

3-BODY QUANTIZATION CONDITION IN UNITARY FORMALISM

[Eur.Phys.J. A53 (2017) no.9] [Eur.Phys.J. A53 (2017) no.12] [Phys.Rev. D97 (2018) no.11] [arXiv:1807.04746]

Maxim Mai
The George Washington University

- Many unsolved questions of QCD involve 3-body channels
 - Roper-puzzle & $\pi\pi N$ channel
 - $a_1(1260) \leftrightarrow \pi \varrho/\pi \sigma$ channels \leftrightarrow spectroscopy spin-exotics
 - *X*(3872) etc..

- Many unsolved questions of QCD involve 3-body channels
 - Roper-puzzle & $\pi\pi N$ channel
 - $a_1(1260) \leftrightarrow \pi \varrho/\pi \sigma$ channels \leftrightarrow spectroscopy spin-exotics
 - *X*(3872) etc..

- Best theoretical tool: Lattice QCD \rightarrow some (preliminary) studies:
 - $\pi\pi N \& a_{1}(1260)$
 - π_Q *I*=2
 - more is under way...

Lang et al. (2014) Lang et al. (2016)

[I=2, $\pi\rho$] Woss et al. (2017)

- Many unsolved questions of QCD involve 3-body channels
 - Roper-puzzle & $\pi\pi N$ channel
 - $a_1(1260) \leftrightarrow \pi \varrho/\pi \sigma$ channels \leftrightarrow spectroscopy spin-exotics
 - *X*(3872) etc..

- Best theoretical tool: **Lattice QCD** → some (preliminary) studies:
 - $\pi\pi N \& a_{1}(1260)$
 - π₀ *I*=2
 - more is under way...

- Lang et al. (2014) Lang et al. (2016)
 - [I=2, $\pi\rho$] Woss et al. (2017)

• However,

Lattice spectrum is discretized → *mapping to infinite volume* spectrum

this talk: **QUANTIZATION CONDITION FOR 3-BODY SYSTEMS**

2-body case

Lüscher (1986)

- one-to-one mapping
- Various extensions: multi-channels, spin, ...

Gottlieb, Rummukainen, Feng, Meißner, Li, Liu, Doring, Briceno, Rusetsky, Bernard...

2-body case

Lüscher (1986)

- one-to-one mapping
- Various extensions: multi-channels, spin, ...

Gottlieb, Rummukainen, Feng, Meißner, Li, Liu, Doring, Briceno, Rusetsky, Bernard...

3-body case

- presumably no one-to-one mapping
 - → complex kinematics (8 variables)
 - → sub-channel dynamics
- important theoretical developments and *pilot* numerical investigation

Sharpe, Hansen, Briceno, Hammer, Rusetsky, Polejaeva, Griesshammer, Davoudi, Guo...

MM/Doring(2017)
Pang/Hammer/Rusetsky/Wu(2017)
Hansen/Briceno/Sharpe(2018)
Doring/Hammer/MM/Pang/Rusetsky/Wu(2018)

- First data driven study of the volume spectrum
 - $\rightarrow (\pi^+\pi^+)$ and $(\pi^+\pi^+\pi^+)$ systems
 - → comparison with Lattice QCD results

MM/Doring (2018)
> this talk <</pre>

UNITARY ISOBAR INF.-VOL. AMPLITUDE

Eur.Phys.J. A53 MM et al. (2017)

UNITARY ISOBAR INF.-VOL. AMPLITUDE

Eur.Phys.J. A53 MM et al. (2017)

- 2) **Disconnected part** = spectator + tower of "isobars"
 - > functions with correct right-hand-singularities for each $QN \tau (M_{inv})$
 - > coupling to asymptotic states: cut-free-function v (q, p)

UNITARY ISOBAR INF.-VOL. AMPLITUDE

Eur.Phys.J. A53 MM et al. (2017)

- 2) **Disconnected part** = spectator + tower of "isobars"
 - > functions with correct right-hand-singularities for each $QN \tau (M_{inv})$
 - > coupling to asymptotic states: cut-free-function v (q, p)
- 3) Connected part = general 4d BSE-like equation w.r.t kernel **B** (**p**, **q**; **s**)

