ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУ СПО «ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ»

Практическое пособие по изучению раздела

Теория пределов

Составила: Миргородская Ирина Николаевна, преподаватель математики

ст. Ленинградская 2006 г.

Пособие составлено в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по специальностям среднего профессионального образования.

Данное пособие ставит своей целью оказание помощи студентам, обучающимся по специальностям 080110 «Экономика и бухгалтерский учет» (по отраслям), в организации их самостоятельной работы по овладению системой знаний, умений и навыков в объеме действующей программы.

В данном пособии представлено краткое содержание основного теоретического материала, подробное решение примеров и упражнения для самостоятельной работы. Итоговая контрольная работа позволит закрепить полученные знания по данной теме.

Пособие может быть использовано преподавателями математики при подготовке к лекционным и практическим занятиям.

Понятие предела последовательности.

В курсе математического анализа понятие предела является одним из основных. С помощью предела вводятся производная и определенный интеграл. Предварительно ознакомимся с понятием числовой последовательности.

Пусть каждому натуральному числу ${\bf n}$ поставлено в соответствие число $a_n=f(n)$, т.е. пусть задана функция натурального аргумента. Тогда говорят, что задана **числовая последовательность** $\{a_n\}$. Обычно числовую последовательность задают формулой

$$a_n = f(n)$$
.

Так, например:

1) формула $a_n = 2n - 1$ числам натурального ряда

ставит в соответствие последовательность нечетных чисел

2) формула $a_n = 1$ - 2n задает числовую последовательность -1, -3, -5, -7, ...,

которая является бесконечно убывающей арифметической прогрессией;

3) формула $a_n = \frac{n}{2n+1}$ задает возрастающую последовательность правильных дробей

$$\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \dots;$$

4) формула $a_n = \frac{4n-1}{3n-1}$ задает убывающую последовательность неправильных дробей

$$\frac{3}{2}, \frac{7}{5}, \frac{11}{8}, \frac{15}{11}, \frac{19}{14}, \dots$$

Во всех приведенных примерах заданные последовательности являются бесконечными: для каждой из них не существует последнего члена.

Определение. Число **a** называется пределом последовательности $x_1, x_2, x_3, ..., x_n$, ..., если для всякого сколь угодно малого положительного числа ε (эпсилон) найдется такое положительное число N, что абсолютная величина разности $|x_n-a|$ $< \varepsilon$ при n > N. Это кратко записывается так:

$$\lim_{n\to\infty} x_n = a$$

Предел функции.

Пусть дана функция: y = f(x).

Определение. Число A называется пределом функции f(x) при $x \to a$, если для любого сколь угодно малого $\varepsilon > 0$ найдется такое $\delta > 0$, что $|f(x) - A| < \varepsilon$ при $0 < |x - a| < \delta$.

Это записывают так:

$$\lim_{x \to a} f(x) = A$$

Теоремы о пределах

(правила предельного перехода)

1. Предел суммы или разности равен сумме или разности пределов.

$$\ell im(x \pm y) = \ell imx \pm \ell imy$$

2. Предел произведения равен произведению пределов.

$$\ell im(x \cdot y) = \ell imx \cdot \ell imy$$

3. Предел отношения равен отношению пределов.

$$\ell im(x/y) = \ell imx/\ell imy \ell imy \neq 0$$

Свойства пределов.

1. Предел постоянной равен этой постоянной.

$$\ell im A = A$$
, если $A = const.$

2. Постоянную можно вынести за знак предела.

$$\ell im(c \cdot y) = c \cdot \ell imy$$
, если $c = const.$

3. Если существуют конечные пределы $\lim_{x\to a} f(x)$ и $\lim_{x\to a} g(x)$, то

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} f(x)^{\lim_{x \to a} g(x)}$$

4. Если существует $\lim_{x\to a} g(x)$ и f(x) – элементарная функция, то

$$\lim_{x \to a} f(g(x)) = f \lim_{x \to a} g(x)$$

Например:

$$\lim_{x \to a} \sqrt{g(x)} = \sqrt{\lim_{x \to a} g(x)},$$

$$\lim_{x \to a} \log_c g(x) = \log_c \lim_{x \to a} g(x).$$

Понятие бесконечно малой и бесконечно большой величины.

Если предел функции равен нулю ($\ell imy = 0$), то она называется бесконечно малой величиной.

Если предел функции равен бесконечности ($\ell imy = \infty$), т.е. величине, обратной к бесконечно малой величине, то она называется бесконечно большой величиной.

Следовательно, выполняются равенства

$$\lim \frac{1}{0} = \infty$$
, $\lim \frac{1}{\infty} = 0$.

Найти следующие пределы:

1.
$$\lim_{x\to 4} \frac{5x+2}{2x+3}$$
.

 Δ Так как х \rightarrow 4, то числитель дроби стремится к числу

 $5 \cdot 4 + 2 = 22$, а знаменатель – к числу $2 \cdot 4 + 3 = 11$. Следовательно,

$$\lim_{x \to 4} \frac{5x+2}{2x+3} = \frac{22}{11} = 2.$$

2.
$$\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^4 + x^2 + 1} = \frac{3 - 3}{9 + 3 + 1} = \frac{0}{13} = 0$$

3.
$$\lim_{x \to -1} (x^3 - x^2 + 1) = -1 - 1 + 1 = -1$$

4.
$$\lim_{x\to 0} (3x^3 + x^2 - 8x + 10) = 0 + 0 - 0 + 10 = 10$$

Но при простой подстановке может получиться неопределенность типа $\frac{0}{0}$ или

$$\frac{\infty}{\infty}$$
. Эти случаи рассмотрим далее.

