

## ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο" (Ακαδημαϊκό Έτος 2016-17)

**Εξαμηνιαία Εργασία: Ρομποτικός Χειριστής** τριών στροφικών βαθμών ελευθερίας (Robotic Manipulator with 3 rotational DOF)

Στο Σχήμα 1 εικονίζεται η κινηματική δομή ενός ρομποτικού χειριστή τριών στροφικών βαθμών ελευθερίας  $\{q_1, q_2, q_3\}$ . Τα μήκη των συνδέσμων  $\{l_0, ..., l_5\}$  θεωρούνται γνωστά και σταθερά. Η κινηματική διάταξη αρχικοποίησης (όπου  $q_i$ =0, για κάθε i=1,2,3) είναι αυτή που εικονίζεται στο Σχήμα 1.

## Α. Θεωρητική Ανάλυση

- 1. Να προσδιορισθεί ο πίνακας παραμέτρων **Denavit-Hartenberg** του ρομποτικού βραχίονα.
- 2. Να γραφεί η κινηματική εξίσωση (ευθύ γεωμετρικό μοντέλο) του ρομπότ.
- 3. Να υπολογιστεί η **Ιακωβιανή μήτρα** για τυχαία διάταξη, και να γραφεί το ευθύ διαφορικό κινηματικό μοντέλο του ρομπότ.
- 4. Να μελετηθεί το αντίστροφο γεωμετρικό, καθώς και το αντίστροφο διαφορικό κινηματικό μοντέλο του ρομπότ, και να προσδιορισθούν πιθανές ιδιόμορφες διατάξεις του συστήματος (singular configurations).

## Β. Κινηματική Προσομοίωση

Έστω ότι, για τις ανάγκες μιας ρομποτικής εργασίας, το τελικό σημείο δράσης  $O_E$  του εργαλείου του ρομποτικού βραχίονα καλείται να εκτελέσει ευθύγραμμη κίνηση, ξεκινώντας από δεδομένο σημείο  $A(x_a,y_a,z_a)$  και τερματίζοντας σε δεδομένο σημείο  $B(x_B,y_B,z_B)$ .

- 5. Θεωρούμε ότι τη χρονική στιγμή t=0 το τελικό σημείο δράσης του ρομπότ βρίσκεται ήδη στη δεδομένη αρχική θέση Α και ότι η επιθυμητή τροχιά του τελικού στοιχείου δράσης πρέπει να διαγραφεί συνολικά εντός 10 secs. Επιθυμητή, επίσης, είναι η ομαλότητα της τροχιάς (χρονική συνέχεια και ως προς την ταχύτητα).
  - Να σχεδιαστεί **επιθυμητή τροχιά** στο χώρο εργασίας και να εκτελεστεί **κινηματική προσομοίωση** του ρομποτικού χειριστή.
  - Να δοθούν οι γραφικές παραστάσεις στο χρόνο (plots) των ακολούθων μεγεθών, που επιτυγχάνουν την εκτέλεση της επιθυμητής ρομποτικής εργασίας:
  - (α) Το επιθυμητό προφίλ κίνησης του τελικού εργαλείου δράσης, δηλαδή: (1) η επιθυμητή θέση του άκρου  $(p_{\rm Ex},\,p_{\rm Ey},\,p_{\rm Ez})$  του ρομπότ σε κάθε χρονική στιγμή t, και (2) η γραμμική ταχύτητα του εργαλείου δράσης.
  - (β) Οι γωνίες στροφής  $\{q_1,\ldots,q_3\}$  και οι γωνιακές ταχύτητες  $\{\dot{q}_1,\ldots,\dot{q}_3\}$  των αρθρώσεων, σε κάθε χρονική στιγμή t, κατά την εκτέλεση της εργασίας.
  - (γ) Ένα, τουλάχιστον, διάγραμμα κίνησης που θα εικονίζει μια χρονική ακολουθία ενδιάμεσων διατάξεων της ρομποτικής κινηματικής αλυσίδας κατά την εκτέλεση της εργασίας (από το animation της κίνησης).

Παρατήρηση: Για την κινηματική προσομοίωση μπορεί να υποτεθεί ότι:  $z_A=z_B$ ,  $x_A=x_B$ , και  $l_3=0$ . Οι υπόλοιπες διαστάσεις, μήκη συνδέσμων και λοιπά γεωμετρικά στοιχεία του ρομποτικού βραχίονα και της επιθυμητής ρομποτικής εργασίας (συντεταγμένες των σημείων A και B εντός του χώρου εργασίας -workspace), θεωρούνται δεδομένα και μπορεί να είναι της επιλογής σας για τις ανάγκες της κινηματικής προσομοίωσης.

Σημείωση: Είναι επιθυμητό οι συντεταγμένες των σημείων Α και Β (εντός του χώρου εργασίας) να μπορεί να εισάγονται ως παράμετροι της ρομποτικής εργασίας κατά την εκτέλεση του προγράμματος προσομοίωσης.

Να παραδοθούν: (α) γραπτή αναφορά (report), και (β) τα απαραίτητα αρχεία προγραμμάτων των προσομοιώσεων σε ηλεκτρονική μορφή ("m-files", εαν οι προσομοιώσεις γίνουν με χρήση Matlab).

(Οι εργασίες παραδίδονται ηλεκτρονικά μέσω της ιστοσελίδας του μαθήματος στο  $\frac{\text{http://mycourses.ntua.gr}}{\text{http://mycourses.ntua.gr}}$ 



Σχήμα 1: Κινηματική δομή ρομποτικού χειριστή 3 στροφικών β.ε.