Metagenomic Binning Pipelines - the State of the Art

3 Abstract

- 4 New generations of sequencing platforms coupled with numerous bioinformatics tools have led
- 5 to rapid technological progress in metagenomics and metatranscriptomics to investigate complex
- 6 microorganism communities. Nevertheless, a combination of different bioinformatic tools remains
- 7 necessary to draw conclusions out of microbiota studies. As sequencing costs have dropped at
- 8 a rate above 'Moore's law', a greater number of large data sets are being produced than ever
- 9 before. Newer algorithms that take advantage of the size of these datasets are continually being
- developed. Binning algorithms are defined as the grouping of assembled metagenomic contigs by
- their genome of origin. Selecting the most appropriate binning algorithm can be a daunting task
- 12 and is influenced by many factors This review serves as a guide to direct the researcher to the
- binning algorithm that best suits their needs.

Background

this can be found in the Human Microbiome Project; a project that has been greatly imrpoved
the understanding of the microbila flora involved in human health and disease. These advances
have brought with them greater demands for storage, CPU time, and consequently more efficient
algorithms. The main function of binning tools is to reconstruct species/biological entities from
metagenomic samples. Compared to amplicon, shotgun metagenome can provide functional gene

The explosion in popularity and success in the field of metagenomics over the last 25 years can be largely attributed to the advances in computing tecnologies. An example of the outcomes of

- 21 metagenomic samples. Compared to amplicon, shotgun metagenome can provide functional gene
- $_{22}$ profiles directly and reach a much higher resolution of taxonomic annotation. However, due to the
- 23 high demands on computational resources, cost, and expertise necessary to perform this analysis,
- 24 researchers have historically been limited in their capacity to collect and analyse sequencing data.
- $_{25}$ As the cost of sequencing is rapidly falling, this burden has been significantly lessened At the time

- of writing, shotgun metagenomic sequeng costs on average three times as much as 16S sequencing comparitavely. The objectives of this review is for the reader to be better informed about the latest algorithms (since 2017) for binning metagenomic samples. The second part of this review is for the reader to be informed about distinguishing factors between the methods. The last part is for the reader to make an informed decision based on those factors for their needs. This review will be broken down into the following sections:
- List of the binning algorithms
- Classify binning algorithms based on their objectives, guideline for algorithm choice, subsection msp mag
 - Current limitations and Future directions

Recent methods for metagenomic binning

A metagenomic sample is comformed of many organisms and the standard procedure is to retrieve the sequences from the mixture of organisms. The final goal of binning is to reconstruct the sequences from each organism present in the original sample. Among the binning tools developed in recent years we can distinguish a subset dedicated to cluster reads (read-binning) (MetaBBC-LR, BioBloom Tools, CLAME, LVQ-KKN, Meta VW, HirBin, MEGAN-LR). The main purpose of read-binning tools is to preprocess reads into clusters for a posterior targeted assemby, here we find reference-free and non-reference-free tools, and tools designed for short-read or long-read sequencing technologies. The majority of binning tools we can find are oriented toward clustering contigs (contig-binning) into bins, which may represent the genome from a single biological entity/organism. Contig-binning tools normally rely on coverage information and sequence composition. Progress in contig-binning algorithms can be seen in the proposals to integrate new sources of information (for example, from scaffold-graphs(Binnacle), paired-end reads(COCACOLA), or 3D contact information(MetaTOR)) and state of the art algorithms in machine learning (CoCoNet, Variational Autoencoders for Metagenomic Binning (VAMB)).

51 Metagenome Assembled Genomes

A Metagenome-Assembled Genome (MAG) is a single-taxon assembly based on one or more binned metagenomes that has been asserted to be a close representation to an actual individual genome (that could match an already existing isolate or represent a novel isolate).

55 Binning microbial genomes with deep learning

- 56 The integration of deep learning techniques into the field of metagenomics has revolutionised the
- 57 field of metagenomics. The VAMB pipeline was developed to take advantage of variational au-
- toencoders; a generative machine learning model that uses a combination. Improved metagenome
- 59 binning and assembly using deep variational autoencoders. Nature biotechnology the VAMB
- 60 pipeline (Nissen et al., n.d.).

