Amendments to the claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

1. (Currently Amended): A compound of Formula I:

$$R^{10} \xrightarrow[R]{} (CR^{1}R^{2})_{p} \times Z \times (CR^{4}R^{5})_{n} \xrightarrow[CR^{8}R^{9}]_{q}} (CR^{8}R^{9})_{q}$$

wherein:

Z is CH, CR^3 or N, wherein when Z is CH or CR^3 , k is 0-4 and t is 0 or 1, and when Z is N, k is 0-3 and t is 0;

Ι

Y is selected from -O-, -S-, -N(R^{12})-, and -C(R^4)(R^5)-;

 W^1 is selected from C_1 - C_6 alkyl, C_0 - C_6 alkyl C_3 - C_8 cycloalkyl, aryl and Het, wherein said C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_6 alkyl- C_0 9 SR^{12} , $-C_0$ - C_6 alkyl- C_0 8 R^{13} 8, C_0 9, C_0 9, alkyl- C_0 9

 $W^2 \text{ is selected from H, halo, C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, $-C_0$-C_6 alkyl-$NR^{13}R^{14}$, $-C_0$-C_6 alkyl-SR^{12}, $-C_0$-C_6 alkyl-OR^{12}, $-C_0$-C_6 alkyl-$CO2R^{12}$, $-C_0$-C_6 alkyl-$CONR^{13}R^{14}$, $-C_0$-C_6 alkyl-COR^{15}, $-C_0$-C_6 alkyl-$OCONR^{13}R^{14}$, $-C_0$-C_6 alkyl-$NR^{13}CONR^{13}R^{14}$, $-C_0$-C_6 alkyl-$NR^{13}CONR^{15}$, $-C_0$-C_6 alkyl-$Het, $-C_0$-C_6 alkyl-Ar and$

```
-C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, wherein said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C<sub>3</sub>-C<sub>7</sub> cycloalkyl, Ar and Het moieties of said -C<sub>0</sub>-C<sub>6</sub> alkyl-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-CO<sub>2</sub>R<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CO<sub>3</sub>R<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CO<sub>3</sub>R<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CO<sub>3</sub>R<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>R<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>3</sub>H, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>R<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>1</sub>R<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOONR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOONR<sup>13</sup>R<sup>14</sup>, and -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COONR<sup>15</sup>, where said C<sub>1</sub>-C<sub>6</sub> alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
```

 W^3 is selected from the group consisting of: H, halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- SR^{12} , $-C_0$ - C_6 alkyl- OR^{12} , $-C_0$ - C_6 alkyl- CO_2R^{12} , $-C_0$ - C_6 alkyl- CO_2R^{13} , $-C_0$ - C_0 alkyl- CO_2R^{13} , $-C_0$ - $-C_0$ alkyl- $-C_0$ - $-C_0$ alkyl- $-C_0$ - $-C_0$ alkyl- $-C_0$ - $-C_0$ alkyl- $-C_0$ - $-C_0$ --

Q is selected from C_3 - C_8 cycloalkyl, Ar and Het; wherein said C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_6 alkyl- C_0 0 R^{12} , $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_0 2 alkyl- C_0 2 R^{13} 2 R^{14} , $-C_0$ - C_0 2 alkyl- C_0 2 R^{12} , $-C_0$ 2 R^{12} , $-C_0$ 2 R^{12} , $-C_0$ 2 R^{13} 2 R^{14} , $-C_0$ 2 R^{13} 2 R^{14} , $-C_0$ 2 R^{12} 2 R^{12} 3 R^{12} 4, $-C_0$ 2 R^{13} 5 R^{14} 5 $R^$

```
p is 0-8;
n is 2-8;
m is 0 or 1;
q is 0 or 1;
t is 0 or 1;
```

by one or more halo substituents;

each R^1 and R^2 are independently selected from H, halo, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- OR^{12} , $-C_0$ - C_6 alkyl- SR^{12} , $-C_1$ - C_6 alkyl-Het, $-C_1$ - C_6 alkyl-Ar and $-C_1$ - C_6 alkyl- C_3 - C_7 cycloalkyl, or R^1 and R^2 together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any of said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl-Ar, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl, $-C_0$ - C_6 alkyl- C_2 R¹², $-C_0$ - C_6 alkyl-C(O)SR¹², $-C_0$ - C_6 alkyl-CONR¹³R¹⁴, $-C_0$ - C_6 alkyl-COR¹⁵, $-C_0$ - C_6 alkyl-NR¹³R¹⁴, $-C_0$ - C_6 alkyl-SO₂NR¹³R¹⁴, $-C_0$ - C_6 alkyl-SO₂R¹², $-C_0$ - C_6 alkyl-SOR¹⁵, $-C_0$ - C_6 alkyl-OCOR¹⁵, $-C_0$ - C_6 alkyl-OC(O)NR¹³R¹⁴, $-C_0$ - $-C_6$ alkyl-OC(O)OR¹⁵, $-C_0$ - $-C_6$ alkyl-NR¹³C(O)OR¹⁵, $-C_0$ - $-C_6$ alkyl-NR¹³C(O)NR¹³R¹⁴, and $-C_0$ - $-C_6$ alkyl-NR¹³COR¹⁵, wherein said $-C_0$ - $-C_6$ alkyl is optionally unsubstituted or substituted

each R^4 and R^5 is independently selected from H, halo, C_1 - C_6 alkyl, - C_0 - C_6 alkyl-Het, - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

R⁶ and R⁷ are each independently selected from H, halo, C₁-C₆ alkyl,

 $-C_0-C_6 \ alkyl-Het, \ -C_0-C_6 \ alkyl-Ar \ and \ -C_0-C_6 \ alkyl-C_3-C_7 \ cycloalkyl;$

R⁸ and R⁹ are each independently selected from H, halo, C₁-C₆ alkyl,

-C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;

 R^{10} and R^{11} are each independently selected from H, $C_1\text{-}C_{12}$ alkyl, $C_3\text{-}C_{12}$ alkenyl,

 $C_3-C_{12} \ alkynyl, \ -C_0-C_8 \ alkyl-Ar, \ -C_0-C_8 \ alkyl-Het, \ -C_0-C_8 \ alkyl-C_3-C_7 \ cycloalkyl,$

-C₀-C₈ alkyl-O-Ar, -C₀-C₈ alkyl-O-Het, -C₀-C₈ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-S(O)_x-

 C_0 - C_6 alkyl, $-C_0$ - C_8 alkyl- $S(O)_x$ -Ar, $-C_0$ - C_8 alkyl- $S(O)_x$ -Het, $-C_0$ - C_8 alkyl- $S(O)_x$ -

C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-NH-Ar, -C₀-C₈ alkyl-NH-Het, -C₀-C₈ alkyl-NH-

C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-Het,

-C₀-C₈ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-Ar, -C₀-C₈ alkyl-Het and

- C_0 - C_8 alkyl- C_3 - C_7 cycloalkyl, where x is 0, 1 or 2, or R^{10} and R^{11} , together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C_1 - C_{12} alkyl,

C₃-C₁₂ alkenyl, or C₃-C₁₂ alkynyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted

 C_1 - C_6 alkyl), -N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), unsubstituted -OC₁- C_6 alkyl, -CO₂H, -CO₂(unsubstituted C_1 - C_6 alkyl), -CONH₂, -CONH(unsubstituted C_1 - C_6 alkyl), -CON(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), -SO₂NH₂, -SO₂NH(unsubstituted C_1 - C_6 alkyl) and -SO₂N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl);

 R^{12} is selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl-Het and - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

each R^{13} and each R^{14} are independently selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl-Ar, $-C_0$ - C_6 alkyl-Het and $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl, or R^{13} and R^{14} together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{15} is selected from C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl- C_6 alkyl- C_6 alkyl-Het and C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

provided that R¹⁰ and R¹¹ are not both H when Z is CH or N, Y is <u>-O-</u> [[-O(CR⁴R⁵)-]], n is 3, m is 1 and each R⁴, R⁵, R⁶, R⁷ are H, W³ is H, p is 0 or p is 1 or 2 and R¹ and R² are each H, k is 0 or k is 1 and R³ is halo or C₁-C₄ alkoxy, q is 0 or q is 1 or 2 and R⁸ and R⁹ are each H, Q is unsubstituted C₃-C₇ cycloalkyl, phenyl or Het, or phenyl substituted by one or more substituents selected from halo, -CH₃, -CH₂CH₃, -CF₃, -OC₁-C₄ alkyl, -OCH₂CH₂OH, -OCF₃, -OCF₂H, -SCH₃, -SCF₃, -SO₂CH₃, -CO₂H, -CO₂CH₃, -OH, -OCH₂CO₂H, -CH₂CONH₂, -NO₂, -CN, -N(CH₃)₂, and -NHC(O)CH₃, or Het substituted by one or more substituents selected from: -C₁-C₃ alkyl, -OC₁-C₄ alkyl, -CH₂OH, -CO₂H, -CO₂CH₂CH₃, -CO₂-tert-C₄H₉ alkyl, -CO₂CH₂-phenyl, -CONH₂, -C(O)phenyl, -C(O)CH₃, -CH₂CH₂-phenyl, and oxo, t is 0, and W¹ and W² are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl; or

provided that the compound is not:

