Package	Function	Note	Example	File
Build-in packages in R (stats, unit, base packages),	head(x, n,)	Extract the first n rows of data/matrix	head(cars)	L1B1
	tail(x, n,)	Extract the last n rows of data/matrix	tail(cars)	L1B1
no need to install and	<pre>diff(x, lag = 1, differences = 1,)</pre>	Returns suitably lagged and iterated differences	diff(x = AAPL\$AAPL.Adjusted, differences = 1)	L2B1
library packages	install.packages(.)	Install packages	<pre>install.packages("readxl")</pre>	L1B1
	library(.)	prepare functions in packages	library("readxl")	L1B1
	Help(.) or ?.	Such for usage document for functions	help("read_excel");? read_excel	L1B1
	read.csv(path,)	Read csv file	read.csv("AAPL.csv")	L1B1
	write.csv(x, file = "",)	Save data to csv file	<pre>write.csv(data_AAPL,"data.csv",row.names = TRUE)</pre>	L1B1
	<pre>read.table(path, header = TRUE, sep = "")</pre>	Read txt file	read.table("AAPL.txt", header = TRUE, sep=" ")	L1B1
	<pre>write.table(x, file = "",)</pre>	Save data to txt file	<pre>write.table(data_AAPL, "data.txt", sep = " ", dec = ".", row.names = TRUE, col.names = TRUE)</pre>	L1B1
	data.frame(.)	Create data frame	data.frame(BJsales)	L1B1
	na.omit(.)	Remove NA value from data		
	na.approx(.)	Create data frame	na.approx(DEXUSEU)	L2B3
	merge(x, y,)	Merge two data frames by common columns or row names, or do other versions of database <i>join</i> operations	merge(AAPL\$AAPL.Adjusted, CPIAUCSL, join='left')	L2B2
	hist(.)	computes a histogram of the given data values and plot.	hist(logreturn_AAPL)	L1B1
	summary(.)	summary is a generic function used to produce result summaries of the results of various model fitting functions.	<pre>summary(return_differences\$`5day Return differences `)</pre>	L2B1

<pre>rank(x, na.last = TRUE,</pre>	Returns the sample ranks of the values in a vector.	<pre># No. 1 is the biggest return rank(-as.numeric(AAPL\$Return),na.last = "keep")</pre>	L4B1
<pre>quantile(x, probs = seq(0, 1), na.rm = FALSE, names = TRUE,)</pre>	Produces sample quantiles corresponding to the given probabilities.	<pre># calcaulte 80th percentage quantile return Quantile80 = quantile(AAPL\$Return,probs=0.8,</pre>	L4B1
which.min(x) which.max(x)	Determines the index of the (first) minimum or maximum of a numeric (or logical) vector.	<pre># data index with closest return to Quantile80 index80 = which.min(abs(Quantile80-AAPL\$Return))</pre>	L4B1
get(.)	Search by name for an object.	get("GE") or get(GE)	L5B1
lapply(X, FUN,)	Returns a list of the same length as X, each element of which is the result of applying FUN to the corresponding element of X.	<pre>lapply(tickers, function(x) Ad(get(x)))</pre>	L5B1
do.call(what, args)	Constructs and executes a function and a list of arguments to be passed to it.	<pre>do.call(merge, lapply(tickers, function(x) Ad(get (x))))</pre>	L5B1
subset(x, subset,)	Return subsets of vectors, matrices or data frames which meet conditions.	<pre>subset(Asset_df, Date>="2012-01-01" & Date<"2013-01 -01")</pre>	L5B1
<pre>var(x, y = NULL,) cov(x, y = NULL,) cor(x, y = NULL,)</pre>	Compute the variance of x and the covariance or correlation of x and y if these are vectors.	cor(Return)	L5B1
<pre>colSums(x,) rowSums(x,) colMeans(x,) rowMeans(x,)</pre>	Form row and column sums and means for numeric arrays (or data frames).	rowSums(Equityv)	L5B2
<pre>cumsum(x) cumprod(x) cummax(x) cummin(x)</pre>	Returns cumulative sums, products, minima or maxima of the elements of the argument.	<pre>cumsum(Port\$Port.Return) cummax(PortReturnCumu)</pre>	L5B2
<pre>dnorm(x, mean, sd,) pnorm(q, mean, sd, lower.tail=TRUE,) qnorm(p, mean, sd, lower.tail=TRUE,) rnorm(n, mean, sd,)</pre>	Density, distribution function, quantile function and random generation for the normal distribution.	<pre>pnorm(x, mean = mu, sd = sigma)</pre>	L5B3

