A Study on Benchmark Datasets for Human Disease Genes

-The more we Learn, The more we Serve

Group Members :

Mahin Hossain ID: 190204061

MD Shihabul Islam Shovo ID: 190204075

MD Fardin Jaman Aranyak ID: 190204093

Md. Symum Hossain ID: 190204105

Supervised By: Dr. S.M.A. Al-Mamun

Human Gene-Disease datasets

Raw Datasets

- Availability: Scattered over literature as free-text data, Unorganized, Not recorded properly
- **Usefulness:** Not compatible for computational analysis
- Work compatible: Not suitable and slow process

Benchmark Datasets

- Availability: OMIM, DisGeNet, GAD, GWAS
- Usefulness: Cytoscape plugin and Computational analysis
- Work compatible:
 Representable as GDAs graph

State of art Genomics Datasets

OMIM DisGeNET CTD **UniPort GWAS GAD Orphanet** ClinVer **Catalog GWAS** dbGaP GeneCards Central

Resources On Genotype and Phenotype

Name	URL	Scope	Organism	Current Statistics	Original Refer- ence	Current Refer- ence
DisGeNET	DisGeNET ¹	Gene-disease, and variant-disease as- sociations	Human	1134942 associations, between 21,671 genes and 30170 diseases, 46589 SNPs	2010 [33]	[7]
Comparative Toxicogenomics Database(CTD)	CTD ²	Chemicals, genes, and disease associ- ations	Human and animal models	1127498 associ- ations between 20,027 genes and 1504 diseases	2003 [34]	[6]
Online Mendelian Inheritance in Man(OMIM)	OMIM ³	Mendelian dis- eases and their genes	Human	121512 associ- ations between 29,596diseases and 20,790 genes	1998 [35]	[5]
Genetic As- sociation Database(GAD)	GAD ⁴	Genes, variants, and complex dis- eases and traits	Human	74928 associa- tions between 12,774 diseases and 10,697 genes	2004	[11]
UniProt Knowl- edgebase	UniPort ⁵	Proteins	Human	566467 associ- ations between 1545 diseases and 19,368 genes	2004 [36]	[9]
The NHGRI-EBI Catalog of pub- lished GWAS (GWAS Catalog)	GWAS ⁶	GWAS studies	Human	30,148 associations between 2,743 diseases and 21,449 genes (18,666 variants)	2009 [36]	[12]

Tools for Genomic Data Extraction

BeFree

PubTator

BioBERT

MetaMap

DisGeNet- A Dataset of Gene-Disease Associations

Released On

September, 2010

Repository

Open Access

Informations

GDAs & VDAs

Raw Data Source

Omim, Unipport, CTD, CURATED

Curated Data Source

Mendelian, Curated repositories, GWAS catalogues, Scientific literature

Data Extraction

Text mining tools

Access DisGeNET

Web Interface, SQLite database, Cytoscape, Semantic web

DisGeNet Versions

V4.0 (June, 2016)

- 429, 036 GDAs
- 17, 381 genes
- 15, 093 diseases

V6.0 (June, 2019)

- 628, 625 GDAs
- 17, 549 genes
- 24, 166 diseases

V7.0 (June, 2020)

- 1, 134, 942 GDAs
- 21, 671 genes
- 30, 170 diseases

Category	Clinical Concepts	Associated Genes	Associated Variants
Disease	21838	20163	139004
Disease Group	962	15474	22477
Phenotype	7493	16854	62686

Detailed Statistics of the DisGeNET's Current Version: v7.0

OMIM(Online Online Mendelian Inheritance in Man)

First Introduced

In the 60s

Traditional focus

Mendelian diseases

Text Data

Expert Curation

Recent focus

Complex diseases

Data Format

Text but structured

Access OMIM

Website, API

Category	GDAs	Genes	Diseases
Total	121, 512	29, 596	20, 790

Statistics of the OMIM Current Version

Workflow Diagram

OMIM

Disgenet

Machine Learning Model for Gene Disease Association

- Decision Tree (DT)
- Support Vector Machines (SVMs)
- Random Forests (RF)
- Neural Networks (NN)

NEURAL NETWORK (NN)

