Dimostrare che un linguaggio non è regolare

Usate il Pumping Lemma per dimostrare che i seguenti linguaggi non sono regolari, riempiendo gli spazi nel testo sottostante.

Esercizio 1

 $L = \{w \in \{a, b\}^* \mid \text{il numero di } a \text{ è maggiore del numero di } b\}$

Dimostrazione. Supponiamo per assurdo che Lsia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w =______, che appartiene ad L ed è di lunghezza maggiore di k;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- (dimostra che per qualsiasi suddivisione xyz puoi trovare un esponente i tale che $xy^iz \notin L$)

Abbiamo trovato un assurdo quindi L non può essere regolare.

П

Esercizio 2

$$L = \{a^l b^m a^n \mid l + m = n\}$$

Dimostrazione. Supponiamo per assurdo che L sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w=______, che appartiene ad L ed è di lunghezza maggiore di k;
- sia w=xyz una suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq k;$
- (dimostra che per qualsiasi suddivisione xyz puoi trovare un esponente i tale che $xy^iz \notin L$)

Abbiamo trovato un assurdo quindi L non può essere regolare.

Esercizio 3

$$L = \{a^l b^m a^n \mid l + m \equiv n \mod 3\}$$

Dimostrazione. Supponiamo per assurdo che L sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w=______, che appartiene ad L ed è di lunghezza maggiore di k;
- sia w=xyz una suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq k;$
- (dimostra che per qualsiasi suddivisione xyz puoi trovare un esponente i tale che $xy^iz \notin L$)

Abbiamo trovato un assurdo quindi L non può essere regolare.

Esercizio 4

$$L = \{0^{n^2} \mid n \ge 0\}$$

Dimostrazione. Supponiamo per assurdo che L sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola w=______, che appartiene ad L ed è di lunghezza maggiore di k;
- sia w=xyz una suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq k;$
- (dimostra che per qualsiasi suddivisione xyz puoi trovare un esponente i tale che $xy^iz \notin L$)

Abbiamo trovato un assurdo quindi ${\cal L}$ non può essere regolare.