

### SÍLABO ÁLGEBRA LINEAL

# I. ÁREA CURRICULAR: MATEMÁTICA Y CIENCIAS BÁSICAS

### II. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-l1.3 Código de la asignatura : 09036602050

1.4Ciclo: II1.5Créditos: 51.6Horas semanales totales: 10

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 6 (T=4, P=2, L=0))

1.6.2. Horas no lectivas : 4

1.7 Condición del Curso : Obligatorio1.8 Requisito(s) : Ninguno

1.9 Docente : Mg. Carmen Rosa Monzón Monzón

### III. SUMILLA

El curso corresponde al área curricular de Matemática y Ciencias Básicas; es de carácter obligatorio y de naturaleza teórico y práctico está orientada a promover en los estudiantes los conocimientos y técnicas del algebra lineal, pretende desarrollar habilidades y estrategias de razonamiento para resolver problemas de la vida real, aplicar los conceptos, Métodos y técnicas.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Ecuaciones lineales y matrices. II. Vectores en R<sup>2</sup>, R<sup>3</sup> y Rn III. Espacios vectoriales reales y IV. Transformaciones lineales y matrices. Aplicaciones del algebra lineal

### IV. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

### 3.1 Competencias

- . Aplica la teoría de matrices y determinantes
- . Define e interpreta los vectores en general
- . Aplica con propiedades si es un espacio Vectorial
- . Demuestra con claridad orden y precisión si son transformaciones lineales.

### 3.2 Componentes

### Capacidades

- . Aplica la teoría de matrices y determinantes para resolver sistemas de ecuaciones lineales.
- Realiza operaciones con vectores y representarlos gráficamente en el plano y en el espacio
- Aplica las propiedades de los espacios vectoriales en la resolución problemas de la geometría en  $R^n$
- Reconoce si una función dada entre dos espacios vectoriales constituye o no una transformación lineal e identificar el núcleo y la imagen de la transformación lineal

### Contenidos actitudinales

- Aprecia la importancia de los tipos Matrices para la solución de los problemas
- Reflexiona sobre el procedimiento seguido para hallar las aplicaciones correspondientes
- Participa activamente en la solución de problemas Matriciales
- Persevera en su propósito de aprender los temas que se le presenta en este curso

### V. PROGRAMACIÓN DE CONTENIDOS

# UNIDAD I : ECUACIONES LINEALES Y MATRICES

• CAPACIDAD: Aplica la teoría de matrices y determinantes para resolver sistemas de ecuaciones lineales.

| SEMANA | CONTENIDOS CONCEPTUALES                                                                                                                                                                                       | CONTENIDOS PROCEDIMENTALES                                                                                                                                                                                                                                         | ACTIVIDAD DE APRENDIZAJE                                                                                                                                                        | HC<br>L | T.I. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| 1      | Primera sesión: Prueba de entrada. Sistemas de ecuaciones. Eliminación de Gauss Jordan. Segunda sesión: Matrices. Operaciones con matrices, Propiedades. Características.                                     | Responde la prueba de entrada     Explica los tipos de Matrices y propiedades     Resuelve problemas con matrices                                                                                                                                                  | Lectivas (L):  Introducción al tema - 1 h  Desarrollo del tema - 3 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | 6       | 4    |
| 2      | Primera sesión: Producto punto de vectores". Multiplicación de matrices. Sistemas de ecuaciones lineales. Segunda sesión: Propiedades de las operaciones con matrices Propiedades                             | <ul> <li>Resuelve problemas usando multiplicación de matrices</li> <li>Resuelve sistemas de ecuaciones lineales reconociendo su consistencia o inconsistencia y el número de soluciones posibles</li> <li>Ordena la información en términos matriciales</li> </ul> | Lectivas (L):  Desarrollo del tema - 2 h  Ejemplos del tema - 2 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2h  Trabajo Aplicativo - 2 h     | 6       | 4    |
| 3      | Primera sesión: Operaciones elementales por fila. Solución de ecuaciones lineales. Sistemas homogéneos. Segunda sesión: Inversa de una matriz cuadrada. Método de Gauss-Jordan para el cálculo de la inversa. | - Aplica los diferentes métodos de obtención de una matriz inversa                                                                                                                                                                                                 | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema - 1 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2h  Trabajo Aplicativo - 2h      | 6       | 4    |
| 4      | Primera sesión: Determinante. Propiedades de los determinantes. Definición de menor. Cofactor. Segunda sesión: Adjunta de una matriz. Inversa de una matriz por medio de la adjunta. Regla de Cramer          | - Emplea eficientemente las propiedades en el desarrollo de un determinante                                                                                                                                                                                        | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema - 1 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h    | 6       | 4    |

