

Getting started (again)

Open RStudio
Open your NRI project
Open a **new** script for today:
File > New File > R Script

Make sure to load packages at the top:
library(tidyverse)
library(palmerpenguins)
library(car)

Messages vs. Warnings vs. Errors

Messages and Warnings and Errors (Oh my!)

- Not all coloured text is a problem
- · Messages are just helpful information

```
ggplot(data = drop_na(penguins), aes(x = body_mass_g, y = flipper_length_mm)) +
  stat_smooth()
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

4 / 55

Messages and Warnings and Errors (Oh my!)

- · Not all coloured text is a problem
- · Messages are just helpful information
- Warnings should be considered **FYIs**. They might be a problem, but not always
 - Your code will run, even with a warning
 - Warnings always start with Warning:

```
ggplot(data = penguins, aes(x = sex, y = body_mass_g)) +
  geom_boxplot()
```

Warning: Removed 2 rows containing non-finite values (stat_boxplot).

5 / 55

Messages and Warnings and Errors (Oh my!)

- · Not all coloured text is a problem
- Messages are just helpful information
- Warnings should be considered FYIs. They might be a problem, but not always
 - Your code will run, even with a warning
 - Warnings always start with Warning:
- Errors are always problems :(
 - Your code will stop with an error
 - Errors always start with Error:

```
ggplot(data = Penguins, aes(x = sex, y = body_mass_g)) +
 geom_boxplot()
```

Error in ggplot(data = Penguins, aes(x = sex, y = body_mass_g)): object 'Penguins' not found

Messages and Warnings and Errors (Oh my!)

- Not all coloured text is a problem
- Messages are just helpful information
- Warnings should be considered **FYIs**. They might be a problem, but not always
 - Your code will run, even with a warning
 - Warnings always start with Warning:
- Errors are always problems :(
 - Your code will stop with an error
 - Errors always start with **Error**:

Messages < Warnings < Errors

```
ggplot(data = Penguins, aes(x = sex, y = body_mass_g)) +
geom_boxplot()
## Error in ggplot(data = Penguins, aes(x = sex, y = body_mass_g)): object 'Penguins' not found
```

6 / 55

Data Transformations

Transformations

Non-normal residuals

Use a transformation!
Good for addressing non-normality of residuals,
and problems with variance

```
stat_qq() +
stat_qq_line()

4-
2-
0dues
0-
1 0 0 theoretical
```

ggplot(data = d, aes(sample = std_residuals)) +

Transformations

Order of Operations

- 1. See the need (i.e. non-normal residuals, heteroscedacity, etc.)
- 2. Figure out which transformation
- 3. Apply the transformation
- 4. Check model assumptions
- 5. Try again as needed

9 / 55

Transformations: Common options

Table of transformations in R

