(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-318551

(43)公開日 平成7年(1995)12月8日

(51) Int.Cl.6

識別記号 广内整理番号

S

FΙ

技術表示箇所

G01N 30/48

技術

C08L 33/26

LJV

G01N 30/88

E

審査請求 未請求 請求項の数10 OL (全 9 頁)

(21)出願番号

特願平6-108643

(22)出顧日

平成6年(1994)5月23日

特許法第30条第1項適用申請有り 平成6年3月5日 社団法人日本薬学会発行の「日本薬学会第114年会講演

要旨集」に発表

(71)出願人 390014535

新技術事業団

埼玉県川口市本町4丁目1番8号

(72)発明者 松島 美一

神奈川県川崎市川崎区池田2-3-21

(72)発明者 金澤 秀子

神奈川県横浜市緑区奈良町2913-1-1107

(72)発明者 山本 一夫

東京都板橋区志村1-24-11-101

(72)発明者 高井 信治

東京都目黒区中根1-9-14

(74)代理人 弁理士 田中 宏

最終質に続く

(54) 【発明の名称】 クロマトグラフィー方法及び該方法に使用するクロマトグラフィー用充填剤

(57)【要約】

【目的】水系で生体要素(タンパク質、DNA、糖脂質等)及び細胞を固体表面との相互作用を外的信号(例えば温度)によって制御し、分離あるいは精製することができるクロマトグラフィー用充填剤を使用したクロマトグラフィー方法提供することを目的とする。

【構成】移動相を水系に固定したままで、固定相表面の 親水性/疎水性のバランスを外的信号によって変化させ ることが可能である充填剤を用いて溶質の分離を行うこ とを特徴とするクロマトグラフィー方法であり、具体的 には、アミノ基、カルボキシル基、或いは水酸基等を表 面に持つ担体表面を、末端にアミノ基、カルボキシル 基、或いは水酸基等を有するポリアルキルアクリルアミ ド或いはその共重合体で化学修飾したクロマトグラフィー 用充填剤を用いたクロマトグラフィー方法である。

1

【特許請求の範囲】

【請求項1】 移動相を水系に固定したままで、固定相表面の親水性/疎水性のバランスを外的信号によって変化させることが可能である充填剤を用いて溶質の分離を行うことを特徴とするクロマトグラフィー方法。

【請求項2】 外的信号が温度変化である請求項1記載のクロマトグラフィー方法。

【請求項3】 溶質が生体要素もしくは細胞である請求項1記載のクロマトグラフィー方法。

【請求項4】 充填剤が、担体表面を末端にアミノ基、カルボキシル基、或いは水酸基等を有するポリアルキルアクリルアミド或いはその共重合体で化学修飾したクロマトグラフィー用充填剤である請求項1記載のクロマトグラフィー方法。

【請求項5】 アミノ基、カルボキシル基、或いは水酸基等を表面に持つ担体に、末端にアミノ基、カルボキシル基、或いは水酸基等を有するポリアルキルアクリルアミド或いはその共重合体で化学修飾したクロマトグラフィー用充填剤よりなる固定相に溶質を保持させた後、外部温度を段階的に変化させる温度グラディエント或いは 20温度によるステップグラディエント法により固定相表面の親水性/疎水性のバランスを変化させ、同一の移動相を通過させることによって溶質を分離することを特徴とするクロマトグラフィ方法。

【請求項6】 移動相が水系溶媒である請求項5記載の クロマトグラフィー方法。

【請求項7】 担体表面に、温度応答性高分子を導入したことを特徴とするクロマトグラフィー用充填剤。

【請求項8】 温度応答性高分子が末端にアミノ基、カルボキシル基、或いは水酸基等を有するポリアルキルアクリルアミドである請求項7記載のクロマトグラフィー用充填剤。

【請求項9】 ポリアルキルアクリルアミドが、ポリー(N-イソプロピルアクリルアミド)、ポリジエチルアクリルアミド又はポリアクリロイルピロイジンの何れか一種である請求項8記載のクロマトグラフィー用充填剤。

【請求項10】 アミノ基、カルボキシル基、或いは水酸基等を有する担体表面にアミノ基、カルボキシル基、或いは水酸基等を有するポリアルキルアクリルアミド或 40いはその共重合体を化学修飾したことを特徴とするクロマトグラフィー用充填剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は水系で、生体要素(タンパク質、DNA、糖脂質等)及び細胞を固体表面と細胞膜との相互作用を外的信号(例えば温度)によって制御することが可能であるクロマトグラフィー用充填剤を利用して分離或いは精製することができるクロマトグラフィー方法に関する。

2

[0002]

