Задача А. Двоичное дерево поиска 1

 Имя входного файла:
 bst1.in

 Имя выходного файла:
 bst1.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 100000. В каждой строке находится одна из следующих операций:

- insert x добавить в дерево ключ x. Если ключ x уже в дереве, то ничего делать не нало.
- ullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо.
- ullet exists x если ключ x есть в дереве, выведите «true», иначе «false»

Все числа во входном файле целые и по модулю не превышают 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists. Следуйте формату выходного файла из примера.

Примеры

- 1	.p.,p.,		
	bst1.in	bst1.out	
	insert 2	true	
	insert 5	false	
	insert 3		
	exists 2		
	exists 4		
	delete 5		

Задача В. Двоичное дерево поиска 2

 Имя входного файла:
 bst2.in

 Имя выходного файла:
 bst2.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 100000. Формат операций смотрите в предыдущей задаче. В каждой строке находится одна из следующих операций:

• insert x — добавить в дерево ключ x.

- ullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо.
- ullet exists x если ключ x есть в дереве, выведите «true», иначе «false»
- **next** x выведите минимальный элемент в дереве, строго больший x, или «**none**», если такого нет.
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none», если такого нет.
- kth k выведите k—ый по величине элемент (нумерация с единицы). Если такого не существует, то выведите «none».

Все числа во входном файле целые и по модулю не превышают 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Примеры

bst2.in	bst2.out
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	2
delete 5	none
next 4	
prev 4	
kth 1	
kth 3	

Задача С. И снова сумма...

 Имя входного файла:
 sum.in

 Имя выходного файла:
 sum.out

 Ограничение по времени:
 3 секунды

 Ограничение по памяти:
 64 мегабайта

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с которым разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \leqslant x \leqslant r$.

ЛКШ.2012.Август.В.День 3 Летняя Компьютерная Школа, Берендеевы поляны, 31 июля 2012 года

Формат входного файла

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задаёт запрос sum(l,r).

Если операция «+ i» идёт во входном файле в начале или после другой операции «+», то она задаёт операцию add(i). Если же она идёт после запроса «?», и результат этого запроса был y, то выполняется операция add((i+y)) mod 10^9).

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходного файла

Для каждого запроса выведите одно число — ответ на запрос.

Примеры

sum.in	sum.out
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	