

Parallel Algorithm for Closest Pair Problem

Ge Wu | July 24, 2013

Problem Description

Closest Pair Problem

• Given *n* different unordered points $P = \{p_1, p_2, ..., p_n\}$ in unit square

$$p_i = (x_i, y_i) \in (0, 1) \times (0, 1) \subset \mathbb{R}^2$$

- Find a pair of points with closest euclidean distance between them
- Find any pair if there's a tie.

Background

- $O(n \log n)$ lower bound in comparison tree model
- Bentley and Shamos 1976
 O(n log n) algorithm using divide and conquer
- Rabin 1976
 O(n) randomized algorithm with O(1) floor function
- Fortune and Hopcroft 1978
 O(n log log n) deterministic algorithm with O(1) floor function
- Khuller and Matias 1995
 Another O(n) randomized algorithm

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

- Sample ($n^{\frac{2}{3}}$ Points from P)
- Partition
- Compute

Sample

- Compute all pair of distances: $O((n^{\frac{2}{3}})^2) = O(n^{\frac{4}{3}})$
- Divide & Conquer: $O(n^{\frac{2}{3}} \log n^{\frac{2}{3}}) = O(n^{\frac{2}{3}} \log n) \subset O(n)$ More samples possible: $O(\frac{n}{\log n} \log \frac{n}{\log n}) \subset O(n)$
- Other approach?

July 24, 2013

Partition

- Map points to the cells
- Divide the coordinates by cell length and **truncate** them to integer
- Partition $G = \{G_1, G_2, ..., G_k\}$ with:

$$\bigcup_{i=1}^k G_i = P, G_i \cap G_j = \emptyset, k <= n$$

O(n) with hashing

July 24, 2013

Partition

 $H(cell_{x_idx}, cell_{y_idx}) = (cell_{x_idx} + 2 \cdot cell_{y_idx}) \mod 7$

Compute

Theorem

Let G_i with $1 \le i \le k$ be the **i-th** non-empty cell and c,d some positive constants, then

$$Prob\left(\sum_{i=1}^{k}|G_i|^2\leq c\cdot n\right)\geq 1-rac{1}{2^{n^d}}$$

Runtime for computing all pairs distances

$$O(\sum_{i=1}^k |G_i| \cdot |G_i \cup neighbor(G_i)|) = O(\sum_{i=1}^k |G_i|^2) = O(n)$$

Alternative for Sampling

Recursively calculate the closest distance on samples $S = \{s_1, ..., s_{n^{\frac{2}{3}}}\}$

- Sample another $n^{\frac{4}{9}}$ points S' from S
- Get closest distance on S' by calculating all pair distances: $O(n^{\frac{8}{9}})$
- Partition and compute the closest distance on S

Pseudocode

o Cell set
$$H = \emptyset$$
, Result $rst = \infty$

```
O(n^{\frac{2}{3}})
1 Choose set S of n^{\frac{2}{3}} samples
  \delta = \min_{x,y \in S, x \neq y} (dist(x,y))
                                                                       O(n^{\frac{8}{9}})
2 for i = 1 to n do
                                                                       O(n)
        c = cell(p_i)
        if not H.findCell(c) then
              H.addCell(\{c, idx = \{c.x, c.y\}\})
        H.findCell(c).addPoint(p_i)
3 foreach c₁ in H do
                                                                       O(n)
         foreach c_2 in \{c_1\} \cup neighbor(c_1) do
              foreach (p_i, p_i) in c_1 \times c_2
                    rst = min(rst, dist(p_i, p_i))
```

