

Subject: Electronic Design Principles

Topic: Instrumental Amplifier

Student: Minh Quan Tran

Table of Contents

1.	Obj	ectives	4
2.	The	ory and Calculation	5
2	2.1	Theory	5
4	2.2	Design and Calculation	5
		ign and Result	
(3.1	Multisim's design.	7
(3.2	Breadboard's design	7
(3.3	Result	8
4.	CO	NCLUSION1	1

TABLE OF FIGURES

Figure 2-1: Instrumentation Amplifier's design	5
Figure 2-2: Formula to calculate V _{out}	
Figure 2-3: LM348N's datasheet	
Figure 3-1: Multisim's design	
Figure 3-2: Breadboard's design	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~
TABLE'S OF TABLE	
Table 3-1: Input for Instrumentation Amplifier	9
Table 3-2: Output for Instrumentation Amplifier	

#### 1. Objectives

# 1. Objectives

- Build an Instrumentation Amplifier with all 7 input resistor are the same
- Show your design in using Multisim in your pre-lab.
- Prepare a table for measurement in advance to prove that your circuit work by comparing your calculated values with the actual values.

### 2. Theory and Calculation

#### 2.1 Theory

- An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It is optimized for small differential signals that may be riding on a large common mode voltages.

### 2.2 Design and Calculation



Figure 2-1: Instrumentation Amplifier's design

For this design the following equipment are use:

- 7 Resistors 10k
- IC LM348N
- Function Generator
- Power Supply

Formula to calculate Vout:



Figure 2-2: Formula to calculate V_{out}

So with all R are the same:

$$A = \frac{R}{R} \left( 1 + \frac{2R}{R} \right)$$
$$A = 3$$

### - Power supply:

#### recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC+}	4	18	V
Supply voltage, V _{CC} _	-4	-18	V

Figure 2-3: LM348N's datasheet

From the datasheet, it said that it recommended that the power supply of  $V_{cc+}$  should be in range from 4V to 18V, and for  $V_{cc-}$  should be from -4 to -18.

## 3. Design and Result

For this assignment, 6 cases will be tested, 3 will be with DC power and 3 will be from AC power.

### 3.1 Multisim's design.



Figure 3-1: Multisim's design

### 3.2 Breadboard's design



Figure 3-2: Breadboard's design

#### 3.3 Result

- Input:





Table 3-1: Input for Instrumentation Amplifier

- Output:





Table 3-2: Output for Instrumentation Amplifier

## 4. CONCLUSION

From the result of all cases:

- All cases have Theory's result, Multisim's result and Breadboard's result nearly the same.

# **REFERENCES**