	<pre>dt(x, df, ncp) pt(q, df,ncp, lower.tail=TRUE) qt(p, df,ncp, lower.tail=TRUE) rt(n, df, ncp)</pre>	Density, distribution function, quantile function and random generation for the t distribution with df degrees of freedom (and optional non-centrality parameter ncp).	<pre>pvalue = pt(q=(tstat),df = reg\$df,lower.tail = TRU E)</pre>	L8B1
	set.seed(.)	Set random seed so that we can replicate the result	set.seed(567)	L6B1
	<pre>sample(x, size, replace = FALSE, prob = NULL)</pre>	sample takes a sample of the specified size from the elements of x using either with or without replacement.	<pre>sample(NormalRN\$SimuReturn, size = N,replace=FALSE)</pre>	L6B1
	<pre>lm(formula, data,)</pre>	lm is used to fit linear models	<pre>lm(UMCSENT~1+UNRATE, data = Train)</pre>	L7B1
	<pre>predict(model, newdata)</pre>	predictions from the results of various model fitting functions.	<pre>predict(reg1, new_data)</pre>	L7B1
	decompose(x, type,)	Decompose a time series into seasonal, trend and irregular components using moving averages.	decompose (HSNG)	L9B0
	acf(x,) pacf(x,)	acf is for autocovariance or autocorrelation. pacf is for partial autocorrelations.	<pre>acf(RGDP\$FirstDifLog, main='') pacf(RGDP\$FirstDifLog, main='')</pre>	L12B2
	arima(x, order=c(0, 0, 0),)	Fit an ARIMA model to a univariate time series.	<pre>arima(RGDP\$FirstDifLog, order = c(1, 0, 0), seasonal=c(0, 0, 0))</pre>	L12B2
	qqnorm(y,)	Produces a normal QQ plot of the values in y.	qqnorm(residuals(opt_fit))	L12B2
	qqline(y,)	Adds a line to a "theoretical", by default normal, quantile-quantile plot	qqline(residuals(opt_fit))	L12B2
	ks.test(x, y,)	Perform a Kolmogorov-Smirnov test.	ks.test(residuals(opt_fit),pnorm)	L12B2
<u>readxl</u>	read_excel(path,)	Read excel file	read_excel("AAPL.xlsx")	L1B1
ggplot2	<pre>ggplot(data, aes(x,y,group,)+ geom_line()+</pre>	Create elegant data visualizations		
quantmod	<pre>getSymbols(Symbols, from, to, src = "yahoo",)</pre>	Load data via API. Note: argument from and to do not work when src ="FRED"	<pre>getSymbols("GE", from='2017-01-01', to="2021-03-01") getSymbols('CPIAUCSL', src='FRED')</pre>	L1B1 L2B2

	Op(x) Hi(x) Lo(x) Cl(x) Vo(x) Ad(x)	Extract (transformed) data from a suitable OHLC object.	Ad(AAPL) # return adjusted closed price of AAPL	
	<pre>periodReturn(x, period='monthly', type='arithmetic',)</pre>	Given a set of prices, return periodic returns.	<pre>periodReturn(AAPL,period='daily',type='arithmetic')</pre>	
<u>Quandl</u>	Quandl.api_key(.)	Set API key	Quandl.api_key("abcd")	L3B4
	Quandl(code, start_date, end_date, type, transform, collapse,order,)	Retrieves Data from the Quandl Dataset endpoint and formats	Quandl(code = c('WIKI/GOOGL.11','WIKI/IBM.11'), start_date = "2011-12-30",end_date = "2013-01-01", collapse="daily", type="xts")	L3B4
Performanc eAnalytics	chart_Series(.)	Plot time series data	chart_Series(AAPL\$AAPL.Close)	L1B1
	chart.Histogram(.)	Create a histogram of returns, with optional curve fits for density and normal.	<pre>chart.Histogram(AAPL\$Return, main = "Plain")</pre>	L4B1
	chart.Drawdown(.)	A time series chart demonstrating drawdowns from peak equity attained through time, calculated from periodic returns.	<pre>chart.Drawdown(Return_AAPL, legend.loc = "bottomleft", ylab = "Drawdowns", date.format = "%b/%Y", main = "Drawdown Plot", las = 2,color="red")</pre>	L2B1
	chart.Boxplot(.)	A wrapper to create box and whiskers plot with some defaults useful for comparing distributions.	<pre>chart.Boxplot(AAPL\$Return, outlier.symbol="*", symbol.color =c("darkblue"),outcol="red")</pre>	L4B2
	<pre>charts.PerformanceSumma ry(.)</pre>	For a set of returns, create a wealth index chart, bars for perperiod performance, and underwater chart for drawdown	charts.PerformanceSummary(AAPL\$Return)	L4B1
	chart.Correlation(.)	Visualization of a Correlation Matrix.	chart.Correlation(Return)	L5B1
	chart.VaRSensitivity(R, methods,)		<pre>chart.VaRSensitivity(Portfolio.R\$BuyHold,</pre>	L14B1
	table.Stats(.)	Returns a basic set of statistics that match the period of the data passed in.	table.Stats(AAPL\$Return)	L4B1

