

Problem Statement

Bayesian filtering problem

Consider CO₂ monitoring as a Bayesian filtering problem:

$$\mathbf{x}_k \sim p(\mathbf{x}_k \mid \mathbf{x}_{k-1})$$
 $\mathbf{y}_k \sim p(\mathbf{y}_k \mid \mathbf{x}_k), \quad k = 0, 1, 2, ...$

where

- $ightharpoonup \mathbf{x}_k \in \mathbb{R}^n$ is the *state* (CO₂ saturation/pressure) vector at time $t = k\Delta t$
- \triangleright $\mathbf{y}_k \in \mathbb{R}^m$ is the observation vector
- $\triangleright p(\mathbf{x}_k \mid \mathbf{x}_{k-1}) = p(\mathbf{x}_k \mid \mathbf{x}_{1:k-1}, \mathbf{y}_{1:k-1})$ is the Markovian *transition* probability
- $\triangleright p(\mathbf{y}_k \mid \mathbf{x}_k) = p(\mathbf{y}_k \mid \mathbf{x}_{1:k}, \mathbf{y}_{1:k-1})$ is the *likelihood* of the *measurement* model

Sequential Bayesian Inference

Calculate posterior $p\left(\mathbf{x}_k \mid \mathbf{y}_{1:k}\right)$ for the state, \mathbf{x}_k , recursively, via the predictive distribution:

$$p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1:k-1}\right) = \int p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{y}_{1:k-1}\right) d\mathbf{x}_{k-1}$$
$$= \mathbb{E}_{\mathbf{x}_{k} \sim p\left(\mathbf{x}_{k-1} \mid \mathbf{y}_{1:k-1}\right)} \left[p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) \right]$$

followed by the correction step involving Bayes formula:

$$p(\mathbf{x}_{k} \mid \mathbf{y}_{1:k}) = \frac{p(\mathbf{y}_{k} \mid \mathbf{x}_{k}) p(\mathbf{x}_{k} \mid \mathbf{y}_{1:k-1})}{\int p(\mathbf{y}_{k} \mid \mathbf{x}_{k}) p(\mathbf{x}_{k} \mid \mathbf{y}_{1:k-1}) d\mathbf{x}_{k}}$$

- ightharpoonup Marginalization over state \mathbf{x}_{k-1} in Chapman-Kolmogorov integral, and
- Integral for evidence are both computationally unfeasible!