LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic Constraints

Weidi Xu^{1,2}, Jingwei Wang², Lele Xie², Jianshan He², Hongting Zhou², Taifeng Wang³, Xiaopei Wan², Jingdong Chen², Chao Qu¹, Wei Chu^{2,1}

¹INFLY TECH (Shanghai) Co., Ltd ²Ant Group ³BioMap Research

An Example of Encoding First-order Logic Constraints

Task: Given the input image and input tokens, the task is to develop a function to predict whether two tokens coexist in a block.

Rule: If tokens *i* and *j* are in the same block and tokens *j* and *k* are also together, then tokens *i* and *k* should be in the same block.

Rule: $\forall i, j, k : C(i, j) \land C(j, k) \implies C(i, k)$.

An example of using LogicMP in the image segmentation problem.

LogicMP: the first fully differentiable neuro-symbolic approach capable of encoding FOLCs for arbitrary neural networks

Overview of LogicMP.

Pseudo Code for the Example.

Approach Details

Experiments

Task: Given the input image and input tokens, the task is to develop a function to predict whether two tokens coexist in a block.

Rule: If tokens *i* and *j* are in the same block and tokens *j* and *k* are also together, then tokens *i* and *k* should be in the same block.

Results over Document Images.

Methods	full	long
LayoutLM-BIOES [14]	80.1	33.7
LayoutLM-SpanNER [4]	74.0	22.0
LayoutLM-SPADE [6]	80.1	43.5
LayoutLM-Pair [12]	82.0	46.7
LayoutLM-Pair w/ SL [13]	-	-
LayoutLM-Pair w/ SPL [1]	_	-
LayoutLM-Pair w/ SLrelax	82.0	47.8
LayoutLM-Pair w/ LogicMP	83.3	50.1
LayoutLM-Pair w/ SLrelax+LogicMP	83.4	50.3

Task: Given the relational facts, the task is to develop a function to predict whether a latent fact is true.

Rule: Rules of family/school/academic relations.

Results over Relational Graphs.

Method	Kinship					UW-CSE						Cora						
IVICTIO		S2	S3	S4	S5	avg.	Α.	G.	L.	S.	T.	avg.	S1	S2	S3	S4	S5	avg.
MCMC [9]	.53	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
골BP/Lifted BP [10]	.53	.58	.55	.55	.56	.56	.01	.01	.01	.01	.01	.01	_	-	-	-	-	-
≅MC-SAT [8]	.54	.60	.55	.55	-	-	.03	.05	.06	.02	.02	.04	_	-	-	-	-	-
HL-MRF [2]	1.0	1.0	1.0	1.0	-	-	.06	.09	.02	.04	.03	.05	-	-	-	-	-	-
± ExpressGNN	.56	.55	.49	.53	.55	.54	.01	.01	.01	.01	.01	.01	.37	.66	.21	.42	.55	.44
ExpressGNN w/ GS [15]																		
ExpressGNN w/ LogicMP	.99	.98	1.0	1.0	1.0	.99	.26	.30	.42	.25	.28	.30	.80	.88	.72	.83	.89	.82

Task: Given the text sequence, the task is to develop a function to predict the sequence labels.

Rule: adjacent rules and list rule.

Results over Text.

i todatto o	VOI TOXLL
Methods	F1
BLSTM [5]	89.98
BLSTM (lex) [3]	90.77
BLSTM w/ CRF [7]	90.94
BLSTM w/ CRF (mean field) [11]	91.07
BLSTM w/ SL [13]	-
BLSTM w/ SPL [1]	-
BLSTM w/ SLrelax	90.38
BLSTM w/ LogicDist (adj) [5]	p: 89.80, q: 91.11
BLSTM w/ LogicDist (adj+list) [5]	p: 89.93, q: 91.18
BLSTM w/ LogicMP (adj)	91.25
BLSTM w/ LogicMP (adi+list)	91.42

LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic Constraints

Weidi Xu^{1,2}, Jingwei Wang², Lele Xie², Jianshan He², Hongting Zhou², Taifeng Wang³, Xiaopei Wan², Jingdong Chen², Chao Qu¹, Wei Chu^{2,1}

¹INFLY TECH (Shanghai) Co., Ltd ²Ant Group ³BioMap Research

References I

K. Ahmed, S. Teso, K. Chang, G. V. den Broeck, and A. Vergari.

Semantic probabilistic layers for neuro-symbolic learning.

In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

S. H. Bach, M. Broecheler, B. Huang, and L. Getoor.

Hinge-loss Markov random fields and probabilistic soft logic.

The Journal of Machine Learning Research, 18:109:1–109:67, 2017.

J. P. C. Chiu and E. Nichols.

Named entity recognition with bidirectional LSTM-CNNs.

Transactions of the Association for Computational Linguistics, 4:357–370, 2016.

J. Fu, X. Huang, and P. Liu.

SpanNER: Named entity re-/recognition as span prediction.

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pages 7183–7195. Association for Computational Linguistics, 2021.

Z. Hu, X. Ma, Z. Liu, E. H. Hovy, and E. P. Xing.

Harnessing deep neural networks with logic rules.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. Association for Computer Linguistics, 2016.

W. Hwang, J. Yim, S. Park, S. Yang, and M. Seo.

Spatial dependency parsing for semi-structured document information extraction.

In Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pages 330–343. Association for Computational Linguistics, 2021.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer.

Neural architectures for named entity recognition.

In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 260–270. Association for Computational Linguistics, 2016.

H. Poon and P. M. Domingos.

Sound and efficient inference with probabilistic and deterministic dependencies.

In Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages 458–463. AAAI Press, 2006.

M. Richardson and P. M. Domingos.

Markov logic networks.

Machine Learning, 62(1-2):107-136, 2006.

P. Singla and P. M. Domingos.

Lifted first-order belief propagation.

In The Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, USA, July 13-17, 2008, pages 1094–1099. AAAI Press, 2008.

X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu.

AIN: fast and accurate sequence labeling with approximate inference network.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6019–6026. Association for Computational Linguistics, 2020.

J. Xu, W. Xu, M. Sun, T. Wang, and W. Chu.

Extracting trigger-sharing events via an event matrix.

In Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 1189–1201. Association for Computational Linguistics, 2022.

J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. V. den Broeck.

A semantic loss function for deep learning with symbolic knowledge.

In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 5498–5507. PMLR, 2018.

Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou.

Layoutlm: Pre-training of text and layout for document image understanding.

In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 1192–1200. ACM, 2020.

Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi, and L. Song.

Efficient probabilistic logic reasoning with graph neural networks.

In 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.