```
exit()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
try:
  from google.colab import drive
  drive.mount('/content/gdrive/', force_remount=True)
 %cd '/content/gdrive/MyDrive/TEMPORATION/Tiểu luận/data'
except ImportError as e:
 print('Cannot mount to your folder')
→ Mounted at /content/gdrive/
     /content/gdrive/MyDrive/TEMPORATION/Tiểu luận/data
df = pd.read_csv('PS_log.csv')
```

df.head(10)

₹	ste	р	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlaggedFraud
	0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M1979787155	0.0	0.00	0	0
	1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M2044282225	0.0	0.00	0	0
	2	1	TRANSFER	181.00	C1305486145	181.00	0.00	C553264065	0.0	0.00	1	0
	3	1 (CASH_OUT	181.00	C840083671	181.00	0.00	C38997010	21182.0	0.00	1	0
	4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M1230701703	0.0	0.00	0	0
	5	1	PAYMENT	7817.71	C90045638	53860.00	46042.29	M573487274	0.0	0.00	0	0
	6	1	PAYMENT	7107.77	C154988899	183195.00	176087.23	M408069119	0.0	0.00	0	0
	7	1	PAYMENT	7861.64	C1912850431	176087.23	168225.59	M633326333	0.0	0.00	0	0
	8	1	PAYMENT	4024.36	C1265012928	2671.00	0.00	M1176932104	0.0	0.00	0	0
	9	1	DEBIT	5337.77	C712410124	41720.00	36382.23	C195600860	41898.0	40348.79	0	0
4												•

```
print('Step - from \ \{\} \ to \ \{\}'.format(df.step.min(), \ df.step.max()))
from matplotlib import pyplot as plt
_df_5.plot(kind='scatter', x='amount', y='oldbalanceOrg', s=32, alpha=.8)
```



```
from matplotlib import pyplot as plt
_df_4.groupby('type').size().plot(kind='barh', color=sns.palettes.mpl_palette('Dark2'))
plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
from matplotlib import pyplot as plt
_df_0['amount'].plot(kind='hist', bins=20, title='amount')
plt.gca().spines[['top', 'right',]].set_visible(False)
df.duplicated().sum()
→ 0
df.isnull().sum()
\overline{\mathbf{T}}
                    0
          step
                    0
          type
                    0
         amount
                    0
        nameOrig
      oldbalanceOrg
     newbalanceOrig
        nameDest
     oldbalanceDest 0
     newbalanceDest 0
         isFraud
     isFlaggedFraud 0
    dtype: int64
df['type'].unique()
→ array(['PAYMENT', 'TRANSFER', 'CASH_OUT', 'DEBIT', 'CASH_IN'],
          dtype=object)
df['isFlaggedFraud'].unique()
→ array([0, 1])
df['isFraud'].unique()
\rightarrow array([0, 1])
df['nameOrig'].unique()
```

1. Histogram - Phân phối số tiền giao dịch

sns.histplot(df['amount'], bins=50, kde=True)

plt.figure(figsize=(8, 5))

```
plt.title("Phân phối số tiền giao dịch")
plt.xlabel("Amount")
plt.ylabel("Số lượng giao dịch")
plt.show()
```



```
# 2. Bar Plot - Ti lê giao dịch gian lận
plt.figure(figsize=(5, 5))
sns.countplot(data=df, x='isFraud')
plt.title("Ti lê giao dịch gian lận")
plt.xlabel("isFraud (0 = Hợp lê, 1 = Gian lận)")
plt.ylabel("Số lượng")
plt.show()
```



```
# 3. Scatter Plot - So sánh số dư trước và sau giao dịch
plt.figure(figsize=(8, 6))
sns.scatterplot(x='oldbalanceOrg', y='newbalanceOrig', hue='isFraud', data=df, alpha=0.6)
plt.title("Số dư trước và sau giao dịch (Gốc)")
plt.xlabel("oldbalanceOrg")
plt.ylabel("newbalanceOrig")
plt.legend(title="isFraud")
plt.show()
```



```
# 4. Bar Plot - Loai giao dich và gian lân
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x='type', hue='isFraud')
plt.title("Loai giao dich và ti lê gian lân")
plt.xlabel("Type")
plt.ylabel("Sŏ lượng giao dich")
plt.legend(title="isFraud")
plt.show()
```



```
# 5. Heatmap - Ma trận tương quan
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 8))
# Select only numerical features for correlation calculation
numerical_df = df.select_dtypes(include=['number'])
correlation_matrix = numerical_df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title("Ma trận tương quan giữa các đặc trưng số")
plt.show()
```

 $\overline{\mathbf{T}}$

ISFRAUD

ISFlaggedFRAUD

```
flag_fraud_counts=df['isFlaggedFraud'].value_counts()
print(flag_fraud_counts)
→ isFlaggedFraud
     0 6362604
              16
     Name: count, dtype: int64
Double-click (or enter) to edit
df.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 6362620 entries, 0 to 6362619
     Data columns (total 11 columns):
     # Column
                         Dtype
     0
         step
                          int64
                         object
         type
                          float64
         amount
         nameOrig
                         object
```

```
4 oldbalanceOrg float64
   newbalanceOrig float64
6 nameDest
                   object
   oldbalanceDest float64
8 newbalanceDest float64
    isFraud
                   int64
10 isFlaggedFraud int64
dtypes: float64(5), int64(3), object(3)
memory usage: 534.0+ MB
```

Number of transactions which were considered to be fraudulent

```
df_flagged = df.loc[df.isFlaggedFraud == 1]
print('Sum of isFlaggedFraud = 1: ', len(df_flagged))
df_flagged
```

₹	Sum	of	isFlaggedFraud	= 1:	16
			step	type	

Julii 01	TZLIAR	gedFraud = 1:	16								
	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlagg
27364	46 212	TRANSFER	4953893.08	C728984460	4953893.08	4953893.08	C639921569	0.0	0.0	1	
32472	97 250	TRANSFER	1343002.08	C1100582606	1343002.08	1343002.08	C1147517658	0.0	0.0	1	
37602	88 279	TRANSFER	536624.41	C1035541766	536624.41	536624.41	C1100697970	0.0	0.0	1	
55637	13 387	TRANSFER	4892193.09	C908544136	4892193.09	4892193.09	C891140444	0.0	0.0	1	
59964	07 425	TRANSFER	10000000.00	C689608084	19585040.37	19585040.37	C1392803603	0.0	0.0	1	
59964	09 425	TRANSFER	9585040.37	C452586515	19585040.37	19585040.37	C1109166882	0.0	0.0	1	
61684	99 554	TRANSFER	3576297.10	C193696150	3576297.10	3576297.10	C484597480	0.0	0.0	1	
62054	39 586	TRANSFER	353874.22	C1684585475	353874.22	353874.22	C1770418982	0.0	0.0	1	
62664	13 617	TRANSFER	2542664.27	C786455622	2542664.27	2542664.27	C661958277	0.0	0.0	1	
62814	82 646	TRANSFER	10000000.00	C19004745	10399045.08	10399045.08	C1806199534	0.0	0.0	1	
62814	84 646	TRANSFER	399045.08	C724693370	10399045.08	10399045.08	C1909486199	0.0	0.0	1	
62960	14 671	TRANSFER	3441041.46	C917414431	3441041.46	3441041.46	C1082139865	0.0	0.0	1	
63512	25 702	TRANSFER	3171085.59	C1892216157	3171085.59	3171085.59	C1308068787	0.0	0.0	1	
63624	60 730	TRANSFER	10000000.00	C2140038573	17316255.05	17316255.05	C1395467927	0.0	0.0	1	
63624	62 730	TRANSFER	7316255.05	C1869569059	17316255.05	17316255.05	C1861208726	0.0	0.0	1	
63625	84 741	TRANSFER	5674547.89	C992223106	5674547.89	5674547.89	C1366804249	0.0	0.0	1	
4											>

