

WHAT IS CLAIMED IS:

1. A method of treating inosine monophosphate dehydrogenase associated disorders comprising:
 5 administering a therapeutically effective amount of a compound of formula (I)

10 including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates thereof wherein:

15 X^1 is $C=O$, $-S(O)-$, or $-S(O)_2-$;
 X^2 is CR^3 or N ;
 X^3 is $-NH-$, $-O-$, or $-S-$;
 X^4 is CR^4 or N ;
 X^5 is CR^5 or N ;
 X^6 is CR^6 or N ;
 R^1 is alkyl, substituted alkyl, alkenyl, substituted
 20 alkenyl, alkynyl, substituted alkynyl, NR^8R^9 , SR^{20} , cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heterocycloalkyl, or heteroaryl;
 R^2 is halogen, cyano, nitro, hydroxy, oxo (double bond is no longer present between CR^2 and X^6), SR^7 , $S(O)R^7$,
 25 SO_2R^7 , $SO_2NR^8R^9$, CO_2R^7 , $C(O)NR^8R^9$, or heteroaryl;
 R^3 is hydrogen, hydroxy, halogen, cyano, CO_2R^7 , NR^8R^9 , alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heterocycloalkyl or
 30 heteroaryl;

~~R⁴, R⁵, and R⁶ are independently selected from the group consisting of hydrogen, halogen, nitro, cyano, O-R⁷, NR⁸R⁹, SR⁷, S(O)R⁷, SO₂R⁷, SO₃R⁷, SO₂NR⁸R⁹, CO₂R⁷, C(O)NR⁸R⁹, C(O)alkyl, C(O)substituted alkyl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl;~~

~~R⁷, R¹⁰, and R¹¹, are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, alkynyl, cycloalkyl, substituted cycloalkyl, C(O)alkyl, C(O)substituted alkyl, C(O)cycloalkyl, C(O)substituted cycloalkyl, C(O)aryl, C(O)substituted aryl, C(O)Oalkyl, C(O)Osubstituted alkyl, C(O)heterocycloalkyl, C(O)heteroaryl, aryl, substituted aryl, heterocycloalkyl and heteroaryl;~~

~~15 R⁸ and R⁹ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, alkynyl, C(O)alkyl, C(O)substituted alkyl, C(O)cycloalkyl, C(O)substituted cycloalkyl, C(O)aryl, C(O)substituted aryl, C(O)Oalkyl, C(O)Osubstituted alkyl, C(O)heterocycloalkyl, C(O)heteroaryl, aryl, substituted aryl, heterocycloalkyl, and heteroaryl or R⁸ and R⁹ taken together with the nitrogen atom to which they are attached complete a heterocycloalkyl or heteroaryl ring;~~

~~20 R²⁰ is alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, heteroaryl or heterocycloalkyl;~~

~~25 R³ and R¹ may be taken together with the carbon atoms to which they are attached to form a monocyclic or substituted monocyclic ring system of 5 or 6 carbon atoms; and~~

~~30 R⁴ and R⁵ may be joined together by the chain -O-CH₂-O- or -O-CH₂-CH₂-O- .~~

2. A method of claim 1 comprising: administering a therapeutically effective amount of a compound of formula (II)

5

(II)

including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates thereof wherein:

10 R² is a monocyclic substituted or unsubstituted heteroaryl group.

3. A method of claim 2 comprising: administering a therapeutically effective amount of a compound of formula
15 (III)

(III)

20 including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates thereof wherein:

R² is 4-oxazolyl, substituted 4-oxazolyl, 5-oxazolyl, or substituted 5-oxazolyl;

25 R³ is hydrogen, hydroxy, NR⁸R⁹, alkyl of 1 to 4 carbons, alkenyl of 2 to 4 carbons, alkynyl of 2 to 4

carbons, substituted alkyl of 1 to 4 carbons, phenyl, substituted phenyl, cycloalkyl of 5 to 7 carbons, substituted cycloalkyl of 5 to 7 carbons, monocyclic heterocycloalkyl and monocyclic heteroaryl;

