Oligosaccharide Esters from the Roots of Polygala arillata

Wataru Kobayashi,† Toshio Miyase,*,† Sayako Suzuki,† Hiroshi Noguchi,† and Xin-Min Chen‡

School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan, and Division of Phytochemistry, Chengdu Institute of Biology, Chinese Academy of Sciences, 4-9 Ren Ming Nan Lu, Chengdu, Sichuan, People's Republic of China

Received February 4, 2000

Two new sucrose esters, arillatoses A (1) and B (2), and four new trisaccharide esters, arillatoses C-F (3-6), were isolated from the roots of *Polygala arillata*, together with four known sucrose esters, glomeratose E (7) and sibiricoses A_1 (8), A_5 (9), and A_6 (10). The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence.

In the course of conducting a research program on the oligosaccharide esters from Polygala species,2 we have investigated P. arillata Buch.-Ham. (Polygalaceae). This species is widely distributed in the People's Republic of China, and its roots are used as a traditional medicine in a manner similar to "Yuan zhi" (the roots of P. tenuifolia Willd.) to tranquilize, as a tonic, and to prevent loss of memory.3 No previous investigation has been reported on the oligosaccharide esters of *P. arillata*. We now report the isolation and structure elucidation of two sucrose esters, arillatoses A (1) and B (2), and four new trisaccharide esters, arillatoses C-F (3-6). Four known compounds isolated from this plant were identified by comparison of the spectral data with reported data as glomeratose E (7)1 sibiricoses A_1 (8), A_5 (9), and A_6 (10).²

Results and Discussion

The air-dried roots of P. arillata were extracted with MeOH under reflux. The MeOH extract was suspended in H₂O and extracted with ether. The H₂O layer was adsorbed on a porous polymer gel (Diaion HP-20) column and eluted

with mixtures of water and methanol. The 50% MeOH eluate was chromatographed further to afford six sucrose esters (1, 2,and 7-10) and four trisaccharide esters (3-6).

The FABMS of arillatose A (1) showed quasimolecular ion peaks at m/z 753 [M + H]⁺ and 775 [M + Na]⁺, consistent with a molecular formula of $C_{34}H_{40}O_{19}$. On alkaline hydrolysis, 1 afforded sucrose, while on acid hydrolysis, it gave D-glucose and D-fructose.4 The 1H NMR spectrum of **1** exhibited two methine protons [δ 4.81 (1H, br s) and δ 3.98 (1H, d, J = 2 Hz)], a vinyl proton at a highly deshielded position [δ 7.77 (1H, s)], and two aromatic protons [δ 6.92 (1H, s) and δ 6.34 (2H, s)], in addition to the signals due to sucrose. The aromatic proton (δ 6.34) indicated the presence of a 1,3,4,5-tetrasubstituted benzene unit in 1. All proton and carbon signals were assigned by COSY, HOHAHA, HMBC, and HMQC NMR experiments. On irradiation of the aromatic proton at δ 6.34 due to H-2', ROEs were observed at a methoxyl at δ 3.70 (6H, s), a methine proton at δ 4.81 due to H-1, a methine proton at δ 3.98 due to H-2, and an olefinic proton at δ 7.77 due to H-4 (Figure 1). From this ROE correlation between H-2' and H-4, the bond C-1-C-1' was concluded to be quasiaxial. The coupling constant between H-1 and H-2 (4 Hz) indicated that the bond C-2-H-2 was quasi-equatorial, and if the bond C-2-H-2 had been quasi-axial, the H-4 signal would have been a doublet induced by the allylic coupling with H-2.5 The CD spectrum of 1, which is identical with (1*S*,2*R*)-1,2-dihydro-6,7-dihydroxy-1-(3',4'-dihydroxyphenyl)naphthalene 2,3-dicarboxylic acid dimethyl ester,6 showed a positive first Cotton effect at 346 nm. Therefore, 1 has a 1S,2R configuration. From these data, the structure of arillatose A was deduced as cyclic $3'\rightarrow 3:6\rightarrow 2-[(1S,2R)-1-$ (4-hydroxy-3,5-dimethoxyphenyl)-1,2-dihydro-7-hydroxy-6,8-dimethoxy-2,3-naphthalenedicarboxyl]- β -D-fructofuranosyl α -D-glucopyranoside.

