Kapitel 3

Homologie von Garben

 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ kurze exakte Sequenz von Garben auf $X, U \subseteq X$ offen $\Rightarrow 0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U) \to \dots$? exakt $\mathop{\parallel}_{\Gamma(U,\mathcal{F})}$

§ 12 abgeleitete Funktoren

Definition + Bemerkung 12.1

- a) Eine Kategorie \mathcal{C} heißt **abelsch**, wenn gilt:
 - (i) $\operatorname{Hom}_{\mathcal{C}}(A, B)$ ist abelsche Gruppe für alle $A, B \in \operatorname{Ob}(\mathcal{C})$
 - (ii) Für Morphismen gelten die Distributivgesetze (bezüglich + und ·)
 - (iii) Direkte Summen, Kerne, Kokerne existieren
 - (iv) Der Homomorphiesatz gilt
- b) Ab, k VR, R Mod, Ab(X), \mathcal{O}_X Mod sind abelsche Kategoriem
- c) Grp, Set sind nicht abelsch

Definition 12.2

Sei \mathcal{C} abelsche Kategorie

- a) Ein **Komplex** in \mathcal{C} ist eine Sequenz $C^0 := \ldots \to C^{i-1} \xrightarrow{d^{i-1}} C^i \xrightarrow{d^i} C^{i+i} \to \ldots$ mit Objekten C^i in \mathcal{C} , Morphismen $d^i \in \operatorname{Hom}_{\mathcal{C}}(C^i, C^{i+1})$ sodass für jedes $i \in \mathbb{Z}$ gilt: $\operatorname{Bild}(d^{i-1}) \subseteq \operatorname{Kern}(d^i)$
- b) Für einen Komplex C^0 heißt $H^i(C^0) := \operatorname{Kern}(d^i)/\operatorname{Bild}(d^{i-1})$ i-tes Kohomologieobjekt.
- c) $d^i \circ d^{i-1} = 0 \ \forall i$

Proposition 12.3

Sei \mathcal{C} eine abelsche Kategorie

- a) Die Komplexe in \mathcal{C} bilden eine Kategorie \mathcal{C}^0 mit Morphismen...
- b) H^i ist Funktor $\mathcal{C}^0 \to \mathcal{C} \checkmark$
- c) Zu jeder kurzen exakten Sequenz $0\to C'^0\to C^0\to C''^0\to 0$ in \mathcal{C}^0 gibt es eine lange exakte Kohomologiesequenz

$$0 \to H^0(C'^0) \to H^0(C^0) \to H^0(C''^0) \xrightarrow{d} H^1(C'^0) \to H^1(C^0) \to \dots$$

Ziel: Sei X ein Schema, \mathcal{F} Garbe auf X. Suche Gruppen (beziehungsweise \mathcal{O}_X -Moduln) $H^i(X,\mathcal{F}), i \geq 0$, sodass für jede kurze exakte Sequenz $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ in $\underline{\mathrm{Ab}(X)}$ (beziehungsweise $\underline{\mathcal{O}_X} - \underline{\mathrm{Mod}}$) gilt:

$$0 \to H^0(X, \mathcal{F}') \to H^0(X, \mathcal{F}) \to H^0(X, \mathcal{F}'') \to H^1(X, \mathcal{F}') \to H^1(X, \mathcal{F}) \to \dots$$
 ist exakt und $H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$.

Bemerkung 12.4

Sei $H^i(X,\cdot)$ so ein Funktor, (*) $0 \to \mathcal{F} \to \mathcal{G}^0 \to \mathcal{G}^1 \to \text{exakte Sequenz in } \underline{\text{Ab}(X)}$ ("Auflösung von \mathcal{F} ").

Ist $H^i(X, \mathcal{G}^j) = 0$ für alle $j \geq 0$ und alle $i \geq 1$ (\mathcal{G}^j ist azyklisch), so gilt $H^i(X, \mathcal{F}) = H^i(\Gamma(X, \mathcal{G}^0))$

Beweis

Induktion über i:

$$\begin{split} i &= 0 \colon \ 0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{G}^0) \to \Gamma(X, \mathcal{G}^1) \text{ ist exakt.} \\ H^0(\Gamma(X, \mathcal{G}^0)) &= \mathrm{Kern}(\Gamma(X, \mathcal{G}^0) \to \Gamma(X, \mathcal{G}^1)) \cong \Gamma(X, \mathcal{F}) \\ \mathrm{Aus} \ (^*) \text{ folgt} \ \ 0 \to \mathcal{F} \to \mathcal{G}^0 \to \mathcal{G}^0 \middle/_{\mathcal{F}} \to 0 \quad \text{ist exakt und} \\ 0 \to \mathcal{G}^0 \middle/_{\mathcal{F}} \to \mathcal{G}^1 \to \mathcal{G}^2 \to \dots \text{ ist exakt} \end{split}$$

i = 1: Nach Voraussetzung gibt es lange exakte Sequenz

$$0 \to H^{0}(X, \mathcal{F}) \to H^{0}(X, \mathcal{G}^{0}) \to H^{0}(X, \mathcal{G}^{0}/_{\mathcal{F}}) \to H^{1}(X, \mathcal{F}) \to 0 \to H^{1}(X, \mathcal{G}^{0}/_{\mathcal{F}}) \to \dots$$

$$\Rightarrow H^{1}(X, \mathcal{F}) = \frac{H^{0}(X, \mathcal{G}^{0}/\mathcal{F})}{\operatorname{Bild}(H^{0}(X, \mathcal{G}^{0}))}$$

$$(H^{0}(X, \mathcal{G}^{0}/_{\mathcal{F}}) \cong \operatorname{Kern}(H^{0}(X, \mathcal{G}^{1}) \to H^{0}(X, \mathcal{G}^{2})))$$

