Brian Caff

Simpson paradox

Berkeley dat

Carfanadia

Weighting

Mantel/Haensze

Mathematical Biostatistics Boot Camp 2: Lecture 9, Simpson's Paradox and Confounding

Brian Caffo

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

October 3, 2013

Comounding

Weighting

Mantel/Haenszel

1 Simpson's paradox

2 Berkeley data

3 Confounding

4 Weighting

6 Mantel/Haenszel estimator

Mathematical Biostatistics Boot Camp 2: Lecture 9, Simpson's Paradox and Confounding

Brian Cafl

Simpson's paradox

Berkeley data

Comountain

Weightin

Mantel/Haensze estimator

Simpson's (perceived) paradox

		Death penalty		
Victim	Defendant	yes	no	% yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
	White	53	430	11.0
	Black	15	176	7.9
White		64	451	12.4
Black		4	155	2.5

1

¹From Agresti, Categorical Data Analysis, second edition

Weighting

Weighting

Mantel/Haenszel estimator

Discussion

- Marginally, white defendants received the death penalty a greater percentage of time than black defendants
- Across white and black victims, black defendant's received the death penalty a greater percentage of time than white defendants
- Simpson's paradox refers to the fact that marginal and conditional associations can be opposing
- The death penalty was enacted more often for the murder of a white victim than a black victim. Whites tend to kill whites, hence the larger marginal association.

Comounding

Weighting

Mantel/Haensze estimator

Example

 Wikipedia's entry on Simpson's paradox gives an example comparing two player's batting averages

	First	Second	Whole
	Half	Half	Season
Player 1	4/10 (.40)	25/100 (.25)	29/110 (.26)
Plater 2	35/100 (.35)	2/10 (.20)	37/110 (.34)

- Player 1 has a better batting average than Player 2 in both the first and second half of the season, yet has a worse batting average overall
- Consider the number of at-bats

Brian Caf

Simpson' paradox

Berkeley data

C . . C P . .

Weighting

Mantel/Haensze estimator

Berkeley admissions data

 The Berkeley admissions data is a well known data set regarding Simpsons paradox

Mantel/Haensze

```
Acceptance rate by department
```

```
> apply(UCBAdmissions, 3,
        function(x) c(x[1] / sum(x[1 : 2]),
                      x[3] / sum(x[3 : 4])
Dept
   A 0.62 0.82
   B 0.63 0.68
   C 0.37 0.34
   D 0.33 0.35
   E 0.28 0.24
   F 0.06 0.07
```

Brian Caff

Simpson' paradox

Berkeley data

Confounding

Weighting

Mantel/Haensze estimator

Why? The application rates by department

> apply(UCBAdmissions, c(2, 3), sum)
Dept

Gender A B C D E F Male 825 560 325 417 191 373 Female 108 25 593 375 393 341 Confoundi

Weighting

Mantel/Haenszel

Discussion

• Mathematically, Simpson's pardox is not paradoxical

$$a/b < c/d$$

$$e/f < g/h$$

$$(a+e)/(b+f) > (c+g)/(d+h)$$

 More statistically, it says that the apparent relationship between two variables can change in the light or absence of a third

Confounding

- Variables that are correlated with both the explanatory and response variables can distort the estimated effect
 - Victim's race was correlated with defendant's race and death penalty
- One strategy to adjust for confounding variables is to stratify by the confounder and then combine the strata-specific estimates
 - Requires appropriately weighting the strata-specific estimates
- Unnecessary stratification reduces precision

