6 Carpet

AD-A254 384

Form Approved CMB No 0704-0188

Platent A DIAC Negro REPORT

AN WILL BE IN Black and

Public reporting builden for this out in for gathering and maintaining the data hierar gathering and maintaining the data hierar collection for information including sugge pain High Au. South \$704. Arringt, 5. VA

in time for reviewing logory on the specific person of partials or ex-minings regarding this business material and other societies for this recrossate for information operations and healths, to its lettergine education in control and this provision of the control of control.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED
	1992	THESIS/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS
An Analysis of the Torn		Raleigh
Thunderstorm of Novembe	r 28, 1988	
6. AUTHOR(S)		ELECTE
6. AUTHOR(S)		AUG 2 4 1992
Carl Scott Funk, Captai	n	
7. PERFORMING ORGANIZATION NAME(S) IND ADDRESS(ES)	. PERFORMING ORGANIZATION
		REPORT NUMBER
AFIT Student Attending:	North Carolina	State University AFIT/CI/CIA- 92-045
The state of the s	NAME (C) AND ADDE	(6/15) 10 (000) (000) (100) (100)
9. SPONSORING MONITORING AGENCY	NAME(S) AND ADDRE	55(ES) 10. SPONSORING MONITORING AGENCY REPORT NUMBER
AFIT/CI		
Wright-Patterson AFB OH	45433-6583	
0		
11. SUPPLEMENTARY NOTES	7.	
12a. DISTRIBUTION AVAILABILITY STAT Approved for Public Rele		12b. DISTRIBUTION CODE
Distributed Unlimited	ase IAW 190-1	
ERNEST A. HAYGOOD, Capta	ain. USAF	
Executive Officer	211, 0011	
13. ABSTRACT (Maximum 200 word).		
		92-23451
		92-23-3
1		Manife Mail Manife Manife Mint and a mark man see.

14. SUBJEC	TERMS			15. NUMBER OF PAGES
				124 16. PRICE CODE
17. SECURI OF REP		18 SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

92

0 21 124

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

DTIC OFFALE OF ESPECTED 8

An Analysis of the Tornado-producing Raleigh Thunderstorm of November 28, 1988

by

Carl Scott Funk

Acession For
NTC SEAL E
Pred Tas
Unancional Cod
Jarif seation
87
Distribution/
Avsilability Codes
Avail and/or
Dist Special
\circ
H-1
, ,

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science

Department of Marine, Earth and Atmospheric Sciences

Raleigh

1992

Approved by:

aller of Francisco

Charles 2 Cridewin
Chairman of Advisory Committee

Abstract

Funk, Carl S., An Analysis of the Tornado-producing Raleigh Thunderstorm of November 28, 1988 (Under of the direction of Dr. Charles E. Anderson).

The purpose of this research was to document the synoptic and local environment of the North Carolina-Virginia tornado outbreak of November 28, 1988, and to present evidence of the coupling of the existing Raleigh thunderstorm mesocyclone with strong surface vorticity fields as a possible explanation for the sudden spin-up of the very strong (Fujita Scale 4) Raleigh Tornado. Conventional surface, upper-air, and satellite data were analyzed on the Man-Computer Interactive Data Access System (McIDAS) computer system at the University of Wisconsin-Madison to study the changes in the synoptic environment prior to the tornado event. Radar data from Volens, Va., Cape Hatteras, NC, and Wilmington, NC were obtained from the National Climatic Data Center (NCDC) and analyzed to determine if characteristic storm signatures were present. In addition, various other types of data from local sources were obtained and used in the analysis.

Results of the analysis indicated that despite marginal severe weather conditions just six hours prior to the Raleigh Tornado, the atmosphere rapidly changed and exhibited the classic severe weather characteristics necessary for tornado production. Also, the thunderstorm associated with the Raleigh Tornado was part of a strong mesolow pressure system, and satellite data indicated the presence of a mesocyclone within the thunderstorm. Finally, strong surface vorticity fields were present in the central-North Carolina region.

This analysis suggests the possibility of the coupling of the existing mesocyclone with strong surface vorticity fields enhanced by convergence along the axis of the storms inflow, and by thermal boundary interaction.

Table of Contents

LIST OF TABLES	Pag _€
LIST OF TABLES	,
LIST OF FIGURES	v
1. INTRODUCTION	1
1.1 Background of the Raleigh Tornado	
1.2 Justification for the Research	
1.4 Description of the Tornado Outbreak	
1.5 Synoptic Setting of the Outbreak Case	
1.5 Syrioptic Setting of the Satorcak Sassiminiminiminiminiminiminiminiminiminim	
2. RESEARCH OBJECTIVES	33
2.1 Objectives of the Research	33
2.2 Working Hypothesis	
2.3 Methodology Employed	
2.3.1 Processing Data on the McIDAS	
2.3.2 Surface and Upper Air Data	
2.3.3 Radar Data	36
2.3.4 Satellite Imagery	36
2.3.5 Lightning Data	37
2.3.6 Other Data Sources	37
3. RESEARCH RESULTS	40
3.1 The Developing Environment - Surface	40
3.2 Development as Seen in Radar Imagery	
3.2.1 A Special Feature of the Raleigh Thunderstorn	•••
as Seen by Radar	48
3.3 Development as Seen in Satellite Imagery	
3.4 Lightning Activity of the Storm	
3.5 Assessment of the Mesoscale Low	
4. DISCUSSION OF RESULTS	91
5. CONCLUSIONS	95
5.1 Minor Findings	05
5.2 Major Findings	95 95

6.	BIBLIOGRAPHY	.98
7.	APPENDIX1	03

List of Tables

	Page
Table 1. Total tornadoes, total path length in miles, and average path length by Fujita-scale strength for all U.S. tornadoes in the 63-year period, 1916-1978.	5
Table 2. Assessment of the damage, injuries and deaths caused by the November 28, 1988 tornado outbreak by the State of North Carolina.	11
Table 3. Stability indices at 0000UTC, November 28, 1988 for Greensboro (GSO), Cape Hatteras (HAT), Athens (AHN), and Charleston (CHS).	14
Table 4. Values of PBE and 0-4 km mean shear for Greensboro (GSO), Charleston (CHS), Athens (AHN), and Cape Hatteras (HAT).	43
Table 5. The criteria for taking and disseminating special observations of radar observed meteorological phenomena, from the Federal Meteorological Handbook #7, Weather Radar Observations, Part A (1987).	44
Table 6. Mean wind as defined by the vector mean of the 850, 700, 500 and 300 mb levels for Greensboro (GSO), Athens (AHN), and Raleigh (RDU) in comparison to the radar derived direction and speed of the Raleigh storm	47

List of Figures

	Page
Figure 1. North Carolina-Virginia tornado outbreak of November 28, 1988.	
Figure 2. The three stages in the life cycle of an ordinary thunderstorm cell.	16
Figure 3. Browning's (1964) conceptual model of the circulation within a severe right-moving storm.	17
Figure 4. Plot of potential buoyant energy versus the 0-4 kilometer mean shear (after Rasmussen and Wilhelmson, 1983).	18
Figure 5. 0000 UTC surface analysis for November 28, 1988.	19
Figure 6a. 850 mb heights and wind speed analysis for 0000 UTC, November 28, 1988.	20
Figure 6b. 700 mb heights and wind speed analysis for 0000 UTC, November 28, 1988.	21
Figure 6c. 500 mb heights and wind speed analysis for 0000 UTC, November 28, 1988.	22
Figure 6d. 300 mb heights and wind speed analysis for 0000 UTC, November 28, 1988.	23
Figure 7. Stations used and area represented by cross-sections 1 and 2 for 0000 UTC, November 28, 1988.	24
Figure 8a. Cross-section 1 for 0000 UTC, November 28, 1988.	25
Figure 8b. Cross-section 2 for 0000 UTC, November 28, 1988.	26
Figure 9. Lifted Index values for 0000 UTC, November 28, 1988.	27
Figure 10. Hodographs for stations 72317 (GSO), 72311 (AHN), 72304 (HAT), and 72208 (CHS) at 0000 UTC. November 28, 1988.	28

Figure 11a. 0001 UTC GOES water vapor imagery for November 28, 1988.	29
Figure 11b. 0601 UTC GOES water vapor imagery for November 28, 1988.	30
Figure 12a. 0031 UTC GOES infrared imagery for November 28, 1988.	31
Figure 12b. 0601 UTC GOES infrared imagery for November 28, 1988.	32
Figure 13. Area used in determining regional values for graphic analysis of surface meteorological parameters.	38
Figure 14. Map of the central North Carolina area.	39
Figure 15a. 0000 UTC surface pressure analysis at 1 mb intervals for November 28, 1988.	54
Figure 15b. 0400 UTC surface pressure analysis at 1 mb intervals for November 28, 1988.	55
Figure 15c. 0500 UTC surface pressure analysis at 1 mb intervals for November 28, 1988.	56
Figure 15d. 0600 UTC surface pressure analysis at 1 mb intervals for November 28, 1988.	57
Figure 16a. 0000 UTC surface wind convergence analysis for November 28, 1988.	58
Figure 16b. 0400 UTC surface wind convergence analysis for November 28, 1988.	59
Figure 16c. 0500 UTC surface wind convergence analysis for November 28, 1988.	60
Figure 16d. 0600 UTC surface wind convergence analysis for November 28, 1988.	61
Figure 17. Regional and local area 1 hour pressure change in mb, and total pressure change for the period 28/0100-0700 UTC, November 1988.	62
Figure 18. Regional and local area minimum divergence (convergence) values for the period 27/2300-28/0700 UTC, November 1988.	63

	• •
Figure 19a. 0000 UTC moisture divergence analysis for November 28, 1988.	64
Figure 19b. 0400 UTC moisture divergence analysis for November 28, 1988.	65
Figure 19c. 0500 UTC moisture divergence analysis for November 28, 1988.	66
Figure 19d. 0600 UTC moisture divergence analysis for November 28, 1988.	67
Figure 20. Regional and local area minimum moisture divergence (convergence) values for the period 27/2300-28/0800 UTC, November 1988.	68
Figure 21a. 0000 UTC surface vorticity analysis for November 28, 1988.	69
Figure 21b. 0400 UTC surface vorticity analysis for November 28, 1988.	70
Figure 21c. 0500 UTC surface vorticity analysis for November 28, 1988.	71
Figure 21d. 0600 UTC surface vorticity analysis for November 28, 1988.	72
Figure 22. Regional and local area maximum vorticity values for the period 27/2300-28/0800 UTC November 1988.	73
Figure 23a. 0400 UTC surface thermal analysis for November 28, 1988.	74
Figure 23b. 0500 UTC surface thermal analysis for November 28, 1988.	75
Figure 23c. 0600 UTC surface thermal analysis for November 28, 1988.	76
Figure 24. Plot of potential buoyant energy (PBE) and 0-4 kilometer mean wind shear (after Rasmussen and Wilhelmson, 1983).	77
Figure 25. Pressure traces from Charlotte (CLT), Greensboro (GSO), and Raleigh (RDU) for the period 27/1700-28/1700 UTC, November, 1988.	78
Figure 26a. Radar depiction of the squall line at 0431 UTC, November 28, 1988 from the Volens, VA radar.	79

1. INTRODUCTION

1.1 Background of the Raleigh Tornado

"Four people were killed and at least 150 were injured in the early morning of Monday, November 28 (1988), when a series of tornadoes sucked up acre after acre of north Raleigh and eastern North Carolina and spat them out like furious giants."

The Raleigh News and Observer Special Edition "TORNADO"

When the damage survey was complete and all was accounted for, the tornadoes associated with this outbreak killed four and injured 157 people. The brunt of the storm was felt in Raleigh where it accounted for two of the deaths and 105 of the injured. Little was left undamaged along the cornadoes path. One-hundred and five houses and ten businesses were destroyed, 1,440 homes and 29 businesses damaged, and 800 people left homeless. Of the \$77.2 million in damage across eastern North Carclina, \$60 million was in Wake County alone (News and Observer, 1988).

Of the seven torriadoes in the outbreak (figure 1), the Raleigh Tornado was the most severe. Rated F4 on the Fujita tornado classification scale, it carved an almost unbroken path 135 kilometers long from just east of the Raleigh-Durham International Airport to near Roanoke Rapids in Northhampton County. Maximum winds were about 94 ms⁻¹ and they occurred in Raleigh.

In parts of Raleigh the devastation was so complete, only foundations of houses remained. Given the destructiveness of the tornado, the death toll was amazingly low. This may in part have been due to the hour of night, when the streets were relatively clear of cars and pedestrians. In the final analysis, luck played a large part in keeping the death toll low.

1.2 Justification for the Research

The Raleigh tornado case offers an opportunity to study a rare, and in some aspects unique, tornado event. It was rare because those tornadoes classified as violent in the Fujita tornado classification scheme, rated F4-F5, make up only about three percent of the total tornado population (Fujita, 1981). It was unique that in North Carolina there was no previous climatological record for a violent tornado in the month of November.

Since 1916, records indicate November and December average the fewest tornado occurrences of all months in North Carolina (NOAA, 1989). During the period of record, only 12 tornadoes were reported in the state during November. None of these resulted in fatalities. In December there were only eight tornadoes with a single fatality. None of the 20 tornadoes occurred in the early morning hours. For Wake County, North Carolina the total was one tornado each in November and December with no fatalities.

The development of the Raleigh tornado occurred only six hours after a marginal synoptic environment for severe weather was in place. No tornado or severe thunderstorm watch was in effect when the tornado struck Raleigh (NOAA, 1989). Thus it might seem forecasters were "surprised" by the tornado. The development of severe weather in marginal environments is not a well understood phenomena. Miller (1972) presented a summary of important parameters and suggested guidelines for rating these parameters in his manual on severe storm forecasting. These rules key upon the highly baroclinic synoptic setting that leads to widespread outbreaks of severe thunderstorms and tornadoes. Indeed, these types of situations are handled best by forecasters at the National Severe Storms Forecast Center (NSSFC) (Maddox and Doswell, 1982). Yet, outbreaks of significant severe thunderstorms events often occur in

relatively weak large-scale meteorological settings (Maddox et al, 1980; Maddox and Doswell, 1982).

The Raleigh tornado's development also prompts questions about the relationship of the tornado to the thunderstorm cell, and to tornadogenesis. As reviewed by Klemp (1987), a supercell storm may persist in a nearly steady state configuration for up to several hours, yet the transition to tornadic phase is rapid and may take less than ten minutes. The factors responsible for this transition are not well understood. However, some theories exist for this transformation.

Mr. Don Burgess of the National Severe Storms Laboratory (NSSL) indicated that of severe storm cells interrogated by the NEXRAD prototype, only about 50 percent of those with tornado vortex signatures (TVS) actually produced a tornado (Anderson, 1990). One can then question the interaction of the severe storm cell with the larger-scale environment and consider what factors in the environment might be present in the 50 percent of the storms which produce tornadoes, and are not present in the other 50 percent.

In his review, Klemp indicates that in severe storm simulations the intensification may be stimulated by the baroclinic generation of strong horizontal vorticity along the low-level cold air pool forming beneath the storm. In this process the horizontal temperature gradients tend to produce horizontal vorticity which is nearly parallel to the low-level inflow. What is generated is horizontal vorticity several times the magnitude of the mean shear. This vorticity is tilted into the vertical as it is swept up into the mesocyclone circulation. In a similar vein, Anderson (1990) suggests that the necessary elements for tornado production are an existing strong surface vorticity field which can be intensified by the low-level wind convergence into the thunderstorm cell. Schrab, et al. (1990) successfully used the surface vorticity field in conjunction with satellite

data as a predictor of tornadoes and their intensity. The North Carolina-Virginia tornado outbreak was included in this study.

1.3 Background Research

A number of research projects have enhanced our knowledge and understanding of severe storm events. Also, with each new observational tool we can better understand their complex nature. The tornado, however, being the most dramatic product of the severe storm evolution, still eludes most definitive descriptions because of its scale in comparison to the parent storm and our current observational capabilities.

Tornado is defined in the <u>Glossary of Meteorology</u> (1959) as "a violently rotating column of air, pendant from a cumulonimbus cloud, and nearly always observable as a funnel cloud or tuba (a cloud column or inverted cloud cone, pendant from a cloud base)". It is a violent and destructive, though relatively rare, atmospheric storm responsible for about 100 deaths and \$200 million property damage annually (Davies-Jones, 1982). The majority of tornadoes are considered weak and are short lived (Table 1). Consequently, only a small percentage (about three percent) are responsible for almost all of the fatalities and property damage each year.

Tornadoes are produced from a special class of thunderstorms known as supercells. The relationship between tornadoes and mesocyclones was shown by a Doppler radar study of Oklahoma thunderstorms which showed 62% of thunderstorms with mesocyclones produced tornadoes and no tornadoes occurred in thunderstorms without mesocyclones (Brandes, 1984). Another type of tornado associated with gust fronts and shear lines exists but is very weak (it may reach F0 in strength) and short-lived (Wilson, 1986).

Supercell thunderstorms are characterized by being large, long-lived

storms which move in a direction to the right of the vector mean wind in the layer occupied by the storm (Barnes and Newton, 1982). Table 6 (page 47) demonstrates this for the Raleigh storm. The typical airmass thunderstorm has a lifetime of about one hour, during which it may move twenty kilometers or so with the atmospheric winds in which it is embedded (Browning, 1982). This is illustrated in figure 2. The supercell in contrast, has a complex structure where the mesocyclone develops an almost steady-state circulation in which an updraft and downdraft coexist (figure 3).

Table 1. Total tornadoes, total path length in miles, and average path length by Fujita-scale strength for all U.S. tornadoes in the 63-year period, 1916-1978. After Tecson, et al, 1979.

F-scale	Total #	Total path	Mean path
	tornadoes	length (miles)	length (miles)
0	5,718	8,059	1.41
1	8,645	25,426	2.94
2	7,102	39,459	5.56
3	2,665	27,306	10.25
4	673	12,559	18.66
5	127	3,626	28.55

Severe storms often develop along lines of organized convection or squall lines. Lewis, et al. (1974) and Heymsfield and Schotz (1985) documented non-tornadic, but severe (hail producing), squall lines that moved across the National Severe Storms Laboratory (NSSL) mesoscale data network in Oklahoma. Ogura and Chen (1977) also described the initiation and growth stages of an intense mesoscale system with features similar to these studies.

An important feature in the development of these squall lines was mesoscale boundary layer convergence. Heymsfield and Schotz suggested this mesoscale convergence is a precursor condition to squall line development.

Schlesinger (1983), in model simulations of severe storms, found that without pre-existing mesoscale lifting, the storms would rapidly decay. He concluded that some form of mesoscale forcing was necessary in the initiation and sustenance of severe storms. Another similarity in the squall line case studies was the almost simultaneous rapid development of a number of cells along the squall line. Also, Schrab (1988) discussed a squall line tornadic outbreak which produced 14 tornadoes from five of the 12 total cells. Development along the squall line was fairly uniform and the tornadoes were produced along the entire length of the line, not limited to a specific or preferred region.

With the advent of meteorological satellites, attempts have been made to identify tornadic storms by their characteristic behavior or signature. Adler and Fenn (1981, 1979a) in a study of tornadic thunderstorms as seen in three-to-five-minute-interval, infrared Geostationary Orbiting Environmental Satellite (GOES) data, noted similarities in the behavior of tornadic thunderstorm cells. They found a period of rapid height increase (cell top temperature decrease) 30 to 45 minutes prior to tornado touchdown. A typical value for the temperature decrease was 0.40 Kmin⁻¹, or about a 3 ms⁻¹ cloud top ascent rate. The height increase was followed by a period of no growth or a drop in cloud-top height preceding or at the time of the tornado touchdown.

Anderson and Schrab (1988) also used satellite imagery to forecast thunderstorm cells which would become tornadic by their characteristic anvil signatures. Using a two-dimensional plume simulation, they input two variables to manipulate the growth rate and direction of the simulation until there was a good fit between the envelope of the simulated and actual plume over several time steps. The two parameters, UMax (the anvil outflow strength) and SDA (storm relative anvil deviation angle to the ambient wind flow), are thought to

have a similar physical basis as the local potential buoyant energy and vertical wind shear. Identification of tornadic storms in individual case studies was successful, but the variation of parameter breakpoint values (between tornadic and non-tornadic) among cases hampered the combination of the observations into a single forecast scheme. Perry (1989) attempted to improve their technique by including a third parameter in the statistical model, i.e. the 0 to 4 kilometer mean wind shear. However, because upper air data are collected routinely only twice a day, rapidly changing atmospheric conditions meant the location and time of an upper air winds site was often not representative of the conditions present at the time of the severe local storm. It was not until Anderson included surface vorticity (Schrab, et al., 1990) as the additional parameter that his model was at least partially successful in accounting for the different breakpoint intercepts that occur with each outbreak. The advantage of surface vorticity as a predictor over the 0-4 km wind shear is that as well as being characteristic of the synoptic environment, new values are available hourly, and data are available from a much denser sampling network.

Because of their destructiveness, violent tornadoes (F4-F5) have been popular targets of study. Anderson (1982, 1983, 1985a, 1985b) and Fujita and Stiegler (1985) have studied and documented the particular characteristics of storms producing violent tornadoes. Their findings indicate these storms may be distinguished from their counterparts which produce less destructive tornadoes. Some of their findings include: the necessity of mesoscale convergence in the surface flow to assist the broad upward motion needed for the maintenance of the storm complex (this was also seen in Schlesinger's (1983) numerical modeling studies of severe storms), that these tornadoes are often embedded in a strong mesocyclone evident as a surface mesolow, and these storms form

stable meso-vortices which show evidence of 2-cell circulation.

