Frühjahr 23 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Auf der Menge

$$\Omega := \{(x, y, z) \in \mathbb{R}^3 \mid 3x^2 + 4y^2 \le z\}$$

sei $f: \Omega \to \mathbb{R}$ definiert durch

$$f(x,y,z) = \frac{1 + 4x^2 + 3y^2}{1 + z^2}.$$

a) Für jedes $\zeta > 0$ bezeichnet $f|_{\Omega_{\zeta}}$ die Einschränkung von f auf die Menge $\Omega_{\zeta} := \{(x,y,z) \in \Omega \mid z=\zeta\}$. Zeigen Sie, dass $f|_{\Omega_{\zeta}}$ ein globales Maximum und ein globales Minimum besitzt und deren Werte gegeben sind durch

$$\frac{1+\frac{4}{3}\zeta}{1+\zeta^2}$$
 beziehungsweise $\frac{1}{1+\zeta^2}$.

b) Entscheiden Sie jeweils mit Begründung, ob f ein globales Maximum beziehungsweise ein globales Minimum besitzt, und bestimmen Sie gegebenenfalls dessen Wert.

Lösungsvorschlag:

a) Die Funktion f ist als Verknüpfung stetiger Funktionen selbst eine stetige Funktion, weil der Nenner nirgends verschwindet. Für jedes $\zeta>0$ ist Ω_{ζ} beschränkt, denn für alle $(x,y,z)\in\Omega_{\zeta}$ gilt $|(x,y,z)|^2\leq (3x^2+4y^2+z^2)\leq z+z^2=\zeta+\zeta^2,$ also $|(x,y,z)|\leq \sqrt{\zeta+\zeta^2}.$ (Hier bezeichnet $|\cdot|$ die euklidische Norm auf dem $\mathbb{R}^3.$) Außerdem sind die Mengen abgeschlossen, ist nämlich $(x_n,y_n,z_n)_{n\in\mathbb{N}}\subset\Omega_{\zeta}$ eine konvergente Folge mit Grenzwert $(x,y,z)\in\mathbb{R}^3,$ so folgt $z=\lim_{n\to\infty}z_n=\lim_{n\to\infty}\zeta=\zeta$ und $3x^2+4y^2=\lim_{n\to\infty}3x_n^2+4y_n^2\leq\lim_{n\to\infty}z_n=z,$ also $(x,y,z)\in\Omega_{\zeta}.$ Damit ist für jedes $\zeta>0$ die Menge $\Omega_{\zeta}\subset\mathbb{R}^3$ abgeschlossen und beschränkt und daher kompakt nach dem mehrdimensionalen Satz von Bolzano-Weierstraß. Damit besitzt nach dem Satz von Minimum und Maximum die Funktion $f|_{\Omega_{\zeta}}$ ein globales Minimum und ein globales Maximum, weil diese Mengen niemals leer sind, denn für jedes $\zeta>0$ ist $(0,0,\zeta)\in\Omega_{\zeta}.$ Wegen

$$f(x, y, z) = \frac{1 + 4x^2 + 3y^2}{1 + z^2} = \frac{1 + 4x^2 + 3y^2}{1 + \zeta^2} \ge \frac{1}{1 + \zeta^2} = f(0, 0, \zeta)$$

und $(0,0,\zeta)\in\Omega_\zeta$ ist das Minimum durch $\frac{1}{1+\zeta^2}$ gegeben. Für das Maximum halten wir zunächst fest, dass für $(x,y,z)\in\Omega_\zeta$ die Ungleichung $x^2=\frac{1}{3}3x^2\leq\frac{1}{3}(3x^2+4y^2)\leq\frac{1}{3}z=\frac{1}{3}\zeta$ gilt, also auch

$$f(x,y,z) = \frac{1+4x^2+3y^2}{1+z^2} \le \frac{1+3x^2+4y^2+x^2}{1+\zeta^2} \le \frac{1+\zeta+\frac{1}{3}\zeta}{\zeta^2} = \frac{1+\frac{4}{3}\zeta}{1+\zeta^2} = f\left(\frac{\sqrt{\zeta}}{\sqrt{3}},0,\zeta\right).$$

Wegen
$$3\left(\frac{\sqrt{\zeta}}{\sqrt{3}}\right)^2 + 4 \cdot 0^2 = \zeta \le \zeta$$
, ist $\left(\frac{\sqrt{\zeta}}{\sqrt{3}}, 0, \zeta\right) \in \Omega_{\zeta}$ und $\frac{1 + \frac{4}{3}\zeta}{1 + \zeta^2}$ ist das Maximum.

- b) Wir bezeichnen die in a) bestimmten Extremalstellen mit $m_{\zeta} := (0,0,\zeta)$ und $M_{\zeta} := \left(\frac{\sqrt{\zeta}}{\sqrt{3}},0,\zeta\right)$, und die zugehörigen Werte mit $w_{\zeta} := \frac{1}{1+\zeta^2}$ und $W_{\zeta} := \frac{1+\frac{4}{3}\zeta}{1+\zeta^2}$. Für $\zeta \to \infty$ konvergiert $f(m_{\zeta}) = w_{\zeta}$ gegen 0, also ist inf $f(\Omega) \le 0$. Weil f(x,y,z) für alle $(x,y,z) \in \Omega$ strikt positiv ist, gilt inf $f(\Omega) = 0$ und die Funktion besitzt kein globales Minimum.
 - Wir betrachten jetzt die Funktion $h:(0,\infty)\to\mathbb{R},\ h(t):=W_t$ und untersuchen das Extremwertverhalten von h. Die Funktion ist stetig differenzierbar und erfüllt
 - $\lim_{t\to 0}h(t)=1 \text{ und } \lim_{t\to \infty}=0. \text{ Außerdem ist } h'(t)=\frac{\frac{4}{3}(1+t^2)-2t(1+\frac{4}{3}t)}{(1+t^2)^2}, \text{ was genau dann verschwindet, wenn } 2(1+t^2)=t(3+4t) \text{ gilt, also wenn } 0=2t^2+3t-2$ erfüllt ist. Die einzige positive Nullstelle diesen Polynoms ist $t_0=\frac{1}{2}$ mit $h(\frac{1}{2})=\frac{1}{2}$
 - $\frac{\frac{5}{3}}{\frac{5}{4}} = \frac{4}{3}$. Dieser Wert ist höher als die Grenzwerte am Rand und die Ableitung
 - hat nur eine einzige Nullstelle, daher muss dieser Wert ein globales Maximum sein (Kurvendiskussion: die Ableitung wechselt auf $(0, \frac{1}{2})$ und $(\frac{1}{2}, \infty)$ ihr Vorzeichen nicht, auf dem ersten Intervall muss das Vorzeichen positiv sein, weil f dort wachsen muss $(\lim_{t\to 0}h(t)=1>h(\frac{1}{2}))$ und analog muss f auf dem zweiten Intervall fallen). Für alle $(x,y,z)\in\Omega\backslash\{(0,0,0)\}$ gilt nun $f(x,y,z)\leq W_z=h(z)\leq h(\frac{1}{2})=f(M_{\frac{1}{2}})$ und $M_{\frac{1}{2}}=\left(\frac{1}{\sqrt{6}},0,\frac{1}{2}\right)$ ist die globale Maximalstelle von f mit globalem Maximalwert $f(M_{\frac{1}{2}})=W_{\frac{1}{2}}=h(\frac{1}{2})=\frac{4}{3}>1=f(0,0,0).$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$