PCT

WORLD INTELLECTUAL PROPER International Bure

INTERNATIONAL APPLICATION PUBLISHED UNDER 7

(51) International Patent Classification 6: C12Q 1/68, C12N 15/11 // C12R 1/68

A2

(11) International Publication Number:

WO 96/08582

(43) International Publication Date:

21 March 1996 (21.03.96)

(21) International Application Number:

PCT/CA95/00528

(22) International Filing Date:

12 September 1995 (12.09.95)

(30) Priority Data:

08/304,732

12 September 1994 (12.09.94) US

(71)(72) Applicants and Inventors: BERGERON, Michel, G. [CA/CA]; 2069 Brûlard Street, Sillery, Quebec G1T 1G2 (CA). OUELLETTE, Marc [CA/CA]; 975 Casot Street, Quebec, Quebec G1S 2Y2 (CA). ROY, Paul, H. [US/CA]; 28 charles Garnier Street, Loretteville, Quebec G2A 2X8 (CA).

(74) Agents: DUBUC, Jean, H. et al.; Goudreau Gage Dubuc & Martineau Walker, 3400 Stock Exchange Tower, Victoria Square, P.O. Box 242, Montreal, Quebec H4Z 1E9 (CA).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES

(57) Abstract

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epiderminis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80 % of bacterial pathogens isolated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleic acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA.	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
	Czech Republic	LV	Latvia	TJ	Tajikistan
CZ	-	MC	Monaco	TT	Trinidad and Tobago
DE	Germany Denmark	MD	Republic of Moldova	UA	Ukraine
DK		MG	Madagascar	US	United States of Americ
ES	Spain Sink and	ML	Mali	UZ	Uzbekistan
FI	Finland	MN	Mongolia	VN	Viet Nam
FR	France	IATIA	Mongona		
GA	Gabon				

AMPLIFICATION PROBES AND UNIVERSAL AND SPECIFIC IDENTIFY DETECT AND RAPIDLY TO PRIMERS RESISTANCE ANTIBIOTIC PATHOGENS AND BACTERIAL ROUTINE DIAGNOSIS IN SPECIMENS FOR CLINICAL FROM MICROBIOLOGY LABORATORIES.

BACKGROUND OF THE INVENTION

Classical identification of bacteria

5

Bacteria are classically identified by their ability to 10 utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20E™ system. Susceptibility testing of Gram negative bacilli has progressed to microdilution tests. Although the API and the microdilution systems are cost-effective, at least 1 5 two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to isolate and identify the bacteria from the specimen. Some faster detection methods with sophisticated and expensive apparatus have been developed. For example, the fastest identification 20 system, the $autoSCAN-Walk-Away^{TM}$ system identifies both Gram negative and Gram positive from isolated bacterial colonies in 2 hours and susceptibility patterns to antibiotics in only 7 hours. However, this system has an unacceptable margin of especially with bacterial species other 25 error, Enterobacteriaceae (York et al., 1992. J. Clin. Microbiol. 30:2903-2910). Nevertheless, even this fastest method requires primary isolation of the bacteria as a pure culture, a process which takes at least 18 hours if there is a pure culture or 2 to 3 days if there is a mixed culture. 30

Urine specimens

35

A large proportion (40-50%) of specimens received in routine diagnostic microbiology laboratories for bacterial identification are urine specimens (Pezzlo, 1988, Clin. Microbiol. Rev. 1:268-280). Urinary tract infections (UTI) are extremely common and affect up to 20% of women and account for

extensive morbidity and increased mortality among hospitalized patients (Johnson and Stamm, 1989; Ann. Intern. Med. 111:906-917). UTI are usually of bacterial etiology and require antimicrobial therapy. The Gram negative bacillus Escherichia coli is by far the most prevalent urinary pathogen and accounts for 50 to 60 % of UTI (Pezzlo, 1988, op. cit.). The prevalence for bacterial pathogens isolated from urine specimens observed recently at the "Centre Hospitalier de 1'Université Laval (CHUL)" is given in Tables 1 and 2.

10

30

35

Conventional pathogen identification in urine specimens. The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. The gold standard is still the classical semi-quantitative plate culture method in which a calibrated 15 loop of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial UTI is normally associated with a bacterial count of $\geq 10^7$ CFU/L in urine. However, infections with less than 107 CFU/L 20 in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, close to 80% of urine specimens tested are considered negative (<10⁷ CFU/L; 2.5 Table 3).

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative results and a more efficient clinical investigation of the patient. Several rapid identification methods (UriscreenTM, UTIscreenTM, Flash TrackTM DNA probes and others) were recently compared to slower standard biochemical methods which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and specificities as well as a high number of false negative and false positive results (Koening et al., 1992. J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992. J. Clin. Microbiol. 30:640-684).

Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics.

5

25

30

35

Any clinical specimens

As with urine specimen which was used here as an example, our probes and amplification primers are also applicable to any other clinical specimens. The DNA-based tests proposed in this invention are superior to standard methods currently used 10 for routine diagnosis in terms of rapidity and accuracy. While a high percentage of urine specimens are negative, in many other clinical specimens more than 95% of cultures are negative (Table 4). These data further support the use of universal probes to screen out the negative clinical 15 specimens. Clinical specimens from organisms other than humans (e.g. other primates, mammals, farm animals or live stocks) may also be used.

Towards the development of rapid DNA-based diagnostic tests 20

A rapid diagnostic test should have a significant impact on the management of infections. For the identification of pathogens and antibiotic resistance genes in clinical samples, DNA probe and DNA amplification technologies offer several advantages over conventional methods. There is no need for subculturing, hence the organism can be detected directly in clinical samples thereby reducing the costs and time associated with isolation of pathogens. DNA-based technologies have proven to be extremely useful for specific applications in the clinical microbiology laboratory. For example, kits for the detection of fastidious organisms based on the use of hybridization probes or DNA amplification for the direct detection of pathogens in clinical specimens are commercially available (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

The present invention is an advantageous alternative to the conventional culture identification methods used in hospital clinical microbiology laboratories and in private clinics for routine diagnosis. Besides being much faster, DNA-5 based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. biochemical properties). originality of this invention is that genomic DNA fragments 10 (size of at least 100 base pairs) specific for 12 species of commonly encountered bacterial pathogens were selected from genomic libraries or from data banks. Amplification primers or oligonucleotide probes (both less than 100 nucleotides in length) which are both derived from the sequence of species-15 specific DNA fragments identified by hybridization from genomic libraries or from selected data bank sequences are used as a basis to develop diagnostic tests. Oligonucleotide primers and probes for the detection of commonly encountered and clinically important bacterial resistance genes are also 20 included. For example, Annexes I and II present a list of suitable oligonucleotide probes and PCR primers which were all derived from the species-specific DNA fragments selected from genomic libraries or from data bank sequences. It is clear to the individual skilled in the art that oligonucleotide 25 sequences appropriate for the specific detection of the above bacterial species other than those listed in Annexes 1 and 2 may be derived from the species-specific fragments or from the selected data bank sequences. For example, the oligonucleotides may be shorter or longer than the ones we 30 have chosen and may be selected anywhere else in the identified species-specific sequences or selected data bank sequences. Alternatively, the oligonucleotides may be designed for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of species-35 specific genomic DNA fragments from bacterial genomic DNA libraries and the selection of genomic DNA fragments from data bank sequences which are used as a source of species-specific

30

35

and ubiquitous oligonucleotides. Although the selection of oligonucleotides suitable for diagnostic purposes from the sequence of the species-specific fragments or from the selected data bank sequences requires much effort it is quite possible for the individual skilled in the art to derive from our fragments or selected data bank sequences suitable oligonucleotides which are different from the ones we have selected and tested as examples (Annexes I and II).

Others have developed DNA-based tests for the detection and identification of some of the bacterial pathogens for which we have identified species-specific sequences (PCT patent application Serial No. WO 93/03186). However, their strategy was based on the amplification of the highly conserved 16S rRNA gene followed by hybridization with internal species-specific oligonucleotides. The strategy from this invention is much simpler and more rapid because it allows the direct amplification of species-specific targets using oligonucleotides derived from the species-specific bacterial genomic DNA fragments.

20 Since a high percentage of clinical specimens are negative, oligonucleotide primers and probes were selected from the highly conserved 16S or 23S rRNA genes to detect all bacterial pathogens possibly encountered in clinical specimens in order to determine whether a clinical specimen is infected or not. This strategy allows rapid screening out of the numerous negative clinical specimens submitted for bacteriological testing.

We are also developing other DNA-based tests, to be performed simultaneously with bacterial identification, to determine rapidly the putative bacterial susceptibility to antibiotics by targeting commonly encountered and clinically relevant bacterial resistance genes. Although the sequences from the selected antibiotic resistance genes are available and have been used to develop DNA-based tests for their detection (Ehrlich and Greenberg, 1994. PCR-based Diagnostics in Infectious Diseases, Blackwell Scientific Publications, Boston, Massachusetts; Persing et al, 1993. Diagnostic

Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.), our approch is innovative as it represents major improvements over current "gold standard" diagnostic methods based on culture of the bacteria because it allows the rapid identification of the presence of a specific bacterial pathogen and evaluation of its susceptibility to antibiotics directly from the clinical specimens within one hour.

based on cultivation of the bacteria that we are developing will gradually replace the slow conventional bacterial identification methods presently used in hospital clinical microbiology laboratories and in private clinics. In our opinion, these rapid DNA-based diagnostic tests for severe and common bacterial pathogens and antibiotic resistance will (i) save lives by optimizing treatment, (ii) diminish antibiotic resistance by reducing the use of broad spectrum antibiotics and (iii) decrease overall health costs by preventing or shortening hospitalizations.

20

5

10

1 5

20

2.5

30

3 5

7

SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided sequence from genomic DNA fragments (size of at least 100 base pairs and all described in the sequence listing) selected either by hybridization from genomic libraries or from data banks and which are specific for the detection of commonly encountered bacterial pathogens (i.e. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis) in clinical specimens. These bacterial species are associated with approximately 90% of urinary tract infections and with a high percentage of other severe infections including septicemia, meningitis, pneumonia, intraabdominal infections, infections and many other severe respiratory tract infections. Overall, the above bacterial species may account for up to 80% of bacterial pathogens isolated in routine microbiology laboratories.

Synthetic oligonucleotides for hybridization (probes) or DNA amplification (primers) were derived from the above species-specific DNA fragments (ranging in sizes from 0.25 to 5.0 kilobase pairs (kbp)) or from selected data bank sequences (GenBank and EMBL). Bacterial species for which some of the oligonucleotide probes and amplification primers were derived from selected data bank sequences are Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. The person skilled in the art understands that the important innovation in this invention is the identification of the species-specific DNA fragments selected either from bacterial genomic libraries by hybridization or from data bank The selection of oligonucleotides from these sequences. fragments suitable for diagnostic purposes is also innovative. Specific and ubiquitous oligonucleotides different from the

ones tested in the practice are considered as embodiements of the present invention.

The development of hybridization (with either fragment or oligonucleotide probes) or of DNA amplification protocols for the detection of pathogens from clinical specimens renders 5 possible a very rapid bacterial identification. This will greatly reduce the time currently required for the identification of pathogens in the clinical laboratory since these technologies can be applied for bacterial detection and identification directly from clinical specimens with minimum 10 pretreatment of any biological specimens to release bacterial DNA. In addition to being 100% specific, probes and amplification primers allow identification of the bacterial species directly from clinical specimens or, alternatively, from an isolated colony. DNA amplification assays have the 15 added advantages of being faster and more sensitive than hybridization assays, since they allow rapid and exponential in vitro replication of the target segment of DNA from the bacterial genome. Universal probes and amplification primers selected from the 16S or 23S rRNA genes highly conserved among 20 bacteria, which permit the detection of any bacterial pathogens, will serve as a procedure to screen out the numerous negative clinical specimens received in diagnostic laboratories. The use of oligonucleotide probes or primers complementary to characterized bacterial genes encoding 25 resistance to antibiotics to identify commonly encountered and clinically important resistance genes is also under the scope of this invention.

30

DETAILED DESCRIPTION OF THE INVENTION

Development of species-specific DNA probes

DNA fragment probes were developed for the following bacterial species: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis,

30

35

Staphylococcus saprophyticus, Haemophilus influenzae and Moraxella catarrhalis. (For Enterococcus faecalis and Streptococcus pyogenes, oligonucleotide sequences were exclusively derived from selected data bank sequences). These species-specific fragments were selected from bacterial species-specific by hybridization to DNA from a variety of Gram positive and Gram negative bacterial species (Table 5).

The chromosomal DNA from each bacterial species for which probes were seeked was isolated using standard methods. DNA was digested with a frequently cutting restriction enzyme such as Sau3AI and then ligated into the bacterial plasmid vector 10 pGEM3Zf (Promega) linearized by appropriate restriction endonuclease digestion. Recombinant plasmids were then used to transform competent E. coli strain DH5lpha thereby yielding a genomic library. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA 15 fragments of target bacteria ranging in size from 0.25 to 5.0 kilobase pairs (kbp) were cut out from the vector by digestion recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in low melting point 20 agarose gels. Each of the purified fragments of bacterial genomic DNA was then used as a probe for specificity tests.

For each given species, the gel-purified restriction fragments of unknown coding potential were labeled with the radioactive nucleotide $\alpha^{-32}p(\text{dATP})$ which was incorporated into the DNA fragment by the random priming labeling reaction. Non-radioactive modified nucleotides could also be incorporated into the DNA by this method to serve as a label.

Each DNA fragment probe (i.e. a segment of bacterial genomic DNA of at least 100 bp in length cut out from clones randomly selected from the genomic library) was then tested for its specificity by hybridization to DNAs from a variety of bacterial species (Table 5). The double-stranded labeled DNA probe was heat-denatured to yield labeled single-stranded DNA which could then hybridize to any single-stranded target DNA fixed onto a solid support or in solution. The target DNAs

consisted of total cellular DNA from an array of bacterial species found in clinical samples (Table 5). Each target DNA released from the bacterial cells and denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in 5 solution. The fixed single-stranded target DNAs were then hybridized with the single-stranded probe. Pre-hybridization, hybridization and post-hybridization conditions were as follows: (i) Pre-hybridization; in 1 M NaCl + 10% dextran sulfate + 1% SDS (sodium dodecyl sulfate) + 100 μ g/ml salmon 10 sperm DNA at 65°C for 15 min. (ii) Hybridization; in fresh pre-hybridization solution containing the labeled probe at 65°C overnight. (iii) Post-hybridization; washes twice in 3X SSC containing 1% SDS (1X SSC is 0.15M NaCl, 0.015M NaCitrate) and twice in 0.1 X SSC containing 0.1% SDS; all washes were at 15 65°C for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs.

20 Species-specific DNA fragments selected from various bacterial genomic libraries ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria performed as described above. All of the bacterial 25 species tested (66 species listed in Table 5) were likely to be pathogens associated with common infections or potential contaminants which can be isolated from clinical specimens. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. DNA fragment probes found to be specific were subsequently 30 tested for their ubiquity (i.e. ubiquitous probes recognized most isolates of the target species) by hybridization to bacterial DNAs from approximately 10 to 80 clinical isolates of the species of interest (Table 6). The DNAs were denatured, 35 fixed onto nylon membranes and hybridized as described above.

2.5

30

35

Sequencing of the species-specific fragment probes

The nucleotide sequence of the totality or of a portion of the species-specific DNA fragments isolated (Table 6) was determined using the dideoxynucleotide termination sequencing method which was performed using Sequenase (USB Biochemicals) 5 or T7 DNA polymerase (Pharmacia). These nucleotide sequences are shown in the sequence listing. Alternatively, sequences selected from data banks (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes for Escherichia coli, Enterococcus faecalis, Streptococcus 10 pyogenes and Pseudomonas aeruginosa. For this strategy, an array of suitable oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from data banks was tested for their specificity and ubiquity in PCR and hybridization assays as described 15 later. It is important to note that the data bank sequences were selected based on their potential of being speciesspecific according to available sequence information. Only species-specific which from sequences bank oligonucleotides could be derived are included in this 20 invention.

Oligonucleotide probes and amplification primers derived from species-specific fragments selected from the genomic libraries or from data bank sequences were synthesized using an automated DNA synthesizer (Millipore). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (e.g. Genetics Computer Group (GCG) and OligoTM 4.0 (National Biosciences)). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide, a high proportion of G or C residues at the 3' end and a 3'-terminal T residue (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

Hybridization with oligonucleotide probes

In hybridization experiments, oligonucleotides (size less than 100 nucleotides) have some advantages over DNA fragment probes for the detection of bacteria such as ease of preparation in large quantities, consistency in results from 5 batch to batch and chemical stability. Briefly, hybridizations, oligonucleotides were 5' end-labeled with the radionucleotide $\gamma^{3\,2}P(ATP)$ using T4 polynucleotide kinase (Pharmacia). The unincorporated radionucleotide was removed by passing the labeled single-stranded oligonucleotide through a 10 Sephadex G50 column. Alternatively, oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled 15 in the art that labeling means other than the three above labels may be used.

The target DNA was denatured, fixed onto a solid support and hybridized as previously described for the DNA fragment probes. Conditions for pre-hybridization and hybridization were as described earlier. Post-hybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min. For probes labeled with radioactive labels the detection of hybrids was by autoradiography as described earlier. For non-radioactive labels detection may be colorimetric or by chemiluminescence.

The oligonucleotide probes may be derived from either strand of the duplex DNA. The probes may consist of the bases A, G, C, or T or analogs. The probes may be of any suitable length and may be selected anywhere within the species-specific genomic DNA fragments selected from the genomic libraries or from data bank sequences.

13

DNA amplification

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived either from the sequenced species-specific DNA fragments or from data bank sequences or, alternatively, were shortened versions of oligonucleotide probes. Prior to synthesis, the potential primer pairs were analyzed by using the program OligoTM 4.0 (National Biosciences) to verify that they are likely candidates for PCR amplifications.

10 During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the denatured double-stranded target DNA from the bacterial genome are used to amplify exponentially in vitro the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle 15 (Persing et al, 1993. Diagnostic Molecular Microbiology: Applications, American Society Principles and Microbiology, Washington, D.C.). Briefly, the PCR protocols were as follows. Clinical specimens or bacterial colonies were 20 added directly to the 50 μL PCR reaction mixtures containing 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl₂, 0.4 µM of each of the two primers, 200 µM of each of the four dNTPs and 1.25 Units of Tag DNA polymerase (Perkin Elmer). PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 25 30 cycles of 1 second at 95°C and 1 second at 55°C) using a Perkin Elmer 480™ thermal cycler and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical 30 for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after amplification (e.g. $\mathtt{TagMan^{TM}}$ system from Perkin Elmer or Amplisensor $\mathtt{^{TM}}$ from Biotronics) or liquid hybridization with an oligonucleotide probe binding to internal sequences of the amplification product. These novel probes can be generated 35 from our species-specific fragment probes. Methods based on the detection of fluorescence are particularly promising for

utilization in routine diagnosis as they are, very rapid and quantitative and can be automated.

To assure PCR efficiency, glycerol or dimethyl sulfoxide (DMSO) or other related solvents, can be used to increase the sensitivity of the PCR and to overcome problems associated 5 with the amplification of target with a high GC content or with strong secondary structures. The concentration ranges for $(v \mid v)$, and 3-10% 5-15% (v/v) glycerol and DMSO are respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and the MgCl₂ are 0.1-1.0 10 μM and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society 15 for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods see examples 7 and 8.

The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as 20 ligase chain reaction (LCR), transcription-based amplification systems (TAS), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) (Persing et al, 1993. Diagnostic Molecular Microbiology: 25 Applications, American Society Principles and Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification methods or any other procedures which may be used to increase 30 rapidity and sensitivity of the tests. Any oligonucleotides suitable for the amplification of nucleic acid by approaches other than PCR and derived from the species-specific fragments and from selected antibiotic resistance gene sequences included in this document are also under the scope of this 35 invention.

Specificity and ubiquity tests for oligonucleotide probes and primers

The specificity of oligonucleotide probes, derived either from the sequenced species-specific fragments or from data bank sequences, was tested by hybridization to DNAs from the 5 array of bacterial species listed in Table 5 as previously described. Oligonucleotides found to be specific were subsequently tested for their ubiquity by hybridization to bacterial DNAs from approximately 80 isolates of the target species as described for fragment probes. Probes were 10 considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates. Results for specificity and ubiquity tests with the oligonucleotide probes are summarized in Table 6. The specificity and ubiquity of the 15 amplification primer pairs were tested directly from cultures (see example 7) of the same bacterial strains. For specificity and ubiquity tests, PCR assays were performed directly from bacterial colonies of approximately 80 isolates of the target species. Results are summarized in Table 7. All specific and ubiquitous oligonucleotide probes and amplification primers 20 for each of the 12 bacterial species investigated are listed in Annexes I and II, respectively. Divergence in the sequenced DNA fragments can occur and, insofar as the divergence of these sequences or a part thereof does not affect the 25 specificity of the probes or amplification primers, variant bacterial DNA is under the scope of this invention.

Universal bacterial detection

35

In the routine microbiology laboratory a high percentage of clinical specimens sent for bacterial identification is negative (Table 4). For example, over a 2 year period, around 80% of urine specimens received by the laboratory at the 5 "Centre Hospitalier de l'Université Laval (CHUL)" were negative (i.e. $<10^7$ CFU/L) (Table 3). Testing clinical samples with universal probes or universal amplification primers to detect the presence of bacteria prior to specific identification and screen out the numerous negative specimens 10 is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several oligonucleotides and amplification primers were therefore synthesized from highly conserved portions of bacterial 16S or 23S ribosomal RNA gene sequences available in data banks (Annexes III and 15 IV). In hybridization tests, a pool of seven oligonucleotides (Annex I; Table 6) hybridized strongly to DNA from all bacterial species listed in Table 5. This pool of universal probes labeled with radionucleotides or with any other modified nucleotides is consequently very useful for detection 20 of bacteria in urine samples with a sensitivity range of $\geq 10^7$ CFU/L. These probes can also be applied for bacterial detection in other clinical samples.

Amplification primers also derived from the sequence of highly conserved ribosomal RNA genes were used as an alternative strategy for universal bacterial detection directly from clinical specimens (Annex IV; Table 7). The DNA amplification strategy was developed to increase the sensitivity and the rapidity of the test. This amplification test was ubiquitous since it specifically amplified DNA from 23 different bacterial species encountered in clinical specimens.

Well-conserved bacterial genes other than ribosomal RNA genes could also be good candidates for universal bacterial detection directly from clinical specimens. Such genes may be associated with processes essential for bacterial survival (e.g. protein synthesis, DNA synthesis, cell division or DNA

repair) and could therefore be highly conserved during evolution. We are working on these candidate genes to develop new rapid tests for the universal detection of bacteria directly from clinical specimens.

5

Antibiotic resistance genes

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial 10 resistance. Our goal is to provide the clinicians, within one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific 15 pathogen in the positive specimens with DNA-based tests for specific bacterial detection, the clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to 20 antimicrobials is to detect directly from the clinical specimens the most common and important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resitance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available 25 from data banks, our strategy is to use the sequence from a portion or from the entire gene to design specific oligonucleotides which will be used as a basis for the development of rapid DNA-based tests. The sequence from the bacterial antibiotic resistance genes selected on the basis of 30 their clinical relevance (i.e. high incidence and importance) is given in the sequence listing. Table 8 summarizes some characteristics of the selected antibiotic resistance genes.

PCT/CA95/00528 WO 96/08582

18

EXAMPLES

The following examples are intended to be illustrative of the various methods and compounds of the invention.

5

EXAMPLE 1:

Isolation and cloning of fragments. Genomic DNAs from Escherichia coli strain ATCC 25922, Klebsiella pneumoniae strain CK2, Pseudomonas aeruginosa strain ATCC 27853, Proteus mirabilis strain ATCC 35657, Streptococcus pneumoniae strain 10 ATCC 27336, Staphylococcus aureus strain ATCC 25923, Staphylococcus epidermidis strain ATCC 12228, Staphylococcus saprophyticus strain ATCC 15305, Haemophilus influenzae reference strain Rd and Moraxella catarrhalis strain ATCC 53879 were prepared using standard procedures. 15 understood that the bacterial genomic DNA may have been isolated from strains other than the ones mentioned above. (For Enterococcus faecalis and Streptococcus oligonucleotide sequences were derived exclusively from data banks). Each DNA was digested with a restriction enzyme which 20 frequently cuts DNA such as Sau3AI. The resulting DNA fragments were ligated into a plasmid vector (pGEM3Zf) to create recombinant plasmids and transformed into competent E. coli cells (DH5 α). It is understood that the vectors and corresponding competent cells should not be limited to the 25 ones herein above specifically examplified. The objective of obtaining recombinant plasmids and transformed cells is to provide an easily reproducible source of DNA fragments useful as probes. Therefore, insofar as the inserted fragments are specific and selective for the target bacterial DNA, any 30 recombinant plasmids and corresponding transformed host cells are under the scope of this invention. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments from target bacteria ranging in size from 0.25 to 5.0 kbp were cut out from the vector by digestion 35 of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by

agarose gel electrophoresis and purified in a low melting point agarose gel. Each of the purified fragments was then used for specificity tests.

5 Labeling of DNA fragment probes. The label used was $\alpha^{32}\text{P}(\text{dATP})$, a radioactive nucleotide which can be incorporated enzymatically into a double-stranded DNA molecule. fragment of interest is first denatured by heating at 95°C for 5 min, then a mixture of random primers is allowed to anneal to the strands of the fragments. These primers, once annealed, 10 provide a starting point for synthesis of DNA. DNA polymerase, usually the Klenow fragment, is provided along with the four nucleotides, one of which is radioactive. When the reaction is terminated, the mixture of new DNA molecules is once again denatured to provide radioactive single-stranded DNA molecules 15 (i.e. the probe). As mentioned earlier, other modified nucleotides may be used to label the probes.

Specificity and ubiquity tests for the DNA fragment 20 probes. Species-specific DNA fragments ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria. Samples of whole cell DNA for each bacterial strain listed in Table 5 were transferred onto a nylon membrane using a dot blot apparatus, washed and 2.5 denatured before being irreversibly fixed. Hybridization conditions were as described earlier. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. Labeled DNA fragments hybridizing specifically only to target bacterial species 30 (i.e. specific) were then tested for their ubiquity by hybridization to DNAs from approximately 10 to 80 isolates of the species of interest as described earlier. The conditions for pre-hybridization, hybridization and post-hybridization washes were as described earlier. After autoradiography (or 35 other detection means appropriate for the non-radioactive label used), the specificity of each individual probe can be

PCT/CA95/00528 WO 96/08582

20

determined. Each probe found to be specific (i.e. hybridizing only to the DNA from the bacterial species from which it was isolated) and ubiquitous (i.e. hybridizing to most isolates of the target species) was kept for further experimentations.

5

10

20

EXAMPLE 2:

Same as example 1 except that testing of the strains is by colony hybridization. The bacterial strains were inoculated onto a nylon membrane placed on nutrient agar. The membranes were incubated at 37°C for two hours and then bacterial lysis and DNA denaturation were carried out according to standard procedures. DNA hybridization was performed as described earlier.

EXAMPLE 3: 15

Same as example 1 except that bacteria were detected directly from clinical samples. Any biological samples were loaded directly onto a dot blot apparatus and cells were lysed in situ for bacterial detection. Blood samples should be heparizined in order to avoid coagulation interfering with their convenient loading on a dot blot apparatus.

EXAMPLE 4:

Nucleotide sequencing of DNA fragments. The nucleotide sequence of the totality or a portion of each fragment found 25 to be specific and ubiquitous (Example 1) was determined using the dideoxynucleotide termination sequencing method (Sanger et 1977, Proc. Natl. Acad. Sci. USA. 74:5463-5467). These al., sequence listing. sequences are shown in the Oligonucleotide probes and amplification primers were selected 30 from these nucleotide sequences, or alternatively, from selected data banks sequences and were then synthesized on an automated Biosearch synthesizer (Millipore™) using phosphoramidite chemistry.

35

Labeling of oligonucleotides. Each oligonucleotide was 5' end-labeled with $\gamma^{3\,2}$ P-ATP by the T4 polynucleotide kinase

(Pharmacia) as described earlier. The label could also be non-radioactive.

Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by hybridization to DNAs from a variety of Gram positive and Gram negative bacterial species as described earlier. Species-specific probes were those hybridizing only to DNA from the bacterial species from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests as follows.

Ubiquity test for oligonucleotide probes. oligonucleotide probes were then used in ubiquity tests with 15 approximately 80 strains of the target species. Chromosomal DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes described for specificity tests. The batteries οf approximately 80 isolates constructed for each target species 20 contain reference ATCC strains as well as a variety of clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species. Examples of specific and ubiquitous oligonucleotide probes are listed 25 in Annex 1.

EXAMPLE 5:

Same as example 4 except that a pool of specific oligonucleotide probes is used for bacterial identification (i) to increase sensitivity and assure 100% ubiquity or (ii) to identify simultaneously more than one bacterial species. Bacterial identification could be done from isolated colonies or directly from clinical specimens.

35 EXAMPLE 6:

<u>PCR amplification</u>. The technique of PCR was used to increase sensitivity and rapidity of the tests. The PCR

primers used were often shorter derivatives of the extensive sets of oligonucleotides previously developed for hybridization assays (Table 6). The sets of primers were tested in PCR assays performed directly from a bacterial colony or from a bacterial suspension (see Example 7) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in annex II.

The specificity of all selected PCR primer pairs was tested against the battery of Gram negative and Gram positive bacteria used to test the oligonucleotide probes (Table 5). Primer pairs found specific for each species were then tested for their ubiquity to ensure that each set of primers could amplify at least 80% of DNAs from a battery of approximately 80 isolates of the target species. The batteries of isolates constructed for each species contain reference ATCC strains and various clinical isolates representative of the clinical diversity for each species.

Standard precautions to avoid false positive PCR results should be taken. Methods to inactivate PCR amplification products such as the inactivation by uracil-N-glycosylase may be used to control PCR carryover.

EXAMPLE 7:

25

30

35

Amplification directly from a bacterial colony or suspension. PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to 1.5 x 10⁸ bacteria/mL). In the case of direct amplification from a colony, a portion of the colony was transferred directly to a 50 µL PCR reaction mixture (containing 50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl₂, 0.4 µM of each of the two primers, 200 µM of each of the four dNTPs and 1.25 Unit of Taq DNA polymerase (Perkin Elmer)) using a plastic rod. For the bacterial suspension, 4 µL of the cell suspension was added to

46 μL of the same PCR reaction mixture. For both strategies, the reaction mixture was overlaid with 50 μL of mineral oil and PCR amplifications were carried out using an initial denaturation step of 3 min. at 95°C followed by 30 cycles consisting of a 1 second denaturation step at 95°C and of a 1 second annealing step at 55°C in a Perkin Elmer 480^{TM} thermal cycler. PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 2.5 $\mu g/mL$ of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.

Alternatively, amplification from bacterial cultures was performed as described above but using a "hot start" protocol. In that case, an initial reaction mixture containing the target DNA, primers and dNTPs was heated at 85°C prior to the addition of the other components of the PCR reaction mixture. The final concentration of all reagents was as described above. Subsequently, the PCR reactions were submitted to thermal cycling and analysis as described above.

20

25

30

15

5

10

EXAMPLE 8:

Amplification directly from clinical specimens. For amplification from urine specimens, 4 μL of undiluted or diluted (1:10) urine was added directly to 46 μL of the above PCR reaction mixture and amplified as described earlier.

To improve bacterial cell lysis and eliminate the PCR inhibitory effects of clinical specimens, samples were routinely diluted in lysis buffer containing detergent(s). Subsequently, the lysate was added directly to the PCR reaction mixture. Heat treatments of the lysates, prior to DNA amplification, using the thermocycler or a microwave oven could also be performed to increase the efficiency of cell lysis.

Our strategy is to develop rapid and simple protocols to eliminate PCR inhibitory effects of clinical specimens and lyse bacterial cells to perform DNA amplification directly from a variety of biological samples. PCR has the advantage of

being compatible with crude DNA preparations. For example, blood, cerebrospinal fluid and sera may be used directly in PCR assays after a brief heat treatment. We intend to use such rapid and simple strategies to develop fast protocols for DNA amplification from a variety of clinical specimens.

EXAMPLE 9:

5

35

Detection of antibiotic resistance genes. The presence of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described in previous sections. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antibiotic resistance gene sequences. These tests can be performed either directly from clinical specimens or from a bacterial colony and should complement diagnostic tests for specific bacterial identification.

EXAMPLE 10:

Same as examples 7 and 8 except that assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to (i) reach an ubiquity of 100% for the specific target pathogen or (ii) to detect simultaneously several species of bacterial pathogens.

25 For example, the detection of Escherichia coli requires three pairs of PCR primers to assure a ubiquity of 100%. Therefore, a multiplex PCR assay (using the "hot-start" protocol (Example 7)) with those three primer pairs was developed. This strategy was also used for the other bacterial pathogens for which more than one primer pair was required to reach an ubiquity of 100%.

Multiplex PCR assays could also be used to (i) detect simultaneously several bacterial species or, alternatively, (ii) to simultaneously identify the bacterial pathogen and detect specific antibiotic resistance genes either directly from a clinical specimen or from a bacterial colony.

10

30

35

For these applications, amplicon detection methods should be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes. Another useful strategy for this purpose would be detection using a variety of fluorochromes emitting at different wavelengths which are each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorochrome (e.g. TaqManTM, Perkin Elmer).

EXAMPLE 11:

Detection of amplification products. The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 7) may be used for the 15 revelation of amplification products. Such methods may be based on the detection of fluorescence after amplification (e.g. AmplisensorTM, Biotronics; Taq Man^{TM}) or other labels such as biotin (SHARP Signal TM system, Digene Diagnostics). These methods are quantitative and easily automated. One of 20 the amplification primers or an internal oligonucleotide probe specific to the amplicon(s) derived from the species-specific fragment probes is coupled with the fluorochrome or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are 25 rapid and flexible as fluorochromes emitting different wavelengths are available (Perkin Elmer).

EXAMPLE 12:

Species-specific, universal and antibiotic resistance gene amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-based amplification systems (TAS), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) or any other methods to increase the sensitivity of the test. Amplifications can be performed

2.5

30

35

from an isolated bacterial colony or directly from clinical specimens. The scope of this invention is therefore not limited to the use of PCR but rather includes the use of any procedures to specifically identify bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.

EXAMPLE 13:

A test kit would contain sets of probes specific for each bacterium as well as a set of universal probes. The kit is provided in the form of test components, consisting of the set 10 of universal probes labeled with non-radioactive labels as well as labeled specific probes for the detection of each bacterium of interest in specific clinical samples. The kit will also include test reagents necessary to perform the prehybridization, hybridization, washing steps and hybrid 15 detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included. Of course, the kit will include standard samples to be used as negative and positive controls for each 20 hybridization test.

Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:

-A kit for the universal detection of bacterial pathogens from most clinical specimens which contains sets of probes specific for highly conserved regions of the bacterial genomes.

-A kit for the detection of bacterial pathogens retrieved from urine samples, which contains eight specific test components (sets of probes for the detection of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Staphylococcus aureus and Staphylococcus epidermidis).

10

20

-A kit for the detection of respiratory pathogens which contains seven specific test components (sets of probes for detecting Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pyogenes and Staphylococcus aureus).

-A kit for the detection of pathogens retrieved from blood samples, which contains eleven specific test components (sets of probes for the detection of Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Staphylococcus epidermidis).

-A kit for the detection of pathogens causing meningitis,

15 which contains four specific test components (sets of probes
for the detection of Haemophilus influenzae, Streptococcus
pneumoniae, Escherichia coli and Pseudomonas aeruginosa).

-A kit for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 19 following genes associated with bacterial resistance: blatem, blarob, blashv, aadB, aacCl, aac

-Other kits adapted for the detection of pathogens from 25 skin, abdominal wound or any other clinically relevant kits will be developed.

EXAMPLE 14:

reagents and controls to perform DNA amplification assays.

Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from a bacterial colony. Components required for universal bacterial detection, bacterial identification and antibiotic resistance genes detection will be included.

Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will be coated with the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for bacterial identification and antibiotic resistance gene detection will be included in kits for testing directly from colonies as well as in kits for testing directly from colonies as well as in kits for testing directly from clinical specimens.

The kits will be adapted for use with each type of specimen as described in example 13 for hybridization-based diagnostic kits.

15

20

2.5

30

5

10

EXAMPLE 15:

It is understood that the use of the probes and amplification primers described in this invention for bacterial detection and identification is not limited to clinical microbiology applications. In fact, we feel that other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, pharmaceutical products or other products requiring microbiological control. These tests could also be applied to detect and identify bacteria in biological samples from organisms other than humans (e.g. other primates, mammals, farm animals and live stocks). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological studies.

Table 1. Distribution of urinary isolates from positive urine samples (≥ 10⁷ CFU/L) at the Centre Hospitalier de
 1'Université Laval (CHUL) for the 1992-1994 period.

		% of isolates			
1 0	Organisms	Nov 92 n=267ª	Apr 93 n=265	Jul 93 n=238	Jan 94 n=281
	Escherichia coli	53.2	51.7	53.8	54.1
	Enterococcus faecalis	13.8	12.4	11.7	11.4
1 5	Klebsiella pneumoniae	6.4	6.4	5.5	5.3
	Staphylococcus epidermidis	7.1	7.9	3.0	6.4
	Proteus mirabilis	2.6	3.4	3.8	2.5
	Pseudomonas aeruginosa	3.7	3.0	5.0	2.9
	Staphylococcus saprophyticus	3.0	1.9	5.4	1.4
20	Others ^b	10.2	13.3	11.8	16.0

a n = total number of isolates for the indicated month.

b See Table 2.

Table 2. Distribution of uncommon^a urinary isolates from positive urine samples (≥ 10⁷ CFU/L) at the Centre Hospitalier de l'Université Laval (CHUL) for the 1992-1994 period.

		% of isolates			
10	Organisms ^a	Nov 92	Apr 93	Jul 93	Jan 94
	Staphylococcus aureus	0.4	1.1	1.3	1.4
	Staphylococcus spp.	2.2	4.9	1.7	6.0
1 5	Micrococcus spp.	0.0	0.0	0.4	0.7
	Enterococcus faecium	0.4	0.4	1.3	1.4
	Citrobacter spp.	1.4	0.8	0.4	0.7
	Enterobacter spp.	1.5	1.1	1.3	1.4
	Klebsiella oxytoca	1.1	1.5	2.5	1.8
20	Serratia spp.	0.8	0.0	0.5	0.0
	Proteus spp.	0.4	0.4	0.0	1.1
	Morganella and Providencia	0.4	0.8	0.4	0.0
	Hafnia alvei	0.8	0.0	0.0	0.0
	NFBb	0.0	0.4	1.3	1.1
25	Candida spp.	0.8	1.9	0.7	0.4

a Uncommon urinary isolates are those identified as "Others" in Table 1.

b NFB: non fermentative bacilli (i.e. Stenotrophomonas and Acinetobacter).

Table 3. Distribution of positive^a (bacterial count ≥ 10⁷
CFU/L) and negative (bacterial count < 10⁷ CFU/L) urine
specimens tested at the Centre Hospitalier de l'Université
Laval (CHUL) for the 1992-1994 period.

•	Number of			isolates (%)	
10	Specimens	Nov 92	Apr 93	Jul 93	Jan 94
,	received:	1383(100)	1338(100)	1139(100)	1345(100)
	positive:	267(19.3)	265(19.8)	238(20.9)	281(20.9)
	negative:	1116(80.7)	1073(80.2)	901(79.1)	1064(79.1)
15					

^a Based on standard diagnostic methods, the minimal number of bacterial pathogens in urine samples to indicate an urinary tract infection is normally 10⁷ CFU/L.

Table 4. Distribution of positive and negative clinical specimens tested in the Microbiology Laboratory of the CHUL.

Clinical specimens ^a	No. of samples tested	% of negative specimens	% of positive specimens
			<u> </u>
Urine	17,981	19.4	80.6
Haemoculture/marrow	10,010	6.9	93.1
Sputum	1,266	68. 4	31.6
Superficial pus	1,136	72.3	27.7
Cerebrospinal fluid	553	1.0	99.0
Synovial fluid-articular	523	2.7	97.3
Bronch./Trach./Amyg./Throat	502	56.6	43.4
Deep pus	473	56.8	43.2
Ears	289	47.1	52.9
Pleural and pericardial fluid	132	1.0	99.0
Peritonial fluid	101	28.6	71.4

²⁵ a Specimens tested from February 1994 to January 1995.

Table 5. Bacterial species (66) used for testing the
specificity of DNA fragment probes, oligonucleotide probes
and PCR primers.