【従来の技術】高速液体クロマトグラフィー(HPL C)は移動相液体と固定相の組合せが多種多様であり、 試料に応じて種々選択できるので近年種々の物質の分離、精製に利用されている。しかして、従来使用されているクロマトグラフィーでは固定相の表面構造は変化させずに、移動相中に含まれている溶質と固定相表面との相互作用を移動相の溶媒を変化させることによって行われている。例えば、多くの分野で使用されているHPL Cにおいては、固定相としてシリカゲル等の担体を用いた順相系のカラムではヘキサン、アセトニトリル、クロコホルムなどの有機溶媒を移動相として使用しており、また水系で分離されるシリカゲル誘導体を担体として用いた逆相系のカラムではメタノール、アセトニトリルなどの有機溶媒が使用されている。

【0003】また、陰イオン交換体あるいは陽イオン交換体を固定相とするイオン交換クロマトグラフィーでは外的イオン濃度あるいは種類を変化させて物質分離を行っている。近年遺伝子工学等の急速な進歩により、生理活性ペプチド、タンパク質、DNAなどが医薬品を含む様々な分野に広範囲にその利用が期待され、その分離・精製は極めて重要な課題となっている。特に、生理活性物質をその活性を損なうことなく分離・精製する技術の必要性が増大している。

【0004】しかし、従来の移動相に用いられている有機溶媒、酸、アルカリ、界面活性剤は生理活性物質の活性を損なうと同時に夾雑物となるために、そのシステムの改良が期待されている。また、このような物質の環境汚染の回避という面からもこれらの物質を用いない分離・精製システムが必要となっている。

[0005]

30

【発明が解決しようとする課題】そこで、本発明者らは、上記の要望を満足すべく種々検討した結果、固定相の表面構造を、例えば温度などの外的条件を変化させることによって、移動相を変化させることにより分離・精製する技術を開発し、本発明を完成したもので、本発明の目的は、外的条件を変化させることによって固定相の表面特性を可逆的に変化させ、これによって単一の水系移動相によって分離、精製可能なクロマトグラフィー方法及び該クロマトグラフィーに使用する固定相としての充填剤を提供する。

[0006]

【課題を解決するための手段】本発明の要旨は、移動相を水系に固定したままで、固定相表面の親水性/疎水性のバランスを外的信号によって変化させることが可能である充填剤を用いて溶質の分離を行うことを特徴とするクロマトグラフィー方法であり、具体的には、アミノ基、カルボキシル基、或いは水酸基等を表面に持つ担体50表面を、末端にアミノ基、カルボキシル基、或いは水酸

3

基等を有するポリアルキルアクリルアミド或いはその共重合体で化学修飾したクロマトグラフィー用充填剤を用いたクロマトグラフィー方法である。即ち、本発明を用いることにより、外部温度を臨界温度以上にすることによってタンパク質や細胞などの生体要素を疎水性表面に吸着させ、温度を低下させることにより、これを分離又は剥離することが可能となる。従って、この際、有機溶媒、酸、アルカリ、界面活性剤等の薬剤を全く用いないので、これらが夹雑物質となることを防ぎ、また、タンパク質や細胞などの機能を維持したままでの分析と同じに分離にも利用することができる。

【0007】従来のクロマトグラフィー法では1種類の移動相で種々の化合物が混じっている試料特に極性の大きく異なる複数の試料を分離・分析する場合、分離が困難であり、分離に要する時間が大変長くなってしまう。そのため、このような試料を扱う際には有機溶媒の量や種類を時間と共に連続的に変化させる溶媒グラディエント法或いは段階的に変化させるステップグラディエント法式いは及階のに単一の移動相でカラム温度を連続的或いは段階的に変化させることにより同様の分離を達成することが可能であり、この方法を採用することによって、上述の夾雑物の混入を防止し、タンパク質や細胞などの機能を維持したままで分離できると共に所望の成分を温度をコントロールすることによって短時間で分離*

4

* が可能なのである。

【0008】本発明において使用するクロマトグラフィ - 用充填剤は、その表面に温度応答性高分子を導入し、 これによって充填剤表面の親水性/疎水性のバランス が、例えば温度変化によって変化することが可能な充填 剤である。即ち、担体表面を温度応答性高分子である、 例えば末端にアミノ基、カルボキシル基、或いは水酸基 等を有するポリアルキルアクリルアミド或いはその共重 合体で化学修飾した充填剤である。この化学修飾した充 填剤としては、例えば、表面にアミノ基、カルボキシル 基、或いは水酸基等の官能基を有するシリカ担体に前記 のポリアルキルアクリルアミド或いはその共重合体を化 学修飾したものである。そして、アミノ基、カルボキシ ル基、或いは水酸基等の官能基を有するシリカ担体とし ては、具体的にアミノプロピルシリカゲル、アミノセフ ァデックス、アミノガラス、イオン交換樹脂等を挙げる ことができる。本発明において、ポリアルキルアクリル アミドとしては、ポリー (N-イソプロピルアクリルア ミド)、ポリジエチルアクリルアミド又はポリアクリロ イルピロリジンの何れか一種が好ましい。従って、本願 発明において使用する好ましいポリアルキルアクリルア ミド及びその共重合体の構造式を示すと次の通りであ

