Outline

- Introduction
- Background
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
 - Overview
 - Query decomposition and localization
 - → Distributed query optimization
- Multidatabase Query Processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Query Processing in a DDBMS

Low-level data manipulation commands for D-DBMS

Query Processing Components

- Query language that is used
 - → SQL: "intergalactic dataspeak"
- Query execution methodology
 - → The steps that one goes through in executing high-level (declarative) user queries.
- Query optimization
 - → How do we determine the "best" execution plan?
- We assume a homogeneous D-DBMS

Selecting Alternatives

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO

AND RESP = "Manager"

Strategy 1

 $\Pi_{ENAME}(\sigma_{RESP="Manager" \land EMP.ENO=ASG.ENO}(EMP \times ASG))$

Strategy 2

 $\Pi_{\text{ENAME}}(\text{EMP} \bowtie_{\text{ENO}} (\sigma_{\text{RESP="Manager"}}(\text{ASG}))$

Strategy 2 avoids Cartesian product, so may be "better"

What is the Problem?

Site 1

Site 2

Site 3

Site 4

Site 5

 $ASG_1 = \sigma_{ENO} \le "E3" (ASG)$ $ASG_2 = \sigma_{ENO} \le "E3" (ASG)$ $EMP_1 = \sigma_{ENO} \le "E3" (EMP)$ $EMP_2 = \sigma_{ENO} \le "E3" (EMP)$

Result

Cost of Alternatives

Assume

- \Rightarrow size(EMP) = 400, size(ASG) = 1000
- → tuple access cost = 1 unit; tuple transfer cost = 10 units

Strategy 1

→ produce ASG': (10+10) * tuple access cost	20
→ transfer ASG' to the sites of EMP: (10+10) * tuple transfer cost	200
→ produce EMP': (10+10) * tuple access cost * 2	40
→ transfer EMP' to result site: (10+10) * tuple transfer cost	200
Total Cost	460

Strategy 2

transfer EMP to site 5: 400 * tuple transfer cost	4,000
→ transfer ASG to site 5: 1000 * tuple transfer cost	10,000
→ produce ASG': 1000 * tuple access cost	1,000
→ join EMP and ASG': 400 * 20 * tuple access cost	8,000
	22 000

Total Cost 23,000

Query Optimization Objectives

Minimize a cost function

I/O cost + CPU cost + communication cost

These might have different weights in different distributed environments

- Wide area networks
 - communication cost may dominate or vary much
 - bandwidth
 - speed
 - high protocol overhead
- Local area networks
 - communication cost not that dominant
 - total cost function should be considered
- Can also maximize throughput

Complexity of Relational Operations

- Assume
 - \rightarrow relations of cardinality n
 - sequential scan

Operation	Complexity
Select Project (without duplicate elimination)	O(n)
Project (with duplicate elimination) Group	O(n * log n)
Join Semi-join Division Set Operators	O(n * log n)
Cartesian Product	$O(n^2)$

Query Optimization Issues – Types Of Optimizers

Exhaustive search

- Cost-based
- Optimal
- Combinatorial complexity in the number of relations

Heuristics

- Not optimal
- Regroup common sub-expressions
- Perform selection, projection first
- Replace a join by a series of semijoins
- Reorder operations to reduce intermediate relation size
- Optimize individual operations

Query Optimization Issues – Optimization Granularity

- Single query at a time
 - Cannot use common intermediate results
- Multiple queries at a time
 - Efficient if many similar queries
 - Decision space is much larger

Query Optimization Issues – Optimization Timing

Static

- Compilation > optimize prior to the execution
- → Difficult to estimate the size of the intermediate results⇒error propagation
- Can amortize over many executions
- → R*
- Dynamic
 - Run time optimization
 - Exact information on the intermediate relation sizes
 - → Have to reoptimize for multiple executions
 - → Distributed INGRES
- Hybrid
 - Compile using a static algorithm
 - → If the error in estimate sizes > threshold, reoptimize at run time
 - → Mermaid

Query Optimization Issues – Statistics

- Relation
 - Cardinality
 - Size of a tuple
 - Fraction of tuples participating in a join with another relation
- Attribute
 - Cardinality of domain
 - Actual number of distinct values
- Common assumptions
 - Independence between different attribute values
 - Uniform distribution of attribute values within their domain

Query Optimization Issues – Decision Sites

Centralized

- → Single site determines the "best" schedule
- → Simple
- Need knowledge about the entire distributed database

Distributed

- Cooperation among sites to determine the schedule
- Need only local information
- Cost of cooperation

