

Algorithms and Complexity

Introduction to complexity analysis

Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Complexity Analysis

- Target
 - Forecast of resources (memory, time) needed by the algorithm for execution
- To really understand programs behavior we have to develop a mathematical model
 - Machine-independent
 - Assumption
 - Sequential single-processor model (traditional architecture)
 - Independent of the input data of a particular instance of the problem

Complexity Analysis

- It depends on the size n of the problem
- A lower complexity may compensate hardware efficiency
- Examples
 - ➤ Integer multiplication: Number of bits of the operands
 - > Sorting algorithm: Number of data to sort
 - **>** ...
- Output
 - > T(n): execution time
 - > S(n): memory occupation

A Simple Counting Problem

- Write a program able to
 - > Read an integer value N
 - Print-out the number M of ordered couples (i, j) such that
 - i and j are integer values
 - And $1 \le i \le j \le N$
- Example
 - ➤ Input: N=4
 - > Generated couples
 - **(**1,1)(1,2)(1,3)(1,4) (2,2)(2,3)(2,4) (3,3)(3,4) (4,4)
 - ➤ Output: M = 10

```
int count_ver1 (int N) {
  int i, j, sum;
                                                It generates all pairs:
                                                   1 \le i \le j \le N
  sum = 0;
  for (i=1; i<=N; i++) {
    for (j=i; j<=N; j++) {
                                                It counts-them up
       sum++;
  return sum;
                                                It returns the result
```

```
int count_ver1 (int N) {
  int i, j, sum;
  sum = 0;
                                         1 + (N+1) + N
  for (i=1; i<=N; i++) {
                                      \sum_{i=1}^{N} [1 + (N-i+2) + (N-i+1])
    for (j=i; j<=N; j++) {
       sum++;
                                          \sum^{N} (N-i+1)
  return sum;
```

$$T(N) = 4 + 2N + \sum_{i=1}^{N} (5 + 3N - 3i)$$

$$T(N) = 4 + 2N + \sum_{i=1}^{N} (5) + \sum_{i=1}^{N} (3N) - \sum_{i=1}^{N} (3i)$$

5N $3N^2$

$$T(N) = 4 + 7N + 3N^2 - 3\sum_{i=1}^{N} i$$

$$T(N) = 4 + 7N + 3N^2 - 3\frac{N(N+1)}{2}$$

$$T(N) = 1.5N^2 + 5.5N + 4$$

$$1$$

$$1 + (N+1) + N$$

$$\sum_{i=1}^{N} [1 + (N-i+2) + (N-i+1])$$

$$\sum_{i=1}^{N} (N-i+1)$$
1

Finite arithmetic progression $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

```
int count_ver2 (int N) {
  int i, sum;

sum = 0;

for (i=1; i<=N; i++) {
  sum = sum + (N-i+1);
  }

return sum;
}</pre>
```

```
int count_ver1 (int N) {
   int i, j, sum;
   sum = 0;
   for (i=1; i<=N; i++) {
      for (j=i; j<=N; j++) {
        sum++;
      }
   }
   return sum;
}</pre>
```

It generates all pairs: $1 \le i \le j \le N$

$$T(N)=6N+4$$

$$1$$

$$1 + (N+1) + N$$

$$\sum_{i=1}^{N} (4) = 4N$$

The for cycle computes

```
int count_ver2 (int N) {
  int i, sum;

sum = 0;

for (i=1; i<=N; i++) {
  sum = sum + (N-i+1);
  }

return sum;
}</pre>
```

$$\sum_{i=1}^{N} (N - i + 1) =$$

$$= N^{2} + N - \sum_{i=1}^{N} i =$$

$$= N(N + 1) - \frac{N(N+1)}{2}$$

$$= \frac{N(N+1)}{2}$$

which can be used to substitute the entire cycle

The for cycle computes

```
 > \sum_{i=1}^{N} (N-i+1) = \frac{N(N+1)}{2}
```

> which can be used to substitute the entire cycle

```
int count_ver3 (int N) {
  return N * (N+1) / 2;
}
```

```
int count_ver2 (int N) {
  int i, sum;
  sum = 0;
  for (i=1; i<=N; i++) {
    sum = sum + (N-i+1);
  }
  return sum;
}</pre>
```

It generates all pairs: $1 \le i \le j \le N$

The for cycle computes

$$\sum_{i=1}^{N} (N-i+1) = \frac{N(N+1)}{2}$$

> which can be used to substitute the entire cycle

```
int count_ver3 (int N) {
  return N * (N+1) / 2;
}
T(N) = 4
```

Summary

Algorithm	T(N)	Order of T(N)
Version 1	$1.5N^2 + 5.5N + 4$	N^2
Version 2	6N + 4	N
Version 3	4	constant

Algorithm Classification

Asymptotic behavior	Algorithm Class
1	Constant
log n	Logarithmic
n	Linear
n log n	Linearithmic
n ²	Quadratic
n ³	Cubic
2 ⁿ	Exponential

Complexity grows much faster than the input size

Summary

Hypothesis

> 1 operation = 1 nsec = 10^{-9} sec

Wall-clock (elapsed) time

Asymptotic behavior	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷
N	1μs	10 μs	100μs	1ms	10ms
20 n	20μs	200μs	2ms	20ms	200ms
n log n	9.96µs	132μs	1.66ms	19.9ms	232ms
20 n log n	199μs	2.7ms	32ms	398ms	4.6sec
n ²	1ms	100ms	10s	17min	1.2day
20 n ²	20ms	2s	3.3min	5.6h	23day
N^3	1s	17min	12day	32years	32 millenium

