L'intégral des démos bac

1 Suite croissante convergente

1.1 Énoncé

Soit (u_n) une suite croissante qui converge vers une limite finie l. Alors $\forall n \in \mathbb{N}, u_n \leq l$.

1.2 Démonstration

Raisonnons par l'absurde:

Supposons que : $\exists n_0 \in \mathbb{N}, u_{n_0} > l$.

Alors, comme la suite u_n est croissante : $\forall n \ge n_0, u_n \ge u_{n_0} > l$.

L'intervalle ouvert]l-1; $u_{n_0}[$ contient l, mais ne peut contenir les u_n que pour $n < n_0$, donc il ne peut pas contenir tous les termes de la suite à partir d'un certain rang.

Cela contredit le fait que $\lim_{n\to+\infty} u_n = l$.

Donc $\forall n \in \mathbb{N}, u_n \leq l$.

2 Suite croissante non majorée

2.1 Énoncé

Une suite croissante non majorée a pour limite $+\infty$.

2.2 Démonstration

Soit (u_n) une suite croissante non majorée.

Soit *A* un réel quelconque.

Comme la suite n'est pas majorée par A, $\exists N \in \mathbb{N}, u_N > A$

Comme la suite est croissante, $\forall n \ge N, u_n \ge u_N > A$.

Tous les termes de la suite sont donc dans l'intervalle] A; $+\infty$ [à partir d'un certain rang N.

Donc $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_n > A \Leftrightarrow \lim_{n \to +\infty} u_n = +\infty.$

3 Limites des suites géométriques

3.1 Énoncé

$$q > 1 \Rightarrow \lim_{n \to +\infty} q^n = +\infty.$$

3.2 Démonstration

Soit q > 1.

Alors $\exists a \in \mathbb{R}_+^*$, q = 1 + a.

Soit $\forall n \in \mathbb{N}, P_n : "q^n \ge 1 + na".$

INITIALISATION:

Pour n = 0, $q^0 = 1$ et $1 + 0 \times a = 1$, donc $q^0 \ge 1 + 0 \times a$. La récurrence est donc initialisée.

HÉRÉDITÉ .

Supposons que pour un certain n quelconque de \mathbb{N} , P_n soit vraie. Montrons que P_{n+1} est vraie.

 $HR: q^n \ge 1 + na$

Mq: $q^{n+1} \ge 1 + a(n+1)$

On a : $q^{n+1} = q \times q^n = q^n(1+a)$

Or, par HR, $q^n \ge 1 + na$

Donc $q^{n+1} \ge (1+a)(1+na) = 1+na+a+na^2 = 1+a(n+1)+na^2$

Or, comme $n \ge 0$ et $a^2 > 0$, $na^2 \ge 0$

Donc $q^{n+1} \ge 1 + a(n+1)$

La propriété est donc héréditaire.

CONCLUSION:

 P_0 est vraie, $\forall n \in \mathbb{N}, P_n \Rightarrow P_{n+1}$, donc d'après le principe de récurrence, $\forall n \in \mathbb{N}, q^n \ge 1 + na$.

$$a > 0 \Rightarrow \lim_{n \to +\infty} (1 + na) = +\infty.$$

Donc d'après le théorème de comparaison, $\lim_{n\to+\infty} q^n = +\infty$.

4 Prérequis (Fonction exponentielle)

Soit f une fonction dérivable sur un intervalle I. Si $\forall x \in I$, f'(x) = 0, alors f est constante sur I.

5 1ère Démo (Fonction exponentielle)

5.1 Énoncé

Soit f la fonction dérivable sur \mathbb{R} telle que f' = f et f(0) = 1. Alors, $\forall x \in \mathbb{R}, f(x) \times f(-x) = 1$ et $f(x) \neq 0$.

5.2 Démonstration

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = f(x) \times f(-x)$.

Comme f est dérivable sur \mathbb{R} , il en est de même de la fonction $u: x \to f(-x)$ et, pour $x \in \mathbb{R}$, u'(x) = -f'(x). Donc g est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$:

$$g'(x) = f'(x) \times u(x) + f(x) \times u'(x)$$

$$= f'(x) \times f(-x) - f(x) \times f(-x)$$

$$= f(x) \times f(-x) - f(x) \times f(-x) \quad : f' = f$$

$$= 0$$

Donc g est constante sur \mathbb{R} .

Par ailleurs, $g(0) = f(0)f(-0) = (f(0))^2 = 1$.

Donc $\forall x \in \mathbb{R}, g(x) = 1 \Leftrightarrow f(x) \times f(-x) = 1.$

De plus, si $\exists x_0 \in \mathbb{R}$, $f(x_0) = 0$, alors $f(x_0) \times f(-x_0) = 0$, ce qui contredit le résultat précédent. Donc $\forall x \in \mathbb{R}$, $f(x) \neq 0$.

