שאלה 3 מתוך בוחן אמצע סמסטר א' בדידה 2021

נגדיר פונקציה:

$$F = \lambda f \in \mathbb{N} \to P(\mathbb{Z}).\lambda z \in \mathbb{Z}.\{n \in \mathbb{N} | z \in f(n)\}\$$

- א. מצאו תחום וטווח עבור הפונקציה (אין צורך להוכיח). (7 נק׳)
 - ב. חשבו את הביטויים הבאים (אין צורך להוכיח):

(8)
$$F(\lambda n \in \mathbb{N}.\{-n,n\})(-4)$$
 $F(\lambda n \in \mathbb{N}.\{n \bmod 2\})(1)$

(נקי) על? האם F אם אם F אח"ע? האם F על? הוכיחו תשובתכם.

פתרונות:

א.

$$dom(F) = \mathbb{N} \to P(\mathbb{Z})$$

 $Range(F) = \mathbb{Z} \to P(\mathbb{N})$

د.

$$F(\lambda n \in \mathbb{N}. \{-n, n\}) (-4) = \{n \in \mathbb{N} : -4 \in \{-n, n\}\} = \{4\}$$
$$F(\lambda n \in \mathbb{N}. \{n \mod 2\}) (1) = \{n \in \mathbb{N} : 1 \in \{n \mod 2\}\} = \mathbb{N}_{\text{odd}}$$

١.

 $F(f_1)
eq F(f_2)$ עני איברים שונים בתחום של $F(f_1)
eq F(f_2)$ עדי איברים די $F(f_1)
eq F(f_2)$ עדי איברים די $F(f_1)
eq F(f_2)$ עדי אונים די $F(f_1)
eq F(f_2)$ עדי אונים די בעלות אותו בעלות אותו תחום $F(f_2)
eq F(f_2)$ בי עדי אונים די בעלות אותו בעלות אותו תחום $F(f_2)
eq F(f_2)$ בי בי להוכיח שקיים $F(f_2)
eq F(f_2)$ נשים לב שלכל $F(f_2)
eq F(f_2)$ בי הפונקציה $F(f_2)
eq F(f_2)$ בי בעלות בעל

$$F\left(f\right):\mathbb{Z}\rightarrow P\left(\mathbb{N}\right)$$

$$\forall z\in\mathbb{Z}\ F\left(f\right)\left(z\right)=\left\{ n\in\mathbb{N}:z\in f\left(n\right)\right\}$$

 $\{n\in\mathbb{N}:z\in f_1\left(n
ight)\}
eq \{n\in\mathbb{N}:z\in f_2\left(n
ight)\}$, צריך להוכיח, $F\left(f_1\right)(z)
eq F\left(f_2\right)(z)$ ש־ $\{n\in\mathbb{N}:z\in f_1\left(n_0\right),f_2\left(n_0\right)\}$ בעלות אותו תחום $\{n\in\mathbb{N}:z\in\mathbb{N}\}$, אז קיים $\{n\in\mathbb{N}:z\in\mathbb{N}\}$ הם שונים. מאחר ש־ $\{n\in\mathbb{N}:z\in\mathbb{N}\}$ הם קבוצות (שייכים ל־ $\{n\in\mathbb{N}:z\in\mathbb{N}\}$), המשמעות היא שקיים באחת מהן איבר שלא קיים בקבוצה השנייה. בלי הגבלת מכלליות, נוכל לסמן $\{n\in\mathbb{N}:z\in\mathbb{N}:z\in\mathbb{N}\}$, המשמעות היא שקיים באחת מהן איבר שלא קיים בקבוצה השנייה. בלי הגבלת מכלליות, נוכל לסמן $\{n\in\mathbb{N}:z\in\mathbb{N}:z\in\mathbb{N}\}$, אז מתקיים

$$n_0 \in \{n \in \mathbb{N} : z_1 \in f_1(n)\} = F(f_1)(z_1)$$

 $n_0 \notin \{n \in \mathbb{N} : z_1 \in f_2(n)\} = F(f_2)(z_1)$

כלומר מצאנו שקיים איבר בקבוצה $F\left(f_{1}\right)\left(z_{1}\right)$ שלא שייך לקבוצה $F\left(f_{2}\right)\left(z_{1}\right)$ ולכן וסך הכל נקבל $F\left(f_{1}\right)\left(z_{1}\right)$ שלא שייך לקבוצה $F\left(f_{1}\right)\left(z_{1}\right)$ וסך הכל נקבל בקבוצה $F\left(f_{1}\right)$ כרצוי.

