부산대학교 전기컴퓨터공학부 정보컴퓨터공학전공 201724579 정현모

1 개요

기존 과제에서 수행한 학습모델인 단층 퍼셉트론 모델들을 다층 퍼셉트론으로 바꾸고, 하이퍼 파라미터들을 조절하여 정확도를 향상시킨다. 바꿀 하이퍼 파라미터로는 은닉층의 개수, 각 은닉층당 퍼셉트론의 수이다. 총 퍼셉트론의 수는 100개로 동일하게 하고 은닉층의 깊이가 깊어질수록 어떤 차이가 있는 지 살펴본다. 이후 가장 정확도가 높은 모델로 epoch_count나 learning_rate를 바꿔보겠다.

2 학습 결과

2.1 전복 고리수 추정 신경망

2.1.1 학습 결과

조건 (epoch = 10)	정확도	소요 시간(s)
set_hidden([100])	100%	0.507
set_hidden([50, 50])	100%	0.626
set_hidden([20, 20, 20, 20, 20])	100%	0.805
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	100%	1.100

2.2 천체의 펄서 예측 신경망

조건 (epoch = 10)	정확도	소요 시간(s)
set_hidden([100])	97.2%	2.16
set_hidden([50, 50])	91.3%	2.96
set_hidden([20, 20, 20, 20, 20])	91.9%	4.30
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	90.8%	4.77

조건 (epoch = 50)	정확도	소요 시간(s)
set_hidden([100])	97.7%	8.97
set_hidden([50, 50])	97.4%	11.1
set_hidden([20, 20, 20, 20, 20])	90.9%	15.4
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	90.8%	21.2

		l
조건 (epoch = 100)	정확도	소요 시간(s)
set_hidden([100])	97.9%	17.7
set_hidden([50, 50])	97.3%	21.5
set_hidden([20, 20, 20, 20, 20])	91.2%	29.9
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	90.0%	42.9

조건 (epoch = 200)	정확도	소요 시간(s)
set_hidden([100])	97.7%	35.6
set_hidden([50, 50])	96.9%	44.4
set_hidden([20, 20, 20, 20, 20])	91.0%	59.4
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	90.6%	83.0

2.3 철판 분류 신경망

2.3.1 Softmax + Cross Entropy

조건 (epoch = 10)	정확도	소요 시간(s)
set_hidden([100])	35.0%	0.298
set_hidden([50, 50])	36.8%	0.337
set_hidden([20, 20, 20, 20, 20])	37.9%	0.431
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	32.2%	0.549

조건 (epoch = 50)	정확도	소요 시간(s)
set_hidden([100])	33.7%	1.37
set_hidden([50, 50])	33.8%	1.62
set_hidden([20, 20, 20, 20, 20])	36.3%	1.98
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	37.1%	2.61

조건 (epoch = 100)	정확도	소요 시간(s)
set_hidden([100])	33.0%	2.71
set_hidden([50, 50])	34.3%	3.02
set_hidden([20, 20, 20, 20, 20])	34.0%	3.86
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	35.0%	5.13

2.3.2 Sigmoid + Mean Squared Error

조건 (epoch = 10)	정확도	소요 시간(s)
set_hidden([100])	85.7%	0.265
set_hidden([50, 50])	85.3%	0.318
set_hidden([20, 20, 20, 20, 20])	85.7%	0.434
set_hidden([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])	85.7%	0.598

3 결과 분석

3.1 전복 고리수 추정 신경망

기존 전복 고리수 추정 신경망에선 은닉층이 없을 때에도 정확도가 100%에 가깝게 나오는 것을 확인할 수 있었다. 여러 hidden layer를 만들면서 실험을 해보았는데, 눈에 띄는 특징은 같은 100개의 은닉 퍼셉트론인데도 걸리는 시간이 모두 다름을 알 수 있었다. 정확하게는 은닉층의 개수가 많아질수록 오래 걸리는 것을 확인할 수 있었다.

이는 아래 그림으로 설명이 가능하다. 그림1과 같이 은닉층이 하나인 경우엔 은닉 퍼셉트론이 100개더라도 입력층 퍼셉트론 수 * 은닉층 퍼셉트론 수 * 출력층 퍼셉트론 수로 총 4800개의 Weight가 생기는 것을 알 수 있다. Weight의 수는 곧 연산의 수를 의미한다. 그에비해 그림2는 12 * 50 * 50 * 4 = 120,000개의 Weight를 가짐을 알 수 있다.

그림 1. 1개의 은닉층

그림 2. 2개의 은닉층

3.2 천체의 펄서 예측 신경망

천체의 펄서 예측 신경망의 경우 학습 소요시간이 가장 적게 든 1개의 은닉층이 정확도가 가장 높게 나왔다. 정확도를 조금 더 상승시켜 보기 위해 epoch_count라는 훈련횟수 하이퍼 파라미터를 조정해가며 정확도를 확인해 보았다. 확인 결과 epoch_count가 100일 때 97.9% 의 정확도로 가장 높음을 확인할 수 있었다.

또한 어떤 epoch를 사용하더라도 1개의 은닉층을 가진 모델이 가장 성능이 우수했다. 이는 단순히 학습횟수가 많고, 모델이 깊고 무겁다고 성능이 좋아지는 것은 아님을 확인할 수 있었다. 학습시간으로만 봤을 때 가장 빠른 epoch=10, 1개의 은닉층 모델과 epoch=200, 10개의 은닉층 모델을 비교해 보면 40배나 더 오래 걸렸지만 성능은 학습시간도 더 빨랐던 epoch=10, 1개의 은닉층 모델이 97.2%로 7.2%나 더 높은 정확도를 보여주었다.

3.3 철판 분류 신경망

철판 분류 신경망 역시 epoch_count와 hidden layer들로 하이퍼 파라미터를 변경해가며 정확도를 확인했다. 더 이상 성능상에 큰 변화는 있지 않았고, 성능이 너무 낮게 나와 지난 과제에서 만든 Sigmoid + MSE 모델과 현재의 Softmax + Cross Entropy 모델을 비교해보기로했다. 결과는 놀랍게도 Sigmoid + MSE 모델이 현저히 높은 정확도를 가졌다.

지난 과제에서 단층 퍼셉트론일 때 정확도가 높게 나온 것은 단순히 우연의 일치이고, 역전파 과정에서 경사소실이 일어날 가능성이 큰 Sigmoid + MSE 모델이기에 다층 퍼셉트론에선 정확도가 Softmax + Cross Entropy 모델에서 더 크게 나올 것으로 기대했다. 하지만 단층퍼셉트론과 마찬가지로 다층 퍼셉트론에서도 Sigmoid + MSE 모델이 정확도가 더 높게 나왔다. 철판 분류 문제의 dataset의 특징이거나 내가 제작한 Sigmoid + MSE 모델에 문제가 있을 것이라고 생각한다.