Интегралы, задачи

Теорема 1 (Кантора о равномерной непрерывности). Если функция f(x) непрерывна на отрезке (компакте), то она равномерно непрерывна на нём.

1. Докажите, что если функция f(x) непрерывна на отрезке [a,b], то она интегрируема (по Риману) на нём.

Интеграл от функции f(x) по отрезку [a,b], обозначается через

$$\int_a^b f(x) \, dx.$$

Также, положим по определению

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx, \ \int_{a}^{a} f(x) dx = 0.$$

2. а) Докажите, что если функция f(x) интегрируема по большему из отрезков с концами a и b, b и c, c и a, то она интегрируема и по двум другим и имеет место равенство

$$\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) + \int_{b}^{c} f(x) \, dx,$$

каково бы ни было взаимное расположение точек $a,\,b,\,c.$

b) Докажите, что если функции f(x) и g(x) интегрируемы на отрезке [a,b], то для любых чисел α и β функция $(\alpha f + \beta g)(x)$ также интегрируема на нём и имеет место равенство

$$\int_a^b (\alpha f + \beta g)(x) \, dx = \alpha \cdot \int_a^b f(x) \, dx + \beta \cdot \int_a^b g(x) \, dx.$$

- **3.** а) Докажите, что если функция f(x) интегрируема на отрезке $[a,b],\ a< b$ и $f(x)\geqslant 0$ на всём отрезке [a,b], то и $\int_a^b f(x)\,dx\geqslant 0.$
- b) Докажите, что если функции f(x) и g(x) интегрируемы на отрезке $[a,b],\ a < b$ и $f(x) \geqslant g(x)$ на всём отрезке [a,b], то и $\int_a^b f(x) \, dx \geqslant \int_a^b g(x) \, dx.$
- **4.** Докажите, что если функция f(x) непрерывна на отрезке [a,b], то найдётся такое число $c \in [a,b]$, что $\int_a^b f(x) \, dx = (b-a) \cdot f(c)$.

Определение 1. Пусть функция f(x) интегрируема на отрезке [a,b]. Определим на отрезке [a,b] функцию

$$\Phi(x) = \int_{a}^{x} f(t) dt.$$

Иногда функцию $\Phi(x)$ называют *интегралом* с переменных верхним пределом.

5. Докажите, что функция $\Phi(x)$ непрерывна на отрезке [a,b].

- **6.** Докажите, что если функция f(x) непрерывна в точке $c \in [a, b]$, то функция $\Phi(x)$ дифференцируема в точке c и $\Phi'(c) = f(c)$.
- 7. (основная формула интегрального исчисления; формула Ньютона–Лейбница). Пусть функция f(x) непрерывна на отрезке [a,b], функция F(x) её nepsoofpas-nas на этом отрезке, т.е. такая дифференцируемая на отрезке [a,b] функция, что для любой точки $c \in [a,b]$ выполнено F'(c) = f(c). Тогда

$$\int_a^b f(x) dx = F(b) - F(a) \stackrel{\text{def}}{=} F(x) \Big|_a^b.$$

- 8. Пусть функция f(x) непрерывна на отрезке [a,b]. Пусть также имеется функция $\varphi(t)$, определённая на отрезке $[\alpha,\beta]$, причём
- 1) функция $\varphi(x)$ имеет непрерывную производную на отрезке $[\alpha, \beta]$;
- 2) значения функции $\varphi(t)$ на отрезке $[\alpha, \beta]$ не выходят за пределы [a, b];
- 3) $\varphi(\alpha) = a, \ \varphi(\beta) = b.$

Тогда имеет место формула

$$\int_{a}^{b} f(x) dx = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

- 9. Составьте таблицу основных интегралов.
- **10.** Пусть $\alpha\geqslant 0$. Используя интеграл, найдите $\lim_{n\to\infty}\frac{1^{\alpha}+2^{\alpha}+\ldots+n^{\alpha}}{n^{\alpha+1}}$.
- **11.** Для любых действительных чисел a_1, a_2, \ldots, a_n докажите неравенство

$$\sum_{1 \leqslant i, j \leqslant n} \frac{a_i a_j}{i + j - 1} \geqslant 0.$$