Lecture 8: Dynamic Programming

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

May 17 & 19, 2021

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

1/81

Outline

- Introduction
- 2 Policy Evaluation
- 3 Policy Iteration
- 4 Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- Iterative Algorithms
- Summary & Lookahead
- 9 References

Outline

- 1 Introduction
- (2) Policy Evaluation
- Policy Iteration
- 4 Value Iteration
- Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- (7) Iterative Algorithms
- (8) Summary & Lookahead
- 9 References

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

3/81

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimizing a "program", i.e., a policy

- c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused

Markov decision processes satisfy both properties

- Bellman equation gives recursive decomposition
- Value function stores and reuses solutions

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

5/81

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

Recall: Definitions

- Agent: an entity that is equipped with sensors, in order to sense the environment, and end-effectors in order to act in the environment, and goals that he wants to achieve
- Policy: a mapping function from observations (sensations, inputs of the sensors) to actions of the end effectors
- Model: the mapping function from states/observations and actions to future states/observations
- Planning: unrolling a model forward in time and selecting the best action sequence that satisfies a specific goal
- Plan: a sequence of actions

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

7/81

Recall: Definitions

- Rollout: several sequential transitions
- Trajectory: full stack of observed quantities of sequences of states, actions and rewards

Recall: Four Basic Value Functions

	state values	action values
prediction	${ m V}_{\pi}$	q_π
control	$ m V_*$	q_{st}

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

9/81

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for *planning* in an MDP
- For prediction:
 - ▶ Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - ▶ Output: value function v_{π}
- Or for control:
 - ▶ Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - Output: optimal value function v*
 - and: optimal policy π_*

Bellman Backup

- The term "Bellman backup" comes up quite frequently in the RL literature.
- The Bellman backup for a state (or a state-action pair) is the right-hand side of the Bellman equation: the reward-plus-next-value.
- It is a particular computation of calculating a new value based on successor-values
- For example, a Bellman backup at state s with respect to a value function V computes a new value at s by backing up the successor values V(s') using Bellman equation

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

11/81

Categories of Policies

- First Criterion
 - ► Non-stationary policy: depends on the time step & useful for the finite-horizon problem
 - ► Stationary policy: independent of the time step & useful for the infinite-horizon problem
- Second Criterion
 - ▶ Deterministic policy: described as $\pi(s): \mathcal{S} \to \mathcal{A}$
 - ▶ Stochastic policy: described as $\pi(a|s)$: $\mathcal{S} \times \mathcal{A} \to [0,1]$ where $\pi(a|s)$ denotes the probability that action a may be chosen in state s

Outline

- 1 Introduction
- 2 Policy Evaluation
- Policy Iteration
- (4) Value Iteration
- Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- (7) Iterative Algorithms
- (8) Summary & Lookahead
- 9 References

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

13/81

Iterative Policy Evaluation

- ullet Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- \bullet $v_1 \rightarrow v_2 \ldots \rightarrow v_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - ▶ For all states $s \in S$
 - ▶ Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s
- We will discuss asynchronous backups later
- Convergence to v_{π} will be proven at the end of the lecture

Iterative Policy Evaluation: Sweep

$$v_0 \to v_1 \to \cdots \to v_k \to v_{k+1} \to \cdots \to v_{\pi}$$
a "sweep"

A sweep consists of applying a **backup operation** to each state.

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

15 / 81

Iterative Policy Evaluation: Backup

$$egin{aligned} \mathbf{v}_{k+1}(s) &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|s) \left(\mathcal{R}_s^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} \mathbf{v}_k(s')
ight) \\ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

Example: Small Gridworld

- Undiscounted episodic MDP ($\gamma=1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- ullet Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

17 / 81

Iterative Policy Evaluation in Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

19/81

Outline

- 1 Introduction
- Policy Evaluation
- 3 Policy Iteration
- (4) Value Iteration
- Extensions to Dynamic Programming
- (6) Approximate Dynamic Programming
- (7) Iterative Algorithms
- 8 Summary & Lookahead
- References

Policy Iteration

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

policy evaluation policy improvement "greedification"