5 R⁴ is hydrogen, halogen, nitro, hydroxy, alkyl of 1 to 4 carbons, cyano, CF₃, OCF₃, OCH₃, SCH₃, S(O)CH₃, or S(O)₂CH₃;

 R⁵ is hydrogen, halogen, nitro, hydroxy, alkyl of 1 to 4 carbons, cyano, vinyl, CF₃, CF₂CF₃, CH=CF₂, OCH₃,

10 OCF₃, OCHF₂, SCH₃, S(O)CH₃, or S(O)₂CH₃; and

 R⁶ is hydrogen, halogen, nitro, hydroxy, alkyl of 1 to 4 carbons, cyano, CF₃, OCH₃, OCF₃, SCH₃, S(O)CH₃, and S(O)₂CH₃.

15 4. A method of Claim 3 comprising: administering a therapeutically effective amount of a compound including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates wherein:

20 R² is 4-oxazolyl, substituted 4-oxazolyl, 5-oxazolyl, substituted 5-oxazolyl or heteroaryl;

 R³ is hydrogen, hydroxy, halogen, methyl or NR⁸R⁹;

 R⁴ is hydrogen;

25 R⁵ is halogen, methyl, ethyl, substituted alkenyl, alkyne, OMe or OCF₃; and

 R⁶ is hydrogen.

30 5. A method of Claim 4 comprising: administering a therapeutically effective amount of a compound including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates wherein:

 R² is 4-oxazolyl, substituted 4-oxazolyl, 5-oxazolyl or substituted 5-oxazolyl;

35 R³ is hydrogen, hydroxy, halogen or methyl;

R^4 is hydrogen;
 R^5 is halogen, methyl or OMe; and
 R^6 is hydrogen.

5 6. A method of treating inosine monophosphate dehydrogenase associated disorders comprising: administering a therapeutically effective amount of a phosphodiesterase Type 4 inhibitor and a compound of formula (X):

10

including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates

15 thereof wherein:

X^1 is $C=O$, $-S(O)-$, or $-S(O)_2-$;
 X^2 is CR^3 or N;
 X^3 is $-NH-$, $-O-$, or $-S-$;
 X^4 is CR^4 or N;
 X^5 is CR^5 or N;
 X^6 is CR^6 or N;
 R^1 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, NR^8R^9 , SR^{20} , cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heterocycloalkyl, or heteroaryl;
 R^2 is halogen, cyano, nitro, hydroxy, oxo (double bond is no longer present between CR^2 and X^6), SR^7 , $S(O)R^7$, SO_2R^7 , $SO_2NR^8R^9$, CO_2R^7 , $C(O)NR^8R^9$, or heteroaryl;
 R^3 is hydrogen, hydroxy, halogen, cyano, CO_2R^7 , NR^8R^9 , alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted

cycloalkyl, aryl, substituted aryl, heterocycloalkyl or heteroaryl;

R⁴, R⁵, and R⁶ are independently selected from the group consisting of hydrogen, halogen, nitro, cyano,
 5 O-R⁷, NR⁸R⁹, SR⁷, S(O)R⁷, SO₂R⁷, SO₃R⁷, SO₂NR⁸R⁹, CO₂R⁷, C(O)NR⁸R⁹, C(O)alkyl, C(O)substituted alkyl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl;

R⁷, R¹⁰, and R¹¹, are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, alkynyl, cycloalkyl, substituted cycloalkyl, C(O)alkyl, C(O)substituted alkyl, C(O)cycloalkyl, C(O)substituted cycloalkyl, C(O)aryl, C(O)substituted aryl, C(O)Oalkyl, C(O)Osubstituted alkyl,
 15 C(O)heterocycloalkyl, C(O)heteroaryl, aryl, substituted aryl, heterocycloalkyl and heteroaryl;

