Proof Assistant Based Verification of Programs

Haitao Hu

May 19, 2023

- 1 Introduction to proof assistant
- 2 Introduction to Type theory
- 3 Formalization of security flow analysis
- Proof of security flow analysis
- Present and Future

Introduction to proof assistant

- Interactive proof editor
- Automated/Refined proofs
- Libraries
- Agda and Coq

Introduction to Type theory

- We use A, B, \cdots to denote a *type*.
- ② A judgement is a: A, where a is element of type A. Informal, if A is a proposition, then we may say A has a proof a.
- Given two proposition A, B, from BHK-interpretation (Brouwer-Heyting-Kolmogorov):
 - $c: A \wedge B$ follows directly from a: A and b: B.
 - $c: A \lor B$ follows directly from a: A or b: B.
 - $c: A \rightarrow B$ follows directly from b: B under the assumption that a: A.

But how does *c* look like ? we do not know...

Curry-Howard isomorphism

- OHI is a one-by-one correspondence between simply typed lambda calculus and propositional logic.
- 2 It gives c a precise definition:
 - $(a, b) : A \times B$ follows directly from a : A and b : B.
 - inl a: A + B follows directly from a: A.
 - inr b: A + B follows directly from b: B.
 - $\lambda x. b[x/a]: A \rightarrow B$ follows directly from b: B under the assumption that a: A.
 - ...
- A program term in STLC is indeed a proof term in PL.

Proposition as types

- To prove a proposition A, one must find a proof, which is equivalent to finding an element a such that a: A.
- Some terminologies when we use type theory to do proof:
 - how to form new types of this kind, via formation rules.
 - how to construct elements of that type, via constructors or introduction rules.
 - how to use elements of that type, via eliminators or elimination rules.
 - a computation rule, which expresses how an eliminator acts on a constructor.
 - an optional **uniqueness principle**, which expresses uniqueness of maps into or out of that type.

A example

- Prove $(A \land B \to C) \to (A \to B \to C)$, this is we have to find a $c: (A \land B \to C) \to (A \to B \to C)$.
- ② Suppose we have a constructor \land -intro : $A \to B \to A \land B$.
- Then we have

$$\lambda f.(\lambda x, y. f (\land -intro x y)) : (A \land B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C)$$

Dependent Type theory

- **1** CHI is just a correspondence for non-dependent type. i.e, $A \rightarrow B$.
- ② Given a type family $P: A \to \mathcal{U}$, then we may have a dependent function type $\Pi_{a:A}$ P(a).
- **3** Dependent type give us a interpretation for \forall and \exists .
 - dependent function type is ∀. So predicate is actually something that generates new proposition for given a object.
 - dependent product type $\Sigma_{a:A} P(a)$ is \exists .
- **9** Propositional logic $+ \forall + \exists = \text{first order logic.}$
- Second Again Ag

- Source code : https://github.com/m4p1e/FoS
- 2 The two principles of security flow analysis:
 - a variable is only data-dependent on the variables such that have lower security level i.e. $x_H = y_I$.
 - a variable is only control-dependent on the variables such that have lower security level i.e. if (z_L) $\{x = y\}$.
- We give a definition of simple language :

- Given variables x_1, x_2, \dots, x_m and function $Sec_v : var \to \mathbb{N}$. For each x_i , the security level of x_i is $Sec_v(x_i)$.
- ② Then we can define function $Sec_{ne} : nexpr \rightarrow \mathbb{N}$ by pattern matching
 - if e is constant, then $Sec_{ne}(e) = 0$;
 - if e is a variable, then $Sec_{ne}(e) = Sec_{\nu}(e)$.
 - if e is $(e_1 + e_2)$, then $Sec_{ne}(e) = Sec_{ne}(e_1) \sqcup Sec_{ne}(e_2)$.
 - if e is $(e_1 e_2)$, then $Sec_{ne}(e) = Sec_{ne}(e_1) \sqcup Sec_{ne}(e_2)$.
 - if e is $(e_1 * e_2)$, then $Sec_{ne}(e) = Sec_{ne}(e_1) \sqcup Sec_{ne}(e_2)$.

where \sqcup is lowest upper bound operator.

