

The Human Y Chromosome

- Male sex determining, passed through male lineage only
- Only the pseudoautosomal regions (PA) recombine with X
- Heterochromatin has 10kb sequence complexity
- NRY contains 20+ genes in two broad categories: X-Y homologous, or Y-specific multicopy families.

- Each hybrid has a full hamster genome, and some random fraction of the target genome
- X-ray intensity determines fragment size, which determines STS linkage range and ordering resolution

Radiation Hybrid Theory

- Fragments are independently retained/rejected by host cell. Each hybrid will have a unique subset of fragments.
- Unlinked markers will associate randomly, since they will always be on different fragments.
- Linked markers with "zero" separation will associate absolutely, and with decreasing frequency as the distance between them (and thus the probability of a radiation-induced break occurring) increases

Radiation Hybrids in Action

Problem: Scale of Project

- Over 1000 markers to be mapped
- Each marker requires at least one plate of PCR, two plates for markers that provide useful map information
- PCR reactions are visualized with agarose gels
- Vector data needs to be extracted, stored and analyzed

High Throughput PCR

- Packard Multiprobe adapted for 20 x 96-well plates
- Adds template DNA, primers, PCR master mix, mineral oil and loading dye

High Throughput PCR

• Small, inexpensive, basic-function thermal cyclers (Hybaid Omn–E)

High Throughput PCR

- Four Centipede gel boxes, each with 10 x 50-well combs
- Buffer plumbing system for rapid "dry" gel loading

Data Management - JavaGel

- Java applet for image annotation and data retrieval
- User clicks on the four edge marker lanes

Data Management - JavaGel

• In search mode, clicking on the faintest band finds all other bands of that size with the same or better S/N ratio

Data Management - JavaGel

Quality and annealing temperature information are entered

~

RH Results for Demo 12/13/00

Vector

Top Gel: Reasonable at 640

B1 (Hamster) = 0

G12(Blank) = 0

H12(Human) = 1

BS(Human 20%) = 1

B5(Human 5%) = 1

Theta scores for existing markers

sY892

sY914

sY912

BE508K05

0.050

0.000

0.180

0.310

sY891

sY892

sY914

sY912

0.418

0.050

0.000

0.180

sY914

sY912

sY920

BE508K05

0.000

0.180

0.310

0.269

Graphical View of Theta Matrix

- Theta values for likely linkage represented by spectrum
- Likely unlinked values (>0.6) shown as gray scale
- Color of marker name indicates quality of STS
- Diagonal values (technically 0) are split between flanking markers

Diagonal View of Matrix

Ordering Markers

- User needs to grossly order markers due to multiple Y–specific repeat families
- Algorithmic ordering minimizes subdiagonal distance:
 - Exhaustive ordering within a small (6-8 marker) sliding window
 - "Random cost" ordering generates excellent order with much larger marker sets
 - Wang et al. A fast random cost algorithm for physical mapping. Proc Natl. Acad. Sci. USA 1994 (91) 11094-11098

RH "Simulator"

- Novel method for determining linkage likelihood
- Developed due to concern that existing algorithms would be less likely to find linkage in marker pairs with differing copy number:

Triploid 010100010100110010011000100101
Haploid 01000001000000000001100000000

RH Simulator Theory

- System is provided with "models" of marker arrangement:
 - A-B A-B A-B A-B B *etc.*
 - Each model provides linkage information only, not order
- For each model, the probability is calculated for a hybrid being one of four classes in a pairwise comparison:

- These probabilities depend on:
 - The model, the distance between linked markers, the retention frequency (RF) and the average kilobases per centiRay. The last two values need to be observed from a subset of actual data.

Model Probability Curves

Linked Haploid

A0 = A+ B- Shown in pink when probabilities are equal

 $\mathbf{AB} = \mathbf{A}^{+} \mathbf{B}^{+}$

 $\mathbf{00} = \mathbf{A} \cdot \mathbf{B} \cdot \text{shown on right axis}$

Linked Triploid

Haploid - Triploid

Overall Probability

- Given a vector pair, the number of hybrid pairs that are 00, AB, A0 & B0 are summed (for example, 79, 8, 1 & 2)
- Using the probability curves, the <u>overall</u> probability that a model would generate that set of 4 sums can be calculated for each distance. The distance with the best (greatest) probability is then reported for the model.
- These "model probabilities" can then be compared to each other to determine the likelihood of one model over the others

Ambiguous Data

- Markers are typically tested twice, on different days
- On average, about 1-3% of hybrids show conflicts between duplicate trials (i.e. one trial is positive, the other negative)
- Conflicts result from error (often gel loading, but also PCR failure) or marginal assays with "consistent inconstancy"
- Such ambiguous data are represented as "2" in the vector
- Program will analyze all possible vector pairs when ambiguous data are encountered, and report the average results with standard deviations

Sample Model Prediction Output

```
Model -log<sub>10</sub>(P) Distance
A = sY1
           A-B B 1.95 \pm 0.12 at 0 \pm
                                           0 kb
          A-B B B 3.04 \pm 0.16 at 0 \pm 0 kb
B = sY2
         A-B B B B 5.44 \pm 0.30 at 0 \pm 0 kb
           A-B A-B 5.85 \pm 0.34 at 256 \pm 29 kb
           A A-B B 6.16 \pm 0.19 at 0 \pm 0 kb
         A A-B B B 6.97 \pm 0.14 at 0 \pm 0 kb
             A B B 8.22 ± 0.55 Unlinked Model
       A-B B B B B 8.37 \pm 0.41 at 0 \pm 0 kb
       A-B A-B A-B 8.62 \pm 0.47 at 194 \pm 22 kb
                                      0 ±
       A A-B B B B 9.13 ± 0.25 at
                                           0 kb
               A B 9.32 ± 0.53 Unlinked Model
           A B B B 9.41 ± 0.59 Unlinked Model
         B B-A A A 10.43 \pm 0.26 at
                                      0 ±
                                           0 kb
                                         etc...
```

• Observation - likelihoods are insufficient to choose a single model with high certainty.

