GILE: A GENERALIZED INPUT-LABEL EMBEDDING FOR TEXT CLASSIFICATION

Funded by: SUMMIA FNSNE

Nikolaos Pappas James Henderson

Idiap Research Institute, Martigny, Switzerland

BACKGROUND

Problem: Given $D = \{(x_i, y_i)\}_1^n$ with $y_i \in \{0, 1\}^k$ where each input x_i and label c_i are described by word sequences

$$\Phi: X \mapsto \mathcal{Y}_s \cup \mathcal{Y}_u$$

Generalizing well on both seen (\mathcal{Y}_s) and unseen (\mathcal{Y}_u) labels during training remains a *challenge* because existing models:

- Are tailored for either seen or unseen label prediction
- Have limited expressivity in the output layer

PROPOSED APPROACH: GILE

Given encoded input $h = f_{in}(x_i)$ and encoded label matrix $\mathcal{E} \in \mathbb{R}^{|\mathcal{Y}| \times d}$ with rows $e_j = f_{out}(c_j)$, we have:

$$p(y_i|x_i) \propto \exp[(\sigma(\mathcal{E}U + b_u) \odot \sigma(Vh + b_v))w + b]$$

Specifically, based on the joint representation between any input x_i and label e_j and a linear unit $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\hat{y} = p(y_i|x_i) = \frac{1}{1 + e^{-P_{val}^{(i)}}}; \quad P_{val}^{(i)} = \begin{bmatrix} g_{joint}^{(i1)}w + b \\ \dots \\ g_{joint}^{(ik)}w + b \end{bmatrix}$$

NOVEL PROPERTIES

- Captures nonlinear input and label relationships
- Allows to control the effective capacity of the output layer
- Trained with cross-entropy and is label-set-size independent

(B.1) Effect of Low-Resource Outputs

(B.3) Effect of Encoder Type

REFERENCES

[YH15] M. Yazdani, J. Henderson. A Model of Zero-Shot Learning of Spoken Language Understanding, EMNLP, 2015. [N16] J. Nam, E. L. Mencía, J. Fürnkranz. All-In Text: Learning Document, Label, and Word Representations Jointly, AAAI, 2016. [Y16] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy. Hierarchical Attention Networks for Document Classification, NAACL, 2016.

[P17] N. Pappas, A. Popescu-Belis. Multilingual Hierarchical Attention Networks for Document Classification, IJCNLP, 2017.

Results and Analysis

(A) Single-task Learning

Model	Layer form	S	een la	bels	Un	seen	labels	Params
abbrev.	Output	RL	AvgPr	OneErr	RL	AvgPr	OneErr	#count
AiTextML [N16]	$\mathcal{EW}h_t$	3.54	32.78	25.99	21.62	2.66	98.61	724.4M
1-9 WAN	$W^{ op}h_t$	1.53	42.37	11.23	_	_	_	55.60M
BIL-WAN [YH15]	$\sigma(\mathcal{EW})\mathcal{W}h_t$	1.21	40.68	17.52	18.72	9.50	93.89	52.85M
BIL-WAN [N16]	$\mathcal{EW}h_t$	1.12	41.91	16.94	16.26	10.55	93.23	52.84M
GILE-WAN	$\sigma(\mathcal{E}U)\sigma(Vh_t)$	0.78	44.39	11.60	9.06	12.95	91.90	52.93M
- constrained d_j	$\sigma(\mathcal{EW})\sigma(\mathcal{W}h_t)$	1.01	37.71	16.16	10.34	11.21	93.38	52.85M
- only label	$\sigma(\mathcal{EW})h_t$	1.06	40.81	13.77	9.77	14.71	90.56	52.84M
- only input	$\mathcal{E}\sigma(\mathcal{W}h_t)$	1.07	39.78	15.67	19.28	7.18	95.91	52.84M

BioASQ: 10M documents (6.6/0.1/4.9M), 26K labels (23.6 seen/2.4 K unseen).

- AiTextML: Bilinear input-label embedding trained with a ranking loss.
- ullet WAN: Word-level attention network with a sigmoid linear unit.
- ullet BIL-WAN: Word-level attention network with a bilinear input-label embedding.

(B) Multi-task Learning

Models		General	l labels	Specific labels		
abbrev.	# lang.	Avg#parar	ns AvgF1	Avg#para	ms AvgF1	
HAN [Y16]	1	50K	77.41	90K	44.90	
MHAN [P17]	2	40K	78.30	80K	45.72	
MHAN [P17]	8	32K	77.91	72K	45.82	
GILE-HAN	1	50K	79.12	90K	45.90	
GILE-MHAN	2	40K	$\boldsymbol{79.68}$	80K	46.49	
GILE-MHAN	8	32K	79.48	72K	46.32	

<u>DW dataset</u>: 0.6M documents (80/10/10%), 5K labels (5K seen), 8 languages.

- HAN: Hierarchical attention net with no parameter sharing across languages.
- MHAN: Multilingual net which shares attention mechanisms across languages.
- GILE-MHAN: Multilingual model which shares attention mechanisms and output layer parameters across languages except w, b.

(B.2) Effect of Label Sampling

Conclusion

We proposed an input-label embedding for text classification which:

- Generalizes over previous input-label embedding models.
- Exhibits strong performance on both seen and unseen label prediction.
- Improves multi-task learning models regardless of the encoder type and resource availability of seen labels.

Future work: Use more advanced label encoders, perform pretraining on unlabeled data and explore other tasks.