

Lecture 7

Yueming Jin ymjin@nus.edu.sg

Electrical and Computer Engineering Department
National University of Singapore

Acknowledgement: EE2211 development team Thomas, Helen, Xinchao, Kar-Ann, Chen Khong, Robby and Haizhou

Course Contents

- Introduction and Preliminaries (Xinchao)
 - Introduction
 - Data Engineering
 - Introduction to Probability and Statistics
- Fundamental Machine Learning Algorithms I (Yueming)
 - Systems of linear equations
 - Least squares, Linear regression
 - Ridge regression, Polynomial regression
- Fundamental Machine Learning Algorithms II (Yueming)
 - Over-fitting, bias/variance trade-off
 - Optimization, Gradient descent
 - Decision Trees, Random Forest
- Performance and More Algorithms (Xinchao)
 - Performance Issues
 - K-means Clustering
 - Neural Networks

Fundamental ML Algorithms: Linear Regression

References for Lectures 7-9:

Main

- [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019. (read first, buy later: http://themlbook.com/wiki/doku.php)
 - Chapters 3, 4, 5, & 7.
- [Book2] Andreas C. Muller and Sarah Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", O'Reilly Media, Inc., 2017

Supplementary

- [Book3] Jeff Leek, "The Elements of Data Analytic Style: A guide for people who want to analyze data", Lean Publishing, 2015.
- [Book4] Stephen Boyd and Lieven Vandenberghe, "Introduction to Applied Linear Algebra", Cambridge University Press, 2018 (available online) http://vmls-book.stanford.edu/
- [Ref 5] Professor Vincent Tan's notes (chapters 7-9): (useful) https://vyftan.github.io/papers/ee2211book.pdf

Fundamental ML Algorithms: Overfitting, Bias-Variance Tradeoff

Module III Contents

- Overfitting, underfitting & model complexity
- Feature selection & Regularization
- Bias-variance trade-off
- Loss function
- Optimization
- Gradient descent
- Decision trees
- Random forest

Regression Review

- Goal: Given feature(s) x, we want to predict target y
 - -x can be 1-D or more than 1-D
 - -y is 1-D
- Two types of input data
 - Training set $\{x_i, y_i\}$, from $i = 1, \dots, N$
 - Test set $\{x_j, y_j\}$, from $j = 1, \dots, M$
- Learning/Training
 - Training set used to estimate regression coefficients \widehat{w}
- Prediction/Testing/Evaluation
 - Prediction performed on test set to evaluate performance

Regression Review: Linear Case

- x is 1D & y is 1-D
- Linear relationship between x & y
- Illustration (4 training samples):

$$\mathbf{X}_{train} = \left(egin{array}{cc} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{array}
ight) \quad \mathbf{y}_{train} = \left(egin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \end{array}
ight)$$

Training/Learning (primal) on training set

$$\hat{\mathbf{w}} = (\mathbf{X}_{train}^T \mathbf{X}_{train})^{-1} \mathbf{X}_{train}^T \mathbf{y}_{train}$$

$$\hat{\mathbf{y}}_{test} = \mathbf{X}_{test}\hat{\mathbf{w}}$$

Regression Review: Polynomial

- x is 1-D (or more than 1-D) & y is 1-D
- Polynomial relationship between x & y
- Quadratic illustration (4 training samples, x is 1-D):

$$\mathbf{X}_{train} = \left(egin{array}{ccc} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ 1 & x_3 & x_3^2 \ 1 & x_4 & x_4^2 \end{array}
ight) \quad \mathbf{y}_{train} = \left(egin{array}{c} y_1 \ y_2 \ y_3 \ y_4 \end{array}
ight)$$

Training/Learning (primal) on training set

$$\hat{\mathbf{w}} = (\mathbf{X}_{train}^T \mathbf{X}_{train})^{-1} \mathbf{X}_{train}^T \mathbf{y}_{train}$$

$$\hat{\mathbf{y}}_{test} = \mathbf{X}_{test} \hat{\mathbf{w}}$$

Regression Review: Polynomial

- x is 1-D (or more than 1-D) & y is 1-D
- Polynomial relationship between x & y
- Quadratic illustration (4 training samples, x is 1-D):

$$\mathbf{P}_{train} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{pmatrix} \quad \mathbf{y}_{train} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$

