Government Policies

Pascal Michaillat
Brown University
www.pascalmichaillat.org

Active	lasso marke	t policies	Polices 8	o reduce un-
		en u is boo		
(I)	wage polici	es mi	nimum wag	e, wage tax
(2)	Public em	plozment		
Passive	lasa man	bet policies	Policies	to improve
		mploted u		
		ment i'm		
Minimu	n vage	Apsume	all workers	are paid at
min	un wage	W WL	at happens.	vhen minimum
Wage	goes up 1			
Use m	atching mo	lel w/ job.	nationing.	
	. Wage	fum dian	W	
	· Produc	tion Junction	·	a N , 02d 21
) (
	a supply	25(0)	majfecter	by minimum wage
· Laba	demand	20(0)=		1 T(6)] d

W oprimal minimum wage _> moximizes welfare. Or given by formula $L^* = L^5(\phi^*) = \int_{A}^{A} (\phi^*) + \int_{A}^{A} (\phi^*) = \int_{A}^{A} ($. W" is such that Ld (6") = L" $\begin{bmatrix} a & d & 1/1-A & 1/$ $\frac{W^{+} \left(\left(+ \left(\left(6^{+} \right) \right) \right)^{d}}{a \ d} = \left(L^{+} \right)^{d-1}$ $W^{\frac{1}{2}} = \frac{\alpha \times (L^{\frac{1}{2}})^{\frac{1}{2}}}{[1 + 7(6^{\frac{1}{2}})]^{\frac{1}{2}}}$ If currently for Lot then need reduce W to w

EU > U+ Ef currently \(\operatorname{+} > \operatorname{+} \operatorname

Empirical evidence on minimum vage Empirical literature is hurded in 2 camps

Minimum wage reduces employment (majorent with our model Minimum vage has no effect on employment Juneur doxment. Not consider with our matching model -> modely improve the model to explain this fact. Need to instroduce new ele ments such that minimum wage dos not de press labor de mand 1) Efficiency-wage element: labor product orty increases w/wage = a = a(w) w/a'(w) > 0In labor demand $\frac{\alpha}{w} = \frac{a(w)}{w}$ If a(w)/w ~ combrant - w doe not affect Ld (O) _, minimum vage dos not reduce emploxment-1 can une still explain business cycles? @ Aggregate-demand elements W1=3 disposable income 1 => spending 1 => sales 1 => "effective productivity" 1 => a 1 Could introduce a (w) w/ a'(w) >0

Optimal payroll tax +* (to madrim ze we fare > reach 0*) efficiency 0, L+= L5(6+), U+= H- L+ Optimal payroll tax such that $L^{d}(6^{*}) = L^{S}(6^{*})$ $= L^{*}$ Solve Ld (6+): L+ $=) \frac{(1+t^{*}) W \left[1+ T \left(6^{*}\right)\right]^{d}}{a} - \left(2^{*}\right)^{d-1}$ the could be so a Lo. A If paynol too pard by finms (incidence of has is on finms): pay not is effective tool But I pay noll tax paid by wakers (incidence of tax is on waters). Jinms & labor demandare unaffected by tax -> tax is completely ineffe drive _

Public employment - + wakers in public pecta = 17 6 of # wakers 15 - spending an public wakers = 63% of govern-- ment opending _ stimulus pa drages often nause public employment Example VS New Deal Introducing public employment in matching model - Matching process. public d'envate workers one part of same labor market

V : # vacancies from firms + # vacancies from government · 0 = V/U . S sob-se paration rate applies both to private firms l government · m (U, V) gives # matches on aggregate labor market (finms + government)
government & workers apply indiscummately bo private finms pullic & private jobs neom's workers i'n discummabely

- Labor supply not affected by public employment $L^{s}(\theta) = \frac{f(\theta)}{\Delta + f(\theta)} + H$ private en ployment aggrégate employment Laba demand is modified by public employment. Aggregate labor demand - Private labor demand + public labor demand (by firms)

Ld (b) + G

Ld (b) + G

Ll (b) + G

Ll (c) [1+T(c)] / 1-A + G · hoduction function (s concare, · Wage ib regid a oz oz oz 1 Ld(0) + 6 Labor market egur lebrum LS (0) aggregate loba aggregate labor suply

$$\lambda = dL$$
 dG

Computation of) = L5(6) G>0 Ld(0)+G=LS(6)

Implicately, O is a fundian of G through equili-

- Louin condition.

Increase public employment by d6 >0

· Employment change by dL

. Tightmess dange by d0 1) Compute do

@ Infe dl -> b = dL/d6

dG _ dLUS e drHs

Since equilibrium andition is valid Sofore e after change d6, then dLHS = dRHS

.
$$dRHS = \frac{dL^{S}}{d\Theta}$$
. $d\Theta$

. $dLHS = \frac{dL^{d}}{d\Theta}$. $d\Theta + dG$

Hence $\frac{dL^{d}}{d\Theta}$ $d\Theta + dG = \frac{dL^{S}}{d\Theta}$

$$\left[\frac{dL^{S}}{d\Theta} - \frac{dL^{d}}{d\Theta}\right] d\Theta = dG$$

$$\left[\frac{dL^{S}}{d\Theta} - \frac{dL^{d}}{d\Theta}\right] d\Theta = \frac{dG}{dG}$$

$$\left[\frac{dL^{S}}{d\Theta} - \frac{dL^{d}}{d\Theta}\right] d\Theta = \frac{dG}{dG}$$

