

TO:

DATE : October 16. 2002

SAMSUNG TFT-LCD

MODEL NO.: LTM150XH-L06

APPROVED BY:	
Any Modification of Spec is not allowed without SEC's permission.	

Approved by:

PREPARED BY : AMLCD Technical Customer Service Team

J.H. Park

SAMSUNG ELECTRONICS CO., LTD.

Doc.No.	LTM150XH-L06	Rev.No	04 - 000 - G - 011008	Page	1 /28
---------	--------------	--------	-----------------------	------	-------

CONTENTS

Preliminary

General Description

1.	Absolute Maximum Ratings 1.1 Absolute Ratings Of Environment 1.2 Electrical Absolute Ratings	(3)
2.	Optical Characteristics	(6)
3.	Electrical Characteristics 3.1 TFT LCD Module 3.2 Back-light Unit	(9)
	Block Diagram 4.1 TFT LCD Module 4.2 Back-light Unit	(12)
5.	Input Terminal Pin Assignment 5.1 Input Signal & Power 5.2 LVDS Interface 5.3 Back-light Unit 5.4 Input Signals, Basic Display Colors and Gray 5.5 Pixel format	Scale of Each Color
6.	Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 6.3 Timing diagrams of LVDS 6.4 Power ON/OFF Sequence	(17) y mode)
7.	Outline Dimension	(21)
8.	Reliability Test	(23)
9.	Packing	(24)
10). Marking & Others	(25)
11	. General Precaution	(27)

GENERAL DESCRIPTION

DESCRIPTION

LTM150XH-L06 is a color active matrix TFT (Thin Film Transistor) liquid crystal display that uses amorphous silicon TFT switching devices. This model is composed of a TFT LCD panel, a driver circuit and a back-light system. The resolution of 15.0- inch contains 1,024 x 768 pixels and can display up to 16.2M colors. 6 o'clock direction is the optimum viewing angle.

FEATURES

- High contrast ratio, High aperture structure
- Wide viewing angle
- High-speed response
- XGA(1024x768 pixels) resolution
- 8-bit color depth, Display 16.2M colors
- Low power consumption
- 4 CCFTs (Cold Cathode Fluorescent Tube)
- DE Mode
- LVDS Interface with 1 pixel / clock

APPLICATIONS

- TV & Desktop monitors
- Display terminals for AV application products
- · Monitors for Industrial machine

GENERAL SPECIFICATIONS

ITEM	SPECIFICATION	UNIT	NOTE
Active area	304.1(H) x228.1(V) (15.0 inch diagonal)	mm	
Driver element	a-Si TFT active matrix		
Display colors	16,2M		
Number of pixel	1024 x 768	pixel	
Pixel arrangement	RGB vertical stripe		
Pixel pitch	0.297(H) x 0.297(W)	mm	
Display Mode	Normally white		
Surface treatment	Haze 25 , Anti-glare & Hard - Coating (3H)		

Doc.No.	LTM150XH-L06	Rev.No	04 - 000 - G - 011008	Page	3 /28
---------	--------------	--------	-----------------------	------	-------

Mechanical Information

ITEM		MIN.	TYP.	MAX.	NOTE
	Horizontal (H)	331.1	331.6	332.1	mm
Module size	Vertical (V)	254.4	254.9	255.4	mm
	Depth (D)	-	12.5	13.0	mm
Weight		-	-	1350	g

1. ABSOLUTE MAXIMUM RATINGS

1.1 ABSOLUTE RATINGS OF ENVIRONMENT

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Storage temperature	T _{STG}	-25	60	°C	(1),(5)
Operating temperature (Surface of Glass)	T _{OPR}	0	50	°С	(1),(5)
Shock (non-operating)	Snop	-	50	G	(2),(4)
Vibration (non-operating)	Vnop	-	1.5	G	(3),(4)

Note (1) Temperature and relative humidity range are shown in the figure below.

90 % RH Max. (40 °C ≥ Ta)

Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

- (2) 11ms, sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- (3) 10 300 10 Hz, Sweep rate: 10 min, 30 min for X,Y,Z.
- (4) At testing Vibration and Shock, the fixture in holding the Module to be tested have to be hard and rigid enough so that the Module would not be twisted or bent by the fixture.
- (5) If product is used for extended time excessively or exposed to high temperatures for extended time, there is a possibility of wide viewing angle film damage which could affect visual characteristics.

