Scilab Textbook Companion for Elements Of Heat Transfer by M. Jacob And G. A. Hawkins¹

Created by
Abhishek Sharma
B.Tech
Chemical Engineering
Institute Of Technology BHU
College Teacher
Ms Bhawna Verma
Cross-Checked by

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements Of Heat Transfer

Author: M. Jacob And G. A. Hawkins

Publisher: John Wiley & Sons, New York

Edition: 3

Year: 1957

ISBN: 9780471437253

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
3	Conduction of heat in the steady state	5	
4	Conduction of heat in the unsteady state	14	
5	Steady state heat conduction in bodies with heat sources	26	
6	Introduction to the dimensional analysis of convection	29	
7	Heat transfer by free convection	31	
8	Heat transfer by forced convection	36	
9	Heat transfer by the combined effect of conduction and convection	39	
10	Heat transfer in condensing and boiling	54	
11	Heat transfer by radiation	56	
12	Heat transfer by the combined effect of conduction convection and radiation	62	
14	Heat transfer in temperature measurements	65	
15	Heat transfer and fluid friction	67	
16	Mass transfer	69	

List of Scilab Codes

Exa 3.1	Conduction through homogenous plane wall	5
Exa 3.2	Conduction through a composite plane wall	6
Exa 3.3	Conduction through a homogenous cylinder wall	7
Exa 3.4	Conduction through a composite cylinder wall	8
Exa 3.5	Influence of variable conductivity	9
Exa 3.6	Conduction through edge and corner sections	9
Exa 3.7	Conduction through sections of complicated range	10
Exa 3.8	Relaxation method	11
Exa 3.10	realaxation	12
Exa 4.1	Unsteady state	14
Exa 4.2	Unsteady State	16
Exa 4.3	Sudden change of surface temperature	17
Exa 4.4	Sudden change of temperature	18
Exa 4.5	Periodic temperature change	19
Exa 4.6	Periodic change of surface temperature	20
Exa 4.7	Periodic change of surface temperature	21
Exa 4.8	Unsteady state conduction	23
Exa 4.9	Unsteady state conduction	24
Exa 5.1	Maximum temperature in coil	26
Exa 5.2	Temperare distribution in solid cylinder	27
Exa 6.1	Reynolds concept of similarity	29
Exa 6.2	Reynolds number	30
Exa 7.1	Heat transfer by vertical and horizontal surfaces	31
Exa 7.2	Heat transfer from horizontal surface	32
Exa 7.3	Heat transfer from horizontal cylinders	33
Exa 7.4	Heat transfer from horizontal cylinders	34
Exa 8.1	Heating of fluids in turbulent flow	36
Exa 8.3	The heating of fluids flowing normal to tubes	37

Exa 9.1	Heat transfer from a rod	39
Exa 9.2	Heat transfer from a rod	41
Exa 9.3	Heat transmision through a plane wall	42
Exa 9.4	Heat transfer through a cylinder wall	42
Exa 9.5	LMTD	43
Exa 9.6	LMTD through graphs	44
Exa 9.7	Calculation for heat exchanger design	45
Exa 9.8	Heat exchanger design	46
Exa 9.9	Heat exchanger effectiveness ratio	48
Exa 9.9b	Heat transfer from wall in contact with a medium	49
Exa 9.10	Heat exchanger effectiveness ratio	51
Exa 9.11	Combined conduction and convection	52
Exa 10.1	Condensation	54
Exa 11.1	Heat excannge between black planes	56
Exa 11.2	Heat exchange between floor and roof	56
Exa 11.3	Heat exchange between perpendicular surfaces	57
Exa 11.4	Heat exchange between irradiating surfaces	58
Exa 11.5	heat excange between large planes of different emissivity	59
Exa 11.6	Heat exchange between two non black bodies	60
Exa 11.7	Heat exchange in an enclosure	60
Exa 12.1	Heat losses from insulated horizontal table	62
Exa 12.2	Heat loss from bare tubes	63
Exa 14.1	Influence of convection and radiation	65
Exa 15.1	Reynolds Analogy	67
Exa 16.1	Diffusion coefficient	69
Exa 16.2	Diffusion coefficient	70
Exa 12.3	Diffusion of one gas into another stagnant gas	70
Exa 16.4	Mass transfer coefficient	71
Exa 16.5	Air over water surface	72
Exa 16.6	Air flowing over water surface	73
Exa 16.7	Heat and mass transfer in free convection	75
Exa 16.8	Humidification	77
Exa 16.9	Absortion over wetted surface	78

Chapter 3

Conduction of heat in the steady state

Scilab code Exa 3.1 Conduction through homogenous plane wall

```
1 clear;
2 clc();
4 // To find heat loss per square feet of wall surface
      per hour
6 deltax=9/12;
                                // thickness of wall in
      ft
                          // thermal conductivity of
7 k=0.18;
     wall in B/hr-ft-degF
8 t1=1500;
                                // inside temperature
     of oven wall in degF
                                // outside temperature
9 t2=400;
     of oven wall in degF
10
                               // heat loss in Btu/hr
11 q=k*(t1-t2)/deltax;
12 printf("\n The heat loss for each square foot of
     wall surface is %d Btu/hr-ft^2",q);
```

Scilab code Exa 3.2 Conduction through a composite plane wall

```
1 clear;
2 clc();
4 // To compute tempertures at the contact surfaces
      inside the furnaces
6 \times 1 = 9/12;
                         // thickness of firebrick in ft
7 k1=0.72;
                         // thermal conductivity of
      firebrick in Btu/hr-ft-degF
8 x2=5/12;
                         // thickness of insulating
      brick in ft
                         // thermal conductivity of
  k2=0.08;
      insulating brick in Btu/hr-ft-degF
                         // thickness of redbrick in ft
10 \times 3 = 7.5/12;
                         // thermal conductivity of
11 k3=0.5;
      firebrick in Btu/hr-ft-degF
                         // inner temperature of wall in
12 t1=1500;
       degF
                         // outer temperature of wall in
13 t2=150;
       degF
14
15 // resistances of mortar joints are neglected
16 q = (t1-t2)/(x1/k1+x2/k2+x3/k3); // heat flow per
      square ft in Btu/hr
17 t2=t1-(q*x1/k1);
                                      // first contact
      temperature in degF
18 printf("\n The temperature at the contact of
      firebrick and insulating brick is %d degF",t2);
19
                                      // second contact
20 t3=t2-(q*x2/k2);
      temperature in degF
21 printf("\n The temperature at the contact of
```

Scilab code Exa 3.3 Conduction through a homogenous cylinder wall

```
1 clear;
2 clc();
    // to calculate the heat loss from pipe
    d1=2.375/12;
                                     // internal diameter
        of pipe in ft
    t=1/12;
                                     // thickness of
       insulating material in ft
                                     // external (
    d2=d1+2*t;
8
       insulation) diameter of pipe in ft
    k=0.0375;
                                     // thermal
       conductivity of insulating material in Btu/hr-ft
      -F
                                     // length of pipe in
10
    1=30;
        ft
11
    t1 = 380;
                                     // inner surface
       temperature of insulation
                                     // outer surface
12
    t2 = 80;
       temperature of insulation
13
    q=2*\%pi*k*(t1-t2)/log(d2/d1); // heat loss per
14
       unit length
15
    printf("\n Heat loss per linear foot is %.d Btu/hr"
16
                                     // heat loss for 30
    qtot=round(q)*1;
17
       ft pipe
    printf("\n Total heat loss through 30 ft of pipe is
18
       \%d Btu/hr",qtot)
```

Scilab code Exa 3.4 Conduction through a composite cylinder wall

```
1 clear;
2 clc();
4 // To calculate heat loss from pipe
                             // outer diameter of pipe in
6 d1=10.75/12;
       ft
  x1=1.5/12;
                             // thickness of insulation 1
       in ft
8 x2=2/12;
                             // thickness of insulation 2
      in ft
                             // diameter of insulation 1
  d2 = d1 + 2 * x1;
      in ft
10 d3=d2+2*x2;
                             // diameter of insulation 1
     in ft
11 t1=700;
                             // inner surface temperature
       of composite insulation in degF
                             // outer surface temperature
       of composite insulation in degF
                             //thermal conductivity of
13 \text{ k1} = 0.05;
      material 1 in Btu/hr-ft-degF
                             // thermal conductivity of
14 \text{ k2=0.039};
      material 2 in Btu/hr-ft-degF
15
16 q=2*\%pi*(t1-t2)/(log(d2/d1)/k1+log(d3/d2)/k2);
                                             // heat loss
      per linear foot in Btu/hr
17 printf("\n The heat loss is found to be %d Btu/hr-ft
     ", q);
```

Scilab code Exa 3.5 Influence of variable conductivity

```
1 clear;
2 clc();
3
4 // To find out heat loss through 1 sq. ft of flat
      slab of 85% magnesia and 15% asbestos
6 \text{ km} = 0.0377;
                              // Mean thermal
      conductivity at 220 degF
                              // Inner surface
7 t1 = 260;
      temperature of slab in degF
  t2=180;
                              // Outer surface
      temperature of slab in degF
9 \quad A = 1;
                              // Area of slab in ft
                              // Thickness of insulation
10 x = 2/12;
     in ft
11
12 q=km*A*(t1-t2)/x; // Heat loss through slab
     in Btu/hr
13 printf("\n Heat loss through flat slab is %.1f Btu/
     hr",q);
```

