Hamiltonian Monte Carlo

Goal: Scaple from T(x) < e - U(x), U: Rd - R, U = C2

Idu: introduce the hamitanian H: R2d - R when

(P,x) -> N(x) + 1 p+Cp for some psd C

Then we consider a distribution $\pi(p,x) \propto e^{-H(p,x)}$

which is easier to sumple from and marginalizing

gives Samples from TT.

Consider the ODE

$$\int \frac{\partial P_{3t}}{\partial t} = -\frac{\partial H}{\partial x} (P_{t}, x_{t}) = -\nabla U(x_{t})$$

$$\frac{\partial P_{3t}}{\partial t} = \frac{\partial H}{\partial r} (P_{t}, x_{t}) = C^{-1} P_{t}$$

With initial condition $(p_0, \chi_0) \Rightarrow \{(p_t, \chi_t), t \geq 0\}$

$$\frac{\partial}{\partial t} \# (p_t, \chi_t) = \frac{\partial \# (p_t, \chi_t)}{\partial t} \frac{\partial P_t}{\partial t} + \frac{\partial \# (p_t, \chi_t)}{\partial t} \frac{\partial Z_0}{\partial t} = 0$$

 $H(P_t, \chi_t) = H(P_t, \chi_0)$ i.e. Constant humitonian

$$\xi_{X}$$
: Find $N(x) = \frac{\chi^2}{2}$, $p^T C^T p = \frac{p^2}{2}$

$$H(Y_t, \rho_t) \equiv cst \Leftrightarrow \frac{\chi^2}{2a} + \frac{\rho^2}{2b} \equiv cst$$

Given
$$(P_0, \chi_0)$$
 and set $M_t: \mathbb{R}^{2p} \longrightarrow \mathbb{R}^{2p}$

$$(P_0, \chi_0) \longmapsto (P_1, \chi_t)$$

Algarithm: Giren X-2

- 1. Draw P.~ N(o,c)
- 2. Compute (p', x') = M+ (po, x)
- 3. Set Xn+1=X'

Prop: If Xn with Xn+1 with

Proof: If Xn ~T then (Xn, Po) ~TT

 $(P', X') = M_{\dagger}(P_{\bullet}, X_{n})$

Properties of Mt eneme that (P',x') with which imply that x'ntt.

So we can travel long distances along the hamiltonian without destroying the target dist.

Estimating the map Me

Intradable in general.

St
$$(p,x) \mapsto (p',x')$$

Define
$$\overline{p} = p - \frac{\varepsilon}{2} \nabla u(x)$$

$$\chi' = \chi + \varepsilon C^{-1} \overline{p}$$
Lenp froy
$$p' = \overline{p} - \frac{\varepsilon}{2} \nabla u(x)$$

$$p' = \overline{p} - \frac{\varepsilon}{2} \nabla u(x)$$

Consider
$$S_L \equiv S^L = S \circ S \circ \cdots \circ S : \mathbb{R}^{2d} \longrightarrow \mathbb{R}^{2d}$$

Alguithm: Giren Xn=x

3.
$$x_{n+1} = \begin{cases} x' & \text{wp. } m_{1}(1, exp(-H(p', x') + H(p_{0}, x))) \\ x & \text{o.w.} \end{cases}$$

- MH step helps us sulf correct if the disentization is four off.

Prop: If XnuT, Xnt, WT

Proof:

(x) Need to Show (SL)-1 = FOSLOF, F: (P,2)->(-p,x)

Justification: If the for L=1,

52 = 5 05 = FOSOFOFOSOF = FOSOF

By industria Sil= Fo Shop

Sufficent to show 51= F. SUF

 $S: (\rho_1 \times) \longrightarrow (\rho', \times')$

$$\begin{cases} b_1 = b - \frac{5}{6} \triangle \Lambda(x) \\ b_2 = b - \frac{5}{6} \triangle \Lambda(x) \end{cases}$$

8. Flip agan 3 Linute

Didinate

- p

$$\begin{cases} -\bar{p} = (-p') - \zeta_1 \nabla u x_1 \\ \chi = \chi' + \varepsilon \bar{c}^{1} (-\bar{p}) \end{cases}$$

$$-\bar{p} = (-\bar{p}) - \frac{\varepsilon}{2} \nabla u x_2$$

A map T: RZd -> RZd is Simpletic if VT(y)

$$\forall y \in \mathbb{R}^{kd} \quad \nabla T(y) J \nabla T(y)^{T} = J \qquad J = \begin{bmatrix} 0 \\ -J \\ J \end{bmatrix}$$

=> det | 7+(g) = ± 1

(x) The map SL is simpletic

If S_1, S_2 are simplestic $S_1 \circ S_2$ is simplestic b/c $\nabla S(y) = \nabla S_1(S_2(y)) \nabla S_2(y)$

 $\int S(x) = \int S(x) = \int$

$$S_{1}:(\rho,x)\longmapsto\left(\rho^{-\frac{c}{2}}\nabla u(x), \chi+\epsilon c^{-1}\rho-\frac{c^{2}}{2}C^{-1}\nabla u(x)\right)$$

$$S_{2}:(\rho,x)\longmapsto\left(\rho^{-\frac{c}{2}}\nabla u(x), \chi\right)$$

$$\nabla S_{z}(p, x) = \begin{bmatrix} \pm & 0 \\ -\frac{c}{2} \nabla^{(2)} U(x) & I \end{bmatrix}$$

$$\Delta S^{2}(b'x) = \begin{bmatrix} 0 & I \\ -I & -\frac{c}{c_{s}} \rho_{s} \end{pmatrix} (b'x)$$

$$\nabla S_{2}(\rho, x) J \nabla S_{2}(\rho, x)^{T} = \begin{bmatrix} O & J \\ -I & O \end{bmatrix} = J$$

Similar for S1.

So together we get simplectic maps 5,52, 5205,