第五章 树与二叉树

2022年10月2日 星期日 19:44

树的基本概念

树的存储结构/树的表示

树林和二叉树的转换

树和森林的遍历对应关系

| 先根遍历 | 先序遍历 | 先序遍历 | 后根遍历中序遍历中序遍历

二叉树的代码表示 typedef struct TreeNode *BinTree; struct TreeNode int Data; // 存值 BinTree Left**;** // 左儿子结点 BinTree Right**;** // 右儿子结点

二叉树的三种遍历方法

三种遍历实例

常考的结论

5 1	一方的结论				
	1、不能唯一确定一颗二叉树的是: 先序序列和后序序列				
	2、先序遍历第一个节点为根节点;后序遍历最后一个节点为根节点				
	3、前序序列和中序序列的关系相当于以前序序列为入栈次序,以中序序列为出栈顺序				
	4、前序序列与后序序列刚好相反的时候,二叉树的高度 = 节点数(即每层只有一个节点)				
	5、后序遍历可以找到m到n直接的路径(其中m是n的祖先)				
	6、根据两个序列确定二叉树的方法	17.【2021 统考真题】某森林 F 对应的二叉树为 T 若 T 的先序遍历序列是 $a_{x}b_{y}$, $d_{x}c_{y}$, e_{y} , e			
		A.1 B.2 C.2 D.4			
		前is a b d g e g f			
		pts hdaegcf			
		①根结点为 ②确定 6 对 ③确定 eg cf			
		Ed eget D D D D D D D D D D D D D D D D D D D			
		森树为			

哈夫曼树/最优二叉树

定义	特点	
● 树的带权路径长度最小的二叉树	● 没有度为 1 的结点	
● WPL=路径长度 * 结点权值	● n个叶结点的哈夫曼树共有 2n-1 个结点	
	● 哈夫曼树的任意非叶结点的左右子树交换后仍是哈夫曼树	
	● 对同一组权值,可能存在不同构的多棵哈夫曼树	
	● 哈夫曼树不一定是完全二叉树	
构造	例题	
● 每次把队列中值最小的合并, 合并后的值放入队列中再继续比较	17.【2021 统考真题】若某二叉树有 5个叶结点,其权值分别为 10,12,16,21,30,则其最小的带权路径长度(WPL)是(分) A.89 B.200 C.208 D.289 (10,12,16,21,30) (10,12,16,2	

合夫曼编码			
相关概念	由哈夫曼树构造哈夫曼编码的过程【左0右1】		
● 前缀编码: 没有一个编码是另一个编码的前缀的编码	哈夫曼树	对应的哈夫曼编码	最终的编码表
 如右2图'l'的编码为00, 'u'的编码为11100等等 出现频率越高的字符越会在上层,这样它的编码越短 出现频率越低的字符越会在下层,编码越短 经过这样的设计,最终整个文本存储空间才会最大化的缩减 			字符 I w '' e i u r 编码 00 01 10 110 1111 11100 111
 有了右3图的编码表之后 "we will we will r u"这句重新进行编码就可以得到很大的压缩 编码表示为 01 110 10 01 1111 00 00 10 01 110 10 01 1111 00 00	4 4 5 e 6 1 i i i i i i i i i i i i i i i i i i	e	

Initial(S)	Union(S,Root1,Root2)	Find(S,x)
• 将集合S中的每个元素都初始化为只有一个单元素的子集合	把集合S中的子集合Root2并入子集合Root1要求Root1和Root2互不相交,否则不执行合并	• 查找集合S中单元素x所在的子集合,并返回该子集合的根结点
<pre>void Initial(int S[]) { for (int i = 0; i < size; i++) S[i] = -1; }</pre>	<pre>void Union(int S[], int Root1, int Root2) { S[Root2] = Root1; }</pre>	<pre>int Find(int S[], int x) { while (S[x] >= 0) x = S[x]; return x; }</pre>
S ① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ (a) 全集合S初始化时形成一个森林 0 1 2 3 4 5 6 7 8 9 -1 -1 -1 -1 -1 -1 -1 -1 (b) 初始化时形成的(森林)双亲表示 图 5.21 并查集的初始化	0 1 2 3 4 5 6 7 8 9 -7 0 -3 2 1 2 0 0 0 1 图 5.23 S ₁ ∪S ₂ 可能的表示方法	S ₁ (0) 6 7 8 4 9 (a) 集合的树形表示 1 -4 -3 -3 2 1 2 0 0 0 1 (b) 集合S ₁ 、S ₂ 和IS ₃ 的(森林)双亲表示 图 5.22 用树表示并查集