Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022
Team ID	PNT2022TMID34083
Project Name	Smart Farmer - IoT Enabled Smart Farming
	Application
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Moisture Detection	Dielectric sensor measures moisture levels in the soil.
		The moisture sensors use in connection with rain check
		locations throughout the farm. This allows for the
		observation of soil moisture conditions when
		vegetation level is low.
FR-2	Temperature and humidity	DHT11 is a Humidity and Temperature Sensor, which
	detection	generates calibrated digital output. DHT11 can be
		interface with any microcontroller like Arduino,
		Raspberry Pi, etc. and get instantaneous results. DHT11
		is a low cost humidity and temperature sensor which
		provides high reliability and long term stability.
FR-3	Livestock monitoring	lot-enabled livestock management solutions take the
		guesswork out of herd health. Using a wearable collar
		or tag, battery-powered sensors monitor the location,
		temperature, blood pressure and heart rate of animals
		and wirelessly send the data in near-real-time to
		farmers' devices
FR-4	Airflow Detection	Airflow sensors are used to record the number of
		gaseous substances present in the soil at a particular
		landscape after irrigation or to get an overview of the
		land that is to be cultivated before the seeding process.
		It determines the optimum pressure required to pump
		air to aerate the soil and make it more fertile. It is also
		used to determine the properties of the soil, its
		compaction, moisture-holding capacity, and more.
FR-5	Soil Nutrient Detection	Electrochemical sensors provide information for soil
		nutrient detection. Soil samples are sent to a soil-
		testing lab. Specific measurements, especially the
		determination of pH, are performed utilizing an ion-
		selective electrode. These electrodes sense the activity
		of particular ions, such nitrate, potassium, or hydrogen.
FR-6	Location Detection	Location sensors determine the range, distance and
		height of any position within the required area. They
		take the help of GPS satellites for this purpose
FR-7	Equipment Function detection	Electronic sensor installed on tractors and other field
		equipment to check equipment operations. Then,
		cellular and satellite communication systems used to
		convey the data immediately to computers or e-mail it

		to people. The field executive can then recover the information on their office computer or cell phone.
FR-8	Field Surveillance	Drones are equipped with sensors and cameras for imaging, mapping, and surveying purposes. There are ground-based and aerial drones. Ground-based drones are bots that survey the field on wheels. Aerial drones are flying robots that are either remotely controlled or can fly automatically through software-controlled flight plans. Insights about crop health, irrigation, spraying, planting, soil, and field can be drawn from the data collected from the drones. After the drones survey and collect the data, they are taken to a nearby lab to be analysed.
FR-9	Farm Remote Access by Farmers	Farm management software centralizes, manages, and optimizes the production activities and operations of farms. With farm management software, farmers can become strategic and efficient in their daily farm-related tasks and responsibilities.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution. $\label{eq:following} % \[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{$

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Usability can be described as the capacity of a system to provide a condition for its users to perform the tasks safely, effectively, and efficiently. IoT in agriculture uses robots, drones, remote sensors, and computer imaging combined with continuously progressing machine learning and analytical tools for monitoring crops, surveying, and mapping the fields, and providing data to farmers for rational farm management plans to save both time and money.
NFR-2	Security	Potential attacks in various different smart farming systems can lead to serious security issues in the dynamic and distributed cyber-physical environment. These types of threats and attacks can result in severe disruptions of interconnected businesses. These threats are mostly related to cybersecurity, data integrity and data loss. In addition, because of the utilization of heavy machinery connected online, there are many emerging vulnerabilities that can potentially lead to disastrous consequences
NFR-3	Reliability	Reliability Means Consistency and Accuracy. Reliability ensure that a farmer can get a field task accomplished in a timely manner, it also reduces lost time and productivity. It is also reliable to

	environmental conditions but can be affected due to
	environmental disasters
Performance	Performance is high. Smart farming helps farmers to
	better understand the important factors such as
	water, topography, aspect, vegetation and soil
	types. This allows farmers to determine the best
	uses of scarce resources within their production
	environment and manage these in an
	environmentally and economically sustainable
	manner. Has a real potential to deliver a more
	productive and sustainable form of agricultural
	production, based on a more precise and resource-
	efficient approach.
Availability	Telecommunications technologies such as advanced
	networking and GPS. Hardware and software for
	specialized applications and for enabling IoT-based
	solutions, robotics and automation. This would
	enable farmers to monitor crops from anywhere.
Scalability	Scalability in smart farming refers to the adaptability
	of a system to increase the capacity, for example,
	the number of technology devices such as sensors
	and actuators, while enabling timely analysis. Cloud
	computing and edge computing improve the
	scalability. Cloud computing provides a high level of
	flexibility by providing remote services for
	monitoring and managing farm data. Challenges of
	scalability are identity management and access
	control, security, privacy, governance, and fault
	tolerance.
	Availability