Formale Semantik o6. Quantifikation und Modelltheorie

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Achtung: Folien in Überarbeitung. Englische Teile sind noch von 2007! Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

- 1 From PC to F1
 - Taking stock
 - Pronouns and context
 Phrase structure version of PC
 - Trees
 - C-command
- 2 Model theory
 - Models and valuations
 - Assignment functions

- Modified assignment functions
- 3 Problems with natural language
 - Restricted quantificationVariable binding and scope
 - Pre-spellout movement
 - LF movement
- Quantification in English: F2
 - Movement rules
 - Fragment F2

From PC to F1

• before we turn to quantification in F1/F2 English:

- before we turn to quantification in F1/F2 English:
- names refer to individuals

- before we turn to quantification in F1/F2 English:
- names refer to individuals
- itr. verbs refer to sets of individuals

- before we turn to quantification in F1/F2 English:
- names refer to individuals
- itr. verbs refer to sets of individuals
- tr. verbs refer to sets of ordered pairs of individuals

- before we turn to quantification in F1/F2 English:
- names refer to individuals
- itr. verbs refer to sets of individuals
- tr. verbs refer to sets of ordered pairs of individuals
- sentences refer to truth values

• **This** drives a Golf.

- This drives a Golf.
- this = a pronominal NP

- This drives a Golf.
- this = a pronominal NP
- denotes an individual

- This drives a Golf.
- this = a pronominal NP
- denotes an individual
- but not rigidly

- **This** drives a Golf.
- this = a pronominal NP
- denotes an individual
- but not rigidly
- fixed only within a specific context (SOA)

• quantified expression: $(\forall x)Px$

- quantified expression: $(\forall x)Px$
- for all assignments of 'this', 'this' has property P

- quantified expression: $(\forall x)Px$
- for all assignments of 'this', 'this' has property P
- Q evaluation in PC is algorithmic

- quantified expression: $(\forall x)Px$
- for all assignments of 'this', 'this' has property P
- Q evaluation in PC is algorithmic
- variables interpreted like definite pronominal NPs (within a fixed context)

ullet a o const, var

- $a \rightarrow \text{const}$, var
- conn $\rightarrow \land, \lor, \rightarrow, \leftrightarrow$

- $a \rightarrow \text{const}$, var
- conn $\rightarrow \land, \lor, \rightarrow, \leftrightarrow$
- neg $\rightarrow \neg$

- $a \rightarrow \text{const}$, var
- conn $\rightarrow \land, \lor, \rightarrow, \leftrightarrow$
- neg $\rightarrow \neg$
- $lackbox{Q} o \exists, \forall$

• pred₁ \rightarrow P, Q

- pred₁ \rightarrow P, Q
- $pred_2 \rightarrow R$

- pred₁ \rightarrow P, Q
- $\bullet \ pred_2 \to R$
- $\bullet \ pred_3 \to S$

- pred₁ \rightarrow P, Q
- $pred_2 \rightarrow R$
- pred₃ \rightarrow S
- $\bullet \ \ const \to b \text{, } c$

- pred₁ \rightarrow P, Q
- $pred_2 \rightarrow R$
- pred₃ \rightarrow S
- const \rightarrow b, c
- var \rightarrow x₁, x₂, ..., x_n

• wff \rightarrow pred_n $a_1 a_2 ... a_n$

- wff \rightarrow pred_n $a_1 a_2 ... a_n$
- ${}^{\bullet} \text{ wff} \rightarrow \text{neg wff}$

- wff \rightarrow pred_n $a_1 \overline{a_2 ... a_n}$
- $\bullet \ \text{wff} \to \text{neg wff}$
- ${}^{\bullet} \ wff \to wff \ con \ wff$

- wff \rightarrow pre $\overline{d_n a_1 a_2 ... a_n}$
- $\bullet \ \text{wff} \to \text{neg wff}$
- wff \rightarrow wff con wff
- wff \rightarrow (Q var) wff

A wff without Q

A wff with Q's

• Node A c-commands (constituent-commands) node B iff

- Node A c-commands (constituent-commands) node B iff
 - ► A does not dominate B and

- Node A c-commands (constituent-commands) node B iff
 - ► A does not dominate B and
 - ► and the first branching node dominating A also dominates B.

- Node A c-commands (constituent-commands) node B iff
 - ► A does not dominate B and
 - ▶ and the first branching node dominating A also dominates B.
- The definition in CM allows a node to dominate itself.

Configurational binding

• in configurational tree-structures:

Configurational binding

- in configurational tree-structures:
- A variables is bound by the closest c-commanding coindexed quantifier.

