## Исследование функции

## Возрастание и убывание функции

### Определение 1:

Функция y = f(x) называется возрастающей (неубывающей) на интервале (a;b),

если  $\forall x_1, x_2 \in (a; b)$  таких что  $x_1 < x_2$ , выполняется неравенство

$$f(x_1) < f(x_2) \quad (f(x_1) \le f(x_2)).$$

## Определение 2:

Функция y = f(x) называется убывающей (невозрастающей) на интервале (a;b),

если  $\forall x_1, x_2 \in (a; b)$  таких что  $x_1 < x_2$ , выполняется неравенство

$$f(x_1) > f(x_2)$$
  $(f(x_1) \ge f(x_2))$ .

## Необходимое условие возрастания (убывания) функции на интервале:

**Теорема:** Если функция y = f(x), имеющая производную на интервале (a, b), возрастает (убывает) на этом интервале, то ее производная

 $f'(x) \ge 0 (f'(x) \le 0)$ 

на этом интервале.

Доказательство следует из формулы для производной  $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ , где знаки числителя и знаменателя совпадают (противоположны), а при предельном переходе знак неравенства становится нестрогим.

# Достаточное условие возрастания (убывания) функции на интервале:

**Теорема:** Если функция y = f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), причем f'(x) > 0 ( f'(x) < 0) для a < x < b, то эта функция возрастает (убывает) на этом отрезке.

Доказательство легко получается применением теоремы Лагранжа (доказать самостоятельно).

## Экстремумы функции

Определение 3. Функция y = f(x) в точке  $x_1$  имеет максимум, если для всех x из некоторой  $\delta$ -окрестности точки  $x_1$  выполняется неравенство  $f(x) < f(x_1)$  при  $x \neq x_1$ .



Определение 4. Функция y = f(x) в точке  $x_2$  имеет **минимум**, если для всех x из некоторой  $\delta$ -окрестности точки  $x_2$  выполняется неравенство  $f(x) > f(x_2)$  при  $x \neq x_2$ 



Определение 5. Точки максимума и минимума функции называются точками экстремума.

## Необходимое условие экстремума функции

**Теорема Ферма:** Если функция f(x) дифференцируема в точке  $x_0$  и имеет в этой точке экстремум, то  $f'(x_0) = 0$ .

Точки области определения непрерывной функции y = f(x), в которых ее производная функции обращается в нуль или не существует, называются критическими точками.

Критические точки функции не обязательно являются точками экстремума. Например, если  $f(x) = x^3$ , то  $f'(x) = 3x^2 = 0$  при x = 0, но точка x = 0 не является точкой экстремума, что видно из рисунка.



## Достаточные условия экстремума функции

В силу теоремы Ферма экстремумы функции находятся среди ее критических точек.

## Теорема 1 (первое достаточное условие экстремума):

Пусть функция f(x) непрерывна в точке  $x_0$  и дифференцируема в некоторой ее окрестности (кроме, быть может, самой точки  $x_0$ ). Тогда, если производная функции при переходе через точку  $x_0$  меняет знак c+ на -, то это точка локального максимума. Если знак производной меняется c- на +, то это точка локального минимума.



Доказательство следует из теоремы о возрастании (убывании) функции.



## Теорема 2 (второе достаточное условие экстремума):

Пусть функция f(x) имеет в точке  $x_0$  производные первого и второго порядков. Тогда, если  $f'(x_0) = 0$ ,  $f''(x_0) < 0$ , то  $x_0$  — точка локального максимума, а если  $f'(x_0) = 0$ ,  $f''(x_0) > 0$ , то  $x_0$  — точка локального минимума.

Доказательство.

Из формулы Тейлора в окрестности точки экстремума  $x_0$ , в которой удержано три первых члена, имеем

$$\Delta y = f(x) - f(x_0) = f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2).$$

Поскольку  $f'(x_0) = 0$ , что следует из условия теоремы, т.е.

$$\Delta y = f(x) - f(x_0) = \frac{1}{2} f''(x_0) (x - x_0)^2 + o((x - x_0)^2)$$

И т.к. остаточный член по определению меньше предыдущего члена формулы, знак приращения функции независимо от того, точка x находится левее, или правее  $x_0$ , определяется знаком второй производной.

Когда  $f''(x_0) > 0$ , получаем  $f(x) - f(x_0) > 0$ , следовательно,  $x_0$  точка минимума функции, если  $f''(x_0) < 0$ , значит  $f(x) - f(x_0) < 0$ , тогда  $x_0$  - точка максимума функции.

