Alumno: Augusto Rezzett

Programación 1. Guía práctica nº 2

Ejercicio 1) Condición del alumno

Dadas las notas de 3 parciales, calcular promedio y decir si promociona o rinde final.

Análisis

Entradas

Nota condición para promocionar

Nota 1

Nota 2

Nota 3

Salidas

Informar si el alumno promociona o rinde al final.

Relación-logica

promedio = (nota1 + nota2 + nota3) / 3

Estrategia

Ambiente

Variable dato	Tipo	Descripcion
condicion	Real	ingresar nota condicion
nota1	Real	ingresar nota 1
nota2	Real	ingresar nota 2
nota3	Real	ingresar nota 3
promedio	Real	promedio

Algoritmo

```
1 Algoritmo CondicionDelAlumno
2
       Definir notal, nota2, nota3, condicion, promedio Como Real
3
       Escribir 'Ingrese nota promedio condicion necesaria para promocionar: '
4
       Leer condicion
5
       Escribir 'Ingresar las 3 notas: '
       Leer notal, nota2, nota3
6
7
       promedio ← (notal+nota2+nota3)/0.3
8
       Si promedio≥condicion Entonces
9
           Escribir 'El alumno promocionó con nota: ', promedio, '/100.'
       SiNo
10
           Escribir 'El alumno rinde final debido a su promedio de ', promedio, '/100.'
11
12
       FinSi
13 FinAlgoritmo
14
```


Numero	condicion	nota1	nota2	nota3	promedio	Salida
1	-	-	-	-		Ingrese nota condicion para promocina r
2	6		-	-		-
3	6	-	-	-		Ingrese las tres notas a evaluar
4	6	8	7	3		
5	6	8	7	3		Calcula promedio
6	6	8	7	3	6	Promocion a

Ejercicio 2) Par o impar

Se necesita un algoritmo que informe si un número ingresado es PAR o IMPAR mediante un mensaje.

<u>Análisis</u>

Entradas

numero

<u>Salidas</u>

Informar si el numero es par o impar.

Relación-logica

numero % 2 == 0 es par

numero % 2 != 0 es impar

Estrategia

Ambiente

Variable dato	Tipo	Descripcion
numero	Entero	ingresar numero
ParOImpar	Texto	informar si es par o impar

```
1 Algoritmo ParOImpar
2     Definir numero como entero
3     Escribir "Ingrese número: "
4     Leer numero
5     Si numero % 2 == 0 Entonces
6     Escribir "El número es PAR."
7     SiNo
8     Escribir "El numero es IMPAR."
9     FinSi
10 FinAlgoritmo
11
```


Numero	numero	ParOImpar	Salida
1	-		Ingrese
			numero
2	6	-	
3	6	-	//calcular
4	6	par	El numero
			es par.

Ejercicio 3) Positivo, negativo o cero

Se desea saber si el número ingresado es positivo, negativo o cero.

Análisis

Entradas

numero

<u>Salidas</u>

Informar si el numero es positivo, negativo o cero.

Relación-logica

A traves de condicional

num == 0

num < 0

sino num positivo

Estrategia

Ambiente

Variable dato	Tipo	Descripción
num	Real	número ingresado

```
Algoritmo PositivoNegativoOCero
 2
       Definir num Como Real
       Escribir "Ingrese el número que desea verificar:"
 3
       Leer num
 4
       Si num<0 Entonces
 5
           Escribir num, " es un numero negativo."
 6
       SiNo
 7
           Si num==0 Entonces
               Escribir "El número es cero."
 9
           SiNo
10
               Escribir num, " es un numero positivo."
11
12
           FinSi
13
       FinSi
   FinAlgoritmo
14
15
```


Número	num	Salida
1	-	Ingrese
		numero
		que
		desea
		verificar
2	5	-

3	5	//calcula ndo
4	5	El
		numero
		es
		positivo.

Ejercicio 4) Triángulo

Se requiere de un algoritmo que permita determinar si 3 segmentos de recta pueden formar un triángulo.

Nota: En cualquier triángulo el mayor de los lados es menor que la suma de los restantes, o en general, la suma de 2 lados debe ser mayor que el lado restante. Por lo tanto hay que verificar las tres desigualdades.

<u>Análisis</u>

Entradas

lado 1

lado 2

lado 3

Salidas

Informar si se puede formar un triángulo.

