# The Graph Structure of Process Interpretations of Regular Expressions

#### Clemens Grabmayer

https://clegra.github.io

Department of Computer Science



S GRAN SASSO SCIENCE INSTITUTE



SCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore

L'Aquila, Italy

#### IFIP 1.6 Working Group Meeting

Nancy

July 1, 2024

#### Overview

- ▶ regular expressions (unary/binary star/1-free-under-star (\*/±))
- Milner's process interpretation P/semantics [·]<sub>P</sub>
  - ▶  $P-/\llbracket \cdot \rrbracket_P$ -expressible graphs ( $\rightarrow$  expressibility question)
  - ▶ axioms for []-identity (~ completeness question)
- ▶ loop existence and elimination (LEE)
  - defined by loop elimination rewrite system, its completion
  - describes interpretations of (\*/+) reg. expr.s (extraction possible)
  - ▶ LEE-witnesses: labelings of process graphs with LEE
  - ▶ LEE is preserved under bisimulation collapse (stepwise collapse)
- ▶ 1-LEE = sharing via 1-transitions facilitates LEE

- ► LEE/1-LEE characterize image of P<sup>•</sup> (restricted/unrestricted)
  - ▶ where P<sup>•</sup> a compact (sharing-increased) refinement of P
- outlook on work-to-do

#### Overview

- ▶ regular expressions (unary/binary star/1-free-under-star (\*/±))
- Milner's process interpretation P/semantics [·]<sub>P</sub>
  - ▶  $P_-/\llbracket \cdot \rrbracket_{P}$ -expressible graphs ( $\rightarrow$  expressibility question)
  - axioms for []p-identity (~ completeness question)
- ▶ loop existence and elimination (LEE)
  - defined by loop elimination rewrite system, its completion
  - describes interpretations of (\*/+) reg. expr.s (extraction possible)
  - ▶ LEE-witnesses: labelings of process graphs with LEE
  - ▶ LEE is preserved under bisimulation collapse (stepwise collapse)
- ▶ 1-LEE = sharing via 1-transitions facilitates LEE
  - describes interpretations of all reg. expr.s (extraction possible)
  - not preserved under bisimulation collapse (approximation possible)
- ▶ LEE/1-LEE characterize image of P<sup>•</sup> (restricted/unrestricted)
  - ▶ where P<sup>•</sup> a compact (sharing-increased) refinement of P
  - ▶ via refined extraction using LEE/1-LEE
- outlook on work-to-do

```
Definition ( \sim Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary Kleene star: e, e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^* (for a \in A).
```

▶ symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$ 

```
Definition ( \sim Copi–Elgot–Wright, 1958) 
Regular expressions over alphabet A with unary Kleene star: e, e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^* (for a \in A).
```

- **>** symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$
- with unary star \*: 1 is definable as 0\*

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for  $a \in A$ ).  
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{\textcircled{\$}} e_2$  (for  $a \in A$ ).

- ▶ symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$
- with unary star \*: 1 is definable as 0\*
- ▶ with binary star <sup>®</sup>: 1 is not definable (in its absence)

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for  $a \in A$ ).  
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{*} e_2$  (for  $a \in A$ ).

- ▶ symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$
- with unary star \*: 1 is definable as 0\*
- ▶ with binary star <sup>®</sup>: 1 is not definable (in its absence)

#### 1-free)

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for  $a \in A$ ).  
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{\otimes} e_2$  (for  $a \in A$ ).

- ▶ symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$
- with unary star \*: 1 is definable as 0\*
- ▶ with binary star <sup>®</sup>: 1 is not definable (in its absence)

#### Definition (for process interpretation)

1-free regular expressions over alphabet A with

binary Kleene star:

$$f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^{\bullet} f_2$$
 (for  $a \in A$ ).

#### 1-free)

Definition (~ Kleene, 1951, ~ Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for  $a \in A$ ).  
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^*$  (for  $a \in A$ ).

- ▶ symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$
- with unary star \*: 1 is definable as 0\*
- ▶ with binary star <sup>®</sup>: 1 is not definable (in its absence)

#### Definition (for process interpretation)

1-free regular expressions over alphabet A with unary/binary Kleene star:

$$f, f_1, f_2 ::= 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid (f_1^*) \cdot f_2$$
 (for  $a \in A$ ),  
 $f, f_1, f_2 ::= 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^{\mathfrak{G}} f_2$  (for  $a \in A$ ).

### Regular Expressions (under-star-/1-free)

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for  $a \in A$ ).  
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^*$  (for  $a \in A$ ).

