Chapter 1

1.1 Exercice 1

Considérons $(U_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables tel que $U_n \leq U$ pour tout n et $\mathbb{E}[U_n] \uparrow \mathbb{E}_*[U]$. Soit $\omega \in \Omega$, on définit la suite de fonction suivante :

$$\phi_n(\omega) = \inf_{k \ge n} U_k(\omega).$$

La suite de fonction $(\phi_n)_{n\in\mathbb{N}}$ constitue une suite croissante (p.s.) et nous avons, pour chaque n

$$\phi_n(\omega) = U(\omega), \quad \forall \omega \in \Omega.$$

Considérons la fonction mesurable U_* définie par :

$$U_*(\omega) = \lim_{n \to \infty} \phi_n(\omega).$$

Clairement $U_* \leq U$ et par le théorème de convergence monotone :

$$\mathbb{E}[U_*] = \mathbb{E}[\lim_{n \to \infty} \phi_n] = \lim_{n \to \infty} \mathbb{E}\phi_n = \mathbb{E}_*U.$$

Pour toute fonction mesurable V tel que $V \leq U$, nous avons $V \vee U_* \leq U$, de plus

$$\mathbb{E}[V \vee U_*] < \mathbb{E}_* U = \mathbb{E} U_*.$$

Nous obtenons alors:

$$\mathbb{E}V \vee U_* = \mathbb{E}U_*$$
.

Ce qui nous permet d'obtenir que $V \vee U_* = U_*$, d'où $U_* \geq V$ presque sûrement.

1.2 Exercice 2

Ici, $T^*(\omega) = T(\omega)$ puisque T est mesurable. Or, puisque \mathbb{P} est la mesure de Cauchy, $\mathbb{E}T$ n'existe pas. Donc $\mathbb{E}T^*$ n'existe pas. Néanmoins, \mathbb{E}^*T doit exister : il s'agit du minimum pris sur des espérance qui existent. Soit $U \geq T$ mesurable tel que $\mathbb{E}U$ existe. Notons U^+ (resp. U_-) sa

partie positive (resp. sa partie négative). Nous avons

$$\mathbb{E}U^{+} \geq \mathbb{E}T^{+} = \frac{1}{\pi} \int_{\mathbb{R}^{+}} \frac{\omega}{1 + \omega^{2}} d\omega = \infty.$$

Donc $\mathbb{E}U^+ = \infty$. Puisque $\mathbb{E}U$ existe, cela induit que

$$\mathbb{E}U_{-}<\infty$$
.

Ainsi $\mathbb{E}U = \mathbb{E}U^+ - \mathbb{E}U_- = \infty$. Puisque U est choisit arbitraire, on a donc

$$\mathbb{E}^*T=\infty.$$

1.3 Exercice 3

Supposons ici $\mathbb{E}^*T < \infty$. Puisque, en dehors d'un ensemble négligeable, la suite $f_n(x)$ est croissante en n, la limite existe dans $\bar{\mathbb{R}}$. Ainsi, T est définie presque sûrement et, de plus :

$$\forall n \in \mathbb{N}, \quad \mathbb{E}^* T_n \leq \mathbb{E}^* T_{n+1} \leq \mathbb{E}^* T < \infty.$$

Par monotonicité de l'intégrale extérieure, il suit

$$\lim_{n} \sup_{n} \mathbb{E}^* T_n = \lim_{n \to \infty} \mathbb{E}^* T_n \le \mathbb{E}^* T.$$

Puisque chaque $\mathbb{E}^*T_n \leq \infty$, par définition, il existe une suite de fonction étagées tel que :

$$0 < T_n(\omega) < \phi_n(\omega), \quad a.s.$$

et

$$\mathbb{E}T_n < \mathbb{E}\phi_n < \mathbb{E}^*T_n + 2^{-n}$$
.

Puisque, pour tout entier $n \leq m$

$$\psi_n := \inf_{m \ge n} \phi_m, \quad \phi = \lim_{n \to \infty} \phi_n,$$

satisfont, presque sûrement et pour tout $n \in \mathbb{N}$

$$0 \le \psi_1 \le \psi_2 \le \dots,$$

$$0 < T_n < \phi_n < \phi,$$

et

$$0 \le T \le \phi$$
.

