InfoSeminar

Chapter 11 Practical Methodology
Chapter 12 Applications

Heechul Lim

Department of Information and Communication Engineering

DGIST

2017.11.29

Chapter 11 Practical Methodology

- 11.1 Performance Metrics
- 11.2 Default Baseline Models
- 11.3 Determining Whether to Gather More Data
- 11.4 Selecting Hyperparameters
- 11.5 Debugging Strategies
- 11.6 Example: Multi-Digit Number Recognition

- 12.1 LargeScale DeepLearning
- **12.2 Computer Vision**
- 12.3 Speech Recognition
- 12.4 Natural Language Processing
- 12.5 Other Applications

Chapter 11 Practical Methodology

- 11.1 Performance Metrics
- 11.2 Default Baseline Models
- 11.3 Determining Whether to Gather More Data
- 11.4 Selecting Hyperparameters
- 11.5 Debugging Strategies
- 11.6 Example: Multi-Digit Number Recognition

- 12.1 LargeScale DeepLearning
- **12.2 Computer Vision**
- 12.3 Speech Recognition
- 12.4 Natural Language Processing
- 12.5 Other Applications

Chapter 11 Practical Methodology

11.1 Performance Metrics

- 11.2 Default Baseline Models
- 11.3 Determining Whether to Gather More Data
- 11.4 Selecting Hyperparameters
- 11.5 Debugging Strategies
- 11.6 Example: Multi-Digit Number Recognition

- 12.1 LargeScale DeepLearning
- **12.2 Computer Vision**
- 12.3 Speech Recognition
- 12.4 Natural Language Processing
- 12.5 Other Applications

Introduction

- Applying deep learning techniques require more
- A good practitioner needs to know how to monitor it
- Practitioners need to
 - Decide whether to gather more data
 - Increase or decrease model capacity
 - Add or remove regularizing features
 - Improve the optimization of a model
 - Improve approximate inference in a model
 - Debug the software implementation of the model
- It is important to be able to determine the right course

Introduction

- [Andrew Ng] Advice for applying Machine Learning
 - Determine your goals
 - Establish a working end-to-end pipeline as soon as possible
 - Diagnose which components are performing well
 - Repeatedly make incremental changes

- Determine your goals
 - What metric to use
 - What level of performance you desire
- Guide all of your future actions
 - With error metric
- Keep in mind that no app achieve zero error
- Keep in mind that data can be limited

- In the academic setting
 - Attainable error rate based on published benchmark results
- In the real-word setting
 - Safe error rate
 - Cost-effective
 - Appealing to consumers
- One kind of a mistake > another
- E-mail spam detection system
 - incorrectly classifying a legitimate message as spam
 - incorrectly allowing a spam message to appear in the inbox

- Training a binary classifier to detect some rare event
- Medical test for a rare disease
- 1%
 - Probability of having disease
- 99%
 - Accuracy by simply hard-coding
- Is that excellent?

Precision and recall

Precision

- The detections reported by the model that were correct

Recall

- The true events that were detected

Detecting disease

A detector that says everyone has the disease

Precision:
$$\frac{1}{99+1} = 0.01$$

Recall:
$$\frac{1}{1+0} = 1$$

Detecting disease

A detector that says no one has the disease

Wrong!

Detecting disease

A detector that says no one has the disease

Precision: $\frac{0}{0+0}$

Recall: $\frac{0}{1+0} = 0$

Accuracy: $\frac{99}{1+0+0+99} = 0.99$

Correct!

Precision and recall(PR)

- Summarizing PR with a single number
- F-score

$$- F = \frac{2pr}{p+r}$$

- Harmonic mean

$$\overline{x} = n \times (\sum_{i=1}^{n} \frac{1}{x_i})^{-1}$$

Precision and recall

- Summarizing PR with graph
- PR curve

https://www.quora.com/What-is-Precision-Recall-PR-curve

- Refusing to make a decision
 - Reducing the amount of job that the human must process
- Coverage
 - A response range of system
- Coverage V.S. Accuracy

- Chapter 11 Practical Methodology
 - 11.1 Performance Metrics
 - 11.2 Default Baseline Models
 - 11.3 Determining Whether to Gather More Data
 - 11.4 Selecting Hyperparameters
 - 11.5 Debugging Strategies
 - 11.6 Example: Multi-Digit Number Recognition
- Chapter 12 Applications
 - 12.1 LargeScale DeepLearning
 - **12.2 Computer Vision**
 - 12.3 Speech Recognition
 - 12.4 Natural Language Processing
 - 12.5 Other Applications

