Tabăra de pregătire a lotului național de informatică

Râmnicu - Vâlcea, 24 aprilie - 1 mai 2015

Baraj II - Seniori

Sursa: sakura.c / sakura.cpp / sakura.pas

Problema 3 - Sakura

100 puncte

Tassadar, primarul orașului Araoșimit, a plantat pe bulevarde cireși japonezi. Cu trecerea timpului, aceștia au crescut mari și frumoși, numai că... acum sunt prea mari și ramurile lor îngreunează traficul. Din acest motiv, primarul a hotărât că ar fi cazul să taie câteva ramuri, dar să păstreze frumusețea copacilor.

Cerintă

Se dau T perechi de arbori (A, B) cu rădăcini fixate și se cere să spuneți numărul minim de operații care trebuie efectuate asupra arborelui A astfel încât acesta să devină izomorf cu arborele B, sau să menționați dacă acest lucru nu este posibil. O operație constă în ștergerea unei frunze din arborele A.

Date de intrare

Fişierul de intrare sakura.in conține pe prima linie un singur număr natural \mathbb{T} , reprezentând numărul de perechi de arbori. În continuare vor fi descrise cele \mathbb{T} perechi. Pe prima linie din descrierea fiecărei perechi se află numărul \mathbb{N} , reprezentând numărul de noduri din primul arbore (asupra căruia se vor efectua operațiile). Pe următoarele $\mathbb{N}-1$ linii se vor afla câte două numere \mathbb{X} și \mathbb{Y} , cu semnificația că există muchie între nodurile cu indicii \mathbb{X} și \mathbb{Y} . Pe următoarea linie se află un număr \mathbb{M} , reprezentând numărul de noduri din al doilea arbore. Pe următoarele $\mathbb{M}-1$ linii se vor afla câte două numere \mathbb{X} și \mathbb{Y} , cu semnificația că există muchie între nodurile cu indicii \mathbb{X} și \mathbb{Y} .

Date de ieșire

În fişierul de ieşire sakura.out se vor afişa T linii. Pe fiecare linie veți scrie câte un singur număr natural, reprezentând răspunsul pentru fiecare pereche de arbori, în ordinea dată în fişierul de intrare. Dacă, pentru o pereche, este posibil să se obțină al doilea arbore din primul, veți afişa numărul minim de operații. Altfel, veți afișa "-1".

Restricții și precizări

- 1 ≤ T ≤ 10
- $1 \le N, M \le 500$
- Pentru 20% din teste N, M \leq 13
- Pentru 60% din teste N, M \leq 100
- Nodurile arborilor sunt numerotate de la 0
- Toți arborii au ca rădăcină nodul cu indicele 0
- După eliminarea unei frunze, este posibil ca tatăl frunzei respective să devină și el frunză și să poată fi șters
- Doi arbori se consideră izomorfi dacă au aceeaşi rădăcină şi există o posibilitate de reetichetare a nodurilor primului arbore astfel încât cei doi arbori să fie identici

Exemple

sakura.in	sakura.out	Explicație
2	2	Pentru prima pereche, putem șterge, în această ordine,
4	-1	nodurile 3 și 1. Cei doi arbori rămași sunt izomorfi,
0 1		deoarece au aceeași rădăcină (0), și putem reeticheta
0 2		nodul 2 din primul arbore cu 1. Astfel, vor deveni
3 1		identici. Pentru a doua pereche, nu există soluție.
2		
0 1		
1		
2		
0 1		

Timp maxim de execuție/test: 0.4 secunde.

Memorie totală disponibilă: 64 MB, din care 32 MB pentru stivă.

Dimensiunea maximă a sursei: 20 KB.