$$\Rightarrow H^{1}(X, \mathcal{F}) \cong \operatorname{Kern}(H^{0}(X, \mathcal{G}^{1}) \to H^{0}(X, \mathcal{G}^{2}))/\operatorname{Bild}(H^{0}(X, \mathcal{G}^{0}) \to H^{0}(X, \mathcal{G}^{1}))$$

$$= H^{1}(\Gamma(X, \mathcal{G}^{0}))$$

Definition + Bemerkung 12.5

- a) Ein Objekt I in einer abelschen Kategorie \mathcal{C} heißt **injektiv**, wenn $\operatorname{Hom}_{\mathcal{C}}(\cdot, I)$ exakt ist.
- b) I ist genau dann injektiv, wenn für jedes solches Diagramm ein $\varphi \in \operatorname{Hom}_{\mathcal{C}}(C, I)$ existiert mit $\tilde{\varphi} \circ \alpha = \varphi$.

$$0 \to C' \xrightarrow{\alpha} C$$

$$\varphi \downarrow \swarrow \tilde{\varphi}$$

$$I$$

$$0 \to C' \xrightarrow{\alpha} C \to C'' \to 0$$
$$0 \to \operatorname{Hom}(C'', I) \to \operatorname{Hom}(C, I) \to \operatorname{Hom}(C', I)$$

Beispiel

 $\mathbb{Q}/_{\mathbb{Z}}$ ist injektiv in Ab, denn:

Seien $G'\subseteq G$ abelsche Gruppe, $\varphi:G'\to \mathbb{Q}/_{\mathbb{Z}}$ Homomorphismus. Für $a\in G$ sei

$$\tilde{\varphi}(a) := \begin{cases} \frac{1}{n} \varphi(n \cdot a) & \text{, falls } n \text{ minimal mit } n \cdot a \in G' \\ 0 & \text{, } n \cdot a \notin G' \text{ für alle } n > 0 \end{cases}$$

Bemerkung 12.6

Sei I injektives Objekt in $\underline{\mathrm{Ab}(X)}$ und $0 \longrightarrow I \xrightarrow[p]{r} \mathcal{F} \to \mathcal{F}'' \longrightarrow \mathcal{F}'' \to 0$ exakt.

- a) Dann gibt es $p: \mathcal{F} \to I$ mit $p \circ \alpha = \mathrm{id}_I$.
- b) $\mathcal{F} \cong \mathcal{F}'' \oplus I$, denn:

 $I \cap \operatorname{Kern}(p) = 0, \ \beta|_{\operatorname{Kern}(p)} : \operatorname{Kern}(p) \to \mathcal{F}'' \text{ ist Isomorphismus, } I + \operatorname{Kern}(p) = \mathcal{F}$

c)
$$0 \to H^0(X, I) \to H^0(X, \mathcal{F}) \to H^0(X, \mathcal{F}'') \to 0 = H^1(X, I)$$
 ist exakt.

Proposition 12.7

In den Kategorien Ab, <u>R-Mod</u>, $\underline{Ab}(X)$, $\underline{\mathcal{O}}_{X}$ -Modul gibt es genügend viele injektive Objekte, das heißt jedes Objekt ist isomorph zu einem Unterobjekt eines injektiven Objekts.

Beweis

Aufwändige Konstruktion aus $\mathbb{Q}/_{\mathbb{Z}}$ (aber naheliegend)

Definition + Bemerkung 12.8

Sei X Schema, $\mathcal{F} \in Ab(X)$

- a) \mathcal{F} besitzt injektive Auflösung, das heißt eine exakte Sequenz $0 \to \mathcal{F} \hookrightarrow I^0 \to I^1 \to I^2 \to \ldots$ mit $\forall \nu : I_{\nu}$ injektiv $(\ldots \xrightarrow{d^{n-1}} I^n, \tilde{d}^n : I^n/\text{Bild}(d^{n-1}) \hookrightarrow I^{n+1}, d^n = \tilde{d}^n \circ \text{pr})$
- b) $H^i(X,\mathcal{F}) := H^i(\Gamma(X,I^0))$ heißt *i*-te Kohomologiegruppe von \mathcal{F} , das heißt H^0 ist die Kohomologie des Komplexes $0 \to \Gamma(X,I^0) \to \Gamma(X,I^1) \to \Gamma(X,I^2) \to \dots$
- c) Insbesondere: $H^0(X, \Gamma) = \text{Kern}(\Gamma(X, I^0) \to \Gamma(X, I^1)) \stackrel{\Gamma \text{ ist}}{=} \Gamma(X, \mathcal{F})$

Proposition 12.9

Sei X Schema, $\mathcal{F} \in Abb(X)$

- a) $H^{i}(X,\mathcal{F})$ hängen nicht von der gewählten injektiven Auflösung ab.
- b) $H^i(X,\cdot)$ ist ein Funktor $Ab(X) \to \underline{Ab}$
- c) Jede kurze Sequenz $0 \to A \to B \to C \to 0$ von Garben induziert eine lange exakte Kohomologiesequenz $0 \to H^0(X,A) \to H^0(X,B) \to H^0(X,C) \to H^1(X,A) \to H^1(X,B) \to H^0(X,B)$

d) Injektive Garben I sind azyklisch, das heißt für alle $i \geq 1$ ist $H^i(X, I) = 0.$ $0 \rightarrow I \rightarrow I \rightarrow 0 \rightarrow 0...$ ist injektive Auflösung.

