描述

AT8236是一款直流有刷电机驱动器,能够以高达6A的峰值电流双向控制电机。利用电流衰减模式,可通过对输入信号进行脉宽调制(PWM)来控制电机转速,同时具备低功耗休眠模式。

AT8236集成同步整流功能,可显著降低系统功耗要求。

内部保护功能包含过流保护,短路保护,欠压锁定和过温保护。AT8236N 提供一个故障检测输出管脚。

AT8236提供一种带有裸露焊盘的ESOP8封装,能有效改善散热性能,且是无铅产品,符合环保标准。

应用

- 打印机及办公自动化设备
- 电器
- 智能家居
- 工业控制

型号选择

订货型号	封装	包装信息
AT8236	ESOP8	编带,4000颗/盘
AT8236N	ESOP8	编带,4000颗/盘

特点

- ●单通道H桥电机驱动器
- ●宽电压供电, 5.5V-36V
- ●低R_{DS(ON)}电阻, 200mΩ (HS+LS)
- 6A峰值驱动输出, 4A连续驱动输出
- PWM控制接口
- 支持低功耗休眠模式

封装形式

ESOP8

典型应用原理图

管脚定义

管脚列表

管脚名	管脚序号	管脚定义	外围元件与连接						
			电源与地						
GND	1	4+ 17-19P	CND绘册和艾比迪相科拉到市源地						
PPAD	-	芯片地	GND管脚和芯片裸焊盘接到电源地						
VM	5	芯片电源	芯片电源和电机电源,需做好电源滤波						
			控制逻辑						
IN1	3	逻辑输入	校制[1]						
IN2	2	泛料机八	控制H桥输出状态,内置下拉电阻						
VREF	4	参考电压输入(8236)	参考电压输入,来设定驱动峰值电流						
nFAULT	4	故障检测输出(8236N)	开漏输出,使用外接上拉电阻。当过流、过温、欠压,nFAULT将被 拉低						
ISEN	7	H桥 检流输入/地	H桥检流端,接检流电阻到地,若不需要限流,直接接地						
	功率输出								
OUT1	6	H桥输出 1	H桥输出,						
OUT2	8	H桥输出 2	定义正向电流为 OUT1 → OUT2						

电路工作极限 at T₄ = 25℃

参数	符号	条件	范围	单位
功率电源	VM		-0.3 – 40	V
输出峰值电流	I _{PEAK}		±6	А
逻辑输入电压	V _{IN}		-0.7 to 7	V
Sense 电压	V_{SENSE}		-0.3 to 0.5	V
工作温度	T _A	Range S	-40 to 85	°C
最高结温	T _J (max)		150	°C
储藏温度	T_{stg}		-55 to 150	°C

热阻特性 at T_A = 25°C

热计量	ESOP 8PINS	单位
θ _{JA} - 硅核到环境的热阻系数 ^(*)	35	°C/W

(*) 自然对流条件下硅核到环境的热阻系数是通过在 JESD51-7 中所指定的 JEDEC 标准高 K 值电路板上进行仿真模拟获得,环境条件如 JESD51-2a 中所述。

推荐工作条件 at TA=25°C

参数	符号	最小	典型	最大	单位
功率电源	VM	5.5	-	36	V
连续输出电流	I_{OUT}	0	-	3	А
峰值输出电流	I _{PEAK}	0	-	4.5	А
逻辑输入电压	V_{IN}	0	-	5.25	V
逻辑输入频率	$f_{ m PWM}$	0	-	100	kHZ
参考电压	$ m V_{REF}$	0.5	-	4	V

^(*) 芯片大电流工作时,需做好芯片散热。

电气特性 at T_A= 25°C, V_M= 24 V

参数		测试条件	最小	典型	最大	单位
电源供电			-			
I _{VM}	VM 静态工作电流	f _{PWM} < 50 kHz	-	4.5	6	mA
I _{VMQ}	VM 休眠电流	IN1 = IN2 = 0 V	-	20	30	uA
V _{UVLO}	VM 欠压锁定值	VM 上升	-	4.7	5.0	V
V _{HYS}	VM 欠压迟滞		-	300	-	mV
逻辑输入			·			
V _{IL}	逻辑输入低电压		-	0.5	0.7	V
V _{IH}	逻辑输入高电压		1.5	-	5.25	V
V _{HYS}	逻辑输入迟滞		-	0.2	-	V
I _{IL}	逻辑输入电流_低电平	V _{IN} = 0 V	-0.2	-	0.2	uA
I _{IH}	逻辑输入电流_高电平	V _{IN} = 3.3 V	-	33	100	uA
R _{pd}	输入内部下拉电阻	Other	-	100	-	kΩ
t _{SLEEP}	进入 SLEEP 状态延迟		-	0.7	1.0	ms
H桥 FETs						
R _{DS(ON)}	高侧+低侧 FET 电阻	I _O = 1A, T _J = 25°C	-	200	-	mΩ
I _{OFF}	输出关断漏电流		-1	-	1	uA
驱动电路时	· · · · · · · · · · · · · · · · · · ·					
t _{OFF}	电流衰减时间	内部 PWM 固定关断时间	-	23	-	us
t _R	上升时间	V _M =24V, 24Ω to GND, 20% to 80%	-	150	-	ns
t _F	下降时间	V _M =24V, 24Ω to GND, 20% to 80%	-	150	-	ns
t _{DEAD}	死区时间		-	250	-	ns
A _{ISEN}	ISEN 电流增益		-	10	-	V/V
t _{BLANK}	消隐时间		-	2.2	-	us
保护电路	·					
I _{OCP}	过流阈值		6	7	10	А
T _{OCP}	过流重启时间		-	3	-	ms
T _{SD}	过温阈值	结温	140	150	160	$^{\circ}$ C
T _{HYS}	过温迟滞		-	30	-	°C

