# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет



# Колпаков Р.М. Теория дискретных функций

Конспект лекций первого курса первого потока 2014-2015

# 1 Булевы функции

## 1.1 Определение булевой функции.

Обозначим за E множество  $\{0,1\}$ .

**Определение.**  $f(x_1, \ldots, x_n) \in E$  — функция алгебры логики **(булева функция)**, где  $x_i \in E \ \forall i = 1, \ldots, n$  — это отображение  $f \colon E^n \to E$ . Его можно проиллюстрировать таблицей возможных значений f на различных наборах переменных:

| $\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$ |       |           |       | $f(x_1,\ldots,x_n) \ 0$ или $1$ $0$ или $1$ |
|-----------------------------------------------|-------|-----------|-------|---------------------------------------------|
| 1                                             | <br>1 | <br><br>1 | <br>1 | <br>0 или 1                                 |

**Определение.**  $P_2$  — множество всех булевых функций от произвольного конечного множества переменных.  $P_2(n)$  — множество всех булевых функций от n переменных.

**Определение.** 
$$E^n = \{(\sigma_1, \dots, \sigma_n) | \sigma_i \in E; i = 1, \dots, n\}$$

**У**тверждение **1.1.**  $|P_2(n)| = 2^{2^n}$ .

□ Очевидно. ■

## 1.2 Существенные и фиктивные переменные.

**Определение.** Пусть  $f(x_1,\ldots,x_n)$  — булева функция. Тогда  $x_i$  называется **существенной** переменной для f, если  $\exists \sigma_1,\sigma_2,\ldots\sigma_{i-1},\sigma_{i+1},\ldots,\sigma_n\in\{0,1\}$ :

$$f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 0, \sigma_{i+1}, \dots, \sigma_n) \neq f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 1, \sigma_{i+1}, \dots, \sigma_n).$$

В противном случае переменная называется фиктивной (пример придумать не очень сложно).

**Определение.** Пусть  $x_i$  — фиктивная переменная для f. Рассмотрим функцию

$$g(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n) : g(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, \sigma_{i+1}, \dots, \sigma_n) =$$

$$= f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 0, \sigma_{i+1}, \dots, \sigma_n) = f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 1, \sigma_{i+1}, \dots, \sigma_n).$$

Тогда говорят, что g получена из f удалением фиктивной переменной  $x_i$ .

**Определение.** Пусть  $f(x_1, \ldots, x_n)$  — булева функция. Также, пусть имеется  $y \neq x_1, \ldots, x_n$ . Рассмотрим функцию  $h(x_1, \ldots, x_n, y)$ ,  $h(\sigma_1, \ldots, \sigma_n, \sigma) = f(\sigma_1, \ldots, \sigma_n)$ . Тогда говорим, что h получена из f добавлением фиктивной переменной y.

**Определение.** Две булевы функции называются **равными**, если они могут быть получены друг из друга с помощью некоторого числа операций добавления или удаления фиктивных переменных.

## 1.3 Элементарные функции

1. От одной переменной:

| ĺ | $\boldsymbol{x}$ | 0 | $\boldsymbol{x}$ | $\bar{x}$ | 1 |
|---|------------------|---|------------------|-----------|---|
| ĺ | 0                | 0 | 0                | 1         | 1 |
| ľ | 1                | 0 | 1                | 0         | 1 |

2. От двух переменных:

| $\boldsymbol{x}$ | y | xy | $x \vee y$ | $x \oplus y$ | $x \sim y$ | $x \to y$ | x y | $x \downarrow y$ |
|------------------|---|----|------------|--------------|------------|-----------|-----|------------------|
| 0                | 0 | 0  | 0          | 0            | 1          | 1         | 1   | 1                |
| 0                | 1 | 0  | 1          | 1            | 0          | 1         | 1   | 0                |
| 1                | 0 | 0  | 1          | 1            | 0          | 0         | 1   | 0                |
| 1                | 1 | 1  | 1          | 0            | 1          | 1         | 0   | 0                |

3. От трех переменных (функция "медиана"):

| $\underline{x}$ | y | z | f(x, y, z) |
|-----------------|---|---|------------|
| 0               | 0 | 0 | 0          |
| 0               | 0 | 1 | 0          |
| 0               | 1 | 0 | 0          |
| 0               | 1 | 1 | 1          |
| 1               | 0 | 0 | 0          |
| 1               | 0 | 1 | 1          |
| 1               | 1 | 0 | 1          |
| 1               | 1 | 1 | 1          |

## 1.4 Формула над системой булевых функций.

 $\Phi = \{f_1(x_1, x_2, \dots, x_{n_1}); f_2(x_1, x_2, \dots, x_{n_2}); \dots; f_n(x_1, x_2, \dots, x_{n_n})\} \subseteq P_2$  — некоторое множество булевых функций, таких что каждой булевой функции  $f_i(x_1, x_2, \dots, x_{n_i})$  сопоставляем функциональный символ  $f_i$ .

**Определение. Формулой над**  $\Phi$  называется строка символов, состоящая из любых символовпеременных, обозначающих  $f_1, \ldots, f_n$  и вспомогательных символов «(», «)», «,», определяемое индуктивным образом:

**База индукции:** символ любой переменной — правильная формула над  $\Phi$ .

**Индуктивное предположение:** пусть  $F_1, F_2, \ldots, F_{n_i}$  — некоторые формулы над  $\Phi$ , тогда  $f_i(F_1, F_2, \ldots, F_{n_i})$  — тоже формула над  $\Phi$ .

**Пример 4.1.**  $((\overline{x \lor y})\&(z \to y))$  — формула над  $\{x \lor y; x\&y, x \to y, \overline{x}\}$ 

Конъюнкция имеет приоритет над дизъюнкцией.

**Определение.** Значения формулы на наборе значений переменных, входящих в формулу, определяется индуктивным образом.

**База индукции:** если f — тривиальная, то все очевидно.

**Индуктивное предположение:** пусть  $F_1, F_2, \dots, F_n$  — формулы, для которых данное понятие уже определено.

$$f_i(F_1, F_2, \ldots, F_{n_i});$$

 $x_1, \ldots, x_n$ — все переменные, содержащиеся в F;

$$\Omega = (\sigma_1, \dots, \sigma_n)$$
— набор значений  $x_1, \dots, x_n$ ;

 $\Omega_j$ — поднабор значений из  $\Omega$  для переменных, содержащихся в формуле  $F_j$ ;  $b_j$ — значение функции  $F_j$  на наборе  $\Omega_j$ .

