

2022-06-01

2022-05-31

2022-05-30

2022-05-27

2022-05-26

2022-05-25

2022-05-24

2022-05-23

2022-05-20

2022-05-19

2022-05-18

2022-05-17

2022-05-16

2022-05-13

2022-05-12

2022-05-11

2022-05-10

2022-05-09

2022-05-06

2022-05-05

2022-05-04

2022-05-03

2022-05-02

2022-04-29

2022-04-28

2022-04-27

2022-04-26

2022-04-22

2022-04-21

2022-04-20

2022-04-19

2022-04-15

2022-04-14

DoExercises:

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

A 10			
0 11	HIM	NAIC	770
-	_uigi	IVIIC	IZZU
- A			

Soluzioni all'esercizio del 2022-04-06 creato per luigi.miazzo

Le previsioni meteo dicono che a Strembo la probabilità di pioggia è 0.05, la probabilità che ci sia bel tempo è 0.93 ma che c'è anche una remota probabilità, 0.02, che nevichi.

Quando Mario Rossi andava al lavoro in ufficio a Strembo, arrivava in ritardo con probabilità 0.11 quando pioveva, con probabilità 0.61 in caso di neve e con probabilità 0.03 anche nei giorni in cui c'era il sole.

Mario riesce ogni tanto ad essere in ritardo al lavoro anche oggi con lo smartworking da casa.

Quesiti e soluzioni

Il procedimento è il medesimo in tutti e tre i casi. Scriviamo i nostri eventi:

- B= Mario è in ritardo
- $A_1=$ nel giorno considerato piove
- $A_2=$ nel giorno considerato nevica
- $A_3=$ nel giorno considerato c'è bel tempo

Quesito 1

Con che probabilità era in ritardo, quando ancora andava in ufficio?

Dobbiamo calcolare $P(B) = \sum_{j=1}^3 P(A_j) P(B|A_j) = 0.05 \cdot 0.11 + 0.02 \cdot 0.61 + 0.93 \cdot 0.03 = 0.0456$.

- La risposta corretta è: 0.0456
- La risposta inserita è: 57/1250

Quesito 2

Dai registri dell'ufficio, risulta che il 31 gennaio 2020 Mario Rossi è arrivato in ritardo. Qual è la probabilità che quel giorno nevicasse?

Per rispondere alla domanda usiamo il Teorema di Bayes:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_j P(A_j)P(B|A_j)}$$

A questo punto $P(A_i|B)=rac{P(A_i)P(B|A_i)}{P(B)}$ per ogni i=1,2,3, in particolare per i=2 abbiamo la risposta a questo quesito.

- La risposta corretta è: 0.2675439
- La risposta inserita è: 61/228

Quesito 3

Qual è la probabilità che il 31 gennaio 2020 (giorno in cui Mario Rossi era in ritardo) ci fosse brutto tempo?

Sfruttiamo i conti fatti per il quesito precedente: possiamo o sommare $P(A_1|B) + P(A_3|B)$ o, equivalentemente, sottrarre $P(A_3|B)$ da 1.

In entrambi i casi si ottiene il medesimo risultato.

- La risposta corretta è: 0.3881579
- La risposta inserita è: 59/152

2022-04-13	
2022-04-12	
2022-04-11	
2022-04-08	
2022-04-07	
2022-04-06	
2022-04-05	
2022-04-04	
2022-04-01	
2022-03-31	
2022-03-30	
2022-03-29	
2022-03-28	
2022-03-24	