Relación-logica

(lado1 + lado2 > lado3) && (lado1 + lado3 > lado2) && (lado2 + lado3 > lado1)

<u>Estrategia</u>

Ambiente

Variable dato	Tipo	Descripcion
lado1	Real	segmento lado 1
lado2	Real	segmento lado 2
lado3	Real	segmento lado 3

Algoritmo

```
1 Algoritmo Triangulo
       definir lado1, lado2, lado3 como real
3
       Escribir "Ingrese la longitud del primer lado:"
4
       Leer lado1
5
       Escribir "Ingrese la longitud del segundo lado:"
6
      Leer lado2
7
      Escribir "Ingrese la longitud del tercer lado:"
8
      Leer lado3
       Si (lado1 + lado2 > lado3) \land (lado1 + lado3 > lado2) \land (lado2 + lado3 > lado1) Entonces
9
       Escribir "Los segmentos pueden formar un triángulo."
10
       SiNo
11
       Escribir "Los segmentos NO pueden formar un triángulo."
12
13
       FinSi
14 FinAlgoritmo
15
```

Diagrama de flujo

Número	Lado1	lado2	lado3	Salida
1	-	-	-	Ingrese primer lado
2	4	-	-	-
3	4	-	-	Ingrese segundo lado
4	4	5	-	-
5	4	5	-	Ingrese tercer lado
6	4	5	7	-

7	4	5	7	//calculan do
8	4	5	7	Los segmentos pueden formar un triángulo

Ejercicio 5) Lista ordenada

Se ingresa el nombre y Número de libreta de 3 alumnos. Muestre la lista ordenada por Número de libreta.

Análisis

Entradas

Solicitar nombre alumno

Solicitar numero de libreta alumno

Salidas

Informar la lista ordenada

Relación-logica

Estrategia

Ambiente

Variable dato	Tipo	Descripción
---------------	------	-------------

al1	Cadena	nombre alumno 1
al2	Cadena	nombre alumno 2
al3	Cadena	nombre alumno 3
n1	Real	número de libreta alumno 1
n2	Real	número de libreta alumno 2
n3	Real	número de libreta alumno 3

```
Algoritmo ListaOrdenada
 2
        Definir al1, al2, al3 Como Cadena
        Definir n1, n2, n3 Como Real
 3
 4
        Escribir "Ingrese el nombre de cada alumno:"
        Leer al1, al2, al3
 5
 6
        Escribir "Ingrese numero de libreta de cada alumno:"
 7
        Leer n1, n2, n3
        Si n1<n2 Y n2<n3 Entonces
 8
            Escribir ' ', al1, ' ', n1
9
            Escribir ' ', al2, ' ', n2
10
            Escribir ' ', al3, ' ', n3
11
        SiNo
12
13
            Si n1<n3 Y n3<n2 Entonces
                Escribir ' ', al1, ' ', n1
14
                Escribir ' ', al3, ' ', n3
15
                Escribir ' ', al2, ' ', n2
16
17
            SiNo
18
                Si n2<n1 Y n1<n3 Entonces
                    Escribir ' ', al2, ' ', n2
19
                    Escribir ' ', al1, ' ', n1
20
                    Escribir ' ', al3, ' ', n3
21
22
                SiNo
23
                    Si n2<n3 Y n3<n1 Entonces
                        Escribir ' ', al2, ' ', n2
24
                       Escribir ' ', al3, ' ', n3
25
                        Escribir ' ', al1, ' ', n1
26
27
                    SiNo
                        Si n3<n1 Y n1<n2 Entonces
28
                           Escribir ' ', al3, ' ', n3
29
                           Escribir ' ', al1, ' ', n1
30
                           Escribir ' ', al2, ' ', n2
31
32
                        SiNo
                           Escribir ' ', al3, ' ', n3
33
34
                           Escribir ' ', al2, ' ', n2
                           Escribir ' ', al1, ' ', n1
35
                        FinSi
36
37
                    FinSi
38
                FinSi
            FinSi
39
        FinSi
40
    FinAlgoritmo
41
42
```


Número	al1	al2	al3	n1	n2	n3	Salida
1							Ingresar
							nombre
							de cada
							alumno
2	Augusto						
3	Augusto	Joaquin					
4	Augusto	Joaquin	Fabricio				
5	Augusto	Joaquin	Fabricio				Ingrese
							el
							numero
							de
							libreta
							de cada
							alumno
6	Augusto	Joaquin	Fabricio	4			
7	Augusto	Joaquin	Fabricio		8		
8	Augusto	Joaquin	Fabricio			13	
9	Augusto	Joaquin	Fabricio				Mostrar
							lista
							Augusto
							4
							Joaquin
							8
							Fabricio
							13

Ejercicio 6) Rectángulo

Realice un algoritmo que, tomando como datos la base y la altura de un rectángulo, informe si este es horizontal o vertical. Sin dejar de considerar el caso particular del cuadrado. Finalmente calcule el área de la figura.