[0009] [化1]

ポリーアルキルアクリルアミド

	R ₁	R ₂	Abbreviation
Poly(N-isopropylacrylamide)	—н	—сн [_] сн,	Poly(IPAAm)
Poly(N,N'-diethylacrylamide)	C2H6	C ₂ H ₆	Poly(DEAAm)
Poly(acrylroylpyrolidine)	(Poly(APy)

[0010] (化2]

共重合体

$$\begin{array}{c|c}
 & CH_2 - CH \\
 & C = 0 \\
 & R_1 & R_2
\end{array}$$

A:5~60%含有

【0011】ポリ(N-イソプロピルアクリルアミド) は32℃に下限臨界温度を有するので、該分子で化学修 飾した担体はこの臨界温度で親水/疎水に表面物性が変 化するため、これをクロマトグラフィーの充填剤の表面 にグラフトもしくはコーティングして使用した場合、試 料に対する保持力が温度によって変化するため溶離液の*

【0014】Nーイソプロピルアクリルアミドモノマー(1)、2,2'ーアゾビス(イソブチロニトリル)(AIBNと略記)、3ーメルカプトプロピオン酸(MPAと略記)をN,Nージメチルホルムアミド溶媒に溶かし、液体窒素を用いて凍結脱気をした後、70±1℃においてテロメリゼーションによって重合した。これを濃縮し、ジエチルエーテルによって沈澱させ片末端にカルボキシル基を持ったポリ(Nーイソプロピルアクリル※50

*組成を変化させずに保持挙動を温度によってコントロー ルすることが可能となる。下限臨界温度を32℃以上に するためには、イソプロピルアクリルアミドよりも親水 性のモノマーであるアクリルアミド、メタアクリル酸、 アクリル酸、ジメチルアクリルアミド、ビニルピロリド ンなどをイソプロピルアクリルアミドと共重合させるこ とによって調整することが可能である。また、下限臨界 温度を32℃以下にしたいときは、疎水性モノマーであ るスチレン、アルキルメタクリレート、アルキルアクリ 10 レートなどとの共重合によって調整することができる。 【0012】また、ポリジエチルアクリルアミドの下限 臨界温度は、約30℃~32℃であり、この温度を境と して親水/疎水に表面物性が変化し、前述のポリー (N ーイソプロピルアクリルアミド)の場合と同様に、試料 に対する保持力が温度によって調整することができる。 本発明で利用される新規なクロマトグラフィー用担体 は、化学修飾或いは髙分子のコーティングによって作成 される。化学修飾手段としては表面グラフト法とラジカ ル重合の2つの方法を用いることができる。 またコーテ 20 イング方法としては、適用温度範囲内で不溶とした後、 不溶なものコーティングする。これらを図示すると、図 1の通りである。本発明のクロマトグラフィー担体の製 造方法の具体的手段の一例として次の化学式を参照して 述べる。

6

[0013] [化3]

※アミド)(2)を得る。粗生成物は溶解再沈法で精製する。これをシリカゲルをいれたデシケーター中に入れ、常温減圧下にて乾燥する。これを乾燥酢酸エチルに溶解し、ジシクロヘキシルカルボジイミド(DCCと略記)、Nーヒドロキシこはく酸イミドを加え室温で反応させポリ(Nーイソプロピルアクリルアミド)のカルボキシル基を活性エステル化した後、濃縮してジエチルエーテル中に滴下して沈澱させる。次に常温減圧乾燥し、

活性エステル化ポリ(Nーイソプロピルアクリルアミド)(3)を得る。これを純水に溶かしアミノ基含有担体を加え反応してアミド結合を形成することによりポリ(Nーイソプロピルアクリルアミド)を担体にグラフト、コーティングしたもの(4)を得る。本発明における担体を使用して分離・精製できるものとしては生理活性を有するタンパク質や細胞などで、具体的に牛血清アルブミン、IgG、フィブリノーゲン、フィブロネクチン、トランスフェリン、血液凝固因子等を挙げることができる。

[0015]

