Quantile Summary for Weighted Data

Tianqi Chen

November 9, 2014

Abstract

In this note, I describe an algorithm to construct approximate Quantile Summary for examples that comes with weight. This is an natural extension of existing quantile summary algorithm where each example are of same weight. It can be used to efficiently compute summary of weighted data over streams. It also be useful to handle the quantile summary problem when the dataset contains duplicated values.

1 Introduction

The problem of approximately answering quantile queries over stream is an important for many real world applications. One important existing approach to this problem is GK algorithm [1] and extensions based on the GK framework [2]. The main component of GK algorithm is a data structure called quantile summary, that is able to answer quantile queries with relative accuracy of ϵ . Two operations are defined for the quantile summary: (1) a merge operations to combine two summaries with approximation error ϵ_1 nd ϵ_2 together, with the approximation level of merged summary being $\max(\epsilon_1, \epsilon_2)$; (2) a prune operation to reduce the number of element to b+1, introducing an additional $\frac{1}{b}$ error in the approximation level. The quantile summary with merge and prune operations forms the basic building blocks of the future streaming quantile computation algorithms [2].

However, most existing framework assumes that each data point are of same weight. In many real world scenarios, the data points may comes with weight. In other cases, we may encounter duplicated incoming values, where we could like to "zip" the n data points into one data point with weight n. It is desirable to have an algorithm that constructs the quantile summary over weighted data. In this note, we describe an extension to GK summary. The proposed new quantile summary, which can answer quantile queries over the weighted dataset, comes with merge and prune operations with $same\ guarantee$ as GK summary. This allows our summary to be easily plugged into all the frameworks that uses GK summary as building block, to answer quantile queries over weighted dataset efficiently.

2 Formalization and Definitions

Given an input multi-set $\mathcal{D} = \{(x_1, w_1), (x_2, w_2) \cdots (x_n, w_n)\}$ such that $w_i \in [0, +\infty), x_i \in \mathcal{X}$. Each x_i corresponds to a position of the point and w_i is the weight of the point. Assume we have a total order < defined on \mathcal{X} , define the two rank functions $r_{\mathcal{D}}^-, r_{\mathcal{D}}^+ : \mathcal{X} \to [0, +\infty)$

$$r_{\mathcal{D}}^{-}(y) = \sum_{(x,w)\in\mathcal{D}, x < y} w \tag{1}$$

$$r_{\mathcal{D}}^{+}(y) = \sum_{(x,w)\in\mathcal{D}, x\leq y} w \tag{2}$$

We should note that since \mathcal{D} is defined to be a *multiset* of the points. It can contain multiple record with exactly same position x and weight w. We also define another weight function $\omega_{\mathcal{D}}: \mathcal{X} \to [0, +\infty)$ as

$$\omega_{\mathcal{D}}(y) = r_{\mathcal{D}}^{+}(y) - r_{\mathcal{D}}^{-}(y) = \sum_{(x,w)\in\mathcal{D}, x=y} w.$$
 (3)

Finally, we also define the weight of multi-set $\mathcal D$ to the sum of weights of all the points in the set

$$\omega(\mathcal{D}) = \sum_{(x,w)\in\mathcal{D}} w \tag{4}$$

Our task is given a series of input \mathcal{D} , estimate $r^+(y)$ and $r^-(y)$ for $y \in \mathcal{X}$.

3 Quantile Summary for Weighted Data

Definition 3.1. Quantile Summary of Weighted Examples A quantile summary for \mathcal{D} is defined to be tuple $Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}})$, where $S = \{x_1, x_2, \dots, x_k\}$ is selected from the points in \mathcal{D} (i.e. $x_i \in \{x | (x, w) \in \mathcal{D}\}$), $x_i < x_{i+1}$ for all i, and x_1 and x_k are minimum and maximum point in \mathcal{D} :

$$x_1 = \min_{(x,w)\in\mathcal{D}} x, \quad x_k = \max_{(x,w)\in\mathcal{D}} x$$

 $\tilde{r}_{\mathcal{D}}^+,\,\tilde{r}_{\mathcal{D}}^-$ and $\tilde{\omega}_{\mathcal{D}}$ are functions in $S\to[0,+\infty),$ that satisfies

$$\tilde{r}_{\mathcal{D}}^-(x_i) \le r_{\mathcal{D}}^-(x_i), \quad \tilde{r}_{\mathcal{D}}^+(x_i) \ge r_{\mathcal{D}}^+(x_i), \quad \tilde{\omega}_{\mathcal{D}}(x_i) \le \omega_{\mathcal{D}}(x_i)$$
 (5)