Configurational binding

- in configurational tree-structures:
- A variables is bound by the closest c-commanding coindexed quantifier
- scope = binding domain

A wff with Q's

• remember T-sentences: **S of L is true in v iff p**.

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $\blacktriangleright \ \mathcal{M} = \langle \textit{U}_{n}, \textit{V}_{n} \rangle$

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - $ightharpoonup V_n$ = a valuation function which assigns

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - V_n = a valuation function which assigns
 - ★ individuals to names

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - V_n = a valuation function which assigns
 - ★ individuals to names
 - ★ sets of n-tuples of indivuiduals to pred_n

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - V_n = a valuation function which assigns
 - ★ individuals to names
 - ★ sets of n-tuples of indivuiduals to pred_n
- \mathbf{g} is function from variables to individuals in \mathcal{M}

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - V_n = a valuation function which assigns
 - ★ individuals to names
 - ★ sets of n-tuples of indivuiduals to pred_n
- \mathbf{g} is function from variables to individuals in \mathcal{M}
- we evaluate: $[\alpha]^{\mathcal{M}_n,g_n}$

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - $ightharpoonup V_n$ = a valuation function which assigns
 - ★ individuals to names
 - ★ sets of n-tuples of indivuiduals to pred_n
- $\underline{\mathbf{g}}$ is function from variables to individuals in \mathcal{M}
- we evaluate: $[\alpha]^{\mathcal{M}_n,g_n}$
- the extension of α relative to \mathcal{M}_n and g_n

V_n valuates statically

- V_n valuates statically
- Q's require flexible valuation of pronominal matrices

- V_n valuates statically
- Q's require flexible valuation of pronominal matrices
- g_n is like V_n for constants, only flexible

- V_n valuates statically
- Q's require flexible valuation of pronominal matrices
- g_n is like V_n for constants, only flexible
- it can iterate through Un

- V_n valuates statically
- Q's require flexible valuation of pronominal matrices
- g_n is like V_n for constants, only flexible
- it can iterate through Un
- initial assignment can be anything:

$$g_1 = \left[egin{array}{l} {\sf x}_1
ightarrow {\sf Herr Webelhuth} \ {\sf x}_2
ightarrow {\sf Frau Eckardt} \ {\sf x}_3
ightarrow {\sf Turm - Mensa} \end{array}
ight]$$

• for each Q loop, one modification

- for each Q loop, one modification
- read $g_n [d/x_m]$ as "...relative to g_n where x_m is reassigned to d"

- for each Q loop, one modification
- read $g_n [d/x_m]$ as "...relative to g_n where x_m is reassigned to d"
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Frau\ Eckardt$

- for each Q loop, one modification
- read $g_n [d/x_m]$ as "...relative to g_n where x_m is reassigned to d"
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Frau\ Eckardt$
- $lacksquare \left[lacksquare lacksquare$

• $[\![(\forall x_1)Px_1]\!]^{\mathcal{M}_1,g}$

- $[(\forall x_1)Px_1]^{\mathcal{M}_1,g_1}$
- start with initial assignment: $[x_1]^{\mathcal{M}_1,g_1}=$ Webelhuth check: $[Px_1]^{\mathcal{M}_1,g_1}$

- $\llbracket (\forall x_1) P x_1 \rrbracket^{\mathcal{M}_1, g_1}$
- start with initial assignment: $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- modify: $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Eckardt}/\mathsf{x}_1]} = \mathsf{Eckardt}$ check: $[\mathsf{P}x_1]^{\mathcal{M}_1,g_1}$

- $[(\forall x_1)Px_1]^{\mathcal{M}_1,g_1}$
- start with initial assignment: $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- modify: $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- ullet modify: $\llbracket x_1
 bracket^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_1]} = \mathsf{Mensa}$ check: $\llbracket \mathsf{P} \mathsf{x}_1
 bracket^{\mathcal{M}_1,g_1}$

- $[(\forall x_1)Px_1]^{\mathcal{M}_1,g_1}$
- start with initial assignment: $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- modify: $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- modify: $\llbracket x_1
 rbracket^{\mathcal{M}_1, \overline{g}_1[\mathsf{Mensa}/x_1]} = \mathsf{Mensa}$ check: $\llbracket \mathsf{P} x_1
 rbracket^{\mathcal{M}_1, \overline{g}_1}$
- iff the answer was never 0, then $[(\forall x_1)Px_1]^{\mathcal{M}_1,g_1}=1$

