Astron. Astrophys. Suppl. Ser. 61, 127-139 (1985)

# Photometric variations and period determination of eight southern CP stars (\*)

C. Waelkens (\*\*)

Astronomisch Instituut Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3030 Heverlee, Belgium

Received December 7, 1984, accepted March 4, 1985

Summary. — We discuss the photometric variations in the Geneva System of eight southern CP stars. Improved values for the periods of HD 28843, HD 56455, HD 81009, and HD 175362 are determined; the periods of HD 34797, HD 98457, HD 133880, and HD 191287 are derived for the first time. Both HD 98457 and HD 191287 present variations of exceptionally large amplitude. HD 133880 is a remarkable CP star in view of its short period, its large magnetic field, and the extreme variability of its peculiarity index. The stars HD 28843, HD 34797, and HD 56455 also have a variable peculiarity index.

**Key words**: CP stars — photometry — stellar rotation — magnetic fields.

#### 1. Introduction.

Mostly as a result of the many systematic surveys carried out over the last two decades, the photometric variability of the chemically peculiar stars is now well documented in the literature (see Catalano and Renson, 1984, and the references therein). The behaviour of these stars is to be understood within the framework of the oblique rotator model: for virtually all CP stars, the variations are strictly periodic, and the periods are the rotation periods of these stars.

In view of the wealth of data already available, the astrophysical interest of adding new objects to the list of known variable CP stars may be questioned. Current surveys are mostly motivated by interest in the distribution of the rotation periods. The study of CP stars in clusters and associations (e.g. North, 1984; Maitzen, 1982) gives clues for our understanding of the dependence of angular momentum on stellar age, and so of the breaking mechanism at work in CP stars. Other recent research focuses on the long-period tail of the distribution (Hensberge et al., 1984).

The stars we discuss in the present paper were not selected for such specific purposes. Our decision to monitor some of the stars stemmed from the large scatter of their previous measurements in the Geneva Photometric System. The two other stars, HD 56455 and HD 81009, have been used for some time as standard stars in this system. The periods of four of the program stars were already known, but we could slightly improve their values; the variability

of the remaining four stars has, to our knowledge, not been studied in detail before. Some of these objects turned out to be of exceptional interest, so that their relevance merits special discussion.

#### 2. Observations

All observations were obtained with the Geneva Photometer attached at the Swiss Telescope, La Silla Observatory, Chile, mostly from 1981 to 1983. All eight stars had already been observed at earlier opportunities with the same equipment. We observed these stars as part of a broader program concerning the photometric variability of early-type stars. We did not work with fixed comparison stars but instead increased the number of standard star measurements in order to improve the precision.

We are planning to discuss the observational techniques and the accuracy that could be achieved in a forthcoming paper. The following short overview will suffice for our present purposes. The typical scatter of the V-magnitude data in the Geneva Catalogue (Rufener, 1981) is 0.008 mag (Rufener and Bartholdi, 1982). This scatter is partly caused by instrumental error sources on a long time scale and is lowered to about 0.006 mag when only the data of a few subsequent seasons, taken with the same instrument, are considered (e.g. HD 56455 below). It must also be realized that the average program carried out in the Geneva photometry does not require better precision; the attained accuracy of the data is a compromise between the astrophysical relevance of high precision and the efficiency of data acquisition. It is clear that an enlargement of the number of standard star measurements results in a significant improvement of the precision. Such an approach is desirable for the study of variable stars and has been followed by us. For most of the data considered here, the uncertainties are of the order of 0.003-0.004 mag.

<sup>(\*)</sup> Based on observations made with the Swiss Telescope at the European Southern Observatory, Chile.

<sup>(\*\*)</sup> Aangesteld Navorser Belgisch Nationaal Fonds voor Wetenschappelijk Onderzoek.

128

## 3. Analysis of the observations.

The eight program stars are listed in table I. We give the names and the HR and HD numbers. The reddening-free parameters X, Y, and Z that are of interest for the description of the B stars (Cramer and Maeder, 1979) can be written as

$$X = 0.3788 + 1.3764 (U-B1) + 0.1602 (B1-B2) - 0.6896 (B2-V1) - 0.8450 (V1-G)$$

$$Y = -0.8288 + 0.3235 (U-B1) - 1.9993 (B1-B2) + 0.3370 (B2-V1) + 1.0865 (V1-G)$$

$$Z = -0.4572 + 0.0255 (U-B1) - 0.1485 (B1-B2) + 0.3211 (B2-V1) - 0.7994 (V1-G).$$

In the context of the Bp stars, the parameter Z is of importance, since it is an estimator of the 5300 Å-feature, and so of the magnetic field (Cramer and Maeder, 1980): it differs from zero only for the magnetic CP stars. We also list in table I the mean values of the parameters X, Y, and Z, the MK spectral type as inferred from the colors, and the mean visual brightness of each star.

For A-F stars, changes in physical parameters affect all color indices in an intricate way, so that it is impossible to develop for them a formalism similar to the XYZ-formalism, which allows a clear-cut distinction between different physical effects (Golay, 1980; Nicolet and Cramer, 1983). Still, Ap stars like HD 81009 can be recognized in the Geneva system by means of the parameter  $\Delta(V1-G)$ , defined (Hauck and North, 1982) as

$$\Delta(V1-G) = (V1-G) - 0.289 (B2-G) + 0.302.$$

The periods are listed in the last column of table I. They have been determined in two steps: first, we applied Deeming's (1975) and Stellingwerf's (1978) methods on the new observations, and, second, we used the older data in order to refine the value of the period. Our estimates of the errors on the periods are given in the next section, the accuracy of the periods depending in each case on the accuracy of the data and especially on that of the oldest data.

## 4. Discussion of the individual stars.

The individual data for all the stars are listed in tables II to IX. The phase diagrams for the mB- and mV-variations are shown in figure 1, and the variations of the color indices are plotted in figure 2.

#### HD 28843

The photometric and spectroscopic variability of HD 28843 was first studied by Pedersen and Thomsen (1977) and by Pedersen (1979), who derived a period of 1.37375 days. The time base of our data is much longer, and an improved value for the period of  $1.37381 \pm 0.00001$  days could be derived. This period fits into the error box given by Manfroid and Mathys (1984). An epoch of maximum visual brightness is JD 2445287.35  $\pm$  0.02. The color and light curves are not in phase. Maximum light in the *U*-band

occurs later than maximum visual light (at phase 0.07) while maximum blue light occurs earlier (at phase 0.98).

Borra et al. (1983) claim that if a magnetic field is present on the surface of HD 28843 it is likely not to exceed a few hundred Gauss. Their statement is confirmed by the mean value of the Z-parameter, which does not deviate strongly from zero.

#### HD 34797

The peculiarity of HD 34797 is not well documented in the literature. This star is classified «  $\lambda$  Boo? » in the Bright Star Catalogue. However, the Z-parameter of HD 34797 is clearly that of a magnetic star, which was already noted by Hauck and North (1982).

The most significant period in our data for HD 34797 is  $2.28704 \pm 0.00004$  days. An epoch of maximum light is JD 2445257.70  $\pm$  0.02. The light and color variations are in phase and the amplitude is largest in the *U*-band.

The remaining scatter is somewhat larger than expected for observations that were all gathered during the same season. It cannot be excluded that some part of the residual scatter is due to stray light from HD 34798, another sixth magnitude (variable) B star, which forms a visual pair with HD 34797 with a mutual separation of 39 arcseconds.

### HD 56455

Light and color variations of HD 56455 were first observed by Renson *et al.* (1976); these authors derived a period of 2.24 days. The Geneva data cannot be represented with a period near that value. The most significant period is  $1.9346 \pm 0.0001$  days. An epoch of maximum brightness is JD 2444549.77  $\pm$  0.03.