Scilab code Exa 3.6 Conduction through edge and corner sections

```
temperature of furnace in degF
8 a = 3
                                 // Length of furnace in ft
9 b = 4
                                 // Breadth of furnace in
      ft
10 c = 2.5
                                 // Height of furnace in ft
11 \quad Aa = 2 * a * b
                                 // Area of surface A in ft
      ^2
12 Ab = 2 * b * c
                                 // Area of surface A in ft
                                 // Area of surface A in ft
13 \text{ Ac} = 2 * a * c
      ^2
14 x = 4.5/12
                                     Thickness of insulation
       in ft
15 t = 24
                                 // Time elapsed in hr
                                 // Number of edges
16 M=4
                                 // Number of corners
17 N = 8
18
19 S=Aa/x+Ab/x+Ac/x+0.54*(a+b+c)*M+0.15*x*N
      Shape factor
20 \text{ qo=S*k*(T1-T2)}
      Heat flow per hour
21 q = qo * t
      Heat loss in 24 hr
22
23 printf("The heat loss in 24 hr is %d Btu",q)
```

Scilab code Exa 3.7 Conduction through sections of complicated range

```
1 clear;
2 clc();
3
4 // To compute shape factor for the special section
        in figure
5
6 // Ratio of diameter of circle to the side of square
```

```
is 0.5. Hence required lines have been
      estabilished by trial and error method.
8 M = 8 * 9;
                            // number of flow channels
      for the entire section
9 N=8.37;
                            // number of equal channel
      intervals
10 // the fractional part arises due to the fractional
      part of temperature close to border EG
11
12 k = M/N;
                           // Ratio of shape factor to
      wall length
13 printf("\n Shape factor for the special section (
      where the ratio of radius of circle to half side
      length is 0.5), S is \%.2 \, \text{fL}", k);
```

Scilab code Exa 3.8 Relaxation method

```
1 clear;
2 clc();
4 // To find the temperature of planes indicated by
      grid points using relaxation method
5 t1=800;
                      // inner surface temperature of
      wall in degF
6 t4 = 200;
                         outer surface temperature of
      wall in degF
8 //Grids are square in shape so delx =dely where delx
      y sre dimensions of square grid
10 t2=[700 550 550 587.5 587.5 596.9 596.9 599.3 599.3
     599.8];
                          // Assumed temperature of
      grid point 1
11 t3=[300 300 375 375 393.8 393.8 398.5 398.5 399.6
```

```
399.6];
                            // Assumed temperature of
     grid point 2
12
13 for i=1:9
14
       th2(i)=t1+t3(i)-2*t2(i);; // th1=q/kz at grid
       th3(i)=t2(i)+t4-2*t3(i);//th2=q/kz at grid
15
          pt2
       printf ("\n Assuming t2=\%.1 f \degF \and t2=\%.1 f
16
          degF \setminus h th1 [\%d] = \%.1 f degF and th2 [\%d] = \%.1 f
          17
        printf(" Since th2 [%d] is not equal to th3 [%d],
           hence other values of t2 and t3 are to be
          assumed n, i, i);
18 end
19
20 printf ("\nAssuming t2=600 degF and t3=400 degF, th2=
     th3.");
21 printf("\nHence Steady state condition is satisfied
     at grid temperatures of 400 degF and 600 degF");
```

Scilab code Exa 3.10 realaxation

```
symmetry axes
10 Ta=300; Tb=441; Tc=600; Td=300; Te=432; Tf=600; Tg=600; Th=430; Tf=600; T
                                =600; Ti=300; Tj=384; Tk=461; Tl=485; Tm=490; Tn=300; To
                                =340; Tp=372; Tq=387; Tr=391; Ts=300; Tt=300; Tu=300;
                                Tv = 300; Tw = 300;
11 // Above grid point temperatures are given in the
                                 question for the quarter section considered in
                                degF(a,b,c...w are grid points)
12
13 q1=4*k*((Tc-Tb)/2+(Tf-Te)+(Tf-Tk)+(Tg-T1)+(Th-Tm)/2)
                                                                                                                                                                                                      // Amount of heat
                                coming from inside in Btu/hr
14 q^{2=4*k*((Tb-Ta)/2+(Te-Td)+(Tj-Ti)+(To-Tn)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-Tt)+(To-T
                                Tp-Tu)+(Tq-Tu)+(Tr-Tw)/2); // Amount of heat
                                 going outside in Btu/hr
15 q = (q1+q2)/2;
                                                                                                                                                                                                  // average of heat
                                 going in and heat coming out
16 printf("\n Total heat flow per unit depth is %.1fBtu
                                /hr",q);
17
                                                                                                                                                                                                 // shape factor in ft
18 S=q/(k*(Tc-Ta));
19 printf("\n Shape factor is %.2 fft",S)
```

Chapter 4

Conduction of heat in the unsteady state

Scilab code Exa 4.1 Unsteady state

```
1 clc();
2 clear;
4 // To find heat changes and temperature change on
      heating of a concrete wall
6 b=9;
                                              // Thickness
      of the wall in ft
                                              // Area of
7 \quad A = 5;
      wall
8 \text{ k=0.44};
                                              // Thermal
      conductivity in Btu/hr-ft-degF
                                              // Specific
9 Cp = .202;
      heat in Btu/lbm-degF
                                              // Density in
10 rho=136;
       1b / ft ^3
11
12 function[t]=templength(x);
      Temperature function in terms of length
```

```
13
       t = 90 - 80*x + 16*x^2 + 32*x^3 - 25.6*x^4;
14
       funcprot(0);
15 endfunction
16 tgo = derivative(templength, 0);
                                             //
      Temperature gradient at x=0ft
17 tgl = derivative(templength, 9/12);
                                             //
      Temperature gradient at x=9/12 ft
18
19 go = -k*A*tgo;
                                             // Heat
      entering per unit time in Btu/hr
20 printf ("Heat entering per unit time is %.2 f Btu/hr \
     n",qo);
21 \text{ ql} = -k*A*tgl;
                                             // Heat
      coming out per unit time in Btu/hr
22 printf(" Heat coming per unit time is %.2f Btu/hr \n
     ",ql);
                                             //Heat energy
23 q3 = qo-q1;
       stored in Btu/hr
24 printf (" Heat energy stored in wall is %.2 f Btu/hr \
      n",q3);
25
                                                   //
26 \text{ a=k/(rho*Cp)};
      Thermal diffusivity
27 function [t2] = doublederivative(y);
      Derivative of tempearture with respect to length
      in degF/ft
28
     t2 = -80 + 32 * y + 96 * y^2 - 102.4 * y^3;
29
     funcprot(0);
30 endfunction
31 timeder0=a*derivative(doublederivative,0); //
      derivative of temperature wrt time at x=0 in
      degF
32 printf (" Time derivative of temperature wrt time at
      x=0 ft is \%.2 f degF/hr\n", timeder0);
33 timeder1=a*derivative(doublederivative, 9/12);
      // derivative of temperature wrt time at x=9/12
      in degF
34 printf (" Time derivative of temperature wrt time at
```

Scilab code Exa 4.2 Unsteady State

```
1 clc();
2 clear;
3 // To find heat changes and temperature change on
      heating of a concrete wall
                                           // thickness of
4 b=9;
       the wall in ft
5 A = 5;
                                           // area of wall
       in ft<sup>2</sup>
                                            // Thermal
6 \text{ k=0.44};
      conductivity in Btu/hr-ft-degF
7 Cp = .202;
                                            // Specific
      heat in Btu/lbm-degF
8 \text{ rho} = 136;
                                            // density in
      1b / ft ^3
9
10 function[t]=templength(x);
11
       t = 90 - 8*x-80*x^2;
12
       funcprot(0);
13 endfunction
14 tgo = derivative(templength,0); // temperature
      gradient at x=0ft
15 tgl = derivative(templength,9/12);
                                            // temperature
       gradient at x=9/12 ft
16
17 qo = -k*A*tgo;
                                            // Heat
      entering per unit time in Btu/hr
18 printf("Heat entering per unit time is %.2f Btu/hr \
      n",qo);
19 ql = -k*A*tgl;
                                            // Heat coming
       out per unit time in Btu/hr
20 printf (" Heat coming per unit time is %.2 f Btu/hr \n
```

```
",q1);
21 	 q3 = qo-q1;
                                            //Heat energy
      stored in Btu/hr
22 printf (" Heat energy stored in wall is %.2 f Btu/hr \
      n",q3);
23
24 \text{ a=k/(rho*Cp)};
                                               Thermal
      diffusivity in ft<sup>2</sup>/hr
25 function[t2] = doublederivative(y);
                                            // derivative
      of tempearture with respect to length in degF/ft
     t2 = -8 - 160 * x;
26
27
     funcprot(0);
28 endfunction;
29 timeder0=a*derivative(doublederivative,0);
      // derivative of temperature wrt time at x=0 in
      degF
30 printf (" Time derivative of temperature wrt time at
      x=0 ft is \%.2 f degF/hr\n", timeder0);
31 timeder1=a*derivative(doublederivative, 9/12);
      // derivative of temperature wrt time at x=9/12
      in degF
32 printf (" Time derivative of temperature wrt time at
      x=9/12 ft is \%.2 f degF/hr\n", timeder1);
33 printf(" Teperature at each part of wall decreases
      equally");
```

Scilab code Exa 4.3 Sudden change of surface temperature

```
7 \text{ Ti} = 70;
                         // tempearature of wall
     initially in degF
                         // temperature of surface when
8 \text{ Ts} = 1500;
     suddenly changed in degF
9 a = 0.03;
                         // thermal diffusivity in ft^2/
     hr
10 k = 0.5;
                         // thermal conductivity in Btu/
     hr-ft-degF
11 A = 10;
                         // area of wall in sq ft
                         // distance from surface where
12 x = 7/12;
      tempearture is to be found in ft
13 f = x/(2*sqrt(a*t));
14 // From gaussian error function table erf can be
      found
15 errorf = 0.55; // Referred from table
17 T = Ts + (Ti - Ts) * errorf;
18 printf ("Temperaure at a distance of 7/12 ft from
      surface is \%.1 f \deg F \backslash n",T);
19 q = -k*A*(Ti-Ts)*exp(-x^2/(4*a*t))/sqrt(t*%pi*a);
     // heat flow rate at a distance
20 qtot = -k*A*(Ti-Ts)*2*sqrt(t/(%pi*a));
     // total heat flowing after 10 hrs in Btu
21 printf (" Heat flowing at a distance of 7/12 ft from
      surface is \%d Btu/hr\n",q);
22 printf(" Total heat flow after 10 hrs is %f Btu", %pi)
```

