

ELG 5255: Applied Machine Learning

Assignment:2

BY: Group 5

Anas Elbattra

Ahmed Badawy

Esraa Fayad

<u>Part 1→</u>

1-

Part 1:—

* We have J4 Samples.

* We have J4 Samples.

Glading Probabilities

P (Stolen = 4es) = 6/14

P (Not Stolen = No) = 8/14

Glor Yes No

Red 3/6 4/8

2/8

2/8

Yellow 2/6

Blue

1/6

	type	4	es	N)							
	SBC+s	4		3/4	<u></u>							
	SUV	3/	Ś	5/9	5							
	O(<i>'e</i>)'\	- 1		25	2	lo						
	Domes	Нc	2/	6	5,	/g						
	ImPoA	ಆ	4//	Ь		3/8						
,	Given New Instance:											
	hew Ins	lang				יע,		Dom.	esti	(ء		
×= <	Color= Bl	ue.	. 15	y) ==	ىك :	V 10	(iġi _h	= T	om	eshi		>

$$\Re P\left(\text{Color} = \text{Blue } | \text{Stolen} = \text{No}\right) \\
= \left(\frac{2}{9}\right)$$

P(Yes|X) =
$$P(Blue | Yes) P(SUV=Yes)$$

(Domestic = Yes) $P(Stolen=Yes)$

= $\frac{1}{6} * \frac{2}{6} * \frac{2}{6} * \frac{4}{14}$

= 0.00793

P(No | X) = $P(Blue | No) P(SuV=No)$

(Domestic = Yes) $P(Stolen=Yes)$

= $\frac{2}{8} * \frac{5}{8} * \frac{5}{8} * \frac{2}{8}$

Given the fluct $P(No | X) P(Yes | X)$

We will label $X to be$ "No"

Part 1:
2. $\lambda_{11} = \lambda_{22} = 0$, $\lambda_{12} = 6$, $\lambda_{21} = 3$ Reject → $\lambda_{=2}$ $\Rightarrow R(\alpha_{1}|x) = \lambda_{11}P(c_{1}|x) + \lambda_{12}P(c_{2}|x)$ $= 0 *P(c_{1}|x) + 6P(c_{2}|x)$ $\Rightarrow R(\alpha_{1}|x) = 6 - 6P(c_{1}|x) 0$ $\Rightarrow R(\alpha_{2}|x) = \lambda_{21}P(c_{1}|x) + \lambda_{22}P(c_{2}|x)$ $= 3P(c_{1}|x) + 0*P(c_{2}|x)$ $\Rightarrow R(\alpha_{2}|x) = 3P(c_{1}|x) 2$ $\Rightarrow R(\alpha_{1}|x) = 3P(c_{1}|x) 2$

* We choose of, if $R(\alpha_1|X) < 2 \Rightarrow P(C_1|X) > \frac{2}{3}$ * We choose of 2 if $R(\alpha_2|X) < 2 \Rightarrow P(C_1|X) < \frac{2}{3}$. We peject if $\frac{2}{3} < P(C_1|X) < \frac{2}{3}$

Part 2→ Naive Bayes

Function conf_matrix

To preview the confusion matrix and classification report

```
def conf_matrix(x, y, title, show_report=False):
    cm = confusion_matrix(x, y)
    plt.figure(figsize=(6, 4))

sns.heatmap(cm, annot=True, fmt='d', cmap="Oranges", cbar=False)
    plt.title(f'Confusion Matrix - {title} Data')
    plt.xlabel('Predicted Class')
    plt.ylabel('True Class')
    plt.show()
    if not show_report:
        print("Accuracy: ", accuracy_score(x, y))

if show_report:
    report = classification_report(x, y)
    print("Classification Report:")
    print(report)
    plt.show()
```

Read Date from URL

```
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data'
spambase = pd.read_csv(url, header=None)
```

Show The First 5 Rows

```
spambase.head()
                       5 6 7 8 9 ... 48
                                                 49 50
                                                        51
                                                                   53
                                                                        54
                                                                                56 57
278
1 0.21 0.28 0.50 0.0 0.14 0.28 0.21 0.07 0.00 0.94 ... 0.00 0.132 0.0 0.372 0.180 0.048 5.114 101 1028
2 0.06 0.00 0.71 0.0 1.23 0.19 0.19 0.12 0.64 0.25 ... 0.01 0.143 0.0 0.276 0.184 0.010 9.821 485 2259
3 0.00 0.00 0.00 0.0 0.63 0.00 0.31 0.63 0.31 0.63 ... 0.00 0.137 0.0 0.137 0.000 0.000 3.537 40
                                                                              191
                                                                                   - 1
4 0.00 0.00 0.00 0.0 0.63 0.00 0.31 0.63 0.31 0.63 ... 0.00 0.135 0.0 0.135 0.000 0.000 3.537 40 191 1
5 rows x 58 columns
```

