Segundo Trabalho Maior: Modelagem de Instrumentos por Modulação em Frequência

Data de entrega: 14/11/2014 até 23:55 pelo PACA

Este trabalho consiste em 3 partes:

- Leitura do artigo clássico de John Chowning intitulado "The Synthesis of Complex Audio Spectra by Means of Frequency Modulation" (1973), disponível em https://ccrma.stanford.edu/sites/default/files/user/jc/fm_synthesis_paper.pdf
- Implementação dos exemplos mencionados no artigo, conforme as instruções específicas da seção 1 desse enunciado.
- Aplicação dos instrumentos em um trabalho musical, conforme as instruções específicas da seção 2 desse enunciado.

1 Implementação dos instrumentos

As 5 primeiras páginas do artigo servirão de introdução ao trabalho e como revisão do que vimos em aula sobre a técnica de síntese FM. A partir da página 6 o artigo começa a descrever os instrumentos propostos na linguagem Music V, e que nós adaptaremos para o Pure Data. Todas as nossas implementações em Pure Data serão abstrações com inlets de sinais ([inlet~]) para cada parâmetro de controle. Você pode reutilizar as abstrações mais genéricas para a criação de abstrações mais específicas (considerando que todos os patches estarão em um mesmo diretório).

Nos instrumentos do texto há sempre 3 parâmetros iniciais (P1, P2 e P3) que correspondem ao início do som do instrumento, o identificador do instrumento e a duração do evento produzido, que são utilizados em uma partitura na linguagem Music V. Estas informações serão controladas no Pure Data por estruturas de controle do próprio patch, e fora dos instrumentos, conforme descrito na seção 2. Os instrumentos que devemos implementar são estes:

- FM simples: implementado como FMsimples~.pd. Instrumento representado na figura 9 (do artigo), e que possui 4 parâmetros de controle (amplitude, frequência portadora, frequência de modulação e amplitude de modulação).
- Envelope ADSR linear: implementado como ADSR1inear. pd. Instrumento tratado como "unidade geradora" (u.g.4) que corresponde a um oscilador por consulta a tabela com um perfil indicado na figura 11, será substituído na nossa implementação por um gerador de envelope flexível como aquele que implementamos em aula, e deve aceitar sete entradas: disparo (inicia a produção) do sinal, tempo de ataque, amplitude de pico, tempo de decaimento inicial, amplitude de sustentação, tempo de sustentação e tempo de relaxamento final.
- Envelope ADSR exponencial: implementado como ADSR exponencial. Pequena variação do instrumento anterior para nossas experiências, deve aceitar um parâmetro adicional β que modifica os trechos lineares da curva ADSR transformando as amplitudes lineares a em $\phi(a)=\frac{1-e^{\beta a}}{1-e^{\beta}}$. Atenção: as amplitudes de pico a_p e de sustentação a_s devem ser transformadas na geração das rampas para garantir que os valores produzidos pela curva são realmente a_p e a_s (e não $\phi(a_p)$ e $\phi(a_s)$), conforme os valores dos inlets.
- FM com envelope para o índice de modulação: implementado como FMdinamica~.pd. Instrumento representado na figura 10, e que possui 5 parâmetros de controle (amplitude, frequência portadora, frequência de modulação, índice de modulação I_1 e índice de modulação I_2). Neste instrumento os valores do índice instantâneo são obtidos indiretamente a partir da curva de amplitude, adaptada linearmente para produzir valores de índice entre I_1 e I_2 .
- Instrumento (genérico) de metal: implementado como FMmetal~.pd. Instrumento referido no texto como "brass-like tones", consiste em usar a mesma frequência para a portadora e moduladora, e variar o índice entre 0 e 5 acompanhando o perfil da envoltória dinâmica. Deve receber 3 entradas (sinais): amplitude, frequência fundamental (instantâneas) e um parâmetro que chamaremos de detune, que é um pequeno valor somado à frequência de modulação, conforme o comentário do parágrafo anterior à figura 13. Conforme a frequência fundamental e a forma do envelope dinâmico deve ser possível reconstruir sons parecidos com trompetes, trombones e tubas, e efeitos como vibrato, glissando, etc.

