Prof. Alexander Huth 4.14.2020

HOMEWORK 2

- * Due today!
- * If you haven't turned it in yet, remember that the late policy is quite lenient (see syllabus)

PROJECT PROPOSALS

* Feedback will come to you sporadically over the next week

RECAP

- * Linking artificial and biological neural networks
- * In vision:
 - * Train ANN to recognize objects
 - * Use its representations to model visual cortex
 - * This works pretty well (Eickenberg, Yamins)

RECAP

- * How much does the *task* of the ANN matter?
 - * Networks trained to classify images learn good representations for modeling brain
 - * But random (untrained!) networks also work pretty well!

- * Suppose there's a sequence of input output pairs {(x_t, y_t)}_{t=1,2,...,T}
 - * & suppose there are sequential relationships, i.e. y_t is dependent not only on x_t but also on previous x

- * Suppose there's a sequence of input output pairs {(x_t, y_t)}_{t=1,2,...,T}
- * To apply a simple neural network we could feed in all x and y in parallel
 - * But this doesn't generalize to different sequence lengths, and would use a *huge* number of parameters

- * Recurrent neural networks (RNNs) can solve this problem
- * RNNs can solve these sequence problems without a huge number of weights

- * (Drawing of basic RNN)
- * (Drawing of RNN training using backprop through time, BPTT)

LANGUAGE

- * Experimental setting:
 - * A subject listens to language (e.g. a narrative story) while BOLD responses are recorded from cortex using fMRI
 - * We want to do **system identification:** build some model that predicts BOLD responses from the language stimuli

LANGUAGE

- * To apply the "system construction" approach:
 - * build an artificial neural network that solves some task
 - * then use its representations (as a linearizing transform) to model the brain
- * What task?

LANGUAGE

- * In vision: object categorization seems like a good task (modulo earlier discussion), because it requires the network to learn lots of things
- * What is an equivalent for language?
 - * Ideally something related to language meaning

LANGUAGE MODELS

- * One solution may be language models, which have taken on a similar role in the NLP field to image classification models (e.g. AlexNet) in computer vision
- * The task of a language model is to predict a word from its context
 - * e.g. $P(w_i|w_1,...,w_{i-1})$

LANGUAGE MODELS

- * Language models can use many different architectures
- * One is a recurrent neural network (RNN)
- * In particular, a variant RNN called a long short-term memory (LSTM) network
 - * (We'll talk talk about this network & how it works in detail on Tuesday)

FMRI EXAMPLE USING LSTM LANGUAGE MODEL

* Jain & Huth (2018) Incorporating context into language encoding models for fMRI. NeurIPS

FMRI EXAMPLE USING LSTM LANGUAGE MODEL

- * Approach:
 - * Train LSTM language model on text
 - * Do fMRI experiment
 - * Use LSTM language model to extract features from fMRI stimuli
 - * Build linearized system identification model using LSTM-derived features

FMRI EXAMPLE USING LSTM LANGUAGE MODEL

- * In visual models different features can be extracted from different layers
- * In language models different features can be extracted from different layers and with different amounts of context

* e.g.
$$P(w_i|w_{i-c},\ldots,w_{i-1})$$
 "context length"

* Different brain areas prefer different amounts of context

* But "layer preference" does not recapitulate known hierarchies, unlike Eickenberg, etc.

* In visual models, there is a clear "progression" of representations from low- to high-level

Also seen in Toneva & Wehbe NeurIPS 2019

NEXT TIME

* Other neural network architectures for language modeling: LSTMs & Transfomers