S9 – AUTOMATISMES ET INFORMATIQUE INDUSTRIELLE

Fascicule 2

Logique séquentielle

593

59 - Automatismes et Info. Indus. Logique séquentielle

ICAM

1) Définition de la logique séquentielle

Nous avons défini un processus comme un enchaînement d'opérations dans un ordre déterminé.

La logique séquentielle intègre cette notion d'ordre déterminé.

Si l'on prend un exemple simple : un moteur avec deux boutons « marche » et « arrêt ».

Dans ce cas, la position des boutons poussoirs ne permet pas de connaître l'état du moteur.

C'est à dire qu'à une combinaison d'entrée correspondent 2 états possibles en sortie.

Il faut raisonner dans le temps en disant :

- Le moteur est arrêté si la dernière action dans le temps a été effectuée sur le bouton arrêt.
- Le moteur est en marche si la dernière action dans le temps a été effectuée sur le bouton marche.

La nécessité de prendre en compte la chronologie, c'est à dire la succession dans le temps des combinaisons d'états de variables d'entrée, fait que ce système de commande du moteur relève de la logique séquentielle.

2) Moyens d'étude d'une partie commande en logique séquentielle

Les systèmes automatisés industriels répondent à un cahier des charges qui définit de façon précise les caractéristiques fonctionnelles quelles que soient les technologies utilisées pour les réaliser (électrique, mécanique, pneumatique, électronique).

Pour décrire dans n'importe quel cas un système automatisé, les spécialistes ont créé un outil graphique, le GRAFCET.

GRAF \rightarrow Graphe C \rightarrow Commande E \rightarrow Etape T \rightarrow Transition

3) Constitution du grafcet

Il se présente sous forme d'un organigramme qui décrit une suite logique et organisée du cycle de déroulement des différentes opérations appelées étapes d'un système automatisé.

Carré simple

1

Etapes

2

Elles représentent les différentes opérations, numérotées, correspondant au travail à obtenir dans une suite logique établie par le concepteur.

59 - Automatismes et Info. Indus. Logique séquentielle

ICAM

Toujours en association avec une une étape ; elles décrivent sous différentes formes (littérale ou codée ex : sortir vérin) le travail à effectuer.

Elles réunissent deux étapes qui se suivent. Il ne peut y avoir qu'une seule transition entre 2 étapes. Elle indique l'évolution d'une étape à l'autre. C'est donc un passage obligatoire.

Sur chaque transition est associée une réceptivité. Le franchissement de la transition ne peut se faire que si la réceptivité est vraie.

Nota : une réceptivité toujours vraie sera notée <u>1</u>

On décrit ainsi la logique séquentielle entre les entrées PO PC et les sorties PC PO

H.J.-V15

59 - Automatismes et Info. Indus. Logique séquentielle

ICAM

4) Types de Grafcet : différents « points de vue »

La spécification « point de vue » décrit à quel niveau se situe le concepteur pour donner une description du système.

On considère alors trois points de vue :

Le «point de vue SYSTEME»:

Le Grafcet décrit, sous une forme littérale, le procédé, la coordination et l'évolution des différentes séquences (opérations) relatives au système.

La description demeure abstraite et ne demande pas de notion d'automatisme pour la comprendre (on observe l'évolution du produit).

Le point de vue PARTIE OPERATIVE :

Ce Grafcet décrit sous forme d'actions fonctionnelles le comportement de la PO pour obtenir les actions désirées (mouvements).

A ce niveau, le choix technologique est fait (on observe le comportement des actionneurs).

Il peut être de forme littérale ou symbolique.

Le point de vue PARTIE COMMANDE :

A ce niveau, le concepteur s'implique dans le fonctionnement de la partie commande.

Le langage est codé.

Il reçoit des informations et émet des ordres.

H.J.-V15 F2-5

59 - Automatismes et Info. Indus. Logique séquentielle

ICAM

5) Règles d'évolution du Grafcet

Règle 1 : Etape initiale

Activée inconditionnellement au départ du système. Elle correspond souvent à un comportement repos vis-à-vis de la PO.

Règle 2 : Franchissement d'une transition

Cette condition ne peut se produire que si :

> la transition est validée (étapes immédiatement précédentes actives)

ET

> la réceptivité qui lui est associée est vraie (=1)

La transition devient alors franchissable et est obligatoirement franchie.

Illustration:

	2 	2 al = 0	2 al = 1 3	2 al = 1 3	2
Etapes actives	-	Etape 2	-	Etape 2	Etape 3
Transition validée ?	non	oui	non	oui	Le
Réceptivité vraie ?	non	non	oui	oui	franchissement est autorisé et obligatoirement franchi
Transition?	non	non	non	oui	

H.J.-V15 F2-6

59 - Automatismes et Info. Indus. Logique séquentielle

ICAM

Règle 3 : Evolution des étapes actives

Le franchissement d'une transition entraîne :

- l'activation de toutes les étapes immédiatement suivantes reliées à cette transition
- la désactivation de toutes les étapes immédiatement précédentes, reliées à cette transition.

Illustration

6) Les séquences multiples

Les systèmes complexes comportent généralement des séquences qui s'exécutent en même temps ou des séquences choisies en fonction des directives du cahier des charges.

a) La séquence exclusive ou choix de séquence : OU

Pourquoi ?

Cette configuration du grafcet apparaît quand, à la sortie d'une étape, le chemin que peut prendre le cycle, a la possibilité de se faire suivant l'état des réceptivités, sur différentes séquences.

La séquence choisie s'exécute seule.

b) <u>Les séquences simultanées : ET</u>

Pourquoi ?

Cette configuration du GRAFCET apparaît chaque fois que le franchissement d'une transition active plusieurs chemins fonctionnant en parallèle.

Leurs exécutions sont indépendantes, mais se déroulent en même temps.

H.J.-V15

59 - Automatismes et Info. Indus. Logique séquentielle

ICAM

c) Le saut conditionnel

c-1) Le saut d'étapes :

Pourquoi ?

Cette particularité du Grafcet est utilisée quand le système demande de passer plusieurs étapes non utiles, à un moment donné.

Si l'étape 3 est active et :

- Si c=1, les étapes 4 5 6 seront normalement exécutées.
- Si c= 0, les étapes
 4
 5
 6 ne seront pas
 exécutées et le cycle passera directement à l'étape

c-2) La reprise d'étapes

Pourquoi?

Dans ce cas, inverse du saut d'étape, le cycle permet de reprendre plusieurs fois une même séquence :

Si l'étape 6 est active et

- Si f = 1, on passe à l'étape $\boxed{7}$
- Si f = 0, alors on reprend les étapes $\boxed{4}$ $\boxed{5}$