

attachment #4

SEQUENCE LISTING

<110> BROUN, Pierre
VAN DE LOO, Frank
BODDUPALLI, Sekhar
SOMERVILLE, Chris

<120> PRODUCTION OF HYDROXYLATED FATTY ACIDS IN GENETICALLY
MODIFIED PLANTS

<130> 20263/255164

<140> 09/117,921
<141> 1999-03-04

<150> 08/597,313
<151> 1996-02-06

<150> PCT/US97/02187
<151> 1997-02-06

<160> 15

<170> MS Word

<210> 1
<211> 543
<212> DNA
<213> Lesquerella fendleri

<220>
<221> UNSURE
<222> 83
<223> any

<400> 1
tattggcacc ggccggcacca ttccaacaat ggatccctag aaaaagatga agtctttgtc 60
ccacctaaga aagctgcagt canatggtat gtcaaatacc tcaacaaccc tcttgacgc 120
attctggtgt taacagttca gtttatcctc ggggtggcctt tgtatcttagc cttaatgtta 180
tcaggttagac cttatgtatgg tttcgcttca catttcttcc ctcatgcacc tatctttaaag 240
gaccgtgaac gtctccagat atacatctca gatgctgttca ttcttagctgt ctgttatgg 300
ctttaccgtt acgctgttcc acaaggattt gactgtatgttactgtctca cggagttaccg 360
cttttgatag tgaactttt ccttgccttgc gtcacttttct tgcatgcacac tcatttcctca 420
ttacctcaact atgattcaac cgagtggaa tggatttagag gagctttgtt tacggtagac 480
agagactatg gaatcttcaa caaggtgttt cacaacataa cagacacccca cgtagcacac 540
cac 543

<210> 2
<211> 544
<212> DNA
<213> Lesquerella fendleri

<400> 2
tatagggcacc ggaggcacca ttccaacaca ggatccctcg aaagagatga agtatttg 60
ccaaaggcaga aatccgcaat caagtggtag ggcgaatacc tcaacaaccc tcttggtcg 120
atcatgtatgt taactgttca gttcgcttcc ggtatggccct tggatcttagc cttaacgtt 180
tctggcagac cctacaatgg tttcgcttcc catttcttcc ccaatgttcc tatctacaaac 240
gaccgtgaac gcctccagat ttacatcttct gatgctgttca ttcttagccgt ctgttatgg 300
ctttaccgtt acgctgttgc acaaggacta gcctcaatgttactgtctaa cggagttccg 360
cttttgatag ttaactttt cctcgtcttgc atcacttact tacaacacac tcaccctg 420

ttgcctcact atgattcatc agagtggat tggcttagag gagcttagc tactgttagac 480
agagactatg gaatcttcaa caaggttcc cataacatca cagacaccca cgtcgacac 540
cact 544

