Université de Lille, FST 2019/2020 - SESI - L1, Semestre 1

Mathématiques élémentaires, M11 Jeudi 7 Novembre 2019. Durée : 3h.

Les documents, calculatrices, téléphones et appareils électroniques ne sont pas autorisés.

Une attention particulière sera portée à la clarté et à la précision des réponses. Le sujet comporte deux pages. Le barème est donné à titre indicatif.

Notez votre numéro de groupe sur votre copie.

Partie I. Algèbre (10 points : 3+3+4)

Exercice 1 – Soit f une fonction réelle de \mathbb{R} dans \mathbb{R} .

- 1. (a) Ecrire à l'aide de quantificateurs l'assertion « f est une fonction surjective ».
 - (b) Ecrire à l'aide de quantificateurs la négation de l'assertion « f est une fonction surjective ».
 - (c) Vérifier que f n'est pas une fonction surjective lorsque $f(x) = |x^3 5| 5$.
- 2. (a) Rappeler la définition de l'image Im(f) d'une fonction f définie de $\mathbb R$ dans $\mathbb R$
 - (b) Déterminer, en justifiant votre réponse, l'ensemble Im(f) lorsque $f(x) = |x^3 5| 5$.

Exercice 2 – On rappelle que $C_n^k = \frac{n!}{k!(n-k)!}$ pour toute paire d'entiers (k,n) tels que $0 \le k \le n$.

- 1. Calculer C_4^2 et C_7^6 .
- 2. Citer la formule du binôme de Newton pour $(a+b)^3$, en explicitant la valeur de chaque coefficient.
- 3. En utilisant le fait que $\sin \theta = \frac{1}{2i} (e^{i\theta} e^{-i\theta})$ pour $\theta \in \mathbb{R}$, déterminer les coefficients réels λ et μ tels que $(\sin \theta)^3 = \lambda \sin(3\theta) + \mu \sin \theta$.

Exercice 3 – Soit $z = -i(2+2i)^3$.

- 1. Déterminer le module et un argument de z.
- 2. Déterminer les parties réelle et imaginaire de z.
- 3. Déterminer sous forme algébrique les racines carrées de z.
- 4. En utilisant la forme trigonométrique de z, déterminer le plus petit entier n strictement positif tel que $z^n \in]0, +\infty[$.

Partie II. Analyse (10 points: 3+2+5)

Exercise 4 – Soit $f(x) = |x^2 - x - 2| - |x + 1|$ pour $x \in \mathbb{R}$.

- 1. Donner une expression de f n'utilisant pas la valeur absolue.
- 2. Résoudre l'équation f(x) = 0.
- 3. Soit $I = [2, +\infty[$ et J = f(I). Démontrer que la restriction de f sur I, notée $f|_{I}: I \to J$, est une bijection dont l'on précisera la fonction réciproque $f|_{I}^{-1}$.

Exercice 5 -

- 1. Rappeler la définition de la fonction $\arccos x$, en précisant notamment <u>les</u> domaines de définition et d'arrivée.
- 2. On rappelle que $(\sin \theta)^2 + (\cos \theta)^2 = 1$ pour $\theta \in \mathbb{R}$. Soit $f(x) = \sin(\arccos x)$. Exprimer, en justifiant votre réponse, la fonction f au moyen de $\sqrt{1-x^2}$.

Exercice 6 -

1. Etudier la convergence des suites définies par leur terme général suivant $(n \ge 1)$:

(a)
$$u_n = \left(\frac{5}{6} + \frac{1}{n}\right)^n$$
;

(b)
$$u_n = \sqrt{n^2 + 2n + 2} - n$$
;

(c)
$$u_n = \frac{4^n + 1}{2^n + 1} - 2^n$$
;

(d)
$$u_n = \cos \frac{n\pi}{2}$$
.

- 2. Soit $(u_n)_{n\geq 0}$ la suite définie par : $u_0=4$ et $u_{n+1}=1+u_n-\sqrt{u_n}$.
 - (a) Vérifier par récurrence que $u_n > 1$ pour $n \in \mathbb{N}$.
 - (b) Vérifier que la suite $(u_n)_{n\geq 0}$ est décroissante.
 - (c) Déterminer la limite de $(u_n)_{n\geq 0}$.

UFR de Mathématiques

L1 SESI - PEIP - Semestre 1

Alexan I Tall Tall

Devoir Surveillé de Maths 11 - Samedi 28 octobre 2017

Durée : 3 heures

Sans document ni calculatrice

Le barème est donné à titre indicatif

Attention : noter le numéro de votre groupe sur votre copie

Partie I : Algèbre

Exercice 1 (2 points). Dire, en justifiant votre réponse, si les assertions suivantes sont vraies ou fausses, puis écrire leur négation :

1. $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \quad x^2 + y^2 = 0.$

2. $\forall x \in \mathbb{R}, \quad (x \le 2) \Rightarrow (x^2 \le 4).$

Exercice 2 (3,5 points).

1. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par : $f(x) = (x-1)^2$.

(a) Dessiner le graphe de f.

(b) f est-elle injective? Surjective? Justifier votre réponse.

(c) Déterminer les ensembles suivants :

$$f(\mathbb{R}); \quad f(]-\infty,1]); \quad f^{-1}([0,1]); \quad f^{-1}([1,+\infty[).$$

2. Soit $g:[1,+\infty[\to[0,+\infty[$ la fonction définie par $:g(x)=(x-1)^2.$ Montrer que g est une application bijective et donner une expression de l'application réciproque g^{-1} .

Exercice 3 (1 point). Ecrire la formule du binôme et en déduire la valeur de :

$$\sum_{k=0}^{50} \left(\frac{1}{2}\right)^k \mathbf{C}_{50}^k.$$

On rappelle que C_n^k désigne k parmi n.

Exercice 4 (3,5 points).

1. (a) Déterminer le module et un argument de $\frac{1+i\sqrt{3}}{1+i}$.

(b) Résoudre dans C l'équation :

$$z^5 = \frac{1 + i\sqrt{3}}{1 + i}$$
.

2. Résoudre dans C les équations :

$$z^2 = 2i$$
 et $z^2 - (1 - i)z - i = 0$.

Partie II : Analyse

Exercice 1 (2 points). Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par : f(x) = |2x + 2| - |x - 1|.

- 1. Donner une expression de f n'utilisant pas la valeur absolue.
- 2. Tracer le graphe de f.
- 3. Résoudre l'équation f(x) = 0.

Exercice 2 (1,5 points). On considère l'équation (E):

$$\ln(x^2 + 1) - \ln(x - 1) = \ln 5.$$

Déterminer le domaine de validité de l'équation (E) et la résoudre.

Exercice 3 (1,5 points). Simplifier les expressions suivantes :

$$\arcsin\left(\sin\frac{19\pi}{2}\right)$$
; $\arccos\left(\cos\frac{33\pi}{9}\right)$.

Exercice 4 (2,5 points). Calculer les limites des suites définies par leur terme général suivant :

$$u_n = \frac{n^3 + 1}{n^3 + n}; \qquad v_n = \sqrt{n + 1} - \sqrt{n}; \qquad w_n = \frac{5^n - 2^n}{5^n + 2^n};$$
$$x_n = 1 + \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^n}; \qquad y_n = \frac{e^{-n} \cos n}{n^2 + 1}.$$

Exercice 5 (2,5 points). On considère les deux suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ définies par :

$$u_n = \sum_{k=1}^n \frac{1}{k^3} = \frac{1}{1^3} + \frac{1}{2^3} + \dots + \frac{1}{n^3}; \quad v_n = u_n + \frac{1}{n}.$$

- 1. Calculer u2 et v2.
- 2. Montrer que les deux suites (u_n) et (v_n) sont adjacentes. En déduire qu'elles convergent vers une même limite ℓ et que $\frac{9}{8} \le \ell \le \frac{13}{8}$.

Partie II : Analyse

Exercice 1 (2 points). Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par : $f(x) = |x^2 - 1| - |x - 1|$.

- 1. Donner une expression de f n'utilisant pas la valeur absolue
- 2. Résoudre l'équation f(x) = 0.
- 3. Résoudre l'inéquation f(x) > 0.

Exercice 2 (1.5 points). On considère l'équation (E) :

$$\ln(x^2 - 4) - \ln(x - 1) = \ln 4$$

Déterminer le domaine de validité de l'équation (E) et la résoudre.

Exercice 3 (1,5 points). Simplifier les expressions suivantes :

$$\arcsin\left(\sin\frac{11\pi}{5}\right)$$
; $\arccos\left(\cos\frac{23\pi}{7}\right)$; $\arctan\left(\tan\frac{17\pi}{3}\right)$.

Exercice 4 (2,5 points). Calculer les limites des suites définies par leur terme général suivant :

$$u_n = \frac{n^3 + 2}{n^3 - n};$$
 $v_n = n - \sqrt{n^2 + 1};$ $w_n = \frac{5^n - 2^n}{5^n + 2^n};$
$$x_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n};$$
 $y_n = \frac{\cos n}{1 + n^2}.$

Exercice 5 (2,5 points). On considère la suite $(S_n)_{n\geq 2}$ de terme général

$$S_n = \sum_{k=2}^n \frac{(-1)^k}{\ln k}$$

et on pose $u_n = S_{2n}$ et $v_n = S_{2n+1}$.

ante

aleu

- Montrer que les deux suites (u_n) et (v_n) sont adjacentes.
- 2. En déduire que la suite (S_n) est convergente. Justifier votre réponse.
