

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Быстрое преобразование Фурье»

Студент 315 группы В.В. Кожемяк

Руководители практикума к.ф.-м.н., доцент И.В. Рублёв к.ф.-м.н., доцент П.А. Точилин

Содержание

1	Пос	становка задачи	3
	1.1	Общая формулировка задачи	3
	1.2	Формальная постановка задачи	3
2	Вы	числение аналитических преобразований Фурье	4
	2.1	Некоторые необходимые обозначения и соотношения	4
		Вычисление аналитического преобразования Фурье	
		функции $f_1(t) = \frac{1-\cos^2 t}{t}$	5
	2.3	Вычисление аналитического преобразования Фурье	
		функции $f_2(t)=te^{-2t^2}$	7
	2.4	Примеры, иллюстрирующие работу программы	

1 Постановка задачи

1.1 Общая формулировка задачи

Дана система функций (всюду далее, если не сказано противное, предполагается, что $f(t): \mathbb{R} \to \mathbb{R}$ и функция суммируема и обладает достаточной гладкостью)

$$\begin{cases}
f_1(t) = \frac{1 - \cos^2 t}{t} \\
f_2(t) = te^{-2t^2} \\
f_3(t) = \frac{2}{1 + 3t^6} \\
f_4(t) = e^{-5|t|} \ln(3 + t^4)
\end{cases}$$
(1.1)

Для каждой функции из системы (1.1) требуется:

- 1. Получить аппроксимацию преобразования Фурье $F(\lambda)$ при помощи быстрого преобразования Фурье (**БПФ** / **FFT**), выбирая различные шаги дискретизации исходной функции и различные окна, ограничивающие область определения f(t).
- 2. Построить графики $F(\lambda)$.
- 3. Для функций $f_1(t)$ и $f_2(t)$ из заданного набора вычислить аналитически преобразование Фурье

$$F(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt$$
 (1.2)

и сравнить графики $F(\lambda)$, полученные из аналитического представления и из аппроксимации через $\mathbf{B}\Pi\Phi$.

1.2 Формальная постановка задачи

- 1. Реализовать на языке MATLAB функцию plotFT(hFigure, fHandle, fFTHandle, step, inpLimVec, outLimVec) со следующими параметрами:
 - hFigure указатель на фигуру, в которой требуется отобразить графики
 - fHandle указатель на функцию (Function Handle), которую требуется преобразовывать (f(t))
 - fFTHandle указатель на функцию (Function Handle), моделирующую аналитическое преобразование Фурье (1.2) функции f(t) (может быть пустым вектором, в таком случае график аналитического преобразования строить не требуется)
 - ullet step положительное число, задающее шаг дискретизации Δt
 - inpLimVector вектор-строка, задающая окно [a,b] для функции f(t), первый элемент вектора содержит a, второй b, причём a < b, но не обязательно a = -b

• outLimVector — вектор-строка, задающая окно [c,d] для вывода графика преобразования Фурье (пределы осей абсцисс). В случае, если передаётся пустой вектор, следует брать установленные в фигуре пределы или определять свои разумным образом

Данная функция строит графики вещественной и мнимой частей численной аппроксимации преобразования Фурье (1.2) функции f(t), заданной в fHandle (и, при необходимости, соответствующие графики аналитического преобразования Фурье $F(\lambda)$)

Кроме того, данная функция, должна возвращать структуру, содержащую следующие параметры:

- nPoints число вычисляемых узлов сеточной функции, рассчитываемое по формуле: $nPoints = \left\lfloor \frac{(b-a)}{step} \right\rfloor$
- step поправленное значение шага дискретизации Δt , рассчитываемое по формуле: $step = \frac{(b-a)}{nPoints}$
- ullet inpLimVec окно [a,b] для функции f(t)
- outLimVec окно для вывода графика преобразования Фурье $f(\lambda)$
- 2. Построить, используя написанную функцию plotFT, для каждой из функций системы (1.1) графики λ для разных значений входных параметров (окон **inpLimVec**, **outLimVec** и частоты дискретизации **step**).

В частности, для некоторых функций подобрать параметры так, чтобы проиллюстрировать эффекты наложения спектра, появления ряби и их устранения (в случае ряби — в точках непрерывности λ)

3. Для функций $f_1(t)$ и $f_2(t)$ из системы (1.1) вычислить аналитически их преобразования Фурье $F(\lambda)$ и построить их графики вместе с графиками численной аппроксимации $F(\lambda)$

2 Вычисление аналитических преобразований Фурье

2.1 Некоторые необходимые обозначения и соотношения

Напомним, что преобразование Фурье $F(\lambda)$ функции f(t) задаётся формулой (1.2):

$$F(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} ddt$$

Далее, для краткости будем писать:

$$f(t) \to F(\lambda)$$

Для вычисления аналитического преобразования Фурье нам потребуется лемма Жордана и теорема о вычетах.

