Lecture 38

17 Factorization of polynomials

17.1 Reducibility Tests

Definition 17.1 (Irreducible/Reducible Polynomial). Let D be an integral domain. A polynomial $f(x) \in D[x]$ that is neither 0 nor a unit in D[x] is said to be <u>irreducible</u> over D if whenever f(x) = g(x)h(x), then g(x) or h(x) is a unit in D[x]. A nonzero, nonunit element of D[x] that is *not* irreducible is said to be reducible.

Example 17.1.

$$f(x) = 2x^{2} + 4$$

$$= 2 \cdot (x^{2} + 2)$$

$$= 2(x + \sqrt{-2})(x - \sqrt{-2})$$

Reducible over \mathbb{Z} , \mathbb{C} . Irreducible over \mathbb{Q} , \mathbb{R} .

Example 17.2. $x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2})$ is irreducible over \mathbb{Q} but reducible over \mathbb{R} .

Theorem 17.1 (Reducibility Test for Degrees 2 and 3). Let F be a field and $f(x) \in F[x]$ such that deg f = 2 or 3. Then f(x) is reducible over $F \iff f(x)$ has a zero in F.

Pf sketch. If f(x) = g(x)h(x) then $\deg g(x) + \deg h(x) = \deg f(x) = 2$ or 3. So g(x) or h(x) has a degree of 1 (if $\deg g(x) = 0$ or $\deg h(x) = 0$ then g(x) or h(x) is a unit).

$$\deg 1 \implies ax + b, \quad a, b \in F$$

$$\implies a(x + \frac{b}{a})$$

$$\implies -\frac{b}{a} \text{ is a zero of } f(x)$$

Example 17.3. $x^2 + 1$ is irreducible over $\mathbb{Z}_3 \iff (0^2 + 1 = 1, 1^2 + 1 = 2, 2^2 + 1 = 5 = 2 \text{ in } \mathbb{Z}_3)$

 $x^2 + 1$ is reducible over $\mathbb{Z}_5 \iff (x^2 + 1 = (x - 2)(x - 3) \text{ in } \mathbb{Z}_5[x])$

Exercise. Prove Example 17.3

Example 17.4. $x^4 + 2x^2 + 1 = (x^2 + 1)^2$ is reducible over \mathbb{Q} (or \mathbb{R}) in $\mathbb{Q}[x]$ (or $\mathbb{R}[x]$) but $x^4 + 2x^2 + 1$ has no zeros in \mathbb{Q} (or in \mathbb{R})

1

Definition 17.2 (Content of a Polynomial, Primitive Polynomial). The content of a nonzero polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$$

is the greatest common divisor of $a_n, a_{n-1}, \ldots, a_0$. A <u>primitive polynomials</u> is an element in $\mathbb{Z}[x]$ with content 1.

Lemma 17.1 (Gauss's Lemma). The product of two primitive polynomials in $\mathbb{Z}[x]$ is primitive.

Proof. Assume f(x), g(x) are primitive, and suppose f(x)g(x) is not primitive. Let p be a prime divisor of the content of f(x)g(x). Consider the ring homomorphism from $\phi: \mathbb{Z}[x] \to \mathbb{Z}_p[x]$. Let $\overline{f(x)g(x)}$ be the image of f(x)g(x) in $\mathbb{Z}_p[x] \implies \overline{f(x)g(x)} = \overline{f(x)g(x)}$

Note. In other words, $\overline{f(x)}$ is the polynomial in $\mathbb{Z}[x]$ obtained by reducing the coefficients of f(x) modulo p.

Since
$$p \mid$$
 content of $f(x)g(x) \Longrightarrow \overline{f(x)g(x)} = 0$ in $\mathbb{Z}_p[x]$
 $\Longrightarrow \overline{f(x)} = 0$ or $\overline{g(x)} = 0$ because $\mathbb{Z}_p[x]$ is an integral domain.
 $\Longrightarrow f(x)$ or $g(x)$ is not primitive. (\Longrightarrow)

Theorem 17.2. Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , it is reducible over \mathbb{Z} .

Proof. Assume f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Q}[x]$. Let a and b be the LCM of denominators of coefficients of g(x) and h(x) respectively. Then (ab)f(x) = abg(x)h(x) = (ag(x))(bh(x)). Let c_1 and c_2 be the content of ag(x) and bh(x) respectively. Then $ag(x) = c_1\hat{g}(x)$ and $bh(x) = c_2\hat{h}(x)$ where $\hat{g}(x)$ and $\hat{h}(x)$ are primitive in $\mathbb{Z}[x]$. Let d be the content of f (i.e. $f(x) = d\hat{f}(x)$ where $\hat{f}(x) \in \mathbb{Z}[x]$ is primitive.) Then $(abd)\hat{f}(x) = (c_1c_2)\hat{g}(x)\hat{h}(x) \in \mathbb{Z}[x]$. By Gauss' lemma, $\hat{g}(x)\hat{h}(x)$ is primitive in $\mathbb{Z}[x]$

- $\implies abd = c_1c_2 \implies \hat{f}(x) = \hat{g}(x)\hat{h}(x)$
- $\implies f(x) = d\hat{f}(x) = (d\hat{g}(x)) \cdot \hat{h}(x)$
- $\implies f(x)$ is reducible over \mathbb{Z} (since $d\hat{g}(x), \hat{h}(x) \in \mathbb{Z}[x]$).

Example 17.5.
$$f(x) = 6x^2 + x - 2 = \underbrace{(3x - \frac{3}{2})}_{g(x)} \underbrace{(2x + \frac{4}{3})}_{h(x)}$$

 $d = 1, \ a = 2, \ b = 3, \ c_1 = 3, \ c_2 = 2 \implies f(x) = (2x - 1)(3x + 2)$

FINISH EXAMPLE (NOTES-38)

Theorem 17.3. Let p be prime and $f(x) \in \mathbb{Z}[x]$ such that $\deg f \geq 1$. $\overline{f(x)}$ reducing coeff of f(x) modulo p.

If $\overline{f(x)}$ is irreducible over \mathbb{Z}_p and $\deg \overline{f(x)} = \deg f(x)$, then f(x) is irreducible over \mathbb{Q} .

Remark. $f(x) = 21x^3 - 3x^2 + 2x + 9$ work over \mathbb{Z}_2

 $\overline{f(x)} = x^3 + x^2 + 1$ has no zero in $\mathbb{Z}_2 \implies$ irriducible