Chen-Zhu Xie

谢尘竹

Portfolio: 🗘 🔼 in Scholar: Г

Preference: 6

Contact: 🔀 🛚

Personality: aries INTP ab

Education

Nanjing University	College of Engineering and Applied Sciences Nanjing, Jian							
Doctor of Philosophy	Optical Engineering	<i>Q.E.</i> − <i>Top 15%</i>	Nonlinear Fourier Optics 🕥 – 2025.06					
Dissertation: "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\varepsilon}}, \bar{\bar{\bar{\chi}}}$ dielectrics"								
Master 's Studies	Quantum Electronics	Courses Score – 93.5 🕠	THz OAM Source – 2022.06					
Northeastern Unive	rsity Scho	ol of Physics, College of Scien	nce Shenyang, Liaoning					
Northeastern University Bachelor of Science	rsity Scho Applied Physics	ol of Physics, College of Science GPA Rank – 1/400	DDTank Aimbots – 2020.06					
Bachelor of Science	Applied Physics	GPA Rank − 1/400 👩	, e,					

Personal Projects

3 e-books on mathematics, physics, and programming

-2017.08

- ♦ Book 1: mathematics, divided into 6 chapters, some intriguing chapters are:
- → Multinomial theorem
- \rightarrow Strive to get the general formula for the n-th derivatives of a composite function f(g(x))
- → The connection between the sums of certain series and the indefinite integrals of their terms
- \rightarrow Explaining Euler's formula a+b-c=n through topology
- → Retracing the journey of the determinant calculation rules
- → Book 2: up to 12 programs mainly designed to solve mathematical problems
 - → All solutions that meet the criteria of the Faà di Bruno Formula
 - → Deep recursion algorithms for the aforementioned contexts & the partition numbers
 - → General solution of a system of multivariable linear equations with given coefficients
 - → Complete solution to the Double Comb/Ruler problem
 - → Minimum integer solution of a system of two linear Diophantine equations
 - → Microstate count of Bose-Einstein systems ∈ Multinomial theorem's combinations
- → Book 3: geometry related
 - → Spherical trigonometry
 - → Special relativity

Behind NLAST ¹	0 ightarrow 1 : Techniques crafted from scratch in my acedemic project : NLAST 2022.02 –
	Managed to realize tree-print feature in CMD lines without knowing any tree-packages in order to visualize run-time Call Stack with buried checkpoints & display crucial info to understand the hierarchical structure of my code from a more abstract perspective Enabled multi-threads to accelerate for loops in python while preserving the loops' order Implemented through utilizing the producer-consumer model (producer = thread pool) Allow users to select which parts of the codes in the for loops to parallelize in CPU Transform multi-layer for loops into nested multi-threads: each thread = a new thread pool Future model will move away from python as the primary language & shift to GPU Favoring GPU is driven by "fields in physics = arrays/matrices in math/programs" Haven't decided which to employ: CUDA, Jax, webGL2, webGPU, Mojo or Bend? Developed a log file system to track & record the operating status for debugging to output script parameters (**kwargs) for rapid reproducibility of data in the future to store data files & folders, and their metadata for swift data import and reutilization Achieved automatic skipping of functions that return repeated values stored in memory via @decorators: let precomputation assess whether to execute the decorated function Wrap matplotlib into plot_1d(, _2d, _3d, .gif) for data visualization also sped up by customized multi-threading Matlab Mathematica JavaScript Python ?
LabView Projects	BB84 QKD protocol simulation & distributed optical fiber sensing - 2021.06
	• Verified the information security of photon_polarization_state-related BB84 protocol
	Visualized the distribution of anomalies along the fiber optic cable from user data LabView
Extended 1A2B	A Code-breaking Game - Bulls and cows: Guessing 4 digits \rightarrow 1-9 digits -2019.09
	→ Hardware - MicroController (C8051F350.h) version of Original 1A2B: Guessing 4 numbers
	Software - VC++6.0 version of Upgraded 1A2B: Guessing 1-9 numbers Keil.C C++ ▶ ♣ ♦
DDTank Aimbots	An inverse solving toolkit for a projectile game similar to Angry Birds - 2017.04
	Established an aerodynamic model with air resistance $R = -kv$ for the game DDTank by solving $v' \propto R + F$, where driving force $F = \text{gravity } G + \text{wind force } W$ which lead to the core transcendental equation $1 - e^{kt} + kt = k^2 M(F; \Delta r, \hat{v}_0)$ that can be numerically solved by Newton's method for t with given $k, F; \Delta r, \hat{v}_0$ Finally, for each $\Delta r, \hat{v}_0$, one can obtain corresponding initial velocity v_0 ($k, F; t, M$) after k, F are determined (by the game engine itself) v_0 ends up the very info required to accurately hit an enemy at a distance of Δr from you Software Features: multi-OS/end, multi-hit_mode, multi-trajectory, multi-thread supported Multi-OS: classic Web game on Windows, Mobile game on Android & Android Emulator Multi-hit_mode: charge-mode for value v_0 , drag_mode (like angry birds) for extended curve Multi-trajectory: predicts up to $6 = (1+2)^*2$ trajectories for the player: split $3 + \text{backward } 3$ Multi-threading: succeeded in coordinating multiple timers to implement multi-threading Capturing game data semi-automatically with computer vision purely call findmulticolorEX in dm.dll VBA Excel E4A EPL

