VARIABLE INFILTRATION CAPACITY (VIC) MODEL

ERT 474/574
Open-Source Hydro Data Analytics
Oct 27nd 2025

Announcement

- Week 10: VIC Hydrologic Modeling & Modeling Practices
- Week 11: Routing Modeling & River Networks
- Week 12: Meteorological Forcings & Regridding
- Week 13: Parameter Sensitivity/Improving Model Performance
- Week 14 (Thanksgiving): Progress Update
- Week 15: FAIR & CARE Principals
- Week 16: Final Presentation!!

An Overview of the VIC Model

- Hydrology model comparison/selection
- VIC model features
 - Cell size
 - Sub-grid representations
- VIC model processes
 - Vegetation
 - Snow
 - Evapotranspiration
 - Runoff/Infiltration
 - Baseflow

An Overview of the VIC Model

- Hydrology model comparison/selection
- VIC model features
 - Cell size
 - Sub-grid representations
- VIC model processes
 - Vegetation
 - Snow
 - Evapotranspiration
 - Runoff/Infiltration
 - Baseflow

The VIC Model

- The Variable Infiltration Capacity (VIC)
 Model
- Grid-based land surface representation
- Simulates land surface-atmosphere fluxes of moisture and energy
- Developed for coupled Land surface model (LSM) – Global Circulation Model (GCM) simulations
 - Considered a research model
- Open-source development

Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model

Sub-Grid Representation: Vegetation

- Spatial distribution and parameters for vegetation classes are specified within input files
- Energy and water balance terms are computed independently for each vegetation class
- Each class has a different parameterization:
 - Leaf-Area Index
 - Rooting Depth
 - Surface Roughness
 - etc.
- Classes must add up to 100% area or VIC's bare soil scheme is used for the remainder
- Example: 33% Forest, 36% Grassland
 - What's the bare soil percentage?
 - 100 33 36 = 31% bare soil

Grid Cell Vegetation Coverage

Sub-Grid Representation: Elevation

- Simulates orographic effects on precipitation/snowfall and snowpack processes
- Important for representing the differences in snow accumulation and snow melt timing between high and low elevations
- User-specified snow (elevation) bands
 - Fractional area and mean elevation for each band
- Mean pixel temperature is lapsed to each elevation band
 - Precipitation falls as either liquid or solid depending on the lapsed temperature

Elevation Precipitation Snow Cover

VIC Snow Elevation Bands

Sub-Grid Representation: Aggregation

- Sub-grid processes are combined through weighted areal average
- Computed by elevation bands and then vegetation cover
 - Order of operations is important

More elevation bands and vegetation types significantly increase computation time!

Quiz Question

With the VIC model, what is the smallest grid cell size in which we can run the model and still have a representation of the physics, and why?

Quiz Question

With the VIC model, what is the smallest grid cell size in which we can run the model and still have a representation of the physics, and why?

1 km to 3 km. There is no strict rule concerning the smallest grid size. We would not recommend running VIC for grid cells smaller than 1 km.

Hydrologic Process Representation

- Requires detailed parameterization
 - Important for climate-sensitive regions
 - Parameterization versus Parameters
- Contains modules and options to capture specific processes

Parameters # Parameterization

• For example, to evaluate the evapotranspiration, we can use multiple parameterization methods!

Penman-Monteith Equation

$$\lambda_v E = rac{\Delta(R_n - G) +
ho_a c_p \left(\delta e
ight) g_a}{\Delta + \gamma \left(1 + g_a/g_s
ight)}$$

 g_a = Conductivity of air, atmospheric conductance (m s⁻¹) g_s = Conductivity of stoma, surface or stomatal conductance (m s⁻¹) **Pristley-Taylor Equation**

$$ET_o = \alpha (R - G) \frac{\Delta}{\Delta + \gamma}$$

Parameterization

 α = an empirical constant accounting for the vapor pressure deficit and resistance values [-]

