

What is claimed is:

- 1 1. A wireless apparatus comprising:
 - 2 a forward error correction (FEC) coder to encode digital data using a low
 - 3 density parity check (LDPC) code, said FEC coder including:
 - 4 a matrix multiplication unit to multiply input data by a transpose of a
 - 5 first portion of a parity check matrix to generate modified data;
 - 6 a differential encoder to differentially encode said modified data to
 - 7 generate coded data; and
 - 8 a concatenation unit to concatenate the input data and the coded data to
 - 9 form a code word; and
 - 10 a wireless transmitter to transmit a wireless signal that includes said code word.

- 1 2. The wireless apparatus of claim 1, wherein:
 - 2 said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

- 1 3. The wireless apparatus of claim 1, further comprising:
 - 2 a mapper, between said FEC coder and said wireless transmitter, to map said
 - 3 code word based on a predetermined modulation scheme; and
 - 4 an inverse discrete Fourier transform unit to convert mapped data from a
 - 5 frequency domain representation to a time domain representation.

- 1 4. The wireless apparatus of claim 1, wherein:
 - 2 said parity check matrix is substantially as described in the list file of Appendix
 - 3 A.

- 1 5. The wireless apparatus of claim 1, wherein:
 - 2 said parity check matrix is the same as the matrix described in the list file of
 - 3 Appendix A.

1 6. The wireless apparatus of claim 1, further comprising:
2 a storage medium to store a representation of at least said first portion of said
3 parity check matrix for use by said matrix multiplication unit.

1 7. The wireless apparatus of claim 6, wherein:
2 said storage medium is operative to store a representation of the entire parity
3 check matrix.

1 8. The wireless apparatus of claim 6, wherein:
2 said storage medium is operative to store a matrix that is substantially as
3 described in the list file of Appendix A.

1 9. The wireless apparatus of claim 6, wherein:
2 said storage medium is operative to store a matrix that is a portion of a matrix
3 that is substantially as described in the list file of Appendix A, said portion of said
4 matrix being a portion having columns of weight 4.

1 10. The wireless apparatus of claim 1, wherein:
2 said LDPC code is a (2000, 1600) bit-length code.

1 11. The wireless apparatus of claim 1, wherein:
2 said wireless apparatus is a wireless user device for use in a wireless network.

1 12. The wireless apparatus of claim 1, wherein:
2 said wireless apparatus is a wireless access point.

1 13. The wireless apparatus of claim 1, wherein:
2 said wireless apparatus is a wireless network interface module.

1 14. The wireless apparatus of claim 1, wherein:
2 said wireless apparatus is an integrated circuit.

1 15. A method comprising:
2 matrix multiplying input data by a transpose of a first portion of a parity check
3 matrix;
4 processing a result of said matrix multiplication using differential encoding to
5 generate coded data;
6 concatenating said input data and said coded data to form a code word; and
7 generating and transmitting a wireless signal that includes said code word.

1 16. The method of claim 15, wherein:
2 said wireless signal is an orthogonal frequency division multiplexing (OFDM)
3 signal.

1 17. The method of claim 15, further comprising:
2 accessing a storage medium storing a representation of at least a portion of said
3 parity check matrix before matrix multiplying.

1 18. The method of claim 15, wherein:
2 said parity check matrix is substantially as described in the list file of Appendix
3 A.

1 19. The method of claim 15, wherein:
2 said parity check matrix is the same as the matrix described in the list file of
3 Appendix A.

1 20. The method of claim 15, wherein:
2 said parity check matrix defines a (2000, 1600) bit-length LDPC code.

1 21. The method of claim 15, wherein:
2 generating and transmitting a wireless signal includes mapping said code word
3 into modulation symbols and processing said modulation symbols using an inverse
4 discrete Fourier transform.

1 22. An article comprising a machine readable storage medium having a
2 representation of at least a portion of a parity check matrix stored thereon, said parity
3 check matrix being substantially as described in the list file of Appendix A.

1 23. The article of claim 22, wherein:
2 said machine readable storage medium has a representation of the entire parity
3 check matrix stored thereon.

1 24. The article of claim 22, wherein:
2 said machine readable storage medium has a portion of said parity check matrix
3 stored thereon that includes all columns of weight 4.

1 25. The article of claim 22, wherein:
2 said parity check matrix is the same as the matrix described in the list file of
3 Appendix A.

1 26. The article of claim 22, wherein:
2 said parity check matrix defines a (2000, 1600) bit-length LDPC code.

1 27. The article of claim 22, wherein:
2 said article includes a wireless communication device.

1 28. The article of claim 22, wherein:
2 said article comprises only said machine readable storage medium.

1 29. The article of claim 22, wherein:
2 said machine readable storage medium comprises at least one of the following: a
3 semiconductor memory, a read only memory (ROM), a random access memory
4 (RAM), an erasable programmable read only memory (EPROM), an electrically
5 erasable programmable read only memory (EEPROM), a flash memory, a magnetic
6 card, an optical card, a magnetic disk, an optical disk, a CD-ROM, and a magneto-
7 optical disk.

1 30. A system comprising:
2 a forward error correction (FEC) coder to encode digital data using a low
3 density parity check (LDPC) code, said FEC coder including:
4 a matrix multiplication unit to multiply input data by a transpose of a
5 first portion of a parity check matrix to generate modified data;
6 a differential encoder to differentially encode said modified data to
7 generate coded data; and
8 a concatenation unit to concatenate the input data and the coded data to
9 form a code word;
10 a wireless transmitter to transmit a wireless signal that includes said code word;
11 and
12 at least one dipole antenna coupled to said wireless transmitter to facilitate
13 transmission of said wireless signal.

1 31. The system of claim 30, wherein:
2 said wireless signal is an orthogonal frequency division multiplexing (OFDM)
3 signal.

1 32. The system of claim 30, further comprising:
2 a storage medium to store a representation of at least said first portion of said
3 parity check matrix for use by said matrix multiplication unit.

1 33. The system of claim 30, wherein:
2 said parity check matrix is substantially as described in the list file of Appendix
3 A.

1 34. An article comprising a storage medium having instructions stored thereon that,
2 when executed by a computing platform, operate to:
3 matrix multiply input data by a transpose of a first portion of a parity check
4 matrix;
5 process a result of said matrix multiplication using differential encoding to
6 generate coded data;
7 concatenate said input data and said coded data to form a code word; and
8 generate and transmit a wireless signal that includes said code word.

1 35. The article of claim 34, wherein:
2 said wireless signal is an orthogonal frequency division multiplexing (OFDM)
3 signal.

1 36. The article of claim 34, wherein said instructions, when executed by the
2 computing platform, further operate to:
3 access a storage medium having at least a portion of said parity check matrix
4 stored thereon before matrix multiplying.

1 37. The article of claim 34, wherein:
2 said parity check matrix is substantially as described in the list file of Appendix
3 A.

1 38. The article of claim 34, wherein:
2 said parity check matrix defines a (2000, 1600) bit-length LDPC code.