- ▶ symbol  $\mathbf{0}$  instead of  $\emptyset$ , symbol  $\mathbf{1}$  instead of  $\{\epsilon\}$
- with unary star \*: 1 is definable as 0\*
- ▶ with binary star <sup>®</sup>: 1 is not definable (in its absence)

#### Definition (for process interpretation)

The set  $RExp^{(4)}(A)$  of 1-free regular expressions over A is defined by:

$$f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^* \cdot f_2$$
 (for  $a \in A$ ),

the set  $RExp^{(*/4)}(A)$  of under-star-1-free regular expressions over A by:

$$uf$$
,  $uf_1$ ,  $uf_2 := 0 \mid 1 \mid a \mid uf_1 + uf_2 \mid uf_1 \cdot uf_2 \mid f^*$  (for  $a \in A$ ).

#### Process interpretation P of regular expressions (Milner, 1984)

### Process interpretation P of regular expressions (Milner, 1984)

#### Process interpretation P of regular expressions (Milner, 1984)

$$0 \stackrel{P}{\longmapsto} \operatorname{deadlock} \delta, \text{ no termination}$$

$$1 \stackrel{P}{\longmapsto} \operatorname{empty-step process} \epsilon, \text{ then terminate}$$

$$a \stackrel{P}{\longmapsto} \operatorname{atomic action} a, \text{ then terminate}$$

$$e_1 + e_2 \stackrel{P}{\longmapsto} (\operatorname{choice}) \operatorname{execute} P(e_1) \operatorname{or} P(e_2)$$

$$e_1 \cdot e_2 \stackrel{P}{\longmapsto} (\operatorname{sequentialization}) \operatorname{execute} P(e_1), \operatorname{then} P(e_2)$$

$$e^* \stackrel{P}{\longmapsto} (\operatorname{iteration}) \operatorname{repeat} (\operatorname{terminate} \operatorname{or} \operatorname{execute} P(e))$$

$$\llbracket e \rrbracket_P := \llbracket P(e) \rrbracket_{\stackrel{\triangle}{\mapsto}} (\operatorname{bisimilarity} \operatorname{equivalence} \operatorname{class} \operatorname{of} \operatorname{process} P(e))$$





























#### Definition (Transition system specification T)

$$\frac{e_i \xrightarrow{a} e'_i}{a \xrightarrow{a} 1} \qquad \frac{e_i \xrightarrow{a} e'_i}{e_1 + e_2 \xrightarrow{a} e'_i} \quad (i \in \{1, 2\})$$

#### Definition (Transition system specification T)

$$\frac{e_i \xrightarrow{a} e'_i}{e_1 + e_2 \xrightarrow{a} e'_i} (i \in \{1, 2\})$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$

#### Definition (Transition system specification $\mathcal{T}$ )

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \overline{(e^{*}) \Downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

#### Definition (Transition system specification $\mathcal{T}$ )

$$\frac{e_{i} \downarrow \qquad e_{2} \downarrow \qquad e$$

#### Definition (Transition system specification $\mathcal{T}$ )

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{a^{a} + 1}{a^{a} + 1} \qquad \frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{1} \cdot e_{2}} \qquad \frac{e_{1} \Downarrow}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{2}} \qquad \frac{e^{a} \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

#### Definition

The process (graph) interpretation P(e) of a regular expression e:

 $P(e) := labeled transition graph generated by e by derivations in <math>\mathcal{T}$ .





#### *P*-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (example, formally)



# *P*-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)



*P*-expressible

$$[\cdot]_{P}$$
-expressible  $[\cdot]_{P}$ -expressible

## *P*-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)



*P*-expressible

 $[\cdot]_{P}$ -expressible  $[\cdot]_{P}$ -expressible

# *P*-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)



*P*-expressible

 $[\![\cdot]\!]_P$ -expressible  $[\![\cdot]\!]_P$ -expressible

**not** *P*-expressible **not**  $[\cdot]_P$ -expressible

# P-expressibility and $[\cdot]_{P}$ -expressibility (examples)



*P*-expressible

 $\|\cdot\|_{P}$ -expressible  $\|\cdot\|_{P}$ -expressible

**not** P-expressible **not**  $\|\cdot\|_{P}$ -expressible

# *P*-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples)



*P*-expressible

 $[\![\cdot]\!]_P$ -expressible

 $[\cdot]_{P}$ -expressible

**not** P-expressible **not**  $\llbracket \cdot \rrbracket_P$ -expressible

Q: How can P-expressibility and  $\llbracket \cdot \rrbracket_{P}$ -expressibility be characterized?

