CSIT113 Problem Solving

Week 10

Please enrol in your Spring 2020 subjects as soon as possible.

ADVANTAGES:

- To ensure that you get into the computer lab or workshop of your choice
- To map out your timetable for Spring session
- To get details of your subject

- Consider the game of Tic-Tac-Toe (Noughts and Crosses)
 - Two players X and O alternate play on a 3×3 grid.
 - Each player puts their symbol in one of the empty squares.
 - The winner is the first player to establish a line of three of their symbol.
 - Horizontal
 - Vertical
 - Diagonal
 - A draw is possible
 - Consider the following sample game:

We can construct a tree showing all possible positions in the game.

• The root is an empty board.

The next level shows all possible first moves

- Note: there are only three possible first moves
 - The rest are reflections or rotations of these.

• And so on...

As you can see this is going to be a pretty big tree!

- We can eliminate duplicated nodes
- This turns our game tree into a game graph
- This game graph is directed and acyclic

Becomes...

- The terminal nodes (leaves) of the game graph correspond to winning/losing or drawn positions.
- Thus, our sample game is one path from the root to a leaf...

• ...is one possible complete game.

A Solitaire Game.

- Let us now look at a game with a much simpler game graph.
- We start with three coins...

- We can flip the centre coin at any time.
- We can flip either end coin only if the other two coins show the same face.
- Starting Position is HTH
- Ending Position is THT

A Solitaire Game.

 We can construct the game tree by starting at the initial position and trying all valid moves:

A Solitaire Game.

 We can simplify this by combining duplicated nodes to get the equivalent game graph.

Any path from the start node to the end node is a solution to the game.

State-Trees and State-Graphs

- We can create a tree or graph for any problem not just for games.
- Each node represents a partial attempt at a solution.
- The leaves represent final states for the problem these may be:
 - Solutions
 - or Dead ends.
- The difficulty is to find a path from the root to a solution without building the whole tree.
- Any solution strategy can be viewed as a way of choosing the next node in the tree.

Brute Force Graphs

- Consider the **discrete** backpack problem:
 - We have a set of objects, each with a weight and a value.
 - We need to assemble the greatest possible value into our backpack.
 - We must put all of an object in the backpack.
- We could construct the state tree in two different ways:
 - 1. At each level, decide which object to add to the pack next.
 - 2. At each level, decide whether to add the next object to the pack or not.

Consider the following problem:

Object	1	2	3
Value	20	10	30
Weight	5	2	3

Backpack capacity = 7

• Red nodes are illegal. Green nodes are optimal.

Consider the following problem:

Object	1	2	3
Value	20	10	30
Weight	5	2	3

Backpack capacity = 7

• Again Red is illegal, green is best.

What's wrong with this?

- The big problem we have here is that we have no easy way to find the best terminal node.
- We need some way of evaluating the nodes as we go.
- The alternative is to construct the whole tree and then find the solution somewhere within it.
- If we have 10 objects we have a tree with over 1000 leaves!
- Each extra object doubles the number.
- Do not even think about trying to fit the best selection from 100 objects!

How do we fix this.

- We need some way to decide which node is the most promising at each level.
- We call this measure of "promisingness" a metric.
- We could then choose this node to further expand.
- This is the basis of the greedy strategy.
- Let's look at solving the continuous backpack problem in terms of a state-tree.
- We will start with the same set of objects and use value/weight as our metric.

Consider the following problem:

Object	1	2	3
Value	20	10	30
Weight	5	2	3
V/W	4	5	10

Backpack capacity = 7

When Greedy Fails

- As we have seen in previous weeks the greedy strategy does not always lead to a solution.
- Sometimes the promising node turns out to be wrong.
- What can we do in this case?
 - Brute force?
 - Something else?
- Brute force always works but often we can find a better strategy.
- We will examine one such strategy, backtracking.

The N Queens Problem

- This problem involves placing n chess queens on a square $n \times n$ board so that no two queens share:
 - the same row;
 - the same column;
 - the same diagonal.

The N Queens Problem

• Here is a sample 4 x 4 solution:

We Have a Problem

• One difficulty with this problem is that there is no solution for some values of *n*.

•
$$n = 3$$

- The simplest statement of the problem (the one that uses least information) is as follows:
 - Place n queens on a square board with n^2 squares so that no two queens threaten each other.
- If we number the squares from 1 to n^2 we can try all possible values for each queen.

- Thus all queens start on square 1 and we try moving each queen to all possible squares independently.
- For a 4 x 4 board this approach looks like this...

Start

• ... much later...