Тогда значение F на наборе  $\Omega$  равно  $f_i(b_1,\ldots,b_{ni})$ 

Пусть F — формула над  $\Phi$ , содержащая символы переменных  $x_1, \ldots, x_n$ . Тогда F реализует функцию  $f(x_1, \ldots, x_n)$ , т.ч для любого набора  $(\sigma_1, \ldots, \sigma_n)$  значений  $x_1, \ldots, x_n$  значение  $f(\sigma_1, \ldots, \sigma_n)$  равно значению формулы F на  $\sigma_1, \ldots, \sigma_n$ .

f получается из  $\Phi$  с помощью операции суперпозиции, если F реализуется некоторой нетривиальной формулой над  $\Phi$ .

**Определение.** Две формулы  $F_1$  и  $F_2$  называются **эквивалентными**, если они реализуют одинаковые функции.

Пусть  $* \in \{ \lor, \&, \oplus, \sim \}$  — некоторая операция.

- 1. x \* y = y \* x (коммутативность)
- 2. x \* (y \* z) = (x \* y) \* z (ассоциативность)
- 3.  $x(y \lor z) = xy \lor xz$   $x(y \oplus z) = xy \oplus xz$   $x \lor (y \& z) = (x \lor y) \& (x \lor z)$   $x \lor (y \sim z) = (x \lor y) \sim (x \lor z)$  (дистрибутивность)
- 4.  $x \lor xy = x$  (поглощение)
- 5.  $\overline{\overline{x}} = x$  (двойное отрицание)
- 6.  $\overline{x \lor y} = \overline{x} \& \overline{y}$   $\overline{x \& y} = \overline{x} \lor \overline{y}$  (закон де Моргана)

7. 
$$x\overline{x} = 0$$
,  $x \lor \overline{x} = 1$ ,  $x \oplus \overline{x} = 1$ ,  $x \sim \overline{x} = 0$   
 $xx = x$ ,  $x \lor x = x$ ,  $x \oplus x = 0$ ,  $x \sim x = 1$   
 $x\&1 = x$ ,  $x \lor 1 = 1$ ,  $x \oplus 1 = \overline{x}$ ,  $x \sim 1 = x$   
 $x\&0 = 0$ ,  $x \lor 0 = x$ ,  $x \oplus 0 = x$ ,  $x \sim 0 = \overline{x}$ 

## 2 Замыкания.

## 2.1 Определения.

Возьмем множество  $F \subseteq P_2$ .

**Определение.** Замыкание [F] множества F — это множество всех булевых функций, получаемых из булевых функций множества F с помощью операций суперпозиции, удаления и добавления фиктивных переменных.

**Определение.** F — замкнуто, если [F] = F.

- 1.  $[\{x \oplus y\}] = \{0, x, x_1 \oplus \ldots \oplus x_t (t \ge 2)\}$
- 2.  $P_2$  замкнуто.

**Определение.**  $P_2(n)$  — все булевы функции, существенно зависящие от не более, чем n переменных.

- 1.  $P_2(1)$  замкнуто.
- 2.  $P_2(2)$  не замкнуто.  $(xy \in P_2(2), \, xyz \not\in P_2(2))$

#### 2.2 Свойства замыкания.

- 1.  $F \subseteq [F]$ .
- 2.  $F_1 \subseteq F_2 \Longrightarrow [F_1] \subseteq [F_2]$
- 3. [[F]] = [F]
  - $\square$  1)  $[F] \subseteq [[F]]$  (no 1, 2)
  - $2)[[F]] \subseteq [F].$

 $f(x_1, ..., x_n) \in [[F]] \Rightarrow \exists$  формула  $\Phi$ , реализующая f. Пусть  $f_1, ..., f_s$  — все функциональные символы, содержащиеся в  $\Phi$ .  $f_1, ..., f_s \in [F] \Rightarrow$  каждая функция  $f_i$  реализуется некоторой формулой  $\Phi_i$  над  $F: \Phi = f_i(F_1, ..., F_{n_i})$ .

 $\Phi_i(F_1,\ldots,F_{n_i})$  — формула, полученная из  $\Phi$  заменой  $x_i\longmapsto F_i.$   $\Phi_i(F_1,\ldots,F_n).$ 

$$\Phi_i(F_1,\ldots,F_n).$$

Так получим:

 $\Phi'$  — формулу над F, реализующую функцию  $F \Rightarrow f \in [F] \Rightarrow [[F]] \subseteq [F]$ .

- 4.  $[F_1] \cap [F_2]$  замкнуто.
  - □ Возьмем  $f \in [[F_1] \cap [F_2]]$ : f реализуется формулой  $\Phi$  над  $[F_1] \cap [F_2]$ . Пусть  $f_1, \dots f_s$  все функциональные символы из  $\Phi$ .  $\forall i \, f_i$  реализуется и формулой  $\Phi_1$  над  $F_1$  и формулой  $\Phi_2$  над  $F_2 \Rightarrow f \in [F_1] \cap [F_2]$ .  $\blacksquare$
- 5.  $[F_1] \cup [F_2]$  не обязательно замкнуто.

## 2.3 СДНФ и СКНФ.

Пусть F — замкнутое множество, и  $F_1 \subseteq F$ .

**Определение.**  $F_1$  называется полным в F, если  $[F_1] = F$ .

**Определение.**  $F_1$  называется полным, если  $[F_1] = P_2$ .

**Пример 3.1.**  $P_2$  — полное множество.

**Утверждение 2.1.**  $f(x_1, \ldots, x_n) - булева функция.$ 

Тогда: 
$$f(x_1, ..., x_n) = (\overline{x_1} \& f(0, x_2, ..., x_n)) \lor (x_1 \& f(1, x_2, ..., x_n))$$

- $\square$  Пусть  $\sigma = (\sigma_1, \ldots, \sigma_n)$  набор значений переменных  $x_1, \ldots, x_n$ .
- 1.  $\sigma_1 = 0$ .

$$\overline{\sigma_1} \& f(0, \sigma_2, \dots, \sigma_n) \lor \sigma_1 \& f(1, \sigma_2, \dots, \sigma_n) =$$

$$= 1 \& f(0, \sigma_2, \dots, \sigma_n) \lor 0 \& f(1, \sigma_2, \dots, \sigma_n) =$$

$$= f(0, \sigma_2, \dots, \sigma_n) = f(\sigma_1, \dots, \sigma_n)$$

2.  $\sigma_1 = 1$ .