Unicité de la fonction exponentielle

6.1 Énoncé

Il existe une unique fonction f définie sur \mathbb{R} telle que f' = f et f(0) = 1. Cette fonction s'appelle la **fonction exponentielle**, et on la note *exp*.

6.2 Démonstration

ÉXISTENCE:

L'existence de la fonction exponentielle est admise.

Soit g une autre fonction définie et dérivable sur sur \mathbb{R} telle que g' = g et g(0) = 1. D'après la propriété précédente, $\forall x \in \mathbb{R}, f(x) \neq 0$, on peut donc définir la fonction :

$$h(x) = \frac{g(x)}{f(x)}$$

Montrons que $\forall x \in \mathbb{R}, h(x) = 1$.

La fonction h est dérivable sur \mathbb{R} , donc $\forall x \in \mathbb{R}$:

$$h'(x) = \frac{g'(x) \times f(x) - g(x) \times f'(x)}{(f(x))^2}$$

$$= \frac{g(x) \times f(x) - g(x) \times f(x)}{(f(x))^2} : f' = f; g' = g$$

$$= 0$$

Donc
$$h$$
 est constante sur \mathbb{R} .
De plus, $h(0) = \frac{g(0)}{f(0)} = 1$.

Donc
$$\forall x \in \mathbb{R}, h(x) = 1 \Leftrightarrow \frac{g(x)}{f(x)} = 1 \Leftrightarrow g(x) = f(x).$$

Donc f = g.

Limites de la fonction exponentielle

7.1 Énoncé

$$1. \lim_{x \to -\infty} e^x = 0^+$$

$$2. \lim_{x \to +\infty} e^x = +\infty$$

7.2 Démonstration

LIMITE EN $+\infty$

Montrons que : $\forall x \in \mathbb{R}^+, e^x > x$.

Soit $\forall x \in \mathbb{R}^+$, $f(x) = e^x - x$.

f est dérivable sur $[0; +\infty[$ et $\forall x \in \mathbb{R}^+, f'(x) = e^x - 1.$

 $\forall x \ge 0, e^x > 1 \Rightarrow f'(x) \ge 0$

Donc f est croissante sur $[0; +\infty[$ et comme $f(0) = e^0 = 1,$

 $\forall x \ge 0, f(x) \ge 1 \Rightarrow f(x) > 0 \Leftrightarrow e^x > x$

Comme $\lim_{x \to +\infty} x = +\infty$, on a, par comparaison, $\lim_{x \to +\infty} e^x = +\infty$

Limite en $-\infty$

$$\forall x \in \mathbb{R}, e^x = \frac{1}{e^{-x}}$$

D'où:

$$\lim_{x \to +\infty} (-x) = +\infty \Rightarrow \lim_{x \to -\infty} e^{-x} = +\infty \Rightarrow \lim_{x \to -\infty} e^{x} = 0$$

8 1ère Démo (Intégration)

8.1 Énoncé

Soit f une fonction continue et positive sur un intervalle [a;b] . Alors la fonction F définie sur [a;b] par :

$$F(x) = \int_{a}^{x} f(t) \, dt$$

est dérivable sur [a;b] et $\forall x \in [a;b]$, F'(x) = f(x). Plus précisément, F est la primitive de f sur [a;b] qui s'annule en a.

8.2 Démonstration

L'on ne montrera ce théorème que lorsque f est croissante sur [a;b].

Soit f une fonction continue, positive et croissante sur [a;b]. Soient $x_0 \in [a;b]$ et h > 0 tel que $x_0 + h \in [a;b]$.

Idée : On va encadrer $\frac{F(x_0+h)-F(x_0)}{h}$ pour calculer sa limite quand $h\to 0$

On a, d'après la relation de Chasles:

$$F(x_0 + h) - F(x_0) = \int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt = \int_a^{x_0 + h} f(t) dt = \int_{x_0}^{x_0 + h} f(t) dt$$

Remarque : Comme f est croissante sur [a;b], le domaine $\mathcal D$ est compris entre les rectangles de base $[x_0;x_0+h]$ et de hauteurs $f(x_0)$ et $f(x_0+h)$, ce qui va nous permettre d'encadrer $\int_{x_0}^{x_0+h} f(t) \, dt$.

Comme f est croissante sur [a;b], on a l'encadrement :

$$(x_0 + h - x_0) \times f(x_0) \le \int_{x_0}^{x_0 + h} f(t) dt \le (x_0 + h - x_0) \times f(x_0 + h)$$

C'est à dire:

$$h \times f(x_0) \le \int_{x_0}^{x_0+h} f(t) \, \mathrm{d}t \le h \times f(x_0+h)$$

D'où, en divisant pas h > 0:

$$f(x_0) \le \frac{\int_{x_0}^{x_0 + h} f(t) dt}{h} \le f(x_0 + h)$$

Soit encore, puisque $F(x_0 + h) - F(x_0) = \int_{x_0}^{x_0 + h} f(t) dt$:

$$f(x_0) \le \frac{F(x_0 + h) - F(x_0)}{h} \le f(x_0 + h)$$

En procédant de même pour h < 0, on obtient : $f(x_0 + h) \le \frac{F(x_0 + h) - F(x_0)}{h} \le f(x_0)$.