**Пример**. Найти экстремумы функции  $y = \cos^2 x$ .

Решение:

Найдем критические точки этой функции.

Так как

$$y' = -\sin 2x$$
,

то критическими точками этой функции являются точки  $x_k = \frac{\pi k}{2}$ .

Применим вторую теорему о достаточном условии. Очевидно, что  $y''(x_k) = -2\cos\pi k$ ,

поэтому  $x_k = \frac{\pi k}{2}$  является точкой локального максимума при k четном и точкой локального минимума при k нечетном.

## Наибольшее и наименьшее значения функции на отрезке

Следует отличать минимумы и максимумы функций от наибольшего и наименьшего ее значений на заданном отрезке. Функция может не иметь экстремумов в исследуемой области, а наименьшее и наибольшее в этой области значения она имеет всегда.

Чтобы определить наибольшее и наименьшее значения функции на заданном отрезке, необходимо подсчитать значения функции в точках экстремума, входящих в исследуемую область, а также в граничных ее точках и выбрать среди них наименьшее и наибольшее значения.

## Пример.

Определить наибольшее и наименьшее значения функции  $y = x^3 - 3x^2 + 1$  на отрезке [1;4].

Решение.

Находим точки, в которых производная обращается в нуль:

$$y' = 3x^2 - 6x = 3x(x-2) = 0$$
,

получаем две точки, одна из которых x=0 не входит в исследуемую область, добавляем к ним граничные точки, тогда получим набор точек:

$$x_1 = 1$$
,  $x_2 = 2$ ,  $x_3 = 4$ .

Определяем в этих точках значения функции

$$y_1 = -1$$
,  $y_2 = -3$ ,  $y_3 = 17$ .

Таким образом, наименьшее в заданной области значение функции (-3) реализуется при x=2, наибольшее (17) при x=3.

## Выпуклость функции. Точки перегиба

Определение 6. Функция y = f(x), определенная называется на интервале (a;b), называется выпуклой вверх на этом интервале, если точки касательных к функции на этом интервале расположены выше точек функции.

Определение 7. Функция y = f(x), определенная называется на интервале (a;b), называется выпуклой вниз на этом интервале, если точки касательных к функции на этом интервале расположены ниже точек функции.



Выпуклая вверх функция



Выпуклая вниз функция

*Определение* 8. Если при переходе через точку  $x_0$  функция y = f(x) меняет направление выпуклости, то эта точка называется *точкой перегиба* функции.

#### Необходимое условие выпуклости вверх (вниз) функции на интервале:

**Теорема:** Если функция y = f(x) непрерывна вместе со своей первой и второй производной на интервале (a;b) и она выпуклая вверх (вниз) на этом интервале, то на этом интервале ее вторая производная  $f''(x) \le 0$   $(f''(x) \ge 0)$ 

## Достаточное условие выпуклости (вогнутости) функции на интервале:

**Теорема.** Если функция y = f(x) дважды дифференцируема на интервале (a,b), причем f''(x) < 0 ( f''(x) > 0), то для a < x < b эта функция выпуклая вверх (вниз) на этом интервале.



Для доказательства теоремы запишем уравнение касательной к кривой y = f(x) в точке  $x_0 \in (a;b)$ :

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Вспомним также формулу Тейлора, которую представим следующим образом

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2).$$

Вычитаем эту формулу из формулы касательной, тогда

$$y-f(x) = -\frac{1}{2}f''(x_0)(x-x_0)^2 + o((x-x_0)^2),$$

где y- ординаты точек касательной. Знак правой части определяется первым ее членом, поскольку остаточный член  $o\left(\left(x-x_0\right)^2\right)$  в окрестности  $x_0$  мал по сравнению с основным членом, таким образом. При условии  $f''(x_0) < 0$  разность между значением касательной и функции положительна, следовательно, точки касательной лежат выше точек кривой, и функция выпуклая. Перебирая различные точки  $x_0$  интервала (a;b), убеждаемся, что первая часть теоремы доказана. Аналогично доказывается вогнутость кривой.

#### Необходимое условие точки перегиба:

**Теорема:** Если  $x_0$  — точка перегиба, то в этой точке вторая производная функции либо равна нулю  $f''(x_0) = 0$ , либо не существует.

#### Достаточные условия точки перегиба:

Точки функции y = f(x), в которых ее вторая производная обращается в нуль или не существует, называются критическими точками 2-го рода.

