

Woods Hole Oceanographic Institution

4080463

A

THE WHOI MOORED ARRAY PROJECT 1963-1978: DATA DIRECTORY AND BIBLIOGRAPHY

bу

S. Tarbell, M. Chaffee, A. Williams and R. Payne

August 1980

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-76-C-0197; NR 083-40C and for the National Science Foundation under Grant OCE 77-19403.

Approved for public release; aistribution unlimited.

WCODS HOLE, MASSACHUSETTS 02543

Best Available Copy

80 10 14

REPORT NUMBER	TATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
}	2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
WHOI-79-884	AD-A090 4	163
TITLE (and Subtitio)	والمراجعة المسارة ويوجه والمساورة والمناجعة والمساورة وا	S. TYPE OF REPORT. & PERIOD COVERE
THE WHOI MOORED ARRAY PROJE	ECT 1963-1978: DATA	19 Technical restant
THE WHOI MOORED ARRAY PROJE DIRECTORY AND BIBLIOGRAPHY		S. PERFORMING ORG. REPORT NUMBER
	The state of the s	(A)
AUTHOR(a)	The state of the s	CONTRACT OR GRANT NUMBER(+)
S. Tarbell M. Chaffee, A.	Williams 🗪 R.)	NØ9014-76-C-0197 - 440
Payne		NSF- OCE 77-19403
PERFORMING ORGANIZATION NAME AND		10. PROGRAM ELEMENT, PROJECT, TAS
Woods Hole Oceanographic In	nstitution	NR 083-400 12 17
Woods Hole, MA 02543	-	12 12 12 12 12 12 12 12 12 12 12 12 12 1
. CONTROLLING OFFICE NAME AND ADDR	121	TE REPORT DATE
NORDA	(August 1986
National Space Technology I	Laboratory \	MI-NUMBER OF PAGES
Bay St. Louis, MS 39529 Monitoring agency name 4 address	VII dillanat ham Castralliad Offic	168 ce) 18. SECURITY CLASS. (of this report)
- MONITORING NOTICE WANTE & RODRESS	Kit eittermit tiom controlling Cili	to. Seconit v censs. (or the topolity
		Unclassified
		IS. DECLASSIFICATION/DOWNGRADING
S. DISTRIBUTION STATEMENT (of this Repo		
Approved for public release	e; distribution unli	CYCLECTE
		OCT 1 5 1980
7. DISTRIBUTION STATEMENT (of the abetre		OCT 1 5 1980
7. DISTRIBUTION STATEMENT (of the abetre		OCT 1 5 1980
Approved for public release 7. DISTRIBUTION STATEMENT (of the aboute) 8. SUPPLEMENTARY NOTES		OCT 1 5 1980
7. DISTRIBUTION STATEMENT (of the abetre		OCT 1 5 1980
7. DISTRIBUTION STATEMENT (of the abetre	ect antorod in Block 20, if differen	OCT 1 5 1980
7. DISTRIBUTION STATEMENT (of the abelia 8. SUPPLEMENTARY NOTES	ect antorod in Block 20, if differen	OCT 1 5 1980
7. DISTRIBUTION STATEMENT (of the abetre	ect antorod in Block 20, if differen	OCT 1 5 1980
DISTRIBUTION STATEMENT (of the abelia Supplementary notes KEY WORDS (Continue on reverse elde 11 ne	ect antorod in Block 20, if differen	OCT 1 5 1980
DISTRIBUTION STATEMENT (of the above Supplementary notes Rey words (Continue on reverse elde if ne 1. Current meter 2. Moored instruments	ect antorod in Block 20, if differen	OCT 1 5 1980
DISTRIBUTION STATEMENT (of the above Supplementary notes Key words (Continue on reverse elde if ne Current meter Moored instruments Bibliography	ict antered in Block 20, if differen	OCT 1 5 1980
D. SUPPLEMENTARY NOTES REY WORDS (Continue on reverse elde if not Current meter Moored instruments Bibliography ABSTRACT (Continue on reverse elde if not General information about	coseary and identify by block numbers on the month of the	DOT 1 5 1980 A A A Ber) Ser, durations and data gathered
D. SUPPLEMENTARY NOTES REY WORDS (Continue on reverse elde if not Current meter Moored instruments Bibliography ABSTRACT (Continue on reverse elde if not General information about	cossery and identify by block numbers to mooring location (also known as Buoy	DOT 1 5 1980 The Report) A A A Ber) S, durations and data gathered froup between late 1963 and

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-014-6601 |

WHOI-79-88

THE WHOI MOORED ARRAY PROJECT 1963-1978: DATA DIRECTORY AND BIBLIOGRAPHY

by

S. Tarbell, M. Chaffee, A. Williams, and R. Payne

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

August 1980

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-76-C-0197; NR 083-400 and for the National Science Foundation under Grant OCE 77-19403.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanographic Institution Technical Report WHOI-79-88.

Approved for public release; distribution unlimited.

Approved for Distribution

Valentine Worthington, Chairman Department of Physical Oceanography

ABSTRACT

General information about mooring locations, durations and data gathered by the Moored Array Project (also known as Buoy Group) between late 1963 and 1978 is listed. Also included is a comprehensive list of scientific and technical publications written by the Buoy Group staff.

TABLE OF CONTENTS

	Page
ABSTRACT	1
TABLE OF CONTENTS	3
ACKNOWLEDGMENTS	4
THE EARLY YEARS	5
Instruments	7
CALENDAR OF EVENTS	9
REFERENCES	12
SECTION A Graphs and charts	13
SECTION B List of all recovered data	47
SECTION C Bibliography	131

ACKNOWLEDGMENTS

This report has been a cooperative effort for a number of years.

The early charts were compiled and drafted by Margaret Chaffee. The table of available data is mostly the work of Phyllis Hayes, a summer student and the bibliography was compiled by Audrey Williams.

Many people have contributed special time and effort in the area of documentation. Among them are Nick Fofonoff, Ferris Webster, Robert Heinmiller, Raymond Pollard, George Tupper, Jim McCullough, and Gordon Volkmann. Many more have contributed to the most basic level of documentation, the careful daily records kept by the mooring, instrument and data processing sections. It is this solid base of unglamorous paper work that supports the effort of the scientific staff and makes possible this report, the distillation of everyone's continuous effort.

The Early Years

In 1959 a long-range program of oceanographic environmental research was outlined and submitted to the Office of Naval Research from the Woods Hole Oceanographic Institution. Among the recommendations were the use of fixed and drifting instrumented buoys to measure the distribution and variability of ocean currents. The specific projects were developed further in a formal proposal to the Office of Naval Research in 1960. The general objectives were "to achieve a greater proderstanding of the 'climatic' qualities of the circulation of the oceans". The major specific effort was to "be devoted to the development of suitable unmanned equipment for the collection of data pertinent to the prediction problem and an experimental line of stations through the Gulf Stream to be set up to evaluate these techniques and collect essential data on the time variations of this major current system".

The W.H.O.I. Buoy Group, set up initially under the guidance of Dr. W. S. Richardson, designed and built the prototype moorings, current meters and other instruments. The first batch of 100 current meters plus wind recorders were assembled at W.H.O.I. during Spring 1961 for deployment at 12 mooring sites between Cape Cod and Bermuda.

The program encountered serious problems from the outset. Loss rates were unacceptably high, ranging from 40 to 90% of the instruments set for periods of two to three months. Of the records recovered, most were seriously contaminated by high levels of high-frequency noise from mooring motion.

Although the instruments and moorings were redesigned for redeployment in 1962, the modifications were inadequate to meet the conditions (largely unknown) encountered at sea. The Bermuda buoy line was discontinued in Spring 1962. The outlook for long-term moored array experiments appeared bleak. However, experimentation and redesign continued. Film records recovered in 1962 were analyzed manually to identify sampling and recording problems and to expose the various modes of mooring motion that degraded the records. In 1963, the program emphasis was shifted to engineering and

development. Current meters were redesigned with sampling rates that matched the wide-band signals seen from moorings. Records from these instruments proved to be machine-readable and quickly exposed the real structure of the signal spectrum. Realistic specifications could now be set for the next generation of current meters. (A more detailed discussion is available in Fofonoff, 1968.)

Solving the current meter sampling problem did not eliminate the high loss rate of instruments at sea (35% for exposure periods of two weeks or more during 1965-67). Improvements continued to be slow and uncertain until reliable acoustic releases were developed and an effective back-up recovery system was designed. Development of mooring techniques has been described by Heinmiller (1975, 1976a, b). The ability to conduct post-mortems on mooring failures led to a rapid improvement in durability and resistance to corrosion and fatigue of mooring components. In 1968 recoveries of better than 90% were attained, eliminating a major constraint on application of moored buoys for scientific use. A rapid expansion in number and scope of scientific experiments followed starting in 1969.

The present report catalogues the experiments carried out, the data collected, and the resulting scientific papers and technical reports during the period from 1963 to 1979. The evolution of moored buoy techniques is apparent in the maps and listings included. The continued support of the Office of Naval Research has been essential to the development of moored buoy techniques, especially during the 60's when the scientific returns seemed at times so meager compared to the investments.

Instruments

The overriding goal of the Buoy Group, from the beginning, has been to make accurate observations of ocean currents on an accurate time base. Over the years, the data treatment and recording methods within the current meters have changed radically while the sensors, the Savonius rotor and vane, have stayed very nearly like the original models. Also, other variables, such as temperature, differential temperature, and pressure have been added to the observations recorded.

Table 1 contains a very brief summary of the instrument developments which we will comment on here.

The first current meters were manufactured by Geodyne, Inc. These recorded their data on movie film and used mechanical clocks for the time base. Transferring the data to magnetic tape for digital processing was difficult and not particularly reliable so it was hailed as a great advance when Geodyne brought out the Model 850. This uses basically the same instrument but recorded on magnetic tape in endless loop cartridges. Both the film recording and Model 850 current meter used burst sampling recording, giving the investigators a measure of the high frequency content in ocean currents, but the magnetic tape increased the data storage capacity as well as the reliability. Replacing the mechanical clocks with quartz crystal oscillators improved the accuracy and reliability of the time by a remarkable amount.

In 1971, the first prototypes of the Vector Averaging Current Meter (VACM) were deployed. This instrument, conceived and designed at W.H.O.I., used the vane and Savonius rotor for sensors but vector averaged the data nearly continuously and recorded digitally on magnetic tape cassettes. Vector averaging effectively removed the aliasing problem and the recording techniques developed increased the data capacity of the current meters markedly. A combination of up-to-date electronics and very careful maintenance and servicing yielded a remarkably reliable instrument.

Water temperature has been recorded in all VACMs by means of thermistors. An accuracy of .01°C is achieved routinely (Payne et al., 1976). Other variables have been added to the observations as the need arose. The requirement for small scale temperature gradients prompted the development of the differential temperature (DT) circuits for the Internal Wave experiment (IWEX). The need for monitoring mooring behavior gave rise to the measurement of pressure in the VACM. The multiplexing circuit was developed at the same time to allow the recording of several variables besides current without increasing the number of circuit boards and therefore the size and power requirements of the instrument.

The Model 850 has continued to yield quite satisfactory data and all of our Model 850s are in active use. Substantial improvements have been made to the electronics resulting in improved reliability (Valdes, 1977). The ability to measure temperature has been added to all the Model 850s.

During the past 3 or 4 years the Buoy Group has come to expect a rather high level of performance from its instruments, order of 90% data return from the VACMs and only slightly less from the Model 850s. Recently two moorings were recovered after an 18 month deployment with excellent data return.

Instruments from other institutions have been deployed on Buoy Group moorings. The best example is probably the temperature-pressure recorder (T/P) developed at M.I.T.'s Draper Laboratories under John Dahlen. The T/P was developed for use on the MODE moorings and gave the Buoy Group its first quantitative information on vertical mooring motion.

CALENDAR OF EVENTS

- The data gathered was used to determine the effectiveness and limitations of the instrument (film recording current meter made by the Geodyne Corporation) and the mooring system. Data quality is marginal in all cases due to the state of the art at that time. Data quality problems include light struck film, blurring between channels, film transport uneven, and uneven light intensity causing channels to be misread on machine reading.
- 1964 Solving instrument and engineering problems was the principal thrust of the project. Removing the large external fin and damping the vane follower were just two of the instrument modifications. Our present system of naming moorings and data files was initiated and previously set moorings and data series re-named to conform to the new procedure.
- 1965 The first good two month time series was recovered. Instrument changes included a magnetic switch turn-on (from a mercury switch) and double ended (vane one end, rotor other end) to single ended current meters.
- 1966 A few of the instruments were modified to record on magnetic tape instead of on film.
- 1967 The conversion to magnetic tape recording instruments was continued.

 Mooring work was suspended pending results of experimental mooring types.
- 1968 Finished converting from film to magnetic tape recording instruments.

 Larger, faster computer system installed (Sigma 7). All data series converted to the Maltais Format (Maltais, 1969) on the new computer.

 The back-up recovery system (Berteaux and Heinmiller, 1969) was to be used on all moorings.
- 1969 The first crystal clocks were installed, replacing the less accurate mechanical clocks.
- 1970 The first intermediate moorings (Heinmiller and Walden, 1973) were set. Directional inaccuracies in vane follower and northern bias were measured and corrected. The increase in mooring and instrument reliability started a trend to set moorings in arrays.

CALENDAR OF EVENTS (cont.)

- 1971 Prototypes of the Vector Averaging Current Meter (VACM) were used successfully. A few of the Model 850 instruments were modified to include a temperature sensor. The first mooring with an intended duration of 1 year was set. The MODE/POLYMODE experiments began with MODE 0, Array 1.
- 1972 The 1 year mooring was recovered (388 days). The modification of the Model 850 to include temperature was continued and calibration techniques were devised for the thermistors. The VACMs were modified to correct a design flaw. Compass, vane values were lost if the rotor had not turned 1/8th of a turn. The modification forced a count of one in the rotor. MODE was continued with Arrays 2 and 3.
- 1973 Modified VACMs that recorded differential temperature were used in IWEX. MODE 1, set in the spring, was the largest array set by the Buoy Group. It had 16 moorings and over 200 instruments. Two VACM problems were discovered: chemical deposition in rotor and vane bearings and a rotor drop-out problem caused by a drifting diode. Modifications to eliminate the problems were started.
- 1974 The various modifications of the VACM were continued. POLYMODE Array 1 was set.
- 1975 A program to update the circuitry of the Model 850 clocks to bring them up to standards was started (Valdes, 1977). POLYMODE Array 2, Setting 1 was deployed and recovered and Array 2, Setting 2 was deployed.
- 1976 Two VACMs were modified to add pressure in a multiplexing mode.

 POLYMODE, Array 2, Setting 2 was recovered and Setting 3 was set.

 INDEX moorings were deployed in the Indian Ocean and recovered.
- 1977 POLYMODE, Array 2, Setting 3 was recovered. POLYMODE, Array 3, clusters A and B were deployed.
- 1978 POLYMODE, Array 3, clusters A and B were recovered and two site moorings were deployed. JASIN was set and recovered. A 15 month LDE array was deployed.

Table 1 shows the chronological order of the introduction of some of the technological improvements made in instruments and moorings as well as some of the major experiments the Buoy Group has been involved in. Mooring numbers are for the mooring set nearest the end of the year above it.

Events	Calendar Years
1	963,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
Mooring Numbers	141 - 193 - 261 - 321 - 421 - 522 - 586 - 638 -
Nominal Mooring Duration	[7 days][Two months][6 months][9-15 mo. * Back up recovery system in use. * Intermediate moorings * First 1 year mooring * use of MIT T/Ps
Current Meters, Film Model 850 VACM	[Film Recording] [Magnetic tape recording [- Vector Averaging * 850 Temperature mod. * VACM DT mod. and *pressure.
Clocks	[Mechanical clocks -] [- Crystal Clocks
Major Experiments Long term site D	+++++++++++++++++++++
Along 70° W.	++++++++++++
Gulf Stream	++ +++ +
MODE, POLYMODE	+++++++++++++++++++++
IWEX	+
INDEX	+
JASIN	+
SCOR WG 21	+ + +
Local Dynamics Ex.	+++++
Calendar Years 1	963,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79

Referenc '

- Berteaux, H. O. and R. Heinmiller, 1969. Back-up recovery systems of deep-sea moorings. W.H.O.I. Technical Report WHOI 69-7.
- Fofonoff, N. P., 1968. A summary report on current measurements from moored buoys, 1959-1965. W.H.O.I. Technical Report WHOI 68-30.
- Heinmiller, R. H., Jr., 1975. Mooring operations of the Woods Hole Buoy Group for the MID-OCEAN DYNAMICS EXPERIMENT. W.H.O.I. Technical Report WHOI 75-42.
- Heinmiller, R. H., Jr., 1976a. The Woods Hole Buoy Project moorings, 1960 through 1974. W.E.O.I. Technical Report WHOI 76-53.
- Heinmiller, R. H., Jr., 1976b. Mooring operations techniques of the Buoy Project at the Woods Hole Oceanographic Institution. W.H.O.I.

 Technical Report WHOI 76-96.
- Heinmiller, R. H. and R. G. Walden, 1973. Details of Woods Hole moorings. W.H.O.I. Technical Report WHOI 73-71.
- Maltais, J. A., 1969. A nine channel digital magnetic tape format for storing oceanographic data. W.H.O.I. Technical Report WHOI 69-55.
- Payne, R. E., A. L. Bradshaw, J. P. Dean and K. E. Schleicher, 1976.

 Accuracy of temperature measurements with the VACM. W.H.O.I.

 Technical Report WHOI 76-94.
- Valdes, J. R., 1977. COS/MOS 850 current meter report. W.H.O.I. Technical Report WHOI 77-30.

SECTION A CHARTS AND GRAPHS

The charts and graphs in this section show the position, duration and 3 digit mooring number of each mooring set in the Atlantic in that year. Use the following legend for the calendar year displays:

Mooring numbers

038 Surface Mooring

159 Subsurface, Intermediate or Bottom Mooring

Depths of Instruments (meters)

1234 Depth of current meter

1234 Depth of non current meter instrument

1234 Digitizer depth

1234 Lost instrument

A dashed line means lost or adrift

R. A. means recovered adrift

Note that data from moorings before 107 were of very poor quality and were not archived.

プライス (1975年、1970年、1978年1978年、1915年、1915年、1915年、1916年

N. Atlantic

是是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们就会

のでは、一般のできない。 では、一般のできないできない。 できないできないできないできない。

KIRLEMENT TO THE STATE OF THE S

W. Talvest Manual Company

TO THE PARTY OF TH

Action of Ministration

A Maria

A STATE OF THE PARTY OF THE PAR

当年を会合とは、 では、これでは、日本のでは

Action to the second

		1
	<u></u>	280
		, NOV
		00.7
		SEPT
	1	AUG
		JULY JULY 1974
	013,2512.	JUNE
e D Muir Seamount Mode Area	\$22 \text{in 201/1201/1202.} \$124 \text{in 201/1201/1202.} \$125 \text{in 201/1201/1202.} \$125 \text{in 201/1202.} \$125 \text{in 201/1202.} \$125 \text{in 201/1202.} \$125 \text{in 201/1202.} \$127 \text{in 201/1202.}	MAY
	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	APRIL
Windward 	Site D Suit Stream MODE Area	MARCH
1045, 1048, 1247, 1456, 1456, 1456, 1456, 1456, 1456, 1464 Possoge Pos		FEB
1045,1046,1247,1 1050,1053,1252, 187,988,1999,200 179,980,1997, 2140,582, 2089,2988, 2131,3023,3027 900,603,602,80	1973	NAU

j

SECTION B LIST OF ALL RECOVERED DATA

A list by year and mooring number of all data recorded and archived by the Data Processing section of the Moored Array Project. Description of Heading - There are two formatted lines, a mooring line and an instrument data line.

EXAMPLE OF PAGE HEADING

*DATA	* SAMPLING *DAYS*DATA START* VARIABLES*REPORT* COMMENTS
*Mooring -	Moorings are numbered chronologically. There are
	a few exceptions in the early years when documentation
	was more casual.
Type	Usually SURface, SUBsurface, INTermediate, BoTtoM,
	SPEcial (see comments) or TRI-mooring
Depth	Water depth or instrument depth in meters.
Latitude Long.*	Position.
Days	Mooring days on station or instrument recorded days.
	As instruments were turned on some time before setting
	and turned off after retrieval, the data days may be
	longer than the mooring days. A zero means less than
	a day. A ? means unknown.
Set/Recovered	Year-month-day mooring was set or retrieved.
Report	Numbered W.H.O.I. Technical Report describing the data
	Letters instead of numbers mean report in preparation.
Comments	Comments, location designation (Site D) or experiment
	name.
	List of Sites on 70° 00'W
	Site D 39° 20'N
	Site F 38° 30'N
	Site G 38° 00'N
	Site H 37° 30'N
	Site J 36° 00'N
	Site L 34° 00'N
	Site M 33° 00'N

Site P 30° 00'N

List of Experiment Acronyms

MODE Mid-Ocean Dynamics Experiment

SCOR UNESCO Working Group on continuous current velocity measurements

IWEX Internal Wave Experiment

POLYMODE

International experiment aimed at understanding the role of large scale eddies in ocean circulation

INDEX Indian Ocean Experiment

JASIN Joint Air-Sea Interaction

*Data *No.*

Mooring number plus instrument position number, counting from the top of the mooring line.

Instr.

Instrument series and instrument serial number

G- Film recording instrument G-code

H- Film recording instruments H-Code

T- Prototype tape recording instruments

M- Model 850 tape recording instruments

D- Digitizing instrument

DT- VACM modified to measure temperature difference

VACM- Vector Averaging Current Meter

W- Wind recorder

TP- Draper Lab temperature depth recorder

Sampling

There are two modes of sampling measured in seconds: continuous or interval. Continuous series have samples evenly spaced in time (e.g., 5 or 900 seconds).

Interval series are burst sampled. Bursts of data (usually 15-24 samples) were taken at a specified rate (5 or 5.27 seconds). Then wait until the next recording cycle (frequently 900 or 3600 seconds (15 minutes, 1 hour)). Thus 5.27/1800 is burst sampled data with consecutive bursts of 5.27 second samples every half hour (1800 seconds).

A 5 second sampling rate indicates a mechanical clock; the 5.27 rate a crystal clock. An E following a number means the film was read and keypunched manually (eyeballed).

or

days

magnetic variation)

Model 850 and VACM Sampling Times Conversion

or

hours

Minutes

Seconds

or mours or days
1 7/8
3 3/4
7 1/2
15
30 1/2
60 1
2
24 1
T/P Sampling Times Conversion
16
32
1
Year-month-day of first recorded data which may include
laboratory or shipboard data.
The first initial of each variable. For a current meter:
C = Compass E = East component
V = Vane N = North component
D = Direction P = Pressure
S = Speed R = Rotor speed (scalar speed)
T = Time $B = Bearing (compass + vane +$

A second T = Temperature

A third T = either temperature or TDIF (Temperature Difference)

For a temperature/pressure (T/P) recorder;

T = Temperature or time

P = Pressure or pressure difference

D = Depth

C = Corrected temperature

GLOSSARY

ALVIN W.H.O.I. research submarine

Compound Mooring A mooring that uses a combination of wire rope (in the

fishbite zone) and synthetic rope.

Switch Channels Model 850 tape cartridges have two channels. At the

end of recording on one channel the instrument should

switch and write on the second channel. At the end of

channel 2 it should stop.

Rotor 1 Bit Modi-

fication

A VACM modification to cause vane and compass readings

to be recorded even when there are no rotor counts in

the recording interval.

Faking Box

COS/MOS

A short lived system for rapid deployment of mooring.

Refers to COmplimentary-Symmetry/Metal-Oxide-Semi-

conductor circuitry used in upgrading of Model 850

current meter. See Valdes (WHOI 77-30).

Sea Spider Mooring

Three legged mooring with single subsurface float.

Early attempt at extra stable mooring.

* DATA * NO.	1 6 1	EPTH*INSTR*	SAMPLING *	- DAY	S*DAT	A START	LES*R	RI# COMMENS	1
S 70 7 C1 7 C1 7 C1 7 C1	0 N N O O	9 24.7 -156 -287 -136 -275	9	000	63- 63- 63- 63-	VII-23/ VII-23 VII-23 VII-23	63- VII-24 CVDST 65-44 CVDST 65-44 CVOST 65-44 CVOST 65-44		
139 SUR 1081 1083	375 53 250	78 25.04 G-273 294	73 08.0W 600F 784E	000	63- 63- 63-	VII-28/ VII-28 VII-28	63- VII-30 CVDST CVDST		
109 SUR 1092 1093 1094	500 150 250 350	78 27.0N 265 290 G-100	73 4E.OW 784E 815E 6150F	0000	63- 63- 63-	VII-28/ VII-28 VII-28 VII-28	763- VI 1-30 CV DS T CV DS T CV DS T		
110 SUR 1102 1103	375 150 250	78 28.0N G-137 295A	74 14.0W 600E 706F	200	663	VII-28/ VII-28 VII-28	/63- VII-30 CVDST CVDST		
111 SUR 1114	3621 405	0 58.0N 323	34 55.0W 6000F	28	63- 63-	11 -15/6	63-111-15 CVDST	T.	EGUATORI AL
112 SUR 1122 1123 1124	4905 80 155 405	0 00.0N 213 278 265	34 58.0W 6000E 6000E 6000E	50 50 50 50 50 50 50 50 50 50 50 50 50 5	63- 63- 63-	II -16/ II -16 II -16 II -16	63- 1V-15 CVDST CVDST CVDST	w	EQUATORI AL
113 5 UR	2290	1 00.55 0 00.0	34 58.0W 33 45.0W	26	63- 63-	11 -16/ 11 -17/	.7/ LOST	ū. Ū	FQUATORI AL EQUATORI AL

EQUATORI AL	EQUATORI AL	EQUATORIAL	EQUATORI AL	EQUATORIAL	EQUATORIAL EQUATORIAL E UATORIAL	EQUATORIAL
-25 T	1-25 ST ST	-26 1 1		-27 T T	-10 Red adkift	-13 T T
11 -19/63- 11- 11 -19 CVDS 11 -19 CVDS	11 -19/63- 11 11 -19 CVDS 11 -19 CVDS	11 -20/63- 11- 11 -20 CVDST 11 -20 CVDST 11 -20 CVDST 11 -20 CVDST	11 -20/63- 11-: 11 -20 CVDST 11 -20 CVDST 11 -20 CVDST 11 -20 CVDST	11 -21/63- 11- 11 -21 CVDST 11 -21 CVDST 11 -21 CVDST 11 -21 CVDST	11 -22/63- IV- 11 -22/ LGST 11 -23/RECOVER	111-08/63-111- 1111-08 CVDS1 111-08 CVDS1
6 63- 5 63- 5 63-	6 63- 5 63- 5 63-	6 63- 6 63- 6 63- 8 63-	6 63- 5 63- 6 63- 6 63- 6 63-	6 6 6 3 1 1 6 6 6 3 1 1 1 1 1 1 1 1 1 1	7 63- ? 63- ? 63-	5 63- 4 63- 3 63-
27 20.0W 642E 684E	27 32.0W 600F 660E	27 30.0W 600F 666E 600F 624F	27 27.0w 600E 684F 624E 600E	27 32.0W 606E 600E 624E 642E	25 00.0W 4 25 00.0W 25 00.0W	32 31.0W 600E 600E 660E
1 32.0N 281 294	0 28.0N 320 295	3 00.0N 268 299 303 296	0 32.0S 235 214 239 273	1 34.05 326 297 210 204	0 54.0S 0 01.0N 01 01.0N	1 29.0S 204A 326A 214A
2 80 405	30 80	2 30 80 155 405	2 30 80 155 405	2 30 80 11 15 15 15 15 15 15 15 15 15 15 15 15	~ ~ ~ ~	4490 30 80 405
115 SUR 1152 1154	116 SUR 1161 1162	117 SUR 1171 1172 1173	118 SUR 1181 1182 1183 1183	119 SUR 1191 1193 1193	120 SUP 121 SUR 122 SUR	123 5 UR 1231 1232 1234

**************************************	# 10 EP	TH*LATITUDE	* LONG. *	DAYS*	SE DATA	T START	/RECOVERED *REPORT* CUMMENT	ENTS
124 SUR 1241 1242 1243 1244	4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 28.0S 297A 303A G-135A 296A	32 28.0W 600F 624E 600E 612E	n n 4 n 4	66683 6683 1	111-08/6 111-08 111-09 111-08	3-111-13 CVDST CVDST CVDST CVDST	EQUATORI AL
125 SUR 1252 1254	% 80 405	0 01.0v 273A 239A	32 25.0W 600E 510E	տտտ	63- 63- 63-	VI08/6 VI08 III08	3- VI-13 CVDST CVDST	EQUATORIAL
126 5UR 1261 1262 1263	7 30 80 155	0 28.0N 2994 281A 327A	32 28.0W 456F 564E 546E	տտտտ	63- 63- 63-	111-09/6 111-09 111-10	3-111-14 CVDS T CVDS T CVDS T	EQUATORIAL
127 SUR 1271 1272 1272	7 30 80 405	1 30.0N 320A 301 294A	32 35.0W 492E 696E 600E	១ ហ ហ ៧	63- 63- 63-	111-09/6 111-09 111-09 111-12	3-111-14 CVDST CVDST CVDST	EQUATORIAL
128 SUR 1281 1282 1283 1283	2 30 180 405 505	1 28.0M 2948 2968 2998 301	29 59.0W 540F 528E 516F 522E	សស4 ស ស	663-1 631-1 631-1		3-111-20 CVDST CVDST CVDST CVDST	FQUATORI AL
129 SUR 1291 1292 1293 1293	2 80 1 155 50 50	0 31.0N 2358 6~1358 3038 2973	29 58.0w 678E 618E 600E 702E	មេខាយមេ	663-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		3-111-21 CVDST CVDST CVDST CVDST	EQUATORI AL

EQUATORIAL.	EQUATORI AL	EQUATORIAL	EQUATORIAL EQUATORIAL	EQUATORI AL	EQUATORI AL		
						VINEYARD SOUND	VINEYARD SOUND
- III -16/63-III -21 - III -16 CVDST - III -16 CVDST - III -16 CVDST - III -16 CVDST	- III-16/63-III-22 - III-16 CVDST - III-16 CVDST - III-16 CVDST	- III-17/63-111-22 - III-17 CVDST - III-17 CVDST - III-17 CVDST - III-17 CVDST	- 111-24/63- 1V-38 - 111-24/63- 1V-38	- 111-25/63- 1V-07 - 111-25 CVDST	- III-25/63- IV-07	- XI -38/63- XI-12 - XI -08 CVDSI	3- XI -08/ LCST
6831	63-	6 63- 5 63- 5 63- 5 63- 5 63-	63-	63-	+ 63-	4 63- 3 63-	? 63
29 59.0W 5 600F 708E 5 648E 5 468F	29 57.0W 6 63.0E 5 624E 5 498E 5	30 02.0W 6 660F 624E 530F 498F	29 34.0W 16 30 40.0W 16	31 52.0W 14 200F 1	33 00.0W 14	70 46.5W 6000E	76 46.5W
0 01.0S 2148 3268 2958 2048	0 32.05 3208 2818 3278	1 30.05 2108 2738 2689 2393	3 00.0S 2 59.0S	2 59 . 55 296	3 00.08	41 26.3N H-514	41 26.3V
2 30 80 155 405	2 155 405 80	? 30 80 155 405	ر. <i>ب</i>	3 1 505	<i>ر.</i>	7 1 6	~
130 SUR 1301 1302 1303 1303	131 SUR 1312 1313 1314	132 SUR 1321 1322 1323 1323	133 SUR 134 SUR	135 SUR 1355	136 SUR	137 SUB 1371	138 SLB

*MOORING *NO**IYPE	**NUCKING *NO.*IYPE*DEPTH*LATITUDE*	* - DNO-	DAYS#	1	SET	۱ ٪	/	*REPORT*	COMMENTS	1	ı	ı	l t	I #
*DATA	1 1 1	1	1	ı	1	ì	1 1	•	1	1	ı	ı	1	
ON	*DEPTH*INSTR. *	SAMPLING *[DAYS	DAYS*DATA		START#	VAR I ABLES *REPORT*	*REPORT	* COMMENTS					*
		; (,		! ! ! ;			 			!)
SER	~	64 32.0W	o	0	ŧ	0/07	70-11-07		DEKENDINA					
m	0 H-5	-1	-	63-	- IX	-26	EVOST	65-44						
3	0 H-5	1	1	63-	- IX	26	EVOST	65-44						
3	70 H-5		_	63-	XI	26	EVD: T	65-44						
~	80 H-5		,i	-69	×I×	-26	ENGST	9-44						
395	1230 H-530	~	 -l	63-	XI -	-26	トシコフェ	65-44						
Š	240 H-5		0	63-	- IX	56	FAUST	65-44						
3	88 H-5	300E	1	63-	- 1×	26	EVDST	65-44						
	000 H-5	1	~	63-	- 1x	56	EVEST	65-44						
SUR	~	64 33.7W	•	63-	۱ X	26/63-XI	3-XII-02		BERMUDA-FLOAT		EC 0	RECOVERED		ADRIFT
401	0 H-532	_	-	63-	- 1x	26	ENUST	65-44						
402	0 H-5	p -4		63-	IX	56	EVDST	65-44						
1403	-53		7	63-	- 1×	-26	EVIDST	65-44						
1404	0 H-5	1	-	63-	- IX	56	ENDST	65-44						
SUR	2560 32 12.74	64 32.8W	4	63-	- 11X	9/90	XII -06/63-XII-10		BERMUDA-RECOVERED	COVER		ADRIFT	FT	
1411	60 H-5		 1	63-	XII-06	90	ENDST	66-60						
412	61 H-514	5	3	63-	- 1 I X	90-	EVOST	09-99						
1413				63-	~ I I X	90-	FNUST	09-99						

٠	4	4
ŀ	9	4
ŀ	Ç	H
ŀ	-	*
ŀ		ł

**************************************	**************************************	LONG.	*DAYS*	* SET *DATA	- START	RECOVERED VAXIABLES	*REPORT* 	* COMMENTS	1 1 1		# #
E 59	12 35.1N 10 H-536	70 04.8W	0	64-	11 -24/ 11 -24	64-11-25 ENDST		INSTRUMENT M	MOUNTED O	NO	OWER
UR 66	12 34.9N	70 04.8W	12	64-	11 -12/64-	64- 11-24					
SUR 49 441 442	41 41.6N 8 G-136 30 H-308	69 46.4W 1 5	₩ H 4	-49 -49 -49	1 -08/64- 1 -03 1 -03	64- 1-12 CVPST EVFST					
UB 57 51 52	41 42.6N 24 H-304 40 H-311	69 47.5W 5 5	440	64- 64- 64-	1 -08/ 1 -08 1 -08	64- [-12 EVDST FVDST					
\$U8 23 461 462 463	96 32 13.2V 60 H-514 61 H-522 560 H-518	64 36.2W 4 1 1	7777	- 49 - 49 - 49 - 49	II -16/64 II -16 II -16 II -16	64- II-18 EVDST EVDST FVDST	09-99 09-99	BERMUDA			
SUR 22	68 32 11.04 226 H-532	64 38.0W	2 =	-49	11 -25/ 11 -25	15/64- 11-27 15 - FNDST	07-99	BERMUDA			
SUR 18 SUR 20 SUR SUR 20	1800 32 15.0N 2000 32 16.0N 20 32 20.0N 2000 32 15.0N	04 38.0W 64 36.0W 64 40.0W 64 35.0W	~ ~ ~ ~	63-VI 63-VI 63-VI 63-	111-18/ 111-19/ 111-19/ XI -01/	1 CST LCST LCST LCST		ENGINEERING ENGINEERING ENGINEEPING ENGINEERING	MOORING MOORING MOORING MOORING		
UR 21	60 32 22.0N	64 03.0W	~	-+9	11 -03/	L 05 T		FNGI NEER ING	MOORING		
31 31 31 32 33 33 35 35 35 35 35 35 35 35 35 35 35	40 52 47.0N 000 H-545 00C H-549 50C H-550 75C H-546 75C H-546	35 38.0% 1 1 1 1	9 11 11 11 11 10	64- 64- 64- 64- 64- 64- 64-	1V -07/64- 1V -07 1V -07 1V -07 1V -07 1V -07	64- 1V-13 EVEST EVEST EVEST EVEST EVEST EVEST EVEST EVEST	67-66 67-66 67-66 67-66 67-65				

PORT* COMMENTS	67-65 67-65 67-66	BEZMUDA	3E RMUDA 66-60	BERMUDA 66-60	BERMUDA 66-60	8£RMUDA 66-60 66-60	MULTIPLE FLOATS	67–66 67–66	67-66
н 1 о 1 1 о 1	67.6		66.	.99	-99	66- 66-		67- 67-	-19
TART# \	1V -08 EVEST 1V -08 EVEST IV -08 EVEST	VII-16/ LPST IV -22/62- V -20 XII-15/ LEST	V -08/64- V -15 V -08 FWYST	V -10/64- V -16 V -10 FYE I	V -10/64- V -1C V -10 EUFST	V -11/64- V -14 V -11 EVPST V -11 FVEST	V -12/64- V -15	VII-21/64-VII-26 VII-21 EVUST VII-21 ENDST	VII-21/64-VII-26 VII-21 EVUST
DATA	64-	63- V 62- 1 62- V	- + 9	- 4 9	- 4 9	64- 64- 64-	-+9	64- V 64- V 64- V	64- V 64- V
* ! * !	000	29 62	7 66 6	1 6	9	E	9	4 4 2	4 9
ING B. O.W	~ ~ ~	67 50.7W UNKNOWN E. OF BDA.	64 34.1% 600	64 35.14 1	64 36.3W	64 31.8W 1	64 37.2W	67 50.0W 1200F 1200E	67 49.0W 1200F
H* INSTR. *	T T T 	36 15.2N UNKNOAN 10 MILES	32 13.1N W-125	32 14. 84 H-522	32 14.6N H-518	32 15.44 H-534 H-524	32 17.0N	23 42.0V H-533 H-538	23 50.5N H-534
	2 50 0 3 0 0 0	4577 ? 2610	2615	2140 260	2103 260	2286 494 1594	2140	5700 192 692	5790 192
2 1 SI	1541 1542 1543	5 SUR 6 SUR 7 SUR	a SUR 1581	9 SUB 1591	0 SUR 1603	SUR 1612 1614	2 SPE	3 SUR 1631 1632	164 SUR 1641