We further require the equality sign holds for maximum and minimum point ($\tilde{r}_{\mathcal{D}}^-(x_i) = r_{\mathcal{D}}^-(x_i)$, $\tilde{r}_{\mathcal{D}}^+(x_i) = r_{\mathcal{D}}^+(x_i)$ and $\tilde{\omega}_{\mathcal{D}}(x_i) = \omega_{\mathcal{D}}(x_i)$ for $i \in \{1, k\}$). Finally, the function value must also satisfy the following constraints, which are quite natural

$$\tilde{r}_{\mathcal{D}}^{-}(x_i) + \tilde{\omega}_{\mathcal{D}}(x_i) \le \tilde{r}_{\mathcal{D}}^{-}(x_{i+1}), \quad \tilde{r}_{\mathcal{D}}^{+}(x_i) \le \tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) \tag{6}$$

Note that since the domain of these functions are only defined on S, it is suffice to use 4k record to store the summary, since we only need to remember each x_i and the corresponding function values of each x_i .

Definition 3.2. Extension of Function Domains

Given a quantile summary $Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}})$ defined in Definition 3.1, the domain of $\tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-$ and $\tilde{\omega}_{\mathcal{D}}$ were defined only in S. We extend the definition of these functions to $\mathcal{X} \to [0, +\infty)$ as follows When $y < x_1$:

$$\tilde{r}_{\mathcal{D}}^{-}(y) = 0, \ \tilde{r}_{\mathcal{D}}^{+}(y) = 0, \ \tilde{\omega}_{\mathcal{D}}(y) = 0$$
 (7)

When $y > x_k$:

$$\tilde{r}_{\mathcal{D}}^{-}(y) = \tilde{r}_{\mathcal{D}}^{+}(x_k), \ \tilde{r}_{\mathcal{D}}^{+}(y) = \tilde{r}_{\mathcal{D}}^{+}(x_k), \ \tilde{\omega}_{\mathcal{D}}(y) = 0 \tag{8}$$

When $y \in (x_i, x_{i+1})$ for some i:

$$\tilde{r}_{\mathcal{D}}^-(y) = \tilde{r}_{\mathcal{D}}^-(x_i) + \tilde{\omega}_{\mathcal{D}}(x_i), \ \tilde{r}_{\mathcal{D}}^+(y) = \tilde{r}_{\mathcal{D}}^+(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}), \ \tilde{\omega}_{\mathcal{D}}(y) = 0$$
 (9)

Lemma 3.1. Extended Constraint

The extended definition of $\tilde{r}_{\mathcal{D}}^-$, $\tilde{r}_{\mathcal{D}}^+$, $\tilde{\omega}_{\mathcal{D}}$ satisfies the following constraints

$$\tilde{r}_{\mathcal{D}}^-(y) \le r_{\mathcal{D}}^-(y), \quad \tilde{r}_{\mathcal{D}}^+(y) \ge r_{\mathcal{D}}^+(y), \quad \tilde{\omega}_{\mathcal{D}}(y) \le \omega_{\mathcal{D}}(y)$$
 (10)

$$\tilde{r}_{\mathcal{D}}^-(y) + \tilde{\omega}_{\mathcal{D}}(y) \le \tilde{r}_{\mathcal{D}}^-(x), \quad \tilde{r}_{\mathcal{D}}^+(y) \le \tilde{r}_{\mathcal{D}}^+(x) - \tilde{\omega}_{\mathcal{D}}(x), \text{ for all } y < x$$
 (11)

