

Deteksjon av hvitvasking

Martin Jullum Seniorforsker Norsk Regnesentral

Analysesamling Skatteetaten, 15.11.23

Agenda

Forskningssenteret BigInsight

Hvitvasking: Hva, hvordan og hvorfor?

Prosjekt 1: Maskinlæring for deteksjon av mistenkelige transaksjoner

Prosjekt 2: GNN for deteksjon av hvitvaskere

Detecting money laundering transactions with machine learning

Martin Jullum, Anders Løland and Ragnar Bang Huseby Norwegian Computing Center, Oslo, Norway, and Geir Ånonsen and Johannes Lorentzen

Anonsen and Johannes Lorentzen

DNB, Oslo, Norway

Finding Money Launderers Using Heterogeneous Graph Neural Networks

Fredrik Johannessen*1 and Martin Jullum†2

¹DNB, P.O. Box 1600, Sentrum, NO-0021 Oslo, Norway ²Norwegian Computing Center, P.O. Box 114, Blindern, NO-0314 Oslo, Norway

Forskningssenteret BigInsight

INNOVATION OBJECTIVES

2015 - 2023

100 mill. fra NFR + 50 mill. fra partnerne

Personalised marketing

Personalised health and patient safety

Personalised fraud detection

Sensor systems

systems

Forecasting power

Explaining Al

Hvitvasking Hva, hvordan og hvorfor?

Hvitvasking

- Å få penger fra kriminell aktivitet til å se lovlig ut
- Eksempler
 - Kjøpe antikviteter med skitne penger – presenter som loftsfunn – selg lovlig
 - Inkluder midler fra kriminell aktivitet i egen lovlig virksomhet

Hvitvasking

- Å få penger fra kriminell aktivitet til å se lovlig ut
- Eksempler
 - Kjøpe antikviteter med skitne penger – presenter som loftsfunn – selg lovlig
 - Inkluder midler fra kriminell aktivitet i egen lovlig virksomhet

 Hvitvaskingsloven: Alle finansielle foretak er pålagt å rapportere mistenkelige transaksjoner til Økokrim

Prosjekt 1: Maskinlæring for deteksjon av mistenkelige transaksjoner

Journal of

Money Laundering Control

Detecting money laundering transactions with machine learning

Martin Jullum, Anders Løland and Ragnar Bang Huseby Norwegian Computing Center, Oslo, Norway, and Geir Ånonsen and Johannes Lorentzen DNB, Oslo, Norway

Typisk hvitvaskingssystem

Vår "løsning"

Bytt ut hvitvaskingssystemet med en maskinlæringsmodell

- Typer data
 - transaksjonshistorikk
 - kundedata
 - alarmer
 - manuelle saker

Vår "løsning"

Mer realistisk oppsett!

 Bytt ut hvitvaskingssystemet med en maskinlæringsmodell

- Typer data
 - transaksjonshistorikk
 - kundedata
 - alarmer
 - manuelle saker

Er dette så vanskelig da?

Modellering

- Binær respons (Y): Transaksjon sendt til Økokrim (Ja = 1, nei = 0)
- Vil predikere P(Y = 1|data relatert til aktuell transaksjon)
- State of the art: Gradient boosting machines (GBM)
- XGBoost veldig effektiv og fleksibel implementering av GBM basert på tre-modeller

Transformering av rådata (feature engineering)

XGBoost krever numeriske tabelldata som input!

Typer input data

- Spesifikk info om aktuell transaksjon
- Bakgrunnsinfo om sender/mottaker
- Sender/mottakers transaksjonshistorikk
- Tidligere rapporterte transaksjoner fra sender/mottaker

Υ	X1	X2	Х3	X4	X5	X6
1	0,453406	0,992838	0,734389	0,159918	0,397515	0,949952
0	0,274	0,654207	0,169886	0,493841	0,407112	0,939789
0	0,741897	0,855005	0,585788	0,366456	0,365123	0,57955
1	0,488119	0,465754	0,716517	0,493048	0,855049	0,632114
0	0,134458	0,762057	0,848194	0,098779	0,872603	0,063026
0	0,531914	0,998817	0,808215	0,060721	0,716595	0,35374
0	0,341509	0,8398	0,637808	0,48304	0,279987	0,730286
0	0,530306	0,463271	0,338713	0,986781	0,925251	0,272484
1	0,864123	0,652763	0,689599	0,080937	0,990294	0,364736
0	0,106812	0,900351	0,450224	0,143815	0,593244	0,020764