10	Bacterial species	Number of strains tested	of	Number strains tested
	Gram negative:		Gram negative:	
	Proteus mirabilis	5	Haemophilus parainfluenzae	2
15	Klebsiella pneumoniae	5	Bordetella pertussis	2
	Pseudomonas aeruginosa	5	Haemophilus parahaemolyticus	s 2
	Escherichia coli	5	Haemophilus haemolyticus	2
	Moraxella catarrhalis	5	Haemophilus aegyptius	1
	Proteus vulgaris	2	Kingella indologenes	1
20	Morganella morganii	2	Moraxella atlantae	1
	Enterobacter cloacae	2	Neisseria caviae	1
	Providencia stuartii	1	Neisseria subflava	1
	Providencia species	1	Moraxella urethralis	1
	Enterobacter agglomerans	; 2	Shigella sonnei	1
25	Providencia rettgeri	2	Shigella flexneri	1
	Neisseria mucosa	1	Klebsiella oxytoca	2
	Providencia alcalifacies	ns 1	Serratia marcescens	2
	Providencia rustigianii	1	Salmonella typhimurium	1
	Burkholderia cepacia	2	Yersinia enterocolitica	1
30	Enterobacter aerogenes	2	Acinetobacter calcoaceticus	: 1
	Stenotrophomonas maltopi	hilia 2	Acinetobacter lwoffi	1
	Pseudomonas fluorescens	1	Hafnia alvei	2
	Comamonas acidovorans	2	Citrobacter diversus	1
	Pseudomonas putida	2	Citrobacter freundii	1
3 5	Haemophilus influenzae	5	Salmonella species	1

...continued on next page

Table 5 (continued). Bacterial species (66) used for
testing the specificity of DNA fragment probes,
oligonucleotide probes and PCR primers.

1 0	Bacterial species	Number of strains tested
	Gram positive:	
	Streptococcus pneumoniae	7
1 5	Streptococcus salivarius	2
	Streptococcus viridans	2
	Streptococcus pyogenes	2
	Staphylococcus aureus	2
	Staphylococcus epidermidis	2
20	Staphylococcus saprophyticus	5
	Micrococcus species	2
	Corynebacterium species	2
	Streptococcus groupe B	2
	Staphylococcus simulans	2
25	Staphylococcus ludgunensis	2
	Staphylococcus capitis	2
	Staphylococcus haemolyticus	2
	Staphylococcus hominis	2
	Enterococcus faecalis	2
30	Enterococcus faecium	1
	Staphylococcus warneri	1
	Enterococcus durans	1
	Streptococcus bovis	1
	Diphteroids	1
3 5	Lactobacillus acidophilus	1

Table 6. Species-specific DNA fragment and oligonucleotide probes for hybridization.

Organisms ^a	Number	of fragment	probes ^b	Number of oligonucleotide pr				
	Tested	Specific	Ubiqui- tous ^C	Synthe- sized	Specific	Ubiqu:		
E. coli d	_	-	-	20	12	9 £		
E. coli	14	2	2 ^e	-	-	-		
K. pneumoniae ^d K. pneumoniae	- 33	- 3	- 3	15 18	1 12	1 8		
P. mirabilis ^d P. mirabilis	- 14	- 3	- 3e	3 15	3 8	2 7		
P. aeruginosa ^d P. aeruginosa	- 6	- 2	- 2 ^e	26 6	13 0	9 0		
S. saprophyticus	7	4	4	20	9	7		
H. influenzae ^d H. influenzae	- 1	1	- 1	16 20	2 1	2 1		
S. pneumoniae ^d S. pneumoniae	_ 19	2	- 2	6 4	1	1 1		
M. catarrhalis	2	2	2	9	8	8		
S. epidermidis	62	1	1	-	-	-		
S. aureus	30	1	1	-	-	-		
Universal probesd	-	-	•	7	-	79		

³⁰

a No DNA fragment or oligonucleotide probes were tested for E. faecalis and S. pyogenes.

b Sizes of DNA fragments range from 0.25 to 5.0 kbp.

A specific probe was considered ubiquitous when at least 80% of isolates of the target species (approximately 80 isolates) were recognized by each specific probe. When 2 or more probes are combined, 100% of the isolates are recognized.

d These sequences were selected from data banks.

Ubiquity tested with approximately 10 isolates of the target species.

f A majority of probes (8/9) do not discriminate E. coli and Shigella spp.

⁹ Ubiquity tests with a pool of the 7 probes detected all 66 bacterial species listed in Table 5.

Table 7. PCR amplification for bacterial pathogens commonly encountered in urine, sputum, blood, cerebrospinal fluid and other specimens.

Organism		er pair ^a Q ID NO)	Amplicon size (bp)	Ubiquity ^b	DNA amplification from			
					colonies ^c	specimens ^c		
E. coli	1 e	(55+56)	107	75/80	+	+		
E. CO11	2 e	(46+47)	297	77/80	+	+		
	3	(42+43)	102	78/80	+	+		
	4	(131+132)	134	73/80	+	+		
	1+3+4	,	-	80/80	+	+		
E. faecalis	1e	(38+39)	200	71/80	+	+		
E. laecalis	_ 2e	(40+41)	121	79/80	+	+		
	1+2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	80/80	+	+		
K. pneumoniae	1	(67+68)	198	76/80	+	+		
R. phedmonico	2	(61+62)	143	67/80	+	.		
	3 ^h	(135+136)	148	78/80	+	N.T. ⁱ		
	4	(137+138)	116	69/80	+	N.T.		
	1+2+3		-	80/80	+	N.T.		
P. mirabilis	1	(74+75)	167	73/80	+	N.T.		
F. MILES-1	2	(133+134)	123	80/80	+	N.T.		
P. aeruginosa	1e	(83+84)	139	79/80	+	N.T.		
	2 ^e	(85+86)	223	80/80	•	N.T.		
S. saprophyticus	: 1	(98+99)	126	79/80	+	•		
S. Buploping close	2	(139+140)	190	80/80	+	N.T.		
M. catarrhalis	1	(112+113		79/80	+	N.T.		
	2	(118+119)		80/80	+	N.T.		
	3	(160+119) 137	80/80	•	N.T.		
H. influenzae	1e	(154+155) 217	80/80	+	N.T.		
S. pneumoniae	1 ^e	(156+157) 134	80/80	+	N.T.		
J. p.:	2 e	(158+159) 197	74/80	+	N.T.		
	3	(78+79)	175	67/80	+	N.T.		

...continued on next page

Table 7 (continued). PCR amplification for bacterial pathogens commonly encountered in urine, sputum, blood, cerebrospinal fluid and other specimens.

Organism		mer pair ^a EEQ ID N O)	Amplicon size (bp)	Ubiquityb	DNA amplification from		
		,			colonies ^c	specimensd	
	·						
S. epidermidis	1	(147+148)	175	80/80	+	N.T.	
	2	(145+146)	125	80/80	+	N.T.	
S. aureus	1	(152+153)	108	80/80	+	N.T.	
	2	(149+150)	151	80/80	+	N.T.	
	3	(149+151)	176	80/80	•	N.T.	
S. pyogenes ^f	1e	(141+142)	213	80/80	+	N.T.	
	2 ^e	(143+144)	157	24/24	+	N.T.	
Universal	1e	(126-127)	241	194/195 ^g	•	+	

- 20
- a All primer pairs are specific in PCR assays since no amplification was observed with DNA from 66 different species of both Gram positive and Gram negative bacteria other than the species of interest (Table 5).
- 25 b The ubiquity was normally tested on 80 strains of the species of interest. All retained primer pairs amplified at least 90% of the isolates. When combinations of primers were used, an ubiquity of 100% was reached.
- For all primer pairs and multiplex combinations, PCR amplifications directly performed from a bacterial colony were 100 % species-specific.
 - d PCR assays performed directly from urine specimens.
 - e Primer pairs derived from data bank sequences. Primer pairs with no "e" are derived from our species-specific fragments.
- f for S. pyogènes, primer pair #1 is specific for Group A Streptococci (GAS). Primer pair #2 is specific for the GASproducing exotoxin A gene (SpeA).
- 9 Ubiquity tested on 195 isolates from 23 species representative of 40 bacterial pathogens commonly encountered in clinical specimens.
 - h Optimizations are in progress to eliminate non-specific amplification observed with some bacterial species other than the target species.
- 45 i N.T.: not tested.

Table 8. Selected antibiotic resistance genes for diagnostic purposes.

	Genes	Antibiotics	Bacteria ^a	SEQ ID NO
0	(bla _{tem}) TEM-1	β-lactams	Enterobacteriaceae, Pseudomonadaceae, Haemophilus, Neisseria	161
	(blarob) ROB-1	β -lactams	Haemophilus, Pasteurella	162
	(bla _{shv}) SHV-1	β-lactams	Klebsiella and other Enterobacteriaceae	163
5	aadB, aacC1, aacC2, aacC3, aacA4	Aminoglycosides	Enterobacteriaceae, Pseudomonadaceae	164, 165, 166 167, 168
	mech	β -lactams	Staphylococci	169
	vanH, vanA, vanX	Vancomycin	Enterococci	170
	satA	Macrolides	Enterococci	173
0	aacA-aphD	Aminoglycosides	Enterococci, Staphylococci	174
	vat	Macrolides	Staphylococci	175
	vga	Macrolides	Staphylococci	176
	msrA	Erythromycin	Staphylococci	177
5	Int and Sul conserved sequences	β-lactams, trimethoprim, aminoglycosides, anti-, septic, chloramphenicol	Enterobacteriaceae, Pseudomonadaceae	171, 172

Bacteria having high incidence for the specified antibiotic resistance genes. The presence in other bacteria is not excluded.

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

5	SEQ :	ID NO	Nuc	cleot	ide	seq	ence	•	C	rig	ginating	DNA fragment
											SEQ ID NO	Nucleotide position
10												
	Bacte	<u>rial specie</u>	<u>:s</u> :	Esch	erich	ia col	i					
	44	5'-CAC	CCG	CTT	GCG	TGG	CAA	GCT	GCC	С	5 a	213-237
	45	5'-CGT	TTG	TGG	TTA	CCA	GTT	CCA	TCC	G	5 a	489-513
	48	5 ' - T GA	AGC	ACT	GGC	CGA	AAT	GCT	GCG	T	6ª	759-783
1 5	49	5'-GAT	GTA	CAG	GAT	TCG	TTG	AAG	GCT	T	6ª	898-922
	50	5'-TAG	CGA	AGG	CGT	AGC	AGA	AAC	TAA	С	7a	1264-1288
	51	5'-GCA	ACC	CGA	ACT	CAA	CGC	CGG	ATT	T	7 a	1227-1251
	52	5'-ATA	CAC	AAG	GGT	CGC	ATC	TGC	GGC	С	7 a	1313-1337
	53	5 ' -TG C	GTA	TGC	ATT	GCA	GAC	CTT	GTG	GC	7a	111-136
20	54	5'-GCT									7 a	373-397
	Bacte	erial specie	<u>es</u> :	Prot	eus r	nirab	ilis					
	70 ^b	5'-TGG	TTC	ACT	GAC	TTT	GCG	ATG	TTT	С	12	23-47
	71	5 ' -TCG	AGG	ATG	GCA	TGC	ACT	AGA	AAA	T	12	53-77
25	72 ^b	5'-CGC '	rga T	TA GO	TT T	C GCT	AAA	ATC	TTA I	ΥA	12	80-109
	73	5'-TTG	ATC C	TC AT	T TT	A TTA	ATC	ACA	TGA C	CA	12	174-203

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

;	SEQ I	D NO	Nucleoti	.de sec	quence	Or	iginating	DNA fragment
							SEQ ID	Nucleotide
							NO	position
0	Bacter	ial specie	es: Prote	us miral	oilis			
	76	5'-CCG C	CT TTA GCA	TTA ATT	GGT GTT TAT	AGT	13	246-275
					AAT GTC TTG			291-320
	80b				GAC TCC C		14	18-42
	81				A CGA CAC A		15 ^a	1185-1209
5	82				G TGT GAA AAT	•	15a	1224-1250
	Bacte	rial speci	es: Klebs GTG TCG TI	•	neumoniae CT TTC AC		8	45-67
	58				AC GCA GCC A		9	161-185
0	59b				GA GGT ATA C	3	9	203-228
, 0	60p				GT AAA ACT C		9	233-258
	63b				'AA CGA AGG G		10	250-275
	64b		AAA CTG T				10	201-223
	65		ATC GCC C				10	77-99
2 5	66				ATA TCC ATC A	C	10	249-274
	69				CCG GTT GTT G		11 ^a	296-320

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

5	SEQ II) NO	Nuc	leot	ide	sequ	ence		Ori	gi:	nating D	NA fragment
			···		·						SEQ ID	Nucleotide position
10	Bacteri	al species:	\boldsymbol{P}	seudo	mon	as ae	rugin	osa				
	87	5'-AAT	GCG	GCT	GTA	CCT	CGG	CGC	TGG	T	18a	2985-3009
	88	5'-GGC	GGA	GGG	CCA	GTT	GCA	CCT	GCC	A	18 ^a	2929-2953
	89	5 ' -AGC	CCT	GCT	CCT	CGG	CAG	CCT	CTG	С	18ª	2821-2845
	90	5'-TGG	СТТ	TTG	CAA	CCG	CGT	TCA	GGT	T	18 ^a	1079-1103
15	91	5 ' -GCG	CCC	GCG	AGG	GCA	TGC	TTC	GAT	G	19a	705-729
	92	5'-ACC	TGG	GCG	CCA	ACT	ACA	AGT	TCT	A	19 ^a	668-692
	93	5 ' -GGC	TAC	GCT	GCC	GGG	CTG	CAG	GCC	G	19a	505-529
	94	5 ' -CCG	ATC	TAC	ACC	ATC	GAG	ATG	GGC	G	20a	1211-1235
	95	5'-GAG	CGC	GGC	TAT	GTG	TTC	GTC	GGC	T	20 a	2111-2135
20												
	Bacter	ial species:	S	trept	ососо	us p	neum	onia	?			
	120	5'-TCT	GTG	CTA	GAG	ACT	GCC	CCA	TTT	С	30	423-447
	121	5 ' -CGA	TGT	CTT	GAT	TGA	GCA	GGG	TTA	T	31ª	1198-1222
												. <u></u>

²⁵ a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

5	SEQ I	D NO I	Nucleo	tide se	equen	ice		C	rigi	nating D	NA fragment
										SEQ ID NO	Nucleotide position
							_	_			
10	<u>Bacter</u>	<u>ial species</u>	: Stap	hylococ	cus sa	iproj	phyt	ticus	3		
	96	5'-CGT T	TT TAC	CCT TAC	CTT I	TC (GTA	CTA	CC	21	45-73
	97b	5'-TCA GO	GC AGA C	GT AGT	ACG A	AAA	AGG	TAA	GGG	21	53-82
	100	5'-CAC C	AA GTT 7	rga cac	GTG A	AAG A	TTA	CAT		22	89-115
	101 ^b	5'-ATG A	GT GAA (GCG GAG	TCA C	SAT 1	TAT	GTG	CAG	23	105-134
15	102	5'-CGC TO	CA TTA (CGT ACA	GTG A	ACA A	ATC	G		24	20-44
	103	5'-CTG G	TT AGC	TTG ACT	CTT A	AAC A	AAT	CTT	GTC	24	61-90
	104 ^b	5'-GAC G	CG ATT	GTC ACT	GTA (CGT I	AAT	GAG	CGA	24	19-48
	Bacter	ial species	: Mor	axella c	atarrh	ıalis					
20	108	5'-GCC C	CA AAA	CAA TGA	AAC Z	ATA	TGG	T		28	81-105
	109	5'-CTG C	AG ATT	TTG GAA	TCA '	TAT	CGC	С		28	126-150
	110	5'-TGG T	TT GAC	CAG TAT	TTA Z	A CG	CCA	T		28	165-189
	111	5'-CAA C	GG CAC	CTG ATG	TAC	CTT	GTA	С		28	232-256
	114	5'-TTA C	AA CCT	GCA CCA	CAA	GTC	ATC	A		29	97-121
25	115	5'-GTA C	AA ACA	AGC CGT	CAG	CGA	CTT	A		29	139-163
	116	5'-CAA T	CT GCG	TGT GTG	CGT	TCA	СT			29	178-200
	117	5'-GCT A	CT TTG	TCA GCT	TTA	GCC	ATT	CA		29	287-312

a Sequences from data banks

³⁰ b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

SEQ I	D NO	Nucleotide sequence						Oı	rigi	iginating DNA fragment			
										S	EQ ID	Nucleotide	
											NO	position	
Bacter	ial species:	Hae	mopl	hilu	s inj	fluer	ızae						
105 ^b	5'-GCG T	CA GAA	AAA	GTA	GGC	GAA	ATG	AAA	G		25	138-165	
106 ^b	5'-AGC G	GC TCT	ATC	TTG	TAA	TGA	CAC	A			26ª	770-794	
107 ^b	5'-GAA A	CG TGA	ACT	ccc	CTC	TAT	ATA	A			27ª	5184-5208	
	Univers	sal p	rob	esc									
122 ^b	5'-ATC C	CA CCT	TAG	GCG	GCT	GGC	TCC	A			-	-	
123	5'-ACG T	CA AGT	CAT	CAT	GGC	ССТ	TAC	GAG	TAG	G	-	-	
124 ^b	5'-GTG T	GA CGG	GCG	GTG	TGT	ACA	AGG	С			-	-	
125 ^b	5'-GAG T	TG CAG	ACT	CCA	ATC	CGG	ACT	ACG	A		-	-	
128 ^b	5'-CCC T	AT ACA	TCA	CCT	TGC	GGT	TTA	GCA	GAG	AG	-	-	
129	5'-GGG G	GG ACC	ATC	CTC	CAA	GGC	TAA	ATA	С		-	-	
130b	5'-CGT C	CA CTT	TCG	TGT	TTG	CAG	AGT	GCT	GTG	TT	-	-	

a Sequences from data banks

²⁵ b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

C Universal probes were derived from 16S or 23S ribosomal RNA gene sequences not included in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

SEQ ID	NO Nu	cleo	tide	sec	quenc	:e		Originating	DNA fragment
								SEQ ID	Nucleotide
<u></u>						.		ио	position
<u>Bacterial</u>	species:		Esch	ie ri ch	ia co	li			
42	5'-GCT	TTC	CAG	CGT	CAT	ATT	G	4	177-195
43b	5 ' -GAT	CTC	GAC	AAA	ATG	GTG	A	4	260-278
46	5'-TCA	CCC	GCT	TGC	GTG	GC		5 a	212-228
47b	5 ' -GGA	ACT	GGA	ATC	CAC	AAA	С	5 a	490-508
55	5 ' -GCA	ACC	CGA	ACT	CAA	CGC	С	7 a	1227-1245
56b	5 ' -GCA	GAT	GCG	ACC	CTT	GTG	T	7a	1315-1333
131	5 ' -CAG	GAG	TAC	GGT	GAT	TTT	TA	3	60-79
132 ^b	5'-ATT	TCT	GGT	TTG	GTC	ATA	CA	3	174-193
Bacteria	l species:	E	ntero	cocci	us fae	calis			
38	5 ' -GCA	ATA	CAG	GGA	AAA	ATG	TC	1 ^a	69-88
39b	5 ' -CTT	CAT	CAA	ACA	ATT	AAC	TC	1 ^a	249-268
40	5'-GAA	CAG	AAG	AAG	CCA	AAA	AA	. 2ª	569-588
41b	5 ' -GCA	ATC	CCA	AAT	AAT	ACG	GT	2a	670-689
5	J GCA								

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

5	SEQ ID	NO	Nucle	otid	e se	equer	nce	Orig	inating D	NA fragment
									SEQ ID NO	Nucleotide position
0										
	<u>Bacteria</u>	l species:	Kl	ebsie	ella j	oneur	nonia	ae		
	61	5 ' -GAC	AGT (CAG '	TTC	GTC	AGC	С	9	37-55
	62 ^b	5 ' -CGT	AGG (GTG	TGA	ATA	TCG	С	9	161-179
	67	5 ' -TCG	CCC (CTC .	ATC	TGC	TAC	T	10	81-99
5	68b	5'-GAT	CGT	GAT	GGA	TAT	TCT	T	10	260-278
	135	5 ' -GCA	GCG '	TGG	TGT	CGT	TCA		8	40-57
	136 ^b	5 ' -AGC	TGG	CAA	CGG	CTG	GTC		8	170-187
	137	5'-ATT	CAC .	ACC	СТА	CGC	AGC	CA	9	166-185
	138b	5'-ATC	CGG	CAG	CAT	CTC	TTT	GT	9	262-281
20										
	Bacteria	al species:	Pro	oteus	mira	abilis				
	74	5'-GA#	ACA	TCG	CAA	AGT	CAG	T	12	23-41
	75b	5'-ATA							12	170-189
	133	5'-CG0							14	17-36
2 5	134 ^b	5'-CT/							14	120-139

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

SEQ	ID NO	Nucleotide seque	ence Ori	ginating	DNA fragment
			_	SEQ ID	Nucleotide position
				NO	posicion
Bact	erial species	: Staphylococcus sa	aprophyticus		
98	5 ' -CGT	TTT TAC CCT TAC CTT	TTC GTA CT	21	45-70
dee	5 ' -AT C	GAT CAT CAC ATT CCA	TTT GTT TTT A	21	143-170
139	5'-CTG	GTT AGC TTG ACT CTT	AAC AAT C	24	61-85
140	5'-TCT	TAA CGA TAG AAT GGA	GCA ACT G	24	226-250
Bact	erial species	: Pseudomonas ae	ruginosa		
83	5 ' -CGA	GCG GGT GGT GTT CAT	С	16ª	554-572
84b	5'-CAA	GTC GTC GGA GGG	A	16ª	674-692
85	5 ' -TCG	CTG TTC ATC AAG ACC	С	17a	1423-1441
86p	5'-CCG	AGA ACC AGA CTT CAT	С	17a	1627-1645
Bact	erial species	a: Moraxella cata rr l	ialis		
112	5 ' -GGC	ACC TGA TGT ACC TTG		28	235-252
113	b 5'- AA C	AGC TCA CAC GCA TT		28	375-391
118	5 ' -T GT	TTT GAG CTT TTT ATT	TTT TGA	29	41-64
119	b 5'-CGC	TGA CGG CTT GTT TGT	ACC A	29	137-158
160	5 ' -GCT	CAA ATC AGG GTC AGC		29	22-39
119	b 5'-cgc	TGA CGG CTT GTT TGT	ACC A	29	137-158

³⁰ a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

SEQ I	ON C	Nucleo	tide	seque	ence	C	rig	inating	DNA fragme
							:	SEQ ID	Nucleotide
								NO	position
Bacteri	al species:	Stap	hyloco	occus e	pider	midi	s		
145	5'-ATC A	AA AAG TTG	GCG A	AC CTT	TTC	A		36	21-45
146 ^b	5'-CAA A	AG AGC GTG	GAG A	AAA AGT	T ATC	A		36	121-145
147	5'-TCT C	TT TTA ATT	TCA T	CT TC	ATT	CCA	TAG	36	448-477
148 ^b	5'-AAA C	AC AAT TAC	AGT C	CTG GT	T ATC	CAT	ATC	36	593-622
Pactor	al enocios	Star	huloc	occus i	211 701 1	c			
	ial species	•	•					2 7	400 436
149 ^b		AT TTT ACC						37	409-438
150	5'-TCA A	CT GTA GCT	TCT	TTA TC	C ATA	CGT	TGA	37	288-317
149b	5'-CTT C	AT TTT ACC	GTG A	ACT TC	r TAG	AAG	ATT	37	409-438
151	5'-ATA T	TT TAG CTT	TTC A	AGT TT	C TAT	ATC	AAC	37	263-292
152	5'-AAT C	TT TGT CGG	TAC A	ACG AT	A TTC	TTC	ACG	37	5-34
153 ^b	5'-CGT	AAT GAG AT	T TCA	GTA GA	T AA	r ACA	ACA	37	83-112

²⁵ a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

SEQ ID	NO Nucleotide sequence	Or	iginating	DNA fragmen
		•	SEQ ID	Nucleotide
			NO	position
<u>Bacteria</u>	i <u>l species</u> : Haemophilus influenza	ıe		
154	5'-TTT AAC GAT CCT TTT ACT CCT TT	T G	27 a	5074-5098
155 ^b	5'-ACT GCT GTT GTA AAG AGG TTA AA	T A	27ª	5266-5290
Bacteria	al species: Streptococcus pneumon	iae		
78	5'-AGT AAA ATG AAA TAA GAA CAG G	AC AG	34	164-189
79b	5'-AAA ACA GGA TAG GAG AAC GGG A	AA A	34	314-338
156	5 - ATT TGG TGA CGG GTG ACT TT		31 a	1401-1420
157 ^b	5'-GCT GAG GAT TTG TTC TTC TT		31 a	1515-1534
158	5'-GAG CGG TTT CTA TGA TTG T	.A	35 a	1342-1361
159 ^b	5'-ATC TTT CCT TTC TTG TTC T	T	35 a	1519-1538
Bacteri	al species: Streptococcus pyogenes			
141	5'-TGA AAA TTC TTG TAA CAG GC		32 a	286-305
142b	5'-GGC CAC CAG CTT GCC CAA TA		32 a	479-498
143	5'-ATA TTT TCT TTA TGA GGG TG		33 a	966-985
144b	5'-ATC CTT AAA TAA AGT TGC CA		33a	1103-1122

a Sequences from data banks

³⁰ b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

5	SEQ ID	NO	Nucle	otide	seq	uenc	е	Orig	inating	DNA fragment
									SEQ ID	Nucleotide position
10			Univ	ersal	pr	imer	·s ^c			
	126 127 ^b	5'-GGA 5'-ATG							-	-

a Sequences from data banks

¹⁵ b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

C Universal primers were derived from the 16S ribosomal RNA gene sequence not included in the Sequence listing

OI CHE	al RNA genes
probes by allgament of the	ribosomal
₽	238
20 12	pue
prop	168 and 238
of universal	of bacterial
of	of
election	sednences
x III. S	
Annex	

Pawarse strand of SEO ID NO: 122	NO: 122	TGGAGCC	AGCCGCCTAA	GGTGGGAT		
	1461				1510	
etrentococcus salivarius	TGAGGTAACC	TTTTGGAGCC	TGAGGTAACC TTTTGGAGCC AGCCGCCTAA GGTGGGATAG ATGANNGGGG	GGTGGGATAG	ATGANNGGGG	
nestone in ania	TAGCTTAACC	TTCGGGAGGG	TAGCTTAACC TTCGGGAGGG CGCTTACCAC	TTTGTGATTC ATGACTGGGG	ATGACTGGGG	
Proceds varyaris	TAGTCTAACC	GCAAGGGGGA	TAGTCTAACC GCAAGGGGGA CGGTTACCAC GGAGTGATTC ATGACTGGGG	GGAGTGATTC	ATGACTGGGG	
Neisseria donorrhoeae	TAGGGTAACC	GCAAGGAGTC	TAGGGTAACC GCAAGGAGTC CGCTTACCAC GGTATGCTTC ATGACTGGGG	GGTATGCT TC	ATGACTGGGG	
Streptococcus lactis	TIGCCTAACC	GCAAGGAGGG	TIGCCTAACC GCAAGGAGGG CGCTTCCTAA GGTAAGACCG ATGACNNGGG	GGTAAGAC CG	ATGACNNGGG	

ATCATGGC CCTTACGAGT AGG

ACGTCAAGTC

123

SEQ ID NO:

	genes.	
	RNA	
	some 1	
T B T	ribo	
y al	238	
80	and	
prop	168	
universal	bacterial	
0	of	
Annex III. Selection of universal propes by alignment of the	sequences of bacterial 16S and 23S ribosomal RNA genes.	
III.		
Annex		

				51							
1300	AGGCTACAC	AGGGCTTCAC	AGGCTTCAC	AGGCTACAC	AGGCTACAC	AGGCTACAC	AGGCTACAC	AGGCTACAC	GGGCCACAC	AGGCTACAC	AGGCTGCAA
	ATCATGGC CCTTACGAGT AGGGCTACAC	. CTCATGGC CCTTATGACC AGGGCTTCAC	. CTCATGGC CCTTATGGGT AGGGCTTCAC	ATCATGGC CCTTACGAGT AGGGCTACAC	ATCATGGC CCTTACGACC AGGGCTACAC	GTATCATGGC CCTTACGAGT AGGGCTACAC	ATCATGGC CCTTACGGCN AGGGCTACAC	ATCATGCC CNTTATGTGT AGGGCTACAC	ATCATGCC TCTTACGAGT GGGGCCACAC	ATCATGGC CCTTACGCCT AGGGCTACAC	ATCATGCC CCTTATGTCT AGGGCTGCAA
	ACGTCAAGTC	ACGICAAGIC	ACGTCAAGTC	ACGTCAAGTC	ACGTCAAGTC	ACGTTAAGTC	ACGTCAAGTC	ACGINNAATC	ACGTCAAATC	ACGTCAAGTC	ACGTCAAATC
1251	GGTNGGGATG	GGTGGGGATG	GGTNGGGATG	GCTGGGGATG	GGTGGGGATG	GGTGGGGATG	GGTGGGGATG	GGTGGGGATG	GGTGGGGATG	GGTGGGGACG	GGAAGGGATG
	Haemophilus influenzae	Neisseria gonorrhoeae	Pseudomonas cepacia	Serratia marcescens	Escherichia coli	Proteus vulgaris	Pseudomonas aeruginosa	Clostridium perfringens	Mycoplasma hominis	Helicobacter pylori	Mycoplasma pneumoniae

genes. and 23s ribosomal RNA probes by alignment of 168 universal bacterial of of Selection sednences III. Annex

Reverse of the probe SEQ ID NO: 124

GCCTTGTACA CACCGCCCGT CACAC

ACGITCICGG GICTIGIACA CACCGCCGT CACACCAIGG ACGITCCCGG GICTIGIACT CACCGCCGT CACACCAIGG ACGITCCCGG GCCTIGIACA CACCGCCGT CACACCATGG GCNTTGTACA CACCGCCCGT CACACCATGG ACGITCCCGG GCCTIGIACA CACCGCCGT CACACCAIGG ACGITCCCNG GICTIGIACA CACCGCNCGI CACACCATGA ACGITCICGG GICIIGIACA CACCGCCCGI CAAACIAIGA GTCTTGTACA CACNGCCCGT CACACCATGG ACGITCCCGG GCCIIGIACA CACCGCCCGI CACACCAIGG ACGITCCCGG GCCTIGIACA CACCGCCGT CACACCAIGG NNCTIGIACA CACCGCCGI CACACCATGG ACGTTCCCGG ACGITCCCNG ACGTTCCCGG 1451 Clostridium perfringens Haemophilus influenzae Pseudomonas aeruginosa Mycoplasma pneumoniae Neisseria gonorrhoeae Serratia marcescens Helicobacter pylori Pseudomonas cepacia Mycoplasma hominis Proteus vulgaris Escherichia coli

3

SUBSTITUTE SHEET

0

geneg. 168 and 238 ribosomal RNA probes by alignment of universal bacterial of of Selection sednences Annex III.

Reverse strand of SEQ ID NO 125: TCG TAG1

S

TCG TAGICCGGAT TGGAGICTGC AACTC

1400 TGGAGTCTGC AACTCGACTC TGCACTCTGC AACTCGAGTG TGCACTCTGC AACTCGAGTG TGGAGTCTGC AACTCGACTC TGGAGTCTGC AACTCGACTC TGGAGTCTGC AACTCGACTC CGCAGTCTGC AACTCGACTG TGTAGGCTGA AACTCGCCTA TGGAGTCTGC AATTCGACTC TOTAGGCTGC AACTCGCCTG TOYCOCTCC YATTCGTCCT ACACC..TCT CAGTTCGGAT AAGTTGGTCT CAGTTCGGAT AAGTGCGTCG TAGTCCGGAT AAGTATGTCG TAGTCCGGAT AAACCGATCG TAGTCCGGAT AAACCGATCG TAGTCCGGAT AAACCGATCG TAGTCCGGAT AAGTCTGTCG TAGTCCGGAT AAGTACGTCT AAGTCCGGAT AAACCAGTCT CAGTTCGGAT AAGCCGATCT CAGTTCGGAT 1361 Clostridium perfringens Haemophilus influenzae Pseudomonas aeruginosa Mycoplasma pneumoniae Neisseria gonorrhoeae Pseudomonas cepacia Helicobacter pylori Serratia marcescens Mycoplasma hominis Proteus vulgaris Escherichia coli 20

Annex	III.	Selection	of	universal p	probes	e Q	la .	lignment	O.	the	
		sednences	of	bacterial	168 8	pue	238	ribosoms	H	RNA	gene

		2040	GGTGACGCCT	TGTGACGCCT	TGTGACGCCT	TGTGACGCCT	GCTGACACCT	ACTGACTCCT
	atgtataggg		ATGTATAGGG	ACGTATACGG	ACGTATAGGG	ACGTATAGGG	ACGTATAGGG	ATGTATATGG ACTGACTCCT
	CT CTCTGCTAAA CCGCAAGGTG		AAACACAGCT CTCTGCTAAA CCGCAAGGTG	AAACACAGCA CTGTGCAAAC ACGAAAGTGG	CTCTGCAAAC ACGAAAGTGG	AAACACAGCA CTCTGCAAAC ACGAAAGTGG	AAACACAGGT CTCTGCGAAG TCGTAAGGCG	AAACACAGGT CCATGCGAAG TCGTAAGACG
		1991	AAACACAGCT	AAACACAGCA	AAACACAGCA	AAACACAGCA	AAACACAGGT	AAACACAGGT
	Reverse strand of SEQ ID NO: 128		Lactobacillus lactis	Escherichia coli	Pseudomonas aeruginosa	Pseudomonas cepacia	Bacillus stearothermophilus	Micrococcus luteus
~			10					15

GGGGGGACC ATCCTCCAAG GCTAAATAC SEQ ID NO: 129

530	CCTGACTGAC	ACTGACTGAC	CGTGATCGAC	CCTTAGTGAC	ACCTGTTGAC
	GCTAAATACT	GCTAAATACT	GCTAAATACT	CCTAAATACT	CCTGAATACT
	IGTCTGAATA TGGGGGGACC ATCCTCCAAG GCTAAATACT	TGTCTGAACA TGGGGGGACC ATCCTCCAAG GCTAAATACT	IGTCTGAAGA TGGGGGGACC ATCCTCCAAG GCTAAATACT	AGTITIGAATC CGGGAGGACC ATCTCCCAAC CCTAAATACT	CGTGTGAATC TGCCAGGACC ACCTGGTAAG CCTGAATACT
481	TGTCTGAATA	TGTCTGAACA	TGTCTGAAGA	AGTTTGAATC	CGTGTGAATC
	Escherichia coli	Pseudomonas aeruginosa.	Pseudomonas cepacia	Lactobacillus lactis	Micrococcus luteus

	genes.
the	RNA
alignment of	238 ribosomal
рХ	and
universal probes	of bacterial 168
of u	of b
Selection	seguences
III.	
Annex	

AACACAGCA CTCTGCAAAC ACGAAAGTGG ACG

					55		
9 0 8	2030	ACGTATAGGG	acg tatacgg	ACGTATAGGG	ACGTATAGGG	ATGTATAGGG	ATGTATATGG
Acgaaagtog		ACGAAAGTGG	ACGAAAGTGG	ACGAAAGTGG	TCGTAAGGCG	CCGCAAGGTG	TCGTAAGACG
CTCTGCAAAC ACGAAAGTGG ACG		AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG	AAACACAGCA CTGTGCAAAC ACGAAAGTGG ACGTATACGG	AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG	AAACACAGGT CTCTGCGAAG TCGTAAGGCG ACGTATAGGG	AAACACAGCT CTCTGCTAAA CCGCAAGGTG ATGTATAGGG	AAACACAGGT CCATGCGAAG TCGTAAGACG ATGTATATGG
AACACAGCA			AAACACAGCA	AAACACAGCA		AAACACAGCT	AAACACAGGT
: 130	1981	TGTTTATTAA	TGTTTATTAA	TGTTTAATAA	TGTTTATCAA	TGTTTATCAA	TGTTTATCAA
Reverse strand of SEQ ID NO: 130		psendomonas aeruginosa	Recherichia coli	Desidomonas cepacia	Racillus stearothermophilus	Lactobacillus lactis	Micrococcus luteus

CACACCAT

CACCGCCCGT

CTGGGAGGAA GGTGGGGATG ACGTCAAATC.....GTCTTGTACA CACCGCCGT CACACCATG

ATTGGAGGAA GGAAGGGATG ACGTCAAATC.....GTCTTGTACA CACCGCCCGT

Mycoplasma hominis Helicobacter pylori Mycoplasma pneumoniae

20

GGAGGAGGAA GGTGGGGACG ACGTCAAGTC.....GTCTTGTACT

the of alignment Selection of the universal PCR primers by gene 168 ribosomal RNA bacterial IV. Annex

	CA CACCGCCGT CACACCAT	1490	T CACACCATGG	T CACACCATGG	T CACACCATGG	T CACACCATGG	T CACACCATGG	T CACACCATGG	T CACACCATGG	T CACACCATGG	T CACACCATG
	CA CACCO		CACCGCC	CACCGCC	CACNGCC	CACCGCC	CACCGCC	CACCGCC	CACCOCC	CACCOCC	CACCOCN
		12701461	ACTGGAGGAA GGTGGGGATG ACGTCAAGTCGCCTTGTACA CACCGCCGT CACACCATGG	ACCTCAAGTCNNCTTGTACA CACCCCCCT CACACCATGG	ACGTCAAGTCGTCTTGTACA CACNGCCCGT CACACCATGG	ACGTCAAGTCGCCTTGTACA CACCGCCGT CACACCATGG	ACOTTAAGTCGCCTTGTACA CACCGCCGT CACACCATGG	ACGTCAAGTCGCNTTGTACA CACCGCCGT CACACCATGG	ACC GGAGGAA GGCGGGGATG ACG TCAAGTCGCCTTGTA CA CACCGCCGT CACACCAT GG	ACC GGAGGAA GGTGGGGATG ACG TCAAGTCGCCTTGTA CA CACCGCCGT CACACCAT GG	CCAGGAGGAA GGTGGGGATG ACGINNAAICGICTIGIACA CACCGCNCGT CACACCATG
GOAGGAA GOTGGGAATG ACG			GGTGGGGATG	GOTGGGGATG	CGINGGGAIG	GGTGGGGATG	GGTGGGGATG	GGTNGGGATG	GGCGGGGATG	GGTGGGGATG	GGTGGGGATG
	127	1241	ACTGGAGGAA	GCCGGAGGAA GGTGGGGATG	ACCOCAGGAA GGTNGGGATG	ACT GGAGGAA	ACCGGAGGAA GGTGGGGATG	ACTGGAGGAA GGTNGGGATG	ACCGGAGGAA	ACC GGAGGAA	CCAGGAGGAA
SEQ ID NO: 126	Reverse strand of SEQ ID NO:		Escherichia coli	Neisseria gonorrhoeae	Pseudomonas cepacia	Serratia marcescens	Proteus vulgaris	Haemophilus influenzae	Legionella pneumophila	Pseudomonas aeruginosa	Clostridium perfringens
		0					5				

56

8

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANTS: BERGERON, Michel G. OUELLETTE, Marc ROY, Paul H.
 - (ii) TITLE OF THE INVENTION: SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES
 - (iii) NUMBER OF SEQUENCES: 177
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE:
 - (B) STREET:
 - (C) CITY:
 - (D) STATE:
 - (E) COUNTRY:
 - (F) ZIP:
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: FLOPPY DISK, 800K
 - (B) COMPUTER: Macintosh IIci
 - (C) OPERATING: System 7.0
 - (D) SOFTWARE: Word 5.1a
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION;
 - (A) NAME: JEAN C. BAKER
 - (B) REGISTRATION NUMBER:
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE:
 - (B) TELEFAX:

