

- () Preliminary Specifications(v) Final Specifications

Module	8"(8.0") WUXGA 16:10 Color TFT-LCD with LED Backlight design
Model Name	G080UAN01.0(00)
Note (🗭)	LED Backlight without driving circuit design

Customer	Date	Approved by	Date
		Grace Hung	<u>30/6/2018</u>
Checked & Approved by	Date	Prepared by	
		Ryan Chen	<u>30/6/2018</u>
Note: This Specification is sul without notice.	pject to change	GDE AU Optronics	_

Contents

1.	. Handling Precautions	4
2.	. General Description	5
	2.1 General Specification	5
	2.2 Optical Characteristics	
3.	. Functional Block Diagram	11
4.	. Absolute Maximum Ratings	12
	4.1 Absolute Ratings of TFT LCD Module	12
	4.2 Absolute Ratings of Environment	12
5.	. Electrical Characteristics	13
	5.1 TFT LCD Module	13
	5.2 Backlight Unit	20
6.	. Signal Interface Characteristic	21
	6.1 Pixel Format Image	21
	6.2 Integration Interface Requirement	22
	6.3 Interface Timing	24
	6.4 Power On Sequence	26
7.	. Panel Reliability Test	28
	7.1 Vibration Test	28
	7.2 Shock Test	28
	7.3 Reliability Test	28
8.	. Mechanical Characteristics	29
	8.1 Standard Front View	29
	8.2 Standard Back View	30
9.	. Shipping and Package	31
	9.1 Shipping Label Format	31
	9.2 Carton Package	31
	9.3 Shipping Package of Palletizing Sequence	32

Record of Revision

Ver	sion and Date	Page	Old description	New Description	Remark
0.1	2017/6/1	All	First Edition		
0.2	2017/6/28	20	LED life time 15K hrs (min.)	LED life time 20K hrs (min.)	
0.3	2018/2/22	6	Color / Chromaticity Coordinates :white (x,y) modify (0.313, 0.329)	New white (x,y) :(0.313, 0.335) New RGB (x,y) :(0.604, 0.344)(0.321, 0.616)(0.155, 0.106)	
1.0	2018/06/30	All	Final spec		

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11)After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

Product Specification AU OPTRONICS CORPORATION

2. General Description

G080UAN01.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:10 , 1200(H) x1920(V) screen and 16.7M colors (RGB 8-bits data driver) without LED backlight driving circuit. All input signals are MIPI interface compatible.

G080UAN01.0 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 °C condition:

Items	Unit		Speci	ifications		
Screen Diagonal	[mm]	203.09 (8")				
Active Area	[mm]	107.64(H) x 1	72.224(V)			
Pixels H x V		1200 x 3(RGI	3) x 1920			
Pixel Pitch	[mm]	0.0897 X 0.08	397			
Pixel Format		R.G.B. Vertic	al Stripe			
Display Mode		Normally Blad	ck			
White Luminance (ILED=19mA) (Note: ILED is LED current)	[cd/m ²]	500 typ.				
Luminance Uniformity		80% max. (5 65% max (13				
Contrast Ratio		1000 typ				
Response Time	[ms]	27 typ / 35 m	ax			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.				
Power Consumption	[Watt]	1.88 (Logic 0.46W / BLU 1.42W)				
Weight	[Grams]	80 max				
			Min.	Тур.	Max.	
Physical Size	[mm]	Length		114.6	114.8	
without bracket	[,,,,,,]	Width		184.1	184.3	
		Thickness			3.95	
Electrical Interface		4 lane MIPI				
Glass Thickness	[mm]	0.2				
Surface Treatment(panel only)		Glare				
Support Color		RGB 8-bit				
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	-10 to +60 -20 to +70				
RoHS Compliance		RoHS Compl	iance			

