带 64 字节 RAM 及 32K 输出的实时时钟 IC- SD2058 Ver1.4

1. 概述

SD2058 是一种具有标准 IIC 接口的实时时钟芯片, CPU 可使用该接口通过六位地址寻址来读写片内 64 字节寄存器的数据(包括时间寄存器、报警寄存器、控制寄存器、通用 SRAM 寄存器)。

SD2058 内置单路定时/报警中断输出,报警中断时间最长可设至 100 年。

SD2058 具有独立的 32768hz 方波脉冲输出脚。

SD2058 内置时钟精度数字调整功能,可以在很宽的范围内校正时钟的偏差(-189ppm~+189ppm,分辨力为 3.05ppm),并通过外置的温度传感器可设定适应温度变化的调整值,实现在宽温范围内高精度的计时功能。

2. 特性

- 低功耗: 1.0 µ A 典型值(V_{DD}=3.0V, Ta=25℃)。
- 工作电压: 1.8~5.5V, 工作温度: -40℃~+85℃。
- 标准 IIC 总线接口方式, 最高速度 400KHZ (4.5V~5.5V)。
- 年、月、日、星期、时、分、秒的 BCD 码输入/输出,并可通过独立的地址访问各时间寄存器。
- 闰年自动调整功能(从 2000 年~2099 年)。
- 可选择 12/24 小时制式.
- 内置年、月、日、星期、时、分、秒共7字节的报警数据寄存器及1字节的报警允许寄存器。
- 内置 44 个字节通用 SRAM 寄存器可用于存储用户的一般数据。
- 三种中断均可选择从 INT 脚输出, 并具有两个中断标志位.
- 可设定并自动重置的单路报警中断功能(时间范围最长设至100年),年、月、日、星期、时、分、秒报警共有96种组合方式,并有单事件报警和周期性报警两种中断输出模式.
- 周期性频率中断输出:从32768Hz~1/16Hz······1 秒共十五种方波脉冲.
- 具有独立的、可控的 32768hz 方波脉冲输出脚。
- 自动重置的 8 位倒计时定时器, 可选的 4 种时钟源(4096HZ、64HZ、1HZ、1/60HZ)。
- 内置时钟精度数字调整功能,可通过程序来调整走时的快慢。用户采用外置的温度传感器,设定适应温度变化的调整值,可实现在宽温范围内高精度的计时功能。
- 内置 IIC 总线 0.5 秒自动复位功能(从 Start 命令开始计时), 保证时钟数据的有效性及可靠性, 避免 IIC 总线挂死问题。
- 内置三个时钟数据写保护位,避免对数据的误写操作,可更好地保护时钟数据。
- 内置上电复位电路及指示位。
- 内置电源稳压, 内部计时电压可低至 1.5V。
- 芯片管脚抗静电(ESD)>4KV。
- 芯片在兴威帆的评估板上可通过 4KV 的群脉冲(EFT)干扰。
- 软件与兴威帆的 SD2068 全兼容。
- CMOS 工艺。
- 封装形式:SOP8/MSOP8。

3. 原理框图

4. 管脚定义

封装形式:SOP8/MSOP8

表 1 SD2058 管脚功能表

脚号	名称	功能	特征
1	OSCIN	晶振的输入	0~1.5V 输入
2	OSCOUT	晶振的输出	0~1.5V 输出
3	32K	32. 768KHZ 方波信号输出脚.	N-沟道开路输出
4	V_{ss}	负电源 (GND)	
5	SDA	串行数据输入/输出脚,此管脚通常用一电阻上拉	N沟道开路输出, CMOS 输
		至 V _{DD} , 并与其它漏极开路或集电器开路输出的器	λ.
		件通过线与方式连接.	
6	SCL	串行时钟输入脚,由于在SCL上升/下降沿处理信	CMOS 输入
		号,要特别注意 SCL 信号的上升/下降升降时间,	
		应严格遵守说明书。	
7	INT	报警中断输出脚,根据控制寄存器来设置其工作的	N-沟道开路输出
		模式,它可通过重写控制寄存器来禁止.	
8	V _{DD}	正电源	1.8V~5.5V

