

Motivation

Continuous measurement of number coughs:

- Personalized patient care
- Monitor severity of respiratory diseases
- Assess treatment efficacy of novel antitussive therapies

Rudd et al., Lung (2022), "The Statistics of Counting Coughs: Easy as 1, 2, 3?", Fig. 1

3

Motivation

Continuous measurement of number coughs:

- Personalized patient care
- Monitor severity of respiratory diseases
- Assess treatment efficacy of novel antitussive therapies

24/7 measurement

https://councils.forbes.com/blog/wearable-tech-in-healthcare

Dataset: COUGHVID

EPFL Embedded Systems Laboratory

- COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms
- ~30'000 sample
- eXtreme Gradient Boosting (XGB) cough classifier

Data Preprocessing

Threashold = 0.8

=> 95.4% precision

1.0

0.8

-0.6 of super 1.0

0.8

-0.4 of super 1.0

0.9

0.4

0.7

0.8

-0.4 of super 1.0

0.9

0.0

0.0

-0.4 of super 1.0

0.0

-0.4 of super 1.0

0.5 of super 1.0

0.6 of super 1.0

0.7

0.8

-0.9 of super 1.0

0.9 of super 1.0

0.0 of supe

- Segmentation
- Downsampling to 16kHz
- Cropping to 1s

Cough dataset

Preprocessed Cough dataset

Final dataset: ~14'000 sample

(10% testing, 5% validation)

3x Augmentation with:

- Stretching
- Shifting
- Noise addition

Augmented Cough dataset

Crowdsourced data

Contains bad samples!

Target Device

- MAX78000 Microcontroller
 - Dual Core: Arm Cortex-M4 Processor with FPU, 100MHz, RISC-V Coprocessor, 60MHz
 - 512KB Flash Memory
 - 128KB SRAM
 - 16KB Cache
 - Convolutional Neural Network Accelerator
 - 12-Bit Parallel Camera Interface
 - MAX20303 Wearable PMIC with Fuel Gauge
 - Charge from USB
 - On-Board DAPLink Debug and Programming Interface for Arm Cortex-M4 processor with FPU
 - Breadboard Compatible Headers
 - Micro USB Connector
 - Micro SD Card Connector
- Integrated Peripherals
 - RGB Indicator LED
 - User Pushbutton
 - CMOS VGA Image Sensor
 - Low-Power Stereo Audio CODEC
 - Digital Microphone
 - SWD Debugger
 - Virtual UART Console
 - 10-Pin Cortex Debug Header for RISC-V Coprocessor

Model Design

Hardware accelerator CNN architecture

Feature extraction?

First approach:

>2x more power consumption than NN inference!

Model Design

Hardware accelerator CNN architecture

Feature extraction?

Better approach:

- (+) Zero cost (change order of memory locations)
- (+) Using 1D conv can extract both short time and long time relations

CoughNet v1

- 8 1D-Convolution layers + ReLu activation function
- 4 Max pooling layers
- 1 Fully connected layer (linear)

Inspired from Maxim KWS examples

CoughNet v1 (8 classes)

Nb classes	8 (6 Keywors + Cough + Unknown)
Nb epochs	100
Quatization	Quantization Aware Training
Accuracy	91.5 %
Precision (cough)	0.99
Sensitivity (cough)	0.98
F-1 score (cough)	0.98
Size	428.7 KB (390.6 FLASH + 38.1 SRAM)
Latency	1.8 ms
Nb of operations	8,400,224 ops

Figure 1: Quatized network, 8 Classes (6 + cough + unknown), 91.5% Accuracy

CoughNet v1 (20 classes)

Nb classes	20 (18 Keywors + Cough + Unknown)				
Nb epochs	100				
Quatization	Quantization Aware Training				
Accuracy	87.9 % (-3.6%)				
Precision (cough)	0.98 (-0.01%)				
Sensitivity (cough)	0.98				
F-1 score (cough)	0.98				
Size	432.6 KB (394.4 FLASH + 38.1 SRAM) (+3.9KB)				
Latency	1.8 ms				
Nb of operations	8,402,272 ops				

Row-Normalized Confusion Matrix

Figure 2: Quatized network, 20 Classes (18 + cough + unknown), 87.9% Accuracy

8 vs 20 classes

Same model, more classes:

The unknown classes cause most of the accuracy drop, but good for robustness and generalization.