$$0 \& f(0, \sigma_2, \dots, \sigma_n) \lor 1 \& f(1, \sigma_2, \dots, \sigma_n) = f(1, \sigma_2, \dots, \sigma_n) = f(\sigma_1, \dots, \sigma_n)$$

$$f(x_1, ..., x_n) = (\overline{x_1} \& f(0, x_2, ..., x_n)) \lor (x_1 \& f(1, x_2, ..., x_n)) =$$

$$= \overline{x_1} \& (\overline{x_2} \& f(0, 0, ..., x_n)) \lor (x_2 \& f(0, 1, ..., x_n)) \lor$$

$$\lor (x_1 \& (\overline{x_2} \& f(1, 0, ..., x_n)) \lor (x_1 \& f(1, 1, ..., x_n))) =$$

$$= \overline{x_1} \overline{x_2} f(0, 0, ..., x_n) \lor \overline{x_1} \overline{x_2} f(0, 1, ..., x_n) \lor x_1 \overline{x_2} f(1, 0, ..., x_n) \lor x_1 x_2 f(1, 1, ..., x_n)$$

Определение. 
$$x_{\sigma} = \begin{cases} x, \text{ если } \sigma = 1 \\ \overline{x}, \text{ если } \sigma = 0 \end{cases}$$

Итак,  $f(x_1,\ldots,x_n)$  можно переписать в виде  $\bigvee_{\sigma_1,\sigma_2\in E} f(\sigma_1,\sigma_2,x_3,\ldots,x_n)$ . Мы также можем аналогично разложить f по k переменным:  $f(x_1,\ldots,x_n)=\bigvee_{(\sigma_1,\ldots,\sigma_k)\in E^k}f(\sigma_1,\ldots,\sigma_k,\ldots,x_n)$  При k=n получаем:  $f(x_1,\ldots,x_n)=\bigvee_{(\sigma_1,\ldots,\sigma_n)\in E^n}x_1^{\sigma_1}\ldots x_n^{\sigma_n}f(\sigma_1,\ldots,\sigma_n)=$ 

 $\bigvee_{\substack{(\sigma_1,\ldots,\sigma_n)\in E^n}} x_1^{\sigma_1}\ldots x_n^{\sigma_n}$ 

Определение. Форма представления функции в виде

$$f(x_1,\dots,x_n)=\bigvee_{\substack{(\sigma_1,\dots,\sigma_n)\in E^n\\f(\sigma_1,\dots,\sigma_n)=1}}x_1^{\sigma_1}\dots x_n^{\sigma_n}$$
 называется

Совершенной дизъюнктивной нормальной формой (СДНФ).

**Определение.** Пусть  $f(x_1,\ldots,x_n)\neq 1$  — булева функция.  $\overline{x}\neq 0 \Rightarrow \overline{f(x_1,\ldots,x_n)}=\bigvee_{\substack{(\sigma_1,\ldots,\sigma_n)\in E^n\\ \overline{f}(\sigma_1,\ldots,\sigma_n)=1}}\overline{x_1^{\sigma_1}\ldots x_n^{\sigma_n}}=$  $= & & \underbrace{x_1^{\sigma_1,\ldots,\sigma_n} \in E^n}_{\substack{(\sigma_1,\ldots,\sigma_n)=0\\f(\sigma_1,\ldots,\sigma_n)=0}} \overline{x_1^{\sigma_1}} \vee \ldots \vee \overline{x_n^{\sigma_n}} = & & \underbrace{x_1^{\overline{\sigma_1}}}_{\substack{(\sigma_1,\ldots,\sigma_n)\in E^n\\f(\sigma_1,\ldots,\sigma_n)=0}} \overline{x_1^{\overline{\sigma_1}}} \vee \ldots \vee \overline{x_n^{\overline{\sigma_n}}} - \text{ это так называемая}$ 

Совершенная конъюктивная нормальная форма (СКНФ).

**Утверждение 2.2.**  $\{x \& y, x \lor y, \bar{x}\}$  — полное множество.

- Если  $f \neq 0$ , то СДНФ формула над  $\{x\&y, x \lor y, \bar{x}\}$  Если f = 0, то  $f = \bar{x}\&x \Rightarrow$ любая функция реализуется формулой над  $\{x\&y, x\lor y, \bar{x}\}$ .
- **Лемма 2.3 (О сводимости полных множеств).**  $F, F' \subseteq P_2$ , F полное множество, uлюбая функция из F может быть реализована формулой над  $F' \Rightarrow F'$  — полное множество.
- $\forall$  функция из F может быть реализована формулой над  $F'\Rightarrow F\subseteq [F']\Rightarrow [F]\subseteq$ [[F']] = [F'].

F — полное  $\Rightarrow$   $[F] = P_2, [F] \subseteq [F'] \Rightarrow P_2 \subseteq [F'] \Rightarrow F'$  — полное.

## 2.4 Ещё примеры полных множеств функций.

**Утверждение 2.4.**  $\{x\&y, \bar{x}\}$  — полное множество.

 $\{x\vee y,\,x\&y,\,ar{x}\}$  — полное множество. Учитывая, что  $x\vee y=\overline{x}\&ar{y}$  , то по лемме о сводимости получаем нужное.

**Утверждение 2.5.**  $\{x \lor y, \bar{x}\}$  — полное множество.

 $\{x\&y, \bar{x}\}$  — полное множество. Учитывая, что:  $x\&y=\overline{x}\vee \overline{y}$ , то по лемме о сводимости получаем нужное.

**Утверждение 2.6.**  $\{x \oplus y, x \& y, 1\}$  — полное множество.

 $\bar{x} = x \oplus 1$ . Получаем нужное по лемме о сводимости и утверждению 2.

**Утверждение 2.7.**  $\{x|y\}$  — полное множество.

 $\Box$   $x|y=\bar{x}\vee\bar{y}=\overline{x\&y};$ 

 $\bar{x} = x | x;$ 

x&y = x|y = (x|y)|(x|y);

 $\{x\&y, \bar{x}\}$  — полное по лемме о сводимости, значит  $\{x|y\}$  — полное.  $\blacksquare$ 

Следствие 2.1. Из любого полного множества можно выделить конечное полное подмножество.

 $F \subseteq P_2$  — полное множество.  $\Rightarrow$  существует формула  $\Phi$  над F, реализующая x|y. Пусть  $\{f_1, \dots, f_s\}$  — множество всех символов функций, содержащихся в  $\Phi.\Phi$  — формула над  $\{f_1,\ldots,f_s\}\Rightarrow x|y$  содержится в замыкании.  $\{x|y\}$  — полное.  $\Rightarrow$  по лемме о сводимости  $\{f_1,\ldots,f_s\}\subseteq F$  — полное.  $\blacksquare$ 

#### 2.5 Полином Жегалкина.

Пусть  $f(x_1,\ldots,x_n)$  — булева функция.

