

Аналого-цифровой преобразователь (АЦП) для весов (24 бит)

ОПИСАНИЕ

Основанная на запатентованной компанией AVIA Semiconductors технологии микросхема HX711 является прецизионным аналого-цифровым преобразователем (АЦП) (24 бит), разработанным для весов и других применений в промышленной автоматизации. Микросхема HX711 непосредственно подключается к мостовому датчику.

Входной мультиплексор позволяет производить выбор канала А или В и подключать его ко входу коэффициентом усилителя с программируемым усиления PGA и малым уровнем собственных шумов. Для канала А коэффициент усиления программируется 128 или 64, соответствующие входному сигналу напряжением ±20mV или ±40mV полной шкалы датчика силы при питании 5В, подключенном к выводу аналогового питания AVDD. Канал фиксированный коэффициент усиления 32. Встроенный стабилизатор напряжения исключает необходимость во внешнем стабилизаторе напряжения для формирования аналогового питания АЦП и датчика. синхронизации Clock является многофункциональным, на него допускается подавать синхроимпульсы от внешнего источника, к нему допускается подключать кварцевый резонатор. Наряду с этим возможно использование встроенного генератора. В последнем случае отпадает необходимость применения внешних компонентов. Схема первоначальной настройки внутренних узлов микросхемы значительно упрошает инициализацию цифрового интерфейса.

Нет необходимости в программировании внутренних регистров. Управление микросхемой HX711 осуществляется через ее выводы.

ТЕХНИЧЕСКИЕ ДАННЫЕ

- Два дифференциальных канала усиления, выбираемых с помощью мультиплексора.
- На чипе возможна активация малошумящего усилителя с программируемым коэффициентом усиления 32, 64, 128.
- На чипе имеется встроенный стабилизатор напряжения для формирования аналогового питания датчика и АЦП.
- Встроенный генератор не требует установки внешних компонентов (в качестве опции может устанавливаться внешний кварцевый резонатор).
- Встроенная схема для первоначальной настройки узлов при включении питающего напряжения.
- Несложная логика управления цифровыми узлами микросхемы, в том числе, последовательным интерфейсом. При этом программирование чипа не требуется.
- Скорость обновления данных измерения устанавливается 10 раз в секунду или 80 раз в секунду.
- Подавление в цепи питания наводок 50Гц и 60Гц.
- Энергопотребление с учетом встроенного стабилизатора напряжения:
 - нормальный режим работы < 1,5мА
 - режим пониженного энергопотребления < 1мкА.
- Допустимый диапазон питающего напряжения 2,6-5,5 В.
- Рабочий диапазон температур -40 +80 °C.
- Упаковка 16 выводовая SOP-16

ПРИМЕНЕНИЯ

- Весы
- Управление технологическими процессами

TEL: (592) 252-9530 (P. R. China)

EMAIL: market@aviaic.com

Назначение выводов

Питание стабилизатора VSUP Выход управления стабилизатором ВАSE	1 • 2	16 15	DVDD RATE	Цифровое питание Вход управления скоростью обновления данных
Аналоговое питание AVDD	3	14	□ XI	Вход подключения кварца и внешней синхронизации
Вход управления стабилизатором VFB	4	13	□ xo	Вход подключения кварца
Аналоговая земля AGND	5	12	DOUT	Цифровой выход данных
Отвод опорного напряжения VBG	6	11	□ PD_SCK	Вход синхронизации и управление снижением потребления
Канал A Отрицательный вход INNA	7	10	INPB	Канал В Положительный вход
Канал А Положительный вход INPA	8	9	INNB	Канал В Отрицательный вход

