Calcul intégral et applications

Table des matières

1.	Ensembles et applications.	1
2.	Espaces mesurables.	1
	2.1. Tribus. • • • • • • • • • • • • • • • • • • •	1
	2.2. Rappels sur la topologie. · · · · · · · · · · · · · · · · · · ·	2
	2.3. Applications mesurables. · · · · · · · · · · · · · · · · · · ·	3
3.	Fonctions indicatrices.	6
4.	Mesure.	8
	4.1. Mesure de Lebesgue. · · · · · · · · · · · · · · · · · · ·	9
	4.2. Ensemble négligeable.	10
5.	Intégrale de Lebesgue.	10
	5.1. Intégrale des fonctions étagées positives.	10
	5.2. Intégrales de fonctions mesurables positives. · · · · · · · · · · · · · · · · · · ·	12

Chapitre 1: Espaces et applications mesurables.

1. Ensembles et applications.

Proposition 1.1. Soit E un ensemble et $(A_i)_{i\in I}$ une collection quelconque de sous-ensembles de E.

$$(1) E \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} E \setminus A_i$$

$$\begin{array}{l} (1) \ E \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} E \setminus A_i. \\ (2) \ E \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} E \setminus A_i \end{array}$$

Définition 1.2. Soit E et F deux ensembles quelconques et soit $f: E \to F$ une application quelconque. L'image par f d'un sous-ensemble $A \subset E$ est le sous ensemble de F noté f(A) défini par : $f(A) = \{ y \in F, \exists x \in A, y = f(x) \} = \{ f(x), x \in A \}.$

L'image réciproque d'un sous-ensemble $B \subset F$ est le sous-ensemble noté $f^{-1}(B)$ de E et défini par $f^{-1}(B) = \{x \in E, f(x) \in B\}.$

2. Espaces mesurables.

2.1. Tribus.

Définition 2.1 (Tribu). Soit E un ensemble quelconque, $\mathcal{P}(E)$ désigne l'ensemble des parties de E. On appelle *tribu* sur E (ou σ -algèbre) une famille de parties de E, $\mathcal{A} \subset \mathcal{P}(E)$ telle que :

- (1) $\emptyset \in \mathcal{A}$,
- (2) Si $A \in \mathcal{A}$ alors $A^c \in \mathcal{A}$.
- (3) Si $(A_n)_{n \in \mathbb{N}}$ est une suite d'éléments de \mathcal{A} , alors $\bigcup_{n > 1} A_n \in \mathcal{A}$.

Remarques 2.2.

(1) Pour toute famille $(B_i)_{i \in I}$ de $\mathcal{P}(E)$,

$$\left(\bigcup_{i\in I} B_i\right)^c = \bigcap_{i\in I} \left(B_i\right)^c \operatorname{et} \left(\bigcap_{i\in I} B_i\right)^c = \bigcup_{i\in I} \left(B_i\right)^c$$

(2) On peut remplacer le point (3) de la définition par : Si $(A_n)_{n\in\mathbb{N}}$, est une suite de \mathcal{A} alors $\bigcap_{n\in I} A_n \in \mathcal{A}.$

(3) De même, par le point (2), on peut remplacer le premier point par $E \in \mathcal{A}$.

Exemples 2.3.

- 1. $\mathcal{P}(E)$ est une tribu sur E. C'est la tribu *fine* sur E.
- 2. $\{\emptyset, E\}$ est une tribu sur E. C'est la tribu grossière sur E.
- 3. Si $A \subset E$ est un sous-ensemble de $E, \{\emptyset, A, A^c, E\}$ est une tribu sur E.
- 4. $\{A \in \mathcal{P}(E) \mid A \text{ ou } A^c \text{ est au plus dénombrable ou } \}$ est une tribu sur E.

Définition 2.4 (Espace mesurable). Soit E un ensemble et A une tribu sur E. Le couple (E, \mathcal{A}) est appelé un *espace mesurable*.

Définition 2.5 (Ensemble mesurable). Soit E un ensemble et A une tribu sur E. Les éléments d'une tribu A sont appelés les *ensembles mesurables* ou les parties mesurables de (E, A).

Proposition 2.6. Une intersection quelconque de tribus sur *E* est une tribu sur *E*.

Démonstration. Soit $(A_i)_{i \in I}$ une famille de tribus sur E. Posons $A = \bigcap_{i \in I} A_i$.

- (1) $\emptyset \in \mathcal{A} \operatorname{car} \emptyset \in (\mathcal{A}_i)_{i \in I}$.
- (2) Soit $A \in \mathcal{A}$ alors $A \in (\mathcal{A}_i)_{i \in I}$ donc $A^c \in (\mathcal{A}_i)_{i \in I}$ car les \mathcal{A}_i sont des tribus donc $A^c \in \bigcap_{i \in I} \mathcal{A}_i$.
- (3) Soit $(A_n)_{n\geq 1}$ une suite d'éléments de \mathcal{A} . Alors $(A_n)_{n\geq 1}\in (\mathcal{A}_i)_{i\in I}$ donc $\bigcup_{n\geq 1}A_n\in \mathcal{A}_{i\in I}$. Ainsi, $\bigcup_{n\geq 1}A_n\in \bigcap_{i\in I}\mathcal{A}_i$.

Corollaire 2.7. Soit $\mathcal{C} \subset \mathcal{P}(E)$ une famille de parties de E. L'intersection de toutes les tribus sur E qui contiennent \mathcal{C} est une tribu sur E.

Démonstration. Application directe de la proposition précédente.

Définition 2.8 (Engendrée). On appelle tribu engendrée par \mathcal{C} la tribu notée par

$$\sigma(\mathcal{C}) := \{ \cap \mathcal{A} \mid \mathcal{A} \text{ soit tribu sur } E \text{ et } \mathcal{C} \subset \mathcal{A} \}.$$

Remarque 2.9. $\sigma(\mathcal{C})$ est la plus petite des tribus sur E qui contiennent \mathcal{C} , i.e si \mathcal{A} est une tribu qui contient \mathcal{C} alors $\sigma(\mathcal{C}) \subset \mathcal{A}$

Exemples 2.10.

