Introduction to Machine Learning

Lecture 6

Instructor:

Dr. Tom Arodz

- P(AB)=P(A)P(B) Independent events:
- P(snow,dog_barked) = P(snow)*P(dog_barked)
 - P(dog_barked)=0.01, P(snow)= 0.0526
 P(snow,dog_barked) = 0.00526

```
P(\text{snow} \mid \text{dog\_barked}) = P(\text{snow})
because P(A|B)=P(AB)/P(B)=P(A) since P(AB)=P(A)P(B)
```

- P(dog_barked)=0.01, P(snow)= 0.0526
 P(snow,dog_barked) = 0.00526
- Informal: knowing if dog barked doesn't give us any additional info about snow
- P(i.i.d. dataset)=P(sample1)*P(sample2)*P(sample3)...
 - Example: Gaussian-distributed dataset
 - $P(x|mean) = exp(-(x-mean)^2)$
 - P(dataset| mean) = $exp(-(x1-mean)^2)$ *exp(-(x2-mean)^2) *exp(-(x3-mean)^2)

- Conditional independence: P(AB|C)=P(A|C)P(B|C)
 - 3 variables: car length (A), sportiness (B), type (C, car or van)
 - overall, length (A) and sportiness (B) are correlated
 - cars are shorter and more sporty than vans

but:

- within cars ("|C=car"), sportiness and length are independent
- within vans ("|C=van"), sportiness and length are independent
- P(sportiness,length) != P(sportiness)P(length)
 - Not independent
 - but
- P(sportiness,length | vehicle_type)= P(sportiness|vehicle_type)*P(length|vehicle_type)
 - Conditionally independent

- Conditional independence: P(AB | C)=P(A | C)P(B | C)
- Alternatively: P(A|BC)=P(A|C)
 - Adding knowledge of B happening to knowledge of C happening doesn't change probability of A (similar to P(snow|bark)=P(snow), but "|C")
 - If we assume conditional independence of A&B given C, we can eliminate B and simplify our equations
- From definitions:

$$P(AB|C) = P(ABC) / P(C)$$

$$P(A|C) = P(AC) / P(C)$$

$$P(B|C) = P(BC) / P(C)$$

- Together, blue expands using definitions as:
 - P(ABC) / P(C) = [P(AC) / P(C)] * [P(BC) / P(C)]
 - P(ABC) = [P(AC) * P(BC)] / P(C)
- Also from definition:
 - P(A|BC) = P(ABC) / P(BC)
- Substitute green gives us: P(A|BC) = {[P(AC) * P(BC)] / P(C)} / P(BC)
- Which is: P(A | BC) = P(AC) / P(C) = P(A | C)

- Law of total probability
 - $P(A) = \Sigma_i P(A \mid B_i) P(B_i)$
 - "B" may or may not be related to "A"
 - The equality is always true by rules of math,
 as long as we sum up over all options B_i for B in the summation

```
P(snow) =
    P(snow|dog_barked)P(dog_barked)
+P(snow|dog_didn't_bark)P(dog_didn't_bark)
=
    P(snow)P(dog_barked)
+P(snow)(1-P(dog_barked))
= P(snow)(P(dog_barked) + 1 - P(dog_barked))
    P(snow)*1
```

- Simplifying the language: likelihood L(A/B) vs conditional probability P(B/A)
 - We define L(A|B) to be proportional to P(B|A)
 - It's not normalized to sum(A)=1!
 - Likelihood of subzero (given there's snow) is proportional to conditional probability of snow given subzero:
 L(subzero|snow) = P(snow|subzero) = 0.5
 - Instead of saying "conditional probability of B given A" we can simply say "likelihood of A" (for a given B, often with B implied from context and not mentioned)
 - "find A with highest conditional probability of B given A, for given B" can be shortened to: "find A with highest likelihood, for given B".

Recap: MLE

Initial formula:

$$p(y_i | x,S) = p(x | y_i,S) p(y_i | S) / \Sigma_i p(x | y_i,S) P(y_i | S)$$

- Maximum likelihood estimation (MLE) :
 - find single θ_i with highest $p(\theta_i \mid y_i, S)$,
 - θ_i =arg max $_{\theta}$ P(S| θ) or θ_i =arg max $_{\theta}$ P(S| θ)P(θ)
 - Use that parameter, it encapsulates all that we learned from the training set S:

$$p(x \mid y_i,S) = p(x \mid y_i,\theta_i)$$

Final formula:

$$p(y_i \mid x,S) \sim p(x \mid y_i, \theta_i) p(y_i \mid S)$$

2D Gaussian – Car vs SUV

 Fit a gaussian (2 features => 2D Gaussian) to each class (Car, SUV)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]^{-1}$$