Comme f est continue sur [a;b], on a donc en x_0 , $\lim_{h \to 0} f(x_0 + h) = f(x_0)$.

Donc d'après le théorème des gendarmes, $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$. Donc F est dérivable sur x_0 avec $F'(x_0) = f(x_0)$.

Ceci étant vrai pour tout x_0 de [a;b], F est dérivable sur [a;b] et F'=f.

2ème Démo (Intégration)

9.1 Énoncé

Toute fonction continue sur un intervalle admet des primitives sur cet intervalle.

9.2 Démonstration

On se place dans le cas où f est définie sur l'intervalle **fermé** [a;b].

On admet que, dans ce cas, f admet un minimum m sur [a;b].

La fonction $g: x \mapsto f(x) - m$ est alors continue et positive sur [a; b].

Elle admet donc une primitive G sur [a;b]: $\forall x \in [a;b]$, G'(x) = f(x) - m.

Soit $\forall x \in [a;b], F: x \mapsto G(x) + mx$.

Alors *F* est dérivable sur [a;b] et, pour tout $x \in [a;b]$:

$$F'(x) = G'(x) + m = g(x) - m = f(x) - m + m = f(x)$$

Ainsi, f admet F pour primitive sur [a;b].

Indépendance de deux événements (Probabilités)

10.1 Indépendance

Deux événements A et B sont indépendants si $P(A \cap B) = P(A) \times P(B)$ Si $P(A) \neq 0$, A et B sont indépendants si, et seulement si $P_A(B) = P(B)$.

10.2 Énoncé

Si A et B sont indépendants, alors \bar{A} et B le sont aussi.

10.3 Démonstration

Comme *A* et *B* sont indépendants, $P(A \cap B) = P(A) \times P(B)$.

A et \bar{A} forment un système d'événements complet, donc d'après la formule des probabilités totales : $P(B) = P(A \cap B) + P(\bar{A} \cap B)$

D'où:

$$P(\bar{A} \cap B) = P(B) - P(A \cap B)$$

$$= P(B) - P(A) \times P(B)$$

$$= P(B) \times (1 - P(A))$$

$$= P(\bar{A}) \times P(B)$$

Donc A et B sont indépendants.

11 La loi exponentielle est une loi sans mémoire

11.1 Énoncé

$$X \rightsquigarrow \mathcal{E}(\lambda) \Rightarrow \forall (t; h) \in \mathbb{R}^2_+, P_{X \ge t}(X \ge t + h) = P(X \ge h)$$

11.2 Démonstration

$$P_{X \ge t}(X \ge t + h) = \frac{P(\{X \ge t\} \land \{X \ge t + h\})}{P(X \ge t)}$$

$$= \frac{P(X \ge t + h)}{P(X \ge t)}$$

$$= \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}$$

$$= \frac{e^{-\lambda t} \times e^{-\lambda h}}{e^{-\lambda t}}$$

$$= e^{-\lambda h}$$

$$= P(X \ge h)$$

12 Unicité de u_{α}

12.1 Loi normale centrée réduite

$$\forall t \in \mathbb{R}, \phi(t) = \frac{1}{2\pi} \times e^{-\frac{t^2}{2}}$$

12.2 Énoncé

$$T \rightsquigarrow \mathcal{N}(0; 1) \Rightarrow \forall \alpha \in]0; 1[, \exists ! u_{\alpha} \in \mathbb{R}^+, P(-u_{\alpha} \le T \le u_{\alpha}) = 1 - \alpha$$

12.3 Démonstration

Soit $\forall u \in [0; +\infty[, F(u) = P(-u \le T \le u) = 1 - \alpha$.

On a : F(0) = 0 et $\lim_{u \to +\infty} F(u) = 1$: l'aire sous la cloche vaut 1.

Par ailleurs, par symétrie de ϕ par rapport à l'axe des ordonnées, on a :

 $F(u) = 2 \times P(0 \le T \le u) = \int_0^u \phi(t) \, \mathrm{d}t \ (avec \int_0^u \phi(t) \, \mathrm{d}t \ la \ primitive \ de \ \phi \ qui \ s'annule \ en \ 0).$ Donc $F'(u) = 2 \times \phi(u) > 0$ et par suite, F est strictement croissante sur $[0; +\infty[$.