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1817 base pairs

 - (B) TYPE: Nucleic acid(C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

(332) = = 2					
ACAGTAAAA	AGTTGTTAAC	GAATGAATTT	GTTAACAACT	TTTTTGCTAT	50
GGTATTGAGT	TATGAGGGGC	AATACAGGGA	AAAATGTCGG	CTGATTAAGG	100
AATTTAGATA	GTGCCGGTTA	GTAGTTGTCT	ATAATGAAAA	TAGCAACAAA	150
TATTTACGCA	GGGAAAGGGG	CGGTCGTTTA	ACGGGAAAAA	TTAGGGAGGA	200
TAAAGCAATA	CTTTTGTTGG	GAAAAGAAAT	AAAAGGAAAC	TGGGGAAGGA	250
GTTAATTGTT	TGATGAAGGG	AAATAAAATT	TTATACATTT	TAGGTACAGG	300
CATCTTTGTT	GGAAGTTCAT	GTCTATTTTC	TTCACTTTTT	GTAGCCGCAG	350
AAGAACAAGT	TTATTCAGAA	AGTGAAGTTT	CAACAGTTTT	ATCGAAGTTG	400
GAAAAGGAGG	CAATTTCTGA	GGCAGCTGCT	GAACAATATA	CGGTTGTAGA	450
TCGAAAAGAA	GACGCGTGGG	GGATGAAGCA	TCTTAAGTTA	GAAAAGCAAA	500
CGGAAGGCGT	TACTGTTGAT	TCAGATAATG	TGATTATTCA	TTTAGATAAA	550
AACGGTGCAG	TAACAAGTGT	TACAGGAAAT	CCAGTTGATC	AAGTTGTGAA	600
AATTCAATCG		TCGGTGAAGA	AGGAGTTAAA	AAAATTGTTG	650
CTTCTGATAA		AAAGATCTTG	TCTTTTTAGC	TATTGACAAA	700
CGTGTAAATA		ATTATTTTAT	AAAGTCAGAG	TAACTTCTTC	750
ACCAACTGGT		CATTGGTTTA	TAAAGTGAAC	GCTACAGATG	800
GAACAATTAT		GATTTAACGG	AACATGTCGG	TAGTGAAGTA	850
ACGTTAAAAA		AGTAACGTTT	AATGTACCAG	TTGAAAAAAG	900
CAATACGGGA		ACGGAACGG	TAACACAGGG	GTTTACCATG	950
CAGTAGTTGA		AATTATTCT	A TTATTCAAGO	GCCATCACTA	1000
GCGACATTA		TATTGACGC	TATACGCATG	GAAAATTTGT	1050
GAAAACATA		ATTTCCAAC	G ACACAGTATI	GATGATCGAG	1100
GGATGCCCA'		GTTGATGAA	C AACATCCAGA	TGCTTATGAC	1150
AATGCTTTT	_		TATGGTGAA	A CAAGTACACC	1200
AACAGGAAA			A TGTAGTTGGT	CATGAAATGA	1250
CACATGGTG			T TAGAATATT	r AGGACAATCA	1300
GGTGCCTTG			G ATGGGTTAT	A TTATTTCGGG	1350

TGCATCTAAT	CCAGAAATTG	GTGCGGATAC	TCAGAGTGTT	GACCGAAAAA	1400
CAGGTATTCG	AAATTTACAA	ACGCCAAGTA	AACACGGACA	ACCAGAAACC	1450
ATGGCTCAAT	ACGACGATCG	AGCACGGTAT	AAAGGAACGC	CTTATTATGA	1500
TCAAGGCGGT	GTTCATTATA	ACAGTGGAAT	TATTAATCGG	ATTGGTTACA	1550
CCATTATCCA	GAACTTAGGC	ATTGAAAAAG	CACAGACTAT	TTTCTACAGC	1600
TCGTTAGTAA	ATTACTTAAC	ACCTAAAGCA	CAATTCAGTG	ATGCTCGTGC	1650
TGCGATGCTT	GCTGCTGCAA	AAGTTCAATA	TGGCGATGAA	GCAGCTTCAG	1700
TGGTGTCAGC	AGCCTTTAAC	TCTGCTGGAA	TCGGAGCTAA	AGAAGACATT	1750
CAGGTAAACC	AACCAAGTGA	ATCTGTTCTG	GTCAATGAAT	GAAAAAATT	1800
CCCCAATTAA	ATAAAAA				1817

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2275 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GGTACCAAAG	AAAAAAACGA	ACGCCACAAC	CAACAGCCTC	TAAAGCAACA	50
CCTGCTTCTG	AAATTGAGGG	AGATTTAGCA	AATGTCAATG	AGATTCTTTT	100
GGTTCACGAT	GATCGTGTCG	GGTCAGCAAC	GATGGGAATG	AAAGTCTTAG	150
AAGAAATTTT	AGATAAAGAG	AAAATTTCAA	TGCCGATTCG	AAAAATTAAT	200
ATTAATGAAT	TAACTCAACA	AACACAGGCT	TTAATTGTCA	CAAAAGCTGA	250
ACTAACGGAA	CAAGCACGTA	AAAAAGCACC	GAAAGCGACA	CACTTATCAG	300
TAAAAAGTTA	TGGTTAATCC	CCAAAAATAT	GAAACAGTGG	GTTTCGCTCT	350
TAAAAGAAAG	TGCCTAGAGA	GGAAGAAAAC	AATGGAAAAT	CTTACGAATA	400
TTTCAATTGA	ATTAAATCAA	CAGTTTAATA	CAAAAGAAGA	AGCTATTCGC	450
TTTTCCGGCC	AGAAACTAGT	CGAGGCAGGC	TGTGTTGAGC	CCGCTTATAT	500
CGAAGCAATG	ATTGAAAGAG	ACCAATTGCT	ATCTGCCCAT	ATGGGGAATT	550
TTATTGCCAT	TCCTCATGGA	ACAGAAGAAG	CCAAAAAATT	AGTGAAAAA	600
TCAGGAATCT	GTGTAGTGCA	AGTCCCAGAG	GGCGTTAATT	TTGGCACCGA	650
AGAAGATGAA	AAAATTGCTA	CCGTATTATT	TGGGATTGCC	GGAGTCGGTG	700
AAGAACATTT	GCAATTAGTC	CAACAAATTG	CACTTTATTG	TAGTGATATG	750
GATAACGTGG	TGCAACTTGC	CGATGCATTA	AGTAAAGAAG	AAATAACAGA	800

WO 96/08582 PCT/CA95/00528

60

(2) INFO	RMATI	ON FOR SEQ I	D NO: 3:			
(i)	(A) (B) (C)	NCE CHARACTE LENGTH: 227 TYPE: Nucles STRANDEDNESS TOPOLOGY: L:	base pairs ic acid 5: Double	·		
(ii)	MOLEC	CULE TYPE: DI	NA (genomic	:)		
(vi)	ORIGI	NAL SOURCE: ORGANISM: E	scherichia	coli		
(xi)	SEQUE	ENCE DESCRIP	TION: SEQ	ID NO: 3:		
CATCCCC	יר איר (GGTTGTTTT (CCGATTGAGG	ATTTTATAGA	TGGTTTCTGG	50
CCACCTO	CAC :	AGGAGTACGG	TGATTTTTAA	TTATTGCAAT	TGCACAAGAG	100
TONGTTO	מינים	CCAAAGACA	GCACCGGTAT	CAATATAATG	CAGGTTGCCA	150
ATTATCC Z	ACGC (GATGGCGCAA	AGGTGTATGA	CCAAACCAGA	AATGATCGGC	200
		GCCAGTTCGC				227
		ION FOR SEQ				
(i)	(A) (B) (C)	ENCE CHARACT LENGTH: 278 TYPE: Nucle STRANDEDNES TOPOLOGY: 1	B base pair eic acid SS: Double	s		
(ii)	MOLE	CULE TYPE:	DNA (genomi	.c)		
(vi)	ORIC (A)	GINAL SOURCE ORGANISM:	: Escherichia	coli		
(xi)	SEQ	JENCE DESCRI	PTION: SEQ	ID NO: 4:		
GATCTA	AAATC	AAATTAATTG		ACCACAGCGG		50
AACTC	rgaca	AGAAGTTAAC			ACGCGAACAT	100
		CCGTATGTCA			GCGGACGACA	150
		GTCCACTACC			TATTGGGGCG	200
		GGGCGTGGGC	GTAATTGGT	AATCAGGCG	GGGGTCAGCG	250
		CACCATTTTG	TCGAGATC			27

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1596 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

-					
ATGGCTGACA	TTCTGCTGCT	CGATAATATC	GACTCTTTTA	CGTACAACCT	50
GGCAGATCAG	TTGCGCAGCA	ATGGGCATAA	CGTGGTGATT	TACCGCAACC	100
ATATACCGGC	GCAAACCTTA	ATTGAACGCT	TGGCGACCAT	GAGTAATCCG	150
GTGCTGATGC	TTTCTCCTGG	CCCCGGTGTG	CCGAGCGAAG	CCGGTTGTAT	200
GCCGGAACTC	CTCACCCGCT	TGCGTGGCAA	GCTGCCCATT	ATTGGCATTT	250
GCCTCGGACA	TCAGGCGATT	GTCGAAGCTT	ACGGGGGCTA	TGTCGGTCAG	300
GCGGGCGAAA	TTCTCCACGG	TAAAGCCTCC	AGCATTGAAC	ATGACGGTCA	350
GGCGATGTTT	GCCGGATTAA	CAAACCCGCT	GCCGGTGGCG	CGTTATCACT	400
CGCTGGTTGG	CAGTAACATT	CCGGCCGGTT	TAACCATCAA	CGCCCATTTT	450
AATGGCATGG	TGATGGCAGT	ACGTCACGAT	GCGGATCGCG	TTTGTGGATT	500
CCAGTTCCAT	CCGGAATCCA	TTCTCACCAC	CCAGGGCGCT	CGCCTGCTGG	550
AACAAACGCT	GGCCTGGGCG	CAGCATAAAC	TAGAGCCAGC	CAACACGCTG	600
CAACCGATTC	TGGAAAAACT	GTATCAGGCG	CAGACGCTTA	GCCAACAAGA	650
AAGCCACCAG	CTGTTTTCAG	CGGTGGTGCG	TGGCGAGCTG	AAGCCGGAAC	700
AACTGGCGGC	GGCGCTGGTG	AGCATGAAAA	TTCGCGGTGA	GCACCCGAAC	750
GAGATCGCCG	GGGCAGCAAC	CGCGCTACTG	GAAAACGCAG	CGCCGTTCCC	800
GCGCCCGGAT	TATCTGTTTG	CTGATATCGT	CGGTACTGGC	GGTGACGGCA	850
GCAACAGTAT	CAATATTTCT	ACCGCCAGTG	CGTTTGTCGC	CGCGGCCTGT	900
GGGCTGAAAG	TGGCGAAACA	CGGCAACCGT	AGCGTCTCCA	GTAAATCTGG	950
TTCGTCCGAT	CTGCTGGCGG	CGTTCGGTAT	TAATCTTGAT	ATGAACGCCG	1000
ATAAATCGCG	CCAGGCGCTG	GATGAGTTAG	GTGTATGTTT	CCTCTTTGCG	1050
CCGAAGTATO	ACACCGGATT	CCGCCACGCG	ATGCCGGTTC	GCCAGCAACT	1100
GAAAACCCGC	ACCCTGTTCA	ATGTGCTGGG	GCCATTGATT	AACCCGGCGC	1150
ATCCGCCGCT	GGCGTTAATT	GGTGTTTAT	GTCCGGAACT	GGTGCTGCCG	1200
ATTGCCGAA	A CCTTGCGCGT	GCTGGGGTAT	CAACGCGCGG	CGGTGGTGCA	1250
CAGCGGCGG	3 ATGGATGAAG	TTTCATTAC	A CGCGCCGACA	ATCGTTGCCG	1300
AACTGCATG	A CGGCGAAATT	AAAAGCTAT	C AGCTCACCGC	AGAAGACTTT	1350

GGCCTGACAC	CCTACCACCA	GGAGCAACTG	GCAGGCGGAA	CACCGGAAGA	1400
AAACCGTGAC	ATTTTAACAC	GTTTGTTACA	AGGTAAAGGC	GACGCCGCCC	1450
ATGAAGCAGC	CGTCGCTGCG	AACGTCGCCA	TGTTAATGCG	CCTGCATGGC	1500
CATGAAGATC	TGCAAGCCAA	TGCGCAAACC	GTTCTTGAGG	TACTGCGCAG	1550
TGGTTCCGCT	TACGACAGAG	TCACCGCACT	GGCGGCACGA	GGGTAA	1596

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2703 base pairs
 (B) TYPE: Nucleic acid
 (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GACGACTTAG	TTTTGACGGA	ATCAGCATAG	TTAATCACTT	CACTGTGGAA	50
AATGAGGAAA	TATTATTTTT	TTTGCGCTTC	GTAATTAATG	GTTATAAGGT	100
CGGCCAGAAA	CCTTTCTAAT	GCAAGCGATG	ACGTTTTTTT	ATGTGTCTGA	150
ATTTGCACTG	TGTCACAATT	CCAAATCTTT	ATTAACAACT	CACCTAAAAC	200
GACGCTGATC	CAGCGTGAAT	ACTGGTTTCC	CTTATGTTCA	TCAGATTCAT	250
TTAAGCAAGG	GTTTCTTCTT	CATTCCTGAT	GAAAGTGCCA	TCTAAAAAGA	300
TGATCTTAAT	AAATCTATTA	AGAATGAGAT	GGAGCACACT	GGATATTTTA	350
CTTATGAAAC	TGTTTCACTC	CTTTACTTAA	TTTATAGAGT	TACCTTCCGC	400
TTTTTGAAAA	TACGCAACGG	CCATTTTTTG	CACTTAGATA	CAGATTTTCT	450
GCGCTGTATT	GCATTGATTT	GATGCTAATC	CTGTGGTTTG	CACTAGCTTT	500
AAGTGGTTGA	GATCACATTT	CCTTGCTCAT	CCCCGCAACT	CCTCCCTGCC	550
TAATCCCCCG	CAGGATGAGG	AAGGTCAACA	TCGAGCCTGG	CAAACTAGCG	600
ATAACGTTGT	GTTGAAAATC	TAAGAAAAGT	GGAACTCCTA	TGTCACAACC	650
TATTTTTAAC	GATAAGCAAT	TTCAGGAAGC	GCTTTCACGT	CAGTGGCAGC	700
GTTATGGCTT	AAATTCTGCG	GCTGAAATGA	CTCCTCGCCA	GTGGTGGCTA	750
GCAGTGAGTG	AAGCACTGGC	CGAAATGCTG	CGTGCTCAGC	CATTCGCCAA	800
GCCGGTGGCG	AATCAGCGAC	ATGTTAACTA	CATCTCAATG	GAGTTTTTGA	850
TTGGTCGCCT	GACGGGCAAC	AACCTGTTGA	ATCTCGGCTG	GTATCAGGAT	900
GTACAGGATT	CGTTGAAGGC	TTATGACATC	AATCTGACGG	ACCTGCTGGA	950
AGAAGAGATC	GACCCGGCGC	TGGGTAACGG	TGGTCTGGGA	CGTCTGGCGG	1000
CGTGCTTCCT	CGACTCAATG	GCAACTGTCG	GTCAGTCTGC	GACGGGTTAC	1050

GGTCTGAACT	ATCAATATGG	TTTGTTCCGC	CAGTCTTTTG	TCGATGGCAA	1100
ACAGGTTGAA	GCGCCGGATG	ACTGGCATCG	CAGTAACTAC	CCGTGGTTCC	1150
GCCACAACGA	AGCACTGGAT	GTGCAGGTAG	GGATTGGCGG	TAAAGTGACG	1200
AAAGACGGAC	GCTGGGAGCC	GGAGTTTACC	ATTACCGGTC	AAGCGTGGGA	1250
TCTCCCCGTT	GTCGGCTATC	GTAATGGCGT	GGCGCAGCCG	CTGCGTCTGT	1300
GGCAGGCGAC	GCACGCGCAT	CCGTTTGATC	TGACTAAATT	TAACGACGGT	1350
GATTTCTTGC	GTGCCGAACA	GCAGGGCATC	AATGCGGAAA	AACTGACCAA	1400
AGTTCTCTAT	CCAAACGACA	ACCATACTGC	CGGTAAAAAG	CTGCGCCTGA	1450
TGCAGCAATA	CTTCCAGTGT	GCCTGTTCGG	TAGCGGATAT	TTTGCGTCGC	1500
CATCATCTGG	CGGGGCGTGA	ACTGCACGAA	CTGGCGGATT	ACTAAGTTAT	1550
TCAGCTGAAC	GATACCCACC	CAACTATCGC	GATTCCAGAA	CTGCTGCGCG	1600
TGCTGATCGA	TGAGCACCAG	ATGAGCTGGG	ATGACGCTTG	GGCCATTACC	1650
AGCAAAACTT	TCGCTTACAC	CAACCATACC	CTGATGCCAG	AAGCGCTGGA	1700
ACGCTGGGAT	GTGAAACTGG	TGAAAGGCTT	ACTGCCGCGC	CACATGCAGA	1750
TTATTAACGA	AATTAATACT	CGCTTTAAAA	CGCTGGTAGA	GAAAACCTGG	1800
CCGGGCGATG	AAAAGTGTG	GGCCAAACTG	GCGGTGGTGC	ACGACAAACA	1850
AGTGCATATG	GCGAACCTGT	GTGTGGTTGG	CGGTTTCGCG	GTGAACGGTG	1900
TTGCGGCGCT	GCACTCGGAT	CTGGTGGTGA	AAGATCTGTT	CCCGGAATAT	1950
CACCAGCTAT	GGCCGAACAA	ATTCCATAAC	GTCACCAACG	GTATTACCCC	2000
ACGTCGCTGG	ATCAAACAGT	GCAACCCGGC	ACTGGCGGCT	CTGTTGGATA	2050
AATCACTGCA	AAAAGAGTGG	GCTAACGATC	TCGATCAGCT	GATCAATCTG	2100
GTTAAATTGG	CTGATGATGC	GAAATTCCGT	CAGCTTTATC	GCGTGATCAA	2150
GCAGGCGAAT	AAAGTCCGTC	TGGCGGAGTT	TGTGAAAGTT	CGTACCGGTA	2200
TTGACATCAA	TCCACAGGCG	ATTTTCGATA	TTCAGATCAA	ACGTTTGCAC	2250
GAGTACAAAC	GCCAGCACCT	GAATCTGCTG	CGTATTCTGG	CGTTGTACAA	2300
AGAAATTCGT	GAAAACCCGC	AGGCTGATCG	CGTACCGCGC	GTCTTCCTCT	2350
TCGGCGCGAA	AGCGGCACCG	GGCTACTACC	TGGCTAAGAA	TATTATCTTT	2400
GCGATCAACA	AAGTGGCTGA	CGTGATCAAC	AACGATCCGC	TGGTTGGCGA	2450
TAAGTTGAAG	GTGGTGTTCC	TGCCGGATTA	TTGCGTTTCG	GCGGCGGAAA	2500
AACTGATCCC	GGCGGCGGAT	ATCTCCGAAC	AAATTTCGAC	TGCAGGTAAA	2550
GAAGCTTCCG	GTACCGGCAA	TATGAAACTG	GCGCTCAATG	GTGCGCTTAC	2600
TGTCGGTACG	CTGGATGGGG	CGAACGTTGA	AATCGCCGAG	AAAGTCGGTG	2650
AAGAAAATAT	CTTTATTTTT	GGTCATACGG	TCAAACAAGT	GAAGGCAATC	2700
GAC					2703

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1391 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

					E 0
AGAGAAGCCT	GTCGGCACCG	TCTGGTTTGC	TTTTGCCACT	GCCCGCGGTG	50
AAGGCATTAC	CCGGCGGGAT	GCTTCAGCGG	CGACCGTGAT	GCGGTGCGTC	100
GTCAGGCTAC	TGCGTATGCA	TTGCAGACCT	TGTGGCAACA	ATTTCTACAA	150
AACACTTGAT	ACTGTATGAG	CATACAGTAT	AATTGCTTCA	ACAGAACATA	200
TTGACTATCC	GGTATTACCC	GGCATGACAG	GAGTAAAAAT	GGCTATCGAC	250
GAAAACAAAC	AGAAAGCGTT	GGCGGCAGCA	CTGGGCCAGA	TTGAGAAACA	300
ATTTGGTAAA	GGCTCCATCA	TGCGCCTGGG	TGAAGACCGT	TCCATGGATG	350
TGGAAACCAT	CTCTACCGGT	TCGCTTTCAC	TGGATATCGC	GCTTGGGGCA	400
GGTGGTCTGC	CGATGGGCCG	TATCGTCGAA	ATCTACGGAC	CGGAATCTTC	450
CGGTAAAACC	ACGCTGACGC	TGCAGGTGAT	CGCCGCAGCG	CAGCGTGAAG	500
GTAAAACCTG	TGCGTTTATC	GATGCTGAAC	ACGCGCTGGA	CCCAATCTAC	550
GCACGTAAAC	TGGGCGTCGA	TATCGACAAC	CTGCTGTGCT	CCCAGCCGGA	600
		AAATCTGTGA		CGTTCTGGCG	650
CACCGGCGAG		GACTCCGTGG		GCCGAAAGCG	700
CAGTAGACGT		CGACTCTCAC		CGGCACGTAT	750
GAAATCGAAG		AGCTGGCGG		CAGTCCAACA	800
GATGAGCCAG	_		TGAAAATTGG	TGTGATGTTC	850
CGCTGCTGAT					900
GGTAACCCGG		CGGTGGTAAC			950
TGTTCGTCTC	GACATCCGTC	GTATCGGCGC			1000
TGGTGGGTAC	G CGAAACCCGC				1050
CCGTTTAAA	C AGGCTGAATT				
CTACGGCGA	A CTGGTTGACC		A AGAGAAGCTG		1100
CAGGCGCGT	G GTACAGCTAC	AAAGGTGAG.	A AGATCGGTCA		1150
AATGCGACT	G CCTGGCTGAA	AGATAACCC	G GAAACCGCGA		1200
GAAGAAAGT.	A CGTGAGTTGC	TGCTGAGCA	A CCCGAACTC		1250
TCTCTGTAG		A GGCGTAGCA	G AAACTAACGA	A AGATTTTAA	1300

			03			
					TTGCTTTTTT	1350
AAGTTGT	AAG (GATATGCCAT	GACAGAATCA	ACATCCCGTC	G	1391
(2) INFO	RMATI	ON FOR SEQ	ID NO: 8:			
(i)	(A) (B) (C)	ENCE CHARAC LENGTH: 23 TYPE: Nucl STRANDEDNE TOPOLOGY:	<pre>8 base pair eic acid SS: Double</pre>	S		
(ii)	MOLE	CULE TYPE:	DNA (genomi	c)		
(vi)	ORIG (A)	INAL SOURCE ORGANISM:	: Klebsiella	pneumoniae		
(xi)	SEQU	ENCE DESCRI	PTION: SEQ	ID NO: 8:		
TCGCCAG	GAA	GGCGGCATTC	GGCTGGGTCA	GAGTGACCTG	CAGCGTGGTG	50
TCGTTCA	.GCG	CTTTCACCCC	CAACGTCTCG	GGTCCCTTTT	GCCCGAGGGC	100
AATCTCG	CGG	GCGTTGGCGA	TATGCATATT	GCCAGGGTAG	CTCGCGTAGG	150
GGGAGGC	TGT	TGCCGGCGAG	ACCAGCCGTT	GCCAGCTCCA	GACGATATCC	200
TGCGCTG	TAA	TGGCCGTGCC	GTCAGACCAG	GTCAGACC		238
(2)INFO	RMAT	ION FOR SEC	ID NO: 9:			
(i)	(A) (B) (C)	TYPE: Nuc	35 base pair leic acid ESS: Double	rs		
(ii)	MOLE	ECULE TYPE:	DNA (genom	ic)		
(vi)	ORIO	GINAL SOURCE ORGANISM:	E: Klebsiella	pneumoniae		
(xi)	SEQ	JENCE DESCR	IPTION: SEQ	ID NO: 9:		
CAGCGT	AATG	CGCCGCGGCA	TAACGGCGCC	ACTATCGACA	GTCAGTTCGT	50
CAGCCT	GCAG	CCTGGGCTGA			CCGAACTACA	100
GCACCT	ATAG	CCACAGCGAT	AACAACAGC	GCTGGGAGTC	GGTTTACTCC	150
TATCTT	GCCC	GCGATATTCA			TGGTCGGTAA	200
TACGTA	TACC	TCTTCCGGCA	TTTTCGACAC	TTTGAGTTTI	ACCGGTCTGC	250
AGCTCA	GTTC	GACAAAGAGA	TGCTGCCGG	A TAGCCTGCAT	GCTTTGCGCC	300

SUBSTITUTE SHEET

GACGATTCGA GGGATCGCGC GCACCACCGC GGAGGTCTCG GTTTATCAGA 350

ATGGTTACAG CATTTATAAA ACCACCGTCG CTACC 385 (2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: LENGTH: 462 base pairs (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: CTCTATATTC AGGACGAACA TATCTGGACC TCTGGCGGGG TCAGTTCCGG 50 CTTTGATCGC CCTGCACCCG CAGCGGGTGA TCGCCCCTCA TCTGCTACTG 100 CGGCGCTGCA ACAGGCGACG ATCGATGACG TTATTCCTGG CCAGCAAACA 150 GCAGACCAAT TAAGGTCTGA TAGTGGCTCT CTTCCTCCGG CGCGCGACGG 200 TCCAGGCGGC TCAACAGTTT GGTGCATAGC GCTTTGCGGT TGAGATGACG 250 CCCTTCGTTA AGAATATCCA TCACGATCTC CGTCCATGGA GAGTAGCGTT 300 TATTCCAGAA TAGGGTTTTT CAGGATCTCA TGGATCTGCG CCTGCTTATC 350 GCTATTTTGT AACCAGATCG CATAAAGTGG ACGGGATAAC GTAGCGCTGT 400 CCATGACCGT ATGTAACCCA TGCTTCTCTT TCGCCCAGCG AGCAGGTAGC 450 462 CAACAGCAGC CG (2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: GCTGACCGCT AAACTGGGTT ACCCGATCAC TGACGATCTG GACATCTACA 50 CCCGTCTGGG CGGCATGGTT TGGCGCGCTG ACTCCAAAGG CAACTACGCT 100 TCAACCGGCG TTTCCCGTAG CGAACACGAC ACTGGCGTTT CCCCAGTATT 150 TGCTGGCGGC GTAGAGTGGG CTGTTACTCG TGACATCGCT ACCCGTCTGG 200

AATACCAGTG	GGTTAACAAC	ATCGGCGACG	CGGGCACTGT	GGGTACCCGT	250
CCTGATAACG	GCATGCTGAG	CCTGGGCGTT	TCCTACCGCT	TCGGTCAGGA	300
AGATGCTGCA	CCGGTTGTTG	CTCCGGCTCC	GGCTCCGGCT	CCGGAAGTGG	350
CTACCAAGCA	CTTCACCCTG	AAGTCTGACG	TTCTGTTCAA	CTTCAACAAA	400
GCTACCCTGA	AACCGGAAGG	TCAGCAGGCT	CTGGATCAGC	TGTACACTCA	450
GCTGAGCAAC	ATGGATCCGA	AAGACGGTTC	CGCTGTTGTT	CTGGGCTACA	500
CCGACCGCAT	CGGTTCCGAA	GCTTACAACC	AGCAGCTGTC	TGAGAAACGT	550
GCTCAGTCCG	TTGTTGACTA	CCTGGTTGCT	AAAGGCATCC	CGGCTGGCAA	600
AATCTCCGCT	CGCGGCATGG	GTGAATCCAA	CCCGGTTACT	GGCAACACCT	650
GTGACAACGT	GAAAGCTCGC	GCTGCCCTGA	TCGATTGCCT	GGCTCCGGAT	700
CGTCGTGTAG	AGATCGAAGT	TAAAGGTATC			730

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 225 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Proteus mirabilis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

CGCTACTGTT	TAAATCTCAT	TTGAAACATC	GCAAAGTCAG	TGAACCACAT	50
ATTCGAGGAT	GGCATGCACT	AGAAAATATT	AATAAGATTT	TAGCGAAACC	100
TAATCAGCGC	AATATCGCTT	AATTATTTA	GGTATGTTCT	CTTCTATCCT	150
ACAGTCACGA	GGCAGTGTCG	AACTTGATCC	TCATTTTATT	AATCACATGA	200
CCAATGGTAT	AAGCGTCGTC	ACATA			225

68

& §					
(2) INFORMATION FOR SEQ ID NO: 13:					
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 402 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 					
(ii) MOLECULE TYPE: DNA (genomic)					
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>					
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:					
ACATTTTAAA TAGGAAGCCA CCTGATAACA TCCCCGCAGT TGGATCATCA	50				
GATTTATAGC GGCATTTGGT ATCCGCTAGA TAAAAGCAGT CCAACGATCC	100				
CGCCAATTGT TAGATGAAAT TGGACTATTC TTTTTATTTG CTCCGCTTTA	150				
	200				
GCACGCTCTT TAATGTGTTA GGCCCATTAA TTAATCCAGC GCGTTCCGCC	250				
TTTAGCATTA ATTGGTGTTT ATAGTCCTGA ATTATTAATG CCTATTGCAG	300				
ATACCTTAAA TGTCTTGGGC TACAAACGTG CGGCAGTGGT CCATAGTGGT	350				
GGAATGGATG AAGTGTCATT ACATGCTCCC ACACAAGTGG CTGAGTTACA	400				
CA	402				
(2) INFORMATION FOR SEQ ID NO: 14:					
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 157 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 					
(ii) MOLECULE TYPE: DNA (genomic)					
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>					
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:					
CTGAAACGCA TTTATGCGGG AGTCAGTGAA ATCATCACTC AATTTTCACC	50				
CGATGTATTT TCTGTTGAAC AAGTCTTTAT GGCAAAAAAT GCAGACTCAG					
CATTAAAATT AGGCCAAGCA AGAGGTGTGG CGATTTTAGC GGCAGTCAAT					

SUBSTITUTE SHEET

AATGATC

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1348 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Proteus mirabilis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTCTCTTTA	AAATCAATTC	TTAAAGAAAT	TATTAATAAT	TAACTTGATA	50
CTGTATGATT	ATACAGTATA	ATGAGTTTCA	ACAAGCAAAA	TCATATACGT	100
TTTAATGGTA	GTGACCCATC	TTTATGCTTC	ACTGCCCAGA	GGGAGATAAC	150
ATGGCTATTG	ATGAAAACAA	ACAAAAAGCA	TTGGCCGCAG	CACTTGGTCA	200
AATTGAAAAG	CAATTTGGTA	AAGGTTCTAT	CATGCGTCTG	GGCGAAGACC	250
GTTCCATGAA	CGTAGAAACT	ATCTCTACAG	GATCTTTATC	ATTAGACGTT	300
GCTTTAGGTG	CAGGTGGATT	GCCACGTGGC	CGTATTGTTG	AAATCTATGG	350
CCCTGAATCT	TCTGGTAAAA	CAACCTTGAC	TCTACAAGTT	ATTGCCTCTG	400
CTCAGCGTGA	AGGAAAAATT	TGTGCATTTA	TTGATGCTGA	ACATGCATTA	450
GACCCAATTT	ATGCTCAAAA	GCTAGGTGTC	GATATCGATA	ATCTACTCTG	500
CTCTCAACCT	GACACAGGTG	AACAAGCTCT	GGAAATTTGT	GATGCATTAT	550
CTCGCTCTGG	TGCGGTCGAT	GTTATTGTCG	TGGACTCCGT	GGCAGCATTA	600
ACACCAAAAG	CTGAAATTGA	AGGTGAAATT	GGTGATTCAC	ACGTTGGTTT	650
AGCCGCACGT	ATGATGAGCC	AAGCTATGCG	TAAACTAGCG	GGTAACCTTA	700
AAAACTCTAA	TACACTGCTG	ATTTTCATTA	ACCAAATTCG	TATGAAAATC	750
GGTGTTATGT	TTGGTAACCC	AGAAACCACG	ACCGGTGGTA	ATGCGCTTAA	800
ATTCTATGCT	TCTGTTCGTT	TAGACATTCG	TCGCATTGGC	TCTGTCAAAA	850
ATGGTGATGA	AGTCATTGGT	AGTGAGACTC	GCGTTAAAGT	TGTTAAAAAT	900
AAAGTGGCTG	CACCGTTTAA	ACAAGCTGAA	TTCCAAATTA	TGTACGGTGA	950
AGGTATTAAT	ACCTATGGCG	AACTGATTGA	TTTAGGTGTT	AAACATAAGT	1000
TAGTAGAGAA	AGCAGGTGCT	TGGTATAGCT	ACAATGGCGA	AAAAATTGGT	1050
CAAGGTAAAG	CTAACGCAAC	CAATTACTTA	AAAGAACATC	CTGAAATGTA	1100
CAATGAGTTA	AACACTAAAT	TGCGTGAAAT	GTTGTTAAAT	CATGCTGGTG	1150
AATTCACAAG	TGCTGCGGAT	TTTGCAGGTG	AAGAGTCAGA	CAGTGATGCT	1200
GACGACACAA	AAGAGTAATT	AGCTGGTTGT	CATGCTGTTT	GTGTGAAAAT	1250
AGACCTTAAA	TCATTGGCTA	TTATCACGAC	AGCATCCCAT	AGAATAACTT	1300

GTTTGTATAA ATTTTATTCA GATGGCAAAG GAAGCCTTAA AAAAGCTT 1348

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2167 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudomonas aeruginosa
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

GGTACCGCTG	GCCGAGCATC	TGCTCGATCA	CCACCAGCCG	GGCGACGGGA	50
ACTGCACGAT	CTACCTGGCG	AGCCTGGAGC	ACGAGCGGGT	TCGCTTCGTA	100
CGGCGCTGAG	CGACAGTCAC	AGGAGAGGAA	ACGGATGGGA	TCGCACCAGG	150
AGCGGCCGCT	GATCGGCCTG	CTGTTCTCCG	AAACCGGCGT	CACCGCCGAT	200
ATCGAGCGCT	CGCACGCGTA	TGGCGCATTG	CTCGCGGTCG	AGCAACTGAA	250
CCGCGAGGGC	GGCGTCGGCG	GTCGCCCGAT	CGAAACGCTG	TCCCAGGACC	300
CCGGCGGCGA	CCCGGACCGC	TATCGGCTGT	GCGCCGAGGA	CTTCATTCGC	350
AACCGGGGGG	TACGGTTCCT	CGTGGGCTGC	TACATGTCGC	ACACGCGCAA	400
GGCGGTGATG	CCGGTGGTCG	AGCGCGCCGA	CGCGCTGCTC	TGCTACCCGA	450
CCCCTACGA	GGGCTTCGAG	TATTCGCCGA	ACATCGTCTA	CGGCGGTCCG	500
GCGCCGAACC	AGAACAGTGC	GCCGCTGGCG	GCGTACCTGA	TTCGCCACTA	550
CGGCGAGCGG	GTGGTGTTCA	TCGGCTCGGA	CTACATCTAT	CCGCGGGAAA	600
GCAACCATGT	GATGCGCCAC	CTGTATCGCC	AGCACGGCGG	CACGGTGCTC	650
GAGGAAATCT	ACATTCCGCT	GTATCCCTCC	GACGACGACT	TGCAGCGCGC	700
CGTCGAGCGC	ATCTACCAGG	CGCGCGCCGA	CGTGGTCTTC	TCCACCGTGG	750
TGGGCACCGG	CACCGCCGAG	CTGTATCGCG	CCATCGCCCG	TCGCTACGGC	800
GACGGCAGGC	GGCCGCCGAT	CGCCAGCCTG	ACCACCAGCG	AGGCGGAGGT	850
GGCGAAGATG	GAGAGTGACG	TGGCAGAGGG	GCAGGTGGTG	GTCGCGCCTT	900
ACTTCTCCAG	CATCGATACG	CCCGCCAGCC	GGGCCTTCGT	CCAGGCCTGC	950
CATGGTTTCT	TCCCGGAGAA	CGCGACCATC	ACCGCCTGGG	CCGAGGCGGC	1000
CTACTGGCAG	ACCTTGTTGC	TCGGCCGCGC	CGCGCAGGCC	GCAGGCAACT	1050
GGCGGGTGGA	AGACGTGCAG	CGGCACCTGT	ACGACATCGA	CATCGACGCG	1100
CCACAGGGGC	CGGTCCGGGT	GGAGCGCCAG	AACAACCACA	GCCGCCTGTC	1150
TTCGCGCATC	GCGGAAATCG	ATGCGCGCGG	CGTGTTCCAG	GTCCGCTGGC	1200
AGTCGCCCGA	ACCGATTCGC	CCCGACCCTT	ATGTCGTCGT	GCATAACCTC	1250

H

GACGACTGGT	CCGCCAGCAT	GGGCGGGGA	CCGCTCCCAT	GAGCGCCAAC	1300
TCGCTGCTCG	GCAGCCTGCG	CGAGTTGCAG	GTGCTGGTCC	TCAACCCGCC	1350
GGGGGAGGTC	AGCGACGCCC	TGGTCTTGCA	GCTGATCCGC	ATCGGTTGTT	1400
CGGTGCGCCA	GTGCTGGCCG	CCGCCGGAAG	CCTTCGACGT	GCCGGTGGAC	1450
GTGGTCTTCA	CCAGCATTTT	CCAGAATGGC	CACCACGACG	AGATCGCTGC	1500
GCTGCTCGCC	GCCGGGACTC	CGCGCACTAC	CCTGGTGGCG	CTGGTGGAGT	1550
ACGAAAGCCC	CGCGGTGCTC	TCGCAGATCA	TCGAGCTGGA	GTGCCACGGC	1600
GTGATCACCC	AGCCGCTCGA	TGCCCACCGG	GTGCTGCCTG	TGCTGGTATC	1650
GGCGCGCGC	ATCAGCGAGG	AAATGGCGAA	GCTGAAGCAG	AAGACCGAGC	1700
AGCTCCAGGA	CCGCATCGCC	GGCCAGGCCC	GGATCAACCA	GGCCAAGGTG	1750
TTGCTGATGC	AGCGCCATGG	CTGGGACGAG	CGCGAGGCGC	ACCAGCACCT	1800
GTCGCGGGAA	GCGATGAAGC	GGCGCGAGCC	GATCCTGAAG	ATCGCTCAGG	1850
AGTTGCTGGG	AAACGAGCCG	TCCGCCTGAG	CGATCCGGGC	CGACCAGAAC	1900
AATAACAAGA	GGGGTATCGT	CATCATGCTG	GGACTGGTTC	TGCTGTACGT	1950
TGGCGCGGTG	CTGTTTCTCA	ATGCCGTCTG	GTTGCTGGGC	AAGATCAGCG	2000
GTCGGGAGGT	GGCGGTGATC	AACTTCCTGG	TCGGCGTGCT	GAGCGCCTGC	2050
GTCGCGTTCT	ACCTGATCTT	TTCCGCAGCA	GCCGGGCAGG	GCTCGCTGAA	2100
GGCCGGAGCG	CTGACCCTGC	TATTCGCTTT	TACCTATCTG	TGGGTGGCCG	2150
CCAACCAGTT	CCTCGAG				2167

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1872 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GAATTCCCGG	GAGTTCCCGA	CGCAGCCACC	CCCAAAACAC	TGCTAAGGGA	50
GCGCCTCGCA	GGGCTCCTGA	GGAGATAGAC	CATGCCATTT	GGCAAGCCAC	100
TGGTGGGCAC	CTTGCTCGCC	TCGCTGACGC	TGCTGGGCCT	GGCCACCGCT	150
CACGCCAAGG	ACGACATGAA	AGCCGCCGAG	CAATACCAGG	GTGCCGCTTC	200
CGCCGTCGAT	CCCGCTCACG	TGGTGCGCAC	CAACGGCGCT	CCCGACATGA	250
GTGAAAGCGA	GTTCAACGAG	GCCAAGCAGA	TCTACTTCCA	ACGCTGCGCC	300
GGTTGCCACG	GCGTCCTGCG	CAAGGCCCC	ACCGGCAAGC	CGCTGACCCC	350

