

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА

СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

HA TEMY:

HA ILWIS.						
Обработка датасета: решение проблемы						
дисбал	дисбаланса классов с целью улучшения					
	качества	моделей				
Студент	ИУ5-63Б		Беляев И.А.			
Руководитель НИР	(группа)	(подпись, дата)	(Фамилия И.О.) Гапанюк Ю.Е.			
-		(подпись, дата)	(Фамилия И.О.)			

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

УТВЕРЖД	ĮАЮ	
Заведующий кафедро	й	ИУ5
	•	(индекс)
	B.V	 Терехов
	(И.О	О. Фамилия)
(подпись)		
		(дата)

ЗАДАНИЕ

на выполнение научно-исследовательской работы

		P
по теме Обработка датасета: решение проблем	ы дисбаланса классов с	целью улучшения
качества моделей		
Студент группы ИУ5-63Б		
Беля	іев Иван Андреевич	
Направленность НИР (учебная, исследовательская,	практическая, производ	дственная, др.)
ИССЛЕДОВАТІ		
, ,		
Источник тематики (кафедра, предприятие, НИР)	КАФЕДРА	
График выполнения НИР:		
25% к нед., 50% к нед., 75% к	нед., 75% к	нед
Техническое задание:		<u> </u>
Оформление научно-исследовательской работы:		
Расчетно-пояснительная записка на листах ф	ормата А4.	
Перечень графического (иллюстративного) материа		слайлы и т.п.)
	····· (- · · · · · · · · · · · · · · ·	
7025		
Цата выдачи задания « <u>07</u> » <u>февраля</u> 2025 г.		
D HIIID		Γ Η Α
Руководитель НИР	(Беляев И.А.
Converge	(подпись, дата)	(Фамилия И.О.) Гапанюк Ю.Е.
Студент	(
	(подпись, дата)	(Фамилия И.О.)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Введение

В современном мире видеохостинги, такие как YouTube, играют ключевую роль в распространении контента, привлекая миллиарды пользователей. С ростом количества загружаемых видео возрастает и конкуренция между создателями, что делает важным понимание факторов, влияющих на популярность и категоризацию контента. Автоматическое определение категории видео на основе его характеристик (количество просмотров, лайков, дизлайков) может быть полезным для рекомендательных систем, анализа трендов и оптимизации контент-стратегий.

Цель исследования — построение и анализ моделей машинного обучения для небинарной классификации категорий YouTube-видео на основе данных о просмотрах, лайках и дизлайках. В рамках работы проводится предварительная обработка данных, включая устранение пропусков и масштабирование признаков, исследование дисбаланса классов, обучение и сравнение различных алгоритмов классификации (например, Random Forest, Gradient Boosting и др.), а также оценка их эффективности с использованием метрики точности.

Актуальность исследования:

Проблема автоматической категоризации контента актуальна для платформ, работающих с большими объемами данных, таких как YouTube. Точное определение категории видео позволяет улучшить рекомендательные алгоритмы, упростить модерацию и повысить качество аналитики. Использование методов машинного обучения дает возможность автоматизировать этот процесс, снижая зависимость от ручной разметки и повышая скорость обработки данных.

Особенности задачи:

- Датасет содержит дисбаланс классов (некоторые категории представлены значительно чаще других), что требует применения методов балансировки (oversampling, undersampling).
- Признаки (количество просмотров, лайков, дизлайков) имеют большой разброс значений, что может потребовать масштабирования.

Результаты исследования могут быть полезны для анализа трендов на YouTube, улучшения рекомендательных систем и автоматизации обработки видеоконтента.

Описание датасета

В исследовании используется открытый датасет "Most Popular 1000 YouTube Videos", содержащий информацию о 1000 видеороликах с наибольшим количеством просмотров. Датасет включает 7 признаков, описывающих основные метрики видео:

- rank позиция видео в рейтинге популярности
- Video название видео
- Video views количество просмотров (в числовом формате с разделителями)
- Likes количество лайков
- Dislikes количество дизлайков (может содержать пропуски)
- Category категория видео (например, *Music, Entertainment, Gaming*) (может содержать пропуски)
- published год публикации

Особенности датасета:

- **Дисбаланс классов**: Категории распределены неравномерно (например, *People & Blogs* доминирует, а другие категории представлены слабо).
- **Пропущенные значения**: Некоторые записи содержат отсутствующие значения (например, *Dislikes, Category*).
- **Разномасштабные признаки**: Числовые признаки (Video views, Likes, Dislikes) имеют большой разброс значений, что требует масштабирования.

