

Lecture 3-2: "li" Pseudo Instruction CS10014 Computer Organization

Department of Computer Science
Tsung Tai Yeh

Thursday: 1:20 pm— 3:10 pm

Classroom: EC-022

Acknowledgements and Disclaimer

- Slides were developed in the reference with
 - CS 61C at UC Berkeley
 - https://inst.eecs.berkeley.edu/~cs61c/sp23/
 - CS 252 at UC Berkeley
 - https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
 - CSCE 513 at University of South Carolina
 - https://passlab.github.io/CSCE513/

Outline

- U-Format
 - "li" pseudo instruction

• li rd, Immediate

- Load 32-bit values or address in the destination register
- How to translate "li t0 0x12345678" to instructions?
- One instruction is impossible since no 32-bit object can encode all 2³² possible immediates AND all 32 possible destination registers

Solution: lui instruction

- In the above example, we can do
 - lui t0 0x12345
 - addi
 t0 t0 0x678

- lui rd, immediate
 - Load Upper Immediate, U-type
 - Writes the signed-extended 20-bit immediate, left-shifted by 12 bits, to x[rd], zeroing the lower 12 bits
 - x[rd] = sext (immediate[31:12] << 12)

31		1211		6	0	
	Immediate[31:12]	Rd		011011	1	

- addi rd, rs1 immediate
 - Add immediate, I-type
 - Adds the signed-extended immediate to register x[rs1] and write the result to x[rd]
 - x[rd] = x[rs1] + sext (immediate)

31		20	19 15	14 12	11 7	6	0
	Immediate[11:0]		rs1	000	rd	0110111	

- li rd, immediate
 - If the range of the immediate is 0 ~ 4096 (12-bit)
 - li rd, immediate => addi rd, x0, immediate
 - else
 - lui rd (immediate << 12)
 - addird, rd, (immediate & 0xFFF)

)

- In case
 - lui a0, immediate0 << 12
 - addi a0, a0, (immediate1 & 0xFFF)
- When 11th immediate1 = 0
 - lui a0, immediate0 << 12
 - addi a0, a0, (immediate1 & 0xFFF)
- When 11th immeidate1 = 1
 - lui a0, ((immediate0 +1) << 12)
 - addi a0, a0, (immediate1 & 0xFFF); then a0 − 2^12

- In case: li a0, 0xABCEDFFF
 - lui a0, 0xABCDE
 - addi a0, a0, 0xFFF
- Problem: 0xFFF isn't 4095; it's -1 (2' complement)
 - 0xFFF = 1111 1111 1111 (11th immediate = 1)
 - lui a0, (immediate0+1) << 12)
 - add a0, a0, (immediate1 & 0xFFF); then a0 2^12)
 - lui t0 0xABCDE #t0 stores 0xABCDF000
 - addi t0 t0 0xFFF #t0 = (0xABCD**F**000 & 0xFFF)-2^12 #t0 = 0xABCD**E**FFF