Show the total of transactions that were considered to be fraudulent and the previous and new balance is 0

```
df_total_transfer = df.loc[(df.type == 'TRANSFER')]
df_total_transfer.loc[(df_total_transfer.oldbalanceDest == 0) & (df_total_transfer.newbalanceDest == 0)]
print('Sum of transactions that were considered to be fraudulent and the previous and new balance is 0: ', len(df_total_transactions))
df_total_transactions
```

Sum of transactions that were considered to be fraudulent and the previous and new balance is 0: 4174 amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlagge 2 1 TRANSFER 181.00 C1305486145 181.00 0.0 C553264065 0.0 0.0 251 2806.00 C1420196421 2806.00 C972765878 0.0 0.0 1 TRANSFER 0.0 1 680 1 TRANSFER 20128.00 C137533655 20128.00 0.0 C1848415041 0.0 0.0 1277212.77 C1334405552 969 1 TRANSFER 1277212.77 0.0 C431687661 0.0 0.0 1115 1 TRANSFER 35063.63 C1364127192 35063.63 0.0 C1136419747 0.0 0.0 6362610 742 TRANSFER 63416.99 63416.99 0.0 C1812552860 0.0 0.0 C778071008 6362612 **TRANSFER** 1258818.82 C1531301470 1258818.82 C1470998563 0.0 0.0 6362614 743 TRANSFER 339682.13 C2013999242 339682.13 0.0 C1850423904 0.0 0.0 6362616 743 TRANSFER 6311409.28 C1529008245 6311409.28 C1881841831 0.0 0.0 6362618 743 TRANSFER 850002.52 C1685995037 850002.52 0.0 C2080388513 0.0 0.0 4174 rows × 11 columns

Further investigation whether isFlaggedFraud is a useful column in the dataset

```
print(df_flagged.amount.min())
print(df_total_transfer.loc[df_total_transfer.isFlaggedFraud == 0].amount.max())
transfers = df_total_transfer.loc[df_total_transfer.amount > 200000]
transfers.loc[transfers.isFlaggedFraud == 0]

353874.22
92445516.64
```

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	${\tt oldbalanceDest}$	newbalanceDest	isFraud	isFlagg
19	1	TRANSFER	215310.30	C1670993182	705.00	0.0	C1100439041	22425.00	0.00	0	
24	1	TRANSFER	311685.89	C1984094095	10835.00	0.0	C932583850	6267.00	2719172.89	0	
82	1	TRANSFER	224606.64	C873175411	0.00	0.0	C766572210	354678.92	0.00	0	
84	1	TRANSFER	379856.23	C1449772539	0.00	0.0	C1590550415	900180.00	19169204.93	0	
85	1	TRANSFER	1505626.01	C926859124	0.00	0.0	C665576141	29031.00	5515763.34	0	
			•••								
6362608	742	TRANSFER	258355.42	C1226129332	258355.42	0.0	C1744173808	0.00	0.00	1	
6362612	743	TRANSFER	1258818.82	C1531301470	1258818.82	0.0	C1470998563	0.00	0.00	1	
6362614	743	TRANSFER	339682.13	C2013999242	339682.13	0.0	C1850423904	0.00	0.00	1	
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	0.00	1	
6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C2080388513	0.00	0.00	1	
09094 rows	s × 11	columns									
)

Get the minimum and maximum amount of where fraud is flagged and not flagged

```
round(df_flagged.oldbalanceOrg.min())
print('Min, Max of oldBalanceOrg for isFlaggedFraud = 1 TRANSFERs: {}, {}'.format(round(df_flagged.oldbalanceOrg.min()), round(df_flagged.oldbalanceOrg.min()), round(df_flagge
```

Check if duplicate customers exist based on the isFlaggedFraud status

```
df_flagged = df.loc[df.isFlaggedFraud == 1]
df_not_flagged = df.loc[df.isFlaggedFraud == 0]
```

Check if merchants are involved in different types of transactions

Merchants ('M') are not involved in CASH_IN (paid by the merchant) transactions to customers ('C'). There are also no merchants among destination accounts for CASH_OUT transactions (paying a merchant). However, merchants exist for all PAYMENTs transactions in nameDest.

```
print('Are there any merchants in nameOrif for CASH_IN transactions? {}\n'.format(df.loc[df.type == 'CASH_IN'].nameOrig.str.contains('M').any()))

print('Are there any merchants in nameDest for CASH_OUT transactions? {}\n'.format(df.loc[df.type == 'CASH_OUT'].nameDest.str.contains('M').any()))

print('Are there any transactions do not have merchants in nameDest in the PAYMENT type? {}\n'.format((df.loc[df.nameDest.str.contains('M')].type != Are there any merchants in nameOrif for CASH_IN transactions? False

Are there any transactions do not have merchants in nameDest in the PAYMENT type? False
```

Check for transactions where the destination for Transfer transactions matches for CASH OUT

```
df_fraud_transfer = df.loc[(df.isFlaggedFraud == 1) & (df.type == 'TRANSFER')]
df_fraud_cash_out = df.loc[(df.type == 'CASH_OUT')]
print('Are there any transactiosn where nameDest for TRANSFER and nameOrig for CASH OUT match? {}\n'.format((df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_transfer.nameDest.isin(df_fraud_
```

The there any transactions where nameDest for TRANSFER and nameOrig for CASH OUT match? False

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlagge
2	1	TRANSFER	181.00	C1305486145	181.00	0.0	C553264065	0.00	0.00	1	
3	1	CASH_OUT	181.00	C840083671	181.00	0.0	C38997010	21182.00	0.00	1	
251	1	TRANSFER	2806.00	C1420196421	2806.00	0.0	C972765878	0.00	0.00	1	
252	1	CASH_OUT	2806.00	C2101527076	2806.00	0.0	C1007251739	26202.00	0.00	1	
680	1	TRANSFER	20128.00	C137533655	20128.00	0.0	C1848415041	0.00	0.00	1	
6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.0	C776919290	0.00	339682.13	1	
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	0.00	1	
6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.0	C1365125890	68488.84	6379898.11	1	
6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C2080388513	0.00	0.00	1	
6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.0	C873221189	6510099.11	7360101.63	1	
8213 rows	8213 rows × 11 columns										
4											

Get fraudulent transactions that have a genuine CASH OUT status

```
df_genuine_cash_out = df.loc[(df.isFraud == 0) & (df.type == 'CASH_OUT')]
df_fraudulent_transfer = df.loc[(df.isFraud == 1) & (df.type == 'TRANSFER')]
print('Fraudulent TRANSFERs where the destination accounts initially had genuine CASH OUTs.\n\n')
```

df_fraud_transfer.loc[df_fraud_transfer.nameDest.isin(df_genuine_cash_out.nameDest.drop_duplicates())]

Fraudulent TRANSFERs where the destination accounts initially had genuine CASH OUTs.

