Finite Expiration American Put Thursday, March 22, 2012 3:21 PM

Sponsored by the National Grid Foundation national grid

The power of action

let us recall the results for the Perpetual American Put on: $dS_{\xi} = rS_{\xi} d\xi + \sigma S_{\xi} dW_{\xi}$

Perpetual American Put: N_{*}(a) = max $\mathbb{E}\left[\tilde{e}^{rs}(k-S_s)\right]$

• It sategy : if $S_t \leq L$ exercise immediately • if $S_t \geq L$ wait

on for L* = 2r K the strategy is OPTIMAL

Analytic Characterization of 17 (1)

() NT(x) 7 (K-x)+

(2) $\Upsilon V(x) - \Upsilon x V'(x) - \frac{1}{2} \nabla^2 x^2 V'(x) > 0$

3) for each n > 0: equality holds in either (1) or (2) and $\sigma'(1*) = -1$ (Supoth pasting)

Probabilistic Characterization of Vt = NIx (St)

1 Vt 7 (K-St)

@ ert Vt : P supermartingale

A Here with a change like you a last

3) there exists a stopping time 3* such that $V_0 = \mathbb{E} \left[\tilde{e}^{r s^*} (k - S_{z*})^{\frac{1}{2}} \right]$

7* = min {t70 : 54 € 5}

S = stopping region (= continuation region

Now let's move on to finite expiration American Put:

· T= maturity

- the owner of the option can exercise any time up to T

- · intrinsic value : (K-S_t)
- . reduce of the put: $v(t,x) = \max_{t \leq s \leq T} \left[e^{r(s-t)} (k-s_z)^{t} | s_t = x \right]$

Analytical Characterization of the Put Price Nt. 2)

- (1) $\nabla (t_i x) \pi (k-x)^{\dagger}$ (4) $t \in [0,T]$
- 白 インはれ) ではれ) イスではれ) 立でえなればれ) 30
- (3) equality holds in either (1) or (2) $V_{R}(t, x) = -1$ on the curve L(T-t)

Probabilistic Characterization of 1 = v (t, Sx)

- () Vt 7 (K-St) (Y) OSTET
- 3 Vz is the smallest process that satisfies O22