- We estimate mean and covariance from data:
 - Simplest option is to just estimate the mean for each class, assume covariance is fixed as a diagonal (identity) matrix

$$\overline{\mathbf{x}} = rac{1}{n} \sum_{i=1}^n \mathbf{x}_j$$

More complex option is to estimate one covariance S for all data (average of covariances for each class)

$$S = \sum_{i=1}^n (\mathbf{x}_j - \overline{\mathbf{x}}) (\mathbf{x}_j - \overline{\mathbf{x}})^T$$

- Even more complex: separate covariance for each class
 - Decision boundary no longer linear

Is one Gaussian per class ideal?

We estimated a single, best-fitting (according to maximum likelihood)
Gaussian for each class

What if our data is not Gaussian?

Gaussian Mixture Models: fit multiple Gaussians

Is one Gaussian per class ideal?

We estimated a single, best-fitting (according to maximum likelihood (MLE))
Gaussian for each class

If our data is (approximately) Gaussian, is one gaussian ideal?

Let's assume yes, but:

Did we pick the right one? We only had limited training data....

- Example ("hidden dice"):
 - we have positive integer samples
 - from a uniform distribution with an unknown maximum M
 - We only know M<=10</p>
 - we observe set S of four values: 2, 4, 7, 8
 - Our goal: estimate p(x|S)
 - Most interestingly,
 what is the probability of seeing
 9 and 10
 based on the above information?
 - i.e., p(x=9|S)=? and p(x=10|S)=?

- Example ("hidden dice"):
 - we have positive integer samples
 - from a uniform distribution with an unknown maximum M
 - We only know M<=10</p>
 - we observe set S of four values: 2, 4, 7, 8
 - Our goal: estimate p(x|S)
- Maximum likelihood (MLE) approach:
 - We choose M for which P(S|M) is highest $P(S|M)=P(\{2,4,7,8\}|M)=P(2|M)*P(4|M)*P(7|M)*P(8|M)$
 - Based on that M, we assume p(x|S) = p(x|M)
 - What's the M?

- **Example:**
 - we have positive integer samples
 - from a uniform distribution with an unknown maximum M
 - We only know M<=10</p>
 - P(x|M)=1/M
 - we observe set S of four values: 2, 4, 7, 8
 - what is p(x|S)?
- Maximum likelihood (MLE) approach:
 - We choose M that leads to highest value of: P(S|M)=P(2|M)*P(4|M)*P(7|M)*P(8|M)
 - If M<8 P(S|M)=0</p>
 - If $M=8 P(S|M)=(1/8)^4$
 - If $M=9 P(S|M)=(1/9)^4$
 - If $M=10 P(S|M)=(1/10)^4$

MLE choice:

highest prob. of training set S among all possible values of M

- 'Example:
 - we have positive integer samples
 - from a uniform distribution with an unknown maximum M
 - We only know M<=10</p>
 - we observe set S of four values: 2, 4, 7, 8
 - what is p(x|S)?
- Maximum likelihood (MLE) approach:
 - We choose M=8, and have: p(x|S)=p(x|M=8)

•
$$P(x|S)$$
 = 1/8= 0.125 for any x<=8
= 0 for x=9, x=10

Would you give seeing 9 when we saw 2,4,7,8 a 0% probability?

- 'Example:
 - we have positive integer samples
 - from a uniform distribution with an unknown maximum M
 - We only know M<=10</p>
 - we observe set S of four values: 2, 4, 7, 8
 - what is p(x|S)?
- Maximum likelihood (MLE) approach:
 - We choose M=8, and have: p(x|S)=p(x|M=8)

•
$$P(x|S)$$
 = 1/8= 0.125 for any x<=8
= 0 for x=9, x=10

Would you give seeing 9 when we saw 2,4,7,8 a 0% probability?

MLE provides a point estimate

- Maximum likelihood (MLE) :
 - find single θ_i with highest $p(\theta_i | y_i, S)$,
 - θ_i =arg max_{θ}P(S| θ) or θ_i =arg max_{θ} P(S| θ)P(θ)
 - Use that parameter, it encapsulates all that we learned from the training set S: $p(x \mid y_{i},S) = p(x \mid y_{i},\theta_{i})$
- For the simple hidden dice problem, MLE resulted in conclusion that the hidden dice has M=8 faces
 - That single number (M=8) is all we get
- It is a serious limitation of the MLE approach:
 - We get one, most likely, value(s) for the parameter(s)
 - It's called a point estimate
- Most "modern" machine learning methods used in practice are similar
 - E.g. training results in a single neural network (a single set of weights)
 - An alternative, more complete approach (Bayesian learning) is often too computationally complex