<210> 3
<211> 1855
<212> DNA
<213> Lesquerella fendleri

<220>
<221> UNSURE
<222> 46, 99, 203, 1658, 1788
<223> any

<400> 3
atgaagctt ataagaagg agtttctct ggtgacagag aaattntgtc aattggtagt 60
gacagttgaa gcaacagggaa caacaaggat gggtggtgnt gatgctgatg tggtgatgtg 120
ttattcatca aatactaaat actacattac ttgttgctgc ctacttctcc tatttcctcc 180
gccacccatt ttggaccac ganccttca tttaaacacct ctctcggtct attcaccaga 240
agagaagcca agagagagag agagagaatg ttctgaggat cattgtctc ttcatcgta 300
ttaacgtaaag ttttttttga ccactcatat ctaaaatcta gtacatgcaa tagattaatg 360
actgttcctt cttttgatat tttagcttc ttgaattcaa gatgggtgt ggtgaaagaa 420
taatggttac cccctcttcc aagaatctcg aaactgaagc cctaaaacgt ggaccatgtg 480
agaaaaccacc attcaactgtt aaagatctga agaaagcaat cccacacgt tgtttcaagc 540
gctctatccc tcgttcttc tcctaccttc tcacagatat cacttagtt tcttgcttct 600
actacgttgc cacaaattac tctctcttc ttccctcagcc tctctctact tacctagtt 660
ggcctctcta ttgggtatgt caaggtgtg tcttaaccgg tatctgggtc attggccatg 720
aatgtggtca ccattgtatc agtactatac aatgggtaga tgacactgtt ggttttatct 780
tccatttcctt ctttctcgat ctttacttct ctttggaaata cagtcatgt cgtaaccatt 840
ccaacaatgg atctctcgag aaagatgaag tctttgtccc accgaagaaa gctgcagtca 900
aatggtatgt taaataccctc aacaaccctc ttggacgcattcttgatgtt acagttcagt 960
ttatcctcggtt gtttttttttgc tatcttagct ttaatgtatc aggttagacat tatgtatgtt 1020
tcgttccaca tttttccctt catgcaccta tctttaaaga ccgagaacgc ctccagatat 1080
acatctcaga tgctggattt ctatgtgtct gttatggctt ttaccgttac gctgcttcac 1140
aaggatttgc tgctatgtc tgctgtatg gaggatcgct ttttgatgtt aacttttcc 1200
ttgtcttggtaactttcttg cagcacactc atccttcgtt acctcattat gattcaaccg 1260
agtggaaatg gatttagagga gctttggta cggtagacag agactatggatattgaaca 1320
aggtgttcca taacataaca gacacacatg tggtctcatca tcttttgca actataccgc 1380
attataaacgc aatggaaatgtt acagaggcga taaagccaat acttgggtat tactaccact 1440
tcgttggaaac accgtggatgtt gtttttttttgc tatgggaagc aaaggagtgt ctctatgttag 1500
aaccggataac ggaacgtggg aagaaagggtg tctactatttta caacaataag ttatggaggt 1560
gatagggcga gagaagtgcattatcaatc ttttttttca tgtttttaggt gtcttggta 1620
agaagctatgtt gtttttttca ataatctcg agtccatnta gttgtgttct ggtgcatttt 1680
gccttagttt gtttttttca ataatctcg agtccatnta gttgtgttct ggtgcatttt 1740
aagaacaatgtt ttacgtgtttt aaaaactctcg gaacgaatgtt accacaanat atccaaaacc 1800
ggctatccga attccatatac cgaaaaaccgg atatccaaat ttccagagta cttag 1855

<210> 4
<211> 384
<212> PRT
<213> Lesquerella fendleri

<400> 4
Met Gly Ala Gly Gly Arg Ile Met Val Thr Pro Ser Ser Lys Lys Ser
1 5 10 15

Glu Thr Glu Ala Leu Lys Arg Gly Pro Cys Glu Lys Pro Pro Phe Thr
20 25 30

Val Lys Asp Leu Lys Lys Ala Ile Pro Gln His Cys Phe Lys Arg Ser
 35 40 45
 Ile Pro Arg Ser Phe Ser Tyr Leu Leu Thr Asp Ile Thr Leu Val Ser
 50 55 60
 Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe Ser Leu Leu Pro Gln Pro
 65 70 75 80
 Leu Ser Thr Tyr Leu Ala Trp Pro Leu Tyr Trp Val Cys Gln Gly Cys
 85 90 95
 Val Leu Thr Gly Ile Trp Val Ile Gly His Glu Cys Gly His His Ala
 100 105 110
 Phe Ser Asp Tyr Gln Trp Val Asp Asp Thr Val Gly Phe Ile Phe His
 115 120 125
 Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg
 130 135 140
 His His Ser Asn Asn Gly Ser Leu Glu Lys Asp Glu Val Phe Val Pro
 145 150 155 160
 Pro Lys Lys Ala Ala Val Lys Trp Tyr Val Lys Tyr Leu Asn Asn Pro
 165 170 175
 Leu Gly Arg Ile Leu Val Leu Thr Val Gln Phe Ile Leu Gly Trp Pro
 180 185 190
 Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala
 195 200 205
 Ser His Phe Phe Pro His Ala Pro Ile Phe Lys Asp Arg Glu Arg Leu
 210 215 220
 Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu
 225 230 235 240
 Tyr Arg Tyr Ala Ala Ser Gln Gly Leu Thr Ala Met Ile Cys Val Tyr
 245 250 255
 Gly Val Pro Leu Leu Ile Val Asn Phe Phe Leu Val Leu Val Thr Phe
 260 265 270
 Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Thr Glu Trp
 275 280 285
 Glu Trp Ile Arg Gly Ala Leu Val Thr Val Asp Arg Asp Tyr Gly Ile
 290 295 300
 Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His
 305 310 315 320
 Leu Phe Ala Thr Ile Pro His Tyr Asn Ala Met Glu Ala Thr Glu Ala
 325 330 335
 Ile Lys Pro Ile Leu Gly Asp Tyr Tyr His Phe Asp Gly Thr Pro Trp
 340 345 350

