STSCI 4780 Shrinkage estimation and Hierarchical and empirical Bayes

Tom Loredo, CCAPS & SDS, Cornell University

© 2020-04-21

Repeated sampling performance of estimators

Setting

Consider a parametric model with sampling distribution $p(D|\theta)$ for data D, parameters θ

Construct a *point estimator* for θ (or some other quantity of interest), $\tilde{\Theta}(D)$

- Bayes: Posterior mode or mean or median...
- Frequentist: MLE, method of moments, best linear unbiased estimator (BLUE)...

How well do we expect $\tilde{\Theta}(D)$ to perform on average? Address this via properties of the $\tilde{\Theta}(D)$ sampling distribution

$$p(\tilde{\theta}|\boldsymbol{\theta}) = \int d\boldsymbol{D} \, p(\boldsymbol{D}, \tilde{\theta}|\boldsymbol{\theta}) = \int d\boldsymbol{D} \, p(\boldsymbol{D}|\boldsymbol{\theta}) \, \delta \left[\tilde{\theta} - \tilde{\Theta}(\boldsymbol{D}) \right]$$

Note: In general, performance will depend on θ

Monte Carlo replication study

Replicate the experiment:

- 1. Set θ to a fixed value
- 2. Draw a full dataset D from $p(D|\theta)$
- 3. Compute $\tilde{\Theta}(D)$
- 4. Repeat from (2) many times \rightarrow sampling dist'n for $\tilde{\Theta}(D)$, $p(\tilde{\theta}|\theta)$ (e.g., as a histogram)
- 5. Repeat from (1), using a different θ

Viewpoints/motivations

- Bayes: Pre-data comparison of choices of posterior summary; the natural criteria average over choices of θ (using the prior)
- Frequentist:
 - ▶ Ideal: Seek estimator whose performance is *independent* of θ (not always possible—you need to be both lucky & clever!)
 - ► More commonly: Seek estimator with good *worst-case* performance

Error and bias

The *error* made if we use $\Theta(D)$ in place of θ is

$$e(D) = \tilde{\Theta}(D) - \theta$$

The *bias* of the estimator is the *expected error* (as a function of θ):

$$b(\theta) \equiv \mathbb{E}[\tilde{\Theta}(D) - \theta] = m(\theta) - \theta$$

where $m(\theta) = \mathbb{E}[\tilde{\Theta}(D)]$, and the expectation is WRT $p(D|\theta)$, averaging/integrating over D

An estimator with $b(\theta) = 0$ is an *unbiased estimator*

If $b(\theta)=b$ (a constant), we can subtract it off from the original $\tilde{\Theta}(D)$ to get an unbiased estimator, but usually the bias depends on θ

Other "typical" values of $\tilde{\Theta}(D)$ (measures of "central tendency") may be interesting—mode, median—but the bias is usually the easiest to analyze

Variability and variance

In repeated sampling with θ fixed, the estimator will give an ensemble of estimates

A measure of variability of the estimator is the variance *with* respect to the mean, i.e., the expected squared distance of an estimate from its expectation value:

$$v(\theta) \equiv \mathbb{E}\left[\left(\tilde{\Theta}(D) - m(\theta)\right)^{2}\right]$$

$$= \mathbb{E}\left[\tilde{\Theta}^{2}(D)\right] + m^{2}(\theta) - 2\mathbb{E}\left[\tilde{\Theta}(D) m(\theta)\right]$$

$$= \mathbb{E}\left[\tilde{\Theta}^{2}(D)\right] - m^{2}(\theta)$$

Mean squared error (MSE)

Note that $v(\theta)$ is a measure of distance from $m(\theta)$, not from θ itself (the "true" value)

MSE is the average squared distance from $\tilde{\Theta}(D)$ to θ itself:

$$MSE(\theta) \equiv \mathbb{E}\left[\left(\tilde{\Theta}(D) - \theta\right)^{2}\right]$$
$$= \mathbb{E}\left[\tilde{\Theta}^{2}(D)\right] + \theta^{2} - 2\theta m(\theta)$$

Recall that $b(\theta) = m(\theta) - \theta$, so that

$$b^2(\theta) = m^2(\theta) + \theta^2 - 2\theta m(\theta)$$

$$\Rightarrow \text{MSE}(\theta) = \mathbb{E}\left[\tilde{\Theta}^{2}(D)\right] - m^{2}(\theta) + b^{2}(\theta)$$
$$= v(\theta) + b^{2}(\theta)$$

For an *unbiased* estimator, $v(\theta)$ measures the average scale of the error, but for a *biased* estimator, we have to worry about the $b^2(\theta)$ contribution \rightarrow *bias-variance tradeoff*

1970 baseball averages

Efron & Morris looked at batting averages of baseball players who had N=45 at-bats in May 1970 — 'large' N & includes Roberto Clemente (outlier!)

Red = n/N maximum likelihood estimates of true averages Blue = Remainder of season, $N_{rmdr} \approx 9N$

Cyan = James-Stein estimator: nonlinear, correlated, biased But *better*!

Theorem (independent Gaussian setting): In dimension \gtrsim 3, shrinkage estimators always beat independent MLEs in terms of expected RMS error

"The single most striking result of post-World War II statistical theory."