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlagge
2736446	212	TRANSFER	4953893.08	C728984460	4953893.08	4953893.08	C639921569	0.0	0.0	1	
3247297	250	TRANSFER	1343002.08	C1100582606	1343002.08	1343002.08	C1147517658	0.0	0.0	1	
4											•

DATA ENCODING

In order to apply different machine learning algorithms to the data, the fields need to be numbers. TRANSFERs are denoted by 0 and CASH_OUTs by 1.

```
df = pd.read_csv('PS_log.csv')
df.info()
→ <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 6362620 entries, 0 to 6362619
     Data columns (total 11 columns):
     # Column
                         Dtype
     0
                          int64
          sten
                          object
          type
                          float64
          amount
         nameOrig
                          object
         oldbalanceOrg
                         float64
          newbalanceOrig float64
         nameDest
                         object
          oldbalanceDest float64
        newbalanceDest float64
         isFraud
                         int64
      10 isFlaggedFraud int64
     dtypes: float64(5), int64(3), object(3)
     memory usage: 534.0+ MB
from sklearn.preprocessing import LabelEncoder
le_orig = LabelEncoder()
le dest = LabelEncoder()
df['nameOrig'] = le_orig.fit_transform(df['nameOrig'])
df['nameDest'] = le_dest.fit_transform(df['nameDest'])
df['balanceChangeOrig'] = df['oldbalanceOrg'] - df['newbalanceOrig']
df['balanceChangeDest'] = df['newbalanceDest'] - df['oldbalanceDest']
df.drop(['oldbalanceOrg', 'newbalanceOrig', 'oldbalanceDest', 'newbalanceDest'], axis=1, inplace=True)
le type = LabelEncoder()
df['type'] = le_type.fit_transform(df['type'])
X = df.drop(['isFraud'], axis=1)
y = df['isFraud']
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42, stratify=y)
```

Decision Tree

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
```

```
from sklearn import tree
import time

start_time = time.time()

dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)
y_pred_dt = dt_model.predict(X_test)
end_time = time.time()

training_time = end_time - start_time
print(f"Thời gian chạy Decision Tree: {training_time:.4f} giây")

Thời gian chạy Decision Tree: 85.3670 giây

#plot tree
plt.figure(figsize=(50,30))
tree.plot_tree(dt_model, filled=True, rounded=True, fontsize= 18, max_depth=6)
plt.show()
```



```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
accuracy_dt = accuracy_score(y_test, y_pred_dt)
precision_dt = precision_score(y_test, y_pred_dt)
recall_dt = recall_score(y_test, y_pred_dt)
f1_dt = f1_score(y_test, y_pred_dt)

from prettytable import PrettyTable

table = PrettyTable()
table.field_names = ["Metric", "Decision Tree"]
table.add_row(["Accuracy", accuracy_dt])
table.add_row(["Precision", precision_dt])
table.add_row(["Recall", recall_dt])
table.add_row(["F1 Score", f1_dt])
print(table)
```

```
Metric | Decision Tree
       Accuracy | 0.9994137635125153 |
      Precision | 0.773308957952468
        Recall | 0.7723676202069385
      F1 Score | 0.7728380024360536
     +-----
import matplotlib.pyplot as plt
import seaborn as sns
# Function to plot a confusion matrix
def plot_confusion_matrix(y_true, y_pred, title):
   cm = confusion_matrix(y_true, y_pred)
   plt.figure(figsize=(6,4))
   sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False)
   plt.title(title)
   plt.xlabel("Predicted Label")
   plt.ylabel("True Label")
   plt.show()
```

Decision Tree Confusion Matrix
plot_confusion_matrix(y_test, y_pred_dt, "Decision Tree Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc

y_pred_dt_prob = dt_model.predict_proba(X_test)
fpr_dt, tpr_dt, _ = roc_curve(y_test, y_pred_dt_prob[:, 1])
roc_auc_dt = auc(fpr_dt, tpr_dt)

plt.figure()
plt.plot(fpr_dt, tpr_dt, color='darkorange', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


Random Forest

```
from sklearn.ensemble import RandomForestClassifier
from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score
import time
start_time = time.time()
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)
y_pred_rf = rf_model.predict(X_test)
end_time = time.time()
training_time = end_time - start_time
print(f"Thời gian chạy Random Forest: {training_time:.4f} giây")
→ Thời gian chạy Random Forest: 1575.8560 giây
accuracy_rf = accuracy_score(y_test, y_pred_rf)
precision_rf = precision_score(y_test, y_pred_rf)
recall_rf = recall_score(y_test, y_pred_rf)
f1_rf = f1_score(y_test, y_pred_rf)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Random Forest"]
table.add_row(["Accuracy", accuracy_rf])
table.add_row(["Precision", precision_rf])
table.add_row(["Recall", recall_rf])
table.add_row(["F1 Score", f1_rf])
print(table)
        Metric | Random Forest
        Accuracy | 0.9996377278542488 |
       Precision | 0.9781553398058253
         Recall | 0.7358490566037735
        F1 Score | 0.8398749565821466
```

plot_confusion_matrix(y_test, y_pred_rf, "Random Forest Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc

y_pred_rf_prob = rf_model.predict_proba(X_test)
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf_prob[:, 1])
roc_auc_rf = auc(fpr_rf, tpr_rf)

plt.figure()
plt.plot(fpr_rf, tpr_rf, color='darkorange', lw=2, label=f'Random Forest (AUC = {roc_auc_rf:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


Naive Bayes

```
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import time

start_time = time.time()
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
y_pred_nb = nb_model.predict(X_test)
end_time = time.time()

training_time = end_time - start_time
print(f"Thời gian chạy Naive Bayes: {training_time:.4f} giây")
```

```
Thời gian chạy Naive Bayes: 1.9841 giây
accuracy_nb = accuracy_score(y_test, y_pred_nb)
precision_nb = precision_score(y_test, y_pred_nb)
recall_nb = recall_score(y_test, y_pred_nb)
f1_nb = f1_score(y_test, y_pred_nb)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Naive Bayes"]
table.add_row(["Accuracy", accuracy_nb])
table.add_row(["Precision", precision_nb])
table.add_row(["Recall", recall_nb])
table.add_row(["F1 Score", f1_nb])
print(table)
    +----+
     | Metric | Naive Bayes
      Accuracy | 0.996142312443616
      Precision | 0.1410989010989011
        Recall | 0.3907486305538649
      F1 Score | 0.20733085741966736
```

plot_confusion_matrix(y_test, y_pred_nb, "Naive Bayes Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc

y_pred_nb_prob = nb_model.predict_proba(X_test)
fpr_nb, tpr_nb, _ = roc_curve(y_test, y_pred_nb_prob[:, 1])
roc_auc_nb = auc(fpr_nb, tpr_nb)

plt.figure()
plt.plot(fpr_nb, tpr_nb, color='darkorange', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


##

```
# Plot ROC curves on the same plot
plt.figure(figsize=(8, 6))  # Adjust figure size if needed
plt.plot(fpr_dt, tpr_dt, color='blue', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt:.2f})')
plt.plot(fpr_ft, tpr_ft, color='green', lw=2, label=f'Random Forest (AUC = {roc_auc_rf:.2f})')
plt.plot(fpr_nb, tpr_nb, color='red', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb:.2f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')  # Diagonal line for reference
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Decision Tree, Random Forest, and Naive Bayes')
plt.legend(loc='lower right')
plt.show()
```


Feature Importance

```
importances = rf_model.feature_importances_
feature_names = X.columns
feature_importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances}).sort_values(by='Importance', ascending=False)
print(feature_importance_df)
# Loại bỏ các cột có Importance thấp (tùy ngưỡng, ví dụ < 0.01)</pre>
```

```
selected_features = feature_importance_df[feature_importance_df['Importance'] > 0.01]['Feature']
X = df[selected_features]
\overline{2}
                  Feature Importance
     6 balanceChangeOrig
                              0.352139
                              0 307780
       balanceChangeDest
     a
                     step
                              0.120235
     2
                   amount
                              0.095995
                 nameOrig
                              0.043436
     4
                 nameDest
                              0.042908
                              0.036058
     1
                     type
           isFlaggedFraud
                              0.001448
```

Hyperparameter Tuning

Dùng GridSearchCV hoặc RandomizedSearchCV để tìm siêu tham số tốt nhất cho mô hình.

