

MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PERGURUAN TINGGI (ON MIPA-PT) **TAHUN 2018**

A. ANALISIS REAL

BAGIAN PERTAMA

- 1. Diketahui himpunan $A \subseteq \mathbb{R}$ tak kosong, Jika sup $A = \inf A$, maka himpunan A
- 2. Jika $\lim_{x \to c} \frac{a_0 + a_1(x c) + a_2(x c)^2 + \dots + a_n(x c)^n}{(x c)^n} = 0$, maka $a_0 + a_1 + a_2 + \dots + a_n = \dots$
- 3. Deret $\sum_{n=1}^{\infty} \frac{1}{n^2} = \cdots$
- 4. Diketahui fungsi $f: [-5, 4] \to \mathbb{R}$ kontinu. Jika $E = \{x \in [-5, 4]: f(x) = x\}$, maka closure dari E adalah ...
- 5. Nilai $\lim_{n \to \infty} n \int_0^1 \frac{2x^n}{x + x^{2n+1}} dx = \cdots$
- 6. Untuk setiap $n \in \mathbb{N}$,

$$f_n(x) = \begin{cases} \frac{nx}{2n-1}, & x \in \left[0, \frac{2n-1}{n}\right] \\ 1, & x \in \left[\frac{2n-1}{n}, 2\right] \end{cases}$$
 maka untuk $n \to \infty$, $\int_1^2 f_n(x) \, dx$ konvergen ke ...

- 7. Diketahui $a \in \mathbb{R}$ dan fungsi $f: \mathbb{R} \to \mathbb{R}$ memenuhi $|xf(x) + a| < \sin^2(x a)$. untuk setiap $x \in \mathbb{R}$. Nilai $\lim_{x \to a} f(x) = \cdots$
- 8. Diketahui barisan bilangan real $\{a_n\}$ dan $\{b_n\}$ keduanya konvergen ke 0. Jika $\{b_n\}$ turun monoton dan $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = 2018$, maka $\lim_{n\to\infty} \frac{a_n}{2b_n} = \cdots$

BAGIAN KEDUA

- 1. Selidiki kekonvergenan barisan bilangan real $\{x_n\}$, dengan $x_1=1$ dan $x_{n+1}=1$
- 2. Buktikan pernyataan berikut: Jika untuk setiap n, f_n merupakan fungsi naik dan $\{f_n\}$ konvergen seragam ke f pada [a, b], maka

$$\lim_{n\to\infty}\int_a^b f_n(x)\ dx\to \int_a^b f(x)\ dx\ .$$

3. Diketahui fungsi f mempunyai turunan yang kontinu pada [a,b]. Jika f(a)=f(b) = 0 dan $\int_a^b [f(x)]^2 dx = 1$, buktikan bahwa

$$\int_{a}^{b} x^{2} [f'(x)]^{2} dx \ge \frac{1}{4}.$$

MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PERGURUAN TINGGI (ON MIPA-PT) TAHUN 2018

B. KOMBINATORIKA

BAGIAN PERTAMA

- 1. Banyaknya subset dari himpunan {1,2,...,25} yang terdiri dari 3 bilangan sehingga dalam sebuah subset tidak terdapat dua bilangan berurutan adalah ...
- Sebuah klub bulu tangkis mempunyai 35 anggota terdiri dari 15 anak laki-laki dan 20 anak perempuan. Klub akan membentuk 10 pasangan ganda campuran. Banyaknya cara yang mungkin untuk membentuk 10 pasangan ganda campuran adalah ...
- 3. Sebuah toko roti memproduksi 8 jenis donat. Donat dikemas dalam kotak berisi 12 buah donat. Banyaknya cara untuk mengisi sebuah kotak sehingga terdapat sedikitnya satu buah donat untuk setiap jenis adalah ...
- 4. Untuk bilangan bulat positif $n \geq 2$, nilai dari $\sum_{k=2}^{n} (-1)^k k \binom{n}{k}$ adalah ...
- 5. Misalkan b_n adalah banyaknya untaian atas n huruf yang dapat dibentuk dengan menggunakan A, B dan C sedemikian sehingga bila huruf A muncul bukan sebagai huruf akhir pada untaian, maka A harus segera diikuti oleh B. Relasi rekurensi dari barisan $\{b_n\}$ adalah ...
- 6. Diberikan permutasi $\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$ atas himpunan $\{1, 2, \dots, n\}$ dengan $n \geq 7$. Banyaknya permutasi π sehingga $\pi(1) = 5$ atau $\pi(3) = 7$ atau $\pi(6) = 2$ adalah ...
- 7. Dalam bentuk yang paling sederhana, fungsi pembangkit eksponensial (exponential generating function) dari barisan (0!, 1!, 2!, 3!, ..., n!, ...) adalah ...
- 8. Diberikan sebuah graf sederhana G atas 6 titik $v_1, v_2, ..., v_6$. Bila G mempunyai 8 sisi dan derajat dari titik-titik $v_1, v_2, ..., v_6$ masing-masing adalah 1, 3, 3, 3, dan 2, maka derajat dari titik v_6 adalah ...