- 1. Soit $A \subset E$. Alors $(\sigma(A)) = \{\emptyset, E, A, A^c\}$.
- 2. La tribu engendrée par les singletons sur E est égale à la tribu engendrée par les ensembles dénombrables et on a $\sigma(\{x\} \mid x \in E\}) = \sigma(A \in \mathcal{P}(E) \mid A$ est au plus dénombrable) = $\{A \in \mathcal{P}(E) \mid A \text{ ou } A^c \text{ est au plus dénombrable}\}.$

2.2. Rappels sur la topologie.

Définition 2.11 (Topologie). Soit E un ensemble quelconque, $O \subset \mathcal{P}(E)$ une famille de parties de E. On dit que O est une topologie sur E si elle vérifie :

- (1) $\emptyset \in O$ et $E \in O$.
- (2) Si $(A_i)_{i \in I}$ est une famille quelconque de O alors $\bigcup_{i \in I} A_i \in O$.
- (3) Pour toute famille finie d'élements de $O, (A_1, ..., A_n), \bigcap_{k \in \{1, ..., n\}} A_k \in O$.

Les éléments d'une topologie sont appelés les ouverts.

Proposition 2.12. Une intersection quelconque de topologies est une topologie.

Corollaire 2.13. Soit $\mathcal{C} \subset \mathcal{P}(E)$ une famille de parties de E. L'intersection de toutes les topologies sur E qui contiennent \mathcal{C} est une topologie sur E.

Définition 2.14. Un ensemble E muni d'une topologie \mathcal{O} est appelé un espace topologique.

Définition 2.15 (Tribu borélienne). Soit (E, \mathcal{O}) un espace topologique. On appelle tribu borélienne sur E notée $\mathcal{B}(E)$ la tribu engendrée par la topologie \mathcal{O} ; $\mathcal{B}(E) = \sigma(\mathcal{O})$.

Remarque 2.16. Dans la suite de ce cours nous ne considérons que les tribus boréliennes sur $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ ou des sous-ensembles de $\overline{\mathbb{R}}$ et sur \mathbb{R}^d pour $d \ge 1$.

Notation 2.17. On note $\mathcal{B}(\mathbb{R})$ la tribu borélienne sur \mathbb{R} engendrée par la topologie usuelle (euclidienne).

Proposition 2.18. La tribu borélienne sur \mathbb{R} est définie par :

$$\mathcal{B}(\mathbb{R}) = \sigma(\{]a, b[, a < b \in \mathbb{R}\}) = \sigma(\{] - \infty, a[, a \in \mathbb{R}\}) = \dots$$

Démonstration. Soit $O(\mathbb{R})$ la topologie sur \mathbb{R} , i.e l'ensemble des ouverts de \mathbb{R} . Par définition, $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O}(\mathbb{R}))$. On a $a,b \in \mathbb{Q}, a < b$, $]a,b[\in \mathcal{O}(\mathbb{R})$ et donc $\sigma(\{]a,b[,a,b\in\mathbb{Q}\}) \subset \mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O}(\mathbb{R}))$. Réciproquement, soit $A \in \mathcal{O}(\mathbb{R})$. Rappelons que $A = \bigcup_{]a,b[\subset A,(a,b)\in\mathbb{Q}^2]} a,b[$. Cela entraine que $A \in \sigma(\{]a,b[,a,b\in\mathbb{R}\})$. On conclut que

$$\mathcal{O}(\mathbb{R} \subset \sigma(\{]a, b[, a, b \in \mathbb{Q}\}) \Rightarrow \sigma(\mathcal{O}(\mathbb{R})) \subset \sigma(\{]a, b[, a, b \in \mathbb{Q}\}).$$

Montrons que $\mathcal{B}(\mathbb{R}) = \sigma(\{]-\infty, a[, a \in \mathbb{Q}\})$. Soit $a \in \mathbb{Q}$ de telle sorte que

$$]-\infty, a[\subset \mathcal{O}(\mathbb{R}) \Rightarrow]-\infty, a[\in \sigma(\mathcal{O}(\mathbb{R})) = \mathcal{B}(\mathbb{R}).$$

On fait de même avec $]-\infty, a[, [a, +\infty[...$

Proposition 2.19. La tribu boréienne sur \mathbb{R}^d est engendrée par l'ensemble des pavés ouverts dont les extremités sont rationnelles $\mathcal{B}(\mathbb{R}^d) = \sigma(\{|a_1,b_1[x...x]a_d,b_d[,a_i,b_i \in \mathbb{Q}\})$.

Définition 2.20. On définit sur $\overline{\mathbb{R}}$ la tribu borélienne par

$$\mathcal{B}(\mathbb{R}) = \sigma(\{[-\infty, a[, a \in \mathbb{R}\} \cup \{]a, +\infty], a \in \mathbb{R}\})$$

Définition 2.21 (Tribu trace). Soit (E, \mathcal{A}) un espace mesurable, $B \subset E$ un sous-ensemble de E. On appelle *tribu trace* de \mathcal{A} sur B la tribu $\mathcal{A}_B := \{A \cap B, A \in \mathcal{A}\}$

Proposition 2.22. A_B est une tribu sur B.

Démonstration.
$$\emptyset \in \mathcal{A}_B$$
, $C = A \cap B \in \mathcal{A}_B$. Alors $B \setminus C = B \cap E \setminus A$. $b_i(c_n)$ est une suite de \mathcal{A}_B , alors $\cup C_n = \cup A_n \cap B = (\cup A_n) \cap B \in \mathcal{A}_B$.

Exemple 2.23. Par exemple $\mathcal{B}(\mathbb{R})$ est la tribu trace de $\mathcal{B}(\overline{\mathbb{R}})$ sur \mathbb{R} . Soit $\overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{+\infty\} = [0, +\infty]$. On définit la tribu $\mathcal{B}(\overline{\mathbb{R}}_+)$ comme la tribu trace de $\mathcal{B}(\overline{\mathbb{R}})$ sur $\overline{\mathbb{R}}_+$ On étendra la multiplication sur $\overline{\mathbb{R}}_+$ en posant : $\forall x \in]0, +\infty[, x \cdot +\infty = +\infty \cdot x = +\infty \text{ et } 0 \cdot +\infty = +\infty \cdot 0 = 0.$

2.3. Applications mesurables.

Remarques 2.24.

- (1) Soit $f: E \to F$ une application, $C \subset F$. L'image réciproque de C par f est défini par $f^{-1}(C) = \{x \in E, f(x) \in C\}$.
- (2) $f^{-1}(\bigcup_{i \in I} C_i) = \bigcup_{i \in I} f^{-1}(C_i) \text{ et } f^{-1}(\bigcap_{i \in I} C_i) = \bigcap_{i \in I} f^{-1}(C_i).$

Définition 2.25 (Image réciproque). Soit E et F deux ensembles, $f: E \to F$ une application. L'image réciproque d'une famille de parties $\mathcal{C} \subset \mathcal{P}(F)$ par f comme : $f^{-1}(\mathcal{C}) = \{f^{-1}(c), c \in \mathcal{C}\}$.