The photometric variations of HD 56455 are similar to those of HD 34797. Also, both stars are close to each other in the HR diagram. The residual scatter of the light and color curves of HD 56455, 0.006 mag, is quite typical for data obtained in three subsequent observation seasons.

#### HD 81009

HD 81009 is the only A star in our sample. It was last discussed by Hensberge *et al.* (1981), who found a period of 33.97 days in their own and the published four-color data. The most significant period in the Geneva data,  $33.96 \pm 0.01$  days, fits into the error box determined by Hensberge *et al.* (1981). An epoch of maximum brightness (in the *B*1-band, see below) is JD 2444480.7  $\pm$  0.5.

The wavelength dependence of the variability of HD 81009 is striking. This star is only slightly variable in the U-band and hardly varies at all in the visual band; the amplitude is maximal in the B1-band, near the 4100 Å-feature caused by the rare earth elements. It would probably be of much interest to monitor HD 81009 in the near UV or redwards of the V-band.

#### HD 98457

Although rather faint, HD 98457 is an interesting object for further investigation. Its period of  $11.535 \pm 0.002$  days, is fairly long, so that even long exposures would hardly be smeared out over the phase. An epoch of maximum brightness is JD 2445019.0  $\pm$  0.2.

The amplitude amounts to 0.12 mag in the visual, and to 0.21 mag in the *U*-band, one of the largest values for any known CP star. The dependence of the amplitude

on the wavelength is rather exceptional: between the U-band (mean wavelength = 3460 Å) and the B1-band (4020 Å) the amplitude drops by 0.19 mag! A detailed spectral analysis of this wavelength region might prove worthwhile, especially since the lines must be very sharp.

N° 1

HD 133880 is classified as an « Ap Si 4200 » star in the Bright Star Catalogue, and it is noted there that it has a magnetic field. This last remark is probably based on the appearance of HD 133880 in Babcock's (1958) list of magnetic stars. It is largely confirmed by the record value of the peculiarity parameter, Z = -0.074. Application of Cramer and Maeder's Z-versus-Hs calibration gives a value of 5.4 kG for the mean surface field of this star. Even this value could be only a lower limit, since saturation of Z sometimes occurs for large values of the magnetic field strength. Borra and Landstreet (1975) determined three values for the effective field, which show a range of about 6 kG, between -2.8 kG and +3.7 kG.

The period of HD 133880 is short,  $0.87746 \pm 0.00001$  days. An epoch of maximum visual brightness is JD 2445472.07 ± 0.01; the maximum in the B-band then occurs at the phase 0.90.

The shortness of the period is probably why HD 133880 has not been studied intensively previously, despite its apparent visual brightness, the large value of its magnetic field, the amplitude of its variations, and its possible membership to the Scorpius-Centaurus association. The spectral lines must indeed be quite broad, so that the peculiarities are somewhat smeared out. Variations with such large amplitudes (0.15 mag in the U-band) are in fact exceptional for broad-lined CP-stars and can perhaps only be explained by the presence of a very strong magnetic field.

#### HD 175362

HD 175362 is a well-known He abnormal star. It is one of the best studied cases, since it is one of the hottest magnetic helium-weak stars known (Borra et al., 1983). Borra et al. derived a period of  $3.6740 \pm 0.0015$  days from He line strength maxima and magnetic field measurements. Our data have enabled us to refine the value of the period to  $3.6733 \pm 0.0001$  days. An epoch of maximum light is JD 2445509.6  $\pm$  0.1.

## HD 191287

HD 191287 is another example of a large amplitude variable with a rather short period of 1.62345  $\pm$  0.00002 days. An epoch of maximum visual brightness is JD 2445504.12  $\pm$ 

The amplitude in the visual band exceeds 0.2 mag, and is thus larger than that of any known variable CP star. The amplitude in the *U*-band amounts to 0.23 mag. The wavelength dependence of the amplitude and the shape of the curves are similar to those observed for HD 98457; the (U-B1)-variation has an amplitude of 0.15 mag peakto-peak. The amplitude is smallest in the B1-band, and we conjecture that the spectrum of HD 191287 has a pronounced depletion at 4200 Å. This feature would also explain the anomalously low value of the parameter Y, which places this star about 0.07 mag below the reference sequence of class V stars in the X-Y-diagram, even though the parameters X and Y normally are hardly affected by the peculiarities (Cramer and Maeder, 1979).

#### 5. Discussion.

5.1 Interpretation of the photometric variations. The explanation for the photometric variations of the CP stars has been discussed frequently in the recent literature; it has last been reviewed by Schöneich (1981). The now classical hypothesis, first proposed by Peterson (1970), is the so-called line blocking-backwarming hypothesis. It is assumed that the bolometric energy radiated through each surface element is constant over the star. The nonhomogeneous distribution of the different elements over the surface, however, causes different parts of the stellar surface to have a different spectral appearance; in particular, the radiation is blocked at the specific wavelengths corresponding to the lines of the enhanced elements. and is radiated away at other wavelengths. The hypothesis gained some support from UV photometry (Molnar, 1973; Leckrone, 1974): it was discovered that the variations of some stars changed sign for wavelengths shorter than some « null wavelength », so that it seemed indeed possible that the variability of the bolometric brightness was vanishingly small for these stars.

The line blocking-backwarming hypothesis has been challenged by authors who performed detailed model atmosphere calculations (e.g. Muthsam and Stepién, 1981). It would seem that at least for some stars the abundance variations alone cannot explain the observed photometric behaviour, so that additional effects, such as effective temperature variations and the influence of the magnetic field, must be invoked.

It is evident that ultraviolet observations are needed in order to test these ideas for early type stars: these stars radiate most of their energy in the UV, and most of the interesting lines occur short of 3000 Å. The interest of optical observations, such as ours, is that of selecting the best candidates for further study. We feel that at least three large amplitude stars deserve further attention: HD 133880 because of its large field, and HD 98457 and HD 191287 because of the remarkable behaviour of their amplitudes with wavelength. For the latter two stars, the variations do not change sign in the optical region, but the amplitude rises sharply towards shorter and longer wavelengths. For the sake of completeness, we list in table X the amplitudes for the five intermediate passbands of the Geneva System for all eight program stars.

5.2 The variability of the peculiarity index. — We mentioned in section 3 above that, in the Geneva system, the early type stars are best described with the XYZformalism. For normal stars, the parameters X and Y are indicators of the effective temperature and the luminosity; the calibrations apply reasonably well to the peculiar B stars, unless the peculiarities are extreme, as in the case of HD 191287. However, even when the mean values of these photometric parameters may be interpreted in physical terms, it is highly unlikely that the variations of X and Y for Bp stars may be interpreted as variations of the temperature and of the gravity. Were that the case, the spectral type of HD 98457 would vary from B6V at maximum to B8III at minimum: the absolute magnitude would remain roughly constant, while the effective temperature would vary with an amplitude of 2600 K!

Astronomy and Astrophysics n° 1-85 July. — 9

One should then also be cautious when interpreting variations of Z in terms of variations of the surface magnetic field strength. For most of the stars considered here, the variations of (V1-G) have lower amplitudes than those of the other indices, so the terms in the other colors also play their role in the variation of Z, which is then not so easily interpreted as a variation of the 5300 Å-feature. To settle this point, it might be useful to compare the behaviour of some CP stars in the Geneva system with their behaviour in Maitzen's  $\Delta a$ -photometric system (Maitzen, 1982).

