

$\overline{DPP} - 6$

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/41

Video Solution on YouTube:-

https://youtu.be/j4jjZ_XFZgA

- A projectile is projected upward with speed 2 m/s on an incline plane of inclination 30⁰ Q 1. at an angle of 150 from the plane. Then the distance along the plane where projectile will fall is:

 - (a) $\frac{4}{15}$ (c) $\frac{4}{5} \left(\frac{1}{\sqrt{3}} \frac{1}{3} \right)$

- A projectile is projected with speed u at an angle of 600 with horizontal from the foot Q 2. of an inclined plane. If the projectile hits the inclined plane horizontally, the range on inclined plane will be:
 - (a) $\frac{u^2(\sqrt{21})}{}$

- Find time of flight of the projectile along the inclined plane as shown in figure: $10 \, m/s^2$

(a) 2 sec

(b) 1.69 sec

(c) 2.69 sec

- (d) 1 sec
- An inclined plane makes an angle $\theta_0 = 30^{\circ}$ with the horizontal. A particle is projected Q 4. from this plane with a speed of 5 m/s at an angle of elevation $\beta = 30^{\circ}$ with the horizontal as shown in Fig. Find the range of the particle on the plane when it strikes the plane: $(g = 10 m/s^2)$

hysicsaholics

- (a) 5 m
- (c) $\frac{5}{2}$ m

- (b) $\frac{5}{3} m$ (d) $\frac{2}{5} m$
- Find time of flight of the projectile along the inclined plane as shown in figure: Q 5. $(g = 10 \, m/s^2)$

- (a) 5 *sec*
- (c) 3.31 sec

- (b) 6.31 sec
- (d) 2.21 sec
- A particle is projected with a velocity of 30 m/s at an angle 60° above the horizontal on Q 6. a slope of inclination 30°. Find its range and time of flight: $(g = 10 \text{ m/s}^2)$
 - (a) 30 m, $\sqrt{3}$ s

(c) $60 \, m$, $2\sqrt{3} \, s$

- (b) 30 m, $2\sqrt{3} s$ (d) $60\sqrt{3} m$, 2 s
- A particle is projected with a velocity of 30 m/s at an angle 60° above the horizontal on Q 7. a slope of inclination 30°. Find its angle of hit: $(g = 10 \text{ m/s}^2)$
 - (a) 30^{0}

(b) 60°

(c) 90^{0}

- (d) 45°
- A projectile is fired horizontally from an inclined plane (of inclination 45° with Q 8. horizontal) with speed = 50 m/s. if $g = 10 m/s^2$, the range measured along the incline is:
 - (a) 500 m

(b) $500\sqrt{2} \ m$

(c) $200\sqrt{2} \ m$

- (d) none of these
- Q 9. An inclined plane is making an angle β with horizontal. A projectile is projected from the bottom of the plane with a speed u at an angle α with horizontal then its maximum range R_{max} is:
 - (a) $R_{max} = \frac{u^2}{g(1-\sin\beta)}$ (c) $R_{max} = \frac{u}{g(1-\sin\beta)}$
- (b) $R_{max} = \frac{u^2}{g(1+\sin\beta)}$ (d) $R_{max} = \frac{u}{g(1+\sin\beta)}$

Physicsaholics

Q 10. A particle is projected from the bottom of an inclined plane of inclination 30^{0} . At what angle α (from the horizontal) should the particle be projected to get the maximum range on the inclined plane.

(a) 15^0

(b) 30^0

(c) 45^{0}

(d) 60°

Q.1) c	Q.2) d	Q.3) b	Q.4) a	Q.5) b
Q.6) c	Q.7) b	Q.8) b	Q.9) b	Q.10) d