Упаковка SOP-16L

Выв. №	Обознач.	Назначение	Описание
1	VSUP	Питание	Питание стабилизатора: 2,7 - 5,5 В
2	BASE	Аналоговый выход	Выход управления регулирующим элементом (свободен, если не используется по назначению)
3	AVDD	Питание	Питание аналоговых цепей: 2,6 – 5,5 В
4	VFB	Аналоговый вход	Вход управления стабилизатором (connect to AGND when not used)
5	AGND	Общий	Аналоговая земля
6	VBG	Аналоговый выход	Отвод источника опорного напряжения
7	INA-	Аналоговый вход	Канал А отрицательный вход
8	INA+	Аналоговый вход	Канал А положительный вход
9	INB-	Аналоговый вход	Канал В отрицательный вход
10	INB+	Аналоговый вход	Канал В положительный вход
11	PD SCK	Цифровой вход	Управление режимом пониженного энергопотребления (Лог. 1 – активизация режима) и вход синхронизации, на который подается последовательность синхроимпульсов.
12	DOUT	Цифровой выход	Цифровой выход данных
13	XO	Цифровой вход/выход	Вход/выход кварцевого резонатора (свободен, если не используется по назначению)
14	XI	Цифровой вход	Вход/выход кварцевого резонатора или вход внешней синхронизации, Лог. 0: использование встроенного генератора.
15	RATE	Цифровой вход	Управление скоростью обновления данных, Лог. 0: 10 Гц; Лог. 1: 80 Гц.
16	DVDD	Питание	Цифровое питание: 2,6 – 5,5 B.

Табл. 1 Назначение выводов

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметр	Описание	мин тип	MAKC	ЕД.
Диапазон входных	V(inp)-V(inn)	±0,5(AVDD/G	AIN)	В
сигналов полной шкалы				
измеряемой величины				
Синфазный входной		AGND+1.2	AVDD-1.3	В
сигнал				
Скорость обновления	Встроенный генератор, 10		Гц	
данных измерения	RATE = 0			
	Встроенный генератор,	80		
	RATE = DVDD			
	Кварц или внешняя	fclk/110592	0	
	синхрозация, RATE = 0			
	Кварц или внешняя	f _{clk} /138240)	
	синхрозация, RATE = DVDD			
Формат выходных	Двоичное дополнение	800000	7FFFFF	HEX
данных				
Время установления	RATE = 0	400		мсек
данных (1)	RATE = DVDD	50		
Погрешность смещения	Gain = 128 (Усиление=128)	0,2		мВ
	Gain = 64 (Усиление=64)	0,4		
Шумы на входе	Gain = 128, RATE = 0	50		нВ(ср.
	Gain = 128, RATE = DVDD	90		кв. зн.)
Погрешность от	Смещение по входу (Gain =	±6		нВ/°С
температуры	128)			/0.0
	Усиление (Gain = 128)	±5		ppm/°C
Коэффициент	Gain = 128, RATE = 0	100		дБ
подавления синфазной				
составляющей	G	100		
Подавление помех по	Gain = 128, RATE = 0	100		дБ
питанию		1,25		В
Ответвление источника		1,25		В
опорного напряжения				
(VBG)				
Кварц или Внешняя		1 11,0592	20	МГц
синхронизация		,		,
Напряжение питания	DVDD	2,6	5,5	В
1	AVDD, VSUP	2,6	5,5	
Ток потребления	Нормальный режим	1400		мкА
аналоговых схем	Режим пониженного	0,3		
(Включая стабилизатор)	энергопотребления			
Ток потребления	Нормальный режим	100		мкА
цифровых схем	Режим пониженного	0,2		
	энергопотребления	ŕ		

¹⁾ Время установления данных на выходе учитывает такие задержки как время включения питания, время первоначальной настройки узлов микросхемы, задержка при изменении настройки входа канала и коэффициента усиления.

Табл. 2 Основные технические характеристики

Аналоговые входы

Дифференциальный вход канала А выполнен для непосредственного подключения к дифференциальному выходу мостового датчика. В нем программируется коэффициент усиления 128 или 64. Большой коэффициент усиления соответствует малым значениям выходного сигнала датчика. При питании 5 В, поданном на вывод AVDD, эти коэффициенты усиления соответствуют входным напряжениям полной шкалы измеряемых величин ±20 мВ или ±40 мВ соответственно.

Дифференциальный вход канала В имеет фиксированный коэффициент усиления 32. Значение входного напряжения полной шкалы измеряемой величины составляет ± 80 мВ при подаче питания 5 В на вывод AVDD.

Опции питания

Цифровое питание DVDD должно быть тем же самым, что питание микроконтроллера.

При использовании внешнего стабилизатора значение выходного напряжения зависит от характеристик транзистора. Значение выходного напряжения равняется VAVDD=VBG*(R1+R2)/ R1 (Рис. 1). Значение этого напряжения должно быть меньше на 100 мВ (и более), чем напряжение VSUP.