Default Baseline Models

- Recommendations for which algorithms to use
- Depending on the complexity of your problem
 - Shallow learning model
 - Deep learning model
- Depending on structure of your data
 - Fully connected layer networks
 - Convolutional neural networks
 - Recurrent neural networks

Default Baseline Models - Optimization

- SGD with a decaying learning rate
 - Decaying linearly until reaching minimum learning rate
 - Decaying exponentially
 - Decreasing the learning rate by a factor of 2-10 each time
 - Momentum, Nesterov, Adagrad, RMSprop, Adam
- Batch normalization (BN)
 - Dramatic effect on optimization performance
 - Especially for convolutional networks and networks with sigmoidal nonlinearities

Default Baseline Models - Optimization

- BN V.S. Whitening
- Definition of BN

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
              Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                     // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                     // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
                                                                                 // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                            // scale and shift
```

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

Default Baseline Models

If your training set is limited

- You should include regularization from the start
- Early stopping should be used almost universally
- Dropout is an excellent regularizer
- BN sometimes reduces generalization error

- Chapter 11 Practical Methodology
 - 11.1 Performance Metrics
 - 11.2 Default Baseline Models

11.3 Determining Whether to Gather More Data

- 11.4 Selecting Hyperparameters
- 11.5 Debugging Strategies
- 11.6 Example: Multi-Digit Number Recognition

- 12.1 LargeScale DeepLearning
- **12.2 Computer Vision**
- 12.3 Speech Recognition
- 12.4 Natural Language Processing
- 12.5 Other Applications

Determining Whether to Gather More Data

- How does one decide whether to gather more data?
 - Determine whether the performance on the training set is acceptable.
- If performance on the training set is poor
 - Try increasing the size of the model
 - Try improving the learning algorithm
- If large models and algorithms do not work well
 - The problem might be the of the training data.
 - Try collecting cleaner data or collecting a richer set of features.

Determining Whether to Gather More Data

- If the performance on the test set is acceptable
 - There is nothing left to be done
- If test set performance is worse than training
 - Gathering more data is one of the most effective solutions
- The key considerations
 - The cost and feasibility of gathering more data
 - The cost and feasibility of reducing test error by other means
 - The amount of data that is expected to be necessary

- Chapter 11 Practical Methodology
 - 11.1 Performance Metrics
 - 11.2 Default Baseline Models
 - 11.3 Determining Whether to Gather More Data

11.4 Selecting Hyperparameters

- 11.5 Debugging Strategies
- 11.6 Example: Multi-Digit Number Recognition

- 12.1 LargeScale DeepLearning
- **12.2 Computer Vision**
- 12.3 Speech Recognition
- 12.4 Natural Language Processing
- 12.5 Other Applications

Selecting Hyperparameters

Characters of hyperparameter

- Affecting the time and memory cost of running the algorithm
- Affecting the quality of the model recovered by the training
- Affecting its ability to infer correct results

Various hyperparameters

- Convolution kernel width
- Implicit zero padding
- Dropout rate
- Learning rate
- Weight decay coefficient(Regularization parameter)
- Number of hidden units

- Understanding the relationship between
 - Hyperparameters
 - Training error
 - Generalization error
 - Computational resources (memory and runtime)
- The goal of manual hyperparameter search
 - To find the lowest generalization error
- Three factors
 - The representational capacity of the model
 - The ability to minimize the cost function used to train the model
