Covid Data Notebook

Goal

The purpose of this notebook is to show the analysis of Covid data from the Virginia Department of Health library(ggplot2)

Preparing the data

Read in raw data as a data frame

```
rawData <- read.csv("VDH-COVID-19-PublicUseDataset-EventDate.csv", stringsAsFactors = FALSE)
# Fix the date field
rawData$FixedDate <- as.Date(rawData$Event.Date,format="%m/%d/%Y")</pre>
```

Now we build two new data frames: one with confirmed cases and one with probable cases and then merge them together. Before we merge them we change the column headings of the 2 dataframes. We also need to replace all of the NA values with 0's.

```
# Build a data frame with just the confirmed cases
confirmedCases <- subset(rawData, Case.Status == "Confirmed")</pre>
# Build a data frame with just the probable cases
probableCases <- subset(rawData, Case.Status == "Probable")</pre>
# Change the column headings to reflect the two data sets
col_headings
                       <- c('Event.Date',
                            'Health.Planning.Region',
                            'Case.Status - Confirmed',
                            'Cases-confirmed',
                            'Hospitalizations-confirmed',
                            'Deaths-confirmed',
                            'FixedDate')
col headings2
                       <- c('Event.Date',
                            'Health.Planning.Region',
                            'Case.Status - Probable',
                            'Cases-probable',
                            'Hospitalizations-probable',
                            'Deaths-probable',
                            'FixedDate')
names(confirmedCases) <- col_headings</pre>
names(probableCases) <- col_headings2</pre>
# Merge the two dataframes and build the new columns combining the data
mergedData
                       <- merge(confirmedCases,
                                probableCases,
                                by = c("FixedDate", "Health.Planning.Region"),
                                all.x = TRUE,
```

```
all.y = TRUE)
mergedData[is.na(mergedData)] <- 0 # Replace all of the NA's with 0</pre>
```

Here we build a new column with the total of confirmed and probable cases, deaths and hospitalizations.

Build 3 new dataframes for the different regions in Virginia:

```
casesEastern <- subset(mergedData, mergedData$Health.Planning.Region == "Eastern")
casesCentral <- subset(mergedData, mergedData$Health.Planning.Region == "Central")
casesNorthern <- subset(mergedData, mergedData$Health.Planning.Region == "Northern")</pre>
```

Calculating the Totals for the State

```
totalCases = sum(rawData$'Number.of.Cases')
totalHospitalizations = sum(rawData$'Number.of.Hospitalizations')
totalDeaths = sum(rawData$'Number.of.Deaths')
```

Totals for the State:

• Cases: 67964

• Hospitalizations: 6223

• Deaths: 1896

Calculate heard immunity rate of Eastern Virginia

```
According to CDC nationwide IFR is 0.26%
```

```
numberHadit = sum(casesEastern$'totalDeaths') / .0026
```

Individuals who have had Covid: 89230.77

Total Population in the Eastern Planning Region: 1,854,806. Percentage of individuals who have had Covid: 0.0481079

Total Cases Over Time

```
totalCases_vs_Deaths_Plot = ggplot() + geom_line(data = mergedData, aes(x = FixedDate, y = totalCases),
print(totalCases_vs_Deaths_Plot + ggtitle("Total Cases Over Time"))
```

Total Cases Over Time

totalCases_Eastern_Plot = ggplot() + geom_line(data = casesEastern, aes(x = FixedDate, y = totalCases),
print(totalCases_Eastern_Plot) + ggtitle("Total Cases, Eastern Virginia")


```
totalCases_Central_Plot = ggplot(data = casesCentral, aes(x = FixedDate, y = totalCases)) + geom_line()
print(totalCases_Central_Plot + ggtitle("Total Cases, Central Virginia"))
```

Total Cases, Central Virginia

totalDeaths_Eastern_Plot = ggplot(data = casesEastern, aes(x = FixedDate, y = totalDeaths)) + geom_line
print(totalDeaths_Eastern_Plot) + ggtitle("Total Deaths, Eastern Virginia")

Total Deaths, Eastern Virginia


```
percent_hadit_Eastern = ggplot(data = casesEastern, aes(x = FixedDate, y = numberHadit)) + geom_line()
print(percent_hadit_Eastern) + ggtitle(" Total hadit")
```


Calculate heard immunity rate of Eastern Virginia, according to CDC nationwide IFR is 0.26%