RNN/LSTM for Sequence and Time-Series Data

Quang-Vinh Dinh Ph.D. in Computer Science

Outline

- > RNN in PyTorch
- > RNNs for Time-Series Data
- > RNNs for IMDB dataset
- > From RNN to LSTM
- > LSTM Applications

Embedding Layer

Increase space dimentions

index	word			
0	[UNK]			
1	[pad]			
2	ai			
3	a			
4	are			
5	cs			
6	is			
7	learning			
		→		
re learning AI				

be updated

After one update

Embedding visualization

Embedding visualization

$$h_0 = \mathbf{0} \qquad b_{hh} = \mathbf{0}$$

$$h_1 = \tanh(W_{xh}X_1 + b_{xh} + W_{hh}h_0 + b_{hh})$$

$$h_2 = \tanh(W_{xh}X_2 + b_{xh} + W_{hh}h_1 + b_{hh})$$

$$h_3 = \tanh(W_{xh}X_3 + b_{xh} + W_{hh}h_2 + b_{hh})$$

$$h_4 = \tanh(W_{xh}X_4 + b_{xh} + W_{hh}h_3 + b_{hh})$$

$$h_5 = \tanh(W_{xh}X_5 + b_{xh} + W_{hh}h_4 + b_{hh})$$

 \rightarrow h_t = tanh(W_{xh}X_t + b_{xh} + W_{hh}h_(t-1) + b_{hh})

Stack of RNNs

❖ Recurrent Neural Networks (RNNs)

***** Two layers

$$k_1 = \tanh(W_{hk}h_1 + b_{hk} + W_{kk}k_0 + b_{kk})$$

$$k_2 = \tanh(W_{hk}h_2 + b_{hk} + W_{kk}k_1 + b_{kk})$$

$$h_1 = \tanh(W_{xh}X_1 + b_{xh} + W_{hh}h_0 + b_{hh})$$

$$h_2 = \tanh(W_{xh}X_2 + b_{xh} + W_{hh}h_1 + b_{hh})$$

RNNs

***** Bidirectional RNNs

Outline

- > RNN in PyTorch
- > RNNs for Time-Series Data
- > RNNs for IMDB dataset
- > From RNN to LSTM
- > LSTM Applications

Weather Forecasting

***** Introduction

Predict future temperature in weather forecasting

Weather Forecasting

***** Introduction

Problem Statement: Given temperature from the previous 5 hours (including the current one), predict temperature of the next 1 hour.

Hour	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00
Condition								C. C
Temperature	32	31	31	30	29	26	25	CONTRACTOR OF THE PROPERTY OF

