Justine Falque joint work with Nicolas M. Thiéry

Laboratoire de Recherche en Informatique Université Paris-Sud (Orsay)

SLC, April 17h of 2019

• Permutation group G

Profile, conjectures

Profile, conjectures

Profile of a permutation group, a finite example

• Permutation group $G \rightarrow \text{induced action on } subsets$

Profile, conjectures

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

Profile, conjectures

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0		5	
1		6	
2		7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1		6	
2		7	
3		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1		6	
2		7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

Profile, conjectures

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

Profile, conjectures

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
3		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2		7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
$\frac{2}{3}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	$\frac{5}{6}$	
2	3	7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3		8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
3	3	8	
4		> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

Profile, conjectures

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	
1	1	6	
2	3	7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	3 3 6	8	
4	6	> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	
2	3	7	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	3 3 6	8	
4	6	> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	
3	3 3 6	8	
4	6	> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	1
3	3 3 6	8	
4	6	> 8	

- Permutation group $G \rightarrow \text{induced action on } subsets$
- Orbit of n-subsets = orbit of degree n

Profile of G

$$\varphi_G(n) = \# \text{ orbits of } degree \ n$$

Example

n	φ_G	n	φ_G
0	1	5	3
1	1	6	3
2	3	7	1
3	3	8	1
4	6	> 8	0

Profile, conjectures

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$

Profile, conjectures

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$
 $G \text{ infinite } \rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$
 $G \text{ infinite } \rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

Profile, conjectures

G is P-oligomorphic: φ_G is bounded by a polynomial in n

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$
 $G \text{ infinite } \rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

Profile, conjectures

G is P-oligomorphic: φ_G is bounded by a polynomial in n

Example

$$\mathcal{H}_{\mathfrak{S}_{\infty}}(z) = 1 + z + z^2 + \dots = \frac{1}{1-z}$$

Series of the profile

$$P_{G_3}(z) = 1 + 1z + 3z^2 + 3z^3 + 6z^4 + 3z^5 + 3z^6 + 1z^7 + 1z^8$$
 $G \text{ infinite } \rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

G is P-oligomorphic: φ_G is bounded by a polynomial in n

Example

$$\mathcal{H}_{\mathfrak{S}_{\infty}}(z) = 1 + z + z^2 + \dots = \frac{1}{1-z}$$

Conjecture 1 - Cameron, 70's

G P-oligomorphic
$$\Rightarrow$$
 $\mathcal{H}_G(z) = \frac{N(z)}{\prod_{z} (1-z^{d_i})}$ with $N(z) \in \mathbb{Z}[z]$

Orbit algebra (Cameron, 80's)

Profile, conjectures

Structure of graded algebra $A_G = \bigoplus_n A_n$ on the orbits

Orbit algebra (Cameron, 80's)

Profile, conjectures

Structure of graded algebra $A_G = \bigoplus_n A_n$ on the orbits

• combinatorial description of the product

Orbit algebra (Cameron, 80's)

Profile, conjectures

Structure of graded algebra $A_G = \bigoplus_n A_n$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree:

Orbit algebra (Cameron, 80's)

Profile, conjectures

Structure of graded algebra $A_G = \bigoplus_n A_n$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$
- $\dim(\mathcal{A}_n) = \varphi_G(n)$

Profile, conjectures

Orbit algebra (Cameron, 80's)

Profile, conjectures

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$
- $\dim(\mathcal{A}_n) = \varphi_G(n)$, so $\mathcal{H}_G(z) = \sum_n \dim(\mathcal{A}_n) z^n$

Orbit algebra

Orbit algebra (Cameron, 80's)

Profile, conjectures

Structure of graded algebra $A_G = \bigoplus_n A_n$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$
- $\dim(\mathcal{A}_n) = \varphi_G(n)$, so $\mathcal{H}_G(z) = \sum_n \dim(\mathcal{A}_n) z^n$

Conjecture 2 (stronger) - Macpherson, 85

G P-oligomorphic $\Rightarrow \mathcal{A}_G$ is finitely generated

Block system

• Equivalence relation preserved by the group

Block system

- Equivalence relation preserved by the group
- Blocks = the classes

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_4

4

3

1

2

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_4

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_4

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_4

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_4

Not a block system \rightarrow

Macpherson:

G P-oligomorphic with no non trivial blocks $\Rightarrow \varphi_G(n) = 1$

Macpherson:

