Funciones con datos normalizados

Camila Silva

2023-05-31

```
library("phyloseq")
library("ggplot2")
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.6-4

library("RColorBrewer")
library("stringi")
```

Cargado de datos originales

```
setwd("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1")
outpath = "/home/camila/GIT/Tesis_Maestria/Analisis_Comparativo/Fresa_Solena/Results_img"

fresa_kraken <- import_biom("fresa_kraken.biom")
colnames(fresa_kraken@tax_table@.Data) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "fresa_kraken@tax_table@.Data <- substr(fresa_kraken@tax_table@.Data,4,100)
colnames(fresa_kraken@otu_table@.Data) <- substr(colnames(fresa_kraken@otu_table@.Data),1,6)
metadata_fresa <- read.csv2("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1/metadata.csv",head
fresa_kraken@sam_data <- sample_data(metadata_fresa)
fresa_kraken@sam_data$Sample<-row.names(fresa_kraken@sam_data)
colnames(fresa_kraken@sam_data)<-c('Treatment', 'Samples')
samples_to_remove <- c("MP2079", "MP2080", "MP2088", "MP2109", "MP2137")
fresa_kraken_fil <- prune_samples(!(sample_names(fresa_kraken) %in% samples_to_remove), fresa_kraken)</pre>
```

Normalización de los datos

Cada una de las funciones de normalización toma un objeto phloseq y devuelve un objeto physeq cuya tabla otu se transforma.

edgeRnorm

Esta función escala datos NGS normalizados utilizando la función de normalización provista en edgeR.

```
edgeRnorm = function(phy, ...){
  require("edgeR")
  require("phyloseq")
  if (!taxa_are_rows(phy)) {
    phy <- t(phy) #transpone el objeto phyoseq
 x = as(otu_table(phy), "matrix")
  x = x + 1
  y = edgeR::DGEList(counts = x, remove.zeros = TRUE)
  z = edgeR::calcNormFactors(y, ...)
  if (!all(is.finite(z$samples$norm.factors))) {
    stop("Something wrong with edgeR::calcNormFactors on this data, non-finite $norm.factors")
  }
 return(z)
}
z <- edgeRnorm(fresa_kraken_fil, method = "TMM")</pre>
## Loading required package: edgeR
## Loading required package: limma
unimos z con el resto del objeto phyloseq
nor fresa kraken fil <- merge phyloseq(otu table(z@.Data[[1]], taxa are rows = TRUE),
                         tax_table(fresa_kraken_fil@tax_table@.Data),
                         fresa kraken fil@sam data)
```

Haciendo el mismo analisis del reporte 3 tomando los datos normalizados para poder realizar una comparación en los resultados.

Subconjunto de "Eukaryota"

```
merge_Eukaryota<-subset_taxa(nor_fresa_kraken_fil,Kingdom=="Eukaryota")</pre>
```

Subconjunto de "Bacteria"

```
merge_Bacteria<-subset_taxa(nor_fresa_kraken_fil,Kingdom=="Bacteria")</pre>
```

Funciones

Crea los subconjuntos de datos input phy phyliseq total tax rango al que queremos recortar output

```
glomToGraph<-function(phy,tax){
    ## creamos el subconjunto dependiendo del linaje taxonomico deseado
    glom <- tax_glom(phy, taxrank = tax)
    ## sacamos los porcentajes
    percentages <- transform_sample_counts(glom, function(x) x*100 / sum(x) )
    percentages_df <- psmelt(percentages)
    return(list(glom,percentages,percentages_df))
}</pre>
```

Graficar abundancias stackbar

input entra el percentages df

```
Abundance_barras <- function(phy,tax,attribute,abundance_percentage){
  ##llamar funcion de datos
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]] #phyloseq</pre>
  percentages <- Data[[2]] #phyloseq</pre>
  percentages_df <- Data[[3]] # dataframe</pre>
  ## Graficamos para cada subconjunto las barras de abundancia
  plot_barras <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill=tax ,color=attr</pre>
    scale colour manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.2, "cm"),
          legend.key.width = unit(0.25, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=8, face = "bold"),
          legend.text=element_text(size=6),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  percentages_df$tax<-percentages_df[,ncol(percentages_df)]</pre>
  percentages_df$tax[percentages_df$Abundance < abundance_percentage] <- "Others"</pre>
  percentages_df$tax <- as.factor(percentages_df$tax)</pre>
  plot_percentages <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill='tax', col
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.3, "cm"),
          legend.key.width = unit(0.5, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=10, face = "bold"),
          legend.text=element_text(size=8),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  return(list(plot_barras,plot_percentages))
```