Unfortunately, surface field measurements are not available for our program stars. Effective fields have been measured for HD 133880 (Borra and Landstreet, 1975), HD 28843 and HD 175362 (Borra et al., 1983). The effective fields of HD 133880 and HD 175362 are variable. We present the phase diagrams for the parameter Z of the seven B stars and the phase diagram for  $\Delta(V1-G)$  of HD 81009 in figure 3. It is striking that the variation of Z is negligibly small for both large amplitude variables HD 98457 and HD 191287. As a matter of fact, for these stars, the term in (V1-G) is almost exactly canceled by the term in (B2-V1). The Z-variations are also vanishingly small for the effective field variable HD 175362. On the other hand, slight Z-variations are observed for HD 28843 and also for HD 34797 and HD 56455.

The most interesting object again appears to be HD 133880. A pronounced variability of Z, with an amplitude slightly exceeding 0.04 mag, is observed for this star. If this variability could be interpreted as a variability of the field strength, it would indicate a range of 3.8 to 7.8 kG for the surface field. In this reasoning, we have ignored saturation effects, an assumption which could be realistic because of the important rotational broadening of the lines. As to the effective field, our ephemeris and

Borra and Landstreet's data indicate that it reaches its most negative value at the maximum of Z and of the visual brightness.

#### 6. Concluding remarks.

The sample of CP stars discussed here was constructed merely as a byproduct of other investigations and is, as such, quite heterogeneous. It is worthwhile to consider the reasons why some of these stars were not studied more intensively before and why their variability was detected in the Geneva system. These reasons, indeed, illustrate different aspects of the usefulness of a photometric approach to the CP phenomenon.

- (1) HD 34797 had not been recognized previously as a CP star and was detected as such by purely photometric means.
- (2) The definitely interesting object HD 133880 has only now been saved from a relative anonymity, since its large rotational velocity acts as a counter-selection effect in spectroscopic methods of detection.
- (3) Photometry is an effective tool for selecting the more spectacular objects among the fainter CP stars, such as HD 98457 and HD 191287.

## Acknowledgements.

The author wishes to thank Prof. Rufener for the allocation of observing time with the Swiss telescope at La Silla, and Drs. Maitzen and North for interesting comments. Financial support from the Belgian « Ministerie van Onderwijs » and from the Belgian « Fonds voor Kollektief Fundamenteel Onderzoek », under project No. 2.0119.83, is gratefully acknowledged.

#### References

```
BABCOCK, H. W.: 1958, Astrophys. J. Suppl. Ser. 3, 141.
BORRA, E. F., LANDSTREET, J. D.: 1975, Publ. Astron. Soc. Pacific 87, 961.
BORRA, E. F., LANDSTREET, J. D., THOMPSON, I.: 1983, Astrophys. J. Suppl. Ser. 53, 151.
CATALANO, F. A., RENSON, P.: 1984, Astron. Astrophys. Suppl. Ser. 55, 371.
CRAMER, N., MAEDER, A.: 1979, Astron. Astrophys. 78, 305.
Cramer, N., Maeder, A.: 1980, Astron. Astrophys. 88, 135.
DEEMING, T. J.: 1975, Astrophys. Space Sci. 36, 137.
GOLAY, M.: 1980, Vistas Astron. 24, 141.
HAUCK, B., NORTH, P.: 1982, Astron. Astrophys. 114, 23.
HENSBERGE, H. et al.: 1981, Astron. Astrophys. Suppl. Ser. 46, 151.
HENSBERGE, H. et al.: 1984, Astron. Astrophys. 132, 291.
LECKRONE, D. S.: 1974, Astrophys. J. 190, 319.
MAITZEN, H. M.: 1982, Astron. Astrophys. 115, 275.
MANFROID, J., MATHYS, G.: 1984, Inf. Bull. Var. Stars, No. 2551.
MOLNAR, M. R.: 1973, Astrophys. J. 179, 527.
MUTHSAM, H., STEPIÉN, K.: 1981, Astron. Astrophys. 86, 240.
NICOLET, B., CRAMER, N.: 1983, Astron. Astrophys. 117, 248.
NORTH, P.: 1984, Astron. Astrophys. Suppl. Ser. 55, 259
PEDERSEN, H.: 1979, Astron. Astrophys. Suppl. Ser. 35, 313.
PEDERSEN, H., THOMSEN, B.: 1977, Astron. Astrophys. Suppl. Ser. 30, 11.
Peterson, D. M.: 1970, Astrophys. J. 80, 698.
RENSON, P., MANFROID, J., HECK, A.: 1976, Astron. Astrophys. Suppl. Ser. 23, 413.
RUFENER, F.: 1981, Astron. Astrophys. Suppl. Ser. 45, 207.
RUFENER, F., BARTHOLDI, P.: 1982, Astron. Astrophys. Suppl. Ser. 48, 503.
SCHÖNEICH, W.: 1981, in Upper Main Sequence Chemically Peculiar Stars, Liège Colloquium, P. Renson, ed., p. 235.
STELLINGWERF, R. F.: 1978, Astrophys. J. 224, 953.
```

TABLE II. — The data for HD 28843. The time is expressed in Heliocentric Julian Days. The phases are computed with the ephemeris given in the text.

|                 |           |         |         |           |         |         |         |         |         | _         |         |         |         |         |         | _       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-----------------|-----------|---------|---------|-----------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| v1-G            | 537       | 505     | 518     | /10       | 521     | 513     | 521     | 525     | 509     | 516       | 513     | 516     | 517     | 518     | 513     | 519     | 519     | 515     | 512     | 517     | 518     | 515     | 515     | 519     | 516     | 512     | 512     | 522     | 519     | 514     | 522     |
| B2-V1           | 222       | 268     | 259     | 977-      | 223     | 229     | 220     | 252     | 244     | 261       | 254     | 263     | 224     | 226     | 260     | 246     | 261     | 261     | 225     | 231     | 228     | 214     | 249     | 257     | 221     | 232     | 270     | 232     | 248     | 254     | 227     |
| B1-B2           | 772       | 764     | 771     | 79/-      | 756     | 757     | 755     | 762     | 760     | 766       | 762     | 760     | 755     | -,753   | 767     | 766     | 763     | 764     | 754     | 751     | 757     | 752     | 770     | 761     | 755     | 756     | 764     | 759     | 763     | 762     | 756     |
| U-Bl            | 960*-     | 780*-   | 077     | 860*-     | 990*-   | 083     | 080     | 089     | 760     | 056       | 680*-   | 030     | 059     | 091     | 067     | 101     | 030     | 050     | 053     | 052     | 078     | 078     | 084     | 023     | 072     | 095     | 050     | 056     | 047     | 036     | 085     |
| mV              | 5.745     | 5.697   | 5.714   | 29/05     | 5.798   | 5.778   | 5.781   | 5.699   | 5.717   | 5.727     | 5.709   | 5.729   | 5.786   | 5.750   | 5.709   | 5.720   | 5.726   | 5.724   | 5.783   | 5.793   | 5.770   | 5.781   | 5.702   | 5.747   | 5.789   | 5.738   | 5.720   | 5.786   | 5.763   | 5.768   | 5.794   |
| шВ              | 4.614     | 4.565   | 4.578   | 4.652     | 4.686   | 699.4   | 4.678   | 4.562   | 4.595   | 4.578     | 4.581   | 4.585   | 4.687   | 979.7   | 4.568   | 4.589   | 4.581   | 4.580   | 4.680   | 789.4   | 4.659   | 4.682   | 4.563   | 4.609   | 4.690   | 4.624   | 4.571   | 4.672   | 4.630   | 4.621   | 4.691   |
| Phase           | .186      | .933    | .958    | .213      | 797     | .335    | .370    | .033    | .148    | 668.      | .055    | .800    | .521    | .251    | .936    | .114    | 808     | .828    | .559    | .590    | .290    | .327    | .028    | .756    | .480    | .199    | .858    | .605    | 699.    | .718    | .380    |
| JD -<br>2400000 | 41259.594 | 289.471 | 671.425 | 44534./95 | 544.756 | 890.779 | 890.827 | 891.738 | 891,896 | 45219.894 | 244.837 | 245.861 | 246.852 | 247.855 | 270.777 | 273,768 | 274.722 | 274.749 | 275,753 | 275.796 | 276.758 | 276.809 | 277.772 | 278.772 | 279.766 | 280,755 | 314.631 | 315,657 | 322,614 | 322.681 | 356.562 |
|                 |           |         |         |           |         |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|                 |           |         |         |           |         |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|                 |           |         |         |           |         |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |

1.37381 2.28704 1.9346 33.96 11.5355 .87746 3.6733 P(days) è SP(X,Y) B5111 B6V B7111 B7111 B7111 B31V B7? -.012 -.019 .006 -.025 -.024 -.024 2 × 28843 34797 56455 81009 98457 133880 175362 쥪 표 V686 CrA Pup Hya DZ Eri Name K PR

TABLE I. — Identifications of the program stars, mean photometric parameters, inferred spectral types, and periods.

