1. Filter admission_period to include only values between 2006.1 and 2019.2.
- 2. Remove entries where enrollment_type is labeled as "Exempted"
- 3. Exclude entries where situation is "In Progress".

Python Code for Data Cleaning

```
1 import pandas as pd
3 # Load the dataset
4 df = pd.read_csv('stratified_history.csv')
6 # Step 1: Filter admission_period to include only values between 2006.1 and 2019.2
7 df_filtered = df[(df['admission_period'] >= 2006.1) & (df['admission_period'] <= 2019.2)]
```

```
9 # Step 2: Remove entries where enrollment_type is labeled as "Exempted"
10 df_filtered = df_filtered[df_filtered['enrollment_type'] != 'Exempted']
12 # Step 3: Exclude entries where situation is "In Progress"
13 df_filtered = df_filtered[df_filtered['situation'] != 'In Progress']
14
15 # Display the first few rows of the cleaned dataset
16 print(df_filtered.head())
18 # Save the cleaned dataset to a new CSV file (optional)
19 df_filtered.to_csv('cleaned_dataset.csv', index=False)
```

Explanation of the Code

- 1. Loading the Dataset :
 - The dataset is loaded using pd.read_csv().
- 2. Filtering admission_period :
 - The condition (df['admission_period'] >= 2006.1) & (df['admission_period'] <= 2019.2) ensures that only rows with admission_period within the specified range are retained.
- 3. Removing "Exempted" Entries:
 - The condition df_filtered['enrollment_type'] != 'Exempted' filters out rows where enrollment_type is labeled as "Exempted"
- 4. Excluding "In Progress" Situations:
 - The condition df_filtered['situation'] != 'In Progress' removes rows where situation is "In Progress".
- 5. Saving the Cleaned Dataset:
 - The cleaned dataset is optionally saved to a new CSV file for further analysis.

Resulting DataFrame (df_filtered)

The resulting DataFrame, df_filtered, contains only the rows that meet the specified criteria. It can now be used for further analysis or to address specific analytical questions.

If you have a specific analytical question, please provide it, and I will use the cleaned dataset to derive an answer along with the corresponding Python code.

> What are the key statistical properties (mean, median, variance) of students' final grades for each enrollment period?

qwen-max-latest

To analyze the key statistical properties (mean, median, and variance) of students' final grades (final_average) for each enrollment_period , we will use the cleaned dataset (df_filtered) generated earlier. Below is the step-by-step approach:

Approach

- 1. Group Data by Enrollment Period :
 - Use the groupby() function to group the data by enrollment_period .
- 2. Calculate Statistical Properties :
 - For each group (i.e., each enrollment_period), calculate:
 - Mean : Average of final_average
 - Median : Middle value of final average when sorted.
 - Variance : Measure of how much the values in final_average vary from the mean.
- 3. Handle Missing Values :
 - Ensure that missing or null values in final_average are excluded during calculations.
- 4. Output Results:
 - Create a summary DataFrame containing the calculated statistics for each enrollment_period .
- 5. Python Code:
 - Implement the above steps using Python and Pandas.

Python Code

```
python
                                                                                         1 import pandas as pd
3 # Load the cleaned dataset (if not already loaded)
4 # df_filtered = pd.read_csv('cleaned_dataset.csv')
```

```
6 # Ensure 'final_average' is numeric and drop rows with NaN values in 'final_average'
7 df_filtered['final_average'] = pd.to_numeric(df_filtered['final_average'], errors='coerce')
8 df_filtered = df_filtered.dropna(subset=['final_average'])
10 # Group by 'enrollment_period' and calculate mean, median, and variance
grade_stats = df_filtered.groupby('enrollment_period')['final_average'].agg(
12
       mean grade='mean',
       median_grade='median',
13
14
       variance_grade='var'
15 ).reset_index()
17 # Display the resulting statistics
18 print(grade_stats)
19
20 # Save the results to a CSV file (optional)
21 grade_stats.to_csv('grade_statistics_by_enrollment_period.csv', index=False)
```

Explanation of the Code

1. Data Cleaning

- The column final_average is converted to a numeric type using pd.to_numeric(), with invalid values coerced to
 NaN.
- Rows with missing final_average values are dropped using dropna().

2. Grouping and Aggregation :

- The dataset is grouped by enrollment_period .
- For each group, the following aggregations are performed:
 - Computes the average grade.
 - median: Finds the middle value of the grades.
 - var : Calculates the variance of the grades.

3. Output:

The resulting DataFrame contains three columns: mean_grade , median_grade , and variance_grade , along with the corresponding enrollment_period .

4. Saving Results :

• The results are optionally saved to a CSV file for further analysis.

Example Output

The output DataFrame (grade_stats) might look like this:

ENROLLMENT_PERIOD	MEAN_GRADE	MEDIAN_GRADE	VARIANCE_GRADE
2006.1	7.2	7.5	1.2
2006.2	6.8	7.0	1.5
2007.1	7.0	7.2	1.3

Interpretation

- Mean Grade: Represents the average performance of students in each enrollment period.
- Median Grade: Indicates the central tendency, which is less sensitive to outliers compared to the mean.
- Variance : Measures the spread or variability of grades within each enrollment period. A higher variance suggests greater variability in student performance.

If you need further analysis or visualization (e.g., plotting trends over time), please let me know!