99 00				WIRE BROKE AT KINK IN LINE	CABLE PARTED DURING LAUNCH
67-66 67-66 67-65 67-65					
1-28/64-VIII-04 1-28 FYEST 1-28 ENDST 1-28 ENDST 1-28 ENDST	VII-29/64-VIII-04 VII-29 EROST VII-29 ENDSI VII-29 ENDSI	VII-29/64-VIII-05 VII-29 ENDST VII-29 EUESI	-01/64- XI-?? -01 ENDST	-01/ LGST -02/64- IX-02 -05/ LCST	15/ LOST 23/64- IX-23
1-28/ 1-28 1-28 1-28 1-28	VII-29/ VII-29 VII-29 VII-29	I -29/ I -29 I -29			-15/ -23/
>>>>>			××	XXX	
644 644 149 149 149	64- 64- 64- 64-	64- 64- 64-	64- 64-	64- 64- 64-	64-
rr094	40m	1-10-11	62	~ o ~	~ O
68 49.0w 1200E 240E 1200E 1200E	68 21.0W 1200E 1200E 1200E	67 54.0% 1200E 240E	63 57.0W 18000Ľ	63 57.0W 63 50.0W 63 49.0W	4 4 w w
28 50.0N H-534 H-524 H-539 H-538	29 11.3N H-522 H-532 H-533	29 39.5N H-518 H-549	33 59.0N W-125		2 2
5290 55 56 620 3240	5200 55 56 56	5200 55 56	4701	4664 4655 4660	1000 20 C0
SUR 1651 1652 1653 1654	S UR 1661 1662 1663	SUR 1671 1672	5 UR 1681	SUB SUR SUB	v v
165	166	167	168	169 170 171	~ ~
		- *** -	-	· · -	To Typeson To de 1988

TTUDE* LONG. *DAYS* SET /RECOVERED *REPORT* COMMENTS *	8.6N 69 56.2W ? 65- I -28/ LCST	33.2% 70 02.7W 30 65- 1 -29/65- 11-28 MOORING LOST SITE D 8 900E 14 65- 1 -29 ST ON STATION 14 DAYS,VANE STUCK	6.0% 73 40.0W 0 65- II -04/65- II-34 LINE PARTED DURING LAUNCH 0 5/3600 0 65- II -04 FYUST	9.04 70 43.0W 6 65-11-05/65-11-13 WASHED ASHURE VIMEYARD 4 1200E 5 65-11-05 ENDST 70-40	0.0N 70 00.0W 0 65- II -24/65- II-24 ACOUSTIC RELEASE FIRED ON DECK	0.7N 69 58.9W 24 65- II -28/65-III-24 2 5/900 19 65- II -28 EVDST 70-40 4 5/900 19 65- II -28 EVDST 70-40 5/1209 19 65- II -28 EVDST 70-40 STUCK COMPASS	0.0N 70 00.2W 35 65- III-23/65- IV-27 4 5/900 34 65- III-23 + 46.51 70-40 7 18000E 34 65- III-23 FNDST 70-40	18000E
LONG. *D	9 56.2W ?	02.7W 30 0E 14	3 40.0W 0 5/3600 0	ာ ဖ	00.0W	58.9W 24 5/900 19 5/900 19 5/1200 19	70 00.2W 35 5/900 34 8000E 34	.9w 168 40 22 47
ר א ן ס • ן	SUR 2584 39 18.6N	5 SUB 2561 39 23.2W 1754 2032 H-518		177 5 U3 30 41 29.04 1771 15 H-664	SUB 2594 39 20.0N	SUB 2580 39 20.7N 1791 64 H-662 1793 940 H-534 1794 1942 H-660	SUB 2602 39 20.0N 1801 144 H-284 1803 123 H-137	

•0•	TEST OF TELEMETRY SYSTEM,NO DATA BAD DIRECTIONS		TEST OF 24 METER SPAR BUDY	TEST OF 'SEA-SPIDER' MOORING	SITE D	SITE D	SITE D	SITE D COMPASS STICKY,SPEED BIASED	SITE D
		70-40 70-40 70-40		70-40		70-40 70-40 70-40	70-40 70-40 70-40 70-40		70-40
65- IV -21/ LGST	65- V -04/65- V -06 65- V -04 ENPST	65- VI -24/65-VIII-19 65- VI -24 FNDST 65- VI -24 ENDST 65- VI -24 FNDST	65- VI -24/ LCST	65-VIII-04/65-VIII-19 65-VIII-04 ENDS T	65-VIII-04/ LCST	65- X -06/65- XI-20 65- X -06 EVDST 65- X -06 ENDST 65- X -06 ENDST	65- X -06/65- XI-01 65- X -06 ENDST 7 ENDS 3 -06 ENDST 65- X -06 ENDST 7 ENDS 4 -69	65- XI -30/66- IV-21 65- XI -30' EVDST	65- XI -30/66-111-11 65- XI -30 ENDST
~	2	55 51 50	~	15	~	448 448 49	56 57 50 50	142	101 52
70 01.2W	70 02.1W 900E	70 02.5W 5/900 5/900 5/900	70 04.0W	78 40.0W 5/1800	ML.65 69	69 59.0W 600E 5/900 5/900	69 57.0W 5/900 900E 5/900	69 57.3W 1200E	70 04.0W 5/900
39 19.1N	39 21.3N H-284	39 19.6N H-664 H-284 H-137	39 20.6N	30 15.0N H-539	39 19.3N	39 20.5N W-126 H-542 H-539	39 20.0N H-545 H-137 H-548 H-548	39 20.4N W-123	39 19.3N H-304
26 10	2618 123	2600 120 514 2026	2600	803	2600	2615 7 88	2607 98 99 1001 2002	2602	2632 167
182 SUB	183 SUR 1832	184 SUB 1841 1342 1844	185 SUR	186 TRI 1861	187 5 UB	188 SUR 1881 1882 1883	189 SUB 1891 1892 1894 1894	190 SUR 1901	191 SUB 1911

# 400R ING #NO. # TYPE # DATA # NO.	E *DEPT	H*LATI H*INST	* LONG.	1010	AYS - SET - SET AYS * DATA	- START		*REPORT S*REPORT	* COMMENTS
2 B 19		38 2 H-30	70 00.5W 5/900	43	-99	1 -05/	-05/66- 11-17 -05 ENDST	71-50	SITE F
193 SUB 1932 1933 1934	2604 492 594 1997	39 19.0.v H-550 H-302 H-542	70 00.0W 5/900 5/900 900E	137 49 50 45	66- 1 66- 1 66- 1 66- 1	1 -07/66 1 -07 1 -07 1 -07	766 - VI - 24 EVDS T EVDS T ST	71-50	SITE D COMPASS, VANE BOTH STUCK
174 SUR 1941 1942 1943 1945	4491 20 50 101 200 4016	36 04.3N H-539 H-545 H-137 T-104 H-518	70 04.8W 1 900E 900E 5		1 -99 66- 1 66- 1 66- 1 66- 1	1 -18 1 -18 1 -18 1 -18 1 -18	-18/66- 11-19 -18 E4DST -18 E4DST -18 ST -18 CVDST -18 E4DST		SITE J FILM TRANSPORT PROBLEMS DIRECTION DATA UNREADABLE PROTOTYPE MAGNETIC TAPE INSTRU.
195 SUP 1951	4500	35 59.0N W-126	69 58.0W 600E	67 67	11 -99 11 -99		-18/66- IV-26 -18 ENEST	71-50	SITE J
196 Tel 1961 1962	37	41 C9.6N W-123 W-161	70 41.8W 600F •5	N W C	\lambda I -99 \lambda I -99		-15/66- 1V-17 -15 ENLST -16 ENDST	71-50	SURFACE TRIMODRING
197 SUR	5652	39 23.0N	70 02.0W	-	VI -99		-20/66- 1V-21		ABORTED MOORING, LINE PARTED
198 SUR 1981 1982	2586 6	39 22.5N W-159 H-788	69 58.0W .5/900 5/900	33 34 31	VI -99 VI -99 VI -99		-20/66- V -?3 -20 EVDST -20 EVDST	71-50 71-50	SITE D

SITE J	SITE O	SITE D VANE FOLLOWFR STUCK	SITE D	SITE D	SITE G	SITE H	SITE J SITE J	SITE D	SITE D	SITE D ROTOR,VANE HAVE PROBLEMS ONLY 9 DAYS OF SPEED DATA ROTOR,VANE HAVE PROBLEMS
71-50 71-50 71-50			71-50	71-50 71-50 71-50		71-50		71-50		
66- IV -22/66- V -18 66- IV -22 ENFGT 66- IV -22 END T 66- IV -22 INFST	66- IV -27/ ICST	66- V -18/66- V -20 66- V -18 EVNST 66- V -18 EVDST 66- V -18 EVFST	66- VI -24/66-VIII-09 66- VI -24 ENCST	66- VI -24/66-VIII-30 66- VI -24 FNDST 66- VI -24 FNDST 66- VI -24 ENDST 66- VI -24 ENDST	66- IV -22/ LOST	66- VI -27/66-VIII-13 66- VI -27 ENDST	66- IV -28/ LCST 66-VIII-11/ LCST	66-VIII-30/66- IX-)1 66-VIII-30 ENDST	1807 TUR-111A-99	66-VIII-30/66- X - 17 66-VIII-30 ENDST 66-VIII-30 ENDST 66-VIII-30 ENDST 66-VIII-30 ENDST
26 26 26	(~	2	46 46	67 25 24 25	~	44	<i>(- '-</i>	2 1	6٠	38 37 37 38
70 02.8W 5/900 5/900 5/900	M9.85 69	69 58.5W 1 1 900E	69 53.5W	69 55.0W 5/900 5/900 5/900	70 01.0W	70 00.0W 5/900	69 59.3W 70 00.7W	69 55.0W	M0°55 69	006/5 006/5 006/5
4500 35 57.0N 6 H-304 500 H-792 1000 H-137	2595 39 21.2N	2608 39 20.5N 50 H-518 150 H-284 300 H-664	2560 39 20.5N W-123	2540 39 22.3N 104 M-110 502 M-112 2004 M-113	4125 38 01.0N	4200 37 31.54 4168 H-137	4340 35 59.0N 4360 36 03.3N	2570 39 18.4N W-123	2599 38 18.0N	26C5 36 19.0N 85 M-135 487 M-138 989 M-132 2C59 M-123
199 SUR 1992 1994 1995	200 SUB	201 SUR 2013 2014 2015	202 SUR 2021	203 SUB 2031 2032 2034	204 508	205 9TM 2051	206 SUR 207 SUR	208 SUR 2081	279 SUR	210 SUB 2101 2102 2102 2103 2103

5											
211 S UR 2111 21112	3	39 19.7W W-126 M-145	WZ.95 69 006/5.	09	66-	x -04/6 × -04/6	-04/66-XII-)3 -04 ENEST -04 ENDST	71-50	BATTERY LEAKED		SITE D
N =		39 20.0N M-125 M-127 M-122 M-129	69 51.5W 5/900 5/900 5/900 5/900	600 600 600 600 600 600 600 600 600 600	666-	79/800-1 ××××	6-XII-07 FAUST ENDST ENDST FAUST	71-50 71-50 71-50 71-50	VANE LOST	0,	SITE D
213 SUR	2574	39 10.0M	70 00.0W	<i>~</i>	-99	× -07/6	-07/66-X1!-17		RECOVERED ADRIFT		SITED
214 SUR 2141	2557	39 19.9N W-163	70 01.1W	<i>c</i> 1 0	-99 66-	XII-07/66-XII XII-07	96-X11-38 EVDST		EQUIPMENT TEST	S	SITE D
215 SUB 2151	2570 120	39 17.5N M-143	70 05.0W 5/900	18	-99 66-	XII-15/6 XII-15	-15/69-VIII-G6 -15 ENDST	71-50	RECOVERED ADRI TIME BASE QUES	ADRIFT SIT QUESTIONABLE	SITE O
216 SUR 2161 2162 2163 2164 2164	2561 10 52 104 506	39 18.5N X-100 M-146 M-149 M-119	70 01.2W 600E 5/900 5/900 5/900	(10====	- 666 - 666	XII-07/66-XII- XII-07 CVNST XII-07 ENDST XII-07 ENEST XII-07 ENEST XII-07 ENEST	56-X11-39 CVNST EVDST LVNST EVPST EVPST		COMPASS BIT PR	PROBLEMS	SITE D
2 × × × × × × × × × × × × × × × × × × ×	m 0 m	37 59. 04 37 30. 08 36 04.28	70 01.0W 70 00.0W 69 54.7W	433	66- 66- 50-	XII-04/ XII-05/ XII-05/6	LCST LPST 67- II-17		ENGINEERING MO	MOORING	SITE G SITE H SITE J

T* COMMENTS *		DENMARK STPAITS NO RECOVERABLE ROTOR VALUES NO RECOVERABLE ROTOR VALUES	SITE G DENMARK STRAITS SITE J RECOVERED ADPIFT SITE M	FXPLORATORY SITE P MEASUREMENTS	DENMARK STRAITS DENMARK STRAITS DENMARK STRAITS
REPORT	74-4 74-4 74-4	74-4	74-4		
VARIABLES 		/67-111-36 ENDST ENDST ENDST ENDST	LUST LUST LUST LUST LUST ENDST	67- 11-21 ENDS T EALST EV.ST	LOST LCST LCST
- ART -26 -26	-26 -26 -26	-02/ -02 -02 -02 -02	-25/ [7 -15/ L' -17/ [7] -19/67-	-20/ -21 -21 -21	-02/ -02/ -02/
TA ST		terd bond pand pand tred and bond pand pand bred	per test test pert pert pert test test pert pert		
AYS*DAT 	67- 67- 67-	67- 67- 67- 67-	- 79 - 79 - 79 - 79	67- 67- 67- 67-	67- 67- 67-
o i	444 01-0	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	210	-000	6 C C
1 NG *	5/900 5/900 5/900	28 01.2W 5/600 5/600 5/600 5/600	28 59.3W 28 59.3W 69 53.0W 69 56.5W	57.2 10E 10E 10E	28 41.0W 28 27.0W 28 12.0W
INSTR. #	M-129 M-149 M-159	65 42.4N H-842 H-836 H-833 H-844	37 59.04 65 37.84 36 05.34 33 00.54	, 2,1,0 ,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	65 44.94 65 51.34 65 45.64
#0£P 2620 10	511 1013 2020	835 706 760 788 814	3804 365 4379 5416	5240 12 515	445 550 590
100	2204 2205 2205	221 SUB 2214 2215 2217 2217	222 BTW 223 SUP 224 SU2 225 SUR 225 SUR	1 こくらこ	228 SUP 228 SUP 229 SUP

• SC *									
30.2	w 1-	65 40.64 H-838 H-841	27 47.2W 5/600 5/600	475 400 38	67- 67- 67-		-03/67- -03 F	57-111-17 1905-1 1907-1	DENMARK STRAITS NO RECCVERABLE ROTOR VALUES ROTOR VALUES QUESTIONABLE
231 SUR 2311 2312 2313	2605 12 16	39 20.0N W-164 H-137 D-173	70 00.0W 1 2	-000	67- 67- 67-	>>>>	-27/67 -27 -27 -27	57- 1V-27 EVPST EVDST CVOSTATTE	SITE D
232 SUR 233 SUR 234 BTM 235 BTM 236 SUR	2590 2590 3829 4180 4517	39 18.9N 39 17.8N 38 01.6N 37 31.1N	70 03.0W 70 00.6W 89 59.8W 69 56.0W	~ ~ ~ ~ ~	67- 67- 67- 67-	2222	-26/ -27/ -25/ -25/	LCS1 LCS1 LCS1 LCS1 LCS1	SITE D SITE D SITE G SITE H SITE J
237 SUR 2371	5416	32 55.6N W-165	69 55.54 2	~ ~	67- 67-	>>	-21 <i>/</i> -21	L CS T FNEST	SITE W Instrument Removed After Set
238 SUR 2381 2382	5434	30 03.24 W-166 H-877	70 01.8W 3600 900	61 37 60	67- 67- 67-	1V -2 1V -2 1V -2	-22/c -22 -22	2/u7- VI-2? 2 EVT 2 EVDST	SITE P LOST BASIC DATA *SAME* DUE IN TAPE ERRORS
239 SUB 2391 2393	102 27 67	40 10.6W D-175 M-135	70 00.7W 2.5 5	σ Ο α	67- 67- 67-	1117	-17/67 -17 -17	57- VI-26 CVDSTRTTT74-4 EVDST 74-4	SHELF COMPASS+VANE PROBLEMS DIRECTIONS UNRELIABLE AFTER JUNE 21
240 SUR 2401 2402 2404	2183 14 2021	39 37.2V W-175 D-172 M-145	69 58.9W 5 2.5 5	0814	-79 -79 -79		-17/67- -17 -17 -17	57- VI-26 EVPST CV0ST0TTF ENDST	SLOPE SPEED QUESTIONABLE NOT GOOD TOO MANY ERRORS SAD COMPASS VALUES
241 5 UR 24 11 24 12	2614	39 17.7N W-164 X-660	69 58.2W	-00	67- 67-	>>>	-18/57 -18	7- VI-18 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70	SITE D 1 HOUR OF CONTINOUS GOOD DATA 1 HOUR OF CONTINOUS GOOD DATA

SITE U BASIC VERSIBN LBST	SITE UBASIC VERSION LUST	SLBPE NG USFABLE SPEED,TEMPERATURE VANF - LECTRBNIC PABBLEMS ORIFFING TIME BASE	RFLEASF FIREDBBUYANCY FAILURE SITE H SITE L MABRING ABBRYED, CABLE PARTED	SCSK 4G 21	SCOR WG 21	COMPASS, VANE NOT GOOD PAPER IN MARINE SCIENCE NUMBER 11.
7 * * † * 4 * 4 * 4 * 4 * 4 * 4	7 + + t 7 + + t 7 + + t			* * * *	* * * * *	4
/67-VIII-08 ENDS T ENDS T ENDS T	67-V111-08 ENDST ENDST ENDST ENDST	67- VI-26 CVDSTRIIT EVDST	LOST LCST LOST 67-VII-07	FVII-24 EVOST CVDST FVDST ENDST	67-V11-24 ENDS T CV DS T EV DS T CV DS T EN DS T	67-V11-24 FVDST DST ENDST FVDST
9119	20000	****	19/ 188/ 107/	1-16/6 1-15 1-15 1-15	1110	-17/6 -17 -17 -17
>>>>	>>>>>	>>>>	>>>>	>>>>>	>>>>>	>>>>>
10 60 10 10 10 10 10 10 10 10 10 10 10 10 10	**************************************	0 x x x 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7	8077 7000 7000 7000	8/7/7/ 2000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ທ ¢ ເນ ນ ວ Σ	3000	3	3333	3		3
59 55 0 900£ 900£ 900	70 07 • 6 57 90 57 90 57 90 900	70 02+7 2-5 5 5 5	70 07 67 4 67 69 57 69 57 69 57 70	69 54.8 300 300 150E	69 89 80 80 80 80 80 80 80 80 80 80 80 80 80	69 57.2 300 300 150E
Z Z E W Z Z E W Z Z E W Z Z E W Z Z Z E W Z Z Z E W Z Z Z Z	39 17.5N He K 50 Me 160	38 59.60 0-17: 3-17: M-174	38 03 11 N 34 34 34 34 34 34 34 34 34 34 34 34 34	39 1°5N Me120 He65 TSM723 He872	39 17 3N M-177 3N H-177 TF 177 TF 173	39 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5990 503 503	268 803 1488 1488 1490	2576 1014 2517	45 41 41 84 84 84 86 86 86 86 86 86 86 86 86 86 86 86 86	2600 478 486 515	0.55 0.54 0.09 0.09 0.00 0.00 0.00	25 25 25 25 25 25 25 25 25 25 25 25 25 2
2 5 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000 000000	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	251 SUB 2511 2512 2512 2514 2515

252 5UB 2521	2582 109	39 22.14 X-660	70 01.9W 1	6 4	67-VIII-08/57-VIII-16 67-VIII-08 CVDST	NO USEARLE	DATA	SITE L
253 SUR 2531 2532	2582	39 21.9N W-164 H-137	70 02.2W 1 1	8	67-VIII-08/67-VIII-16 67-VIII-08 EVDST 67-VIII-08 ENCST	SHORT BUT SHORT BUT	6000 6000	SITE D
254 S UB 2542 2543 2543 2544 2544	2620 106 97 101 105	39 21.0N D-172 H-868 H-878 H-873	70 03.4W 900F 5 5 900F	10011	67- X -03/67- X -10 67- X -03 TTTT 67- X -03 EVDST 67- X -03 EVDST 67- X -03 EVDST 67- X -03	4-47	S	STTF D
255 SUR 256 SUR	2630 5364	39 18.2N 34 04.0N	70 03.7W 69 56.1W	54	67- X -06/67- X -07 67-VIII-11/67- X -04	ENGINFERING ENGINEERING	MGOPING MOORING	SITE D SITE L
257 SUR 2571 2572	91	42 59.64 W-173 H-137	70 25.9W	400	67- VII-28/67-VII-2° 67- VII-28 ENDST 67- VII-28 ENDST	FOR VICE-	-PRESIDENT	HUMPHRY
259 SUK	5569	39 19.7W	70 00.8W	-	61- x -08/67- x -76	ENGINEER ING	MCORING	SITE D
259 SUR 2592	2600	39 19.7N H-878	70 01.3W	rv O	67- XII-07/ 7-XII-12 67- XII-10 ENEST	TIME SERIE	IES IN 8 PIECE	п S
260 SUR 2602 2603	2614 12 516	39 16.8N H-873 X-660	70 00.1W	000	67- XII-08/57-XII-10 67- XII-08 EVDST 67- XII-08 CVDST	SHORT BUT	BUT GOND MODIFIED	SITE D
261 SUR	2575	39 16.3N	70 01.4W	(67- XII-10/67-XII-11	ENGINEER	ENGINEERING MOORING S	SITED

LONG. *DAYS* SET	AMPLING *DAYS*DATA START* VARIABLES*REPORT* C	10.2N 70 02.1W 1 68- II -24/68- II-24 TEST OF BACK-UP RECOVERY SYSTEM 08.2N 69 58.8W 51 68- IV -19/68- VI-10 2 MONTH TEST OF NYLON MOORING	09.3N 70 01X 72	11.4N 69 56.7W 52 68- IV -24/68- VI-15 -877 900 51 68- IV -24 ENDST 74-52	09.2N 70 03.3W 2 68- VI -08/68- VI-10	11.4N 70 04.2% 75 68- VI -09/68-VIII-23 COMPASS STICKY,NU ROTOR VALUES 170 5/900 47 68- VI -09 ENDST	09.7N 69 51.7W 104 68- VI -14/68- IX-26 175 5/1800 103 68- VI -14 FNDST 74-52	6N 70 01.6W 69 68- VI -15/68-VIII-23 5/900 47 68- VI -15 FVDST 5/900 23 68- VI -15 EVDST	.0N 69 54.6W 5 68- IV -19/68- IV-24	08.3N 70 02.4W 6 68-VIII-14/68-VIII-20 ENGINEERING MOORING SITE D SHORT BUT GOOD 5 68-VIII-14 ENDST
L ONG	SAMPLIN			69 56 • 900			69 51. 5/18			
2	*DEPTH*INSTR*	39 10.2N 39 08.2N	39 09.3N W-101X M-172	39 11.4N H-877	39			39 ¥-1	39 07.0N	39 08.3N
 :*DEPTH	+DEPTH	2680	2680	26 7 0 2576	2710	2663	2658 2558	2679	2730	2683
*MOOR ING *NO. * TYP E	*DATA		SUR 2641	265 BTM 2651	266 SUR	267 SUR	268 BTM 2681	269 SUR 2691 2693) <u>(</u> C	

*MGORING *NG* *TYP *DATA * NG*	E & DEPTH*LA 	TITUDE	LONG.	DAYS DAYS	* SET /RECOVERED *DATA START* VASIABLES	*REPORT*	* COMMENTS
20000	39 W12 W12 M-1	09 • 1 \\ 5 - \times \\ 177 \\ 124 \\ 122 \\ 122 \\	40	72477		74-52 74-52 74-52 74-52	CURRENT AND TEMPERATURE SHEAR NO ROTOR VALUES
273 SUR 2735	2794 39 519 M-1	06.3N 59	70 02.6 W 5		68-VIII-20/08-VIII-21 68-VIII-20 EVDST		TEST OF ENGINEERING INSTRUMENTS COMPASS PROBLEMS
274 SUR. 2742 2743 2743	2685 39 14 M-1 54 M-1 105 M-1	10.24 72 73 35	70 04.2W 5/900 5/900 5/900	4 4 4 4 4 1 1 1 1	68-VIII-22/68- X -02 68-VIII-22 FYPST 7 68-VIII-22 ENLST 7 68-VIII-22 ENLST 7	74-52 74-52 74-52	SITE D
275 SUR 2751	2677 39 W-1	09.5N 74	70 01.3W 900F	35 34	68-VIII-24/68- IX-27 68-VIII-24 ENDST 7.	74-52	ENGINEERING WIRE TEST
276 SUR 277 SUB 278 SUR	1812 39 2600 39 2675 39	52.3N 08.2N C8.6N	69 12.8W 70 02.9W 69 39.3W	80 80 4 4 4	68-VIII-25/68- XI-16 68- IX -26/68- IX-30 68- IX -26/68- IX-28		FOR *ALVIN* INSPECTION-ALVIN LOST TO TEST POSITIONING ABILITY ENGINEERING MOORING
279 SUR 2791	2685 39 H-1	08.8N 01X	70 01.5W 5/900	31 63	68- X -01/68-XII-11 68- X -01 EUDST 7	4-52	TEST OF COMPOUND MOORING ANEMOMETER BLEW AWAY
230 SUR 2801 2803 2804 2805	2685 39 W-1. 12 M-1 53 M-1 104 M-1	10.0N 25X 22 42 59	70 02.8W 5/900 5/900 5/900 5/900	70 48 57 64 63	68- X -02/68-X11-11 68- X -02 ENDST 7. 68- X -02 ENDST 7. 68- X -02 ENDST 7. 68- X -02 ENDST 7.	74-52 74-52 74-52	SITE D COMPASS STUCK
281 SUR 282 SUR	1374 39 1610 33	53. óid 50.8V	69 13.6W	31	68- X -23/69- XI-22 68- X -23/69- XI-22		RANGE AND BEARING MARKERS FOR 'ALVIN' RECOVERY
283 SUB 2833 2836 2836	2675 39 501 M-1 521 M-1 531 M-1	10.2v 77 95 96	70 04.6% 5 5	ထထထတ	68- XII-10/68-XII-18 68- XII-10 ENDST 68- XII-10 ENDST 68- XII-10 ENDST	74-52	CURRENT SHEAR EXPERIMENT COMPASS STUCK, VANE STICKY

SITE D	TEST OF ENGINEERING INSTRUMENTS SHORT BUT GOOD	DRIFTINGSIGHTED APRIL 69	SITE D	SITE D
74-52			74-52	
68- XII-19/69- IV-17 68- XII-19 ENDST 68- XII-19 ENDST	68- XII-18/68-XII-19 68- XII-16 E'105I	68- XII-19/ LCST	68- XII-19/69- VI-J2 68- XII-19 ENDST	68- XII-19/69- IV-17
68- 68-	68- 68-	-89	68- 68-	68-
70 03.6W 120 5/1800119 5 81	70 03.0W 1 5	70 04.0W ?	70 02.1W 171 5/1800 42	70 00.5W 120
2690 39 09.8N 12 M-173 54 M-145	2670 39 10.54 515 M-170	2674 39 12.2V	2680 39 10.7N 2580 M-175	2678 39 09.4N
284 SUR 2842 2843	285 SUR 2852	286 SUR	287 BTM 2871	298 SUR

PORT* CCMMENTS ** PORT* COMMENTS ** PORT* COMMENTS **	MEDITERRANIAN SEA TO MEASURE VERTICAL DISTR OF INERTIAL DISTURBANCES (SOUTH SIDE OF AN ENCLOSED	ING MOORING SI	SYNTATIC FOAM FLUA! 153! 76-40 PROGRESSIVE ROTOR FAILURE	RECOVERED- MOORING ADRIFT RESET AS MOORING 296	SITE D	TO MEASURE CURRENT SHEAR 76-40 CRYSTAL (NOT MECHANICAL) CLOCK 76-40 COMPASS, VANE MISSING BITS 76-40 76-40 76-40
R.COVERED *RE VARIABLES*RE	69-111-12 FNDST 76-40 ENDST 76-40 FNDST 76-40 ENDST 76-40	.69- IV-24 ENDST 76- ENDST 76-	769- 1V-24 ENDS T ENDS T	769- IV-18 EVDST ENDST ENDST EVDST	-16/69- 14-23	69- 1V-26 ENDST ENDST ENDST ENDST FNDST FNDST 7
S* SET // S*DATA START*	69- 1 -22/ 69- 1 -22 69- 1 -22 69- 1 -22 69- 1 -22 69- 1 -22	69- 1V -16 69- 1V -16 1 69- 1V -16	8 69- IV -16/ 7 69- IV -16 8 69- IV -16	2 69- IV -16/ 2 69- IV -16 2 69- IV -16 2 69- IV -16 2 69- IV -16	4 9ز- ۱۸ –19	9 69- IV -17 8 69- IV -17 8 69- IV -17 1 69- IV -17 8 69- IV -17
LONG. *DAY		70 02.54 8 5 8 5 8	70 02.5W 8 5 7 5 8	69 56.5W 2 5/1800 2 5/1800 2 5/1800 2 5/1800 2	2.6W	70 00.0W 5.27/900 5.27/900
H*LATITUDE*		39 10.9N M-151 M-198	39 08.7N M-209 M-211	39 08.4N M-210 M-214 M-213 M-203	39 (5	39 10. M-142 M-122 M-204 M-159
DEP DEP	2833 211 713 1215 1717 2219	2682 16 521	2682 2581 2670		767	267 151 151 153 153
*MOORING *NO.*TYPE *DATA * NO. *	289 SUB 2892 2893 2894 2894 2895	0 6 0 6 0 6	291 BTM 2911 2912	N 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	r a	29462 29462 29462 29462 29463

ENGINEERING MOORING SITE D	LINE DAMAGED WHILE SETTING 297 RESET AS MOORING 299	MOORING 297 DRIFTED ACROSS 296 WHILE IT WAS BEING SET 4 MONTH WIRE TEST SITE D	RECOVERED ADRIFT SITE O	4 MONTH WIRE TEST SITE D	ENGINEERING INSTRUMENT TEST	4 MONTH BOTTOM MOORING *D*	TEST OF GLASS BALL BUOY
		76-40	76-40 76-40 76-40 76-40		76-41 76-41	76-41	
-23/69- 1V-26	-24/69- 1V-25 -24 ENDST -24 EYFST -24 FNDST -24 FNDST	-25/69- 1V-76 -26/69-VIII-12 -25 ENDST -25 ENDST	-29/69- V -15 -28 FVDST -28 ENDST -28 ENDST -28 FNDST	-29/69-v11!-12	-07/69- VI-11 -07 ENDS I -07 ENDS I	-07/69- X -11 -07 ENPST	6C-IA -69/80-
>	>>>>	> >>>	>>>>>	1	>>>	\ 1 \	I >
-69	-69 -69 -69	-69 -69 -69	69- 69- 69- 69-	-69	-69 -69 -69	-69 -69	-69
9	00000	1 108 109 110	16 30 30 30 29	105	444	126 125	-
70 04.3W	70 01.8W 5/900 5/900 5/900 5/900	70 01.8W 69 59.0W 5/1800 5/1800	70 03.6W 5/900 5/900 5/900 5/900	70 01.2W	69 56.0W 5 5	69 59.5W 5/1800	70 03.2 W
39 10.1N	39 10.5N M-213 M-214 M-203 M-210	39 10.3N 39 09.1N W-125X M-205	39 09.0N M-203 M-214 M-213 M-213	N9. 60 6E	39 09.9N W-169X M-198	39 05.9N M-159	39 07.6N
2690	2674 13 51 167 2310	2672 2675 14	2696 13 51 107 2372	2680	2680	2685 2586	2692
295 BTM	296 SUR 2961 2962 2965 2965	297 SUR 298 SUR 2981 2983	299 SUR 2991 2992 2995 2296	300 SUR	301 SUR 3011 3014	302 BTM 3021	303 B TM

COMMENTS	NTS UNDER GULF STREAM	NTS UNDER GULF STREAM	NTS UNDER GULF STREAM	NTS UNDER GULF STREAM ED RECORDING MODES AFTER	YS OF TORQUE BALANCED WIRE TIC ROTOR FAILURE	SITE D	SITE 0	TOP 50M STOLEN SEPT. 11 ROTOR VALUES MOSTLY ZEROS	STREAM BOTTOM MOORING
	CURRENTS	CURRENTS	CURRENTS	CURRENTS CHANGED	16 DAYS TEST OF T SPORATIC			TOP SO	SULF S
	76-41	76-41				76-41	76-41 76-41 76-41 76-41	76-41	
ECOVERE VAR I A BL	-12/69-VIII-14 -12 ENDST	-12/69-VIII-14 -12 ENDST	-12/69-VIII-14	69-VIII-14 EVDST	-13/69- X -11 -13 FNDST	-13/69-VIII-11 -13 FVDST -13 ENDST -13 FNDST -13 FNDST	70- 1 -04 ENCST ENCST ENDST ENDST	69- X -30 F4PST ENDST E4DST	69-VIII-13/69-VIII-13 69-VIII-13 FNDST
- START	VI -12, VI -12	VI -12, VI -12	VI -12/	VI -12/69- VI -12	VI -13/ VI -13	VI -13/ VI -13 VI -13 VI -13 VI -13	9-VIII-10/70 9-VIII-10 9-VIII-10 9-VIII-10	9-VIII-10/69- X 9-VIII-10 FUP 9-VIII-11 END 9-VIII-11 EVD	11-13/
AYS* SET AYS*DATA	-69	7 -69	۸ -69	N −69	N -69	\ \ -69 \ \ -69 \ \ -69	111A-69 111A-69 111A-69	69-VIII-10/ 69-VIII-10 69-VIII-11 69-VIII-11	I 1 1 - 6 9
DAYS	62	62 62	62	62 16	120 85	60 50 50 50 50 50 50 50 50 50 50 50 50 50	147 36 62 1118	56 58 57	0
E* LONG.	9 ~	70 00.3W 5/1800	70 00.0W	70 01.0W 5/1800	69 52.9W 5/1800	70 00.2W 5/900 5/900 5/900	70 02.2W 5.27/1800 5/1800 5/1800 5/1800	70 04.9W 5/1800 5/1800 5.27/1800	70 00.0W
H*LATITUD	36 23.4N M-122	36 43.0N M-127	37 00.0N	37 20.0N M-209	39 09.6N M-170	39 09.0N W-101X M-203 M-214 M-213	39 10.0V M-142 M-175 M-215 M-204	39 11.2v M-191 M-206 M-220	37 55.4N M-129
1212	4486	4426 4227	4368	4281 4084	2682 15	2678 13 56 108	2683 200 532 1044 2066	2685 56 108 210	4088 3988
*MOORING *NO. * TYPE * DATA * NO.	304 BTM 3041	305 BTM 3051	306 BTM	307 9 TM 30 7 1	308 SUR 3082	309 SUR 3091 3093 3095 3096	310 SUB 3101 3102 3103 3103	311 SUR 3115 3116 3116	312 BTM 3121

TELEMETRY TEST AT SITE L	2 MONTH WIRE TEST AT SITE L	VTHS	SITE D	SITE D BAD VANE VALUES	MODRING DYNAMICS TEST 'L'	2 MONTH WIRE ROPE EVALUATION	SEWER OUTFALL-FALMOUTH
	76-41 76-41		76-41 76-41 76-41 76-41 76-41	76-41			
69-VIII-17/69-VIII-19	69-VIII-18/69- X -08 69-VIII-18 FNDS! 69-VIII-18 FNDST 69-VIII-18/69- X -08	- X -04/70- 1 -)4	X -06/70- 1 -75 X -06 ENDST X -06 ENDST X -06 ENDST X -06 ENDST X -06 ENDST	- X -06/70- 1 -0% - X -06 EVDST - X -06 EVDST	- X -07/09- X -00	- x -10770-111-32	- XI -26/69-XII-10 - XI -26 ENFST
2 69	51 69 51 69 51 69 51 69	-69 76	91 69- 56 69- 62 69- 59 69- 58 69- 58 69-	92 69- 59 69- 63 59-	2 69- 2 69-	3 69-	4 69- 4 59-
70 02.5W	70 02.0W 5 5/900 5 5/900 5 65 58.3W 5	70 01.9W 9	70 02.8W 9 5.27/900 5 5.27/900 5 5.27/900 5	70 02.8W 9 5.27/900 5 5.27/900 6	70 01.0W	70 04.0W 143	70 39.0W 14 5.27/225 14
5368 33 59.2N	5368 34 02.7N W-169X 14 M-198 5368 34 01.0N	2692 39 06.3N	2681 39 12.0N W-101X 13 M-122 53 M-212 1G5 M-213 207 M-203	2545 39 19.7N 12 M-209 104 M-127	5370 33 58.0v 14 M-210	5370 34 01.0N	27 41 30.4N 10 M-220
313 SUR	314 SUR 3141 3143 315 SUR	316 SUR	317 SUR 3171 3173 3174 3174 3175	318 SUR 3181 3183	319 SUR 3193	320 SUR	321 SU6 3211

