Definitions et props

Définition 1: Commutatif les variables peuvent etre inverses

Définition 2: L'arbre de Derivation C'est un format de pour representer une proposition

Figure 1: $(P \Rightarrow Q) \land (P \lor \neg R)$

Définition 3: Loi de De Morgan Soit P et Q deux assertions, alors $\neg(P \lor Q) \equiv \neg P \land \neg Q$ $\neg(P \land Q) \equiv \neg P \lor \neg Q$

Tables de verite

il est assume qu'un connecteur est commutatif sauf mentione autrement

table de ∧: q binaire

	Т	上
\top	\vdash	Τ
\Box	\vdash	Τ
Т	Т	Т

table de \vee : q binaire

\perp	Т	上
	H	Τ
Т	Т	Τ
Т	Τ	\vdash

table de \oplus : q binaire

	Т	上
	H	\vdash
Τ	Т	Т
T	\top	T

table de \Rightarrow : q binaire dit non commutatif

上	Н	Τ
\perp	H	Т
Т	Т	上
Т	Т	Т

autrement dit, vrai sauf si p est vrai et q est faux

table de ⇔: q binaire

\Box	Т	\vdash
\perp	H	丄
Τ	Т	上
Τ	Т	Т

vrai si les deux variables ont la meme valeur

Proprietes

- comutativite de \wedge et \vee

$$(p \wedge q) \equiv (q \wedge p)$$

$$(p\vee q)\equiv (q\vee p)$$

• associativite de \land et \lor

$$((P \land Q) \land R) \equiv ((q \land R) \land P) \ ((P \lor Q) \lor R) \equiv ((Q \lor R) \lor P)$$

• idempotence de \land et \lor

$$(p \land p) \equiv p$$
$$(p \lor p) \equiv p$$

TPs

Question 1: Ecrire une fonction interpretations (nbVar) qui renvoie le tuple constitue de toutes les interpretations possible de nbvar variables propositionnelles

ici la strategie est d'imiter ce tableau en python

	v	f	v
f	f	f	v
v	v	v	v
f	v	f	v

qui, rempli, donne toutes les possibilites des variables

```
def interpretations(nbvar):
vrai = [vrai for i in range(nbvar)]
faux = [faux for i in range(nbvar)]
```

Question 2.

Une formule propositionelle FP de n variables esst codee par une chiande de caracteres respectant la syntaxe python. les variables étant toujours codées V[0], V[1],...,V[n-1]. Écrivez une fonction TV(FP,n) qui renvoie la table de vérité de la formule FP sous forme de tuple de tuples à l'aide de la fonction Inter et la fonction d'évaluation eval(chaine) du Python qui évalue une chaine de caractères si elle respecte la syntaxe du langage Python.

```
Exemple. Avec la chaîne de caractère FP = \text{``V[0]} and V[1], l'appel de la fonction TV(FP,2) doit renvoyer le tuple ((False, False), (False, True, False), (True, False, False), (True, True, True))
```