Doc.No.	LTM150XH-L06	Rev.No	04 - 000 - G - 011008	Page	4 /28
---------	--------------	--------	-----------------------	------	-------

1.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD MODULE

(Vss = GND = 0 V)

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Power Supply Voltage	V _{CC}	V _{SS} -0.3	+3.6	٧	(1)

NOTE (1) With Ta (25 ± 2 °C)

(2) BACK-LIGHT UNIT

 $Ta = 25 \pm 2 \, {}^{\circ}C$

ITEM	SYMBOL	MIN.	MAX.	UNIT.	NOTE
Lamp current	ΙL	3.0	6.5	mArms	(1)
Lamp frequency	fL	40	80	KHz	(1)

NOTE (1) Permanent damage to the device may occur if maximum values are exceeded.

Functional operation should be restricted to the conditions described under Normal Operating Conditions.

2. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (4).

Measuring equipment: TOPCON BM-5A

* Ta = 25 \pm 2 $^{\circ}$ C , V_{DD} = 3.3V, fv= 60Hz, f_{DCLK}=65MHz, IL = 7.0 mArms

ITEM	1	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	NOTE	
Contrast Ratio (Center of screen)		CR		300	400	-		(1), (2), (4)	
Response	Rising	TR			1	5	7	msec	(1), (3)
Time at Ta	Falling	TF		-	20	24	msec	(1), (3)	
Luminance of Center of s		YL	$\phi = 0$,	400	430	450	cd/m²		
	Red	Rx	$\theta = 0$		0.628				
	Neu	Ry	Normal		0.353				
Greer Color Chromaticity	Green	Gx	Viewing Angle		0.290	Typ. +0.03			
		Gy		Тур. -0.03	0.595			(1), (4)	
(CIE 1931)	Blue	Вх			0.144				
		By			0.088				
		Wx		-	0.304				
	White	W _Y			0.304				
					0.020				
	Hor.	θι		65	70	-			
Viewing Angle	HOI.	θR	CR ≥ 10	65	70	-	Degrees		
Angio		фн	CR ≥ 10	45	50	-			
	Ver.	фь		55	60	-			
Brightness U	niformity	Вимі		-	-	25	%	(5)	

Note 1) Definition of Viewing Angle : Viewing angle range ($10 \le CR$)

Note 2) Definition of Contrast Ratio (CR): Ratio of gray max (Gmax) ,gray min (Gmin) at the center point of panel.

Note 3) Definition of Response time : Sum of TR,TF

Note 4) After stabilizing and leaving the panel alone at a given temperature for 30 min , the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. 30 min after lighting the back-light. This should be measured in the center of screen. Lamp current : 7.0mA , Environment condition : Ta = 25 ± 2 °C

Optical characteristics measurement setup

Note 5) Definition of 9 points brightness uniformity

Buni = $(1-(Bmin/Bmax)) \times 100$

Bmax : Maximum Brightness
Bmin : Minimum Brightness

 Doc.No.
 LTM150XH-L06
 Rev.No
 04 - 000 - G - 011008
 Page
 8 /28

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta= 25 ± 2 $^{\circ}$ C

ITEM			SYMBOL	MIN	TYP	MAX	UNIT	NOTE	
Voltage of Power Supply			V _{DD}	3.0	3.3	3.6	V		
Differential Input High			VIH	-	ı	+100	mV	(1)	
Threshold Volta	ige	Low	VIL	-100	ı	-	mV	(1)	
	W	hite		ı	400	ı	mA	(2)(4)*a	
Current of Power Supply	Мо	osaic	IDD	-	420	-	mA	(2)(4)*b	
		-pixel ecker		-	470	550	mA	(2)(4)*c	
Vsync Freque	ncy		f∨	-	60	75	Hz		
Hsync Freque	Hsync Frequency			1	48.3	60.0	kHz		
Main Frequency			fDCLK	47	65	65 80 MHz		(3)	
Rush Current			Irush	-	-	1.5	Α	(5)	

Note (1) Condition : VCM = +1.2V (Typical)

- (2) $f_V=60Hz$, $f_{DCLK}=65MHZ$, $V_{DD}=3.3V$, DC Current.
- (3) 1 Pixel / clock
- (4) Power dissipation check pattern

(5) Measurement Conditions

Note: Control Signal: High(+3.3V) -->Low(Ground)

All Signal lines to panel except for power 3.3V: Ground

The rising time of supplied voltage is controlled to 470us by R3 and C2 value.

3.2 BACK-LIGHT UNIT

The back-light system is an edge-lighting type with 4 CCFTs(Cold Cathode Fluorescent Tube).

The characteristics of four lamps are shown in the following tables.

Ta= 25 ± 2 °C

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Lamp Current	IL	3.0	6.0	6.5	mA _{rms}	(1)
Lamp Voltage	VL	1	665	-	Vrms	I∟=6.0 mArms
Lamp Frequency	FL	40	-	60	kHz	(2)
Operating Life Time of Lamp	Hr	25,000	35,000	-	Hour	(3)
Startup Voltage	Vs	-	-	1120 (25°C)	Vrms	(4)
				1570 (0°C)		

Note) The waveform of the inverter output voltage must be area symmetric and the design of the inverter must have specifications for the modularized lamp.

