Partiel 1 de Physique (Durée: 1h30)

Les calculatrices et les documents ne sont pas autorisés.

CORRIGE

Exercice 1 Distribution discrète (5 points)

On considère trois charges ponctuelles +q, +q et -q, placées respectivement aux points O, A et B. Le point M appartient à la médiatrice du segment AB. On donne OA = OB = a.

- 1-a) Représenter sur le schéma ci-dessus les vecteurs champs électrostatiques créés par les trois charges au point M, ainsi que le champ total $\tilde{E}(M)$.
 - b) Exprimer les normes $E_O(M)$, $E_A(M)$ et $E_B(M)$, en fonction de k, q, a et a, ainsi que celle du vecteur champ total : E(M).

blow pant course shirtent que
$$E_{A}(D) = E_{B}(D)$$

et $E_{A}(D) = \frac{1}{k} \frac{9}{AD^{2}} = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha}$

To allers, $E_{O}(D) = \frac{1}{k} \frac{9}{OD^{2}} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$

Des lus, come $E_{A} + E_{B} = t E_{O}$ and athogonus,
on those chiretient

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \sin^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha}$$

$$E(D) = \frac{1}{k} \frac{9}{a^{2} \cos^{2} \alpha} = \frac{1}{k} \frac{9}{a^{2} \cos^{2}$$

2- Exprimer le potentiel électrique V(M) créé au point M, en fonction de k, q, a et α.

Come
$$V(n) = V_0(n) + V_A(n) + V_B(n)$$
 et $q_A = -q_B$

on a $V(n) = V_0(n)$

$$= |k \frac{q}{\alpha \cos \alpha}|$$

Exercice 2 Distribution continue (3 points)

On rappelle ici qu'un élément de longueur de charge dQ situé au point P d'un fil de charge linéique λ constante, crée un champ électrique élémentaire $dE_s(M) = \frac{k\lambda}{x}\cos(\alpha)d\alpha$ où α est tel qu'indiqué cidessous.

1-En utilisant ce résultat calculer les normes des vecteurs $\overrightarrow{E_{AC}}(0)$, $\overrightarrow{E_{CB}}(0)$ et $\overrightarrow{E_{BA}}(0)$ créés respectivement par la distribution continue de charges suivantes au centre O. Représenter ces vecteurs.

où ABC est un triangle équilatéral de côté 2a. Les segments [AC] et [BC] portent une densité linéique de charges λ et [AB] une densité négative – λ.

On
$$\times$$
 for him we be names:

$$dE_{AC}(0) = \frac{k\lambda}{J_0} \cos \alpha \, d\alpha \quad \text{et } J_0 = AJ \cdot \tan \frac{\pi}{G}$$

$$= \alpha/J_3$$

$$= E_{AC}(0) = \int_{-\pi/3}^{\pi/3} \frac{k\lambda J_3}{a} \cos \alpha \, d\alpha$$

$$= k\lambda \frac{J_3}{a} \cdot 2 \sin \left(\frac{\pi}{3}\right) = \left|\frac{k\lambda}{a} \cdot 3\right|$$

$$= E_{CB}(0) = E_{BA}(0) \quad \left(\text{color} des \text{ names}\right).$$

2) En déduire l'expression du champ total créé au point O en fonction de k, \(\lambda\) et a

Plusaurs nethodos. J'en passe la une auca las

pieze les.

$$\overline{E}_{AC}(0) + \overline{E}_{CB}(0) = 2 \cos \left(\frac{\pi}{3}\right) \cdot \overline{E}_{AC}(0)$$
 $= E_{AC}(0) = E_{AB}(0) =$