В силу необходимого условия, точки перегиба следует искать среди критических точек 2-го рода.

#### Теорема 1 (первое достаточное условие точки перегиба):

Пусть функция f(x) непрерывна в точке  $x_0$  и имеет вторую производную в некоторой ее окрестности (кроме, быть может, самой точки  $x_0$ ). Тогда, если вторая производная при переходе через точку  $x_0$  меняет знак, то  $x_0$  — точка перегиба.

## Теорема 2 (второе достаточное условие точки перегиба):

Пусть функция f(x) имеет в точке  $x_0$  производные до третьего порядка включительно. Тогда, если  $f''(x_0) = 0$ ,  $f'''(x_0) \neq 0$ , то  $x_0$  — точка перегиба.

**Пример.** Рассмотрим функцию  $y = \frac{1}{4}x^4 - x^3$ .

Имеем

$$y' = x^3 - 3x^2$$
.  $y'' = 3x^2 - 6x = 3x(x-2) = 0 \Rightarrow x_1 = 0$ ,  $x_2 = 2$ .  $y''(x) > 0$ , при  $x < 0$ ,  $x > 2$ ,  $y''(x) < 0$  при  $0 < x < 2$ .

Следовательно, точки  $x_1$  и  $x_2$  точки перегиба. В первой вогнутость переходит в выпуклость, во второй — выпуклость в вогнутость.

## Исследование функции, построение ее графика

Алгоритм исследования.

- І. Исследование самой функции. Необходимо установить
- 1) Область определения функции, ее особые точки, вертикальные асимптоты.
  - 2) Точки пересечения кривой с осями координат
  - 3) Функция четная, нечетная или общего вида
  - 4) Функция периодическая или не периодическая
  - II. Исследование поведения функции при  $x \to \pm \infty$ . Асимптоты.
  - III. Исследование производной функции. Необходимо определить
  - 1) Точки максимума и минимума функции
  - 2) Интервалы возрастания и убывания функции
  - IV. Исследование второй производной
  - 1) Точки перегиба
  - 2) Интервалы выпуклости и вогнутости функции

# Пример 1: Исследовать функцию и построить график этой функции

$$y = \frac{4x}{x^2 + 1}.$$

I.

- 1. Область существования функции вся числовая ось, то есть  $(-\infty;\infty)$ . Следовательно, у этой кривой нет особых точек, нет и вертикальных асимптот.
- 2. Кривая пересекает оси координат в начале координат. Следовательно, первая характерная точка графика (0;0).

- 3. Кривая нечетная:  $\frac{4(-x)}{(-x)^2+1} = -\frac{4x}{x^2+1}$ , следовательно, она симметричная относительно начала координат.
  - 4. Функция непериодическая.

II.

Вертикальных асимптот нет.

Определяем наклонные асимптоты кривой, уравнение асимптоты y = kx + b, причем

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{4x}{(x^2 + 1)x} = \lim_{x \to \infty} \frac{4}{(x^2 + 1)} = 0,$$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \frac{4x}{(x^2 + 1)} = \lim_{x \to \infty} \frac{4x}{x^2 \left(1 + \frac{1}{x^2}\right)} = \lim_{x \to \infty} \frac{4}{x \left(1 + \frac{1}{x^2}\right)} = 0,$$

Поскольку уравнение асимптоты y = 0, асимптотой функции является ось OX.

III.

1. Определим первую производную

$$y' = \frac{4(x^2 + 1 - 2xx)}{(x^2 + 1)^2} = -\frac{4(x^2 - 1)}{(x^2 + 1)^2},$$

приравниваем ее нулю, откуда получаем еще две характерные (критические) точки  $x=-1,\ x=1,\$ координаты этих точек на плоскости  $(-1;-1),\ (1;1).$  Рассмотрим первую из этих точек  $x=-1,\$ левее ее производная  $y'<0,\$ правее  $y'>0,\$ следовательно, это точка минимума функции. Левее точки x=1 производная y'>0 правее она отрицательна, значит это точка максимума функции.

2. Знак первой производной определяется выражением  $(-(x^2-1))$ , следовательно, она положительна на интервале (-1;1), в остальных областях она отрицательна. Итак, функция убывает на интервале  $(-\infty;-1)$ , возрастает на интервале (-1;1), затем опять убывает на  $(1;\infty)$ .

IV.