Задания для самостоятельной работы.

Найти пределы функций:

1.
$$\lim_{x \to 1} \frac{x^2 + 2x + 2}{x^2 - 1}$$
 2. $\lim_{x \to 0} \frac{3x^2 + x}{4x^3 + x + 10}$

3.
$$\lim_{x \to 0,1} \frac{5x+4}{1-x}$$

4.
$$\lim_{x\to 2} \frac{x^3-4x+5}{x^2+6}$$

5.
$$\lim_{x \to -1} \frac{(x+3)(x-2)}{x+2}$$

6.
$$\lim_{x \to 3} \frac{3}{2x - 6}$$

7.
$$\lim_{x \to 1} \frac{2x^2 - 5x - 3}{4x^2 - 13x + 3}$$

8.
$$\lim_{x\to 1} \frac{4x^2-5x-1}{2x^2-x-1}$$

Раскрытие неопределенности вида $\frac{0}{0}$.

Для раскрытия неопределенности такого вида необходимо предварительно сократить дробь (разложив на множители), а затем найти предел. Например:

1.
$$\lim_{x\to 3} \frac{x^2-9}{x^2-3x}$$
.

 Δ Здесь числитель и знаменатель дроби при x \to 3 стремятся к нулю(неопределенность вида $\frac{0}{0}$). Имеем

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x(x - 3)} = \lim_{x \to 3} \frac{x + 3}{x} = \frac{3 + 3}{3} = 2.$$

2.
$$\lim_{x \to 5} \frac{x^2 - 7x + 10}{x^2 - 9x + 20} = \lim_{x \to 5} \frac{(x - 5)(x - 2)}{(x - 5)(x - 4)} = \lim_{x \to 5} \frac{x - 2}{x - 4} = \frac{3}{1} = 3$$

где необходимо было решить квадратные уравнения для разложения квадратного трехчлена на множители в числителе и в знаменателе дроби по формуле $ax^2+bx+c=(x-x_1)(x-x_2)$.

3

$$\lim_{x \to 0} \frac{x}{\sqrt{1+3x}-1} = \lim_{x \to 0} \frac{x(\sqrt{1+3x}+1)}{(\sqrt{1+3x}-1)(\sqrt{1+3x}+1)} = \lim_{x \to 0} \frac{x(\sqrt{1+3x}+1)}{1+3x-1} = \lim_{x \to 0} \frac{x(\sqrt{1+3x}+1)}{1+3x-1} = \lim_{x \to 0} \frac{x(\sqrt{1+3x}+1)}{3x} = \lim_{x \to 0} \frac{x(\sqrt{1+3x}+1)}{3} =$$

здесь, для того чтобы избавиться от иррациональности в знаменателе, и числитель и знаменатель были умножены на выражение, сопряженное знаменателю, а затем знаменатель был свернут по формуле разности квадратов.

Задания для самостоятельной работы.

Найти пределы функций:

1.
$$\lim_{x \to 0} \frac{3x^3 + x}{x}$$

3.
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$$

5.
$$\lim_{x \to 3} \frac{3-x}{x^3-27}$$

7.
$$\lim_{x \to 5} \frac{x-5}{2-\sqrt{x-1}}$$

9.
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$

11.
$$\lim_{x\to 2} \frac{3x^2 - 8x + 4}{5x^2 - 14x + 8}$$

13.
$$\lim_{x \to 0} \frac{x}{\sqrt{x+4}-2}$$

15.
$$\lim_{x \to 7} \frac{\sqrt{x+2}-3}{x^2-49}$$

2.
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 2x - 3}$$

4.
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$$

6.
$$\lim_{x \to 3} \frac{3x^2 - 11x + 6}{2x^2 - 5x - 3}$$

8.
$$\lim_{x \to \sqrt{5}} \frac{x^4 - 25}{x^2 - 5}$$

10.
$$\lim_{x\to 5} \frac{x^2 - 8x + 15}{x^2 - 25}$$

12.
$$\lim_{x\to 6} \frac{x-6}{\sqrt{x+3}-3}$$

14.
$$\lim_{x\to 2} \frac{4x^2-7x-2}{5x^2-9x-2}$$

16.
$$\lim_{x\to 2} \frac{x^2-4}{x^3-2x^2+x-2}$$

Раскрытие неопределенности вида $\frac{\infty}{\infty}$.

Для раскрытия неопределенности такого вида необходимо числитель и знаменатель разделить на x с наибольшим показателем степени.

Например:

1.
$$\lim_{x \to \infty} \frac{x^4 - x^2 + 2}{x^3 - x + 1} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2} + \frac{2}{x^4}}{\frac{1}{x} - \frac{1}{x^3} + \frac{1}{x^4}} = \frac{1}{0} = \infty$$

$$\lim_{x \to \infty} \frac{x^3 + x^4}{x^5 + x^6} = \lim_{x \to \infty} \frac{\frac{x^3}{x^6} + \frac{x^4}{x^6}}{\frac{x}{x^6} + \frac{x^6}{x^6}} = \lim_{x \to \infty} \frac{\frac{1}{x^3} + \frac{1}{x^2}}{\frac{1}{x} + 1} = \frac{0}{1} = 0$$

3.
$$\lim_{x \to \infty} \frac{10x^2 - x - 6}{3x - x^2} = \lim_{x \to \infty} \frac{10 - \frac{1}{x} - \frac{6}{x^2}}{\frac{3}{x} - 1} = \frac{10}{-1} = -10$$

Задания для самостоятельной работы.

