Course Name:Linear Algebra

Course Code: MT 104

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

December 3, 2020

Eigenvectors and Linear Transformations

- Recall the definition of similar matrices:
 Let A and C be n×n matrices. We say that A is similar to C in case A = PCP⁻¹ for some invertible matrix P.
- A square matrix A is diagonalizable if A is similar to a diagonal matrix D.
- An important idea of this section is to see that the mappings
 x → Ax and w → Dw

are essentially the same when viewed from the proper perspective. Of course, this is a huge breakthrough since the mapping $\mathbf{w} \mapsto D\mathbf{w}$ is quite simple and easy to understand. In some cases, we may have to settle for a matrix C which is simple, but not diagonal.

Similarity Invariants for Similar Matrices A and C

Property	Description
Determinant	A and C have the same determinant
Invertibility	A is invertible \iff C is invertible
Rank	A and C have the same rank
Nullity	A and C have the same nullity
Trace	A and C have the same trace
Characteristic Polynomial	A and C have the same char. polynomial

Characteristic Polynomial	A and C have the same char. polynomial
Eigenvalues	A and C have the same eigenvalues
Eigenspace dimension	If λ is an eigenvalue of A and C , then the eigenspace of A corresponding to λ and the eigenspace of C corresponding to λ have the same dimension.

Exercise 5.4

Eigenvectors and Linear transformations.

How is the factorization $A = PDP^{-1}$ related to linear transformations?

Any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be implemented by left-multiplication by a matrix A, the standard matrix of T.

We want to extend this kind of representation to any linear transformation between two finite-dimensional vector spaces.

Suppose V is an n-dimensional vector space and W is an m-dimensional vector space. Let $T:V \to W$ be a linear transformation. Suppose further that B and C are ordered bases for V and W respectively.

For any $\vec{x} \in V$, the coordinate vector $\begin{bmatrix} \vec{x} \end{bmatrix}_B$ is in \mathbb{R}^n and the coordinate vector of its image, $\begin{bmatrix} T(\vec{x}) \end{bmatrix}_C$, is in \mathbb{R}^m .

Let $\begin{bmatrix} \vec{b_1}, \dots, \vec{b_n} \end{bmatrix}$ be the basis B for V. If $\vec{x} = r_1 \vec{b_1} + \dots + r_n \vec{b_n}$, then

$$\begin{bmatrix} \vec{x} \end{bmatrix}_B = \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix}$$

and, since T is linear,

$$T(\vec{x}) = T(r_1\vec{b}_1 + \dots + r_n\vec{b}_n) = r_1T(\vec{b}_1) + \dots + r_nT(\vec{b}_n)$$
 (*)

Now using the basis C in W, we can write (*) in terms of C-coordinate vectors:

$$\left[T(\vec{x})\right]_C = r_1 \left[T(\vec{b}_1)\right]_C + \dots + r_n \left[T(\vec{b}_n)\right]_C \tag{**}$$

But since C-coordinate vectors are in \mathbb{R}^m , the vector equation

$$\left[T(\vec{x})\right]_C = r_1 \left[T(\vec{b_1})\right]_C + \dots + r_n \left[T(\vec{b_n})\right]_C$$

can be written as a matrix equation

$$\left[T(\vec{x})\right]_C = M\left[\vec{x}\right]_B$$

with

$$M = \left[\left[T(\vec{b_1}) \right]_C \left[T(\vec{b_2}) \right]_C \cdots \left[T(\vec{b_n}) \right]_C \right]$$

The matrix M is a matrix representation of T called the matrix for T relative to the bases B and C.

Example: Suppose $B = \{\vec{b_1}, \vec{b_2}\}$ is a basis for V and $C = \{\vec{c_1}, \vec{c_2}, \vec{c_3}\}$ is a basis for W. Let $T: V \to W$ be a linear transformation with the property that $T(\vec{b_1}) = 3\vec{c_1} - 2\vec{c_2} + 5\vec{c_3}$ and $T(\vec{b_2}) = 4\vec{c_1} + 7\vec{c_2} - \vec{c_3}$ Find the matrix M for T relative to B and C.

