Smoothing Splines

- In Regression Splines (let's use NCS), we need to choose the number and the location of knots.
- What's a Smoothing Spline? Start with a "naive" solution: put knots at all the observed data points (x_1, \ldots, x_n) :

$$\mathbf{y}_{n\times 1} = \mathbf{F}_{n\times n}\boldsymbol{\beta}_{n\times 1}.$$

Instead of selecting knots, let's carry out the following ridge regression (Ω will be defined later):

$$\min_{\boldsymbol{\beta}} \left[\|\mathbf{y} - \mathbf{F}\boldsymbol{\beta}\|^2 + \lambda \boldsymbol{\beta}^t \Omega \boldsymbol{\beta} \right],$$

where the tuning parameter λ is often chosen by CV.

Next we'll see how smoothing splines are derived from a different aspect.

Roughness Penalty Approach

- Let S[a,b] be the space of all "smooth" functions defined on [a,b].
- ullet Among all the functions in S[a,b], look for the minimizer of the following penalized residual sum of squares

$$RSS_{\lambda}(g) = \sum_{i=1}^{n} [y_i - g(x_i)]^2 + \lambda \int_a^b [g''(x)]^2 dx,$$

where λ is a smoothing parameter.

• Theorem. $\min_g \mathsf{RSS}_{\lambda}(g) = \min_{\tilde{g}} \mathsf{RSS}_{\lambda}(\tilde{g})$ where \tilde{g} is a NCS with knots at the n data points x_1, \ldots, x_n (WLOG, $x_i \neq x_j$ and $x_1 < x_2 < \cdots < x_n$)

(WLOG, assume $n \ge 2$.) Let g be a smooth function on [a,b] and \tilde{g} be a NCS with knots at $\{x_i\}_{i=1}^n$ satisfying

$$g(x_i) = \tilde{g}(x_i), \quad i = 1:n. \tag{1}$$

First, such \tilde{g} exists since NCS with n knots has n dfs, so we can pick the n coefficients properly such that (1) is satisfied.

Next we want to show that

$$\int_{a}^{b} [g''(x)]^{2} dx \ge \int_{a}^{b} [\tilde{g}''(x)]^{2} dx \quad (*)$$

with equality holds if and only if $\tilde{g} \equiv g$. Recall that

$$RSS_{\lambda}(g) = \sum_{i=1}^{n} [y_i - g(x_i)]^2 + \lambda \int_a^b [g''(x)]^2 dx.$$

So it is easy to conclude that if (*) holds,

$$\mathsf{RSS}_{\lambda}(\tilde{g}) \leq \mathsf{RSS}_{\lambda}(g).$$

That is, for any smooth function g, we can find a NCS \tilde{g} which matches $g(x_i)$ on the n samples and whose penalized residual sum of squares is not worse than the one of g. So Theorem follows.

PROOF : We will use integration by parts and the fact that \tilde{g} is a NCS.

$$h(x) = g(x) - \tilde{g}(x)$$
. Note $h(x_i) = 0$ for $i = 1, \dots, n$.

$$\int_{a}^{b} [g''(x)]^{2} dx = \int_{a}^{b} [\tilde{g}''(x) + h''(x)]^{2} dx$$

$$= \int_{a}^{b} [\tilde{g}''(x)]^{2} dx + \int_{a}^{b} [h''(x)]^{2} dx + 2 \underbrace{\int_{a}^{b} \tilde{g}''(x)h''(x)dx}_{=0}$$

$$\int_{a}^{b} \tilde{g}''(x)h''(x)dx = \int_{a}^{b} \tilde{g}''(x)dh'(x) = \underbrace{h'(x)\tilde{g}''(x)\Big|_{a}^{b}}_{=0} - \int_{a}^{b} h'(x)\tilde{g}^{(3)}(x)dx$$

$$= -\sum_{i=1}^{n-1} \tilde{g}^{(3)} \left(\frac{x_i + x_{i+1}}{2} \right) \int_{x_i}^{x_{i+1}} h'(x) dx$$

$$= -\sum_{i=1}^{n-1} \tilde{g}^{(3)} \left(\frac{x_i + x_{i+1}}{2} \right) h(x) \Big|_{x_i}^{x_{i+1}} = 0$$