# Properties of P, $[\cdot]_P$ , and $=_{\cdot\mid\cdot\mid_P}$

- ▶ Not every finite-state process is *P*-expressible.
- Not every finite-state process is [[·]]<sub>P</sub>-expressible (= P-expressible modulo ↔).
- ▶ Fewer identities hold for  $=_{\llbracket \cdot \rrbracket_P}$  than for  $=_{\llbracket \cdot \rrbracket_I}$ :



$$P(a \cdot (b+c))$$

$$P(a \cdot b + a \cdot c)$$

# Properties of P, $[\cdot]_P$ , and $=_{\cdot\mid\cdot\mid_P}$

- ▶ Not every finite-state process is *P*-expressible.
- Not every finite-state process is  $[\cdot]_{P}$ -expressible (= P-expressible modulo  $\stackrel{\hookrightarrow}{=}$ ).
- ▶ Fewer identities hold for  $=_{\mathbb{E} \cdot \mathbb{I}_P}$  than for  $=_{\mathbb{E} \cdot \mathbb{I}_I}$ :



# Properties of P, $[\cdot]_P$ , and $=_{\cdot|_P}$

- ▶ Not every finite-state process is *P*-expressible.
- Not every finite-state process is [[·]]<sub>P</sub>-expressible (= P-expressible modulo ↔).
- ▶ Fewer identities hold for  $=_{\llbracket \cdot \rrbracket_P}$  than for  $=_{\llbracket \cdot \rrbracket_I}$ :



# Properties of P, $[\cdot]_P$ , and $=_{\cdot|_P}$

- ▶ Not every finite-state process is *P*-expressible.
- Not every finite-state process is [[·]]<sub>P</sub>-expressible (= P-expressible modulo ↔).
- ▶ Fewer identities hold for  $=_{\llbracket \cdot \rrbracket_P}$  than for  $=_{\llbracket \cdot \rrbracket_I}$ :



# Properties of P, $[\cdot]_P$ , and $=_{\cdot\mid\cdot\mid_P}$

- ▶ Not every finite-state process is *P*-expressible.
- Not every finite-state process is [[·]]<sub>P</sub>-expressible (= P-expressible modulo ↔).
- ► Fewer identities hold for  $=_{\llbracket \cdot \rrbracket_P}$  than for  $=_{\llbracket \cdot \rrbracket_I}$ :  $=_{\llbracket \cdot \rrbracket_P} \nsubseteq =_{\llbracket \cdot \rrbracket_I}$ .



### (Q1) Complete axiomatization:

Is the axiom system suggested by Milner complete for  $=_{\llbracket \cdot \rrbracket_P}$ ?

### (Q2) $[\cdot]_{P}$ -Expressibility:

What structural property characterizes process graphs that are  $\llbracket \cdot \rrbracket_P$ -expressible?

### (Q1) Complete axiomatization:

Is the axiom system suggested by Milner complete for  $=_{\llbracket \cdot \rrbracket_P}$ ?

### (Q2) $[\cdot]_{P}$ -Expressibility:

What structural property characterizes process graphs that are  $\llbracket \cdot \rrbracket_{P}$ -expressible?

▶ is decidable (Baeten/Corradini/G, 2007)

### (Q1) Complete axiomatization:

Is the axiom system suggested by Milner complete for  $=_{\llbracket \cdot \rrbracket_P}$ ?

### (Q2) $[\cdot]_{P}$ -Expressibility:

What structural property characterizes process graphs that are  $\llbracket \cdot \rrbracket_P$ -expressible?

- ▶ is decidable (Baeten/Corradini/G, 2007)
- partial new answer (G/Fokkink, 2020):
  - bisimulation collapse has loop existence & elimination property (LEE) if expressible by under-star-1-free regular expression

### (Q1) Complete axiomatization:

Is the axiom system suggested by Milner complete for =<sub>[-]p</sub>?

- series of partial completeness results for:
  - exitless iterations (Fokkink, 1998)
  - with a stronger fixed-point rule (G, 2006)
  - ▶ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
  - ▶ with 0 but under-star-1-free (G/Fokkink, 2020)

### (Q2) $[\cdot]_{P}$ -Expressibility:

What structural property characterizes process graphs that are  $\lceil \cdot \rceil_{P}$ -expressible?

- ▶ is decidable (Baeten/Corradini/G, 2007)
- partial new answer (G/Fokkink, 2020):
  - bisimulation collapse has loop existence & elimination property (LEE) if expressible by under-star-1-free regular expression

### (Q1) Complete axiomatization:

Is the axiom system suggested by Milner complete for  $=_{\mathbb{R}_p}$ ?

- Yes! (G, 2022, proof summary, employing LEE and crystallization)
- series of partial completeness results for:
  - exitless iterations (Fokkink, 1998)
  - with a stronger fixed-point rule (G, 2006)
  - ▶ under-star 1-free, and without 0 (Corradini/de Nicola/Labella, 2004)
  - ▶ with 0 but under-star-1-free (G/Fokkink, 2020)

### (Q2) $[\cdot]_{P}$ -Expressibility:

What structural property characterizes process graphs that are  $\lceil \cdot \rceil_{P}$ -expressible?