3-[3-[[2-[3,4-bis(phenylmethoxy)phenyl]-2-

hydroxyethyl] (phenylmethyl) amino] propyl]-benzamide,

(S)-2-hydroxy-5-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

5-[2-[[2-[3,5-bis(phenylmethoxy)phenyl]-2-hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxy-benzamide,

2-hydroxy-4-[3-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]propoxy]-benzamide,

2-hydroxy-4-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

(R)-2-hydroxy-5-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

2-hydroxy-5-[3-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]propyl]-benzamide, 2-hydroxy-5-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

5-[2-[[2-(4-fluorophenyl)-2-hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxybenzamide,

5-[2-[[2-[3-(aminosulfonyl)-4-methoxyphenyl]-2-

hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxy-benzamide,

(R)-4-[2-[[2-hydroxy-2-[3-

(trifluoromethyl)phenyl]ethyl](phenylmethyl)amino]ethoxy]-benzeneacetamide,

(R)-4-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzeneacetamide,

4-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzeneacetamide,

5-[2-[[2-(4-fluorophenyl)-2-hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxyethyl]

4-[2-[[2-[3,4-bis(phenylmethoxy)phenyl]-2-

hydroxyethyl](phenylmethyl)amino]ethoxy]-benzamide,

or a pharmaceutically acceptable salt or solvate thereof.

- 2. (Original): The compound according to claim 1, wherein p is 0, 1 or 2.
- 3. (Previously presented): The compound according to claim 1, wherein t is 0.
- 4. (Previously presented): The compound according to claim 1, wherein R^1 , R^2 , R^8 and R^9 are each H.
 - 5. (Previously presented): The compound according to claim 1, wherein Z is CH.
 - 6. (Previously presented): The compound according to claim 1, wherein k is 0 or 1.

- 7. (Previously presented): The compound according to claim 1, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
 - 8. (Previously presented): The compound according to claim 1, wherein n is 2-4.
 - 9. (Previously presented): The compound according to claim 1, wherein n is 3.
 - 10. (Previously presented): The compound according to claim 1, wherein q is 1.
- 11. (Previously presented): The compound according to claim 1, wherein R^4 and R^5 are independently selected from H and C_1 - C_4 alkyl.
- 12. (Previously presented): The compound according to claim 1, wherein R^{10} and R^{11} are independently selected from H and C_1 - C_4 alkyl, or R^{10} and R^{11} , together with the nitrogen to which they are attached, form a substituted or unsubstituted 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N and O, wherein the substituted ring is substituted with C_1 - C_4 alkyl.
- 13. (Previously presented): The compound according to claim 1, wherein R¹⁰ and R¹¹ are each independently selected from H, methyl and ethyl, or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a azetidinly, pyrrolidinly, piperidnyl, azepanyl, N-methyl-piperazinyl, or morpholinyl group.
 - 14. (Previously presented): The compound according to claim 1, wherein Q is aryl.
- 15. (Previously presented): The compound according to claim 1, wherein Q is phenyl optionally substituted with two substituents selected from halo and C_1 - C_4 haloalkyl.
- 16. (Previously presented): The compound according to claim 1, wherein m is 0 or m is 1 and R⁶ and R⁷ are both H.
 - 17. (Previously presented): The compound according to claim 1, wherein W^3 is H.

- 18. (Previously presented): The compound according to claim 1 wherein W^1 and W^2 are each unsubstituted phenyl or W^1 is unsubstituted phenyl and W^2 is methyl.
 - 19. (Currently Amended): A compound having Formula II:

$$R^{10} \xrightarrow{\text{(CR}^1\text{R}^2)_p} Z \xrightarrow{\text{Y-(CR}^4\text{R}^5)_n} N$$

wherein:

Z is CH or N, wherein k is 0, 1 or 2;

Y is -O- or $-C(R^4)(R^5)$ -;

 $W^1 \text{ is selected from } C_1\text{-}C_6 \text{ alkyl, } C_3\text{-}C_8 \text{ cycloalkyl, aryl or Het, wherein said} \\ C_1\text{-}C_6 \text{ alkyl, } C_3\text{-}C_8 \text{ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one} \\ \text{or more groups independently selected from halo, cyano, nitro, } C_1\text{-}C_6 \text{ alkyl, } C_3\text{-}C_6 \text{ alkenyl, } \\ C_3\text{-}C_6 \text{ alkynyl, -}C_0\text{-}C_4 \text{ alkyl-}CO_2R^{12}, \text{-}C_0\text{-}C_4 \text{ alkyl-}C(0)SR^{12}, \text{-}C_0\text{-}C_4 \text{ alkyl-}CONR^{13}R^{14}, \\ \text{-}C_0\text{-}C_4 \text{ alkyl-}COR^{15}, \text{-}C_0\text{-}C_4 \text{ alkyl-}NR^{13}R^{14}, \text{-}C_0\text{-}C_4 \text{ alkyl-}SR^{12}, \text{-}C_0\text{-}C_4 \text{ alkyl-}OR^{12}, \\ \text{-}C_0\text{-}C_4 \text{ alkyl-}SO_3H, \text{-}C_0\text{-}C_4 \text{ alkyl-}SO_2NR^{13}R^{14}, \text{-}C_0\text{-}C_4 \text{ alkyl-}SO_2R^{12}, \text{-}C_0\text{-}C_4 \text{ alkyl-}SOR^{15}, \\ \text{-}C_0\text{-}C_4 \text{ alkyl-}OCOR^{15}, \text{-}C_0\text{-}C_4 \text{ alkyl-}OC(0)NR^{13}R^{14}, \text{-}C_0\text{-}C_4 \text{ alkyl-}OC(0)OR^{15}, \\ \text{-}C_0\text{-}C_4 \text{ alkyl-}NR^{13}C(0)OR^{15}, \text{-}C_0\text{-}C_4 \text{ alkyl-}NR^{13}C(0)NR^{13}R^{14}, \text{ and -}C_0\text{-}C_4 \text{ alkyl-}NR^{13}COR^{15}, \\ \text{where said } C_1\text{-}C_6 \text{ alkyl is optionally unsubstituted or substituted by one or more halo substituents:} \\$

W² is selected from H, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl,
-C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², -C₀-C₄ alkyl-CO₂R¹²,
-C₀-C₄ alkyl-C(O)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵,
-C₀-C₄ alkyl-OCOR¹⁵, -C₀-C₄ alkyl-OCONR¹³R¹⁴, -C₀-C₄ alkyl-NR¹³CONR¹³R¹⁴,
-C₀-C₄ alkyl-NR¹³COR¹⁵, -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and
-C₀-C₄ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl are

```
optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1-C_6 alkyl, C_3-C_6 alkenyl, C_3-C_6 alkynyl, -C_0-C_4 alkyl-CO_2R^{12}, -C_0-C_4 alkyl-C(O)SR^{12}, -C_0-C_4 alkyl-COR^{13}R^{14}, -C_0-C_4 alkyl-COR^{15}, -C_0-C_4 alkyl-COR^{12}, -C_0-C_4 alkyl-COR^{13}, -C_0-C_4 alkyl-COR^{15}, -C_0-C_4 alkyl-COR^{15}, -C_0-C_4 alkyl-COR^{15}, -C_0-C_4 alkyl-COR^{15}, where said C_1-C_0 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
```

 W^3 is selected from the group consisting of: H, halo, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_4 alkyl- SR^{12} , $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- CO_2R^{12} , $-C_0$ - C_4 alkyl- $C(O)SR^{12}$, $-C_0$ - C_4 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_4 alkyl- COR^{15} , $-C_0$ - C_4 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_4 alkyl- $NR^{13}CONR^{13}R^{14}$, $-C_0$ - C_4 alkyl- $NR^{13}COR^{15}$, $-C_0$ - C_4 alkyl-Het, $-C_1$ - C_4 alkyl-Ar and $-C_1$ - C_4 alkyl- C_3 - C_7 cycloalkyl, wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