Tyr Val Ala Met Tyr Arg Glu Ala Lys Glu Cys Leu Tyr Val Glu Pro
 355 360 365
 Asp Thr Glu Arg Gly Lys Lys Gly Val Tyr Tyr Tyr Asn Asn Lys Leu
 370 375 380

 <210> 5
 <211> 387
 <212> PRT
 <213> Ricinus communis

 <400> 5
 Met Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Ser
 1 5 10 15
 Glu Lys Lys Gly Gly Ser Ser His Leu Lys Arg Ala Pro His Thr Lys
 20 25 30
 Pro Pro Phe Thr Leu Gly Asp Leu Lys Arg Ala Ile Pro Pro His Cys
 35 40 45
 Phe Glu Arg Ser Phe Val Arg Ser Phe Ser Tyr Val Ala Tyr Asp Val
 50 55 60
 Cys Leu Ser Phe Leu Phe Tyr Ser Ile Ala Thr Asn Phe Phe Pro Tyr
 65 70 75 80
 Ile Ser Ser Pro Leu Ser Tyr Val Ala Trp Leu Val Tyr Trp Leu Phe
 85 90 95
 Gln Gly Cys Ile Leu Thr Gly Leu Trp Val Ile Gly His Glu Cys Gly
 100 105 110
 His His Ala Phe Ser Glu Tyr Gln Leu Ala Asp Asp Ile Val Gly Leu
 115 120 125
 Ile Val His Ser Ala Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser
 130 135 140
 His Arg Arg His His Ser Asn Ile Gly Ser Leu Glu Arg Asp Glu Val
 145 150 155 160
 Phe Val Pro Lys Ser Lys Ser Lys Ile Ser Trp Tyr Ser Lys Tyr Ser
 165 170 175
 Asn Asn Pro Pro Gly Arg Val Leu Thr Leu Ala Ala Thr Leu Leu Leu
 180 185 190
 Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp
 195 200 205
 Arg Phe Ala Cys His Tyr Asp Pro Tyr Gly Pro Ile Phe Ser Glu Arg
 210 215 220
 Glu Arg Leu Gln Ile Tyr Ile Ala Asp Leu Gly Ile Phe Ala Thr Thr
 225 230 235 240
 Phe Val Leu Tyr Gln Ala Thr Met Ala Lys Gly Leu Ala Trp Val Met
 245 250 255

Arg	Ile	Tyr	Gly	Val	Pro	Leu	Leu	Ile	Val	Asn	Cys	Phe	Leu	Val	Met
	260							265					270		
Ile	Thr	Tyr	Leu	Gln	His	Thr	His	Pro	Ala	Ile	Pro	Arg	Tyr	Gly	Ser
	275						280					285			
Ser	Glu	Trp	Asp	Trp	Leu	Arg	Gly	Ala	Met	Val	Thr	Val	Asp	Arg	Asp
	290					295				300					
Tyr	Gly	Val	Leu	Asn	Lys	Val	Phe	His	Asn	Ile	Ala	Asp	Thr	His	Val
	305					310			315			320			
Ala	His	His	Leu	Phe	Ala	Thr	Val	Pro	His	Tyr	His	Ala	Met	Glu	Ala
				325				330				335			
Thr	Lys	Ala	Ile	Lys	Pro	Ile	Met	Gly	Glu	Tyr	Tyr	Arg	Tyr	Asp	Gly
					340			345				350			
Thr	Pro	Phe	Tyr	Lys	Ala	Leu	Trp	Arg	Glu	Ala	Lys	Glu	Cys	Leu	Phe
					355		360				365				
Val	Glu	Pro	Asp	Glu	Gly	Ala	Pro	Thr	Gln	Gly	Val	Phe	Trp	Tyr	Arg
	370				375				380						
Asn	Lys	Tyr													
	385														

