Of packets and their journeys.

Hardik Rajpal

October 9, 2023

Contents

1	Misc
	1.1 Big Fat Protocol Table
	1.2 Addresses
2	Link Layer
	2.1 ARP Protocol
	2.1.1 Gratuitous ARP
3	Network Layer
	3.1 Obtaining IP Addresses
	3.2 DHCP
	3.2.1 Operation
	3.2.2 Router Configuration
	3.3 ICMP

Chapter 1

Misc

1.1 Big Fat Protocol Table

• Model Layer refers to the layer that the protocol is modelled to be a part of.

Name	Operates	Model Layer	Function	Remarks
	over			
ARP	N/A	Link	Returns the MAC address corre-	Further discussion.
			sponding to an IP address	
DHCP	UDP	Application	Used to obtain new IP address	Further discussion.
			assignments for hosts.	
ICMP	IP	Network	Used by hosts and routers to	Futher discussion. Why is
			communicate network level infor-	it on the network layer?
			mation	

1.2 Addresses

- \bullet Ethernet addresses are 48bits=6Bytes long.
- IPv4 addresses are 32bits=4Bytes long.

Chapter 2

Link Layer

2.1 ARP Protocol

- Operates at link layer.
- Used to find the MAC address m corresponding to an IP address a.
- Broadcasts "who is a? tell srcIPAddress." message. Host with IP address a replies.
 - Ex: who is 10.11.63.71? tell 10.09.63.43.
- Each intermediate host maintains a cache of IP to MAC translations and updates its cache on parsing ARP replies and requests.
- The requesting host saves the reply MAC in its cache.
- Entries in said cache timeout periodically.
- The packet format is:

0	8 1	6 3					
Hardware Type (=1)		Protocol Type (=0x0800)					
HLEN (=48)	PLEN (=32)	Operation					
Source Hardware Address (Bytes 0-3)							
Source Hardware	Address (Bytes 4-5)	Source Protocol Address (Bytes 0-1)					
Source Protocol A	Address (Bytes 2-3)	Target Hardware Address (Bytes 0-1)					
Target Hardware Address (Bytes 2-5)							
Target Protocol Address (Bytes 0-3)							

- Hardware type specifies what link level technology we're using. For ex, it's set to 1 for ethernet.
- Protocol Type refers to higher level protocol. It's 0x0800 for IP.
- HLEN specifies length of the MAC address in bits.
- PLEN specifies length of the protocol address in bits. It's 32 for IP address in bits.
- Operation can be: request or reply.
- The terms involved are:

- Originator: Host that generates ARP request.
- Target: Host replying to the ARP request. It updates its cache with srcIP, srcMAC.
- When a host has to forward a datagram that specifies a destination IP address (that is within the LAN),
 - 1. It first checks its ARP cache for a map from dstIP to MAC.
 - 2. If no entry is found, it broadcasts an ARP request.
 - 3. While the request and reply move through the LAN, intermediate hosts refresh their caches.
- Note: Intermediate hosts NEVER reply to ARP requests.

2.1.1 Gratuitous ARP

- Generated by a host to inform others of its IP and MAC address.
- According to this, gratuitous ARPs are request packets and not reply packets.
- Both IPdst and IPsrc are set to IP host, and src MAC is set to host MAC.
- dst MAC is the broadcast address: ff:ff:ff:ff:ff
- No reply is expected.
- Gratuitous ARP is used to:
 - 1. Inform hosts of changes to my IP or MAC address.
 - 2. Inform hosts that a host is now available.
 - 3. Help rectify ARP entries.
 - 4. Report IP address conflicts (duplicate IP addresses).
 - 5. Inform learning bridges of the new location of the host, or the location of a new host.
- Note that since ARP is a stateless protocol, even replies that were never requested are parsed and processed and thus, can function as gratuitous ARPs.

Chapter 3

Network Layer

3.1 Obtaining IP Addresses

- Organizations get the address blocks from ISPs, from whom they purchase internet routers. Ex: Reliance, Tata, Sprint, AT&T.
- ISPs in turn get address blocks from Regional Internet Registries (RIR) which are controlled by Internet Corporation for Assigned Names and Numbers (ICANN).
- There are five RIRs:

- ISPs follow CIDR (covered before maybe) to assign blocks to organizations based on their size, and splits up blocks between organizations using different bits after the block's identifying bits.
- ISP routers advertise the block address that they've been given by an RIR to other routers for receiving all those packets.
- They don't advertise individual organize prefixes, but aggregate them all into the largest possible block.
- Given that the organization has an IP prefix, each host needs a unique IP address (hence a suffix).
- The address needs to be unique and location (subnet) dependent.
- Additionally, it needs to be reconfigurable, unlike ethernet addresses which are fixed by the manufacturer. (Though even those can be modified in some OSes, like Linux).
- Before any communication, the host needs:
 - 1. an IP address
 - 2. a mask that specifies what the network portion corresponds to

