

Ens: Prof. Marco Picasso Analyse numérique - XYZ 26 Juin 2019 de 12h15 à 14h30 1

Lennon John

SCIPER: XXXXX1

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple** il y a une ou plusieurs réponses correctes. On comptera:
 - $+1/N\,$ points si vous cochez une réponse correcte, où N est le nombre de réponses correctes,
 - 0 point si vous ne cochez rien,
 - -1/M point si vous cochez une réponse incorrecte, où M est le nombre de réponses incorrectes.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si vous cochez la réponse correcte,
 - 0 point si vous ne cochez rien,
 - -1 point si vous cochez la réponse incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Il y a 18 questions à **choix multiple** ou questions **vrai-faux** et 14 points répartis sur deux questions à **rédiger**.
- Aucune page supplémentaire ne pourra être ajoutée à ce document.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien			
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren	
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte			

Pour chaque question mettez une croix dans les cases correspondant à des réponses correctes sans faire de ratures.

 ${\bf Question} \ {\bf 1}: \ \ {\bf Soit} \ A \ {\bf la} \ {\bf matrice} \ {\bf d\'efinie} \ {\bf par}$

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix},$$

on a

On considère le système différentiel suivant:

Trouver
$$u_1: [0, +\infty[$$
 $\to \mathbb{R}$ et $u_2: [0, +\infty[$ $\to \mathbb{R}$ tels que t $\to u_1(t)$ t $\to u_2(t)$
$$u_1'(t) = -(u_2(t))^2 u_1(t), \quad t > 0,$$

$$u_2'(t) = -(u_1(t))^2 u_2(t), \quad t > 0,$$

$$u_1(0) = 1, \ u_2(0) = 1.$$

Question 2: On a

$$\frac{1}{2}\frac{d}{dt}\Big((u_1(t))^2 + (u_2(t))^2\Big) + 2(u_1(t))^2(u_2(t))^2 = 0, \quad \forall t > 0.$$

☐ VRAI ☐ FAUX

Question 3: On a

$$(u_1(1))^2 + (u_2(1))^2 \le (u_1(0))^2 + (u_2(0))^2.$$

VRAI FAUX

Question 4: Soit h > 0, $t_n = nh$, n = 0, 1, 2, ..., on note u^n une approximation de $u(t_n)$ obtenue à l'aide du schéma d'Euler rétrograde. Pour n = 0, 1, 2, ..., étant donné u_1^n et u_2^n , il s'agit de trouver u_1^{n+1} et u_2^{n+1} tels que

$$f_1(u_1^{n+1}, u_2^{n+1}) = 0,$$

 $f_2(u_1^{n+1}, u_2^{n+1}) = 0.$

où $f_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ et $f_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ sont définies pour tout $x_1, x_2 \in \mathbb{R}$ par

$$f_1(x_1, x_2) = x_1 - u_1^n + h(x_2)^2 x_1, \ f_2(x_1, x_2) = x_2 - u_2^n + h(x_1)^2 x_2$$

Question 5 : On effectue un pas de la méthode de Newton pour approcher u_1^1 et u_2^1 à partir de u_1^0 et u_2^0 . On note u_1^1 et u_2^1 et u_2^1 et u_2^1 ainsi obtenues. Le système linéaire à résoudre s'écrit

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 - x_1^1 \\ 1 - x_2^1 \end{pmatrix} = \begin{pmatrix} h \\ h \end{pmatrix},$$

où a et b sont donnés par

$$a = 1 - h, b = -h$$

$$a = 1 + h, b = 2h$$

$$a = 1 - 2h, b = -2$$

$$a = 1 + 2h, b = h$$

On considère le problème suivant: trouver $u:[0,1]\times[0,+\infty[\to\mathbb{R}$ tel que

$$\begin{split} &\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < 1, \ t > 0, \\ &u(x,0) = \sin(\pi x), \qquad 0 < x < 1, \\ &u(0,t) = 0, \ u(1,t) = 0, \qquad t > 0. \end{split}$$

Soit N un entier positif, h=1/N, $x_i=ih$, $i=0,1,\ldots,N+1$. Soit M un entier positif et $\tau>0$ le pas de temps, $t_n=n\tau$, $n=0,1,\ldots,M$. On note u_i^n une approximation de $u(x_i,t_n)$, $n=0,1,\ldots,M$, $i=1,\ldots,N$. On considère une méthode de différences finies pour calculer les valeurs u_i^n . On approche

- $\partial u/\partial t(x,t)$ à l'aide d'une formule de différences finies rétrograde,
- $\partial^2 u/\partial x^2(x,t)$ à l'aide d'une formule de différences finies centrée.

