



|                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :<br><br><b>C07C 29/149</b>                                                                                                                                                                                          |  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (11) Internationale Veröffentlichungsnummer: <b>WO 99/38824</b>               |
|                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (43) Internationales Veröffentlichungsdatum: <b>5. August 1999 (05.08.99)</b> |
| (21) Internationales Aktenzeichen: <b>PCT/EP99/00234</b>                                                                                                                                                                                                                   |  | (81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |                                                                               |
| (22) Internationales Anmeldedatum: <b>16. Januar 1999 (16.01.99)</b>                                                                                                                                                                                                       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |
| (30) Prioritätsdaten:<br><b>198 03 893.3 31. Januar 1998 (31.01.98) DE</b>                                                                                                                                                                                                 |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |
| (71) Anmelder ( <i>für alle Bestimmungsstaaten ausser US</i> ): <b>BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).</b>                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |
| (72) Erfinder; und                                                                                                                                                                                                                                                         |  | Veröffentlicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |
| (75) Erfinder/Anmelder ( <i>nur für US</i> ): <b>ANTONS, Stefan [DE/DE]; Schwalbenweg 3, D-51373 Leverkusen (DE). SCHULZE TILLING, Andreas [DE/DE]; Walter-Flex-Strasse 17, D-51373 Leverkusen (DE). WOLTERS, Erich [DE/DE]; Stenzelbergstrasse 11, D-50939 Köln (DE).</b> |  | <i>Mit internationalem Recherchenbericht.<br/>Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |
| (74) Gemeinsamer Vertreter: <b>BAYER AKTIENGESELLSCHAFT; D-51368 Leverkusen (DE).</b>                                                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |

(54) Title: METHOD FOR PRODUCING OPTICALLY ACTIVE ALCOHOLS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON OPTISCH AKTIVEN ALKOHOLEN

## (57) Abstract

The invention relates to a simple method for obtaining purer optically active alcohols with a higher enantiomeric purity, in higher yields, at lower temperatures and in short reaction times by reducing the optically active carboxylic acids with hydrogen in the presence of a catalyst containing in addition to ruthenium, at least one other metal or transition metal with an atomic number between 23 and 82.

## (57) Zusammenfassung

Bei einem Verfahren zur Herstellung von optisch aktiven Alkoholen erhält man diese auf einfache Weise, mit höherer Reinheit, höherem Enantiomerenüberschuss, in höheren Ausbeuten, bei niedrigeren Temperaturen und kürzeren Reaktionszeiten, wenn man die optisch aktiven Carbonsäuren in Gegenwart eines Katalysators, der neben Ruthenium mindestens ein weiteres Metall oder Übergangsmetall mit Ordnungszahlen im Bereich 23 bis 82 enthält, mit Wasserstoff reduziert.

**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                              |    |                                      |    |                                                    |    |                                   |
|----|------------------------------|----|--------------------------------------|----|----------------------------------------------------|----|-----------------------------------|
| AL | Albanien                     | ES | Spanien                              | LS | Lesotho                                            | SI | Slowenien                         |
| AM | Armenien                     | FI | Finnland                             | LT | Litauen                                            | SK | Slowakei                          |
| AT | Österreich                   | FR | Frankreich                           | LU | Luxemburg                                          | SN | Senegal                           |
| AU | Australien                   | GA | Gabun                                | LV | Lettland                                           | SZ | Swasiland                         |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich               | MC | Monaco                                             | TD | Tschad                            |
| BA | Bosnien-Herzegowina          | GE | Georgien                             | MD | Republik Moldau                                    | TG | Togo                              |
| BB | Barbados                     | GH | Ghana                                | MG | Madagaskar                                         | TJ | Tadschikistan                     |
| BE | Belgien                      | GN | Guinea                               | MK | Die ehemalige jugoslawische<br>Republik Mazedonien | TM | Turkmenistan                      |
| BF | Burkina Faso                 | GR | Griechenland                         | ML | Mali                                               | TR | Türkei                            |
| BG | Bulgarien                    | HU | Ungarn                               | MN | Mongolei                                           | TT | Trinidad und Tobago               |
| BJ | Benin                        | IE | Irland                               | MR | Mauretanien                                        | UA | Ukraine                           |
| BR | Brasilien                    | IL | Israel                               | MW | Malawi                                             | UG | Uganda                            |
| BY | Belarus                      | IS | Island                               | MX | Mexiko                                             | US | Vereinigte Staaten von<br>Amerika |
| CA | Kanada                       | IT | Italien                              | NE | Niger                                              | UZ | Usbekistan                        |
| CF | Zentralafrikanische Republik | JP | Japan                                | NL | Niederlande                                        | VN | Vietnam                           |
| CG | Kongo                        | KE | Kenia                                | NO | Norwegen                                           | YU | Jugoslawien                       |
| CH | Schweiz                      | KG | Kirgisistan                          | NZ | Neuseeland                                         | ZW | Zimbabwe                          |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik<br>Korea | PL | Polen                                              |    |                                   |
| CM | Kamerun                      | KR | Republik Korea                       | PT | Portugal                                           |    |                                   |
| CN | China                        | KZ | Kasachstan                           | RO | Rumänien                                           |    |                                   |
| CU | Kuba                         | LC | St. Lucia                            | RU | Russische Föderation                               |    |                                   |
| CZ | Tschechische Republik        | LI | Liechtenstein                        | SD | Sudan                                              |    |                                   |
| DE | Deutschland                  | LK | Sri Lanka                            | SE | Schweden                                           |    |                                   |
| DK | Dänemark                     | LR | Liberia                              | SG | Singapur                                           |    |                                   |
| EE | Estland                      |    |                                      |    |                                                    |    |                                   |

