Profile HMM for multiple sequences

Pair HMM

HMM for pairwise sequence alignment, which incorporates affine gap scores.

"Hidden" States

- Match (M)
- Insertion in x (X)
- insertion in y (Y)

Observation Symbols

- Match (M): {(a,b)| a,b in ∑ }.
- Insertion in x (X): {(a,-)| a in ∑ }.
- Insertion in y (Y): {(-,a)| a in ∑ }.

Alignment: a path → a hidden state sequence

A T - G T T A T A T C G T - A C

M M Y M M X M M

Pair HMMs

Multiple sequence alignment (Globin family)

```
Helix
                     AAAAAAAAAAAAAA
                                       HBA HUMAN
              -----VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN
          -----VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTORFFESF
MYG PHYCA
          -----VLSEGEWOLVLHVWAKVEA--DVAGHGODILIRLFKSHPETLEKFDRF
GLB3_CHITP -----LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU -----GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI -----GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus
                    Ls.... vaWkv. .
                                            g . L., f . P .
Helix
              DDDDDDDEEEEEEEEEEEEEEEEE
HBA HUMAN
          -DLS----HGSAOVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-
HBB HUMAN
          GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG PHYCA
          KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAOSHATKH-
GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLB5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus
                   ... v...Hg kv. a a...l
Helix
           FFGGGGGGGGGGGGGGG
                                    НИНИНИНИНИНИНИНИНИНИНИНИНИ
HBA HUMAN
          -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-----
HBB HUMAN
          -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYOKVVAGVANALAHKYH-----
MYG PHYCA
          -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP --VTHDOLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM--
GLB5_PETMA -QVDPQYFKVLAAVIADTVAAG------DAGFEKLMSMICILLRSAY----
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---
GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS-----
Consensus
                   1 . .. ....
                                       . aa. k. .
                                                     l sky
```

Profile model (PSSM)

- A natural probabilistic model for a conserved region would be to specify independent probabilities e_i(a) of observing nucleotide (amino acid) a in position i
- The probability of a new sequence x according to this model is

$$P(x \mid M) = \prod_{i=1}^{L} e_i(x_i)$$

Profile / PSSM

- •DNA / proteins Segments of the same length L;
- Often represented as Positional frequency matrix;

LTMTRGDIGNYLGLTVETISRLLGRFQKSGML
LTMTRGDIGNYLGLTVETISRLLGRFQKSGMI
LTMTRGDIGNYLGLTVETISRLLGRFQKSEIL
LTMTRGDIGNYLGLTVETISRLLGRLQKMGIL
LAMSRNEIGNYLGLAVETVSRVFSRFQQNELI
LAMSRNEIGNYLGLAVETVSRVFTRFQQNGLI
LPMSRNEIGNYLGLAVETVSRVFTRFQQNGLL
VRMSREEIGNYLGLTLETVSRLFSRFGREGLI
LRMSREEIGSYLGLKLETVSRTLSKFHQEGLI
LPMCRRDIGDYLGLTLETVSRALSQLHTQGIL
LPMSRRDIADYLGLTVETVSRAVSQLHTDGVL
LPMSRQDIADYLGLTIETVSRTFTKLERHGAI

Searching profiles: inference

 Give a sequence S of length L, compute the likelihood ratio of being generated from this profile vs. from background model:

$$- R(S|P) = \prod_{i=1}^{L} \frac{e_i(x_i)}{b_s}$$

Searching motifs in a sequence: sliding window approach

Match states for profile HMMs

- Match states
 - Emission probabilities

$$e_{M_i}(a)$$

Components of profile HMMs

- Insert states $e_{I_i}(a)$
 - Emission prob.
 - Usually back ground distribution q_a .
 - Transition prob.
 - M_i to I_i , I_i to itself, I_i to M_{i+1}

