Number theory Assignment

By: Bassem Mohamed

ID: 13

CODE DISCRIPTION

There are 2 class MainWindow and MathMethods.

MainWindow contains GUI code.

MathMethods contains the main code of the 3 the problems.

Question one

First method (straight forward method).

This method depends on <u>Java</u>'s java.math.BigInteger class has a <u>modPow()</u>.

This method is fastest one.

Seconded method(simple loop).

This methods depends on equivalence of these 2 equations:

```
c \equiv (a \cdot b) \pmod{m}

c \equiv (a \cdot (b \pmod{m})) \pmod{m}
```

originally the base is multiplied b times to itself, this algorithm reduce the base after each multiplication by the mod. It's time is O (b)

```
The algorithim:
```

```
public static BigInteger modularExploop(BigInteger a, BigInteger
b, BigInteger n){
```

```
BigInteger i = new BigInteger("0");
BigInteger c=new BigInteger("1");
for (; i.compareTo(b) < 0; i = i.add(BigInteger.ONE)) {
        c=(c.multiply(a)).mod(n);
}
return c;
}</pre>
```

Third method(Right to left binary method)

This method the more efficient than the last one. it's time is O (log b). exponent can be written as:

$$e = \sum_{i=0}^{n-1} a_i 2^i$$

The value b^e can then be written as:

$$b^e = b^{\left(\sum_{i=0}^{n-1} a_i 2^i\right)} = \prod_{i=0}^{n-1} \left(b^{2^i}\right)^{a_i}$$

The solution *c* is therefore:

$$c \equiv \prod_{i=0}^{n-1} \left(b^{2^i} \right)^{a_i} \pmod{m}$$

The algorithm:

Fourth method (Euler method)

This method depends of the reduction of the exponent using Euler totient function.

The following charts for the execution time of the first three methods

y-axis is time in millisecond and x-axis is number of decimal digits.

Question two

In this question I used complete search to find the inverse.

Using this equation (ab) mod n = 1, I searched a value of b that satisfy the equation.

The code:

```
public static long getModularInverse(int a , int m){
    long i = 1;
    while ((i * m + 1) % a != 0){
        i++;
    }
    return ((i * m + 1) / a);
}
```

Question three

I used the algorithm given in the section

oc≡ a,	(mod mi)	* Input: mis and ais
X = a2	(mod mi)	Output: x which satisfies the se
$x = a_g$	(mod mg)	of equations
	1	* Condition: every pair of mis is
i	*	relatively prime
No. Date. Steps:		
	* m ₂ * m ₃	
$M_1 = \frac{M}{m_1}$	→ Y ₁ = i	nverse (M,) mod m,
M2 = M	→ Y ₂ =	Inverse (Mz) mod mz
M3 - M	→ Y3 = 10	verse (Mg) mod mg

The code:

```
public static int CRT(int[] a , int [] m){
    int bigM=1;
    int[] mArr = new int[m.length];
    int[] yArr = new int[m.length];
    int x=0;
    for (int i = 0; i < m.length; i++) {
        bigM=m[i]*bigM;
    }

    for (int i = 0; i < mArr.length; i++) {
        mArr[i]=bigM/m[i];
        yArr[i]=(int) getModularInverse(mArr[i], m[i]);
        x=(x+(a[i]*yArr[i]*mArr[i]))%bigM;
    }

    return x;
}</pre>
```

SOURCES: Wikipedia and tutorial notes.