Product Specification AU OPTRONICS CORPORATION

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Lumin ILED=19n			5 points average	425	500		cd/m ²	1, 4, 5.
		$ heta_{R} hinspace heta_{L}$	Horizontal (Right)		89			
Viewing Ar	Viewing Angle		CR = 10 (Left)		89			4.0
Viewing 7 ti	igio	Ψн	Vertical (Upper)		89		degree	4, 9
		ΨL	CR = 10 (Lower)		89			
Luminance Un	iformity	δ_{5P}	5 Points			80%		1, 3, 4
Luminance Un	iformity	δ _{13P}	13 Points			65%		2, 3, 4
Contrast R	atio	CR		800	1000	-		4, 6
Cross tal	k	%				4		4, 7
Response T	ime	T _{RT}	Rising + Falling		27	35	msec	4, 8
	Red	Rx		0.574	0.604	0.634		
	Red	Ry		0.314	0.344	0.374		
	Green	Gx		0.291	0.321	0.351		
Color / Chromaticity	Green	Gy		0.586	0.616	0.646		
Coordinates		Bx	CIE 1931	0.125	0.155	0.185		4
	Blue	Ву		0.076	0.106	0.136		
				0.283	0.313	0.343		
	White	Wy		0.305	0.335	0.365		
NTSC	•	%		_	60	-		

G080UAN01.0 Document Version: 1.0 6 of 32

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

- 2	_	Minimum Brightness of five points
δ _{W5} =	-	Maximum Brightness of five points
۰ -	_	Minimum Brightness of thirteen points
$\delta_{\rm W13}$ =	-	Maximum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting

AU OPTRONICS CORPORATION

Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Center of the screen

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)=
$$\frac{\text{Brightness on the "White" state}}{\text{Brightness on the "Black" state}}$$

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (rising time) and from "White" to "Black" (falling time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9: Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Product Specification AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 8 inches wide Color TFT/LCD 31 Pin four channel Module

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	-10	+60	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-20	+70	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power			0.46	[Watt]	Note 1
IDD	IDD Current			153	[mA]	Note 1
IRush	Inrush Current			1500	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

Note 1: Maximum Measurement Condition: White Pattern at 3.3V driving voltage. (Pmax=V3.3 x Iblack)

Note 2: Measure Condition

Vin rising time

Product Specification AU OPTRONICS CORPORATION

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

MIPI DC characteristics are as follows:

MIPI Rece	iver Differential Input (DC Characteristics)				
Symbol	Parameter	Min	Тур	Max	Unit
В R мірі	Input data bit rate	200	-	1000	Mbps
VCMRX	Common-mode voltage(HS Rx mode)	155	-	330	mV
Vidth	Differential input high threshold (HS Rx mode)	-	-	70	mV
VIDTL	Differential input low threshold (HS Rx mode)	-70	-	-	mV
Vidm	Differential input voltage range (HS Rx mode)	70	-	500	mV
VIHHS	Single-end input high voltage (HS Rx mode)	-	-	460	mV
VILHS	Single-end input low voltage (HS Rx mode)	-40	-	-	mV
Zid	Differential input impedance	80	100	125	Ω
VIHLP	Logic 1 input voltage (LP Rx mode)	880			mV
VILLP	Logic 0 input voltage (LP Rx mode)			550	mV

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta V_{CMRX(HF)}$	Common-mode interference beyond 450MHz		-	-	100	mV
$\Delta V_{\text{CMRX(LF)}}$	Common-mode interference 50MHz ~ 450MHz		-50	-	50	mV
ССМ	Common-mode termination		_	-	60	pF
UI _{INST}	UI instantaneous		1		12.5	ns

HS RX Scheme

Symbol	Parameter	Min	Тур	Max	Unit	Notes
T _{SKEW[TX]}	Data to Clock Skew (mesured at transmitter)			0.15	UI _{INST}	1
T _{SETUP[RX]}	Data to Clock Setup Time (receiver)	0.25			UI _{INST}	2
T _{HOLDIRXI}	Data to Clock Hold Time (receiver)	0.25			UI _{INST}	2

Note:

- 1. Total silicon and package delay budget of 0.25*UI_{INST}
- 2. Total setup and hold window for receiver of 0.5 *UI_{INST}

