CLAIRVOYANCE

Predizendo resultados em League of Legends

João F. B. S. Martins

Motivação

Atualmente League of Legends é o jogo mais jogado do planeta com mais de 100 milhões de jogadores ativos mensalmente. Além de uma comunidade casual muito grande, o jogo também conta com um cenário competitivo muito desenvolvido, tendo distribuído mais de 5 milhões de dólares em prêmios no último campeonato mundial. Este projeto foi desenvolvido com o objetivo de fornecer a essa comunidade uma ferramenta de predição de resultados em tempo real, utilizando dados pregame.

Dados

Foi utilizado um wrapper da API da Riot Games, desenvolvido em Python e nomeado Cassiopeia, para coleta dos dados. Foram coletadas um total de 40228 partidas da season 2017, distribuídas por 4 regiões do mundo: América do Norte, Brasil, Europa Ocidental e Coreia do Sul.

A coleta dos dados foi feita em "teia" utilizando o tier Mestre como seed inicial para priorizar jogadores mais habilidosos.

Metodologia

Com os dados coletados foram modelados vários datasets utilizando tanto features pregame como in-game. Ao agregar por time e fazer a diferença deles foram criados alguns atributos adicionais para aumentar a acurácia das predições. Alguns dos atributos pregame, como a escolha dos campeões, tiveram que ser representados em one-hot encoding.

As features de dados in-game representam o acumulado dos mesmos em intervalos de 10 minutos. São eles(por minuto e por jogador): creeps mortos, dano recebido, ganho de ouro, ganho de experiência.

Devido à natureza tabular dos dados, os modelos de aprendizado utilizados foram todos baseados em árvores de decisão. Foram escolhidos dois modelos de boosting (AdaBoost e XGBoost) e um de bagging (Random Forests).

Análise Experimental

O uso das features de histórico requer muita coleta e pré-processamento, portanto foram criados dois datasets unificados dos dados pregame, um que as leva em conta e outro que não. Para ajuste dos hiperparâmetros dos modelos foi então executado um gridsearch sobre os datasets criados.

Atributos por base de dados	AdaBoost	XGBoost	Random Forests
Campeões por time	$52.41\% \ (0.46\%)$	$52.89\% \ (0.30\%)$	$51.11\% \ (0.63\%)$
Feitiços de invocador por time	$51.24\% \ (0.37\%)$	$51.14\% \ (0.23\%)$	$50.61\% \ (0.41\%)$
Talentos de invocador por time	$52.37\% \ (0.48\%)$	$52.53\% \ (0.15\%)$	$50.61\% \ (0.43\%)$
Tipos/capacidade de dano por campeão	$51.01\% \ (0.38\%)$	$51.39\% \ (0.25\%)$	$50.31\% \ (0.55\%)$
Soma das maestrias de campeão por invocador	$51.38\% \ (0.30\%)$	$51.37\% \ (0.33\%)$	$50.29\% \ (0.68\%)$
Maestria de invocador com campeão escolhido	$58.78\% \ (0.72\%)$	$58.63\% \ (0.62\%)$	$54.68\% \ (0.58\%)$
Vitórias por invocador	$66.46\% \ (2.52\%)$	$66.91\% \ (2.59\%)$	$62.41\% \ (2.53\%)$
Vitórias para campeão escolhido por invocador	89.08% (1.93%)	89.29% (1.99%)	$87.74\% \ (2.12\%)$
Acurácia média	59.07%	59.23%	57.18%

Acurácia dos modelos para dados pregame isolados

Dataset	AdaBoost	XGBoost	Random Forests
Exceto histórico(pré-ajuste)	59.44%	$\boldsymbol{59.77}\%$	54.58%
Exceto histórico(ajuste)	60.62%	61.42%	64.80 %
Todos os atributos(pré-ajuste)	89.08%	89.29%	87.68%
Todos os atributos(ajuste)	89.41%	89.5 %	89.1%

Agregados de atributos e ajuste de hiperparâmetros

Usando como base de comparação, os resultados pregame foram melhores que os resultados in-game até 30 minutos de partida.

Intervalos de tempo	AdaBoost	XGBoost	Random Forests
0 a 10 minutos	$71.80\% \ (0.82\%)$	$71.93\% \ (0.98\%)$	$71.89\% \ (1.01\%)$
0 a 20 minutos	$81.95\% \ (0.75\%)$	$82.03\% \ (0.79\%)$	$81.85\% \ (0.69\%)$
0 a 30 minutos	87.98% (0.50%)	$88.09\% \ (0.47\%)$	$87.88\% \ (0.47\%)$
0 até o fim do jogo	$90.37\% \ (0.51\%)$	$90.57\% \ (0.46\%)$	$90.35\% \ (0.51\%)$

Acurácia dos modelos para dados ingame

Relação dos 10 atributos mais importantes para os dados pregame

Conclusão e Trabalhos Futuros

O uso das features de histórico retornou uma acurácia maior do que o de dados in-game até 30 minutos, porém se mostrou inviável de obter em tempo real. No entanto foi alcançada 64.80% de acurácia com dados que poderiam ser coletados em tempo hábil.

Para que esse processo realmente se torne viável, uma interface será criada para automatizar a coleta dos dados para os jogadores e campeões presentes em uma partida, da qual o usuário participará.

Também serão coletados dados de jogos profissionais para uma análise das tendências e do mercado de apostas em jogos competitivos.