```
data_trans <- mutate(data, y_trans = 1/y^2)
data_trans <- mutate(data, y_trans = 1/y)
data_trans <- mutate(data, y_trans = 1/sqrt(y))
data_trans <- mutate(data, y_trans = log(y))
data_trans <- mutate(data, y_trans = log10(y))
data_trans <- mutate(data, y_trans = sqrt(y))
data_trans <- mutate(data, y_trans = y^2)
data_trans <- mutate(data, y_trans = (y^lambda -
1)/lambda)
data_trans <- mutate(data, y_trans = asin(sqrt(y/100)))</pre>
```

Transformation	R Code
Inverse square	1/y^2
Reciprocal	1/y
Inverse square root	1/sqrt(y)
Naural log (ln)	log(y)
Log base 10	log10(y)
Square root	sqrt(y)
Square	y^2
Box Cox	(y^lambda - 1) / lambda
Arcsine-sqare-root	asin(sqrt(y/100))

data_trans is the NEW data frame, y_trans is your TRANSFORMED y-value

10 / 55

Transformations: How to choose?

- Based on what you know (often discipline specific standards for certain data types)
- Based on what you see (does it look exponential or logarithmic?)
- Based on trial and error (try different transformations and see how it goes)
- ullet Based on Box-Cox lambda (λ)

Can EITHER $\label{eq:Apply} \mbox{A through Box-Cox transformation} \\ \mbox{OR} \\ \mbox{Use it to indicate best transformation} \rightarrow$

Best λ	Equation	Name
-2.5 to -1.5	$1/y^{2}$	inverse square
-1.5 to -0.75	1/y	reciprocal
-0.75 to -0.25	$1/\sqrt{y}$	inverse square root
-0.25 to 0.25	ln(y)	natural log
0.25 to 0.75	\sqrt{y}	square root
0.75 to 1.5	y	none
1.5 to 2.5	y^2	square

Transformations: Box-Cox

Finding λ

- ullet Use a plot of λ
 - boxcox() function from MASS package
 - Use boxcox() directly, otherwise MASS interferes with select()

b <- MASS::boxcox(m)

Transformations: Box-Cox

Finding λ

- Use a plot of λ
 - boxcox() function from MASS package
 - Use boxcox() directly, otherwise MASS interferes with select()

b <- MASS::boxcox(m)

- Get the exact λ

b\$x[b\$y == max(b\$y)]

[1] -0.2626263

Apply the transformation

Interactions

Interactions

Interaction between Flipper Length and Species

Does the effect of Flipper Length on Body Mass depend on Species? (i.e. Are the slopes different?)

Interactions

Interaction between Flipper Length and Bill Length

Does the effect of Flipper Length on Body Mass depend on Bill Length? (i.e. Does the slope of Flipper Length change with Bill Length?)

Interactions

Main Effects only +

```
m <- lm(body_mass_g ~ flipper_length_mm + bill_length_mm, data = penguins)</pre>
```

17 / 55

Interactions

Main Effects only +

```
m <- lm(body_mass_g ~ flipper_length_mm + bill_length_mm, data = penguins)</pre>
```

Main Effects and Interaction +:

17 / 55

Interactions

Main Effects only +

```
m <- lm(body_mass_g ~ flipper_length_mm + bill_length_mm, data = penguins)</pre>
```

Main Effects and Interaction +:

Shortcut: Main Effects and Interaction *

```
m <- lm(body_mass_g ~ flipper_length_mm * bill_length_mm, data = penguins)</pre>
```

Interactions

Main Effects only +

```
m <- lm(body_mass_g ~ flipper_length_mm + bill_length_mm, data = penguins)</pre>
```

Main Effects and Interaction +:

Shortcut: Main Effects and Interaction *

```
m <- lm(body_mass_g ~ flipper_length_mm * bill_length_mm, data = penguins)</pre>
```

Don't forget your diagnostic plots!

17 / 55

Interpreting Interactions

Including Correlation Tables

```
summary(m, correlation = TRUE) # Showing bottom of the output only
## Coefficients:
                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .
## flipper_length_mm -7.3085 15.0321 -0.486 0.627145
## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***
## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 386.8 on 338 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.7694, Adjusted R-squared: 0.7674
## F-statistic: 375.9 on 3 and 338 DF, p-value: < 2.2e-16
##
## Correlation of Coefficients:
                                           (Intercept) flipper_length_mm bill_length_mm
## flipper_length_mm
## bill_length_mm
                                          -0.99
                                                                                                                               18 / 55
## flipper_length_mm:bill_length_mm 0.99
                                                                               -1.00
```

Interpreting Interactions

Including Correlation Tables