TABLE X. — Peak-to-peak amplitudes of the program stars for the five intermediate bands of the Geneva system.

| HD \ \ (A) | 3458 | 4022 | 4480 | 5408 | 5814 |
|------------|------|------|------|------|------|
| 28843      | .15  | .13  | .12  | 60.  | 60.  |
| 34797      | .10  | • 05 | • 05 | •04  | •05  |
| 56455      | 60.  | •05  | •05  | •03  | •00  |
| 81009      | .02  | 90•  | •00  | .01  | 00.  |
| 98457      | .21  | •02  | •05  | .11  | .13  |
| 133880     | .14  | .10  | 60.  | • 05 | 80.  |
| 175362     | .10  | .07  | .07  | 90.  | 90.  |
| 191287     | .22  | .07  | .13  | .19  | .21  |
|            |      |      |      |      |      |

TABLE III. — The data for HD 34797.

| Z     |                                                                                                                    |
|-------|--------------------------------------------------------------------------------------------------------------------|
| V1-G  |                                                                                                                    |
| B2-V1 | 220<br>232<br>238<br>231<br>227<br>227<br>224<br>225                                                               |
| в1-в2 | 721<br>715<br>733<br>734<br>726<br>728<br>726<br>727<br>727                                                        |
| U-Bl  | .036<br>.022<br>.032<br>.034<br>.032<br>.048<br>.083                                                               |
| Λm    | 6.506<br>6.508<br>6.486<br>6.501<br>6.501<br>6.533<br>6.543<br>6.543<br>6.569<br>6.509                             |
| ШВ    | 5.423<br>5.413<br>5.405<br>5.405<br>5.420<br>5.439<br>5.439<br>5.457<br>5.457<br>5.458                             |
| Phase | .794<br>.138<br>.818<br>.872<br>.815<br>.673<br>.545<br>.383<br>.398                                               |
| JD -  | 2743.772<br>753.707<br>766.697<br>795.858<br>813.869.733<br>44890.733<br>5244.887<br>244.887<br>245.854<br>245.854 |

1985A&AS...61..127W

| 2               | 017       | 021     | 024     | 024     | 026     | 013     | 011     | 025     | 026     | 023     | 018     | 021     | 016     | 020     | 020     | 016     |
|-----------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| V1-G            | 504       | 501     | 495     | 500     | 495     | 507     | 512     | 965-    | 667     | 499     | 506     | 501     | 507     | 503     | 503     | 507     |
| B2-V1           | 227       | 231     | 226     | 235     | 232     | 222     | 226     | 230     | 235     | 230     | 230     | 228     | 226     | 228     | 230     | 228     |
| B1-B2           | 730       | 728     | 738     | 727     | 732     | 730     | 727     | 732     | 723     | 729     | 724     | 727     | 727     | 725     | 730     | 729     |
| U-Bl            | 990.      | .058    | .027    | .027    | .034    | .084    | .072    | .036    | .032    | •046    | .051    | •045    | .039    | .037    | .033    | .029    |
| м               | 6.534     | 6.536   | 6.509   | 6.510   | 6.511   | 6.551   | 6.546   | 6.520   | 6.510   | 6.528   | 6.534   | 6.538   | 6.535   | 905-9   | 6.509   | 6.536   |
| mB              | 5.440     | 5.446   | 5.418   | 5.416   | 5.417   | 5.464   | 5,458   | 5.429   | 5.420   | 5.436   | 5.444   | 5.450   | 5.449   | 5.413   | 5.415   | 5.442   |
| Phase           |           | -       | -       | 966.    |         | -       | -       | -       | -       |         | -       |         | -       |         |         |         |
| JD -<br>2400000 | 45359,547 | 359,628 | 360,544 | 360,607 | 360.696 | 361,550 | 361,637 | 362,548 | 362.662 | 365.542 | 365,639 | 366.584 | 366.690 | 367,543 | 367,602 | 413.526 |

TABLE IV. — The data for HD 56455.

|                 |           | _       |         |         |         |         | _       | _       |         |         |         |         |         |         |         |         |         |         |         |         |         | _       | _       | _       |         |         |         |         |         | _       |         |
|-----------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2               | 022       | 017     | 004     | 015     | 013     | 900     | 012     | 004     | 001     | 021     | 019     | • 005   | 004     | 005     | 012     | 011     | 000.    | 011     | 023     | 003     | 018     | •004    | - 003   | 007     | 004     | 008     | 007     | .001    | 010     | 014     | .00.    |
| vl-G            | 500       | 506     | 526     | 508     | 513     | 517     | 512     | 526     | 520     | 502     | 505     | 528     | 516     | 517     | 505     | 509     | 523     | 510     | 501     | 526     | 503     | 527     | 519     | 515     | 518     | 517     | 520     | 523     | 514     | 508     | 524     |
| B2-v1           | 233       | 230     | 239     | 229     | 234     | 232     | 237     | 245     | 223     | 236     | 235     | 223     | 222     | 229     | 219     | 226     | 227     | 228     | 236     | 240     | 232     | 230     | 226     | 227     | 226     | 230     | 239     | 224     | 228     | 228     | 223     |
| B1-B2           | 736       | 733     | 723     | 729     | 725     | 739     | 737     | 727     | 739     | 738     | 735     | 737     | 746     | 749     | 748     | 745     | 739     | 741     | 726     | 729     | 745     | 748     | 742     | 741     | 735     | 730     | 735     | 733     | 734     | 736     | 731     |
| U-Bl            | .045      | .028    | .074    | .058    | .047    | .109    | .113    | .091    | .097    | .032    | .042    | 860.    | 670.    | •056    | .044    | .042    | .083    | .047    | 090.    | .106    | .030    | .112    | •064    | 0.070   | .088    | .051    | .101    | .109    | .034    | .046    | 080     |
| Λm              | 5.703     | 5.697   | 5.722   | 5.728   | 5.715   | •       | 5.730   | 5.739   | 5.727   | 5.697   | 5.710   | 5.723   | 5.707   | 5.716   | 5.697   | 5.702   | 5.731   | 5.706   | 5.713   | 5.731   | 5.710   | 5.728   | 5.726   | •       | 5.735   | 5.732   | •       | 5.738   | ٠       | 5.707   | 5.731   |
| шВ              | 4.603     | 4.614   | 4.631   | 4.639   | 4.616   | 4.668   | 4.635   | 4.639   | 4.631   | 4.614   | 4.614   | 4.628   | 4.612   | 4.614   | 4.613   | 4.604   | 4.636   | 4.603   | 4.621   | 4.633   | 4.609   | 4.626   | 4.628   | 4.630   | 4.640   | 4.644   | 4.631   | 4.639   | 4.615   | 4.610   | 4.630   |
| Phase           | .186      | 070     | .685    | .260    | .803    | .510    | .647    | 799.    | . 705   | .007    | .194    | .712    | .260    | .802    | 670.    | .950    | .445    | .144    | .218    | .613    | .126    | .653    | .287    | .318    | 905.    | .970    | .473    | .622    | .138    | .214    | .439    |
| JD -<br>2400000 | 44203.837 | 226.769 | 235.756 | 240,737 | 243.722 | 254.763 | 264.700 | 266.669 | 268.682 | 286.677 | 298.647 | 299.648 | 302,645 | 307,561 | 323.516 | 543.869 | 573.846 | 586.806 | 592.753 | 614.798 | 615.790 | 616.810 | 627.710 | 629.703 | 635.678 | 638,703 | 639.676 | 649.637 | 650,637 | 654.652 | 668.629 |