Найти пределы функций:

1.
$$\lim_{x \to \infty} \frac{x^3 - 2x + 6}{3x^3 + x^2 - 26}$$
2. $\lim_{x \to \infty} \frac{x^2 - 4x + 3}{x + 5}$
3. $\lim_{x \to \infty} \frac{x^2 - 2x + 5}{x^3 + 3x + 7}$
4. $\lim_{x \to \infty} \frac{3x^3 - 4x + 8}{5x^3 + 27x^2 + x}$
5. $\lim_{x \to \infty} \frac{10x^4 - 8x^2 + 3}{5x^4 + 3x^3 + 5}$
6. $\lim_{x \to \infty} \frac{5x^3 + 4x^2 - 1}{8x^2 - 6x + 3}$

Иногда при подстановке в функцию предельного значения аргумента получаются выражения, не имеющие конкретного смысла:

$$\infty$$
 - ∞ , 1^{∞} , $0 \cdot \infty$, 0^{0} ,

их называют «неопределенностями». В этих случаях для нахождения пределов необходимо предварительно выполнить некоторые преобразования данного выражения.

Рассмотрим некоторые приемы, которыми пользуются при таких преобразованиях.

Например: Имеется неопределенность вида [∞ - ∞] :

1.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 6x} - x \right) = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 6x} - x)(\sqrt{x^2 + 6x} + x)}{(\sqrt{x^2 + 6x} + x)} = \lim_{x \to \infty} \frac{x^2 + 6x - x^2}{\sqrt{x^2 \left(1 + \frac{6}{x}\right) + x}} = \lim_{x \to \infty} \frac{6x}{x\sqrt{1 + \frac{6}{x} + x}} = \lim_{x \to \infty$$

2.

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right) = \lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{(x - 1)(x + 1)} \right) = \lim_{x \to 1} \frac{1 \cdot (x + 1) - 2}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x - 1}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{1$$

Замечательные пределы.

Первый замечательный предел.

Предел отношения *sin* бесконечно малой величины к самой этой величины к самой этой величине равен 1.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \qquad \lim_{x \to 0} \frac{tgx}{x} = 1$$

Например:

1.
$$\lim_{x \to 0} \frac{\sin x}{3x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{3} \cdot 1 = \frac{1}{3}$$

2.
$$\lim_{x \to 0} \frac{\sin 5x}{x} = 5 \lim_{x \to 0} \frac{\sin 5x}{5x} = 5 \cdot 1 = 5$$

3.
$$\lim_{x \to 0} \frac{tg \, 3x}{x} = \lim_{x \to 0} \left(\frac{\sin 3x}{x} \cdot \frac{1}{\cos 3x} \right) = \lim_{x \to 0} \frac{3\sin 3x}{3x} \cdot \lim_{x \to 0} \frac{1}{\cos 3x} = 3 \cdot 1 \cdot 1 = 3$$

4.
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x} = \lim_{x \to 0} \frac{\frac{\sin 3x}{x}}{\frac{\sin 5x}{x}} = \frac{\lim_{x \to 0} \frac{\sin 3x}{x}}{\lim_{x \to 0} \frac{\sin 5x}{x}} = \frac{3}{5}$$

Свойства:

$$\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$$

$$2. \lim_{x \to 0} \frac{tgax}{bx} = \frac{a}{b}$$

3.
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx} = \frac{a}{b}$$

Второй замечательный предел.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x} = e$$

Например:

$$\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x = \left(\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{\frac{x}{3}} \right)^3 = e^3$$

2.
$$\lim_{x \to \infty} \left(1 + \frac{1}{5x} \right)^x = \left(\lim_{x \to \infty} \left(1 + \frac{1}{5x} \right)^{5x} \right)^{\frac{1}{5}} = e^{\frac{1}{5}}$$

3.
$$\lim_{x\to 0} (1+4x)^{\frac{3}{5x}} = \left(\lim_{x\to 0} (1+4x)^{\frac{1}{4x}}\right)^{\frac{3\cdot 4}{5}} = e^{\frac{12}{5}}$$

4.
$$\lim_{x \to \infty} \left(\frac{1+x}{x} \right)^{\frac{x}{2}} = \left(\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right)^{\frac{1}{2}} = e^{\frac{1}{2}}$$

Задания для самостоятельной работы.

1.
$$\lim_{x \to 0} \frac{\sin 2x}{3x}$$
 2.
$$\lim_{x \to 0} \frac{\sin 5x}{3x}$$

3.
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 7x}$$

$$4. \lim_{x \to 0} \frac{\sin 6x}{tg \, 3x}$$

5.
$$\lim_{x \to \infty} \left(1 + \frac{5}{3x} \right)^{2x}$$

6.
$$\lim_{x\to\infty} \left(1+\frac{2}{3x}\right)^x$$

7.
$$\lim_{x\to 0} (1+2x)^{\frac{5}{x}}$$

8.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{5x}$$

Правило Лопиталя для раскрытия неопределенностей.

