A Two Level Dependent Session Type Theory

Qiancheng Fu^1 and Hongwei Xi^1

¹Boston University

February 12, 2023

1 Syntax

```
variables
                     x, y, z
channels
                     c, d
                                                             U \mid L
       sorts
                     s, r, t
                                                            + | -
       roles
                   m, n, A, B, C
     _{\rm terms}
                                                   ::= x \mid c \mid s
                                                             \Pi_t(x:A).B \mid \Pi_t\{x:A\}.B \mid \Sigma_t(x:A).B \mid \Sigma_t\{x:A\}.B
                                                             \lambda_t(x:A).m \mid \lambda_t\{x:A\}.m \mid \langle m,n \rangle_t \mid \{m,n\}_t
                                                            m \ n \mid \mathcal{R}^{\Sigma}_{[z]A}(m,[x,y]n) \mid \mu(x:A).m \\ 1 \mid () \mid 2 \mid \text{true} \mid \text{false} \mid \mathcal{R}^{2}_{[z]A}(m,n_{1},n_{2})
                                                             TA \mid \text{return } m \mid \text{let } x \leftarrow m \text{ in } n
                                                             proto \mid \operatorname{end} \rho \mid \rho\{x:A\}.B \mid \rho(x:A).B \mid \rho \operatorname{Ch} A
                                                             \operatorname{fork}(x:A).m \mid \operatorname{recv}\{m\} \mid \operatorname{recv} m \mid \operatorname{send}\{m\} \mid \operatorname{send} m
                                                             close m \mid \text{wait } m
                                                             x \mid c \mid \lambda_t(x:A).m \mid \lambda_t\{x:A\}.m \mid \langle u,v \rangle_t \mid \{v,m\}_t
     values u, v
                                                              () | true | false | return v | let x \leftarrow v in m
                                                              fork (x:A).m \mid \text{recv } \{v\} \mid \text{recv } v \mid \text{send } \{v\} \mid \text{send } v
                                                              send \{v\} \ m \mid send u \ v \mid close v \mid wait v
```

2 Static Fragment

Sort Order

$$\overline{\mathbf{U} \sqsubseteq s}$$
 $\overline{\mathbf{L} \sqsubseteq \mathbf{L}}$

Static Context

$$\frac{\Gamma \vdash \qquad \Gamma \vdash A : s \qquad x \in \mathit{fresh}(\Gamma)}{\Gamma, x : A \vdash}$$

Core Typing

Data Typing

$$\frac{\Gamma \vdash}{\Gamma \vdash 1 : \mathbf{U}} \qquad \frac{\Gamma \vdash}{\Gamma \vdash () : 1} \qquad \frac{\Gamma \vdash}{\Gamma \vdash 2 : \mathbf{U}} \qquad \frac{\Gamma \vdash}{\Gamma \vdash \text{true} : 2} \qquad \frac{\Gamma \vdash}{\Gamma \vdash \text{false} : 2}$$

$$\frac{\Gamma, z : 2 \vdash A : s \qquad \Gamma \vdash m : 2 \qquad \Gamma \vdash n_1 : A[\text{true}/z] \qquad \Gamma \vdash n_2 : A[\text{false}/z]}{\Gamma \vdash \mathbf{R}^2_{[z]A}(m, n_1, n_2) : A[m/z]}$$

Monadic Typing

$$\frac{\Gamma \vdash A : s}{\Gamma \vdash \Tau A : \mathsf{L}} \qquad \frac{\Gamma \vdash m : A}{\Gamma \vdash \mathsf{return} \ m : \Tau A} \qquad \frac{\Gamma \vdash B : s \qquad \Gamma \vdash m : \Tau A \qquad \Gamma, x : A \vdash n : \Tau B}{\Gamma \vdash \mathsf{let} \ x : A \leftarrow m \ \mathsf{in} \ n : \Tau B}$$

Session Typing

3 Dynamic Fragment

Dynamic Context

$$\frac{\Gamma;\Delta \vdash \qquad \Gamma \vdash A:s \qquad x \in \mathit{fresh}(\Gamma)}{\Gamma,x:A;\Delta,x:_s A \vdash} \qquad \qquad \frac{\Gamma;\Delta \vdash \qquad \Gamma \vdash A:s \qquad x \in \mathit{fresh}(\Gamma)}{\Gamma,x:A;\Delta \vdash}$$

Context Merge

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \quad x \in \mathit{fresh}(\Delta)}{(\Delta_1, x :_U A) \cup (\Delta_2, x :_U A) = (\Delta, x :_U A)}$$

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \quad x \in \mathit{fresh}(\Delta)}{(\Delta_1, x :_L A) \cup \Delta_2 = (\Delta, x :_L A)}$$