<u>UNITARY ISOBAR INF.-VOL. AMPLITUDE</u>

Eur.Phys.J. A53 MM et al. (2017)

- 2) **Disconnected part** = spectator + tower of "*isobars*"
 - > functions with correct right-hand-singularities for each $QN \tau (M_{inv})$
 - > coupling to asymptotic states: cut-free-function v (q, p)
- 3) Connected part = general 4d BSE-like equation w.r.t kernel **B** (**p**, **q**; **s**)
- 4) 2- and 3-body unitarity constrains B, T

- → relativistic 3d integral-equation
- → useful for phenomenological applications
- \rightarrow unknowns: $\mathbf{v}, \mathbf{C}, \mathbf{m}_0$

$$B = \boxed{\begin{array}{c} v \\ \hline \end{array}}$$

$$\tau^{-1} = \frac{1}{1/m_0} + \frac{v}{1/m_0} + \cdots + \cdots + \cdots + \cdots$$

3-BODY QUANTIZATION CONDITION

Eur.Phys.J. A53 MM/Doring(2017)

• Power-law finite-volume effects

 \leftrightarrow on-shell configurations in T \leftrightarrow Im $T \leftrightarrow$ Unitarity is crucial

• Replace integrals by sums:

```
\{E^*/T^{-1}(E^*)=0\} = \{En.Eigenvalues in a box\}
```

 \triangle B is NOT regular \rightarrow projection to irreps essential

3-BODY QUANTIZATION CONDITION

Eur.Phys.J. A53 MM/Doring(2017)

Power-law finite-volume effects

 \leftrightarrow on-shell configurations in T \leftrightarrow Im $T \leftrightarrow$ Unitarity is crucial

• Replace integrals by sums:

$$\{E^*/T^{-1}(E^*)=0\} = \{En.Eigenvalues in a box\}$$

 \triangle B is NOT regular \rightarrow projection to irreps essential

some useful techniques:

Doring/Hammer/MM/... (2018)

Final result in terms of shells s⁽¹⁾ and basis vector index u⁽¹⁾

$$\operatorname{Det}\left(\mathbf{B}_{\mathbf{u}\mathbf{u}'}^{\mathbf{\Gamma}\mathbf{s}\mathbf{s}'}(\mathbf{W^2}) + \frac{2\mathbf{E_s}\,\mathbf{L^3}}{\vartheta(\mathbf{s})}\tau_{\mathbf{s}}(\mathbf{W^2})^{-1}\delta_{\mathbf{s}\mathbf{s}'}\delta_{\mathbf{u}\mathbf{u}'}\right) = \mathbf{0}$$

W – total energy

ϑ – multiplicity

L – lattice size

 $E_s - 1p$. energy

Eur.Phys.J. A53 MM/Doring(2017)

Power-law finite-volume effects

 \leftrightarrow on-shell configurations in T \leftrightarrow Im $T \leftrightarrow$ Unitarity is crucial

• Replace integrals by sums:

$$\{E^*/T^{-1}(E^*)=0\} = \{En.Eigenvalues in a box\}$$

 \triangle B is NOT regular \rightarrow projection to irreps essential

some useful techniques:

Doring/Hammer/MM/... (2018)

Final result in terms of shells s⁽¹⁾ and basis vector index u⁽¹⁾

$$\operatorname{Det}\left(\mathbf{B}_{\mathbf{u}\mathbf{u}'}^{\mathbf{\Gamma}\mathbf{s}\mathbf{s}'}(\mathbf{W^2}) + \frac{2\mathbf{E_s}\,\mathbf{L^3}}{\vartheta(\mathbf{s})}\tau_{\mathbf{s}}(\mathbf{W^2})^{-1}\delta_{\mathbf{s}\mathbf{s}'}\delta_{\mathbf{u}\mathbf{u}'}\right) = \mathbf{0}$$

W – total energy

ϑ – multiplicity

L – lattice size

 E_{a} – 1p. energy

Possible work-flow:

1) Fix
$$\mathbf{v} = \mathbf{v} =$$

to 3-body data (Lattice or Exp. data)

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- > Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

14

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

I. 2-body subchannel:

- one-channel problem: $\pi\pi$ -system in S-wave, I=2
- > 2-body amplitude consistent with 3-body one

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > $L=2.5 \text{ fm}, m_{\pi}=291/352/491/591 \text{ MeV} \rightarrow \textbf{BonusQ}$: chiral extrapolation in 3body system?

