WHAT IS CLAIMED IS:

	1	1. A method for classifying received network data comprising:
	2	scanning incoming network data using lexical token scanning wherein said network data
July -	7	
)		is treated as a stream of input bytes, said network data being organized into data packets,
	/ 4	said lexical scanning resulting in the identification of a data packet as belonging to one of
	5	a plurality of classes.
	1	2. The method of claim 1 wherein said scanning includes identifying
	2	an arithmetic operation and performing said arithmetic operation.
	1	3. The method of claim 1 wherein said scanning includes identifying
	2	a skip operation and in response thereto skipping over one or more subsequent input
	3	bytes.
1,C		
	1	4. The nethod of claim 1 wherein said lexical scanning includes
III La	2	providing a set of regular expressions, each regular expression having an associated class
	3	identifier.
	1	5. The method of claim 1 further including providing a deterministic
14 14	2	finite automaton (DFA) comprising plural states, said step of scanning including
وورد	3	recognizing data packets using said DFA including transitioning from one state to
103	4	another.
	1	6. The method of claim 5 wherein said data packets are variable
	2	length data packets.
	•	
	l	7. The method of claim 5 wherein said DFA is defined by a set of
	2	regular expressions.
	1	The method of claim 7 further including generating a grammar tree
	2	data structure/representative of said regular expression, producing a non-deterministic
	3	finite automaton (NFA) from said grammar tree data structure, and converting said NFA
	4	to produce said DFA.
		1

1	9. The method of claim 5 wherein some of said states include one or
2	more associated computer instructions and wherein said computer instructions are
3	executed in connection with transitioning to a state.
1	10. The method of claim 9 wherein some of said states further include
2	a skip instruction.
1	11. In a network data switching device, a method for classifying data
2	packets comprising steps of:
3	providing one or more regular expressions, each having an associated class
4	identifier;
5	receiving plural data packets, each having a length not necessarily equal to
6	one another; and
7	for each data packet, determining a matching one of said regular
8	expressions that matches said data packet, wherein said each data packet is classified
9	according to the class identifier associated with said matching regular expression.
1	12. The method of claim 11 wherein said data packets comprise a data
2	stream and said determining includes lexically scanning said data stream.
1	13. The method of claim 11 wherein said regular expressions are
2	represented by a deterministic finite automaton (DFA).
1	14. The method of claim 13 wherein said DFA is in compressed form.
1	15. The method of claim 11 further including compiling said regular
2	expressions to produce said DFA.
1	16. The method of claim 15 wherein said compiling produces a non-
2	deterministic finite automaton (NFA) as intermediate data structure, said compiling
3	further includes converting said NFA to produce said DFA.
1	/ 17. The method of claim 16 further including reducing said DFA to a
2	compressed form.

1	18. The method of claim 1 wherein said data packet comprises plural
2	bytes, and said determining includes detecting an operator indicating a number of bytes to
3	be skipped.
1	19. The method of claim 18 wherein said number is specified by the
2	value of a current input byte.
1	20. The method of claim 18 wherein said number is specified in a
2	register.
1	21. The method of plaim 18 wherein said determining further includes
2 .	detecting an operator indicating a value to be saved in a register.
1	22. The method of claim 21 wherein said determining further includes
2	detecting an operator indicating a legical or mathematical operation to be performed on
3	the contents of said register.
1	23. In a data packet receiving and forwarding device, a method for
2	classifying received data packets comprising a stream of data, said method comprising
3	steps of:
4	receiving a description of classification rules in a classification language;
5	compiling said classification language to produce a deterministic finite
6	automaton (DFA) comprising plural states;
7	configuring a programmable hardware packet classifier with said DFA;
8	and
9	scanning said data stream with said hardware packet classifier to classify
10	said received data packets.
1	24. The method of claim 23 wherein said compiling includes
2	associating arithmetic and logic instructions with some of said states.
1	25. The method of claim 23 wherein said classification language
2	includes regular expressions.
1	26. The method of claim 25 wherein said regular expressions include
2	arithmetic and logic operations.

	1
1	27. The method of claim 26 wherein said regular expressions further
2	include skip operations.
1	28. The method of claim 27 wherein said regular expressions further
2	include data storage operations.
1	29. The method of claim 23 wherein said DFA is in compressed
2	format.
1	30. The method of claim 23 further including:
2	receiving a second description of classification rules in a classification
3	language;
4	compiling said second classification language to produce a second DFA;
5	configuring a programmable hardware packet classifier with said second
6	DFA; and
7	applying said data stream to said hardware packet classifier to classify sa
8	received data packets,
9	wherein said data packets are classified according to said second
10	classification rules, thereby facilitating changing packetizing policies in said data packet
11	routing device.
1	31. A network/data packet classifier comprising:
2	an input port for receiving network data packets comprising a stream of
3	data;
4	a memory assemblage configured with data representing a deterministic
5	finite automaton (DFA), said pFA representing plural regular expressions; and
6	decompression logic operatively coupled to said memory assemblage and
7	configured to scan said stream of data with said DFA to find a matching one of said
8	regular expressions,
9	said regular expressions having corresponding class identifiers,
10	wherein each of said network data packets is associated with the class
11	identifier of said regular expression that matches it.
1	32. The classifier of claim 31 wherein some of said regular expression
2	include arithmetic instructions and logic instructions, said memory assemblage further