- ▶ is decidable (Baeten/Corradini/G, 2007)
- partial new answer (G/Fokkink, 2020):
  - bisimulation collapse has loop existence & elimination property (LEE) if expressible by under-star-1-free regular expression

#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



 $(L1), \frac{(L2)}{(L1)}$   $(L1), (L2), \frac{(L3)}{(L3)}$ 

#### Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



(L1),<del>(L2)</del>

(L1),(L2),<del>(L3)</del>

#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



#### Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.



## Loop elimination



## Loop elimination



## Loop elimination







































































- $\longrightarrow_{elim}$ : eliminate a transition-induced loop by:
  - removing the loop-entry transition(s)
  - garbage collection
- →<sub>prune</sub>: remove a transition to a deadlocking state

#### Lemma

(i)  $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$  is terminating.

- $\longrightarrow_{elim}$ : eliminate a transition-induced loop by:
  - removing the loop-entry transition(s)
  - garbage collection
- →<sub>prune</sub>: remove a transition to a deadlocking state

#### Lemma

(i)  $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$  is terminating.

ov reg-expr proc-int loop loop-elim confluence LEE LEE-witness extraction collapse 1-LEE cp-proc-int refd-extr char's summ res +



ov reg-expr proc-int loop loop-elim confluence LEE LEE-witness extraction collapse 1-LEE cp-proc-int refd-extr char's summ res +















































































#### Loop elimination, and properties

- →<sub>elim</sub>: eliminate a transition-induced loop by:
  - removing the loop-entry transition(s)
  - garbage collection
- →<sub>prune</sub>: remove a transition to a deadlocking state

#### Lemma

- (i)  $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$  is terminating.
- (ii)  $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$  is decreasing, and so due to (i) locally confluent.



#### Loop elimination, and properties

- →<sub>elim</sub>: eliminate a transition-induced loop by:
  - removing the loop-entry transition(s)
  - garbage collection
- → prune: remove a transition to a deadlocking state

#### Lemma

- (i)  $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$  is terminating.
- (ii)  $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$  is decreasing, and so due to (i) locally confluent.
- $(iii) \longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}} is confluent.$



#### Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace*{1cm}} \mathsf{elim}$$

 $\wedge G_0$  has no infinite trace).

#### Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left( G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \mathsf{elim} \right.$$

$$\land G_0 \text{ has no infinite trace} \right).$$

#### Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an  $\longrightarrow_{\text{elim}}$  normal form without an infinite trace.

#### Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \land G_0 \text{ has no infinite trace}).$$

#### Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an  $\longrightarrow_{\text{elim}}$  normal form without an infinite trace.
- (iii) There is an  $\longrightarrow_{\text{elim,prune}}$  normal form without an infinite trace.

#### Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \land G_0 \text{ has no infinite trace}).$$

#### Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an  $\longrightarrow_{\text{elim}}$  normal form without an infinite trace.
- (iii) There is an →<sub>elim,prune</sub> normal form without an infinite trace.
- (iv) Every  $\longrightarrow_{\text{elim}}$  normal form is without an infinite trace.
- (v) Every  $\longrightarrow_{\text{elim,prune}}$  normal form is without an infinite trace.

#### Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \land G_0 \text{ has no infinite trace}).$$

#### Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an  $\longrightarrow_{\text{elim}}$  normal form without an infinite trace.
- (iii) There is an →<sub>elim,prune</sub> normal form without an infinite trace.
- (iv) Every  $\longrightarrow_{\text{elim}}$  normal form is without an infinite trace.
- (v) Every  $\longrightarrow_{\text{elim,prune}}$  normal form is without an infinite trace.

#### Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

# Failure of LEE in general (example)



no loop subchart, but infinite paths

# Failure of LEE in general (example)



LEE

no loop subchart, but infinite paths









































## Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

```
(Int)_{P}^{(*/+)}: P^{\bullet}-(*/\pm)-expressible graphs have structural property LEE Process interpretations P(e) of (*/\pm) regular expressions e are finite process graphs that satisfy LEE.

(Extr)_{P}: LEE implies [\cdot]_{P}-expressibility

From every finite process graph G with LEE a regular expression e can be extracted such that G \hookrightarrow P(e).
```

## Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

```
(Int)_{D}^{(*/\pm)}: P^{\bullet}-(*/\pm)-expressible graphs have structural property LEE
                Process interpretations P(e)
                 of (*/1) regular expressions e
                   are finite process graphs that satisfy LEE.
(Extr)<sub>P</sub>: LEE implies \llbracket \cdot \rrbracket_P-expressibility
              From every finite process graph G with LEE
               a regular expression e can be extracted
                 such that G \stackrel{\text{def}}{=} P(e).
(Coll): LEE is preserved under collapse
            The class of finite process graphs with LEE
              is closed under bisimulation collapse.
```













