IR.1101 - Réseaux/Networks Final Project

Comparative Analysis of
Distance-Vector & Link-State Routing Protocols
Based on RIP and OSPF

PRESENTATION

Group 2: FU Jintao GUO Xiaofan LIN Yingqi LIU Yang YIN Chenghao ZHAO Chao

18 / 01 / 2024

TABLE OF CONTENT

1. Introduction

2. Routing Protocol

- Distance-Vector Routing Protocol (RIP)
- Link-State Routing Protocol (OSPF)
- Comparative Analysis

3. Implementation

- Small-Scale Network (Suitable for RIP)
- Large Enterprise Network (Suitable for OSPF)
- Hybrid Network (Coexistence of RIP and OSPF)

4. Conclusion

1.Introduction

Dynamic routing protocols are essential in modern networking, allowing routers to exchange information dynamically, enabling networks to adapt seamlessly to changes.

■ Protocol Categories

Distance-Vector and Link-State protocols are distinguished by their wide adoption and unique operational mechanisms.

■ Focus on RIP and OSPF

This presentation will concentrate on two protocols: the Routing Information Protocol (RIP) and Open Shortest Path First (OSPF).

■ Monitoring and Distribution

Monitoring network changes and distributing this information across routers, making the choice of a suitable routing protocol a key decision in network design and management.

2. Routing Protocol

- Operate at 3rd of OSI model(Network Layer)
- Purpose: sorting & distribution of IP packets
- Attribute and Characteristics:
 - Best Possible Routers
 - Faster Convergence
 - Security Options
 - Avoiding Loops
- Dynamic Route: selected using routing protocol
- IGP(Interior Gateway Routing Protocols)
 - Use for route selection within the autonomous system
 - Each of routing protocol has their own metric & administrative distances

Figure Source: Khan, Murad; Javaid, Nadeem. (2019, February). "Routing in IP-based Networks." Thesis. pp.10.[51]

2.1 Distance-Vector Routing

The DV Routers

- Not know about the complete network topology
- Only have info passed by the neighbour devices

The characteristics of DVR protocol

- Bellman-Ford Algorithm
- Metrics: Distance and Vector (mainly based on Hop-Counts vector)
- Defines Routing Table (neighbor routers direct connection)
- Periodic Updates
- Simple and Efficient

Pros and Cons of DVR

- ✓ Simple Algorithm
- ✓ Easy To Implement
- ✓ Occupies Less Memory & Processor

- x Loops May Occur
- x Regularly Updated
- x Single Parameter

Figure 2.6: Distance Vector Routing [5]

Figure Source: Khan, Murad; Javaid, Nadeem. (2019, February). "Routing in IP-based Networks." Thesis. pp.16.[51].

2.1.1 Routing Information Protocol

RIP:

- Suitable for small IP networks.
- Use hop-count as metric (up to 15 hops)
- Convergence time required
- Low memory and processor requirements
- Routing loops may occur during network failures

Figure Source: Khan, Murad; Javaid, Nadeem. (2019, February). "Routing in IP-based Networks." Thesis. pp.3.[51].

2.2Link-State Routing

The characteristics of LSR protocol

- SPF (Shortest Path First Algorithm) [Dijkstra's Algorithm]
- Precise Metrics(Bandwidth, Delay and other QoS parameter)
- Identical Database
- Provides Hierarchical Structure
- Triggered Update
- Efficient and Fast Convergence Without Any Loop

Pros and Cons of LSR

- ✓ Respond Quickly
- ✓ Small Packet Size
- x Complex Algorithm
- x High Memory Consumption & Processor Requirements
- x Difficult to Configure
- x Poor Performance on Constantly Changing Links

Figure Source: Khan, Murad; Javaid, Nadeem. (2019, February). "Routing in IP-based Networks." Thesis. pp.14.[51].

2.2.10pen Shortest Path First

OSPF:

- Suitable for large networks or environments that require rapid convergence
- Specifically designed for IP networks, so IP routing is calculated directly
- Calculating costs mainly relies on bandwidth

Figure Source: Khan, Murad; Javaid, Nadeem. (2019, February). "Routing in IP-based Networks." Thesis. pp.33.[51].

2.3 Comparative Analysis

3.Implementation

Use Cisco to build the following simulation scenario:

- 3.1 Small-Scale Network (Suitable for RIP)
- 3.2 Large Enterprise Network (Suitable for OSPF)
- 3.3 Hybrid Network (Coexistence of RIP and OSPF)

Build a Small-Scale Network

- Ping PC1 from PC0 failed,
- Ping Router0 from PC0 succeeded.
- Because RIP is not configured yet
 - → nework0 and network1 cannot communicate.

Configure RIP on Router1 and Route0 save it.

- Ping PC1 from PC0 failed the first time
- Ping succeeded the second time.

Last Status Source

Failed

Successful

PC0

PC0

PC0

Because it takes time for the RIP protocol to update the routing table.

