

Можете ли вы помочь сохранить "голубое золото", используя данные для прогнозирования наличия воды?

Выполнили студенты:

Волянский Юлиан, гр. Б17-565

Худоярова Анастасия, гр. Б17-505

Шарафиев Родион, гр. Б17-503

Описание

Задача: для каждого водоёма понять, что влияет на его водообеспеченность.

Временной интервал прогноза: зависит от датасета **Результат**: построение математических моделей, которые прогнозируют требуемые параметры.

Этапы работы

Подготовка данных

Получения трендов, сезонности всех характеристик

Общий анализ и выявление общих закономерностей и особенностей

Проверка стационарности данных

Приведение данных в случае необходимости к нужному виду.

Построение модели

Тестирование

Прогнозирование

Подготовка данных:

удаление NaN и дополнение пропусков с помощью интерполяции значений.

Подготовка данных:

удаление NaN и дополнение пропусков с помощью интерполяции значений.

Подготовка данных:

удаление NaN и дополнение пропусков с помощью интерполяции значений.

Подготовка данных: Восстановление хронологического порядка

```
df <- df[order(df$Date), ]
df['Time_Interval'] = df$Date - shift(df$Date, n=1, fill=NA, type="lag")

days <- df$Time_Interval

for(i in days)
{
    if(isTRUE(i > 1) || is.null(i))
    {
        print(i)
    }
}
```

Декомпозиция временных рядов. Общие выводы

Ресемлирование

Проверка на стационарность

До преобразований

```
adfuller(train_without_seasonal)

(-1.7530523252277812,
0.4040061812438108,
30,
4147,
{'1%': -3.431927852028984,
'5%': -2.862237208417471,
'10%': -2.5671411303007297},
-6466.6340148344425)

kpss(train_without_seasonal)

(4.8498423005402,
0.01,
31,
{'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739})
```

- 1. Убрали годовую сезонность
- 2. Убрали недельную сезонность
- 3. Подняли ряд до нуля с помощью среднего значения
- 4. Дифференцировали ряд

До преобразований

```
adfuller(train_diff)

(-7.049388885102958,
5.577384465690022e-10,
29,
4147,
{'1%': -3.431927852028984,
   '5%': -2.862237208417471,
   '10%': -2.5671411303007297},
-6463.0131426843)

kpss(train_diff)

(0.41039939618941784,
   0.07267267405628541,
31,
   {'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739})
```

Построение модели

Выбор лучшей по AIC, BIC

Dep. Variable:	у	No. Observations:	4178
Model:	SARIMAX(3, 1, 2)	Log Likelihood	3250.577
Date:	Tue, 12 Jan 2021	AIC	-6489.153
Time:	05:49:55	ВІС	-6451.129
Sample:	0	HQIC	-6475.704
	_ /1178		

SARIMAX Results

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	1.6207	0.035	46.228	0.000	1.552	1.689
ar.L2	-0.6577	0.032	-20.533	0.000	-0.721	-0.595
ar.L3	0.0339	0.016	2.111	0.035	0.002	0.065
ma.L1	-1.7567	0.034	-52.320	0.000	-1.823	-1.691
ma.L2	0.7643	0.033	22.965	0.000	0.699	0.830
sigma2	0.0123	0.000	71.578	0.000	0.012	0.013

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1628.35

Prob(Q):	0.99	Prob(JB):	0.00
Heteroskedasticity (H):	1.09	Skew:	0.31
Prob(H) (two-sided):	0.12	Kurtosis:	6.00

Petrigano Тестирование

Результаты

- 1. Максимальный объем в марте, минимальный в декабре
- 2. Максимальный расход воды (1м^3 / сек через поперечное сечение) в марте, минимальное в декабре
- 3. Максимальная температура в августе, минимальная в декабре

Предсказание данных

Water Spring Madonna di Canneto. Восстановление данных

Методом интерполяции восстанавливаем все нужные данные

Water_Spring_Madonna_di_Canneto. Восстановление данных

Методом линейной регрессии была предпринята попытка восстановления данных на основе имеющихся данных. Но полученная модель оказалась не точной, поэтому она была отклонена.

Water_Spring_Madonna_di_Canneto. Анализ данных

Проведено тестирование на стационарность данных (ADF test и KPSS) и их преобразование. Построены графики ACF и PACF, по ним были определены параметры для построения модели ARIMA.

