

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA - S1

RENCANA PEMBELAJARAN SEMESTER (RPS)

Program Studi :		MATEMATIKA - S1
Mata Kuliah/Kode	:	Metode Numerik/MAT6323
Jumlah SKS :		3
Tahun Akademik		2024
Semester	:	2
Mata Kuliah Prasyarat	:	-
Dosen Pengampu		1. Nur Insani S.Si., M.Sc., Ph.D 2. Drs. Sahid M.Sc.
Bahasa Pengantar		Bahasa Indonesia

A. DESKRIPSI MATA KULIAH

Mata kuliah Metode Numerik berbobot 3 SKS dan mencakup materi tentang: galat dalam hampiran numerik, penyelesaian sistem persamaan linier secara numerik, hampiran akar persamaan tak linier secara numerik, interpolasi, penurunan dan pengintegralan secara numerik, dan penyelesaian persamaan diferensial biasa (masalah nilai awal) secara numerik. Beberapa metode numerik untuk menyelesaikan masalah matematika diperkenalkan dalam mata kuliah ini. Sebagai kesatuan mata kuliah ini adalah kegiatan praktik menggunakan program komputer Euler Maths Toolbox (EMT) untuk mengimplementasikan algoritma dan menyelesaian masalah matematika terkait secara numerik. Dalam mata kuliah ini mahasiswa belajar menggunakan berbagai alternatif penyelesaian masalah matermatika secara numerik, berlatih berfikir secara sistematis dan algoritmik – yakni menyelesaikan masalah langkah demi langkah untuk menarik suatu kesimpulan. Oleh karena itu, setelah selesai mengikuti perkuliahan ini diharapkan mahasiswa dapat menggunakan metode numerik yang sesuai dengan menggunakan bahasa pemrograman khusus matematika untuk menyelesaikan masalah-masalah matematika. Kemampuan ini dapat berguna untuk menyelesaikan masalah-masalah matematika yang tidak dapat diselesaikan secara eksak (analitik). Proses Pembelajaran Metode Numerik dilaksanakan secara kontekstual, integratif, dan interaktif, dengan karakteristik berpusat pada mahasiswa.

B. CAPAIAN PEMBELAJARAN LULUSAN (CPL) DAN CAPAIAN PEMBELAJARAN MATA KULIAH (CPMK)

Nomor	Capaian Pembelajaran Mata Kuliah (CPMK)	Capaian Pembelajaran Lulusan (CPL)
	CPMK1. Menjelaskan pengertian metode numerik dan arti penting metode numerik dalam menyelesaikan masalah-masalah matematika	Menguasai secara mendalam bidang matematika meliputi analisis, aljabar, geometri, statistika, matematika terapan, dan ilmu komputer untuk dasar pengembangan diri dalam bekerja maupun studi lanjut
1	CPMK2. Menjelaskan konsep galat dan konsep-konsep yang terkait dengan galat dalam komputasi numerik, baik secara teoritis maupun praktis	Menguasai secara mendalam bidang matematika meliputi analisis, aljabar, geometri, statistika, matematika terapan, dan ilmu komputer untuk dasar pengembangan diri dalam bekerja maupun studi lanjut
3	CPMK3. Menggunakan software khusus matematika (Euler Maths Toolbox, Octave, SCILAB, atau MATLAB, dll) untuk mengimplementasi algoritma-algoritma di dalam metode numerik	Memanfaatkan perkembangan matematika, teknologi informasi, dan komunikasi untuk menjadi pembelajar sepanjang hayat.
4	CPMK4. Menggunakan metode numerik yang sesuai untuk menentukan hampiran penyelesaian suatu sistem persamaan linier (SPL)	Merumuskan model matematis dari permasalahan di berbagai bidang, menyelesaikan, dan menginterpretasikannya.
5	CPMK5. Menggunakan metode numerik yang sesuai untuk menghitung hampiran penyelesaian suatu persamaan tak linier	Menerapkan algoritma dengan menggunakan kaidah matematika yang benar dan efisien untuk membentuk sistem perangkat lunak yang berkualitas dengan memperhatikan aspek etika, legal dan keamanan informasi.
6	CPMK6. Menggunakan metode numerik yang sesuai untuk menghitung hampiran nilai suatu fungsi (interpolasi)	Merumuskan model matematis dari permasalahan di berbagai bidang, menyelesaikan, dan menginterpretasikannya.
7	CPMK7. Menggunakan metode numerik yang sesuai untuk menghitung hampiran nilai turunan suatu fungsi	Merumuskan model matematis dari permasalahan di berbagai bidang, menyelesaikan, dan menginterpretasikannya.
8	CPMK8. Menggunakan metode numerik yang sesuai untuk menghitung hampiran nilai integral suatu fungsi	Merumuskan model matematis dari permasalahan di berbagai bidang, menyelesaikan, dan menginterpretasikannya.
9	CPMK9. Menggunakan metode numerik yang sesuai untuk menghitung hampiran penyelesaian persamaan diferensial biasa (masalah nilai awal)	Merumuskan model matematis dari permasalahan di berbagai bidang, menyelesaikan, dan menginterpretasikannya.