— Brad Efron

"Probably the most startling statistical discovery of the past century."

— Lawrence Brown

"Stunned with disbelief."

— Erich Lehmann's reaction

Some shrinkage estimators

For batting averages f_i , use a variance stabilizing transform to get x_i that have an approximately normal distribution with $\sigma = 1$:

$$x_i = \sqrt{45} \arcsin(2f_i - 1)$$

Compute the squared magnitude of the x vector:

$$s^2 = \sum_{i=1}^{N} x_i^2$$

The James-Stein estimator is

$$\hat{\theta}_i^{\rm JS} = \left(1 - \frac{C}{s^2}\right) x_i$$

The best value of C is C = N - 2

Stein, and then James & Stein, motivated this from the *geometry* of multivariate normal distributions

Efron & Morris: "An astute follower of baseball might be aware that just as each player's batting ability can be represented by a Gaussian curve, so too the true batting abilities of all major-league players have an approximately normal distribution.... With this valuable extra information, which statisticians call a 'prior distribution,' it is possible to construct a superior estimate of each player's true batting ability."

$$\bar{x} = \frac{1}{N} \sum_{i} x_{i}; \qquad r^{2} = \sum_{i} (x_{i} - \bar{x})^{2}$$

$$egin{aligned} \hat{ heta}_i^{ ext{EM}} &= ar{x} + \left(1 - rac{K}{r^2}\right) \left(x_i - ar{x}\right) \\ &= ar{x} \left[1 - \left(1 - rac{K}{r^2}\right)\right] + \left(1 - rac{K}{r^2}\right) x_i \end{aligned}$$

The best K is K = N - 3

Dennis Lindley: This looks like Bayesian inference using a conjugate "prior," but with μ_0 determined by the data (JS resembles $\mu_0=0$)

A population of coins/flippers

Each flipper+coin flips different number of times

- What do we learn about the *population* of coins—the distribution of α s?
- How does population membership effect inference for a single coin's α ?

$$\begin{split} p(\theta, \{\alpha_i\}, \{n_i\}) &= \pi(\theta) \prod_i p(\alpha_i | \theta) \; p(n_i | \alpha_i) \\ &= \pi(\theta) \prod_i p(\alpha_i | \theta) \; \ell_i(\alpha_i) \end{split}$$

Terminology:

- \bullet θ are hyperparameters
- $\pi(\theta)$ is the *hyperprior*
- $\ell_i(\alpha_i) \equiv p(n_i|\alpha_i)$ is a member or item likelihood function

A simple multilevel model: beta-binomial

Goals:

- Learn a population-level "prior" by pooling data
- Account for population membership in member inferences

Success

probabilities

Data

Qualitative

$$\begin{split} p(\theta, \{\alpha_i\}, \{n_i\}) &= \pi(\theta) \prod_i p(\alpha_i | \theta) \; p(n_i | \alpha_i) \\ &= \pi(\theta) \prod_i p(\alpha_i | \theta) \; \ell_i(\alpha_i) \end{split}$$

Quantitative

$$\theta = (\mathbf{a}, \mathbf{b}) \text{ or } (\mu, \sigma)$$

$$\pi(\theta) = \text{Flat}(\mu, \sigma)$$

$$p(\alpha_i|\theta) = \text{Beta}(\alpha_i|\theta)$$

$$p(n_i|\alpha_i) = \binom{N_i}{n_i} \alpha_i^{n_i} (1 - \alpha_i)^{N_i - n_i}$$

Generating the population & data

Likelihood function for one member's α

Learning the population distribution

Lower level estimates

Two approaches to member/item estimation

• Hierarchical Bayes (HB): Calculate marginals

$$p(\alpha_j|\{n_i\}) \propto \ell_j(\alpha_j) \int d heta \, \pi(heta) \, p(lpha_j| heta) \left[\prod_{i
eq j} \int dlpha_i \, p(lpha_i| heta) \, \ell_i(lpha_i)
ight]$$

• **Empirical Bayes (EB):** Plug in an optimum $\hat{\theta}$ and estimate $\{\alpha_i\}$ View as approximation to HB, or a frequentist procedure that estimates a prior from the data

For Lec21...

Lower level estimates

Bayesian outlook

- Marginal posteriors are *narrower* than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for $\{\alpha_i\}$ is dependent

Frequentist outlook

- Point estimates are biased
- Reduced variance → estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates *shrink* toward prior/population mean
- Estimates "muster and borrow strength" across population (Tukey's phrase); increases accuracy and precision of estimates
- Efron* describes shrinkage as a consequence of accounting for indirect evidence

^{*}Bradley Efron (2010): "The Future of Indirect Evidence"

Population and member estimates

Competing data analysis goals

"Shrunken" member estimates provide improved & reliable estimate for population member properties

But they are *under-dispersed* in comparison to the true values \rightarrow not optimal for estimating *population* properties*

No point estimates of member properties are good for all tasks!

We should view population data tables/catalogs as providing descriptions of member likelihood functions, not "estimates with errors"

*Louis (1984); Eddington noted this in 1940!