Math 450B

Homework 3

Dr. Fuller
Due February 13

1. Determine if the following examples are continuous on the indicated domain. Justify your answers.

(a)
$$f : \mathbf{R}^2 - \{\mathbf{0}\} \to \mathbf{R}$$
 given by $f(x, y) = \frac{xy}{x^2 + y^2}$

(b)
$$f: \mathbf{R}^2 \to \mathbf{R}$$
 given by $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

(c)
$$f: \mathbf{R}^2 \to \mathbf{R}$$
 given by $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

- 2. Prove that $f: \mathbf{R}^n \to \mathbf{R}$ given by f(x) = ||x|| is continuous.
- 3. Suppose that $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ satisfies $||f(\mathbf{x}) f(\mathbf{y})|| \le K ||\mathbf{x} \mathbf{y}||^{\alpha}$, where K > 0 and $\alpha > 0$ are constants. Prove that f is continuous.
- 4. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies:
 - (i.) for each fixed x_0 , the function $y \mapsto f(x_0, y)$ is continuous; and
 - (ii.) for each fixed y_0 , the function $x \mapsto f(x, y_0)$ is continuous.

Give an example of such an f which is not continuous.

5. Professor Doofus mistakenly writes the following on the blackboard.

Theorem 11. The following are equivalent.

- (1) $f: \mathbf{R}^n \to \mathbf{R}^m$ is continuous (with the ε - δ definition)
- (2) For every open set $U \subseteq \mathbf{R}^n$, the image $f(U) \subseteq \mathbf{R}^m$ is open.

Give an example with m = n = 2 which shows that Doofus is wrong.

- 6. Suppose that $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ is continuous, with $\mathbf{a} \in A$ and $f(\mathbf{a}) > 0$. Prove that there exists $\delta > 0$ such that $f(\mathbf{x}) > 0$ for all $\mathbf{x} \in B(\mathbf{a}, \delta) \cap A$.
- 7. Suppose that $A \subset \mathbf{R}^n$ is a set which is not closed. Prove that there exists a continuous function $f : A \to \mathbf{R}$ which is unbounded. (Hint: You might find it useful to first show that the set $\mathbf{R}^n A$ must contain a point in the boundary of A.)