Q is phenyl or Het; wherein said phenyl or Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- C_0 2 R^{12} , $-C_0$ - C_4 alkyl- C_0 8 R^{12} , $-C_0$ - C_4 alkyl- C_0 8 R^{13} 8 R^{14} , $-C_0$ - C_4 alkyl- C_0 9 R^{13} 8 R^{14} , $-C_0$ - C_4 alkyl- C_0 9 R^{12} , $-C_0$ 0 R^{13} 8 R^{14} , $-C_0$ 0 R^{12} 9, $-C_0$ 0 R^{12} 9, $-C_0$ 1 R^{12} 9, $-C_0$ 1 R^{13} 1 R^{14} 9, and $-C_0$ 1 R^{13} 1 R^{14} 9, where said C_1 1 R^{13} 1 R^{14} 9 or more halo substituents,

```
\begin{array}{c} p \text{ is } 0\text{-}4;\\ n \text{ is } 3;\\ m \text{ is } 0 \text{ or } 1;\\ q \text{ is } 0 \text{ or } 1;\\ t \text{ is } 0;\\ each \ R^1 \text{ and } R^2 \text{ are independently selected from H, fluoro, } C_1\text{-}C_6 \text{ alkyl,}\\ -C_0\text{-}C_4 \text{ alkyl-}OR^{12}, -C_0\text{-}C_4 \text{ alkyl-}SR^{12}, -C_1\text{-}C_4 \text{ alkyl-Het, } -C_1\text{-}C_4 \text{ alkyl-Ar and}\\ -C_1\text{-}C_4 \text{ alkyl-}C_3\text{-}C_7 \text{ cycloalkyl, where any of said } C_1\text{-}C_6 \text{ alkyl is optionally unsubstituted or substituted by one or more halo substituents;} \end{array}
```

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- $SO_2NR^{13}R^{14}$, and $-C_0$ - C_4 alkyl- CO_2H , wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently selected from H, fluoro and C₁-C₆ alkyl; R⁶ and R⁷ are each independently selected from H, fluoro and C₁-C₆ alkyl; R⁸ and R⁹ are each independently selected from H, fluoro and C₁-C₆ alkyl; R^{10} and R^{11} are each independently selected from H, C_1 - C_{10} alkyl, C_3 - C_8 alkenyl, C₃-C₈ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-O-Ar, -C₀-C₆ alkyl-O-Het, -C₀-C₆ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-S(O)_x- C_1 - C_6 alkyl- C_0 - C_0 C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-NH-Ar, -C₀-C₆ alkyl-NH-Het, -C₀-C₆ alkyl-NH- C_3 - C_7 cycloalkyl, $-C_0$ - C_6 alkyl- $N(C_1$ - C_4 alkyl)-Ar, $-C_0$ - C_6 alkyl- $N(C_1$ - C_4 alkyl)-Het, -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹¹ and R¹², together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₁₀ alkyl, C₃-C₁₀ alkenyl, C₃-C₁₀ alkynyl are optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₄ alkyl), -N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), unsubstituted -OC₁-C₄ alkyl, -CO₂H, -CO₂(unsubstituted C₁-C₄ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₄ alkyl), -CON(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C₁-C₄ alkyl)(unsubstituted C_1 - C_4 alkyl);

 R^{12} is selected from H, C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R¹³ and R¹⁴ are each independently selected from H, C₁-C₆ alkyl,
-C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹³ and R¹⁴ together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{15} is selected from C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R^{10} and R^{11} are not both H when Z is CH or N, Y is $\underline{\text{-O-}}$ [[$\underline{\text{-O(CR}^4R^5)}$ -]], n is 3, m is 1 and each R^4 , R^5 , R^6 , R^7 are H, W^3 is H, p is 0 or p is 1 or 2 and R^1 and R^2 are each H, k is 0 or k is 1 and R^3 is halo or C_1 - C_4 alkoxy, q is 0 or q is 1 or 2 and R^8 and R^9 are each H, Q is unsubstituted phenyl or Het, or phenyl substituted by one or more substituents selected from halo, $-\text{CH}_3$, $-\text{CH}_2\text{CH}_3$, $-\text{CF}_3$, $-\text{OC}_1$ - C_4 alkyl, $-\text{OCH}_2\text{CH}_2\text{OH}$, $-\text{OCF}_3$, $-\text{OCF}_2\text{H}$, $-\text{SCH}_3$, $-\text{SCF}_3$, $-\text{SO}_2\text{CH}_3$, $-\text{CO}_2\text{H}$, $-\text{CO}_2\text{CH}_3$, -OH, $-\text{OCH}_2\text{CO}_2\text{H}$, $-\text{CH}_2\text{CONH}_2$, $-\text{NO}_2$, -CN, $-\text{N(CH}_3)_2$, and $-\text{NHC}(O)\text{CH}_3$, or Het substituted by one or more substituents selected from: $-\text{C}_1\text{-C}_3$ alkyl, $-\text{OC}_1\text{-C}_4$ alkyl, $-\text{CH}_2\text{OH}$, $-\text{CO}_2\text{H}$, $-\text{CO}_2\text{CH}_2\text{CH}_3$, $-\text{CO}_2$ -tert- $-\text{C}_4\text{H}_9$ alkyl, $-\text{CO}_2\text{CH}_2\text{-phenyl}$, $-\text{CONH}_2$, -C(O)phenyl, $-\text{C(O)CH}_3$, $-\text{CH}_2\text{CH}_2\text{-phenyl}$, and oxo, t is 0, and $-\text{VCO}_3\text{CH}_3$ are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl; or

provided that the compound is not 2-hydroxy-4-[3-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]propoxy]-benzamide,

or a pharmaceutically acceptable salt or solvate thereof.

- 20. (Previously presented): The compound according to claim 1, wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and W^3 are each H; R^4 and R^5 are each independently selected from H and C_1 - C_4 alkyl, R^{10} and R^{11} are each independently selected from H, C_1 - C_{10} alkyl, $-C_1$ - C_4 alkyl-O-Ar, $-S(O)_2C_1$ - C_4 alkyl, $-S(O)_2$ -Ar, $-C_0$ - C_4 alkyl-Het, where the Het group is selected from imidazolyl, thienyl (thiophenyl), morpholinyl, thiomorpholinyl, furyl, tetrahydrofuranyl, pyridyl, isoxazolyl, oxadiazolyl, triazolyl and thiazolyl; or R^{10} and R^{11} , together with the nitrogen to which they are attached, form a substituted or unsubstituted 4-7 membered heterocyclic ring which optionally contains one additional heteroatom selected from N and O, wherein the substituted ring is substituted with C_1 - C_4 alkyl, wherein when said C_0 - C_4 alkyl is C_1 - C_4 alkyl, said C_1 - C_4 alkyl is unsubstituted or substituted by - CO_2 H or - CO_2 (unsubstituted C_1 - C_6 alkyl); Z is CH; Y is -O- or - $C(R^4)(R^5)$ -; Q is a substituted phenyl group, containing two substituents selected from halo and C_1 - C_4 haloalkyl; P is 0, 1 or 2; P0 is 3; P1 is 1; P2 is 0; and P3 are aryl or P3 is aryl and P4 is aryl or P3.
- 21. (Currently Amended): The compound according to claim 1, wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and W^3 are each H; ; R^4 and R^5 are each independently selected from H and methyl; R^{10} and R^{11} are each independently selected from H, methyl, ethyl, imidazol-2-yl-

methyl-, 5-bromo-thiophen-2-yl-methyl- [[(or 5-bromo-thion-2-yl-methyl-)]], thiophen-2-yl-methyl- [[(or thion-2-yl-methyl-)]], 2-methoxy-ethyl-, 2-dimethylamino-ethyl-, 2-morpholin-4-yl-ethyl-, 2-methoxy-1-methyl-ethyl-, 2-methoxy-ethyl-, furan-2-yl-methyl-, 3-methyl-isoxazol-5-yl-methyl-, 2-thiomorpholin-4-yl-ethyl-, 2-pyrrolidin-1-yl-ethyl-, pyridin-3-yl-methyl-, 2-pyridin-2-yl-ethyl-, 3-phenoxy-ethyl-, 3-isopropoxy-propyl-, 3-methoxy-propyl-, 5-methyl-[1,3,4] oxadiazol-2-yl-methyl-, 4-methyl-thiazol-2-yl-methyl-, 1-thiophen-2-yl-ethyl-, thiophen-3-yl-methyl- 5-methyl-4H-[1,2,4]triazol-3-yl-methyl-, pyridin-2-yl-methyl-, tetrahydrofuran-2-yl-methyl-, 1-ethyl-pyrrolidin-2-yl-methyl-, octyl, decyl, 2-(2-hydroxy-ethoxy)-ethyl-, 1-carboxy-thiophen-2-yl-methyl- [[(or 1-carboxy-thionyl-2-yl-methyl-)]], phenyl-sulfonyl- [[(mesyl)]], or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form an azetidinly, pyrrolidinyl, piperidnyl, azepanyl, 4-methyl-piperazin-1-yl, or morpholin-4-yl group; Z is CH; Y is -O-; Q is 2-chloro-3-(trifluoromethyl)phenyl; p is 1; n is 3; q is 1; k is 0; t is 0; m is 1; and W¹ and W² are each unsubstituted phenyl or W¹ is unsubstituted phenyl and W² is methyl; or a pharmaceutically acceptable salt or solvate thereof.