Severe storms develop in environments characterized by large potential instability and vertical wind shear (Miller, 1967). A number of studies documented the relationship of the available potential buoyant energy to the vertical wind shear as a means of discriminating among the various convective storm types and tornado classifications (Leftwich and Wu, 1988; Colquhoun and Shepherd, 1985; Rasmussen and Wilhelmson, 1983; Weisman and Klemp, 1982). The potential buoyant energy (PBE) is defined as the positive area on an upper-air sounding. Vertical wind shear, in this sense, is the mean shear in the lowest four kilometers above ground level. Using the method of Rasmussen and Wilhelmson, the parameters are computed as;

$$PBE = g \int_{LFC}^{EL} (T_p - T_E / T_E) dz$$

PBE: (Potential Buoyant Energy) Positive area of a sounding

Where LFC is the level of free convection, EL the equilibrium level, T_p and T_E the parcel and environmental temperatures respectively. Also,

Mean Shear =
$$\int_0^{4km} ((\delta V/\delta z)dz) / \int_0^{4km} dz$$

Shear: Low-level (0-4 km) vertical wind shear

Figure 4, Rasmussen and Wilhelmson's plot of PBE vs. mean 0-4 kilometer wind shear shows how they could delineate between tornadic storms, mesocyclones which did not produce tornadoes, and storms which had neither tornadoes or mesocyclones using the two parameters. The results indicated that within certain threshold values, tornadic storm development required large amounts of PBE and mean shear. The study was based on soundings measured at 1200 Coordinated Universal Time (UTC) closest to the tornado

event. In situations where large scale processes in the atmosphere rapidly alter the sounding, this technique would have little forecasting application unless the forecaster, in evaluating the parameters, decides the conditions are likely to persist or be found in a different region during the day.

Despite the importance of PBE and wind shear in the production of severe weather and its prediction, other factors have long been recognized as necessary for outbreaks of tornadic storms to occur. In the Raleigh tornado case, the absence of dry mid-level air (700-450 mb), indicated to National Weather Service forecasters that only heavy rains would be expected (NOAA, 1989). Miller (1972) calls the presence or intrusion of dry mid-level air "an essential ingredient for any significant outbreak of tornadic storms." Also, forecast decision trees (e.g. Colquhoun, 1982) absolutely require dry mid-level air as a prerequisite to severe storm forecasts. The dry air ingestion into the storm itself provides for increased negative buoyancy of the downdraft air through evaporative cooling and by the same process may steepen the lapse rate within the storm (Doswell, 1982).

1.4 Description of the Tornado Outbreak

From approximately 0530 UTC to 1049 UTC on Monday, November 28, 1988, seven tornadoes touched down in parts of eastern North Carolina and Virginia (figure 1). In the Fujita tornado classification scheme, one was rated F0, three F1, two F2, and one F4.

As described by NOAA (1989) and others, these are summarized: the first tornado, rated F1, touched down on the southbound lane of Interstate 85 (I-85) about two and a half kilometers north of Virginia route 644 near Meredithville, Virginia around 0530 UTC (Brunswick Times-Gazette, 1988; Anderson, 1989). It moved to the northeast along the southbound lane of I-85

for about five kilometers into the town of Alberta, Virginia before lifting. Soon after the Alberta tornado dissipated, the Raleigh tornado formed just to the southwest of the Raleigh-Durham International Airport. It touched down first around 0600 UTC at the Reedy Creek Section entrance to the William B. Umstead State Park, though, audible and ground damage evidence exists to indicate it was aloft for an unknown amount of time before finally settling to the ground. The tornado moved rapidly to the northeast in excess of 25 ms⁻¹. Rated F4, it devasted parts of north Raleigh before moving out of Wake County into Franklin, Nash, Halifax and Northhampton Counties. After being on the ground continuously for 135 kilometers, it lifted at about 0745 UTC five kilometers north of Jackson in Northhampton County. The same thunderstorm then produced another tornado which struck near the town of Galatia, again in Northhampton County, about fifteen kilometers from where the Raleigh tornado lifted. This tornado, rated F2, was on the ground for about five kilometers shortly after 0750 UTC. The last tornado to be spawned from this thunderstorm touched down north of Franklin, Virginia at about 0820 UTC for 24 kilometers before lifting around 0835 UTC. It was rated F2 and struck the town of Walters, Virginia. Between 0830 UTC and 1049 UTC, three additional tornadoes struck the North Carolina coastal counties of Pamlico, Hyde and Dare. They were rated F1, F1, and F0, and were on the ground for 48, 6.4, and 1.6 kilometers respectively.

Table 2, compiled by the State of North Carolina, is an assessment of the damage, injuries, and deaths caused by this tornado outbreak for the state of North Carolina.

Table 2. Assessment of the damage, injuries and deaths caused by the November 28, 1988 tornado outbreak by the State of North Carolina.

	Homes	Homes	Businesses		
County	Damaged	Destroyed	Destroyed	Injured	Dead
Hyde	9	1	1	0	0
Dare	11	6	0	0	0
Pamlico	0	5	0	3	0
Northhampton	10	8	4	0	0
Wake	1586	128	35	105	2
Nash	10	11	0	22	2
Franklin	22	30	3	17	0
Halifax	22	13	3	10	0
Totals	1687	199	45	157	4

1.5 Synoptic Setting of the Outbreak Case

The weather system which produced the outbreak case for this study was unremarkable in most aspects. Though it did produce instances of severe weather early in the development of the system, including tornadoes, none was reported in the 24 hours prior to the North Carolina-Virginia outbreak (NOAA, 1989). The synoptic low pressure system developed east of the Rocky Mountains as a dry continental polar airmass and moved southeastward out of Canada. By the evening of November 26, the cold front associated with this weather system reached the Mississippi River Valley. On the evening of the 27th, it had reached the Appalachian Mountains and was poised to move into central and coastal sections of the middle Atlantic states.

In the 72 hours prior to the Raleigh tornado event, the NSSFC recorded 78 instances of severe weather (hail, high winds, and tornadoes) associated with this system. Storms struck first across portions of Oklahoma, Texas, and Arkansas where 64 reports of severe weather in the 24 hours before 0900 UTC, November 26 were received. The system moved eastward and continued to produce violent weather. By 0900 UTC on November 27, another 14 reports of

severe weather in Louisiana, Mississippi, and Alabama were recorded. The system did not produce more severe weather until about 0530 UTC, November 28, 1988. This information was summarized from the NOAA (1989) Natural Disaster Survey Report.

By 0000 UTC on November 28, the surface low pressure system was centered near east-central Wisconsin. Its cold front extended through northern Virginia, east of Staunton (SHD) and Roanoke (ROA), into North Carolina west of Hickory (HKY) and Winston-Salem (INT), and continued south through South Carolina, Georgia, and the Florida panhandle. A thermal boundary extended from near Columbia, SC (CAE) northeastward to just west of Fayetteville, NC (FAY) and east of RDU. Figure 5 shows the relative positions of the surface features. Also shown are 5° F contours and the 65° F and greater (shaded area) dewpoint values. Most striking was the temperature contrast across the thermal boundary. South and east of the front, winds were southerly and mostly greater than 5 ms⁻¹.

In the upper air analysis the frontal system was well supported aloft (figures 6(a)-6(d)). The long-wave trough was well defined at the standard levels and a short-wave trough existed between 850 mb and 500 mb. At 700 mb (figure 6(b)) an area of relatively drier air is seen to the west of the Appalachian Mountains. Maximum winds at each level are defined by the jet core speeds, in ms⁻¹, and are given by the enclosed isotachs. At 300 mb (figure 6(d)) a broad area of jet stream winds in excess of 50 ms⁻¹ was evident across the upper Mississippi River Valley. Not seen in this figure is another jet core maximum at 200 mb above GSO. Figure 7 gives the stations used in the cross-sectional analysis for figures 8(a) and (b), cross-sections 1 and 2. Cross-section 1, figure 8(a), shows a jet core greater than 55 ms⁻¹ to the west of North Carolina in the

upper Mississippi River valley. Above GSO, winds at 200 mb were >65 ms⁻¹, creating a double jet condition. These jet winds were analyzed by NOAA meteorologists as the sub-tropical and polar jet streams, respectively. This pattern is favorable for the development of divergence aloft, and divergence aloft is necessary for the enhancement of deep convection (NOAA, 1989; Doswell, 1982). In cross-section 2, figure 8(b), the dry air which would eventually be in a position to intrude into the Raleigh thunderstorm and enhance the severe storm complex was seen in the mid-levels, above 500 mb, to the west of AHN.

Lifted index values (figure 9) at 0000 UTC on November 28 indicated stable conditions prevailed over central and western North Carolina, with increasingly unstable air to the east and south of the Raleigh area. Despite the stable air over central North Carolina, strong veering and increasing winds with height were present in the region. Recalling figure 4, wind shear vs. PBE for the Raleigh case, shear values were very high. This was also evident in the hodographs of CHS, GSO, HAT and AHN (figure 10). GSO displays a classic tornado producing hodograph (see Klemp, 1987).

The situation by 0000 UTC suggested a marginal situation for the development of severe weather. While significant vertical wind shear existed across the region (figure 4 and figure 10), other factors necessary for the production of severe weather were missing. According to Miller (1972), the thermal structure must be conditionally unstable for severe weather to occur. Across eastern North Carolina the Lifted Index values ranged between 0 and -2 (figure 9) and the Total Totals Index from 46 to 49 (table 3). Miller rates these values as weak for the production of severe weather. Additionally, a very moist, nearly saturated air mass was east of the Appalachian Mountains. Figure 11(a), the GOES 0001 UTC water vapor imagery, shows moist air east of the

Appalachians. Also precent was the dry air to the southwest of extreme wester. North Carolina. At the time it seemed doubtful that this air would intrude into the Raleigh storm. This is also seen in cross-section 2, figure 8(b). The GOES IR imagery, figure 12(a), at 0031 UTC shows widespread convection across the region, though, strongest activity at this time was in northern Florida and southern Georgia (NOAA, 1989). However, by 0601 UTC the situation would have changed drastically and can be seen in figure 12(b), the GOES IR imagery for that time, the Raleigh thunderstorm was a well developed and dramatic feature. While some factors suggested severe weather, the situation has not dramatic and forecasters at the local NWS forecast office and Severe Local Storms forecast office at NSSFC felt the potential for severe weather was somewhat limited (NOAA, 1989).

Table 3. Stability indices at 0000 UTC, November 25 1988 for Greensboro (GSO), Cape Hatteras (HAT), Alhens (AHN), and Charleston (CHS).

Chatian	Lifted	Coope	Total	V Tradi.
Station	Index	Sweat	Totals	K-Inde
72317 (GSO)	-0.14	397	48.8	35.9
72304 (HAT)	-1.34	307	45.6	30.6
72311 (AHN)	6.26	381	49.1	35.5
72208 (CHS)	-3.24	312	47.4	22.9

Figure 1. North Carolina-Virginia tornado outbreak of November 28, 1988. Compileu by the Winu Research Laboratory, University of Chicago.

Figure 2. The three stages in the life cycle of an ordinary thunderstorm cell. After Browning (1982), from Byers and Braham.

Figure 3. Browning's (1964) conceptual model of the circulation within a severe right-moving storm. This is depicted as a three-dimensional, nearly steady-state circulation (relative to storm motion) in which warm, moist low-level air feeds continuously into a single large updraft. Evaporative cooling within the region of heaviest precipitation just north of the updraft drives the main downdraft which ingests air passing around in front of the eastward-moving storm. The hatched area represents approximate extent of precipitation at the ground, and the gust front boundary is represented by the frontal boundary symbol.

Figure 4. Plot of potential buoyant energy versus the 0-4 kilometer mean shear (after Rasmussen and Wilhelmson, 1983).

Figure 5. 0000 UTC surface analysis for November 28, 1988. Solid lines are isobars at 2 mb intervals. Dashed lines are isotherms at 5° F intervals. Shaded area represents surface dewpoint values $\geq 65^{\circ}$ F.

Figure 6a. 850 mb heights and wind speed analysis for 0000 UTC, November 28, 1988. Heights are analysed at 30 meter intervals (solid lines), and wind speeds ≥20 mps are represented by the dashed lines.

analysed at 60 meter intervals (solid lines), and wind speed >30 mps are represented by the dashed lines. Also, dewpoint temperatures are represented as shown on the figure. Lowest dewpoint values (<-250 C) Figure 6b. 700 mb heights and wind speed analysis for 0000 UTC, November 28, 1988. Heights are are in the shaded region.

Figure 6c. 500 mb heights and wind speed analysis for 0000 UTC, November 28, 1988. Heights are analysed at 60 meter intervals (solid lines), and wind speed ≥50 mps are represented by the dashed lines.

Figure 6d. 300 mb heights and wind speed analysis for 0000 UTC, November 28, 1988. Heights are analysed at 120 meter intervals (solid lines), and wind speed ≥50 mps are represented by the dashed lines.

Figure 7. Stations used and area represented by cross-sections 1 and 2 for 0000 UTC, November 28, 1988.

intervals, dashed lines are isotachs at 5 mps intervals, dot shaded areas represent dewpoint depressions of Figure 8a. Cross-section 1 for 0000 UTC, November 28, 1988. Solid lines represent isentropes at 5a C <5ø C, and cross hatched areas represent dewpoint depressions >30ø C.

intervals, dasned lines are isotachs at 5 mps intervals, dot shaded areas represent dewpoint depressions of Figure 8b. Cross-section 2 for 0000UTC, November 28, 1988. Solid lines represent isentropes at 50 C ≤5ø C, and cross hatched areas represent dewpoint depressions ≥30g C.

Figure 9. Lifted Index values for 0000 UTC, November 28, 1988. Negative LI values are in single unit intervals and positive LI values are in 5 unit intervals.

Figure 10. Hodographs for stations 72317 (GSO), 72311 (AHN), 72304 (HAT), and 72208 (CHS) at 0000 UTC, November 28, 1988. Levels are represented by \underline{S} for surface, $\underline{10}$ for 1000 mb, $\underline{8}$ for 850 mb, $\underline{7}$ for 700 mb, and $\underline{5}$ for 500 mb.

Figure 11a 0001 UTC GOES water vapor imagery for November 28, 198? Green to yellow shaded areas represent moistest atmosphere, and the drier atmosphere is represented by the darker pink to dark blue shaded areas

Figure 11b 0601 UTC GOES water vapor imagery for November 28, 1988 Green to yellow shaded areas represent moistest atmosphere, and the drier atmosphere is represented by the darker pink to dark blue shaded areas

Figure 12a. 0031 UTC GOES infrared imagery for November 28, 1988. Red and black shades represent higher/colder cloud tops.

Figure 12b 0601 UTC GOES infrared imagery for November 28, 1988 Red and black shades represent higher/colder cloud tops.

2. RESFARCH OBJECTIVES

2.1 Objectives of the Research

There were two objectives of this research. The first was to document the synoptic and local environment of the North Carolina-Virginia tornado outbreak. Local operational meteorologists were caught off guard by the dramatic changes in the meteorological environment in the six hours prior to the outbreak of severe weather. This was the subject of much debate locally, and culminated in a congressional hearing on March 3, 1989 to assess the operations of the National Weather Service during this severe weather episode.

The second, and most important objective, concerned presenting corroborative evidence for Anderson and Schrab's research (Schrab, et al., 1990) that tornadogenesis results from the coupling of an existing mesocyclone in a thunderstorm with strong surface vorticity fields. At question here is a mechanism for the columnar vortex within the mesocyclone to extend through the surface boundary layer to the ground. In some manner, the tornado funnel must either build up or down in the boundary layer.

2.2 Working Hypothesis

The development of severe weather requires the complex interaction of a number of meteorological parameters. Extensive research by Miller (1972) and others revealed a number of quantifiable and recognizable parameters with forecast applicability to severe weather. Recent numerical simulations have added to our understanding of the severe storm complex. With this basis, it was hypothesized that:

a) Despite the marginal forecast situation for severe weather six hours prior to the event, the development of the Raleigh tornado did not involve any

new or unique mechanism. Rather, the same classical environmental factors and conditions found in other tornado cases developed by 0600 UTC. Strong veering winds evident in the 0000 UTC soundings remained in place. Moist and potentially unstable air was available in the low levels for the convective storm to tap when the surface warm thermal boundary moved to the north of the Raleigh area. Finally, mid-level dry air from west and southwest of Georgia moved northeastward with the advancing mid-level trough and was in a position to intrude into the region of storm development.

b) A pre-frontal surface trough developed west of Raleigh in an area of mesoscale convergence. Subsequently, the Raleigh tornado thunderstorm cell formed in the squall line which developed in the pre-frontal trough. Additionally, a strongly baroclinic zone, a surface thermal boundary, was to the west of Raleigh. The squall line intensified the ambient horizontal vorticity through convergence. The surface vorticity was also intensified by the presence of the thermal boundary and the baroclinic generation of horizontal vorticity. The Raleigh tornado then, was the result of the coupling of the mesocyclone within the thunderstorm cell with an area of surface and boundary layer horizontal vorticity.

2.3 Methodology Employed

Conventional data sources were available for the analysis of this case study. Because no Severe Thunderstorm Watch was in effect prior to the Raleigh tornado, no attempt was made to augment any of the conventional data gathering networks (e.g., rapid-scan GOES imagery, or two-minute interval radar imagery). In addition, normal temporal and spatial data arrangements of the data gathering networks were used.

2.3.1 Processing Data on the McIDAS

The McIDAS (Man-computer-Interactive-Data-Access-System) was developed in the 1970's at the Space Science Engineering Center, University of Wisconsin-Madison. It is unique in its capability to ingest real-time geostationary weather satellite data and conventional weather data, and combine the different forms of data in a single analysis. Besides software to plot and contour surface and upper air data, extensive software exists to process satellite sounding data, track cloud motions, or generate statistics of specified geographical areas for a digital image.

2.3.2 Surface and Upper Air Data

Conventional surface, upper air, ship, and buoy data via the WB604 circuit were available for November 27 and 28, 1988. Data were available on the McIDAS in a series of meteorological data (MD) files. Using McIDAS software, we were able to print, plot, contour and access all the normal meteorological parameters (e.g., temperature, pressure, winds, heights) and contour the derived parameters (e.g., vorticity, divergence, advection). Once data was taken from an MD file, the McIDAS software objectively analyzed it to a uniform 10 by 10 grid using the Barnes Analysis scheme. After a grid was created, it was saved in a grid file where it could be manipulated as necessary for larger or smaller unit intervals, advected, averaged, diverged, or any of a number of other arithmetic and meteorological operations. The individual grid point values were also available for inspection and use. Derived parameters were calculated using finite differences on the gridded data, again using the standard McIDAS software. The analyses in this thesis with the exception of surface pressure and upper air heights were produced on McIDAS. Values used in the line graphs of parameter data were taken from the raw grids.

In my analyses, when referring to the **Regional** values in the line graphs, the region is defined along an area from Richmond, VA southwest to near Columbia, SC (figure 13). **Raleigh area** is defined as the grid point value closest to RDU. Regional and Raleigh area values were used to compare local changes with the larger scale processes that were taking place. The regional area as defined approximates the area in which the squall line developed.

2.3.3 Radar Data

Sixteen millimeter radar film from Volens, VA, Wilmington, NC, and Cape Hatteras, NC were obtained from the National Climatic Data Center. Because it was closer and had better resolution, the Volens radar film was of primary interest. Located about 120 kilometers north of Raleigh, the 10 centimeter wavelength WSR-74S radar provided continuous coverage through the event in a series of five minute Plan-Position Indicator (PPI) scans. The images were transferred to radar maps provided by the Volens radar personnel. Measurements of the area of the radar echoes were then done using a planimeter.

2.3.4 Satellite Imagery

Images of the event were available at four kilometer resolution, infrared and eight kilometer resolution, water vapor GOES imagery every half-hour. Archived by the Space Sciences and Engineering Center at the University of Wisconsin-Madison, the data were available via a remote McIDAS workstation at North Carolina State University. Use of the McIDAS in processing the satellite imagery allowed selective enhancement of features and area statistics computations using available McIDAS software commands.

2.3.5 Lightning Data

Lightning activity for the Raleigh thunderstorm was monitored by the SUNY-Albany Lightning Detection Network. The data were available from the Meteorological Office of the Carolina Power and Light Company. The system detects cloud-to-ground positive and negative lightning strokes. Data was analyzed in five-minute-interval periods from 0545 UTC to 0609 UTC (e.g., 0545-0549). Lightning activity prior to 0545 UTC was minimal in the central North Carolina area. Also analyzed was the flash density for the period 0530 UTC to 0629 UTC for the same region.

2.3.6 Other Data

A number of other data sources were found in the Raleigh area to help evaluate the mesocyclone which accompanied the storm. These were all surface data and included; two barograph traces from private citizens (one within one mile of the tornado's path), a barograph tracing from WRAL-TV and North Carolina State University in Raleigh, wind and temperature traces from the Environmental Protection Agency (EPA) sensors located in the Research Triangle Park (RTP), and tower data from Carolina Power and Lights' Shearon-Harris Nuclear Plant (SHNP) located on B. Everett Jordan Lake. Figure 14 is a map of the general area.

Figure 13. Area used in determining regional values for graphic analysis of surface meteorological parameters.

Figure 14. Map of the central North Carolina area. SHNP is the Shearon-Harris Nuclear Plant and RTP-EPA represents the Environmental Protection Agency sensor site at the Research Triangle Park. Both were local sources of data.

