

Métodos Matemáticos para la Física I (LFIS 222)

Licenciatura en Física

Profesor: Graeme Candlish Semestre II 2023

Tarea 2

1. Encuentre un dominio en el plano z cuyo imagen bajo la transformación $w=z^2$ es el dominio cuadrado en el plano w acotado por las líneas $u=1,\ u=2,\ v=1$ y v=2. La figura 1 abajo muestra la idea.

Solución: Sabemos que las hipérbolas se transforman en líneas rectas bajo la transformación $w=z^2$, así que necesitamos definir las hipérbolas apropiadas. Para los bordes B'C' y A'D' usamos

$$u = x^2 - y^2 \quad v = 2xy \tag{1}$$

con u=1 y u=2 respectivamente. Para estas hipérbolas tenemos $1 \le v \le 2$. Para los bordes B'A' y C'D' usamos las mismas ecuaciones pero con v=1 y v=2. En este caso $1 \le u \le 2$. La región delimitada por esta hipérbolas corresponde al cuadrado especificado bajo el mapeo $w=z^2$.

2. Utilice el teorema en la sección 17 del libro para mostrar que

(a)

$$\lim_{z \to \infty} \frac{4z^2}{(z-1)^2} = 4 \tag{2}$$

(b)

$$\lim_{z \to 1} \frac{1}{(z-1)^3} = \infty \tag{3}$$

(c)

$$\lim_{z \to \infty} \frac{z^2 + 1}{z - 1} = \infty \tag{4}$$

Solución:

(a) Para obtener este límite, usamos el teorema para escribir

$$\lim_{z \to 0} \frac{4(\frac{1}{z})^2}{(\frac{1}{z} - 1)^2} = \lim_{z \to 0} \frac{4}{1 - 2z + z^2} = 4 \tag{5}$$

(b)
$$\lim_{z \to 1} (z - 1)^3 = 0 \quad \Rightarrow \quad \lim_{z \to 1} \frac{1}{(z - 1)^3} = \infty \tag{6}$$

Figure 1: Mapeo a un cuadrado.

(c)
$$\lim_{z \to 0} \frac{\frac{1}{z} - 1}{\left(\frac{1}{z}\right)^2 + 1} = \lim_{z \to 0} z \frac{1 - z}{1 + z^2} = 0 \tag{7}$$

3. Encuentre f'(z) para las siguientes funciones:

(a)
$$f(z) = 3z^2 - 2z + 4$$

(b)
$$f(z) = (2z^2 + i)^5$$

(c)
$$f(z) = \frac{z-1}{2z+1}$$
 $(z \neq -\frac{1}{2})$

(d)
$$f(z) = \frac{(1+z^2)^4}{z^2}$$
 $(z \neq 0)$

Solución:

- (a) Usamos la regla para derivar polinomios y el hecho de que la derivada de una constante es cero: f'(z) = 6z 2.
- (b) Aquí podemos usar la regla de cadena: $f'(z) = 20z(2z^2 + i)^4$.
- (c) Tenemos una regla para derivar cocientes: $f'(z) = \frac{[2z+1-2(z-1)]}{(2z+1)^2} = \frac{3}{(2z+1)^2}$.
- (d) En este caso podemos combinar la regla para cocientes con la regla de cadena: $f'(z) = [z^24(1+z^2)^32z (1+z^2)^42z]/z^4 = [8z^3 2z(1+z^2)](1+z^2)^3/z^4 = 2(3z^2-1)(1+z^2)^3/z^3$.

4. Utilice el teorema en sección 21 del libro para mostrar que f'(z) no existe en ningún punto si

- (a) $f(z) = \bar{z}$
- (b) $f(z) = z \bar{z}$
- (c) $f(z) = 2x + ixy^2$
- (d) $f(z) = e^x e^{-iy}$

Solución: El teorema dice que si la derivada existe en un punto, las derivadas de primer orden de las funciones componentes existen existen en ese punto y satisfacen las ecuaciones de Cauchy-Riemann.

