

Relazione di calcolo

SuperProfessional Folding XP

- 1- Descrizione della struttura.
- 2- Materiali utilizzati.
- 3- Carichi considerati.
- 4- Modello di calcolo.
- 5- Calcoli.
- 6- Tabelle delle portate

Il tecnico incaricato

DEGLI INGER

DESCRIZIONE DELLA STRUTTURA

La struttura in oggetto è una trave reticolare modulare realizzata con tubolari in lega di alluminio estruso. I moduli hanno le dimensioni mostrate nella tavola allegata. I correnti in ogni modulo sono realizzati con tubolari 50 x 3 mentre i diagonali sono tubolari 30 x 3 saldati ai correnti come in figura. La continuità fra i moduli è garantita da opportune boccole collegate ai correnti mediante tre spine. Le distanze fra gli interassi dei correnti sono pari a 49 cm orizzontalmente e 52 cm in diagonale.

MATERIALI UTILIZZATI

Il materiale utilizzato è una lega di alluminio Al-Zn5.4Mg0.8Zr con denominazione 7108 HB 120 secondo le norme UNI EN 575 avente una resistenza allo snervamento pari a σ =2750 Kg/cmq, ed un modulo E=700000 kg/cmq. Si considera un coefficiente di sicurezza pari a υ =1.7 e si ottiene come a σ adm=1620 kg/cmq . In prossimità delle saldature il materiale termicamente alterato subisce un decadimento delle caratteristiche meccaniche per cui la resistenza residua di tali tratti è pari a σ =2150 kg/cmq ed applicando un coefficiente di sicurezza 1.7 si ottiene σ adm=1264 kg/cmq. Le saldature sono realizzate con materiale di apporto S-Al Mg5 a vente una resistenza pari a 1200 kg/cmq. Considerando che il processo di saldatura realizzato è di prima classe, la resistenza della saldatura è pari a 1100 kg/cmq per le condizioni di carico I e per una saldatura del tipo testa a testa e 660 kg/cmq per le saldature a cordone d'angolo.Per saldature con materiale diverso , ad esempio con 6082 si ottiene σ =650 kg/cmq per saldature testa a testa e σ =480 kg/cmq per saldature a cordone d'angolo.

CARICHI

Il calcolo è stato eseguito considerando due tipologie di carico. Un carico concentrato P applicato in prossimità della mezzeria ed un carico uniformemente distribuito sull'intera luce della trave . Il carico è stato considerato statico, applicato in corrispondenza dei nodi del corrente inferiore.

MODELLO DI CALCOLO

Per il calcolo della struttura in esame è stato utilizzato il metodo delle tensioni ammissibili.

Lo schema di calcolo delle azioni M T N dovute ai carichi è quello di una trave in semplice appoggio.

Le verifiche di resistenza sono state eseguite solo sulle sezioni maggiormente sollecitate: la mezzeria per gli sforzi flessionali, ed i diagonali in prossimità degli appoggi per gli sforzi di taglio. Essendo la trave molto snella , gli elementi sono stati verificati anche alla instabilità utilizzando la nota relazione di Eulero $Ncr=\pi^2EJ/L^2_{0}$, dove $L_0=\alpha L$ ($\alpha=0.8$).

Nel caso del diagonale $L=73.5\,$ cm . Nei confronti della instabilità si è utilizzato un coefficiente di sicurezza pari a v=3.0.

CALCOLI

Dati relativi al corrente:

Dimensioni 50 x 3 mm

Area = 4.427 cm^2

J=12.28 cm4

W=4.912 cm3

Dati relativi al diagonale:

Dimensioni 30 x 3.0

Area = 2.54 cm^2

 $J = 2.34 \text{ cm}^4$

 $W = 1.56 \text{ cm}^3$

Lunghezza =49.5 cm

Caratteristiche della sezione nel suo complesso:

Area = 17.7 cm^2

 $J = 9970 \text{ cm}^4$

 $W = 370 \text{ cm}^3$

Verifica a flessione:

Applicando la formula M/W ottengo come massima tensione considerando tutte le tipologie di carico:

 $\sigma = 900 \text{ kg/cm}^2 \le 1550 \text{ kg/cm}^2$

VERIFICA A TAGLIO

Un singolo diagonale può resistere a trazione 1832 kg, ed a compressione considerando la formula di Eulero 1000 kg. I diagonali sono inclinati e sono uno compresso ed uno teso. Il taglio totale resistente è:

T= 1500 Kg

VERIFICA RIFOLLAMENTO

Ci sono tre spine aventi φ=10 mm. La rottura avviene per cedimento del tubo di spessore 3 mm a rifollamento. Pertanto si esegue tale verifica.

Tiro totale = 4.42*1000=4420 kg

Area resistente = 0.3*2*1.0*3=1.8 cmq

σ=4420/1.8=2455 kg/cmq <2.0xσadm=3100 kg/cmq

TRALICCIO A QUATTRO CORRENTI

Lega di alluminio Al-Zn5.4Mg0.8Zr - designazione numerica 7108 Materiale di apporto saldature S-Al Mg5.

- Correnti tubo Ø mm 50 x 3
- Diagonali tubo Ø mm 30 x 3

TABELLA DELLE PORTATE UTILI DEL TRALICCIO

Con coefficiente di sicurezza sulla resistenza di progetto del materiale base adiacente al giunto termicamente alterato.

V = 1.5

LUNGHEZZA (mt)	CARICO CONCENTRATO (Kg)	CARICO DISTRIBUITO (Kg/mt)	FRECCIA (cm)
mt 8	1250	300	3,6
mt 10	1100	225	6,7
mt 12	940	160	10,1
mt 14	770	104	12,6
mt 16	640	79	16,8
mt 18	550	59	21,0
mt 20	460	47	23,1
mt 22	400	37	28,0
mt 24	360	29	33,2
mt 26	310	24	40,2

- Schema di calcolo: trave su due appoggi.
- Portate valide per carichi statici.
- · Carichi applicati nei nodi dei correnti inferiori.
- · La freccia teorica non considera il gioco nei giunti.

Il tecnico incaricato

DOTTORE INGESNERE GENGHINI ENRICO