G P-oligomorphic with no non trivial blocks $\Rightarrow \varphi_G(n) = 1$

Theorem (Classification, Cameron)
Only 5 complete groups such that $\varphi_G(n) = 1 \quad \forall n$

Macpherson:

G P-oligomorphic with no non trivial blocks $\Rightarrow \varphi_G(n) = 1$

Theorem (Classification, Cameron)

Only 5 complete groups such that $\varphi_G(n) = 1 \ \forall n$

- $Aut(\mathbb{Q})$: automorphisms of the rational chain
- $Rev(\mathbb{Q})$: generated by $Aut(\mathbb{Q})$ and one reflection
- Aut(\mathbb{Q}/\mathbb{Z}), preserving the circular order
- Rev(\mathbb{Q}/\mathbb{Z}): generated by Aut(\mathbb{Q}/\mathbb{Z}) and a reflection
- \mathfrak{S}_{∞} : the symmetric group

Macpherson:

G P-oligomorphic with no non trivial blocks $\Rightarrow \varphi_G(n) = 1$

Theorem (Classification, Cameron)

Only 5 complete groups such that $\varphi_G(n) = 1 \ \forall n$

- $Aut(\mathbb{Q})$: automorphisms of the rational chain
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q}/\mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group

Well known, nice groups (called *highly homogeneous*). In particular, their orbit algebra is finitely generated.

Wreath product $\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3}$

Wreath product $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3 \rtimes \mathfrak{S}_3$

Wreath product

 $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3 \rtimes \mathfrak{S}_3$

Subset of shape $2, 3, 2 \rightarrow x_1^2 x_2^3 x_3^2$

Wreath product

 $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3 \rtimes \mathfrak{S}_3$

Subset of shape $2, 3, 2 \rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets \leftrightarrow symmetric polynomials in x_1, x_2, x_3

Wreath product

$$\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$$

Subset of shape $2, 3, 2 \rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets \leftrightarrow symmetric polynomials in x_1, x_2, x_3

$$\mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_3} \simeq \operatorname{Sym}_3[X] = \mathbb{Q}[X]^{\mathfrak{S}_3}$$

Wreath product

$$\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$$

Subset of shape $2, 3, 2 \rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets \leftrightarrow symmetric polynomials in x_1, x_2, x_3

$$\mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_3} \simeq \operatorname{Sym}_3[X] = \mathbb{Q}[X]^{\mathfrak{S}_3}$$

One can obtain functions counting integer partitions, combinations, P-partitions (with optional length and/or hight restrictions) as profiles of wreath products...

$$\implies G \leq \mathfrak{S}_M \wr \mathfrak{S}_N$$

•
$$M < \infty$$

- $M < \infty$
- $N < \infty$

•
$$M < \infty$$
 $\longrightarrow \varphi_G(n) \ge O(n^{M-1})$

•
$$N < \infty$$

•
$$M < \infty$$
 $\longrightarrow \varphi_G(n) \ge O(n^{M-1})$

•
$$N < \infty$$
 $\longrightarrow \varphi_G(n) \ge O(n^{N-1})$

Two cases if G is P-oligomorphic:

•
$$M < \infty$$
 $\longrightarrow \varphi_G(n) \ge O(n^{M-1})$

•
$$N < \infty$$
 $\longrightarrow \varphi_G(n) \ge O(n^{N-1})$

Better have big finite blocks and/or "small" infinite ones...

Lattices of block systems

Lattice of partitions \rightarrow structure of *lattice* on block systems

Lattices of block systems

Lattice of partitions \rightarrow structure of *lattice* on block systems

Lattices of block systems

Lattice of partitions \rightarrow structure of *lattice* on block systems

Non trivial fact

- {Systems with $< \infty$ blocks only} = sublattice with maximum
- {Systems with ∞ blocks only} = sublattice with minimum

Lattices of block systems

Lattice of partitions \rightarrow structure of *lattice* on block systems

Non trivial fact

- {Systems with $< \infty$ blocks only} = sublattice with maximum
- {Systems with ∞ blocks only} = sublattice with minimum

Remark. If G is P-oligomorphic, both of them are actually finite!

Idea

Idea

1. Take the maximal system of finite blocks

Idea

1. Take the maximal system of finite blocks

Idea

1. Take the maximal system of finite blocks

Action on the maximal finite blocks...