 $\bullet \ \llbracket (\forall \mathsf{x}_1)(\exists \mathsf{x}_2) \mathsf{P} \mathsf{x}_1 \mathsf{x}_2 \rrbracket^{\mathcal{M}_1, g_1}$

- $\llbracket (\forall \mathbf{x}_1)(\exists \mathbf{x}_2) P \mathbf{x}_1 \mathbf{x}_2 \rrbracket^{\mathcal{M}_1, g_1}$
- $[x_1]^{\mathcal{M}_1,g_1}=$ Webelhuth

- $[(\forall x_1)(\exists x_2)Px_1x_2]^{\mathcal{M}_1,g_1}$
- $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$
 - $ightharpoonup \left[m{x}_2
 ight]^{\mathcal{M}_1,g_1} = \textit{Eckardt}$

- $[x_1]^{\mathcal{M}_1,g_1} =$ Webelhuth

 - $ig|_{X_2}^{\mathcal{M}_1,g_1} = ext{Eckardt}$ $ig|_{X_2}^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = ext{Webelhuth}$

- $\llbracket (\forall \mathsf{x}_1)(\exists \mathsf{x}_2) \mathsf{P} \mathsf{x}_1 \mathsf{x}_2 \rrbracket^{\mathcal{M}_1, \mathsf{g}_2}$
- $[x_1]^{\mathcal{M}_1,g_1} =$ Webelhuth
 - $| [x_2]|^{\mathcal{M}_1,g_1} = Eckardt$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$

- $[(\forall \mathsf{x}_1)(\exists \mathsf{x}_2)\mathsf{P}\mathsf{x}_1\mathsf{x}_2]^{\mathcal{M}_1,g_1}$
- $\llbracket x_1 \rrbracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $| [x_2]|^{\mathcal{M}_1,g_1} = Eckardt$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - $ightharpoonup \left[oldsymbol{x}_2
 ight]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = \overline{Eckardt}$

- $[(\forall \mathsf{x}_1)(\exists \mathsf{x}_2)\mathsf{P}\mathsf{x}_1\mathsf{x}_2]^{\mathcal{M}_1,g_1}$
- $\llbracket x_1 \rrbracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $| [x_2]|^{\mathcal{M}_1,g_1} = Eckardt$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - $[x_2]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$
 - $ightharpoonup \left[x_{2} \right]^{\mathcal{M}_{1},g_{1}\left[\mathsf{Eckardt}/\mathsf{x}_{1}
 ight]} = \mathsf{Eckardt}$

- $[(\forall \mathsf{x}_1)(\exists \mathsf{x}_2)\mathsf{P}\mathsf{x}_1\mathsf{x}_2]^{\mathcal{M}_1,g_1}$
- $\llbracket x_1 \rrbracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $ightharpoonup \|\mathbf{x}_2\|^{\mathcal{M}_1,g_1} = \mathsf{Eckardt}$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - $[x_2]^{\overline{\mathcal{M}}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$

 - lacksquare $[\![x_2]\!]^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}^2]}=\mathsf{Webelhuth}$

- $[(\forall x_1)(\exists x_2)Px_1x_2]^{\mathcal{M}_1,g_1}$
- $\llbracket x_1
 bracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $| [x_2]|^{\mathcal{M}_1,g_1} = Eckardt$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - $[x_2]^{\overline{\mathcal{M}}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$

 - $Arr \|x_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}_2]}=\mathsf{Webelhuth}$
 - lacksquare $\llbracket x_2
 rbracket^{M_1,g_1[[Eckardt/x_1]Mensa/x_2]} = Mensa$

- $\bullet \ \ \llbracket (\forall \mathsf{x}_1)(\exists \mathsf{x}_2) \mathsf{P} \mathsf{x}_1 \mathsf{x}_2 \rrbracket^{\mathcal{M}_1, g_1}$
- $\llbracket x_1 \rrbracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $| [x_2]^{\mathcal{M}_1,g_1} = Eckardt$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - $[x_2]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$
 - $\|\mathbf{x}_2\|^{\mathcal{M}_1,g_1[\mathsf{Eckardt}/\mathsf{x}_1]} = \mathsf{Eckardt}$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}_2]} = \mathsf{Webelhuth}$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/x_1]} = \mathsf{Mensa}$

