

Microwave Engineering (Lab)

Lab 6: Design of branch line coupler

DONG Yunyang

dongyy@sustech.edu.cn

411, No. 2, Hui Yuan

Tencent Meeting: 874-068-9694

Bits2Waves, a 1-day experience on building your own modern digital radio.

耦合器是一个四端口微波器件,通常将1-4端口分别指代输入端、直通端、耦合端和隔离端。大多数应用中大部分功率从直通端输出,耦合端则输出一小部分功率,以获得输入端信号的备份,隔离端无输出。如功率监控系统,测试仪器,正交功率分配。

3dB分支线定向耦合器: 如果端口微带线的特性阻抗相等且为 Z_0 ,竖直分支微带线特性阻抗也为 Z_0 ,水平分支微带线特性阻抗取值为 $Z_0/\sqrt{2}$,此时,直通输出口和耦合输出功率相等,均为输入端口的一半,且有90°的相位差,隔离端输出为0。

Fig. 1. Branch-line coupler. Here $Z_0 = 50 \Omega$.

定向耦合器中的两个重要的指标:

耦合度C: 输入端输入功率与耦合端的输出功率之比:

$$C = 10\lg \frac{P_1}{P_3} = 10\lg \frac{1}{|S_{31}|^2}$$

耦合度C表征了耦合强弱。

隔离度I: 输入端输入功率与隔离端的输出功率之比:

$$I = 10\lg \frac{P_1}{P_4} = 10\lg \frac{1}{|S_{41}|^2}$$

Fig. 1. Branch-line coupler. Here $Z_0 = 50 \Omega$.

理想3dB分支线耦合器:

$$C = 3dB$$

$$I = \infty$$

设计一个3dB分支线定向耦合器

- 1. 基板Rogers 5870,厚度0.787mm
- 2. 中心频率: 2GHz
- 3. 端口阻抗: 50Ω
- 4. 带宽: 100MHz
- 5. S11, S22, S33, S44<-15dB
- 6. S41<-20dB
- 7. S21, S31>-3.3dB
- 8. 中心频点abs(S31-S21)<0.1dB
- 9. 中心频点89°<|phase(S31)-phase(S21)|<91°

Fig. 1. Branch-line coupler. Here $Z_0 = 50 \Omega$.

GOAL GOAL Goal Goal OptimGoal1 OptimGoal2 Expr="dB(S11)" Expr="dB(S21)" SimInstanceName="SP1" SimInstanceName="SP1" Weight=1 Weight=1 **GOAL GOAL** Goal Goal OptimGoal3 OptimGoal4 Expr="dB(S31)" Expr="dB(S41)" SimInstanceName="SP1" SimInstanceName="SP1" Weight=1 Weight=1 **GOAL GOAL** Goal Goal OptimGoal5 OptimGoal6 Expr="abs(dB(S31)-dB(S21))" Expr="phase(S31)-phase(S21)-180" SimInstanceName="SP1" SimInstanceName="SP1" Weight=1 Weight=1

next 3 pages

EXPT6.pdf

Name	Value	Unit	Evaluated
hs	0.787	mm	0.787mm
hc	0.017	mm	0.017mm
Lf	10	mm	10mm
Wf	2.33	mm	2.33mm
L1	27.22	mm	27.22mm
W1	2.33	mm	2.33mm
L2	27	mm	27mm
W2	3.82	mm	3.82mm

Optimetrics -> Right click -> Add -> Optimization

Optimetrics -> OptimizationSetup1 -> Right Click -> View Analysis Result

Homework

- Design a Branch Line Coupler in ADS and HFSS
- Center Frequency: 1.45 GHz
- Bandwidth: 100MHz
- Substrate: FR4, thickness: 1.6mm
- S11<-15dB, S21>-3.3dB, S31>-3.3dB, S41<-20dB
- abs(S31-S21)<0.1dB at center frequency
- 89°<|phase(S31)-phase(S21)|<91° at center frequency
- Optimization