Датасет позволяет исследовать зависимость категории видео от его популярности (просмотров,

лайков, дизлайков) и применять методы машинного обучения для автоматической классификации контента.

План исследования

1. Предобработка данных

- Удаление пропущенных значений.
- Преобразование числовых признаков (Video views, Likes, Dislikes) в единый формат (удаление разделителей, перевод в числовой формат).
- Масштабирование числовых признаков.

2. Построение моделей машинного обучения из курса лабораторных работ

- Выбор и обучение классических моделей с учителем из курса лабораторных работ:
 - о KNN (К-ближайших соседей)
 - о Модель логистической регрессии
 - о Метод опорных векторов
 - о Дерево решений
 - о Бэггинг ансамблевая модель
 - о Случайный лес ансамблевая модель
 - о AdaBoost ансамблевая модель
 - о Градиентный бустинг ансамблевая модель

3. Анализ точности моделей

- Оценка качества моделей с помощью accuracy (как базовой метрики).
- Выявление дисбаланса классов (преобладание определенных категории над остальными).

4. Решение проблемы дисбаланса классов

- Применение комбинированного подхода:
 - о Оверсэмплинг для увеличения числа примеров редких классов.
 - о Андерсэмплинг для уменьшения избыточности доминирующего класса.
- Проверка баланса после обработки.

5. Повторное обучение моделей на сбалансированных данных

- Обучение тех же моделей, что и в п.2, но на скорректированном датасете.
- Оценка качества новых моделей с помощью **accuracy**.

6. Сравнение результатов

- Сопоставление метрик до и после балансировки.
- Анализ влияния дисбаланса на работу моделей (например, рост recall для редких классов).

7. Формирование выводов

- Определение лучшей модели по итоговым метрикам.
- Оценка эффективности методов борьбы с дисбалансом.

Ход работы

```
In [1]: import pandas as pd
       # Загрузка датасета
       df = pd.read csv("Most popular 1000 Youtube videos.csv")
       # Первичный анализ данных
        print("Обзор данных:")
        display(df.info())
        print("\nПропущенные значения:")
       display(df.isnull().sum())
      Обзор данных:
       <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1000 entries, 0 to 999
      Data columns (total 7 columns):
                       Non-Null Count Dtype
           Column
          ----
                       -----
       ---
                       1000 non-null int64
       0
           rank
           Video 1000 non-null object
       1
           Video views 1000 non-null object
       2
          Likes 1000 non-null object
         Dislikes 52/ non-null
       4
                                       object
       5
                                       object
           published 1000 non-null
       6
                                       int64
      dtypes: int64(2), object(5)
      memory usage: 54.8+ KB
      None
      Пропущенные значения:
       rank
      Video
                       0
      Video views
                       0
      Likes
                       0
      Dislikes
                     473
                      18
      Category
                       0
      published
      dtype: int64
In [2]: # Преобразуем колонку 'Dislikes', 'Likes', 'Video Views' в числовой формат
       df['Dislikes'] = df['Dislikes'].str.replace(',', '').astype(float)
       df['Likes'] = df['Likes'].str.replace(',', '').astype(float)
       df['Video views'] = df['Video views'].str.replace(',', '').astype(float)
In [3]: data cleaned = df.dropna()
        print("Обзор данных:")
        display(data cleaned.info())
        print("\nПропущенные значения:")
        display(data cleaned.isnull().sum())
```

```
Обзор данных:
        <class 'pandas.core.frame.DataFrame'>
        Index: 511 entries, 0 to 998
        Data columns (total 7 columns):
         # Column Non-Null Count Dtype
        ---
                            -----
         0 rank 511 non-null int64
1 Video 511 non-null object
2 Video views 511 non-null float64
3 Likes 511 non-null float64
4 Dislikes 511 non-null float64
5 Category 511 non-null object
6 published 511 non-null int64
        dtypes: float64(3), int64(2), object(2)
        memory usage: 31.9+ KB
        None
        Пропущенные значения:
        rank
        Video
        Video views 0
        Likes
                       0
        Dislikes
                         0
        Category
                         0
        published
        dtype: int64
In [4]: # Разделение на обучающую и тестовую выборки
         from sklearn.model selection import train test split
         # Признаки (Х) и целевая переменная (у)
         X = data cleaned[["Video views", "Likes", "Dislikes"]] # Пример признаков
         y = data cleaned["Category"] # Целевая переменная
```