A chaque pas de temps il s'agit de résoudre le système linéaire $A\vec{u}^{n+1} = \vec{u}^n$ où on a noté \vec{u}^n le vecteur de composantes u_i^n , $i=1,\ldots,N$. Le programme matlab / octave exam1.m correspond à cette méthode. A partir de N,M,τ , il permet de calculer u_i^M , $i=1,\ldots,N$. Le programme est incomplet.

Question 6: A la ligne b(i) = ???;, il faut remplacer les ??? par:
sin(pi*i*h)
<pre> tau*sin(pi*i*h) 0 </pre>
tau / (h*h) * sin(pi*i*h)
Question 7: A la ligne a(i) = 1 + ???;, il faut remplacer les ??? par:
tau
tau / (h*h)
2 * tau / (h*h)
2 * tau
Question 8: A la ligne d(i) = - ???;, il faut remplacer les ??? par:
2 * tau
tau
tau / (h*h)
2* tau / (h*h)
Question 9: A la ligne a(i) = a(i) - ???;, il faut remplacer les ??? par:
b(i-1) * d(i-1)
b(i-1) * c(i-1)
Question 10: A la ligne c(i) = c(i)/???;, il faut remplacer les ??? par:
a(i)
d(i)
□ b(i)

```
Question 11: A la ligne b(i+1) = (b(i+1) - ???)/a(i+1);, il faut remplacer les ??? par:
 \bigcap c(i) * b(i)
 __ d(i) * c(i)
 d(i) * b(i)
Question 12: A la ligne b(i) = b(i) - ???;, il faut remplacer les ??? par:
 __ c(i) * d(i)
 Question 13 : Une fois complété, le programme donne les résultats suivants:
                        >> exam1(9,10,0.01);
                         erreur maximum au temps final 2.032035e-02
                        >> exam1(19,40,0.0025);
                         erreur maximum au temps final 5.238880e-03
                        >> exam1(39,160,0.000625);
                         erreur maximum au temps final
                                                          1.320115e-03
                        >> exam1(79,640,0.00015625);
                         erreur maximum au temps final 3.306863e-04
On en déduit
 Le schéma converge à l'ordre \mathcal{O}(h^2 + \tau)
    Le schéma est stable si \tau \leq h^2/2
    Le schéma est stable pour tout h > 0 et \tau > 0
    Le schéma converge à l'ordre \mathcal{O}(h+\tau)
```

${\bf Question} \ \ {\bf 14} : \ \ {\bf Une} \ {\bf fois} \ {\bf complét\'e}, \ {\bf le} \ {\bf programme} \ {\bf donne} \ {\bf les} \ {\bf r\'esultats} \ {\bf suivants} :$

```
>> exam1(9,1000,0.01);
 erreur maximum au temps final 2.755597e-41
>> exam1(9,1000,0.1);
 erreur maximum au temps final 3.826546e-297
>> exam1(9,1000,1.);
 erreur maximum au temps final 0.000000e+00
>> exam1(19,1000,0.01);
 erreur maximum au temps final 1.580696e-41
>> exam1(19,1000,0.1);
 erreur maximum au temps final 1.795569e-298
>> exam1(19,1000,1.);
 erreur maximum au temps final 0.000000e+00
>> exam1(39,1000,0.01);
 erreur maximum au temps final 1.374616e-41
>> exam1(39,1000,0.1);
 erreur maximum au temps final 8.349512e-299
>> exam1(39,1000,1.);
 erreur maximum au temps final 0.000000e+00
```

On en déduit

Le schéma converge à l'ordre $\mathcal{O}(h^2 + \tau)$
Le schéma est stable si $\tau \leq h^2/2$
Le schéma converge à l'ordre $\mathcal{O}(h+\tau)$
Le schéma est stable pour tout $h>0$ et $\tau>0$

