Seconde

Évaluation 2 - Solutions

Compétences évaluées

Compétences	Items		C	В	A
RCO	Connaître le vocabulaire du cours et les relations importantes.				
VAL	Comparer des valeurs calculées avec des valeurs de références pour valider un raisonnement.				
REA	Réaliser un calcul en donnant le résultat en notation scientifique avec les bonnes unités.				
COM	Répondre avec des phrases complètes et compréhensibles sans les questions. Rédiger de manière synthétique et argumentée.				

Appréciation et remarques		

I - Sang et anémie

Document 1 - Composition du sang et anémie

Le sang est un mélange liquide composé de $54\,\%$ de plasma, $45\,\%$ de globules rouges et $1\,\%$ de globules blancs.

Le plasma est une solution aqueuse, qui contient des minéraux, des nutriments et les gaz liés à la respiration : dioxygène O_2 et dioxyde de carbone CO_2 .

Pour assurer son bon fonctionnement, l'organisme d'un être humain a besoin de fer Fe. On dit qu'une personne souffre d'anémie si la concentration massique en fer dans le sang est trop faible. Le fer est transporté par une molécule dans le sang : l'hémoglobine.

On peut séparer les constituants du sang en utilisant une centrifugeuse, ce qui donne un mélange constitué de trois phases.

Échantillon de sang d'une personne normale. Échantillon d'une personne souffrant d'anémie.

- 1 Indiquer en justifiant si le contenu des tubes à essais du document 1 est un mélange homogène ou un mélange hétérogènes. (RCO, APP)
 - 2 Indiquer le solvant et les solutés qui constituent le plasma. (RCO, APP)
- ${f 3}$ Déduire des deux échantillons de sang le composant du sang qui contient les molécules d'hémoglobines. (APP)

Document 2 - Dosage de l'hémoglobine

Mesurer la concentration massique en hémoglobine dans le sang permet de détecter les cas d'anémies. On parle d'anémie si cette concentration massiques est inférieure a $1,2\,\mathrm{g}\cdot\mathrm{L}^{-1}$ pour une femme et $1,3\,\mathrm{g}\cdot\mathrm{L}^{-1}$ pour un homme. Pour mesurer cette concentration, on peut réaliser une échelle de teinte, car c'est l'hémoglobine qui donne sa teinte rouge au sang.

Échantillon de sang à doser.

Schéma de l'échelle de teinte réalisée, avec les solutions étalons et leurs concentrations.

- 4 Rappeler avec vos mots le principe général d'un dosage par étalonnage (que veut-on mesurer et comment fait-on). (RCO, COM)
- 5 Pour préparer des solutions, on peut effectuer une dilution ou une dissolution. Indiquer en justifiant laquelle des deux on effectue pour passer de la solution 2 à la solution 3. (RCO)
 - 6 Donner le nom de deux verreries nécessaires pour réaliser une dilution. (RCO)
- 7 En utilisant le document 2, indiquer en justifiant la concentration en hémoglobine de l'échantillon de sang. (APP, VAL)
 - 8 L'échantillon vient d'une femme. Indiquer en justifiant si elle souffre d'anémie ou non. (VAL)

II - Conduite et alcoolémie

Mélanie et sa femme Sihame sortent en voiture pour aller manger dehors. Au restaurant Sihame boit un verre de 500 mL d'alcool à 10°: c'est-à-dire que 10 % du volume de la boisson est de l'éthanol. On va chercher à déterminer si Sihame pourra de nouveau conduire après le repas.

- 9 Calculer le volume d'éthanol dans le verre. (APP, REA)
- L'éthanol a une masse volumique qui vaut $\rho_{\text{\'e}th} = 0.8 \,\mathrm{g \cdot mL^{-1}}$. Pour un volume $V_{\text{\'e}th}$ d'éthanol, on peut calculer d'éthanol avec cette relation $m_{\text{\'e}th} = \rho_{\text{\'e}th} \times V_{\text{\'e}th}$.
 - 10 Calculer la masse d'éthanol bue par Sihame. (APP, REA)

Le corps d'une femme adulte contient en moyenne $4.5\,\mathrm{L}$ de sang. En France, « il est interdit de conduire avec un taux d'alcool dans le sang supérieur ou égal à $0.5\,\mathrm{g}\cdot\mathrm{L}^{-1}$ de sang ».

- 11 En physique-chimie on parle de concentration massique plutôt que de taux d'alcool. Expliquer avec vos mots la différence entre cette grandeur et la masse volumique. (RCO, COM)
 - 12 Rappeler la formule mathématique de la concentration massique. (RCO)
 - 13 Calculer la concentration massique d'éthanol dans le sang de Sihame. (APP, REA)
 - 14 Indiquer, en justifiant, si Sihame pourra conduire en sortant du restaurant. (APP, VAI)

En fait, quand une personne boit une boisson alcoolisée, seule une petite partie de l'éthanol et absorbé par l'organisme. En moyenne seulement 12% de l'éthanol passe dans le sang. Si on a bu 10 g d'éthanol, 1,2 g passe dans le sang.