Scilab code Exa 4.4 Sudden change of temperature

```
ft
5 t = 20/60;
                                // Time elapsed in hr
                                // thermal diffusivity of
6 a = 0.31;
      steel in ft<sup>2</sup>/hr
7 \text{ Ti} = 80;
                                // Temperature of steel
      sphere initially in degF
                                // Temperature of surface
8 \text{ Ts} = 1200;
       suddenly changed in degF
9 s = 4*a*t/d^2;
                               // A parameter
10 // From table the value of F(s) can be known
11 Fs = 0.20;
12 Tc = Ts+(Ti-Ts)*Fs;
                               // Tempearture at the
      center of sphere in degF
13 printf("The tempearture at the center of steel
      sphere after 20 mins is %d degF", Tc);
```

Scilab code Exa 4.5 Periodic temperature change

```
1 clc();
2 clear;
3 // To estimate the time lag of temperature (sine)
      wave
4 t = 24;
                                     // Time period of
     tempearture wave in hr
                                     // Thermal
5 k = 0.6;
      conductivity of wall in Btu/hr-ft-degF
6 \text{ Cp} = 0.2;
                                     // Specific heat
      capacity of wall in Btu/lb-degF
7 y = 110;
                                     // specific gravity
     in lb/ft^3
8 x = 8/12;
                                     // Distance from
     surface in ft
9 a = k/(y*Cp);
                                      // Thermal
      diffusivity in ft<sup>2</sup>/hr
10 n=1/t;
                                     // frequency in /hr
```

```
11 delr = x/(2*sqrt(a*%pi*n);  // Time lag in hr
12 printf("Time lag of the temperature at a point 8 in from surface is %.1f hr", delr;
```

Scilab code Exa 4.6 Periodic change of surface temperature

```
1 clc();
2 clear;
4 // To calculate the range in temperatures at
      different depths
5 T1 = -15;
                                                  // Min
      temperature at surface in degF
6 T2 = 25;
                                                  // Max
      temperature at surface in degF
                                                  // time gap
7 t = 24;
      in hrs
                                                  // thermal
8 k=1.3;
      \verb|conductivity| in Btu/hr-ft-degF|
                                                  // heat
9 Cp = 0.4;
      capacity in lb/ft-degF
10 y = 126.1;
                                                  // specific
      gravity in lb/ft<sup>3</sup>
11 n=1/t;
                                                  // frequency
       in /hr
12 Tm = (T1 + T2)/2;
13 a=k/(y*Cp);
                                                  // thermal
      diffusivity in ft<sup>2</sup>
14
15 \times 1 = 2;
16 \times 2 = 6;
17 th0 = (T1-T2)/2;
18 th1=th0*-exp(-x1*sqrt(\%pi*n/a));
                                                  //
      temperature range at 2 ft depth
19 th2=th0*-exp(-x2*sqrt(\%pi*n/a));
                                                  //
```

```
temperature range at 6 ft depth
20 printf ("Amplitude of tempearture at 2ft deep is %.2f
       degF \setminus n", th1);
21 printf(" Amplitude of tempearture at 6ft deep is \%.2
      f = degF \setminus n", th2);
22 printf(" At a depth of 2ft, temperature varies from
       4.78 degF to 5.22 degF and at a depth of 6 ft,
      temperature remains constant at 5 degF");
23 delr1=x1/2*sqrt(1/(a*%pi*n));
                                             // time lag
      at 2 ft depth
24 delr2=x2/2*sqrt(1/(a*%pi*n));
                                             // time lag
      at 6 ft depth
25 printf(" Lag of temperature wave at a depth 2 ft is
     \%.1\,\mathrm{f} hr \n",delr1);
26 printf(" Lag of temperature wave at a depth 6 ft is
     \%.1 f hr \n", delr2);
```

Scilab code Exa 4.7 Periodic change of surface temperature

```
1 clc();
2 clear;
4 // To calculate the range in temoperatures at
      different depths
                                             // Min
5 T1 = 10;
      temperature at surface in degF
6 T2 = -10;
                                             // Max
      temperature at surface in degF
7 t1=24;
8 t2=5;
                                               Time gap
      in hrs
9 k=0.3;
                                             // Thermal
      conductivity in Btu/hr-ft-degF
10 Cp = 0.47;
                                             // Heat
      capacity in lb/ft-degF
```

```
// Specific
11 y = 100;
      gravity in lb/ft<sup>3</sup>
12 \text{ n1=1/t1};
                                               // Frequency
      in /hr
13 Tm = (T1+T2)/2; a=k/(y*Cp);
                                               // thermal
      diffusivity in ft<sup>2</sup>
14 n=1/t1;
                                               // Frequency
      in /sec
15 \times 1 = 1;
16 \times 2 = 1;
                                               // Depth in
      ft
17 th0=(T1-T2)/2; th1=th0*exp(-x1*sqrt(%pi*n/a));
             // temperature range at 2 ft depth
18 th2=th0*exp(-x2*sqrt(\%pi*n/a));
      Temperature range at 6 ft depth
19 printf ("Amplitude of tempearture at 2ft deep is %.2f
       degF \setminus n", th1);
20 delr1=x1/2*sqrt(1/(a*%pi*n));
                                              // Time lag
      at 2 ft depth
21 printf (" Lag of temperature wave at a depth 2 ft is
     \%.1 f hr \n", delr1);
22
    // To calculate the temperature at a depth of 1 ft
       , 5 hr after the srface temperature reaches the
       minimum temperature
23
    r=3/(4*n);
                                               // Time at
       which minimum surface temperature occurs for the
        first time in hr
                                               // Time ar
24
    r1=r+5;
       which temperature is to be found out in degF
    th3=th0*exp(-x1*sqrt(%pi*n/a))*sin(2*%pi*r1
25
       /24-4.53);
    Tr = Tm + th3;
26
       Temperature to be found out in degF
    printf(" The temperaure at 1 ft depth is %.2f degF
27
       \n", Tr);
```

Scilab code Exa 4.8 Unsteady state conduction

```
1 clc();
2 clear;
4 // to compute the temperatures at different points
                                         // thermal
5 a=0.02;
      diffusivity in ft<sup>2</sup>/hr
                                         // the value of
6 M=4;
     4 is selected for M
7 x=9/12:
                                         // thickness of
      wall in ft
8 \text{ delx}=1.5/12;
                                            // at time
9 delr=delx^2/(a*M);
      interval the heat transfeered will change the
      temperature of sink from tb2 to tb2o
10 printf("The time interval is to be of \%.3 f hr \n",
      delr);
11
12 t1o=370; t2o=435; t3o=480; t4o=485; t5o=440; t6o
      =360; t70=250;
13
14 // tempetaures at different positions at wall in
     degF initially
15 // we know qo=Z*delx*dely*rho*Cp(tb2'-tb2)/delr
     So on solving equations we get tb2'=(tb1+tb3+ta2+
      tc2)/4
16 // using above formula, temperaures at different
      positions as shown below can be calculated in
     degF
17
18 ta=[370 430 470 473 431 352 250];
19 tb=[370 425 461 462 422 346 250];
20 tc=[370 420 452 452 413 341 250];
```

Scilab code Exa 4.9 Unsteady state conduction

```
1 clc();
2 clear;
4 // to compute the temperatures at different points
                                          // thermal
6 a=0.53;
      diffusivity in ft<sup>2</sup>/hr
                                          // the value of
7 \quad M=4;
      4 is selected for M
8 x=6/12;
                                          // thickness of
      wall in ft
9 \text{ delx} = 2/12;
10 delr=delx^2/(a*M);
                                          // at time
      interval the heat transfeered will change the
      temperature of sink from tb2 to tb2o
11 printf("the time interval is to be of \%.3 f hr \n",
      delr);
12
13 // the temperature is constant in the whole wall
      initiallt 100 degF and afterwards it changes to
      1000 \, \text{degF}.
14 // we know qo=Z*delx*dely*rho*Cp(tb2'-tb2)/delr
      So on solving equations we get tb2'=(tb1+tb3+ta2+
      tc2)/4
15 // Using above formula we can calculate the
```

different temperatures as given below in degF

Chapter 5

Steady state heat conduction in bodies with heat sources

Scilab code Exa 5.1 Maximum temperature in coil

```
1 clc();
2 clear:
4 // to calculate the maximum temperature inside the
      coil when current was 2.5 amp
5 // the ratio of radii 12/13.5 is so great that the
      curvature may be neglected
7 Di= 10/12;
                                                       //
     inside diameter of the coil in ft
8 x = 7/48;
                                                       //
      thickness of coil in ft
9 \text{ ts} = 70.5;
                                                       //
      Initial temp. of coil in degF
10 Rm = 12.1;
                                                       //
      Resistance of coil
                                                       //
11 e=0.0024;
      Temperature coefficient of coil in degF
12 i = 0.009;
                                                       //
```