Verallgemeinerung 12.10

Seien A, B abelsche Kategorien, \mathcal{A} habe genügend injektive Objekte und $F: \mathcal{A} \to \mathcal{B}$ ein kovarianter linksexakter Funktor. \leadsto Definiere analog zu 12.8 **abgeleitete Funktoren** $R^i F$ von F ($i \ge 0$) \leadsto diese haben die Eigenschaften aus 12.9.

§ 13 Čech-Kohomologie

Sei X topologischer Raum, $\mathcal{U} = \{U_i | i \in \mathbb{N}\}$ eine offene Überdeckung von $X, \mathcal{F} \in \text{Abb}(X)$

Definition + Bemerkung 13.1

a) Für $k \geq 0$ sei $C^k(\mathcal{U}, \mathcal{F}) := \prod_{i_0 < \dots < i_k} \mathcal{F}(U_{i_0} \cap \dots \cap U_{i_k})$

$$d^{k}: \begin{cases} C(\mathcal{U}, \mathcal{F}) & \to & C^{k+1}(\mathcal{U}, \mathcal{F}) \\ (S_{i_{0}, \dots, i_{k}})_{i_{0} < \dots < i_{k}} & \mapsto & \left(\sum_{\nu=0}^{k-1} (-1)^{\nu} S_{i_{0}, \dots, i_{\nu-1}, i_{\nu+1}, \dots, i_{k+1}} \big|_{U_{i_{0}} \cap \dots U_{i_{k+1}}}\right)_{i_{0} < \dots i_{k+1}} \end{cases}$$

- b) Für alle $k \geq 0$ gilt $d^{k+1} \circ d^k = 0$, das heißt $0 \to C^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d^0} C^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d^1} \dots$ ist Kettenkomplex. [Nachrechnen!]
- c) $\check{H}^k(\mathcal{U},\mathcal{F}) := H^k(C^0(\mathcal{U},\mathcal{F})) = \frac{\mathrm{Kern}(d^k)}{\mathrm{Bild}(d^{k-1})}$ heißt k-te $\check{\mathbf{Cech-Kohomologie}}$ von \mathcal{F} bezüglich \mathcal{U} .
- d) $\check{H}^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X) \stackrel{12.8}{=} H^0(X, \mathcal{F})$

Beweis d) $\Phi: \left\{ \begin{array}{ccc} \mathcal{F}(X) & \to & \check{H}^0(\mathcal{U},\mathcal{F}) = \mathrm{Kern}(d^0) \\ S & \mapsto & (S|_{U_i})_{i \in \mathbb{N}} \end{array} \right.$ ist wohldefiniert

Garbeneigenschaft: Φ bijektiv

Beispiel 13.2

 $X = S^1$, $\mathcal{F} = \mathbb{Z}$ konstante Garbe

a)
$$\mathcal{U} = \{X, \emptyset, \emptyset, \ldots\} \Rightarrow C^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X) \cong \mathbb{Z}$$

 $\forall k \ge 1 : C^k(\mathcal{U}, \mathcal{F}) = 0$

$$0 \to \mathcal{F}(X) \xrightarrow{d^0} 0 \xrightarrow{d^1} 0 \to \dots$$

$$\Rightarrow \check{H}^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X) \cong \mathbb{Z}, \, \forall \, k \geq 1 : \check{H}^k(\mathcal{U}, \mathcal{F}) = 0$$

b) $\mathcal{U} = \{U, V\}$

$$C^{0}(\mathcal{U}, \mathcal{F}) = \mathcal{F}(U) \times \mathcal{F}(V) \cong \mathbb{Z}^{2}$$

$$C^{1}(\mathcal{U}, \mathcal{F}) = \mathcal{F}(U \cap V) = \mathbb{Z}^{2}, \ \forall \ k \geq 2 : C^{k}(\mathcal{U}, \mathcal{F}) = 0$$

$$0 \to \mathbb{Z}^2 \xrightarrow{d^0} \mathbb{Z}^2 \xrightarrow{d^1} 0 \to 0 \to \dots$$

Definition 13.3

a) Definiere für $k \geq 0$ die Garbe

$$\mathcal{C}^k = \mathcal{C}^k(\mathcal{U}, \mathcal{F}) := \prod_{i_0 < \ldots < i_k} (i_{i_0 < \ldots < i_k})_* \mathcal{F}|_{U_{i_0} \cap \ldots \cap U_{i_k}}$$

Das heißt:
$$C^k(\mathcal{U}, \mathcal{F})(U) = \prod_{i_0 < \dots < i_k} \mathcal{F}(U_{i_0} \cap \dots \cap U_{i_k} \cap U)$$

$$C^k = (U, \mathcal{F})(X) = C^k(U, \mathcal{F})$$

- b) Definiere $d_U^k: \mathcal{C}^k(\mathcal{U}, \mathcal{F})(U) \to \mathcal{C}^{k+1}(\mathcal{U}, \mathcal{F})(U)$ wie in 13.1 $\Rightarrow d^k$ ist Garbenmorphismus und $\forall k > 0: d^{k+1} \circ d^k = 0$
- und $\forall k \geq 0 : d^{k+1} \circ d^k = 0$ c) $\varepsilon_U : \begin{cases} \mathcal{F}(U) \to \mathcal{C}^0(\mathcal{U}, \mathcal{F})(U) \\ s \mapsto (s|_{U \cap U_i})_{i \in \mathbb{N}} \end{cases}$ definiert einen injektiven Garbenmorphismus.
- d) $0 \to \mathcal{F} \xrightarrow{\varepsilon} \mathcal{C}^0 \xrightarrow{d^0} \mathcal{C}^1 \xrightarrow{d^1} \mathcal{C}^2 \to \dots$ ist eine Auflösung von \mathcal{F} (das heißt exakt). Achtung: im Allgemeinen weder injektiv noch azyklisch!