MOORI NO. + T + OA + OA	ш	TITU	LONG.	*DAYS*	SET SATA	/ / / / START*	RECOVERED 	*REPORT*	* COMMENTS
322 SUR 3221 3222	2690	39 07.8N W-169X M-191	69 57.5W 5.27/900 5/900	55 61 56	70-	40- I 70- I 70- I	70- 11-28 ENDST ENDST		LOST LOWER PART OF MOORING BAD VANE VALUES ROTOR FAILS AFTER 3 DAYS
323 SUR 3233 3234 3234 3236	5365 515 1017 2020 4205	33 58.5V M-232 M-226 M-206 M-227	69 58.5W 5/1800 5/1800 5/1800	125 86 125 85 126	70- 70- 70- 10-	1 -08/70 1 -08 1 -08 1 -08	70- V -13 ENDST ENDST ENDST ENDST	77-18 77-18 77-18 77-18	BUOY FREE, MOORING SANK-MARCH NO DATA ON CHANNEL B DATA ON ONE CHANNEL ONLY
324 SUB 325 SUB	2921 2921	31 50.0N 31 50.0N	65 15.0W 65 15.0W		I A-69	11-15/ 11-15/	69-VIII-15/69-VIII-16 69-VIII-15/69-VIII-16		ANCHOR DROP EXPERIMENT ANCHOR OROP EXPERIMENT
326 BTM 3261 3262	4128 3990 4102	37 37.0N M-142 M-207	70 33.0W 5.27/1800 5/1800	130 131 129	70- 11 70- 11 70- 11		-28/70-V11-08 -27 EVDST -28 EVDST	77-18	NORTH/SOUTH BOTTOM ARRAY VANE STUCK
327 BTM 3272	4417 4209	36 46.0N M-129	69 59.0W 5.27/1800	130 130	70- I 70- I	I -28/ I -27	-28/70-VII-08 -27 ENDST	77-18	NORTH/SOUTH BOTTOM ARRAY
328 RT4 3281	5356 4210	31 01.0N M-127	69 31.0W 5.27/1800	124 103	70- 1	11-03/	111-03/70-V11-05 111-01 ENDST		NORTH/SOUTH BOTTOM ARRAY VANE STUCK
329 STM 3291	5424 4209	31 00.0N M-223	70 29.0W 5/1800	124 124	70- 1	11-03/	III-03/70-VII-05 III-03 ENDST	77-18	NORTH/SOUTH BOTTOM ARRAY
330 BTM 3302	5464 4205	28 00.0N M-225	69 57.0W 5/1800	122	70- 1	11-04/ 11-04	III-04/70-VII-34 III-04 ENDSI		NORTH/SOUTH BOTTOM ARRAY VANE STUCK
331 BTM 3311 3312	477 225 427	11 32.2N M-204 M-209	61 54.2W 5/900 5.27/900	37	70- 170- 170- 170- 170- 170- 170- 170- 1	III-12/70-1V III-18 END III-12 END	70-1 V-13 ENDST ENDST	77-18	CARIBBEAN INFLOW STUDIES

* 1 * 1	S R WG 21	R WG 21	R WG 21	R WG 21
1	INFLOW STUDIES SCOR	SCOR	SCOR	SCOR
NIS				
COMME	CARIBBEAN			
REPORT :*REPORT*	77 ****** 71-13 113	* * * * * * *	* * * * *	4 X 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
/RECOVERED * VARIABLES	70- 1V-13	0- IV-02 ENDSTI ENDST ENDST ENDST ENDST ENDST	0- IV-02 ENDST ENDST ENDST ENDST CVDST	70- 1V-03 ENDST CVDST ENDST ENDST ENDST ENDST
START	111-12/7 111-22 111-20/7 111-20/7 111-20 111-20 111-20 111-20 111-20	111-20/7 111-20 111-20 111-20 111-20 111-20	111-21/7 111-21 111-21 111-21 111-21	
* S *DAT	70- 70- 70- 70- 70- 70- 70-	1007	00000	1001
*DAYS	337 36 112 122 122 122 123	400mm2001	44 122 122 123 124	122233
E* LONG. SAMPLING	61 54.2W 5.27/900 5.27/900 32 50.1W 900 900 900 900 900	32 55.7W 900 900 900 900 900 900	32 44.2W 900 900 900 900 5.27/900	32 46.1W 900 5.27/900 900 900 900
DEPTH*LATITUDE* OEPTH*INS!R** S	11 39.0N M-122 M-215 16 36.9N B-155 A-941 LSK M-203 A-8303 P-536	16 30.2N P-532 A-3267 B-124 A-3323 B-153 A-9434	16 35.6N LSK-10 A-9071 A-4242 B-156 M-213	16 29.0N A-8352 M-212 LSK-8 A-8348 P-534
* * !	675 423 625 5180 50 192 195 200 996	5190 46 50 196 200 992 992 996	4990 46 50 200 204 1003	5170 50 53 196 200 204 1000
*NG. * TYPE *DATA * NG.	332 BTM 3321 3322 AK1 SUR AK11 AK13 AK13 AK14 AK15 AK15	AK2 SUR AK21 AK22 AK23 AK24 AK24 AK25	AK3 SUR AK31 AK32 AK32 AK34 AK34	AK 4 SCR AK 4 11 AK 4 4 11 AK 4 4 4 12 AK 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

FOR ACGUSTIC PROPAGATION TEST GOND DATA SITE L	FOR ACOUSTIC PROPAGATION TEST TRANSPONDER TEST FOR W.H.O.I. ASSOCIATES	ARRAY WITH 339,340 SITE ()	ARRAY WITH 338,340 SITE D	ARRAY WITH 338, 339 SITE D
77-18 77-18 77-18	77-18	75-7 7-27 7-27 7-27	75-7 75-7 75-7 75-7 75-7	75-7 7-87 7-87 7-87 7-87
7/70- 1V-16 7 ENDS T 4/70-VII-06 3 ENDS T 13 ENDS T 13 ENDS T 13 ENDS T	70-VII-02 ENDST ENDST FVDST 770-XII-02 770- VI-14	FVO-VIII-IT EVDST ENDST FVDST EVDST EVDST EVDST	FNDST ENDST ENDST ENDST ENDST ENDST ENDST ENDST	FNDST FNDST FNDST FNDST FNCST FNCST FNCST FNCST FNCST FNCST
	V -17/ V -16 V -17 V -14/ I -18/	VI -27 VI -27 VI -27 VI -27 VI -27	VI -28 VI -27 VI -27 VI -27 VI -25 VI -25	VI -27 VI -27 VI -27 VI -27 VI -27 VI -27
70- 1 70- 1 70- 1 70-	70- 70- 70- 70- 70- v	70-7 70-7 70-07 70-07 70-07	200- 200- 200- 200- 200- 200- 200- 200-	> -07 > 07 > 07
00 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	46 46 46 208	55 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22222 22222 232222	
64 11.6W 5/900 69 56.0W 5.27/900 5.27/900	64 07.5W 5.27/900 5.27/900 69 56.5W 70 46.0W	69 55.5W 5.27/900 5.27/900 5.27/900 5.27/900	70 02.3W 5.27/900 5.27/900 5.27/900 5.27/900	70 35.2W 5.27/900 5.27/900 5.27/900 5.27/900 5.27/900
32 04.8N M-175 33 58.0N M-238 M-122 M-191 M-240	32 08.0N M-175 M-215 33 58.5W 41 26.0N	39 34.5N W-169X M-226 M-212 M-173 M-203	39 07.6N W-143X M-249 M-227 M-225 M-177 M-206	39 07.5N W-101X M-205 M-248 M-170 M-248 M-248
4384 3877 5270 1017 2019 4326	4400 1312 2346 5370 26	2322 12 12 12 12 12 167	2682 112 32 72 72 2545	2754 12 32 52 72 2620
333 BTM 334 SUR 3342 3344 3345	335 INT 3351 3354 336 STM 337 SUR	338 SUR 3381 3383 3385 3385	339 SUR 3391 3393 3394 3395 3395	340 SUR 3401 3402 3403 3404 3406

1 * 1 * 1		F STREAM		EAM			m	ш		
1 1	DACRON	CORR. ACROSS GULF	E EVALUATION	CORR. ACROSS GULF STREAM	ACROSS SLOPE E	ACROSS SLOPE	ES ON THE SLOPE	ES ON THE SLOPE CALLY STUCK	ES ON SLOPE	ACROSS SLOPE
COMMENTS	TEST OF JACKETED RFCOVERED ADRIFT	L.F. WAVE COI	WIRE, HARDWARE	WAVE CORR. A	WAVE MOTION ACROSS BAD TIME BASE	WAVE MOTION ACROSS	INTERNAL WAVES	INTERNAL WAVES ON VANE MECHANICALLY	INTERNAL WAVES	WAVE MOTION ACROSS
REPORT*		77-18 77-18		77-18		77-18	77-18	77-18	77-18	77-18
/RECOVERED *REPORT*	-30/70-vIII-14 -30/70-vII -05	-13/70- X -08 -13 ENDST -07 ENDST	70- X-09	/70- X -06 ENDST	770-X11-11 ENDST	/70-×11-34 FNDST	770- X -36. FYEST TYDST	70- X -06 FNDST FNDST ENDST ENDST	770-X11-04 ENDST FNFST	/70-x11-11 ENDST
* SET /!	70- VI -30, 70- VI -30,	70-VIII-13 70-VIII-13 70-VIII-07	70-VIII-14/70-	70-VIII-18/70- X -06 70-VIII-18 ENUST	70-VIII-18/70-XII-11 70-VIII-07 ENDST	70-VIII-19/70-XII-)4 70-VIII-07 ENDST	70-VIII-19/70- X -0/ 70-VIII-07 FYEST 70-VIII-19 FYDST	70-VIII-19/70- X 70-VIII-07 FNBS 70-VIII-19 ENDS 70-VIII-19 ENDS	70-VIII-19/70-XII-04 70-VIII-19 ENDST 70-VIII-19 ENDST	70-VIII-19/70-XII-11 70-VIII-19 ENRST
DAYS DAYS	4 ~	6 4 8 6 2 3	28	51 49	115	107	4 6 6 8 8 8	4 4 6 4 8 4 0 7 8	107 72 89	114
* LONG. *	70 01.0W 70 02.5W	70 33.0W 5.27/900 5.27/900	WC . 63 69	70 58.6W 5.27/900	70 58.0W 5.27/1800	70 40.5W 5.27/1800	70 57.0W 5.27/900 5.27/900	70 56.2W 5.27/900 5.27/900 5.27/900	70 56.0W 5.27/1800 5.27/1800	71 15.0W 5.27/1800
EP TH*LATITUDE	34 01.0N	35 58.0N M-151 M-240	33 59.24	39 28.54 M-122	39 35.5N M-251	39 50.2N M-238	39 50.24 M-142 M-191	39 50.64 M-175 M-145 M-129	39 49.6N M-223 M-234	39 36.6N M-215
12121	5365 5363	4444 2263 4115	5365	2527 1504	2263 2163	876 776	977 975 982	943 846 933 941	993 888 9 90	2150
**************************************	341 SUR 342 SUR	343 INT 3432 3434	344 SUR	345 INT 3451	346 BTM 3461	347 BTM 3471	348 BIM 3481 3482	349 BTM 3491 3492 3493	350 BTM 3501 3502	351 3 FW 3511

GULF STREAM	GULF STREAM	I TEST ENT, NO ROTOR		SITE J	SITE D
WAVE CORR. ACROSS GULF STREAM	WAVE CORR. ACROSS GULF STREAM	6 MONTH CORROSION TEST WATER IN INSTRUMENT, NO	FISHBITE TEST WIRE TEST	ARRAY WITH 358 COMPASS STUCK	ARRAY WITH 357 DIRFCTIONS BAD TIME BASE BAD
77-18	77-18			77-18	77-18
X -06/70-XII-11 X -06 ENDST	X -08/70-XII-00 X -08 ENDST	X -09/71- V -74 X -09 EVRST	X -09/70-XII-07 XII-08/ LCST	XII-09/71- V -96 XII-09 FNDST XII-09 ENDST XII-09 ENDST	XII-11/71- 1V-27 XII-11 ENDST XII-11 ENDST XII-11 ENDST
70-	70-	70-	70-	70- 70- 70-	70- 70- 70-
47	62 59	207 128	53	148 148 148 148	137 138 77 138
71 01.4W 5.27/900	70 35.0W 5.27/900	69 59.2W 5.27/3600	69 54.5W 70 12.0W	70 36.8W 5.27/1800 5.27/1800 5.27/1800	70 03.0W 5.27/1800 5.27/1800 5.27/1800
39 23.3N M-213	35 58.0N M-206	34 02 5.4 M-255	34 02.3N 33 48.0N	35 58.9V M-226 M-212 M-227	39 07.4N M-204 M-240 M-205
2509	4436	53 6 8 5284	5361 5374	4425 2056 3066 4047	2680 1466 1976 2495
352 BTM 3521	353 RTM 3531	354 BTM 3541	355 SUR 356 SUR	357 INT 3571 3574 3574	358 INT 3581 3584 3584

T* COMMENTS	GULF STREAM ARRAY VANE BIT PROBLEMS	GULF STREAM ARRAY 2 MONTHS WITH NO SPEEDS	NYLON PARTED NYLON PARTEO GULF STREAM,CM CASE CRUSHED	GULF STREAM ARRAY	GULF STREAM ARRAY ROTOR FAILS DEC 29 INSTRUMENT SHORTED OUT FEB 16	GULF STRFAM ARRAY GULF STREAM ARRAY	GULF STREAM ARRAY
R E POR		77-18 77-18		77-18			77-18
DAYS* SET /RECOVERED *REPORT* DAYS*DATA START* VARIABLES*REPORT*	XII-12/71- IV-30 XII-12 ENDST	XII-13/71- V -03 XII-12 ENDST XII-12 ENDST	XII-14/70-XII-14 XII-14/70-XII-14 XII-14/71- V -08	XII-14/71- V -07 XII-14 ENDST	XII-15/71- V -07 XII-19 EVEST II -12 ENUST	XII-15/71- VI-06 XII-16/ LEST	XII-16/71- V -08 XII-16 ENDST
* SET *DATA S1	70-	70-	70- 70- 76-	70-	70- 70- 71-	70-	70-
DAYS *DAYS*	139 139	141 141 142	0 0 145	144 148	143 123 31	142	143
* LONG.	71 52.0W 5.27/1800	71 15.0W 5.27/1800 5.27/1800	69 27.0W 69 24.0W 68 18.7W	67 53.2W 5.27/1800	69 10.5W 5.27/1800 5.27/1800	70 17.0W 70 42.0W	69 27.5W 5.27/1800
*DEPTH*LATITUDE *OEPTH*INSTR.*	37 16.0N M-122	36 23.0N M-191 M-203	37 59.5N 38 02.0N 38 23.8N	36 57.5W M-249	36 58.8N M-172 M-175	36 45.0N 37 40.0N	37 57.6N M-127
	3528 3325	4230 3697 4C19	3950 3940 4117	4915	4465 3933 4255	4371 3995	3955 3750
*MOOR ING *NO.* TYPE *DATA * NO.	359 BTM 3591	360 BTM 3601 3602	361 8TM 362 8TM 363 9TM	364 BTM 3641	365 BTM 3651 3652	366 BTM 357 BTM	368 BTM 3681

THE THE CONTROL OF TH

**************************************	E*0EPTH *0EPTH	E*DEPTH*LATITUDE* 	LONG. *	DAYS*	AYS* SET	T / I	AYS* SET /RECOVERED *REPORT* COMMENTS AYS*DATA START* VARIABLES*REPORT* COMMENTS	RED *REPORT* BLES*REPORT*	* COMMENTS
369 BTM 3691 3692	5817 5616 5801	22 48.2N M-259 M-260	66 28.8W 5.27/1800 5.27/1800	122 122 122	71- 71- 71-	1 -21/1 -21	-21/71- V -23 -21 ENDST -21 ENDST		ANTILLES RIDGE CORROSION CAUSED ROTOR FAILURE ROTOR MISSING 22 DAYS IN MIDDLE
370 BTM 3701 3702	5402 5201 5386	22 14.6N M-129 M-173	67 18.3W 5.27/1800 5.27/1800	121 87 121	71-71-71-	1 -22/ 1 -23 1 -23	-22/11- V -23 -23 ENDST -22 ENDST	77-56	ANTILLES RIDGE SHORT-TAPE ADVANCE PROBLEMS VANE STICKY
371 9TM 3711	5325 5309	21 16.0N M-257	68 01.0W 5.27/1800	118	71-	1 -24/	-24/71- V -2? -24 ENDST		ANTILLES RIDGE ROTOR FAILS AFTER 7 DAYS
372 BTM	1 00	00 22.45	160 01.8W	ć.	71- 1	1V -08/ LUST	. Lust		EQUATORIAL UNDERCURRENT
373 SUR 3731 3732 3733	4441 17, 102 2004	1 03.5N M-215 M-206 M-177	50 31.7W 5.27/1800 5.27/1800 5.27/1800	162 116 91 142	-17 -17 -17	1V -13/ 1V -12 1V -12 1V -12	-13/71- XI-22 -12 FNDST -12 ENDST -12 ENDST		TOROID DRIFTED, MODRING SANK MAY NO ROTOR, RETURNED BY JAPANESE DATA ON CHANNEL A CNLY NO ROTOR
374 SUR	4451	00 01.1N	149 55.1W	7	71-	/91- NI	IV -16/71- 1V-23		EQUATORI AL UNDERCURRENT
375 SUR 3752	4647	1 03.5S M-142	50 01.7W 5.27/1800	155	71-	18 -18/	IV -18/71- 1X-20 IV -30 FNDST	77-56	EQUATORIAL UNDERCURRENT
376 BTM	2423	01 06.1N	150 00.9W	ć- -	71-	IV -25/ LCST	, LCST		EQUATORIAL UNDERCURRENT

REPORT COMME!·: * * * * * * * * * * * * * * * * * * *	FVALUATION OF V.A.C.M. 77-56 VECTOR AVERAGING CURRENT METER 77-56 MODIFIED TO INCLUDE TEMPERATURE 77-56	7-56 7-56 7-56 7-56 7-56 7-56	7-56 7-56 1-56 INSTRUMENT MOORED UPSIDE DOWN 7-56 7-55	ENGINEERING MOORING-GULF STREAM 77-56 NO ROTOR 77-56	ENGINEERING MODRING-SITE L	WATER IN CASE, NO ROTOR 7-56 7-56	UNDER GULF STREAM
ET / LECOVERED A START* VARIABLES	71- IV -27/71- V -24 71- IV -28 ENDSTT 71- IV -27 ENDSTT 71- IV -27 ENDSTT 71- IV -27 ENDSTT 71- IV -27 ENDST	71- 1V -27/71- V -24 71- 1V -27 ENDST 77 71- 1V -28 ENDSTT 77 71- 1V -27 ENDST 77 71- 1V -28 ENDST 77	71- IV -28/71-VII-28 71- IV -28 FNDST 77 71- IV -28 FNDST 77 71- IV -28 FNDST 77 71- V -03 FNFST 77 71- V -03 FNFST 77	71- IV -30/71- V -32 71- IV -30 ENDST 77 71- IV -30 ENDST 71- IV -30 ENDST 77	71- V -04/71- XI-04	71- V -06/71-VIIIJI 71- V -06 ENDST 71- V -06 ENEST 77 71- V -06 ENIST 77	71- V -09/71-VIII-08
DAYS* S	27 7 26 7 28 7 28 7 28 7 28 7	27 7 29 7 26 7 28 7	91 7 90 7 92 7 41 7 92 7	2222	84	87 7 88 7 88 7 88 7	16
LONG. *	70 00.3W 5.27/900 5.27/900 5.27/900 5.27/903	69 59.6W 5.27/900 5.27/900 5.27/900 5.27/900	69 59.7W 5.27/1800 5.27/1800 5.27/1800 5.27/1800	70 21.5W 5.27/450 5.27/450 5.27/450	69 57.5W I	70 30.5w 5.27/1800 5.27/1800 5.27/1800	48 32.0W
E*DEPTH*LATITUDE* *nepTH*INSTR.* S	39 08.0N V-101 M-198 V-102 M-268	39 07.74 W-101X V-103 M-269 V-104	39 08.6V W-143X M-270 M-207 M-213	37 19.5N M-226 M-256 M-261	33 57.0V	35 58.9V M-264 M-265 M-27I	39 52.0N
*DEPTH*LA	2665 8 10 12 21	300 365 8 8 10 112 112	2662 15 107 569 1011	4160 47) 2002 + 4100	5375	4445 2072 3C41 4C19	4803
*MOORING *NS.*IYPE *DATA * NO.*	377 SUR 3772 3773 3774 3774	378 SUR 3781 3783 3784 3784	379 5 UR 3791 3793 3794 3795 3795	380 SUR 3803 380•10	381 SUR	382 INT 3821 3823 3824	383 8TM

	SITE D ARRAY THERMCGRAPH	77-56	71- VII-27/71-VII-10 71- VII-28 FNDST 71- VII-27 TT 71- VII-27 ENUST	44 44 43 43	69 59.1W 5.27/1800 3600 5.27/1800	39 31.6N W-101X O-003 M-204	2428	395 SUR 3951 3952 3954
KELVIN SEAMOUNT	GULF STREAM,		71- VI -28/71-VII-30 71- VI -23 FVDST	33	65 31.2W 5.27/900	39 00.0N	4780 4580	394 BTM 3941
KELVIN SEAMOUNT	GULF STREAM.	77-56	71- VI -30/71-VII-30 71- VI -28 ENDST	32 33	65 21.9W 5.27/900	38 48.0N	4810	393 BTM 3931
KELVIN SEAMOUNT	GULF STREAM.	77-56	71- VI -29/71-VII-30 71- VI -28 ENDST	32 33	65 10.0W 5.27/900	38 35.0N	4870	392 BTM 3921
KELVIN SEAMOUNT	GULF STREAM,	77-56	71- VI -29/71-VII-30 71- VI -28 ENDST	32 33	65 00.0W 5.27/900	38 23.7N M-205	493 4931	391 BTM 3911
KELVIN SEAMOUNT	GULF STREAM,	17-56	71- VI -29/71-VII-30 71- VI -28 ENDST	32 33	64 49.0W 5.27/900	38 10.0N M-203	5000 5000	390 BTM 390ï
KELVIN SEAMOUNT	GULF STREAM,	77-56	71- VI29/71-VII-31 71- VI28 ENDST	32 33	64 40.5W 5.27/900	37 57.0N M-191	4664	389 BTM 3891
KELVIN SEAMOUNT	GULF STREAM,	77-56	70- VI -29/71-VII-31 70- VI -28 ENDST	32 33	64 28.8W 5.27/900	37 45.0N M-122	5005 4805	388 B TM 3881
CURRENT STUDY	KUROSHIO CUR		71- VII-06/71- X -02 71- VII-06 ENDST	97 77	132 29.2E 5.27/1800	31 29.9N M-274	223 6 2086	387 BTM 3871
CURRENT STUDY	KURUSHIO CUR		71- VI -26/ LCST	~	134 17.8E	32 58.3V	1058	386 BTM
CURRENT STUDY	KUROSHIO CUR	17-5,6	71- VI -19/71- X -03 71- VI -16 ENUST	106 108	134 41.0E 5.27/1800	32 46.9N M-273	1211	385 BTM 3851
CURRENT STUDY	KUROSHIO CUR	77-56	71- VII-18/71- X -04 71- VII-08 ENDST	108 67	136 35.2E 5.27/1800	32 58.4N M-261	3578 3423	384 BTM 3841

* NO. *	EPTH*INSTR. *					1 1	
	8 13	70 07.4W 5.27/1800 3600 5.27/1800	44 44 48 48	71- VII-27/71-IX 71- VII-29 FND 71- VII-28 TT 71- VII-27 ENP	-1 X - 11 FNDST TT ENDST	77-56	SITE D ARRAY THERMOGRAPH
397 SUR 265 3972 3973 3974 1(55 39 08.8N 3 0-002 12 M-212 014 M-173 518 M-226	69 56.5W 3600 5.27/1800 5.27/1800	4444	71- VII-28/71- II 71- VII-28 TT 71- VII-27 EMD 71- VII-28 END 71- VII-27 END	- IX-11 TT ENDST ENDST ENDST	77-56	SITE D ARRAY THERMOGRAPH ROTOR FAILS
398 SUR 266 3982 3983 3985 10 3987 20	660 39 08.7v 3 0-001 12 V-102 1006 M-269 2006 M-257 2508 M-266	69 59.9W 3600 900 5.27/1800 5.27/1800	88 88 88	71- VII-28/71- X 71- VII-29 TT 71- VII-26 END 71- VII-29 END 71- VII-28 END	- X -24 TT ENDSTRCVT ENDST ENDST ENDST	77-56	MOORING PARTED AUG 24 THERMOGRAPH ROTOR FAILURE
399 SUR 297 3993 3994 3995 10	77 39 10.6N 2 G-T459 9 M-198 011 M-129	69 15.0W 3600 5.27/1800 5.27/1800	8 7 7 8	71- VII-29/71-vII 71- VII-29 TT 71- VII-29 ENDS 71- VII-29 ENDS	-v III-06 TT ENDSTT ENDST		MOORING PARTED, 4 KNOT CURRENT THERMOGRAPH NO TEMP, GOOD DIRECTION—SPEED NO ROTOR
400 INT 4447 4001 2037 4004 4003	47 35 56.8N 037 M-227 003 &-259	70 25.8W 5.27/1800 5.27/1800	167 89 32	71-VIII-01/71-XII 71- VII-30 ENDS 71- IX -19 FNDS	-XII-15 ENDST FNDST	77-56 77-56	SITE J
401 SUB 536	63 33 58.4N	M6*65 69	84	71-V111-03/71-	X-27		TEST OF POLYCARBONATED WIRE
402 SUR 275 4021 4022 4023 10	54 39 00.3N 3 G-T463 12 M-127 014 M-172	70 07.0W 3600 5.27/1800 5.27/1800	37 7 46 18	71-VIII-05/71- 1 71-VIII-05 TT 71- VII-28 EVI 71- IX -05 FVE	1X-11 DST EST		SITE D ARRAY THERMOGRAPH ROTOR CAGE PULLED APART FAILED TO SWITCH CHANNELS
2 SUR 27 4021 4022 4023	4 39 00. 3 G-T463 12 M-127 14 M-172	70 07 3600 27/1	37 46 18	71-VIII-0 71-VIII-0 71- VII-2 71- IX -0	71	711- 1X TT EVDS EVDS	711 - 1X TT EVDS FVES

MOORING SITE	ENGINEERING CORROSION TEST LEAKED MARCH 31,NO ROTOR	ENGINEERING MOORING	SMOOTH TOPOGRAPHY MODE SWORDFISH BILL STUCK,NO ROTOR	SMOOTH TOPOGRAPHY MODE	SMOOTH TOPOGRAPHY MODE ROTOR QUESTIONABLE	SMOOTH TOPOGRAPHY MODE	SMOOTH TOPOGRAPHY MODE	SMOOTH TOPOGRAPHY MODE DID NOT SWITCH CHANNELS INTERMITTENT ROTOR	SMOOTH TOPOGRAPHY MODE NO DATA AFTER DEC 24 PROGRESSIVE ELECTRONIC FAILURE
	1 95-11		788-7 788-5 788-5 78-5 78-5	78-5 78-5 78-5	78-5	78-5 78-5	78-5 78-5	78-5	78-5
X -25/71	X -26/72- XI-0/ X -26 EVEST	x -26/72- 11-12	x -29/72- 11-07 x -30 EVOST x -28 ENOST x -29 ENOST x -28 ENDST x -30 ENDST x -30 ENDST	x -30/72 - 11-09 x -20 EVDST x -28 ENDSTT x -30 ENDST	x -30/7?- II-09 x -21 EVDST	x -30/72- 11-09 x -30 ENDSTT x -31 ENDST	x -31/72- 11-09 x -29 FNCST x -31 FVDST	x -31/72- 11-07 x11-13 ENDST x -28 EYPST	X -31/72-11-07 X -21 FUDSTI X -29 EUDST
71-	71-71-	71-	71-71-71-71-71-71-71-71-71-71-71-71-71-7	71-71-71-71-71-71-71-71-71-71-71-71-71-7	71-71-	71- 71- 71-	71-71-71-71-71-71-71-71-71-71-71-71-71-7	71- 71- 71-	71-71-71-71-71-71-71-71-71-71-71-71-71-7
70 16.5W 51	70 00.8W 388 5.27/3600 330	70 06.1W 109	70 00.3W 101 5.27/1800 30 5.27/1800 105 900 108 5.27/1800 109 5.27/1800 50	70 20.6W 102 5.27/1800 116 5.27/1800 108 5.27/1800 102	70 08.8W 102 5.27/1800 115	70 06.8W 102 5.27/1800 105 5.27/1800 101	69 41.5W 101 5.27/1800 104 5.27/1800 100	69 31.3W 99 5.27/1800 14 5.27/1800 105	69 41.5w 99 5.27/1800 112 5.27/1800 105
4465 35 55.54	5368 34 01 04 5270 M-213	5315 33 59.5V	5460 27 59.8N 514 M-264 816 M-271 1518 V-103 1620 M-205 4003 M-240 4202 M-281	5460 28 00.4N 514 M-207 1516 M-174 4001 M-272	5470 27 49.0N 1503 M-149	5465 28 01.5V 1522 M-212 4028 M-250	5460 28 21.5N 1504 M-122 4008 M-277	5427 28 00.7N 1476 M-265 3981 M-191	5455 28 00.2N 1502 M-129 4005 M-225
403 SUR	404 BTM 4041	405 SUR	406 4063 4064 4065 4066 4066	407 SUR 4071 4072 4073	408 INT 4081	409 INT 4091 4092	410 INT 41C1 4102	411 INT 4111 4112	412 INT 4121 4123

THE PROPERTY OF THE PROPERTY O

*NO. * TYP	E &UE	P TH*L ATI TUDE*	1 ONG.	*DAYS*	SET	/RECOVERED *	*REPORT*	COMMENT	
*DATA * NO.	 *0EPTH	1 *	* ! !	DAYS*	*DATA START*	VARIABLES	*REPORT	COMMENTS	
413 8TM 414 BTM	5460 5460	28 00.3N 28 02.1N	69 58.2W 70 00.4W	7 7	71- X -31/71- 71- X -31/71-	71- X1-32 71- X1-02		ACOUSTIC DROPSONDE EXPERIMENT ACOUSTIC DROPSONDE EXPERIMENT	
415 BTM 4151	5454 5352	23 21.7V M-260	69 08.6W 5.27/3600	166 171	71- XI -20/72- 71- XI -19	72- V -04 ENDST		OUTER ANTILLES RIDGE MARGINAL QUALITY DIRECTIONS	
416 BTM 4161	5392 5290	23 48.2N	68 38.1W 5.27/1800	1 66 1 74	71- XI -20/7 71- XI -19	72- V -04 FNLST		OUTER ANTILLES RIDGE VANE BIT PROBLEM	
417 BTM	5378	23 48.1N	ML-9E 69	164	71- XI -21/7	72- V -04		OUTER ANTILLES RIDGE	
418 INT	0	39 0	MO.65 69	10	- XII-10/	71		COHERENCE WITH 419	
4181 4182 4183	500	M-175	900 5.27/450 900	111	71- XII-11 71- XII-08 71- XII-11	FT ENDSTT TT	77-56	THERMOGRAPH	
8 1	S C	M-12	27	10	X	FNOSTT	77-56		
18	~0	M-20 0-00	.27/45	10	71- XII-10 71- XII-11	ENDS 1.1	90-77	THERMUGRAPH	
Z		6	M0.65 69	6	- XII-10/	71-X11-20	, , ,	COHERENCE WITH 418	
610	00	A - C	745	σ α	71- XII-10 71- XII-12	ENDSTT	11-56	THERMOGRAPH	
4193	545 606	Σ Ο	5.27/450	σω	X -	ENDSTT TT	17-56	THERMOGRAPH	
420 SUR	2654	0 6	69 57.1	153	1-11x -1	111	ι	SLOPE ARRAY SITE D	
4201 4203		W-143 M-249	5.27/1800 5.27/1800	103 96	XII-1 XII-0	2 FNDS I	77-56		
I (N.)	20	M-22	. 27/180	76	1-11×	FNDS	77-56		
~ ~	1008 2063	M-26 M-14	.2//18U .27/180	8 7 3 5	71- XII-12	ENDST	77-56		
101	52	M-23	.27/180	63	ı	ENDST		INSTRUMENT FAILED FEB 10	
421 INT 4211	4440	35 58.3N	70 29.0W 5.27/1.400	92 92	71- XII-13/ 71- XII-13	3/72-111-14 3 EYPS1	77-56	SITE J	

*MOOR ING

*MOOR ING *NO. * TYP *DATA * NO.	E * 0 E P T	*MOORING	LONG.	* DAYS*	AYS* SET AYS*DATA	T / RECOVERED *REPORT* START* VARIABLES*REPORT*	PORT* COMMENTS
422 INT 4221 4222	2724 1027 2495	39 02.3N M-257 M-274	70 02.1W 5.27/1800 5.27/1800	108 114 108	72- 72- 72-	II-01/72- V -19 I -26 EVDST DC I -31 ENDST DC	SLOPE ARRAY
423 INT 4231 4232	2729 1017 2001	39 10.5N 7 M-270 1 M-273	70 33.3W 5.27/1800 5.27/1800	108 110 110	72- 72- 72-	11-01/72- V -19 1 -31 ENDST DC 1 -31 ENDST DC	SLOPE ARRAY
424 SUR 4242 4243 4244	5254 1519 4074 5131	28 09.1N M-175T M-127T M-206T	68 36.8W 5.27/1800 5.27/1800 5.27/1800	112 120 170 120	72- 72- 72- 72-	II-06/72- V -28 I -26 ENDSTT 78-5 I -26 ENDST) 78-5 I -26 ENDSTO 78-5	-5 -5 -5
425 SUR	5462	28 00.8N	89 39.8W	~	72-	11-08/ LCST	MODE
426 BTM 4261 4262	1756 1704 1746	17 36.6N M-122T M-129T	65 15.1W 5.27/450 5.27/450	39	72- 72- 72-	III-17/72- 1V-25 III-16 FULSTI III-16 FUDSTI	CARIBBEAN OVERFLOW NO COMPASS VALUES INSTRUMENT FAILED AFTER 7 DAYS
427 BTM 4271 4272	1809 1741 1791	17 35.3N M-174T M-212T	65 14.6W 5.27/450 5.27/450	39 40 40	72- 72- 72-	III-17/72- IV-25 III-16 EVESTT III-16 ENDSTT	CARIBBEAN OVERFLOW VANE STUCK AFTER APRIL 14
428 SUR	2640	39 12.7N	69 58.2W	0	72-	111-12/72-111-12	TEST FAKING BOX DEPLOYMENT

.0V. *	#i) E.P.T			1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1
429 SUR	2656	39 10.14	_	172	72-	111-12/72	10-X1 -2.		St OPF	AR & AY	
42))	69	0	173	72-	111-12	一 のことは	ر 10			
4293	v i	~ ' '	2 9	126	-71	111-10	ログログロ	ر د د			
4294	61	~ 11	2 9	() I	121	111-12	- NO.74) (
4295	96	~!	2 5	7 . T 05.0	72-	1111-12	FNCNT)) ()			
4298	2347	M-250	2 2	173	72-	111-12	FAUST	DC			
127 05	r C	74 00 ac		68		111-18/7	2- V −25		SUMPY	BUMPY TOSOGRAPHY	MODE
4301	1356	V-0107	006	86	72-	111-11 FVDST	FADSTT	78-5			
4302	, w	M-207	5.27/900	20		111 17	FNUST	78-5			
181 18.	G.	28 20 34	68 24.	89	72-	1/61-111	111-19/72- V -26		BUMPY	TIPGGRAPHY	₩00.F
4312			S	69	72-	61-111	ENUST	78-5			
TN1 CE2	5380	28 10.04	68 23 0 W	c	72-	111-19/7	111-19/72-111-19		ABORTE	ABORTED-HUMAN ERRUR	
	: \									20000	9002
Z	5380	28 10.54	68 23.8W	68	72-	1111-20/7	111-20/72- V -27	7 2 - 5	30 A	TOWN TOWNSHAPE	
4332			006/17•4	† ?	. 7 /	67-111	- 400	2			
34 IN1	527	28 10.2N	68 11	4	72-	1111-20/7	111-20/72- V -26	: !	BUMPY	BUMPY TOPOGRAPHY	MODE
4345		M-265	5.27/900	69	72-	111-20	#2024	78-5			
135 IN1	'n	27 58.74	63 24.7W	19	72-	V -21/12- V	72- V -26	; ;	BUMPY TOPOG	TOPOGRAPHY	400E
4324		V-0112	006	98	72-	111-11	FVDSTT	ر-8/	SIICKI	u z z z	
5113 YE 7	1072	39 51.14	70 05.2₩	10	72-		111-25/72- VI -09		EN6145	ENGINEERING MODZING, FLUAT TEST	FLUAT TE
2											

VI-OC CURRENTS UNDER GULF STREAM DST DC	- VI~36 CURRENTS UNDER GULF STREAM ENDST DC	- VI-O& CURRENTS UNDER GULF STREAM ENDST VANE VERY STICKY	- VI-05 CURRENTS UNDER GULF STREAM FNPST DC	:- VI-O5 CURRENTS UNDER GULF STREAM ENDST DC FVDSTT DC	!- VI-05 CURRENTS UNDER GULF STREAM ENDST DC EVDSTRT DC	:- VI-O4 CURRENTS UNDER GULF STREAM ENDST DC FVDSTT DC	:-VI-04 CURRENTS UNDER GULF STREAM ENDST DC VANE STUCK AFTER MAY 13	2- VI-03 CURRENTS UNDER GULF STREAM ENDST DC 23 DAYS OF ROTOR	2- VI-O? CURRENTS UNDER GULF STRE. ENDST ELECTRICAL PROBLEMS	/1-03 CURRENTS UNDER GULF STRFAM NST DC
59 72- IV -03/72- VI-06 20 72- IV -03 FNDST	54 72- 1V -08/72- V 60 72- 1V -06 EVE	58 72- IV -09/72- V 66 72- III-31 ENI	56 72- IV-10/72- V 66 72- III-31 FM	156 72- IV -10/72- V 60 72- IV -06 EMI 56 72- IV -10 EVE	56 72- 1V -10/72- V 59 72- 1V -06 ENE 55 72- 1V -10 EVE	55 72- IV -10/72- V 59 72- IV -06 ENE 70 72- IV -04 FVE	54 72- IV -11/72-VI-04 64 72- III-31 ENDST 54 72- IV -10 FADSTT	53 72- 1V -11/72- V 64 72- 111-31 END	53 72- IV -11/72- V 64 72- III-31 END	52 72- IV -12/72- VI-0 63 72- III-31 FNDST
49 44.2W 5.27/900	49 44.4W 5.27/900	49 45.9W 5.27/900	49 46.6W 5.27/900	49 47.3W 1 5.27/900 900	49 46.0W 5.27/900 3600	49 46.1W 5.27/900 900	49 41.8W 5.27/900 900	49 46.8W 5.27/900	49 45.0W 5.27/900	49 46.0W 5.27/900
5477 37 00.0V 5217 M-238	421 37 30.6N 5161 M-225	1412 37 59.6N 5152 M-240	1419 38 17.6N 5159 M-256	3419 38 39.0N 4600 M-226 5159 V-0117	6416 39 00.0N 4597 M-205 5156 V-0113	416 39 23.2N 4597 M-271 5156 V-0116	413 39 40.3N 4594 M-266 5153 V-0120	348 40 03.34 5124 M-277	244 40 33.5V 3983 M-281	1683 41 00.2N 3422 M-264
437 BIM 54 4371 5	438 BTM 54 4381 5	439 BTM 54 4391 5	440 BTM 54 4401 5	441 BTM 54 4411 4 4412 5	442 BTM 54 4421 4 4422 5	443 BTM 54 4431 4 4432 5	444 BTM 54 4441 4 4442 5	445 BTM 53 4451 5	446 BTM 42 4461 3	447 BTM 36