**Определение.** Полиномом Жегалкина функции f называется полином P с коэффициентами в  $\{0,1\}$  от переменных  $x_1,\ldots,x_n$  степени не выше n, такой что  $f(x_1,\ldots,x_n)=P(x_1,\ldots,x_n)$ .

**Утверждение 2.8.** Полином Жегалкина существует для любой функции  $f(x_1, \dots, x_n)$ .

$$\Box f(x_1, \dots, x_n) = \bigvee_{f(\sigma_1 \dots \sigma_n) = 1} x^{\sigma_1} \dots x^{\sigma_n} = \bigoplus_{f(\sigma_1, \dots, \sigma_n) = 1} x^{\sigma_1} \dots x^{\sigma_n} =$$

$$=\bigoplus_{f(\sigma_1,\ldots,\sigma_n)=1}(x_1\oplus\bar{\sigma_1})\ldots(x_n\oplus\bar{\sigma_n})=\bigoplus_{k=0}^n\big(\bigoplus_{i_1< i_2<\ldots< i_k}c_{i_1,\ldots,i_k}x_{i_1}\ldots x_{i_k}\big), \ \mathrm{где}\ c_{i_1,\ldots,i_k}\in\{0,1\}.$$

В этой сумме слагаемое с k=0 соответствует произведению пустого множества переменных, то есть свободному члену.  $\blacksquare$ 

Из определения следует, что если f — константа, то её полином Жегалкина имеет степень 0, то есть равен 1 или 0 (в зависимости от того, какой константой является f, разумеется).

**Утверждение 2.9.** Для каждой булевой функции от n переменных существует единственный полином Жегалкина.

- $\square$  Как было доказано выше, для каждой функции полином Жегалкина существует. Далее, очевидно, что разным функциям соответствуют разные полиномы Жегалкина. Покажем, что всевозможных полиномов степени не выше n от переменных  $x_1,\ldots,x_n$  ровно столько же, сколько всевозможных булевых функций от этих переменных.
- 1)  $|P_2(n)| = 2^{2^n}$ .
- 2) Каждый коэффициент  $c_{i_1,...,i_k}$  соответствует подмножеству  $\{x_{i_1},...,x_{i_k}\}$  (возможно пустому) из множества переменных  $\{x_1,...,x_n\}$ . Таких подмножеств  $2^n$ . Каждый коэффициент принимает значения 0 или 1, значит, всего полиномов  $2^{2^n}$ . Отсюда всё очевидно.

## 3 Замкнутые классы булевых функций.

## 3.1 Функции, сохраняющие ноль и единицу.

**Определение.** f сохраняет 0, если  $f(0,\ldots,0)=0$ .  $T_0$  — множество всех функций, сохраняющих ноль. Например,  $0,\,x,\,x\& y,\,x\vee y,\,x\oplus y$ .

Определение. Селекторная функция — функция, тождественна равная переменной.

**Лемма 3.1.**  $T_0 - 3 a m \kappa H y m o$ .

 $\square$  Тождественная функция содержится в  $T_0$ . Значит, надо проверить, что если  $f(x_1,\ldots,x_n),g_1,\ldots$   $T_0$ , то  $f(g_1,\ldots,g_n)\in T_0$ .

Можем полагать, что  $g_1, \ldots, g_n$  зависят от одних и тех же переменных:  $x_1, \ldots, x_n$  (иначе можно добавить переменные в качестве фиктивных). Тогда:

$$f(g_1(x_1,\ldots,x_n),\ldots,g_n(x_1,\ldots,x_n)) = h(x_1,\ldots,x_n) h(0,\ldots,0) = f(g_1(0,\ldots,0),\ldots,g_n(0,\ldots,0)) = f(0,\ldots,0) = 0. \Rightarrow h \in T_0. \blacksquare$$

**Определение.** f сохраняет 1, если  $f(1,\ldots,1)=1$ . Обозначим за  $T_1$  множество всех функций, сохраняющих единицу. Например,  $1,\,x,\,xy\to y,\,x\vee y.$ 