15 — Calculer de nouveau la concentration massique dans le sang de Sihame en tenant compte de cette information. Indiquer, en justifiant, si Sihame pourra conduire en sortant du restaurant. (APP, REA, VAL)

Seconde

Évaluation 2 - Solutions

Compétences évaluées

Compétences	Items			В	A
RCO	Connaître le vocabulaire du cours et les relations importantes.				
VAL	Comparer des valeurs calculées avec des valeurs de références pour valider un raisonnement.				
REA	Réaliser un calcul en donnant le résultat en notation scientifique avec les bonnes unités.				
COM	Répondre avec des phrases complètes et compréhensibles sans les questions. Rédiger de manière synthétique et argumentée.				

Appréciation et remarques						

I – Sang et anémie

Document 1 - Composition du sang et anémie

Le sang est un mélange liquide composé de $54\,\%$ de plasma, $45\,\%$ de globules rouges et $1\,\%$ de globules blancs.

Le plasma est une solution aqueuse, qui contient des minéraux, des nutriments et les gaz liés à la respiration : dioxygène O_2 et dioxyde de carbone CO_2 .

Pour assurer son bon fonctionnement, l'organisme d'un être humain a besoin de fer Fe. On dit qu'une personne souffre d'anémie si la concentration massique en fer dans le sang est trop faible. Le fer est transporté par une molécule dans le sang : l'hémoglobine.

On peut séparer les constituants du sang en utilisant une centrifugeuse, ce qui donne un mélange constitué de trois phases.

Échantillon de sang d'une personne normale. Échantillon d'une personne souffrant d'anémie.

- 1 Indiquer en justifiant si le contenu des tubes à essais du document 1 est un mélange homogène ou un mélange hétérogènes. (RCO, APP)
 - 2 Indiquer le solvant et les solutés qui constituent le plasma. (RCO, APP)
- $\bf 3$ Déduire des deux échantillons de sang le composant du sang qui contient les molécules d'hémoglobines. (APP)

Document 2 - Dosage de l'hémoglobine

Mesurer la concentration massique en hémoglobine dans le sang permet de détecter les cas d'anémies. On parle d'anémie si cette concentration massiques est inférieure a $1,2 \,\mathrm{g} \cdot \mathrm{L}^{-1}$ pour une femme et $1,3 \,\mathrm{g} \cdot \mathrm{L}^{-1}$ pour un homme. Pour mesurer cette concentration, on peut réaliser une échelle de teinte, car c'est l'hémoglobine qui donne sa teinte rouge au sang.

Échantillon de sang à doser.

Schéma de l'échelle de teinte réalisée, avec les solutions étalons et leurs concentrations.

- 4 Rappeler avec vos mots le principe général d'un dosage par étalonnage (que veut-on mesurer et comment fait-on). (RCO, COM)
- 5 Pour préparer des solutions, on peut effectuer une dilution ou une dissolution. Indiquer en justifiant laquelle des deux on effectue pour passer de la solution 2 à la solution 3. (RCO)
 - 6 Donner le nom de deux verreries nécessaires pour réaliser une dilution. (RCO)
- 7 En utilisant le document 2, indiquer en justifiant la concentration en hémoglobine de l'échantillon de sang. (APP, VAL)
 - 8 L'échantillon vient d'un homme. Indiquer en justifiant s'il souffre d'anémie ou non. (VAL)

II - Conduite et alcoolémie

Maxime et son mari Nassim sortent en voiture pour aller manger dehors. Au restaurant Nassim boit un verre de 250 mL d'alcool à 10°: c'est-à-dire que 10 % du volume de la boisson est de l'éthanol. On va chercher à déterminer si Nassim pourra de nouveau conduire après le repas.

- 9 Calculer le volume d'éthanol dans le verre. (APP, REA)
- L'éthanol a une masse volumique qui vaut $\rho_{\text{\'e}th} = 0.8 \,\mathrm{g \cdot mL^{-1}}$. Pour un volume $V_{\text{\'e}th}$ d'éthanol, on peut calculer d'éthanol avec cette relation $m_{\text{\'e}th} = \rho_{\text{\'e}th} \times V_{\text{\'e}th}$.
 - 10 Calculer la masse d'éthanol bue par Nassim. (APP, REA)

Le corps d'un homme adulte contient en moyenne $5.5 \,\mathrm{L}$ de sang. En France, « il est interdit de conduire avec un taux d'alcool dans le sang supérieur ou égal à $0.5 \,\mathrm{g} \cdot \mathrm{L}^{-1}$ de sang ».

- 11 En physique-chimie on parle de concentration massique plutôt que de taux d'alcool. Expliquer avec vos mots la différence entre cette grandeur et la masse volumique. (RCO, COM)
 - 12 Rappeler la formule mathématique de la concentration massique. (RCO)
 - 13 Calculer la concentration massique d'éthanol dans le sang de Nassim. (APP, REA)
 - 14 Indiquer, en justifiant, si Nassim pourra conduire en sortant du restaurant. (APP, VAI)

En fait, quand une personne boit une boisson alcoolisée, seule une petite partie de l'éthanol et absorbé par l'organisme. En moyenne seulement 12% de l'éthanol passe dans le sang. Si on a bu $10\,\mathrm{g}$ d'éthanol, $1,2\,\mathrm{g}$ passe dans le sang.

15 — Calculer de nouveau la concentration massique dans le sang de Nassim en tenant compte de cette information. Indiquer, en justifiant, si Nassim pourra conduire en sortant du restaurant. (APP, REA, VAL)