(

)\*·0







$$)^* \cdot 0)$$

$$\downarrow a$$

$$)^* \cdot 0$$























$$\begin{array}{c}
G_{2} \\
\hline
P(e) \supseteq G_{2} \not\cong P(e)
\end{array}$$

$$\begin{array}{c}
e \\
(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0) \\
\downarrow a \\
b \\
(b \cdot 1 + b \cdot (a \cdot 1)) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0
\end{array}$$

$$G_2' \qquad P(e) = G_2'$$

$$\underbrace{(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)}_{e}$$

$$G_2'$$

$$P(e) = G_2'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)$$

$$G_{2}' \qquad P(e) = G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{2}'$$

$$P(e) = G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{2}' \qquad P(e) = G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{2}'$$

$$P(e) = G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G'_{2} \qquad P(e) = G'_{2}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow$$

$$G_{2}'$$

$$P(e) = G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$\downarrow c$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{2}' \qquad P(e) = G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow a$$

$$G_{2}' \qquad P(e) = G_{2}' \Rightarrow G_{2}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c$$

$$\downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad$$

$$G_{2}' \qquad P(e) = G_{2}' \stackrel{?}{\Rightarrow} G_{2} \stackrel{?}{\Rightarrow} G_{2}'$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad$$

### Observation

▶ LEE is not invariant under bisimulation.

### Observation

▶ LEE is not invariant under bisimulation.



### Observation

▶ LEE is not invariant under bisimulation.



### Observation

- ▶ LFF is not invariant under bisimulation.
- ▶ LEE is not preserved by converse functional bisimulation.



## LEE under functional bisimulation

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

### LEE under functional bisimulation

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \stackrel{\rightharpoonup}{=} G_2 \implies \mathsf{LEE}(G_2)$$
.

### Proof (Idea).

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .



$$P(a(a(b+ba))^* \cdot 0)$$



$$P(a(a(b+ba))^* \cdot 0)$$



$$P(a(a(b+ba))^* \cdot 0)$$



$$P(a(a(b+ba))^* \cdot 0)$$





$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$





$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$



$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$



$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$



$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$

### LEE under functional bisimulation

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

### Idea of Proof for (i)

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .

# LEE under functional bisimulation / bisimulation collapse

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse  $C \Longrightarrow \mathsf{LEE}(C)$ .

### Idea of Proof for (i)

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .

# LEE under functional bisimulation / bisimulation collapse

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse  $C \Longrightarrow \mathsf{LEE}(C)$ .

### Idea of Proof for (i)

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .

▶ images of loop subcharts in  $G_1$  under  $\geq$  are loop subcharts of  $G_2$ .

# LEE under functional bisimulation / bisimulation collapse

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse  $C \Longrightarrow \mathsf{LEE}(C)$ .

### Idea of Proof for (i)

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .

- ▶ images of loop subcharts in  $G_1$  under  $\geq$  are loop subcharts of  $G_2$ .
- ▶ eliminating a loop subchart from  $G_2$  amounts, via  $\Rightarrow$ , to eliminating a transition induced subgraph from  $G_1$ .

## LEE under functional bisimulation / bisimulation collapse

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse  $C \Longrightarrow \mathsf{LEE}(C)$ .

### Idea of Proof for (i)

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .

- ▶ images of loop subcharts in  $G_1$  under  $\geq$  are loop subcharts of  $G_2$ .
- ▶ eliminating a loop subchart from  $G_2$  amounts, via  $\Rightarrow$ , to eliminating a transition induced subgraph from  $G_1$ .
- ▶ LEE is preserved by dropping transition-induced subgraphs.

## LEE under functional bisimulation / bisimulation collapse

#### Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse  $C \Longrightarrow \mathsf{LEE}(C)$ .

### Idea of Proof for (i)

Use loop elimination in  $G_1$  to carry out loop elimination in  $G_2$ .

- ▶ images of loop subcharts in  $G_1$  under  $\geq$  are loop subcharts of  $G_2$ .
- ▶ eliminating a loop subchart from  $G_2$  amounts, via  $\Rightarrow$ , to eliminating a transition induced subgraph from  $G_1$ .
- ▶ LEE is preserved by dropping transition-induced subgraphs.

Due to LEE( $G_1$ ), then such loop elimination in  $G_2$  terminates in a graph without an infinite trace. This establishes LEE( $G_2$ ).

### Lemma (C)



v reg-expr proc-int loop loop-elim confluence LEE LEE-witness extraction collapse 1-LEE cp-proc-int refd-extr char's summ res  $\pm$ 

# LLEE-preserving collapse (example, corollary)

### Lemma (C)

The bisimulation collapse of a LLEE-graph is again a LLEE-graph.



### Corollary

A process graph is  $[\cdot]_{P}$ -expressible by an (\*/1) regular expression if and only if its bisimulation collapse is a LLEE-graph.