Hybrid

- One site determines the global schedule
- Each site optimizes the local subqueries

Query Optimization Issues – Network Topology

- Wide area networks (WAN) point-to-point
 - Characteristics
 - Low bandwidth
 - Low speed
 - High protocol overhead
 - Communication cost will dominate; ignore all other cost factors
 - Global schedule to minimize communication cost
 - Local schedules according to centralized query optimization
- Local area networks (LAN)
 - Communication cost not that dominant
 - Total cost function should be considered
 - Broadcasting can be exploited (joins)
 - Special algorithms exist for star networks

Distributed Query Processing Methodology

Outline

- Introduction
- Background
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
 - → Overview
 - Query decomposition and localization
 - Distributed query optimization
- Multidatabase query processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Step 1 – Query Decomposition

Input: Calculus query on global relations

- Normalization
 - manipulate query quantifiers and qualification
- Analysis
 - detect and reject "incorrect" queries
 - possible for only a subset of relational calculus
- Simplification
 - eliminate redundant predicates
- Restructuring
 - → calculus query → algebraic query
 - more than one translation is possible
 - use transformation rules

Normalization

- Lexical and syntactic analysis
 - check validity (similar to compilers)
 - check for attributes and relations
 - type checking on the qualification
- Put into normal form
 - Conjunctive normal form

$$(p_{11} \vee p_{12} \vee ... \vee p_{1n}) \wedge ... \wedge (p_{m1} \vee p_{m2} \vee ... \vee p_{mn})$$

Disjunctive normal form

$$(p_{11} \land p_{12} \land \dots \land p_{1n}) \lor \dots \lor (p_{m1} \land p_{m2} \land \dots \land p_{mn})$$

- OR's mapped into union
- AND's mapped into join or selection

Analysis

- Refute incorrect queries
- Type incorrect
 - → If any of its attribute or relation names are not defined in the global schema
 - → If operations are applied to attributes of the wrong type
- Semantically incorrect
 - Components do not contribute in any way to the generation of the result
 - Only a subset of relational calculus queries can be tested for correctness
 - Those that do not contain disjunction and negation
 - → To detect
 - connection graph (query graph)
 - join graph

Analysis – Example

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO = ASG.ENO

AND ASG.PNO = PROJ.PNO

AND PNAME = "CAD/CAM"

AND DUR ≥ 36

AND TITLE = "Programmer"

Query graph

Join graph

Analysis

If the query graph is not connected, the query may be wrong or use Cartesian product

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO = ASG.ENO

AND PNAME = "CAD/CAM"

AND DUR > 36

AND TITLE = "Programmer"

Simplification

- Why simplify?
 - Remember the example
- How? Use transformation rules
 - Elimination of redundancy
 - idempotency rules

$$p_1 \land \neg (p_1) \Leftrightarrow \text{false}$$
 $p_1 \land (p_1 \lor p_2) \Leftrightarrow p_1$
 $p_1 \land \text{false} \Leftrightarrow p_1$

. . .

- Application of transitivity
- Use of integrity rules

Simplification – Example

SELECT TITLE

FROM EMP

WHERE EMP.ENAME = "J. Doe"

OR (NOT (EMP.TITLE = "Programmer")

AND (EMP.TITLE = "Programmer"

OR EMP.TITLE = "Elect. Eng.")

AND NOT (EMP.TITLE = "Elect. Eng."))

SELECT TITLE

FROM EMP

WHERE EMP.ENAME = "J. Doe"

Restructuring

- Convert relational calculus to relational algebra
- Make use of query trees
- Example

Find the names of employees other than J. Doe who worked on the CAD/CAM project for either 1 or 2 years.

SELECT ENAME

FROM EMP, ASG, PROJ

WHERE EMP.ENO = ASG.ENO

AND ASG.PNO = PROJ.PNO

AND ENAME≠ "J. Doe"

AND PNAME = "CAD/CAM"

AND (DUR = 12 **OR** DUR = 24)

Restructuring –Transformation Rules

- Commutativity of binary operations
 - $\rightarrow R \times S \Leftrightarrow S \times R$
 - $\rightarrow R \bowtie S \Leftrightarrow S \bowtie R$
 - $\rightarrow R \cup S \Leftrightarrow S \cup R$
- Associativity of binary operations
 - $ightharpoonup (R \times S) \times T \Leftrightarrow R \times (S \times T)$
 - \rightarrow $(R \bowtie S) \bowtie T \Leftrightarrow R \bowtie (S \bowtie T)$
- Idempotence of unary operations