```
from sklearn.model selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report, roc_auc_score
import matplotlib.pyplot as plt
def evaluate_model(model, X_test, y_test, y_pred):
    print(confusion_matrix(y_test, y_pred))
    print(classification_report(y_test, y_pred))
    print("Accuracy:", accuracy_score(y_test, y_pred))
    # AUC-ROC
    y_pred_proba = model.predict_proba(X_test)[:, 1]
    auc_score = roc_auc_score(y_test, y_pred_proba)
    print("AUC-ROC Score:", auc_score)
    fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
    plt.plot(fpr, tpr, label=f"AUC = {auc_score:.2f}")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("ROC Curve")
    plt.legend(loc="best")
    plt.show()
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report, roc_auc_score
import matplotlib.pyplot as plt
import time
# Xác định các giá trị siêu tham số
param grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [10, 20, 30, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
# GridSearchCV
grid search = GridSearchCV(estimator=RandomForestClassifier(random state=42), param grid=param grid, cv=3, scoring='roc auc', verbose=2, n jobs=-1)
{\tt grid\_search.fit}({\tt X\_train,\ y\_train})
# Tìm siêu tham số tốt nhất
best_rf_model = grid_search.best_estimator_
print("Best Parameters:", grid_search.best_params_)
# Đánh giá mô hình tốt nhất
y_pred_best_rf = best_rf_model.predict(X_test)
print("\nOptimized Random Forest:")
evaluate\_model(best\_rf\_model, X\_test, y\_test, y\_pred\_best\_rf)
Fitting 3 folds for each of 108 candidates, totalling 324 fits
param_grid_dt = {
    'max_depth': [5, 10, 20, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
start_time = time.time()
```

```
grid\_search\_dt = GridSearchCV(estimator=DecisionTreeClassifier(random\_state=42), param\_grid=param\_grid\_dt, cv=3, scoring='roc\_auc', verbose=2, n\_job
grid_search_dt.fit(X_train, y_train)
# Decision Tree tốt nhất
best_dt_model = grid_search_dt.best_estimator_
print("Best Parameters:", grid_search_dt.best_params_)
y_pred_best_dt = best_dt_model.predict(X_test)
end_time = time.time()
print(f"Thời gian chạy Decision Tree using GridSearchCV: {end_time - start_time:.4f} giây")
print("\nOptimized Decision Tree:")
evaluate_model(best_dt_model, X_test, y_test, y_pred_best_dt)
Fitting 3 folds for each of 36 candidates, totalling 108 fits
     Best Parameters: {'max_depth': 10, 'min_samples_leaf': 4, 'min_samples_split': 2}
     Thời gian chạy Decision Tree using GridSearchCV: 1240.1013 giây
     Optimized Decision Tree:
     [[1270844
                  37]
                   precision
                                recall f1-score
                                                   support
                0
                        1.00
                                  1.00
                                             1.00
                                                   1270881
                        0.97
                                             0.77
                                                      1643
                1
                                  0.63
         accuracy
                                             1.00
                                                   1272524
        macro avg
                        0.98
                                  0.82
                                             0.88
                                                   1272524
     weighted avg
                        1.00
                                  1.00
                                             1.00
                                                   1272524
```

Accuracy: 0.9994986342104353 AUC-ROC Score: 0.9721285218564073


```
accuracy_dt_gs = accuracy_score(y_test, y_pred_best_dt)
precision_dt_gs = precision_score(y_test, y_pred_best_dt)
recall_dt_gs = recall_score(y_test, y_pred_best_dt)
f1_dt_gs = f1_score(y_test, y_pred_best_dt)
!pip install prettytable
→ Collecting prettytable
       Downloading prettytable-3.12.0-py3-none-any.whl.metadata (30 kB)
     Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prettytable) (0.2.13)
     Downloading prettytable-3.12.0-py3-none-any.whl (31 kB)
     Installing collected packages: prettytable
     Successfully installed prettytable-3.12.0
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Decision Tree", "Decision Tree using GridSearchCV"]
table.add_row(["Accuracy", accuracy_dt, accuracy_dt_gs])
table.add_row(["Precision", precision_dt, precision_dt_gs])
table.add_row(["Recall", recall_dt, recall_dt_gs])
table.add_row(["F1 Score", f1_dt, f1_dt_gs])
```

print(table)

plot_confusion_matrix(y_test, y_pred_best_dt, "Decision Tree using GridSearchCV Confusion Matrix")


```
y_pred_best_dt_prob = best_dt_model.predict_proba(X_test)
fpr_dt_gs, tpr_dt_gs, _ = roc_curve(y_test, y_pred_best_dt_prob[:, 1])
roc_auc_dt_gs = auc(fpr_dt_gs, tpr_dt_gs)

plt.figure(figsize=(8, 6))  # Adjust figure size if needed
plt.plot(fpr_dt, tpr_dt, color='blue', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt:.2f})')
plt.plot(fpr_dt_gs, tpr_dt_gs, color='green', lw=2, label=f'Decision Tree using GridSearchCV (AUC = {roc_auc_dt_gs:.2f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')  # Diagonal line for reference
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Decision Tree, Decision Tree using GridSearchCV')
plt.legend(loc='lower right')
plt.show()
```



```
plt.figure(figsize=(8, 6))  # Adjust figure size if needed
plt.plot(fpr_dt_gs, tpr_dt_gs, color='blue', lw=2, label=f'Decision Tree using GridSearchCV (AUC = {roc_auc_dt_gs:.2f})')
plt.plot(fpr_rf, tpr_rf, color='green', lw=2, label=f'Random Forest (AUC = {roc_auc_rf:.2f})')
plt.plot(fpr_nb, tpr_nb, color='red', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb:.2f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')  # Diagonal line for reference
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Decision Tree using GridSearchCV, Random Forest, and Naive Bayes')
plt.legend(loc='lower right')
plt.show()
```


ROC Curves for Decision Tree using GridSearchCV, Random Forest, and Naive Bayes

BALANCED

from sklearn.model_selection import train_test_split

#plot confusion matrix

```
import matplotlib.pyplot as plt
import seaborn as sns
# Function to plot a confusion matrix
def plot_confusion_matrix(y_true, y_pred, title):
    cm = confusion_matrix(y_true, y_pred)
   plt.figure(figsize=(6,4))
   sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False)
   plt.title(title)
   plt.xlabel("Predicted Label")
   plt.ylabel("True Label")
   plt.show()
!pip install imblearn
Requirement already satisfied: imblearn in /usr/local/lib/python3.10/dist-packages (0.0)
     Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.10/dist-packages (from imblearn) (0.12.4)
    Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.26.4)
    Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.13.1)
     Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.6.0)
     Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.4.2)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (3.5.0)
!pip install prettytable
    Requirement already satisfied: prettytable in /usr/local/lib/python3.10/dist-packages (3.12.0)
```

Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prettytable) (0.2.13)

dtype: int64