3. RESEARCH RESULTS

3.1 The Developing Environment - Surface

One of the most dramatic aspects in the evolution of the environment prior to the Raleigh thunderstorm was the development of the surface low pressure trough ahead of the cold front. Figure 15 shows the development of the prefrontal trough from 0000 UTC through 0600 UTC. This trough was accompanied by areas of mesoscale convergence and vorticity (see Figs 16 and 21), the axis of which was west of Raleigh. The area of convergence was evident as early as 0000 UTC (figure 16(a)). Recalling Heymsfield and Schotz's (1985) suggestion that the convergence area is important in initiating the squall line, we see in this case it was also coincident with the development of the surface trough. Also, figure 15(d), the 0600 UTC surface pressure field, shows the mesolow associated with the Raleigh storm. Figure 21(d), surface vorticity field, shows the surface vorticity field was also maximized at 0600 UTC, coincident with the Raleigh tornado thunderstorm cell.

While the pre-frontal trough deepened through the region from 0000 - 0600 UTC, the greatest one-hour decrease in the surface pressure occurred between 0500-0600 UTC as the Raleigh thunderstorm developed and approached RDU. Figure 17 shows the Regional and RDU one-hour pressure change in graphic form. At 0700 UTC, after the mesolow accompanying the Raleigh thunderstorm had passed RDU, there was a sharp rise in the surface pressure.

The presence of the mesoscale surface convergent area, figures 16(a)(d), was evident for several hours before the outbreak of convection. Another interesting feature of the divergence pattern was at 0500 UTC when the maximum values of convergence were coincident with the Raleigh thunderstorm

cell. Also, in a plot of the minimum divergence values for each hour in the region and at RDU (figure 18), we see maximum convergence occurring during the life-cycle of the Raleigh thunderstorm cell.

Another aspect of the low-level convergence is the effect on the supply of moisture for the area under examination. Doswell (1982) states that two of the primary factors in developing severe weather potential are low-level convergence and a supply of moisture. The combination of these factors gives the moisture convergence field. For the Raleigh case, moisture convergence fields are shown in figures 19(a)-(d). Where negative values imply convergence, it can be seen that moisture convergence was evident as early as 0000 UTC. The axis of the moisture convergence field was coincident with the axis of the mesoscale convergence area and the development of the surface trough. At 0500 UTC, figure 19(c), the centers of relative maxima were located with the developing Raleigh and Alberta thunderstorm cells. By 0600 UTC, figure 19(d), the Raleigh thunderstorm was again located near the maximum values of moisture convergence. The plot of the moisture convergence values by hour in the region and at RDU, figure 20, showed a steady influx of moisture to the region for several hours prior to the outbreak of severe weather.

The surface vorticity fields, shown in figures 21(a)-(d), were consistent with the results of the previous analyses of sea level pressure and divergence. A positive surface vorticity field in the vicinity of a surface pressure trough was expected. The axis of the positive vorticity values was along the developing surface trough. In figure 21(c), at 0500 UTC, the maximum vorticity values were associated with the Alberta storm, and in 21(d) maximum values were associated with the Raleigh storm. Figure 22, the plot of largest regional and RDU vorticity values by hour, shows that throughout the region the surface vorticity values

were positive. At RDU the maximum value was presumably associated with the approach of the Raleigh thunderstorm mesocyclone and accompanying mesolow.

At the time of the 0000 UTC upper air sounding, surface conditions in the Raleigh area were similar to those at Greensboro. Raleigh was east of the advancing cold front, yet in the cool air behind the thermal boundary (figure 5). To the south and east of RDU at Pope Air Force Base (POB) and Rocky Mount-Wilson (RWI), respectively, temperatures were 5.5° C to 8.3° C warmer and dewpoints were about 5° C higher. In the next two hours, temperatures at RDU increased over 5.5° C and dewpoints nearly 4° C as the thermal boundary moved to the north and west of the Raleigh area. Figures 23(a)-(c) shows the change in surface temperature and dewpoint (≥65° F) patterns between 0000 UTC and 0600 UTC. By 0600 UTC, figure 23(c), the strongest thermal gradient was to the southwest of RDU. The Shearon-Harris Nuclear Plant tower data, about 14 miles southwest of RDU indicated the warm air was at least that far west of Raleigh as the temperature was 22.7° C/73° F and the dewpoint temperature was 17.8° C/64° F.

With the introduction of warm, moist air at the surface to the Raleigh area it was possible to estimate expected changes in the stability of the atmosphere there. In evaluating the 0000 UTC upper air soundings for Cape Hatteras, Athens, Charleston, and Greensboro for PBE and mean shear, only the Charleston sounding had adequate values of PBE and mean shear to fail into the tornadic region as defined by Rasmussen and Klemp's work. The results are shown in figure 24; each sounding is identified by its three letter station identifier. The Greensboro sounding is not indicated on figure 24 because the PBE value was less than the minimum scale value of this figure. However, the shear value

was the highest of the soundings evaluated. Table 4 gives the calculated values of PBE and mean shear for each sounding.

Two additional points are identified on figure 24. The first considers the source region of the low-level air in the Raleigh area by 0600 UTC as the South Carolina coast, and combines the lower tropospheric sounding data (≤850 mb) of Charleston with the upper-level air (>850 mb) of Greensboro. The result is plotted as CMB. The second was a mean stear value using winds derived from time averaged grids of McIDAS wind data to estimate a 0600 UTC standard level profile above RDU. This was combined with the PBE value of the combined case (CMB) and is plotted on the figure as DER. Both points are located well within the tornadic region of figure 24, and may indicate the changes which occurred with the introduction of the warm, moist air to the Raleigh area.

Table 4. Values of PBE and 0-4 km mean shear for Greensboro (GSO), Charleston (CHS), Athens (AHN), and Capa Hatteras (HAT). Also, values were calculated for the combined lower (≤850 mb) CHS and upper (>850 mb) GSO sour.dings (as CMB). A shear value was calculated for winds Jerived from time averaged McIDAS wind grids for 0600 UTC (as DER).

<u>Station</u>	Shear (s^{-1})	<u>PBE (m²s-2)</u>
GSO	1.45×10^{-2}	317
CHS	8.74×10^{-3}	₁ 725
AHN	1.07×10^{-2}	498
HAT	8.57×10^{-3}	723
CMB	$1.10x10^{-2}$	2384
DER	9.53×10^{-3}	

An analysis of the barograph traces for Charlotte and Greensboro showed, in addition to the steady pressure fall caused by the approach of the synoptic scale system, a series of pressure perturbations were evident. Figure

25, the pressure traces for Greensboro, Charlotte and Raleigh, indicates the pressure jump activity occurred west of the Raleigh area. The Raleigh trace reveals no evidence of the kind of pressure jump activity seen at Charlotte or Greensboro. It is possible these pressure perturbations were channeled along a track that ran to the west of Raleigh near the area where the pre-frontal surface trough developed and the squall line formed.

3.2 Development as Seen in Radar Imagery

Between 0432 UTC and 0634 UTC on November 28, other than the normal hourly radar observations, only a single special observation was disseminated. Table 5 gives the criteria for special observations of convective cells. The squall line did not meet criteria for line development until 0528 UTC. The only special was taken at 0603 UTC for the Raleigh cell when it came within 5,000 feet of the tropopause. The highest D/VIP level was four (this level of radar return is considered very strong - see table 5), but none of the signatures normally associated with severe weather were evident. No hook echo was seen with this storm, but given the distance of the radar from the tornado it was not likely to be detected. Radar observed hook-shaped appendages are small and change rapidly. As a result, they have been found only at short ranges where the radar resolution is high (Battan, 1973).

Table 5. The criteria for taking and disseminating special observations of radar observed meteorological phenomena, from the Federal Meteorological Handbook #7, Weather Radar Observations, Part A (1987).

Criteria for Special Observations (Sect. 10.2.2):

a) echoes of extreme intensity (D/VIP 6) are observed.

b) echoes of very strong (D/VIP 4) or intense (D/VIP 5) intensity are observed in or near a severe weather forecast area.

- c) convective echoes observed having hooks, holes, appendages or other features that are characteristic of severe weather.
- d) convective echoes are observed whose projected paths will intersect within the next 30 minutes.
- e) convective echoes with severe weather potential are observed whose tops are within 5,000 feet of the tropopause, exceed the tropopause, or reach at least 50,000 feet above MSL.
- f) convective echoes with intensity greater than strong (D/VIP 3) persist at the same location for an hour or more.
- g) a line echo wave pattern (LEWP) is observed.
- h) a tornado or severe thunderstorm has been reported within radar range during the past hour. Take a special observation whether or not the report is verified.
- i) the eye or center of a hurricane or tropical storm is observed.
- j) flash flooding is reported near observed echoes. Take a special observation whether or not the report is verified.

The radar development of the storm as compiled from radar logs and interviews of station personnel (NOAA, 1989) is summarized:

0528 UTC - VQN observed level 3 DVIP (Digital/ Video Integrator and Processor) intensity with tops below 35,000 feet located 30 miles west of Raleigh. The area was moving east-northeast at 35 mph, while individual cells were moving northeast at speeds greater than 45 mph.

0603 UTC - VQN transmited a special radar observation for the cell over Raleigh (the information had been called to the forecaster at RDU a few minutes prior to dissemination). The maximum top was now at 45,000 feet with a level four DVIP intensity to 16,000 feet. This satisfied special criteria for a convective cell with echo tops within 5,000 feet of the tropopause (46,900 feet at GSO).

0616 UTC - RDU meteorologists called VQN concerning the Raleigh cell. Radar observer indicated the cell was now a DVIP level three and tops had lowered by approximately 8,000 feet.

(The thunderstorm top remained near 37,000 feet and did not again meet any of the criteria for a special observation. The result - the Raleigh thunderstorm cell was not identified as being tornadic until 0702 UTC)

The behavior noted in the previous paragraph where the thunderstorm top lowered by several thousand feet has been frequently observed in a number of tornadic thunderstorms. Radar observations indicate that tornado touchdown was often accompanied by a decrease in echo maximum height and a decrease in the height of the Bounded Weak Echo Region (BWER) (e.g., Lemon et al., 1978).

The evolution of the squall line and the Raleigh thunderstorm cell is shown in figures 26(a)-(f). Only DVIP level 2 and greater returns are depicted. Radar imagery showed the line of D/VIP level 2 echoes which developed into the squall line became distinct around 0415 UTC. In general, a much larger area of rain and thunderstorms was occurring from the Gulf of Mexico northward along the eastern seaboard. The Raleigh cell reached level 4 D/VIP intensity near 0530 UTC, and no characteristic severe storm radar signatures were seen.

The squall line appears to have developed along the axis of the surface pre-frontal trough. Figures 26(b) and 26(e) show agreement in the position of the axis of the surface trough, figures 15(c) and (d), and the location of the squall line at 0500 and 0600 UTC. During the time from beginning of the squall line to the development of the Raleigh tornado, either the Alberta or Raleigh thunderstorm cell was the dominant cell along the line. When the radar echo growth of the squall line was measured in terms of DVIP level 2 and greater returns for areal coverage, there was initially a single broad area of level 2 returns at 0415 UTC. The line then began to take on cellular characteristics and areal coverage decreased slightly. The first cell to dominate the squall line in terms of areal coverage was the Alberta tornado thunderstorm cell between

0500-0530 GMT. Figure 27 shows the changes which occurred in the extent of the squall line areal coverage. For the Alberta cell we see an increase in areal extent of the squall line followed by a decrease near or just after tornado development. The Raleigh storm shows similar behavior between 0530-0630 UTC. First, it became the dominant cell along the squall line and areal coverage of the line reached its maximum value soon after the Raleigh tornado had touched down, 0621 UTC. After the Raleigh tornado developed there was a decrease in areal coverage.

Movement of the storm as determined by radar was 245° at 26 ms⁻¹. When this is compared with the mean wind of the environment, we see that the Raleigh thunderstorm cell was a right mover. This, as well as tornado production, are characteristics of supercell storms. In table 6, we see the storms movement was some 15° to the right of the mean wind.

Table 6. Mean wind as defined by the vector mean of the 850, 700, 500 and 300 mb levels for Greensboro (GSO), Athens (AHN), and Raleigh (RDU) in comparison to the radar derived direction and speed of the Raleigh storm. Directions are in degrees, speed in mps. The Raleigh mean wind was estimated from time averaged upper air winds on McIDAS.

		GSO		AHN		RDU (est)
	Level	Dir	Spd	Dir	Spd	Dir	Spd
1	850	200	24	205	19	230	19
	700	215	32	205	21	230	32
	500	240	40	240	38	220	40
	300	245	44	235	53	233	42
	Mean						
	Wind	229	33	227	32	228	31
ı							

Storm motion (from radar): 2450 /26ms⁻¹

3.2.1 A Special Feature of the Raleigh Thunderstorm as Seen by Radar

As noted previously by radar and following in satellite imagery, the Raleigh thunderstorm cell top collapsed from 45,000 feet to 37,000 feet after the time of tornado production. This behavior is not unusual. NOAA Technical Memorandum NWS TC 1 (1982) describes research results of tornadic thunderstorms seen by radar as:

"10.17 Fujita noted tornado occurrence after the collapse of overshooting thunderstorm tops.

10.17.1 Radar Characteristics

Lemon found the echo top generally:

- A. Lowers from 2 to 7 km (about 7-23 kft).
- B. Shifts back near the low level echo area."

However, it is interesting to note that while the tornado was on the ground continuously for about 105 minutes (0600 UTC-0745 UTC), radar logs indicate the storm top never regained its former height, staying between 37,000 and 40,000 feet in height.

3.3 Development as Seen in Satellite Imagery

Despite only 30-minute interval GOES IR imagery for this case, similar trends in behavior were seen for the Raleigh storm as in other severe storm cases (Adler and Fenn, 1981, 1979a). Reynolds (1980), in a study of hailstorms as seen in satellite imagery, also found 30-minute satellite data was sufficient to observe the characteristic signature of the hailstorms. Figure 28, cloud top temperature vs. time for the Raleigh cell, shows a rapid decrease in cloud top temperature began about an hour prior to the Raleigh tornado. After reaching its lowest temperature, 211° K, in the 0601 UTC satellite image, at the time of tornado production, the

storm top temperature increased (cell top height lowered) slowly through the life of the tornado. Storm top collapse was also verified by the radar data (see Section 3.2).

The divergence of a cloud top is extremely important in determining vertical velocity within a severe thunderstorm. Anderson (1982), in a storm-scale study of the top of the thunderstorm which produced the Wichita Falls tornado, found maximum divergence values associated with the tornado producing mesocyclone. In this case study, divergence of the Raleigh thunderstorm cell top was determined using the McIDAS area statistics capability.

Using McIDAS, area statistics were calculated for IR pixel values corresponding to a cut-off temperature for each image. The cut-off value used for the areal cloud top change calculations was ≥223° K. This was similar to Adler and Fenn's (1979a) value of 226° K used in their case studies, and seemed a reasonable estimate of the anvil edges based on visual inspection of the data. The statistic was found by defining a search area on the satellite image. Then McIDAS counted the number of pixels with corresponding brightness values less than or equal to the cut-off value (for higher/colder cloud tops). The data was output as the number of pixels meeting the criteria and an average earth area for pixels within the defined region was given for area calculation. Results are shown in figure 29.

If the chosen blackbody temperature isotherm nearly coincides with the edge of the thunderstorm anvil, then expansion of the area within the isotherm is a measure of outflow divergence. A value of the divergence for the cloud top can be estimated by (after Adler and Fenn, 1979a),

DVG (divergence) =
$$(1/A) dA/dt$$

 $\overline{DVG} = \overline{(1/A)} \overline{(AA/At)}$

where $\Delta A/\Delta t$ for the period 0400-0700 UTC is calculated by,

$$\Delta A/\Delta t$$
 = constant = 9638km² - 383km²/10800sec = 0.86 s⁻²s⁻¹

DVG for the Raleigh storm for the period 0600-0630 UTC,

$$\overline{A} = (8541 \text{km}^2 + 5613 \text{km}^2)/2 = 7077 \text{km}^2$$

 $\overline{DVG}_{0600-0630} = (1/7077 \text{km}^2)(0.86 \text{km}^2 \text{s}^{-1}) = 1.2 \times 10^{-4} \text{s}^{-1}$

The value of divergence for the period 0600-0630 UTC, $1.2 \times 10^{-4} \text{s}^{-1}$, was of the same order of magnitude but less than Adler and Fenn found as the average of non-severe weather elements. This was also an order of magnitude less than Anderson (1982) found for the divergence at the top of the Wichita Falls tornado mesocyclone ($1.0 \times 10^{-3} \text{s}^{-1}$).

It is also possible to relate **w**, the vertical velocity of a thunderstorm cloud top, to the rate of temperature change of the cloud top. The vertical velocity is calculated by dividing the time rate of change of the temperature at the cloud top by the lapse rate through the lapse of the atmosphere in which this occured (after Adler and Fenn, 1979a):

$$\mathbf{w} = (\delta T/\delta z)^{-1} dT/dt$$

We calculated a vertical velocity for the Raleigh thunderstorm cloud top for the interval between the 0531 and 0601 UTC satellite images. A lapse rate was determined for the layer from 230 mb to 150 mb using the Greensboro sounding and the vertical velocity was calculated as:

$$-\delta T/\delta z = -55.7^{\circ} - (-64.5^{\circ})/2672 m = 3.3^{\circ} \text{ Kkm}^{-1}$$

 $dT/dt = 214^{\circ} - 211^{\circ} \text{ K}/30 \text{ min} = 0.1^{\circ} \text{ Kmin}^{-1}$
 $w = 0.1^{\circ} \text{ Kmin}^{-1}/3.3^{\circ} \text{ Kkm}^{-1} = 0.03 \text{ kmmin}^{-1} = 0.5 \text{ ms}^{-1}$

This result is less than we would expect for a severe storm cell. Adler and Fenn described an average of 2.7 ms⁻¹ for 11 tornadic cases, with ascent rates

up to 8 ms⁻¹ for very intense convection (Adler and Fenn, 1979b). However, given only 30-minute resolution, it is not suprising we did not find the dramatic, short time-scale changes that a rapidly developing supercell thunderstorm experiences.

Figure 28 shows the plot of cloud top temperature versus time for the Raleigh storm. From 0400-0600 UTC there was an 11° K drop in temperature for the Raleigh thunderstorm cell top as seen in satellite imagery. Again, as in the calculations of the cloud top divergence, 30-minute imagery does not accurately represent the rapid changes that can occur in a severe storm cell top. The Raleigh storm top temperature decrease of 11° K/120 min, or 3° K/30 min between the 0530 and 0600 UTC images, is in stark contrast to the 4.3° Kmin-1 change that Adler and Fenii (1981) and Mack, et al., (1983) found in a study of tornadic storms using three to five minute GOES imagery.

This is not to say however, that satellite imagery of the Raleigh storm did not give us a clue to its intensity or nature. Quite the contrary, research by both Perry (1989) and Schrab, et al., (1990) indicate the probable presence of a mesocyclone associated with the Raleigh thunderstorm. Using the method of Anderson (described in Section 1.3), it was found the Raleigh storm was well within the intensities measured as tornadic for this outbreak, and compared favorably when combined with case studies of other tornadic outbreaks.

3.4 Lightning Activity of the Raleigh Thunderstorm

Figure 30 is a histogram of the cloud-to-ground lightning activity for the period 0545-0609 UTC, in Wake County, North Carolina. The scale of the graph makes it appear as though there was a significant increase in the cloud-to-ground lightning rate during the last five-minute period (25 flashes per five minutes). However, a number of studies have documented electrically active storms with

peak sustained flash rates of 2,000 per hour (Goodman and MacGorman, 1985; Holle, et al., 1985).

3.5 Assessment of the Mesoscale Supporting Feature

By 0600 UTC, the Raleigh thunderstorm cell was associated with a mesoscale low. Figure 15(d) shows mesolows associated with both the Raleigh and Alberta thunderstorm cells. Tower data from Shearon-Harris Nuclear Plant (SHNP) was used to assess the mesolow. The SHNP data was used because its format as 15-minute interval data makes it possible to accurately evaluate the timing of the passage of the feature.

When tracing backwards from the track of the Raleigh tornado cell. SHNP was located along the axis of the storm's path. It is likely the storm center passed near the meteorological tower at the SHNP site. Figure 31, a plot of the 15 minute averaged pressure data at SHNP, shows the pressure began to drop rapidly just after 0515 UTC and did not recover until 0630 UTC. This indicated some form of mesoscale feature existed about 45 minutes before the Raleigh tornado was produced.

If the Raleigh thunderstorm and the mesolow were moving at the same rate of speed, and if the feature were in steady state we can estimate its size. From the radar data the thunderstorm's calculated speed was 26 ms⁻¹ or 1.56 kmmin⁻¹. It was seen in figure 31, it took about 75 minutes for the mesolow to completely pass the SHNP meteorological tower. Multiplying the thunderstorm's speed by the amount of time it took for the mesolow to pass by the SHNP tower gives an estimate of the size of the mesolow.

(1.56 km/min) (75 min) = 117 km

The RDU and local barograph traces show the same general trend and timing for the mesolow. The coarseness and resolution of these data made it difficult to determine an accurate time for the passage of the mesoscale feature from the traces. They were used, however, to corroborate the SHNP tower data.

Also from SHNP, a trace of the wind speed and direction at the 60 meter level showed a very interesting association with the mesolow. Figure 32 shows the general features of each trace. The wind direction veered steadily with time begining at about 0550 UTC until about 0620 UTC. What is absent in this picture is the sudden windshift from a southerly direction to a westerly direction that normally accompanies the passage of a thunderstorm outflow boundary. In this case there was not a sudden windshift, but one which took some thirty minutes to complete. This is an indication of a mesolow rather than a squall-line passage. Just as interesting was the trace of the wind speed. Again, there was no jump in wind speed as would be expected with a passing gustfront. Rather, wind speed steadily increased starting from about 0530 UTC, reached a peak about 0556 UTC when the pressure gradient force was presumably greatest, and decreased until about 0620 UTC. At the point of its closest pass, steady state winds were near 40 kt with gusts to 50 kt.