- Envelope ASR: implementado como ASR $\tilde{}$.pd. Ilustrado na figura 12 e utilizado nos instrumentos de sopro (Woodwind-like tones). Utiliza rampas exponenciais e deve aceitar as entradas disparo, tempo de ataque, amplitude de sustentação, tempo de sustentação, tempo de relaxamento final e β .
- **Tubo de órgão** implementado como FMorgao~.pd. Este é o primeiro exemplo da série de Woodwind-like tones, com parâmetros $\frac{c}{m}=3$ e índice de modulação variando entre 0 e 2. Deve aceitar 3 entradas: amplitude, frequência fundamental e detune. Atenção neste e em outros exemplos: a frequência fundamental neste exemplo é a da moduladora, não a da portadora; para cada caso deve-se traduzir o termo frequência fundamental para o oscilador correto.
- Fagote implementado como FMfagote~.pd. É o segundo exemplo da série de sopros (bassoon-like tones). Deve aceitar 3 entradas: amplitude, frequência fundamental e detune.
- Clarinete implementado como FMclarinete..pd. É o terceiro exemplo da série de sopros (clarinet-like tones). Deve aceitar 3 entradas: amplitude, frequência fundamental e detune.
- Envelope exponencial: implementado como Rexponencial".pd. É o envelope ilustrado na figura 14. Deve receber como entradas o disparo, a duração e o parâmetro β da curva exponencial.
- Sino: implementado como FMsino~.pd. Este é o primeiro exemplo da série Percussive sounds, com parâmetros $\frac{c}{m} = \frac{\sqrt{2}}{2}$ e índice de modulação variando entre 0 e 10. Deve aceitar 2 entradas: amplitude e frequência da portadora.
- Envelope de tambor: implementado como ARtambor. pd. Ilustrado na figura 15, pode ser obtido por um envelope AR exponencial. Entradas: disparo, amplitude inicial, tempo de ataque, amplitude de pico, tempo de relaxamento e β .
- **Tambor:** implementado como FMtambor~.pd. Este é o segundo exemplo da série Percussive sounds. Deve aceitar 2 entradas: amplitude e frequência da portadora.
- Bloco de madeira: implementado como FMblocodemadeira..pd. Este é o terceiro exemplo da série Percussive sounds. Deve aceitar 2 entradas: amplitude e frequência da portadora. Note que o índice usa um envelope separado e bem mais curto, do tipo produzido por Rexponencial..pd.
- FM com três portadoras: implementado como FMtresportadoras~.pd. Esta é uma pequena variação do exemplo da figura 17, em que são somadas 3 FMs com portadoras independentes que utilizam a mesma moduladora. De implementação análoga ao instrumento FMdinamica~.pd, deve aceitar as entradas: amplitude, frequências portadoras 1, 2 e 3, frequência de modulação, índice de modulação I_1 e índice de modulação I_2 . Uma sugestão de utilização desse instrumento é usar a moduladora como frequência fundamental e as portadoras como regiões formantes, para gerar sons de vogais a partir das tabelas de formantes da tabela 3-10 (página 292) do Moore.

2 Aplicação musical

Nessa parte do trabalho cada um utilizará os instrumentos implementados para produzir uma peça-patch que dure entre 3 e 5 minutos.

O objetivo central não é criar peças originais ou bonitas, mas explorar as possibilidades de timbres da síntese FM.

Os trabalhos podem ser totalmente inventados/compostos ou reproduzirem peças já existentes.

É necessário que a peça-patch produza os eventos/parâmetros e disparos a partir de um comando do usuário, ou seja, não é para enviar gravações, mas um patch (chamado peça<NUMEROUSP>.pd) com um botão do tipo "para tocar aperte aqui".

Sequências complicadas de valores e parâmetros podem ser armazenadas em arquivos externos e lidas pelo patch (por exemplo usando [coll] para ler arquivos texto ou [seq]/[midiparse] para ler arquivos MIDI).

Bom Trabalho!