### Verfahren zur Herstellung von optisch aktiven Alkoholen

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktiven  
5 Alkoholen durch katalytische Reduktion der entsprechenden optisch aktiven Carbonsäuren mit Wasserstoff.

Es ist bereits bekannt, daß man optisch aktive Alkohole durch katalytische Hydrierung der entsprechenden Carbonsäuren an Ruthenium-Katalysatoren herstellen  
10 kann (siehe EP-A 717 023). Als geeignete Reaktionsbedingungen werden dort Temperaturen im Bereich von 50 bis 150°C und Drucke im Bereich von 5 bis 250 bar angegeben.

Bei der Herstellung von S-1,2-Propandiol (nach älterer Nomenklatur auch als L-1,2-  
15 Propandiol zu bezeichnen) wurden dabei Enantiomerenüberschüsse von über 97 % bei einer Ausbeute von maximal 88 % und bei einer Reaktionstemperatur von 80°C erzielt. Bei der entsprechenden Hydrierung von S-Äpfelsäure (nach älterer Nomenklatur auch als L-Äpfelsäure zu bezeichnen) wurden dabei S-1,2,4-Butantriol mit einer Reinheit von 97 % bei 80°C erhalten. Ein Wert für den Enantiomerenüberschuß  
20 wurde nicht angegeben.

Die Enantiomerenüberschüsse der auf diese Weise hergestellten Alkohole genügen noch nicht ganz den hohen Anforderungen für Wirkstoffzwischenprodukte. Zudem sind die erzielbaren chemischen Ausbeuten und die benötigten Reaktionszeiten noch  
25 nicht voll befriedigend.

Es besteht also noch immer Bedarf nach einem Verfahren zur Herstellung von optisch aktiven Alkoholen aus den entsprechenden Carbonsäuren, bei dem die Kombination des erzielbaren Enantiomerenüberschusses, der erzielbaren chemischen  
30 Ausbeute und der benötigten Reaktionszeit insgesamt günstiger ist als bisher.

Es wurde nun ein Verfahren zur Herstellung von optisch aktiven Alkoholen aus optisch aktiven Carbonsäuren gefunden, das dadurch gekennzeichnet ist, daß man optisch aktive Carbonsäuren in Gegenwart eines Katalysators, der neben Ruthenium mindestens ein weiteres Metall oder Übergangsmetall mit Ordnungszahlen im Bereich 23 bis 42 enthält, mit Wasserstoff reduziert.

In das erfindungsgemäße Verfahren kann man z.B. optisch aktive Carbonsäuren der Formel (I) einsetzen



10

in der

m für 1, 2 oder 3,

15

n für null oder eine ganze Zahl von 1 bis 5 und

R' für einen einbindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl-, C<sub>7</sub>-C<sub>12</sub>-Aralkyl-, C<sub>6</sub>-C<sub>10</sub>-Aryl- und C<sub>1</sub>-C<sub>12</sub>-Alkoxyresten ausgewählten Rest oder für Hydroxy oder Halogen stehen und

20

im Falle m = 1

25

R für einen einbindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl-, C<sub>7</sub>-C<sub>12</sub>-Aralkyl-, C<sub>6</sub>-C<sub>10</sub>-Aryl- und C<sub>1</sub>-C<sub>12</sub>-Alkoxyrest ausgewählten Rest oder für einen Halogen- oder Hydroxyrest steht, der von R' verschieden ist,

im Falle m = 2

R nicht vorhanden ist oder für einen zweibindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl- und C<sub>7</sub>-C<sub>12</sub>-Aralkylreste ausgewählten Rest steht, und

5

im Falle m = 3

R für einen dreibindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl- und C<sub>7</sub>-C<sub>12</sub>-Aralkylreste ausgewählten Rest steht und

10

optisch aktive Alkohole der Formel (II) erhalten



in der

15

m, n, R' und R die bei Formel (I) angegebene Bedeutung haben.

In den Formeln (I) und (II) stehen vorzugsweise

20 m für 1 oder 2,

n für null, 1 oder 2 und

25 R' für geradkettiges oder verzweigtes C<sub>1</sub>-C<sub>4</sub>-Alkyl, Benzyl, Hydroxy, Fluor, Chlor oder Brom und ist

R von R' verschieden und steht für geradkettiges oder verzweigtes C<sub>1</sub>-C<sub>4</sub>-Alkyl, Benzyl, Hydroxy, Fluor oder Chlor.