Proof. The only non-trivial part is to prove the case when $y \in (x_i, x_{i+1})$:

$$\tilde{r}_{\mathcal{D}}^-(y) = \tilde{r}_{\mathcal{D}}^-(x_i) + \tilde{\omega}_{\mathcal{D}}(x_i) \le r_{\mathcal{D}}^-(x_i) + \omega_{\mathcal{D}}(x_i) \le r_{\mathcal{D}}^-(y)$$

$$\tilde{r}_{\mathcal{D}}^{+}(y) = \tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) \ge r_{\mathcal{D}}^{+}(x_{i+1}) - \omega_{\mathcal{D}}(x_{i+1}) \ge r_{\mathcal{D}}^{+}(y)$$

This proves Eq. (10). Furthermore, we can verify that

$$\tilde{r}_{\mathcal{D}}^+(x_i) \leq \tilde{r}_{\mathcal{D}}^+(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) = \tilde{r}_{\mathcal{D}}^+(y) - \tilde{\omega}_{\mathcal{D}}(y)$$

$$\tilde{r}_{\mathcal{D}}^{-}(y) + \tilde{\omega}_{\mathcal{D}}(y) = \tilde{r}_{\mathcal{D}}^{-}(x_i) + \tilde{\omega}_{\mathcal{D}}(x_i) + 0 \le \tilde{r}_{\mathcal{D}}^{-}(x_{i+1})$$
$$\tilde{r}_{\mathcal{D}}^{+}(y) = \tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1})$$

Using these facts and transitivity of < relation, we can prove Eq. (11) \square

We should note that the extension is based on the ground case defined in S, and we do not require extra space to store the summary in order to use the extended definition. We are now ready to introduce the definition of ϵ -approximate quantile summary.

Definition 3.3. ϵ -Approximate Quantile Summary

Given a quantile summary $Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}})$, we call it is ϵ -approximate summary if for any $y \in \mathcal{X}$

$$\tilde{r}_{\mathcal{D}}^{+}(y) - \tilde{r}_{\mathcal{D}}^{-}(y) - \tilde{\omega}_{\mathcal{D}}(y) \le \epsilon \omega(\mathcal{D})$$
 (12)

We use this definition since we know that $r^-(y) \in [\tilde{r}_{\mathcal{D}}^-(y), \tilde{r}_{\mathcal{D}}^+(y) - \tilde{\omega}_{\mathcal{D}}(y)]$ and $r^+(y) \in [\tilde{r}_{\mathcal{D}}^-(y) + \tilde{\omega}_{\mathcal{D}}(y), \tilde{r}_{\mathcal{D}}^+(y)]$. Eq. (12) means the we can get estimation of $r^+(y)$ and $r^-(y)$ by error of at most $\epsilon\omega(\mathcal{D})$.

Lemma 3.2. Quantile summary $Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}})$ is an ϵ -approximate summary if and only if the following two condition holds

$$\tilde{r}_{\mathcal{D}}^{+}(x_i) - \tilde{r}_{\mathcal{D}}^{-}(x_i) - \tilde{\omega}_{\mathcal{D}}(x_i) \le \epsilon \omega(\mathcal{D})$$
 (13)

$$\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{r}_{\mathcal{D}}^{-}(x_i) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_i) \le \epsilon \omega(\mathcal{D})$$
(14)

Proof. The key is again consider $y \in (x_i, x_{i+1})$

$$\tilde{r}_{\mathcal{D}}^{+}(y) - \tilde{r}_{\mathcal{D}}^{-}(y) - \tilde{\omega}_{\mathcal{D}}(y) = [\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1})] - [\tilde{r}_{\mathcal{D}}^{+}(x_i) + \tilde{\omega}_{\mathcal{D}}(x_i)] - 0$$

This means the condition in Eq. (14) plus Eq. (13) can give us Eq. (12) \Box

Property of Extended Function In this section, we have introduced the extension of function $\tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}$ to $\mathcal{X} \to [0, +\infty)$. The key theme discussed in this section is the relation of constraints on the original function and constraints on the extended function. We can find that, as the results stated by Lemma 3.1 and 3.2, the constraint on the original function can results in more general constraints on the extended function. This can be very useful in the future sections for proving the property of the algorithm, since we only need to ensure the constraints to hold on the original function, and these properties naturally holds in the extended function.