<210> 6
 <211> 383
 <212> PRT
 <213> Arabidopsis thaliana

<400>	6														
Met	Gly	Ala	Gly	Gly	Arg	Met	Pro	Val	Pro	Thr	Ser	Ser	Lys	Lys	Ser
1				5					10				15		
Glu	Thr	Asp	Thr	Thr	Lys	Arg	Val	Pro	Cys	Glu	Lys	Pro	Pro	Phe	Ser
				20				25				30			
Val	Gly	Asp	Leu	Lys	Lys	Ala	Ile	Pro	Pro	His	Cys	Phe	Lys	Arg	Ser
				35				40			45				
Ile	Pro	Arg	Ser	Phe	Ser	Tyr	Leu	Ile	Ser	Asp	Ile	Ile	Ile	Ala	Ser
				50				55			60				
Cys	Phe	Tyr	Tyr	Val	Ala	Thr	Asn	Tyr	Phe	Ser	Leu	Leu	Pro	Gln	Pro
	65					70			75			80			
Leu	Ser	Tyr	Leu	Ala	Trp	Pro	Leu	Tyr	Trp	Ala	Cys	Gln	Gly	Cys	Val
					85				90			95			
Leu	Thr	Gly	Ile	Trp	Val	Ile	Ala	His	Glu	Cys	Gly	His	His	Ala	Phe
				100				105			110				
Ser	Asp	Tyr	Gln	Trp	Leu	Asp	Asp	Thr	Val	Gly	Leu	Ile	Phe	His	Ser
					115			120			125				
Phe	Leu	Leu	Val	Pro	Tyr	Phe	Ser	Trp	Lys	Tyr	Ser	His	Arg	Arg	His
				130			135			140					

His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
 145 150 155 160
 Gln Lys Ser Ala Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu
 165 170 175
 Gly Arg Ile Met Met Leu Thr Val Gln Phe Val Leu Gly Trp Pro Leu
 180 185 190
 Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys
 195 200 205
 His Phe Phe Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln
 210 215 220
 Ile Tyr Leu Ser Asp Ala Gly Ile Leu Ala Val Cys Phe Gly Leu Tyr
 225 230 235 240
 Arg Tyr Ala Ala Ala Gln Gly Met Ala Ser Met Ile Cys Leu Tyr Gly
 245 250 255
 Val Pro Leu Leu Ile Val Asn Ala Phe Leu Val Leu Ile Thr Tyr Leu
 260 265 270
 Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp Asp
 275 280 285
 Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 290 295 300
 Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
 305 310 315 320
 Phe Ser Thr Met Pro His Tyr Asn Ala Met Glu Ala Thr Lys Ala Ile
 325 330 335
 Lys Pro Ile Leu Gly Asp Tyr Tyr Gln Phe Asp Gly Thr Pro Trp Tyr
 340 345 350
 Val Ala Met Tyr Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp
 355 360 365
 Arg Glu Gly Asp Lys Lys Gly Val Tyr Trp Tyr Asn Asn Lys Leu
 370 375 380

 <210> 7
 <211> 383
 <212> PRT
 <213> Brassica napus

 <400> 7
 Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser
 1 5 10 15
 Glu Thr Asp Asn Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr
 20 25 30
 Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser
 35 40 45

Ile Pro Arg Ser Phe Ser His Leu Ile Trp Asp Ile Ile Ile Ala Ser
 50 55 60
 Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro Asn Pro
 65 70 75 80
 Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val
 85 90 95
 Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His Ala Ala Phe
 100 105 110
 Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser
 115 120 125
 Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
 130 135 140
 His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Arg
 145 150 155 160
 Arg Ser Gln Thr Ser Ser Gly Thr Ala Ser Thr Ser Thr Thr Phe Gly
 165 170 175
 Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr
 180 185 190
 Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys
 195 200 205
 His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln
 210 215 220
 Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu Leu
 225 230 235 240
 Pro Tyr Ala Ala Val Gln Gly Val Ala Ser Met Val Cys Phe Leu Arg
 245 250 255
 Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu
 260 265 270
 Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp Asp
 275 280 285
 Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 290 295 300
 Asn Gln Gly Phe His Asn Ile Thr Asp Thr His Glu Ala His His Leu
 305 310 315 320
 Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile
 325 330 335
 Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Val
 340 345 350
 Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp
 355 360 365

Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
370 375 380

<210> 8
<211> 309
<212> PRT
<213> Glycine max

<400> 8
Ser Leu Leu Thr Ser Phe Ser Tyr Val Val Tyr Asp Leu Ser Phe Ala
1 5 10 15