Show Value Counts for Spam

Part $2 \rightarrow (A)$

Split the dataset into two parts as training data and test data

- first 80 percent for training
- last 20 percent for test

```
split_index = int(len(spambase) * 0.8)
first_80_percent= spambase[:split_index]
last_20_percent= spambase[split_index:]
```

split first_80_percent for x_train and y_train and split last_20_percen for x_test and y_test

```
x_train = first_80_percent.drop(first_80_percent.columns[-1], axis=1)
y_train = first_80_percent.iloc[:, -1]
x_test = last_20_percent.drop(first_80_percent.columns[-1], axis=1)
y_test = last_20_percent.iloc[:, -1]
```

Function "Naive_Bayes_Models"

- this is user defined function whice apply Naive Bayes models
- It Takes 4 parameters Naive_Bayes_classifier, X_train, Y_train, X_test
- then path X_train and Y_train to fit function then path X_test to predict function to calculate classifier_predictions

```
def Naive_Bayes_Models(classifier,X__train,Y__train,X__test):
    classifier.fit(X__train, Y__train)
    classifier_predictions = classifier.predict(X__test)
    return classifier_predictions
```

Run "Naive_Bayes_Models" Function using GaussianNB classifier

```
Gaussian_predictions=Naive_Bayes_Models(GaussianNB(),x_train,y_train,x_test)
```

Display the confusion matrix for GaussianNB classifier

```
conf_matrix(y_test,Gaussian_predictions,"Gaussian Naive Bayes Classifiers for Part 2 (A)")
```

Confusion Matrix - Gaussian Naive Bayes Classifiers for Part 2 (A) Data

Accuracy: 0.6178067318132465

Run "Naive_Bayes_Models" Function using MultinomialNB classifier

MultinomialNB_predictions=Naive_Bayes_Models(MultinomialNB(),x_train,y_train,x_test)

Display the confusion matrix for MultinomialNB classifier

```
conf_matrix(y_test,MultinomialNB_predictions,"Multinomial Naive Bayes Classifiers for Part 2 (A)")
```

Confusion Matrix - Multinomial Naive Bayes Classifiers for Part 2 (A) Data

Accuracy: 0.7231270358306189

Part $2 \rightarrow (B)$

Put All columns except the last one in X Put the last column in Y and split X, Y using train_test_split function

```
X = spambase.iloc[:, :-1] # All columns except the last one
y = spambase.iloc[:, -1]

X_train_split, X_test_split, y_train_split, y_test_split = train_test_split(X, y, test_size=0.2, random_state=42,shuffle=True)
```

Run "Naive_Bayes_Models" Function using GaussianNB classifier based on train test split function

Gaussian_Use_train_split_predictions=Naive_Bayes_Models(GaussianNB(),X_train_split,y_train_split,X_test_split)

Display the confusion matrix for GaussianNB classifier

conf_matrix(y_test_split,Gaussian_Use_train_split_predictions,"Gaussian Naive Bayes Classifiers for Part 2 (B)")

Confusion Matrix - Gaussian Naive Bayes Classifiers for Part 2 (B) Data

Accuracy: 0.8208469055374593

Run ''Naive_Bayes_Models'' Function using MultinomialNB classifier based on train test split function

MultinomialNB_Use_train_split_predictions=Naive_Bayes_Models(MultinomialNB(),X_train_split,y_train_split,X_test_split)

Display the confusion matrix for MultinomialNB classifier

conf_matrix(y_test_split,MultinomialNB_Use_train_split_predictions,"Multinomial Naive Bayes Classifiers for Part 2 (B)")

Confusion Matrix - Multinomial Naive Bayes Classifiers for Part 2 (B) Data

Accuracy: 0.7861020629750272

Part $2 \rightarrow (C)$

Run "Naive_Bayes_Models" Function using BernoulliNB classifier based on train test split function

 $BernoulliNB_Use_train_split_predictions=Naive_Bayes_Models(BernoulliNB(), X_train_split, Y_train_split, X_test_split)$

Display the confusion matrix and Classification Report for BernoulliNB classifier

Confusion Matrix - BernoulliNB_classifier Naive Bayes Classifiers for Part 2 (C) Data

Classificatio	n Report:				
	precision	recall	f1-score	support	
0	0.86	0.94	0.90	531	
1	0.91	0.80	0.85	390	
accuracy			0.88	921	
macro avg	0.89	0.87	0.88	921	
weighted avg	0.88	0.88	0.88	921	
_					

Display Accuracy Score for BernoulliNB classifier

```
print("Accuracy for BernoulliNB classifier: ", accuracy_score(y_test_split, BernoulliNB_Use_train_split_predictions))

Accuracy for BernoulliNB classifier: 0.8805646036916395
```

I choose BernoulliNB classifier because the Target column (Spam) has two classes (1) or not (0)

I noticed that spam column imbalanced and Class imbalance can have an impact on the performance of classifiers and BernoulliNB is a classifier that can handle imbalanced datasets effectively, particularly when the features are binary. This classifier has the ability to capture the patterns associated with the minority class (spam) while disregarding the patterns linked to the majority class (non-spam). But classifiers like MultinomialNB and GaussianNB might be susceptible to the influence of class imbalance.

