	SVM LOSS : Score Function!
•	For an element x_i $S = Scores = f(x_i, W)$ $f(x_i, W)$ $f(x_i, W)$ $f(x_i, W)$
*	LOSS function (1, = 2 max (0, 8; - 8y; + A)
	Hinge loss By to be greater than all other Hinges at a, ignore—w Klores, (Least Margin)
X	ise W
	Regularization: Restrict set of Weights W Because [Family of functions] Whoman mat he wight (71) 34 3 10
X	Multiclays SVM LOB, Regulation
	L= 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Data Loss Regularization (Avg. loss L. of Penally - Restrict lauge weights.
	R(W)= Z Z W (L2 norm)

SoftMax Classifier: A Cross Entropy Loss: Li= -log (ebgi -fy + log Zetj function: \(\int_{i}(3) = e^{3i} \) \rightarrow Normalize
\[\secons \] \(\secons \) 3 - Vector of arbit nary real values. J- Gets squashed to values between 0 &1 Practical Issue of Numerical Stability: Dul to exponents in softmax, it can be unstable and blow up. So a trick is to do this: ely: = Cely: = ely: t log c = ely: t log c = ely: t log c Choose log C = - max; f; So, for example, [100, 200, 300] becomes
[-200, -100, 0] + easier to calculate. Softmax gives probabilities/confidence for each class. Hore peaky - Small & & Regular/zation

More diffuse - Big & Penalty. A SVM Ns. Softmax. SVM more "local" doesn't penalize uncertainty.

For eq., if scores are [10,9,9], with $\Delta = 1$ the hinge loss is 0 since score of correct

class is above morgin (1) of other class scores.

It would be 0 even for [10, -100, -100]. But, soft max penalizes [10, 9,9) with higher loss than [10, -100, -100]. Practical Note: Normalize images,

1. Choose a "meen image" and
subtract it from every other image. Pixel
values are transformed from [0.., 255] to
[-127,., 127] -> Centering the mean to 0. 2. Normalize farther to have ronge