 - $\sigma_{p_1(A_1)}(\sigma_{p_2(A_2)}(R)) \Leftrightarrow \sigma_{p_1(A_1) \land p_2(A_2)}(R)$ where R[A] and $A' \subseteq A$, $A'' \subseteq A$ and $A' \subseteq A''$
- Commuting selection with projection

Restructuring – Transformation Rules

Commuting selection with binary operations

$$\rightarrow \sigma_{p(A)}(R \times S) \Leftrightarrow (\sigma_{p(A)}(R)) \times S$$

$$\rightarrow \sigma_{p(A_i)}(R \cup T) \Leftrightarrow \sigma_{p(A_i)}(R) \cup \sigma_{p(A_i)}(T)$$

where A_i belongs to R and T

Commuting projection with binary operations

$$\to \Pi_C(R \bowtie_{(A_{j'}B_k)} S) \Leftrightarrow \Pi_{A'}(R) \bowtie_{(A_{j'}B_k)} \Pi_{B'}(S)$$

where R[A] and S[B]; $C = A' \cup B'$ where $A' \subseteq A$, $B' \subseteq B$

Example

Recall the previous example:

Find the names of employees other than J. Doe who worked on the CAD/CAM project for either one or two years.

SELECT ENAME

FROM PROJ, ASG, EMP

WHERE ASG.ENO=EMP.ENO

AND ASG.PNO=PROJ.PNO

AND ENAME # "J. Doe"

AND PROJ. PNAME="CAD/CAM"

AND (DUR=12 **OR** DUR=24)

© M. T. Özsu & P. Valduriez Ch.7/27

Equivalent Query

OPNAME="CAD/CAM" ∧ (DUR=12 ∧ DUR=24) ∧ENAME≠"J. Doe"

Restructuring

Step 2 – Data Localization

Input: Algebraic query on distributed relations

- Determine which fragments are involved
- Localization program
 - substitute for each global query its materialization program
 - → optimize

Example

Assume

- EMP is fragmented into EMP₁, EMP₂, EMP₃ as follows:
 - \bullet EMP₁= $\sigma_{\text{ENO} \leq \text{"E3"}}$ (EMP)
 - \bullet EMP₂= $\sigma_{\text{"E3"} < \text{ENO} \le \text{"E6"}}$ (EMP)
 - ♦ EMP₃= $\sigma_{\text{ENO≥"E6"}}$ (EMP)
- → ASG fragmented into ASG₁ and ASG₂ as follows:
 - \bullet ASG₁= $\sigma_{\text{ENO} \leq \text{"E3"}}(\text{ASG})$
 - \bullet ASG₂= $\sigma_{\text{ENO}>\text{"E3"}}(\text{ASG})$

Replace EMP by $(EMP_1 \cup EMP_2 \cup EMP_3)$ and ASG by $(ASG_1 \cup ASG_2)$ in any query

Ch.7/31

© M. T. Özsu & P. Valduriez

Provides Parallellism

Eliminates Unnecessary Work

Reduction for PHF

- Reduction with selection
 - Relation R and $F_R = \{R_1, R_2, ..., R_w\}$ where $R_j = \sigma_{p_j}(R)$ $\sigma_{p_i}(R_j) = \emptyset \text{ if } \forall x \text{ in } R : \neg(p_i(x) \land p_j(x))$
 - → Example

Reduction for PHF

- Reduction with join
 - Possible if fragmentation is done on join attribute
 - Distribute join over union

$$(R_1 \cup R_2) \bowtie S \Leftrightarrow (R_1 \bowtie S) \cup (R_2 \bowtie S)$$

→ Given $R_i = \sigma_{p_i}(R)$ and $R_j = \sigma_{p_j}(R)$

$$R_i \bowtie R_j = \emptyset \text{ if } \forall x \text{ in } R_i, \forall y \text{ in } R_j : \neg (p_i(x) \land p_j(y))$$

Reduction for PHF

- Assume EMP is fragmented as before and
 - \rightarrow ASG₁: $\sigma_{ENO ≤ "E3"}$ (ASG)
 - \rightarrow ASG₂: $\sigma_{\text{ENO}} > "E3"$ (ASG)
- Consider the query

FROM EMP, ASG

WHERE EMP.ENO=ASG.ENO

- Distribute join over unions
- Apply the reduction rule

© M. T. Özsu & P. Valduriez

Reduction for VF

Find useless (not empty) intermediate relations

Relation R defined over attributes $A = \{A_1, ..., A_n\}$ vertically fragmented as $R_i = \Pi_{A'}(R)$ where $A' \subseteq A$:

 $\Pi_{D,K}(R_i)$ is useless if the set of projection attributes D is not in A'

Example: $EMP_1 = \Pi_{ENO,ENAME}$ (EMP); $EMP_2 = \Pi_{ENO,TITLE}$ (EMP)

Reduction for DHF

• Rule:

- Distribute joins over unions
- Apply the join reduction for horizontal fragmentation
- Example

```
ASG<sub>1</sub>: ASG \bowtie_{ENO} EMP<sub>1</sub>

ASG<sub>2</sub>: ASG \bowtie_{ENO} EMP<sub>2</sub>

EMP<sub>1</sub>: \sigma_{TITLE="Programmer"} (EMP)

EMP<sub>2</sub>: \sigma_{TITLE="Programmer"} (EMP)
```

Query

```
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
AND EMP.TITLE = "Mech. Eng."
```

Reduction for DHF

Reduction for DHF

Elimination of the empty intermediate relations

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/40

Reduction for Hybrid Fragmentation

- Combine the rules already specified:
 - Remove empty relations generated by contradicting selections on horizontal fragments;
 - Remove useless relations generated by projections on vertical fragments;
 - → Distribute joins over unions in order to isolate and remove useless joins.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/41

Reduction for HF

Example

Consider the following hybrid fragmentation:

$$EMP_1 = \sigma_{ENO \leq "E4"} (\Pi_{ENO,ENAME} (EMP))$$

$$EMP_2 = \sigma_{ENO>"E4"} (\Pi_{ENO,ENAME} (EMP))$$

$$EMP_3 = \sigma_{ENO,TITLE}(EMP)$$

and the query

SELECT ENAME

FROM EMP

WHERE ENO="E5"

Outline

- Introduction
- Background
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
 - → Overview
 - Query decomposition and localization
 - Distributed query optimization
- Multidatabase Query Processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Step 3 – Global Query Optimization

Input: Fragment query

- Find the *best* (not necessarily optimal) global schedule
 - Minimize a cost function
 - Distributed join processing
 - ♦ Bushy vs. linear trees
 - Which relation to ship where?
 - ♦ Ship-whole vs ship-as-needed
 - Decide on the use of semijoins
 - ◆ Semijoin saves on communication at the expense of more local processing.
 - Join methods
 - nested loop vs ordered joins (merge join or hash join)

Cost-Based Optimization

- Solution space
 - The set of equivalent algebra expressions (query trees).
- Cost function (in terms of time)
 - → I/O cost + CPU cost + communication cost
 - These might have different weights in different distributed environments (LAN vs WAN).
 - Can also maximize throughput
- Search algorithm
 - How do we move inside the solution space?
 - Exhaustive search, heuristic algorithms (iterative improvement, simulated annealing, genetic,...)

Query Optimization Process

Search Space

- Search space characterized by alternative execution
- Focus on join trees
- For *N* relations, there are O(*N*!) equivalent join trees that can be obtained by applying commutativity and associativity rules

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

Search Space

- Restrict by means of heuristics
 - Perform unary operations before binary operations
 - → ...
- Restrict the shape of the join tree
 - Consider only linear trees, ignore bushy ones

Linear Join Tree

Bushy Join Tree

Search Strategy

- How to "move" in the search space.
- Deterministic
 - Start from base relations and build plans by adding one relation at each step
 - Dynamic programming: breadth-first
 - Greedy: depth-first
- Randomized
 - Search for optimalities around a particular starting point
 - Trade optimization time for execution time
 - → Better when > 10 relations
 - Simulated annealing
 - Iterative improvement

Search Strategies

Deterministic

Randomized

Cost Functions

- Total Time (or Total Cost)
 - Reduce each cost (in terms of time) component individually
 - Do as little of each cost component as possible
 - → Optimizes the utilization of the resources

Increases system throughput

- Response Time
 - Do as many things as possible in parallel
 - May increase total time because of increased total activity

Total Cost

Summation of all cost factors

```
Total cost = CPU \cos t + I/O \cos t + communication \cos t
```

CPU cost = unit instruction cost * no.of instructions

I/O cost = unit disk I/O cost * no. of disk I/Os

communication cost = message initiation + transmission

Total Cost Factors

- Wide area network
 - Message initiation and transmission costs high
 - Local processing cost is low (fast mainframes or minicomputers)
 - → Ratio of communication to I/O costs = 20:1
- Local area networks
 - Communication and local processing costs are more or less equal
 - → Ratio = 1:1.6

Response Time

Elapsed time between the initiation and the completion of a query

```
Response time = CPU time + I/O time + communication time
```