【実施例】次に実施例をもって、具体的に本発明を説明 する。

実施例1

(a) 片末端にカルボキシル基を有するポリ (N-イソプロピルアクリルアミド) の合成法

N-イソプロピルアクリルアミド20.0g、3-メル カプトプロピオン酸0.19g、2,2'-アゾビス (イソブチロニトリル) 0.21gをそれぞれ重合管に いれ、乾燥N、N-ジメチルホルムアミド50mlを加 えて溶解した。次に液体窒素下で凍結した後真空オイル ポンプで重合管中の酸素を脱気し、減圧状態のまま重合 管をメタノールに浸しN, N-ジメチルホルムアミド中 の溶存酸素を取り除いた。この凍結脱気の操作を3回繰 り返し行った。脱気が完全にできたら70±1℃のイン キュベーターで17時間反応させた。次に、室温まで下 がったら減圧濃縮を行う乾燥ジエチルエーテル中に滴下 させ片末端にカルボキシル基を持ったポリ(N-イソプ ロピルアクリルアミド)を沈澱させた。この沈澱物をP TFE (ポリテトラフルオロエチレン) フィルター (ポ アサイズ3.0μm)で濾取し、シリカゲルを入れたデ シケーター中で減圧乾燥をし、粗生成物18.0gが得 られた。これを乾燥N, N' -ジメチルホルムアミド3 Omlに溶かした後、乾燥ジエチルエーテル中に滴下 し、その沈澱物をテフロンフィルターで濾取した。これ をデシケーター中で減圧乾燥をおこない精製ポリ (N-**イソプロピルアクリルアミド)を得た。N-イソプロピ** ルアクリルアミド8.0g、N,N-ジメチルアクリル アミド2.0g、3ーメルカプトプロピオン酸0.18 精製したN, N-ジメチルアクリルアミド50mlに溶 解し、上記と同様に脱気封管後70±1℃で12時間重 合した。上記と同様の再沈精製を行い、片末端にカルボ キシル基を有するN-イソプロピルアクリルアミド共重 合体を得た。得られた共重合体は水溶液中で43℃付近 で相転移を示した。合成の仕込み等に、N-イソプロピ ルアクリルアミドモノマーに対するN, N-ジメチルア クリルアミドモノマーの量を変化させることによって任 意の温度で相転移を示す共重合体が得られる。得られた 各ポリマーはテトラヒドフランを溶媒としたゲル濾過ク Я

ロマトグラフィー及び酸ー塩基測定によりポリ(Nーイソプロピルアクリルアミド)が分子量10,000、NーイソプロピルアクリルアミドーN,Nージメチルアクリルアミド共重合体が分子量8,000であり、各分子末端に約1個のカルボキシル基を有することを確認した。

【0016】(b) 片末端にカルボキシル基を有するポリ(Nーイソプロピルアクリルアミド) の活性エステル化

10 精製ポリ (N-イソプロピルアクリルアミド)を11.35gを乾燥酢酸エチル100ml中に溶かし、ジシクロヘキシルカルボジイミド1.23g及びN-ヒドロキシこはく酸イミド0.69gを加えてよく攪拌しながら0℃で2時間、室温(20~25℃)で12時間反応させた。次に、副反応物であるN,N'ージシクロヘキシル尿素をPTFEフィルターで濾取し、その濾液を減圧濃縮した後乾燥ジエチルエーテル中に滴下し沈澱したものをテフロンフィルターで濾取して、常温減圧で溶媒を留去したものについて、活性エステル化ポリ(N-イソプロピルアクリルアミド)を得た。片末端カルボン酸NーイソプロピルアクリルアミドーN,N-ジメチルアクリルアミド共重合体も同様にして、活性エステル化した。

【0017】(c)活性エステル化ポリ(N-イソプロ ピルアクリルアミド)とアミノ基担体との結合 活性エステル化ポリ(N-イソプロピルアクリルアミ ド) 2.0gを純水50m1に溶かし、アミノプロピル シリカゲル6.0gを加え、12時間室温で激しく振と うして反応させた後冷水500m1で洗浄し、再び活性 エステル化ポリ (N-イソプロピルアクリルアミド) 2.0gを純水50mlに溶かした溶液中に加え、12 時間室温で激しく振とうした。この操作を3回繰り返 し、冷水500mlで洗浄した後、メタノール100m 1で洗浄し、乾燥した。活性エステル化ポリ (N-イソ プロピルアクリルアミド) 3.0gを6mlのN,N-ジメチルホルミアミドに溶解し、これを表面に一級アミ ノ基を導入したポリスチレン微粒子浮遊液1ml (直径 1.0±0.03μm、原液濃度:5×10¹¹個/m 1)を24mlの純水で希釈した液に1mlづつ30分 間隔で加え、ゆっくりと転倒混和した。全量を加えた 後、4℃以下で16時間転倒混和した。反応終了後、遠 心分離による回収と冷純化による洗浄を2回繰り返した 後、ハンクス平衡塩溶液 (pH7.4) を用いて希釈し $\mathcal{E}(6\times10^{9}, 6\times10^{10}/\text{ml})$.