| JD -<br>2400000 | Phase | шВ                     | Λm    | U-Bl  | B1-B2         | B2-V1 | V1-G  | 2     |
|-----------------|-------|------------------------|-------|-------|---------------|-------|-------|-------|
| 246.802         | .235  | 5.443                  | 6.527 | .068  | 723           | 229   | 509   |       |
| 247.856         | 969.  | 5.430                  | : -:  | 040   | 726           | 225   | 502   | 019   |
| 248.836         | .124  | 5.418                  | -:    | .045  | ٠.            | ٠,    | 4     | 0.    |
| 270.768         | .714  | 5.431                  | -:    | 0.044 | ٠. ٠          | ٠,٠   | r;    | 5     |
| 74. 723         | 570.  | 5.401                  | • -   | 050.  | • "           | •     | ., r  | ₫6    |
| 74.736          | 644   | 5,453                  | :     | 690.  |               | : ::  | , "   | 5 5   |
| 74.750          | .455  | 5,450                  | ٠.    | .068  | ٠.            |       | . "   | 014   |
| 75.725          | .881  | 5,415                  | ٦.    | .033  | ٠.            |       | 5     | 0     |
| 12.760          | .897  | 5.408                  | ~     | .034  | ٠.            | ٠,    | 4.    | 023   |
| 15.797          | .913  | 5.409                  | -:    | .039  | ٠.            | ٠,    | 64.   | -:025 |
| 75.836          | .930  | 5.410                  | -:    | .038  | ٠.            | ٠,    | .50   | 9     |
| 75.865          | .943  | 5.409                  | -:    | .032  | ٠.            | ٠,    |       | 025   |
| 76.734          | .323  | 5.445                  | -;    | .082  | ٠.            | ٠,    | .51   | s.    |
| 76.773          | .340  | 5.463                  | ٠;    | 060.  | ٠.            | ٠,    | r.    | 015   |
| 76.827          | .363  | 5.457                  | ٠;    | 980.  | ٠.            | ٠,    | r.    | 2     |
| 998.97          | .380  | 5.468                  | ٠.    | .071  | ٠.            | ٠,    | .51   | 8     |
| 77.728          | .757  | 5.424                  | -:    | .041  | ٠.            | ٠,    | 49    | 9     |
| 377.806         | .791  | 5.424                  | ٠:    | .043  | ٠.            | ٠,    | 4     | .0    |
| 178,776         | .215  | 5,433                  | ٠.    | 790   |               |       | .50   | 5     |
| 78.844          | .245  | 5.452                  |       | 70.   |               |       | 50    | 5     |
| 279.720         | .628  | 5.429                  |       | 055   |               | : ``  | . "   | ; 5   |
| 79.846          | .683  | 5.444                  |       | .052  | •             | •     | •     | 5     |
| 80.740          | 0.74  | 5.404                  | ` `   | 039   | . ' .         | : ``  | •     | : 5   |
| 80.798          | 00    | 5.412                  |       | 860   | • '           | • •   | •     | 3 5   |
| 80.851          | 123   | 5 425                  | : -   | 200.  | • '           | • "   | 000   | 5 5   |
| 111.689         | 909   | 5 443                  | : -   | 350   | • '           | •     | •     | 3 5   |
| 12 707          | 200.  | ייני<br>מלילי<br>מלילי | : -   | 900.  | •             | •     | •     | 2 5   |
| 12 758          | 70.   | 5 / 23                 |       | 650.  | ` '           | •     | 499   | 3 5   |
| 790             | 100   | 7.420                  | : -   | 50.0  | •             | •     | •     | 024   |
| 12.190          | 00.   | 2.432                  |       | 050.  | •             | •     | •     | 022   |
| 270.61          | 200   | 7.404                  |       | 4,0.  | ``            | •     | •     | 3 8   |
| 13.709          | 064.  | 754.0                  | •     | 0,0.  | •             | •     | •     | 012   |
| 10'-CT          | 120   | 204.0                  | •     | 900   | ` '           | "     | •     | 010   |
| 14.020          | 160.  | 101.7                  | •     | 20.0  | ` '           | •     | •     | 38    |
| 14.709          | 200   | 2.411                  | ٠. ٠  | 970.  | ``            | ٠,٠   | •     | 025   |
| 2/0.01          | 95.   | 7.44                   | ٠     | 470.  | ``            | •     | ٠; ٠  | 3     |
| 17.77           | 465.  | 1/5.0                  | ٠. ٠  | 5/0.  | ``            | ٠,    | • • • | 9     |
| 16.633          | 89/   | 7.41/                  | •:    | .032  | ``            | ~     | ٠,    | 018   |
| 27.615          | 385   | 5.444                  | ٠:    | .077  | ٠.            | ٧.    | ٠,    | ₽.    |
| 30,596          | .874  | 5.426                  | ٠:    | .035  | ٠.            | ٧.    | ٠,    | 017   |
| 30,685          | .912  | 5.409                  | ٠:    | .034  | ٦.            | ~     | ٧.    | 9     |
| 30,756          | .943  | 5.405                  | ٠,    | .023  | ٦.            | ~     | r.    | 023   |
| 30,808          | 996.  | 5.409                  | ٠.    | .032  | ٦.            | ~     | ٠,    | .02   |
| 31.552          | .292  | 5.458                  | 4;    | .073  | ٦.            | ~     | ٠,    | 2     |
| 31.631          | .326  | 5.460                  | ٠,    | 920.  | Γ.            | ~     | ۳,    | 2     |
| 31.706          | .359  | 5.450                  | 41    | .080  | _             | ~     | r.    | 2     |
| 31.770          | .387  | 5,456                  | 'n    | .081  | _             | ~     | ۲,    | 0     |
| 32.572          | .738  | 5.449                  | 'n.   | .037  | _             | ~     | 4     | 20    |
| 32.651          | .772  | 5.427                  | 'n    | .035  | _             | ~     | ٠,    | .02   |
| 32.776          | .827  | 5.428                  | 'n.   | .038  | $\overline{}$ | ~     | 501   | 02    |
| 56.561          | .227  | 5.449                  | ĸ.    | .056  | _             | ~     | ď     | 10.   |
| 57.538          | .654  | 5.445                  | 'n    | 970.  | _             | ~     | ٠,    | 5     |
| 57.629          | 769   | 5.439                  | 'n    | .041  | _             | ~     | ഗ     | 5     |
| 57.709          | .729  | 5.433                  | ĸ.    | 040   | _             | ~     | 4     | .02   |
| 58.596          | .116  | 5.432                  | 'n    | 970.  | _             | ~     | 64.   | 6     |
| 5 6 70          |       | C / / u                | ٠     |       | ١             |       |       |       |

TABLE V (continued).

TABLE IV (continued).