Модель KNN

Разделение данных

Для начала подберем параметр = 5

```
In [5]: from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import accuracy_score

# Создание и обучение модели
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

# Предсказание на тестовых данных
y_pred_KNN = knn.predict(X_test)

# Оценка качества модели
accuracy_KNN = accuracy_score(y_test, y_pred_KNN)
print(f"Точность модели: {accuracy_KNN:.2f}")
```

X train, X test, y train, y test = train test split(X, y, test size=0.2, rar

Точность модели: 0.34

Модель логистической регрессии

```
In [6]: from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler

# Масштабирование данных (логистическая регрессия чувствительна к масштабу)
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)

# Создание и обучение модели
    model_LogReg = LogisticRegression(multi_class='ovr', solver='liblinear', max model_LogReg.fit(X_train_scaled, y_train)

# Предсказание на тестовой выборке
    y_pred_LogReg = model_LogReg.predict(X_test_scaled)

# Оценка точности (Ассигасу)
    accuracy_LogReg = accuracy_score(y_test, y_pred_LogReg)
    print(f"Accuracy: {accuracy_LogReg:.2f}")
```

Accuracy: 0.40

c:\Users\Иван\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\linear_model_logistic.py:1256: FutureWarning: 'multi_class' was depreca
ted in version 1.5 and will be removed in 1.7. Use OneVsRestClassifier(Logis
ticRegression(..)) instead. Leave it to its default value to avoid this warn
ing.
 warnings.warn(

Метод опорных векторов

```
In [7]: from sklearn.svm import SVC
        from sklearn.multiclass import OneVsOneClassifier
        import itertools
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Определяем параметры для поиска
        param grid = {
            'kernel': ['linear', 'rbf', 'poly'],
            'C': [0.1, 1, 10],
            'gamma': ['scale', 'auto'],
            'degree': [2, 3, 4]
        # Генерируем все комбинации параметров
        param combinations = list(itertools.product(param grid['kernel'], param grid
        # Переменные для хранения лучших параметров и точности
        best accuracy = 0
        best params = None
        # Перебираем все комбинации параметров
        for kernel, C, gamma, degree in param combinations:
            # Создаем модель SVM с текущими параметрами
```

```
svm_model = OneVsOneClassifier(SVC(kernel=kernel, C=C, gamma=gamma, degr

# Обучаем модель на обучающей выборке
svm_model.fit(X_train_scaled, y_train)

# Предсказываем метки классов для тестовой выборки
y_pred_SVM = svm_model.predict(X_test_scaled)

# Оцениваем точность модели
accuracy_SVM = accuracy_score(y_test, y_pred_SVM)

# Если точность лучше, обновляем лучшие параметры
if accuracy_SVM > best_accuracy:
    best_accuracy = accuracy_SVM
    best_params = {'kernel': kernel, 'C': C, 'gamma': gamma, 'degree': c

# Выводим лучшие параметры и точность
print("Лучшие параметры:", best_params)
print(f"Лучшая точность на тестовых данных: {best_accuracy:.2f}")
```

Лучшие параметры: {'kernel': 'rbf', 'C': 10, 'gamma': 'auto', 'degree': 2} Лучшая точность на тестовых данных: 0.41

Модель дерева решений

```
In [8]: from sklearn.tree import DecisionTreeClassifier

# Создание и обучение модели
model_tree = DecisionTreeClassifier(random_state=42)
model_tree.fit(X_train_scaled, y_train)

# Предсказание на тестовой выборке
y_pred_tree = model_tree.predict(X_test_scaled)

# Оценка ассигасу
accuracy_tree = accuracy_score(y_test, y_pred_tree)
print(f"Accuracy: {accuracy_tree:.2f}")
```