61 Binning for viral genomes

- 62 New insights from uncultivated genomes of the global human gut microbiome (Nayfach, Shi,
- 63 Seshadri, Pollard, & Kyrpides, 2019).

64 Chosing the most appropriate binning algorithm (Classifica-

tion by output)

- 66 A review on the benchmarking binning algorithms was done by Yue et al., 2020. Resource man-
- agement is an important factor in the choice of binning algorithm. The tradeoff between number
- of Central Processing Units (CPUs), memory, and time are important considerations. Newer ad-
- ⁶⁹ vances in pipeline technologies have ameliorated these costs. Alignment based or alignment free.
- $_{70}$ An analysis pipeline is defined as a program that combines several programs in a defined order to
- 71 complete a complex analysis. Improperly developed, validated, and/or monitored pipelines may
- 72 generate inaccurate results.

⁷³ MSPs, binning co-abundant genes

- Binning of co-abuntant genes represents an alternative proposal to reconstruct species/biological
- 75 entities from a set of metagenomic samples. Co-abundant gene binning methods assume each
- 76 gene coming from a shared chromosome will display proportional abundances across samples, if
- 77 you have enough samples from a common environment you can identify the sets of genes from
- ⁷⁸ a common organism of origin (MLGs Chameleon-clust 2012, CAGs and MGSs Canopy 2014,
- 79 Markovclust-MGCs Karlsson 2013, MSPs MSPminner 2018). jjjjjjj HEAD
- To the extent of our knwoledge, in the past few years MSPminer is the only available Software
- exploiting this approach. MSPminer introduced a robust proportionality measure detecting co

