Note. There are 6 problems in total. For problems 2 to 6, to ensure consideration for partial/full scores, write down necessary intermediate steps. Correct answers with inadequate or no intermediate steps may result in zero credit.

Some useful formula.

• The probability mass function (pmf) of a binomial (n, p) distribution is

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x = 0, 1, \dots, n$,

and zero, otherwise. Its mean and variance are np and np(1-p), respectively. When n=1, it is called Bernoulli(p) distribution.

• The pmf of a negative binomial (r, p) distribution is

$$p(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$
, for $x = r, r+1, r+2, \dots$

and zero, otherwise. Its mean and variance are $\frac{r}{p}$ and $\frac{r(1-p)}{p^2}$, respectively. When r=1, it is called geometric (p) distribution.

• The pmf of a Poisson(λ) distribution is

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
, for $x = 0, 1, 2, ...,$

and zero, otherwise. Its mean and variance are λ and λ , respectively.

• The joint pmf of a multinomial (n, m, p_1, \ldots, p_m) , where $p_1 + \cdots + p_m = 1$, is

$$p(x_1,\ldots,x_m) = \binom{n}{x_1,\ldots,x_m} p_1^{x_1} \times \cdots \times p_m^{x_m},$$

for $0 \le x_i \le n$, i = 1, ..., m; $x_1 + \cdots + x_m = n$, and zero, otherwise.

• The probability density function (pdf) of a uniform (α, β) distribution is

$$f(x) = \frac{1}{\beta - \alpha}$$
, for $\alpha < x < \beta$,

and zero, otherwise. Its mean and variance are $\frac{\alpha+\beta}{2}$ and $\frac{(\beta-\alpha)^2}{12}$, respectively.

• The pdf of a gamma(α, λ) distribution is

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$$
, for $x > 0$,

and zero, otherwise. Its mean and variance are $\frac{\alpha}{\lambda}$ and $\frac{\alpha}{\lambda^2}$, respectively. The gamma function is defined as $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$, and $\Gamma(\alpha) = (\alpha - 1)!$ if α is a positive integer. When $\alpha = 1$, it is called exponential(λ) distribution.

- 1. (10 points) For each of the random variable X or random vector \mathbf{X} given below,
 - determine the type of the (joint) distribution (i.e., $\operatorname{normal}(\mu, \sigma^2)$, exponential(λ), $\operatorname{gamma}(\alpha, \lambda)$, $\operatorname{beta}(\alpha, \beta)$, uniform, $\operatorname{Weibull}(\alpha, \beta, \nu)$, $\operatorname{Cauchy}(\mu, \sigma)$, $\operatorname{Poisson}(\lambda)$, $\operatorname{hyper-geometric}(n, N, R)$, $\operatorname{binomial}(n, p)$, $\operatorname{Bernoulli}(p)$, $\operatorname{multinomial}(n, m, p_1, \ldots, p_m)$, $\operatorname{negative binomial}(r, p)$, $\operatorname{geometric}(p)$, ..., etc.) which best models X or X, and
 - if possible, identify the values of the parameters in the chosen distribution.
 - (a) (5 points) George, Mary, and Hilary live in a certain house in which phone calls are received as a Poisson process with parameter λ per hour, where λ is unknown. Someday, in order to receive an important phone call, they came up with a schedule: George waited by the phone between 9AM-10AM, Mary waited by the pone between 10AM-12PM, and Hilary waited by the phone between 12PM-5PM. Let X_1, X_2, X_3 be the numbers of phone calls that George, Mary, and Hilary received respectively. Suppose that the total number of phone calls they received between 9AM-5PM was 12. Set $\mathbf{X} = (X_1, X_2, X_3)$.
 - (b) (5 points) A trained flea sits on the real line at x = 4, and its master begins flipping a fair coin. Each time the coin shows a head, the flea hops one unit to the right, each time a tail shows it hops one unit to the left. Let X be the random variable "the flea's position after a large number of flips," where the number of flips is unknown. [Hint. Apply the normal approximation to the binomial distribution.]
- 2. (20 points) Compute the following probabilities. A correct answer without intermediate steps will receive no credit.
 - (a) (6 points) A point is chosen at random on a line segment of length L. Compute the probability that the ratio of the shorter to the longer segment is less than 1/4.
 - (b) (7 points) The time that it takes to service a car is an exponential random variable with rate $\lambda = 1$. If A.J. brings his car in a time 0 and M.J. brings her car in a time t > 0, what is the probability that M.J.'s car is ready before A.J.'s car? (assume that service times are independent and service begins upon arrival of the car.)
 - (c) (7 points) If X_1, X_2, X_3 are independent random variables that are uniformly distribution over (0,1), compute the probability that the largest of the three is greater than the sum of the other two. [**Hint**. $\{X_{(3)} > X_{(2)} + X_{(1)}\} = \{X_3 > X_1 + X_2\} \cup \{X_2 > X_1 + X_3\} \cup \{X_1 > X_2 + X_3\}$.]
- 3. (14 points) Suppose X and Y are two jointly distributed random variables with joint probability density function (pdf):