The C-coordinate vectors for the images of $\vec{b_1}$ and $\vec{b_2}$ are

$$\begin{bmatrix} T(\vec{b_1}) \end{bmatrix}_C = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} \text{ and } \begin{bmatrix} T(\vec{b_2}) \end{bmatrix}_C = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

Then the matrix
$$M = \begin{bmatrix} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{bmatrix}$$

Linear transformations on \mathbb{R}^n .

Theorem. Diagonal matrix representation.

Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix.

If B is a basis for \mathbb{R}^n formed from the columns of P,

then D is the B-matrix for the transformation $\vec{x} \mapsto A\vec{x}$.

Linear transformations $T:V \to V$, from a vector space V into itself.

When the domain and codomain of T are the same, that is when $T:V \to W$ and W is the same as V and basis C is the same as B, the matrix

$$M = \left[\left[T(\vec{b_1}) \right]_C \left[T(\vec{b_2}) \right]_C \cdots \left[T(\vec{b_n}) \right]_C \right]$$

is called the *B*-matrix for T, written $\left[T\right]_{B}$.

The B-matrix for $T:V \to V$ satisfies the equation

$$[T(\vec{x})]_{R} = [T]_{R} [\vec{x}]_{R}, \quad \forall \vec{x} \in V.$$

Exercise 5.5

Recall that the characteristic equation for an $n \times n$ matrix is a polynomial of degree n. As such it always has exactly n roots.

So far we have been considering 2×2 matrices with 2 real and distinct roots. In this case the characteristic equation is

$$\lambda^2 - T\lambda + D = 0$$
,

where T is the trace of the matrix, and D is the determinant. We have the roots

$$\lambda = \frac{T \pm \sqrt{T^2 - 4D}}{2} \text{ with } T^2 - 4D > 0$$

Now we will consider the case where $T^2 - 4D < 0$.

In this case we'll need complex numbers to determine eigenvalues and eigenvectors.

Complex numbers - quick review

Why do we have complex numbers?

Consider the equation $x^2 + 1 = 0$. Solving for x we get

$$x^2 = -1$$
 and so $x = \pm \sqrt{-1}$

Somehow we need to make sense of $\sqrt{-1}$.

We have a poor mathematical system if it can't handle the simple equation $x^2 + 1 = 0$. Clearly, the symbol $\sqrt{-1}$ does not represent a real number. Long ago $\sqrt{-1}$ was called an "imaginary" number and the name, unfortunately, still sticks today.

We need a number system that will include things like $\sqrt{-1}$. This will turn out to be the *complex number system* \mathbb{C}^n .

Euler will help us here; he wanted to make use of these numbers and so he began by setting $i = \sqrt{-1}$.

We then have

$$i^2 = (\sqrt{-1})^2 = -1,$$
 $i^3 = i \cdot i^2 = (-1) \cdot i = -i,$
 $i^4 = i^2 \cdot i^2 = (-1)(-1) = 1,$ $i^5 = i^2 \cdot i^2 \cdot i = (-1)(-1)i = i$ and so on.

In general a complex number is written in the form

z = a + bi, where a and b are real numbers, $i = \sqrt{-1}$.

a is called the real part of z, written Re(z),

and

b is called the *imaginary part* of z, written Im(z).

If b = 0, we have no imaginary part and the resulting z is real. If a = 0, there is no real part and so z is a purely imaginary number.

Eample: Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 0.50 & -0.60 \\ 0.75 & 1.10 \end{bmatrix}$$
 and find a basis for each eigenspace.