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

21/81

Policy Improvement in Small Gridworld

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can *improve* the policy by acting greedily

$$\pi'(s) = rg \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

• This improves the value from any state s over one step,

$$q_\pi(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_\pi(s,a) \geq q_\pi(s,\pi(s)) = v_\pi(s)$$

ullet It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$\begin{aligned} v_{\pi}(s) &\leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_t = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_t = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s] = v_{\pi'}(s) \end{aligned}$$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

23 / 81

Remark & Proof

Remark & Proof

Remark & Proof

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

27 / 81

Policy Improvement (2)

• If improvements stop,

$$q_\pi(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_\pi(s,a) = q_\pi(s,\pi(s)) = v_\pi(s)$$

• Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- ullet Therefore $v_\pi(s)=v_*(s)$ for all $s\in\mathcal{S}$
- ullet so π is an optimal policy

Policy Iteration

- Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

• Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

- In Small Gridworld improved policy was optimal, $\pi'=\pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π^*

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

29 / 81

Policy Iteration Algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

31/81

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - e.g. ϵ -convergence of value function
- Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k=3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1
 - ► This is equivalent to *value iteration* (next section)

Generalized Policy Iteration (GPI)

- GPI: interaction of Policy Evaluation and Policy Improvement
- Policy Evaluation estimate v_{π} : any policy evaluation algorithm
- Policy Improvement generate $\pi' \geq \pi$: any policy improvement algorithm

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

33 / 81

Outline

- 1 Introduction
- Policy Evaluation
- Policy Iteration
- 4 Value Iteration
- Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- 1 Iterative Algorithms
- 8 Summary & Lookahead
- 9 References

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A_*
- ullet Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- ullet π achieves the optimal value from state s', $v_\pi(s')=v_*(s')$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

35 / 81

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \left\{ \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right\}$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

Value Iteration

- ullet Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- \bullet $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_*$
- Using synchronous backups
 - At each iteration k+1
 - ▶ For all states $s \in S$
 - ▶ Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

37 / 81

Value Iteration (2)

$$\begin{aligned} \mathbf{v}_{k+1}(s) &= \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{s}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} \mathbf{v}_{k}(s') \right) \\ \mathbf{v}_{k+1} &= \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}^{\mathbf{a}} + \gamma \mathcal{P}^{\mathbf{a}} \mathbf{v}_{k} \right) \end{aligned}$$

Value Iteration Algorithm

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop: $| \Delta \leftarrow 0$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

Output a deterministic policy, $\pi \approx \pi_*$, such that

$$\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

39 / 81

Example of Value Iteration in Practice

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Demo using REINFORCEjs Library

- Demo link: https://cs.stanford.edu/people/karpathy/ reinforcejs/gridworld_dp.html
- Gridworld DP demo: policy evaluation, policy improvement, value iteration

0.22	0.25	0.27	0.31	0.34	0.38	0.34 ↑	0.31 *	0.34	0.38
0.25	0.27	0.31	0.34	0.38	0.42	0.38	0.34	0.38	0.42
0.22					0.46				0.46
0.20	0.22	0.25	-0.78 ♣ R-1.0		0.52	0.57	0.64	0.57	0.52
0.22	0.25	0.27	0.25		0.08 R-1.	-0.36 R -1.0	0.71	0.64	0.57
0.25 F	0.27	0.31	0.27		1.20 + R 1.0	0.08 ← R-1.0	0.79	-0.29 ← R-1.0	0.52
0.27	0.31	0.34	0.31		1.0β	0.97	0.87	-0.21 ← R-1.0	0.57
0.31	0.34	0.38	-0.58 R-1.₩		-0. ф 3 R-1.0	-0. † 3 R-1.0	0.7	0.71	0.64
0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.7	0.64	0.57
0.31	0.34	0.38	0.42 £ ,	0.46	0.52	0.57	0.6	0.57	0.52

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

41/81

Policy Iteration vs. Value Iteration

- Policy iteration
 - picks a policy and then determines the true, steady-state value of being in each state given the policy.
 - Given this value, a new policy is chosen.
 - ► Converges faster in terms of the number of iterations, since it doing a lot more work in each iteration
- Value iteration
 - updates the value at each iteration
 - ▶ and then determines a new policy given the new estimate of the value function.
 - At any iteration, the value function is **not** the true, steady-state value of the policy
 - ► Much faster per iteration, may be far from the true value function

