Numerical Computation of Eigenvalues

En caso de encontrar un error o posible mejora, no dude en mencionarlo en clases o por email. ¡Gracias!

(S)cientific (C)omputing (T)eam ILI-286 DI-UTFSM Chile

v 0.32

Table of contents

- Definición
- Computación
- Algoritmos Matriciales
- Ritz Values

Definición

Definición

Sea A una matriz cuadrada en $\mathbb{R}^{n \times n}$. Diremos que $\lambda \in \mathbb{C}$ y $\mathbf{v} \in \mathbb{C}^n$ son valor y vector propios si:

$$A\mathbf{v} = \lambda \mathbf{v} \mathbf{y} \mathbf{v} \neq \mathbf{0}$$

¿Cómo podemos organizar todos los valores propios?

Sea A una matriz cuadrada en $\mathbb{R}^{n\times n}$. Diremos que $\lambda_i\in\mathbb{C}$ y $\mathbf{v}_i\in\mathbb{C}^n$ son el i-ésimo valor y vector propio. Si ahora los sumamos todos y los ordenamos considerando que el sub índice i corresponde a la i-ésima columna, obtenemos (Hint: $A\mathbf{v}_i = \lambda_i \mathbf{v}_i = \mathbf{v}_i \lambda_i$):

Representación Matricial

¿Cómo podemos organizar todos los valores propios?

Sea A una matriz cuadrada en $\mathbb{R}^{n\times n}$. Diremos que $\lambda_i\in\mathbb{C}$ y $\mathbf{v}_i\in\mathbb{C}^n$ son el i-ésimo valor y vector propio. Si ahora los sumamos todos y los ordenamos considerando que el sub índice i corresponde a la i-ésima columna, obtenemos (Hint: $A\mathbf{v}_i = \lambda_i\mathbf{v}_i = \mathbf{v}_i\lambda_i$):

$$A\begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$AV = V\Lambda$$

Representación Matricial

¿Cómo podemos organizar todos los valores propios?

Sea A una matriz cuadrada en $\mathbb{R}^{n\times n}$. Diremos que $\lambda_i\in\mathbb{C}$ y $\mathbf{v}_i\in\mathbb{C}^n$ son el i-ésimo valor y vector propio. Si ahora los sumamos todos y los ordenamos considerando que el sub índice i corresponde a la i-ésima columna, obtenemos (Hint: $A\mathbf{v}_i = \lambda_i\mathbf{v}_i = \mathbf{v}_i\lambda_i$):

$$AV = V\Lambda$$

Si V^{-1} existe, se tiene:

$$A = V \wedge V^{-1}$$

Potencias de A

Dado $A = V \wedge V^{-1}$, ¿Qué podemos decir de A^n ?

$$A^{n} = (V \wedge V^{-1})^{n}$$
$$= V \wedge V^{-1} V \wedge V^{-1} \dots V \wedge V^{-1}$$

¿Podemos simplificar algo?

$$A^n = V \Lambda^n V^{-1}$$

¡Excelente!

Otra definición

Un valor propio dominante...

Sea A una matriz cuadrada en $\mathbb{R}^{n\times n}$. Un *valor propio dominante* de A es una valor propio λ de magnitud ($|\lambda|$) mayor a todos los otros valores propios. Si existiera, el vector propio \mathbf{v} asociado a λ es llamado vector propio dominante.

Primer Algoritmo

Un valor propio dominante...se encuentra así

Algorithm 1 Power Iteration

- 1: **x**₀=Dato inicial
- 2: for j = 1 to ∞ do
- 3: $\mathbf{u}_{j-1} = \mathbf{x}_{j-1} / \|\mathbf{x}_{j-1}\|_2$
- 4: $\mathbf{x}_{i} = A \mathbf{u}_{i-1}$
- 5: $\lambda_{j} = \mathbf{u}_{i-1}^{T} A \mathbf{u}_{j-1}$
- 6: end for
- 7: $\mathbf{u}_i = \mathbf{x}_i / \|\mathbf{x}_i\|_2$

Convergencia de Power Iteration

Th: Sea A una matriz de $n \times n$ con valores propios $\lambda_1, \ldots, \lambda_n$, y $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$. Asuma que los vectores propios forman una base de \mathbb{R}^n . Para casi todo vector inicial, Power Iteration converge *linealmente* al vector propio asociado a λ_1 con tasa de convergencia $S = |\lambda_2/\lambda_1| < 1$.