Aside: weighting

- Suppose that you have two unbiased scales, one with variance 1 lb and and one with variance 9 lbs
- Confronted with weights from both scales, would you give both measurements equal creedance?
- Suppose that $X_1 \sim N(\mu, \sigma_1^2)$ and $X_2 \sim N(\mu, \sigma_2^2)$ where σ_1 and σ_2 are both known
- ullet log-likelihood for μ

$$-(x_1-\mu)^2/2\sigma_1^2-(x_2-\mu)^2/2\sigma_2^2$$

Continued

• Derivative wrt μ set equal to 0

$$(x_1 - \mu)/\sigma_1^2 + (x_2 - \mu)/\sigma_2^2 = 0$$

Answer

$$\frac{x_1r_1+x_2r_2}{r_1+r_2}=x_1p+x_2(1-p)$$

where $r_i = 1/\sigma_i^2$ and $p = r_1/(r_1 + r_2)$

- ullet Note, if X_1 has very low variance, its term dominates the estimate of μ
- General principle: instead of averaging over several unbiased estimates, take an average weighted according to inverse variances
- For our example $\sigma_1^2 = 1$, $\sigma_2^2 = 9$ so p = .9

\\/-:----

Weightin

Mantel/Haensze estimator

Mantel/Haenszel estimator

- Let n_{ijk} be entry i, j of table k
- The k^{th} sample odds ratio is $\hat{\theta}_k = \frac{n_{11k}n_{22k}}{n_{12k}n_{21k}}$
- The Mantel Haenszel estimator is of the form $\hat{\theta} = \frac{\sum_k r_k \hat{\theta}_k}{\sum_k r_k}$
- The weights are $r_k = \frac{n_{12k}n_{21k}}{n_{++k}}$
- The estimator simplifies to $\hat{\theta}_{MH}=rac{\sum_k n_{11k}n_{22k}/n_{++k}}{\sum_k n_{12k}n_{21k}/n_{++k}}$
- SE of the log is given in Agresti (page 235) or Rosner (page 656)

Mantel/Haensze estimator

Center 2 14 6 11 25 16 10 27 7 12 1 16 0 12 22 10 73 52 38 33 29 21 14 13 n

S - Success, F - failure T - Active Drug, C - placebo²

$$\hat{\theta}_{MH} = \frac{(11 \times 27)/73 + (16 \times 10)/25 + \ldots + (4 \times 1)/13}{(10 \times 25)/73 + (4 \times 22)/25 + \ldots + (6 \times 2)/13)} = 2.13$$

Also $\log \hat{\theta}_{MH} = .758$ and $\hat{SE}_{\log \hat{\theta}_{MH}} = .303$

²Data from Agresti, Categorical Data Analysis, second edition ←□ → ←② → ←② → ←② → ◆② → ◆③ ←

Weightin

Mantel/Haensze

- $H_0: \theta_1 = \ldots = \theta_k = 1$ versus $H_a: \theta_1 = \ldots = \theta_k \neq 1$
- The CHM test applies to other alternatives, but is most powerful for the H_a given above
- Same as testing conditional independence of the response and exposure given the stratifying variable
- CMH conditioned on the rows and columns for each of the k contingency tables resulting in k hypergeometric distributions and leaving only the n_{11k} cells free

CMH test cont'd

- Under the conditioning and under the null hypothesis
 - $E(n_{11k}) = n_{1+k} n_{+1k} / n_{++k}$
 - $\operatorname{Var}(n_{11k}) = n_{1+k} n_{2+k} n_{+1k} n_{+2k} / n_{++k}^2 (n_{++k} 1)$
- The CMH test statistic is

$$\frac{\left[\sum_{k} \{n_{11k} - E(n_{11k})\}\right]^{2}}{\sum_{k} \text{Var}(n_{11k})}$$

• For large sample sizes and under H_0 , this test statistic is $\chi^2(1)$ (regardless of how many tables you are summing up)

Brian Caf

Simpson' paradox

berkeley data

Confounding

Weightin

Mantel/Haensze

mantelhaen.test(dat, correct = FALSE)

Results: $CMH_{TS} = 6.38$

P-value: .012

Test presents evidence to suggest that the treatment and response are not conditionally independent given center

vveignting

Mantel/Haensze estimator

Some final notes on CMH

- It's possible to perform an analogous test in a random effects logit model that benefits from a complete model specification
- It's also possible to test heterogeneity of the strata-specific odds ratios
- Exact tests (guarantee the type I error rate) are also possible exact = TRUE in R