Arillatose B (2) was isolated as an amorphous powder. The positive mode FABMS revealed a quasimolecular ion peak at m/z 541 [M + Na]⁺, consistent with a molecular formula of C₂₂H₃₀O₁₄. On alkaline hydrolysis, 2 afforded sucrose and ferulic acid, while on acid hydrolysis, it gave D-glucose and D-fructose. In the ¹H NMR spectrum of 2, one feruloyl signal was observed, in addition to the signals due to sucrose. All proton and carbon signals in the NMR spectra (Tables 2 and 3) of 2 were assigned from its ¹H-¹H COSY, HOHAHA, HMBC, and HMQC spectra. The position of the feruloyl group in the sucrose moiety of 2 was deduced from the HMBC experiment. In this spectrum, a long-range correlation (${}^{3}J_{\text{COCH}}$) was observed between the feruloyl carbonyl carbon signal at δ 169.2 and the proton

^{*} To whom correspondence should be addressed: Tel.: 054-264-5661. Fax: 054-264-5661. E-mail: miyase@ys7.u-shizuoka-ken.ac.jp. † University of Shizuoka.

[‡] Chinese Academy of Sciences

Figure 1. Correlations observed in the ROE difference NMR spectrum of arillatose A (1).

Table 1. 1H NMR and 13C NMR Data of 1 in CD3OD at 35 °C

Glc-1 2 3 4	¹ H NMR 5.53 d (4) 3.37 dd (4, 10)	92.8	HMBC (C→H)
2 3 4	3.37 dd (4, 10)	92.8	г о
2 3 4	3.37 dd (4, 10)	92.8	
3 4			Fru-2
4		73.7	
	3.46 dd (10, 9)	75.6	
	3.10 dd (10, 9)	72.1	
5	3.70 m	73.2	Glc-6
6	4.06 dd (10, 2)	65.7	α
	4.57 dd (10, 9)		Glc-5, α
Fru-1	3.66 d (12)	66.7	
	3.77 d (12)		
2		105.3	
3	5.28 d (9)	80.3	Fru-4, α'
4	4.33 dd (10, 9)	72.2	Fru-3, -5, -6
5	3.66 a	81.9	Fru-2, -3
6	3.76 a	61.0	
	3.86 a		
1	4.81 br s	42.0	2, 8, 8a, 9, 1', 2', 3',6
2	3.98 d (2)	49.6	1, 4, 9, 10, 1'
3	, ,	123.1	
4	7.77 s	141.5	2, 3, 4a, 5, 10
4a		124.3	
5	6.92 s	109.7	4, 4a, 6, 7
6		149.5	
8			
8a			
9		174.7	
_	6.34 s		1, 1', 3', 6'
	0.015		1, 1, 0, 0
	6 34 s		1, 1', 2', 5'
-			6
			8
			3'
			5′
	3 4 5 6 6 1 2 2 3 3 4 4 4a 5 6 6 7	2 3 5.28 d (9) 4 4.33 dd (10, 9) 5 3.66 a 6 3.76 a 3.86 a 1 4.81 br s 2 3.98 d (2) 3 4 7.77 s 4a 5 6.92 s 6 7 8 8 8a 9 10 1′ 2′ 6.34 s 3′ 4′ 5′ 6′ 6.34 s MeO-6 3.91 s MeO-8 3.53 s MeO-3′ 3.70 s	2 105.3 3 5.28 d (9) 80.3 4 4.33 dd (10, 9) 72.2 5 3.66 a 81.9 6 3.76 a 61.0 3.86 a 123.1 4 4.81 br s 42.0 2 3.98 d (2) 49.6 3 7.77 s 141.5 4a 7.77 s 141.5 4a 124.3 5 6.92 s 109.7 6 149.5 7 143.8 8 146.9 8a 124.8 9 174.7 10 168.6 1' 135.6 6' 6.34 s 106.0 3' 149.1 4' 135.6 5' 6.34 s 106.0 3' 149.1 6' 6.34 s 106.0 MeO-6 3.91 s 56.9 MeO-8 3.53 s 60.8 MeO-8' 3.70 s 56.8

^a Overlapped.

signal at δ 4.27 due to H-6 of glucose. From these data, the structure of **2** was elucidated as β -D-fructofuranosyl 6-O-feruloyl- α -D-glucopyranoside.