Components of profile HMMs

- Delete states
 - No emission prob.
 - Cost of a deletion
 - $M \rightarrow D$, $D \rightarrow D$, $D \rightarrow M$
 - Each D→D might be different

Full structure of profile HMMs

Deriving HMMs from multiple alignments

- Key idea behind profile HMMs
 - Model representing the consensus for the alignment of sequence from the same family
 - Not the sequence of any particular member

```
HBA_HUMAN ...VGA--HAGEY...

HBB_HUMAN ...V----NVDEV...

MYG_PHYCA ...VEA--DVAGH...

GLB3_CHITP ...VKG-----D...

GLB5_PETMA ...VYS--TYETS...

LGB2_LUPLU ...FNA--NIPKH...

GLB1_GLYDI ...IAGADNGAGV...

*** *****
```

Deriving HMMs from multiple alignments

- Basic profile HMM parameterization
 - Aim: making the higher probability for sequences from the family
- Parameters
 - the probabilities values : trivial if many of independent alignment sequences are given.

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$
 $e_k(a) = \frac{E_k(a)}{\sum_{a'} E_k(a')}$

length of the model: heuristics or systematic way

Sequence conservation: entropy profile of the emission probability distributions

Searching with profile HMMs

- Main usage of profile HMMs
 - Detecting potential sequences in a family
 - Matching a sequence to the profile HMMs
 - Viterbi algorithm or forward algorithm
 - Comparing the resulting probability with random model

$$P(x \mid R) = \prod_{i} q_{x_i}$$

Searching with profile HMMs

Viterbi algorithm (optimal log-odd alignment)

$$V_{j}^{M}(i) = \log \frac{e_{M_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} V_{j-1}^{M}(i-1) + \log a_{M_{j-1}M_{j}}, \\ V_{j-1}^{I}(i-1) + \log a_{I_{j-1}M_{j}}, \\ V_{j-1}^{D}(i-1) + \log a_{D_{j-1}M_{j}}; \end{cases}$$

$$V_{j}^{I}(i) = \log \frac{e_{I_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} V_{j}^{M}(i-1) + \log a_{M_{j}I_{j}}, \\ V_{j}^{I}(i-1) + \log a_{I_{j}I_{j}}, \\ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}}; \end{cases}$$

$$V_{j}^{D}(i) = \max \begin{cases} V_{j-1}^{M}(i) + \log a_{M_{j-1}D_{j}}, \\ V_{j-1}^{I}(i) + \log a_{I_{j-1}D_{j}}, \\ V_{j-1}^{D}(i) + \log a_{D_{j-1}D_{j}}; \end{cases}$$

Searching with profile HMMs

Forward algorithm: summing over all potent alignments

$$\begin{split} F_{j}^{\mathrm{M}}(i) &= \log \frac{e_{\mathrm{M}_{j}}(x_{i})}{q_{x_{i}}} + \log[a_{\mathrm{M}_{j-1}\mathrm{M}_{j}} \exp(F_{j-1}^{\mathrm{M}}(i-1)) \\ &+ a_{\mathrm{I}_{j-1}\mathrm{M}_{j}} \exp(F_{j-1}^{\mathrm{I}}(i-1)) + a_{\mathrm{D}_{j-1}\mathrm{M}_{j}} \exp(F_{j-1}^{\mathrm{D}}(i-1))]; \\ F_{j}^{\mathrm{I}}(i) &= \log \frac{e_{\mathrm{I}_{j}}(x_{i})}{q_{x_{i}}} + \log[a_{\mathrm{M}_{j}\mathrm{I}_{j}} \exp(F_{j}^{\mathrm{M}}(i-1)) \\ &+ a_{\mathrm{I}_{j}\mathrm{I}_{j}} \exp(F_{j}^{\mathrm{I}}(i-1)) + a_{\mathrm{D}_{j}\mathrm{I}_{j}} \exp(F_{j}^{\mathrm{D}}(i-1))]; \\ F_{j}^{\mathrm{D}}(i) &= \log[a_{\mathrm{M}_{j-1}\mathrm{D}_{j}} \exp(F_{j-1}^{\mathrm{M}}(i)) + a_{\mathrm{I}_{j-1}\mathrm{D}_{j}} \exp(F_{j-1}^{\mathrm{I}}(i)) \\ &+ a_{\mathrm{D}_{j-1}\mathrm{D}_{j}} \exp(F_{j-1}^{\mathrm{D}}(i))]; \end{split}$$