Proposition 2.26. Soit $\mathcal{B} \subset \mathcal{P}(F)$ une tribu sur F. Alors $f^{-1}(\mathcal{B})$ est une tribu sur E.

Démonstration.

- (1) $f^{-1}(\emptyset) = \emptyset \in f^{-1}(\mathcal{B}).$
- (2) Soit $B \in \mathcal{B}$. $f^{-1}(F \setminus B) = E \setminus f^{-1}(B)$. Or $f^{-1}(B) \in f^{-1}(\mathcal{B})$ et $f^{-1}(F \setminus B) \in f^{-1}(\mathcal{B})$ donc $E \setminus f^{-1}(B) \in f^{-1}(\mathcal{B})$.
- $\text{(3) Soit } (A_n)_{n\geq 1} \text{ une suite de } f^{-1}(\mathcal{B}), (B_n)_{n\in N}\in B. \text{ Alors } f^{-1}(B_n)=A_n \text{ et } \cup f^{-1}(\cup B_n)\in f^{-1}(\mathcal{B}).$

Proposition 2.27. Soit $f: E \to F$ une application quelconque et $\mathcal{C} \subset \mathcal{P}(F)$ une famille de parties de F.

$$\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C})).$$

Définition 2.28 (Appl mesurable). Soit (E, \mathcal{A}) , (F, \mathcal{B}) deux espaces mesurables. Une application $f: E \to F$ est dite $(\mathcal{A}, \mathcal{B})$ -mesurable si $f^{-1}(\mathcal{B}) \subset \mathcal{A}$.

Remarque 2.29. Cela revient à dire $\forall B \in \mathcal{B}, f^{-1}(B) \in \mathcal{A}$.

Notation 2.30.

- (1) $f: (E, \mathcal{A}) \to (F, \mathcal{B})$ signifie que f est $(\mathcal{A}, \mathcal{B})$ -mesurable.
- (2) S'il n'y a pas de confusion possible, on pourra dire que f est mesurable.

Exemple 2.31. Soit $f:(E,\mathcal{A})\to [0,1]$. Par défaut, [0,1] muni de la tribu borélienne sur [0,1]. Une application mesurable à valeurs dans (une partie de) $\overline{\mathbb{R}}$ sera toujours appelée une fonction borélienne.

Proposition 2.32. Soit $(E, \mathcal{A}), (F, \mathcal{B})$ des espaces mesurables. Soit $\mathcal{C} \subset \mathcal{B}$ tel que $\mathcal{B} = \sigma(\mathcal{C})$. Alors f est $(\mathcal{A}, \mathcal{B})$ -mesurable si et seulement si $f^{-1}(\mathcal{C}) \subset \mathcal{A}$.

Démonstration. Remarquons que $f^{-1}(\mathcal{C}) \subset f^{-1}(\mathcal{B})$ car $\mathcal{C} \subset \mathcal{B}$. Par conséquent si f est mesurable, $f^{-1}(\mathcal{C}) \subset \mathcal{A}$.

Supposons maintenant que $f^{-1}(\mathcal{C}) \subset \mathcal{A}$. Par la Proposition 2.27, $\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C})) = f^{-1}(\mathcal{B})$ donc $f^{-1}(\mathcal{B}) \subset \mathcal{A}$. Donc f est mesurable.

Corollaire 2.33. Toute fonction monotone $f : \mathbb{R} \to \mathbb{R}$ est mesurable (borélienne).

Démonstration. En effet, l'image réciproque d'un intervalle par une fonction monotone est une intervalle. Puisque $\mathcal{B}(\mathbb{R})$ est engendré par les intervalles, ce corollaire se déduit de la proposition ci dessus avec $\mathcal{C} = \{\text{intervalles de } \mathbb{R}\}, \mathcal{A} = \mathcal{B} = \mathbb{R}.$

Notation 2.34. Soit $f:(E,\mathcal{A})\to\mathbb{R}$.

- (1) Pour tout $a \in \mathbb{R}$, on note $\{f < a\} := f^{-1}(] \infty, a[) = \{x \in E, f(x) < a\};$
- (2) Pour tout $a \in \mathbb{R}$, on note $\{f \le a\} = f^{-1}\{] \infty, a\}$
- (3)
- (4) Pour tout $a, b \in \mathbb{R}_+$, a < b on note $\{a < f < b\} := f^{-1}(]a, b[)$
- (5) ...

Définition 2.35 (Continue). Soit (E, \mathcal{O}_E) , (F, \mathcal{O}_F) deux espaces topologiques, $f: E \to F$. On dit que f est *continue* si pour tout $\mathcal{B} \in \mathcal{O}_F$, $f^{-1}(\mathcal{B}) \in \mathcal{O}_E$.

Exercice 1. Vérifier que cette définition est bonne pour les $f : \mathbb{R} \to \mathbb{R}$.

Proposition 2.36. Soit (E, \mathcal{O}_E) , (F, \mathcal{O}_F) deux espaces topologiques munis respectivement de leur tribu borélienne $\mathcal{B}(F)$ et $\mathcal{B}(E)$. Alors toute application $f: E \to F$ continue est $(\mathcal{B}(E), \mathcal{B}(F))$ -mesurable.

Démonstration. Soit $f: E \to F$ continue. Alors, $f^{-1}(\mathcal{O}_F) \subset \mathcal{O}_E$ donc $\sigma(f^{-1}(\mathcal{O}_F)) \subset \sigma(\mathcal{O}_E)$. Soit $f^{-1}(\sigma(\mathcal{O}_F)) \subset \sigma(\mathcal{O}_E)$ donc $f^{-1}(\mathcal{B}(F)) \subset \mathcal{B}(E)$. Ainis, f est bien $(\mathcal{B}(E), \mathcal{B}(F))$ -mesurable.

Remarque 2.37. On retiendra que si I et J sont deux intervalles de \mathbb{R} et $f: I \to J$ une application continue alors f est borélienne.

Proposition 2.38. Soit $(E, \mathcal{A}), (F, \mathcal{B}), (G, \mathcal{C})$ trois espaces topologiques mesurables, $f: E \to F, g: F \to G$ deux applications mesurables. Alors $g \circ f: E \to G$ est mesurable.

