

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination

May 2021

Max. Marks: 60 Duration: 2.00 hrs Class: S.Y.MCA Semester: IV Course Code:MCA43 Branch: M.C.A.

Name of the Course: Design and Analysis of Algorithms

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.	Questions					CO-BL-PI
Q2					15	
A	Write the algorithm for quick sort and analyze its time complexity.					2-4-2.2.3 1-4-2.2.3
В	Multiply the matrices A and B using Strassens's Matrix Multiplication. $\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 5 & 6 \\ 7 & 3 \end{bmatrix}$					2-4-2.2.3
С		the optimal solution	5	3-2-4.3.4		
	Items	Wi	Vi			
	Item1	5 pounds	30\$			
	Item2	10 pounds	20\$			
	Item3	20 pounds	100\$			
	Item4	30 pounds	90\$			
	Item5	40 pounds	160\$			
Q3					15	
A	Let the dimensions of A,B,C,D respectively be 10X5, 5X15, 15X8, 8X20 generate matrix product chains that produces minimum number of matrix multiplications using dynamic programming.					3-4-2.2.4
В	Draw the portion of state space tree generated by recursive backtracking algorithm for sum of subsets problem with an example. OR					4-4-4.3.4
	Explain the importance of bounding function in generating the solutions. And also write about different types of bounding					

	functions with an example each.		
Q4		15	
A	Find the shortest path distance between every pair of vertices using Floyd Warshall Algorithm.	5	5-4-4.3.3
В	Analyse the string matching algorithm with finite auotomata, compare with brute force string matching.	5	5-5-4.3.3
С	Do you think set cover problem belongs to NP-Complete class? Give the proof to justify your answer. OR Find the vertex cover of the given graph.	5	6-4-1.3.1