

UNIVERSITATEA "ALEXANDRU IOAN CUZA" IAȘI FACULTATEA DE INFORMATICĂ

Algoritmi pentru testarea izomorfismului grafurilor

Coordonator științific:

Lect. Dr. Cristian Frăsinaru

Student:

Ignat Gabriel-Andrei

Cuprins

- **01** Introducere
- **02** Algoritmi
- O3 Detalii de implementare

- **04** Rezultate
- 05 Demo interfață
- 06 Concluzii

Definiție:

Două grafuri $\mathbf{G_1}$ și $\mathbf{G_2}$ sunt izomorfe dacă există o funcție bijectivă $\mathbf{f} \colon \mathbf{V}(\mathbf{G_1}) \to \mathbf{V}(\mathbf{G_2})$ a.i. $\exists (u,v) \in \mathsf{E}(\mathsf{G_1})$ ddacă $\exists (f(u),f(v)) \in \mathsf{E}(\mathsf{G_2})$.

Exemplu:

$$f(1) = a$$

 $f(2) = c$
 $f(3) = e$
 $f(4) = b$
 $f(5) = d$

 $\operatorname{Graf} \operatorname{G}_1$

 $\mathsf{Graf}\;\mathsf{G}_2$

Complexitate

- aparține clasei NP;
- nu a fost demonstrat că aparține clasei problemelor NP-complete;
- nu a fost descoperit un algoritm de complexitate polinomială;
- NP-intermediară.

Aplicații: Chimie organică

- reprezentare ușoară a compușilor sub forma de graf;
- căutare unui compus într-o bază de date;
- impact: industria farmaceutică,
 a materialelor și alimentară.

Aplicații: Recunoaștere de modele

- recunoașterea feței;
- recunoașterea amprentei;
- recunoașterea obiectelor 2D/3D.

Algoritmi

Cazul general: Ullman

- inspirat din domeniul inteligenței artificiale;
- mapări consistente cu problema izomorfismului;
- matrice de compatibilitate;
- căutare de tip DFS;
- procedură de rafinare a candidaților.

Stare parțială:

- \rightarrow M(s) = {(1,a), (2,c), (3,c)}
- \rightarrow M₁(s) = {1, 2, 3}
- → $M_2(s) = \{a, c, e\}$
- \rightarrow subgrafurile induse $G_1(s)$ și $G_2(s)$ sunt izomorfe

Matricea de compatibilitate:

	а	b	С	d	е
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	0	0	0
5	0	0	0	1	1

Arbore de căutare:

Procedura de rafinare a candidaților:

Pentru a exista izomorfismul trebuie respectată următoarea proprietate:

- Pentru fiecare pereche de noduri compatibile (i, j), cu $i \in G_1$ și $j \in G_2$:
 - \circ fiecare vecin x al lui i trebuie să aibă măcar un candidat $y \in G_2$ vecin cu j

Exemplu:

	а	b	С	d	е
1	1	0	0	0	0
2	0	0	1	0	0
3	0	0	0	1 -> 0	1
4	0	1	0	0	0
5	0	0	0	1	1 -> 0

Schița algoritmului:

Algorithm 1: Algoritmul de căutare Ullman **Input**: o stare parțială s (starea inițială s_0 are $M(s_0) = \emptyset$)

Output: maparea izomorfă dintre grafuri dacă există

```
1 Procedure match (s):
```

- if M(s) este mapare completă then
- return M(s);
- Calculează mulțimea P(s) a perechilor candidat pentru a fi incluse în maparea M(s);

57

- foreach p in P(s) do
- 6 Creează o nouă stare s' identică cu s;
- Adaugă perechea p la maparea M(s');
- 8 match(s');

Calculul perechilor candidat:

- O pereche (i, j), cu $i \in G_1$ și $j \in G_2$, unde:
 - \circ i este următorul nod nemapat din G_1
 - j este nod din G₂ compatibil cu i

Complexitate:

Complexitate timp

- caz favorabil: $O(n * n^2) = O(n^3)$
- caz nefavorabil: O(n! * n²)

Complexitate spațiu

• $O(n * n^2) = O(n^3)$

Cazul general: VF2

- foarte folosit în practică;
- abordare similară cu algoritmul lui Ullman;
- mulțimi terminale ale stării curente;
- reguli de consistență și fezabilitate;
- partajare de variabile între stări;

Mulțimi terminale:

- maparea curentă $M_2(s) = \{a, e, d\}$
- mulţimi terminale:

$$\circ \quad \mathsf{T_2in}(\mathsf{s}) = \{\mathsf{b},\,\mathsf{c}\}$$

$$\circ \quad \mathsf{T}_2\mathsf{out}(\mathsf{s}) = \{\mathsf{c}\}$$

$$\circ T_2 in(s) \cap T_2 out(s) = \{c\}$$

Reguli de consistență:

O pereche candidat (i, j), cu $i \in G_1$ și $j \in G_2$, este consistentă dacă:

- → R_PRED: pentru fiecare predecesor x al lui i care este mapat la un nod y, trebuie ca y să fie predecesorul lui j;
- → R_SUCC: similar;

Reguli de fezabilitate:

O pereche candidat (i, j), cu $i \in G_1$ și $j \in G_2$, este fezabilă dacă:

- $ightharpoonup R_IN$: numărul de succesori/predecesori ai lui i care se află în mulțimea T_1 in(s) trebuie să fie egal cu numărul de succesori/predecesori ai lui j care se află în mulțimea T_2 in(s);
- → R_OUT: similar;
- → R_NEW: similar.

Complexitate timp

- caz favorabil: $O(n * n) = O(n^2)$
- caz nefavorabil: O(n! * n)

Complexitate spațiu

• O(n + c * n) = O(n)

Alţi algoritmi:

- Iterații ulterioare ale lui VF2: VF2Plus, VF2++, VF3, VF3-light;
- Nauty: reprezentare canonică;
- Babai:
 - Teoria grupurilor;
 - Complexitate cvasipolinomială.

Izomorfismul arborilor: AHU

- etichetarea nodurilor;
- eticheta nodului ≅ codificarea structurii
 subarborelui cu rădăcina în nodul respectiv;
- complexitate liniară O(n);
- construirea soluției prin parcurgere BFS.

Etichetarea nodurilor:

Detalii de implementare

Biblioteca de grafuri:

Graph4J

- Model matematic;
- Variabile primitive;
- Operații de bază eficiente.

Îmbunătățiri ale algoritmilor de bază:

- Ullman: matricea de compatibilitate partajată între stări;
- Ullman şi VF2:
 - căutare iterativă;
 - o pseudografuri, multigrafurile;
 - o problemă derivată: izomorfismul pe subgraf indus;
- AHU: arbori fără rădăcină, păduri de arbori.

PERFORMANȚE

Grafuri rare (p = 0.3):

Grafuri de densitate medie (p = 0.6):

Grafuri dense (p = 0.9):

Grafuri Barabási:

Ullman vs VF2 (grafuri rare):

Arbori:

Demo Interfață

Concluzii

Concluzii:

01 Contribuții

- Implementare algoritmi eficienți într-o bibliotecă de grafuri open-source, Graph4J;
- Depistarea, corectarea unor probleme în cadrul bibliotecii;
- Spre deosebire de alte biblioteci, algoritmii implementați au tratat toate cazurile de grafuri.

02 Îmbunătățiri

Precondiție necesară
 Weisfeiler-Leman.

03 Direcții de viitor

- Implementarea unor algoritmi mai eficienţi: VF3, VF3-light;
- Abordarea problemei izomorfismului inexact.

Mulţumesc pentru atenţie!

