- 1. Un rectángulo tiene 20 m de perímetro. Expresar el área del rectángulo como función de la longitud de uno de sus lados.
- 2. Dar el área de la superficie de un cubo como función de su volumen.
- 3. Encontrar el dominio de las funciones definidas por las siguientes fórmulas:

(a)
$$f(x) = \sqrt{1 - x^2}$$
.

(b)
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$
.

(c)
$$f(x) = \frac{1}{x-1} + \frac{1}{x-2}$$
.

(d)
$$f(x) = (\sqrt{x})^2$$
.

(e)
$$f(x) = \begin{cases} 0, & |x| > 1\\ \sqrt{1 - x^2}, & |x| \le 1. \end{cases}$$

4. Encontrar el dominio y la imagen de las siguientes funciones:

$$f(x) = \frac{1}{x^2 + 1},$$

$$g(x) = \frac{1}{x^2 - 1}.$$

- 5. Sea f(x) = 1/(1+x). Dar el dominio de las siguientes funciones y determinar la expresión de cada una de ellas:
 - (a) P(x) = f(f(x)).
 - (b) Q(x) = f(1/x).
 - (c) R(x) = f(cx).
- **6.** Sean $C(x) = x^2$, $P(x) = \frac{1}{x}$ y S(x) = sen(x).
 - (i) Dar el dominio de las siguientes funciones y determinar la expresión de cada una de ellas:

(a)
$$(C \circ P)(y)$$
.

(b)
$$(C \circ P \circ S)(t) + (S \circ P)(t)$$
.

(ii) Expresar cada una de las siguientes funciones en términos de C, P, S.

(a)
$$f(x) = \frac{1}{\text{sen}(x^2)}$$
.

(a)
$$f(x) = \frac{1}{\sin(x^2)}$$
. (b) $f(t) = \sin(\sin(t))$. (c) $f(u) = \sin^2(\frac{1}{u})$.

(c)
$$f(u) = \operatorname{sen}^2\left(\frac{1}{u}\right)$$

7. (a) Para cada conjunto $A\subset\mathbb{R}$ definimos la función C_A como sigue:

$$C_A(x) = \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{cases}$$

Si A v B son dos subconjuntos arbitrarios de los números reales, encontrar expresiones para $C_{A \cap B}$, $C_{A \cup B}$ y $C_{\mathbb{R} \setminus A}$, en términos de C_A y C_B .

- (b) Probar que si f es una función tal que f(x) = 0 ó 1 para todo x, entonces existe un conjunto A tal que $f = C_A$.
- (c) Demostrar que $f = f^2$ si y sólo si $f = C_A$ para algún conjunto A.
- 8. Decir si las siguientes afirmaciones son verdaderas o falsas, donde f, g y h son funciones definidas en todo \mathbb{R} .
 - (a) Si f y g son pares, entonces f + g es par.
 - (b) Si f es par y q es impar, entonces f + q es impar.
 - (c) Si f y g son impares, entonces fg es par.
 - (d) Si f y g son impares, entonces $f \circ g$ es par.
 - (e) La función |f| es par.
 - (f) La función f(|x|) es par.

- (g) $f \circ (g+h) = f \circ g + f \circ h$. (h) $\frac{1}{f \circ g} = \frac{1}{f} \circ g$.
- **9.** (a) Sea f(x) = x + 1. Existe una función g tal que $f \circ g = g \circ f$?
 - (b) Sea f una función constante. ¿Para qué funciones g se cumple $f \circ g = g \circ f$?
 - (c) Supongamos que f es una función tal que $f \circ g = g \circ f$ para toda función g. Demostrar que f es la función identidad.
- **10.** Sea

$$f(x) = \begin{cases} x+1 & 0 \le x < 1, \\ -x+3 & 1 \le x < 4, \\ \frac{1}{2}x-3 & 4 \le x \le 6. \end{cases}$$

Graficar la función g donde:

(a)
$$q(x) = f(x)$$
.

(b)
$$g(x) = f(x) - 1$$
.

(b)
$$g(x) = f(x) - 1$$
. (c) $g(x) = f(x+2)$.

(d)
$$g(x) = 2f(x)$$
.

(e)
$$g(x) = -f(x)$$

(e)
$$g(x) = -f(x)$$
. (f) $g(x) = f(2x)$.

(g)
$$g(x) = f(\frac{1}{2}x)$$
.

(h)
$$g(x) = f(-x)$$
.

(i)
$$g(x) = |f(x)|$$
.

11. Esbozar la gráfica de las siguientes funciones, dar su dominio e imagen, y analizar si son invectivas.

(a)
$$a(t) = 5t - 2$$
.

(a)
$$a(t) = 5t - 2$$
. (b) $b(x) = 3x^2 + 2x - 1$. (c) $c(t) = -t^2 + 1$.

(c)
$$c(t) = -t^2 + 1$$
.

(d)
$$d(t) = |t - 3|$$
. (e) $X(t) = \frac{t}{|t|}$.

(e)
$$X(t) = \frac{t}{|t|}$$
.

(f)
$$V(x) = |\operatorname{sen}(x)|$$
.

(g)
$$W(t) = \operatorname{sen}^2(t)$$

(g)
$$W(t) = \text{sen}^2(t)$$
. (h) $f(x) = \sqrt{x+1}$.

12. Hallar f^{-1} para cada una de las siguientes funciones, e indicar su dominio.

(a)
$$f(x) = x^3 + 1$$
.

(b)
$$f(x) = (x-1)^3$$
.

(c)
$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q}, \\ -x & \text{si } x \notin \mathbb{Q}. \end{cases}$$
 (d) $f(x) = \begin{cases} \frac{1}{2}x & \text{si } x < 0, \\ 2x & \text{si } x \ge 0. \end{cases}$ (e) $f(x) = \begin{cases} -\frac{1}{x-2} & \text{si } x \ne 2, \\ 0 & \text{si } x = 2. \end{cases}$ (f) $f(x) = \begin{cases} -x^2 & \text{si } x \ge 0, \\ 1-x^3 & \text{si } x < 0. \end{cases}$

(d)
$$f(x) = \begin{cases} \frac{1}{2}x & \text{si } x < 0, \\ 2x & \text{si } x \ge 0. \end{cases}$$

(e)
$$f(x) = \begin{cases} -\frac{1}{x-2} & \text{si } x \neq 2, \\ 0 & \text{si } x = 2. \end{cases}$$

(f)
$$f(x) = \begin{cases} -x^2 & \text{si } x \ge 0, \\ 1 - x^3 & \text{si } x < 0. \end{cases}$$

13. Para cada una de las siguientes funciones, escoger un intervalo cerrado [a, b] de tal manera que la función restringida a tal intervalo es inyectiva. Dar en cada caso la función inversa restringida a la imagen.

(a)
$$f(x) = -x^2$$

(b)
$$f(x) = \frac{1}{x^2}$$
.