

Tutorium 13

Algorithmen I SS 14

Wiederholung

$\mathcal{O}\text{-Kalkül}$

Gegeben seien zwei Funktionen f und g. Zeige dass gilt:

$$g\in\mathcal{O}(f)\Leftrightarrow f\in\Omega(g)$$

Laufzeiten

Was ist der Unterschied zwischen Laufzeit, erwarteter Laufzeit und amortisierter Laufzeit?

Sortieren

Gegeben sei eine Folge von n Elementen (bestehend aus Schlüssel und Wert), wobei höchstens k verschiedene Schlüssel auftreten. Entwickle einen Algorithmus, der die Folge in erwarteter Zeit $\mathcal{O}(k\log k + n)$ sortiert.

Minimale Spannbäume

Sei G=(V,E) ein zusammenhängender ungerichteter gewichteter Graph und T ein MST in G. Für $V'\subseteq V$ sei G' der von V' induzierte Teilgraph von G und G' der von G' induzierte Teilgraph von G'.

Zeige: Wenn T' zusammenhängend ist, dann ist T' ein MST in G'.

Durchmesser von Graphen

Der Durchmesser eines Graphen ist der maximale Abstand zwischen zwei Knoten. Entwickle einen Algorithmus, der den Durchmesser eines ungerichteten, ungewichteten, zusammenhängenden Graphen berechnet und dabei höchstens $\mathcal{O}(nm)$ Zeit benötigt.

Geld wechseln (1)

Gegeben sei die Menge der Münzwerte M=1,2,5,10,20,50,100,200. Entwickle einen Greedy-Algorithmus, der für einen gegebenen Geldbetrag die kleinste Menge an Münzen liefert, die zur Darstellung nötig sind. Funktioniert der Algorithmus noch, wenn zusätzlich eine Münze mit dem Wert 4 eingeführt wird?

Geld wechseln (2)

Gegeben sei eine beliebige Menge an Münzwerten M mit $1 \in M$. Entwickle einen Algorithmus, der für einen gegebenen Geldbetrag die kleinste Menge an Münzen liefert, die zur Darstellung nötig sind.