Visszacsatolásos tanulási módszerek a Mario játékra alkalmazva

Schnebli Zoltán

Babeș-Bolyai Tudományegyetem, Kolozsvár

2018 május 26

► Felügyelt tanulás

- ► Felügyelt tanulás
 - regresszió, osztályozás

- ► Felügyelt tanulás
 - regresszió, osztályozás
- ► Felügyeletlen tanulás

- Felügyelt tanulás
 - regresszió, osztályozás
- ► Felügyeletlen tanulás
 - klaszterezés

- ▶ Felügyelt tanulás
 - regresszió, osztályozás
- ► Felügyeletlen tanulás
 - klaszterezés
- Félig felügyelt tanulás

- ▶ Felügyelt tanulás
 - regresszió, osztályozás
- ► Felügyeletlen tanulás
 - klaszterezés
- ► Félig felügyelt tanulás
 - robotika

Működési elv:

- Ügynök
- ▶ Környezet
- ► Állapot Cselekedet
- Jutalom

Felfedezés és kizsákmányolás

- ightharpoonup ϵ mohó stratégia
- ightharpoonup csökkenő ϵ paraméter

Elemei:

- Irányelv
- Jutalomfüggvény
- Értékfüggvény
- Környezet modellje

$$\blacktriangleright (S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma)$$

- $\blacktriangleright (S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma)$
 - ▶ S állapottér

- $\blacktriangleright (S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma)$
 - ▶ S állapottér
 - ► A cselekvéstér

- $\blacktriangleright (S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma)$
 - ▶ S állapottér
 - A cselekvéstér
 - $ightharpoonup \mathcal{P}_{\mathsf{a}}(s,s')$ s' valószínűségét határozza meg

- $\blacktriangleright (S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma)$
 - ▶ S állapottér
 - A cselekvéstér
 - $ightharpoonup \mathcal{P}_{\mathsf{a}}(s,s')$ s' valószínűségét határozza meg
 - $ightharpoonup \mathcal{R}_a(s,s')$ s'-be vezető cselekedet jutalmát hazározza meg

- $\blacktriangleright (S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma)$
 - ▶ S állapottér
 - A cselekvéstér
 - $ightharpoonup \mathcal{P}_{a}(s,s')$ s' valószínűségét határozza meg
 - $ightharpoonup \mathcal{R}_a(s,s')$ s'-be vezető cselekedet jutalmát hazározza meg
 - γ engedményfaktor

Megoldási módszerek:

- Dinamikus programozás
 - kipróbál minden lehetőséget mielőtt lép
 - sok memória
- Monte Carlo módszerek
 - tapasztalat
 - pontos környezeti modell
- Időbeli-differencia tanulás (ID tanulás)
 - ▶ előző két elv egyesítése

A legegyszerűbb ID tanulás

- ► TD(0)
- $V(s_t) \leftarrow V(s_t) + \alpha[r_t + \gamma V(s_{t+1}) V(s_t)]$
- α tanulási ráta

Q - tanulás

- nem ígényel környezeti modellt
- képes optimális irányelvet találni

SARSA - tanulás

- ► Állapot-Cselekvés-Jutalom-Állapot-Cselekvés
- Q tanulásból származik
- ▶ $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t)]$

Deep Q - tanulás

- Neurális háló
- ► Tapasztalat
- ▶ 3 réteg

Alkalmazás

- Visszacsatolásos ügynök
- Lua szerver
- Környezeti modell

Alkalmazás

- JSON üzenetek
- ▶ a játék reprezentációja

Eredmények

- 55+ százalékos sikeresség
- maximálisan elért távolság

