Тестовый файл

Содержание

1	Стереометрия	2
	1.1 Сечения	2

1 Стереометрия

Теорема 1.1. Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны:

$$\alpha \parallel \beta, \gamma \cap \alpha = a, \gamma \cap \beta = b \Longrightarrow a \parallel b$$

Доказательство.

 $\alpha \parallel \beta \Longrightarrow \exists c \subset \alpha : c \parallel b$. По теореме о крыше $a \parallel c, b \parallel c$.

1.1 Сечения

Определение 1. Углом между наклонной и плоскостью называется угол между наклонной и её проекцией на данную плоскость.

Теорема 1.2. Угол между наклонной к плоскости и её проекцией на эту плоскость есть наименьший из углов между наклонной и каждой прямой, лежащей в этой плоскости.

Теорема 1.3. Пусть прямая a образует с плоскостью π угол α . Прямая $b \subset \pi$ образует с прямой a угол φ , а с её проекцией на плоскость π – угол β . Тогда $\cos \varphi = \cos \alpha \cdot \cos \beta$.

Доказательство.

Пусть A – произвольная точка на прямой a, O – точка пересечения прямой a с π , L – основание перпендикуляра из A на π , а B – основание перпендикуляра из L на b. Без ограничения общности положим OA = 1, тогда $OL = \cos \alpha$, а $OB = \cos \alpha \cdot \cos \beta$. Пусть $\delta = (ABL)$, тогда $BL \perp b$ по построению, $AL \perp b$, так как $b \subset \pi$, $AL \perp \pi \Longrightarrow b \perp \delta \Longrightarrow b \perp AB$. Отсюда $OB = \cos \varphi = \cos \alpha \cdot \cos \beta$.

Определение 2. Если среди всех расстояний между точками, одна из которых принадлежит фигуре Φ_1 , а другая — фигуре Φ_2 , существует наименьшее, то его называют между фигурами Φ_1 и Φ_2 .

Теорема 1.4. Расстоянием от точки до плоскости является расстояние от данной точки до её проекции на данную плоскость.

Определение 3. Общим перпендикуляром двух скрещивающихся прямых называется отрезок, концы которого лежат на данных прямых, перпендикулярный к ним.

Теорема 1.5. Общий перпендикуляр двух скрещивающихся прямых существует и единственен.

Теорема 1.6. Расстояние между двумя скрещивающимися прямыми равно расстоянию от точки пересечения одной из этих прямых с перпендикулярной ей плоскостью до проекции другой прямой на эту плоскость.