PRACTICA 2 Bisección-Newton

Fecha de presentación: 18 de agosto del 2022

NOTA. Usar para todos los ejercicios planteados cinco cifras decimales. A partir del ejercicio 11 usar geogebra

- 1. Use el método de bisección para hallar la raíz de la ecuación $f(x) = e^{-x} x$ en el intervalo [0,1] y 10 iteraciones
- 2. Se quiere emplear el método de la bisección para encontrar una solución aproximada de la primera raíz de la ecuación $f(x) = ln(x^2 + 1) e^{\frac{x}{2}}cos(\pi x)$, en el intervalo [0.1, 0.5], con una exactitud de 10^{-2}
- 3. Aproximar con una tolerancia de 10^{-3} una solución por el método de la bisección para $cos(x^2) = sen(x-1)$, en [0,2]
- 4. Demuestre gráficamente que $f(x) = x^3 x 1$ tiene exactamente una raíz en el intervalo [1,2]. Luego hallar dicha solución por el método de la bisección con una tolerancia de 10^{-2}
- 5. Hallar la solución por el método de la bisección con una tolerancia de 10^{-2} De la ecuación $x^2 + x ln(3x - 2) - 2 = 0$ en el intervalo [1,2]
- 6. Aproximar mediante el método de Newton-Rapshon la raíz de f(x) = 0 tomando como valor inicial $x_0 = 0.6$ con una tolerancia de 10^{-5} de la siguiente función:

$$f(x) = \ln(x^2 + 1) - e^{\frac{x}{2}}cos(\pi x)$$

- 7. Use el método de Newton-Raphson para hallar la raíz de la ecuación $f(x) = x + x^7 = 3$ con $x_0 = 1$ y una tolerancia de 10^{-6}
- 8. Usar el método de Newton-Raphson, para aproximar la raíz de $fx = e^{-x} lnx$ con $x_0 = 1$ hasta un error < 1
- 9. Con el método de Newton-Raphson, encuentre la raíz de la siguiente ecuación: $4\cos x = e^x \cos x_0 = 1$ y una tolerancia de 10^{-4}
- 10. Hallar por el método de Newton Raphson las raíces de la ecuación

$$7sen(x)e^{-x} = 1$$

con $x_0 = 0$ y una tolerancia de 10^{-5}

- 11. Sea la curva $y = x^2 + x + e^x$. Aproximar con una tolerancia 10^{-3} , la abscisa del punto de la curva, más lejano al punto p(0,3) trabaje en [-1,0]
- 12. Usando el método de la bisección, aproximar con una tolerancia 10^{-2} la abscisa de la curva $y = x^4$
- 13. Aproximar con una tolerancia 10^{-2} una solución para $x^3 = 2^{-x}$, se sabe que dicha solución está en el intervalo [0,1]
- 14. Sea la curva $y = x^2 + x + e^x$. Aproximar con una tolerancia 10^{-7} , la abscisa del punto de la curva , más lejano al punto p(0,3) trabaje con $x_0 = -1$
- 15. Usando el método de Newton aproximar con una tolerancia 10^{-4} el máximo de la función $f(x) = x\cos x \, \cos x_0 = 1$