Beweis

d) $U \subseteq X$ offen: $\mathcal{F}(U) \xrightarrow{\varepsilon_U} \prod_{i \in \mathbb{N}} \mathcal{F}(U \cap U_i) \xrightarrow{d^0} \prod_{i \neq j} \mathcal{F}(U \cap U_i \cap U_j)$ $d_U^0(\varepsilon_U(s)) = d_U^0((s|_{U \cap U_i})_{i \in N}) = (s|_{U \cap U_i|_{U \cap U_i \cap U_j}} - s|_{U \cap U_j|_{U \cap U_i \cap U_j}}) = 0$ Seien $x \in X, j \in \mathbb{N}, x \in U_j$. Zeige Exaktheit auf den Halmen

$$0 \longrightarrow \mathcal{F} \xrightarrow{\varepsilon_X} \mathcal{C}^0 \xrightarrow[h_1]{d_X^0} \mathcal{C}^1 \xrightarrow[h_2]{d_X^1} \mathcal{C}^2 \xrightarrow{d_X^2} \cdots$$

Definiere
$$h^k: \mathcal{C}_X^k \to \mathcal{C}_X^{k-1}$$
.
 $s \in \mathcal{C}_X^k \Rightarrow \hat{s} = [(V, s)] \times V \subseteq U_j$, $s \in \mathcal{C}^k(V)$

$$(s_{i_0, \dots, i_k})_{i_0 < \dots < i_k}$$
Sei $t_{j_0, \dots, j_{k-1}}: \begin{cases} 0, \dots, j_{k-1} \\ (-1)^{\nu} s_{j_0, \dots, j_{k-1}}, j_{\nu-1} < j < j_{\nu} \end{cases}$

$$h^k(\hat{s}) = [(V, (t_{j_0, \dots, j_{k-1}})_{i_0 < \dots < i_{k-1}}]$$
Nachrechnen: $\underbrace{d_X^{k-1} \circ h^k + h^{k+1} \circ d_X^k}_{f} = \mathrm{id}$
Sei $\hat{s} \in \mathrm{Kern}(d_X^k), \hat{s} = f(\hat{s}) = d_X^{k-1} \circ h^k(\hat{s}) \Rightarrow \hat{s} \in \mathrm{Bild}(d_X^{k-1})$

Proposition 13.4

Sei X Schema, $\mathcal{F} \in \mathrm{Ab}(X)$, $U = \{U_i | i \in \mathbb{N}\}$ offene Überdeckung von X. Dann gibt es für jedes $k \geq 0$ einen natürlichen Gruppenhomomorphismus

$$\check{H}^k(\mathcal{U},\mathcal{F}) \to H^k(X,\mathcal{F})$$

Beweis

Sei $0 \to \mathcal{F} \to I^0$ injektive Auflösung von \mathcal{F} und $0 \to \mathcal{F} \to \mathcal{C}^0 = \mathcal{C}^0(\mathcal{U}, \mathcal{F})$ Auflösung aus 13.3. Dann gibt es einen Homomorphismus von Komplexen:

§ 14 Kohomologie quasi kohärenter Garben

Definition + Bemerkung 14.1

Sei X ein topologisch Raum, $\mathcal{F} \in Ab(X)$

- a) \mathcal{F} heißt **welk**, wenn $\rho_{U'}^U: \mathcal{F}(U) \to \mathcal{F}(U')$ surjektiv ist für alle offenen $U' \subseteq U$.
- b) Konstante Garben sind welk, wenn X irreduzibel ist. Wolkenkratzergarben sind welk.
- c) Ist $0 \to \mathcal{F}' \to \mathcal{F} \xrightarrow{\beta} \mathcal{F}'' \to 0$ exakt, \mathcal{F} welk, so ist $0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \xrightarrow{\beta_U} \mathcal{F}''(U) \to 0$ exakt für jedes offene $U \subseteq X$).
- d) Sei $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exakt. Sind \mathcal{F}' und \mathcal{F} welk, so auch \mathcal{F}'' .

Beweis

c) Sei $V \subseteq U$ offen in X. Nach c) sind

Nach Voraussetzung sind die vertikalen Sequenzen exakt.

d) Sei $s \in \mathcal{F}''(U)$. Nach Voraussetzung (β surjektiv) gibt es offene Überdeckung (U_i) $_{i \in I}$ von U und $\hat{s} \in \mathcal{F}(U_i)$ mit $\beta_{U_i}(\hat{s}_i) = s_i|_{U_i}$. Sei $d_{ij} := \hat{s}_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j} \in \mathcal{F}(U_i \cap U_j)$.

$$\beta_{U_i \cap U_j}(d_{ij}) = 0 \Rightarrow d_{ij} \in \mathcal{F}'(U_i \cap U_j) \xrightarrow{\mathcal{F}' \text{ welk}} \times d_{ij} \in \mathcal{F}'(U_i)$$

Setze $\hat{s}'_i := 2\hat{s}_i - d_{ij} \Rightarrow \hat{s}'_i|_{U_i \cap U_j} = 2\hat{s}_i - \hat{s}_i + \hat{s}_j = \hat{s}_i + \hat{s}_j = \hat{s}'_j|_{U_i \cap U_j} \Rightarrow \text{die } \hat{s}'_i \text{ bilden konsistente Familie} \Rightarrow \exists \ \tilde{s} \in \mathcal{F}(U) \text{ mit } \tilde{s}|_{U_i} = \hat{s}'_i \text{ für alle } i \in I \text{ und } s_U(\tilde{s}) = s.$

Proposition 14.2

Sei X ein Schema, \mathcal{I} injektive \mathcal{O}_X -Modulgarbe auf X. Dann ist \mathcal{I} welk.