The veering winds indicate the mesolow center passed north of the Shearon-Harris Plant. Also, since radar indicated the thunderstorm cell was north of the tower, the wind speed supports the notion of very vigorous inflow into the storm.

Figure 15a. 0000 UTC surface pressure analysis at 1 mb intervals for November 28, 1988.

Figure 15b. Same as 15(a) except at 0400 UTC.

Figure 15c. Same as 15(a) except at 0500 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X".

Figure 15d. Same as 15(a) except at 0600 LTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Also, we see the Raleigh thunderstorm was associated with a mesoiow pressure feature.

Figure 16a. 0000 UTC surface wind convergence analysis for November 28, 1988. Units are $x10^{-5}$ s⁻¹.

Figure 16b. Same as 16(a) except at 0400 UTC.

Figure 16c. Same as 16(a) except at 0500 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Also, the Raleigh thunderstorm was within the area of maximum convergence.

Figure 16d. Same as 16(a) except at 0600 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X".

Figure 17. Regional and local are 1 hour pressure change in mb, and total pressure change for the period 28/0100-0700 UTC, November 1988.

Figure 18. Regional and local area minimum divergence (convergence) values for the period 27/2300-28/0700 UTC, November 1988.

Figure 19a. 0000 UTC moisture divergence analysis for November 28, 1988. Units are g/kg/hr.

Figure 19b. Same as 19(a) except at 0400 UTC.

Figure 19c. Same as 19(a) except at 0500 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Also, note cells were located near areas of maximum moisture convergence.

Figure 19d. Same as 19(a) except at 0600 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Note again that the cells were within the region of maximum surface moisture convergence.

Figure 20. Regional and local area minimum moisture divergence (convergence) values for the period 27/2300-28/0800 UTC, November 1988.

Figure 21a. 0000 UTC surface vorticity analysis for November 28, 1988. Units are $x10^{-5}$ s⁻¹.

Figure 21b. Same as 21(a) except at 0400 UTC.

Figure 21c. Same as 21(a) except at 0500 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X".

Figure 21d. Same as 21(a) except at 0600 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Also, the Raleigh thunderstorm cell and associated mesolow were within the region of maximum positive surface vorticity.

Figure 22. Regional and local area maximum vorticity values for the period 27/2300-28/0800 UTC November 1988.

Figure 23a. 0400 UTC surface thermal analysis for November 28, 1988. Contours are in $5^{\rm O}$ F intervals. Surface dewpoint values $\geq 65^{\rm O}$ F are represented by the hatched area.

Figure 23b. Same as 23(a) except at 0500 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Also, the Alberta cell was almost in the warm sector across the thermal boundary (it produced a tornado at approximately 0530 UTC).

Figure 23c. Same as 23(a) except at 0600 UTC. Note the positions of the Raleigh (RAL) and Alberta (ALB) thunderstorm cells are represented by the respective "X". Also, the Raleigh thunderstorm was in the warm sector across the thermal boundary and produced a tornado at 0600 UTC.

Figure 24. Plot of potential buoyant energy (PBE) and 0-4 kilometer mean wind shear (after Rasmussem and Wilhelmson, 1983). Included are the stations for the Raleigh tornado case (HAT, AHN, AYS, and CHS), a combined sounding (as CMB) using the Greensboro and Charleston upper air soundings, and a value derived from the time averaged upper-air wind grids (as DER).

Figure 25. Pressure traces from Charlotte (CLT), Greensboro (GSO), and Raleigh (RDU) for the period 27/1700-28/1700 UTC, November 1988.

Figure 26a. Radar depiction of the squall line at 0431 UTC, November 28, 1988 from the Volens, VA radar. Only DVIP level 2 and greater returns are represented.

Figure 26b. Same as 28(a) except at 0501 UTC.

Figure 26c. Same as 28(a) except at 0533 UTC.

Figure 26d. Same as 28(a) except at 0556 UTC.

Figure 26e. Same as 28(a) except at 0604 UTC.

Figure 26f. Same as 28(a) except at 0628 UTC.

Figure 27. Total area of the radar coverage of DVIP level 2 and greater returns for the Raleigh thunderstorm squall line. Also represented is the change in area between radar images.

Figure 28. Cloud top temperature versus time for the Raleigh thunderstorm cell from GOES IR imagery for the period 28/0230-0800 UTC, November 1988.

Figure 29. Cloud top anvil area growth for the Raleigh thunderstorm cell from GOES IR imagery for the period 28/0230-0800 UTC, November 1988.

Figure 30. Histogram of the cloud-to-ground lightning activity for the Raleigh thunderstorm cell from the STINY-Albany Lightning Detection Network for the period 28/0545-0609 UTC, November 1988, in five-minute increments.

Figure 31. Plot of the 15-minute averaged pressure (inHg) at the Shearon-Harris Nuclear Plant for the period 28/0400-0730 UTC, November 1988.

Figure 32. Plot of the wind speed and direction traces at the Shearon-Harris Nuclear Plant for the period 28/0500-0700 UTC November 1988. Wind direction is in degrees, speed in miles per hour.

4. DISCUSSION OF RESULTS

The development of the Raleigh thunderstorm has been described in terms of the data available to document its environment and the unique circumstances which contributed to the tornadoe's development. Evidence was presented to show the changes in the environment which occurred prior to tornado development, and demonstrated the coupling of the Raleigh thunderstorm mesocyclone with a strong, localized surface vorticity field and subsequent production of the Raleigh tornado.

The Raleigh thunderstorm cell was classified as a supercell or mesocyclone because it met the following criteria:

- a) it was long-lived. Considering the time from when the cell was recognized as part of the developing squall line until it produced its final tornado, 0528-0835 UTC, it had lasted more than three hours.
- b) it was a right mover. It was found the storm deviated to the right of the mean wind by about 15° (Table 6).
 - c) the storm produced three tornadoes, one rated F4, and two F2's.

Severe storms, like the Raleigh thunderstorm, are known to develop in environments characterized by large potential instabilities and vertical wind shear. As well, the basic building blocks of unstably stratified, and moist, convergent airflow are vital to the development of severe storms. It was our working hypothesis that all these elements were in place by 0600 UTC despite the marginal situation for severe weather which existed at 0000 UTC.

Evidence was presented to show that all the known factors required for severe storm production were in place by 0600 UTC and the atmosphere was conducive for the severe storms. Analysis of the 0000 UTC soundings showed very strong vertical wind shear was present through the entire middle and

southern Atlantic coast region. By 0600 UTC over the Raleigh region, the wind profile derived from time-averaged upper-air wind grids indicated the vertical wind shear was still present. At the surface, with the north and westward movement of the thermal boundary, the Raleigh area was then exposed to the warm, moist, more convectively unstable air behind the thermal boundary. In addition, strong southerly flow from the South Carolina coast and off-shore Gulf Stream provided a steady and abundant supply of moisture for the maintenance of convection.

Another factor considered essential for the development of severe weather was the presence of dry air in the middle-levels of the upper atmosphere. By 0600 UTC it was clearly evident in the water vapor imagery that drier air was present in upper atmosphere and the Raleigh storm formed on the boundary of the moist and dry air regimes.

Convection, in the form of a squall line, developed west of the Raleigh area along a pre-frontal surface trough. The region in which the trough formed was coincident with a surface mesoscale convergence area. Supporting the surface convergence was a short-wave trough in the mid-levels of the atmosphere. This provided for the removal of the accumulating mass at the surface, and the trough deepened over time.

The radar observation at 0528 UTC showed the Raleigh thunderstorm was about 30 miles southwest of RDU with a radar-observed height of 35,000 feet. By 0603 the thunderstorm had grown to 45,000 feet and produced a tornado. The storm top then collapsed some 8,000 feet and remained near this height for nearly two hours while producing the long-tracked, long-lived Raleigh Tornado. The tornado and thunderstorm cell then moved parallel to the thermal boundary until the tornado dissipated in northeastern North Carolina. It has long been recognized that where a line of thunderstorms intersects such a baroclinic zone is

a favored location for the occurrence of tornadic storms (Maddox and Doswell, 1982). It has also been observed that in environments considered weak or marginal for the production of severe weather, tornadic storms have developed along or near an existing thermal boundary (Maddox, et al.,1980). In addition, characteristics of these tornadic storms are that tornadoes which move across the thermal boundary are short-tracked and intense (rated F2 or greater), and those which move parallel to the boundary are long-tracked and intense. Our evidence shows the Raleigh tornado developed, then moved parallel to the thermal boundary as a long-tracked violent tornado.

When the Raleigh thunderstorm moved through the Raleigh area it was embedded in a mesolow which was probably more than 100 kilometers in extent. Tower data from the SHNP southwest of Raleigh and along the thunderstorms path suggested that a mesolow feature passed with windspeeds in excess of 20 ms⁻¹.

Satellite data supprted the existence of a mesocyclone with the Raleigh thunderstorm (Perry, 1989; Schrab, et al., 1990) prior to the Raleigh tornado. This is important when one considers that in a survey of Doppler observations using the NEXRAD prototype (Anderson, 1990), only about 50 percent of storms with the tornado vortex signature actually produced tornadoes. As this indicates, the presence of a mesocyclone does not guarantee a tornado will develop. In the Raleigh tornado case, a number of environmental parameters were maximized in the Raleigh area at the time of the Raleigh tornado.

The figures showing convergence, surface vorticity, and surface pressure suggest ample low-level horizontal vorticity was present at the time of the Raleigh tornado development. This coupled with the existing mesocyclone produced a situation where both a mesocyclone and a surface vorticity field which could be

intensified by the wind convergence into the thunderstorm cell were present for tornado production.

We can accept our working hypothesis that although the 0000 UTC environment was marginal for the development of severe weather, by 0600 UTC the atmosphere had evolved all the conditions known to be necessary for severe weather production (actually the atmosphere was ready for severe weather by 0530 UTC if one considers the Alberta tornado). Also, it was seen that the mesocyclone intensification and tornado production occurred in the region of a pre-existing thermal boundary.

Finally, the Raleigh tornado case demonstrated an association of, and the possible coupling of an existing mesocyclone with strong surface vorticity enhanced by convergence fields and a nearby thermal boundary to produce a tornado. The timing of these events strongly suggests a cause-effect relationship. Additionally, remarkable evidence was presented to show the Raleigh tornado persisted, continuously on the ground for nearly 2 hours, despite being imbedded in a thunderstorm of only modest height (near 40,000 feet).

5. CONCLUSIONS

5.1 Minor Findings

The Raleigh thunderstorm exhibited features of severe thunderstorms which collaborate the findings of other researchers. These are:

- a) The storm intensified as it moved across a surface thermal boundary.
- b) Rapid storm growth occurred in the vicinity of the thermal boundary, and prior to producing the F-4 rated Raleigh Tornado. The tornado path was extremely long, approximately 135 kilometers, and was parallel to the thermal boundary.
- c) The storm cell top collapsed some 8,000 feet as it produced the Raleigh Tornado. Subsequently, the F-4 tornado was maintained for some 135 km despite existing in a thunderstorm complex of only modest extent.

5.2 Major Findings

The Raleigh tornado and thunderstorm represent one of the rarest, yet most violent of atmospheric storms - the "killer tornado." It was extremely violent, long-lived, and had a lengthy damage path. In some manner, the quasi-steady tornado vortex and its parent mesocyclone developed in a rapidly changing and complex environment, possibly the result of the coincidence of an existing mesocyclone with strong, low-level horizontal vorticity.

There were three major findings as a result of this research. These were:

- a) The environment evolved severe storm potential. Despite marginal conditions for severe storm production at 0000 UTC, as evidenced by severe weather indices and the weather forecast, all the known factors for severe storm production were in place by 0600 UTC.
 - b) The Raleigh thunderstorm was associated with a strong mesolow. The

surface mesolow was between 100 and 120 kilometers in extent, and its influence began to be felt in the area some 45 minutes prior to the production of the tornado.

c) There was evidence for the coupling of an existing mesocyclone with a surface vorticity field enhanced by convergence along the axis of the storms inflow, and by thermal boundary interaction.

This finding dealt with the complex atmospheric interactions required to produce a tornado. Noting Anderson's (1990) hypothesis that an existing mesocyclone must couple with an enhanced surface vorticity field to build a tornado through the surface boundary layer, the Raleigh tornado case offers evidence for such a coupling. Satellite imagery indicated the presence of a mesocyclone within the Raleigh thunderstorm prior to tornado development. At the surface, a number of factors were present to enhance the horizontal surface vorticity. Our data shows ambient surface vorticity was maximized in the Raleigh area at the time of the Raleigh tornado as a result of the squall line convergence. Additionally, strong thermal contrast to the west of the Raleigh area was also responsible for mesoscale intensification of the surface vorticity. Maddox, et al., 1980, developed a physical model of the boundary-layer wind fields across thermal boundaries. According to the model, winds veer slowly with height on the cool side of the thermal boundary, while winds veer rapidly through the subcloud layer in the hot, moist air mass. In this model, when the mean subcloud winds are considered, the meso-scale moisture convergence and cyclonic vorticity are maximized across a narrow mixing zone along the thermal boundary.

Also, Klemp and Rotunno (1983) found that large low level vorticity is generated through the tilting and intense stretching of air from the inflow side of the storm. Analysis of their simulation results showed this vertical vorticity to be

derived from the horizontal vorticity of the environmental shear, and the horizontal vorticity generated solenoidally as low-level air is swept into the storms inflow along the storms cold outflow boundary. Their results showed the vorticity generated by these interactions could be three times the magnitude of the synoptic horizontal vorticity. They attained low-level vorticities exceeding 2x10⁻² s⁻¹. In the Raleigh study, the synoptic scale vorticity values never exceeded 2.5x10⁻⁵ s⁻¹, however, storm scale values were probably much greater.

When coupled with the existing mesocyclone of the Raleigh thunderstorm, the already strong horizontal cyclonic vorticity field was intensified by the wind convergence along the axis of the low level inflow into the Raleigh supercell.

Apparently, some threshold value was reached which allowed the spin-up of the tornado through the boundary layer to the surface.

6. BIBLIOGRAPHY

Adler, R.F., and D.D. Fenn, 1979a: Thunderstorm Intensity as Determined from Satellite Data. J. Appl. Meteor., **18**, 502-517.

Adler, R.F., and D.D. Fenn, 1979b: Thunderstorm Vertical Velocities Estimated from Satellite Data. J. Atmos. Sci., 36, 1747-1754.

Adler, R.F., and D.D. Fenn: Satellite-Charved Cloud-Top Height Changes in Tornadic Storms. J. Appl. Meteor., 20, 1369-1375.

Anderson, C.E., 1982: Dramatic Development of Thunderstorm Circulation Associated with the Wichita Falls Tornado as Revealed by Satellite Inagery. <u>Preprints 12th Conf. Severe Local Storms</u> (San Antonio, TX), Amer. Meteor. Soc., Boston, MA.

Anderson, C.E., and M.W. Gunning, 1983: Mesoscale Forcing Factors in the Long-Lived Wichita Falls, Tx Tornadic Storm. <u>Preprints 13th Conf. Severe Local Storms</u> (Tulsa, OK), Amer. Meteor. Soc., Boston, MA.

Anderson, C.E., 1985a: The Fall-out Pattern for Debris from the Barneveld, WI Tornado: An F-5 Storm. <u>Preprints 14th Conference Local Storms</u> (Indianapolis, IN), Amer. Meteor. Soc., Boston, MA.

Anderson, C.E., 1985b: The Barneveld Tornado: A New Type of Tornadic Storm in the Form of a Spiral Mesolow. <u>Preprints 14th Conf. Severe Local Storms</u> (Indianapolis, IN), Amer. Meteor. Soc., Boston, MA.

Anderson, C.E., and K.J. Schrab, 1988: The Use of Satellite Imagery to Identify Tornadic Thunderstorms. <u>Preprints 15th Conf. Severe Local Storms</u> (Baltimore, MD), Amer. Meteor. Soc., Boston, MA.

Anderson, C.E., 1989: Private Communication.

Anderson, C.E., 1990: Private Communication.

Barnes, S.L., and C.W. Newton, 1982: Thunderstorms in the Synoptic Setting. Thunderstorms: A Social Scientific, and Technological Documentary, Volume 2, Thunderstorm Morphology and Dynamics, Edwin Kessler (Editor), U.S. Dept of Commerce, NOAA/ERL, 109-172.

Battan, L.J., 1973: <u>Radar Observation of the Atmosphere</u>. University of Chicago Press. 324 pp.

Brandes, E.A., 1984: Vertical Vorticity Generation and Mesocyclone Sustenance in Tornadic Thunderstorms: The Observational Evidence. <u>Mon. Wea. Rev.</u>, **112**, 2253-2269.

Browning, K.A., 1982: General Circulation of Middle-Latitude Thunderstorms. Thunderstorms: A Social Scientific, and Technological Documentary, Volume 2, Thunderstorm Morphology and Dynamics, Edwin Kessler (Editor), U.S. Dept of Commerce, NOAA/ERL, 211-247.

Brunswick Times-Gazette, 1988: <u>Brunswick Times-Gazette</u>, <u>November 30, 1988</u> <u>Edition</u>, Brunswick County VA.

Colquhoun, J.K., 1982: A Logic Sheet to Assist Forecasting Thunderstorms and Severe Thunderstorms. <u>Preprints 12th Conf. Severe Local Storms</u> (San Antonio, TX), Amer. Meteor. Soc., Boston, MA.

Colquhoun, J.K., and D.J. Shepheld, 1985: The Relationship Between Tornado Intensity and the Environment of its Parent Severe Thunderstorm. <u>Preprints 14th Conf. Severe Local Storms</u> (Indianapolis, IN), Amer. Meteor. Soc., Boston, MA.

Davies-Jones, R., 1982: <u>Thunderstorms: A Social Scientific, and Technological Documentary, Volume 2, Thunderstorm Morphology and Dynamics</u>, Edwin Kessler (Editor), U.S. Dept of Commerce, NOAA/ERL, 297-351.

Doswell, C.A., 1982: <u>The Operational Meteorology of Convective Weather, Volume 1: Operational Mesoanalysis</u>. NOAA Technical Memorandum NWS NSSFC-5, U.S. Dept of Commerce (NTIS #PB83-162321).

Federal Meteorological Handbook #7, 1987: Federal Meteorological Handbook #7, Weather Radar Observations, Part A. NOAA, U.S. Dept. of Commerce.

Fujita, T.T., 1981: Tornadoes and Downbursts in the Context of Generalized Planetary Scales. <u>J. Atmos. Sci.</u>, **38**, 1511-1534.

Fujita, T.T., and D. Stiegler, 1985: Detailed Analysis of the Tornado Outbreak in the Carolinas by Using Radar, Satellite, and Aerial Survey Data. <u>Preprints 14th Conf. Severe Local Storms</u> (Indianapolis, IN), Amer. Meteor. Soc., Boston, MA.

Glossary of Meteorology, 1959. Amer. Meteor. Soc., Boston, MA, 585 pp. Goodman, S.J., and D.R. MacGorman, 1985: Lightning Activity in Mesoscale Convective Systems. Preprints 14th Conf. Severe Local Storms (Indianapolis, IN). Amer. Meteor. Soc., Boston, MA.

Heymsfield, G.M., and S. Schotz, 1985: Structure and Evolution of a Severe Squali Line Over Oklahoma. <u>Mon. Wea. Rev.</u>, **113**, 1563-1589.

Holle, R.L., A.I. Watson, J.R. Daugherty, and R.E. Lopez, 1985: Cloud-to-Ground Lightning in the Mesoscale Convective System on May 20-21, 1979 During SESAME. <u>Preprints 14th Conf. Severe Local Storms</u> (Indianapolis, IN). Amer. Meteor. Soc., Boston, MA.

Klemp, J.B., 1987: Dynamics of Tornadic Thunderstorms. <u>Ann. Rev. Fluid Mech.</u>, **19**, 369-402.

Leftwich, P.W. Jr., and X. Wu, 1988: An Operational Index of the Potential for Violent Tornado Development. <u>Preprints 15th Conf. Severe Local Storms</u> (Baltimore, MD), Amer. Meteor. Soc., Boston, MA.

Lemon, L.R., D.W. Burgess, and R.A. Brown, 1978: Tornadic Storm Airflow and Morphology Derived from Single-Doppler Radar Measurements. <u>Mon. Wea. Rev.</u>, 106, 48-61.

Lewis, J.M., Y. Ogura, and L. Gidel, 1974: Large Scale Influences Upon the Generation of a Mesoscale Disturbance. Mon. Wea. Rev., 102, 545-560.

MacGorman, D.R., W.D. Rust, and V. Mazur, 1985: Lightning Activity and Mesocyclone Evolution, 17 May 1981. <u>Preprints 14th Conf. Severe Local Storms</u> (Indianapolis, IN), Amer. Meteor. Soc., Boston, MA.

Mack, R.A., A.F. Hasler, and R.F. Adler, 1983: Thunderstorm Cloud Top Observations Using Satellite Stereoscopy. Mon. Wea. Rev., 111, 1949-1964.

Maddox, R.A., L.R. Hoxit, and C.F. Chappell, 1980: A Study of Thunderstorm Interactions with Thermal boundaries. <u>Mon. Wea. Rev.</u>, **108**, 322-336.

Maddox, R.A., and C.A. Doswell, 1982: Forecasting Severe Thunderstorms: A Brief Evaluation of Accepted Techniques. <u>Preprints 12th Conf. Severe Local Storms</u> (San Antonio, TX), Amer. Meteor. Soc., Boston, MA.

Miller, R.C., 1967: Notes on Analysis and Severe Storm Forecasting Procedures of the Military Weather Warning Center. Technical Report 200, USAF Air Weather Service. Miller, R.C., 1972: Notes on Analysis and Severe Storm Forecasting Procedures of the Air Force Global Weather Central. Technical Report 200 (Revised), USAF Air Weather Service.

