The Embedding Path Order for λ-free higher-order terms

Alexander Bentkamp

```
Let t >_{fo} s if
for t = g(\bar{t}) and s = f(\bar{s})
```

or

2.

or

3.

Let
$$t >_{fo} s$$
 if
for $t = g(\bar{t})$ and $s = f(\bar{s})$

or

2.
$$g > f$$
,

Or

3.
$$g = f, \bar{t} >>_{fo} \bar{s},$$

RPO's nature

Let
$$t >_{fo} s$$
 if
for $t = g(\bar{t})$ and $s = f(\bar{s})$

RPO's duty (for the subterm property)

1. $t' \ge_{\text{fo}} s$ for some term $t' \in \bar{t}$

2.
$$g > f$$
,

Or

3.
$$g = f, \bar{t} >>_{fo} \bar{s},$$

RPO's nature

```
Let t >_{fo} s if represented the subterm property for t = g(\bar{t}) and s = f(\bar{s}) for some term t' \in \bar{t}
```

2.
$$g > f$$
,

and $t >_{fo} s'$ for all $s' \in \overline{s}$

3.
$$g = f, \bar{t} >>_{fo} \bar{s},$$
 and $t >_{fo} s'$ for all $s' \in \bar{s}$

RPO's nature

Irreflexivity check

First-order signature with only one function symbol @

```
@(@(map, X), @(@(cons, Y), Z))
= @(@(cons, @(X, Y)), @(@(map, X), Z))
```

First-order signature with only one function symbol @

```
@(@(map, X), @(@(cons,Y),Z))
= @(@(cons,@(X,Y)),@(@(map, X),Z))
```

λ-free HOL

Higher-order terms without λ-expressions

```
map X (cons YZ)
= cons (XY) (map XZ)
```

First-order signature with only one function symbol @

```
@(@(map, X), @(@(cons, Y), Z))
= @(@(cons, @(X, Y)), @(@(map, X), Z))
```

RPO is weak because most heads are @

λ-free HOL

Higher-order terms without λ-expressions

map X (cons Y Z) = cons (X Y) (map X Z)

First-order signature with only one function symbol @

```
@(@(map, X), @(@(cons, Y), Z))
= @(@(cons, @(X, Y)), @(@(map, X), Z))
```

RPO is weak because most heads are @

λ-free HOL

Higher-order terms without λ-expressions

map X (cons YZ) = cons (XY) (map XZ)

RPO using the "real" heads?

Let
$$t >_{ho} s$$
 if
for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

Or

2.

or

3.

Let
$$t >_{ho} s$$
 if
for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

or $\xi > \zeta$,

3.
$$\xi = \zeta$$
, $\bar{t} \gg_{\text{ho}} \bar{s}$,

Let
$$t >_{ho} s$$
 if
for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

1. $t' \ge_{ho} s$ for some term $t' \in \bar{t}$

Oľ

2. $\xi > \zeta$,

3.
$$\xi = \zeta$$
, $\bar{t} \gg_{\text{ho}} \bar{s}$,

Let
$$t >_{ho} s$$
 if
for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

- 1. $t' \ge_{ho} s$ for some term $t' \in \overline{t}$
- 2. $\xi > \zeta$, and $t >_{\text{ho}} s'$ for all $s' \in \overline{s}$
- 3. $\xi = \zeta$, $\bar{t} >>_{ho} \bar{s}$, and $t >_{ho} s'$ for all $s' \in \bar{s}$

Let
$$t >_{ho} s$$
 if
for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

- 1. $t' \ge_{ho} s$ for some term $t' \in \bar{t}$
- 2. $\xi > \zeta$, vars $(t) \supseteq \text{vars}(\zeta)$ and $t >_{\text{ho}} s'$ for all $s' \in \overline{s}$
- 3. $\xi = \zeta$, $\bar{t} >>_{ho} \bar{s}$, and $t >_{ho} s'$ for all $s' \in \bar{s}$

