Financial Risk Management for Cryptocurrencies

A QUANTITATIVE ANALYSIS

Eline Van der Auwera Wim Schoutens Marco Petracco Lucia Alessi

Introduction

- Correlation between cryptocurrencies and other asset classes
- Distributional properties
- Volatile behaviour
 - ARMA-GARCH
- Conclusion

Correlation

- The cryptocurrency market becomes more correlated over time
- In the beginning only coins with similar characteristics, like Bitcoin (BTC) and Litecoin (LTC) were correlated
- Many cryptocurrencies are bought using Ether and Bitcoin

Correlation

EUR-USD XR - BTC

Gold-BTC

S&P500 - BTC

- 10-day correlation fluctuates around zero
- 180-day correlation never exceeds 30% in absolute value
- -> Differentiated risk reducer

Distributional properties

- Periods of high returns and low returns cluster together
- Fat tails

Distributional properties

- Excess kurtosis
- Which standardised distribution fits best?
 - Maximum likelihood estimation for the best fitting parameters
 - KS-test statistic to determine the goodness-of-fit

Volatile behaviour

- Extremely volatile
- Volatility clustering

ARMA-GARCH

- Returns are anti-persistent (fluctuate heavily + mean reverting) according to Hurst parameter
- Returns exhibit autocorrelation
- -> AR, MA and GARCH part are needed to accurately model the returns

ARMA(2,2)-GARCH(1,3)

_					
		Coef.	Std. Err.	T-value	P-value
	c	0.217	0.056	3.84794	0.000
AR MA	ϕ_1	-0.005	0.003	-1.525	0.127
	ϕ_2	-0.991	0.003	-329.674	0.000
	θ_1	-0.001	0.003	-0.368	0.713
	θ_2	0.993	0.000	5118.236	0.000
	ω	0.225	0.113	1.989	0.047
	γ_1	0.267	0.042	6.309	0.000
	ψ_1	0.123	0.108	1.142	0.254
	ψ_2	0.193	0.098	1.961	0.049
	ψ_3	0.416	0.097	4.301	0.000
	ν	3.340	0.259	12.884	0.000

- Ljung-Box test cannot be rejected
 - No autocorrelation left
- Arch LM test cannot be rejected
 - No arch effect left

ARMA-GARCH for VaR prediction

Conclusion

- •The market is extremely inter-correlated and Bitcoin has the first mover advantage
- Differentiated risk reducer
- Cryptocurrencies have fat tails and high kurtosis -> t-distribution
- •Volatility clustering and mean-reverting behaviour -> anti-persistent
- •An ARMA(2,2)-GARCH(1,3) model is the best fitting model to the log returns of Bitcoin
 - It allows for an accurate VaR prediction