Linkage Likelihood with Models

• By subtracting the best linked and unlinked models, a likelihood of linkage for STS pairs can be generated.

- Inner color representsminimum LOD between standard deviations
- Marker pairs exceedinguser-set maximum for ambiguous data

Comparison to Standard Methods

• LOD linkage results are similar to those obtained by standard algorithms, but tend to be lower.

LOD Linkage as per:

Jones HB. Pairwise analysis of radiation hybrid mapping data. *Ann. Hum. Genet.* 60, 351-357 (1996)

LOD Linkage as per Simulation

LOD score vs. Distance

Conclusions

- Model simulation provides a stringent assay for determining linkage between RH vectors
- Likelihoods of copy number based on retention frequency are too similar to allow reliable choice of one model over all others when comparing markers.
- Final map has 700+ markers, with 11 gaps. Sequence comparison shows reasonable order within contiguous segments.

Acknowledgments

Steve Rozen Programming Consultation

Helen Skaletsky Statistics / Programming Consultation

Loreall Pooler Marker Typing

Chad Nussbaum Mapping Consultation / Reagents

Tom Hudson Mapping Consultation

Eric Lander Idea Guru

David Page Patron and Mentor

RH Simulator Theory I

- System is provided with "models" of marker arrangement:
 - A-B A-B A-B A-B B *etc.*
 - Each model provides linkage information only, not order
- Two basic levels of probability calculations:
 - Probability of a linked pair (A-B) becoming separated is function of distance between them (d) and "intensity of radiation" ($\lambda = 0.01/\text{kb}_{per}cR$): $\theta = 1 e^{-\lambda^* d}$
 - Probability of retaining a fragment is retention frequency (RF)
 - Both RF and λ are experimentally determined
 - RF and λ may vary across chromosome, but are treated as constant

RH Simulator Theory II

- We can simplify the system by considering only the four possible outcomes for a pairwise comparison of a hybrid:
 - both positive (AB), both negative (00), or A0 or B0
- Models are composed of independent components, calculate probabilities for each of three component types:

	A	В	A-B
pAB	0	0	$(1-\theta) RF + \theta RF^2$
p00	1-RF	1-RF	$(1-\theta)(1-RF) + \theta(1-RF)^2$
pA0	RF	0	θ RF (1-RF)
pB0	0	RF	θ RF (1-RF)

RF = retention frequency, θ = break probability (function of distance)

RH Simulator Theory III

• Find total probabilities for the model as:

```
p00_{Tot} \qquad Product (p00) \ for \ all \ components pA0_{Tot} \qquad (Product (pA|0) \ for \ all \ components) - p00_{Tot} \qquad where \ pA|0 = pA0 + p00 pB0_{Tot} \qquad (Product (pB|0) \ for \ all \ components) - p00_{Tot} \qquad where \ pB|0 = pB0 + p00 pAB_{Tot} \qquad 1 - (p00_{Tot} + pA0_{Tot} + pB0_{Tot})
```

• Calculate these total probabilities for each model, and for a finite set of distances (generally 12)

RH Simulator Theory IV

• We can now apply these four probabilities to determine the probability that a given model would generate an observed vector pair at a specified distance:

$$P = \frac{p00^{w} pA0^{x} pB0^{y} pAB^{z} N!}{w! x! y! z!}$$

Where:

w = number of hybrids 00

x = number of hybrids A0

y = number of hybrids B0

z = number of hybrids AB

N = total number of hybrids

Gap Analysis

		Link	LOD=3 Copy#		
Gap	Left STS	LOD	Lft	Rgt	Distance / Comment
	SP03-26	0.10	1-2	1-2	No Seq Data (not real gap)
1	SP03-10	2.52	1-2	2-5	No Seq Data
	SP04-42	2.23	1-3	1-3	No Seq Data (not real gap)
2	sY23	2.41	1 - 4	2-5	439 kb
3	sY1029	-0.41	1-2	2-5	125 kb + Near site of inversion
4	sY900	-2.32	1-3	1 - 4	160 kb +
5	SP14-22	-1.36	1	1-2	540 kb
6	sXY701	-2.00	1-2	1-3	270 kb
7	sY715	1.20	6+	1-2	Centromere
8	SP30-03	-0.92	1-2	1-2	100 kb
9	SP37-38	0.69	1-2	1-3	147 kb
10	SP51-36	-0.91	1-2	1 - 4	??
11	sY707	1.93	1 - 4	1-2	??

"Well Behaved" Markers

"Poorly Behaved" Markers