Maintenant, le théorème de convergence monotone s'applique à la suite de fonction mesurable ψ_n , en combinant l'ensemble des inégalités, nous obtenons :

$$\mathbb{E}^*T \leq \mathbb{E}\psi = \lim_{n \to \infty} \mathbb{E}\psi_n \leq \lim_{n \to \infty} \mathbb{E}\phi_n = \lim_{n \to \infty} \mathbb{E}^*T_n \leq \mathbb{E}^*T$$

1.4 Exercice 4

Dans un premier temps, montrons que

$$|T_n - T^*| \le 2S^*.$$

Si $T_n \to T$, alors $|T| \leq S$, puisque $\forall n \in \mathbb{N}$ nous avons $|T_n| \leq S$. Donc,

$$|T_n - T| \le 2S \le 2S^*$$

Par définition de S^* (voir page 6). Or $2S^* \in \mathcal{M}(\Omega, \mathbb{R}^+)$ tel que $2S^* \geq |T_n - T|$. Par définition, il suit que :

$$|T_n - T^*| \le 2S^*. \tag{1.1}$$

Ce qui est le premier résultat souhaité. Avant de poursuivre, introduisons un lemme :

Lemma 1. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré où μ est une mesure finie. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables $\Omega \to \mathbb{R}$ vérifiant :

• La suite (f_n) converge simplement $\mu - p - p$ sur Ω vers f;

$$\forall \omega \in \Omega, \quad \lim_{n \to \infty} f_n(\omega) = f(\omega), \quad \mu - p.p.$$

• il existe une constante telle que $\forall n \in \mathbb{N}, |T_n| \leq M$.

Alors,

$$\lim_{n \to \infty} \int |f_n - f| \, d\mu = 0$$

Proof. D'après les hypothèses, on voit immédiatement que la fonction limite f est bornée par la même constante,

$$|f| \leq M$$
.

Soit $\epsilon > 0$ fixé, le théorème d'Egorov nous permet de trouver un sous ensemble $\Omega_{\epsilon} \subset \Omega$ avec :

$$\mu\left(\Omega \setminus \Omega_{\epsilon}\right) \leq \epsilon$$

en restriction auquel on a convergence uniforme de la suite de fonctions (f_n) vers f. Alors, sur Ω_{ϵ} , nous pouvons trouver un entier $N_{\epsilon} \in \mathbb{N}^*$ assez grand tel que,

$$n \ge N_{\epsilon} \implies (\forall \omega \in \Omega_{\epsilon}, |f_n(x) - f(x)| \le \epsilon,$$

d'où

$$\int_{\Omega} |f_n(x) - f(x)| \, d\mu(x) = \int_{\Omega_{\epsilon}} |f_n(x) - f(x)| \, d\mu(x) + \int_{\Omega \setminus \Omega_{\epsilon}} |f_n(x) - f(x)| \, d\mu(x)$$

$$\leq \epsilon \mu(\Omega_{\epsilon}) + 2 \int_{\Omega \setminus \Omega_{\epsilon}} M d\mu(x)$$

$$\leq \epsilon (\mu(\Omega_{\epsilon} + 2N))$$

Ce qui est le résultat attendu.

Soit $N \in \mathbb{N}$, notons l'ensemble mesurable suivant :

$$G_N = \{ \omega \in \Omega, \quad S^*(\omega) \le N \}.$$

La suite de fonction (g_N) définie par

$$g_N(\omega) = S^*(\omega) \mathbb{1}_{G_N}(\omega),$$

est mesurable et croissante, une application du théorème de convergence monotone nous permet d'obtenir, pour $\epsilon > 0$, l'existence d'un $N_{\epsilon} \in \mathbb{N}$ tel que, pour tout $n \geq N_{\epsilon}$

$$\int_{\Omega \setminus G_N} g_n(\omega) d\mathbb{P}(\omega) \le \epsilon \tag{1.2}$$

De plus, grâce au lemme, nous avons l'existence d'un entier n_{ϵ} tel que pour tout $n \geq n_{\epsilon}$:

$$\int_{G_N} |T_n - T|^* d\mathbb{P} \le \epsilon \tag{1.3}$$

Grâce à ces deux inégalités, nous pouvons obtenir :

$$\int_{\Omega} |T_n - T|^* d\mathbb{P} = \int_{G_N} |T_n - T|^* d\mathbb{P} + \int_{\Omega \backslash G_N} |T_n - T|^* d\mathbb{P},$$

$$\leq \epsilon + 2\epsilon.$$

D'où

$$\mathbb{E}\left|T_n - T\right|^* \to 0$$

ce qui implique notre résultat.