Weiterhin ist bevorzugt, daß einer der Reste R' und R für Hydroxy steht.

5 Wenn m für 2 oder 3 steht, also der Molekülteil -CH(R')-(CH<sub>2</sub>)<sub>n</sub>-COOH im Einsatzmaterial mehrfach vorhanden ist, so können diese Moleküle hinsichtlich der Bedeutung von n und R' gleich oder verschieden sein.

10 Soweit R' und R Alkyl-, Aralkyl-, Aryl- und/oder Alkoxyreste sind, können diese gegebenenfalls substituiert sein, z.B. mit Halogen-, Hydroxy-, C<sub>1</sub>-C<sub>4</sub>-Alkoxy-, Thiol-, Amino- und/oder C<sub>1</sub>-C<sub>4</sub>-Alkylaminoresten. Vorzugsweise enthalten R' und/oder R weniger als vier derartige Substituenten. Es ist möglich, daß Reduktionen und/oder Spaltungsreaktionen auch an solchen Substituenten stattfinden.

15 Soweit R' und R Alkyl-, Aralkyl-, Aryl- oder Alkoxyreste sind, können diese in der Alkylkette und/oder im Arylteil gegebenenfalls Heteroatome enthalten, z.B. Sauerstoff-, Schwefel- und/oder Stickstoffatome. Vorzugsweise sind weniger als 3 solcher Heteroatome vorhanden.

20 Soweit R' und R Aralkyl- oder Arylreste sind, können diese auch partiell oder vollständig hydriert sein.

25 Falls mehrere COOH-Gruppen in einer Verbindung der Formel (I) vorhanden sind, ist es möglich, daß im Anschluß an die Reduktion einer dieser COOH-Gruppen zur CH<sub>2</sub>OH-Gruppen eine Lactonbildung mit einer verbleibenden COOH-Gruppe erfolgt.

30 Besonders bevorzugt setzt man in das erfindungsgemäße Verfahren optisch aktive Milchsäure, optisch aktive Weinsäure, optisch aktive 2-Chlorpropionsäure, optisch aktive 4-Chlor-3-hydroxybuttersäure oder optisch aktive Äpfelsäure ein und erhält optisch aktives 1,2-Propandiol, optisch aktives 1,2,3,4-Butantetraol, optisch aktives

2-Chlorpropanol, optisch aktives 4-Chlor-1,3-butandiol bzw. optisch aktives 1,2,4-Butantriol.

Als Katalysatoren für das erfindungsgemäße Verfahren kommen z.B. bimetallische  
5 Ruthenium/Metall X-Katalysatoren und trimetallische Ruthenium/Metall X/-Metall Y-Katalysatoren in Frage, die alle als solche oder aufgebracht auf einem Trägermaterial zum Einsatz gelangen können und wobei X und Y jeweils für ein Metall mit einer Ordnungszahl im Bereich 23 bis 82 steht. Die Katalysatoren können Ruthenium und die Metalle X und gegebenenfalls die Metalle Y in verschiedener  
10 Form enthalten, beispielsweise in elementarer Form, in kolloidaler Form, in Form von Verbindungen des Rutheniums und der Metalle X oder des Rutheniums und der Metalle X und Y oder in Form einer intermetallischen Verbindung aus Ruthenium und dem Metall X und gegebenenfalls dem Metall Y. Wenn die Katalysatoren nicht aufgebracht auf einem Trägermaterial zum Einsatz gelangen, können sie beispielsweise in kolloidaler Form oder als feinteiliger Feststoff vorliegen. Beispiele für Katalysatoren sind fein verteilte Ruthenium/Rhenium-, Ruthenium/Osmium-, Ruthenium/Eisen-, Ruthenium/Cobalt-, Ruthenium/Rhodium-, Ruthenium/Palladium-, Ruthenium/Platin-, Ruthenium/Kupfer-, Ruthenium/Zink-, Ruthenium/Silber-, Ruthenium/Zinn-, Ruthenium/Germanium-, Ruthenium/Gallium-, Ruthenium/Blei-,  
15 Ruthenium/Rhenium/Kupfer-, Ruthenium/Rhenium/Silber- und Ruthenium/Rhenium/Zinn-Partikel z.B. in metallischer Form oder in Form ihrer Oxide, Hydroxide, Halogenide, Nitrate, Carboxylate oder Acetylacetonate.  
20

Als Trägermaterial kommen beispielsweise Kohlen, Ruße, Graphite, Aluminiumoxide, Siliciumdioxide, Silikate, Zeolithe und Tonerden in Frage. Trägerkatalysatoren können beispielsweise 1 bis 50 Gew.-% Metall in elementarer Form oder in Form von Verbindungen enthalten.  
25