```
df balanced = pd.read csv('PS log.csv')
df balanced['isFraud'].value counts()
 \rightarrow
                                                   count
                  isFraud
                           0
                                             6354407
                                                      8213
                dtype: int64
from sklearn.preprocessing import LabelEncoder
le_orig = LabelEncoder()
le_dest = LabelEncoder()
df balanced['nameOrig'] = le orig.fit transform(df balanced['nameOrig'])
df_balanced['nameDest'] = le_dest.fit_transform(df_balanced['nameDest'])
\label{eq:df_balanced['balanceChangeOrig'] = df_balanced['oldbalanceOrg'] - df_balanced['newbalanceOrig']} \\
\label{eq:dfbalanced} $$ df_balanced['balanced['oldbalanceDest'] - df_balanced['oldbalanceDest'] - df_balanceDest'] - 
\label{thm:df_dalance} $$ df_balanceOrg', 'newbalanceOrig', 'oldbalanceDest', 'newbalanceDest'], axis=1, inplace=True) $$ df_balanceOreg', 'newbalanceOrig', 'newbalanceOrig
le type = LabelEncoder()
df_balanced['type'] = le_type.fit_transform(df_balanced['type'])
X_balanced = df_balanced.drop(['isFraud'], axis=1)
y_balanced = df_balanced['isFraud']
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled_balanced = scaler.fit_transform(X_balanced)
undersampling
from imblearn.under_sampling import RandomUnderSampler
rus = RandomUnderSampler(random_state=42)
X_resampled, y_resampled = rus.fit_resample(X_scaled_balanced, y_balanced)
  /usr/local/lib/python3.10/dist-packages/sklearn/utils/deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' i
                     warnings.warn(
                /usr/local/lib/python3.10/dist-packages/sklearn/base.py:484: FutureWarning: `BaseEstimator._check_n_features` is deprecated in 1.6 and will be r
                      warnings.warn(
                /usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: FutureWarning: `BaseEstimator._check_feature_names` is deprecated in 1.6 and will b
                     warnings.warn(
X_train_balanced, X_test_balanced, y_train_balanced, y_test_balanced = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42, st
from collections import Counter
print(sorted(Counter(y_resampled).items()))

→ [(0, 8213), (1, 8213)]
y_resampled.value_counts()
  ₹
                                             count
                  isFraud
                           0
                                               8213
                           1
                                               8213
```

```
X_resampled
```

```
array([[-5.71883122e-01, -5.28954357e-01, 6.53202450e-03, ..., -1.58577857e-03, 2.77009392e-01, 7.32054767e-02], [-7.47528845e-01, 9.52399323e-01, -2.96991145e-01, ..., -1.58577857e-03, 1.44776939e-01, -1.52895517e-01], [-4.52444031e-01, 9.52399323e-01, -2.92094615e-01, ..., -1.58577857e-03, 1.68495586e-01, -1.52895517e-01], ..., [3.51012348e+00, -5.28954357e-01, 1.01539526e+01, ..., -1.58577857e-03, 4.31839772e+01, 7.61079787e+00], [3.51012348e+00, 1.69307616e+00, 1.10976490e+00, ..., -1.58577857e-03, 5.94117313e+00, -1.52895517e-01], [3.51012348e+00, -5.28954357e-01, 1.10976490e+00, ..., -1.58577857e-03, 5.94117313e+00, 8.92696467e-01]])
```

undersampling - Decision Tree

```
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
from sklearn import tree
import time
start_time_balanced = time.time()
dt_model_balanced = DecisionTreeClassifier(random_state=42)
dt_model_balanced.fit(X_resampled, y_resampled)
y_pred_dt_balanced = dt_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Decision Tree: {training_time:.4f} giây")
→ Thời gian chạy Decision Tree: 0.1848 giây
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
accuracy_dt_balanced = accuracy_score(y_test_balanced, y_pred_dt_balanced)
precision_dt_balanced = precision_score(y_test_balanced, y_pred_dt_balanced)
recall_dt_balanced = recall_score(y_test_balanced, y_pred_dt_balanced)
f1_dt_balanced = f1_score(y_test_balanced, y_pred_dt_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Decision Tree"]
table.add_row(["Accuracy", accuracy_dt_balanced])
table.add_row(["Precision", precision_dt_balanced])
table.add_row(["Recall", recall_dt_balanced])
table.add_row(["F1 Score", f1_dt_balanced])
print(table)
     | Metric | Decision Tree |
       Accuracy |
                     1.0
      Precision |
                       1.0
       Recall
                       1.0
       F1 Score
                      1.0
```

plot_confusion_matrix(y_test_balanced, y_pred_dt_balanced, "Decision Tree Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc

y_pred_dt_prob = dt_model_balanced.predict_proba(X_test_balanced)
fpr_dt_us, tpr_dt_us, _ = roc_curve(y_test_balanced, y_pred_dt_prob[:, 1])
roc_auc_dt_us = auc(fpr_dt_us, tpr_dt_us)

plt.figure()
plt.plot(fpr_dt_us, tpr_dt_us, color='darkorange', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt_us:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


undersampling - Random Forest

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import time

start_time_balanced = time.time()

rf_model_balanced = RandomForestClassifier(random_state=42)
rf_model_balanced.fit(X_resampled, y_resampled)
y_pred_rf_balanced = rf_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
```

F1 Score

1.0

```
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Random Forest: {training_time:.4f} giây")
Thời gian chạy Random Forest: 3.7461 giây
accuracy_rf_balanced = accuracy_score(y_test_balanced, y_pred_rf_balanced)
precision_rf_balanced = precision_score(y_test_balanced, y_pred_rf_balanced)
recall_rf_balanced = recall_score(y_test_balanced, y_pred_rf_balanced)
f1_rf_balanced = f1_score(y_test_balanced, y_pred_rf_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Random Forest"]
table.add_row(["Accuracy", accuracy_rf_balanced])
table.add_row(["Precision", precision_rf_balanced])
table.add_row(["Recall", recall_rf_balanced])
table.add_row(["F1 Score", f1_rf_balanced])
print(table)
     | Metric | Random Forest |
       Accuracy |
                       1.0
       Precision |
                       1.0
        Recall
                       1.0
```

plot_confusion_matrix(y_test_balanced, y_pred_rf_balanced, "Random Forest Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc

y_pred_rf_prob = rf_model_balanced.predict_proba(X_test_balanced)
fpr_rf_us, tpr_rf_us, _ = roc_curve(y_test_balanced, y_pred_rf_prob[:, 1])
roc_auc_rf_us = auc(fpr_rf_us, tpr_rf_us)

plt.figure()
plt.plot(fpr_rf_us, tpr_rf_us, color='darkorange', lw=2, label=f'Random Forest (AUC = {roc_auc_rf_us:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


undersampling - Naive Bayes

```
from sklearn.naive_bayes import GaussianNB
from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score
import time
start_time_balanced = time.time()
nb_model_balanced = GaussianNB()
nb\_model\_balanced.fit(X\_resampled,\ y\_resampled)
y_pred_nb_balanced = nb_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Naive Bayes: {training_time:.4f} giây")
→ Thời gian chạy Naive Bayes: 0.0126 giây
accuracy_nb_balanced = accuracy_score(y_test_balanced, y_pred_nb_balanced)
precision_nb_balanced = precision_score(y_test_balanced, y_pred_nb_balanced)
recall_nb_balanced = recall_score(y_test_balanced, y_pred_nb_balanced)
f1_nb_balanced = f1_score(y_test_balanced, y_pred_nb_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Naive Bayes"]
table.add_row(["Accuracy", accuracy_nb_balanced])
table.add_row(["Precision", precision_nb_balanced])
table.add_row(["Recall", recall_nb_balanced])
table.add_row(["F1 Score", f1_nb_balanced])
print(table)
        Metric
                        Naive Bayes
        Accuracy |
                     0.7297626293365794
       Precision
                     0.9908972691807543
         Recall | 0.46378575776019476
        F1 Score | 0.6318407960199005
```