5. 寄存器

5.1 寄存器列表

地	寄存	寄存器名				B	T				数值范围	缺省值
址	器段	称	D7	D6	D5	D4	D3	D2	D1	DO	(十进制)	(二进制)
00H	0012	秒	0	S40	S20	S10	S8	S4	S2	S1	0-59	XXXX-XXXX
01H		分钟	0	MN40	MN20	MN10	MN8	MN4	MN2	MN1	0-59	XXXX-XXXX
02H	实时	7JTY	0	MINTO	H20	MIVIO	MINO	MINT	MINZ	MINI	0 00	AAAA AAAA
0211	財钟	小四	12_/24	0	P/A_	H10	Н8	H4	Н2	H1	0-23	XXXX-XXXX
03H	寄存	 星期	0	0	0	0	0	W4	W2	W1	0-6	XXXX-XXXX
	器 器		0	0			-					
04H	66				D20	D10	D8	D4	D2	D1	1-31	XXXX-XXXX
05H		月	0	0	0	MO10	M08	MO4	MO2	MO1	1-12	XXXX-XXXX
06H		年	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1	0-99	XXXX-XXXX
07H		秒报警	0	AS40	AS20	AS10	AS8	AS4	AS2	AS1	0-59	0000-0000
08H		分钟报警	0	AMN40	AMN20	AMN10	AMN8	AMN4	AMN2	AMN1	0-59	0000-0000
09Н	时间	小时报警	0	0	AH20 AP/A_	AH10	AH8	AH4	AH2	AH1	0-23	0000-0000
OAH	报警	星期报警	0	AW6	AW5	AW4	AW3	AW2	AW1	AWO	N/A	0000-0000
OBH	寄存器	日报警	0	0	AD20	AD10	AD8	AD4	AD2	AD1	1-31	0000-0000
ОСН	88	月报警		0	0	AMO10	AMO8	AMO4	AMO2	AMO1	1-12	0000-0000
ODH		年报警 A	AY7	AY6	AY5	AY4	AY3	AY2	AY1	AY0	0-99	0000-0000
0EH		报警允许	0	EAY	EAMO	EAD	EAW	EAH	EAMN	EAS	N/A	0000-0000
0FH		CTR1	WRTC3	0	INTAF	INTDF	0	WRTC2	0	RTCF	N/A	0000-0000
10H	<u> </u>	CTR2	WRTC1	IM	INTS1	INTS0	0	INTDE	INTAE	INTFE	N/A	0000-0000
11H	控制	CTR3	ARST	32K	TDS1	TDS0	FS3	FS2	FS1	FS0	N/A	0000-0000
12H	寄存	时间调整	0	F6	F5	F4	F3	F2	F1	F0	N/A	0000-0000
13H	器	倒计时定 时器	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0	0-255	0000-0000
14 [~] 3FH	通用 RAM	(44Bytes)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	N/A	XXXX-XXXX

5.2 实时时钟数据寄存器(00H~06H)

实时时钟数据寄存器是 7 字节的存储器,它以 BCD 码方式存贮包括年、月、日、星期、时、分、秒的数据。

年数据[06H 地址] (00~99): 设置千年(20XX)的后两位数字(00~99),通过自动日历功能计至 2099 年。(注意: 2000 年为闰年)

月数据[05H 地址 (01~12): 每月包含的天数通过自动日历功能来更改。

1,3,5,7,8,10,12: 1~31

4,6,9,11: 1~30 2(闰年): 1~29 2(普通): 1~28

日数据[**04H** 地址](01~31)

星期数据[03H 地址] (00~06): 七进制计数器,00 对应星期天,01 对应星期一,依次类推. **小时数据[02H 地址]** (00~23 或 00~11): 小时的最高位 12_/24 是 12 或 24 小时制选择位。

当 12_/24=1 时,24 小时制; 当 12_/24=0 时,12 小时制。

24 小时显示系统	12 小时显示系统	24 小时显示系统	12 小时显示系统
00	12(AM12)	12	32(PM12)
01	01(AM1)	13	21(PM1)
02	02(AM2)	14	22(PM2)
03	03(AM3)	15	23(PM3)
04	04(AM4)	16	24(PM4)
05	05(AM5)	17	25(PM5)
06	06(AM6)	18	26(PM6)
07	07(AM7)	19	27(PM7)
08	08(AM8)	20	28(PM8)
09	09(AM9)	21	29(PM9)
10	10(AM10)	22	30(PM10)
11	11(AM11)	23	31(PM11)

12 小时制时,H20 为 AM/PM 指示位,H20=0 为 AM,H20=1 为 PM, 见下表:(位 H20H10H8H4H2H1)

注意: 当读取小时数据时,要屏蔽掉小时的最高位 12_/24,否则在 24 小时制时会因为 12_/24=1 而显示不对.

分数据[**01H** 地址] (00~59)

秒数据[00H 地址] (00~59)

例如: 设置时间为 2006 年 12 月 20 日星期三 18 点 19 分 20 秒(24 小时制),则寄存器 00~07H 的 赋值应分别为 20h、19H、98h、03h、20h、12h、06h。要特别注意此处小时位的赋值,因为是 24 小时制式,小时的 12 /24 位=1,所以小时的赋值为 98h(1001 1000B).

也请注意在 24 小时制时,当小时数据读出后,其最高位为 1,所以要将读到的数据最高位置 0, 否则小时数据不对。

注:

- 1. 在上电复位时,芯片内部不对实时时钟数据寄存器作清零或置位处理。
- 2. 当写实时时间数据时(00H~06H),不可以单独对7个时间数据中的某一位进行写操作,否则可能会引起时间数据的错误进位,所以要修改其中某一个数据,应一次性写入全部7个实时时钟数据。
- 3. 当芯片收到读实时时钟数据命令,则所有实时时钟数据被锁存(时钟走时并不受影响),此功能可以避免时间数据的错读现象。

5.3 **中断**(08H~13H 地址)

SD2058 有 3 种不同的中断,它们由控制寄存器 2(10H)中的位 INTAE、 INTFE、INTDE 位来使能:

序	中断允许位	中原名	中断标志位		
号	(1=允许,0=禁止)	中断名 	(1=有中断,0=无中断)		
1	INTAE	报警中断	INTAF		
2	INTFE	频率中断	无		
3	INTDE	倒计时中断	INTDF		

中断允许位/标志位列表

当报警中断产生时,置中断标志位 INTAF 为 1;当倒计时中断产生时,置中断标志位 INTDF 为 1;频率中断没有标志位.标志位被置 1 后,需要手动清除.

