SZYBKA TRANSFORMACJA FOURIERA (FFT)

IIUWr. II rok informatyki.

Opracował: Krzysztof Loryś

46 Reprezentacje wielomianów

Dwie reprezentacje wielomianu A stopnia n-1:

[Wsp] jako n-elementowy wektor współczynników $\langle a_0, a_1, \ldots, a_{n-1} \rangle$. [War] jako zbiór wartości w n róźnych punktach $\{(x_i, y_i) : i = 0, \ldots, n - 1 \text{ i } \forall_{0 < i \neq j < n-1} x_i \neq x_j \text{ i } y_i = A(x_i) \}$.

47 Podstawowe operacje na wielomianach

- \bullet dodawanie wykonalne w czasie O(n) przy obydwu reprezentacjach wielomianów,
- mnoźenie łatwe przy reprezentacji [War] (w czasie O(n)); trudne przy reprezentacji [Wsp] (prosta implementacja wymaga czasu $\Omega(n^2)$.
- obliczanie wartości w punkcie łatwe przy reprezentacji [Wsp] (np. schemat Hornera w czasie O(n)); trudne przy reprezentacji [War]

48 Zmiana reprezentacji wielomianu stopnia n-1

$$[\mathtt{Wsp}] \to [\mathtt{War}]$$

Reprezentacja [War] moźe być wybrana na wiele róznych sposobów. Korzystając ze schematu Hornera moźna ją obliczyć w czasie $\Theta(n^2)$.

$$[\mathtt{War}] \to [\mathtt{Wsp}]$$

Twierdzenie 16 Dla kaźdego zbioru $\{\langle x_i, y_i \rangle \mid i = 0, \dots, n-1 \text{ oraz } \forall_{0 \leq i \neq j \leq n-1} x_i \neq x_j \}$ istnieje jednoznacznie wyznaczony wielomian A stopnia n-1 taki, źe $\forall_{0 \leq i \leq n-1} y_i = A(x_i)$.

Współczynniki tego wielomianu moźna obliczyć w czasie $\Theta(n^2)$ ze wzoru Lagrange'a:

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}.$$

Jak pó"xniej pokaźemy przejścia [Wsp] \to [War] i [War] \to [Wsp] , moźna obliczyć w czasie $O(n \log n)$.

49 Pomysł na szybkie mnoźenie wielomianów w postaci [Wsp]

Niech A(x) i B(x) będą wielomianami stopnia $\leq n-1$.

- 1. Utworzyć reprezentacje [Wsp] wielomianów A i B jako wielomianów stopnia 2n-1 (przez dodanie n współczynników równych 0).
- 2. Stosując FFT obliczyć dla tych wielomianów reprezentacje [War] o długości 2n.
- 3. Obliczyć reprezentację [War] wielomianu $C(x) = A(x) \cdot B(x)$.
- 4. Stosujac FFT obliczyć reprezentacje [Wsp] wielomianu C(x).

Kroki 1 i 3 moźna wykonać w czasie O(n), a kroki 2 i 4 w czasie $O(n \log n)$.

50 Pierwiastki z jedności w ciele liczb zespolonych

Definicja 20 n-tym pierwiastkiem z jedności nazywamy liczbę ω taką, źe $\omega^n = 1$.

Fakt 24 W ciele liczb zespolonych istnieje dokładnie n n-tych pierwiastków z jedności. Są nimi liczby $e^{2\pi i k/n}$ dla $i=0,\ldots,n-1$.

Definicja 21 n-ty pierwiastek z jedności, którego potęgi generują zbiór wszystkich n-tych pierwiastków nazywamy n-tym pierwotnym pierwiastkiem z jedności.

Fakt 25 Liczba $\omega_n = e^{2\pi i/n}$ jest n-tym pierwotnym pierwiastkiem z jedności.

Fakt 26 Zbiór $\{\omega_n^j \mid j=0,\ldots,n-1\}$ z mnoźeniem tworzy grupę izomorficzną z grupą $(\mathcal{Z}_n,+_{mod\ n}).$

Lemat 6 (a) $\forall_{n\geq 0, k\geq 0, d>0}$ $\omega_{dn}^{dk} = \omega_n^k$.