Scilab code Exa 5.2 Temperare distribution in solid cylinder

```
1 clc();
2 clear;
4 // to find tempearture difference between inner and
      outer surface
                                                  // radius
5 r = 1/4;
       in inches
6 \text{ to} = 300;
                                                  // outer
      surface temperature of cylinder in degF
7 q0=10;
                                                  // i2r
      heat loss in Btu-in^2/hr
      thermal conductivity of the material in Btu/hr-ft
      -\mathrm{deg}F
9 tc=to+(q0*r*r)*12 /(4*k);
                                                  //
      temperature at center
10 delt=tc-to;
11 printf ("The temperature difference between center and
       outer surface is %.2f degF", delt);
```

```
12
13 // to find heat flow from outer surface
14
15 // Total energy within the cylinder must be
      transferred to as heat to outer surface
16
17 v=%pi*r^2;
                                                 // Volume
       of heatinf element in in 3
18 q1 = q0 * v;
                                                 // heat
      flow to outer surface in Btu/sec
19 tr = -q1*r/(2*k);
                                                 //
      derivative of temperature wrt radius
20 q = q1 * 12;
                                        // Heat flow at
      the outer surfae in Btu/hr-ft
21 printf("\n Heat transfer per unit length at the
      outer surface is %.1f Btu/hr",q);
```

Chapter 6

Introduction to the dimensional analysis of convection

Scilab code Exa 6.1 Reynolds concept of similarity

```
1 clc();
2 clear;
4 // To calculate the reynolds number
6 u=2.08/32.2;
      viscosity of water at 80degF in slug/ft-hr
                                               // density
7 rho=62.4/32.2;
      of water in slug/ft<sup>3</sup>
8 d=2/12;
                                               // inner
     diameter of tube in ft
9 v = 10;
                                               // average
      water velocity in ft/sec
10 Nre=d*v*rho*3600/u;
                                               // reynolds
      number
11 // 3600 is multiplies to convert sec into hrs
12 printf("Reynolds Number is %d", Nre);
```

Scilab code Exa 6.2 Reynolds number

```
1 clc();
2 clear;
4 // To calculate the reynolds number
6 u=2.08/32.16;
      viscosity of water at 80 degF in slug/ft-hr
7 m=965000/32.16;
                                               // mass
      velocity of water in slug/hr-ft
8 d=1/12;
                                               // inner
      diameter of tube in ft
9 Nre=m*d/u;
                                              //
     reynolds number
10
11 // 3600 is multiplies to convert sec into hrs
12 printf("Reynolds Number is %d", Nre);
```

Chapter 7

Heat transfer by free convection

Scilab code Exa 7.1 Heat transfer by vertical and horizontal surfaces

```
1 clc();
2 clear;
4 // To find the film coefficient for free convetion
      for a heated plate
6 \text{ tp=200};
                                                  //
      Temperature of heated plate in degF
                                                  //
      Temperature of air in degF
8 \text{ tf}=(\text{tp+ta})/2;
      Temperature of film in degF
                                                  //
  delt=tp-ta;
      Temperature difference in degF
10 \ Z = 950000;
      referred from the chart for corresponding
      temperature
                                                  // Height
11 L=18/12;
      of vertical plate in ft
```

Scilab code Exa 7.2 Heat transfer from horizontal surface

```
1 clc();
2 clear;
4 // To find the film coefficient for natural
      convetion for a heated square plate
6 \text{ tp}=300;
                                                    //
      Temperature of heated plate in degF
7 ta=80;
                                                    //
      Temperature of air in degF
8 \text{ tf=(tp+ta)/2};
      Temperature of film in degF
  delt=tp-ta;
                                                    //
      Temperature difference in degF
10 \quad Z = 610000;
                                                    // As
      referred from the chart for corresponding
      temperature
11 L=7/12;
                                                   // Height
       of vertical plate in ft
                                                   // Area
12 A=L*L;
      of square plate in ft<sup>2</sup>
13 X=L^3*(delt)*Z;
14
```

Scilab code Exa 7.3 Heat transfer from horizontal cylinders

```
1 clc();
2 clear;
3 // To calculate heat loss by natural convection in a
       horizontal nominal steam pipe
5 D=0.375;
                                                   // Outer
      diameter in ft
                                                   // Pipe
6 T1 = 200;
      surface temperature in degF
                                                   // Air
  T2 = 70;
      temperature in degF
                                                   // Film
8 \text{ Tf} = (T1+T2)/2;
      temperature at whih physical properties is to be
      measured
9 \text{ delT}=T1-T2;
10 rho=0.0667/32.2;
      Density in slug/ft<sup>3</sup>
11 u=0.0482/32.2;
      Viscosity in slug/ft-hr
12 b=1/(460+T2);
```

```
// Heat
13 Cp=0.241*32.2;
      capacity in Btu/slug-ft
14 // The value of specific heat is related to 1 lb
     mass so it must be multiplied to 32.2 to convert
     it into slugs
15 \text{ k=0.0164};
     Thermal conductivity in Btu/hr-ft-degF
16 g=32.2*3600;
17 // Unit of time used is hour so it must be converted
       to sec. Hence 3600 is multiplied
18 Ngr=D^3*rho^2*b*g*delT/(u^3);
                                                 //
      Grasshops number
19 Npr=u*Cp/k;
                                                 //
      Prandtls number
20 A = log(Ngr*Npr);
21
22 // Tha value of A is 6.866
23 // Now seeing the value of nusselt number from the
      table
24
25 Nnu=25.2;
      Nusselt number
                                                 // Heat
26 h=Nnu*k/D;
      transfer coefficient
27 q=h*delT;
                                                 // Heat
      loss per unit area in Btu/hr
28
29 printf ("Heat loss per unit square foot is %d Btu/hr-
      ft^2,q);
```

Scilab code Exa 7.4 Heat transfer from horizontal cylinders

```
1 clc();
2 clear;
3
```

```
4 // To find the film coefficient for natural
      convetion for a heated square plate
6 \text{ tp=200};
                                                 //
      Temperature of heated plate in degF
      Temperature of air in degF
8 \text{ tf=(tp+ta)/2};
      Temperature of film in degF
  delt=tp-ta;
      Temperature difference in degF
10 \quad Z = 910000;
                                                 // As
      referred from the chart for corresponding
      temperature
11 D=4.5/12;
      Diameter of pipe in ft
12 X=D^3*(delt)*Z;
13 // This value lies between X=1000 to X=10^9, so
      formula for heat transfer coefficient is as
      follow
14
15 h=0.27*(delt/D)^(1/4);
      Temperature coefficient in Btu/hr-ft^2-degF
                                                  // Heat
16 \text{ q=h*delt};
      loss in Btu/hr
17
18 printf ("The film coefficient for free convetion for
      the heated plate is %.2f Btu/hr-ft^2-degF",h);
19 printf("\n The heat loss by natural convection from
      the square plateis %d Btu/hr",q);
```

Heat transfer by forced convection

Scilab code Exa 8.1 Heating of fluids in turbulent flow

```
1 clc();
2 clear;
4 // To calculate the average film coefficient of heat
       transfer
6 D=0.0752;
                                                // Outer
      diameter in ft
                                                // Pipe
7 T1 = 61.4;
      surface temperature in degF
                                                // Air
8 T2 = 69.9;
      temperature in degF
                                                // Film
  Tf = (T1+T2)/2;
      temperature at whih physical properties is to be
      measured
10 \text{ delT=T1-T2};
                                                // Density
11 rho=1.94;
      in slug/ft<sup>3</sup>, 62.3/32.2
                                                // viscosity
12 u=0.0780;
```

```
in slug/ft-hr , 2.51/32.2
13 Cp=1*32.2;
                                              // heat
      capacity in Btu/slug-ft
14 k=0.340;
                                              // thermal
      conductivity in Btu/hr-ft-degF
15 v = 7 * 3600;
                                              // velocity
     in ft/sec
16
17 Nre=D*v*rho/u;
                                              // Reynolds
     number
                                              // Prandtls
18 Npr=u*Cp/k;
     number
19 Nnu=0.023*Nre^.8*Npr^.4;
20 h=Nnu*k/D;
                                              // heat
      transfer coefficient
21 printf("The average film coefficient of heat
      transfer is %.d Btu/hr-ft^2-degF",h);
```

Scilab code Exa 8.3 The heating of fluids flowing normal to tubes

Heat transfer by the combined effect of conduction and convection

Scilab code Exa 9.1 Heat transfer from a rod

```
1 clc();
2 clear;
4 // To find the temperature at the free end is made
      of copper iron and glass
6 D = 3/48;
                                              // diameter
      in ft
7 L = 9/12;
                                              // Length
      of steam vessel in ft
                                              // Vessel
8 T1 = 210;
     temperature in degF
                                              // Air
9 T2 = 80;
     temperature in degF
10 th0 = T1-T2;
     Temperature difference in degF
11 h = 1.44;
                                              // Assumed
```

```
heat coefficient in Btu/hr-ft^2-degF
12 C = \%pi*D;
      Circumference of vessel in ft
                                                    // Area of
13 A = \%pi*D*D/4;
      vessel in ft<sup>2</sup>
14
15 // For copper
                                                    // Heat
16 k1 = 219;
      conductivity of copper in Btu/hr-ft-degF
17 m1 = sqrt(h*C/(k1*A));
                                                    // in
                                                           /ft
18 th1 = th0*2/(\exp(m1*L) + \exp(-m1*L));
19 Tl1 = round(th1+T2);
                                                    // The
      temperaure at the free end in degF
20 printf ("Temperature at free end of the copper rod is
       %d \deg F \setminus n", Tl1);
21
22 // For iron
23 \text{ k2} = 36;
                                                    // heat
      conductivity of copper in Btu/hr-ft-degF
24 \text{ m2} = \text{sqrt}(h*C/(k2*A));
                                                    // in /ft
25 th2 = th0*2/(\exp(m2*L)+\exp(-m2*L));
                                                    // The
26 \text{ T12} = \text{th2+T2};
      temperaure at the free end in degF
27 printf ("Temperature at free end of the iron rod is
      \%.2 f \operatorname{degF} \n",T12);
28
29 // For glass
30 \text{ k3} = 0.64;
                                                     // Heat
      conductivity of copper in Btu/hr-ft-degF
31 \quad m3 = sqrt(h*C/(k3*A));
                                                     // in /ft
32 \text{ th3} = \text{th0}*2/(\exp(m3*L) + \exp(-m3*L));
33 \text{ T13} = \text{th3+T2};
                                                     // The
      temperaure at the free end in degF
34 printf(" Temperature at free end of the glass rod is
       \%.2 f degF \n",T13);
```

