Contents

1	Norms	2
2	Functional Analysis Theorems	3
3	Fourier Transformation	5
4	Important Inequalities 4.1 Sobolev Embedding	6
5	Basic Analysis, Measure Theory	7

Here everything can be written down that helps with understanding the Non-Linear Wave Equations Lecture and solving the exercises.

1 Norms

Definition 1 (Sobolev space). The following is called Sobolev space:

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) | | \forall \alpha \in \mathbb{N}^n, |\alpha| \le k : \exists D^\alpha u \in L^p(\Omega) \}$$
 (1)

with the Sobolev Norm, if $p < \infty$:

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^p(\Omega)}^p\right)^{\frac{1}{p}} \tag{2}$$

and if $p = \infty$:

$$||u||_{W^{k,p}(\Omega)} = \max_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{\infty}(\Omega)}.$$
(3)

Notation:

$$H^k(\Omega) := W^{k,2}(\Omega) \tag{4}$$

 $W^{k,p}(\Omega)$ is a Banach space. $C^{k,p}(\Omega)$ is a dense subset of $W^{k,p}(\Omega) \subset L^p(\Omega)$. $H^k(\Omega)$ is a Hilbertspace.

Definition 2 (fractional Sobolev space; source: exercise session 1). For $s \in \mathbb{R}$ (?) $H^s(\mathbb{R}^n)$ is the completion of $C_0^{\infty}(\mathbb{R}^n)$ with respect to the norm

$$||f||_{H^s(\mathbb{R}^n)} = ||(1+|\xi|^2)^{\frac{s}{2}} \mathcal{F}(f)||_{L^2(\mathbb{R}^n)}$$
(5)

where $(1+|\xi|^2)^{\frac{s}{2}}$ corresponds to a derivative in physical space.

Definition 3 (homogeneous Sobolev norm; source: mathoverflow(!!)). If the following quantity is bounded, then we have

$$||f||_{\dot{H}^{s}(\mathbb{R}^{n})} = \left(\int_{\mathbb{R}^{n}} |\xi|^{2s} |\hat{f}(\xi)|^{2} d\xi \right)^{\frac{1}{2}}$$
 (6)

Definition 4 (\dot{H}^1 -norm; source: notes p 16 (!!)).

$$\|\phi\|_{\dot{H}^{1}(\mathbb{R}^{n})} = \left(\int_{\mathbb{R}^{n}} |\nabla\phi|^{2} dx\right)^{\frac{1}{2}}$$
 (7)

Definition 5 (mixed spaces; source: lecture notes p.39). For $1 \leq r < \infty$, $1 \leq q < \infty$ we define $L_t^q L_x^r$ to be the space of (equivalence class of) measurable functions on $\mathbb{R}_t \times \mathbb{R}_x^n$ such that the norm

$$||u||_{L_t^q L_x^r} = \left(\int_{\mathbb{R}} dt \left(\int_{\mathbb{R}^n} |u(t,x)|^r dx \right)^{\frac{q}{r}} \right)^{\frac{1}{q}}$$
 (8)

Theorem 6 (properties of mixed spaces; source: lecture notes p.39). The following facts hold for the mixed spaces $L_t^q L_x^r$:

- 1. The $L_t^q L_x^r$ are Banach spaces.
- 2. Smooth functions of compact support $C_0^{\infty}(\mathbb{R}_t \times \mathbb{R}_x^n)$ are dense in $L_t^q L_x^r$.
- 3. The dual of $L_t^q L_x^r$ can be identified with $L_t^{q'} L_x^{r'}$ where $\frac{1}{q} + \frac{1}{q'} = 1$ and $\frac{1}{r} + \frac{1}{r'} = 1$.

2 Functional Analysis Theorems

Definition 7 (adjoint operator). The adjoint of a (bounded, linear) operator $T: X \to Y$ is defined by

$$T^*: Y \to X, \langle Tx, y \rangle = \langle x, T^*y \rangle. \tag{9}$$

We have that $T^{**} = T$ and $||T|| = ||T^*||$. (letzte Aussage überprüfen)

Theorem 8 (Gronwall's Lemma). Let $f : \mathbb{R} \to \mathbb{R}$ be a non-negative continuous function and $g : \mathbb{R} \to \mathbb{R}$ be a non-negative integrable function such that

$$f(t) \le A + \int_0^t f(s)g(s)ds \tag{10}$$

holds for some $A \geq 0$ for every $t \in [0,T]$. Then

$$f(t) \le A \exp\left(\int_0^t g(s)ds\right) \tag{11}$$

holds for every $t \in [0, T]$.

Theorem 9 (Hahn-Banach). Let ϕ be a bounded linear functional on a subspace M of a normed (real) vectorspace X. Then there exists a bounded linear functional Φ on X which is an extension of ϕ to X and has the same norm, i.e.

$$\|\Phi\|_X = \|\phi\|_M,\tag{12}$$

where

$$\|\Phi\|_X = \sup_{x \in X, \|x\| = 1} |\Phi(x)|, \|\phi\|_M = \sup_{x \in M, \|x\| = 1} |\phi(x)|.$$
 (13)

Theorem 10 (Arzelà-Ascoli theorem, source: Wiki). Consider a sequence of functions (f_n) defined on a compact interval. If this sequence is uniformly bounded and uniformly equicontinuous, then there exists a subsequence (f_{n_k}) that converges uniformly.

