KOREKSI DATA AUTOMATIC IDENTIFICATION SYSTEM (AIS) SATELIT LAPAN-A2 DAN LAPAN-A3 MENGGUNAKAN METODE INTERPOLASI DAN EKSTRAPOLASI (LAPAN-A2 AND LAPAN-A3 AUTOMATIC IDENTIFICATION SYSTEM (AIS) SATELIT DATA CORRECTION USING INTERPOLATION AND EXTRAPOLATION METHODE

Abdul Karim, Rizki Permala, M Mukhayadi, Wahyudi Hasbi Pusat Teknologi Satelit

Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

Jl. Cagak Satelit KM 04 Rancabungur, Bogor

¹Email: abdul.karim@lapan.go.id

Diterima: 15 November 2018; Direvisi: 12 Januari 2019; Disetujui: 7 Februari 2019

ABSTRACT

Nasional Institute Aerounautics and Space (LAPAN) has two satellites (LAPAN-A2 and LAPAN-A3) that are carry Automatic Identification System (AIS) sensors. It can be use for ship monitoring in Indonesian maritime territory. The altitude of the satellite is about 642 Km and 500 km so it has a wide area covered and therefore may receive big amount of data. The problem is the AIS technology use the Time Division Multiple Access (TDMA) system that has limitations in handling big amount of data simultaneously so that some data received can be damaged due to message collision. Therefore, in this research perform analysis and correction on damaged data using interpolation and extrapolation methods. The results is data correction of about 22,6 % for LAPAN-A2 satellite and 20,8 % for LAPAN-A3 satellite.

 $Keywords: {\it AIS, Satellite, LAPAN}$

ABSTRAK

Lembaga Penerbangan dan Antariksa Naional (LAPAN) telah memiliki dua buah satelit (LAPAN-A2 dan LAPAN-A3) yang membawa sensor *Automatic Identification System* (AIS). Pemanfaatan data AIS berbasis satelit ini sangat berguna bagi pemantauan kapal di wilayah perairan Indonesia. Posisi satelit pada ketinggian sekitar 642 Km dan 500 Km dari permukaan laut menghasilkan cakupan yang luas sehingga dapat menerima banyak data kapal. Permaslahannya adalah teknologi AIS yang menggunakan sistem *Time Division Multiple Access* (TDMA) memiliki keterbatasan dalam menangani data yang besar sehingga beberapa data yang diterima dapat mengalami kerusakan akibat terjadinya message *collision*. Oleh karena itu dalam penelitian ini telah dilakukan analisis serta koreksi atas data yang rusak mengunakan metode interpolasi dan ekstrapolasi. Hasil koreksi atas data yang rusak mencapai 22,6% untuk satelit LAPAN-A2 dan 20,8% untuk satelit LAPAN-A3.

Kata kunci: AIS, Satelit, LAPAN

1 PENDAHULUAN

LAPAN telah memiliki dua buah satelit yang membawa sensor AIS (Automatic Identification System). Satelit LAPAN-A2 dengan orbit ekuatorial dan LAPAN-A3 dengan orbit polar. Pemanfaatan data AIS berbasis satelit ini berguna bagi pemantauan wilayah perairan Indonesia yang merupakan negara kepulauan terbesar di Wilayah teritorial perairan Indonesia sekitar 5,9 juta km² atau 75% dari total wilayah. Luas +/- 1.9 juta km² persegi, terletak pada posisi silang dunia (Benua Asia dan Australia serta Samudra Pasifik dan Hindia. Berbatasan dengan 10 negara dan memiliki 17.503 pulau. Memiliki 3 Alur Laut Kepulauan Indonesia (ALKI) dan 4 Choke Point dunia termasuk Selat Malaka.

