Investigation over NOMA with SIC in single antenna scheme

PHYSICAL LAYER SIMULATION

Speaker: Ming-Jie Yang, Chin-Wei Hsu

Advisor: Hung-Yun Hsieh

Outline

- > Previous work
- > Introduction
- ➤ Simulation result (best MCS given pair)
- ➤ Scheduling Problem (single cell, 12 UEs)
- **≻**Algorithm
- >Schedule Results

Recap of our previous works

- In the previous works, we surveyed and introduced literature on the physical and MAC layer techniques for non-orthogonal multiple access (NOMA)
- ➤ Based on the survey, we investigate theoretic and simulation models for NOMA to lay a solid ground for the resource allocation and scheduling to be studied in this project
- ➤ By the simulation result, we observe effect of error propagation: Capacity is calculated assumes zero-error when decoding former stages before extracting users own signal, however once error occurs, SIC performance degrades.

Introduction

- As in the previous work, the requirement of BER threshold for simulation is set way too low, and supported MCS is too few, causing wide feasible region of power allocation factor α in most cases. Here, in this presentation, the issue is considered and some modifications are made.
- The algorithm initially purposed is evaluated with exhaustive search by CSG (coalition structure generation), however, by the visualized result, no further trivial attribute is found.

MCS adaption in SIC

- The power ratio factor is determined by linear search quantumized by (0.0125).
- Two user equipments are placed on position with distance multiple of 100m
- ➤ Both user has BER constraint no greater than 10^-4

Parameters	Simulation settings		
FFT size	2048		
Carrier frequency	2.6 GHz		
Coding scheme	Convolutional Code (punctured)		
Cyclic Prefix	144 samples		
Modulation	BPSK (skipped), QPSK, 16QAM		
Channel	AWGN, ITU pedestrian 3km/hr		
BS power	4 W		
Background noise	-144 dBm		
Pathloss model	Hata model, medium sized city		
Equalizer	FDE MMSE		

MCS adaption in SIC

The marked MCS is the best in given channel condition and BER constraint.

Scheduling problem

- Consider scheduling users in a single cell, all users has to be scheduled once in given time window.
- Assume there are 12 users randomly scattered in 2800 square meter plane. The objective is to maximize spectrum utilization.

Scheduling problem - scenario

- This is a sample of random topology generated.
- The red spot at the origin is BS

Algorithm

It is observed that scheduling pairs with great path loss difference can help achieve better system performance. Thus, the initial algorithm is designed as follows.

Algorithm 1 Scheduling transmission pairs iteratively

```
01: Input: a set of user equipments, i.e. V
02: Initial: CS \leftarrow \emptyset \setminus \text{schedule set}
03: Sort UEs by its pathloss increasingly.
      \mathbf{V}' = \{ [v_1 \ v_2 ... v_n] | PL(v_i) \le PL(v_i) \forall i < j \}
04: While V' is not empty
         u = \mathbf{V}'.first() \setminus select the first element
05:
        For r \in \mathbf{V}', r \neq u
06:
           If pair(u, r) is feasible for given constraint
07:
08:
                \mathbf{M} = pair(u, r).getMCS() \setminus feasible MCSs
09:
              For W_m, m \in \mathbf{M}
                  If W_m > best
10:
11:
                      best \leftarrow W_m
12:
                      r' \leftarrow r
13:
                  End If
14:
               End For
15:
           End For
16:
           If v' exists \setminus u can form a pair.
17:
                \mathbf{V}' \leftarrow \mathbf{V}' \setminus \{r', u\}, \ CS \leftarrow CS \cup \{r', u\}
           Else
18:
                \mathbf{V}' \leftarrow \mathbf{V}' \setminus \{u\}, \ CS \leftarrow CS \cup \{u\}
19:
20:
           End If
21:
        End While
22: Return best, CS
```

Scheduling results

Left-hand side is generated by Algorithm 1, and figure on the right is optimal solution by exhaustive search. Alg. 1 reached 91.67% optimality.

Scheduling results (optimal)

Pair (Slot)	#1	#2	#3	#4	#5	#6
α (med)	0.1938	0.050	0.0375	0.05	0.05	0.1563
PLDiff(dB)	1.0	10.0	8.0	10.0	10.0	6.0

- The PL ratio in this case is less than 11.7.
- Power allocation factor α has to be small enough so the far-end user can decode correctly with less error propagation.
- Cannot be too large that the symbols of two users overlap with others.

Q&A

Thank you for your attention.

