# Predição Casos de Dengue em Séries Temporais

Antonio José Pinheiro Prado. Juliano Siloto Assine e Luiz Eduardo Pita Mercês Almeida

Faculdade de Engenharia Eletrica e de Computação, Unicamp,

## Introdução

Para o projeto da disciplina de "Dados, Inferência e Aprendizagem" ministrada no 2º Semestre de 2019 pelos professores José Cândido Silveira Santos Filho e Flavio du Pin Calmon, escolhemos um desafio público de predição do número de casos de dengue baseado na série histórica das cidades de San Juan, Porto Rico e Iquitos, Peru. O desafio é oferecido pela plataforma DrivenData[1] e a descrição completa do desafio está disponível no seu site oficial.

Consideramos que apesar de se tratar de uma competição, em que não temos acesso aos dados de saída de teste e que estamos sujeitos aos regulamentos da competição, a escolha deste desafio está de acordo com a filosofia da disciplina, pois provê aos alunos uma ótima oportunidade de aplicar ferramentas de inferência em um problema real e de relação direta às suas vidas cotidianas, visto que de janeiro a junho de 2019 já foram confirmados mais de 18,000 casos de dengue na cidade de Campinas.

# **Dados**

Os dados são representados por uma série temporal (Figura 1) com resolução semanal dos casos reportados de dengue, além de 21 atributos contendo localização, dados meteorológicos e de vegetação, agregando 4 fontes distintas. A descrição detalhada está disponível na página do desafio

### Modelo

Tradicionalmente a análise de séries temporais utiliza modelos auto-regressivos da família ARMA (Autoregressive—moving-average), a partir de uma pesquisa preliminar de estudos preditivos de séries temporais sobre epidemias (Tabela 1), temos que os modelos mais comuns são os modelos (S)ARIMA com método de otimização Box-Jenkins, porém, estes modelos dependem de suposições fortes de estacionariedade dos dados e requerem estratégias manuais de agregação dos atributos, o que cresce combinatorialmente em complexidade com o número de atributos (21 no nosso caso).

Também é do interesse do grupo a exploração de modelos baseados em redes neurais, trabalhos mais recentes apontam o uso dessas técnicas, em particular o trabalho em [2] utiliza redes neurais para o nosso dataset em específico, mas não parece existir consenso sobre as melhores escolhas de arquiteturas e hiperparâmetros e portanto uma análise mais profunda é necessária.

Por fim, o critério de otimização é um dado do problema. O modelo deve minimizar a métrica de erro absoluto médio (norma  $l_1$ )

#### Referências

- 1. Bull, P., Slavitt, I., Lipstein, G.: Harnessing the power of the crowd to increase capacity for data science in the social sector. arXiv preprint arXiv:1606.07781 (2016)
- Islas Abud, K., Emmanuel Vallejo Clemente, E., Sánchez Castellanos, H.: A novel deep recurrent neural network architecture for time series forecasting of mosquito-borne disease case counts. Master's thesis (May 2019)
- 3. Cortes, F., Martelli, C.M.T., de Alencar Ximenes, R.A., Montarroyos, U.R., Junior, J.B.S., Cruz, O.G., Alexander, N., de Souza, W.V.: Time series analysis of dengue surveillance data in two brazilian cities. Acta tropica 182, 190–197 (2018)
- Wu, Y., Yang, Y., Nishiura, H., Saitoh, M.: Deep learning for epidemiological predictions. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1085–1088 (2018). ACM
- Guo, P., Liu, T., Zhang, Q., Wang, L., Xiao, J., Zhang, Q., Luo, G., Li, Z., He, J., Zhang, Y., et al.: Developing a dengue forecast model using machine learning: A case study in china. PLoS neglected tropical diseases 11(10), 0005973 (2017)
- 6. Anwar, M.Y., Lewnard, J.A., Parikh, S., Pitzer, V.E.: Time series analysis of malaria in afghanistan: using arima models to predict future trends in incidence. Malaria journal 15(1), 566 (2016)
- 7. Midekisa, A., Senay, G., Henebry, G.M., Semuniguse, P., Wimberly, M.C.: Remote sensing-based time series models for malaria early warning in the highlands of ethiopia. Malaria journal 11(1), 165 (2012)
- 8. Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., La Ruche, G., Girdary, L., Marrama, L.: Time series analysis of dengue incidence in guadeloupe, french west indies: forecasting models using climate variables as predictors. BMC infectious diseases 11(1), 166 (2011)
- 9. Wangdi, K., Singhasivanon, P., Silawan, T., Lawpoolsri, S., White, N.J., Kaewkungwal, J.: Development of temporal modelling for forecasting and prediction of malaria infections using time-series and arimax analyses: a case study in endemic districts of bhutan. Malaria Journal **9**(1), 251 (2010)
- 10. Lu, L., Lin, H., Tian, L., Yang, W., Sun, J., Liu, Q.: Time series analysis of dengue fever and weather in guangzhou, china. BMC Public Health 9(1), 395 (2009)
- Choudhury, Z.M., Banu, S., Islam, A.M.: Forecasting dengue incidence in dhaka, bangladesh: A time series analysis. (2008)
- Luz, P.M., Mendes, B.V., Codeço, C.T., Struchiner, C.J., Galvani, A.P.: Time series analysis of dengue incidence in rio de janeiro, brazil. The American journal of tropical medicine and hygiene 79(6), 933–939 (2008)