## Properties of LEE-charts

```
Theorem (← G/Fokkink, 2020)

A process graph G

is [·]p-expressible by an under-star-1-free regular expression

(i.e. P-expressible modulo bisimilarity by an (+\*) reg. expr.)

if and only if
the bisimulation collapse of G satisfies LEE.
```

## Properties of LEE-charts

```
Theorem (\Leftarrow G/Fokkink, 2020)

A process graph G
is \llbracket \cdot \rrbracket_{P}-expressible by an under-star-1-free regular expression
(i.e. P-expressible modulo bisimilarity by an (1 \times) reg. expr.)
if and only if
the bisimulation collapse of G satisfies LEE.
```

Hence  $[\![\cdot]\!]_{P}$ -expressible **not**  $[\![\cdot]\!]_{P}$ -expressible by 1-free regular expressions:



#### Definition



#### Definition



#### Definition



#### Definition



#### Definition

#### Definition

$$(\underline{G}] = \langle V, A, v_s, \xrightarrow{(\cdot)}, \downarrow^{(1)} \rangle.$$



#### Definition

#### Definition

$$(\underline{G}] = \langle V, A, v_s, \xrightarrow{(\cdot)}, \downarrow^{(1)} \rangle.$$



#### Definition

#### Definition

$$(\underline{G}] = \langle V, A, v_{s}, \xrightarrow{(\cdot)}, \downarrow^{(1)} \rangle.$$



#### Definition

#### Definition

$$(\underline{G}] = \langle V, A, v_s, \xrightarrow{(\cdot)}, \downarrow^{(1)} \rangle.$$



### **Definition**

1-LEE(G) holds for a graph G, if  $G = (\underline{G}]$  for some 1-graph  $\underline{G}$ .

#### Definition

1-LEE(G) holds for a graph G, if  $G = (\underline{G})$  for some 1-graph  $\underline{G}$ .



#### Definition

1-LEE(G) holds for a graph G, if  $G = (\underline{G})$  for some 1-graph  $\underline{G}$ .



#### Definition

1-LEE(G) holds for a graph G, if  $G = (\underline{G})$  for some 1-graph  $\underline{G}$ .



#### Definition

1-LEE(G) holds for a graph G, if  $G = (\underline{G})$  for some 1-graph  $\underline{G}$ .



#### Definition

1-LEE(G) holds for a graph G, if G = (G] for some 1-graph G.





#### Lemma

There is a 1-graph interpretation  $\underline{P}$  of reg. expression e as 1-graphs  $\underline{P}(e)$  such that for all  $e \in RExp$ : (i): LEE( $\underline{P}(e)$ ), (ii): ( $\underline{P}(e)$ ] =  $\underline{P}(e)$ .



#### Lemma

There is a 1-graph interpretation  $\underline{P}$  of reg. expression e as 1-graphs  $\underline{P}(e)$  such that for all  $e \in RExp$ : (i): LEE( $\underline{P}(e)$ ), (ii): ( $\underline{P}(e)$ ] =  $\underline{P}(e)$ .



#### Lemma

There is a 1-graph interpretation  $\underline{P}$  of reg. expression e as 1-graphs  $\underline{P}(e)$  such that for all  $e \in RExp$ : (i): LEE( $\underline{P}(e)$ ), (ii): ( $\underline{P}(e)$ ] = P(e).

#### Theorem

1-LEE(P(e)) holds for all regular expressions e.



#### Lemma

There is a 1-graph interpretation  $\underline{P}$  of reg. expression e as 1-graphs  $\underline{P}(e)$  such that for all  $e \in RExp$ : (i): LEE( $\underline{P}(e)$ ), (ii): ( $\underline{P}(e)$ ] = P(e).

#### **Theorem**

1-LEE(P(e)) holds for all regular expressions e.



## Image of *P* is **not** closed under bisimulation collapse

















## Compact process interpretation *P*•

#### Definition (Transition system specification $\mathcal{T}$ )

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{a^{a} + 1}{a^{a} + 1} \qquad \frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{1} \cdot e_{2}} \qquad \frac{e_{1} \Downarrow}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{2}} \qquad \frac{e^{a} \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

#### Compact process interpretation P\*

#### Definition (Transition system specification T)

$$\frac{e_1 \xrightarrow{a} e'_1}{e_1 \cdot e_2 \xrightarrow{a} e'_1 \cdot e_2}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$

#### Compact process interpretation P\*

#### Definition (Transition system specification $\mathcal{T}^{\bullet}$ , changed rules w.r.t. $\mathcal{T}$ )

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$
 (if  $e'$  is normed)

### Compact process interpretation *P*•

#### Definition (Transition system specification $\mathcal{T}^{\bullet}$ , changed rules w.r.t. $\mathcal{T}$ )

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'} \text{ (if } e' \text{ is not normed)}$$