 JD Phase
 mB
 mV
 U-BI
 BI-B2
 B2-V1
 VI-C
 Z

 24600000
 44675.637
 .061
 4.615
 5.705
 .031
 -.738
 -.225
 -.516
 -.007

 677.548
 .049
 4.622
 5.700
 .042
 -.737
 -.224
 -.505
 -.015

 678.557
 .570
 4.618
 5.700
 .042
 -.737
 -.224
 -.501
 -.007

 710.505
 .119
 4.618
 5.700
 .048
 -.738
 -.224
 -.501
 -.008

 714.494
 .146
 4.611
 5.700
 .048
 -.738
 -.224
 -.501
 -.009

 714.494
 .146
 4.611
 5.703
 .051
 -.737
 -.225
 -.512
 -.009

 714.494
 .146
 4.611
 5.703
 .037
 -.735
 -.226
 -.016

 712.505
 .119
 4.618
 5.703
 .037
 -.735
 -.229
 -.512
 -.009

 <

TABLE V. — The data for HD 81009.

| Δ(V1-G)         | .005      | •003    | .024    | 900.    | .010    | 900.    | 600.    | 003       | 005     | 900.    | .002    | 003     | .010    | 003     | .005    | .001    | .015    | .015    | .005    | 600*    | 900.    | 900*    | 800.    | • 005   | 900     | 600.    |
|-----------------|-----------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| VI-G            | 418       | 423     | 397     | 413     | 408     | 417     | 415     | 424       | 434     | 422     | 423     | -,425   | 410     | 423     | 422     | 428     | 411     | 410     | 416     | 412     | 419     | 419     | 412     | -,413   | 424     | 418     |
| B2-V1           | 001       | 900     | 016     | .007    | .007    | 003     | 007     | .012      | 005     | 015     | 004     | 010     | .002    | .014    | 011     | 011     | 018     | 015     | .005    | 000     | 007     | 008     | .002    | 010     | 022     | 015     |
| B1-B2           | -,455     | 470     | 467     | 455     | -,459   | 472     | 456     | 443       | 461     | 457     | 095     | 454     | 456     | 451     | 457     | 459     | 468     | 456     | 448     | 794     | 463     | 465     | 455     | 464     | 459     | 464     |
| U-B1            | .519      | .540    | .545    | .520    | .518    | .542    | .535    | .510      | .537    | .542    | .538    | .527    | .516    | .512    | .539    | .531    | .552    | .537    | .512    | .535    | .536    | .544    | .524    | .528    | .538    | .540    |
| шV              | 6.522     | 6.524   | 6.522   | 6.524   | 6.524   | 6.521   | 6.516   | 6.521     | 6.517   | 6.526   | 6.518   | 6.521   | 6.518   | 6.523   | 6.527   | 6.523   | 6.520   | 6.533   | 6.520   | 6.520   | 6.518   | 6.526   | 6.510   | 6.512   | 6.507   | 6.526   |
| mB              | 5.825     | 5.807   | 5,800   | 5,833   | 5.837   | 5.804   | 5.805   | 5,831     | 5.804   | 5.805   | 5.805   | 5.825   | 5.823   | 5.833   | 5.800   | 5.804   | 5.803   | 5.804   | 5.829   | 5.819   | 5.803   | 5.804   | 5.816   | 5.820   | 5.795   | 5.800   |
| Phase           | .704      | .910    | •056    | .261    | .379    | .879    | .172    | 109*      | .954    | .043    | .073    | .307    | .336    | .395    | .864    | .893    | .923    | .041    | 659.    | .833    | .951    | 600     | .274    | .303    | 996.    | 966.    |
| JD -<br>2440000 | 43929,680 | 936.686 | 941.639 | 609.876 | 952.616 | 969.577 | 979.556 | 44231.829 | 243.814 | 246.847 | 247.857 | 255.807 | 256.794 | 258.798 | 274.734 | 275.709 | 276.731 | 280.721 | 301.722 | 307.634 | 311.624 | 313,620 | 322,609 | 323,601 | 583,840 | 584.853 |

| Δ(V1-G)         | .018      | .002    | .002    | 600.    | 003     | .003    | •004    | 800.    | .011    | 000     | .005    | 004     | .003    | 900.    | .017    | .014    | .012    | .013    | .002    | .002    | .005    | 600.    | • 005   | 600.    | .002    | 600.    | *008    | 900.    | .007    | .005    | .016    | 900.      | 000.    | 600.    | 000.    | .007    | .005    | <b>*00</b> | .007    | .012    | 900.    |
|-----------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|------------|---------|---------|---------|
| V1-G            | 907       | 422     | 419     | 905     | 430     | 417     | 420     | 412     | 605     | 420     | 419     | 429     | 424     | 411     | 401     | 410     | 413     | 401     | 424     | 423     | 421     | 417     | 420     | 415     | 425     | 414     | 604     | 415     | 416     | 454     | 410     | 410       | 421     | 409     | 423     | 416     | 419     | 420        | 419     | 414     | 419     |
| B2-v1           | 016       | 000.    | .008    | .015    | 003     | .007    | 003     | .005    | .001    | .011    | 002     | •00     | 007     | .012    | .001    | 011     | 013     | .015    | 004     | 003     | 007     | 012     | 007     | 007     | 006     | 004     | .011    | ·007    | 003     | 015     | 018     | .016      | 600.    | .007    | •000    | 001     | 002     | 001        | 600°-   | 015     | 008     |
| B1-B2           | 464       | 466     | 465     | 435     | 460     | 455     | 454     | 452     | 440     | 448     | 977-    | 462     | 461     | 437     | 434     | 462     | 456     | -,444   | 454     | 455     | 464     | 463     | 462     | 462     | 454     | 455     | 437     | 777-    | 457     | 447     | 460     | 436       | 445     | 452     | 456     | 451     | 464     | 466        | 458     | 468     | 465     |
| U-Bl            | .542      | .538    | .534    | .502    | .531    | .535    | .510    | .523    | .507    | .513    | .525    | .536    | .540    | • 206   | .512    | .541    | .543    | .504    | .543    | .551    | .548    | .545    | .542    | .548    | .540    | .532    | .512    | .517    | .542    | .541    | .528    | .515      | .517    | .517    | .521    | .527    | .539    | .542       | .544    | .552    | .541    |
|                 | 517       | 22      | 522     | 20      | 520     | 25      | 50      | 523     | 520     | 523     | 520     | 520     | 514     | 16      | 519     | 524     | 519     | 521     | 524     | 216     | 523     | 523     | 522     | .524    | 50      | 519     | .517    | 505     | 521     | 515     | .515    | 222       | .519    | .519    | .527    | .514    | 523     | .522       | .523    | .514    | 509     |
| Λm              | 9         | •       | •       | •       |         |         | •       |         | •       | •       | •       | •       | ٠       | •       | •       | •       | •       | •       | •       | •       | •       | •       | 9       | 9       | 9       | •       | 9       | •       | •       | 9       | 9       | 9         | 9       | 9       | 9       | 9       | 9       | 9          | 9       | 9       | 9       |
| m B             |           | 5.811   | 5.816   |         | 5.812   |         |         |         |         | 5.838   | 5.824   | 5.816   | 8       | 83      | 5.836   | 5.807   | 5.812   | 5.843   | 5.816   | 5.809   | 5.808   | 5.808   | 5.805   | 5.814   | 5.810   | 5.808   | 5.843   | 5.818   | 5.814   | 5.801   | •       | •         | 5.837   | •       | 5.830   | 5.819   | •       | 5.813      | .81     | 5.790   | 5.788   |
| Phase           | .114      | .261    | .290    | 867.    | 202     | .318    | .348    | .376    | .435    | .465    | .729    | .788    | 906.    | .582    | .642    | .847    | .231    | 797.    | .845    | .844    | .067    | 960.    | .126    | .155    | .185    | .244    | .450    | .714    | .801    | 990.    | •005    | .450      | .653    | .682    | .710    | .741    | 662.    | .858       | .887    | 976.    | .033    |
| JD -<br>2440000 | 44588.855 | 593,853 | 594.826 | 601.876 | 625.787 | 629.747 | 630.762 | 631.714 | 633,721 | 634.739 | 643.688 | 645.697 | 649.720 | 672.651 | 904.706 | 681.679 | 69, 690 | 702,561 | 715.552 | 749.483 | 926.852 | 927.851 | 928.850 | 929.855 | 930.848 | 966.824 | 973.809 | 982.777 | 985.734 | 994.757 | 995.742 | 45007.775 | 048.622 | 049.623 | 050.584 | 051.609 | 053,580 | 055.585    | 056.596 | 058.593 | 095.484 |
|                 |           |         |         |         |         |         |         |         |         |         |         |         |         |         | _       |         |         |         |         |         |         |         |         |         |         |         | _       | _       |         |         |         |           | _       |         |         |         |         |            |         |         |         |