Policy Iteration vs. Value Iteration

- Policy iteration includes: policy evaluation + policy improvement, and the two are repeated iteratively until policy converges.
- Value iteration includes: finding optimal value function + one policy extraction. There is no repeat of the two because once the value function is optimal, then the policy out of it should also be optimal (i.e. converged).
- Finding optimal value function can also be seen as a combination of policy improvement (due to max) and truncated policy evaluation (the reassignment of v(s) after just one sweep of all states regardless of convergence).

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

43 / 81

Outline

- Introduction
- Policy Evaluation
- Policy Iteration
- (4) Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- (7) Iterative Algorithms
- (8) Summary & Lookahead
- Peferences

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
Frediction	Beillian Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
Control	+ Greedy Policy Improvement	I oney iteration	
Control	Bellman Optimality Equation	Value Iteration	

- ullet Algorithms are based on state-value function $v_\pi(s)$ or $v_*(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s,a)$ or $q_{*}(s,a)$
- Complexity $O(m^2n^2)$ per iteration

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

45 / 81

Efficiency of Dynamic Programming

- To find an optimal policy is polynomial in the number of states
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- In practice, classical DP can be applied to problems with a few millions of states

Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
- i.e. all states are backed up in parallel
- require exhaustive sweeps of the entire state set
- Asynchronous DP backs up states individually, in any order
- Sample a state according to some rule, then apply the appropriate backup
- Can significantly reduce computation (does not get locked into hopelessly long sweeps)
- Guaranteed to converge if all states continue to be selected

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

47 / 81

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- *In-place* dynamic programming
- Prioritized sweeping
- Real-time dynamic programming

In-Place Dynamic Programming

• Synchronous value iteration stores two copies of value function for all s in $\mathcal S$

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{old}(s') \right)$$

 $V_{old} \leftarrow V_{new}$

 In-place value iteration only stores one copy of value function because the values are updated in place

for all s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Ziyu Shao (Shanghai Tech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

49 / 81

Prioritized Sweeping

• Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{\mathbf{s}}^{\mathbf{a}} + \gamma \sum_{\mathbf{s}' \in \mathcal{S}} \mathcal{P}_{\mathbf{s}\mathbf{s}'}^{\mathbf{a}} v(\mathbf{s}') \right) - v(\mathbf{s}) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t , A_t , R_{t+1}
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

51/81

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

Sample Backups

- The key design for RL algorithms such as Q-learning and SARSA in subsequent lectures
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- \bullet Instead of reward function ${\cal R}$ and transition dynamics ${\cal P}$
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - ▶ Cost of backup is constant, independent of n = |S|

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

53 / 81

Outline

- 1 Introduction
- Policy Evaluation
- Policy Iteration
- (4) Value Iteration
- (5) Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- (7) Iterative Algorithms
- (8) Summary & Lookahead
- References

Approximate Dynamic Programming

- Find approximately optimal policies for problems with large or continuous spaces
- Local and global approximation strategies for efficiently finding value functions and policies for known models.

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

55 / 81

Local Approximation

- Assumption: states close to each other have similar values
- Nearest neighbor: assign all weight to the closest discrete state, resulting in a piecewise constant value function
- k-nearest neighbor: a weight of 1/k is assigned to each of the k nearest discrete states of s.
- Kernel methods
- Linear interpolation
- Simplex-based interpolation

Global Approximation

- Uses a fixed set of parameters $\{\lambda_i\}$ to approximate the value function over the entire state space
- Linear Regression

```
Algorithm 4.5 Linear regression value iteration

1: function LinearRegressionValueIteration

2: \lambda \leftarrow 0

3: loop

4: for i \leftarrow 1 to n

5: u_i \leftarrow \max_a [R(s_i, a) + \gamma \sum_{s'} T(s' \mid s_i, a) \lambda^{\top} \beta(s')]

6: \lambda_{1:m} \leftarrow \text{Regress}(\beta, s_{1:n}, u_{1:n})

7: return \lambda
```