Лемма 2.1 (лемма Жордана). Если f(z) аналитична в верхней полуплоскости Im(z) > 0, за исключением конечного числа изолированных особых точек, и при $|z| \to \infty$ стремится к нулю равномерно относительно $\arg z$. Тогда для любого $\alpha > 0$

$$\lim_{R \to \infty} \int_{C_R} f(z) \cdot e^{i\alpha z} \, dz = 0$$

где C_R верхняя полуокружность |z|=R, Im(z)>0

Теорема 2.2 (Основная теорема о вычетах). Пусть функция f(z) аналитична всюду в области D за исколючением конечного числа изолированных особых точек z_1, \dots, z_n . Тогда для любой замкнутой области \overline{G} , лежсащей в D и содержащей точки z_1, \dots, z_n внутри, справедливо равенство

$$\int_{\partial G} f(\zeta) d\zeta = 2\pi i \sum_{k=1}^{n} resf(z_k)$$

И еще необходим будет интеграл:

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \tag{2.1}$$

2.2 Вычисление аналитического преобразования Фурье функции $f_1(t) = \frac{1-\cos^2 t}{t}$

Для начала упростим выражение

$$f_1(t) = \frac{1 - \cos^2 t}{t} = \frac{\sin^2 t}{t} = \frac{1 - \cos 2t}{2t}$$

Преобразование Фурье $F_1(\lambda)$ функции $f_1(t)$ задаётся формулой:

$$F_1(\lambda) = \int_{-\infty}^{+\infty} \frac{1 - \cos 2t}{2t} \cdot e^{-i\lambda t} \, ddt$$

Вычислим этот этот интеграл. Для начала распишем $e^{-i\lambda t}$ по определению:

$$e^{-i\lambda t} = \cos \lambda t - i\sin \lambda t.$$

Далее это выражение подставляем в интеграл и пользуемся линейностью интеграла:

$$\int\limits_{-\infty}^{+\infty} \frac{1-\cos 2t}{2t} \cdot e^{-i\lambda t} \, ddt = \int\limits_{-\infty}^{+\infty} \frac{1-\cos 2t}{2t} \cdot \cos \lambda t \, ddt - i \int\limits_{-\infty}^{+\infty} \frac{1-\cos 2t}{2t} \cdot \sin \lambda t \, ddt =$$

$$=\int\limits_{-\infty}^{+\infty}\frac{1}{2t}\cdot\cos\lambda t\,ddt-\int\limits_{-\infty}^{+\infty}\frac{\cos 2t}{2t}\cdot\cos\lambda t\,ddt-i\int\limits_{-\infty}^{+\infty}\frac{1}{2t}\cdot\sin\lambda t\,ddt]+i\int\limits_{-\infty}^{+\infty}\frac{\cos 2t}{2t}\cdot\sin\lambda t\,ddt=$$

$$= \frac{1}{2}I_1 - \frac{1}{2}I_2 - \frac{i}{2}iI_3 + \frac{i}{2}iI_4$$

Рассмотрим каждый из интегралов отдельно.

1. Вычисление I_1 :

Из леммы Жордана (см. выше) и основной теоремы вычетов следует, что

$$\int_{-\infty}^{+\infty} e^{i\alpha x} \cdot f(x) dx = 2\pi i \sum_{k=1}^{n} res[e^{i\alpha z} f(z) | z = Im(z_k) > 0]$$

$$(2.2)$$

Поэтому интеграл I_1 равен нулю.

2. Вычисление I_2 :

Заметим, что

$$\cos 2t \cdot \cos \lambda t = \frac{\cos (2+\lambda)t + \cos (2-\lambda)t}{2}.$$

Пользуясь линейностью интегралов и делая замену переменной, мы сведем эти интегралы к I_1 .

3. Вычисление I_3 :

Следует рассматривать 3 случая:

(a) $\lambda > 0$:

Разбивая на два интеграла и делая замену переменной, мы сведем I_3 к уже известному интегралу (2.1).

(b) $\lambda < 0$:

Т.к. функция $\sin x$ — нечетная, значит знак "минус" можно вынести. И далее опять разбивая на два интеграла и делая замену переменной, мы сведем I_3 к уже известному интегралу (2.1).

(c) $\lambda = 0$:

Очевидно, что $I_3 = 0$.