Water_Spring_Madonna_di_Canneto. Анализ данных

Были построены возможные модели ARIMA и проверены их коэффициенты, а так же построена их сводная таблица

	p	d	q \$	₽ \$	D \$	Q \$	T ∜	residuals 💠	aic 🌲	model	\$
	1	1	1	1	1	1	12	1	20201.7741	ARIMA(1,1,1)(1,1,1)[12]	
	1	1	0	1	1	1	12	1	20230.7296	ARIMA(1,1,0)(1,1,1)[12]	
	1	1	12	1	1	0	12	1	20246.2248	ARIMA(1,1,12)(1,1,0)[12]	
	1	1	11	1	1	0	12	1	21120.9644	ARIMA(1,1,11)(1,1,0)[12]	
	1	1	10	1	1	0	12	/	21319.6211	ARIMA(1,1,10)(1,1,0)[12]	
	1	1	9	1	1	0	12	/	21321.0678	ARIMA(1,1,9)(1,1,0)[12]	
	1	1	8	1	1	0	12	/	21212.9521	ARIMA(1,1,8)(1,1,0)[12]	
	1	1	7	1	1	0	12	/	21319.8338	ARIMA(1,1,7)(1,1,0)[12]	
	1	1	6	1	1	0	12	/	21319.7493	ARIMA(1,1,6)(1,1,0)[12]	
	1	1	5	1	1	0	12	/	21318.3318	ARIMA(1,1,5)(1,1,0)[12]	
Sho	owing 1 t	o 10 of 25	55 entries					Previous	1 2 3	4 5 26	Next

Water_Spring_Madonna_di_Canneto. Результаты

В качестве конечного результата была получена модель, которая позволяет прогнозировать данные о скорости потока в данном роднике.

Water_Spring_Lupa. Восстановление данных

Методом линейной была предпринята попытка восстановления данных на основе имеющихся данных. Но полученная модель оказалась не точной, поэтому она была отклонена.

Water_Spring_Lupa. Восстановление данных

Методом интерполяции восстанавливаем все нужные данные.

Water_Spring_Lupa. Анализ данных

Проведено тестирование на стационарность данных (ADF test и KPSS) и их преобразование. Построены графики ACF и PACF, по ним были определены параметры для построения модели ARIMA.

Water_Spring_Lupa. Результаты

В качестве конечного результата была получена модель, которая позволяет прогнозировать данные о скорости потока в данном роднике.

Lake Bilancino. Подготовка данных

- Проверяем, что данные расположены правильно (по дате)
- Первые записи для нас бесполезны отрезаем их
- Проверяем стационарность, выполняем трансформации

```
df$Date = strptime(df$Date, "%d/%m/%Y")
df$Date <- ymd(df$Date)

df <- df[order(df$Date), ]
df['Interval']=df$Date - shift(df$Date, n=1, fill=NA, type="lag")
days <- df$Interval

for(i in days)
{
    if(isTRUE(i > 1) || is.null(i))
    {
        print(i)
    }
}
```

```
df <- df[579:6603,]
summary(df)</pre>
```

```
## Rainfall_S_Piero Rainfall_Mangona Rainfall_S_Agata Rainfall_Cavallina
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 2.472 Mean : 3.341 Mean : 2.67 Mean : 2.675
## 3rd Qu.: 0.800 3rd Qu.: 1.400 3rd Qu.: 1.20 3rd Qu.: 0.600
## Max. :80.600 Max. :110.000 Max. :120.20 Max. :113.600
## Rainfall_Le_Croci Temperature_Le_Croci Lake_Level Flow_Rate
## Min. : 0.00 Min. :-5.35 Min. :243.5 Min. : 0.450
## 1st Qu.: 0.00 1st Qu.: 9.00 1st Qu.:247.9 1st Qu.: 0.600
## Median : 0.00 Median :14.50 Median :250.2 Median : 1.500
## Mean : 3.13 Mean :14.53 Mean :249.6 Mean : 2.778
## 3rd Qu.: 1.20 3rd Qu.:20.10 3rd Qu.:251.4 3rd Qu.: 3.000
## Max. :88.40 Max. :34.00 Max. :252.8 Max. :74.650
## Date
## Min. :2004-01-02
## ist Qu.:2008-02-16
## Mean :2012-04-01
## Mean :2012-04-01
## 3rd Qu.:2016-05-16
## Meax. :2020-06-30
```

ts_Flow_Rate <- log(ts(df\$Flow_Rate+1, start=c(2004,2), frequency = 365.25))
plot(ts_Flow_Rate)</pre>