Arillatose C (3) was obtained as an amorphous powder. The FABMS of 3 showed a quasimolecular ion peak at m/z703 [M + Na]⁺. Compound 3 gave D-glucose and D-fructose in the ratio 2:1 on acid hydrolysis, while on alkaline hydrolysis it afforded ferulic acid. In the ¹H NMR spectrum of 3, one feruloyl signal was observed. Full assignments of the proton and carbon signals were secured by a HOHAHA difference spectrum, on irradiating at the glucosyl anomeric proton signal and H-3 of the fructosyl moiety, and from ¹H−¹H COSY, HMQC, and HMBC experiments. In the HMBC spectrum, H-6 of Glc 1 was correlated to an ester

carbonyl carbon at δ 169.1. In a ROE difference spectrum, ROE was observed at δ 3.92 (1H, dd, J = 9, 9 Hz) due to H-3 of Glc 1 on irradiation at the anomeric proton signal of Glc 2 at δ 4.53 (1H, d, J = 8 Hz). Accordingly, **3** was deduced as a $O-\beta$ -D-glucopyranosyl-(1 \rightarrow 3)-6-O-feruloyl- α -D-glucopyranosyl β -D-fructofuranoside.

The FABMS of arillatose D (4) showed a quasimolecular ion peak at m/z 733 [M + Na]⁺. The ¹H NMR spectrum was similar to that of arillatose C (3), but it showed the presence of a sinapoyl residue. Compound 4 gave D-glucose and D-fructose in the ratio 2:1 on acid hydrolysis, while alkaline hydrolysis gave sinapic acid. The HMBC experiment showed a correlation between H-6 of Glc 1 and an ester carbonyl carbon at δ 169.0. Thus, **4** was determined as a $O-\beta$ -D-glucopyranosyl-(1 \rightarrow 3)-6-O-sinapoyl- α -D-glucopyranosyl β -D-fructofuranoside.

The ¹H NMR spectra of arillatoses E (5) and F (6) displayed patterns similar to those of arillatoses C (3) and D (4), respectively, except for downfield-shifted oxymethine protons due to H-3 of a fructosyl moiety at δ 5.44 (1H, d, J = 7.5 Hz). On alkaline hydrolysis, **5** afforded ferulic acid and 6 afforded sinapic acid. Compounds 5 and 6 gave D-glucose and D-fructose in the ratio 2:1 on acid hydrolysis. In the HMBC spectra of **5** and **6**, H-3 of a fructosyl moiety was correlated to an ester carbonyl carbon. Therefore, 5 was deduced as $O-\beta$ -D-glucopyranosyl- $(1\rightarrow 3)-\alpha$ -D-glucopyranosyl 3'-O-feruloyl- β -D-fructofuranoside and **6** as O- β -Dglucopyranosyl- $(1\rightarrow 3)$ - α -D-glucopyranosyl 3'-O-sinapoyl- β -D-fructofuranoside.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. UV spectra were recorded on Hitachi U-3410 spectrometer and CD spectra on a JASCO J-20A spectropolarimeter. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a JEOL α-400 FT-NMR spectrometer with TMS as an internal standard. Inverse-detected heteronuclear correlations were measured using HMQC (optimized for ${}^{1}J_{C-H} = 145$ Hz) and HMBC (optimized for ${}^{n}J_{C-H} = 8$ Hz) pulse sequences with a pulsefield gradient. Positive-mode FABMS were recorded on a JEOL JMS-SX102 spectrometer, using a m-nitrobenzyl alcohol matrix. GC was carried out with Hitachi G-3000 gas chromatograph. HPLC was performed using a JASCO System 800.

