PSET5: Ordered Collections

Anusha Murali

March 17, 2023

Tasks to do in this PSET

Part I: Implement Ordered Collections with Binary Search Trees

- 1 Complete insert, which inserts an arbitrary integer in a binary tree
- Complete search, which returns true if the element is found in the binary tree, else returns false
- Complete getmin, returns the minimum integer in a binary tree
- Complete getmax, returns the maximum integer in a binary tree

2 / 14

Step 1 Load Files

Load Files

- # #use "order.ml"
- # #use "orderedcoll.ml"

Step 2: Complete insert in orderedcoll.ml

Complete insert

```
let rec insert (x : elt) (t : tree) : tree =
failwith "insert not implemented"
```

Re-load orderedcoll.ml (with your new insert function)

#use "orderedcoll.ml"

Example

Now the examples in the next slides should work

Example

- First create an empty binary tree called myTree # let myTree = IntTree.empty;;
- Insert 65
 # let myTree = IntTree.insert 65 myTree;;

Example

Now insert 40
let myTree = IntTree.insert 40 myTree;;

Example

Now insert 50

let myTree = IntTree.insert 50 myTree;;

Example

Now insert 70

let myTree = IntTree.insert 70 myTree;;

Example

Now insert 30

let myTree = IntTree.insert 30 myTree;;

Print myTree using the provided "to_string" function

IntTree.to_string myTree;;

"Branch (Branch (Branch (Leaf, [30], Leaf), [40], Branch (Leaf, [50], Leaf)), [65], Branch (Leaf, [70], Leaf))"

10 / 14

Example insert function

Explanation of the insert function

Explanation

 $\frac{\text{Line }\#1}{\text{type and a binary search tree as input arguments and returns}} \ \ \text{the binary tree with the Elt inserted at the correct position}$

Explanation of the insert function

Explanation

```
Line #3 If t is a Leaf, just insert x at the Leaf and exit

Line #5 If t is a branch, compare x with the first element of the node

(remember - it is a list)
```

Explanation of the insert function

Explanation

```
Line #6 If x < hd then insert it on the left branch of this node

Line #7 If x > hd then insert it on the right branch of this node

Line #8 If x = hd, then add it to the list at this node
```