Table 1: Comparison of binning algorithms

Software/Algorithm	Year	Description/purpose	Comment/Highlight	Doi	PubmedID
CoCoNet	2021	Deep learning tool for Viral Metagenome Binning	Reconstucts viral genomes	10.1093/bioinformatics/btab213	33822891
Binnacle	2021	Using scaffolds to improve Metagenomic bin quality	Incorporates scaffold information	10.3389/fmicb.2021.638561	33717033
VAMB	2021	Metagenome binning using deep variational autoe	Antoencoder algorithm, fast processing	10.1038/841587-020-00777-4	33398153
phyloFlash	2020	serBNA profiling and MAG assembly	incorporates serBNA profiling info into MAG ass	10 1128/mSvstems 00920-20	33109753
MetaBCC-1.B	00000	Metagenomic binning for Long-Reads	Suitable for Long Reads segmenting technology	10 1003/bioinformatics/btss441	32657364
Metaboo-Liv	0000	Metagenomic Diming for Long-reads	Santable for nong reads sequenting technology	10.1030/ DIOINIOIMAGICS/ DEGG441	4.500000
BioBloom Tools	2020	Keads binning for targeted assembly, alignment	Data preparation for targeted assembly, using s	10.1073/pnas.1903436117	32641514
GraphBin	2020	Refined binning of metagenomic contigs using as	Incorporates assembly graphs information	10.1093/bioinformatics/btaa180	32167528
MetaSIPSim	2020	Simulating metagenomic stable isotope probing d	Augment binning resolution with extra experimen	10.1186/s12859-020-3372-6	32000676
MetaCon	2019	Unsupervised binning k-mers and coverage, focus	Focus different lengths contigs	10.1186/s12859-019-2904-4	31757198
VirBin	2019	Binning viral haplotypes from assembled contigs	Viral haplotypes MAGs	10.1186/s12859-019-3138-1	31684876
MAGO (*only tool pipeline)	2019	Framework for Production and analysis of MAGs	pipeline	10.1093/molbev/msz237	31633780
SeqDex	2019	Genome separation of Endosymbionts from mixed s	Identification of endosymbiont	10.3389/fgene.2019.00853	31608107
MetaTOR	2019	High quality MAGs from mammalian guts using met	Incorporates 3D contact information	10.3389/fgene.2019.00753	31481973
MetaBAT 2	2019	Adatptative binning algorithm for genome recons	Eliminates manual parameter tuning from previou	10.7717/peeri.7359	31388474
MetaBMF	2019	Scalable binning algorithm for large scale meta	Employs sample X contigs of mapped read counts	10.1093/bioinformatics/btz577	31347687
PolyCRACKER	2019	Method for partitioning polyploid sub genomes b	Haplotypes for polyploid genomes	10.1186/s12864-019-5828-5	31299888
SolidBin	2019	Improving metagenome binning with semi-supervis	NaN	10.1093/bioinformatics/btz253	30977806
Autometa	2019	extraction of microbial genomes from individual	Handles eukaryotic contamination	10.1093/nar/gkz148	30838416
MLBP MrGBP (Algorithm)	2019	Signal processing method for alignment free met	Alternative description of sequences designed f	10.1038/s41598-018-38197-9	30770850
CLAME	2018	Aligment based algorithm allowed description of	Aligment based for reads	10.1186/s12864-018-5191-y	30537931
3D BH SNE (Algorithm)	2018	Fuzzy binning of metagenomic sequence fragments	Horizontal gene transfer and regions of uncerta	10.1109/EMBC.2018.8512529	30440633
LVQ-KNN	2018	Composition based RNA or DNA binning of short s	Classify into DNA or RNA sequence	10.1016/j.virusres.2018.10.002	30291874
MSPminer	2018	Abundance based reconstitution of microbial pan	Pan genome reconstitution	10.1093/bioinformatics/bty830	30252023
MetaWRAP*	2018	Flexible pipeline for genome resolved metagenom	Hybrid bin extraction algorithm	10.1186/s40168-018-0541-1	30219103
MetaVW	2018	Large scale Machine Learning Sequence classific	Machine learning for reads based on Khmer profile	10.1007/978-1-4939-8561-6_2	30030800
Opal (algorithm*)	2018	Metagenomic binning through low density binning	Improvement at higher taxonomic levels, discove	10.1093/bioinformatics/bty611	30010790
BMC3C	2018	Binning contigs using codon usage sequence comp	Add codon usage information	10.1093/bioinformatics/bty519	29947757
AMBER tool	2018	Assessment of Metagenome Binners	NaN	10.1093/gigascience/giy069	29893851
DAS Tool	2018	Derreplication aggregation and scoring strategy	Combines several binning algorithm results	10.1038/s41564-018-0171-1	29807988
MEGAN-LR	2018	Long Read/contigs taxonomic binning	Aligment of long reads against reference sequences	10.1186/s13062-018-0208-7	29678199
CoMet	2018	Binning workflow using contain coverage and com	Single sample, include gc content and 4mer fre	10.1186/s12859-017-1967-3	29297295
٥.	2017	Metagenomic binning and association of plasmids	Plasmid banning at strain level using methylati	10.1038/nbt.4037	29227468
MetaGen	2017	reference-free learning with multiple metagenom	Requires multiple samples	10.1186/s13059-017-1323-y	28974263
d2sBin add onn	2017	Improved formula for calculate oligonucleotide	Math formula to calculate oligo sequence dissim	10.1186/s12859-017-1835-1	28931373
BusyBee Web	2017	Bootstrapped supervises binning and annotation	2d interactive scatterplots supervised binning	10.1093/nar/gkx348	28472498
ICoVer	2017	Interactive visualisation tool for verification	Interactive visualisation tool	10.1186/s12859-017-1653-5"	28464793
HirBin*	2017	High resolution identification of differentiall	Supervised annotation, unsupervised clustering	10.1186/s12864-017-3686-6	28431529
BinSanity	2017	Unsupervised clustering using coverage and affi	Reduce bias for high/low abundance	10.7717/peerj.3035	28289564
Binning_refinner	2017	Improve genome bins through the combination of	Combination of different binning algorithms	10.1093/bioinformatics/btx086	28186226
IFCM add on	2016	Improved binning using Fuzzy C-Means Method	Add estimated distribution of real genome lengths	10.1109/TCBB.2016.2576452	27295684
COCACOLA	2016	binning contigs using composition, read coverag	Adds paired end read and coaligment information	10.1093/bioinformatics/btw290	27256312
GroopM (2)	2014	Tool for automatic recovery of population genom	Adds differential coverage to complement compos	10.7717/peerj.603	25289188