Démonstration. Remarquons d'abord que pour toute partie $C \subset G$, $(g \circ f)^{-1}(P) = (f^{-1} \circ g^{-1})(P)$. Ainsi, $(g \circ f)^{-1}(\mathcal{C}) = f^{-1}(g^{-1}(\mathcal{C}))$. De plus, $g^{-1}(\mathcal{C}) \subset \mathcal{B}$ Ainsi, on a $f^{-1}(g^{-1}(\mathcal{C})) \subset f^{-1}(\mathcal{B}) \subset \mathcal{A}$, D'où la mesurabilité de $f \circ g$. □

Exemples 2.39.

- 1. Si $f:(E,\mathcal{A})\to\mathbb{R}$ est une fonction borélienne alors $|f|:\mathbb{R}\to\mathbb{R}$ est une fonction borélienne.
- 2. Si $f:(E,\mathcal{A})\to\mathbb{R}\setminus 0$ est borélienne, alors $\frac{1}{f}$ l'est aussi.

Proposition 2.40. Soit $f = (f_1, f_2) : (E, \mathcal{A}) \to \mathbb{R}^2$. f est $(\mathcal{A}, \mathcal{B}(\mathbb{R}^2))$ -mesurable si et seulement si $f_1 : (E, \mathcal{A}) \to \mathbb{R}$ et $f_2 : (E, \mathcal{A}) \to \mathbb{R}$ sont mesurables.

Démonstration.

 \Rightarrow Soit $(\pi_1, \pi_2) : \mathbb{R}^2 \to \mathbb{R}$ les projections canoniques $\pi_i(x_1, x_2) = x_i$. π_i sont continues donc $(\mathcal{B}(\mathbb{R}^2), \mathcal{B}(\mathbb{R}))$ -mesurables. De plus, $f_1 = \pi_1 \circ f$ et $f_2 = \pi_2 \circ f$. Par conséquent, si f est mesurable alors f_1 et f_2 le sont.

 \Leftarrow Supposons que f_1 et f_2 sont mesurables. Soit $]a_1,b_1[x]a_2,b_2[$ une partie de \mathbb{R}^2 alors on vérifie que $f^{-1}(]a_1,b_1[x]a_2,b_2[)=f_1^{-1}(]a_1,b_1[)\cap f_2^{-1}(]a_2,b_2[)\in \mathcal{A}$. On amontré que l'image réciproque de tout pavé de \mathbb{R}^2 par f est dans \mathcal{A} .

Comme $\mathcal{B}(\mathbb{R}^2)$ est engendré par les pavés, on a bien $f^{-1}(\mathcal{B}(\mathbb{R}^2)) \subset \mathcal{A}$.

Proposition 2.41. Soit $f:(E,\mathcal{A})\to\mathbb{R}$, $g:(E,\mathcal{A})\to\mathbb{R}$ deux fonctions boréliennes, $\lambda\in\mathbb{R}$

- (1) $\lambda f + g$ est borélienne pour tout $\lambda \in \mathbb{R}$,
- (2) fg est borélienne.

Démonstration.

(1) Posons $\varphi(x) = (f(x), g(x)), \psi(s, t) = \alpha s + t$.

On écrit $\lambda f + g = \psi \circ \varphi$. Alors puisque f et g sont boréliennes, $\varphi(f,g)$ est borélienne par la Proposition 2.40. De plus, $\psi : \mathbb{R}^2 \to \mathbb{R}$ est une fonction continue donc borélienne. Ainsi en appliquant Proposition 2.38, on obtient bien que $\lambda f + g$ est borélienne.

(1) On raisonne ici de la même manière en posant $\psi(s,t) = st$ une fonction continue.

Remarque 2.42. Le point (1) se généralise à toute combinaisaon linéaire finie de fonctions boréliennes.

3. Fonctions indicatrices.

Proposition 3.1. Soit (E, \mathcal{A}) un espace mesurable et $A \subset E$. Alors l'application $\mathbb{1}_A : (E, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ est mesurable si et seulement si $A \in \mathcal{A}$.

Démonstration. $\mathbb{1}_A : E \to \{0,1\} \subset \mathbb{R}$. Remarquons d'abord que si $B \subset \mathbb{R}$ alors

$$\mathbb{I}_A^{-1}(B) = \begin{cases} \emptyset & \text{si } 0 \notin B \land 1 \notin B \\ E & \text{si } 0 \in B \land 1 \in B \\ A & \text{si } 1 \in B \land 0 \notin B \end{cases}.$$
$$A^c & \text{si } 1 \notin B \land 0 \in B$$

Supposons \mathbb{I}_A mesurable alors puisque $\{1\} \in \mathcal{B}(\mathbb{R})$, $\mathbb{I}_A^{-1}(\{1\}) = A \in \mathcal{A}$. Supposons que $A \in \mathcal{A}$ alors pour tout $B \in \mathcal{B}(\mathbb{R})$, $\mathbb{I}_A^{-1} = \emptyset$ ou E ou A ou $A^c \in \mathcal{A}$ D'ou \mathbb{I}_A mesurable. \square

Définition 3.2 (Fonction étagée). Soit (E, \mathcal{A}) un espace mesurable, $\alpha_1, ..., \alpha_n \in \mathbb{R}, A_1, ..., A_n \in \mathcal{A}$. On appelle *fonction étagée* toute application $f: (E, \mathcal{A}) \to \mathbb{R}$ telle que

$$f = \sum_{k=1}^{n} \alpha_k \mathbb{1}_{A_k}.$$

Proposition 3.3. Les fonctions étagées sont mesurables.

Démonstration. Application des propositions précédentes

Proposition 3.4. Une fonction étagée est une fonction mesurable de (E, A) dans \mathbb{R} qui prend un nombre fini de valeurs.

Démonstration. Soit $f:(E,\mathcal{A})\to\mathbb{R}$ une fonction borélienne qui prend les valeurs $\alpha_1,...,\alpha_n$ deux à deux distinctes. Alors on peut écrire $f=\sum_{k=1}^n\alpha_k\mathbb{I}_{\{f=\alpha_k\}}$. Soit x tel que $f(x)=\alpha_i$ alors $\mathbb{I}_{\{f=\alpha_k\}}(x)=1$ si k=i et 0 si $k\neq i$.

Remarque 3.5. L'ecriture $f = \sum_{k=1}^{n} \alpha_k \mathbb{I}_{\{f = \alpha_k\}}$ est l'écriture canonique des fonctions étagées. En effet, une fonction étagée peut s'écrire sous la forme $\sum \alpha_i A_i$ de plusieurs manières si les (A_i) ne constituent pas une partition de E.