Demostración

Sea $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ una base de \mathbb{R}^n y $\lambda_1, \dots, \lambda_n$ los valores propios de A con

 $\mathbf{v}_1, \mathbf{v}_2 \dots, \mathbf{v}_n$ los vectores propios asociados a cada valor propio.

Dado que \mathbf{v}_i forman una base de \mathbb{R}^n , podemos escribir cualquier vector en \mathbb{R}^n como:

 $\mathbf{x}_0 = \sum_{i=1}^n c_i \mathbf{v}_i = V \mathbf{c}.$

Además considere que $c_1 \neq 0$ y $c_2 \neq 0$. Aplicando el Power Iteration y recordando que $A \ V = V \ \Lambda$ obtenemos:

$$\mathbf{x}_0 = V\mathbf{c}$$
 $A \mathbf{x}_0 = A V\mathbf{c} = V \wedge \mathbf{c}$
 $A^2 \mathbf{x}_0 = AV \wedge \mathbf{c} = V \wedge^2 \mathbf{c}$
 \vdots
 $A^k \mathbf{x}_0 = V \wedge^k \mathbf{c}$

Demostración - Continuación

Si normalizamos en cada iteración obtenemos:

$$\frac{A^k \mathbf{x}_0}{\lambda_1^k} = \frac{V \Lambda^k \mathbf{c}}{\lambda_1^k}$$
$$= \sum_{i=1}^n c_i \left(\frac{\lambda_i}{\lambda_1}\right)^k \mathbf{v}_i$$

Donde obtenemos $\left(\frac{\lambda_i}{\lambda_1}\right)^k \to 0$ como $k \to \infty$ para $i \ge 2$.

¿Y de que sirve esto?

Conclusión Power Iteration

- Ahora tenemos un algoritmo para encontrar el valor propio dominante.
- ¿Y si quiero encontrar otro?
- Este algoritmo no sirve. O si...
- Pensemos....
- Aplicaciones: "PCA, Page-Rank, Graph Theory, Google, Facebook, Netflix, ..."

¡Otra definición!

Más propiedades de valores propios

Th: Sea $\lambda_1, \ldots, \lambda_n$ los valores propios de A.

- (a) Los valores propios de la matriz inversa A^{-1} son $\lambda_1^{-1}, \dots, \lambda_n^{-1}$, asumiendo que A^{-1} existe.
- (b) Los valores propios de la matriz A sI son: $\lambda_1 s, \dots, \lambda_n s$.

En ambos casos los vectores propios son los mismos. La demostración de estas propiedades se vieron anteriormente.

Flashback

¿Y que ocurre si utilizamos el Power Iteration con la matriz inversa?

- ¿Se puede?
- No creo....
- Veamos.

Utilizando A^{-1} donde aparece A y considerando $|\lambda_1| > |\lambda_2| > |\lambda_3| > \cdots > |\lambda_n|$

```
1: \mathbf{x}_0=Dato inicial

2: \mathbf{for}\ j = 1 \ \mathbf{to} \infty \ \mathbf{do}

3: \mathbf{u}_{j-1} = \mathbf{x}_{j-1}/\|\mathbf{x}_{j-1}\|_2

4: \mathbf{x}_j = A^{-1} \mathbf{u}_{j-1}

5: \lambda_j = \mathbf{u}_{j-1}^T A^{-1} \mathbf{u}_{j-1}

6: \mathbf{end}\ \mathbf{for}

7: \mathbf{u}_j = \mathbf{x}_j/\|\mathbf{x}_j\|_2
```

Obviando los pasos, podemos concluir que obtenemos λ_n^{-1} y \mathbf{v}_n . Una susbtitución interesante es reemplazar la linea 5 por $\lambda_j = \mathbf{u}_{j-1}^T \mathbf{x}_j$

¡Aprovechando el momentum!