**************************************	F * 0 E P TI	**************************************	* LONG. *	*DAYS*	SET SET	START	/RECJVERED * * VARIABLES	*PEPORT* 	* COMMENTS	1 34 1 45
448 BTM 4481	3018 7580	41 30.0V M-198T	49 44.0W 5.27/900	52 52	72-	1V -12/72 IV -11	72- V1-05 E4USTT		CURRENTS UNDER GULF STREAM NO USEABLE DATA	ЕАМ
449 INT 4491 4492	2769 1049 1049	38 58.8N M-142 M-249	70 00.3W 5.27/1800 5.27/1800	102 105 105	72- 72- 72-	V -19/ V -16 V -16	72-VIII-29 ENDST ENDST	20	SLOPE ARRAY	
450 INT 4501 4502	2754 1014 2002	39 09.2N M-173 M-212T	70 30.8W 5.27/1800 5.27/1800	102 103 84	72- 72- 72-	V -19/ V -18 VI -06	72-V I I I - 29 ENDS I ENDS IT	0 C	SLOPE ARRAY Rotor Questionable	
451 SUR 4512 4513	5437 515 4191	28 54.4N V-0105 M-269	69 41.0W 1800 5.27/1800	162 171 162	72- 72- 72-	<pre></pre>	72- XI-01 ENDS TT ENDS T	78-5	MIXED TOPOGRAPHY MODE	ய
452 INT 4522 4525 4526	5452 561 2075 4181	27 59.81 V-0121 TD#6 M-292	1 70 38.7W 900 86400 5.27/1800	161 154 156 161	72- 72- 72- 72-	V -23/ V -16 V -25 V -23	72- X -31 ENDS TT TP T ENDS T	78-5	MIXED TOPOGRAPHY MODE TEMPERATURE/PRESSURE REC	ODE RECORDER
453 S UR 4532 4533 4535 4535	5261 514 1516 3970 4075	28 10.1 V-0114 V-0115 TD#3 V-0118	68 38.2W 900 900 86400	158 177 127 153 156	72- 72- 72- 72- 72-	V -25/ V -16 V -25 V -27 V -26	72- X -3C ENDSTT ENGSTT TPT ENGSTT	78-5 78-5 78-5	MIXED TOPOGRAPHY MODE TEMPERATURE/PRESSURE REC	OD E R E C OR DE R
454 S UR 4541 4543 4544	5462 514 4207	27 33.7N W-255X V-0103 M-260	69 41.8W 5.27/1800 1800 5.27/1800	156 88 173 157	72- 72- 72- 72-	V -28/ V -16 V -20 V -27	FNDST FNDST ENDST FNDST	78-5	MIXED TOPOGRAPHY MODE BAD DIRECTIONS	m
455 S UR 4552 4553 4553	5462 514 1516 4208	28 00.6N V-0129 V-0119 M-262	69 37.6W 450 900 5.27/1800	160 98 173 161	72- 72- 72- 72-	V -28/ V -28 V -16 V -27	72- X1-04 111 ENDSTT (NEST	78-5 78-5 78-5	MIXED TOPOGRAPHY MODE	m

のでは、これでは、これでは、日本の

である。 は、1900年の日本のでは、1900年の日本

MUIR SEAMOUNT QUESTIONABLE DATA	MUIR SEAMOUNT	L.F. CURRENT VARIBILITY NO ROTOR 1-BIT MODIFICATION VANE STUCK	L.F. CURRENT VARIBILITY TOO MANY ROTOR ZERO'S	L.F. CURRENT VARIBILITY VANE STUCK VANE STUCK	L.F. CURRENT VARIBILITY	INTERNAL WAVE PROPOGATION
20						ეე ეე
V -31/72- X -25 V -30 ENDSTT V -31 EVDSTT	LCST	VII-11/72-XII-05 VII-11 ENDSTT VII-08 ENESTT	VII-11/72-XII-08 VII-14 FNDSTT	VII-11/72-XII-08 VII-11 ENDSTT VII-14 ENDSTT	LCST	VII-15/72-VIII-05 VII-15 ENDSTT VII-15 ENDSTT
V -31/ V -30 V -31	V -31/ LCST		VII-11/ VII-14	VII-11/ VII-11 VII-14	VII-11/ LEST	
72- 72- 72-	72-	72- 72- 72-	72- 72-	72- 72- 72-	72-	72- 72- 72-
147 148 69	<i>د-</i>	147 147 163	150	150 160 221	0	21 23 20
62 35.5W 1 5.27/1800 1 5.27/1800	62 51.9W	70 00.2W 900 900	70 14.5W 900	70 03.9W 150 900 160 900 221	70 00.0W	70 46.4W 56.25 56.25
33 42.0N M-122T M-129	33 41.4N	39 36.6N V-0138 V-0120	39 09.9N V-0107	39 09.8N V-0135 V-0117	39 07.2N	39 54.7N V-0112 V-0113
2998 2015 2898	4817	2263 1963 2163	2709 2607	2664 2364 2564	5669	501 59 84
456 INT 4561 4563	457 INT	458 INT 4581 4582	459 BTM 4591	460 BTM 4601 4602	461 BTM	462 INT 4623 4624

是一个时间,这个时间是一个时间,这个时间,他们是一个时间

+ DATA * NC.	()	INSTR. *	AMPLING *	Ā	DAIA SIAKI#	VARIABLES	*R E P.O.R T *	* COMMENTS *
	2646	39 13	40 03 0X		72-4111-24/7	2- 1X-04		SCUR WG 2
)))	2 4	, , , ,	あん。25		2-VIII-21	FADSTT	¥	
4694	- α • •	0 C# XS 1	1	11	72-1111-24	EVDS T	*	
ש כ		246	006		2-111-2	DST	¥	
S		-27	3600		2-1111-2	ENDST	*	
S C	9	-012	56.25	11	-1111A-2	ENDSTT	*	
V	6	SK#			2-1111-2	FNUST	*	
63.1	10	250	006		2-1111-2	DS T	₩	
63.1	1 20	-23	0		2-1111-2	ENDS 1	*	
63.1	3 99	0	56	14	2-VIII-	FVDSTT	*	
63.1	4 100	O# XS			2-1111-2	LVOVI	*	
7 7 7	5 100	255	006		2-1111-2	ES T	#	
63,1	6 10		3600	11	72-V111-24	ENDST	*	
Z		9 12	70 02.7W	11	2-VIII-24/7	2- 1		SCUR WG 21
464	16	-0111		10	2-VIII-	_	¥	
. 4	S (X X	90	10	2-1111-2	T S J P J	\$	
4644	202	#1251	006	10	111-2	LST	#	
5.4	0	-27	27	12		_	*	
5.4	0	-01	360	10	2-1111-2	FNGS TRI	*	
64	0	260	006	10	2-1111-2	.	#	
9	6	7	5.27/900	12	2-1111-23	V DS T	¥	
}	1	1			*	UNE SCO 1	FCHNICAL	IN MARINE
Z		8 59	000	0	-1111-29/7	2-X11		NAL WAVE PRUPAGALI
	985	M-2061	5.27/1800	107	2-V11	FVUSTT	۵۵	
S	Ø	-25	.27/180	0	-/111/-	SOZ	DC	
Z	90	39 09.2N	70 30.8W	101	72-1111-29/7	2-X111-08	50	INTERNAL WAVE PROPAGATION
4662	1980	-26	27/1800	0	2-1111-2	ENDS T	20	

是一种,我们就是一种,我们就是一种,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的, 第一个一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的

ABORTEC-FAKING BOX FAILURE		MOCRING DYNAMICS	MOORING DYNAMICS TEMPERATURE/PRESSURE RECORDER	MOCRING DYNAMICS TEMPERATURE/PRESSURE RECORDER	MOORING DYNAMICS TEMPERATURE/PRESSURE RECGRUER
	၁၁၀	20000) <i>*</i>		
72-4111-31/72-4111-31	72- IX -04/72-X11-12 72-VIII-31 ENDST 72- IX -04 ENDST	-28/72- XI-03 -22 ENDSTI -22 ENDSTI -22 ENDSTI -22 ENDSTI	28/72 ⁻ 29	-28/72- XI-04 -29 TPT	-29/72- XI-04 -29 IPT
-111	72- IX -04, 72-VIII-31 72- IX -04	*****		, , , ,	××
72-V	72- 72-v 72-	72-72-72-72-72-72-72-72-72-72-72-72-72-7	72-	72-	72- 72-
0	99 100 59	122	0 ~ 0	~ 9	~ 9
46.88.3h	70 02.8% 5.27/1800 5.27/1800	69 36.4% 28.125 14.0625 28.125 28.125	28.123 69 34.6W 30	69 36.44 30	69 38.84 30
35 11.0N	39 10.0N M-257 M-191	28 02.9N V-0126 V-0136 V-0133	V-L139 28 02.3N 1P#10	28 65.0N	28 02.8N
5597	2666 2364 2564	200 200 200 200 200 200 200 200 200 200	5462 5462 5570	5462 5403	5462
467 SUR	468 INT 46E3 4684	469 INT 4651 4655 4656 4656 4656	455.1. 470 BTP 47C1	471 BTM 4711	472 BTM 4721

AND THE PROPERTY OF THE PROPER

一、 ラインを関すると、一般のではの間の関連を持ち

MOORING NO. *TYP #DATA NO.	10101	EPTH*LATITUDE	* LONG. *DAY	S* SET	T START	/RECOVERED *REPORT* 	*REPORT*	* COMMENTS
473 INT 4732 4734 4734	261 370 M 1385 M 3180 M	10.7N 1-173 1-249 1-281	800 4 800 13 800 13	72-72-72-72-	X X X X X 3 3 1 3 1 3 1 1 3 1	30/73-111-11 31 FMEST 30 ENEST 30 ENEST	78-5 78-5 78-5	MODE ROTOR INTERMITTANT AFTER DEC 17 EXTRA COUNTS IN EACH ROTOR VALUE
474 INT 4742 4743 4743	5462 28 583 M- 1595 M- 4105 M-	. 01.4N .227 .259 .276	69 39.4W 126 5.27/1800 126 5.27/1800 157 5.27/1800 126	72- 72- 72- 72-	XI -04/ XI -04 X -16 XI -04	-04/73-111-10 -04 ENDS TR -16 ENDS T -04 FNDS T	78-5 78-5 78-5	MODE
475 BTM 476 INT	2687 39 2685 39	06.5V	70 04.2W 5 69 58.7W 1	72-	XII-05/ XII-06/	XII-05/72-XII-10 XII-06/72-XII-30		TRANSPONDER TEST TEST FAKING BOX LAUNCH
477 INT 4772 4774 4775	2653 39 200 M- 2002 M- 2552 M-	.274 -240 -265	70 00.6W 108 5.27/1800 107 5.27/1800 111 5.27/1800 107	72- 72- 72- 72-	XII-08/ XII-09 XII-06 XII-08	XII-08/73-III-26 XII-09 ENDST XII-06 ENDST XII-08 ENDST) 0 0 0	FAKING BOX LAUNCH
478 INT 4781 4782	2742 39 991 M- 1991 M-	. 09.94 -238 -271	70 30.3W 110 5.27/1800 112 5.27/1800 108	72-72-72-	XII-09/ XII-08 XII-10	XII-09/73-111-29 XII-08 FNUST XII-10 FNUST	20 20	FAKING BOX LAUNCH
479 INT 4791 4792	2558 39 1009 M- 2028 M-	23.0v -277 -266	69 59.5W 106 5.27/1800 109 5.27/1800 108	72- 72- 72-	XII-10/73 XII-09 XII-09	73-111-26 ENDST ENDST	00	FAKING BOX LAUNCH

**************************************	E # 0 E P # 0 E P	DEPTH*LATITUDE*	L UNG.	* CAYS* S		TSTART	/ RECOVERED * REPURT: * VARIABLES* REPORT:	*REPURT* COMMENTS	1 1
480 INI	5462	28 03.8N	M0.66 69	(~	73-	/01-111	LUST		MUDE
2		27 59 V=014	40 39 0 W	116		111-10/7	73-VII-04 FNDS11	76-101	MODE
4812	501	· > :	006	115	73-	 ~ -	ENDSRIT	76-101	
7 F		15#C1	006	112		111-11	TPT	76-101	
8		V-01	900			111-111	ENDSRTT		
8		TP#0	096			111-12	151	76-101	
8 1	9	1P#4	096			111-12	TPT	76-101	
31	20	TP#5	096	111		111-12	1 b 1	76-101	
8 1	49	70-7	006			11 -27	FNDSTT	76-101	
1.1	599	V-01	ი06	146		11 -21	ENDS TT	76-101	
81.1	3	M-21				_	ENDS T	76-101	
91,1	535	M-22	5.27/900	115		111-11	FNDST	76-101	
Z		ဘ	•	707			73- VI -26		MONE
482	6	7.7		103		-	ENDSTT	76-101	
4822	598	1P#15	096	102	7:3-	111-13	191	76-101	
32	ç	013	006	102		111-14	ENDSTT	76-101	
3.2	49	70	006	141		11 -25	ENIDSTT	6-1	
82	9	\sim	006	141		4.7	ENUSTT	- 9	
~	0	V-C105	900	141	73-	11 -25	EVDS TT	76-101	

2		02	68 13.8W	_	3- 111-1	1		MODE
	1 0	0112		• 4	3- 11 -2	FNDSTT	6-10	
0 0	, (4 (06.0	ا ر	2. 111-1) } ⊢	6-10	
n (Э,	440	000	7 C	7 11 7	ر د -	7	
φ (((((((((((((((((((٠	C	006	9	3- 11 -6	FINDS	07-0	
ω ω	81	55 #	096	\circ	3- 1111-5	_ '	07-9	
83	49	011	006	3	3- II -2	OS	6-10	
3		V-C107	006	142	73- 11 -21	FN DS TT	76-101	
83	66	17	006	4	3 - 11 - 2	DS	6-10	
4838		*	0 96		3- 1111-1	1 P T	9-10	
484 INT	5151	7 25	67 59.5W		3- 111-1	73-VII-03		MODE
· 0	ני	2010	000	-	3- [111-1	FNOSTT	6-10	
101	777	10450	2 6	108	73- 111-15	•		
0	4 .) t		,	2 11 -2	CALOCIT	7 1 7	
φ,	٠,	5	000	9	7 11 -6) 		
∞	8	P#45	960	O	5- 111-1	- ;	07-9	
α	0	-01	006		3- II -2	ENDS II	6-10	
œ	00	C18	900	3	3- 11 -2	DS	6-10	
Z	5420	23	69 21.0W	~	3- 1111-1	<u> </u>		MODE
485	50	0178	0	4	3- 11 -5	E	6-10	
4852	611	TP#39	096	107	73- 111-15	TPT		
85	0	01	006	3	3 - 111 - 6		9-10	
80	0	P#57	096	\sim	3- 1111-1		9-10	
85	21	P#E	096	0	3- IIII-1		6 - 10	
85	0	-4	006	136	3- 11 -2		6 - 10	
85	8	P#8	096	0	3- 1111-1		9-10	
85	51	D#1	096	0	3- 1111-1		6 - 10	
85,1	400	2# d	096	0	3- 1111-1		6-10	
85,1	39	77	960	C	3- 111-1		01-9	
)))	•)	

是一个时间,这个时间,他们是一个时间,他们是一个时间,他们是一个时间,他们是一个时间,他们是一个时间,他们们是一个时间,他们们们的时间,他们们们的时间,他们们的

MODE INTERMITTENT ROTOR	ABORTED, MOORING PARTED	MODE	MODE
76-101 76-101 76-101 76-101		76-101 76-101 76-101 76-101	76-101 76-101 76-101 76-101 76-101
III-14/73-VII-02 II -27 ENDSTT II -27 ENDSTT II -25 ENDSTT III-16 TPT	111-15/73-111-15	III-15/73-VII-01 IV -03 ENDSRT III-17 IP1 III-27 ENDSTT III -27 ENDSTT III-17 IP1	III-16/73- VI-30 IIII-16 ENDSTE III-17 TPT III -26 ENDSTE III -21 ENDSTE III-05 ENDSTE
- 4/7 - 27	111-15/7		- 6/7 - 6/7
73- 73- 73-	73-	73- 73- 73- 73-	73-
110 138 135 126 105	0	108 21 104 107 103	1006 1006 1008 1008 1008 1008
70 02.6W 900 900 900 960	71 22.6W	71 22.9W 900 960 900 900 900	69 59.1W 930 960 900 900 900
26 57.5N V-0131 V-0184 V-0106 TP#28	28 33.0N	28 33. LN V-6169 7 TP#41 7 V-132 1 V-0183	29 35.0N V-0141 TP#42 V-0174 V-0111 TP#21
5474 492 1496 25885 3986	5327	5325 567 \ 609 . 3600 4600	5440 507 603 1505 3666
486 INT 4861 4864 4865 4866	487 SLR	488 INT 4381 4382 4883 4885 4886	489 INT 4851 4852 4853 4854 4855 4855

THE PROPERTY OF THE PROPERTY O

* ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !									
490 SUB 4901 4902	2559 999 2011	39 23.7N M-257 M-215	69 59.3W 5.27/1800 5.27/1800	207 207 207	73- 111-26, 73- 111-26 73- 111-26	73- X -15 ENDST ENDST	79-87 79-87	SET BY FAKING BOX	SITE D
491 SUB 4911 4912 4913 4914	2654 205 1019 2030 2550	39 08.2N M-191 M-207 M-250 M-205	69 58.1W 5.27/1800 5.27/1800 5.27/1800	207 207 207 207 207	73- 111-26, 73- 111-26 73- 111-26 73- 111-26	73- X -16 ENDS T FNDS T FNDS T ENDS T	79-87 79-87 79-87	SET BY FAKING BOX	SITE D
492 SUR 4921 4922	2770 1006 2019	39 10.0N M-272 M-264	70 30.4W 5.27/1800 5.27/1800	207 207 207	73- 111-29, 73- 111-26 73- 111-26	73- X -16 ENEST ENDST	79-87		SITE D
493 INT 4931 4932 4933 4934 4936 4936	5446 491 593 791 992 1489 2994	28 42.0N V-0199 IP#34 M-142T IP#52 V-0195 V-0138	70 15.8W 900 86400 5.27/1800 86400 900 900	91 86 87 86 86 86	73- 1V -03 73- 1V -03 73- 1V -03 73- 1V -03 73- 1V -03 73- 1V -03 73- 1V -03	(73 - VI - 3 0 EV 0 S T 1 T P T T P T F N D S T T EN D S T T T P T	76-101 76-101 76-101 76-101 76-101 76-101		MODE
494 INT 4941 4942 4942 4945 4946	5446 492 594 993 1490 2994	27 49.8N V-C121 IP#33 IP#51 V-0118	70 39.8W 900 86400 86400 900	89 87 87 85	73- 1V -03/ 73- 1V -03 73- 1V -03 73- 1V -03 73- 1V -03	73- VI-29 ENDS TT TP T TP T FNCS TT	76-101 76-101 76-101 76-101 75-101	T/P RECORDER	MODE

MODE	PARTED MODE	MODE
6-101 6-101 T/P RECORDER 6-101 6-101 T/P RECORDER 6-101	ABORTED.LINE PAI	76-101 76-101
ENDS TT 7 FENDS TT 7 F	- 1V-02	ENDSTT 77 11 17 17 17 17 17 17 17 17 17 17 17
1V -03/73- 1V -03 1V -03 1V -03 1V -03 1V -03	IV -02/76-	11.
5 73- 5 73- 5 73- 5 73- 5 73- 2 73-	0 73-	
70 00.0W 8 900 8 86400 E 5.27/1800 8 900 8 96400 E	69 01.2W	69 01.0W 8 86400 8 86400 8 86400 8 86400 8 86400 8 86400 8 86400 8 86400 8 86400 8 86400 8 86400 8
27 08.8N V-0163 TP#38 M-212F V-0105 TP#26 M-122T	27 18.0N	27 V-0120 IP#37 M-2137 TP#59 IP#59 IP#59 IP#59 IP#59 IP#59 IP#59 IP#59 IP#69 V-0103 IP#69 V-0158 IP#69
5477 496 598 796 1494 3571 5376	5286	01024 01
495 4951 4951 49952 49953 49959	496 INT	497 INT 49973 49973 49973 49973 49974 49974 49983 49883 49883 49883 49883 49883 49883 49883

*MOORING *NO.* *TYP *OATA	E * D E P T	E*DEPTH*LATITUDE* 	* LONG. *	- 0 AY 0 AY	SE DATA	 7 START	/ RECOVERED + VARIABLE	*REPORT* COMMFNTS 	1 * 1 * 1
101 667 101 667 101 667 101 667 101 667	5 461 498 531 798 533 1496 2596	28 C8.9N V-C193 TP#14 V-G159 TP#48 V-C102 V-C102	70 08.1h 900 86400 900 86400 500 500	801 801 801 801 801 8108	733-1	1	//3- V1-28 ENDSTT 191 ENDSTT 1P1 TP1 TT TT TP1 TT TP1	76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 TIME BASE QUESTIONABL	MODE
500 500 500 500 500 500 500 500 500 500	53 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35	28 17.0N V-0129 TP#13 V-0156 TP#47 V-0201 TP#30 TP#30 N-0164 TP#35 M-1981 V-0128 V-0128 V-0204 M-1751	69 16.3% 3600 3600 3600 86400 86400 86400 5.27/1800 900 5.27/1800	# C C C C C C C C C C C C C C C C C C C		11111111111111111111111111111111111111	773 – VI – 27 ENDS TT TPT FNOS TT TPT TPT TPT TPT TPT TPT FNOS TT TPT FNOS TT	76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101 76-101	MODE
000 HOO	2 mmm 44m 100	7 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	68 41. •27/18 •27/18 •27/18 •27/18	170 170 170 170 170 170		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	73		MODE

WINDWARD PASSAGE SEVERE ELECTRONIC PROBLEMS WINDWARD PASSAGE QUESTIONABLE SPEEDS	ARRAY WITH 507,508,509	ARRAY WITH 506,508,509	ARRAY WITH 506,507,509	TAPE WOUND ARGUND PINCHWHEEL ROTOR CURICUTRY MALFUNCTION	NO ROTOR, TEMPERATURE VALUES	ARRAY WITH 506,507,508
77-29	89 - 6	79-87 79-87 79-87	79-87 79-87	79-87	18-61	79-87 78-87 79-87
09/74-111-02 09 ENDSTR 09 ENDSTR 10/74-111-02 10 ENDST 10 ENDST 09 FNDSTR	74- IV-39 FNDSTRI ENDSTR	74- IV-10 ENDSTRT ENDSTR ENDSTR	₩ S S	\sim	FVDS TT ENDS TR	74- 1V-11 FNDSTR FNDSTR ENDSTR
XI -09/ XI -09 XI -10/ XI -10/ XI -10	x -08/ x -08 x -08 x -13	××× -14/ ×× -14/ × -14/	-13/ -12 -12		777	x -13/7 x -13 x -08 x -08
73-73-73-73-73-73-73-73-73-73-73-73-73-7	73- 73- 73-	73-73-73-	4 4 4			73-
112 113 113 112 111	176 186 185 180	176 179 180 139	61 70 76	702000	70	176 180 186 186
73 38.4W 5.27/1800 5.27/1800 73 37.8W 5.27/1800 5.27/1800	69 59.6W 5.27/3600 5.27/3600 5.27/3600	70 00.8h 5.27/3600 5.27/3600 5.27/3600	00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 ~ ~	70 32.4% 5.27/3600 5.27/3600 5.27/3600
20 18.0N M-269 M-271 20 16.2N M-260 M-277	39 23.2N M-2121 M-240 M-266	39 09.8N M-1221 M-227 M-256	9 69 -020 -012	V-C106 V-0107 V-0115 V-0119	SOC	35 Cd.5N M-259 M-276 M-265
1539 1645 1456 1543 1050 1461	55 4 55 4 55	2662 491 599 2006	64	2665 2665 2665 2673 2673	268	2746 175 580 1587
564 INI 5041 5044 505 INI 5051	6 1 N 506 506 506	507 INI 5072 5073 5074	₩ O O O	00000000000000000000000000000000000000	8 8	509 INT 5051 5052 5053

AND THE PROPERTY OF THE PROPER

* *	1			
* COMMENTS	TETHER BUDY FOR IWEX	MARKER MOURING FOT IWEX ACCOUSTIC BEACON FOR IWEX ACCOUSTIC BEACON FOR IWEX ACCOUSTIC BEACON FOR IWEX	SUBSURFACE, IWEX, LEGS A, B, C FLOODED	SPAR BUOY TETHERED TO 510 DUEL THERMISTERS
*REPORT *REPORT	1 1 1 1		75-1-68 75-1-68 75-1-68 75-1-68 75-1-68 75-1-68 75-1-68 75-1-68	75-68 75-68
RECOVERED *	73-XII-16 ENDSTR	LGST 73- XI-04 73- XI-04 73- XI-04	FOR THE PROPERTY OF THE PROPER	73- XI-05 ENDSRTTT ENDSRTT
- /! / / START*	x -24/ x -24	× -26/ × -27/ × -27/ × -27/		1 -03/ 1 -03 1 -03
SET - OATA S	73-	73-73-73-	######################################	73- X1 73- X1 73- X1
	51	~ œ æ æ	4	2
* LONG * SAMPLING *	69 47.7W 5.27/900	69 51.0W 69 49.0W 69 52.0W 69 52.0W	69 50.9W 225 225 225 225 225 225 225 225 225 22	69 48.0W 56.25 56.25
H*LATITUDE H*INSTR.*	27 44.1N W-270X	27 48.7N 27 43.5N 27 45.4N 27 42.4N	27 43.9N DT-101 DT-105 DT-102 DT-117 DT-117 DT-110 M-175T M-175T DT-108 DT-113 DT-113 DT-1106 DT-1106 DT-1106 DT-1107 M-206T DT-1106 DT-1107 M-142T	27 44.0N V-0129 V-0193
*DEPTH *DEPTH	5459	5461 5455 5455 5455	5455 6000 6033 6333 6000 6000 6000 6000 60	5455 101 126
#400RING #NO.# TYPF: #DATA # NO. :	510 SUR 5101	511 SUR 512 BTM 513 BTM 514 BTM	515 515A1 515A1 515A4 515A6 515A6 515A10 515A10 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1 515B1	516 SPE 5164 5165

GULF STREAM MOGRING 79-56 GRASSY GROWTH ON ROTUR,VANE 79-56 NO TEMPERATURE VALUES	MUIR SEAMGUNT	MUIR SEAMOUNT	MUIR SEAMOUNT
79-87 79-87	79-87 79-87	78-87 78-87	79-87 79-87 79-87
73- XII-05/74-XII-05 73- XII-05 ENDSTT 73- XII-05 ENDSTT	73- XII-05/74- 1V-23 73- XII-05 ENDSTT 73- XII-05 ENDSTT	73- XII-05/74- IV-23 73- XII-05 ENDSTT 73- XII-05 ENDSTT	73- XII-05/74- IV-23 73- XII-05 ENDSTT 73- XII-05 ENDSTT 73- XII-05 ENDSTT
73- XII-05/7 73- XII-05 73- XII-05	XII-05/ XII-05 XII-05	XII-05/ XII-05 XII-05	XII-05/ XII-05 XII-05 XII-05
73- 73-	73-	73- 73- 73-	73- 73- 73-
3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	134	134 144 144	1446
70 00.0W 900 900	62 29.3W 900 900	62 28.6W 900 900	62 36.7h 900 900 900
39 11.4N 1 V-0177 1 V-0112	33 35.0N V-0182 V-0121	33 29.1N V-0114 V-0185	33 30.0N V-0141 V-0201 V-C118
2647 193 197	3138 2140 3035	3C88 2C85 2 5 86	4366 2131 3623 3627
517 INT 5172 5173	518 INT 5181 5182	519 INT 5191 5152	520 INT 5201 5202 5202

* DATA * NG*	*DEP TH	H*INSTR.*	SAMPLING *	1 440	*DATA	START#	VARIABLES	*REPOR	T* COMMENTS	1
		1) - -						\$ 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14		ري	41.5		73-	-15/	74- IV-			MODE
5211	5	27	~	129	73-	711-04	ENDSTR	8		
2	O	\$ C	6400	N	73-	11-1	-	8	/P RECORDE	
7	C	D#C	640		73-	I - 1	161	8	T/P RECORDER	
21	S	D#4	640	Ň	73-	11-1	TPT	8	/P RECORDE	
2.1	50	-2C	.27	3	73-	0-11	ENDS TR	8		
2 1	၁	7#C	640	2	73-	11-1	TPT	8	/P RECORDE	
2 1	50	D#1	640	2	73-	11-1	TPT	8	1/P RECORDER	
2 1	5	P#C	640		73-	11-1	TPT	8	/P RECORDE	
21	C	-27	.27	2	73-	0-I	ENDS TR	8		
21,1	4.01	P#2	640	2	73-	11-11	TPT	8	/P RECURDE	
-	44	P#3	0		73-	1-1	TPT	78-5	T/P RECORDER	
21.1	516	D#0	640	7	73-	11-1		- 8	/P RECORDE	
Z		ထ	9 44 6			I-16/	74- 10-21			MODE
522	54	7	.27			11-0	ENDSTR	8-	CHANNEL A ONLY	
22	Q,	4	640			1-1	TPT	8	P RECO	
22	49	-2	.27	3		11-0	ENDSTR	8		
22	65	4	640			11-1	۵	8	P RECORDE	
22	45	*	640			11-1	TPT	8	1/P RECORDER	
5228	3457	1P#C8	86400	6 0	73-	XII-16	TPT	78-5	P RECORDE	
22	65	7	.27			11-0	FNDSTR	8		
22.1	400	*	640			11-1	Δ	8	1/P RECORDER	
22	4 40	4	640			11-1	TPT	8	/P RECORDE	
•	•	1	((•		(

/RECOVERED *REPORT* COMMENTS *DAYS* L ONG. *DATA

1 %

* NO.	İ	*DEPTH*INSTR.*	SAMPLING	*DAYS	*DATA	j	START* VARI	ABLES	VAR IABLES *REPORT*	* COMMENTS	TENTS	! !	1	ı *
1 NT 5 2 3 1 5 2 3 3	2504 181 983 1991	39 25.6N V-199 V-164 V-135	006 006 006 006	264 264 264 264 264	74- 74- 74- 74-	>>>>	-03/74-X1I. -03 ENDS1 -03 ENDS1	-XII-05 ENDSTT ENDSTT ENDSTT	79-56 79-56 79-56	METAL METAL METAL	PARTICLE PARTICLE PARTICLE	S 0N 00 N	SITE D MAGNET MAGNET	ı
4 55243 55244 55244 55244 5246 7246	2664 197 202 202 496 1005 2013 2512	39 07.5N V-0139 V-0136 V-0113 V-0107 V-0181	006 006 006 006 006	233 265 265 266 266 266 266	74- 74- 74- 74- 74- 74-	>>>>>>	-14/74-XII- -14 ENDS -03 ENDS -02 ENDS -03 ENDS -03 ENDS	-XII-05 ENDST ENDSTCRT ENDSTT ENDSTT ENDSTT	79-56 79-56 79-56 79-56 79-56	THERM	THERMISTER ORIF	DRIFTING	SITE D	C./YEAR
5 INT 5251 5252 5253	2759 195 997 2005	39 07.1N V-205 V-193 V-137	70 32.6W 900 900 900	239 265 264 264	74- 74- 74-	2222	-02/74-XII-06 -02 ENDSTT -03 ENDSTT -03 ENDSTT		79-56 79-56 79-56				SITE D	
1NT 5261 5262	3007 2006 281.0	38 47.0N V-0133 V-0108	70 00.5W 900 900	238 264 266	74- 74- 74-	222	-03/74-XII-06 -03 ENDSTT -02 ENDSTT		79-56 79-56	GULF	STREAM ARRAY	, AY		
1NT 5271 5272	2978 1977 2781	39 09.8N V-0113 V-0110	68 59.8W 900 900	238 266 265	74- 74- 74-	222	-02/74-XII-0(-02 FNDSTT -02 ENDSTT	9	79-56 79-56	GULF	STREAM ARRAY	AY		
8TM 5282	3326 2329	38 35.2N DT-5110	69 10.1W 900	264	74-	 ≥ ≥	-03/74-XII-07 -03 ENDSTT		79-56	GULF	STREAM ARRAY	ΑY		

THE CHARLES AND AND AND ADDRESS OF THE PROPERTY OF THE PROPERT

LF STREAM ARRAT TEMPERATURE	LF STREAM ARRAY	LF STREAM ARRAY P RECORDER	LF STRFAM ARRAY	LF STREAM ARRAY	LF STREAM ARRAY	LF STREAM ARRAY	LF STRFAM ARRAY	LF STREAM ARRAY P RECORDER VANE
79-56 NO T	GULF -56	GULF 79-56 79-56	GULF -56	GULF 79-56 79-56	79-56 79-56	6ULF -56	GULF 79-56 79-56	GULF 17 P 1-56 NO V
79.	79.	79-	79.	79-	79.	79.	79-	79.
FA-XII-07 ENDSTT ENDSTT	4-X I I - I 3 ENDSTT	-16/74-XII-13 -16 TPT -02 ENDSTT -02 ENDSTT	74-XII-14 ENDSTT	74-X 11-14 ENDS TT ENDS TT	74-XII-16 ENDSTT ENDSTT	-03/74-X11-14 -03 ENDSTT	-04/74-X11-16 -04 ENDSTT -03 ENDSTT	74-XII-16 IPI ENDSTT ENDSTCRI
-03/74 -03 -03	-02/74-	-16/ -16 -02 -02	-03/74-	-02/7 -02 -02	-02/7	-03/7	-04/7	-19/7 -19 -03 -02
222	> 2	>>>>	≥ <u>></u> 1	222	>>>	22	222	2222
74- 74- 74-	74-	74-74-74-74-	74-	74- 74- 74-	74- 74- 74-	74-	74- 74- 74-	74- 74- 74- 74-
238 264 264	244 265	243 227 265 265	2 4 4	244 265 265	245 266 264	243	243 264 264	244 220 264 265
69 59.6W 900 900	70 00.6W	69 18.5W 86400 900 900	69 19.9W 900	70 00.4W 900 900	69 59.8W 900 900	69 19.7W 900	69 19.9W 900 900	70 00.0W 86400 900 900
38 21.4N V-0106 V-0109	38 00.5N V-0115	38 CO.24 TP#34 V-U184 V-OLG7	37 29.8N DT-5111	37 30.3N V-0183 DI-5106	37 00.4N V-G131 V-0126	36 59.3N V-0127	36 30.1N V-0111 V-0117	36 29.8N TP#42 V-C179 V-0195
3480 2483 3283	3815 2818	3921 2923 2925 3724	4210 3213	4182 3182 3981	4339 3337 4138	4450 3453	4468 3466 4267	4463 3461 3463 4262
529 INT 5291 5292	530 BTM 5302	531 INT 5311 5312 5313	532 BTM 5322	533 INT 5331 5332	534 INT 5341 5342	535 8TM 5352	536 INT 5361 5362	537 INT 5371 5372 5373

MUDE	MUDE	
1/P RECORDER 1/P RECORDER 1/P RECORDER 1/P RECORDER 1/P RECORDER 1/P RECORDER	ENGINEERING MOORING 1/P RECORDER 1/P RECORDER 1/P RECORDER 1/P RECORDER 1/P RECORDER	
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
74-VII-27 FNDSTR1 TPT TPT TPT TPT TPT TPT TPT TPT TPT TP	74- 1V-20 774- VI-29 ENDSTR TPT TPT TPT TPT TPT TPT TPT TPT TPT T	74-VII-23 ENDSTT
21/7 21 21 21 21 21 21 21 21	7 000000000000000000000000000000000000	v -03/74-
744444444444444444444444444444444444444	7 7777777777777777777777777777777777777	74- I 74- I
14 14 00 00 00 00 00 00 00 00 00 00 00 00 00	2 111 113 103 103 103 114 114	89 130
69 44.8W 5.27/1800 86400 86400 5.27/1300 86400 86400 86400 86400 86400	69 44.9W 68 40.4W 5.27/1800 86400 86400 5.27/1800 86400 86400 86400 86400	69 39.2W 900
28 M-1621 TP##15 TP##15 TP#26 TP#16 TP#16 TP#16 TP#29 TP#29	28 C1 . 1N . 28 C2 . 1N . 28 C3 . 28 C3 . 28 C4 . 28 C	38 19.0N V-0120
54 551 150 150 150 150 150 150 150 150 150	5457 5265 5265 626 1020 1511 2632 2632 4668	3583 1295
538 5381 5382 53883 53883 53883 53883 53883 53883	539 SUR 540 INI 5402 5403 5403 5405 5406 5406 5406 5407	541 INT 5411

