Sequências

por Abílio Lemos

Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147 - 2020

12 e 17 de março de 2020

Definição 1

Uma **sequência** ou uma **sucessão** é uma função onde o domínio é \mathbb{N} , ou seja, $f: \mathbb{N} \to C$, onde C pode ser \mathbb{R} ou \mathbb{C} .

Neste curso estudaremos apenas as sequências cujo o contra-domínio é \mathbb{R} .

Exemplos:

$$0; 1; 2; 3; \dots n; \dots \text{ ou } \frac{1}{\ln 2}; \frac{1}{\ln 3}, \dots; \frac{1}{\ln n}; \dots$$

Notação:

 a_1 ; a_2 ; a_3 ; ... a_n ; ... que pode ser representado por $\{a_n\}_{n=1}^{\infty}$ ou simplesmente por $\{a_n\}$ ou (a_n) ;

Uma sequência também pode ser definida por uma fórmula de recorrência. Por exemplo a **sequência de Fibonacci**: $a_1 = 1$, $a_2 = 1$ e $a_n = a_{n-1} + a_{n-2}$, $n \ge 3$. Os primeiros termos são: 1: 1: 2: 3: 5: 8: 13: 21:

Definição 2

- (i) Dada uma sequência (a_n) , dizemos que o número $L \in \mathbb{R}$ é o limite de (a_n) e escrevemos $\lim_{n \to \infty} a_n = L$ ou $(a_n) \to L$ se, para todo $\epsilon > 0$, existe N tal que se n > N, então $|a_n L| < \epsilon$;
- (ii) Dada uma sequência (a_n) , $\lim_{n\to\infty} a_n = \infty$ ou $(a_n)\to\infty$ se para cada número positivo M existe um inteiro N tal que se n>N, então $a_n>M$.

OBS: Se a sequência (a_n) tem limite L, dizemos que ela é **convergente** e que converge para L. Caso contrário, dizemos que ela **diverge**.

Prove usando a definição que:

(a)
$$\left(\frac{1}{n}\right) \to 0$$
;

(b)
$$\left(\frac{n}{n+1}\right) \to 1$$
.

Propriedades das Sequências: Sejam $(a_n), (b_n)$ duas sequências convergentes, isto é, $\lim_{n\to\infty}a_n=L_1$ e $\lim_{n\to\infty}b_n=L_2$, $L_1, L_2\in\mathbb{R}$. Então:

- (i) $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = L_1 \pm L_2$;
- (ii) $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n = L_1 \cdot L_2$;
- (iii) $\lim_{n\to\infty}(a_n/b_n)=\lim_{n\to\infty}a_n/\lim_{n\to\infty}b_n=L_1/L_2,L_2\neq 0;$
- (iv) $\lim_{n\to\infty} k \cdot a_n = k \lim_{n\to\infty} a_n = k \cdot L_1, k \in \mathbb{R}$;
- (v) $\lim_{n\to\infty} (a_n)^p = (\lim_{n\to\infty} a_n)^p = L_1^p$, so p > 0 e $L_1 > 0$;

Exemplo: Prove que $\left(\frac{n^2}{2n+1}\operatorname{sen}\frac{\pi}{n}\right)$ é convergente e determine seu limite.

Teorema da Substituição: Seja f uma função tal que $f(n) = a_n$, quando $n \in \mathbb{N}$. Então

- (i) Se $\lim_{x\to\infty} f(x) = L$, então $\lim_{n\to\infty} a_n = L$, com $L \in \mathbb{R}, L = \infty$ ou $L = -\infty$;
- (ii) Se f é crescente, então (a_n) é crescente (lembre-se que a sequência é uma função);
- (iii) Se f é decrescente, então (a_n) é decrescente.

Exemplos

- (a) $\lim_{n \to \infty} \frac{1}{n^r} = 0, r > 0$, pois $\lim_{x \to \infty} \frac{1}{x^r} = 0, r > 0$;
- (b) $\lim_{n\to\infty} \frac{\ln n}{n} = 0$, pois $\lim_{x\to\infty} \frac{\ln x}{x} = 0$;
- (c) $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$, pois $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$;
- (d) $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$, pois $\lim_{x\to\infty} x^{\frac{1}{x}} = 1$;

Teorema do Confronto: Se $a_n \le b_n \le c_n$, para $n > n_0$ e $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, então $\lim_{n \to \infty} b_n = L$. Exemplo: A sequência $\left(\frac{(-1)^n}{n}\right)$ é convergente? **Teorema**: Se $\lim_{n\to\infty} |a_n| = 0$, então $\lim_{n\to\infty} a_n = 0$.

Exemplo: Podemos usar esse teorema para provar que a sequência $\left(\frac{(-1)^n}{n}\right)$ é convergente.

Teorema: Se $\lim_{n\to\infty} a_n = L$ e se a função f for contínua em L, então $\lim_{n\to\infty} f(a_n) = f(L)$.

Exemplos

(a)
$$\lim_{n\to\infty}\cos(\frac{\pi}{n})=\cos(\lim_{n\to\infty}\frac{\pi}{n})=\cos 0=1;$$

(b)
$$\lim_{n\to\infty} \sqrt{\frac{1}{n}+1} = \sqrt{\lim_{n\to\infty} \left(\frac{1}{n}+1\right)} = \sqrt{1} = 1.$$