Training/Learning (primal) on training set

$$\hat{\mathbf{w}} = (\mathbf{P}_{train}^T \mathbf{P}_{train})^{-1} \mathbf{P}_{train}^T \mathbf{y}_{train}$$

$$\hat{\mathbf{y}}_{test} = \mathbf{P}_{test}\hat{\mathbf{w}}$$

Note on Training & Test Sets

- Linear is special case of polynomial => use "P" instead of "X" from now on
- Training/Learning (primal) on training set

$$\hat{\mathbf{w}} = (\mathbf{P}_{train}^T \mathbf{P}_{train})^{-1} \mathbf{P}_{train}^T \mathbf{y}_{train}$$

$$\hat{\mathbf{y}}_{test} = \mathbf{P}_{test} \hat{\mathbf{w}}$$

- There should be zero overlap between training & test sets
- Important goal of regression: prediction on new unseen data, i.e., test set
- Why is test set important for evaluation?

	Training Set Fit	
Order 9	Good	

	Training Set Fit	Test Set Fit
Order 9	Good	Bad

- If we take one of the blue lines and compute the square of its length, this is called "squared error" for that particular data point
- If we average squared errors across all the red crosses, it's called mean squared error (MSE) in the test set

Underfitting Example

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 1	Bad	

Underfitting Example

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 1	Bad	Bad

"Just Nice"

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 1	der 1 Bad	Bad
Order 2	Good	

"Just Nice"

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 1	Bad	Bad
Order 2	Order 2 Good	Good

Overfitting & Underfitting

		Training Set Fit	Test Set Fit
•	Order 9	Good	Bad
•	Order 1	Bad	Bad
	Order 2	Good	Good

Overfitting & Underfitting

 Overfitting occurs when model predicts the training data well, but predicts new data (e.g., from test set) poorly

Reason 1

- Model is too complex for the data
- Previous example: Fit order 9 polynomial to 10 data points

Reason 2

- Too many features but number of training samples too small
- Even linear model can overfit, e.g., linear model with 9 input features (i.e., w is 10-D) and 10 data points in training set => data might not be enough to estimate 10 unknowns well

Solutions

- Use simpler models (e.g., lower order polynomial)
- Use regularization (see next part of lecture)

Overfitting & Underfitting

 Underfitting is the inability of trained model to predict the targets in the training set

Reason 1

- Model is too simple for the data
- Previous example: Fit order 1 polynomial to 10 data points that came from an order 2 polynomial
- Solution: Try more complex model

Reason 2

- Features are not informative enough
- Solution: Try to develop more informative features

Overfitting / Underfitting Schematic

Model Complexity or Number of Features

Feature Selection

- Less features might reduce overfitting
 - Want to discard useless features & keep good features, so perform feature selection
- Feature selection procedure
 - Step 1: feature selection in training set
 - Step 2: fit model using selected features in training set
 - Step 3: evaluate trained model using test set
- Very common mistake
 - Feature selection with test set (or full dataset) leads to inflated performance
 - Do not perform feature selection with test data

Selecting Features With Pearson's r

- Given features x, we want to predict target y
- Assume x & y both continuous
- Compute Pearson's correlation coefficient between each feature & target y in the training set
 - Pearson's correlation r measures linear relationship between two variables

Selecting Features With Pearson's

r

- Given features x, we want to predict target y
- Assume x & y both continuous
- Compute Pearson's correlation coefficient between each feature & target y in the training set
 - Pearson's correlation r measures linear relationship between two variables
- Two options
 - Option 1: Pick K features with largest absolute correlations
 - Option 2: Pick all features with absolute correlations > C
 - K & C are "magic" numbers set by the ML practitioner
- Other metrics besides Pearson's correlation are possible

- Regularization is an umbrella term that includes methods forcing learning algorithm to build less complex models.
- Motivation 1: Solve an ill-posed problem
 - For example, estimate 10th order polynomial with just 5 datapoints
- Motivation 2: Reduce overfitting
- For example, in previous lecture, we added $\lambda \mathbf{w}^T \mathbf{w}$:

$$\underset{\mathbf{w}}{\operatorname{argmin}}(\mathbf{Pw} - \mathbf{y})^{T}(\mathbf{Pw} - \mathbf{y}) + \lambda \mathbf{w}^{T}\mathbf{w}$$

Minimizing with respect to w, primal solution is

$$\hat{\mathbf{w}} = (\mathbf{P}^T \mathbf{P} + \lambda \mathbf{I})^{-1} \mathbf{P}^T \mathbf{y}$$