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \quad x \in \mathit{fresh}(\Delta)}{\Delta_1 \cup (\Delta_2, x :_L A) = (\Delta, x :_L A)}$$

Context Constraint

$$\frac{\Delta \triangleright \mathbf{U}}{\Delta, x :_{\mathbf{U}} A \triangleright \mathbf{U}} \qquad \qquad \frac{\Delta \triangleright \mathbf{L}}{\Delta, x :_{s} A \triangleright \mathbf{L}}$$

Dynamic Typing

4 Erasure

Erasure Relation

$$\begin{array}{c} \frac{\Gamma,x:A;\Delta,x:_sA\vdash\Delta\triangleright U}{\Gamma,x:A;\Delta,x:_sA\vdash x\sim x:A} & \frac{\Gamma,x:A;\Delta,x:_sA\vdash m\sim m':B}{\Gamma;\Delta\vdash h_t(x:A).m\sim \lambda_t(x:\Box).m':\Pi_t(x:A).B} \\ \frac{\Gamma,x:A;\Delta\vdash m\sim m':B}{\Gamma;\Delta\vdash h_t\{x:A\}.m\sim \lambda_t\{x:\Box\}.m':\Pi_t\{x:A\}.B} & \frac{\Gamma;\Delta_1\vdash m\sim m':\Pi_t(x:A).B}{\Gamma;\Delta_1\vdash m\sim m':\Pi_t(x:A).B} & \frac{\Gamma;\Delta_2\vdash n\sim n':A}{\Gamma;\Delta_1\vdash m\sim m':B[n/x]} \\ & \frac{\Gamma;\Delta\vdash m\sim m':\Pi_t\{x:A\}.B}{\Gamma;\Delta\vdash m\sim m':B[n/x]} \\ & \frac{\Gamma;\Delta\vdash m\sim m':\Pi_t\{x:A\}.B}{\Gamma;\Delta\vdash m\sim m':B[n/x]} \\ & \frac{\Gamma\vdash \Sigma_t(x:A).B:t}{\Gamma;\Delta\vdash m\sim m':A} & \frac{\Gamma;\Delta_2\vdash n\sim n':B[m/x]}{\Gamma;\Delta\vdash m\sim n':B[m/x]} \\ & \frac{\Gamma\vdash \Sigma_t\{x:A\}.B:t}{\Gamma;\Delta\vdash m\sim m':A} & \frac{\Gamma\vdash n:B[m/x]}{\Gamma;\Delta\vdash m\sim m':A} \\ & \frac{\Gamma\vdash \Sigma_t\{x:A\}.B:t}{\Gamma;\Delta\vdash m\sim m':A} & \frac{\Gamma\vdash n:B[m/x]}{\Gamma;\Delta\vdash m\sim m':C[(x,y)_t/z]} \\ & \frac{\Gamma;\Delta\vdash m\sim m':\Sigma_t(x:A).B}{\Gamma;\Delta\vdash m\sim m':\Sigma_t(x:A).B} & \frac{\Gamma,x:A,y:B;\Delta_2,x:_{r_1}A,y:_{r_2}B\vdash n\sim n':C[(x,y)_t/z]}{\Gamma;\Delta\vdash d\geq 2\vdash R^\Sigma_{[z]C}(m,[x,y]n)\sim R^\Sigma_{\Box}(m',[x,y]n'):C[m/z]} \\ & \frac{\Gamma,z:\Sigma_t\{x:A\}.B\vdash C:s}{\Gamma;\Delta\vdash m\sim m':A} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m':A} & \frac{\Gamma;\Delta\vdash m\sim n':A}{\Gamma;\Delta\vdash m\sim n':A} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim n':B} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m':A} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m} & \frac{\Gamma\vdash P:m=A}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma\vdash P:m=A}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma\vdash B:s}{\Gamma;\Delta\vdash m\sim m':A} & \frac{A\equiv B}{\Gamma;\Delta\vdash m\sim m':A} & \frac{A\equiv B}{\Gamma;\Delta\vdash m\sim m':A} & \frac{A\equiv B}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma\vdash P:m=A}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma;\Delta\vdash m\sim m':A}{\Gamma;\Delta\vdash m\sim m':B} & \frac{\Gamma\vdash m\sim m':A}{\Gamma;\Delta\vdash m$$