4. Вычисление I_4 :

Заметим, что

$$\cos 2t \cdot \sin \lambda t = \frac{\sin (\lambda + 2)t + \sin (\lambda - 2)t}{2}.$$

Тогда получаем

$$\int_{-\infty}^{+\infty} \frac{\cos 2t \sin \lambda t}{t} dt = \int_{0}^{+\infty} \frac{\sin (\lambda + 2)t}{t} dt + \int_{0}^{+\infty} \frac{\sin (\lambda - 2)t}{t} dt$$

Следует рассматривать несколько случаев:

- (a) $\lambda > 2$: Делая замену переменной, получим интегралы типа (2.1).
- (b) $\lambda=2$: Второй интеграл в правой части обнулится, а первый, путем заменый переменной, сведётся к (2.1).
- (c) $\lambda \in (-2; 2)$: Очевидно, что $I_4 = 0$.
- (d) $\lambda = -2$: Первый интеграл в правой части обнулится, а второй, путем заменый переменной, сведётся к (2.1).
- (e) $\lambda < -2$: Пользуясь тем, что функция $\sin x$ нечетная, значит знак "минус" можно вынести и производя замену переменной, получим интегралы типа (2.1).

Итого, в результате получается, что

$$F(\lambda) = \begin{cases} 0, & \lambda \in \{-\infty; 2\} \cup \{0\} \cup \{2; +\infty\} \\ -\frac{\pi i}{2}, & \lambda \in (0; 2) \\ \frac{\pi i}{2}, & \lambda \in (-2; 0) \\ \frac{\pi i}{4}, & \lambda = -2 \\ -\frac{\pi i}{4}, & \lambda = 2 \end{cases}$$
 (2.3)

2.3 Вычисление аналитического преобразования Фурье функции $f_2(t) = te^{-2t^2}$

Преобразование Фурье $F_2(\lambda)$ функции $f_2(t)=te^{-2t^2}$ задаётся формулой:

$$F_2(\lambda) = \int_{-\infty}^{+\infty} t e^{-2t^2} e^{-i\lambda t} dt.$$

Выведем некоторую цепочку преобразований:

$$\int_{-\infty}^{+\infty} t e^{-2t^2} e^{-i\lambda t} dt = \int_{-\infty}^{+\infty} t e^{-2t^2 - i\lambda t} dt = \int_{-\infty}^{+\infty} t e^{-\left(2t^2 + i\lambda t + \frac{i^2\lambda^2}{8}\right) + \frac{i^2\lambda^2}{8}} d =$$

$$= e^{-\frac{\lambda^2}{8}} \int_{-\infty}^{+\infty} t e^{-\left(\sqrt{2}t + \frac{i\lambda}{2\sqrt{2}}\right)^2} dt = \left\{\sqrt{2}t + \frac{i\lambda}{2\sqrt{2}} = s\right\} =$$

$$= \frac{1}{\sqrt{2}} e^{-\frac{\lambda^2}{8}} \int_{-\infty}^{+\infty} \left(\frac{s}{\sqrt{2}} - \frac{i\lambda}{4}\right) e^{-s^2} ds = \frac{1}{4} e^{-\frac{\lambda^2}{8}} \int_{-\infty}^{+\infty} s e^{-s^2} ds - \frac{i\lambda}{4\sqrt{2}} e^{-\frac{\lambda^2}{8}} \int_{-\infty}^{+\infty} e^{-s^2} ds =$$

$$= \frac{1}{4}e^{-\frac{\lambda^2}{8}} \int_{-\infty}^{+\infty} e^{-s^2} ds^2 - \frac{i\lambda}{4\sqrt{2}}e^{-\frac{\lambda^2}{8}} \int_{-\infty}^{+\infty} e^{-s^2} ds.$$

Таким образом, первый интеграл обнуляется, а второй является известным интегралом (2.1). Следовательно получаем:

$$F_2(\lambda) = -\frac{i\sqrt{\pi}}{4\sqrt{2}} \cdot \lambda \cdot e^{-\frac{\lambda^2}{8}}.$$

2.4 Примеры, иллюстрирующие работу программы

1. Рассматрим функцию:

$$f_1(t) = \frac{1 - \cos^2 t}{t}.$$

Заметим, что она имее разрыв первого рода в точке t=0. Исходя из её аналитического представления, мы знаем, что у него пять точек разрыва $(\lambda=\pm\frac{\pi i}{2},\pm\frac{\pi i}{4},0)$.

Выберем несколько значений параметров $\triangle t$ (шаг дискретизации), [a,b] (окно, ограничивающее область действия функции $f_1(t)$), [c,d](окно для вывода преобразования Фурье $F_1(\lambda)$).

(a)
$$\triangle t = 0.9$$
, $[a, b] = [-30, 1000]$, $[c, d] = [-2, 2]$.