Miller, D.A., and F. Sanders, 1980: Mesoscale Conditions for the Severe Convection of 3 April 1974 in the East-Central United States. <u>J. Atmos. Sci.</u>, **37**, 1041-1055.

NOAA, 1989: <u>Natural Disaster Survey Report to the Assistant Administrator for Weather Services, The North Carolina Tornadoes of November 28, 1988.</u> U.S. Dept of Commerce, 42 pp.

NOAA, 1982: <u>An Outline of Severe Local Storms with the Morphology of Associated Radar Echoes, NOAA Technical Memorandum NWS TC 1.</u> U.S. Dept of Commerce, 80 pp.

Ogura, Y., and Y. Chen, 1977: A Life History of an Intense Mesoscale Convective Storm in Oklahoma. <u>J. Atmos. Sci.</u>, **34**, 1458-1476.

Perry, D.R., 1989: Private Communication.

Rasmussen, E.N., and R.B. Wilhelmson, 1983: Relationships Between Storm Characteristics and 1200 GMT Hodographs, Low-Level Shear, and Stability. Preprints 13th Conf. Severe Local Storms (Tulsa, OK), Amer. Meteor. Soc., Boston, MA.

Reynolds, D.W., 1980: Observations of Damaging Hailstorms from Geosynchronous Satellite Digital Data. Mon. Wea. Rev., **108**, 337-348.

Schlesinger, R.E., 1983: Effects of Mesoscale Lifting, Precipitation, and Boundary-Layer Shear on Severe Storm Dynamics in a Three-Dimensional Numerical Modeling Study. Preprints 13th Conf. Severe Local Storms (Tulsa, OK), Amer. Meteor. Soc., Boston, MA.

Schrab, K.J., 1988: A Study on the Use of Satellite Imagery to Identify Tornadic Intensity of Thunderstorms. Masters Thesis, University of Wisconsin, Madison, Wisconsin.

Schrab, K.J., C.E. Anderson, and J.F. Monahan, 1990: The Detection of Tornadoes and Their Intensities Using Statistical Analyses of Satellite Derived Characteristics of the Parent Thunderstorms. Unpublished.

Tecson, J.J., T.T. Fujita, and R.F. Abbey, 1979: Statistics of U.S. Tornadoes Based on the DAPPLE Tornado Tape. <u>Preprints 11th Conf. on Severe Local Storms</u> (Kansas City, MO), Amer. Meteor. Soc., Boston, MA.

The News and Observer Publishing Company, 1988: <u>Special Edition "TORNADO"</u>. The News and Observer, Raleigh, N.C. Uccelini, L.W., 1975: A Case of Apparent Gravity Wave Initiation of Severe Convective Storms. <u>Mon. Wea. Rev.</u>, **103**, 497-513.

Weisman, M.L., and J.B. Klemp, 1982: The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. <u>Mon. Wea. Rev.</u>, 110, 504-520.

Wilson, J.W., 1986: Tornadogenesis by Nonprecipitation Induced Wind Shear Lines. Mon. Wea. Rev., 114, 270-284.

7. APPENDIX

This appendix contains the detailed surface observations for the period 28/0000 UTC to 28/1200 UTC November, 1988, for the southern United States, including the states of Alabama, Georgia, Kentucky, North Carolina, South Carolina, Tennessee, and Virginia. Special criteria observations are prefaced with an "S." All other observations are routine hourlies. Format is as specified:

Dona/		C					Stn	cld			e t at	**-*		Dragin
Date/	٥.	Stn	m	mn.					**: -	****	cld	-		Precip
Time	St	ID	T	ענ	Wind	GBI	Pres	Amt	Vis	_nx	LOW	MIC	l/Hi	Amt
272355	Ат	uetr	48	16	2708		1013.8	310	8.0		75	15		.25
272355			45		2908		1014.8		7.0		18	11		.14
272349			51		2508		1014.8		7.0	ь	20	10		.06
272338			51	50	2608		1015.1			RW-	60		250	.00
272355			49	48	3006		1015.5		6.0		28	4	60	.35
272354			54	50	3406		1014.1		7.0		45	•	00	.10
272350			61		3412		1012.4		7.0	κ-	12			.06
212350			53	49	3408		1015.1				34			. 34
272358			54			23	1013.1			RW-	10			.02
272355			56	50	3608		1014.1			R-F	46	7	28	.05
280052			47		3112		1014.1				30	10	75	
280052			44	39			1015.5		7.0		70	18		
280050			51		0000		1012.4		7.0		50	10		
280050			48		2808		1015.1		4.0	R -	65	10		
280053			49	47			1015.8		7.0		60	5		
280053			5 3	51			1014.1		7.0		50	20		
290051			57	51	3412		1013.1		7.0		25	-		
280050			54	48	3610		1015.5				40			
280056	AL	OZR	54	51		16	1013.8		7.0		30			
S280117	ΑL	OZR			3409	16	1014.5	310	7.0	R-	30	24		
280055	AL	MXF	55	49	3206		1013.8	310	7.0		46	28		
280150	AL	HSV	46	42	3014		1014.5	213	12.0		33	15	75	
280158	ΑL	MSL	4.3	39	3008		1016.1	010	10.0			70		
280150	AL	ANB	50	49	2804		1013.1	310	7.0		50	8		
280150	AL	вни	47	45	3208		1015.5	310	8.0		75	10		
280148	ΑL	TCL	48	47	2804		1016.5	311	7.0		65	5	25	
280153	AL	MGM	5 3	49	3108		1015.1	300	7.0		55			
280153	AL	DHN	56	48	3310		1014.5	300	7.0		31			
280153	AL	MOB	5.3	47	3610		1016.1	300	10.0		46			
280156	AL	OZR	5.3	51	3508	14	1014.5	310	6.0	R-	30	20		
280155	ΑL	MXF	55	49	3008		1014.8	310	7.0		50	28		
280251	AL	HSV	44	39	3012		1015.1	200	15.0		90			.00
280250	AL	BHM	47	45	3004		1015.8	310	10.0		90	10		.04
280250	$\mathbf{A}\mathbf{L}$	TCL	48	46	3004		1017.2	310	7.0		70	10		.00
280251	$\mathbf{A}\mathbf{L}$	MGM	52	48	3108		1015.8	310	7.0		60	20		.00
280250	AL	DHN	54	51	3106		1014.5	300	7.0		31			
\$280320	ΑL	DHN			3206		1014.5	300	5.0	R-F	25			
280252	ΑL	MOB	5 2	48	3310		1017.2	300	10.0		50			.00
280256	AL	OZR	53	50	3504		1015.1	300	6.0	R-F	30			.00
280255	AL	MXF	54	49	2904		1015.8	311	7.0		50	10	28	.00
280352			43	39	3112		1015.8	200	15.0		90			
280351	AL	MSL	40		2602		1016.8	000	10.0					
280350			4.7	45	2910		1014.8	230	2.0	R-F	10	30		
280352			46	44	2606		1016.5	310	10.0		90	10		
280352			47		2904		1017.5	200	7.0		70			
280352			51	45	3110		1016.5	311	7.0		70	15	40	
280350	AL	DHN	53	51	3204		1014.5	300	7.0		35			
280351	AL	MOB	52	46	3408		1018.5	300	10.0		60			

Date/		Stn		ŒD.		C - N	Stn	cld	via	L/m		Hgt		Precip
Time	Sţ	ID	T	10	Wind	GET	Pres	Amt	Vis	WX	LOW	/Mic	1/11	Amt
280356	AL	OZR	53	51	3502		1015.1	300	6.0	L-F	35			
280355	AL	MXF	53	42	3216	21	1016.1	311	7.0		60	10	28	
S280423	$\mathbf{A}\mathbf{L}$	MXF			3212		1016.8	310	7.0	RW-	60	10		
280450	AL,	HSV	41	38	2908		1016.5		15.0			90		
280456			38		2404		1017.2		10.0					
280452			46		2808		1015.5		7.0		35	10		
280451 280450			45	41	2810 3106		1017.2		7.0		100 80	10		
280450			45 49	45				310	7.0		80	50		
280450			53	50	3104			300	7.0		55	50		
280451			51	44			1018.9				65			
		OZR			3004			310	7.0		35	8		
280455	AL	OZR	5 3	50	3306		1015.5	311	7.0		35	8	20	
\$280529	AL	OZR			3006		1016.1	230	7.0		10	20		
280455	$\mathbf{A}\mathbf{L}$	MXF	51	43	3008		1017.2	300	7.0		60			
280549			39		2808		1016.5		15.0			90		.00
280548			37		2404		1017.2		10.0					.00
280550			46		2810		1015.5		7.0		18			
280550			44		2906		1017.5					10	100	.04
280550 280552			42 49		2906 3110		1019.2		7.0		85	20		.00
280553			53	49	3008		1017.3		7.0		18	20		.06
280550			51		3212		1019.5		10.0		70	23		.00
280555			52		3208		1016.1		7.0		10	16		.10
280555			51		2810		1017.2		7.0		60	40		.02
280650			40		2508		1016.5		15.0			250		
280650	AL	MSL	39	36	2706		1017.2	000	7.0					
280655	AL	ANB	45	37	2906	14	1016.5	210	7.0		80	20		
280250	AL	TCL	48	46	3004		1017.2	310	7.0		70	10		.00
280649	\mathtt{AL}	TCL	41	39	2804		1019.2	000	7.0					
280650	AL	MGM	48	43	3112		1017.5	310	7.0		85	40		
280650	AL	DHN	5 3	47	3210		1016.1	300	7.0		21			
280652			49	35	3314		1020.2				75			
280655			50	45	3212		1015.8		7.0		10	20	40	
280655			51	4.3	3012		1017.5		7.0		60	30		
280750			39		2706		1016.8							
2807:7 280752			39	35	2710 2810		1017.5		7.0		80	20	250	
280752			44 39		2604		1018.2		10.0		80	80	230	
280751			41		2806		1019.2		7.0			100		
280750			47		3210		1018.9		7.0		90			
280755			51		3112		1016.8		7.0		5.5			
280752			4.5		3208		1020.9		15.0					
S280735	AL	OZR			3212		1017.2	213	7.0		20	10	40	
280755	AL	OZR	50	42	3214	19	1017.5	213	7.0		20	10	40	
280755	$\mathbf{A} L$	MXF	49	37	3114		1018.9	210	7.0		60	40		
280850	AL	HSV	39	37	2808		1017.2	000	15.L					.00
280855	AI.	MSL	3.8		2708		1018.2	000	7.0					.00
280858			40		2506		1017.5		7.0			20	250	.00
280951			39		2606		1019.5							.00
280849			40		2906		1019.9		7.0					0.5
280850			44	38	3008		1019.5		7.0			100		.00
280855 280851			50	42	3012		1017.8		7.0		60	20		.00
280851			44 50	37 42	3208 3212		1021.6		7.0		22	10	40	.00
280855			46		3004		1019.2		7.0		22	10	4 0	.00
280951			38		2910		1017.8							.00
280955			37		2708		1018.9		7.0					
280951			39		2606		1017.8		7.0			250		
280948			39		2708		1019.2							
280950			40		2908		1020.9		7.0					
280950	AL	MGM	41		3008		1020.2		7.0					

							Stn	cld			cld	Hat	;	Precip
Date/ Time	5 t	Stn ID	T	TO.	Wind	Gst	Pres	Amt	Vis 1	Wx		Mid,		Amt
44														
280951	AL	DHN	49		3008		1018.5		7.0		60	25		
280952			42		3206		1022.2		7.0		25	40		
280955 280955			49 45		2704	19	1019.2		7.0		13	••		
281050			39			19	1018.5		15.0					
281055			38		2810		1019.2		7.0					
281050	AL	ANB	37		2404		1018.9		7.0					
281053			38		2606		1020.2							
281047			38 48		2706	16	1021.9		7.0		100	30		
281050 281051			41	38	3004	10	1022.9		15.0					
281055			47		3212		1020.5	220	7.0		25	40		
\$281108	A.L.	OZR			3210		1020.9		7.0			25	40	
281055			45		2704		1020.5		7.0					.00
281152			36		2710		1019.5		10.0					.00
281150 281152			37 37		2508 2404		1019.9		7.0					.00
281152			38		2506		1021.2		7.0					
291153			37		2804		1022.2	000	7.0					.00
281150			41	3.1	3006		1022.2	000	7.0					.00
281150	AL	DHN	46	36	2910		1020.9		7.0			40		.00
281154			41		3294		1023.6					40		.00
281155			45	35			1021.9		7.0			•		.00
281155	AL	MXE	44	30	2806		1021.7	000						
272348	GA	RMG	51	45	2404									
S272335					2910		1012.4	233	6.0	F	16	5	23	
272351	GA	FTY	51	49	3110		1012.8		6.0		16	5	23	.46
S272331	GA	ATL			3110		1011.7		6.0	L-F	3	11	25	20
272354			53	49		19	1012.1		7.0	TOWE	18	3		.28
\$280002					3304 3304		1010.4			TRWF	3			
\$280002 272350			55	5.4	2906		1010.0		3.0		3	20		.15
272330			70	66			1008.7				100	55	250	.07
\$280020					3212		1013.1	310	7.0		3 3	8		
272350	GA	csc	58	56	3214	16	1012.9	230	4.0	R-F	7	19		.13
5290021	GA	MCH			3108	:	1010.4				17	6		0.0
272347			6.2	60			1010.0			-	6	17	150	.08
S272332					1810		1009.4			TRWF	45	225	150	
\$280025 272349			69	60	2925 1714 -		1010.4				45		150	.08
272353			72	69			1011.4			-	250	130		.00
272352			76	65			1210.7				5.5	250		.00
272347			10	6.8	1014		1012.4	200	7.0		37			.00
\$290015	GA	VLD					1010.			TRW+	14			, e
272351			76		211		1011.4			TRW-	23	16	65	.00 .18
272355			58		2904		1012.8			,	15 28	9 12		.16
27235			5.1	4 :	1:1:16		1012.4 1011.4			TRW	70		100	
5290011 272355			78	7 1	1706		1011.1			TRW-	100		250	
5280020			7.0		341/		1010.4			RW-	18	8		
272355			6 3	6	3112		1010,0				8	24		
27234			55	5.2	3012	,	1011.	310	15.0		13	4		
280946	3 G	RMG	50	4 *	5 2302	,								
28005			51	48	3506		1012.6				25	16		
\$280129					3000		1017.				40 25			
28005			51 55		3 3100 4 2600		1010.			R-	26	3		
280050 \$280111			יכ	24	2701		1010.			R−F	10	,		
28011			69	61	5 JAT				10.0		250	49	90	1
28005			55		9 3119		1013.				3 3	8		
28005			59	5	7 311	0	1011.	4 310	7.0	R₩-	17	6		

Date'		Stn					Stn	cld			Clo	i Hgt	t.	Precip
Time	st	10	т	TD	Wind	Çat	Pres	Aint	V.B	Wx		v/Mic		Amt
										_				
280049 S280126			60	60	3114		1011.1		9.0	T	45 45	25 25		
280051			72	69	1914		1011.4				250			
280048			73		1306		1011.1		6.0	R-	50	250		
280047	GA	SSI	70	68	1710		1012.4	200	6.0	F	31			
280054			74	72	2806		1011.7			TRW-	14			
S280107					2808		1012.1			TRW	14	1 6		
\$280124 280055			56	47	2208 3108		1011.7		7.0	TRW-	75 32	15 10		
280055			50		3206		1012.1		7.0	L-	35	12		
280057	GA	VAD	73	70	2204		1012.1	213	7.0	TRW-	50	50	90	
280055	GA	WRB	60	59	3108		1011.1	310	7.0	RW-	20	8		
280047			53		2908		1011.4	213	15.0		13	4	30	
280148 280150			50 51		2502 0000		1012.1	200	7.0		40			
280150			51		3006		1011.7				28			
S280140			-	• •	2514		1011.1			R-F	20	9		
280153	GA	AHN	53	49	2912		1011.1	310	7.0		22	9		
\$280217					2812		1010.7		7.0		30	9		
280152			70		1910		1008.4				39	80	250	
280154 5280132			54	49	3306 3108		1013.8		7.0	RW-F	28 8	15		
280153			5.7	56	3110		1012.4			RW-F	8	15		
280148			58	58	3409		1012.1		10.0		45	25		
280151	GA	SAV	72	69	1812		1011.7	213	20.0		130	40	250	
5280224					1504		1010.4		7.0			156		
280147			70	68		17	1012.1		5.0			250		
280150 S280212			74	72	1906		1011.7		7.0	T	31 60	75 30		
5290220					2706		1015.1		7.0	R-	30	30		
280155			50	4.3	3004		1011.4		7.0		38	12		
S28 0210	GA	MGE			3004		1011.7	310	7.0		38	9		
5290229					3004		1011.7		7.0		38	9		
280155			71	78	1802		1011.4			TRW-	50			
\$280212 290155			58	5.8	1404 3208		1011.7		7.0	RW-	50 2 0	8		
280147			5.2		3104		1010.7			KW-	45	4	10	
280248	GA	RMG	49	4 3	3004									
280250	GA	FTY	50	48	1805		1012.4	230	7.0		11	40		
5280302					2705		1013.1			R-F	11			
\$290315 280249			. .		2304		1013.1			R-F	11	50		0.0
28/1249			51 52		2804 2708		1011.7		7.0		28 30			.00 .16
S280232			,,	•0	3117	21	1009.7			RW-F	17			
280253	GA	AGS	6 ()	60			1010.4			RW-F	31	11		.03
280754	${\rm G} {\bf A}$	CSG	5 3	50	3004		1014.1	300	6.0	R-	28			.05
S280239	G V	MCN			3108		1013.1	310	7.0		20	8		
280253			53		3204		1012.8		7.0		25	10		.12
280248 280252			59 71		3306 1908		1012.4				45 130	25	250	.00
S2901.7			71	0.9	2012		1011.4			RW-		130		.00
280250			71	69	1804		1010.7		7.0		13	50		
S280232					1714		1012.1			TFH	50			
280247			70		1614		1012.1			TFH	50			
280250			74	72	1904		1011.4		7.0			30		
\$280235 280255			54	40	3002		1014.5		7.0		30			00
280255			50		3002 3104		1014.1		7.0	R _	30 35	8		.00
280255			70		1504		1011.7		7.0		30	Ü		.00
280247			52		2804		1011.1				60	4	10	
280348	GΛ	RMG	48		3002									
S280335	GA	FTY			2606		1012.8	230	5.0	F	6	45		

											_,			_ ,
Date/	٠.	Stn	т	m D	tar (a)	c-	Stn	cld		Man		d Hg		Precip
Time	St	10		10	WING	ĠŖ	t Pres	Amt	VIB	Wx	1.0	w/ mi	d/Hi	Amt
280350	GA	FTY	49	48	2506		1012.4	230	5.0	F	11	45		
280353			50		2804		1012.4		7.0	-	28	8		
280349	GA	AHN	5.1	49	2409		1011.4	300	7.0	R-	34			
280349	GΑ	۸GS	58	56	2908		1010.7	230	10.0		27	100		
280346	GA	CSG	5.3	49	2706		1014.1	300	6.0	R -	28			
280348	GA	MCN	5 3	51	3005		1013.4	310	7.0	R -	28	12		
280348	GA	ABY	5.4	52	3410		1013.8	311	10.0		40	15	25	
S280415					3309		1014.5	212	10.0	R	20	15	40	
280354			72								130		250	
280349			7.1	69	1910		1012.4		6.0		50	19		
5290401					2316	2.7				TRW-F	19	50		
5290424					2114		1012.8			TL-F	40	19		
5280337 280350			74	72	2208 2210		1011.7		4.0		7			
280355			54		2802		1011.7		6.0 7.0	r	30			
280355			49		2808		1012.1			L-F	35	8		
280355			54		3404		1013.1		7.0	D-1	20	J		
\$280426			2.		3304		1012.8			L-F	22	32		
280347			51	47	3006		1011.1		8.0		5	40		
290448			47		3004							• •		
290450			48		2910		1013.1	230	7.0		14	45		
280451	GA	ATL	49	46	3010		1012.4		7.0		28	8		
280447	GA	AHN	5.1	49	2409		1011.4	300	5.0	R =	37			
280448	GA	AGS	5.7	56	2910	17	1010.4	300	10.0	RW-	15			
280447	GA	CSG	5.2	50	2506		1015.1	300	7.0		16			
280450	GA	MCN	5.3	51	2704		1012.8	310	5.0	R-F	28	12		
290448	GΛ	ABY	53	52	3602		1013.8	310	10.0		26	15		
\$280502	GA	ABY			3106		1014.1	230	2.0	TRW	15	26		
\$280524	GA	ABY			3004		1014.1	310	3.0	RW-F	26	15		
280452			74	71	1816	23	1011.1	210	20.0		110	15		
280452			68	67	2510		1012.4			TL-F	40	12		
S280521					3004		1012.1			TRW-F	29			
5280436					3006		1012.1		7.0		250	7		
280450			6.5		3412		1012.4		7.0		9	250		
280455			54	48	3008		1014.8		7.0		30			
280455			67		3008		1012.8		7.0		70		250	
280455			54		2804		1013.1	213	6.0	L-F	20	12	32	
280548 280550			47		3004			330	7.0			4.5		0.7
S280539			46	44	2810		1013.8		7.0		20	45		.07
280551			40		3010	17	1012.4		8.0		14	9		0.0
280551			49 50		2408	1 /	1013.1		8.0 7.0		13 37			.00
280548			55		2704		1010.7		15.0		28			
280551			51		2910		1015.1		12.0		21	15		.05
280552			53		2704		1013.1			R-F	28	12		
\$289538			د ر	J 1	2904		1014.1			R-F	30	26		.13
280549			51	5.1	2802		1014.1			R-F	30	20		.18
280551			73		2014		1010.7			N-1	250	15	90	.01
\$289534				-	2506		1012.1			TRWF	13	29	, ,	•••
\$280534					2506		1012.1			TRWF	13	29		
280551			68	61	2408		1012.1			TRW-F	13	29		.17
280553			6 3		3408		1012.4		7.0			250		1.80
280555	GA	LSF	5.2		3008			300	7.0		30	_		.00
280558	GA	VAD	65	6 0	3106		1012.8		7.0		30			.60
5280540	GA	WRB			2704		1013.1	230	6.0	F	24	35		
290555	GA	WRB	54	52	2904		1012.8	230	6.0		24	35		.00
280648	GA	PMG	45	36	3108									
280647	GA	FTY	45	43	3110		1013.1	230	6.0	R-	20	45		
280650	GA	ATL	46	44	2910		1013.1	310	8.0	R-	11	8		
5280722	GA	ATL			2910		1012.4	310	8.0		22	12		
280647	GA	AGS	53	51	2708		1010.4	300	6.0	RW-	29			
280651	GA	CSG	48	42	3014	19	1015.8	310			28	20		

