

AU PROGRAMME Python based

lundi 31 mars 2025		
	09h15 - 12h45	MORLIER Joseph
	14h00 - 16h15	MORLIER Joseph
1: 04 11 2025		
mardi 01 avril 2025		
	09h15 - 12h45	MORLIER Joseph
	14h00 - 16h15	MORLIER Joseph
mercredi 02 avril 2025		
110101011011011111111111111111111111111		MORLIER Joseph
		MURADÁS
		ODRIOZOLA
	09h15 - 12h45	Daniel
		MAS COLOMER JOAN
		MURADÁS
	14h00 - 16h15	ODRIOZOLA Daniel
	141100 - 101113	Daniei
jeudi 03 avril 2025		
		MAS COLOMER JOAN
		MURADÁS
	00145 42545	ODRIOZOLA
	09h15 - 12h45	Daniel

Intro: Sustainable Aviation (Materials) With Both Eyes Open

Design optimization 1: constrained optimization, MOO, Sensibility with examples

Project DO 1 2 3

Topology Optimization with examples		
Material ecoselection, Ashby Diagram and more		

Projet DO 1 2 3

Wrap up and demo from students

Intro to MDAO
Static Aeroelastic problem is a MDAO problem
Airbus PROJECT by TEAM of 3 (marked*)

vendredi 04 avril	2025	ORAL MARKED*	
			MORLIER Joseph MURADÁS ODRIOZOLA Daniel

FMSM207

Part1: On sensibility

Gradient, Hessian and many more?

Gradient-based methods take a more direct path to ... the optimum

Gradient-based

SNOPT
Func eval = 1
1 = 24,2000

X

SLSQP
Func eval = 1
1 = 24,2000

X

NSG82

Gradient-based optimization with analytic derivatives is our only hope for large-scale problems

100x-10,000x speedup for aerodynamic shape optimization vs. gradient-free¹

At least 5x-10x speedup vs. finite-difference²

[1] Lyu et al. ICCFD8-2014-0203 [2] Gray et al. Aviation 2014-2042

Gradient-based optimization is the only hope

for large numbers of design variables

Need accurate derivative

[Lyu et al. ICCFD8-2014-0203]

Derivatives

• Derivatives tell us which direction to search for a solution

Derivatives

• Slope of Tangent Line

$$f'(x) \equiv \frac{df(x)}{dx}$$

Derivatives

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

$$f'(x) = \frac{\Delta f(x)}{\Delta x}$$

Derivatives in Multiple Dimensions

• Gradient Vector

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1}, & \frac{\partial f(\mathbf{x})}{\partial x_2}, & \dots, & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

Hessian Matrix

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & & & \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_n} \end{bmatrix}$$

Derivatives in Multiple Dimensions

• Directional Derivative

$$\nabla_{\mathbf{s}} f(\mathbf{x}) \equiv \underbrace{\lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{s}) - f(\mathbf{x})}{h}}_{\text{forward difference}}$$

$$= \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{s}/2) - f(\mathbf{x} - h\mathbf{s}/2)}{h}$$
central difference

$$= \underbrace{\lim_{h \to 0} \frac{f(\mathbf{x}) - f(\mathbf{x} - h\mathbf{s})}{h}}_{\text{backward difference}}$$

Analytical sensitivities

If the objective function is known in closed form, we can often compute the gradient vector(s) in closed form (analytically):

For complex systems analytical gradients are rarely available

Sensitivity analysis approaches

Simpler approach (default with fmincon):

How to proceed with PDE such as Kq=f?

FMSM207

Symbolic differentiation

- Use symbolic mathematics programs
- e.g. MATLAB®, Maple®, Mathematica®

Automatic Differentiation

- Mathematical formulae are built from a finite set of basic functions, e.g. additions, sin x, exp x, etc.
- Using chain rule, differentiate analysis code: add statements that generate derivatives of the basic functions
- Tracks numerical values of derivatives, does not track symbolically as discussed before
- Outputs modified program = original + derivative capability
- e.g., ADIFOR (FORTRAN), TAPENADE (C, FORTRAN), TOMLAB (MATLAB), many more...
- Resources at http://www.autodiff.org/
- USFJULIA

https://sinews.siam.org/Details-Page/scientific-machine-learning-how-julia-employs-differentiable-programming-to-do-it-best

How Nastran (a FE code) is

doing this

(5) Comment fait Nastran?