Idea

1. Take the maximal system of finite blocks

Idea

- 1. Take the maximal system of finite blocks
- 2. Take the minimal system of infinite blocks of the action of Gon the maximal finite blocks

Idea.

- 1. Take the maximal system of finite blocks
- 2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Idea.

- 1. Take the maximal system of finite blocks
- 2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

One superblock

$$G_{|B_0} = H_0$$

One superblock

$$G_{|B_0} = H_0 , \operatorname{Fix}(B_0)$$

One superblock

$$G_{|B_0} = H_0$$
, $Fix(B_0)_{|B_1} = H_1$

One superblock

 H_0 , H_1

One superblock

 H_0 , H_1 , H_2

One superblock

 H_0 , H_1 , H_2 , H_3

One superblock

 H_0 , H_1 , H_2 , H_3 , H_4

 H_0 , H_1 , H_2 , H_3 , H_4 , H_5

One superblock

Tower of G H_0 , H_1 , H_2 , H_3 , H_4 , H_5 ...

One superblock

$$H_0$$
, H_1 , H_2 , H_3 , H_4 , H_5 ··· Tower of G

 $H \wr \mathfrak{S}_{\infty}$

 $\rightarrow H$, H , H , H , H

One superblock

 H_0 , H_1 , H_2 , H_3 , H_4 , H_5 ... **Tower** of G

- H ≀ S_∞
- " $H_0 \times \mathfrak{S}_{\infty}$ "

- $\rightarrow H$, H , H , H , H
- $\rightarrow H_0$, Id, Id, Id, Id, Id

One superblock

 H_0 , H_1 , H_2 , H_3 , H_4 , H_5 ... **Tower** of G

H ≀ S_∞

 $\rightarrow H$, H , H , H , H

• " $H_0 \times \mathfrak{S}_{\infty}$ "

- $\rightarrow H_0$, Id, Id, Id, Id, Id
- < " $H_0 \times \mathfrak{S}_{\infty}$ ", $H \wr \mathfrak{S}_{\infty} >$

One superblock

 H_0 , H_1 , H_2 , H_3 , H_4 , H_5 ... **Tower** of G

H ≀ S_∞

 $\rightarrow H$, H , H , H , H

• " $H_0 \times \mathfrak{S}_{\infty}$ "

- $\rightarrow H_0$, Id, Id, Id, Id, Id
- < " $H_0 \times \mathfrak{S}_{\infty}$ ", $H \wr \mathfrak{S}_{\infty} >$

 $H_0 \triangleright H$ w.l.o.g

 H_0 , H_1 , H_2 , H_3 , H_4 , H_5 ··· Tower of G

- $H \wr \mathfrak{S}_{\infty}$ $\rightarrow H , H , H , H , H , H ...$
- " $H_0 \times \mathfrak{S}_{\infty}$ " $\rightarrow H_0$, Id , Id , Id , Id , Id ...
- < " $H_0 \times \mathfrak{S}_{\infty}$ ", $H \wr \mathfrak{S}_{\infty} > \to H_0$, H, H, H, H, H

 $H_0 \triangleright H$ w.l.o.g

Notation: $[H_0, H_\infty]$

• The tower determines G (uses the *subdirect product*)

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$

- The tower determines G (uses the *subdirect product*)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, \cdots

- The tower determines G (uses the *subdirect product*)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_\infty]$

- The tower determines G (uses the *subdirect product*)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_\infty]$

 $\mathbb{Q}[(X_{orb})_{orb}]$, where orb runs through the orbits of H

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_{\infty}]$

 $\mathcal{A}_G \simeq \mathbb{Q}[(X_{orb})_{orb}]^{H_0}$, where orb runs through the orbits of H

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_{\infty}]$

 $\mathcal{A}_G \simeq \mathbb{Q}[(X_{orb})_{orb}]^{\mathbf{H_0}}$, where orb runs through the orbits of H

In particular, both conjectures hold.

General case: minimal subgroup of finite index

General case: minimal subgroup of finite index Normal subgroup K of G

General case: minimal subgroup of finite index Normal subgroup K of G

that fixes the kernel.

Classification 0000

that fixes the kernel.

General case: minimal subgroup of finite index Normal subgroup K of G

that fixes the kernel.