**Лемма 3.2.**  $T_1 - замкнуто.$ 

□ Аналогично предыдущей лемме. ■

#### 3.2 Монотонные функции.

Определим правило сравнения на наборах из нулей и единиц.  $\sigma' = {\sigma'_1, \dots, \sigma'_n}, \ \sigma'' = {\sigma''_1, \dots, \sigma''_n} \in {\{0, 1\}^n}.$ Будем говорить, что  $\sigma' \leqslant \sigma''$ , если  $\forall i \in \{1, ..., n\}$   $\sigma'_i \leqslant \sigma''_i$ . Заметим, что существуют несравнимые наборы, например: (101) и (010). **Определение.** f — монотонная, если для любых  $\sigma'$  и  $\sigma''$  таких, что  $\sigma' \leqslant \sigma''$  выполняется, что  $f(\sigma') \leqslant f(\sigma'')$ . **Лемма 3.3.** M является замкнутым классом. Тождественная функция содержится в M. Значит, осталось проверить, что если  $f(x_1,\ldots,x_n),\,g_1,\ldots,g_n\in M$ , то  $h=f(g_1,\ldots,g_n)\in M$ . Можно считать, что  $g_1,\ldots g_n$ функции от одного и того же количества переменных, в противном случае недостающие переменные можно добавить в качестве несущественных. Выберем произвольные различные наборы  $\sigma' = \{\sigma'_1, \dots, \sigma'_n\}, \ \sigma'' = \{\sigma''_1, \dots, \sigma''_n\}, \$ такие что  $\sigma' \leqslant \sigma''$ . Рассмотрим  $h(\sigma') = f(g_1(\sigma'), g_2(\sigma'), \dots, g_n\sigma'))$  и  $h(\sigma'') = f(g_1(\sigma''), \dots, g_n(\sigma''))$ .  $g_i(\sigma') < g_i(\sigma'')$ , так как  $g_i$  — монотонная.  $f(g_1(\sigma'), g_2(\sigma'), \dots, g_n(\sigma')) \leqslant f(g_1(\sigma''), g_2(\sigma''), \dots, g_n(\sigma''))$ , так как f — монотонная, то h — тоже монотонная. Лемма **3.4** (О немонотонных функциях).  $f(x_1, ..., x_n) \notin M$ . Тогда  $\bar{x} \in [\{f; 0; 1\}]$ .  $f \notin M \Rightarrow \exists \sigma', \sigma'' : \sigma' \leqslant \sigma'', \ f(\sigma') = 1, \ f(\sigma'') = 0.$  Без ограничения общности будем считать, что  $\sigma'$  и  $\sigma''$  устроены следующим образом:  $\sigma' = (0, \dots, 0, \dots, 0, 1, \dots, 1)$  $\sigma'' = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{s}, \underbrace{1, \dots, 1}_{n-k-s})$   $g(x) = f(\underbrace{x, \dots, x}_{k}, \underbrace{0, \dots, 0}_{s}, \underbrace{1, \dots, 1}_{n-k-s}) = \bar{x}$ , так как g(0) = 1 и g(1) = 0. 3.3 Самодвойственные функции. **Определение.** Двойственной функцией к  $f(x_1, ..., x_n)$  называется функция  $f^*(x_1, ..., x_n) =$  $f(\bar{x}_1,\ldots,\bar{x}_n).$ **Пример 3.1.**  $(x\&y)^* = x \lor y$ Легко заметить, что  $(f^*)^* = f$ . Определение. Самодвойственная функция — функция, двойственная самой себе; множество всех таких функций обозначается S. **Утверждение 3.5.** 1)  $\bar{x}, x \oplus y \oplus z, m(x, y, z) \in S$ ; 2)  $0, 1, x \oplus y, x \to y, x \& y, x \lor y \notin S$ В этом несложно убедиться явной проверкой. **Лемма 3.6.** *S является замкнутым классом.* Тождественная функция содержится в S. Значит, осталось проверить, что если  $f(x_1,\ldots,x_k),g_1,\ldots,g_k\in S, \text{ to } h=f(g_1(x_1,\ldots,x_n),\ldots,\underline{g_k(x_1,\ldots,x_n)})\in S.$   $\underline{h^*(x_1,\ldots,x_n)}=\overline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\overline{f(\overline{g_1(\bar{x}_1,\ldots,\bar{x}_n)},\ldots,\overline{g_k(\bar{x}_1,\ldots,\bar{x}_n)})}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,\ldots,\bar{x}_n)}=\underline{f(g_1(\bar{x}_1,\ldots,\bar{x}_n)),\ldots,g_k(\bar{x}_1,$  $f(\overline{g_1^*(x_1,\ldots,x_n)},\ldots,\overline{g_k^*(x_1,\ldots,x_n)}).$ Так как  $g_1 = g_1^*, \dots, g_k = g_k^*$ , то  $h = f(\overline{g_1(x_1, \dots, x_n)}, \dots, \overline{g_k(x_1, \dots, x_n)}) = f^*(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)).$  $f^* = f$ , значит  $h^*(x_1, \dots, x_n) = f^*(x_1, \dots, x_n) = f(x_1, \dots, x_n) = f(x_1, \dots, x_n)$  $= h(x_1, \ldots, x_n) \Rightarrow h \in S. \blacksquare$ 

 $[\{f,\bar{x}\}]$ 

Лемма 3.7 (О несамодвойственной функции). Пусть  $f(x_1, ..., x_n) \notin S$ , тогда  $0, 1 \in$ 

Пусть  $f(x_1,\ldots,x_n) \not\in S$ , тогда  $f^*(x_1,\ldots,x_n) = \overline{f(\bar{x}_1,\ldots,\bar{x}_n)} \neq f(x_1,\ldots,x_n) \Rightarrow \exists \sigma = 0$ 

$$(\sigma_1,\ldots,\sigma_n)$$
, т.ч.  $\overline{f(\bar{\sigma}_1,\ldots,\bar{\sigma}_n)} \neq f(\sigma_1,\ldots,\sigma_n) \Rightarrow f(\bar{\sigma}_1,\ldots,\bar{\sigma}_n) = f(\sigma_1,\ldots,\sigma_n) = C$ . Будем считать, что  $(\sigma_1,\ldots,\sigma_n) = \underbrace{(0,\ldots,0,\underbrace{1,\ldots,1})}_{k}$ . Пусть  $g(x) = f(\underbrace{x,\ldots,x,\bar{x},\ldots,\bar{x}}_{n-k})$ .  $g(0) = f(\underbrace{0,\ldots,0,\underbrace{1,\ldots,1}}_{n-k}) = f(\sigma_1,\ldots,\sigma_n)$ ,  $g(1) = f(\underbrace{1,\ldots,1,0,\ldots,0}_{n-k}) = f(\bar{\sigma}_1,\ldots,\bar{\sigma}_n)$ , значит,  $g(0) = g(1) = C$ , причём  $g$  задаётся формулой над  $\{f,\bar{x}\} \Rightarrow g \in S$ . Получаем  $C \in [\{f,\bar{x}\}] \Rightarrow \bar{C} \in [\{f,\bar{x}\}] \Rightarrow 0, \ 1 \in [\{f,\bar{x}\}]$ .

## 3.4 Линейные функции.

**Определение.** Булева функция называется линейной, если степень её полинома Жегалкина не превосходит 1.

Здесь под степенью полинома Жегалкина понимается максимальная длина слагаемого в нём или, говоря алгебраическим языком, его степень как многочлена над  $\mathbb{Z}_2$ . Например, степень полинома  $xyz \oplus x \oplus 1$  равна 3.

**Определение.** L — класс всех линейных булевых функций.

**Предложение 3.8.** 1) 0, 1, 
$$x$$
,  $\bar{x}$ ,  $x \oplus y$ ,  $x \sim y \in L$ , 2)  $x \to y$ ,  $x \vee y$ ,  $x \& y \notin L$ .

 $\square$  Первая часть утверждения очевидна, кроме утверждения про функцию  $x \sim y$ . Чтобы доказать оставшееся, представим следующие функции в виде полиномов:

$$x \sim y = x \oplus y \oplus 1 \text{ (deg = 1)},$$
  
 $x \to y = \bar{x} \lor xy = xy \oplus x \oplus 1 \text{ (deg = 2)},$   
 $x \lor y = xy \oplus x \oplus y \text{ (deg = 2)}.$ 

Лемма 3.9. L является замкнутым классом.

