Science Project Title

Your name | Teacher's name | School

Problem / Question

Enter your question here (statement of the problem)

Hypothesis

- Add your answer / solution here
- Write hypothesis before you begin the experiment
- This should be your best educated guess based on your research

Project Overview

 Add a brief overview or summary of your project. (Use the Bullets button on the Home tab to remove the bullets.)

Variables / Research

Controlled variables

 These are kept the same throughout your experiments

Independent variable

 The one variable you purposely change and test

Dependent variable

- The measure of change observed because of independent variable
- Decide how you will measure the change

Materials

Materials (detailed list)	Quantity (be specific)
Item	Amount

Procedure

Step 1

Describe this step in your experiment

Step 2

Describe this step in your experiment

Step 3

Describe this step in your experiment

Step 4

Describe this step in your experiment

Data / Observations

- Observation 1
- Observation 2
- Observation 3

- Include results based on your experiments
- Result 2
- Result 3

Conclusion

- Brief summary of what you discovered based on results
- Indicate and explain whether or not the data supports your hypothesis

Works Cited

Include print and electronic sources in alphabetical order

Time Series Analysis and Forecasting

Dušan Stević SW10-2016

Problem

Comparison between algorithms for time series forecasting. The main focus of the project is to study performance of statistical models (AR, MA, ARIMA) and machine learning models (LSTM).

Motivation

- A time series is a series of data points indexed in time order.
- Time series forecasting is the use of a model to predict future values based on previously observed values.
- The motivation for this study is to present performance evaluation for state-of-the-art algorithms for time series forecasting.

Objectives

- Data collection (Data acquisition)
- Data preprocessing
- Develop models
- Evaluate algorithmic performance

Data collection and preprocessing

- Historical stock prices
- Stock market API
- Handling NA values
- Feature engineering and scaling

Detecting stationarity in time series

Rolling (moving) statistics

- Additive time series
- Multiplicative time series
- Visual Test
- Rolling Mean
- Rolling Standard Deviation

Augmented Dickey Fuller Test

- Additive time series
- Statistical Tests
- p-value threshold5%
- (H0): Time series is non-stationary. It has some time dependent structure.
- (H1): Time series is stationary

Kwiatkowski–Phillips– Schmidt–Shin Test

- Multiplicative time
- seriesStatistical Tests
- p-value threshold
- (H0): Time series is non-stationary. It has some time dependent structure.
- (H1): Time series is stationary

Techniques for making time series stationary

- Differencing (Time Shift Transformation)
- Decomposition (Time series = Trend + Seasonality + Noise)

Differencing

Given a set of observation on the time series:

$$x0, x1, x2, x3, \ldots xn$$

The shifted values will be:

Thus, the time series with time shifted values are:

$$null, (x1-x0), (x2-x1), (x3-x2), (x4-x3), \dots (xn-x_{n-1})$$

Statistical Models

- The Autoregressive AR(p) Part of ARIMA: describes relationship between a current observation and previous observations.
- The Integrated I(d) Part of ARIMA: describes number of lags (shifts) until time series becomes stationary.
- The Moving Average MA(q) Part of ARIMA: describes relationship between an observation and a residual error from previous observations.

