

TD 6 – Distributions

- \triangleright **Exercice 1.** Soient f_1 et f_2 des fonctions de classe \mathscr{C}^1 de \mathbf{R} dans \mathbf{R} , et soit f la fonction définie par $f(x) = f_1(x)$ si x < 0, $f(x) = f_2(x)$ si x > 0 (la valeur f(0) étant arbitraire).
 - **1.1.** Montrer que f appartient à $L^1_{loc}(\mathbf{R})$ et définit une distribution régulière notée $T_f \in \mathscr{D}'(\mathbf{R})$.
 - **1.2.** Montrer que f est dérivable sur \mathbf{R}^* , et montrer que sa dérivée définit également une distribution régulière notée $T_{f'} \in \mathcal{D}'(\mathbf{R})$.
 - 1.3. Montrer la "formule de saut"

$$(T_f)' = T_{f'} + (f_2(0) - f_1(0))\delta.$$

- \triangleright Exercice 2. Soit p un entier naturel, $p \ge 1$. Déterminer $x\delta^{(p)}$.
- \triangleright **Exercice 3.** On pose, pour $\varphi \in \mathcal{D}(\mathbf{R})$,

$$\operatorname{vp}_{1/x}(\varphi) := \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x.$$

- **3.1.** Montrer qu'on définit ainsi une distribution sur \mathbf{R} , appelée "valeur principale de 1/x".
- **3.2.** Montrer que la fonction $\ln |x|$ définit une distribution régulière sur \mathbf{R} , et vérifier que $T'_{\ln |x|} = \mathrm{vp}_{1/x}$.
- **3.3.** Déterminer $x \cdot \text{vp}_{1/x}$.

$$xy'(x) = 0, \quad x \in \mathbf{R}. \tag{1}$$

- **4.1.** Résoudre l'équation (1) dans $\mathscr{C}^1(\mathbf{R})$.
- **4.2.** Montrer qu'une solution dans $\mathscr{C}^1(\mathbf{R})$ de cette équation vérifie également l'équation

$$\int_{\mathbf{R}} y(x)(x\varphi(x))' \, \mathrm{d}x = 0, \quad \varphi \in \mathscr{D}(\mathbf{R}).$$
 (2)

MI2 TD 6

4.3. Montrer que la fonction de Heaviside, $H=1_{\mathbf{R}_+},$ vérifie (2).

- **4.4.** Résoudre l'équation xT' = 0 dans $\mathcal{D}'(\mathbf{R})$.
- ightharpoonup Exercice 5. On définit $f: \mathbf{R} \to \mathbf{R}$ par $f(x) = (\pi x)/2$ sur $[0, 2\pi[$, et en prolongeant la fonction sur tout \mathbf{R} par 2π -périodicité.
 - **5.1.** Montrer que f appartient à $\mathrm{L}^2_{2\pi}(\mathbf{R})$ et calculer sa série de Fourier.
 - **5.2.** Montrer que f définit une distribution régulière, notée T_f , et déduire de la question précédente que

$$T_f = \sum_{n \ge 1} \frac{\sin nx}{n}$$

dans $\mathcal{D}'(R)$.

5.3. En déduire la formule de Poisson dans $\mathcal{D}'(\mathbf{R})$,

$$\sum_{n \in \mathbf{Z}} e^{inx} = 2\pi \sum_{n \in \mathbf{Z}} \delta_{2n\pi}.$$

5.4. En déduire, pour $\varphi \in \mathcal{D}(\mathbf{R})$, la formule

$$\sum_{n\in\mathbf{Z}}\widehat{\varphi}(n)=\sum_{n\in\mathbf{Z}}\varphi(n).$$

NB. On rappelle que, pour $\varphi \in L^1(\mathbf{R})$, on définit la transformée de Fourier $\widehat{\varphi}$ par

$$\widehat{\varphi}(\xi) := \int_{\mathbf{R}} \varphi(t) e^{-2i\pi\xi t} \, \mathrm{d}t.$$