Complex Analysis: Homework 14

Peter Kagey

April 18, 2018

Problem 2. (page 227)

Show that the functions z^n , n a nonnegative integer, form a normal family in |z| < 1, also in |z| > 1, but not in any region that contains a point on the unit circle.

Proof.

Problem 3. (page 227)

If f(z) is analytic in the whole plane, show that the family formed by all functions f(kz) with constant k is normal in the annulus $r_1 < |z| < r_2$ if and only if f is a polynomial.

 ${\it Proof.}$

Problem 1. (page 232) If z_0 is real and Ω is symmetric with respect to the real axis, prove (by the uniqueness) that f satisfies with the symmetry relation $f(\bar{z}) = \overline{f(z)}$

Proof.

Problem 2. (page 232) What is the corresponding conclusion if Ω is symmetric with respect to the point z_0 ?

 ${\it Proof.}$

4