

Outline

- Sample-based Localization Problem
- Importance Sampling
- Particle Filter
- Monte Carlo Localization

Motivation

- Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (Sonar)

Outline

- Sample-based Localization Problem
- Importance Sampling
- Particle Filter
- Monte Carlo Localization

Mathematical Description

Set of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

Function Approximation

Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Rejection Sampling

- Let us assume that f(x) < 1 for all x
- Sample x from a uniform distribution
- Sample *c* from [0,1]
- if f(x) > c otherwise

keep the sample reject the sampe

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is often called target
- g is often called proposal
- Pre-condition:

$$f(x) > = 0$$
 $g(x) > 0$

Landmark Example

Example

Wanted: samples distributed according to $p(x | z_1, z_2, z_3)$

Example

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling

Target distribution f :
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_{k} p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

Sampling distribution
$$g: p(x|z_l) = \frac{p(z_l|x)p(x)}{p(z_l)}$$

Importance weights w:
$$f = \frac{p(x | z_1, z_2, ..., z_n)}{p(x | z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k | x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

Weighted samples

After resampling

Outline

- Sample-based Localization Problem
- Importance Sampling
- Particle Filter
- Monte Carlo Localization

Particle Filter

Particle Filter: Sensor Information

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Particle Filter: Sensor Information

Particle Filter: Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x \mid u, x') Bel(x') dx'$$

Particle Filter: Sensor Information

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Particle Filter: Sensor Information

Particle Filter: Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x \mid u, x') Bel(x') dx'$$

Particle Filter Algorithm

Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"
- [Derivation of the MCL equations on the blackboard]

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , $u_{t-1}z_t$):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- 3. **For** i = 1...n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w^i_t = p(z_t \mid x^i_t)$

Compute importance weight

7. $\eta = \eta + w_t^i$

Update normalization factor

 $S_{t} = S_{t} \cup \{\langle x_{t}^{i}, w_{t}^{i} \rangle\}$

Insert

- 9. **For** i = 1...n
- 10. $w_t^i = w_t^i / \eta$

Normalize weights

Outline

- Sample-based Localization Problem
- Importance Sampling
- Particle Filter
- Monte Carlo Localization

Monte Carlo Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

Motion Model

Proximity Sensor Model

Laser sensor

Sonar sensor

Example II (Sonar)

Example III (Initialization)

Example III (10 Ultrasound Scans)

Example III (65 Ultrasound Scans)

Example III (Path Estimation)

Example IV (Landmark-based)

Example V (Vision-based)

Example V (Vision-based)

Example V (Under Light)

Measurement z:

Example V (Next to Light)

Measurement z:

P(z/x):

Example V (Elsewhere)

Measurement z:

P(z/x):

Example V (Global Localization)

Summary I

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions, Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary II

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

Homework

Problem 1: Given the following observation models, please use importance sampling and resampling techniques to estimate the robot location.

Homework

Problem 2: Given a map and the ultrasound sensor model, please use importance sampling and resampling techniques to estimate the robot location and path.

