FINAL Study Guide

Andrew Reed Discrete Final

$\mathrm{May}\ 7,\ 2018$

Contents

1	The	e Foundations: Logic and Proofs	2
	1.1	Propositional Logic	2
	1.2	Propositional Equivalences	į
	1.3	Predicates and Quantifiers	4
	1.4	Rules of Inference (ROI)	Į.
		Proofs	
2 Sets, Functions, Sequences, Sums, and Matrices			7
	2.1	Sets	7

1 The Foundations: Logic and Proofs

1.1 Propositional Logic

Examples of a proposition:

- p(x) = x is a cat. q(x) = x has fur.
- 1. Negation, $\neg p(x)$, changing the statement to x is not a cat
- 2. Conjunction, $p(x) \wedge q(x)$, changing the statement to say x is a cat and it has fur.
- 3. Disjunction, $p(x) \vee q(x)$, changing the statement to say x is a cat and it does not have fur
- 4. Exclusive Or, $p(x) \oplus q(x)$, where the statement is true only when exactly one of p(x) or q(x) is true, otherwise the statement is false.
- 5. <u>Conditional Statement</u>, $p(x) \to q(x)$, where the statement is read "If p, then q" the statement is false when p is true and q is false, otherwise the statement is true.
- 6. <u>Bi-Conditional Statement</u>, $p(x) \leftrightarrow q(x)$, where the statement is true if the values of p and q match. The statement is read as any of the following;
 - (a) "p if and only if q"
 - (b) "p is necessary and sufficient for q"
 - (c) "if p then q, and conversely"
 - (d) "p iff q"

Definitions

- 1. Hypothesis p is considered the hypothesis in the statement $p(x) \to q(x)$.
- 2. Conclusion q is considered the conclusion in the statement $p(x) \to q(x)$.
- 3. Bi-Implications Another way to express "Bi-Conditional statements"

1.2 Propositional Equivalences

- 1. Logically Equivalent, $p(x) \equiv q(x)$, when two statements share the same truth values then the statement is said to be logically equivalent.
- 2. Identity Laws

$$p(x) \wedge T \equiv p(x)$$

$$p(x) \vee F \equiv p(x)$$

3. Domination Laws

$$p(x)\vee T\equiv T$$

$$p(x) \wedge F \equiv F$$

4. Idempotent Laws

$$p(x) \lor p(x) \equiv p(x)$$

$$p(x) \wedge p(x) \equiv p(x)$$

5. Double Negation Law

$$\neg(\neg p(x)) \equiv p(x)$$

6. Commutative Laws

$$p(x) \lor q(x) \equiv q(x) \lor p(x)$$

$$p(x) \land q(x) \equiv q(x) \land p(x)$$

7. Associative Laws

$$(p(x) \lor q(x)) \lor r(x) \equiv p(x) \lor (q(x) \lor r(x))$$

$$(p(x) \wedge q(x)) \wedge r(x) \equiv p(x) \wedge (q(x) \wedge r(x))$$

8. Distributive Laws

$$p(x) \vee (q(x) \wedge r(x)) \equiv (p(x) \vee q(x)) \wedge (p(x) \vee r(x))$$

$$p(x) \wedge (q(x) \vee r(x)) \equiv (p(x) \wedge q(x)) \vee (p(x) \wedge r(x))$$

9. De Morgan's Laws

$$\neg \left(p(x) \land q(x) \right) \equiv \neg p(x) \lor \neg q(x)$$

$$\neg \left(p(x) \vee q(x) \right) \equiv \neg p(x) \wedge \neg q(x)$$

10. Absorption Laws

$$p(x) \vee (p(x) \wedge q(x)) \equiv p(x)$$

$$p(x) \land (p(x) \lor q(x)) \equiv p(x)$$

11. Negation Laws

$$p(x) \vee \neg p(x) \equiv T$$

$$p(x) \land \neg p(x) \equiv F$$

Definitions

- 1. <u>Tautology</u> When all cases in the statement are determined to be true, it is said to be a tautology.
- 2. <u>Contradiction</u>- When all cases in the statement are determined to be false, it is said to be a contradiction.
- 3. Contingency When the statement is neither a tautology, nor a contradiction then it is said to be a contingency.

1.3 Predicates and Quantifiers

- 1. Universal Quantification, $\forall p(x)$ read as, "For all x, p(x)."
- 2. Existential Quantification, $\exists p(x)$ read as, "There exists an element x, that p(x)."
- 3. De Morgan's Laws for Quantifiers:

$$\neg \forall p(x) \equiv \exists \neg p(x)$$

$$\neg \exists p(x) \equiv \forall \neg p(x)$$

Definitions

- 1. Quantification Used to express the extent that a predicate is true. In English, the words; all, some, many, none, and few are used in quantifications.
- 2. Counterexample When there is a value, x in which $\forall p(x)$ is false, then that value of x is called a counterexample of $\forall p(x)$.

