02-K Nearest Neighbors Project

March 21, 2023

1 K Nearest Neighbors Project

1.1 Import Libraries

Import pandas, seaborn, and the usual libraries.

[1]:

1.2 Get the Data

** Read the 'KNN_Project_Data csv file into a dataframe **

[2]:

Check the head of the dataframe.

[23]:

\	IGGA	TLLZ	TRAT	GWYH	XVPM	[23]:
	550.417491	358.347163	2565.995189	817.988525	1636.670614	0
	1161.873391	280.428203	2644.141273	577.587332	1013.402760	1
	922.206261	525.562292	2025.854469	820.518697	1300.035501	2
	419.467495	480.827789	612.000041	1066.866418	1059.347542	3
	843.065903	724.742174	950.622661	1313.679056	1018.340526	4
\	JHZC	MGJM	GUUB	EDFS	HYKR	
	845.136088	1494.878631	330.727893	2147.641254	1618.870897	0
	861.081809	1193.032521	447.157619	853.404981	2084.107872	1
	1647.186291	1968.367513	845.491492	818.676686	2552.355407	2
	1450.935357	1154.391368	341.664784	852.867810	685.666983	3
	1899.850792	539.459350	658.118202	905.469453	1370.554164	4
					TARGET CLASS	
					0	0
					1	1
					1	2
					0	3
					0	4

2 EDA

Since this data is artificial, we'll just do a large pairplot with seaborn.

Use seaborn on the dataframe to create a pairplot with the hue indicated by the TARGET CLASS column.

[4]:

[4]: <seaborn.axisgrid.PairGrid at 0x1197505f8>

3 Standardize the Variables

Time to standardize the variables.

 $[\]ast\ast$ Import Standard Scaler from Scikit learn.
**

```
[5]:
     ** Create a StandardScaler() object called scaler.**
 [6]:
     ** Fit scaler to the features.**
 [7]:
 [7]: StandardScaler(copy=True, with mean=True, with std=True)
     Use the .transform() method to transform the features to a scaled version.
 [8]:
     Convert the scaled features to a dataframe and check the head of this dataframe to
     make sure the scaling worked.
 [9]:
 [9]:
             XVPM
                       GWYH
                                  TRAT
                                            TLLZ
                                                       IGGA
                                                                 HYKR
                                                                           EDFS
                                                                                 \
         1.568522 -0.443435
                              1.619808 -0.958255 -1.128481
                                                             0.138336
                                                                       0.980493
      1 -0.112376 -1.056574
                              1.741918 -1.504220
                                                  0.640009
                                                             1.081552 -1.182663
        0.660647 -0.436981
                             0.775793
                                        0.213394 -0.053171
                                                             2.030872 -1.240707
      3 0.011533
                   0.191324 -1.433473 -0.100053 -1.507223 -1.753632 -1.183561
      4 -0.099059
                   0.820815 -0.904346
                                        1.609015 -0.282065 -0.365099 -1.095644
             GUUB
                       MGJM
                                  JHZC
      0 - 0.932794
                   1.008313 -1.069627
      1 -0.461864
                   0.258321 -1.041546
                              0.342811
         1.149298
                   2.184784
                  0.162310 -0.002793
      3 -0.888557
         0.391419 -1.365603
                             0.787762
         Train Test Split
     Use train_test_split to split your data into a training set and a testing set.
[10]:
```

5 Using KNN

[11]:

Import KNeighborsClassifier from scikit learn.

```
[12]:
     Create a KNN model instance with n_neighbors=1
[13]:
     Fit this KNN model to the training data.
[14]:
[14]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                 metric_params=None, n_jobs=1, n_neighbors=1, p=2,
                 weights='uniform')
        Predictions and Evaluations
     Let's evaluate our KNN model!
     Use the predict method to predict values using your KNN model and X_test.
[24]:
     ** Create a confusion matrix and classification report.**
[16]:
[17]:
     [[112 40]
      [ 34 114]]
[1
```

18]:	

support

recall f1-score

•				
0	0.77	0.74	0.75	152
1	0.74	0.77	0.75	148
avg / total	0.75	0.75	0.75	300

7 Choosing a K Value

precision

Let's go ahead and use the elbow method to pick a good K Value!

^{**} Create a for loop that trains various KNN models with different k values, then keep track of the error_rate for each of these models with a list. Refer to the lecture if you are confused on this step.**

[25]:

Now create the following plot using the information from your for loop.

[20]:

[20]: <matplotlib.text.Text at 0x11cbdb710>

7.1 Retrain with new K Value

Retrain your model with the best K value (up to you to decide what you want) and re-do the classification report and the confusion matrix.

[21]:

WITH K=30

[[127 25] [23 125]]

1 0.83 0.84 0.84 148 avg / total 0.84 0.84 0.84 300

8 Great Job!