Beweis

 $\text{Sei } V \subseteq U \text{ offen. Es gilt } j_! \big(\mathcal{O}_X\big|_{V}\big) \subseteq j_! \big(\mathcal{O}_X\big|_{U}\big) \quad (\mathcal{I}(X) = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{I}), \, \mathcal{I}(U) = \operatorname{Hom}_{\mathcal{O}_X}(j_!(\mathcal{O}_X(U), \mathcal{I})))$

 $\xrightarrow{\mathcal{I} \text{ inj.}} \operatorname{Hom}_{\mathcal{O}_X}(j_!(\mathcal{O}_X|_U), \mathcal{I}) \to \operatorname{Hom}_{\mathcal{O}_X}(j_!(\mathcal{O}_X|_V), \mathcal{I}) \text{ ist surjektiv}$

Satz 4

Sei $X = \operatorname{Spec} R$ ein noethersches affines Schema, \mathcal{F} quasi-hohärente Garbe auf X. Dann ist $H^i(X, \mathcal{F}) = 0$ für alle $i \geq 1$.

Beweis

Sei $M = \mathcal{F}(X) = \Gamma(X, \mathcal{F}) = H^0(X, \mathcal{F})$, also $\mathcal{F} = \tilde{M}$. Sei $0 \to M \to I^{\bullet}$ eine injektive Auflösung des R-Moduls $M \xrightarrow{\text{Bem. 9.5}} 0 \to \tilde{M} \to \tilde{I}^{\bullet}$ ist exakt (also Ausflösung von \mathcal{F}). Der Satz folgt aus 14.4 und 14.3

Proposition 14.3

Welke Garben sind azyklisch.

Proposition 14.4

ist I injektiver R-Modul, so ist \tilde{I} welke \mathcal{O}_X -Modulgarbe $(X = \operatorname{Spec} R)$.

Beweis (von Proposition 14.3)

Sei \mathcal{F} welke Garbe, \mathcal{I} injektive Garbe mit $\mathcal{F} \subseteq \mathcal{I} \Rightarrow 0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{G} \to 0$ exakt mit $\mathcal{G} = \mathcal{I}/\mathcal{F}$. Die lange exakte Kohomologiesequenz dazu ist:

$$0 \rightarrow H^0(X,\mathcal{F}) \rightarrow H^0(X,\mathcal{I}) \rightarrow H^0(X,\mathcal{G}) \xrightarrow{\text{Nullabb.}} H^1(X,\mathcal{F}) \rightarrow H^1(X,\mathcal{I}) \rightarrow H^1(X,\mathcal{G}) \rightarrow H^2(X,\mathcal{F}) \rightarrow H^2(X,\mathcal{I}) \rightarrow H^2(X,\mathcal{I})$$

Nach 14.2 und 14.1 d) sind \mathcal{I} und \mathcal{G} welk.

Beweis (von Proposition 14.4)

Es genügt zu zeigen: $\tilde{\mathcal{I}}(X) \to \tilde{\mathcal{I}}(U)$ surjektiv für jedes $U \subseteq X$ offen.

1. Fall: U = D(f) für ein $f \in R$

$$\Rightarrow \tilde{I}(U) = I_f$$

Sei $\frac{b}{f^n} \in I_f$ (also $b \in I$, $n \ge 0$). Gesucht: $a \in I$ mit $\frac{a}{1} = \frac{b}{f^n}$ in I_f , also $(f^n a - b) \cdot f^m = 0$ für ein $m \ge 0$.

Für jedes $m \geq 0$ induziert $1 \mapsto f^{m+n}$ eine R-lineare Abbildung $R \to (f^{m+n})$. Kern $(\varphi_m) = \operatorname{Ann}(f^{m+n})$ (Ideal) (Ann heißt Annulator)

Es ist $\operatorname{Ann}(f^m) \subseteq \operatorname{Ann}(f^{m+1}) \subseteq \dots \xrightarrow{R \text{ noeth}} \exists m \text{ mit } \operatorname{Ann}(f^{m+n}) = \operatorname{Ann}(f^m) \Rightarrow (f^{m+n}) \cong R/\operatorname{Ann}(f^n)$

Sei $\psi: R \to I$, $1 \mapsto f^m b$ R-linear \Rightarrow Ann $(f^m) \subseteq \text{Kern}(\psi) \Rightarrow \psi$ induziert $\overline{\psi}: (f^{m+n}) \to I \xrightarrow{I \text{ inj.}} \exists$ Fortsetzung $\tilde{\psi}: R \to I \text{ von } \overline{\psi}$.

Setze $a := \tilde{\psi}(1) \Rightarrow f^m b = \psi(1) = \overline{\psi}(f^{m+n}) = \tilde{\psi}(f^{m+n} \cdot 1_R) \stackrel{\tilde{\psi}}{\underset{R-\text{lin.}}{=}} f^{m+n} \cdot \tilde{\psi}(1) = f^{m+n} \cdot a$

§ 15 Kohomologie kohärenter Garben auf projektiven Schemata

Definition + Bemerkung 15.1

Sei $S = \bigoplus_{i=0}^{\infty} S_i$ graduierter Ring und $X = \operatorname{Proj} S$. Sei weiter $M = \bigoplus_{i \in \mathbb{Z}} M_i$ ein graduierter S-Modul.