1.5 exercice 5

Nous avons

$$|S^* - T_*| = |S^* \pm T^* - T_*| \le |S^* - T^*| + (T^* - T_*) \le |S - T|^* + (T^* - T_*).$$

Où la dernière ligne provient du lemme 1.2.2. Suivant le même raisonnement, nous pouvons montrer

$$|S^* - T_*| = |S^* \pm S_* - T_*| \le |S_* - T_*| + (S^* - S_*),$$

$$\le |(-S)^* - (-T)^*| + (S^* - S_*) \le |S - T|^* + (S^* - S_*).$$

Utilisant ces deux inégalités mènent à

$$|S^* - T_*| \le |S^* - T^*| + (T^* - T_*) \wedge (S^* - S_*).$$

Ce que nous voulions démontrer. Nous avons immédiatement que, d'après le lemme 1.2.2

$$(S^* - T_*) \vee (T^* - S_*) = |S^* - T_*|.$$

donc nous obtenons l'inégalité de gauche. Pour celle de droite, nous devons montrer que

$$S^* - T_* \ge (S - T)^*. \tag{1.4}$$

En effet, $S^* - T_* = S^* + (-T)^* \ge (S - T)^*$ à nouveau par l'utilisation du lemme 1.2.2. D'où

$$(S^* - T_*) \wedge (T^* - S_*) \ge (S - T)^* \wedge (T - S)^* = |S - T|^*.$$

Ce qui finit l'exercice.

1.6 Exercice 7

Nous avons clairement, pour tout $c \in \mathbb{R}$ que $\{T > c\} \subset \{T^* > c\}$, ainsi

$$\mathbb{P}^* \left\{ T > c \right\} \le \mathbb{P} \left\{ T^* > c \right\}.$$

Pour obtenir l'autre sens de l'inégalité, considérons A une couverture mesurable de l'ensemble $\{T>c\}$ tel que $A\supset \{T>c\}$. On en tire alors que $\mathbb{P}^*\{T>c\}=\mathbb{P}(A)$. Ainsi $T^*(\omega)\leq c$ presque sûrement si $\omega\notin A$. D'où $\mathbb{P}\{T^*>c\}\leq \mathbb{P}(A)$ et ainsi

$$\mathbb{P}\left\{T^* > c\right\} = \mathbb{P}^*\left\{T > c\right\}.$$

Par passage au complémentaire, nous obtenons

$$\mathbb{P}\{T^* \le c\} = 1 - \mathbb{P}^*\{T \le c\} = \mathbb{P}_*\{T \le c\}. \tag{1.5}$$

Et nous obtenons le résultat. On en déduit immédiatement que si $\mathbb{P}^* \{T \leq c\} = 1$ alors $\mathbb{P} \{T^* \leq c\} = 0$. Ce qui conclut l'exercice.

1.7 Exercice 8

Par définition, nous avons:

$$T^* \geq T$$
,

donc

$$g(T^*) \ge g(T),$$

en ayant exploité le caractère croissant de la fonction g. Or $g \circ T^*$ est mesurable comme composition de deux fonctions qui le sont (g l'est car elle est continue à gauche par hypothèse). D'où

$$g(T)^* \le g(T^*)$$

Nous obtenons ainsi notre première inégalité. Pour la seconde inégalité, soit $\epsilon > 0$, nous avons

$$T^* - \epsilon < T$$

Pour obtenir cette inégalité, raisonner par l'absurde et utiliser la définition de la fonction couverture-mesurable (measurable cover function en V.O.). Donc

$$g(T^* - \epsilon) \le g(T)$$
.

Toujours par le caractère croissant de q. On en déduit ainsi

$$g(T^* - \epsilon) \le g(T)^*,$$

et en exploitant la continuité à gauche, il suit en faisant tendre ϵ vers 0

$$g(T^*) \leq g(T)^*$$

ce qui est le résultat souhaité. La deuxième assertion suit de la première appliqué à la fonction $x\mapsto -g(-x)$.