### Compact process interpretation P\*

#### Definition (Transition system specification $\mathcal{T}^*$ , changed rules w.r.t. $\mathcal{T}$ )

$$\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1 \cdot e_2} \text{ (if } e'_1 \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1} \text{ (if } e'_1 \text{ is not normed)}$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'} \text{ (if } e' \text{ is not normed)}$$

#### Definition

The compact process (graph) interpretation  $P^{\bullet}(e)$  of a reg. expr's e:  $P^{\bullet}(e) := \text{labeled transition graph generated by } e \text{ by derivations in } \mathcal{T}^{\bullet}.$ 

Clemens Grabmayer clegra.github.io

### Compact process interpretation P\*

#### Definition (Transition system specification $\mathcal{T}^{\bullet}$ , changed rules w.r.t. $\mathcal{T}$ )

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$
 (if  $e'$  is normed) 
$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e'}$$
 (if  $e'$  is not normed)

#### Definition

The compact process (graph) interpretation  $P^{\bullet}(e)$  of a reg. expr's e:

 $P^{\bullet}(e) :=$ labeled transition graph generated by e by derivations in  $\mathcal{T}^{\bullet}$ .

Lemma ( $P^{\bullet}$  increases sharing;  $P^{\bullet}$ , P have same bisimulation semantics)

- (i)  $P(e) 
  ightharpoonup P^{\bullet}(e)$  for all regular expressions e.
- (ii) (G is  $\llbracket \cdot \rrbracket_{P^{\bullet}}$ -expressible  $\iff$  G is  $\llbracket \cdot \rrbracket_{P}$ -expressible) for all graphs G.













$$)*) \cdot 0$$







$$((1 \cdot a) \cdot ( )^*) \cdot 0$$

$$a$$

$$(1 \cdot ( )^*) \cdot 0$$























$$\widehat{G}_{4} \qquad P^{\bullet}(uf) = P(uf) \simeq G_{4}$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow$$

## P-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples revisited)





not P-expressible not  $\|\cdot\|_{P}$ -expressible

P-/P•-expressible P•-expressible  $\|\cdot\|_P$ -expressible

# Characterizations of the image of P\*

LEE 
$$\stackrel{\wedge}{=}$$
 image of  $P^{\bullet}|_{RExp^{(*/+)}}$ 

#### Theorem

For every process graph G TFAE:

(i) LEE(G).

LEE 
$$\stackrel{\wedge}{=}$$
 image of  $P^{\bullet}|_{RExp^{(*/+)}}$ 

#### Theorem

For every process graph G TFAE:

- (i) LEE(G).
- (ii) G is  $P^{\bullet}$ -expressible by an (\*/4) regular expression (i.e.  $G \simeq P^{\bullet}(e)$  for some  $e \in RExp^{(*/4)}$ ).

# LEE $\stackrel{\wedge}{=}$ image of $P^{\bullet}|_{RExp^{(*/+)}}$

#### Theorem

For every process graph G TFAE:

- (i) LEE(G).
- (ii) G is  $P^{\bullet}$ -expressible by an (\*/4) regular expression (i.e.  $G \simeq P^{\bullet}(e)$  for some  $e \in RExp^{(*/4)}$ ).
- (iii) G is isomorphic to a graph in the image of  $P^{\bullet}$  on (\*/4) reg. expr's (i.e.  $G \simeq G'$  for some  $G' \in im(P^{\bullet}|_{RExp(*/4)})$ ).

### 1-LEE $\stackrel{\triangle}{=}$ image of $P^{\bullet}$

#### **Theorem**

For every process graph G TFAE:

(i) 1-LEE(G)
(i.e.  $G = (\underline{G})$  for some 1-transition-process-graph  $\underline{G}$  with LEE( $\underline{G}$ )).

#### 1-LEE $\stackrel{\triangle}{=}$ image of $P^{\bullet}$

#### Theorem

For every process graph G TFAE:

- (i) 1-LEE(G) (i.e. G = (G) for some 1-transition-process-graph G with LEE(G)).
- (ii) G is  $P^{\bullet}$ -expressible by a regular expression (i.e.  $G \simeq P^{\bullet}(e)$  for some  $e \in RExp$ ).

## 1-LEE - image of P•

#### **Theorem**

For every process graph G TFAE:

- (i) 1-LEE(G) (i.e. G = (G) for some 1-transition-process-graph G with LEE(G)).
- (ii) G is  $P^{\bullet}$ -expressible by a regular expression (i.e.  $G \simeq P^{\bullet}(e)$  for some  $e \in RExp$ ).
- (iii) G is isomorphic to a graph in the image of  $P^{\bullet}$  (i.e.  $G \simeq G'$  for some  $G' \in im(P^{\bullet})$ ).