- 22. (Original): A compound selected from:
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-morpholin-4-yl-ethanone;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-methyl-acetamide;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*,*N*-dimethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-piperidyn-1-yl-ethanone;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-(4-methyl-piperazin-1-yl)-ethanone;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-pyrrolidin-1-yl-ethanone;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-ethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*,*N*-diethyl-acetamide;

- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-azetidin-1-yl-ethanone;
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-azepan-1-yl-ethanone;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-phenyl-propyl)amino]propoxy}-phenyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(1H-imidazol-2-ylmethyl)-acetamide;
- $N-(5-bromo-thiophen-2-ylmethyl)-2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-acetamide;$
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-thiophen-2-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-methoxy-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl amino]-propoxy}-phenyl)-N-(2-dimethylamino-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-morpholin-4-yl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-methoxy-1-methyl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-methoxy-ethyl)-N-methyl-acetamide;
- $2-(3-\{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy\}-phenyl)-N, N-bis-(2-methoxy-ethyl)-acetamide;$
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-furan-2-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-methyl-isoxazol-5-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-thiomorpholin-4-yl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-pyrrolidin-1-yl-ethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-

- phenyl)-N-pyridin-3-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-pyridin-2-yl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-phenoxy-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-isopropoxy-propyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-methoxy-propyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(5-methyl-[1,3,4] oxadiazol-2-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(4-methyl-thiazol-2-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(1-thiophen-2-yl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-thiophen-3-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(5-methyl-4H-[1,2,4]triazol-3-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-pyridin-2-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(tetrahydro-furan-2-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(1-ethyl-pyrrolidin-2-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-octyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-decyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-[2-(2-hydroxy-ethoxy)-ethyl]-acetamide;
- [2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylamino]-2-thiophen-2-yl-acetic acid;

- 3-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylamino]-propionic acid;
- 3-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylamino]-acetic acid;
- (*R*)-2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-2-methyl-propoxy}phenyl)-1-morpholin-4-yl-ethanone;
- $2-(3-\{(R)-3-[(2-\text{chloro}-3-\text{trifluoromethyl-benzyl})-\text{diphenylethyl-amino}]-\text{butoxy}-\text{phenyl})-1-morpholin-4-yl-ethanone;$
- 4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-*N*,*N*-dimethyl-benzamide;
- 1-(4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-morpholin-4-yl-methanone;
- 1-(4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-(4-methyl-piperazin-1-yl)-methanone;
- 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-*N*,*N*-dimethyl-benzamide;
- 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-*N*-phenyl-benzamide;
- 1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-morpholin-4-yl-methanone;
- 1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-(4-methyl-piperazin-1-yl)-methanone;
- $N-[1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-methanoyl]-methanesulfonamide;$
- N-[1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-methanoyl]-benzenesulfonamide;
- N-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoyl]-methanesulfonamide;
- N-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoyl]-benzenesulfonamide
- N-[-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl-ethanoyl]-N-methyl-benzenesulfonamide;
 - $N-[2-(3-\{3-\{(chlorotrifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy\}-phenyl)-$

ethanoyl]-N-methyl-methanesulfonamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((*S*)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-1-morpholin-4-yl-ethanone;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((*S*)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-*N*- ethyl-acetamide;

 $2-(3-\{3-[(2-\text{chloro}-3-\text{trifluoromethyl-benzyl})-((R)-2-\text{phenyl-propyl})-\text{amino}]-\text{propoxy}-\text{phenyl}-N,N-\text{dimethyl-acetamide};$

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)acetamide;

2-(3-{3-[(2-cChloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)- N- methyl-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)- N,N- dimethyl-acetamide,

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

23. (Original): The compound according to claim 22 selected from:

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-methyl-acetamide,

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*,*N*-dimethyl-acetamide,

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-ethyl-acetamide,

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N,N-bis-(2-methoxy-ethyl)-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-thiophen-3-ylmethyl-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-*N*-methyl-acetamide;

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

24. (Original): The compound according to claim 1, wherein at least one of Y, W^1 , W^2 , W^3 , t, R^1 , R^2 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} or R^{11} is defined as follows:

wherein:

Y is -S-, $-N(R^{12})$ -, or $-C(R^4)(R^5)$ -; or

 W^1 is C_1 - C_6 alkyl or Het, optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl- CO_2R^{12} , $-C_0$ - C_6 alkyl- $C(O)SR^{12}$, $-C_0$ - C_6 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_6 alkyl- COR^{15} , $-C_0$ - C_0 alkyl- COR^{15} , and $-C_0$ - C_0 alkyl- COR^{15} , where said C_1 - C_0 alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or

 W^2 is H, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, -C₀-C₆ alkyl-SR¹², -C₀-C₆ alkyl-OR¹², -C₀-C₆ alkyl-CO₂R¹², -C₀-C₆ alkyl-C(O)SR¹², $-C_0-C_6$ alkyl-CONR¹³R¹⁴, $-C_0-C_6$ alkyl-COR¹⁵, $-C_0-C_6$ alkyl-OCOR¹⁵, -C₀-C₆ alkyl-OCONR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³CONR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³COR¹⁵, -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar or -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C_3-C_6 alkynyl, $-C_0-C_6$ alkyl- $-C_0$ 2R¹², $-C_0-C_6$ alkyl- $-C_0$ 3R¹², $-C_0-C_6$ alkyl- $-C_0$ 3R¹³R¹⁴, $-C_0-C_6$ alkyl- $-C_0$ $-C_0-C_6$ alkyl-SO₃H, $-C_0-C_6$ alkyl-SO₂NR¹³R¹⁴, $-C_0-C_6$ alkyl-SO₂R¹², $-C_0-C_6$ alkyl-SOR¹⁵, -C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₆ alkyl-OC(O)NR¹³R¹⁴, -C₀-C₆ alkyl-OC(O)OR¹⁵, $-C_0-C_6$ alkyl-NR¹³C(O)OR¹⁵, $-C_0-C_6$ alkyl-NR¹³C(O)NR¹³R¹⁴, and $-C_0-C_6$ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or

 $W^3 \text{ is halo, } C_1\text{-}C_6 \text{ alkyl}, \text{-}C_0\text{-}C_6 \text{ alkyl-}NR^{13}R^{14}, \text{-}C_0\text{-}C_6 \text{ alkyl-}SR^{12}, \text{-}C_0\text{-}C_6 \text{ alkyl-}OR^{12}, \\ -C_0\text{-}C_6 \text{ alkyl-}CO_2R^{12}, \text{-}C_0\text{-}C_6 \text{ alkyl-}C(O)SR^{12}, \text{-}C_0\text{-}C_6 \text{ alkyl-}CONR^{13}R^{14}, \text{-}C_0\text{-}C_6 \text{ alkyl-}COR^{15}, \\ -C_0\text{-}C_6 \text{ alkyl-}OCOR^{15}, \text{-}C_0\text{-}C_6 \text{ alkyl-}OCONR^{13}R^{14}, \text{-}C_0\text{-}C_6 \text{ alkyl-}NR^{13}CONR^{13}R^{14}, \\ -C_0\text{-}C_6 \text{ alkyl-}OCOR^{15}, \text{-}C_0\text{-}C_6 \text{ alkyl-}OCONR^{13}R^{14}, \text{-}C_0\text{-}C_6 \text{ alkyl-}NR^{13}CONR^{13}R^{14}, \\ -C_0\text{-}C_0\text$

- C_0 - C_6 alkyl- $NR^{13}COR^{15}$, - C_0 - C_6 alkyl-Het, - C_1 - C_6 alkyl-Ar or - C_1 - C_6 alkyl- C_3 - C_7 cycloalkyl, wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents; or

t is 1; or

 C_1 - C_6 alkyl).

at least one R¹ or R² is halo, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-NR¹³R¹⁴, -C₁-C₆ alkyl-OR¹², -C₁-C₆ alkyl-SR¹², -C₁-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹ and R² together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any of said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; or at least one R⁴ or R⁵ is halo, C₁-C₆ alkyl, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; or at least one R^6 or R^7 is halo, $C_1\text{-}C_6$ alkyl, $-C_0\text{-}C_6$ alkyl-Het, $-C_0\text{-}C_6$ alkyl-Ar or -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; or at least one of R⁸ or R⁹ is halo, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; or at least one of R^{10} and R^{11} is C_1 - C_{12} alkyl, C_3 - C_{12} alkenyl, C_3 - C_{12} alkynyl, -C₀-C₈ alkyl-Ar, -C₀-C₈ alkyl-Het, -C₀-C₈ alkyl-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-O-Ar, $-C_0-C_8$ alkyl-O-Het, $-C_0-C_8$ alkyl-O-C₃-C₇ cycloalkyl, $-C_0-C_8$ alkyl-S(O)_x-C₁-C₆ alkyl, $-C_0-C_8$ alkyl-S(O)_x-Ar, $-C_0-C_8$ alkyl-S(O)_x-Het, $-C_0-C_8$ alkyl-S(O)_x-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-NH-Ar, -C₀-C₈ alkyl-NH-Het, -C₀-C₈ alkyl-NH-C₃-C₇ cycloalkyl, $-C_0-C_8$ alkyl-N(C₁-C₄ alkyl)-Ar, $-C_0-C_8$ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-Ar, -C₀-C₈ alkyl-Het or -C₀-C₈ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₆ alkyl), -N(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), unsubstituted -OC₁-C₆ alkyl, -CO₂H, -CO₂(unsubstituted C₁-C₆ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₆ alkyl), -CON(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₆ alkyl) and -SO₂N(unsubstituted C₁-C₆ alkyl)(unsubstituted