Пусть в некоторой окрестности точки x_0 функции f(x) и $\phi(x)$ дифференцируемы и $\phi'(x) \neq 0$. Если $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \phi(x) = 0$ или $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \phi(x) = \infty$, т.е. частное $f(x) \neq 0$ в точке $f(x) \neq 0$ представляет собой неопределенность вида $\frac{0}{0}$ или $\frac{\infty}{\infty}$, то

 $\lim_{x \to x_0} f(x) / \phi(x) = \lim_{x \to x_0} f'(x) / \phi'(x)$, если предел в правой части этого равенства существует.

Если частное f '(x) / ϕ ' (x) в точке x = x₀ также есть неопределенность вида $\frac{0}{0}$

или $\frac{\infty}{\infty}$ и производные f '(x) и ϕ ' (x) удовлетворяют соответствующим условиям, то следует перейти к отношению вторых производных и.т.д.

В случае неопределенности вида $0\cdot\infty$ или ∞ - ∞ следует алгебраически преобразовать данную функцию так, чтобы привести её к неопределенности вида

$$\frac{0}{0}$$
 или $\frac{\infty}{\infty}$ и далее воспользоваться правилом Лопиталя.

В случае неопределенности вида 0^0 или ∞^0 или 1^∞ следует прологарифмировать данную функцию и найти предел ее логарифма.

Например.

1. Найти предел: $\lim_{x \to 1} \frac{x^2 - 1 + \ell nx}{e^x - e}$

Числитель и знаменатель стремится к нулю при $x \to 1$, а потому имеем неопределенность вида $\frac{0}{0}$. Воспользуемся правилом Лопиталя, т.е. рассмотрим предел отношения производных заданных функций:

$$\lim_{x \to 1} \frac{x^2 - 1 + \ell nx}{e^x - e} = \lim_{x \to 1} \frac{2x + \frac{1}{x}}{e^x} = \frac{3}{e}$$

 $2. \lim_{x \to \infty} \frac{xe^{\frac{x}{2}}}{x + e^x}$

В данном случае имеет место неопределенность вида $\frac{\infty}{\infty}$. Находим

$$\lim_{x \to \infty} \frac{xe^{\frac{x}{2}}}{x + e^{x}} = \lim_{x \to \infty} \frac{e^{\frac{x}{2}} \left(1 + \frac{x}{2}\right)}{1 + e^{x}} = \lim_{x \to \infty} \frac{\frac{1}{2}e^{\frac{x}{2}} \left(2 + \frac{x}{2}\right)}{e^{x}} = \frac{1}{2}\lim_{x \to \infty} \frac{2 + \frac{x}{2}}{e^{\frac{x}{2}}} = \frac{1}{2}\lim_{x \to$$

$$= \frac{1}{2} \lim_{x \to \infty} \frac{\frac{1}{2}}{\frac{1}{2} e^{\frac{x}{2}}} = 0$$

3.
$$\lim_{x\to 0} \left(x^2 \ln x\right)$$

Здесь мы имеем неопределенность вида $0\cdot\infty$. Представим произведение функций в виде частного, а затем, получив неопределенность вида $\frac{\infty}{\infty}$, применим правило Лопиталя:

$$\lim_{x \to 0} (x^2 \ln x) = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x^2}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{2}{x^3}} = -\frac{1}{2} \lim_{x \to 0} x^2 = 0$$

4.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$

Это неопределенность вида ∞ - ∞ . Для того чтобы найти предел функции, приведем дроби к общему знаменателю, а затем, получив неопределенность вида $\frac{0}{0}$, применим правило Лопиталя:

$$\lim_{x \to 0} \frac{e^{x} - 1 - x}{x(e^{x} - 1)} = \lim_{x \to 0} \frac{e^{x} - 1}{e^{x} - 1 + xe^{x}} = \lim_{x \to 0} \frac{e^{x}}{e^{x}(2 + x)} = \frac{1}{2}$$
5.
$$\lim_{x \to 0} (\sin x)^{x}$$

Это – неопределенность вида 0^0 . Обозначим данную функцию через y, т.е. $y = (\sin x)^x$, и прологарифмируем её:

$$\ell ny = x\ell n \sin x = \frac{\ell n \sin x}{\frac{1}{x}}.$$

Вычислим предел логарифма данной функции, применяя правило Лопиталя (здесь имеем неопределенность вида $\frac{\infty}{\infty}$) :

$$\lim_{x \to 0} \ell n y = \lim_{x \to 0} \frac{\ell n \sin x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{\cos x}{\sin x}}{-\frac{1}{x^2}} = -\lim_{x \to 0} \frac{x^2 \cos x}{\sin x} = -\lim_{x \to 0} \left(x \cos x \frac{x}{\sin x} \right)$$

= 0. Следовательно, $\lim_{x \to 0} y = e^0 = 1$.

6.
$$\lim_{x \to \frac{\pi}{2}} (tgx)^{2\cos x}$$

Это – неопределенность вида ∞^0 . Положим (tg x) $^{2\cos x} = y$ и прологарифмируем: $\ln y = 2\cos x \cdot \ln tg$ $x = \frac{2\ln tgx}{\cos x}$.

