Recurrent Neural Networks

- 1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the jth word in the ith training example?

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\ \ \ x^{< i > (j)}$
- $oxed{x}^{(j) < i >}$
- $x^{< j > (i)}$
- 2. Consider this RNN:

This specific type of architecture is appropriate when:

- - It is appropriate when every input should be matched to an output.
- $\square T_x < T_y$
- $\square T_x > T_y$
- $\Box T_x = 1$
- 3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- peech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
- ☐ Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
- 4. You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\hfill \Box$ Estimating $P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- lacksquare Estimating $P(y^{< t>})$
- $\ensuremath{\checkmark}$ Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

- $\hfill \Box$ Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$
- 5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- extstyle ext
- 6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
 - Vanishing gradient problem.
 - Exploding gradient problem.
 - ReLU activation function g(.) used to compute g(z), where z is too large.
 - Sigmoid activation function g(.) used to compute g(z), where z is too large.
- 7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations a. What is the dimension of Γu at each time step?
 - **1**
 - **100**
 - Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.
 - 300
 - 10000
- 8. Here're the update equations for the GRU.

GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
 - Yes, For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- 9. Here are the equations for the GRU and the LSTM:

GRU

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to ___ and __ in the GRU. What should go in the the blanks?

 $ightharpoonup \Gamma_u$ and 1- Γ_u