1.4 Rules of Inference (ROI)

$$\begin{array}{ccc} \underline{\text{Hypothetical Syllogism}} & \underline{\text{Disjunctive Syllogism}} & p \to q & p \lor q \\ \underline{q \to r} & \underline{p \to q} & \underline{p \to q} & \underline{p \to q} \\ \underline{h \to q} & \underline{p \to q} & \underline{p \to q} & \underline{p \to q} \\ \underline{h \to q} & \underline{h \to q} & \underline{h \to q} & \underline{h \to q} & \underline{h \to q} \\ \underline{h \to q} & \underline{h \to q} \\ \underline{h \to q} & \underline{h \to q} \\ \underline{h \to q} & \underline{$$

$$\begin{array}{c|c} \underline{\text{Universal Generalization}} & \underline{\text{Existential Instantiation}} \\ p(c) \text{ for an arbitrary c} & \exists p(x) \\ \hline \vdots \forall p(x) & \vdots p(c) \text{ for some element c} \\ \end{array}$$

Existential Generalization
$$p(c)$$
 for some element c $\therefore \exists p(x)$

Definitions

- 1. Argument Sequence of propositions.
- 2. Premises All propositions in the argument with the exclusion of the conclusion
- 3. Conclusion The final proposition in the argument.
- 4. <u>Argument Form</u> A sequence of compound propositions involving propositional variables.
- 5. <u>Valid</u> A form that makes it impossible for the premises to be true and the conclusion nevertheless to be false.

5

1.5 Proofs

1. direct proof:

Directly prove that if n is an odd integer then n^2 is also an odd integer.

PROOF
$$(\rightarrow)$$
:

An odd number is denoted by the equation, 2k + 1

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2) + 1$$

 $2(2k^2+2)+1$, is another form of 2k+1.

Therefore, if n is an odd integer then n^2 is also an odd integer.

2. Proofs by Contradiction:

Definitions

- 1. <u>Theorem</u> A statement that can be shown to be true.
- 2. Proof A demonstration that a theorem is true.
- 3. Axioms (or postulates) Statements we assume to be true.
- 4. <u>Lemma</u> A less important theorem that is helpful in the proof of other results.
- 5. <u>Corollary</u> A theorem that can be established directly from a theorem that has been proved.
- 6. Conjecture A statement that is being proposed to be a true statement, usually on the basis of some partial evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is found, the conjecture becomes a theorem.

2 Sets, Functions, Sequences, Sums, and Matrices

2.1 Sets

A set is an unordered collection of objects, called elements or members of the set.

We write $a \in A$ to denote that a is an element of the set A.

We write $a \notin A$ denotes that a is not an element of the set A

Well known sets include;

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$, the set of natural numbers

 $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\},$ the set of integers

 $\mathbb{Z}+=\{1,2,3,\ldots\}$, the set of positive integers

 $Q = \{p/q | p \in \mathbb{Z}, \ q \in \mathbb{Z}, \ and \ q \neq 0\}$, the set of rational numbers R, the set of real numbers

 $\mathbb{R}+$, the set of positive real numbers

 \mathbb{C} , the set of complex numbers.

 Ω , the universal set

Showing that A is a Subset of B To show that $A \subseteq B$, show that if x belongs to A then x also belongs to B.

Showing that A is Not a Subset of B To show that $A \nsubseteq B$, find a single $x \in A$ such that $x \notin B$.

Showing Two Sets are Equal To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Every set (S) includes the following two sets;

$$S \subseteq S$$
 AND $\emptyset \subseteq S$

A set (S) is said to be a <u>finite set</u> when it has exactly n distinct elements and n is said to be the cardinality of S, denoted as |S|

The <u>Power Set</u> of a set (S) is the set of all subsets of S. It is denoted as $\mathcal{P}(S)$

2.2 Set Operations

- Let A and B be sets. The <u>Cartesian product</u> of A and B, denoted as $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$
- Let A and B be sets. The <u>union</u> of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.
- Let A and B be sets. The <u>intersection</u> of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

Two sets are called disjoint if their intersection is the empty set.

- Let A and B be sets. The difference (complement) of A and B, denoted by A B, is the set containing those elements that are in A but not in B.
- The <u>complement</u> of the set A, denoted by \overline{A} , is the complement of A with respect to Ω . Therefore, the complement of the set A is Ω A.

2.3 Set Identities