AU OPTRONICS CORPORATION

High Speed Data Transmission: Data to Clock Timing

LP Receiver AC Specifications								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
e _{SPIKE}	Input pulse rejection		-	_	300	V · ps		
T _{MIN-RX}	Minimum pulse width response		50	-	-	ns		
V _{INT}	Peak interference amplitude		-	-	200	mV		
f _{INT}	Interference frequency		450	-	-	MHz		

Input Glitch Rejection of Low-Power Receivers

For MIPI data transmission from TX to TCON works properly in video mode, it is suggested that all of MIPI lanes status follow the scheme showed in below. When power is turned on, all lanes (include clock lane) are into LP-11 status first. When TX wants to start transmitting data to TCON, the clock lane is into HS and start toggling. Then data lanes are into HS and data are transmitted. After data transmissions are finished (ex. H-blanking, V-blanking), the data lanes are returned to LP-11, then clock lane, too. The transmission start from LP-11 and

Product Specification AU OPTRONICS CORPORATION

stop in LP-11 on all lanes (include clock lane) are the recommended proper operation sequence for MIPI video mode.

The timing definitions are listed in below,

Parameter	Description	Min	Тур	Max	Unit
TOLK MICC	Timeout for receiver to detect absence of Clock			60	
TCLK-MISS	transitions and disable the Clock Lane HS-RX.			60	ns
	Time that the transmitter continues to send HS				
	clock after the last associated Data Lane has	00 1			
TCLK-POST	transitioned to LP Mode. Interval is defined as the	60 ns +			ns
	period from the end of THS-TRAIL to the beginning	52*UI			
	of TCLK-TRAIL.				
	Time that the HS clock shall be driven by the				
TCLK-PRE	transmitter prior to any associated Data Lane	8			UI
	beginning the transition from LP to HS mode.				
	Time that the transmitter drives the Clock Lane				
TCLK-PREPARE	LP-00 Line state immediately before the HS-0 Line	38		95	ns
	state starting the HS transmission.				
	Time interval during which the HS receiver shall				
TCLK-SETTLE	ignore any Clock Lane HS transitions, starting from	95		300	ns
	the beginning of TCLK-PREPARE.				
	Time for the Clock Lane receiver to enable the				
TCLK-TERM-EN	HS line termination, starting from the time point			38	ns
	when Dn crosses VIL,MAX.				
	Time that the transmitter drives the HS-0 state				
TCLK-TRAIL	after the last payload clock bit of a HS transmission	60			ns
	burst.				
TCLK-PREPARE	TCLK-PREPARE + time that the transmitter				
+ TCLK-ZERO	drives the HS-0 state prior to starting the Clock.	300			ns
	Time for the Data Lane receiver to enable the				
TD-TERM-EN	HS line termination, starting from the time point			35 ns +	ns
	when Dn crosses VIL,MAX.			4*UI	
TEOT	Transmitted time interval from the start of			105 ns +	ns

	THS-TRAIL or TCLK-TRAIL, to the start of the			12*UI	
	LP-11 state following a HS burst.				
THS-EXIT	Time that the transmitter drives LP-11 following a HS burst.	100			ns
THS-SYNC	HS Sync-Sequence '00011101' period		8		UI
THS-PREPARE	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40 ns + 4*UI		85 ns + 6*Ul	ns
THS-PREPARE + THS-ZERO	THS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145 ns + 10*UI			ns
THS-SETTLE	Time interval during which the HS receiver shall ignore any Data Lane HS transitions, starting from the beginning of THS-PREPARE.	85 ns + 6*UI		145 ns + 10*UI	ns
THS-SKIP	Time interval during which the HS-RX should ignore any transitions on the Data Lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.			55 ns + 4*UI	ns
THS-TRAIL	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	60 ns + 4*UI			ns
TLPX	Transmitted length of any Low-Power state period	50			ns
Ratio TLPX	Ratio of TLPX(MASTER)/TLPX(SLAVE) between Master and Slave side	2/3		3/2	
TTA-GET	Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround.		5*TLPX		ns
TTA-GO	Time that the transmitter drives the Bridge state (LP-00) before releasing control during a Link Turnaround.		4*TLPX		ns
TTA-SURE	Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	TLPX		2*TLPX	ns

AU OPTRONICS CORPORATION

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.
 - 3. The I-chip of AUO use is not support BTA (BTA define ignore).

