Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 1 am 02.6.2020

Name	e: Matr	rikelnummer:	Punkte: /9
rechn	n Sie bitte Ihre Daten ein und machen Sie jeweils genau ein nungen nutzen, aber bitte geben Sie am Ende nur dieses Blat ere Kreuze 0 Punkte.		
1.	Ein hängendes Pendel, auf das eine äußere Kraft wirkt, wir	rd durch die linearisierte DGL $I\ddot{ heta} = -mgL heta - c heta$	$\dot{\theta}L + FL$ beschrieben.
	Nehmen Sie $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$ als Zustand und $u = F$ als Eingang.	. Bringen Sie das System in die Form $\dot{x} = Ax +$	Bu. Geben Sie A und
	B an.		
	(a) $A = \begin{bmatrix} 0 & 1 \\ -mgL/I & -cL/I \end{bmatrix}, B = \begin{bmatrix} 0 \\ L/I \end{bmatrix}$		
	(a) \square $A = \begin{bmatrix} 0 & 1 \\ -mgL/I & -cL/I \end{bmatrix}, B = \begin{bmatrix} 0 \\ L/I \end{bmatrix}$ (c) \square $A = \begin{bmatrix} 0 & 1 \\ mgL/I & cL/I \end{bmatrix}, B = \begin{bmatrix} 0 \\ L/I \end{bmatrix}$		
2.	Welche Lösung $x(t)$ hat die Differentialgleichung $\dot{x}(t) =$	-2u(t) + x(t) mit dem Anfangswert $x(0) = 2$?	
	(a)	(b) $-2u(t) + \int_0^t x(\tau)d\tau$	
	(c) $2e^t - 2e^t \int_0^t e^{\tau} u(\tau) d\tau$	(d) \square $2e^t - 2e^t \int_0^t e^{-\tau} u(\tau) d\tau$	
3.	3. Ein Quadcopter der Masse m hat vier Propeller, die beim senkrechten Flug alle mit der Geschwindigkeit u rotieren und dan eine senkrechte Kraft $4k_{\rm p}u^2$ erzeugen. Zusätzlich wirken die Gewichtskraft und die Luftreibung der Bewegung entgegen. De Bewegungsgleichung des Quadkopters ist gegeben durch $m\dot{v} = -k_{\rm r}v^2 - mg + 4k_{\rm p}u^2$. Welche Geschwindigkeit $v_{\rm ss}$ stellt si ein, wenn der Quadkopter mit konstantem Eingang $u_{\rm ss}$ betrieben wird? [a) $\boxed{-mg + 4k_{\rm p}u_{\rm ss}^2}$ [b) $\boxed{-mg + 4k_{\rm p}u_{\rm ss}^2}$ [c) $\boxed{-mg + 4k_{\rm p}u_{\rm ss}^2}$ [d) $\boxed{-mg + 4k_{\rm p}u_{\rm ss}^2}$		
			$k_{ m r}$
4.	Multiplizieren Sie $a = -4 - 2j$ mit $b = 1 + j$. Das Ergeb		
	(a) $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
	$(c) \qquad -2 - 6j$		
5.	Dividieren Sie $a=3e^{-\pi j}$ durch $b=2e^{-3\pi j}$. Das Ergebni		
	(a) $\frac{3}{2}e^{-\pi j}$ (b) $\frac{6}{6}e^{-3\pi j}$		$e^{2\pi j}$
6.	Wie lautet der Imaginärteil von e^{at}/e^{jbt} ?		
	(a) $e^{at} \cdot \sin(bt)$ (b) e^{jbt}	$ (c) \square e^{bt} \cdot \sin(at) $ $ (d) \square -$	$e^{at} \cdot \sin(bt)$
7.	Multiplizieren Sie die beiden Matrizen ${\cal A}_1$ und ${\cal A}_2$ mit ${\cal A}_1$	$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ und $A_2 = \begin{bmatrix} 0 & -2 \\ 3 & 2 \end{bmatrix}$	
			$\begin{bmatrix} 6 & 2 \\ -3 & -6 \end{bmatrix}$
8.	Der Traktor aus der Vorlesung wird durch die beiden Diff Hierbei ist x_1 die X-Koordinate und x_2 der Orientierungsv Interesse. Linearisieren Sie das System in der Gleichgew System in die Form $\dot{x}=Ax+Bu$, indem Sie A und B ar (a) $A=\begin{bmatrix}0&-V\\0&0\end{bmatrix}$, $B=\begin{bmatrix}0\\V/L\end{bmatrix}$ (c) $A=\begin{bmatrix}V/L&0\\o&V\end{bmatrix}$, $B=\begin{bmatrix}1\\0\end{bmatrix}$	winkel des Traktors. Die Y-Koordinate sei in dies vichtslage $u_{\rm ss}=0$ und $x_{\rm ss}=\begin{bmatrix}0&\frac{\pi}{2}\end{bmatrix}^{\rm T}$. Bringeringeben.	sem Beispiel nicht von n Sie das linearisierte
9.	Bestimmen Sie das Produkt $A \cdot x$ von $A = \begin{bmatrix} -3 & 4 \\ -2 & 2 \end{bmatrix}$ und		2]
			0