Lecture 09 – Deep Learning and CNNs

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Topics

- Discussion of Simpsons Classification
- Deep Learning
- Convolutional Neural Network
 - Lenet
 - Imagenet
 - Deep Networks
- Practice

Traditional and Deep Learning

Traditional

Deep

• Dense Multi-Layer Architectures

- Implicit feature extraction
- Learnable Filters
- Deep Abstraction

Wide applied in the Computer Vision area (audio, images, video processing, etc.).

- Tissue Classification
- Medical Images

Face

Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

PKLot

• Image Translation

Deep Fakes

Animating Faces

A single model animates all images given only a single source image

https://www.youtube.com/watch?v=mUfJOQKdtAk

Computer Vision - Prof. André Hochuli

Lecture 09

Pros

- Enables learning of features rather than hand tuning
- Impressive performance gains on
 - Computer vision
 - Speech recognition
 - Some text analysis
- Potential for much more impact

Cons

- Computationally really expensive
- Requires a lot of data for high accuracy
- Extremely hard to tune
 - Choice of architecture
 - Parameter types
 - Hyperparameters
 - Learning algorithm
 - ...
- Computational + so many choices = incredibly hard to tune

• Lecun 90 's

- Feature Extraction
 - Learnable Filters
- Classification
 - Fully-Connected
 - SVM
 -

Image Convolution

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Computer Vision - Prof. André Hochuli

Lecture 09

Pooling Layer

• All Together

- Lenet
 - Yan Lecun 90 's (IBM / FACEBOOK)
 - Handwritten Digits
 - ~60 K Parameters
 - ~345 K Connections

- AlexNet
 - •Alex Krizhevsky 2012 (Krizhevsky Net)
 - •Imagenet 2012 Challenge (1000 classes)
 - \rightarrow 1.2 M Train, 50K Val, 150K Test
 - •2012 Winner (15.3% Error Top 5)
 - \rightarrow 2° SIFT Based (26.2%)

Alexnet

Imagenet Challenge

- Imagenet 2012 Challenge
 - 1000 classes
 - 1.2 M Train
 - 50K Val
 - 150K Test
 - [LINK TO ACCs]

Computer Vision - Prof. André Hochuli

Lecture 09

Let's Code

• [LINK]