Применяя правило Лопиталя, получим

$$\lim_{x \to \frac{\pi}{2}} \ln \ln y = 2 \lim_{x \to \frac{\pi}{2}} \frac{\ln x}{\sec x} = 2 \lim_{x \to \frac{\pi}{2}} \frac{\frac{\sec^2 x}{tgx}}{\sec x tgx} = 2 \lim_{x \to \frac{\pi}{2}} \frac{\sec x}{tg^2 x} = 2 \lim_{x \to \frac{\pi}{2}} \frac{\sec x tgx}{2tgx \sec^2 x} = \frac{2 \lim_{x \to \frac{\pi}{2}} \frac{\sec x tgx}{2tgx \sec^2 x}}{2tgx \sec^2 x} = \frac{\lim_{x \to \frac{\pi}{2}} \cos x = 0}{\lim_{x \to \frac{\pi}{2}} \sin x}, \text{ T. e. } \lim_{x \to \frac{\pi}{2}} y = e^0 = 1.$$

$$7. \lim_{x \to 0} (1+x)^{\ln x}.$$

Это — неопределенность вида 1^{∞} . Логарифмируя и применяя правило Лопиталя, получим

$$\lim_{x \to 0} \ln \ln x = \lim_{x \to 0} (\ln x \ln(1+x)) = \lim_{x \to 0} \frac{\ln \ln(1+x)}{\frac{1}{\ln x}} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{-\frac{1}{x \ln^2 x}} = -\lim_{x \to 0} \frac{x \ln^2 x}{x+1}$$

$$= -\lim_{x \to 0} \frac{\ln x}{1+\frac{1}{x}} = -\lim_{x \to 0} \frac{2\ln x}{-\frac{1}{x^2}} = 2\lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = 2\lim_{x \to 0} \frac{\frac{1}{1+x}}{\frac{1}{x}} = 0.$$

Таким образом, $\lim_{x\to 0} y = e^0 = 1$.

