計量経済 II: 宿題 7

村澤 康友

提出期限: 2022年11月15日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

問:gretl のサンプル・データ sw-ch14 は,アメリカの失業率と消費者物価指数の 1959 年第 1 四半期~1999 年第 4 四半期の季節調整済みデータである.失業率と消費者物価上昇率(対数階差)の 2 変量 VAR モデルで 両変数を予測したい.

- 1. VAR モデルのラグ次数を AIC・SBIC・HQC で選択しなさい.
 - ※ gretlで VAR モデルのラグ次数を選択する手順は以下の通り.
 - (a) メニューから「モデル」 \rightarrow 「多変量時系列」 \rightarrow 「VAR ラグ選択」を選択.
 - (b)「内生変数」を選択.
 - (c)「外生変数」は選択しない.
 - (d)「最大ラグ」を入力(とりあえずデフォルト値のままでよい).
 - (e) その他は必要に応じて設定(とりあえずデフォルト値のままでよい).
 - (f) $\lceil OK \rfloor$ $\geq D \cup D = 0$.
- 2. VAR(4) モデルを推定しなさい.

※ gretl で VAR モデルを OLS 推定する手順は以下の通り.

- (a) メニューから「モデル」 \rightarrow 「多変量時系列」 \rightarrow 「ベクトル自己回帰モデル(VAR)」を選択.
- (b)「内生変数」を選択.
- (c)「外生変数」は選択しない.
- (d)「ラグ次数」を入力.
- (e) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
- (f) $\lceil OK \rfloor$ property propert
- 3. VAR モデルの推定結果の画面のメニューから「分析」 \rightarrow 「予測」で各変数の予測値を計算できる。2000 年第 1 四半期~2002 年第 4 四半期(計 12 四半期)について,各変数の予測値を時系列グラフで示しなさい。

解答例

1. 次数選択

VAR モデル, 最大ラグ次数: 8

下記の表中のアスタリスク (*) は、それぞれの情報量規準の最良の値(つまり最小値) につけられている

ここで、AIC は赤池の情報量規準、BIC はシュワルツのベイジアン情報量規準、HQC は Hannan-Quinn 規準の略である.

lags	loglik	p(LR)	AIC	BIC	HQC
1	611.29056		-7.810201	-7.692391	-7.762349
2	655.98858	0.00000	-8.335337	-8.138987	-8.255584
3	679.57847	0.00000	-8.588109	-8.313219*	-8.476455*
4	680.98284	0.59032	-8.554617	-8.201187	-8.411062
5	689.42001	0.00204	-8.611871*	-8.179901	-8.436415
6	691.17589	0.47609	-8.582915	-8.072405	-8.375557
7	693.54556	0.31510	-8.561878	-7.972828	-8.322619
8	695.34702	0.46240	-8.533510	-7.865920	-8.262350

2. VAR(4) の推定結果

VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1960:2-1999:4 (T = 159)

 ${\rm Log\text{-}likelihood} = 690.760$

共分散行列の行列式の値 = 5.77502e-007

AIC = -8.4624

 $\mathrm{BIC} = -8.1150$

HQC = -8.3213

かばん検定 (Portmanteau test): LB(39) = 155.132, df = 140 [0.1806]

方程式 1: LHUR

	係数	標準誤差	t-ratio	p 値
const	0.138544	0.0871268	1.590	0.1139
$LHUR_{t-1}$	1.56383	0.0799112	19.57	0.0000
$LHUR_{t-2}$ —	0.605715	0.149400	-4.054	0.0001
$LHUR_{t-3}$ —	0.112232	0.154927	-0.7244	0.4699
$LHUR_{t-4}$	0.108022	0.0816402	1.323	0.1878
ld_PUNEW_1 1	3.6948	5.64232	2.427	0.0164
ld_PUNEW_2 -1	5.1005	6.09646	-2.477	0.0144
ld_PUNEW_3	8.85873	5.90362	1.501	0.1356
ld_PUNEW_4	5.11358	5.72612	0.8930	0.3733
Mean dependent var	6.014256	S.D. deper	ndent var	1.499083
Sum squared resid	8.405827	S.E. of reg	ression	0.236725
R^2	0.976326	Adjusted .	R^2	0.975063
F(8, 150)	773.2574	P-value(F)	8.3e-118
$\hat{ ho}$	0.031862	Durbin-W	atson	1.902536

ゼロ制約のF検定

All lags of LHUR	F(4,150) = 1102.9	[0.0000]
All lags of ld_PUNEW	F(4,150) = 7.23578	[0.0000]
All vars, lag 4	F(2, 150) = 1.01151	[0.3661]

方程式 2: ld_PUNEW

	係数	標準誤差	t-ratio	p値
const	0.00315187	0.00125940	2.503	0.0134
LHUR_{t-1}	-0.00681284	0.00115510	-5.898	0.0000
LHUR_{t-2}	0.00926909	0.00215953	4.292	0.0000
LHUR_{t-3}	-0.00375423	0.00223943	-1.676	0.0957
$LHUR_{t-4}$	0.000769533	0.00118009	0.6521	0.5153
ld_PUNEW_1	0.615143	0.0815583	7.542	0.0000
ld_PUNEW_2	0.0636114	0.0881227	0.7219	0.4715
ld_PUNEW_3	0.380900	0.0853353	4.464	0.0000
ld_PUNEW_4	-0.0560202	0.0827696	-0.6768	0.4996
Mean dependent	var 0.010983	S.D. deper	ndent var	0.007751
Sum squared res	id 0.001756	S.E. of reg	gression	0.003422
R^2	0.814999	Adjusted .	R^2	0.805132
F(8, 150)	82.60061	P-value(F)	$4.54e{-}51$
$\hat{ ho}$	-0.010260	Durbin-W	atson	2.019752

ゼロ制約の F 検定

All lags of LHUR	F(4,150) = 9.25441	[0.0000]
All lags of ld_PUNEW	F(4,150) = 162.195	[0.0000]
All vars, lag 4	F(2, 150) = 0.629513	[0.5343]

連立方程式全体に関して —

帰無仮説: 最長のラグは 3 である 対立仮説: 最長のラグは 4 である 尤度比検定: $\chi_4^2=3.582$ [0.4656]

3. 失業率

消費者物価上昇率 (対数階差)

