Network Security: ARP, IP, TCP, UDP

COMPUTER SECURITY
MARKULE KOHLWEISS

During normal operation:

- My laptop always has the same IP address.
 - False
- My laptop always has the same MAC wireless address.
 - True
- VPNs hide my laptops IP from the web site I am visiting.
 - True
- VPNs protect my data from modification between my computer and the destination website.
 - False VPNs only protect to VPN endpoint
- My ISP (and my VPN) can add and change cookies sent to a website.
 - True Unless the cookies are encrypted

MARKULF KOHLWEISS

IP and MAC Addresses

- Devices on a local area network have
 - IP addresses (network layer)
 - MAC addresses (data link layer)
- IP addresses are used for high level protocols
- MAC addresses are used for low level protocols
- How to translate IP Addresses into MAC addresses?

Address Resolution Protocol (ARP)

- Connects the network layer to the data link layer
- Maps IP addresses to MAC addresses
- Based on broadcast messages and local caching
- Does not support confidentiality, integrity, or authentication
- Defined as a part of RFC 826 (IETF, Request For Comments)

ARP Messages

ARP broadcasts requests of type

who has <IP addressC > tell <IP addressA >

- Machine with <IP addressC> responds
 <IP addressC > is at <MAC address>
- Requesting machine caches response
- Network administrator configures IP address and subnet on each machine

ARP Cache

 The Linux, Windows and OSX command arp - a displays the ARP table

Internet Address	Physical Address	Туре
128.148.31.1	00-00-0c-07-ac-00	dynamic
128.148.31.15	00-0c-76-b2-d7-1d	dynamic
128.148.31.71	00-0c-76-b2-d0-d2	dynamic
128.148.31.75	00-0c-76-b2-d7-1d	dynamic
128.148.31.102	00-22-0c-a3-e4-00	dynamic

- Command arp —a —d flushes the ARP cache (Windows, Apple?)
- ARP cache entries are stored for a configurable amount of time

ARP Spoofing

- The ARP table is updated whenever an ARP response is received
- Requests are not tracked
- ARP announcements are not authenticated
- Machines trust each other
- A rogue machine can spoof other machines

ARP Normal Operation

- Normal operation
 - Alice communicates with Bob

ARP Poisoning Attack

- Man-in-the-middle attack
 - ARP cache poisoning leads to eavesdropping

MARKULF KOHLWEISS

9

ARP Poisoning & ARP Spoofing

- Almost all ARP implementations are stateless
- An ARP cache updates every time that it receives an ARP reply
 - ... even if it did not send any ARP request!
- Can "poison" ARP cache with gratuitous ARP replies
- Using static entries solves the problem but it is almost impossible to manage!

From the LAN to the Internet

Edinburgh's IP Space

- Edinburgh is part of the autonomous system (AS786) of Jisc
 Services Limited, for Joint Information Systems Committee
 - -Class B network 129.215.0.0/16 (64K addresses)
- School of Informatics
 - -40 or so sub-networks, class C (/24) with 254 addresses or slightly larger
 - -Server machines: 129.215.33.0/24
 - DICE desktop machines: 129.215.24.0/22
 - Laptops without a fixed IP address: 129.215.90.0/23

User Datagram Protocol

- UDP is a stateless, unreliable datagram protocol built on top of IP, that is it lies at the transport layer
- UDP does not provide delivery guarantees or acknowledgments, which makes it efficient
- Can however distinguish data for multiple concurrent applications on a single host
- A lack of reliability implies applications using UDP must be ready to accept a fair amount of corrupted and lost data
 - Most applications built on UDP will suffer if they require reliability
 - VoIP, streaming video, and streaming audio all use UDP

Transmission Control Protocol

- Transport layer protocol for reliable data transfer, in-order delivery of messages and ability to distinguish multiple applications on same host
 - HTTP and SSH are built on top of TCP
- TCP packages a data stream into segments transported by IP
 - Order maintained by marking each packet with sequence number
 - Every time TCP receives a packet, it sends out an ACK to indicate successful receipt of the packet
- TCP generally checks data transmitted by comparing a checksum of the data with a checksum encoded in the packet

Ports

- TCP (& UDP) supports concurrent applications on the same server
- Ports are 16 bit numbers identifying where data is directed
- The TCP header includes both a source and a destination port
- Ports 0 through 1023 are reserved for use by known protocols
 - E.g., HTTPS uses 443 and SSH uses 22
- Ports 1024 through 49151 are known as user ports, and are used for listening to connections