 - The degree to which training procedure regularize the model

- The hyperparameter value corresponds to low capacity
 - Generalization error is high, training error is high
 - Underfitting regime
- The hyperparameter value corresponds to high capacity
 - Generalization error is high, training error is low
 - Overfitting regime
- Somewhere in the middle lies the optimal capacity

Learning rate

The effect of various hyperparameters on capacity

Hyperparameter	Increase capacity when
Number of hidden units	increased
Learning rate	tuned optimally
Convolution kernel width	increased
Implicit zero padding	increased
Weight decay coefficient	decreased
Dropout rate	decreased

Selecting Hyperparameters – automatic

- Manual hyperparameter tuning can work very well
 - When the user has a good starting point
 - When the user has months or years of experience
- However, for many applications,
 - These starting points are not available
 - In these cases, automated algorithms can be useful
- Grid search, random search, model-based optimization

Grid search(parameter sweep)

Best value

Large computation cost $O(n^m)$

- Shifting the grid
- Zooming in

m: # of hyperparameters

n: # of values

Random search(parameter sweep)

Probability distribution

Grid and random search

- All the trials are independent
- Parallelization is pros

Bayesian inference

- Set of data samples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- ullet Parameter $oldsymbol{ heta}$ is represented as random variable
- Combine the data likelihood with the prior via Bayes' rule:

$$p(\theta|x^{(1)},\cdots,x^{(m)}) = \frac{p(x^{(1)},\cdots,x^{(m)}|\theta)p(\theta)}{p(x^{(1)},\cdots,x^{(m)})}$$

Bayesian inference

Maximum A Posterior (MAP) Estimation

Chose the point of maximal posterior probability

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} p(\theta|x) = \underset{\theta}{\operatorname{arg max}} \log p(x|\theta) + \underset{prior}{\log p(\theta)}$$

Similar with weight decay term

MLE vs MAP

Measure space

- (U, B, μ)
- U: data set
- B: sub sets of U
- μ : measure. function from B to real space

Probability space

- (Ω, A, P)
- Ω : a sample space
- A: a set of events
- P: the assignment of probability to the events

• Probability space (Ω, A, P)

Random variable

- Function from probability space to real space

- Stochastic process(random process)
 - Function from probability space to function space
 - $X_t(w), t \in I$

Gaussian process(GP)

- Random process finite sample → multivariate normal distribution
- Mean function: m(x)
- $\{x_1, \dots, x_n\}$, random variable $\{h(x_1), \dots, h(x_n)\}$

$$\begin{bmatrix} h(x_1) \\ \vdots \\ h(x_n) \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{bmatrix} \end{pmatrix}$$

$$f(x) \sim GP(m(x), k(x, x'))$$

$$f_i = f(x_i)$$

$$x_i : \text{i-th data of data set}$$

Covariance matrix

$$k_{sqe}(x, x') = \alpha \exp \left\{ -\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_d - x'_d}{\theta_d} \right) \right\}^{R_{sqe}}$$

$$K = \begin{pmatrix} k_{1,1} & k_{1,2} & \cdots & k_{1,n} \\ k_{2,1} & k_{2,2} & \cdots & k_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{n,1} & k_{n,2} & \cdots & k_{n,n} \end{pmatrix}$$

 k_{sqe} : squared-exponential kernel function (covariance function)

x: one point

x': onother point

 x_d : d dimension value of x

 α , θ_d : hyperparameter

K: covariance matrix

Gaussian Process Regression(GPR)

Bayesian Optimization for "Black-box" function

$$x^* = \arg\min_{x \in X} f(x).$$

- Estimate f(x) by using data
- Choice point by using decision rule
- Adding the point to data and repeat this until achieve criteria
- Acquisition function EI(x)
 - Balancing between explore and exploit

Acquisition function(AF) - Probability of Improvement

$$\begin{split} \gamma(\mathbf{x}) &= \frac{f(\mathbf{x}_{\mathsf{best}}) - \mu(\mathbf{x} \, ; \, \{\mathbf{x}_n, y_n\}, \theta)}{\sigma(\mathbf{x} \, ; \, \{\mathbf{x}_n, y_n\}, \theta)} \\ a_{\mathsf{PI}}(\mathbf{x} \, ; \, \{\mathbf{x}_n, y_n\}, \theta) &= \Phi(\gamma(\mathbf{x})) \end{split}$$

