SMS SPAM DETECTION WITH TENSORFLOW.

```
IMPORTATION OF THE IIBRARIES
```

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import tensorflow as tf
6 from tensorflow import keras
7 from tensorflow.keras import layers
```

Loading dataset .read_csv()

```
{f 1} # Using this to load the file from my External Hard drive AND Saving it to Uploaded
2 from google.colab import files
3 uploaded = files.upload()
    Choose Files spam.csv
    • spam.csv(text/csv) - 503663 bytes, last modified: 9/20/2019 - 100% done
    Saving spam.csv to spam (2).csv
1 # when we load the data we use .dropna(axis=1) to drop the unamed columns with null values.
2 import io
3 # I will use this io.BytesIO(uploaded['spam (2).csv']) to read the csv file from the io that i uploaded the file.
4 df = pd.read_csv(io.BytesIO(uploaded['spam (2).csv']),encoding = 'latin-1').dropna(axis = 1)
5 df.head()
           v1
                                                       v2
     0
         ham
                  Go until jurong point, crazy.. Available only ...
                                   Ok lar... Joking wif u oni...
     1
         ham
     2 spam
              Free entry in 2 a wkly comp to win FA Cup fina...
     3
         ham
                U dun say so early hor... U c already then say...
         ham
                 Nah I don't think he goes to usf, he lives aro...
```

i will rename the columns v1 and v2 to label and Text respectively

since the target variable is in string form I will encode it numerically using pandas function .map()

	label	Text	label_enc	
0	ham	Go until jurong point, crazy Available only	0	П
1	ham	Ok lar Joking wif u oni	0	
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	1	
3	ham	U dun say so early hor U c already then say	0	
4	ham	Nah I don't think he goes to usf, he lives aro	0	

LETS VISUALIZE THE DISTRIBUTION OF HAM AND SPAM DATA

```
1 sns.countplot(x=df['label'])
2 plt.show()
```


✓ NB

we can see that Ham data is comapratively higher than spam data, this is natural, since I will be using embeddings in our deep learning model, I do not have to balance the data. Now lets find the average number of words in all sentences in SMS data

```
1 # Average number of tokens in all sentences
2 avg_words_len = round(sum([len(i.split()) for i in df['Text']]) / len(df['Text']))
3
4 print (avg_words_len)
15
```

Now lets find the Total number of unique words in Corpus

SPLIT DATA INTO TRAINING AND TESTING PARTS

Building The Model

first I will build a baseline model and then try to beat the performance of the baseline using deep learning models (embeddings, LSTM and others)

I will use **MultinomialNB()**, this performs very well for text Classififcation when featurs are dicrete like word counts of the words or **tf-idf vectors** (this is a measure that tells us how important or relevant a word is in the document)

```
1 from sklearn.feature_extraction.text import TfidfVectorizer
2 from sklearn.naive_bayes import MultinomialNB
3 from sklearn.metrics import classification_report, accuracy_score, confusion_matrix

1 tfidf_vec = TfidfVectorizer().fit(X_train)
2
3 X_train_vec, X_test_vec = tfidf_vec.transform(X_train), tfidf_vec.transform(X_test)
4
5
6 baseline_model = MultinomialNB()
7 baseline_model.fit(X_train_vec, y_train)

v MultinomialNB
MultinomialNB()
```

Performance of baseline model

```
1 preds = baseline_model.predict(X_test_vec)
2
3 #using the K-fold for cross validation
4
5 def cv_scoring(estimator, X, y):
6     return accuracy_score(y, estimator.predict(X))
7
8
9 print(f"Accuracy on Train Data: {accuracy_score(y_train, baseline_model.predict(X_train_vec))*100}")
10
11 print(f"Accuracy on Test Data : {accuracy_score(y_test, preds)*100}")
12
13 # The Confusion Matrix
14
15 cf_matrix = confusion_matrix(y_test, preds)
16 plt.figure(figsize = (12,8))
17 sns.heatmap(cf_matrix, annot = True)
18 plt.title("Confusion Matrix for the Baseline Model on Test Data")
19 plt.show()
```

Accuracy on Train Data: 97.28516939645502 Accuracy on Test Data: 96.23318385650225

Model 1: Creating custom Text Vectoriation and embeding layers:

```
- **Text vectorization** is turning text into numerical representation. example **Bag of words frequency, Binary Term frequency, etc**
- **Word Embedding** this is a learned representation of text in which words with related meanings have similar representations. each word assigns
```

Custom Text Vectorization layer (TensorFlow)

Create an embedding layer

input_dim is the size of vocabulary.

output_dim is the dimension of the embedding layer i.e, the size of the vector in which the words will be embedde.

input_length is the length of input sequenc.es

Now lets build and compile model 1 using tensorflow functional API

```
1 input_layer = layers.Input(shape= (1,), dtype = tf.string)
2 vec_layer = text_vec(input_layer)
3 embedding_layer_model = embedding_layer(vec_layer)
4 x = layers.GlobalAveragePooling1D()(embedding_layer_model)
5 x = layers.Flatten()(x)
6 \times = layers.Dense(32, activation = 'relu')(x)
7 output_layer = layers.Dense(1, activation = 'sigmoid')(x)
8 model_1 = keras.Model(input_layer, output_layer)
10 model_1.compile(optimizer = 'adam', loss= keras.losses.BinaryCrossentropy(label_smoothing = 0.5),
                                                                            metrics = ['accuracy'])
11
12
1 # The model summary
2 model_1.summary()
    Model: "model"
     Layer (type)
                                Output Shape
                                                          Param #
     input_1 (InputLayer) [(None, 1)]
     text_vectorization (TextVe (None, 15)
     ctorization)
                                                           1994880
     embedding (Embedding)
                                 (None, 15, 128)
     global_average_pooling1d ( (None, 128)
     GlobalAveragePooling1D)
     flatten (Flatten)
                                 (None, 128)
     dense (Dense)
                                 (None, 32)
                                                           4128
     dense_1 (Dense)
                                                           33
                                 (None, 1)
```

Total params: 1999041 (7.63 MB)

Trainable params: 1999041 (7.63 MB) Non-trainable params: 0 (0.00 Byte)

CallBack

lets check and controll the models performance

Training the model_1

2 3

4

```
\label{eq:continuous} 1 \; \text{history = model\_1.fit}(X\_\text{train, y\_train, validation\_data=}(X\_\text{test, y\_test}),
                         epochs = 20,
                        batch_size = 32,
                        callbacks = [lr,es])
    Epoch 1/20
                               =========] - 5s 29ms/step - loss: 0.6060 - accuracy: 0.9053 - val_loss: 0.5775 - val_accuracy: 0.9740 - lr
    140/140 [==
    Epoch 2/20
    140/140 [===
                                                 5s 34ms/step - loss: 0.5702 - accuracy: 0.9874 - val_loss: 0.5735 - val_accuracy: 0.9803 - lr
    Epoch 3/20
    140/140 [==
                                               - 4s 27ms/step - loss: 0.5656 - accuracy: 0.9955 - val_loss: 0.5726 - val_accuracy: 0.9830 - lr
    Epoch 4/20
    140/140 [==
                                                 4s 26ms/step - loss: 0.5641 - accuracy: 0.9982 - val_loss: 0.5724 - val_accuracy: 0.9830 - lr
    Epoch 5/20
    140/140 Γ==
                                                 5s 32ms/step - loss: 0.5633 - accuracy: 0.9991 - val_loss: 0.5726 - val_accuracy: 0.9803 - lr
    Epoch 6/20
    140/140 [==
                                        =====] - 4s 28ms/step - loss: 0.5630 - accuracy: 0.9998 - val_loss: 0.5726 - val_accuracy: 0.9803 - lr
    Epoch 7/20
    140/140 [======
                                               - 4s 28ms/step - loss: 0.5628 - accuracy: 0.9998 - val_loss: 0.5725 - val_accuracy: 0.9803 - lr
    Epoch 8/20
    140/140 [==
                                                 5s 33ms/step - loss: 0.5626 - accuracy: 0.9998 - val_loss: 0.5726 - val_accuracy: 0.9803 - lr
    Epoch 9/20
    140/140 [=====
                                                 4s 27ms/step - loss: 0.5625 - accuracy: 1.0000 - val_loss: 0.5727 - val_accuracy: 0.9803 - lr
```

Ploting the models history

