Codage de l'information

Devoir surveillé

7 décembre 2001. Durée 1h

Documents non autorisés. Portables et calculatrices interdits

Toute réponse non justifiée ne sera pas prise en compte

Exercice 1: Questions

- **Q 1**. Peut–on construire un codage binaire des 10 symboles d'un alphabet source avec des mots de longueur inférieure ou égale à 4 toutes paires?
- **Q 2**. Un codage binaire des cinq symboles d'un alphabet source donne des mots de longueur 1, 2, 3, 4 et 4. Est—il possible que ce codage soit décodable? Peut—on affirmer avec certitude qu'il est décodable? Est—il possible de raccourcir l'un des mots du code en gardant un codage décodable?
- ${\bf Q}$ 3 . Dans un codage binaire optimal, se peut–il que les longueurs des mots du code soient toutes différentes?

Exercice 2: Codages

Le code ASCII code les 26 lettres majuscules de l'alphabet latin A, B, ..., Z, avec les représentations binaires sur 8 bits des nombres entiers de 65 (pour la lettre A) à 90 (pour Z).

Q 1. Codez en binaire le message CODAGE.

Le code nommé Base64 permet de représenter chaque mot de 6 bits par un symbole d'un alphabet qui en contient 64 : les 26 lettres majuscules A...Z, les 26 minuscules a...z, les dix chiffres 0...9 et les deux symboles + et /. La table ci-dessous montre les codes (décimaux) associés à ces symboles.

code	symbole	code	symbole	code	symbole	code	symbole
0	A	17	R	34	i	51	z
1	В	18	S	35	j	52	0
2	С	19	${ m T}$	36	k	53	1
3	D	20	U	37	1	54	2
4	\mathbf{E}	21	V	38	m	55	3
5	\mathbf{F}	22	W	39	n	56	4
6	G	23	X	40	О	57	5
7	Н	24	Y	41	p	58	6
8	I	25	\mathbf{Z}	42	\mathbf{q}	59	7
9	J	26	a	43	r	60	8
10	K	27	b	44	S	61	9
11	$_{\rm L}$	28	c	45	t	62	+
12	\mathbf{M}	29	d	46	u	63	/
13	N	30	e	47	v		
14	О	31	f	48	w		
15	P	32	g	49	X		
16	Q	33	h	50	У		

Q 2. Déterminez la représentation en base 64, de la chaîne binaire obtenue à la première question.

Exercice 3 : Codage décodable?

Quelles sont les conditions que doivent vérifier les entiers positifs p et q pour que le codage suivant des trois symboles de l'alphabet $\{a, b, c\}$ soit décodable de manière unique?

$$\mathbf{c}(a) = 1 \quad \mathbf{c}(b) = 0^p 1 \quad \mathbf{c}(c) = 0^q$$

où 0^p désigne le mot constitué de p fois 0.