- 3. the default router's IP address.
- 4. the DNS server's IP address.
- Manual configuration is one option.
- Remote configuration is difficult and error prone.
- Enter DHCP:

3.2 DHCP

- Operates at application layer, above UDP.
- Used to obtain a new IP address assignment on joining a network or booting.
- DHCP server maintains a pool of available IP address which it leases out on requests.
- Leases expire periodically unless the hosts renew them.
- It's advantages include:
 - Easy of configuration, as it's automated.
 - Reuse of IP addresses, in the case where the total number of hosts is large but the number of hosts live at any time is very small.
 - Support for portability of hosts across the network, across different subnets.
- The packet format is:

Operation (1)	Operation (1) Htype (1)		Hops (1)							
Xid (4)										
Secs	s (2)	Flags (2)								
Ciaadr (4)										
Yiaddr (4)										
Siaddr (4)										
Giaddr (4)										
Chaddr (16)										
Sname (64)										
File (128)										
Options (312)										

- Operation specifies whether it's a request or reply.
- Htype: hardware type: ethernet etc.
- Hlen: specifies length of hardware addresses. It's 6 (Bytes) (48 bits) for ethernet.
- Hops: indicates number of relays traversed. It's set to zero by the host.
- Xid: transaction ID to match requests and replies. All messages corresponding to one DHCP transaction have the same Xid.

- Secs: time elapsed since the client started the communication. A larger value means the server gives
 it more priority in the queue.
- Flags: only 1 of 16 bits is used, corresponding to the broadcast flag: whether or not the server broadcasts its replies.
 - * It's set to 1 when the host broadcasts the discover message, so the server broadcasts its replies as the client doesn't have an IP address yet.
 - * It's set to 0 when the host is renewing the lease, as it has an IP address that the server can send its replies on.
- Ciaddr: specifies the current IP address (if a previous assignment exists).
- Yiaddr: (Your IP addr) the IP address that the server offers the client.
- Siaddr: (Server IP addr) specified only if the client has to contact some other server as a part of the operation.
 - * Additionally, the client uses this in the request message to inform all DHCP servers which may have sent it a request of the server whose offer it has chosen to proceed with.
 - * As the messages are broadcast, those rejected DHCP servers note this request message and terminate the transaction.
- Giaddr: IP address of Relay agent if any.
- Chaddr: Holds the hardware address corresponding to the client.
- Sname: hostname of the server if it has one.
- File: boot file if the server wants to specify one, it's typically not used.
- Options: The client mentions the offered IP address here in the DHCP request packet. The client
 can also request additional information here, and the server can respond with additional information.
- Note that the same packet format is used by the client and the server.
- DHCP has its origins in BOOTP which was used earlier in booting of machines where configuration files were sent over the network.

3.2.1 Operation

- 1. Host broadcasts a DHCP discover message, with the broadcast (dstIP=255.255.255.255) restricted to the physical network.
 - Note that all IP-level broadcasts are link-level broadcasts. Routers don't allow letting such messages out into the internet.
 - All messages in this exchange have their dst IP address set to broadcast.
 - This helps in the case of multiple DHCP servers being around; so that all servers receive the request message meant for a chosen offer, to know they have to terminate the connection.
 - This allows the rejected servers to recycle the available IP addresses faster.
 - The client sets its src IP address to 0.0.0.0 if it's requesting an IP address for the first time.
 - In some cases of field values in the discover packets, unicast mayb be used. See this **if necessary.**
 - Otherwise, it uses its assigned IP address.
 - The server as expected puts its IP address in the src IP address field.
- 2. DHCP server responds with DHCP offer message, while other hosts ignore the discover message.
 - The offered IP address is derived from the subnet IP address, and possibly the hosts' MAC address.
- 3. Host receives the offer and requests the offered IP address: DHCP request message.

- 4. DHCP server confirms the assignment: DHCP ack. The server also informs the client of the expiration time.
- If the host requests for it, the DHCP server also passes:
 - 1. the subnet mask
 - 2. default router's IP address
 - 3. domain name
 - 4. DNS server info
- One DHCP server can be used over multiple subnets, if DHCP Relays are installed in each subnet that forward messages to (and from) DHCP server via a unicast link.
- Routers can act as DHCP relays.

3.2.2 Router Configuration

• Sysads manually configure the interface addresses on a router using network management tools.

3.3 ICMP

- Stands for Internet Control Message Protocol.
- Used by hosts and routers to communicate network-level information.
- Operates on top of the Internet Protocol. (IP).