```
1 print('Train Accuracy: ', np.max(history.history['accuracy'] )*100, '%')
2 print('Train Loss: ', np.min(history.history['loss'])*100,'%')
4 plt.plot(history.history['accuracy'],label = 'Training Accuracy')
5 plt.plot(history.history['loss'],label = 'Training Loss')
6 plt.title('Model training')
7 plt.ylabel('Accuracy')
8 plt.xlabel('Epoch')
9 plt.legend()
10 plt.show()
    Train Accuracy: 100.0 %
    Train Loss: 56.25426173210144 %
```

Model training 1.0 0.9 0.8 Training Accuracy Training Loss 0.7 0.6 4 6 Epoch

Helper function for compiling fitting and evaluating the model

```
1 from sklearn.metrics import precision_score, recall_score, f1_score
3 def compile_model(model):
      # Simply compile the model with adam optimizer
5
      model.compile(optimizer = keras.optimizers.Adam(),
6
                    loss = keras.losses.BinaryCrossentropy(),
                    metrics = ['accuracy'])
8
9 def fit_model(model, epochs, X_train = X_train, y_train = y_train, X_test = X_test, y_test = y_test):
10
      # fi the model with the given epochs, training and test data
      history = model.fit(X_train,
11
12
                          y_train,
13
                           epochs = epochs,
14
                          validation data=(X test, y test),
15
                          validation_steps=int(0.2*len(X_test)),
16
                         callbacks = [lr,es])
17
      print('Train Accuracy: ', np.max(history.history['accuracy'] )*100, '%')
      print('Train Loss: ', np.min(history.history['loss'])*100,'%')
18
19
20
      plt.plot(history.history['accuracy'],label = 'Training Accuracy')
21
      plt.plot(history.history['loss'],label = 'Training Loss')
      plt.plot(history.history['val_accuracy'], label = 'validation Accuracy')
22
      plt.plot(history.history['val_loss'],label = 'validation Loss')
23
      plt.title('Model training')
25
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
26
27
      plt.legend()
28
      plt.show()
29
      return history
30
31 def evaluate_model(model, X,y):
      # evaluate the model and return accuracy, precision, recall and f1-score
32
33
34
      y_preds = np.round(model.predict(X))
35
      accuracy = accuracy_score(y, y_preds)
36
      accuracy = accuracy_score(y, y_preds)
37
      precision = precision_score(y, y_preds)
38
      recall = recall_score(y, y_preds)
39
      f1 = f1_score(y, y_preds)
40
      print("Model Performance in percentage (%)")
41
      model_results_dict = {'accuracy': accuracy * 100,
42
                             'precision': precision * 100,
                             'recall': recall * 100,
43
                             'f1-score': f1 * 100}
44
45
46
47
      return model results dict
```

Model 2 Bidirectional LSTM

this will effectively improve the networkd accesible information, boosting the context for the algorithm.

