Nom:						
Prénom:						
Groupe:	□ 1	□ 2	□ 3			

- 1. (15 points) Considérons l'interférence de Young. Si la distance entre les fentes est de 2 mm, que l'écran est à une distance de 3m des fentes et que le laser utilisé a une longueur d'onde de 600 nm, déterminez:
 - (a) (1 Point) La position du maximum central (interférence constructive);
 - (b) (2 Points) La position du premier minimum (interférence destructrice);
 - (c) (2 Points) La position du premier maximum;
 - (d) (2 Points) La position du deuxième minimum;
 - (e) (2 Points) La position du deuxième maximum;
 - (f) (1 Point) La distance entre deux minima consécutifs;
 - (q) (1 Point) La distance entre deux maxima consécutifs;
 - (h) (1 Point) La distance entre un minimum et un maximum consécutifs;
 - (i) (3 Points) Un schéma de la situation.
 - (a) y = 0;
 - (b) Pour les minima: $y_m = \frac{(m+1/2)\lambda L}{d} = \frac{(m+1/2)600 \cdot 10^{-6} \, \text{mm} \cdot 3 \cdot 10^3 \, \text{mm}}{2 \, \text{mm}} = 0.9 (m+1/2) \, \text{mm}.$ Premier minimum (m=0 ou m=-1): $y=\pm 0.45 \, \text{mm}$
 - (c) Pour les maxima: $y_m = \frac{m\lambda L}{d} = \frac{m600 \cdot 10^{-6} \text{mm} \cdot 3 \cdot 10^3 \text{mm}}{2 \text{mm}} = 0.9 \text{mmm}$. Premier maximum $(m = \pm 1)$: $y_{\pm 1} = \pm 0.9 \text{mm}$
 - (d) Deuxième minimum (m=1 ou m=-2): $y=\pm 1.35$ mm
 - (e) Deuxième maximum ($m = \pm 2$): $y_{\pm 2} = \pm 1.8$ mm
 - (f) La distance entre deux minima consécutifs est toujours la même. Par simplicité, nous pouvons prendre m=0 et m=1: $\Delta y=y_1-y_0=0.9$ mm.
 - (g) La distance entre deux maxima consécutifs est toujours la même. Par simplicité, nous pouvons prendre m=0 et m=1: $\Delta y=y_1-y_0=0.9$ mm. **Note**: La distance entre deux maxima ou deux minima consécutifs est la même.
 - (h) La distance entre un maximum et un minimum consécutifs est toujours la même. Par simplicité, nous pouvons prendre 1.35 mm et 0.9 mm: $\Delta y = 0.45$ mm.

Abbildung 1: Q1 (i)

✓ Vrai;☐ Faux;

 $\hfill\square$ Il manque d'informations

2.	(5 points) Choix de réponse. Choisissez la (les) réponse(s) juste(s). Vous n'avez pas besoin de justifier votre réponse.
	(a) (1 Point) La lumière est une onde électromagnétique:
	☑ Vrai;
	☐ Faux;
	☐ Il manque d'informations
	(b) (1 Point) La lumière est une onde transversale:
	☑ Vrai;
	☐ Faux;
	\square Il manque d'informations
	(c) (1 Point) Le phénomène d'interférence est possible parce que la lumière est une
	onde.
	☑ Vrai;
	☐ Faux;
	☐ Il manque d'informations
	(d) (1 Point) Dans l'interférence de Young, seule la différence de marche entre les deux fentes cause le déphasage.
	Z Vrai;
	□ Faux;
	☐ It mangue d'informations
	·
	(e) (1 Point) En général, la différence de marche, les réflexions et la non-cohérence sont trois causes de déphasage.

$\Delta \phi = \phi_2 - \phi_1$	$\Delta \phi_{\text{tot}} = \Delta \phi_{\delta} + \Delta \phi_{r} + \Delta \phi_{0}$	$\delta = r_2 - r_1$
$d\sin\theta = \delta$	an heta = y/L	$\Delta\phi_{\delta} = \left(\frac{r_2 - r_1}{\lambda}\right)(2\pi)$
$m\lambda = \frac{yd}{L}$	$(m+1/2)\lambda = \frac{yd}{L}$	$\Delta\phi_\delta=rac{4\pi e n_p}{\lambda_0}$
$\Delta\phi_{\rm tot}=m(2\pi)$	$\Delta\phi_{\rm tot}=(m+1/2)(2\pi)$	$(1+x)^{\alpha} \approx 1 + \alpha x$
$\cos x \approx 1 - x^2/2 \approx 1$	$\sin x \approx x$	$\tan x \approx x$
$a\sin\theta=M\lambda$	an heta = y/L	$y_M = \frac{M\lambda L}{a}$
$\theta_c = \frac{1.22\lambda}{D}$	$ an heta_p=n_2/n_1$	$I = I_0/2 I = I_0 \cos^2 \theta$

Tabelle 1: Formules Utiles

Question	1	2	Total
Points	15	5	20
Points Boni	0	0	0
Obtenus			