Если встроенный стабилизатор не задействован, то вывод VSUP должен быть подключенным к цепям AVDD или DVDD в зависимости от того, где значение напряжения выше. Кроме того, вывод VFB должен быть соединен с общим проводом Ground, а вывод BASE должен оставаться свободным. В этом случае не требуется внешний конденсатор 0,1 мкФ на выводе VBC

Опции синхронизации

Работа встроенного генератора активируется при подаче общего провода Ground на вывод XI. При использовании встроенного генератора скорость обновления данных составляет 10 (RATE=0) или 80 (RATE=1) циклов измерения в секунду.

Для установления точного значения скорости обновления данных используется кварц или внешний источник опорной частоты. Кварц подключается к выводам XI и XO. Внешние синхросигналы допускается подавать на вывод XI через неполярный конденсатор 20 пФ. Внешний синхросигнал необязательно должен быть прямоугольной формы. Допускается снимать синхросигнал непосредственно с выхода кварца микроконтроллера амплитудой менее 150 мВ.

При использовании кварца или внешних синхроимпульсов встроенный генератор автоматически отключается

Скорость обновления и формат данных

Применение встроенного генератора обеспечивает скорость обновления данных 10 (RATE=0) или 80 (RATE=1) циклов измерения в секунду.

При использовании внешних синхроимпульсов или кварца скорость обновления данных прямо пропорциональна частоте повторения внешних синхроимпульсов или резонансной частоте кварца. Применение синхроимпульсов или кварца 11,0592 Мгц приводит к скорости обновления 10 (RATE=0) или 80 (RATE=1) циклов измерения в секунду.

24 бита данных представляются в дополнительном двоичном коде. Если входной дифференциальный сигнал выходит за пределы диапазона 24 бит, выходные данные будут находиться в пределах от 800000h (МИН) или до 7FFFFh (МАКС.), до тех пор, пока входной сигнал не вернется к допустимому диапазону входных сигналов.

Последовательный интерфейс

Выводы PD_SCK и DOUT используются для извлечения данных, выбора входа, выбора усиления и управления режимом пониженного энергопотребления.

Пока цифровые данные не готовы для извлечения, цифровой выход DOUT принимает значение Лог. 1. При этом на входе синхронизации PD_SCK должен быть Лог. 0. Появление Лог. 0 на выходе DOUT указывает на то, что данные готовы для извлечения. С помощью подачи 25 – 27 импульсов на вывод PD_SCK данные выдвигаются на выход DOUT. По каждому импульсу на выводе PD_SCK 1 бит данных выдвигается на цифровой выход DOUT, причем старшими разрядами вперед. Так происходит до тех пор, пока все 24 бита не будут использованы для выдвижения данных. 25-ый импульс на входе PD_SCK снова вернет на выходе DOUT значение Лог. 1 (См. Рис. 2).

Выбор коэффициента входа И производится подачей определенного числа импульсов вход PD_SCK (CM. табл. Для того, чтобы не возникали ошибки при последовательной передаче данных, количество импульсов, подаваемых на вход PD_SCK, должно быть в диапазоне 25 – 27 в пределах интервала (или цикла) обработки.

Импульсы на PD_SCK	Вход канала	Усиление		
25	A	128		
26	В	32		
27	A	64		

Табл. 3 Выбор входа канала и усиления

Рис. 2 Временные диаграммы выходных данных, выбора входа и усиления

Надписи на рисунке: Current Output Data – мгновенные значения выходных данных;

One conversion period – один цикл преобразования;

Next Conversion: CH.A, Gain:128 – Следующее преобразование: Канал А, Усиление: 128 Next Conversion: CH.B, Gain:32 – Следующее преобразование: Канал В, Усиление: 32

Next Conversion: CH.A, Gain:64 - Следующее преобразование: Канал А, Усиление: 64 (описка в оригинале В вместо А)

Next Output Data – следующие выходные данные

Обозн.	Описание	МИН	ТИП	МАКС	ЕД
$T_{\mathtt{i}}$	Интервал между спадом DOUT и подъемом PD_SCK	0,1			мксек
T 2	Интервал между подъемом PD_SCK и готовностью данных DOUT			0,1	мксек
Tз	Продолжительность импульса на PD_SCK	0,2	1	50	мксек
T_4	Продолжительность интервала между импульсами на PD_SCK	0,2	1		мксек

Первоначальная настройка узлов и режим пониженного энергопотребления

При подаче питания на чип происходит первоначальная настройка внутренних узлов.