# ACC. # SEPTIH+INSTR.# SAMPLING *CAYS+OATA SIART* VARIABLES**REPORT* COMMENTS 5421 795 1745 1920 2 36.49 274 74 - VII-16/75-VII-26 5422 796 1745 1920 2 310 74 - VII-26 5424 796 1745 1920 2 310 74 - VII-26 5424 1495 1920 2 310 74 - VII-29 5425 3493 1742 1 3.2773600 2 30 74 - VII-29 5426 3493 1742 1 3.2773600 2 30 74 - VII-29 5428 3991 1742 1 3.2773600 2 30 74 - VII-29 5429 3991 1742 1 300 3 307 74 - VII-29 5431 102 4 0.012 1 300 3 307 74 - VII-29 5432 102 V-0105 1 300 3 307 74 - VII-29 5433 102 V-0105 1 300 3 307 74 - VII-39 5444 1 408 1 408 1 408 5455 1 404 1 408 5456 1 404 1 408 5457 1 404 1 408 5458 1 404 1 408 5458 1 404 1 408 5458 1 404 1 408 5459 1 404 1 408 5459 1 404 1 408 5459 1 404 1 408 5450 1 404 1 408 545	470************************************	E*CE	PIH*LATITUDE	* LCNG.	*CAYS*	SET	/RECOVEKED	*REPORT*	* COMMENTS	1 1	•
No. Sec. 2 & 0.1.3 Sec. 38.9 2.74 74 VII16 75 VIII26 Sec. 179.34 Sec. 174	* 00.	#DEP1	H*INSTR	SAMPLING	# CAYS	DATA ST	i	*KEPCRI	* COMMENT		į
442 495 367 74 - VII-12 FINESTI 79-34 7 PRECIBER 442 495 1920 267 74 - VII-12 179-34 17 PRECIBER 442 349 1920 267 74 - VII-29 1PT 79-34 17 PRECIBER 424 1495 1920 269 74 - VII-29 1PT 79-34 17 PRECIBER 425 3493 1PRB 1920 206 74 - VII-29 1PT 79-34 17 PRECIBER 427 4000 M-256 5.2773600 216 74 - VII-29 1PT 79-34 17 PRECIBER 428 3901 1PR 210 27 PRECIBER 79-34 17 PRECIBER 423 102 VOID 307 74 - VIII-10 1PT 79-34 17 PRECIBER 433 102 VOID 307 74 - VIII-10 1PT 79-34 17 PRECIBER 433 102 VOID 307 74 - VIII-10 1PT 79-34 17 PRECIBER <th>2</th> <th>46</th> <th>8 61.</th> <th>9 38.9</th> <th>274</th> <th>4- VII-18/</th> <th>-v11-2</th> <th></th> <th></th> <th>POLYADDE</th> <th></th>	2	46	8 61.	9 38.9	274	4- VII-18/	-v11-2			POLYADDE	
4,22 596 IP#85 1920 270 74 - VII-25 IPT 79-34 IPP RECORDER 4,424 1495 M-213I 5,27/3600 209 74 - VII-25 IPT 79-34 IPP RECORDER 4,22 3493 IP#8 1920 270 74 - VII-27 CVBRIR 79-34 IPP RECORDER 4,22 3493 IP#8 1920 270 74 - VII-27 CVBRIR 79-34 IPP RECORDER 4,23 3948 IP#8 1920 270 74 - VII-29 IPB RECORDER 17P RECORDER 4,31 502 V-012 307 74 - VII-29 IPB RECORDER 17P RECORDER 4,32 200 V-0119 900 367 74 - VII-18 FNST I 7P RECORDER 4,33 4008 IP#26 1920 267 74 - VII-19 CVBRR 1P RECORDER 4,35 4006 IP#26 1920 267 74 - VII-19 CVBRR 1P RECORDER 4,35 4006 IP#26 1920 267 74 - VII-19 CVBRR 1P RECORDER 4,35 <t< td=""><td>42</td><td>S</td><td>-511</td><td>0</td><td>301</td><td>\ I I - I</td><td>ENDS 11</td><td>1</td><td></td><td></td><td></td></t<>	42	S	-511	0	301	\ I I - I	ENDS 11	1			
5422 56E IP#58 1920 69 74- VII-29 IPT 79-34 I/P RECORDER 5426 4059 M-2151 5.2773600 209 74- VII-29 IPT 79-34 I/P RECORDER 5426 3493 IP#8 1920 210 74- VII-29 IPT 79-34 I/P RECORDER 5428 3981 IP#8 2 1920 210 74- VII-29 IPT 79-34 I/P RECORDER 5428 3981 IP#8 2 1920 216 74- VII-29 IPT 79-34 I/P RECORDER 5428 3981 IP#5 1920 216 74- VII-18 ENDSIT 79-34 I/P RECORDER 5432 1002 V-0121 900 27 74- VII-18 IPPSIT 79-34 I/P RECORDER 5432 1002 V-0121 900 27 74- VIII-18 IPPSIT 79-34 I/P RECORDER 5433 1002 V-0121 900 27 74- VIII-18 IPPSIT 79-34 I/P RECORDER 5435 4002 M-269 5.2773600 248 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5436 4006 IP#26 1920 268 74-VIII-01 ITT 79-34 I/P RECORDER 5435 4002 M-269 5.2773600 248 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5435 4002 M-269 5.2773600 248 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-19 CORT 79-34 I/P RECORDER 5435 1900 27 74- VIII-18 FNDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-19 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-18 FNDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5435 1900 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 1910 20 20 27 74- VIII-18 ENDSIT 79-34 I/P RECORDER 5445 1910 1910 20 27 74- VIII-18 ENDS TI 79-34 I/P RECORDER 5445 1910 1910 20 27 74- VIII-18 ENDS TI 79-34 I/P RECORDER 5445 1910 1910 20 27 74- VIII-18 ENDS TI 79-34 I/P RECORDER 5445 1910 1910 20 27 74- VIII-18 ENDS TI 79-34 I/P RECORDER 5445 1910 1910 20 20 27 74- V	42	0	*	92	270	VII-2	TPT	1			
5424 1495 M-2131 5.2773600 209 74- VII-19 CVBRIR 79-34	42	8	P#5	92	83	VII-2	TPT	1			
5426 3493 1P#8 1920 210 74- VII-29 IPT 79-34 IP RECCROER 5428 3981 P#256 5.2773600 216 74- VII-29 IPT 79-34 IP RECCROER 5428 3987 P#256 5.2773600 216 74- VII-18/T5- IV-27 IP RECCROER 5428 3987 P#256 5.2773600 216 74- VII-18/T5- IV-27 IP RECCROER 5438 1002 V-0121 900 307 74- VII-19 IPT 79-34 IP RECCROER 5432 795 IP#54 1920 26 74- VII-19 IPT 79-34 IP RECCROER 5435 4003 M-269 5.2773600 248 74- VII-19 IPT 79-34 IP RECCROER 74- VII-19 IPT 79-34 IP RECCROER 74- VII-19 IPT 79-34	42	49	-213	.27/360	503	VII-1	CVBRIRT	9-			
1AT 5427 4000 M-256 5.2773600 216 74 - VII-27 CVBRTR 79-34 T/P RECCROER 5428 3981 TP#2 1920 270 74 - VII-29 TPT 79-34 T/P RECCROER 5428 3981 TP#2 1920 277 74 - VII-19 FDSTT 79-34 T/P RECCROER 5432 795 TP#54 1920 268 74 - VII-19 FDSTT 79-34 T/P RECCROER 5434 4002 M-269 267 74 - VII-19 FDSTT 17P RECCROER 5436 4006 1P#26 1920 268 74 - VII-19 CVBTR 79-34 5436 4006 1P#26 1920 268 74 - VII-19 CVBTR 79-34 5436 4006 1P#26 1920 268 74 - VII-10 TP-34 1/P RECORDER 5436 4006 1P#26 1920 268 74 - VII-16 FD-34 1/P RECORDER 5436 4006 1P#27 248 74 - VII-16 <	42	49	4	1920	-	VII-2	TPT		ar ar		
1 N.T. 5363 27 57.6 N 64 57.7 h 272 74 - VII-18/75 - IV-27 79-34 TVP RECCROER 5432 795 79454 900 307 74 - VII-18/75 - IV-27 79-34 TVP RECCROER 5432 795 79454 1920 268 74 - VII-18 ENDSTT 79-34 TVP RECCROER 5432 795 79454 1920 268 74 - VII-18 ENDSTT 79-34 TVP RECCROER 5432 7002 N-2619 5.27/3600 248 74 - VII-19 ENDSTT 79-34 TVP RECCROER 5435 4002 N-269 5.27/3600 248 74 - VII-19 CVBRTR 79-34 ARRAY I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42	9	-25	. 27/360	~	VII -2	CVBRTR	19-34			
NI 5363 27 57.6 64 57.7 272 74 - VII-18/75 - IV-27 79-34	45	86	₩	92	-	۷II-2	161	79-34			
5431 502 V-0121 900 3C7 74-VII-18 ENDSTI 79-34 79-34 5432 1795 PP\$4 74-VII-19 FNDT 79-34 7/P RECORDER 5432 1022 V-0119 900 27 74-VII-19 ENDSTCRT 79-34 7/P RECORDER 5434 2002 V-0109 900 27 74-VIII-19 ENDSTCRT 79-34 7/P PRECORDER 5436 4006 1P#26 1920 248 74-VIII-10 TT 79-34 7/P PRECORDER 5436 4006 1P#26 1920 268 74-VIII-10 TT 79-34 7/P RECORDER 1NT 6C15 27 50-2N 50 34-5H 264 74-VIII-10 TV 79-34 7/P RECORDER 5452 79 1 P#4 1920 272 74-VIII-10 TV 79-34 7/P RECORDER 5452 79 1 P#4 1920 277 74-VIII-10 TV 79-34 7/P RECORDER 5452 79 1 P#4	_	36	7 57.	4 57.7	272	111-18/	- 10-2			POLYMODE	
5432 795 19454 1920 268 74-VIII-01 TPT T/P RECORDER 5433 1602 V-0115 900 307 74-VII-19 ENDSTRT 79-34 1/P RECORDER 5434 2002 V-0105 1800 247 74-VII-19 CVBRTR 1/P RECORDER 5435 4006 1P#26 1920 268 74-VIII-01 TT 79-34 5436 4006 1P#26 1920 268 74-VIII-01 TT 79-34 1NT 6C15 27 50-2N 60 05.8W 7 74-VIII-01 TT 79-34 1NT 6C15 27 50-2N 50 34.5H 74-VIII-01 CVBT 79-34 1/P RECORDER 5451 79 1 1980 27 74-VIII-05 ENDSTT 79-34 1/P RECORDER 5452 90 263 74-VIII-01 CVBRTR 79-34 1/P RECORDER 5454 1980 270 240 1111-02 RRAY I 1 <	543	50	-0121	006	367	vII-18	ENDS T	79-34			
5433 1C02 V-0119 900 307 74- VII-18 ENDSTT 79-34 5434 2CC2 V-C105 1800 297 74- VII-19 ENDSTCRT 5435 4002 1P#26 1920 287 74- VII-19 ENDSTCRT 5435 4006 1P#26 1920 268 74- VII-10 TT 79-34 INT 6C15 27 50.2N 65 34.5H 264 74- VII-10 TT 79-34 AF51 1P#44 1920 272 74- VII-16 ENDST 79-34 5451 496 V-O185 900 3C7 74- VII-18 ENDST 79-34 5453 196 1920 23 74- VII-18 ENDST 79-34 5454 1996 V-O16 27 74- VII-18 ENDST 79-34 5455 1985 1P#4 1920 281 74- VIII-18 179-34 17P RECORDER 5455 1986 1P#44 1920 281 </td <td>43</td> <td>Φ</td> <td>P#54</td> <td>92</td> <td>268</td> <td>III</td> <td>TPT</td> <td></td> <td></td> <td></td> <td></td>	43	Φ	P#54	92	268	III	TPT				
5434 2CC2 V-C105 1800 257 74- VII-19 ENDSTCRT 5435 4003 M-269 5.27/3600 248 74- VII-19 CVBRTR 79-34 5436 4006 IP#26 1920 268 74-VIII-01 IT 79-34 INT 6C15 27 50.2N 60 05.8W 7 74-VIII-01 LCST ARRAY I INT 6C15 27 50.2N 55 34.5W 264 74-VIII-16 ENDSTI 79-34 T/P RECORDER 5451 496 V-0185 900 3C7 74-VIII-16 ENDSTI 79-34 T/P RECORDER 5452 900 3C7 74-VIII-02 ENDSTI 79-34 T/P RECORDER 5453 1920 281 74-VIII-04 FT 79-34 T/P RECORDER 5454 1920 281 74-VIII-04 FT 79-34 T/P RECORDER 5454 1920 281 74-VIII-04 FT 79-34 T/P RECORDER 5455 454.5W 1920 281 <td>4</td> <td>00</td> <td>-011</td> <td>9</td> <td>307</td> <td>I</td> <td>ENDS TT</td> <td>79-34</td> <td></td> <td></td> <td></td>	4	00	-011	9	307	I	ENDS TT	79-34			
5435 4002 M-269 5.27/3600 248 74- VII-19 CVBRTR 79-34 5436 4006 1P#26 1920 268 74-VIII-01 TI 79-34 INT 6C15 27 50.2N 60 36.7 74-VIII-01 LOST ARRAY I 5451 496 V-0185 90 372 74-VIII-05 ENDSTIT 79-34 1/P RECORDER 5452 496 V-0185 900 367 74-VIII-05 ENDSTICRT 1/P RECORDER 5454 1920 253 74-VIII-05 ENDSTICRT 1/P RECORDER 5455 1930 367 74-VIII-06 ENDSTICRT 1/P RECORDER 5455 1930 367 74-VIII-01 ENDSTICRT 1/P RECORDER 5456 4C64 M-266 5-27/3600 240 74-VIII-01 FT 79-34 1/P RECORDER 5457 3581 1P#4 1920 25 74-VIII-01 FR 79-34 1/P RECORDER 5461	3	S	-610	80	257	\ \ \	ENDSTCRT				
5436 4006 IP#26 1920 268 74-VIII-01 IT 79-34 INT 6C15 27 20.00 60 05.8W 7 74-VIII-01 LGST ARRAY I INT 6C15 27 53.4.5W 264 74-VIII-01 LGST ARRAY I 5451 496 V-0185 900 3C7 74-VIII-05 CPDI T/P ARRAY I 5453 796 V-0185 900 272 74-VIII-05 CPDI T/P ARRAY I 5454 1996 V-0165 900 263 74-VIII-04 TPT T/P RECORDER 5455 1986 1920 281 74-VIII-04 TPT T/P RECORDER 5456 4C04 M-266 5.27/360 240 74-VIII-04 FT 79-34 T/P RECORDER 5456 4C04 M-266 5.27/360 240 74-VIII-04 FT 79-34 T/P RECORDER 5451 3637 TP-VIII-04 FT 79-34 T/P R	43	00	-269	.27/360	248	V I I	CVBRTR				
INT 6C15 27 50.2N 55 34.5 264 74-VIII-01/ LGST	43	00	P#2	1920	268	III	11	19-34			
INT 6C15 27 50.2N 55 34.5	2	04	8 00 8	0 05.8	~	74-4111-01/	LOST			POLYMODE	
5451 496 V-0185 900 3C7 74- VII-16 ENDS II 79-34 5452 791 1P#44 1920 272 74-VIII-05 CPGT 1/P RECGRER 5453 56 V-5114 500 253 74-VIII-02 ENDSTCRT 1/P RECGRER 5454 1596 V-0165 900 3C7 74-VIII-04 TPT 1/P RECGRER 5455 1585 IP#6 1920 240 74-VIII-04 FT 79-34 1/P RECGRER 5456 4CC4 M-266 5.277/3600 240 74-VIII-04 FT 79-34 1/P RECGRER 5451 3587 74-VIII-04 FT 79-34 1/P RECGRER 5461 498 V-0118 900 307 74-VIII-06 CPDT 1/P RECGRER 5462 826 IP#55 1920 250 74-VIII-06 CPDT 1/P RECGRER 5463 598 V-0129 900 307 74-VIII-06 IPT 1/P -34 1/P RECGRER	2	C I	7 50.	5 34.5	284	VII-18/	5- V -1			POLYMCDE	
5452 791 1P#44 1920 272 74-VIII-05 CPCT T/P RECGRER 5453 596 V-5114 500 253 74-VIII-02 ENDSTT 79-34 5454 1596 V-0165 900 3C7 74-VIII-04 TPT 79-34 5456 4C64 M-266 5.27/3600 240 74-VIII-04 FT 79-34 5451 367 74-VIII-04 FT 79-34 T/P RECORDER 5451 367 74-VIII-04 FT 79-34 T/P RECORDER 5451 367 74-VIII-04 FT 79-34 T/P RECORDER 5461 498 V-0118 900 307 74-VIII-18 ENDSTT 79-34 T/P RECORDER 5462 1418 P#55 1920 277 74-VIII-18 ENDSTT 79-34 T/P RECORDER 5464 1418 P#59 1920 260 74-VIII-18 ENDSTT	545	49	-0185	90	301	\ \ \	ENDSIT	79-34			
5453 596 v-5114 500 253 74-VIII-02 ENDSTCRT 5454 1996 v-0165 900 3C7 74- VII-18 ENDSTT 79-34 5455 1986 TP#6 1920 281 74-VIII-04 TPT TPT 5456 4CC4 M-266 5.27/3600 24G 74-VIII-01 CVBRTR 79-34 5457 3587 TP#4 1920 1C5 74-VIII-04 FT 79-34 5451 3587 TP#4 1920 1C5 74-VIII-04 FT 79-34 5461 498 V-0118 900 307 74-VIII-18 ENDSTT 79-34 5462 826 TP#55 1920 277 74-VIII-18 ENDSTT 79-34 5463 598 V-0129 900 307 74-VIII-18 ENDSTT 79-34 5464 1418 TP#59 1920 2EU 74-VIII-05 TPT 79-34 1/P RECORDER 5465 159E V-5104 90 307 74-VIII-05 TPT 79-34 1/P RECORDER 5466 3622 TP#17 1920 2EC 74-VIII-05 TPT <	4	Ċ,	7	25	272	ΙΙ					
5454 1596 V-0165 900 3C7 74- VII-18 ENDSTT 79-34 5455 4C64 M-266 5.27/3600 24C 74-VIII-04 TPT 79-34 5456 4C64 M-266 5.27/3600 24C 74-VIII-01 CVBRTR 79-34 5457 3587 TP#4 1920 24C 74-VIII-04 FT 79-34 INT 5773 27 54.3N 54 54.6W 283 74- VIII-18/75- V -12 5461 498 V-0118 900 307 74- VII-18 ENDSTT 79-34 5462 826 TP#55 1920 277 74-VII-18 ENDSTT 79-34 5463 598 V-0129 900 307 74- VII-18 ENDSTT 79-34 5464 1418 TP#59 1920 2 EU 74-VIII-05 TPT 79-34 5465 3C2 TP#17 192C 2 EU 74-VIII-05 TPT 79-34 5466 3C2 TP#17 192C 2 EU 74-VIII-05 TPT 79-34 5467 4C31 M-272 5.27/360C 238 74-VIII-C5 TPT 79-34 5468 4C3C TP#3 1920 2 EU 74-VIII-05 TPT 79-34 5468 4C3C TP#3 1920 2 EU 74-VIII-05 TPT 79-34 5468 7401 M-272 5.27/360C 238 74-VIII-05 TPT 79-34 5568 7401 M-272 79-34 5578 7401 M-272 70-34 4	S	-511	0	253	1117	_					
5455 1585 TP#6 1920 281 74-VIII-04 IP1 179-34 179-34 179-34 1920 240 74-VIII-01 CVBRTR 79-34 179-34 1920 1C5 74-VIII-01 CVBRTR 79-34 179-34 1920 1C5 74-VIII-04 FT 79-34 1	45	65	-016	90	307		ENDSTT	9-3			
5456 4664 M-266 5.27/3600 246 74-VIII-01 CVBRIR 79-34 5457 3587 TP#4 1920 165 74-VIII-04 FT 79-34 INT 5773 27 54.3N 54 54.6W 283 74-VIII-18 ENDSTT 79-34 5461 498 V-0118 900 307 74- VII-18 ENDSTT 79-34 5463 598 V-0129 900 307 74- VII-18 ENDSTT 79-34 14.18 TP#59 1920 277 74-VIII-06 CPDT 5464 14.18 TP#59 1920 260 74-VIII-05 TPT 5465 3622 TP#17 192C 260 74-VIII-65 TPT 5466 3622 TP#17 192C 260 74-VIII-65 TPT 5466 3622 TP#17 192C 260 74-VIII-65 TPT 5666 3623 74-VIII-65 TPT 5666 3623 74-VIII-65 TPT 5666 3623 74-VIII-65 TPT 57-34 T/P RECORDER 5466 4631 M-272 5.27/360C 238 74-VIII-65 TPT 57-34 T/P RECORDER	4	28	*	1920	281	74-1111-04		,			
INT 5773 27 54.3N 54 54.6W 283 74- VII-18/75- V -12 5461 498 V-0118 900 307 74- VII-18 ENDSTT 79-34 5462 826 1P#55 1920 277 74-VIII-06 CPDT 5463 598 V-0129 900 307 74- VIII-18 ENDSTT 79-34 1418 1P#59 1920 260 74-VIII-05 1PT 5464 1418 1P#59 1920 260 74-VIII-05 1PT 5465 3622 1P#17 1926 266 74-VIII-65 1PT 5466 3621 N-272 5.27/3606 238 74-VIII-65 1PT 5646 4631 N-272 5.27/3606 238 74-VIII-65 1PT 5646 79-34 77 89-34 5646 4631 PH 7 79-34 5646 4631 PH 7 79-34 5646 74-VIII-65 1PT 56-34 77-78-34 56-36 74-VIII-65 1PT 56-34 77-78-34	4 4 5 6	ည်α ပ	7 7	.27/360	24C	7 9	CV BK IK	79-34			
5461 498 V-0118 900 307 74- VII-18 ENDSTT 79-34 T/P RECORDER 5462 826 TP#55 1920 277 74- VII-18 ENDSTT 79-34 T/P RECORDER 5463 598 V-0129 900 307 74- VII-18 ENDSTT 79-34 T/P RECORDER 5464 1418 TP#59 1920 26U 74- VII-18 ENDSTT 79-34 T/P RECORDER 5465 1596 V-5104 50C 3C7 74- VII-18 ENDSTT 79-34 T/P RECORDER 5466 3C22 TP#17 192C 2EC 74-VIII-C5 TPT 79-34 T/P RECORDER 5467 4G11 N-272 5.27/360C 238 74-VIII-C2 CVBRTR 79-34 T/P RECORDER 5466 4C3C TP#3 1920 2EC 74-VIII-C5 TPT 79-34 T/P RECORDER		, ,	. u	7 7 7 7	202	751-117	4			BOOKY FOR	
462 826 TP#55 1920 277 74-VIII-06 CPDT T/P 463 598 V-0129 900 307 74-VIII-06 CPDT T/P 464 1418 TP#59 1920 2Eu 74-VIII-05 TPT T/P 465 159E V-5104 50C 3C7 74-VIII-05 TPT TP-34 466 3C22 TP#17 192C 2EC 74-VIII-05 TPT T9-34 T/P 467 4G11 M-272 5.27/360C 238 74-VIII-05 CVBRIR 79-34 T/P 466 4C3C TP#3 1920 2EC 74-VIII-05 TPT 79-34 T/P	4 7 Y	ח מ	• • • • • • • • • • • • • • • • • • • •	P 0 0 0	707	VII 18	,	70-34			
463 598 V-0129 900 307 74- VII-18 ENDSTT 79-34 464 1418 TP#59 1920 2Eu 74-VIII-05 TPT T/P 465 159E V-5104 90C 3C7 74- VIII-16 ENCSTT 79-34 466 3C22 TP#17 192C 2EC 74-VIII-C5 TPT 79-34 T/P 467 4G11 M-272 5.27/360C 238 74-VIII-C2 CVBRTR 79-34 T/P 466 4C3C TP#3 1920 2EC 74-VIII-G5 TPT 79-34 T/P	0 4 †	7 0	1101	9 0	277		CPDT	, -			
464 1418 TP#59 1920 2Eu 74-VIII-05 TPT T/P 465 1526 3C7 74-VIII-16 ENCSIT 79-34 466 3C22 TP#17 192C 2EC 74-VIII-C5 TPT 79-34 T/P 467 4G11 M-272 5.27/360C 238 74-VIII-C2 CVBRTR 79-34 T/P 466 4C3C TP#3 1920 2EC 74-VIII-05 TPT 79-34 T/P	46	JO	-012	90	307		ENDS TT	9-3			
465 159E V-5104 90C 3C7 74- VII-18 ENCSIT 79-34 466 3C22 IP#17 192C 2EC 74-VIII-05 IPI 79-34 I/P 467 4G11 P-272 5.27/360C 238 74-VIII-C2 CVBRIR 79-34 I/P 46E 4C3C IP#3 1920 2EC 74-VIII-05 IPI 79-34 I/P	46	47	P#59	92	250	VIII	191				
466 3C22 TP#17 192C 2EC 74-VIII-C5 TPT 79-34 T/P 467 4G11 M-272 5.27/360C 238 74-VIII-C2 CVBRIR 79-34 468 4C3C TP#3 1920 2EC 74-VIII-C5 TPT 79-34 T/P	46	65	-510	9	307	<u> </u>	ENGSIT	79-34			
467 4611 M-272 5.27/3606 238 74-VIII-62 CVBRIR 79-34 466 463C TP#3 1920 266 74-VIII-65 TPT 79-34 T/P	46	C2	P#1	92	2 E C	4-VIII	191	79-34			
46E 4C3C TP#3 1920 2EC 74-VIII-C5 TPT 79-34 T/P	46	CI	-27	.27/360	238	-	CVBRIR	79-34			
	46	C 3	₩	92	2 60	-vI I I	TPT	8			

		111	JRE DATA
POLYMGDE	POLYMODE	POLYMODE	POLYMODE MODIFICATIONS PRESSURE, NO PRESSURE
ARRAY 1	ARRAY 1 T/P RECORDER	ARRAY 1 T/P RECORDER	ARRAY 1 TEST OF VACM MODIFIED FCR GOOD GOOD GOOD
79-34 79-34 79-34 79-34	79-34 79-34 79-34 79-34	79-34 79-34 79-34 79-34	
75- V -13 ENDS TT ENDS TT ENDS TT CV BR TR	VII-18/75- V -10 VII-16 ENDSTT III-06 TPT VII-19 ENDSTT VII-18 ENDSTT VII-18 ENDSTT	VII-18/75- V -01 VII-18 ENDSTI VIII-08 IPT VII-18 ENDSTI VII-18 ENDSTI VII-18 ENDSTI	VIII-07/ LCST XII-16/75- IV-23 XII-03 ENCSTIP XII-15 ENDSTCRI XI -27 ENDSTCRI XI -27 ENDSTCRI XI -27 ENDSTCRI
74- VII-18/75- V 74- VII-18 END 74- VII-18 END 74- VII-18 END 74- VII-19 CVB	74- VII-18/ 74- VII-16 74-VIII-06 74- VII-19 74- VII-18	74- VII-18/ 74- VII-18 74-VIII-08 74- VII-18 74- VII-18 74- VII-18	74-VIII-07/ LCST 74-XII-16/75- I 74-XII-03 END 74-XII-15 END 74-XII-15 END 74-XII-27 END 74-XII-27 END
284 306 307 254	279 307 276 293 307	269 265 367 367 367	2 1130 1176 1176 1176
54 56.5W 900 900 900 5.27/3600	60 04.3W 900 1920 1800 900 900	60 00.6W 900 1920 500 5.27/3600	69 02.4m 69 58.2W 900 450 450 450
28 12.6N V-0201 V-0134 V-0141 M-257	31 01.5N V-0114 TP#7 V-0103 V-5109 V-0182	33 59.2N V-0138 TP#13 V-5113 M-2127 V-5117	36 02.6N 36 C1.6N V-120 V-5101 V-5108 V-5102 V-5105
5785 496 596 1596 4000	5550 500 814 1000 2001 4001	4687 502 810 1602 2002 4002	4894 4533 1484 1598 2000 2002 2002
547 INI 5471 5473 5474 5474	548 INT 5481 5481 5482 5483 5485	549 INI 5451 5452 5452 5453 5453	550 INT 551 INT 5511 5512 5513 5514

*MOORING *NG. #1YP	T + C E P	 TH*LATITUDE*	L CNG.	 *CAYS	۱ ×	1 1 1 - 3	/RECOVERED) *REPORT*	1* CCMMENTS *
* NC.	1#	EPTH*INSTR.*	SAMPLING	*EAYS	*DAT	A START*	T* VAKIABLES*REPORT*	S*REPOF	1
552 INT 5521	3540	38 10.6N 7 V-0139	69 35.5W 225	1 14	75-	11 -04 11 -04	-04/75- 11-16 -04 ENDSTCRT	H	TEST OF SETTING MOCRING OFF RUSSIAN SHIF 1 DAY SEA DATA
4	(1)	31 46	99	(-17/76- I -26	•	BERMUDA MICRCSTRUCTURE ARRAY
5531 5532	30 6 506	5 V-0183 5 DT-5106	500 450	285	75-	1V -1 / 1V -18		Σ Σ 	h
5 5 5 7 7 8	73	TP#15	19 20 900	~ ∝		1V -29	9 TPT 7 ENDSTERT		T/P RECORDER
50	0	M-26	5.27/3600	~		•			VANE, RCICR APPEAR STICKY NEAR END
554 INT	4114	2 21	65 27.0W	-		10 -17	-11/76- 1 -26	.=	BERMUDA MICROSTRUCTURE ARRAY
	-	10-A	006	285	75-	>		T TM	11:
54	-	V-010	006	8					2
54	~	4	1920	7					1/P RECORDER
5544	1013	<u> </u>	006	ထ		IV -17		T TM	
54	51	M-260	5.27/3600	-			3 CVBRIRT		VANE, RCTOR APPEAR STICKY, STUCK
Z	4527	2 59	99	_	-51	v -02	-02/76- I -25		BERMUDA MICRGSTRUCTURE ARRAY
55	-	V-011	S	6	75-	v -02	ENDSTT		
5555	916	07-51	450	101	75-	>		Ψ.	BATTERY GAS CAMAGES TAPES
3,	S	TP#1	2	2	75-				ORDER
13 13	9	DI-51	S	-	75-	>	B ENDSITT		BATTERY GAS DAMAGES TAPES
S S	c	N-0	45	267	75-			Σ 	
R)	~	M-217	0	~	75-			Σ	TEMPERATURE ONLY, VANE, ROTOR STUCK
55	C1	M-274	S	Ç	75-	٧ -02	CVDSTT	X H	
556 INT	•	33	Ū		75-		1715- V -17		TEST MOORING FOR CIRCULATOR INSTRUMENT
5561	1329	Σ	5.27/1800	21	75-	1V -29	-29 CVBRTRT	_	NOS MODIFIED MOD

THE PROPERTY OF THE PROPERTY O

ARRAY 2, SET I POLYMODE T/P RECORDER T/P RECORDER	ARRAY 2, SET I POLYMODE T/P RECORDER ARRAY 2, SET I POLYMODE	ARRAY 2, SET 1 POLYMODE T/P RECORDER ARRAY 2, SET 1 POLYMODE ARRAY 2, SET 1 POLYMODE
78-49 78-49 78-49 78-49 78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49 78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49 78-49
75-XII-I8 ENDSICRI TPT ENDSICRI TPDFCT ENDSITP TPDT TPDT TPDT TPDT TPDT	FOUNDSTRT TPT CVBRTRT CVBRTRT TPDT ENDSTCRT TPT TPT TPT TPT TPT TPT TPT TPT TPT T	75-X11-06 TPT CVBRTRT 75-X11-08 CVBRTRT TPDT 75-X11-08 CVBRTRT TPDT
IV -17/ IV -17/ V -05/ IV -19/ V -07/ V -07/ V -06/ IV -17/ V -06/ V -06/	V - 066 V - 666 V - 063 V - 066 IV - 117 V - 117 V - 063 IV - 117	V -08/ V -04/ V -04/ V -04/ V -04/ V -104
75- 75- 75- 75- 75- 75- 75- 75- 75- 75-	75- 75- 75- 75- 175- 175- 175- 175- 175-	75- 75- 75- 75- 75- 75- 75- 75-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.5h 223 216 600 222 600 223 600 223 218 218 219 600 223 600 223	7h 215 202 216 00 217 00 217 2w 216 00 218
55 05. 500 1920 900 1920 1920 1920 1920 1920	54 40. 900 1920 5.27/36 1920 1920 1920 1920 1920 1920	54 59. 1920 5.27/36 55.27/36 1920 54.59. 5.27/366
35 55.7N V-0112 TP#34 V-0107 TP#46 V-C205P TP#45 TP#45 TP#67 V-0109	35 56.8N V-159 TP#42 M-227T TP#68 V-C126 TP#24 TP#24 TP#24 Y-0127 TP#36 M-175T V-C133	41 29.1N TP#27 M-259T 40 28.0N M-250T TP#11 39 29.0N M-240T TP#5
5683 600 829 1000 1204 1499 2602 2503 3501 0 4001 1 4505	5379 606 1008 1506 2592 4007 1 4573 5478 596 1497 3995	4774 3547 3554 5171 3582 4165 4000 4173
557 1 NI 5571 5571 5571 5572 5573 5575 5576 5578 5578	558 1NT 5581 5583 5584 5585 5585 5581 5591 5592	560 INI 561 5602 561 INI 5611 5612 5621 5621

The first of the second field filled in a continue to the second in a second continue to

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们就是一个人,我们就会 第二十二章 第二

**************************************	E * 0 E + 0 E	H*LATITUD	E* LONG. *D	AYS*	SFT SFT DATA	/RECOVERI	ED *REPORT	T* COMMENTS	i i i
563 INT 5631 5631 5632	5353 3999 4065	38 29.8N M-215T TD#28	54 58.0W 2 5.27/3600 2 1920 2	17	75- V -(775-	05/75-XII-0 05 CVBRTI 08 PT	09 R; 78-49 78-49	ARRAY 2, SET 1 POLYMOD	YMODE
564 INT 5641 5642 5642 5643 5644	5350 590 826 990 1490	37 29.5N V-0204 TD#41 V-0184 M-276T	55 00.0W 2 900 2 1920 2 900 2 900 2 900 2 900 2 900 2 900 2 900 2 900 2	587118	75- 1V 75- 1V 75- 1V 75- 1V 75- 1V 175- 1V	18 75-X II -1 (18 ENDS TCI 11 TP OP CT 17 ENDS TCI 06 CV BR TR 17 ENDS TCI 17 ENDS TCI 17 ENDS TCI 17	10 CRT 78-49 I 78-49 CRT 78-49 RT 78-49 CRT 78-49	ARRAY 2, SET 1 POLY	01 Y*00E
565 INT 5651 5651 5652 5653 5654 5654 5656	5162 646 840 1046 1546 3035 4046	35 36.0N V-0108 TD#33 V-0113 M-173T TD#69 V-0117	55 04.9% 2 900 1920 900 5.27/3600 2 1920 1920	12152188 12162188 12162188	75- 1V 75- 1V 75- 1V 75- 1V 75- 1V 75- 1V 75- 1V 75- 1V	17/75-XII-1 17 ENDSTCI 12 TPDPCT 17 ENDSTCI 07 CVBRTR 11 TPDT 11 ENDSTCI 12 TPDT	18 CRT 78-49 T 78-49 CRT 78-49 RT 78-49 CRT 78-49	ARRAY 2, SET 1 POLYMOO	YMOD E
566 INT 5661 5662 5662 5663 5664	5516 604 807 1005 1505 4006	34 53.4N V-0135 TD#38 V-0137 M-191T	55 01.6h 2 900 1920 900 5.27/3600 2 900	523333	75- 1V - 775- 1V - 75- 1V - 75	17/75-XII-1 17 ENDSTC 11 TP DP CT 18 ENDSTC 08 CVBRTR 17 ENDSTC	CRT 78-49 T 78-49 CRT 78-49 RT 78-49 CRT 78-49	ARRAY 2, SET 1 POLYMOD	YMOD E
567 INT 5671 5672 5673 5673	5296 628 831 1028 1528 4030	31 35.8N V-0178 TD#40 V-0179 M-277T	55 04.9W 2 900 1920 2 900 2 900 2 900 2 900 2 900 2 900 2 900 2 900 2 900 2 900 2	57	75- IV - 75-	17/75-XII-1 17 ENDSTC 16 TPDPCT 17 ENDSTC 13 CVBRTR 17 ENDSTC	CRT 78-49 T 78-49 CRT 78-49 RT 78-49 CRT 78-49	ARRAY 2, SET I POLYMOD	YMODE

ARRAY 2, SET 1 FOLYMODE	IN CONJUCTION WITH *ALVIN* DIVES GOOD GOCD	GIBBS FRACTURE ZONE GOOD BEFORE ELECTRICAL FAILURE	GIBBS FRACTURE ZONE	ARRAY 2, SET 2 POLYMODE T/P RECORDER	ARRAY 2, SET 2 POLYMODE T/P RECORDER	ARKAY 2, SET 2 POLYMODE T/P RECORDER
78-49 78-49 78-49 78-49		Z Z Z	3333 4444	78-49 78-49	78-49 78-49	78-49 78-49
75-XII-19 ENDSTCRT TPEPCT ENESTCRT CVBRTRT ENDSTCRT	5-V111- ENDSTC ENDSTC 6- VI-2	76- VI-26 ENDSTCRT ENDSTCRT ENDSTCRT	76- VI-26 ENDSTCRT ENDSTCRT ENDSTCRT ENDSTCRT	76- X -07 CVBRTR C TP DP T	76- X -09 CVBRIRI IPDPI	76- X -10 CVBRIRT TPCPI
5- 1V -17/ 5- 1V -17 5- V -18 5- 1V -17 5- V -03 7- V -03	5-VIII 5-VIII 5-VIII	7 7 7 7 7 X X X X X X X X X X X X X X X	5- 1x -16/ 5- 1x -16 5- 1x -16 5- 1x -16 5- 1x -16	75- XII-06/76- 75- XII-05 CV 75- XII-09 TP	'5- XII-06/76 '5- XII-06 '5- XII-10	75- XII-07/ 75- XII-07 75- XII-10
59 01.6W 219 7 900 257 7 1920 214 7 5.27/3600 231 7 900 257 7	71 18.2W 4 7 28.125 8 7 28.125 8 7 33 59.2W 272 7	31.0W 273 00 295 00 62	35 30.0W 273 7 900 294 7 900 295 7 900 295 7	54 58.6W 306 7 5.27/3600 331 7 1920 3C2 7	55 03.0W 3C7 7 5.27/3600 331 7 1920 3C2 7	54 59.9% 3C8 7 5.27/3600 330 7 1920 3C3 7
35 55.8N V-0163 TP#39 V-0164 M-2051	39 C1.2N V-110 V-2C1 52 42.7N	-012 2 53 -013 -013	52 46.1N V-0121 V-0118 V-0165 V-0161	41 29.3N M-273T TP#G3	46 27. IN M-266T TP#48	3C 30.2N M-264F TP#C2
5205 595 813 1606 1566	2941 2841 2934 4288	A 0.0 m 0	2358 584 2514 3046 3346	4758 4001 3556	5177 3595 4185	5264 3993 4190
568 1 NT 5681 5681 5682 5683 5684	569 BTM 5651 5652 5652	O Zama	572 INT 5:21 5722 5722 5723	573 INT 5731 5731	574 INT 5741 5742	575 INT 5751 5752