【0018】次に本発明の担体を用いてクロマトグラフィーを行った例を示す。

実施例2

(a) 空カラムへの充填(湿式スラリー充填法) ポリ (Nーイソプロピルアクリルアミド) 修飾シリカゲ 50 ル2.0gを純水10mlに懸濁し、予め空カラム

 $(4.6 \phi \times 150 \text{mm})$ につないであるパッカー内に注ぎ、直ちに蓋を締め圧力が 350kg/cm^2 で2時間、 300kg/cm^2 で3時間純水を送液して充填した。

(b) 本発明による充填剤を用いたクロマトグラフィー 分離例

上記のポリ(N-イソプロピルアクリルアミド)修飾シ リカゲルを固定相としたカラムに医薬品のヒドロコルチ ゾン(1)と酢酸ヒドロコルチゾン(2)の混合物を試 料として注入した場合の分離例を示す。ヒドロコルチゾ 10 ン(1)と酢酸ヒドロコルチゾン(2)とを混合した試 料を注入し、これを移動相として水を毎分1.0mlの 割合で流し、紫外可視吸光度検出器 (測定波長254 n m)を用いて測定した。その結果を図2に示す。図2よ り5℃、15℃、30℃、50℃と温度をあげることに より、水のみの移動相で分離可能となったことが示され る。 図2はヒドロコルチゾン (1) と酢酸ヒドロコルチ ソン(2)の温変化に伴う保持時間の変化を示した。図 3-aは、ベースとなるアミノプロピルシリカゲル担体 を充填剤として用いた場合であり、図3-bは本発明を 用いた充填剤による分離の場合である。図3における温 度の影響を明らかにするために、図4において、10g k'と1/Tの関係をプロットを示す。明らかにベース のシリカゲルや従来のクロマトグラフィーにおける分離 とは、全く異なった保持挙動を示している。

【0019】 (c) 本発明による充填剤を用いたクロマトグラフィ分離例2

上記のポリー (Nーイソプロピルアクリルアミド) 修飾シリカゲルを固定相としたカラムにベンゼン (基準物質) および5種のステロイド医薬品との混合物を試料と 30して注入した場合の分離例を示す。カラムにベンゼン

(1)、ヒドロコルチゾン(2)、プレドニゾロン

(3)、デキサメサゾン(4)、酢酸ヒドロコルチゾン(5)、テストステロン(6)の6種を混合した試料を注入し、これを水を移動相として毎分1.0m1の割合で流し、紫外可視吸光度検出器(波長254 n m)を用いて測定した。その結果を図5に示す。図5において50℃では、15分以上であったテストステロンの溶出時間をカラム温度を5℃に変化させることにより、6分以内に短縮することができた。このように外部温度をコントロールすることにより自由に試料の溶出時間を変化させることが可能である。また、従来のクロマトグラフィーでは有機溶媒との混合液を移動相に用いなければ分離できなかった試料を5℃~50℃の適当な温度に変化させることにより水のみの移動相によって完全な分離を達成することができた。

10 【0020】 (d) 温度応答性高分子修飾表面とリンパ

球との温度制御クロマトグラフィー温度応答性NーイソプロピルアクリルアミドーN,Nージメチルアクリルアミド共重合体(IPAAmーDMA,組成20%モル)をグラフトした微粒子をハンクス平衡塩溶液に浮遊させ、ガラスカラム(8φ×300mm)に高さ100mm程度湿式充填した。ラット腸間膜リンパ節由来のリンパ球浮遊液(3×10°cell/ml)とポリマーグラフト微粒子浮遊液1ml(6×10°個/ml)をハンクス平衡塩溶液にて湿潤させたカラム上部に積層した。このカラムを恒温槽中で40℃に安定させた後、以下の実験を行った。溶離液として40℃に保温したハンクス平衡塩溶液を用いた場合は、カラム下部からの溶出液中には、リンパ球の溶出は見られなかった。続いてカラムを恒温槽中で10℃に安定させた後、10℃のハンクス平衡塩溶液を溶離液として用いた

時、リンパ球は100%溶出した。この溶出液中の生存

率を0.2%ニグロシン溶液を用いて観察した結果、カ

ラムから脱離後にリンパ球は100%生存していること

が確認された。 【0021】

【発明の効果】以上のように、温度応答性高分子を担体表面に導入した充填剤を固定相として使用することで温度変化による固定相の表面特性の制御が可能となり、水中及び水系によって生理活性物質や生きた細胞の分離・回収やその間に動く相互作用の温度制御が実現され、その結果、単一の水系の移動相によってタンパク質や細胞などの生体要素の機能を維持したままで分離・回収が可能と成るので夾雑物の混入を防止することができた。

