Neural Fields

CMPT 743 – Spring 2024 Aryan Mikaeili

- What are Neural fields?
 - A map between coordinates and physical quantities

- What are Neural fields?
 - A map between coordinates and physical quantities
 - E.g. magnetic field induced by a magnet

- What are Neural fields?
 - A map between coordinates and physical quantities
 - E.g. The average wealth in a country

[Blumenstock et al. 2015]

- What are Neural fields?
 - A map between coordinates and physical quantities
 - E.g. The signed distanc field to /Occupancy of the boundry of an object

Terminology

Implicit Neural Representations

Coordinate-based Neural Networks

NeRFs

Terminology

- Field:
 - A quantity defined for all spatial/temporal coordinates
- Neural field:
 - A field that is [partially] parameterized by a neural network

coordinate input
$$z^{(1)}=x$$
 $z^{(i+1)}=\sigma\left(W^{(i)}z^{(i)}+b^{(i)}\right),\; \underline{i=1,\ldots,k-1}$ $f(x)=W^{(k)}z^{(k)}+b^{(k)}$ induction field output

Applications in Vision/Graphics

Lift 2D images into 3D structure

[Saito et al. 2020 PiFU]

[Chan et al. 2021 EG3D]

Application in Vision/Graphics

Render a scene from novel viewpoints

Application in Vision/Graphics

Render a scene from novel viewpoints

NeRF 2020

ZipNeRF 2023

$$\phi(p^{in}) = -1$$

$$\phi(p^{in}) = -1$$
$$\phi(p^{in}) = +1$$

$$\phi(p^{in}) = -1$$

$$\phi(p^{in}) = -1$$
$$\phi(p^{in}) = +1$$

How to reconstruct shape from Occupancy fields?

Marching cubes [squares] algorithm

Marching cubes [squares] algorithm

- Do we need neural networks?
 - Directly optimize field values on grid nodes

- Do we need neural networks?
 - Directly optimize field values on grid nodes
- Pros:
 - Faster training
 - We don't need to backpropagate through Neural net
 - Local control
 - Faster convergence
- Cons:
 - High memory consumption
 - Not compact as a neural network

Hybrid representation

- Better grid representation
 - Multi-LoD representation

Demo

• RGB field (Image memorization)

MLPs are biased towards low frequency signals

- Positional encoding
 - Expand dimensionality of input
 - Include different frequency bands

Positional encoding

Positional encoding