_	
3	configured to contain said instructions, the classifier further including an arithmetic logic
4	unit operatively coupled to said decompression logic and configured to execute said
5	instructions.
1	33. The classifier of claim 32 further including at least one register
2	operatively coupled to said arithmetic logic unit, said arithmetic logic unit further
3	configured to store data into said register in response to a save instruction.
1	34. The classifier of claim 32 further including skip logic operatively
2	coupled to said logic component and configured to skip over an amount of data in
3	response a skip instruction.
1	35. The classifier of claim 31 wherein said network data packets can
2	vary from one packet to another.
1	36. The classifier of claim 31 wherein said DFA is in compressed
2	form.
1	37. The classifier of claim 36 wherein said DFA comprises plural non-
2	default states and plural default states, and said memory assemblage comprises a base
3	memory, a next-state memory, and a default-state memory; said base memory configured
4	to contain address locations of said next-state memory, said next-state memory
5	representing all of said non-default states, said default-state memory representing all of
6	said default states.
1	38. The classifier of claim 37 wherein said memories are random
2	access memories.
1	39. The classifier of claim 37 wherein said memories are read-only
2	memories.
1	40. A network data packet classifier comprising:
2	an input configured to provide a data packet comprising a stream of data;
3	a first system of memory configured with data representing a deterministic
4	finite automaton (DFA), said DFA comprising plural states including an initial state and
5	plural terminating states;
	1

	1
6	a system of logic circuits operatively coupled to said first system of
7	memory and to said input, and configured to lexically scan said data stream with said
8	DFA to produce a reached terminating state; and
9	a second system of memory configured with data representing a class
10	index corresponding to each of said terminating states and configured to output a class
11	index in response to the production of said reached terminating state.
1	41. The classifier of claim 40 further including a third system of
2	memory configured to contain current state information for plural input channels, said
3	system of logic circuits operatively coupled to said third system of memory to initialize
4	said DFA in accordance with current state information corresponding to the input channel
5	associated with said data packet.
1	42. The classifier of claim 40 wherein some of said states have one or
2	more associated instructions, the classifier further including an arithmetic logic unit
3	operatively coupled to said system of logic circuits and configured to execute said
4	instructions.
1	43. The classifier of claim 42 further including at least one register
2	operatively coupled to said arithmetic logic unit, said arithmetic logic unit further
3	configured to store data into said register in response to a save instruction.
1	44. The classifier of claim 42 further including skip logic operatively
2	coupled to said logic component and configured to skip over an amount of data in
3	response a skip instruction.
1	45. The classifier of claim 40 wherein said stream of data is a stream of
2	bytes.
~	·
1	46. The classifier of claim 40 wherein said data packets vary from one
2	packet to another.
1	47. A network packet classifier comprising:
2	means for receiving an incoming network packet;
	·

3	means for classifying said network packet by matching the pattern of its
4	constituent data against plural regular expressions, each regular expression having a
5	corresponding class identifier; and
6	means for outputting a class dentifier of the regular expression which
7	matches said network packet.
1	48. The classifier of claim 47 wherein said means for classifying
2	includes a memory component configured with data to represent a deterministic finite
3	automaton (DFA).
1	49. The classifier of claim 48 wherein said means for outputting
2	includes a second memory component configured with said class identifiers.
1	50. The classifier of claim 47 wherein said regular expressions include
2	arithmetic specifiers and said means for classifying includes an arithmetic logic unit
3	configured to perform operations in accordance with said arithmetic specifiers.
1	51. A network packet classifier comprising:
2	a dual-ported memory component;
3	first classification logic operatively coupled to a first port of said dual-
4	ported memory component and having a first input for receiving a data stream; and
5	second classification logic operatively coupled to a second port of said
6	dual-ported memory component and having a second input for receiving a data stream,
7	said memory component configured to contain a deterministic finite
8	automaton (DFA) comprising plural states,
9	said DFA representing plural regular expressions for matching data
10	packets,
11	said first and second classification logic each configured to scan its
12	associated data stream using said DFA to identify data packets contained therein and to
13	classify identified data packets.
1	52. The classifier of claim 51 wherein said data packets are
2	characterized in being variable in length.
1	53. The classifier of claim 51 wherein said regular expressions include
2	arithmetic and logic operators.

- 54. The classifier of claim 51 wherein said regular expressions include
- 2 -a skip operator.

1