(a) $f(z) = \bar{z} = x - iy$. u = x así que $u_x = 1$, $u_y = 0$. v = -y así que $v_y = -1$ y $v_x = 0$. Las ecuaciones de CR son $u_x = v_y$, $u_y = -v_x$. Podemos que la primera ecuación en este caso nunca se cumple, así que la derivada de esta función no existe en ningún punto.

- (b) $f(z) = z \bar{z} = x + iy x iy = i2y$. Entonces $u_x = 0$, $u_y = 0$, $v_x = 0$, $v_y = 2$. Las ecuaciones de CR nunca se cumplen.
- (c) $f(z) = 2x + ixy^2$. $u_x = 2$, $u_y = 0$, $v_x = y^2$, $v_y = 2xy$. Las ecuaciones de CR son 2 = 2xy, $0 = -y^2$. Así que el único punto donde la segunda ecuación se cumple es y = 0, pero la primera en ese punto no se cumpla, así que la derivada no existe en ningún punto.
- (d) $f(z) = e^x e^{-iy}$. En este caso podemos usar la ecuación de Euler: $f(z) = e^x (\sin y i \cos y)$. Por lo tanto $u = e^x \sin y$, $v = -e^x \cos y$. $u_x = u$, $v_x = v$, $u_y = v$, $v_y = -u$. Las ecuaciones de CR son u = -u y v = -v. Se puede satisfacer estas ecuaciones solamente en los ceros de las funciones u, v. La exponencial $e^x \neq 0$, y las ceros de las funciones $\sin y$ y $\cos y$ no coinciden. Así que la derivada no existe en ningún punto.
- 5. Utilice el teorema en sección 23 para verificar que cada una de estas funciones es completa:
 - (a) f(z) = 3x + y + i(3y x)
 - (b) $f(z) = \cosh x \cos y + i \sinh x \sin y$
 - (c) $f(z) = e^{-y}\sin x ie^{-y}\cos x$
 - (d) $f(z) = (z^2 2)e^{-x}e^{-iy}$

Solución: La manera de encontrar la solución sigue la lógica de la pregunta anterior, pero ahora tenemos que las derivadas tienen que existir y satisfacer las ecuaciones CR en todo el plano complejo, y hay otra condición: las derivadas parciales deben ser **continuas** en todo el plano complejo.

- (a) f(z) = 3x + y + i(3y x), u = 3x + y, v = 3y x. $u_x = 3$, $u_y = 1$, $v_x = -1$, $v_y = 3$. Las derivadas existen y son continuas en todo el plano complejo (son constantes) y satisfacen las ecuaciones de CR. \Rightarrow la función es analítica en todo \mathbb{C} (es entera/completa).
- (b) $f(z) = \cosh x \cos y + i \sinh x \sin y$, $u = \cosh x \cos y$, $v = \sinh x \sin y$. $u_x = \sinh x \cos y$, $u_y = -\cosh x \sin y$, $v_x = \cosh x \sin y$, $v_y = \sinh x \cos y$. Así que tenemos $u_x = v_y$, $u_y = -v_x$: las ecuaciones de CR se cumplen en todos puntos. Las derivadas también son continuas en todos puntos, así que esta función es completa.
- (c) $f(z) = e^{-y} \sin x i e^{-y} \cos x$, $u = e^{-y} \sin x$, $v = -e^{-y} \cos x$. $u_x = e^{-y} \cos x$, $u_y = -e^{-y} \sin x$, $v_x = e^{-y} \sin x$, $v_y = e^{-y} \cos x$. Entonces $u_x = v_y$, $u_y = -v_x$ en todos puntos. Las derivadas también son continuas.

