Machine Learning in Astronomy

Kyle Boone University of Washington SOMACHINE, April 20, 2021

1. Regression

Learn a model that maps some inputs to a continuous output.

Linear Regression

e.g. the Hubble Diagram

$$v = Hd$$

Regression

e.g. fitting the cosmic microwave background.

$$\mathcal{D}_l^{TT} = f(H_0, \Omega_m, \sigma_8, \dots)$$

Photometric redshifts

Can we predict the redshift of a galaxy from its photometry?

What functional form should we assume?

With enough parameters, we can approximate any function!

Photometric redshifts

For problems like this, typically get similar performance for different algorithms. Training set is very important.

Gaussian Process Regression

Produces smooth models with uncertainties from discrete data.

Very useful for timeseries analysis.

2. Classification

Predict which class an observation belongs to.

Equivalent to regression with discrete outputs.

Light curve classification

Type la supernova lightcurve

Type II supernova lightcurve

How do we train a model to tell these apart?

Feature extraction

Extract a number of expert-chosen features.

Use these as inputs to some ML algorithm.

Lots of different approaches!

Performance mostly depends on the dataset.

Reference	Light Curve fit	Dimensionality Reduction	Classification algorithm	Use redshift	Source Code
Poznanski et al, 2006			Template fit	Yes	pSNiD II
Newling et al, 2010	parametric	parameters from fit	Kernel Density Estimation Boosting	Yes	No
Richards et al, 2011	spline	diffusion maps	Random Forest	Yes	No
Karpenka et al, 2012	parametric	parameters from fit	Neural Network	No	No
Ishida & de Souza, 2013	spline	kernel PCA	Nearest Neighbor	No	github
Mislis et al, 2015		descriptive statistics	Random Forest	No	No
Varughese et al, 2015	spline	Wavelets	Nearest Neighbor Support Vector Machine	No	No
Hernitschek et al, 2016	χ^2		Random Forest	No	No
Lochner et al, 2016	parametric Gaussian Process	Wavelets PCA Model Fit	Naive Bayes Nearest Neighbor Support Vector Machine Boosted Decision Trees	No	No
Moller et al, 2016	parametric	parameters from fit	Boosted Decision Trees Random Forest	Yes	No
Charnok and Moss, 2017			Recurrent Neural Network	No	github
Mahabal et al, 2017	rate of change		Neural Network	No	No
Narayan et al, 2018	parametric Gaussian Process	Wavelets PCA	Random Forest	No	No
Revsbech et al, 2018	Gaussian Process	Diffusion Maps	Random Forest	Yes	github
Dai et al, 2018	parametric	parameters from fit	Random Forest	No	No

https://www.kaggle.com/michaelapers/the-plasticc-astronomy-classification-demo

Difference Imaging - Image Classification

Use machine learning to identify transients/variables in difference images.

Previously work used feature extraction + decision trees.

Difference Imaging - Deep Learning

Duev et al. 2019

- Instead of manually selecting features, input the raw data.
- Requires a much more complex model (> millions of parameters).
- For images, convolutional neural networks work very well.

Galaxy morphology - Deep Learning

Dieleman et al. 2014

Input: galaxy cutout

Output: galaxy properties

See next talk

Photometric redshifts - Deep Learning

Pasquet et al. 2019

Previously only used photometry.

With deep learning, can use spatial information to improve photometric redshifts.

3. Unsupervised Learning

Finding patterns in unlabeled data.

Galaxy Spectra - PCA

VanderPlas et al. 2014

Model galaxy spectra as a sum of linear components.

Automatically separates different kinds of galaxies.

Detrending with Kepler - PCA

SN Spectra - Wavelets

Split a signal into different scales. Often used for feature extraction.

(d)

Galaxy Spectra - PCA

VanderPlas et al. 2014

Why is there such strange structure?

Linear models (like PCA) struggle to capture nonlinear behavior (e.g. line widths, velocities, etc.)

Manifold Learning

Often times our data has complex structure, and PCA won't work.

→ Use the local structure to recover a low-dimensional manifold.

e.g. UMAP, t-SNE, Isomap, LLE, ...

Galaxy Spectra - Locally Linear Embedding

Stellar Chemical Abundance - t-SNE

Anders et al. 2018

Generate a two-dimensional embedding from 13 different element abundances.

Very useful for visualizing subgroups.

Galaxy Spectra - Self Organizing Maps

Rahmani et al. 2018

Fit a mesh of neurons to observations.

Used for photometric redshifts.

Galaxy Spectra - Autoencoders

Neural network with a bottleneck layer that encodes a low-dimensional representation.

Galaxies - Clustering

Peth et al. 2016

Often times we want to identify subgroups in a dataset. Many ways to do this:

- K-means
- Hierarchical clustering
- Mixture models

Galaxy Spectra - Anomaly Detection

Identify spectra that are very different from the rest of the sample or from known objects.

e.g. density modeling, isolation forest

4. Challenges of ML in Astronomy

ML algorithms interpolate. They don't extrapolate.

The training set must be representative of the test set.

Garbage in, garbage out!

Training sets

Training sets in astronomy tend to be very biased!

e.g. transient classification. It is easier to follow up brighter objects.

Augmentation

Modify our training set to look like the full dataset.
e.g. make things fainter and add noise.
Take advantages of symmetries!

Augmented, WFD survey, z=0.36

150

25

20

15

Isstq

Isstz

Issta

Issti

Isstz

Issty

60000 60020 60040 60060 60080 60100 60120 60140

Active Learning

What is the optimal way to use our telescope resources?

→ Train a ML algorithm to tell us what it is missing in the training set.

Ishida et al. 2019

Uncertainties and Biases

Moller & de Boissiere 2019

Can modify ML algorithms to provide uncertainties on estimates, e.g. MC dropout.

Warning: modeling errors don't capture training set differences!

Variational Inference

Predict the parameters of a distribution instead of a point estimate.

e.g. Variational Autoencoders

HR Diagram - Normalizing Flows

Model a probability distribution with a neural network using a continuous transformation of a known distribution.

Togootogtokh and Amartuvshin, 2018

Figure 1. (a) Chihuahua and muffin, (b) Labradoodle and fried chicken

Machine learning is not a magic solution!

Need to think carefully about the problem, algorithm, and training data.

learn

