Automating Workflows for the City of Montgomery

BRANNON WALDEN

Contents

- 1. Introduction
- 2. Explanation of Data
- 3. Feature Engineering
- 4. Model Analysis
- 5. Model Summary
- 6. Next Steps
- 7. Appendix

Introduction

The City of Montgomery Inspections Department:

- Issues building permits for construction projects.
- Documents permit applications by entering long descriptions of the projects scope along with many other fields such as location, owner, estimated costs, permit types, zoning, etc.
- Data entry is time consuming and diverts staff attention away from code enforcement and other tasks.

Hypothesis:

The Use Type field, and possibly Job Type, could be automagically populated without human input and with better than average (>52.81%) results using natural language processing and machine learning techniques.

Explanation of Data

After removing
Mixed Occupancy
values, which are
rare occurrences,
the Use Type field
looks good for
binary classification.

Baseline metric = 52.81% accuracy

Feature Engineering

The Description
Field was converted
to Bag of Words, I2
normalized and tfidf representations
and compared using
logistic regression.

The results indicated the tf-idf representation as the top performer.

Logistic Regression

Logistic Regression

Random Forest

Multilayer Perceptron outperforms Random Forest

Model Summary

	Logistic Regression				Random Forest				Multilayer Perceptron			
Test Accuracy	99.34%				97.97%				99.34%			
Validation Accuracy	97.71%				97.71%				98.47%			
Confusion Matrix of model on validation set	Commercial	Commercial 371	Residential	True label Residential Commercial		Commercial 368	Residential		Commercial	Commercial 375	Residential 8	
	True label	12	657		9	660		True label	8	661		
		Predicted label			Predicted label				Predicted label			

Next Steps

Logistic Regression Multiclass Classification | Initial Test Accuracy: 86.04%

Next Steps

- Continue to fine tune and evaluate models and model performance
- Simplify code and isolate each model into its own notebook
- Save models for quicker analysis
- Further develop models for Job Type multiclass classification
- Create a project proposal and deck for presentation to city stakeholders
- Setup and meet with city stakeholders

Appendix

Data Source:

https://data.montgomeryal.gov/Permits/Building-Permit-2014-Present-Download-/qvzc-ejq2

Project Repository:

https://git.generalassemb.ly/bdub595217/project-final

Other Sources:

https://scikit-learn.org

https://machinelearningmastery.com

Zheng, Alice, and Amanda Casari. "Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists." O'Reilly, 2018.

Géron, Aurélien. "Hands-On Machine Learning with Scikit-Learn and TensorFlow." O'Reilly, 2017.