Transcriptional Recording by CRISPR Spacer Acquisition from RNA

Florian Schmidt, Mariia Y. Cherepkova & Randall J. Platt

Bushra Haque

RNA Sequencing

- RNA sequencing can examine the quantity and sequences of RNA in a cell sample using next generation sequencing
- 1. Convert isolated RNA into cDNA fragments
- 2. Addition of adapters to ends of fragments
- 3. NGS analysis
- 4. Aligned to a reference genome
- 5. Assembly
- Limitations:
 - Destructive methods
 - One snapshot at a time

CRISPR-Cas Immune System

(Schmidt et al., 2018)

Significance

- Allows understanding of our transcriptome, including:
 - o mRNA, rRNA, and tRNA
- Form connections between genome information and functional protein expression
- Cell biology and associations with disease

Hypothesis

 CRISPR spacer acquisition from RNA could be leveraged to store transcriptional records in CRISPR arrays to provide a temporal perspective of cellular activity

FsRT-Cas1-Cas2

- Overexpressing reverse-transcriptase
 - (RT) Cas1 containing CRISPR-Cas system orthologues in E. coli cells
- Identified an ortholog from
 Fusicatenibacter saccharivorans
- FsRT-Cas1-Cas2 = FCC

RNA Acquisition

Self-Splicing td Group I Intron

This intron is a functional ribozyme that catalyzes its own excision from the pre-mRNA

RNA Acquisition

Enterobacteria phage MS2

- These phage can exist with both sense and antisense single stranded RNA during life cycle
- No DNA intermediate

Quantitative Recording

sfGFP & Rluc

- Inducible expression system to determine if spacer acquisition is based on RNA abundance
- Under control of anhydrotetracycline (aTc)-inducible P_{tetA} promoter
- Dose-dependant increase in amount of spacers
- KanR control

Quantitative Recording

Fluc

- Second inducible expression system
- Under control of 3-oxohexanoyl-homoserine lactone inducible P_{luxR} promoter
- Combined both expression systems
- Transcriptional records are quantifiable

Proof of Principle

Oxidative & Acid Stress

- Used Record-seq to record and describe complex cellular behaviours
- Analyzed cumulative gene expression counts
- Detected RNA upregulation within bacterial populations due to stress by treatment with:
 - Hydrogen peroxide
 - Acid

Proof of Principle

d

Paraguat

- Bacteriostatic herbicide
- Three cell conditions:
 - Untreated
 - Transient paraquat
 - Paraguat

(Schmidt et al., 2018)

Record-seg showed bacterial record of genes transiently upregulated by paraguat while RNA-seq was unable to detect these genes

Critical Assessment

- Systematic approach
- Low efficiency of spacer acquisition
 - One spacer acquisition event per 20, 000 E. coli cells
- Further extrapolated with future studies with mammalian cells
- Discovery and use of alternate RT-Cas1 orthologues
- Alternate Cas proteins (e.g. Cas 6)

Summary

- Is there an RT-Cas1-Cas1 CRISPR acquisition complex that could acquire spacers directly from RNA and be expressed in *E. coli*?
- Can this RT-Cas1-Cas1 system acquire spacers directly from RNA?
- Can this system be used to quantitatively record transcriptional events in the cell?
- Does it reveal and describe complex cell behaviours?
- Does the use of this system exceed the abilities of RNA-seq?

References

CRISPR Reworked to Record a Cell's Own Transcriptional Activity *The Scientist Magazine*® https://www.the-scientist.com/news-opinion/crispr-reworked-to-record-a-cells-own-transcriptional-activity-64967. Accessed November 2, 2019.

Mackenzie, R. (2018) RNA-seq: Basics, Applications and Protocol. *Genomics Research from Technology Networks*https://www.technologynetworks.com/genomics/articles/rna-seq-basics-applications-and-protocol-299461. Accessed November 2, 2019.

McGinn, J., and Marraffini, L.A. (2019) Molecular mechanisms of CRISPR-Cas spacer acquisition. *Nat Rev Microbiol* 17: 7–12.

Schmidt, F., Cherepkova, M.Y., and Platt, R.J. (2018) Transcriptional recording by CRISPR spacer acquisition from RNA. *Nature* 562: 380–385.

Silas, S., Mohr, G., Sidote, D.J., Markham, L.M., Sanchez-Amat, A., Bhaya, D., *et al.* (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein. *Science* 351 https://science.sciencemag.org/content/351/6276/aad4234. Accessed November 2, 2019.

Terns, R.M., and Terns, M.P. (2014) CRISPR-based technologies: prokaryotic defense weapons repurposed. *Trends in Genetics* 30: 111–118.