Engenharia de Segurança

23 de Março de 2021

Grupo	7
-------	---

a83899	André Morais
a84485	Tiago Magalhães

Prática 1 - Aula 03

Mestrado Integrado em Engenharia Informática Universidade do Minho

Conteúdo

\mathbf{Pr}	otocolo	SSL	$_{i}/\mathbf{T}$	L	5				m Protocolo~SSL/TLS															
2.1	Pergu	nta 2	.1 .																					
	2.1.1	i .																						
	2.1.2	ii .																						
	2.1.3	iii .																						
_																								
\mathbf{Pr}	otocolo	SSE	I																					
3.1																								
	Pergu		.1.																					
	Pergu	nta 3 1)	.1 .																					
	Pergu	nta 3 1) 2)	.1 .																					
	Pergu 3.1.1 3.1.2	nta 3 1) 2)	.1 .					 																

1 Assinaturas cegas baseadas em Curvas Elípticas

1.1 Pergunta 1.1

O código encontra-se no repositório git.

2 Protocolo SSL/TLS

2.1 Pergunta 2.1

As Câmaras Municipais Portuguesas escolhidas foram a de Esposende e a de Amarante.

2.1.1 i

Os pdf's encontram-se no repositório git

2.1.2 ii

Ambas têm a mesma classificação, mas o da câmara municipal de Amarante apresenta um valor de *key exchange* abaixo comparado com o *website* da câmara municipal de Esposende.

O rating da configuração SSL do website da câmara municipal de Amarante, deve-se ao facto de permitir suporte aos protocolos **TLS 1.1** e **TLS 1.0**, uma vez que estes já não são mais seguros. Também este, não possui Forward Secrecy, isto é, não protege sessões passadas contra possíveis comprometimentos de chaves secretas no futuro. O key exchange tem uma classificação baixa devido ao uso de métodos de troca de chaves como Diffie-Hellman key exchange (DHE) e RSA key exchange, sendo que o primeiro é inseguro, uma vez que já são conhecidos ataques, porém existem mitigações e o segundo não fornece Forward Secrecy, sendo recomendável usar para troca de chaves a versão com curvas elípticas do Diffie-Hellman (ECDHE), uma vez que fornece Forward Secrecy e melhor eficiência [4].

Figura 1: Rating Overall do Website da CM de Esposende

Figura 2: Rating Overall do Website da CM de Amarante

2.1.3 iii

O **POODLE** é um ataque conhecido, direcionado ao protocolo SSL 3. Algumas implementações TLS também são vulneráveis a este ataque.

Se o atacante consegue explorar com sucesso esta vulnerabilidade, ele apenas precisa de fazer, em média, $\underline{256}$ SSL 3.0 requests para revelar 1 byte da mensagem cifrada.

Assim sendo o SSL Server test passou a incluir nestes testes, informação acerca se o site avaliado encontra-se exposto por esta vulnerabilidade, visto que este exploit "matou" o SSL 3 e portanto este protocolo não deve ser mais usado.

3 Protocolo SSH

3.1 Pergunta 3.1

3.1.1 1)

```
## second comparison of the property of the pr
```

Figura 3: python3 ssh-audit.py 174.red-88-23-75.staticip.rima-tde.net

```
## pagenzia

| pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzia | pagenzi
```

Figura 4: python3 ssh-audit.py static-232-11-24-46.ipcom.comunitel.net

Figura 5: python3 ssh-audit.py static-232-11-24-46.ipcom.comunitel.net

3.1.2 2)

Telefonica de Espana Static IP

• Software & Versão do SSH: Dropbear SSH 0.46

Vodafone

• Software & Versão do SSH: OpenSSH 5.3p1

$3.1.3 \quad 3)$

Ambos os softwares apresentam 3 vulnerabilidades, como se pode observar nas imagens que se seguem:

Figura 6: Vulnerabilidades do Dropbear SSH 0.46

Figura 7: Vulnerabilidades do OpenSSH 5.3p1

3.1.4 4)

De acordo com as imagens anteriores, podemos verificar que a vulnerabilidade mais grave encontra-se no *Dropbear SSH 0.46* com um *score* de **9.3** de acordo com o CVE Details (CVE-2017-9078).

$3.1.5 \quad 5)$

A gravidade desta vulnerabilidade é crítica de acordo com as métricas CVSS. Esta vulnerabilidade compromete completamente a confidencialidade, integridade e a disponibilidade do serviço, que são propriedades esperadas num protocolo que se espera seguro, como o ssh.

Referências

- [1] https://www.ssllabs.com/ssltest/
- [2] https://www.shodan.io/
- [3] https://www.cvedetails.com/version-search.php
- [4] https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices25-use-forward-secrecy