Graficar betadiversity

```
Beta_diversity <- function(phy,tax,attribute,distance){
  Data <- glomToGraph(phy,tax)
  glom <- Data[[1]]
#CREAR UN GLOM AL 10%
percentages <- Data[[2]]
percentages_df <- Data[[3]]
## Beta diversidad
meta_ord <- ordinate(physeq = percentages, method = "NMDS", distance = distance)
plot_beta <- plot_ordination(physeq = percentages, ordination = meta_ord, color = attribute) +
  geom_text(mapping = aes(label = colnames(phy@otu_table@.Data)), size = 3, vjust = 1.5)
  return(plot_beta)
}</pre>
```

Graficar alphadiversity

```
Alpha_diversity <- function(phy,tax,attribute){</pre>
  ## llamamos la funcion que crea los dataset
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]]</pre>
 percentages <- Data[[2]]</pre>
  percentages_df <- Data[[3]]</pre>
  ## Alfa diversidad
 plot_alpha <- plot_richness(physeq = glom, measures = c("Observed", "Chao1", "Shannon", "simpson"), x = a</pre>
 return(plot_alpha)
        Eukarya by Phylum
Barras_Phylum <- Abundance_barras(merge_Eukaryota, 'Phylum', 'Treatment', 10.0)
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with 'aes()'.
## i See also 'vignette("ggplot2-in-packages")' for more information.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
Barras_Phylum[1] # normal
## [[1]]
```


Barras_Phylum[2]

Abundance

Beta_diversity(merge_Eukaryota , 'Phylum' , 'Treatment', 'bray')

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.01197068
## Run 1 stress 9.889248e-05
## ... New best solution
## ... Procrustes: rmse 0.03525563 max resid 0.09422638
## Run 2 stress 7.818682e-05
## ... New best solution
## ... Procrustes: rmse 0.0002159789 max resid 0.0005655097
## ... Similar to previous best
## Run 3 stress 0.0001011747
## ... Procrustes: rmse 0.0002355887 max resid 0.000621583
## ... Similar to previous best
## Run 4 stress 0.000309758
## ... Procrustes: rmse 0.0005170606 max resid 0.001251241
## ... Similar to previous best
## Run 5 stress 4.005523e-05
## ... New best solution
## ... Procrustes: rmse 8.15411e-05 max resid 0.0002405467
## ... Similar to previous best
## Run 6 stress 6.976465e-05
## ... Procrustes: rmse 2.73921e-05 max resid 6.102336e-05
## ... Similar to previous best
```

```
## Run 7 stress 0.0001000429
## ... Procrustes: rmse 0.0002890018 max resid 0.0007874319
## ... Similar to previous best
## Run 8 stress 9.895129e-05
## ... Procrustes: rmse 3.184906e-05 max resid 9.916759e-05
## ... Similar to previous best
## Run 9 stress 9.294297e-05
## ... Procrustes: rmse 9.371295e-05 max resid 0.0002302141
## ... Similar to previous best
## Run 10 stress 5.607435e-05
## ... Procrustes: rmse 2.143592e-05 max resid 4.889522e-05
## ... Similar to previous best
## Run 11 stress 0.0003939858
## ... Procrustes: rmse 0.001147254 max resid 0.003083277
## ... Similar to previous best
## Run 12 stress 5.443749e-05
## ... Procrustes: rmse 1.9537e-05 max resid 4.309105e-05
## ... Similar to previous best
## Run 13 stress 5.53932e-05
## ... Procrustes: rmse 2.099716e-05 max resid 4.579697e-05
## ... Similar to previous best
## Run 14 stress 0.0001078389
## ... Procrustes: rmse 0.0003120376 max resid 0.0008479884
## ... Similar to previous best
## Run 15 stress 8.570531e-05
## ... Procrustes: rmse 8.491113e-05 max resid 0.0002139273
## ... Similar to previous best
## Run 16 stress 0.001664373
## Run 17 stress 0.0009139555
## Run 18 stress 7.956569e-05
## ... Procrustes: rmse 2.811447e-05 max resid 5.75333e-05
## ... Similar to previous best
## Run 19 stress 9.211771e-05
## ... Procrustes: rmse 2.977756e-05 max resid 7.812541e-05
## ... Similar to previous best
## Run 20 stress 0.0009805078
## *** Best solution repeated 13 times
## Warning in metaMDS(veganifyOTU(physeq), distance, ...): stress is (nearly)
## zero: you may have insufficient data
```