Supposons à présent g mesurable, croissante et de bijection mesurable. A nouveau, puisque

$$q(T^*) > q(T),$$

nous obtenons

$$g(T)^* \le g(T^*).$$

Considérons U une fonction mesurable tel que l'inégalité suivante soit vérifiée presque sûrement

$$g(T^*) \ge U \ge g(T)$$
.

Nous obtenons alors, en exploitant la bijection réciproque de g

$$g^{-1}(U) \ge T.$$

Or $g^{-1}(U)$ est mesurable comme composée de fonctions qui le sont, d'où

$$q^{-1}(U) > T^* \iff U > q(T^*),$$

vérifiée presque sûrement. Ainsi

$$g(T^*) = U \ge g(T)^*$$

Par définition. Ce qui conclut l'exercice.

1.8 Exercice 9

Nous avons, par définition

$$T_1^* \ge T_1, \quad T_2^* \ge T_2,$$

donc puisque g est croissant en chaque coordonnée, nous avons

$$g(T_1^*, T_2^*) \ge g(T_1, T_2).$$

Puisque $g(T_1^*, T_2^*)$ est mesurable comme composée de fonctions qui le sont, donc

$$g(T_1^*, T_2^*) \ge g(T_1, T_2)^*.$$

Nous obtenons notre première inégalité. Considérons $U \in \mathcal{M}(\Omega_1 \times \Omega_2, \bar{\mathbb{R}})$ tel que $U \geq g(T_1, T_2)$ presque sûrement. Par application du théorème de Fubini, pour \mathbb{P}_1 -presque tout ω_1 , nous avons

$$U(\omega_1, \omega_2) \geq g\left(T_1(\omega_1), T_2(\omega_2)\right), \text{ pour } \mathbb{P}_2 \text{ presque tout } \omega_2.$$

Soit $f: \omega_2 \mapsto U(\omega_1, \omega_2)$ et $h: y \mapsto g(x, y)$ avec $x \in \mathbb{R}$. Nous obtenons ainsi l'inégalité suivante

$$f(\omega_2) \ge h(T_2(\omega_2))$$
, pour \mathbb{P}_2 presque tout ω_2 .

La fonction $f = U \circ \pi_2$ est mesurable comme composée de fonctions qui le sont, ainsi

$$f(\omega_2) \ge h(T_2(\omega_2))^*$$
, pour \mathbb{P}_2 presque tout ω_2 .

Or, la fonction $y \mapsto h(y)$ est croissante et continue à gauche, donc d'après l'exercice précédent

$$f(\omega_2) \ge h(T_2^*(\omega_2)), \text{ pour } \mathbb{P}_2 \text{ presque tout } \omega_2.$$

Ce que l'on peut réécrire pour \mathbb{P}_1 -presque tout ω_1

$$U(\omega_1, \omega_2) \geq g(T_1(\omega_1), T_2^*(\omega_2)), \text{ pour } \mathbb{P}_2 \text{ presque tout } \omega_2.$$

La reproduction du même raisonnement pour T_1 permet d'obtenir que

$$U(\omega_1, \omega_2) \ge g(T_1^*(\omega_1), T_2^*(\omega_2)),$$
 P-presque sûrement.

Donc

$$g(T_1, T_2)^* \ge g(T_1^*, T_2^*).$$

Ce qui est ainsi démontré.

1.9 Exercice 10

Soit $\mathcal{C} = \{A \cup N, A \in \mathcal{A}, N \in \mathcal{N}\}$. On montre que \mathcal{C} est une tribu. Ainsi, puisque $\mathcal{A} \cup \mathcal{N} \subset \mathcal{C}$, par minimalité, nous avons $\tilde{\mathcal{A}} = \sigma(\mathcal{A} \cup \mathcal{N}) \subset \mathcal{C}$. Il est aussi clair que $\mathcal{C} \subset \tilde{\mathcal{A}}$. Montrons donc que \mathcal{C} est une tribu.

