Simplifying AI and Machine-Learning with Watson Studio

- · Get your free account and use the Lite plan forever
- No credit card and no autorenewals

Click Here

(https://cocl.us/corsera_da0101en_notebook_top)

(https://www.bigdatauniversity.com)

Data Analysis with Python

Introduction

Welcome!

In this section, you will learn how to approach data acquisition in various ways, and obtain necessary insights from a dataset. By the end of this lab, you will successfully load the data into Jupyter Notebook, and gain some fundamental insights via Pandas Library.

Table of Contents

- 1. Data Acquisition
- 2. Basic Insight of Dataset

Estimated Time Needed: 10 min </div>

Data Acquisition

There are various formats for a dataset, .csv, .json, .xlsx etc. The dataset can be stored in different places, on your local machine or sometimes online.

In this section, you will learn how to load a dataset into our Jupyter Notebook.

In our case, the Automobile Dataset is an online source, and it is in CSV (comma separated value) format. Let's use this dataset as an example to practice data reading.

- data source: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data
 (https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data)
- · data type: csv

The Pandas Library is a useful tool that enables us to read various datasets into a data frame; our Jupyter notebook platforms have a built-in **Pandas Library** so that all we need to do is import Pandas without installing.

In [10]:

Read Data

We use pandas.read_csv() function to read the csv file. In the bracket, we put the file path along with a quotation mark, so that pandas will read the file into a data frame from that address. The file path can be either an URL or your local file address.

Because the data does not include headers, we can add an argument headers = None inside the read csv() method, so that pandas will not automatically set the first row as a header.

You can also assign the dataset to any variable you create.

This dataset was hosted on IBM Cloud object click <u>HERE (https://cocl.us/DA101EN_object_storage)</u> for free storage.

In [1]:

After reading the dataset, we can use the dataframe.head(n) method to check the top n rows of the dataframe; where n is an integer. Contrary to dataframe.head(n), dataframe.tail(n) will show you the bottom n rows of the dataframe.

In [2]:

The first 5 rows of the dataframe

Out[2]:

	0	1	2	3	4	5	6	7	8	9	 16	17	18	19	20
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3.47	9.0
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3.40	10.0
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3.40	8.0

5 rows × 26 columns

Question #1:

check the bottom 10 rows of data frame "df".

In [3]: Out[3]:

	0	1	2	3	4	5	6	7	8	9		16	17	18	19	2
195	-1	74	volvo	gas	std	four	wagon	rwd	front	104.3		141	mpfi	3.78	3.15	9.
196	-2	103	volvo	gas	std	four	sedan	rwd	front	104.3		141	mpfi	3.78	3.15	9.
197	-1	74	volvo	gas	std	four	wagon	rwd	front	104.3		141	mpfi	3.78	3.15	9.
198	-2	103	volvo	gas	turbo	four	sedan	rwd	front	104.3		130	mpfi	3.62	3.15	7.
199	-1	74	volvo	gas	turbo	four	wagon	rwd	front	104.3		130	mpfi	3.62	3.15	7.
200	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		141	mpfi	3.78	3.15	9.
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		141	mpfi	3.78	3.15	8.
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		173	mpfi	3.58	2.87	8.
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109.1		145	idi	3.01	3.40	23.
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		141	mpfi	3.78	3.15	9.
10 rows × 26 columns													•			

Question #1 Answer:

Run the code below for the solution!

Double-click here for the solution.

Add Headers

Take a look at our dataset; pandas automatically set the header by an integer from 0.

To better describe our data we can introduce a header, this information is available at: https://archive.ics.uci.edu/ml/datasets/Automobile (<a href="https://archive.ics.uci.edu/ml/datasets/Automobile (<a href="https://arc

Thus, we have to add headers manually.

Firstly, we create a list "headers" that include all column names in order. Then, we use dataframe.columns = headers to replace the headers by the list we created.

In [4]:

headers

['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engine-location', 'wheel-base', 'l ength', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsep ower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price']

We replace headers and recheck our data frame

In [5]:
Out[5]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	whee bas
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94
3	2	164	audi	gas	std	four	sedan	fwd	front	99
4	2	164	audi	gas	std	four	sedan	4wd	front	99
5	2	?	audi	gas	std	two	sedan	fwd	front	99
6	1	158	audi	gas	std	four	sedan	fwd	front	105
7	1	?	audi	gas	std	four	wagon	fwd	front	105
8	1	158	audi	gas	turbo	four	sedan	fwd	front	105
9	0	?	audi	gas	turbo	two	hatchback	4wd	front	99

10 rows × 26 columns

we can drop missing values along the column "price" as follows

In [6]:

Out[6]:

_		symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	W
	0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	
	1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	
	2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	
	3	2	164	audi	gas	std	four	sedan	fwd	front	
	4	2	164	audi	gas	std	four	sedan	4wd	front	
	200	-1	95	volvo	gas	std	four	sedan	rwd	front	
	201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	
	202	-1	95	volvo	gas	std	four	sedan	rwd	front	
	203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	
	204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	

205 rows × 26 columns

Now, we have successfully read the raw dataset and add the correct headers into the data frame.