Gambar 1-1: Wilayah Indonesia (Isbanadi, 2017)

Kondisi ini memerlukan pemantauan wilayah kelautan yang optimal untuk mengcegah hal-hal illegal yang mungkin terjadi seperti : Illegal logging, Penangkapan ikan illegal, Perompakan, Pencurian, Kecelakaan, Penyelundupan Obat, Penyelundupan Minyak, Imigran Ilegal, Kebakaran dan lainnya.

Pemantaun yang ideal tentunya memerlukan banyak sensor seperti :VSM, AIS dan Citra baik berbasis terrestrial, pesawat udara maupun satelit.

Dalam tulisan ini akan dibahas analisis dan koreksi data AIS Satelit LAPAN menggunakan metode interpolasi dan ekstrapolasi.

Gambar 1-2: Sistem Pemantauan Terpadu di Ditjen PSDKP Kementerian Kelautan dan Perikanan. (Goenaryo, 2017)

2 METODOLOGI

AIS merupakan sistem auto tracking yang digunakan pada kapal dan vessel traffic services (VTS) untuk mengidentifikasi dan melacak posisi kapal cara melakukan dengan pertukaran data secara elektronik dengan kapal lain yang berdekatan, AIS base station, dan satelit. AIS memudahkan kapal dalam bernavigasi dan memungkinkan pihak berwenang untuk melakukan pelacakan ataupun pemantauan posisi dan gerakan kapal.

Sistem AIS merupakan alat bantu yang sangat berguna dalam monitoring kapal laut terutama untuk keamanan di laut dan masih terus dikembangkan hingga saat ini. (Stupak, 2014). Penggunaan yang tepat dapat menambah kontribusi untuk keamanan penumpang, crew maupun muatan kapal tersebut dari hal-hal yang merugikan.

Teknologi AIS yang berkembang saat ini, informasi maritime ditransmisikan menggunakan frekuensi Very High Frequency (VHF). Secara khusus menggunkan frekuensi 161,975 dan 162,025 MHz yang telah ditetapkan untuk keperluan maritime. (ITU, 2012). Kedua saluran tersebut diatur melalui

slot waktu yang dapat dipakai bersama mengunakan sistem TDMA. Masingmasing kanal memiliki 2250 slot permenit seperti yang ditunjukan dalam Gambar 2-1.

Gambar 2-1: Struktur sinyal AIS. (Qing, 2015)

Dengan demikian dari sisi receiver dapat menerima Informasi data yang berkisar 2000 report per menit. (Stupak, 2014). Informasi tersebut berisi antara lain: bujur (longitude), lintang (latitude), kecepatan (Speed Over Ground (SOG)), arah (Course Over Ground (COG)), identitas (Maritime Mobile Service Identity (MMSI)), waktu (Base Data Time), tipe dimensi (Vesssel Type), (Vessel Dimension), Rate Turn, status (Navigation Status), dan Heading. Informasi yang paling banyak digunakan mempelajari dan meprediksi trayektori kapal laut adalah : longitude, latitude, SOG, COG, MMSI dan, base date time. (Shangbo, 2016)

Gambar 2-2: Ilustrasi cakupan data AIS melalui satelit LAPAN.

Satelit LAPAN-A2 yang mengorbit pada ketinggian sekitar 642 km memberikan keuntungan cakupan yang lebih luas seperti ditunjukan dalam Gambar 2-2. Dengan inklinasi orbit 6 derajat mengakibatkan satelit LAPAN-A2 melintas di sekitar ekuator melewati wilayah Indonesia setiap 100 menit. Sedangkan satelit LAPAN-A3 dengan ketinggian yang lebih rendah sekitar 500 km menghasilkan cakupan yang lebih kecil.

Salah satu masalah fundamental dalam system transmisi AIS adalah masalah gap dalam transmisi. Secara mendasar Gap terjadi dikarenakan oleh :

- Saturasi pada lokasi dengan kapasitas kapal yang tinggi.
- Kualitas transmisi yang dihasilkan kapal belum cukup baik
- Kesengajaan dalam menonaktifkankan penggunaaan AIS. (Jessica, 2018)

Analisa yang dilakukan adalah dengan cara mengambil sampel data dari satelit kemudian dilakukan koreksi pada data yang terindikasi mengalami kerusakan dengan metode interpolasi atau ekstrapolasi sehingga ada peluang untuk diperbaiki.

