間率追与数理统计

第 i

随机变量函数的分布

在实际中,经常遇到这样的问题,某个随机变量的分布已知,但是关心的是该随机变量的某个函数的分布。

如:在统计物理中,气体分子运动速度的绝对值X的分布是已知的,但是我们想知道分子运动动能Y的分布,它们之间有如下关系,

$$Y = \frac{1}{2}mX^2$$

再比如: 球的直径D的分布容易测量得到, 但是想知道球的体积的分布,

它们有如下关系 $V = \frac{\pi}{6}D^3$

因此,需要求某些随机变量的函数的分布。

一般地,设X、Y是两个随机变量,y=g(x)是一个已知函数,如果当X取值x时,Y取值为g(x),则称Y是随机变量X的函数,记为Y=g(X)。

本节主要研究单个随机变量的函数的分布问题,即,当随机变量X的概率分布已知时,如何求它的函数Y=g(X)的概率分布。下面分别在X为离散型和连续型两种情况下给出Y=g(X)的分布。

当X为离散型随机变量时,设X的分布律为

X	x_1	x_2	• • •	x_i	•••
P	p_1	p_2	• • •	p_i	• • •

若Y=g(X)也是离散型随机变量,此时Y的分布律可以表示为:

当 $g(x_1)$, $g(x_2)$, ..., $g(x_i)$...中有某些值相等时,则把那些相等的值分别合并,并把对应的概率相加即可。

例1.设随机变量
$$X$$
的分布律为 $\frac{X}{P}$ 0.2 0.3 0.1 0.4

令Y=2X, $Z=(X-1)^2$, 求Y和Z的分布律。

解:将X,Y,Z的取值和概率列在如下的表格中

\boldsymbol{X}	-1	0	1	2
<i>Y</i> =2 <i>X</i>	-2	0	2	4
$Z=(X-1)^2$	4	1	0	1
P	0.2	0.3	0.1	0.4

\boldsymbol{X}	-1	0	1	2
<i>Y</i> =2 <i>X</i>	-2	0	2	4
$Z=(X-1)^2$	4	1	0	1
P	0.2	0.3	0.1	0.4

易知Y的取值都是不同的,因此Y的分布律为

而Z的取值中有两个1,则需要把它们合并, 并把相应的概率相加,得Z的分布律为

一般地, 设X是离散型随机变量, 其分布律为

$$P{X = x_i} = p_i, i = 1, 2, \dots$$

若Y = g(X)可能的取值为 y_k , k=1,2,...

则Y的分布律为
$$P{Y = y_k} = \sum_{g(x_i)=y_k} P{X = x_i} = \sum_{g(x_i)=y_k} p_i$$

例2.已知随机变量Y的分布律为

$$P{X = k} = \frac{1}{2^k}, k = 1, 2, \dots$$

解: 已知Y可能的取值为 -1, 0, 1

目:
$$Y = \sin(\frac{\pi}{2}X) = \begin{cases} -1, & X = 4n - 1\\ 0, & X = 2n, n = 1, 2, \dots\\ 1, & X = 4n - 3 \end{cases}$$

$$P\{X = k\} = \frac{1}{2^{k}}, k = 1, 2, \dots$$

$$Y = \sin(\frac{\pi}{2}X) = \begin{cases} -1, & X = 4n - 1 \\ 0, & X = 2n , n = 1, 2, \dots \\ 1, & X = 4n - 3 \end{cases}$$

$$P\{Y=-1\} = \sum_{n=1}^{\infty} P\{X=4n-1\} = \sum_{n=1}^{\infty} \frac{1}{2^{4n-1}} = \frac{1/8}{1-1/16} = \frac{2}{15}$$

$$P\{Y=0\} = \sum_{n=1}^{\infty} P\{X=2n\} = \sum_{n=1}^{\infty} \frac{1}{2^{2n}} = \frac{1/4}{1-1/4} = \frac{1}{3}$$

$$P{Y = 1} = 1 - P{Y = -1} - P{Y = 0} = \frac{8}{15}$$

:Y的分布律为:

							4																														
			-		_		4						-									-										-					
			. 1	•	.,								1								- 4		N -									2					
				•	. .		4 -														- 1											-					
				-							-	-																									
							4 -														- 1		,									-					
			. 4											٠.							- 2	v	٠.									_	L .				
							4 .																														
							4 .																														
_	_	_		_	_	_		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_
٠.					٠.	٠.	ы		٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 		٠.	٠.				٠.	٠.	٠.	٠.	٠.	٠.	٠,					
ŀ	Ċ	٠.	÷.	Ġ	÷	÷	E		ŀ	ŀ	Ŀ	ŀ	ù	÷	j	Ŀ	Ŀ		٠.	٠.	j	Ŀ		٠.	÷.	÷	÷	ŀ	ŀ	Ċ	j			÷	. 1		. 1
ì	i	i	Ġ			÷	ŀ		÷	ì,			,	2	ò	_			i		d	,			í			Ė	Ė			ij		ď.	4	ď	ď
		į)	ì				ļ			,	1	Ġ	_	•			1	Ġ	1	1							()	1	1	i	E	į	i
			1	L)					į	1)	/	1	Ĺ	_			į	1	Ĺ	1	1							•	2	1	1	1	_		
			į	F)						7		/	1	ĺ	5				1		/	1							5	2	/	1	1	_	-	
			į	F)						2		/	1		5				1		/	3	}						5	3	/	1		_	5	
			1	F)					7	2		/	1	Ĺ,	5	•			1		/.	3	}						8	3	/	1	1	_	5	
			1	F)					7	2		/	1	Ĺ,	5				1	Ĺ	/.	3	}						8	3	/	1		_	5	
				F)					7	2		/	1	Į,	5				1	[,	/.	3	}						8	3	/	1	1	_	5	
				F)					7	2		/	1	Ĺ,	5				1		1.	3	}						8	3	/	1	1	_	5	
				F)					7	2		/	1	L,	5				1	L	/.	3	}						8	3	/	1	1	_	5	
				F)					7	2		/	1	L.	5				1	L	/.	3	}						8	3	/	1	1		5	

1. Y = g(X)为离散型随机变量

当Y = g(X)为离散型随机变量时,只需求Y的分布律,此时,问题的实质是将Y取某个值的概率转化为X属于某范围的概率。

例5.设随机变量
$$X$$
的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$

$$\Rightarrow Y = \begin{cases} 1, & X \le \frac{1}{2} \\ 0, & X > \frac{1}{2} \end{cases}$$
 求Y的分布。

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

$$Y = \begin{cases} 1, & X \le \frac{1}{2} \\ 0, & X > \frac{1}{2} \end{cases}$$

解:
$$P{Y=1} = P{X \le \frac{1}{2}} = \int_{-\infty}^{1/2} f(x) dx = \int_{0}^{1/2} 2x dx = \frac{1}{4}$$

$$P{Y = 0} = 1 - P{Y = 1} = 1 - \frac{1}{4} = \frac{3}{4}$$

所以Y的分布为
$$\frac{Y}{P}$$
 $\frac{1}{3/4}$ $\frac{1}{1/4}$

2.y = g(x)为严格单调函数

当y = g(x)为严格单调函数时,关于Y = g(X)的分布有如下定理。

定理 设X为连续型随机变量,其密度函数为 $f_X(x)$,且当a < x < b时,

 $f_X(x)>0$,若当a< x< b时,y=g(x)为严格单调的可导函数。则Y=g(X)为连续

型随机变量,且其密度函数为

$$f_{Y}(y) = \begin{cases} f_{X}(h(y))|h'(y)|, & \alpha < y < \beta \\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