Some more examples

Discrete Fourier Transform

- Decomposition of a N-sample waveform into periodic components
- > Applications: DVD, JPEG, astrophysics,
- > Trivial algorithm: Quadratic (N²)
- > FFT (Fast Fourier Transform): Linearitmic (N log N)

Simulation of N bodies

- > Simulates gravity interaction among N bodies
- > Trivial algorithm: Quadratic (N²)
- Barnes-Hut algorithm: Linearitmic (N log N)

Asymptotic Analysis

Goal

- Guess an upper-bound for T(n) for an algorithm on n data in the worst possible case
- > Asymptotic
 - For small n, complexity is irrelevant
 - Understand behaviour for $n \to \infty$

Asymptotic Analysis

- Three main analysis
 - Worst case
 - Average case
 - Best case
- Why worst-case analysis?
 - Conservative guess
 - Avoid complex hyphoteses on data
 - Worst case is very frequent
 - > Average (and best) case
 - Either it coincides with the worst case
 - It is not definable, unless we resort to complex hypotheses on data

Tilde Notation

- Estimate running time (or memory) as a function of input size N
- Ignore lower order terms
 - > When N is large, terms are negligible
 - When N is small, terms are not negligible but we do not care about them
- Definition
 - $> f(N) \sim g(N) \text{ means } \lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Tilde Notation

Examples

$$\frac{1}{6}N^3 + 100N^{4/3} + 16 \sim \frac{1}{6}N^3$$

O Asymptotic Notation

Definition

$$T(n) = O(g(n)) \Leftrightarrow \exists c>0, \exists n_0>0 \text{ such that } \forall n \geq n_0$$

 $0 \leq T(n) \leq cg(n)$

g(n) = loose upper bound

Big-Oh Notation Develops upper bounds

O Asymptotic Notation

Examples

- > T(n) = 3n+2 = O(n)
 - c=4 and $n_0=2$
- $ightharpoonup T(n) = 10n^2 + 4n + 2 = O(n^2)$
 - $c=11 \text{ and } n_0=5$
- $ightharpoonup T(n) = 3n+3 = O(n^2)$
 - c=3 and $n_0=2$

Theorem

- $ightharpoonup If T(n) = a_m n^m + + a_1 n + a_0$
 - Then $T(n) = O(n^m)$

Ω Asymptotic Notation

Definition

$$T(n) = \Omega(g(n)) \Leftrightarrow \exists c>0, \exists n_0>0 \text{ such that } \forall n \geq n_0$$

 $0 \leq c \ g(n) \leq T(n)$

g(n) = loose lower bound for T(n)

Big-Omega Notation Develops lower bounds

Ω Asymptotic Notation

Examples

> T(n) =
$$3n+3 = \Omega(n)$$

• c=3 and $n_0=1$
> T(n) = $10n^2+4n+2 = \Omega(n^2)$
• c=1 and $n_0=1$

Theorem

➤ If T(n) =
$$a_m n^m + + a_1 n + a_0$$

• Then T(n) = Ω(n^m)

⊙ Asymptotic Notation

Definition

$$T(n) = \Theta(g(n)) \Leftrightarrow \exists c_1, c_2 > 0, \exists n_0 > 0 \text{ such that } \forall n \ge n_0$$

 $0 \le c_1 g(n) \le T(n) \le c_2 g(n)$

g(n) = tight asymptotic bound for T(n)

Big-Theta Notation Classify algorithms Asymptotic order of growth

⊙ Asymptotic Notation

Examples

>
$$T(n) = 3n+2 = \Theta(n)$$

• c1=3, c2=4 and n0=2

$$ightharpoonup$$
 T(n) = 3n+2 \neq Θ (n²)

$$T(n) = 10n^2 + 4n + 2 \neq \Theta(n)$$

Theorem

► If
$$T(n) = a_m n^m + + a_1 n + a_0$$

• Then $T(n) = \Theta(n^m)$

Theorems

Given two functions f(n) and g(n)

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0 \Rightarrow \mathsf{f(n)}=\mathsf{O(g(n))}$$

$$ightharpoonup \lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$$

$$ightharpoonup f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

$$f(n) = \Theta(g(n)) \Leftrightarrow$$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

> etc.

Memory Occupation

Basics Objects	Size	
Bit	0 or 1	
Byte	8 bits	
1KByte	2 ¹⁰ Byt2 (1 thousand)	
1MByte	2 ²⁰ Bytes (1 million)	
n1GByte	2 ³⁰ Byte (1 billion)	

C scalar Type	sizeof(type)
char	1 byte
int	4 Bytes
float	4 Bytes
double	8 Bytes
etc.	etc.

Padding may be used, i.e., each object uses a multiple of 4/8 bytes

Memory Occupation

Memory occupation from aggregate types may be computed starting from scalar types

```
int vet[N];

struct type {
  char id[N];
  int i;
  float x;
};
N * sizeof (int)

N * sizeof (char) +
  sizeof (int) + sizeof (float)
  plus padding
};
```

Total memory S(N) usage can be computed based on those considerations