GGACATCACC	CAGCAACGCG	GCCAGCAATA	CCTGGAAGCG	CTGATCACCT	400
ACGGCACCCC	GCTGGGCATG	CCGAACTGGG	GCAGCTCCGG	CGAGCTGAGC	450
AAGGAACAGA	TCACCCTGAT	GGCCAAGTAC	ATCCAGCACA	CCCCGCCGCA	500
ACCGCCGGAG	TGGGGCATGC	CGGAGATGCG	CGAATCGTGG	AAGGTGCTGG	550
TGAAGCCGGA	GGACCGGCCG	AAGAAACAGC	TCAACGACCT	CGACCTGCCC	600
AACCTGTTCT	CGGTGACCCT	GCGCGACGCC	GGGCAGATCG	CCCTGGTCGA	650
CGGCGACAGC	AAAAAGATCG	TCAAGGTCAT	CGATACCGGC	TATGCCGTGC	700
ATATCTCGCG	GATGTCCGCT	TCCGGCCGCT	ACCTGCTGGT	GATCGGCCGC	750
GACGCGCGGA	TCGACATGAT	CGACCTGTGG	GCCAAGGAGC	CGACCAAGGT	800
CGCCGAGATC	AAGATCGGCA	TCGAGGCGCG	CTCGGTGGAA	AGCTCCAAGT	850
TCAAGGGCTA	CGAGGACCGC	TACACCATCG	CCGGCGCCTA	CTGGCCGCCG	900
CAGTTCGCGA	TCATGGACGG	CGAGACCCTG	GAACCGAAGC	AGATCGTCTC	950
CACCCGCGGC	ATGACCGTAG	ACACCCAGAC	CTACCACCCG	GAACCGCGCG	1000
TGGCGGCGAT	CATCGCCTCC	CACGAGCACC	CCGAGTTCAT	CGTCAACGTG	1050
AAGGAGACCG	GCAAGGTCCT	GCTGGTCAAC	TACAAGGATA	TCGACAACCT	1100
CACCGTCACC	AGCATCGGTG	CGGCGCCGTT	CCTCCACGAC	GGCGGCTGGG	1150
ACAGCAGCCA	CCGCTACTTC	ATGACCGCCG	CCAACAACTC	CAACAAGGTT	1200
GCCGTGATCG	ACTCCAAGGA	CCGTCGCCTG	TCGGCCCTGG	TCGACGTCGG	1250
CAAGACCCCG	CACCCGGGGC	GTGGCGCCAA	CTTCGTGCAT	CCCAAGTACG	1300
GCCCGGTGTG	GAGCACCAGC	CACCTGGGCG	ACGGCAGCAT	CTCGCTGATC	1350
GGCACCGATC	CGAAGAACCA	TCCGCAGTAC	GCCTGGAAGA	AAGTCGCCGA	1400
ACTACAGGGC	CAGGGCGGCG	GCTCGCTGTT	CATCAAGACC	CATCCGAAGT	1450
CCTCGCACCT	CTACGTCGAC	ACCACCTTCA	ACCCCGACGC	CAGGATCAGC	1500
CAGAGCGTCG	CGGTGTTCGA	CCTGAAGAAC	CTCGACGCCA	AGTACCAGGT	1550
GCTGCCGATC	GCCGAATGGG	CCGATCTCGG	CGAAGGCGCC	AAGCGGGTGG	1600
TGCAGCCCGA	GTACAACAAG	CGCGGCGATG	AAGTCTGGTT	CTCGGTGTGG	1650
AACGGCAAGA	ACGACAGCTC	CGCGCTGGTG	GTGGTGGACG	ACAAGACCCT	1700
GAAGCTCAAG	GCCGTGGTCA	AGGACCCGCG	GCTGATCACC	CCGACCGGTA	1750
AGTTCAACGT	CTACAACACC	CAGCACGACG	TGTACTGAGA	CCCGCGTGCG	1800
GGGCACGCCC	CGCACGCTCC	CCCCTACGAG	GAACCGTGAT	GAAACCGTAC	1850
GCACTGCTTT	CGCTGCTCGC	CA			1872

- (2) INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3451 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudomonas aeruginosa
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TCGAGACGGG	AAGCCACTCT	CTACGAGAAG	ACAGAAGCCC	CTCACAGAGG	50
CCTCTGTCTA	CGCCTACTAA	AGCTCGGCTT	ATTCATATGT	ATTTATATTC	100
TTTCAATAGA	TCACTCAGCG	CTATTTTAAG	TTCACCCTCT	GTAAGTTCAC	150
CTGGGCGCTC	TTTCTTTCCT	TCGGTAAAGC	TGTCGGCCAG	ACCAAACATT	200
AAACTCAAGC	ATCTCCCAAG	CGATGCATCA	TCTTGGGCCA	GCATCCCTGA	250
ATCGCGCGTC	GGACCTCCAA	GTCTTAAAAA	ATTCTTCGCT	GAAGGTTTTC	300
CCATCAATCG	ATGAGGCTAA	TAGCTTCTTT	GCAATATCTA	TCATTTCCAT	350
GCTCACCTTA	AAGCACCTCA	TTTTTCATGT	AAAAATTGTA	TTGATCCGTG	400
CCAGACTCAA	TCCTCCACCC	AGAAACAAAC	ATCCCATCCT	CTCCAATGAT	450
AACAACAATA	TTAGTCCTGG	CATTGTAATG	TACTTTTGAG	TTTACTTCGG	500
AGTGGTAAGT	CCCTTTTTCT	ACGGTTGCAG	GATCAGCAAG	GTGCTCAAGA	550
ATTTTATCCC	TAAACTCTGC	AAGCGTTCCA	TTGTTGGCGC	TTTTTTCACC	600
CAGCCCAAAA	TCATATTTGT	GGCTATCAAA	TTTTTTCTGT	AGTTGCCTCC	650
GTGTGAAGAT	ACCACTATCA	AGAGGACTAC	TGAGCATTAC	ATAAACAGGT	700
TTGACTCCAG	AATCCGCCGG	GAAAATCACG	ATCAGATCGT	TTAGGTCCAG	750
TAGCATTCCC	GGATAGGACT	CCGGGCCGGT	CTTCAACGGT	GTGAGGGCCG	800
CTCCCTCATA	TACCGGCACC	GGCTTCGGTA	TGACCGGAGT	GGTACTCGAA	850
GGGTTCTGGT	TTCCTGGAGG	ACTCGCCGGC	GTCCAAGTCA	GGATCAGTGG	900
CGGCGCTTCT	GCGACCGTAG	AGGGAACCGT	AACCTCGTAC	AGTCCTGTTG	950
CGGCGTTATA	GGCCCCATCC	GGACCGGAAC	GCTTTCGGAA	CGCTCACACC	1000
ATCGGTCTGA	CCACCGAAAG	GTCGTCGTGT	TGCCTCGCGC	CTCGTTGGTC	1050
AGGCGCATCG	GCAGATCGAC	GGTACCGCTG	GCTTTTGCAA	CCGCGTTCAG	1100
GTTTACGCTT	GGGGGAAGCC	CCAATTTAGC	GGCATCCATG	CCCAGGGCGT	1150
AACGAACGCT	ATCGGGCGTT	TGGTCCTGCC	ATTGCTCGGC	AGTCCGGGAG	1200
AGTAGGTCAG	ACTGGCAAGC	CACGGCCATC	ACCGAGGTGC	TGAAGCCAGG	1250
ACCGCCAGGA	CGGCAATCGC	ATCGGAGATC	GCTTGAGCAA	GGGATGCGGC	1300
	CCTCTGTCTA TTTCAATAGA CTGGGCGCTC AAACTCAAGC ATCGCGCGTC CCATCAATCG GCTCACCTTA CCAGACTCAA AACAACAATA AGTGGTAAGT ATTTTATCCC CAGCCCAAAA GTGTGAAGAT TTGACTCCAG TAGCATTCCC CTCCCTCATA GGGTTCTGGT CGGCGCTTCT CGGCGCTTCT AGCGCCATCG ATCGGTCTGA ATCGGTCTGA ATCGGTCTGA ATCGGTCTGA AGCGCATCG GTTTACGCTT AACGAACGCT AACGAACGCT	CCTCTGTCTA CGCCTACTAA TTTCAATAGA TCACTCAGCG CTGGGCGCTC TTTCTTTCCT AAACTCAAGC ATCTCCCAAG ATCGCGCGTC GGACCTCCAA CCATCAATCG ATGAGGCTAA CCAGACTCAA TCCTCCACCC AACAACAATA TTAGTCCTGG AGTGGTAAGT CCCTTTTCT ATTTTATCCC TAAACTCTGC CAGCCCAAAA TCATATTGT GTGTGAAGAT ACCACTATCA TTGACTCCAG GAATCGCCGG TAGCATTCCC GGATAGGACT CTCCCTCATA TACCGCCGG CGGCGTTCT GCGACCCTAG CGGCGTTATA GGCCCCATCC ATCGGTCTGA GCGACCGTAG AGGCGCATCG GCGACCGTAG AGGCGCATCG GCAGATCGAC ATCGGTCTGA CCACCGAAAG AGGCGCATCG GCAGATCGAC ATCGGTCTGA CCACCGAAAG AGGCGCATCG GCGGGAAGCC AACGAACGCT ATCGGCGCTT AGCATCGCT GGGGGAAGCC AACGAACGCT ATCGGCCGTT AGTAGGTCAG ACTGGCCAACC	CCTCTGTCTA CGCCTACTAA AGCTCGGCTT TTTCAATAGA TCACTCAGCG CTATTTTAAG CTGGGCGCTC TTTCTTTCCT TCGGTAAAGC AAACTCAAGC ATCTCCCAAG CGATGCATCA ATCGCGCGTC GGACCTCCAA GTCTTAAAAA CCATCAATCG ATGAGGCTAA TAGCTTCTTT GCTCACCTTA AAGCACCTCA TTTTTCATGT CCAGACTCAA TCCTCCACCC AGAAACAAAC AACAACAATA TTAGTCCTGG CATTGTAATG AGTGGTAAGT CCCTTTTTCT ACGGTTGCAG ATTTTATCCC TAAACTCTGC AAGCGTTCCA GTGTGAAGAT ACCACTATCA AGAGGACTAC TTGACTCCAG AATCCGCCG GAAAATCACG TAGCATTCCC GGATAGGACT CCGGGCCGGT CTCCCTCATA TACCGGCACC GGCTTCGGTA GGGTTCTGGT TTCCTGGAGG ACTCGCCGGC CGGCGTTCT GCGACCGTAG AGGGAACCGT CGGCGCTTCT GCGACCGTAG AGGGAACCGT ATCGGTCTGA CCACCGAAAG GTCGTCGTG AGGCGCATCG GCAGATCGAC GGTACCGCTG GTTTACGCTT GGGGGAAGCC CCAATTTAGC AACGAACGCT ATCGGCGGTT TGGTCCTGCC AACGAACGCT ATCGGCGGTT TGGTCCTGCC AACGAACGCT ATCGGCCGTT TGGTCCTGCC	CCTCTGTCTA CGCCTACTAA AGCTCGGCTT ATTCATATGT TTTCAATAGA TCACTCAGCG CTATTTTAAG TTCACCCTCT CTGGGCGCTC TTTCTTTCCT TCGGTAAAGC TGTCGGCCAG AAACTCAAGC ATCTCCCAAG CGATGCATCA TCTTGGGCCA ATCGCGCGTC GGACCTCCAA GTCTTAAAAA ATTCTTCGCT CCATCAATCG ATGAGGCTAA TAGCTTCTTT GCAATATCTA GCTCACCTTA AAGCACCTCA TTTTTCATGT AAAAATTGTA CCAGACTCAA TCCTCCACC AGAAACAAAC ATCCCATCCT AACAACAATA TTAGTCCTGG CATTGTAATG TACTTTTGAG AGTGGTAAGT CCCTTTTTCT ACGGTTGCAG GATCAGCAAG ATTTTATCCC TAAACTCTGC AGGCGTTCCA TTGTTGGCGC CAGCCCAAAA TCATATTTGT GGCTATCAAA TTTTTTCTGT GTGTGAAGAT ACCACTATCA AGAGGACTAC TGAGCATTAC TTGACTCCAG AATCCGCCGG GAAAATCACG ATCAGATCGT TAGCATTCCC GGATAGGACT CCGGGCCGGT CTTCAACGGT CTCCCTCATA TACCGGCACC GGCTTCGGTA TGACCGGAGT CGGCGCTTCT GCGACCGTAG ACTCGCCGG GTCCAAGTCA ATCGGTCTGA CCACCGAAAG GTCGTCGGTA TGCCTCGCGC AGCCGATCG GCAGATCGAC GGTACCGGAC CTCCCTCATA GCCCCGAAAG GTCGTCGTGT TGCCTCGCGC AGCGCGATCG GCAGATCGAC GGTACCGCG GTCCCAAGTCA ATCGGTCTGA CCACCGAAAG GTCGTCGTGT TGCCTCGCGC AGCGCATCG GCAGATCGAC GCTTTTGCAA CGGCGCATCG GCAGATCGAC GCTTTTGCAA ACGAACGCT ATCGGGCGTT TGCCTCGCGC AGCGCATCG GCAGATCGAC GCTTTTGCAA ACGAACGCT ATCGGGCGTT TGCCTCGCGC ATTGCACGCC AACGAACGCT ATCGGCGCTG TTGCCACGCC AACGAACGCT ATCGGGCGTT TGCCTCGCGC CCAATTTAGC CCACCGAAAG GTCGTCGTGT TGCCTCGCGC AACGAACGCT ATCGGGCGTT TGCCTCGCCC AACGAACGCT ATCGGGCGTT TGCCTCGCGC CCAATTTAGC CCACCGAAGC CCAATTTAGC GCCATCCATG AACGAACGCT ATCGGGCGTT TGGCTCCGCC AACGAACGCT ATCGGGCGTT TGCCTCGCCC AACGAACGCT ACCGGCAACC CCAATTTAGC GCCATCCATG AACGAACGCT ATCGGGCGTT TGGCTCCGCC ATTGCCAGCC AACGAACGCT ACCGGCAACC CCAATTTAGC ACCGAGGTGC AACGAACGCT ACCGGCAACC ACCGAACCCT ACCGAGACCCT ACCGAGACC AACGAACGCT ACCGCGCAACC ACCGAACCC ACCGAACCCT ACCGAGACCC ACCGAACCC ACCGAACCCACCACCACCACCACCACC ACCGAACCCACCACCACCACCCAC	CCTCTGTCTA CGCCTACTAA AGCTCGGCTT ATTCATATGT ATTTATATTC TTTCAATAGA TCACTCAGCG CTATTTAAG TCACCCCTCT GTAAGTTCAC CTGGGCGCTC TTTCTTTCCT TCGGTAAAGC TGTCGGCCAG ACCAAACATT AAACTCAAGC ATCTCCCAAG CGATCCATA TCTTGGGCCA GCATCCCTGA ATCGCGCGTC GGACCTCAA GTCTTAAAAA ATTCTTCGCT GAAGGTTTTC CCATCAATCG ATGAGGCTAA TAGCTTCTTT GCAATATCTA TCATTTCCAT GCTCACCTTA AAGCACCTCA TTTTCATGT AAAAAATTGTA TTGATCCGTG CCAGACTCAA TCCTCCACC AGAAACAAAC ATCCCATCCT CTCCAATGAT AACAACAATA TTAGTCCTGG CATTGTAATG TACTTTTGAG TTTACTTCGG AGTGGTAAGT CCCTTTTCT ACGGTTCCA TTGTTGCGG GTGCTCAAGA ATTTTATCCC TAAACTCTC AAGCGTTCA TTGTTGCGG TTTTTTCACC CAGCCCAAAA TCATATTTGT GGCTATCAA TTTTTTCTGT AGTTGCCTC CTGCCCAAAA TCATATTTGT GGCTATCAA TTTTTTCTGT AGTTGCCTC CTGCCTCATA ACCACTATCA AGAGGACTAC TGAGCATTAC ATAAACAGGT TTGACTCCAG AATCCGCCG GAAAATCACG ATCAGATCGT TTAGGTCCAG CTCCCTCATA TACCGGCACC GGCTTCGGTA TGACCAGAGT GTAACAGAC GGGTTCTGGT TTCCTGGAGG ACTCGCCGG GTCCAAGTCA GGTACCGAA CGGGCTTCT GCGACCGTAG AGGAACCGT AACCTCGTAC AGTCCTGTG CGGCCGTTCT GCGACCGTAG ACCCCCGGC GTCCAAGTCA AGTCCTGTTG CGGCGTTTATA GGCCCCATCC GGACCGGAC GCTTTCGGAA CGCTCACACC ATCGGTCTGA CCACCGAAAG GTCGTCGGAC GCTTTCGGAA CGCTCACACC ATCGGTCTGA CCACCGAAAG GTCGTCGTT TGCCTCGCC CTCGTTGGTC AGGCGCATCG GCACCGTAC GGACCGGAC GCTTTTGGAA CGCTCACACC ATCGGTTGA CCACCGAAAG GTCGTCGTT TGCCTCGCC CTCGTTTGGTC AGGCGCATCG GCAGATCGAC GCTACCGGGC CTCGTTTGGTC ACGGCGATCG GCAGATCGAC GCTACCGCC CTCGTTTGGTC ACGGCGATCG GCAGATCGAC GCTACCGCG CTCGTTTGGAA ACCCCGGAACGT ACCGCGTAC GCACCGAAG CCTTTTTGCAA CCGCGTTCAG ACGACGCT ATCGGGAAGCC CCAATTTACC GCCACCGC CTCGTTTGGTC ACGGCGATCG GCAGATCGAC GCTACCACC AGCCGAAGCC ACCGGAGTC ACCCGGGAC ACCGGACCGTA ACCGCGAG CCCAATCC AGCCGCAC CCCAATTTAGC GCCACCGAAG ACTGGCGCTT TGGCC CCCAGGCGT ACCGCGG CCCAATCC AGCCGAGG CCCAATCC ACCGGGAC ACCGCGAACCG ACCGGAACCG ACCGGGAC ACCGGAACCG ACCGGGAC ACCGGAACCG ACCGGAACCG ACCGGAGACC

WO 96/08582 PCT/CA95/00528

74

GCCTGTGCGA	CCTGGATCAG	ACCCCGCTGC		CACCCGCTGC	1350
CATTGGCTGG	CATGGCATAA	GTATTGGCAG	CCCTGATCGC	CGCTTGACGA	1400
GCGATTTCCT	TGCGCCTTGC	CGTTTCGGCG	TTCAGCTTGT	CCAGCCGTGC	1450
TTGCAGGCTG	GCGATTTCAT	CCACTAGGTA	GGACATCGGC	GTTGTAGGTT	1500
GCCTTTTGTT	TCTCCAGTGC	ATTGGGTGCC	TTGGCAATCA	AGGCATTGTT	1550
TGCAGTCTGC	AATTCTTCTT	ATTGCGATCG	CCTGCGTAAG	GAGTTGAGTA	1600
GCGCGTTCAA	GCCACTGCTC	TGGCGTTGGA	TTGGTCAGTT	GAGGCAAAGC	1650
ATTCCCAGCC	TGGTCAAGCT	CGGACTGCAC	TTTTTTCTCG	ACATTTGCCT	1700
TCCTGGCCTT	GTAGTCCGCC	TCCACCTCAG	CAGCGGCTCG	CTGGGCTTCT	1750
GCTTCCAATG	ACCGGGCTTT	ATTCTCCAGC	TCTTGAGACG	TTTGTTTCAA	1800
GATAGCGATT	TGCGCCTTAT	AGATATCGGC	GCTGTACGCT	TTGGCCAGCT	1850
CACTCATATG	GCGATCCAGG	AACTCTCCAT	AGAATTTTCG	GCTGGCCAGC	1900
AACTGACTCT	GGTACATCGA	CTCTGACTTC	TGAGGAAAGT	CTGAAGCCGT	1950
ATAAAGATTG	GCCGGGCGAT	CCTCAATGAC	CTTTAGCGAT	TTTGCTTTGG	2000
CATCCATGAG	TGCATCAACG	ATACTCTTTT	CATCGCGGAT	GTCATTGGCA	2050
CTGACCGCTT	TACCTGGCAA	CCCCGCTTCA	CTCTTGAGTT	CATCAACCTC	2100
CTTCAGGGTT	TCATTTTTCA	GGTTTTTCTT	GAGTTCTGAA	TGGGACTTAT	2150
CAAGCGTACT	TCTTAGCTTC	CTGTACTCCT	GCATTCCAGT	ACCGACATAC	2200
GGACTTGGTC	CTGGTGGGAC	AAATGGTGGA	GTACCGTAGC	TTGATCGAGC	2250
AGGAATATAC	TGGATTATGT	CACGCCCACC	ACCCTGCACA	TGTGTAATAA	2300
CCATCGAACC	AGGTTCGTAA	TCATTGACAG	CCATAGATCG	CCCCTACATT	2350
AATTTGAAAG	TGTAATGTAT	TGAGCGACTC	CCACCTAGAG	AACCCTCTCC	2400
CAGTCAATAA	GCCCCAATGC	ATCGGCAATA	CACTGCAATC	AACTTCAATA	2450
TCCCGTGTTT	AGATGATCCA	GAAGGTGCGC	TCTCTCGCCT	CTTATAATCG	2500
CGCCTGCGTC	AAACGGTCAT	TTCCTTAACG	CACACCTCAT	CTACCCCGGC	2550
CAGTCACGGA	AGCCGCATAC	CTTCGGTTCA	TTAACGAACT	CCCACTTTCA	2600
AAATTCATCC	ATGCCGCCCC	TTCGCGAGCT	TCCGGACAAA	GCCACGCTGA	2650
TTGCGAGCCC	AGCGTTTTTG	ATTGCAAGCC	GCTGCAGCTG	GTCAGGCCGT	2700
TTCCGCAACG	CTTGAAGTCC	TGGCCGATAT	ACCGGCAGGG	CCAGCCATCG	2750
TTCGACGAAT	AAAGCCACCT	CAGCCATGAT	GCCCTTTCCA	TCCCCAGCGG	2800
AACCCCGACA	TGGACGCCAA	AGCCCTGCTC	CTCGGCAGCC	TCTGCCTGGC	2850
CGCCCCATTC	: GCCGACGCGG	CGACGCTCGA	CAATGCTCTC	TCCGCCTGCC	2900
TCGCCGCCCG	GCTCGGTGCA	CCGCACACGG	CGGAGGGCCA	GTTGCACCTG	2950
CCACTCACCC	TTGAGGCCCG	GCGCTCCACC	GGCGAATGCG	GCTGTACCTC	3000
GGCGCTGGT	G CGATATCGGC	TGCTGGCCAG	GGGCGCCAGC	GCCGACAGCC	3050
TCGTGCTTC	A AGAGGGCTGC	TCGATAGTCG	CCAGGACACG	CCGCGCACGC	3100
TGACCCTGG		-	GCGGCCGCGA		3150

ACCCTGGGTT	GTCAGGCGCC	TGACTGACAG	GCCGGGCTGC	CACCACCAGG	3200
CCGAGATGGA	CGCCCTGCAT	GTATCCTCCG	ATCGGCAAGC	CTCCCGTTCG	3250
CACATTCACC	ACTCTGCAAT	CCAGTTCATA	AATCCCATAA	AAGCCCTCTT	3300
CCGCTCCCCG	CCAGCCTCCC	CGCATCCCGC	ACCCTAGACG	CCCCGCCGCT	3350
CTCCGCCGGC	TCGCCCGACA	AGAAAAACCA	ACCGCTCGAT	CAGCCTCATC	3400
CTTCACCCAT	CACAGGAGCC	ATCGCGATGC	ACCTGATACC	CCATTGGATC	3450
С					3451

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 744 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GGGTTCAGCA	AGCGTTCAGG	GGCGGTTCAG	TACCCTGTCC	GTACTCTGCA	50
AGCCGTGAAC	GACACGACTC	TCGCAGAACG	GAGAAACACC	ATGAAAGCAC	100
TCAAGACTCT	CTTCATCGCC	ACCGCCCTGC	TGGGTTCCGC	CGCCGGCGTC	150
CAGGCCGCCG	ACAACTTCGT	CGGCCTGACC	TGGGGCGAGA	CCAGCAACAA	200
CATCCAGAAA	TCCAAGTCGC	TGAACCGCAA	CCTGAACAGC	CCGAACCTCG	250
ACAAGGTGAT	CGACAACACC	GGCACCTGGG	GCATCCGCGC	CGGCCAGCAG	300
TTCGAGCAGG	GCCGCTACTA	CGCGACCTAC	GAGAACATCT	CCGACACCAG	350
CAGCGGCAAC	AAGCTGCGCC	AGCAGAACCT	GCTCGGCAGC	TACGACGCCT	400
TCCTGCCGAT	CGGCGACAAC	AACACCAAGC	TGTTCGGCGG	TGCCACCCTC	450
GGCCTGGTCA	AGCTGGAACA	GGACGGCAAG	GGCTTCAAGC	GCGACAGCGA	500
TGTCGGCTAC	GCTGCCGGGC	TGCAGGCCGG	TATCCTGCAG	GAGCTGAGCA	550
AGAATGCCTC	GATCGAAGGC	GGCTATCGTT	ACCTGCGCAC	CAACGCCAGC	600
ACCGAGATGA	CCCCGCATGG	CGGCAACAAG	CTGGGCTCCC	TGGACCTGCA	650
CAGCAGCTCG	CAATTCTACC	TGGGCGCCAA	CTACAAGTTC	TAAATGACCG	700
CGCAGCGCCC	GCGAGGGCAT	GCTTCGATGG	CCGGGCCGGA	AGGT	744

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2760 base pairs

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTGCAGCTGG	TCAGGCCGTT	TCCGCAACGC	TTGAAGTCCT	GGCCGATATA	50
CCGGCAGGGC	CAGCCATCGT	TCGACGAATA	AAGCCACCTC	AGCCATGATG	100
CCCTTTCCAT	CCCCAGCGGA	ACCCCGACAT	GGACGCCAAA	GCCCTGCTCC	150
TCGGCAGCCT	CTGCCTGGCC	GCCCCATTCG	CCGACGCGGC	GACGCTCGAC	200
AATGCTCTCT	CCGCCTGCCT	CGCCGCCCGG	CTCGGTGCAC	CGCACACGGC	250
GGAGGGCCAG	TTGCACCTGC	CACTCACCCT	TGAGGCCCGG	CGCTCCACCG	300
GCGAATGCGG	CTGTACCTCG	GCGCTGGTGC	GATATCGGCT	GCTGGCCAGG	350
GGCGCCAGCG	CCGACAGCCT	CGTGCTTCAA	GAGGGCTGCT	CGATAGTCGC	400
CAGGACACGC	CGCGCACGCT	GACCCTGGCG	GCGGACGCCG	GCTTGGCGAG	450
CGGCCGCGAA	CTGGTCGTCA	CCCTGGGTTG	TCAGGCGCCT	GACTGACAGG	500
CCGGGCTGCC	ACCACCAGGC	CGAGATGGAC	GCCCTGCATG	TATCCTCCGA	550
TCGGCAAGCC	TCCCGTTCGC	ACATTCACCA	CTCTGCAATC	CAGTTCATAA	600
ATCCCATAAA		CGCTCCCCGC	CAGCCTCCCC	GCATCCCGCA	650
CCCTAGACGC		TCCGCCGGCT	CGCCCGACAA	GAAAAACCAA	700
CCGCTCGATC		TTCACCCATC	ACAGGAGCCA	TCGCGATGCA	750
CCTGATACCC	CATTGGATCC	CCCTGGTCGC	CAGCCTCGGC	CTGCTCGCCG	800
GCGGCTCGT	CGCGTCCGCC	GCCGAGGAAG	CCTTCGACCT		850
TGCGCCAAA	CCTGCGTGCT	CGACCTCAAC	GACGGCGTGC		900
CATGAGCGT	C GACCCGGCCA	TCGCCGACAC	CAACGGCCAG	GGCGTGCTGC	950
ACTACTCCA'	r GGTCCTGGAG	GGCGGCAAC	ACGCGCTCAA	GCTGGCCATC	1000
GACAACGCC	C TCAGCATCAC	CAGCGACGG	C CTGACCATCO		1050
CGGCGTCGA	G CCGAACAAGC	CGGTGCGCT	A CAGCTACACO	G CGCCAGGCGC	1100
GCGGCAGTT	G GTCGCTGAAC	TGGCTGGTA	C CGATCGGCC		1150
TCGAACATC	A AGGTGTTCAT	CCACGAACT	G AACGCCGGC	A ACCAGCTCAG	1200
CCACATGTC	G CCGATCTAC	A CCATCGAGA	T GGGCGACGA		1250
AGCTGGCGC	G CGATGCCAC	TTCTTCGTC	A GGGCGCACG	A GAGCAACGAG	1300

ATGCAGCCGA	CGCTCGCCAT	CAGCCATGCC	GGGGTCAGCG	TGGTCATGGC	1350
CCAGACCCAG	CCGCGCCGGG	AAAAGCGCTG	GAGCGAATGG	GCCAGCGGCA	1400
AGGTGTTGTG	CCTGCTCGAC	CCGCTGGACG	GGGTCTACAA	CTACCTCGCC	1450
CAGCAACGCT	GCAACCTCGA	CGATACCTGG	GAAGGCAAGA	TCTACCGGGT	1500
GCTCGCCGGC	AACCCGGCGA	AGCATGACCT	GGACATCAAA	CCCACGGTCA	1550
TCAGTCATCG	CCTGCACTTT	CCCGAGGGCG	GCAGCCTGGC	CGCGCTGACC	1600
GCGCACCAGG	CTTGCCACCT	GCCGCTGGAG	ACTTTCACCC	GTCATCGCCA	1650
GCCGCGCGC	TGGGAACAAC	TGGAGCAGTG	CGGCTATCCG	GTGCAGCGGC	1700
TGGTCGCCCT	CTACCTGGCG	GCGCGGCTGT	CGTGGAACCA	GGTCGACCAG	1750
GTGATCCGCA	ACGCCCTGGC	CAGCCCCGGC	AGCGGCGGCG	ACCTGGGCGA	1800
AGCGATCCGC	GAGCAGCCGG	AGCAGGCCCG	TCTGGCCCTG	ACCCTGGCCG	1850
CCGCCGAGAG	CGAGCGCTTC	GTCCGGCAGG	GCACCGGCAA	CGACGAGGCC	1900
GGCGCGGCCA	ACGCCGACGT	GGTGAGCCTG	ACCTGCCCGG	TCGCCGCCGG	1950
TGAATGCGCG	GGCCCGGCGG	ACAGCGGCGA	CGCCCTGCTG	GAGCGCAACT	2000
ATCCCACTGG	CGCGGAGTTC	CTCGGCGACG	GCGGCGACGT	CAGCTTCAGC	2050
ACCCGCGGCA	CGCAGAACTG	GACGGTGGAG	CGGCTGCTCC	AGGCGCACCG	2100
CCAACTGGAG	GAGCGCGGCT	ATGTGTTCGT	CGGCTACCAC	GGCACCTTCC	2150
TCGAAGCGGC	GCAAAGCATC	GTCTTCGGCG	GGGTGCGCGC	GCGCAGCCAG	2200
GACCTCGACG	CGATCTGGCG	CGGTTTCTAT	ATCGCCGGCG	ATCCGGCGCT	2250
GGCCTACGGC	TACGCCCAGG	ACCAGGAACC	CGACGCACGC	GGCCGGATCC	2300
GCAACGGTGC	CCTGCTGCGG	GTCTATGTGC	CGCGCTCGAG	CCTGCCGGGC	2350
TTCTACCGCA	CCAGCCTGAC	CCTGGCCGCG	CCGGAGGCGG	CGGGCGAGGT	2400
CGAACGGCTG	ATCGGCCATC	CGCTGCCGCT	GCGCCTGGAC	GCCATCACCG	2450
GCCCGAGGA	GGAAGGCGGG	CGCCTGGAGA	CCATTCTCGG	CTGGCCGCTG	2500
GCCGAGCGCA	CCGTGGTGAT	TCCCTCGGCG	ATCCCCACCG	ACCCGCGCAA	2550
CGTCGGCGGC	GACCTCGACC	CGTCCAGCAT	CCCCGACAAG	GAACAGGCGA	2600
TCAGCGCCCT	GCCGGACTAC	GCCAGCCAGC	CCGGCAAACC	GCCGCGCGAG	2650
GACCTGAAGT	AACTGCCGCG	ACCGGCCGGC	TCCCTTCGCA	GGAGCCGGCC	2700
TTCTCGGGGC	CTGGCCATAC	ATCAGGTTTT	CCTGATGCCA	GCCCAATCGA	2750
ATATGAATTC					2760

(2) INFORMATION FOR SEQ ID NO: 21:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 172 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
TTGATGAAAT GCATCGATTA ATAAATTTTC ATGTACGATT AAAACGTTTT	50
TACCCTTACC TTTTCGTACT ACCTCTGCCT GAAGTTGACC ACCTTTAAAG	100
TGATTCGTTG AAATCCATTA TGCTCATTAT TAATACGATC TATAAAAACA	150
AATGGAATGT GATGATCGAT GA	172
(2) INFORMATION FOR SEQ ID NO: 22:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
GTTCCATTGA CTCTGTATCA CCTGTTGTAA CGAACATCCA TATGTCCTGA	50
AACTCCAACC ACAGGTTTGA CCACTTCCAA TTTCAGACCA CCAAGTTTGA	100
CACGTGAAGA TTCATCTTCT AATATTTCGG AATTAATATC ATATTATTTA	150
AATAG	155
(2) INFORMATION FOR SEQ ID NO: 23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 145 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	

(ii) MOLECULE TYPE: DNA (genomic)

(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear

(vi)			SOURCE		_		_		
	(A)	ORGA	MISM:	Staphy	lococ	cus sa <u>l</u>	prophy	yticus	
(xi)	SEQU	JENCE	DESCRI	PTION:	SEQ	ID NO:	23:		
ACATAGA	AAA	ACTCA	AAAGA	TTTACT	TTTT	TCAAAT	'GGAA	AATAAGGGTA	50
CACACGA	TAT	TTCCC	GTCAT	CTTCAG	TTAC	CGGTAC	AACA	TCCTCTTTAT	100
TAACCTG	CAC	TAATA	CTGAC	TCCGCT	TCAC	TCATCA	AACT	ACTAA	145
(2) INFO	RMAT	ION F	OR SEQ	ID NO:	24:				
(i)				TERIST					
				6 base		s			
				eic ac: SS: Do					
	(D)			Linear	ubie				
(ii)	MOLE	CULE	TYPE:	DNA (ge	enomi	c)			
(vi)			SOURCE	•					
	(A)	ORGA	NISM:	Staphy.	lococ	cus sap	prophy	/ticus	
(xi)	SEQU	JENCE	DESCRI	PTION:	SEQ :	ID NO:	24:		
TTTCACT	'GGA	ATTAC	ATTTC	GCTCAT	TACG	TACAGT	GACA	ATCGCGTCAG	50
ATAGTTT	CTT	CTGGT	TAGCT	TGACTO	TTAA	CAATCT	TGTC	TAAATTTTGT	100
TTAATTC	TTT	GATTC	GTACT	AGAAAT	ATTT	CTTCTA	ATTC	CTTGTAATTC	150
ATAACTT	'GCA	TTATO	ATATA	AATCAT	AAGT	ATCACA	TTTT	TGATGAATAC	200
TTTGATA	TAA	ATCTG	ACAAT	ACAGGC	AGTT	GCTCCA	TTCT	ATCGTTAAGA	250
ATAGGGT	'AAT	TAATA	.G						266

(2) INFORMATION FOR SEQ ID NO: 25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Haemophilus influenzae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TGTTAAATTT	CTTTAACAGG	GATTTTGTTA	TTTAAATTAA	ACCTATTATT	50
TTGTCGCTTC	TTTCACTGCA	TCTACTGCTT	GAGTTGCTTT	TTCTGAAACC	100
GCCTCTTTCA	TTTCACTTGC	TTTTTCTGAT	GCTGCTTCTT	TCATTTCGCC	150
TACTTTTTCT	GACGCTGCTT	CTGTTGCTGA	TTTAATTACT	TCTTTCGCAT	200
CTTCCACTTT	CTCTGCTACT	TTATTTTTCA	CGTCTGTAGA	AAGCTGCTGT	250
GCTTTTTCCT	TTACTTCAGT	CATTGTATTA	GCTGCAGCAT	CTTTTGTTTC	300
TGATGCGACT	GATGCTACAG	TTTGCTTCGT	ATCCTCAACT	TTTTGTTTTG	350
CTTCTTGCTT	ATCAAAACAA	CCTGTCACGA	CTAAAGCTGA	ACCTAAAACC	400
AATGCTAATG	TTAATTTTTT	CATTATTTTC	TCCATAGAAT	AATTTGATTG	450
TTACAAAGCC	CTATTACTTT	GATGCAGTTT	AGTTTACGGG	AATTTTCATA	500
AAAAGAAAAA	CAGTAATAGT	AAAACTTTAC	CTTTCTTTAA	AAAGATTACT	550
TTATAAAAAA	ACATCTAAGA	TATTGATTTT	TAATAGATTA	TAAAAAACCA	600
ATAAAAATTT	TATTTTTGT	ааааааааа	AATAGTTTAT	TTTAAATAAA	650
TTACAGGAGA	TGCTTGATGC	ATCAATATTT	CTGATTTATT	ACCATCCCAT	700
AATAATTGAG	CAATAGTTGC	AGGATAAAAT	GATATTGGAT	TTCGTTTTCC	750
ATACAGTTCA	GCAACAATTT	CTCCCACTAA	GGGCAAATGG	GAAACAATTA	800
ATACAGATTT	AACGCCCTCG	TCTTTTAGCA	CTTCTAAATA	ATCAA	845

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1598 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Haemophilus influenzae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GAATAGAGTT	GCACTCAATA	GATTCGGGCT	TTATAATTGC	CCAGATTTTT	50
ATTTATAACA	AAGGGTTCCA	AATGAAAAAA	TTTAATCAAT	CTCTATTAGC	100
AACTGCAATG	TTGTTGGCTG	CAGGTGGTGC	AAATGCGGCA	GCGTTTCAAT	150
TGGCGGAAGT	TTCTACTTCA	GGTCTTGGTC	GTGCCTATGC	GGGTGAAGCG	200
GCGATTGCAG	ATAATGCTTC	TGTCGTGGCA	ACTAACCCAG	CTTTGATGAG	250
TTTATTTAAA	ACGGCACAGT	TTTCCACAGG	TGGCGTTTAT	ATTGATTCTA	300
GAATTAATAT	GAATGGTGAT	GTAACTTCTT	ATGCTCAGAT	AATAACAAAT	350
CAGATTGGAA	TGAAAGCAAT	AAAGGACGGC	TCAGCTTCAC	AGCGTAATGT	400
TGTTCCCGGT	GCTTTTGTGC	CAAATCTTTA	TTTCGTTGCG	CCAGTGAATG	450

CLIRSTITUTE SHEET

ATAAATTCGC	GCTGGGTGCT	GGAATGAATG	TCAATTTCGG	TCTAAAAAGT	500
GAATATGACG	ATAGTTATGA	TGCTGGTGTA	TTTGGTGGAA	AAACTGACTT	550
GAGTGCTATC	AACTTAAATT	TAAGTGGTGC	TTATCGAGTA	ACAGAAGGTT	600
TGAGCCTAGG	TTTAGGGGTA	AATGCGGTTT	ATGCTAAAGC	CCAAGTTGAA	650
CGGAATGCTG	GTCTTATTGC	GGATAGTGTT	AAGGATAACC	AAATAACAAG	700
CGCACTCTCA	ACACAGCAAG	AACCATTCAG	AGATCTTAAG	AAGTATTTGC	750
CCTCTAAGGA	CAAATCTGTT	GTGTCATTAC	AAGATAGAGC	CGCTTGGGGC	800
TTTGGCTGGA	ATGCAGGTGT	AATGTATCAA	TTTAATGAAG	CTAACAGAAT	850
TGGTTTAGCC	TATCATTCTA	AAGTGGACAT	TGATTTTGCT	GACCGCACTG	900
CTACTAGTTT	AGAAGCAAAT	GTCATCAAAG	AAGGTAAAAA	AGGTAATTTA	950
ACCTTTACAT	TGCCAGATTA	CTTAGAACTT	TCTGGTTTCC	ATCAATTAAC	1000
TGACAAACTT	GCAGTGCATT	ATAGTTATAA	ATATACCCAT	TGGAGTCGTT	1050
TAACAAAATT	ACATGCCAGC	TTCGAAGATG	GTAAAAAAGC	TTTTGATAAA	1100
GAATTACAAT	ACAGTAATAA	CTCTCGTGTT	GCATTAGGGG	CAAGTTATAA	1150
TCTTTATGAA	AAATTGACCT	TACGTGCGGG	TATTGCTTAC	GATCAAGCGG	1200
CATCTCGTCA	TCACCGTAGT	GCTGCAATTC	CAGATACCGA	TCGCACTTGG	1250
TATAGTTTAG	GTGCAACCTA	TAAATTCACG	CCGAATTTAT	CTGTTGATCT	1300
TGGCTATGCT	TACTTAAAAG	GCAAAAAAGT	TCACTTTAAA	GAAGTAAAAA	1350
CAATAGGTGA	CAAACGTACA	TTGACATTGA	ATACAACTGC	AAATTATACT	1400
TCTCAAGCAC	ACGCAAATCT	TTACGGTTTG	AATTTAAATT	ATAGTTTCTA	1450
ATCCGTTAAA	AAATTTAGCA	TAATAAAGCA	CAATTCCACA	CTAAGTGTGC	1500
TTTTCTTTTA	TAAAACAAGG	CGAAAAATGA	CCGCACTTTA	TTACACTTAT	1550
TACCCCTCGC	CAGTCGGACG	GCTTTTGATT	TTATCTGACG	GCGAAACA	1598

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9100 base pairs (B) TYPE: Nucleic acid