 $\square$   $x \in L$ . Достаточно доказать, что  $f(x_1,\ldots,x_k), g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n)\in L\Rightarrow h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))\in L$ . Проверим это напрямую:  $f\in L\Rightarrow f(x_1,\ldots,x_k)=c_1x_1\oplus\ldots\oplus c_kx_k\oplus c;\ c_i,c\in\{0,1\}.$   $g_1,\ldots,g_k\in L\Rightarrow g_i(x_1,\ldots,x_n)=d_{i1}x_1\oplus\ldots\oplus d_{in}x_n\oplus d_i;\ d_{ij},d_i\in\{0,1\}.$   $h(x_1,\ldots,x_n)=c_1\left(d_{11}x_1\oplus\ldots\oplus d_{1n}x_n\oplus d_1\right)\oplus\ldots\oplus c_k\left(d_{k1}x_1\oplus\ldots\oplus d_{kn}x_n\oplus d_k\right)\oplus c==(c_1d_{11}\oplus c_kd_{k1})x_1\oplus\ldots\oplus (c_1d_{1n}\oplus\ldots\oplus c_kd_{kn})x_n\oplus (c_1d_1\oplus\ldots c_kd_k\oplus c)$ . Видно, что это линейная функция.  $\blacksquare$ 

Лемма **3.10 (О** нелинейной функции). Пусть  $f(x_1, \dots, x_n) \not\in L$ . Тогда  $x \& y \in [\{f, \bar{x}, 0, 1\}]$ .

Пусть  $f \not\in L$ , тогда степень её полинома Жегалкина равна  $k \geqslant 2$ . Выберем нелинейное слагаемое наименьшей степени  $l \geqslant 2$  в этом полиноме. Без ограничения общности можно считать, что это слагаемое  $x_1...x_l$ . Запишем f в виде  $f(x_1,\ldots,x_n)=f_{\deg>l}\oplus x_1...x_l\oplus f_{\deg\leqslant 1}$ , где  $f_{\deg>l}$  — сумма всех слагаемых степени больше l, а  $f_{\deg\leqslant 1}$  — сумма всех слагаемых степени не больше 1.

Рассмотрим функцию  $g(x,y)=f(x,\overline{y,...,y},0,...,0)$ . Ясно, что при подстановке аргументов (x,y,...,y,0,...,0) в полином Жегалкина для f занулятся все слагаемые, входящие в  $f_{\deg>l}$ . Далее, g(x,y)=x y...y  $\oplus$   $\ldots=xy$   $\oplus$   $c_1x$   $\oplus$   $c_2y$   $\oplus$  c.

Теперь рассмотрим функцию  $g'(x,y)=g(x\oplus c_2,y\oplus c_1)=xy\oplus c_1c_2\oplus c=xy\oplus d.$  Значит,  $xy=g'(x,y)\oplus d=g(x\oplus c_2,y\oplus c_1)\oplus d=f(x\oplus c_2,\underbrace{y\oplus c_1,\ldots,y\oplus c_1}_{l-1},0,\ldots,0)\oplus d.$ 

Так как  $x\oplus d=x$  при d=0 и  $x\oplus d=\bar{x}$  при d=1, то  $xy\in [\{f,\bar{x},0,1\}].$   $\blacksquare$ 

## 3.5 Критерий Поста.

**Теорема 3.11 (Критерий полноты).** Пусть  $\mathcal{F} \subseteq P_2$ , тогда

 $\mathcal{F}$  является полной в  $P_2 \iff \mathcal{F}$  не содержится ни в одном из классов  $T_0, T_1, M, L, S$ .

П

- 1. ( $\Rightarrow$ ). Пусть X один из классов  $T_0$ ,  $T_1$ , M, L, S. Они замкнуты, то есть [X] = X. Предположим,  $\mathcal{F} \subseteq X$ , тогда  $[\mathcal{F}] \subseteq [X] = X \neq P_2$ . Противоречие. Значит,  $\mathcal{F}$  не содержится ни в одном из классов  $T_0$ ,  $T_1$ , M, L, S.
- 2. ( $\Leftarrow$ ). Пусть  $\mathcal{F}$  не содержится ни в одном из классов  $T_0, T_1, M, L, S$ . Тогда существуют функции  $f_X \in \mathcal{F} \setminus X$ , где  $X \in \{T_0, T_1, M, L, S\}$ . Получим из этих функций константы, отрицание и дизъюнкцию.

 $f_{T_0} \not\in T_0 \Rightarrow f_{T_0}(0,\dots,0) = 1$ , аналогично  $f_{T_1} \not\in T_1 \Rightarrow f_{T_1}(1,\dots,1) = 0$ . Положим  $\varphi(x) = f_{T_0}(x,\dots,x)$ . Ясно, что  $\varphi(0) = 1$ . Если  $\varphi(1) = 1$ , то это константа 1, а функция  $\psi(x) = f_{T_1}(\varphi(x),\dots,\varphi(x))$  — константа 0. Если же  $\varphi(1) = 1$ , то  $\varphi(x) = \bar{x}$ , и по лемме о несамодвойственной функции при помощи отрицания можно получить обе константы. По лемме о немонотонной функции, из  $f_M$ , имея константы, можно получить отрицание. По лемме о нелинейной функции при помощи констант и отрицания можно получить конъюнкцию. Таким образом, мы выделили в F полную подсистему, а значит,  $[\mathcal{F}] = P_2$ .

**Следствие 3.1.** Из любого полного множества функций можно выделить полное подмножество из  $\leqslant 5$  функций.

 $\square$  Достаточно взять функции  $f_{T_0}, f_{T_1}, f_M, f_S, f_L$ , которые содержатся (по теореме 1) в этом полном множестве.

**Следствие 3.2.** Из любого полного множества функций  $\mathcal{F}$  можно выделить полное подмножество из  $\leqslant 4$  функций.

- $\square$  1) Пусть  $f_{T_0}(1,\ldots,1)=0$ , тогда  $f_{T_0}\not\in M$  и  $\{f_{T_0},\,f_{T_1},\,f_S,\,f_L\}$  полное подмножество в  $\mathcal{F}.$
- 2) Пусть  $f_{T_0}(1,\ldots,1)=1$ , тогда  $f_{T_0}\not\in S$  и  $\{f_{T_0},\,f_{T_1},\,f_M,\,f_L\}$  полное подмножество в  $\mathcal{F}$ .

Замечание. Для 3 функций утверждение уже будет неверным. В качестве полной системы из 4 функций можно рассмотреть  $\{xy, \, x \oplus y \oplus z, \, 0, \, 1\}$ . Наглядно изобразить принадлежность этих функций разным замкнутым классам можно следующей таблицей:

|                       | $T_0$  | $T_1$  | M      | S            | L         |
|-----------------------|--------|--------|--------|--------------|-----------|
| xy                    | $\cup$ | $\cup$ | $\cup$ | $\not\equiv$ | $\not\in$ |
| $x \oplus y \oplus z$ | $\in$  | $\in$  | ∉      | $\in$        | $\in$     |
| 0                     | $\in$  | ∉      | $\in$  | ∉            | $\in$     |
| 1                     | ∉      | $\cup$ | $\in$  | ∉            | $\vdash$  |

При этом, если удалить любую из этих четырёх функций, то получившаяся система уже будет неполной ввиду принадлежности одному из классов  $T_0, T_1, M, L, S$ .