Lake Bilancino. Модели — как тренируем

Для построения моделей используется VAR. Было построено 4 модели, которые далее сравниваются на кросс-валидации.

```
y <- cbind(ts_Flow_Rate, ts_Lake_Level)
colnames(y)<-cbind("Flow_Rate", "Lake_Level")

x <- cbind(ts_Rainfall_Cavallina, ts_Rainfall_Le_Croci, ts_Rainfall_Mangona, ts_Rainfall_S
_Agata, ts_Rainfall_S_Piero, ts_Temperature_Le_Croci)
colnames(x)<-cbind("Rainfall_Cavallina", "Rainfall_Le_Croci", "Rainfall_Mangona", "Rainfall
_S_Agata", "Rainfall_S_Piero", "Temperature_Le_Croci")

Now we need to define the p parameter for our model.

lagselect <- VARselect(y=y, type = "const", exogen = x)
lagselect$selection</pre>
AIC(n): 5 HQ(n): 3 SC(n): 3 FPE(n): 5
```

```
y_1 <- cbind(ts_Flow_Rate, ts_Lake_Level)
colnames(y_1)<-cbind("Flow_Rate", "Lake_Level")

x_1 <- cbind(shift(ts_Rainfall_Cavallina), shift(ts_Rainfall_Le_Croci), shift(ts_Rainfall_Mango
na), shift(ts_Rainfall_S_Agata), shift(ts_Rainfall_S_Piero), shift(ts_Temperature_Le_Croci))
colnames(x_1)<-cbind("Rainfall_Cavallina", "Rainfall_Le_Croci", "Rainfall_Mangona", "Rainfall_S_Agata", "Rainfall_S_Piero", "Temperature_Le_Croci")</pre>
```

```
y_2 <- cbind(ts_Flow_Rate, ts_Lake_Level)
colnames(y_2)<-cbind("Flow_Rate", "Lake_Level")

x_2 <- cbind(shift(ts_Rainfall_Cavallina, n=2L), shift(ts_Rainfall_Le_Croci, n=2L), shift(ts_Rainfall_Mangona, n=2L), shift(ts_Rainfall_S_Agata, n=2L), shift(ts_Rainfall_S_Piero, n=2L), shift(ts_Temperature_Le_Croci, n=2L))
colnames(x_2)<-cbind("Rainfall_Cavallina", "Rainfall_Le_Croci", "Rainfall_Mangona", "Rainfall_S_Agata", "Rainfall_S_Piero", "Temperature_Le_Croci")</pre>
```

```
y_3 <- cbind(ts_Flow_Rate, ts_Lake_Level)
colnames(y_3)<-cbind("Flow_Rate", "Lake_Level")

x_3 <- cbind(ts_Rainfall_Cavallina, ts_Rainfall_Le_Croci, ts_Rainfall_Mangona, ts_Rainfall_S_Ag
ata, ts_Rainfall_S_Piero, ts_Temperature_Le_Croci, shift(ts_Rainfall_Cavallina), shift(ts_Rainf
all_Le_Croci), shift(ts_Rainfall_Mangona), shift(ts_Rainfall_S_Agata), shift(ts_Rainfall_S_Pier
o), shift(ts_Temperature_Le_Croci), shift(ts_Rainfall_Cavallina, n=2L), shift(ts_Rainfall_Le_Croc
i, n=2L), shift(ts_Rainfall_Mangona, n=2L), shift(ts_Rainfall_S_Agata, n=2L), shift(ts_Rainfall_S_Piero, n=2L), shift(ts_Temperature_Le_Croci, n=2L))
colnames(x_3)<-cbind("Rainfall_Cavallina", "Rainfall_Le_Croci", "Rainfall_Mangona", "Rainfall_S_Agata", "Rainfall_S_Piero", "Temperature_Le_Croci", "Rainfall_Cavallina_1", "Rainfall_Le_Croci_
1", "Rainfall_Mangona_1", "Rainfall_Le_Croci_2", "Rainfall_Mangona_2", "Rainfall_S_Agata_2", "Rainfall_S_Piero_2", "Temperature_Le_Croci_2")</pre>
```

Lake Bilancino. Модели — тестирование и кросс-валидация

Для построенных моделей проведено тестирование с прогнозированием на 2 года вперед. Проведена кросс-валидация для их сравнения.

```
border <- length(y[,1])-2*365
train_y <- y[1:border,]
train_x <- x[1:border,]
test_y <- y[(border+1):length(y[,1]),]
test_x <- x[(border+1):length(y[,1]),]</pre>
```

0.22631176560062 · 0.000252284348622253

0.221260757818531 · 0.000224204822228104

0.224814814896173 · 0.000229611915168508

```
cross_val <- function(x, y, p) {
  max \leftarrow length(y[,1])
  border <- max-2*365
  pred_length <- 3</pre>
  errors_Flow=0
  errors_Level=0
  while (border+pred_length <= max) {
    train_y <- y[1:border,]
    train_x <- x[1:border,]
    test_y <- y[(border+1):(border+pred_length),]</pre>
    test_x <- x[(border+1):(border+pred_length),]
    test_Model <- VAR(train_y, p = p, type = "const", exogen = train_x)</pre>
    pred_y <- predict(test_Model, n.ahead = pred_length, dumvar=test_x, ci=0.95)</pre>
    check<-pred_y$fcst$Flow_Rate</pre>
    errors_Flow <- sum((check[,1]-test_y[,1])^2)+errors_Flow
    check<-pred_y$fcst$Lake_Level</pre>
    errors_Level <- sum((check[,1]-test_y[,2])^2)+errors_Level
    measures=measures + 3
    border=border+pred_length
  RMSE_Flow = sqrt(errors_Flow/measures)
  RMSE_Level = sqrt(errors_Level/measures)
  c(RMSE_Flow, RMSE_Level)
```

Lake Bilancino. Результаты

Forecast of series Lake_Level

В качестве конечного результата была получена модель, которая позволяет прогнозировать данные о скорости потока воды и уровне воды в озере.

Также проведена её кросс-валидация с результатами прогнозирования, трансформированными к исходной форме, чтобы другие создатели моделей могли сравнивать ее с нашей.

RMSE_Flow_Rate = 2.26697309092565 RMSE_Level = 0.121072372651214