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

57 / 81

Nonlinear Function Approximation

- Approximate the value function using a function approximator $\hat{v}(s, w)$
- Apply dynamic programming to $\hat{v}(\cdot, w)$
- \bullet e.g. Fitted Value Iteration repeats at each iteration k,
 - lacktriangle Sample states $ilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{\mathcal{S}}$, estimate target value using Bellman optimality equation,

$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', w_k) \right)$$

- ▶ Train next value function $\hat{v}(\cdot, w_{k+1})$ using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$
- Key idea behind the Deep Q-Learning

Online Methods

- Restrict computation to states that are reachable from the current state
- Such reachable state space can be orders of magnitude smaller than the full state space
- Significantly reduce the amount of storage and computation required to choose optimal (or approximately optimal) actions

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

59 / 81

Online Methods

- Forward search: online action-selection method that looks ahead from some initial state s to some horizon (or depth) d.
- Branch and bound search: uses knowledge of the upper and lower bounds of the value function to prune portions of the search tree
- Sparse sampling
 - Avoid the worst-case exponential complexity of forward and branch-and-bound search
 - Uses a generative model to produce samples of the next state and reward
 - ► The run time complexity is still exponential in the horizon but does not depend on the size of the state space

Monte Carlo Tree Search

- The complexity of Monte Carlo tree search does not grow exponentially with the horizon
- Upper Confidence Bound for Trees (UCT) implementation

```
Algorithm 4.9 Monte Carlo tree search
 1: function SelectAction(s, d)
       loop
              SIMULATE(s, d, \pi_0)
 3:
         return arg max<sub>a</sub> Q(s, a)
 5: function Simulate(s, d, \pi_0)
       if d = 0
             return 0
 7:
      if s \notin T
 8:
         for a \in A(s)
 9:
               (N(s,a), Q(s,a)) \leftarrow (N_0(s,a), Q_0(s,a))
10:
              T = T \cup \{s\}
11:
             return ROLLOUT(s, d, \pi_0)
12:
      a \leftarrow \arg\max_{a} Q(s, a) + c\sqrt{\frac{\log N(s)}{N(s, a)}}
13:
14: (s', r) \sim G(s, a)
         q \leftarrow r + \gamma \text{Simulate}(s', d - 1, \pi_0)
       N(s,a) \leftarrow N(s,a) + 1
         Q(s,a) \leftarrow Q(s,a) + \frac{g - Q(s,a)}{N(s,a)}
17:
18:
         return a
```

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

61/81

Direct Policy Search

- So far we presented methods that involve computing or approximating the value function
- An alternative is to search the space of policies directly.
 - ▶ Although the state space may be high dimensional
 - making approximation of the value function difficult
 - ▶ the space of possible policies may be relatively low dimensional and can be easier to search directly.
- Example: local search methods
 - also known as hill climbing or gradient ascent
 - begins at a single point in the search space and then incrementally moves from neighbor to neighbor in the search space until convergence
- Other examples: Markov approximation & simulated annealing & evolutionary method (genetic algorithm)

Outline

- 1 Introduction
- Policy Evaluation
- Policy Iteration
- (4) Value Iteration
- Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- 1 Iterative Algorithms
- 8 Summary & Lookahead
- 9 References

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

63 / 81

Iterative Algorithms

- $x_i(t)$: i^{th} component of x(t)
- $f_i(t)$: i^{th} component of function f(t)
- Jacob-type iteration (components are simultaneously updated): for i = 1, ..., n

$$x_i(t+1) = f_i(x_1(t), \dots, x_n(t))$$

• Gauss-Seidel iteration (updated one component at a time, most recently updated values are used): for i = 1, ..., n

$$x_i(t+1) = f_i(x_1(t+1), \dots, x_{i-1}(t+1), x_i(t), \dots, x_n(t))$$

Iterative Algorithms

- Gauss-Seidel algorithms are often preferable
 - incorporate the newest available information
 - sometime converge faster than the corresponding Jacobi-type algorithm
- A single Gauss-Seidel iteration is called a "sweep"
- One example: Gibbs Sampling with systematic scan

