

X2-Class **Power MOSFET**

IXTA24N65X2 IXTP24N65X2 IXTH24N65X2

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	650	V	
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{\mathrm{GS}}} = 1\text{M}\Omega$	650	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _c = 25°C	24	A	
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	48	Α	
I _A	$T_c = 25^{\circ}C$	12	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	600	mJ	
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	15	V/ns	
P_{D}	T _C = 25°C	390	W	
T _J		-55 +150	°C	
\mathbf{T}_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	ng 300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c M _d	Mounting Force (TO-263) Mounting Torque (TO-220 & TO-247)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-263	2.5	g	
	TO-220 TO-247	3.0 6.0	g 9	

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 250\mu A$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 100	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			145	mΩ

650V 24A D25 $145m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		acteristic Typ.	Values Max	
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	13	22	S
R_{Gi}	Gate Input Resistance		1.1	Ω
C _{iss}			2060	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1470	pF
C _{rss}			1.2	pF
	Effective Output Capacitance			
C _{o(er)}	Energy related $\begin{cases} V_{GS} = 0V \\ V_{DS} = 0.8 \cdot V_{DSS} \end{cases}$		83	pF
$C_{o(tr)}$	Time related $V_{DS} = 0.8 \cdot V_{DSS}$		336	pF
t _{d(on)}	Resistive Switching Times		20	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		25	ns
t _{d(off)}	$R_{G} = 10\Omega$ (External)		50	ns
t_{f}	Tig = 1052 (External)		19	ns
$Q_{g(on)}$			36	nC
Q_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		9	nC
\mathbf{Q}_{gd}			13	nC
R _{thJC}				0.32 °C/W
R _{thCS}	TO-220 TO-247		0.50 0.21	°C/W °C/W

Source-Drain Diode

Symbol	Test Conditions	Chara	cteristic	Values	
$(T_J = 25^{\circ}C, U)$	Jnless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			24	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$			96	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{ll} oldsymbol{t}_{rr} & & \ oldsymbol{Q}_{RM} & \ oldsymbol{I}_{RM} & \end{array} ight. ight.$	$I_F = 12A$, -di/dt = 100A/ μ s $V_R = 100V$		390 3.3 17		ns µC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 12A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 12A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCHES		MILLIMETER	
SIM	MIN	MAX	MIN	MAX
Α	.170	.185	4.30	4.70
A1	.000	.008	0.00	0.20
A2	.091	.098	2.30	2.50
b	.028	.035	0.70	0.90
b2	.046	.060	1.18	1.52
С	.018	.024	0.45	0.60
C2	.049	.060	1.25	1.52
D	.340	.370	8.63	9.40
D1	.300	.327	7.62	8.30
E	.380	.410	9.65	10.41
E1	.270	.330	6.86	8.38
е	.100	BSC	2.54 BSC	
Н	.580	.620	14.73	15.75
L	.075	.105	1.91	2.67
L1	.039	.060	1.00	1.52
L2	_	.070	_	1.77
L3	.010 BSC		0.254	BSC

SYM	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.169	.185	4.30	4.70
A1	.047	.055	1.20	1.40
A2	.079	.106	2.00	2.70
b	.024	.039	0.60	1.00
b2	.045	.057	1.15	1.45
С	.014	.026	0.35	0.65
D	.587	.626	14.90	15.90
D1	.335	.370	8.50	9.40
(D2)	.500	.531	12.70	13.50
Ε	.382	.406	9.70	10.30
(E1)	.283	.323	7.20	8.20
е	.100 BSC		2.54	BSC
e1	.200	BSC	5.08 BSC	
H1	.244	.268	6.20	6.80
L	.492	.547	12.50	13.90
L1	.110	.154	2.80	3.90
ØΡ	.134	.150	3.40	3.80
Q	.106	.126	2.70	3.20

SYM	INCH	lES	MILLIN	1ETERS
STIM	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
Ь	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3.20
С	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Ε	.620	.635	15.75	16.13
E1	.545	.565	13.84	14.35
е	.215 BSC		5.45	BSC
J		.010		0.25
K		.025		0.64
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
ØΡ	.140	.144	3.55	3.65
øP1	.275	.290	6.99	7.37
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83
S	.242 BSC		6.15	BSC

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.