D-4-/		C					c+	a1.4			61.4	**		D
Date/ Time	St	Stn _ID	т	TD	Wind	Gв	Stn t Pres	Cld Amt		Wx	Cld Low	_		Precip Amt
*****								1200			2011	1120	.,	14.10
S280716	GA	CSG			3012		1015.8	310	15.0		45	18		
280654	GA	MCN	53	50	2808		1013.1	311	6.0	F	32	9	13	
280648	GA	ABY	51	51	2704		1014.1	300	7.0		23			
280650	GA	SSI	68	67	1906		1011.4	310	6.0	F	40	26		
280651	GA	VLD	61	58	3510		1012.8	230			9 2	250		
S280723					3510		1012.8				12			
S280645					2910		1015.5		7.0		24			
280655			50			16	1015.8		7.0		24	45		
280658 280655			61 54		3210		1013.4			L-F	25	35		
280748			44		3004		1013.1	230	0.0	r	25	30		
280751			45		2912		1014.1	220	7.0		20	50		
280749			45		2908		1013.8				18	12	80	
280752	GA	AHN	49		2712		1011.1				14			
280748	GA	AGS	52	51	2306		1010.4	300	8.0	RW-	32			
280750	GA	CSG	48	42	2910		1016.1	310	15.0		50	18		
280750	GA	MCN	52	48	2706		1013.8	310	6.0	F	45	14		
5280742					2606		1014.8	300	10.0		14			
5280742					2606		1014.8				14			
280749			51		2606		1014.8				14			
280750			70	68	2310		1010.0				30	10	250	
\$280805 280749				. 7	2410		1010.0			70	9			
280749			69 57		2006 3410		1011.1		6.0 7.0	r	40			
\$280733			٠, ر	32	3010		1016.1		7.0		12 50	24		
280755			50	4 n	2908		1016.1		7.0		50			
280755			59		3006		1014.1			R-F	25			
280755			53		2910		1013.4				28	35		
S280821	GA	WRB				16	1013.4		6.0		32	22		
280848	GA	RMG	4.2	32	2906									
280850	GA	FTY	43	38	2814		1014.5	200	7.0		25			
280851	GA	ATL	44	38	3012		1014.1	310	12.0		80	20		.02
S280837	GA	AHN			2912	17	1011.7	300	10.0		19			
280854	GΑ	AHN	47	42	2912	17	1012.1	300	10.0		22			
290949	GA	AGS	52	51	2108		1010.4	300	15.0		40			
280850			48		3012		1016.8				50	21		.00
280853			50	43		21	1014.5		7.0		45	25		.00
\$280836					3012		1015.1				40	4		
280849			50		2914		1015.5				40	4		.00
280850			63	59	2812		1011.4				12	30		.00
\$280920 280847			7.1		2914		1011.7			-	20			0.0
\$280921			71	09	2210		1011.1		6.0		50	E 0		.00
280 152			54	5.2	3306		1014.1		5.0	r R-F	11 14	50		.00
280855			49		2908		1017.2		7.0	K-r	30	50		.00
280855			58		3006		1014.8			R-F	15	50		.00
280855			52		3114		1014.1		7.0	K-1	30	22		.00
280949	GA	RMG	40		z 704						•			•••
280950	GA	FTY	42		2812		1015.5	200	7.0		40			
280950	GA	ATL	4 3	36	3010		1015.1	200	12.0		80			
280950	GA	AHN	46	38	2810	17	1012.4	300	10.0		28			
S281026					2712	19	1012.8	310	10.0		55	28		
230947			5 <i>2</i>		2008		1010.7	310	15.0		55	15		
280952			46		3014		1018.2		15.0		60			
280950			50			17	1015.1		7.0		45	25		
280948			48		3012		1016.5				40			
280951			60		2914		1012.1				23			
280950			65	63	2810		1011.4			RW-F		40		
5281015					3010		1012.1		3.0			13		
\$281027 280951			5.A	£ 7	2910		1012.4		3.0		8			
280955			54 48	38	3306 3012		1014.8		7.0	RW-F	16			
200703	O/I	-101	40	20	2012		1010.2	200	,.0		60			

Date/		Stn					Stn	cld			Clo	l Hgt	2	Precip
Time	St	ID	T	TD	Wind	Gst	Pres	Amt	Vis	Wx	Low	/Mic	/Hi	_Amt
280956	GA	MCF	42	3.1	3008		1014.8	210	13.0		60	15		
260955			58		2904		1015.1		6.0	R-F	15	30		
S281006					2904		1015.5	230	6.0	F	15	30		
280955	GA	WRB	50			17	1014.8	213	7.0		30	12	80	
281048			39		2904		1016 5	000	10.0					
281050 281049			40 41	36	2810 3010		1016.5							
281049			44			17	1013.4				55			
281049			5.1		2510		1012.1				65	22		
281050	GA	CSG	45	36	3012		1019.2	010	15.0			60		
281050			48		3012		1016.1		10.0		85	25	45	
281048 281050			47		2714 2908		1018.2		7.0	D	32 30			
281102			55 54	51			1012.5		6.0		12			
281047			58		3114		1012.8		4.0		12	8		
S281110	GA	ssi			3010		1013.4	230	4.0	F	10	170		
281052	GA	VLD	5.3	51	3206		1016.5	300		RW-F	18			
S281111					3210	19	1016.8		7.0	_	60	18		
281055			54	51	2906 2804		1013.4		3.0		25 25	15	100	
5281120 281055			46	34	2908		1019.9		7.0	R-F	23	60	100	
281055			40		2908		1015.8					15	70	
S281040	GA	VAD			2706		1015.8	213	4.0	R-F	15	5	30	
281055			57	52	2908		1016.5		5.0		15	5	30	
S281115					2910		1017.2		6.0	F	15	5	30	
281055 281140			50 19		3116 2704		1016.5	213	7.0		30	12	80	.07
281151			39		2812		1017.5	000	7.0					.01
5281200					2910		1012.4		8.0		22	12		
281151	GA	ATI.	40	35	2906		1017.2	000	15.0					.02
S281200						19		310	10.0		55	28		
291153			43			19	1015.1		15.0		2.5	55		.00
281151 281152			50 44	43	2912		1013.8		10.0		25	75		.00
281152			45	34	3012		1018.2		10.0		75	25		.00
281149			47	39	3209		1019.5		10.0		40			.00
281151	GA	SAV	54	51	2910		1013.8	213	7.0	R-	35	15	100	.07
281151			53	51	2710		1015.8		7.0		12			
5281225				r 2	2712		1016.8		7.0		40	15		0.5
281150 5281230			56	52	3012	19	1014.5		7.0		10 5	25 10		.05
281152			51	42			1617.8		7.0		60	10		.84
5281140			•		2908	•	1014.1		3,0	R-F	40	15	25	
281155	GA	LHW	5.4	50	2806		1014.1	213	3.0	R-F	40	15	80	
5281210					2810	14	1014.8			R-F	17	40	80	
281155			4.3	3.2			1020.5		7.0			60		.00
281156 281155			39 55	30	2908		1016.8		13.0		2.5	15	65	.00
5281210			37	40	3110		1017.8		7.0		25 40	15 15	40 25	.03
281155			4.9	34	1010		1017.8		7.0		30	20	80	.00
281153			42		2506		1019.5					8		
21010	.	a					1010 5		10 -					
272350 272350			42 43		2314		1010.0				45	24		.02
272 150			4 3		2706 2508		1011.1		7.0		28 80	30		.01 .06
272347			47		2310		1011.7		7.0	R-	10	30		.27
272350			42		2104		1013.4					80		.00
272355	KY	FTK	46		2405		1011.4		7.0		30	80		
272355			42		2402		1013.8		7.0		80	40		.00
272355			44	37	2610		1012.4		7.0		25	8	40	
272350			42		2306		1012.4	010	10.0			26		
272350	ΚY	213	5.2	45	2804									

Date/		Stn				Stn	C1d			Cle	d Hgt	:	Precip
Time	St	ID	T	TC	Wind	Gst Pres	Amt	Vis	Wx		/Mic		Amt
300050	77.3		4.3		2610	1010 4	210	10.0					
280050 280050			42 43		2610 2508	1010.4				40 28	27		
280052			41		2508	1011.7				15	37		
280053			42		2504	1013.4				• •	30	80	
280049			47		2406	1011.4			R-F	25	10	0.5	
280050			38		2006	1013.8					80		
280055	ΚY	НОР	38	35	2104	1013.8	011	7.0			80	250	
280054	EY	Lou	44	36	2506	1012.8	200	7.0		25			
280050	ΚY	OMB	41		2308	1012.4	000	10.0					
280049	ΚY	513	51	44	2504								
280150	ΚY	CAG	40	33	2410	1010.4	220	10.0		33	55		
280150			41		2406	1011.4					28		
280152			41		2710	1010.7				35		100	
2801-0			40		2504	1013.4					30		
290150			37		2106	1014.1							
280155			38		0000	1014.1					100	250	
280155 280150			42 40	35	2408	1012.8				25			
280149			40	11	2308	1012.4	000	10.0					
280250			40		2510	1010.4	200	10.0		49			.00
280250			38		2208	1011.1		7.0		4,7			.00
280254			3.9		2406	1011.4		8.0		100	45		.00
280248	KY	BWG	39	38	2406	1013.4		7.0			• •		.00
280250	ΚY	PAH	38	29	2506	1014.5	000	12.0					.00
280255	ΚY	FTK	41	3 3	2104	1011.7	000	7.0					.00
280255	ΚY	HOP	3 7	75	2104	1014.1	010	7.0			250		.00
280252	ΚY	LOU	40	35	2106	1012.8	010	7.0			25		
280250	ΚY	OWB	4.0		2408	1012.8	000	10.0					
280249			49	44	aaaa								
280350			39		2312	1010.0					55		
280350			40		2408	1011.1		7.0					
280354			37		2406	1011.1							
280346 280352			39 40		2404 2506	1013.4		7.0					
280355			3.7		2404	1014.8		7.0			250		
290350			40		2404	1012.8		7.0			250		
290350			38		2408	1012.8							
280349	ΚY	513	49	45	2902								
280446	ΚY	CVG	39	29	2514	1010.4	010	10.0			60		
280450	χY	SDF	39	34	2506	1011.4	000	7.0					
280450	ΚY	LEX	37	34	2308	1011.1	000	10.0					
280446	ΚY	BWG	38	3.7	2506	1013.4	000	7.0					
280450			38	2.9	2704	1015.1	000	12.0					
280455	-		4.1	33	2304	1011.7	000	7.0					
280455			38	35	2406	1014.5	010	7.0			250		
280450			39		2408	1012.8	000	7.0					
280449			4 7		2904								
280551			36		2208	1010.4				60			.00
280550			39		2408	1011.4		7.0					.00
280550			36		2508	1011.1							.00
280546			3 /		2404	1013.4		7.0					.00
280549			38		2808	1015.5							.00
280555 280555			41		2304	1011.7		7.0					.00
280551			38 38		2404	1014.8		7.0					.00
280555			41		2208 2906	1012.4	400	10.0					
290650			36		2208	1009 7	202	10 0					
280650			38		2308	1009.7		7.0		55	30		
280650			36		2210	1011.1					28		
280651			37		2606	1010.7		7.0			40		
280648			38		2706	1015.5							
280655			41		2506	1011.7		7.0					
	-	• 1				.011./	300	,					

. -----

Date/ Time	St	Stn ID	т	TD	Wind	Gst	Stn Pres	Cld Amt	Vis_	₩x		Hgt /Mid/Hi	Precip Amt
280655	KY	HOP	39	32	2704		1014.5		7.0				
280650		LOU	37		2108		1012.4	000	10.0				
280649		513	42		2802			200	10.0				
280750 280750			36 37		2210 2612		1009.7	010	10.0		55	28	
280750			35		2306		1010.7		10.0			20	
280752			35		2804		1013.8		7.0				
280747			37		2908			000	12.0				
280755	KY	FTK	40	28	2606		1011.7	000	7.0				
280755	KY	HOP	38	31	2706		1015.1	000	7.0				
280750	KY	LOU	37		2410		1012.8	010	10.0			30	
280749			42		2604								
280851			36	29	2512		1009.4		10.0		55	2.5	.00
280850			36		2710		1011.4		7.0			25	.00
280850 280849			35 35		2408 2504		1010.7		7.0				.00
280849			37	27	2908		1016.5	310	12.0		46	33	.00
280855			39		2406		1011.7		7.0		••	•	.00
		HOP	36	30	2404		1015.1		7.0				.00
280850	KY	LOU	36	29	2508		1012.8	010	10.0			30	
280849	KY	513	43	35	2500								
280950	ΚY	CVG	36	29	2512	17	1009.7	300	10.0		55		
280950			3 7	29	2808		1011.7	230	7.0		22	45	
280950			3.4		2510		1013.7		10.0				
280955			34		2504 2917	•		000	7.0				
280947 280955			36 39	27	2504	29	1016.5	300 010	7.0		43	30	
280955			37	30	2706		1015.5	010	7.0			36	
280950			37	29	2612		1012.8	300	10.0		30	-	
280949			41		2700								
281050	ΚY	CVG	35	26	2816		1010.0	300	7.0		38		
281050	ΚY	SDF	3.5	26	2814		1012.1	230	7.0	SW-	22	38	
281050	ΚY	LEX	3.3	29	2408		1011.1	000	10.0				
281050	ΚY	BWG	35	28	3506		1014.5	300	7.0		30		
291055			3.4		2206		1013.1		7.0			10	
281049			35		2814	2 3	1017		10.0		37		
281055		HOP	40		2706		1012.8		7.0		30		
281055 281052			37 37		2606 2710		1013.4		10.0		40 19	30	
281049			42		2300		101314	230	10.0		+7	30	
281151			3.3		2716		1010.7	300	7.0	SW-	40		.00
281150	ΚY	SDF	3.5	25	2916		1013.1	300	5.0	SW-	28		.00
281150	KY	LEX	3 3	28	2408		1011.4	2 00	10.0		40		.00
281153	ΚY	BWG	3.5	31	2504		1015.1	300	7.0		30		.00
281150	ΚY	LOZ	34	3.2	2308		1014.1	010	7.0			5	.05
281148			34	23	2916		1018.2		10.0		34		.00
281155			38				1016.5	310	7.0		40	25	.00
281155			34	2 /			1014.5				30		
281152 281150			33 40	22	2402	2 i	1015.5	300	10.0	Sw-	35		.85
201130	V.I	.113	40	32	2402								.63
272349	NC	ECG	66	66	1916		1012.4	300	4.0	RF	50		
5272334					2512		1009.0			R-F	20	7 45	
272350			58	57	2410		1008.7			R-F	7	20	1.11
272346			58		2308		1009.4	230		R-F	4	10	
S280019					2104		1009.0			TRF	4	15	
272353			54	53	1304		1008.7			R-F	4	15	.23
5280025			٠,	E 7	0210		1010.0			R-F	15	5 22	
272350 272350			53 61		3104 1506		1010.0			R-F	11	4 22	
272350			70		1906		1014.8		7.0		35 15	47 90	.04
272350			70		2012		1013.8		7.0		29	20 200	
	-	-	-	-									

Date/		Stn					Stn	cld			Clo	l Hgt	:	Precip	
Time	St	ID	T	TD	Wind	Gat	Pres	Amt	Vie	Wx		/Mic		Amt	
							.								
272346 272355			72 57		1808 1304		1010.0		7.0	_	250	•		1.5	
272353			70	68	1912		1012.4		7.0	r	32 25	3 8	250	.15 .05	
272355			74		1602		1009.7		7.0				250	.00	
272355	NC	GSB	71	67	1808		1010.7	230	7.0		15	100			
272356	NC	NCA	69	65	1516		1013.1	213	6.0	F	20	10	70	.33	
272355			70		1706		1013.4		5.0	F	4	70			
272355			74		1704		1009.4		7.0		250	30			
272350 280046			71 66		1810 1714	14	1010.0		7.0		15 10	25		.00	
280053			58		1904		1007.3		7.0		7	20			
280045			57	-	2310		1007.7		2.5	F	3				
280100	NC	HKY	54	53	2908		1043.6	300	1.0	TRWF	13				
280050	NC	AVL	53	52	3610		1009.4	213	6.0	R-F	15	5	24		
280052	NC	RDU	69	66	1912		1008.4		7.0		60	150			
280050			70		2016		1014.5		7.0		15	90			
280050			70		2014		1013.1		7.0		75	9	200		
280046 280050			71 58		1912 1404		1009.7		3.0		250 3	15 40			
280050			70		1814		1012.1		7.0	F	17	9			
280055			73		1804		1009.4		7.0		250	20	50		
280055			72			17	1010.0		7.0			100			
280056			70		1514		1012.8		7.0	R-	23	10	70		
280055	NC	NKT	70	66	2114	** .	1312.8	312	5.0	ŕ	3	4	6		
280057	NC	POB	71	67	2008		1009.0	012	7.0			20	250		
280145	NC	ECG	67	66	1819		1010.7					150			
280150			58	57	1804		1006.7			R-F	5	16			
5280207					1304		1006.0			TR-F	5	20			
280145 \$280205			57		2008 3012	25	1006.7		2.0	TR+F	2 0				
280150			54	53	1706	25	1009.0			R-F	5	30			
280150			50	48	3617		1010.4			R-F	15	7	20		
280150			69	66	1808		1007.3	200	7.0		12				
280150	NC	HAT	70	67	2010		1013.4	011	7.0			15	90		٠
280151	NC	EWN	71		2112	21			7.0		9	30	65		
280149			71	69	1814		1008.7		.7.0		200	15			
\$280134					1404		1007.0		4.0	P	40	3			
280150 280155			71 73	67	1814	21	1010.7		7.0		24 250	10 30			
280155			72	67		17	1009.7		7.0			100			
S280135				•			1012.1		7.0	*	23	12	70		
280156			71	66			1011.7		7.0		250	13	30		
280155			71	66	1808	19	1012.1	213	5.0	F	6	4	30		
S280218	NC	NKT			1710	16	1011.7	210	5.0	F	30	4			
280158	NC	POB	71	68	1810		1908.4		7.0		250	20			
280245			67	66	1819		1010.4					15C			
\$280238					2712		1008.0			TR+F	5			40	
280250			57	56	3008		1007.3		7.0	TRF	5 35			.40	
\$280315 \$280300					2708		1007.7	300	25.0		33				
280245			56		2006		1007.7	300	5.0	RF	6				
280250			54	53	0000			213	7.0		20	5	35	.00	
S280324				-	2406		1009.4		2.0	F	2		32		
280250	NC	AVL	47	45	3514		1010.7	213	6.0	R-F	15	8	24	.25	
280250			70		1910		1007.7		7.0		14	70		.00	
280250			71		2010		1012.8		7.0		15	90		.02	
280250			72 E 0				1011.7		7.0	nu =	200	13	28	.00	
280250 280250			58 71		2404		1008.7		7.0	RW-P	23 28	3		.11	
280250			73		1808	~ *	1009.0		7.0		30	10	250	.00	
S280310		_		••	1902		1009.0				19		250		
280255			72	68		16	1009.4		7.0			100		.00	