Plant Material. P. arillata Buch.-Ham. was collected in June 1996, in Sichuan, People's Republic of China. The plant was identified by Prof. Zhaoguang Liu, Chengdu Institute of Biology, Academia Sinica, People's Republic of China, and a voucher specimen (no. 960715) has been deposited in the Herbarium, School of Pharmaceutical Sciences, University of

Extraction and Isolation. The dried and powdered roots of *P. arillata* (1.98 kg) were extracted twice with MeOH under reflux. After evaporation of the solvent under reduced pressure, the MeOH extract was suspended in H₂O and extracted with diethyl ether. The H₂O layer was subjected to passage over a porous polymer gel Mitsubishi Diaion HP-20 column (15 \times 31.5 cm). The adsorbed material was eluted with 50% aqueous MeOH, 70% aqueous MeOH, and MeOH, successively, after washing with H₂O. The 50% aqueous MeOH eluate (11.7 g) was chromatographed on a Si gel (330 g) column using CHCl₃-MeOH-H₂O (80:18:2) as an eluent to afford fractions A-R. Fractions H+I (686 mg) were subjected to preparative HPLC [ODS 5 × 100 cm; CH₃CN-H₂O (9:91) \rightarrow (17:83) linear gradient] to afford 2 (6 mg). Fractions J+K (565 mg) were subjected to preparative HPLC [ODS 5 × 100 cm; CH₃CN- H_2O (9:91) \rightarrow (17:83) linear gradient] to afford **10** (86 mg). Fraction L (764 mg) was subjected to preparative HPLC [ODS 5×100 cm; CH₃CN-H₂O (8:92) \rightarrow (16:84) linear gradient] to afford 1 (15 mg), 7 (31 mg), and 8 (16 mg). Fraction M (807 mg) was subjected to preparative HPLC [ODS 5 × 100 cm;

Table 2. ¹H NMR Data of 2-6 in CD₃OD at 35 °C

		2	3	4	5	6
Sugar moiety						
o v	Glc1-1	5.42 d (4)	5.47 d (3.5)	5.47 d (3.5)	5.48 d (4)	5.48 d (3.5)
	2	3.46 dd (10, 4)	3.68 dd (9, 3.5)	3.68 dd (9, 3.5)	3.62 dd (10, 4)	3.62 dd (10, 3.5
	3	3.75 dd (10, 9)	3.92 dd (9, 9)	3.92 dd (9, 9)	3.65 dd (10, 10)	3.63 dd (10, 10)
	4	3.33 dd (9, 9)	3.44 dd (9, 10)	3.44 dd (9, 10)	3.49 dd (10, 10)	3.49 dd (10, 10)
	5	4.11 m	4.17 m	4.18 m	3.94 m	3.95 m
	6	4.27 dd (12.5, 6)	4.28 dd (12, 6)	4.28 dd (12, 6)	3.78 dd (12, 6)	3.78 dd (12, 6)
		4.51 dd (12.5, 2)	4.53 dd (12, 1.5)	4.53 dd (12, 1.5)	3.87 dd (12, 1.5)	3.87 dd (12, 3)
	Glc2-1	, , ,	4.53 d (8)	4.53 d (8)	4.28 d (7.5)	4.25 d (7)
	2		3.30^a	3.30^a	3.23^a	3.20^a
	2 3 4 5 6		3.40 dd (9, 9)	3.40 dd (9, 9)	3.26^{a}	3.26^{a}
	4		3.30^a	3.30^a	3.27^{a}	3.22^{a}
	5		3.34 m	3.34 m	3.00 m	2.92 m
	6		3.65 dd (12, 6)	3.64 dd (12, 6)	3.54 dd (12, 6)	3.52 dd (12, 6)
			3.89^a	3.89^a	3.64^a	3.60^a
	Fru-1	3.60 d (12.5)	3.62 d (12)	3.61 d (12)	3.61 d (12)	3.61 d (12)
		3.60 d (12.5)	3.64 d (12)	3.63 d (12)	3.68 d (12)	3.69 d (12)
	3	4.09 d (8)	4.08 d (8)	4.08 d (8)	5.44 d (7.5)	5.44 d (7.5)
	4	4.06 dd (8, 8)	4.08 ^a	4.08 ^a	4.38 dd (9, 7.5)	4.39 dd (9, 7.5)
	4 5	3.80^{a}	3.80^{a}	3.80^{a}	3.96^{a}	3.97^{a}
	6	3.78^{a}	3.80^{a}	3.80^{a}	3.81^{a}	3.81^{a}
		3.82^{a}	3.80^{a}	3.80^{a}	3.81^{a}	3.81^{a}
Acid						
	β	6.42 d (16)	6.43 d (16)	6.45 d (16)	6.44 d (16)	6.47 d (16)
		7.63 d (16)	7.63 d (16)	7.62 d (16)	7.72 d (16)	7.71 d (16)
	2	7.22 d (2)	7.23 d (2)	6.94 s	7.24 d (2)	6.96 s
	γ 2 5	6.81 d (7.5)	6.81 d (9)		6.84 d (9)	
	6	7.09 dd (7.5, 2)	7.09 dd (9, 2)	6.94 s	7.14 dd (9, 2)	6.96 s
	OMe	3.89 s	3.89 s	3.88 s	3.91 s	3.90 s

^a Overlapped.