C. KEGIATAN PERKULIAHAN:

Minggu Ke-	СРМК	Bahan Kajian	Bentuk/ Metode Pembelajaran	Pengalaman Belajar	Indikator Penilaian	Teknik Penilaian	Waktu	Referensi
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

1	1, 2, 3	Galat hampiran numerik: • pengertian dan arti penting komputasi dan metode numerik • galat mutlak dan galat relatif • angka signifikan • bilangan titik mengambang • galat pembulatan dan pemotongan • perambatan galat	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek	Membaca	Menjelaskan pengertian dan arti penting metode numerik, galat, penyajian bilangan dalam komputer, perambatan galat • Menghitung hampiran suatu nilai dan galatnya	Tugas	3 x 50 menit	1, 2, 3, 4, 5
2	1, 2, 3	Galat hampiran numerik: • pengertian dan arti penting komputasi dan metode numerik • galat mutlak dan galat relatif • angka signifikan • bilangan titik mengambang • galat pembulatan dan pemotongan • perambatan galat	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	 Menjelaskan pengertian dan arti penting metode numerik, galat, penyajian bilangan dalam komputer, perambatan galat Menghitung hampiran suatu nilai dan galatnya 	Tugas	3 x 50 menit	1, 2, 3, 4, 5
3	3, 4	Penyelesaian SPL secara numerik: • Iterasi Jacobi • Iterasi Gauss – Seidel • Penyelesaian SPL dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	Menyelesaikan SPL dengan metode Jacobi dan Gauss- Seidel • Menjelaskan syarat metode Jacobi dan Gauss- Seidel konvergen	Tugas	3 x 50 menit	1, 2, 3, 4, 5

4	3, 4	Penyelesaian SPL secara numerik: • Iterasi Jacobi • Iterasi Gauss – Seidel • Penyelesaian SPL dengan EMT	 Demonstrasi Eksperimen/Praktek Tugas/Kerja 	Membaca	Menyelesaikan SPL dengan metode Jacobi dan Gauss- Seidel Menjelaskan syarat metode Jacobi dan Gauss- Seidel konvergen	Tugas	3 x 50 menit	1, 2, 3, 4, 5
5	3, 5	Akar Numerik Persamaan Tak Linier: • Metode Bagi Dua • Posisi Palsu • Titik Tetap • Newton – Raphson • Metode Tali Busur • Perhitungan akar persamaan dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja	Membaca	Menyelesaikan persamaan nonlinear dengan metode bagi dua, posisi palsu, titik tetap, Newton-Raphson, dan tali busur • Menjelaskan persamaan dan perbedaan metode-metode numerik untuk menyelesaian suatu persamaan	Tugas	3 x 50 menit	1, 2, 3, 4, 5
6	3, 5	Akar Numerik Persamaan Tak Linier: • Metode Bagi Dua • Posisi Palsu • Titik Tetap • Newton – Raphson • Metode Tali Busur • Perhitungan akar persamaan dengan EMT	2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja	Membaca	Menyelesaikan persamaan nonlinear dengan metode bagi dua, posisi palsu, titik tetap, Newton-Raphson, dan tali busur • Menjelaskan persamaan dan perbedaan metode-metode numerik untuk menyelesaian suatu persamaan	Tugas	3 x 50 menit	1, 2, 3, 4, 5

7	3, 6	Interpolasi: • Polinomial bentuk baku • Polinomial Newton & Metode Selisih terbagi Newton • Polinomial Lagrange • Spline linier, kuadratik, kubik	2. Demonstrasi	Membaca	Menjelaskan pengertian interpolasi dan perbedaannya dengan ekstrapolasi dan regresi	Tugas	3 x 50 menit	1, 2, 3, 4, 5
8	3, 6	Interpolasi: • Polinomial bentuk baku • Polinomial Newton & Metode Selisih terbagi Newton • Polinomial Lagrange • Spline linier, kuadratik, kubik	2. Demonstrasi	Membaca	Menjelaskan pengertian interpolasi dan perbedaannya dengan ekstrapolasi dan regresi	Tugas	3 x 50 menit	1, 2, 3, 4, 5
9	1, 2, 3, 4, 5, 6	Ujian Sisipan (UTS)	Kuis/Evaluasi	Mengerjakan soal	 Menguasai materi Galat, penyelesaian masalah SPL, Akar persamaan, dan Interpolasi secara numerik 	UTS	3 x 50 menit	1, 2, 3, 4, 5
10	3, 7	Penurunan Fungsi secara Numerik: • Metode Selisih Maju/Mundur/ Pusat • Ekstrapolasi Richardson • Turunan Tingkat Tinggi	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	 Menghitung hampiran nilai turunan suatu fungsi 	Tugas	3 x 50 menit	1, 2, 3, 4, 5

