Khôlles: Semaine 21

- 19 - 23 Février 2024 -

Sommaire

1	Questions de cours - Groupes A, B, C	1
	1.1 Citer le théorème de continuité des intégrales à paramètre et l'appliquer sur Γ	1
	1.2 Citer le théorème de dérivation des intégrales à paramètre et l'appliquer sur Γ	2
	1.3 Citer la version continue du théorème de convergence dominée	3
2	Questions de cours, groupes B et C	4
	2.1 Théorème de Continuité des Intégrales à paramètre. (démo)	4
	2.2 Théorème de dérivation des intégrales à paramètre. (démo)	5
	2.3 Version continue du théorème de convergence dominée. (démo)	7
3	Ouestions de Cours du groupe C uniquement	8

1 Questions de cours - Groupes A, B, C

1.1 Citer le théorème de continuité des intégrales à paramètre et l'appliquer sur Γ

Théorème de Continuité des intégrales à paramètre

Soit $f: I \times J \to \mathbb{R}$ $(I, J \subset \mathbb{R})$. On note $g(x) = \int_{I} f(x, t) dt$ pour $x \in I$.

Hypothèses:

Conclusions:

H.1) $\forall t \in J$, $x \mapsto f(x,t) \operatorname{est} \mathscr{C}^{0} \operatorname{sur} I$

H.2) $\forall x \in I$, $t \mapsto f(x,t) \operatorname{est} \mathscr{C}^{PM} \operatorname{sur} J$

C.1) $t \mapsto f(x,t)$ est intégrable sur J

H.3) $\exists \phi: J \to \mathbb{R}$, \mathscr{C}^{PM} , intégrable sur J, telle que $\forall (x,t) \in I \times J, \ |f(x,t)| \leqslant \phi(t)$

C.2) $g \operatorname{est} \mathscr{C}^0 \operatorname{sur} I$

Exemple (Application à Γ)

On note $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt. \text{ Nous avons alors } J =]0, +\infty[. \text{ Posons } f:(x,t) \mapsto t^{x-1} e^{-t}.$

Domaine de définition :

Soit $x \in \mathbb{R}$. $t \mapsto f(x, t)$ est \mathscr{C}^0 sur J.

Au voisinage de 0^+ : $f(x,t) \sim t^{x-1} \cdot 1 = \frac{1}{t^{1-x}}$, qui est intégrable si et seulement si $1-x < 1 \iff x > 0$.

Au voisinage de $+\infty$: $f(x,t) = o\left(\frac{1}{t^2}\right)$ car $\lim_{t\to +\infty} t^{x+1}e^{-t} = 0$ par croissances comparées. Or, $t\mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$, donc f(x,t) également.

Finalement, $D_{\Gamma} = \mathbb{R}_{+}^{*}$

Continuité:

On localise : Soit $[a,b] \subset \mathbb{R}_+^*$ avec a < b.

Utilisons le théorème de continuité:

- $\forall x \in [a, b], t \mapsto f(x, t)$ est continue sur J.
- $\forall t \in J$, $x \mapsto f(x,t)$ est continue sur D_{Γ} .
- Posons $\varphi: t \mapsto \begin{cases} e^{-t}t^{\alpha-1} & \text{si } t \in]0,1] \\ e^{-t}t^{b-1} & \text{si } t > 1 \end{cases}$.

Alors, ϕ est \mathscr{C}^{PM} et intégrable sur J. De plus, $|f(x,t)|\leqslant \phi(t).$

Alors, d'après le théorème de continuité des intégrales à paramètres, Γ est continue sur tout $[a,b]\subset D_\Gamma$, donc par union, Γ est \mathscr{C}^0 sur \mathbb{R}_+^*

MPI* - 228

1.2 Citer le théorème de dérivation des intégrales à paramètre et l'appliquer sur Γ .

Théorème de Dérivation des intégrales à paramètre

Soit $f: I \times J \to \mathbb{R}$ (I, $J \subset \mathbb{R}$). On note $g(x) = \int_J f(x,t) dt$ pour $x \in I$.

