CS109 – Data Science SVM, Performance evaluation

Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau

Announcements

- HW1 grades went out yesterday
- They are looking really good, well done everyone!

HW2 is due this Thursday!

- You should submit an executed notebook
- But please without pages of test output

Recap K-NN

- Keeps all training data
- Training is fast
- Prediction is slow

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector

$$w^T x = 0$$

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector

x: data point

• y: label $\in \{-1, +1\}$

w: weight vector

• b: bias

Need 2 things to specify hyperplane: w and b

$$w^T x + b = 0$$

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector
- b: bias

- + storage very small
- + prediction very fast but restricted: only a line

Perceptron

x described by 3 features

$$w^T x + b = 0$$

Perceptron

Perceptron History

- invented 1957
- by Frank Rosenblatt

 the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence. (NYT 1958)

(http://en.wikipedia.org/wiki/Perceptron

Perceptron.mp4

Side Note: Step vs Sigmoid Activation

$$s(x) = \frac{1}{1 + e^{-cx}}$$

The Critics

 1969: Minsky and Papert publish their book "Perceptrons"

 Very controversial book, some blame the book for causing the whole research area to stagnate.

The XOR Problem

= limitation of simple separating hyperplane

The XOR Problem

Support Vector Machine

 Widely used for all sorts of classification problems

 Some people say it is the best of the shelf classifier out there

Maximum Margin Classification

equally correct for the perceptron

Solution depends only on the support vectors!

but we still need sufficient training vectors because the support vectors are on the boundary -> they are the rare points

Maximum Margin Classification

$$\gamma^{(i)} = \left(\frac{w^T x^{(i)} + b}{||w||}\right)$$

Maximum Margin Classification

$$\gamma^{(i)} = y^{(i)}(w^T x + b)$$

$$\max_{\gamma,w,b} \quad \gamma$$
 s.t.
$$y^{(i)}(w^Tx^{(i)}+b) \geq \gamma, \quad i=1,\ldots,m$$

$$||w||=1.$$
 non-convex

This Is Kind of Odd

- Which data points do we care the most about? rare points
- What would those samples look like?

The SVM doesn't care about the ideal sample

Two Very Similar Problems

What about outliers?

ξ_i : slack variables

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2$$

subject to:

$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$

 $(i = 1, \dots, n)$

x1

If C large: no slack allowed -> equiv to previous method if C smaller: slack allowed

Two Very Similar Problems

Hard Margin (C = Infinity)

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Soft Margin (C = 10)

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

XOR problem revised

Did we add information to make the problem seperable? no extra measurements, no extra data

Non-Linear Decision Boundary

Input Space

Feature Space

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

Quadratic Kernel

$$x = (x_1, x_2)$$

$$\Phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\Phi(x) \cdot \Phi(z) = 1 + 2 \sum_{i=1}^{d} x_i z_i$$

$$+ \sum_{i=1}^{d} x_i^2 z_i^2 + 2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} x_i x_j z_i z_j$$

$$= (1 + x \cdot z)^2$$

you don't have to compute phi(x)!

Kernel Functions

$$K(x,z) = \Phi(x) \cdot \Phi(z)$$

Polynomial:

$$K(x,z) = (1 + x \cdot z)^s$$

Radial basis function (RBF):

$$K(x,z) = \exp(-\gamma(x-z)^2)$$

So what is the excitement?

So what is the excitement?

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_i x^{(i)^T} x^{(j)}$$

s.t. $\alpha_i \ge 0, i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

 $K(x^{(i)}, x^{(j)})$

 $\arg\min_{w,b} \frac{1}{2} ||w||^2$

s.t.
$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$

Prediction

$$w^T x + b = \sum_{i=1}^m \alpha_i y^{(i)} \langle x^{(i)}, x \rangle + b.$$

- Again we can use the kernel trick!
- Prediction speed depends on number of support vectors

The Miracle Explained

Andrew Ng does this really well

- http://cs229.stanford.edu/notes/cs229notes3.pdf
- Course is also on Youtube, ItunesU, etc.