Question #2:

Find the name of the columns of the dataframe

```
In [18]:
Out[18]:
symboling
                         int64
normalized-losses
                        object
make
                        object
fuel-type
                        object
aspiration
                        object
num-of-doors
                        object
body-style
                        object
drive-wheels
                        object
                        object
engine-location
wheel-base
                       float64
                       float64
length
width
                       float64
height
                       float64
curb-weight
                         int64
engine-type
                        object
num-of-cylinders
                        object
                         int64
engine-size
fuel-system
                        object
bore
                        object
stroke
                        object
                       float64
compression-ratio
horsepower
                        object
                        object
peak-rpm
city-mpg
                         int64
                         int64
highway-mpg
price
                        object
dtype: object
In [19]:
Index(['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration',
        'num-of-doors', 'body-style', 'drive-wheels', 'engine-location',
        'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-typ
e',
        'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke',
'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg',
        'highway-mpg', 'price'],
      dtype='object')
```

Double-click here for the solution.

Save Dataset

Correspondingly, Pandas enables us to save the dataset to csv by using the dataframe.to_csv() method, you can add the file path and name along with quotation marks in the brackets.

For example, if you would save the dataframe **df** as **automobile.csv** to your local machine, you may use the syntax below:

In [29]:

We can also read and save other file formats, we can use similar functions to pd.read_csv() and df.to_csv() for other data formats, the functions are listed in the following table:

Read/Save Other Data Formats

Data Formate	Read	Save
CSV	pd.read_csv()	df.to_csv()
json	pd.read_json()	<pre>df.to_json()</pre>
excel	<pre>pd.read_excel()</pre>	<pre>df.to_excel()</pre>
hdf	pd.read_hdf()	df.to_hdf()
sql	pd.read_sql()	df.to_sql()

Basic Insight of Dataset

After reading data into Pandas dataframe, it is time for us to explore the dataset.

There are several ways to obtain essential insights of the data to help us better understand our dataset.

Data Types

Data has a variety of types.

The main types stored in Pandas dataframes are **object**, **float**, **int**, **bool** and **datetime64**. In order to better learn about each attribute, it is always good for us to know the data type of each column. In Pandas:

In [30]:

Out[30]:

symboling	int64
normalized-losses	object
make	object
fuel-type	object
aspiration	object
num-of-doors	object
body-style	object
drive-wheels	object
engine-location	object
wheel-base	float64
length	float64
width	float64
height	float64
curb-weight	int64
engine-type	object
num-of-cylinders	object
engine-size	int64
fuel-system	object
bore	object
stroke	object
compression-ratio	float64
horsepower	object
peak-rpm	object
city-mpg	int64
highway-mpg	int64
price	object
dtype: object	

returns a Series with the data type of each column.

In [31]:

symboling	int64
normalized-losses	object
make	object
fuel-type	object
aspiration	object
num-of-doors	object
body-style	object
drive-wheels	object
engine-location	object
wheel-base	float64
length	float64
width	float64
height	float64
curb-weight	int64
engine-type	object
num-of-cylinders	object
engine-size	int64
fuel-system	object
bore	object
stroke	object
compression-ratio	float64
horsepower	object
peak-rpm	object
city-mpg	int64
highway-mpg	int64
price	object
dtype: object	

As a result, as shown above, it is clear to see that the data type of "symboling" and "curb-weight" are _int64 , "normalized-losses" is _object , and "wheel-base" is _float64 , etc.

These data types can be changed; we will learn how to accomplish this in a later module.

Describe

If we would like to get a statistical summary of each column, such as count, column mean value, column standard deviation, etc. We use the describe method:

dataframe.describe()

This method will provide various summary statistics, excluding NaN (Not a Number) values.

In [32]:

Out[32]:

	symboling	wheel- base	length	width	height	curb-weight	engine- size	(
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	_
mean	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	
std	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	
min	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	
25%	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	
50%	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	
75%	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	
max	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	

This shows the statistical summary of all numeric-typed (int, float) columns.

For example, the attribute "symboling" has 205 counts, the mean value of this column is 0.83, the standard deviation is 1.25, the minimum value is -2, 25th percentile is 0, 50th percentile is 1, 75th percentile is 2, and the maximum value is 3.

However, what if we would also like to check all the columns including those that are of type object.

You can add an argument include = "all" inside the bracket. Let's try it again.

In [33]:

Out[33]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	
count	205.000000	205	205	205	205	205	205	205	205	205.
unique	NaN	52	22	2	2	3	5	3	2	
top	NaN	?	toyota	gas	std	four	sedan	fwd	front	
freq	NaN	41	32	185	168	114	96	120	202	
mean	0.834146	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	98.
std	1.245307	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	6.
min	-2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	86.
25%	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	94.
50%	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	97.
75%	2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	102.
max	3.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	120.