F(f)=gער בתחום של $f\in\mathbb{N} o P(\mathbb{Z})$ קיים (F איבר בטווח של $g\in\mathbb{Z} o P(\mathbb{N})$ כך שי $g\in\mathbb{Z} o P(\mathbb{N})$ כך שי $g:\mathbb{Z} o P(\mathbb{N})$ תת קבוצה של טבעיים. $g:\mathbb{Z} o P(\mathbb{N})$ מתקיים $g:\mathbb{Z} o P(\mathbb{N})$, כלומר שי $g:\mathbb{Z} o P(\mathbb{N})$ כלומר שיתקיים $g:\mathbb{Z} o P(\mathbb{N})$ כלומר שי $g:\mathbb{Z} o P(\mathbb{N})$ כלומר שי $g:\mathbb{Z} o P(\mathbb{N})$ כלומר שי $g:\mathbb{Z} o P(\mathbb{N})$

$$\forall z \in \mathbb{Z}. \ \{n \in \mathbb{N} | z \in f(n)\} = g(z)$$

נשים לב כי $q(z) \subset \mathbb{N}$ ולכן ניתן לרשום אותה כך: $n \in \mathbb{N}$ ו $n \in \mathbb{N}$ נשים לב כי $n \in \mathbb{N}$ ולכן ניתן לרשום אותה כך:

$$\forall z \in \mathbb{Z}. \{n \in \mathbb{N} | z \in f(n)\} = \{n \in \mathbb{N} | n \in g(z)\}$$

 $z\in g\left(z
ight)$ אם ורק אם $z\in f\left(n
ight)$ נרצה שיתקיים: $z\in\mathbb{Z}$ אם ורק אם

לכן נגדיר את f באופן הבא:

$$f = \lambda n \in \mathbb{N}. \{z \in \mathbb{Z} | n \in g(z)\}$$

אז אכן פונקציה ב־ $\mathbb{N} o P\left(\mathbb{Z}
ight)$, ומתקיים

$$F(f) = \lambda z \in \mathbb{Z}. \{n \in \mathbb{N} : z \in f(n)\}$$

$$= \lambda z \in \mathbb{Z}. \{n \in \mathbb{N} : z \in \{z' \in \mathbb{Z} : n \in g(z')\}\}$$

$$= \lambda z \in \mathbb{Z}. \{n \in \mathbb{N} : n \in g(z)\}$$

$$= \lambda z \in \mathbb{Z}. g(z) \cap \mathbb{N}$$

$$= \lambda z \in \mathbb{Z}. g(z)$$

$$= g$$

וסיימנו.

שאלה 3 מתוך בוחן אמצע סמסטר א' בדידה 2020

נגדיר פונקציה:

$$F = \lambda X \in P(\mathbb{R}). \lambda f \in \mathbb{R} \to \mathbb{R}. f[f^{-1}[X]]$$

א. מצאו תחום וטווח עבור הפונקציה. (7 נק׳)

ב. מצאו אם אפשר שני איברים שונים בקבוצות הבאות:

$$F(\mathbb{R})(\lambda x \in \mathbb{R}. x^2 + 1)$$
, $F(\{0, 1\})(\lambda x \in \mathbb{R}. x^2 + 1)$

במידה ולא ניתן למצוא כאלו, הוכיחו זאת. במידה ויש, רשמו באופן פורמלי. (13 נק׳)

 (70°) על? הוכיחו תשובתכם. (15 $^\circ$ נקי) ג. קבעו האם $^\circ$ חח״ע? האם

פתרונות:

۸.

$$dom(F) = P(\mathbb{R})$$

 $Range(F) = (\mathbb{R} \to \mathbb{R}) \to P(\mathbb{R})$

ב. ביטוי ראשון: מתקיים

$$F(\mathbb{R})\left(\lambda x \in \mathbb{R}.x^2 + 1\right) = Im\left(\lambda x \in \mathbb{R}.x^2 + 1\right) = [1, \infty)$$

1,2 בקבוצה: שונים בקבוצה: $\{x\in\mathbb{R}:x\geq 1\}$ או הקבוצה (באשר $[1,\infty)$

<u>ביטוי שני:</u>

$$F\left(\left\{0,1\right\}\right)\left(\lambda x \in \mathbb{R}.x^2 + 1\right)$$

