Quatrième Chapitre 7

— 7 —

Proportionnalité

- I. Reconnaître une situation de proportionnalité
- 1. Dans un tableau

Définition 1

Deux grandeurs sont proportionnelles si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre appelé **coefficient de proportionnalité**.

// Exemple :

Ces tableaux sont-ils des tableaux de proportionnalité?

Grandeur 1	12	16	28	32	40
Grandeur 2	15	20	35	40	50

.....

.....

Grandeur 1	10	12	16	25	38
Grandeur 2	12	18	25	40	45

.....

Quatrième Chapitre 7

2. Graphiquement

Propriété 1

• Si on représente une situation de proportionnalité dans un repère, alors tous les points sont alignés avec l'origine.

• Réciproquement, dans une situation représentée graphiquement, si tous les points sont alignés avec l'origine, alors c'est une situation de proportionnalité.

Exemple :

En 2022, certaines enseignes vendaient leur essence environ $2\mathfrak{E}$ le litre.

Représenter graphiquement le prix de l'essence en fonction du volume.

On représente le volume sur l'axe des et le prix sur l'axe des et

Exemple :

Dire, en justifiant, si ces graphiques représentent des situations de proportionnalité?

.....

.....

II. Déterminer une quatrième proportionnelle

Propriété 2 : Égalité des produits en croix

Dans une situation de proportionnalité, la quatrième proportionnelle est le nombre calculé à partir de 3 autres nombres connus.

Le tableau ci-dessous est un tableau de proportionnalité où a,b et c sont connus.

La quatrième proportionnelle à déterminer est ici x.

	a	c	
et c différents de zéro.	b	x	

On a : $\frac{b}{a} = \frac{x}{c}$ avec a, b et c différents de zéro.

Et donc : $a \times x = b \times c$ (égalité des produits en croix).

En particulier, on a donc que $x = \frac{b \times c}{a}$.

Exemple	:
Lacinpic	•

Déterminer les valeurs de x et y dans le tableau de proportionnalité suivant :

x	3,6	9
4	4,8	y

.....

III. Calcul et utilisation de ratios

Définition 2

• On dit que deux nombres a et b sont dans le ratio 2:3 si $\frac{a}{b}=\frac{2}{3}$.

Cela revient à dire que $\frac{a}{2} = \frac{b}{3}$.

• On dit que trois nombres a, b et c sont dans le ratio 2:3:4 si $\frac{a}{2} = \frac{b}{3} = \frac{c}{4}$.

Exempl	le	:
--------	----	---

b. Antoine, Chloé et Jules partagent 120 bonbons avec un ratio de 3:4:5. Combien chaque enfant a de bonbons?

.....

.....

Quatrième Chapitre 7

IV. Grandeurs-produit et grandeurs-quotient

1. Définitions

Définition 3

- Une grandeur-produit est une grandeur obtenue en multipliant deux grandeurs.
- Une grandeur-quotient est une grandeur obtenue en divisant deux grandeurs.

// Exemple :

- L'aire d'un rectangle est obtenue en multipliant sa longueur et sa largeur : c'est une grandeur-produit. En termes d'unités, on a : ... $m \times ... m = ... m^2$.
- La concentration massique d'une substance est obtenue en divisant sa masse par un volume : c'est une grandeur-quotient. En termes d'unités, on a : $\frac{\dots g}{\dots L} = \dots g/L = \dots g.L^{-1}$.

Méthode:

- Pour convertir une grandeur-produit, on convertit chacune des grandeurs puis on les multiplie entre elles.
- Pour convertir une grandeur-quotient, on convertit chacune des grandeurs puis on les divise entre elles.

2. Exemple : la vitesse moyenne

Propriété 3

Lors d'un trajet d'une distance D qui dure un temps T, on peut calculer la vitesse moyenne V à l'aide du calcul : $V=\frac{D}{T}$

En conséquence, on a que : $D = V \times T$.

/ Exemple :

Un automobiliste roule à un vitesse moyenne de 90 km/h.

Compléter le tableau ci-dessous :

Distance (en km)	90	120		180	
Temps (en h)			1,5		0.5
Temps (en mn)					