Solving linear equations

Introduction

Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or more unknown quantities which you will be required to find. In this Block we consider a particular type of equation which contains a single unknown quantity, and is known as a linear equation. Later Blocks will describe techniques for solving other types of equations.

Prerequisites

Before starting this Block you should ...

- be able to add, subtract, multiply and divide fractions
- be able to transpose formulae

Learning Outcomes

After completing this Block you should be able to \dots

✓ recognise and solve a linear equation

Learning Style

To achieve what is expected of you . . .

 $\ \ \, \ \ \, \ \ \, \ \, \ \,$ allocate sufficient study time

- revise the prerequisite material
- attempt every guided exercise and most of the other exercises

1. Linear equations

Key Point

A linear equation is an equation of the form

$$ax + b = 0$$
 $a \neq 0$

where a and b are known numbers and x represents an unknown quantity which we must find.

In the equation ax + b = 0, the number a is called the **coefficient of** x, and the number b is called the **constant term**.

The following are examples of linear equations

$$3x + 4 = 0$$
, $-2x + 3 = 0$, $-\frac{1}{2}x - 3 = 0$

Note that the unknown, x, appears only to the first power, that is as x, and not as x^2 , \sqrt{x} , $x^{1/2}$ etc. Linear equations often appear in a nonstandard form, and also different letters are sometimes used for the unknown quantity. For example

$$2x = x + 1$$
 $3t - 7 = 17$, $13 = 3z + 1$, $1 - \frac{1}{2}y = 3$

are all examples of linear equations. Where necessary the equations can be rearranged and written in the form ax + b = 0. We will explain how to do this later in this Block.

Now do this exercise

Which of the following are linear equations and which are not linear?

(a)
$$3x + 7 = 0$$
, (b) $-3t + 17 = 0$, (c) $3x^2 + 7 = 0$, (d) $5x = 0$

The equations which can be written in the form ax + b = 0 are linear.

Answer

To solve a linear equation means to find the value of x that can be substituted into the equation so that the left-hand side equals the right-hand side. Any such value obtained is known as a **solution** or **root** of the equation and the value of x is said to satisfy the equation.

Example Consider the linear equation 3x - 2 = 10.

- (a) Check that x = 4 is a solution.
- (b) Check that x = 2 is *not* a solution.

Solution

- (a) To check that x = 4 is a solution we substitute the value for x and see if both sides of the equation are equal. Evaluating the left-hand side we find 3(4) 2 which equals 10, the same as the right-hand side. So, x = 4 is a solution. We say that x = 4 satisfies the equation.
- (b) Substituting x=2 into the left-hand side we find 3(2)-2 which equals 4. Clearly the left-hand side is not equal to 10 and so x=2 is not a solution. The number x=2 does not satisfy the equation.

Try each part of this exercise

Test which of the given values are solutions of the equation

$$18 - 4x = 26$$

(a)
$$x = 2$$
, (b) $x = -2$, (c) $x = 8$

Part (a) Substituting x = 2, the left hand side equals

Answer

Part (b) Substituting x = -2, the left-hand side equals

Answer

Part (c) Substituting x = 8, the left-hand side equals

Answer

More exercises for you to try

- 1. (a) Write down the general form of a linear equation.
 - (b) Explain what is meant by the root or solution of a linear equation.

In questions 2-8 verify that the given value is a solution of the given equation.

2.
$$3x - 7 = -28$$
, $x = -7$

3.
$$8x - 3 = -11$$
, $x = -1$

4.
$$2x + 3 = 4$$
, $x = \frac{1}{2}$

$$5. \ \frac{1}{3}x + \frac{4}{3} = 2, \quad x = 2$$

6.
$$7x + 7 = 7$$
, $x = 0$

7.
$$11x - 1 = 10$$
, $x = 1$

8.
$$0.01x - 1 = 0$$
, $x = 100$.

Answer

2. Solving a linear equation.

To solve a linear equation we try to make the unknown quantity the **subject** of the equation. This means we attempt to obtain the unknown quantity on its own on the left-hand side. To do this we may apply the same five rules used for transposing formulae given in Chapter 1 Block 7. These are given again here.

Key Point

Operations which can be used in the process of solving a linear equation:

- add the same quantity to both sides
- subtract the same quantity from both sides
- multiply both sides by the same quantity
- divide both sides by the same quantity
- take functions of both sides; for example square both sides.

A useful summary of these rules is 'whatever we do to one side of an equation we must also do to the other'.

Example Solve the equation x + 14 = 5.

