

DSD HW3

Speaker: Alex

Date: 2025/05/01

Cache Specification

- Implement two architectures
 - Direct-mapped
 - Two-way associative
- 8 blocks with 4 words in each block
- Write-through & write back are both available write policies
- Least Recently Used (LRU) & Least Frequently Used (LFU) are both available placement policies

I/O Interface of The Cache Unit

I/O Specification of The Processor Interface

Name	I/O	Width	Description
clk	I	1	positive edge trigger clock
proc_reset	I	1	synchronous active-high reset signal
proc_read	I	1	synchronous active-high read enable signal
proc_write	I	1	synchronous active-high write enable signal
proc_addr	I	30	address bus (word address)
proc_wdata	I	32	data bus for writing to cache
proc_rdata	0	32	data bus for reading from cache
proc_stall	О	1	active-high control signal that asks processor to wait (cache is busy)

I/O Specification of The Memory Interface

Name	I/O	Width	Description
mem_read	O	1	synchronous active-high read enable signal
mem_write	O	1	synchronous active-high write enable signal
mem_addr	0	28	address bus (4-word address)
mem_wdata	0	128	data bus for writing to slow memory
mem_rdata	Ι	128	data bus for reading from slow memory
mem_ready	I	1	asynchronous active-high one-cycle signal that indicates data arrives from memory / data is done written to memory

Timing Diagram of The Memory Interface

(a) Read operation.

(b) Write operation.

Stall

- When the cache needs to access data from the memory and then wait for several cycles, the proc_stall signal should be set high to stall the processor.
- Two possible cases where a stall is necessary
 - * Read miss in both write-through and write-back caches
 - Write hit in only write through caches

Cache Design (35% Each)

- Evaluation is only based on the given testbench "tb_cache.v"
- RTL Simulation (20%)
- Synthesis
 - No latches
 - No negative endpoint slack
 - No timing violations
- Gate-level Simulation (15%)
 - Get the points if you pass the gate-level simulation without timing violations or negative endpoint slacks
 - Still need to pass the RTL simulation and no inferred latches
- Performance is not part of the grading criteria
 - Specify your cycle time in the report and cycle.txt
 - Still encouraged to optimize it for your final project

Report (30%)

- Cycle time to pass the post-synthesis simulation
 - cache_syn.sdc
 - * tb cache.v
 - Cycle time should be reported in "cycle.txt" too
- General Specification
 - Write policy
 - Placement Policy
- Finite State Machine
- Performance
 - Read/Write miss rate
 - Execution cycles
 - Stalled cycles
- Comparison of the two architectures and their results

Bonus (Up to 5%)

- If your cache units are implemented with other skills that enhance the performance significantly
- Describe your methods or architectures in detail in the report
- Regulations
 - direct-mapped & two-way associative
 - ♦ 8 blocks with 4 words each

Submission

```
❖ DSD_HW3_學號/
report.pdf
cycle.txt
rtl/
cache_dm.v
cache_2way.v
syn/
cache_dm_syn.v
cache_2way_syn.v
cache_dm_syn.sdf
cache_dm_syn.ddc
cache_2way_syn.ddc
```

- Compress all the files into one ZIP file
 - ❖ File name: DSD_ HW3 _學號.zip
- Deadline: 2025/05/14 23:59
- Late submission penalty: 20% off per day