- 25. (Original): The compound according to claim 1, wherein at least one of R^4 , R^5 , R^{10} , R^{11} , or W^2 is defined as follows, wherein at least one of R^4 , R^5 , R^{10} or R^{11} is not H, or W^2 is C_1 - C_4 alkyl or Het.
- 26. (Currently Amended): The compound according to claim 1, provided that R¹⁰ and R¹¹ are not both H when: Z is CH, CR³ or N, wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3; Y is -O-; W¹ and W² are each independently C₃-C₈ cycloalkyl or aryl; wherein said C₃-C₈ cycloalkyl and Ar are optionally unsubstituted or substituted as defined herein; Q is C₃-C₈ cycloalkyl, Ar or 4-8 membered Het; wherein said C₃-C₈ cycloalkyl, Ar or Het are optionally unsubstituted or substituted as defined herein; W³ is H; p is 0-6; n is 2-8; m is 0 or 1; q is 0 or 1; t is 0; each R¹ and R² are independently H, C₁-C₆ alkyl, -OC₁-C₆ alkyl or -SC₁-C₆ alkyl; each R³ is the same or different and is independently halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, -OC₁-C₆ alkyl, -C₀-C₆ alkyl-CO₂R¹², -COR¹⁵, -SR¹², -SOR¹⁵, -SO₂R¹² (where R¹² is H, C₁-C₆ alkyl or C₃-C₆ alkenyl and R¹⁵ is C₁-C₆ alkyl or C₃-C₆ alkenyl), -OCOC₁-C₆ alkyl, -OC(O)NR¹³R¹⁴, -CONR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³R¹⁴ (where each R¹³ and each R¹⁴ are independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, and C₃-C₆ alkynyl) or a 5-6 membered Het; each R⁴, R⁵, R⁶, R⁷ and R⁸ are H; and R⁹ is H or C₁-C₆ alkyl;

where R^{12} is H, C_1 - C_6 alkyl or C_3 - C_6 alkenyl and R^{15} is C_1 - C_6 alkyl or C_3 - C_6 alkenyl; and where each R^{13} and each R^{14} are independently selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, and C_3 - C_6 alkynyl.

27. (Currently Amended): A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier or diluent.

Claim 28 (Cancelled).

29. (Currently Amended): A method for the prevention or treatment of an LXR mediated disease or condition increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of a compound having Formula I-A:

I-A

wherein:

Z is CH, CR³ or N, wherein when Z is CH or CR³, k is 0-4 and t is 0 or 1, and when Z is N, k is 0-3 and t is 0;

Y is selected from -O-, -S-, -N(R^{12})-, and -C(R^4)(R^5)-;

 W^1 is selected from C_1 - C_6 alkyl, C_0 - C_6 alkyl C_3 - C_8 cycloalkyl, aryl and Het, wherein said C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_6 alkyl- C_0 9S R^{12} , $-C_0$ - C_6 alkyl- C_0 8C R^{13} 8C R^{14} , $-C_0$ 8C R^{14} 9C R^{15} 9C R^{15} 9C R^{15} 9C R^{15} 1C R^{15}

 W^2 is selected from H, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- SR^{12} , $-C_0$ - C_6 alkyl- OR^{12} , $-C_0$ - C_6 alkyl- CO_2R^{12} ,

```
-C<sub>0</sub>-C<sub>6</sub> alkyl-C(O)SR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CONR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>15</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OCONR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>CONR<sup>13</sup>R<sup>14</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar and
-C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, wherein said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C<sub>3</sub>-C<sub>7</sub> cycloalkyl, Ar and Het moieties of said -C<sub>0</sub>-C<sub>6</sub> alkyl-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-CO<sub>2</sub>R<sup>12</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-C(O)SR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CONR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>R<sup>14</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-SR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>3</sub>H, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>R<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SOR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>15</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)NR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)OR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)OR<sup>15</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)NR<sup>13</sup>R<sup>14</sup>, and -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, where said C<sub>1</sub>-C<sub>6</sub> alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
```

 W^3 is selected from the group consisting of: H, halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- SR^{12} , $-C_0$ - C_6 alkyl- OR^{12} , $-C_0$ - C_6 alkyl- CO_2R^{12} , $-C_0$ - C_6 alkyl- $C(O)SR^{12}$, $-C_0$ - C_6 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_6 alkyl- COR^{15} , $-C_0$ - C_6 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_6 alkyl- $NR^{13}CONR^{13}R^{14}$, $-C_0$ - C_6 alkyl- $NR^{13}COR^{15}$, $-C_0$ - C_6 alkyl-Het, $-C_1$ - C_6 alkyl-Ar and $-C_1$ - C_6 alkyl- C_3 - C_7 cycloalkyl, wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

Q is selected from C_3 - C_8 cycloalkyl, Ar and Het; wherein said C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- C_0 - C_0 -

```
p is 0-8;
n is 2-8;
m is 0 or 1;
```

q is 0 or 1; t is 0 or 1;

each R^1 and R^2 are independently selected from H, halo, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- OR^{12} , $-C_0$ - C_6 alkyl- SR^{12} , $-C_1$ - C_6 alkyl-Het, $-C_1$ - C_6 alkyl-Ar and $-C_1$ - C_6 alkyl- C_3 - C_7 cycloalkyl, or R^1 and R^2 together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any of said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R³ is the same or different and is independently selected from halo, cyano, nitro,

 $C_1\text{-}C_6 \text{ alkyl}, C_3\text{-}C_6 \text{ alkenyl}, C_3\text{-}C_6 \text{ alkynyl}, \text{-}C_0\text{-}C_6 \text{ alkyl-Ar}, \text{-}C_0\text{-}C_6 \text{ alkyl-Het},$

 $-C_0-C_6 \text{ alkyl-} \\ C_3-C_7 \text{ cycloalkyl, } -C_0-C_6 \text{ alkyl-} \\ CO_2 \\ R^{12}, -C_0-C_6 \text{ alkyl-} \\ C(O) \\ SR^{12}, -C_0 \\ SR^{12}, -C$

 $-C_0-C_6$ alkyl-CONR¹³R¹⁴, $-C_0-C_6$ alkyl-COR¹⁵, $-C_0-C_6$ alkyl-NR¹³R¹⁴, $-C_0-C_6$ alkyl-SR¹²,

 $-C_0-C_6 \ alkyl-OR^{12}, \ -C_0-C_6 \ alkyl-SO_3H, \ -C_0-C_6 \ alkyl-SO_2NR^{13}R^{14}, \ -C_0-C_6 \ alkyl-SO_2R^{12}, \$

-C₀-C₆ alkyl-SOR¹⁵, -C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₆ alkyl-OC(O)NR¹³R¹⁴,

 $-C_0-C_6 \ alkyl-OC(O)OR^{15}, \ -C_0-C_6 \ alkyl-NR^{13}C(O)OR^{15}, \ -C_0-C_6 \ alkyl-NR^{13}C(O)NR^{13}R^{14}, \ and \ -C_0-C_0 \ alkyl-NR^{13}C(O)NR^{13$

-C₀-C₆ alkyl-NR¹³COR¹⁵, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^4 and R^5 is independently selected from H, halo, C_1 - C_6 alkyl, - C_0 - C_6 alkyl-Het, - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

R⁶ and R⁷ are each independently selected from H, halo, C₁-C₆ alkyl,

-C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;

R⁸ and R⁹ are each independently selected from H, halo, C₁-C₆ alkyl,

- C_0 - C_6 alkyl-Het, - C_0 - C_6 alkyl-Ar and - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

R¹⁰ and R¹¹ are each independently selected from H, C₁-C₁₂ alkyl, C₃-C₁₂ alkenyl,

 $C_3\text{-}C_{12} \text{ alkynyl, -}C_0\text{-}C_8 \text{ alkyl-Ar, -}C_0\text{-}C_8 \text{ alkyl-Het, -}C_0\text{-}C_8 \text{ alkyl-}C_3\text{-}C_7 \text{ cycloalkyl, -}C_0\text{-}C_8 \text{ alkyl-Ar, -}C_0\text{-}C_8 \text{ alkyl-Het, -}C_0\text{-}C_8 \text{ alkyl-Ar, -}C_0\text{-}C_0$

 $-C_0-C_8 \text{ alkyl-O-Ar, } -C_0-C_8 \text{ alkyl-O-Het, } -C_0-C_8 \text{ alkyl-O-C}_3-C_7 \text{ cycloalkyl, } -C_0-C_8 \text{ alkyl-S(O)}_x-C_0-C_8 \text{ alkyl-O-Het, } -C_0-C_8 \text{ alkyl-O-Het, } -C_$