Accuracy: 0.33

Модель бэггинга

```
In [9]: from sklearn.ensemble import BaggingClassifier, RandomForestClassifier, Extr

# Создаем базовую модель (дерево решений)
base_model = DecisionTreeClassifier()

# Создаем модель бэггинга
bagging_model = BaggingClassifier(estimator=base_model, n_estimators=100, ra

# Обучаем модель
bagging_model.fit(X_train, y_train)

# Предсказание на тестовой выборке
y_pred_bagging = bagging_model.predict(X_test)
```

```
# Оценка качества
accuracy_bagging = accuracy_score(y_test, y_pred_bagging)
print(f"Accuracy бэггинга: {accuracy_bagging}")
```

Accuracy бэггинга: 0.3786407766990291

Модель случайного леса

```
In [10]: # Создаем модель случайного леса
  random_forest_model = RandomForestClassifier(n_estimators=100, random_state=

# Обучаем модель
  random_forest_model.fit(X_train, y_train)

# Предсказание на тестовой выборке
  y_pred_rf = random_forest_model.predict(X_test)

# Оценка качества
  accuracy_rf = accuracy_score(y_test, y_pred_rf)
  print(f"Accuracy случайного леса: {accuracy_rf}")
```

Accuracy случайного леса: 0.42718446601941745

Модель AdaBoost

```
In [11]: # Создаем модель AdaBoost
    adaboost_model = AdaBoostClassifier(estimator=base_model, n_estimators=100,
    # Обучаем модель
    adaboost_model.fit(X_train, y_train)

# Предсказание на тестовой выборке
    y_pred_adaboost = adaboost_model.predict(X_test)

# Оценка качества
    accuracy_adaboost = accuracy_score(y_test, y_pred_adaboost)
    print(f"Accuracy AdaBoost: {accuracy_adaboost}")
```

Accuracy AdaBoost: 0.32038834951456313

Модель градиентного бустинга

```
In [12]: # Создаем модель градиентного бустинга
gradient_boosting_model = GradientBoostingClassifier(n_estimators=100, rando

# Обучаем модель
gradient_boosting_model.fit(X_train, y_train)

# Предсказание на тестовой выборке
y_pred_gb = gradient_boosting_model.predict(X_test)

# Оценка качества
accuracy_gb = accuracy_score(y_test, y_pred_gb)
print(f"Accuracy градиентного бустинга: {accuracy_gb}")
```

Accuracy градиентного бустинга: 0.33980582524271846

```
In [13]: fig, ax = plt.subplots(figsize=(10, 6))
          data cleaned["Category"].value counts().plot(kind='bar')
          plt.xticks(rotation=45)
Out[13]: (array([ 0,
                        1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
           [Text(0, 0, 'People & Blogs'),
            Text(1, 0, 'Music'),
            Text(2, 0, 'Entertainment'),
            Text(3, 0, 'Comedy'),
            Text(4, 0, 'Sports'),
            Text(5, 0, 'Pets & Animals'),
            Text(6, 0, 'Film & Animation'),
            Text(7, 0, 'Gaming'),
            Text(8, 0, 'News & Politics'),
            Text(9, 0, 'Autos & Vehicles'),
            Text(10, 0, 'Nonprofits & Activism'),
            Text(11, 0, 'Education'),
Text(12, 0, 'Science & Technology'),
            Text(13, 0, 'Travel & Events'),
            Text(14, 0, 'Howto & Style')])
         140
         120
         100
         80
         60
          40
         20
                                                                      Science & Technology Events
                                        Film & Animation
                     Entertainment
                           Cornedy
```

Необходимо избавиться от сильного дисбаланса классов для увеличения качества моделей.

Category

Методы Under-sampling имеет смысл применять в ситуациях, когда количество объектов minor-класса не является критически малым. К нашей ситуации это не применимо, т.к. объектов последних пяти категорий катастрофически мало, их количесвто очень близко к нулю.

Over-sampling - увеличение количества объектов minor-класса.

Методы данной группы необходимо применять при очень малых объемах minor-класса(ов). Нам это подходит