Scilab code Exa 9.2 Heat transfer from a rod

```
1 clc();
2 clear;
4 // To find the temperature at the free end is made
      of copper iron and glass
5
6 D = 3/48;
                                               // diameter
      in ft
7 L = 9/12;
                                               // Length
      of steam vessel in ft
8 T1 = 210;
                                               // Vessel
      temperature in degF
9 T2 = 80;
                                               // Air
      temperature in degF
10 \text{ th0} = T1-T2;
      Temperature difference in degF
11 h = 1.44;
                                               // Assumed
     heat coefficient in Btu/hr-ft^2-degF
12 C = \%pi*D;
      Circumference of vessel in ft
13 A = \%pi*D*D/4;
                                               // Area of
      vessel in ft<sup>2</sup>
14
15 k = 36;
                                               // heat
      conductivity of copper in Btu/hr-ft-degF
16 m = sqrt(h*C/(k*A));
                                               // in /ft
17 q=k*A*m*th0*(exp(m*L)-exp(-m*L))/(exp(m*L)+exp(-m*L))
      );
18 // Heat loss by iron rod in Btu/hr
19 printf ("The rate of heat loss by iron rod is %.d Btu
     /hr",q);
```

Scilab code Exa 9.3 Heat transmision through a plane wall

```
1 clc();
2 clear;
4 // To calculate the heat transfer coefficient
6 x = 3/96;
                                              Thickness
     of plate in ft
7 k = 220;
                                           // thermal
     conductivity in Btu/hr-ft-degF
8 \text{ h1} = 480;
                                           // Inner film
      coefficient in Btu/hr-ft^2-degF
9 h2 = 1250;
                                           // Outer film
      coefficient in Btu/hr-ft^2-degF
10 U = 1/((1/h1)+(x/k)+(1/h2));
                                           // Overall
     heat transer coeeficient in Btu-hr-ft^2-degF
11 printf("Overall heat transfer coefficient is %d Btu/
     hr-ft^2-degF",U);
```

Scilab code Exa 9.4 Heat transfer through a cylinder wall

```
// Outer
8 r1 = r2-x;
      radius in ft
9 k = 200;
                                            // thermal
      conductivity in Btu/hr-ft-degF
10 \text{ h1} = 280;
                                            // Inner film
      coefficient in Btu/hr-ft^2-degF
                                            // Outer film
11 h2 = 2000;
      coefficient in Btu/hr-ft^2-degF
12 U = 1/((r2/(h1*r1))+(r2*log(r2/r1)/k)+(1/h2));
              // Overall heat transer coeeficient in
      Btu-hr-ft<sup>2</sup>-degF
13 printf("Overall heat transfer coefficient is %d Btu/
      hr-ft^2-degF",U);
```

Scilab code Exa 9.5 LMTD

```
1 clc();
2 clear;
4 // To calculate LMTD for heat exchanger
6 \text{ Tc1} = 120;
                                                     // Inlet
       cold fluid temperature in degF
  Tc2 = 310;
      Outlet cold fluid temperature in degF
8 \text{ Th1} = 500;
                                                     // Inlet
       hot fluid temperature in degF
  Th2 = 400;
      Outlet hot fluid temperature in degF
10 \text{ delt1} = \text{Th2-Tc1};
      Maximum temperature difference in degF
11 \text{ delt2} = \text{Th1-Tc2};
                                                     //
      Minimum temperature difference in degF
12 LMTD = (delt1-delt2)/log(delt1/delt2);
                                                     // Log
      mean temperature difference
```

13 printf("The log mean temperature difference is %d degF", LMTD)

Scilab code Exa 9.6 LMTD through graphs

```
1 clc();
2 clear;
4 // To calculate temperature difference for heat
      exchanger
6 \text{ Tc1} = 120;
                                                  // Inlet
       cold fluid temperature in degF
  Tc2 = 310;
      Outlet cold fluid temperature in degF
  Th1 = 500;
                                                  // Inlet
       hot fluid temperature in degF
  Th2 = 400;
      Outlet hot fluid temperature in degF
10 K = (Tc2-Tc1)/(Th2-Tc2);
     Temperature ratio
11 R = (Th1-Th2)/(Tc2-Tc1);
      Temperature ratio
12 \text{ delt1} = \text{Th2-Tc1};
     Maximum temperature difference in degF
13 \text{ delt2} = Th1-Tc2;
      Minimum temperature difference in degF
14 LMTD = (delt1-delt2)/log(delt1/delt2);
                                                  // Log
     mean temperature difference
15 f = 0.99;
      Correction factor as seen from figure
16 LMTDc = round(LMTD*f);
                                                  //
      Corrected log mean temperature difference
17 printf("Log mean temperature difference is %d degF",
      LMTDc);
```

Scilab code Exa 9.7 Calculation for heat exchanger design

```
1 clc();
2 clear;
3 // To calculate the outside tube area for a single-
      pass steam condenser
5 Do=1/12;
                                             // Outside
      diameter of the condenser in ft
6 Di=0.902/12;
                                             // Outside
      diameter of the condenser in ft
                                             // Steam
  Ts = 81.7;
      temperature in degF
  Tw1 = 61.4;
                                             // Water
      inlet temperature in degF
  Tw2 = 69.9;
                                             // Water
      outlet temperature in degF
                                             // Thermal
10 \text{ k=63};
      conductivity in Btu/hr-ft-degF
                                             // average
11 v = 7;
      velocity in ft/sec
                                             // water side
12 h1=1270;
       film coefficient i Btu/hr-ft^2-degF
                                             // Steam side
13 h2 = 1000;
       film coefficient in Btu/hr-ft^2-degF
14
15 U=1/((Do/(Di*h1))+(Do*log(Do/Di)/(2*k))+(1/h2));
          // Heat transfer coefficient
16 LMTD=((Ts-Tw1)-(Ts-Tw2))/log((Ts-Tw1)/(Ts-Tw2));
     // Log mean temperature diff.
17 m = 731300;
      // Saturated steam to be handled in lb/hr
18 L = 1097.4 - 49.7;
      // Change in enthalpy in Btu/lb
```

```
19 q=m*L;
    // Heat required in Btu/hr
20 A=q/(U*LMTD);
    // Area of condenser in ft^2
21 printf("The area of steam condenser is %d ft^2",A);
```

Scilab code Exa 9.8 Heat exchanger design

```
1 clc();
2 clear;
4 // To calculate overall heat transfer coefficient
      for heat exchanger
6 \text{ Tc1} = 139.7;
      Inlet cold fluid temperature in degF
  Tc2 = 59.5;
      Outlet cold fluid temperature in degF
  Th1 = 108.7;
      Inlet hot fluid temperature in degF
  Th2 = 97.2;
                                                      //
      Outlet hot fluid temperature in degF
10 \text{ delt1} = \text{Tc1-Th2};
                                                // Maximum
      temperature difference in degF
11 \text{ delt2} = Th1-Tc2;
                                                // Minimum
      temperature difference in degF
12 LMTD = round((delt1-delt2)/log(delt1/delt2));
13 printf(" \n The log mean temperature difference is
      \%d \deg F", LMTD);
14
                                               // Flow rate
15 m = 18210;
       through tubes
16 q = m*(Th2-Tc2);
                                               // Heat loss
       in Btu/hr
                                               // Area in
17 A = 48.1;
```

```
ft<sup>2</sup>
                                                  // Overall
18 U = q/(A*LMTD);
      heat transfer coefficient
19 printf(" \n The overall heat transfer coefficient is
       %d Btu/hr-ft^2-degF \n",U);
20
21
  // To calculte using equations estabilished by
      correlation
  Ts = 113;
                                                  // Average
      tube temperature in degF
24 \text{ Tf} = (123.9 + \text{Ts})/2;
                                                  // Film
      temperature in degF
25 // At this temperature thermal properties are
      considered
26 \text{ p1} = 61.7/32.2;
                                                        //
      Density in slug/ft<sup>3</sup>
  u1 = 1.38/32.2;
      Viscosity in slug/ft-hr
                                                        // Btu/
  Cp1 = 1*32.2;
      slug/ft
29 \text{ k1} = 0.366;
      Thermal conductivity in Btu/hr-ft-degF
30 D1 = 0.375/12;
      Diameter in ft
31 \text{ v1} = 7610;
      Velocity in ft/sec
32 \text{ Nre1} = v1*D1*p1/u1;
      Reynolds number
33 \text{ Npr1} = u1*Cp1/k1;
      Prandtls number
34 \text{ Nnu1} = 0.33*\text{Nre1}^0.6*\text{Npr1}^(1/3);
      Nusselt number
                                                        // Heat
  h1 = Nnu1*k1/D1;
       transfer coefficient
36 printf(" \n The outer heat transfer coefficient is
      \%d Btu/hr-ft^2-degF ",h1);
37
```

```
38 // Taking the thermal properties at 78.3 degF
39 p2 = 62.2/32.2;
      Density in slug/ft<sup>3</sup>
40 \text{ u2} = 2.13/32.2;
      Viscosity in slug/ft-hr
41 \text{ Cp2} = 1*32.2;
                                                    // Heat
       capacity in Btu/slug/ft
42 k2 = 0.348;
      Thermal conductivity in Btu/hr-ft-degF
  D2 = 0.277/12;
      Diameter in ft
44 v2 = 7140;
      Velocity in ft/sec
  Nre2 = v2*D2*p2/u2;
      Reynolds number
  Npr2 = u2*Cp2/k2;
      Prandtls number
  Nnu2 = 0.023*Nre2^0.8*Npr2^(0.4);
      Nusselt number
  h2 = Nnu2*k2/D2;
                                                    // Heat
       transfer coefficient
  printf(" \n The inner heat transfer coefficient is
      \%d Btu/hr-ft^2-degF",h2);
50
51 k3 = 58;
52 \text{ U1} = 1/((D1/(D2*h2))+(D1*log(D1/D2)/(2*k3))+(1/h1));
         // Heat transfer coefficient
53 printf(" \n The overall heat transfer coefficient
      accordind to estabilished correlation is %d Btu/
      hr-ft^2-degF \setminus n", U1);
```