Nous avons $\Omega = \Omega \cup \emptyset$ et $\mathbb{P}^*(\emptyset) = \mathbb{P}(\emptyset) = 0$, d'où $\subset \mathcal{N}$. Donc $\Omega \in \mathcal{C}$. La stabilité par union dénombrable est directe. Montrons la stabilité par complémentaire, *i.e.* $(A \cup N)^c \in \mathcal{C}$ avec $A \in \mathcal{A}$ et $N \in \mathcal{N}$. Puisque $N \in \mathcal{N}$, il existe $B \in \mathcal{A}$ avec $N \subset B$ et $\mathbb{P}^*(B) = 0$. Supposons sans perte de généralité que $A \cap B = \emptyset$; pour le voir, on peut écrire $A \cup N = A \cup (N - A)$ et noter que $N - A \in \mathcal{A}$, ainsi $N - A \in \mathcal{N}$ et aussi $A \cap (B - A) = \emptyset$.

Maintenant, écrivons $A \cup N = (A \cup B) \cap (B^c \cup N)$ et ainsi $(A \cup N)^c = (A \cup B)^c \cup (B^c \cup N)^c = (A \cup B)^c \cup (B \cap N^c)$. Or, $(A \cup B)^c \in \mathcal{A}$ et $B \cap N^c \subset B$, donc $B \cap N^c \in \mathcal{N}$. Ainsi, \mathcal{C} est bien une tribu.

Montrons maintenant que $\tilde{\mathbb{P}}$ est bien définie. Si $A_1 \cup N_1 = A_2 \cup N_2$ avec $A_1, A_2 \in \mathcal{A}$ et $N_1, N_2 \in \mathcal{N}$ alors $A_1 \triangle A_2 \subset N_1 \cup N_2$. Donc

$$\mathbb{P}(A_1 \triangle A_2) = 0,$$

et l'on en tire $\mathbb{P}(A_1) = \mathbb{P}(A_2)$. $\tilde{\mathbb{P}}$ est ainsi bien définie.

Montrons que

$$\tilde{\mathcal{A}} \subset \{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\},\$$

nous avons clairement $\forall A \in \mathcal{A}, N \in \mathcal{N}$

$$\mathbb{P}_*(A \cup N) \le \mathbb{P}^*(A \cup N).$$

De plus, puisque $A \in \mathcal{A}$ (donc mesurable) et en utilisant des propriété de l'exercice 15

$$\mathbb{P}^*(A \cup N) < \mathbb{P}^*(A) + \mathbb{P}^*(N) = \mathbb{P}^*(A) = \mathbb{P}_*(A) < \mathbb{P}_*(A \cup N).$$

Donc

$$\mathbb{P}_*(A \cup N) = \mathbb{P}^*(A \cup N).$$

Montrons à présent que $\{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\}$ est une tribu et nous obtiendrons notre première inclusion. Nous avons, puisque $\emptyset \in \mathcal{A}$ que

$$\mathbb{P}^*(\emptyset) = \mathbb{P}_*(\emptyset) = \mathbb{P}(\emptyset) = 0.$$

Soit $A \in \{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\}$, il suit que

$$\mathbb{P}^*(A^c) = 1 - (1 - \mathbb{P}^*(A^c)) = 1 - \mathbb{P}_*(A) = 1 - \mathbb{P}^*(A) = \mathbb{P}_*(A^c).$$

Donc $A^c \in \{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\}$. Soit $A_i \in \{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\}$, montrons alors que

$$\bigcup_{i>1} A_i \in \{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\}.$$

Or, d'après l'exercice 15

$$\sum_{i\geq 1} \mathbb{P}_*(A_i) \leq \mathbb{P}_*(\bigcup_{i\geq 1} A_i) \leq \mathbb{P}^*(\bigcup_{i\geq 1} A_i) \leq \sum_{i\geq 1} \mathbb{P}^*(A_i).$$

Or, par hypothèse $\sum_{i\geq 1} \mathbb{P}_*(A_i) = \sum_{i\geq 1} \mathbb{P}^*(A_i)$, donc

$$\mathbb{P}_*(\bigcup_{i>1} A_i) = \mathbb{P}^*(\bigcup_{i>1} A_i).$$

Ainsi $\{A \in \Omega, \mathbb{P}^*(A) = \mathbb{P}_*(A)\}$ est bien une tribu et nous obtenons notre première inclusion. L'autre inclusion est immédiate, nous obtenons notre résultat.

