Architecture des Ordinateurs

Partie II: Microprocesseur

3. Interruptions et DMA (suite)

David Simplot simplot@fil.univ-lille1.fr

Au sommaire...

- Introduction
- Interruptions matérielles
- Interruptions logicielles
- Direct Access Memory
- Exemple d'implémentation

D. SIMPLOT - Architecture des Ordinateurs

2

Objectifs

- Comment implémenter un gestionnaire d'interruption ?
- Transition vers le chapitre 4
 - Microprogrammation
- Unité de contrôle plus simple que celle d'un microprocesseur :
 - Automates,
 - ♠ Premier pas vers la microprogrammation...

D. SIMPLOT - Architecture des Ordinateurs

Exemple d'implémentation (2/15) (1) déterminer le comportement

- Que doit faire le gestionnaire d'interruption ?
 - $_{\scriptsize \scriptsize \oplus}$ Sur réception d'un signal INTx : Mémoriser dans le buffer
 - Y a-t-il une place libre ?
 - Si oui, mémoriser puis incrémenter le compteur il faut également envoyer le signal INTAx
 - Si non, rien à faire... attendre qu'une place se libère...
 - Sur réception d'un signal INTA : Présenter le numéro d'interruption
 - · Attendre que INTA repasse à zéro
 - · Décaler les registres du buffer et décrémenter le compteur

D. SIMPLOT - Architecture des Ordinateurs

Exemple d'implémentation (3/15) (1) déterminer le comportement (suite) On utilise un automate: INTx et non plein Attente

On utilise un automate :

INTx et non plein

Attente

Décaler le buffer

Décrémenter cpt

INTA

INTA

Présenter numéro

INTA

- Pb : si le périphérique ne baisse pas tout de suite son INT, il sera mémorisé plusieurs fois...
 - On ajoute un état de temporisation...

D. SIMPLOT - Architecture des Ordinateurs

Exemple d'implémentation (4/15) (1) déterminer le comportement (suite) Nouvel automate... INTx et non plein Attente Décaler le buffer Décrémenter cpt INTA Incrémenter cpt Est-il utile de perdre un cycle d'horloge à chaque mémorisation? Si il y a un INTA, on peut passer directement à son traîtement... D. SIMPLOT - Architecture des Ordinateurs

Exemple d'implémentation (10/15) (4) Codage des états Dans notre automate, on a 6 états → au minimum 3 bits dans le registre d'états Il faut attribuer une configuration de ces 3 bits pour chacun des états · Critère : minimiser la distance (en nombre de bits différents) entre deux états reliés entre eux... 000 A 001 B 101 **F** 010 **D** 110 011 C 111 E D. SIMPLOT - Architecture des Ordinateurs 14

(5) Gestion des transitions (suite) Etat Q2..0 INTA Full INTx état suivant 000 0 B 001 E 111 0 0 E 111 A 000 0 A 000 В 001 C 011 С 011 0 D 010 E 111 D 010 A 000 Ε 111 0 F 101 E 111 D. SIMPLOT - Architecture des Ordinateurs

Exemple d'implémentation (13/15)

Exemple d'implémentation (14/15) (5) Gestion des transitions (suite)

Etat	Q20	INTA	Full	INTx	état suivant	JK2	JK1	JK0		
Α	000	*	0	1	B 001	0*	0*	1*		
		1	1	*	E 111	1*	1*	1*		
		1	0	0	E 111	1*	1*	1*		
		0	1	*	A 000	0*	0*	0*		
		0	0	0	A 000	0*	0*	0*		
В	001	*	*	*	C 011	0*	1*	*0		
С	011	0	*	*	D 010	0*	*0	*1		
		1	*	*	E 111	1*	*0	*0		
D	010	*	*	*	A 000	0*	*1	0*		
Е	111	0	*	*	F 101	*0	*1	*0		
		1	*	*	E 111	*0	*0	*0		
F	101	*	*	*	A 000	*1	0*	*1		
SIMPLO	SIMPLOT - Architecture des Ordinateurs									

Exemple d'implémentation (15/15) (6) Génération des signaux

Pour chaque état, on regarde les signaux générés

D. SIMPLOT - Architecture des Ordinateurs

Eta	Q2	Z	LD	EIN	LDCP	INT/!DE	EDec	Stor	Shif
t	0	D	R	T	Т	С	0	е	t
Α	000	0	*	1	0	*	0	0	0
В	001	0	1	1	0	1	0	1	0
С	011	0	0	1	1	1	1	0	0
D	010	0	*	1	0	*	0	0	0
Е	111	1	*	1	0	0	0	0	0
F	101	0	*	0	1	0	0	0	1
l .									

Conclusion

- La méthode d'implémentation « câblée » des automates est propre aux μP de type RISC :
 - * RISC = Reduced Instruction Set Computer
 - E.g. PowerPC, MIPS, ...
 - [♠] Le format des instructions est uniforme et on peut facilement « tirer » des câbles à partir du registre IR
 - La plupart des instructions se font en un cycle et sont donc facilement représentable sous forme d'automates
- Pour les CISC…
 - Complex Instruction Set Computer
 - E.g. Pentium x86, Motorolla 68xxx, ...
 - [↑] Automate monstrueux ⇒ iI faut une autre méthode...

D. SIMPLOT - Architecture des Ordinateurs

22