The performance of the back-light, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the back-light and the inverter(miss lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

Note (1) Lamp current is measured with current meter for high frequency as shown below.

- (2) Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency shall be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- (3) Life time (Hr) of a lamp is defined as the time in which it continues to operate under the condition of Ta = 25 ± 2 °C and IL = 6.0 mArms until the brightness becomes 50% or lower than it's original value.
- (4) The voltage above this value should be applied to the lamps for more than 1 second to startup. Otherwise the lamps may not to be turned on.

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 Input Signal & Power (LVDS, Connector : Hirose DF14H-20P-1.25H)

Matching Socket : Hirose DF14-20S-1.25C

PIN NO	SYMBOL	FUNCTION	POLARITY	Output Pin# (LVDS Tx)
1	VDD	Power Supply +3.3 V		
2	VDD	Power Supply +3.3 V		
3	GND	Power Ground		
4	GND	Power Ground		
5	RXIN0 -	LVDS Receiver Signal(-)	Negative	PIN#48
6	RXIN0 +	LVDS Receiver Signal(+)	Positive	PIN#47
7	GND	Ground	-	
8	RXIN1 -	LVDS Receiver Signal(-)	Negative	PIN#46
9	RXIN1 +	LVDS Receiver Signal(+)	Positive	PIN#45
10	GND	Ground	-	
11	RXIN2 -	LVDS Receiver Signal(-)	Negative	PIN#42
12	RXIN2 +	LVDS Receiver Signal(+)	Positive	PIN#41
13	GND	Ground	-	
14	RXCLK IN -	LVDS Receiver Clock Signal(-)	Negative	PIN#40
15	RXCLK IN+	LVDS Receiver Clock Signal(+)	Positive	PIN#39
16	GND	Ground	1	
17	RXIN3 -	LVDS Receiver Signal(-)	Negative	PIN#38
18	RXIN3 +	LVDS Receiver Signal(+)	Positive	PIN#37
19	GND	Ground	-	
20	NC	Reserved	-	

Doc.No.	LTM150XH-L06	Rev.No	04 - 000 - G - 011008	Page	13/28
---------	--------------	--------	-----------------------	------	-------

LVDS INTERFACE

Note: The LCD Module uses a 100ohm resistor between positive and negative lines of each receiver input.

5.3 BACK-LIGHT UNIT

Connector: JST BHSR - 02VS -1

Mating Connector : SM02B-BHSS-1(JST)

Pin NO.	Symbol	Color	Function				
1	НОТ	Pink or Blue	High Voltage				
2	COLD	White or Black	Ground				

Doc.No.	LTM150XH-L06	Rev.No	04 - 000 - G - 011008	Page	14/28
---------	--------------	--------	-----------------------	------	-------

5.4 Input Signal, Basic Display Colors and Gray Scale of Each Colors

	Data Signal										Crov															
Color	Display				R	ed							Gre	en							BI	ue				Gray Scale
	-	R 0	R 1	R 2	R 3	R 4	R 5	R 6	R 7	G o	G 1	G 2	G 3	G 4	G 5	G 6	G 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7	Level
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
Basic	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
Color	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R000
	Dark	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R001
Crov		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R002
Gray Scale	1																									R003
of	\downarrow																									R252
Red		1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R252
	Light	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R252
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R252
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G000
	Dark	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G001
	Dark	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G002
Gray Scale	1																							-		G003
of							÷			÷		÷			÷	÷		÷	÷		÷	÷				~ G252
Green	\downarrow																									
	Light	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G252
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G252
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G252
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	B000
	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B001
Gray	↑	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B002
Scale	1					•						•			•											B003 ~
of Blue	\downarrow																									B252
Dide	13254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B252
	Light	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B252
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B252

Note) ✓ Definition of Gray :

Rn : Red Gray, Gn : Green Gray, Bn : Blue Gray (n = Gray level)

✓ Input Signal : 0 = Low level voltage, 1 = High level voltage

6. INTERFACE TIMING

6.1 Timing Parameters (DE only mode, LVDS Transmitter Input)

Signal	Item	Symbol	MIN	TY	Έ	MAX	Uı	nit	Note
	Frequency	1 / Tc	47	65	5	80	MI	Hz	
Clock	High Time	Тсн	4.5	-		-	nsec		
	Low Time	TcL	4.5	-		-	ns	ec	
Data	Setup Time	TDS	2.7	-		-	ns	ec	
Data	Hold Time	TDH	0	-		-	nsec		
Data Enable	Setup Time	TES	2.7	-		-	nsec		(1)
Frame Frequency	Cycle	TV	772	16.7	806	-	msec	lines	
Vertical Active Display Term	Display Period	TVD	768	768	8	768	lines		
One Line Scanning Time	Cycle	Тн	1100	1344		1800	clocks		
Horizontal Active Display Term	Display Period	THD	1024	102	24	1024	clo	cks	

Note (1) When LTM150XH-L06 model is operated by DE only mode, Hsync and Vsync input signals should be fixed to "Low" for stable operation. Otherwise, the module could operate abnormally.

