

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Fundamentos de Matemática III — Lista 3

Prof. Adriano Barbosa

- (1) Seja z = 1 + i, determine o módulo e o argumento de z^4 .
- (2) Calcule

(a)
$$\left(-\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{100}$$
 (b) $(-1+i)^6$ (c) $(1+\sqrt{3}i)^{-5}$ (d) $\frac{i}{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^6}$

- (3) Determine, se possível, o menor valor de $n \in \mathbb{N}$ tal que $(\sqrt{3}+i)^n$ é:
 - (a) real positivo
- (b) real negativo (c) imaginário puro
- (4) (a) Encontre z tal que $iz + 2\bar{z} + 1 i = 0$.
 - (b) Calcule o módulo e o argumento de z.
 - (c) Calcule z^{1004} .
- (5) Calcule

(a)
$$\sqrt{-7 + 24i}$$

(b)
$$\sqrt[3]{-11-2}$$

(c)
$$\sqrt{5+12i}$$

(a)
$$\sqrt{-7+24i}$$
 (b) $\sqrt[3]{-11-2i}$ (c) $\sqrt{5+12i}$ (d) $\frac{1}{\sqrt{-4i}}$

- (6) Sabendo que $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ é uma das raízes quartas de z, calcule todas as raízes quartas de z.
- (7) Determine graficamente as raízes quartas de 81.
- (8) Mostre que a soma das raízes de índice 2n de um número complexo qualquer é zero.