- a) Sei \tilde{M} die Garbe auf X die durch $\tilde{M}(D^+(f)) = M_f^{\text{hom}}$ für jedes homogene $f \in S$ gegeben ist.
- b) Für jedes $x \in X$, also $\mathfrak{p} \in \operatorname{Proj} S$ (homogenes Primideal) ist $\tilde{M}_x = M_{\mathfrak{p}}^{\text{hom}}$.
- c) Für jedes offene $U \subseteq X$ ist

$$\begin{split} \tilde{M}(U) = \{s: U \to \bigcup_{x \in U}^{\cdot} \tilde{M}_x, & s(x) \in \tilde{M}, \text{für jedes } \mathfrak{p} \in U \text{ gibt es Umgebung} \\ & U(\mathfrak{p}) \subseteq U \text{ mit } s(\mathfrak{q}) = \frac{m}{f} \text{ für jedes } \mathfrak{q} \in U(\mathfrak{p}), \\ & \text{dabei ist } m \in M, f \in S \setminus \mathfrak{q} \text{ homogen vom gleichen Grad} \} \end{split}$$

d) \tilde{M} ist quasikohärente \mathcal{O}_X -Modulgarbe. \tilde{M} ist kohärent, falls S noethersch und M endlich erzeugt.

$$(S_f^{\text{hom}} = \{\frac{a}{f^n} : a \in S_{n \cdot d}\}, D^+(f) \cong \operatorname{Spec} S_f^{\text{hom}}, f \text{ homogen vom Grad } d, M_f^{\text{hom}} = \{\frac{m}{f^n} : m \in M_{n \cdot d}\})$$

Beispiele

Sei X = Proj S wie in 15.1

- a) $\tilde{S} = \mathcal{O}_X$
- b) Für $n \in \mathbb{Z}$ sei S(n) der graduierte S-Modul mit $S(n)_d := S_{n+d}$.

$$\mathcal{O}_X(n) := \widetilde{S(n)}$$
 (Serre-Twist)

- c) $S = R[X_0, ..., X_n], X = \text{Proj } S = \mathbb{P}_R^n$ Dann ist $H^0(X, \mathcal{O}_X(1)) = S(1)_0 = S_1$ der freie R-Modul mit Basis $X_0, ..., X_n$.
- d) Für d < 0 hat $\mathcal{O}_X(d)$ keine globalen Schnitte $\neq 0$. Für ≥ 0 ist $H^0(X, \mathcal{O}_X(d))$ der freie R-Modul, der von den homogenen Polynomen vom Grad d in $R[X_0, \ldots, X_n]$ erzeugt wird.

Ziele:

- 1) Bestimme $H^i(\mathbb{P}^n_R, \mathcal{O}(d))$ für alle $i \geq 0$ und alle d.
- 2) Jede hohärente Garbe auf \mathbb{P}_R^n ist von der Form $\mathcal{F} = \bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^n}(d_i) / \mathcal{G}$

Kulturbeitrag: $H^i(\mathbb{P}_R^n, \mathcal{F}) = \check{H}^i(\mathfrak{U}, \mathcal{F})$ für die Überdeckung $\mathfrak{U} = \{U_0, \dots, U_n\}, U_i = D(X_i)$ (affine Standardüberdeckung des \mathbb{P}^n)

Fazit: $X_0^{d_0} \cdot \ldots \cdot X_n^{d_n}$ (mit $\sum_{i=0}^n d_i = d$) liegt in Bild $(d^{n-1}) \Leftrightarrow \exists i \text{ mit } d_i \geq 0$

Bemerkung 15.2

- a) Für $d \ge -n$ ist d^{n-1} surjektiv, also $H^n(\mathbb{P}^n, \mathcal{O}(d)) = 0$
- b) $H^n(\mathbb{P}^n, \mathcal{O}(-n-1)) \cong R$, erzeugt von $\frac{1}{X_0 \cdot ... \cdot X_n}$

Proposition 15.3

Sei R noetherscher Ring, $n \geq 1$, $\mathbb{P}^n = \mathbb{P}^n_R = \operatorname{Proj} R[X_0, \dots, X_R]$, $\mathcal{O} := \mathcal{O}_{\mathbb{P}^n}$

- a) $H^n(\mathbb{P}^n, \mathcal{O}(-n-1)) = R \frac{1}{X_0 \cdot \dots \cdot X_n} \cong R$
- b) Für jedes $d \in \mathbb{Z}$ gibt es natürliche bilineare Abbildung

$$H^0(\mathbb{P}^n, \mathcal{O}(d)) \times H^n(\mathbb{P}^n, \mathcal{O}(-d-n-1)) \to H^n(\mathbb{P}^n, \mathcal{O}(-n-1)) \cong R$$

Diese ist nicht ausgeartete Paarung zwischen freien R-Moduln von endlichem Rang.

c) Für alle i = 1, ..., n - 1 und alle $d \in \mathbb{Z}$ ist

$$H^i(\mathbb{P}^n, \mathcal{O}(d)) = 0$$

Beweis

b) $\underline{d < 0}$: $H^0(\mathbb{P}^n, \mathcal{O}(d)) = S_d$ = 0 für d < 0

$$H^n(\mathbb{P}^n, \mathcal{O}(-d-n-1)) = 0 \text{ für } d < 0 \text{ (15.2 a)})$$

 $d \ge 0$: Für $d \ge 0$ ist die Paarung gegeben durch

$$\underbrace{(X_0^{\nu_0} \cdot \ldots \cdot X_n^{\nu_n}, \underbrace{X_0^{\mu_0} \cdot \ldots \cdot X_n^{\mu_n}}_{\substack{\nu_i > 0}} \mapsto \underbrace{X_0^{\nu_0 + \mu_0} \cdot \ldots \cdot X_n^{\nu_n + \mu_0}}_{\substack{\sum (\nu_i + \mu_i) = -n - 1}}$$

c) Sei $1 \le i \le n - 1, d \in \mathbb{Z}, 0 \le k \le n$.