Variants for non-global alignments

- Local alignments (flanking model)
 - Emission prob. in flanking states use background values q_a .
 - Looping prob. close to 1, e.g. (1- η) for some small η .

Variants for non-global alignments

- Overlap alignments
 - Only transitions to the first model state are allowed.
 - When expecting to find either present as a whole or absent
 - Transition to first delete state allows missing first residue

Variants for non-global alignments

- Repeat alignments
 - Transition from right flanking state back to random model
 - Can find multiple matching segments in query string

Estimation of prob.

- Maximum likelihood (ML) estimation
 - given observed freq. c_{ja} of residue a in position j.

$$e_{M_j}(a) = \frac{c_{ja}}{\sum_{a'} c_{ja'}}$$

- Simple pseudocounts
 - $-q_a$: background distribution
 - A: weight factor

$$e_{M_{j}}(a) = \frac{c_{ja} + Aq_{a}}{A + \sum_{a'} c_{ja'}}$$

Optimal model construction: mark columns

(a) Multiple alignment:

(b) Profile-HMM architecture:

(c) Observed emission/transition counts

Optimal model construction

- MAP (match-insert assignment)
 - Recursive calculation of a number S_i
 - S_j : log prob. of the optimal model for alignment up to and including column j, assuming j is marked.
 - S_j is calculated from S_i and summed log prob. between i and j.
 - T_{ij} : summed log prob. of all the state transitions between marked i and j.

$$T_{ij} = \sum_{x, y \in M, D, I} c_{xy} \log a_{xy}$$

 $-c_{xy}$ are obtained from partial state paths implied by marking i and j.

Optimal model construction

- Algorithm: MAP model construction
 - Initialization:

•
$$S_0 = 0, M_{L+1} = 0.$$

- Recurrence: for j = 1,..., L+1:

$$\begin{split} S_{j} &= \max_{0 \leq i < j} S_{i} + T_{ij} + M_{j} + I_{i+1,j-1} + \lambda; \\ \sigma_{j} &= \arg\max_{0 \leq i \neq i} S_{i} + T_{ij} + M_{j} + I_{i+1,j-1} + \lambda; \end{split}$$

- Traceback: from $j = \sigma_{L+1}$, while $\sigma_j > 0$:
 - Mark column j as a match column
 - $j = \sigma_i$.

Weighting training sequences

- Input sequences are random?
- "Assumption: all examples are independent samples" might be incorrect
- Solutions
 - Weight sequences based on similarity

Weighting training sequences

- Simple weighting schemes derived from a tree
 - Phylogenetic tree is given.
 - [Thompson, Higgins & Gibson 1994b]
 - [Gerstein, Sonnhammer & Chothia 1994]

$$\Delta w_i = t_n \frac{w_i}{\sum_{\text{leaves } k \text{ below } n} w_k}$$

Weighting training sequences

 $w_1: w_2: w_3: w_4 = 35:35:50:64$

 $I_1:I_2:I_3:I_4 = 20:20:32:47$

Multiple alignment by training profile HMM

- Sequence profiles could be represented as probabilistic models like profile HMMs.
 - Profile HMMs could simply be used in place of standard profiles in progressive or iterative alignment methods.
 - ML methods for building (training) profile HMM (described previously) are based on multiple sequence alignment.
 - Profile HMMs can also be trained from initially unaligned sequences using the Baum-Welch (EM) algorithm

Multiple alignment by profile HMM training-Multiple alignment with a known profile HMM

- Before we estimate a model and a multiple alignment simultaneously, we consider as simpler problem: derive a multiple alignment from a known profile HMM model.
 - This can be applied to align a large member of sequences from the same family based on the HMM model built from the (seed) multiple alignment of a small representative set of sequences in the family.