Montrons maintenant la troisième (et dernière assertion). Considérons $\tilde{U} = 1_{\tilde{A}_i}$ avec $\tilde{A}_i \in \tilde{A}$. Prenons $A_i \in \mathcal{A}$ avec $\tilde{A}_i = A_i \cup N_i$ avec $\mathbb{P}^*(N_i) = 0$. Nous avons

$$\mathbb{P}^*(U \neq \tilde{U}) = \mathbb{P}^*(1_{A_i} \neq 1_{\tilde{A}_i}) = \mathbb{P}^*\{\omega \in A_i, \omega \notin A_i \cup N_i\} \cup \{\omega \notin A_i, \omega \in A_i \cup N_i\},$$

$$\leq \mathbb{P}^*\{\omega \in A_i, \omega \notin A_i \cup N_i\} + \mathbb{P}^*\{\omega \notin A_i, \omega \in A_i \cup N_i\} = 0.$$

Le raisonnement est le même pour les fonctions étagées. Soit \tilde{U} une fonction positive, nous savons qu'il existe une suite de fonctions étagées croissante \tilde{U}_n qui converge ponctuellement vers \tilde{U} , *i.e.*

$$\lim_{n\to\infty} \tilde{U}_n(\omega) = \tilde{U}(\omega),$$

avec $\tilde{U}_n = \sum_{i=1}^n \lambda_i 1_{\tilde{A}_i}$, $\tilde{A}_i \in \tilde{\mathcal{A}}$, $\lambda_i \in \mathbb{R}$, $\omega \in \Omega$. On construit alors $U_n = \sum_{i=1}^n \mu_i 1_{A_i}$ avec $\mu_i \in \mathbb{R}$ et A_i tel que $\tilde{A}_i = A_i \cup N_i$. On pose $\psi_n(\omega) = \inf_{k \le n} U_k(\omega)$ qui est une suite décroite et $U = \lim_{n \to \infty} \psi_n$

qui est bien mesurable comme limite d'une fonction mesurable. D'où, pour $\epsilon > 0$ fixé

$$\mathbb{P}^*(\tilde{U} \neq U) = \mathbb{P}^*(\exists n \ge 1, \tilde{U}_n \neq \psi_n) = \mathbb{P}^*(\bigcup_{n \ge 1} |\tilde{U}_n - \psi_n| \ge \epsilon),$$
$$= \mathbb{P}^*(\bigcup_{n \ge 1} \tilde{U}_n - \psi_n \ge \epsilon) + \mathbb{P}^*(\bigcup_{n \ge 1} \psi_n - \tilde{U}_n \le \epsilon).$$

Soit $A_n = \{\omega \in \Omega, \tilde{U}_n(\omega) - \psi_n(\omega) \ge \epsilon\}$, puisque \tilde{U}_n est croissante et ψ_n décroissante, $\tilde{U}_n - \psi_n$ est une fonction croissante donc A_n est une suite d'ensemble croissant. Nous avons donc

$$\mathbb{P}^*(\bigcup_{n>1} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = 0,$$

en ayant utilisé le raisonnement précédent sur les fonctions étagées. Même raisonnement pour l'autre suite d'ensemble. Une fonction \tilde{U} peut être séparé en sa partie positive \tilde{U}^+ et sa partie négative \tilde{U}_- et sa fonction U associée aussi.

1.10 Exercice 11

Si \tilde{T}^{*c} est une couverture mesurable minimale pour la complétion alors, d'après l'exercice précédent, il existe $T^{*c}:(\Omega,\mathcal{A})\to\mathbb{R}$ avec $\tilde{T}^{*c}=T^{*c}$ presque sûrement.

Puisque T^{*c} est mesurable sur (Ω, \mathcal{A}) et $T^{*c} \geq T$, nous obtenons $T^* \leq T^{*c}$. De plus, T^* est mesurable sur (Ω, \tilde{A}) , donc

$$T^* \ge \tilde{T}^* \implies T^* \ge T^{*c},$$

et donc $T^* = T^{*c} = \tilde{T}^{*c}$ presque sûrement.