Ziyu Shao (Shanghai Tech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

65 / 81

Gauss-Seidel Variation of Value Iteration

- Also called "In-place value iteration"
- We have to loop over all states with an order

Step 1'. For each $s \in \mathcal{S}$ compute

$$v^{n}(s) = \max_{a \in \mathcal{A}} \left\{ C(s, a) + \gamma \left(\sum_{s' < s} \mathbb{P}(s'|s, a) v^{n}(s') + \sum_{s' \ge s} \mathbb{P}(s'|s, a) v^{n-1}(s') \right) \right\}$$

Outline

- Introduction
- Policy Evaluation
- Policy Iteration
- 4 Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- 1 Iterative Algorithms
- 8 Summary & Lookahead
- 9 References

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

67 / 81

Markov Models in General

Markov Models		Do we have control over the state transitions?	
		No	Yes
Are the states completely	Yes	Markov Chain	MDP Markov Decision Process
observable?	No	HMM Hidden Markov Model	POMDP Partially Observable Markov Decision Process

Different Policy Families for MDP

Policy π_t	Deterministic	Stochastic
Markov	$s_t \longrightarrow a_t$	$a_t, s_t \longrightarrow [0, 1]$
History-dependent	$h_t \longrightarrow a_t$	$h_t, s_t \longrightarrow [0, 1]$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programmin

May 17 & 19, 2021

69 / 81

Different Policy Families for MDP

Main Performance Criteria of MDP

The finite criterion

$$\mathbb{E}\left[r_0+r_1+\cdots+r_{N-1}|s_0\right]$$

The discounted criterion

$$\mathbb{E}\left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots + \gamma^t r_t + \cdots |s_0|\right]$$

The total reward criterion

$$\mathbb{E}\left[r_0+r_1+\cdots+r_t+\cdots|s_0\right]$$

• The average criterion

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}\left[r_0+r_1+\cdots+r_{n-1}|s_0\right]$$

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

71 / 81

Dynamic Programming Algorithms

- Policy evaluation: backups without a max
- Policy improvement: form a greedy policy, if only locally
- Policy iteration: alternate the above two processes
- Value iteration: backups with a max
- Full backups (to be contrasted later with sample backups)
- Generalized Policy Iteration (GPI)
- Asynchronous DP: a way to avoid exhaustive sweeps
- Bootstrapping: updating estimates based on other estimates
- Biggest limitation of DP is that it requires a probability model (as opposed to a generative or simulation model)

Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
Control	Bellman Optimality Equation	Value Iteration	

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

73 / 81

A Comparison of DP & RL & Heuristics

Method	Level of modeling effort	Solution quality
DP	High	High
RL	Medium	High
Heuristics	Low	Low

Difference Between DP & RL

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

75 / 81

RL verus DP

Methods for Exploration & Exploitation Trade-Off

- Undirected methods: use few information from the learning experiments beyond the value function itself
 - $ightharpoonup \epsilon$ -greedy
 - Boltzmann exploration (softmax)
- Directed methods: use specific exploration heuristics based on the information available from learning
 - \triangleright adding some exploration bonus to Q(s,a)
 - e.g., bonus is related to the number of times action *a* was chosen in state *s*.

Ziyu Shao (ShanghaiTech)

Lecture 8: Dynamic Programming

May 17 & 19, 2021

77 / 81

Approximate RL Methods

RL Algorithms: State-of-the-Art

Lecture 8: Dynamic Programming

Outline

- 1 Introduction
- (2) Policy Evaluation

Ziyu Shao (ShanghaiTech)

- Policy Iteration
- 4 Value Iteration
- Extensions to Dynamic Programming
- 6 Approximate Dynamic Programming
- (7) Iterative Algorithms
- (8) Summary & Lookahead
- References

May 17 & 19, 2021

79 / 81

Main References

- Reinforcement Learning: An Introduction (second edition), R. Sutton
 & A. Barto, 2018.
- Markov Decision Processes: Discrete Stochastic Dynamic Programming, (second edition), Martin L. Puterman, 2005.
- RL course slides from Richard Sutton, University of Alberta.
- RL course slides from David Silver, University College London.