SUBSPACES IN R² AND R³

Let u be a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 .

span $\{u\}$ is the set of all linear combinations (or scalar multiples) of u.

Geometrically, span $\{u\}$ is a straight line passing through the origin.

Let u be a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 .

$$(\ln \mathbb{R}^2) u = (u_1, u_2), \operatorname{span}\{u\} = \{(cu_1, cu_2) | c \in \mathbb{R}\}$$

(can we find the equation of the line?)

For example, if $(u_1, u_2) = (2, -1)$,

$$\Rightarrow a(2) + b(-1) = 0,$$

$$\Rightarrow 2a = b,$$

$$u$$

$$(u_1, u_2)$$

$$u$$

$$(u_1, u_2)$$
origin

 \Rightarrow x + 2y = 0 is the equation

$$\Rightarrow a = 1$$
, $b = 2$ is a solution of the line spanned by $(2, -1)$

Let u be a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 .

$$(\ln \mathbb{R}^2) u = (u_1, u_2), \operatorname{span}\{u\} = \{(cu_1, cu_2) | c \in \mathbb{R}\}$$

$$(\ln \mathbb{R}^3) u = (u_1, u_2, u_3), \operatorname{span}\{u\} = \{(cu_1, cu_2, cu_3) | c \in \mathbb{R}\}$$

Remember that a line in \mathbb{R}^3 cannot be represented by a single linear equation.

$$u$$
 (u_1, u_2, u_3)
origin

Let u, v be two nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 .

 $span\{u,v\}$ is the set of all linear combinations of u and v.

$$= \{ s\boldsymbol{u} + t\boldsymbol{v} \mid s, t \in \mathbb{R} \}$$

What if u and v are parallel?

 $\Rightarrow v$ is a linear combination (scalar multiple) of u

$$span\{u,v\} = span\{u\}$$

= straight line passing through the origin.

Let u, v be two nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 .

 $span\{u,v\}$ is the set of all linear combinations of u and v.

$$= \{ su + tv \mid s, t \in \mathbb{R} \}$$

Let u, v be two nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 .

 $span\{u,v\}$ is the set of all linear combinations of u and v.

$$= \{ su + tv \mid s, t \in \mathbb{R} \}$$

If u and v are not parallel, span $\{u,v\}$ is a plane containing

If u and v are not parallel,

(In
$$\mathbb{R}^2$$
) span $\{u,v\} = \mathbb{R}^2$. $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)$
(In \mathbb{R}^3) span $\{u,v\} = \{su + tv \mid s,t \in \mathbb{R}\}$
 $= \{s(u_1, u_2, u_3) + t(v_1, v_2, v_3) \mid s,t \in \mathbb{R}\}$

(can we find the equation of the plane?)

$$ax + by + cz = 0$$

If u and v are not parallel,

$$u = (1,0,-2), v = (-1,1,0)$$

$$ax + by + cz = 0$$

$$2x + 2y + z = 0$$

$$-a + b = 0$$

$$\begin{pmatrix} 1 & 0 & -2 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -2 & 0 \end{pmatrix} \qquad \begin{cases} a & = 2s \\ b & = 2s \\ c & = s, \quad s \in \mathbb{R} \end{cases}$$

Subspaces of R²

The following are all the subspaces of \mathbb{R}^2 :

- (1) $span{0}$ (the zero subspace) = the origin
- (2) span $\{u\}$ $(u \neq 0)$
 - = straight line through origin
- (3) span{u,v} (u,v not multiples of each other) $= \mathbb{R}^2$

Subspaces of R³

The following are all the subspaces of \mathbb{R}^3 :

- =straight line through origin
- (3) $span\{u,v\}$ (u,v not multiples of each other) = plane containing the origin
- (4) span $\{u,v,w\}$ (*u* is not a linear combination of v,w) $= \mathbb{R}^3$ (*v* is not a linear combination of u,w)
 (*w* is not a linear combination of u,v)

Summary

- 1) Linear span of one vector (geometrical)
- 2) Linear span of two vectors (geometrical)
- 3) Characterisation of all subspaces of \mathbb{R}^2 and \mathbb{R}^3 .