#### **Figuras**



### Tabelas

Tabela 1: Relação de trabalhos similares e características dos modelos utilizados

| Doença          | Outros Atributos                                                                   | Modelo                                                  | Algoritimo                                        | Obs                                                                                                        | Trabalho |
|-----------------|------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|
| Dengue,<br>Zica | Não                                                                                | Vários                                                  | Vários                                            | Tese de Mestrado<br>com nosso dataset                                                                      | [2]      |
| Dengue          | Não                                                                                | ARIMA                                                   | Box Jenkins                                       |                                                                                                            | [3]      |
| Influenza       | Não                                                                                | ARMA-like,<br>Processos<br>Gaussianos,<br>Deep Learning | N/A                                               |                                                                                                            | [4]      |
| Dengue          | Temperatura,<br>Precipitação,<br>Humidade Relativa,<br>Pesquisas no Baidu          | Vários                                                  | Vários                                            | Support Vector Regression teve os melhores resultados                                                      | [5]      |
| Malaria         | Temperatura,<br>Precipitação,<br>Humidade Relativa,<br>Indice de Vegetação         | ARIMA                                                   | Box Jenkins                                       | Trabalha com escala<br>logaritimica dos dados.                                                             | [6]      |
| Malaria         | Temperatura do chão,<br>Precipitação,<br>Indice de Vegetação,<br>EvapoTranspiração | SARIMA                                                  | N/A                                               | Trabalha com escala<br>logaritimica dos dados.                                                             | [7]      |
| Dengue          | Temperatura<br>Max/Min/Avg,<br>Precipitação,<br>Humidade Relativa                  | SARIMA                                                  | Box Jenkins                                       | Variavel com lag de 3 meses e<br>Temperatura são os<br>atributos mais preditivo.                           | [8]      |
| Malaria         | Temperatura<br>Max/Min/Avg,<br>Precipitação,<br>Humidade Relativa                  | ARIMAX                                                  | N/A                                               | Variáveis não eram<br>transferiveis para<br>diferentes localizações                                        | [9]      |
| Dengue          | Temperatura Max/Min,<br>Precipitação,<br>Humidade relativa,<br>Vento               | Regressão de<br>Poisson                                 | GEE/QICu                                          | Temperatura minima/ Humidade<br>são positivamente correlacionadas,<br>vento é negativamente correlacionado | [10]     |
| Dengue          | Não                                                                                | SARIMA                                                  | Normalized<br>Bayesian<br>Information<br>Criteria |                                                                                                            | [11]     |
| Dengue          | Temperatura Max/Min,<br>Precipitação diaria<br>e anual                             | ARIMA                                                   | Box Jenkins                                       | Trabalha com escala<br>logaritimica dos dados                                                              | [12]     |