2.1 Lokasi dan Data

Data yang digunakan dalam penelitian ini adalah data di wilayah Indonesia yang diambil melalui Satelit LAPAN-A2 dan satelit LAPAN-A3 dengan sampel data selama satu tahun mulai November 2017 sampai dengan Oktober 2018. Adapun standar data yang digunakan adalah standar ITU-REC-M.1371-5-201402-I.

2.2 Metode Koreksi Data

Data AIS yang di-download dari satelit LAPAN akan melalui proses decoding untuk menghasilkan data AIS standar yang sesuai dengan ITU-REC-M.1371-5-201402-I. Pada proses decode dipisahkan antara data yang valid dan data yang tidak valid berdasarkan CRC (cyclic redudancy check). Data yang valid bisa langsung dimasukkan ke dalam

database sementara data yang belum valid akan mengalami koreksi ulang agar masih bisa dimanfaatkan. Proses klasifikasi dan koreksi data dalam diagram alir algoritma koreksi data AIS sebagaimana ditunjukkan Gambar 2-3.

CRC Flag:

- "10": uplink true, downlink true valid based on up/down-link CRC.
- 2. "00" : uplink false, downlink trueuntuk dikoreksi.
- 3. "11" : uplink true, downlink falseuntuk dikoreksi.
- 4. "01" : uplink false, downlink false untuk dikoreksi.

Diasumsikan bahwa semua data "10" dianggap benar, untuk menjadi patokan (terutama waktu dan MMSI). Kemudian data yang dianalisa loop per 15 menit (estimasi 1 pass). Berikut langkah-langkah yang dilakukan untuk koreksi data:

1. baca semua file.

- 2. berdasarkan '10' && waktu
 Data_X Data_0 <= 15menit
 (estimasi 1 pass), hitung rataan
 untuk ROT, COG, LONG-LAT,
 SOG, HDG.
- 3. untuk '00/11/01' && waktu
 Data_X Data_0 <= 15menit ,
 cek tiap nilai aktual (absolut)
 ROT, COG, SOG, HDG
 dibandingkan dengan rataan.
 untuk ROT, COG(>=10.0),
 SOG(>=1.0), HDG(>=5.0) kalau
 "YA", jadikan nilai rataan sbg
 nilai baru. selain itu, abaikan.
- 4. untuk '00/11/01' && waktu
 Data_X Data_0 <= 15menit, cek
 tiap nilai aktual (absolut) LONGLAT dibandingkan dengan
 rataan. untuk LONG-LAT(>=
 0.012) kalau "YA", lakukan
 interpolasi atau ekstrapolasi,
 hasil tsb sbg nilai baru. selain
 itu, abaikan.
- 5. Simpan data jika jumlah "10" >= 1 ATAU Counter10 >= CounterLain.

Gambar 2-3 : Diagram Alir Algoritma Koreksi Data AIS

Proses interpolasi/ekstrapolasi, dibutuhkan minimal dua data valid dari satu dataset yang mungkin berisi lebih dari dua data *error*. Interpolasi dilakukan jika data yang akan dikoreksi berada di tengah-tengah data valid dari suatu dataset. Sedangkan ekstrapolasi dilakukan jika data yang akan dikoreksi berada di awal atau di ujung data valid dari suatu data set. (Chapra, 2015).

3 HASIL PEMBAHASAN

Untuk menganalisis data tersebut telah dirancang sebuah aplikasi sesuai dengan diagram alir dalam Gambar 2-3. Adapun aplikasi tersebut dapat dilihat dalam Gambar 3-1.