Phe Ile Phe Tyr Ile Ala Thr Thr Tyr Phe His Leu Leu Pro Gln Pro
20 25 30

Phe Ser Leu Ile Ala Trp Pro Ile Tyr Trp Val Leu Gln Gly Cys Leu
35 40 45

Leu Thr Arg Val Cys Gly His His Ala Phe Ser Lys Tyr Gln Trp Val
50 55 60

Asp Asp Val Val Gly Leu Thr Leu His Ser Thr Leu Leu Val Pro Tyr
65 70 75 80

Phe Ser Trp Lys Ile Ser His Arg Arg His His Ser Asn Thr Gly Ser
85 90 95

Leu Asp Arg Asp Glu Arg Val Lys Val Ala Trp Phe Ser Lys Tyr Leu
100 105 110

Asn Asn Pro Leu Gly Arg Ala Val Ser Leu Leu Val Thr Leu Thr Ile
115 120 125

Gly Trp Pro Met Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp
130 135 140

Ser Phe Ala Ser His Tyr His Pro Tyr Arg Val Arg Leu Leu Ile Tyr
145 150 155 160

Val Ser Asp Val Ala Leu Phe Ser Val Thr Tyr Ser Leu Tyr Arg Val
165 170 175

Ala Thr Leu Lys Gly Leu Val Trp Leu Leu Cys Val Tyr Gly Val Pro
180 185 190

Leu Leu Ile Val Asn Gly Phe Leu Val Thr Ile Thr Tyr Leu Arg Val
195 200 205

His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Lys Gly Ala Leu Ala Thr
210 215 220

Met Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His His Ile Thr
225 230 235 240

Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His
245 250 255

Leu Arg Val Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Asp Thr
260 265 270

Pro Phe Tyr Lys Ala Leu Trp Arg Glu Ala Arg Glu Cys Leu Tyr Val
 275 280 285
 Glu Pro Asp Glu Gly Thr Ser Glu Lys Gly Val Tyr Trp Tyr Arg Asn
 290 295 300
 Lys Tyr Leu Arg Val
 305

<210> 9
 <211> 302
 <212> PRT
 <213> Glycine max

<400> 9
 Phe Ser Tyr Val Val Tyr Asp Leu Thr Ile Ala Phe Cys Leu Tyr Tyr
 1 5 10 15

Val Ala Thr His Tyr Phe His Leu Leu Pro Gly Pro Leu Ser Phe Arg
 20 25 30

Gly Met Ala Ile Tyr Trp Ala Val Gln Gly Cys Ile Leu Thr Gly Val
 35 40 45

Trp Val Val Ala Phe Ser Asp Tyr Gln Leu Leu Asp Asp Ile Val Gly
 50 55 60

Leu Ile Leu His Ser Ala Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr
 65 70 75 80

Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu
 85 90 95

Val Phe Val Pro Lys Val Ser Lys Tyr Leu Asn Asn Pro Pro Gly Arg
 100 105 110

Val Leu Thr Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu Tyr Leu
 115 120 125

Ala Leu Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys His Tyr
 130 135 140

Asp Pro Tyr Gly Pro Ile Tyr Ser Val Ile Ser Asp Ala Gly Val Leu
 145 150 155 160

Ala Val Val Tyr Gly Leu Phe Arg Leu Ala Met Ala Lys Gly Leu Ala
 165 170 175

Trp Val Val Cys Val Tyr Gly Val Pro Leu Leu Val Val Asn Gly Phe
 180 185 190

Leu Val Leu Ile Thr Phe Leu Gln His Thr His Val Ser Glu Trp Asp
 195 200 205

Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 210 215 220

Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
 225 230 235 240

Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Val Glu Tyr
 245 250 255
 Tyr Arg Phe Asp Glu Thr Pro Phe Val Lys Ala Met Trp Arg Glu Ala
 260 265 270
 Arg Glu Cys Ile Tyr Val Glu Pro Asp Gln Ser Thr Glu Ser Lys Gly
 275 280 285
 Val Phe Trp Tyr Asn Asn Lys Leu Ala Met Glu Ala Thr Val
 290 295 300