	table.Distributions(.)	Table of distribution stats.	table.Distributions(AAPL\$Return)	L4B1
	<pre>Return.calculate(prices, method = c("log", "discrete", "difference"))</pre>	calculate simple or compound returns from prices	Return.calculate(AAPL\$AAPL.Adjusted, method ="discrete")	L4B1
	<pre>apply.rolling(R, width, gap = 12, by = 1, FUN = "mean",)</pre>	Creates a results timeseries of a function applied over a rolling window.	<pre>width_n = 250 # window length = 1 year by_n = 1 # update frequency = everyday apply.rolling(AAPL\$Return,</pre>	L4B3
	VaR(R, p = 0.95, Method,)	Calculates Value-at-Risk(VaR) for univariate, component, and marginal cases using a variety of analytical methods.	<pre>VaR(Portfolio.R, p=.95, method="historical")</pre>	L14B1
<u>zoo</u>	<pre>runSum(x, n = 10, cumulative = FALSE)</pre>	Calculate data sums over a n- period moving window	<pre>runSum(x=Return_AAPL, n = 5, cumulative = FALSE)</pre>	L2B1
xts	as.xts(x,)	Covert data to xts data		
	<pre>endpoints(x, on="months", k=1)</pre>	Extract index values of a given xts object corresponding to the <i>last</i> observations given a period specified by on	<pre>endpoints(R,on = Rebalance_freq ,k=k)</pre>	L14B1
	<pre>to.period(x,period, period = c("days", "weeks", "months", "quarters", "years"), OHLC=TRUE)</pre>	Convert an OHLC or univariate object to a specified periodicity lower than the given data object.	<pre>to.period(port, period= "months")</pre>	L3B2
Histogram Tools	PlotRelativeFrequency(x, ylab="Relative Frequency",)	Produces a relative frequency histogram. x is "histogram" object (created by <u>hist</u>).	<pre>PlotRelativeFrequency(hist(na.omit(AAPL\$Return), breaks = 40, plot=FALSE), xlab="Return", main="Relative Frequency Histogram")</pre>	L4B1
corrplot	<pre>corrplot(corr, method,)</pre>	A graphical display of a correlation matrix, confidence interval.	<pre>corrplot(ReturnCorM, method="circle")</pre>	L5B1
roll	<pre>roll_cor(x, y = NULL, width,)</pre>	Computes the rolling and expanding correlations of timeseries data.	<pre>roll_cor(x=Return\$AAPL.Return,</pre>	L5B1
fitdistrplus	descdist(data,)	Computes descriptive parameters of an empirical	<pre>descdist(as.numeric(AAPL\$Return),obs.col = colors)</pre>	L5B3