6.3 Timing Diagrams of LVDS

LVDS Transmitter: National Semiconductor DS90C385MTD

6.4 Power ON/OFF Sequence

: To prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as the diagram below.

NOTE.

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7.	OUTLINE DIMENSION			Preli	minary
ı	[Refer to the next page	J			
Doc.No.	LTM150XH-L06	Rev.No	04 - 000 - G - 011008	Page	21/28

8. RELIABILITY TEST

Test Items	Conditions	Time/Cycle	Sample
HTOL*	50°C,Bias	500 hrs	5
LTOL*	0°C , Bias	500 hrs	5
THB**	40°C / 95%,Bias	500 hrs	5
HTS***	70°C , No Bias	250 hrs	5
LTS***	-30°C , No Bias	250 hrs	5
Thermal Cycle	-20° C/30min ~ +60° C/30min , No bias	200 cycle	5
Box Drop	1 angle , 3 edge , 6 side , 66 cm		5
Shock (Non-operatine)	50G , 11msec Sine wave , ± x/y/z axis	1 time/axis	3
Vibration (Non-operating)	1.5G , 10~300 Hz x/y/z axis , sweep rate : 10 min	30min/axis	3
ESD (Non-Operating)	contact: 150pF, 330 ohm, 200point Air: 150pF, 330 ohm, 200point * oprating: TBD	± 8kV ± 15kV	3

[Result Evaluation Criteria]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

* HTOL/ LTOL: High/Low Temperature Operating Life, ** THB: Temperature Humidity Bias **** HTS/LTS: High/Low Temperature Storage

9. PACKING

- 9.1 CARTON(Internal Packing)
 - (1) Packing Form

Corrugated fiberboard box and corrugated foam as shock absorber

(2) Packing Method

Note (1)Total: Approx. 13.0 Kg

(2)Acceptance number of piling: 10 sets

(3)Carton size: 450 (W) X 348 (D) X 440 (H)

(4)Max accumulation quantity: 7 cartons

(3) Packing Material

No	Part name	Quantiity	No	Part name	Quantiity
1	PROTECTOR-PANEL	1	6	SHIELDING-BAG	1
2	TAPE-PAPER	0.06MT	7	OPP-TAPE	0.2MT
3	PACKING-CASE	0.1	8	LABEL-STICKER	1
4	CUSHION-PAD	0.1	9	LABEL-SAFETY	1
5	CUSHION-COVER	0.1			

10. MARKING & OTHERS

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

(1)Parts number: LTM150XH-L06

(2)Revision : One letter(3)Control Code : One letter

(4)Lot number : 4 K 0 H 123 01 01

(5) Nameplate Indication

Parts name: LTM150XH-L06 Lot number: 4K0H1230101 Inspected work week: 0103

■ High voltage caution

(6) Packing box attach

11. General Precautions

11.1 Handling

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module and CCFT back-light.
- (c) Note that polarizers are very fragile and could be easily damaged. Do neither press nor scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) Desirable cleaners are water, IPA(Isopropyl Alcohol) or Hexane.

 Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth . In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static, it may cause damage to the C-MOS Gate Array IC.
- (i) Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (j) Do not disassemble the module.
- (k) Do not pull or fold the lamp wire.
- (I) Do not adjust the variable resistor which is located on the back side.
- (m) Pins of I/F connector shall not be touched directly with bare hands.

11.2 Storage

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD module in direct sunlight.
- (c) The module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

11.3. Operation

- (a) Do not connect, disconnect the module in the "Power On" condition.
- (b) Power supply should always be turned on/off by following item 6.6 "Power on/off sequence ".
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference should be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the back-light connector and its inverter power supply should be a minimized length and be connected directly. The longer cable between the back-light and the inverter may cause lower luminance of lamp(CCFT) and may require higher startup voltage(Vs).

11.4 Others

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (c) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, variation in part contents and environmental temperature and so on) Otherwise the module may be damaged.
- (d) If the module displays the same pattern continuously for a long period of time, it can be the situation when the image "sticks" to the screen.
- (e) This module has its circuitry PCB on the rear side and should be handled carefully in order not to be stressed.