其中 α =min{g(a), g(b)}, β =max{g(a), g(b)}, h(y)是g(x)的反函数。

证明:不妨设, y = g(x)为严格单调增函数,此时 $\alpha = g(a)$, $\beta = g(b)$,则h(y)也为严格单调增函数,且h'(y)>0。意味着Y = g(X)仅在区间 (α,β) 内取值。设Y的分布函数为 $F_{y}(y)$ 。

当
$$y \le \alpha$$
时, $F_Y(y) = P\{Y \le y\} = 0$
当 $y \ge \beta$ 时, $F_Y(y) = P\{Y \le y\} = 1$
当 $\alpha < y < \beta$ 时, $F_Y(y) = P\{Y \le y\} = P\{Y \le \alpha\} + P\{\alpha < Y \le y\} = P\{\alpha < Y \le y\}$
 $= P\{\alpha < g(X) \le y\} = P\{a < X \le h(y)\} = \int_a^{h(y)} f_X(x) dx$

即
$$Y$$
的分布函数为 $F_Y(y) = egin{cases} 0, & y \leq \alpha \\ \int\limits_{a}^{h(y)} f_X(x) dx, & \alpha < y < \beta \\ 1, & y \geq \beta \end{cases}$

所以Y的密度函数为
$$f_Y(y) = F_Y'(y) = \begin{cases} f_X(h(y))h'(y), & \alpha < y < \beta \\ 0, & 其它 \end{cases}$$

$$f_{Y}(y) = \begin{cases} f_{X}(h(y))|h'(y)|, & \alpha < y < \beta \\ 0, & \sharp \Xi \end{cases}$$

在 $f_X(x)$ 的非零区间(a,b)内,判断y=g(x)的单调性

当 $x \in (a, b)$ 时,求y的取值范围,即y=g(x)的值域(α , β)

步骤:

求
$$y=g(x)$$
的反函数 $x=h(y)$

对反函数x=h(y)关于y求导数h'(y)

代入公式中

例3 设随机变量X服从正态分布 $N(\mu,\sigma^2)$,则X的线性函数 $Y=aX+b(a\neq 0)$ 服从正态分布 $N(a\mu+b,a^2\sigma^2)$ 。

证明: X的概率密度函数为

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

易知对任意 $a\neq 0$, y=ax+b为严格单调的可导函数,且y的取值范围为 $(-\infty, +\infty)$

则有
$$x = h(y) = \frac{y-b}{a}$$
 $h'(y) = \frac{1}{a}$

由定理知, Y的密度函数为 $f_Y(y) = f_X(h(y))|h'(y)|, -\infty < y < \infty$

$$\text{ pr } f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\frac{y-b}{a}-\mu)^2}{2\sigma^2}} \left| \frac{1}{a} \right| = \frac{1}{\sqrt{2\pi} |a|\sigma} e^{-\frac{(y-(a\mu+b))^2}{2a^2\sigma^2}}, -\infty < y < \infty$$

所以有 $Y \sim N(a\mu + b, a^2\sigma^2)$

特别地,上例中若取
$$a = \frac{1}{\sigma}, b = -\frac{\mu}{\sigma}$$

例4.设随机变量X服从参数为 λ 的指数分布,试求 $Y=1-e^{-\lambda X}$ 的分布。

解: X的概率密度为
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

- (1) 对于 $y=1-e^{-\lambda x}$, 当x>0时, 严格单调可导函数;
- (2) 值域为(0,1);
- (3) 反函数为 $x = -\frac{\ln(1-y)}{\lambda}$ (4) 反函数的导数为 $x'_y = \frac{1}{\lambda(1-y)}$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad x = -\frac{\ln(1-y)}{\lambda} \qquad x'_y = \frac{1}{\lambda(1-y)}$$

$$f_{Y}(y) = \begin{cases} f_{X}(x) \mid x'_{y} \mid, & y \in (0,1) \\ 0, & \sharp \dot{\Xi} \end{cases} = \begin{cases} \lambda e^{-\lambda(-\frac{\ln(1-y)}{\lambda})} \frac{1}{\lambda(1-y)}, & y \in (0,1) \\ 0, & \sharp \dot{\Xi} \end{cases} = \begin{cases} 1, & y \in (0,1) \\ 0, & \sharp \dot{\Xi} \end{cases}$$