 $\verb|plot_confusion_matrix| (y_test_balanced, y_pred_nb_balanced, "Naive Bayes Confusion Matrix")| \\$


```
from sklearn.metrics import roc_curve, auc

y_pred_nb_prob = nb_model_balanced.predict_proba(X_test_balanced)
fpr_nb_us, tpr_nb_us, _ = roc_curve(y_test_balanced, y_pred_nb_prob[:, 1])
roc_auc_nb_us = auc(fpr_nb_us, tpr_nb_us)

plt.figure()
plt.plot(fpr_nb_us, tpr_nb_us, color='darkorange', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb_us:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc='lower right')
plt.legend(loc='lower right')
plt.show()
```


v oversampling

```
X_train_balanced, X_test_balanced, y_train_balanced, y_test_balanced = train_test_split(X_resampled_ros, y_resampled_ros, test_size=0.2, random_stat

from collections import Counter
print(sorted(Counter(y_resampled_ros).items()))

____ [(0, 6354407), (1, 6354407)]

y_resampled_ros.value_counts()
```

```
count
isFraud
```

0 6354407

6354407

dtype: int64

oversampling - Decision Tree

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
from sklearn import tree
import time
start_time_balanced = time.time()
dt_model_balanced = DecisionTreeClassifier(random_state=42)
dt_model_balanced.fit(X_resampled_ros, y_resampled_ros)
y_pred_dt_balanced = dt_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Decision Tree: {training_time:.4f} giây")
Thời gian chạy Decision Tree: 368.8052 giây
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
accuracy_dt_balanced = accuracy_score(y_test_balanced, y_pred_dt_balanced)
precision_dt_balanced = precision_score(y_test_balanced, y_pred_dt_balanced)
recall_dt_balanced = recall_score(y_test_balanced, y_pred_dt_balanced)
f1_dt_balanced = f1_score(y_test_balanced, y_pred_dt_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Decision Tree"]
table.add_row(["Accuracy", accuracy_dt_balanced])
table.add_row(["Precision", precision_dt_balanced])
table.add_row(["Recall", recall_dt_balanced])
table.add_row(["F1 Score", f1_dt_balanced])
print(table)
    +----+
     | Metric | Decision Tree |
     Accuracy
                     1.0
      Precision
                      1.0
       Recall
                       1.0
     | F1 Score |
```

plot_confusion_matrix(y_test_balanced, y_pred_dt_balanced, "Decision Tree Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc

y_pred_dt_prob = dt_model_balanced.predict_proba(X_test_balanced)
fpr_dt_os, tpr_dt_os, _ = roc_curve(y_test_balanced, y_pred_dt_prob[:, 1])
roc_auc_dt_os = auc(fpr_dt_os, tpr_dt_os)

plt.figure()
plt.plot(fpr_dt_os, tpr_dt_os, color='darkorange', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt_os:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


oversampling - Random Forest

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import time

start_time_balanced = time.time()

rf_model_balanced = RandomForestClassifier(random_state=42)
rf_model_balanced.fit(X_resampled_ros, y_resampled_ros)
y_pred_rf_balanced = rf_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
```

```
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Random Forest: {training_time:.4f} giây")
Thời gian chạy Random Forest: 6627.0217 giây
accuracy_rf_balanced = accuracy_score(y_test_balanced, y_pred_rf_balanced)
precision_rf_balanced = precision_score(y_test_balanced, y_pred_rf_balanced)
recall_rf_balanced = recall_score(y_test_balanced, y_pred_rf_balanced)
f1_rf_balanced = f1_score(y_test_balanced, y_pred_rf_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Random Forest"]
table.add_row(["Accuracy", accuracy_rf_balanced])
table.add_row(["Precision", precision_rf_balanced])
table.add_row(["Recall", recall_rf_balanced])
table.add_row(["F1 Score", f1_rf_balanced])
print(table)
      | Metric | Random Forest |
       Accuracy |
                        1.0
       Precision
                         1.0
         Recall
                         1.0
```

 $\verb|plot_confusion_matrix| (y_test_balanced, y_pred_rf_balanced, "Random Forest Confusion Matrix")| \\$

Random Forest Confusion Matrix 0 - 1270882 0 1270881 0 1270881

1.0

F1 Score

```
from sklearn.metrics import roc_curve, auc

y_pred_rf_prob = rf_model_balanced.predict_proba(X_test_balanced)
fpr_rf_os, tpr_rf_os, _ = roc_curve(y_test_balanced, y_pred_rf_prob[:, 1])
roc_auc_rf_os = auc(fpr_rf_os, tpr_rf_os)

plt.figure()
plt.plot(fpr_rf_os, tpr_rf_os, color='darkorange', lw=2, label=f'Random Forest (AUC = {roc_auc_rf_os:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


oversampling - Naive Bayes

```
from sklearn.naive_bayes import GaussianNB
from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score
import time
start_time_balanced = time.time()
nb_model_balanced = GaussianNB()
nb\_model\_balanced.fit(X\_resampled\_ros,\ y\_resampled\_ros)
y_pred_nb_balanced = nb_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Naive Bayes: {training_time:.4f} giây")
→ Thời gian chạy Naive Bayes: 5.6703 giây
accuracy_nb_balanced = accuracy_score(y_test_balanced, y_pred_nb_balanced)
precision_nb_balanced = precision_score(y_test_balanced, y_pred_nb_balanced)
recall_nb_balanced = recall_score(y_test_balanced, y_pred_nb_balanced)
f1_nb_balanced = f1_score(y_test_balanced, y_pred_nb_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Naive Bayes"]
table.add_row(["Accuracy", accuracy_nb_balanced])
table.add_row(["Precision", precision_nb_balanced])
table.add_row(["Recall", recall_nb_balanced])
table.add_row(["F1 Score", f1_nb_balanced])
print(table)
        Metric | Naive Bayes
        Accuracy | 0.7255849581569958
       Precision | 0.9879996527559095
         Recall | 0.4567170333020952
        F1 Score | 0.624670947134146
```

 $\verb|plot_confusion_matrix| (y_test_balanced, y_pred_nb_balanced, "Naive Bayes Confusion Matrix")| \\$


```
from sklearn.metrics import roc_curve, auc

y_pred_nb_prob = nb_model_balanced.predict_proba(X_test_balanced)
fpr_nb_os, tpr_nb_os, _ = roc_curve(y_test_balanced, y_pred_nb_prob[:, 1])
roc_auc_nb_os = auc(fpr_nb_os, tpr_nb_os)

plt.figure()
plt.plot(fpr_nb_os, tpr_nb_os, color='darkorange', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb_os:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


