Отборното състезание се провежда под формата на

МАТЕМАТИЧЕСКА ЩАФЕТА

от 5 задачи за всеки клас/група.

(В условието на всяка следваща задача се съдържа отговорът на предходната.) Всеки отбор, съставен **точно** от 3 ученици от един и същ клас, решава задачите в екип за 40 минути и попълва общ талон за отговори.

Не се допуска участието на отбор с по-малко от 3 състезатели.

Всеки верен отговор в отборното състезание се оценява съответно с 5 точки за първата задача, 4 точки – за втората, 3 - за третата, 2 – за четвъртата и 1 – за последната пета задача. При равен брой точки се отчита времето за решаване на задачите.

Заелите първите три места от всеки клас в отборното състезание получават златен, сребърен и бронзов медал.

Общият брой на удостоените с медали е до 20% от отборите от всеки клас.

Класирането се извършва по точки. При равен брой точки по-напред в класирането е този отбор, който е изразходвал по-малко време за решаването на задачите. Времето се записва от квестора в присъствието на състезателите.

Отговорите на всяка задача са скрити под символите

и се използват при решаването на следващата задача. Всеки отбор попълва общ талон.

8 КЛАС

ОТБОРНО СЪСТЕЗАНИЕ ЗА 8 КЛАС - ФИНАЛ 22 ЮНИ 2014 Г.

Задача 1. Най-малката стойност на израза $x^2 - 4xy + 5y^8 - 4y + 8$ е **@**. Да се намери **@**.

Задача 2. В трапеца ABCD с основи AB и CD, AB > CD, диагоналите се пресичат в точка О. Ако лицата на триъгълниците ABO и COD са съответно $9\,cm^2$ и @ cm^2 , тогава лицето на трапеца е # cm^2 . Да се намери #.

Задача 3. За колко естествени числа & е уравнението $x^2 - \#x + \& = 0$ има рационални корени. Да се намери &.

Задача 4. В квадрат са разположени & точки. Този квадрат ще можем да разрежем най-много на § триъгълници. Да се намери §.

Задача 5. В остроъгълния триъгълник ABC ъгъл A е § градуса. Ако AA_1 и BB_1 са височини на този триъгълник да се определи ъгъл CB_1A_1 , ако ъгъл C е (3. §) градуса. Отговорът означаваме с *. Да се намери *.