 \mathbb{H} : $Y=1-e^{-\lambda X} \sim U(0,1)$

推广:设 $F_X(x)$ 为X的分布函数,严格递增,令 $Y=F_X(X)$,则 $Y\sim U(0,1)$ 。

3. y = g(x)为其它形式时

当y = g(x)不单调时,情况比较复杂,Y = g(X)可能是连续型随机变量,也可能不是连续型随机变量。

此时,先求Y的分布函数, $F_Y(y)=P\{Y\leq y\}=P\{g(X)\leq y\}$

如果Y也是连续型随机变量,再对分布函数求导数,得到其密度函数。 如果Y不是连续型随机变量,求出分布函数即可。

* 关键步骤: $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \in D\}$

例5.设随机变量X 服从参数为1/4的指数分布,令 $Z=(X-1)^2$.求Z的概率密度。

解: 易知
$$X$$
的密度函数为 $f_X(x) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}}, & x > 0 \\ 0, & x \le 0 \end{cases}$ 先求 Z 的分布函数

当z<0时, $F_z(z)=P\{Z\leq z\}=0$

\exists z \ge 0 \exists t = T $\exists t \ge 0$ **\exists t \ge 0 \exists t \ge**

即有
$$F_Z(z) = \begin{cases} F_X(1+\sqrt{z}) - F_X(1-\sqrt{z}), & z \ge 0 \\ 0, & z < 0 \end{cases}$$

$$F_{Z}(z) = \begin{cases} F_{X}(1+\sqrt{z}) - F_{X}(1-\sqrt{z}), & z \ge 0 \\ 0, & z < 0 \end{cases} \qquad f_{X}(x) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

所以Z的密度函数为
$$f_Z(z) = F_Z'(z) = \begin{cases} \frac{1}{2\sqrt{z}} [f_X(1+\sqrt{z}) + f_X(1-\sqrt{z})], & z \ge 0 \\ 0, & z < 0 \end{cases}$$

当
$$z \ge 0$$
时, $f_X(1+\sqrt{z}) = \frac{1}{4}e^{-\frac{1+\sqrt{z}}{4}}$ 当 $0 \le z < 1$ 时, $f_X(1-\sqrt{z}) = \frac{1}{4}e^{-\frac{1-\sqrt{z}}{4}}$ 当 $z \ge 1$ 时, $f_X(1-\sqrt{z}) = 0$

$$f_X(1+\sqrt{z}) = \frac{1}{4}e^{-\frac{1+\sqrt{z}}{4}}, z > 0$$

$$f_X(1-\sqrt{z}) = \begin{cases} \frac{1}{4}e^{-\frac{1-\sqrt{z}}{4}}, & 0 \le z < 1\\ 0, & z \ge 1 \end{cases}$$

$$f_{Z}(z) = \begin{cases} 0, & z < 0 \\ \frac{1}{2\sqrt{z}} (\frac{1}{4}e^{-\frac{1+\sqrt{z}}{4}} + \frac{1}{4}e^{-\frac{1-\sqrt{z}}{4}}), & 0 \le z < 1 = \begin{cases} \frac{1}{8\sqrt{z}} [e^{-\frac{1+\sqrt{z}}{4}} + e^{-\frac{1-\sqrt{z}}{4}}], & 0 \le z < 1 \\ \frac{1}{2\sqrt{z}} (\frac{1}{4}e^{-\frac{1+\sqrt{z}}{4}} + 0), & z \ge 1 \end{cases}$$

4.....