High-Speed Data Transmission in Bursts

Switching the Clock Lane between Clock Transmission and Low-Power Mode

Turnaround Procedure

Product Specification AU OPTRONICS CORPORATION

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	1	-	1.42	[Watt]	(Ta=25°C) Note1.
LED Life-Time	N/A	20,000			Hour	(Ta=25°C) Note2.
LED Forward Voltage	VF	-	2.85	3.1	[Volt]	(Ta=25℃)
LED Forward Voltage of every LED string	VF-string	-	22.8	24.8	[Volt]	(Ta=25℃) Note3.
LED Forward Current	IF	-	19	-	[mA]	(Ta=25°ℂ)

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

Note 3: LED array is 3 parallels * 8 series, total 24 LEDs

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1				1200
1st Line	R G B	R G B		R G B	R G B
		-			
	•	.			
		8	*		*
		£0	*		*
	810	*0	*		*
		.			
		15		16	
1920thLine	R G B	RGB		R G B	R G B

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

MIPI connector:

Connector Name / Designation	For Signal Connector		
Manufacturer	Hirose		
Type / Part Number	FH26W-45S-0.3SHW(05)		

6.2.2 Pin Assignment

MIPI lane is a differential signal technology for LCD interface and high speed data transfer device.

Pin No.	Symbol	Description	I/O
1	GND	Ground	Р
2	GND	Ground	Р
3	GND	Ground	Р
4	NC	NC (AUO only)	Р
5	VCC	Power Supply 3.0V	Р
6	VCC	Power Supply 3.0V	Р
7	vcc	Power Supply 3.0V	Р
8	NC	NC	-
9	FB3-	Cathode	Р
10	FB2-	Cathode	Р
11	FB1-	Cathode	Р
12	NC	NC	-
13	LED+	Anode	Р
14	LED+	Anode	Р
15	NC	NC	Р
16	GND	Ground	Р
17	MIPI_DATA0_P	MIPI Differential Data Input	ı
18	MIPI_DATA0_N	MIPI Differential Data Input	I
19	GND	Ground	Р
20	MIPI_DATA1_P	MIPI Differential Data Input	ı
21	MIPI_DATA1_N	MIPI Differential Data Input	1

22	GND	Ground	Р
23	MIPI_CLK_P	MIPI Differential Clock Input	
24	MIPI_CLK_N	MIPI Differential Clock Input	I
25	GND	Ground	Р
26	MIPI_DATA2_P	MIPI Differential Data Input	
27	MIPI_DATA2_N	MIPI Differential Data Input	I
28	GND	Ground	Р
29	MIPI_DATA3_P	MIPI Differential Data Input	
30	MIPI_DATA3_N	MIPI Differential Data Input	I
31	GND	Ground	Р
32	NC	NC (AUO only)	-
33	ID0	ID0 (GND)	0
34	ID1	ID1 (NC)	0
35	GND	Ground	Р
36	LEDPWMOUT	PWM Control Signal of LED Convert(3.3V)	0
37	NC	NC (AUO only)	-
38	NC	NC (AUO only)	-
39	NC	NC	-
40	NC	NC	-
41	NC	NC	-
42	NC	NC	-
43	NC	NC	-
44	NC	NC	-
45	GND	Ground	Р

6.3 Interface Timing

6.3.1 Timing Characteristics

Basically, interface timings should match the 1200 x 1920 /60 Hz manufacturing guide line timing.