Static Semantics 5

Static Reduction

$$\frac{A \hookrightarrow A'}{\Pi_{t}(x:A).B \leadsto \Pi_{t}(x:A').B} \qquad \frac{B \hookrightarrow B'}{\Pi_{t}(x:A).B \leadsto \Pi_{t}(x:A).B'} \qquad \frac{A \leadsto A'}{\Pi_{t}(x:A).B \leadsto \Pi_{t}(x:A').B}$$

$$\frac{B \leadsto B'}{\Pi_{t}\{x:A\}.B \leadsto \Pi_{t}\{x:A\}.B'} \qquad \frac{A \leadsto A'}{\lambda_{t}(x:A).m \leadsto \lambda_{t}(x:A').m} \qquad \frac{m \leadsto m'}{\lambda_{t}(x:A).m \leadsto \lambda_{t}(x:A).m'}$$

$$\frac{A \leadsto A'}{\lambda_{t}\{x:A\}.m \leadsto \lambda_{t}\{x:A'\}.m} \qquad \frac{m \leadsto m'}{\lambda_{t}\{x:A\}.m \leadsto \lambda_{t}\{x:A\}.m'} \qquad \frac{m \leadsto m'}{m \ n \leadsto m' \ n} \qquad \frac{n \leadsto n'}{m \ n \leadsto m' \ n}$$

$$\frac{A \leadsto A'}{\lambda_{t}\{x:A\}.m \leadsto \lambda_{t}\{x:A'\}.m} \qquad \frac{A \leadsto A'}{\lambda_{t}\{x:A\}.m \leadsto \lambda_{t}\{x:A\}.m'} \qquad \frac{m \leadsto m'}{m \ n \leadsto m' \ n} \qquad \frac{n \leadsto n'}{m \ n \leadsto m' \ n}$$

$$\frac{A \leadsto A'}{m \ n \leadsto m' \ n} \qquad \frac{A \leadsto A'}{m \ n \leadsto m' \ n} \qquad \frac{A \leadsto A'}{m \ n \leadsto m' \ n} \qquad \frac{A \leadsto A'}{m \ n \leadsto m' \ n}$$

$$\frac{B \leadsto B'}{\sum_{t}(x:A).B \leadsto \sum_{t}(x:A).B'} \qquad \frac{A \leadsto A'}{\sum_{t}\{x:A\}.B \leadsto \sum_{t}\{x:A'\}.B} \qquad \frac{B \leadsto B'}{\sum_{t}\{x:A\}.B \leadsto \sum_{t}\{x:A\}.B'}$$

$$\frac{m \leadsto m'}{\langle m, n\rangle_{t} \leadsto \langle m', n\rangle_{t}} \qquad \frac{m \leadsto m'}{\langle m, n\rangle_{t} \leadsto \langle m, n\rangle_{t}} \qquad \frac{m \leadsto m'}{\langle m, n\rangle_{t} \leadsto \langle m', n\rangle_{t}} \qquad \frac{n \leadsto n'}{\langle m, n\rangle_{t} \leadsto \langle m', n\rangle_{t}} \qquad \frac{n \leadsto n'}{\langle m, n\rangle_{t} \leadsto \langle m', n\rangle_{t}} \qquad \frac{m \leadsto m'}{R_{[z]A}^{\Sigma}(m, [x, y]n) \leadsto R_{[z]A}^{\Sigma}(m, [x, y]n)} \qquad \frac{R_{[z]A}^{\Sigma}(m, [x, y]n) \leadsto R_{[z]A}^{\Sigma}(m', [x, y]n)}{R_{[z]A}^{\Sigma}(m, [x, y]n) \leadsto n[m_{1}/x, m_{2}/y]} \qquad \frac{A \leadsto A'}{R_{[z]A}^{\Sigma}(m_{1}, m_{2})_{t}, [x, y]n \leadsto n[m_{1}/x, m_{2}/y]} \qquad \frac{A \leadsto A'}{R_{[z]A}^{\Sigma}(m_{1}, m_{2})_{t}, [x, y]n \leadsto n[m_{1}/x, m_{2}/y]} \qquad \frac{A \leadsto A'}{A \&_{t}B \leadsto A' \Leftrightarrow A'} \qquad \frac{m \leadsto m'}{R_{[z,p]A}(m, n)_{t} \leadsto m} \qquad \frac{A \leadsto A'}{R_{[z,p]A}(m, n)_{$$

Conversion

6 Dynamic Semantics

Value

$$\frac{1}{x \text{ value}} \qquad \frac{u \text{ value}}{\lambda_t(x:A).m \text{ value}} \qquad \frac{u \text{ value}}{\lambda_t(x:A).m \text{ value}} \qquad \frac{v \text{ value}}{\langle u,v\rangle_t \text{ value}} \qquad \frac{v \text{ value}}{\langle v,m\rangle_t \text{ value}} \qquad \frac{v \text{ value}}{\langle v,m\rangle_$$

