CPU Planlama (CPU Scheduling)

- 1. Geliş Zamanı (Arrival Time) Sürecin hazır (ready) kuyruğuna giriş zamanı
- 2. Bekleme Süresi (Waiting Time) Sürecin hazır kuyruğunda geçirdiği toplam süre
- 3. Cevap Süresi (Response Time) Hazır kuyruğundaki sürecin CPU'yu ilk ele geçirdiği zaman (cevap süresi = sürecin CPU'ya alındığı zaman geliş zamanı)
- 4. Çalışma Süresi (Burst Time, Execution Time, Running Time) Sürecin CPU'da geçirdiği toplam
- 5. Tamamlanma Süresi (Completion Time, Exit Time) Sürecin CPU'da çalışmasının bittiği zaman
- Devir süresi (Turnaround Time) Sürecin sistemde geçirdiği tüm zaman (devir süresi = çalışma süresi + bekleme süresi) (devir süresi = tamamlanma süresi – geliş zamanı)

Tüm bu süreler hesaplanırken I/O işlemi yapılmadığı varsayılır.

Önceliğe Göre Planlama (Priority Scheduling)

Avantajlar:

- Önce önemli işler çalıştırılır
- Gerçek zamanlı işletim sistemleri için kesintili modu en uygun sonuçları verir

Dezavantajlar:

- Daha düşük öncelikli işlere hiç sıra gelmeyebilir (kıtlık, starvation)
- Gerçekte işlerin ne kadar bekleyeceği, ne zaman CPU'ya alınacağı bilinmez

Örn: Önceliğe göre planlama (kesintili) (büyük sayı yüksek önceliği belirtmektedir)

PID	Geliş Zamanı	Çalışma Süresi	<u>Öncelik</u>
P1	0	4	2
P2	1	3	3
Р3	2	1	4
P4	3	5	5
P5	4	2	5

	P1	P2	Р3	P4	P5	P2	P1
0		1	2	3 8	3 1	.0 1	.2 15

PID	Bitiş zamanı	Devir süresi	Bekleme süresi
P1	15	15 – 0 = 15	15 – 4 = 11
P2	12	12 – 1 = 11	11 – 3 = 8
Р3	3	3 – 2 = 1	1-1=0
P4	8	8 – 3 = 5	5 – 5 = 0
P5	10	10 – 4 = 6	6 - 2 = 4

Ortalama devir süresi = 38 / 5 = 7,6

Ortalama bekleme süresi = 23 / 5 = 4,6

Round Robin

Doğası gereği kesintilidir. CPU belirli bir süre bir sürece atanır. Bu süreye *time quantum* veya *time slice* denir.

Avantajlar:

- En iyi ortalama cevap süresini verir
- Zaman paylaşımlı sistemler, istemci sunucu mimarisi, etkileşimli sistemler için idealdir

Dezavantajlar:

- Çalışma zamanı çok uzun süreçlerde kıtlık oluşabilir
- Performansı time quantuma doğrudan bağlıdır
- Süreçlere öncelik verilemez

time quantum küçüldükçe,

- Context switch sayısı artar
- Cevap süresi düşer
- Kıtlık olasılığı artar

Çok büyük *time quantum* ile FCFS'ye yaklaşır

Örn: Round Robin q=2

PID	Geliş Zamanı	Çalışma Süresi
P1	0	5
P2	1	3
Р3	2	1
P4	3	2
P5	4	3

	P1	P2	P3	P1	P4	P5	P2	P1	P5	
0		2	<u> </u> 4 5	<u> </u>	' <u>c</u>) 1	 1	l 12	13] 14

PID	Bitiş zamanı	Devir süresi	Bekleme süresi
P1	13	13 – 0 = 13	13 – 5 = 8
P2	12	12 – 1 = 11	11 – 3 = 8
P3	5	5 – 2 = 3	3 – 1 = 2
P4	9	9 – 3 = 6	6 - 2 = 4
P5	14	14 – 4 = 10	10 – 3 = 7

Ortalama devir süresi = 43 / 5 = 8,6

Ortalama bekleme süresi = 29 / 5 = 5,8

Örn: Round Robin q=3

PID	Geliş Zamanı	Çalışma Süresi
P1	5	5
P2	4	6
Р3	3	7
P4	1	9
P5	2	2
P6	6	3

	P4	P5	Р3	P2	P4	P1	P6	Р3	P2	P4	P1	Р3
0	1	4	6	9 :	12 1	5 1	.8 2	1 24	1 2	27	30 3	2 33

Ready kuyruğu:

PID	Bitiş zamanı	Devir süresi	Bekleme süresi
P1	32	32 – 5 = 27	27 – 5 = 22
P2	27	27 – 4 = 23	23 – 6 = 17
Р3	33	33 – 3 = 30	30 – 7 = 23
P4	30	30 – 1 = 29	29 – 9 = 20
P5	6	6 – 2 = 4	4 – 2 = 2
P6	21	21 – 6 = 15	15 – 3 = 12

Ortalama devir süresi = 128 / 6 = 21,33

Ortalama bekleme süresi = 96 / 6 = 16

SJF (En kısa iş en önce)

Avantajlar:

- Kesintili versiyonu (SRTF) en iyi ortalama bekleme süresini verir
- Diğer algoritmalar için standart oluşturur

Dezavantajlar:

- Pratik olarak uygulanamaz çünkü süreçlerin çalışma süreleri bilinemez. Sadece tahmin edilehilir
- Uzun süren işlere hiç sıra gelmeyebilir (kıtlık)
- Süreçlere öncelik verilemez
- Uzun işlerin cevap süreleri büyük olur

Örn: SJF (kesintisiz)

PID	Geliş Zamanı	Çalışma Süresi
P1	3	1
P2	1	4
Р3	4	2
P4	0	6
P5	2	3

P4	P1	P3	P5	P2
0	<u> </u>	7		2 10
0	6	/	9 1	.2 1

PID	Bitiş zamanı	Devir süresi	Bekleme süresi
P1	7	7 – 3 = 4	4 – 1 = 3
P2	16	16 – 1 = 15	15 – 4 = 11
Р3	9	9 – 4 = 5	5 – 2 = 3
P4	6	6 – 0 = 6	6 - 6 = 0
P5	12	12 – 2 = 10	10 – 3 = 7

Ortalama devir süresi = 40 / 5 = 8

Ortalama bekleme süresi = 24 / 5 = 4,8

Örn: SRTF (kesintili)

PID	Geliş Zamanı	Çalışma Süresi
P1	3	1
P2	1	4
Р3	4	2
P4	0	6
P5	2	3

	P4	P2	P1	P2	Р3	P5	P4	
0		1	3 4	1 6	5 8	3 1	1 1	16

PID	Bitiş zamanı	Devir süresi	Bekleme süresi
P1	4	4 – 3 = 1	1-1=0
P2	6	6 – 1 = 5	5 – 4 = 1
Р3	8	8 - 4 = 4	4 – 2 = 2
P4	16	16 – 0 = 16	16 – 6 = 10
P5	11	11 – 2 = 9	9 – 3 = 6

Ortalama devir süresi = 35 / 5 = 7

Ortalama bekleme süresi = 19 / 5 = 3,8