模块功能描述

H 桥控制

输入管脚 IN1、IN2 控制 H 桥的输出状态。下表是输入输出间的逻辑关系:

IN1	IN2	OUT1	OUT2	功能
0	0	Z	Z	滑行,休眠
1	0	Н	L	正向
0	1	L	Н	反向
1	1	L	L	刹车

H 桥控制逻辑表

当使用 PWM 控制来实现调速功能时,H 桥可以操作在两种不同的状态,快衰减或者慢衰减。在快衰减模式,H 桥是被禁止的,续流电流流经体二极管,在慢衰减模式,输出 H 桥的两个下管都是打开的。

IN1	IN2	功能
PWM	0	正转 PWM, 快衰减
1	PWM	正转 PWM, 慢衰减
0	PWM	反转 PWM, 快衰减
PWM	1	反转 PWM, 慢衰减

功能逻辑表

下图显示了在不同驱动和衰减模式下的电流通路。

驱动与衰减模式

电流控制

当一个 H 桥被使能,流过相应桥臂的电流上升,当电流达到设定的阈值,驱动器输出关断,直到下一个 PWM 循环开始。注意,在 H 桥被使能的那一刻,ISEN 管脚上的电压是被忽略的,经过一个固定时间后,电流检测电路才被使能。这个消隐时间一般固定在 2.2us。这个消隐时间同时决定了在操作电流衰减时的最小 PWM 时间。

PWM 目标电流是由比较器比较连接在 ISEN 管脚上的电流检测电阻上的电压乘以一个 10 倍因子和一个参考电压决定。AT8236 的参考电压通过 VREF 管脚输入,AT8236N 则内部固定 V_{REF} 电压为 3.3V。以下公式为 100%计算目标电流:

$$I_{\mathit{TRIP}}(A) = \frac{V_{\mathit{REF}}(V)}{A_{\mathit{V}} \times R_{\mathit{ISEN}}(\Omega)} = \frac{V_{\mathit{REF}}(V)}{10 \times R_{\mathit{ISEN}}(\Omega)}$$

死区时间

当输出由高电平转变成低电平,或者由低电平转变为高电平时,存在一个死区时间以防止上下管同时导通。 死区时间内,输出是一个高阻态。当需要在输出上测量死区时间,需要根据相应管脚当时的电流方向来测量。 如果电流是流出此管脚,此时输出端电压是低于地电平一个二极管压降;如果电流是流入此管脚,此时输出端 电压是高于电源电压 VM 一个二极管压降。

休眠模式

当 IN1、IN2 都为低,维持 1ms 以上,器件将进入休眠模式,从而大幅降低器件空闲的功耗。进入休眠模式后,器件的 H 桥被禁止,电荷泵电路停止工作。当 IN1 或 IN2 翻转为高电平且维持至少 5us,经过约 1ms 的延时后,芯片将恢复到正常的操作状态。

过流保护 (OCP)

当流过输出管的电流超过过流阈值,芯片输出关断。经过3ms,芯片会尝试重启,恢复正常。

过温保护 (TSD)

如果结温超过安全限制阈值, H桥的 FET 被禁止。一旦结温降到一个安全水平, 所有操作会自动恢复正常。

欠压锁定保护(UVLO)

如果 VM 管脚上的电压降到低于欠压锁定阈值,输出被禁止,内部逻辑复位。当 VM 上的电压上升到 V_{UVLO} 以上,电路恢复正常工作。

PCB 版图建议

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电源 VM,应该连接不小于 47uF 的电解电容 对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。

逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

典型应用示例

以下给出特定工作条件下的应用原理图范例:

V _{IN}	24V 2A					
I _{OUT}	2A					
V _{REF}	3.0V					

编带料盘信息

Α0	料槽宽度				
В0	料槽长度				
КО	料槽厚度				
W	载带整体宽度				
P1	相邻槽中心间距				

编带 PIN1 方位象限分配

器件	封装	封装标识	管脚数	SPQ	料盘 直径 (mm)	料盘 宽度 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限	
AT8236	ESOP	-	8	4000	330	12	6.55	5.2	2	8	12	Q1	

编带料盘包装尺寸

器件	封装类型	封装标识	管脚数	SPQ	长度(mm)	宽度(mm)	高度(mm)
AT8236	ESOP	1	8	4000	400	343	60

ESOP8

符号	毫米(mm)		
	最小	典型	最大
Α			1.65
A1	0.05		0.15
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39		0.47
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е	1.27(BSC)		
h	0.25		0.50
L	0.50	0.60	0.80
L1	1.05(REF)		
θ	0		8°
e1	0.10(REF)		
D1	3.10(REF)		
E2	2.21(REF)		