三种中断都是以 INT 脚为输出脚, 通过控制寄存器 2 中的 INTS1、INTS0 位来选择确定 INT 脚输出何种中断:

序号	INTS1	INTS0	描述									
0	0	0	禁止输出,高阻态									
1	0	1	报警中断输出									
2	1	0	频率中断输出									
3	1	1	倒计时中断输出									

INT 脚中断输出选通表

(1) 报警中断

当 INTAE=1 时报警中断被允许,报警中断何时发生由时间报警寄存器(07H~0EH)来确定。这其中 07H~0DH 依次用于存放报警时间的秒、分钟、小时、星期、日、月、年数据,除小时报警数据寄存器的最高位始终为"0"、星期位的定义不同以外,其它的格式与实时时钟寄存器相同。

0EH 为时间报警允许寄存器, 如下:

BIT	D7	D6	D5	D4	D3	D2	D1	D0
位名(值)	0	EAY	EAMO	EAD	EAW	EAH	EAMN	EAS
报警允许		年	月		星期	小时	分钟	秒
	-	(0DH)	(0CH)	(0BH)	(OAH)	(09H)	(H80)	(07H)

注:1=允许,0=禁止.

时间报警允许寄存器的使能位是用于确定哪些时间报警寄存器(秒、分钟等)需要与实时时钟寄存器之间作比较。当实时时钟运行时,一旦被允许的报警寄存器均与对应的实时时钟寄存器相匹配,就会触发一次报警中断,同时报警中断标志位 INTAF 位被置"1".

特别:

- 1.当日报警与星期报警均被允许即 EAD=EAW=1 时,只有日报警有效,而星期报警无效,所以时间报警中断共有 96 种组合方式。
- 2.星期报警寄存器的数据格式与实时时钟数据星期的格式不同,星期报警寄存器的位 AW6.AW5.AW4.AW3.AW2.AW1.AW0 分别对应星期六.星期五.星期四.星期三.星期二.星期一.星期日,并可多位置1,例如 AW6,AW1=1,其它位为0,则对应在星期六.星期一会有报警.

每一次对时间报警允许寄存器的写入都会清 INTAF 为"0".

当设置 INTS1=0、INTS0=1 时, 即允许报警中断从 INT 脚输出.该报警中断有两种模式,即单事件报警和周期性报警,模式的选定由控制寄存器 2 中的报警中断模式位 IM 的值来定:

IM 位	报警中断模式	INT 脚
0	单事件报警	输出低电平直至 INTAF 位清零
1	周期性报警	输出低电平有效、宽度为 250ms 的周期性脉冲直至
1		中断允许位清零

为清除报警中断,可通过写操作将控制寄存器 1 的 INTAF 位置"0".但当 ARST 位置为"1",则在控制寄存器 1 被读取时,INTAF 位会自动清零. 举例:

设寄存器 0EH=00000001B,秒报警寄存器 07H=20h,位 INTAE=1、IM=1、INTS1=0、INTS0=1,则每当时间秒数据进位到 20h 的时候, INT 脚都会输出宽度为 250ms 的低电平,即频率为 1 分钟的方波。如下图:

2. 设寄存器 0EH=00001111B,星期报警寄存器 0AH=0010 0110B,小时报警寄存器

- 09H=08h,分钟报警寄存器 08H=30h,秒报警寄存器 07H=00h,位 INTAE=1、IM=1、INTS1=0、INTS0=1,则每到星期一、星期二、星期五的 8 点 30 分 0 秒的时候,INT 脚都会输出宽度为 250ms 的低电平。
- 3. 设寄存器 0EH=00010111B,日报警寄存器 0BH=01h,小时报警寄存器 09H=08h,分钟报警寄存器 08H=30h,秒报警寄存器 07H=00h,位 INTAE=1、IM=1、INTS1=0、INTS0=1,则到每个月 1号的 8点30分0秒的时候,INT 脚都会输出宽度为250ms的低电平。
- 4. 设寄存器 0EH=0111 0100B, 年报警寄存器 0DH=08h,月报警寄存器 0CH=08h,日报警寄存器 0BH=08h,小时报警寄存器 09H=20h,位 INTAE=1、IM=0、INTS1=0、INTS0=1、12_/24=1,则到 2008 年 8 月 8 日 20 点 0 分 0 秒时,INT 脚会输出低电平。此后如清零 INTAF,则 INT 脚从低电平变成高电平。

(2) 频率中断

当 INTFE=1 时频率中断被允许; INTFE=0 时频率中断被禁止. 当设置 INTS1=1、INTS0=0 时,即允许频率中断从 INT 脚输出.频率中断没有标志位.