```
1 input_layer = layers.Input(shape = (1,), dtype = tf.string)
 2 vec_layer = text_vec(input_layer)
 4 embedding_layer_model = embedding_layer(vec_layer)
 6 bi_lstm = layers.Bidirectional(layers.LSTM(64,
                                              activation = 'tanh'.
 8
                                              return_sequences =True))(embedding_layer_model)
 9
10 lstm = layers.Bidirectional(layers.LSTM(64))(bi lstm)
11 flatten = layers.Flatten()(lstm)
12 dropout = layers.Dropout(.1)(flatten)
13
14 x = layers.Dense(32, activation = 'relu')(dropout)
15 output_layer = layers.Dense(1, activation ='sigmoid')(x)
17 model_2 = keras.Model(input_layer, output_layer)
19 compile_model(model_2) # Compile the model
20 history_2 = fit_model(model_2, epochs = 20) # fit the model
```

```
Epoch 1/20
140/140 [==
             ========] - 20s 88ms/step - loss: 0.0584 - accuracy: 0.98
Epoch 2/20
Epoch 3/20
140/140 [==
                    =====] - 11s 78ms/step - loss: 2.3725e-04 - accuracy:
Epoch 4/20
140/140 [==
               ======== ] - 13s 90ms/step - loss: 2.9430e-05 - accuracy:
Epoch 5/20
140/140 [==
                        - 11s 75ms/step - loss: 1.6673e-05 - accuracy:
Epoch 6/20
140/140 [==
               ========] - 11s 77ms/step - loss: 1.4300e-05 - accuracy:
Epoch 7/20
Epoch 8/20
140/140 [==
              Epoch 9/20
Train Accuracy: 100.0 %
Train Loss: 0.0009706817763799336 %
```


MODEL_2 EVALUATION

Model- 3 Transfer Learning with USE Encoder

Transfer learning is an approach where one model generated for one job is utilized as the foundation for model on a different task.

USE Layer (universal Sentence Encoder) this converts text into high dimensional vectors that may be used for text categorization, semantic similarity and other language applications

The USE is from Tensorflow_hub and can be used as a layer .kerasLayer()

```
1 import tensorflow_hub as hub
```

Model_3 with Sequential api

```
1 model_3 = keras.Sequential()
```

Universal-sentence-encoderlayer

```
1 # directly from tfhub
2 use_layer = hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder/4",
3
                        trainable = False,
4
                        input shape =[],
 5
                        dtype = tf.string,
                        name ='USE')
 6
8 model_3.add(use_layer)
9 model_3.add(layers.Dropout(0.2))
10 model_3.add(layers.Dense(64, activation = keras.activations.relu))
11 model_3.add(layers.Dense(1, activation = keras.activations.sigmoid))
12
13 compile_model(model_3)
14
15 history_3 = fit_model(model_3, epochs =5)
    Epoch 1/5
              Epoch 2/5
    140/140 [================= ] - 4s 29ms/step - loss: 0.0779 - accuracy: 0.977
    140/140 [=
                      =========] - 6s 46ms/step - loss: 0.0556 - accuracy: 0.983
    Epoch 4/5
    140/140 [=
                      ========] - 4s 30ms/step - loss: 0.0465 - accuracy: 0.986
    Epoch 5/5
    Train Accuracy: 98.8332986831665 %
    Train Loss: 4.025813192129135 %
```


Now evaluating all the models

```
1 baseline_model_results = evaluate_model(baseline_model, X_test_vec, y_test)
2 model_1_results = evaluate_model(model_1,X_test,y_test)
3 model_2_results = evaluate_model(model_2,X_test,y_test)
4 model_3_results = evaluate_model(model_3,X_test,y_test)
6 total_results = pd.DataFrame({'MultinomialNB Model' : baseline_model_results,
                                'Custom-Vec-Embedding Model': model_1_results,
8
                                'Bidirectional-LSTM Model':model_2_results,
9
                                'USE-Transfer Learning Model':model_3_results}).transpose()
10
11 total_results
    Model Performance in percentage (%)
    35/35 [========== ] - Os 2ms/step
    Model Performance in percentage (%)
                                      ===] - 0s 11ms/step
```