- Следствие 2.2.1. Мнимая часть преобразования Фурье, полученные аналитически и численно, совпадают с точностью до ряби. Эта рябь неизбежно возникает в точках разрыва, но также она появляется и в точках непрерывности функции $F_1(\lambda)$. Первое связано со свойствами преобразования Фурье, а второе с диапозоном окна.
 - Из аналитического представления $F_1(\lambda)$ следует, что вещественная часть преобразования Фурье равна нулю, в то время, как вещественная часть, полученная численно, по модудлю отлична от нуля не больше чем на шаг дискретизации Δt . Отметим, что точки разрыва в преобразовании Фурье, посчитанного численно, веществнной и мнимой частях совпадают.
- (b) $\triangle t = 0.9$, [a, b] = [-300, 2500], [c, d] = [-2, 2].

Следствие 2.2.2. • Мнимые части преобразования Фурье, полученные численно и аналитически совпадают. Но в отличии от предыдущего примера, рябь возникает только в точках разрыва (совсем ее убрать нельзя!). Следоватьельно увеличивая диапозон окна, можно добиться исчезновения ряби в точках неперерывности функции $F_1(\lambda)$.

- Ситуация с действительной частью обстоит также, как и в предыдущем примере.
- 2. Теперь рассмотрим функцию:

$$f_2(t) = te^{-2t^2}$$
.

Как можно видеть, эта функция и её преобразование Фурье непрерывны. Выберем

несколько значений параметров $\triangle t$ (шаг дискретизации), [a,b] (окно, ограничивающее область действия функции $f_1(t)$), [c,d](окно для вывода преобразования Фурье $F_2(\lambda)$).

(a)
$$\triangle t = 0.2$$
, $[a, b] = [-200, 500]$, $[c, d] = [-2, 2]$.

Следствие 2.2.3. • *Мнимые части преобразования Фурье, полученные численно и аналитически, совападают.*

- Вещественная часть преобразования Фурье, полученная аналитически равна нулю, в то время, как, полученная численно, по модулю не превосходит шага дискретизации $\triangle t$.
- Отсутсвует рябь. Т.к. нет точек разрыва.

(b)
$$\triangle t = 1$$
, $[a, b] = [-60, 100]$, $[c, d] = [-2, 2]$.

Следствие 2.2.4. • Вещественная часть преобразования Фурье по прежнему равна нулю, поэтому сдвиг ничего не изменит.

• Что касается мнимой части, то здесь наблюдается эффект наложения спектра. При этом численное преобразование Фурье не совпадает с аналитическим. Данное явление обусловлено нарушением соотношения

$$\triangle t \leq \frac{\pi}{\Lambda},$$

где $\triangle t$ — шаг дискретизации, а $\Lambda>0$ ($|\lambda|<\Lambda$) — промежуток, где нужено устранить наложение спектра.

В данном случае эффект наложения спектра можно устранить, т.к. функция $F_1(\lambda) \to 0$, при $|\lambda| \to +\infty$. И чтобы его устранить нужно: увеличить окно \Rightarrow уменьшится шаг дискретизации $\triangle t$ (см. пример выше);

3. Далее рассмотрим функцию:

$$f_3(t) = \frac{2}{1 + 3t^6}$$

Данная функция является непрерывной. Будем вычилсять преобразование Фурье численно. Выберем несколько значений параметров Δt (шаг дискретизации), [a,b] (окно, ограничивающее область действия функции $f_1(t)$), [c,d](окно для вывода преобразования Фурье $F_3(\lambda)$).

(a)
$$\triangle t = 0.1$$
, $[a, b] = [-40, 50]$, $[c, d] = [-10, 10]$.

Следствие 2.2.5. Сравнине графики мнимых и вещественных частей преобразования Фурье соответсвенно, мы делаем вывод, что ничего существенного не

изменилось при подборе различных параметров. Но мы поняли по графику, что проеобразование Фурье непрерывное.

4. Наконец рассмотрим функцию:

$$f_4(t) = e^{-5|t|} \ln(3 + t^4)$$

Эта функция - нерпрерывна. Будем вычилсять преобразование Фурье численно. Выберем несколько значений параметров $\triangle t$ (шаг дискретизации), [a,b] (окно, ограничивающее область действия функции $f_1(t)$), [c,d](окно для вывода преобразования Фурье $F_4(\lambda)$).

(a)
$$\triangle t = 0.1$$
, $[a, b] = [-100, 100]$, $[c, d] = [-20, 20]$.

(b)
$$\triangle t = 0.1$$
, $[a, b] = [-20, 50]$, $[c, d] = [-10, 10]$.

Следствие 2.2.6. Сравнинь графики мнимых и вещественных частей преобразования Фурье соответсвенно, мы делаем вывод, что ничего существенного не изменилось при подборе различных параметров. И опять мы понимаем, что преобразование Фурье непрерывно.