Exemple 3.6. $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto 2\mathbb{I}_{[0,1]} + \mathbb{I}_{]1,2]}$. Alors f admet aussi lécriture $f(x) = 2\mathbb{I}_{[-1,1]} + \mathbb{I}_{]1,2]} - 2\mathbb{I}_{[-1,0]}$

Proposition 3.7. Une application $\delta: (E, \mathcal{A}) \to (\mathbb{C}, \mathcal{B}(\mathbb{C}))$ est mesurable si et seulement si les applications Re $(f): (E, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et Im $(f): (E, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ sont mesurables.

Définition 3.8. Soit $f_n: E \to \overline{\mathbb{R}}$, $n \ge 0$, une suite de fonctions. On définit les fonctions $\limsup f_n: E \to F$, et $\liminf f_n: E \to \overline{\mathbb{R}}$ pour tout $x \in E$ par ;

$$(\limsup f_n)(x) := \lim_{n \to +\infty} \sup(f_n(x))$$
$$(\liminf f_n)(x) := \lim_{n \to +\infty} \inf(f_n(x)).$$

Notation 3.9. On note parfois $\limsup = \overline{\lim}$ et $\liminf = \underline{\lim}$.

Proposition 3.10. Soit $(f_n)_{n>0}$ une suite de fonctions mesurables (E,\mathcal{A}) dans $(\overline{\mathbb{R}},\mathcal{B}(\mathbb{R}))$.

- (1) Les fonctions $x \mapsto (\sup \overline{f_n})(x)$ et $x \mapsto (\inf f_n)(x)$ sont mesurables de (E, \mathcal{A}) dans $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$.
- (2) Les fonctions $x \mapsto (\limsup f_n)(x)$ et $x \mapsto (\liminf f_n)(x)$ sont mesurables de (E, \mathcal{A}) dans $(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}})).$
- (3) Si $(f_n)_{n>0}$ converge simplement vers f, alors f est mesurable.

Proposition 3.11. Soit $f:(E,\mathcal{A})\to(\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+))$ une fonction mesurable positive. Il existe une suite de fonctions croissante $(f_n)_{n\in\mathbb{N}}$ de fonctions étagées positives telles que pour tout $x\in E$, $f(x) = \lim_{n \to +\infty} f_n(x)$ et si f est bornée alors $(f_n)_n$ converge uniformément vers f.

Démonstration. On pose

$$(f_n)_n := \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \mathbb{1}_{\left\{\frac{k}{2^n} \le f < \frac{k+1}{2^n}\right\}} + n \mathbb{1}_{\left\{f \ge n\right\}}$$

et on vérifie qu'elle vérifie bien la convergence simple vers f et qu'elle est croissante.

- Soit $x \in E$.
 - ► Si $f(x) = +\infty$, pour tout $n \in \mathbb{N}$, $f_n(x) = n$ donc $f(x) = \lim_{n \to +\infty} f_n(x)$.
- si $f(x) < +\infty$, pour tout $n \in \mathbb{N}$, tel que n > f(x), il existe $k \le n2^n 1$ tq $k \le 2^n f(x) < k + 1$ donc $|f(x) f_n(x)| = \left|f(x) \frac{k}{2^n}\right| \le \frac{1}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$ Vérifions que (f_n) est croisssante. Soit $x \in E$
- - si $f(x) \ge n + 1$, $f_n(x) = n < n + 1 = f_{n+1}(x)$.
 - Si f(x) < n, on note k l'entier tq $k \le 2^n f(x) < k + 1$. Ainsi, $f_n(x) = \frac{k}{2^n}$. Comme $f(x) \ge \frac{2k}{2^{n+1}}$, on en déduit que $f_{n+1}(x) \ge \frac{2k}{2^{n+1}} = f_n(x)$.

▶ si $n \le f(x) < n+1$, $f_{n(x)} = n$ et il existe $k \ge n2^{n+1}$ tel que $\frac{k}{2^{n+1}} \le f(x) \le \frac{k+1}{2^{n+1}}$ donc $f_{n+1}(x) \ge n = f_n(x)$.

Proposition 3.12. Soit $f:(E,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable quelconque. Il existe une suite de fonctions étagées $(f_n)_{n\in\mathbb{N}}$ de fonctions étagées telles que pour tout $x\in E$, $f(x) = \lim_{n \to +\infty} f_n(x)$ et si f est bornée alors $(f_n)_n$ converge uniformément vers f.

Démonstration. Il suffit d'appliquer Proposition 3.11 à f en la décomposant par $f = f^+ - |f^-|$. \square

Chapitre 2: Mesures intégrables.

4. Mesure.

Définition 4.1 (Mesure). Soit (E, A) un espace mesurable. On appelle *mesure* sur (E, A) une application $\mu: \mathcal{A} \to \overline{\mathbb{R}}_+$ telle que :

- (1) $\mu(\emptyset) = 0$.
- (2) μ est σ -additive, i.e pour toute suite $(A_n)_n$ d'éléments de $\mathcal A$ deux à deux distincts, alors : $\mu\left(\bigcup_{n>0} A_n\right) = \sum_{n=0} \mu(A_n).$

Définition 4.2 (Espace mesuré). Soit (E, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+$ une mesure. On appelle le triplet (E, \mathcal{A}, μ) un espace mesuré, et pour tout $A \in \mathcal{A}, \mu(A)$ est la mesure de A.

Exemples 4.3.

- 1. $\mu: \mathcal{A} \to \overline{\mathbb{R}}_+$; $A \mapsto 0$ est appelé la mesure *nulle*.
- μ: A → R̄₊; A ↦ {Card(A) si A est fini est appelé mesure de comptage.
 μ: A → R̄₊; A ↦ {+∞ si A ≠ Ø ∈ A, μ(A) = +∞ est appelée mesure infinie ou grossière.
- 4. $\delta_x := \mathbb{I}_A : \mathcal{A} \to \overline{\mathbb{R}}_+$; $x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$ est appelé mesure de *Dirac* en $x \in E$

Proposition 4.4. Soit (E, \mathcal{A}, μ) un espace mesuré. Pour tout $A, B \in \mathcal{A}$, on a les propriétés suivantes;

- $(1) \ \mu(A) = \mu(A \setminus B) + \mu(A \cap B),$
- (2) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$,
- (3) $\mu(A \cup B) \le \mu(A) + \mu(b)$,
- (4) Si $A \subset B$, $\mu(A) \le \mu(B)$.

Démonstration.

