

planetmath.org

Math for the people, by the people.

continuous

Canonical name Continuous

Date of creation 2013-03-22 11:51:55 Last modified on 2013-03-22 11:51:55

Owner djao (24) Last modified by djao (24)

Numerical id 12

Author djao (24) Entry type Definition Classification ${\rm msc}~26{\rm A}15$ Classification msc 54C05Classification msc 81-00Classification ${\rm msc~82\text{-}00}$ Classification ${\rm msc~83\text{-}00}$ Classification ${\rm msc}\ 46L05$

Synonym continuous function Synonym continuous map Synonym continuous mapping

Related topic Limit

Defines continuous at

Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if, for every open set $U \subset Y$, the inverse image $f^{-1}(U)$ is an open subset of X.

In the case where X and Y are metric spaces (e.g. Euclidean space, or the space of real numbers), a function $f: X \to Y$ is continuous if and only if for every $x \in X$ and every real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that whenever a point $z \in X$ has distance less than δ to x, the point $f(z) \in Y$ has distance less than ϵ to f(x).

Continuity at a point

A related notion is that of local continuity, or continuity at a point (as opposed to the whole space X at once). When X and Y are topological spaces, we say f is continuous at a point $x \in X$ if, for every open subset $V \subset Y$ containing f(x), there is an open subset $U \subset X$ containing x whose image f(U) is contained in Y. Of course, the function $f: X \to Y$ is continuous in the first sense if and only if f is continuous at every point $x \in X$ in the second sense (for students who haven't seen this before, proving it is a worthwhile exercise).

In the common case where X and Y are metric spaces (e.g., Euclidean spaces), a function f is continuous at $x \in X$ if and only if for every real number $\epsilon > 0$, there exists a real number $\delta > 0$ satisfying the property that $d_Y(f(x), f(z)) < \epsilon$ for all $z \in X$ with $d_X(x, z) < \delta$. Alternatively, the function f is continuous at $a \in X$ if and only if the limit of f(x) as $x \to a$ satisfies the equation

$$\lim_{x \to a} f(x) = f(a).$$