例6.在半径为R,圆心在原点O的圆周上任取一点M,设MO与x轴正向的夹角 Θ ~ $U(-\pi,\pi)$,求M点与A(-R,0),B(R,0)三点构成的三角形面积的密度函数。

解: 易知三角形的面积为 $S = R^2 |\sin \Theta|$, $-\pi < \Theta < \pi$

先求分布函数
$$F_S(x) = P\{S \le x\} = P\{R^2 \left| \sin \theta \right| \le x\} = P\{\left| \sin \Theta \right| \le \frac{x}{R^2}\}$$

当
$$\frac{x}{R^2} < 0$$
 即 $x < 0$ 时 $F_S(x) = 0$

当
$$\frac{x}{R^2} \ge 1$$
 即 $x > R^2$ 时 $F_S(x) = 1$

当
$$0 \le \frac{x}{R^2} < 1$$
 即 $0 \le x < R^2$ 时
$$F_S(x) = P\{|\sin\Theta| \le \frac{x}{R^2}\} = P\{0 \le \Theta \le \arcsin(\frac{x}{R^2})\}$$

$$+ P\{\pi - \arcsin(\frac{x}{R^2}) \le \Theta \le \pi\} + P\{-\arcsin(\frac{x}{R^2}) \le \Theta \le 0\}$$

$$+ P\{-\pi \le \Theta \le \pi - \arcsin(\frac{x}{R^2})\} = 4\arcsin(\frac{x}{R^2}) / 2\pi$$

故
$$F_S(x) = \begin{cases} 0, & x < 0 \\ \frac{2\arcsin(\frac{x}{R^2})}{\pi}, & 0 \le x \le R^2 \\ 1, & x > R^2 \end{cases}$$

所以
$$f_S(x) = F_S'(x) = \begin{cases} \frac{2}{\pi\sqrt{R^4 - x^2}}, & 0 \le x \le R^2 \\ 0, & 其它 \end{cases}$$

例7.假设一设备开机后无故障工作的时间X服从参数为1/4的指数分布。设备定时开机,出现故障自动关机,而在无故障的情况下工作3小时便关机。试求该设备每次开机无故障工作时间Y的分布函数。

解: 易知X的分布函数为

$$F_X(x) = \begin{cases} 1 - e^{-\frac{x}{4}}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad Y = \begin{cases} X, & X < 3 \\ 3, & X \ge 3 \end{cases}$$

易知样本空间S可以表示为 $\{X<3\}$ ∪ $\{X≥3\}$,所以对任意的实数y

$$\{Y \le y\} \subset \{\{X < 3\} \cup \{X \ge 3\}\}$$

例7.假设一设备开机后无故障工作的时间X服从参数为1/4的指数分布。设备定时开机,出现故障自动关机,而在无故障的情况下工作3小时便关机。试求该设备每次开机无故障工作时间Y的分布函数。

$$F_{X}(x) = \begin{cases} 1 - e^{-\frac{x}{4}}, & x > 0 \\ 0, & x \le 0 \end{cases} Y = \begin{cases} X, & X < 3 \\ 3, & X \ge 3 \end{cases} F_{Y}(y) = P\{X \le y, X < 3\} + P\{Y \le y, X \ge 3\}$$

当
$$y < 0$$
时, $F_Y(y) = P\{X \le y\} + 0 = 0$ 当 $0 \le y < 3$ 时, $F_Y(y) = P\{X \le y\} + 0 = 1 - e^{-y/4}$ 当 $y \ge 3$ 时, $F_Y(y) = P\{X \le 3\} + P\{X \ge 3\} = 1$

所以Y的分布函数为
$$F_Y(y) = \begin{cases} 0, & y < 0 \\ 1 - e^{-y/4}, 0 \le y < 3 \\ 1, & y \ge 3 \end{cases}$$
 易知 $F_Y(y)$ 在 $y = 3$ 时不连续。

第讲

谢谢观看