Part $2 \rightarrow (D)$

Split the first 80 percent into four equal parts (25%)

```
subset_1=first_80_percent[:int(len(first_80_percent)*0.25)]
subset_2=first_80_percent[int(len(first_80_percent)*0.25):int(len(first_80_percent)*0.50)]
subset_3=first_80_percent[int(len(first_80_percent)*0.50):int(len(first_80_percent)*0.75)]
subset_4=first_80_percent[int(len(first_80_percent)*0.75):]
```

Put the four equal parts into List of 4 subset

```
list_of_subset=[subset_1,subset_2,subset_3,subset_4]
```

loop on list_of_subset to access each sub_set

- Put All columns except the last one in x_train_sub_set
- Put the last column in y_train_sub_set
- then Run "Naive_Bayes_Models" Function using BernoulliNB classifier for each sub_set
- predict the accuracy score by last 20 percent
- store the accuracy score for each sub_set in subset_accuracies list

```
subset_accuracies =[]
for iteration,sub_set in enumerate(list_of_subset):

x_train_sub_set = sub_set.drop(sub_set.columns[-1], axis=1)
y_train_sub_set = sub_set.iloc[:, -1]

subset_predictions=Naive_Bayes_Models(BernoulliNB(),x_train_sub_set,y_train_sub_set,x_test)

# Calculate the accuracy score for the subset

subset_accuracy = accuracy_score(y_test, subset_predictions)
print(f"Accuracy for subset {iteration+1} using BernoulliNB classifier : ",subset_accuracy)
# Store the accuracy score in the List

subset_accuracies.append(subset_accuracy)
```

```
Accuracy for subset 1 using BernoulliNB classifier: 0.0

Accuracy for subset 2 using BernoulliNB classifier: 0.6438653637350705

Accuracy for subset 3 using BernoulliNB classifier: 1.0

Accuracy for subset 4 using BernoulliNB classifier: 1.0
```

Plot the bar chart to visualize the accuracy scores of the subsets

```
subset_labels = ['Subset 1', 'Subset 2', 'Subset 3', 'Subset 4']
plt.bar(subset_labels, subset_accuracies)
plt.xlabel('Subsets')
plt.ylabel('Accuracy')
plt.title('Accuracy Scores for Subsets')
plt.ylim([0, 1])
plt.show()
```


We got accuracy zero for Subset 1, 64% for Subset 2, 100% for Subset 3, and 100% for Subset 4.

We got accuracy zero for Subset 1 because all the training data in Subset 1 has class (1) only for the 'spam' column, whereas the test data for this Subset has class (0) only for the 'spam' column. Therefore, we obtained zero accuracy because the model was trained on one class and tested on another class for 'spam'

We got an accuracy of 64% for Subset 2 because the training data in Subset 2 consisted of 893 rows for class (1) and 27 rows for class (0) for the 'spam' column. However, the test data for this Subset had only class (0) for the 'spam' column. As a result, we obtained 64% accuracy because the model was trained on insufficient data for class (0) and most of the training focused on class (1) for the 'spam' column, while the test was conducted on class (0) for 'spam'.

We got an 100% accuracy for Subset 3 and Subset 4 because all the training data in both subsets exclusively consisted of class (0) for the 'spam' column. Similarly, the test data for

these subsets only contained class (0) for the 'spam' column. As a result, we obtained 100% accuracy because the model was trained on an adequate amount of data for class (0) in the 'spam' column and tested on the same class (0) for 'spam'.

Show Value Counts and shape for Spam column for each Sub_Set [taining data ,test data]

Subset: 1

**** Training Data ****

shape for subset 1 (920, 58)

value counts for Lable column in Training Data

1 920

Name: 57, dtype: int64

**** Test Data ****

value counts for Lable column in Test Data

0 921

Name: 57, dtype: int64

Subset : 2

**** Training Data ****

shape for subset 2 (920, 58)

value counts for Lable column in Training Data

1 893

0 27

Name: 57, dtype: int64

**** Test Data ****

value counts for Lable column in Test Data

0 921

Name: 57, dtype: int64

Subset : 3

**** Training Data ****

shape for subset 3 (920, 58)

value counts for Lable column in Training Data

0 920

Name: 57, dtype: int64

**** Test Data ****

value counts for Lable column in Test Data

0 921

Name: 57, dtype: int64

Subset : 4

**** Training Data ****

shape for subset 4 (920, 58)

value counts for Lable column in Training Data

0 920

Name: 57, dtype: int64

**** Test Data ****

value counts for Lable column in Test Data

0 921

Name: 57, dtype: int64