Homework 3, Section 7.4 Solutions

1

Claim: The automorphism group of the additive group \mathbb{Z}_n is isomorphic to \mathbb{Z}_n^* .

Proof. We will show that an isomorphism exists from \mathbb{Z}_n^* to $\operatorname{Aut}(\mathbb{Z}_n)$. Let $f: \mathbb{Z}_n^* \to \operatorname{Aut}(\mathbb{Z}_n)$ be the map $k \to \varphi_k$ for $k \in \mathbb{Z}_n^*$, defined such that for $[a] \in \mathbb{Z}_n$, $\varphi_k([a]) = [ka]$.

1) We must first show that φ_k is a well-defined bijective homomorphism from \mathbb{Z}_n to \mathbb{Z}_n . Let [a] = [b] for $[a], [b] \in \mathbb{Z}_n$. We have $\varphi_k([a]) = [ka]$ and $\varphi_k([b]) = [kb]$. In the ring \mathbb{Z}_n , [ka] = [k][a] and [kb] = [k][b]. Since [a] = [b], it follows that [k][a] = [k][b], so φ_k is well-defined.

Next, let $\varphi_k([a]) = \varphi_k([b])$. Then $\varphi_k([a]) = [ka] = [kb] = \varphi_k([b])$. By the cancellation property, [ka] = [k][a] = [k][b] = [kb] implies [a] = [b], so φ_k is injective.

To show that φ_k is surjective, let $[c] \in \mathbb{Z}_n$ and $[k] \in \mathbb{Z}_n^*$ be given. We must show that there is some $[a] \in \mathbb{Z}_n$ such that $\varphi_k([a]) = [c]$. Since k is relatively prime to n, there exist some $u, v \in \mathbb{Z}_n$ where ku + vn = 1. Multiplying both sides of this equation on the right by c yields (ku + vn)c = kuc + vnc = c. Now we can choose some $a \in \mathbb{Z}_n$ where a = uc. Since vnc = 0 in \mathbb{Z}_n , we have

$$kuc + vnc = c$$

$$\rightarrow ka + 0 = c$$

$$\rightarrow ka = c,$$
(1)

so the map φ_k is surjective.

Now let $a, b \in \mathbb{Z}_n$ be given. Then $\varphi_k([a+b]) = [k(a+b)] = [k][a+b]$. Similarly, $\varphi_k([a]) + \varphi_k([b]) = [ka] + [kb] = [k]([a] + [b]) = [k][a+b]$. Since the group operation of \mathbb{Z}_n is addition, and $\varphi_k([a+b]) = \varphi_k([a]) + \varphi_k([b])$, the map φ_k is a homomorphism to \mathbb{Z}_n .

2) Next, we must show that the map f defined as $k \to \varphi_k$ is a well-defined bijective homomorphism from \mathbb{Z}_n^* to $\operatorname{Aut}(\mathbb{Z}_n)$. To show that f is well-defined, let $k = j \in \mathbb{Z}_n^*$ be given. We have $\varphi([a]) = [ka] = [k][a]$ and $\varphi([a]) = [ja] = [j][a]$. Since [k] = [j], it follows that [k][a] = [ka] = [ja] = [j][a], so the map f is well-defined.

To show that f is injective, let $\varphi_j = \varphi_k \in \text{Aut}(\mathbb{Z}_n)$ be given. Then for some $a \in \mathbb{Z}_n$, we have $\varphi_j([a]) = \varphi_k([a])$ and so [ja] = [j][a] = [k][a] = [ka]. By the cancellation property, [j][a] = [k][a] implies [j] = [k], so the map f is injective.

We will now show that f is surjective. Let $\varphi_c \in \operatorname{Aut}(\mathbb{Z}_n)$ be given. Then for some $b \in \mathbb{Z}_n$, $\varphi_c([b]) = [cb]$. There is some $[a] \in \mathbb{Z}_n$ where [a] = [cb]. Using a similar argument used for equation (1), we can be given some $k \in \mathbb{Z}_n^*$ and choose some $[d] \in \mathbb{Z}_n$ where [kd] = [a] = [cb]. So for any $\varphi_c \in \operatorname{Aut}(\mathbb{Z}_n)$, there is some $k \in \mathbb{Z}_n^*$ such that $\varphi_k = \varphi_c$, so f is surjective.

Finally, let $k, j \in \mathbb{Z}_n^*$ be given. Then for some $a \in \mathbb{Z}_n$, $\varphi_{kj}([a]) = [kja]$. Similarly, the composition $\varphi_k \circ \varphi_j([a])$ yields $\varphi_k([ja]) = [kja]$. The group operation of $\operatorname{Aut}(\mathbb{Z}_n)$ is composition, so the map f is a homomorphism to $\operatorname{Aut}(\mathbb{Z}_n)$.

we have shown that for each $k \in \mathbb{Z}_n^*$, φ_k is isomorphic from \mathbb{Z}_n to \mathbb{Z}_n , and we have shown that the f, the map $k \to \varphi_k$ is isomorphic from \mathbb{Z}_n^* to $\operatorname{Aut}(\mathbb{Z}_n)$, so we have constructed an isomorphism from \mathbb{Z}_n to $\operatorname{Aut}(\mathbb{Z}_n)$ and we are done.