Table 3. ¹³C NMR Data of 2-6 in CD₃OD at 35 °C

		2	3	4	5	6
sugar moiety						
0	Glc1-1	93.3	93.0	92.9	93.1	93.1
	2	73.2	72.3	72.3	72.1	72.1
	3	74.7	85.4	85.4	86.9	86.8
	4	71.9	70.3	70.4	69.8	69.9
	5	72.1	71.9	71.9	74.4	74.4
	6	65.1	65.0	65.2	62.4	62.4
	Glc2-1		105.3	105.2	105.3	105.4
	2		75.5	75.5	75.5	75.5
	3		77.9	77.9	77.6	77.6
	4		71.5	71.6	71.1	71.0
	5		78.2	78.2	77.9	77.8
	6		62.6	62.6	62.3	62.1
	Fru-1	64.3	64.4	64.5	65.5	65.5
	2	105.2	105.2	105.3	105.5	105.5
	3	79.4	79.5	79.5	80.0	80.0
	4	76.2	76.2	76.2	74.2	74.2
	5	83.9	84.0	84.0	84.6	84.7
	6	64.1	64.2	64.3	62.9	62.9
acid						
	α	169.2	169.1	169.0	168.3	168.2
	β	115.4	115.4	115.9	115.2	115.6
	γ 1	147.0	147.0	147.2	147.7	147.9
		127.8	127.8	126.7	127.7	126.6
	2	111.8	111.8	107.1	112.1	107.4
	3	149.4	149.4	149.5	149.5	149.5
	4	150.6	150.6	139.7	150.9	139.9
	5	116.5	116.5	149.5	116.7	149.5
	6	124.2	124.2	107.1	124.5	107.4
	OMe	56.6	56.6	57.0	56.6	57.1

CH₃CN−H₂O (8:92) \rightarrow (16:84) linear gradient] to afford **2** (23 mg), **8** (16 mg), **9** (61 mg), and **10** (18 mg). Fraction N (748 mg) was subjected to a preparative HPLC [ODS 5 \times 100 cm; CH₃CN−H₂O (8:92) \rightarrow (16:84) linear gradient] to afford **3** (9 mg), **7** (53 mg), and **9** (15 mg). Fraction O (812 mg) was subjected to a preparative HPLC [ODS 5 \times 100 cm; CH₃CN−H₂O (8:92) \rightarrow (16:84) linear gradient] to afford **3** (19 mg), **4** (13 mg), **5** (33 mg), and **6** (23 mg).

Arillatose A (1): amorphous powder, $[\alpha]^{27}_D + 25.1^{\circ}$ (c 0.12, MeOH); UV (MeOH) λ_{max} (log ϵ) 205 (4.69), 250 (4.34), 340

(4.17) nm; CD (MeOH) $\lambda_{\rm max}$ ($\Delta\epsilon$) 346 (+7.4), 253 (-6.4), 229 (-12.9) nm; $^{1}{\rm H}$ and $^{13}{\rm C}$ NMR, see Table 1; FABMS m/z 775 [M + Na]⁺, 753 [M + H]⁺.

Arillatose B (2): amorphous powder, $[\alpha]^{27}_D + 15.8^{\circ}$ (c 0.13, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 235 (3.73), 295 (3.66), 326 (3.76) nm; ^1H and ^{13}C NMR, see Tables 2 and 3; FABMS m/z 703 $[\text{M} + \text{Na}]^+$.

Arillatose C (3): amorphous powder, $[\alpha]^{27}_D + 15.8^{\circ}$ (c 0.13, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 245 (3.81), 295 (3.75), 326 (3.83) nm; ^1H and ^{13}C NMR, see Tables 2 and 3; FABMS m/z 703 $[M+Na]^+$.