Date/		Stn					Stn	Cld			Cle	i Hgi	Ŀ	Precip
Time	St	ID	T	TD	Wind	Gat	Pres	Amt		Wx			1/Bi	-
280256 280255			72 72		1716 1708	27	1011.1		7.0 5.0	v	28 45		250 100	.00
S280245			12	.,	1908		1008.4		7.0	•		250	100	.00
280255			71	68		19	1008.7		7.0			250		.00
280350	NC	GSO	57	56	2406		1007.0	300	7.0	R-	20			
5280402	NÇ	GSO			2304		1007.0	230	7.0	R-	. 5	20		
280355	NC	HKY	54	54	0000		1008.7	233	2.0	R-F	3		32	
280350			46		3610		1010.4		6.0	R-F	15	8	22	
280350			71		2012		1007.3		7.0		20	55		
280350 280350			72 73		2012		1012.8		7.0 7.0		15 15	27	75	
280346			73 73		2008	23	1008.7					250	,,	
280350			58		2204		1008.4			RW-F	29	3		
280350			73			19	1011.1		7.0		14			
280355	NC	FBG	74	67	1704		1008.4	230	7.0		. 17	250		
280355	NC	GSB	73	68	1910		1008.7	220	7.0		20	100		
280356	NC	NCA	73	67			1011.4		7.0		16	10		
S280401							1011.4		7.0	R	16	10		
280355			73			17	1011.4		7.0		33	10	250	
280355 280450			72 56		2012		1008.0		7.0 4.0	DP	18	20	250	
280450			36	30	2404		1007.7			R-F	4	1		
S280433					2802		1008.7		2.0		7	22		
280456			54	53	2706		1008.7		7.0	-	7	2	22	
280450	NC	AVL	46	44	3408		1009.7	310	5.0	R-F	22	8		
280450	NC	RDU	71	66	1914		1006.7	230	7.0		19	60		
280450			73		2010		1011.7		7.0		15			
280446			74			23	1011.1		6.0	R-	16		100	
280446			73	69	2010		1008.0		7.0		30		250	
\$280435 280450			57	84	2006		1008.4			rw-f rwf	29 5	3 35		
280450			73		1914		1010.0		7.0	Kur	14	33		
280455			74		1704		1007.7		7.0			250		
280455	NC	GSB	74	68	1910	17	1008.0	200	7.0		25			
280456	NC	NCA	72	67	1816	23	1010.7	230	7.0		13	250		
5280440							1011.1		6.0	R-	30	20		
280455			74		1914				7.0		30	20		
280455			73	68	1808	19	1007.3		7.0	mn #	18 5	70	250	
S280535 280555			56	55	2604 2604		1006.7			TR-F TR-F	5	32		.87
S280627			36	33	2404		1006.3			_	• 5	40		,
280545					2804		1007.0				4	1		
280555	NC	HKY	54	53	2704		1008.4	230	5.0	F	5	30		.48
280551	NC	AVL	46	44	3510		1009.4	300	10.0		32			.28
280552			71	65	1508		1005.0			TRW-	20	70		.01
8280604							1004.6			TRW+	19	2		
280552			73				1011.1	•			15	~-		.02
280550			70 56			21	1010.0			DU_9	17 5	25		.00 .18
280555 280550			56 74		2608	10	1008.0			RW-F	14			.00
\$280603			/ 4	, ,			1008.4			T	14			
280555			75	68			1006.7		7.0	-		250		.00
280555			74				1007.9				20			.00
280556			53				1009.4		7.0	R-		250		
6280630	NC	NCA					1008.7				12	250		
280555			74	_			1009.4					20		.00
280555			74			23	1006.7					250		.00
280650			55	55	3006		1006.0				5	35		
280645					2504		1007.0				4	1		
280655			53		3204		1008.4			L-F	5			
280650			46	44	3308		1009.0						70	
S280638	NC	טעא			2710		1006.3	4 ± 3	7.0	T.M.	29	7	70	

Date/		Stn					Stn	Cld			C1	d Hg	ŧ	Precip
Time	Şt	ID	T	TD	Wind	Ga	t Pres	Amt		Wx		_	d/Hi	
· · · · · · · · · · · · · · · · · · ·										_:::::			3/.44	- 2MH P.
280655	NC	RDU	64	62	2404		1006.0	310	7.0		24	8		
280650			73			25	1010.0				15			
280650			74		2212		1009.0				15			
S280725			_		2112		1008.4			TR-	10			
280655	NC	CLT	56	54	2708		1007.7			RW-F	5			
280650			74			21	1007.3		7.0		14			
280655			76				1006.0					250		
280655			75				1006.3		7.0	3	21		250	
280656			73				1008.4		7.0			250	230	
\$280705				00	-		1008.4			RW-	10	250		
S280705							1008.4			TRW-	10			
280655			74	6 0			1008.4		7.0	TK4-	30	20		
\$280730		-	/ 4	00			1007.7		7.0	-				
\$280730 \$280632					2116	21	1006.0		7.0		30 18	20		. /
280655			74	60	2116									
			/4	90			1005.6		7.0		18			
S280741					3114		1006.7			R-F	24			
5280741			6.3	EO	3114		1006.7		7.0	R-F	24			
280750			53	30	3112		1006.7				24			
280745				40	3106		1007.0			R-F	2			
280755			51		3204		1007.3			L-F	5	20		
280750			44		3414		1008.4		6.0	K-	60	30		
280750			62		2408		1006.3				24	11		
280755			73		2016		1008.7		7.0	-		150		
280750 S280820			73	07			1007.7		2.0		13 1			
280750			55	5.4	2408	13	1007.3		3.0	TR+	5			
S280823			33	J.4	2104		1007.7		5.0		48	5		
280752			73	71		25	1007.3			TRW-	13	3		
\$28081D			,,	,,			1006.7			TRW+	9			
280755			71	68	2914	23	1005.6		7.0	TVUT		250		
\$280820			, 1	63	2504		1005.6		7.0		10		250	
280755			75	6.9		16	1005.3		7.0		25		250	
280756			73		2208	10	1006.3			TRW-	12		230	
280755			74			23	1006.7		_		30	20		
S280818							1006.0			TRW-F	15	5	30	
S280736					2812		1005.6		7.0		14	5		
280755			67	63	2808		1005.6		7.0		14	5		
280850		-	51		3206		1006.3				25	-		.09
280845				••	0000		1006.0				14			•••
280855			51	48	3204	`	1007.0		7.0		50	5		.00
280850			41		3416		1008.7			D_	32	7		.04
S280838					2506		1006.0	•		Λ-	11	4		.01
280854			61	50	2806		1005.6				21	8	15	.49
280853							1008.0		7.0			150	13	.00
280850			71				1006.7		.5	TTD.	1	130		.00
280851			55		1806	1,	1006.7				48	5		.20
\$280836			23	34		10	1006.7			TRW-	12	9		.20
280850			72	70			1006.7				12			.00
S280840					2506		1005.6			KW-	24			.00
280855			60	£1	2606		1005.6				24			00
280855					1808		1004.6			- 1		40	260	.00
											25	40	250	.00
280856			72	90			1006.3				10	_		.00
\$280915							1006.3			TRW-	23	7		
8280915 6280936							1006.3				23	7		
S280836			71.4				1005.3				15	5	30	
280855			74				1006.0					5	30	00
5280923						21	1006.0			TRW-P	15	5	30	
280855			66	61	2706		1005.6		7.0		14			.00
5280940					0000		1005.6				31			
280950					0000		1005.6				32			
280945			53		0000		1005.3				40			
280955	NC	HKY	50	48	2704		1007.7	310	7.0		50	5		

Date/		Stn					8tn	619			CIA	Hgt		Precip
Time	St	_ID	T	TD	Wind	Gs	Pres			- MX		•		Ant
280950			40		3619		1009.4				32	10		
280950			59	58	2804		1005.3			TRW-	35	20		
S281029 280955			74	60	2306	22	1006.0			TR-	40	4	11	
280950			73		2017	23	1007.0		7.0 7.0		50	15 I 40	.50	
5280942			73	′.	2108		1006.7		4.0		5	60		
280954				5 2	2210		1007.0		4.0		5	60	,	
280950			55 72			21	1006.3		7.0	F .	13	00	,	
280955			66		2610	21	1005.6		7.0		20			
S281012			00	,	2708		1006.3		7.0	R	20			
280955			74	68		17	1004.3		7.0		25	40		
S281024					2810	19	1004.3	220		RW-	22	40		
S281024							1004.3			RW-	22	40		
280956	NC	NCA	73	68	1812	21	1006.0	220	7.0		19	30		
S280938	NC	nkt			1814	31	1005.6	213	1.0	TRWP	15	5	30	
280955	NC	NKT	73	68	1819	31	1004.3	213	2.0	TRW-F	15	5	30	
S281009	NC	NKT			1914	35	1006.0	213	7.0		15	5	30	
280955	NC	POB	64	59	2610	16	1005.6	230	7.0		14	30		
S281007					2610	16	1006.0	213	7.0	R-	25	14	50	
S281013		-												
281053			50		2804		1006.3				38	75		
281045	-		51		2906		1005.6			R-	40	_		
281055			48		3208		1008.4		7.0	•	30	5		
281050			37		3417		1010.0			n 13	75			
281053			58		2610	27	1006.0		7.0	R-P	22 50	5 15	9	
281052 281050			75 73				1006.7		7.0		17	35		
281055			60		2610	1,	1006.7	_		TR-	7	33		
S281035			80	90	2310		1007.3		5.0		13	5	60	
281051			53	40	2412		1007.3		7.0		10	5	00	
281053			71			23	1006.3		7.0		70	16		
281055			62		2608	••	1006.3			R-	20			
S281116				•	2608		1006.7			R-F	12	20		
281055			67	63	2608		1005.0		7.0		40	25	70	
S281100	NC	GSB			2512	17	1005.0	223	7.0		20	40	70	
S281100	NC	GSB			2512	17	1005.0	223	7.0		20	40	70	
281056	NC	NCA	72	66	2016	25	1006.3	220	7.0		12	30		
S281042	NC	NKT			1812	31	1006.0	011	7.0			15	80	
281055	NC	NKT		54				011	7.0			15	80	
281055	NC	POB	60	58	2710		1006.3			R-F	25	4	50	
S281102	NC	POB			2708		1006.3	213	3.0	TRW-F	25	4	50	
S281126	NC	POB			2508		1006.3	230	6.0	RW-F	5	25		
281050	NC	RWI	65	61	2910		1005.0	310	7.0		24	17		
281149			70	67	1819		1002.9		-	a.	10	80 1		
S281215				-	2019		1002.9			T	10	80 1	50	
S281200					0000		1005.6				31			
281150			50	46	2908		1006.7				36			.09
281151			50		2910		1008.0				35			
5281219			_		3212		1008.0			RP	8			
281155			47			19	1009.7			*	40			.02
281150			36	27	3414		1011.7						80	.04
5281138					3106		1006.3		7.0		50	12		
281153			55	54	3106		1006.7		7.0		55	19		.70
S281229			72	£0	2904	27	1007.0		2.0	K-F	20	50	00	00
281150 281159			75 72				1007.0		7.0		15	50 2	UU	.00
281159			73 58		2304	د ع	1006.3		7.0	D	17 4	65		.85
5281200			50	20	2310		1007.3		5.0		13	5	60	
281152			52	49	2410		1007.3		7.0	•	10	J	. .	.20
281150			70		2112		1006.3		7.0		80	37 2	50	.55
5281228			, -	- •	2312		1006.3		7.0		12	~· •		
281155			61	56	2304		1007.0			R-F		20		.25

Date/		Stn					Stn	Cld			C1	d Hgi	t	Precip
Time	St	<u>ID</u>	T	TD	Wind	Gø	t Pres	Amt	Vis	Wx	Lo	w/Mi	1/H1	Amt
201155			٠.	٠.					- 4				,	
281155 S281216			64	61	2610	19	1006.3			RW- RW-	22		25	.03
S281216					2610		1006.3			RW-	14 14	11	35 35	
S281210						19	1006.3			K#-	80	7	12	
281156			71	66	1814	-/	1006.0			p.	12	7	80	.35
\$281226				••	2012		1006.0		6.0		80		250	•
S281132						29	1005.6			-	20		200	
281155			74	66	2217				7.0		20		120	
S281132	NC	POB			2408		1006.3		7.0		25	5	50	
281155	NC	POB	59	57	2508		1006.7	230	7.0		7	30		.34
S281218	NC	POB			2606		1007.0	230	7.0	L-	7	30		
281150			61	61	2906		1005.3				11	7		.12
S281230					3308		1005.6				8	4		
S272338					2808		1009.4			TRW+	3			
272350			55	55	2906		1010.0			TRW-	2			.70
S280029 S280029					2704 2704		1009.4				25 25	4		
272350			56	55	2706		1010.0			TRW+	4	•		
272355			73		2012		1010.4		7.0	11000	250			.00
272351			64		1202		1008.7			R-	70	40	250	.00
272350			73		1912		1012.1		7.0		120	17	70	.00
272355			69		1910		1012.1	_		P	10	2	80	.00
272355	sc	NBC	72	65	1910	14	1011.1	213	7.0		80	30	250	.00
272355	sc	SSC	70	64	1806		1009.4	212	9.0		80	50	120	.00
280050	SC	GSP	55	55	2306		1010.0			RW-F	4	27		
S280126					2308		1009.7			R-F	34	4		
S280100					2504		1009.7		4.0	P	5	22		
280100			73		2012		1010.4		7.0		250			
280051			71		1608		1007.7				100		250	
280050 280055			74 68		1914 1908		1011.7		7.0 5.0		120 10	17 2	70 20	
280055			73		2004		1011.1		7.0	r	250	30	80	
280055			70			16	1008.7		9.0			250	-	
280152			56		2504		1009.7				4	43		
S280142					2406		1010.0			R.P	20	55		
280155			55	55	2504		1009.7				5	20		
280155	sc	FLO	73	67	1914		1009.4	220	7.0		17	250		
280151	s¢	CAE	71	66	1910		1008.4	212	10.0	я.	55	15	250	
280150	sc	CHS	74	70	2114	19	1011.7	311	7.0		, 120	17	33	
S280144					1810		1011.1	213	5.0	F	5	2	10	
280155	SC	MYR	68	63	1908	16	1011.1	230	5.0	P	5	10		
280155	SC	NBC	73	66	2014	21	1011.1	311	7.0		250	15	80	
280155	SC	SSC	70		1910		1008.7					80	250	
280253			56				1009.4				4	41		.25
280300			56		2708		1009.4			F	30			
280255			73		1914		1009.4				19			.00
280252			72		1712		1008.0				85		250	.00
280250			75				1011.4			_	120	15	33	.00
280255			70			19	1011.7				5	10		.00
280255			72		2008		1010.7			K-F	15	5	80	.00
280258			70		2010		1009.0				80	20	50	.00
280350 280350			56 55		2206 2710		1009.7				5 30			
280355			73		2014		1009.7			•	19			
S280340			, ,	٠,		25	1009.4			R-	17	40		
280351			64	60			1009.0				17	12	40	
5280405			- •				1009.4				60		250	
280350			75	71			1011.4				33		120	
5280402							1011.4			R-		100		
280355	sc	MYR	70	63	2010	16	1011.1	230	4.0	F	5	10		
280355			72		1904		1010.7			F	15	80		
280357	sc	SSC	71	66	2012		1008.7	210	9.0		50	20		

Date/		Stn					Stn	Cld						
Time	St		т	TD	Wind	Ge	t Pres	Amt		Wx		d Hg	c d/Hi	Precip
		<u> </u>										77.13.	3/ D.L	Amt
280450	sc	GSP	55	55	2308		1010.0	300	8.0	,	5			
280446	SC	AND	56	55	2608		1010.0			R-F	22	6		
280455	sc	FLO	74	68	2019		1008.7	300			21	-		
S280500	SC	CAE			2706		1009.0	230	7.0		20	60		
280450	SC	CAE	60	57	2604		1009.4	213	10.0		60	20	250	
S280436	SC	CHS			2112		1011.1	230	7.0		14	100		
280450	sc	CHS	74	71	2216		1011.1	230	7.0	i	12	100		
280455	SC	MYR	70	66	2008		1010.0	213	6.0	RW-F	10	5	20	
280455	SC	NBC	72	66	2106		1010.4	230	6.0	P	15	80		
280455			71	65	2012		1008.4				50	20		
S280512					2110		1008.0				40	20		
280551			55	53	2206		1009.7			RW-	5			.27
\$280622 280550			E C		2006		1008.7				40	5		
280550			56 74		2205	21	1009.7		7.0	L-F	8 21	12		00
280551			59		2506		1009.0		7.0		20			.00 .01
280554			74		2212		1010.0		7.0		14			.00
5280540						12	1009.7-		6.0	P	10	5	20	•00
280555			71	68	2110		1009.4			RW-F	10	5	8	.00
280555	sc	NBC	73			19	1009.4		6.0		250	15	80	.00
S280547	sc	ssc			2210		1008.7		13.0		40			
280555	sc	SSC	62	57	2910		1008.4	200	13.0		40			.00
280650	SC	GSP	53	51	2208		1008.4	310	12.0		46	5		
280650	вC	AND	56	55	2708		1008.4	212	5.0	F	12	8	100	
200650	sc	FLO	73	67	2214		1007.0	200	7.0		19			
280650			59	55	2706		1008.4	310	7.0		20	10		
280650			74			25	1009.0		7.0		14			
280655			71		1808		1008.4			R-F	10	5	30	
280655			72		2310		1009.0		6.0	P	250	15		
280655			60	54	2916		1008.0					25		
S280705					3002		1007.7				20	_		
280751 \$280828			-9	979	2506		1008.4		15.0		55	5 60		
280750			56	55	2610		1008.7		5.0	P	100	8		
280755			- 66		2814		1007.0					100		
280750					2912		1009.7		7.0		18	10		
5280741					2312		1008.7		7.0		100	14		
S280741					2312		1008.7		7.0		100	14		
280750			72	67	2214		1008.4		7.0		100	14		
280755	SC	MYR	69	65	1808		1008.0	211	5.0	F	30	10	20	
280755	sc	NBC	72	64	2306		1008.7	211	7.0		250		80	
S280830	sc	NBC					1009.4			3	10	80		
280755	sc	SSC	59	53	2706		1008.0	300	13.0		20			
280854	sc	GSP	51	49	2408		1008.4	230	15.0		9	60		.01
S280907	sc	GSP			2510		1008.7	300	15.0		10			
280850	sc	AND	55	55	2714		1009.0	310	5.0	P	100	8		
280855	sc	FLO	63	57	2914		1008.0	300	7.0		16			.00
280850	sc	CAE	55	53	2304		1008.4	230	7.0	R-	18	40		.04
280854	sc	CHS	72	67	2514		1008.7	310	7.0		100	14		.00
280855			70	65	1910	17	1007.0	011	6.0	F		10	30	.00
280855			65	56	2908		1009.7		7.0		15	80		.00
S280843					2706		1008.0				25			
280855			59		2906		1008.0				25			.00
S280925					2906		1009.0			TRW-F	25			
280953			51		2510		1008.7				13	_		
280950			55			16	1009.7		7.0	mow.	100	8		
280950 S281030			60		2717 2714		1008.7			TRW-	20	•		
280950			54		2408		1008.7		7.0	A#	33	8 25		
280951			67		2914		1009.7		7.0	•	14	35		
280955			68		1806		1007.3		6.0	7	19 30	10	80	
280955			61		2910		1010.0		7.0	•	10	10	av	
								555			70			

Date/		Stn					Stn	Cld			C1	d Hgi	.	Precip
Time	St	ID	т	TD	Wind	Gs	t Pres		Vis	Wx		_		Amt
280955	sc	SSC	54	50	2304		1009.0	310	3.0	RW-P	40	15		
5281025					2408		1009.0	310	13.0	RW-	25	15		
\$281037		-			2708		1009.4				75	15		
281052			50	47	2608		1009.7				15			
S281116					2608		1010.0				75			
281050			56		2614		1009.0			RW-	33			
281050			54	49	2608	_	1009.7				14			
5281130							1010.4			RW-	19		48	
S281130						17	1010.4			RW-	19		48	
281051			62	53	3016 2004		1010.7			_	23			
S281039			60	63			1007.3				20		50	
281059 281055			69 59		2708		1008.0			r	20 15		50	
S281117			39	40	2808 2808		1011.1							
S281117 S281040					2612		1009.0				8 25			
281055			54	40	2610		1009.0			TRW~	12			
S281110			J.	4,	2510		1009.4			TV#-	14			
281150			49	46	2906		1011.4				75			.01
281150			45			17	1012.4					100		.66
281151			55				1009.4			RW-	11			.22
281150			53				1010.7			RW-	48			.04
S281213							1011.4			•••	70			
281152			60	51	2916		1011.7	300	7.0		27			.00
281155	sc	MYR	65	56	2508	12	1008.7	212		F	20	15	50	.00
S281135	sc	NBC			2912	19	1012.4	310	4.0	RW-	10	5		
281155	sc	NBC	54	47	2608	16	1012.4	213	6.0	L-	15	5	250	.00
\$281215	sc	NBC			2906		1012.8	213	2.5	RW-	11	2	30	
281155	sc	SSC	53	47	2810		1009.7	230	13.0	- 5.	14	25		.11
					•				•					
\$280020	TN	TRI			0000		1009.0	230	3.0	RF	12	20		
272353	TN	TRI	54	53	2508		1010.7	310	5.0	R-P	20	10		.00
272357	TN	DYR	43	35	2306		1014.5	000	12.0					.00
272350	TN	MKL	41	36	2104		1014.5	000	15.0					.00
272352	TN	BNA	45	42	2710		1013.8	311	15.0		100	40	65	.03
S280020	TN	TYS			1708		1011.4	311	7.0	R-	40	7	25	
272347	TN	TYS	49	48	1810		1012.4	310	5.0	R-F	25	7		.22
272352	TN	CSV	45		2704		1011.7		7.0	RW-	6	15		.40
272349			51		2802		1012.4		7.0	R-	45	24		.13
272352			45		2504		1016.8							.01
272355		_	46		2302		1015.1		7.0		•	40		.00
280052			53	50			1010.4				12		24	
S280130						21	1011.4			R-F	22			
280058			44		2508		1014.8					33		
280053			40		2104		1014.8							
280051			44		2812		1014.1			_	100			
280047			49		1906		1011.4				40			
280049			44		2602		1011.7				6			
280048			50		3502		1012.4			K-	50	24	•	
280051 280055			45		2406		1016.8				60	40		
		_	45		2602		1015.1			_		40	~~	
280151 S280224			48	43	2610 2506		1011.4				22	12	37	
280224			45	2.4	2708		1010.7			K-	37	12		
280154			39		2106		1015.1					35		
280150			42		2708		1014.5				100			
5280137				_,	1910		1011.7			R-	150			
280150			49	48	1906		1011.7				15			
5280220					2010		1011.7				40	15		
280148			42	40	2704		1011.7				6	15		
280148			50		2802		1012.4			R-	50	15		
5280211					3204		1012.1				10	50		
280150			43	37	2706		1017.5					60		

