Übungsblatt 5

Aufgabe 1: Rechnen mit Matrizen

Addieren und multiplizieren Sie (wenn möglich) folgende Matrizenpaare. Berechnen Sie zudem (wenn möglich) den Kommutator [AB] = AB - BA.

(a)
$$A = \begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 & 0 \\ 3 & -1 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} \sqrt{2} \\ -1 \\ \sqrt{3} \end{pmatrix}$$
, $B = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

(c)
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 2 & 1 \\ 4 & 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 & 0 \\ 3 & -1 \\ 0 & 1 \end{pmatrix}$.

Übungsblatt 5

(d) Berechnen Sie A^TB und AB^T mit den Matrizen von Aufgabe (b).

Aufgabe 2: Determinanten

Berechnen Sie die folgenden Determinanten mit so wenig Aufwand wie möglich:

(a)
$$\begin{vmatrix} 4 & 3 & 5 \\ -1 & -3 & -2 \\ 3 & 3 & 1 \end{vmatrix}.$$

(b)
$$\begin{vmatrix} 4 & 3 & 5 \\ 1 & 3 & 2 \\ 3 & 3 & 1 \end{vmatrix}.$$

Aufgabe 3: Inverse Matrix

Bestimmen Sie die inversen Matrizen zu den folgenden Matrizen und überprüfen Sie die Richtigkeit der Ergebnisse rechnerisch:

(a)
$$\begin{pmatrix} 4 & 3 & 5 \\ -1 & -3 & -2 \\ 3 & 3 & 1 \end{pmatrix}$$
 (siehe Aufgabe 2(a)).

Übungsblatt 5

(b)
$$\begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Aufgabe 4: Bonus: Drehmatrizen

Zeigen Sie, dass die Länge eines Vektors $\vec{x} = (x,y,z)^T$ nach einer Drehung durch eine Drehmatrix

$$D_x(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix},$$

d.h. nach der Operation $\vec{x'} = D_x(\phi)\vec{x}$, unverändert bleibt.