```
summary(m, correlation = TRUE) # Showing bottom of the output only
## Coefficients:
                                              Estimate Std. Error t value Pr(>|t|) 5090.5088 2925.3007 1.740 0.082740 .
## (Intercept)
## (Intercept) 5090.5088 2925.3007 1.740 0.082/40 .
## flipper_length_mm -7.3085 15.0321 -0.436 0.627145
## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***
## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000 But for now we'll focus on
                                                                                                       the Estimates
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 386.8 on 338 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.7694, Adjusted R-squared: 0.7674
## F-statistic: 375.9 on 3 and 338 DF, p-value: < 2.2e-16
##
## Correlation of Coefficients:
                                               (Intercept) flipper_length_mm bill_length_mm
## flipper_length_mm
## bill_length_mm
                                               -0.99
                                                                                                                                           18 / 55
## flipper_length_mm:bill_length_mm 0.99
```

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Effect of Flipper Length on Body Mass when Bill Length is 0 mm

19 / 55

Interpreting Interactions

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Effect of Flipper Length on Body Mass when Bill Length is 0 mm

When Bill Length is 0 mm, Body mass decreases by 7.31 g for each 1 mm increase in Flipper Length

19 / 55

Interpreting Interactions

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Effect of Flipper Length on Body Mass when Bill Length is 0 mm

Not meaningful! Do we ever have a Bill Length of 0 mm? Do not interpret

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Effect of Bill Length on Body Mass when Flipper Length is 0 mm

20 / 55

Interpreting Interactions

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Effect of Bill Length on Body Mass when Flipper Length is 0 mm

When Flipper Length is 0 mm, Body Mass decreases by 229.24 g for each 1 mm increase in Bill Length

20 / 55

Interpreting Interactions

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Effect of **Bill Length** on Body Mass when Flipper Length is 0 mm

Not meaningful! Do we ever have a Flipper Length of 0 mm? Do not interpret

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Change in the effect of Flipper Length on Body Mass for every 1 mm change in Bill Length

21 / 55

Interpreting Interactions

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0.082740 .

## flipper_length_mm -7.3085 15.0321 -0.486 0.627145

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Change in the effect of Flipper Length on Body Mass for every 1 mm change in Bill Length

For every 1 mm increase in Bill Length, the effect of a 1 mm increase in Flipper Length on Body Mass increases by 1.2 g (i.e. the slope of the relationship between Body Mass and Flipper Length increases)

21 / 55

Interpreting Interactions

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5090.5088 2925.3007 1.740 0 And Vice Versa!

## flipper_length_mm -7.3085 15.0321 -0.486 0...

## bill_length_mm -229.2424 63.4334 -3.614 0.000347 ***

## flipper_length_mm:bill_length_mm 1.1998 0.3224 3.721 0.000232 ***
```

Change in the effect of Flipper Length on Body Mass for every 1 mm change in Bill Length

For every 1 mm increase in Bill Length, the effect of a 1 mm increase in Flipper Length on Body Mass increases by 1.2 g (i.e. the slope of the relationship between Body Mass and Flipper Length increases)

OH WTF.

Artwork by @allison horst

22 / 55

Plotting Interactions

Create new data frame with extremes

23 / 55

Side Note: tidyverse functions

Create new data frame with extremes

expand()

- from tidyr package (part of the tidyverse)
- tidyverse functions always start with the data, followed by other arguments
- you can reference any column from 'data'
- expand() creates a data frame with all possible combinations of new columns

Plotting Interactions

Create new data frame with extremes

Add predicted y values

- Use predict() function
 - o predict() can be used on most statistical models
- Returns predicted body_mass_g values for new data

```
penguins_new <- mutate(penguins_new, body_mass_g = predict(m, newdata = penguins_new))</pre>
```

25 / 55

Plotting Interactions

Small data frame

- With values predicted from model
- Can plot this to illustrate interactions

```
penguins_new
## # A tibble: 4 x 3
## flipper_length_mm bill_length_mm body_mass_g
                       <dbl>
              <int>
                                        <dbl>
## 1
                172
                             32.1
                                        3099.
## 2
                172
                             59.6
                                        2470.
                              32.1
                                        4941.
## 4
                 231
                              59.6
                                        6258.
```

26 / 55

Plotting Interactions

Raw data (no model)

```
ggplot(data = penguins,
    aes(x = flipper_length_mm,
    y = body_mass_g,
    colour = bill_length_mm)) +
geom_point(size = 2)
```


ANOVAs and Post-Hoc Tests

Post-Hoc Tests

From last week...

Differences within groups, but how are they different?

