SS 2020 • Analysis IIa • Übungsaufgaben

Blatt 6

Abgabefrist: bis zum 04.06.2020 um 23:59:59

als PDF-Datei an den zuständigen Tutor

Aufgabe 1 (4 Punkte + 2 Punkte)

1. Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ definiere

$$||x||_{\infty} := \max\{|x_1|, \dots, |x_n|\}, \quad ||x||_1 := |x_1| + \dots + |x_n|.$$

Beweisen Sie, dass $\|\cdot\|_{\infty}$ und $\|\cdot\|_{1}$ Normen auf \mathbb{R}^{n} sind.

2. Sei n = 2. Betrachte die durch $\|\cdot\|_{\infty}$ und $\|\cdot\|_{1}$ induzierten Metriken d_{∞} und d_{1} auf \mathbb{R}^{2} . Zeichnen Sie die offenen Kugeln $K_{1}(0)$ für diese Metriken.

Aufgabe 2 (3 Punkte)

Sei (X, d) ein metrischer Raum. Definiere $d': X \times X \to \mathbb{R}$,

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Ist d' eine Metrik auf X?

Aufgabe 3 (2 + 3 Punkte)

Bestimme den Abschluss, das Innere und den Rand der folgenden Mengen M in X (der Raum X ist mit der euklidischen Metrik versehen):

1.
$$X = \mathbb{R}, M = \left\{ \frac{n-1}{n} : n \in \mathbb{N} \right\},$$

2.
$$X = \mathbb{Q}, M = \{x \in \mathbb{Q} : 0 \le x \le \sqrt{2}\}.$$

Aufgabe 4 (2+2+2 Punkte)

Seien (X, d) ein metrischer Raum, \mathcal{A} eine nichtleere Menge, $(M_{\alpha})_{\alpha \in \mathcal{A}}$ eine Familie offener Mengen in X.

- 1. Zeigen Sie, dass die Menge $M' := \bigcup_{\alpha \in \mathcal{A}} M_{\alpha}$ offen ist (unabhängig davon, ob \mathcal{A} endlich oder unendlich ist).
- 2. Nehme an, dass \mathcal{A} endlich ist. Zeigen Sie, dass die Menge $M'' := \bigcap_{\alpha \in \mathcal{A}} M_{\alpha}$ offen ist.
- 3. Sei $(N_{\alpha})_{\alpha \in \mathcal{A}}$ eine Familie abgeschlossener Mengen in X. Was kann man über die Abgeschlossenheit von $N' := \bigcup_{\alpha \in \mathcal{A}} N_{\alpha}$ und $N'' := \bigcap_{\alpha \in \mathcal{A}} N_{\alpha}$ sagen? Hinweis: Betrachten Sie $(N')^c$ und $(N'')^c$.

Präsenzaufgaben

- 1. Sei (X, d) ein metrischer Raum und $a \in X$. Definiere $d' : X \times X \to \mathbb{R}$ durch d'(x, y) = d(x, a) + d(y, a). Ist d' auch eine Metrik auf X?.
- 2. Seien (X_1, d_1) und (X_2, d_2) metrische Räume. Betrachte

$$d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}, \quad d((x_1, x_2), (y_1, y_2)) = \max \{d_1(x_1, y_1), d_2(x_2, y_2)\}.$$

Zeigen Sie, dass d eine Metrik auf $X_1 \times X_2$ ist.

- 3. Sei X eine nichtleere Menge und d die diskrete Metrik, d(x,y) = 0 für x = y und d(x,y) = 1 sonst.
 - (a) Zeigen Sie, dass d wirklich eine Metrik auf X ist.
 - (b) Wie kann man alle konvergenten Folgen in (X, d) charakterisieren?
 - (c) Zeigen Sie, dass jede Teilmenge von X bzgl. d gleichzeitig offen und abgeschlossen ist.
- 4. Sei (X, d) ein metrischer Raum und $M \subset X$ eine endliche Menge. Zeigen Sie, dass M^c offen ist und dass M abgeschlossen ist.
- 5. Sei (p_k) eine Folge in \mathbb{R}^n , $p_k = (p_k^{(1)}, \dots, p_k^{(n)})$ mit $p_k^{(j)} \in \mathbb{R}$. Zeigen Sie, dass (p_k) genau dann in \mathbb{R}^n konvergiert (bzgl. der euklidischen Norm), wenn jede der Folgen $(p_k^{(j)})$ in \mathbb{R} konvergiert.
- 6. Seien $M \subset \mathbb{R}^m$ und $N \subset \mathbb{R}^n$ abgeschlossene Mengen. Ist $M \times N$ in \mathbb{R}^{m+n} abgeschlossen? (Alle Räume sind mit der euklidischen Metrik versehen.)
- 7. Bestimmen Sie den Abschluss, das Innere und den Rand der folgenden Mengen M in X (alle Räume sind mit der euklidischen Metrik versehen.):
 - (a) $X = \mathbb{R}, M = (0,1] \cup [2,3).$
 - (b) $X = \mathbb{R}, M = \mathbb{R} \setminus \mathbb{Q},$
 - (c) $X = \mathbb{R}^2$, $M = (0, +\infty) \times \{0\}$,
- 8. Sei (X, d) ein metrischer Raum und $M \subset X$.
 - (a) Sei A eine abgeschlossene Menge mit $M \subset A$. Zeigen Sie, dass $\overline{M} \subset A$ (also ist \overline{M} die kleinste abgeschlossene Menge, die M enthält).
 - (b) Sei B eine offene Menge mit $B \subset M$. Zeigen Sie, dass $B \subset M$ (also ist M die grösste offene Menge, die in M enthalten ist).