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, alkynyl,
 20 C(O)alkyl, C(O)substituted alkyl, C(O)cycloalkyl; C(O)substituted cycloalkyl, C(O)aryl, C(O)substituted aryl, C(O)Oalkyl, C(O)Osubstituted alkyl, C(O)heterocycloalkyl, C(O)heteroaryl, aryl, substituted aryl, heterocycloalkyl, and heteroaryl or R⁸ and R⁹ taken
 25 together with the nitrogen atom to which they are attached complete a heterocycloalkyl or heteroaryl ring;

R²⁰ is alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, heteroaryl or heterocycloalkyl;

R³ and R¹ may be taken together with the carbon atoms
 30 to which they are attached to form a monocyclic or substituted monocyclic ring system of 5 or 6 carbon atoms; and

R⁴ and R⁵ may be joined together by the chain -O-CH₂-O- or -O-CH₂-CH₂-O-.

1 A method for the treatment or prevention of
 allograft rejection comprising: administering a
 therapeutically effective amount of a phosphodiesterase
 Type 4 inhibitor and a compound of formula (X):

5

(X)

including isomers, enantiomers, diastereomers, tautomers,
 pharmaceutically acceptable salts, prodrugs and solvates

10 thereof wherein:

11 X^1 is $C=O$, $-S(O)-$, or $-S(O)_2-$;12 X^2 is CR^3 or N;13 X^3 is $-NH-$, $-O-$, or $-S-$;14 X^4 is CR^4 or N;15 X^5 is CR^5 or N;16 X^6 is CR^6 or N;17 R^1 is alkyl, substituted alkyl, alkenyl, substituted
 alkenyl, alkynyl, substituted alkynyl, NR^8R^9 , SR^{20} ,
 cycloalkyl, substituted cycloalkyl, aryl, substituted
 20 aryl, heterocycloalkyl, or heteroaryl;18 R^2 is halogen, cyano, nitro, hydroxy, oxo (double
 bond is no longer present between CR^2 and X^6), SR^7 , $S(O)R^7$,
 SO_2R^7 , $SO_2NR^8R^9$, CO_2R^7 , $C(O)NR^8R^9$, or heteroaryl;25 R^3 is hydrogen, hydroxy, halogen, cyano, CO_2R^7 , NR^8R^9 ,
 alkyl, substituted alkyl, alkenyl, substituted alkenyl,
 alkynyl, substituted alkynyl, cycloalkyl, substituted
 cycloalkyl, aryl, substituted aryl, heterocycloalkyl or
 heteroaryl;30 R^4 , R^5 , and R^6 are independently selected from the
 group consisting of hydrogen, halogen, nitro, cyano,SEARCHED INDEXED
SERIALIZED FILED
APR 20 1993
U.S. DEPT. OF COMMERCE
U.S. PATENT AND TRADEMARK OFFICE

O-R^7 , NR^8R^9 , SR^7 , S(O)R^7 , SO_2R^7 , $\text{SO}_2\text{NR}^8\text{R}^9$, CO_2R^7 ,
 $\text{C(O)NR}^8\text{R}^9$, C(O)alkyl , $\text{C(O)substituted alkyl}$, alkyl ,
 substituted alkyl , alkenyl , $\text{substituted alkenyl}$, alkynyl
 $\text{and substituted alkynyl}$;

5 R^7 , R^{10} , and R^{11} , are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, alkynyl, cycloalkyl, substituted cycloalkyl, C(O)alkyl , $\text{C(O)substituted alkyl}$, C(O)cycloalkyl , $\text{C(O)substituted cycloalkyl}$, C(O)aryl , $\text{C(O)substituted aryl}$,
10 C(O)Oalkyl , $\text{C(O)Osubstituted alkyl}$, $\text{C(O)heterocycloalkyl}$, C(O)heteroaryl , aryl, substituted aryl, heterocycloalkyl and heteroaryl;