TCP Packet Format

Bit Offset	0-3	4-7	8-15	16-18	19-31		
0	Source Port			Destination Port			
32	Sequence Number						
64	Acknowledgment Number						
96	Offset	Reserved	Flags	Window Size			
128	Checksum			Urgent Pointer			
160	Options						
>= 160	Payload						

Establishing TCP Connections

- TCP connections are established through a three-way handshake.
- The server generally is a passive listener, waiting for a connection request
- The client requests a connection by sending out a SYN packet
- The server responds by sending a SYN/ACK packet, acknowledging the connection
- The client responds by sending an ACK to the server, thus establishing connection

TCP Data Transfer

- During connection initialization using the three way handshake, initial sequence numbers are exchanged
- The TCP header includes a 16 bit checksum of the data and parts of the header, including the source and destination
- Acknowledgment or lack thereof is used by TCP to keep track of network congestion and control flow and such
- TCP connections are cleanly terminated with a 4-way handshake
 - The client which wishes to terminate the connection sends a FIN message to the other client
 - The other client responds by sending an ACK
 - The other client sends a FIN
 - The original client now sends an ACK, and the connection is terminated

TCP Data Transfer and Teardown

SYN Flooding

Send tons of requests at the victim and overload them.

 Basic three-part handshake used by Alice to initiate a TCP connection with Bob.

```
A \rightarrow B: SYN, X

B \rightarrow A: ACK, X + 1; SYN, Y

A \rightarrow B: ACK, Y + 1
```

 Alice sends many SYN packets, without acknowledging any replies. Bob accumulates more SYN packets than he can handle.

SYN Flooding

- Problems
 - Attribution attacker uses their own IP which could be traced
 - Bandwidth attacker uses their own bandwidth which is likely smaller than a server's
- Effective against a small target
 - Someone running a game server in their home
- Not effective against a large target
 - Company website

Spoofing: forged TCP packets

- Same as SYN flooding, but forge the source of the TCP packet
- Advantages:
 - Harder to trace
 - ACKs are sent to a second computer, less attacker bandwidth used
- Problems:
 - Ingress filtering is commonly used to drop packets with source addresses outside their origin network fragment.

Smurfing (directed broadcast)

- The smurfing attack exploits the ICMP (Internet Control Message Protocol) whereby remote hosts respond to echo packets to say they are alive (ping).
- Some implementations respond to pings to broadcast addresses.
- Idea: Ping a LAN to find hosts, which then all respond to the ping.
- Attack: make a packet with a forged source address containing the victim's IP number. Send it to a smurf amplifier, who swamps the target with replies.

LANs that allow Smurf attacks are badly configured. One approach is to blacklist these LANs.

Smurf Amplifier Registry (SAR) http://www.powertech.no/smurf/

Current top ten smurf amplifiers (updated every 5 minutes) (last update: 2016-01-17 23:31:02 CET)

Network	#Dups	#Incidents	Registered	at	Home AS
212.1.130.0/24	38	0	1999-02-20	09:41	AS9105
204.158.83.0/24	27	0	1999-02-20	10:09	AS3354
209.241.162.0/24	27	0	1999-02-20	08:51	AS701
159.14.24.0/24	20	0	1999-02-20	09:39	AS2914
192.220.134.0/24	19	0	1999-02-20	09:38	AS685
204.193.121.0/24	19	0	1999-02-20	08:54	AS701
198.253.187.0/24	16	0	1999-02-20	09:34	AS22
164.106.163.0/24	14	0	1999-02-20	10:11	AS7066
12.17.161.0/24	13	0	2000-11-29	19:05	not-analyzed
199.98.24.0/24	13	0	1999-02-18	11:09	AS6199

2457713 networks have been probed with the SAR
56 of them are currently broken
193885 have been fixed after being listed here

MARKULF KOHLWEISS 28

Distributed Denial of Service (DDoS)

A large number of machines work together to perform an attack that prevents valid users from accessing a service.

Common examples:

- Slashdot effect a large number of valid users all try and access at once.
- Botnets
- Amazon web services

What We Have Learned

- ARP protocol
- ARP poisoning attack
 - MitM attack on a LAN
- Transport layer protocols
 - TCP for reliable transmission
 - UDP when packet loss/corruption is tolerated
- Lack of built-in security in network protocols
 - Security can be incorporated into application layer (SSL)

Questions

MARKULF KOHLWEISS 32