Fichier exam1.m:

```
function [b] = exam1(N,M,tau)
% Schema d'Euler retrograde pour le probleme de la chaleur.
% A chaque pas de temps, il faut resoudre le systeme lineaire A u^{n+1} = b
  ou u^{n+1} est le vecteur qui contient les approximations de u(x_i,t^{n+1}).
%
  parametres
%
% N
            : nombre d'inconnues du systeme lineaire
%
            : nombre de pas de temps
%
            : pas de temps
% b
            : N-vecteur, a chaque pas de temps,
%
              b est le second membre du systeme lineaire A u^{n+1} = b,
%
              puis la solution du systeme lineaire u^{n+1}.
% h
            : pas d'espace
%
            : temps courant
  t.
            : N-vecteur, diagonale de la matrice A,
%
              puis diagonale de L tq A=LU
%
            : (N-1)-vecteur, sur-diagonale de la matrice A,
  С
%
              puis sur-diagonale de U tq A=LU
%
            : (N-1)-vecteur, sous-diagonale de la matrice A,
%
              puis sous-diagonale de L tq A=LU
%
h=1/(N+1);
t=0:
\% condition initiale
%
for i=1:N
  b(i)=???;
end
\% remplissage de la matrice \, A
for i=1:N
  a(i) = 1+???;
end
for i=1:N-1
 d(i) = -???;
end
for i=1:N-1
  c(i) = -???;
end
\% decomposition A = LU
c(1)=c(1)/???;
for i=2:N-1
  a(i) = a(i) - ????;
  c(i) = c(i)/???;
end
```

```
a(N) = a(N) - ???;
% schema d'Euler retrograde
for n=1:M
 t=t+tau;
\% resolution du systeme lineaire Ly = b
 b(1)=b(1)/???;
 for i=1:N-1
   b(i+1) = (b(i+1)-???)/a(i+1);
%
% resolution du systeme lineaire U x = y
 for i=N-1:-1:1
    b(i) = b(i) - ???;
  end
end
err = 0;
for(i=1:N)
    \texttt{erri = abs(b(i)-exp(-pi*pi*t)*sin(i*h*pi));}
    if (erri>err)
        err = erri;
    end
end
fprintf(' erreur maximum au temps final e \n',err
```

Problème de transport On considère le problème de transport suivant: trouver $u:[0,1]\times[0,+\infty[\to\mathbb{R}]$ tel que

$$\begin{split} &\frac{\partial u}{\partial t}(x,t) - \frac{\partial u}{\partial x}(x,t) = 0, \quad 0 < x < 1, t > 0, \\ &u(x,0) = 10(1-x)^3, \quad 0 < x < 1, \\ &u(1,t) = 0, \quad t > 0. \end{split}$$

Question 15 : La solution du problème est donnée par u(x,t)

Soit N un entier positif, h = 1/(N+1), $x_i = ih$, i = 0, 1, ..., N+1. Soit $\tau > 0$ le pas de temps, M le nombre de pas de temps, $t_n = n\tau$, n = 0, 1, ..., M. On note u_i^n une approximation de $u(x_i, t_n)$ obtenue

- en utilisant une formule de différence finie progressive pour approcher $\frac{\partial u}{\partial t}$,
- en utilisant une formule de différence finie décentrée pour approcher $\frac{\partial u}{\partial x}$

Le fichier matlab / octave exam2.m implémente ce schéma. Ce fichier est incomplet.