INT 脚输出频率中断由控制寄存器 3 中的 FS3、FS2、FS1、FS0 位来选择确定:

频率(HZ)	FS3	FS2	FS1	FS0
0	0	0	0	0
32768	0	0	0	1
4096	0	0	1	0
1024	0	0	1	1
64	0	1	0	0
32	0	1	0	1
16	0	1	1	0
8	0	1	1	1
4	1	0	0	0
2	1	0	0	1
1	1	0	1	0
1/2	1	0	1	1
1/4	1	1	0	0
1/8	1	1	0	1
1/16	1	1	1	0
1秒	1	1	1	1

注:除了 1 秒外,INT 脚输出的频率中断均是由 32768HZ 晶体振荡电路整形及分频得到的;1 秒频率中断是 指输出 500ms 低电平、500ms 高电平的方波,其低电平的下降沿与秒进位同步; 在数字调整寄存器起作 用时,1 秒和 1Hz 的时长是不相同的.(参考 5.4)

例如:需要INT脚输出1HZ信号时,可以通过设置位INTS1=1、INTS0=0、INTFE=1、FS3-FS2-FS1-FS0=1010得到.

(3) 倒计时中断

与倒计时中断相关的寄存器是 8 位的倒数定时器, 当控制寄存器 2 中的位 INTDE=1 时倒计时中断被允许.

TDS1	TDS0	定时器频率源(HZ)
0	0	4096
0	1	64
1	0	1
1	1	1/60

倒数定时器的频率源由控制寄存器 2 中的位 TDS1、TDS0 来选定

当 INTDE=1 且倒数定时器写入一个八位自动重置的二进制数后,倒数定时器会按照 TDS1、TDS0 选定的频率时间来减一.每次当倒数定时器为零时,会置倒计时中断的标志位(控制寄存器 1 中的位 INTDF)为 1。倒计时中断最长周期为 256 分钟。

当设置 INTS1=1、INTS0=1、IM=0 时, 即允许倒计时中断的低电平从 INT 脚输出. 置 INTDF=0 时 INT 脚输出变为高电平直到下一次倒计时中断 INT 脚再次变为低电平; 当设置 INTS1=1、INTS0=1、IM=1 且 倒数定时周期大于 250ms 时,则从 INT 脚输出低电平时间为 250ms 连续脉冲。

当设置 INTDE=0 时倒计时中断被禁止或复位。

特别的:当重新配置倒计时中断时,需要复位倒计时计数器,即置 INTDE=0,然后再置 INTDE=1,才可以 启用新的倒计时中断。

5.4 时间精度调整电路(12H 地址)

由于受

- 1) 每个晶振的误差±5ppm 或±10ppm 或±20ppm 或±50ppm;
- 2) 晶振负载电容与 IC 内部电容的匹配程度;
- 3) 每个 IC 的误差±10ppm;
- 4) 电路板寄生电容的误差;
- 5) 温度对精度的影响最多会到-140ppm(如在-40℃或85℃时)

从而会引起会时钟较大的误差,一般通过以下方法来调整:

a.模拟化时间精度调整电路

模拟化时间精度调整电路主要是调整外加在 OSCIN 脚的电容 CGOUT 值,如下图:

b.数字化时间精度调整电路(12H 地址)

利用数字化时间精度调整电路可以每 20 秒改变当前 1 秒所包含的 32768Hz 脉冲的个数,从而到达时钟走时调整,使 SD2058 保持高的走时精度.相关寄存器为时间调整寄存器(内部地址 12H):

时间调整寄存器:(缺省值为 00H)

D7	D6 D5		D4	D3	D2	D1	D0	
0	F6	F5	F4	F3	F2	F1	F0	

F6^{*}F0:时间调整位;时间调整电路是在当秒计数为 00, 20, 40 时刻,根据预先设置的数据(F6^{*}F0)改变 1 秒时钟内计数的个数.通常每 32768 个脉冲为 1 秒(对寄存器预设初值,才能激活整个调整电路).

当 F6 为"0"时,产生1 秒的寄存器计数脉冲将增加为 32768+((F5, F4, F3, F2, F1, F0)-1)×2;

当 F6 为"1"时,产生1秒的寄存器计数脉冲将减少为 32768-((/F5, /F4, /F3, /F2, /F1, /F0)+1)×2;(/F5 是 F5 的反码, 其它类同)

当(F6, F5, F4, F3, F2, F1, F0)预设为(*, 0, 0, 0, 0, 0, *)时,产生1秒的寄存器计数脉冲不变.

例: 当 (F6, F5, F4, F3, F2, F1, F0)=(0, 1, 0, 1, 0, 0, 1) 且当 00, 20, 40 秒时刻时, 寄存器计数脉冲变为 32768+(41-1) ×2=32848;

当 (F6, F5, F4, F3, F2, F1, F0)=(1, 1, 1, 1, 1, 1, 0) 且当 00, 20, 40 秒时刻时,寄存器计数脉冲变为 32768-(1+1) ×2=32764;

当(F6, F5, F4, F3, F2, F1, F0)=(0, 0, 0, 0, 0, 0, 1) 且当00, 20, 40 秒时刻时, 寄存器计数脉冲保持为32768不变.

因为每 20 秒增加或减少计数脉冲的最小个数为 2,,所以时钟调整寄存器的最小调整精度是: $2/(32768 \times 20)$ = 3. 015ppm.

注意: 时钟调整电路仅是调整的时钟走时,并不对晶振本身频率调整,所以 32.768KHZ 脉冲输出没有变化.

