Demo Supongamos que M=P. Luego, Muéris resulta insatisfacible, pues cualquier interpretación que satisface a M no puede al mismo tiempo hacer verdadera a f y su negación rf. Como ya probamos que consistente => satisfacible, vale el contrarrecíproco insatisfacible => inconsistente. Entonces Muéris insatisfacible => Muéris inconsistente.	Teor	ema	de	Com	plet	itu	d												
Ya probamos que: • [consistente sii [satisfacible • [u { r p} es inconsistente sii [r +] Teorema: Si [= p entonces [r +]. Demo Supongamos que [= p. Luego, [ru { r p} resulta insatisfacible, pues cualquier interpretación que satisface a [no puede al mismo tiempo hacer verdadera a l y su negación rf. Como ya probamos que consistente => satisfacible, vale el contrarrecíproco insatisfacible => inconsistente. Entonces [ru { r p} insatisfacible => [ru { r p} inconsistente.	S; F	7⊨ ₹	en	-onc	es	۲۲	.₽.												
Profishente sii Proatisfacible Profishente sii Profishente si																			
Tuétè es inconsistente sii PH Teorema: Si PEP entonces PH. Demo Supongamos que PEP. Luego, Puétè resulta insatisfacible, pues cualquier interpretación que satisface a P no puede al mismo tiempo hacer verdadera a f y su negación th. Como ya probamos que consistente ⇒ satisfacible, vale el contrarrecíproco insatisfacible ⇒ inconsistente. Entonces Puétè insatisfacible ⇒ Puétê inconsistente.	Ya F	>robo	Mo!	s ģ	rue:														
Teorema: Si [] = P entonces [] + P. Demo Supongamos que [] = P. Luego, [] 2713 resulta insatisfacible, pues cualquier interpretación que satisface a [] no puede al mismo tiempo hacer verdadema a P y su negación 7P. Como ya probamos que consistente => satisfacible, vale el contrarrecíproco insatisfacible => inconsistente. Entonces [] u { 7 } insatisfacible => [] u { 7 } inconsistente. Por último, si [] u { 7 } inconsistente entonces [] + P.													_ P						
Supongamos que l'= f. Luego, l'uérf3 resulta insatisfacible, pues cualquier interpretación que satisface a l' no puede al mismo tiempo hacer verdadera a f y su negación rf. Como ya probamos que consistente => satisfacible, vale el contrarrecíproco insatisfacible => inconsistente. Entonces l'uérf3 insatisfacible => l'uérf3 inconsistente.	Teore	гма	: Si	7	F P	en	tono	ces	7	۲ ۲	•								
pues cualquier interpretación que satisface a 17 no puede al mismo tiempo hacer verdadera a 1 y su negación 71. Como ya probamos que consistente => satisfacible, vale el contrarrecíproco insatisfacible => inconsistente. Entonces 17 u { -13 insatisfacible => 17 u { -13 inconsistente.	Demo	,																	
contrarreciproco insatisfacible \Rightarrow inconsistente. Entonces $\Gamma \cup \{-1\}$ insatisfacible $\Rightarrow \Gamma \cup \{-1\}$ inconsistente.	pues	cua) qui e	er	inte	st bt	·et(zcio	'n	que	So	ctist	Face	ટ ૦	. 7	No	ρu		
アッシャチ insatisfacible => アッシャチ inconsistente.						•										-		. el	
Por último, si Muzzpz inconsistente entonces MH.			'													on c	es		
	Por ú	ltimo	, si	۲۷	£7f	کے آا	NCO1	nsis	.ten	le	en	ton	ces	Γ.	' ⊢ ∤	•			