INF100 – Introdução à Programação I

Roteiro Prática 28 a 31 de maio de 2018

Nome do arquivo a ser entregue: p12.py

Base para esta prática: Aula 06 (em especial o Exercício 6); Exercícios D.05 e D.12 do run.codes.

Faça o <u>download</u> de todos os arquivos. Depois entre no IDLE e abra o arquivo **p12.py** dentro do IDLE. Execute o programa e veja se está funcionando corretamente. Deve aparecer na tela as figuras mostradas abaixo:

A primeira imagem é a original. A outra é a imagem rotacionada em 180°.

Agora estude o código do programa, juntamente com os comentários que explicam o propósito de cada linha. Em seguida, complete o código para que o programa efetue as transformadas explicadas a seguir. Para cada uma delas, você deve adotar a mesma abordagem já mostrada no "esqueleto" do programa:

- 1. Montar a imagem (matriz) dentro da variável **im2**., copiando para dentro dela os dados da imagem original, que está na variável em **im1**.
- 2. Mostrar a imagem **im2**.

Espelhar a imagem na horizontal

Para espelhar a imagem na horizontal, devemos "inverter" cada uma das m linhas da matriz. Se olharmos para uma linha i qualquer da matriz, teremos o seguinte:

Segue um exemplo:

Imagem espelhada na horizontal

Espelhar a imagem na vertical

Esse caso é muito semelhante ao anterior, só que devemos "inverter" cada uma das n colunas da matriz. Segue um exemplo:

Prática 12 - INF100 - 2018/I - Valor: 1 ponto

Imagem Original

Imagem espelhada na vertical

Rotacionar a imagem 90° no sentido horário

Segue um exemplo:

Imagem Original

Imagem rotacionada

Para construir essa imagem rotacionada (e as duas imagens a seguir), precisamos criar a matriz im2 com as dimensões trocadas em relação à original. Ou seja, em vez de $m \times n$, ela será de tamanho $n \times m$. Podemos fazer isso usando o comando:

im2 = imagens.Imagem('', (n,m))

Rotacionar a imagem 90° no sentido anti-horário

Segue um exemplo:

Imagem Original

Imagem rotacionada

Obter a Transposta da imagem

Toda matriz A possui uma transposta $B = A^T$ se e somente se $B_{ij} = A_{ji}$ para todo elemento (j,i) de A. Cada <u>linha</u> i da matriz transposta corresponde à <u>coluna</u> i da matriz original, e vice-versa, como mostra o exemplo abaixo.

A:				
	1	2	3	
	4	5	6	

A^T :				
	1	4		
	2	5		
	3	6		

Segue um exemplo:

Imagem transposta

Testando outra imagem

Troque o nome do arquivo no início do programa. No lugar de **jardim.jpg**, use o **holli.jpg** e execute o programa novamente. **Obs.**: Você pode entregar o programa usando qualquer uma dessas duas imagens.

Não esqueça de preencher o <u>cabeçalho</u> com seus dados e uma breve descrição do programa.

Após certificar-se que seu programa está correto, envie o arquivo do programa fonte (**p12.py**) através do sistema do LBI.