VISUALIZATION

Introducción a la Ciencia de Datos

R plots

- We will see a small set of them:
 - Plots
 - Histograms
 - Boxplots
 - Barplots
 - Pies

 To change parameters for margins and plot areas use the par function.

Link to R manual

- ?iris
- iris
- class(iris)
- names(iris)
- ?plot
- example (plot)
- plot(iris\$Sepal.Length, iris\$Petal.Length)

• plot(iris\$Sepal.Length, iris\$Petal.Length, main="PLOT", xlab="Sepal length", ylab="Petal length")

• plot(iris\$Sepal.Length,
 iris\$Petal.Length,
 col=iris\$Species,
 main="PLOT", xlab="Sepal
 length", ylab="Petal
 length")

• plot(iris\$Sepal.Length,
 pch=16,
 iris\$Petal.Length,
 col=iris\$Species,
 main="PLOT", xlab="Sepal
 length", ylab="Petal
 length")

pch

0: 🔲	10: 🕀	20: •	A: A
1: 🔾	11:🂢	21: 🛑	a: a
2: 🛆	12: 🎛	22: 📕	B: B
з: —	13: 🔀	23: 🔷	b: b
4: ×	14: 🔽	24: 📥	S: S
5: 🔷	15: 🔼	25: 🔻	`: `
6: 🤝	16: 🛑	@: <mark>@</mark>	.: -
7: 🖂	17: 📥	+: +	,: ,
8: *	18: 🔷	%: <mark>%</mark>	?: ?

```
• plot(iris$Sepal.Length,
  pch=16,
  iris$Petal.Length,
  col=iris$Species,
  main="PLOT", xlab="Sepal
  length", ylab="Petal
  length")
```

- ?abline
- abline (h=2.5)


```
• plot(iris$Sepal.Length,
  pch=16,
  iris$Petal.Length,
  col=iris$Species,
  main="PLOT", xlab="Sepal
  length", ylab="Petal
  length")
```

• abline (6.5, -0.8, 1ty=2)

pch

0: 🔲	10: 🕀	20: •	A: A
1: 🔾	11:🂢	21: 🛑	a: a
2: 🛆	12: 🎛	22: 📕	B: B
з: +	13: 🔀	23: 🔷	b: b
4: ×	14: 🔽	24: 📥	S: S
5: 🔷	15: 🔼	25: 🔻	`; 、
6: 🔽	16: 🛑	@: <mark>@</mark>	.: •
7: 🖂	17: 📥	+: +	,: ,
8: 🜟	18: 🔷	%: <mark>%</mark>	?: ?
9: 🕁	19: 🔵	#: #	*; *

Ity

0. 'blank'	
1. 'solid'	
2. 'dashed'	
3. 'dotted'	
4. 'dotdash'	
5. 'longdash'	
6. 'twodash'	

```
• plot(iris$Sepal.Length,
  pch=16,
  iris$Petal.Length,
  col=iris$Species,
  main="PLOT", xlab="Sepal
  length", ylab="Petal
  length")
```

• legend("topleft",
 legend=levels(iris\$Speci
 es),
 col=1:length(levels(iris
 \$Species)), pch=16)

Curves

```
• plot(0:10, sin(0:10),
  type="l")
```


Curve

• curve(sin(x), 0, 10, n=100)

0

Х

2

Piecewise functions

```
    myfun <- function(x)
    {ifelse(x > 0,7,-2)}
    curve(myfun(x), -5, 5)
```


Scatterplot

• plot(iris)

Scatterplot

• plot(iris[,-5], col=iris\$Species)

- ?hist
- hist(iris\$Petal.Length, main="Histogram", xlab="Petal length")

 hist(iris\$Petal.Length, main="Histogram", xlab="Petal length", breaks=5)


```
• minimo <-
min(iris$Petal.Length,ir
is$Sepal.Length)</pre>
```