【図面の簡単な説明】

【図1】本発明の担体表面の説明図

【図2】ヒドロコルチゾン(1)と酢酸ヒドロコルチゾン(2)の溶離に及ぼす温度影響を示す。

【図3】ヒドロコルチゾン(1)と酢酸ヒドロコルチゾン(2)の温度変化に伴う保持時間の変化を示す。 a 図は充填剤としてアミノプロピルシリカゲル、 b 図は本発明の充填剤である。

【図4】移動相として水を用いた場合、カラム中のヒドロコルチゾン(1)と酢酸ヒドロコルチゾン(2)に対するファント ホッフプロット図を示す。a 図は充填剤としてアミノプロピルシリカゲル、b 図は本発明の充填剤である。

【図5】ベンゼン(1)、ヒドロコルチゾン(2)、プレドニゾロン(3)、デキサメサゾン(4)、酢酸ヒドロコルチゾン(5)、テストステロン(6)の溶離に及ぼす温度の影響を示す。

[図1]

【図2】

フロントページの続き

(72)発明者 桜井 靖久 東京都杉並区永福3-17-6 (72)発明者 岡野 光夫 千葉県市川市国府台6-12-12 Japanese Laid-Open Patent Publication No. 7-318551

Laid Open Date: December 8, 1995

Application No. 6-108643

Application Date: May 23, 1994

[Title of the Invention]

CHROMATOGRAPHIC TECHNIQUE AND CHROMATOGRAPHIC PACKING TO BE USED THEREIN

[Abstract]

[Object] To provide a chromatographic technique with the use of a chromatographic packing by which a biological factor (protein, DNA, glycolipid, etc.) or a cell can be separated or purified by controlling its interaction with the surface of a solid in an aqueous system by an external signal (for example, temperature).

[Constitution]

A chromatographic technique for separating a solute by using a packing wherein the hydrophilic-hydrophobic balance on the surface of a stationary phase can be changed by an external signal while fixing the mobile phase to an aqueous system. More particularly, a chromatographic technique with the use of a chromatographic packing wherein the surface of a carrier having amino groups, carboxyl groups, hydroxyl groups or the like on the surface is chemically modified with a polyalkylacrylamide having a terminal amino, carboxyl or hydroxyl group or the like or a copolymer of the same.

[Claims]

[Claim 1] A chromatographic technique characterized in that a solute is separated by using a packing wherein the hydrophilic-hydrophobic balance on the surface of a stationary phase can be changed by an external signal while fixing the mobile phase to an aqueous system.

[Claim 2] A chromatographic technique as claimed in Claim 1 wherein said external signal is a change in temperature.

[Claim 3] A chromatographic technique as claimed in Claim

1 wherein said solute is a biological factor or a cell.

[Claim 4] A chromatographic technique as claimed in Claim 1 wherein said packing is a chromatographic packing wherein the surface of a carrier is chemically modified with a polyalkylacrylamide having a terminal amino, carboxyl or hydroxyl group or the like or a copolymer of the same.

Claim 51 A chromatographic technique which comprises retaining a solute by a stationary phase comprising a chromatographic packing wherein a carrier having amino groups, carboxyl groups, hydroxyl groups or the like on the surface is chemically modified with a polyalkylacrylamide having a terminal amino, carboxyl or hydroxyl group or the like or a copolymer of the same; and allowing the solute to pass through a single mobile phase while changing the hydrophilichydrophobic balance on the surface of the stationary phase by the temperature gradient method or the temperature-step

gradient method wherein the external temperature is varied stepwise to thereby separate the solute.

[Claim 6] A chromatographic technique as claimed in Claim 5 wherein said mobile phase is an aqueous solvent.

[Claim 7] A chromatographic packing wherein a temperature responsive polymer has been introduced onto the surface of a carrier.

[Claim 8] A chromatographic packing as claimed in Claim 7 wherein said temperature responsive polymer is a polyalkylacrylamide having a terminal amino, carboxyl or hydroxyl group or the like.

[Claim 9] A chromatographic packing as claimed in Claim 8 wherein said polyalkylacrylamide is one selected from among poly(N-isopropylacrylamide), polydiethylacrylamide and polyacryloylpyrrolidine.

[Claim 10] A chromatographic packing wherein the surface of a carrier having amino groups, carboxyl groups, hydroxyl groups or the like is chemically modified with a polyalkylacrylamide having an amino, carboxyl or hydroxyl group or the like or a copolymer of the same.