$$a_{\mathsf{PI}}(\mathbf{x}\,;\,\{\mathbf{x}_n,y_n\},\theta) = \Phi(\gamma(\mathbf{x}))$$

 $a(x; \{x_n, y_n\}, \theta)$: dependence(AF and previous observations)

 $\{x_n, y_n\}_{n=1}^N$: observations form

 x_{best} : best current value as $x_{best} = argmin_{x_n} f(x_n)$

 $\phi(\cdot)$: cumulative distribution function

[NIPS 12] Practical Bayesian Optimization of Machine Learning Algorithms

Acquisition function(AF) - Probability of Improvement

Acquisition function - Expected Improvement

$$\begin{split} \gamma(\mathbf{x}) &= \frac{f(\mathbf{x}_{\mathsf{best}}) - \mu(\mathbf{x}\,;\,\{\mathbf{x}_n,y_n\},\theta)}{\sigma(\mathbf{x}\,;\,\{\mathbf{x}_n,y_n\},\theta)} \\ a_{\mathsf{EI}}(\mathbf{x}\,;\,\{\mathbf{x}_n,y_n\},\theta) &= \sigma(\mathbf{x}\,;\,\{\mathbf{x}_n,y_n\},\theta)\,(\gamma(\mathbf{x})\,\Phi(\gamma(\mathbf{x})) + \mathcal{N}(\gamma(\mathbf{x})\,;\,0,1)) \end{split}$$

 $a(x; \{x_n, y_n\}, \theta)$: dependence(AF and previous obserbations)

 $\{x_n, y_n\}_{n=1}^N$: observations form

 x_{best} : best current value as $x_{best} = argmin_{x_n} f(x_n)$

 $\phi(\cdot)$: cumulative distribution function

[NIPS 12] Practical Bayesian Optimization of Machine Learning Algorithms

Acquisition function - Expected Improvement

Practical Bayesian Optimization of Machine Learning Algorithms

Red line: unknown black box function f(x)

Black line: estimation

EI(x): acquisition function

Limitation of Bayesian Optimization

- Tuning the second hyper parameters(e.g. kernel function)
- No guide about stochastic assumption
- Impossible parallelization
- Difficult to implement software

To solve this, refer to this paper

- [NIPS 12] Practical Bayesian Optimization of Machine Learning Algorithms
- Jasper Snoek, Hugo Larochelle, Ryan P. Adams
- Citation: 1031

Contents

Chapter 11 Practical Methodology

- 11.1 Performance Metrics
- 11.2 Default Baseline Models
- 11.3 Determining Whether to Gather More Data
- 11.4 Selecting Hyperparameters

11.5 Debugging Strategies

11.6 Example: Multi-Digit Number Recognition

Chapter 12 Applications

- 12.1 LargeScale DeepLearning
- **12.2 Computer Vision**
- 12.3 Speech Recognition
- 12.4 Natural Language Processing
- 12.5 Other Applications

Debugging

- Deep learning systems are difficult to debug
- Bias update error example
 - $b \leftarrow b \alpha$ **b**: biases, α : learning rate
 - It is so difficult to find this error
- Debugging tests
 - Visualize the model in action
 - Reasoning about software using train and test error
 - Fit a tiny dataset
 - Compare back-propagated derivatives to numerical derivatives
 - Monitor histograms of activations and gradient

Contents

Chapter 11 Practical Methodology

- 11.1 Performance Metrics
- 11.2 Default Baseline Models
- 11.3 Determining Whether to Gather More Data
- 11.4 Selecting Hyperparameters
- 11.5 Debugging Strategies
- 11.6 Example: Multi-Digit Number Recognition

Chapter 12 Applications

12.1 LargeScale DeepLearning

12.2 Computer Vision

- **12.3 Speech Recognition**
- 12.4 Natural Language Processing
- 12.5 Other Applications

A comparison of global and local contrast normalization

- Contrast Normalization
- Contrast formula
 - One of the sources of variation that can be safely removed

$$\bar{\mathbf{X}} = \frac{1}{3rc} \sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^3 X_{i,j,k}$$

$$X \in \mathbb{R}^{r \times c \times 3} : \text{image tensor}$$

$$X_{i,j,1} : \text{red intensity}$$

$$X_{i,j,1} : \text{green intensity}$$

$$X_{i,j,1} : \text{green intensity}$$

$$X_{i,j,1} : \text{blue intensity}$$

- Global contrast normalization(GCN)
 - Preventing images from having varying amounts of contrast

$$X'_{i,j,k} = s \frac{X_{i,j,k} - \bar{X}}{\max \left\{ \epsilon, \sqrt{\lambda + \frac{1}{3rc} \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{3} \left(X_{i,j,k} - \bar{X} \right)^{2}} \right\}}$$

 $X_{i,j,1}$: red intensity

 $X_{i,j,1}$: green intensity

 $X_{i,j,1}$: blue intensity

 s, ϵ, λ : hyper parameters

GCN maps examples onto a sphere

Thank you