Utilizando A - s I donde aparece A y considerando $|\lambda_1| > |\lambda_2| > |\lambda_3| > \cdots > |\lambda_n|$

```
1: x<sub>0</sub>=Dato inicial
```

2: **for**
$$j = 1$$
 to ∞ **do**

3:
$$\mathbf{u}_{j-1} = \mathbf{x}_{j-1} / ||\mathbf{x}_{j-1}||_2$$

4: $\mathbf{x}_j = (A - s I)^{-1} \mathbf{u}_{j-1}$

4:
$$\mathbf{x}_{j} = (A - sI)^{-1} \mathbf{u}_{j-1}$$

5:
$$\lambda_j = \mathbf{u}_{j-1}^T \mathbf{x}_j$$

- 6: end for
- 7: $\mathbf{u}_i = \mathbf{x}_i / \|\mathbf{x}_i\|_2$

Obviando los pasos, podemos concluir que obtenemos $\tilde{\lambda}$ y $\tilde{\mathbf{v}}$.

¿Qué es $\tilde{\lambda}$? No entiendo...

- Anteriormente dijimos que la aplicación del algoritmo Power Iteration a la matriz A encontraba el valor propio dominante λ_1 de esta.
- OK, ya se eso.
- ¿Que ocurre si aplicamos el Power Iteration a la matriz A^{-1} ?
- Encontramos λ_n^{-1} dado que λ_n^{-1} es el *valor propio dominante* de A^{-1} . :-)
- ¿Y?
- mmmm, pensemos.
- Si aplicamos el algoritmo Power Iteration a $(A s I)^{-1}$ encontramos ... ¡El valor propio dominante de $(A s I)^{-1}$!

¿Qué es $\tilde{\lambda}^{-1}$? No entiendo...

- Si aplicamos el algoritmo Power Iteration a $(A s I)^{-1}$ encontramos ... ¡El valor propio dominante de $(A s I)^{-1}$!
- OK, entonces $\tilde{\lambda}$ es el valor propio dominante de $(A s I)^{-1}$.
- ¿Es $\tilde{\lambda}$ un valor propio de A?
- No
- Pff, ¿Y de que me sirve?
- ¡De mucho! Con $\tilde{\lambda}$ podemos encontrar un valor propio diferente al valor propio dominante o el de menor magnitud (en el caso de usar A^{-1}).
- ¿Cómo?
- $\tilde{\lambda} = (\lambda_i s)^{-1}$. Simplificando: $\lambda_i = \tilde{\lambda}^{-1} + s$.

Un valor propio *no* dominante...se encuentra así

Algorithm 2 Inverse Power Iteration

- 1: x₀=Dato inicial
- 2: for i = 1 to ∞ do
- 3: $\mathbf{u}_{j-1} = \mathbf{x}_{j-1} / ||\mathbf{x}_{j-1}||_2$ 4: $\mathbf{x}_i = (A sI)^{-1} \mathbf{u}_{j-1}$
- 5: $\lambda_i = \mathbf{u}_{i-1}^T \mathbf{x}_i$
- 6: end for
- 7: $\mathbf{u}_i = \mathbf{x}_i / \|\mathbf{x}_i\|_2$

Este algoritmo encuentra $\lambda_i = \tilde{\lambda}^{-1} + s$. Donde λ_i es el valor propio más cercano a s.

Otro algoritmo — Rayleigh Quotient Iteration

Algorithm 3 Rayleigh Quotient Iteration

- 1: **x**₀=Dato inicial
- 2: **for** j = 1 to ∞ **do**
- 3: $\mathbf{u}_{j-1} = \mathbf{x}_{j-1} / ||\mathbf{x}_{j-1}||_2$
- 4: $\lambda_{j-1} = \mathbf{u}_{j-1}^T A \mathbf{u}_{j-1}$
- 5: Solve $(\vec{A} \lambda_{j-1} I) \mathbf{x}_j = \mathbf{u}_{j-1}$
- 6: end for
- 7: $\mathbf{u}_{i} = \mathbf{x}_{i} / \|\mathbf{x}_{i}\|_{2}$

(Para valores propios no repetidos) Este algoritmo encuentra el valor propio dominante λ_i y converge cuadráticamente. ¡Si la matriz es simétrica converge cúbicamente!.