Appoche seni-analytique

$$K(x) \ u(x) = F(x)$$

- General case f is not depending on xi
- except for volumic force (i.e. gravity)

$$\frac{\partial K(x)}{\partial x_{i}} u(x) + K(x) \frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}}$$

$$K(x) \frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$K(x) \frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$K(x) \frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial K(x)}{\partial x_{i}} u(x)$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial f(x)}{\partial x_{i}} - \frac{\partial u(x)}{\partial x_{i}} - \frac{\partial u(x)}{\partial x_{i}} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial u(x)}{\partial x_{i}} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x_{i}} = \frac{\partial u(x)}{\partial x} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x} = \frac{\partial u(x)}{\partial x} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x} = \frac{\partial u(x)}{\partial x} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x} = \frac{\partial u(x)}{\partial x} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x} = \frac{\partial u(x)}{\partial x} - \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)}{\partial x} = \frac{\partial u(x)}{\partial x}$$

$$\frac{\partial u(x)$$

Numerical Differentiation

- Finite Difference Methods
- Complex Step Method

Numerical Differentiation: Finite Difference

• Derivation from Taylor series expansion

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \cdots$$

Numerical Differentiation: Finite Difference

Neighboring points are used to approximate the derivative

$$f'(x) \approx \underbrace{\frac{f(x+h) - f(x)}{h}}_{\text{forward difference}} \approx \underbrace{\frac{f(x+h/2) - f(x-h/2)}{h}}_{\text{central difference}} \approx \underbrace{\frac{f(x) - f(x-h)}{h}}_{\text{backward difference}}$$

h too small causes numerical cancellation errors

Numerical Differentiation: Finite Difference

- Error Analysis
 - Forward Difference: O(h)
 - Central Difference: O(h2)

Numerical Differentiation: Complex Step

• Taylor series expansion using imaginary step

$$f(x+ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \cdots$$
$$f'(x) = \frac{\text{Im}(f(x+ih))}{h} + O(h^2) \text{ as } h \to 0$$
$$f(x) = \text{Re}(f(x+ih)) + O(h^2)$$

Complex Step Derivative (see LIVESCRIPT ON LMS)

• Similar to finite differences, but uses an imaginary step

$$f'(x_0) \approx \frac{\text{Im}[f(x_0 + i\Delta x)]}{\Delta x}$$

Second order accurate

Canx use very small step sizes e.g. $\Delta x \approx 10^{-20}$

Doesn't have rounding error, since it doesn't perform subtraction

Limited application areas

Code must be able to handle complex step values

First Exercice

Read and finish the notebook called Complexstep_student.ipynb

Numerical Differentiation Error Comparison

Automatic Differentiation

• Evaluate a function and compute partial derivatives simultaneously using the chain rule of differentiation

$$\frac{d}{dx}f(g(x)) = \frac{d}{dx}(f \circ g)(x) = \frac{df}{dg}\frac{dg}{dx}$$

AD... is Computer Sciences

A program is composed of elementary operations like addition, subtraction, multiplication, and division.

Consider the function $f(a, b) = \ln(ab + \max(a, 2))$. If we want to compute the partial derivative with respect to a at a point, we need to apply the chain rule several times:⁹

$$\frac{\partial f}{\partial a} = \frac{\partial}{\partial a} \ln(ab + \max(a, 2))$$

$$= \frac{1}{ab + \max(a, 2)} \frac{\partial}{\partial a} (ab + \max(a, 2))$$

$$= \frac{1}{ab + \max(a, 2)} \left[\frac{\partial(ab)}{\partial a} + \frac{\partial \max(a, 2)}{\partial a} \right]$$

$$= \frac{1}{ab + \max(a, 2)} \left[\left(b \frac{\partial a}{\partial a} + a \frac{\partial b}{\partial a} \right) + \left((2 > a) \frac{\partial 2}{\partial a} + (2 < a) \frac{\partial a}{\partial a} \right) \right]$$

$$= \frac{1}{ab + \max(a, 2)} [b + (2 < a)]$$

One example

- Forward Accumulation is equivalent to expanding a function using the chain rule and computing the derivatives inside-out
- Requires n-passes to compute n-dimensional gradient

$$\frac{\partial f}{\partial a}(3,2) f(a,b) = \ln(ab + \max(a,2))$$

AD computational graphs

$$\frac{\partial f(3,2)}{\partial a}$$

• Forward Accumulation

$$f(a,b) = \ln(ab + \max(a,2))$$

EMSM207

Automatic Differentiation

In Julia

The ForwardDiff.jl package supports an extensive set of mathematical operations and additionally provides gradients and Hessians.

```
julia> using ForwardDiff
julia> a = ForwardDiff.Dual(3,1);
julia> b = ForwardDiff.Dual(2,0);
julia> log(a*b + max(a,2))
Dual{Nothing}(2.1972245773362196,0.33333333333333333333)
```

In Julia

The Zygote.jl package provides automatic differentiation in the form of reverse-accumulation. Here the gradient function is used to automatically generate the backwards pass through the source code of f to obtain the gradient.