时钟调整寄存器的调整值计算方法:

1) 当晶振频率大于目标频率(32768HZ),则需要增加 1 秒内的计数脉冲:

其中:晶振频率是从 INT 脚测出的频率中断标称为 32768HZ 的频率(即 FS3、FS2、FS1、FS0=0001), 下同;

调整值是设置 F6~F0 的数值,该数值是用二进制补码形式表示.下同

2) 当晶振频率小于目标频率(32768HZ),则需要减少1秒内的计数脉冲:

3) 当晶振频率等于目标频率(32768HZ),则不需要改变 1 秒内的计数脉冲. 调整值=0,+1,-64,-63 或者缺省.

计算调整数值大小示例:

- 1) 晶振频率=32770HZ, 目标频率=32768HZ 调整值=(32770-32768+0.1)/(32770*2/(32768*20))=(32770-32768)*10+1=21 故设置(F6,F5,F4,F3,F2,F1,F0)=(0,0,1,0,1,0,1)
- 2) 晶振频率=32762HZ, 目标频率=32768HZ 调整值=(32762-32768)/(32762*2/(32768*20))=(32762-32768)*10=-60 因为-60 的 7 位补码是 80H-3CH=44H

故设置(F6,F5,F4,F3,F2,F1,F0)=(1,0,0,0,1,0,0)

经过数字化时间精度电路调整后,时钟精度与目标频率相差±1.5ppm(在室温下)

但是要注意:

- 1) 时间调整电路不能改变从 INT 输出频率中断的频率;
- 2) 最大调整范围:
 - a. 晶振频率大于目标频率时,调整数值范围(F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,0,0,0)到(0,1,1,1,1,1,1),实际可调范围从-3.05ppm 到-189.2ppm.
 - b. 晶振频率小于目标频率时,调整数值范围(F6,F5,F4,F3,F2,F1,F0)=(1,1,1,1,1,1,1)到(1,0,0,0,0,1,0),实际可调范围从+3.05ppm 到+189.2ppm.

特别的: 虽然 SD2058 的上电复位功能会复位数字调整寄存器 12H 为 0,但在电源环境比较恶劣的条件下并不能绝对保证芯片每一次上电的可靠复位。针对绝大多数不使用数字调整功能的用户,为了保证走时精度的可靠性,强烈建议能在写时间的程序里加上清 12H 寄存器为 0 的程序。

5.5 通用 RAM(14H~3FH 地址)

SD2058 内部提供 44 个字节的通用静态 RAM 供用户存储数据.

通用 SRAM 的缺省值是 XXH. (即不确定值)

5.6 其它控制/状态位

(1) WRTC1、WRTC2、WRTC3 位:寄存器 (00H~3FH) 写允许位。即 WRTC1=1、WRTC2=1、WRTC3=1 时 写允许.注意置位有先后顺序,先置 WRTC1 为 1,后置 WRTC2、WRTC3 为 1;当 WRTC1=0、WRTC2=0、WRTC3=0 时则写禁止,同样置位有先后顺序,先置 WRTC2、WRTC3 为 0,后置 WRTC1 为 0。当写禁止时,除了以上三位可以写以外,从 00H 到 3FH 所有的寄存器均不可以写。写禁止并不影响读操作。

特别的: 当写允许时, 如需要赋值与写保护位相关的寄存器 0FH、10H, 则要注意对应的位 WRTC1、WRTC2、WRTC3 的赋值, 这三个位只能为 1 而不可为 0, 否则会造成写禁止而数据写不进相应的寄存器.

- (2) **ARST** 位:自动复位使能位.对控制寄存器 1 的 INTAF、INTDF 的自动复位进行使能/禁止. 当 ARST=1 时,对控制寄存器 1 进行一次有效的读操作后,以上两个状态位均复位为"0".若 ARST=0,则需要对 INTAF、INTDF 进行手动复位方可清零。
- (3) RTCF 位:上电位,全部电源失效后再上电则该位置"1",为只读位.上电后的第一次有效写(只要写一个字节即可)就可以将 RTCF 位清为"0".
- (4) 32K 位: 32768hz 输出控制位---32K=0, 允许输出; 32K=1, 禁止输出。

6.串行 IIC 接口

6.1 **SD2058** 通过两线式 IIC 串行接口方式接收各种命令并读写数据。两线式串行 IIC 接口方式描述如下:

(1) 开始条件

当 SCL 处于高电平时,SDA 由高电平变成低电平时构成一个开始条件,对 SD2058 的所有操作均必 须由开始条件开始。

(2) 停止条件

当 SCL 处于高电平时,SDA 由低电平变成高电平时构成一个停止条件,此时 SD2058 的所有操作均停止,系统进入待机状态。

实时时钟的串行接口

(3) 数据传输

当 SCL 为低电平,且 SDA 线电平变化时,则数据由 CPU 传输给 SD2058(高位在前、低位在后,下同);当 SCL 为高电平,且 SDA 线电平不变时,则 CPU 读取 SD2058 发送来的数据;当 SCL 为高电平,且 SDA 电平变化时,SD2058 收到一个开始或停止条件。

(4) 确认

数据传输以 8 位序列进行。SD2058 在第九个时钟周期时将 SDA 置位为低电平,即送出一个确认信号 (Acknowledge bit,以下简称 "ACK"),表明数据已经被其收到。特别地对地址为 20H~3FH 的 SRAM,在 写时 SD2058 不会发出 ACK 信号,读时仍然需要 CPU 发出 ACK 或 NOACK 信号。

图 5 实时时钟确认信号

6.2 数据/指令传输格式

当 CPU 发出开始条件与实时时钟建立连接后, CPU 首先通过 SDA 总线连续输出 7 位器件地址和 1 位 读/写指令来唤醒 SD2058.