Die einzusetzenden Katalysatoren können gegebenenfalls durch eine Behandlung mit Schwefelverbindungen, z.B. mit Thioether, modifiziert worden sein.  
30

Bevorzugt sind Katalysatoren, die Ruthenium und Rhenium ohne Träger enthalten und eine hohe spezifische Oberfläche aufweisen, z.B. eine solche von 50 bis 150 m<sup>2</sup>/g. Derartige Katalysatoren kann man z.B. herstellen, indem man auf einem Rutheniumoxidhydrat mit hoher Oberfläche (z.B. 50 bis 300 m<sup>2</sup>/g) Rhenium aus einer Rheniumlösung durch Einwirkung von Wasserstoff reduktiv abscheidet. Dabei wird ein bimetallischer Katalysator mit hoher Oberfläche und innigem Kontakt der beiden Metalle erhalten. Grundsätzlich kann die Abscheidung eines zweiten Metalls bei der Katalysatorherstellung oder *in situ* bei der Hydrierreaktion erfolgen.

5

10      Bezogen auf 1 Mol eingesetzte optisch aktive Carbonsäure kann man als Katalysator z.B. 0,1 bis 30 g Metall oder Metallverbindungen oder 1 bis 100 g Trägerkatalysatoren, die Metall oder Metallverbindungen enthalten, einsetzen.

15      Das erfindungsgemäße Verfahren wird im allgemeinen in Gegenwart eines Lösungsmittels für die optisch aktiven Carbonsäuren und optisch aktiven Alkohole durchgeführt. Als Lösungsmittel kommen beispielsweise Wasser, mit Wasser mischbare organische Lösungsmittel und Gemische aus beiden in Frage. Als mit Wasser mischbare Lösungsmittel seien niedere Alkohole und mit Wasser mischbare Ether genannt. Bevorzugte Lösungsmittel sind Wasser und Gemische, die Wasser und niedrige Alkohole oder Tetrahydrofuran enthalten.

20

25      Das erfindungsgemäße Verfahren kann man z.B. bei Temperaturen im Bereich 0 bis 150°C und Drucken im Bereich 5 bis 300 bar durchführen. Bevorzugt sind Temperaturen von 40 bis 130°C und Drücke von 50 bis 250 bar. Besonders bevorzugt werden Temperaturen von 30 bis 80°C und Drücke von 150 bis 250 bar.

30      Zur Aufarbeitung des Reaktionsgemisches kann man beispielsweise zunächst abkühlen, den Katalysator z.B. durch Filtration abtrennen, dann die Produktlösung z.B. mit Natronlauge neutralisieren, die vorhandenen leicht flüchtigen Bestandteile (i.a. Lösungsmittel und Reaktionswasser) durch Destillation, gegebenenfalls unter ver-

mindertem Druck, entfernen und den Rückstand im Vakuum fraktionieren. Den abgetrennten Katalysator kann man wiederverwenden, ebenso das Lösungsmittel.

Das erfindungsgemäße Verfahren kann kontinuierlich, halbkontinuierlich oder diskontinuierlich durchgeführt werden. Als Reaktoren eignen sich z.B. Rührkessel und Rieselphasereaktoren. Vorteilhaft wird das Verfahren als Batch-Zulaufverfahren durchgeführt, wobei der Katalysator im Lösungsmittel vorgelegt wird und die Säure in der Menge zugepumpt wird, wie sie bei der Hydrierung verbraucht wird. Hierdurch lässt sich die Säurekonzentration im Reaktor auf einem niedrigen Niveau halten, was sich auf die Katalysatorstandzeit und die Ausbeute positiv auswirkt und die Korrosivität des Reaktionsmediums erniedrigt.

Wenn man nach dem erfindungsgemäßen Verfahren optisch aktive Äpfelsäure reduziert, so kann man das erhaltene Reaktionsgemisch direkt, d.h. ohne vorherige Abtrennung der Nebenprodukte, zum optisch aktiven 3-Hydroxytetrahydrofuran umsetzen, z.B. indem man zunächst abkühlt, den Katalysator abtrennt, die vorhandenen leicht flüchtigen Bestandteile durch Destillation, gegebenenfalls unter schwach vermindertem Druck, abtrennt, p-Toluolsulfonsäure hinzufügt und im Vakuum fraktiniert destilliert.

Bei der erfindungsgemäßen Reduktion von optisch aktiver Äpfelsäure erhält man i.a. neben optisch aktivem 1,2,4-Butantriol, optisch aktive 3,4-Dihydroxybuttersäure, die teilweise bereits unter Reaktionsbedingungen zum optisch aktiven 3-Hydroxybutyrolacton lactonisiert. Dies ist insbesondere dann der Fall, wenn man die Reaktion bei 50 bis 60 % des Wasserstoffsverbrauchs, der zur vollständigen Reduktion zum 1,2,4-Butantriol nötig wäre, abbricht, die leicht flüchtigen Bestandteile abtrennt, den Rückstand z.B. mit Natronlauge neutralisiert und das 1,2,4-Butantriol z.B. destillativ abtrennt. Nach Freisetzung der 3,4-Dihydroxybuttersäure und Lactonisierung zum optisch aktiven 3-Hydroxybutyrolacton durch Zusatz von Säure, z.B. Trifluoressigsäure (siehe Chem. Lett. (1984), 1389), kann man das optisch aktive 3-Hydroxybutyrolacton destillativ abtrennen.