¹ Non-linear Angular Spectrum Theory

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- logging system
 - o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - o JOSA.A. | O.E. #tightly focus # $\bar{\epsilon}$ anisotropy | Light.Sci.App. | O.E.

PPT <u>1 2 3</u> ... •

PPT 1234 ... 😱

Three Books Closed-form $E_3(\mathbf{r})$ in $\left[\nabla^2 + k_3^2 \right] E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r}) E_1(\mathbf{r}) E_2(\mathbf{r}) \right]$

2022.02 -

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Developed a log file system to record and output script runtime parameters**kwargs,
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - o O.L. | P.R.A.

Scientific Activities

- [0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum

 "Analytic vector linear & nonlinear Fourier crystal optics in arbitrary $\bar{\epsilon}$, $\bar{\bar{\chi}}$ dielectrics" | Oral [PPT] 2024.05.29
- [-1] 2023 CSOE-NJU² Book Club Meeting & Sharing Session

 "A guided tour to Ray & Wave Optics Simulation" | Oral [PPT]

 2023.12.09
- [-2] Academic Café Salon of the Research Group Nanjing, Jiangsu
 - "Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" | Oral [PDF]

2021.05.21

Publications

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, **C. Xie**, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications **14**, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

Academic Focus

Next generation high N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics \square 2024.06 – !Paraxial k_0^ω High N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics \square 2024.03 – Emphasizing G_{xyz}^ω 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics \square 2023.12 – Involving $\bar{\chi}_{\omega}^{(2)}$ anisotropy Vector non-uniform analytic linear & nonlinear Fourier crystal optics \square 2023.06 – !Unitary $G_{\omega}^{\pm} \Leftarrow$!Hermitian $\bar{\varepsilon}_{r}^\omega \Rightarrow$ Non-uniform analytic linear & nonlinear Fourier crystal optics \square 2023.03 –

² The Nanjing University student branch of the Chinese Society for Optical Engineering

Solution $m{E}_{\omega}^{\pm}$ to $\left(m{\nabla}^2+k_{\omega\pm}^2\right)m{E}_{\omega}^{\pm}\!\propto\!m{P}_{\omega\pm}^{(2)}$	Analytic linear & nonlinear Fourier crystal optics 😱	2022.09 -
Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below	Nonlinear angular spectrum theory for SFG 😱	2022.06 -
Solution $\mathcal{F}[E_3] = \iiint \cdot to\left(\mathbf{\nabla}^2 + k_3^2 \right) E_3(r) \propto P_3^{(2)}(r)$	Nonlinear convolution solution to SFG 😱	2022.03 -
Nonlinear THz LiNbO ₃ -based metasurface	Quit THz project formally COMSOL	- 2022.01
S BWOPO + THz optical parametric amplification	Mathematica BookxNote Pro	- 2021.12
THz backward optical parametric oscillator (BWOPC	O) Mathematica VBA Excel	- 2021.11
Multi-cycle THz orbital angular momentum (OAM)	source RoamEdit Blender	- 2021.11
Narrow-band THz OAM source via Optical Rectifica	ation (OR) Python Blender	- 2021.10
\bigcirc Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics	RoamEdit VBA Excel	- 2021.07
\bigcirc Visible Photons $\xrightarrow{\text{SPDC}}$ THz Spectroscopy	BookxNote Pro GeoGebra VBA Excel	- 2021.06
Cavity Phase Matching = Sheet OPO	Paint 3D RoamEdit GeoGebra VBA Excel	- 2021.05
🜎 THz Holography via Optical Rectification	Matlab GeoGebra VBA Excel	- 2021.01
\bigcirc Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)	GeoGebra VBA Excel	- 2020.12
\square Multicycle THz pulse generation by OR in LiNbO ₃	crystals VBA PowerPoinT	- 2020.10

