- CHANDAN KUMAR

ID: GO_STP_13267

- 1 import numpy as np
- 2 import pandas as pd
- 1 startup = pd.read_csv("/content/50_Startups.csv")
- 2 startup.head()

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

1 startup.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

1 startup.describe()

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000

1 startup.corr()

	R&D Spend	Administration	Marketing Spend	Profit
R&D Spend	1.000000	0.241955	0.724248	0.972900
Administration	0.241955	1.000000	-0.032154	0.200717
Marketing Spend	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000

```
1 from sklearn.model_selection import train_test_split
2 xtrain, xtest, ytrain, ytest = train_test_split(features, target, test_size = 0.2, rand
3 print(xtrain.shape)
4 print(xtest.shape)
5 print(ytrain.shape)
6 print(ytest.shape)
```

```
(40, 4)
    (10, 4)
    (40, 1)
    (10, 1)
1 from sklearn.linear_model import LinearRegression
2 model = LinearRegression()
1 model.fit(xtrain, ytrain)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
1 ypred = model.predict(xtest)
2 ypred
    array([[103083.22418255],
           [132499.19098469],
           [132504.92013514],
           [72044.22079157],
           [178578.88804813],
           [116196.18897916],
           [ 67901.09868183],
           [ 98843.64614762],
           [114025.15059486],
           [167965.96780569]])
```

1 from sklearn.metrics import r2 score

- 2 accuracy = r2_score(ytest, ypred)
- 3 accuracy*100

93.48088470484865