- (1) On a $A \setminus B = \{A \cap (E \setminus B)\}\$ et $A \cap B$ disjoints donc $A = (A \setminus B) \cup (A \cap B)$. Or d'après la σ -additivité, pour tout C et D disjoints alors $\mu(C \cup D) = \mu(C) + \mu(D)$. D'où $\mu(A) = \mu(A \setminus B) + \mu(A \cap B)$.
- (2) On remarque que $A \setminus B$, $A \cap B$ et $B \setminus A$ sont deux à deux disjoints et $A \cup B = (A \setminus B) \cup (A \cap B) \cup (A \cap B)$ $(B \setminus A)$, donc

$$\mu(A \cup B) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A)$$

$$\Rightarrow \mu(A \cup B) + \mu(A \cap B) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A) + \mu(A \cap B)$$

$$\Rightarrow \mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$
(1)

(3) Si $\mu(A) + \mu(B) = +\infty$, l'inégalité est évidente. Sinon, par (2),

$$\mu(a) + \mu(b) = \mu(A \cup B) + \mu(A \cap B)$$

$$\underset{\mu \ge 0}{\Rightarrow} \mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) \le \mu(A) + \mu(B)$$

(4) On a $\mu(B) = \mu(B \setminus A) + \mu(A \cap B) = \mu(B \setminus A) + \mu(A) \ge \mu(A) \operatorname{car} \mu(A \setminus B) = \mu(\emptyset) = 0$.

Définition 4.5 (Finie). Soit (E, \mathcal{A}) un espace mesurable, $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+$ une mesure sur (E, \mathcal{A}) :

- On dit qu'une mesure μ est finie si $\mu(E) < +\infty$.
- On dit que $\mu(E)$ est la *masse* de la mesure μ .

Définition 4.6 (Probabilité). Soit (E, \mathcal{A}) un espace mesurable, $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+$ une mesure sur (E, \mathcal{A}) . Si la masse de μ vaut 1, On dit que μ est une *probabilité*.

Définition 4.7 (Finie). On dir que μ est σ -finie s'il existe une suite (A_n) de \mathcal{A} telle que $E = \bigcup_{n \geq 0} A_n$ et pour tout $n \geq 0$, $\mu(A_n) < +\infty$.

Remarque 4.8. On dit qu'une suite de parties de E, $(A_n)_n$ est croissante si $\forall n \geq 0, A_n \subset A_{n+1}$.

Proposition 4.9. Soit (E, \mathcal{A}, μ) un espace mesuré et $(A_n)_{n>0}$ une suite d'éléments de \mathcal{A} .

- (1) Si la suite $(A_n)_{n\geq 0}$ est croissante alors $\lim_{n\to +\infty} \mu(A_n) = \mu\left(\bigcup_{n\geq 0} A_n\right)$
- (2) Si la suite $(A_n)_{n\geq 0}$ est décroissante et si il existe $n_0\geq 0$ tel que $\mu_{n_0}<+\infty$ alors $\lim_{n\to+\infty}\mu(A_n)=\mu(\bigcap_{n\geq 0}A_n)$.

Démonstration.

(1) S'il existe n_0 tel que $\mu(A_{n_0}) = +\infty$ alors puisque $A_{n_0} \subset \bigcup_{n \geq 0} A_n$ on a $\mu(A_{n_0}) \leq \mu(\bigcup_{n \geq 0} A_n)$ et l'égalité est évidente. $\mu(A_{n_0}) = +\infty \leq \mu(A_n)$. Sinon, on pose $(B_n)_n \coloneqq \begin{cases} A_0 & \text{si } n = 0 \\ A_n \setminus A_{n-1} & n > 0 \end{cases}$. Les B_n sont alors deux à deux disjoints et $\bigcup_{n \geq 0} A_n = \bigcup_{n \geq 0} B_n$. Ainsi,

$$\mu\left(\bigcup_{n\geq 0} A_n\right) = \mu\left(\bigcup_{n\geq 0} B_n\right) = \sum_{n\geq 0} \mu(B_n) = \lim_{n\to +\infty} \left(\sum_{k=1}^n \mu(A_k) - \mu(A_{k-1})\right) + \mu(A_0)$$
$$= \lim_{n\to +\infty} \mu(A_n).$$

(2)

Proposition 4.10. Soit (E, \mathcal{A}, μ) un espace mesuré, (F, \mathcal{B}) un espace mesurable, et $f: (E, \mathcal{A}) \to (F, \mathcal{B})$ une application mesurable. Alors l'application

$$\mu_f: (\mathcal{B}) \to \overline{\mathbb{R}}_+; B \mapsto \mu(f^{-1}(B))$$

est une mesure sur (F, \mathcal{B}) . On l'appelle la mesure image.

Démonstration.

- $\mu_f(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0.$
- Soit $(B_n)_{n>0}$ une suite d'éléments de \mathcal{B} deux à deux distincts.

$$\mu_f\left(\bigcup_{n\geq 0} B_n\right) = \mu(f^{-1}(\bigcup B_n)) = \mu(\bigcup f^{-1}(B))$$

Or les $f^{-1}(B_n)$ sont 2 à 2 disjoints. Donc d'après la σ - additivité de μ , on a $\mu_f(\bigcup B_n) = \sum \mu(f^{-1}B_n) = \sum \mu_f(B_n)$.

Ainsi, μ_f est une mesure sur (F, \mathcal{B}) .

4.1. Mesure de Lebesgue.

Théorème 4.11 (Unicité des mesures). Soit μ , ν deux mesures sur un espace mesurable (E, \mathcal{A}) . Si :

- μ et ν coincident sur une partie $\mathcal{C} \subset \mathcal{A}$ qui engendre \mathcal{A} ,
- \mathcal{C} est stable par intersections finies,
- $E \in \mathcal{C}$,
- μ ou ν est σ -finie,

alors $\mu = \nu$.

Démonstration. Admis.

Corollaire 4.12. Il existe sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ une unique mesure λ telle que pour tout pavé $\Pi_{i=1}^d]a_i, b_i[$,

$$\lambda(\Pi_{i=1}^d]a_i, b_i[) = \Pi_{i=1}^d(b_i - a_i).$$

Cette mesure est appelée la mesure de Lebesgue sur \mathbb{R}^d .

Démonstration. $\mathcal{C} = \{ \Pi_{i=1}^d] a_i, b_i [, a_i < b_i \in \mathbb{R} \}$. Alors $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R}^d)$

Proposition 4.13. Soit μ une mesure sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ vérifiant :

- pour tout $B \in \mathcal{B}(\mathbb{R}^d)$, pour tout $x \in \mathbb{R}^d$, $\mu(x+B) = \mu(B)$,
- $\mu([0,1]^d) = 1$,

alors μ est la mesure de Lebesgue, $\mu = \lambda d$.

