University of British Columbia Department of Mechanical Engineering

MECH468 Modern Control Engineering MECH509 Controls Midterm exam

Examiner: Dr. Ryozo Nagamune February 24 (Wednesday), 2021, 1-1:50pm (PST)

Exam policies

- Allowed: Open-book. Any distributed material and any textbook. You can see course materials on your computer.
- Not-allowed: Matlab. Calculators. Web-browsing.
- Write all your answers on your own sheets.
- Motivate your answers properly. (No chance to defend your answers orally.)
- No questions are allowed.
- 30 points in total.

Before you start ...

- Use washroom before the exam.
- Turn off your mobile phone, or make in in the airplane mode.
- No eating.

After you finish the exam ...

- Scan, or take a photo of, your answer sheets.
- Upload the pdf (or jpg) files of your answer sheets on Canvas "Assignments".
- Make sure that you have uploaded all your answer sheets. You cannot add some sheets later even if you somehow missed uploading them.

Marking scheme

Question #	Expected duration	Full mark
Q1	about 15 min	10 %
Q2	about 15 min	10 %
Q3	about 20 min	10 %
Total	about 50 min	30 %

1. Answer the following questions.

(a) For a matrix $A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}$, obtain the matrix exponential e^{At} . (2pt)

Hint: If you want, you can use the formula $e^{M+N} = e^M e^N$ if MN = NM.

(b) For an equation of motion $m\ddot{p} = f$ where f is the force input and p is the position output of a mass m, obtain a state equation (output equation is not necessary) with the following two states: (4pt)

$$z_1 := p + \dot{p}, \quad z_2 := p - \dot{p}$$

(c) Linearize the following nonlinear state equation with your selected linearization point. (4pt)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -x_1(1-x_2^3) + u + 1 \\ -x_1^2 - x_2^2 + 1 \end{bmatrix}$$

2. Consider the following state-space model.

$$\dot{x} = \begin{bmatrix} 0 & 2 \\ -1 & -3 \end{bmatrix} x + \begin{bmatrix} 2 \\ -1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} x$$

- (a) Check the internal stability. (2pt)
- (b) Check the controllability. (2pt)
- (c) Check the observability. (2pt)
- (d) Obtain the coordinate transformation matrix T^{-1} for the Kalman decomposition. State which column of T^{-1} corresponds to T_{co} , $T_{c\bar{o}}$, $T_{\bar{c}o}$, or $T_{\bar{c}\bar{o}}$. You do NOT need to perform the Kalman decomposition. Just obtain T^{-1} .

——— (Continue to the next page) ————

2

3. Let us consider the minimum energy control for the velocity of a car. The car's dynamics is assumed to be represented by a discrete-time model:

$$v[k+1] = \frac{v[k]}{2} + f[k],$$

where v [m/s] is the velocity of a car and f [N] is the force applied to the car.

- (a) Check the controllability of this system. (2pt)
- (b) Obtain the minimum energy control to transfer the velocity from the initial velocity v[0] = 8 [m/s] to the final velocity v[2] = 12. (4pt)
- (c) Using the minimum energy control in (b), compute the velocity v[1]. Make a plot with the time step k in x-axis and the car velocity v in y-axis. (2pt)
- (d) Obtain one **non-minimum energy control** (i.e., control other than minimum energy control) to transfer the velocity from the initial velocity v[0] = 8 [m/s] to the final velocity v[2] = 12. (2pt)

(End	of	Midterm	Exam) ———
(, Ena	ΟI	Midterin	схаш) ———