# UNIDAD II: VECTORES EN R2, R3, Rn SUBESPACIOS

• CAPACIDAD: Realiza operaciones con vectores y representarlos gráficamente en el plano y en el espacio

| SEMANA | CONTENIDOS CONCEPTUALES                                                                                                                                                                 | CONTENIDOS PROCEDIMENTALES                                                                                                                                                                                                                                      | ACTIVIDAD DE APRENDIZAJE                                                                                                                                                     | HO<br>L | RAS<br>T.I. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|
| 5      | Primera sesión: Vectores en R². Norma de un vector. Vector unitario. Segunda sesión: Operaciones con vectores. Propiedades. Área del paralelogramo y del triángulo.                     | <ul> <li>Reconoce un vector en el plano y en el espacio</li> <li>Explica e interpretar un vector en el plano ,su magnitud y su dirección de un vector</li> <li>Aplica la teoría para resolver problemas relacionados con el área de un paralelogramo</li> </ul> | Lectivas (L):  Desarrollo del tema - 2 h  Ejemplos del tema - 2 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | _ 6     | 4           |
| 6      | Primera sesión: Vectores en R³. Operaciones con vectores. Introducción a las transformaciones lineales. Segunda sesión: Producto vectorial de vectores. Área. Volumen. Rectas y planos. | <ul> <li>Interpreta el producto vectorial, para sus respectivas aplicaciones</li> <li>Desarrolla ejercicios para calcular el área y volumen.</li> </ul>                                                                                                         | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema – 1 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | - 6     | 4           |
| 7      | Primera sesión: Introducción. Definición y propiedades básicas. Segunda sesión: Subespacios. Definición. Propiedades. Reglas de cerradura                                               | Revisión de temas previos onoce ,interpreta y aplica correctamente los subespacios vectoriales     Demuestra con ejemplos si es un subespacio vectorial                                                                                                         | Lectivas (L):  Desarrollo del tema - 3 h Ejemplos del tema - 2h Ejercicios en aula - 1 h  Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h      | 6       | 4           |
| 8      | Revisión de temas previos                                                                                                                                                               | - Resuelve ejercicios de temas previios                                                                                                                                                                                                                         | Lectivas (L):  Desarrollo del tema - 0  Ejemplos del tema - 0  Ejercicios en aula - 6  Trabajo Independiente (T.I):  Resolución tareas - 2h  Trabajo Aplicativo - 2 h        | 6       | 4           |

# UNIDAD III: ESPACIOS VECTORIALES REALES

• CAPACIDAD: Aplica las propiedades de los espacios vectoriales en la resolución problemas de la geometría en  $R^n$ .

| SEMANA | CONTENIDOS CONCEPTUALES                                                                                                                                                                                             | CONTENIDOS PROCEDIMENTALES                                                                                                                                                  | ACTIVIDAD DE APRENDIZAJE                                                                                                                                                     | НО  | RAS           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 9      | Primera sesión: Combinación lineal. Conjunto generador. Espacio generado por un conjunto de vectores. Segunda sesión: Dependencia e independencia lineal. Interpretación geométrica de dependencia lineal en R³.    | Comprende el significado de espacios vectoriales reales de dimensión finita.     Deduce si los vectores son linealmente independiente o dependiente                         | Lectivas (L):  Desarrollo del tema - 2 h  Ejemplos del tema - 2 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | 6   | <b>T.I.</b> 4 |
| 10     | Primera sesión: Bases, definición. Dimensión, definición. Segunda sesión: Sistemas homogéneos. Nulidad. Relación entre homogéneos y no homogéneos.                                                                  | - Analiza y utiliza los conceptos de generadores, Base y dimensión y los teoremas respectivos en solución de problemas                                                      | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema - 1 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | - 6 | 4             |
| 11     | Primera sesión: Rango de una matriz. Rango y singularidad. Aplicaciones del rango a los sistemas lineales. Segunda sesión: Coordenadas y cambio de base. Ilustración de un espacio vectorial. Matriz de transición. | <ul> <li>Desarrolla ejercicios aplicando el rango de una matriz</li> <li>Reconoce una matriz de transición</li> <li>Desarrolla ejercicios usando cambio de base.</li> </ul> | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema - 2h  Ejercicios en aula - 1 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h  | 6   | 4             |
| 12     | Primera sesión: Bases ortogonales en R <sup>n</sup> . Proceso de Gram-Schmidt. Segunda sesión: Matriz ortogonal. Proyección ortogonal. Complemento ortogonal. Cuarta práctica calificada.                           | - Aplica la teoría para Transformar bases ortonormales                                                                                                                      | Lectivas (L):  Desarrollo del tema - 0  Ejemplos del tema - 0  Ejercicios en aula - 6  Trabajo Independiente (T.I):  Resolución tareas - 2h  Trabajo Aplicativo - 2 h        | _ 6 | 4             |