- $[(\forall x_1)(\exists x_2)Px_1x_2]^{\mathcal{M}_1,g_2}$
- $\llbracket x_1 \rrbracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1} = \mathsf{Eckardt}$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - $\|\mathbf{x}_2\|^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$
 - $\|\mathbf{x}_2\|^{\mathcal{M}_1,g_1[Eckardt/\mathbf{x}_1]} = Eckardt$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}_2]} = \mathsf{Webelhuth}$
 - $\| \mathbf{x}_2 \|^{\mathcal{M}_1,g_1[[Eckardt/x_1]Mensa/x2]} = Mensa$
- $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/x_1]} = \mathsf{Mensa}$

- $\bullet \ \ \llbracket (\forall \mathsf{x}_1)(\exists \mathsf{x}_2) \mathsf{P} \mathsf{x}_1 \mathsf{x}_2 \rrbracket^{\mathcal{M}_1, g_1}$
- $\llbracket x_1 \rrbracket^{\mathcal{M}_1,g_1} = Webelhuth$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1} = \mathsf{Eckardt}$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - lacksquare $\llbracket x_2
 bracket^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$

 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}_2]} = \mathsf{Webelhuth}$
 - $ightharpoons \|\mathbf{x}_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/x_1]} = \mathsf{Mensa}$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_1]} = \mathsf{Eckardt}$
 - lacksquare $[x_2]^{\mathcal{M}_1,g_1[[\mathsf{Mensa}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}_2]}=\mathsf{Webelhuth}$

- $\bullet \ \llbracket (\forall \mathsf{x}_1)(\exists \mathsf{x}_2)\mathsf{P}\mathsf{x}_1\mathsf{x}_2 \rrbracket^{\mathcal{M}_1,\mathsf{g}_1}$
- $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$
 - $| [x_2]^{\mathcal{M}_1,g_1} = \mathsf{Eckardt}$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
 - lacksquare $\llbracket x_2
 bracket^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$
 - $| [x_2]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$
 - $ightharpoonup \|x_2\|^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Webelhuth}/\mathsf{x}_2]} = \mathsf{Webelhuth}$
 - $\| \mathbf{x}_2 \|^{\mathcal{M}_1,g_1[[Eckardt/x_1]Mensa/x_2]} = Mensa$
- $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/x_1]} = \mathsf{Mensa}$
 - $ightharpoonup \|x_2\|^{\overline{\mathcal{M}}_1,g_1[\mathsf{Mensa}/\mathsf{x}_1]} = \mathsf{Eckardt}$
 - $[x_2]^{\mathcal{M}_1,g_1[[\mathsf{Mensa}/x_1]\mathsf{Webelhuth}/x_2]} = \mathsf{Webelhuth}$
 - $ightharpoonup \left[x_2
 ight]^{\mathcal{M}_1,g_1[[\mathsf{Mensa}/\mathsf{x}_1]\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$

• quantifying expressions in NL beyond \forall and \exists

- quantifying expressions in NL beyond \forall and \exists
- some seem to work differently:

- quantifying expressions in NL beyond \forall and \exists
- some seem to work differently:
- All patients adore Dr. Rick <u>D</u>agless M.D. (∀x₁)Px₁ → Ax₁d (ok)

- quantifying expressions in NL beyond \forall and \exists
- some seem to work differently:
- All patients adore Dr. Rick <u>D</u>agless M.D. $(\forall x_1)Px_1 \rightarrow Ax_1d$ (ok)
- but: Most patients adore Dr. Rick <u>D</u>agless M.D. (MOST x₁)Px₁ → Ax₁d (wrong interpretation)

- quantifying expressions in NL beyond \forall and \exists
- some seem to work differently:
- All patients adore Dr. Rick <u>D</u>agless M.D. (∀x₁)Px₁ → Ax₁d (ok)
- but: Most patients adore Dr. Rick <u>D</u>agless M.D. (MOST x₁)Px₁ → Ax₁d (wrong interpretation)
- domain should be the set of patients, not individuals

- quantifying expressions in NL beyond \forall and \exists
- some seem to work differently:
- All patients adore Dr. Rick <u>D</u>agless M.D. (∀x₁)Px₁ → Ax₁d (ok)
- but: Most patients adore Dr. Rick <u>D</u>agless M.D. (MOST x₁)Px₁ → Ax₁d (wrong interpretation)
- domain should be the set of patients, not individuals
- For NL: Assume that the checking domain for Q is the set denoted by CN.

