MATH 002 SAMPLE FINAL (SUPPLEMENTARY)

FOR THE MATERIAL we covered in Chapter 1 please refer your exam 1,exam 2 and exam 3's and their sample tests.

Questions on Section 2.1-2.1-2.4 and 2.5

- 1) How do you determine a given number is a solution to an equation or not? Explain.
- 2) Below you are given the solution of a student to a linear equation. She has made a mistake and reached a wrong answer. Identify the mistake and explain why it is so. Note that I am <u>NOT</u> asking what the correct solution is. I want you to tell her what her mistake is.

$$2x - x - 5 = -x - 1 - 4$$

$$x - 5 = -x - 5$$

$$+5 + 5$$

$$x = -x \implies \frac{x}{x} = -\frac{x}{x} \implies 1 = -1 \text{ Contradiction and No Solution}$$

3) Solve the following linear equations if possible. In the case the equality is <u>an identity</u> or <u>a contradiction</u> makes sure you state which one as well as the <u>solutions</u>. Simplify your answers!!

a)
$$-3(4t-1) = -(t-14)$$

b)
$$-\frac{5v}{3} = 25$$

c)
$$4y+3(y-2)=2(y+4)-(2y-7)$$

d)
$$\frac{q-3}{2} - \frac{4q-1}{6} = \frac{2}{18}$$

$$\frac{6x-10}{5} = \frac{4x+4}{2}$$

f)
$$4(x-1)-x+6=2x-(-x-2)$$

g)
$$5(3u+3)-10=15u+4$$

4) Solve the following literal equations for the variable mentioned.

a) Solve for y:

$$2(3x - y + 1) = 3(4x - y - 2)$$

b) Solve for h_1 :

$$V = \frac{1}{3}\pi r^2 (h_1 + h_2)$$

c) Solve for R_1 :

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

5) Fill in the blanks in the following table

F	T.,	
Inequality	Number Line Graph	Interval
		Notation
$x < \pi$		
		(-3,7]
		. , ,
	← 	
	5	
$5 \ge x \ge 0$		

6) Solve the following inequalities if possible. In the case the inequality is an unconditional inequality or a contradiction make sure you state which one as well as the solutions. Write your final answers in interval notation!!!

a)
$$4(6m+7)-2m \ge 7(3m+1)+1$$

b)
$$\frac{2x}{5} + \frac{1}{2} \ge \frac{3x}{4} + \frac{3}{20}$$

$$c) \quad -\frac{3}{4}w < -2$$

d)
$$-3(5-2x) > -2(5x+1)+16x$$

e)
$$3x + 2 \le 3(x+1)$$

f)
$$-3 \le \frac{m-2}{3} < -1$$
 (Hint: LCD)

$$5 - \frac{x-5}{2} \ge -1$$

7) Solve the following quadratic equations either by factoring or by extraction of roots. <u>Simplify your answers as much as you can.</u> (Answers containing only these two methods will be accepted. Solutions using other methods will get zero.)

a)
$$35v^2 = 250$$

b)
$$(5b+1)^2-2=79$$

c)
$$(r+6)(r-1) = -10$$

d)
$$2w^2 = 7w + 15$$

e)
$$\frac{3}{v} = v$$
 (Hint: The word "proportion" comes to mind!!)

- 8) Solve each quadratic equation by <u>completing the square</u>. <u>Simplify your</u> <u>answers as much as you can.</u> Answers that use <u>only</u> completing the square method will be accepted. Other solution methods will get zero.
- a) $2y^2 16y 112 = 0$
- b) $10x = 4x^2$
- 9) Solve each quadratic equation by <u>using the Quadratic Formula</u>. <u>Simplify</u> <u>your answers as much as you can.</u> Answers that use <u>only</u> the quadratic formula will be accepted. Other solution methods will get zero.
- a) $2y^2 3y + 8 = y^2 + 7y$
- b) (2x-3)(x-5)=0

ANSWERS:

- You replace se (the variable) with the given It in the eqn. If it makes the eqn. turn into a correct statement then the #x is a soln.
 - 2) $x = -x \Rightarrow \frac{x}{x} = -\frac{x}{x} \Rightarrow 1 = -1$ Contradiction and No Solution