 C_0 - C_6 alkyl, $-C_0$ - C_8 alkyl- $S(O)_x$ -Ar, $-C_0$ - C_8 alkyl- $S(O)_x$ -Het, $-C_0$ - C_8 alkyl- $S(O)_x$ -

 C_3 - C_7 cycloalkyl, - C_0 - C_8 alkyl-NH-Ar, - C_0 - C_8 alkyl-NH-Het, - C_0 - C_8 alkyl-NH-

 $C_3-C_7 \ cycloalkyl, \ -C_0-C_8 \ alkyl-N(C_1-C_4 \ alkyl)-Ar, \ -C_0-C_8 \ alkyl-N(C_1-C_4 \ alkyl)-Het,$

- C_0 - C_8 alkyl- $N(C_1$ - C_4 alkyl)- C_3 - C_7 cycloalkyl, - C_0 - C_8 alkyl-Ar, - C_0 - C_8 alkyl-Het and

- C_0 - C_8 alkyl- C_3 - C_7 cycloalkyl, where x is 0, 1 or 2, or R^{10} and R^{11} , together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C_1 - C_{12} alkyl,

 C_3 - C_{12} alkenyl, or C_3 - C_{12} alkynyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C_1 - C_6 alkyl), -N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), unsubstituted -OC₁- C_6 alkyl, -CO₂H, -CO₂(unsubstituted C_1 - C_6 alkyl), -CONH₂, -CONH(unsubstituted C_1 - C_6 alkyl), -CON(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C_1 - C_6 alkyl) and -SO₂N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl);

 R^{12} is selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl-Het and - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

each R¹³ and each R¹⁴ are independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹³ and R¹⁴ together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{15} is selected from C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

provided that R¹⁰ and R¹¹ are not both H when Z is CH or N, Y is <u>-O-</u> [[-O(CR⁴R⁵)-]], n is 3, m is 1 and each R⁴, R⁵, R⁶, R⁷ are H, W³ is H, p is 0 or p is 1 or 2 and R¹ and R² are each H, k is 0 or k is 1 and R³ is halo or C₁-C₄ alkoxy, q is 0 or q is 1 or 2 and R⁸ and R⁹ are each H, Q is unsubstituted C₃-C₇ cycloalkyl, phenyl or Het, or phenyl substituted by one or more substituents selected from halo, -CH₃, -CH₂CH₃, -CF₃, -OC₁-C₄ alkyl, -OCH₂CH₂OH, -OCF₃, -OCF₂H, -SCH₃, -SCF₃, -SO₂CH₃, -CO₂H, -CO₂CH₃, -OH, -OCH₂CO₂H, -CH₂CONH₂, -NO₂, -CN, -N(CH₃)₂, and -NHC(O)CH₃, or Het substituted by one or more substituents selected from: -C₁-C₃ alkyl, -OC₁-C₄ alkyl, -CH₂OH, -CO₂H, -CO₂CH₂CH₃, -CO₂-tert-C₄H₉ alkyl, -CO₂CH₂-phenyl, -CONH₂, -C(O)phenyl, -C(O)CH₃, -CH₂CH₂-phenyl, and oxo, t is 0, and W¹ and W² are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl;

or a pharmaceutically acceptable salt or solvate thereof.

- 30. (Original): The method according to claim 29, wherein p is 0 or 1 and q is 1.
- 31. (Previously presented): The method according to claim 29, wherein R^1 , R^2 , R^8 and R^9 are each H.

- 32. (Previously presented): The method according to claim 29, wherein Z is CH.
- 33. (Previously presented): The method according to claim 29, wherein k is 0 or 1.
- 34. (Previously presented): The method according to claim 29, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
 - 35. (Previously presented): The method according to claim 29, wherein n is 3.
- 36. (Previously presented): The method according to claim 29, wherein R^{10} is H or C_1 - C_4 alkyl.
- 37. (Previously presented): The method according claim 29, wherein Q is phenyl optionally substituted with two substituents selected from halo and C₁-C₄ haloalkyl.
- 38. (Previously presented): The method according to claim 29 wherein W^1 and W^2 are unsubstituted phenyl.
- 39. (Currently Amended): A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula II-A:

wherein:

Z is CH or N, wherein k is 0, 1 or 2;

Y is -O- or $-C(R^4)(R^5)$ -;

 W^1 is selected from C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, aryl or Het, wherein said C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one

or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- C_0 2 R^{12} , $-C_0$ - C_4 alkyl- C_0 0 SR^{12} , $-C_0$ - C_4 alkyl- C_0 8 R^{13} 8 R^{14} , $-C_0$ - C_4 alkyl- C_0 8 R^{12} , $-C_0$ - C_4 alkyl- C_0 8 R^{12} , $-C_0$ 9. $-C_0$ 4 alkyl- $-C_0$ 9 R^{13} 8 R^{14} , $-C_0$ 9. $-C_0$ 4 alkyl- $-C_0$ 9 R^{12} 9, $-C_0$ 9. $-C_0$ 4 alkyl- $-C_0$ 90 R^{13} 8, $-C_0$ 90. $-C_0$ 4 alkyl- $-C_0$ 90 R^{15} 9, $-C_0$ 90. $-C_0$ 90 R^{15} 9, and $-C_0$ 90. $-C_0$ 90 alkyl- $-C_0$ 90 R^{15} 9, where said $-C_0$ 90 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^2 is selected from H, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $-C_0-C_4$ alkyl-NR¹³R¹⁴, $-C_0-C_4$ alkyl-SR¹², $-C_0-C_4$ alkyl-OR¹², $-C_0-C_4$ alkyl-CO₂R¹², $-C_0-C_4$ alkyl-C(O)SR¹², $-C_0-C_4$ alkyl-CONR¹³R¹⁴, $-C_0-C_4$ alkyl-COR¹⁵, $-C_0-C_4$ alkyl-OCOR¹⁵, $-C_0-C_4$ alkyl-OCONR¹³R¹⁴, $-C_0-C_4$ alkyl-NR¹³CONR¹³R¹⁴, $-C_0-C_4$ alkyl-NR¹³COR¹⁵, $-C_0-C_4$ alkyl-Het, $-C_0-C_4$ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₄ alkyl-CO₂R¹², $-C_0-C_4$ alkyl-C(O)SR¹², $-C_0-C_4$ alkyl-CONR¹³R¹⁴, $-C_0-C_4$ alkyl-COR¹⁵, $-C_0-C_4$ alkyl-NR¹³R¹⁴, $-C_0-C_4$ alkyl-SR¹², $-C_0-C_4$ alkyl-OR¹², $-C_0-C_4$ alkyl-SO₃H, $-C_0-C_4$ alkyl-SO₂NR¹³R¹⁴, $-C_0-C_4$ alkyl- SO_2R^{12} , $-C_0-C_4$ alkyl- SOR^{15} , $-C_0-C_4$ alkyl- $OCOR^{15}$, $-C_0-C_4$ alkyl-OC(O)NR¹³R¹⁴, $-C_0-C_4$ alkyl-OC(O)OR¹⁵, $-C_0-C_4$ alkyl-NR¹³C(O)OR¹⁵, -C₀-C₄ alkyl-NR¹³C(O)NR¹³R¹⁴, and -C₀-C₄ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^3 is selected from the group consisting of: H, halo, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_4 alkyl- SR^{12} , $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- CO_2R^{12} , $-C_0$ - C_4 alkyl- $C(O)SR^{12}$, $-C_0$ - C_4 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_4 alkyl- COR^{15} , $-C_0$ - C_4 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_4 alkyl- $NR^{13}CONR^{13}R^{14}$, $-C_0$ - C_4 alkyl- $NR^{13}COR^{15}$, $-C_0$ - C_4 alkyl-Het, $-C_1$ - C_4 alkyl-Ar and $-C_1$ - C_4 alkyl- C_3 - C_7 cycloalkyl, wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