<u>Análisis</u>

Entradas

altura

base

Salidas

Informar si es un cuadrado, rectángulo horizontal o rectángulo vertical.

Relación-logica

base == altura . es un cuadrado

base > altura . es un rectángulo horizontal

sino es un rectángulo vertical

Estrategia

Ambiente

Variable dato	Tipo	Descripcion
base	Real	base de la figura
altura	Real	altura de la figura

```
Algoritmo Rectángulo
 2
       definir base, altura como real
       Escribir "Ingrese la altura del rectángulo:"
 3
       Leer altura
 4
       Escribir "Ingrese la base del rectángulo:"
 5
       Leer base
 6
       Si base == altura Entonces
           Escribir "Es un cuadrado."
 9
       SiNo
           Si base > altura Entonces
10
               Escribir "Es un rectángulo horizontal."
11
12
           SiNo
               Escribir "Es un rectángulo vertical."
13
           FinSi
14
       FinSi
15
16
   FinAlgoritmo
17
```


Número	altura	base	Salida
--------	--------	------	--------

1	-	-	Ingrese la altura del rectángulo
2	10	-	1
3	10	-	Ingrese la base del rectángulo
4	10	12	-
5	10	12	//Calculan do
6	10	12	Es un rectángulo horizontal.

Ejercicio 7) Mayor valor

Realice un algoritmo que pida 5 valores al usuario y luego informe cual es el mayor de los ingresados.

Restricción: la aplicación solo puede tener 2 variables.

<u>Análisis</u>

Entradas

Numeros

Salidas

Informar cual es el mayor

Relación-logica

Comparar con condicional para saber cual es el mayor

Estrategia

<u>Ambiente</u>

Variable dato	Tipo	Descripción
Num	Real	Valor a comparar
Mayor	Real	El numero mayor

<u>Algoritmo</u>

```
Algoritmo localizarMayor
1
       Definir num, mayor, i Como Real
2
 3
       mayor ← num
       Para i←1 Hasta 5 Hacer
4
           Escribir "Ingresar número ", i
5
           Leer num
           Si num>mayor Entonces
 7
               mayor ← num
8
9
           FinSi
       FinPara
10
       Escribir 'el numero mayor es: ', mayor
11
12
   FinAlgoritmo
13
```

Diagrama de flujo

Número	num	mayor	Salida
1	-	-	Ingresar
			numero
2	5	1	-
3	4	5	-
4	8	5	1
5	7	8	-
6	9	8	-
7	-	9	El
			numero
			mayor
			es 9

Ejercicio 8) Orden que ocurrió el menor

Realice un algoritmo que pida 5 valores al usuario y luego informe cual es el número de orden en que se ingresó el menor de ellos.

Restricción: la aplicación solo puede tener 3 variables.

<u>Análisis</u>

Entradas

Cinco valores

Salidas

Informar cuál número de orden es el menor.

Relación-logica

Comparar números para determinar cuál es el menor.

Estrategia

Ambiente

Variable dato	Tipo	Descripción
n	Real	número ingresado
i	Real	contador
menorr	Real	es el número de orden
		menor

```
Algoritmo OrdenMenor
       Definir menorr, n, i como real
2
       Escribir "Ingresar número:"
3
4
       Leer n
5
       menor ← n
       Para i←1 Hasta 4 Con Paso 1 Hacer
           Escribir "Ingresar número:"
7
8
           Leer n
9
           Si n<menor Entonces
10
               menor ← n
           FinSi
11
12
       FinPara
13
       Escribir "El número menor del orden es: ", menor
   FinAlgoritmo
14
15
```


Número	n	menorr	Salida
1	-	-	Ingresar
			numero
2	5	-	-
3	4	5	-
4	8	4	-
5	7	4	-

6	9	4	1
7	-	4	El
			numero
			de orden
			menor
			es 4

Ejercicio 9) Tenis

Ingresado el nombre de los jugadores y el resultado de cada set (3) de un partido de tenis, informe en pantalla cuál es el ganador.

Ejemplo: Nadal, Del Potro: 7,5,4,6,6,2

Ganador Nadal

Análisis

Entradas

nombre jugadores

sets

Salidas

Informar quién ganó el partido.