TABLE VI. — The data for HD 98457.

| 2               | 039<br>020<br>026<br>009<br>021<br>009                             |
|-----------------|--------------------------------------------------------------------|
| v1-G            | 475<br>487<br>491<br>495<br>482<br>509                             |
| B2-v1           | 216<br>182<br>231<br>162<br>164<br>220                             |
| B1-B2           | 690<br>687<br>711<br>686<br>682<br>705                             |
| U-Bl            | .204<br>.172<br>.275<br>.122<br>.084                               |
| пV              | 7.940<br>7.909<br>7.982<br>7.886<br>7.865<br>8.001                 |
| шВ              | 6.898<br>6.882<br>6.906<br>6.882<br>6.923<br>6.923                 |
| Phase           | .225<br>.836<br>.564<br>.915<br>.994<br>.425                       |
| JD -<br>2400000 | 13925.722<br>932.772<br>952.699<br>44625.809<br>649.790<br>654.769 |

TABLE VIII. — The data for HD 175362.

V1-G

B2-V1

B1-B2

U-B1

ě

띹

JD -2400000

TABLE VII (continued).

TABLEAU VI (continued).

0.022 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 2 V1-G -.188
-.167
-.167
-.198
-.198
-.198
-.198
-.198
-.198
-.197
-.197
-.197
-.197
-.197
-.197
-.197 B2-V1 B1-B2 ...677 ...671 ...686 ...686 ...687 ...683 ...694 ...694 ...694 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 ...696 .. U-Bl 1143 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 1099 7.910 7.886 7.885 7.895 7.995 7.997 7.993 7.954 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 7.959 ě 6.900 6.879 6.893 6.893 6.895 6.909 6.895 6.895 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.907 띹 44659,838 672,675 738,548 738,548 45008,837 047,715 069,656 094,586 101,565 359,716 359,716 361,721 361,864 362,844 362,844 362,844 362,846 367,776 397,629 398,646 397,776 397,629 398,646 397,776 397,629 398,646 397,776 JD -2400000

-.077 -.064 -.074 -.063 -.063 -.061 -.061 -.067 -.088 -.088

-.459 -.472 -.464 -.465 -.465 -.471 -.470 -.463 -.463 -.474 -.474

-.287 -.287 -.287 -.297 -.277 -.273 -.273 -.273 -.273 -.273 -.291 -.291 -.293 -.293

-.713 -.709 -.711 -.711 -.710 -.710 -.710 -.713 -.713 -.713 -.714 -.715 -.715

.113 .120 .1120 .1120 .122 .131 .140 .140 .140 .140 .140 .131 .101 .101 .105

.224 .303 .214 .2564 .324 .324 .365 .401 .445 .445 .990 .990 .037 .108

45483.674 483.743 484.586 484.639 485.682 485.682 485.682 485.682 485.682 485.682 533.483 533.587 533.587 535.554

5.767 5.788 5.771 5.780 5.795 5.803

4.626 4.656 4.627 4.643 4.665 4.685

5.808 5.811 5.799 5.789 5.754 5.751 5.768 5.768

4.692 4.693 4.693 4.652 4.600 4.600 4.620 4.673

— The data for HD 133880. TABLE VII.

2

V1-G

B2-V1

B1-B2

U-B1

Ž.

Phase

JD -2400000

| 2               | 023       | 021     | 023     | 030       | 022     | 019       | 023     | 021     | 024     | 024     | 027     | 024     | 021     | 024     | 024     | 016     | 024     | 023     | 023     | 022     | 024     | 025     | 018     | 028     | 026         | 024     | 021     | 019     | 027     | 026     | 027     |
|-----------------|-----------|---------|---------|-----------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|---------|---------|---------|---------|
| VI-G            | 506       | 510     | 510     | 506       | 509     | 512       | 512     | 512     | 512     | 511     | 508     | 511     | 510     | 508     | 507     | 517     | 507     | 511     | 512     | 513     | 510     | 507     | 517     | 507     | 507         | 511     | 511     | 514     | 507     | 509     | 507     |
| B2-v1           | 252       | 249     | 254     | 269       | 252     | 247       | 259     | 255     | 263     | 264     | 260     | 257     | 252     | 257     | 251     | 250     | 254     | 257     | 259     | 261     | 258     | 255     | 256     | 265     | 264         | 263     | 254     | 254     | 260     | 262     | 261     |
| B1-B2           | 785       | 768     | 766     | 774       | 771     | 769       | 766     | 768     | 772     | 777     | 767     | 764     | 770     | 776     | 767     | 769     | 775     | 770     | 767     | 775     | 767     | 769     | 764     | 773     | 783         | 777     | 772     | 774     | 773     | 771     | 772     |
| U-B1            | 241       | 226     | 219     | 247       | 223     | 229       | 223     | 217     | 227     | 241     | 228     | 228     | 211     | 211     | 219     | 220     | 231     | 229     | 226     | 239     | 209     | 211     | 213     | 241     | 237         | 246     | 221     | 230     | 240     | 240     | 242     |
| Λш              | 5.333     | 5.374   | 5,366   | 5.332     | 5.362   | 5,369     | 5.372   | 5.374   | 5.354   | 5.323   | 5,353   | 5.362   | 5.377   | 5.382   | 5.372   | 5.376   | 5.342   | 5.343   | 5.362   | 5.332   | 5.384   | 5.378   | 5.380   | 5.343   | 5.337       | 5.334   | 5.365   | 5.360   | 5.327   | 5.324   | 5.327   |
| шВ              | 4.183     | 4.239   | 4.228   | 4.183     | 4.221   | 4.232     | 4.230   | 4.234   | 4.209   | 4.171   | 4.213   | 4.226   | 4.239   | 4.245   | 4.235   | 4.236   | 4.197   | 4.201   | 4.217   | 4.181   | 4.241   | 4.236   | 4.240   | 4.198   | 4.184       | 4.181   | 4.225   | 4.213   | 4.181   | 4.175   | 4.185   |
| Phase           | 070       | .410    | .349    | 766.      | .317    | .344      | .361    | 747.    | .285    | .078    | .321    | .348    | 009.    | .626    | .401    | 77.7    | .217    | .250    | .790    | .153    | .610    | .634    | .655    | .885    | <b>506.</b> | .926    | .786    | .832    | .055    | .078    | .103    |
| JD -<br>2400000 | 42908.859 | 935.822 | 968,660 | 44748.915 | 834.579 | 45183.639 | 451.854 | 456.932 | 458.920 | 483.874 | 484.766 | 484.866 | 485.791 | 485.886 | 488,733 | 488.891 | 491.730 | 491.850 | 493,834 | 498.843 | 533,579 | 533.670 | 533,747 | 534.590 | 534.661     | 534.741 | 541.573 | 541.741 | 542.563 | 542.646 | 542.738 |
|                 | -         |         |         |           |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |             |         |         |         |         |         |         |