Q is phenyl or Het; wherein said phenyl or Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro,

```
C_1-C_6 alkyl, C_3-C_6 alkenyl, C_3-C_6 alkynyl, -C_0-C_4 alkyl--C_0--C_4 alkyl--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--C_0--
-C_0-C_4 alkyl-CONR<sup>13</sup>R<sup>14</sup>, -C_0-C_4 alkyl-COR<sup>15</sup>, -C_0-C_4 alkyl-NR<sup>13</sup>R<sup>14</sup>, -C_0-C_4 alkyl-SR<sup>12</sup>,
-C_0-C_4 alkyl-OR^{12}, -C_0-C_4 alkyl-SO_3H, -C_0-C_4 alkyl-SO_2NR^{13}R^{14}, -C_0-C_4 alkyl-SO_2R^{12},
-C<sub>0</sub>-C<sub>4</sub> alkyl-SOR<sup>15</sup>, -C<sub>0</sub>-C<sub>4</sub> alkyl-OCOR<sup>15</sup>, -C<sub>0</sub>-C<sub>4</sub> alkyl-OC(O)NR<sup>13</sup>R<sup>14</sup>,
-C<sub>0</sub>-C<sub>4</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, where said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or substituted by
one or more halo substituents,
                p is 0-4;
                n is 3;
                m is 0 or 1;
                q is 0 or 1;
                t is 0;
                each R<sup>1</sup> and R<sup>2</sup> are independently selected from H, fluoro, C<sub>1</sub>-C<sub>6</sub> alkyl,
-C_0-C_4 alkyl-OR<sup>12</sup>, -C_0-C_4 alkyl-SR<sup>12</sup>, -C_1-C_4 alkyl-Het, -C_1-C_4 alkyl-Ar and
-C<sub>1</sub>-C<sub>4</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, where any of said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
substituted by one or more halo substituents;
                each R<sup>3</sup> is the same or different and is independently selected from halo, cyano,
C_1-C_6 alkyl, -C_0-C_4 alkyl-NR<sup>13</sup>R<sup>14</sup>, -C_0-C_4 alkyl-OR<sup>12</sup>, -C_0-C_4 alkyl-SO<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>, and
-C_0-C_4 alkyl-CO_2H, wherein said C_1-C_6 alkyl is optionally unsubstituted or substituted by one
or more halo substituents;
                each R<sup>4</sup> and R<sup>5</sup> is independently selected from H, fluoro and C<sub>1</sub>-C<sub>6</sub> alkyl;
                R<sup>6</sup> and R<sup>7</sup> are each independently selected from H, fluoro and C<sub>1</sub>-C<sub>6</sub> alkyl;
                R<sup>8</sup> and R<sup>9</sup> are each independently selected from H, fluoro and C<sub>1</sub>-C<sub>6</sub> alkyl;
                R<sup>10</sup> and R<sup>11</sup> are each independently selected from H, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>3</sub>-C<sub>8</sub> alkenyl,
C<sub>3</sub>-C<sub>8</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl,
-C<sub>0</sub>-C<sub>6</sub> alkyl-O-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-O-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-O-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-S(O)<sub>x</sub>-
C_1-C_6 alkyl, -C_0-C_6 alkyl-S(O)_x-Ar, -C_0-C_6 alkyl-S(O)_x-Het, -C_0-C_6 alkyl-S(O)_x-
C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-NH-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-NH-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-NH-
C_3-C_7 cycloalkyl, -C_0-C_6 alkyl-N(C_1-C_4 alkyl)-Ar, -C_0-C_6 alkyl-N(C_1-C_4 alkyl)-Het,
-C<sub>0</sub>-C<sub>6</sub> alkyl-N(C<sub>1</sub>-C<sub>4</sub> alkyl)-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and
-C_0-C_6 alkyl-C_3-C_7 cycloalkyl, where x is 0, 1 or 2, or R^{11} and R^{12}, together with the nitrogen
to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains
```

one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₁₀ alkyl,

 C_3 - C_{10} alkenyl, C_3 - C_{10} alkynyl are optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C_1 - C_4 alkyl), -N(unsubstituted C_1 - C_4 alkyl)(unsubstituted C_1 - C_4 alkyl), unsubstituted -OC₁- C_4 alkyl, -CO₂H, -CO₂(unsubstituted C_1 - C_4 alkyl), -CONH₂, -CONH(unsubstituted C_1 - C_4 alkyl), -CON(unsubstituted C_1 - C_4 alkyl)(unsubstituted C_1 - C_4 alkyl), -SO₂NH₂, -SO₂NH(unsubstituted C_1 - C_4 alkyl) and -SO₂N(unsubstituted C_1 - C_4 alkyl)(unsubstituted C_1 - C_4 alkyl);

 R^{12} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R¹³ and R¹⁴ are each independently selected from H, C₁-C₆ alkyl,
-C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹³ and R¹⁴ together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{15} is selected from C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R^{10} and R^{11} are not both H when Z is CH or N, Y is $\underline{\text{-O-}}$ [[$\underline{\text{-O(CR}^4R^5)}$ -]], n is 3, m is 1 and each R^4 , R^5 , R^6 , R^7 are H, W^3 is H, p is 0 or p is 1 or 2 and R^1 and R^2 are each H, k is 0 or k is 1 and R^3 is halo or C_1 - C_4 alkoxy, q is 0 or q is 1 or 2 and R^8 and R^9 are each H, Q is unsubstituted phenyl or Het, or phenyl substituted by one or more substituents selected from halo, $-\text{CH}_3$, $-\text{CH}_2\text{CH}_3$, $-\text{CF}_3$, $-\text{OC}_1$ - C_4 alkyl, $-\text{OCH}_2\text{CH}_2\text{OH}$, $-\text{OCF}_3$, $-\text{OCF}_2\text{H}$, $-\text{SCH}_3$, $-\text{SCF}_3$, $-\text{SO}_2\text{CH}_3$, $-\text{CO}_2\text{H}$, $-\text{CO}_2\text{CH}_3$, -OH, $-\text{OCH}_2\text{CO}_2\text{H}$, $-\text{CH}_2\text{CONH}_2$, $-\text{NO}_2$, -CN, $-\text{N(CH}_3)_2$, and $-\text{NHC}(O)\text{CH}_3$, or Het substituted by one or more substituents selected from: $-\text{C}_1\text{-C}_3$ alkyl, $-\text{OC}_1\text{-C}_4$ alkyl, $-\text{CH}_2\text{OH}$, $-\text{CO}_2\text{H}$, $-\text{CO}_2\text{CH}_2\text{CH}_3$, $-\text{CO}_2$ -tert- $-\text{C}_4\text{H}_9$ alkyl, $-\text{CO}_2\text{CH}_2$ -phenyl, $-\text{CONH}_2$, -C(O)-phenyl, -C(O)-CH₂-phenyl, and oxo, t is 0, and $-\text{CO}_3\text{CH}_3$ are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl;

or a pharmaceutically acceptable salt or solvate thereof.

40. (Previously presented): The method according to claim 29, wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and W^3 are each H; R^4 and R^5 are each independently selected from H and C_1 - C_4 alkyl, R^{10} and R^{11} are each independently selected from H, C_1 - C_{10} alkyl, $-C_1$ - $-C_4$ alkyl- $-C_1$ - $-C_4$ alkyl- $-C_1$ - $-C_4$ alkyl- $-C_1$ - $-C_4$ alkyl- $-C_1$ - $-C_4$ alkyl-Het, where the Het group is selected from imidazolyl, thienyl (thiophenyl), morpholinyl, thiomorpholinyl, furyl,

tetrahydrofuranyl, pyridyl, isoxazolyl, oxadiazolyl, triazolyl and thiazolyl; or R^{10} and R^{11} , together with the nitrogen to which they are attached, form a substituted or unsubstituted 4-7 membered heterocyclic ring which optionally contains one additional heteroatom selected from N and O, wherein the substituted ring is substituted with C_1 - C_4 alkyl, wherein when said C_0 - C_4 alkyl is C_1 - C_4 alkyl, said C_1 - C_4 alkyl is unsubstituted or substituted by - CO_2H or - CO_2 (unsubstituted C_1 - C_6 alkyl); Z is CH; Y is -O- or - $C(R^4)(R^5)$ -; Q is a substituted phenyl group, containing two substituents selected from halo and C_1 - C_4 haloalkyl; p is 0, 1 or 2; n is 3; m is 0 or 1; q is 1; k is 0; t is 0; and W^1 and W^2 are aryl or W^1 is aryl and W^2 is aryl or C_1 - C_4 alkyl; or a pharmaceutically acceptable salt or solvate thereof.