I. 2-body subchannel:

- one-channel problem: $\pi\pi$ -system in S-wave, I=2
- > 2-body amplitude consistent with 3-body one

- 1) Fix λ , M_0 to exp. data
 - \odot incoorrect m_{π} behavior!

16

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

I. 2-body subchannel:

- > one-channel problem: $\pi\pi$ -system in S-wave, I=2
- > 2-body amplitude consistent with 3-body one

- 1) Fix λ , M_{ρ} to exp. data
 - \odot incoorrect m_{π} behavior!
- 2) Chiral NLO & K-matrix

© works badly for high energies (1984)

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > $L=2.5 \text{ fm}, m_{\pi}=291/352/491/591 \text{ MeV} \rightarrow \textbf{BonusQ}$: chiral extrapolation in 3body system?

I. 2-body subchannel:

- > one-channel problem: $\pi\pi$ -system in S-wave, I=2
- > 2-body amplitude consistent with 3-body one

- 1) Fix λ , M_{θ} to exp. data
 - \odot incoorrect m_{π} behavior!
- 2) Chiral NLO & K-matrix
 - © works badly for high energies
- 3) Inverse Amplitude

Truong (1988)

- \odot correct $\sigma \& m_{\pi}$ behavior
- © parameters known

Gasser/Leutwyler(1984)

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

I. 2-body subchannel:

- one-channel problem: $\pi\pi$ -system in S-wave, I=2
- > 2-body amplitude consistent with 3-body one

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

II. 3-body spectrum

Remaining unknown: C

- > genuine (momenta-dependent) 3-body "force"
- > simplest case: $C_{qp} = c \, \delta^{(3)}(p-q)$

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - \rightarrow LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

II. 3-body spectrum

Remaining unknown: C

 $\mathrm{Det}\left(\mathbf{B}_{\mathbf{u}\mathbf{u}'}^{\mathbf{\Gamma}\mathbf{s}\mathbf{s}'}(\mathbf{W^2}) + \frac{2\mathbf{E_s}\,\mathbf{L^3}}{\vartheta(\mathbf{s})}\tau_{\mathbf{s}}(\mathbf{W^2})^{-1}\delta_{\mathbf{s}\mathbf{s}'}\delta_{\mathbf{u}\mathbf{u}'}\right) = \mathbf{0}$

- > genuine (momenta-dependent) 3-body "force"
- > simplest case: $C_{qp} = c \delta^{(3)}(p-q)$

Fit c to NPLQCD ground state level

 $\rightarrow C=0.2 \pm 1.5 \cdot 10^{-10}$

arXiv:1807.04746 MM/Doring(2018)

- Interesting system: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

Detmold et al. (2008)

- \rightarrow Repulsive channel \rightarrow **Q**: does the "isobar" picture hold?
- > L=2.5 fm, $m_{\pi}=291/352/491/591$ MeV \rightarrow BonusQ: chiral extrapolation in 3body system?