#### Summary

- ▶ process interpretation P/semantics  $\llbracket \cdot \rrbracket_P$  of regular expressions
  - expressibility and completeness questions
- ▶ loop existence and elimination (LEE)
  - loop elimination rewrite system can be completed
  - ▶ interpretation/extraction correspondences with (\*/±) reg. expr.s
  - ▶ LEE-witnesses: labelings of graphs with LEE
  - stepwise LEE-preserving bisimulation collapse
- ▶ 1-LEE = sharing via 1-transitions facilitates LEE
  - interpretation/extraction correspondences with all regular expressions
  - not preserved under bisim. collapse (approximation possible)
- ► Characterizations of the image of *P* (refinement of *P*):
  - ▶ LEE  $\stackrel{\triangle}{=}$  image of  $P^{\bullet}|_{RExp(*/+)}$   $\supseteq$  image of  $P|_{RExp(*/+)}$
  - ▶ 1-LEE  $\stackrel{\triangle}{=}$  image of  $P^{\bullet}$   $\supseteq$  image of P
- outlook on work-to-do

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P\*
- refined expression extraction from process graphs with LEE
- ▶ image of (\*/4) reg. expr's under  $P^{\bullet}$  is closed under collapse

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P\*
- refined expression extraction from process graphs with LEE
- ▶ image of (\*/4) reg. expr's under  $P^{\bullet}$  is closed under collapse
- ▶ A finite process graph G is  $[\cdot]_{P}$ -expressible by a (\*/1) regular expression  $\iff$  the bisimulation collapse of G satisfies LEE (G/Fokkink 2020).

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P\*
- refined expression extraction from process graphs with LEE
- ▶ image of (\*/4) reg. expr's under  $P^{\bullet}$  is closed under collapse
- ▶ A finite process graph G is  $[\cdot]_{P}$ -expressible by a  $(*/\pm)$  regular expression  $\iff$  the bisim. collapse of G is  $P^{\bullet}$ -expressible by a  $(*/\pm)$  reg. expr..

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P\*
- refined expression extraction from process graphs with LEE
- image of (\*/1) reg. expr's under  $P^{\bullet}$  is closed under collapse
- ▶ A finite process graph G is  $[\cdot]_{P}$ -expressible by a  $(*/\pm)$  regular expression  $\iff$  the bisim. collapse of G is  $P^{\bullet}$ -expressible by a  $(*/\pm)$  reg. expr..

#### Outlook on an extension:

▶ image of (\*/4) reg. expr's under  $P^{\bullet}$  = finite process graphs with LEE.

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P\*
- ▶ refined expression extraction from process graphs with LEE
- image of (\*/1) reg. expr's under  $P^{\bullet}$  is closed under collapse
- ▶ A finite process graph G is  $[\cdot]_{P}$ -expressible by a  $(*/\pm)$  regular expression  $\iff$  the bisim. collapse of G is  $P^{\bullet}$ -expressible by a  $(*/\pm)$  reg. expr..

#### Outlook on an extension:

- ▶ image of (\*/±) reg. expr's under  $P^{\bullet}$  = finite process graphs with LEE.
  - A finite process graph G is  $P^{\bullet}$ -expressible by a (\*/4) regular expression  $\iff G$  satisfies LEE.

- ▶ 1-free/under-star-1-free (\*/1) reg. expr'ss defined (also) with unary star
- ▶ image of (\*/±) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P\*
- refined expression extraction from process graphs with LEE
- image of (\*/1) reg. expr's under  $P^{\bullet}$  is closed under collapse
- ▶ A finite process graph G is  $[\cdot]_{P}$ -expressible by a (\*/4) regular expression  $\iff$  the bisimulation collapse of G satisfies LEE (G/Fokkink 2020).

#### Outlook on an extension:

- ▶ image of (\*/±) reg. expr's under  $P^{\bullet}$  = finite process graphs with LEE.
  - A finite process graph G is  $P^{\bullet}$ -expressible by a (\*/4) regular expression  $\iff G$  satisfies LEE.

- Slides/abstract on clegra.github.io
  - ▶ slides: .../lf/IFIP-1\_6-2024.pdf
  - ▶ abstract: .../lf/abstract-IFIP-1\_6-2024.pdf
- ► CG, Wan Fokkink: A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity
  - ▶ LICS 2020, arXiv:2004.12740, video on youtube.
- ▶ CG: Modeling Terms by Graphs with Structure Constraints,
  - ► TERMGRAPH 2018, EPTCS 288, arXiv:1902.02010.
- ▶ CG: The Image of the Process Interpretation of Regular Expressions is Not Closed under Bisimulation Collapse,
  - arXiv:2303.08553.
- CG: Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete,
  - ▶ LICS 2022, arXiv:2209.12188, poster.

## Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi–Elgot–Wright, 1958)

## Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi–Elgot–Wright, 1958)

## Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi–Elgot–Wright, 1958)