

Exame normal de **Introdução aos Sistemas Electromagnéticos**Eng. Biomédica 2ºAno/1ºSemestre

11/02/2011 Duração: 1h

Parte I

- A parte I é constituída por 5 questões de escolha múltipla.
- Para cada questão há uma única hipótese correcta.
- Cotação: Resposta correcta = 2; Resposta errada = -0,66
- **1.** Uma carga $q_1 = 2$ nC encontra-se na posição $\vec{r_1} = 0\hat{i} + 0\hat{j} + 0\hat{k}$ (cm) e uma carga $q_2 = 8$ nC encontra-se na posição $\vec{r_2} = 3\hat{i} + 0\hat{j} + 0\hat{k}$ (cm).
- **1.1** O vector campo eléctrico criado pelas cargas na posição $\vec{r}_3 = 0\hat{i} + 4\hat{j} + 0\hat{k}$ (cm) é:

A: $\vec{E} = -17280\hat{i} + 34290\hat{j} \left(\frac{V}{m}\right)$	B: $\vec{E} = -11250\hat{i} + 28800\hat{j}$ $\left(\frac{V}{m}\right)$
C: $\vec{E} = 14050 \hat{j} \left(\frac{\text{V}}{\text{m}}\right)$	D: $\vec{E} = 23040\hat{i}$ $\left(\frac{\text{V}}{\text{m}}\right)$

1.2 Onde se deve colocar uma terceira carga de modo a que fique sujeita a uma força eléctrica nula?

A: Na posição $1\hat{i} + 0\hat{j} + 0\hat{k}$ (cm)	B: Na posição $2\hat{i} + 0\hat{j} + 0\hat{k}$ (cm)
C: Na posição $-1\hat{i} + 0\hat{j} + 0\hat{k}$ (cm)	D: Na posição $-4\hat{i} + 0\hat{j} + 0\hat{k}$ (cm)

2. Um electrão de carga $q_e = -1.6 \times 10^{-19} \, \mathrm{C}$ e massa $m_e = 9.1 \times 10^{-31} \, \mathrm{kg}$ lança-se com uma velocidade de $v_e = 3 \times 10^7 \, \mathrm{ms}^{-1}$, paralelamente a um campo eléctrico de grandeza $E = 5 \, \mathrm{kV/cm}$. Determine o espaço percorrido pelo electrão até a sua velocidade se anular.

A: 5,12 mm	B: 2,37 mm
C: 7,43 cm	D: 16,29 cm

- **3.** Considere os três fios muito compridos e co-planares percorridos pelas correntes com as intensidades e sentidos representados na figura. A distância entre fios adjacentes é d= 5 cm.
- 3.1 O campo magnético sobre um ponto do fio central é de:

A: $\vec{B} = 8 \hat{z} \mu T$	B: $\vec{B} = -12 \hat{z} \mu T$
C: $\vec{B} = -8 \hat{x} \mu T$	D: $\vec{B} = 12 \hat{x} \mu T$

3.2 A força magnética sentida num metro do fio central é de:

A: $\vec{F} = -24 \hat{x} \mu N$	B: $\vec{B} = -36 \hat{z} \mu N$
C: $\vec{B} = 36 \hat{x} \mu N$	D: $\vec{B} = 24 \hat{z} \mu N$

- **4.** Duas bobinas próximas, A e B, têm 100 e 200 espiras, respectivamente. Uma corrente de 1,5 A faz com que através de A passe um fluxo de 2,4 mWb e através de B passe um fluxo de 1,3 mWb.
- **4.1** O coeficiente de auto-indutância de A (L_A) e o coeficiente de auto-indução entre A e B (M) são respectivamente:

A: $L_A = 160 mH$; $M = 173 mH$	B: $L_A = 320 mH$; $M = 160 mH$
C: $L_A = 240 mH$; $M = 180 mH$	D: $L_A = 90 \text{ mH}$; $M = 240 \text{ mH}$

3.2 A força electromotriz média induzida em B quando a corrente em A decai para zero num intervalo de 50 ms é:

A: 5,2 V	B: 26 mV
C: 3,5 V	D: 10,0 mV