Gambar 3-1 : Aplikasi Koreksi data AIS

Data yang gunakan sebagai sampel adalah data rata-rata perbulan dalam yang diambil setiap hari selama periode bulan November 2017 sampai dengan Oktober 2018. Hasil dapat dilihat dalam Tabel 3-1 dan Tabel 3-2.

Tabel 3-1: Rata-rata penerimaan data AIS satelit LAPAN-A2 beserta data yang mengalami kerusakan pada periode November 2017-Oktober 2018

Bulan	Rata-rata Data	Data Error
November	1953459	1060896
Desember	2066332	1069232
Januari	1440587	777428
Februari	1782691	1004076
Maret	1868129	1015985
April	2003991	1086412
Mei	1844996	1015012
Juni	1881072	1018378
Juli	2076465	1129496
Agustus	1975107	1091758
September	1936120	1081273
Oktober	1831131	1009286
Total	1730868	1029936

 $DE_{A2} = DE_{A2}/RD_{A2}$

= 1029936/1730868

= 59.5 %

Dimana:

RD_{A2}: Rata-rata data

DE_{A2} : Data error

%DEA2: Persentase Data Error

Tabel 3-2: Rata-rata penerimaan data AIS satelit LAPAN-A3 beserta data yang mengalami kerusakan pada periode November 2017-Oktober 2018

Bulan	Rata-rata Data	Data Error
November	1006753	556923
Desember	1004310	556412
Januari	1008504	551898
Februari	1002634	560687
Maret	1008580	567367
April	1004964	559214
Mei	1000247	556518
Juni	1034729	579488
Juli	1014262	581464
Agustus	1012135	577410
September	1002685	563402
Oktober	1013929	580745
Total	1009477	565960

 $\%DE_{A3} = DE_{A3}/RD_{A3}$

= 1009477/565960

= 56,1 %

Dimana:

 RD_{A3} : Rata-rata data DE_{A3} : Data error

 DE_{A3} : Persentase Data Error

Tabel 3-3: Hasil koreksi Data AIS satelit LAPAN-A2

Bulan	CRC	Data Asli	Data Koreksi	%
November	00	1053240	417076	39,6
	01	4310	1689	39,2
	11	3346	2847	85,1
	10	778615	0	0
	Jum	1953459	421612	21,6
Desember	00	1063502	491265	46,2
	01	3084	1446	46,9
	11	2646	2391	90,4
	10	997100	0	0
	Jum	2066332	495102	23,9
Januari	00	753315	323629	42,9
	01	14710	5312	36,1
	11	9403	7534	80,1
	10	663159	0	0
	Jum	1440587	336475	23,3
Februari	00	990191	421700	42,5
	01	8637	2663	30,8
	11	5248	3860	73,5
	10	778615	0	0
	Jum	1782691	428223	24,0
Maret	00	999517	355976	35,6
	01	9703	3129	32,2
	11	6765	5038	74,4
	10	852144	0	0
	Jum	1868129	364143	19,5
April	00	1067687	464878	43,5
	01	10552	4490	42,5
	11	8173	6987	85,4
	10	917579	0	0
	Jum	2003991	476355	23,7
Mei	00	983028	422994	43,0
	01	18504	7713	41,6
	11	13480	11520	85,4
	10	829984	0	0
	Jum	1844996	442227	23,9

Juni	00	993102	392174	39,4
	01	14543	4862	33,4
	11	10733	8297	77,3
	10	862694	0	0
	Jum	1881072	405333	21,5
Juli	00	1091657	435318	39,8
	01	21817	6997	32,0
	11	16022	12009	74,9
	10	946969	0	0
	Jum	2076465	454324	21,8
Agustus	00	1061765	460924	43,4
	01	17559	6844	38,9
	11	12434	10266	82,5
	10	883349	0	0
	Jum	1975107	478034	24,4
September	00	1041916	403103	38,6
	01	23089	7525	32,5
	11	16268	12544	77,1
	10	854847	0	0
	Jum	1936120	423172	21,8
Oktober	00	990840	388673	39,2
	01	10646	3543	33,2
	11	7800	5940	76,1
	10	821845	0	0
	Jum	1831131	398156	21,7

