Lab 3 – Day 3 Load modeling and scheduling

Simulink implementation

- Two-fold goal:
 - Provide a reference voltage for the system (3.3V)
 - Rule the energy flow in the system
 - Determine what is the total power consumption of loads
 - Collect the power production of the photovoltaic module
 - Decide how to use the battery:
 - If the photovoltaic power is higher or equal to total load demand, no need to use the battery
 - » I can even charge the battery!
 - Else, estimate how much current must be drained from the battery
- How long will my IoT system survive?

• Part 1:

- Guarantee that all current requests happen at the same voltage
- If any voltage is different from 3.3V, stop the simulation!
 - Maybe someDC-DC converter is missing?

• Part 2:

- Estimate the energy flow
 - 1. Estimate total load power consumption
 - 2. Derive photovoltaic power production
 - 3. Calculate the difference: $P_{LOAD} P_{PV}$
 - If the difference is positive, that power must be provided by the battery (photovoltaic module is not enough!)
 - If the difference is negative, that power can be used to charge the battery (unused power!)
 - 4. Battery current is thus: $\frac{P_{LOAD} P_{PV}}{3.3V}$

TOTAL LOAD POWER CONSUMPTION

POWER MISSING/STILL
AVAILABLE
(MUST DISCHARGE THE
BATTERY/CAN CHARGE THE
BATTERY)

Simulink implementation

- 6 loads
 - Temperature sensor
 - Humidity and temperature sensor
 - Methane sensor
 - CH4 sensor
 - Air quality sensor
 - Metal-oxide, H2 and Ethanol sensing
 - Mic click sensor
 - Silicon microphone
 - Memory and control unit
 - A module to transmit data over ZigBee

- Loads are implemented as simple PSM
 - Fixed voltage, same as DC bus (3.3V)
 - Varying current
 - One active state (higher consumption)
 - One sleep state (lower consumption)
- Data taken from load datasheets
 - Typical current consumption depending on activity

LOAD	ACTIVE (mA)	SLEEP (mA)
Air quality sensor	48.2	0.002
Methane sensor	18	0.002
Temperature sensor	3	0.002
Mic click sensor	0.15	0.002
ZigBee transmission	0.1	0.001
Memory and control	13	0.002

- Loads behavior is periodic
 - Active time is fixed for each load
 - Depends on the requirements of the component
 - E.g., how long it takes for the sensor to make the measurements
 - Given as input specification

LOAD	TIME (s)
Air quality sensor	30
Methane sensor	30
Temperature sensor	6
Mic click sensor	12
ZigBee transmission	24
Memory and control	6

- Loads behavior is periodic
 - Load activation depends on a schedule
 - Fixed order: first sensors, then memory and control, then transmission
 - Sensors can be activated sequentially or in parallel

Who controls load activation?

Pulse generator:

- Define the period
 - Equal for all loads
- Define the delay
 - 0 if load starts at the beginning of each period
 - Else equal to the computation time of former loads
- Define pulse width
 - % of period in which the load is active
 - ACTIVE TIME ·100
 PERIOD

Pulse generator:

- Loads variables from the workspace
 - E.g., for the air quality sensor:
 - Period = period variable
 - Delay = air_delay
 variable
 - Pulse width = air_pulse
 variable
- Starting values provided in the config.m file
 - Must be executed before you run the simulation!

- Loads react to the pulse:
 - Pulse is 1 \rightarrow higer current value
 - Active load
 - Pulse is $0 \rightarrow$ lower current value
 - Non active load
 - Voltage is fixed
 - Always 3.3V

Simulink implementation

Simulation settings

- Already set no need to change them!
- Simulation length: length variable
 - Set to 30 days
- Timestep: 1 second

Simulation settings

- To run the simulation:
 - Click on the green play button
 - Simulation stops when:
 - You reached the defined simulation length (30 days)
 - Any stop has been activated
 - E.g., battery discharged

First analysis of the Lab:

- In the report, no need to comment on the construction of the components
- Discuss the main features of the simulation given the provided schedule (parallel sensors)
 - 1. Exhibit one example trace of the simulation, showing meaningful qualtities
 - E.g., loads power, photovoltaic power, battery power, and battery SOC to show that the system behaves correctly
 - 2. Efficiency of the converters, to see if we fall in a good area (high efficiency) or not (low efficiency = a lot of wasted power)
 - How often the battery has to be used to supply power
 - I.e., photovoltaic power is not enough

Second analysis of the Lab:

- Determine the best scheduling
 - Allows longer lifetime of the system
 - Compare:
 - Different periods, from 2 minutes to 10 minutes
 - Different scheduling
 - All sensors in parallel
 - Sequential activation of the sensor
 - Any impact on the evolution battery?
 - Choose (motivating) the best schedule

Second analysis of the Lab:

- What the analysis should contain:
 - What different parameters have been explored
 - E.g., different period lengths
 - What schedule orders have been explored
 - What lifetime has been achieved with each configuration
 - Document simulation with useful plots, e.g., of SOC
 - Which configuration is considered better and why
 - With value of maximum achieved lifetime