• For $\lambda > 0$, matrix becomes invertible (Motivation 1)

- Regularization is an umbrella term that includes methods forcing learning algorithm to build less complex models.
- Motivation 1: Solve an ill-posed problem
 - For example, estimate 10th order polynomial with just 5 datapoints
- Motivation 2: Reduce overfitting
- For example, in previous lecture, we added $\lambda \mathbf{w}^T \mathbf{w}$:

$$\underset{\mathbf{w}}{\operatorname{argmin}}(\mathbf{Pw} - \mathbf{y})^{T}(\mathbf{Pw} - \mathbf{y}) + \lambda \mathbf{w}^{T}\mathbf{w}$$

• Minimizing with respect to w, primal solution is

$$\hat{\mathbf{w}} = (\mathbf{P}^T \mathbf{P} + \lambda \mathbf{I})^{-1} \mathbf{P}^T \mathbf{y}$$

Consider minimization from previous slide

Cost function quantifying data fitting error in training set

Regularization

Consider minimization from previous slide

$$\underset{\mathbf{w}}{\operatorname{argmin}}(\mathbf{Pw-y})^T(\mathbf{Pw-y}) + \lambda \mathbf{w}^T \mathbf{w}$$
• $\mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_d^2$ L2 - Regularization

- Encourage w_0 , ..., w_d to be small (also called shrinkage or weight-decay) => constrain model complexity
- More generally, most machine learning algorithms can be formulated as the following optimization problem

$$\underset{\mathbf{w}}{\operatorname{argmin}} \mathbf{Data-Loss(w)} + \lambda \mathbf{Regularization(w)}$$

- Data-Loss(w) quantifies fitting error to training set given parameters w: smaller error => better fit to training data
- Regularization(w) penalizes more complex models

Regularization Example

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 9, $\lambda = 1$	Good	

Regularization Example

x

Python demo

Bias versus Variance

Suppose we are trying to predict red target below:

Low Bias: blue predictions on average close to red target Low Variance: low variability among predictions

Low Variance

High Variance

Low Bias: blue predictions on average close to red target High Variance: large variability among predictions

High Bias: blue predictions on average not close to red target Low Variance: Low variability among predictions

High Bias: blue predictions on average not close to red target High Variance: high variability among predictions

Bias + Variance Trade off

Test error = Bias Squared + Variance + Irreducible Noise

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial
- Fit with order 4 polynomial

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial
- Fit with order 4 polynomial

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial
- Fit with order 4 polynomial

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial
- Fit with order 4 polynomial

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial
- Fit with order 4 polynomial

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial: low variance
- Fit with order 4 polynomial: high variance

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial: low variance, low bias
- Fit with order 4 polynomial: high variance, low bias

- Simulate data from order 2 polynomial (+ noise)
- Randomly sample 10 training samples each time
- Fit with order 2 polynomial: low variance, low bias
- Fit with order 4 polynomial: high variance, low bias

Order 2
Achieves Lower
Test Error

Bias-Variance Decomposition Theorem

- Test error = Bias Squared + Variance + Irreducible Noise
 - Mathematical details in optional uploaded material (won't be tested)
- "Variance" refers to variability of prediction models across different training sets
 - In previous example, every time the training set of 10 samples changes, the trained model changes
 - "Variance" quantifies variability across trained models
- "Bias" refers to how well an average prediction model will perform
 - In previous example, every time the training set of 10 samples changes, the trained model changes
 - If we average the trained models, how well will this average trained model perform?
- "Irreducible Noise" reflects the fact that even if we are perfect modelers, it might not be possible to predict target y with 100% accuracy from feature(s) x

Summary

- Overfitting, underfitting & model complexity
 - Overfitting: low error in training set, high error in test set
 - Underfitting: high error in both training & test sets
 - Overly complex models can overfit; Overly simple models can underfit
- Feature selection
 - Extract useful features from training set
- Regularization (e.g., L2 regularization)
 - Solve "ill-posed" problem (e.g., more unknowns than data points)
 - Reduce overfitting
- Bias-Variance Decomposition Theorem
 - Test error = Bias Squared + Variance + Irreducible Noise
 - Can be interpreted as trading off bias & variance:
 - Overly complex models can have high variance, low bias
 - · Overly simple models can have low variance, high bias