Scilab code Exa 9.9 Heat exchanger effectiveness ratio

```
1 clc();
2 clear;
```

```
3
4 // To determine the value of product of overall heat
       transfer and the total area
5
6 To 1 = 140;
                                               // inlet
      temperature of oil in degF
  To2 = 90;
                                               // Outlet
      temperature of oil in degf
                                                  Specific
8 Cpo = 0.5;
      heat capacity in Btu/lb-degf
                                               // Inlet
  Tw1 = 60;
      tempearture of water in degF
10 \text{ Tw2=80};
                                               // Outlet
      temperature of water in degF
                                               // Mass flow
11 mo = 2000;
       rate of oil in lb/hr
12 q=mo*Cpo*(To1-To2);
                                               // Heat
      transferred in Btu/hr
                                               // Heat
13 Cpw = 1;
      capacity of water in Btu/hr
14 mw=q/(Cpw*(Tw2-Tw1));
                                               // Mass flow
       rate in lb/hr
                                               // Effective
15 E1 = (Tw1 - Tw2) / (Tw1 - To2);
       ratio
16
17 // Seeing the effective ratio and mass flow rate
      ratio, from the graph we get UA
18 UA = 1.15 * mo * Cpo;
19 printf ("The product of overall heat transfer and
      total area is %d Btu/hr-degF", UA);
```

Scilab code Exa 9.9b Heat transfer from wall in contact with a medium

```
1 clc();
2 clear;
```

```
4 // To calculate the temperature of surface and
      centre plane
5
6 t = 2;
                                                 Thickness
      of wall in ft
  To = 100;
                                                 Initial
      temperature of wall in degF
8 \text{ Tg} = 1000;
                                                 Temperature
       of hot gases exposed in degF
9 k=8;
                                                 Thermal
      conductivity in Btu/hr-ft-degF
10 p = 162;
                                                 density in
      lb/ft^-3
                                              // Heat
11 Cp=0.3;
      capacity in Btu/lb-degF
                                              // Heat
12 h=1.6;
      transfer coefficient in Btu/hr-ft^-2-degF
13 a=k/(p*Cp);
                                              // Thermal
      diffusivity
14
  // Considering the values of a and 4at/L^2 and h1/2k
     , the value of Phis, Phic and Si can be obtained
16 Phis = 0.37;
17 Phic=0.41;
18 Si = 0.62;
19
20 \text{ Ta=Tg+(To-Tg)*Phis};
                                              // Temperature
       of surface in degF
21 printf ("The temperature of surface is \%d degF \setminusn ",
      Ta);
22 \text{ Tc=Tg+(To-Tg)*Phic};
                                              // Temperature
       of center plane in degF
23 printf ("The temperature of surface is \% d \deg F \setminus n",
      Tc);
24 \quad A = 10;
                                               // area of
      wall through which heat is absorbed
25 q=p*Cp*t*A*Si*(To-Tg);
                                               // Heat
```

```
absorbed in Btu/hr
26 printf("The heat absorbed by wall is %d Btu",q);
```

Scilab code Exa 9.10 Heat exchanger effectiveness ratio

```
1 clc();
2 clear;
4 // To calculate the terminal temperature of oil and
      water
                                               // inlet
6 To1=160;
      temperature of oil in degF
7 Cpo = 0.5;
                                               // Specific
      heat capacity in Btu/lb-degf
                                               // Inlet
  Tw1 = 60;
      temperature of water in degF
                                               // Mass flow
9 \text{ mo} = 1000;
      rate of oil in lb/hr
                                               // Mass flow
10 \text{ mw} = 2500;
      rate of water in lb/hr
11 Cpw=1;
                                               // Heat
      capacity of water in Btu/hr
12 X=mo*Cpo/(mw*Cpw);
                                               // Ratio of
      flow rates
13 UA = 1.15 * mo * Cpo;
14 B=UA/mo*Cpo;
15
16 // from the graph, we can locate the point of A and
      B And corresponding effectiveness ratio
17 E=0.86;
      Effectiveness ratio
18 To2 = To1 - E*(To1 - Tw1);
                                               // Outlet
      temperature of oil in degF
19 printf ("The outlet temperature of oil is \%d \deg F \setminus n"
```

Scilab code Exa 9.11 Combined conduction and convection

```
1 clc();
2 clear;
4 // To compute the temprature distribution
                                                 // Heat
5 h=1;
      transfer coefficient in Btu/hr-ft^2-degF
6 x = 1;
     Assumed thickness in ft
7 k=1:
     Thermal conductivity in Btu/hr-ft-degF
8 \text{ N=h*x/k};
9 t0=600;
10 t4 = 200;
11 t1=[500 550 550 525 525 512.5 512.5 512.5 506.2
      506.2 506.2 506.2 503.1 503.1];
12 t2=[450 450 450 450 425 425 425 412.5 412.5 412.5
      406.3 406.3 406.3 403.1];
13 t3=[350 350 325 325 325 325 312.5 312.5 312.5 306.3
      306.3 303.1 303.1 303.1];
14
15 // Assumed temperatures in degF for points 1 2 & 3
      respectively
16 for i=1:14
17 th1(i)=t0+t2(i)-2*t1(i);
```

```
18 th2(i)=t1(i)+t3(i)-2*t2(i);
19 th3(i)=t2(i)+t4-2*t3(i);
20 printf("Assuming t1=%.1f degF t2=%.1fdegF t3=%.1
        fdegF \n th1=%.1fdegF th2=%.1fdegF th3=%.1fdegF
        \n",t1(i),t2(i),t3(i),th1(i),th2(i),th3(i));
21 end
22 printf("This way assumption must be continued till all sink strengths are zero");
```

Heat transfer in condensing and boiling

Scilab code Exa 10.1 Condensation

```
1 clc();
2 clear;
4 // To determne the heat transfer coefficient for
     steam
5 y=1.9;
                                                  //
     Density in slug/ft^-2
6 u=0.0354;
      Viscosity in slug/ft-hr
7 k=0.376;
                                                  //
     Thermal conductivity in Btu/hr-ft-degF
8 1 = 32600;
                                                  // Heat
      of condensation in Btu/slug
9 Tg=142;
                                                  //
      Temperature of steam in degF
10 Tw = 138;
     Temperature of wall in degF
11 delT=Tg-Tw;
                                                  //
     Temperature driving force in degF
```

Heat transfer by radiation

Scilab code Exa 11.1 Heat excannge between black planes

Scilab code Exa 11.2 Heat exchange between floor and roof

```
1 clc()
2 // To calculate the net radiant interchange between
      floor and roof of a furnace
3
4
5 A1=15*15;
                                                // Area of
      floor in ft<sup>2</sup>
                                                // Area of
6 \text{ A2=A1};
      roof in ft^2
  T1 = 2460/100;
      Temperature of floor in degR
  T2=1060/100;
                                                //
      temperature of roof in degR
                                                // Stephan
9 s = 0.174;
      Boltzman's constant
10 // S/L=1.5, So considering graph F12=0.31
11
12 F12=0.31;
13 q=s*F12*A1*(T1^4-T2^4);
14 printf ("The net radiant interchange between two
      bodies of unit area is %d Btu/hr-ft^2",q);
```

Scilab code Exa 11.3 Heat exchange between perpendicular surfaces

```
// Stephan
8 s = 0.174;
     Boltzman's constant
9 T1 = 1000;
      Temperature of floor in degF
10 T2 = 500;
                                              //
      Temperature of wall in degF
                                              // Ratios
11 Y = y / x;
12 \quad Z=z/x;
13
14 // Seeing the graph, F12 could be found out
15 F12=0.165;
16 q12=s*F12*A1*((((T1+460)/100)^4)-((T2+460)/100)^4);
       // Radiant interchange
17 printf ("The net radiant interchange between two
      bodies of unit area is %d Btu/hr-ft^2",q12);
```

Scilab code Exa 11.4 Heat exchange between irradiating surfaces

```
1 clc();
2 clear;
3 // To calculate the radiant interchange between two
     black discs
5 D=10/12;
                                                 //
     Diameter of black disc
6 L=5/12;
      Distance between two discs
7 T1 = (1500 + 460) / 100;
     Temperature of disc 1 in degR
8 T2 = (1000 + 460) / 100;
      Temperature of disc 2 in degR
  // From the ratio of S/L, the value of F1r2 can be
     found out
10 F1r2=0.669;
                                                 // Shape
     factor
```

Scilab code Exa 11.5 heat excange between large planes of different emissivity

```
1 clc();
2 clear;
3 // To calculate the net radiant interchange between
     two parallel black discs
4
5 T1 = (1500 + 460) / 100;
                                                  //
      Temperature of plane 1 in degR
6 T2 = (1000 + 460) / 100;
      Temperature of plane 2 in degR
7 e1=0.8;
                                                  //
      Emmisivity for higher temperature
8 e2=0.6;
      Emmisivity for lower temperature
9 s = 0.174;
      Stephan Boltzman's constant
10 D=10/12;
      Diameter of disc in ft
11 A = \%pi/4*D^2;
                                                  // Area
      of disc in ft<sup>2</sup>
12 F1r2=0.669;
13 F1r2g=1/((1/F1r2)+(1/e1)+(1/e2)-2);
                                                  // Shape
```

