Mathematic Modelling of the Integrated Application of The Magic Formula and The Acquirers Multiple and Additional Factors for Stock Rating

1) Calculating Acquirers Multiple and ROCE, EY (Constituents of the Magic Formula):

$$AM_{i} = \frac{EV_{i}}{EBIT_{i}}$$

$$ROCE_{i} = \frac{EBIT_{i}}{(Capital\ Employed)_{i}}$$

$$EY_{i} = \frac{EPS_{i}}{Share\ Price\ _{i}}$$

$$RG_{i} = \left(\frac{Revenue_{Year3}}{Revenue_{Year0}}^{1/3}\right) - 1$$

$$FCFG_{i} = \left(\frac{FCF_{Year3}}{FCF_{Year0}}^{1/3}\right) - 1$$

$$DE_{i} = \frac{Total\ Debt}{Shareholders\ Equity}$$

Where:

- 1. AM_i is the acquirers multiple for stock i
- 2. ROCE_i is the return on capital employed for stock i
- 3. EY_i is the earnings yield of stock i
- 4. $(Capital\ Employed)_i = (Total\ Assets)_i (Current\ Liabilities)_i$ 5. $EPS_i = \frac{(Net\ Income)_i (Preffered\ Dividends)_i}{Weighted\ average\ number\ of\ shares\ outstanding}$
- 6. RG_i is the revenue growth across three years for stock i
- 7. $FCFG_i$ is the FCF growth across three years for stock i
- 8. FCF = OCF Capex
- 9. $DE_i = Debt$ to Equity for stock i
- 10. Shareholders' Equity=Total Assets-Total Liabilities
- 2) Normalizing the calculated values using Z-Score Normalization:

$$Z_{AM_i} = \frac{AM_i - \mu_{AM}}{\sigma_{AM}}$$

$$Z_{ROCE_i} = \frac{ROCE_i - \mu_{ROCE}}{\sigma_{ROCE}}$$

$$Z_{EY_i} = \frac{EY_i - \mu_{EY}}{\sigma_{EY}}$$

$$Z_{RG_i} = \frac{RG_i - \mu_{RG}}{\sigma_{RG}}$$

$$Z_{FCFG_i} = \frac{FCFG_i - \mu_{FCFG}}{\sigma_{FCG}}$$

$$Z_{DE_i} = \frac{DE_i - \mu_{DE}}{\sigma_{DE}}$$

$$Z_{B_i} = \frac{\beta_i - \mu_\beta}{\sigma_\beta}$$

Where:

- 1. Z_{x_i} is the normalized x score where x is:
 - a. AM
 - b. ROCE
 - c. EY
 - d. RG
 - e. FCFG
 - f. DE
 - $g. \mu$
- 2. μ_x is the average x score of stocks in the same industry where x is:
 - a. *AM*
 - b. ROCE
 - c. EY
 - d. RG
 - e. FCFG
 - f. DE
 - g. β
- 3. σ_x is the standard deviation of x scores of stocks in the same industry where x is:
 - a. AM

- c. EY
- d. RG
- e. FCFG
- f. DE
- g. β
- 3) Converting to Score (Scoring on [0,1] ensuring outliers are smoothed)

$$\begin{split} Score_{AM_i} &= 1 - Sigmoid(Z_{AM_i}) \\ Score_{DE_i} &= 1 - Sigmoid(Z_{DE_i}) \\ Score_{\beta_i} &= 1 - Sigmoid(Z_{\beta_i}) \\ Score_{ROCE_i} &= Sigmoid(Z_{ROCE_i}) \\ Score_{EY_i} &= Sigmoid(Z_{EY_i}) \\ Score_{RG_i} &= Sigmoid(Z_{RG_i}) \\ Score_{FCFG_i} &= Sigmoid(Z_{FCFG_i}) \end{split}$$

Where:

1.
$$Sigmoid(x) = \frac{1}{1+e^{-x}}$$

4) Output Weighted Composite Score:

$$FinalScore_{i} = (w_{1} * Score_{AM_{i}}) + (w_{2} * Score_{ROCE_{i}}) + (w_{3} * Score_{EY_{i}}) + (w_{5} * Score_{DE_{i}}) + (w_{6} * Score_{\beta_{i}}) + (w_{7} * Score_{RG_{i}}) + (w_{4} * Score_{FCFG_{i}})$$

Where:

1.
$$w_1 = 0.25$$

2.
$$w_2 = 0.125$$

3.
$$w_3 = 0.125$$

4.
$$w_4 = 0.2$$

5.
$$w_5 = 0.1$$

6.
$$w_6 = 0.15$$

7.
$$w_7 = 0.05$$

5) Output Final Rating