Conceptos de probabilidad

→ Definición clásica (de Pascal - LaPlace): $P(A) = \frac{N_A}{N}$

→ Definición frecuentista (de Von Mises - Reichenbach): $P(A) = \lim_{n \to +\infty} \frac{n_A}{n}$

Fórmulas que se cumplen siempre	Casos particulares	
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$P(A \cup B) = P(A) + P(B)$	Eventos mutuamente excluyentes
$P(A \cap B) = P(A) \cdot P \begin{pmatrix} B / \\ / A \end{pmatrix}$	$P(A \cap B) = P(A) \cdot P(B)$	Eventos independientes
$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} (*)$	$P\left(\frac{A}{B}\right) = \frac{P(A) \cdot P(B/A)}{P(B)} (**)$	Teorema de Bayes

(*): Dependiendo del contexto a veces es más simple calcular directamente P(A) dejando como supuesto para ese cálculo que a ocurrido B .

(**): Es muy usual en bibliografías formular el Teorema de Bayes aplicando el teorema de la probabilidad total en el denominador.

Partición de un espacio: El conjunto de subconjuntos $\{B_1; B_2; B_3; ...\}$ (numerable, no necesariamente finito) se dice partición del espacio Ω si cumple simultáneamente las siguientes dos condiciones:

1) La unión de todos ellos forman el espacio: $\bigcup_{y_i} B_i = B_1 \cup B_2 \cup B_3 \cup ... = \Omega$

2) Subconjuntos distintos no tienen elementos en común: $\forall (i;j); B_i \cap B_j = \begin{bmatrix} \emptyset & \text{si } i \neq j \\ B_i & \text{si } i = j \end{bmatrix}$

Teorema de la probabilidad total: Si A es un evento en Ω , y $\{B_1; B_2; B_3; ...\}$ es alguna partición del espacio Ω , entonces:

$$P(A) = P(B_1) \cdot P\begin{pmatrix} A \\ B_1 \end{pmatrix} + P(B_2) \cdot P\begin{pmatrix} A \\ B_2 \end{pmatrix} + P(B_3) \cdot P\begin{pmatrix} A \\ B_3 \end{pmatrix} + \dots$$

Formulas de los complementos: Para cualquier conjunto A se cumple:

$$P(A)=1-\dot{P}(\overline{A})$$

Si además la probabilidad está condicionada (está restringida a un cierto subconjunto), entonces la formula de los complementos toma la forma:

$$P\begin{pmatrix} A/B \end{pmatrix} = 1 - P\begin{pmatrix} \overline{A}/B \end{pmatrix}$$

Postulado de la partición elemental: Si $\{A_1;A_2;A_3;...\}$ es una partición elemental del espacio Ω (en el sentido que cada subconjunto A_i no contiene más de un elemento que pueda ser considerado de interés por separado), y se conoce la probabilidad de cada subconjunto de la partición elemental: $P(A_1)$, $P(A_2)$, $P(A_3)$, ... entonces es posible responder cualquier consigna que se plantee respecto de la probabilidad en el espacio Ω de interés.