How to Count?

Addition Example

A Trivial Example

You decide to purchase a snack from one food outlet located in either the **Student Centre** or the **Market Place**.

- If you visit the Student Centre, you can purchase a snack from one of eight food outlets.
- If you visit the Market Place, you can purchase a snack from one of twelve food outlets.

How many possible food outlets could you purchase a snack from?

Solution.

There are 8 + 12 = 20 possible food outlets you could purchase a snack from.

Theorem: The Addition Principle (AP)

Suppose there are:

- n_1 ways for event E_1 to occur,
- n_2 ways for event E_2 to occur,
- •
- n_k ways for event E_k to occur.

If the ways the different events can occur are pairwise disjoint, then the number of ways

for at least one of the events E_1, E_2, \ldots, E_k to occur is $\sum_{i=1}^n n_i = n_1 + n_2 + \cdots + n_k$.

The Addition Principle can be restated using sets:

Theorem: The Addition Principle (AP)

Let A_1,A_2,\ldots,A_k be any k finite sets. If $A_i\cap A_j=\emptyset$ for all $1\leq i,j\leq k$ with $i\neq j$, then

$$\left|\bigcup_{i=1}^k A_i\right| = |A_1 \cup A_2 \cup \cdots \cup A_k| = \sum_{i=1}^k |A_i|.$$

Multiplication Example

A Trivial Example

You visit a restaurant for dinner that has a three-course fixed price menu. You are asked to choose **one appetizer**, **one entrée** and **one dessert** from the menu below.

Appetizer:

- Potato leek soup
- Ceasar salad
- Egg rolls

Entrée:

- Grilled beef tenderloin
- Vegan lasagna
- Enchiladas

Dessert:

- Gulab jamun
- Chocolate cake

How many different meal possibilities are there?

Solution. There are $3 \times 3 \times 2 = 18$ possible meals.

Multiplication

Theorem: The Multiplication Principle (MP)

Suppose that an event E can be decomposed into k ordered events E_1, E_2, \ldots, E_k , and that there are:

- n_1 ways for event E_1 to occur,
- n_2 ways for event E_2 to occur,
- n_k ways for event E_k to occur.

Then the total number of ways for the event E to occur is $\prod_{i=1}^{n} n_i = n_1 \times n_2 \times \cdots \times n_k$.

The Multiplication Principle can be restated using sets:

Theorem: The Multiplication Principle (MP)

Let A_1, A_2, \ldots, A_k be any k finite sets and

$$\prod^k A_i := \{(a_1, a_2, \dots, a_k) \ : \ a_1 \in A_1, \ a_2 \in A_2, \dots, a_k \in A_k\}$$

be the Cartesian product of A_1, A_2, \ldots, A_k . Then $\left| \prod_{i=1}^r A_i \right| = \prod_{i=1}^r |A_i|$.

Permutations

Definition: Permutation

A permutation is an arrangement of distinct objects.

Definition: Factorial

The **factorial** of n is defined as

$$n! = n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

with the convention that 0! = 1.

Facts

- (i) There are n! permutations of a set of n objects.
- (ii) Fix k so that $0 \le k \le n$.

 The number of permutations of k objects of a set of

The number of permutations of k objects of a set of size n is:

$$n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot (n-k+1)$$
.

Note: We can rewrite this as $\frac{n!}{(n-k)!}$.

Problems

Example

There are

- 2 ways to travel from city A to city B,
- 4 ways to travel from city B to city C, and
- 3 ways to travel from city C to city D.

If to reach city D from city A one must first pass through city B followed by city C, then how many ways are there from city A to city D?

Example

- (a) Find the number of positive divisors of 600 (including 1 and 600).
- (b) Let n be a positive integer and $\sigma(n)$ denote the number of positive divisors of n. Give a formula for $\sigma(n)$ and prove it is correct.

Example

Let $X=\{1,2,\ldots,100\}$ and $S=\{(a,b,c):a,b,c\in X \text{ and } a<\min\{b,c\}\}.$ Find |S|.

Example

How many ways can we arrange 3 objects from $\{a, b, c, d\}$?