

广东工业大学机器人学院 循迹小车报告

课程名称:	机器人入门项目设计1
指导老师:	陈玮. .
学院专业:	信息工程学院信息工程 4
学号:	3115002349
姓名:	李森

摘 要 完成课程设计轨道如 Figure 1.

小车依次经过 Figure1 标注 1 号点得 5 分、2 号点再得 5 分,3 号点再得 5 分、4 号点再得 5 分、5 号点再得 3 分、6 号点再得 3 分;当小车从开始点出发依次经过各点到达终点(7 号点),若用时小于或等于 70 秒,再得 2 分;若低于 70 秒每减二十秒加 1 分,最多加 2 分。

目 录

-,	方案一
	1.1 论证方案
	1.1.1 调试
	1.2 设计电路
	1. 2. 1 真值表
	1.2.2 K-MAP 化简
	1. 2. 3 电路图
_,	方案二
	2.1 论证方案
	2.2 设计电路
	2. 2. 1 真值表
	2. 2. 2 K-MAP 化简
	2. 2. 3 电路图
	2.3 调试
\equiv	方案三
_,	3.1 论证方案
	3.2 设计电路
	3. 2. 1 真值表
	3. 2. 2 K-MAP 化简
	3. 2. 3 电路图
	3.3 调试
	结语
	6文献15
	$rac{1}{2}$
附件	otag
	附件 1: 感想体会
	附件 2: 实验照片

一、方案一(最终方案)

- 1.1 论证方案
- 1. 利用 LM1117 稳压芯片将锂电池 8V 的电压降为 5V 电压供给 VCC 接 5V 的芯片使用。

接法如图

2. 利用 L298N 实现左右轮的正反转

3. 利用 NE555 产生 PWM, 调节小车的行进速度。

- 4. 利用数字逻辑给左右轮输入信号。
- 5. 利用锁存器保存的原因,加上触发功能,可以控制保存时间。

此方案加大了传感器间的距离。以下方案的真值表中,将四个传感器从左到右依次编号为 A、B、C、D。L298ND 的 In1、in2 控制左轮,in3、in4 控制右轮。传感器探测到白线记为 1(高电平),探测到黑线记为 0(低电平)。d 为 do not care 。记 F 为直走(forward),转 左为 L,转右为 R。

传感器位置

1.1.1 调试

可能是由于马达的问题,小车直走时左轮速度大于右轮,导致小车在循迹时中间靠左边传感器贴着黑线走,以至转直角时时状态异常。

- 1.2 设计电路
- 1.2.1 真值表

A	В	С	D	IN1	IN2	IN3	IN4	STATE
1	1	1	1	1	0	1	0	F
1	1	0	1	1	0	0	0	R
1	0	1	1	0	0	1	0	L
1	0	0	0	1	0	1	0	F
0	0	0	1	0	0	1	0	L
0	0	0	0	1	0	0	0	R
0	0	1	1	0	1	1	0	L
1	1	0	0	1	0	0	1	R
0	1	1	0	0	1	1	0	L
0	0	0	1	1	0	0	0	R
0	1	0	0	0	1	1	0	L

1.2.2 K-MAP

In1

	CD	C'D	C'D'	CD'
AB	1	0	0	d
AB'	1	d	1	d
A'B'	1	0	0	d
A'B	d	d	0	1
In2	CD	C'D	C'D'	CD'
AB	0	0	0	d
AB'	0	d	0	d
A'B'	1	0	0	d
A'B	d	d	1	1
	CD	C'D	C'D'	CD'
In3				
AB	1	0	0	d
AB'	1	d	1	d
A'B'	1	0	0	d
A'B	d	d	0	1
In4				
	CD	C'D	C'D'	CD'
AB	0	0	1	d
AB'	0	d	0	d
A'B'	0	0	0	d
A'B	d	d	0	0

化简得表达式: In1=AB+C'D' IN2=A'CD

IN3=CD+A' B' D+AB' IN4=ABD'

1.2.3 电路图

二、方案二

2.1 论证方案

采用四个传感器,如图所示放置。此方案为原始方案,

2.2.1 列出真值表

A	В	С	D	Movement	Movement	The state of
				of The left	of The right	the car
				side	side	
1	0	1	1	S	F	Turn left
1	1	0	1	F	S	Turn right
1	1	1	1	F	F	Forward
1	0	0	0	S	F	Turn left
0	0	0	1	F	S	Turn right
0	0	1	1	S	F	Turn left
1	1	0	0	F	S	Turn right
0	0	0	0	F	S	Turn right
0	0	0	1	S	F	Turn left
0	0	0	1	S	F	Turn left