CPU time = unit instruction time * no. of sequential instructions

I/O time = unit I/O time * no. of sequential I/Os

communication time = unit msg initiation time * no. of sequential msg + unit transmission time * no. of sequential bytes

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/54

Example

Assume that only the communication cost is considered Total time = $2 \cdot \text{message}$ initialization time + unit transmission time * (x+y) Response time = \max {time to send x from 1 to 3, time to send y from 2 to 3} time to send x from 1 to 3 = \max initialization time + unit transmission time * x

time to send y from 2 to 3 = message initialization time + unit transmission time * y

Optimization Statistics

- Primary cost factor: size of intermediate relations
 - → Need to estimate their sizes
- Make them precise ⇒ more costly to maintain
- Simplifying assumption: uniform distribution of attribute values in a relation

Statistics

- For each relation $R[A_1, A_2, ..., A_n]$ fragmented as $R_1, ..., R_r$
 - \rightarrow length of each attribute: $length(A_i)$
 - → the number of distinct values for each attribute in each fragment: $card(\Pi_{A_i}R_i)$
 - ⇒ maximum and minimum values in the domain of each attribute: $min(A_i)$, $max(A_i)$
 - \rightarrow the cardinalities of each domain: $card(dom[A_i])$
- The cardinalities of each fragment: $card(R_j)$ Selectivity factor of each operation for relations
 - For joins $SF_{\bowtie}(R,S) = \frac{card(R \bowtie S)}{card(R) * card(S)}$

Intermediate Relation Sizes

Selection

$$size(R) = card(R) \cdot length(R)$$
 $card(\sigma_F(R)) = SF_{\sigma}(F) \cdot card(R)$
where
$$SF_{\sigma}(A = value) = ---$$

$$SF_{\sigma}(A = value) = \frac{1}{card(\prod_{A}(R))}$$

$$SF_{\sigma}(A > value) = \frac{max(A) - value}{max(A) - min(A)}$$

$$SF_{\sigma}(A < value) = \frac{value - max(A)}{max(A) - min(A)}$$

$$SF_{\sigma}(p(A_{i}) \land p(A_{j})) = SF_{\sigma}(p(A_{i})) \cdot SF_{\sigma}(p(A_{j}))$$

$$SF_{\sigma}(p(A_{i}) \lor p(A_{j})) = SF_{\sigma}(p(A_{i})) + SF_{\sigma}(p(A_{j})) - (SF_{\sigma}(p(A_{i})) \cdot SF_{\sigma}(p(A_{j})))$$

$$SF_{\sigma}(A \in \{value\}) = SF_{\sigma}(A = value) * card(\{values\})$$

Intermediate Relation Sizes

Projection

```
card(\Pi_A(R)) = card(R)
```

Cartesian Product

```
card(R \cdot S) = card(R) * card(S)
```

Union

upper bound: $card(R \cup S) = card(R) + card(S)$

lower bound: $card(R \cup S) = max\{card(R), card(S)\}$

Set Difference

upper bound: card(R-S) = card(R)

lower bound: 0

Intermediate Relation Size

Join

- Special case: *A* is a key of *R* and *B* is a foreign key of *S* $card(R \bowtie_{A=B} S) = card(S)$
- More general:

$$card(R \bowtie S) = SF_{\bowtie} * card(R) \cdot card(S)$$

Semijoin

$$card(R \bowtie_A S) = SF_{\bowtie}(S.A) * card(R)$$

where

$$SF_{\bowtie}(R \bowtie_{A} S) = SF_{\bowtie}(S.A) = \frac{card(\prod_{A}(S))}{card(dom[A])}$$

Histograms for Selectivity Estimation

- For skewed data, the uniform distribution assumption of attribute values yields inaccurate estimations
- Use an histogram for each skewed attribute A
 - Histogram = set of buckets
 - ◆ Each bucket describes a range of values of A, with its average frequency f
 (number of tuples with A in that range) and number of distinct values d
 - → Buckets can be adjusted to different ranges
- Examples
 - Equality predicate
 - With (value in Range_i), we have: $SF_{\sigma}(A = value) = 1/d_i$
 - Range predicate
 - ❖ Requires identifying relevant buckets and summing up their frequencies

Histogram Example

For ASG.DUR=18: we have SF=1/12 so the card of selection is 300/12 = 25 tuples

For ASG.DUR≤18: we have min(range₃)=12 and max(range₃)=24 so the card. of selection is 100+75+(((18-12)/(24-12))*50) = 200 tuples

Centralized Query Optimization

- Dynamic (Ingres project at UCB)
 - → Interpretive
- Static (System R project at IBM)
 - → Exhaustive search
- Hybrid (Volcano project at OGI)
 - → Choose node within plan

Dynamic Algorithm

- Decompose each multi-variable query into a sequence of mono-variable queries with a common variable
- 2 Process each by a one variable query processor
 - → Choose an initial execution plan (heuristics)
 - Order the rest by considering intermediate relation sizes

No statistical information is maintained

Dynamic Algorithm— Decomposition

• Replace an *n* variable query *q* by a series of queries

$$q_1 \rightarrow q_2 \rightarrow \dots \rightarrow q_n$$

where q_i uses the result of q_{i-1} .