4 Construction of Initial Summary

Given a small multi-set $\mathcal{D} = \{(x_1, w_1), (x_2, w_2), \cdots, (x_n, w_n)\}$, we can construct initial summary $Q(\mathcal{D}) = \{S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}\}$, with S to the set of all values in \mathcal{D} $(S = \{x | (x, w) \in \mathcal{D}\})$, and $\tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}$ defined to be

$$\tilde{r}_{\mathcal{D}}^+(x) = r_{\mathcal{D}}^+(x), \quad \tilde{r}_{\mathcal{D}}^-(x) = r_{\mathcal{D}}^-(x), \quad \tilde{\omega}_{\mathcal{D}}(x) = \omega_{\mathcal{D}}(x) \text{ for } x \in S$$
 (15)

The constructed summary is 0-approximate summary, since it can answer all the queries accurately. The constructed summary can be feed into future operations described in the latter sections.

5 Merge Operation

In this section, we define how we can merge the two summaries together. Assume we have $Q(\mathcal{D}_1) = (S_1, \tilde{r}_{\mathcal{D}_1}^+, \tilde{r}_{\mathcal{D}_1}^-, \tilde{\omega}_{\mathcal{D}_1})$ and $Q(\mathcal{D}_2) = (S_2, \tilde{r}_{\mathcal{D}_1}^+, \tilde{r}_{\mathcal{D}_2}^-, \tilde{\omega}_{\mathcal{D}_2})$ quantile summary of two dataset \mathcal{D}_1 and \mathcal{D}_2 . Let $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$, and define the merged summary $Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}_1}^+, \tilde{r}_{\mathcal{D}_1}^-, \tilde{\omega}_{\mathcal{D}})$ as follows.

$$S = \{x_1, x_2 \cdots, x_k\}, x_i \in S_1 \text{ or } x_i \in S_2$$
 (16)

The points in S are combination of points in S_1 and S_2 . And the function $\tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}$ are defined to be

$$\tilde{r}_{\mathcal{D}}(x_i) = \tilde{r}_{\mathcal{D}_1}(x_i) + \tilde{r}_{\mathcal{D}_2}(x_i)$$
 (17)

$$\tilde{r}_{\mathcal{D}}^{+}(x_i) = \tilde{r}_{\mathcal{D}_1}^{+}(x_i) + \tilde{r}_{\mathcal{D}_2}^{+}(x_i)$$
 (18)

$$\tilde{\omega}_{\mathcal{D}}(x_i) = \tilde{\omega}_{\mathcal{D}_1}(x_i) + \tilde{\omega}_{\mathcal{D}_2}(x_i) \tag{19}$$

We should note that on left sides of equality we use functions defined on $S \to [0, +\infty)$, while on the right sides we use the extended function definitions, since x_i may only belong to one of S_1 or S_2 .

Due to additive nature of r^+ , r^- and ω :

$$r_{\mathcal{D}}^{-}(y) = r_{\mathcal{D}_{1}}^{-}(y) + r_{\mathcal{D}_{2}}^{-}(y), r_{\mathcal{D}}^{+}(y) = r_{\mathcal{D}_{1}}^{+}(y) + r_{\mathcal{D}_{2}}^{+}(y), \omega_{\mathcal{D}}(y) = \omega_{\mathcal{D}_{1}}(y) + \omega_{\mathcal{D}_{2}}(y),$$

Algorithm 1: Query Function g(Q, d)

```
Input: d: 0 \leq d \leq \omega(\mathcal{D})

Input: Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}) where S = x_1, x_2, \cdots, x_k

if d < \frac{1}{2} [\tilde{r}_{\mathcal{D}}^-(x_1) + \tilde{r}_{\mathcal{D}}^+(x_1)] then return x_1

if d \geq \frac{1}{2} [\tilde{r}_{\mathcal{D}}^-(x_k) + \tilde{r}_{\mathcal{D}}^+(x_k)] then return x_k

Find i such that \frac{1}{2} [\tilde{r}_{\mathcal{D}}^-(x_i) + \tilde{r}_{\mathcal{D}}^+(x_i)] \leq d < \frac{1}{2} [\tilde{r}_{\mathcal{D}}^-(x_{i+1}) + \tilde{r}_{\mathcal{D}}^+(x_{i+1})]

if 2d < \tilde{r}_{\mathcal{D}}^-(x_i) + \tilde{\omega}_{\mathcal{D}}(x_i) + \tilde{r}_{\mathcal{D}}^+(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) then | return x_i

else | return x_{i+1}

end
```

And making use of the extended constraint property in Lemma 3.1, we can verify that $Q(\mathcal{D})$ satisfies all the constraints in Definition 3.1 and is a valid quantile summary.