32 / 55

Post-Hoc Tests

- Males significantly bigger than females
- Only two groups, so we can use the figure
- 6000 5 500
- Are Adelie and Chinstrap the same size?
- Looks like it, but no statistical support

• Males significantly bigger than females • Only two groups, so we can use the figure • Are Adelie and Chinstrap the same size? • Looks like it, but no statistical support Use post-hoc tests to test each combination against the others | Sex | Sex

Estimated Marginal Means

emmeans() function from emmeans package

- Calculates estimated marginal means (least-squares means)
- Mean response of each factor, adjusting for other factors
- Can think of this as a predicted mean response if sample sizes were equal (and controlling for other parameters)

```
library(emmeans)
emm_sp <- emmeans(m, specs = "species")
emm_sp

## species emmean SE df lower.CL upper.CL
## Adelie 3706 26.2 329 3655 3758
## Chinstrap 3733 38.4 329 3658 3809
## Gentoo 5084 29.0 329 5027 5141
##
## Results are averaged over the levels of: sex
## Confidence level used: 0.95
```

pairs() function from emmeans packages

Post-Hoc Tests (All pair-wise)

```
• Compare each combination
```

```
pairs(emm_sp)
```

```
## contrast estimate SE df t.ratio p.value

## Adelie - Chinstrap -26.9 46.5 329 -0.579 0.8313

## Adelie - Gentoo -1377.9 39.1 329 -35.236 <.0001

## Chinstrap - Gentoo -1350.9 48.1 329 -28.067 <.0001

##

## Results are averaged over the levels of: sex

## P value adjustment: tukey method for comparing a family of 3
```

Post-Hoc Tests (All pair-wise)

pairs() function from emmeans packages

• Compare each combination

```
pairs(emm_sp)
```

Differences in Body Mass

 Adelie penguins are **not** different from Chinstrap penguins (P value = 0.831)

36 / 55

Post-Hoc Tests (All pair-wise)

pairs() function from emmeans packages

• Compare each combination

```
pairs(emm_sp)
```

Differences in Body Mass

- Adelie penguins are **not** different from Chinstrap penguins (P value = 0.831)
- Adelie penguins are on average 1377.9 g lighter than Gentoo penguins (P value = < 0.0001)

```
## contrast estimate SE df t.ratio p.value
## Adelie - Chinstrap -26.9 46.5 329 -0.579 0.8313
## Adelie - Gentoo -1377.9 39.1 329 -35.236 <.0001
## Chinstrap - Gentoo -1350.9 48.1 329 -28.067 <.0001
##
## Results are averaged over the levels of: sex
## P value adjustment: tukey method for comparing a family of 3 estimates</pre>
```

37 / 55

Post-Hoc Tests (All pair-wise)

pairs() function from emmeans packages

• Compare each combination

```
pairs(emm_sp)
```

Differences in Body Mass

- Adelie penguins are not different from Chinstrap penguins (P value = 0.831)
- Adelie penguins are on average 1377.9 g lighter than Gentoo penguins (P value = < 0.0001)
- Chinstrap penguins are on average 1350.9 g lighter than Gentoo penguins (P value < 0.0001)

Post-Hoc Tests (All pair-wise)

pairs() function from emmeans packages

Compare each combination

```
pairs(emm_sp)
```

Differences in Body Mass

- Adelie penguins are not different from Chinstrap penguins (P value = 0.831)
- Adelie penguins are on average 1377.9 g lighter than Gentoo penguins (P value = < 0.0001)
- Chinstrap penguins are on average 1350.9 g lighter than Gentoo penguins (P value < 0.0001)

Therefore, on average

Gentoo penguins are the largest Adelie and Chinstrap penguins are the same size

38 / 55

Post-Hoc Tests (Dunnett's)

With contrast() function from emmeans package

- Dunnett's comparison is a type of contrast
- Each level compared to control
- Use method = "trt.vs.ctrl" OR method = "dunnett"

39 / 55

Post-Hoc Tests (Dunnett's)

With contrast() function from emmeans package

- Dunnett's comparison is a type of contrast
- Each level compared to control
- Use method = "trt.vs.ctrl" OR method = "dunnett"

Look familiar?