- (b) $\forall_{parzystego\ n > 0} \ \omega_n^{n/2} = \omega_2 = -1.$
- $(c) \ \forall_{parzystego \ n \ > \ 0} \ \{(\omega_n^j)^2 \ | \ j = 0, \dots, n-1\} = \{\omega_{n/2}^l \ | \ l = 0, \dots, \frac{n}{2} 1\}.$
- (d) $\forall_{n \geq 1, k \geq 0} takiego, \text{ \mathbb{Z}e nf k} \sum_{j=0}^{n-1} (\omega_n^k)^j = 0.$

51 Dyskretna Transformacja Fouriera (DFT).

Definicja 22 Niech $\mathbf{a} = a_0, \dots, a_{n-1}$. Wektor $\mathbf{y} = y_0, \dots, y_{n-1}$ taki, źe $y_k = \sum_{j=0}^{n-1} a_j \omega_n^{kj}$ (dla $k = 0, \dots, n-1$) nazywamy Dyskretną Transformacją Fouriera wektora \mathbf{a} .

Jeśli **a** jest wektorem współczynników wielomianu A(x), to **y** jest wektorem wartości tego wielomianu w punktach $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$.

52 FFT - szybki algorytm obliczania DFT

- Idea algorytmu.

Niech $A^{[0]}(z) = a_0 + a_2 z + a_4 z^2 \dots + a_{n-2} z^{n/2-1}$ i $A^{[1]}(z) = a_1 + a_3 z + a_5 z^2 \dots + a_{n-1} z^{n/2-1}$. Wówczas $A(x) = A^{[0]}(x^2) + x A^{[0]}(x^2)$.

Tak więc problem obliczenia wartości wielomianu A stopnia n-1 w n punktach: $\omega_n^0, \omega_n^1, \ldots, \omega_n^{n-1}$, redukuje się do problemu obliczenia wartości dwóch wielomianów $A^{[0]}$ i $A^{[1]}$ stopnia $\frac{n}{2}-1$ w $\frac{n}{2}$ punktach: $\omega_{n/2}^0, \omega_{n/2}^1, \ldots, \omega_{n/2}^{(n/2)-1}$.

```
\begin{array}{c} \mathbf{procedure} \; Recursive - FFT(\mathbf{a}) \\ n \leftarrow length(\mathbf{a}) \\ \mathbf{if} \; n = 1 \; \mathbf{then} \; \; \mathbf{return} \; (\mathbf{a}) \\ \omega_n \leftarrow e^{2\pi i/n} \\ \omega \leftarrow 1 \\ \mathbf{a}^{[0]} \leftarrow \langle a_0, a_2, \ldots, a_{n-2} \rangle \\ \mathbf{a}^{[1]} \leftarrow \langle a_1, a_3, \ldots, a_{n-1} \rangle \\ \mathbf{y}^{[0]} \leftarrow Recursive - FFT(\mathbf{a}^{[0]}) \\ \mathbf{y}^{[1]} \leftarrow Recursive - FFT(\mathbf{a}^{[1]}) \\ \mathbf{for} \; k \leftarrow 0 \; \mathbf{to} \; n/2 - 1 \; \mathbf{do} \\ y_k \leftarrow y_k^{[0]} + \omega y_k^{[1]} \\ y_{k+(n/2)} \leftarrow y_k^{[0]} - \omega y_k^{[1]} \\ \omega \leftarrow \omega \omega_n \\ \mathbf{return} \; y \end{array}
```

- Złoźoność algorytmu: $T(n) = 2T(\frac{n}{2}) + \Theta(n) = \Theta(n \log n)$.

Definicja 23 Splotem wektorów $\mathbf{a} = \langle a_0, \dots, a_{n-1} \rangle$ $i \mathbf{b} = \langle b_0, \dots, b_{n-1} \rangle$ nazywamy wektor $\mathbf{c} = \langle c_0, \dots, c_{2n-1} \rangle$ taki, źe $\forall_{0 \leq i \leq 2n-1}$ $c_i = \sum_{j=0}^{i} a_j b_{i-j}$ i oznaczamy go $\mathbf{c} = \mathbf{a} \otimes \mathbf{b}$.

Tak więc splot $\mathbf{a}\otimes\mathbf{b}$ jest reprezentacją [Wsp] iloczynu wielomianów o reprezentacjach [Wsp] \mathbf{a} i \mathbf{b} .