Контрольная работа

1.
$$\lim_{x \to -2} \frac{x^3 + 3x + 1}{x^2 - x - 1}$$

3.
$$\lim_{x \to \infty} \frac{x^3 + 5x^2 + 7x + 3}{x^2 + 2x + 1}$$

5.
$$\lim_{x \to -2} \left(x^3 + 3x^2 \right)$$

7.
$$\lim_{x \to 4} \frac{x^2 - 2x}{x - 3}$$

9.
$$\lim_{x\to 2} \frac{5x^2-2x+4}{(x-1)(x+1)}$$

11.
$$\lim_{x \to \infty} \frac{2x^3 + x}{x^3 - 1}$$

13.
$$\lim_{x \to 2} \frac{x^2 + x + 2}{x^2 + 2x + 8}$$

15.
$$\lim_{x\to 2} \frac{x^2-4}{x^2-2x}$$

17.
$$\lim_{x\to 3} \left(5x^2 - 6x + 7\right)$$

19.
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 3x}$$

21.
$$\lim_{x \to \sqrt{2}} \frac{x^4 - 4x^2 + 4}{x^3 - 2x}$$

23.
$$\lim_{x \to \infty} \frac{2x^3 - 3x^2 + 5x + 7}{3x^3 + 4x^2 - x + 2}$$

25.
$$\lim_{x \to \infty} \frac{5x^3 + x - 1}{2x^3 + 5x^2}$$

$$27. \lim_{x \to \infty} \frac{\sqrt{x^2 + 4}}{x}$$

2.
$$\lim_{x \to 1} \frac{3x^2 + x - 4}{5x - x^2 - 4}$$

4.
$$\lim_{x \to 1} \frac{x^{100} - 1}{x^5 - 1}$$

6.
$$\lim_{x\to 2} \left(3x^2 - 2x\right)$$

8.
$$\lim_{x \to 5} \frac{7x-5}{10+2x}$$

10.
$$\lim_{x\to 0} \frac{\sqrt{x^2+2}}{2-\sqrt{x}}$$

12.
$$\lim_{x\to 3} (x^2 - 7x + 4)$$

14.
$$\lim_{x\to 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{5x}$$

16.
$$\lim_{x \to -2} \frac{2x^2 + 7x + 6}{(x+2)^2}$$

18.
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x - 2}$$

20.
$$\lim_{x \to -2} \frac{x^4 - 16}{x + 2}$$

22.
$$\lim_{x \to 1} \frac{x^4 + 2x^2 - 3}{x^2 - 3x + 2}$$

24.
$$\lim_{x \to \infty} \frac{x^2 - 5x + 8}{2x^3 - x + 1}$$

26.
$$\lim_{x \to \infty} \frac{4x^3 + x^2 - 2}{3x^2 + 5x - 2}$$

$$28. \lim_{x \to \infty} \frac{3x}{\sqrt{x^2 - 2x + 3}}$$

29.
$$\lim_{x \to \infty} \frac{3x^2 + 5x + 1}{x^2 - 2}$$

31.
$$\lim_{x \to \infty} \frac{x^2 + 8x - 1}{x^5 + 7x^3 + 11}$$

33.
$$\lim_{x \to 0} \frac{3tgx}{x}$$

$$35. \lim_{x \to 0} \frac{\sin 2x}{x}$$

$$37. \lim_{x \to 0} \frac{\sin 6x}{\sin 2x}$$

39.
$$\lim_{x\to\infty} \left(1+\frac{2}{x}\right)^{3x}$$

41.
$$\lim_{x\to\infty} \left(\frac{x+2}{x}\right)^{2x}$$

43.
$$\lim_{x \to \infty} \left(1 + \frac{2}{3x} \right)^{3x}$$

45.
$$\lim_{x\to 0,1} \frac{5x+4}{1-x}$$

47.
$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 + 5x - 2}$$

49.
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 3x + 2}$$

51.
$$\lim_{x \to 1,5} \frac{2x^2 - x - 3}{2x^2 - 5x + 3}$$

53.
$$\lim_{x \to -0.5} \frac{2x^2 - 7x - 4}{-2x^2 + 5x + 3}$$

55.
$$\lim_{x \to 4} \frac{16 - x^2}{x^3 - 64}$$

30.
$$\lim_{x\to\infty} \frac{2x^3-x+5}{3x^3+7x+1}$$

32.
$$\lim_{x\to\infty} \left(\sqrt{x+1} - \sqrt{x}\right)$$

34.
$$\lim_{x \to 0} \frac{tg \, 2x}{x}$$

$$36. \lim_{x \to 0} \frac{\sin 17x}{8x}$$

38.
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x}$$

40.
$$\lim_{x\to 0} \left(\frac{3+x}{3}\right)^{\frac{1}{x}}$$

42.
$$\lim_{x\to\infty} \left(1+\frac{5}{x}\right)^x$$

44.
$$\lim_{x\to\infty} \left(1+\frac{2}{5x}\right)^x$$

46.
$$\lim_{x\to 2} \frac{x^3 - 4x + 5}{x^2 + 6}$$

48.
$$\lim_{x\to 64} \left(2\sqrt[3]{x} - \sqrt[3]{x^2} + 5\right)$$

50.
$$\lim_{x\to 0} \frac{3-\sqrt{x}+9}{x}$$

52.
$$\lim_{x \to -1} \frac{3x^2 + 2x - 1}{-x^2 + x + 2}$$

54.
$$\lim_{x \to 3} \frac{3x^2 - 11x + 6}{2x^2 - 5x - 3}$$

56.
$$\lim_{x\to 2} \frac{x^3-8}{x^2+x-6}$$

57.
$$\lim_{x \to \frac{1}{3}} \frac{3x^2 + 2x - 1}{27x^3 - 1}$$

59.
$$\lim_{x \to 3} \frac{\sqrt{2x+3}-3}{3-x}$$

61.
$$\lim_{x \to -2} \frac{2 - \sqrt{6 + x}}{\sqrt{7 - x} - 3}$$

63.
$$\lim_{x \to -1} \frac{x+1}{x+\sqrt{x+2}}$$

65.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

67.
$$\lim_{x \to \infty} \frac{x^2 - 4x + 3}{x + 5}$$

69.
$$\lim_{x \to \infty} \frac{2x^2 + 7x - 1}{3x^2 - 5x + 6}$$

71.
$$\lim_{x \to 3} \frac{3x^3 - 4x^2 + 8}{-5x^3 + 2x^2 + x}$$