В выборку искусственно вносятся данные, которых изначально в ней не было. Следует сделить за тем, чтобы не менялись распределения признаков.

```
In [14]: from imblearn.over sampling import BorderlineSMOTE, RandomOverSampler
         from imblearn.under sampling import NeighbourhoodCleaningRule
         # Шаг 1. Oversample до 25 все категории, которых < 20
         ros = RandomOverSampler(
             sampling strategy=lambda y: {
                 label: 25 for label, count in pd.Series(y).value counts().items() if
             },
             random state=42
         X \text{ ros, } y \text{ ros = ros.fit resample}(X, y)
         # War 2. BorderlineSMOTE на предварительно сбалансированных данных
         over = BorderlineSMOTE(
             sampling strategy={
                  'Entertainment': 70,
                  'Comedy': 70,
                  'Sports': 50,
                  'Pets & Animals': 45,
                  'Film & Animation': 40,
                  'Gaming': 40,
                  'News & Politics': 40,
                  'Autos & Vehicles': 35,
                  'Nonprofits & Activism': 30,
                  'Education': 30,
                  'Science & Technology': 30,
                  'Travel & Events': 30,
                  'Howto & Style': 30
             random state=42,
             k neighbors=2,
             m neighbors=5,
             kind='borderline-1'
         X over, y over = over.fit resample(X ros, y ros)
```

```
In [15]: import matplotlib.pyplot as plt
import pandas as pd

# Преобразуем y_over в Series
y_over_series = pd.Series(y_over)

# Строим график по убыванию количества
fig, ax = plt.subplots(figsize=(10, 6))
y_over_series.value_counts().sort_values(ascending=False).plot(kind='bar', a

# Подписи и оформление
plt.title("Распределение категорий после Over-sampling")
plt.xlabel("Категория")
plt.ylabel("Количество")
plt.xticks(rotation=45)
plt.grid(axis='y')
plt.tight_layout()
plt.show()
```


Теперь, когда редкие классы «дотянуты», нужно избавиться от переизбытка мажоритарных классов, не теряя информативных объектов. Используем Under-sampling

Neighbourhood Cleaning Rule (NCR) оставляет только те объекты, которые имеют "хороших" соседей, то есть он очищает выборку, не уничтожая всю структуру

```
In [16]: from sklearn.preprocessing import LabelEncoder

# Шаг 1: Закодируем строковые метки в числа
le = LabelEncoder()
```

```
y_over_encoded = le.fit_transform(y_over)

# Under-sampling
under = NeighbourhoodCleaningRule(
    sampling_strategy='auto',
    n_jobs=-1
)
X_resampled, y_resampled_encoded = under.fit_resample(X_over, y_over_encoded)

# Шаг 3: Декодируем обратно в строковые метки
y_resampled = le.inverse_transform(y_resampled_encoded)
```

```
In [17]: # Преобразуем y_over в Series
y_resampled_series = pd.Series(y_resampled)

# Строим график по убыванию количества
fig, ax = plt.subplots(figsize=(10, 6))
y_resampled_series.value_counts().sort_values(ascending=False).plot(kind='ba'

# Подписи и оформление
plt.title("Распределение категорий после Over-sampling")
plt.xlabel("Категория")
plt.ylabel("Количество")
plt.ylabel("Количество")
plt.sticks(rotation=45)
plt.grid(axis='y')
plt.tight_layout()
plt.show()
```


ТЕПЕРЬ ОБУЧИМ ТЕ ЖЕ МОДЕЛИ И СРАВНИМ ИХ КАЧЕСТВО С ИСХОДНЫМ

```
y_resampled,
test_size=0.2,
random_state=42,
stratify=y_resampled # Сохраняет распределение классов
```

KNN

```
In [19]: from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# Создание и обучение модели
knn_new = KNeighborsClassifier(n_neighbors=5)
knn_new.fit(X_train_new, y_train_new)

# Предсказание на тестовых данных
y_pred_KNN_new = knn_new.predict(X_test_new)

# Оценка качества модели
accuracy_KNN_new = accuracy_score(y_test_new, y_pred_KNN_new)
print(f"Точность модели: {accuracy_KNN_new:.2f}")
```

Точность модели: 0.76

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

```
In [20]: from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler

# Масштабирование данных (логистическая регрессия чувствительна к масштабу) scaler_new = StandardScaler()
X_train_scaled_new = scaler_new.fit_transform(X_train_new)
X_test_scaled_new = scaler_new.transform(X_test_new)

# Создание и обучение модели
model_LogReg_new = LogisticRegression(multi_class='ovr', solver='liblinear', model_LogReg_new.fit(X_train_scaled_new, y_train_new)

# Предсказание на тестовой выборке
y_pred_LogReg_new = model_LogReg_new.predict(X_test_scaled_new)

# Оценка точности (Ассигасу)
accuracy_LogReg_new = accuracy_score(y_test_new, y_pred_LogReg_new)
print(f"Accuracy: {accuracy_LogReg_new:.2f}")
```