Post-Hoc Tests (Dunnett's)

Dunnett's treatment vs. control contrasts with summary() table

```
summary(m)

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3372.39 31.43 107.308 <2e-16 ***
## speciesChinstrap 26.92 46.48 0.579 0.563
## speciesGentoo 1377.86 39.10 35.236 <2e-16 ***
## sexmale 667.56 34.70 19.236 <2e-16 ***</pre>
```

Dunnett's treatment vs. control contrasts with emmeans

Post-Hoc Tests and P-Value adjustments

No adjustment, too liberal?

contrast estimate SE df t.ratio p.value ## Adelie - Chinstrap -26.9 46.5 329 -0.579 0.5628 ## Adelie - Gentoo -1377.9 39.1 329 -35.236 <.0001 ## Chinstrap - Gentoo -1350.9 48.1 329 -28.067 <.0001 ## ## Results are averaged over the levels of: sex

Extremely conservative*

In these examples, little difference, but can make a HUGE difference in other analyses

* Don't use "Bonferroni, see this article

41 / 55

Post-Hoc Tests and P-Value adjustments

Middle of the road: Benjamini Hochberg (FDR, False Discovery Rate)*

* See this article

Post-Hoc Tests and P-Value adjustments

Middle of the road: Benjamini Hochberg (FDR, False Discovery Rate)*

No one best method

What is your question? Are you more concerned about Type 1 or Type 2 error?

* <u>See this article</u> 42 / 55

Post-Hoc Tests

Test options

Argument	P-Value Adjustment	
none	No P-Value Adjustment (essentially Fisher's LSD)	
tukey	Tukey's HSD (Honestly significant difference), uses the Studentized range distribution with the number of means in the family.	
fdr	Benjamini-Hochberg Test or False Discovery Rate Test	
bonferroni	Bonferroni Correction	
scheffe	Computes p values from F distribution	
mvt	Adjusted p values based on the joint normal or t distribution of the linear function	
holm	Holm Test	
hochberg	<u>Hochberg Test</u>	
hommel	Hommel Test	

43 / 55

Post-Hoc Tests with Interactions

Model: 2-way ANOVA

```
m <- lm(body_mass_g ~ species * sex, data = penguins)</pre>
```

Estimated Marginal Means

```
library(emmeans)
m_emms <- emmeans(m, specs = c("species", "sex"))
m_emms

## species sex emmean SE df lower.CL upper.CL
## Adelie female 3369 36.2 327 3298 3440
## Chinstrap female 3527 53.1 327 3423 3632
## Gentoo female 4680 40.6 327 4600 4760
## Adelie male 4043 36.2 327 3972 4115
## Chinstrap male 3939 53.1 327 3835 4043
## Gentoo male 5485 39.6 327 5407 5563
##
## Confidence level used: 0.95
```

pairs() function from emmeans packages

• Compare each combination

```
pairs(m_emms, adjust = "fdr")
```

```
estimate SE df t.ratio p.value
## contrast
## Adelie female - Chinstrap female
                                                 -158 64.2 327 -2.465 0.0152
## Adelie female - Gentoo female
                                               -1311 54.4 327 -24.088 <.0001
## Adelie female - Adelie male
                                                -675 51.2 327 -13.174 <.0001
## Adelie female - Chinstrap male
                                                -570 64.2 327 -8.875 <.0001
## Adelie female - Gentoo male
                                               -2116 53.7 327 -39.425 <.0001
## Chinstrap female - Gentoo female -1153 66.8 327 -17.246 <.0001
## Chinstrap female - Adelie male
                                                -516 64.2 327 -8.037 <.0001
## Chinstrap female - Chinstrap female - 1958 66.2 327 -29.50 ...
## Chinstrap female - Gentoo male - 1958 66.2 327 -29.50 ...
## Gentoo female - Adelie male 636 54.4 327 11.691 <.0001
741 66.8 327 11.085 <.0001
## Gentoo female - Gentoo male
## Adelie male - Chinstrap male
                                                -805 56.7 327 -14.188 <.0001
105 64.2 327 1.627 0.1047
## Chinstrap male - Gentoo male
                                               -1441 53.7 327 -26.855 <.0001
                                               -1546 66.2 327 -23.345 <.0001
## P value adjustment: fdr method for 15 tests
```