NOTE:Turn left (L)

2. 2. 2k-map 化简

左轮

	CD	CD'	C'D'	C'D
AB	1	d	1	1
AB'	0	d	0	d
A'B'	0	d	1	0
A'B	d	d	0	d

右轮

	CD	CD'	C'D'	C'D
AB	1	d	0	0
AB'	1	d	1	d
A'B'	1	d	0	1
A'B	d	d	1	d

化简得:左轮=AB+A'B'D'

右轮=CD+AB'+A'C'D

2.2.3 电路图

2.3 调试过程

虽然在第一天就能跑完全程,但速度很慢,跑完全程 70+s。一旦加快速度便会冲出跑道,据仔细思考,这可能是因为转直角弯时小车反转速度不够快,加上原来走直线的惯性作用。对于此问题,我们尝试用达林顿管 tip107、运算放大器、三极管放大电压,加大反转速度。

三、方案三

3.1 传感器位置

3.2.1 真值表

A	В	С	D	IN1	IN2	IN3	IN4	STATE
1	1	1	1	1	0	1	0	F
1	1	0	1	1	0	0	0	R
1	0	1	1	0	0	1	0	L
1	0	0	0	1	0	1	0	F
0	0	0	1	0	0	1	0	L
0	0	0	0	1	0	0	0	R
0	0	1	1	0	1	1	0	L
1	1	0	0	1	0	0	1	R

3. 2. 2k-map 化简

In1

	CD	C'D	C'D'	CD'
AB	1	1	1	d
AB'	0	d	1	d
A'B'	0	d	1	d
A'B	d	d	d	d

In2

	CD	C'D	C'D'	CD'
AB	0	0	0	d
AB'	0	d	0	d
A'B'	1	d	0	d
A'B	d	d	d	d

In3

	CD	C'D	C'D'	CD'
AB	1	0	0	d
AB'	1	d	1	d
A'B'	1	d	0	d
A'B	d	d	d	d

In4

	CD	C'D	C'D'	CD'
AB	0	0	1	d
AB'	0	d	0	d
A'B'	0	d	0	d
A'B	d	d	d	d

In1=AB+C'D'

IN2=A'CD

IN3=CD+A'B'D'+AB'

IN4=ABD'

3.2.3 电路图

3.3 调试过程

在本次试跑中,小车的反转速度明显提高,过直角弯道顺利。小车跑完全程速度提升。

四、结语

参考文献

- [1] 数字电子技术基础(第五版).2011-11
- [2] 电路 第五版 邱关源 2015-6
- [3] 模拟电子技术基础(第四版) 童诗白 2006
- [5] 电子技术基础. 数字部分. (康华光. 第5版) 1998
- [6] 电子技术基础. 模拟部分. (康华光. 第 5 版) 2005

致谢

这份实验顺利完成,在此感陈玮老师、丁老师,张老师、孙老师、刘老师、 钟老师六位老师和周攀师兄、曹狄师兄等 5 位 TA; 感谢我的搭档。感谢你们授 予我们知识、带领我们进步、陪着我们度过每一个有意义的周末。也感谢各位老 师给了我们这样一个机会锻炼我们的实验操作能力、提高我们运用数电模电电路 的相关知识的能力。从第六周到现在,我们能够坚持下来离不开你们的坚持与支 持。谢谢你们!

附件

附件1: 体会感想

第一个方案的试跑是第四次才成功的,是的,成功前的失败总是让我受挫,失败后的成功总是让我又充满信心。是的,经过这一学期的实验学习,我清楚地意识到,几乎每一个工程的设计与实现都是有差距的。理论总是需要被实践验证,这正如陆游说的那句诗:纸上得来终觉浅,绝知此事要躬行。我在乎的并不是成绩是否优异,而是整个过程的掌握各种新技能。在调试过程中,从不同的视角看待同一个问题也总会有不同的发现。这给我的启示是:只有更透彻地理解本质,才能把问题看得更清楚,发现更多的解决办法!希望凝聚智慧和汗水的小车能让我们走得更远!

附件 2: 实验照片

调试我们的小车

赛道上的同学们