Démonstration. Admis

4.2. Ensemble négligeable.

Définition 4.14 (Négligeable). Soit (E, \mathcal{A}, μ) un espace mesuré, $M \subset E$. On dit que M est *négligeable* s'il existe $A \in \mathcal{A}$ tel que $M \subset A$ et $\mu(A) = 0$.

Remarque 4.15. Un ensemble négligeable n'appartient pas nécéssairement à la tribu.

Définition 4.16. On dit que la mesure μ est complète si \mathcal{A} contient tous les ensembles négligeables.

Définition 4.17. Une propriété sur l'ensemble E est une application $P: E \to \{\text{vrai}, \text{faux}\}$.

Définition 4.18. On dit qu'une propriété est vraie μ -presque partout si l'ensemble $\{x \in E : P(x) = \text{faux}\}\$ est négligeable.

5. Intégrale de Lebesgue.

5.1. Intégrale des fonctions étagées positives.

Notation 5.1. On rappelle que l'écriture canonique est $f = \sum_{\alpha \in f(E)} \alpha \mathbb{1}_{\{f = \alpha\}}$. On a bien que $\{\{f\alpha\} | \alpha \in f(E)\}$ forme une partition de E. On note \mathcal{E}_+ l'ensemble des fonctions étagées.

Définition 5.2 (Intégrale). Soit $f \in \mathcal{E}_+$. On appelle intégrale de f par rapport à la mesure μ sur (E, \mathcal{A}) définit par:

$$\int_{E} f(x) d\mu(x) = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i}).$$

Remarque 5.3. Si f admet deux écritures canoniques, alors $\int_F f d\mu$ ne dépend pas de ces écritures.

Remarque 5.4. Sous la forme canonique, $f = \sum_{\alpha \in f(E)} \alpha \mathbb{1}_{\{f=\alpha\}}$, on a

$$\int_{E} f(x)d\mu(x) = \sum_{\alpha \in f(E)} \alpha \mu(\{f = \alpha\}).$$

Attention, L'ensemble $\{f=0\}$ peut être tel que $\mu(\{f=0\})=+\infty$. La convention $0(+\infty)=+\infty 0=0$ est alors très importante.

Remarque 5.5. On peut avoir $\alpha > 0$ et $\mu(\{f = \alpha\}) = +\infty$ et dans ce cas, $\int_E f d\mu = +\infty$.

Exemples 5.6.

1. Soit $f: \mathbb{E} \to \overline{\mathbb{R}}_+$; $x \mapsto 0$.

$$\int_{E} f(x) \, \mathrm{d}\mu(x) = \sum_{\alpha \in f(E)} \alpha \mu(\{f = \alpha\}) = 0 \cdot \mu(\{f = 0\}) = 0 \cdot \mu(E) = 0.$$

2. $\mu = \delta_a, a \in E$.

$$\int_E f(x)d\mu(x) = \sum_{\alpha \in f(E)} \alpha \mu(\{f = \alpha\}) = \sum_{\alpha \in f(E)} \alpha \delta_a(\{f = \alpha\}) = f(a).$$

3. Si l'espace mesuré est $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, λ mesure de lebesgue. On a vu $\forall x \in \mathbb{R}, \lambda(\{x\}) = 0$. Plus généralement, pour tout sous-ensemble dénombrable $D \subset \mathbb{R}$, on a $D \in \mathcal{B}(\mathbb{R})$ et $\lambda(D) = 0$. Soit alors $f = 2\mathbb{I}_{\mathbb{Q}} + 3\mathbb{I}_{\mathbb{N}}$. On a

$$\int_{\mathbb{R}} f(x)d\lambda(x) = 2\lambda(\mathbb{Q}) + 3\lambda(\mathbb{N}) = 0.$$

4. Soit $f = \mathbb{1}_{[(2,3)]} + 3\mathbb{1}_{[0,1]} = \mathbb{1}_{[-2,0[} + 4\mathbb{1}_{[0,1]} + \mathbb{1}_{]1,3]}$. Calculons son intégrale. On a pour la 1ere écriture : $\lambda([(2,3)]) + 3\lambda([0,1]) = 5 + 3 = 8$. et pour la 2eme écriture : $\lambda([-2,0[) + 4\lambda([0,1]) + \lambda([1,3])) = 8$.

Proposition 5.7. L'application $f\mapsto \int_E f d\mu$ de \mathcal{E}_+ dans $\overline{\mathbb{R}}_+$ satisfait les propriétés suivantes

- Pour toutes fonctions $f, g \in \mathcal{E}_+$, $f + g \in \mathcal{E}_+$ et $f_E f + g d\mu = f_E f d\mu + f_E g d\mu$,
- Pour tout $\lambda \in \mathbb{R}_+$, $\lambda f \in \mathcal{E}_+$ et $\int_E \alpha f \, d\mu = \alpha \int_E f \, d\mu$,
- Pour toutes fonctions $f, g \in \mathcal{E}_+, f \leq g \Rightarrow \int_E f d\mu \leq \int_E g d\mu$.

Démonstration.

• On pose $f = \sum_{i=1}^{n} \alpha_{i} \mathbb{I}_{A_{i}}$, $g = \sum_{i=1}^{n} \beta_{i} \mathbb{I}_{B_{i}}$ avec $A_{i} := \{f = \alpha_{i}\}, B_{i} := \{g = \beta_{i}\}, (A_{i})_{i \in \{1, ..., n\}}, (B_{i})_{i \in \{1, ..., m\}}$ sont des partitions de E. On a

$$\begin{split} \int_E f + g \, \mathrm{d}\mu &= \int_E \sum_{i=1}^n \sum_{j=1}^m (\alpha_i + \beta_j) \mathbb{1}_{A_i \cap B_j} \, \mathrm{d}\mu(x) \\ &= \sum_{\mathrm{def}} \sum_{i=1}^n \sum_{j=1}^m (\alpha_i + \beta_j) \mu(A_i \cap B_j) = \sum_{i=1}^n \alpha_i \sum_{j=1}^m \mu(A_i \cap B_j) + \sum_{j=1}^m \beta_j \sum_{i=1}^n \mu(A_i \cap B_j) \\ &= \sum_{i=1}^n \alpha_i \mu \Biggl(\bigcup_{j=1}^n A_i \cap B_j \Biggr) + \sum_{j=1}^m \beta_j \mu \Biggl(\bigcup_{i=1}^n A_i \cap B_j \Biggr) \underset{\mathrm{prop } 4.4}{=} \sum_{i=1}^n \alpha_i \mu(A_i) + \sum_{j=1}^m \alpha_i \mu(B_j) \underset{\mathrm{def}}{=} \int_E f \, \mathrm{d}\mu + \int_E g \, \mathrm{d}\mu. \end{split}$$