Kernel Trick for SVMs

- Arbitrary many dimensions
- Little computational cost
- Maximal margin helps with curse of dimensionality

 Helps avoid overfitting

Face Recognition

pred: Colin Powell true: Colin Powell

pred: George W Bush true: George W Bush

pred: Tony Blair true: Tony_Blair

pred: George W Bush true: George W Bush

pred: Colin Powell true: Colin Powell

pred: Colin Powell true: Colin Powell

pred: Colin Powell true: Colin Powell

pred: George W Bush true: George W Bush

pred: George W Bush pred: Donald Rumsfeld

pred: Tony Blair true: Tony Blair

pred: George W Bush true: George W Bush

true: George W Bush true: Donald Rumsfeld

Face Recognition

- Load image data
- Put your test data aside
- Extract Eigenfaces
- Train SVM
- Evaluate performance

Red are cross validation steps

SVM_sign_language.mp4

Jhon Gonzalez

https://www.youtube.com/watch?v=cxHMgl2_5zg

more slack gamma=10^-1, C=10^-2 gamma=10^0, C=10^-2 gamma=10^1, C=10^-2 more degr of freedom gamma=10^-1, C=10^0 gamma=10^0, C=10^0 gamma=10^1, C=10^0 less smooth hyperplane gamma=10^-1, C=10^2 gamma=10^0, C=10^2 gamma=10^1, C=10^2

http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Tips and Tricks

- SVMs are not scale invariant
- Check if your library normalizes by default
- Normalize your data
 - mean: 0 , std: 1
 - map to [0,1] or [-1,1]
- Normalize test set in same way!

Tips and Tricks

- RBF kernel is a good default
- For parameters try exponential sequences
- Read:

Chih-Wei Hsu et al., "A Practical Guide to Support Vector Classification", Bioinformatics (2010)

SVM vs KNN

What are the main key differences?

SVM: no need to keep all training data, just support vectors

Parameter Tuning

Given a classification task

- Which kernel?
- Which kernel parameter values?
- Which value for C?

Try different combinations and take the best.

Train vs. Test Error

Where is KNN on this graph for K=1, or for K=Inf?

Grid Search

Zang et al., "Identification of heparin samples that contain impurities or contaminants by chemometric pattern recognition analysis of proton NMR spectral data", Anal Bioanal Chem (2011)

Error Measures

- True positive (tp)
- True negative (tn)
- False positive (fp)
- False negative (fn)

TPR and FPR

• True Positive Rate:

$$\frac{tp}{tp+fn}$$

False Positive Rate:

$$\frac{fp}{fp+tn}$$

predicted

Reciever Operating Characteristic

ROC Example

Precision Recall

• Recall:
$$\frac{tp}{tp+fn}$$

• Precision: $\frac{tp}{tp+fp}$

predicted

Precision Recall

Recall: If I pick a random positive example, what is the probability of making the right prediction?

Extreme case: classify everything +1 -> recall =

Extreme case: classify everything +1 -> recall = 1, precision = 1/2

 Precision: If I take a positive prediction example, what is the probability that it is indeed a positive example?

Precision Recall Curve

What is better? depends on application

ex: screening at airport: recall more important

Comparison

Algo 2 is better

J. Davis & M. Goadrich, "The Relationship Between Precision-Recall and ROC Curves.", ICML (2006)

F-measure

Weighted average of precision and recall

$$F_{\beta} = \frac{(\beta^2 + 1) \cdot P \cdot R}{\beta^2 \cdot P + R}$$

- Usual case: $\beta = 1$
- Increasing eta allocates weight to recall

Multi Class

One vs All

- Train n classifier for n classes
- Take classification with greatest margin
- Slow training

Multi Class

One vs One

- Train n(n-1)/2 classifiers
- Take majority vote
- Fast training because a lot less points

Confusion Matrix

http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

Recap

- Perceptrons are great
- But really just a separating hyperplane
- So is SVM
- Kernels are neat
- Evaluation metrics are important