- Align a sequence to a profile HMM→Viterbi algorithm
- Construction a multiple alignment just requires calculating a Viterbi alignment for each individual sequence.
 - Residues aligned to the same match state in the profile HMM should be aligned in the same columns.

 Given a preliminary alignment, HMM can align additional sequences.

FPHF-DLS----HGSAQ FESFGDLSTFDAVNGNPK FDRFKHLKTEAEMKASED FTQFAG-KDLESIKGTAP FPKFKGLTTADOLKKSAD FS-FLK-GTSEVPQNNPE FG-FSG----AS---DPG

•	Position	1	2	3	4	5	6	insert	7	8	9	10	1 1
		F	P	Н	F	_	D	LS	Н	G	S	A	Q
		F	E	S	F	G	D	LSTPDAV	M	\mathbf{G}	Ν	P	K
		F	D	R	F	K	Н	LKTEAEM	K	Α	\mathbf{S}	E	D
		F	Τ	Q	F	A	G	KDLESI	K	G	\mathbf{T}	A	P
		F	P	K	F	K	G	LTTADQL	K	K	S	Α	D
		F	S	_	F	L	K	GTSEVP	Q	И	N	P	Ε
		F	G	-	F	S	G	AS	-	-	D	Р	G

- Important difference with other MSA programs
 - Viterbi path through HMM identifies inserts
 - Profile HMM does not align inserts
 - Other multiple alignment algorithms align the whole sequences.

```
FPHF-Dls....HGSAQ
FESFGDlstpdavMGNPK
FDRPKHlkteaemKASED
FTQFAGkdlesi.KGTAP
FPKFKGlttadqlKKSAD
FS-FLKgtsevp.QNNPE
FG-FSGas....-DPG
```

```
FS-FLKngvdptaai--NPK
FPHF-Dls.....HGSAQ
FESFGDlstpdav..MGNPK
FDRFKHlkteaem..KASED
FTQFAGkdlesi...KGTAP
FPKFKGlttadql..KKSAD
FS-FLKgtsevp...QNNPE
FG-FSGas....--DPG
```

Profile HMM training from unaligned sequences

Harder problem

- estimating both a model and a multiple alignment from initially unaligned sequences.
- Initialization: Choose the length of the profile HMM and initialize parameters.
- Training: estimate the model using the Baum-Welch algorithm (iteratively).
- Multiple Alignment: Align all sequences to the final model using the Viterbi algorithm and build a multiple alignment as described in the previous section.

Profile HMM training from unaligned sequences

Initial Model

- The only decision that must be made in choosing an initial structure for Baum-Welch estimation is the length of the model M.
- A commonly used rule is to set M be the average length of the training sequence.
- We need some randomness in initial parameters to avoid local maxima.

Multiple alignment by profile HMM training

- Avoiding Local maxima
 - Baum-Welch algorithm is guaranteed to find a LOCAL maxima.
 - Models are usually quite long and there are many opportunities to get stuck in a wrong solution.
 - Solution
 - Start many times from different initial models.
 - Use some form of stochastic search algorithm, e.g. simulated annealing.

Multiple alignment by profile HMM - similar to Gibbs sampling

- The 'Gibbs sampler' algorithm described by Lawrence et al.[1993] has substantial similarities.
 - The problem was to simultaneously find the motif positions and to estimate the parameters for a consensus statistical model of them.
 - The statistical model used is essentially a profile HMM with no insert or delete states.