R^8 and R^9 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl,

15 cycloalkyl, substituted cycloalkyl, alkenyl, alkynyl, C(O)alkyl , $\text{C(O)substituted alkyl}$, C(O)cycloalkyl , $\text{C(O)substituted cycloalkyl}$, C(O)aryl , $\text{C(O)substituted aryl}$, C(O)Oalkyl , $\text{C(O)Osubstituted alkyl}$, $\text{C(O)heterocycloalkyl}$, C(O)heteroaryl , aryl, substituted aryl, heterocycloalkyl, and heteroaryl or R^8 and R^9 taken together with the nitrogen atom to which they are attached complete a heterocycloalkyl or heteroaryl ring;

20 R^{20} is alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, heterocycloalkyl, and heteroaryl or heterocycloalkyl;

25 R^3 and R^1 may be taken together with the carbon atoms to which they are attached to form a monocyclic or substituted monocyclic ring system of 5 or 6 carbon atoms; and

30 R^4 and R^5 may be joined together by the chain
 $-\text{O-CH}_2\text{-O-}$ or $-\text{O-CH}_2\text{-CH}_2\text{-O-}$.

8. A method of Claim 6 wherein: the phosphodiesterase Type 4 inhibitor is Rolipram.

9. A method of Claim 6 wherein: the phosphodiesterase Type 4 inhibitor is [4-[3-(cyclopentyloxy)-4-methoxy-phenyl]-2-pyrroridinone].

5 10. A compound of formula (I)

(I)

including isomers, enantiomers, diastereomers, tautomers,
10 pharmaceutically acceptable salts, prodrugs and solvates
thereof wherein:

X^1 is $\text{C}=\text{O}$, $-\text{S}(\text{O})-$, or $-\text{S}(\text{O})_2-$;

X^2 is CR^3 or N;

X^3 is $-\text{NH}-$, $-\text{O}-$, or $-\text{S}-$;

15 X^4 is CR^4 or N;

X^5 is CR^5 or N;

X^6 is CR^6 or N;

R^1 is alkyl, substituted alkyl, alkenyl, substituted
alkenyl, alkynyl, substituted alkynyl, cycloalkyl,

20 substituted cycloalkyl, aryl, substituted aryl,
heterocycloalkyl, or heteroaryl;

R^2 is cyano, hydroxy, oxo (double bond is no longer
present between CR^2 and X^6), SR^7 , $\text{S}(\text{O})\text{R}^7$, SO_2R^7 , $\text{SO}_2\text{NR}^8\text{R}^9$,
 CO_2R^7 , $\text{C}(\text{O})\text{NR}^8\text{R}^9$, or heteroaryl;

25 R^3 is hydrogen, hydroxy, halogen, cyano, CO_2R^7 , NR^8R^9 ,
alkyl, substituted alkyl, alkenyl, substituted alkenyl,
alkynyl, substituted alkynyl, cycloalkyl, substituted
cycloalkyl, aryl, substituted aryl, heterocycloalkyl or
heteroaryl;

30 R^4 , R^5 , and R^6 are independently selected from the
group consisting of hydrogen, halogen, nitro, cyano,

$O-R^7$, NR^8R^9 , SR^7 , $S(O)R^7$, SO_2R^7 , SO_3R^7 , $SO_2NR^8R^9$, CO_2R^7 , $C(O)NR^8R^9$, $C(O)alkyl$, $C(O)$ substituted alkyl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl;

5 R^7 , R^{10} , and R^{11} , are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, alkynyl, cycloalkyl, substituted cycloalkyl, $C(O)alkyl$, $C(O)$ substituted alkyl, $C(O)cycloalkyl$, $C(O)$ substituted cycloalkyl, $C(O)aryl$, $C(O)$ substituted aryl,