Scilab code Exa 11.6 Heat exchange between two non black bodies

```
1 clc();
2 clear;
3
4 // To calculate the net radiant interchange between
     two parallel planes
6 T1 = 1460/100;
     Temperature of first black plane in degK
  T2=1060/100;
     temperature of second black plane in degK
  s = 0.174;
                                             // Stephan
     Boltzman's constant
  e1=0.9;
     Emmisivity for higher temperature
10 e2=0.7;
     Emmisivity for higher temperature
11 F1r2=1/((1/e1)+(1/e2)-1);
                                             // Shape
     factor
12
13 q=s*F1r2*(T1^4-T2^4);
14 printf("The net radiant interchange between two
     bodies of unit area is %d Btu/hr-ft^2",q);
```

Scilab code Exa 11.7 Heat exchange in an enclosure

```
1 clc();
2 clear;
4 // To calculate the net radiant interchange per foot
      length of pipe of 2 in. standard diameter
6 e = 0.8;
                                               //
      emmisivity of pipe metal
7 D=2.375/12;
                                               // Diameter
       of pipe in ft
                                               // Stephans
8 s = 0.174;
      Boltzman's constant
9 T1 = (300 + 460) / 100;
      Temperature of disc 1 in degF
10 T2 = (80 + 460) / 100;
      Temperature of disc 2 in degF
11 A1=%pi*D;
                                               // Area of
     one foot of pipe in ft^2
12 q12=s*e*A1*((T1^4)-(T2^4));
                                               // Radiant
      interchange in Btu/hr
13 printf ("The net radiant interchange per foot length
      of pipe is \%.1 \, f Btu/hr-ft",q12);
```

Heat transfer by the combined effect of conduction convection and radiation

Scilab code Exa 12.1 Heat losses from insulated horizontal table

```
1 clc();
2 clear;
4 // To calculate the heat loss per linear foot from a
      4-in. (out-side diameter=4.5 in.) nominal
      horizontal steel pipe covered with 1 in.of
      insulation
6 D=4.5/12;
                                                    //
      Outer diameter of pipe in ft
                                                    //
7 D2=6.5/12;
     Outer diameter of insulation in ft
8 k=0.035;
                                                    //
     Thermal conductivity in Btu/hr-ft-degF
9 T1 = 400;
                                                    //
     Temperature of pipe in degF
10 \quad T3 = 70;
                                                    //
```

```
Temperature of air in degF
                                                     //
11 T2 = 120;
      Assumed temperature in degF
12 h=2*k*(T1-T2)/(D2*(T2-T3)*log(D2/D));
                                                     // Sum
       of coefficient of convection and radiation
13 \text{ delT}=T2-T3;
      Temperature difference in degF
14 T2 = 120;
                                                     //
      Assumed temperature in degF
15 printf ("The assumption of T2=120 comes out to be
      satisfactory and hc+hr=\%.1 f \ n \ ",h);
16 q=h*\%pi*D2*delT;
                                                     //
      Heat loss in Btu/hr
17 printf ("The heat loss per unit foot of pipe is %d
     Btu/hr-ft",q);
```

Scilab code Exa 12.2 Heat loss from bare tubes

```
1 clc();
2 clear;
4 // To calculate the heat loss per square foot from
     an uninsulated 2 inch sch. pipe
6 D=2.375/12;
                                                       //
      Outer diameter of pipe in ft
7 k=0.035;
     Thermal conductivity in Btu/hr-ft-degF
8 T1 = 400;
      Temperature of pipe in degF
9 T2 = 70;
     Temperature of air in degF
10 \text{ delT}=T1-T2;
      Temperature difference in degF
11 T2=120;
```

```
Assumed temperature in degF

12 h=3.67;

13 // As seen from the table , for delT=330. the value of hc+hr=3.67

14 q=h*delT; // Heat loss in Btu/hr

15 printf("The heat loss per square foot of pipe is %d Btu/hr-ft",q);
```

Heat transfer in temperature measurements

Scilab code Exa 14.1 Influence of convection and radiation

```
1 clc();
2 clear;
4 // To calculate the true gas temperature
6 D1 = 36/12;
      diameter of circular duct in ft
7 D2=5/96;
      diameter of tube in ft
  T1=800;
      Temperature of tube in degF
9 To = 500;
     Temperature of duct in degF
10 k=0.02;
      Thermal conductivity in lb/ft^-2-hr
11 u=0.18*(10^-9)*(3600^2);
      Viscosity in slug/ft-hr
12 p=0.04/32.2;
     Density in slug/ft<sup>3</sup>
```

```
13 n=u/p;
                                                 //
     Kinematic viscosity in ft^2/hr
14 v=15*3600;
     Velocity in ft/hr
15 e=0.8;
     Emmisivity
16 Nre=v*D2/n;
     Reynolds number
17 Nnu=0.3*(Nre^0.57);
     Nusselt number
18 h=Nnu*k/D2;
                                                 // Heat
      transfer coefficient
19 Tg=Tl+0.174*e*((((Tl+460)/100)^4)-((To+460)/100)^4)/
     h; // Gas temperature in degF
20 printf("The temperature of gas is %d degF", Tg);
```

Heat transfer and fluid friction

Scilab code Exa 15.1 Reynolds Analogy

```
1 clc();
2 clear;
4 // To calculate the pressure drop, heat loss per
      hour and fil coefficient of heat transfer
6 \text{ Tm} = 70;
                                                 // Average
       air temperature in degF
  Tw = 60;
                                                 // Pipe
      wall temperature in degF
                                                 // Mean
8 \quad thm = Tm - Tw;
      temperature difference in degF
9 // Thm is so small that the fluid properties may be
      based on 70 degF
10
                                                 //
11 v = 30;
      Velocity in ft/sec
                                                 // Length
12 L=1000;
      of pipe
13 D=3/12;
                                                 //
      Diameter in ft
```

```
//
14 y = 0.15;
      Specific weight in lb/ft<sup>3</sup>
15 p=0.15/32.2;
                                                    // Density
       in slug/ft<sup>3</sup>
16 \quad u = 0.00137;
                                                    //
      Viscosity in slug/ft/hr
17 Nre=v*3600*D*p/u;
                                                          //
      Reynolds number
18 f=0.08/(Nre)^.25;
                                                    // Nusselt
       number
19 delp=2*f*L*p*(v^2)/D;
                                                    //
      Pressure drop in lb/sq.in
20 printf("The pressure drop is \%d lb/sq.ft \n", delp);
21
22
23 \text{ cp=0.24*32.2};
                                                    //
      Specific heat capacity in slug/degF
                                                    // Heat
24 \text{ Cp=0.24*0.15};
      capacity in Btu/ft<sup>3</sup>-degF
25 \text{ k=0.0148};
                                                    // Thermal
       conductivity in Btu/ft-hr-degF
26 \text{ Npr=u*cp/k};
      Prandtls number
27 phi=sqrt(Npr)/(1+(750*sqrt(Npr)/Nre)+7.5*(Npr^0.25)/
      sqrt(Nre));
28 A = \%pi * L * D;
                                                    // Area in
       ft<sup>2</sup>
29 q=phi*f*Cp*A*v*thm*3600/(2*Npr);
                                                    // Heat
      loss in Btu/hr
30 printf("Heat loss per hour of air is %f Btu/hr \n ",
      phi);
31 h=q/(A*thm);
                                                   // Film
      coefficient
32 printf ("The film coefficient of heat transfer on the
       inner pipe wall is %.1f Btu/hr-ft^2-degF",h);
```

Mass transfer

Scilab code Exa 16.1 Diffusion coefficient

```
1 clc();
2 clear;
4 // To compute the diffusion coefficient for water
      vapour in air
  T=25+273;
                                        // Temperature in
      degK
                                        // Pressure in atm
7 p=1;
8 Va=18.9;
                                        // Molecular volume
       of water vapour in cm<sup>3</sup>/gm-mol
                                        // Molecular volume
9 Vb = 29.9;
       of air in cm<sup>3</sup>/gm-mol
                                        // Molecular weight
10 \text{ Ma} = 18;
       of water vapour in gm/mol
                                        // Molecular weight
11 Mb = 29;
       of air in gm/mol
12 Dab=0.0043*(T^1.5)*sqrt((1/Ma)+(1/Mb))/(p*(Va^(1/3)+
      Vb^(1/3))^2);
13 printf("The diffusion coefficient is %.3 f cm^3/sec"
      ,Dab);
```

Scilab code Exa 16.2 Diffusion coefficient

```
1 clc();
2 clear;
4 // To compute the diffusion coefficient for benzene
      in air
                                         // Temperature in
6 T=25+273;
      degK
7 p=1;
                                            Pressure in atm
8 \text{ Va} = 96;
                                            Molecular volume
       of benzene in cm<sup>3</sup>/gm-mol
9 \text{ Vb} = 29.9;
                                         // Molecular volume
       of air in cm<sup>3</sup>/gm-mol
                                         // Molecular weight
10 Ma = 78;
       of benzene in gm/mol
                                         // Molecular weight
11 Mb = 29;
       of air in gm/mol
12 Dab=0.0043*(T^1.5)*sqrt((1/Ma)+(1/Mb))/(p*(Va^(1/3)+
      Vb^(1/3))^2);
13 printf ("The diffusion coefficient is %.3 f cm^3/sec"
      ,Dab);
```

Scilab code Exa 12.3 Diffusion of one gas into another stagnant gas

```
1 clc();
2 clear;
3
4 // To compute the ammonia diffusing through the stagnant air
```

```
5
6 x=0.1/12;
                                            // thickness of
       still air layer in ft
7 T = 77 + 460;
                                            // temperature
      in degR
8 p=1;
                                            // Atmospheric
      pressure in atm
                                            // Pressure of
9 \text{ pa1} = 0.3;
      ammonia in still air in atm
                                            // pressure of
10 pb1=p-pa1;
      air in atm
                                            // pressure of
11 pa2=0;
      ammonia in the absorption plane
12 pb2=p-pa2;
                                            // pressure of
      air in absorption plane
13 pbm = (pb2 - pb1) / (log(pb2/pb1));
                                              //
      Logarithmic mean pressure
14 D=0.914;
                                            // Diffusion
      coefficient for ammonia
15 R=0.729;
                                            // Gas constant
       in ft<sup>3</sup>-atm/lb-mole-degR
16 N=D*p*(pa1-pa2)/(R*T*x*pbm);
17 printf ("The amount of ammonia diffusing through the
      stagnant air is %.1 f lb-mol/hr-ft^2", N);
```

