Constante de solubilité et de complexation des ions Al³⁺

Joseph Delpy - Cassandra Dailledouze Prépa Agreg ENS Paris-Saclay

2021

1 Matériel

- pH-mètre + électrode verre + électrode au chlorure d'argent
- Potence + support pour électrodes
- Deux pipettes de 10 mL
- Grand bécher de 200 mL
- Agitateur magnétique
- Burette de 25 mL
- Eprouvette graduée de 100 mL

2 Produits

- Solution de chlorure d'aluminium à 0.20 mol.L^{-1}
- Solution d'acide chlorhydrique à 0.20 mol.L^{-1}
- Solution de soude à à 0.50 mol.L^{-1}

3 Protocole

- Prélever 10 mL de la solution de chlorure d'aluminium, les insérer dans le grand bécher qui servira pour le titrage
- Prélever 10 mL de la solution d'acide chlorhydrique, les insérer dans le même bécher
- Diluer la solution obtenue avec 80 mL d'eau. La concentration en ions Al^{3+} et en ions H_3O^+ est alors de 0.02 mol.L^{-1} .
- Etalonner le pH-mètre
- Rincer et remplir la burette avec la solution de soude à 0.50 mol.L^{-1} .
- Simuler sur Dozzzaqueux avec ces paramètres pour avoir une idée des volumes des différentes équivalences et point anguleux. Autoriser les espèces $Al(OH)_{3(s)}$ et $Al(OH)_{4}$ – $_{(aq)}$
- Réaliser le titrage : autour des points anguleux, travailler avec le plus petit volume de soude qu'il est possible de verser (0.05 mL = un goutte)

4 Tracés

Voir simulation figure 1 et courbe de suivi réel du pH figure 2.

5 Exploitation

5.1 Précipitation de l'oxyde d'aluminium Al(OH)₃

Le premier point anguleux n'est pas parfaitement net. On peut toutefois estimer le pH d'apparition du précipité à 3.4 ± 0.1 . En négligeant la dilution, on calcule :

$$pK_s = -\log \frac{\left[Al^{3+}\right]_0}{c} + 3pK_e - 3pH = 33.5 \pm 0.3$$

Mesuré à 20°C. La valeur tabulée à 20°C est de $pK_s^{tab} = 33.5$.

 ${\bf FIGURE}~1-Simulation~dozzzaqueux$

FIGURE 2 – Courbe de titrage réelle

5.2 Constante de formation β_4 de $AL(OH)_4^-$

Le second point anguleux apparaît pour un pH de 11.1 \pm 0.1. On déduit alors (toujours en négligeant la dilution, plus discutable ici) :

$$\log \beta_4 = \log \log \frac{\left[A l^{3+}\right]_0}{c^{\circ}} - pH + pK_e + pK_s = 34.7 \pm 0.1$$

tojours à 20°C. La valeur tabulée à 25°C est de log $\beta_4=33.3.$