73.
$$\lim_{x \to -3} \left(\frac{1}{x+3} - \frac{6}{9-x^2} \right)$$

75.
$$\lim_{x \to \infty} \left(x - \frac{x^3}{x^2 + 1} \right)$$

77.
$$\lim_{x \to 0} \frac{\sin 7x}{\sin 3x}$$

79.
$$\lim_{x\to\infty} \left(\frac{x^2}{x+3} - x \right)$$

81.
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$$

83.
$$\lim_{x \to -1} \frac{x^2 - 4x - 5}{x^2 - 2x - 3}$$

58.
$$\lim_{x\to 0} \frac{x}{\sqrt{x+4}-2}$$

60.
$$\lim_{x \to 1} \frac{\sqrt{x} - \sqrt{2 - x}}{x - 1}$$

62.
$$\lim_{x\to 2} \frac{\sqrt{4x+1}-3}{\sqrt{x+2}-2}$$

64.
$$\lim_{x \to 4} \frac{x - \sqrt{3x + 4}}{16 - x^2}$$

66.
$$\lim_{x \to 64} \frac{\sqrt{x} - 8}{4 - \sqrt[3]{x}}$$

68.
$$\lim_{x \to \infty} \frac{x^2 - 2x + 5}{x^3 + 3x + 7}$$

70.
$$\lim_{x\to\infty} \frac{x^4 + 2x^3 - 1}{100x^3 + 2x^2}$$

72.
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right)$$

74.
$$\lim_{x \to 1} \left(\frac{3}{x^3 - 1} - \frac{1}{x - 1} \right)$$

76.
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{12}{x^3-8} \right)$$

78.
$$\lim_{x\to 0} \frac{\sin 10\pi x}{tg5x}$$

80.
$$\lim_{x\to 0} \frac{x^3 - x^2 + 2x}{x^2 + x}$$

82.
$$\lim_{x\to 3} \frac{3-x}{x^3-27}$$

84.
$$\lim_{x\to\infty} \left(\sqrt{x+5} - \sqrt{x}\right)$$

85.
$$\lim_{x \to \infty} \left(\sqrt{2x+1} - \sqrt{x+2} \right)$$

87.
$$\lim_{x \to \infty} \left(\sqrt{4x^2 + 3x} - 2x \right)$$

89.
$$\lim_{x\to\infty} \left(\sqrt{4x-1}-x\right)$$

91.
$$\lim_{x\to 0} \frac{x^2-2}{x+3}$$

93.
$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 - 5x + 2}$$

95.
$$\lim_{x \to 1} \frac{x^{10} - 1}{x^3 - 1}$$

97.
$$\lim_{x\to 8} \frac{\sqrt[3]{x}-2}{x^2-7x-8}$$

99.
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

101.
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

103.
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right)$$

105.
$$\lim_{x \to \frac{\pi}{4}} \frac{1 + \sin 2x}{1 - \cos 4x}$$

107.
$$\lim_{x \to \pi} \frac{tgx}{\sin 2x}$$

109.
$$\lim_{x\to 2} \frac{x-2}{x^2-3x+2}$$

111.
$$\lim_{x\to 0} \frac{x}{\sqrt{1+3x}-1}$$

113.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

86.
$$\lim_{x\to\infty} \left(\sqrt{x^2 + 10x} - x \right)$$

88.
$$\lim_{x \to \infty} (x - \sqrt{2x - 3})$$

90.
$$\lim_{x\to\infty} \left(x - \sqrt{x^2 + 7x}\right)$$

92.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2}$$

94.
$$\lim_{x\to 0} \left(\frac{(1+5x)^7 - (1+7x)^5}{x^2} \right)$$

96.
$$\lim_{x\to 2} \frac{\sqrt{x}-\sqrt{2}}{x^2-4}$$

98.
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$

$$100. \lim_{x \to 0} \frac{\sin 5x}{\sin 7x}$$

102.
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$

104.
$$\lim_{x\to 2} \frac{x^2-4x+1}{2x+1}$$

$$106. \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\cos 2x}$$

108.
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

110.
$$\lim_{x\to 3} \frac{x^2-9}{x^2-2x-3}$$

112.
$$\lim_{x \to a} \frac{\sqrt{ax} - x}{x - 2}$$

114.
$$\lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt{1-x}}{x}$$

115.
$$\lim_{x\to 0} \frac{\sqrt{x+1} - \sqrt{1-x}}{x}$$

117.
$$\lim_{x \to \infty} \frac{2x^2 - 1}{3x^2 - 4x}$$

119.
$$\lim_{x \to -2} \frac{3x+6}{x^3+8}$$

121.
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^3 + 1}$$

123.
$$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$$

125.
$$\lim_{x \to -2} \left(\frac{1}{x+2} + \frac{4}{x^2 - 4} \right)$$

127.
$$\lim_{x\to 2} \frac{4x^2 + 3x - 1}{x + 5}$$

129.
$$\lim_{x \to 3} \frac{x+7}{8-x}$$

131.
$$\lim_{x \to 1} \frac{2x+1}{x-4}$$

133.
$$\lim_{x\to 2} \frac{x^2 - 3x + 1}{x - 3}$$

135.
$$\lim_{x \to 2} \frac{x^2 - 4}{x + 8}$$

137.
$$\lim_{\alpha \to -1} \frac{5 + 2\alpha^2 - \alpha}{\alpha^2 + 3\alpha - 2}$$