The characteristic equation of *A* is $Det \begin{bmatrix} 0.50 & -0.60 \\ 0.75 & 1.10 \end{bmatrix} = 0$ = $(0.50 - \lambda)(1.10 - \lambda) - (-0.60 - \lambda)(0.75)$ = $\lambda^2 - 1.60\lambda + 1.00 = 0$

So
$$\lambda = \frac{1.60 \pm \sqrt{(-1.60)^2 - 4}}{2} = \frac{1.60 \pm i\sqrt{4 - 2.56}}{2} = 0.80 \pm 0.60i$$

Consider the eigenvalue $\lambda = 0.80 - 0.60i$

For
$$\lambda_1 = 0.80 - 0.60i$$
, $A - \lambda_1 I = A - (0.80 - 0.60i)I$

$$= \begin{bmatrix} 0.50 & -0.60 \\ 0.75 & 1.10 \end{bmatrix} - \begin{bmatrix} 0.80 - 0.60i & 0.00 \\ 0.00 & 0.80 - 0.60i \end{bmatrix}$$

$$= \begin{bmatrix} -0.30 + 0.60i & -0.60 \\ 0.75 & 0.30 + 0.60i \end{bmatrix}$$

Row reduction by hand is unpleasant however, since 0.80-0.60i is an eigenvalue, the system

$$\frac{(-0.30 + 0.60i)x_1 - 0.60x_2 = 0.00}{0.75x_1 + (0.30 + 0.60i)x_2 = 0.00}$$
 (*)

has a nontrivial solution. So both of the equations in (*) must determine the *same relationship* between x_1 and x_2 . So either equation can be used to express one variable in terms of the other. *The equations are identical.*

Consider the second equation in (*):

$$0.75x_1 + (0.30 + 0.60i)x_2 = 0$$

$$0.75x_1 = -(0.30 + 0.60i)x_2 \Rightarrow x_1 = (-0.40 - 0.80i)x_2$$

To eliminate the decimals, pick $x_2 = 5$. Then $x_1 = -2 - 4i$ A basis for the eigenspace corresponding to $\lambda = 0.80 - 0.60i$

is
$$\vec{v}_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + \begin{bmatrix} -4 \\ 0 \end{bmatrix} i$$

-

Similar calculations for the eigenvalue $\lambda_2 = 0.80 + 0.60i$ produce the eigenvector

$$\vec{v}_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2+4i \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \end{bmatrix} i.$$

Notice that the eigenvalues λ_1 and λ_2 are a conjugate pair;

$$\lambda_1 = 0.80 - 0.60i$$
 $\lambda_2 = 0.80 + 0.60i$

"

They're corresponding eigenvectors are a conjugate pair as well:

$$\vec{v}_1 = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -2 + 4i \\ 5 \end{bmatrix}$. This will always be the case.

A basis for the eigenspace corresponding to $\lambda = 0.80 + 0.60i$

is
$$\vec{v}_2 = \begin{bmatrix} -2+4i\\5 \end{bmatrix} = \begin{bmatrix} -2\\5 \end{bmatrix} + \begin{bmatrix} 4\\0 \end{bmatrix} i$$
.

Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$ and find a basis for each eigenspace.

Solution

Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$ and find a basis for each eigenspace.

The characteristic polynomial of A is $\lambda^2 - 4\lambda + 5 = 0$

So the eigenvalues of A are
$$\lambda = \frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm i\sqrt{4}}{2} = 2 \pm i$$
.

Set
$$\lambda_1 = 2 + i$$
 and $\lambda_2 = 2 - i$.

For
$$\lambda_1 = 2 + i$$
, $A - \lambda_1 I = A - (2 + i)I = \begin{bmatrix} -1 - i & -2 \\ 1 & 1 - i \end{bmatrix}$.

The equation
$$(A-(2+i)I)\vec{x} = \vec{0}$$
, where $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, amounts to $x_1 + (1-i)x_2 = 0 \Rightarrow x_1 = -(1-i)x_2$ with x_2 free.

A basis vector for the eigenspace is thus $\vec{v}_1 = \begin{bmatrix} -1+i\\1 \end{bmatrix} = \begin{bmatrix} -1\\1 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} i$

The eigenvalue $\lambda_2 = 2 - i$, which is the conjugate of λ_1 , has the basis vector $\vec{v}_2 = \begin{bmatrix} -1 - i \\ 1 \end{bmatrix}$ for the eigenspace.

Conjugate eigenvalues have conjugate eigenvectors.