- Detachment
 - → Query q decomposed into $q' \rightarrow q''$ where q' and q'' have a common variable which is the result of q'
- Tuple substitution
 - → Replace the value of each tuple with actual values and simplify the query

$$q(V_1, V_2, ..., V_n) \rightarrow (q'(t_1, V_2, V_2, ..., V_n), t_1 \in R)$$

Detachment

```
SELECT
q:
               V_2 . A_2, V_3 . A_3, ..., V_n . A_n
     FROM
                   R_1 V_1, ..., R_n V_n
                   P_1(V_1.A_1') AND P_2(V_1.A_1, V_2.A_2, ..., V_n.A_n)
     WHERE
     SELECT
               V_1 \cdot A_1 INTO R_1'
     FROM
                   R_1 V_1
                   P_1 (V_1 . A_1)
     WHERE
q": SELECT
               V_2 \cdot A_2, ..., V_n \cdot A_n
                   R_1 ' V_1, R_2 V_2, ..., R_n V_n
     FROM
     WHERE
                   P_2(V_1.A_1, V_2.A_2, ..., V_n.A_n)
```

Detachment Example

Names of employees working on CAD/CAM project

 q_1 : SELECT EMP. ENAME

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

AND PROJ. PNAME="CAD/CAM"

 \bigvee

 q_{11} : SELECT PROJ.PNO INTO JVAR

FROM PROJ

WHERE PROJ. PNAME="CAD/CAM"

q': **SELECT** EMP.ENAME

FROM EMP, ASG, JVAR

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

Detachment Example (cont'd)

q': **SELECT** EMP.ENAME

FROM EMP, ASG, JVAR

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

 \bigvee

 q_{12} : **SELECT** ASG.ENO **INTO** GVAR

FROM ASG, JVAR

WHERE ASG.PNO=JVAR.PNO

 q_{13} : **SELECT** EMP.ENAME

FROM EMP, GVAR

WHERE EMP.ENO=GVAR.ENO

Tuple Substitution

 q_{11} is a mono-variable query

 q_{12} and q_{13} is subject to tuple substitution

Assume GVAR has two tuples only: $\langle E1 \rangle$ and $\langle E2 \rangle$

Then q_{13} becomes

 q_{131} :

SELECT

EMP.ENAME

FROM

EMP

WHERE

EMP.ENO="E1"

 q_{132} :

SELECT

EMP. ENAME

FROM

EMP

WHERE

EMP.ENO="E2"

Static Algorithm

- Simple (i.e., mono-relation) queries are executed according to the best access path
- 2 Execute joins
 - Determine the possible ordering of joins
 - Determine the cost of each ordering
 - Choose the join ordering with minimal cost

Static Algorithm

For joins, two alternative algorithms:

Nested loops
 for each tuple of external relation (cardinality n₁)
 for each tuple of internal relation (cardinality n₂)
 join two tuples if the join predicate is true
 end

- \rightarrow Complexity: $n_1^* n_2$
- Merge joinsort relationsmerge relations
 - \rightarrow Complexity: n_1 + n_2 if relations are previously sorted and equijoin

Static Algorithm – Example

Names of employees working on the CAD/CAM project Assume

- EMP has an index on ENO,
- ASG has an index on PNO,
- → PROJ has an index on PNO and an index on PNAME

Example (cont'd)

- Choose the best access paths to each relation
 - → EMP: sequential scan (no selection on EMP)
 - ASG: sequential scan (no selection on ASG)
 - → PROJ: index on PNAME (there is a selection on PROJ based on PNAME)
- 2 Determine the best join ordering
 - → EMP ⋈ ASG ⋈ PROJ
 - → ASG ⋈PROJ ⋈EMP
 - → PROJ ⋈ASG ⋈EMP
 - → ASG ⋈EMP ⋈PROJ
 - → EMP × PROJ ⋈ ASG
 - → PRO × JEMP ⋈ASG
 - Select the best ordering based on the join costs evaluated according to the two methods