Parameters

Vegetation Canopy

Canopy "throughfall" occurs when additional precipitation exceeds the canopy storage capacity in the current time step

Source: https://vic.readthedocs.io/en/master/Overview/ModelOverview/

Snow Simulations

- Snow within the vegetation canopy is directly related to LAI
- Uses quasi two-layer energy balance model at the snow surface
 - Thin surface layer (solving the energy balance at the pack surface)
 - Pack layer
- Albedo and snowpack size evolve with snow ages

• We can calibrate snow surface roughness and albedo to affect the energy balance on snowpack

New Snow

Compressed Snow

New Snow

Time 1 Time 2

New Snow

Compressed Snow

Old snow

Time 3

Rain-Snow Partitioning

- VIC used a simple (linear) method to determine the percentage of liquid (rain) or solid (snow) precipitation
- Example: Rain Minimum = 0.0 °C
- Snow Maximum = 2.0 °C
- The rain minimum and snow maximum parameters are calibratable
- For this example, 0.5°C would produce 75% snow and 25% rain

Evapotranspiration Simulation

Physically-based Penman Monteith approach [Monteith, 1965]

$$ET = rac{\Delta (R_n - G) +
ho_a c_p \left(\delta e
ight) g_a}{\left(\Delta + \gamma \left(1 + g_a/g_s
ight)
ight) L_v}$$

 Δ = Rate of change of saturation specific humidity with air temperature. (Pa K⁻¹) R_n = Net <u>irradiance</u> (W m⁻²), the external source of energy flux G = Ground heat flux (W m⁻²), usually difficult to measure c_p = <u>Specific heat</u> capacity of air (J kg⁻¹ K⁻¹) ρ_a = dry air <u>density</u> (kg m⁻³) δe = <u>vapor pressure</u> deficit (Pa) g_a = <u>Conductivity</u> of air, atmospheric conductance (m s⁻¹) g_s = Conductivity of stoma, <u>surface or stomatal conductance</u> (m s⁻¹) v = <u>Psychrometric constant</u> (v ≈ 66 Pa K⁻¹)

Made up of three components for each elevation band and vegetation type

Bare soil calculations are similar but include resistance terms for soil-atmosphere moisture transfer

Parameterization of Soils

- Soil information is poorly known
- Pedotransfer functions
 - Changing what we have into what we need
 - Soil texture info to physical units
 - Soil pedotransfer table
- Soil texture information is used to estimate:
 - Porosity
 - Ksat
 - Field capacity
 - Wilting point
 - Residual capacity
 - And other soil characteristics

VIC resources

- Current VIC website:
 - https://vic.readthedocs.io/en/master/
- Source Code Availability
 - https://github.com/UW-Hydro/VIC

References

Francini, M., and M. Pacciani, (1991) Comparative analysis of several conceptual rainfall-runoff models, J. Hydrol., 122, 161-219

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415- 14428

Lohmann, D., R. Nolte-Holube, and E. Raschke, (1996), A large-scale horizontal routing model to be coupled to land surface parametrization schemes, Tellus, 48, 708-721.

Lohmann, D., E. Raschke, B. Nijssen and D. P. Lettenmaier (1998), Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model, Hydrol. Sci. J., 43, 131-141.

Maurer, E. (2011), VIC Hydrology Model Training Workshop-Part I: About the VIC Model, Presentation, url: http://www.engr.scu.edu/~emaurer/chile/vic_taller/01_vic_training_overview_processes.pdf

Monteith, J. L. (1965), Evaporation and the environment, in The state of movement of water in living organisms, pp 205-234, 19th Symposia of the Society for Experimental Biology. Cambridge Univ. Press, London, UK

Wood, E. F., D. P. Lettenmaier, and V. G. Zartarian (1992), A land-surface hydrology parameterization with subgrid variability for general circulation models, J. Geophys. Res., 97, 2717-2728