Definition 11 (uniformly equicontinuous). A sequence of functions (f_n) is said to be uniformly equicontinuous if, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f_n(x) - f_n(y)| < \varepsilon \tag{14}$$

whenever $|x-y| < \delta$ for all functions f_n in the sequence.

This is the version of Arzelà-Ascoli used on example sheet 6, problem*, in a specific norm:

Theorem 12 (Arzelà-Ascoli theorem, source: solution to sheet 5). Suppose there is a sequence (of solutions) $(\phi^{(i)})$ in $C^{k-1}([0,T]\times\mathbb{R}^n)$ that converges to ϕ in a $C^{k-1}([0,T]\times\mathbb{R}^n)$ -sense and is uniformly bounded, meaning $\|\partial^k\phi\|_{L^\infty}\leq A$ (A not dependent on i).

Then, there exists a subsequence $(\phi^{(i_{\lambda})})$ that converges in $C^{k}([0,T]\times\mathbb{R}^{n})$.

Theorem 13 (Banach-Alaoglu, basic version). Let (u_k) be a bounded sequence in a Hilbert space H, i.e. $||u_k||_H \leq C$. Then there exists a subsequence which converges weakly in H.

Definition 14 (Weak Convergence; source: Wiki). A sequence of elements (x_n) in a Hilbert space H is said to converge weakly to $x \in H$ if

$$\langle x_n, y \rangle \to \langle x, y \rangle$$
 (15)

for all $y \in H$, $\langle \cdot, \cdot \rangle$ denoting the inner product of H. Notation: $x_n \rightharpoonup x$

Theorem 15 (Riesz Representation thm).

Theorem 16 (Banach's Fixed Point Thm; source: Wiki). Let $(X, \|\cdot\|)$ be a non-empty complete metric space and $T: X \to X$ a contraction mapping. Then T admits a unique fixed point x^* in X, so $T(x^*) = x^*$.

Definition 17 (contraction mapping). A map $T: x \to X$ is called a contraction mapping if there exists a $q \in [0,1)$ such that

$$||T(x) - T(y)|| \le q||x - y|| \tag{16}$$

for all $x, y \in X$.

3 Fourier Transformation

Open Question: What is the advantage of Fourier representation?

Definition 18 (Schwartz space). The Schwartz space $\mathcal{S}(\mathbb{R}^n)$ is a vectorspace given by

$$\mathcal{S}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) | \forall \alpha, \beta \in \mathbb{N}_0^n, \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} f(x)| < \infty \}$$
 (17)

equipped with a countable family of semi-norms

$$||f||_{\alpha,\beta} := \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} f(x)|. \tag{18}$$

You can think of the Schwartz space as functions that decay faster than any polynomial.

Definition 19 (Fourier transform). Given a function $f \in \mathcal{S}(\mathbb{R}^n)$, we define the Fourier transform by

$$\mathcal{F}(f)(\xi) := \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx. \tag{19}$$

The inverse Fourier transform is given by

$$\mathcal{F}^{-1}(f)(\xi) := \int_{\mathbb{D}^n} f(x)e^{+2\pi ix\cdot\xi} dx. \tag{20}$$

Theorem 20 (properties of Fourier transform and norms; source: exercise session 1). For $f \in \mathcal{S}(\mathbb{R}^n)$ the following holds:

1.
$$\|\mathcal{F}(f)\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)}$$

2.
$$\|\mathcal{F}(f)\|_{L^{\infty}(\mathbb{R}^n)} = \|f\|_{L^1(\mathbb{R}^n)}$$

Theorem 21 (properties of the Fourier transform; source: exercise session 1). For $f \in \mathcal{S}(\mathbb{R}^n)$ the following properties hold:

1.
$$\mathcal{F}(\partial_i f(x)) = 2\pi i \xi_i \mathcal{F}(f)(\xi)$$

2.
$$\mathcal{F}(x_i f(x)) = -\frac{1}{2\pi i} \partial_{\xi_i} \mathcal{F}(f)(\xi)$$

4 Important Inequalities

Theorem 22 (The interpolation inequality). We have

$$||f||_{H^{s}(\mathbb{R}^{n})} \le C(s_{1}, s_{2}, s_{n}) ||f||_{H^{s_{1}}(\mathbb{R}^{n})}^{\theta_{1}} ||f||_{H^{s_{2}}(\mathbb{R}^{n})}^{\theta_{2}}, \tag{21}$$

where $0 \le s_1 \le s \le s_2$, $\theta_1 + \theta_2 = 1$ and $\theta_1 s_1 + \theta_2 s_2 = s$.

