Enhancing MBSE Education with Version Control and Automated Feedback

Levente Bajczi¹, Dániel Szekeres ¹, Daniel Siegl², Vince Molnár ¹

- ¹ Budapest University of Technology and Economics Department of Artifical Intelligence and Systems Engineering
- ² LieberLieber Software GmbH

Critical Systems Research Group

MBSE Course at TU Budapest

- Focus: (Model-Based) Systems Engineering
 - Modeling primarily in SysML
 - Platform-driven methodology

Evaluations:

- Exam with multiple-choice and constructive tasks
- Homework:
 - Groups of 3 → Collaborative modeling!
 - Complex SysML model in 6 steps

80-120 participants

Requirements analysis

Structural modeling

Fault tolerance

Behavior modeling

Platform modeling

V&V

Motivation & History

Challenges:

- Collaborative modeling
- Managing tasks and submissions
- Grading 30-40 projects 6 times per semester
- Long-time vision: Automated workflows
 - For collaboration and feedback

- Modeling in MagicDraw; Version control on Teamwork Server;
 Documentation and grading in Moodle
- Modeling in Papyrus; Version control and documentation on GitHub;
 Grading in Moodle

Requirements

Goals:

- 1. Early & automated feedback
- 2. Issue and progress tracking
- 3. Integrated and always up-to-date documentation

Summarized: DevOps for SysML

- Agile feedback loops
- Make learning/teaching systems engineering less frustrating
- Motivate students to learn (and get familiar with modern tools)

Toolchain

Inspired by **best practices** in **software engineering**

- Development on feature branches
- Convenient graphical diff/merge from Git client and from pull requests
- Automation in GitHub Actions
 - Using private runners
 - GDPR, Licence & IP protection

Homework Assignment Details

Design of an "IntelliBus" System

- Autonomous buses providing on-demand transportation in a closed office park
 - 1. Requirement engineering for the whole system
 - 2. Structural modeling: traceability to requirements, top-down functional decomposition, bottom-up platform design
 - 3. Safety analysis of an adaptive cruise control (ACC) component
 - 4. Behavior modeling: detailed design of the boarding equipment
 - 5. Platform allocation and architecture for the ACC component
 - **6. V&V** for the ACC component (requirement review, test definition)

Workflow

Assignment: Opening a PR

Submission: Merging a PR

Documentation: Markdown with dynamically updating diagram renders

Evaluation: Automated checks for WiP, **then** human feedback

Example Feedback

Auto-Updating Documentation

Can easily be used in markdown documentation!

```
![diagram](../../raw/renders/Model.IntelliBus_S
ystem._3___Use_cases.System_use_cases.svg)
```


Evaluation with Students

Course of 2023/24/1 (Autumn)

- Tutorial:

Setting up the tools and performing simple 2-way and 3-way merging

- Homework:

- Initial repository with Assignment 1
- 5 subsequent assignments via automated PRs
- Any 2 assignments may be skipped, but incentives for not skipping

- Students appreciated LemonTree as a standalone tool
 - But had a hard time working with merge conflicts in general
 - Previous years: typical solution was to discard one of versions
- "Model merging should be emphasized in the course material and the optional tutorial should be mandatory"
 - Using tools efficiently requires training
 - Even if the tool is efficient and intuitive
- 79% completion rate of the homework
 - Typical level in the past years

How satisfied were you with Enterprise Architect? (1 – "Never want to use it again"; 5 – "It was excellent")

How satisfied were you with LemonTree? (1 – "Never want to use it again"; 5 – "It was excellent")

How satisfied were you with the whole infrastructure (EU, LT, GH)? (1 – "Never want to use it again"; 5 – "It was excellent")

Grader Feedback

- Easier to check (due to automatic diagram renders)
- Faster to evaluate
 - No need to open the model
 - But sometimes rendering errors led to false results
- Quality of submissions generally higher
- Fewer issue tickets, technical problems
 - Despite the new toolchain!

Summary of Experiences

- ✓ Fewer technical problems
- ✓ Overall positive student experiences
- ✓ More streamlined grading

- ① Modeling and model versioning are hard
- More training for tools
- Some rendering errors have to be investigated

Outlook: SysML v2

- New challenges
 - Education: new and complex language, new principles
 - Tooling: only preliminary tool support, requires deep knowledge
 - Versioning: textual syntax vs. graph model
- In its current state, the textual syntax is only a view
 - Need to be able to diff text and graphs
 - Display and interpret the diff as graph models
 - The *meaning* of changes is revealed in the graph
 - Model slicing is a very difficult problem in the context of merge
 - Different files might have fragments of the necessary information
 - Hard to preserve consistency of the model

Future Plans

- Integrating a pattern-based model validator
 - Goal: semantic correctness of submissions
 - Not only structural requirements, but adhering to best practices as well
 - Done, testing in 2024/25/1 (Autumn) with limited patterns

StateMachineWithEntryOrExitPoint	S1	Warning
StateMachineWithoutInitialState	S2	Error
NoStartingPointInStateMachineRegion	S3	Error
MultipleStartingPointInStateMachineRegion	S4	Error
StateMachineWithCompletionTransition	S 5	Warning
TransitionWithAbsoluteTiming	S6	Warning
ForkWithInvalidOutgoingTransitions	S7	Error
SignalEventTriggerWithoutPort	S8	Error
StateWithDoActivity	S9	Warning
ActorWithoutAssociationOnUseCaseDiagram	U1	Error
ActorsConnectedOnUseCaseDiagram	U2	Error
UseCaseWithoutConnectedActor_Transitive	U3	Error
NoScenariosDefinedForUseCase	U4	Warning
BlockDefinitionDiagramWithConnector	B1	Error
InterruptingEdgeWithoutInterruptableRegion	A1	Error

Summary