11 rows × 26 columns

Now, it provides the statistical summary of all the columns, including object-typed attributes.

We can now see how many unique values, which is the top value and the frequency of top value in the object-typed columns.

Some values in the table above show as "NaN", this is because those numbers are not available regarding a particular column type.

Question #3:

You can select the columns of a data frame by indicating the name of each column, for example, you can select the three columns as follows:

```
dataframe[[' column 1 ',column 2', 'column 3']]
```

Where "column" is the name of the column, you can apply the method ".describe()" to get the statistics of those columns as follows:

```
dataframe[[' column 1 ',column 2', 'column 3'] ].describe()
Apply the method to ".describe()" to the columns 'length' and 'compression-ratio'.
```

In [34]:

Out[34]:

	length	compression-ratio
count	205.000000	205.000000
mean	174.049268	10.142537
std	12.337289	3.972040
min	141.100000	7.000000
25%	166.300000	8.600000
50%	173.200000	9.000000
75%	183.100000	9.400000
max	208.100000	23.000000

Double-click **here** for the solution.

Info

Another method you can use to check your dataset is:

dataframe.info

It provide a concise summary of your DataFrame.

In [35]:

Out[35]:

	ınd method Dat ıel-type aspir		of	symboling	normalized-l	osses	mak
0	3		? a.	lfa-romero	gas	std	
1	3			lfa-romero	gas	std	
2	1			lfa-romero	gas	std	
3	2		. u. 164	audi	gas	std	
4	2		164	audi		std	
-	۷				gas		
200	1		 OE	···		 c+d	
200	-1		95	volvo	gas	std	
201	-1		95	volvo	gas	turbo	
202	-1		95	volvo	gas	std	
203	-1		95	volvo	diesel	turbo	
204	-1		95	volvo	gas	turbo	
\	num-of-doors	body-style	drive	-wheels eng	ine-location	wheel-base	•••
0	two	convertible		rwd	front	88.6	
1	two	convertible		rwd	front	88.6	
2	two	hatchback		rwd	front	94.5	
3	four	sedan		fwd	front	99.8	
4	four	sedan		4wd	front	99.4	
• •	•••	•••		•••	•••	•••	
200	four	sedan		rwd	front	109.1	
201	four	sedan		rwd	front	109.1	•••
202	four	sedan		rwd	front	109.1	•••
202	four	sedan			front	109.1	• • •
				rwd			• • •
204	four	sedan		rwd	front	109.1	• • •
	engine-size	fuel-system	bore		mpression-rat		
0	130	mpfi	3.47	2.68		.0 11	
1	130	mpfi	3.47	2.68		.0 11	
2	152	mpfi	2.68	3.47		.0 15	
3	109	mpfi		3.40	10	.0 10	2
4	136	mpfi	3.19	3.40	8	.0 11	.5
200	 141	mpfi	3.78	3.15		.5 11	
201	141	mpfi	3.78	3.15		.7 16	
202	173	mpfi	3.58	2.87		.8 13	
203	145	idi	3.01	3.40		.0 10	
204	141	mpfi	3.78	3.15		.5 11	
	peak-rpm cit	y-mpg highway	y-mpg	price			
0	5000	21	27	13495			
1	5000	21	27	16500			
2	5000	19	26	16500			
3	5500	24	30	13950			
4	5500	18	22	17450			
	• • •						
200	5400	23	28	16845			
201	5300	19	25	19045			
202	5500	18	23	21485			
203	4800	26	27	22470			
204	5400	19	25	22625			
	-		_				

[205 rows x 26 columns]>

Here we are able to see the information of our dataframe, with the top 30 rows and the bottom 30 rows.

And, it also shows us the whole data frame has 205 rows and 26 columns in total.

Excellent! You have just completed the Introduction Notebook!

About the Authors:

This notebook was written by Mahdi Noorian PhD (https://www.linkedin.com/in/mahdi-noorian-58219234/), Joseph Santarcangelo (https://www.linkedin.com/in/joseph-s-50398b136/), Bahare Talayian, Eric Xiao, Steven Dong, Parizad, Hima Vsudevan and Fiorella Wenver (https://www.linkedin.com/in/fiorellawever/) and Yi Yao (https://www.linkedin.com/in/yi-leng-yao-84451275/).

<u>Joseph Santarcangelo (https://www.linkedin.com/in/joseph-s-50398b136/)</u> is a Data Scientist at IBM, and holds a PhD in Electrical Engineering. His research focused on using Machine Learning, Signal Processing, and Computer Vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Copyright © 2018 IBM Developer Skills Network. This notebook and its source code are released under the terms of the MIT License (https://cognitiveclass.ai/mit-license/).