11	3, 8	Integrasi Numerik: • Pengertian Kuadratur • Aturan Jumlah Kanan/Kiri/ Tengah • Aturan Simpson, Simpson 3/8 • Aturan Boole • Metode Romberg • Kuadratur Gauss – Legendre • Perhitungan Kuadratur dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	Menjelaskan pengertian kuadratur	Tugas	3 x 50 menit	1, 2, 3, 4, 5
12	3, 8	Integrasi Numerik: • Pengertian Kuadratur • Aturan Jumlah Kanan/Kiri/ Tengah • Aturan Simpson, Simpson 3/8 • Aturan Boole • Metode Romberg • Kuadratur Gauss – Legendre • Perhitungan Kuadratur dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	Menjelaskan pengertian kuadratur	Tugas	3 x 50 menit	1, 2, 3, 4, 5
13	3, 8	Integrasi Numerik: • Pengertian Kuadratur • Aturan Jumlah Kanan/Kiri/ Tengah • Aturan Simpson, Simpson 3/8 • Aturan Boole • Metode Romberg • Kuadratur Gauss – Legendre • Perhitungan Kuadratur dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	Menjelaskan pengertian kuadratur	Tugas	3 x 50 menit	1, 2, 3, 4, 5

14	3, 9	Penyelesaian PD Biasa (Masalah Nilai Awal) secara numerik: • Metode Euler • Metode Heun • Metode Runge – Kutta, • Penyelesaian PD Biasa dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	Menjelaskan pengertian penyelesaian PD biasa (masalah nilai awal) secara numerik dan bedanya dengan penyelesaian eksak Menghitung penyelesaian PD biasa (masalah nilai awal) secara numerik dan menggambar grafiknya	Tugas	3 x 50 menit	1, 2, 3, 4, 5
15	3, 9	Penyelesaian PD Biasa (Masalah Nilai Awal) secara numerik: • Metode Euler • Metode Heun • Metode Runge – Kutta, • Penyelesaian PD Biasa dengan EMT	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek 4. Tugas/Kerja Mandiri	Membaca	Menjelaskan pengertian penyelesaian PD biasa (masalah nilai awal) secara numerik dan bedanya dengan penyelesaian eksak • Menghitung penyelesaian PD biasa (masalah nilai awal) secara numerik dan menggambar grafiknya	Tugas	3 x 50 menit	1, 2, 3, 4, 5
16	1, 2, 3, 4, 5, 6, 7, 8, 9		Kuis/Evaluasi	Mengerjakan soal	 Menguasai materi Galat, penyelesaian masalah SPL, Akar persamaan, Interpolasi, turunan fungsi, integrasi, dan masalah nilai awal secara numerik 	UAS	3 x 50 menit	1, 2, 3, 4, 5

D. KOMPONEN PENILAIAN:

Nomor	Teknik Penilaian	Persentase Bobot Penilaian	Keterangan
1.	Kognitif	50	Akumulasi bobot penilaian maksimal 50%
	a. Kehadiran	0	
	b. Kuis	5	
	c. Tugas	15	
	d. UTS	10	
	e. UAS	20	
2.	Partisipatif	50	Akumulasi bobot penilaian minimal 50%

	a. Studi Kasus	25	
	b. Team Based Project	25	
TOTAL		100	

E. REFERENSI

- 1. Pengantar Komputasi Numerik dengan MATLAB (2005) oleh Sahid (Penerbit Andi Yogyakarta)
- 2. Handout Metode Numerik (Sahid, 2008-2021, FMIPA UNY)
- 3. Applied Numerical Methods with Matlab for Engineers and Scientists, 4th edition (2018) oleh Steve Chapra. (The McGraw-Hill Companies, Inc.)
- 4. Numerical Analysis, 10th edition (2016), oleh Richard L. Burden, J. Douglas Faires, & Annette M. Burden. (Brooks/Cole, Cengage Learning.)
- 5. An introduction to numerical methods: a MATLAB approach, 4th edition (2019) oleh Abdelwahab Kharab, Ronald B. Guenther. (Taylor & Francis Group, LLC)

Mengetahui,

Ketua Jurusan/Koorprodi

[disahkan secara digital pada sistem RPS]

PROGRAM STUDI MATEMATIKA - S1

KODE PRODI: 30514

Yogyakarta, 1 Januari 2025

Dosen Pengampu,

[disahkan secara digital pada sistem RPS]

Drs. Sahid M.Sc.

NIP: 196509051991011001

1. UU ITE No. 11 Tahun 2008 Pasal 5 Ayat 1 "Informasi Elektronik dan/atau Dokumen Elektronik dan/atau hasil cetaknya merupakan alat bukti yang sah."

2. Dokumen ini telah ditandatangani secara elektronik menggunakan sertifikat elektronik yang diterbitkan oleh BSrE