Scilab code Exa 16.4 Mass transfer coefficient

```
7 ro = 1/24;
                                            // Outer radius
      of pipe in ft
8 \text{ Cal} = 0.0003;
                                            // Concentration
       at the inner hose of pipe in lb-mol/ft^2
9 \text{ Ca2=0};
                                            // Concentration
       at the outer surface
10 D=0.7*10^-5;
                                            // Diffusion
      coefficient of hydrogen in rubber in ft^2/hr
                                            // Rate of
11 N=2*\%pi*D*(Ca1-Ca2)/log(ro/ri);
      diffusion in lb-mol/hr
12 printf ("The rate of diffusion iof hydrogen in rubber
       is \%.2 \text{ f}*10^--8 \text{ lb-mole/hr}, N*10^8;
```

Scilab code Exa 16.5 Air over water surface

```
1 clc();
2 clear;
4 // To calculate the amount of water evaporated per
      hour per square foot of surface area
6 u=0.0437;
                                             // Viscosity
      in lb/hr-ft
7 \text{ rho} = 0.077;
                                              // Density in
      1b-ft^2
8 D=0.992;
                                              // Diameter of
       pipe in ft
9 v = 4 * 3600;
                                             // Velocity in
       ft/sec
                                             // Length of
10 L=6/12;
      pipe parallel to direction of air flow in ft
                                             // Atmospheric
       pressure in psi
12 \quad T = 460 + 65;
                                             // Temperature
       in degR
```

```
13
14 // Heat transfer equation for laminar flow of a flat
       surface
15 Nre=L*v*rho/u;
                                             // Reynolds
      number
16 Ns=u/(rho*D);
                                             // Schimdt
      mumber
17 Nnu=0.662*(Ns)^(1/3)*sqrt(Nre);
                                             // Nusselt
      number
18 hmc = Nnu * D/L;
                                             // Heat
      transfer coefficient
19 pv1=0.144;
                                             // Vapour
      pressure at 40% humidity
20 \text{ pv2=0.252};
                                             // Vapour
      pressure at saturation
                                             // Absolute
21 pa1=p-pv1;
      pressure of air at 40% rel. humidity in psi
                                             // Absolute
22 pa2=p-pv2;
      pressure of saturated air in psi
                                             // Log mean
23 \text{ pbm} = (pa1+pa2)/2;
      pressure in psi
                                             // Universal
24 R = 1544;
      gas constant in ft<sup>3</sup>-psi/lbmol-degR
N=hmc*p*(pa1-pa2)*144/(R*T*pbm);
26 printf ("The amount of water evaporated per hour is \%
      .4 f lb mol/hr-ft^2, N);
```

Scilab code Exa 16.6 Air flowing over water surface

```
in lb/hr-ft
7 \text{ rho} = 0.069;
                                               // Density in
      lb-ft^2
8 D=0.992;
                                               // Diameter of
       pipe in ft
9 v=7.5*3600;
                                               // Velocity in
       ft/sec
10 L=2;
                                               // Length of
      pipe parallel to direction of air flow in ft
11 M=0.992;
                                               // Molecular
      weight
                                                   Atmospheric
12 p=14.696;
       pressure in psi
13 T=460+65;
                                               // Temperature
       in degR
14 M = 29;
                                               // molecular
      weight of air
                                               // Molecular
15 \text{ M2=18};
      weight of water vapour
                                               // Area of
16 A = 4;
      water surface in ft<sup>2</sup>
17 // Heat transfer equation for laminar flow of a flat
       surface
                                               // Reynolds
18 Nre=L*v*rho/u;
      number
19
20 // Assuming the case that of a fluid flowing
      parallel to a flat plate, jm=0.0039
21 \text{ jm} = 0.0039;
22 \text{ Ns=u/(rho*D)};
                                               // Schimdt
      mumber
23 Gm = v * rho/M;
                                                  Mole flow
      rate
24 \text{ pv1} = 0.672;
                                               // Vapour
      pressure at 40\% humidity
25 \text{ pv2} = 0.600;
                                               // Vapour
      pressure at saturation
                                               // Absolute
26 pa1=p-pv1;
```

```
pressure of air at 40% rel. humidity in psi
27 pa2=p-pv2;
                                              // Absolute
      pressure of saturated air in psi
28 \text{ pbm} = (pa1+pa2)/2;
                                              // Log mean
      pressure in psi
29 hmp=jm*Gm/(pbm*144*Ns^(2/3));
                                                   // Heat
      transfer coefficient in lbmol/ft^2-hr-psi
30 \text{ N=hmp*(pv1-pv2)*144};
                                            // Mass transfer
       rate in lb mol/hr-ft<sup>2</sup>
31 W = N * A * M2;
32 printf ("The amount of water evaporated per hour is \%
      .3 f lb mol/hr-ft^2", W);
```

Scilab code Exa 16.7 Heat and mass transfer in free convection

```
1 clc();
2 clear;
4 // To calculate the amount of water evaporated in
      per hour for a square foot of water surface
6 u=3.82*10^-7;
                                              // Viscosity
      in lb-sec/ft^2
  rho=2.3*10^-3;
                                              // Density in
       lbsec^2/ft^4
                                              // Area in ft
8 \quad A = 1;
      ^2
9 Cp = 0.24;
                                              // Specific
      heat capacity in abtu/lbm-degF
10 v = 4 * 3600;
                                              // Velocity
      in ft/sec
11 k=0.015;
                                              // Thermal
      conductivity in Btu/hr-ft-degF
12 p = 14.7;
                                              //
      Atmospheric pressure in psi
```

```
// Avg.
13 M = 29;
      molecular weight of air
14 T1 = 70 + 460;
                                                //
      Temperature of still air in degF
  T2=90+460;
      temperature of surface of water in degF
16 L=1;
                                                // For
      characteristic of 1 ft
17 D=0.992;
                                                //
      Diffusivity in ft<sup>2</sup>/sec
18
19 // Heat transfer equation for laminar flow of a flat
       surface
20 Ngr=32.2*L^3*((T2/T1)-1)/(u/rho)^2;
                                                // Grasshops
      number
21 \text{ Npr}=u*3600*Cp*32.2/k;
                                                    Prandtls
      number
22 Nnu=0.75*(Ngr*Npr)^.25;
                                                // Nusselt
      number
23 h=Nnu*k/L;
                                                // Heat
      transfer coefficient
24 \text{ Ns}=u*3600/(\text{rho}*D);
                                                // Schimdt
      mumber
25 \text{ hmc=h*D*(Ns/Npr)^0.25/k};
                                                // Heat
      transfer coe
26 \text{ pv1=0.18};
                                                // Vapour
      pressure at 40% humidity
27 \text{ pv2}=0.69;
                                                // Vapour
      pressure at saturation
                                                // Absolute
28 pa1=p-pv1;
      pressure of air at 40% rel. humidity in psi
29
  pa2=p-pv2;
                                                // Absolute
      pressure of saturated air in psi
30 \text{ pbm} = (pa1 + pa2)/2;
                                                // Log mean
      pressure in psi
                                                // Universal
31 R = 1544;
      gas constant in ft^3-psi/lbmol-degR
32 T = (T1 + T2)/2;
                                                // Average
```

Scilab code Exa 16.8 Humidification

```
1 clc();
2 clear;
4 // To know the moisture content of air
  Td = 70 + 460;
                                               // Dry bulb
       temperature in degR
  Tw = 60 + 460;
                                               // Wet bulb
       temperature in degR
8 a=0.26;
                                               // Ratio of
       coefficients ie. h/hmw from table
9 L=1059.9;
                                               // Latent
     heat Btu/lbmol
10 p=14.7;
      Atmospheric pressure in psi
                                               // Partial
11 pa=0.259;
      pressure of water in psi
12 Ma=18;
      Molecular weight of water vapour
13 Mb = 29;
      Molecular weight of air
14
15 Wwb=pa*Ma/(Mb*(p-pa));
                                               // Absolte
      dry bulb humidity of air
16 Wdb=Wwb-(a*(Td-Tw)/L);
                                               // Absolte
      dry bulb humidity of air
17 printf ("The humidity of air at dry conditions is %.5
```

Scilab code Exa 16.9 Absortion over wetted surface

```
1 clc();
2 clear;
4 // To estimate the mass transfer coefficient
6 v = 20;
                                              // Velocity of
       air ammonia mixture in ft/sec
                                              // Prandtls
7 \text{ Npr} = 0.72;
      number
8 \text{ Ns} = 0.60;
                                                 Schimdt
      number
9 \text{ pbm} = 14.7;
                                              // log mean
      pressure in psi
                                                 Molecular
10 Mm = 29;
      weight of mixture
                                              // Molecular
11 Mv = 17;
      weight of ammonia
12 \text{ Ma} = 29;
                                              // Molecular
      weight of air
13 Cp = 0.24;
                                              // specific
      heat capacity in Btu/lbm-degF
                                              // Heat
14 h=8;
      transfer coefficient
15 p=1;
                                              // Atospheric
      pressure in atm
16
17 hmp=h*Mv*(Npr/Ns)^(2/3)/(Cp*p*Ma); // Mass
      transfer coefficient based on pressure
18 printf("The mass transfer coefficient based on
      pressure is %.1f lbm/hr-ft^2-atm", hmp);
```