MLE vs Bayesian estimation

- Known distribution shape, unknown parameters of the distribution (M here), need to be estimated from data
- Maximum likelihood (MLE) approach:
 - We try to estimate single, most likely values of parameters from the training set
 - We use that single estimated value in all reasoning
 - p(x | S) = p(x | M)

Bayesian learning approach:

- We treat parameters as a random variable
- We treat the training set as evidence that allows us to assign probabilities to different values of parameters
 - P(M=8), P(M=9), P(M=10)
- We use all possible parameter values M, but each value carries different weight, based on its probability P(M|S)
 - $p(x | S) = \Sigma_M p(x | M) P(M | S)$

Bayesian estimation

- $p(x \mid S) = \sum_{i} p(x \mid \theta_{i}) P(\theta_{i} \mid S)$ $P(\theta_{i} \mid S) = P(S|\theta_{i})P(\theta_{i}) / \sum_{i} P(S|\theta_{i})P(\theta_{i})$
 - Let's assume P(M=1)=P(M=2)=...=P(M=10)=0.1
- $P(S|\theta_i) = \Pi_k P(x_k|\theta_i)$
 - P(x|S) = p(x|M=8) P(M=8|S) + p(x|M=9) P(M=9|S) + p(x|M=10) P(M=10|S)
 - P(M=8|S) = P(S|M=8)P(M=8) / ... $= (1/8)^4 / [(1/8)^4 + (1/9)^4 + (1/10)^4] = 0.4916$
 - P(M=9|S) = P(S|M=9)P(M=9) / ... $= (1/9)^4 / [(1/8)^4 + (1/9)^4 + (1/10)^4] = 0.3069$
 - P(M=10|S) = P(S|M=10)P(M=10) / ... $= (1/10)^4 / [(1/8)^4 + (1/9)^4 + (1/10)^4] = 0.2014$
- P(x|S) = 0.49 p(x|M=8) + 0.31 p(x|M=9) + 0.20 p(x|M=10)
 - P(x=9|S) = 0.49*0 + 0.31*1/9 + 0.20*1/10 = 0.054 (not 0.0 as in MLE)
 - P(x=8|S) = 0.49*1/8 + 0.31*1/9 + 0.20*1/10 = 0.116 (not 0.125)

MLE vs Bayesian estimation

- **Example:**
 - we have positive integer samples
 - from a uniform distribution with an unknown maximum M
 - We only know M<=10</p>
 - P(x|M)=1/M
 - we observe set S of four values: 2, 4, 7, 8
 - what is p(x|S)?
- Let's get more data:
 - We observed 4 more points (now we have 8 samples)
 - Still, we haven't see 9 or 10,
 - the highest number we've seen is still 8
- How would that affect MLE estimate of P(x|S)?
- How would that affect Bayesian estimate of P(x|S)?

MLE vs Bayesian estimation

- Maximum likelihood (ML) approach:
 - We choose M that leads to highest value of: P(S|M)=P(2|M)*P(4|M)*P(7|M)*P(8|M) If M<8 P(S|M)=0</p>
 - If $M=8 P(S|M)=(1/8)^8$
 - If $M=9 P(S|M)=(1/9)^8$
 - If $M=10 P(S|M)=(1/10)^8$

Still the same estimate:

•
$$P(x|S)$$
 = 1/8= 0.125 for any x<=8
= 0 for x=9, x=10

Bayesian estimation

- $P(x \mid S) = \sum_{i} p(x \mid \theta_{i}) P(\theta_{i} \mid S)$ $P(\theta_{i} \mid S) = P(S|\theta_{i})P(\theta_{i}) / \sum_{i} P(S|\theta_{i})P(\theta_{i})$
 - Let's assume P(M=1)=P(M=2)=...=P(M=10)=0.1
- $P(S|\theta_i) = \Pi_k P(x_k|\theta_i)$
 - P(x|S) = p(x|M=8) P(M=8|S) + p(x|M=9) P(M=9|S) + p(x|M=10) P(M=10|S)
 - P(M=8|S) = P(S|M=8)P(M=8) / ... $= (1/8)^{8} / [(1/8)^{8} + (1/9)^{8} + (1/10)^{8}] = 0.6420$
 - P(M=9|S) = P(S|M=9)P(M=9) / ... $= (1/9)^{8} / [(1/8)^{8} + (1/9)^{8} + (1/10)^{8}] = 0.2502$
 - P(M=10|S) = P(S|M=10)P(M=10) / ... $= (1/10)^{8} / [(1/8)^{8} + (1/9)^{8} + (1/10)^{8}] = 0.1077$
 - P(x|S) = 0.64 p(x|M=8) + 0.25 p(x|M=9) + 0.11 p(x|M=10)
 - P(x=9|S)=0+0.25/9+0.11/10=0.038 (not 0 as in ML)
 - was 0.054 with 4 instead of 8 samples
 - P(x=8|S) = 0.65/8 + 0.25/9 + 0.11/10 = 0.118 (not 0.125)
 - was **0.116**

