

Consideremos la matrices *A* y *B* particionadas en *rxr* bloques de idéntico tamaño.

Supongamos que disponemos de una malla abierta de *rxr* procesadores:

$$A = \begin{bmatrix} A_{00} & A_{01} & \cdots & A_{0,r-1} \\ A_{10} & A_{11} & \cdots & A_{1,r-1} \\ \vdots & \vdots & & \vdots \\ A_{r-1,0} & A_{r-1,1} & \cdots & A_{r-1,r-1} \end{bmatrix} P_{10} P_{11} \cdots P_{1s}$$

$$B = \begin{bmatrix} B_{00} & B_{01} & \cdots & B_{0,r-1} \\ B_{10} & B_{11} & \cdots & B_{1,r-1} \\ \vdots & \vdots & & \vdots \\ B_{r-1,0} & B_{r-1,1} & \cdots & B_{r-1,r-1} \end{bmatrix} \quad \vdots \quad s = r-1$$

$$P_{s0} \qquad P_{s1} \qquad \cdots \qquad P_{s1} \qquad \cdots$$

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{00} & B_{01} & B_{02} \\ B_{10} & B_{11} & B_{12} \\ B_{20} & B_{21} & B_{22} \end{bmatrix} =$$

$$\begin{bmatrix} A_{00}B_{00} + A_{01}B_{10} + A_{02}B_{20} & A_{00}B_{01} + A_{01}B_{11} + A_{02}B_{21} & A_{00}B_{02} + A_{01}B_{12} + A_{02}B_{22} \\ A_{10}B_{00} + A_{11}B_{10} + A_{12}B_{20} & A_{10}B_{01} + A_{11}B_{11} + A_{12}B_{21} & A_{10}B_{02} + A_{11}B_{12} + A_{12}B_{22} \\ A_{20}B_{00} + A_{21}B_{10} + A_{22}B_{20} & A_{20}B_{01} + A_{21}B_{11} + A_{22}B_{21} & A_{20}B_{02} + A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

ALGORITMO

Inicialmente P_{ij} contiene A_{ij} y B_{ij} . Cada procesador calculará el bloque correspondiente C_{ij} del producto C = AB. Internamente estos bloques tendrán el mismo nombre, es decir

$$\mathcal{A} \leftarrow A_{ij} \quad \mathcal{B} \leftarrow B_{ij} \quad \mathcal{C} \leftarrow C_{ij}$$

Cada procesador P_{ij} estará identificado por su fila (=i) y su columna (=j).

Para
$$k = 0, 1, ..., r - 1$$

— Si columna=mod(fila+k,r):

Mandar A a todos los procesadores de mi fila.

$$C = C + A \star B$$

Si no:

Recibir \mathcal{A} del procesador que envía en mi fila y almacenarlo en $\mathcal{A}T\mathcal{MP}$.

$$C = C + ATMP \star B$$

— Hacer una rotación de los bloques columna de B, es decir, P_{ij} manda su bloque $\mathcal B$ a $P_{i-1,j}$. El proceso P_{0j} manda su bloque $\mathcal B$ a $P_{r-1,j}$.

Después de estas *r* iteraciones, *C* contiene el producto *AB* distribuido entre los procesadores y los bloques de *B* han sufrido una rotación entre las columnas, volviendo a estar almacenados como al inicio del algoritmo.

r=	:3
4	31
	-

k=0	fila	0	1	2		
	mod(fila+0,3)	0	1	2		
	(fila,columna)	(0,0)	(1,1)	(2,2)		
k=1	fila	0	1	2		
	mod(fila+1,3)	1	2	0		
	(fila,columna)	(0,1)	(1,2)	(2,0)		
k=2	Fila	0	1	2		
	mod(fila+2,3)	2	0	1		
	(fila,columna)	(0,2)	(1,0)	(2,1)		