General case: minimal subgroup of finite index Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks

General case: minimal subgroup of finite index Normal subgroup K of G

- that fixes the kernel.
- that stabilizes the superblocks

General case: minimal subgroup of finite index

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

Classification

General case: minimal subgroup of finite index

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

Classification

General case: minimal subgroup of finite index

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which Rev(...) are reduced down to Aut(...)

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which Rev(...) are reduced down to Aut(...)

General case: minimal subgroup of finite index

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which Rev(...) are reduced down to Aut(...)

0000

Shape of the orbit algebra \mathcal{A}_G

• In K, totally independent superblocks (and kernel)

• In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"

• In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free" \Rightarrow direct product of the restrictions $K^{(i)}$

- In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow A_K = \bigotimes_i A_{K(i)}$

Classification

- In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and $\mathrm{Aut}(...)$, and the wreath products' being "too big, too free" \Rightarrow direct product of the restrictions $K^{(i)}$ $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks

- In K, totally independent superblocks (and kernel)
 - Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_{orb_i})_{orb_i}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s

- In K, totally independent superblocks (and kernel)
 - Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_{orb_i})_{orb_i}]$ free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)

- In K, totally independent superblocks (and kernel)
 - Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_{orb_i})_{orb_i}]$ free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators

- In K, totally independent superblocks (and kernel)
 - Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_{orb_i})_{orb_i}]$ free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators
 - $\Rightarrow \mathcal{A}_G$ is the algebra of invariants of this finite action

• In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"

- \Rightarrow direct product of the restrictions $K^{(i)}$
- $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_{orb_i})_{orb_i}]$ free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators $\Rightarrow \mathcal{A}_G$ is the algebra of invariants of this finite action
- Hilbert's theorem:
 \$\mathcal{A}_G\$ finitely generated (and even Cohen-Macaulay)

• In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and Aut(...), and the wreath products' being "too big, too free"

- \Rightarrow direct product of the restrictions $K^{(i)}$
- $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_{orb_i})_{orb_i}]$ free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators
 ⇒ A_G is the algebra of invariants of this finite action
- Hilbert's theorem:

 \mathcal{A}_G finitely generated (and even Cohen-Macaulay)

Which end the proof of the conjectures!

 G_0 a finite permutation group

Classification of *P*-oligomorphic groups G_0 a finite permutation group, \mathcal{B}_0 a block system.

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

For each orbit of blocks

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

For each orbit of blocks, choose

1. One group of profile 1

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id₁ for at most one orbit of one block

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id₁ for at most one orbit of one block

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id₁ for at most one orbit of one block

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id₁ for at most one orbit of one block

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id₁ for at most one orbit of one block
- 2. One normal subgroup H of $H_0 = G_{0|B}$ for B in the orbit

 G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are singletons
 - Can alternatively be Id₁ for at most one orbit of one block
- 2. One normal subgroup H of $H_0 = G_{0|B}$ for B in the orbit

Thank you for your attention!

Context

- G permutation group of a countably infinite set E
- Profile φ_G : counts the orbits of finite subsets of E
- Hypothesis: $\varphi_G(n)$ bounded by a polynomial
- Conjecture (Cameron): rational form of the generating series
- Conjecture (Macpherson): finite generation of the orbit algebra

Results

- Both conjectures hold!
- Classification of P-oligomorphic permutation groups
- The orbit algebra is an algebra of invariants (up to some idempotents)

The tower determines the group (1): "straight \mathfrak{S}_{∞} "

G contains a set of "straight" swaps of blocks

Subdirect product of G_1 and G_2

- Formalizes the synchronization between G_1 and G_2
- Subgroup of $G_1 \times G_2$ (with canonical projections G_1 and G_2)
- $E = E_1 \sqcup E_2$ stable $\Rightarrow G$ subdirect product of $G_{|E_1}$ and $G_{|E_2}$

Synchronization in a subdirect product

Let $N_1 = \operatorname{Fix}_G(E_2)$ and $N_2 = \operatorname{Fix}_G(E_1)$.

$$\frac{G_1}{N_1} \simeq \frac{G}{N_1 \times N_2} \simeq \frac{G_2}{N_2}$$

A subdirect product with explicit N_i 's is explicit.

Remark. N_1 and N_2 are normal in G_1 and G_2 , so the possibilities of synchronization of a group is linked to its normal subgroups.