<210> 10
 <211> 371
 <212> PRT
 <213> Zea mays

<400> 10
 Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys Gln Glu
 1 5 10 15
 Gln Leu Ala Arg Ala Thr Gly Gly Ala Ala Met Gln Arg Ser Pro Val
 20 25 30
 Glu Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro
 35 40 45
 His Cys Phe Glu Arg Ser Val Leu Lys Ser Phe Ser Tyr Val Val His
 50 55 60
 Asp Leu Val Ile Ala Ala Ala Leu Leu Tyr Phe Ala Leu Ala Ile Ile
 65 70 75 80
 Pro Ala Leu Pro Ser Pro Leu Arg Tyr Ala Ala Trp Pro Leu Tyr Trp
 85 90 95
 Ile Ala Gln Gly Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Val Val
 100 105 110
 Gly Leu Val Leu His Ser Ser Leu Met Val Pro Tyr Phe Ser Trp Lys
 115 120 125
 Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp
 130 135 140
 Glu Val Phe Val Pro Lys Lys Glu Ala Leu Pro Trp Tyr Thr Pro
 145 150 155 160
 Tyr Val Tyr Asn Asn Pro Val Gly Arg Val Val His Ile Val Val Gln
 165 170 175
 Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Thr Asn Ala Ser Gly Arg
 180 185 190
 Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr
 195 200 205
 Asn Asp Arg Glu Arg Ala Gln Ile Phe Val Ser Asp Ala Gly Val Val
 210 215 220

Ala Val Ala Phe Gly Leu Tyr Lys Leu Ala Ala Ala Phe Gly Val Trp
 225 230 235 240
 Trp Val Val Arg Val Tyr Ala Val Pro Leu Leu Ile Val Asn Ala Trp
 245 250 255
 Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu Pro His
 260 265 270
 Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met
 275 280 285
 Asp Arg Asp Tyr Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp
 290 295 300
 Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala
 305 310 315 320
 Met Glu Ala Thr Lys Ala Ile Arg Pro Ile Leu Gly Asp Tyr Tyr His
 325 330 335
 Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Gly Glu
 340 345 350
 Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Asn
 355 360 365
 Lys Lys Phe
 370

<210> 11
 <211> 224
 <212> PRT
 <213> Ricinus communis

<400> 11
 Trp Val Met Ala His Asp Cys Gly His His Ala Phe Ser Asp Tyr Gln
 1 5 10 15
 Leu Leu Asp Asp Val Val Gly Leu Ile Leu His Ser Cys Leu Leu Val
 20 25 30
 Pro Tyr Phe Ser Trp Lys His Ser His Arg Arg His His Ser Asn Thr
 35 40 45
 Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys Lys Lys Ser Ser
 50 55 60
 Ile Arg Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro Gly Arg Ile Met
 65 70 75 80
 Thr Ile Ala Val Thr Leu Ser Leu Gly Trp Pro Leu Tyr Leu Ala Phe
 85 90 95
 Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys His Tyr Asp Pro
 100 105 110
 Tyr Gly Pro Ile Tyr Asn Asp Arg Glu Arg Ile Glu Ile Phe Ile Ser
 115 120 125

Asp Ala Gly Val Leu Ala Val Thr Phe Gly Leu Tyr Gln Leu Ala Ile
130 135 140

Ala Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly Val Pro Leu Leu
145 150 155 160

Val Val Asn Ser Phe Leu Val Leu Ile Thr Phe Leu Gln His Thr His
165 170 175

Pro Ala Leu Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly
180 185 190

Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe
195 200 205

His Asn Ile Thr Asp Thr Gln Val Ala His His Leu Phe Thr Met Pro
210 215 220

<210> 12

<211> 20

<212> DNA

<213> Ricinus communis

<400> 12

gctctttgt gcgctcattc

20

<210> 13

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: homologous regions of Ricinus communis deduced by hydroxylase sequence and Arabidopsis thaliana deduced desaturase sequence for use as oligonucleotide primer

<400> 13

cggtaccaga aaacgccttg

20

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: homologous regions of Ricinus communis deduced by hydroxylase sequence and Arabidopsis thaliana deduced desaturase sequence for use as oligonucleotide primer

<220>

<221> UNSURE

<222> 6, 12, 15

<223> any

<400> 14

taywsncaym gnmgncayca

20

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: homologous regions of Ricinus communis deduced by hydroxylase sequence and Arabidopsis thaliana deduced desaturase sequence for use as oligonucleotide primer

<220>
<221> UNSURE
<222> 7, 10, 16
<223> any

<400> 15
rtgrtgngcn acrtgngtrt c

21