√ SMOTE

4

```
X_train_balanced, X_test_balanced, y_train_balanced, y_test_balanced = train_test_split(X_resampled_smote, y_resampled_smote, test_size=0.2, random_
from collections import Counter
```

```
print(sorted(Counter(y_resampled_smote).items()))
```

```
→ count
```

isFraud

0 6354407

1 6354407

dtype: int64

smote - DT

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
from sklearn import tree
import time
start_time_balanced = time.time()
dt_model_balanced = DecisionTreeClassifier(random_state=42)
dt_model_balanced.fit(X_resampled_smote, y_resampled_smote)
y_pred_dt_balanced = dt_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Decision Tree: {training_time:.4f} giây")
Thời gian chạy Decision Tree: 412.0620 giây
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
accuracy_dt_balanced = accuracy_score(y_test_balanced, y_pred_dt_balanced)
precision_dt_balanced = precision_score(y_test_balanced, y_pred_dt_balanced)
recall_dt_balanced = recall_score(y_test_balanced, y_pred_dt_balanced)
f1_dt_balanced = f1_score(y_test_balanced, y_pred_dt_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Decision Tree"]
table.add_row(["Accuracy", accuracy_dt_balanced])
table.add_row(["Precision", precision_dt_balanced])
table.add_row(["Recall", recall_dt_balanced])
table.add_row(["F1 Score", f1_dt_balanced])
print(table)
    +----+
     | Metric | Decision Tree |
     | Accuracy |
                      1.0
      Precision
                      1.0
       Recall
                       1.0
     | F1 Score |
```

plot_confusion_matrix(y_test_balanced, y_pred_dt_balanced, "Decision Tree Confusion Matrix")


```
from sklearn.metrics import roc_curve, auc
```

```
y_pred_dt_prob = dt_model_balanced.predict_proba(X_test_balanced)
fpr_dt_smote, tpr_dt_smote, _ = roc_curve(y_test_balanced, y_pred_dt_prob[:, 1])
roc_auc_dt_smote = auc(fpr_dt_smote, tpr_dt_smote)

plt.figure()
plt.plot(fpr_dt_smote, tpr_dt_smote, color='darkorange', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt_smote:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


smote - RF

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import time

start_time_balanced = time.time()

rf_model_balanced = RandomForestClassifier(random_state=42)
rf_model_balanced.fit(X_resampled_smote, y_resampled_smote)
y_pred_rf_balanced = rf_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
```

```
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Random Forest: {training_time:.4f} giây")
Thời gian chạy Random Forest: 9036.3916 giây
accuracy_rf_balanced = accuracy_score(y_test_balanced, y_pred_rf_balanced)
precision_rf_balanced = precision_score(y_test_balanced, y_pred_rf_balanced)
recall_rf_balanced = recall_score(y_test_balanced, y_pred_rf_balanced)
f1_rf_balanced = f1_score(y_test_balanced, y_pred_rf_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Random Forest"]
table.add_row(["Accuracy", accuracy_rf_balanced])
table.add_row(["Precision", precision_rf_balanced])
table.add_row(["Recall", recall_rf_balanced])
table.add_row(["F1 Score", f1_rf_balanced])
print(table)
      | Metric | Random Forest |
       Accuracy |
                        1.0
       Precision
                         1.0
         Recall
                         1.0
                         1.0
        F1 Score
```

 $\verb|plot_confusion_matrix| (y_test_balanced, y_pred_rf_balanced, "Random Forest Confusion Matrix")| \\$


```
from sklearn.metrics import roc_curve, auc

y_pred_rf_prob = rf_model_balanced.predict_proba(X_test_balanced)
fpr_rf_smote, tpr_rf_smote, = roc_curve(y_test_balanced, y_pred_rf_prob[:, 1])
roc_auc_rf_smote = auc(fpr_rf_smote, tpr_rf_smote)

plt.figure()
plt.plot(fpr_rf_smote, tpr_rf_smote, color='darkorange', lw=2, label=f'Random Forest (AUC = {roc_auc_rf_smote:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


smote - NB

```
from sklearn.naive_bayes import GaussianNB
from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score
import time
start_time_balanced = time.time()
nb_model_balanced = GaussianNB()
nb_model_balanced.fit(X_resampled_smote, y_resampled_smote)
y_pred_nb_balanced = nb_model_balanced.predict(X_test_balanced)
end_time_balanced = time.time()
training_time = end_time_balanced - start_time_balanced
print(f"Thời gian chạy Naive Bayes: {training_time:.4f} giây")
→ Thời gian chạy Naive Bayes: 4.9128 giây
accuracy_nb_balanced = accuracy_score(y_test_balanced, y_pred_nb_balanced)
precision_nb_balanced = precision_score(y_test_balanced, y_pred_nb_balanced)
recall_nb_balanced = recall_score(y_test_balanced, y_pred_nb_balanced)
f1_nb_balanced = f1_score(y_test_balanced, y_pred_nb_balanced)
from prettytable import PrettyTable
table = PrettyTable()
table.field_names = ["Metric", "Naive Bayes"]
table.add_row(["Accuracy", accuracy_nb_balanced])
table.add_row(["Precision", precision_nb_balanced])
table.add_row(["Recall", recall_nb_balanced])
table.add_row(["F1 Score", f1_nb_balanced])
print(table)
                       Naive Bayes
        Metric
        Accuracy | 0.7252780845421072 |
       Precision
                     0.98798702571506
         Recall | 0.45610171211938805
        F1 Score | 0.6240926366562948
```

 $\verb|plot_confusion_matrix| (y_test_balanced, y_pred_nb_balanced, "Naive Bayes Confusion Matrix")| \\$


```
from sklearn.metrics import roc_curve, auc

y_pred_nb_prob = nb_model_balanced.predict_proba(X_test_balanced)
fpr_nb_smote, tpr_nb_smote, _ = roc_curve(y_test_balanced, y_pred_nb_prob[:, 1])
roc_auc_nb_smote = auc(fpr_nb_smote, tpr_nb_smote)

plt.figure()
plt.plot(fpr_nb_smote, tpr_nb_smote, color='darkorange', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb_smote:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


Visualize Data

```
df = pd.read_csv('PS_log.csv')
```

số lượng dl

```
import matplotlib.pyplot as plt
import seaborn as sns
# Giả sử bạn có dataframe 'df' với cột 'type' chứa các loại giao dịch
```

```
# Tính số lượng giao dịch theo từng loại
transaction_counts_by_type = df['type'].value_counts()
# Tính tổng số giao dịch
total_transactions = len(df)
# Vẽ biểu đồ số lượng giao dịch theo từng loại
plt.figure(figsize=(10, 6))
# Vẽ biểu đồ cột với màu sắc đẹp
sns.set(style="whitegrid") # Cải thiện kiểu nền
ax = sns.barplot(x=transaction_counts_by_type.index, y=transaction_counts_by_type.values, palette='muted')
# Tăng độ bóng đổ cho các cột
for patch in ax.patches:
    patch.set_edgecolor('black') # Đặt màu viền cột là đen
    patch.set_linewidth(2) # Đặt độ dày viền cột
# Thêm các giá trị số vào các cột và điều chỉnh vị trí
for p in ax.patches:
    height = p.get_height()
    ax.annotate(f'{height:,.0f}',
                (p.get_x() + p.get_width() / 2., height),
               ha='center', va='bottom', fontsize=14, color='black', fontweight='bold', xytext=(0, 5), textcoords='offset points')
# Thêm tổng số giao dịch vào biểu đồ với vị trí phù hợp
ax.annotate(f'Tổng số giao dịch: {total_transactions:,}',
            xy=(0.5, 0.92), # Đặt tại vị trí phù hợp để tránh đè lên cột
            xycoords='axes fraction',
            ha='center', va='center',
            fontsize=16, color='red', fontweight='bold')
# Thiết lập tiêu đề và nhãn trục
plt.title('Số lượng giao dịch theo loại', fontsize=18, fontweight='bold', color='darkblue')
plt.xlabel('Loại giao dịch', fontsize=14, fontweight='bold', color='darkgreen')
plt.ylabel('Số lượng giao dịch', fontsize=14, fontweight='bold', color='darkgreen')
# Tăng khoảng cách cho các nhãn
plt.xticks(rotation=45, fontsize=12, fontweight='bold')
plt.yticks(fontsize=12)
# Hiển thị biểu đồ
plt.show()
```

<ipython-input-12-1eb2a51b9204>:17: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` ax = sns.barplot(x=transaction_counts_by_type.index, y=transaction_counts_by_type.values, palette='muted')

giao dịch hợp lệ và gian lận