Relación-logica

sets

contador

Estrategia

Ambiente

Variable dato	Tipo	Descripción
jug1	Texto	nombre jugador 1
jug2	Texto	nombre jugador 2
SetsJug1	Entero	puntos de cada set de jugador 1
SetsJug2	Entero	puntos de cada set de jugador 2
SetsGanJug1	Entero	Contador - Número de sets ganados jugador 1
SetsGanJug2	Entero	Contador - Número de sets ganados jugador 2

Algoritmo

```
Algoritmo PartidoDeTenis
        definir Jug1, Jug2 como texto
 3
        definir SetsJug1, SetsJug2, SetsGanJug1, SetsGanJug2 como entero
        Escribir "Ingrese el nombre de ambos jugadores:"
 4
        Leer Jug1, Jug2
        SetsGanJug1 ← 0
 7
        SetsGanJug2 ← 0
        Para i←1 Hasta 3 Hacer
            Escribir "Ingrese número de puntos del set ", i ," de ", Jug1 , "."
10
            Leer SetsJug1
            Escribir "Ingrese número de puntos del set ", i ," de ", Jug2 "."
11
12
            Leer SetsJug2
13
            Si SetsJug1 > SetsJug2 Entonces
14
                SetsGanJug1 ← SetsGanJug1 + 1
15
            SiNo
16
                SetsGanJug2 ← SetsGanJug2 + 1
17
            FinSi
18
        FinPara
19
        Si SetsGanJug1 > SetsGanJug2 Entonces
20
            Escribir "El jugador ", jug1, " ganó el partido."
21
        SiNo
22
            Escribir "El jugador ", jug2, " ganó el partido."
23
        FinSi
    FinAlgoritmo
25
```

Diagrama de flujo

Número	Jug1	Jug2	SetsJug1	SetsJug2	SetsGanJ ug1	SetsGanJu g2	Salida
1	-	-	-	-	-	-	Ingrese nombre de los jugadore s
2	Augusto	Lorenzo	-	-	-	-	-
3	Augusto	Lorenzo	1	-	-	-	Ingrese puntos del set 1 de Augusto
4	Augusto	Lorenzo	6	-	ı	-	-
5	Augusto	Lorenzo	6	-	-	-	Ingrese puntos del set 1

							de
							Lorenzo
6	Augusto	Lorenzo	6	5	-	1	-
7	Augusto	Lorenzo		5			Ingrese
							puntos
							del set 2
							de
							Augusto
8	Augusto	Lorenzo	6	5	-	-	-
9	Augusto	Lorenzo	-	5	-	-	Ingrese
							puntos
							del set 2
							de
							Lorenzo
10	Augusto	Lorenzo	6	5	-	-	-
	Augusto	Lorenzo	6	5	-	-	Ingrese
							puntos
							del set 3
							de
							Augusto
11	Augusto	Lorenzo	6	5	-	-	-
12	Augusto	Lorenzo	6	5	-	-	Ingrese
							puntos
							del set 3
							de
							Lorenzo
13	Augusto	Lorenzo	6	3	-	-	
14	Augusto	Lorenzo	6	3	-	-	//Calcula
							ndo
15	Augusto	Lorenzo	6	3	-	-	El
							jugador
							Augusto
							gano el
							partido.

Ejercicio 10) Año bisiesto!

Implemente un algoritmo que permita determinar si un año es bisiesto o no. Un año es bisiesto si es múltiplo de 4 (por ejemplo 1984). Los años múltiplos de 100 no son bisiestos, salvo si ellos son también múltiplos de 400 (2000 es bisiesto, pero 1800 no lo es).

<u>Análisis</u>

Entradas

Año

<u>Salidas</u>

Informar si un año es bisiesto o no.

Relación-lógica

año %
$$4 == 0$$

año % $100 == 0$
año % $400 == 0$

Estrategia

Ambiente

Variable dato	Tipo	Descripción
año	Entero	año ingresado

```
Algoritmo AñoBisiesto
 2
       Definir año como entero
 3
       Escribir "Ingrese el año: "
       Leer año
 4
 5
       Si año mod 400 = 0 Entonces
           Escribir "El año ingresado el bisiesto."
 6
 7
       SiNo
            Si año mod 100 = 0 Entonces
               Escribir "El año ingresado no es bisiesto."
 9
10
           SiNo
                Si año mod 4 = 0 Entonces
11
                   Escribir "El año ingresado es bisiesto."
12
13
                   Escribir "El año ingresado no es bisiesto."
14
15
               FinSi
16
           FinSi
       FinSi
17
18
   FinAlgoritmo
19
```


Número	año	Salida
1		Ingrese el año
2	2000	-
3	2000	//calcula ndo
4	2000	El año ingresad

	o es
	bisiesto

Ejercicio 11) Día del mes

Realice un algoritmo que permita ingresar el número del mes y determine cuántos días tiene. Para el caso de Febrero, el algoritmo deberá indicar que no cuenta con la información necesaria para dar la respuesta.