CoughNet v2 (1D-conv then 2D-conv)

- 9 1D-Convolution layers + ReLu activation function
- 1 Fully connected layer (linear)

CoughNet v2 (20 classes)

Nb classes	20 (18 Keywors + Cough + Unknown)
Nb epochs	100
Quatization	Quantization Aware Training
Accuracy	88.1 % (+0.2%)
Precision (cough)	0.96 (-0.02%)
Sensitivity (cough)	0.98
F-1 score (cough)	0.97 (-0.01%)
Size	384.4 KB (346.3 FLASH + 38.1 SRAM) (-48.2 KB)
Latency	2.6 ms (+0.8ms)
Nb of operations	13,859,456 ops

* Expected to also consume more energy

Figure 3: Quatized network, 20 Classes (18 + cough + unknown), 88.1% Accuracy

CoughNet v1 vs. v2

1D-conv model vs 2D-conv model:

Can adapt the model to optimize for memory or latency depending on the need

Comparison with other work

CoughNet vs EPFL XGB model vs Other:

Ref.	Edge-AI execution	HW-aware design	ML performance Sensors ML model		Environmental noise	
Drugman, 2020, [11]	No	No	*Sens. = 94.7% *Spec. = 95.0%	audio microphone contact microphone	2 Neural Networks	Yes
Otoshi, 2021, [14]	No	No	*Sens. = 92.0% *Spec. = 96.0%	3-axis accelerometer stretchable strain sensor	Variational Autoencoder + K-means clustering	Yes
Nemati, 2021, [28]	No	No	*Sens. = 83.0% *Spec. = 91.7%	microphone kinematic	Random forest + DWT template matching	No
Wang, 2022, [26]	Yes	No	*Acc. = 78.5% *F1 = 77.0%*	4 microphones	CNN	Yes
Jokic, 2022, [21]	No	No	*Acc. = 80.0%	4 microphones	CNN	No
Zhang, 2022, [27]	Yes	No	*AUROC = 77.0%			Yes
Kuhn, 2023, [20]	No	No	*Sens. = 88.5% † / 84.15% + *Prec. = 99.97% † / 99.7% +			Yes
Cough-E (ours)	Yes	Yes	Sens. = 71.0% Prec. = 78.0% F1 = 77.7%			Yes

EPFL XGB model →

⁽⁺⁾ nightime testing

^(*)Segment-based performance metrics (cf. Section II-F)

^(†) daytime testing

Comparison with other work

CoughNet vs EPFL XGB model vs Other:

Cough-E (ours)	Yes	Yes	Sens. = 71.0% Prec. = 78.0% F1 = 77.7%	microphone kinematic	2 XGB classifiers	Yes
(*)Segme	nt-based perfo	ormance metrics	s (cf. Section II-F)	(†) daytime testing (‡) nightime testing		
CoughNet	Yes	Yes	Sens. = 98.6% Prec. = 98.1% F1 = 98.3%	microphone	CNN Classifier	Yes

!! Comparison metrics slightly different

- CoughNet: fixed window (1s), metrics deduced from confusion matrix
- Cough-E: variable window
 - o True Positive: start and end of a predicted cough event overlap with a ground-truth
 - False Positive: predicted cough with no overlap or overlap outside tolerance windows
 - False Negative: ground truth that does not overlap with a prediction

Comparison with Analog Devices

Analog devices paper demonstrating performance of keyword spotting:

TABLE I
COMPARISON OF ACCURACY RESULTS ON THE SPEECH COMMAND
DATASET

		Model	MFCC	Precision	#Param	Model Size	Acc	
	_	[1]	yes	fp-32	244.2K	976.8 KB	90.2%	
		[2]	yes	fp-32	238K	952 KB	95.8%	
		[3]	yes	fp-32	61K	244 KB	96.4%	
		[4]	yes	int-8	497.6K	497.6 KB	95.4%	
		[6]	no	fp-32	122K	488 KB	96.6%	000
Analog Devices mo	odel →	ours	no	int-8	419.8K	419.8 KB	96.3%	200 epochs
	Cou	ghNet v1	no	Int-8	432.6 K	432.6 KB	87.9%	100 epochs

Limitations & Potential Improvements

- 1. Did not train for long enough due to limited resources
- 2. Cough detection very good, but cough counting not so accurate
 - Combined coughs
 - Varying duration coughs
- 3. Could add energy measurements and comparison

Demo


```
** New Inference **
1595904: Starts CNN: 40
1595904: Completes CNN: 40
CNN Time: 1850 us
Classification results:
[-0072400] -> Class 00
                          Up: 0.4%
[-0128208] -> Class 01
                          Down: 0.0%
[-0127296] -> Class 02
                        Left: 0.0%
[-0199856] -> Class 03
                         Right: 0.0%
[-0091440] -> Class 04
                         Stop: 0.2%
[-0115504] -> Class 05
                        Go: 0.1%
                       Yes: 0.0%
[-0198704] -> Class 06
                        No: 0.0%
[-0126752] -> Class 07
                       One: 0.0%
[-0167056] -> Class 08
                        Two: 1.5%
[-0049280] -> Class 09
[-0106832] -> Class 10
                         Three: 0.1%
[-0115744] -> Class 11
                        Four: 0.1%
[-0134048] -> Class 12
                        Five: 0.0%
[-0113936] -> Class 13
                        Six: 0.1%
                         Seven: 0.4%
[-0085728] -> Class 14
[-0146256] -> Class 15
                         Eight: 0.0%
                        Nine: 0.0%
[-0157616] -> Class 16
[-0141712] -> Class 17
                        Zero: 0.0%
[+0052320] -> Class 18
                        Cough: 96.2%
[-0056576] -> Class 19 Unknown: 0.8%
Detected word: Cough (96.2%)
```

Number of coughs today: 6

Demo

Thank you for Listening!

Q&A