Only modification: condition for variable heads

Properties

- Coincides with first-order RPO on first-order terms
- Almost a ground-total simplification order, except for compatibility with arguments:

$$t >_{\mathsf{ho}} s \not\Rightarrow t u >_{\mathsf{ho}} s u$$

Properties

- Coincides with first-order RPO on first-order terms
- Almost a ground-total simplification order, except for compatibility with arguments:

$$t >_{\mathsf{ho}} s \not\Rightarrow t u >_{\mathsf{ho}} s u$$

Challenge: Find a

ground-total simplification order for λ-free HOL that resembles RPO

Embedding step →_{emb}

Replace a subterm of the form **s t** by **s** or by **t**

```
f(ga)(hb) \rightarrow_{emb} fg(hb)
```

Embedding step →_{emb}

Replace a subterm of the form **s t** by **s** or by **t**

```
f(g a) (h b) \rightarrow_{emb} f g (h b) \rightarrow_{emb} f g b
```

Embedding step →_{emb}

Replace a subterm of the form **s t** by **s** or by **t**

```
f(ga)(hb) \rightarrow_{emb} fg(hb) \rightarrow_{emb} fgb \rightarrow_{emb} fb
```

Embedding step →_{emb}

Replace a subterm of the form **s t** by **s** or by **t**

```
f(ga)(hb) \rightarrow_{emb} fg(hb) \rightarrow_{emb} fgb \rightarrow_{emb} fb \rightarrow_{emb} b
```

Embedding step →_{emb}

Replace a subterm of the form st by s or by t

For example:

$$f(g a) (h b) \rightarrow_{emb} f g (h b) \rightarrow_{emb} f g b \rightarrow_{emb} f b \rightarrow_{emb} b$$

Embedding relation >_{emb}

Transitive closure of →_{emb}

$$f(ga)(hb) \triangleright_{emb} fb$$

Embedding step →_{emb}

Replace a subterm of the form st by s or by t

For example:

$$f(g a) (h b) \rightarrow_{emb} f g (h b) \rightarrow_{emb} f g b \rightarrow_{emb} f b \rightarrow_{emb} b$$

Embedding relation >_{emb}

Transitive closure of \rightarrow_{emb}

For example:

$$f(ga)(hb) \triangleright_{emb} fb$$

Any simplification order has the embedding property:

$$t \triangleright_{\mathsf{emb}} s \Rightarrow t > s$$

```
Let t >_{epo} s if
                  for t = \xi \bar{t} and s = \zeta \bar{s}
```

or **2.**

Let
$$t >_{\text{epo}} s$$
 if for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

or **2.**
$$\xi > \zeta$$

3.
$$\xi = \zeta$$
, $\bar{t} \gg_{\text{epo}} \bar{s}$,

Let
$$t >_{\text{epo}} s$$
 if for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

- 1. $t' \ge_{epo} s$ for some term t' with $t \to_{emb} t'$
- or $\xi > \zeta$

3.
$$\xi = \zeta$$
, $\bar{t} \gg_{\text{epo}} \bar{s}$,

```
Let t >_{epo} s if for t = \xi \bar{t} and s = \zeta \bar{s}
```

- 1. $t' \ge_{epo} s$ for some term t' with $t \to_{emb} t'$
- 2. $\xi > \zeta$ and $t >_{\text{epo}} s'$ for all s' with $s \to_{\text{emb}} s'$
- 3. $\xi = \zeta$, $\bar{t} >>_{\rm epo} \bar{s}$, and $t >_{\rm epo} s'$ for all s' with $s \to_{\rm emb} s'$

Let
$$t >_{epo} s$$
 if for $t = \xi \bar{t}$ and $s = \zeta \bar{s}$

- 1. $t' \ge_{epo} s$ for some term t' with $t \to_{emb} t'$
- 2. $\xi > \zeta$ and $t >_{\text{epo}} s'$ for all s' with $s \to_{\text{emb}} s'$
- 3. $\xi = \overline{\zeta}, \, \overline{t} >>_{\text{epo}} \overline{s},$ and $t >_{\text{epo}} s'$ for all s' with $s \to_{\text{emb}} s'$

Can be made to work (with some modifications for applied variables)

```
Let t>_{\operatorname{epo}} s if for t = \xi \, \bar{t} \text{ and } s = \zeta \, \bar{s}
```