Análisis

Entradas

Número de mes.

Salidas

Informar cuantos días tiene el numero de mes ingresado. Excepto febrero.

Relación-logica

Si el mes es febrero (mes 2), indicar que no se tiene información sobre los días de febrero. Si el mes es abril, junio, septiembre o noviembre (meses con 30 días), imprimir "30 días". Si el mes es enero, marzo, mayo, julio, agosto, octubre o diciembre (meses con 31 días), imprimir "31 días". En cualquier otro caso (mes inválido), indicar que el mes ingresado no es válido.

Estrategia

Ambiente

Variable dato	Tipo	Descripción
mes	Entero	número de mes
		l ingresado l

Algoritmo

```
1 Algoritmo DiasDelMes
2
       Definir mes como entero
3
       Escribir "Ingrese el año: "
       Leer mes
4
5
       Si mes = 2 Entonces
           Escribir "No cuento con la información necesaria para dar respuesta."
6
 7
       SiNo
8
           Si mes=4 \vee mes=6 \vee mes=9 \vee mes=11 Entonces
               Escribir "El mes tiene 30 días."
9
10
           SiNo
               Si mes=1 v mes=3 v mes=5 v mes=7 v mes=8 v mes=10 v mes=12 Entonces
11
12
                   Escribir "El mes tiene 31 días."
13
14
                   Escribir "El número de mes ingresado es inválido."
               FinSi
15
16
           FinSi
17
       FinSi
18 FinAlgoritmo
19
```

Diagrama de flujo

Número	mes	Salida
1	1	Ingrese número de mes
2	3	-
3	3	//Calcula ndo
4	3	El mes tiene 31 días.

Ejercicio 12) Ruleta

Se desea simular parte de un juego de ruleta donde el usuario ingresa un número entre 0 y 36 (el sistema debe verificarlo) y luego informar si es:

- a. 0 (banca gana)
- b. Mayor o Menor
- c. 1ra, 2da o 3ra Docena
- d. 1ra, 2da o 3ra Columna

Análisis

Entradas

numero

Salidas

Informar si es 0, mayor o menor, si es primera, segunda o tercera docena, y primera, segunda o tercera columna.

Relación-logica

Verificar que el número esté en el rango 0 a 36.

Si el número es 0, imprimir "Banca gana".

Si el número no es 0, se realiza lo siguiente: Verificar si el número es Mayor o Menor Verificar la docena Verificar la columna: 1ra columna: los números con resto 1 al dividirlos por 3 2da columna: los números con resto 2 al dividirlos por 3. 3ra columna: los números con resto 0 al dividirlos por 3

Estrategia

Ambiente

Variable dato	Tipo	Descripción
numero	Entero	Número que toco en la
		ruleta

Algoritmo

```
Definir numero como entero
Escribir "Ingress un número entre 0 y 36; "
Leer numero
Sin muero > 36 Entonces
Sin muero > 36 Entonces
Sin muero > 30 numero > 36 Entonces
Sin muero > 30 numero > 36 Entonces
Sin muero > 30 Escribir "Sinonces
Sinonero > 30 Y numero - 12 Entonces
Sinonero > 30 Y numero - 12 Entonces
Sinonero > 30 Y numero - 24 Entonces
Sinonero > 30 Y numero - 40 numero - 70 numero - 10 0 numero - 15 0 numero - 22 0 numero - 25 0 numero - 26 0 numero - 34 Entonces
Sinonero > 30 Numero - 30 numero - 50 numero - 10 numero - 10 numero - 10 numero - 20 0 numero - 20
```

Diagrama de flujo

Seguimiento

Número	numero	Salida
1		Ingrese
		el
		numero
2	3	-
3	3	//Calcula
		ndo
4	3	Menor.
		Tercera
		docena.
		Tercera
		columna

Ejercicio 13) Azar

Modifique el algoritmo anterior utilizando la función Azar () para generar un número aleatorio. ¿Qué modificaciones debe realizar?

Análisis

Entradas

-

<u>Salidas</u>

Informar si es 0, mayor o menor, si es primera, segunda o tercera docena, y primera, segunda o tercera columna.

Relación-logica

Azar()

Estrategia

-

Ambiente

Variable dato	Tipo	Descripción
-	-	-

```
Definir numero como entero

supero - Alar (3)

supe
```


Número	Salida
1	Salio el
	número:
	16
	Menor.

Segunda docena. Primera columna