Hypothèses:

H.1) $\forall t \in J$, $x \mapsto f(x,t) \text{ est } \mathscr{C}^1 \text{ sur } I$

H.2.a) $\forall x \in I, \ t \mapsto f(x,t) \ \text{est} \ \mathscr{C}^{PM}$, intégrable sur J

H.2.b) $\forall x \in I, \ t \mapsto \frac{\partial f}{\partial x}(x,t)$ est \mathscr{C}^{PM} (non forcément intégrable) sur J

 $\begin{array}{ll} \text{H.3)} \ \exists \phi: J \to \mathbb{R}, \quad \mathscr{C}^{PM} \text{, intégrable sur J, telle que} \\ \forall (x,t) \in I \times J, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \phi(t) \end{array}$

Conclusions:

C.1) $g \operatorname{est} \mathscr{C}^1 \operatorname{sur} I$

C.2) $\forall x \in I$, $g'(x) = \int_{I} \frac{\partial f}{\partial t}(x, t) dt$

Exemple

Caractère \mathscr{C}^1 :

Lemme

Soit a < 1, et $b \in \mathbb{N}$. Alors $f(t) = \frac{(\ln(t))^b}{t^a}$ est intégrable au voisinage de 0

Tout comme précédemment, localisons sur $[\mathfrak{a},\mathfrak{b}]\subset\mathbb{R}_+^*$ avec $\mathfrak{a}{<}\mathfrak{b}.$ Appliquons le théorème :

• $\forall t \in J, \ x \mapsto f(x,t) \text{ est } \mathscr{C}^1 \text{ sur I par produit et composition.}$

De plus,
$$\frac{\partial f}{\partial x}(x,t) = \ln(t) \cdot t^{x-1} e^{-t}$$

• $\forall x \in [a,b], \ t \mapsto f(x,t)$ est continue par morceaux, intégrable sur J.

Idem, $\frac{\partial f}{\partial x}$ est continue par morceaux sur J

 $\bullet \ \ \text{Posons} \ \phi: t \mapsto \begin{cases} \ln(t) e^{-t} t^{\alpha-1} \ \text{si} \ t \in]0,1] \\ \ln(t) e^{-t} t^{b-1} \ \text{si} \ t > 1 \end{cases} \quad .$

Alors, ϕ est \mathscr{C}^{PM} et intégrable sur J. De plus, $\left|\frac{\partial f}{\partial x}(x,t)\right|\leqslant |\phi(t)|.$

Ainsi, d'après le théorème de dérivation pour les intégrale à paramètres, Γ est \mathscr{C}^1 sur tout $[a,b]\subset\mathbb{R}_+^*$, donc est \mathscr{C}^1 sur \mathbb{R}_+^*

1.3 Citer la version continue du théorème de convergence dominée.

Théorème de Convergence Dominée des Intégrales à paramètre

Soit
$$f: I \times J \to \mathbb{R}$$
 $(I, J \subset \mathbb{R})$. On note $g(x) = \int_{J} f(x, t) dt$ pour $x \in I$. Soit $a \in \overline{I}$.

Hypothèses:

Conclusions:

$$\text{H.1)} \ \forall x \in I, \ t \mapsto f(x,t) \text{ est } \mathscr{C}^{PM}$$

$$\begin{aligned} \text{H.2)} & \exists h : J \rightarrow \mathbb{R}, \ \mathscr{C}^{PM} \text{ telle que } \forall t \in J, \\ & \lim_{x \rightarrow \alpha} f(x,t) = h(t) \end{aligned}$$

H.3)
$$\exists \phi: J \to \mathbb{R}$$
, \mathscr{C}^{PM} , intégrable sur J, telle que $\forall (x,t) \in I \times J, \ |f(x,t)| \leqslant \phi(t)$

C.2)
$$\lim_{x \to a} g(x) = \int_{J} h(t)dt = \int_{J} \lim_{x \to a} f(x,t)dt$$

2 Questions de cours, groupes B et C

2.1 Théorème de Continuité des Intégrales à paramètre. (démo)

 $\begin{tabular}{ll} \textbf{Th\'eor\`eme} de Continuit\'e des int\'egrales \`a param\`etre \\ Soit f: I \times J \to \mathbb{R} \ (I, J \subset \mathbb{R}). \ On \ note \ g(x) = \int_{J} f(x,t) dt \ pour \ x \in I. \\ \\ Hypoth\`eses: & Conclusions: \\ H.1) \ \forall t \in J, \ x \mapsto f(x,t) \ est \ \mathscr{C}^0 \ sur \ I \\ \\ H.2) \ \forall x \in I, \ t \mapsto f(x,t) \ est \ \mathscr{C}^{PM} \ sur \ J \\ \\ H.3) \ \exists \phi: J \to \mathbb{R}, \ \mathscr{C}^{PM}, \ int\'egrable \ sur \ J, \ telle \ que \\ \forall (x,t) \in I \times J, \ |f(x,t)| \leqslant \phi(t) \\ \\ C.2) \ g \ est \ \mathscr{C}^0 \ sur \ I \\ \\ C.2) \ g \ est \ \mathscr{C}^0 \ sur \ I \\ \\ \end{tabular}$

