Explore data

The

Datasaurus Dozen dataset is a collection of 13 sets of x/y data that have very similar summary statistics but look very different when plotted. Our modeling goal is to predict which member of the "dozen" each point belongs to.

Let's start by reading in the data from the datasauRus package.

```
library(tidyverse)
library(datasauRus)
```

datasaurus_dozen

```
# A tibble: 1,846 x 3
      dataset
                   Х
##
    1 dino
               55.4
                      97.2
##
    2 dino
               51.5
                      96.0
    3 dino
               46.2
                      94.5
    4 dino
               42.8
                      91.4
    5 dino
               40.8
                      88.3
##
    6 dino
               38.7
                      84.9
   7 dino
               35.6
                     79.9
##
    8 dino
               33.1
                      77.6
    9 dino
               29.0 74.5
## 10 dino
               26.2 71.4
  # ... with 1,836 more rows
```

These datasets are very different from each other!

```
datasaurus_dozen %>%
  ggplot(aes(x, y, color = dataset)) +
  geom_point(show.legend = FALSE) +
  facet_wrap(~dataset, ncol = 5)
```


But their summary statistics are so similar.

```
datasaurus dozen %>%
  group by(dataset) %>%
  summarise(across(c(x, y), list(mean = mean, sd = sd)),
     x y cor = cor(x, y)
  )
## # A tibble: 13 x 6
## dataset x_mean x_sd y_mean y_sd x_y_cor
##
                    54.3 16.8 47.8 26.9 -0.0641
## 1 away
## 2 bullseye 54.3 16.8 47.8 26.9 -0.0686

## 3 circle 54.3 16.8 47.8 26.9 -0.0683

## 4 dino 54.3 16.8 47.8 26.9 -0.0645

## 5 dots 54.3 16.8 47.8 26.9 -0.0603

## 6 h_lines 54.3 16.8 47.8 26.9 -0.0617
## 7 high lines 54.3 16.8 47.8 26.9 -0.0685
## 8 slant_down 54.3 16.8 47.8 26.9 -0.0690
## 9 slant_up 54.3 16.8 47.8 26.9 -0.0686
## 10 star 54.3 16.8 47.8 26.9 -0.0630
## 11 v_lines 54.3 16.8 47.8 26.9 -0.0694
## 12 wide_lines 54.3 16.8 47.8 26.9 -0.0666
## 13 x shape 54.3 16.8 47.8 26.9 -0.0656
```

Let's explore whether we can use modeling to predict which dataset a point belongs to. This is not a large dataset compared to the number of classes (13!) so this isn't a tutorial that shows best practices for a predictive modeling workflow overall, but it *does* demonstrate how to evaluate a multiclass model, as well as a bit about how random forest models work.

```
datasaurus dozen %>%
  count (dataset)
## # A tibble: 13 x 2
## dataset n
##
## 1 away
                  142
## 2 bullseye 142
## 3 circle 142
## 4 dino 142
## 5 dots 142
## 6 h_lines 142
## 7 high lines 142
## 8 slant down 142
## 9 slant_up 142
## 10 star
                   142
## 11 v lines 142
## 12 wide_lines 142
## 13 x shape
                   142
```

Build a model

Let's start out by creating bootstrap resamples of the Datasaurus Dozen. Notice that we aren't

splitting into testing and training sets, so we won't have an unbiased estimate of performance on new data. Instead, we will use these resamples to understand the dataset and multiclass models better.

```
library(tidymodels)
set.seed(123)
dino_folds <- datasaurus_dozen %>%
 mutate(dataset = factor(dataset)) %>%
 bootstraps()
dino_folds
## # Bootstrap sampling
## # A tibble: 25 x 2
## splits
                        id
##
## 1 Bootstrap01
## 2 Bootstrap02
## 3 Bootstrap03
## 4 Bootstrap04
## 5 Bootstrap05
## 6 Bootstrap06
## 7 Bootstrap07
## 8 Bootstrap08
## 9 Bootstrap09
## 10 Bootstrap10
\#\# \# ... with 15 more rows
```

Let's create a random forest model and set up a model workflow with the model and a formula preprocessor. We are predicting the $\mathtt{dataset}$ class (dino vs. circle vs. bullseye vs. ...) from x and y. A random forest model can often do a good job of learning complex interactions in predictors.

```
##
## -- Model ---
## Random Forest Model Specification (classification)
## Main Arguments:
   trees = 1000
##
##
## Computational engine: ranger
Let's fit the random forest model to the bootstrap resamples.
doParallel::registerDoParallel()
dino rs <- fit resamples(</pre>
 dino wf,
 resamples = dino_folds,
 control = control resamples(save pred = TRUE)
dino rs
## # Resampling results
## # Bootstrap sampling
## # A tibble: 25 x 5
                       id .metrics .notes
## splits
.predictions
##
## 1
```

We did it!

Evaluate model

How did these models do overall?

```
collect_metrics(dino_rs)

## # A tibble: 2 x 5

## .metric .estimator mean n std_err
##

## 1 accuracy multiclass 0.449 25 0.00337

## 2 roc_auc hand_till 0.846 25 0.00128
```

The accuracy is not great; a multiclass problem like this, especially one with so many classes, is harder than a binary classification problem. There are so many possible wrong answers!