לא ניתן למצוא שני איברים שונים בקבוצה. נוכיח זאת: לא ניתן למצוא שני איברים הרים $f=\lambda x\in\mathbb{R}.x^2+1$ נסמן

$$F(\{0,1\}) (\lambda x \in \mathbb{R}.x^2 + 1) = f[f^{-1}[\{0,1\}]]$$

 $x\in\mathbb{R}$ מתקיים $f(x)\geq 1$. בפרט, ל־0 אין מקור בפונקציה $x\in\mathbb{R}$, ולכן לכל $x^2\geq 0$ מתקיים $x\in\mathbb{R}$ מתקיים לכל $x\in\mathbb{R}$. בפרט, ל־0 אין מקור בפונקציה $x^2\geq 0$ מתקיים $x\in\mathbb{R}$ מחפש מקור ל־1:

$$f(x) = 1 \iff x^2 + 1 = 1 \iff x^2 = 0 \iff x = 0$$

 $.f^{-1}\left[\{0,1\}
ight]=\{0\}$ לכן $.f^{-1}\left[\{0,1\}
ight]=\{0\}$ הוא מקור יחיד ל־1, וסה"כ

$$f[f^{-1}[\{0,1\}]] = f[\{0\}] = \{f(0)\} = \{1\}$$

כלומר קיים איבר יחיד בקבוצה הנתונה.

. 1

 $.F\left(X_{1}
ight)
eq F\left(X_{2}
ight)$ שונות, נוכיח $X_{1},X_{2}\in P\left(\mathbb{R}
ight)$ יהיו יהיו F

 $r\in X_1,\,r\notin X_2$ נובע שקיים איבר באחת מהן שלא קיים בשנייה. בלי הגבלת הכלליות נניח $X_1\neq X_2$ מכך ש $X_1\neq X_2$ נובע שקיים איבר באחת מהן שלא קיים בשנייה. בלי הגבלת הכלליות נניח $X_1\neq X_2$ נובע היות $F(X_1),F(X_2)$ הן פונקציות $F(X_1),F(X_2)$ (אי שוויון בין קבוצות). $F(X_1)$ (אי שוויון בין קבוצות). $F(X_1)$ באופן הבא:

$$f_0 = \lambda x \in \mathbb{R}. r$$

 $.r \notin X_2$ כלומר f_0 היא פונקציה קבועה שמחזירה תמיד f_0 , ולכן $f_0^{-1}[X_1]=\mathbb{R}$ כי $f_0^{-1}[X_2]=\emptyset$ כי $f_0^{-1}[X_1]=\emptyset$ כי כלומר f_0 היא פונקציה קבועה שמחזירה תמיד f_0 ולכן f_0

$$F(X_1)(f_0) = f_0[f_0^{-1}[X_1]] = f_0[\mathbb{R}] = \{r\}$$

$$F(X_2)(f_0) = f_0[f_0^{-1}[X_2]] = f_0[\emptyset] = \emptyset$$

. כרצוי
ט $F\left(X_{1}\right)\neq F\left(X_{2}\right)$ גם ולכן א $F\left(X_{1}\right)\left(f_{0}\right)\neq F\left(X_{2}\right)\left(f_{0}\right)$ כרצוי

עבורו מתקיים $X\in P\left(\mathbb{R}\right)$ כך שלא קיים (F לא על: נראה שקיים $g\in (\mathbb{R} o\mathbb{R}) o P\left(\mathbb{R}\right)$ עבורו מתקיים F געבורו F(X)=g . עבורו מתקיים עבורי

$$g = \lambda f \in \mathbb{R} \to \mathbb{R}. \mathbb{R}$$

כלומר g היא פונקציה קבועה שמחזירה תמיד את הקבוצה $\mathbb R$. נניח בשלילה שקיים $(F(X_0))$ כך ש־ $(F(X_0))$ כך ש־ $(F(X_0))$ אז לכל $(F(X_0))$ מתקיים $(F(X_0))$, כלומר (לפי הגדרת $(F(X_0))$):

$$f\left[f^{-1}\left[X_0\right]\right] = \mathbb{R}$$

בפרט, זה אומר ש־f חייבת להיות על (כי נובע שהתמונה של f חייבת להיות \mathbb{R}), והרי שזה לא נכון לכל $f\in\mathbb{R}\to\mathbb{R}$ כללית. לדוגמה: נבחר f (בפרט לא ייתכן הפונקציה הקבועה 0). אז f (הפונקציה הקבועה ט). אז בפרט לא ייתכן

$$f_0\left[f_0^{-1}\left[X_0\right]\right] = \mathbb{R}$$

 $.f_0\left[f_0^{-1}\left[X_0\right]\right]\subseteq Im\left(f_0\right)=\left\{0\right\}$ כי 0ה"כ הוכחנו ש־0 אינה על.