Math 21 Module 1: Limits and Continuity

Nile Jocson <atraphaxia@gmail.com>

February 19, 2025

Contents

1	Lim	it of a F	un	\mathbf{ct}	ioı	1:	\mathbf{A}	n	In	tu	iti	ve	A	(p	pr	oa	ch.	1														3
	1.1																												 			 3
	1.2																												 			 4
		1.2.1																											 			 4
		1.2.2																											 			 5
		1.2.3																											 			 6
		1.2.4																											 			 7
		1.2.5																											 			 8
		1.2.6																											 			 9
		1.2.7																											 			 10
		1.2.8																											 			 11
		1.2.9																											 			 12
		1.2.10																											 			 13
	1.3																															 14
	1.0	1.3.1	Ċ		·						i						·						·	i		 ·		 i	 	i		
		1.3.2	-			-		-			-			-	-		-				 -		-	-		 -	-	 -	 	-		
		1.0.2	•		·	•		•	•		•			•	•		·	·	 •	·	 •		•	•	 •	 ·	•	 •		•	•	
2	One	e-Sided L	in	it	\mathbf{s}																											16
	2.1																												 			 16
		2.1.1																											 			 16
		2.1.2																											 			 17
		2.1.3																											 			 18
		2.1.4																											 			 19
		2.1.5																											 			 20
		2.1.6																											 			 21
		2.1.7																											 			 22
		218																														23

2 One-Sided Limits

2.1

Evaluate the following limits.

2.1.1

$$\lim_{x \to 3^{-}} \sqrt{7x^2 - 12x + 5}$$

$$=\lim_{x\to 3^-}\sqrt{7x^2-7x-5x+5}$$
 Factor.
$$=\lim_{x\to 3^-}\sqrt{(7x-5)(x-1)}$$

$$=\sqrt{(7(3)-5)(3-1)}$$
 Since $\sqrt{(7x-5)(x-1)}\neq 0$ as $x\to 3^-$, eliminate the limit.
$$=\sqrt{(16)(2)}$$
 Final answer.

16

$$\lim_{x \to \frac{3}{2}} \sqrt{4x^2 - 12x + 9}$$

$$= \lim_{x \to \frac{3}{2}} \sqrt{4x^2 - 6x - 6x + 9}$$
 Factor.
$$= \lim_{x \to \frac{3}{2}} \sqrt{(2x - 3)^2}$$

$$= 2(\frac{3}{2}) - 3$$
 Final answer.

$$\lim_{x \to \frac{2}{3}^+} \lfloor 3x + 1 \rfloor$$

$= \lim_{x \to \frac{2}{3}^+} \lfloor 3^+ \rfloor$	
= 3	Final answer.

$$\lim_{x\to\frac{2}{3}^-} \lfloor 3x+1 \rfloor$$

$= \lim_{x \to \frac{2}{3}^-} \lfloor 3^- \rfloor$	
= 2	Final answer.

$$\lim_{x\to\frac{2}{3}}\lfloor 3x+1\rfloor$$

DNE Final answer. If one-sided limits aren't equal, the limit doesn't exist.

$$\lim_{x \to 1} \frac{|4x| - |x - 5|}{1 - x}$$

$$= \lim_{x \to 1} \frac{4x - |x - 5|}{1 - x} \qquad |4x| = 4x, x \ge 0$$

$$= \lim_{x \to 1} \frac{4x - (-x + 5)}{1 - x} \qquad |x - 5| = -x + 5, x < 5$$

$$= \lim_{x \to 1} \frac{5x - 5}{1 - x}$$

$$= \lim_{x \to 1} \frac{-5(1 - x)}{1 - x}$$

$$= -5$$
Final answer.

21

$$\lim_{t \to -\frac{1}{2}} \frac{2t+1}{|2t^2 - 3t - 2|}$$

$\lim_{t \to -\frac{1}{2}^-} \frac{2t+1}{ 2t^2-3t-2 }$	Evaluate negative one-sided limit.
$= \lim_{t \to -\frac{1}{2}^-} \frac{2t+1}{2t^2-3t-2}$	$\left 2t^2 - 3t - 2\right = 2t^2 - 3t - 2, x < -\frac{1}{2}$
$= \lim_{t \to -\frac{1}{2}^-} \frac{2t+1}{2t^2-4t+t-2}$	Factor.
$= \lim_{t \to -\frac{1}{2}} - \frac{2t+1}{(2t+1)(t-2)}$	
$= \lim_{t \to -\frac{1}{2}^-} \frac{1}{t-2}$	
$=\frac{1}{-\frac{1}{2}-2}$	
$=-\frac{2}{5}$	
$\lim_{t \to -\frac{1}{2}^+} \frac{2t+1}{ 2t^2-3t-2 }$	Evaluate positive one-sided limit.
$= \lim_{t \to -\frac{1}{2}^-} \frac{2t+1}{-(2t^2-3t-2)}$	$\left 2t^2 - 3t - 2\right = -(2t^2 - 3t - 2), x \ge -\frac{1}{2}$
$= \lim_{t \to -\frac{1}{2}^-} - \frac{2t+1}{2t^2 - 3t - 2}$	
$= \lim_{t \to -\frac{1}{2}^-} - \frac{2t+1}{2t^2-4t+t-2}$	Factor.

DNE

 $= \lim_{t \to -\frac{1}{2}^-} - \frac{2t+1}{(2t+1)(t-2)}$

 $= \lim\nolimits_{t \to -\frac{1}{2}^-} - \frac{1}{t-2}$

Final answer. If one-sided limits aren't equal, the limit doesn't exist.

_

$$\lim x \to 1^{-} \frac{x \lfloor x \rfloor - 1}{\lfloor x \rfloor - 1}$$

$$=\lim_{x\to 1^-}\frac{\frac{1\lfloor 1^-\rfloor-1}{\lfloor 1^-\rfloor-1}}{\frac{1}{\lfloor 1^-\rfloor-1}}$$

$$=\lim_{x\to 1^-}\frac{\frac{1(0)-1}{(0)-1}}{\frac{1}{(0)-1}}$$
 Final answer.