• c-command condition on binding/scope fails in NL

- c-command condition on binding/scope fails in NL
- no PNF's in NL

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)
- ambiguities independent of Q position

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)
- ambiguities independent of Q position
 - Everybody loves somebody. (ELS)

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)
- · ambiguities independent of Q position
 - Everybody loves somebody. (ELS)
 - $\blacktriangleright (\forall \mathbf{x}_1)(\exists \mathbf{x}_2) \mathbf{L} \mathbf{x}_1 \mathbf{x}_2$

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)
- ambiguities independent of Q position
 - Everybody loves somebody. (ELS)
 - $\blacktriangleright (\forall \mathbf{x}_1)(\exists \mathbf{x}_2) \mathbf{L} \mathbf{x}_1 \mathbf{x}_2$
 - $\blacktriangleright (\exists \mathbf{x}_2)(\forall \mathbf{x}_1) \mathbf{L} \mathbf{x}_1 \mathbf{x}_2$

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)
- ambiguities independent of Q position
 - Everybody loves somebody. (ELS)
 - $(\forall \mathbf{x}_1)(\exists \mathbf{x}_2) \mathbf{L} \mathbf{x}_1 \mathbf{x}_2$
 - $\blacktriangleright (\exists x_2)(\forall x_1) L x_1 x_2$
- Q ambiguity cannot be structural (e.g., ∃ will never c-command ∀)

Cases of overt movement and traces

- wh movement:
- What_i will Agent Cooper solve t_i?

•

Cases of overt movement and traces

- wh movement:
- What_i will Agent Cooper solve t_i?
- •
- passive movement:
- (Laura Palmer); was killed t_i.

•

Cases of overt movement and traces

- wh movement:
- What_i will Agent Cooper solve t_i?
- passive movement:
- (Laura Palmer); was killed t_i.
- raising verbs:
- (Laura Palmer); seems t; to be dead.

• construction of an independent representational level LF

- construction of an independent representational level LF
- could use movement mechanism as used at surface level

- construction of an independent representational level LF
- could use movement mechanism as used at surface level
- All quantifiers adjoin to the left periphery of S at LF.

- construction of an independent representational level LF
- could use movement mechanism as used at surface level
- All quantifiers adjoin to the left periphery of S at LF.
- LF is constructed by syntactic rules!

Ambiguities at LF

```
• [s''] everybody; [s'] somebody; [s] [s] ti loves [s] []]
```

Ambiguities at LF

```
• [s''] everybody, [s'] somebody, [s] toves [s] []]
```

•

• [_{S''} somebody_i [_{S'} everybody_i [_S t_i loves t_i]]]

•

The Q raising rule

$$[_S X NP Y] \Rightarrow [_{S'} NP_i [_S X t_i Y]]$$

The Q raising rule

$$[_{\mathsf{S}}\,\mathsf{X}\,\mathsf{NP}\,\mathsf{Y}\,] \;\Rightarrow\; [_{\mathsf{S}'}\,\mathsf{NP}_{\mathsf{i}}\,[_{\mathsf{S}}\,\mathsf{X}\,\mathsf{t}_{\mathsf{i}}\,\mathsf{Y}\,]]$$

• specify a PS as input and output

The Q raising rule

$$[_{\mathsf{S}} \ \mathsf{X} \ \mathsf{NP} \ \mathsf{Y} \] \ \Rightarrow \ [_{\mathsf{S'}} \ \mathsf{NP}_i \ [_{\mathsf{S}} \ \mathsf{X} \ \mathsf{t}_i \ \mathsf{Y} \]]$$

- specify a PS as input and output
- QR rule also introduces coindexing of traces

• copies all definitions from F1

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.
 - ightharpoonup Det ightarrow every, some

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.
 - ▶ Det → every, some
 - $ightharpoonup NP
 ightarrow Det N_{common-count}$

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.
 - ▶ Det → every, some
 - $ightharpoonup NP
 ightharpoonup Det N_{common-count}$
- adds the QR rule

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.
 - ▶ Det → every, some
 - $ightharpoonup NP
 ightarrow DetN_{common-count}$
- adds the QR rule
- assume introduction of reasonable syntactic types/rules without specifying

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.
 - ▶ Det → every, some
 - $ightharpoonup NP
 ightharpoonup Det N_{common-count}$
- adds the QR rule
- assume introduction of reasonable syntactic types/rules without specifying
- ullet assume admissible (reasonable, possible) models ${\cal M}$

Semantics for QR output: every

A sentence containing the trace t_i with an adjoined NP_i (which consists of every plus the common noun β) extend to 1 iff for each individual u in the universe U which is in the set referred to by the common noun β , S denotes 1 with u assigned to the pronominal trace t_i . g is modified iteratively to check that.

Semantics for QR output: some, a

(similar)

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.