## 3.6 Предполные классы

**Определение.** Пусть  $F \subseteq P_2$ . Тогда F – предполный, если:

- 1.  $F \neq P_2$
- 2. [F] = F
- 3.  $\forall f \notin F : [F \cup f] = P_2$

В клетке таблице снизу стоит функция  $\in$  строке и  $\notin$  столбцу  $\Rightarrow$  ни один из классов не содержится в другом.

|       | $T_0$          | $T_1$          | L          | S            | M              |
|-------|----------------|----------------|------------|--------------|----------------|
| $T_0$ |                | 0              | xy         | xy           | $x \oplus y$   |
| $T_1$ | 1              |                | xy         | xy           | x y            |
| L     | $\overline{x}$ | $\overline{x}$ |            | $x \oplus y$ | $\overline{x}$ |
| S     | $\overline{x}$ | $\overline{x}$ | m(x, y, z) |              | $\overline{x}$ |
| M     | 1              | 0              | xy         | xy           |                |

**Теорема 3.12.**  $T_0, T_1, S, M, L$  – множество всех предполных классов.

 $\square$  Пусть есть A = [A] – предполный. Возьмем класс M.

Пусть  $A \subset M \Rightarrow \exists f \in M \setminus A : [A \cup f] \subseteq [M] = M$ .

Аналогичные рассуждения можно провести и для остальных классов.

## 3.7 Принцип двойственности

#### Формулировка.

Пусть формула  $\Phi$  над F задает функцию f. Формула  $\Phi'$ , получающаяся из  $\Phi$  путем замены  $f_i \to f_i^*$  будет реализовывать  $f^*$ .

(Напомним, что функция  $f^*(x_1,\ldots,x_n)=\overline{f(\overline{x_1},\ldots,\overline{x_n})}$ )

#### Йдея:

 $\overline{f_0(\overline{f_{i_1}(\ldots)},\ldots,\overline{f_{i_k}(\ldots)})}$  – возникаю двойные отрицания, которые изчезают, кроме верхних и нижних, что как раз дает функцию  $f^*$ .

## 4 Сложность.

# Лекция 7 (продолжение оценки функции Шеннона).

## 5.1 В предыдущих сериях

Мы уже имеем для функции Шеннона следующую оценку скорости роста:

$$n \leqslant L(n) \leqslant 6 \cdot \frac{2^n}{n}$$

Попробуем теперь ее улучшить.

Напомним, что:

**Определение.** Приведенная схема — схема, в которой все элементы выполняют разные функции, то есть не существует таких двух одинаковых элементов, на входы которых подаются одни и те же переменные или результаты вычисления других функций.

Все булевы функции в этой лекции будем считать от переменных  $x_1, \ldots, x_n$ . Также все выкладки проводятся в выбранном «стандартном» базисе  $\{\&, \lor, \neg\}$ , если не указано обратное.

## 5.2 Определения.

**Определение.**  $N_{=(n,l)}$  — число приведенных схем сложности l со входами  $x_1, \ldots, x_n$ .

**Определение.**  $N_{\leq (n,l)}$  — число приведенных схем сложности не выше l со входами  $x_1,\ldots,x_n$ .

#### 5.3 Основная оценка.

**Лемма 5.1.** При достаточно больших n при  $l \geqslant n \; \exists \, C > 0$  выполняется неравенство

$$N_{\leq (n,l)} \leq (C \cdot l)^l$$

Пусть S — приведенная схема сложности l со входами  $x_1, \ldots, x_n$ . Пронумеруем элементы схемы и зафиксируем нумерацию Num. Пусть  $L_i$  — элемент схемы, имеющий в данной нумерации номер i. На множестве пар из схемы и нумерации на ней введем функцию t(S, Num) = T, где T — таблица вида:

| f      | $E_1$ | $E_2$ |
|--------|-------|-------|
| &      | $x_1$ | $x_3$ |
| $\vee$ | $x_1$ | $x_3$ |
| Г      | $x_2$ | $x_2$ |
| V      | $x_2$ | $L_2$ |
| &      | $L_6$ | $L_4$ |
| V      | $L_1$ | $L_3$ |

Таблица состоит из l строк и трёх столбцов, в строчке с номером i в первом столбце стоит знак функции, которую реализует элемент  $L_i$ , а в двух других — элементы множества  $\{L_1,\ldots,L_l,x_1,\ldots,x_n\}$ , которые поступают на вход этой функции. Если функция в левом столбце — отрицание, в два правых столбца запишем один и тот же элемент из вышеуказанного множества, над которым производится отрицание. Например, на схеме, задаваемой таблицей выше, переменные  $x_1$  и  $x_3$  передаются на элемент «и» (первая строчка), результат передаётся вместе с отрицанием переменной  $x_2$  на вход элемента «или» (шестая строчка) и т.д. Также обозначим за a номер строки с элементом, выход которого является выходом всей схемы (тут a=5).

По такой таблице, построенной по схеме и нумерации, можно однозначно восстановить схему S.

Обозначим за  $N_l$  число таблиц, соответствующих всем парам (S,Num) заданной сложности l. Имеет место оценка

$$N_l \leqslant 3^l \cdot (l+n)^{2l} \cdot l \leqslant 3^l \cdot 2l^{2l} \cdot l = (3 \cdot 2^2)^l \cdot l^{2l} \cdot l = 12^l \cdot l^{2l} \cdot l \leqslant 13^l \cdot l^{2l}$$
.

Первое неравенство очевидно. Второе неравенство следует из предположения  $n\leqslant l$ , при котором мы доказываем лемму. Последнее неравенство верно асимптотически и следует из неравенства  $12^l\cdot l\leqslant 13^l$ .

**Утверждение 5.2.** Пусть схема S — приведенная,  $Num_1 \neq Num_2$  — две ее нумерации,  $t(S, Num_1) = T_1$ ;  $t(S, Num_2) = T_2$ , тогда  $T_1 \neq T_2$ 

 $\square$  Предположим, что  $T_1 = T_2$ .

Введем на S еще одну монотонную нумерацию  $Num_0$  и зафиксируем ее. Дальше, перебирая по порядку нумерации  $Num_0$  элементы схемы S найдем первый элемент  $L_i$  (по нумерации  $Num_0$ ), такой, что он имеет в  $Num_1$  и  $Num_2$  номера  $k_1$  и  $k_2$ , причем  $k_1 \neq k_2$ . Такой элемент существует, потому что  $Num_1 \neq Num_2$ . Рассмотрим строки  $k_1$  и  $k_2$  таблиц  $T_1$  и  $T_2$  соответственно.