Check Routing Table of R1


```
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is directly connected, Serial2/0
    192.168.1.0/24 is directly connected, FastEthernet0/0
    192.168.2.0/24 [120/1] via 10.10.0.3, 00:00:19, Serial2/0
Router#show ip rip database
10.0.0.0/8 auto-summary
10.0.0.0/8 directly connected, Serial2/0
1/92.168.1.0/24 auto-summary
192.168.1.0/24
                directly connected. FastEthernet0/0
                auto-summary
192.168.2.0/24
192.168.2.0/24
    [1] via 10.10.0.3, 00:00:26, Serial2/0
Router# tractraceroute 192.168.1.1
```

Check HOP form PC0 to PC1


```
Tracing the route to 192.168.2.4

1 10.10.0.3 14 msec 1 msec 3 msec
2 * 3 msec 3 msec
Router#
```

Build a simplified single-area OSPF network

```
Enter configuration commands, one per line.
Router(config)#interface se3/0
Router(config-if)#bandwidth 50
```

```
Router(config)#interface se2/0
Router(config-if)#bandwidth 1000
Router(config-if)#exit
```

$$Cost = \frac{Reference\ Bandwidth}{Interface\ Bandwidth}$$

Configure OSPF protocol on routers

```
Router*configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #router ospf 1
Router(config-router) #network
% Incomplete command.
Router(config-router) #network 192.168.1.0 0.0.0.225 area 0
OSPF: Invalid address/mask combination (discontiguous mask)
Router(config-router) #network 192.168.1.0 0.0.0.255 area 0
Router(config-router) #network 10.0.0.0 0.255.255.255 area 0
Router(config-router) #network 20.0.0.0 0.255.255.255 area 0
Router(config-router) #network 20.0.0.0 0.255.255.255 area 0
```


Stimulate the OSPF network

Event List					
Vis.	Time(sec)	Last Device	At Device		
	0.000	-	PC0		
	0.001	PC0	Switch0		
	0.003	Switch0	Router1		
	0.006	Router1	Router2		
	0.009	Router2	Router3		
	0.010	Router3	Switch1		
	0.012	Switch1	PC2		
CO.	0.013	PC2	Switch1		

Build the multi-area OSPF network

Configure OSPF protocol on routers

```
Router-A(config-if)#exit
Router-A(config) #router ospf 1
Router-A config-router) #network 192.168.1.0 0.0.0.255 area 0
Router-A config-router) #network 192.168.2.0 0.0.0.255 area 0
00:18:49 %OSPF-5-ADJCHG: Process 1, Nbr 192.168.10.1 on GigabitEthernet0/1
Router-A config-router) #network 192.168.1.0 0.0.0.255 area 0
Router-A config-router) #network 192.168.2.0 0.0.0.255 area 2
Router-A config-router) #network 192.168.20.0 0.0.0.255 area 1
Router-B(config-if)#exit
Router-B(config) #router ospf 1
Router-B(config-router) #network 192.168.2.0 0.0.0.255 area 2
Router-B(config-router) #network 192.168.30.0 0.0.0.255 area 2
00:20:43: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.20.1 on Serial0/3/0 from LOADING to
FULL, Loading Done
Router-B(config-router) #network 192.168.2.0 0.0.0.255 area 2
Router-B(config-router) #network 192.168.30.0 0.0.0.255 area 2
```

Stimulate the netork

Event List					
Vis	. Time(sec)	Last Device	At Device		
	0.000		PC1		
	0.001	PC1	Switch-A		
	0.002	Switch-A	Router-A		
	0.003	Router-A	Router-B		
	0.004	Router-B	PC3		
	0.005	PC3	Router-B		

Advantage

- Scalability
- Efficient Routing

Disadvantages

- Complexity
- Resource Intensive

Redistribution

Convert RIP and OSPF metrics to make them compatible

Configure RIP for the router in Area2

Configure OSPF for the router in Area 0 and Area 1

Configure OSPF redistribution into RIP

Configure OSPF redistribution into RIP

Verify network connectivity

Advantages

- Interoperability: Supports legacy systems where RIP is already in place, allowing for a smoother transition to more advanced OSPF without immediate full-scale upgrades.
- Flexibility: Enables phased network upgrades, transitioning individual segments to OSPF while maintaining overall network service.
- Cost-Effectiveness: May defer costs associated with upgrading hardware that does not support OSPF.

Disadvantages

- Complexity: Managing two protocols increases the complexity of the network, necessitating advanced knowledge and careful configuration to prevent issues like routing loops and asynchronous routing tables.
- Inconsistency in Metrics: OSPF and RIP use different metrics for determining the best path, which can lead to suboptimal routing decisions when the protocols interact.
- Administrative Overhead: Requires careful tuning of redistribution between the protocols to maintain a consistent and loop-free environment.

4. Conclusion

How Choosing Between RIP and OSPF:

Depends on network size, complexity, and requirements for efficiency and scalability.

Each protocol has its specific use case and operational objectives.

	RIP	OSPF
Scale	Small	Large
Complexity	Low	High
Overhead	High in bandwidth Low in computation	Low in bandwidth High in computation
User friendly	High	Low