Accuracy: 0.22

c:\Users\Иван\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\linear_model_logistic.py:1256: FutureWarning: 'multi_class' was depreca
ted in version 1.5 and will be removed in 1.7. Use OneVsRestClassifier(Logis
ticRegression(..)) instead. Leave it to its default value to avoid this warn
ing.
 warnings.warn(

```
In [21]: from sklearn.svm import SVC
         from sklearn.multiclass import OneVsOneClassifier
         import itertools
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Определяем параметры для поиска
         param grid = {
             'kernel': ['linear', 'rbf', 'poly'],
             'C': [0.1, 1, 10],
             'gamma': ['scale', 'auto'],
             'degree': [2, 3, 4]
         }
         # Генерируем все комбинации параметров
         param combinations = list(itertools.product(param grid['kernel'], param grid
         # Переменные для хранения лучших параметров и точности
         best accuracy new = 0
         best params new = None
         # Перебираем все комбинации параметров
         for kernel, C, gamma, degree in param combinations:
             # Создаем модель SVM с текущими параметрами
             svm model new = OneVsOneClassifier(SVC(kernel=kernel, C=C, gamma=gamma,
             # Обучаем модель на обучающей выборке
             svm model new.fit(X train scaled new, y train new)
             # Предсказываем метки классов для тестовой выборки
             y pred SVM new = svm model new.predict(X test scaled new)
             # Оцениваем точность модели
             accuracy SVM new = accuracy score(y test new, y pred SVM new)
             # Если точность лучше, обновляем лучшие параметры
             if accuracy SVM new > best accuracy new:
                 best accuracy new = accuracy SVM new
                 best_params_new = {'kernel': kernel, 'C': C, 'gamma': gamma, 'degree
         # Выводим лучшие параметры и точность
         print("Лучшие параметры:", best params new)
         print(f"Лучшая точность на тестовых данных: {best accuracy new:.2f}")
        Лучшие параметры: {'kernel': 'rbf', 'C': 10, 'gamma': 'scale', 'degree': 2}
        Лучшая точность на тестовых данных: 0.43
         ДЕРЕВО РЕШЕНИЙ
In [22]: from sklearn.tree import DecisionTreeClassifier
         # Создание и обучение модели
         model tree new = DecisionTreeClassifier(random state=42)
```

model tree new.fit(X train scaled new, y train new)

```
# Предсказание на тестовой выборке
         y pred tree new = model tree new.predict(X test scaled new)
         # Оценка ассигасу
         accuracy_tree_new = accuracy_score(y_test_new, y_pred_tree_new)
         print(f"Accuracy: {accuracy tree new:.2f}")
        Accuracy: 0.88
         БЭГГИНГ
In [23]: from sklearn.ensemble import BaggingClassifier, RandomForestClassifier, Extr
         # Создаем базовую модель (дерево решений)
         base model new = DecisionTreeClassifier()
         # Создаем модель бэггинга
         bagging model new = BaggingClassifier(estimator=base model new, n estimators
         # Обучаем модель
         bagging model new.fit(X train new, y train new)
         # Предсказание на тестовой выборке
         y pred bagging new = bagging model new.predict(X test new)
         # Оценка качества
         accuracy bagging new = accuracy score(y test new, y pred bagging new)
         print(f"Accuracy бэггинга: {accuracy bagging new}")
        Accuracy бэггинга: 0.925531914893617
         СЛУЧАЙНЫЙ ЛЕС
In [24]: # Создаем модель случайного леса
         random forest model new = RandomForestClassifier(n estimators=100, random st
         # Обучаем модель
         random forest model new.fit(X train new, y train new)
         # Предсказание на тестовой выборке
         y pred rf new = random forest model new.predict(X test new)
         # Оценка качества
         accuracy rf new = accuracy score(y test new, y pred rf new)
         print(f"Accuracy случайного леса: {accuracy rf new}")
        Accuracy случайного леса: 0.9042553191489362
         ADABOOST
In [25]: # Создаем модель AdaBoost
         adaboost model new = AdaBoostClassifier(estimator=base model new, n estimator
         # Обучаем модель
         adaboost model new.fit(X train new, y train new)
```

```
# Предсказание на тестовой выборке
y_pred_adaboost_new = adaboost_model_new.predict(X_test_new)
# Оценка качества
accuracy_adaboost_new = accuracy_score(y_test_new, y_pred_adaboost_new)
print(f"Accuracy AdaBoost: {accuracy_adaboost_new}")
```