41. (Currently Amended): The method according to claim 29, wherein R¹, R², R³, R⁶, R⁷, R⁸, R⁹ and W³ are each H; R⁴ and R⁵ are each independently selected from H and methyl; R¹⁰ and R¹¹ are each independently selected from H, methyl, ethyl, imidazol-2-ylmethyl-, 5-bromo-thiophen-2-yl-methyl- [[(or 5-bromo-thien 2-yl-methyl-)]], thiophen-2-ylmethyl- [[(or thien-2-yl-methyl-)]], 2-methoxy-ethyl-, 2-dimethylamino-ethyl-, 2-morpholin-4-yl-ethyl-, 2-methoxy-1-methyl-ethyl-, 2-methoxy-ethyl-, furan-2-yl-methyl-, 3-methyl-isoxazol-5-yl-methyl-, 2-thiomorpholin-4-yl-ethyl-, 2-pyrrolidin-1-yl-ethyl-, pyridin-3-yl-methyl-, 2-pyridin-2-yl-ethyl-, 3-phenoxy-ethyl-, 3-isopropoxy-propyl-, 3-methoxy-propyl-, 5-methyl-[1,3,4] oxadiazol-2-yl-methyl-, 4-methyl-thiazol-2-yl-methyl-, 1-thiophen-2-yl-ethyl-, thiophen-3-yl-methyl- 5-methyl-4H-[1,2,4]triazol-3-yl-methyl-, pyridin-2-yl-methyl-, tetrahydrofuran-2-yl-methyl-, 1-ethyl-pyrrolidin-2-yl-methyl-, octyl, decyl, 2-(2-hydroxy-ethoxy)-ethyl-, 1-carboxy-thiophen-2-yl-methyl- [[(or 1-carboxy-thien-2-yl-methyl-)]], phenyl, methyl-sulfonyl- [[(mesyl)]], phenyl-sulfonyl- [[(benzene sulfonyl)]], or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form an azetidinly, pyrrolidinyl, piperidnyl, azepanyl, 4-methyl-piperazin-1-yl, or morpholin-4-yl group; Z is CH; Y is -O-; Q is 2-chloro-3-(trifluoromethyl)phenyl; p is 1; n is 3; q is 1; k is 0; t is 0; m is 1; and W¹ and W² are each unsubstituted phenyl or W¹ is unsubstituted phenyl and W² is methyl; or a pharmaceutically acceptable salt or solvate thereof.

42. (Previously presented): The method according to claim 29, wherein at least one of Y, W¹, W², W³, t, R¹, R², R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ or R¹¹ is defined as follows: wherein:

Y is -S-, -N(
$$R^{12}$$
)-, or -C(R^4)(R^5)-; or

W¹ is Het optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- CO_2 R¹², $-C_0$ - C_6 alkyl- CO_2 R¹², $-C_0$ - C_6 alkyl- CO_2 R¹³, $-C_0$ - C_6 alkyl- CO_2 R¹⁴, $-C_0$ - C_6 alkyl- CO_2 R¹⁵, $-C_0$ - C_6 alkyl- CO_2 R¹⁷, $-C_0$ - C_6 alkyl- CO_2 R¹⁸, $-C_0$ - C_0 alkyl- CO_2 R¹⁹, $-C_0$ - C_0 alkyl- $-C_0$ R¹⁵, $-C_0$ - $-C_0$ alkyl- $-C_0$ R¹⁵, $-C_0$ - $-C_0$ alkyl- $-C_0$ R¹⁵, where said $-C_0$ - $-C_0$ alkyl- $-C_0$ R¹⁵, where said $-C_0$ - $-C_0$ alkyl- $-C_0$ - $-C_0$ -

 W^2 is H, halo, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_0-C_6$ alkyl-SR¹², $-C_0-C_6$ alkyl-OR¹², $-C_0-C_6$ alkyl-CO₂R¹², $-C_0-C_6$ alkyl-C(O)SR¹², $-C_0-C_6 \ alkyl-CONR^{13}R^{14}, \ -C_0-C_6 \ alkyl-COR^{15}, \ -C_0-C_6 \ alkyl-OCOR^{15},$ -C₀-C₆ alkyl-OCONR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³CONR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³COR¹⁵, -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar or -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C_3-C_6 alkynyl, $-C_0-C_6$ alkyl- $-C_0$ 2R¹², $-C_0-C_6$ alkyl- $-C_0$ 3R¹², $-C_0-C_6$ alkyl- $-C_0$ 3R¹³R¹⁴, $-C_0-C_6 \text{ alkyl-COR}^{15}, -C_0-C_6 \text{ alkyl-NR}^{13} \text{R}^{14}, -C_0-C_6 \text{ alkyl-SR}^{12}, -C_0-C_6 \text{ alkyl-OR}^{12}, -C_0-C_6 \text{ alkyl$ -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹³R¹⁴, -C₀-C₆ alkyl-SO₂R¹², -C₀-C₆ alkyl-SOR¹⁵, -C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₆ alkyl-OC(O)NR¹³R¹⁴, -C₀-C₆ alkyl-OC(O)OR¹⁵, $-C_0-C_6$ alkyl-NR¹³C(O)OR¹⁵, $-C_0-C_6$ alkyl-NR¹³C(O)NR¹³R¹⁴, and $-C_0-C_6$ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or

 W^3 is halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- SR^{12} , $-C_0$ - C_6 alkyl- C_0 - C_0 -

t is 1; or

at least one R^1 or R^2 is halo, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_1$ - C_6 alkyl- OR^{12} , $-C_1$ - C_6 alkyl- SR^{12} , $-C_1$ - C_6 alkyl-Het, $-C_1$ - C_6 alkyl-Ar and

-C₁-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹ and R² together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; or

at least one R^4 or R^5 is halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one R^6 or R^7 is halo, C_1 - C_6 alkyl, - C_0 - C_6 alkyl-Het, - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one of R^8 or R^9 is halo, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one of R¹⁰ or R¹¹ is C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl,

 $-C_0-C_6 \ alkyl-Ar, \ -C_0-C_6 \ alkyl-Het, \ -C_0-C_6 \ alkyl-C_3-C_7 \ cycloalkyl, \ -C_0-C_6 \ alkyl-O-Ar,$

 $-C_0-C_6$ alkyl-O-Het, $-C_0-C_6$ alkyl-O-C₃-C₇ cycloalkyl, $-C_0-C_6$ alkyl-S(O)_x-C₁-C₆ alkyl,

 $-C_0-C_6$ alkyl- $S(O)_x$ -Ar, $-C_0-C_6$ alkyl- $S(O)_x$ -Het, $-C_0-C_6$ alkyl- $S(O)_x$ - C_3-C_7 cycloalkyl,

-C₀-C₆ alkyl-NH-Ar, -C₀-C₆ alkyl-NH-Het, -C₀-C₆ alkyl-NH-C₃-C₇ cycloalkyl,

 $-C_0-C_6$ alkyl-N(C₁-C₄ alkyl)-Ar, $-C_0-C_6$ alkyl-N(C₁-C₄ alkyl)-Het,

-C₀-C₆ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het or

 $-C_0-C_6$ alkyl- C_3-C_7 cycloalkyl, where x is 0, 1 or 2, or

R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is optionally substituted by one or more of the substituted C₁-C₁ alkyl). N(unsubstituted C₁-C₂ alkyl) alkyl)

-NH(unsubstituted C_1 - C_6 alkyl), -N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), unsubstituted -OC₁- C_6 alkyl, -CO₂H, -CO₂(unsubstituted C_1 - C_6 alkyl), -CONH₂,

-CONH(unsubstituted C_1 - C_6 alkyl), -CON(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), -SO₂NH, -SO₂NH₂, -SO₂NH(unsubstituted C_1 - C_6 alkyl) and -SO₂N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl).

43. (Previously presented): The method according to claim 29, wherein at least one of R^4 , R^5 , R^{10} , R^{11} , or W^2 is defined as follows, wherein at least one of R^4 , R^5 , R^{10} or R^{11} is not H, or W^2 is C_1 - C_4 alkyl or Het.

- 44. (Previously presented): The method according to claim 29, provided that R¹⁰ and R¹¹ are not both H when: Z is CH, CR³ or N, wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3; Y is -O-; W¹ and W² are each independently C₃-C₈ cycloalkyl or aryl; wherein said C₃-C₈ cycloalkyl and Ar are optionally unsubstituted or substituted as defined herein; Q is selected from C₃-C₈ cycloalkyl, Ar and 4-8 membered Het; wherein said C₃-C₈ cycloalkyl, Ar and Het are optionally unsubstituted or substituted as defined herein; W³ is H; p is 0-6; n is 2-8; m is 0 or 1; q is 0 or 1; t is 0; each R¹ and R² are independently H, C₁-C₆ alkyl, -OC₁-C₆ alkyl or -SC₁-C₆ alkyl; each R³ is the same or different and is independently halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, -OC₁-C₆ alkyl, -C₀-C₆ alkyl-CO₂R¹², -COR¹⁵, -SR¹², -SOR¹⁵, -SO₂R¹² (where R¹² is H, C₁-C₆ alkyl or C₃-C₆ alkenyl and R¹⁵ is C₁-C₆ alkyl or C₃-C₆ alkenyl), -OCOC₁-C₆ alkyl, -OC(O)NR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³R¹⁴ (where each R¹³ and each R¹⁴ are independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, and C₃-C₆ alkynyl) or a 5-6 membered Het; each R⁴, R⁵, R⁶, R⁷ and R⁸ are H; and R⁹ is H or C₁-C₆ alkyl;
- 45. (Original): A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound selected from:
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-methyl-acetamide,
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*,*N*-dimethyl-acetamide,
- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-ethyl-acetamide,
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N,N-bis-(2-methoxy-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-thiophen-3-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-N-methyl-acetamide;

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

Claims 46-48 (Cancelled).

48. (Previously presented): The method according to claim 29, wherein said LXR mediated disease or condition is inflammation.

49. (Previously presented): A method for increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of a compound according to claim 29.

Claims 50-58 (Cancelled).