Solution

Note that by subtracting 14 from both sides, we leave x on its own on the left. Thus

$$x + 14 - 14 = 5 - 14$$

 $x = -9$

Hence the solution of the equation is x = -9. It is easy to check that this solution is correct by substituting x = -9 into the original equation and checking that both sides are indeed the same. You should get into the habit of doing this.

Example Solve the equation 19y = 38.

Solution

In order to make y the subject of the equation we can divide both sides by 19:

$$19y = 38$$

$$\frac{19y}{19} = \frac{38}{19}$$
cancelling 19's gives
$$y = \frac{38}{19}$$
so
$$y = 2$$

Hence the solution of the equation is y = 2.

Example Solve the equation 4x + 12 = 0.

Solution

Starting from 4x + 12 = 0 we can subtract 12 from both sides to obtain

$$4x + 12 - 12 = 0 - 12$$

so that
$$4x = -12$$

If we now divide both sides by 4 we find

$$\frac{4x}{4} = \frac{-12}{4}$$

cancelling 4's gives

x = -3

So the solution is x = -3.

Now do this exercise

Solve the linear equation 14t - 56 = 0.

Answer

Example Solve the following equations:

(a)
$$x + 3 = \sqrt{7}$$
,

(b)
$$x+3 = -\sqrt{7}$$
.

Solution

- (a) Subtracting 3 from both sides gives $x = \sqrt{7} 3$.
- (b) Subtracting 3 from both sides gives $x = -\sqrt{7} 3$.

Note that when asked to solve $x + 3 = \pm \sqrt{7}$ we can write the two solutions as $x = -3 \pm \sqrt{7}$. It is usually acceptable to leave the solutions in this form (i.e. with the $\sqrt{7}$ term) rather than calculate decimal approximations. This form is known as the **surd form**.

Example Solve the equation $\frac{2}{3}(t+7) = 5$.

Solution

There are a number of ways in which the solution can be obtained. The idea is to gradually remove unwanted terms on the left-hand side to leave t on its own. By multiplying both sides by $\frac{3}{2}$ we find

$$\frac{3}{2} \times \frac{2}{3}(t+7) = \frac{3}{2} \times 5$$
$$= \frac{3}{2} \times \frac{5}{1}$$
$$t+7 = \frac{15}{2}$$

and after simplifying and cancelling,

Finally, subtracting 7 from both sides gives

$$t = \frac{15}{2} - 7$$

$$= \frac{15}{2} - \frac{14}{2}$$

$$= \frac{1}{2}$$

So the solution is $t = \frac{1}{2}$.

Example Solve the equation 3(p-2) + 2(p+4) = 5.

Solution

At first sight this may not appear to be in the form of a linear equation. Some preliminary work is necessary. Removing the brackets and collecting like terms we find the left-hand side yields 5p + 2 so the equation is 5p + 2 = 5 so that, finally, $p = \frac{3}{5}$.

Try each part of this exercise

Solve the equation 2(x-5) = 3 - (x+6).

Part (a) First remove the brackets on both sides.

Answer

We may write this as

$$2x - 10 = -x - 3$$

We will try to rearrange this equation so that terms involving x appear only on the left-hand side, and constants on the right.

Part (b) Start by adding 10 to both sides.

Answer

Part (c) Now add x to both sides.

Answer

Part (d) Finally solve this to find x.

Answer

Example Solve the equation

$$\frac{6}{1 - 2x} = \frac{7}{x - 2}$$

Solution

This equation appears in an unfamiliar form but it can be rearranged into the standard form of a linear equation. By multiplying both sides by (1-2x) and (x-2) we find

$$(1-2x)(x-2) \times \frac{6}{1-2x} = (1-2x)(x-2) \times \frac{7}{x-2}$$

Considering each side in turn and cancelling common factors:

$$6(x-2) = 7(1-2x)$$

Removing the brackets and rearranging to find x we have

further rearrangement gives:
$$6x - 12 = 7 - 14x$$

$$20x = 19$$

$$x = \frac{19}{20}$$

The solution is therefore $x = \frac{19}{20}$.

Example Consider Figure 1 which shows three branches of an electrical circuit which meet together at X. Point X is known as a **node**. As shown in Figure 1 the current in each of the branches is denoted by I, I_1 and I_2 . Kirchhoff's current law states that the current entering any node must equal the current leaving that node. Thus we have the equation

$$I = I_1 + I_2$$

$$I = I_1 + I_2$$

$$I_1$$

Figure 1.

