Report NFA to DFA Converter

subset construction method

Team members:

-	Omar Tawfik	221000307
-	Shahd Elkazzaz	221000923
-	Mariam Abdulbary	221000919
-	Radwa Ahmed	221000674
-	Moslim Eldawi	221000010

Project Description

This project implements a tool that converts a **Non-deterministic Finite Automaton** (NFA), possibly with ε -transitions, into a **Deterministic Finite Automaton** (DFA) using the **subset construction method**. The core functionality involves computing ε -closures, handling transitions based on input symbols, and generating a visual and tabular representation of the equivalent DFA.

What Does It Do?

- Takes user-defined NFA transitions and final states as input.
- Computes ε-closures and reachable states.
- Constructs the equivalent DFA using subset construction.
- Generates a transition table, textual DFA description, and visual diagram of the DFA.
- Saves the results into DFArepresentation.txt and an image DFAvisualization.png.

Input Format

- Number of NFA states.
- Transitions for each state (input symbol and corresponding end states).
- Final states of the NFA.

Output Format

- ε-closures for each state.
- DFA transition table (printed and saved).
- Final states and start state of DFA.
- A .txt file (DFArepresentation.txt) and an image (DFAvisualization.png) representing the DFA.

Inside Mechanism

- **computeEpsilonClosure**: Recursively collects all states reachable via ε-transitions.
- **computeTransition**: Computes the resulting states from a set of states on a given symbol.
- **createDFA**: Implements the subset construction method by iterating over power sets of state combinations and tracking transitions.
- visualizeDFA: Uses Graphviz to render the DFA as a state diagram.
- **createDFATable**: Uses pandas to format the DFA transitions into a readable table.

Programming Language, Tools & Libraries Used

- **Programming Language**: Python 3
- Libraries:
 - o pandas For tabular transition representation
 - o graphviz For state diagram visualization
 - o itertools For powerset generation
 - o os For file and environment operations (optional use)

Project Output Screenshot

1. Sample DFA Transition Table

```
■ DFArepresentation.txt

     --- DFA Transition Table ---
    Is Start Is Final Is Dead a
     State
     Ø
                                 Yes Ø
               Yes
     Α
                                     В
                        Yes
                                     Α
     DFA States:
    State: Ø
    State: ['A']
     State: ['B']
    DFA Transitions:
     From state Ø:
    On input a: Ø
     From state ['A']:
    On input a: ['B']
     From state ['B']:
    On input a: ['A']
    DFA Start State: ['A']
     DFA Final States:
    ['B']
     Dead State: ∅
```

2. DFA Visualization