[Detailed Description of the Invention]

[Field of Industrial Application]

This invention relates to a chromatographic technique with the use of a chromatographic packing by which a

biological factor (protein, DNA, glycolipid, etc.) or a cell can be separated or purified by controlling the interaction between the surface of a solid and cell membrane in an aqueous system by an external signal (for example, temperature).

In recent years, high performance liquid chromatography (HPLC) has been employed in the separation and purification of many substances, since various combinations of mobile phases and stationary phases can be appropriately selected therein depending on the sample. In the conventional chromatographic techniques, however, the interaction between a solute contained in the mobile phase and the surface of the stationary phase is induced by changing not the surface structure of the stationary phase but a solvent in the mobile phase. In HPLC employed in a number of fields, for example, carriers such as silica gel are employed as the stationary phase while organic solvents such as hexane, acetonitrile and chloroform are employed as the mobile phase in the case of normal phase columns. In the case of reversed phase columns wherein silica gel derivatives separated in an aqueous system are employed as carriers, on the other hand, use is made of organic solvents such as methanol and acetonitrile. [0003]

In ion exchange chromatography with the use of anion exchangers or cation exchangers as the stationary phase,

substances are separated by changing the xternal ion concentration or ion type. With the recent rapid progress in genetic engineering, etc., it has been expected to use physiologically active peptides, proteins, DNAs and the like in various fields including the pharmaceutical field. Thus it is a very important problem to separate and purify these substances. Among all, there has been a great increase in the necessity for techniques for separating and purifying physiologically active substances without damaging the activities thereof.

E00043

However, the organic solvents, acids, alkalis and surfactants employed in the conventional mobile phases would damage the activities of physiologically active substances and, moreover, contaminate the same. It is therefore expected to improve this system. From the viewpoint of avoiding environmental pollution due to these substances, it has been also required to establish a separation and purification system without using these substances.

[Problems to be Solved by the Invention]

Under these circumstances, the present inventors have conducted extensive studies to satisfy the above-mentioned requirements. As a result, they have successfully developed a technique wherein separation and purification are achieved by

changing the interaction between a solute and the stationary phase surface by changing not the mobile phase but an external condition such as temperature, thus completing the present invention. Accordingly, the present invention aims at providing a chromatographic technique wherein separation and purification can be achieved with the use of a mobile phase of a single aqueous system by reversibly changing the surface characteristics of the stationary phase due to changes in an external condition, and a packing which is to be used as the stationary phase in this chromatographic technique.

[Means for Solving the Problems]

The gist of the present invention resides in a chromatographic technique for separating a solute by using a packing wherein the hydrophilic-hydrophobic balance on the surface of a stationary phase can be changed by an external signal while fixing the mobile phase to an aqueous system, more particularly, a chromatographic technique with the use of a chromatographic packing wherein the surface of a carrier having amino groups, carboxyl groups, hydroxyl groups or the like on the surface is chemically modified with a polyalkylacrylamide having a terminal amino, carboxyl or hydroxyl group or the like or a copolymer of the same.

According to the present invention, namely, a biological factor such as a protein or cell is adsorbed onto hydrophobic

surface by elevating the external temperature to the critical temperature or above and then the temperature is lowered. Thus the biological factor can be separated or peeled off. Since no chemical (organic solvent, acid, alkali, surfactant, etc.) is employed in this process, the chromatographic system can be prevented from the contamination with these chemicals. Moreover, this technique is applicable to separation similar to analysis while sustaining the function of the protein or cell.

[0007]

By the conventional chromatographic techniques, it is highly difficult to separate and analyze samples containing various compounds, in particular, two or more samples largely differing from each other in polarity in a single mobile phase. Thus it takes a very long period of time to complete the separation. To deal with such samples, therefore, it has been a practice to employ the solvent gradient method or the step gradient method wherein the amount or type of organic solvent(s) is continuously varied with the passage of time to thereby separate the solute. In the temperature gradient method or the step gradient method of the present invention, in contrast, separation can be similarly achieved by continuously or stepwise varying the column temperature in a single mobile phase without using any organic solvent. By using such a method, it becomes possible to separate proteins,

cells, etc. while sustaining the functions ther of and preventing the contamination with the above-mentioned impurities. Moreover, the desired component can be separated within a short period of time by controlling the temperature.

