Indian Institute of Engineering Science and Technology, Shibpur B. E. Part-III (CST) 5th Semester Examinations, 2015

1 a) Differentiate among the RAW, WAR and WAW data hazard types. 5 b) Consider the following code sequence: 7 SW 512(R0), R3; => M[512] < R3 LW R1, 1024(R0); => R1 < M[1024] LW R2, 512(R0); => R2 < M[512] Identify the cases of possible data hazard (RAW/WAR/WAW). c) Define branch delay slot. 3 2 a) Define compulsory, conflict and capacity miss? 6 b) In a system, the cache size (volume of cache interfaced) is 1MB; memory block size is 16KB. If cache size of the system is increased to 2MB, keeping all other components/parameters intact, then clarify its impact on compulsory/conflict/capacity miss. 6 c) A program accesses each element of a 64 x 64 matrix 16 times in course of its execution. The data cache can accommodate 1024 matrix elements and 64 matrix elements per block/page. How many compulsory data cache misses occur during the program execution? 5 .5 3 a) Describe snoopy protocol based on the write-invalidate policy, implemented to enforce cache coherence in a multiprocessor system.		
c) Define branch delay slot. 2 a) Define compulsory, conflict and capacity miss? 6 b) In a system, the cache size (volume of cache interfaced) is 1MB; memory block size is 16KB. If cache size of the system is increased to 2MB, keeping all other components/parameters intact, then clarify its impact on compulsory/conflict/capacity miss. 6 c) A program accesses each element of a 64 x 64 matrix 16 times in course of its execution. The data cache can accommodate 1024 matrix elements and 64 matrix elements per block/page. How many compulsory data cache misses occur during the program execution? 5.5 3 a) Describe snoopy protocol based on the write-invalidate policy, implemented to enforce cache		
2 a) Define compulsory, conflict and capacity miss? 6 b) In a system, the cache size (volume of cache interfaced) is 1MB; memory block size is 16KB. If cache size of the system is increased to 2MB, keeping all other components/parameters intact, then clarify its impact on compulsory/conflict/capacity miss. 6 c) A program accesses each element of a 64 x 64 matrix 16 times in course of its execution. The data cache can accommodate 1024 matrix elements and 64 matrix elements per block/page. How many compulsory data cache misses occur during the program execution? 5.5 3 a) Describe snoopy protocol based on the write-invalidate policy, implemented to enforce cache		
b) In a system, the cache size (volume of cache interfaced) is 1MB; memory block size is 16KB. If cache size of the system is increased to 2MB, keeping all other components/parameters intact, then clarify its impact on compulsory/conflict/capacity miss. 6 c) A program accesses each element of a 64 x 64 matrix 16 times in course of its execution. The data cache can accommodate 1024 matrix elements and 64 matrix elements per block/page. How many compulsory data cache misses occur during the program execution? 5.5 3 a) Describe snoopy protocol based on the write-invalidate policy, implemented to enforce cache		
data cache can accommodate 1024 matrix elements and 64 matrix elements per block/page. How many compulsory data cache misses occur during the program execution? 5.5 3 a) Describe snoopy protocol based on the write-invalidate policy, implemented to enforce cache		
Time step :: 1 2 3 4 5 6 7 8 Processor 1: 0 0 1 0 1 1 2 0 Processor 2: 0 1 0 1 0 2 2 3		
Show traces of the execution of references by two processors indicating hits in C1 and C2 when the system follows i) Write-invalidate policy; ii) Write-update policy.		
c) Describe in brief the loop interchange technique to reduce cache miss rate. 3.5		
4 a) Indicate the basic features of an ERCW shared memory SIMD computer. Describe method of broadcasting a message in such an SIMD computer. b) A table T contains n elements. Estimate the worst case search time to find an element x from T in (i) ERCW; (ii) CREW SIMD computer. c) Define the function of a 2x2 crossbar switch. Construct an 1x8 demultiplexer using 2x2 crossbar switches. 5.5		

5 a) Describe, in brief, the architecture of a static data flow machine. Explain	the basi
differences between static and dynamic data flow computation model.	7
b) Define execution in a VLIW architecture of degree 3. Explain the differences	betwee
superscalar and VLIW architectures in terms of hardware requirement.	7
c) State a methodology for handling out-of-order exceptions in instruction pipeline.	3.5
6 a) Distinguish between UMA and NUMA.	6
b) What is loop unrolling? How does it help in ILP? -Explain with an example.	6
c) What is 'data speculation'? Describe a data value prediction scheme.	5.5
7. Write short notes on the following	10+7.5
a) RAID 5 and RAID 6.	
b) 1-bit and 2-bit prediction schemes.	