```
Alpha_diversity(merge_Eukaryota , 'Phylum' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Family

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1060678
## Run 1 stress 0.1060682
## ... Procrustes: rmse 0.0001028798 max resid 0.0005915666
## ... Similar to previous best
## Run 2 stress 0.1061217
## ... Procrustes: rmse 0.0041568 max resid 0.02267181
## Run 3 stress 0.1060657
  ... New best solution
## ... Procrustes: rmse 0.007448014 max resid 0.04961758
## Run 4 stress 0.1060685
## ... Procrustes: rmse 0.007469715 max resid 0.04966758
## Run 5 stress 0.1060659
## ... Procrustes: rmse 9.97509e-05 max resid 0.0005361477
## ... Similar to previous best
## Run 6 stress 0.1060673
## ... Procrustes: rmse 0.007408574 max resid 0.04955511
## Run 7 stress 0.1226876
## Run 8 stress 0.1231561
## Run 9 stress 0.1061211
## ... Procrustes: rmse 0.008498236 max resid 0.05011349
## Run 10 stress 0.1061092
## ... Procrustes: rmse 0.004302652 max resid 0.02332515
```

```
## Run 11 stress 0.1060632
## ... New best solution
## ... Procrustes: rmse 0.00206139 max resid 0.009995199
## ... Similar to previous best
## Run 12 stress 0.1061216
## ... Procrustes: rmse 0.00880617 max resid 0.05043059
## Run 13 stress 0.1060671
## ... Procrustes: rmse 0.007765716 max resid 0.05000833
## Run 14 stress 0.1229768
## Run 15 stress 0.1229739
## Run 16 stress 0.4031998
## Run 17 stress 0.1060693
## ... Procrustes: rmse 0.007802046 max resid 0.05004872
## Run 18 stress 0.1060629
## ... New best solution
## ... Procrustes: rmse 3.389585e-05 max resid 0.0001234405
## ... Similar to previous best
## Run 19 stress 0.1060684
## ... Procrustes: rmse 0.007783704 max resid 0.0500382
## Run 20 stress 0.1289051
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Eukaryota , 'Family' , 'Treatment')

Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided

```
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Genero

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1074764
## Run 1 stress 0.107476
## ... New best solution
## ... Procrustes: rmse 0.001314157 max resid 0.00705542
## ... Similar to previous best
## Run 2 stress 0.1074767
## ... Procrustes: rmse 0.001313808 max resid 0.006996822
## ... Similar to previous best
## Run 3 stress 0.1074765
## ... Procrustes: rmse 0.001319793 max resid 0.007012956
## ... Similar to previous best
## Run 4 stress 0.1074767
## ... Procrustes: rmse 0.0001846096 max resid 0.001024319
## ... Similar to previous best
## Run 5 stress 0.1086937
## Run 6 stress 0.1199206
## Run 7 stress 0.1074768
## ... Procrustes: rmse 0.001390626 max resid 0.007388438
## ... Similar to previous best
## Run 8 stress 0.1074893
## ... Procrustes: rmse 0.002917775 max resid 0.01522508
## Run 9 stress 0.1086943
```

```
## Run 10 stress 0.11992
## Run 11 stress 0.1215632
## Run 12 stress 0.1169324
## Run 13 stress 0.1074765
## ... Procrustes: rmse 0.001329751 max resid 0.007069924
## ... Similar to previous best
## Run 14 stress 0.1198
## Run 15 stress 0.1196314
## Run 16 stress 0.127567
## Run 17 stress 0.1074767
## ... Procrustes: rmse 0.0001797517 max resid 0.0009988099
## ... Similar to previous best
## Run 18 stress 0.1074766
## ... Procrustes: rmse 0.00135151 max resid 0.007172921
## ... Similar to previous best
## Run 19 stress 0.1074756
## ... New best solution
## ... Procrustes: rmse 0.0001882877 max resid 0.001036694
## ... Similar to previous best
## Run 20 stress 0.1074764
## ... Procrustes: rmse 0.001121884 max resid 0.005921689
## ... Similar to previous best
## *** Best solution repeated 2 times
```



```
Alpha_diversity(merge_Eukaryota , 'Genus' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Species

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Eukaryota , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1207974
## Run 1 stress 0.1203176
## ... New best solution
## ... Procrustes: rmse 0.02159519 max resid 0.1291859
## Run 2 stress 0.1200151
## ... New best solution
## ... Procrustes: rmse 0.01150802 max resid 0.0769741
## Run 3 stress 0.120014
## ... New best solution
## ... Procrustes: rmse 0.0002715031 max resid 0.001355024
## ... Similar to previous best
## Run 4 stress 0.1202943
## ... Procrustes: rmse 0.01095976 max resid 0.07705545
## Run 5 stress 0.1249151
## Run 6 stress 0.1388923
## Run 7 stress 0.120658
## Run 8 stress 0.124854
## Run 9 stress 0.1249818
## Run 10 stress 0.1200138
## ... New best solution
## ... Procrustes: rmse 0.001034876 max resid 0.005056942
## ... Similar to previous best
```

```
## Run 11 stress 0.1200136
## ... New best solution
## ... Procrustes: rmse 0.0002684173 max resid 0.001116539
## ... Similar to previous best
## Run 12 stress 0.133594
## Run 13 stress 0.1248472
## Run 14 stress 0.1200142
## ... Procrustes: rmse 0.0009451305 max resid 0.004285167
## ... Similar to previous best
## Run 15 stress 0.120053
## ... Procrustes: rmse 0.003444614 max resid 0.0173501
## Run 16 stress 0.1249152
## Run 17 stress 0.1248538
## Run 18 stress 0.1200146
## ... Procrustes: rmse 0.001058271 max resid 0.004855841
## ... Similar to previous best
## Run 19 stress 0.1200134
## ... New best solution
## ... Procrustes: rmse 0.0001936794 max resid 0.001210324
## ... Similar to previous best
## Run 20 stress 0.1248475
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Eukaryota , 'Species' , 'Treatment')

#——Bacteria by Phylum

Barras_Species <- Abundance_barras(merge_Bacteria, 'Phylum', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
Beta_diversity(merge_Bacteria , 'Phylum' , 'Treatment', 'bray')
```

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1513513
## Run 1 stress 0.1591989
## Run 2 stress 0.1646307
## Run 3 stress 0.1569451
## Run 4 stress 0.1689358
## Run 5 stress 0.1611884
## Run 6 stress 0.155079
## Run 7 stress 0.1566522
## Run 8 stress 0.1501999
## ... New best solution
## ... Procrustes: rmse 0.04681636 max resid 0.3138002
## Run 9 stress 0.1595085
## Run 10 stress 0.1564686
## Run 11 stress 0.1664798
## Run 12 stress 0.1607572
## Run 13 stress 0.16398
## Run 14 stress 0.1504408
## ... Procrustes: rmse 0.04432778 max resid 0.2971084
## Run 15 stress 0.170348
## Run 16 stress 0.1702325
## Run 17 stress 0.1552923
```

```
## Run 18 stress 0.1732893
## Run 19 stress 0.1639814
## Run 20 stress 0.1660028
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 2: no. of iterations >= maxit
## 18: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Phylum' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Bacteria by Familia

Barras_Species <- Abundance_barras(merge_Bacteria, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1371579
## Run 1 stress 0.133966
## ... New best solution
## ... Procrustes: rmse 0.05000407 max resid 0.3009845
## Run 2 stress 0.1340831
## ... Procrustes: rmse 0.002883314 max resid 0.0144938
## Run 3 stress 0.1342678
## ... Procrustes: rmse 0.01080321 max resid 0.05772273
## Run 4 stress 0.1341087
## ... Procrustes: rmse 0.008984848 max resid 0.05444024
## Run 5 stress 0.1341086
## ... Procrustes: rmse 0.009118656 max resid 0.05504089
## Run 6 stress 0.1749506
## Run 7 stress 0.1480008
## Run 8 stress 0.1339659
## ... New best solution
## ... Procrustes: rmse 8.251938e-05 max resid 0.000305396
## ... Similar to previous best
## Run 9 stress 0.1397728
## Run 10 stress 0.1342675
## ... Procrustes: rmse 0.01062292 max resid 0.05713492
## Run 11 stress 0.1373272
```