Since we saved the predictions with $save_pred = TRUE$ we can compute other performance metrics. Notice that by default the positive predictive value (like accuracy) is macro-weighted for multiclass problems.

```
dino rs %>%
 collect predictions() %>%
 group by(id) %>%
 ppv(dataset, .pred class)
## # A tibble: 25 x 4
##
    id
         .metric .estimator .estimate
##
## 1 Bootstrap01 ppv macro
                                    0.428
## 2 Bootstrap02 ppv
                                    0.431
                      macro
## 4 Bootstrap04 ppv macro
## 5 Bootstrap05 ---
                                    0.436
                                    0.418
                                    0.445
## 6 Bootstrap06 ppv
                                    0.413
                      macro
## 7 Bootstrap07 ppv macro
                                    0.420
## 8 Bootstrap08 ppv
                                    0.423
                      macro
## 9 Bootstrap09 ppv
                      macro
                                    0.393
## 10 Bootstrap10 ppv macro 0.429
## # ... with 15 more rows
```

Next, let's compute ROC curves for each class.

```
dino_rs %>%
  collect_predictions() %>%
  group_by(id) %>%
  roc_curve(dataset, .pred_away:.pred_x_shape) %>%
  ggplot(aes(1 - specificity, sensitivity, color = id)) +
  geom_abline(lty = 2, color = "gray80", size = 1.5) +
  geom_path(show.legend = FALSE, alpha = 0.6, size = 1.2) +
  facet_wrap(~.level, ncol = 5) +
  coord equal()
```


We have an ROC curve for each class and each resample in this plot. Notice that the points dataset was easy for the model to identify while the dino dataset was very difficult. The model barely did better than guessing for the dino!

We can also compute a confusion matrix. We could use <code>tune::conf_mat_resampled()</code> but since there are so few examples per class and the classes were balanced, let's just look at all the resamples together.

```
dino_rs %>%
  collect_predictions() %>%
  conf_mat(dataset, .pred_class)
```

##		Truth									
## P	rediction	away	bullseye	circle	dino	dots	h_lines	high_lines			
slant_down slant_up star v_lines wide_lines x_shape											
##	away	220	78	50	59	9	55	78			
130	96	58	4	118		83					
##	bullseye	125	470	17	97	3	38	101			
74	109	31	40	93	5	55					
##	circle	99	16	852	105	4	34	147			
49	98	85	6	62	3	30					
##	dino	54	65	16	142	5	42	82			
153	114	50	23	66		49					
##	dots	22	20	22	33	1221	39	57			
47	34	15	11	28	1	L 6					
##	h_lines	52	81	37	60	26	897	37			
42	54	34	4	56	3	36					
##	high_line	es 111	105	69	145	8	27	381			
95	125	58	34	73	-	77					
##	slant_dow	vn 137	55	24	158	10	30	69			
318	114	33	41	89		27					
##	slant_up	81	82	37	144	1	30	64			
107	264	30	13	96		49					

##	star	60	52	37	77	19	28	62
73	37	755	0	34	87			
##	v_lines	32	66	30	69	7	9	45
78	56	20	1133	32	14			
##	wide_lir	nes 175	134	55	137	0	56	69
102	193	53	21	390	14	7		
##	x_shape	158	102	65	79	4	27	121
67	44	92	1	136	648			

These counts are can be easier to understand in a visualization.

```
dino_rs %>%
  collect_predictions() %>%
  conf_mat(dataset, .pred_class) %>%
  autoplot(type = "heatmap")
```


There is some real variability on the diagonal, with a factor of 10 difference from dinos to dots.

If we set the diagonal to all zeroes, we can see which classes were most likely to be confused for each other.

```
dino_rs %>%
  collect_predictions() %>%
  filter(.pred_class != dataset) %>%
  conf_mat(dataset, .pred_class) %>%
  autoplot(type = "heatmap")
```

evay-	0	78	50	59	9	55	78	130	96	58	4	118	83
bullseye	125	0	17	97	3	38	101	74	109	31	40	93	55
circle	99	16	0	105	4	34	147	49	98	85	6	62	30
dino	54	65	16	0	5	42	82	153	114	50	23	66	49
dots	22	20	22	33	0	39	57	47	34	15	11	28	16
h_lnes	52	81	37	60	26	0	37	42	54	34	4	56	36
high_lines	111	105	69	145	8	27	0	95	125	58	34	73	77
slant_down	137	55	24	158	10	30	69	0	114	33	41	89	27
slant_up	81	82	37	144	1	30	64	107	0	30	13	96	49
star	60	52	37	77	19	28	62	73	37	0	0	34	87
r_inn	32	66	30	69	7	9	45	78	56	20	0	32	14
wide_lines	175	134	55	137	0	56	69	102	193	53	21	0	147
x_shope -	158	102	65	79	4	27	121	67	44	92	1	136	0
	away	bullseye	circle	diso	dots	h_ines	high_lines Truth	slant_down	slant_up.	star	v_lines	wide_lines	(_shape

The dino dataset was confused with many of the other datasets, and $wide_lines$ was often confused with $slant_up$.