

Yan Zhu

if
$$C \ge 2$$
, the inequality is sortified.
thus, $2^{n+1} \in O(2^n)$. Yes

$$n^{1.1} \in O(\log^2 n)$$

$$\lim_{n \to \infty} \frac{n^{(0)}}{\log^3 n}$$

$$\frac{(n^{(1)})}{(n^{(1)})} = (-g(n^{(1)}) - (-g(n^{(1)})) - (-g(n^{(1)}))$$

$$= (-1) \cdot (-g)^{n} - 2 \cdot (-g(n^{(1)}))$$

When
$$n \to \infty$$
, $n^{(1)}$ given forster then $\lfloor g^2 n$, even with any C . So No.

1.b NP
$$2^{m} \leftarrow 0 (2^{n})$$

$$\lim_{n \to \infty} 2^{n} = \infty$$
when $n > \infty$ 2^{n} increase
that then 2^{n} , and
there is no C will satisfy it,

50 NO.

(g)":, much fort than (yely")
$$90 - \frac{1}{100} \frac{1}{100} \rightarrow \infty$$

since the result is ∞ , in fixed $n^{tot} \in SLS(s^t n)$. So, Yes, l.e No. 1. + Yes. In < Oclog3n). 5n € SL ((1-1)*) nt > login nt & login lim ht login lin Nt login (my(n) - (og(log3 n) (mcn2) - (mclagin) = 1 (g(n) - 3 (g(lgn) > 00 = 1/2 log (n) - , log clogn) -> 100 Since not grows forster than ly'n, since logn grows faster the (gclojn), In grows forster the log3n the onswer is No. 50 Yes. 1.9 o(g(n)) (w (g(n)) vicers
(in f(n) = 00 lim f(n) = 0 A: or f(u) that can fit both 0 and ∞ is impossible, become the him qun commot represent two different incresment Parte, thus ogan (w (ga)=0 For example: g (n) = logn f(n) = n2 lin h2 -> 00

n2 & O (logn) n2 &wclogn)

2.6

If x is 0 or 1, the function directly returns x (i.e., it returns 0 when x is 0 and returns 1 when x is 1).

For any other value of x greater than 1, the function calls itself recursively with x - 1 and x - 2 as arguments, adds the results of these two calls together, and returns the sum.

Basically, it calculates the Fibonacci number of a given int X.

3. b.

00

work: max_run =0 1 run_=0 1 loop(n): (if f mylist[i] == key 1 run+=1 1 if run>nax_run 1 max_run =run 1) 4n return max_run 1 1+1+4n+1 =3+4n O(1)=4n+3

The work and span are both O(n).

Work: The algorithm traverses the entire list, and performs a series of constant operations each time, resulting in the total workload.

Span: Since all operations of the algorithm are executed sequentially, so is the span.

3.0

Operation Count Overview . . if len(mylist) -- o

return Result(o. o. o. False)

Operations: if len(mylist) -- 1:

if mylist[o] -- key

Operations: 1

return Result(1, 1, 1, True) Operations:

return Result(o. o. o. False)

mid = len(mylist) // 2

left_result - longest_run_recursive(mylist[: mid], key)

Operations: Win/2) right_result = longest_run_recursive(mylist[mid:], key)

Operations: W(n/2) left len-left result left size

Operations: 1 if left result is entire range and mylist[mid] - key.

Operations: 2

left_len -- right_result.left_size Operations: 1

right_len - right_result.right_size

if right result is entire range and mylist[mid-i] -- key:

Operations: 2 right_len -- left_result right_size

cross len-

if mylist[mid-1] -- key and mylist[mid] -- key:

cross_len - left_result right_size - right_result left_size

max_len = max(left_result.longest_size, right_result.longest_size, cross_len)

entire_range - left_result is_entire_range and right_result is_entire_range

return Result(left_len, right_len, max_len, entire_range)

Operations: 1

() C(1 = 23

3.0

The T(n) of the vecuvsive Algorithm; T(n) = 27(n/2) + 0 (1) (W(n) = O(n) since every element is in the recursive. 5(n) = () (h) Become the process is liner, it depoils on the result of last recursive.

Wa) is some as 3d. But sinze we one curing panallel computing, leading to the Octogn).