$$f_{X,Y}(x,y) = \begin{cases} c \cdot xy(1-x), & \text{for } 0 < x < 1, \ 0 < y < 1, \\ 0, & \text{otherwise,} \end{cases}$$

where c is a constant.

- (a) (4 points) Find the value of c.
- (b) (4 points) Find the marginal pdf of X.
- (c) (3 points) Examine whether X and Y are independent.
- (d) (3 points) Find P(X < 1/2|Y > 1/2). [Hint. Use (c) to simplify the calculation.]

4. (21 points) Let X_1, \ldots, X_n be independent uniform (0,1) random variables. Define $X_{(1)} = \min(X_1, \ldots, X_n)$ and $X_{(n)} = \max(X_1, \ldots, X_n)$. Let

$$R = X_{(n)} - X_{(1)}$$
 and $M = \frac{X_{(n)} + X_{(1)}}{2}$.

(a) (3 points) Show that the joint pdf of $X_{(1)}$ and $X_{(n)}$ is

$$f_{X_{(1)},X_{(n)}}(s,t) = \begin{cases} n(n-1)(t-s)^{n-2}, & \text{if } 0 < s < t < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (b) (8 points) Find the joint cumulative distribution function (cdf) $F_{X_{(1)},X_{(n)}}(u,v)$ of $X_{(1)}$ and $X_{(n)}$.
- (c) (6 points) Compute the joint pdf of R and M.
- (d) (4 points) Show that the covariance of R and M is $\left[Var(X_{(n)}) Var(X_{(1)})\right]/2$.
- 5. (16 points) Suppose that W, the amount of moisture in the air on a given day, is a gamma random variable with parameters (α, λ) , where α is a positive integer. Suppose also that given that W = w, the number of accidents during that day call it N has a Poisson distribution with mean w.
 - (a) (4 points) Use multiplication law to find the joint distribution of W and N.
 - (b) (6 points) Use the law of total probability to show that $N + \alpha$ is a negative binomial random variable with parameters $\left(\alpha, \frac{\lambda}{\lambda+1}\right)$.
 - (c) (6 points) Use Bayes theorem to show that the conditional distribution of W given that N = n is the gamma distribution with parameters $(\alpha + n, \lambda + 1)$.
- 6. (19 points) Suppose that X, the number of people who enter an elevator on the ground floor, is a Poisson random variable with mean μ. Suppose that there are R floors above the ground floor, and each person is equally likely to get off at any one of the R floors, independently of where the others get off. Let Y be number of stops that the elevator will make before discharging all of its passengers.
 - (a) (3 points) For k = 1, 2, ..., R, let

$$I_k = \begin{cases} 1, & \text{if the elevator stops at floor } k, \\ 0, & \text{otherwise.} \end{cases}$$

Show that the conditional distribution of I_k given X = x is Bernoulli(p) with

$$p = 1 - \left(\frac{R-1}{R}\right)^x$$

for $k = 1, 2, \ldots, R$. [Hint. Calculate $P(I_k = 0|X = x)$.]

- (b) (4 points) Examine whether I_1 and I_2 are conditionally independent given X = x. [Hint. Calculate $P(I_1 = 0, I_2 = 0 | X = x)$ to examine.]
- (c) (5 points) Identify the conditional expectation of Y given X = x by expressing Y as a function of I_1, \ldots, I_R .
- (d) (7 points) Show that the expected number of stops that the elevator will make before discharging all of its passengers (i.e., $E_Y(Y)$) is $R\left(1-e^{-\mu/R}\right)$. [Hint. Apply law of total expectation.]