Lemma 5.1. The combined quantile summary satisfies

$$\tilde{r}_{\mathcal{D}}^{-}(y) = \tilde{r}_{\mathcal{D}_{1}}^{-}(y) + \tilde{r}_{\mathcal{D}_{2}}^{-}(y)$$
 (20)

$$\tilde{r}_{\mathcal{D}}^{+}(y) = \tilde{r}_{\mathcal{D}_{1}}^{+}(y) + \tilde{r}_{\mathcal{D}_{2}}^{+}(y)$$
 (21)

$$\tilde{\omega}_{\mathcal{D}}(y) = \tilde{\omega}_{\mathcal{D}_1}(y) + \tilde{\omega}_{\mathcal{D}_2}(y) \tag{22}$$

for all $y \in \mathcal{X}$

This can be obtained by straight-forward application of Definition 3.2.

Theorem 5.1. If $Q(\mathcal{D}_1)$ is ϵ_1 -approximate summary, and $Q(\mathcal{D}_2)$ is ϵ_2 -approximate summary. Then the merged summary $Q(\mathcal{D})$ is $\max(\epsilon_1, \epsilon_2)$ -approximate summary.

Proof. For any $y \in \mathcal{X}$, we have

$$\tilde{r}_{\mathcal{D}}^{+}(y) - \tilde{r}_{\mathcal{D}}^{-}(y) - \tilde{\omega}_{\mathcal{D}}(y) = [\tilde{r}_{\mathcal{D}_{1}}^{+}(y) + \tilde{r}_{\mathcal{D}_{2}}^{+}(y)] - [\tilde{r}_{\mathcal{D}_{1}}^{-}(y) + \tilde{r}_{\mathcal{D}_{2}}^{-}(y)] - [\tilde{\omega}_{\mathcal{D}_{1}}(y) + \tilde{\omega}_{\mathcal{D}_{2}}(y)]$$

$$\leq \epsilon_{1}\omega(\mathcal{D}_{1}) + \epsilon_{2}\omega(\mathcal{D}_{2}) \leq \max(\epsilon_{1}, \epsilon_{2})\omega(\mathcal{D}_{1} \cup \mathcal{D}_{2})$$

Here the first inequality is due to Lemma 5.1.

6 Prune Operation

Before we start discussing the prune operation, let us first introduce a query function g(Q, d). The definition of function is shown in Algorithm 1. For a given rank d, the function returns a x whose rank is close to d. This property is formally described in the following Lemma.

Lemma 6.1. For a given ϵ -approximate summary $Q(\mathcal{D}) = (S, \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}),$ $x^* = g(Q, d)$ satisfies the following property

$$d \ge \tilde{r}_{\mathcal{D}}^{+}(x^{*}) - \tilde{\omega}_{\mathcal{D}}(x^{*}) - \frac{\epsilon}{2}\omega(\mathcal{D})$$

$$d \le \tilde{r}_{\mathcal{D}}^{-}(x^{*}) + \tilde{\omega}_{\mathcal{D}}(x^{*}) + \frac{\epsilon}{2}\omega(\mathcal{D})$$
(23)

Proof. We need to discuss four possible cases

• $d < \frac{1}{2} [\tilde{r}_{\mathcal{D}}^-(x_1) + \tilde{r}_{\mathcal{D}}^+(x_1)]$ and $x^* = x_1$. Note that the rank information for x_1 is accurate $(\tilde{\omega}_{\mathcal{D}}(x_1) = \tilde{r}_{\mathcal{D}}^+(x_1) = \omega(x_1), \, \tilde{r}_{\mathcal{D}}^-(x_1) = 0)$, we have