1716 kolonner (features)

Dataraffinering

2 år med modellerbare transaksjonsdata

- Alle transaksjoner som leder til
 - Rapportering (C)
 - Alarm, men ikke rapportering (B)
- Et tilfeldig utvalg normale transaksjoner (A)

Dataraffinering

- Valgte #A = #B
- Kun én transaksjon fra hver manuelle innspeksjon (2)
- Ingen transaksjoner fra samme sender/mottaker to etterfølgende dager

Trening, testing og modellering

Modellering

- 10-fold kryssvalidering
- Stoppekriterium (# boostingiterasjoner): AUC
- Tuning: Tilfeldig + iterativt gridsøk
- Trening på GPU
- Endelig modell brukt til prediksjon på testdata:

$$\hat{f}(x_{\text{test}}) = \frac{1}{10} \sum_{i=1}^{10} \hat{f}_{cv,-i}(x_{\text{test}})$$

2 treningsscenarier

Alle datatyper 1) Electronic Customer 2) Manual Investigation

Uten urapporterte transaksjoner

Evaluering av scenariene

Rangering: AUC

Sannsynligheter: Brier score

$$\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} (y_i - \hat{p}_i)^2$$

Sammenligning av scenarier

	Alle datatyper	Uten urapporterte transaksjoner
AUC	0.907	0.852
Brier	0.025	0.340

MYE bedre!

ML vs dagens AML system

Vanskelig å sammenligne

 PPP = Proportion of Positive Predictions: Andel transaksjoner som må kontrolleres for å finne 95% av de rapporterte transaksjonene

	ML (alle datatyper)	Dagens system
PPP	31.5 %	48.9 %

Begrensninger

- Vi bruker egentlig ikke transaksjonsnettverket
 - Hvem du sender/mottar penger til/fra
- Informasjon fra sosiale/profesjonelle nettverk blir ikke utnyttet
- Mange variabler vanskeligere å sette i produksjon
- Modellen lærer kun fra det som allerede er rapportert

Prosjekt 2: GNN for deteksjon av hvitvaskere

Finding Money Launderers Using Heterogeneous Graph Neural Networks

Fredrik Johannessen*1 and Martin Jullum^{†2}

¹DNB, P.O. Box 1600, Sentrum, NO-0021 Oslo, Norway
 ²Norwegian Computing Center, P.O. Box 114, Blindern, NO-0314 Oslo, Norway

Bakgrunn

- GNN: Graph Neural Network
 - Klasse metoder som bygger prediktive modeller direkte på grafdata
- Prosjektet startet som en masteroppgave

Department of Mathematics
University of Oslo

Finding Money Launderers
Using Heterogeneous Graph
Neural Networks

Fredrik Johannessen Master's Thesis, Spring 2022

Message passing

Message passing er kjerneideen til GNN

 Aggregeringsparametere deles på tvers av noder – tillater generalisering til nye noder

Vårt hvitvaskingsnettverk

Grafen er heterogen i både

Noder: individer, bedrifter, eksterne kontoer

Kanter: transaksjoner, roller

5 millioner noder 9 millioner kanter

Eksisterende GNN-rammeverk

- ▶ De fleste metodene er utviklet for homogene grafer (GCN, GraphSage, GAT, ...)
- R-GCN (Schlichkrull et al., 2018) er en utvidelse av GCN som håndterer flere kanttyper
 - Bruker én message passing funksjon per kanttype
 - Håndterer ikke flere node-typer
 - Håndterer ikke forklaringsvariabler for kantene
- MPNN (Gilmer et al., 2017) er et rammeverk som forrener mange homogene GNN-metoder

Vår modell: H-MPNN

- H-MPNN: Utvider MPNN til å håndtere heterogene grafer:
 - En MPNN-modell per kombinasjon av

- 2 alternativer for aggregering til endelig embedding:
 - Sum av MPNN-embeddinger
 - Trener ekstra SLP-lag med alle MPNN-embeddinger som input

Resultater

Takk for oppmerksomheten

Martin Jullum – martinjullum.com – jullum@nr.no