 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Haemophilus influenzae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

GTCAAAAATT GCGTGCATTC TAGCGAAAAA ATGGGCTTTT GGGAACTGTG 50 GGATTTATTT AAAATCTTAG AAAATCTTAC CGCACTTTTA AGCTATAAAG 100 TGCGGTGAAA TTTAGTGGCG TTTATAATGG AGAATTACTC TGGTGTAATC 150

CATTCGACTG	TCCAGCTTCC	AGTACCTTCT	GGAACTAATG	TTTTTGTGAG	200
ATAAGGCAAA	ATTTCTTTCA	TTTGGGTTTC	TAATGTCCAA	GGTGGATTAA	250
TTACCACCAT	ACCGCTCGCA	GTCATTCCTC	GTTGATCGCT	ATCTGGGCGA	300
ACGGCGAGTT	CAATTTTTAG	AATTTTTCTA	ATTCCCGTTG	CTTCTAAACC	350
СТТАААААТА	CGTTTAGTTT	GTTGGCGTAA	TACAACAGGA	TACCAAATCG	400
CATAAGTGCC	AGTGGCAAAA	CGTTTATAGC	CCTCTTCAAT	GGCTTTAACA	450
ACGAGATCAT	AATCATCTTT	TAATTCATAA	GGCGGATCGA	TGAGTACTAA	500
GCCTCGGCGT	TCTTTTGGCG	GAAGCGTTGC	TTTGACTTGT	TGAAAGCCAT	550
TGTCACATTT	TACGGTGACA	TTTTTGTCGT	CGCTAAAATT	ATTGCGAAGA	600
ATTGGATAAT	CGCTAGGATG	AAGCTCGGTC	AATAGTGCGC	GATCTTGTGA	650
GCGCAACAAT	TCCGCGGCAA	TTAATGGAGA	ACCCGCGTAA	TAACGTAGTT	700
CTTTGCCACC	ATAATTGAGT	TTTTTGATCA	TTTTTACATA	ACGAGCAATA	750
TCTTCGGGTA	AATCTGTTTG	ATCCCACAGG	CGTCCAATAC	CTTCTTTATA	800
TTCCCCCGTT	TTTTCTGATT	CATTTGAGGA	TAAACGATAA	CGCCCACAC	850
CAGAGTGCGT	ATCCAAATAA	AAAAAGCCTT	TTTCTTTGAG	TTTAAGATTT	900
TCCAAAATGA	GCATTAAAAC	AATATGTTTC	AAGACATCGG	CATGATTGCC	950
AGCGTGAAAT	GAGTGATGAT	AACTCAGCAT	AATATATTCC	TTATATATTC	1000
CTTATTTGTT	TAATAACGAA	GGCGAGCCAA	TTGACTCGCC	CGATTACACA	1050
CTAAAGTGCG	GTCATTTTTA	GAAGAGTTCT	TGTGGTTGCG	TCGCTGGCGT	1100
ATTGCCTTCA	TTATTTAAGC	GTTGCTGTAA	CTCAGTAGGA	ACATAATAAC	1150
CACGCTCTTG	CATTTCCGAA	AGATAGGTAC	GTGTCGGTTC	TGTTCCCGCA	1200
ATAAAATATT	CTTTGCGCCC	ACCGTTTGGA	GAAAGCAAAC	CTGTCAAAGT	1250
ATCAATGTTT	TTTTCCACAA	TTTTTGGCGG	TAGCGACAAT	TTACGTTCTG	1300
GCTTATCACT	CAAAGCCGTT	TTCATATAAG	TGATCCAAGC	AGGCATTGCT	1350
GTTTTTGCTC	CTGCTTCTCC	ACGCCCAAGT	ACTCGTTTGT	TATCATCAAA	1400
CCCGACATAA	GTTGTGGTTA	CTAAGTTTGC	ACCAAATCCC	GCATACCAAG	1450
CCACTTTTGA	ACTGTTGGTA	GTACCTGTTT	TACCGCCTAT	ATCGCTACGT	1500
TTAATGCTTT	GTGCAATACG	CCAGCTGGTG	CCTTTCCAGT	CTAAACCTTG	1550
TTCGCCATAA	ATTGCCGTAT	TTAAGGCACT	ACGAATGAGA	AAAGCAAGTT	1600
CGCCACTAAT	GACACGTGGC	GCATATTCTA	TTTTCGACGA	AGCATTTTTT	1650
GCAGCAGCCA	TTAAATCAAT	CGCATCTTCT	TTAAGTGCGG	TCATATTTGA	1700
TTGTAATTCT	GGCAGTTCAG	GCACAGTTTC	AGGTTGTTGA	TCTAATTCTT	1750
CGCCATTGGT	GCTGTCATCT	GTTGGTTTTA	AGGCATTCTC	GCCTAAAGGA	1800
ATATTGGCAA	AGCCGTTGAT	TTTGTCTTTG	GTTTCGCCAT	AAATTACAGG	1850
TATATCATTA	CATTCAATGC	AAGCAATTTT	AGGGTTTGCA	ATAAATAAGT	1900
CTTTACCCGT	GTTATCTTGA	ATTTTTTCAA	TGATATAAGG	TTCAATGAGG	1950
AAGCCACCAT	TATCAAACAC	CGCATAAGCT	CGCGCCATTT	CTAATGGTGT	2000

GAAAGAGGCT	GCGCCAAGTG	CTAAGGCTTC	ACTGGCAAAA	TATTGATCAC	2050
GTTTAAAACC	AAAACGTTGT	AAAAATTCTG	CTGTGAAATC	AATACCTGCC	2100
GTTTGGATAG	CACGAATAGC	AATTATATTT	TTGGATTGAC	CTAATCCTAC	2150
GCGTAAACGC	ATCGGGCCAT	CATAACGATC	AGGCGAGTTT	TTCGGTTGCC	2200
ACATTTTTTG	TCCCGGTTTT	TGAATAGAAA	TCGGGCTGTC	TTGTAATACG	2250
CTTGAAAGTG	TTAAGCCTTT	TTCTAATGCT	GCCGCGTAAA	TAAATGGTTT	2300
GATAGAAGAA	CCCACTTGAA	CTAAAGACTG	TGTGGCTCGA	TTGAATTTAC	2350
TTTGTTCATA	GCTAAAGCCA	CCGACCACTG	CTTCAATCGC	ACCATTATCT	2400
GAATTAAGAG	AAACTAATGC	TGAATTTGCT	GCGGGAATTT	GTCCTAATTG	2450
CCATTCCCCA	TTAGCACGCT	GATGAATCCA	AATTTGCTCG	CCGACTTTCA	2500
CAGGATTGCT	TCTGCCTGTC	CAACGCATTG	CATTGGTTGA	TAAGGTCATT	2550
TTTTCCCCAG	AAGCGAGCAA	TATATCAGCA	CCGCCTTTTA	CAATTCCAAT	2600
CACTGCCGCA	GGAATAAATG	GCTCTGAATC	AGGTAGTTTG	CGTAGAAAAC	2650
CGACAATGCG	ATCATTGTCC	CAAGCGGCTT	CATTTTTTTG	CCATAATGGC	2700
GCGCCACCGC	GATAACCGTG	ACGCATATCG	TAATCAATCA	AGTTATTACG	2750
CACAGCTTTT	TGGGCTTCAG	CTTGGTCTTT	TGAAAGTACA	GTGGTAAATA	2800
CTTTATAACC	ACTGGTGTAA	GCATTTTCTT	CGCCAAAACG	ACGCACCATT	2850
TCTTGACGCA	CCATTTCAGT	GACATAATCG	GCTCGAAATT	CAAATTTTGC	2900
GCCGTGATAG	CTCGCCACAA	TCGGCTCTTT	CAATGCAGCA	TCATATTCTT	2950
CTTTGCTGAT	GTATTTTTCA	TCTAACATAC	GGCTTAGCAC	CACATTGCGG	3000
CGTTCTTCTG	AACGTTTTAA	AGAATAAAGC	GGGTTCATTG	TTGAAGGTGC	3050
TTTAGGTAAA	CCAGCAATAA	TCGCCATTTC	CGATAAGGTC	AATTCATTCA	3100
ATGATTTACC	GAAATAGGTT	TGTGCTGCCG	CTGCAACACC	ATAAGAACGA	3150
TAGCCTAAAA	AGATTTTGTT	TAAATAAAGC	TCTAATATTT	CTTGTTTGTT	3200
GAGAGTATTT	TCGATTTCTA	CCGCAAGCAC	GGCTTCACGA	GCTTTACGAA	3250
TAATGGTTTT	TTCTGAGGTT	AAGAAAAAGT	TACGCGCTAA	TTGTTGAGTA	3300
ATCGTACTTG	CGCCTTGTGA	TGCACCGCCA	TTACTCACTG	CGACAAACAA	3350
TGCACGGGCA	ATGCCGATAG	GGTCTAATCC	GTGATGATCG	TAAAAACGAC	3400
TGTCTTCCGT	CGCTAAAAAT	GCGTCAATTA	AGCGTTGTGG	CACATCGGCT	3450
AATTTCACTG	GAATACGGCG		ACTTCGCCAA		3500
GTCAGCCGTA	TAAATCTGCA	TTGGTTGCTG	TAATTCAACG	GTTTTTAATG	3550
TTTCTACTGA	GGGCAATTCA	GATTTTAAGT	GGAAATACAA	CATTCCGCCT	3600
GCTACTAAAC	CTAAAATACA	TAAAGTTAAT	AGGGTGTTTA	TTTAATTATA	3650
TGCGATCCGC	ATCGTAAAAT	TCTCGCTTCG	TTAATGAATA	TTCTTGTCAA	3700
GAGACCTATG			AGATTCAGCC	TTTAAAGAAT	3750
			TTACCGCACT		
GCATTCATCG	TAAGCAGAGT	TATTTTGATT	TTGTGTGGTT	TGATGATCTC	3850

WO 96/08582 PCT/CA95/00528

84

GAACAGCCAC	AAAGTTATCA	AATCTTTGTT	AATGATCGTT	ATTTTAAAAA	3900
TCGTTTTTTA	CAACAGCTAA	AAACACAATA	TCAAGGGAAA	ACCTTTCCTT	3950
TGCAGTTTGT	AGCAAGCATT	CCCGCCCACT	TAACTTGGTC	GAAAGTATTA	4000
ATGTTGCCAC	AAGTGTTAAA	TGCGCAAGAA	TGTCATCAAC	AATGTAAATT	4050
TGTGATTGAA	AAAGAGCTGC	CTATTTTTTT	AGAAGAATTG	TGGTTTGATT	4100
ATCGTTCTAC	CCCGTTAAAG	CAAGGTTTTC	GATTAGAGGT	TACTGCAATT	4150
CGTAAAAGTA	GCGCTCAAAC	TTATTTGCAA	GATTTTCAGC	CATTTAATAT	4200
TAATATATTG	GATGTTGCGT	CAAATGCTGT	TTTGCGTGCA	TTTCAATATC	4250
TGTTGAATGA	ACAAGTGCGG	TCAGAAAATA	CCTTATTTTT	ATTTCAAGAA	4300
GATGACTATT	GCTTGGCGAT	TTGTGAAAGA	TCTCAGCAAT	CACAAATTTT	4350
ACAATCTCAC	GAAAATTTGA	CCGCACTTTA	TGAACAATTT	ACCGAACGTT	4400
TTGAAGGACA	ACTTGAACAA	GTTTTTGTTT	ATCAAATTCC	CTCAAGTCAT	4450
ACACCATTAC	CCGAAAACTG	GCAGCGAGTA	GAAACAGAAC	TCCCTTTTAT	4500
TGCGCTGGGC	AACGCGCTAT	GGCAAAAAGA	TTTACATCAA	CAAAAAGTGG	4550
GTGGTTAAAT	GTCGATGAAT	TTATTGCCTT	GGCGTACTTA	TCAACATCAA	4600
AAGCGTTTAC	GTCGTTTAGC	TTTTTATATC	GCTTTATTTA	TCTTGCTTGC	4650
TATTAATTTA	ATGTTGGCTT	TTAGCAATTT	GATTGAACAA	CAGAAACAAA	4700
ATTTGCAGGC	ACAGCAAAAG	TCGTTTGAAC	AACTTAATCA	ACAGCTTCAT	4750
AAAACTACCA	TGCAAATTGA	TCAGTTACGC	ATTGCGGTGA	AAGTTGGTGA	4800
AGTTTTGACA	TCTATTCCCA	ACGAGCAAGT	AAAAAAGAGT	TTACAACAGC	4850
TAAGTGAATT	ACCTTTTCAA	CAAGGAGAAC	TGAATAAATT	TAAACAAGAT	4900
GCCAATAACT	TAAGCTTGGA	AGGTAACGCG	CAAGATCAAA	CAGAATTTGA	4950
ACTGATTCAT	CAATTTTTAA	AGAAACATTT	TCCCAATGTG	AAATTAAGTC	5000
AGGTTCAACC	TGAACAAGAT	ACATTGTTTT	TTCACTTTGA	TGTGGAACAA	5050
GGGGCGGAAA	AATGAAAGCT	TTTTTTAACG	ATCCTTTTAC	TCCTTTTGGA	5100
AAATGGCTAA	GTCAGCCTTT	TTATGTGCAC	GGTTTAACCT	TTTTATTGCT	5150
ATTAAGTGCG	GTGATTTTTC	GCCCCGTTTT	AGATTATATA	GAGGGGAGTT	5200
CACGTTTCCA	TGAAATTGAA	AATGAGTTAG	CGGTGAAACG	TTCAGAATTG	5250
TTGCATCAAC	AGAAAATTTT	AACCTCTTTA	CAACAGCAGT	CGGAAAGTCG	5300
AAAACTTTCT	CCAGAACTGG	CTGCACAAAT	TATTCCTTTG	AATAAACAAA	5350
TTCAACGTTT	AGCTGCGCGT	AACGGTTTAT	CTCAGCATTT	ACGTTGGGAA	5400
ATGGGGCAAA	AGCCTATTTT	GCATTTACAG	CTTACAGGTC	ATTTTGAAAA	5450
AACGAAGACA	TTTTTATCCG	CACTTTTGGC	TAATTCGTCA	CAGCTTTCTG	5500
TAAGTCGGTT	GCAATTTATG	AAACCCGAAG	ACGGCCCATT	GCAAACCGAG	5550
ATCATTTTTC	AGCTAGATAA	GGAAACAAAA	TGAAACATTG	GTTTTTCCTG	5600
ATTATATTAT	TTTTTATGAA	TTGCAGTTGG	GGACAAGATC	CTTTCGATAA	5650
AACACAGCGT	AACCGTTCTC	AGTTTGATAA	CGCACAAACA	GTAATGGAGC	5700

AAACAGAAAT	AATTTCCTCA	GATGTGCCTA	ATAATCTATG	CGGAGCGGAT	5750
GAAAATCGCC	AAGCGGCTGA	AATTCCTTTG	AACGCTTTAA	AATTGGTGGG	5800
GGTAGTGATT	TCTAAAGATA	AAGCCTTTGC	CTTGTTGCAA	GATCAAGGTT	5850
TGCAAGTTTA	CAGCGTTTTA	GAGGGCGTTG	ATGTGGCTCA	AGAGGGCTAT	5900
ATTGTAGAAA	AAATCAACCA	AAACAATGTT	CAATTTATGC	GTAAGCTAGG	5950
AGAGCAATGT	GATAGTAGTG	AATGGAAAAA	ATTAAGTTTT	TAAAGGAAGA	6000
TTATGAAGAA	ATATTTTTTA	AAGTGCGGTT	ATTTTTTAGT	ATGTTTTTGT	6050
TTGCCATTAA	TCGTTTTTGC	TAATCCTAAA	ACAGATAACG	AACGTTTTTT	6100
TATTCGTTTA	TCGCAAGCAC	CTTTAGCTCA	AACACTGGAG	CAATTAGCTT	6150
TTCAACAAGA	TGTGAATTTA	GTGATTGGAG	ATATATTGGA	AAACAAGATC	6200
TCTTTGAAAT	ТАААСААТАТ	TGATATGCCA	CGTTTGCTAC	AAATAATCGC	6250
AAAAAGTAAG	CATCTTACTT	TGAATAAAGA	TGATGGGATT	TATTATTTAA	6300
ACGGCAGTCA	ATCTGGCAAA	GGTCAGGTTG	CAGGAAATCT	TACGACAAAT	6350
GAACCGCACT	TAGTGAGTCA	CACGGTAAAA	CTCCATTTTG	CTAAAGCTTC	6400
TGAATTAATG	AAATCCTTAA	CAACAGGAAG	TGGCTCTTTG	CTTTCTCCCG	6450
CTGGGAGCAT	TACCTTTGAT	GATCGCAGTA	ATTTGCTGGT	TATTCAGGAT	6500
GAACCTCGTT	CTGTGCAAAA	TATCAAAAA	CTGATTGCTG	AAATGGATAA	6550
GCCTATTGAA	CAGATCGCTA	TTGAAGCGCG	AATTGTGACA	ATTACGGATG	6600
AGAGTTTGAA	AGAACTTGGC	GTTCGGTGGG	GGATTTTTAA	TCCAACTGAA	6650
AATGCAAGAC	GAGTTGCGGG	CAGCCTTACA	GGCAATAGCT	TTGAAAATAT	6700
TGCGGATAAT	CTTAATGTAA	ATTTTGCGAC	AACGACGACA	CCTGCTGGCT	6750
CTATAGCATT	ACAAGTCGCC	AAAATTAATG	GGCGATTGCT	TGATTTAGAA	6800
TTGAGTGCGT	TGGAGCGTGA	AAATAATGTA	GAAATTATTG	CAAGCCCTCG	6850
CTTACTCACT	ACCAATAAGA	AAAGTGCGAG	CATTAAACAG	GGGACAGAAA	6900
TTCCTTACAT	CGTGAGTAAT	ACTCGTAACG	ATACGCAATC	TGTGGAATTT	6950
CGTGAGGCGG	TGCTTGGTTT	GGAAGTGACG	CCACATATTT	CTAAAGATAA	7000
CAATATCTTA	CTTGATTTAT	TGGTAAGTCA	AAATTCCCCT	GGTTCTCGTG	7050
TCGCTTATGG	ACAAAATGAG	GTGGTTTCTA	TTGATAAACA	AGAAATTAAT	7100
ACTCAGGTTT	TTGCCAAAGA	TGGGGAAACC	ATTGTGCTTG	GCGGCGTATT	7150
TCACGATACA	ATCACGAAAA	GCGAAGATAA	AGTGCCATTG	CTTGGCGATA	7200
TACCCGTTAT	TAAACGATTA	TTTAGCAAAG	AAAGTGAACG	ACATCAAAAA	7250
CGTGAGCTAG	TGATTTTCGT	CACGCCACAT	ATTTTAAAAG	CAGGAGAAAA	7300
	GTTGAAACAA				
	TTTTAATTTT				7400
ATCGCAAAAA	ATGGGTTATG	TTCAGGTTGC	CAAAAACAAA	TTAAATCTTT	7450
	GGTCATTGTG				7500
GTGGGAATTG	TCTTAAACAA	GAACCAAGTT	GGGATAAGAT	GGTCATTATT	7550

GGGCATTATA	TTGAACCTCT	TTCGATATTG	ATTCAGCGTT	TTAAATTTCA	7600
AAATCAATTT	TGGATTGACC	GCACTTTAGC	TCGGCTTTTA	TATCTTGCGG	7650
TACGTGATGC	TAAACGAACG	CATCAACTTA	AATTGCCAGA	GGCAATCATT	7700
CCAGTGCCTT	TATATCATTT	TCGTCAGTGG	CGACGGGGTT	ATAATCAGGC	7750
AGATTTATTA	TCTCAGCAAT	TAAGTCGTTG	GCTGGATATT	CCTAATTTGA	7800
ACAATATCGT	AAAGCGTGTG	AAACACACCT	ATACTCAACG	TGGTTTGAGT	7850
GCAAAAGATC	GTCGTCAGAA	TTTAAAAAAT	GCCTTTTCTC	TTGCTGTTTC	7900
GAAAAATGAA	TTTCCTTATC	GTCGTGTTGC	GTTGGTGGAT	GATGTGATTA	7950
CTACTGGTTC	TACACTCAAT	GAAATCTCAA	AATTGTTGCG	AAAATTAGGT	8000
GTGGAGGAGA	TTCAAGTGTG	GGGGCTGGCA	CGAGCTTAAT	ATAAAGCACT	8050
GGAAAAAAA	GCGCGATAAG	CGTATTATTC	CCGATACTTT	CTCTCAAGTA	8100
TTTAGGACAT	AATTATGGAA	CAAGCAACCC	AGCAAATCGC	TATTTCTGAT	8150
GCCGCACAAG	CGCATTTTCG	AAAACTTTTA	GACACCCAAG	AAGAAGGAAC	8200
GCATATTCGT	ATTTTCGCGG	TTAATCCTGG	TACGCCTAAT	GCGGAATGTG	8250
GCGTATCTTA	TTGCCCCCCG	AATGCCGTGG	AAGAAAGCGA	TATTGAAATG	8300
ATATATAA	CTTTTTCTGC	ATTTATTGAT	GAAGTGAGTT	TGCCTTTCTT	8350
AGAAGAAGCA	GAAATTGATT	ATGTTACCGA	AGAGCTTGGT	GCGCAACTGA	8400
CCTTAAAAGC	ACCGAATGCC	AAAATGCGTA	AGGTGGCTGA	TGATGCGCCA	8450
TTGATTGAAC	GTGTTGAATA	TGTAATTCAA	ACTCAAATTA	ACCCACAGCT	8500
TGCAAATCAC	GGTGGACGTA	TAACCTTAAT	TGAAATTACT	GAAGATGGTT	8550
ACGCAGTTTT	ACAATTTGGT	GGTGGCTGTA	ACGGTTGTTC	AATGGTGGAT	8600
GTTACGTTAA	AAGATGGGGT	AGAAAAACAA	CTTGTTAGCT	TATTCCCGAA	8650
TGAATTAAAA	GGTGCAAAAG	ATATAACTGA	GCATCAACGT	GGCGAACATT	8700
CTTATTATTA	GTGAGTTATA	AAAGAAGATT	TATAATGACC	GCACTTTTGA	8750
AAGTGCGGTT	ATTTTTATGG	AGAAAAAATG	AAAATACTTC	AACAAGATGA	8800
TTTTGGTTAT	TGGTTGCTTA	CACAAGGTTC	TAATCTGTAT	TTAGTGAATA	8850
ATGAATTGCC	TTTTGGTATC	GCTAAAGATA	TTGATTTGGA	AGGATTGCAG	8900
GCAATGCAAA	TTGGGGAATG	GAAAAATTAT	CCGTTGTGGC	TTGTGGCTGA	8950
GCAAGAAAGT	GATGAACGAG	AATATGTGAG	TTTGAGTAAC	TTGCTTTCAC	9000
TGCCAGAGGA	TGAATTCCAT	ATATTAAGCC	GAGGTGTGGA	AATTAATCAT	9050
TTTCTGAAAA	CCCATAAATT	CTGTGGAAAG	TGCGGTCATA	AAACACAACA	9100

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 525 base pairs

 - (B) TYPE: Nucleic acid(C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

AAAAATCGAC	TGCCGTCATT	TTCAACCACC	ACATAGCTCA	TATTCGCAAG	50
CCAATGTATT	GACCGTTGGG	AATAATAACA	GCCCCAAAAC	AATGAAACAT	100
ATGGTGATGA	GCCAAACATA	CTTTCCTGCA	GATTTTGGAA	TCATATCGCC	150
ATCAGCACCA	GTATGGTTTG	ACCAGTATTT	AACGCCATAG	ACATGTGTAA	200
AAAATTAAA	TAACGGTGCA	AGCATGAGAC	CAACGGCACC	TGATGTACCT	250
TGTACGATGA	CCTCACCTGC	TGTGGCAACC	ATACCAAGTC	CATTGCCTGT	300
GATATTTTTG	CGAAAAGACA	AACTTACCAC	ACAGACCAAG	CCGATGATTG	350
AGATGACAAA	ATAAAACCAA	TCCAAATGCG	TGTGAGCTGT	TGTGGTCCAA	400
AATCCAGTAA	ATAGTGCAAT	AAATCCGCAA	ACAAACCAAA	GTAGCACCCA	450
GCTTGTTGTC	CAATCTTTTT	TACCAAAGCC	TGTGATGTTA	TCTAAAATAT	500
CAATTTTCAT	CAGATTTTCC	CTAAT			525

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 466 base pairs

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Moraxella catarrhalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

TAATGATAAC	CAGTCAAGCA	AGCTCAAATC	AGGGTCAGCC	TGTTTTGAGC	50	
TTTTTATTTT	TTGATCATCA	TGCTTAAGAT	TCACTCTGCC	ATTTTTTAC	100	
AACCTGCACC	ACAAGTCATC	ATCGCATTTG	CAAAAATGGT	ACAAACAAGC	150	
CGTCAGCGAC	ТТАААСАААА	AAAGGCTCAA	TCTGCGTGTG	TGCGTTCACT	200	
TTTACAAATC	ACCATGCACC	GCTTTGACAT	TGTTGGTGAA	TTTCATGACC	250	
ATGCACACCC	TTATTATATT	AACTCAAATA	AAATACGCTA	CTTTGTCAGC	300	
TTTAGCCATT	CAGATAATCA	AGTCGCTCTC	ATCATCAGCT	TAACACCTTG	350	
TGCCATTGAC	ATAGAAGTTA	ACGATATTAA	ATACAGTGTG	GTTGAACGAT	400	
ACTTTCATCC	CAATGAAATT	TATCTACTTA	CTCAATTTAG	CTCTACTGAT	450	
AGGCAACAGC	TTATTA				466	
CURCULT ITE CHEET						

(2) INFORMATION	FOR	SEQ	ID	NO:	30:
-----------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 631 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

GATCTTTGAT	TTTCATTGAG	TATTACTCTC	TCTTGTCACT	TCTTTCTATT	50
TTACCATAAA	GTCCAGCCTT	TGAAGAACTT	TTACTAGAAG	ACAAGGGGCT	100
TCTGTCTCTA	TTTGCCATCT	TAGGCATCAA	AAAAGAGGGG	TCATCCCTCT	150
TTACGAATTC	AATGCTACTA	GGGTATCCAA	ATACTGGTTG	TTGATGACTG	200
CCAAAATATA	GGTATCTGCT	TTCAAGAGGT	CATCTGGTCC	AAATTCAACA	250
TCCAATGGGG	AATTTTCCTG	CTCTCGGAAA	CCCAAAATAT	TCAGATTGTA	300
TTTGCCACGG	AGGTCTAATT	TACTTCAGAC	TTTGACCTGC	CCAAGACTGA	350
GGAATTTTCA	TCTCCACGAT	AGACACATTT	TTATCCAACT	GAAAGACATC	400
AACACTATTA	TGAAAAGAAT	GGTCTGTGCT	AGAGACTGCC	CCATTTCATA	450
CTCTGGCGAG	ATAACCGAGT	CAGCTCCAAT	CTTTTCTAGC	ACTTTCTTAG	500
CGGTCTGACT	TTTGACCTTA	GCAATAACAG	TCGGTACCCC	CAAACTCTTA	550
CAGTGCATAA	CCGCAAGCAC	ACTCGACTCC	AGATTTTCAC	CTGTCGCGAC	600
TACAACGGTA	TCGCAGGTAT	CAATCCCTGC	T		631

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3754 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CCAATATTT GGTCAGCATA GTGTTCTTTT TCAGTGGTAA CAGCTTGCAA 50
TACTTGAGCA GAAATGGCAG ATTTATCAAG GAAAAAGTTA ACGTAAGGTC 100

CTGTTGCGAC	AACTTTTTCA	AAGGCTTGGC	TGTTCATTTT	TTCAGCCAGT	150
TCAGCCGCAA	TCATTTGTGG	TGCTTTACGT	TCGACTTTTG	CAAGAGAAAA	200
AGCAGGGAAA	GCAATGTCTC	CCATTTCTGA	GTTTTTAGGG	GTTTCCAGTA	250
ACTTTAAAAT	AGCCTCTTGG	TCCAGGCTAT	CAATGATGCT	AGATAATTCG	300
CTAGCAATCA	ATTCTTTTGT	ATTCATTAAG	AGCTCCTTTT	TGGACTTTTC	350
TACTATTTTA	TCACAATTTT	AAAGAAAGAA	GAAAAAATTT	TTGAAATCTC	400
CTGTTTTTTT	GGTATAATAT	GGTTATAAAT	ATAGTTATAA	ATATAGTTAT	450
AAATATGCAC	GCAAGAGGAT	TTTATGAGAA	AAAGAGATCG	TCATCAGTTA	500
АТААААААА	TGATTACTGA	GGAGAAATTA	AGTACACAAA	AAGAAATTCA	550
AGATCGGTTG	GAGGCGCACA	ATGTTTGTGT	GACGCAGACA	ACCTTGTCTC	600
GTGATTTGCG	CGAAATCGGC	TTGACCAAGG	TCAAGAAAAA	TGATATGGTG	650
TATTATGTAC	TAGTAAATGA	GACAGAAAAG	ATTGATTTGG	TGGAATTTTT	700
GTCTCATCAT	TTAGAAGGTG	TTGCAAGAGC	AGAGTTTACC	TTGGTGCTTC	750
ATACCAAATT	GGGAGAAGCC	TCTGTTTTGG	CAAATATTGT	AGATGTAAAC	800
AAGGATGAAT	GGATTTTAGG	AACAGTTGCT	GGTGCCAATA	CCTTATTGGT	850
TATTTGTCGA	GATCAGCACG	TTGCCAAACT	CATGGAAGAT	CGTTTGCTAG	900
ATTTGATGAA	AGATAAGTAA	GGTCTTGGGA	GTTGCTCTCA	AGACTTATTT	950
TTGAAAAGGA	GAGACAGAAA	ATGGCGATAG	AAAAGCTATC	ACCCGGCATG	1000
CAACAGTATG	TGGATATTAA	AAAGCAATAT	CCAGATGCTT	TTTTGCTCTT	1050
TCGGATGGGT	GATTTTTATG	AATTATTTTA	TGAGGATGCG	GTCAATGCTG	1100
CGCAGATTCT	GGAAATTTCC	TTAACGAGTC	GCAACAAGAA	TGCCGACAAT	1150
CCGATCCCTA	TGGCGGGTGT	TCCCTATCAT	TCTGCCCAAC	AGTATATCGA	1200
TGTCTTGATT	GAGCAGGGTT	ATAAGGTGGC	TATCGCAGAG	CAGATGGAAG	1250
ATCCTAAACA	AGCAGTTGGG	GTTGTTAAAC	GAGAGGTTGT	TCAGGTCATT	1300
ACGCCAGGGA	CAGTGGTCGA	TAGCAGTAAG	CCGGACAGTC	AGAATAATTT	1350
TTTGGTTTCC	ATAGACCGCG		ATTTGGCCTA	GCTTATATGG	1400
ATTTGGTGAC			GTCTTTTGGA	TTTCACGCTG	1450
GTTTGTGGGG	AAATCCGTAA			TGTTGGGTTA	1500
TGACTTGTCT	GAGGAAGAAG		CAGCCGCCAG	ATGAATCTGG	1550
TACTCTCTTA	TGAAAAAGAA			ATTGGATTTG	1600
CGATTGGCAA	CGGTGGAGCA		AGTAAGCTGC	TCCAGTATGT	1650
TCATCGGACT	CAGATGAGGG		CCTCAAACCT	GTTATCCGCT	1700
ACGAAATTAA	GGATTTCTTG			GGCTAGTCTG	1750
GATTTGGTTG			AAACAAGGCA	GTCTTTTCTG	1800
GCTTTTGGAT			GATGCGTCTC	TTGCGTTCTT	1850
GGATTCATCG				ACGTCAAGAA	1900
GTAGTGCAGG	TCTTTCTCGA	CCATTTCTTT	GAGCGTAGTG	ACTTGACAGA	1950

CAGTCTCAAG	GGTGTTTATG	ACATTGAGCG	CTTGGCTAGT	CGTGTTTCTT	2000
TTGGCAAAAC	CAATCCAAAG	GATCTCTTGC	AGTTGGCGAC	TACCTTGTCT	2050
AGTGTGCCAC	GGATTCGTGC	GATTTTAGAA	GGGATGGAGC	AACCTACTCT	2100
AGCCTATCTC	ATCGCACAAC	TGGATGCAAT	CCCTGAGTTG	GAGAGTTTGA	2150
TTAGCGCAGC	GATTGCTCCT	GAAGCTCCTC	ATGTGATTAC	AGATGGGGGA	2200
ATTATCCGGA	CTGGATTTGA	TGAGACTTTA	GACAAGTATC	GTTGCGTTCT	2250
CAGAGAAGGG	ACTAGCTGGA	TTGCTGAGAT	TGAGGCTAAG	GAGCGAGAAA	2300
ACTCTGGTAT	CAGCACGCTC	AAGATTGACT	ACAATAAAAA	GGATGGCTAC	2350
TATTTTCATG	TGACCAATTC	GCAACTGGGA	AATGTGCCAG	CCCACTTTTT	2400
CCGCAAGGCG	ACGCTGAAAA	ACTCAGAACG	CTTTGGAACC	GAAGAATTAG	2450
CCCGTATCGA	GGGAGATATG	CTTGAGGCGC	GTGAGAAGTC	AGCCAACCTC	2500
GAATACGAAA	TATTTATGCG	CATTCGTGAA	GAGGTCGGCA	AGTACATCCA	2550
GCGTTTACAA	GCTCTAGCCC	AAGGAATTGC	GACGGTTGAT	GTCTTACAGA	2600
GTCTGGCGGT	TGTGGCTGAA	ACCCAGCATT	TGATTCGACC	TGAGTTTGGT	2650
GACGATTCAC	AAATTGATAT	CCGGAAAGGG	CGCCATGCTG	TCGTTGAAAA	2700
GGTTATGGGG	GCTCAGACCT	ATATTCCAAA	TACGATTCAG	ATGGCAGAAG	2750
ATACCAGTAT	TCAATTGGTT	ACAGGGCCAA	ACATGAGTGG	GAAGTCTACC	2800
TATATGCGTC	AGTTAGCCAT	GACGGCGGTT	ATGGCCCAGC	TGGGTTCCTA	2850
TGTTCCTGCT	GAAAGCGCCC	ATTTACCGAT	TTTTGATGCG	ATTTTTACCC	2900
GTATCGGAGC	AGCAGATGAC	TTGGTTTCGG	GTCAGTCAAC	CTTTATGGTG	2950
GAGATGATGG	AGGCCAATAA	TGCCATTTCG	CATGCGACCA	AGAACTCTCT	3000
CATTCTCTTT	GATGAATTGG	GACGTGGAAC	TGCAACTTAT	GACGGGATGG	3050
CTCTTGCTCA	GTCCATCATC	GAATATATCC	ATGAGCACAT	CGGAGCTAAG	3100
ACCCTCTTTG	CGACCCACTA	CCATGAGTTG	ACTAGTCTGG	AGTCTAGTTT	3150
ACAACACTTG	GTCAATGTCC	ACGTGGCAAC	TTTGGAGCAG	GATGGGCAGG	3200
TCACCTTCCT	TCACAAGATT	GAACCGGGAC	CAGCTGATAA	ATCCTACGGT	3250
ATCCATGTTG	CCAAGATTGC	TGGCTTGCCA	GCAGACCTTT	TAGCAAGGGC	3300
GGATAAGATT	TTGACTCAGC		AGGAACAGAG	AGTCCTCCTC	3350
CCATGAGACA	AACTAGTGCT	GTCACTGAAC	AGATTTCACT	CTTTGATAGG	3400
GCAGAAGAGC	ATCCTATCCT	AGCAGAATTA	GCTAAACTGG	ATGTGTATAA	3450
TATGACACCT	ATGCAGGTTA	TGAATGTCTT	AGTAGAGTTA	AAACAGAAAC	3500
ТАТААААССА	AGACTCACTA	GTTAATCTAG	CTGTATCAAG	GAGACTTCTT	3550
TGACAATTCT	CCACTTTTTT		CATCACACAA		3600
AAGGGCTGAC	GCATTGTCGC		CTATTTTTA		3650
ATGCTGATTC	AGAAAATAAA		TGGCAGGCCC	TGCTTCGCTC	3700
CTGATGACAG	GCTTGATGGT	TGCTAGTTCA	CTTCTGCAAC	CGCGTTATCT	3750
GCAG					3754

(2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1337 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pyogenes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

AACAAAATAA	AAGAACTTAC	CTATTTTCCA	TCCAAAATGT	TTAGCAATCA	50
TCATCTGCAA	GGCAACGTAT	TGCATGGCAT	TGATGTGATG	AGCAACTAAT	100
ATGTCATTAG	AACGTTGCGT	CAAACTAGCA	TCTAAATAAA	GATCGAAATG	150
CAGTTATCAA	AAATGCAAGC	TCCTATCGGC	CCTTGTTTTA	ATTATTACTC	200
ACATTGCCTT	AATGTATTTA	CTTGCTTATT	ATTAACTTTT	TTGCTAAGTT	250
AGTAGCGTCA	GTTATTCATT	GAAAGGACAT	TATTATGAAA	ATTCTTGTAA	300
CAGGCTTTGA	TCCCTTTGGC	GGCGAAGCTA	TTAATCCTGC	CCTTGAAGCT	350
ATCAAGAAAT	TGCCAGCAAC	CATTCATGGA	GCAGAAATCA	AATGTATTGA	400
AGTTCCAACG	GTTTTTCAAA	AATCTGCCGA	TGTGCTCCAG	CAGCATATCG	450
AAAGCTTTCA	ACCTGATGCA	GTCCTTTGTA	TTGGGCAAGC	TGGTGGCCGG	500
ACTGGACTAA	CGCCAGAACG	CGTTGCCATT	AATCAAGACG	ATGCTCGCAT	550
TCCTGATAAC	GAAGGGAATC	AGCCTATTGA	TACACCTATT	CGTGCAGATG	600
GTAAAGCAGC	TTATTTTTCA	ACCTTGCCAA	TCAAAGCGAT	GGTTGCTGCC	650
ATTCATCAGG	CTGGGCTTCC	TGCTTCTGTT	TCTAATACAG	CTGGTACCTT	700
TGTTTGCAAT	CATTTGATGT	ATCAAGCCCT	TTACTTAGTG	GATAAATATT	750
GTCCAAATGC	CAAAGCTGGG	TTTATGCATA	TTCCCTTTAT	GATGGAACAG	800
GTTGTTGATA	AACCTAATAC	AGCTGCCATG	AACCTCGATG	ATATTACAAG	850
AGGAATTGAG	GCTGCTATTT	TTGCCATTGT	CGATTTCAAA	GATCGTTCCG	900
ATTTAAAACG	TGTAGGGGC	GCTACTCACT	GACTGTGACG	CTACTAAACC	950
TATTTTAAAA	AAACAGAGAT	ATGAACTAAC	TCTGTTTTTT	TTGTGCTAAA	1000
AATGAAAGAC	CTAGGGAAAC	TTTTCATCGG	TCTTTCTCAA	TTGTCATCTT	1050
AATCTAATAC	TACTTCTAAC	ATCAGCGGGT	ATAGTTTGCC	AGTAATTAAG	1100
AAACGTTGTT	GATCTAAATG	AGCAATCCCA	TTCAAAACAT	TAAGGTCAGG	1150
GTAATGGGAC	TTATCAAGAT	TTAAGGCTTT	TAACAAAGGA	CTAATATCAT	1200
AGGTGGCTAC	CACCTTTCCA	GAATCAGGTT	GGAGTTTGAC	AATAGTATTG	1250
GTTTGCCAAA	TATTGGCATA	GAGATAACCA	TCTACATACT	CTAATTCGTT	1300
AAGCATTGAG	ATAGGGACAC	TTTCTATAGC	AACTAGT		1337

CLIRSTITUTE SHEET

- (2) INFORMATION FOR SEQ ID NO: 33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1837 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pyogenes
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