Bayesian learning for classification

- For predictions, we use $p(y_i|x,S)$, we can get it from:
 - $p(x \mid y_i, S)$
 - If you have seen m_r red examples in the training set, what's the probability of seeing "red?", i.e., what's $p(x \mid red,S)$
 - Easier if we fit a distribution to the points $p(x \mid red,S) = \mathcal{N}(x \mid \theta_{best_for_red})$

 $P(A)=\Sigma_{i}P(A|B_{i})P(B_{i})$ $P(A|C)=\Sigma_{i}P(A|B_{i}C)P(B_{i}|C)$

- But why pick just one "best" Gaussian?
- Bayesian learning: average over all possible Gaussians, weighted by how good a fit to the data they are
- $p(x \mid y_i, S) = \Sigma_{\theta_i} \mathcal{N}(x \mid y_i, \theta_i, S) p(\theta_i \mid y_i, S)$ $= \Sigma_{\theta_i} \mathcal{N}(x \mid y_i, \theta_i) p(\theta_i \mid y_i, S)$

x and S are conditionally independent given $\theta_{i,j}$ i.e., if we know $\theta_{i,j}$ knowing also S doesn't change our knowledge of x

Bayesian learning for classification

- $p(y_i | x,S) = p(x | y_i,S) p(y_i | S) / Σ_i p(x | y_i,S)$
 - $p(x \mid y_{i},S) = \Sigma_{\theta i} p(x \mid y_{i},\theta_{i}) p(\theta_{i} \mid y_{i},S)$ or in fact $= \int p(x \mid y_{i},\theta_{i}) p(\theta_{i} \mid y_{i},S) d\theta_{i}$ because θ_{i} is not discrete it's a vector of real numbers

- What do the terms on the right mean?
 - $p(x \mid y_i, \theta_i)$ means: the distribution for class y_i is parameterized by a vector θ_i i.e., probability of x depends on the value of θ_i
 - We assume we know the distribution shape $p(x | \theta_i)$
 - E.g. normal distribution: θ_i is info about mean and covariance
 - If we know what θ_i is, we can easily calculate probability of x
 - $p(\theta_i \mid y_i, S)$ means: the value of parameter θ_i depends on the samples from class i in the training set S
 - E.g. some Gaussians (some means) are a "better fit" to the data in the training set than other

1D Gaussian example

 Take into account all possible Gaussians, weighted by their "goodness of fit"

MLE vs Bayesian learning

• $p(y_i \mid x,S) = p(x \mid y_i,S) p(y_i \mid S) / \Sigma_i p(x \mid y_i,S) P(y_i \mid S)$

$$p(x \mid y_{i},S) = \Sigma_{\theta i} p(x \mid \theta_{i}, y_{i}, S) p(\theta_{i} \mid y_{i}, S)$$

 $P(A)=\Sigma_{i}P(A|B_{i})P(B_{i})$ $P(A|C)=\Sigma_{i}P(A|B_{i}C)P(B_{i}|C)$

- Two options:
 - Bayesian estimation use full formula:
 - use formula $p(x \mid y_i, S) = \Sigma_{\theta i} p(x \mid y_i, \theta_i) p(\theta_i \mid y_i, S)$
 - No approximations, we're using all possible values of $θ_i$ weighing them by their probability given training set S
 - often computationally v. intensive!
 - Maximum likelihood (MLE):
 - find single θ_i with highest probability of the training set, p(S| θ_i),
 - θ_i =arg max_{θ} P(S| θ)
 - Make an approximation:
 - since all other θ_i had smaller p(S | θ_i), approximate them by 0
 - We end up with an approximation, but a much simpler formula: $p(x | y_i,S) = p(x | y_i,\theta_i)$

ML Approach #2 - problems

- E.g. Maximum likelihood (MLE) with Gaussians:
 - Training:
 - for each class, find single θ_{class} with highest p($S_{class} \mid \theta_{class}$)
 - $\theta_{class} = arg max_{\theta} mult_normal(\theta).pdf(S_{class})$
 - Predicting: use those θ_{class} to make probabilistic predictions:
 - $p(class|x,S)=mult normal(\theta_{class}).pdf(x)*P[class]$