• ... much, much later...

• ...we get a solution!

What Next?

- This approach is clearly stupid!
- We are using none of the information inherent in the problem.
- For example, each queen must be in a different row.
- Let's use this to construct a less brutish brute force solution

Start

• ... some time later...

• ...success!

What Next?

- This is better but we still are doing a lot of needless work.
- Let us add the fact that each queen is in a different column.
- We can use this to build brute force 3.

Start

• ... some time later...

• ...success.

What Next?

- This is even better but we still are doing a lot of needless work.
- Perhaps our basic strategy, placing all the queens at once, is at fault.
- What if we try placing them one at a time?

• Place a queen in row 1

• Place a queen in row 2

- We cannot place the next queen!
- Now what do we do?

Backtrack

- When we placed each queen we took the first available square.
- But there were other squares available.
- What we have to do is go back to the last place we had another move available to us and try it instead.
- This procedure is known as backtracking.

• This didn't work

• So try this

• Place a queen in row 3

• Again, we cannot continue.

• We cannot place a queen in row 4!

Backtrack

And we have run out of possibilities on row 2

Backtrack again!

• This didn't work.

• So try this.

• Success!

8x8

 Here is an animation of the backtracking strategy being used to solve the 8 Queens problem.

Efficiency

• Let us compare the different strategies:

Strategy	Number of Moves	
Brute Force 1	6031	
Brute Force 2	115	
Brute Force 3	11	
Backtracking	8 (partial)	

• As *n* is increased, the value of backtracking becomes even greater.

- We can understand what is happening by analysing the underlying data structure that describes the problem.
- The *game-tree*.
- This is a tree constructed by taking each move in turn and linking it to each possible continuation.

- In the first brute force algorithm, each node has 16 children.
- As the tree has 4 levels, there are 65,536 leaves in the tree, each corresponding to one possible arrangement of queens.
- The algorithm is to look at each leaf in turn until we find the solution.
- With n queens this gives n^{2n} leaves.

- In the second brute force algorithm, each node has 4 children.
- As the tree has 4 levels, there are 256 leaves in the tree, each corresponding to one possible arrangement of queens.
- This reduction in the size of the tree is what makes this much faster to solve.
- With n queens this gives n^n leaves.

- In the third brute force algorithm, the root node has 4 children.
- Each of these has 3 children.
- Each of these has 2.
- And each of these has 1.
- There are a total of 24 leaves.
- We examine each of these in turn.
- With *n* queens this gives *n*! leaves.

- The backtracking algorithm takes a different approach.
- Instead of looking only at the leaves, look at the internal nodes as we construct them.
- Stop building the sub-tree as soon as you get an illegal position.
- This dramatically reduces the work we have to do.

• As *n* gets bigger, the advantage becomes greater.

n	n^{2n}	n^n	n!	Backtrack
4	65,536	256	24	8
5	9,765,625	3,125	120	5
6	2,176,782,336	46,656	720	34
7	678,223,072,849	823,543	5,040	10
8	281,474,976,710,656	16,777,216	40,320	?

- This approach of constructing a tree of solutions and pruning it as it is built can be applied to a wide range of problems.
- Even so, we eventually reach a point where this approach is still too time consuming.
 - Consider solving the 1,000 queens problem.
- At this point we need to introduce ways of pruning the game tree even more effectively.

Metrics

- In the *n*-queens problem we explored the state tree in order.
 - We considered possible positions, left to right, in each row.
- What if we could attach a value to each node that provided some estimate of how likely its branch was to contain the solution?
- This would provide a better order in which to select branches to explore.
 - Select the branch with highest value.
- We call such a measure a *metric*.
- Adding a metric can dramatically improve backtracking.

Metrics and Greedy Strategies

- Every greedy algorithm is based on a metric.
- For greedy to work we need the metric to be perfect.
 - It must guarantee that the solution is down the chosen path.
 - The likelihood is either zero or one.
- In other cases we have a metric that is not perfect.
 - It does not guarantee that the solution is down the chosen path.
 - The likelihood is between zero and one.
- In such cases we cannot use a greedy strategy with guaranteed success.
- We can, however, use backtracking.

Heuristics

- When a metric is not perfect we call it a *heuristic*.
- Heuristics can improve the performance of a number of solution strategies.
- A good heuristic can dramatically improve the performance of these strategies.
- Good:
 - Close match to reality (the metric leads quickly to the solution)
 - Easy/cheap to evaluate
- Sometimes backtracking, even with a good heuristic, is not enough.
- We need even better strategies.