- 1. Perhatikan barisan Fibonacci dengan relasi rekurensi: untuk $n \ge 2$. $f_n = f_{n-1} + f_{n-2}$. $f_0 = 0$. $f_1 = 1$. Definisikan matriks $F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} f_2 & f_1 \\ f_1 & f_0 \end{bmatrix}$.
 - (a) Buktikan bahwa $F^n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$.
 - (b) Buktikan bahwa $f_{n+1}f_{n-1} f_n^2 = \begin{cases} 1, & \text{bila } n \text{ genap} \\ -1, & \text{bila } n \text{ ganjil} \end{cases}$

OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PERGURUAN TINGGI (ON MIPA-PT) TAHUN 2018

- 2. Andaikan G adalah sebuah graf sederhana ($simple\ graph$). Bila e adalah sebuah sisi yang menghubungkan titik u dan titik v di G, maka dikatakan bahwa titik u bertetangga dengan titik v. Derajat dari sebuah titik v di G adalah banyaknya titiktitik yang bertetangga dengan v. Perlihatkan bahwa pada sebuah graf sederhana G terdapat sedikitnya dua titik dengan derajat sama.
- 3. Tentukan banyaknya cara untuk mewarnai bujur sangkar 1×1 pada persegi panjang $1 \times n$ dengan menggunakan warna merah, hijau, atau biru sedemikian sehingga terdapat sejumlah genap bujur sangkar berwarna merah.

ST BR MA TARREST OF THE STATE O

OLIMPIADE NASIONAL

MATEMATIKA DAN ILMU PENGETAHUAN ALAM

A

PERGURUAN TINGGI (ON MIPA-PT) TAHUN 2018

C. ALJABAR LINEAR

BAGIAN PERTAMA

- $1. \quad \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}^{2018} = \cdots$
- 2. Jika $A = \begin{bmatrix} \alpha & 1 & 1 & 1 \\ 1 & \alpha & 1 & 1 \\ 1 & 1 & \beta & 1 \\ 1 & 1 & 1 & \beta \end{bmatrix}$ dengan $\alpha^2 \neq 1 \neq \beta^2$, maka $\det(A) = \cdots$
- 3. Diberikan vektor-vektor $\begin{bmatrix} -1 & 2 \\ 1 & -3 \end{bmatrix}$, $\begin{bmatrix} 3 & -6 \\ -3 & 9 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & -3 \\ -3 & 8 \end{bmatrix}$ di $\mathbb{R}^{2\times 2}$. Salah satu basis subruang dari $\mathbb{R}^{2\times 2}$ yang dibangun oleh keempat vektor tersebut adalah ...
- 4. Pemetaan $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ didefinisikan sebagai $f(u,v) = u_1v_1 3u_2v_1 3u_1v_2 + ku_2v_2,$ untuk setiap $u = (u_1,u_2,u_3)$ dan $v = (v_1,v_2,v_3)$ di \mathbb{R}^3 . Himpunan semua nilai k yang membuat f hasil kali dalam di \mathbb{R}^3 adalah ...
- 5. Matriks $A \in \mathbb{R}^{n \times n}$ memenuhi $A^T A = AA^T = 4I$. Himpunan semua nilai eigen A adalah ...
- adalah ...

 6. Misalkan $D: P_2 \to P_2$ dengan $D(a_2x^2 + a_1x + a_0) = 2a_2x + a_1$, untuk semua $a_2, a_1, a_0 \in \mathbb{R}$. Nilai eigen pemetaan $D^2 + D + I$ mempunyai multiplitas geometri ...
- 7. Misalkan K adalah ruang nol matriks $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & -1 & -1 \end{bmatrix}$. Maka $K^{\perp} = \cdots$
- 8. Misalkan $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ dengan $T\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} b & -a \\ d & -c \end{bmatrix}$, untuk semua bilangan real a, b, c, d. Himpunan $X = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ adalah basis $\mathbb{R}^{2\times 2}$. Maka $[T]_X = \cdots$

- 1. Misalkan $T: \mathbb{R}^2 \to \mathbb{R}^2$ adalah transformasi linier pencerminan terhadap garis $y = \left(-\frac{1}{3}\sqrt{3}\right)x$. Tentukanlah T(-5,4).
- 2. Misalkan $A,B,C\in\mathbb{R}^{n\times n}$. Buktikan bahwa $\begin{bmatrix}A&C\\0&B\end{bmatrix}\geq \mathrm{rank}(A)+\mathrm{rank}(B)$.
- 3. Misalkan $x \in \mathbb{C}^n$ dengan $||x||_2 = 1$. Tentukan semua nilai eigen matriks $A = \begin{bmatrix} 0 & x^* \\ x & 0 \end{bmatrix} \in \mathbb{C}^{(n+1)\times (n+1)}$ serta vektor-vektor eigennya.

MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PERGURUAN TINGGI (ON MIPA-PT) TAHUN 2018

D. ANALISIS KOMPLEKS

BAGIAN PERTAMA

- 1. Bilangan bulat terkecil n dengan $n \ge 2018$ sehingga $\left(\sqrt{3} + 3i\right)^n$ merupakan bilangan real adalah ...
- 2. Diketahui bahwa segi-12 dan segi-18 beraturan dengan lingkaran luar yang jari-jarinya satu satuan mempunyai T titik persekutuan, dengan T>1. Nilai T adalah ...
- 3. Apabila diketahui fungsi

$$f(z)=z{\rm Re}(z)+\bar{z}{\rm Im}(z)+\bar{z}$$
terdiferensial kompleks di titik z_0 , maka nilai dari $f'(z_0)$ adalah ...

4. Nilai integral kompleks

$$\int_{|z|=1} \left(z^2 \sin \frac{1}{z} + \frac{1}{z^2} \sin z \right) dz$$

adalah ...

- 1. Misalkan $z \in \mathbb{C}$ sehingga $|1+z^2| < 1$. Tunjukkan bahwa $2|1+z|^2 \geq 1$.
- 2. Diberikan $p(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0$ adalah sebuah suku banyak kompleks berderajat n>0 dan γ adalah lingkaran |z|=r. Buktikan

$$\frac{1}{2\pi i} \int_{\gamma} \frac{|p(z)|^2}{z^{1-n}} dz = a_0 \bar{a}_n r^{2n}.$$

MATEMATIKA DAN ILMU PENGETAHUAN ALAM

PERGURUAN TINGGI (ON MIPA-PT) TAHUN 2018

E. STRUKTUR ALJABAR

BAGIAN PERTAMA

- 1. Suatu subgrup **H** di $\mathbb{Z}_2 \times \mathbb{Z}_2$ disebut *swapped* jika setiap (a, b) di **H**, berlaku (b, a) juga di **H**. Banyaknya subgrup bertipe *swapped* di $\mathbb{Z}_2 \times \mathbb{Z}_2$ adalah ...
- 2. Himpunan $\Omega=\left\{e^{(2k\pi i)/(7^m)}\mid k\in\mathbb{Z}\right\}$, dimana e merupakan bilangan Euler dan $i^2=-1$, membentuk grup dengan operasi perkalian biasa. Banyaknya $\omega\in\Omega$ sedemikian sehingga $\Omega=\langle\omega\rangle$ adalah ...
- 3. Misalkan $\mathbb{Z}_2[x]$ merupakan ring polinom dengan koefisien di \mathbb{Z}_2 dan I merupakan ideal yang dibangun oleh $f(x) = x^2 + x \in \mathbb{Z}_2[x]$. Banyaknya unsur pembagi nol di ring $\mathbf{R} = \mathbb{Z}_2[x]/I$ adalah ...
- 4. Diberikan ring komutatif $\mathbb{Z}_3[v] \coloneqq \{\alpha_0 + \alpha_1 v \mid \alpha_0, \alpha_1 \in \mathbb{Z}_3\}$, dimana $v \notin \mathbb{Z}_3$ dan $v^2 = v$. Banyaknya ideal maksimal di $\mathbb{Z}_3[v]$ adalah ...

- 1. Diberikan sebarang grup (G,*) dan $A,B\subseteq G$, kita notasikan $A*B\coloneqq \{a*b\mid a\in A,b\in B\}$.
 - (a) Tunjukkan bahwa untuk $n \ge 3$ terdapat $A, B \subseteq (\mathbb{Z}_n, +)$ dengan $A, B \ne \mathbb{Z}_n$ dan $|A \cap B| = 1$ sedemikian sehingga $\mathbb{Z}_n = A + B$.
 - (b) Buktikan bahwa jika |A| + |B| > |G| maka G = A * B.
- 2. Misalkan K suatu lapangan hingga. Buktikan bahwa 1 + 1 = 0 di K jika dan hanya jika untuk setiap $f \in K[x]$ dengan derajat f lebih besar atau sama dengan 1 polinom $f(X^2)$ merupakan polinom tereduksi.