Lecture 8

Rivest-Shamir-Adelman (RSA)

CS 450/650

Fundamentals of Integrated Computer Security

- Mid-term review Oct. 15
- Mid-term Oct. 17

Two kinds of Cryptography

Symmetric

- 1) Alice and Bob agree on a cryptosystem
- 2) Alice and Bob agree on a key
- 3) Alice takes her plaintext message and encrypts it using the encryption algorithm and the key. This creates a ciphertext message
- 4) Alice sends the ciphertext message to Bob
- 5) Bob decrypts the ciphertext message with the same algorithm and key and reads it

Asymmetric

- Alice and Bob agree on a publickey cryptosystem
- 2) Bob sends Alice his public key
- 3) Alice encrypts her message using Bob's public key and sends it to Bob
- 4) Bob decrypts Alice's message using his private key

RSA

- RSA is one of the first practical public-key cryptosystems and is widely used for secure data transmission.
- The encryption key is public and differs from the decryption key which is kept secret (asymmetric cipher)
- Its security is based on the practical difficulty of doing some mathematical operations
 - RSA: factoring the product of two large prime numbers, the factoring problem

Fundamentals for RSA

Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers
- b divides a if there is no remainder on division
- The notation b|a is commonly used to mean b divides a
- If b | a we say that b is a divisor of a

Properties of Divisibility

- If a | 1, then $a = \pm 1$
- If $a \mid b$ and $b \mid a$, then $a = \pm b$
- Any b != 0 divides 0
- If $a \mid b$ and $b \mid c$, then $a \mid c$
- If b|g and b|h, then b|(mg + nh) for arbitrary m and n
 - 2 | 4 and 2 | 8, the 2 | (4m+8n)

Division Algorithm

- Given any positive integer n and any nonnegative integer a, if we divide a by n we get an integer quotient q and an integer remainder r that obey the following relationship:
 - a = qn + r, where $0 \le r \le n$; q = [a/n]
 - E.g., a=21, n=10, then a=2*10+1, so q=2 and r=1

Greatest Common Divisor (GCD)

- greatest common divisor (GCD) of two positive integers
 - GCD: the largest number that divides both of them without leaving a remainder
- Two integers are relatively prime if their GCD is 1

Greatest Common Divisor (GCD)

- The greatest common divisor of a and b is the largest integer that divides both a and b
- Represented by gcd(a, b)
- Positive integer c is said to be the gcd of a and b if
 - c is a divisor of a and b
 - Any divisor of a and b is a divisor of c
- Example: gcd(6,8), gcd(8,16), gcd(9,10)

GCD Properties

- GCD should be positive
- So gcd(a, b) = gcd(a,-b) = gcd(-a, b) = gcd(-a, -b)
- example: gcd(8,-6)
- We stated that two integers a and b are relatively prime if their only common positive integer factor is 1; this is equivalent to saying that a and b are relatively prime if gcd(a, b) = 1

\mathbb{M}

Modular Arithmetic

- If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n; the integer n is called the modulus
- Thus, for any integer a
 - a = qn + r, 0 <= r < n; q = [a/n]
 - a mod n=r
- Example: 1) 11 mod 7 and 2) -11 mod 7

Congruent Modulo n

- If $(a \mod n) = (b \mod n)$, we write as $a \equiv b \mod n$
 - a and b are said to be congruent modulo n
- Note that if $a \equiv 0 \mod n$, then $n \mid a$
- e.g., $73 \equiv 4 \mod 23$,
- example: 21 ≡? –9 mod 10

• Exercise

- $a. 19 \equiv ? -19 \mod 10$
- b. 20 \equiv ? -20 mod 10

Properties of Congruences

- Reflexive: $a \equiv a \mod n$
- Symmetric: if $a \equiv b \mod n$, then $b \equiv a \mod n$
- Transitive: if $a \equiv b \mod n$, and $b \equiv c \mod n$, then $a \equiv c \mod n$
- Exercise:
 - prove: if $n \mid (a b)$, then $a \equiv b \mod n$

Modular Arithmetic

- $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - $-[(11 \mod 10) + (12 \mod 10)] \mod 10 = (11 + 12)$ $\mod 10$
- $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - $-[(11 \mod 10) (12 \mod 10)] \mod 10 = (11 12)$ $\mod 10$
- $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$
 - $-[(11 \mod 10) \times (12 \mod 10)] \mod 10 = (11 \times 12)$ $\mod 10$

Modular Arithmetic

- for integer n > 1, if $a \equiv b \mod n$ and $c \equiv d \mod n$, then
 - $-a \pm c \equiv b \pm d \mod n$ and
 - $-ac \equiv bd \mod n$
 - $-e.g. 1=3 \mod 2$ and $0 = 4 \mod 2$, then 1*0≡3*4 mod 2

Euler's Totient Function

- Euler's totient function, written ø (n), is defined as the number of positive integers less than n and relatively prime to n
- By convention, $\emptyset(1) = 1$
- Examples: $\emptyset(7) = 6$, $\emptyset(4) = 2$
- For a prime p, \emptyset (p) = p-1
- Suppose we have two primes p and q, with p!=q. Then we have, for n=pq, $\emptyset(n) = \emptyset(pq) = \emptyset(p) * \emptyset(q) = (p-1)(q-1)$

n	$\phi(n)$
1	1
2	1
3	2
4	2
5	4
6	2
7	6
8	4
9	6
10	4

n	$\phi(n)$
11	10
12	4
13	12
14	6
15	8
16	8
17	16
18	6
19	18
20	8

n	$\phi(n)$
21	12
22	10
23	22
24	8
25	20
26	12
27	18
28	12
29	28
30	8

- Exercises
- $\emptyset(8) = ?, \emptyset(9) = ?$