- Human Brain
- Adaptability
- Both (C & R)
- Very Effective & Expensive
- P, MLP, CNN and RNN
- Image Recognition, NLP, Medical D., Speech Recommender Systems, Predictive Analytic

Comparative Analysis Between Models

Feature	SVM	Random Forest	Neural Networks	Decision Tree
Classification	Binary and multi-class	Binary and multi-class	Binary and multi-class	Binary and multi-class
	marci class	muri cuss	mari cass	marci cado
Regression	Yes	Yes	Yes	No
Interpretability	High	Low	Low	Medium
Computational complexity	Medium	High	High	Low
Robustness to outliers	High	High	High	Low
Feature scaling	No	No	Yes	No

Summarizing the Analytic Discussion

Model	Description	Advantageous	Disadvantageous
SVM	Supervised	HD data, Robustness, Interpretation	Computational Complexity, tuning
RF	Ensamble	High accuracy, No scaling, Robustness,	Complexity, Hyperparameter
NN	Human Brain	High Accuracy, adaptability	Interoperability, Hyperparameter
DT	Tree Like Structure	Simplicity, Efficiency	Overfitting, Noise S.

◆Title: Benchmark data set for breast cancer associated genes.

- ☐ 12565 records were processed
- Raw data were collected From HuGE LiteratureFinder
- EDirect Tool was used to separate PubMeds
- Double Cross Validation were applied
- ☐ The benchmark Dataset was achieved

Title: Benchmarking network propagation methods for disease gene identification.

- Identify genes for targeted drug treatment
- Data Source is OpenTargets database
- 12 specialized computer algorithms were used across 22 common diseases
- ☐ Six different measures used to evaluate algorithm efficacy.
- Cross-validation were employed to ensure reliability of results

Title: Genomic variant benchmark: if you cannot measure it, you cannot improve it.[3]

- Crucial for evaluating variant caller accuracy in genomics research
- Dataset Created using diverse sequencing technologies
- Establishes pipelines, fosters new sequencing approaches
- ☐ Short-read technologies widely used but have limitations
- Long-read sequencing used for detecting previously undetected SVs

Steps of benchmarking 💢

S.NO: Serial number

DB_ID: Database identifier DIS_CLASS: Disease class GENE: Gene information

PUBMED.ID: PubMed identifier

LACKASSO: Lack of association indicator

TITLE: Title of the publication

YEAR: Year of publication

CONCLUSION: Conclusion of the publication

REF_SENTENCE: Reference sentence ASSOCIATION_CLASS: Association class

REF_GENE: Reference gene

GENE_NEW: New gene information

WEIGHT: Weight value
Dimension of the dataset: 14

It doesn't directly provide numerical values for the Interpretability, Robustness to noise, Handling of missing data, and Computational complexity for any ML model

Method Name	Accuracy
Neural Network	80.65%
SVM	60.41%
Decision Tree	72.91%
Random Forest	85.71%

Table 4.1: Perfomance on Different Method

Random Forest Tree Snapshot

Table 1: Missing Values in the Dataset

Column	Missing Values
S.NO	0
DB_ID	0
DIS_CLASS	0
GENE	0
PUBMED.ID	0
LACKASSO	0
TITLE	1
YEAR	8
CONCLUSION	2403
REF_SENTENCE	0
ASSOCIATION_CLASS	0
REF_GENE	0
GENE_NEW	0
WEIGHT	0

Conclusion & Future Work

- Vast field of Research
- Human Helpful Innovation
- Medical Milestone
- Need to Walk More
- Hybrid Model
- Feature Selection
- Optimization
- Interpretability
- Applications

References

- 1. S. A. A. P. S. A. A. K. S. Raj and Alok, "benchmark gene reference data for breast cancer", mendeley data, v2, doi: 10.17632/xdkvk75ns7.2,"
- 2. S. P.-A. S. J. B. D. R. W. A. P.-L. A. G. B. H. Dessailly, "Benchmarking network propagation methods for disease gene identification," 2019.
- 3. S. A. D. Majidian and C. C. et al., "Genomic variant benchmark: if you cannot improve it. genome biol 24, 221," 2023.

Thank You! ••

Do you have any questions?