Theorem 23 (Gargliardo-Nirenberg interpolation estimate; source: sheet 5). Let $\phi \in H^s(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. For $0 < |\alpha| < s$ we have

$$||D^{\alpha}\phi||_{L^{\frac{2s}{|\alpha|}}(\mathbb{R}^n)} \le C(|\alpha|, s, n)(||\phi||_{L^{\infty}(\mathbb{R}^n)})^{1-\frac{|\alpha|}{s}}(||\phi||_{\dot{H}^{s}(\mathbb{R}^n)})^{\frac{|\alpha|}{s}}.$$
 (22)

4.1 Sobolev Embedding

Theorem 24 (Sobolev embedding thm; source: sheet 1). There exists a constant C = C(n, s) > 0 such that for every $f \in H^s(\mathbb{R}^n)$ with $s > \frac{n}{2}$ we have

$$||f||_{L^{\infty}(\mathbb{R}^n)} \le C||f||_{H^s(\mathbb{R}^n)}.$$
 (23)

Theorem 25 (source: sheet 1). If s is a non-negative integer, there exists a constant C = C(s) such that for every $f \in H^s(\mathbb{R}^n)$ with $s > \frac{n}{2}$ we have

$$\frac{1}{C} \sum_{|\alpha| \le s} \|\partial^{\alpha} f\|_{L^{2}(\mathbb{R}^{n})} \le \|f\|_{H^{s}(\mathbb{R}^{n})} \le C \sum_{|\alpha| \le s} \|\partial^{\alpha} f\|_{L^{2}(\mathbb{R}^{n})}. \tag{24}$$

Theorem 26 (source: solution to sheet 3). Let $f \in \mathcal{S}(\mathbb{R}^n)$. If $s > k + \frac{n}{2}$, then

$$||f||_{C_b^k(\mathbb{R}^n,\mathbb{C})} \le C||f||_{H^s},$$
 (25)

where the b means bounded.

Theorem 27 (source: sheet 6). For $0 \le s < \frac{n}{2}$ there exists a constant C = C(s, n), such that

$$\|\phi\|_{L^{\frac{2n}{n-2s}}(\mathbb{R}^n)} \le C\|\phi\|_{\dot{H}^s(\mathbb{R}^n)}.$$
 (26)

Theorem 28 (second Sobolev embedding thm; source: Wiki). If n < pk and $r + \alpha = k - \frac{n}{p}$ with $\alpha \in (0,1)$, then one has the embedding

$$W^{k,p}(\mathbb{R}^n) \subset C^{r,\alpha}(\mathbb{R}^n). \tag{27}$$

5 Basic Analysis, Measure Theory

Theorem 29 (Young's Inequality). Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Then, for any non-negative a and b it holds

$$ab = \frac{a^p}{p} + \frac{b^q}{q}. (28)$$

Theorem 30 (Young's Inequality Special case). Let $x, y \in \mathbb{R}^n$, $\delta > 0$, p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Then we have

$$|xy| \le \delta |x|^2 + \frac{1}{4\delta} |y|^2. \tag{29}$$

Theorem 31 (Hölder's Inequality; source: Wiki). Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Then, if $f \in L^p$ and $g \in L^q$:

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q}. \tag{30}$$

Theorem 32 (Lebesgue Monotone Convergence; source: math3ma.com). Suppose $(f_n: X \to [0, \infty))$ being a monotonically increasing sequence of measurable functions on a measurable set X such that $f_n \to f$ pointwise almost everywhere, then

$$\lim_{n \to \infty} \int_X f_n = \int_X f. \tag{31}$$

Theorem 33 (Fatou's Lemma; source: Wiki). Given a measure space $(\Omega, \mathcal{F}, \mu)$ and a set $X \in \mathcal{F}$, let $(f_n : X \to [0, \infty])$ be a sequence of measurable functions. Define the function $F_X \to [0, \infty]$ by setting $f(x) = \liminf_{n \to \infty} f_n(x)$ for every $x \in X$.

Then f is measurable, and also

$$\int_{X} f d\mu \le \liminf_{n \to \infty} \int_{X} f_n d\mu \tag{32}$$

where the integrals may be infinite.

Theorem 34 (Change of Variables Formula; source: Wiki). Let $\Omega \subset \mathbb{R}^n$ be an open set, $\Phi: \Omega \to \Phi(\Omega) \subset \mathbb{R}^n$ a diffeomorphism. A function f is integrable on $\Phi(\Omega)$ iff the function $x \mapsto f(\Phi(x))|Det(D\Phi(x))|$ is integrable on Ω . Then we have

$$\int_{\Phi(\Omega)} f(y)dy = \int_{\Omega} f(\Phi(x))|\det(D\Phi(x))|dx. \tag{33}$$

Theorem 35 (Picard-Lindelöf). Let $G \subset \mathbb{R} \times \mathbb{R}^n$ be open and $f: G \to \mathbb{R}^n$ a continuous function satisfying a Lipschitz property locally. Then for every $(a,c) \in G$ there exists $a \in S \setminus S$ and a solution

$$\phi: [a - \epsilon, a + \epsilon] \to \mathbb{R}^n \tag{34}$$

for the ODE y' = f(x, y) with initial data $\phi(a) = c$.

Theorem 36 (Chain Rule).

$$\frac{\partial}{\partial x}F(\phi(x)) = \frac{\partial F}{\partial \phi}\frac{\partial \phi}{\partial x}$$
 (35)