Runtime: O(n) with high probability, Worst: case $O(n^2)$

Parallelization

- 0 Cell set $H = \emptyset$, Result $rst = \infty$ ## H synchronized Hashmap
- 1 Choose set S of $n^{\frac{2}{3}}$ samples ## allocate p PEs $O(\frac{n^{\frac{1}{3}}}{p})$ $\delta = min_{x,y \in S, x \neq y}(dist(x,y))$ ## recurse once $O(\frac{n^{\frac{8}{3}}}{p} + \log p)$
- 2 **for** i = 1 **to** n **do** ## allocate p PEs $c = cell(p_i)$ $O(\frac{n}{p})$
 - if not H.findCell(c) then $H.addCell(\{c, idx = \{c.x, c.y\}\}$ ## maximal n times
 - $H.findCell(c).addPoint(p_i)$
 - 3 foreach c_1 in H do foreach c_2 in $\{c_1\} \cup neighbor(c_1)$ do foreach (p_i, p_j) in $c_1 \times c_2$ ## allocate $\lfloor p \cdot \frac{\#Pairs}{|c_1||c_2|} \rfloor$ PEs $rst = min(rst, dist(p_i, p_i))$

Total runtime:
$$O(\frac{n}{p} + \log p)$$
 ## factor $\log p$ for collecting distances

(D) (B) (토) (토) 토(트) 익(()

 $O(\frac{n}{p} + \log p)$

Theorem

Let G_i with $1 \le i \le k$ be the **i-th** non-empty cell and c,d some positive constants, then

$$Prob\left(\sum_{i=1}^{k}|G_i|^2\leq c\cdot n\right)\geq 1-rac{1}{2^{n^d}}$$

Sampling Lemma

Let $G = \{G_1, G_2, ..., G_k\}$ be a partition of set P, for which $N(D) \ge n$, where

$$N(G) = \sum_{i=1}^{k} \frac{|G_i| \cdot (|G_i| - 1)}{2}$$

If $n^{\frac{2}{3}}$ pairwise different elements are drawn at random from P then the probability, that two elements will be chosen from the same G_i , is at least $1-2^{-n^c}$ for some positive constant c

Proof see

- Rabin 1976
- Dietzfelbinger et al. 1997

Estimate the probability using Chebyshev's inequality

Lemma 2

Let G_{δ} be a grid with gap δ and $G_{2\delta}$ another grid with gap 2δ , which is obtained by ignoring every second line of G_{δ} , then

$$N(G_{2\delta}) \leq 4N(G_{\delta}) + \frac{3}{2}n$$

Let
$$k = \sum_{i=1}^4 k_i$$

$$f(x) = x(x-1)$$
 convex $\Rightarrow f(\frac{1}{4}k) \le \frac{1}{4} \sum_{i=1}^{4} f(k_i)$

$$\frac{1}{2}k(k-1) = 8 \cdot \frac{1}{4}k(\frac{1}{4}k-1) + \frac{3}{2}k$$

$$\leq 8 \cdot \frac{1}{4}\sum_{i=1}^{4} k_i * (k_i - 1) + \frac{3}{2}k$$

$$\Rightarrow N(G_{2\delta}) \leq 8 \cdot \frac{1}{2}N(G_{\delta}) + \frac{3}{2}n$$

Solution

Introduction

A Proof for the Runtime

Lemma 3

$$N(G_{\delta'}) \leq 16N(G_{\delta}) + 6n$$

$$egin{aligned} N(G_{\delta'}) & \leq \sum_{i=1}^4 N(G_{2\delta}^i) \ & \leq \sum_{i=1}^4 (4N(G_{\delta}) + rac{3}{2}n) \ & = 16N(G_{\delta}) + 6n \end{aligned}$$