Dynamic Reduction

$$\frac{m \rightsquigarrow m'}{m \ n \rightsquigarrow m' \ n} \qquad \frac{n \rightsquigarrow n'}{m \ n \rightsquigarrow m \ n'} \qquad \frac{v \text{ value}}{(\lambda_t(x:A).m) \ v \rightsquigarrow m[v/x]} \qquad \frac{(\lambda_t\{x:A\}.m) \ n \rightsquigarrow m[n/x]}{(\lambda_t\{x:A\}.m) \ n \rightsquigarrow m[n/x]}$$

$$\frac{m \rightsquigarrow m'}{\langle m, n \rangle_t \rightsquigarrow \langle m', n \rangle_t} \qquad \frac{n \rightsquigarrow n'}{\langle m, n \rangle_t \rightsquigarrow \langle m, n' \rangle_t} \qquad \frac{m \rightsquigarrow m'}{\{m, n\}_t \rightsquigarrow \{m', n\}_t} \qquad \frac{m \rightsquigarrow m'}{\mathbf{R}_{[z]A}^\Sigma(m, [x, y]n) \rightsquigarrow \mathbf{R}_{[z]A}^\Sigma(m', [x, y]n)}$$

$$\frac{u \text{ value} \qquad v \text{ value}}{\mathbf{R}_{[z]A}^\Sigma(\langle u, v \rangle_t, [x, y]n) \rightsquigarrow n[u/x, v/y]} \qquad \frac{v \text{ value}}{\mathbf{R}_{[z]A}^\Sigma(\{v, m\}_t, [x, y]n) \rightsquigarrow n[v/x, m/y]} \qquad \frac{m \rightsquigarrow m'}{\pi_1 \ m \rightsquigarrow \pi_1 \ m'}$$

$$\frac{m \rightsquigarrow m'}{\pi_2 \ m \rightsquigarrow m'} \qquad \frac{m \rightsquigarrow m'}{\pi_2 \ m \rightsquigarrow \pi_2 \ m'} \qquad \overline{\pi_1 \ (m, n)_t \rightsquigarrow m} \qquad \overline{\pi_2 \ (m, n)_t \rightsquigarrow n} \qquad \overline{\mathbf{R}_{[x, p]A}^\Xi(H, P) \rightsquigarrow H}$$

7 Meta Theory

Static Meta Theory

Theorem 1 (Confluence). If $m \rightsquigarrow^* m_1$ and $m \rightsquigarrow^* m_2$, then there exists n such that $m_1 \rightsquigarrow^* n$ and $m_2 \rightsquigarrow^* n$.

Theorem 2 (Equality). Definitional equality \equiv is an equivalence relation.

Theorem 3 (Static Validity). For any static typing $\Gamma \vdash m : A$, there exists sort s such that $\Gamma \vdash A : s$ is derivable.

Theorem 4 (Sort Uniqueness). If there are static typings $\Gamma \vdash A : s$ and $\Gamma \vdash A : t$, then s = t.

Theorem 5 (Static Subject Reduction). *If there is static typing* $\Gamma \vdash m : A$ *and static reduction* $m \leadsto n$, *then* $\Gamma \vdash n : A$ *is derivable.*

Theorem 6 (Static Normalization). For any m with static typing $\Gamma \vdash m : A$, it is strongly normalizing.

Dynamic Meta Theory

Theorem 7 (Dynamic Reflection). For any dynamic typing Γ ; $\Delta \vdash m : A$, static typing $\Gamma \vdash m : A$ is derivable.

Theorem 8 (Value Stability). If there is value v with dynamic typing Γ ; $\Delta \vdash v : A$ and $\Gamma \vdash A : s$, then $\Delta \triangleright s$.

Theorem 9 (Dynamic Subject Reduction). *If there is dynamic typing* ϵ ; $\epsilon \vdash m : A$ *and dynamic reduction* $m \rightsquigarrow n$, *then* ϵ ; $\epsilon \vdash n : A$ *is derivable.*

Theorem 10 (Dynamic Progress). If there is dynamic typing ϵ ; $\epsilon \vdash m : A$, then m is a value or there exists n such that $m \rightsquigarrow n$.

Erasure-Dynamic Meta Theory

Theorem 11 (Erasure Existence). For any dynamic typing Γ ; $\Delta \vdash m : A$, there exists m' such that erasure relation Γ ; $\Delta \vdash m \sim m' : A$ is derivable.

Theorem 12 (Erasure Subject Reduction). For any erasure relation ϵ ; $\epsilon \vdash m \sim m'$: A and dynamic reduction $m' \rightsquigarrow n'$, there exists n such that the following diagram commutes.

Theorem 13 (Erasure Progress). For any erasure relation ϵ ; $\epsilon \vdash m \sim m' : A$, then m' is a value or there exists n' such that $m' \rightsquigarrow n'$.