• The function Sec_{ne} look like something below in Agda.

```
\begin{split} & \sec_{ne} : \sec_{v} \to \mathsf{nexp} \to \mathbb{N} \\ & \sec_{ne} \ \mathit{sec'}_{v} \ (\mathsf{n-const} \ \mathit{x}) = 0 - ? \\ & \sec_{ne} \ \mathit{sec'}_{v} \ (\mathsf{n-var} \ \mathit{x}) = \mathit{sec'}_{v} \ \mathit{x} \\ & \sec_{ne} \ \mathit{sec'}_{v} \ (\mathsf{n-add} \ e_{1} \ e_{2}) = \mathit{sec}_{ne} \ \mathit{sec'}_{v} \ e_{1} \ \sqcup \ \mathit{sec}_{ne} \ \mathit{sec'}_{v} \ e_{2} \\ & \sec_{ne} \ \mathit{sec'}_{v} \ (\mathsf{n-sub} \ e_{1} \ e_{2}) = \mathit{sec}_{ne} \ \mathit{sec'}_{v} \ e_{1} \ \sqcup \ \mathit{sec}_{ne} \ \mathit{sec'}_{v} \ e_{2} \\ & \sec_{ne} \ \mathit{sec'}_{v} \ (\mathsf{n-mul} \ e_{1} \ e_{2}) = \mathit{sec}_{ne} \ \mathit{sec'}_{v} \ e_{1} \ \sqcup \ \mathit{sec}_{ne} \ \mathit{sec'}_{v} \ e_{2} \end{split}
```

② Similarly, we can define Sec_{be} : $\mathsf{bexpr} \to \mathbb{N}$ and Sec_{re} : $\mathsf{rexpr} \to \mathbb{N}$.

- **①** Finally, we may define function Sec_{st} : stmt $\to \mathbb{N}$.
 - if st is x := e, then $Sec_{st}(st) = Sec_v(x) \sqcup Sec_{re}(e)$.
 - if st is if e then st_1 else st_1 , then $Sec_{st}(st) = Sec_{re}(e) \sqcap Sec_{st}(st_1) \sqcap Sec_{st}(st_2)$.
 - if st is while e loop st_1 , then $Sec_{st}(st) = Sec_{re}(e) \sqcap Sec_{st}(st_1)$
 - if st is st_1 ; st_2 , then $Sec_{st}(st) = Sec_{st}(st_1) \sqcap Sec_{st}(st_2)$.

where \sqcap is greatest lower bound operator. But something bad happens, what is the security level of skip?

- If $Sec_{st}(skip)$ is 0, then every conditional statement if e then st_1 else st_1 such that st_1 or st_2 includes skip will be unsafe.
- Thus, $Sec_{st}(skip) := \top$ such that every number $n < \top$.
- ② We need to introduce a new type of number $\hat{\mathbb{N}} = \mathbb{N} \cup \{\top\}$.

1 The function Sec_{st} look like something below in Agda.

```
\begin{split} &\sec_{st}: \sec_v \to \mathsf{stmt} \to \hat{\mathbb{N}} \\ &\sec_{st} \mathit{sec'_v} \mathsf{skip} = \top \\ &\sec_{st} \mathit{sec'_v} (x := e) = n \leq \top (\mathsf{sec} \mathit{sec'_v} x \; \mathsf{sec_{re}} \mathit{sec'_v} \; e) \\ &\sec_{st} \mathit{sec'_v} (\mathsf{if} \; e \; \mathsf{then} \; \mathit{st}_1 \; \mathsf{else} \; \mathit{st}_2) = \\ &n \leq \top (\mathsf{sec}_{be} \; \mathit{sec'_v} \; e) \; \sqcap^g \; \mathsf{sec}_{\mathit{st}} \; \mathit{sec'_v} \; \mathit{st}_1 \; \sqcap^g \; \mathsf{sec}_{\mathit{st}} \; \mathit{sec'_v} \; \mathit{st}_2 \\ &\sec_{st} \; \mathit{sec'_v} (\mathsf{while} \; e \; \mathsf{loop} \; \mathit{st}) = \\ &n \leq \top (\mathsf{sec}_{be} \; \mathit{sec'_v} \; e) \; \sqcap^g \; \mathsf{sec}_{\mathit{st}} \; \mathit{sec'_v} \; \mathit{st} \\ &\sec_{\mathit{st}} \; \mathit{sec'_v} (\mathit{st}_1 \; ; \; \mathit{st}_2) = \mathsf{sec}_{\mathit{st}} \; \mathit{sec'_v} \; \mathit{st}_1 \; \sqcap^g \; \mathsf{sec}_{\mathit{st}} \; \mathit{sec'_v} \; \mathit{st}_2 \end{split}
```

where $\top : \hat{\mathbb{N}}$ and $n \leq \top : \mathbb{N} \to \hat{\mathbb{N}}$ are introduction rules of $\hat{\mathbb{N}}$.