• Notons $f := \sum_{i=1}^n \alpha_i \mathbb{I}_{A_i}$ alors $\alpha f = \sum_{i=1}^n \alpha \alpha_i \mathbb{I}_{A_i}$ d'où $\alpha f \in \mathcal{E}_+$ et $\int_{\mathcal{E}} \alpha f \, \mathrm{d}\mu = \sum_{i=1}^n \alpha \alpha_i \mu(A_i) = \alpha \sum_{i=1}^n \alpha_i \mu(A_i) = \alpha \int f \, \mathrm{d}\mu.$

• Comme $f \le g, g - f$ est une fonction étagée positive. Par la point 1, on a donc

$$\int_{E} g d\mu = \int_{E} f + (g - f) d\mu = \int_{E} f d\mu + \int_{E} (g - f) d\mu \ge \int_{E} f d\mu.$$

Proposition 5.8. Pour tout $A \in \mathcal{A}$, $\int_E \mathbb{I}_A(x) d\mu(x) = \mu(A)$. Si $f = \sum_{i=1}^n \alpha_i \mathbb{I}_{A_i}(x) d\mu(x)$ alors,

$$\int_{E} f \, \mathrm{d}\mu = \sum_{i=1}^{n} \alpha_{i} \int_{E} \mathbb{1}_{A_{i}}(x) \, \mathrm{d}\mu(x).$$

5.2. Intégrales de fonctions mesurables positives.

Notation 5.9. On notera \mathcal{M}_+ l'ensembles des fonctions mesurables positives de (E, \mathcal{A}) dans $(\overline{\mathbb{R}}_+, \mathcal{B}(\overline{\mathbb{R}}_+))$. On munit (E, \mathcal{A}) d'une mesure μ .

Définition 5.10 (Intégrale). On définit l'intégrale de toute fonction $f \in \mathcal{M}_+$ par rapport à la mesure μ par :

$$\int_{E} f(x) d\mu(x) = \sup \left\{ \int_{E} g(x) d\mu(x) : g \in \mathcal{E}_{+}g \le f \right\}.$$

Cette intégrale sera notée indifféremment $\int_E f(x) d\mu(x)$, $\int_E f(x)\mu(dx)$, $\int_E f d\mu$.

Définition 5.11 (μ -intégrable). Si $\int_E f d\mu < +\infty$, on dira que f est μ -intégrable.

Remarque 5.12. L'intégrale d'une fonction mesurable positive (E, \mathcal{M}_+) est toujours définie, sa valeur pouvant éventuellement être infinie.

Proposition 5.13. Pour toutes fonctions $f, g \in \mathcal{M}_+$

$$f \le g \Rightarrow \int_E f \, \mathrm{d}\mu \le \int_E g \, \mathrm{d}\mu.$$

Démonstration. Soit $h \in \mathcal{E}_+, h \leq f$. Alors $h \leq g$ donc

$$\begin{split} &\left\{ \int_E h(x) \, \mathrm{d} \frac{\mu(x)}{h} \in \mathcal{E}_+ h \le f \right\} \subset \left\{ \int_E h(x) \, \mathrm{d} \frac{\mu(x)}{h} \in \mathcal{E}_+, h \le g \right\} \\ \Rightarrow & \sup \left\{ \int_E h(x) \, \mathrm{d} \frac{\mu(x)}{h} \in \mathcal{E}_+ h \le f \right\} \le \sup \left\{ \int_E h(x) \, \mathrm{d} \frac{\mu(x)}{h} \in \mathcal{E}_+, h \le g \right\}. \end{split}$$

Le cas particulier découle du fait que l'intégrale de la fonction $x \mapsto 0$ sur E est nulle.

Théorème 5.14 (Théorème de Beppo-Levi). Si (f_n) est une suite croissante de fonctions de \mathcal{M}_+ alors $\lim_{n\to+\infty} f_n \in \mathcal{M}_+$. Posons $f=\lim_{n\to+\infty} f_n$ alors

$$\int_{E} f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Proposition 5.15. Soi $f, g \in \mathcal{M}_+$. Alors,

- $\int_E (f+g) d\mu = \int_E f d\mu + \int_E g d\mu$.
- Pour tout $\alpha \ge 0$, $\int_E \alpha f \, d\mu = \alpha \int_E f \, d\mu$.

Démonstration.

Par Proposition 3.11, il existe des suites croissantes (f_n)_{n∈N}, et (g_n)_{n∈N} de ε₊ telles que f_n, et g_n convergent respectivement vers f et g. Alors f_n + g_n est une suite croissante de M₊ telle que f + g = lim_{n→+∞} f_n + g_n. De plus par Proposition 5.7, f_E f_n + g_n dμ = f_E f_n dμ + f_E g_n dμ donc par le Théorème de Beppo-Levi, et unicité de la limite on a bien que

$$\int_E (f+g) \,\mathrm{d}\mu = \int_E f \,\mathrm{d}\mu + \int_E g \,\mathrm{d}\mu.$$

• Par Proposition 3.11, on pose la suite $(\alpha f_n)_{n\in\mathbb{N}}$ est une suite croissante de \mathcal{M}_+ qui converge vers αf . De plus, $\int_E \alpha f_n \, \mathrm{d}\mu = \alpha \int_E f_n \, \mathrm{d}\mu$ donc par le Théorème de Beppo-Levi, et unicité de la limite on a bien que

$$\int_E \alpha f \,\mathrm{d}\mu = \alpha \int_E f \,\mathrm{d}\mu.$$

Proposition 5.16. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de \mathcal{M}_+ . On a

$$\int_E \sum_{n\geq 0} f_n = \sum_{n\geq 0} \int_E f_n \, \mathrm{d}\mu.$$

 $D\'{e}monstration$. La suite des sommes partielles de f_n est une suite croissante de \mathcal{M}_+ . Par le Th\'eorème de Beppo-Levi,on a

$$\int_E \sum_{k=0}^n f_k \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int_E \sum_{k \ge 0} f_k \, \mathrm{d}\mu \text{ et } \sum_{k=0}^n \int_E f_k \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \sum_{k \ge 0} \int_E f_k \, \mathrm{d}\mu.$$

Or par additivité des intégrales de fonctions de \mathcal{M}_+ ,

$$\int_E \sum_{k=0}^n f_k \, \mathrm{d}\mu = \sum_{k=0}^n \int_E f_k \, \mathrm{d}\mu,$$

d'où
$$\int_E \sum_{n>0} f_n = \sum_{n>0} \int_E f_n d\mu$$
.