| Z               | 023<br>023<br>023<br>024<br>024<br>024<br>024<br>024<br>024<br>024<br>024<br>024<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v1-G            | 506<br>506<br>506<br>506<br>507<br>508<br>508<br>508<br>507<br>507<br>507<br>507<br>507<br>507<br>507<br>507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| B2-v1           | 255<br>254<br>254<br>254<br>255<br>255<br>255<br>255<br>257<br>257<br>257<br>257<br>257<br>257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B1-B2           | 785<br>786<br>777<br>777<br>777<br>777<br>777<br>777<br>777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| U-Bl            | 241<br>251<br>252<br>253<br>253<br>253<br>253<br>253<br>253<br>253<br>253<br>253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| мV              | 5.333333333333333333333333333333333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| шВ              | 4 183<br>4 238<br>4 238<br>4 238<br>6 232<br>6 232<br>6 233<br>6 233<br>7 |
| Phase           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| JD -<br>2400000 | 42908.859 935.825 936.660 4,488.915 451.854 456.892 458.932 458.932 458.932 458.932 458.933 458.891 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730 491.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

...477 ...481 ...467 ...467 ...467 ...463 ...467 ...463 ...463 ...463 ...463 ...463

2.285 2.273 2.273 2.276 2.276 2.303 2.303 2.315 2.316 2.317 2.317 2.317 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318 2.318

55.779 56.811 56.802 56.802 56.758 56.758 56.758 56.758 56.758 56.758 56.758 56.758 56.758 56.758

4.647 4.676 4.684 4.684 4.688 4.646 4.646 4.616 4.616 4.616 4.617 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618 4.618

43584,855 585,860 443,886 443,886 443,886 403,886 403,888 403,888 403,888 444,817 444,817 450,771 450,771 451,74 451,74 451,74 451,74 451,74 451,74 451,74 451,74 451,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 461,74 4

TABLE VIII (continued).

| JD -<br>2400000                                       | Phase                                | шВ                                                 | Λш                                                 | U-Bl                                   | B1-B2                           | B2-V1                                  | V1-G                            | 2                               |
|-------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|
| 45546.583<br>546.716<br>548.651<br>564.497<br>564.579 | .150<br>.186<br>.713<br>.027<br>.049 | 4.186<br>4.195<br>4.232<br>4.173<br>4.175<br>4.241 | 5.329<br>5.336<br>5.376<br>5.328<br>5.326<br>5.381 | 240<br>243<br>217<br>246<br>242<br>212 | 773<br>766<br>770<br>779<br>777 | 260<br>263<br>252<br>264<br>264<br>262 | 507<br>511<br>513<br>512<br>507 | 027<br>026<br>019<br>023<br>027 |

TABLE IX. — The data for HD 191287.

|                 |                      |         |          |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |         | _       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-----------------|----------------------|---------|----------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2               | 043                  | 9.5     | 9.5      | 017     | 03      | 9       | 039     | 050       | 034     | 041     | 058     | 03      | 70      | 03      | 9       | - 037   | •       |         | •       | 046     | 940     | 02      | 023      | 044     | 038     | 035     | 052     | 038     | 052     | 044     | 039     | 045     | 042     | 036     | 043     | 033     | 036     | 042     | 033     | 043     | 027     |
| v1-G            | 452                  | 451     | 451      | 461     | 974-    | 655-    | 443     | 436       | 674     | 443     | 419     | 452     |         |         | •       |         | •       | •       | 452     | 204     | [44]    | 462     | 462      | 442     | 877     | 453     | 423     | 451     | 432     | 434     | 440     | 434     | 437     | 457     | 442     | 455     | 451     | 436     | 447     | 877-    | 457     |
| B2-V1           | 144                  | 139     | <br>!!!! | 086     | -108    | 106     | 080     | 133       | 100     | 095     | 079     | 060     | 071     | 143     | 060     | 000     |         | 101-    | 141     | 136     | 145     | 120     | 112      | -,115   | 107     | 121     | 070     | 130     | 078     | 990     | 065     | 068     | 073     | 094     | 106     | 111     | 112     | 091     | 073     |         | 104     |
| B1-B2           | 618                  | 626     | 579      | 619     | 602     | 617     | 575     | 626       | 603     | 585     | 570     | 577     | 625     | 627     | 577     | - 611   | 603     | - 630   | 623     | - 627   | 616     | 633     | 626      | 609     | 009     | 616     | 575     | 624     | 554     | •       | 559     | 559     | 569     | 590     | •       | •       | 604     | 606     | 576     | 618     | 61      |
| U-Bl            | .307                 | .318    | .235     | .273    | .263    | .273    | .188    | .316      | .267    | .232    | .188    | 227     | 306     | 312     | 510     | 258     | 230     | 312     | 312     | 310     | 303     | 297     | .290     | .264    | .250    | .290    | .177    | 305     | .172    | .161    | .161    | .176    | .180    | .237    | .254    | .263    | .257    | .234    | .190    | 300     | .280    |
| mV              | 8.277<br>8.142       | ۲.      | ╗        | 7.      | ~       | ۲.      | ∹       | ~         | ۲,      | ٦.      | 9       |         |         |         | ! -     | ••      | :-      | •       |         |         | •       | •       |          | •       | 8.209   | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       | •       |
| mB              | 7.341                |         | •        | •       | •       | •       | •       |           | •       | •       |         |         |         |         |         | •       | •       | •       | •       | 7 333   | 7.37.5  | 7.344   | 7,339    | 7,332   | 7,323   | 7.357   | 7.264   | 7.347   | 7.264   | 7.261   | 7.261   | 7.260   | 7.280   | 7.337   | 7.337   | 7.342   | 7.347   | 7.294   | 7.277   | 7.352   | 7.367   |
| Phase           | .590                 | .559    | .175     | .259    | .213    | •656    | .885    | .531      | .229    | .840    | 924     | 164     | 524     | 559     | 135     | 792     | 707     | 2.5     | 15      | 104.    | . 473   | 202     | 713      | 97.     | .784    | .322    | 076.    | .396    | .955    | .983    | .012    | .034    | 790.    | .192    | .212    | .236    | .254    | .822    | .889    | .400    | .299    |
| JD -<br>2400000 | 44022.859<br>044.821 | 061.771 | 062.771  | 403.834 | 778,799 | 808.720 | 810.716 | 45444.914 | 450.918 | 451,910 | 456.917 | 628 657 | 483 866 | 483.922 | 484.857 | 464.037 | 785 930 | 488 909 | 787 167 | 491.784 | 471.007 | 493.896 | 498, 784 | 498,838 | 498.899 | 499,773 | 500,776 | 530,738 | 531.645 | 531.691 | 531,738 | 531.774 | 531.823 | 533,654 | 533,686 | 533,725 | 533,754 | 534.676 | 534,785 | 548.602 | 564.673 |

136





© European Southern Observatory • Provided by the NASA Astrophysics Data System

1985A&AS...61..127W

FIGURE 2a. — The color variations of HD 28843, HD 34797, and HD 56455. Shown are, respectively, the phase diagrams for the indices *U-BI*, *BI-B2*, *B2-VI*, and *VI-G*.



FIGURE 2b. — The same as figure 2a for HD 81009, HD 133880, and HD 175362.

1985A&AS...61..127W



FIGURE 3. — The variability of the peculiarity indices of the program stars.



© European Southern Observatory • Provided by the NASA Astrophysics Data System