TCATGTTTGA	CAGCTTATCA	TCGATAAGCT	TACTTTTCGA	ATCAGGTCTA	50
TCCTTGAAAC	AGGTGCAACA	TAGATTAGGG	CATGGAGATT	TACCAGACAA	100
CTATGAACGT	ATATACTCAC	ATCACGCAAT	CGGCAATTGA	TGACATTGGA	150
ACTAAATTCA	ATCAATTTGT	TACTAACAAG	CAACTAGATT	GACAACTAAT	200
TCTCAACAAA	CGTTAATTTA	ACAACATTCA	AGTAACTCCC	ACCAGCTCCA	250
TCAATGCTTA	CCGTAAGTAA	TCATAACTTA	CTAAAACCTT	GTTACATCAA	300
GGTTTTTTCT	TTTTGTCTTG	TTCATGAGTT	ACCATAACTT	TCTATATTAT	350
TGACAACTAA	ATTGACAACT	CTTCAATTAT	TTTTCTGTCT	ACTCAAAGTT	400
TTCTTCATTT	GATATAGTCT	AATTCCACCA	TCACTTCTTC	CACTCTCTCT	450
ACCGTCACAA	CTTCATCATC	TCTCACTTTT	TCGTGTGGTA	ACACATAATC	500
AAATATCTTT	CCGTTTTTAC	GCACTATCGC	TACTGTGTCA	CCTAAAATAT	550
ACCCCTTATC	AATCGCTTCT	TTAAACTCAT	CTATATATAA	CATATTTCAT	600
CCTCCTACCT	ATCTATTCGT	AAAAAGATAA	AAATAACTAT	TGTTTTTTT	650
GTTATTTTAT	ATTAAAATTA	TTAATATAAG	TTAATGTTTT	TAAAAATAT	700
ACAATTTTAT	TCTATTTATA	GTTAGCTATT	TTTTCATTGT	TAGTAATATT	750
GGTGAATTGT	AATAACCTTT	TTAAATCTAG	AGGAGAACCC	AGATATAAAA	800
TGGAGGAATA	TTAATGGAAA	ACAATAAAAA	AGTATTGAAG	AAAATGGTAT	850
TTTTTGTTT	AGTGACATTT	CTTGGACTAA	CAATCTCGCA	AGAGGTATTT	900
GCTCAACAAG	ACCCCGATCC	AAGCCAACTT	CACAGATCTA	GTTTAGTTAA	950
AAACCTTCAA	AATATATATT	TTCTTTATGA	GGGTGACCCT	GTTACTCACG	1000
AGAATGTGAA	ATCTGTTGAT	CAACTTTTAT	CTCACGATTT	AATATATAAT	1050
GTTTCAGGGC	CAAATTATGA	AAATTAAAT .	ACTGAACTTA	AGAACCAAGA	1100
GATGGCAACT	TTATTTAAGG	ATAAAAACGT	TGATATTTAT	GGTGTAGAAT	1150
ATTACCATCT	CTGTTATTTA	TGTGAAAATG	CAGAAAGGAG	TGCATGTATC	1200
TACGGAGGG	TAACAAATCA	TGAAGGGAAT	CATTTAGAAA	TTCCTAAAAA	1250
GATAGTCGT	r aaagtatcaa	TCGATGGTAT	CCAAAGCCTA	TCATTTGATA	1300

TTGAAACAAA	TAAAAAAATG	GTAACTGCTC	AAGAATTAGA	CTATAAAGTT	1350
AGAAAATATC	TTACAGATAA	TAAGCAACTA	TATACTAATG	GACCTTCTAA	1400
ATATGAAACT	GGATATATAA	AGTTCATACC	TAAGAATAAA	GAAAGTTTTT	1450
GGTTTGATTT	TTTCCCTGAA	CCAGAATTTA	CTCAATCTAA	ATATCTTATG	1500
ATATATAAAG	ATAATGAAAC	GCTTGACTCA	AACACAAGCC	AAATTGAAGT	1550
CTACCTAACA	ACCAAGTAAC	TTTTTGCTTT	TGGCAACCTT	ACCTACTGCT	1600
GGATTTAGAA	ATTTTATTGC	AATTCTTTTA	TTAATGTAAA	AACCGCTCAT	1650
TTGATGAGCG	GTTTTGTCTT	ATCTAAAGGA	GCTTTACCTC	CTAATGCTGC	1700
AATTTTAA	ATGTTGGATT	TTTGTATTTG	TCTATTGTAT	TTGATGGGTA	1750
ATCCCATTTT	TCGACAGACA	TCGTCGTGCC	ACCTCTAACA	CCAAAATCAT	1800
AGACAGGAGC	TTGTAGCTTA	GCAACTATTT	TATCGTC		1837

(2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 841 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

GATCAATATG	TCCAAGAAAC	CACATGTTCC	TAAGACAAGA	GCTAACAGAC	50
TGGCCGTCAA	TAATAGTATT	GTTCTTTTTT	TCATCATTAC	TCCTTAACTA	100
GTGTTTAACT	GATTAATTAG	CCAGTAAATA	GTTTATCTTT	ATTTACACTA	150
TCTGTTAAGA	TATAGTAAAA	TGAAATAAGA	ACAGGACAGT	CAAATCGATT	200
TCTAACAATG	TTTTAGAAGT	AGAGGTATAC	TATTCTAATT	TCAATCTACT	250
ATATTTTGCA	CATTTTCATA	AAAAAAATGA	GAACTAGAAC	TCACATTCTG	300
CTCTCATTTT	TCGTTTTCCC	GTTCTCCTAT	CCTGTTTTTA	GGAGTTAGAA	350
AATGCTGCTA	CCTTTACTTA	CTCTCCTTTA	ATAAAGCCAA	TAGTTTTTCA	400
GCTTCTGCCA	TAATAGTATT	GTTGTCCTGG	GTGCCAAATA	GTAAATTATT	450
TTTTAATCCT	GTGAGAGTCT	CTTTGGCATT	GGACTTGATA	ATTGGATTCT	500
GGATTTTTCC	AAGTAAATCT	TCAGCCTCTC	TCAGTTTTCT	TAACCTTTCA	550
GTCTCGACCT	GAGGTTCTTC	TGATTCCTCT	GGTGATTCTT	CTGGTGATTC	600
TTCTTCTGGT	TCCTCTGTTG	GTTTTGGAGA	CTCTGGTTTC	TCGCTTTGCG	650
GTTTCTCTTC	TCGAGGGGTT	TCTTCCTCAG	GTTTTTCTGT	CTGAGGTTTC	700
TCCTCGTTTG	GTTTTTCCGT	TTGATTGGTA	TCAGCTTGAC	CATTTTTGTT	750
TCTTTGAACA	TGGTCGCTAG	CGTTACCAAA	ACCATTATCT	GAATGCGACG	800

TTCGTTTGGA TGTTCGACAT AGTACTTGAC AGTCGCCAAA A

841

- (2) INFORMATION FOR SEQ ID NO: 35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4500 base pairs

 - (B) TYPE: Nucleic acid(C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

GATCAGGACA	GTCAAATCGA	TTTCTAACAA	TGTTTTAGAA	GTAGATGTGT	50
ACTATTCTAG	TTTCAATCTA	TTATATTTAT	AGAATTTTTT	GTTGCTAGAT	100
TTGTCAAATT	GCTTAAAATA	ATTTTTTCA	GAAAGCAAAA	GCCGATACCT	150
ATCGAGTAGG	GTAGTTCTTG	CTATCGTCAG	GCTTGTCTGT	AGGTGTTAAC	200
ACTTTTCAAA	AATCTCTTCA	AACAACGTCA	GCTTTGCCTT	GCCGTATATA	250
TGTTACTGAC	TTCGTCAGTT	CTATCTGCCA	CCTCAAAACG	GTGTTTTGAG	300
CTGACTTCGT	CAGTTCTATC	CACAACCTCA	AAACAGTGTT	TTGAGCTGAC	350
TTCGTCAGTT	CTATCCACAA	CCTCAAAACA	GTGTTTTGAG	CTGACTTTGT	400
CAGTCTTATC	TACAACCTCA	AAACAGTGTT	TTGAGCATCA	TGCGGCTAGC	450
_	GCTCTTTGAT	TTTCATTGAG	татаааааса	GATGAGTTTC	500
TTCTTAGTTT	TTATGGACTA	тааатсттса	GCTGAAACTA	CTTTCAAGGA	550
TGTTTTCTTT	TAAAAGAATT	TTTTGAAACT	AAAATCTACT	ATATTACACT	600
CATTATTATA		ATGAGGTATA	ATAAATTTAC	TAACACTTAT	650
ATATTGAAAG		TTTATGTATA	TTTAAAGATA	GATTGCTGTA	700
AAAAAGTGAT		AAATAACAGA	TAGAGAGAAG	GGATTGAAGC	750
AAAATAGTAG				CAAAAAAGCA	800
TTAGAAAAGG		GATATTTAAG	_	GACAGTTTTC	850
GAGAAAAAGA	CAAGTTGAAC	TACTTTTGAC		TAAGCTGGAT	900
TGATTGATTI	-	TTATTTGGGA		CTACAAGTAT	950
AAGATTCTG	TTGTGAGCTT	GATTATATTI			1000
TTATGCTTAT	GAAAAGCTAT	TTGAAAAAGT		GATTGAGCAG	
GAAGTATGG?	r gtaaatagca	TAAGCTGATG		GCTTATAAAG	1050
AGATATTTT	A GTTTAATTGC	AGCGGTGTCC			1100
CAGGAGTCT	G ATTGGAGAAA	GGAGAGGGG			1150
TAGTTTGTT	T AGTTCATTTI	TGTCATTTA			1200
GTTAATAAA	A GACAAACTAA	GTGCATTTT(1250
AGAAATCGG	G ATATAGATAI	AGAGAGGAA	AGTATGAATC	GGAGTGTTCA	1300

	mamaamma ma	CCAMMACCAA	A CIDA TICCOTTA	GGAGCGGTTT	1250
AGAACGTAAG	TGTCGTTATA	GCATTAGGAA			1350
CTATGATTGT	AGGAGCAGTG	GTATTTGGAA	CGTCTCCTGT	TTTAGCTCAA	1400
GAAGGGGCAA	GTGAGCAACC	TCTGGCAAAT	GAAACTCAAC	TTTCGGGGGA	1450
GAGCTCAACC	CTAACTGATA	CAGAAAAGAG	CCAGCCTTCT	TCAGAGACTG	1500
AACTTTCTGG	CAATAAGCAA	GAACAAGAAA	GGAAAGATAA	GCAAGAAGAA	1550
AAAATTCCAA	GAGATTACTA	TGCACGAGAT	TTGGAAAATG	TCGAAACAGT	1600
GATAGAAAAA	GAAGATGTTG	AAACCAATGC	TTCAAATGGT	CAGAGAGTTG	1650
ATTTATCAAG	TGAACTAGAT	AAACTAAAGA	AACTTGAAAA	CGCAACAGTT	1700
CACATGGAGT	TTAAGCCAGA	TGCCAAGGCC	CCAGCATTCT	ATAATCTCTT	1750
TTCTGTGTCA	AGTGCTACTA	AAAAAGATGA	GTACTTCACT	ATGGCAGTTT	1800
ACAATAATAC	TGCTACTCTA	GAGGGGCGTG	GTTCGGATGG	GAAACAGTTT	1850
TACAATAATT	ACAACGATGC	ACCCTTAAAA	GTTAAACCAG	GTCAGTGGAA	1900
TTCTGTGACT	TTCACAGTTG	AAAAACCGAC	AGCAGAACTA	CCTAAAGGCC	1950
GAGTGCGCCT	CTACGTAAAC	GGGGTATTAT	CTCGAACAAG	TCTGAGATCT	2000
GGCAATTTCA	TTAAAGATAT	GCCAGATGTA	ACGCATGTGC	AAATCGGAGC	2050
AACCAAGCGT	GCCAACAATA	CGGTTTGGGG	GTCAAATCTA	CAGATTCGGA	2100
ATCTCACTGT	GTATAATCGT	GCTTTAACAC	CAGAAGAGGT	ACAAAAACGT	2150
AGTCAACTTT	TTAAACGCTC	AGATTTAGAA	AAAAAACTAC	CTGAAGGAGC	2200
GGCTTTAACA	GAGAAAACGG	ACATATTCGA	AAGCGGGCGT	AACGGTAAAC	2250
CAAATAAAGA	TGGAATCAAG	AGTTATCGTA	TTCCAGCACT	TCTCAAGACA	2300
GATAAAGGAA	CTTTGATCGC	AGGTGCAGAT	GAACGCCGTC	TCCATTCGAG	2350
TGACTGGGGT	GATATCGGTA	TGGTCATCAG	ACGTAGTGAA	GATAATGGTA	2400
AAACTTGGGG	TGACCGAGTA	ACCATTACCA	ACTTACGTGA	CAATCCAAAA	2450
GCTTCTGACC	CATCGATCGG	TTCACCAGTG	AATATCGATA	TGGTGTTGGT	2500
TCAAGATCCT	GAAACCAAAC	GAATCTTTTC	TATCTATGAC	ATGTTCCCAG	2550
AAGGGAAGGG	AATCTTTGGA	ATGTCTTCAC	AAAAAGAAGA	AGCCTACAAA	2600
AAAATCGATG	GAAAAACCTA	TCAAATCCTC	TATCGTGAAG	GAGAAAAGGG	2650
AGCTTATACC	ATTCGAGAAA	ATGGTACTGT	CTATACACCA	GATGGTAAGG	2700
CGACAGACTA	TCGCGTTGTT	GTAGATCCTG	TTAAACCAGC	CTATAGCGAC	2750
AAGGGGGATC	TATACAAGGG	TAACĆAATTA	CTAGGCAATA	TCTACTTCAC	2800
AACAAACAAA	ACTTCTCCAT	TTAGAATTGC	CAAGGATAGC	TATCTATGGA	2850
TGTCCTACAG	TGATGACGAC	GGGAAGACAT	GGTCAGCGCC	TCAAGATATT	2900
ACTCCGATGG	TCAAAGCCGA	TTGGATGAAA	TTCTTGGGTG	TAGGTCCTGG	2950
AACAGGAATT	GTACTTCGGA	ATGGGCCTCA	CAAGGGACGG	ATTTTGATAC	3000
CGGTTTATAC	GACTAATAAT	GTATCTCACT	TAAATGGCTC	GCAATCTTCT	3050
CGTATCATCT	ATTCAGATGA	TCATGGAAAA	ACTTGGCATG	CTGGAGAAGC	3100
GGTCAACGAT	AACCGTCAGG	TAGACGGTCA	AAAGATCCAC	TCTTCTACGA	3150

TGAACAATAG	ACGTGCGCAA	AATACAGAAT	CAACGGTGGT	ACAACTAAAC	3200
AATGGAGATG	TTAAACTCTT	TATGCGTGGT	TTGACTGGAG	ATCTTCAGGT	3250
TGCTACAAGT	AAAGACGGAG	GAGTGACTTG	GGAGAAGGAT	ATCAAACGTT	3300
ATCCACAGGT	TAAAGATGTC	TATGTTCAAA	TGTCTGCTAT	CCATACGATG	3350
CACGAAGGAA	AAGAATACAT	CATCCTCAGT	AATGCAGGTG	GACCGAAACG	3400
TGAAAATGGG	ATGGTCCACT	TGGCACGTGT	CGAAGAAAAT	GGTGAGTTGA	3450
CTTGGCTCAA	ACACAATCCA	ATTCAAAAAG	GAGAGTTTGC	CTATAATTCG	3500
CTCCAAGAAT	TAGGAAATGG	GGAGTATGGC	ATCTTGTATG	AACATACTGA	3550
AAAAGGACAA	AATGCCTATA	CCCTATCATT	TAGAAAATTT	AATTGGGACT	3600
TTTTGAGCAA	AGATCTGATT	TCTCCTACCG	AAGCGAAAGT	GAAGCGAACT	3650
AGAGAGATGG	GCAAAGGAGT	TATTGGCTTG	GAGTTCGACT	CAGAAGTATT	3700
GGTCAACAAG	GCTCCAACCC	TTCAATTGGC	AAATGGTAAA	ACAGCACGCT	3750
TCATGACCCA	GTATGATACA	AAAACCCTCC	TATTTACAGT	GGATTCAGAG	3800
GATATGGGTC	AAAAAGTTAC	AGGTTTGGCA	GAAGGTGCAA	TTGAAAGTAT	3850
GCATAATTTA	CCAGTCTCTG	TGGCGGGCAC	TAAGCTTTCG	AATGGAATGA	3900
ACGGAAGTGA	AGCTGCTGTT	CATGAAGTGC	CAGAATACAC	AGGCCCATTA	3950
GGGACATCCG	GCGAAGAGCC	AGCTCCAACA	GTCGAGAAGC	CAGAATACAC	4000
AGGCCCACTA	GGGACATCCG	GCGAAGAGCC	AGCCCCGACA	GTCGAGAAGC	4050
CAGAATACAC	AGGCCCACTA	GGGACAGCTG	GTGAAGAAGC	AGCTCCAACA	4100
GTCGAGAAGC	CAGAATTTAC	AGGGGGAGTT	AATGGTACAG	AGCCAGCTGT	4150
TCATGAAATC	GCAGAGTATA	AGGGATCTGA	TTCGCTTGTA	ACTCTTACTA	4200
CAAAAGAAGA	TTATACTTAC	AAAGCTCCTC	TTGCTCAGCA	GGCACTTCCT	4250
GAAACAGGAA	ACAAGGAGAG	TGACCTCCTA	GCTTCACTAG	GACTAACAGC	4300
TTTCTTCCTT	GGTCTGTTTA	CGCTAGGGAA	AAAGAGAGAA	CAATAAGAGA	4350
AGAATTCTAA	ACATTTGATT	TTGTAAAAAT	AGAAGGAGAT	AGCAGGTTTT	4400
CAAGCCTGCT	ATCTTTTTTT	GATGACATTO	AGGCTGATAC	GAAATCATAA	4450
GAGGTCTGA	ACTACTTTCA	GAGTAGTCTC	TTCTATAAAA	TATAGTAGAT	4500

(2) INFORMATION FOR SEQ ID NO: 36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 705 base pairs
 (B) TYPE: Nucleic acid
 (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus epidermidis
- (xi) SEQUENCE DESCRIPTION: SEO ID NO. BEET

GATCCAAGCT	TATCGATATC	ATCAAAAAGT	TGGCGAACCT	TTTCAAATTT	50
TGGTTCAAAT	TCTTGAGATG	TATAGAATTC	AAAATATTTA	CCATTTGCAT	100
AGTCTGATTG	CTCAAAGTCT	TGATACTTTT	CTCCACGCTC	TTTTGCAATT	150
TCCATTGAAC	GTTCGATGGA	ATAATAGTTC	ATAATCATAA	AGAATATATT	200
AGCAAAGTCT	TTTGCTTCTT	CAGATTCATA	GCCAATTTTA	TTTTTAGCTA	250
GATAACCATG	TAAGTTCATT	ACTCCTAGTC	CAACAGAATG	TAGTTCACTA	300
TTCGCTTTTT	TTACACCTGG	TGCATTTTGA	ATATTTGCTT	CATCACTTAC	350
AACTGTAAGA	GCATCCATAC	CTGTGAACAC	AGAATCTCTG	AATTTACCTG	400
ATTCCATAAC	ATTCACTATA	TTCAATGAGC	CTAAGTTACA	TGAAATATCT	450
CTTTTAATTT	CATCTTCAAT	TCCATAGTCG	TTAATTACTG	ATGTCTCTTG	500
TAATTGGAAA	ATTTCAGTAC	ATAAATTACT	CATTTTAATT	TGCCCAATAT	550
TTGAATTCGC	ATGTACTTTG	TTTGCATTAT	CTTTAAACAT	AAGATATGGA	600
TAACCAGACT	GTAATTGTGT	TTGTGCAATC	ATATTTAACA	TTTCACGTGC	650
GTCTTTTTTC	TTTTTATCGA	TTTCGAACCC	GGGGTACCGA	ATTCCTCGAG	700
TCTAG					705

(2)	INFORMATION	FOR	SEQ	ID	NO:	37:
(Z)	INFORMATION	LOI	0 112			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 442 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus aureus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

GATCAATCTT	TGTCGGTACA	CGATATTCTT	CACGACTAAA	TAAACGCTCA	50
GATCIBILGE	TATAAATGAA	TGTTGATAAC	AATGTTGTAT	TATCTACTGA	100
TTCGCGATTT		GAAACATTGT	GTTCTGTATG	TAAAAGCCGT	150
AATCTCATTA	CGTTGCATCG		TCATACGAGA	GTTATATTTT	200
CTTGATAATC		CCGAAGCTGG		GTTTCCCTTC	250
CCAGCCAAAA	CGATATTTTT		CGTGAAAAAG	ACTGTAGCTT	300
ATTATCACAC	ATTTTTA	GCTTTTCAGT			350
CTTTATCCAT	ACGTTGAATA	ATTGTACGAT	TCTGACGCAC	CATCTTTTGC	550
ACACCTTTAA	TGTTATTTGT	TTTAAAAGCA	TGAATAAGTT	TTTCAACACA	400
ACGATGTGAA		AGTCACCGTA	AAATGAAGGA	TC	442

- (2) INFORMATION FOR SEQ ID NO: 38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecalis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

GCAATACAGG GAAAAATGTC

	71	
(2) INFOR	RMATION FOR SEQ ID NO: 39:	
, ,	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) 1	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
CTTCATC	AAA CAATTAACTC	20
(2) INFO	RMATION FOR SEQ ID NO: 40:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
GAACAGA	AGA AGCCAAAAAA	20
(2) INFO	RMATION FOR SEQ ID NO: 41:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
GCAATCO	CCAA ATAATACGGT	20

(i) SEQUENCE CHARACTERISTICS: SUBSTITUTE SHEET

(2) INFORMATION FOR SEQ ID NO: 42:

(A) LENGTH: 19 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
GCTTTCCAGC GTCATATTG	19
(2) INFORMATION FOR SEQ ID NO: 43:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
GATCTCGACA AAATGGTGA	19
(2) INFORMATION FOR SEQ ID NO: 44:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
CACCCGCTTG CGTGGCAAGC TGCCC	25

(2) INFOR	RMATION FOR SEQ ID NO: 45:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)]	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
CGTTTGT	GGA TTCCAGTTCC ATCCG	25
(2) INFO	RMATION FOR SEQ ID NO: 46:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
TCACCCG	GCTT GCGTGGC	17
(2)INFC	ORMATION FOR SEQ ID NO: 47:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
GGAACT	GGAA TCCACAAAC	19
(2) INF	ORMATION FOR SEQ ID NO: 48:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases SUBSTITUTE SHEET	

(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
TGAAGCACTG GCCGAAATGC TGCGT	25
(2) INFORMATION FOR SEQ ID NO: 49:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
GATGTACAGG ATTCGTTGAA GGCTT	25
(2) INFORMATION FOR SEQ ID NO: 50:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
TAGCGAAGGC GTAGCAGAAA CTAAC	25

2) INFOR	RMATION FOR SEQ ID NO: 51:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
GCAACCC	GAA CTCAACGCCG GATTT	25
(2) INFO	RMATION FOR SEQ ID NO: 52:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
ATACACA	AAGG GTCGCATCTG CGGCC	25
(2) INF	ORMATION FOR SEQ ID NO: 53:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
TGCGTA	ATGCA TTGCAGACCT TGTGGC	26
(2) INE	FORMATION FOR SEQ ID NO: 54:	

SUBSTITUTE SHEET

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases

(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	0.5
GCTTTCACTG GATATCGCGC TTGGG	25
(2) INFORMATION FOR SEQ ID NO: 55:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	•
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Escherichia coli	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
GCAACCCGAA CTCAACGCC	19
(2) INFORMATION FOR SEQ ID NO: 56:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Escherichia coli	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
GCAGATGCGA CCCTTGTGT	19

(2) INFORMATION FOR SEQ ID NO: 57:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
GTGGTGTCGT TCAGCGCTTT CAC	23
(2) INFORMATION FOR SEQ ID NO: 58:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
GCGATATTCA CACCCTACGC AGCCA	25
(2) INFORMATION FOR SEQ ID NO: 59:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
GTCGAAAATG CCGGAAGAGG TATACG	26
(2) INFORMATION FOR SEQ ID NO: 60:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases	

SUBSTITUTE SHEET

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
ACTGAGCTGC AGACCGGTAA AACTCA	26
(2) INFORMATION FOR SEQ ID NO: 61:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Klebsiella pneumoniae	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
GACAGTCAGT TCGTCAGCC	19
(2) INFORMATION FOR SEQ ID NO: 62:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Klebsiella pneumoniae	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	4.0
CGTAGGGTGT GAATATCGC	19

(2) INFORMATION FOR SEQ ID NO: 03.	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
CGTGATGGAT ATTCTTAACG AAGGGC	26
(2) INFORMATION FOR SEQ ID NO: 64:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
ACCAAACTGT TGAGCCGCCT GGA	23
(2) INFORMATION FOR SEQ ID NO: 65:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Klebsiella pneumoniae	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
GTGATCGCCC CTCATCTGCT ACT	23
(2) INFORMATION FOR SEQ ID NO: 66:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases	

(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
CGCCCTTCGT TAAGAATATC CATCAC	26
(2) INFORMATION FOR SEQ ID NO: 67:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
TCGCCCCTCA TCTGCTACT	19
(2) INFORMATION FOR SEQ ID NO: 68:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Klebsiella pneumoniae	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
GATCGTGATG GATATTCTT	19

(2) INFORMATION FOR SEQ ID NO: 69:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
CAGGAAGATG CTGCACCGGT TGTTG	25
(2) INFORMATION FOR SEQ ID NO: 70:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
TGGTTCACTG ACTTTGCGAT GTTTC	25
(2) INFORMATION FOR SEQ ID NO: 71:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	9.5
TCGAGGATGG CATGCACTAG AAAAT	25
(2) INFORMATION FOR SEQ ID NO: 72:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 bases(B) TYPE: Nucleic acid	

(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
CGCTGATTAG GTTTCGCTAA AATCTTATTA	30
(2) INFORMATION FOR SEQ ID NO: 73:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Proteus mirabilis	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
TTGATCCTCA TTTTATTAAT CACATGACCA	30
(2) INFORMATION FOR SEQ ID NO: 74:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	4.0
GAAACATCGC AAAGTCAGT	19

(2) INFOR	MATION FOR SEQ ID NO: 73.	
(SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) M	MOLECULE TYPE: DNA (genomic)	
(vi) (ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
ATAAAATO	GAG GATCAAGTTC	20
(2) INFO	RMATION FOR SEQ ID NO: 76:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
CCGCCTT	TAG CATTAATTGG TGTTTATAGT	30
(2) INFO	ORMATION FOR SEQ ID NO: 77:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
CCTATT	GCAG ATACCTTAAA TGTCTTGGGC	30
(2) INF	CORMATION FOR SEQ ID NO: 78:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid SUBSTITUTE SHEET	

(C) STRANDEDNESS: Sinc (D) TOPOLOGY: Linear	gle
(ii) MOLECULE TYPE: DNA (ge	nomic)
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Strepto</pre>	coccus pneumoniae
(xi) SEQUENCE DESCRIPTION:	
AGTAAAATGA AATAAGAACA GGACAG	26
(2) INFORMATION FOR SEQ ID NO:	79:
(i) SEQUENCE CHARACTERIST: (A) LENGTH: 25 bases (B) TYPE: Nucleic ac (C) STRANDEDNESS: Si (D) TOPOLOGY: Linear	id ngle
(ii) MOLECULE TYPE: DNA (g	enomic)
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Strept</pre>	
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO: 79:
AAAACAGGAT AGGAGAACGG GAAAA	- 1
(2) INFORMATION FOR SEQ ID NO	
(i) SEQUENCE CHARACTERISM (A) LENGTH: 25 bases (B) TYPE: Nucleic as (C) STRANDEDNESS: S (D) TOPOLOGY: Linea	s cid ingle
(ii) MOLECULE TYPE: DNA (genomic)
(vi) ORIGINAL SOURCE: (A) ORGANISM: <i>Pro</i> te	
(xi) SEQUENCE DESCRIPTION	
TTGAGTGATG ATTTCACTGA CTC	ecc 25
(2) INFORMATION FOR SEQ ID N	0: 81:
(i) SEQUENCE CHARACTERIS (A) LENGTH: 25 base (B) TYPE: Nucleic of (C) STRANDEDNESS: (D) TOPOLOGY: Line	es acid Single ar
(ii) MOLECULE TYPE: DNA	(genomic)

<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
GTCAGACAGT GATGCTGACG ACACA	25
(2) INFORMATION FOR SEQ ID NO: 82:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
TGGTTGTCAT GCTGTTTGTG TGAAAAT	27
(2) INFORMATION FOR SEQ ID NO: 83:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
CGAGCGGGTG GTGTTCATC	19

(2) INFORMATION FOR SEQ ID NO: 84:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
CAAGTCGTCG TCGGAGGGA	19
(2) INFORMATION FOR SEQ ID NO: 85:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
TCGCTGTTCA TCAAGACCC	19
(2) INFORMATION FOR SEQ ID NO: 86:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
CCGAGAACCA GACTTCATC	19
(2) INFORMATION FOR SEQ ID NO: 87:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid SUBSTITUTE SHEET	

(C) STRANDEDNESS: Single D) TOPOLOGY: Linear	
(ii) M	MOLECULE TYPE: DNA (genomic)	
(vi) 0	ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa	
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
AATGCGGC	TTG TACCTCGGCG CTGGT	25
(2) INFOR	RMATION FOR SEQ ID NO: 88:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) 1	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
GGCGGAG	GGC CAGTTGCACC TGCCA	25
(2)INFO	RMATION FOR SEQ ID NO: 89:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 89:	*.
AGCCCTC	GCTC CTCGGCAGCC TCTGC	25

2) INFORMATION FOR SEQ ID NO: 90:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Pseudomonas aeruginosa	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	25
TGGCTTTTGC AACCGCGTTC AGGTT	23
(2) INFORMATION FOR SEQ ID NO: 91:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Pseudomonas aeruginosa	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	25
GCGCCCGCGA GGGCATGCTT CGATG	
(2) INFORMATION FOR SEQ ID NO: 92:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	25
ACCTGGGCGC CAACTACAAG TTCTA	
(2) INFORMATION FOR SEQ ID NO: 93:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid	

MY

<pre>(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear</pre>	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
GGCTACGCTG CCGGGCTGCA GGCCG 2	5
(2) INFORMATION FOR SEQ ID NO: 94:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Pseudomonas aeruginosa	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
CCGATCTACA CCATCGAGAT GGGCG	25
(2) INFORMATION FOR SEQ ID NO: 95:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	٥.
GAGCGCGGCT ATGTGTTCGT CGGCT	25

(2) INFORMATION FOR SEQ ID NO: 96:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus saprophyticus	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
CGTTTTTACC CTTACCTTTT CGTACTACC	29
(2) INFORMATION FOR SEQ ID NO: 97:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus saprophyticus	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
TCAGGCAGAG GTAGTACGAA AAGGTAAGGG	30
(2) INFORMATION FOR SEQ ID NO: 98:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus saprophyticus	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
CGTTTTTACC CTTACCTTTT CGTACT	26
(2) INFORMATION FOR SEQ ID NO: 99:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 bases (B) TYPE: Nucleic SCICTUTE SHEET SUBSTITUTE SHEET	

	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 99:	
ATCGATC	ATC ACATTCCATT TGTTTTTA	28
(2) INFO	RMATION FOR SEQ ID NO: 100:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
CACCAAG	TTT GACACGTGAA GATTCAT	27
(2) INFO	RMATION FOR SEQ ID NO: 101	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
ATGAGTG	AAG CGGAGTCAGA TTATGTGCAG	30

(2) INFORM	MATION FOR SEQ ID NO: 102:	
(A (E (C	EQUENCE CHARACTERISTICS: A) LENGTH: 25 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Single D) TOPOLOGY: Linear	
(ii) MC	OLECULE TYPE: DNA (genomic)	
(vi) OF	RIGINAL SOURCE: A) ORGANISM: Staphylococcus saprophyticus	
(xi) S	EQUENCE DESCRIPTION: SEQ ID NO: 102:	
CGCTCATTA	AC GTACAGTGAC AATCG	25
(2) INFORM	MATION FOR SEQ ID NO: 103:	
(. ()	EQUENCE CHARACTERISTICS: A) LENGTH: 30 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) M	MOLECULE TYPE: DNA (genomic)	
(vi) O	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
CTGGTTAG	GCT TGACTCTTAA CAATCTTGTC	30
(2) INFOR	RMATION FOR SEQ ID NO: 104:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) 1	MOLECULE TYPE: DNA (genomic)	
(vi) (ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
GACGCGAT	TTG TCACTGTACG TAATGAGCGA	30
(2) INFO	RMATION FOR SEQ ID NO: 105:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 bases (B) TYPE: Nucleic acid SUBSTITUTE SHEET	

((C) S (D) T	STRANDEDNESS: Single TOPOLOGY: Linear	
(ii) N	MOLECU	JLE TYPE: DNA (genomic)	
		NAL SOURCE: DRGANISM: Haemophilus influenzae	
(xi) S	SEQUE1	NCE DESCRIPTION: SEQ ID NO: 105:	
GCGTCAGA	AAA A	AAGTAGGCGA AATGAAAG	28
(2) INFOR	OITAMS	ON FOR SEQ ID NO: 106:	
·	(A) I (B) 5	NCE CHARACTERISTICS: LENGTH: 25 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
(ii) 1	MOLEC	ULE TYPE: DNA (genomic)	
		NAL SOURCE: ORGANISM: Haemophilus influenzae	
(xi)	SEQUE	NCE DESCRIPTION: SEQ ID NO: 106:	
AGCGGCTC	CTA '	TCTTGTAATG ACACA	25
(2) INFO	RMATIC	ON FOR SEQ ID NO: 107:	
	(A) (B) (C)	NCE CHARACTERISTICS: LENGTH: 25 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
(ii) 1	MOLEC	ULE TYPE: DNA (genomic)	
(vi)	ORIGI (A)	NAL SOURCE: ORGANISM: Haemophilus influenzae	
(xi)	SEQUE	NCE DESCRIPTION: SEQ ID NO: 107:	
GAAACGT	GAA (CTCCCCTCTA TATAA	25

(2) INF O	RMATION FOR SEQ ID NO: 108:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
GCCCAA	AAC AATGAAACAT ATGGT	25
(2) INFO	RMATION FOR SEQ ID NO: 109:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 109:	
CTGCAG	ATTT TGGAATCATA TCGCC	25
(2) INF	ORMATION FOR SEQ ID NO: 110:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 110:	
TGGTTI	GACC AGTATTTAAC GCCAT	25
(2) INF	FORMATION FOR SEQ ID NO: 111:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid	

(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
CAACGGCACC TGATGTACCT TGTAC 25	,
(2) INFORMATION FOR SEQ ID NO: 112:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:	
GGCACCTGAT GTACCTTG	3
(2) INFORMATION FOR SEQ ID NO: 113:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
AACAGCTCAC ACGCATT	7

(2) INFORMATION FOR SEQ ID NO: 114:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
TTACAACCTG CACCACAAGT CATCA 25	5
(2) INFORMATION FOR SEQ ID NO: 115:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
GTACAAACAA GCCGTCAGCG ACTTA 2	5
(2) INFORMATION FOR SEQ ID NO: 116:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
CAATCTGCGT GTGTGCGTTC ACT	23
(2) INFORMATION FOR SEQ ID NO: 117:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid SUBSTITUTE SHEET	

	(C) STRANDEDI (D) TOPOLOGY	NESS: Single : Linear	
(ii)	MOLECULE TYPE	: DNA (genomic)	
(vi)	ORIGINAL SOUR((A) ORGANISM	CE: : Moraxella catarrhalis	
(xi)	SEQUENCE DESC	RIPTION: SEQ ID NO: 117:	
GCTACTT	TGT CAGCTTTA	GC CATTCA	26
(2) INFO	RMATION FOR SI	EQ ID NO: 118:	
(i)	SEQUENCE CHAR. (A) LENGTH: (B) TYPE: Nu (C) STRANDED (D) TOPOLOGY	24 bases cleic acid NESS: Single	
(ii)	MOLECULE TYPE	: DNA (genomic)	
(vi)	ORIGINAL SOUR (A) ORGANISM	CE: : Moraxella catarrhalis	
(xi)	SEQUENCE DESC	RIPTION: SEQ ID NO: 118:	
TGTTTT	SAGC TTTTTATT	'TT TTGA	24
(2) INF	RMATION FOR S	EQ ID NO: 119:	
(i)	SEQUENCE CHAR (A) LENGTH: (B) TYPE: Nu (C) STRANDED (D) TOPOLOGY	22 bases ncleic acid DNESS: Single	
(ii)	MOLECULE TYPE	E: DNA (genomic)	
(vi)	ORIGINAL SOUR	RCE: M: Moraxella catarrhalis	
(xi)	SEQUENCE DESC	CRIPTION: SEQ ID NO: 119:	
CGCTGA	CGGC TTGTTTGT	rac ca	22

WO 96/08582 PCT/CA95/00528

(2) INFORM	MATION FOR SEQ ID NO: 120:	
()	EQUENCE CHARACTERISTICS: A) LENGTH: 25 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Single D) TOPOLOGY: Linear	
(ii) M	MOLECULE TYPE: DNA (genomic)	
(vi) O	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae	
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
TCTGTGCT	'AG AGACTGCCCC ATTTC	25
(2) INFOR	RMATION FOR SEQ ID NO: 121:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) 1	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
CGATGTC'	TTG ATTGAGCAGG GTTAT	25
(2) INFO	RMATION FOR SEQ ID NO: 122:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
ATCCCAC	CCTT AGGCGGCTGG CTCCA	25

(2) INFO	RMATION FOR SEQ ID NO: 123:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
ACGTCAA	AGTC ATCATGGCCC TTACGAGTAG G	31
(2) INFO	ORMATION FOR SEQ ID NO: 124:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(i i)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
GTGTGA	CGGG CGGTGTGTAC AAGGC	25
(2) INF	ORMATION FOR SEQ ID NO: 125:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
GAGTTG	CAGA CTCCAATCCG GACTACGA	28
(2) INF	ORMATION FOR SEQ ID NO: 126:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 126:	
		20

(2) INFOR	RMATION FOR SEQ ID NO: 127:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 127:	
ATGGTGT	GAC GGGCGGTGTG	20
(2) INFO	RMATION FOR SEQ ID NO: 128:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
CCCTATA	ACAT CACCTTGCGG TTTAGCAGAG AG	32
(2) INFO	DRMATION FOR SEQ ID NO: 129:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 129:	
GGGGGG	ACCA TCCTCCAAGG CTAAATAC	28

(2) INFO	RMATION FOR SEQ ID NO: 130:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
CGTCCAC	CTTT CGTGTTTGCA GAGTGCTGTG TT	32
(2) INFO	ORMATION FOR SEQ ID NO: 131:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
CAGGAG	TACG GTGATTTTA	20
(2) INF	ORMATION FOR SEQ ID NO: 132:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 132:	
ATTTCI	TGGTT TGGTCATACA	20

WO 96/08582 PCT/CA95/00528

(2) INFO	RMATION FOR SEQ ID NO: 133:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 133:	
CGGGAGT	CCAG TGAAATCATC	20
(2) INFO	DRMATION FOR SEQ ID NO: 134:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
СТАААА	TCGC CACACCTCTT	20
(2) INF	ORMATION FOR SEQ ID NO: 135:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 135:	
GCAGCC	GTGGT GTCGTTCA	18
(2) IN	FORMATION FOR SEQ ID NO: 136:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 bases (B) TYPE: Nucleic acid SUBSTITUTE SHEET	

	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
AGCTGGC.	CAAC GGCTGGTC	18
(2) INFO	RMATION FOR SEQ ID NO: 137:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
ATTCACA	ACCC TACGCAGCCA	20
(2) INFO	RMATION FOR SEQ ID NO: 138:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 138:	
ATCCGGC	CAGC ATCTCTTTGT	20

WO 96/08582 PCT/CA95/00528

1321

(2) INFO	RMATION FOR SEQ ID NO: 139:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	•
(i i)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
CTGGTT	AGCT TGACTCTTAA CAATC	25
(2) INF	ORMATION FOR SEQ ID NO: 140:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 140:	
TCTTA	ACGAT AGAATGGAGC AACTG	25
(2) IN	FORMATION FOR SEQ ID NO: 141:	
(i	(A) LENGTH: 20 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: DNA (genomic)	
-	(A) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes	
(xi	i) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
TGAA	AATTCT TGTAACAGGC	20
	NFORMATION FOR SEQ ID NO: 142:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 bases(B) TYPE: Nucleic acid	

CLIRCTITUTE SHEET

	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes	
(x i)	SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
GGCCACC	CAGC TTGCCCAATA	20
(2) INFO	ORMATION FOR SEQ ID NO: 143:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 143:	
ATATTT	TCTT TATGAGGGTG	20
(2) INF	ORMATION FOR SEQ ID NO: 144:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 144:	
ATCCTT	'AAAT AAAGTTGCCA	20