Multiple alignment by profile HMM training-Model surgery

- We can modify the model after (or during) training a model by manually checking the alignment produced from the model.
 - Some of the match states are redundant
 - Some insert states absorb too many sequences
- Model surgery
 - If a match state is used by less than ½ of training sequences, delete its module (match-insert-delete states)
 - If more than ½ of training sequences use a certain insert state, expand it into n new modules, where n is the average length of insertions
 - ad hoc, but works well

Phylo-HMMs: model multiple alignments of syntenic sequences

- A phylo-HMM is a probabilistic machine that generates a multiple alignment, column by column, such that each column is defined by a phylogenetic model
- Unlike single-sequence HMMs, the emission probabilities of phylo-HMMs are complex distributions defined by phylogenetic models

Applications of Phylo-HMMs

- Improving phylogenetic modeling that allow for variation among sites in the rate of substitution (Felsenstein & Churchill, 1996; Yang, 1995)
- Protein secondary structure prediction (Goldman et al., 1996; Thorne et al., 1996)
- Detection of recombination from DNA multiple alignments (Husmeier & Wright, 2001)
- Recently, comparative genomics (Siepel, et. al. Haussler, 2005)

Phylo-HMMs: combining phylogeny and HMMs

- Molecular evolution can be viewed as a combination of two Markov processes
 - One that operates in the dimension of space (along a genome)
 - One that operates in the dimension of time (along the branches of a phylogenetic tree)
- Phylo-HMMs model this combination

Single-sequence HMM

$$\mathbf{X} = \mathtt{TAACGGCAGA}...$$

Phylo-HMM

Phylogenetic models

- Stochastic process of substitution that operates independently at each site in a genome
- A character is first drawn at random from the background distribution and assigned to the root of the tree; character substitutions then occur randomly along the tree branches, from root to leaves
- The characters at the leaves define an alignment column

Phylogenetic Models

 The different phylogenetic models associated with the states of a phylo-HMM may reflect different overall rates of substitution (e.g. in conserved and non-conserved regions), different patterns of substitution or background distributions, or even different tree topologies (as with recombination)

Phylo-HMMs: Formal Definition

- A phylo-HMM is a 4-tuple $\theta = (S, \psi, A, b)$:
 - $-|S| + \{S_1, \square, S_M\}$: set of hidden states
 - $-\psi + \{\psi_1, \Box \psi_M\}$: set of associated phylogenetic models
 - $-A = \{a_{i,k}\}$ $(1 \le j, k \le M)$: transition probabilities
 - $-p_{\overline{\Pi}}(b_1, \square, b_M)$: initial probabilities

The Phylogenetic Model

- $\psi_j = (Q_j, \pi_j, \tau_j, \beta_j)$:
 - $-Q_i$: substitution rate matrix
 - $-\pi_{i}$: background frequencies
 - $-\tau_i$: binary tree
 - $-\beta_i$: branch lengths

The Phylogenetic Model

- The model is defined with respect to an alphabet Σ whose size is denoted d
- The substitution rate matrix has dimension dxd
- The background frequencies vector has dimension d
- The tree has n leaves, corresponding to n extant taxa
- The branch lengths are associated with the tree

Probability of the Data

- Let X be an alignment consisting of L columns and n rows, with the ith column denoted X_i
- The probability that column X_i is emitted by state s_j is simply the probability of X_i under the corresponding phylogenetic model, $P(X_i | \psi_j)$
- This is the likelihood of the column given the tree, which can be computed efficiently using Felsenstein's "pruning" algorithm (which we will describe in later lectures)

Substitution Probabilities

- Felsenstein's algorithm requires the conditional probabilities of substitution for all bases a,b∈Σ and branch lengths t∈β_i
- The probability of substitution of a base b for a base a along a branch of length t, denoted $P(b \mid a, t, \psi_j)$ is based on a continuous-time Markov model of substitution, defined by the rate matrix Q_j