The tower determines the group (2): $Stab_G(blocks)$

 $Stab_G(blocks) = explicit subdirect product of the <math>H_i$

 $G \simeq \operatorname{Stab}_G(\operatorname{blocks}) \rtimes \operatorname{"straight} \mathfrak{S}_{\infty} \to \operatorname{Ok}$

$$= 0 +$$

$$=$$
 0 + 0 + $\frac{5}{4}$

Example of a product in the cyclic group \mathcal{C}_5

$$=$$
 0 + 0 + $\frac{5}{4}$ + $\frac{5}{4}$ $\frac{2}{3}$ + $\frac{5}{4}$ $\frac{2}{3}$

$$=$$
 2 (5) (4) (3)

$$=$$
 2 $(\frac{5}{4})(\frac{1}{3})$ + 2 $(\frac{5}{4})(\frac{1}{3})$ + \cdots

$$= 2 \frac{5}{4} + 2 \frac{5}{4} + \cdots + 1 \frac{5}{4} + \cdots$$

$$\varphi_G(n) = ?$$

$$\varphi_G(n) = ?$$

$$\varphi_G(n) = ?$$

$$\varphi_G(n) = ?$$

$$\varphi_G(n) =$$

$$\varphi_G(n) = p(n)$$

Examples of orbit algebras (1)

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Examples of orbit algebras (1)

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = p_3(n)$.

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = p_3(n)$.

 $A_n =$ homogeneous symmetric polynomials of degree n in x_1, x_2, x_3

Examples of orbit algebras (1)

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = p_3(n)$.

 $A_n = \text{homogeneous symmetric polynomials of degree } n \text{ in } x_1, x_2, x_3$

Examples of orbit algebras (2)

More generally, for H subgroup of \mathfrak{S}_m :

• $G = \mathfrak{S}_{\infty} \wr H :$ $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x_1, \dots, x_m]^H$, the algebra of invariants of H $\mathbb{Q}\mathcal{A}(G)$ is finitely generated by Hilbert's theorem.

• $G = H \wr \mathfrak{S}_{\infty}$: $\mathbb{Q}\mathcal{A}(G) = \text{the free algebra generated by the age of } H$

"Speak, friend..."

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $\rightarrow C_3$ acts on monomials

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets

 $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

 $x \stackrel{\bullet}{\circ}$

 $x \stackrel{\bullet}{\otimes}$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$\begin{array}{cccc}
x & + & x \\
 & & \\
x & + & x
\end{array}$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$O(x \circ)$$

$$O(x_{\circ})$$
 $O(x_{\circ})$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$\mathrm{O}(\ x \bigcirc).\mathrm{O}(\ x \bigcirc) = \ \mathrm{O}(\ x \bigcirc x \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$\mathrm{O}(\ x \ \bigcirc).\mathrm{O}(\ x \ \bigcirc) = \ \mathrm{O}(\ x \ \bigcirc x \ \bigcirc) + \mathrm{O}(\ x \ \bigcirc x \ \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \bigcirc).O(x \bigcirc) = O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \bigcirc).O(x \bigcirc) = O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \stackrel{\bullet}{\otimes}).O(x \stackrel{\bullet}{\otimes}) = O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes})$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \bigcirc).O(x \bigcirc) = O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \stackrel{\bullet}{\otimes}).O(x \stackrel{\bullet}{\otimes}) = O(x \stackrel{\bullet}{\otimes} \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} \stackrel{\bullet}{\otimes})$$

$$O(\begin{tabular}{c} O(\begin{tabular}{c} \lozenge \\ O(\begin{tabular}{c} \lozenge$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \circ).O(x \circ) = O(x \circ x \circ) + O(x \circ x \circ) + O(x \circ x \circ)$$

$$O(\begin{picture}(60,0)(10,0$$

The tower has shape H_0 , H, H, H ...

Lemma to prove

G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$

Proof.

An element $s \in G$ stabilizing the blocks \leftrightarrow a quadruple $g \in H_1 \rightarrow \exists (1, g, h, k), h, k \in H_1.$

Let σ be an element of G that permutes "straightforwardly" the first two blocks and fixes the other two.

Conjugation of x by σ in $G \rightarrow y = (g, 1, h, k)$

Then: $x^{-1}y = (q, q^{-1}, 1, 1)$

By arguing that the tower does not depend on the ordering of the blocks, q^{-1} and therefore q are in H_2 .

In the infinite case, apply to each restriction to four consecutive blocks of the fixator of the previous ones in G.

Nested block system 000000	One superblock	Classification 0000	Bonus