Obliczenia inżynierskie w środowisku MATLAB Techniki Monte Carlo w obliczeniach wielowymiarowych

Paweł Wachel

1. Rozpatrzymy d–wymiarową przestrzeń liniową z normą l_p . Dla każdego wektora $v \in \mathbb{R}^d$ mamy więc

$$\|v\|_{p} = \left(\sum_{k=1}^{d} |v_{k}|^{p}\right)^{\frac{1}{p}}, \qquad 1 \le p < \infty$$
 (1)

oraz $||v||_p = \max_d \{|v_k|\}$ dla $p = \infty$.

2. W przypadku d=3, p=2 otrzymujemy oczywiście

$$||v||_2 = \sqrt[2]{v_1^2 + v_2^2 + v_3^2},$$

a zatem $\|v\|_2$ jest długością (wektora) w powszechnym, intuicyjnym, rozumieniu.

- 3. Posłużymy się nieformalną definicją pojęcia kuli jako zbioru punktów przestrzeni, **oddalonych** od ustalonego punktu v_0 (zwanego środkiem) o odległość nie większą niż stała r (promień).
 - Uwaga: dla uproszczenia rozważymy tylko kule o środkach w początku układu współrzędnych i promieniu jednostkowym r=1.
- 4. Zgodnie z powyższą definicją oraz definicją normy l_p (wzór (1)) interesujące nas kule będziemy oznaczać symbolem K_p^d , gdzie d to wymiar przestrzeni, a p to zastosowana norma.

Figure 1: Przykładowe kule $K_2^3,\,K_2^2$ oraz K_1^2

Zadania do wykonania:

- 1. Skonstruować program wykreślający kulę K_p^2 dla zadanej wartości $p \in [1, \infty]$ oraz przedstawić uzyskane wyniki dla różnych (samodzielnie wybranych) wartości p. Przedyskutować kształt obiektów również dla $p \in (0,1)$. Dla jakich wartości p otrzymane zbiory są wklęsłe, a dla jakich wypukłe?
- 2. Posługując się technikmi Monte Carlo oszacować objętość kuli K_1^2 (a więc pola kwadratu o boku równym $\sqrt{2}$).
- 3. Posługując się technikmi Monte Carlo oszacować objętość kuli K_2^3 (a więc "klasycznej" kuli jednostkowej w przestrzeni trójwymiarowej).
- 4. Posługując się technikmi Monte Carlo oszacować objętość kul K_2^d dla $d=1,2,\ldots,10$. Uzyskane rezultaty przedstawić w formie wykresu (zależność K_2^d od d). Jak zmienia się objętość kuli jednostkowej wraz ze wzrostem wymiarowości przestrzeni?
- 5. Powtórzyć symulacje z punktu 4. dla normy l_1 (lub/oraz innych samodzielnie wybranych wartości p). Dokonać interpretacji uzyskanych wyników.