Lineare Algebra

BA-INF-021, MB 05

AOR Dr. Thoralf Räsch Sommersemester 2023

Übungsaufgaben, Serie 3

Aufgabe 1 (1+1 Punkte). Lassen Sie uns Multiple Choice für die Klausur üben. Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind und geben Sie gern zusätzlich kurz Ihren Gedanken dabei an.

- (a) Die reellen Zahlen lassen sich als Q-Vektorraum auffassen.
- (b) Die rationalen Zahlen lassen sich als \mathbb{R} -Vektorraum auffassen.

Aufgabe 2 (4 Punkte). Sei $X \neq \emptyset$ eine Menge und V ein \mathbb{K} -Vektorraum. Wir definieren mit $\mathrm{Abb}(X,V) = \{f \mid f: X \to V\}$ die Menge alle Abbildungen von X nach V. Zeigen Sie, dass $\mathrm{Abb}(X,V)$ mit den Verknüpfungen

$$(f+g)(x) = f(x) + g(x)$$
 und $(\lambda \cdot f)(x) = \lambda f(x)$

zu einem \mathbb{K} -Vektorraum wird.

Aufgabe 3 (6 Punkte). Betrachten Sie den Vektorraum $M = \{f \mid f : [-1,1] \to \mathbb{R}\}$ wie in Satz 2.5 im LA-Skript. Welche der folgenden Teilmengen sind Unterräume von M? Begründen Sie Ihre Antworten!

- (a) $U_1 := \{ f \in M \mid f(x) \ge 0 \text{ für alle } x \in [-1, 1] \}$
- (b) $U_2 := \{ f \in M \mid \exists a, b \in \mathbb{R} : f(x) = a \cos(\pi x) + b \sin(\pi x) \text{ für alle } x \in [-1, 1] \}$
- (c) $U_4 := \{ f \in M \mid f(x) \neq 0 \text{ für alle } x \in [-1, 1] \}$

Aufgabe 4 $(6 \cdot (1 + \frac{1}{2}) \text{ Punkte})$. Sei V der \mathbb{Q} -Vektorraum der reellen Zahlen \mathbb{R} und W der \mathbb{R} -Vektorraum ebenfalls der reellen Zahlen \mathbb{R} . Durch die Änderung des Grundkörpers bekommen wir verschiedene Unterraumbegriffe. Hier müssen Sie sich vielleicht mehr konzentrieren, als Sie zunächst vermuten. Entscheiden und begründen Sie, welche der folgenden Teilmengen Unterräume von V bzw. W sind:

- (a) $U_1 = \{0\}$
- (b) $U_2 = \mathbb{R}$
- (c) $U_3 = \mathbb{Q}$
- (d) $U_4 = \{a\sqrt{2} + b\sqrt{3} \mid a, b \in \mathbb{R}\}$
- (e) $U_5 = \{a\sqrt{2} + b\sqrt{3} \mid a, b \in \mathbb{Q}\}\$
- (f) $U_6 = \mathbb{Z}$

Lassen Sie mich noch einen neuen technischen Begriff einführen, den wir in der Vorlesung noch kennenlernen werden:

Definition. Für gegebene Vektoren $v_1, \ldots, v_n \in \mathbb{R}^n$ definieren wir

$$\mathcal{L}(v_1,\ldots,v_n) := \left\{ \sum_{j=1}^n \alpha_j v_j \mid \alpha_j \in \mathbb{R} \right\} \subseteq \mathbb{R}^n.$$

Aufgabe 5 (2+1+1 Punkte). Entscheiden und begründen Sie:

(a) Ist $\mathcal{L}(v_1,\ldots,v_n)$ für beliebige Vektoren v_1,\ldots,v_n ein Unterraum des \mathbb{R}^n ?

(b) Beschreiben Sie
$$\mathcal{L}(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}) \subseteq \mathbb{R}^3.$$

(c) Liegt der Vektor
$$\begin{pmatrix} 1 \\ -6 \\ 4 \end{pmatrix}$$
 in $\mathcal{L}(\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}) \subseteq \mathbb{R}^3$?

Aufgabe 6 (3 Punkte). Weisen Sie die folgende Mengengleichheit nach (indem Sie beide Mengeninklusionen prüfen):

$$\mathcal{L}\begin{pmatrix} 1\\1\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}) = \mathcal{L}\begin{pmatrix} 2\\1\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix})$$

Beschreiben Sie, welche Menge von Punkten im dreidimensionalen Raum \mathbb{R}^3 durch diese linearen Hüllen beschrieben wird!

Sie können hier insgesamt **29 Punkte** erreichen. Der Zettel geht allerdings nur mit **24 Punkten** in die offizielle

Wertung ein, so dass die Differenz als **Bonuspunkte** gewertet werden.

Abgabe über eCampus in Ihrem Tutorium bis Freitag, 28. April, 12:00 Uhr.