В первой их клетке стоит один и тот же знак, так как функция, которую реализует элемент, не зависит от нумерации. Для двух других клеток есть две возможности: либо там стоит знак переменной, тогда они тоже одинаковы, либо элемент множества  $\{L_1 \cdots L_l\}$ , для каждой таблицы в своей нумерации.

Посмотрим, «выход» каких элементов может подаваться на «вход» элемента  $L_i$  (в нумерации  $Num_0$ ). Так как  $Num_0$  — монотонная, то это могут быть только элементы с меньшим номером в данной операции. Но для элементов с меньшим номером в  $Num_0$  их номера в  $Num_1$  и  $Num_2$  совпадают.

Это значит, что строчки  $k_1$  в  $T_1$  и  $k_2$  в  $T_2$  одинаковые. Так как таблицы (по нашему предположению) одинаковые, то в таблице  $T_1$  строчка с номером  $k_2 \neq k_1$  совпадает со строчкой с тем же номером в  $T_2$ , которая, в свою очередь, совпадает со строчкой  $k_1$  в  $T_1$ . Это значит, что в  $T_1$  есть две одинаковые строчки. Другими словами, в схеме S есть два элемента, реализующие одинаковые функции. Это противоречит с приведенностью S.

Итак,  $T_1 \neq T_2 \blacksquare$ 

Значит, число таблиц, соответствующей какой-либо схеме равно числу способов пронумеровать элементы этой схемы. Тогда, учитывая, что число способов пронумеровать l элементов — l!, и что  $l! \geqslant (\frac{l}{3})^l$ :

$$N_{=(n,l)} = \frac{N_l}{l!} \leqslant \frac{13^l \cdot l^{2l}}{l!} \leqslant 39^l \cdot l^l$$

Тогда:

$$N_{\leq (n,l)} \leq \sum_{i=0}^{l} N_{=(n,i)} \leq (l+1) \cdot 39^{l} \cdot l^{l} \leq (40l)^{l}$$

Данная оценка завершает доказательство леммы.

Утверждение 5.3.

$$L(n) \geqslant \frac{2^n}{n}$$

 $\square$  Положим  $l_{\varepsilon} = (1-\varepsilon)\cdot rac{2^n}{n},\ 0<\varepsilon<1$ 

При любом  $\varepsilon$  из заданного интервала верна оценка:

$$\log_2 \frac{N_{\leqslant (n, l_{\varepsilon})}}{2^{2^n}} \leqslant l_{\varepsilon} \cdot \log_2 \left( C \cdot l_{\varepsilon} \right) - 2^n \leqslant (1 - \varepsilon) \cdot \frac{2^n}{n} \cdot \log_2 2^n - 2^n = -\varepsilon \cdot \frac{2^n}{n}$$

При  $n \to +\infty$  отношение  $\frac{N_{\leqslant (n,l_{\varepsilon})}}{2^{2^n}}$  стремится к нулю.

Это значит, что при достаточно больших n число функций, которые можно реализовать при помощи схем, сложности меньше  $\frac{2^n}{n}$ , много меньше числа всех функций от n переменных. А это значит, что существуют функции, сложность которых больше или равна  $\frac{2^n}{n}$ . А это и значит, что

$$L(n) \geqslant \frac{2^n}{n}$$

**Теорема 5.4.** Пусть  $n \to +\infty$  , тогда

$$L(n) - \frac{2^n}{n} \geqslant \frac{2^n \log_2 n}{n^2}$$

 $\square \quad \text{Пусть } \varepsilon > 0 \quad - \text{ фиксировано. Положим } l_\varepsilon = \frac{2^n}{n} + (1-\varepsilon) \cdot \frac{2^n \log_2 n}{n^2} \,.$  Так как  $\log_2 n \leqslant n$  при больших n, то  $l_\varepsilon = \frac{2^n}{n} + (1-\varepsilon) \cdot \frac{2^n \log_2 n}{n^2} \leqslant 2 \cdot \frac{2^n}{n}$  и  $C \cdot l_\varepsilon \leqslant 2C \cdot \frac{2^n}{n}$ .

$$\log_2 \frac{N_{\leq (n, l_{\varepsilon})}}{2^{2^n}} \leq \log_2 \frac{(Cl_{\varepsilon})^{l_{\varepsilon}}}{2^{2^n}} = l_{\varepsilon} \log_2 Cl_{\varepsilon} - 2^n = (*).$$

Подставляем выражение для  $l_{\varepsilon}$  перед логарифмом в (\*), получаем:

$$(*) = \left(\frac{2^n}{n} + (1 - \varepsilon)\frac{2^n \log_2 n}{n^2}\right) \cdot \log_2(Cl_{\varepsilon}) - 2^n \leqslant \left(\frac{2^n}{n} + (1 - \varepsilon)\frac{2^n \log_2 n}{n^2}\right) \cdot \log_2(2C \cdot \frac{2^n}{n}) - 2^n =$$

$$= \left(\frac{2^n}{n} + \frac{2^n \log_2 n}{n^2} - \varepsilon\frac{2^n \log_2 n}{n^2}\right) \cdot \left(\log_2 2c + n - \log_2 n\right) - 2^n =$$

$$= 2^n - \frac{2^n \log_2 n}{n} + \frac{2^n \log_2 n}{n} - \varepsilon\frac{2^n \log_2 n}{n} - \varepsilon\frac{2^n \log_2 n}{n} - 2^n + \bar{o}\left(\frac{2^n \log_2 n}{n}\right) = -\varepsilon\frac{2^n \log_2 n}{n} + \bar{o}\left(\frac{2^n \log_2 n}{n}\right).$$

Получили оценку  $\log_2 \frac{N_{\leqslant (n,l_\varepsilon)}}{2^{2^n}} \leqslant -\varepsilon \frac{2^n \log_2 n}{n} + \bar{o} \left(\frac{2^n \log_2 n}{n}\right)$ ; правая часть стремится к  $-\infty$  при  $n \to +\infty$ , значит,  $\frac{N_{\leqslant (n,l_\varepsilon)}}{2^{2^n}} \to 0$ , значит,  $L(n) \geqslant l_\varepsilon$ .

Рассуждение верно для любого сколь угодно малого  $\varepsilon>0$ . Переходя к пределу при  $\varepsilon\to 0$ , получаем утверждение теоремы.  $\blacksquare$