# UNIDAD IV: TRANSFORMACIONES LINEALES Y MATRICES. APLICACIONES DEL ALGEBRA LINEAL

CAPACIDAD: Reconoce si una función dada entre dos espacios vectoriales constituye o no una transformación lineal e identificar el núcleo y la imagen de la transformación lineal

| SEMANA | CONTENIDOS CONCEPTUALES                                                                                                                                                                                        | CONTENIDOS PROCEDIMENTALES                                                                                                                                                                                    | ACTIVIDAD DE APRENDIZAJE                                                                                                                                                     | НО  | RAS<br>T.I. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| 13     | Primera sesión: Valores y vectores propios. Ecuación y polinomio característicos. Multiplicidad algebraica. Segunda sesión: Matrices similares. Matriz diagonalizable. Diagonalización de matrices simétricas. | Aplica la teoría para hallar los valores y vectores propios     Determina la matriz diagonalizable                                                                                                            | Lectivas (L):  Desarrollo del tema - 2 h  Ejemplos del tema - 2 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | 6   | 4           |
| 14     | Primera sesión: Transformaciones lineales. Reflexión respecto al eje X. transformaciones de rotación. Segunda sesión: Núcleo de una transformación. Imagen de una transformación lineal.                       | <ul> <li>Formula la Matriz asociada a una transformación lineal entre dos espacios vectoriales R<sup>m</sup> a R<sup>n</sup></li> <li>Demuestra usando la teoría si son transformaciones lineales.</li> </ul> | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema – 1 h  Ejercicios en aula - 2 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h | - 6 | 4           |
| 15     | Primera sesión: Representación matricial de una transformación lineal. Segunda sesión: Aplicaciones: Programación lineal, problemas económicos de la programación lineal                                       | - Identifica la relación de las transformaciones lineales con las matrices                                                                                                                                    | Lectivas (L):  Desarrollo del tema - 3 h  Ejemplos del tema - 2h  Ejercicios en aula - 1 h  Trabajo Independiente (T.I):  Resolución tareas - 2 h  Trabajo Aplicativo - 2 h  | 6   | 4           |
| 16     |                                                                                                                                                                                                                | Examen final                                                                                                                                                                                                  |                                                                                                                                                                              |     | <u>I</u>    |
| 17     |                                                                                                                                                                                                                | Entrega de promedios finales y acta del curso.                                                                                                                                                                |                                                                                                                                                                              |     |             |

### VI. ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

### VII. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones, manual universitario, obras literarias, artículos de revistas y periódicos.

### VIII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

$$PF = (2*PE + EF) / 3$$

### PE= (P1+P2+P3+P4+P4-MN)/4

Donde:

PF : Promedio Final

PΕ : Promedio de evaluación

EF : Examen final

P1, ..., P4: Prácticas calificadas (escrito)

MN : Menor nota entre las prácticas calificadas

#### **FUENTES DE CONSULTA** IX.

(h)

(i)

de su vida

### **Bibliográficas**

- Kolman, B. (2006). Álgebra Lineal. Octava edición. México: Pearson Educación
- Grossman, S. (2007). Elementary Linear Algebra With Applications Quinta edición. China: Mc Graw-Hill Interamericana
- Grossman, S. (2008) Álgebra Lineal. Sexta edición. China: Mc Graw-Hill Interamericana.

R = relacionado

Espinoza, E. (2006). Álgebra Lineal.2da Edición Impreso en el Perú.

### APORTE DEL CURSO AL LOGRO DE RESULTADOS

K = clave

ingeniería dentro de un contexto social y global

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

Recuadro vacío = no aplica

R

| (a) | Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería                            | K |
|-----|-----------------------------------------------------------------------------------------------------|---|
| (b) | Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos |   |
| (c) | Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas   |   |
| (d) | Habilidad para trabajar adecuadamente en un equipo multidisciplinario                               |   |
| (e) | Habilidad para identificar, formular y resolver problemas de ingeniería                             | K |
| (f) | Comprensión de lo que es la responsabilidad ética y profesional                                     |   |
| (g) | Habilidad para comunicarse con efectividad                                                          |   |

Una educación amplia necesaria para entender el impacto que tienen las soluciones de la

Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo

| (j | j) | Conocimiento de los principales temas contemporáneos                                                     | I |
|----|----|----------------------------------------------------------------------------------------------------------|---|
| (k | (۲ | Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería |   |

El aporte del curso al logro de los resultados del estudiante (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

**K** = clave **R** = relacionado **Recuadro vacío** = no aplica

| a. | Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.                 | K |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| b. | Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.                                                  | K |
| C. | Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas. |   |
| d. | Habilidad para trabajar con efectividad en equipos para lograr una meta común.                                                                               |   |
| e. | Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.                                                        |   |
| f. | Habilidad para comunicarse con efectividad con un rango de audiencias.                                                                                       |   |
| g. | Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.                                         |   |
| h. | Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.                                                         |   |
| i. | Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.                                              | R |
| j  | Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.        |   |