Uff, hemos visto muchas cosas...

Conclusiones

- Power Iteration: Valor propio dominante
- Inverse Power Iteration: Valor propio más cercano a s.
- Rayleigh Quotient Iteration: Depende de la condición inicial y converge cuadráticamente.
- Rayleigh Quotient Iteration: (Precaución linea 5) ¡Resolver $(A \lambda_{i-1} I) \mathbf{x}_i = \mathbf{u}_{i-1}$ únicamente si la matriz no es singular!
- ¿Qué hago si la matriz $(A \lambda_{i-1} I)$ es singular?
- Detener el algoritmo, ¡ya se convergió! :-)
- Esto es como jugar con fuego ... ¡pero sin quemarse!

Sigamos...

¿Recuerda?

Si A tiene valor propio λ y vector propio \mathbf{v} entonces $B = Q^{-1}AQ$, tiene valor propio λ y vector propio $Q^{-1}\mathbf{v}$.

En este caso se dice que A es una matriz similar a B.

Theorem

Matrices Similares tienen los mismos valores propios.

Otra Demostración:

$$\begin{aligned} \det(B-\lambda I) &= \det(Q^{-1}AQ - \lambda I) \\ &= \det(Q^{-1}AQ - \lambda Q^{-1}IQ) \\ &= \det(Q^{-1}(A-\lambda I)Q) = \det(Q^{-1})\det(A-\lambda I)\det(Q) \\ &= \det(A-\lambda I) \end{aligned}$$

Algoritmos matriciales para encontrar todos los valores propios al mismo tiempo

Normalized Simultaneous Iteration

- 1: $\bar{Q}_0 = I$
- 2: for j = 0 to ∞ do
- 3: $A_{i}\bar{Q}_{j}=\bar{Q}_{j+1}R_{j+1}$
- 4: end for
- 5: $\Lambda = \operatorname{diag}(\bar{Q}^T A \bar{Q})$

Algoritmos matriciales para encontrar todos los valores propios al mismo tiempo

Unshifted QR algorithm

```
1: Q_0 = I

2: R_0 = A

3: \bar{Q} = Q_0

4: for j = 0 to \infty do

5: Q_{j+1}R_{j+1} = qr(R_j Q_j)

6: \bar{Q} = \bar{Q} Q_j

7: end for

8: \Lambda = \text{diag}(R Q)
```

Recuerde que $A = QR \Rightarrow Q^T AQ = RQ$, i.e. A es similar a RQ. ¡En este caso tenemos una secuencia de transformaciones similares!

Por último, Ritz values...

¿Qué son los Ritz values?

- Son una estimación de los valores propios.
- ¿Cómo se obtienen?
- Se obtienen de la matriz Hn de la iteración de Arnoldi en GMRes.
- ¿Qué es H_n ? En GMRes se construye \tilde{H}_n .
- $H_n = Q_n^* Q_{n+1} \tilde{H}_n$, i.e. removiendo la última fila de \tilde{H}_n .
- Ahora tengo una matriz más pequeña, ¿Cómo la uso?
- Se obtienen los valores propios de esta (¡Estos son los Ritz Values!) a través de los métodos ya discutidos :-)
- ¿Puedo hacer shifts y el resto de cosas que aprendí? ¡Sí!

¿Algo más?

- Sí
- ¿Que cosa?
- Les sugiero encarecidamente que busquen en el libro un ejemplo de cada método y lo hagan a mano en lo posible.
- OK, ¿Algo más?
- Sí
- Uff, ¿No será mucho?
- No. Implementen todos los métodos y traigan sus códigos a clases en su computador personal.
- OK, that's easy.
- Excellent!