Joint RGB-Spectral Decomposition Model Guided Image Enhancement in Mobile Photography

Phad Rohan Vaijnath (210718)

November 6, 2024

1 Comparison

1.1 Part-1: Segmentation-JDM

Two changes were made in decode-head module of Segmentation-JDM model. First, The loss function was changed from Cross Entropy Loss to Focal Loss with γ equal to 2. Second, dilation of 2 was added to convolutional layers of FCN. Following Results were observed:

Model	iterations	building	plant	sky	trunk	road	mIoU
Paper	14000	87.53	91.01	95.87	31.14	89.11	78.93
Mine	12000	88.04	91.26	94.39	35.18	90.08	78.94
Modified ($\gamma = 2.0$)	12000	88.38	90.08	84.22	24.57	84.76	74.4

Table 1: Evaluation of modified segmentation-JDM and it's comparison with previous model

As we can see, The modified model performed poorly compared to original model. There are following possible reasons for this.

- 1. Focal loss works best in case of sever imbalance in classes. In our case class imbalance might not be sever enough for focal loss to outperform cross entropy loss.
- 2. Focal loss highly emphasizes on difficult samples so model might be struggling to generalize for other easy classes.
- 3. I only trained for $\gamma = 0.5, 1.0, 2.0$ and 3.0. There might be some other gamma for which focal may perform better.

1.2 Part-2: JDMHDRNet

In the SPSA module of JDM-HDRNet, activation function was changed from leaky-relu to gelu. Following results were observed:

Model	Epochs	$PSNR^*$	$SSIM^*$
HDRNet	6000	27.75 2	0.939
$JDM - HDRNet^*(Paper)$	6000	30.14	0.968
$JDM - HDRNet^*(Mine)$	3000	29.01	0.967
$JDM - HDRNet^*(Modified)$	2000	29.13	0.967

Table 2: Training with Ideal Priors

Due to time limitations, I could not train for whole 6000 epochs to compare with paper's results, but we can clearly see that modified model reached better PSNR value in less epochs compared to when I trained paper's model in phase-1. Hence we can safely say that modified model will atleast reduce training time if not outperform the original model. Either way, it is a improvement over paper's model.