 $\begin{aligned} & \text{RKD}_{\text{A2}} = & \sum \frac{Nv + Ja + Fb + Mr + Ap + Jn + Jl + Ag + Sp + Ok}{12} \\ & = & \sum \frac{21,5 + 23,9 + 23,3 + 24 + 19,4 + 23,7 + 23,9 + 21,5 + 21,8 + 24,2 + 21,8 + 21,7}{12} \end{aligned}$

 $RKD_{A2} = 22,6 \%$

Dimana:

RKD_{A2}: Nilai rata-rata koreksi data

Tabel 3-4: Hasil koreksi Data AIS satelit LAPAN-A3

Bulan	CRC	Data Asli	Data Koreksi	%
November	00	555720	204635	36,8
	01	670	235	35,1
	11	533	464	87,0
	10	449830	0	0
	Jum	1006753	205334	20,4
Desember	00	555186	236340	42,5
	01	724	288	39,7
	11	502	461	91,8
	10	447898	0	0
	Jum	1004310	237089	23,6

Januari	00	550683	210157	38,1
	01	686	248	36,1
	11	529	480	90,7
	10	456606	0	0
E-b	Jum	1008504	210885	20,9
Februari	00 01	559395 765	211169	37,7 34,2
	11	527	262 448	34,2 85,0
	10	441947	0	03,0
	Jum	1002634	211879	21,1
Maret	00	566073	192397	33,9
	01	771	245	31,7
	11	523	432	82,6
	10	441213	0	0
	Jum	1008580	193074	19,1
April	00	557913	231383	41,4
	01	746	303	40,6
	11	555	516	92,9
	10	445750	0	0
	Jum	1004964	232202	23,1
Mei	00	555947	193429	34,8
	01	404	116	28,7
	11	167	119	71,2
	10	443729	0	0
	Jum	1000247	193664	19,3
Juni	00	578839	211245	36,5
	01	441	125	28,3
	11	208	161	77,4
	10	455241	0	0
	Jum	1034729	211531	20,4
Juli	00	580886	205059	35,3
	01	435	124	28,5
	11	143	125	87,4
	10	432798	0	0
Agustus	Jum 00	1014262 576886	205308 207439	20,2 35,9
. igustus	01	387	115	29,7
	11	137	120	87,6
	10	434725	0	0
	Jum	1012135	207674	20,5
		562828	204391	36,3
September	00		-0.571	
September	00 01		119	30.0
September	01	396	119 155	30,0 87,1
September	01 11	396 178	119 155 0	30,0 87,1 0
September	01 11 10	396 178 439283	155 0	87,1
September Oktober	01 11	396 178	155	87,1 0

Jum	1013929	209638	20.6	
10	433184	0	0	
11	139	117	84,2	

$$\begin{split} & \text{RKD}_{\text{A3}} = & \sum \frac{Nv + Ja + Fb + Mr + Ap + Jn + Jl + Ag + Sp + 0k}{12} \\ & = & \sum \frac{20,4 + 23,6 + 20,9 + 21,1 + 19,1 + 23,1 + 19,3 + 20,4 + 20,2 + 20,5 + 20,4 + 20,6}{12} \end{split}$$

 $RKD_{A3} = 20.8 \%$

Dimana:

RKDA3: Nilai rata-rata koreksi data

Gambar 3-2 : Presentase hasil koreksi data AIS Satelit LAPAN-A2 periode November 2017 – Oktober 2018

Gambar 3-3 : Presentase hasil koreksi data AIS Satelit LAPAN-A3 periode November 2017-Oktober 2018

Adapun contoh penggunaan koreksi dapat dilihat dalam Gambar 3-3, dimana terdapat pergeseran trajektori pergerakan disekitar daerah utara Pulau Papua.