Static Algorithm

Best total join order is one of

 $((ASG \bowtie EMP) \bowtie PROJ)$

 $((PROJ \bowtie ASG) \bowtie EMP)$

Static Algorithm

- ((PROJ ⋈ ASG) ⋈ EMP) has a useful index on the select attribute and direct access to the join attributes of ASG and EMP
- Therefore, chose it with the following access methods:
 - select PROJ using index on PNAME
 - then join with ASG using index on PNO
 - then join with EMP using index on ENO

Hybrid optimization

- In general, static optimization is more efficient than dynamic optimization
 - Adopted by all commercial DBMS
- But even with a sophisticated cost model (with histograms), accurate cost prediction is difficult
- Example
 - Consider a parametric query with predicate
 WHERE R.A = \$a /* \$a is a parameter
 - → The only possible assumption at compile time is uniform distribution of values
- Solution: Hybrid optimization
 - Choose-plan done at runtime, based on the actual parameter binding

Hybrid Optimization Example

Join Ordering in Fragment Queries

- Ordering joins
 - Distributed INGRES
 - → System R*
 - → Two-step
- Semijoin ordering
 - → SDD-1

Join Ordering

Consider two relations only

- Multiple relations more difficult because too many alternatives.
 - Compute the cost of all alternatives and select the best one.
 - ♦ Necessary to compute the size of intermediate relations which is difficult.
 - Use heuristics

Join Ordering – Example

Consider

$$PROJ \bowtie_{PNO} ASG \bowtie_{ENO} EMP$$

Join Ordering – Example

Execution alternatives:

1. EMP \rightarrow Site 2

Site 2 computes EMP'=EMP ⋈ ASG

EMP'→ Site 3

Site 3 computes EMP' ™ PROJ

3. ASG \rightarrow Site 3

Site 3 computes ASG'=ASG ™ PROJ

 $ASG' \rightarrow Site 1$

Site 1 computes ASG' ⋈ EMP

5. EMP \rightarrow Site 2

 $PROJ \rightarrow Site 2$

Site 2 computes EMP ™ PROJ ™ ASG

2. ASG \rightarrow Site 1

Site 1 computes EMP'=EMP™ ASG

 $EMP' \rightarrow Site 3$

Site 3 computes EMP' ™ PROJ

4. PROJ → Site 2

Site 2 computes PROJ'=PROJ ⋈ ASG

 $PROJ' \rightarrow Site 1$

Site 1 computes PROJ' ⋈ EMP

Semijoin Algorithms

- Consider the join of two relations:
 - \rightarrow R[A] (located at site 1)
 - \rightarrow S[A](located at site 2)
- Alternatives:
 - 1. Do the join $R \bowtie_A S$
 - 2. Perform one of the semijoin equivalents

$$R \bowtie_{A} S \iff (R \bowtie_{A} S) \bowtie_{A} S$$

 $\Leftrightarrow R \bowtie_{A} (S \bowtie_{A} R)$
 $\Leftrightarrow (R \bowtie_{A} S) \bowtie_{A} (S \bowtie_{A} R)$

Semijoin Algorithms

- Perform the join
 - → send R to Site 2
 - ightharpoonup Site 2 computes $R \bowtie_A S$
- Consider semijoin $(R \ltimes_A S) \bowtie_A S$
 - $\rightarrow S' = \Pi_A(S)$
 - \rightarrow S' \rightarrow Site 1
 - → Site 1 computes $R' = R \ltimes_A S'$
 - $\rightarrow R' \rightarrow Site 2$
 - → Site 2 computes $R' \bowtie_A S$

Semijoin is better if

$$size(\Pi_A(S)) + size(R \ltimes_A S)) < size(R)$$

Distributed Dynamic Algorithm

- 1. Execute all monorelation queries (e.g., selection, projection)
- 2. Reduce the multirelation query to produce irreducible subqueries $q_1 \rightarrow q_2 \rightarrow ... \rightarrow q_n$ such that there is only one relation between q_i and q_{i+1}
- 1. Choose q_i involving the smallest fragments to execute (call MRQ')
- Find the best execution strategy for MRQ'
 - a) Determine processing site
 - b) Determine fragments to move
- 3. Repeat 3 and 4

Static Approach

- Cost function includes local processing as well as transmission
- Considers only joins
- "Exhaustive" search
- Compilation
- Published papers provide solutions to handling horizontal and vertical fragmentations but the implemented prototype does not