(d)

$$f(z) = (z^{2} - 2)e^{-x}e^{-iy}$$

$$= (x^{2} - y^{2} - 2 + i2xy)e^{-x}e^{-iy}$$

$$= (x^{2} - y^{2} - 2 + i2xy)e^{-x}(\cos y - i\sin y)$$

$$= (x^{2} - y^{2} - 2)e^{-x}\cos y + 2xye^{-x}\sin y$$

$$+ i\left[2xye^{-x}\cos y - (x^{2} - y^{2} - 2)e^{-x}\sin y\right]$$
(8)

Por lo tanto

$$u(x,y) = (x^2 - y^2 - 2)e^{-x}\cos y + 2xye^{-x}\sin y$$

$$v(x,y) = -(x^2 - y^2 - 2)e^{-x}\sin y + 2xye^{-x}\cos y$$
(9)

Calculando las derivadas se puede verificar que $u_x = v_y$, $u_y = -v_x$. Las derivadas además son continuas en todos puntos.

6. Sea f una función analítica en todo el dominio D. Demuestre que si f(z) toma solamente valores reales para todo z en D, entonces f(z) debe ser constante en D.

Solución: Escribimos f(z) = u(x,y) + iv(x,y). Ya que por suposición f es analítica, podemos escribir $f'(z) = u_x + iv_x$. Si la función toma solamente valores reales tenemos v = 0, y por lo tanto $v_x = v_y = 0$. Para una función analítica las ecuaciones CR aplican en todos puntos, así que $u_x = v_y = 0$ y concluimos que la función es constante.

7. Dibuje las curvas de nivel de las funciones componentes u v cuando

$$f(z) = \frac{z-1}{z+1}$$

Soluci'on: Podemos identificar las funciones u, v en la siguiente manera:

$$f(z) = \frac{z-1}{z+1} = \frac{(z-1)(\bar{z}+1)}{|z+1|^2} = \frac{|z|^2 + z - \bar{z} - 1}{|z+1|^2}$$

$$= \frac{x^2 + y^2 - 1}{x^2 + y^2 + 2x + 1} + i\frac{2y}{x^2 + y^2 + 2x + 1}$$
(10)

por lo tanto

$$u = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 2x + 1} \quad v = \frac{2y}{x^2 + y^2 + 2x + 1}.$$
 (11)

Las curvas de nivel de estas funciones corresponden a los valores de x, y donde u, v son constantes. Así que tenemos que resolver las siguientes ecuaciones:

$$\frac{x^2 + y^2 - 1}{x^2 + y^2 + 2x + 1} = c_1 \quad \frac{2y}{x^2 + y^2 + 2x + 1} = c_2. \tag{12}$$

i) Para comenzar, trabajamos en la primera:

$$x^{2} + y^{2} - 1 = c_{1}(x^{2} + y^{2} + 2x + 1)$$

$$\Rightarrow x^{2} + y^{2} - \frac{2c_{1}}{1 - c_{1}}x = \frac{1 + c_{1}}{1 - c_{1}}$$
(13)

Aplicamos una traslación de las coordenadas para identificar que esta es la ecuación de un círculo:

$$x \to x' - x_0 \quad \Rightarrow \quad (x' - x_0)^2 + y^2 - \frac{2c_1}{1 - c_1}(x' - x_0) = \frac{1 + c_1}{1 - c_1}$$

$$\Rightarrow \quad (x')^2 - 2x'x_0 + x_0^2 + y^2 - \frac{2c_1}{1 - c_1}x' + \frac{2c_1}{1 - c_1}x_0 = \frac{1 + c_1}{1 - c_1}$$
(14)

Podemos eliminar los términos lineales en x' con $x_0 = -c/(1-c)$ para llegar a

$$x^2 + y^2 = \frac{1}{(1 - c_1)^2} \tag{15}$$

donde hemos escrito x en vez de x'. Reconocemos esta ecuación como la de un círculo con radio $1/|1-c_1|$. Entonces, las curvas de nivel de la función u, dadas por $u(x,y)=c_1$, corresponden generalmente a círculos centrados en $x_0=-c_1/(1-c_1)$ con radio $1/|1-c_1|$.