		distribution and provides a skewness-kurtosis plot.		
Distributio nUtils	skewness(.) kurtosis(.)	Computes the sample skewness and sample kurtosis.		
rollRegres	<pre>roll_regres(formula, data, width, do_compute,)</pre>	Method for fast rolling and expanding regression models.	<pre>roll_regres(data = "Returns", width = 24L, formula = ExcessReturn.Stock~1+ExcessReturn.Marke t,do_compute = c("sigmas", "r.squareds")</pre>	L8B2
TTR	SMA $(x, n = 10,)$	Calculate various moving averages (MA) of a series.	SMA (HSNG, n=24)	L9B0
lubridate	<pre>month(x,) year(x) quarter(x)</pre>	Return month/quarter/year number	month(index(Asset))	L9B1
car	<pre>linearHypothesis(model, hypothesis.matrix,)</pre>	Generic function for testing a linear hypothesis.	<pre>linearHypothesis(model2, c("betasLogFactorRetMkt.RF=0", "betasLogFactorRetSMB=0", "betasLogFactorRetHML=0"))</pre>	L10B2
lmtest	<pre>coeftest(x, vcov. = NULL, df = NULL,)</pre>	A generic function for performing z and (quasi-)t Wald tests of estimated coefficients.	<pre># t-test for coefficients. Argument of vcovHC accom modates for potential heteroscedasticity. coeftest(model2,vcov=vcovHC(model2))</pre>	L10B2
tseries	<pre>adf.test(x, alternative = c("stationary", "explosive"),)</pre>	Computes the Augmented Dickey-Fuller test for the null that x has a unit root.	<pre>adf.test(RGDP\$Level, alternative = "stationary")</pre>	L12B2
forecast	<pre>auto.arima(y, d, D, stationary = FALSE, seasonal = TRUE,)</pre>	Returns best ARIMA model according to either AIC, AICc or BIC value.	auto.arima(RGDP\$LogLevel, seasonal=FALSE)	L12B2
	<pre>tsdisplay(x, lag.max,)</pre>	Plots a time series along with its acf and either its pacf, lagged scatterplot or spectrum.	<pre>tsdisplay(residuals(opt_fit), lag.max=45,</pre>	L12B2
	<pre>Arima(y, order, seasonal, include.mean = TRUE, include.drift = FALSE, include.constant,)</pre>	Largely a wrapper for arima function in the stats package. The main difference is that this function allows a drift term.	<pre>Arima(Train\$Level, order=c(2,1,0), seasonal = FALSE, include.drift = TRUE)</pre>	L12B3
PortfolioA nalytics	<pre>portfolio.spec(.) add.constraint(.) add.objective(.) optimize.portfolio(.)</pre>	Search for efficient portfolio with respect to constraints and objectives.		L13B0

	chart.Weights(.)	Charts the optimal weights of a portfolio.	<pre>chart.Weights(opt.portf, neighbors = NULL, main = "Weights")</pre>	L13B1
	<pre>chart.RiskReward(.)</pre>	This function charts risk-return	<pre>chart.RiskReward(opt.portf, risk.col="StdDev", return.col="mean",chart.assets = TRUE)</pre>	L13B1
	extractWeights(.)	Extract assets weights	Weights = extractWeights(opt.portf)	L13B1
bizdays	create.calendar(name, holidays, weekdays,)	Creates calendars and stores them in the calendar register.	<pre>cal = create.calendar("America",</pre>	
	<pre>adjust.next(dates,cal) following(.) adjust.none(.) modified.following(.) adjust.previous(.) preceding(.) modified.preceding(.)</pre>	Rolls the given date to the next or previous business day, unless it is a business day.	modified.preceding(Rebalance.Date,cal)	L14B1
riskParityP ortfolio	riskParityPortfolio(Sigma,)	Designs risk parity portfolios to equalize/distribute the risk contributions of the different assets.	Sigma<-cov(Return) portfolio.parity <- riskParityPortfolio(Sigma)	L14B2
<u>fPortfolio</u>	<pre>efficientPortfolio(.) maxratioPortfolio(.) tangencyPortfolio(.) minriskPortfolio(.) minvariancePortfolio(.) maxreturnPortfolio(.)</pre>	Returns efficient portfolios.	<pre>portfolio.tangency <- tangencyPortfolio(</pre>	L14B2
	<pre>getCov(.) getCovRiskBudgets(.) getWeights(.)</pre>	Extractor functions to get information from portfolio	<pre>getWeights(portfolio.tangency) getCovRiskBudgets(portfolio.tangency)</pre>	L14B2
	<pre>rollingWindows(x, period, by = "1m")</pre>	Returns a list of rolling window frames	rollingWindows(Return, period="3m", by="1m")	L14B2

Note: LmBn in the "File" column indicates Lesson m Breakout n. For example, "L14B2" is Lesson 14 breakout 2 (see "BreakoutContents.pdf" for details)