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/85

Static Approach – Performing Joins

- Ship whole
 - Larger data transfer
 - Smaller number of messages
 - → Better if relations are small
- Fetch as needed
 - \rightarrow Number of messages = O(cardinality of external relation)
 - Data transfer per message is minimal
 - → Better if relations are large and the selectivity is good

- 1. Move outer relation tuples to the site of the inner relation
 - (a) Retrieve outer tuples
 - (b) Send them to the inner relation site
 - (c) Join them as they arrive
 - Total Cost = cost(retrieving qualified outer tuples)
 - + no. of outer tuples fetched * cost(retrieving qualified inner tuples)
 - + msg. cost * (no. outer tuples fetched * avg. outer tuple size)/msg. size

2. Move inner relation to the site of outer relation

Cannot join as they arrive; they need to be stored

- Total cost = cost(retrieving qualified outer tuples)
 - + no. of outer tuples fetched * cost(retrieving matching inner tuples from temporary storage)
 - + cost(retrieving qualified inner tuples)
 - + cost(storing all qualified inner tuples in temporary storage)
 - + msg. cost * no. of inner tuples fetched * avg. inner tuple size/msg. size

- 3. Move both inner and outer relations to another site
 - Total cost = cost(retrieving qualified outer tuples)
 - + cost(retrieving qualified inner tuples)
 - + cost(storing inner tuples in storage)
 - + msg. cost · (no. of outer tuples fetched * avg. outer tuple size)/msg. size
 - + msg. cost * (no. of inner tuples fetched * avg. inner tuple size)/msg. size
 - + no. of outer tuples fetched * cost(retrieving inner tuples from temporary storage)

4. Fetch inner tuples as needed

- (a) Retrieve qualified tuples at outer relation site
- (b) Send request containing join column value(s) for outer tuples to inner relation site
- (c) Retrieve matching inner tuples at inner relation site
- (d) Send the matching inner tuples to outer relation site
- (e) Join as they arrive
 - Total Cost = cost(retrieving qualified outer tuples)
 - + msg. cost * (no. of outer tuples fetched)
 - + no. of outer tuples fetched * no. of inner tuples fetched * avg. inner tuple size * msg. cost / msg. size)
 - + no. of outer tuples fetched * cost(retrieving matching inner tuples for one outer value)

Dynamic vs. Static vs Semijoin

- Semijoin
 - → SDD1 selects only locally optimal schedules
- Dynamic and static approaches have the same advantages and drawbacks as in centralized case
 - → But the problems of accurate cost estimation at compile-time are more severe
 - More variations at runtime
 - Relations may be replicated, making site and copy selection important
- Hybrid optimization
 - Choose-plan approach can be used
 - 2-step approach simpler

2-Step Optimization

- 1. At compile time, generate a static plan with operation ordering and access methods only
- 2. At startup time, carry out site and copy selection and allocate operations to sites

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/92

2-Step – Problem Definition

Given

- \rightarrow A set of sites $S = \{s_1, s_2, ..., s_n\}$ with the load of each site
- → A query $Q = \{q_1, q_2, q_3, q_4\}$ such that each subquery q_i is the maximum processing unit that accesses one relation and communicates with its neighboring queries
- → For each q_i in Q, a feasible allocation set of sites $S_q = \{s_1, s_2, ..., s_k\}$ where each site stores a copy of the relation in q_i
- The objective is to find an optimal allocation of Q to S such that
 - the load unbalance of S is minimized
 - The total communication cost is minimized

2-Step Algorithm

- For each q in Q compute load (S_q)
- While Q not empty do
 - 1. Select subquery *a* with least allocation flexibility
 - 2. Select best site *b* for *a* (with least load and best benefit)
 - 3. Remove *a* from *Q* and recompute loads if needed

2-Step Algorithm Example

- Let $Q = \{q_1, q_2, q_3, q_4\}$ where q_1 is associated with R_1 , q_2 is associated with R_2 joined with the result of q_1 , etc.
- Iteration 1: select q_4 , allocate to s_1 , set load(s_1)=2
- Iteration 2: select q_2 , allocate to s_2 , set load(s_2)=3
- Iteration 3: select q_3 , allocate to s_1 , set load(s_1) =3
- Iteration 4: select q_1 , allocate to s_3 or s_4

sites	load	R_1	R_2	R_3	R_4	
s ₁	1	R ₁₁		R ₃₁	R ₄₁	
s_2	2		R ₂₂			
s_3	2	R ₁₃		R ₃₃		
s ₄	2	R ₁₄	R ₂₄			

Note: if in iteration 2, q_2 , were allocated to s_4 , this would have produced a better plan. So hybrid optimization can still miss optimal plans