$$d \ge 0 - \frac{\epsilon}{2}\omega(\mathcal{D}) = \tilde{r}_{\mathcal{D}}^{+}(x_1) - \tilde{\omega}_{\mathcal{D}}(x_1) - \frac{\epsilon}{2}\omega(\mathcal{D})$$
$$d < \frac{1}{2}[\tilde{r}_{\mathcal{D}}^{-}(x_1) + \tilde{r}_{\mathcal{D}}^{+}(x_1)] \le \tilde{r}_{\mathcal{D}}^{-}(x_1) + \tilde{r}_{\mathcal{D}}^{+}(x_1) = \tilde{r}_{\mathcal{D}}^{-}(x_1) + \tilde{\omega}_{\mathcal{D}}^{+}(x_1)$$

• $d \ge \frac{1}{2} [\tilde{r}_{\mathcal{D}}^-(x_k) + \tilde{r}_{\mathcal{D}}^+(x_k)]$ and $x^* = x_k$, then

$$d \geq \frac{1}{2} [\tilde{r}_{\mathcal{D}}^{-}(x_k) + \tilde{r}_{\mathcal{D}}^{+}(x_k)] = \tilde{r}_{\mathcal{D}}^{+}(x_k) - \frac{1}{2} [\tilde{r}_{\mathcal{D}}^{+}(x_k) - \tilde{r}_{\mathcal{D}}^{-}(x_k)] = \tilde{r}_{\mathcal{D}}^{+}(x_k) - \frac{1}{2} \tilde{\omega}_{\mathcal{D}}(x_k)$$
$$d < \omega(\mathcal{D}) + \frac{\epsilon}{2} \omega(\mathcal{D}) = \tilde{r}_{\mathcal{D}}^{-}(x_k) + \tilde{\omega}_{\mathcal{D}}(x_k) + \frac{\epsilon}{2} \omega(\mathcal{D})$$

• $x^* = x_i$ in the general case, then

$$2d < \tilde{r}_{\mathcal{D}}^{-}(x_{i}) + \tilde{\omega}_{\mathcal{D}}(x_{i}) + \tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1})$$

$$= 2[\tilde{r}_{\mathcal{D}}^{-}(x_{i}) + \tilde{\omega}_{\mathcal{D}}(x_{i})] + [\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) - \tilde{r}_{\mathcal{D}}^{-}(x_{i}) - \tilde{\omega}_{\mathcal{D}}(x_{i})]$$

$$\leq 2[\tilde{r}_{\mathcal{D}}^{-}(x_{i}) + \tilde{\omega}_{\mathcal{D}}(x_{i})] + \epsilon \omega(\mathcal{D})$$

$$2d \geq \tilde{r}_{\mathcal{D}}^{-}(x_{i}) + \tilde{r}_{\mathcal{D}}^{+}(x_{i})$$

$$= 2[\tilde{r}_{\mathcal{D}}^{+}(x_{i}) - \tilde{\omega}_{\mathcal{D}}(x_{i})] - [\tilde{r}_{\mathcal{D}}^{+}(x_{i}) - \tilde{\omega}_{\mathcal{D}}(x_{i}) - \tilde{r}_{\mathcal{D}}^{-}(x_{i})] + \tilde{\omega}_{\mathcal{D}}(x_{i})$$

$$\geq 2[\tilde{r}_{\mathcal{D}}^{+}(x_{i}) - \tilde{\omega}_{\mathcal{D}}(x_{i})] - \epsilon \omega(\mathcal{D}) + 0$$

• $x^* = x_{i+1}$ in the general case

$$2d \geq \tilde{r}_{\mathcal{D}}^{-}(x_{i}) + \tilde{\omega}_{\mathcal{D}}(x_{i}) + \tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1})$$

$$= 2[\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1})] - [\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) - \tilde{r}_{\mathcal{D}}^{-}(x_{i}) - \tilde{\omega}_{\mathcal{D}}(x_{i})]$$

$$\geq 2[\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) + \tilde{\omega}_{\mathcal{D}}(x_{i+1})] - \epsilon \omega(\mathcal{D})$$

$$2d \leq \tilde{r}_{\mathcal{D}}^{-}(x_{i+1}) + \tilde{r}_{\mathcal{D}}^{+}(x_{i+1})$$

