Homework 05

DarkSharpness

2023.10.18

目录

T1

$$\{(1), (12)(34), (13)(24), (14)(23)\}$$

$$\{(132), (243), (142), (134)\}$$

$$\{(123), (143), (234), (124)\}$$
 在 S_4 中的左陪集为:
$$\{(1), (12)(34), (13)(24), (14)(23)\}$$

$$\{(132), (243), (142), (134)\}$$

$$\{(123), (143), (234), (124)\}$$

$$\{(12), (34), (1423), (1324)\}$$

$$\{(13), (24), (1432), (1234)\}$$

$$\{(14), (23), (1243), (1342)\}$$

 $H = \{(1), (12)(34), (13)(24), (14)(23)\}$ 在 A_4 中的左陪集为:

T8

两个。
$$\langle a^2 \rangle$$
 和 $a\langle a^2 \rangle = \{a^n | n = 2k - 1, k \in [15]\}$

T11

设子群为 $H \leq G$, 设左陪集为 $aH, a \in G$ 。

 $\forall x \in aH, x = ah$,因此 $x^{-1} = h^{-1}a^{-1} \in Ha^{-1}$,即 aH 中的元素的逆元素在 Ha^{-1} 中。同理,任意 $x \in Ha^{-1}, x = ha^{-1}$,因此, $x^{-1} = a^{-1}h^{-1} \in aH$,即 Ha^{-1} 每个元素都是 aH 中某个元素的逆元素。所以可知,aH 所有元素的逆元素组成了这个子群的右陪集 Ha^{-1} 。

T12

$$x \in a(H_1 \cap H_2) \iff \exists h, h \in H_1 \cap H_2 \wedge x = ah$$

$$\iff \exists h, h \in H_1 \wedge h \in H_2 \wedge x = ah$$

$$\iff \exists h_1, h_2, h_1 \in H_1 \wedge h_2 \in H_2$$

$$\wedge x = ah_1 \wedge x = ah_2(a.k.a \ h_1 = h_2 \ \text{in this case})$$

$$\iff x \in aH_1 \wedge x \in aH_2$$

$$\iff x \in aH_1 \cap aH_2$$

T20

设 |G|=3。构造 $G^*=\{(a,b,c)|abc=1$, $a,b,c\in G\}$ 。因为确定了 a,b 之后,存在唯一的 $c\in G$ 满足条件,所以 $|G^*|=(3n)^{3-1}=9n^2$ 。定义 $A=\{(a,a,a)|a^3=1$, $a\in G\}$, $B=\{(a,b,c)|abc=1$, $a\neq b\lor b\neq c\lor c\neq a$, $a,b,c\in G\}$ 。 显然, $|G^*|=|A|+|B|$ 。对于任意 $\{a,b,c\}\in B$,(a,b,c),(b,c,a), $(c,a,b)\in B$ 。因此,对于每个 B 中元素,存在唯一与之对应的两组元素,即 B 可以看作由一些无序三元组中的每个元素构成。设 $\exists m\in \mathbb{Z}, |B|=3m$,又因为 $|G^*|=|A|+|B|$,因此可知 $\exists k\in \mathbb{Z}, |A|=3k$ 。

注意到: $(1,1,1) \in A$, 因此 $|A| \ge 3$, 即 $\exists g \in G, (g,g,g) \in A, g \ne 1$, 即 G 中存在 3 阶元素.

注: 本结论为 Cauchy 定理的特例。

22

因为交换群,所以: $\pi: a \mapsto a^n$ 满足 $\pi(ab) = (ab)^n = a^nb^n = \pi(a)\pi(b)$,即 π 为 G 的自同态。

下证 π 为双射。

若存在 $a,b\in G, a\neq b\wedge\pi(a)=\pi(b)$,则由交换群性质, $(ab^{-1})^n=1$,因此 $ord(\langle ab^{-1}\rangle)\mid n$ 。因为 $ab^{-1}\in G$,因此 $ord(\langle ab^{-1}\rangle)\mid ord(G)$ 。而注意到 (ord(G),n)=1 因此 $ord(ab^{-1})=1$ 即 a=b 矛盾。所以 $a,b\in G, a\neq b$,有 $\pi(a)\neq\pi(b)$ 即为单射。

因为 π 为 G 到自身的单射,且 G 有限,因此由元素数相等可知,为满射。 综上 π 为 G 的自同构。