Lemma 3

$$N(G_{\delta'}) \leq 16N(G_{\delta}) + 6n$$

$$N(G_{\delta'}) \leq \sum_{i=1}^{4} N(G_{2\delta}^{i})$$

 $\leq \sum_{i=1}^{4} (4N(G_{\delta}) + \frac{3}{2}n)$
 $= 16N(G_{\delta}) + 6n$

Lemma 3

$$N(G_{\delta'}) \leq 16N(G_{\delta}) + 6n$$

$$N(G_{\delta'}) \leq \sum_{i=1}^{4} N(G_{2\delta}^{i})$$

 $\leq \sum_{i=1}^{4} (4N(G_{\delta}) + \frac{3}{2}n)$
 $= 16N(G_{\delta}) + 6n$

Lemma 3

$$N(G_{\delta'}) \leq 16N(G_{\delta}) + 6n$$

$$N(G_{\delta'}) \leq \sum_{i=1}^{4} N(G_{2\delta}^{i})$$

 $\leq \sum_{i=1}^{4} (4N(G_{\delta}) + \frac{3}{2}n)$
 $= 16N(G_{\delta}) + 6n$

Lemma 3

$$N(G_{\delta'}) \leq 16N(G_{\delta}) + 6n$$

$$N(G_{\delta'}) \leq \sum_{i=1}^{4} N(G_{2\delta}^{i})$$

 $\leq \sum_{i=1}^{4} (4N(G_{\delta}) + \frac{3}{2}n)$
 $= 16N(G_{\delta}) + 6n$

- Two of $n^{\frac{2}{3}}$ samples will be very likely in the same cell, if $N(G) \ge n$
- $N(G_{2\delta}) \leq 4N(G_{\delta}) + \frac{3}{2}n$
- \bullet $N(G_{\delta'}) < 16N(G_{\delta}) + 6n$ if $\delta' < \delta$

Proof.

Let δ^* be the grid gap, which makes $n \leq N(G_{\delta^*}) < 5.5n$. (It exists!) If $n^{\frac{2}{3}}$ samples are randomly chosen, two of them will be in one cell with high probability. Let δ be the distance between them with $\delta < 2\delta^*$, then

$$N(G_{\delta}) \le 16N(G_{2\delta^*}) + 6n$$

 $\le 16(4N(G_{\delta^*}) + \frac{3}{2}n) + 6n \in O(n)$

◆□ → ◆同 → ◆ 三 → ● | = ● ◆ ○ ○ ○

Reference I

[BS76] Jon Louis Bentley and Michael Ian Shamos.

"Divide-and-conquer in multidimensional space". In: Proceedings of the eighth annual ACM symposium on Theory of computing. STOC '76. Hershey, Pennsylvania, USA: ACM, 1976, pp. 220–230. DOI: 10.1145/800113.803652. URL:

http://doi.acm.org/10.1145/800113.803652.

- [CG89] Benny Chor and Oded Goldreich. "On the power of two-point based sampling". In: *Journal of Complexity* 5.1 (1989), pp. 96–106.
- [Die+97] Martin Dietzfelbinger et al. "A reliable randomized algorithm for the closest-pair problem". In: *Journal of Algorithms* 25.1 (1997), pp. 19–51.

Reference II

- [FH78] Steven Fortune and John E Hopcroft. *A note on Rabin's nearest-neighbor algorithm*. Tech. rep. Cornell University, 1978.
- [KM95] Samir Khuller and Yossi Matias. "A simple randomized sieve algorithm for the closest-pair problem". In: *Information and Computation* 118.1 (1995), pp. 34–37.
- [KT06] J. Kleinberg and E. Tardos. "Algorithm Design". In: Pearson Education, 2006. Chap. 13 Randomized Algorithms.
- [Lip09] Richard J. Lipton. Rabin Flips a Coin. 2009. URL: http://rjlipton.wordpress.com/2009/03/01/rabinflips-a-coin/ (visited on 07/15/2013).
- [Rab76] Michael Oser Rabin. "Probabilistic algorithms". In: Algorithms and Complexity: New Directions and Recent Results. Ed. by Joseph Frederick Traub. Academic Press, 1976, pp. 21–39.

Reference III

[Weba] URL: http://www.cse.ust.hk/tcsc/comp670r/Class_1_

Notes.ppt/.

[Webb] URL: http://en.wikipedia.org/wiki/Closest_pair_

of_points_problem/.