FMSM207

What is JAX?

JAX = accelerated array computation + program transformation

import jax.numpy *as* jnp

- JAX is NumPy on the CPU and GPU!
- JAX uses XLA (Accelerated Linear Algebra) to compile and run NumPy code, lightning fast

 JAX can automatically differentiate and parallelise native Python and NumPy code

JAX is NumPy on the GPU

CPU (Multiple Cores)

GPU (Hundreds of Cores)

Image credit: MathWorks

(10,000 x 10,000) (10,000 x 10,000) NumPy on CPU (Apple M1 Max): 7.22 s ± 109 ms (10,000 x 10,000) (10,000 x 10,000) JAX on GPU (NVIDIA RTX 3090): 56.9 ms ± 222 µs (**126x** faster)

Low latency Ideal for serial processing

High throughput Ideal for parallel processing

What is a program transformation?

```
import jax
import jax.numpy as jnp

def f(x):
    return x**2

dfdx = jax.grad(f)# this returns a python function!

x = jnp.array(10.)

print(x)
print(dfdx(x))

---
10.0
20.0
```

Step 1: convert Python function into a simple intermediate language (jaxpr)

```
print(jax.make_jaxpr(f)(x))
---
{ lambda ; a:f32[]. let b:f32[] = integer_pow[y=2] a in (b,) }
```

Step 2: apply transformation (e.g. return the corresponding gradient function)

```
print(jax.make_jaxpr(dfdx)(x))
---
{ lambda ; a:f32[]. let
    _:f32[] = integer_pow[y=2] a
    b:f32[] = integer_pow[y=1] a
    c:f32[] = mul 2.0 b
    d:f32[] = mul 1.0 c
    in (d,) }
```



```
import jax
import jax.numpy as jnp
def f(x):
    return x**2
dfdx = jax.grad(f)# this returns a python function!
d2fdx2 = jax.grad(dfdx)# transformations are composable!
x = jnp.array(10.)
print(x)
print(d2fdx2(x))
10.0
2.0
```


We can arbitrarily compose program transformations in JAX!

This allows highly sophisticated workflows to be developed

JAX is not easy

• https://medium.com/swlh/solving-optimization-problems-with-jax-98376508bd4f

So start... with Autograd

• Read and finish the notebook called 03-introduction-toautograd.ipynb and 04-autograd-applications.ipynb

Scipy and Sympy

https://members.cbio.mines-paristech.fr/~nvaroquaux/teaching/2016image-xd/advanced/mathematical_optimization/index.html

https://members.cbio.mines-paristech.fr/~nvaroquaux/teaching/2016-image-xd/packages/sympy.html

Without knowledge of the gradient:		
without knowledge of the gradient.		
	 In general, prefer BFGS (scipy.optimize.fmin bfgs()) or L-BFGS (scipy.optimize.fmin l bfgs b()), even if you have to approximate numerically gradients On well-conditioned problems, Powell (scipy.optimize.fmin powell()) and Nelder-Mead (scipy.optimize.fmin()), both gradient-free methods, work well in high dimension, but they collapse for ill-conditioned problems. 	
With knowledge of the gradient:		
	 BFGS (scipy.optimize.fmin bfgs()) or L-BFGS (scipy.optimize.fmin bfgs b()). Computational overhead of BFGS is larger than that L-BFGS, itself larger than that of conjugate gradient. On the other side, BFGS usually needs less function evaluations than CG. Thus conjugate gradient method is better than BFGS at optimizing computationally cheap functions. 	
With the Hessian:		
	•If you can compute the Hessian, prefer the Newton method (scipy.optimize.fmin_ncg()).	
If you have noisy measurements:		
	•Use Nelder-Mead (<u>scipy.optimize.fmin()</u>) or Powell (<u>scipy.optimize.fmin powell()</u>).	