Objetivos do Trabalho

Introdução e Motivação

Apresentação do Bruno

Apresentação do Bruno Canale

Python - Keras Framework para Machine Learning

Base de dados utilizada

Implementação da Rede Convolucional

Redes e Resultados

Camada de entrada

Primeira Rede - Arquitetura

Primeira Rede - Treinamento

Treinamento

- ► Épocas = 10
- ▶ ltens = 60000
- ► Tempo = 30 minutos

Teste

▶ |tens = 10000

Resultado na base de teste

▶ 98.02%

Convolução - 1

Ativação - 1

Convolução - 2

Ativação - 2

Pooling

Flatten (N * 2D \rightarrow 1D)

Dense - 1

Ativação - 3

Dense - 2

Ativação - 4

Apresentacao do Fábio - Sugestão: Discussao sobre como essas observacoes ligam na MLP clássica e/ou problemas de Machine Learning