Plano de Ensino – Teoria da Computação

Instituto Federal de Educação, Ciência e Tecnologia de Brasília, campus Taguatinga

1 Identificação da Disciplina

• Nome da Disciplina: Teoria da Computação;

• Curso: Computação (ABI);

• Pré-requisitos: Algoritmos e Programação de Computadores;

• Carga Horária: 72 h/a.

• Período: 2022/2;

• Professor: Daniel Saad Nogueira Nunes.

2 Bases Tecnológicas (Ementa)

Programas, Máquinas e Computações. Máquinas de Turing. Funções Recursivas. Computabilidade. Decidibilidade. Análise e Complexidade de Algoritmos. Classes e complexidade de problemas computacionais.

3 Objetivos e Competências

- Abordar os limites teóricos da computação através dos problemas indecidíveis.
- Introduzir a tese de Church-Turing e a compreensão de equivalência de modelos computacionais relevantes.
- Compreender a dificuldade inerente aos problemas e a classificação em classes de complexidade.

4 Habilidades Esperadas

- Ser capaz de avaliar a computabilidade de problemas
- Avaliar a complexidade de problemas.
- Compreender a relevância e equivalência de diferentes modelos computacionais.

5 Conteúdo Programático

- 1. Introdução à disciplina;
- 2. Conceitos Preliminares:
- 3. Máquinas de Turing e variantes;
- 4. A tese de Chuch-Turing;
- 5. Decidibilidade e Problemas Indecidíveis;
- 6. Redutibilidade;
- 7. Tópicos avançados em Computabilidade.

6 Metodologias de Ensino

Tradicional.

7 Recursos de Ensino

Os recursos de ensinam baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

8 Avaliação

A nota final é calculada como:

$$N_f = \frac{\sum_{i=1}^3 P_i}{3}$$

em que P_i denota a nota da i-ésima prova. Existe previsão de uma avaliação extra, de caráter substitutivo, a qual substitui a nota da menor prova.

O aluno é considerado **aprovado** se, e somente se, obtiver $N_f \ge 6.0$ e presença $\ge 75\%$. As presenças são computadas através de chamadas nas atividades síncronas e através da entrega das atividades assíncronas.

9 Observações

Será atribuída nota **ZERO** a qualquer avaliação que incidir em plágio.

10 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

Semana do dia	Conteúdo	Total de Horas
14/09/2022	Apresentação da disciplina	4
21/09/2022	Conceitos Preliminares	4
28/09/2022	Máquinas de Turing	4
05/10/2022	Máquinas de Turing	4
12/10/2022	Máquinas de Turing*	2
19/10/2022	Conecta IF	4
26/10/2022	Prova 1*	4
02/11/2022	Variantes de Máquinas de Turing	4
09/11/2022	A definição de Algoritmo e a Tese de Church-Turing	4
16/11/2022	A indecidibilidade do problema da parada	4
23/11/2022	A indecidibilidade do problema da parada	4
30/11/2022	Prova 2*	2
07/12/2022	Reduções	4
14/12/2022	Reduções	4
21/12/2022	Reduções	4
04/01/2023	Prova 3	4
11/01/2023	Plantão de dúvidas	4
18/01/2023	Prova Substitutiva	4
25/01/2023	Encerramento da disciplina	4

Total 72

Bibliografia

- [HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to automata theory, languages, and computation international edition (2. ed), Addison-Wesley, 2003.
- [Pap07] Christos H. Papadimitriou, Computational complexity, Academic Internet Publ., 2007.
- [Sip97] Michael Sipser, Introduction to the theory of computation, PWS Publishing Company, 1997.