- Now we can build a checker upon early defined security level functions by defining a function accpet: stmt → Bool.
 - If accpet(st) = true, then st is safe.
 - If accpet(st) = false, then st is unsafe.
- The two principles of security flow analysis:
 - a variable is only data-dependent on the variables such that have lower security level i.e. $x_H = y_L$.
 - a variable is only control-dependent on the variables such that have lower security level i.e. if (z_L) {x = y}.

Safety Checker

- We define accept by pattern matching. For briefly, we use Sec for all objects.
 - if st is skip, then accept(st) = true.
 - if st is x := e, then $accept(st) = Sec(e) \le b Sec(x)$.
 - if st is if e then st_1 else st_1 ,
 - if $Sec(e) \leq Sec(st_1) \sqcap^g Sec(st_2)$, then accept(st) = true.
 - otherwise, accept(st) = false.
 - if st is while e loop st₁,
 - if $Sec(e) \leq Sec(st_1)$, then accept(st) = true.
 - otherwise, accept(st) = false.
 - if st is st_1 ; st_2 , then $accept(st) = accept(st_1) \land accept(st_2)$.
 - where \leq^b is boolean less than operator.
- The corresponding code at https://github.com/m4p1e/FoS/blob/main/Proof.agda#L224

Proof of security flow analysis

- Our goal : is that checker always output right answer ?
- The equivalent proposition is
 For any program P, accept(P) = true if and only if P is safe.
 But what does safe mean?
- Operational semantics tell us how does a program run.
- Observational semantics are the computational effects in operational semantics that are visible to a third observer.
 - memory layout
 - input and output trace
 - syscalls
 - environment
 - ...

Proof of security flow analysis

- We say two memory M_1, M_2 : var \rightarrow value are distinguishable in security level ℓ , if for any variable x such that $Sec(x) \leq I$, we have $M_1(x) = M_2(x)$.
 - Simply, written $M_1 =_{\ell} M_2$.
- If a program P satisfies following conditions
 - given two initial memory M_1 and M_2 such that $M_1 =_{\ell} M_2$;
 - there are two final memory M_1' and M_2' such that $\{M_1\}$ P $\{M_1'\}$ and $\{M_2\}$ P $\{M_1'\}$;
 - then $M_1' =_{\ell} M_2'$,

then P is safe. This property is also called no-interference.

Proof of security flow analysis

The main theorem looks like something below in Agda.

```
 \begin{array}{l} \text{Theorem}: \ \{\ell: \ \mathbb{N}\} \\ \qquad \to \ (s_1: \mathsf{state}) \to \ (s_1': \mathsf{state}) \\ \qquad \to \ (s_2: \mathsf{state}) \to \ (s_2': \mathsf{state}) \\ \qquad \to \ s_1 \ [\equiv \ell \ ] \ s_2 \\ \qquad \to \ (st: \mathsf{stmt}) \\ \qquad \to \ \mathsf{accept} \ st \ \mathsf{sec}'_{\nu} \equiv \mathsf{true} \\ \qquad \to \ \{\ s_1\ \} \ st \ \{\ s_1'\ \} \\ \qquad \to \ \{\ s_2\ \} \ st \ \{\ s_2'\ \} \\ \qquad \to \ s_1' \ [\equiv \ell \ ] \ s_2' \end{array}
```

Roadmap of Proof

- Give big-step evaluation rules for expressions. (Proof.agda#L248-L318)
- ② Give operational semantics for our language. (Proof.agda#L321-L362)
- 3 Prove some lemmas, then organize them to main theorem.
 - Lemma-1: If $Sec(st) > \ell$ and accept(st) = true, then $s =_{\ell} s'$ for any $\{s\}$ st $\{s'\}$. (Proof.agda#L676)
 - Lemma-2: If $s_1 =_{\ell} s_2$ and $\llbracket e \rrbracket$ $s_1 \neq \llbracket e \rrbracket$ s_2 , then Sec(e) > I. (Proof.agda#L525)
 - ...

Summary

- Good structures bring good readability and less-pain proving.
- Don't overly care about these details.
- If you want to know why does your proof work, Martain Löf type theory (MLTT) or Homotopy type theory (HoTT) is all you need.

Present and Future

- PL: languages for expressing mathematics
- SE: managing large codebases
- Compilers + distributed computing: speed
- Machine learning: automated proof search
- MCI: usable by working mathematicians/computer scientists
- Graphics: visualization

Thank you for listening!