

74V2T241

DUAL BUS BUFFER NON INVERTED (3-STATE)

- HIGH SPEED: $t_{PD} = 3.8$ ns (TYP.) at $V_{CC} = 5$ V
- LOW POWER DISSIPATION: $I_{CC} = 1\mu A(MAX.)$ at $T_A = 25$ °C
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- COMPATIBLE WITH TTL LEVEL: V_{IH}=2.0V(MIN), V_{II}=0.8V(MAX)
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OH}| = I_{OL} = 8\text{mA}$ (MIN) at $V_{CC} = 4.5\text{V}$
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 4.5V to 5.5V
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74V2T241 is an advanced high-speed CMOS DUAL BUS BUFFER NON INVERTER fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

It has one active-high and one active-low output enable. Power down protection is provided on all

ORDER CODES

PACKAGE	T&R
SOT23-8L	74V2T241STR

inputs and outputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V systems and it is ideal for portable applications like personal digital assistant, camcorder and all battery-powered equipment.

All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

June 2003 1/8

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1, 7	1G, 2G	Output Enable Inputs
2, 5	1A, 2A	Data Inputs
3, 6	2Y, 1Y	Data Outputs
4	GND	Ground (0V)
8	V _{CC}	Positive Supply Voltage

TRUTH TABLE

1G	2G	Α	Y
L	Н	L	L
L	Н	Н	Н
Н	L	Х	Z

X: "H" or "L" Z: High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit			
V _{CC}	Supply Voltage	-0.5 to +7.0	V			
VI	DC Input Voltage	-0.5 to +7.0	V			
Vo	DC Output Voltage (see note 1)	-0.5 to +7.0	V			
Vo	DC Output Voltage (see note 2)	-0.5 to V _{CC} + 0.5	V			
I _{IK}	DC Input Diode Current	- 20				
I _{OK}	DC Output Diode Current	- 20	mA			
Io	DC Output Current	± 25	mA			
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA			
T _{stg}	Storage Temperature	-65 to +150	°C			
T _L	Lead Temperature (10 sec)	260	°C			

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. 1) V_{CC} =0V or \overline{nG} = V_{CC} (Output in High Impedance state) 2) High or Low State

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage (see note 1)	0 to 5.5	V
Vo	Output Voltage (see note 2)	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 3) $(V_{CC} = 5.0 \pm 0.5V)$	0 to 20	ns/V

¹⁾ $V_{\rm CC}$ =0V or Output in High Impedance state 2) High or Low State 3) $V_{\rm IN}$ from 0.8 to 2.0V

*5*7 2/8

DC SPECIFICATIONS

		Т	est Condition	Value							
Symbol	Parameter	v _{cc}	Vcc		T _A = 25°C			85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	4.5 to 5.5		0.8			0.8		0.8		V
V _{IL}	Low Level Input Voltage	4.5 to 5.5				2.0		2.0		2.0	V
V _{OH}	High Level Output	4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V
	Voltage	4.5	I _O =-8 mA	3.94			3.8		3.7		V
V _{OL}	Low Level Output	4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
	Voltage	4.5	I _O =8 mA			0.36		0.44		0.44	
I _{OZ}	High Impedance Output Leakage Current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 5.5 \text{ or GND}$			±0.25		± 2.5		± 2.5	μΑ
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
I _{OPD}	Power down Output Leakage Current	0	V _O = 5.5			0.5		5		10	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			1		10		10	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$)

	Test Condition				Value							
Symbol	Parameter	v _{cc}			T _A = 25°C			-40 to 85°C		-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{PLH} t _{PHL}	Propagation Delay Time	5.0 ^(**)	15			3.8	5.5	1.0	6.5	1.0	7.5	ns
		5.0 ^(**)	50			4.3	6.5	1.0	7.5	1.0	8.5	
t _{PLZ}	Output Disable	5.0 ^(**)	15	$R_L = 1 K\Omega$		3.6	5.0	1.0	6.0	1.0	7.0	no
t _{PHZ}	Time	5.0 ^(**)	50	$R_L = 1 K\Omega$		5.1	7.0	1.0	8.0	1.0	9.0	ns
t _{PZL}	Output Enable	5.0 ^(**)	15	$R_L = 1 K\Omega$		3.7	5.9	1.0	7.0	1.0	8.0	nc
t _{PZH} Time	5.0 ^(**)	50	$R_L = 1 K\Omega$		4.1	6.5	1.0	7.5	1.0	8.5	ns	

^(**) Voltage range is 5.0V ± 0.5V

CAPACITIVE CHARACTERISTICS

		Test Condition	Value							
Symbol Parameter			T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			4	10		10		10	pF
C _{OUT}	Output Capacitance			6						pF
C _{PD}	Power Dissipation Capacitance (note 1)			14						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$

477

TEST CIRCUIT TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L =15/50pF or equivalent (includes jig and probe capacitance) R1 = 1K Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

477 4/8

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

SOT23-8L MECHANICAL DATA

DIM		mm.			mils				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
А	0.90		1.45	35.4		57.1			
A1	0.00		0.15	0.0		5.9			
A2	0.90		1.30	35.4		51.2			
b	0.22		0.38	8.6		14.9			
С	0.09		0.20	3.5		7.8			
D	2.80		3.00	110.2		118.1			
E	2.60		3.00	102.3		118.1			
E1	1.50		1.75	59.0		68.8			
е	0	.65			25.6				
e1		1.95			76.7				
L	0.35		0.55	13.7		21.6			

6/8

Tape & Reel SOT23-xL MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Во	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	3.9	4.0	4.1	0.153	0.157	0.161

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com