- (a) If $I_2 = 10$ A and I = 18A calculate I_1 .
- (b) Suppose I = 36A and it is known that current I_2 is five times as great as I_1 . Find the branch currents.

Solution

(a) Substituting the given values into the equation we find $18 = I_1 + 10$. Solving for I_1 we find

$$I_1 = 18 - 10 = 8$$

Thus I_1 equals 8 A.

(b) We are given that, from Kirchhoff's law, $I = I_1 + I_2$. We are told that I_2 is five times as great as I_1 , and so we can write $I_2 = 5I_1$. Since I = 36 we have

$$36 = I_1 + 5I_1 = 6I_1$$

Solving this linear equation $36 = 6I_1$ gives $I_1 = 6$ A. Finally, since I_2 is five times as great as I_1 , we have $I_2 = 5I_1 = 30$ A.

More exercises for you to try

In questions 1-24 solve each equation:

1.
$$7x = 14$$

$$2. -3x = 6$$

3.
$$\frac{1}{2}x = 7$$

4.
$$3x = \frac{1}{2}$$

5.
$$4t = -2$$

6.
$$2t = 4$$

7.
$$4t = 2$$

8.
$$2t = -4$$

9.
$$\frac{x}{6} = 3$$

10.
$$\frac{x}{6} = -3$$

11.
$$7x + 2 = 9$$

12.
$$7x + 2 = 23$$

13.
$$-7x + 1 = -6$$

14.
$$-7x + 1 = -13$$

15.
$$\frac{17}{3}t = -2$$

1.
$$7x = 14$$
 2. $-3x = 6$ 3. $\frac{1}{2}x = 7$ 4. $3x = \frac{1}{2}$ 5. $4t = -2$ 6. $2t = 4$ 7. $4t = 2$ 8. $2t = -4$ 9. $\frac{x}{6} = 3$ 10. $\frac{x}{6} = -3$ 11. $7x + 2 = 9$ 12. $7x + 2 = 23$ 13. $-7x + 1 = -6$ 14. $-7x + 1 = -13$ 15. $\frac{17}{3}t = -2$ 16. $3 - x = 2x + 8$ 17. $x - 3 = 8 + 3x$ 18. $\frac{x}{4} = 16$ 19. $\frac{x}{9} = -2$ 20. $-\frac{13}{2}x = 14$ 21. $-2y = -6$ 22. $-7y = 11$ 23. $-69y = -690$ 24. $-8 = -4\gamma$.

17.
$$x - 3 = 8 + 3$$

18.
$$\frac{x}{4} = 16$$

19.
$$\frac{x}{9} = -2$$

20.
$$-\frac{13}{2}x = 14$$

21.
$$-2y = -6$$

22.
$$-7y = 11$$

23.
$$-69y = -690$$

$$24 - 8 = -4\gamma$$

In questions 25 - 47 solve each equation:

$$25. \ \ 3y - 8 = \frac{1}{2}y$$

26.
$$7t - 5 = 4t + 7$$

26.
$$7t - 5 = 4t + 7$$
 27. $3x + 4 = 4x + 3$

28.
$$4 - 3x = 4x + 3$$

29.
$$3x + 7 = 7x + 2$$

29.
$$3x + 7 = 7x + 2$$
 30. $3(x + 7) = 7(x + 2)$
32. $2(x + 4) = 8$ 33. $-2(x - 3) = 6$

$$31. \ 2x - 1 = x - 3$$

32.
$$2(x+4) = 8$$

33.
$$-2(x-3) = 6$$

34.
$$-2(x-3) = -6$$

33.
$$-3(3x-1) =$$

30.
$$2 - (2t + 1) = 4(t + 2)$$

31.
$$3(m-3) = 8$$

$$36. \ \ 3m-3=3(m-3)+2m$$

28.
$$4 - 3x = \overline{4}x + 3$$
 29. $3x + 7 = 7x + 2$ 30. $3(x + 7) = 7(x + 3)$ 31. $2x - 1 = x - 3$ 32. $2(x + 4) = 8$ 33. $-2(x - 3) = 6$ 34. $-2(x - 3) = -6$ 35. $-3(3x - 1) = 2$ 36. $2 - (2t + 1) = 4(t + 2)$ 37. $5(m - 3) = 8$ 38. $5m - 3 = 5(m - 3) + 2m$ 39. $2(y + 1) = -8$ 40. $17(x - 2) + 3(x - 1) = x$ 41. $\frac{1}{3}(x + 3) = -9$ 42. $\frac{3}{m} = 4$ 43. $\frac{5}{m} = \frac{2}{m + 1}$ 44. $-3x + 3 = 18$ 45. $3x + 10 = 31$ 46. $x + 4 = \sqrt{8}$ 47. $x - 4 = \sqrt{23}$