• Voviendo a la expresión original para u(x, y), podemos ver que x = 1 con y indeterminado cuando $c_1 = 1$. Entonces, $c_1 = 1$ corresponde a una línea vertical en x = 1.

- Con $c_1 = 0$, el círculo está centrado en el origen, con radio 1.
- Para $0 < c_1 < 1$, el centro está en el rango $-\infty < x_0 < 0$ y el radio es $1 < R < \infty$.
- Para $c_1 > 1$ y $c_1 < 0$, $x_0 > 0$ y R < 1. En el límite $c_1 \to \pm \infty$, $x_0 \to 1$, $R \to 0$.
- ii) La segunda ecuación es

$$\frac{2y}{x^2 + y^2 + 2x + 1} = c_2 \tag{16}$$

Aplicamos la misma idea de nuevo, aplicando una traslación en x, y, escribiendo $x \to x' - x_0$ y $y \to y' - y_0$ y así cancelando términos lineales en x' y y' para obtener

$$(x')^2 + (y')^2 = \frac{1}{c_2^2} \tag{17}$$

con $x_0 = 1$ y $y_0 = 1/c_2$. Entonces las curvas de nivel de la función v son también círculos con radio $1/|c_2|$, y centros a lo largo de la línea vertical x = 1.

- Para $c_2 = 0$, volvemos a la expresión original de v para encontrar y = 0. Entonces, este es simplemente el eje real.
- Para $c_2 < 0$, $y_0 < 0$, y el radio es $1/|c_2|$. En el límite $c_2 \to -\infty$, $y_0 \to 0$ y $R \to 0$. En el límite $c_2 \to 0+$, $y_0 \to +\infty$, $R \to \infty$.
- Para $c_2>0,\ y_0>0$. En el límite $c_2\to\infty,\ y_0\to0$ y $R\to0$. En el límite $c_2\to0-,\ y_0\to-\infty,\ R\to\infty$
- 8. A partir de la función

$$f_1(z) = \sqrt{r}e^{i\theta/2}$$
 $(r > 0, 0 < \theta < \pi)$ (18)

y considerando ejemplo 2 (sección 24), indique porque

$$f_2(z) = \sqrt{r}e^{i\theta/2}$$
 $\left(r > 0, \frac{\pi}{2} < \theta < 2\pi\right)$ (19)

es una continuación analítica de f_1 a través del eje real negativo hacia el plano medio inferior. Después, muestre que la función

$$f_3(z) = \sqrt{r}e^{i\theta/2} \qquad \left(r > 0, \pi < \theta < \frac{5\pi}{2}\right) \tag{20}$$

es una continuación analítica de f_2 a través del eje real positivo hacia el primer cuadrante, pero que $f_3(z) = -f_1(z)$ en esa región.

Solución: La intersección del dominio de f_1 con el de f_2 es el dominio $(\frac{\pi}{2} < \theta < \pi)$. Los valores de las funciones coinciden en ese dominio, y son funciones analíticas, así que f_2 debe ser la continuación analítica de f_1 . En la caso de f_3 , la intersección de su dominio con el de f_2 es el dominio $(\pi < \theta < 2\pi)$ (el plano medio inferior). En ese dominio las funciones f_2 y f_3 coinciden y son analíticas, así que f_3 es la continuación analítica de f_2 . La región $(0 < \theta < \frac{\pi}{2})$ (el primer cuadrante) es dentro del dominio de f_1 , y corresponde a la parte del dominio f_3 cuando $(2\pi < \theta' < \frac{5\pi}{2})$. Escribiendo $\theta' = \theta + 2\pi$, tenemos

$$f_3(z) = \sqrt{r}e^{i\theta'/2} = \sqrt{r}e^{i\theta/2}e^{i2\pi/2} = \sqrt{r}e^{i\theta/2}e^{i\pi} = -\sqrt{r}e^{i\theta/2} = -f_1(z)$$
 (21)