NO STATES OF THE PROPERTY OF T

	E*CEPT	H*LATITUDE	* TCV6 *	CAYS*	SET	1 / 1	ECOVEREC	*REPORT*	CCMMENTS
o i	*DEP1	**************************************	4	CAYS	DATA	RI	VAR IABLES*		MMENTS
576 INT 5761 5762	5340 3597 3592	38 29 M-257 TP#22	54 5 5.27/ 1920	367 230 363	75- X 75- X 75- X	11-07/ 11-07 11-11	76- X -10 CVBRTRT TPEPT	78-49	ARRAY 2, SET 2 POLYMODE T/P RECORDER
577 INT 5771 5772 5772 5773 5773	5310 588 785 785 1495 3995	37 28.7N V-5101 TP#05 V-0185 M-2561 V-5108	55 CO.9W 900 1920 900 5.27/3600	3 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	75-7 75-7 75-7 75-7 75-7 75-7 75-7 75-7	II-16/ I -25 II-12 II-09 II-09	76- X -12 ENDS TCRT TP DP CT ENDS TCRT CV BR TR T EN DS TCRT	78-49 78-49 78-49 78-49	ARRAY 2, SET 2 POLYMODE T/P RECORDER
578 INT 5781 5782 5782 5783	5463 577 790 780 1483 3585	35 58.3N V-0141 TP#50 V-0105 M-2381 V-5113	53 45.4m 900 1920 900 5.27/3600	M M M M M M M M M M M M M M M M M M M	200000 100000 110000 10000	XII-11/7 XI -26 XII-13 XII-03 XII-09 XII-09	F6- X -05 ENDSTCRT TPDPCT ENDSTCRT CVBRTRT ENDSTCRT	78-49 78-49 78-49 78-49	ARRAY 2, SET 2 POLYMODE T/P RECORDER
579 INI 5751 5752 5752 5753 5754 5755	5338 596 758 758 1497 2255 4000 4560	35 55.7N V-0201 TP#13 V-5104 M-2061 TP#68 V-C114	54 41.8W 900 1920 900 5.27/3600 1920 1920	298 341 212 667 259 340 253	277 -	XII-12/7 XII-26 XII-16 XII-11 XII-10 XII-14 XII-14	FOURTH TO THE TO THE TO THE TO THE TO THE	78-49 78-49 78-49 78-49 78-49 78-49	ARRAY 2, SET 2 POLYMODE T/P RECGRDER T/P RECORDER
580 INI 5801 5802 5803 5803 5804	5507 587 602 990 1454 3595	31 35.2N V-0326 TP#43 V-0103 M-213T V-5109	54 56.0W 900 1920 900 5.27/3600	2248 248 248 248 248 248 248 248 248 248	× × × × × × × ×	11-15/7 1 -26 11-17 1 -28 11-13	6- X -19 ENDSTCRT IPDPCT ENDSTCRT CVBRTRT ENDSTCRT	78-49 78-49 78-49 78-49	ARRAY 2, SET 2 POLYMODE T/P RECORDER

ARRAY 2, SET 2 POLYMUDE T/P RECORDER	ARRAY 2, SET 2 POLYMODE 1/P RECORDER 1/P RECORDER	ARRAY 2, SET 2 POLYMODE T/P RECORDER T/P RECORDER T/P RECORDER T/P RECORDER	ARRAY 2, SET 2 POLYMODE I/P RECORDER TEST OF REDEPLOYABLE KEVLAR	ENGINEERING MOORING MOCIFIED TO INCLUDE PRESSURE
78-49 78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49	
FNDS TCRT TPDPCT ENDS TCRT ENDS TCRT CVBRTRT ENDS TCRT	76- X -15 ENDSTCRT CVBRTRT TPDPT ENDSTCRT TPCPT	76- X -14 ENDS TCRT TPDPCT ENDS TCRT TPDPCT CVBR TRT PDPT TPDP 7 ENDS TCRT TPT TPT	-20/76- X -02 -21 TP GP CT -28 ENDS TCRT -19 CV BR TRT -25 EN CS TCRT	28/76- 1V-16 28 ENDSTIP
XII-17/ XI -26 XII-20 XI -25 XII-15	XII-18/76- XI -26 XII-01 XII-20 XI -25 XI -25	XII-18/76 XII-02 XII-21 XII-21 XII-10 XII-21 XII-19 XII-19	XXXXX X	ı ı X
137	727	127 127 127 127 127 127 127 127 127 127	75-75-75-75-75-75-75-75-75-75-75-75-75-7	75-
22222222222222222222222222222222222222	303 319 342 295 295	362 3993 3294 3294 2295 2593 2593	2288 2329 242 2333	116 143
55 04.7W 900 1920 900 5.27/3600	55 05.0% 900 5.27/3600 1920 900 1920	55 02.5h 900 1920 900 1920 1920 1920 1920	59 01.5h 1920 900 5.27/3600 900	69 54.3k 900
34 55.6ii V-0182 IP#54 V-0324 M-209T	35 36.0.1 V-0115 M-2721 1P#C7 V-5117	35 52.53 V-0327 IP#23 V-0110 IP#57 M-2C71 IP#17 V-5105 IP#12	35 56.9N 1P#47 V-0101 M-2121 V-5110	39 47.0N V-C12CP
5562 587 835 590 1494 3995	5107 588 1495 3106 3596	5043 605 815 1008 1219 1492 2006 3011 0 3593 1 4512 2 5012	5202 814 814 536 1499 4000 1584	1463
581 INT 5811 5812 5813 5813 5814	582 INT 5821 5821 5824 5825 5825	583 593 598 5983 5983 5983 5983 5983 598	584 INT 5842 5843 5844 5845 5845	586 INT 5861

*MCORING *NO.*TYPE *DATA * NC.	E * D E P T I * D E P T I	*MGORING	* LONG. *	*DAYS*	YS* SET YS*DATA	T - START	/RECOVERED *REPURT* 	*REPURI *REPORI	CCMMENTS
587 INT 5871 5872	496 145 295	39 56.1N V-0117 V-0112	71 02.9w 900 900	181 196 196	76- 76- 76-	1 -28 1 -28 1 -28	-28/76-VIII-08 -28 ENDSTURT -28 ENDSTURT	80-3 80-3	SHELF/SLOPE ARRAY NO ROTOR, PIVOT BROKE AT LAUNCH
588 INT 5881 5382	2305 305 V 2005 V	39 36.6.4 V-0178 V-010·9	70 56.5W 900 900	180 196 196	76- 76- 76-	1 -28 1 -28 1 -28	-28/76-VIII-08 -28 ENDSTCRT -28 ENDSTCRT	80-3 80-3	SHELF/SLOPE ARRAY
589 INT 5851	2645 1995	39 16.9W V-0107	70 50.0W 900	180	76- 76-	1 -28	-28/76-VIII-08 -28 ENDSTCRI	80-3	SHELF/SLOPE ARRAY
590 INT 5901	502	39 42.5N V-0163	71 47.0W 900	183	76- 76-	1 -28, I -28	-28/76-VIII-11 -28 ENDSTCRT	80-3	SHELF/SLOPE ARRAY
591 INT	500	39 54.7N	69 23.4W	155	-92	90-111	111-05/76-1111-07		SHELF/SLOPE ARRAY
592 INT 5921 5923 5924 5925 5925	572 95 144 193 243 263	17 43.8N V-0108 V-0139 V-0181 V-0164 V-5116	64 56.54 56.25 56.25 56.25 56.25	0 m m m v v v v v v v v v v v v v v v v	76- 76- 76- 76- 76-	111188111111111111111111111111111111111	-18/76- 1V-27 -18 ENDSTCRT -18 ENDSTCRT -18 ENDSTCRT -18 ENDSTCRT -18 ENDSTCRT	77-41 77-41 77-41 77-41 77-41	SAINT CRUIX MODRING

INDEX	RESET AS MOORING 597 INDEX T/P RECORDER	INDEX I/P RECURDER	INDEX T/P RECORDER	RESET OF MOORING 594INDEX
8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A A A A A A A A A A A A A A A A A A	A P P P	
F7- I -02 ENDSTCRT CVBRTRT CVBRTRT	776- VJ-JJ ENESTT TPT CVDSTT CVDSTT CVDSTT	77- 1 -04 ENDSTCRT CVBRTRT CVBRTRT TPT	76-X11-31 TPT ENDSTCRT CVBRTRT CVBRTRT	FACT 1 -01 ENDSTT ENDSTT ENDSTT
-16/77- -10 EN -08 CV -13 CV	-10/ -115 -15 -11- 71-	-10/7 -10 -09 -09 -20	-21/76- -21 -10 -12 -19	-14/7 -14 -14 -14
>>>>	>>>>>	<i>>>>></i>	>>>>	>>>>
76- 76- 76-	76- 76- 76- 76- 76-	76- 76- 76- 76-	76- 76- 76- 76-	76- 76- 76- 76-
234 239 233	28 112 123 23	231 240 241 146 227	226 222 240 236 227	202 1 5 5 199 199
50 28.3W 900 5.27/3600 5.27/3600	52 58.9W 900 1920 5.27/360U 5.27/3600 5.27/3600	53 0C.0W 900 5.27/3600 5.27/3600 1920	0 00.0W 1920 900 5.27/3600	52 58.9% 5.27/3600 5.27/3600 5.27/3600
0 03.0N V-0106 M-240T M-142T	0 00.9N V-C111 IP#63 M-2601 M-2151	1 30.0N V-0184 M-2761 M-2771 TP#27	0 00.1N TP#61 V-0183 M-2711 M-2621	C CO.9.4 V-U111 M-215T M-261T
5082 203 1500 3545	5674 250 1500 250 250 250 250 250	5117 202 1500 3542 4551	4711 254 551 1550 3595	5672 201 2508 3544
593 INT 5931 5923 5934	594 INT 5941 5942 5943 5943 5944	595 5951 5951 5953 5953	596 INT 5961 5962 5962 5963	597 INT 5971 5974 5975

0	# C E P T I	*NG**1YPE*CEPTH*LATTOUE* *DATA	LCNG.	* C A Y S: * C A Y S: * C A Y S:	* SET * CATA	/R	ECOVEREC VARIABLES	*REPORT* - * PEPORT*	* CCMMENTS * COMMENTS *	1 1 1
598 INT 5981 5981 5983 5984 5984	5206 600 1000 1500 4000	35 55 3N V-6379 V-0109 M-2701 V-0165	59 02.3 M 900 900 3600 900	238 238 238 255	76- 13 76- 13 76- 13 76- 13	x -14/7 x -14 x -20 x -01 x -15	77- V -28 ENDSTCRT ENDSTCRT ENDSTCRT ENDSTCRT	78-49 78-49 78-49	ARKAY 2, SET 3	POLYMODE
599 INT 5951	5457	35 57.4N V-0136	55 27.8h 900	239	76- 1)	x -14/7 x -14	7- V -29 ENDSTCRT	78-49	ARRAY 2,SET 3	POL YMODE
600 1N1 6001 6002 6003 6004 6006 6006	5318 7965 7966 1498 3595	35 55 3N V-0108 TP#42 V-0381 Y-1757 TP#27 V-C179	54 44.4% 900 1920 900 3600 1920 900	2000 2000 2000 2000 2000 2000 2000	76- 10 76- 10 76- 10 76- 10 76- 10	1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FNDSICRT ENDSICRT ENDSICRT ENDSICRT ENDSICRT ENDSICRT ENDSICRT ENDSICRT ENDSICRT EPTPCT	78-49 78-49 78-49 78-49 78-49 78-49	ARRAY 2, SET 3 I/P RECORDER I/P RECORDER	POL YMODE
601 INT 6011 6013 6014 6015	5467 603 1603 1563	35 51.5N V-0375 V-0177 M-2501 V-C195	53 46.9h 900 900 3600 900	238 239 239 239 257	76- 1X 76- 1X 76- 1X 76- 1X	x - 114/7 - 114 - 114 - 103	77- V -30 ENDSTCRT ENDSTCRT ENDSTCRT ENDSTCRT	78-49 78-49 78-49 78-49	ARRAY 2, SET 3	POLYMODE
602 INT 6021 6022	4772 3993 3583	41 29.4N V-0112 TP#72	54 58.0W 900 1920	274 301 271	76- 1) 76- 1) 76-)	x -17/7 x -17 x -09	77-VII-09 ENDSICRT CPTPCT	78-49	ARRAY 2, SET 3 T/P RECORDER	POLYMODE
603 INI 6031 6032	5173 3596 4239	46 27.1N V-U107 TP#85	55 03.0W 900 1920	272 298 269	76- 1) 76- 1) 76- 1)	x -20/7 x -20 x -10	7-V11-08 ENDSTCRT CPTPCT	78-49	ARRAY 2,SET 3 1/P RECORDER	POLYMODE
604 INT 6041 6042	5266 4002 4217	39 29.2N V-0133 TP#82	55 00.8W 500 1920	270 294 267	76- 1) 76- 1) 76- 1)	x -24/7 x -24 x -11	7-VII-07 ENDSICRI EPTPCT	78-49 78-49	ARRAY 2, SET 3 T/P RECORDER	POLYMODE

POL YMOD E	POLYMODE	POL YMODE	POL YMCDE
ARRAY 2,SET 3 1/P RECORDER 1/P RECORDER	ARRAY 2,SET 3 T/P RECORDER	ARRAY 2.SET 3	ARRAY 2, SET 3 T/P RECORDER T/P RECORDER T/P RECORDER T/P RECORDER
78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49	78-49 78-49 78-49 78-49 78-49 78-49 78-49
-17/7-VII-05 -17 ENDSTCRT -13 EPTPCT -17 ENDSTCRT -13 EPTPCT	7-VI I-G5 TI ENDS TCRT ENDS TCRT	77-VII-04 ENDSTTP ENDSTCRT ENDSTCRT ENDSTCRT	T-V11-04 ENDS1TT EPTPCT ENDSTCRT ENDSTCRT CPPT CPPT CPTPCT CPTPCT CPTPCT TPT TPT
IX -17/7 IX -17 X -13 IX -17	X -114/7 X -114 IX -123 IX -23	IX -21/7 IX -21 IX -17 IX -13 IX -13	1
76- 76- 76- 76-	76- 76- 76- 176- 176-	76- 1 76- 1 76- 1 76- 1	76- 76- 76- 76- 76- 76- 76- 76- 76-
267 301 301 301 264	266 262 305 304 304	264 300 300 300 300	2001 2001 2003 2003 2003 2003 2003 2003
54 56.1W 900 1920 900 1920	54 59.6W 1920 900 3600 900	40°00 55 900 900 900	55 C4.6h 900 1920 900 3600 1920 1920 1920
38 28 8N V-0178 TP#81 V-0117	37 29.3N TP#41 V-0181 M-214T V-G121	36 30.0N V-0205 V-0113 V-0131 V-0373	35 52.8N V-0129 TP#34 V-0193 N-173T TP#19 TP#19 TP#74 TP#74
3400 4003 5246 5246	334 814 1014 1513 4013	1548 1548 1548 1548	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
605 INT 5 6051 6052 6053 6053	606 INT 5 6062 6063 6064 6065	607 INT 5 6071 6072 6073 6073	608 INT 5 6081 6082 6082 6085 6085 6087 6089

*MOORING	E * C E P T	H*LATITUDE	* LGNG.	AYS	+ SE	ı - -	/KECOVERED	*KEPURT*	CCMMENTS		
* DAT	*UEPI	H*INSTR*	SAMPLING *	CAYS	*DATA	STAR	T* VARIABLES	S*REPORT	* COMMENTS	 	. !
1 N I	115	5 35 -016	55 04.	261 298	76- 76-	-1-	/ 77-V I I -04 ENDS ICR	8-4	ARRAY 2, SET 3	HOLYMODE	
6093 6094 6095 6095	1000 1500 3117 4000	036 191 #79	900 3600 1920 900	302 294 257 257 258	76- 76- 76-	7777 ××××	5 ENDSTCR1 3 EVDSTT 7 DPTPCT 0 ENDSTCR1	78- 78- 78- 78-	T/P RECCRUER		
50	00	-01 P#E	9 2	308 257	76- 76-	-1-	ENDS1C DPTPCT	7 78-4 78-4	T/P RECORDER		
610 INT 61C1 61C2 61C3 61C3	5487 598 998 1496 3598	35 14.5N V-0127P V-0163 V-0126 V-C386	55 00.04 900 900 900 900	266 293 293 307 300	76- 76- 76- 76-	1 X - 2 C	8/77-VII-03 8 ENDSTIP 0 ENDSTCRI 4 ENDSTCRI 7 ENDSTCRI	78-49 T 78-49 T 78-49 T 78-49	ARRAY 2, SET 3	POLYMODE	
611 INT 6111 6112 6112 6113	5566 601 796 1601 1501	34 55.5N V-0199 TP#38 V-0371 M-2591	55 04.8W 900 1920 900 3600	256 204 304 204 294	76- 76- 76- 76-	X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4/77-V11-02 4 ENDSTCRT 9 DP TPCT 5 ENDSTCRT 3 ENDSTT	7 78-49 78-49 7 78-49 7 78-49	ARRAY 2,SET 3 T/P RECORDER	POLYMODE	
612 INT 6123 6123 6124 6125 6125 6127 6128	5555 803 763 1003 2502 2503 4003	31 35.2N V-0138 TP#40 DT-5115 V-0204 V-0180 V-0180 V-0135	54 56.0W 900 1920 900 900 900 900	2246 2422 2422 2422 2422 2422 2422 2422	76- 76- 76- 76- 76- 76- 76-	1111111 XXXXXXX	3/77- VI-21 ENDSTCRT EPTPCT ENDSTTT O ENDSTCRT ENDSTCRT ENDSTCRT ENDSTCRT ENDSTCRT	7 8-49 78-49 78-49 1 78-49 1 78-49 1 78-49	ARRAY 2, SET 3	POLYMODE	
613 INT 614 INT	5581 5581	31 33.7N 31 32.0N	50 00.2W	82	76- 76-	× -10	19/77- VI-21 20/77- I -10		ENGINEERING TEST PARAFLUX EXPERIMENT	ST 1MENT	

#MUORING #NG*#1YP #DA1A NG*	E + C E P T + O E P T	H*LAIITUDE H*INSTK.*	* LONG. *	CAYS	* SE * DATA	STARTA	RECOVEREC VARIABLES	*REPOR	T* COMMENTS
615 6155 6155 6155 6155 6155		31 32 7N V-0115P DT-5106 DT-5107 V-0141 V-0114	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	168 203 203 177 177	77- -07- -07- -07- -07- -07- -07-	1	ENDSPTT ENDSPTT ENDSTTT ENDSTTT ENDSTT ENDSTT ENDSTT	22 22 23	INTERNAL WAVE EXPERIMENT MODIFIED TO INCLUDE PRESSURE
2 Z 2 Z	2593 1995 2756	54 032 010	0 0	- 200	77-77	2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	78- V - ENDST ENDST		WESTERN BOUNCERY UNDERCURRENT PRESSURE DRIFTS 12 DBS
617 INT 6171 6172 6172	36C1 6O1 2C02 3602	30 32.1N V-0201P V-5101 V-5102	75 06.0% 900 900 900	357 398 379	77- 77- 77-	V -14/ V -09 IV -20 IV -21	78- V -O6 ENDSTT ENDST	232	WESTERN BOUNDERY UNDERCURRENT
618 INT 6181 6182 6182	4002 3003 3602	30 43.2N V-0110P V-0431 V-0105	74 11.0% 900 900 900	353 371 372	77- 77- 77-	V -15/ V -09 IV -27 IV -26	78- V -03 ENDSTTP ENDSTT ENDST	Z Z Z 	WESTERN BOUNDERY UNDERCURRENT TEN LCW CRDER TOP BITS =0
619 INT	4557	30 48.3N	74 00.5W	۷	-11	v -15/	LCST		WESTERN BOUNCERY UNDERCURRENT
620 SUB 62C1 62C2 62C2	5187 1558 2558 4587	31 03.5N V-120P V-5110 V-0433	73 28.8% 900 900 500	353 359 370	77- 77- 77-	v -15/ v -09 IV -20 IV -27	78- V -02 ENDSTTP ENDSTT ENDSTT	222 444	WESTERN BOUNCERY UNDERCURRENT

BOTTOM MIXED LAYER EXPERIMENT	BOTIOM MIXED LAYER EXPERIMENT	&	MOUNTED ON RELEASE CLUSTER B POLYMODE CHANNEL A GNLY	CLUSTER B POLYMODE	CLUSTER B POLYMODE MOTOR DRIVER BOARD MALFUNCTIONED
******* *******	0 K	SAT SAT SAT SAT SAT	SAT SAT SAT SAT SAT	SAT SAT SAT SAT	SAT SAT SAT SAT
ENDSTTT ENDSTTT ENDSTTT ENDSTTT ENDSTTT ENDSTTT ENDSTTT	77-VIII-18 ENDSTT		78- V -25 TP T ENDSTT ENCSTT TP T ENDSTT	4/78- V -25 4 ENDSTT 4 IPT 4 ENDSTT 4 IPT 3 ENDSTT	- V -25 ENDSTI IPI ENDSTI IPI ENDSTI
-177 -05 -22 -22 -22 -22	-18/77 -26	-11/ -21 -12 -12 -31 -03		-14/ -14 -14 -04 -14	-13/78 -15 -15 -31 .
V 22 V -	v -77		7	HHH7337 >>> >	>>> >
4044444	70	നനയയപയനം	n r v a a v v v		-77 -77 -77 -77
25 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8w 9	3 0 0	* *****	E 347 346 0 386 0 386 0 387 0 387	346 100 344 355 344 400
46 26 26 4 45 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	70 24.8 450	41 07-7 900 1920 1920 1920 1920 1920 1920 1920	920 27/360 27/360 27/360 520 27/360	40 21.1 900 1920 5.27/3601 1920 5.27/360	41 12.84 900 1920 5.27/3600 1920 i.27/3600
28 31.0N 2 V-0325 3 DT-51C4 5 DT-5117 6 DT-5116 8 DT-5116 8 DT-51C3	28 31.0N 8 V-0183	27 24.8N 8 V-5113 6 TP#20 3 TP#44 6 M-1421 1 TP#67 7 M-2561	27 1. 27 1. 27 1. 28 M-152 2. 20 M-152 2.	27 14.5N 5 V-0106 3 IP#5 8 M-206C 7 IP#29 0 M-26IT	26 52.7N V-0434 IP#37 M-2121 5 IP#45 M-227C 5
24 20 20 20 20 20 20 20 20 20 20 20 20 20	5453 541	425 425 425 425 435 435 435 435 435 435 435 435 435 43	244444	4723 186 1488 2607 3990	4315 215 215 507 1514 2621 4C15
621 SLB 6211 6212 6213 6214 6215 6215	622 SUB 6221	623 SUB 6231 6232 6234 6235 6235 6235	24 SU 624 624 624 624 624 624	625 SUB 6251 6252 6253 6253 6254	626 SUB 6261 6262 6263 6263 6264

CLUSTER B POLYMODE WATER IN CASE-NG ROTOR VALUES	CLUSTER A POLYMODE ROTOR QUIT APRIL 15 NO ROTOR AUG.15 TO JAN.15	CLUSTER A POLYMODE CLOCK DRIFTS 13H. AFTER MARCH 1	CLUSTER A POLYMODE	CLUSTER A POLYMODE	CLUSTER A POLYMCDE NO ROTGR VALUES AFTER DEC. 2
SAT SAT SAT	SAT SAT SAT	SAT SAT SAT SAT	S S S S S S S S S S S S S S S S S S S	SAT SAT SAT SAT	SAT SAT SAT
78- V -24 ENDSIT TPT ENDSTT IPT ENESTT	78- V -22 ENDSTT ENDSTT TPT ENDSTT	78- V -22 ENDSTT TPT ENDSTT TPT TPT	77- V -21 ENDS TT TP T ENDS TT TP T TP T	78- V -18 ENDSTT 1PT ENCSTT TPT ENDSTT	78- V -20 ENDSIT ENDSIT TPI EVDSIT
-114/ -20 -15 -16 -16	-16/78 -01 -03 -17	-17/ -28 -18 -01 -18	-17// -20 -18 -02 -18 -18	-18/78- -20 E -19 I -19 I	-18/ -28 -02 -19
77- VI 77- IV 77- VI 77- VI 77- VI	77 - VI 77 - VI 77 - VI 77 - VI 17 - 77	77- VI 77- IV 77- VI 77- VI 77- VI	77- VI 77- IV 77- VI 77- VI 77- VI 77- VI	77- VI 77- IV 77- VI 77- VI 77- VI	77- VI 77- IV 77- V 77- VI V -77
341 341 341 341 385	8 8 8 8 6 4 0 0 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3W 339 7 405 7 338 7 00 355 7 336 7 00 336 7	7 933 937 937 937 937	1M 337 7 410 7 336 00 384 7 00 388 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5W 336 405 00 383 00 385 00 382
41 40.7W 900 1920 5.27/3600 1920 5.27/3600	47 50.0W 5.27/3600 5.27/3600 1920 5.27/3600	48 03.3 900 1920 5.27/360 1920 5.27/360	48 39.4 900 1920 5.27/360 1920 1920	48 52. 900 1920 5.27/36 1920 5.27/36	49 13. 900 5.27/36 1920 5.27/36
26 69.8N V-0111 1P#54 M-2131 M-269C	27 25.6N M-240T M-271T TP#10 M-272C	28 01.0N V-0435 IP#47 M-257T IP#11 M-273T	27 51.7N V-0184 TP#50 M-2151 TP#17 TP#6	27 55.8N V-51.05 TP#13 M-276T IP#3 M-262T	26 51.8N V-0436 M-264T TP#24 M-266F
3857 206 531 1505 2800 3407	4961 505 1485 2867 3994	4554 203 203 505 1500 4006	4855 200 542 1498 2800 3496 4508	5106 212 546 1510 2857 4016	4881 196 1488 2796 3553
627 SLB 6271 6272 6273 6273 6274	628 SUB 6282 6283 6283 6284	629 SUB 6291 6292 6293 6253 6254	630 SUB 6301 6302 6304 6305 6305 6306	631 SUB 6311 6312 6313 6314 6314	632 SUB 6321 6323 6324 6325

*MOORING - *NO.*IYPE*C *DATA -	E # C	EPTH*LATITUDE*	** LGNG *CAYS*	SE1 .	/kecoverec *	*REPORT*	CCMMENTS + +
*	*DEP IH	*INSTR.*	ING *EAYS	*DAIA START*	VAR IABL	*REPORT*	COMMENTS
St	~ .	32 33 8N	4.7W 38	ï×	-15/78-XII-07	:	ISLAND TRAPPED WAVES
6332 6332	115	2 2	900 428	77- XI -14 77- XI -14	ENDS 11P	ΣΣ	NO RUTOR VALUES
33	-	18	27	×	ENDSTI	2	ELECTRONIC MALFUNCTION AFTER AUG. 6
ιυ Lij	2	V-0112	45	77- XI -14	ENDSTT	Σ	
634 SUB	245	32 32.2N	4 · 1 W	X	-16/78-XII-16		ISLAND TRAPPED WAVES
6342	545	V-0113	900 403		ENDSTT	Σ. H	
CC	842	V-0163		77- XI -14	ENDS 11	Σ	
ے	524	32 22.4N	₩6 •0	×	-17/78-XII-17		ISLAND TRAPPED WAVES
6352	524	18	40,4	77- XI -14	ENDSTI	Σ	
35	7	V-0371			ENDSTI	Σ ⊢	NO RCTOR VALUES
636 SUB	4456	4	39 40.5W 362		XII-08/78-XII-05		WESTERN BOUNDARY SILL
6361	4256	N-0		X	ENDSTT	79-85	
6362	4356	M-2	909	×	ENDS TT	79-85	
6363	4406	V-011	900 416	×	ENDS TT	79-85	
6364	9444	0-A		77- XI -01	ENDSIT	79-85	
637 SUB	4304	4 01.2N	39 19.0W 362		XII-08/78-XII-05		WESTERN BGUNDARY SILL
6371	4104	\ - 0	900 416	77- XI -01	ENDSTT	79-85	
6372	4204	M-250C	3600	X	ENDSTT	79-85	
m	4254	0 <u>-</u> 0			ENDSTT	79-85	
S	4584	V-C141		77- XI -01	ENDSTT	79-85	COMPASS MAY BE STICKY

EXPERIMENT DEC.25 LOCAL DYNAMICS EXPERIMENT LOCAL DYNAMICS EXPERIMENT CHANNEL SWITCH PROBLEM CHANNEL SWITCH PROBLEM NO ROTOR AFTER DEC.25 NO ROTCR VALUES NO ROTCR VALUES LOCAL DYNAMICS VO ROTCR AFTER / KECOVERED *REPORT * COMMENTS * NC. *CEPIH'sINSTR.* SAMPLING *CAYS*DATA START* VARIABLES*REPORT* CCMMENTS 1V -29/79-VII-20 ENDSTIP IV -30/79-VII-22 -29/79-VII-21 **ENDSTT ENDSTT ENDS 11 ENDS 11** ENDSIT ENDSTT NOST ENDS TT **ENDS 11** NDS 11 ENDSTT **ENDS 11** ENDST **TISQN** 191 161 PT. 111-29 -01 10-111-29 111-27 1V - 13111-27 11-27 V -02 1V -28 11 -28 111-30 111-27 111-27 11-27 > 1 ح SET 78-78-78-78-78-78-78-78-78-78-78-78-78-78-78-78-18-*NO.*TYPE*CEPTH*LATITUDE* LCNG. *CAYS* 445 486 490 478 446 444 144 144 489 473 489 489 489 450 446 470 595 472 450 471 69 28.9 W 46 56 59 M 69 22 0M 5.27/3600 5.27/3600 5.27/3600 5.27/3600 006 1920 1920 900 900 900 005 900 906 1920 31 23.1N 31 C9.8N 31 CL.4N V-0115P V-0380 V-0378 V-0379 V-0185 V-0180 V-C179 V-0195 V-C182 M-173C M-277C V-C178 M-191C M-259C V-C165 1P#79 1P#88 TP#72 865 565 602 761 822 245 376 464 669 £2C 920 585 1044 1270 1 595 2895 525C 5355 5362 5355 646,10 64C+12 64C • 14 64C+11 **#UATA** *MOOR ING 6383 **64C2** 64C8 6382 6392 6354 6463 4046 6465 6406 1589 64C1 64 C7 638 INI INI 689 640 INI 5349

電電器ではないことと

* NO*										
641 INT 6411 6411 6412 6413 6413	5349 494 595 695 819	31 10.1N TP#86 V-C375 TP#41 V-0122		447 429 429 429	78- 78- 78- 78-	IV -36/7 V -02 III-29 V -02 III-22	36/79-VII-22 02 TPT 29 ENDSTT 02 TPT 22 ENDSTT	LOCAL DY	DYNAMICS	EX P ER I MENT
642 INT 6421 6422	5463 502 603	30 58.5N TP#87 V-0204	69 50.0W 1920 900	446 429 450	78- 78- 78-	V -01/7 V -02 III-27	79-VII-22 TPT ENDSTI	LOCAL DYN	DYNAMICS	EXP ER IMENT
643 INT 6431 6432 6432 6433	5375 510 611 710	3C 49.0N TP#83 V-0138 TP#75 V-0137	69 36.9h 1920 900 1920 900	4444 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	78- 78- 78- 78-	v -16/7 v -11 III-23 v -11 III-23	79-VII-23 TPT ENDSTT TPT ENDSTT	LOCAL DYN NO TEMPER	AL DYNAMICS TEMPERATURE	EXP ER IMENT
644 INT 6441 6442 6442	5366 543 644 743	30 35.5N TP#85 V-0164 TP#78	69 28.2% 1920 900 1920	44C 438 494 438	78- 78- 78- 76-	V -10/7 V -11 III-23 V -11	79-VII-24 TPT ENUSTT TPT	LOCAL DYNAMICS		EXP ER IMENT
645 INT	5367	31 00-74	69 27.0W	¢.	78-	V -10/1	10/LOST	LOCAL BY	EY NAM I CS	EXP ER IMENT
646 INT 6461 6462 6462 6463	5339 492 593 693	3C 50.3N TP#80 V-0131 TP#77 V-C129	69 22.0% 1920 900 1920	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	78- 78- 78- 78-	V -11/ V -12 III-23 V -12 III-22	79-VII-23 TP1 ENDSTT TP1 ENDSTT	LOCAL DYNAR	DYNAMICS EXP ONIC FAILURE	EXP ER IMENT UR E
647 INT 6471 6472 6473	5286 477 578 677	31 CO.UN TP#69 V-0126 IP#68	69 09.6W 1920 900 1920	443 443 443 443 443 443 443 443 443 443	78- 78- 78-	V -11/ V -12 III-22 V -12	79-VII-23 TPT ENDSTT TPT	LOCAL DY	DY NAM I CS	EXP ER I M EN T

CLUSTER A SITE POLYMODE	CLUSTER B SITE POLYMODE INSTRUMENT FLUGDED	ENGINEERING MOORING
SAT SAT SAT SAT	SAT SAT SAT SAT SAT	
-22/79- X -18 -30 ENDSTI -23 TPT -30 ENDSTI -23 TPT -23 TPT -23 TPT	v -26/79- x -20 11-29 ENDSTI v -26 TPT v -26 TPT v -26 TPT v -26 TPT v -26 TPT v -26 TPT v -26 TPT	VII-03/78-XII-20
V -22/ III-30 V -23 V -23 V -23 V -23 III-29	V -26/ V -26 V -26 V -26 V -26 V -26 V -26 III-30	
78- 78- 78- 78- 78- 78- 78-	78- 78- 78- 78- 78- 78-	78-
515 517 517 517 517 517 517 517 517 517	513 512 512 512 512 512 512	200
48 40.8W 900 1920 1920 900 1920 900	41 09.4W 900 1920 1920 5.27/3600 1920 1920	68 56.4W 200
27 51.4N V-0109 1P#73 1P#35 V-0117 1P#39 1P#46 V-0118	27 25.6N V-0108 TP#74 TP#30 M-175C TP#40 TP#40	38 C3.2N
4881 178 476 628 1475 2779 3478	4268 216 516 516 1517 266 1517 2417	3564
648 INT 6481 6482 6483 6483 6485 6486	649 INT 6451 6452 6453 6453 6453 6454 6455	111 059

# # CO K	25	T	TH#1 ATTT::0F#	1 0WG 1	*>^VU*	1	I	RECOVERED	*RFPORT*	* COMMENTS	 	
*	T T	2 1			, I	1	1				1	
*	무	#DEPT	TH*INSTR.*	1	*DAYS	*DAT	A START*	VAR IABLES	*RE PORT	* COMMENTS		•
651	ä	1558	<u>ئ</u> ب	32	41	78-	V11-29/	78- IX-07			JASIN	
9	511	15	DI-510	2	79	78-		ENDSITI	78-93			
•	~	82	DT-5	12.	19		V11-22	DSTT	6			
•	-	85	V-32	00	9	78-		1	78-93			
9	7	16	DI-510	-	9	78-	VII-23	ENDSITI	78-93			
9	~	46	V-017	0	63		I-2	S	8-9			
9	~	16	V-C38	00	64		11 - 2	51	8-9			
•	-	0	DT-51C	-4	19	78-	I-2	ENDSTIT	6			
9	15	10	15-10	12.	19	78-	_	S	8-9			
•	1,1	10	V-037	\circ	64			ST	σ			
<u>.</u>	1,1	10	V-038	0	64	78-	I-2	ENDSTI	6			
9	1.1	11	01-51	_	61	78-	1-2	ENDSTTT	8			
•	1,1	11	V-C10	\sim	63	78-	VII-24	ENDSIT	78-93			
9	1,1	11	V-0105		63	78-	1-2	ENDSTT	78-93			
9	~	12	15-10	12.	61	78-	_	ENDSTIT	8			
9	1.1	12	01-511	_	19	78-	11-2	ENDSTTT	8-9			
•	1.1	18	DT-511	12.	19	78-	VII-22	ENDSTIT	61			
•	1,1	20	015-10	12.	29	78-		ENDSTIT	8-9			
3	1.1	21	V-043	\circ	64	78-		ENDSTT	6			
9	1,2	58	DI-51	_	9	78-	VII-23	ENDSTTT	8-9			
<u>.</u> 6	1.2	30	01-511	12.	9	78-		\circ	8-9			
9	1.2	31	V-C11	\sim	9	78-		ENDSTIP	6-8			
9	1.2	100	015-10	_	9	78-		ENCSTIT	2			
652	⊃	1551	CI		39	78-	-30/	78- 1x-06			NISAL	
9	52C		V-167	006	64	78-	11-24	ENDSTT	8-9	ATMOSPHERIC CATA	•	
9	3	51	V-0436	0	49	78-	_	ENDSTI	78-93			
653	د	1555	59 CL. IN		39	78-	VII-30/7	78- 1X-06			NISAL	
9	C)	-	NB1S	180	50		11-21	ENTICP			:	
9	532	11	V-C433	005	63	7.8-	11-2	ST				
	m i		1-51	-	9 9	78-		ENDSTIT	œ			
	מו		_	ဘ	14		-2	_				
654 S	ce	1244	32 32.1N	MO.74 49	30	78-	7/1- IX	7/78-XII-17		AIR DEPLOYABLE MOORING	SI NG	
				THE ENC.	¥	MCCRING	SSET	ROM :963 T	TERCHGH	1578		
										•		

SECTION C BIBLIOGRAPHY

The bibliography on the following pages contains references to articles in scientific journals, technical reports, and other publications which bear on the scientific and technical activities of the Buoy Group. The list is reasonably complete as of February 1980.

