Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 233.4 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

656.55
656.54
(wu) 966.52
656.50
656.50 -

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

656.49

656.48

0

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 12.72, tilsynelatende blå størrelseklass $m_B=14.44$

40

60

Periode (år)

80

100

120

20

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 12.72, tilsynelatende blå størrelseklass $m_B = 15.44$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=6.76,$ tilsynelatende

blå størrelseklass m_B = 8.48

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 6.76, tilsynelatende blå størrelseklass $m_B = 9.48$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.30 og store halvakse a=45.89 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.30 og store halvakse a=60.98 AU.

Filen 1F.txt

Ved bølgelengden 453.68 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Observasjonstid (dager)

5

6

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

1.50

ò

i

Gass-sky A har masse på 27.40 solmasser, temperatur på 12.40 Kelvin og tetthet 1.39e-20 kg per kubikkmeter

ż

Gass-sky B har masse på 5.40 solmasser, temperatur på 61.30 Kelvin og tetthet 2.52e-21 kg per kubikkmeter

Gass-sky C har masse på 9.40 solmasser, temperatur på 36.10 Kelvin og

tetthet 8.42e-21 kg per kubikkmeter

Gass-sky D har masse på 16.80 solmasser, temperatur på 59.20 Kelvin og tetthet 7.04e-21 kg per kubikkmeter

Gass-sky E har masse på 13.00 solmasser, temperatur på 61.30 Kelvin og tetthet 4.82e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE B) stjernas overflate består hovedsaklig av helium

STJERNE C) hele stjerna er elektrondegenerert

STJERNE D) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE E) stjernas energi kommer fra Planck-stråling alene

Filen 1L.txt

Stjerne A har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V = 8.52

Stjerne B har spektralklasse K4 og visuell tilsynelatende størrelseklasse m_V = 6.68

Stjerne C har spektralklasse G9 og visuell tilsynelatende størrelseklasse m_V = 6.68

Stjerne D har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V = 8.94

Stjerne E har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 1.91

Filen 1P.txt

Alle gasspartiklene har fart $100~\mathrm{m/s}$ i tilfeldige (uniformt fordelte) retninger.

$Filen~2A/Oppgave 2A_Figur 1.png$

3

2 ·

1 -

i

ź

3

10 9 8 y-posisjon (buesekunder) 7 6 5

5

x-posisjon (buesekunder)

9

10

Figur 1

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen $2B/Oppgave2B_Figur$ 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.7700000000000001776357 AU.

Tangensiell hastighet er 45603.983649187102855649 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.672 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.360 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=19.038.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9444 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00034 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=470.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9889 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 719.10 nm.

Filen 4A.txt

Stjernas masse er 6.08 solmasser.

Stjernas radius er 0.84 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -600 -200 200 -400 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 26.92 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.51 solmasser.

r-koordinaten til det innerste romskipet er
r $=13.48~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=22.54~\mathrm{km}.$