Question 16: A la ligne unew(i) = ???;; il faut remplacer les ??? par:

Question 17: Le fichier donne les résultats suivants

On en déduit que, si $\tau \leq h$, alors:

Le schéma est stable
Le schéma est instable
\square Le schéma converge à l'ordre $\mathcal{O}(h+ au)$
Le schéma converge à l'ordre $\mathcal{O}(h^2 + a)$

 $\ \ \, \displaystyle \bigsqcup \ \, \max_{0 \leq i \leq N+1} |u_i^{n+1}| \leq \max_{0 \leq i \leq N+1} |u_i^n|$

 \square Si tous les $u_i^n \ge 0$, $i = 0, 1, \dots, N+1$, alors tous les $u_i^{n+1} \ge 0$, $i = 0, 1, \dots, N+1$

Fichier exam2.m:

```
function exam2(N,M,tau)
   %
      Schema d'Euler progressif pour le probleme de transport du/dt-du/dx=0
   %
   % indications:
   %
   % uold
               : N-vecteur, uold(i) est une approximation de u(x_i,t_n)
               : N-vecteur, unew(i) est une approximation de u(x_i,t_n+1)
   %
   \% definitions preliminaires
   h=1/(N+1);
                     % pas d'espace
   t=0.;
                     % temps initial
   %
   % condition initiale
   for i=1:N
     uold(i)=10*(1-i*h)^3;
   end
   % schema progressif decentre
   %
   for n=1:M
     t=t+tau;
     unew(N)= ???;
     for i=N-1:-1:1
       unew(i)= ???;
     end
     for i=1:N
       uold(i)=unew(i);
     end
   end
   % imprimer l'erreur maximum au temps final
   %
   err = 0;
   for i=1:N
     if (???<1)
       uex(i)=???;
      else
       uex(i)=???;
     endif
     erri = abs(unew(i)-uex(i));
      if (erri>err)
       err = erri;
      end
    end
    fprintf(' erreur maximum au temps e: e n',t,err)
```

Questions à rédiger

Répondre dans l'espace quadrillé dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question ouverte 1: Cette question est notée sur 7 points.

Soit $x_0 \in \mathbb{R}$ et soit $f: [x_0, x_0 + 2] \to \mathbb{R}$ une fonction \mathcal{C}^3 . Montrer que pour tout $0 < h \le 1$ on a

$$\left| f'(x_0) - \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h} \right| \le h^2 \max_{x_0 \le x \le x_0 + 2} |f'''(x)|.$$

Question ouverte 2: Cette question est notée sur 8 points.

Réservé au correcteur

Soit $f:[0,1]\to\mathbb{R}$ une fonction \mathcal{C}^2 donnée. On veut approcher $\int_0^1 f(x) \, \mathrm{d}x$ à l'aide de la formule du rectangle. Soit N un entier positif, on subdivise l'intervalle [0,1] en N sous-intervalles $[\frac{i}{N},\frac{i+1}{N}],\ i=0,1,\ldots,N-1$.

(a) Montrer que
$$\int_0^1 f(x) dx = \frac{1}{2N} \sum_{i=0}^{N-1} \int_{-1}^1 f\left(\frac{1}{N}\left(i + \frac{t+1}{2}\right)\right) dt$$
.

Soit $g:[-1,1]\to\mathbb{R}$ une fonction continue donnée, on approche $\int_{-1}^1 g(t) \, dt$ par 2g(0). On obtient ainsi l'approximation $L_N(f)$ de $\int_0^1 f(x) \, dx$.

(b) Montrer que

$$\int_0^1 f(x) \, dx - L_N(f) = \frac{1}{2N} \sum_{i=0}^{N-1} \left(\int_{-1}^1 f\left(\frac{1}{N}\left(i + \frac{t+1}{2}\right)\right) \, dt - 2f\left(\frac{1}{N}\left(i + \frac{1}{2}\right)\right) \right).$$

(c) Pour tout $i = 0, 1, \dots, N-1$ et pour tout -1 < t < 1 on a

$$f\left(\frac{1}{N}\left(i+\frac{t+1}{2}\right)\right) = f\left(\frac{1}{N}\left(i+\frac{1}{2}\right)\right) + \frac{t}{2N}f'\left(\frac{1}{N}\left(i+\frac{1}{2}\right)\right) + r_i(t).$$

Expliciter $r_i(t)$.

(d) Montrer que
$$\int_0^1 f(x) dx - L_N(f) = \frac{1}{2N} \sum_{i=0}^{N-1} \int_{-1}^1 r_i(t) dt$$
.

(e) Montrer que
$$\left| \int_0^1 f(x) \, dx - L_N(f) \right| \le \frac{1}{8N^2} \max_{0 \le t \le 1} |f''(t)|.$$