(1) 器件代码:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	
0	1	1	0	0	1	0	R/W	

其中高7位 BIT7~BIT1 称"器件代码",它代表实时时钟的器件地址,固定为"0110010";BIT0 为读/写位,"1" 为读操作,"0"为写操作。

(2) 数据传输格式:

在数据发送/接收时停止信号到来时,将结束其数据传输,同时内部六位地址归零(注:内部六位地址的缺省值为000000B).如果只有开始信号,而没有结束信号,接着重新产生起始信号,则还要重新设置器件代码(在传输方向需要改变时,就用这种传输方式,如下面的读数据方式 1).

主设备向从设备写入数据过程图

S	0	1	1	0	0	1	0	0	Α	数据	Α	数据	Α	P
		0	뤽:	址字	节	80 0	8	写	3. 3.		0			

主设备向从设备直接读取数据过程图

S	0	1	1	0	0	1	0	1	Α	数据	A	数据	A_	P
	寻址字节					// - 40		诶						

数据传输时改变其传输方向过程图

(3)SD2058 数据传输的写模式

- . 先送 7 位器件地址(0110010),第 8 位送入写命令("0"),第 9 位是 SD2058 的响应位(ACK),SD2058 进入写状态;
- . 接下来一个字节, 高 2 位是传输模式(写状态时, 传输模式定义为"00"),低 6 位确定 SD2058 的内部地址(00H~3FH), 第 9 位是 SD2058 的响应位:
- . 开始写数据,每写完 1 个字节的数据之后,都经过 1 位的响应信号才能写下 1 字节的数据;如果要结束写数据过程,则在 ACK 后送出停止命令即可.

SD2058 写数据示例(向 14H,15H 地址写数据):

- **特别注意:**1. 除了 WRTC1、WRTC2、WRTC3 三个写允许位,对寄存器(00H~3FH)的写操作必须确认芯片处于写允 状态,否则写无效.
 - 2. 写时间同步:每次对实时时间秒寄存器的写操作时,当秒数据的 8 个 bit 完全写入并收到 ACK 信号后,就会对秒以下的内部计数器清零,使时间同步。
 - 3. 从当前地址开始,每次读写完一个字节地址自动加1直到3FH,读写完3FH后地址自动加1后为00h.
 - 4. 为了提高数据的可靠性,当写完成后,应将芯片置于写禁止状态。(参见 5.6)
 - 5. 有关写实时时间数据的位数的特别要求请参见(5.2.注 2)

(4)SD2058 数据传输的读模式

SD2058 有两种读数据方法:

I)读方法 1:从指定的内部地址中读取数据

- . 与写模式的前两步一样;
- . 重新发出开始命令以改变两线接口数据传输方向;
- . 再送7位器件地址(0110010),第8位送入读命令("1"), 第9位是SD2058的响应位(ACK),SD2058进入读状态;
- . 开始读数据,每读完 1 个字节的数据之后,CPU 都要送出 1 位的响应信号(ACK,低电平)才能读下 1 字节的数据;如果想要结束读数据过程,则 CPU 要送出 1 位的响应信号(ACK_,高电平), ACK_后送出停止命令即可.

SD2058 读数据方法 1 示例(从 7H~9H 地址读取数据):

II)读方法 2:直接读取数据(从内部地址 00h 开始)

- . 开始信号后,先送 7 位器件地址(0110010),第 8 位送入读命令("1"), 第 9 位是 SD2058 的响应位 (ACK),SD2058 进入读状态;
- . 每读完1个字节的数据之后,CPU都要送出1位的响应信号(ACK,低电平)才能读下1字节的数据;如果想要结束读数据过程,则CPU要送出1位的响应信号(ACK_,高电平), ACK_后送出停止命令即可.

SD2058 读数据方法 2 示例(从 00H 地址开始读取数据):

(5) SD2058 在特殊条件下的数据传输

为了保证读写数据的有效性,SD2058的两线通信开始到结束仅在此0.5S秒之内,如此可避免总线挂死的现象。

因此在 SD2058 中, IIC 通信方式会在第一个开始信号 (START)到来之后的 0.5 秒之内自动终止本次通信。所以,要注意:从开始信号进行读/写数据,直到停止信号,读/写操作过程必须在 0.5 秒之内完成。

7. 上电复位

芯片内部具有上电复位电路: 当芯片第一次加上电源时,芯片内部复位。复位操作对内部部分寄存器进行置初值但不包括实时时钟数据寄存器、通用 RAM.