Scientific Papers

1957

Walden, R. G., D. D. Ketchum, and D. D. Frantz, Jr., Buoy telemeters ocean temperature data. <u>Electronics</u>, 30, (6),164-167.

1963

- Richardson, W. S., P. B. Stimson, and C. H. Wilkins, Current measurements from moored buoys. <u>Deep-Sea Res.</u>, 10, (4), 369-388.
- Webster, F., A preliminary analysis of some Richardson current meter records. <u>Deep-Sea Res.</u>, 10, (4), 389-396.

1965

Day, C. G., and F. Webster, Some current measurements in the Sargasso Sea.

<u>Deep-Sea Res.</u>, 12, (6),805-814.

THE PARTY OF THE P

- Stimson, P. B., Synthetic-fiber deep-sea mooring cables: their life expectancy and susceptibility to biological attack. <u>Deep-Sea Res.</u>, 12, (1), 1-8.
- Worthington, L. V., and G. H. Volkmann, The volume transport of the Norwegian Sea overflow water in the North Atlantic. Deep-Sea Res., 12, (5), 667-676.

1966

Stalcup, M. C., and W. G. Metcalf, Direct measurements of the Atlantic Equatorial undercurrent. J. Mar. Res., 24, (1), 44-55.

1968

Webster, F., Observations of inertial-period motions in the deep sea.

Rev. of Geophys., 6, (4), 473-490.

- Clarke, R.A., and N. P. Fofonoff, Geophysical fluid flow over varying bottom topography. J. Mar. Res., 27, (2), 226-240.
- Fofonoff, N. P., Spectral characteristics of internal waves in the ocean.

 <u>Deep-Sea Res.</u>, Supp. to Vol. 16, 59-71.
- Longuet-Higgins, M. S., On the transport of mass by time varying ocean currents. Deep-Sea Res., 16, (5), 431-447.
- Martin, S., W. F. Simmons, and C. I. Wunsch, Resonant internal wave interactions. <u>Nature</u>, 224, No. 5223, 1014-1016.

Scientific Papers

1969 (cont.)

- Richardson, W. S., W. J. Schmitz, Jr., and P. P. Niiler, The velocity Structure of the Florida Current from the straits of Florida to Cape Fear. Deep-Sea Res., Supp. to Vol. 16, 225-231.
- Schmitz, W. J., Jr., and P. P. Niiler, A note on the kinetic energy exchange between fluctuations and mean flow in the surface layer of the Florida Current. <u>Tellus</u>, 21, 814-819.
- Schmitz, W. J., Jr., On the dynamics of the Florida Current. J. Mar. Res., 27, No. 1, 121-150.
- Webster, F., On the representativeness of direct deep-sea current measurements.

 Progress in Oceanography, Vol. 5, 3-15.
- Webster, F., Vertical profiles of horizontal ocean currents. <u>Deep-Sea Res.</u>, 16, (1), 85-98.
- Webster, F., Turbulence spectra in the ocean. Deep-Sea Res., Supp to Vol. 16, 357-368.

- Frankignoul, C., The effect of weak shear and rotation on inertial wave .. Tellus, 22, (2), 194-204.
- Pollard, R. G., On the generation by winds of inertial waves in the ocean.

 <u>Deep-Sea Res.</u>, 17, (4), 795-812.
- Pollard, R. T., Surface waves with rotation an exact solution. <u>J. Geo.</u> Res., 75, (30), 5895-5898.
- Pollard, R. T., and R. C. Millard, Jr., Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, (4), 813-821.
- Schmitz, W. J., Jr., A. R. Robinson, and F. C. Fuglister, Bottom velocity measurements directly under the Gulf Stream. <u>Science</u>, 170, 1192-1194.
- Siedler, G., General circulation of water masses in the Red Sea. in:

 Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens
 and D. A. Ross, editors, 131-137.

Scientific Papers

1970 (cont.)

- Thompson, R., Venus's general circulation is a merry-go-round. <u>J. Atmos.</u> <u>Sci.</u>, 27, 1107-1116.
- Thompson, R., Diurnal tides and shear instabilities in a rotating cylinder.

 J. Fluid Mech., 40, 737-752.

1971

- Fofonoff, N. P., and F. Webster, Current measurements in the western Atlantic. Phil. Trans. Roy. Soc. London A., 270, 1206, 423-436.
- Gonella, J., A local study of inertial oscillations in the upper layers of the ocean. Deep-Sea Res., 18, 8, 775-788.
- Gonella, J., Sur la polarisation des courants marins par la rotation terrestre. C. R., Acad. Sc. Paris, 273, 162-164.
- McKee, W. D., Comments on "A Rossby wake due to an island in an eastward current". J. Phys. Oceanogr., 1, 4, 287.
- Millard, R. C., Jr., Wind measurements from buoys: a sampling scheme.

 J. Geophys. Res., 76, 24, 5819-5828.
- Sanford, T. B., and W. J. Schmitz, Jr., A comparison of direct measurements and GEK observations in the Florida Current off Miami. J. Mar. Res., 29, 3, 347-359.

- Siedler, G., Vertical coherence of short-periodic current variations.

 <u>Deep-Sea Res.</u>, 18, 179-191.
- Thompson, R., Spectral estimation from irregularly spaced data.

 IEEE Trans. on Geoscience Electronics, GE-9, 107-110.
- Thompson, R., Topographic Rossby wave observations at Site D. <u>Deep-Sea</u>
 <u>Res.</u>, 18, 1, 1-24.
- Thompson, R., Numeric calculation of turbulent diffusion. Quart. J. Roy. Met. Soc., 97, 93-98.
- Thompson, R., Why there is an intense eastward current in the North Atlantic, but not in the South Atlantic. J. Phys. Oceanogr., 1, 235-237.
- Thompson, R., Structure of the Antarctic Circumpolar Current. J. Geophys. Res., 76, (36), 8694.
- Webster, F., On the intersity of horizontal ocean currents. <u>Deep-Sea Res.</u>, 18, 9, 885-893.

Scientific Papers

1972

- Frankignoul, C. J., Stability of finite amplitude internal waves in a shear flow. Geophys. Fluid Dyn., 4, (2), 91-99.
- Gonella, J., A rotary-component method for analysing meteorological and oceanographic vector time series. <u>Deep-Sea Res.</u>, 19, (12), 833-846.
- Joyce, T. M., Nonlinear interactions among standing surface and internal gravity waves. Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Martin, S., W. Simmons, and C. Wunsch, The excitation of resonant triads by single internal waves. J. Fluid Mech., 53, (1), 17-44.
- McKee, W. D., Scattering of Rossby waves by partial barriers. Geophys. Fluid Dyn., 4, (1), 83-89.
- McWilliams, J., Observations of kinetic energy correspondences in the internal wave field. Deep-Sea Res., 19, (11), 798-811.

THE PROPERTY OF THE PROPERTY O

- Perkins, H. T., Inertial oscillations in the Mediterranean. <u>Deep-Sea Res.</u>, 19, (4), 289-296.
- Saunders, P. M., Space and time variability of temperature in the upper ocean. Deep-Sea Res., 19, (7), 467-480.
- Stalcup, M. C., and W. G. Metcalf, Current measurements in the passages of the Lesser Antilles. <u>J. Geophys. Res.</u>, 77, (6), 1032-1049.
- Webster, F., Estimates of the coherence of ocean currents over vertical distances. <u>Deep-Sea Res.</u>, 19, (1), 35-44.
- Wunsch, C., and R. Hendry, Array measurements of the bottom boundary layer and the internal wave field of the Continental Slope.

 Geophys. Fluid Dyn., 4, 101-145.

- Bryden, H., New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res., 20, (4), 401-408.
- Gould, W. J., Effects of non-linearities of current meter compasses.

 <u>Deep-Sea Res.</u>, 20, (4), 423-427.
- Gould, W. J., and W. D. McKee, Vertical structure of semi-diurnal tidal currents in the Bay of Biscay. Nature, 244, 88-91.
- Knox, R. A., and R. C. Millard, Jr., Bottom sensing device for use with STD systems. <u>Deep-Sea Res.</u>, 20, (4), 419-421.

Scientific Papers

1973 (cont.)

- Leary, C., and R. Thompson, Shortcomings of objective analysis schemes.

 J. Appl. Met., 12, 489-594.
- Luyten, J. R., Topographic Rossby waves a cautionary tale. Mem Soc. Roy. des Sci. de Liège, 6 VI, 167-177.
- Magaard, L., and W. D. McKee, Semi-diurnal tidal currents at Site D. Deep-Sea Res., 20, (11), 997-1009.
- McKee, W. D., Internal inertia waves in a fluid of variable depth. <u>Proc.</u> Camb. Phil. Soc., 73, 205-213.
- Pollard, R., Interpretation of near-surface current meter observations.

 <u>Deep-Sea Res.</u>, 20, (3), 261-268.
- Pollard, R. T., P. B. Rhines, and R. Thompson, The deepening of the wird-mixed layer. Geo. Fluid Dynam., 4, 381-404.
- Regal, R., and C. Wunsch, M₂ tidal currents in the western North Atlantic.

 <u>Deep-Sea Res.</u>, 20, (5), 493-502.
- Saunders, P. M., Tracing surface flow with surface isotherms. Mem. Soc. Roy. des Sci. de Liège, 6, VI, 97-106
- Saunders, P. M., The skin temperature of the ocean, a review. Mem. Soc. Roy. des Sci. de Liège, 6, VI, 91-96.
- Thompson, R., Generation of stochastic processes with given spectra.

 <u>Utilitas Mathematica</u>, 3, 127-137.

- Bryden, H. L., Geostrophic comparisons using MODE-1 moored current and temperature measurements. <u>Nature</u>, 251, 409-410.
- Frankignoul, C. J., A cautionary note on the spectral analysis of short inertial-internal wave records. J. Geo. Res., 79, (24), 3459-3462.
- Frankignoul, C. J., Observed anisotropy of spectral characteristics of internal waves induced by low-frequency currents. J. Phys. Oceanogr., 4, 625-634.
- Frankignoul, C. J., Preliminary observations of internal wave energy flux in frequency, depth-space. Deep-Sea Res., 21, 895-910.

Scientific Papers

1974 (cont.)

- Gould, W. J., W. J. Schmitz, Jr., and C. Wunsch, Preliminary field results for a mid-ocean dynamics experiment (MODE-O). Deep-Sea Res., 21, (11), 911-931.
- Joyce, T. M., Nonlinear interactions among standing surface and internal gravity waves. J. Fluid Mech., 63, (4), 801-825.
- Lindberg, W. R., and R. Thompson, Simulation of three-dimensional turbulence with given second-order statistical structure. Quart. Jour. of the Roy. Met. Soc., Vol. 100, No. 426, October 1974, 608-623.

THE TAX OF THE PROPERTY OF THE

- Luyten, J. R., and A. R. Robinson, Transient Gulf Stream meandering, II:

 Analysis via quasi geostrophic time dependent model. J. Phys.

 Ocean., 3, (2), 256-269.
- Robinson, A. R., J. R. Luyten, and F. C. Fuglister, Transient Gulf Stream meandering I: An observational experiment. J. Phys. Ocean., 4, (2), 237-255.
- Sanford, T. B., and R. Flick, Observations of strong current shears in the deep ocean and some implications on sound rays. J. Acoust. Soc. of Amer., 56, (4), 1118-1121.
- Schmitz, W. J., Jr., Observations of low-frequency current fluctuations on the Continental Slope and Rise near Site D. <u>J. Mar. Res.</u>, 32, (2), 233-251.
- Siedler, G., 1974, The fine-structure contamination of vertical velocity spectra in the deep ocean. <u>Deep-Sea Res.</u>, 21, (1), 37-46.
- Siedler, G., and E. Seibold, Currents related to sediment transport at the Ibero-Moroccan continental shelf. Meteor Forsch.-Ergebnisse, Reihe A, No. 14, 1-12.
- Siedler, G., 1974, Observations on internal wave coherence in the deep ocean. Deep-Sea Res., 21, (8), 597-610.
- Thompson, R., Stratified Ekman boundary layer models. Geo. Fluid Dyn., 5, 201-210.

Scientific Papers

- Briscoe, M. G., 1975
 Internal waves in the ocean. Rev. Geophys. and Space Physics, 13, 591-598 and 636-645.
- Briscoe, M. G., 1975

 Preliminary results from the tri-moored internal wave experiment (IWEX). J. Gaophys. Res., 80 (27), 3872-3883.
- Briscoe, M. G., 1975
 Introduction to a collection of papers on internal waves. J. Geophys. Res., 80, 289-290.
- Bryden, H. L., 1975

 Momentum, mass, heat, and vorticity balances from oceanic measurements
 of current and temperature. Ph.D. Thesis W.H.O.I.-M.I.T. Joint Program.
- Desaubies, Y. J. F., 1975

 A linear theory of internal wave spectra and coherences near the Väisälä frequency. J. Geophys. Res., 80, 895-899
- Dexter, S. C., J. D. Milliman, and W. J. Schmitz, Jr., 1975

 Mineral deposition in current meter bearings. Deep-Sea Res., 22,
 703-706.
- Fofonoff, N. P., and H. Bryden, 1975

 Specific gravity and density of seawater at atmospheric pressure.

 Jour. Mar. Res., Suppl., 33, 69-82.
- Gould, W. J., and E. Sambuco, 1975

 The effect of mooring type on measured values of ocean currents.

 <u>Deep-Sea Res.</u>, 22, 55-62.
- Hayes, S. P., 1975

 The temperature and salinity fine structure of the Mediterranean Water in the western Atlantic. Deep-Sea Res., 22, 1-11.
- Preliminary measurements of the time lagged coherence of vertical temperature profiles. J. Geophys. Res., 80, (3), 307-311.
- Hayes, S. P., T. M. Joyce, and R. C. Millard, Jr., 1975

 Measurements of vertical fine structure in the Sargasso Sea.

 Jour. Geophys. Res., 80, (3), 314-319.
- Kim, K., 1975
 Instability and energetics in a baroclinic ocean. Ph.D. Thesis, W.H.O.I.-M.I.T. Joint Program in Oceanography.

Scientific Papers (cont.)

- Müller, P., and D. J. Olbers, 1975
 On the dynamics of internal waves in the deep ocean. <u>J. Geophys.</u>
 Res., 80, 3848-3860.
- Robinson, A. R., J. R. Luyten, and G. Flierl, 1975
 On the theory of thin rotating jets: A quasi-geostrophic time dependent model. Geophys. Fluid Dyn., 6, 211-244.
- Sanford, T. B., and R. E. Flick, 1975

 On the relationship between transport and motional electric potentials in broad, shallow currents. J. Mar. Res., 33, (1), 123-139.
- Sanford, T. B., 1975
 Observations of the vertical structure of internal waves. J. Geophys. Res., 80, 3861-3871.
- Wunsch, C., 1975
 Internal tides in the ocean. Rev. Geophys. Space Phys., 13, 167-182.
- Zenk, W., and E. J. Katz, 1975
 On the stationarity of temperature spectra at high horizontal wavenumbers. J. Geophys. Res., 80, 3885-3891.

Scientific Papers

- Armi, L., and R. C. Millard, Jr., 1976

 The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, (27), 4983-4990.
- Eriksen, C. C., 1976

 Measurements and models of fine-structure, internal gravity waves and wave breaking in the deep ocean. Ph.D. Thesis, M.I.T.-W.H.O.I. Joint Program in Oceanography.
- Frankignoul, C., 1976
 Observed interaction between oceanic internal waves and mesoscale eddies. Deep-Sea Res., 23 (9), 805-820
- Leaman, K. D., 1976

 Observations on the vertical polarization and energy flux of near-inertial waves. J. of Phys. Oceanogr., 6 (6), 894-908.
- Leary, C. A., and R. Thompson, 1976

 A warm-core disturbance in the western Atlantic during BOMEX. Monthly

 Weather Review, 104 (4), 443-452.
- Luyten, J. R., and J. C. Swallow, 1976

 Equatorial Undercurrents. Deep-Sea Res., 23, 1005-1007.
- Müller, P., and G. Siedler, 1976

 Consistency relations for internal waves. Deep-Sea Res., 23, 613-628.
- Panicker, N. N., and D. Schmidt, 1976

 Prediction and measurement of the stability of a deep-sea trimooring.

 Ocean Engineering, Pergamon Press, 3 (4), August 1976, Oxford England.
- Panicker, N. N., 1976

 Power resource estimate of ocean surface waves. Ocean Engineering,
 Pergamon Press, 3, (6), December 1976, Oxford, England.
- Richman, J. G., 1976

 Kinematics and energetics of the mesoscale mid-ocean circulation: MODE.

 Ph.D. Thesis, M.I.T.-W.H.O.I. Joint Program in Oceanography.
- Saunders, P. M., and N. P. Fofonoff, 1976

 Conversion of pressure to depth in the ocean. Deep-Sea Res., 23, 109-111.
- Saunders, P. M., 1976

 Near-surface current measurements. Deep-Sea Res., 23, 249-257
- Schmitz, W. J., Jr., 1976

 Observation of a new abyssal current at the western foot of the Bermuda Rise. Geophys. Res. Letters, 3 (7), 373-374.

Scientific Papers

1976 (cont.)

- Schmitz, W. J., Jr., 1976

 Eddy kinetic energy in the deep western North Atlantic. J. Geophys. Res., 81 (27), 4981-2.
- Thompson, R., and J. R. Luyten, 1976
 Evidence for bottom-trapped topographic Rossby waves from single moorings.

 Deep-Sea Res., 23 (7), 629-635.
- Thompson, R., 1976
 Climatological numerical models of the surface mixed layer of the ocean.
 J. Phys. Oceanogr., 6 (4), 496-503.
- Voorhis, A. D., D. C. Webb, and R. C. Millard, Jr., 1976

 Current structure and mixing in the shelf/slope water front south of New England. J. Geophys. Res., 81 (21), 3695-3708.
- Worthington, L. V., 1976
 On the North Atlantic circulation. The Johns Hopkins Oceanographic
 Studies, Number 6. The Johns Hopkins University Press, Baltimore and London, 110 pp.
- Wunsch, C., 1976

 Geographical variability of internal wave field: A search for sources and sinks. J. Phys. Oceanogr., 6 (4), 471-485.

Scientific Papers

1977 -

Armi, L., 1977

The dynamics of the bottom boundary layer of the deep ocean In: Bottom Turbulence, Proceedings of the 8th International Liege Colloquium on Ocean Hydrodynamics, June 1976, J. C. J. Nihol, editor, Elsevier Scientific Publishing Company.

- Briscoe, M. G., 1977
 Gaussianity of internal waves. <u>Journal of Geophysical Research</u>, 82 (15), 2117-2126.
- Briscoe, M. G., 1977
 On current finestructure and moored current meter measurements of internal waves. <u>Deep-Sea Research</u>, 24, 1121-1132.
- Bryden, H. L., 1977

 Geostrophic comparisons from moored measurements of current and temperature during the Mid-Ocean Dynamics Experiment. Deep-Sea Research, 24, 667-681.
- Bryden, H. L., 1977

 Horizontal advection of temperature for low-frequency motions.

 Deep-Sea Research, 23, 1165-1174.
- Bryden, H. L., and N. P. Fofonoff, 1977

 Horizontal divergence and vorticity estimates from velocity and temperature measurements in the MODE region.

 Oceanography, 7 (3), 329-337.
- Chhabra, N. K., 1977

 Correction of vector-averaging current meter records from the MODE-1 central mooring for the effects of low-frequency mooring line motion. Deep-Sea Research, 24, 279-287.
- Flierl, G. R., and J. C. McWilliams, 1977
 On the sampling requirements for measuring moments of eddy variability. <u>Journal of Marine Research</u>, 35, 797-820.
- Fofonoff, N. P., 1977

 Computation of potential temperature of seawater for an arbitrary reference pressure. Deep-Sea Research, 24, 489-491.
- Jones, I. S. F., and B. C. Kenney, 1977

 The scaling of velocity fluctuations in the surface mixed layer.

 Journal of Geophysical Research, 82 (9), 1392-1396.

Scientific Papers

1977 (cont.)

- Joyce, T. M., 1977

 A note on the lateral mixing of water masses. <u>Journal of Physical Oceanography</u>, 7, 626-629.
- Joyce, T. M., and Y. Desaubies, 1977

 Discrimination between internal waves and temperature finestructure.

 Journal of Physical Oceanography, 7 (1), 22-32.
- Luyten, J. R., 1977

 Scales of motion in the deep Gulf Stream and across the Continental Rise. <u>Journal of Marine Research</u>, 35 (1), 49-74.
- Richman, J. G., C. Wunsch, and N. G. Hogg, 1977

 Space and time scales of mesoscale motion in the western North
 Atlantic. Reviews of Geophysics and Space Physics, 15 (4),
 385-420.
- Schmitz, W. J., Jr., 1977
 On the deep general circulation in the Western North Atlantic.

 Journal of Marine Research, 35 (1), 21-28.
- Thompson, R., 1977
 Observations of Rossby waves near Site D. Progress in Oceanography, 7, 135-162.

Scientific Papers

- Armi, L., 1978

 Some evidence for boundary mixing in the deep ocean. <u>J. Geophys.</u>

 Res., 83, 1971-1979.
- D'Asaro, E., 1978

 Mixed layer velccities induced by internal waves. <u>J. Geophys. Res.</u>, 83 (C5), 2437-2438.
- Bryden, H. L., 1978

 Mean upwelling velocities on the Oregon continental shelf during Summer 1973. Estuarine and Coastal Marine Science, 7, 311-327.
- Hogg, N. G., T. B. Sanford, and E. J. Katz, 1978
 Eddies, Islands and Mixing. J. Geophys. Res., 83, 2921-2938.
- Joyce, T. M., W. Zenk, and J. M. Toole, 1978

 The anatomy of the Antarctic Polar Front in the Drake Passage.

 J. Geophys. Res., 83 (Cl2), 6093-6113.
- McCartney, M. S., L. V. Worthington, and W. J. Schmitz, Jr., 1978

 Large cyclonic rings from the northeast Sargasso Sea. J. GeophysRes., 83 (C2), 901-914.
- The MODE Group, 1978

 The Mid-Ocean Dynamics Experiment. Deep-Sea Res., 25 (10), 859-910.
- Müller, P., D. J. Olbers, and J. Willebrand, 1978

 The IWEX spectrum. J. Geophys. Res., 83 (C1), 479-500.
- Schmitz, W. J., Jr., 1978
 Observations of the vertical structure of low frequency fluctuations in the western North Atlantic. J. Mar. Res., 36, (2), 295-310.
- Schmitz, W. J., Jr., and N. G. Hogg, 1978

 Observations of energetic low frequency current fluctuations in the Charlie-Gibbs Fracture Zone. J. Mar. Res., 36 (4), 725-734.

Scientific Papers

1979

- Armi, L., 1979.
 - Effects of variations in eddy diffusivity on property distributions in the oceans. <u>Journal of Marine Research</u>, 37 (3), 515-530.
- Armi, L., 1979.

 Reply to comments by C. Garre

Reply to comments by C. Garrett on "Some evidence for boundary mixing in the deep ocean". <u>Journal of Geophysical Research</u>, 84, 5097-5098.

- Dean, J., 1979.
 - A moored instrument for vertical temperature gradients. <u>Journal</u> of Geophysical Research, 84, 5089-5091.
- Eriksen, C. C., 1979.

 An equatorial transect of the Indian Ocean. <u>Journal of Marine</u>

 Research, 37, 215-232.
- Fofonoff, N. P. and E. L. Lewis, 1979.

 Letter to the Editor "A Practical Salinity Scale", Journal of the Oceanographical Society of Japan, 35 (1), 63-64.
- Frankignoul, C. J. and T. M. Joyce, 1979.

 On the internal wave variability during the Internal Wave Experiment (IWEX). Journal of Geophysical Research, 84, 769-776.
- Gregg, M. C. and M. G. Briscoe, 1979.

 Internal waves, finestructure, microstructure, and mixing in the ocean. Reviews of Geophysics and Space Physics, 17, 1524-1548.
- Katz, E. J. and M. G. Briscoe, 1979.
 Vertical coherence of the internal wave field from towed sensors.
 Journal of Physical Oceanography, 9, 518-530.
- Luyten, J. R., 1979.

 Recent observations in the equatorial Indian Ocean. In: Monsoon
 Dynamics, M. J. Lighthill, editor, Cambridge University Press.
- Rhines, P. B. and W. R. Holland, 1979.

 A theoretical discussion of eddy-driven mean flows.

 <u>Atmospheres and Oceans</u>, 3, 289-325.

 <u>Dynamics of</u>
- Ruddick, B. and T. M. Joyce, 1979.

 Observations of interaction between the internal wavefield and low frequency flows in the North Atlantic.

 Journal of Physical Ocean-ography, 9, 498-517.
- Schmitz, W. J., Jr. and W. B. Owens, 1979.

 Observed and numerically simulated kinetic energies for MODE eddies.

 Journal of Physical Oceanography, 9, 1294-1297.

Scientific Papers

1980

- Armi, L., 1980
 Anomalous water in the deep ocean suggests lateral advection/stirring.
 Science, in press.
- Armi, L. and E. D'Asaro, 1980

 Flow structures of the benthic ocean. <u>Journal of Geophysical</u>

 <u>Research</u>, 85, Cl, 469-484.
- Bray, N. A. and N. P. Fofonoff,
 Available potential energy for MODE eddies. Journal of Physical
 Oceanography, submitted.
- Bryden, H. L.,

 Geostrophic vorticity balance in mid-ocean. Journal of Geophysical Research, accepted.
- Bryden, H. L. and M. M. Hall,
 Heat transport by currents across 25°N latitude in the Atlantic
 Ocean. Science, 207, 884-886.
- Bryden, H. L., D. Halpern and R. D. Pillsbury,

 Importance of eddy heat flux in a heat budget for Oregon coastal waters. Journal of Geophysical Research, submitted.
- Eriksen, C.,

 Evidence for a spectrum of equatorially trapped internal gravity
 waves. Journal of Geophysical Research, submitted.
- Halpern, D., R. A. Weller, M. G. Briscoe, R. E. Davis and J. R. McCullough,

 JASIN and MILE current meter intercomparisons.

 Journal of

 Geophysical Research, submitted.

- Hogg, N. G.,
 Some bottom topography problems in physical oceanography, GARP
 Publications Series, in press.
- Hogg, N. G.,
 Observations of internal Kelvin waves trapped round Bermuda.
 Journal of Physical Oceanography, accepted.
- Hogg, N. G. and W. J. Schmitz, Jr.,

 A dynamical interpretation of low frequency motions near very rough topography the Charlie Gibbs Fracture Zone. <u>Journal of Marine</u>
 Research, accepted.
- Holland, W. R. and P. B. Rhines,
 An example of eddy-induced ocean circulation. Journal of Physical
 Oceanography, in press.

Scientific Papers

1980 (cont.)

- Joyce, T. M., 1980
 On production and dissipation of thermal variance in the oceans.

 Journal of Physical Oceanography, 10,
- Joyce, T. M., R. H. Käse and W. Zenk,
 Horizontal advection of temperature in the seasonal thermocline
 during JASIN 1978. Journal of Physical Oceanography, submitted.
- Luyten, J. R. and C. C. Eriksen,

 Deep equatorial jets in the Indian and Pacific Oceans. Science,
 submitted.
- McCartney, M. S., L. V. Worthington and M. E. Raymer, 1980
 Anomalous water mass distribution at 55°W in the North Atlantic in 1977. Journal of Marine Research, 38, 147-171.
- McComas, C. H. and M. G. Briscoe, 1980

 Bispectra of internal waves. Journal of Fluid Mechanics, 97, 205-213.

- Owens, W. B. and N. G. Hogg,
 Oceanic observations of stratified Taylor columns near a bump.
 Deep-Sea Research, accepted.
- Payne, R. E. and W. Smith,

 Spectra of frequency counting digitization errors.

 Research, accepted.
- Rhines, P. B.,

 Eddy-driven circulation of the ocean; a vorticity transport theory.

 Journal of Marine Research, sub judice.
- Schmitz, W. J., Jr., 1980

 Weakly depth-dependent segments of the North Atlantic circulation.

 Journal of Marine Research, 38, 111-133.

Technical Reports

1957

Geophysical Research Directorate, The Air Force Cambridge Research Center, and the Air Research and Development Command Report on Contract No. AF 19(604)-2043, W.H.O.I. Technical Report WHOI 57-61.

1958

- Frantz, Pavid H., Jr., D. D. Ketchum and R. G. Walden, A radio telemetering system for oceanography. W.H.O.I. Technical Report WHOI 58-29.
- Richardson, W. S., Measurement of thermal microstructure. W.H.O.I. Technical Report WHOI 58-11.

1959

- Frantz, D. H., Jr., From scullery to front parlor. Oceanus VI, Nc. 2, 1959.
- Hubbard, C. J. and W. S. Richardson, The contour temperature recorder.
 W.H.O.I. Technical Report WHOI 59-16.
- Hubbard, C. J. and W. S. Richardson, Measurement of the spectrum of underwater light. W.H.O.I. Technical Report WHOI 59-30.

1961

Richardson, W. S., Current measurements from moored buoys. Oceanus VIII
No. 2, 1961.

- Richardson, W. S., Instruction manual for recording current meter. W.H.O.I. Technical Report WHOI 62-6.
- Richardson, W. S., Current measurements from moored buoys. Marine Sciences Instrumentation, Volume 1, Plenum Press, 1962.
- Snyder, R. M. and E. H. Chute, Telemetering current meter. W.H.O.I. Technical Report WHOI 62-21.
- Walden, R. G. and D. H. Frantz, A long-range, oceanographic telemetering system. Marine Sciences Instrumentation, Volume 1, Plenum Press, 1962.

Technical Reports

1963

- Morin. J. O. and R. G. Walden, Radio telemetering buoys. <u>Undersea Technology</u>, August 1963.
- Richardson, W. S., P. B. Stimson and C. H. Wilkins, Current measurements from moored buoys. W.H.O.I. Technical Report WHOI 63-1.
- Smith, P. F. and E. Fredkin, Computers and transducers. Marine Sciences
 Instrumentation, Vol. II, Plenum Press, 1963.
- Snyder, R. M., Report from the North. Oceanus, Vol. IX, No. 4, 1963.
- Stimson, P. B., Equalant buoy program. Oceanus, Vol. IX, No. 4, 1963.
- Walden, R. G., A telemetry receiving site. <u>Undersea Technology</u>, <u>4</u> (10), 18, 1963.

1964

on Automatic Collection, Processing and Analysis of Oceanogr. Data, University of California, San Diego, 11-12 December 1964.

- Lovenvirth, D. L., A computer system for reading Richardson current meter film. M.T.S. Trans. of the 1964 Buoy Tech. Symp.
- Smith, P. F., K. E. Perry and A. L. M. Dingee, Jr., Automatic reading and processing of current speed and direction, precision temperature records, and wave data from unattended instruments. First U. S. Navy Symp. on Military Oceanogr., U. S. Navy Oceanographic Office, Washington DC, 1964, 293-328.
- Stimson, P. B., Performance record of moored buoy systems. W.H.O.I. Technical Report WHOI 64-14.
- Walden, R. G. and D. Webb, Methods of locating and tracking buoys. M.T.S. Trans. of the 1964 Buoy Tech. Symp.
- Webster, F., Some perils of measurement from moored ocean buoys. M.T.S. Trans. of the 1964 Buoy Tech. Symp.
- Webster, F., Processing moored current meter data. W.H.O.I. Technical Report WHOI 64-55.

1965

Fofonoff, N. P., A technique for analyzing buoy system motion. Geo-Marine Tech., 1 (7) 10-13, 1965.

Technical Reports

1965 (cont.)

- Turner, H. J. and B. Prindle, Some characteristics of "fishbite" damage on deep-sea mooring lines. Limn. and Oceanogr., 10, supplement, November 1965, R259-R264.
- Walden, R. G., Buoys in oceanography. <u>Sea Frontiers</u>, 11, <u>No. 1</u>, January-February 1965.
- Walden, R. G., D. C. Webb and R. M Snyder, Ocean current data from a telemetry buoy. W.H.O.I. Technical Report WHOI 65-65.
- Webster, F. and N. P. Fofonoff, A compilation of moored current meter observations, Volume I, W.H.O.I. Technical Report WHOI 65-44.

1966

- Fofonoff, N. P., Oscillation modes of a deep-sea mooring. Geo-Marine Tech., 2, (9), 13-17.
- Webster, F. and N. P. Fofonoff, A compilation of moored current meter observations, Volume II. W.H.O.I. Technical Report WHOI 66-60.

1967

- Berteaux, H. O. and N. P. Fofonoff, Oceanographic buoys gather data from surface to sea floor. Oceanology Intl., July/August 1967.
- Fofonoff, N. P., Variability of ocean circulation. <u>Trans. Amer. Geophys. Union</u>, 48, (2), 575-578.
- Fofonoff, N. P., Current measurements from moored buoys. Trans. 2nd Int.

 Buoy Tech. Symp., M.T.S., Washington DC, September 18-20, 1967, 409-418.
- Fofonoff, N. P. and Yücel Ercan, Response characteristics of a Savonius rotor current meter. W.H.O.I. Technical Report WHOI 67-33.
- Stimson, P. B., Deep-sea mooring cables. M.T.S. Trans. 2nd Int. Buoy Tech. Symp., Washington DC, September 18-20, 1967.
- Turner, H. J., Jr. and B. Prindle, The vertical distribution of fish-bites on deep-sea mooring lines in the vicinity of Bermuda. W.H.O.I.

 Technical Report WHOI 67-58.
- Webster, F. and N. P. Fofonoff, A compilation of moored current meter observations, Volume III. W.H.O.I. Technical Report WHOI 67-66.
- Webster, F., A scheme for sampling deep-sea currents from moored buoys.

 M.T.S. Trans. 2nd Int. Buoy Tech. Symp., Washington DC, September 1820, 1967.

ALCONOMIC STREET

Technical Reports

1968

- Berteaux, H. O. R. Mitchell, E. A. Capadona and R. L. Morey, in:
 A critical look at marine technology, MTS Trans. 4th Ann. Conf.,
 July 1968, 671-705.
- Berteaux, H. O., Surface moorings review of performance. W.H.O.I. Technical Report WHOI 68-20.
- Berteaux, H. O. and D. E. Laaksonen, Testing of wire ropes and strands for mooring line applications (Land tests summer 1968). W.H.O.I. Technical Report WHOI 20-68.
- Fofonoff, N. P. and J. F. Garrett, Mooring motion. W.H.O.I. <u>Technical Report</u> WHOI 68-31.
- Fofonoff, N. P., A summary report on current measurements from moored buoys, 1959-65. W.H.O.I. Technical Report WHOI 68-30.
- Froidevaux, M. R., Application of statistical estimation to the determination of ocean current-meter dynamics. <u>M.I.T.</u> Instrumentation Lab. Rep. No. T-494, January 1968.

and is the beauty of the beaut

many of the control o

- Froideveaux, M. R. and R. A. Scholten, Computerized analysis of ocean environmental sensing equipment (O.E.S.E.). Ocean experiment data.

 M.I.T. Instrumentation Lab. Rep. No. E-2445, 1968.
- Froideveaux, M. R. and R. A. Scholten, Calculation of the gravity fall motion of a mooring system. M.I.T. Instrumentation Lab. Rep. No. E-2319, 1968.
- Heinmiller, R. H., Jr., A test of a swivel on a deep-sea mooring. W.H.O.I.

 <u>Technical Report WHOI 13-68.</u>
- Heinmiller, R. H., Jr. Acoustic release systems. W.H.O.I. Technical Report WHOI 68-48.
- Martin, W. D., Tension and geometry of a single point moored surface buoy system A computer study. W.H.O.I. Technical Report WHOI 68-79.
- McCullough, J. R., Oceanographic applications of digital filters. W.H.C.I.
 Technical Report WHOI 68-78.
- Millard, R. C., Jr., Wind measurements from buoys: a sampling technique. W.H.O.I. Technical Report WHOI 68-68.
- Toth, W. and W. Vachon, OESE and Geodyne current meter, Progress report on W.H.O.I. contract PO17052. M.I.T. Instrumentation Lab. Rep. No. E-2229, 1968.

Technical Reports

1968 (cont.)

Volkmann, G. H., Mooring summary, 1967. W.H.O.I. Technical Report WHOI 68-80.

1969

- Berteaux, H. O. and R. Heinmiller, Back-up recovery systems of deep-sea moorings. W.H.O.I. Technical Report WHOI 69-7.
- Berteaux, H. O. and R. Walden, Analysis and experimental evaluation of single-point moored buoy systems. W.H.O.I. Technical Report WHOI 69-36.
- Frankignoul, C., Note on internal waves in a simple thermocline model. W.H.O.I. Technical Report WHOI 69-47.
- Maltais, J. A., A nine channel digital magnetic tape format for storing oceanographic data. W.H.O.I. Technical Report WHOI 69-55.
- McCullough, J. R. and G. H. Tupper, Summary of current meter operations in 1968. W.H.O.f. Technical Report WHOI 69-14.
- Millard, R. C., Jr., Observations of static and dynamic tension variations from surface moorings. W.H.O.I. Technical Report WHOI 69-29.
- SCOR 21 Report, UNESCO Tech. Papers in Marine Science No. 11, 1969.
- Thompson, R., The search for topographic Rossby waves in the gappy current records at Site D. W.H.O.I. Technical Report WHOI 69-67.
- Volkmann, G. H., Mooring summary 1968. W.H.O.I. Technical Report WHOI 69-35.

REPRESENTATION OF THE PROPERTY
. 1970

- Berteaux, H. O. and R. G. Walden, An engineering program to improve the reliability of deep-sea moorings. M.T.S. 6th Ann. Meeting, 1, 29 June 1 July, 1970.
- Berteaux, H. O., Design of deep-sea mooring lines. M.T.S. Journal, 4, (3), 33-46, 1970.
- Day, C. G., Wind measurements from moored buoys. W.H.O.I. Technical Report WHOI 70-19.
- Gifford, J., Cruise report CHAIN Cruise 92. W.H.O.I. Technical Report WHOI 70-13.
- Heinmiller, R. H., Cruise report CHAIN Cruise 90. W.H.O.I. Technical Report WHOI 70-12.

