CS 267A - Homework 1

Peter Racioppo (103953689)

April 9, 2020

Problem 1

1. Knowledge Base:

$$\neg b \Rightarrow c$$

$$\neg a \Rightarrow \neg c$$

$$\neg a \vee \neg b$$

2. Truth Table:

There are $2^3 = 8$ models.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg b \Rightarrow c$	$\neg a \Rightarrow \neg c$	$\neg a \lor \neg b$
T	T	T	F	F	F	T	T	F
T	T	F	F	F	Т	T	T	F
T	F	T	F	T	F	T	T	T
T	F	F	F	T	T	F	T	T
F	T	T	Т	F	F	T	F	T
F	T	F	T	F	Т	T	T	T
F	F	T	T	T	F	T	F	T
F	F	F	Т	Т	Т	F	T	T

3. Logical Consistency:

Prop. 3 is True in 4 models.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg b \Rightarrow c$	$\neg a \Rightarrow \neg c$	$\neg a \lor \neg b$
T	T	T	F	F	F	T	T	F
T	F	T	F	T	F	T	T	T
F	T	T	T	F	F	T	F	T
F	F	T	T	T	F	T	F	T

Prop. 1 is true in all 4 of these models.

Prop. 2 is satisfied in 2 of these models.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg b \Rightarrow c$	$\neg a \Rightarrow \neg c$	$\neg a \lor \neg b$
T	T	T	F	F	F	Т	T	F
T	F	T	F	T	F	T	T	T

Prop. 4 is satisfied in 1 of these models.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg b \Rightarrow c$	$\neg a \Rightarrow \neg c$	$\neg a \lor \neg b$
T	F	T	F	T	F	T	T	Т

Thus, the three testimonies are consistent, and they are satisfied by exactly one model.

4. Who Lied?

If everyone is innocent, we take the first row of the truth table.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg b \Rightarrow c$	$\neg a \Rightarrow \neg c$	$\neg a \lor \neg b$
T	T	T	F	F	F	T	T	F

Prop. 1-3 are all true, but Prop. 4 $(\neg a \lor \neg b)$ is false. Thus, C lied.

5. Guilt/Innocence:

If all of the testimonies are true, only one model is satisfied:

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg b \Rightarrow c$	$\neg a \Rightarrow \neg c$	$\neg a \lor \neg b$
T	F	T	F	T	F	T	T	T

Thus, B is guilty.

Problem 2

1.
$$(a \lor b \lor \neg c) \land (a \lor \neg d)$$

If a = 1, we have $1 \wedge 1 = 1$. Thus, this statement is satisfiable.

DPLL:

$$S = (a \lor b \lor \neg c) \land (a \lor \neg d)$$
if $(a = 1)$

$$S = 1$$
else if $(a = 0)$

$$S = (b \lor \neg c) \land \neg d$$

if $(d = 1)$

$$S = 0$$

else if
$$(d = 0)$$

$$S = b \wedge \neg c$$

if
$$(b=0)$$

$$S = 0$$

else if
$$(b=1)$$

$$S = \neg c$$

if
$$(c = 0)$$

$$S = 1$$

else if
$$(c=1)$$

 $S=0$

SAT: (For example: a = 1, b = 0, c = 0)

2.
$$\neg(a \lor b) \land (\neg c \lor (c \land d)) \Rightarrow \neg c \land d$$
 If $d=0$, we have $\neg a \land \neg b \land \neg c \Rightarrow 0$. Then, if $a \lor b \lor c$, we have $0 \Rightarrow 0$, which is True. Thus, the statement is satisfiable. DPLL:
$$S = \neg(a \lor b) \land (\neg c \lor (c \land d)) \Rightarrow \neg c \land d$$
 if $(d=0)$
$$S = \neg a \land \neg b \land \neg c \Rightarrow 0$$
 if $(a=1)$
$$S=1$$
 else if $(a=0)$
$$\neg b \land \neg c \Rightarrow 0$$

$$S = \text{True if } b \lor c \text{ and } S = \text{False otherwise.}$$
 else if $(d=1)$
$$\neg a \land \neg b \Rightarrow \neg c$$
 if $(c=1)$
$$S = \neg a \land \neg b \Rightarrow 0$$

$$S = \text{True if } a \lor b \text{ and } S = \text{False otherwise.}$$
 else if $(c=0)$
$$S = \neg a \land \neg b \Rightarrow 1$$

$$S = \neg a \land \neg b \Rightarrow 1$$

$$S = \text{False if } a \lor b \text{ and } S = \text{True otherwise.}$$
 SAT: (For example: $a=1,b=1,c=1,d=0$)

3. DPLL:
$$S = (x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow (\neg x \lor y \lor y \lor z) \Rightarrow$$

Thus, this statement is not satisfiable. UNSAT.

if (y = 0)

else if (y = 1)

 $S = z \land \neg z = 0$

 $S = z \land \neg z = 0$

 $S = (y \vee z) \wedge (y \vee \neg z) \wedge (\neg y \vee z) \wedge (\neg y \vee \neg z)$