Windows - souborový systém

Souborový systémy, oddíly, disky

- Souborový systém:
 - o pravidla pro ukládání souborů a adresářů na pevný disk:
 - kde na pevném disku je soubor
 - o jak se jmenuje a v jakém je adresáři
 - o a jaká má přístupová práva…kdo ho může číst/upravovat
- Každý disk/oddíl/výměnné zařízení:
 - Musí mít svůj souborový systém

V MS Windows - oddíly/disky vidíme odděleně (C, D,...)

Z C:\ nemáme "jednoduchý" přístup na G:\, D:\ ...:

- Každý oddíl, disk, externí zařízení ve MS Windows:
 - má svůj kořenový adresář (tzv. root) označený písmenem:
 - C:\ D:\ E:\ ... Z:\

Souborový systém - stromová struktura

- Adresáře v Windows Stromová struktura:
 - Počátek \ kořenový adresář root:
 - k němu jsou připojeny ostatní podadresáře
 - V Linuxu: i "jiné samostatné souborové systémy"

- Základní pojmy a symbolika :
 - Kořenový adresář (root):
 - Aktuální adresář
 - o ve kterém se uživatel nebo proces v daném okamžiku nachází
 - Nadřízený adresář
 - o adresář o úroveň výš v kontextu stromové struktury
 - Cesta (path)
 - o umístění konkrétního adresáře v adresářovém stromu

Stromová struktura - Windows

Stromová struktura - Linux

- 1) tradiční souborové systémy (File System)
- 2) žurnálovací FS
- 3) síťové FS
- 4) virtuální FS

- 1) tradiční ("rychlé") FS Windows
 - FAT File Allocation Table:
 - FAT12, FAT16, vFAT, FAT32, exFAT (64) adresace 12,16,32,64b
 - Postupně klesá omezení max.velikost souboru
 - max.velikost oddílu
 - max.počet souborů

- FAT32 W95, W98, diskety/flash disky
 - o max.velikost souboru 4GB (109 B)
 - max.velikost oddílu 32GB
 - max.počet souborů cca 4 000 000
- exFAT (FAT64) od Windows 7
 - o vhodný hlavně pro flash disky , vysokokapacitní karty SDXC...
 - o max.velikost souboru 16 x 10⁶⁴ B (EiB ExbiByte)
 - o max.velikost oddílu 128 x 10⁶⁴ B
 - max.počet souborů v adresáři > 65536

- 2) žurnálovací FS
 - Rozdíl mezi tradičním a žurnálovým systémem:
 - ve způsobu ukládání dat
 - Tradiční systém:
 - průběžně ukládá data na disk a sektory označí pro OS jako obsazené
 - Při kolizi (výpadek el.energie) může nastat:
 - soubor nefunkční/nekompletní,
 - o Evidence obsazeného místa chyba
 - o Při vymazání souboru některé sektory zůstanou obsazené

Žurnálovací souborový systém NTFS

- New Technology File System
- Využívá vyhrazené pomocné místo (buffer) na disku žurnál
- Zapisuje jak na disk, tak do žurnálu:
 - Info v žurnálu
 - Co zapsat a kam (na úrovni sektorů)
 - o Co je už zapsané na disku a co ne
 - Byla-li operace kompletní vymaže žurnál

Žurnálový systém:

- Ukládání na disk ve více krocích:
 - 1) nejprve OS zapíše do žurnálu, co bude ukládat
 - 2) pak uloží data na HDD, metadata na disk
 - 3) zatím sektor pro OS neoznačí za obsazený
 - 3) provede kontrolu (je-li vše ze žurnálu zapsáno na disk)
 - 4) je-li OK označí sektory za obsazené a smaže záznam ze žurnálu

- Výhoda systému žurnálu při kolizi:
 - část dat zapsaných korektně na disku zbytek nezapsaných:
 - Např. výpadek el.energie
 - V žurnálu info že zápis dat neproběhl do konce
 - Při restartu:
 - Není-li žurnál prázdný:
 - Z info z žurnálu se provede zbývající zápis dat na pozadí
 - Po kontrole komplet.zápisu žurnál vymazán

Žurnálovací FS - NTFS

- NTFS (New Technology File System)
- Vyvinutý původně pro Windows NT
 - Windows 2000
 - Windows XP
 - Windows Vista, Windows 7,8,10; Windows Server
 20XX
- NTFS plně nahradil systém FAT

NTFS

- Vlastnosti NTFS:
- Žurnálování:
- Access Control List:
 - práva k přístupu a manipulaci se soubory (čtení/zápis/mazání...)
- Komprese dat
 - úspora místa

NTFS

- Vlastnosti NTFS:
 - Šifrování (EFS Encrypting File System)
 - ochrana dat
 - Diskové kvóty:
 - o nastavení velikosti využitelného místa na disku (pro uživatele)
 - Dlouhá jména souborů

Souborové systémy v GNU/Linuxu

- žurnálovací souborové systémy
 - ext3
- žurnálová verze souborového systému ext2 (plně kompatibilní - stejná struktura)
- Lze jej připojit jako ext2
- A opačně !!!
- ext4 kompatibilní s ext3
 - Novinky zrušení omezení ext3, nové fce:
 - velikost FS, počet souborů v adresáři, CRC žurnálu, online defragmentaci, rychlejší kontrola, zvýšení výkonu...

Souborové systémy v GNU/Linuxu

žurnálovací souborové systémy

- ReiserFS
 - zahrnuto v Linuxovém jádru z roku 2001
 - Dobře zachází s malými soubory / velkým počtem souborů
 - o úspora místa a zlepšení výkonu

Souborové systémy v síti

- 3) síťové souborové systémy
 - NFS Network File System (Sun)
 - internetový protokol pro vzdálený přístup k souborům přes počítačovou síť
 - SMB Server Message Block (Microsoft)
 - Síťový protokol slouží ke sdílenému přístupu:
 - o k souborům, tiskárnám, sériovým portům, komunikace mezi uzly
 - o využíván hlavně na počítačích s operačními systémy Windows

Souborové systémy v OS

- 4) Virtuální souborový systém
 - abstraktní vrstva nad konkrétními FS
 - o Cílem VFS:
 - o poskytnout aplikacím jednotný způsob přístupu k různým FS
 - Tzv. jednotné API

VFS