Behauptung: Dann ist die Multiplikation mit X_k ein Isomorphismus $H^i(\mathbb{P}^n, \mathcal{O}(d-1)) \to H^i(\mathbb{P}^n, \mathcal{O}(d))$.

Jedes $\alpha \in H^i(\mathbb{P}^n, \mathcal{O}(d))$ wird repräsentiert von einem Tupel von Linearkombinationen von Monomen $X_{j_0}^{\nu_0} \cdot \ldots \cdot X_{j_i}^{\nu_i}$ mit $\sum \nu_k = d$, $\nu_k < 0$ für alle k. Multipliziere mit $X_{j_i}^{-\nu_i}$. Das Bild von $X_{j_0}^{\nu_0} \cdot \ldots \cdot X_{j_n}^{\nu_n}$ in $H^i(\mathbb{P}^n, \mathcal{O}(d-\nu_i))$ ist 0. Nach der Behauptung ist damit auch $\alpha = 0$.

Beweis der Behauptung: Œ k = n

 X_n induziert exakte Sequenz von graduierten S-Moduln $(S = R[X_0, \dots, X_n])$

$$0 \to S(d-1) \xrightarrow{\cdot X_n} S(d) \to \frac{S(d)}{X_n} \cdot S(d-1) \to 0$$

$$\stackrel{\cong^S/X_n S(d)}{\cong R[X_0, \dots, X_n](d)}$$

Daraus ergibt sich exakte Sequenz von $\mathcal{O}_{\mathbb{P}^n}$ -Modulgarben:

$$(*) \quad 0 \to \mathcal{O}(d-1) \stackrel{\cdot X_n}{\to} \mathcal{O}(d) \to j_* \mathcal{O}_{\mathbb{P}^{n-1}}(d) \to 0 \qquad (j: \mathbb{P}^{n-1} = V(X_n) \hookrightarrow \mathbb{P}^n)$$

Es gilt: $H^i(\mathbb{P}^n, j_* \overbrace{\mathcal{O}_{\mathbb{P}^{n-1}}(d)}^{=:\mathcal{F}}) \cong H(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(d))$, denn: Sei $0 \to \mathcal{F} \to \mathcal{G}^{\bullet}$ welke Auflösung $\Rightarrow 0 \to j_*\mathcal{F} \to j_*\mathcal{G}^{\bullet}$ ist welke Auflösung.

Induktion über $n: n = 0 \checkmark$, $n = 1 \checkmark$

 $n \ge 2$: Lange exakte Kohomologiesequenz zu (*):

$$\dots \to H^{i-1}(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(d)) \to H^i(\mathbb{P}^n, \mathcal{O}(d-1)) \stackrel{\cdot X_n}{\to} H^i(\mathbb{P}^{n-1}, \mathcal{O}(d)) \to \dots$$

Nach Induktionsvoraussetzung ist $H^i(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(d)) = 0$ für $1 \leq i \leq n-2$. Nach der Behauptung folgt, dass $i = 2, \ldots, n-2$

 $\underbrace{i=1:}_{S_{d-1}} 0 \to H^0(\mathbb{P}^n, \mathcal{O}(d-1)) \to H^0(\mathbb{P}^n, \mathcal{O}(d)) \to H^0(\mathbb{P}^{n-1}, \mathcal{O}(d)) \to 0 \text{ ist}$ exakt $\Rightarrow H^1(\mathbb{P}^n, \mathcal{O}(d-1)) \overset{\cdot X_n}{\to} H^1(\mathbb{P}^n, \mathcal{O}(d))$ ist injektiv, $H^1(\mathbb{P}^n, \mathcal{O}(d-1)) \overset{\cdot X_n}{\to} H^1(\mathbb{P}^n, \mathcal{O}(d))$ ist surjektiv für $n \geq 3$ nach Induktionsvoraussetzung. Für n=2 ist 1=n-1.

 $\underline{i=n-1}$: Nach Induktionsvoraussetzung ist $H^{n-2}(\mathbb{P}^{n-1},\mathcal{O}(d))=0$.

Zu zeigen also: $H^{n-1}(\mathbb{P}^n, \mathcal{O}(d)) \to H^{n-1}(\mathbb{P}^{n-1}, \mathcal{O}(d))$ ist die Nullabbildung. Äquivalent: $\delta: H^{n-1}(\mathbb{P}^{n-1}, \mathcal{O}(d)) \to H^n(\mathbb{P}^n, \mathcal{O}(d-1))$ ist injektiv.

erz. v. den Monomen
$$X_0^{\nu_0} \cdot ... X_{n-1}^{\nu_{n-1}}$$
 mit $\sum \nu_i = d$, alle $\nu_i < 0$

Das Bild von δ ist der Kern von X_n , also der freie R-Modul mit Basis $X_0^{\nu_0} \cdot \ldots \cdot X_{n-1}^{\nu_{n-1}} \cdot X_n^{-1}$ mit $\sum_{i=0}^{n-1} \nu_i = d$, alle $\nu_i < 0 \Rightarrow \operatorname{Rang}(\operatorname{Bild} \delta) = \operatorname{Rang}(H^{n-1}(\mathbb{P}^{n-1}, \mathcal{O}(d))) \Rightarrow \delta$ injektiv. Übung: $H^1(\mathbb{P}^2, \mathcal{O}(d)) = 0$ für alle $d \in \mathbb{Z}$

Satz 5

Sei X projektives R-Schema über einem noetherschen Ring R. Dann ist $H^i(X, \mathcal{F})$ endlich erzeugter R-Modul für jede kohärente Garbe \mathcal{F} auf X.

