

Introduction to Deep Learning

DAY 1: Introduction & First Model

DAY 2: Monitoring and Troubleshooting the learning process

DAY 3: Convolutional neural networks & Regularization

09:00 Introduction to Deep Learning

10:20 Coffee break

10:30 Creating a neural network for classification

11:20 Coffee break

11:30 Monitoring the training process

12:30 END

ARTIFICIAL INTELLIGENCE A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Glosser.ca, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

https://www.kaggle.com/keras/resnet50

https://www.kaggle.com/keras/resnet50

DNN: What is it good for?

What sort of problems can deep learning solve?

Pattern/object recognition

DOG

leisergu, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

• Segmenting images (or any data)

B.Palac, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

 Translating between one set of data and another, for example natural language translation.

• Generating new data that looks similar to the training data, often used to create synthetic datasets, art or even "deepfake" videos.

What sort of problems deep learning *cannot* solve?

- Where only small amounts of training data is available.
- Tasks requiring an explanation of how the answer was arrived at.
- Being asked to classify things which are nothing like their training data.

Exercise: deep learning problems

Which of the following would you apply Deep Learning to?

- Recognising whether or not a picture contains a bird.
- Calculating the median and interquartile range of a dataset.
- Identifying MRI images of a rare disease when only one or two example images available for training.
- Identifying people in pictures after being trained only on cats and dogs.
- Translating English into French.

Glosser.ca, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Glosser.ca, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

https://gfycat.com/helpfulconstantkite

Li, Hao, et al. "Visualizing the loss landscape of neural nets." arXiv preprint arXiv:1712.09913 (2017).

Deep Learning Frameworks

- Tensorflow
 - Google
 - General Tensor Network Caculations
- PyTorch
 - Facebook
 - Very Fast
- Keras
 - Designed for Ease of Use
 - On top of Tensorflow
 - Good Documentation
- And many others (Theano, Caffe, etc.)

What we are using

- Keras Deep Learning Framework
- Sklearn Machine Learning Framework
- Seaborn Visualization Library

Exercise: check versions

```
from tensorflow import keras
print(keras.__version__)

import seaborn as sns
print(sns.__version__)

import sklearn
print(sklearn.__version__)
```


Deep Learning Workflow

Deep Learning Workflow

- 1. Formulate/Outline the problem
- 2. Identify inputs and outputs
- 3. Prepare data
- 4. Choose a pre-trained model or build a new architecture from scratch
- 5. Choose a loss function and metrics
- 6. Train the model
- 7. Measure Performance
- 8. Tune Hyperparameters
- 9. Perform a Prediction/Classification

Exercise: deep learning workflow