8. 振荡电路

内部晶体振荡电路如下:

该电路可外配负载电容(CL)最小为 6PF 的 32768HZ 晶体。

9. 二极管保护电路(仅供参考)

10. 应用参考电路

11. PCB 排版示例

如上图所示, 在排 PCB 时要注意一下几点:

- (1) 晶振、匹配电容尽可能挨近 SD2058 的 1、2 脚,不要距离太远;
- (2) 在振荡电路旁边包括 SD2058 的 1、2 脚和晶振、匹配电容周围围一圈地线;在 SD2058 的背面不要排布大电流、强干扰线路。

12. 极限参数

V _{DD} 、SCL、SDA 和 INT 引脚上的电压(相对于地) ····································	··· −0.5V 至 7.0V
X1 和 X2 引脚上的电压(相对于地)	· −0.5V至V _{DD} +0.5 (V _{DD} 模式)
	-0.5V至V _{BAT} +0.5 (V _{BAT} 模式)
贮存温度	-65℃至+150℃
引线温度(焊接,10秒)	260℃

注: 强度超出所列的极限参数可能导致器件的永久性损坏。这些仅仅是极限参数,并不意味着在极限条件下或在任何其 它超出推荐工作条件所示参数的情况下器件能有效地工作。延长在极限参数条件上的工作时间会影响器件的可靠 性。

13. 直流特性

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
V_{DD}	Main Power Supply		1.8		5.5	V	
T	Supply Current	V _{DD} =5V		1.6	3.0	μА	
I_{DD1}		V _{DD} =3V		1.0	1.5	μА	
I _{DD2}	Supply Current win IIC Active	V _{DD} =5V		40	120	μА	
I_{L1}	Input Leakage Current On SCL			100		nA	
I_{LO}	I/O Leakage Current On SDA			100		nA	
V _{BATHYS}	V _{BAT} Hysteresis		50	100	200	mV	
INT Vol	Output Low Voltage	$V_{DD}=5V$ $I_{OL}=3mA$			0.4	V	
		$V_{DD}=5V$ $I_{OL}=3mA$			0.4	V	

14. 交流特性

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
$V_{\rm IL}$	SDA and SCL input buffer LOW voltage		-0.3		$0.3 \times V_{DD}$	V	
V_{IH}	SDA and SCL input buffer HIGH voltage		0.7×V _D		V _{DD} +0.3	V	
Hyteresis	SDA and SCL input buffer hysteresis		0.05×V			V	
V_{OL}	SDA output buffer LOW voltage sinking 3mA		0		0.4	V	
C _{pin}	SDA and SCL pin capacitance	$T_A=25$ °C f=1MHZ $V_{DD}=5V$ $V_{IN}=0V$ $V_{OUT}=0V$			10	pF	
f_{SCL}	SCL frequency				400	kHZ	
t _{IN}	Pulse width suppression time at SDA and SCL inputs				50	ns	
taa	SCL falling edge to SDA output data valid	SCL falling edge crossing 30% of $V_{\rm DD}$ until SDA exits the 30% to 70% of $V_{\rm DD}$ window			900	ns	
$t_{ m BUF}$	Time the bus must be free before the start of a new transmission	SDA crossing 70% of V_{DD} during a STOP condition, to SDA crossing 70% of V_{DD} during the following START condition	1300			ns	
t _{LOW}	Clock LOW time	Measured at the 30% of V _{DD} crossing	1300			ns	
t _{HIGH}	Clock HIGH time	Measured at the 70% of V _{DD} crossing	600			ns	
t _{SU:STA}	START condition setup time	SCL rising edge to SDA falling edge Both crossing 70% of V _{DD}	600			ns	
$t_{\text{HD:STA}}$	START condition hold time	From SDA falling edge crossing 30% of $V_{\rm DD}$ to SCL falling edge crossing 70% of $V_{\rm DD}$	600			ns	
tsu:dat	Input data setup time	From SDA exiting the 30% to 70% of V _{DD} window ,to SCL rising edge crossing 30% of V _{DD}	100			ns	
t _{HD:DAT}	Input data hold time	From SCL falling edge crossing 30% of V_{DD} to SDA entering the 30% to 70% of V_{DD} window	0		900	ns	
t _{SU:STO}	STOP condition setup time	From SCL rising edge crossing 70% of $V_{\rm DD}$,to SDA rising edge crossing 30% of $V_{\rm DD}$	600			ns	
t _{HD:STO}	Output condition hold time	From SDA rising edge to SCL falling edge .Both crossing 70% of $V_{\rm DD}$	600			ns	
$t_{ m DH}$	Output data hold time	From SCL falling edge crossing 30% of $V_{\rm DD}$,until SDA enters the 30% to 70% of $V_{\rm DD}$ window.	0			ns	
t_R	SDA and SCL rise time	From 30% to 70% of V _{DD}	20+ 0.1×Cb		300	ns	
$t_{\rm F}$	SDA and SCL fall time	From 70% to 30% of V_{DD}	20+ 0.1×Cb		300	ns	
Cb	Capacitive loading of SDA or SCL	Total on-chip and off-chip	10		400	PF	
R_{PU}	SDA and SCL bus pull-up resistor off-chip	Maximum is determined by t_R and t_F For Cb=400pF,max is about 2-2.5k Ω For Cb=40pF,max is about 15~20k Ω	1			kΩ	

总线时序图

15.频率误差&温度关系曲线

16. 封装尺寸(unit:mm)