Überraschend haben erfindungsgemäß zu verwendende Katalysatoren, insbesondere solche, die Ruthenium und Rhenium enthalten, eine wesentlich höhere Performance in der Hydrierung von optisch aktiven Carbonsäuren als ein monometallischer Ruthenium-Katalysator. Mit dem erfindungsgemäßen Verfahren kann man auf einfache Weise auch in technischem Maßstab optisch aktive Alkohole mit höherer Reinheit, höherem Enantiomerenüberschuß, in höherer Ausbeute, bei niedrigeren Temperaturen und/oder mit kürzeren Reaktionszeiten herstellen, als mit den bekannten Hydrierverfahren. Insbesondere ist die Kombination von erzielbarem Enantiomerenüberschuß, erzielbarer chemischer Ausbeute und der benötigten Reaktionszeit insgesamt günstiger als beim Stand der Technik.

**Beispiele****Beispiel 1**

## 5      a)     Katalysatorherstellung

In einen 0,7 l-Edelstahlautoklaven wurden in 100 ml Wasser 62,9 g RuO<sub>2</sub> wasserfeucht (enthaltend 7,61 Gew.-% Ru) und 6,3 g Re<sub>2</sub>O<sub>7</sub> (enthaltend 76,9 Gew.-% Re) vorgelegt. Es wurde je 2 mal mit Stickstoff und danach mit Wasserstoff gespült, 100 bar Wasserstoff aufgedrückt und unter Röhren (800 UpM) auf 120°C erhitzt. Nach Erreichen dieser Temperatur wurde der Wasserstoffdruck auf 150 bar erhöht und diese Bedingungen 1 Stunde aufrecht erhalten. Es wurde ein Ru/Re-Katalysator mit einer spezifischen Oberfläche von 70 m<sup>2</sup>/g erhalten (bestimmt nach der BET-Methode).

## 15     b)    Hydrierung von S-Äpfelsäure

Der Autoklav wurde auf 60°C abgekühlt, entspannt und 278 g einer 18,9 gew.-%igen wäßrigen S-Äpfelsäurelösung zugefügt. Anschließend wurde bei 60°C und 200 bar Wasserstoffdruck bis zum Ende der Wasserstoffaufnahme (24 Stunden) gerührt. Nach dem Abkühlen auf Raumtemperatur wurde der Katalysator abfiltriert, das dann verbleibende Reaktionsgemisch mit Natronlauge neutralisiert und von der erhaltenen Rohlösung das Wasser abdestilliert. Es blieben 42,0 g einer farblosen viskosen Flüssigkeit, die bei einem Druck von 1 mbar destilliert wurde. Nach einem Vorlauf, der aus Butandiolen bestand, wurden 33,9 g 97,9 gew.-%iges S-1,2,4-Butantriol erhalten (Kp. 133°C/1 mbar, ee = 98,8 %). Dies entspricht einer Ausbeute von 79,8 % der Theorie, bezogen auf eingesetzte S-Äpfelsäure.

**Beispiel 2****Reaktionsverlauf**

Es wurde wie in Beispiel 1 verfahren und der Reaktionsverlauf durch Probenahme verfolgt. Die zeitliche Änderung der Zusammensetzung des Reaktionsgemisches ist in Tabelle 1 wiedergegeben. Hieraus ist insbesondere ersichtlich, nach welcher Reaktionszeit größere Mengen an S-3,4-Dihydroxybuttersäure und S-3-Hydroxybutyrolacton im Reaktionsgemisch vorhanden sind.

10 **Tabelle 1**

| Anteile im Reaktionsgemisch [GC %] | Reaktionszeit [h] |      |      |      |     |
|------------------------------------|-------------------|------|------|------|-----|
|                                    | 4                 | 10   | 16   | 20   | 24  |
| S-Äpfelsäure                       | 58                | 15   | 1    | <1   | <1  |
| S-1,2,4-Butantriol                 | 7,5               | 24,5 | 48,5 | 64,5 | 78  |
| S-3,4-Dihydroxybuttersäure         | 22                | 37,5 | 30   | 18   | 3,5 |
| S-3-Hydroxybutyrolacton            | 7                 | 15   | 14   | 11,5 | 9   |