Substitution Probabilities

• In particular, for any given non-negative value t, the conditional probabilities $P(b \mid a, t, \psi_j)$ for all $a,b \in \Sigma$ are given the dxd matrix $P_j(t) = \exp(Q_j t)$, where

$$\exp(Q_j t) = \sum_{k=0}^{\infty} \frac{(Q_j t)^k}{k!}$$

Example: HKY model

$$\mathbf{Q}_{j} = \begin{pmatrix} - & \pi_{\mathrm{C},j} & \kappa_{j}\pi_{\mathrm{G},j} & \pi_{\mathrm{T},j} \\ \pi_{\mathrm{A},j} & - & \pi_{\mathrm{G},j} & \kappa_{j}\pi_{\mathrm{T},j} \\ \kappa_{j}\pi_{\mathrm{A},j} & \pi_{\mathrm{C},j} & - & \pi_{\mathrm{T},j} \\ \pi_{\mathrm{A},j} & \kappa_{j}\pi_{\mathrm{C},j} & \pi_{\mathrm{G},j} & - \end{pmatrix}$$

$$\pi_{j} = (\pi_{A,j}, \pi_{C,j}, \pi_{G,j}, \pi_{T,j})$$

 κ_j represents the transition/transversion rate ratio for ψ_j '-'s indicate quantities required to normalize each row.

State sequences in Phylo-HMMs

- A state sequence through the phylo-HMM is a sequence $\phi_{\mathbb{T}}(\phi_1, \square, \phi_L)$ such that $\phi_i \in S \ \forall 1 \leq i \leq L$
- The joint probability of a path and and alignment is

$$P(\phi, X \mid \theta) = \beta_{\phi_1} P(X_1 \mid \psi_{\phi_1}) \prod_{i=2}^{L} a_{\phi_{i-1}\phi_i} P(X_i \mid \psi_{\phi_i})$$

Phylo-HMMs

 The likelihood is given by the sum over all paths (forward algorithm)

$$P(X \mid \theta) = \sum_{\phi} P(\phi, X \mid \theta)$$

• The maximum-likelihood path is (Vertebi's)

$$= \operatorname{argmax}_{\phi} P(\phi, X \mid \theta)$$

Computing the Probabilities

- The likelihood can be computed efficiently using the forward algorithm
- The maximum-likelihood path can be computed efficiently using the Viterbi algorithm
- The forward and backward algorithms can be combined to compute the posterior probability

$$P(\phi_i = j \mid X, \theta)$$

Higher-order Markov Models for Emissions

- It is common with gene-finding HMMs to condition the emission probability of each observation on the observations that immediately precede it in the sequence
- For example, in a 3-rd-codon-position state, the emission of a base x_i ="A" might have a fairly high probability if the previous two bases are x_{i-2} ="G" and x_{i-1} ="A" (GAA=Glu), but should have zero probability if the previous two bases are x_{i-2} ="T" and x_{i-1} ="A" (TAA=stop)

Higher-order Markov Models for Emission

- Considering the N observations preceding each x_i corresponds to using an Nth order Markov model for emissions
- An Nth order model for emissions is typically parameterized in terms of (N+1)-tuples of observations, and conditional probabilities are computed as

$$P(x_i|x_{i-N},\ldots,x_{i-1}) = \frac{P(x_{i-N},\ldots,x_{i-1},x_i)}{\sum_{y} P(x_{i-N},\ldots,x_{i-1},y)}$$

Nth Order Phylo-HMMs

Probability of the *N*-tuple $P(\mathbf{X}_i|\mathbf{X}_{i-N+1},\dots,\mathbf{X}_{i-1}) = \frac{P(\mathbf{X}_{i-N+1},\dots,\mathbf{X}_{i-1},\mathbf{X}_i)}{\sum_{\mathbf{Y}}P(\mathbf{X}_{i-N+1},\dots,\mathbf{X}_{i-1},\mathbf{Y})}$

Sum over all possible alignment columns Y (can be calculated efficiently by a slight modification of Felsenstein's "pruning" algorithm)