- maximo <max(iris\$Petal.Length,ir
 is\$Sepal.Length)</pre>
- hist(iris\$Petal.Length,
 main="Histogram",
 xlab="Variable",
 col="lightblue",
 xlim=c(minimo, maximo))
- hist(iris\$Sepal.Length, main="Histogram", xlab="Variable", col="pink", add=TRUE)


```
hist(iris$Petal.Length, main="Histogram", xlab="Variable", col=rgb(1,0,0,0.5), xlim=c(minimo,maximo))
hist(iris$Sepal.Length, main="Histogram", xlab="Variable", col=rgb(0,0,1,0.5), add=TRUE)
```



```
data<-</li>
 data.frame(Stat11=rnorm(100, mean=3,
 sd=2),
 Stat21=rnorm(100, mean=4, sd=1),
 Stat31=rnorm(100,mean=6,sd=0.5),
 Stat41=rnorm(100,mean=10,sd=0.5),
 Stat12=rnorm(100, mean=4, sd=2),
 Stat22=rnorm(100, mean=4.5, sd=2),
 Stat32=rnorm(100,mean=7,sd=0.5),
 Stat42=rnorm(100,mean=8,sd=3),
 Stat13=rnorm(100, mean=6, sd=0.5),
 Stat23=rnorm(100,mean=5,sd=3),
 Stat33=rnorm(100, mean=8, sd=0.2),
 Stat43=rnorm(100,mean=4,sd=4))
 summary(data)
boxplot(data)
```


• boxplot(data, las = 2)

• boxplot(data, las = 2,
 names = c("Station
 1", "Station 2", "Station
 3", "Station 4", "Station
 1", "Station 2", "Station
 3", "Station 4", "Station
 1", "Station 2", "Station
 3", "Station 4"))

• boxplot(data, las = 2, at = c(1,2,3,4,6,7,8,9,11,12, 13,14))

• boxplot(data, col =
 c("red", "sienna", "palevi
 oletred1", "royalblue2", "
 red", "sienna", "paleviole
 tred1", "royalblue2", "red
 ", "sienna", "palevioletre
 d1", "royalblue2"))

• colors()

- counts <table(mtcars\$gear)</pre>
- barplot(counts, main="Car Distribution", xlab="Number of Gears")

• barplot(counts,
 main="Car Distribution",
 horiz=TRUE,
 names.arg=c("3 Gears",
 "4 Gears", "5 Gears"))

- counts < table(mtcars\$vs,
 mtcars\$gear)</pre>
- barplot(counts,
 main="Car Distribution
 by Gears and VS",
 xlab="Number of Gears",
 col=c("darkblue","red"),
 legend =
 rownames(counts))

Car Distribution by Gears and VS

• barplot(counts,
 main="Car Distribution
 by Gears and VS",
 xlab="Number of Gears",
 col=c("darkblue","red"),
 legend =
 rownames(counts),
 beside=TRUE)

Car Distribution by Gears and VS

Pie

```
• pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
```

- names(pie.sales) <- c("Blueberry", "Cherry", "Apple", "Boston Cream", "Other", "Vanilla Cream")
- pie (pie.sales)

Pie

• pie(pie.sales, col = rainbow(6))

Export plots

- PDF
- PNG
- SVG
- JPEG
- BMP
- TIFF

- pdf("archivo.pdf")
- ...R sentences...
- dev.off()
- ?png
- ?pdf

Bibliography

- R graphics. Paul Murrell. Computer Science and Data Analysis Series. Chapman & Hall/CRC. 2006.
- http://www.r-bloggers.com
- http://www.statmethods.net

EXERCISES (VISUALIZATION)

Introducción a la Ciencia de Datos

Exercise 1

Given this data:

1) Plot distance against stretch.

stretch	distance
46	148
54	182
48	173
50	166
44	109
42	141
52	166

Exercise 2

The table on the right have ten observations, taken during the years 1970-79, are on October snow cover for Eurasia (snow cover is in millions of square kilometers).

- Plot snow.cover versus year.
- 2 Plot a histogram of the snow.cover values.

year	snow.cover
1970	6.5
1971	12.0
1972	14.9
1973	10.0
1974	10.7
1975	7.9
1976	21.9
1977	12.5
1978	14.5
1979	9.2

Exercise 3

Given the data in NY.xls

- (Optional) convert °F to°C and in to mm.
- 2 Plot Year vs. Warmest Minimum Temperature
- ③ Plot Year vs. Warmest Minimum Temperature and Coldest Minimum Temperature. Don't forget to add a legend!