WO 96/08582 PCT/CA95/00528

(2) INFO	RMATION FOR SEQ ID NO: 145:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermidis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 145:	
ATCAAAA	AGT TGGCGAACCT TTTCA	25
(2) INFO	ORMATION FOR SEQ ID NO: 146:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermidis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 146:	
CAAAAGA	AGCG TGGAGAAAAG TATCA	25
(2) INFO	ORMATION FOR SEQ ID NO: 147:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermidis	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 147:	
TCTCTT	TTAA TTTCATCTTC AATTCCATAG	30
(2) INF	CORMATION FOR SEQ ID NO: 148:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic SCITITUTE SHEET SUBSTITUTE SHEET	

	STRANDEDNESS: Single TOPOLOGY: Linear	
(ii) MOLEC	CULE TYPE: DNA (genomic)	
	NAL SOURCE: ORGANISM: Staphylococcus epidermidis	
(xi) SEQUE	ENCE DESCRIPTION: SEQ ID NO: 148:	
AAACACAATT	ACAGTCTGGT TATCCATATC	30
(2)INFORMATI	ON FOR SEQ ID NO: 149:	
(A) (B)	ENCE CHARACTERISTICS: LENGTH: 30 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
(ii) MOLEC	CULE TYPE: DNA (genomic)	
	INAL SOURCE: ORGANISM: Staphylococcus aureus	
(xi) SEQUE	ENCE DESCRIPTION: SEQ ID NO: 149:	
CTTCATTTTA	CGGTGACTTC TTAGAAGATT	30
(2) INFORMATI	ON FOR SEQ ID NO: 150:	
(A) (B) (C)	ENCE CHARACTERISTICS: LENGTH: 30 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
(ii) MOLEC	CULE TYPE: DNA (genomic)	
	INAL SOURCE: ORGANISM: Staphylococcus aureus	
(xi) SEQUE	ENCE DESCRIPTION: SEQ ID NO: 150:	
TCAACTGTAG	CTTCTTTATC CATACGTTGA	30

(2) INFORMATION FOR SEQ ID NO: 151:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:	
ATATTTTAGC TTTTCAGTTT CTATATCAAC 30	
(2) INFORMATION FOR SEQ ID NO: 152:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
AATCTTTGTC GGTACACGAT ATTCTTCACG)
(2) INFORMATION FOR SEQ ID NO: 153:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
CGTAATGAGA TTTCAGTAGA TAATACAACA 3	0
(2) INFORMATION FOR SEQ ID NO: 154:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid SUBSTITUTE SHEET	

	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Haemophilus influenzae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 154:	
TTTAACG	SATC CTTTTACTCC TTTTG	25
(2) INFO	RMATION FOR SEQ ID NO: 155:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Haemophilus influenzae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 155:	
ACTGCTG	STTG TAAAGAGGTT AAAAT	25
(2)INFO	DRMATION FOR SEQ ID NO: 156:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 156:	
ATTTGGT	TGAC GGGTGACTTT	20

PCT/CA95/00528 WO 96/08582

138

(2) INFOR	MATION FOR SEQ ID NO: 157:	
(SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii) M	MOLECULE TYPE: DNA (genomic)	
(vi) (ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae	
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 157:	
GCTGAGGA	ATT TGTTCTTCTT	20
(2) INFOR	RMATION FOR SEQ ID NO: 158:	
•	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 158:	
GAGCGGT	TTTC TATGATTGTA	20
(2) INFO	ORMATION FOR SEQ ID NO: 159:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 159:	
ATCTTT	CCTT TCTTGTTCTT	20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 bases

(B) TYPE: Nucleic acid

SUBSTITUTE SHEET

- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Moraxella catarrhalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

GCTCAAATCA GGGTCAGC

18

- (2) INFORMATION FOR SEQ ID NO: 161:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 861 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

ATGAGTATTC	AACATTTCCG	TGTCGCCCTT	ATTCCCTTTT	TTGCGGCATT	50
TTGCCTTCCT	GTTTTTGCTC	ACCCAGAAAC	GCTGGTGAAA	GTAAAAGATG	100
CTGAAGATCA	GTTGGGTGCA	CGAGTGGGTT	ACATCGAACT	GGATCTCAAC	150
AGCGGTAAGA	TCCTTGAGAG	TTTTCGCCCC	GAAGAACGTT	TTCCAATGAT	200
GAGCACTTTT	AAAGTTCTGC	TATGTGGCGC	GGTATTATCC	CGTGTTGACG	250
CCGGGCAAGA	GCAACTCGGT	CGCCGCATAC	ACTATTCTCA	GAATGACTTG	300
GTTGAGTACT	CACCAGTCAC	AGAAAAGCAT	CTTACGGATG	GCATGACAGT	350
AAGAGAATTA	TGCAGTGCTG	CCATAACCAT	GAGTGATAAC	ACTGCGGCCA	400
ACTTACTTCT	GACAACGATC	GGAGGACCGA	AGGAGCTAAC	CGCTTTTTTG	450
CACAACATGG	GGGATCATGT	AACTCGCCTT	GATCGTTGGG	AACCGGAGCT	500
GAATGAAGCC	ATACCAAACG	ACGAGCGTGA	CACCACGATG	CCTGCAGCAA	550
TGGCAACAAC	GTTGCGCAAA	CTATTAACTG	GCGAACTACT	TACTCTAGCT	600
TCCCGGCAAC	AATTAATAGA	CTGGATGGAG	GCGGATAAAG	TTGCAGGACC	650
ACTTCTGCGC	TCGGCCCTTC	CGGCTGGCTG	GTTTATTGCT	GATAAATCTG	700
GAGCCGGTGA	GCGTGGGTCT	CGCGGTATCA	TTGCAGCACT	GGGGCCAGAT	750
GGTAAGCCCT	CCCGTATCGT	AGTTATCTAC	ACGACGGGGA	GTCAGGCAAC	800
TATGGATGAA	CGAAATAGAC	AGATCGCTGA	GATAGGTGCC	TCACTGATTA	850
AGCATTGGTA	A				861

- (2) INFORMATION FOR SEQ ID NO: 162:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 918 base pairs
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

ATGTTAAATA	AGTTAAAAAT	CGGCACATTA	TTATTGCTGA	CATTAACGGC	50
TTGTTCGCCC	AATTCTGTTC	ATTCGGTAAC	GTCTAATCCG	CAGCCTGCTA	100
GTGCGCCTGT	GCAACAATCA	GCCACACAAG	CCACCTTTCA	ACAGACTTTG	150
GCGAATTTGG	AACAGCAGTA	TCAAGCCCGA	ATTGGCGTTT	ATGTATGGGA	200
TACAGAAACG	GGACATTCTT	TGTCTTATCG	TGCAGATGAA	CGCTTTGCTT	250
ATGCGTCCAC	TTTCAAGGCG	TTGTTGGCTG	GGGCGGTGTT	GCAATCGCTG	300
CCTGAAAAAG	ATTTAAATCG	TACCATTTCA	TATAGCCAAA	AAGATTTGGT	350
TAGTTATTCT	CCCGAAACCC	AAAAATACGT	TGGCAAAGGC	ATGACGATTG	400
CCCAATTATG	TGAAGCAGCC	GTGCGGTTTA	GCGACAACAG	CGCGACCAAT	450
TTGCTGCTCA	AAGAATTGGG	TGGCGTGGAA	CAATATCAAC	GTATTTTGCG	500
ACAATTAGGC	GATAACGTAA	CCCATACCAA	TCGGCTAGAA	CCCGATTTAA	550
ATCAAGCCAA	ACCCAACGAT	ATTCGTGATA	CGAGTACACC	CAAACAAATG	600
GCGATGAATT	TAAATGCGTA	TTTATTGGGC	AACACATTAA	CCGAATCGCA	650
AAAAACGATT	TTGTGGAATT	GGTTGGACAA	TAACGCAACA	GGCAATCCAT	700
TGATTCGCGC	TGCTACGCCA	ACATCGTGGA	AAGTGTACGA	TAAAAGCGGG	750
GCGGGTAAAT	ATGGTGTACG	CAATGATATT	GCGGTGGTTC	GCATACCAAA	800
TCGCAAACCG	ATTGTGATGG	CAATCATGAG	TACGCAATTT	ACCGAAGAAG	850
CCAAATTCAA	CAATAAATTA	GTAGAAGATG	CAGCAAAGCA	AGTATTTCAT	900
ACTTTACAGC	TCAACTAA				918

- (2) INFORMATION FOR SEQ ID NO: 163:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 864 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

ATGCGTTATA TTCGCCTGTG TATTATCTCC CTGTTAGCCA CCCTGCCGCT 50
GGCGGTACAC GCCAGCCCGC AGCCGCTTGA GCAAATTAAA CTAAGCGAAA 100
GCCAGCTGTC GGGCCGCGTA GGCATGATAG AAATGGATCT GGCCAGCGGC 150

CGCACGCTGA	CCGCCTGGCG	CGCCGATGAA	CGCTTTCCCA	TGATGAGCAC	200
CTTTAAAGTA	GTGCTCTGCG	GCGCAGTGCT	GGCGCGGGTG	GATGCCGGTG	250
ACGAACAGCT	GGAGCGAAAG	ATCCACTATC	GCCAGCAGGA	TCTGGTGGAC	300
TACTCGCCGG	TCAGCGAAAA	ACACCTTGCC	GACGCAATGA	CGGTCGGCGA	350
ACTCTGCGCC	GCCGCCATTA	CCATGAGCGA	TAACAGCGCC	GCCAATCTGC	400
TACTGGCCAC	CGTCGGCGGC	CCCGCAGGAT	TGACTGCCTT	TTTGCGCCAG	450
ATCGGCGACA	ACGTCACCCG	CCTTGACCGC	TGGGAAACGG	AACTGAATGA	500
GGCGCTTCCC	GGCGACGCCC	GCGACACCAC	TACCCCGGCC	AGCATGGCCG	550
CGACCCTGCG	CAACGTTGGC	CTGACCAGCC	AGCGTCTGAG	CGCCCGTTCG	600
CAACGGCAGC	TGCTGCAGTG	GATGGTGGAC	GATCGGGTCG	CCGGACCGTT	650
GATCCGCTCC	GTGCTGCCGG	CGGGCTGGTT	TATCGCCGAT	AAGACCGGAG	700
CTGGCGAGCG	GGGTGCGCGC	GGGATTGTCG	CCCTGCTTGG	CCCGAATAAC	750
AAAGCAGAGC	GCATTGTGGT	GATTTATCTG	CGGGATACCC	CGGCGAGCAT	800
GGCCGAGCGA	AATCAGCAAA	TCGCCGGGAT	CGGCAAGGCG	CTGTACGAGC	850
ACTGGCAACG	CTAA				864

(2) INFORMATION FOR SEQ ID NO: 164:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 534 base pairs

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

ATGGACACAA	CGCAGGTCAC	ATTGATACAC	AAAATTCTAG	CTGCGGCAGA	50
TGAGCGAAAT	CTGCCGCTCT	GGATCGGTGG	GGGCTGGGCG	ATCGATGCAC	100
GGCTAGGGCG	TGTAACACGC	AAGCACGATG	ATATTGATCT	GACGTTTCCC	150
GGCGAGAGGC	GCGGCGAGCT	CGAGGCAATA	GTTGAAATGC	TCGGCGGGCG	200
CGTCATGGAG	GAGTTGGACT	ATGGATTCTT	AGCGGAGATC	GGGGATGAGT	250
TACTTGACTG	CGAACCTGCT	TGGTGGGCAG	ACGAAGCGTA	TGAAATCGCG	300
GAGGCTCCGC	AGGGCTCGTG	CCCAGAGGCG	GCTGAGGGCG	TCATCGCCGG	350
GCGGCCAGTC	CGTTGTAACA	GCTGGGAGGC	GATCATCTGG	GATTACTTTT	400
ACTATGCCGA	TGAAGTACCA	CCAGTGGACT	GGCCTACAAA	GCACATAGAG	450
TCCTACAGGC	TCGCATGCAC	CTCACTCGGG	GCGGAAAAGG	TTGAGGTCTT	500
GCGTGCCGCT	TTCAGGTCGC	GATATGCGGC	CTAA		534

- (2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS: SUBSTITUTE SHEET

- (A) LENGTH: 465 base pairs
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

ATGGGCATCA	TTCGCACATG	TAGGCTCGGC	CCTGACCAAG	TCAAATCCAT	50
GCGGGCTGCT	CTTGATCTTT	TCGGTCGTGA	GTTCGGAGAC	GTAGCCACCT	100
ACTCCCAACA	TCAGCCGGAC	TCCGATTACC	TCGGGAACTT	GCTCCGTAGT	150
AAGACATTCA	TCGCGCTTGC	TGCCTTCGAC	CAAGAAGCGG	TTGTTGGCGC	200
TCTCGCGGCT	TACGTTCTGC	CCAGGTTTGA	GCAGCCGCGT	AGTGAGATCT	250
ATATCTATGA	TCTCGCAGTC	TCCGGCGAGC	ACCGGAGGCA	GGGCATTGCC	300
ACCGCGCTCA	TCAATCTCCT	CAAGCATGAG	GCCAACGCGC	TTGGTGCTTA	350
TGTGATCTAC	GTGCAAGCAG	ATTACGGTGA	CGATCCCGCA	GTGGCTCTCT	400
ATACAAAGTT	GGGCATACGG	GAAGAAGTGA	TGCACTTTGA	TATCGACCCA	450
AGTACCGCCA	CCTAA				465

- (2) INFORMATION FOR SEQ ID NO: 166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 861 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

GGAAGGCAAT	AACGGAGGCG	CTTCAAAAAC	TCGGAGTCCA	50
CTATTGATGG	TGCATGCCTC	ACTTAAAGCG	ATTGGTCCGG	100
AGCGGAGACG	GTCGTTGCCG	CGTTACGCTC	CGCGGTTGGG	150
CTGTGATGGG	ATACGCATCG	TGGGACCGAT	CACCCTACGA	200
AATGGCGCTC	GGTTGGATGA	CAAAACCCGC	CGTACCTGGC	250
TCCCGCAACG	GCCGGGACTT	ACCGTGGGTT	CGGCCTGCTG	300
TGGTTCAAGC	CCCCGCCGCG	CGGCGCAGCG	CGCACCCCGA	350
GTCGCGGTTG	GTCCACTGGC	TGAAACGCTG	ACGGAGCCTC	400
TCACGCCTTG	GGGGAAGGGT	CGCCCGTCGA	GCGGTTCGTT	450
GGAAGGCCCT	GCTGTTGGGT	GCGCCGCTAA	ACTCCGTTAC	500
TACGCCGAGG	CGGTTGCCGA	TATCCCCAAC	AAACGGCGGG	550
GATGCCGATG	CTTGGAAGCA		CGCCTGGAAA	600
	CTATTGATGG AGCGGAGACG CTGTGATGGG AATGGCGCTC TCCCGCAACG TGGTTCAAGC GTCGCGGTTG TCACGCCTTG GGAAGGCCCT TACGCCGAGG	CTATTGATGG TGCATGCCTC AGCGGAGACG GTCGTTGCCG CTGTGATGGG ATACGCATCG AATGGCGCTC GGTTGGATGA TCCCGCAACG GCCGGGACTT TGGTTCAAGC CCCCGGCGCG GTCGCGGTTG GTCCACTGGC TCACGCCTTG GGGGAAGGGT GGAAGGCCCT GCTGTTGGGT TACGCCGAGG CGGTTGCCGA	CTATTGATGG TGCATGCCTC ACTTAAAGCG AGCGGAGACG GTCGTTGCCG CGTTACGCTC CTGTGATGGG ATACGCATCG TGGGACCGAT AATGGCGCTC GGTTGGATGA CAAAACCCGC TCCCGCAACG GCCGGGACTT ACCGTGGGTT TGGTTCAAGC CCCCGGCGCG CGGCGCAGCG GTCGCGGTTG GTCCACTGGC TGAAACGCTG TCACGCCTTG GGGGAAGGGT CGCCCGTCGA GGAAGGCCCT GCTGTTGGGT GCGCCCTAA TACGCCGAGG CGGTTGCCGA TATCCCCAAC GATGCCGATG CTTGGAAGCA ACGGCGAAGT	CTATTGATGG TGCATGCCTC ACTTAAAGCG ATTGGTCCGG AGCGGAGACG GTCGTTGCCG CGTTACGCTC CGCGGTTGGG CTGTGATGGG ATACGCATCG TGGGACCGAT CACCCTACGA AATGGCGCTC GGTTGGATGA CAAAACCCGC CGTACCTGGC TCCCGCAACG GCCGGGACTT ACCGTGGGTT CGGCCTGCTG GTCGCGGTTG GTCCACTGGC TGAAACGCTG ACGGAGCCTC TCACGCCTTG GGGGAAGGGT CGCCCGTCGA GCGGTTCGTT GGAAGGCCCT GCTGTTGGGT GCGCCGCTAA ACTCCGTTAC TACGCCGAGG CGGTTGCCGA TATCCCCAAC AAACGGCGGG

ACGGCATCGG	ATTACGATTC	AAACGGCATT	CTCGATTGCT	TTGCTATCGA	650
AGGAAAGCCG	GATGCGGTCG	AAACTATAGC	AAATGCTTAC	GTGAAGCTCG	700
GTCGCCATCG	AGAAGGTGTC	GTGGGCTTTG	CTCAGTGCTA	CCTGTTCGAC	750
GCGCAGGACA	TCGTGACGTT	CGGCGTCACC	TATCTTGAGA	AGCATTTCGG	800
AACCACTCCG	ATCGTGCCAG	CACACGAAGT	CGCCGAGTGC	TCTTGCGAGC	8 5C
CTTCAGGTTA	G				861

(2) INFORMATION FOR SEQ ID NO: 167:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

ATGACCGATT	TGAATATCCC	GCATACACAC	GCGCACCTTG	TAGACGCATT	50
TCAGGCGCTC	GGCATCCGCG	CGGGGCAGGC	GCTCATGCTG	CACGCATCCG	100
TTAAAGCAGT	GGGCGCGTG	ATGGGCGGCC	CCAATGTGAT	CTTGCAGGCG	150
CTCATGGATG	CGCTCACGCC	CGACGCCACG	CTGATGATGT	ATGCGGGATG	200
GCAAGACATC	CCCGACTTTA	TCGACTCGCT	GCCGGACGCG	CTCAAGGCCG	250
TGTATCTTGA	GCAGCACCCA	CCCTTTGACC	CCGCCACCGC	CCGCGCCGTG	300
CGCGAAAACA	GCGTGCTAGC	GGAATTTTTG	CGCACATGGC	CGTGCGTGCA	350
TCGCAGCGCA	AACCCCGAAG	CCTCTATGGT	GGCGGTAGGC	AGGCAGGCCG	400
CTTTGCTGAC	CGCTAATCAC	GCGCTGGATT	ATGGCTACGG	AGTCGAGTCG	4 50
CCGCTGGCTA	AACTGGTGGC	AATAGAAGGA	TACGTGCTGA	TGCTTGGCGC	500
GCCGCTGGAT	ACCATCACAC	TGCTGCACCA	CGCGGAATAT	CTGGCCAAGA	550
TGCGCCACAA	GAACGTGGTC	CGCTACCCGT	GCCCGATTCT	GCGGGACGGG	600
CGCAAAGTGT	GGGTGACCGT	TGAGGACTAT	GACACCGGTG	ATCCGCACGA	650
CGATTATAGT	TTTGAGCAAA	TCGCGCGCGA	TTATGTGGCG	CAGGGCGGCG	700
GCACACGCGG	CAAAGTCGGT	GATGCGGATG	CTTACCTGTT	CGCCGCGCAG	750
GACCTCACAC	GGTTTGCGGT	GCAGTGGCTT	GAATCACGGT	TCGGTGACTC	800
AGCGTCATAC	GGATAG				816

(2) INFORMATION FOR SEQ ID NO: 168:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 498 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY UBSTITUTE SHEET

- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

ATGCTCTATG	AGTGGCTAAA	TCGATCTCAT	ATCGTCGAGT	GGTGGGGCGG	50
AGAAGAAGCA	CGCCCGACAC	TTGCTGACGT	ACAGGAACAG	TACTTGCCAA	100
GCGTTTTAGC	GCAAGAGTCC	GTCACTCCAT	ACATTGCAAT	GCTGAATGGA	150
GAGCCGATTG	GGTATGCCCA	GTCGTACGTT	GCTCTTGGAA	GCGGGGACGG	200
ATGGTGGGAA	GAAGAAACCG	ATCCAGGAGT	ACGCGGAATA	GACCAGTTAC	250
TGGCGAATGC	ATCACAACTG	GGCAAAGGCT	TGGGAACCAA	GCTGGTTCGA	300
GCTCTGGTTG	AGTTGCTGTT	CAATGATCCC	GAGGTCACCA	AGATCCAAAC	350
GGACCCGTCG	CCGAGCAACT	TGCGAGCGAT	CCGATGCTAC	GAGAAAGCGG	400
GGTTTGAGAG	GCAAGGTACC	GTAACCACCC	CAGATGGTCC	AGCCGTGTAC	450
ATGGTTCAAA	CACGCCAGGC	ATTCGAGCGA	ACACGCAGTG	ATGCCTAA	498

- (2) INFORMATION FOR SEQ ID NO: 169:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2007 base pairs

 - (B) TYPE: Nucleic acid(C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

ATGAAAAAGA	TAAAAATTGT	TCCACTTATT	TTAATAGTTG	TAGTTGTCGG	50
GTTTGGTATA	TATTTTTATG	CTTCAAAAGA	TAAAGAAATT	AATAATACTA	100
TTGATGCAAT	TGAAGATAAA	AATTTCAAAC	AAGTTTATAA	AGATAGCAGT	150
TATATTTCTA	AAAGCGATAA	TGGTGAAGTA	GAAATGACTG	AACGTCCGAT	200
ТАТАТАККА	AATAGTTTAG	GCGTTAAAGA	TATAAACATT	CAGGATCGTA	250
АААТААААА	AGTATCTAAA	AATAAAAAAC	GAGTAGATGC	TCAATATAAA	300
ATTAAAACAA	ACTACGGTAA	CATTGATCGC	AACGTTCAAT	TTAATTTTGT	350
TAAAGAAGAT	GGTATGTGGA	AGTTAGATTG	GGATCATAGC	GTCATTATTC	400
CAGGAATGCA	GAAAGACCAA	AGCATACATA	TTGAAAATTT	AAAATCAGAA	450
CGTGGTAAAA	TTTTAGACCG	AAACAATGTG	GAATTGGCCA	ATACAGGAAC	500
ACATATGAGA	TTAGGCATCG	TTCCAAAGAA	TGTATCTAAA	AAAGATTATA	550
AAGCAATCGC	TAAAGAACTA	AGTATTTCTG	AAGACTATAT	CAACAACAAA	600
TGGATCAAAA	TTGGGTACAA	GATGATACCT	TCGTTCCACT	TTAAAACCGT	650
TAAAAAAATG	GATGAATATT	TAAGTGATTT	CGCAAAAAA	TTTCATCTTA	700
CAACTAATGA	AACAGAAAGT	CGTAACTATC	CTCTAGAAAA	AGCGACTTCA	750
CATCTATTAG	GTTATGTTGG	TCCCATTAAC	TCTGAAGAAT	TAAAACAAAA	800
	SUB	STITUTI	ESHEE	Ì	

AGAATATAAA	GGCTATAAAG	ATGATGCAGT	TATTGGTAAA	AAGGGACTCG	850
AAAAACTTTA	CGATAAAAAG	CTCCAACATG	AAGATGGCTA	TCGTGTCACA	900
ATCGTTGACG	ATAATAGCAA	TACAATCGCA	CATACATTAA	TAGAGAAAA	950
GAAAAAAGAT	GGCAAAGATA	TTCAACTAAC	TATTGATGCT	AAAGTTCAAA	1000
AGAGTATTTA	TAACAACATG	AAAAATGATT	ATGGCTCAGG	TACTGCTATC	1050
CACCCTCAAA	CAGGTGAATT	ATTAGCACTT	GTAAGCACAC	CTTCATATGA	1100
CGTCTATCCA	TTTATGTATG	GCATGAGTAA	CGAAGAATAT	AATAAATTAA	1150
CCGAAGATAA	AAAAGAACCT	CTGCTCAACA	AGTTCCAGAT	TACAACTTCA	1200
CCAGGTTCAA	CTCAAAAAAT	ATTAACAGCA	ATGATTGGGT	TAAATAACAA	1250
AACATTAGAC	GATAAAACAA	GTTATAAAAT	CGATGGTAAA	GGTTGGCAAA	1300
AAGATAAATC	TTGGGGTGGT	TACAACGTTA	CAAGATATGA	AGTGGTAAAT	1350
GGTAATATCG	ACTTAAAACA	AGCAATAGAA	TCATCAGATA	ACATTTTCTT	1400
TGCTAGAGTA	GCACTCGAAT	TAGGCAGTAA	GAAATTTGAA	AAAGGCATGA	1450
AAAAACTAGG	TGTTGGTGAA	GATATACCAA	GTGATTATCC	ATTTTATAAT	1500
GCTCAAATTT	CAAACAAAAA	TTTAGATAAT	GAAATATTAT	TAGCTGATTC	1550
AGGTTACGGA	CAAGGTGAAA	TACTGATTAA	CCCAGTACAG	ATCCTTTCAA	1600
TCTATAGCGC	ATTAGAAAAT	AATGGCAATA	TTAACGCACC	TCACTTATTA	1650
AAAGACACGA	AAAACAAAGT	TTGGAAGAAA	AATATTATTT	CCAAAGAAAA	1700
TATCAATCTA	TTAAATGATG	GTATGCAACA	AGTCGTAAAT	AAAACACATA	1750
AAGAAGATAT	TTATAGATCT	TATGCAAACT	TAATTGGCAA	ATCCGGTACT	1800
GCAGAACTCA	AAATGAAACA	AGGAGAAAGT	GGCAGACAAA	TTGGGTGGTT	1850
TATATCATAT	GATAAAGATA	ATCCAAACAT	GATGATGGCT	ATTAATGTTA	1900
AAGATGTACA	AGATAAAGGA	ATGGCTAGCT	ACAATGCCAA	AATCTCAGGT	1950
AAAGTGTATG	ATGAGCTATA	TGAGAACGGT	TAAAAAAT	ACGATATAGA	2000
TGAATAA					2007

(2) INFORMATION FOR SEQ ID NO: 170:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2607 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

ATCAGTGTGG GACATAAATC AGAGATTTCC CCCTCTATTE TTTTTGCGCT 200									
	ATCAGTGTGG	GACATAAATC	AGAGATTTCC.	CETETATE	TTETTGCGCT	200			
	ACGCCAACGT								
	TGCATTCCAT	GCTCTTTCGC	CTCGCTTTGG	CGTTATGGCA	ACGATAATTA	100			
	ATGAATAACA	TCGGCATTAC	TGTTTATGGA	TGTGAGCAGG	ATGAGGCAGA	50			

WO 96/08582 PCT/CA95/00528

146

GAAGAGAGCC	GGTGTGAAAT	ATATTTCTAC	CCGAAGCATC	GGCTGCAATC	250
ATATAGATAC	AACTGCTGCT	AAGAGAATGG	GCATCACTGT	CGACAATGTG	300
GCGTACTCGC	CGGATAGCGT	TGCCGATTAT	ACTATGATGC	TAATTCTTAT	350
GGCAGTACGC	AACGTAAAAT	CGATTGTGCG	CTCTGTGGAA	AAACATGATT	400
TCAGGTTGGA	CAGCGACCGT	GGCAAGGTAC	TCAGCGACAT	GACAGTTGGT	450
GTGGTGGGAA	CGGGCCAGAT	AGGCAAAGCG	GTTATTGAGC	GGCTGCGAGG	500
ATTTGGATGT	AAAGTGTTGG	CTTATAGTCG	CAGCCGAAGT	ATAGAGGTAA	550
ACTATGTACC	GTTTGATGAG	TTGCTGCAAA	ATAGCGATAT	CGTTACGCTT	600
CATGTGCCGC	TCAATACGGA	TACGCACTAT	ATTATCAGCC	ACGAACAAAT	650
ACAGAGAATG	AAGCAAGGAG	CATTTCTTAT	CAATACTGGG	CGCGGTCCAC	700
TTGTAGATAC	CTATGAGTTG	GTTAAAGCAT	TAGAAAACGG	GAAACTGGGC	750
GGTGCCGCAT	TGGATGTATT	GGAAGGAGAG	GAAGAGTTTT	TCTACTCTGA	800
TTGCACCCAA	AAACCAATTG	ATAATCAATT	TTTACTTAAA	CTTCAAAGAA	850
TGCCTAACGT	GATAATCACA	CCGCATACGG	CCTATTATAC	CGAGCAAGCG	900
TTGCGTGATA	CCGTTGAAAA	AACCATTAAA	AACTGTTTGG	ATTTTGAAAG	950
GAGACAGGAG	CATGAATAGA	ATAAAAGTTG	CAATACTGTT	TGGGGGTTGC	1000
TCAGAGGAGC	ATGACGTATC	GGTAAAATCT	GCAATAGAGA	TAGCCGCTAA	1050
CATTAATAAA	GAAAAATACG	AGCCGTTATA	CATTGGAATT	ACGAAATCTG	1100
GTGTATGGAA	AATGTGCGAA	AAACCTTGCG	CGGAATGGGA	AAACGACAAT	1150
TGCTATTCAG	CTGTACTCTC	GCCGGATAAA	AAAATGCACG	GATTACTTGT	1200
TAAAAAGAAC	CATGAATATG	AAATCAACCA	TGTTGATGTA	GCATTTTCAG	1250
CTTTGCATGG	CAAGTCAGGT	GAAGATGGAT	CCATACAAGG	TCTGTTTGAA	1300
TTGTCCGGTA	TCCCTTTTGT	AGGCTGCGAT	ATTCAAAGCT	CAGCAATTTG	1350
TATGGACAAA	TCGTTGACAT	ACATCGTTGC	GAAAAATGCT	GGGATAGCTA	1400
CTCCCGCCTT	TTGGGTTATT	AATAAAGATG	ATAGGCCGGT	GGCAGCTACG	1450
TTTACCTATC	CTGTTTTTGT	TAAGCCGGCG	CGTTCAGGCT	CATCCTTCGG	1500
TGTGAAAAAA	GTCAATAGCG	CGGACGAATT	GGACTACGCA	ATTGAATCGG	1550
	TGACAGCAAA		AGCAGGCTGT		1600
GAGGTCGGTT	GTGCGGTATT				1650
GGTGGACCAA	ATCAGGCTGC	AGTACGGAAT	CTTTCGTATT	CATCAGGAAG	1700
TCGAGCCGGA	AAAAGGCTCT		TTATAACCGT		1750
CTTTCAGCAG	AGGAGCGAGG		GAAACGGCAA		1800
TAAAGCGCTC	GGCTGTAGAG	GTCTAGCCCG	TGTGGATATG	TTTTTACAAG	1850
ATAACGGCCC	CATTGTACTG		ATACTCTGCC		1900
TCATACAGTO	GTTATCCCCG		GCTGCAGGTA		1950
CGAACTGATT	GACCGCTTGA		GTTAAAGGGG		2000
GGAAATAGG <i>I</i>	TTTACTTTT	TAGATGAAAT	AGTACACGGT	GTTCGTTGGG	2050

ACGCTAAATA	TGCCACTTGG	GATAATTTCA	CCGGAAAACC	GGTTGACGGT	2100
TATGAAGTAA	ATCGCATTGT	AGGGACATAC	GAGTTGGCTG	AATCGCTTTT	2150
GAAGGCAAAA	GAACTGGCTG	CTACCCAAGG	GTACGGATTG	CTTCTATGGG	2200
ACGGTTACCG	TCCTAAGCGT	GCTGTAAACT	GTTTTATGCA	ATGGGCTGCA	2250
CAGCCGGAAA	ATAACCTGAC	AAAGGAAAGT	TATTATCCCA	ATATTGACCG	2300
AACTGAGATG	ATTTCAAAAG	GATACGTGGC	TTCAAAATCA	AGCCATAGCC	2350
GCGGCAGTGC	CATTGATCTT	ACGCTTTATC	GATTAGACAC	GGGTGAGCTT	2400
GTACCAATGG	GGAGCCGATT	TGATTTTATG	GATGAACGCT	CTCATCATGC	2450
	ATATCATGCA	ATGAAGCGCA	AAATCGCAGA	CGTTTGCGCT	2500
	AAACAGTGGG	TTTGAAGCAT	ATAGCCTCGA	ATGGTGGCAC	2550
ТАТСТАТТАА	GAGACGAACC	ATACCCCAAT	AGCTATTTTG	ATTTCCCCGT	2600
	GAGACGAACC	7111CCCC1M11			2607
TAAATAA					

(2) INFORMATION FOR SEQ ID NO: 171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1288 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

GGATCCATCA	GGCAACGACG	GGCTGCTGCC	GGCCATCAGC	GGACGCAGGG	50
AGGACTTTCC	GCAACCGGCC	GTTCGATGCG	GCACCGATGG	CCTTCGCGCA	100
GGGGTAGTGA	ATCCGCCAGG	ATTGACTTGC	GCTGCCCTAC	CTCTCACTAG	150
TGAGGGGCGG	CAGCGCATCA	AGCGGTGAGC	GCACTCCGGC	ACCGCCAACT	200
TTCAGCACAT	GCGTGTAAAT	CATCGTCGTA	GAGACGTCGG	AATGGCCGAG	250
CAGATCCTGC	ACGGTTCGAA	TGTCGTAACC	GCTGCGGAGC	AAGGCCGTCG	300
CGAACGAGTG	GCGGAGGGTG	TGCGGTGTGG	CGGGCTTCGT	GATGCCTGCT	350
TGTTCTACGG	CACGTTTGAA	GGCGCGCTGA	AAGGTCTGGT	CATACATGTG	400
ATGGCGACGC	ACGACACCGC	TCCGTGGATC	GGTCGAATGC	GTGTGCTGCG	450
CAAAAACCCA	GAACCACGGC	CAGGAATGCC	CGGCGCGCGG	ATACTTCCGC	500
TCAAGGGCGT	CGGGAAGCGC	AACGCCGCTG	CGGCCCTCGG	CCTGGTCCTT	550
CAGCCACCAT	GCCCGTGCAC	GCGACAGCTG	CTCGCGCAGG	CTGGGTGCCA	600
AGCTCTCGGG	TAACATCAAG	GCCCGATCCT	TGGAGCCCTT	GCCCTCCCGC	650
ACGATGATCG	TGCCGTGATC	GAAATCCAGA	TCCTTGACCC	GCAGTTGCAA	700
ACCCTCACTG		CCGTTCCATA	CAGAAGCTGG	GCGAACAAAC	750
GATGCTCGCC		CCGAGGATGC	GAACCACTTC	ATCCGGGGTC	800
AGCACCACCG				TCTCCTGAAG	850
AGCACCACCO	- SOBS	IIIUIE	SHEET		

CCAGGGCAGA	TCCGTGCACA	GCACCTTGCC	GTAGAAGAAC	AGCAAGGCCG	900
CCAATGCCTG	ACGATGCGTG	GAGACCGAAA	CCTTGCGCTC	GTTCGCCAGC	950
CAGGACAGAA	ATGCCTCGAC	TTCGCTGCTG	CCCAAGGTTG	CCGGGTGACG	1000
CACACCGTGG	AAACGGATGA	AGGCACGAAC	CCAGTGGACA	TAAGCCTGTT	1050
CGGTTCGTAA	GCTGTAATGC	AAGTAGCGTA	TGCGCTCACG	CAACTGGTCC	1100
AGAACCTTGA	CCGAACGCAG	CGGTGGTAAC	GGCGCAGTGG	CGGTTTTCAT	1150
GGCTTGTTAT	GACTGTTTTT	TTGTACAGTC	TATGCCTCGG	GCATCCAAGC	1200
AGCAAGCGCG	TTACGCCGTG	GGTCGATGTT	TGATGTTATG	GAGCAGCAAC	1250
GATGTTACGC	AGCAGGGCAG	TCGCCCTAAA	ACAAAGTT		1288

(2) INFORMATION FOR SEQ ID NO: 172:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1650 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

GTTAGATGCA	CTAAGCACAT	AATTGCTCAC	AGCCAAACTA	TCAGGTCAAG	50
TCTGCTTTTA	TTATTTTAA	GCGTGCATAA	TAAGCCCTAC	ACAAATTGGG	100
AGATATATCA	TGAAAGGCTG	GCTTTTTCTT	GTTATCGCAA	TAGTTGGCGA	150
AGTAATCGCA	ACATCCGCAT	TAAAATCTAG	CGAGGCTTT	ACTAAGCTTG	200
CCCCTTCCGC	CGTTGTCATA	ATCGGTTATG	GCATCGCATT	TTATTTTCTT	250
TCTCTGGTTC	TGAAATCCAT	CCCTGTCGGT	GTTGCTTATG	CAGTCTGGTC	300
GGGACTCGGC	GTCGTCATAA	TTACAGCCAT	TGCCTGGTTG	CTTCATGGGC	350
AAAAGCTTGA	TGCGTGGGGC	TTTGTAGGTA	TGGGGCTCAT	AATTGCTGCC	400
TTTTTGCTCG	CCCGATCCCC	ATCGTGGAAG	TCGCTGCGGA	GGCCGACGCC	450
ATGGTGACGG	TGTTCGGCAT	TCTGAATCTC	ACCGAGGACT	CCTTCTTCGA	500
TGAGAGCCGG	CGGCTAGACC	CCGCCGGCGC	TGTCACCGCG	GCGATCGAAA	550
TGCTGCGAGT	CGGATCAGAC	GTCGTGGATG	TCGGACCGGC	CGCCAGCCAT	600
CCGGACGCGA	GGCCTGTATC	GCCGGCCGAT	GAGATCAGAC	GTATTGCGCC	650
GCTCTTAGAC	GCCCTGTCCG	ATCAGATGCA	CCGTGTTTCA	ATCGACAGCT	700
TCCAACCGGA	AACCCAGCGC	TATGCGCTCA	AGCGCGGCGT	GGGCTACCTG	750
AACGATATCC	AAGGATTTCC	TGACCCTGCG	CTCTATCCCG	ATATTGCTGA	800
GGCGGACTGC	AGGCTGGTGG	TTATGCACTC	AGCGCAGCGG	GATGGCATCG	850
CCACCCGCAC	CGGTCACCTT	CGACCCGAAG	ACGCGCTCGA	CGAGATTGTG	900
CGGTTCTTCG	AGGCGCGGGT	TTCCGCCTTG	CGACGGAGCG	GGGTCGCTGC	950
CGACCGGCTC	ATCCTCGATC	CGGGGATGGG		AGCCCCGCAC	1000
	SUBS	TITUTE	SHEET		

CGGAAACATC	GCTGCACGTG	CTGTCGAACC	TTCAAAAGCT	GAAGTCGGCG	1050
TTGGGGCTTC	CGCTATTGGT	CTCGGTGTCG	CGGAAATCCT	TCTTGGGCGC	1100
CACCGTTGGC	CTTCCTGTAA	AGGATCTGGG	TCCAGCGAGC	CTTGCGGCGG	1150
AACTTCACGC	GATCGGCAAT	GGCGCTGACT	ACGTCCGCAC	CCACGCGCCT	1200
GGAGATCTGC	GAAGCGCAAT	CACCTTCTCG	GAAACCCTCG	CGAAATTTCG	1250
CAGTCGCGAC	GCCAGAGACC	GAGGGTTAGA	TCATGCCTAG	CATTCACCTT	1300
CCGGCCGCCC	GCTAGCGGAC	CCTGGTCAGG	TTCCGCGAAG	GTGGGCGCAG	1350
ACATGCTGGG	CTCGTCAGGA	TCAAACTGCA	CTATGAGGCG	GCGGTTCATA	1400
CCGCGCCAGG	GGAGCGAATG	GACAGCGAGG	AGCCTCCGAA	CGTTCGGGTC	1450
GCCTGCTCGG	GTGATATCGA	CGAGGTTGTG	CGGCTGATGC	ACGACGCTGC	1500
GGCGTGGATG	TCCGCCAAGG	GAACGCCCGC	CTGGGACGTC	GCGCGGATCG	1550
ACCGGACATT	CGCGGAGACC	TTCGTCCTGA	GATCCGAGCT	CCTAGTCGCG	1600
AGTTGCAGCG	ACGGCATCGT	CGGCTGTTGC	ACCTTGTCGG	CCGAGGATCC	1650

(2) INFORMATION FOR SEQ ID NO: 173:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 630 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

