Simulation of dynamic obstacles on the path of an automated car

Anastasiy Belyaev, Alexander Kotov

Outline

- Problem statement
- Metrics
- Datasets
- Models
 - NeRF original
 - o NeRF in the wild
 - Instant NeRF
 - o NeRF++
 - NeRFies
 - Block-NeRF

Problem statement

Synthesize a target image with an arbitrary target camera pose from given source images and their camera poses.

Metrics

$$PSNR = 20 \log_{10} \left(\frac{MAX_f}{\sqrt{MSE}} \right)$$

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} ||f(i,j) - g(i,j)||^{2}$$

- f original image mxn
- g degraded image mxn
- MAX_f maximum signal value that exists in our original "known to be good" image

Datasets

- Original NerfDataset
- Waymo Dataset

Datasets

- Original
 Nerf
 Dataset
- WaymoDataset

Nerf original

Representing scenes as neural radiance fields for view synthesis

girafe ai

NeRF: Representing scenes as neural radiance fields for view synthesis

year: 2020

Conferece: CVPR

Authros: B Mildenhall, PP Srinivasan, M Tancik

Citations: 2092

Link: <u>.pdf</u>

Code: github

Problem

Given a large set of images, NeRF learns to implicitly represent the 3D shape, such that new views can later on be synthesised.

Algorithm

- Generate a sampled set of 3D points
- Produce an output set of densities and colors (using MLP)
- Accumulate densities and color into 2D image

(x, y, z)

2 5 6, R e L u

5

6,

R

е

u

2 5 6, R e L u

2 5 6, R e L u

2 5 6, R e L u

5

6,

R

е

u

 (θ, ϕ)

(RGB)

- march camera rays through the scene to generate a sampled set of 3D points;
- (x, y, z, θ, ϕ) 2) use those points and their correspondings 2D viewing directions as input to the neural network to produce an output set of colors and densities;
 - 3) use classic volume rendering techniques to accumulate those colors and densities into 2D image;

Volume Rendering

 $\sigma(\textbf{x})$ - differential probability of a ray terminating at an infinitesimal particle at location x;

- $C(\mathbf{r})$ expected color of camera ray $\mathbf{r}(t) = \mathbf{o} + \mathbf{d}t$, $t \in [t_n, t_f]$;
- T(t) probability that the ray travels from t_n to t without hitting any other particle;

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt,$$

where
$$T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$
.

Optimizing a NeRF

Positional encoding

$$F_{\Theta} = F'_{\Theta} \circ \gamma$$

$$F_{\Theta} = F'_{\Theta} \circ \gamma$$
, $\gamma(p) = (\sin(2^{0}\pi p), \cos(2^{0}\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p))$.

Hierarchical volume sampling

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i, \quad w_i = T_i (1 - \exp(-\sigma_i \delta_i)).$$

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

Quadrature

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right].$$

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right),$$

$$\delta_i = t_{i+1} - t_i$$

Complete Model

No View Dependence No Positional Encoding

(c) Radiance Distributions

Architecture

- Architecture is MLP
- Weights of network represent 3D image Ray from each pixel of each image

Loss

Volume Rendering Rendering Loss

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^{t} \sigma(\mathbf{r}(s))ds\right)$$

- Architecture is MLP
- Weights of network represent 3D image
- Ray from each pixel of each

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

Nerf in the wild

Neural Radiance Fields for Unconstrained Photo Collections

girafe ai

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

• year: 2021

• Conferece: CVPR

• Authros: R Martin-Brualla, N Radwan

• Citations: 445

Link: <u>.pdf</u>

• Code: <u>github</u>

Problem

- Occluders
- Uncontrollable external conditions
- Not much data

(a) Photos

(b) Renderings

Architecture

- Two heads
- Appearance and transient embeddings
- Ray from each pixel of each

Architecture

Instant Nerf

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

girafe ai

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

year: 2022

Conferece:

Authros: T Müller, A Evans, C Schied, A Keller

Citations: 346

Link: <u>.pdf</u>

Code: <u>github</u>

Tasks

- Neural gigapixel images
- Neural SDF
- NERF
- Neural volume
- High speed of training

Nerf ++

Analyzing and improving neural radiance fields.

girafe ai

Nerf++: Analyzing and improving neural radiance fields.

- year: 2020
- Conferece:
- Authros: K Zhang, G Riegler, N Snavely, V Koltun
- Citations: 339
- Link: <u>.pdf</u>
- Code: <u>github</u>

Shape-radiance ambiguity.

ground-truth NeRF MLP vanilla MLP

INVERTED SPHERE PARAMETRIZATION

(a) bounding volume for the truck only

(b) bounding volume for the entire scene

(a) NeRF++ prediction

(b) predicted foreground

(c) predicted background

NeRF vs NeRF++

NeRF NeRF++

NeRFies

Deformable neural radiance fields.

girafe ai

Nerfies: Deformable neural radiance fields.

year: 2021

• Conferece: ICCV2021

Authros: K Park, U Sinha, JT Barron

• Citations: 467

Link: <u>.pdf</u>

Code: <u>github</u>

Nerfies

The method is able to turn arbitrarily taken selfie photos or videos into deformable Nerf models, which allow you to recreate photorealistic images of an object at any point.

$$G(\mathbf{x}, \mathbf{d}, \boldsymbol{\psi}_i, \boldsymbol{\omega}_i) = F(T(\mathbf{x}, \boldsymbol{\omega}_i), \mathbf{d}, \boldsymbol{\psi}_i)$$
.

$$L_{\text{elastic}}(\mathbf{x}) = \|\log \mathbf{\Sigma} - \log \mathbf{I}\|_F^2 = \|\log \mathbf{\Sigma}\|_F^2$$
,

$$L_{\text{bg}} = \frac{1}{K} \sum_{k=1}^{K} ||T(\mathbf{x}_k) - \mathbf{x}_k||_2.$$

$$w_j(\alpha) = \frac{(1 - \cos(\pi \operatorname{clamp}(\alpha - j, 0, 1)))}{2},$$

Block-nerf

Scalable Large Scene Neural View Synthesis

girafe ai

Block-NeRF: Scalable Large Scene Neural View Synthesis

• year: 2022

• Conferece: CVPR

Authros: M Tancik, V Casser, X Yan, S Pradhan

• Citations: 86

• Link: <u>.pdf</u>

• Code: <u>github</u>

Problem

- Want to represent large scenes
- Want to expand pretrained Nerf with new part
- Want good speed of training

Algorithm

- Multiple nerfs with own sectors
- Target view
 generated by
 combining nerfs with
 good visibility
- Merging renderings based on block origin's distance

Architecture

- Appearance embeddings from nerf in the wild
- Separate MLP for visibility prediction

Thanks for attention!

Questions?