$$= 2[\tilde{r}_{\mathcal{D}}^{-}(x_{i+1}) + \tilde{\omega}_{\mathcal{D}}(x_{i+1})] + [\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}) - \tilde{\omega}_{\mathcal{D}}(x_{i+1}) - \tilde{r}_{\mathcal{D}}^{-}(x_{i+1})] - \tilde{\omega}_{\mathcal{D}}(x_{i+1})$$

$$\leq 2[\tilde{r}_{\mathcal{D}}^{-}(x_{i+1}) + \tilde{\omega}_{\mathcal{D}}(x_{i+1})] + \epsilon \omega(\mathcal{D}) - 0$$

Now we are ready to introduce the prune operation. Given a quantile summary $Q(\mathcal{D})=(S,\tilde{r}_{\mathcal{D}}^+,\tilde{r}_{\mathcal{D}}^-,\tilde{\omega}_{\mathcal{D}})$ with $S=\{x_1,x_2,\cdots,x_k\}$ elements, and a memory budget b. The prune operation creates another summary $Q'(\mathcal{D})=(S',\tilde{r}_{\mathcal{D}}^+,\tilde{r}_{\mathcal{D}}^-,\tilde{\omega}_{\mathcal{D}})$ with $S'=\{x_1',x_2',\cdots,x_{b+1}'\}$, where x_i' are selected by query the elements in original summary using rank $\{0,\frac{1}{b}\omega(\mathcal{D}),\frac{2}{b}\omega(\mathcal{D}),\cdots,\frac{b}{b}\omega(\mathcal{D})\}$

$$x_i' = g\left(Q, \frac{i-1}{b}\omega(\mathcal{D})\right).$$

The definition of $\tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}}$ in Q' is copied from original summary Q, by restricting input domain from S to S'. We should note that there could be duplicated entries in the S' by this definition, and the duplicated entries

can be removed to reduce the memory cost further. Since all the elements in Q' comes from Q, we can verify that Q' satisfies all the constraints in Definition 3.1 and is a valid quantile summary.

Theorem 6.1. Given a ϵ -approximate quantile summary $Q(\mathcal{D})$, and prune it with b memory budget, resulting $Q'(\mathcal{D}) = (S', \tilde{r}_{\mathcal{D}}^+, \tilde{r}_{\mathcal{D}}^-, \tilde{\omega}_{\mathcal{D}})$. Then $Q'(\mathcal{D})$ is a $(\epsilon + \frac{1}{b})$ -approximate summary.

Proof. We only need to prove the property in Eq. (14) for Q'. Using Lemma 6.1, we have

$$\frac{i-1}{b}\omega(\mathcal{D}) + \frac{\epsilon}{2}\omega(\mathcal{D}) \ge \tilde{r}_{\mathcal{D}}^{+}(x_{i}') - \tilde{\omega}_{\mathcal{D}}(x_{i}')$$
$$\frac{i-1}{b}\omega(\mathcal{D}) - \frac{\epsilon}{2}\omega(\mathcal{D}) \le \tilde{r}_{\mathcal{D}}^{-}(x_{i}') + \tilde{\omega}_{\mathcal{D}}(x_{i}')$$

Then we can find that

$$\tilde{r}_{\mathcal{D}}^{+}(x_{i+1}') - \tilde{\omega}_{\mathcal{D}}(x_{i+1}') - \tilde{r}_{\mathcal{D}}^{-}(x_{i}') - \tilde{\omega}_{\mathcal{D}}(x_{i}')$$

$$\leq \left[\frac{i}{b}\omega(\mathcal{D}) + \frac{\epsilon}{2}\omega(\mathcal{D})\right] - \left[\frac{i-1}{b}\omega(\mathcal{D}) - \frac{\epsilon}{2}\omega(\mathcal{D})\right] = \left(\frac{1}{b} + \epsilon\right)\omega(\mathcal{D})$$

References

- [1] M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In *Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data*, SIGMOD '01, pages 58–66, 2001.
- [2] Q. Zhang and W. Wang. A fast algorithm for approximate quantiles in high speed data streams. In *Proceedings of the 19th International Conference on Scientific and Statistical Database Management*, SS-DBM '07, 2007.