- abundant but no necessarily co ocurring. This tools groups co-abundant genes into Metagenomic
- 53 Species Pan-genomes or MSPs and classify genes within an MSP as core, accessory and shared.
- The factors that impact directly on MSPs quality include the sample composition, the se-
- quencing depth, the previos bioinforamtic steps to build the reference gene dataset and to map
- the reads. A high number of samples with varying phenotipes improve the quality of MSPs.
- MSPs can be employed for taxonomic profiles of new samples from similar ecosystems, to
- 88 compare strains between samples building a presence/absence table of accesory genes and for
- biomarker discovery. By binning contigs carrying genes from the same MSP it is also possible to
- 90 build a MAG.
- Co-abundant gene binning methods perform better in large sample datasets

92 0.1 Metagenomic Species Pan-genomes

- 93 Microbial pan-genomes are gene repertoires composed of core genes present in all strains and
- ⁹⁴ accessory genes present in only some of them (Medini et al., 2005). In a shotgun metagenomic
- 95 sequencing context, we define as shared the genes detected in some samples where the species is
- 96 not present.
- A strain found in a sample is an instance of the species pan-genome: it is made of all the
- species (shared) core genes and of a subset of (shared) accessory genes. Core genes are suitable for
- 99 taxonomic profiling at species-level while accessory genes can be used to compare strains across
- 100 samples. Genes tagged as shared should be used carefully as they contain false positives counts
- or are subject to horizontal transfer.

102 Conclusion

- New and open areas of research in which the application of metagenomic pipelines are rele-
- HMP and other
- The increased impact of machine learning in analysis
- Short section just for past-present-future completeness
- Future developments for metagenomic analysis

1.1 Weaknesses and future developments

109

110 Until now binning methods perform poorly in samples containing similar strains.

===== To the extent of our knwoledge, in the past few years MSPminer is the only avail-111 able Software exploiting this approach. MSPminer introduced a robust proportionality measure 112 detecting co abundant but no necesarily co ocurring. This tools groups co-abundant genes into 113 Metagenomic Species Pan-genomes or Metagenomic Species Pan-genomess (MSPs) and classify 114 genes within an MSP as core, accessory and shared. The factors that impact directly on MSP 115 quality include the sample composition, the sequencing depth, the previous bioinforamtic steps to 116 build the reference gene dataset and to map the reads. A high number of samples with varying 117 phenotipes improve the quality of MSPs. MSPs can be employed for taxonomic profiles of new 118 samples from similar ecosystems, to compare strains between samples building a presence/absence 119 table of accesory genes and for biomarker discovery. By binning contigs carrying genes from the same MSP it is also possible to build a MAG. 121

122 Metagenomic Species Pan-genomes

Microbial pan-genomes are gene repertoires composed of core genes present in all strains and accessory genes present in only some of them (Tettelin et al., 2005). In a shotgun metagenomic sequencing context, we define as shared the genes detected in some samples where the species is not present. A strain found in a sample is an instance of the species pan-genome: it is made of all the species (shared) core genes and of a subset of (shared) accessory genes. Core genes are suitable for taxonomic profiling at species-level while accessory genes can be used to compare strains across samples. Genes tagged as shared should be used carefully as they contain false positives counts or are subject to horizontal transfer.

1 Conclusion

135

New and open areas of research in which the application of metagenomic pipelines are relevant
The increased impact of machine learning in analysis Short section - just for past-present-future
completeness Future developments for metagenomic analysis

6 References

- Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S., & Kyrpides, N. C. (2019). New insights from uncultivated genomes of the global human gut microbiome. *Nature*, 568 (7753), 505–510.
- Nissen, J. N., Johansen, J., Allesøe, R. L., Sønderby, C. K., Armenteros, J. J. A., Grønbech,
 C. H., ... others (n.d.). Improved metagenome binning and assembly using deep variational
 autoencoders. *Nature Biotechnology*, 1–6.
- Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., . . . others

 (2005). Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial "pan-genome". *Proceedings of the National Academy of Sciences*,

 102(39), 13950–13955.
- Yue, Y., Huang, H., Qi, Z., Dou, H.-M., Liu, X.-Y., Han, T.-F., ... Tu, J. (2020). Evaluating metagenomics tools for genome binning with real metagenomic datasets and cami datasets. BMC bioinformatics, 21(1), 1–15.