(1) SD2058 SOP8 封装尺寸图

(2) SD2058 MS0P8 封装尺寸图

	Dimensions I	n Millimeters	Dimensions	s In Inches	
Symbol	Min	Max	Min	Max	
Α	0. 820	1.100	0.032	0. 043 0. 006 0. 037 0. 015	
A1	0. 020	0. 150	0. 001 0. 030 0. 010		
A2	0. 750	0.950			
b	0. 250	0. 380			
С	0.090	0. 230	0.004	0.009	
D	2. 900	3. 100	0.114	0. 122	
е	0.650	O(BSC)	0.020	5(BSC)	
E	2. 900	3. 100	0.114	0. 122	
E1	4. 750	5. 050	0. 187	0. 199	
L	0. 400	0.800	0.016	0. 031	
θ	0°	6°	0°	6°	

■ 编后语

感谢您阅读本资料。由于经验和水平的欠缺,本文难免有错误和遗漏。如果您在使用过程中发现错误或不恰当的地方,请拨打电话: 0755-83246178 或请 E-mail: support@whwave.com.cn, 我们将尽快予以答复。谢谢您的支持与合作!

注:

本资料中的内容如有变化, 恕不另行通知。

本资料提供的应用线路及程序仅供参考,本公司不承担由此而引起的任何损失。由于本公司的产品不断更新和提高,希望您经常与本公司联系,以索取最新资料。 本公司不承担在任何使用过程中引起的侵犯第三方专利和其它权利的责任。

注: 本文档受中国版权法保护,非授权禁止拷贝、复制、引用或传播

(SD及 WAVE 均为我公司注册商标)

深圳市兴威帆电子技术有限公司

附录:

一. 硬件布图排版:

(1) 电路图

如本数据手册中 10.所示

32768hz 的晶振外配电容与晶振的负载电容 C₂有关:如采用我公司代理的 SEIKO 32768hz/6pf 的晶振,外配的两个电容值均可选择为 7pf;如采用市场上一般的负载电容为 12.5pf 的晶振,则外配的两个电容值均可选择为 14pf 左右。不过因为电容大则功耗大,所以建议用 32768hz/6pf 的晶振。我公司可以配套供应晶振和电容。

为了更好地提高时钟的精度,我们提供帮客户测试外配电容值的服务。

(2) 对强干扰的处理:

在强电源干扰的场合,可考虑在 SD2058 的 VDD 脚(pin8)与主电源之间串 200 欧的电阻、100uH 磁珠,对地加 104、22uF 的电容。

对于像 GPRS 等高频无线发射模块应用的场合,请尽量将时钟电路远离这些无线干扰源。

二. 走时精度问题:

(1) 影响走时精度的因素

- 一般来讲, 影响时钟 IC 走时精度的因素有以下几点:
- a.每个晶振的误差±5ppm 或±10ppm 或±20ppm 或±50ppm;
- b.晶振负载电容与振荡脚所配谐振电容的匹配程度;
- c.每个IC由于内置谐振电容的偏差会引起走时误差±10ppm;
- d. IC 在 3V 或 5V 工作电压下走时精度相差 3ppm;
- e. 电路板寄生电容的误差;
- f. 温度对精度的影响最多会到-140ppm(如在-40℃或85℃时).
- 注: **ppm=parts permillion** 的缩写,1ppm=百万分之一,5ppm 相当于月误差=30x24x3600x5/1000000=12.96 秒,年误差=12.96x12=2.59 分钟.

(2) SD2058 在精度调整方面的优势

SD2058 内部的振荡电路示意图如下:

我们平常见到的很多时钟 IC, 在振荡电路内部都集成了谐振电容, 这样用户就可以在外面不用接电容, 貌似省事, 却带来了影响时钟走时精度的问题。由于内部由二极管实现的结电容的误差较大, 会引起±10ppm 的走时误差, 我们就会发现不同的 IC 在同一块板上走时快慢不一, 很难调整。

而 SD2058 就摒弃了这种设计思路,在振荡电路内部并没有谐振电容,完全依赖于用户外置的电容;针对本节提到的影响走时精度的"因素 d"即电压对走时精度的影响,SD2058 内部的振荡电路采用了1.5V 的稳压供电,从而保证在不同的电压下走时精度的一致性。

如此,采用 32768hz/6pf/5ppm 的晶振,外配的两个电容值选择为 7pf ,则一般情况下 50%IC 的走时精度可以在 5ppm 以内,其它精度的基本上在 10ppm 左右,走时应该比较准确。此种方法适合于大批量生产(注:对不同的板寄生电容可能不同,上面的电容 7pf 也是一个推荐值,如果需要找出你所做 PCB 准确的外配电容值,我们公司可以提供这方面的服务)。

(3) 走时精度的验证方法:

方法 1: 通过测试 SD2058 的 INT 输出频率来确定走时的误差。该方法速度快而准。

方法 2: 让时钟走一段时间,看误差大小。此方法较慢,对条件要求不高。 但注意有一个问题,就是标准时间源的选择。可以选择报时电话: 12117; 也可 以通过网络校时软件来校时:

http://www.whwave.com.cn/download/wave/AboutTime.rar。但是不要选用没有校时的电脑,因为电脑的时钟精度一般都不高。

方法 3: 手机安卓版网络/GPS 校时软件:

http://zhushou.360.cn/detail/index/soft id/3179034?from=onebox