```
## Run 12 stress 0.1371496

## Run 13 stress 0.1712092

## Run 14 stress 0.146128

## Run 15 stress 0.1373142

## Run 16 stress 0.1673007

## Run 17 stress 0.1342682

## ... Procrustes: rmse 0.01085522 max resid 0.05782109

## Run 18 stress 0.1373217

## Run 19 stress 0.1372433

## Run 20 stress 0.1339663

## ... Procrustes: rmse 0.0002034761 max resid 0.0007390473

## *** Best solution repeated 2 times
```


Alpha_diversity(merge_Bacteria , 'Family' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Bacteria by Genero

Barras_Species <- Abundance_barras(merge_Bacteria, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

			_		
lex flavores	Desulfatibasillum	Labrenzia		Parenicipacier	Subtercola
flexum	Desulfatibacillum	Labrys		Paroceanicella	Succinivibrio
habitans	Desulfitobacterium	Laceyella		Parolsenella	Suicoccus
luna	Desulfobacca	Lachnoanaerobaculum		Parvibaculum	Sulfidibacter
marina	Desulfobacter	Lachnoclostridium		Parvimonas	Sulfitobacter
ncola	Desulfobacula	Lachnospira		Parvularcula	Sulfuricaulis
rhabdus	Desulfobulbus	Lacibacter		Pasteurella	Sulfuricella
rufa	Desulfocapsa	Lacimicrobium		Paucibacter	Sulfuricurvum
salimonas	Desulfococcus	Lacinutrix		Paucilactobacillus	Sulfuriferula
salinus	Desulfocurvibacter	Lacipirellula		Pauljensenia	Sulfuriflexus
sediminimonas	Desulfofarcimen	Lacrimispora		Pectinatus	Sulfurifustis
sphaera	Desulfoglaeba	Lacticaseibacillus		Pectobacterium	Sulfurihydrogenibium
talea	Desulfohalobium	Lactiplantibacillus		Pediococcus	Sulfurimicrobium
iibacter	Desulfoluna	Lactobacillus		Pedobacter	Sulfurimonas
hidicoccus	Desulfolutivibrio	Lactococcus		Pedococcus	Sulfuriroseicoccus
hnia	Desulfomarina	Lacunisphaera		Pelagerythrobacter	Sulfuritalea
nobacterium	Desulfomicrobium	Lancefieldella	_	Pelagibacterium	Sulfuritortus
angium	Desulfomonile	Lapidilactobacillus	_	Pelagovum	Sulfurivermis
bacter	Desulfonema	Laribacter		Pelistega	Sulfurospirillum
cibacterium	Desulforamulus	Larkinella		Pelobacter	Sulfurovum
ibacter	Desulforapulum	Latilactobacillus		Pelodictyon	Sutcliffiella
imonas	Desulfosarcina	Lautropia		Pelolinea	Sutterella
natoleum	Desulfoscipio	Lawsonella		Pelosinus	Suttonella
nicicoccus	Desulfosediminicola	Lawsonia		Pengzhenrongella	Swingsia
nophonus	Desulfosporosinus	Leadbetterella		Peptacetobacter	Symbiobacterium
obacter	Desulfosudis	Leclercia		Peptoclostridium	Sýmmachiella
a	Desulfotalea	Lederbergia		Peptoniphilus	Synechococcus
cacaulis	Desulfotomaculum	Leeuwenhoekiella		Peribacillus	Synechocystis
lassotoga	Desulfovibrio	Legionella		Periweissella	Syntrophobacter
ntibacter	Desulfurispirillum	Leifsonia		Permianibacter	Syntrophobotulus
obium	Desulfurivibrio	Leisingera		Persephonella	Syntrophomonas
acter	Desulfurobacterium	Lelliottia		Persicimonas	Syntrophotalea
ntiacibacter	Desulfuromonas	Leminorella		Peteryoungia	Syntrophothermus
	Devosia	Lentibacillus		Petrimonas	
ntimicrobium					Syntrophus
ntimonas	Devriesea	Lentilactobacillus		Petrocella	Tabrizicola
ticoccus	Dialister	Lentilitoribacter		Petrotoga	Tamlana Tamlana
imonas	Diaminobutyricimonas	Lentzea		Phaeobacter	<u>Tannerella</u>
liella	Diaphorobacter	Leptodesmis		Phascolarctobacterium	Tardibacter
idibacter	Dichelobacter	Leptolyngbya		Phenylobacterium	Tardiphaga
wickia	Dickeya	Leptospira		Phnomibacter	Tateyamaria
acterium	Dictyóglomus	Leptospirillum		Phocaeicola	Tatlóckia
