Tecnológico de Monterrey

Física Matemática II Departamento de Física

Prof. Julio C. Gutiérrez Vega

TAREA # 1

 $\frac{\mathrm{d}^{\pi} f}{\mathrm{d} x^{\pi}}$

Nombre del equipo: <u>La π-ésima derivada</u>

Nombres	Matrícula
Isidro Isaac Reyes Quintero	A01730477
Rohan Ramesh	A01673352

Fecha de entrega: 20 Agosto 2018			
Calificación:	de	puntos	

1)

¿Bajo cuál condición tres puntos distintos z₁, z₂ y z₃ estarán sobre una misma recta?

Consideramos los siguientes números complejos:

$$z_{21} = z_2 - z_1 = r_{21}e^{i\theta_{21}}$$
 $z_{31} = z_3 - z_1 = r_{31}e^{i\theta_{31}}$

Para que los números queden sobre la misma recta, los ángulos de los números tienen que cumplir que $\theta_{21} = \pm \theta_{31}$. Esto nos permite escribir la condición de la siguiente manera:

$$| \arg (z_2 - z_1) | = | \arg (z_3 - z_1) |$$

2)

 $\dot{\varepsilon}$ Bajo cuál condición cuatro puntos distintos $z_1,\ z_2,\ z_3\ y\ z_4$ estarán sobre una misma circunferencia?

Consideramos que el punto z_3 es el punto más lejano de z_1 , es decir, $|z_3 - z_1| > |z_2 - z_1|$ y $|z_3 - z_1| > |z_4 - z_1|$. Si no cumple con esto, se cambia el orden de los puntos de tal manera que sea cierto(si z_2 , z_3 y z_4 son equidistantes a z_1 , entonces los puntos no son sobre la misma circunferencia dado que z_1 sería el centro de un circulo único que pasa por los otros puntos). Ahora podemos utilizar el **teorema de Ptolemy** para definir la condición para que los 4 puntos queden sobre la misma circunferencia:

$$|z_3 - z_1||z_4 - z_2| = |z_2 - z_1||z_4 - z_3| + |z_4 - z_1||z_3 - z_2|$$

3)

¿Bajo cuál condición n puntos distintos z_1 , z_2 , z_3 , ..., z_n estarán sobre una misma esfera tridimensional?

Dado que todos los números complejos están definidos por 2 números reales(o dos grados de libertad) y sólo se requiere dos números reales para describir la superficie de una esfera, **todos los números complejos pertenecen a la misma esfera tridimensional**. Ej: *Esfera de Riemann*.

4)

Representar el conjunto de puntos

$$Re\left[(a+i)z+b\right] = 0$$

con $a, b \in \mathbb{R}$ y explicar el significado geométrico de a y b.

Dado que z=x+iy, la expresión dada se puede escribir como:

$$\operatorname{Re}\left[ax - y + b + iay + ix\right] = 0$$
 \Rightarrow $ax - y + b = 0$

Esto claramente es la ecuación de una línea recta, a describe la pendiente de la línea y b es la ordenada en el origen. A continuación se muestra una gráfica del conjunto de puntos, con valores a y b generados aleatoriamente.

5)

Dibuja en el plano complejo las regiones definidas por las siguientes relaciones

A)
$$|z - z_0| < R$$

La región representa todos los puntos en el plano complejo que se encuentran a una distancia menor a R de z_0 . En coordenadas cartesianas, la región está descrita por:

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} < R$$

a continuación se muestra la región utilizando los siguientes valores:

$$z_0 = 0.898998 + i4.53115$$
 $R = 4$

B)
$$\text{Re}[z^2] = 4$$

La expresión dada se puede simplificar a lo siguiente:

$$Re[x^2 - y^2 + 2ixy] = x^2 - y^2 = 4$$

Esto describe una hipérbola como se muestra en la siguiente gráfica:

C)
$$\text{Re}[e^{i\pi/2}z] = 0$$

Simplificando, obtenemos:

$$\operatorname{Re}[ix - y] = -y = 0$$

$$\mathbf{D})|z - 1 + i| + |z + 1 - i| = 6$$

Si consideramos que $z_0\equiv 1-i,$ entonces podemos escribir la relación como:

$$|z - z_0| + |z + z_0| = 6$$

Esto es la definición de un ellipse con focos en z_0 y $-z_0$.

E)
$$\frac{e^{[\text{Im}(z)]^2}}{e^{|z|^2}} - \text{Im}(z) = 0$$

Simplificando, obtenemos:

$$\frac{e^{y^2}}{e^{x^2+y^2}} - y = 0 \qquad \Leftarrow \qquad y = e^{-x^2}$$

la cual describe una campana gaussiana, como se muestre en al siguiente gráfica:

6)

Encontrar y graficar cuidadosamente la región en el plano w=u+iv que corresponde a la región triangular limitada por las rectas $x=1,\ y=1$ and x+y=1 bajo la transformación $w=-z^2$

Escribiendo explicitamente la transformación, obtenemos:

$$w = f(z) = -z^2 = (y^2 - x^2) + i(-2xy)$$

 $u = y^2 - x^2$ $v = -2xy$

utilizamos las siguientes parametrizaciones de las rectas dadas para generar las curvas correspondientes en el espacio w:

utilizando estas curvas se generó la siguiente gráfica:

7)

 \dot{z} Cómo se transforman las líneas coordenadas del plano z cuando se aplica esta transformación?

$$e^z = \frac{a - w}{a + w}$$

donde a es una constante compleja en general y w=u+iv. Para ilustrar sus conclusiones grafiquen cuidadosamente la imagen en el plano w del rectángulo definido por los puntos $z_1=1+i$, $z_2=3+i$, $z_3=3+2i$ y $z_4=1+2i$.

Queremos despegar la expresión para w = f(z). Primero, tomamos el logaritmo de ambos lados:

$$z = \ln \frac{1 - w/a}{1 + w/a}$$

recordando que:

$$\tanh^{-1}(s) = \frac{1}{2} \ln \frac{1+s}{1-s}$$

podemos decir que:

$$z = 2 \tanh^{-1} \left(\frac{-w}{a} \right) \qquad \Rightarrow \qquad w = -a \tanh \left(\frac{z}{2} \right)$$

Ya sabemos que el efecto del valor de a escala y rota la transformación por las propiedades de los números complejos. Por lo tanto en las siguientes gráficas se utilizarán los valores:

$$a = 1$$
 $a = e^{i\pi/4}$ $a = 2e^{i3\pi/2}$