ITEM		SYNBOL	min	typ	max	UNIT	
Frame Rate			-	55	60		Hz
LCD	Pixels Rate		-		159.4		MHz
	DCLK	Frequency	fCLK			500	MHz
	DCLK	Period	Tclk	1			ns
		Horizontal total time	tHP	1275	1341	1342	t _{CLK}
		Horizontal Active time	tHadr		1200		t _{CLK}
	Horizontal	Horizontal Pulse Width	tHsync	1	1	1	t _{cLK}
Timing		Horizontal Back	tHBP	32	60	60	t _{cLK}
		Horizontal Front	tHFP	60	80	81	t _{CLK}
		Vertical total time	tvp	1981	1981	1982	t _H
		Vertical Active time	tVadr		1920		t _H
	Vertical	Vertical Pulse Width	tVsync	1	1	1	t _H
		Vertical Back Porch	tVBP	25	25	25	t _H
		Vertical Front Porch	tVFP	35	35	36	t _H
Differential Swing			VDswing	140			mV
Bit Rate			TX SPD (MBPS)	955	999	1000,	Mbps
Pixel For	nat				8		Data bit/ pixel
Lane	Lane				1		Lane

Note: VIDTH is the input high threshold and should >70mV VIDTL is the input low threshold and should < -70mV

6.4 Power On Sequence

6.4.1 Power

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart.

	Value					
Parameter	Min.	Тур.	Max.	Unit	Remark	
T1	5	-	-	ms		
T2	180	-	-	ms		
Т3	100	-	-	ms		
T4	200	-	-	ms		
Т5	200	-	-	ms		
T6	500	-	-	ms		
Т7	120	-	-	ms		

6.4.2 MIPI Command

NO	Document No.	Туре	Attachment file
1	NT51021 AN-017 V01 20140110 I2C Enforce Mode.pdf	切換控制權 (MIPI LP mode)	NT51021 AN-017 V01 20140110 I2C E
2	NT51021 AN-002 V01 20140926 MIPI Video Input.pdf	IC noise for MIPI	NT51021 AN-002 V01 20140926 MIPI
3	NT51021 AN-023 V2.0 ALS Application Notice	ALS	NT51021 AN-023 V2.0 ALS Application

	20140731.pdf		
4	NT51021 AN-024 V1.1 CABC Application Notice .pdf	CABC_EN	NT51021 AN-024 V1.1 CABC Applicati
5	NT51021 AN-021 V0.1 Color Enhancement Application Note 20140128.pdf	CE_EN	NT51021 AN-021 V0.1 Color Enhancerr
6	NT51021 AN-003 V03 20140930 MIPI AC Timing Fine Tune.pdf	MIPI AC Timing Fine tune	NT51021 AN-003 V03 20140930 MIPI
7		Sleep in/ out	Page 0 : Sleep in:0x10, sleep out:0x11,

Double-Click the "Attachment Icon" above for opening attachment file.

Remark: initialization code must include the code for GAMMA 2.2 in the Power Supply condition for the module •

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

• Frequency: 10 - 500Hz Random

• Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

Test method: Non-Operation

• Acceleration: 220 G , Half sine wave

• Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 300h	
High Temperature Operation	Ta= 60℃, Dry, 240h	
Low Temperature Operation	Ta= -10℃, 240h	
High Temperature Storage	Ta= 70℃, 240h	
Low Temperature Storage	Ta= -20℃, 240h	
Thermal Shock Test	Ta=-20℃ to 70℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV	Note 1
LOD	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable.

No data lost, No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

8. Mechanical Characteristics

8.1 Standard Front View

8.2 Standard Back View

9. Shipping and Package

9.1 Shipping Label Format

Shipping label:

9.2 Carton Package

filled EPE cushion around(as below), then seal the carton, finish the package.

G080UAN01.0 Document Version : 1.0 31 of 32

9.3 Shipping Package of Palletizing Sequence

6 pcs/tray

(11+1)trays/carton

Total 66 pcs panel/carton

Total carton weight: 10.2 Kg Carton type: 520*340*250mm

PP Board: Put it on the bottom of the Tray

32 of 32