II. 3-body spectrum

Remaining unknown: C

 $\mathrm{Det}\left(\mathbf{B}_{\mathbf{u}\mathbf{u}'}^{\mathbf{\Gamma}\mathbf{s}\mathbf{s}'}(\mathbf{W^2}) + \frac{2\mathbf{E_s}\,\mathbf{L^3}}{\vartheta(\mathbf{s})}\tau_{\mathbf{s}}(\mathbf{W^2})^{-1}\delta_{\mathbf{s}\mathbf{s}'}\delta_{\mathbf{u}\mathbf{u}'}\right) = \mathbf{0}$

- > genuine (momenta-dependent) 3-body "force"
- \rightarrow simplest case: $C_{qp} = c \, \delta^{(3)}(p-q)$

Predict exited spectrum:

 \rightarrow novel pattern

1/1 of interacting/non-interacting lvls

- → all QC-poles are simple
- → chiral extrapolation to phys point

"LIBERATION/CAPTURING OF 3 BIRDS (PARTICLES)"= SUMMARY

[Eur.Phys.J. A53 (2017) no.9]

- Parametrization via 2-body sub-channel amplitudes ("isobars")
- Relativistic integral equation
- Phenomenological applications in progress...

"Three-body Unitarity in the Finite Volume"

[Eur.Phys.J. A53 (2017) no.9, 177] [Phys.Rev. D97 (2018) no.11]

- \rightarrow Discretization & Projection to irreps of O_h leads to 3body QC
- Numerical toy-examples explored
- Extension to multi-channels in progress...

"Finite-volume spectrum of $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$ systems"

[arXiv:1807.04746]

- (excited spectrum) of $\pi^+\pi^+$ & $\pi^+\pi^+$ systems **predicted** from 3b QC
- ground level compared with NPLQCD results
- > 3-body fin-vol. spectrum features explored
- Predictions at phys. pion mass
 - > *Outlook: N**(1440), ...

BACKUP

$m_{\pi} \; [\mathrm{MeV}]$	139.57	291	352	491	591
$E_2^1 [m_\pi]$	$2.1228^{+0.0068}_{-0.0069}$	$2.0437^{+0.0071}_{-0.0086}$	$2.0334^{+0.0076}_{-0.0086}$	$2.0233^{+0.0105}_{-0.0098}$	$2.0204^{+0.0200}_{-0.0106}$
Refs. [24, 25]	_	2.0471 (27)(65)	$\mathbf{2.0336(22)(22)}$	2.0215 (16)(13)	2.0171(16)(19)
$E_2^2 [m_\pi]$	_	_	$3.6245^{+0.0746}_{-0.0299}$	$2.9556^{+0.0728}_{-0.0263}$	$2.7045^{+0.0827}_{-0.0271}$
$E_2^3 \ [m_\pi]$	_	_	_	$3.7114^{+0.1482}_{-0.0737}$	$3.2911^{+0.1241}_{-0.0688}$
$E_2^4 \ [m_\pi]$	_	_	_	_	$3.6802^{+0.0707}_{-0.0902}$
$E_2^5 [m_\pi]$	_	_	_	_	$3.9829^{+0.0500}_{-0.0299}$
$E_3^1 [m_\pi]$	$3.6564^{+0.1014}_{-0.0847}$	$*3.1444^{+0.0171}_{-0.0192}$	$*3.1058^{+0.0091}_{-0.0147}$	$*3.0655^{+0.0029}_{-0.0095}$	$*3.0537^{+0.0048}_{-0.0119}$
Refs. [24, 25]	_	3.1458 (49)(125)	$\mathbf{3.1050(27)(27)}$	$\mathbf{3.0665(26)(22)}$	3.0516 (27)(53)
$E_3^2 \ [m_\pi]$	_	_	$4.7301^{+0.1577}_{-0.1027}$	$4.0031^{+0.0196}_{-0.1836}$	$3.7315^{+0.0309}_{-0.0742}$
$E_3^3 \ [m_\pi]$	_	_	_	$4.7043^{+0.0126}_{-0.5923}$	$4.2621^{+0.0001}_{-0.1739}$
$E_3^4 [m_\pi]$	_	_	_	$4.7890^{+0.0506}_{-0.1722}$	$4.3155^{+0.0837}_{-0.1341}$
$E_3^5 \ [m_\pi]$	_	_	_	_	$4.5913^{+0.0001}_{-0.1995}$
$E_3^6 \ [m_\pi]$	_	_	_	_	$4.6634^{+0.0001}_{-0.1070}$
$E_3^7 [m_\pi]$	_	_	_	_	$4.6995^{+0.0001}_{-0.0661}$