Recall from "Uneur plagment fluctuations" function G

$$\left[\frac{dL^{S}}{d\Theta} - \frac{dL^{S}}{d\Theta}\right] = \frac{dG}{d\Theta}$$

$$\left[\frac{dL^{S}}{d\Theta} - \frac{dL^{S}}{d\Theta}\right] = \frac{dG}{d\Theta}$$

$$\left[\frac{dL^{S}}{d\Theta} - \frac{dG}{d\Theta}\right] = \frac{dG}{d\Theta}$$

$$\left[\frac{dG}{d\Theta} - \frac{dG}{d\Theta}\right]$$

$$\left[\frac{dG}{d\Theta} - \frac{dG}{d\Theta}\right] = \frac{dG}{d\Theta}$$

$$\left[\frac{dG}{d\Theta} - \frac{dG}{d\Theta}\right]$$

unem plox me	nY	ſ						
	state	u	>	65,	6	duna	rian i	f ut
	benefi							
	state	u;	,	8%	dus	ation 1	to	+6 week
	dde ti'a							
Introducing UI	inho	mot d	ung	model				
- One-period mode								
- All workers								
- Sore of				•				
. Unemploye.						Mat	E	>0
_, Aggregate								
				_				
							0	
_ tinmo y	oak	V va	canc	uies to		unt c	vake	y
_ Marching	funo	k.m	g	ives -	4 d	wah	u-11	in
marches					\			

- Labor market typhtress is
$$\theta = V/E$$
.

- Probability to find a job / unit of sifet $f(\theta)$

- Probability to find a job $E \times f(\theta)$

Labor dimand

One representative firm. - L workers

- N producers

- R recounters

. production Junction. $Y = a N$

. wage function $W = W(a, UE)$

. recounter - produce natio $T(\theta) = R/N$

L have - $T = V \times V = V \times V$

7(6) - T $T(6) \times N = R$ $T = Y - W \times L$ Prof. t T(= a. N - W x [14 7(6)] x N (s) same as in usual model same labor demand. $L^{d}(6,UI) = \left[\frac{a}{W(a,UI)} \left[1+7(6)\right]^{d}\right]^{l-d}$. downward - Roping labor demand if LLI _ but haizontal labor demand of d=1 - Ld responds to UI if W dos Representative worker · employed waker: consume Ce · unemployed waker: consume OLC u L Ce -> gap between Ce L C" is determined by UI - generous UI system, ce clare to ce

global maximum_ take derivative of objedice sun dien f(6) DU - E = 0 Effort chosen by wakers $E(\Theta, UE) = f(\Theta) \Delta U$ · UI) gam from working 1 => incentive to search 1 -> E 1 DES/JUT < 0 . OT = neturn on effort T = incentive to peard (=) E 1 ∂€5/36 >0 Labor supply $L^{S}(\theta,UE) = E^{S}(\theta,UE) \times f(\theta)$ 25 = 0 - 912/9 NI < 0 UI degresses labor 04ply

 $SW = L \cdot U(C^e) + (I-L) \cdot U(C^u) - E_2^2$ Social planmer chooses ut to madimize SW subjects to the following constraints; · budget constraint for government (=) resource total consumption $E = E^{S}(\Theta, UI)$ $L = L^{S}(\Theta, UI)$ wakers reoponse · equelbrium response - 0 - 0 (UI) given by Ld (O, UI) = L5(B, UI) . Solving paual planner's problem * All variables in social planner's problem can be expressed as function of (0, UI)

* Soual welfane can be expressed as fundian f (O, UI) * Social planner's problem becomes max SW(O(UI), UI) Optimel UI iv gruen by finst-order condition BAILY-CHETTY CORRECTION TEAM dsw = 0 D 35W 0 UI that maxim tes welfare, beeping 6 constant -> optimal UI in a "partial equilibrium" setup a " mas" octup -, UI solving ophomally tradeoff b/W incertives & In Duran Cl -> UI given by a

public-finance formula called "Baily-Chettry formula". Formula griss optimal UI as a Junction of 2 statistics, - Em microelasticity of unem ployment was to UI - U'(ce) / U'(cu), natrio of marginal utilités, measuring reed for imparance c[0,1] U'(ce)/U'(cu) 1 => optimal UI V mourance value of UI V 2) 25W UI efficiency term captures whether the labor market operates efficiently a not_ Three pomble cases

-0. laba market t-ghtmass a) 35W _ Baily - chetty omains valid 9<u>8</u> (9 > 0 : labor market tightness is imefrciently low -> claba market is imefficiently -s Baily chetty Vo not valid anymore c) <u>Sem</u> 70 tightness is irrefl, wently high -> labor market 10 inefficiently tight. - Barly - chetty formula is not valid anymore Effect of UI on equilibrium do/duI tigh trees UI has no effect an a) $d\theta/dUI = 0$ tightness

=> Optimal UI i's man generous Kan in booms (os in US) in Plumps c) do/dut < 0 0 t when UI 1 · happens in standard matching model (bargaining + linear production Jandian) • 0 2 2 m 2 2 m -> Baily - chetty formula has to be corrected => Optimal UT . procyclical > Optimal UI ib more generous in booms than in slumps (opposite of Us policy)