**Beispiel 3**

15

a) **Katalysatorherstellung**

In einem 3 l-Edelstahlautoklaven wurden in 400 ml Wasser 234,6 g RuO<sub>2</sub> wasserfeucht (enthaltend 8,2 Gew.-% Ru) und 25,2 g Re<sub>2</sub>O<sub>7</sub> (enthaltend 76,9 Gew.-% Re) vorgelegt. Es wurde je 2 mal mit Stickstoff und Wasserstoff gespült, 100 bar Wasserstoff aufgedrückt und unter Rühren (800 UpM) auf 20 120°C geheizt. Nach Erreichen dieser Temperatur wurde der Wasserstoffdruck auf 150 bar erhöht und diese Bedingungen 1 Stunde aufrecht erhalten.

b) Hydrierung von S-Äpfelsäure im batch-Zulaufverfahren

Der Autoklav wurde auf 70°C abgekühlt und der Wasserstoffdruck auf 200 bar erhöht. Anschließend wurden im Verlauf von 9,5 Stunden 1112 g einer 18,9 gew.-%igen wäßrigen S-Äpfelsäurelösung zugefügt und bis zum Ende der Wasserstoffaufnahme gerührt (5 Stunden). Nach dem Abkühlen auf Raumtemperatur wurden die flüssigen Anteile des Autoklaveninhalts über ein Steigrohr mit Fritte entnommen. Der Katalysator blieb für weitere Hydrierungen im Autoklaven zurück (siehe Beispiele 4 bis 6). Von der erhaltenen Rohlösung wurde das Wasser abdestilliert. Es blieben 154,1 g einer farblosen viskosen Flüssigkeit, die bei einem Druck von 1 mbar destilliert wurde. Nach einem Vorlauf, der aus Butandiolen bestand, wurden 135,8 g 98,9 gew.-%iges S-1,2,4-Butantriol erhalten (Kp. 133°C/1 mbar, ee = 98,1 %). Dies entspricht einer Ausbeute von 80,7 % der Theorie, bezogen auf eingesetzte S-Äpfelsäure.

15

**Beispiele 4 bis 6**

Wiederholte Katalysatorverwendung

20 Beispiel 3 b) wurde mit dem jeweils zurückgewonnenen Katalysator 3 mal wiederholt. Einzelheiten siehe Tabelle 2.

**Tabelle 2**

|            | Anzahl der Rückführungen | Ausbeute *) | ee-Wert |
|------------|--------------------------|-------------|---------|
| Beispiel 4 | 1                        | 78,2 %      | 99,1 %  |
| Beispiel 5 | 2                        | 81,4 %      | 98,9 %  |
| Beispiel 6 | 3                        | 77,5 %      | 99,1 %  |

25

\*) % der Theorie, bezogen auf eingesetzte S-Äpfelsäure

Beispiele 7 bis 10Vergleichsbeispiele

5 Es wurde wie in Beispiel 3 verfahren, jedoch wurde bei der Katalysatorherstellung kein  $\text{Re}_2\text{O}_7$  verwendet. Es wurde bei verschiedenen Temperaturen gearbeitet. Einzelheiten siehe Tabelle 3.

Tabelle 3

10

|             | Temperatur | Reaktionszeit<br>[Stunden] | Ausbeute<br>[% d.Th.] | ee-Wert     |
|-------------|------------|----------------------------|-----------------------|-------------|
| Beispiel 7  | 60°C       | 24                         |                       | kein Umsatz |
| Beispiel 8  | 80°C       | 24                         | 19,9 %                | 9,9 %       |
| Beispiel 9  | 100°C      | 19                         | 68,2 %                | 78,4 %      |
| Beispiel 10 | 120°C      | 25                         | 45,3 %                | 0,1 %       |

Beispiele 11 und 12

15 Es wurde verfahren wie in Beispiel 1, jedoch wurde statt  $\text{Re}_2\text{O}_7$  einmal eine entsprechende Menge einer sauren Zinn(II)-chloridlösung und einmal eine entsprechende Menge Eisen(II)-oxalat eingesetzt. Die Ergebnisse sind aus Tabelle 4 ersichtlich.

Tabelle 4

20

|             | Katalysator | Reaktionszeit<br>[Stunden] | Ausbeute<br>[% der Theorie] | ee-Wert |
|-------------|-------------|----------------------------|-----------------------------|---------|
| Beispiel 11 | Ru/Sn       | 30                         | 88,4                        | 93,4 %  |
| Beispiel 12 | Ru/Fe       | 24                         | 62,9                        | 94,3 %  |

Patentansprüche

1. Verfahren zur Herstellung von optisch aktiven Alkoholen aus optisch aktiven Carbonsäuren, dadurch gekennzeichnet, daß man optisch aktive Carbonsäuren in Gegenwart eines Katalysators, der neben Ruthenium mindestens ein weiteres Metall oder Übergangsmetall mit Ordnungszahlen im Bereich 23 bis 5 82 enthält, mit Wasserstoff reduziert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als optisch aktive Carbonsäuren solche der Formel (I) einsetzt  
10



in der

15 m für 1, 2 oder 3,

n für null oder eine ganze Zahl von 1 bis 5 und

20 R' für einen einbindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl-, C<sub>7</sub>-C<sub>12</sub>-Aralkyl-, C<sub>6</sub>-C<sub>10</sub>-Aryl- und C<sub>1</sub>-C<sub>12</sub>-Alkoxyresten ausgewählten Rest oder für Hydroxy oder Halogen stehen und

im Falle m = 1

25 R für einen einbindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl-, C<sub>7</sub>-C<sub>12</sub>-Aralkyl-, C<sub>6</sub>-C<sub>10</sub>-Aryl- und C<sub>1</sub>-C<sub>12</sub>-