Accuracy AdaBoost: 0.8829787234042553

ГРАДИЕНТНЫЙ БУСТИНГ

```
In [26]: # Создаем модель градиентного бустинга
gradient_boosting_model_new = GradientBoostingClassifier(n_estimators=100, r

# Обучаем модель
gradient_boosting_model_new.fit(X_train_new, y_train_new)

# Предсказание на тестовой выборке
y_pred_gb_new = gradient_boosting_model_new.predict(X_test_new)

# Оценка качества
accuracy_gb_new = accuracy_score(y_test_new, y_pred_gb_new)
print(f"Accuracy градиентного бустинга: {accuracy_gb_new}")
```

Ассигасу градиентного бустинга: 0.9468085106382979

СРАВНЕНИЕ

```
In [27]: import pandas as pd
         # Создаем словарь с данными
         data = {
             'Модели': ['KNN', 'Логистическая регрессия', 'Метод опорных векторов',
                        'Дерево решений', 'Бэггинг', 'Случайный лес', 'AdaBoost', 'Гра
              'Accuracy до балансировки': [accuracy KNN, accuracy LogReg, best accuracy
                                         accuracy tree, accuracy bagging, accuracy rf,
                                         accuracy adaboost, accuracy gb],
              'Accuracy после балансировки': [accuracy KNN new, accuracy LogReg new, k
                                            accuracy tree new, accuracy bagging new, a
                                            accuracy adaboost new, accuracy gb new]
         }
         # Создаем DataFrame
         results df = pd.DataFrame(data)
         # Отображаем таблицу с стилями
         styled df = (results df.style
                       .set caption('Сравнение точности моделей до и после балансировк
                       .format({'Accuracy до балансировки': '{:.3f}',
                               'Accuracy после балансировки': '{:.3f}'})
                       .set properties(**{'text-align': 'center'})
                        .highlight max(subset=['Accuracy до балансировки', 'Accuracy
                 #
                 #
                                      color='lightgreen')
                 #
                        .highlight min(subset=['Accuracy до балансировки', 'Accuracy
                                      color='#ffcccb')
                 #
                 )
```

Показываем таблицу styled_df

Out[27]:

Сравнение точности моделей до и после балансировки классов

	Модели	Accuracy до балансировки	Accuracy после балансировки
0	KNN	0.340	0.755
1	Логистическая регрессия	0.398	0.223
2	Метод опорных векторов	0.408	0.426
3	Дерево решений	0.330	0.883
4	Бэггинг	0.379	0.926
5	Случайный лес	0.427	0.904
6	AdaBoost	0.320	0.883
7	Градиентный бустинг	0.340	0.947

Выводы

В несбалансированном датасете лучше всего себя показали случайный лес и и метод опорных векторов. Лучшее значение ассигасу – 0,427.

После решения проблемы дисбаланса классов лучшие многие модели показали себя гораздо лучше – значения метрики выросли примерно в два раза. Лучшие значения показали градиентный бустинг (0,947) и Бэггинг (0,926).

Однако некоторые модели на сбалансированном датасете показали себя не очень хорошо. Так, например, логистическая регрессия ухудшилась в качестве с 0,398 до 0,223, а метод опорных векторов практически не изменился – с 0,408 качество выросло всего лишь до 0,426.

Таким образом, можно сделать вывод, что балансировка данных — важный этап при работе с дисбалансом классов, особенно в задачах классификации. В данном исследовании исходный датасет содержал сильный перекос в распределении, что приводило к смещению моделей в сторону мажоритарного класса и низкому качеству предсказаний для редких категорий.

Применение комбинированного подхода (Random Over Sampling + Border Line Smote + Neighbourhood Cleaning Rule) позволило:

- 1. Улучшить метрики для меньшинственных классов.
- 2. Снизить переобучение моделей на доминирующем классе.
- 3. Повысить общее качество моделей.

Итоговое сравнение показало, что балансировка данных значительно повышает качество моделей, особенно для ансамблевых методов (увеличение качества более чем в два раза). Таким образом, устранение дисбаланса — необходимое условие для построения объективных и надежных классификаторов.