ircus	■ Dietzia	 Leptothermofonsia 		Phoenicibacter	Tatumella
hizobium	Dinoroseobacter	Leptothrix		Photobacterium	Tautonia
pira	Dissulfurimicrobium	Leptotrichia		Photorhabdus	Taylorella
pirillum	Dissulfurispira	Leucobacter		Phototrophicus	Teĺmatocola
obacter	■ Dokdonella	Leuconostoc		Phreatobacter	Tenacibaculum
llus	Dokdonia	Levilactobacillus		Phycicoccus	Tenuifilum
erioplanes	Dolichospermum	Liberibacter		Phycisphaera	Tepidanaerobacter
eriovorax	Dolosigranulum	Lichenicola		Phyllobacterium	Tepidibacter
eroides	Dongshaea	Lichenihabitans		Phytobacter	Tepidibacter
duia	Dorea	Ligilactobacillus		Phytohabitans	Tepidimonas
esiella	Draconibacterium	Lignipirellula		Pigmentiphaga	Tepiditoga
onella	Duganella	Limihaloglobus		Pikeienuella	Terasakiella
ia	Duncaniella	Limnobacter		Pimelobacter	Teredinibacter
lea	Dyadobacter	Limnobaculum		Pirellula	Terribacillus
lovibrio	Dyella	Limnochorda		Pirellulimonas	<u>Terricaulis</u>
jiatoa	Dysgonomonas	Limnoglobus		Piscirickettsia	Terriglobus Terribabitans
írinckia	- Divenemohacter	 I imnohahitane 		Dietricoccue	- Iarrihahitane

Abundance

Beta_diversity(merge_Bacteria , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1449554
## Run 1 stress 0.1568268
## Run 2 stress 0.4042205
## Run 3 stress 0.1381229
## ... New best solution
## ... Procrustes: rmse 0.05965033 max resid 0.3019309
## Run 4 stress 0.1616195
## Run 5 stress 0.1396337
## Run 6 stress 0.1394425
## Run 7 stress 0.1449217
## Run 8 stress 0.1391332
## Run 9 stress 0.1478272
## Run 10 stress 0.1381222
## ... New best solution
## ... Procrustes: rmse 0.0002157188 max resid 0.0007001074
## ... Similar to previous best
## Run 11 stress 0.1446967
## Run 12 stress 0.1394436
## Run 13 stress 0.1394896
## Run 14 stress 0.1538027
## Run 15 stress 0.1394435
## Run 16 stress 0.1446968
```

```
## Run 17 stress 0.1396111
## Run 18 stress 0.1394431
## Run 19 stress 0.1425789
## Run 20 stress 0.1382031
## ... Procrustes: rmse 0.005269061 max resid 0.02762457
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Genus' , 'Treatment')

#——Bacteria by Species

Barras_Species <- Abundance_barras(merge_Bacteria, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1576092
## Run 1 stress 0.1716447
## Run 2 stress 0.1884511
## Run 3 stress 0.1586321
## Run 4 stress 0.1576103
## ... Procrustes: rmse 0.0005398961 max resid 0.002832279
## ... Similar to previous best
## Run 5 stress 0.1520053
## ... New best solution
## ... Procrustes: rmse 0.06042515 max resid 0.3534131
## Run 6 stress 0.1657862
## Run 7 stress 0.1625793
## Run 8 stress 0.1599885
## Run 9 stress 0.1861631
## Run 10 stress 0.1586322
## Run 11 stress 0.1786974
## Run 12 stress 0.1519651
## ... New best solution
## ... Procrustes: rmse 0.006402111 max resid 0.04373792
## Run 13 stress 0.1586322
## Run 14 stress 0.1569664
## Run 15 stress 0.1752804
```

```
## Run 16 stress 0.1549728
## Run 17 stress 0.1566349
## Run 18 stress 0.1561432
## Run 19 stress 0.1515452
## ... New best solution
## ... Procrustes: rmse 0.01317253 max resid 0.08874532
## Run 20 stress 0.1519647
## ... Procrustes: rmse 0.01321349 max resid 0.08868381
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 6: no. of iterations >= maxit
## 14: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Species' , 'Treatment')