- 1. $t' \ge_{epo} s$ for some term t' with $t \to_{emb} t'$
- 2. $\xi > \zeta$ and $t >_{\text{epo}} s'$ for all s' with $s \to_{\text{emb}} s'$
- 3. $\xi = \zeta$, $\bar{t} >>_{\rm epo} \bar{s}$, and $t >_{\rm epo} s'$ for all s' with $s \to_{\rm emb} s'$

Can be made to work (with some modifications for applied variables)

Chop

Definition:

$$\mathsf{chop}(\zeta t_1 \ldots t_n) = t_1 \ldots t_n$$

(only defined if n > 0)

$$chop(f(ga)(hb)) = ga(hb)$$

$$t>_{\operatorname{ep}} s$$
 for $t=\xi \, \overline{t}_n$ and $s=\zeta \, \overline{s}_m$ if

1.

or

2.

$$t>_{\operatorname{ep}} s$$
 for $t=\xi \, \overline{t}_n$ and $s=\zeta \, \overline{s}_m$ if

1.

or

$$\xi > \zeta$$
,

$$\xi = \zeta, \ \overline{t}_n >>_{\mathsf{ep}} \overline{s}_m,$$

$$t>_{\operatorname{ep}} s$$
 for $t=\xi \, \overline{t}_n$ and $s=\zeta \, \overline{s}_m$ if

1. n > 0 and $chop(t) \ge_{ep} s$

or

$$\xi > \zeta$$
,

$$\xi = \zeta, \ \overline{t}_n >>_{\mathsf{ep}} \overline{s}_m,$$

$$t>_{\mathsf{ep}} s$$
 for $t=\xi \, \bar{t}_n$ and $s=\zeta \, \bar{s}_m$ if

1.
$$n > 0$$
 and $chop(t) \ge_{ep} s$

or

2.

or

$$\xi > \zeta$$
,
and either $m = 0$ or $t >_{ep} chop(s)$

$$\xi = \zeta, \, \bar{t}_n >>_{\rm ep} \bar{s}_m,$$
 and either $m = 0$ or $t >_{\rm ep} {\rm chop}(s)$

$$t>_{\mathsf{ep}} s$$
 for $t=\xi \, \bar{t}_n$ and $s=\zeta \, \bar{s}_m$ if

- 1. n > 0 and $chop(t) \ge_{ep} s$
- $\xi, \zeta \in \Sigma, \ \xi > \zeta,$
- and either m = 0 or $t >_{ep} chop(s)$
- 3. $\xi, \zeta \in \Sigma$, $\xi = \zeta$, $\bar{t}_n >>_{\rm ep} \bar{s}_m$, and either m = 0 or $t >_{\rm ep}$ chop(s)

$$t>_{\mathsf{ep}} s$$
 for $t=\xi \, \bar{t}_n$ and $s=\zeta \, \bar{s}_m$ if

- 1. n > 0 and $chop(t) \ge_{ep} s$
- $2, \quad \xi, \zeta \in \Sigma, \quad \xi > \zeta,$
- and either m = 0 or $t >_{ep} chop(s)$
- $\xi, \zeta \in \Sigma, \ \xi = \zeta, \ \bar{t}_n >>_{\rm ep} \bar{s}_m,$ and either m=0 or $t>_{\rm ep}$ chop(s)
- 4. $\xi, \zeta \in \mathcal{V}, \ \xi = \zeta, \ \bar{t}_n >>_{\text{ep}} \bar{s}_m, \ n > 0,$ and either m = 0 or $\text{chop}(t) >_{\text{ep}} \text{chop}(s)$

Properties

- RPO-like, ground-total simplification order (verified in Isabelle)
- Worst runtime of size(s)*size(t)*depth(s)*depth(t)
 (implemented in Zipperposition)

Properties

- RPO-like, ground-total simplification order (verified in Isabelle)
- Worst runtime of size(s)*size(t)*depth(s)*depth(t)
 (implemented in Zipperposition)

Questions to you:

- Is it a known fact that any simplification order has the embedding property?
- Could this order be useful in other contexts outside of superposition?