 She has divided both sides by "x" without going back a checking whether x = 0 is a soln. or not. In her case it is the only solution and she thrown it away by dividing both sides by x.
- a) -3(4i-1) = -(i-14) -12t+3 = -t+14 +12t -14 -14 -14 -14 -14 -14 -14 -15 -15 -15 -15

$$\frac{-39 - 24 = 2}{+24 + 24}$$

$$\frac{-39 = 26}{-3} = 9$$

$$\frac{-39 = 26}{-3} = 3$$

e)
$$\frac{6x-10}{5}$$
 $\frac{4x+4}{2}$
 $2(6x-10) = 5(4x+4)$
 $12x-20 = 20x + 20$
 $-12x$ $-12x$
 $-20 = 8x + 20$
 -20 -20
 $-40 = 8x$ \Rightarrow $x = -5$

f)
$$4(x-1)-x+6=2x-(-x-2)$$

 $4x-4-x+b=2x+x+2$
 $3x+2=3x+2$
 $3x=3x$
 $-3x-3x$
 $0=0$ Identity Soln: IR

g)
$$5(3u+3)-10=15u+4$$

 $15u+5=10=15u+4$
 $15u+5=15u+4$
 $-15u$ -15u
 $5=4$ Contradiction
No Soln.

Solve for y:

$$2(3x-y+1) = 3(4x-y-2)$$

$$6x-2y+2 = 12x-3y-6$$

$$+2y + 2 = 12x-y-6$$

$$-6x - 6x$$

$$2 = 6x-y-6$$

$$+y + 2 = 6x-6$$

$$y+2=6x-6$$

 -2 -2
 $y=6x-8$

Solve for h_1 : B)

$$V = \frac{1}{3}\pi r^{2}(h_{1} + h_{2}) \implies 3V = \mathcal{B}\left(\frac{1}{3}\pi r^{2}(h_{1} + h_{2})\right)$$

$$\frac{3V}{\pi r^{2}} = \frac{3V}{\pi r^{2}} = h_{1} + h_{2}$$

$$\frac{3V}{\pi r^{2}} = h_{1} + h_{2}$$

$$\frac{3V}{\pi r^{2}} - h_{2} = h_{1}$$

$$\frac{3V}{\pi r^{2}} - h_{2} = h_{1}$$

C)

Solve for
$$R_1$$
: LCD= RR_1R_2

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \implies RR_1R_2 \cdot \frac{1}{R} = RR_1R_2 \cdot \frac{1}{R_1} + RR_1R_2 \cdot \frac{1}{R_2}$$

$$R_1R_2 = RR_2 + RR_1$$

$$-RR_1$$

$$-RR_1$$

$$R_1R_2 - RR_1 = RR_2$$

$$R_1(R_2 - RR_1) = RR_2$$

5) Fill in the blanks in the following table

Inequality	Number Line Graph	Interval Notation
$x < \pi$	AMMANN SC	, (-∞, T)
-3<×≤7	<u> </u>	(-3,7]
5<⊁	<	(5,00)
5 ≥ x ≥ 0	to Transit De	[0,5].

a)
$$4(6m+7)-2m \ge 7(3m+1)+1$$

 $24m+28-2m \ge 2(m+7+1)$
 $22m+28 \ge 2(m+8)$
 $-21m$
 $-21m$
 $-21m$
 -28
 -28
 -28
 -28
 -28
 -28
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -29
 -2

b)
$$\frac{2x}{5} + \frac{1}{2} \ge \frac{3x}{4} + \frac{3}{20}$$
 LCD=20
 $\frac{4}{26}(\frac{2x}{5}) + 20(\frac{1}{2}) > 26(\frac{3x}{4}) + 20(\frac{3}{20})$
 $\frac{8x}{5} + \frac{10}{7} > \frac{15x}{7} + \frac{18}{7}$
 $\frac{7}{7} > \frac{7x}{7}$
 $\frac{7}{7} \times \frac{7x}{7}$
 $\frac{17}{7} \times \frac{(-\infty)11}{7}$

c)
$$-\frac{3}{4}w < -2 \Rightarrow 4\left(-\frac{3}{4}\omega\right) < (-2) 4$$

$$-\frac{3\omega}{-3} < -\frac{8}{-3}$$

$$\omega > \frac{8}{3}$$

$$\left(\frac{3}{2}, \infty\right)$$

d)
$$-3(5-2x) > -2(5x+1)+16x$$

 $-15+6x > -10x-2+16x$
 $-15+6x > 6x-2$
 $-6x -6x$
 $-15 > -2$
 $+2$
 $-13 > 0 \in Contraditation$
No Soln.