53 Interpolacja w n-tych pierwiastkach z jedności

Jeśli $\mathbf{y} = DFT(\mathbf{a})$, to $\mathbf{y} = V_n \cdot \mathbf{a}$, gdzie V_n jest macierzą $n \times n$, której wyraz (j, k)-ty równa się ω_n^{jk} .

Fakt 27 Dla $j, k = 0, \dots, n-1$ wyraz (j, k)-ty macierzy V_n^{-1} równa się ω_n^{-jk}/n .

Powyźszy fakt pozwala na obliczenie **a** z danego **y** przez zastosowanie FFT (naleźy ω_n zastąpić przez ω_n^{-1})

54 Efektywna implementacja FFT

```
procedure Iterative - FFT(\mathbf{a})
    Bit - Reverse - Copy(\mathbf{a}, A)
     n \leftarrow length(\mathbf{a})
                                                   \{ n \text{ jest potęgą } 2\text{-ki } \}
     for s \leftarrow 1 to \log n do
              \omega_m \leftarrow e^{2\pi i/m}
               \omega \leftarrow 1
               for j \leftarrow 0 to m/2 - 1 do
                         for k \leftarrow j to n-1 step m do
                                       t \leftarrow \omega A[k+m/2]
                                        u \leftarrow A[k]
                                        A[k] \leftarrow u + t
                                        A[k+m/2] \leftarrow u-t
     return A
\mathbf{procedure}\ Bit-Reverse-Copy(\mathbf{a},A)
     n \leftarrow length(\mathbf{a})
     for k \leftarrow 0 to n-1 do A[rev(k)] \leftarrow a_k
```

rev(k) oznacza tutaj n-bitową liczbę powstałą przez zapisanie n-bitowego rozwinięcia binarnego liczby k od prawej do lewej strony.

```
Definicja 24 (a) Splotem wektorów \mathbf{a} = \langle a_0, \dots, a_{n-1} \rangle i \mathbf{b} = \langle b_0, \dots, b_{n-1} \rangle nazywamy wektor \mathbf{c} = \langle c_0, \dots, c_{2n-1} \rangle taki, źe \forall_{0 \leq i \leq 2n-1} c_i = \sum_{j=0}^{i} a_j b_{i-j} i oznaczamy go \mathbf{c} = \mathbf{a} \otimes \mathbf{b}.
```

(b) Negatywnym splotem zwiniętym wektorów **a** i **b** nazywamy wektor $\mathbf{d} = \langle d_0, \dots, d_{n-1} \rangle$, taki źe $d_i = \sum_{j=0}^i a_j b_{i-j} - \sum_{j=i+1}^{n-1} a_j b_{n+i-j}$.

Tak więc splot $\mathbf{a} \otimes \mathbf{b}$ jest reprezentacją [Wsp] iloczynu wielomianów o reprezentacjach [Wsp] \mathbf{a} i \mathbf{b} i, jak pokazaliśmy, może być obliczony przy użyciu transformacji Fouriera.

Fakt 28 Niech \mathbf{a} , \mathbf{b} i \mathbf{d} jak w powyższej definicji. Niech ψ będzie pierwiastkiem z jedności stopnia 2n. Oznaczmy przez $\mathbf{\hat{a}}$, $\mathbf{\hat{b}}$ i $\mathbf{\hat{d}}$ wektory $\langle a_0, \psi a_1, \dots, \psi^{n-1} a_{n-1} \rangle$, $\langle b_0, \psi b_1, \dots, \psi^{n-1} b_{n-1} \rangle$ i $\langle d_0, \psi d_1, \dots, \psi^{n-1} d_{n-1} \rangle$. Wówczas $DFT(\mathbf{\hat{d}}) = DFT(\mathbf{\hat{a}}) \cdot DFT(\mathbf{\hat{b}})$.

Aby uniknąć kłopotów związanych z niedokładną reprezentacją zespolonych pierwiastków z jedności, moźna transformację Fouriera wykonywać nad jakimś ciałem skończonym lub pierścieniem R_m liczb całkowitych modulo m posiadającym n-ty pierwotny pierwiastek z jedności.

Fakt 29 Niech n i ω będą potęgami liczby 2 (róźnymi od 1) oraz niech $m = \omega^{n/2} + 1$. Wówczas n i ω są odwracalne w R_m oraz ω jestn-tym pierwotnym pierwiastkiem z jedności.