

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
• • • • • • • • • • • • • • • • • • • •	
КАФЕЛРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа №20 По предмету: «Функциональное и логическое программирование»

Преподаватель: Строганов Ю.В.

Студент: Гасанзаде М.А.,

Группа: ИУ7-66Б

ЗАДАНИЕ

Используя хвостовую рекурсию, разработать, <u>комментируя аргументы</u>, эффективную программу, позволяющую:

- Сформировать список из элементов числового списка, больших заданного значения;
- Сформировать список из элементов, стоящих на нечетных позициях исходного списка (нумерация от 0);
- Удалить заданный элемент из списка (один или все вхождения);
- Преобразовать список в множество (можно использовать ранее разработанные процедуры).

Убедиться в правильности результатов

Для одного из вариантов ВОПРОСА и 1-ого задания составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина — сверху! Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и соответствующий вывод: успех или нет —и почему.

ВОПРОСЫ

Как организуется хвостовая рекурсия в Prolog?

- Рекурсивный вызов единственен и расположен в конце тела правила
- Не должно быть возможности сделать откат до вычисления рекурсивного вызова

Как организовать выход из рекурсии в Prolog?

С помощью отсечения.

Какое первое состояние резольвенты?

Заданный вопрос (goal).

Каким способом можно разделить список на части, какие, требования к частям?

Получить голову или хвост списка можно при унификации списка с [H|T], H- голова списка, T- хвост списка (является списком).

Как выделить за один шаг первые два подряд идущих элемента списка? [H1|[H2|_]]

Как выделить 1-й и 3-й элемент за один шаг?

[H1|[_|[H3|_]]]

Как формируется новое состояние резольвенты?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- 1. в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- 2. к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

Когда останавливается работа системы?

Работа системы останавливается, когда найдены все возможные ответы на вопрос.

Как это определяется на формальном уровне?

Когда в резольвенте находится исходный вопрос, для которого пройдена вся БЗ.

ЛИСТИНГ

```
domains
         list = integer*.
predicates
         biggerThan(list, integer, list). % список, число, результат
         oddElements(list, list). % список, результат
         deleteElement(list, integer, list).% список, число, результат
         createSet(list, list). %исходный список, результат
clauses
         biggerThan([], _, []).
         biggerThan([H|T], Min, [H|ResTail]) :-
                  H > Min,
                  biggerThan(T, Min, ResTail), !.
         biggerThan([ |T], Min, ResTail) :-
                  biggerThan (T, Min, ResTail).
         oddElements([], []).
         oddElements([_], []).
oddElements([_|[H|T]],[H|ResTail]) :-
                  oddElements(T, ResTail).
         deleteElement([], _, []).
deleteElement([El|T], El, ResTail) :-
                  deleteElement(T, El, ResTail), !.
         deleteElement([H|T], El, [H|ResTail]) :-
                  deleteElement(T, El, ResTail).
         createSet([], []).
         createSet([H|T], [H|ResTail]) :-
                  deleteElement(T, H, TmpRes),
                  createSet(TmpRes, ResTail).
goal
         %biggerThan([1, 2, 3, 4, 2, 1], 5, Res).
         %oddElements([1, 2, 3, 4], Res).
         %oddElements([1, 2, 3], Res).
%deleteElement([1, 2, 3, 3, 1, 3, 4], 3, Res).
%createSet([1, 2, 3, 3, 1, 3, 4], Res).
%createSet([1, 1, 1], Res).
```

Эффективность достигнута за счет использования хвостовой рекурсии и использования отсечения.

ТАБЛИЦА

Текст процедуры

Bonpoc: biggerThan([1], 2, Res)

№ Ш	Текущая резольвента – ТР	ТЦ, выбираемые правила: сравниваемые термы,	Дальнейшие действия с комментариями
аг a		подстановка	1
1	biggerThan([1], 2, Res)	ТЦ: biggerThan([1], 2, Res)	Поиск знания с начала БЗ
	biggerThan([1], 2, Res)	ПР1: [] = [1] _ = 2 [] = Res Неудача	Метка переносится ниже
	biggerThan([1], 2, Res)	ПР2: [H1 T1] = [1] Min1 = 2 [H1 ResTail1] = Res Успех H1 = 1 T1 = [] Min1 = 2 Res = [1 ResTail1]	Тело ПР2 заменяет цель в резольвенте
2	1 > 2 biggerThan([], 2, ResTail1) !	Сравнение: 1 > 2 Ложь	Откат к 1. Метка переносится ниже.
3	biggerThan([1], 2, Res)	ПР3: [_ T3] = [1] Min3 = 2 ResTail3 = Res Успех T3 = [] Min3 = 2 Res = ResTail3	Тело ПРЗ заменяет цель в резольвенте
4	biggerThan([], 2, ResTail3)	ТЦ: biggerThan([], 2, ResTail3)	Поиск знания с начала БЗ
	biggerThan([], 2, ResTail3)	ПР1: [] = [] _ = 2 [] = ResTail3 Успех ResTail3 = 0	Пустое тело заменяет цель в резольвенте
	Пусто		Успех.

			Res = ResTail3 = [] Возврат к предыдущему состоянию резольвенты
5	biggerThan([], 2, ResTail3)	ПР2: [H5 T5] = [] Min5 = 2 [H5 ResTail5] = ResTail3 Неудача	Метка переносится ниже.
	biggerThan([], 2, ResTail3)	ПР3: [_ T3] = [] Min5 = 2 ResTail5 = Res Неудача	Необходимо включить откат, но метки в конце процедур – других альтернатив нет. Система завершает работу.