Aflevering 5 - uden hjælpemidler

Opgave 1

Skitsér følgende sum eller differens af vektorer:

$$1) \ \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$2) \quad \binom{2}{3} + \binom{-4}{2}$$

$$3) \ \binom{4}{4} - \binom{2}{2}$$

3)
$$\begin{pmatrix} 4 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 4) $\begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

Opgave 2

Skitsér følgende par af vektorer og mål vinklen mellem dem:

$$1) \ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$2) \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

Opgave 3

Lad
$$\vec{v} = \begin{pmatrix} -2\\4 \end{pmatrix}$$
 og lad $\vec{w} = \begin{pmatrix} \frac{1}{2}\\-1 \end{pmatrix}$

- i) Bestem et tal x, så $\vec{v}x = \vec{w}$.
- ii) Løs ligningen

$$\vec{v} + \vec{w} + \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Opgave 4

Lad punkterne A = (0, 2), B = (-3, 5), C = (1, 2) og D = (-5, -5) være givet.

i) Udregn følgende udtryk

1)
$$\overrightarrow{AB} + \overrightarrow{CD}$$

2)
$$2\overrightarrow{AC} - 3\overrightarrow{DC}$$

3)
$$\overrightarrow{BD} - \overrightarrow{DB}$$

4)
$$\overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{CB} + \overrightarrow{DB}$$

ii) Bestem længden af følgende vektorer:

1)
$$3\overrightarrow{BA}$$

$$2) \overrightarrow{AC} + 2\overrightarrow{CD}$$

iii) Vektorerne \overrightarrow{AC} og \overrightarrow{OC} afgrænser sammen med y-aksen et trekantet område. Bestem arealet af dette område.

Opgave 5

Lad punkterne A = (8,3) og B = (0,3) være givet.

- i) Bestem midtpunktet M mellem A og B.
- ii) Bestem nu midtpunktet N mellem B og M.
- iii) Bestem til sidst midtpunktet mellem M og N.

Opgave 6

Bestem følgende udtryk og afgør, hvis nogle af vektorerne er orthogonale.

$$1) \quad \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -5 \end{pmatrix}$$

$$2) \ \begin{pmatrix} -2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

$$3) \ 4 \begin{pmatrix} 9 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

1)
$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -5 \end{pmatrix}$$
 2) $\begin{pmatrix} -2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
3) $4 \begin{pmatrix} 9 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ 4) $\begin{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -3 \\ 4 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 6 \end{pmatrix}$

Opgave 7

Skitsér en enhedscirkel og bestem $\cos(v)$ og $\sin(v)$ for følgende vinkler ved aflæsning:

1	60°
Ι,	00

Opgave 8

- i) Det gælder, at $\sin(120^\circ) = \frac{\sqrt{3}}{2}$. Brug idioutformlen og enhedscirklen til at bestemme $\cos(120^\circ)$.
- ii) Brug idiotformlen og enhedscirklen til at bestemme $\cos(45^{\circ})$. Hint: $\cos(45^{\circ}) = \sin(45^{\circ})$.