10 $C(O)Oalkyl$, $C(O)O$ substituted alkyl, $C(O)$ heterocycloalkyl, $C(O)$ heteroaryl, aryl, substituted aryl, heterocycloalkyl and heteroaryl;

R^8 and R^9 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl,

15 cycloalkyl, substituted cycloalkyl, alkenyl, alkynyl, $C(O)alkyl$, $C(O)$ substituted alkyl, $C(O)cycloalkyl$, $C(O)$ substituted cycloalkyl, $C(O)aryl$, $C(O)$ substituted aryl, $C(O)Oalkyl$, $C(O)O$ substituted alkyl, $C(O)$ heterocycloalkyl, $C(O)$ heteroaryl, aryl, substituted aryl,

20 aryl, heterocycloalkyl, and heteroaryl or R^8 and R^9 taken together with the nitrogen atom to which they are attached complete a heterocycloalkyl or heteroaryl ring;

R^3 and R^1 may be taken together with the carbon atoms to which they are attached to form a monocyclic or

25 substituted monocyclic ring system of 5 or 6 carbon atoms; and

R^4 and R^5 may be joined together by the chain
 $-O-CH_2-O-$ or $-O-CH_2-CH_2-O-$;

30 with the following provisos:

(c) when X^1 is $C=O$, X^2 is CR^3 , X^3 is NH , X^4 is CR^4 , X^5 is CR^5 , X^6 is CR^6 , R^1 is substituted or meta unsubstituted phenyl, R^3 is H, R^4 is H, R^5 is H and R^6 is H, then R^2 is not $PhCONH$,

5 (d) when X^1 is $C=O$, X^2 is CR^3 , X^3 is NH , X^4 is CR^4 , X^5 is CR^5 , X^6 is CR^6 , R^1 is phenyl substituted with H, F, Cl, Br, I, CH_3 , CF_3 , OH, OCH_3 , OCF_3 , OCH_2CH_3 , NH_2 , $NHCH_3$, $N(CH_3)_2$, O-benzyl, $-C(=O)-R_0$, or $-C(=O)-OR_0$ and R_0 is a lower alkyl group, R^3 is H, R^4 is H, R^5 is H and R^6 is H, then R^2 is not

10

15 where Y is CH_2 , O or S, m and n are each greater than 1, and the sum of m and n is between 3 and 6; and

20 (c) when R^2 is heteroaryl, at least one of the heteroatoms must be O;

11. A compound of Claim 10 of formula (II)

25

including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates thereof wherein:

30 R^2 is a monocyclic substituted or unsubstituted heteroaryl group.

12. A compound of Claim 11 of formula (III)

*Sub
β²*
5 including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates thereof wherein:

10 R^2 is 4-oxazolyl, substituted 4-oxazolyl, 5-oxazolyl, or substituted 5-oxazolyl;

15 R^3 is hydrogen, hydroxy, NR^8R^9 , alkyl of 1 to 4 carbons, alkenyl of 2 to 4 carbons, alkynyl of 2 to 4 carbons, substituted alkyl of 1 to 4 carbons, phenyl, substituted phenyl, cycloalkyl of 5 to 7 carbons, substituted cycloalkyl of 5 to 7 carbons, monocyclic heterocycloalkyl and monocyclic heteroaryl;

20 R^4 is hydrogen, halogen, nitro, hydroxy, alkyl of 1 to 4 carbons, cyano, CF_3 , OCF_3 , OCH_3 , SCH_3 , $S(O)CH_3$, or $S(O)_2CH_3$;

25 R^5 is hydrogen, halogen, nitro, hydroxy, alkyl of 1 to 4 carbons, cyano, vinyl, CF_3 , CF_2CF_3 , $CH=CF_2$, OCH_3 , OCF_3 , $OCHF_2$, SCH_3 , $S(O)CH_3$, or $S(O)_2CH_3$; and

30 R^6 is hydrogen, halogen, nitro, hydroxy, alkyl of 1 to 4 carbons, cyano, CF_3 , OCH_3 , OCF_3 , SCH_3 , $S(O)CH_3$, and $S(O)_2CH_3$.

