Clustering/Unsupervised Learning

Customer Segmentation

Name Rank 1 Rank 2 Rank 3

Paul	Snacks	Book	Furniture
Liz	Perfume	Furniture	Book
•	•	•	•
•	•	•	•

Dimensionality Reduction Technique

Assign each vector to a favorable cluster (high affinity)

Semantic segmentation:

Pixels part of same object get assigned to same segment

Algorithm capable of clustering dataset

Hard Clustering - instances are assigned to a single cluster

Soft Clustering - instances are assigned a score

Score is the distance between instance and centroid

If centroids are provided

If instances are labeled

Avg Instance instances labeled to find centroid

Avg Instance

Choose random instance as centroid

Kmeans Init $Method^1$ k =2

New centroid is instance highest probability:

New centroid with
$$probability = \frac{D(\mathbf{x}^{(i)})^2}{\sum_{j=1}^m D(\mathbf{x}^{(j)})^2}$$

Select $D(x^{(6)})$

$$D(x^{(i=6)})^{2}$$

$$\sum_{j=1}^{m} \int_{j\neq 6} D(x^{(j)})^{2}$$

Silhouette Coefficient per instance

Cluster2

•

Cluster1

 x^{i} avg distance to other x^{j} incluster $= a = \sum_{j=1}^{N_{thiscluster}-1} D_{j}$

•

Silhouette Coefficient per instance

 x^{i} avg distance to other x^{j} in nearest cluster $=b=\sum_{j=1}^{N_{thiscluster}}D_{j}$

Silhouette Coefficient =
$$\frac{(b-a)}{max(a,b)}$$

Silouette Score =
$$\frac{1}{m} \sum_{i}^{m} Silhouette Coefficient_{i}$$

Semisupervised

Cluster Training Data

Find Instances closest to centroid (representative Data)

Find Instances closest to centroid

Train (representative_instance, representative_label)

Label Propagation

DBSCAN

Hyper-parameter eps = high

DBSCAN

Hyper-parameter eps = very-low

Inertia

Distance to each instance and closest centroid

Gaussian Mixture

Probabilistic model assumes instances are generated from a mixture of several Gaussian distributions

Instances is replaced with sample(s) from Gaussian Distributed Clusters

Model is generative so new instances with can be generated using it

Gaussian Mixture

Primarily used for anomaly detection

Assumes dataset is clean and uncontaminated.

Gaussian Mixture

Also used for novelty detection

Assumes dataset is clean and uncontaminated.

Model =
$$\begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \dots \end{bmatrix}$$

Probability

How plausible future

outcome x(r.v) is knowing

model parameters or weights

Likelihood

How plausible parameters are, after the outcome x(r.v) is known.

Log of likelihood function reveals **parameters** which make an outcome likely

Bayesian Gaussian Mixture

Find model that minimizes a theoretical information criterion

Bayesian Gaussian Mixture

Beta distribution model

used to generate clusters (i.e. weights, means, covariances)

 Φ = [0.3 , 0.6 ...]

- 30 percent of instances go to cluster 1
- 40 percent of remaining instances to to cluster 2

Beta variable lpha

lpha large ($\Phi \approx 0$) (many clusters)

lpha small ($\Phi \approx 1$) (few clusters)

Wishart Distribution model

used to generate cluster shapes (samples covariance matrices)

W(d, V)

Bayesian Gaussian Mixture

Assumes clusters and their parameters have been sampled (\mathbf{z}^i)

 $p(\mathbf{z}^i)$ - encode cluster distribution with prior knowledge

$$p(\mathbf{z} \mid \mathbf{X}) = \text{posterior} = \frac{p(\mathbf{X} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{X})}$$

How to update **z** probability distribution after observing new data

$p(\mathbf{X} \mid \mathbf{z})$

- probability of **X**(observation/event) knowing **z** variables/parameters

$p(\mathbf{z})$

- prior knowledge encoded distribution

Encode examples:

- clusters likely to be less dense (after observing new samples)
- clusters likely to be highly dense
- · clusters likely to be spherical shaped

$p(\mathbf{X})$

- probability of observations
- Requires integrating over all possible values of z (impossible as that would consider every possible combination of cluster parameters and cluster assignment)

Olivetti Faces Dataset

N= 400 Dimension 64x64 Instance - 1D vector of size 4096

40 Unique People

Pipeline Exercise 11: Image Segmentation

Pipeline Exercise 11: Dimension Reduction

Method 2

Pipeline Exercise 11: Dimension Reduction

Method 3

Exercise 12: Anomaly Detection

First validation image corrupted(rotated)

Exercise 13: Reconstruction Note : recovered Images are 'good' not' perfect' Perfect Recovered Dimension Reduction χ^{train} Recover images \rightarrow x^{val} Inverse Transform Damaged image Reconstructs to the dataset in trained dataset: Tries to reconstruct a normal face

Four images in the validation were distorted. After transforming and taking the inverse the reconstruction set was measured for all datasets

Note: Python: Annotation