Alkoxyrest ausgewählten Rest oder für einen Halogen- oder Hydroxyrest steht, der von R' verschieden ist,

im Falle m = 2

5

R nicht vorhanden ist oder für einen zweibindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl- und C<sub>7</sub>-C<sub>12</sub>-Aralkylreste ausgewählten Rest steht, und

10

im Falle m = 3

R für einen dreibindigen, aus der Gruppe der geradkettigen und verzweigten C<sub>1</sub>-C<sub>12</sub>-Alkyl- und C<sub>7</sub>-C<sub>12</sub>-Aralkylreste ausgewählten Rest steht und

15

optisch aktive Alkohole der Formel (II) erhält



in der

20

m, n, R' und R die bei Formel (I) angegebene Bedeutung haben.

25

3. Verfahren nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man optisch aktive Milchsäure, optische aktive Weinsäure, optisch aktive 2-Chlorpropionsäure, optisch aktive 4-Chlor-3-hydroxybuttersäure oder optisch aktive Äpfelsäure einsetzt.

4. Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als Katalysatoren bimetallische Ruthenium/Metall X-Katalysatoren oder trimetallische Ruthenium/Metall X/Metall Y-Katalysatoren einsetzt, wobei X und Y jeweils für ein Metall mit einer Ordnungszahl im Bereich von 23 bis 82 steht.  
5
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß in den Katalysatoren Ruthenium und die Metalle X und, soweit vorhanden, Y in elementarer Form, in kolloidaler Form, in Form von Verbindungen des Rutheniums und der Metalle X oder des Rutheniums und, falls vorhanden, der Metalle X und Y oder in Form einer intermetallischen Verbindung von Ruthenium und dem Metall X und, falls vorhanden, dem Metall Y vorliegt.  
10
6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Katalysatoren Ruthenium und Rhenium ohne Träger enthalten und eine spezifische Oberfläche von 50 bis 150 m<sup>2</sup>/g aufweisen.  
15
7. Verfahren nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man bezogen auf 1 Mol eingesetzte optisch aktive Carbonsäure 0,1 bis 30 g Metall oder Metallverbindungen oder 1 bis 100 g Trägerkatalysatoren, die Metall oder Metallverbindungen enthalten, einsetzt.  
20
8. Verfahren nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man es bei Temperaturen im Bereich 0 bis 150°C und Drucken im Bereich 5 bis 300 bar durchführt.  
25
9. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man das nach der Reaktion vorliegende Reaktionsgemisch aufarbeitet, indem man es zunächst abkühlt, den Katalysator abtrennt, die Produktlösung neutralisiert, die vorhandenen, leicht flüchtigen Bestandteile abdestilliert und den Rückstand im Vakuum fraktioniert.  
30

10. Verfahren nach Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß man optisch aktive Äpfelsäure einsetzt und zur Herstellung eines Reaktionsgemischs, das neben optisch aktiven 1,2,4-Butantriol optisch aktive 3,4-Dihydroxybuttersäure und optische aktive 3-Hydroxybutyrolacton enthält, die Reaktion bei 50 bis 60 % des Wasserstoffsverbrauchs, der zur vollständigen Reduktion zum 1,2,4-Butantriol nötig wäre abbricht, dann die leicht flüchtigen Bestandteile abtrennt, den Rückstand neutralisiert und das 1,2,4-Butantriol abtrennt und zur Abtrennung des optisch aktiven 3-Hydroxybutyrolactons nach Zusatz von Säure nochmals destilliert.

5  
10

# INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 99/00234

**A. CLASSIFICATION OF SUBJECT MATTER**  
IPC 6 C07C29/149

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|------------|------------------------------------------------------------------------------------|-----------------------|
| A          | EP 0 717 023 A (BAYER AG) 19 June 1996<br>cited in the application<br>---          |                       |
| A          | US 5 536 879 A (ANTONS STEFAN ET AL)<br>16 July 1996<br>---                        |                       |
| A          | US 5 149 680 A (KITSON MELANIE ET AL)<br>22 September 1992<br>-----                |                       |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

|                                                                                                                                                                                            |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Date of the actual completion of the international search                                                                                                                                  | Date of mailing of the international search report |
| 31 May 1999                                                                                                                                                                                | 09/06/1999                                         |
| Name and mailing address of the ISA<br><br>European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016 | Authorized officer<br><br>Schwaller, J-M           |

# INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/00234

| Patent document cited in search report | Publication date | Patent family member(s) |       | Publication date |
|----------------------------------------|------------------|-------------------------|-------|------------------|
| EP 0717023                             | A 19-06-1996     | DE 4444109 A            |       | 13-06-1996       |
|                                        |                  | DE 59505086 D           |       | 25-03-1999       |
|                                        |                  | JP 8231447 A            |       | 10-09-1996       |
|                                        |                  | US 5731479 A            |       | 24-03-1998       |
| -----                                  | -----            | -----                   | ----- | -----            |
| US 5536879                             | A 16-07-1996     | DE 4428106 A            |       | 15-02-1996       |
|                                        |                  | DE 59500099 D           |       | 06-03-1997       |
|                                        |                  | EP 0696575 A            |       | 14-02-1996       |
|                                        |                  | ES 2096497 T            |       | 01-03-1997       |
|                                        |                  | JP 8059575 A            |       | 05-03-1996       |
| -----                                  | -----            | -----                   | ----- | -----            |
| US 5149680                             | A 22-09-1992     | AT 63106 T              |       | 15-05-1991       |
|                                        |                  | AT 128381 T             |       | 15-10-1995       |
|                                        |                  | AU 602208 B             |       | 04-10-1990       |
|                                        |                  | AU 1497888 A            |       | 02-11-1988       |
|                                        |                  | CN 1030072 A,B          |       | 04-01-1989       |
|                                        |                  | CN 1055360 A,B          |       | 16-10-1991       |
|                                        |                  | CN 1059296 A,B          |       | 11-03-1992       |
|                                        |                  | DE 3854529 D            |       | 02-11-1995       |
|                                        |                  | DE 3854529 T            |       | 28-03-1996       |
|                                        |                  | EP 0285420 A            |       | 05-10-1988       |
|                                        |                  | EP 0417867 A            |       | 20-03-1991       |
|                                        |                  | EP 0662343 A            |       | 12-07-1995       |
|                                        |                  | WO 8807515 A            |       | 06-10-1988       |
|                                        |                  | JP 1503459 T            |       | 22-11-1989       |
|                                        |                  | JP 2749090 B            |       | 13-05-1998       |
|                                        |                  | US 4985572 A            |       | 15-01-1991       |
| -----                                  | -----            | -----                   | ----- | -----            |

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 99/00234

**A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**  
IPK 6 C07C29/149

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C07C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

**C. ALS WESENTLICH ANGESEHENE UNTERLAGEN**

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile | Betr. Anspruch Nr. |
|------------|----------------------------------------------------------------------------------------------------|--------------------|
| A          | EP 0 717 023 A (BAYER AG) 19. Juni 1996<br>in der Anmeldung erwähnt<br>---                         |                    |
| A          | US 5 536 879 A (ANTONS STEFAN ET AL)<br>16. Juli 1996<br>---                                       |                    |
| A          | US 5 149 680 A (KITSON MELANIE ET AL)<br>22. September 1992<br>-----                               |                    |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

\* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

31. Mai 1999

Absendedatum des Internationalen Rechercheberichts

09/06/1999

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Schwaller, J-M

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 99/00234

| Im Recherchenbericht angeführtes Patentdokument |   | Datum der Veröffentlichung | Mitglied(er) der Patentfamilie                                                                                                                                                                                                                                 | Datum der Veröffentlichung                                                                                                                                                                                                   |
|-------------------------------------------------|---|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 0717023                                      | A | 19-06-1996                 | DE 4444109 A<br>DE 59505086 D<br>JP 8231447 A<br>US 5731479 A                                                                                                                                                                                                  | 13-06-1996<br>25-03-1999<br>10-09-1996<br>24-03-1998                                                                                                                                                                         |
| US 5536879                                      | A | 16-07-1996                 | DE 4428106 A<br>DE 59500099 D<br>EP 0696575 A<br>ES 2096497 T<br>JP 8059575 A                                                                                                                                                                                  | 15-02-1996<br>06-03-1997<br>14-02-1996<br>01-03-1997<br>05-03-1996                                                                                                                                                           |
| US 5149680                                      | A | 22-09-1992                 | AT 63106 T<br>AT 128381 T<br>AU 602208 B<br>AU 1497888 A<br>CN 1030072 A,B<br>CN 1055360 A,B<br>CN 1059296 A,B<br>DE 3854529 D<br>DE 3854529 T<br>EP 0285420 A<br>EP 0417867 A<br>EP 0662343 A<br>WO 8807515 A<br>JP 1503459 T<br>JP 2749090 B<br>US 4985572 A | 15-05-1991<br>15-10-1995<br>04-10-1990<br>02-11-1988<br>04-01-1989<br>16-10-1991<br>11-03-1992<br>02-11-1995<br>28-03-1996<br>05-10-1988<br>20-03-1991<br>12-07-1995<br>06-10-1988<br>22-11-1989<br>13-05-1998<br>15-01-1991 |