45 / 55

Post-Hoc Tests with Interactions (All pair-wise)

pairs() function from emmeans packages

· Compare each combination

```
pairs(m_emms, adjust = "fdr")
```

Differences in Body Mass

 Female Adelie penguins are on average 158 g smaller than female Chinstrap penguins (P value = 0.015)

```
estimate SE df t.ratio p.value
## contrast
## Adelie female - Chinstrap female -158 64.2 327 -2.465 0.0152
## Adelie female - Gentoo female -1311 54.4 327 -24.088 <.0001
## Adelie female - Adelie male
                                          -675 51.2 327 -13.174 <.0001
## Adelie female - Chinstrap male
                                          -570 64.2 327 -8.875 <.0001
## Adelie female - Gentoo male
                                          -2116 53.7 327 -39.425 <.0001
## Chinstrap female - Gentoo female -1153 66.8 327 -17.246 <.0001
## Chinstrap female - Adelie male
                                           -516 64 2 327 -8 037 < 0001
## Chinstrap female - Chinstrap male
                                           -412 75.0 327 -5.487 <.0001
## Chinstrap female - Gentoo male
                                          -1958 66.2 327 -29.564 <.0001
                                         636 54.4 327 11.691 <.0001
741 66.8 327 11.085 <.0001
## Gentoo female - Adelie male
## Gentoo female - Chinstrap male
## Gentoo female - Gentoo male
## Adelie male - Chinstrap male
                                           -805 56.7 327 -14.188 <.0001
                                           105 64.2 327 1.627 0.1047
## Adelie male - Gentoo male
                                          -1441 53.7 327 -26.855 <.0001
## Chinstrap male - Gentoo male
                                          -1546 66.2 327 -23.345 <.0001
## P value adjustment: fdr method for 15 tests
```

46 / 55

Post-Hoc Tests with Interactions (All pair-wise)

pairs() function from emmeans packages

• Compare each combination

```
pairs(m_emms, adjust = "fdr")
```

Differences in Body Mass

- Female Adelie penguins **are** on average 158 g smaller than female Chinstrap penguins (P value = 0.015)
- Male Adelie penguins are not different from male Chinstrap penguins (P value = 0.105)

```
estimate SE df t.ratio p.value
## Adelie female - Chinstrap female -158 64.2 327 -2.465 0.0152
## Adelie female - Gentoo female -1311 54.4 327 -24.088 <.0001
                                      -675 51.2 327 -13.174 <.0001
## Adelie female - Adelie male
## Adelie female - Chinstrap male
                                        -570 64.2 327 -8.875 <.0001
                                       -2116 53.7 327 -39.425 <.0001
## Adelie female - Gentoo male
## Chinstrap female - Gentoo female -1153 66.8 327 -17.246 <.0001
## Chinstrap female - Adelie male
                                        -516 64.2 327 -8.037 <.0001
## Chinstrap female - Chinstrap male
                                        -412 75.0 327 -5.487 <.0001
## Gentoo female - Gentoo male -805 56.7 327 -14.188 <.0001
## Adelie male - Chinstrap male 105 64.2 327 1.627 0.1047
## Adelie male - Gentoo male -1441 53.7 327 -26.855 <.0001
## Chinstrap male - Gentoo male
                                        -1546 66.2 327 -23.345 <.0001
## P value adjustment: fdr method for 15 tests
```