e)
$$3x+2 \le 3(x+1)$$

 $3x+2 \le 3x+3$
 $-3x$
 $2 \le 3$ | Unconclitional Ineq.
Soln: IR

$$\frac{3}{3} = \frac{m-2}{3} < -1 \text{ (Hint: LCD)} \quad LcD = 3$$

$$\frac{3}{3} = \frac{3}{3} < -1 \text{ (Hint: LCD)} \quad LcD = 3$$

$$\frac{3}{3} = \frac{3}{3} < -1 \text{ (Hint: LCD)} \quad LcD = 3$$

$$\frac{-9}{4} \leq \frac{m-2}{4} \leq -3$$

$$\frac{+2}{42} + \frac{2}{42}$$

$$-7 \leq m \leq -1$$

$$\frac{5}{-7} = \frac{-5}{2} \geq -1$$

$$\frac{-5}{-7} = \frac{-5}{2} \geq -1$$

$$\frac{-5}{-7} = \frac{-5}{-7}$$

$$\frac{-5}{-7} = \frac{-5}{-7}$$

$$\frac{-5}{-7} = \frac{-7}{-7}$$

$$\frac{-5}{-7} = \frac{-7}{-7}$$

$$\frac{-17}{-17} = \frac{-7}{-7}$$

$$\frac{-17}{-17} = \frac{-7}{-7}$$

a)
$$\frac{35v^2 = 250}{35}$$
 \Rightarrow $V^2 = \frac{50}{7}$
 $\sqrt{v^2} = \sqrt{\frac{50}{7}} \Rightarrow$ $|v| = \sqrt{\frac{50}{77}} = \frac{5\sqrt{2}}{\sqrt{7}}$

b)
$$(5b+1)^2-2=79$$

 $+2$ $+2$
 $\sqrt{(5b+1)^2-\sqrt{8}}$ \implies $|5b+1|=9$

c)
$$(r+6)(r-1)=-10$$

$$r^{2}-r+6r-6=-10$$

$$r^{2}+5r-6=-10$$

$$+10$$

$$+10$$

$$r^{2}+5r+4=0$$

$$(r+4)(r+1)=0$$

$$r+4=0$$

$$r+4=0$$

$$r=-1$$

d)
$$2w^2 = 7w + 15$$
 \Rightarrow $2\omega^2 - 7\omega - 15 = 0$ \Rightarrow $A \cdot B = -36$ \Rightarrow $(2\omega^2 - 10\omega) + 3\omega - 15 = 0$ \Rightarrow $(2\omega + 3)(\omega - 5) = 0$ \Rightarrow $(2\omega + 3)(\omega + 5) = 0$

8) a)
$$\frac{2y^2 - 16y - 112 = 0}{2}$$

 $y^2 - 8y - 56 = 0$
 $y^2 - 8y = 56$ $b = -8$ $\frac{1}{2} = -4$ $(-4)^2 = 16$
 $y^2 - 8y + 16 = 56 + 16$
 $y^2 - 8y + 16 = 72$
 $(y - 4)^2 = 72$
 $(y - 4)^2 = 72 = \sqrt{36 \cdot 2} = 6\sqrt{2}$
 $(y - 4)^2 = \sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$
 $(y - 4)^2 = \sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$
 $(y - 4)^2 = \sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$
 $(y - 4)^2 = \sqrt{72} = \sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$

b)
$$10x = 4x^{2} \implies \frac{4x^{2} - 10x = 0}{4} \implies x^{2} - \frac{5}{2}x = 0$$

$$b = -\frac{5}{2} \quad b_{2} = -\frac{5}{4} \quad (-\frac{5}{4})^{2} = \frac{25}{16} \quad x^{2} - \frac{5}{2}x + \frac{25}{16} = 0 + \frac{25}{16}$$

$$|x - \frac{5}{4}| = \frac{5}{4}$$

9) a)
$$\frac{2y^{2}-3y+8=y^{2}+7y}{-y^{2}-7y}$$
 $\frac{-(y^{2}-7y)}{y^{2}-10y+8} = 0$ $a=1$ $b=-10$ $c=8$

$$x = \frac{-(-10)}{2(1)} \mp \sqrt{(-10)^{2}-4(1)(8)} = \frac{10}{2} \pm \sqrt{100-32}$$

$$x = \frac{10}{2} \pm \sqrt{68} = \frac{10}{2} \pm \sqrt{4\cdot17} = \frac{10}{2} \pm 2\sqrt{17} = \frac{10}{2} \pm 2\sqrt{17}$$

$$= \frac{10}{2} \pm \sqrt{10}$$
b) $(2x-3)(x-5)=0 \Rightarrow 2x^{2}-10x-3x+15=0$

$$2x^{2}-13x+15=0$$

$$2x^{2}$$