139.
$$\lim_{x \to \sqrt{3}} \left(2 - x^2 + x\sqrt{3} \right)$$

141.
$$\lim_{x \to -2} \left(4 + \frac{x}{2} \right)$$

143.
$$\lim_{a \to 3} \frac{a^2 + 3a - 3}{6 - a}$$

116.
$$\lim_{x \to \pi} \frac{\sqrt{1 - tgx} - \sqrt{1 + tgx}}{\sin 2x}$$

118.
$$\lim_{x \to \infty} \frac{5x^3 - 7x}{1 - 2x^3}$$

120.
$$\lim_{x \to 3} \frac{9-x^2}{\sqrt{3x}-3}$$

122.
$$\lim_{x \to \infty} \frac{5x^2 - 3x + 2}{2x^2 + 4x + 1}$$

124.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - x \right)$$

126.
$$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + 2x}$$

128.
$$\lim_{x \to 2} \frac{5+x}{2-x}$$

130.
$$\lim_{x \to 7} \frac{x-2}{x+3}$$

132.
$$\lim_{x\to 0} \frac{3-2x}{2+x}$$

134.
$$\lim_{x \to 1} \frac{x-1}{x+3}$$

136.
$$\lim_{x \to -2} \frac{x+2}{x-5}$$

138.
$$\lim_{x \to 2} \frac{3x - x^2}{x + 8}$$

140.
$$\lim_{x \to 3} \frac{x^2 - 10x + 21}{x^2 + 1}$$

142.
$$\lim_{a \to 4} \frac{4-a}{a+1}$$

144.
$$\lim_{a \to -3} \frac{a+3}{a-3}$$

145.
$$\lim_{a\to 4} \frac{a^2-16}{a+5}$$

147.
$$\lim_{x\to 0} \frac{1+x-x^2}{2x^2+5x+4}$$

149.
$$\lim_{x\to 0} \frac{1+x+x^2}{9-x}$$

151.
$$\lim_{x\to 0} \left(2^x + 3x + 1\right)$$

153.
$$\lim_{a \to 2} \frac{a^2 - a - 2}{a + 7}$$

155.
$$\lim_{a \to 0,5} \frac{1+2a}{2a-1}$$

157.
$$\lim_{x \to \pi} \frac{\sin^2 x}{\sin 2x}$$

159.
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

161.
$$\lim_{x\to 2} \frac{2x-4}{x^2-3x+2}$$

163.
$$\lim_{a \to 4} \frac{a^3 - 64}{a^2 - 16}$$

165.
$$\lim_{x \to 3} \frac{27 - x^3}{x^2 - 9}$$

167.
$$\lim_{a \to 3} \frac{a^3 - 5a^2 + 6a}{a^2 - 3a}$$

169.
$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2\sqrt{x}}{x-1}$$

171.
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{9-x}$$

146.
$$\lim_{a \to \sqrt{5}} \frac{a^2 - 5}{a + 1}$$

148.
$$\lim_{x\to 0} \frac{1+3x+x^2}{x+2}$$

150.
$$\lim_{x \to 6} \frac{x^2 + 5x + 6}{x^2 + 4x - 12}$$

152.
$$\lim_{x \to \frac{\pi}{6}} \frac{tg \, 2x}{x}$$

154.
$$\lim_{x \to \frac{\pi}{6}} \frac{\sin x}{x}$$

156.
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 16}$$

158.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

160.
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 5x + 6}$$

162.
$$\lim_{x\to 2} \frac{8-x^3}{x-2}$$

164.
$$\lim_{a \to 2} \frac{2 + a - a^2}{4 - a^2}$$

166.
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 3x + 2}$$

168.
$$\lim_{x\to 8} \frac{4-\sqrt{2x}}{x-8}$$

170.
$$\lim_{x \to 1} \frac{\sqrt{x+1} - 2\sqrt{x-2}}{9 - x^2}$$

172.
$$\lim_{x\to 3} \frac{x^2-9}{x^2-6x+9}$$

173.
$$\lim_{x\to 0} \frac{x+x^2+x^3}{x^4+x^3-x^2}$$

175.
$$\lim_{x \to \infty} \frac{x^2 + 12x - 4}{x^3 + 6x}$$

177.
$$\lim_{x \to \infty} \frac{x^2 - x + 14}{3x^2 - 3x + 1}$$

179.
$$\lim_{x \to \infty} \frac{x^4 - x^3 + 7x + 1}{2 - x + x^3}$$

181.
$$\lim_{x \to \infty} \frac{6x^2 + 7x - 1}{2x^2 - x + 5}$$

183.
$$\lim_{x \to \infty} \frac{4x - x^2 - x^3}{x^4 - x^2 + 11x + 7}$$

185.
$$\lim_{x \to \infty} \left(\frac{x+5}{x} \right)^{2x}$$

187.
$$\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{2x}$$

189.
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 8x + 15}$$

191.
$$\lim_{y \to -2} \frac{y^3 + 3y^2 + 2y}{y^2 - y - 6}$$

193.
$$\lim_{x\to 0} \frac{\sqrt{x^2+4}-2}{\sqrt{x^2+9}-3}$$

195.
$$\lim_{x \to \infty} \left(\frac{x-3}{x} \right)^x$$

197.
$$\lim_{x \to \infty} \frac{2x^2 - 4x + 5}{x^3 + 4}$$

174.
$$\lim_{x \to \infty} \frac{x^2 + 3x - 5}{2x + 17}$$

176.
$$\lim_{x \to \infty} \frac{x^5 + 3}{x^4 + 10x^3 + 100x^2}$$

178.
$$\lim_{x \to \infty} \frac{x - x^2 + 5x^3}{3x + x^3 - 12}$$

180.
$$\lim_{x \to \infty} \frac{x + x^2 + 2x^3}{x^3 - 2x^2 + 4x - 1}$$

182.
$$\lim_{x \to \infty} \frac{x^3 - x}{x^2 + 4x}$$

184.
$$\lim_{x \to \infty} \frac{x^2 - x}{x^2 + 4x}$$

186.
$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x$$

188.
$$\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{ex}$$

190.
$$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

192.
$$\lim_{x\to 4} \frac{x^3-64}{x-4}$$

$$194. \quad \lim_{x \to \infty} \left(1 + \frac{2}{3x} \right)^x$$

196.
$$\lim_{x\to 0} \frac{x^2}{\sqrt{x^2+1}-1}$$

$$198. \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{3}\right)}{x^2}$$

Используемая литература:

- 1. Богомолов Н.В. Практические занятия по математике. М., 2000.496 с.
- 2. Богомолов Н.В., Самойленко П.И. Сборник дидактических заданий по математике. М., 2005.236 с.
- 3. Лисичкин В.Т., Соловейчик И.Л. Математика. М., 1991.480 с.
- 4. Минорский В.П. Сборник задач по высшей математике. М., 1997.352 с.
- 5. Рогов А.Т. Задачник по высшей математике для техникумов. М., 1973.250 с.
- 6. Подольский В.А., Суходский А.М. Сборник задач по математике. М., 1999.496 с.
- 7. Яковлев Г.Н. Алгебра и начала анализа. М., 1978.336с.
- 8. Пехлецкий И.Д. Математика. М., 2003.300 с.
- 9. Гусак А.А. Математический анализ и дифференциальные уравнения. Минск, 2003.416 с.
- 10. Данко П.Е., Попов А.Г. Высшая математика в упражнениях и задачах. М., 2003.304 с.

Для заметок.	
,	
,	