Date/		Stn					Stn	Cld				Hgt		Precip
Time	St	ID	T_	TD	Wind	Gst	Pres	Amt	Vie V	1X	LOW	/W.q	(11)	Amt
280155	TN	NQA	45	33	2402	:	1015.8	010	7.0			40		
280253	TN	TRI	48	45	2406		1011.1		7.0		50	15		.30
280252			44		3010		1015.8							.00
280250			40		2306		1015.5 1014.8					100		.00
280250 280247			41 48		2606 2212		1011.7		7.0 1	₹	50	15		.14
280247			41		2806		1012.1		7.0	_	6	15		.00
S280242					3110		1012.1		10.0	R-	16	50		
280249	TN	CHA	49	45	3312		1012.8				16	50		.07
S280317					3310		1012.8			R	32	60		.00
280251			42		2806		1018.2		7.0			40		.00
280256 280354			45 48		2702 2406		1010.7		7.0	R-	45	15	60	
S280417			40		2204		1010.7		7.0		12	25		
280350			43		2608		1016.1	000	12.0					
280353			39	35	2306		1015.8	000	15.0					
280351	TN	BNA	39		2406		1014.8			_		-		
280347			48		3110		1011.4			R-	25	7 25	50	
280353			39		2808		1012.8				15 32	23		
280353			47		3306 2708		1013.1				72			
280350 280355			42		2702		1016.5			4.				
280452		-	47		2102		1010.0			R-	10	70		
280452			39		2406		1016.1	000	15.0					
280451	TN	BNA	39	36	1804		1014.8	000	15.0					
280447	TN	TYS	45	42	2712		1011.7	230			25	50		
280500	TN	CSV							25.0				2	
280448			47		3110		1013.8				45	30		
280451			40		2906		1018.9							
280455			44		2904 0000		1017.2			R-F	10	44		.31
280553 280550			46 38		2506		1016.5							.00
280550			41		2512		1014.8							.00
280550			45		2812		1012.4	230	15.0		16	35		.17
S280612					2906		1012.1	230	15.0		13	37		
280550	TN	CSV	36	33	2706		1013.1				15	25		.06
S280617					2604		1013.1					25	250	.09
280551			45		3406		1013.8				50			.00
280550					2806 2802		1017.5			*				.00
280556			42		2704		1009.0			R-F	12	34		
280652 280653			39		2606		1017.2							
280648					2508									
280648			44		2812		1012.1	310	15.0		40	13		
280650	TN	csv	35	32	2706		1012.8						250	
280651			44		3209		1014.5					50	100	
280650			40		2908		1019.9							
280655			42		2904		1017.5			R-	14	36		
280800 280753			43 38		2706		1017.8				- •			
280748			39		2610		1015.1							
280749			42		2710		1012.9				25	45		
280750			34		2504							25		
280750	T	CHA	41		2904		1014.8					50		
28075			40		2908		1020.5							
28075			42		2904		1018.5			D	12	32		.03
28085			40 38		2914		1010.7				12	32		.00
280854 28084			38		2510		1015.5							.00
528083			,,	J.4	2914		1013.1				50	25		
28085			41	35	2510		1013.1	200	15.0		50			.00
28085	O T	N CSV	35	33	2406		1013.1	010	10.0			30		.00

Date/	cr	Stn	m	TT C		۵-	Stn	Cld		**-		d Hgt		Precip
Time	_st	ID	T	10	Wind	GS	t Pres	Amt	Vis	WX	Lo	w/Mic	1/H1	Amt
280848	יאידי י	CUA	40	24	2608		1015 1	-	15 0					20
280852			40		3012		1015.1							.00
280856			41		3006		1019.2							.00
280954		_	39		2708		1011.1				49	15		•00
280954			37		2810		1018.5							
280949	TN	BNA	38		2512		1015.8							
280950	TN	TYS	39		2606		1013.8					22	50	
280950	TN	csv	34		2708		1013.1					30		
280951	TN	CHA	40	34	2706		1015.5	000	15.0					
280950	TN	MEM	37	27	2914		1021.9	000	20.0					
280955	TN	NQA	38	25	2806		1019.9	000	7.0					
281053	TN	TRI	39	32	2610		1011.4	300	10.0		- 60			
281054	TN	MKL	36	28	2712		1019.2	000	15.0					
281048	TN	BNA	37	32	2810		1016.1	000	15.0					
281050	TN	TYS	39	34	2408		1014.5	010	15.0			21		
281050	TN	csv	33	31	2808		1014.1	010	10.0			30		
281051			. 40		3108		1016.1			5.				
281051					3112		1022.9							
281055		-	37	23	2706		1020.9							
S281200					2610		1011.1				46	12		
281150			38		2610		1012.8					45	70	.04
281200			35			19	1020.9							.00
281155			34		3012	• •	1020.5						1	.00
281149 281150			36		2612		1016.5					- 1		.00
281150			37 33		2208 2608		1014.1					21 30		.00
5281216			33	30	2512		1014.8				8	30		.00
5281200					3310		1012.8			P	32			
281149			39	11	2908		1017.2			κ-	72			.00
281153			34		3010		1023.3							.00
281156			36		2906		1021.2		7.0					.00
					•									
5272340	VA	IAD			1704		1007.3	223	8.0		11	44	90	
272354	VA	IAD	60	58	1804		1006.7	311	8.0	RW-	80	9	44	.05
272345	VA	SHD	56		0000		1007.0	230	15.0		50	100		
272344	VA	CHO	59	57	2004		1007.3	230	7.0		18	25		
272350	VA	RIC	60	60	1204		1008.7	310	8.0		40	25		.18
272353	VA	LYH	57	57	1906		1041.5	300	5.0	F	5			
272352			69		1914		1010.7		7.0		80	20		.00
272350			70	66			1011.1		7.0		10			•00
S280005					0000		1006.7				27	50		
\$280027					2804		1008.0			R-P	25	3		
272350			58	58	1206		1006.7				27	60		•08
S280016					2904		1007.3			TRW-	20	50		
272349			58		0000		_		15.0		20	50		-66
272355			62		1602		1007.7			RW-	40	6	80	.18
272355			59				1010.0		7.0		80	16	40	.00
272355			69				1010.4		7.0		15	11	80	.00
272355			68			1/	1011.4		7.0		10	6	30	-
272357			59		2002		1007.3		7.0	K-	25	15	50	.22
280050			60 EE	5 8	2004		1006.0		8.0		75	9	28	
280045 280045			55 50	8 £	0000		1006.0				50			
S280115			58	סכ	1404 2406		1006.3		7.0	TD	14	20		
280050			61	59	1408		1003.6		8.0	-7.	6 19	30		
280051			58		2108		1007.7			RW-F	2			
280058			69		1916		1009.7		7.0		14			
280050			70		1916		1010.4		7.0		11			
280051			57		0000		1007.3		2.0	R-F	14	4	30	
280050			. 59		2404		1008.0					100	J J	
280055					0000		1006.7		7.0		40	12	80	
S280110					1302		1006.7		7.0		20	6	40	
	- •										20	•	-5	

Date/		Stn					Stn	Cld			614	**	_	
Time	_St		т	TD	Wind	Ge	t Pres	Amt		_W×	Cld Low		5/Hi	Precip _Amt
-				-								-4144	*/ ***	CHILL
S280110	VA	DAA			1302		1006.7	213	7.0		20	6	40	
280055			68		1912		1009.4				15	40		
280100			69				1009.0				15	11	80	
280055			68			23	1010.7				10	30		
280056			59	55	1902		1006.7				3	10		
S280119					1604		1006.0			R-	3			
280150			60	58	1904		1005.0				36	11	80	
S280208 S280208					2204		1005.0			RW-	8	28	80	
280145			55		2204		1005.0			RW- R-	8 50	28	80	
280145			58	57	2504		1006.7				3		8	
5280219				~	2004		1006.0			R-F	3		39	
280150	VA	RIC	62	60	1508		1006.3				19	30		
280150	VA	LYH	58	58	2106		1006.7	300	3.0	F	3			
5280230	VA	LYH			2208		1007.3	300	1.5	TRWF	2			
280157	VA	PHF	69	65	1814	19	1008.7	230	7.0		14	40		
280150	VA	ORF	70	65	1921	27	1009.0	300	7.0		14		1.2	
5280137	VA	ROA			3504		1006.7	331	1.0	R-F	15		3	
280150	VA	ROA	57	57	3604		1006.7	230	2.0	RF	5	15		
S280224					2506		1006.3			R-F	14		100	
200150			58	58	3504		1007.0				16	30		
5280222					3202		1006.7			TR-	16	30		
5280147					0000		1005.6				4	2	10	
280155 S280224			60	22	1302		1005.3			R-F R-F	4	2		
280155			69	65		17	1003.3				15	35		
280155			69		1816				7.0		15	11	80	
280155			69				1009.7		7.0		10	30		
280155	VA	NYG	55	52	1600		1004.6	300	4.0	R-F	4			
S280226	VA	NYG			2202		1004.6	300	2.0	TR+F	2			
S280226	٧٨	NYG			2202		1004.6	300	2.0	TR+F	2			
5280236	٧A	IAD			2204		1006.0	213	4.0	TRW-F	5	4	12	
S280319					0000		1004.6		7.0		4	6	19	
280245			54		0000		1006.0		5.0		50	80		
280245			57	57	2504		1006.0			R-F	3		40	
S280236					1714		1005.3		8.0		45			
280253			66			23	1005.3		8.0	0.00	40	20		.00
280252 280252			58 70		1810	27	1008.7		2.0 7.0	K.F	1 14	40		.00
280250			71				1008.7		7.0	•	14	•		.00
280249			56		2906	•	1006.3			R-F	20	40		.22
280250			58		1204		1006.3			TRW-P		••		.00
280255			60		2904		1006.0			TRW-F	4	2		.00
S280302					0000		1005.3			TRW-F	3	2		
S280302	VA	DAA			0000		1005.3	310		TRW-F	3	2		
280256	VA	LFI	69	65	1910	17	1008.4	230	7.0		15	35		.00
280255	VA	NGU	69	65	1917	21	1008.0	213	7.0	•	15	11	80	
280256	٧A	NTU	69	64	1814	23	1008.7	223	7.0		10	30	80	.00
S280240	VA	NYG			2000	12	1005.3	300	1.0	TR+F	2			
280256			59	56	3204		1005.0			TR+F	2			.00
S280317					0000		1004.6	232	3.0	TRF	2		14	
S280337				_	0000		1004.6				55	7	20	
280350					2204		1005.0			RW-	55	20		
280345					1808	٠.	1005.0			R-P	3		22	•
280350			70 ~	6 I		21	1005.6		8.0		35	25		
5230430				E ^	2014		1005.6			TR-	30	20		
280352					2108	1.0	1006.3			TRWF	2			
280350						13	1008.4		7.0		15	40		
280350					2221		1008.0		7.0		14	2.5	,	
280352					2604		1006.3		7.0	mpu =		20		
280355 S280408			60	υJ	0000		1005.3			TRW-F	30 3	2	20	
B200408	*M	UNA			3000		1005.0	 3	1.3	RW-F	3	4	30	

D=h=/		C+-					C+-	~1 ~			al a	U-+		Dwagin
Date/ Time	St	Stn ID	т	TD	Wind	Gst	Stn Pres	Cld Amt	Vis	Wx	Cld Low	-		Precip Amt
***********	<u> </u>			<u> </u>	p. p. p.	<u> </u>		1804				110.2	14-14-	
280355	VA	LFI	70	66	2012	19	1007.7	200	7.0		15			
280355	VA	NGU	70	65	2017	25	1007.7	213	7.0		15	9	80	
S280403	VA	NGU			1919	29	1007.7	213	6.0	RW-	15	9	80	
5280425	٧A	NGU			1919	27	1007.7	213	7.0		15	9	80	
280355	٧N	NTU	70	64	1917	23	1008.0	230	7.0		10	30		
280355	V٨	NYG	58	55	0000		1005.0	331	1.0	RF	25		2	
S280410	VA	NYG			1404		1004.6	233	1.0	r.F	2		25	
S280410	VA	NYG			1404		1004.6		1.0		2		25	
280450	VA	IAD	57	56	0000		1004.6		6.0		50	20	90	
280450	VA	RIC	69	61	2012		1005.0		2.0		25	15,		
S280506	VA	RIC			1812		1004.0			TRW-	23	15		
280500			70		1814		1008.4		7.0		15	40		
280450			72		2223	29	1009.0		7.0	_	15			
280450			54	53	3106		1006.3		7.0		70 2	20	30	
S280432			60	E 4	0000		1003.6			RW-F	2	1	30	
280455 S280513			90	34	0000		1004.6			RW-F	4	2	30	
S280313					2016		1007.7		7.0		15	-	•	
280455			70	66	2016		1007.3		7.0	••••		15		
280455			71			27	1007.3		7.0		15	9		
280455			71	64	2014				7.0		10			
280456			58		2102		1004.0		.7	TRF	2		25	
\$280535					0000		1004.0	213	2.5	RW-F	35	20	90	
280550			57	56	0000		1004.0	213	2.5	RW-P	35	20	90	.82
S280550	VA	IAD			0000		1003.3	330	1.0	RW-F	38			
280545	VA	СНО	57	57	2304		1004.6	330	3.0	F	30			
280550	VΑ	RIC	69	61	1714		1002.9	230	5.0	TRW-	23	50		.03
S280609	VA	RIC			2319	33	1003.3	213	5.0	TRW	23	5	50	
280550	VA	PHF	70	65	1814		1006.7		7.0		20		250	.00
280550	VA	ORF	72		2023		1006.3				15	22		.00
280550			51	45	2708		1007.0		7.0		32	70		.27
S280537					0000		1003.6			RW-F	3	2	30	
280555			60	54	0000		1003.3			RW-F	3		5	1.13
S280620					0000		1003.3		.7	F	2	1	9	00
280555			70		1912		1005.6		7.0		15	15 9		.00
280555			71				1005.6		7.0		15	y		
280555			7 i	65		21	1006.7		7.0	F .	10 2		25	
S280545					0000		1003.3		.5		2		25	
\$280545 280557			58	55	0000		1003.3		1.0		2			1.05
			36	23	0037		1033.3			RW-F	38		2.5	1.05
280650					3108		1004.0			RW-F	30	20		
\$280701 280655			65	63	2708		1002.6			RW-	23	5		
280654			65 71		1816		1002.3		7.0	ACH -	20	80		
280650			72			27	1006.0		7.0	R-	15	•		
280650			49		2606		1006.3		7.0		40	70		
S280640			••		0000		1003.6			RW-F	3	1	5	
5280640			~		0000		1003.6	·		RW-F	3	1	5	
280655			59	54	0000		1004.3			RW-F	10	3	30	
5280646					2016		1005.0			RW-	35	16		
280655			70	66	2016		1005.0			RW-	35	16		
280655			71			21	1006.0		7.0		30	9	20	
280655			72				1006.0		7.0		10			
5280639					0000	5 mg .	1002.9		1.0	RF	2			
280656			58	54	3302		1002.9		1.0		2			
280750			55		3506		1004.0		7.0		30			
280750			63	60	2608		1004.0	310	5.0	RW-	21	10		
8280830	VA	RIC			2608		1003.6	230	7.0		10	25		
280750	VA	рчг	72	66	1814		1004.6	230	7.0		20	40		
280750	VA	ORF	72	67	1819	25	1004.6	300	10.0		15			
280750	VA	ROA	49	47	2306		1005.6	300	7.0		40			
280755	VA	DAA	59	54	0000		1003.6	311	5.0	RW-F	40	10	15	

Date/		Stn					Stn	Cld	l		cld	Hgt		Precip
Time	St	ID	ፓ	TD	Wind	Gs	t Pres	Amt	Vis	Wx	Low	/Mid	/H1	Amt
202755			~											
280755 280755			71 71				1004.0				16	20 9	20	
5280830			′ -	٠,	1912	19	1003.3			т	30 30	9	20 20	
280755			72	65	1916					•	12	30	-,	
280755			58		0000		1002.9			RF	2	25		
280850	٧٨	IAD	53	53	3404	* 4 +	1004.0				33	70		.05
280850	VA	RIC	62		2708		1003.6	310	7.0	RW-	25	10		.57
280850	٧A	PHF	69	67	1912		1003.6	230	4.0	TRW-	15	20		.00
S280920	VA	PHF	68	67	2808		1093.6	300	4.0	TRW-	20			
280850	VA	ORF	73	67	1621	31	1002.9	310	10.0		55	15		.00
S280926					2014		1002.3		7.0	T	15	22		
280850			49		2406		1006.0		7.0		70	40		.00
28C855 S280907			56	48	3404 3206		1002.9			rw- rw-p	40 5	20 2	80 23	.00
S280907					3206		1003.6			RW-F	5	2	23	
S290832					2010		1003.6			TRW-	16	20		
£280838	VA	LFI												
280859	VA	LFI	68	68				213	6.0	TRW-	16	5	20	.00
280855	VA	ngu	72	68	1821	33	1002.3	212	7.0	T	30	9	80	.00
S280920	VA	NGU			1914	17	1002.3	212	6.0	RW-	20	9	80	
\$2809 2 5														
280855			72	66			1004.0		7.0		10	30		
S280903				40	3106	21	1003.6		7.0	D #	30 11	10 2	80 25	00
280956 280950			55 51		3504		1002.6		4.0 7.0		40	-	45	-00
280950			61		2606		1003.6		7.0	K -	50	10		
5281010				•	2706		1004.0		7.0		12	23		
5281008					2508		1005.0				45			
5280940			66	65	2904		1004.0			RW-	20	10	40	
280953	٧A	PHF	65	64	2906		1003.3	011				20	50	
5280939	V.	ORF			1821	33	1000.6	230	10.0		15	22		
280950	VA	ORF	72	67	2717	35	1002.9	300	2.0	R+	13			
S281007						33	1003.6		1.0	TR+	12			
280950			48	46	2804		1005.6		7.0		31			
S280936					2512		1003.3			TRW+	20			
200955			66	65	2710	25	1002.3		7.0	en sa	50	20	00	
\$280945 280955			72	67	2112	۷٦	1002.3		7.0	TRW	15 15	9 8	80	
S291001			, 2	0,	2108		1003.6			TRW-	15	8	80	
280955			72	66		29	1002.9		7.0		30	10	80	
5280940	VA	NYG			0504		1002.9			R-F	23	11		
280957			53	48	0104		1002.9				23	11		
281050	VA	IAD	51	51	3504	~	1004.0	300	7.0	R-	42			
281045	VA	SHD	49		3004		1004.6	300	1.0	R-F	24			
281045	VA	CHO	51	47	2506		1004.3	310	10.0	R-	65	30		
281050	VA	RIC	58	53	3012	16	1004.3	300	5.0	RW-	12			
281050			50		2306		1004.6				45			
281058			63		2810	٠,.	1004.0				14	30		
281050			66		2514		1003.6			R-	20			
281050			43		2910		1007.3				38			
281050			52 53		2704		1005.3			nu =	20	•	2.4	
281055 281055			53 63		0000 2710		1003.6		7.0	RW-P	5 40	2 12	23 80	
S281112			.,	72			_003.3	-14			•0		50	
281055			65	63	2504		1003.6	311	7.0		50	8	20	
S281035			-	-	2208		1003.3			RW-	30	8	80	
281055			72	67	2410		1003.6				23	8	80	
S281110	VA	NGU			2708	16	1003.6	213			14	8	80	
281055			71	65			1003.3		7.0		10	5	30	
S281101							1003.6		.7		8	5	10	
S281125			•-			16	1003.6			RW-P	10	5	30	
281056	VA	NYG	53	48	0102		1003.3	310	6.0	L-P	11	3		

Date/		Stn					Sin	Cld			cld	Hgt		Precip
Time	42	ID	т	тD	Wind	Gst	Pres	Amt	Vis	Wx	Low	Mid	/Hi	Amt
1 time														
281150	v/A	TAD	49	47	3214	23	1005.0	213	10.0		38	25	80	.16
281145			44	•	3010		1006.0			R-	3.5			
281145			51	46	2704		1004.0				60	30		
5281200				• •	2706		1004.0	230	7.0		12	23		
281150			55	5.2	3006		1004.6	310	5.0	R-	38	10		.61
\$281200					2508		1005.0		15.0		45			
291153			46	4.1	2812		1006.0			RW-	45	27		.08
			40	-4 1	23,2				25.0					
\$281200			6.2	60	2406		1004.0	213	7.0		28	10	250	.15
291155			5.2	00	2706		1004.3		1.5	RF	8	20		
5281219					2721	2.2					12			
\$281200						3 3	1003.3		7.0		22	45		.08
291150			65		2606		1003.3				80	40		.00
281150			4.1		3008		1006.3				20	30		• • •
291149			5.2	49	2905					RW-F	23	5		
5281137	VA	DAA			0000		1004.3				29	5	80	.58
291155	VA	DAA	53	45	0000		1004.3			RW-F		5	12	
5291140	VA	FAF			3004		1002.9			RW-	40		40	
281158	VA	FAF	61	60	3008		1003.3			TRW-	12	5		
5281225	VA	FAF			2706		1004.0			TRW-	7	5	12	
281155	VA	LFI	6.3	61	2808		1002.9	213			20	8		1.03
5281214	VA	LFI			2810		1003.6	213	6.0	KM-	12	5	30	
291155	VA	NGC	6.4	50	2710		1003.6	211	7.0		14	4	8	
5281210	VA	NOU			2708		1003.6	211	6.0	RW-	14	4	8	
5281230	VA	NGU			2710		1004.0	213	5.0	RW-F	29	8	60	
281155	VΑ	NTU	65	61	2506		1003.6	213	4.0	RW-F	10	5		
5291230					230€		1004.6	213	5.0	TP	10	5	30	
281155			5.2	47	0102	2	1004.0	230	9.0	3-L-	11	23		.44
281150			64	64	2506	,	1002.6	213	4.0	RW-F	30	5	70	
231130	* ^^		0 -	, .										