Donc d'après le théorème des valeurs intermédiaires, comme $(1-\alpha) \in]0; 1[, \exists ! u_{\alpha} \in \mathbb{R}, F(u_{\alpha}) = 1-\alpha,$ c'est à dire telle que :

$$P(-u_\alpha \leq T \leq u_\alpha) = 1 - \alpha$$

13 Intervalle de fluctuation avec une loi normale

13.1 Énoncé

Soient:

— X_n une variable aléatoire suivant la loi binomiale $\mathcal{B}(n; p)$

— La fréquence
$$F_n = \frac{X_n}{n}$$

- α ∈]0; 1[

— $u_{\alpha} \in \mathbb{R}$, $P(-u_{\alpha} \le Z \le u_{\alpha}) = 1 - \alpha$, $Z \leadsto \mathcal{N}(0; 1)$

On note:

$$I_n = \left[p - u_\alpha \sqrt{\frac{p(1-p)}{n}}; p + u_\alpha \sqrt{\frac{p(1-p)}{n}} \right]$$

Alors $\lim_{n \to +\infty} P(F_n \in I_n) = 1 - \alpha$

Note : I_n s'appelle **l'intervalle de fluctuation asymptotique** de la fréquence F_n au seuil $1-\alpha$.

13.2 Démonstration

Soit:

$$Z_n = \frac{X_n - np}{\sqrt{np(1-p)}}$$

D'après le théorème de Moivre-Laplace, quand n devient grand, Z_n suit une loi normale centrée réduite $\mathcal{N}(0;1)$:

$$\lim_{n \to +\infty} P(-u_{\alpha} \le Z_n \le u_{\alpha}) = 1 - \alpha$$

Or:

$$-u_{\alpha} \leq Z_{n} \leq u_{\alpha} = -u_{\alpha} \leq \frac{X_{n} - np}{\sqrt{np(1-p)}} \leq u_{\alpha}$$

$$= -u_{\alpha} \times \sqrt{np(1-p)} \leq X_{n} - np \leq u_{\alpha} \times \sqrt{np(1-p)}$$

$$= np + -u_{\alpha} \times \sqrt{np(1-p)} \leq X_{n} \leq np + u_{\alpha} \times \sqrt{np(1-p)}$$

$$= p - u_{\alpha} \times \sqrt{\frac{p(1-p)}{n}} \leq \frac{X_{n}}{n} \leq p + u_{\alpha} \times \sqrt{\frac{p(1-p)}{n}}$$

$$= p - u_{\alpha} \times \sqrt{\frac{p(1-p)}{n}} \leq F_{n} \leq p + u_{\alpha} \times \sqrt{\frac{p(1-p)}{n}}$$

D'où le résultat en passant à la limite.

14 Théorème du toit

14.1 Énoncé

Soient d_1 et d_2 deux droites parallèles, \mathscr{P}_1 et \mathscr{P}_2 deux plans distincts tels que $d_1 \subset \mathscr{P}_1$ et $d_2 \subset \mathscr{P}_2$. Si \mathscr{P}_1 et \mathscr{P}_2 sont sécants, alors leur droite Δ d'intersection est parallèle à d_1 et d_2 .

14.2 Énoncé

Notons \vec{u} un vecteur directeur de d_1 et d_2 (qui sont parallèles), et \vec{w} un vecteur directeur de Δ . Notons $(\vec{u}, \vec{v_1})$ un couple de vecteurs directeurs de \mathcal{P}_2 .

$$\Delta \subset \mathcal{P}_1 \Rightarrow \exists (x_1; y_1) \in \mathbb{R}^2, \ \vec{w} = x_1 \vec{u} + y_1 \vec{v}_1.$$

$$\Delta \subset \mathcal{P}_2 \Rightarrow \exists (x_2; y_2) \in \mathbb{R}^2, \ \vec{w} = x_2 \vec{u} + y_2 \vec{v}_2.$$

On a donc $x_1 \vec{u} + y_1 \vec{v_1} = x_2 \vec{u} + y_2 \vec{v_2}$, c'est à dire $(x_1 - x_2) \vec{u} = y_2 \vec{v_2} - y_1 \vec{v_1}$.

Si $x_1 \neq x_2$, alors $\vec{u} = \frac{y_2}{x_1 - x_2} \vec{v_1} - \frac{y_2}{x_1 - x_2} \vec{v_2}$ et les vecteurs \vec{u} , $\vec{v_1}$ et $\vec{v_2}$ sont donc coplanaires ce qui est impossible car les plans \mathscr{P}_1 et \mathscr{P}_2 sont sécants. Donc $x_1 = x_2$ et $y_1 = 0$ et $y_2 = 0$ car les vecteurs $\vec{v_1}$ et $\vec{v_2}$ ne sont pas colinéaires. Au final, $\vec{w} = x_1 \vec{u}$ et Δ est parallèle à d_1 et d_2 .