Technical Reports

1970 (cont.)

- Heinmiller, R. H., Cruise report CHAIN Cruise 95. W.H.O.I. Technical Report WHOI 70-14.
- Pollard, R. T., A compilation of moored wind and current meter observations. W.H.O.I. Technical Report WHOI 70-40.
- Vachon, W. A., Kink formation properties and other mechanical characteristics of oceanographic strands and wire rope. M.I.T. Instrumentation Lab. Report E-2487, 1970.
- Volkmann, G., Mooring summary 1969. W.H.O.I. Technical Report WHOI 70-37.
- Volkmann, G., Cruise report CHAIN Cruise 98. W.H.O.I. Technical Report WHOI 70-38.

1971

- Berteaux, H. O., An engineering review of the Woods Hole Oceanographic Institution buoy program. Proc. Int. Colloq. on Exploitation of the Oceans, Bordeaux, March, 1971.
- Dexter, S. C., Interim report on marine materials project. In: Progress Report on Sea Grant GH 104 for Oceanog. Eng. Acad. Devel., A. J. Williams, ed., W.H.O.I. Technical Report WHOI 71-4.
- Heinmiller, R. H., R/V CHAIN Cruise 95, January 2-12, 1970. W.H.O.I. Technical Report WHOI 71-23.

THE THE PROPERTY OF THE PROPER

- Panicker, N. N., Determinations of directional spectra of ocean waves from gauge arrays. PH.D. hesis, U. of California, Berkeley, Tech. Rept. HEL-1-18.
- Tarbell, S. and F. Webster, A compilation of moored current meter and wind observations, Vol. V. W.H.O.I. Technical Report WHOI 71-50.

- Daubin, S. C., H. O. Berteaux, D. S. Bitterman, Jr., P. R. Boutin and P. E. Kallio, The ACODAC system. W.H.G.I. Technical Report WHOI 72-87.
- Dexter, S. C., Handbook of oceanographic materials. <u>W.H.O.I. Technical</u> Report WHOI 4-72.

Technical Reports

1972 (cont.)

- Heinmiller, R. H., Cruise Report, Chain 101, 29 January 14 February 1972. W.H.O.I. Technical Report WHOI 72-48.
- Heinmiller, R. H., Cruise Report, Knorr 17, 3 17 December, 1970. W.H.O.I. Technical Report WHOI 72-49.
- Heinmiller, R. H., Cruise Report, Knorr 23, 25 July August 1971. W.H.O.I. Technical Report WHOI 72-50.
- Heinmiller, R. H., Cruise Report, Knorr 5, June July, 1970. W.H.O.I. Technical Report WHOI 72-51.
- Moller, D. A., R/V Knorr Cruise No. 13, October 7 21, 1970. W.H.O.I. Technical Report WHOI 72-80.
- Stimson, P. B. and B. Prindle, Armoring of synthetic-fiber deep-sea moring lines against fishbite. W.H.O.I. Technical Report WHOI 72-75.

A STANDARD CONTRACTOR OF THE PROPERTY OF THE P

- Berteaux, H. O. and R. Heinmiller, Back-up recovery of deep-sea moorings.

 MTS Journal, February/March, 1973.
- Berteaux, H. O. and R. Morey, Alleviation of corrosion problems in deepsea moorings. Proc. 3rd Int. Cong. on Marine Corrosion and Fouling, Gettysburg, Maryland.
- Chhabra, N. K, 1973, Mooring Mechanics A Comprehensive Study, Vol. 1.
 C. S. Draper Laboratory, inc., Report R-775.
- Collins, C. W., Jr., Radio antenna system installation and measurement on oceanographic buoys. W.H.O.I. Technical Report WHOI Tech. Memo 2-73.
- Frankignoul, C. J. and R. F. Henery, Spectral analysis of short inertialinternal wave records. <u>Marine Sciences Directorate Manuscript</u> Report Series No. 34.
- Gifford, J., Cruise Report, R/V Chain 107, 22 October 10 November, 1972. W.H.O.I. Technical Report WHOI 73-4.
- Heinmiller, R. H., Cruise Report: Chain 112, Legs I and II, 6 March 3 April, 1973. W.H.O.I. Technical Report WHOI 73-51.
- Heinmiller, R. H., Cruise Report: Chain 112, Leg IV, 24 June 9 July, 1973. W.H.O.I. Technical Report WHOI 73-50.

Technical Reports

1973 (cont.)

- Heinmiller, R. H. and R. G. Walden, Details of Woods Hole moorings. W.H.O.I. Technical Report WHOI 73-71.
- Panicker, N. N., Computer simulation of a tripod mooring for design and prediction. W.H.O.I. Technical Report WHOI 73-85.
- Tupper, G., Cruise Report, Gosnold 194. W.H.O.I. Technical Report WHOI 73-30.
- Walden, R. G. and N. N. Panicker, Analysis of taut-mooring technology.

 Proc. W.M.O. Tech. Conf. on means of Acquis. and Commun. of Ocean
 Data, Tokyo, Japan. W.H.O.I. Technical Report WHOI 73-31.
- Walden, R. G., H. O. Berteaux and F. Striffler, The design, logistics and installation of a SOFAR float tracking station at Grand Turk Island (B.W.I.). W.H.O.I. Technical Report WHOI 73-73.

- Briscoe, M. G., Near-surface experiment at MODE site. MODE Hot-Line News, no. 47, 4 January 1974 (unpublished document).
- Briscoe, M. G., Exponential fits to the MODE area Väisälä profile. MODE Hot-Line News, no. 59, 21 June 1974 (unpublished document).
- Bryden, H., Geostrophic calculations from MODE-I moored temperature data.

 MODE Hot-Line News, no. 50, 15 February 1974 (unpublished document).
- Chausse, D. and S. Tarbell, A compilation of moored current meter and wind observations, Volume VII (1968 measurements). W.H.O.I. Technical Report WHOI 74-52.
- Chhabra, N. K., J. M. Dahlen and M. R. Froidevaux, 1974, Mooring Dynamics Experiment Determination of a Verified Dynamic Model of the W.H.O.I.

 Intermediate Mooring. C. S. Draper Laboratory, Inc., Report R-823.
- Dexter, S. C., Microbiological fouling and its control in coastal water and the deep ocean. W.H.O.I. Technical Report WHOI 74-64.
- Fofonoff, N. P., S. P. Hayes and R. C. Millard, Jr., W.H.O.I./Brown microprofiler: methods of calibration and data handling. W.H.O.I. Technical Report WHOI 74-89.
- Frankignoul, C., Energy correspondences in the internal wave field.

 MODE Hot-Line News, no. 54, 12 April 1974 (unpublished document).

Technical Reports

1974 (cont.)

- Frankignoul, C., Interaction between internal waves and low-frequency currents. MODE Hot-Line News, no. 62, 2 August 1974 (unpublished document).
- Gifford, J. E., Cruise Report, Atlantis II 57, May 1970. W.H.O.I. Technical Report WHOI 74-101.
- Gifford, J. E., Cruise Report, Knorr 8, August 1970. W.H.O.I. Technical Report WHOI 74-102.
- Gifford, J. E., Cruise Report, Atlantis II 66, December 1971. W.H.O.I.

 Technical Report WHOI 74-103
- Gifford, J. E., Cruise Report, Knorr 26, May-June 1972. W.H.O.I. Technical Report WHOI 74-104.
- Heinmiller, R. H., Jr., Cruise Report, Chain 116. W.H.O.I. Technical Report WHOI 74-77.
- Heinmiller, R. H., Jr. and D. A. Moller, Failure of a moored array in a Gulf Stream Eddy. MTS Jour., 8, (7), August 1974.
- Heinmiller, R. H., Jr., W. J. Schmitz, Jr. and M. G. Briscoe, Scientific needs for moored instrumentation. MTS, 10th Ann. Conf., September 1974, 3-15.

- Heinmiller, R. H., Jr., Bottom topography at POLYMODE-O sites. MODE Hot-Line News, no. 65, 13 September 1974 (unpublished document).
- Heinmiller, R. H., Jr., Report on R/V Chain cruise 116. MODE Hot-Line News, no. 65, 13 September 1974 (unpublished document).
- Huppert, H. and H. Freeland, MODE bathymetry. MODE Hot-Line News, no. 65, 13 September 1974 (unpublished document):
- Joyce, T., IWEX temperature measurements. MODE Hot-Line News, no. 53, 29 March 1974 (unpublished document).
- La Rochelle, R. A., AMF acoustic release operation and maintenance; supplement by the Woods Hole Oceanographic Institution's Buoy Project. W.H.O.I. Technical Report WHOI 74-45.
- McCullough, J. R., In search of moored current sensors. Proc. 10th Ann. MTS Conf., September 1974, 31-54.
- Millard, R. C., Jr., CTD averages from IWEX. MODE Hot-Line News, no. 52, 15 March 1974 (unpublished document).

Technical Reports

1974 (cont.)

- Millard, R. C., Jr., Bottom-layer observations from MODE and IWEX. MODE Hot-Line News, no. 60, 5 July 1974 (unpublished document).
- Moller, D. A., Acoustic navigation during IWEX. MODE Hot-Line News, no. 51, 1 March 1974 (unpublished document).
- Moller, D. A., The deployment of an oceanographic deep-sea mooring: The IWEX Project. International Conference on Engineering in the Ocean Environment, IEEE, Halifax, N. S., August 1974.
- Moller, D. A., Cruise Report, Knorr 34 and Knorr 36. W.H.O.I. Technical Report WHOI 74-94.
- Moller, D. A., Cruise Report, Atlantis II 63. W.H.O.I. Technical Report WHOI 74-43.
- Moller, D. A., Cruise Report, Atlantis II 69. W.H.O.I. Technical Report WHOI 74-48.
- Moller, D. A., Cruise Report, Chain 103. W.H.O.I. Technical Report WHOI 74-41.
- Panicker, N. N., S. Schultz and D. Schmidt, Analysis of surface mooring dynamics. Paper No. OTC 2071, Preprints, 6th Ann. Offshore Tech. Conf., Houston, pp. 417-428, May 1974.
- Panicker, N. N., Review of techniques for directional wave spectra. Proc. Int. Symp. on Ocean Wave Measurement and Analysis, New Orleans, pp. 669-688, September 1974.
- Panicker, N. N., Effect of cable material on surface mooring dynamics.

 MODE Hot-Line News, no. 62, 2 August 1974 (unpublished document).
- Payne, R. E., A buoy mounted meteorological recording package. W.H.O.I. Technical Report WHOI 74-40.
- Schmitz, W. J., Jr., J. R. Luyten and W. Sturges, The role of eddies in the general circulation of the deep western North Atlantic. MODE Hot-Line News, no. 61, 19 July 1974 (unpublished document).
- SCOR Working Group 21, 1970, An Intercomparison of Some Current Meters, II.

 UNESCO Technical Papers in Marine Science No. 17, 1974.
- Tarbell, S., A compilation of moored current meter and wind observations, Volume VI (1967 measurements). W.H.O.I. Technical Report WHOI 74-4.

Technical Reports

1974 (cont.)

- Thompson, R., Predicting the characteristics of the well-mixed layer. W.H.O.I. Technical Report WHOI 74-82.
- Tupper, G. H., Cruise Report, Knorr 39. W.H.C.I. Technical Report WHOI 74-42.
- Walden, R. G. and H. O. Berteaux, Design and performance of a deep-sea tri-moor. Proc. 10th Ann. MTS Conf., September 1974.
- Zenk, W. and M. G. Briscoe, The Cape Cod experiment on near-surface internal waves. W.H.O.I. Technical Report WHOI 74-87.
- Zenk, W., Vertical displacement spectra at high wavenumbers from MODE-I tows. MODE Hot-Line News no. 53, 23 March 1974 (unpublished document).
- Zenk, W., Temperature variability below the mixed layer in the MODE-I area.

 MODE Hot-Line News no. 61, 19 July 1974 (unpublished document).

1975

- Cheney, R., W. Gemmill, M. Shank, P. Richardson and D. Webb, Ring tracking experiment. MODE Hot-Line News no. 83, 7 November 1974 (unpublished document).
- Cheney, R. and P. Richardson, Distribution of Gulf Stream rings in the northwestern Sargasso Sea. <u>MODE Hot-Line News</u> no. 79, 5 September 1974 (unpublished document).

- Clay, P., The all-wire mooring. MODE Hot-Line News no. 69, 17 January 1975 (unpublished document).
- Flierl, G., Quasi-Eulerian quantities derived from float measurements and true Eulerian quantities. MODE Hot-Line News no. 85, 19 December 1975 (unpublished document).
- Frankignoul, C. J., Some statistical features of high-frequency motions in MODE-I. MODE Hot-Line News no. 72, 11 April 1975 (unpublished document).
- Guillard, E. D., Ed., A Manual for Science Personnel Aboard Research Vessels of the Woods Hole Oceanographic Institution (an unnumbered W.H.O.I. Technical Report).
- Heinmiller, R. H., Jr., Mooring operations of the Woods Hole Buoy Group for the MID-OCEAN DYNAMICS EXPERIMENT. W.H.O.I. Technical Report WHOI 75-42.

Technical Reports

1975 (cont.)

- Iida, L. and M. G. Briscoe, Gaussianity of the current and temperature data from the trimoored Internal Wave Experiment (IWEX). W.H.O.I.

 Technical Report WHOI 75-67.
- Lai, D. and P. Richardson, Distribution and movement of cyclonic Gulf Stream rings from historical data (1970-1973). MODE Hot-Line News no. 80, (unpublished document).
- McCartney, M., Big babies in the northern Sargasso Sea. MODE Hot-Line News
 No. 74, 6 June 1975 (unpublished document).
- McCullough, J. R., 1975, In search of moored current sensors. MTS Proc. 10th Ann. Conf.
- McCullough, J. R., A digital data logging technique for remote recording instruments. Proc. of the Working Conference on Oceanographic Data Systems, 12-14 November 1975, Woods Hole, Massachusetts.
- McCullough, J. R., Vector averaging current meter speed calibration and recording technique. W.H.O.I. Technical Report WHOI 75-44.
- Panicker, N. N. and D. W. Schmidt, Prediction and measurement of the stability of the IWEX tripod mooring. W.H.O.I. Technical Report WHOI 75-46.
- Panicker, N. N. and L. E. Borgman, 1975, Enhancement of directional wave spectrum estimates. Proc. 14th Int. Conf. on Coastal Engineering (Copenhagen), American Society of Civil Engineers, Vol. I.
- Pollard, R. T. and S. Tarbell, A compilation of moored current meter and wind observations, Volume VII (1970 array measurements). W.H.O.I. Technical Report WHOI 75-7.
- Richman, J., Temperature records from MODE-I moorings 1 and 8. MODE Hot-Line News no. 69, 17 January 1975 (unpublished document).
- Riser, S., Temperature events at MODE-I site moorings 1 and 8. MODE Hot-Line News no. 71, 14 March 1975 (unpublished document).
- Robinson, A, Summary of theoretical and numerical modeling of low-frequency mesoscale processes. MODE Hot Line News no. 81, 10 October 1975 (unpublished document).
- Rossby, T., D. Dow and H. Freeland, Float tracks for May-December 1974. MODE Hot-Line News no. 76, 18 July 1975 (unpublished document).

Technical Reports

1975 (cont.)

- Schmitz, W. J., Jr. and R. H. Heinmiller, Notes on mooring and current meter performance. MODE Hot Line News no. 69, 17 January 1975 (unpublished document).
- SCOR Working Group 21, 1972, An interpretation of some current meters, III. UNESCO Technical Papers in Marine Science 23, 1975.
- Tarbell, S., M. G. Briscoe and D. Chausse, A compilation of moored current data and associated oceanographic observations, Volume IX [1973 Internal Wave Experiment (IWEX)]. W.H.O.I. Technical Report WHOI 75-68.
- Thompson, R., Dynamical tests with single current meters. MODE Hot-Line News no. 80, 26 September 1975 (unpublished document).
- Tupper, G. H., Cruise Report Knorr 44. W.H.O.I. Technical Report WHOI 75-59.
- Volkmann, G., Some XBT sections in the western North Atlantic. MODE Hot-Line News no. 84, 28 November 1975 (unpublished document).

THE PROPERTY OF THE PROPERTY O

- Armi, L., The dynamics of the bottom boundary layer of the deep ocean. Proc. 8th Int. Liège Coll. on Ocean Hydrodynamics bottom turbulence, June, 1976.
- Bradley, K., CHAIN 129 Cruise Report. POLYMODE News no. 3, 20 February 1976, W.H.O.I. (unpublished document).
- Bradley, K., Intermediate mooring notes. <u>POLYMODE News</u> no. 15, 17 September 1976, W.H.O.I. (unpublished document).
- Bradley, K., KNORR 60 Cruise Report. <u>POLYMCDE News</u> no. 18, 19 November 1976, W.H.O.I. (unpublished document).
- Briscoe, M., Notes on bispectral calculations on internal waves. <u>POLIMODE</u>
 News no. 9, 4 June 1976, W.H.O.I. (unpublished document).
- Chausse, D. and S. Tarbell, A compilation of moored current data and associated ocean observations, Volume XIII, 1973 MODE. W.H.O.I. Technical Report WHOI 76-101.
- Chhabra, N. K., 1976, Mooring Mechanics ,A comprehensive Computer Study, Vol. II Three Dimensional Dynamic Analysis of Moored and Drifting Buoy Systems. The C. S. Draper Laboratory, Inc. Report R-1066.

Technical Reports

1976 (cont.)

- Dean, J., Differential-temperature VACMs. <u>POLYMODE</u> News no. 12, 30 July 1976, W.H.O.I. (unpublished document).
- Flierl, C.. Motions of tracer particles in Gulf Stream rings. POLYMODE News nc. 8, 14 May 1976, W.H.O.I. (unpublished document).
- Fofonoff, N. P., 1976, roLYGON-70: A Soviet oceanographic experiment.

 Oceanus, 19 (3), 40-44.
- Fofonff. N. P., Intercomparison '76. POLYMODE News no. 15, 17 September 1976, W.H.O.I. (unpublished document).
- Fofonoff, N. P. and R. C. Millard, Jr., CTD intercomparison aboard R/V AKADEMIK VERNADSKY. POLYMODE News no. 19, 10 December 1976, W.H.O.I. (unpublished document).
- Heinmiller, R. H., The Woods Hole Buoy Project moorings, 1960 through 1974. W.H.O.I. Technical Report WHOI 76-53.
- Heinmiller, R. H., Mooring operations techniques of the Buoy Project at the Woods Hole Oceanographic Institution. W.H.O.I. Technical Report WHOI 76-96.
- Heinmiller, R. H., The POLYMODE local dynamics experiment. POLYMODE News no. 14, W.H.O.I. (unpublished document).
- Heinmiller, R. H., Visit of AKADEMIK VERNADSKY to Boston. POLYMODE News no. 17, 29 October 1976, W.H.O.I. (unpublished document).
- Joyce, T., J. Dean, M. McCartney, R. Millard, D. Moller, A. Voorhis, D. Dahm, D. Georgi, G. Kullenberg, J. Toole and W. Zenk, Observations of the antarctic polar front during FDRAKE 76: A cruise report. W.H.O.I.

 Technical Report WHOI 76-74.
- Joyce, T., Temperature finestructure of the MODE-I eddy. POLYMODE News no. 9, 4 June 1976, W.H.O.I. (unpublished document).
- Luyten, J., Mean flow along the Continental Rise. <u>POLYMOBE News</u> no. 2, 20 January 1976, W.H.O.I. (unpublished document).
- McCullough, J. R., Moored current meter sensor development. POLYMODE News no. 12, 30 July 1976, W.H.O.I. (unpublished document).
- Millard, R. C., Jr. and T. Joyce, The use of vertical profiling with a CTD in the study of natural variability in the ocean. Proc. Ocean Profiling Workshop, June 2-4, 1976, NOAA Data Buoy Office/NSF, 37-64.

Technical Reports

1976 (cont.)

- Millard, R. C., Jr., CTD and hydrographic intercomparison aboard AKADEMIK KURCHATOV. POLYMODE News no. 13, 13 August 1976, W.H.O.I. (unpublished document).
- Moller, D. A., A computer program for the design and static analysis of single-point subsurface mooring systems: NOYFB. W.H.O.I. Technical Report WHOI 76-59.
- Panicker, N. N., Energy resource potential of ocean surface waves. 15th
 International Conference on Coastal Engineering, Honolulu, Hawaii,
 July 1976.
- Panicker, N. N. and D. Schmidt, Stability and the IWEX trimooring.

 POLYMODE News no. 1, 16 January 1976, W.H.O.I. (unpublished document).

- Pryne, R. E., A. L. Bradshaw, J. P. Dean and K. E. Schleicher, Accuracy of temperature measurements with the VACM. W.H.O.I. Technical Report WHOI 76-94.
- Richardson, P., Rings and ridges. <u>POLYMODE News</u> no. 8, 14 May 1976, W.H.O.I. (unpublished document).
- Richardson, P., An XB'r section through several rings. POLYMODE News no. 8, 14 May 1976, W.H.O.I. (unpublished document).
- Richardson, P., The entrainment of Gulf Stream water by a cyclonic ring.
 POLYMODE News no. 13, 13 August 1976, W.H.O.I. (unpublished document).
- Saunders, P., Intercomparison of a VACM and an acoustic current meter.

 POLYMODE News no. 12, 30 July 1976, W.H.O.I. (unpublished document).
- Swallow, J. C. and J. R. Luyten, Some observations of surface currents in the western Indian Ocean. Ocean Modelling no. 1, October 1976, SCOR WG 49 (unpublished manuscript).
- Tarbell, S. A., A compilation of moored current data and associated oceanographic observations, Volume X, early 1969 measurements. W.H.O.I. Technical Report WHOI 76-40.
- Tarbell, S. A., A compilation of moored current data and associated oceanographic observations, Volume XI, late 1969 measurements. W.H.O.I. Technical Report WHOI 76-41.
- Valdes, J., Model 840 current meter results and modifications. POLYMODE News no. 12, 30 July 1976, W.H.O.I. (unpublished document).

Mechnical Reports

1976 (cont.)

- Walden, R., Tests of KEVLAR as a new mooring material. <u>POLYMODE News</u> no. 15, 17 September 1976, W.H.O.I. (unpublished document).
- Worthington, L. V., Further notes on Big Babies. <u>POLYMODE News</u> no. 3, 20 February 1976, W.H.O.I. (unpublished document).

1977

- Berteaux, H. O., R. A. Goldsmith and W. E. Schott, III, Heave and roll response of free floating bodies of cylindrical shape. W.H.O.I. Technical Report WHOI 77-12.
- Bradley, K., KNORR 66 Cruise Report. POLYMODE News no. 33, 19 August 1977, W.H.O.I. (unpublished document).
- Chhabra, N. K., 1977, Dynamic motions of a subsurface mooring system at anchor impact after its free fall to the ocean floor. The Charles Stark. Draper Laboratory, Inc. Report R-1079.
- Heinmiller, R. H. and R. A. LaRochelle, Field experience with acoustic releases at the Woods Hole Oceanographic Institution. W.H.O.I. Technical Report WHOI 77-10.
- Joyce, T., CTD observations during KNORR 66, Leg II. POLYMODE News no. 33, 19 August 1977, W.H.O.I. (unpublished document).
- McCullough, J. R., 1977, Problems in measuring currents near the ocean surface. Oceans '77, MTS-IEEE (unpublished manuscript).
- Panicker, N. N. and D. Schmidt, Prediction and measurement of the stability of a deep-sea trimooring. Ocean Engineering, 3, 1977 (Pergamon Press).
- Sanford, T. B. and N. G. Hogg, The North Atlantic fine and microstructure Cruise KNORR 52 and EASTWARD 75-12. W.H.O.I. Technical Report WHOI 77-11.

THE REPORT OF THE PROPERTY OF

- Tarbell, S., R. Payne and R. Walden, A compilation of moored current meter data and associated mooring action data from mooring 592, Volume XIV (1976 data). W.H.O.I. Technical Report WHOI 77-41.
- Tarbell, S. A. and A. W. Whitlatch, A compilation of moored current data and associated oceanographic observations, Volume XIII (1970 measurements). W.H.O.I. Technical Report WHOI 77-18.

Technical Reports

1977 (cont.)

- Tarbell, S. A. and A. W. Whitlatch, A compilation of moored current data and associated oceanographic observations, Volume XV (1971 measurements). W.H.O.I. Technical Report WHOI 77-56.
- Valdes, J. R., COS/MOS 850 current meter report. W.H.O.I. Technical Report WHOI 77-30.
- Volkmann, G., Four short XBT sections across the Mid-Atlantic Ridge.

 POLYMODE News no. 33, 19 August 1977, W.H.O.I. (unpublished document).
- Walden, R. G., C. W. Collins, Jr., P. R. Clay and P. O'Malley, Validation testing of the DOCMS intermediate mooring. W.H.O.I. Technical Report WHOI 77-53.
- Walden, R. G. D. H. DeBok, D. Meggitt, J. B. Gregory and W. A. Vachon,
 The mooring dynamics experiment A major study of the dynamics of
 buoys in the deep ocean. Proc. 9th Ann. Offshore Technology Conference
 in Houston, Texas, May 1977, 3.
- Wunsch, C., POLYMODE Array III plans. POLYMODE News no. 24, 25 March 1977, W.H.O.I (unpublished document).

- Wunsch, C., Temperature and pressure measurements from POLYMODE Array II.

 POLYMODE News no. 26, 22 April 1977, W.H.O.I. (unpublished document).
- Wunsch, C., Setting of Array III clusters A and B. <u>POLYMODE News</u> no. 33, 9 August 1977, W.H.O.I. (unpublished document).

- Armi, L., The importance of boundaries. Oceanus, 21 (1), 14-19 (Winter 1978).
- Briscoe, M. G., 1978, On the energy balance of internal waves. Yearbook of the McGraw-Hill Encyclopedia of Science and Technology.
- Briscoe, M. G., T. M Joyce, (2) J. Willebrand, P. Müller and D. J. Olbers, Bibliography and inverse analysis of the trimocred internal wave experiment INEX (2). W.H.O.I. Technical Report WHOI 78-10.
- Brown, N. L. and G. K. Morrison, W.H.O.I./Brown Conductivity, temperature and depth microprofiler. W.H.O.I. mechnical Report WHOI 78-23.
- Bryden, H. L., R. C. Millard and D. L. Porter, CTD observations in the western Mediterranean Sea during Cruise 118, Leg 2 of R/V CHAIN, February, 1975. W.H.O.I. Technical Report WHOI 78-26.
- Frankignoul, C. and T. Joyce, Internal-wave-induced viscosity. POLYMODE News no. 52, 4 August 1978, W.H.O.I. (unpublished document).

Technical Reports

1978 (cont.)

- Heath, R. A., H. L. Bryden and S. P. Hayes, 1978, Interaction of the Antarctic Circumpolar Current with topography south of New Zealand. Antarctic Journal of the U. S.
- Joyce, T. and G. Siedler, 1978, Some examples of air-sea interaction in JASIN-78 as observed by PLANET. <u>JASIN news</u>, 10 (5-7), Institute of Oceanographic Sciences (unpublished document).
- McComas, C. H., III, Bispectra of Internal Waves. W.H.O.I. Technical Report WHOI 78-25.
- McCullough, J. R., 1978, Near-surface ocean current sensors: problems and performance. In: Proc. of a Working Conference on Current Measurement, W. Woodward, C.N.K. Mooers, K. Jensen, editors. Tech. Report DEL-SG-3-78, College of Marine Studies, University of Delaware, Newark DE 19711.
- McWilliams, J., H. Bryden, C. Ebbesmyer, W. Holland, J. Luyten, B. Owens, J. Price, T. Rossby, W. Schmitz, B. Semtner and B. Taft, What observations and numerical models indicate about the site of the Local Dynamics Experiment. POLYMODE News no. 46, 21 April 1978, W.H.O.I. (unpublished document).
- Millard, R. C., A. Blumer and N. Galbraith, A digital tape format for Woods Hole Oceanographic Institution CTD data. W.H.O.I. Technical Report WHOI 78-43.
- Owens, B., Local Dynamics Experiment Deployment. POLYMODE News no. 48, 2 June 1978, W.H.O.I. (unpublished document).
- Schmitz, W. J., Jr. and J. P. Dean, 1978, The oceanic eddy field: comments on exploration and technology. In: Proc. of a Working Conference on Current Measurement, January 11-13, 1978. Technical Report DEL-SG-3-78, College of Marine Sciences, University of Delaware, Newark DE 19711.
- Siedler, G. and T. Joyce, 1978, Tidal variations as observed by PLANET during JASIN-78. <u>JASIN News</u>, 10, 4-5.
- Tarbell, S. and M. G. Briscoe, A compilation of moored current meter and wind recorder data, Volume XVIII (JASIN, 1978, Moorings 651-653.

 W.H.O.I. Technical Report WHOI 78-93.

Technical Reports

1978 (cont.)

- Tarbell, S. and A. Spencer, A compilation of moored current data and associated observations (MCDE-Site, Volume XVI, 1971-1975). W.H.O.I. Technical Report WHOI 78-5.
- Tarbell, S. and A. Spencer, A compilation of moored instrument data and associated oceanographic observations, Volume XVII (POLYMODE Array II data). W.H.O.I. Technical Report WHOI 78-49.
- Tupper, G., ATLANTIS II-100 Cruise Report. POLYMODE News no. 53, 25 August 1978, W.H.O.I. (unpublished document).
- Walden, R. G., More Kevlar test results. <u>POLYMODE News</u> no. 44, 10 March 1978, W.H.O.I. (unpublished document).

1979

- Briscoe, M., J. McCullough and R. Weller, 1979, JASIN current meter and mooring intercomparison. JASIN News no. 12, 5-8, Institute of Oceanographic Sciences (unpublished document).
- Briscoe, M. G., C. A. Mills, R. E. Payne and K. R. Peal, ATLANTIS II (Cruise 102) moored and shipboard surface meteorological measurements during JACIN 1978. W.H.O.I. Technical Report WHOI 79-43.
- Briscoe, M. G. and R. E. Payne, 1979, Meteorological observations and preliminary wind stress calculation from Buoy W2. JASIN News no. 12, 8-9, Institute of Oceanographic Sciences (unpublished document).
- Ciesluk, A., Local Dynamics Experiment recovery. <u>POLYMODE News</u> no. 71, 28 September 1979, W.H.O.I. (unpublished document).
- Fu, L. and C. Wunsch, Recovery of POLYMODE Array 3 Clusters A and B. POLYMODE News no. 60, 19 January 1979, W.H.O.I. (unpublished document).
- McComas, C. H. and M. G. Briscoe, 1979, Buoyancy frequency near the FIA.

 JASIN News no. 13, 3, Institute of Oceanographic Sciences (unpublished document).
- McCullough, J. R., Near-surface ocean current sensors: problems and performance. W.H.O.I. Technical Report WHOI 79-90.
- McCullough, J. R. and W. Graeper, Moored acoustic travel time (ATT) current meters: Evolution, performance and future designs. W.H.O.I. Technical Report WHOI 79-92.

and the second and their a

١,

Technical Reports

1979 (cont.)

- Mills, C. A. and P. Rhines, The deep western boundary current at the Blake-Bahama Outer Ridge: current meter and temperature observations, 1977-1978. W.H.O.I. Technical Report WHOI 79-85.
- Pennington, N. and M. G. Briscoe, <u>ATLANTIS II</u> (Cruise 102) preliminary CTD data from JASIN 1978. <u>W.H.O.I. Technical Report WHOI 79-42</u>.
- Spencer, A., A compilation of moored current meter data and associated oceanographic observations, Volume XX (Pise Array, 1974). W.H.O.I. Technical Report WHOI 79-56.
- Spencer, A., C. Mills and R. E. Payne, A compilation of moored current meter data and associated oceanographic observations, Volume XIX (Polymode Array 1 data). W.H.O.I. Technical Report WHOI 79-34.
- Tarbell, S., M. G. Briscoe and R. A. Weller, A compilation of moored current meter and viral recorder data, Volume XVII (JASIN, 1978: moorings 651-653). William Technical Report WHOI 79-65.
- Tarbell, S. and R. Payne, A compilation of moored current meter data and associated oceanographic observations, Volume XXII (1973 observations). W.H.O.I. Technical Report 79-87.
- Tarbell, S., A. Williams, R. Payne and M. Chaffee, The W.H.O.I. moored array program 1963-1978: Data directory and bibliography. W.H.O.I. Technical Report WHOI 79-88.

1980

- Ciesluk, A., Final POLYMCDE Array 3 mooring recovery. <u>POLYMODE News</u> no. 73, 18 January 1980; W.H.O.I. (unpublished document).
- Fu, L.-L., 1980, Observations and models of inertial waves in the deep ocean.

 Ph.D. Thesis, M.I.T.-W.H.O.I. Joint Program.
- Georgi, D. T., J. P. Doa and J. A. Chase, Temperature calibration of expendable bathythermographs. Ocean Engineering, in press.
- Joyce, T. M., R. H. Käse and W. Zenk, Aspects of low frequency upper ocean variability during JASIN, Phase II. <u>JASIN News</u> no. 15, Institute of Oceanographic Sciences (unpublished document).
- McCullough, J. R., Techniques of measuring currents near the ocean surface.

 <u>Instruments and Methods in Air-Sea Interaction</u>, A NATO text, in preparation.
- Millard, R., J. Toole and M. Swartz, A fast responding temperature measurement system for CTD applications. Ocean Engineering, in press.

CARLES CHARLES OF THE PROPERTY
Technical Reports

1980 (cont.)

Ou, H. W., J. A. Vermersch, W. S. Brown and R. C. Beardsley, New England Shelf/Slope Experiment (February to August, 1976) data report: The moored array. W.H.O.I. Technical Report WHOI 80-3.

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

Deputy Under Secretary of Defense
(Research and Advanced Technology)
Military Assistant for Environmental Science
Room 3D129
Washington, D.C. 20301

Office of Naval Research 800 North Quincy Street Arlington, VA 22217

- 3 ATTN: Code 483
- 1 ATTN: Code 460
- 2 ATTN: 102B
- ONR Representative Woods Hole Oceanographic Inst. Woods Hole, MA 02543

Commanding Officer
Naval Research Laboratory
Washington, D.C. 20375

6 ATTN: Library, Code 2627

12 Defense Documentation Center Cameron Station Alexandria, VA 22314 ATTN: DCA

Commander Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522

- 1 ATTN: Code 8100 1 ATTN: Code 6000 1 ATTN: Code 3300
- NODC/NOAA Code D781 Wisconsin Avenue, N.W. Washington, D.C. 20235

1. Current meter 2. Moored instruments 3. Bibliography 1. Tarbell, S. 11. Chaffee, M. 111. Millians, A. 11. Payne, R. 11. Payne, R. 11. CCE 77-19403 This card is UNCLASSIFIED	1. Current neter 2. Moored 'nstrurents 3. Sibliography 1. Tarbell, S. 11. Chaffee, N. 111. Millians, A. 11. Wagnla-76-C-0197; V. NOCOIA-76-C-0197; V. NOCOIA-76-C-0197; VI OCE 77-19403 This card is UNCLASSIFIED
Nocds Hole Oceangraphic Institution High Woods Hole Oceangraphic Institution High Woods Hole Oceangraphic Institution The Will Woods Areay Project 1963-1978: DATA DIRECTOR Wo Bissing Horoschaft & S. Tarbell H. Chaffee, A. Willsar- and R. Payne. August 1980. 166 pages. Prepared for the Office of Maral Research under Contract Foundation under Grant OCE 77-19403. General information about rooming locations, durations and data gathered by the Woods Annay Project (also known as Bury Group) between late 1963 and 1978 are 1isted. Also included is a comprehensive list of scientific and technical publications written by the Buoy Group staff.	Woods Hole Oceanographic Institution Woods Hole Oceanographic Institution THE WROIT WOOLD ARRAY PROJECT 1963-1978: DATA DIRECTORY ALTO SETELORARPH VB. S. Tarbell, M. Chaffee, A. Williars and R. Payne. August 1980. 168 pages. Freepared for the Office of Maral Research under Contract Foundation under Grant OCE 77-19403. General information about rooming locations, durations and disa galancerd by the Woored Array Project (also known as Buoy Group) between late 1963 and 1978 are listed. Also included is a comprehensive list of scientific and technical publications written by the Buoy Group staff.
1. Current meter 2. Moored instr. Ants 3. Bibliography 1. Tarbell, S. 111. Chaffee, M. 111. xillians, A. 11. Payne, R. V. WOOO14-76-C-0197; NR 093-400 VI. OCE 77-19403 This card is UNCLASSIFIED	1. Current neter 2. Poored instruments 3. Bibliography 1. Tarbell, S. 11. Chaffee, M. 111. Milliams, A. 111. Milliams, A. 111. Milliams, A. 112. Payne, R. V. NGOOL4-75-C-0197, NR 083-400 VI. OCE 77-19403 This card is UNCLASSIFIED
Noods Hole Oceanographic Institution NHOI-79-88 THE MIOI MODRED ARAAY PROJECT 1963-1978: DATA DIRECTION AND BIBLIOGAMPH by S. Tarbell, W. Chaffee, A. Williars and K. Payne, August 1960, 168 pages. A. Williars and K. Payne, August 1960, 168 pages. Prepared for the Office of Naval Research under Contract NOCOIL-76-C-0197, NR C63-400 and for the Mational Science Foundation under Grant CCE 77-19403. General information about mooring locations, durations and date gathered by the Foored Array Project (also known as Buoy Group) between late 1963 and 1978 are listed. Ansiso included is a comprehensive list of scientific and technical publications written by the Buoy Group staff.	Woods Hole Oceanographic Institution Woods Hole Oceanographic Institution WHOL-79-88 THE WHOLE WORED ARRAY PROJECT 1963-1978: DATA CIRCTORY AND SIBLIGGARPHY by S. Tarbell, M. Chaffee, A. Willars and R. Payne, August 1980." 168 pages. Prepared for the Office of Mayal Research under Contract WOODL-76-C-0197, RR 063-400 and for the National Science Foundation under Grant OCE 77-19403. General Information of Project (also known and data gathered by the Moored Array Project (also known as Buoy Group) between late 1963 and 1978 are listed. Also included is a corprehensive list of scientific and technical publications written by the Buoy Group staff.

のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、