

> Optimization: an introduction

Alberto TONDA, Senior Researcher (DR)

UMR 518 MIA-PS (Applied Mathematics and Computer Science) INRAE, AgroParisTech, Université Paris-Saclay Institut des Systèmes Complexes, Paris-Ile-de-France

Outline

- Vocabulary
- General principles
- Brainstorming
- Taxonomy (-ies)
- Intended outcome

- Objective/cost/loss/fitness function
 - Function that we aim to minimize/maximize
 - "Function" in the broadest possible sense (input, output)
- Variables
 - Inputs of the objective function; d variables, d dimensions
 - We can control them, use them to sample the objective function
- Search space/objective function landscape
 - All possible values of the input variables that we could test
 - Sampled to find best possible values of objective function

- Boundaries
 - Limits of variable values
 - Described for each variable, independently
 - Boundaries define the limits of the search space
- Candidate solution
 - Point in search space that could be the solution to our problem
- Constraints
 - Relationships between multiple problem variables
 - Must be satisfied to have an acceptable solution

- Neighborhood
 - Part of the search space "near" a given solution
 - In a continuous search space, small hypervolume around point

$$N(x) = \{x' \in \mathbb{R}^d, \|x - x'\|_n \le \epsilon\}$$

- In a discrete search space, we need to define a move operator $N(x) = \{x' \in S, x' \text{ is reachable from } x \text{ using a single move} \}$
- Example: for a bit string, 0101010...1 move can be "flip bit"
- Local vs global search
 - Local search moves only inside the neighborhood
 - Sometimes used loosely, definition is not precise

- Global optimum/optima
 - Input variables values with the best objective function value
 - Point in the search space with the best objective function value
 - There might be more than one (multi-modal function)
 - We might be satisfied with finding one, or wanting all of them

- Local optimum/optima
 - Point with a (relatively) high value of the objective function
 - "Surrounded" by points with worse values
 - Moving away from the point could be difficult for an algorithm
 - Generally, we don't know if it a point is a local or global optimum

General principles and assumptions

- We do not know much about the search space
 - Shape of the objective function (search space) is unknown
 - Mathematical formulation might not be possible
 - To optimize is to explore the search space, looking for optima
- We want to explore in an <u>efficient</u> way!
 - We cannot spend infinite time wandering about
 - Even a simple continuous function in one dimension has potentially *infinite points* in the search space to explore!
 - Trade-off between quality of solution and time spent

> General principles and assumptions

- Minimal requirements to be able to optimize
 - Define boundaries (min and max values of points)
 - Encode a solution in a computer (e.g. list of floating point values)
 - Describe how to move in search space (e.g. move by a small Δx in a dimension)

> General principles and assumptions

- Exploration and exploitation in iterative search algorithms
 - Initially, explore the search space as much as possible
 - Then, focus on/exploit the most promising parts found
 - Switch between exploration and exploitation is hard to time
 - Vocabulary: horizontal/vertical, breadth/depth, ...

> Brainstorming

 Can we think about a few (simple) strategies to go through the search space and find the best possible point?

> Simple strategies

- Exhaustive search
 - Evaluate all possible variable values in search space
 - In practice, impossible; but a systematic (grid) search could be
- Random search
 - Randomly sample objective function in points within boundaries
 - Does not take into account the feedback from objective function
- Greedy search
 - Start from a point, explore neighborhood and take best point
 - Keep going until no improvement is found

> Taxonomy of optimization methods

- Continuous vs Discrete
 - For discrete optimization, it becomes "choose one among many"
 - Domain is "combinatorial optimization"
 - Mixed discrete/continuous problems exist; also complex structures
- Exact vs Stochastic/Approximate
 - Exact methods guarantee convergence on a global optimum
 - Too much time or incorrect assumptions on objective function
 - Stochastic methods deliver reasonable solution in short(er) time...
 - ...but they have no guarantees on whether it's the global optimum
 - Terminology: "Stochastic" might also refer to stochastic variables

> Taxonomy of optimization methods

- Archive/Population vs No-Memory
 - Keep in memory a set of candidate solutions
 - Representing current "knowledge" of the search space
 - Use this knowledge to take decisions on next exploration
 - Lots of function evaluations! Also, memory occupation
- Single-objective vs Multi-objective
 - Conflicting objectives: improve one, deteriorate other(s)
 - Not searching for a single solution, but several compromises
 - "Many"-objective: 10 or more objectives (...)

Modality

- Unimodal: there is only one global optimum, find ONE solution
- Multi-modal: there are multiple global optima, or local optima close in value to the global optimum
- Multi-modal: we are interested in finding ALL (or more) optima

Dynamicity

- Static: a regular optimization problem
- Dynamic: the objective function CHANGES WITH TIME!
- Objective function: y = f(x, t)

- Computational expensiveness of objective function
 - Not expensive: extensive sampling possible
 - Expensive: surrogate models, Bayesian optimization, store list of all solutions previously evaluated...
- Objective function's search space is deceptive/flat
 - Assumption: "good solutions are close to other good solutions"
 - If this is not true, most algorithms don't work
 - Better off with a completely random sampling
 - Flat search space has no clues on where to move

> Real-world applications can be weird

- Mix of continuous and discrete variables
- Optimize graphs, trees, ensembles of trees...
- Search space can be hard to characterize
 - E.g. "optimize the shape of a car to minimize wind resistance"
 - E.g. "optimize order of visit of towns, to minimize traveling time"
 - E.g. "optimize an Assembly language program that is able to set all bits in the ax computer registry to zero (maximize number of bits set to zero)"

> Intended outcome

- You will have optimization problems to solve
 - Identify the typology (linear, non-linear, dynamic, static...)
 - Match with the best algorithm for the problem
 - Or get some ideas on how to design an optimization algorithm

- Very often, the best optimization algorithm is HEURISTIC
 - Heuristic is developed ad-hoc for the target problem
 - Employs domain knowledge of the problem inside algorithm

Questions?

Bibliography

- Kochenderfer & Wheeler, Algorithms for Optimization, MIT Press, 2019

Images: unless otherwise stated, I stole them from the Internet. I hope they are not copyrighted, or that their use falls under the Fair Use clause, and if not, I am sorry. Please don't sue me.