Preuve:

 $g \ continue \ sur \ I \iff \forall \alpha \in I, \ \ g \ est \ continue \ en \ \alpha \iff \forall \alpha \in I, \ \ \lim_{x \to \alpha} g(x) = g(\alpha).$

Utilisons alors le théorème de convergence dominée :

- $H_1' = H_1$
- $\bullet \ \ H_2': \forall t \in J, \ \ f(x,t) \xrightarrow[x \to \alpha]{} f(\alpha,t). \ Ainsi, \ \exists h; J \to \mathbb{R}, \ \ \lim_{x \to \alpha} f(x,t) = h(t)$
- $H_3' = H_3$

Ainsi, g est continue sur I

2.2 Théorème de dérivation des intégrales à paramètre. (démo)

Théorème de Dérivation des intégrales à paramètre

Soit $f: I \times J \to \mathbb{R}$ (I, $J \subset \mathbb{R}$). On note $g(x) = \int_J f(x,t) dt$ pour $x \in I$.

Hypothèses:

H.1) $\forall t \in J$, $x \mapsto f(x,t) \text{ est } \mathscr{C}^1 \text{ sur } I$

H.2.a) $\forall x \in I, \ t \mapsto f(x,t) \ est \ \mathscr{C}^{PM}$, intégrable sur J

H.2.b) $\forall x \in I, \ t \mapsto \frac{\partial f}{\partial x}(x,t) \text{ est } \mathscr{C}^{PM} \text{ (non forcément intégrable) sur J}$

 $\begin{array}{ll} \text{H.3)} \ \exists \phi: J \to \mathbb{R}, \quad \mathscr{C}^{PM} \text{, intégrable sur J, telle que} \\ \forall (x,t) \in I \times J, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \phi(t) \end{array}$

Conclusions:

C.1) $g \operatorname{est} \mathscr{C}^1 \operatorname{sur} I$

C.2) $\forall x \in I$, $g'(x) = \int_{I} \frac{\partial f}{\partial t}(x,t) dt$

Preuve:

Montrons que $\forall \alpha \in I$, g est dérivable en α :

$$\forall x \in I \setminus \{\alpha\}, \frac{g(x) - g(\alpha)}{x - \alpha} = \int_J \frac{f(x, t) - f(\alpha, t)}{x - \alpha} dt$$

Posons $h: x \mapsto \int_J \frac{f(x,t) - f(\alpha,t)}{x-\alpha} dt$ et $h(\alpha) = \int_J \frac{\partial f}{\partial x}(x,t) dt$. Montrons que h est continue en α .

On note alors $h(x) = \int_J \delta(x,t) dt$, avec $\delta(x,t) = \frac{f(x,t) - f(\alpha,t)}{x-\alpha}$ si $x \neq \alpha$, et $\delta(\alpha,t) = \frac{\partial f}{\partial x}(\alpha,t)$.

Appliquons le théorème de Continuité :

- $\forall x \in I$, nous avons $t \mapsto \delta(x, t)$ continue par morceaux sur J. (H_2)
- $\begin{array}{l} \bullet \ \, \forall t \in J, \ \, x \mapsto f(x,t) \ \, \text{est} \, \mathscr{C}^1 \ \, \text{donc} \, \mathscr{C}^0 \ \, \text{sur} \, I, \, \text{donc} \, \delta(x,t) \ \, \text{est} \, \mathscr{C}^0 \ \, \text{sur} \, I. \\ \text{(On a } \lim_{x \to \alpha} \delta(x,t) = \lim_{x \to \alpha} \frac{f(x,t) f(\alpha,t)}{x-\alpha} = \frac{\partial f}{\partial x}(\alpha,t) = \delta(\alpha,t)). \end{array}$
- $\exists \phi: J \to \mathbb{R}$, continue par morceaux et intégrable telle que $\forall x, t \in I \times J$, $|\delta(x,t)| \leq |\phi(t)|$:

Si
$$x = a$$
, $H_3 \Rightarrow Ok$.
Si $x \neq a$, $\delta(x,t) = \frac{f(x,t) - f(a,t)}{x - a}$, appliquons l'EAF:

$$\forall t \in J, \ x \mapsto f(x,t) \text{ est } \mathscr{C}^1 \text{ sur I par } H_1, \text{ donc}$$
 :

$$\forall x \in I, (x \neq a), \exists x \in]a, x[, f(x,t) - f(a,t) = (x - a) \frac{\partial f}{\partial x}(c,t).$$

$$Puisque\ (x\neq\alpha),\ \frac{f(x,t)-f(\alpha,t)}{x-\alpha}=\delta(x,t)\leqslant |\phi(t)|.$$

Ainsi, $\forall (x,t) \in I \times J$, $|\delta(x,t)| \leq |\phi(t)|$ avec ϕ continue par morceaux et intégrable.

Nous avons alors d'après le théorème de continuité que h est continue sur I, donc en a. Alors :

$$\lim_{x\to a}\frac{g(x)-g(a)}{x-a}=\int_{I}\frac{\partial f}{\partial x}dt\Rightarrow \ g \ \text{D\'erivable et } g':x\mapsto \int_{I}\frac{\partial f}{\partial x}(x,t)dt.$$

Pour montrer que g est \mathscr{C}^1 , appliquons le théorème de continuité à g' :

• $\forall x \in I, \ t \mapsto \frac{\partial f}{\partial x}(x,t)$ est Continue par morceaux. (H_2)

- $\forall t \in J, \ x \mapsto \frac{\partial f}{\partial x}(x,t) \text{ est Continue. } (H_1)$
- $\exists \phi: J \to \mathbb{R}$, continue par morceaux et intégrable, telle que $\forall (x,t) \in I \times J$, $|\frac{\partial f}{\partial x}(x,t)| \leqslant |\phi(t)|$. (H_3) Alors, g est \mathscr{C}^1

2.3 Version continue du théorème de convergence dominée. (démo)

Théorème de Convergence Dominée des Intégrales à paramètre

Soit
$$f: I \times J \to \mathbb{R}$$
 $(I, J \subset \mathbb{R})$. On note $g(x) = \int_J f(x, t) dt$ pour $x \in I$. Soit $a \in \overline{I}$.

Hypothèses:

Conclusions:

- H.1) $\forall x \in I$, $t \mapsto f(x,t) \operatorname{est} \mathscr{C}^{PM}$
- $\begin{array}{ll} \text{H.2)} & \exists h: J \rightarrow \mathbb{R}, \ \mathscr{C}^{PM} \ telle \ que \ \forall t \in J, \\ & \lim_{x \rightarrow \alpha} f(x,t) = h(t) \end{array}$
- C.1) h est intégrable sur J
- H.3) $\exists \phi: J \to \mathbb{R}$, \mathscr{C}^{PM} , intégrable sur J, telle que $\forall (x,t) \in I \times J, \ |f(x,t)| \leqslant \phi(t)$
- C.2) $\lim_{x \to a} g(x) = \int_{J} h(t)dt = \int_{J} \lim_{x \to a} f(x, t)dt$

Preuve:

Utilisons la caractérisation séquentielle de la limite :

$$\left[\lim_{x\to a}g(x)=\int_{J}h(t)dt\right]\iff \left[\forall (x_n)\in I^{\mathbb{N}},\ x_n\to a\Rightarrow \lim_{n\to +\infty}g(x_n)=\int_{J}h(t)dt\right]$$

Soit $(x_n) \in I^{\mathbb{N}}$, telle que $x_n \to a$. Alors, $g(x_n) = \int_J f(x_n, t) dt$.

Posons
$$f_n(t) = f(x_n, t)$$
. Alors, $g(x_n) = \int_I f_n(t) dt$.

Appliquons dès lors le théorème de convergence dominée, version séquentielle.

- $\forall n \in \mathbb{N}, f_n \text{ est } \mathscr{C}^{PM} \text{ sur } J$
- (f_n) CVS vers h sur J
- $\exists \phi: J \to \mathbb{R}, \ \mathscr{C}^{PM}$ et intégrable telle que $\forall t \in J, |f_n(t)| \leqslant \phi(t)$

Donc, d'après le théorème de Convergence dominée, $\lim_{n \to +\infty} g(x_n) = \lim_{n \to +\infty} \int_I f_n(t) dt = \int_I h(t) dt$.

Ainsi, par caractérisation séquentielle : $\lim_{x \to a} g(x) = \int_J h(t)dt$

3 Questions de Cours du groupe C uniquement

