\bullet Sei $X \sim \mathcal{U}_{[0,1]}.$ Was ist dann $\mathbb{E}(2X)$?

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$?
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$?

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$?
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$?
- Sei $Z \sim \mathcal{N}(\mu, \sigma^2)$. Was ist dann die Verteilung von $\frac{Z-\mu}{\sigma}$?

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$?
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$?
- Sei $Z \sim \mathcal{N}(\mu, \sigma^2)$. Was ist dann die Verteilung von $\frac{Z-\mu}{\sigma}$?

Rechenregeln für Erwartungswert und Varianz

Sei X eine Zufallsvariable und $a,b\in\mathbb{R}$. Dann gilt:

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$
$$\mathbb{V}(aX + b) = a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(X) = 0 \Rightarrow \mathbb{E}(X + 6) = ?$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \ \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(X) = 2 \Rightarrow \mathbb{E}(0, 5 \cdot X) = ?$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \ \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{V}(X) = 2 \Rightarrow \mathbb{V}(0, 5 \cdot X) = 0, 5^{2} \cdot \mathbb{V}(X) = 0, 5^{2} \cdot 2 = 0, 5$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

Aufgabe

• Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$?

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

Aufgabe

• Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$?

$$X \sim \mathcal{U}_{[0,1]} \Rightarrow \mathbb{E}(X) = 0, 5 \Rightarrow \mathbb{E}(2X) = 1$$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$? $X \sim \mathcal{U}_{[0,1]} \Rightarrow \mathbb{E}(X) = 0, 5 \Rightarrow \mathbb{E}(2X) = 1$
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$?

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$? $X \sim \mathcal{U}_{[0,1]} \Rightarrow \mathbb{E}(X) = 0, 5 \Rightarrow \mathbb{E}(2X) = 1$
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$? $Y \sim Poi(4) \Rightarrow \mathbb{V}(Y) = 4 \Rightarrow \mathbb{V}(Y 0, 5) = 4$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$? $X \sim \mathcal{U}_{[0,1]} \Rightarrow \mathbb{E}(X) = 0, 5 \Rightarrow \mathbb{E}(2X) = 1$
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$? $Y \sim Poi(4) \Rightarrow \mathbb{V}(Y) = 4 \Rightarrow \mathbb{V}(Y 0, 5) = 4$
- Sei $Z \sim \mathcal{N}(\mu, \sigma^2)$. Was ist dann die Verteilung von $\frac{Z-\mu}{\sigma}$?

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$? $X \sim \mathcal{U}_{[0,1]} \Rightarrow \mathbb{E}(X) = 0, 5 \Rightarrow \mathbb{E}(2X) = 1$
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$? $Y \sim Poi(4) \Rightarrow \mathbb{V}(Y) = 4 \Rightarrow \mathbb{V}(Y 0, 5) = 4$
- Sei $Z \sim \mathcal{N}(\mu, \sigma^2)$. Was ist dann die Verteilung von $\frac{Z-\mu}{\sigma}$? $Z \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow \mathbb{E}\left(\frac{Z-\mu}{\sigma}\right) = 0, \ \mathbb{V}\left(\frac{Z-\mu}{\sigma}\right) = 1$

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b, \quad \mathbb{V}(aX+b)=a^2\mathbb{V}(X)$$

- Sei $X \sim \mathcal{U}_{[0,1]}$. Was ist dann $\mathbb{E}(2X)$? $X \sim \mathcal{U}_{[0,1]} \Rightarrow \mathbb{E}(X) = 0, 5 \Rightarrow \mathbb{E}(2X) = 1$
- Sei $Y \sim Poi(4)$. Was ist dann $\mathbb{V}(Y 0, 5)$? $Y \sim Poi(4) \Rightarrow \mathbb{V}(Y) = 4 \Rightarrow \mathbb{V}(Y 0, 5) = 4$
- Sei $Z \sim \mathcal{N}(\mu, \sigma^2)$. Was ist dann die Verteilung von $\frac{Z-\mu}{\sigma}$? $Z \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow \mathbb{E}\left(\frac{Z-\mu}{\sigma}\right) = 0, \ \mathbb{V}\left(\frac{Z-\mu}{\sigma}\right) = 1$ $\Rightarrow \frac{Z-\mu}{\sigma} \sim \mathcal{N}(0,1) \text{ (Standardisierung, z-Transformation)}$