42.
$$\frac{3}{m} = 4$$

43.
$$\frac{5}{m} = \frac{2}{m+1}$$

$$44. \ \ -3x + 3 = 18$$

45.
$$3x + 10 = 31$$

46.
$$x + 4 = \sqrt{8}$$

47.
$$x-4=\sqrt{23}$$

48. If
$$y = 2$$
 find x if $4x + 3y = 9$

49. If
$$y = -2$$
 find x if $4x + 5y = 3$

48. If
$$y = 2$$
 find x if $4x + 3y = 9$
50. If $y = 0$ find x if $-4x + 10y = -8$
49. If $y = -2$ find x if $4x + 5y = -3$
51. If $x = -3$ find y if $2x + y = 8$

51. If
$$x = -3$$
 find y if $2x + y = 8$

52. If
$$y = 10$$
 find x when $10x + 55y = 530$ 53. If $\gamma = 2$ find β if $54 = \gamma - 4\beta$

53. If
$$\gamma = 2$$
 find β if $54 = \gamma - 4\beta$

In questions 54-63 solve each equation:

54.
$$\frac{x-5}{2} - \frac{2x-1}{3} = 6$$
 55. $\frac{x}{4} + \frac{3x}{2} - \frac{x}{6} = 1$ 56. $\frac{x}{2} + \frac{4x}{3} = 2x - 7$ 57. $\frac{5}{3m+2} = \frac{2}{m+1}$ 58. $\frac{2}{3x-2} = \frac{5}{x-1}$ 59. $\frac{x-3}{x+1} = 4$ 60. $\frac{x+1}{x-3} = 4$ 61. $\frac{y-3}{y+3} = \frac{2}{3}$ 62. $\frac{4x+5}{6} - \frac{2x-1}{3} = x$

55.
$$\frac{x}{4} + \frac{3x}{2} - \frac{x}{6} = 1$$

56.
$$\frac{x}{2} + \frac{4x}{3} = 2x - 7$$

$$57. \ \frac{5}{3m+2} = \frac{2}{m+1}$$

$$58. \ \frac{2}{3x-2} = \frac{5}{x-1}$$

63.
$$\frac{3}{2s-1} + \frac{1}{s+1} = 0$$

64. Solve the linear equation
$$ax + b = 0$$
 to find x

64. Solve the linear equation
$$ax + b = 0$$
 to find x
65. Solve the linear equation $\frac{1}{ax + b} = \frac{1}{cx + d}$ to find x

Answer

End of Block 3.1

- (a) linear
- (b) linear; the unknown is t
- (c) not linear because of the term x^2
- (d) linear; here the constant term is zero

10. But $10 \neq 26$ so x = 2 is not a solution.

18-4(-2)=26. This is the same as the right-hand side, so x=-2 is a solution.

18-4(8)=-14. But $-14 \neq 26$ and so x=8 is not a solution.

1.	(a)	The general form is $ax + b = 0$	where a	and b	are k	nown	numbers	and a	represe	ents
		the unknown quantity.								

(b) A root is a value for the unknown which satisfies the equation.

t = 4

$$2x - 10 = 3 - x - 6$$

$$2x = -x + 7$$

3x = 7

$\frac{7}{3}$

1. 2	22	3. 14	4. $\frac{1}{6}$	5. $-\frac{1}{2}$	6. 2
7. $\frac{1}{2}$	82	9. 18	1018	11. 1	12. 3
13. 1	14. 2	15. $-6/17$	16. $-5/3$	1711/2	18. 64
1918	2028/13	21. $y = 3$	2211/7	23. $y = 10$	24. 2
25. 16/5	26. 4	27. 1	$28. \ 1/7$	$29. \ 5/4$	30. 7/4
312	32. 0	33. 0	34. 6	$35. \ 1/9$	367/6
$37. \ \ 23/5$	38. 6	395	$40. \ \ 37/19$	4130	$42. \ \ 3/4$
43. $-5/3$	445	45. 7	46. $\sqrt{8} - 4$	47. $\sqrt{23} + 4$	$48. \ \ 3/4$
49. $13/4$	50. 2	51. 14	522	5313	5449
$55. \ 12/19$	56. 42	57. 1	58. 8/13	59. $-7/3$	$60. \ 13/3$
61. 15	62. 7/6	63. $-2/5$	64. $-b/a$	$65. \ \frac{d-b}{a-c}$	