Arillatose D (4): amorphous powder, $[α]^{27}_D + 2.0^\circ$ (c 0.10, MeOH); UV (MeOH) $λ_{max}$ (log ϵ) 239 (4.21), 330 (4.13) nm; 1 H and 13 C NMR, see Tables 2 and 3; FABMS m/z 733 $[M+Na]^+$.

Arillatose E (5): amorphous powder, [α] $^{27}_{D}$ -20.6° (c 0.09, MeOH); UV (MeOH) λ_{max} (log ϵ) 203 (4.44), 240 (4.05), 294 (3.94), 327 (4.01), 380 (3.35) nm; 1 H and 13 C NMR, see Tables 2 and 3; FABMS m/z 703 [M + Na] $^{+}$.

Arillatose F (6): amorphous powder, $[α]^{27}_D$ -4.5° (c 0.10, MeOH); UV (MeOH) $λ_{max}$ (log ε) 202 (4.50), 240 (4.17), 330 (4.12) nm; 1 H and 13 C NMR, see Tables 2 and 3; FABMS m/z 733 $[M+Na]^+$.

Alkaline Hydrolysis of 1–6. Each compound (2 mg) was treated with 1 N NaOH aqueous (50 μ L) for 4 h at room temperature in N₂ atmosphere, and the reaction mixture was extracted three times with EtOAc after acidification with 1 N HCl. From the H₂O layer, a sugar was detected by HPLC [Asahipak NH2P-50, 4.6 mm \times 25 cm, CH₃CN-H₂O (65:35), 1.0 mL/min, UV 195 nm, 7] as follows: sucrose (t_R 5.2 min) from 1 and 2. From the EtOAc layer, ferulic acid (t_R 9.1 min) was detected from 2, 3, and 5; sinapic acid (t_R 8.6 min) was detected from 4 and 6 by HPLC [YMC R-ODS-5, 4.6 mm \times 25 cm, CH₃CN-H₂O (22.5:77.5) + 0.05% CF₃COOH, 1.0 mL/min, UV 270 nml.

Acid Hydrolysis of 1–6. Each compound (1 mg) was heated on a boiling water bath with 1 N HCl (50 $\mu L)$ for 15 min. The reaction mixture was passed through an Amberlite IRA-60E column and the eluate was concentrated. The residue was warmed at 60 °C with a solution of D-cysteine methyl ester in pyridine (3 mg/25 $\mu L)$ for 90 min and to the reaction mixture hexamethyldisilazane (10 $\mu L)$ and trimethylsilyl chloride (10 $\mu L)$ were added, and the reaction mixture was stirred at 60

°C for 30 min. The supernatant was subjected to GC. Conditions: column Supelco SPB-1, 0.25 mm × 27 m; temperature 220 °C; carrier gas, N2. From 1–6, D-glucose (\textit{t}_{R} 18.6 min) and D-fructose (t_R 14.3 min) were detected.8 In 3-6, the ratio of these sugars was 2:1.

Acknowledgment. We thank the staff of the Analytical Center, University of Shizuoka, for measurement of FABMS.

References and Notes

- Zhang, D.-M.; Miyase, T.; Kuroyanagi, M.; Umehara, K.; Noguchi, H. *Phytochemistry* 1998, 47, 45–52, and references therein.
 Miyase, T.; Noguchi, H.; Chen X.-M. *J. Nat. Prod.* 1999, 62, 993–996.

- (3) Jian, S. New Medicinal College Dictionary of Chinese Drugs, Shanghai
- Scientific Technologic Publisher: Shanghai, 1997; p 2174. (4) Hara, S.; Okabe, H.; Mihashi, K. *Chem. Pharm. Bull.* **1986**, *34*, 1843–
- (5) Maeda, S.; Masuda, H.; Tokoroyama, T. Chem. Pharm. Bull. 1995, 43, 84-90.
- (6) Nishizawa, M.; Tuda, M.; Hayashi, K. Phytochemistry 1990, 29, 2645— 2649.
- (7) Binder, H. J. Chromatgr. 1980, 189, 414-420.
- (8) The t_R for L-glucose (17.1 min) and the t_R for L-fructose (15.0 min) were obtained from that of the enantiomer (D-fructose + L-cysteine methyl ester).

NP0000567