Classical (Symmetric) Cryptography

Applied Cryptography

1

Cryptography: terminology (1/2)

- Cryptography
 - Art or science of hidden writing
 - from Gr. kryptós, hidden + graph, r. of graphein, to write
 - It was initially used to maintain the confidentiality of information
- Steganography
 - from Gr. steganós, hidden + graph, r. of graphein, to write
- Hide into inside another thing (like a picture)
 - Art or science of breaking cryptographic systems or encrypted information
- - Cryptography + cryptanalysis

Applied Cryptography

- Discover original plaintext
 - · Which originated a given ciphertext
- Discover a cipher key
 - Allows the decryption of ciphertexts created with the same key
- Discover the cipher algorithm
 - Or an equivalent algorithm...
 - · Usually algorithms are not secret, but there are exceptions
 - · Lorenz, A5 (GSM), RC4 (WEP), Crypto-1 (Mifare)
 - · Algorithms for DRM (Digital Rights Management)
 - Reverse engineering

Applied Cryptography

Cryptography: computational security

- > The number of possible keys is finite
 - And much less than the number os possible messages
 - #K << #M
- ▶ Thus, security ultimately depends on the computing power of cryptanalysts go through all keys
 - · Computations per time period
 - Storage capacity
 - · Resistance time is mainly given by key length
- Provable security
 - The computational security can be demonstrated by comparing it with known hard problems

Applied Cryptography

Key dimensions in perspective

- $> 2^{32}$ (4 Giga)
 - IPv4 address space
 - World population
 - Years for the Sun to become $\triangleright 2^{265}$ a white dwarf
- > 2⁶⁴
 - Virtual address space of current CPU architectures
- > 2¹²⁸
 - IPv6 address space

- \triangleright 2¹⁶⁶
 - Earth atoms
- - Hydrogen atoms in the known universe
- - Only cryptography uses them

© André Zúguete / Tomás Oliveira e Silva

Applied Cryptography

Cryptanalysis attacks: approaches

- > Brute force
 - Exhaustive search along the key space until finding a suitable key
 - Usually infeasible for a large key space
 - e.g. 2¹²⁸ random keys (or keys with 128 bits)
 - · Randomness is fundamental!
- - Reduce the search space to a smaller set of potential candidates

Applied Cryptography

11

Cryptography: practical approaches (1/4)

- > Theoretical security vs. practical security
 - Expected use ≠ practical exploitation
 - Defective practices can introduce vulnerabilities
 - Example: reuse of keys
- - Computational complexity of break-in attacks
 - Using brute force
 - Security bounds:
 - Cost of cryptanalysis
 - · Availability of cryptanalysis infra-structure
 - · Lifetime of ciphertext

Applied Cryptography

Cryptography: practical approaches (2/4)

- The amount of offered secrecy
 - e.g. key length
- · Complexity of key selection
 - e.g. key generation, detection of weak keys
- · Implementation simplicity
- · Error propagation
 - · Relevant in error-prone environments
 - · e.g. noisy communication channels
- · Dimension of ciphertexts
 - · Regarding the related plaintexts

Tomás Oliveira e Silva

Applied Cryptography

Cryptography: practical approaches (3/4)

slow, Substitution

- > Confusion
 - Complex relationship between the key, plaintext and the ciphertext
 - Output bits (ciphertext) should depend on the input bits (plaintext + key) in a very complex way
- Diffusion Drix suffle, parmitetion
 - Plaintext statistics are dissipated in the ciphertext
 - If one plaintext bit toggles, then the ciphertext changes substantially, in an unpredictable or pseudorandom manner
 - Avalanche effect

Applied Cryptography

15

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Cryptography: practical approaches (4/4)

- ▶ Always assume the worst case
 - Cryptanalysts know the algorithm
 - · Security lies in the key
 - Cryptanalysts know/have many ciphertext samples produced with the same algorithm & key
 - · Ciphertext is not secret!
 - Cryptanalysts partially know original plaintexts
 - · As they have some idea of what they are looking for
 - · Know-plaintext attacks
 - · Chosen-plaintext attacks

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

17

Cryptographic robustness

- ▶ The robustness of algorithms is their resistance to attacks
 - No one can evaluate it precisely
 - $\boldsymbol{\cdot}$ Only speculate or demonstrate using some other robustness assumptions
 - They are robust until someone breaks them
 - There are public guidelines with what should/must not be used
 - · Sometimes antecipating future problems
- ▶ Algorithms with longer keys are probably stronger
 - And usually slower ...
- ▶ Public algorithms w/o known attacks are probably stronger
 - More people looking for weaknesses

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Cryptographic guidelines

- □ Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, NIST Special Publication 800-175B Rev. 1, July 2019
- Cryptographic Storage Cheat Sheet, OWASP Cheat Sheets (last revision: 6/Jun/2020)
- □ Guidelines on cryptographic algorithms usage and key management, European Payments Council, EPC342-08 v9.0, 9/Mar/2020
- △ Algorithms, Key Size and Protocols Report, ECRYPT Coordination
 & Support Action, Deliverable D5.4, H2020-ICT-2014 Project 645421,
 28/Feb/2018

Applied Cryptography

Cryptanalysis of Tunny in Bletchley Park: The mistake (30 August 1941)

- - He set up his Lorenz and sent a 12 letter indicator (wheel setup) to the receiver
 - After ~4,000 characters had been keyed, by hand, the receiver said "send it again"
- > The operator resets the machine to the same initial setup
 - · Same keystream! Absolutely forbidden!
- > The sender began to key in the message again (by hand)
 - But he typed a slightly different message!

```
C = M \oplus Ks

C' = M' \oplus Ks \rightarrow M' = C \oplus C' \oplus M \rightarrow text variations
```

Know parts of the initial text M reveal the variations, M'

Applied Cryptography

35

Cryptanalysis of Tunny in Bletchley Park: Breakthrough

- ▶ Messages began with SPRUCHNUMMER "msg number"
 - The first time the operator typed S P R U C H N U M M E R
 - The second time he typed S P R U C H N R
 - Thus, immediately following the N the two texts were different!
- ▷ John Tiltman at Bletchley Park was able to fully decrypt both messages (called *Depths*) using an additive combination of them
 - The 2nd message was ~500 characters shorter than the first one
 - Tiltman managed to discover the correct message for the 1st ciphertext
- ▶ They got for the 1st time a long stretch of the Lorenz keystream
 - They did not know how the machine did it, ...
 - ... but they knew that this was what it was generating!

Applied Cryptography

Cryptanalysis of Tunny in Bletchley Park: Colossus

- ▷ The cipher structure was determined from the keystream
 - But deciphering it required knowing the initial position of rotors
- □ Germans started using numbers for the initial wheels' state
 - Bill Tutte invented the double-delta method for finding that state
 - The Colossus was built to apply the double-delta method
- - Design started in March 1943
 - The 1,500 valve Colossus Mark 1 was operational in January 1944
 - Colossus reduced the time to break Lorenz from weeks to hours

Applied Cryptography