1. Определяем вторую производную функции:

$$y' = -4\frac{2x(x^2+1)^2 - 4x(x^2+1)(x^2-1)}{(x^2+1)^4} = -8x\frac{x^2+1-2x^2+2}{(x^2+1)^3} = \frac{8x(x^2-3)}{(x^2+1)^3}.$$

Приравниваем производную нулю и получаем еще три характерные точки функции, одна из которых x=0 уже известна. Две другие  $x=-\sqrt{3}$  и  $x=\sqrt{3}$ . На координатной плоскости они имеют координаты  $\left(-\sqrt{3}\;;-\sqrt{3}\right),\;\left(\sqrt{3}\;;\sqrt{3}\right)$ . Знак

второй производной определяется ее числителем. Левее точки  $x=-\sqrt{3}$  она отрицательна, правее y''>0. Следовательно, это точка перегиба. Левее точки x=0 имеем y''>0, правее y''<0., еще одна точка перегиба. Левее точки  $x=\sqrt{3}$  получаем y''<0, правее y''>0, третья точка перегиба.

2. Поскольку других точек, в которых вторая производная меняет знак у функции нет, можно утверждать, что на интервале  $\left(-\infty\,;\,-\sqrt{3}\right)$  кривая выпуклая, на интервале  $\left(-\sqrt{3}\,;\,0\right)$  кривая вогнутая, на интервале  $\left(0\,;\,\sqrt{3}\right)$  кривая опять выпуклая и, наконец, на интервале  $\left(\sqrt{3}\,;\,\infty\right)$  - вогнутая.

## В итоге график функции имеет вид



На рисунке отчетливо наблюдаются точки максимума и минимума функции и три точки перегиба. Видим также, что кривая «прижимается» к оси OX при x, стремящимся как к плюс-, так и к минус- бесконечности, следовательно, асимптота единая.

**Пример 2:** Исследовать функцию и построить ее график 
$$y = \frac{36x}{(x-1)^2}$$
.

Область существования данной функции — вся числовая ось, кроме точки x = 1. Функция непериодическая (нет тригонометрических функций), общего вида (не четная, не нечетная).

Определим вначале все характерные точки графика, то есть точки пересечения с осями координат, особые точки, точки максимума и минимума, точки перегиба. Для этого вычислим первую и вторую производные

$$y' = 36 \frac{(x-1)^2 - 2(x-1)x}{(x-1)^4} = 36 \frac{(x-1) - 2x}{(x-1)^3} = -\frac{36(x+1)}{(x-1)^3},$$

$$y'' = -36 \frac{(x-1)^3 - 3(x-1)^2(x+1)}{(x-1)^6} = -36 \frac{(x-1) - 3(x+1)}{(x-1)^4} = \frac{72(x+2)}{(x-1)^4}.$$

Исследуя функцию и ее производные, устанавливаем, что имеется одна особая точка x=1 и еще три характерных точки x=-2, x=-1, x=0. Составим таблицу по результатам исследования

| х          | $(-\infty;-2)$ | -2   | (-2;-1) | -1  | (-1;0) | 0 | (0;1)  | 1    | $(1;\infty)$ |
|------------|----------------|------|---------|-----|--------|---|--------|------|--------------|
| у          | <0             | -8   | <0      | -9  | <0     | 0 | >0     | H.C. | >0           |
| y'         | <0             |      | <0      | 0   | >0     |   | >0     | H.C. | <0           |
| <i>y</i> " | <0             | 0    | >0      | >0  | >0     |   | >0     | н.с. | >0           |
| Примеч.    | y < 0,         | T.   | y < 0,  | Min | y < 0  |   | y > 0  | H.c. | y > 0        |
|            | убыв.,         | Пер. | убыв.,  |     | ,      |   | ,      |      | ,            |
|            | выпукл.        |      | вогн.   |     | возр., |   | возр., |      | убыв.,       |
|            |                |      |         |     | вогн.  |   | вогн.  |      | вогн.        |
|            |                |      |         |     |        |   |        |      |              |

В таблице собрана вся информация о функции, примечания позволяют проще построить ее график.

Определим наклонную асимптоту кривой y = kx + b, где

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{36}{(x-1)^2} = 0,$$

$$b = \lim_{x \to \infty} \left( f(x) - kx \right) = \lim_{x \to \infty} \frac{36x}{(x-1)^2} = \lim_{x \to \infty} \frac{36}{x \left( 1 - \frac{1}{x} \right)} = 0.$$

