Topics in machine learning: Naresh Manwani

Siddharth Bhat

Monsoon 2019

Contents

1	Policy iteration	5
	1.1 Value iteration algorithm	F

4 CONTENTS

Chapter 1

Policy iteration

$$\pi_{k+1}(s) = \text{arg} \max_{\alpha \in A(s)} r(s,\alpha) + \gamma \sum_{s} P(s'|s,\alpha) \nu_{\pi_k}(s')$$

Theorem 1 The policy iteration algorithm generates a sequence of policies with non-decreasing state values. That is, $V^{\pi_{k+1}} \geqslant V^{\pi_k}$, $V^{\pi} \in \mathbb{R}^n$, is the vector of state values for state π

Proof 1 F^{π_k} is the bellman expectation operator (?) Since V^{π_k} is a fixed point of F^{π_k} ,

```
\begin{split} V^{\pi_k} &= F^{\pi_k}(V^{\pi_k}) \leqslant F(V^{\pi_k}) \qquad (\textit{upper bounded by max value}) \\ F(V^{\pi_k}) &= F^{\pi_{k+1}}(V^{\pi_k}) \qquad (\textit{By defn of policy improvement step}) \\ V^{\pi_k} &\leqslant F^{\pi_{k+1}}(V^{\pi_k}) \qquad (\textit{eqn 1}) \\ F^{\pi_{k+1}}(V^{\pi_k}) &\leqslant (F^{\pi_{k+1}})^2(V^{\pi_k}) \qquad (\textit{Monotonicity of } F^{\pi_{k+1}}) \\ \forall t \geqslant 1, \ F^{\pi_{k+1}}(V^{\pi_k}) \leqslant (F^{\pi_{k+1}})^t(V^{\pi_k}) \qquad (\textit{Monotonicity of } F^{\pi_{k+1}}) \\ F^{\pi_{k+1}}(V^{\pi_k}) &\leqslant (F^{\pi_{k+1}})^t(V^{\pi_k}) \leqslant V^{\pi_{k+1}} \qquad (\textit{Contraction mapping, } V^{\pi_{k+1}} \; \textit{is fixed point}) \\ V^{\pi_k} &= F^{\pi_{k+1}}(V^{\pi_k}) \leqslant V^{\pi_{k+1}} \end{split}
```

For a set of actions \mathcal{A} and a set of states \mathcal{S} , the total number of policies is $|\mathcal{A}^{\mathcal{S}}|$. The number of computations per iteration is $O(|\mathcal{S}|^3)$. So the loose upper bound is be $O(|\mathcal{S}|^3 \times |\mathcal{A}^{\mathcal{S}}|)$.

1.1 Value iteration algorithm

```
let v n s = max [r s a + gamma * sum [(p s' s a) * v (n-1) s' | s' <- ss] | a <- as]
let vs = [v i | i <- [0..]]
let norm v v' = max [(v s - v' s) | s <- ss]
let out = head $
   dropWhile (\v v' -> norm (v' - v) < eps * (1 - gamma) / (2 * gamma)) $
   zip vs (tail vs)
let policy s = argmax as $ \a ->
   r s a + gamma * sum [ (p s' s a) * out s' | s' <- ss]</pre>
```