Beweis

$$\tilde{U} \subseteq \mathbb{P}_R^n$$
 offen, $U = \tilde{U} \cap X \Rightarrow j_* \mathcal{F}(\tilde{U}) = \mathcal{F}(U), \ \mathcal{F}|_U = \tilde{M} \Rightarrow j_* \mathcal{F}|_{\tilde{U}} = \tilde{M}_U)$

Sei $j: X \hookrightarrow \mathbb{P}_R^n$ abgeschlossene Einbettung, $X = \text{Proj}(R[X_0, \dots, X_n]/I)$. Dann ist $j_*\mathcal{F}$ kohärent und $H^i(X, \mathcal{F}) \cong H^i(\mathbb{P}_R^n, j_*\mathcal{F})$. Also ohne Einschränkung $X = \mathbb{P}_R^n$.

Behauptung: Jede kohärente Garbe \mathcal{F} auf \mathbb{P}_R^n ist isomorph zu $\bigoplus_{i=1}^r \mathcal{O}(d_i)/\mathcal{G}$ für geeignete $r \geq 1$, $d_i \in \mathbb{Z}, \mathcal{G}$

Dann sei
$$0 \to \mathcal{G} \to \bigoplus_{j} \mathcal{O}(d_{j}) \to \mathcal{F} \to 0$$
 exakt $\Rightarrow H^{i}(\mathbb{P}^{n}, \bigoplus \mathcal{O}(d_{j})) \cong \bigoplus_{j} H^{i}(\mathbb{P}^{n}, \mathcal{O}(d_{j}))$ (!)

 $\Rightarrow H^i(\mathbb{P}^n, \bigoplus \mathcal{O}(d_j))$ endlich erzeugte R-Moduln

$$\xrightarrow{\text{lange ex. Sequenz}} \dots \to \bigoplus_{j} H^{i}(\mathbb{P}^{n}, \mathcal{O}(d_{j})) \xrightarrow{d^{i}} H^{i}(\mathbb{P}^{n}, \mathcal{F}) \xrightarrow{\delta^{i}} H^{i+1}(\mathbb{P}^{n}, \mathcal{G}) \to \dots$$

Absteigende Induktion über i:

$$H^{n+1}(\mathbb{P}^n,\mathcal{G}) = 0$$
 weil $n+1 > m$

- $\Rightarrow H^n(\mathbb{P}^n, \mathcal{F})$ endlich erzeugt, weil d^n surjektiv
- $\Rightarrow H^n(\mathbb{P}^n,\mathcal{G})$ endlich erzeugt, weil \mathcal{G} auch kohärent
- $\Rightarrow H^{n-1}(\mathbb{P}^n, \mathcal{F})$ endlich erzeugt, weil $\operatorname{Kern}(\delta^{n-1}) = \operatorname{Bild}(d^{n-1})$ endlich erzeugt und $\operatorname{Bild}(\delta^{n-1})$ als Untermodul von $H^n(\mathbb{P}^n, \mathcal{G})$ endlich erzeugt

Die Behauptung folgt aus:

Proposition 15.4

Sei \mathcal{F} kohärente Garbe auf \mathbb{P}_R^n . Dann gibt es ein $d_0 \in \mathbb{Z}$, sodass für $d \geq d_0 \mathcal{F}(d) := \mathcal{F} \otimes_{\mathcal{O}} \mathcal{O}(d)$ von globalen Schnitten erzeugt wird, das heißt es gibt $s_1, \ldots, s_r \in \Gamma(\mathbb{P}^n, \mathcal{F}(d))$, sodass für jedes offene $U \subseteq \mathbb{P}_R^n$ gilt: $\mathcal{F}(d)(U)$ wird erzeugt von $s_1|_U, \ldots, s_r|_U$ (als $\mathcal{O}_{\mathbb{P}^n}(U)$ -Modul!)

Definiere Garbenmorphisus
$$\epsilon: \left\{ \begin{array}{ccc} \bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^n} & \to & \mathcal{F}(d) \\ e_i & \mapsto & s_i \end{array} \right.$$

 ϵ ist surjektiv $\Rightarrow e_{-d}: \bigoplus_{i=1}^r \mathcal{O}(-d) \to \mathcal{F}$ surjektiv

Beweis

Sei $U_i = D(X_i)$, $M_i := \mathcal{F}(U_i)$. M_i ist endlich erzeugter $R[\frac{X_0}{X_i}, \dots, \frac{X_n}{X_i}]$ -Modul. $\mathcal{F}|_{U_i} = \tilde{M}_i$. Seien s_{i_1}, \dots, s_{i_r} Erzeuger von M_i als $R[\frac{X_0}{X_i}, \dots, \frac{X_n}{X_i}]$ -Modul.

Auf
$$U_i \cap U_j$$
 ist $s_{i_{\nu}}|_{U_i \cap U_j} \in \mathcal{F}(U_i \cap U_j) = (M_j)_{\frac{X_i}{X_j}} \Rightarrow \text{Es gibt } d_{i_{\nu}} \text{ mit } s_{i_{\nu}} \cdot X_i^{d_{i_{\nu}}} \in \Gamma(U_i \cap U_j, \tilde{M}_j \otimes \mathcal{O}(d_{i_{\nu}}))$ für alle j . Sei $d := \max\{d_{i_{\nu}} : i, \nu\} \Rightarrow s_{i_{\nu}} \cdot X_i^d \in \Gamma(\mathbb{P}^n, \mathcal{F} \otimes \mathcal{O}(d))$ für alle $i, \nu \Rightarrow \text{die } t_{i_{\nu}} \text{ erzeugen } \mathcal{F}(d)$.

Satz (Grothendieck)

Sei X ein n-dimensionales noethersches Schema, \mathcal{F} eine Garbe von abelschen Gruppen. Dann ist $H^i(X, \mathcal{F}) = 0$ für alle i > n.