pairs() function from emmeans packages

· Compare each combination

```
pairs(m_emms, adjust = "fdr")
```

Differences in Body Mass

- Female Adelie penguins are on average 158 g smaller than female Chinstrap penguins (P value = 0.015)
- Male Adelie penguins are not different from male Chinstrap penguins (P value = 0.105)
- Female Adelie penguins are on average 675 g lighter than male Adelie penguins (P value = 0)

```
estimate SE df t.ratio p.value
## contrast
## Adelie female - Chinstrap female
                                      -158 64.2 327 -2.465 0.0152
## Adelie female - Gentoo female -131 54.4 327 -24.088 <.0001
    Adelie female - Adelie male
                                       -675 51.2 327 -13.174 <.0001
## Adelie female - Chinstrap male -570 64.2 327 -8.875 <.0001
## Adelie female - Gentoo male
                                    -2116 53.7 327 -39.425 <.0001
## Chinstrap female - Gentoo female -1153 66.8 327 -17.246 <.0001
## Chinstrap female - Adelie male
                                     -516 64.2 327 -8.037 <.0001
## Chinstrap female - Chinstrap male
                                    -412 75.0 327 -5.487 <.0001
## Gentoo female - Gentoo male
## Adelie male - Chinstrap male
                                     -805 56.7 327 -14.188 <.0001
105 64.2 327 1.627 0.1047
   Adelie male - Gentoo male
                                     -1441 53.7 327 -26.855 <.0001
## Chinstrap male - Gentoo male
                                     -1546 66.2 327 -23.345 <.0001
## P value adjustment: fdr method for 15 tests
```

48 / 55

Post-Hoc Tests with Interactions

Model: ANCOVA

m <- lm(body_mass_g ~ flipper_length_mm * species, data = penguins)</pre>

Estimated Marginal Means

• Here use emtrends() function from emmeans package

```
m_emms <- emtrends(m, specs = "species", var = "flipper_length_mm")
m_emms

## species flipper_length_mm.trend SE df lower.CL upper.CL
## Adelie 32.8 4.63 336 23.7 41.9
## Chinstrap 34.6 6.35 336 22.1 47.1
## Gentoo 54.6 5.17 336 44.4 64.8
##
## Confidence level used: 0.95</pre>
```

These are the effects of Flipper Length on Body Mass in each Species.

On average...

- Adelie: Body Mass increases by 32.8 g for each 1 mm increase in Flipper Length.
- Chinstrap: Body Mass increases by 34.6 g for each 1 mm increase in Flipper Length.
- Gentoo: Body Mass increases by 54.6 g for each 1 mm increase in Flipper Length.

49 / 55

Post-Hoc Tests with Interactions

Model: ANCOVA

m <- lm(body_mass_g ~ flipper_length_mm * species, data = penguins)</pre>

Estimated Marginal Means

• Here use emtrends() function from emmeans package

```
m_emms <- emtrends(m, specs = "species", var = "flipper_length_mm")
m_emms

## species flipper_length_mm.trend SE df lower.CL upper.CL
## Adelie 32.8 4.63 336 23.7 41.9
## Chinstrap 34.6 6.35 336 22.1 47.1
## Gentoo 54.6 5.17 336 44.4 64.8
##
## Confidence level used: 0.95</pre>
```

These are the effects of Flipper Length on Body Mass in each Species.

On average...

- Adelie: Body Mass increases by 32.8 g for each 1 mm increase in Flipper Length.
- Chinstrap: Body Mass increases by 34.6 g for each 1 mm increase in Flipper Length.
- Gentoo: Body Mass increases by 54.6 g for each 1 mm increase in Flipper Length.

But are these different from one another?

pairs() function from emmeans packages

Compare among species

```
pairs(m_emms, adjust = "fdr")
```

```
## contrast estimate SE df t.ratio p.value
## Adelie - Chinstrap -1.74 7.86 336 -0.222 0.8247
## Adelie - Gentoo -21.79 6.94 336 -3.139 0.0055
## Chinstrap - Gentoo -20.05 8.19 336 -2.448 0.0223
## ## P value adjustment: fdr method for 3 tests
```

50 / 55

Post-Hoc Tests with Interactions (All pair-wise)

pairs() function from emmeans packages

· Compare among species

```
pairs(m_emms, adjust = "fdr")
```

```
## contrast estimate SE df t.ratio p.value
## Adelie - Chinstrap -1.74 7.86 336 -0.222 0.8247

## Adelie - Gentoo -21.79 6.94 336 -3.139 0.0055
## Chinstrap - Gentoo -20.05 8.19 336 -2.448 0.0223
##
## P value adjustment: fdr method for 3 tests
```

