Relatório da Experiência de Thomson	
Turno: Grupo: Data:	
Número: Nome:	
Número: Nome:	
Número: Nome:	
 Trabalho preparatório a realizar ANTES da sessão de Laboratório: Descreva quais os objectivos do trabalho que irá realizar na sessão de laboratório. Desenhe um diagrama dos campos eléctricos, magnéticos, da velocidade dos electrões e forças aplicadas nas diferentes zonas do TRC, para a deflexão magnética e deflexão 	
magnética e eléctrica. 3. Escolha os 5 pares de coordenadas, $(y, \pm z)$, na grelha do tubo TRC que irá utilizar nos ensaios de deflexão magnética, de modo a obter os maiores valores de R possíveis. Preencha as 3 primeiras colunas da Secção 2.1.2.	
1.1 Objectivos do Trabalho	
1.1.1 Equações	
Escreva no seguinte quadro todas as equações necessárias para calcular as grandezas, bem como as suas incertezas e a lengenda de símbolos. Numere as equações para futura referência. Indique nas tabelas qual a equação que utiliza para os cálculos.	

2 Relatório

${f 2.1}$ DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA

2.1.1 Montagem Experimental

Desenhe um diagrama da experepectiva resolução e incerteza.	riência. Inclua uma	lista e legenda do	os instrumentos e

2.1.2 Medidas Experimentais e Cálculos Intermédios

Preencha as seguintes tabelas indicando apenas os algarismos significativos. Terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente. Indique as unidades de cada coluna, utilizando (sub)múltiplos mais adequados para o máximo de clareza nas tabelas.

$$U_a =$$
 _____ [] , $\delta U_a =$ ____ [], $\delta_y =$ ____ [mm], $\delta_z =$ ____ [mm]

y [cm]	$z_{+}/z_{-} [{\rm cm}]$	R[]	δR []	I_+ []	I_ []	$\overline{I} = \frac{ I_+ + I }{2} []$	$\delta I = \frac{ I_+ - I }{2} \left[\right]$	

$U_a =$	\pm	V

y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	I_+ []	I_{-} $[$ $]$	$\overline{I} = \frac{ I_+ + I }{2} []$	$\delta I = \frac{ I_+ - I }{2} []$

<i>I</i> /	 1/
II = III	

y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	I_+ []	I_ []	$\overline{I} = \frac{ I_+ + I }{2} []$	$\delta \overline{I} = \frac{ I_{+} - I_{-} }{2} []$

$\textbf{2.1.3} \quad \text{Cálculos de } q/m$

			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	\overline{I} []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
	土					
\pm	土					土
	土					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	\overline{I} []	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
±	土					
\pm	土					土
土	土					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	\overline{I} []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$q/m \ [10^{11} {\rm C/kg}]$
土	土					
土	土					土
±	土					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	\overline{I} []	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
±	土					
±	士					土
土	土					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	\overline{I} []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$q/m \ [10^{11} {\rm C/kg}]$
土	土					
\pm	土					土
\pm	土					

$\delta_{(U_a)}q/m$ []	$\delta_{(U_a)}q/m$ [%]	$\delta_{(R)}q/m$ []	$\delta_{(R)}q/m$ [%]	$\delta_{(\overline{I})}q/m~[~~]$	$\delta_{(\overline{I})}q/m$ [%]	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

9	1 1	Recultados	Finaic	Evolique	os critários a	المحالانا مييا	nara ohter	as incertezas.
4.	1.4	Resultados	rinais.	Explique	os criterios a	me munzon	bara obter	as incertezas.

$q/m_{(B)} = (\underline{\qquad} \pm \underline{\qquad}$	_) $\times 10^{11} \text{ C/kg}$
Desvio à Exactidão =	%, Incerteza relativa =%

2.2 DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA E ELÉTRICA QUASE COMPENSADAS

2.2.1 Dados Experimentais e Cálculos

Distância entre placas d =___[]

			$U_a =$		_ ±	V	
I_{max} []	$I_{min} []$	\overline{I} []	δI []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

	$U_a =$	±	V	
$egin{bmatrix} I_{max} \ [&] \ \end{bmatrix} egin{bmatrix} I_{min} \ [&] \ \end{bmatrix} ar{I}$	\overline{I} $[\hspace{.1cm}]$ δI $[\hspace{.1cm}]$	$B \begin{bmatrix} \end{bmatrix} \delta B \begin{bmatrix} \end{bmatrix}$	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

		U	a =	_ ±	_ V	
I_{max} []	I_{min} []	\overline{I} [] $\delta \overline{I}$ [] B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

2.2.2 Resultados

Desvio à Exatidão = _____%, Incerteza relativa = _____%

2.3 Trajetória não compensada

Aumente agora o campo B (sempre com $I \leq 3$ A) de forma a visualizar uma trajetória claramente não compensada. Faça um esboço da curva observada, indicando os vetores das forças em jogo (com uma estimativa do seu valor em [N]), bem como as condições experimentais. Comente a figura obtida.

2.4	Análise e comparação dos dois métodos.	Conclusões e Comentários Finais