Gambar 3-4 : Contoh hasil koreksi data trajektori Kapal

Berdasarkan data AIS yang diterima maka dapat diketahui Kapal tersebut bernama Cape Vanya milik negara Cyprus. Spesifikasi Kapal ditunjukan dalam Gambar 3-4.

Gambar 3-5: Cave Vanya (Marine Traffic, 2018)

4 KESIMPULAN

Data AIS yang diterima oleh Satelit LAPAN-A2 rata-rata perhari pada periode November 2017 sampai dengan Oktober 2018 adalah sejumlah 1.730.868 data. Sedangkan data Satelit LAPAN-A3 rata-rata 1.009.477 data. Kerusakan data yang terjadi sebesar 59,5% untuk Satelit LAPAN-A2 dan 56,1% Satelit LAPAN-A3.

Koreksi data yang berhasil divalidasi menggunakan metode interpolasi dan ekstrapolasi mencapai 22,6% untuk Satelit LAPAN-A2 dan 20,8% untuk Satelit LAPAN-A3.

UCAPAN TERIMAKASIH

Terimakasih penulis tujukan kepada Kementrian Riset & Teknologi dan Pendidikan Tinggi melalui program Insentif Riset Sistem Inovasi Nasional

Serta kepada pihak-pihak yang membantu penulis baik penyediaan data, pengerjaan data, serta Tim Redaksi Jurnal Teknologi Dirgantara.

DAFTAR RUJUKAN

Goenaryo., (2017). Kebutuhan dan *Pemanfaatan*Data AIS dalam Pengawasan SDKP

presented at Focus Group Discussion

Pemanfaatan Hasil Litbang dan Fasilitas

Teknologi Satelit 2017.

International Telecommunications Union (ITU)., (2012). Interim Solutions for Improved Efficiency in the Use of the Band 156–174 Mhz by Stations in the Maritime Mobile Service; International Telecommunications Union: Budapest, Hungary.

Isbandi Andrianto., (2017). Kebutuhan Satelit
Untuk Monitoring Keamanan Laut Di
Perairan Indonesia presented at Focus
Group Discussion Pemanfaatan Hasil
Litbang dan Fasilitas Teknologi Satelit 2017.

Jessica H.Ford., David Peel., David Kroodsma.,
Britta Denise Hardesty., Uwe Rosebrock.
,ChrisWilcox., (2018), Detecting suspicious
activities at sea based on Anomalies in
Automatic Identification Systems
transmissions, Journal Public Library os
Science (PLOS).

Marine Traffic, Cave Vanya. https://www.marinetraffic.com/en/ais/deta ils/ships/shipid:371722/mmsi:209256000/imo:9182710/vessel:CAPE_VANYA diunduh: 30 Oktober 2018.

Qing Hu., Yi Jiang., Jingbo Zhang., Xiaowen Sun., Shufang Zhang., (2015), Development of an Automatic Identification System Autonomous Positioning System, Journal Sensors.

R. Bosnjak., (2012), Automatic Identification System in maritime Traffic in error analysis. Journal of Transactions on Maritime Science (ToMS) Vol.1 No.2, 77-84.

S.C.Chapra., R. P.Canale., (2015). *Numerical Methods for Engineers, Seventh Edition*. Publication of McGraw-Hill Education, ISBN: 978-0-07-339792-4.

Shangbo Mao., Enmei Tu., Guanghao Zhang., Lily Rachmawati., Eshan Rajabally., (2016). An Automatic Identification System (AIS) Database for Maritime Trajectory Prediction and Data Mining, Proceedings of Extreme

- Learning Machines-2016, Desember 2016, ISBN 978-3-319-57420-2.
- T. Stupak., (2014). Influence of Automatic Identification System on Safety of Navigation

at Sea, Journal of Marine Navigation and Safety of Sea Transportation Vol. 8 No. 3, 337-341.