Problems:

- Why Gaussian? Why not other distribution?
- Any distribution on input features limits us to working directly in input features space
 - Any common "textbook" distribution will be a rather simple formula that uses raw input features
 - Prevents us from doing more flexible, complex reasoning

"true hackers browse the web in binary";)

- Probability distribution governing the problem is not (*fully*) known
 - We can only learn about the problem from the training set
 - Machine Learning Approach #2 (dist. not fully known)
 - E.g. we know (assume) it's e.g. a Gaussian,
 we just don't know the mean and/or covariance matrix
 - Typically, the distribution shape/formula is specified:
 - in the original features space
 - separate for each class (i.e., p(x|y=class))
 - Typically, we use per-class Parametric Models (e.g. MLE or Bayesian learning):
 - Training: we estimate parameters of known distribution shape from training data
 - Inference: we use the distributions with those parameters to make predictions

- Machine Learning Approach #3
 - We typically work directly with p(y|x), instead of per-class p(x|y=a class)
 - Shape of p(y|x) is often not as obvious as p(x|y)
 - It involves all classes together
 - while p(x|y) is class-specific, and often can be assumed/derived based on domain knowledge about generative model (how samples/features arise) for the class
 - We don't directly assume anything about the distribution shape
 - Instead, we model the distribution through some function class $some_f$ that has trainable parameters θ
 - a specific vector of values θ_{opt} of these parameters gives us a specific function to make predictions: $f(x) = some_f(\theta_{opt})(x)$
 - We still work in the original feature space
 - But, sometimes we may reinterpret models as providing new, better feature space

- E.g. Maximum likelihood (MLE) with a distribution:
 - Training:
 - for each class, find single θ_{class} with highest p(S_{class} | θ_{class})
 - θ_{class} = arg max_{θ} distribution (θ).pdf (S_{class})
 - Predicting: use those θ_{class} to make probabilistic predictions:
 - $p(class|x,S)=distribution(\theta_{class}).pdf(x)*P[class]$
- "Modern" machine learning (plug in f instead of distr.):
 - Predicting: use trained parameters θ_{opt}
 - $p(class|x,S)=some_f(\theta_{opt})(x).to_class_probs()$
 - Training:
 - Search for single value of parameters θ that minimizes:

```
\theta_{\text{opt}} = \operatorname{arg\,max}_{\theta} \operatorname{error\_metric}(S, \\ \operatorname{some\_f}(\theta) (x \text{ in } S).to\_class\_probs()
```

"Modern" machine learning:

```
minimize<sub>\theta</sub>: error_metric(S, some f(\theta)(x in S).to class probs())
```

Filling the gaps:

- some $f(\theta)(x)$ **or** some $f(\theta;x)$
 - Some function that takes two groups of inputs
 - Raw input features x
 - Trainable parameters ⊖
 - the parameters help us pick a specific function from a family of functions
- to_class_probs()
 - some_f (θ;x) may not return probabilities, how to convert to: ≥0, sum=1
- error metric
 - Classification error? Do we need something more complex?
- minimize_θ
 - how? For Gaussians in MLE, we had analytical solution, that's unlikely for some_f

The story so far...

- Ideal way of making predictions:
 - Perfect feature
 - Accurate, efficient simulation
 - Fully-known probability distribution p(y|x) from which data comes from
 - or p(x|y), we can use Bayes theorem to get p(y|x) from it
- Traditional machine learning:
 - heuristics / ad-hoc approaches (e.g. perceptron in HW1)
 - maximum likelihood (or Bayesian learning)
 - pick a distribution shape for p(x|y), based on domain knowledge
 - fit best distribution p(x|y) to each class in training data
 - get p(y|x) from these distributions using Bayes theorem
- "Modern" machine learning:
 - produce numbers that we can treat as p(y|x) from some function f(x) not any specific distribution
 - Tweak the parameters θ of function $f(x; \theta)$ to make predictions better

Scheduling...

- HW2 is in Canvas
 - Due Tuesday, 10/1, 5pm
 - Gradescope autograder will become available by Wednesday
- On Wednesday, 9/18, we will have a class focused heavily on practical aspects / coding
 - I will upload a jupyter notbook to Canvas in advance (by tomorrow end of day)
 - Ideally, have a machine+setup ready to execute it during class
 - Either on your machine, or in the cloud e.g. on Google Colab (this requires you to set up an account in advance)
 - The class will be fully online, no in-person part