ATGGGTCCGA	ATCCTATGAA	AATGTATCCT	ATAGAAGGAA	ACAAATCAGT	50
ACAATTTATC	AAACCTATTT	TAGAAAAATT	AGAAAATGTT	GAGGTTGGAG	100
AATACTCATA	TTATGATTCT	AAGAATGGAG	AAACTTTTGA	TAAGCAAATT	150
TTATATCATT	ATCCAATCTT	AAACGATAAG	TTAAAAATAG	GTAAATTTTG	200
CTCAATAGGA	CCAGGTGTAA	CTATTATTAT	GAATGGAGCA	AATCATAGAA	250
TGGATGGCTC	AACATATCCA	TTTAATTTAT	TTGGTAATGG	ATGGGAGAAA	300
CATATGCCAA	AATTAGATCA	ACTACCTATT	AAGGGGGATA	CAATAATAGG	350
TAATGATGTA	TGGATAGGAA	AAGATGTTGT	AATTATGCCA	GGAGTAAAAA	400
TCGGGGATGG	TGCAATAGTA	GCTGCTAATT	CTGTTGTTGT	AAAAGATATA	4 50
GCGCCATACA	TGTTAGCTGG	AGGAAATCCT	GCTAACGAAA	TAAAACAAAG	500
ATTTGATCAA	GATACAATAA	ATCAGCTGCT	TGATATAAAA	TGGTGGAATT	550
GGCCAATAGA	CATTATTAAT	GAGAATATAG	ATAAAATTCT	TGATAATAGC	600
ATCATTAGAG	AAGTCATATG	GAAAAAATGA			630

- (2) INFORMATION FOR SEQ ID NO: 174:
 - (i) SEQUENCE CHARACTERISTICS:

WO 96/08582 PCT/CA95/00528

150

- (A) LENGTH: 1440 base pairs(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

•					
ATGAATATAG	TTGAAAATGA	AATATGTATA	AGAACTTTAA	TAGATGATGA	50
TTTTCCTTTG	ATGTTAAAAT	GGTTAACTGA	TGAAAGAGTA	TTAGAATTTT	100
ATGGTGGTAG	AGATAAAAAA	TATACATTAG	AATCATTAAA	AAAACATTAT	150
ACAGAGCCTT	GGGAAGATGA	AGTTTTTAGA	GTAATTATTG	AATATAACAA	200
TGTTCCTATT	GGATATGGAC	AATATATAA	AATGTATGAT	GAGTTATATA	250
CTGATTATCA	TTATCCAAAA	ACTGATGAGA	TAGTCTATGG	TATGGATCAA	300
TTTATAGGAG	AGCCAAATTA	TTGGAGTAAA	GGAATTGGTA	CAAGATATAT	350
TAAATTGATT	TTTGAATTTT	TGAAAAAAGA	AAGAAATGCT	AATGCAGTTA	400
TTTTAGACCC	TCATAAAAAT	AATCCAAGAG	CAATAAGGGC	ATACCAAAAA	450
TCTGGTTTTA	GAATTATTGA	AGATTTGCCA	GAACATGAAT	TACACGAGGG	500
CAAAAAAGAA	GATTGTTATT	TAATGGAATA	TAGATATGAT	GATAATGCCA	550
CAAATGTTAA	GGCAATGAAA	TATTTAATTG	AGCATTACTT	TGATAATTTC	600
AAAGTAGATA	GTATTGAAAT	AATCGGTAGT	GGTTATGATA	GTGTGGCATA	650
TTTAGTTAAT	AATGAATACA	TTTTTAAAAC	AAAATTTAGT	ACTAATAAGA	700
AAAAAGGTTA	TGCAAAAGAA	AAAGCAATAT	ATAATTTTTT	AAATACAAAT	750
TTAGAAACTA	ATGTAAAAAT	TCCTAATATT	GAATATTCGT	ATATTAGTGA	800
TGAATTATCT	ATACTAGGTT	ATAAAGAAAT	TAAAGGAACT	TTTTTAACAC	850
CAGAAATTTA	TTCTACTATG	TCAGAAGAAG	AACAAAATTT	GTTAAAACGA	900
GATATTGCCA	GTTTTTTAAG	ACAAATGCAC	GGTTTAGATT	ATACAGATAT	950
TAGTGAATGT	ACTATTGATA	АТАААСАААА		GAGTATATAT	1000
TGTTGCGTGA	AACTATTAT	AATGATTTAA		AAAAGATTAT	1050
ATAGAAAGTT	TTATGGAAAG	ACTAAATGCA		TTGAGGGTAA	1100
AAAGTGTTT	TGCCATAATG	ATTTTAGTT	TAATCATCTA	TTGTTAGATG	1150
GCAATAATA	ATTAACTGGA	ATAATTGATT		TGGAATTATA	1200
GATGAATAT	r gtgatttat	ATACTTACT	r Gaagatagtg	AAGAAGAAAT	1250
AGGAACAAA!	r tttggagaag	ATATATTAA(1300
TTGAGAAAG	C AAAAGAATAT	CAAGATATA	G TTGAAGAATA		1350
GAAACTATT	G TTTATGGAAT				1400
TGGTAGAAA	A GAAATTTATA	AAAGGACTT	A TAAAGATTGA	•	1440

(2) INFORMATION FOR SEQ ID NO: 175:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 660 base pairs

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

TTGAATTTAA	ACAATGACCA	TGGACCTGAT	CCCGAAAATA	TTTTACCGAT	50
AAAAGGGAAT	CGGAATCTTC	AATTTATAAA	ACCTACTATA	ACGAACGAAA	100
ACATTTTGGT	GGGGGAATAT	TCTTATTATG	ATAGTAAGCG	AGGAGAATCC	150
TTTGAAGATC	AAGTCTTATA	TCATTATGAA	GTGATTGGAG	ATAAGTTGAT	200
TATAGGAAGA	TTTTGTTCAA	TTGGTCCCGG	AACAACATTT	ATTATGAATG	250
GTGCAAACCA	TCGGATGGAT	GGATCAACAT	ATCCTTTTCA	TCTATTCAGG	300
ATGGGTTGGG	AGAAGTATAT	GCCTTCCTTA	AAAGATCTTC	CCTTGAAAGG	350
GGACATTGAA	ATTGGAAATG	ATGTATGGAT	AGGTAGAGAT	GTAACCATTA	400
TGCCTGGGGT	GAAAATTGGG	GACGGGGCAA	TCATTGCTGC	AGAAGCTGTT	450
GTCACAAAGA	ATGTTGCTCC	CTATTCTATT	GTCGGTGGAA	ATCCCTTAAA	500
ATTTATAAGA	AAAAGGTTTT	CTGATGGAGT	TATCGAAGAA	TGGTTAGCTT	550
TACAATGGTG	GAATTTAGAT	ATGAAAATTA	TTAATGAAAA	TCTTCCCTTC	600
ATAATAAATG	GAGATATCGA	AATGCTGAAG	AGAAAAAGAA	AACTTCTAGA	650
TGACACTTGA					660

(2) INFORMATION FOR SEQ ID NO: 176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1569 base pairs
 - TYPE: Nucleic acid (B)
 - (C) STRANDEDNESS: Double
 - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:

ATGAAAATAA	TGTTAGAGGG	ACTTAATATA	AAACATTATG	TTCAAGATCG	50	
TTTATTGTTG	AACATAAATC	GCCTAAAGAT	TTATCAGAAT	GATCGTATTG	100	
GTTTAATTGG	TAAAAATGGA	AGTGGAAAAA	CAACGTTACT	TCACATATTA	150	
TATAAAAAAA	TTGTGCCTGA	AGAAGGTATT	GTAAAACAAT	TTTCACATTG	200	
TGAACTTATT	CCTCAATTGA	AGCTCATAGA	ATCAACTAAA	AGTGGTGGTG	250	
AAGTAACACG	AAACTATATT	CGGCAAGCGC	TTGATAAAAA	TCCAGAACTG	300	
CTATTAGCAG	ATGAACCAAC	ANCOPACTOR	GALAACA ACT	ATATAGAAAA	350	
CTATTAGCAG ATGAACCAA BASTITUTEASAAT 350						

ATTAGAACAG	GATTTAAAAA	ATTGGCATGG	AGCATTTATT	ATAGTTTCAC	400
ATGATCGCGC	TTTTTTAGAT	AACTTGTGTA	CTACTATATG	GGAAATTGAC	450
GAGGGAAGAA	TAACTGAATA	TAAGGGGAAT	TATAGTAACT	ATGTTGAACA	500
AAAAGAATTA	GAAAGACATC	GAGAAGAATT	AGAATATGAA	AAATATGAAA	550
AAGAAAAGAA	ACGATTGGAA	AAAGCTATAA	ATATAAAAGA	ACAGAAAGCT	600
CAACGAGCAA	CTAAAAAACC	GAAAAACTTA	AGTTTATCTG	AAGGCAAAAT	650
AAAAGGAGCA	AAGCCATACT	TTGCAGGTAA	GCAAAAGAAG	TTACGAAAAA	700
CTGTAAAATC	TCTAGAAACC	AGACTAGAAA	AACTTGAAAG	CGTCGAAAAG	750
AGAAACGAAC	TTCCTCCACT	TAAAATGGAT	TTAGTGAACT	TAGAAAGTGT	800
AAAAAATAGA	ACTATAATAC	GTGGTGAAGA	TGTCTCGGGT	ACAATTGAAG	850
GACGGGTATT	GTGGAAAGCA	AAAAGTTTTA	GTATTCGCGG	AGGAGACAAG	900
ATGGCAATTA	TCGGATCTAA	TGGTACAGGA	AAGACAACGT	TTATTAAAAA	950
AATTGTGCAT	GGGAATCCTG	GTATTTCATT	ATCGCCATCT	GTCAAAATCG	1000
GTTATTTTAG	ССААААААТА	GATACATTAG	AATTAGATAA	GAGCATTTTA	1050
GAAAATGTTC	AATCTTCTTC	ACAACAAAAT	GAAACTCTTA	TTCGAACTAT	1100
TCTAGCTAGA	ATGCATTTTT	TTAGAGATGA	TGTTTATAAA	CCAATAAGTG	1150
TCTTAAGTGG	TGGAGAGCGA	GTTAAAGTAG	CACTAACTAA	AGTATTCTTA	1200
AGTGAAGTTA	ATACGTTGGT	ACTAGATGAA	CCAACAAACT	TTCTTGATAT	1250
GGAAGCTATA	GAGGCGTTTG	AATCTTTGTT	AAAGGAATAT	AATGGCAGTA	1300
TAATCTTTGT	ATCTCACGAT	CGTAAATTTA	TCGAAAAAGT	AGCCACTCGA	1350
ATAATGACAA	TTGATAATAA	AGAAATAAAA	ATATTTGATG	GCACATATGA	1400
ACAATTTAAA	CAAGCTGAAA	AGCCAACAAG	GAATATTAAA	GAAGATAAAA	1450
AACTTTTACT	TGAGACAAAA	ATTACAGAAG	TACTCAGTCG	ATTGAGTATT	1500
GAACCTTCGG	AAGAATTAGA	ACAAGAGTTT	CAAAACTTAA	TAAATGAAAA	1550
ልል ርልልልጥጥፕር	GATAAATAA		,		1569

(2) INFORMATION FOR SEQ ID NO: 177:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1467 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

ATGGAACAAT ATACAATTAA ATTTAACCAA ATCAATCATA AATTGACAGA 50
TTTACGATCA CTTAACATCG ATCATCTTTA TGCTTACCAA TTTGAAAAAA 100

TAGCACTTAT	TGGGGGTAAT	GGTACTGGTA	AAACCACATT	ACTAAATATG	150
ATTGCTCAAA	AAACAAAACC	AGAATCTGGA	ACAGTTGAAA	CGAATGGCGA	200
AATTCAATAT	TTTGAACAGC	TTAACATGGA	TGTGGAAAAT	GATTTTAACA	250
CGTTAGACGG	TAGTTTAATG	AGTGAACTCC	ATATACCTAT	GCATACAACC	300
GACAGTATGA	GTGGTGGTGA	AAAAGCAAAA	TATAAATTAC	GTAATGTCAT	350
ATCAAATTAT	AGTCCGATAT	TACTTTTAGA	TGAACCTACA	AATCACTTGG	400
ATAAAATTGG	TAAAGATTAT	CTGAATAATA	TTTTAAAATA	TTACTATGGT	450
ACTTTAATTA	TAGTAAGTCA	CGATAGAGCA	CTTATAGACC	AAATTGCTGA	500
CACAATTTGG	GATATACAAG	AAGATGGCAC	AATAAGAGTG	TTTAAAGGTA	550
ATTACACACA	GTATCAAAAT	CAATATGAAC	AAGAACAGTT	AGAACAACAA	600
CGTAAATATG	AACAGTATAT	AAGTGAAAAA	CAAAGATTGT	CCCAAGCCAG	650
TAAAGCTAAA	CGAAATCAAG	CGCAACAAAT	GGCACAAGCA	TCATCAAAAC	700
AAAAAAATAA	AAGTATAGCA	CCAGATCGTT	TAAGTGCATC	AAAAGAAAAA	750
GGCACGGTTG	AGAAGGCTGC	TCAAAAACAA	GCTAAGCATA	TTGAAAAAAG	800
AATGGAACAT	TTGGAAGAAG	TTGAAAAACC	ACAAAGTTAT	CATGAATTCA	850
ATTTTCCACA	TTAAAATAAA	TATGATATCC	ATAATAATTA	TCCAATCATT	900
GCACAAAATC	TAACATTGGT	TAAAGGAAGT	CAAAAACTGC	TAACACAAGT	950
ACGATTCCAA	ATACCATATG	GCAAAAATAT	AGCGCTCGTA	GGTGCAAATG	1000
GTGTAGGTAA	GACAACTTTA	CTTGAAGCTA	TTTACCACCA	AATAGAGGGA	1050
ATTGATTGTT	CTCCTAAAGT	GCAAATGGCA	TACTATCGTC	AACTTGCTTA	1100
TGAAGACATG	CGTGACGTTT	CATTATTGCA	ATATTTAATG	GATGAAACGG	1150
ATTCATCAGA	ATCATTCAGT	AGAGCTATTT	TAAATAACTT	GGGTTTAAAT	1200
GAAGCACTTG	AGCGTTCTTG	TAATGTTTTG	AGTGGTGGGG	AAAGAACGAA	1250
ATTATCGTTA	GCAGTATTAT	TTTCAACGAA	AGCGAATATG	TTAATTTTGG	1300
ATGAACCAAC	TAATTTTTTA	GATATTAAAA	CATTAGAAGC	ATTAGAAATG	1350
TTTATGAATA	AATATCCTGG	AATCATTTTG	TTTACATCAC	ATGATACAAG	1400
GTTTGTTAAA	CATGTATCAG	ATAAAAAATG	GGAATTAACA	GGACAATCTA	1450
TTCATGATAT	AACTTAA				1467

WO 96/08582 PCT/CA95/00528

154

CLAIMS

What is claimed is:

25

30

- A method using probes (fragments and/or oligonucleotides) 5 and/or amplification primers which are specific, ubiquitous and sensitive for determining the presence and/or amount of nucleic acids from bacterial species selected from the group consisting of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus 10 pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, faecalis, Staphylococcus saprophyticus, Enterococcus Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis in a any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or 15 variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said bacterial species. 20
 - 2. A method as defined in claim 1 further using probes (fragments and/or oligonucleotides) and/or amplification primers which are universal and sensitive for determining the presence and/or amount of nucleic acids from any bacteria from any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said any bacteria.
 - 35 3. A method as defined in claim 1 further using probes (fragments and/or oligonucleotides) and/or amplification primers which are specific, ubiquitous and sensitive for

155

determining the presence and/or amount of nucleic acids from an antibiotic resistance gene selected from the group consisting of blatem, Blarob, Blashy, aadB, aacC1, aacC2, mecA, vanA, vanH, vanX, satA, aacA-aphD, vat, aacC3, aacA4, vga, msrA, sul and int in any sample suspected of containing 5 said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said 10 probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said antibiotic resistance gene.

- 15 4. The method of any one of claims 1, 2 and 3 which is performed directly on a sample obtained from human patients, animals, environment or food.
- 5. The method of any one of claims 1, 2 and 3 which is 20 performed directly on a sample consisting of one or more bacterial colonies.
- 6. The method of any one of claims 1 to 5, wherein the bacterial nucleic acid is amplified by a method selected from the group consisting of:
 - a) polymerase chain reaction (PCR),
 - b) ligase chain reaction,
 - c) nucleic acid sequence-based amplification,
 - d) self-sustained sequence replication,
 - e) strand displacement amplification,
 - f) branched DNA signal amplification,
 - g) nested PCR, and
 - h) multiplex PCR.
- 35 7. The method of claim 6 wherein said bacterial nucleic acid is amplified by PCR.

10

15

25

30

35

- 8. The method of claim 7 wherein the PCR protocol is modified to determine within one hour the presence of said bacterial nucleic acids by performing for each amplification cycle an annealing step of only one second at 55°C and a denaturation step of only one second at 95°C without any elongation step.
- 9. A method for the detection, identification and/or quantification of *Escherichia coli* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

- 20 said bacterial DNA being in a substantially single stranded form;
 - b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Escherichia coli, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Escherichia coli* in said test sample.

5

10

- 10. A method as defined in claim 9, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-227 nucleotides in length which sequence is comprised in SEQ ID NO: 3 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-278 nucleotides in length which sequence is comprised in SEQ ID NO: 4 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-1596 nucleotides in length 15 which sequence is comprised in SEQ ID NO: 5 or a complementary sequence thereof,
 - 4) an oligonucleotide of 12-2703 nucleotides in length which sequence is comprised in SEQ ID NO: 6 or a complementary sequence thereof,
- 5) an oligonucleotide of 12-1391 nucleotides in length which sequence is comprised in SEQ ID NO: 7 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Escherichia coli.

25

30

35

- 11. The method of claim 10, wherein the probe for detecting nucleic acid sequences from *Escherichia coli* is selected from the group consisting of SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54 and a sequence complementary thereof.
- 12. A method for detecting the presence and/or amount of Escherichia coli in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having

35

158

at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of *Escherichia coli* DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 15 target sequence as an indication of the presence and/or amount of Escherichia coli in said test sample.
 - 13. The method of claim 12, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 42 and SEQ ID NO: 43,
 - b) SEQ ID NO: 46 and SEQ ID NO: 47,
 - c) SEQ ID NO: 55 and SEQ ID NO: 56, and
 - d) SEQ ID NO: 131 and SEQ ID NO: 132.
- 25 14. A method for the detection, identification and/or quantification of *Klebsiella pneumoniae* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 30 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

15

20

25

30

35

159

said bacterial DNA being in a substantially single
stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Klebsiella pneumoniae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Klebsiella pneumoniae* in said test sample.
 - 15. A method as defined in claim 14, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-238 nucleotides in length which sequence is comprised in SEQ ID NO: 8 or a complementary sequence thereof,
 - 2) an oligonucleotide of 12-385 nucleotides in length which sequence is comprised in SEQ ID NO: 9 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-462 nucleotides in length which sequence is comprised in SEQ ID NO: 10 or a complementary sequence thereof,
 - 4) an oligonucleotide of 12-730 nucleotides in length which sequence is comprised in SEQ ID NO: 11 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of *Klebsiella* pneumoniae.

- 5 16. The method of claim 15, wherein the probe for detecting nucleic acid sequences from *Klebsiella pneumoniae* is selected from the group consisting of SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 69 and a sequence complementary thereof.
 - 17. A method for detecting the presence and/or amount of Klebsiella pneumoniae in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Klebsiella pneumoniae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, and SEQ ID NO: 11;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- 30 c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Klebsiella pneumoniae in said test sample.
- 18. The method of claim 17, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 61 and SEQ ID NO: 62,
 - b) SEQ ISUBSTITUTE SHEET

15

20

25

30

35

161

- c) SEQ ID NO: 135 and SEQ ID NO: 136, and
- d) SEQ ID NO: 137 and SEQ ID NO: 138.
- 19. A method for the detection, identification and/or quantification of Proteus mirabilis directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of *Proteus mirabilis*, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Proteus mirabilis* in said test sample.

30

1621

- A method as defined in claim 19, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-225 nucleotides in length which sequence is comprised in SEQ ID NO: complementary sequence thereof,
- 2) an oligonucleotide of 12-402 nucleotides in length which sequence is comprised in SEQ ID NO: 13 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-157 nucleotides in length which sequence is comprised in SEQ ID NO: 14 or 10 complementary sequence thereof,
 - 4) an oligonucleotide of 12-1348 nucleotides in length which sequence is comprised in SEQ 15 ID NO: or complementary sequence thereof, and
- variants thereof which specifically and ubiquitously 15 anneal with strains and representatives of Proteus mirabilis.
- The method of claim 20, wherein the probe for detecting 21. nucleic acid sequences from Proteus mirabilis is selected from the group consisting of SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID 20 NO: 72, SEQ ID NO: 73, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID SEQ ID NO: 81, SEQ ID NO: 82 and a sequence 80, complementary thereof.
- 22. A method for detecting the presence and/or amount of 25 Proteus mirabilis in a test sample which comprises the following steps:
- treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Proteus mirabilis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a 35 template, said at least one pair of primers being chosen from

within one of the following sequences: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, and SEQ ID NO: 15;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of *Proteus mirabilis* in said test sample.

10

5

- 23. The method of claim 22, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 74 and SEQ ID NO: 75, and
 - b) SEQ ID NO: 133 and SEQ ID NO: 134.

15

25

30

35

- 24. A method for the detection, identification and/or quantification of Staphylococcus saprophyticus directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphylococcus saprophyticus, under conditions such that the nucleic acid of

said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus saprophyticus in said test sample.
- 25. A method as defined in claim 24, wherein said probe is selected from the group consisting of:
- an oligonucleotide of 12-172 nucleotides in length
 which sequence is comprised in SEQ ID NO: 21 or a complementary sequence thereof,
 - 2) an oligonucleotide of 12-155 nucleotides in length which sequence is comprised in SEQ ID NO: 22 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-145 nucleotides in length which sequence is comprised in SEQ ID NO: 23 or a complementary sequence thereof,
 - 4) an oligonucleotide of 12-265 nucleotides in length which sequence is comprised in SEQ ID NO: 24 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus saprophyticus.

30 26. The method of claim 25, wherein the probe for detecting nucleic acid sequences from Staphylococcus saprophyticus is selected from the group consisting of SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104 and a sequence complementary thereof.

25

10

15

25

30

35

- 27. A method for detecting the presence and/or amount of Staphylococcus saprophyticus in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus saprophyticus DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 24;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus saprophyticus in said test sample.
 - 28. The method of claim 27, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 98 and SEQ ID NO: 99, and
 - b) SEQ ID NO: 139 and SEQ ID NO: 140.
 - 29. A method for the detection, identification and/or quantification of *Moraxella catarrhalis* directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert

166

support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

- b) contacting said single stranded DNA with a probe, said 5 probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 28, SEQ ID NO: 29, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or 10 representatives of Moraxella catarrhalis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label 15 being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label 20 on said inert support or in said solution as an indication of the presence and/or amount of Moraxella catarrhalis in said test sample.
- 30. A method as defined in claim 29, wherein said probe is selected from the group consisting of:
 - 1) an oligonucleotide of 12-526 nucleotides in length which sequence is comprised in SEQ ID NO: 28 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-466 nucleotides in length 30 which sequence is comprised in SEQ ID NO: 29 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Moraxella catarrhalis.

31. The method of claim 30, wherein the probe for detecting nucleic acid sequences from Moraxella catarrhalis is selected

from the group consisting of SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117 and a sequence complementary thereof.

5

30

- 32. A method for detecting the presence and/or amount of *Moraxella catarrhalis* in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Moraxella catarrhalis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 28 and SEQ ID NO: 29;
- 20 b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Moraxella catarrhalis in said test sample.
 - 33. The method of claim 32, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEO ID NO: 112 and SEQ ID NO: 113,
 - b) SEQ ID NO: 118 and SEQ ID NO: 119, and
 - c) SEQ ID NO: 160 and SEQ ID NO: 119.
- 34. A method for the detection, identification and/or quantification of Pseudomonas aeruginosa directly from a test sample or from bacterial colonies, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single 10 stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, a sequence complementary thereof, a 15 part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Pseudomonas aeruginosa, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said 20 complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said 25 probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Pseudomonas aeruginosa* in said test sample.
 - 35. A method as defined in claim 34, wherein said probe is selected from the group consisting of:

30

35

1) an oligonucleotide of 12-2167 nucleotides in length which sequence is comprised in SEQ ID NO: 16 or a complementary sequence thereof,

20

30

35

169

- 2) an oligonucleotide of 12-1872 nucleotides in length which sequence is comprised in SEQ ID NO: 17 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-3451 nucleotides in length which sequence is comprised in SEQ ID NO: 18 or a complementary sequence thereof,
- 4) an oligonucleotide of 12-744 nucleotides in length which sequence is comprised in SEQ ID NO: 19 or a complementary sequence thereof,
- 5) an oligonucleotide of 12-2760 nucleotides in length which sequence is comprised in SEQ ID NO: 20 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of *Pseudomonas* aeruginosa.

- 36. The method of claim 35, wherein the probe for detecting nucleic acid sequences from *Pseudomonas aeruginosa* is selected from the group consisting of SEQ ID NO: 87, SEQ ID NO: 88, SEQ ID NO: 89, SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95 and a sequence complementary thereof.
- 37. A method for detecting the presence and/or amount of 25 Pseudomonas aeruginosa in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of *Pseudomonas aeruginosa* DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ

ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19 and SEQ ID NO: 20;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Pseudomonas aeruginosa in said test sample.

10

5

- 38. The method of claim 37, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 83 and SEQ ID NO: 84, and
 - b) SEQ ID NO: 85 and SEQ ID NO: 86.

15

25

30

35

- 39. A method for the detection, identification and/or quantification of *Staphylococcus epidermidis* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 36, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphylococcus epidermidis, under conditions such that the nucleic acid of said probe can selectively hybridize with said

10

15

25

30

35

171

bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Staphylococcus epidermidis* in said test sample.
- 40. A method as defined in claim 39, wherein said probe is selected from the group consisting of an oligonucleotide of 12-705 nucleotides in length which sequence is comprised in SEQ ID NO: 36 and variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus epidermidis.
- 41. A method for detecting the presence and/or amount of 20 Staphylococcus epidermidis in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus epidermidis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the following sequence: SEQ ID NO: 36;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and

25

30

35

- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus epidermidis in said test sample.
- 5 42. The method of claim 41, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 145 and SEQ ID NO: 146, and
 - b) SEQ ID NO: 147 and SEQ ID NO: 148.
- 10 43. A method for the detection, identification and/or quantification of Staphylococcus aureus directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 15 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 37, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphylococcus aureus, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus aureus in said test sample.

5

10

15

20

25

30

- 44. A method as defined in claim 43, wherein said probe is selected from the group consisting of an oligonucleotide of 12-442 nucleotides in length which sequence is comprised in SEQ ID NO: 37 and variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus aureus.
- 45. A method for detecting the presence and/or amount of Staphylococcus aureus in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus aureus DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the following sequence: SEQ ID NO: 37;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus aureus in said test sample.
- 35 46. The method of claim 45, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 149 and SEQ ID NO: 150,

- b) SEQ ID NO: 149 and SEQ ID NO: 151, and
- c) SEQ ID NO: 152 and SEQ ID NO: 153.

5

10

15

20

25

30

35

47. A method for the detection, identification and/or quantification of *Haemophilus influenzae* directly from a test sample or from bacterial colonies, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Haemophilus influenzae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Haemophilus influenzae* in said test sample.

- 48. A method as defined in claim 47, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-845 nucleotides in length which sequence is comprised in SEQ ID NO: 25 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-1598 nucleotides in length which sequence is comprised in SEQ ID NO: 26 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-9100 nucleotides in length 10 which sequence is comprised in SEQ ID NO: 27 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Haemophilus influenzae.

15

5

49. The method of claim 48, wherein the probe for detecting nucleic acid sequences from Haemophilus influenzae is selected from the group consisting of SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107 and a sequence complementary thereof.

20

35

- 50. A method for detecting the presence and/or amount of Haemophilus influenzae in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Haemophilus influenzae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 25, SEQ ID NO: 26 and SEQ ID NO: 27;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence,

25

176

and amplifying said target sequence, if any, to a detectable level; and

- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Haemophilus influenzae in said test sample.
- The method of claim 50, wherein said at least one pair of 51. primers comprises the following pair: SEQ ID NO: 154 and SEQ ID NO: 155.
- 10 52. A method for the detection, identification and/or quantification of Streptococcus pneumoniae directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 15 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert 20 support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34, SEQ ID NO: 35, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously 30 anneals with strains or representatives of Streptococcus pneumoniae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said 35 probe or the label being present on a first reactive member of

said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Streptococcus pneumoniae* in said test sample.
- 53. A method as defined in claim 52, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-631 nucleotides in length which sequence is comprised in SEQ ID NO: 30 or a complementary sequence thereof,
 - 2) an oligonucleotide of 12-3754 nucleotides in length which sequence is comprised in SEQ ID NO: 31 or a complementary sequence thereof,
 - 3) an oligonucleotide of 12-841 nucleotides in length which sequence is comprised in SEQ ID NO: 34 or a complementary sequence thereof,
- 4) an oligonucleotide of 12-4500 nucleotides in length 20 which sequence is comprised in SEQ ID NO: 35 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Streptococcus pneumoniae.

25

5

15

54. The method of claim 53, wherein the probe for detecting nucleic acid sequences from Streptococcus pneumoniae is selected from the group consisting of SEQ ID NO: 120, SEQ ID NO: 121 and a sequence complementary thereof.

30

- 55. A method for detecting the presence and/or amount of Streptococcus pneumoniae in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution 35 containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two

complementary strands of Streptococcus pneumoniae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34 and SEQ ID NO: 35;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Streptococcus pneumoniae in said test sample.

15

25

5

10

- 56. The method of claim 55, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 78 and SEQ ID NO: 79,
 - b) SEQ ID NO: 156 and SEQ ID NO: 157, and
- 20 c) SEQ ID NO: 158 and SEQ ID NO: 159.
 - 57. A method for the detection, identification and/or quantification of Streptococcus pyogenes directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
- inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single 35 stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid

10

15

25

35

which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 32, SEQ ID NO: 33, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Streptococcus pyogenes, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Streptococcus pyogenes* in said test sample.
- 58. A method as defined in claim 57, wherein said probe is selected from the group consisting of:
- 20 1) an oligonucleotide of 12-1337 nucleotides in length which sequence is comprised in SEQ ID NO: 32 or a complementary sequence thereof,
 - 2) an oligonucleotide of 12-1837 nucleotides in length which sequence is comprised in SEQ ID NO: 33 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of *Streptococcus* pyogenes.

- 30 59. A method for detecting the presence and/or amount of Streptococcus pyogenes in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of *Streptococcus pyogenes* DNA that

10

30

35

180

contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 32 and SEQ ID NO: 33;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Streptococcus pyogenes in said test sample.
- 15 60. The method of claim 59, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 141 and SEQ ID NO: 142, and
 - b) SEQ ID NO: 143 and SEQ ID NO: 144.
- 20 61. A method for the detection, identification and/or quantification of Enterococcus faecalis directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 25 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, a sequence

15

20

25

30

35

complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Enterococcus faecalis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Enterococcus faecalis* in said test sample.

62. A method as defined in claim 61, wherein said probe is selected from the group consisting of:

- 1) an oligonucleotide of 12-1817 nucleotides in length which sequence is comprised in SEQ ID NO: 1 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-2275 nucleotides in length which sequence is comprised in SEQ ID NO: 2, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Enterococcus faecalis.

- 63. A method for detecting the presence and/or amount of Enterococcus faecalis in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Enterococcus faecalis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target

sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 1 and SEQ ID NO: 2;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount
 of Enterococcus faecalis in said test sample.
 - 64. The method of claim 63, wherein said at least one pair of primers is selected from the group consisting of:
 - a) SEQ ID NO: 38 and SEQ ID NO: 39, and
- b) SEQ ID NO: 40 and SEQ ID NO: 41.

25

30

35

- 65. A method for the detection of the presence and/or amount of any bacterial species directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a universal probe which sequence is selected from the group consisting of SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130 and a sequence complementary thereof, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being

present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of said any bacterial species in said test sample.
- 10 66. A method for detecting the presence and/or amount of any bacterial species in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing a pair of universal primers which sequence is defined in SEQ ID NO: 126 and SEQ ID NO: 127, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said any bacterial species DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of said any bacterial species in said test sample.
- 30 67. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene blatem (TEM-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving
 in solution the bacterial DNA of the sample or of a
 substantially homogenous population of bacteria isolated from
 this sample or
 SUBSTITUTE SHEET

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

5 said bacterial DNA being in a substantially single stranded form;

10

15

20

25

35

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 161, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a β -lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene TEM-1.

68. A method as defined in claim 67, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 161.

30 69. A method for evaluating a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene bla_{tem} (TEM-1) in a test sample which comprises the following steps:

a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two

CHRSTITUTE SHEET

15

20

25

35

complementary strands of said bacterial antibiotic resistance gene coding for a β -lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 161;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene TEM-1.
 - 70. A method for evaluating a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene bla_{rob} (ROB-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single 30 stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 162, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a β -lactamase, under conditions such that the

10

20

25

30

35

nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene ROB-1.
- 71. A method as defined in claim 70, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 162.
 - 72. A method for evaluating a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene bla_{rob} (ROB-1) in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a β -lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 162;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to

15

20

25

30

35

 β -lactam antibiotics mediated by the bacterial antibiotic resistance gene ROB-1.

- 73. A method for evaluating a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene bla_{shv} (SHV-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 163, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a β -lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene SHV-1.

- 74. A method as defined in claim 73, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 163.
- 5 75. A method for evaluating a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene bla_{Shv} (SHV-1) in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a β-lactamase that contains a target sequence,
 15 and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 163;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene SHV-1.
- 76. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a
 35 substantially homogenous population of bacteria isolated from this sample, or

10

20

25

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 164, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside adenylyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a 15 hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB.
 - A method as defined in claim 76, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 164.
- 78. A method for evaluating a bacterial resistance 30 aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB in a test sample which comprises the following steps:
- treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having 35 at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two

15

20

25

30

35

190

complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside adenylyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 164;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB.
 - 79. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacCl directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 165, a sequence complementary thereof, a part thereof and a variant thereof, which

specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1.
- 15 80. A method as defined in claim 79, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 165.
- 81. A method for evaluating a bacterial resistance to 20 aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1 in a test sample which comprises the following steps:

25

30

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 165;
- 35 b) synthesizing an extension product of each of said primers which extension products contain the target sequence,

10

15

20

25

30

35

192

and amplifying said target sequence, if any, to a detectable level; and

- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1.
- 82. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2 directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 166, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

193

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2.
- 83. A method as defined in claim 82, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 166.
- 10 84. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2 in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO:
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- 30 c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2.
- 35 85. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3 directly from a test sample

10

15

20

25

30

35

194

or from bacterial colonies, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 167, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3.
- 86. A method as defined in claim 85, wherin said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 167.
- 87. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial

10

35

antibiotic resistance gene aacC3 in a test sample which comprises the following steps:

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 167;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 20 target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3.
- 88. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4 directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 30 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 168, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

10

15

20

25

30

35

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4.
 - 89. A method as defined in claim 88, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 168.
 - 90. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4 in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so

20

25

30

35

as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 168;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 10 target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4.
- 91. A method for evaluating a bacterial resistance to β -lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 169, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a penicillin-binding protein, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling

means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to ß-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA.
- 10 92. A method as defined in claim 91, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 169.
- 93. A method for evaluating a bacterial resistance to β15 lactam antibiotics mediated by the bacterial antibiotic
 resistance gene mecA in a test sample which comprises the
 following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a penicillin-binding protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 169;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and

30

35

c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to ß-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA.

199

- 94. A method for evaluating a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- 15 b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 170, a sequence complementary thereof, a part thereof and a variant thereof, 20 specifically anneals with said bacterial antibiotic resistance genes coding for vancomycin-resistance proteins, conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected 25 by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label 30 on said inert support or in said solution as an indication of a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX.
- 95. A method as defined in claim 94, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 170.

10

35

96. A method for evaluating a bacterial resistance vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX in a test sample which comprises the following steps:

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance genes coding for vancomycin-resistance proteins that contain a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 170; 15
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 20 target sequence as an indication of a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX.
- 97. A method for evaluating a bacterial resistance to 25 streptogramin A mediated by the bacterial antibiotic resistance gene satA directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a 30 substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

10

15

20

25

30

35

said bacterial DNA being in a substantially single
stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 173, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a streptogramin A acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA.
 - 98. A method as defined in claim 97, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 173.

99. A method for evaluating a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA in a test sample which comprises the

following steps:

a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for streptogramin A acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so

25

30

35

as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 173:

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA.
- 100. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 174, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase-phosphotransferase under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial

10

15

20

25

35

DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD.
- 101. A method as defined in claim 100, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 174.
- 102. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD in a test sample which comprises the following steps:
- treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance coding for an aminoglycoside acetyltransferasegene phosphotransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined 30 in SEQ ID NO: 174;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to

10

15

20

25

30

35

aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD.

- 103. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 175, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a virginiamycin acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat.

- 104. A method as defined in claim 103, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 175.
- 5 105. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a virginiamycin acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 175;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 25 target sequence as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat.
- 106. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga directly from a test sample or from bacterial colonies, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

15

20

25

35

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing *in situ* said inoculated sample or isolated bacteria to release the bacterial DNA,

5 said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 176, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an ATP-binding protein, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga.

107. A method as defined in claim 106, therein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 176.

- 30 108. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene *vga* in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance

10

20

25

30

35

gene coding for an ATP-binding protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 176;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga.

109. A method for evaluating a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA directly from a test sample or from bacterial

colonies, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated

bacteria to release the bacterial DNA, said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 177, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an erythromycin resistance protein under conditions such that the nucleic acid of said probe can

10

15

35

208

selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA.
- 110. A method as defined in claim 109, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 177.

111. A method for evaluating a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene *msrA* in a test sample which comprises the following steps:

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an erythromycin resistance protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 177;
 - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to

35

209

erythromycin mediated by the bacterial antibiotic resistance gene msrA.

- 112. A method for evaluating potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene *int* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single
stranded form;

- b) contacting said single stranded DNA with a probe, said 20 probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 171, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance 25 gene coding for an integrase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first 30 reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene *int*.

- 113. A method as defined in claim 112, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 171.
- 5 114. A method for evaluating potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene *int* in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an integrase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 171;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene int.
- 30 115. A method for evaluating potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul directly from a test sample or from bacterial colonies, which comprises the following steps:
- 35 a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a

25

35

211

substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid 10 which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 172, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a sulfonamide resistance protein under 15 conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said 20 labelling means, said first reactive member reacting with a second reactive member present on said probe; and
 - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul.
- 116. A method as defined in claim 115, wherein said probe 30 comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 172.
 - 117. A method for evaluating potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul in a test sample which comprises the following steps:

10

15

20

25

30

212

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a sulfonamide resistance protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 172;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of potential bacterial resistance to β -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul.
- 118. A nucleic acid having the nucleotide sequence of any one of SEQ ID NOs: 1 to 37, SEQ ID NOs: 161 to 177, a part thereof and variants thereof which, when in single stranded form, ubiquitously and specifically hybridize with a target bacterial DNA as a probe or as a primer.
- 119. An oligonucleotide having a nucleotidic sequence of any one of SEQ ID NOs: 38 to 160.
- 120. A recombinant plasmid comprising a nucleic acid as defined in claim 118.
- 121. A recombinant host which has been transformed by a recombinant plasmid according to claim 120.

213

- 122. A recombinant host according to claim 121 wherein said host is Escherichia coli.
- 123. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 9, 14, 19, 24, 29, 34, 39, 43, 47, 52, 57 and 61, comprising any combination of probes defined therein.
- 10 124. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 44, 48, 49, 53, 54, 58, 62 and 65, comprising any combination of oligonucleotide probes defined therein.
- 125. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 41, 42, 45, 46, 50, 51, 55, 56, 59, 60, 63, 64 and 66 comprising any combination of primers defined therein.
- 126. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106 and 109 comprising any combination of probes defined therein.
- 30 127. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107 and 110 comprising any combination of oligonucleotide probes defined therein.
 - 128. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial

resistance genes defined in any one of claims 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108 and 111 comprising any combination of primers defined therein.

- 5 129. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 123, comprising any combination of the bacterial probes defined therein and any combination of the probes to the antibiotic resistance genes defined in any one of SEQ ID NOs: 161 to 177 in whole or in part.
- 130. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 124, comprising any combination of the bacterial oligonucleotide probes defined therein and any combination of oligonucleotide probes that hybridize to the antibiotic resistance genes defined in any one of SEQ ID NOS: 161 to 177.

20

25

131. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 125, comprising any combination of the primers defined therein and any combination of primers that anneal to the antibiotic resistance genes defined in any one of SEQ ID NOS: 161 to 177.