25

13. A compound of Claim 12 including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates wherein:

~~R² is 4-oxazolyl, substituted 4-oxazolyl, 5-oxazolyl, substituted 5-oxazolyl or heteroaryl;~~

~~R³ is hydrogen, hydroxy, halogen, methyl or NR⁸R⁹;~~

~~R⁴ is hydrogen;~~

5 R⁵ is halogen, methyl, ethyl, substituted alkenyl, alkyne, OMe or OCF₃; and

~~R⁶ is hydrogen.~~

Su
B2

14. A compound of Claim 13 including isomers,

10 enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates wherein:

~~R² is 4-oxazolyl, substituted 4-oxazolyl, 5-oxazolyl or substituted 5-oxazolyl;~~

~~R³ is hydrogen, hydroxy, halogen or methyl;~~

15 R⁴ is hydrogen;

~~R⁵ is halogen, methyl or OMe; and~~

~~R⁶ is hydrogen.~~

15. A compound of Claim 10 of formula (V)

20

(V)

including isomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates

25 selected from:

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

10

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is CH₃ and R³ is hydrogen;

20 a compound of formula (V) wherein:

R¹ is

and R³ is CH₃;

25

a compound of formula (V) wherein:

R¹ is

30

and R³ is hydrogen;

5 a compound of formula (V) wherein:

R¹ is

5

and R³ is hydrogen;

10 *Sub b2* a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

15 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

20

a compound of formula (V) wherein:

R¹ is

25

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

a compound of formula (V) wherein:

5 and R^3 is hydrogen;

a compound of formula (V) wherein:

10 and R^3 is hydrogen;

a compound of formula (V) wherein:

15 and R^3 is hydrogen;

20 a compound of formula (V) wherein:

and R^3 is hydrogen;

25 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

20

R¹ is

and R³ is hydrogen;

25

a compound of formula (V) wherein:

R¹ is5 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is10 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is15 and R³ is hydrogen;

a compound of formula (V) wherein:

20 R¹ isand R³ is hydrogen;

25 a compound of formula (V) wherein:

R¹ is

and R^3 is Br;

a compound of formula (V) wherein:

R^1 is

and R^3 is hydrogen;

*Suh
B2* a compound of formula (V) wherein:

10 R^1 is

15 and R^3 is hydrogen;

a compound of formula (V) wherein:

20 R^1 is

25 and R^3 is hydrogen;

a compound of formula (V) wherein:

R^1 is

30 and R^3 is hydrogen;

a compound of formula (V) wherein:

5 R¹ is

10 and R³ is hydrogen;

a compound of formula (V) wherein:

15 R¹ is

20 and R³ is hydrogen;

a compound of formula (V) wherein:

25 R¹ is

and R³ is hydrogen;

a compound of formula (V) wherein:

30 R¹ is

35 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

5 and R³ is hydrogen;

*5M
β₂*
a compound of formula (V) wherein:

R¹ is

10 and R³ is hydrogen;

a compound of formula (V) wherein:

15 R¹ is

20 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

25 and R³ is hydrogen;

a compound of formula (V) wherein:

5 R¹ is

10 and R³ is hydrogen;

a compound of formula (V) wherein:

15 R¹ is

20 and R³ is hydrogen;

a compound of formula (V) wherein:

25 R¹ is

and R³ is hydrogen;

a compound of formula (V) wherein:

30 R¹ is

and R³ is hydrogen;

35 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

a compound of formula (V) wherein:

25

R¹ is

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

5

and R³ is hydrogen;

10 a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

25

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

10

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

25 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

20 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

25

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

20 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

25

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

25 a compound of formula (V) wherein:

R¹ is

5 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

10 and R³ is hydrogen;

a compound of formula (V) wherein:

15 R¹ is

20 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

25 and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

a compound of formula (V) wherein:

5 R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

10 R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

15 R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

20 R¹ is

20

and R³ is hydrogen;

25 a compound of formula (V) wherein:

R¹ is

and R³ is hydrogen;

5

a compound of formula (V) wherein:

R¹ is

10

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

15

and R³ is hydrogen;

a compound of formula (V) wherein:

R¹ is

20

and R³ is hydrogen;

a compound of formula (V) wherein:

25

R¹ is

and R^3 is hydrogen;

a compound of formula (V) wherein:

5 R^1 is

and R^3 is hydrogen;

10 a compound of formula (V) wherein:

R^1 is

and R^3 is hydrogen;

15 a compound of formula (V) wherein:

R^1 is

and R^3 is hydrogen;

20

 a compound of formula (V) wherein:

R^1 is

25

 and R^3 is hydrogen;

 a compound of formula (V) wherein:

5 and *R*³ is hydrogen;

a compound of formula (V) wherein:

*R*¹ is

10 and *R*³ is hydrogen;

and a compound of formula (V) wherein:

*R*¹ is

15 and *R*³ is hydrogen.

16. A compound of Claim 10 including isomers,

20 enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, prodrugs and solvates thereof selected from:

25

5
Sub
 β_2

10
15
20
25

Sub
 β^2

TOECHO = E020204000

5

10

15

20

25

PROTIC SOLVENTS

5

Sub
 β_2

10

15

20

25

5

10

15

20

25

5

ζ_{ub}
 β_2

10

15

20

25

TOUGHED-E02042600

5

Sub
β2

10

15

20

5

 $\zeta_{\text{ub}} \beta^2$

10

15

20

25

TDBE200 = 0.050 ± 0.050

5

Su
B2

10

15

20

25

5

$$S^{\beta_1} \beta_2$$

10

15

20

25

TOP 20% - 2000+3600

5

*Sub
β²*

10

15

20

25

ζ_{ub}
 β_2

5

10

15

20

25

TOPIC = E0504850

5

10

15

20

25

T0002410-E050-B650

and

20

17. A pharmaceutical composition comprising a compound
25 of Claim 10 and a pharmaceutically acceptable carrier.

18. A pharmaceutical composition comprising a compound of Claim 11 and a pharmaceutically acceptable carrier.

19. A pharmaceutical composition comprising a compound of Claim 12 and a pharmaceutically acceptable carrier.

20. A pharmaceutical composition comprising a compound of Claim 13 and a pharmaceutically acceptable carrier.

10 21. A pharmaceutical composition comprising a compound of Claim 14 and a pharmaceutically acceptable carrier.

22. A pharmaceutical composition comprising a compound of Claim 15 and a pharmaceutically acceptable carrier.

15 23. A pharmaceutical composition comprising a compound of Claim 16 and a pharmaceutically acceptable carrier.

24. A method of treating inosine monophosphate dehydrogenase associated disorders comprising: administering a therapeutically effective amount of the composition of Claim 17.

25 25. A method of treating inosine monophosphate dehydrogenase associated disorders comprising: administering a therapeutically effective amount of the composition of Claim 17 and another agent known to be useful in treatment of such disorders.

30 26. A method of treating inosine monophosphate dehydrogenase associated disorders comprising: administering a therapeutically effective amount of the pharmaceutical composition of Claim 17 and a phosphodiesterase Type 4 inhibitor.

27. A method for the treatment or prevention of allograft rejection comprising: administering a therapeutically effective amount of the pharmaceutical composition of Claim 17 and a phosphodiesterase Type 4 inhibitor.

5

28. A method of Claim 7 wherein: the phosphodiesterase Type 4 inhibitor is Rolipram.

10 29. A method of Claim 7 wherein: the phosphodiesterase Type 4 inhibitor is [4-[3-(cyclopentyloxy)-4-methoxy-phenyl]-2-pyrrolidinone].

15