Honors & Awards

Academia	Doctor's Qualification Exam (Oral)		Excellent	(<i>Top 15%</i>	Nanjing	U.	2024.01	
	Bachelar Thesis 😱 & Defense		Excellent	(7)	1/90	Northeaster	n U.	2020.06	
Competition	Three Provinces Achievement Expo	(Exhibition		Leader	Three	Prov.	2019.10	
	"Challenge Cup" Tech Competition	(Grand prize	e 😱	Leader	Liaoning	Prov.	2019.06	
Schola	rships	Academic Fellowship		1st class		¥40,000	Nanjing	U.	2020-24
	-	"Jinchuan" Scholarship		1st place		¥5,000	Northeaster	n U.	2019.04
& Fallowshins	Academic Scholarship		1st place		¥2,000	Northeaster	n U.	2018.06	
renow	Fellowships	Entrance Scholarship		3rd place		¥5,000	Leshan No.1	H.S.	2013.09
Hor	iors	Graduation with Honor		Outstandin	ıg		Northeaster	n U.	2020.07
8	ķ	League Member		Excellent			Northeaster	n U.	2019.11
Tit	les	Undergraduate Student		Excellent	(7)		Northeaster	n U.	2018.12
Memberships	Chinese Society for Optical Engineer	ing	Member			Nanjing	U.	2021-25	
	"Qian Sanqiang" Talent Class		Head			I.H.E.P.		2017-20	

Research Projects

3D Vector Nonlinear

Fourier Crystal Optics

Solving
$$\left[\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] \underline{\boldsymbol{E}}(\boldsymbol{r}) = k_0^2 \bar{\bar{\chi}} : \mathcal{F}_{\omega}^{-1} \left[\widetilde{\boldsymbol{E}}_{\mathrm{p}} \widetilde{\boldsymbol{E}}_{\mathrm{p}} \right] (\boldsymbol{r}) \right] \text{ analytically} \qquad 2023.05 - 10 = 0.00$$

- The first & fastest white box solver ever for this inhomogeneous wave equation o or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including
 k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- Reproduced well-known papers, all of which provide either zero or wrong theory:
 - Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
 - O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component
 - \circ O.E. | Q.E. #high N.A. # $\bar{\bar{\chi}}$ anisotropy

Complex Vector Linear

Fourier Crystal Optics

Analytic solution
$$E(r)$$
 to $\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] E(r) = \mathbf{0}$ where $\varepsilon_{ij} \in \mathbb{C}$ 2023.02 -

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- Reproduced well-known papers, some are purely experimental (too hard to model):
 J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - o JOSA.A. | O.E. #tightly focus $\#\bar{\epsilon}$ anisotropy | Light.Sci.App. | O.E.

PPT <u>123</u> ... 😱

PPT 123 ... 😱

Real Scalar NonlinearFourier Crystal Optics

Closed-form
$$E_3(r)$$
 in $\left[\nabla^2 + k_3^2\right] E_3(r) = -k_{03}^2 \chi(r) E_1(r) E_2(r)$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency:
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - o L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - O.L. | P.R.A.

PPT <u>1 2 3 4</u> ... •

Extracurricular Activities

Member at Some Club
 Detailed explanation of what you do at this club

• Member at Some Club

Detailed explanation of what you do at this club

Volunteer at Some Event
 Detailed explanation of what you do in this event

Volunteer at Some Event
 Detailed explanation of what you do in this event

2017–Current

2016-2017

Fall 2019

Winter 2015

Skills

Skill Group: List of technologies

• Skill Group: List of technologies

• Skill Group: List of technologies

• Skill Group: List of technologies

Languages

• Language: language proficiency level

- EXAM: details

• Language: language proficiency level

• Language: language proficiency level