```
# Tính số lượng giao dịch hợp lệ và gian lận
transaction_counts = df['isFraud'].value_counts()

# Vẽ biểu đồ số lượng giao dịch hợp lệ và gian lận
plt.figure(figsize=(8, 6))

# Bar plot - Số lượng giao dịch
sns.barplot(x=transaction_counts.index, y=transaction_counts.values, palette='coolwarm')

# Thiết lập tiêu đề và nhãn trục
plt.title('Số lượng giao dịch hợp lệ và gian lận', fontsize=16)
plt.xlabel('Loại giao dịch', fontsize=14)
plt.ylabel('Số lượng giao dịch', fontsize=14)
plt.xticks([0, 1], ['Hợp lệ', 'Gian lận'])

# Hiến thị biểu đồ
plt.show()
```

<ipython-input-7-6a1dd13408a7>:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` sns.barplot(x=transaction_counts.index, y=transaction_counts.values, palette='coolwarm')


```
# Tính tỷ lệ giao dịch gian lận và hợp lệ
fraud_ratio = transaction_counts[1] / transaction_counts.sum() * 100
valid_ratio = transaction_counts[0] / transaction_counts.sum() * 100
# Vẽ biểu đồ tỷ lệ phần trăm
plt.figure(figsize=(8, 6))
# Vẽ biểu đồ cột cho tỷ lệ giao dịch
sns.barplot(x=['H\phi p \ l\hat{e}', \ 'Gian \ l\hat{q}n'], \ y=[valid\_ratio, \ fraud\_ratio], \ palette='coolwarm')
# Thiết lập tiêu đề và nhãn trục
plt.title('Tỷ lệ giao dịch hợp lệ và gian lận', fontsize=16)
plt.xlabel('Loại giao dịch', fontsize=14)
plt.ylabel('Tỷ lệ phần trăm', fontsize=14)
# Hiển thị tỷ lệ phần trăm lên trên cột
for i, value in enumerate([valid_ratio, fraud_ratio]):
    plt.text(i, value + 1, f'{value:.2f}%', ha='center', fontsize=12)
# Hiển thị biểu đồ
plt.show()
```

<ipython-input-8-9952e9df6c55>:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` sns.barplot(x=['Hợp lệ', 'Gian lận'], y=[valid_ratio, fraud_ratio], palette='coolwarm')


```
import matplotlib.pyplot as plt
fraud_counts = df['isFraud'].value_counts()

# Tao biểu đồ hình tròn
plt.figure(figsize=(8, 8))
plt.pie(fraud_counts, labels=['Hợp lệ', 'Gian lận'], autopct='%1.2f%%', startangle=140, colors=['#76c7c0', '#ff5733'])

# Đảm bảo biểu đồ có tỷ lệ bằng nhau để hình tròn không bị méo
plt.axis('equal')

# Thêm tiêu đề
plt.title('Phân phối số lượng giao dịch hợp lệ và gian lận', fontsize=16, fontweight='bold')

plt.legend(fontsize=12)
# Hiến thị biểu đồ
plt.show()
```

$\overline{\Rightarrow}$

Phân phối số lượng giao dịch hợp lệ và gian lận

phân phối dl

```
import matplotlib.pyplot as plt
import seaborn as sns
# Thiết lập cho seaborn và matplotlib
sns.set(style="whitegrid")
# 1. Biểu đồ phân phối cho các trường số
plt.figure(figsize=(14, 10))
# Đặt số lượng các biểu đồ cần vẽ
plt.subplot(2, 3, 1)
sns.histplot(df['step'], bins=50, kde=True, color='skyblue')
plt.title('Phân phối Step')
plt.subplot(2, 3, 2)
sns.histplot(df['amount'], bins=50, kde=True, color='salmon')
plt.title('Phân phối Amount')
plt.subplot(2, 3, 3)
sns.histplot(df['oldbalanceOrg'], bins=50, kde=True, color='green')
plt.title('Phân phối OldbalanceOrg')
plt.subplot(2, 3, 4)
\verb|sns.histplot(df['newbalanceOrig'], bins=50, kde=True, color='purple')|\\
plt.title('Phân phối NewbalanceOrg')
plt.subplot(2, 3, 5)
sns.histplot(df['oldbalanceDest'], bins=50, kde=True, color='orange')
plt.title('Phân phối OldbalanceDest')
plt.subplot(2, 3, 6)
sns.histplot(df['newbalanceDest'], bins=50, kde=True, color='blue')
plt.title('Phân phối NewbalanceDest')
plt.tight_layout()
plt.show()
# 2. Biểu đồ phân loại cho trường 'type'
plt.figure(figsize=(8, 6))
sns.countplot(x='type', data=df, palette='viridis')
```

```
plt.title('Số lượng giao dịch theo loại', fontsize=16)
plt.xlabel('Loại giao dịch', fontsize=14)
plt.ylabel('Số lượng giao dịch', fontsize=14)
plt.xticks(rotation=45)
plt.show()
# 3. Biểu đồ scatter plot mối quan hệ giữa Amount và OldbalanceOrg
plt.figure(figsize=(8, 6))
\verb|sns.scatterplot(x='oldbalanceOrg', y='amount', data=df, hue='isFraud', palette='coolwarm', alpha=0.5)|
plt.title('Mối quan hệ giữa Amount và OldbalanceOrg', fontsize=16)
plt.xlabel('OldbalanceOrg', fontsize=14)
plt.ylabel('Amount', fontsize=14)
plt.show()
# 4. Biểu đồ Boxplot cho mối quan hệ giữa Amount và isFraud
plt.figure(figsize=(8, 6))
sns.boxplot(x='isFraud', y='amount', data=df, palette='coolwarm')
plt.title('Mối quan hệ giữa Amount và isFraud', fontsize=16)
plt.xlabel('Gian lận (isFraud)', fontsize=14)
plt.ylabel('Amount', fontsize=14)
plt.show()
# 5. Biểu đồ Violin plot cho mối quan hệ giữa Type và Amount
plt.figure(figsize=(8, 6))
sns.violinplot(x='type', y='amount', data=df, palette='muted')
plt.title('Mối quan hệ giữa Type và Amount', fontsize=16)
plt.xlabel('Loại giao dịch', fontsize=14)
plt.ylabel('Amount', fontsize=14)
plt.show()
# 6. Biểu đồ mối quan hệ giữa isFraud và Type
plt.figure(figsize=(8, 6))
sns.countplot(x='type', hue='isFraud', data=df, palette='Set1')
plt.title('Sự phân bố giao dịch hợp lệ và gian lận theo loại giao dịch', fontsize=16)
plt.xlabel('Loại giao dịch', fontsize=14)
plt.ylabel('Số lượng giao dịch', fontsize=14)
plt.show()
```


Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False sns.countplot(x='type', data=df, palette='viridis')