Входной сигнал на выводе PD_SCK используется для управления режимом пониженного энергопотребления HX711. При подаче на вход PD_SCK. Лог. 0 микросхема находится в нормальном рабочем состоянии.

Рис. 3 Управление режимом пониженного энергопотребления.

Если сигнал на выводе PD_SCK изменится от Лог. 0 к Лог. 1 на время более 60 мксек, то микросхема HX711 перейдет в режим пониженного энергопотребления (См. рис. 3). Встроенный стабилизатор и внешний датчик также перейдут в режим пониженного энергопотребления.

Если сигнал PD_SCK возвратится к значению Лог.0, то в микросхеме произойдет первоначальная настройка

узлов и по умолчанию будет выбран канал А с коэффициентом усиления 128.

Надписи на рис. 3: Power down – пониженное энергопотребление;

Normal – нормальный режим энергопотребления

Пример практического применения

На рис. 1 представлен типовой вариант весов с применением HX711. В данном техническом решении используется встроенный генератор (XI=0) , скорость обновления данных 10 Γ ц (RATE=0). Однополярное питание (2,7 – 5,5 В) поступает непосредственно от цепи питания микроконтроллера МСU. Канал В может отслеживать уровень напряжения батареи. Цепи, относящиеся к контролю батареи на рис. 1 не показаны.

Надписи на рис. 1:

Input MUX – мультиплексор входов

Analog Supply Regulator – стабилизатор аналогового напряжения питания

Gain – 32, 64, 128 - усиление 32, 64, 128

24 bit ΣΔ ADC – сигма-дельта АЦП 24 бит

Bandgap Reference – источник опорного напряжения bandgap

Internal Oscillator – встроенный генератор

Digital Interface – цифровой интерфейс

То/From MCU – к микроконтроллеру / из микроконтроллера

Load cell – тензодатчик

AGND – аналоговая земля.

Reference PCB Board (Single Layer)

Fig.4 Reference PCB board schematic

Fig.5 Reference PCB board layout

Reference Driver (Assembly)

```
Call from ASM:
                    LCALL
                             ReaAD
                extern unsigned long ReadAD(void);
Call from C:
                  unsigned long data;
                   data=ReadAD();
PUBLIC
              ReadAD
HX711ROM
              segment code
              HX711ROM
rseg
sbit
              ADDO = P1.5;
              ADSK = P0.0;
sbit
OUT:
        R4, R5, R6, R7
                          R7=>LSB
ReadAD:
                              //AD Enable (PD SCK set low)
    CLR
           ADSK
    SETB
           ADDO
                              //Enable 51CPU I/O
    JΒ
           ADDO, $
                              //AD conversion completed?
    MOV
           R4, #24
ShiftOut:
    SETB
           ADSK
                              //PD_SCK set high (positive pulse)
    NOP
    CLR
           ADSK
                              //PD_SCK set low
           C, ADDO
                              //read on bit
    MOV
    XCH
           A, R7
                              //move data
    RLC
           A
    XCH
           A, R7
    XCH
           A, R6
    RLC
           A
    XCH
           A, R6
    XCH
           A, R5
    RLC
           A
    XCH
           A, R5
                               //moved 24BIT?
    DJNZ
           R4, ShiftOut
    SETB
           ADSK
    NOP
    CLR
           ADSK
    RET
    END
```


Reference Driver (C)

```
sbit
       ADDO = P1^5;
sbit
       ADSK = P0^0;
unsigned long ReadCount(void){
 unsigned long Count;
 unsigned char i;
 ADDO=1;
 ADSK=0;
 Count=0;
 while(ADDO);
 for (i=0; i<24; i++) {
   ADSK=1;
   Count=Count << 1;
    ADSK=0;
    if(ADDO) Count++;
 ADSK=1;
 Count=Count^0x800000;
 ADSK=0;
 return(Count);
```

Размеры упаковки

Надписи на рисунках:

Reference PCB Board (Single Layer) – Образцовая печатная плата (однослойная)

Fig. 4 Reference PCB schematic - Рис. 4 Принципиальная схема образцовой печатной платы.

Fig. 5 Reference PCB board layout – Рис.5 Топология образцовой печатной платы.

Reference Driver (Assembly) – Образцовый драйвер (на ассемблере)

Reference Driver (C) – Образцовый драйвер (на C)