The chromatographic packing to be used in the present invention is one having a temperature responsive polymer introduced onto the surface thereof. Thus the hydrophilichydrophobic balance on the surface of the packing can be changed depending on, for example, temperature changes. In this packing, therefore, the carrier surface is chemically modified with a temperature responsive polymer, for example, a polyalkylacrylamide having a terminal amino, carboxyl or hydroxyl group or the like or a copolymer thereof. Examples of this chemically modified packing include those obtained by chemically modifying silica carriers having functional groups such as amino, carboxyl or hydroxyl groups on the surface with the above-mentioned polyalkylacrylamides or copolymers thereof. Particular examples of the silica carriers having functional groups such as amino, carboxyl or hydroxyl groups include aminopropyl silica gel, Amino Sephadex, aminoglass and ion exchange resins. As the polyalkylacrylamide to be used in the present invention, it is preferable to select one from among poly(N-isopropylacrylamide), polydiethyleneacrylamide and polyacryloylpyrrolidine. That is to say, the structural

formulae of the polyalkylacrylamide or its polymer preferably employed in the present invention are as follows:

[00093

[Chemical formula 1]
Polyalkylacrylamida

	R ₁	R ₂	Abbreviation
Poly(N-isopropylacrylamide)	—H	-ch ch	Poly(IPAAm)
Poly(N,N-dishylacrylamide)	CaHe	—C ₂ H ₆	Poly(DEAAm)
Poly(acrylroylpyrolidine)	(Poly(APy)

[0010]

[Chemical formula 2]

Copolymer

$$\begin{array}{c|c}
\hline
 & CH_2 - CH \\
\hline
 & C=0 \\
\hline
 & R_1 & R_2 \\
\hline
 & R_2
\end{array}$$

A: content: 5-60%.

A
$$= CH_2 - C - COOC_{\ell}H_{2\ell+1}$$

alkyl methacry late ($\ell=1-20$)

 $= CH_2 - C - COOC_{\ell}H_{2\ell+1}$

[0011]

Since poly(N-isopropylacrylamids) has a lower limit critical temperature of 32 °C, a carrier chemically modified with its molecules undergoes changes in the surface characteristics (hydrophilic/hydrophobic) at this critical temperature. When the surface of a chromatographic packing is grafted or coated therewith, therefore, the capability of retaining a sample varies depending on temperature. Thus the

retention behaviors can be controlled depending on temperature without changing the composition of the eluent. The lower limit critical temperature exceeding 32 °C can be achieved by copolymerizing isopropylacrylamide with a monomer superior in hydrophilic nature to it, for example, acrylamide, methacrylic acid, acrylic acid, dimethylacrylamide or vinylpyrrolidone. Also, a lower limit critical temperature of 32 °C or below can be achieved by copolymerizing isopropylacrylamide with a hydrophobic monomer such as styrene, alkyl methacrylate or alkyl acrylate.

[0012]

Because of having a lower limit critical temperature of about 30 to 32 °C, polydiethylacrylamide undergoes changes in the surface characteristics (hydrophilic/hydrophobic) at this point. Thus its capability of retaining a sample can be controlled by varying the temperature, similar to the abovementioned case of poly(N-isopropylacrylamide). The novel chromatographic packing employed in the present invention can be prepared by chemical modification or polymer coating. As a means of the chemical modification, use can be made of two methods, i.e., surface grafting and radical polymerization. In the coating method, the polymer is insolubilized at a temperature falling within the application range and then subjected to coating. Fig. 1 illustrates this method. Now, an example of the means for producing the chromatographic

packing of the present invention will be described by reference t the following chemical formula.

[Chemical formula 3]

[0014]

N-Isopropylacrylamide monomer (1), 2,2°-azobis- (isobutyronitrile) (abbreviated as AIBN) and 3-mercapto-propionic acid (abbreviated as MPA) are dissolved in a solvent N,N-dimethylformamide. After freeze-degassing with the use of liquid nitrogen, these monomers are polymerized by telomerization at 70 ± 1 °C. Then the mixture is concentrated and precipitated from diethyl ether to thereby give poly(N-isopropylacrylamide) (2) having a terminal carboxyl group. The crude product is purified by dissolution-reprecipitation.

Then it is introduced into a desiccator containing silica gel and dried at ordinary temperatures under reduced pressure. Then it is dissolved in dry ethyl acetate and dicyclohexylcarbodiimide (abbreviated as DCC) and N-hydroxysuccinimide are added thereto. After reacting at room temperature to thereby convert the carboxyl group of the poly(N-isopropylacrylamide) into an active ester, it is concentrated and dropped into diethyl ether for precipitation. Next, it is dried at ordinary temperatures under reduced pressure to thereby give active-esterified poly(N-isopropylacrylamide) (3). The obtained product is dissolved in purified water and a carrier having amino groups is added thereto. Then these substances are reacted together to thereby form an amide bond. Thus a carrier (4) graft-coated with poly(N-isopropylacrylamide) is By using the carrier of the present invention, physiologically active proteins, cells, etc. can be separated Particular examples thereof include bovine and purified. serum albumin, IgG, fibrinogen, fibronectin, transferrin and blood coagulation factor.