Differences in the effect of Flipper Length on Body Mass

• The effect of Flipper Length on Body Mass is not different between Adelie and Chinstrap penguins (P value = 0.825)

51 / 55

Post-Hoc Tests with Interactions (All pair-wise)

pairs() function from emmeans packages

```
• Compare among species
```

```
pairs(m_emms, adjust = "fdr")
```

```
## contrast estimate SE df t.ratio p.value
## Adelie - Chinstrap -1.74 7.86 336 -0.222 0.8247
## Adelie - Gentoo -21.79 6.94 336 -3.139 0.0055
## Chinstrap - Gentoo -20.05 8.19 336 -2.448 0.0223
## P value adjustment: fdr method for 3 tests
```

Differences in the effect of Flipper Length on Body Mass

- The effect of Flipper Length on Body Mass is not different between Adelie and Chinstrap penguins (P value = 0.825)
- The effect of Flipper Length on Body Mass is significantly less in Adelie than in Gentoo penguins (Body Mass increases 21.8 g less per 1mm increase in Flipper Length; P value = 0.006)

pairs() function from emmeans packages

Compare among species

```
pairs(m_emms, adjust = "fdr")
```

```
## contrast estimate SE df t.ratio p.value
## Adelie - Chinstrap -1.74 7.86 336 -0.222 0.8247
## Adelie - Gentoo -21.79 6.94 336 -3.139 0.0055
## Chinstrap - Gentoo -20.05 8.19 336 -2.448 0.0223
##
## P value adjustment: fdr method for 3 tests
```

Differences in the effect of Flipper Length on Body Mass

- The effect of Flipper Length on Body Mass is not different between Adelie and Chinstrap penguins (P value = 0.825)
- The effect of Flipper Length on Body Mass is significantly less in Adelie than in Gentoo penguins (Body Mass increases 21.8 g less per 1mm increase in Flipper Length; P value = 0.006)
- The effect of Flipper Length on Body Mass is significantly less in Chinstrap than in Gentoo penguins (Body Mass increases 20 g less per 1mm increase in Flipper Length; P value = 0.022)

53 / 55

Post-Hoc Tests with Interactions (All pair-wise)

pairs() function from emmeans packages

· Compare among species

```
pairs(m_emms, adjust = "fdr")
```

```
## contrast estimate SE df t.ratio p.value
## Adelie - Chinstrap -1.74 7.86 336 -0.222 0.8247
## Adelie - Gentoo -21.79 6.94 336 -3.139 0.0055
## Chinstrap - Gentoo -20.05 8.19 336 -2.448 0.0223
## P value adjustment: fdr method for 3 tests
```

Differences in the ef

Best way is to use a figure at the same time!

- The effect of Flipper Length on Body Mass is not different between Adelie and Chinstrap penguins (P value = 0.825)
- The effect of Flipper Length on Body Mass is significantly less in Adelie than in Gentoo penguins (Body Mass increases 21.8 g less per 1mm increase in Flipper Length; P value = 0.006)
- The effect of Flipper Length on Body Mass is significantly less in Chinstrap than in Gentoo penguins (Body Mass increases 20 g less per 1mm increase in Flipper Length; P value = 0.022)

53 / 55

Visualizing Interactions

emmip(m, species ~ flipper_length_mm, cov.reduce = range)

- Here, Linear prediction = y = Body Mass
- Adelie and Chinstrap penguins have similar effects (i.e. slopes are **not** significantly different)
- Gentoo has a larger effect (i.e. slope is significantly larger) than either Adelie or Chinstrap penguins

Homework (Practice)*

Consider bill depth your response variable and species and year your predictor variables

1. Convert year to a categorical variable and remove Gentoo penguins

```
penguins_sub <- mutate(penguins, year = factor(year))
penguins_sub <- filter(penguins_sub, species != "Gentoo")</pre>
```

- 2. Create a figure comparing bill depth to species and year. Think about how to best tease apart the relationships.
- 3. Model the relationship between bill depth and the interaction between species and year.
- 4. Check diagnostics
- 5. How does the relationship of species and bill depth change among years?

* Not to be handed in, answers posted in these slides next week