Time-series Data

Temperature forecasting

Date	Summary	Precip Type	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)
2006-04-01 00	Partly Cloudy	rain	9.47222222	7.38888889	0.89	14.1197	251	15.8263
2006-04-01 01	Partly Cloudy	rain	9.35555556	7.227777778	0.86	14.2646	259	15.8263
2006-04-01 02	Mostly Cloudy	rain	9.37777778	9.37777778	0.89	3.9284	204	14.9569
2006-04-01 03	Partly Cloudy	rain	8.288888889	5.94444444	0.83	14.1036	269	15.8263
2006-04-01 04	Mostly Cloudy	rain	8.75555556	6.97777778	0.83	11.0446	259	15.8263
2006-04-01 05	Partly Cloudy	rain	9.22222222	7.111111111	0.85	13.9587	258	14.9569
2006-04-01 06	Partly Cloudy	rain	7.733333333	5.522222222	0.95	12.3648	259	9.982
2006-04-01 07	Partly Cloudy	rain	8.772222222	6.527777778	0.89	14.1519	260	9.982
2006-04-01 08	Partly Cloudy	rain	10.8222222	10.82222222	0.82	11.3183	259	9.982
2006-04-01 09	Partly Cloudy	rain	13.77222222	13.77222222	0.72	12.5258	279	9.982
2006-04-01 10	Partly Cloudy	rain	16.01666667	16.01666667	0.67	17.5651	290	11.2056
2006-04-01 11	Partly Cloudy	rain	17.14444444	17.1444444	0.54	19.7869	316	11.4471
2006-04-01 12	Partly Cloudy	rain	17.8	17.8	0.55	21.9443	281	11.27
2006-04-01 13	Partly Cloudy	rain	17.33333333	17.33333333	0.51	20.6885	289	11.27
2006-04-01 14	Partly Cloudy	rain	18.87777778	18.87777778	0.47	15.3755	262	11.4471
2006-04-01 15	Partly Cloudy	rain	18.91111111	18.9111111	0.46	10.4006	288	11.27
2006-04-01 16	Partly Cloudy	rain	15.38888889	15.38888889	0.6	14.4095	251	11.27
2006-04-01 17	Mostly Cloudy	rain	15.55	15.55	0.63	11.1573	230	11.4471
2006-04-01 18	Mostly Cloudy	rain	14.2555556	14.2555556	0.69	8.5169	163	11.2056
2006-04-01 19	Mostly Cloudy	rain	13.14444444	13.1444444	0.7	7.6314	139	11.2056
2006-04-01 20	Mostly Cloudy	rain	11.55	11.55	0.77	7.3899	147	11.0285
2006-04-01 21	Mostly Cloudy	rain	11.18333333	11.18333333	0.76	4.9266	160	9.982
2006-04-01 22	Partly Cloudy	rain	10.11666667	10.11666667	0.79	6.6493	163	15.8263
2006-04-01 23	Mostly Cloudy	rain	10.2	10.2	0.77	3.9284	152	14.9569
2006-04-10 00	Partly Cloudy	rain	10.4222222	10.42222222	0.62	16.9855	150	15.8263
2006-04-10 01	Partly Cloudy	rain	9.911111111	7.566666667	0.66	17.2109	149	15.8263
2006-04-10 02	Mostly Cloudy	rain	11.18333333	11.18333333	0.8	10.8192	163	14.9569
2006-04-10 03	Partly Cloudy	rain	7.15555556	5.04444444	0.79	11.0768	180	15.8263
2006-04-10 04	Partly Cloudy	rain	6.111111111	4.816666667	0.82	6.6493	161	15.8263

Weather Forecasting

***** Introduction

Time Temperature (C)	
06-04-01 00:00:00.000 +0200 9.472222	
06-04-01 01:00:00.000 +0200 9.355556	
06-04-01 02:00:00.000 +0200 9.377778	
06-04-01 03:00:00.000 +0200 8.288889	
06-04-01 04:00:00.000 +0200 8.755556	
06-04-01 05:00:00.000 +0200 9.222222	

Temperature forecasting datatable

Time-series Data

Temperature forecasting

Date	Temperature (C)		
2006-04-01 00	9.472222222		
2006-04-01 01	9.35555556		
2006-04-01 02	9.37777778		
2006-04-01 03	8.28888889		
2006-04-01 04	8.75555556		
2006-04-01 05	9.22222222		
2006-04-01 06	7.733333333		
2006-04-01 07	8.772222222		
2006-04-01 08	10.82222222		
2006-04-01 09	13.77222222		
2006-04-01 10	16.01666667		
2006-04-01 11	17.14444444		
2006-04-01 12	17.8		
2006-04-01 13	17.33333333		
2006-04-01 14	18.87777778		
2006-04-01 15	18.9111111		
2006-04-01 16	15.38888889		
2006-04-01 17	15.55		
2006-04-01 18	14.2555556		
2006-04-01 19	13.14444444		
2006-04-01 20	11.55		
2006-04-01 21	11.18333333		
2006-04-01 22	10.11666667		
2006-04-01 23	10.2		

Time-series Data

Temperature forecasting

Example

$$W_{xh} = \begin{bmatrix} 0.6584 \\ -0.1671 \end{bmatrix}$$

$$b_{xh} = \begin{bmatrix} -0.5966 \\ 0.0945 \end{bmatrix}$$

$$W_{hh} = \begin{bmatrix} 0.5147 & -0.1310 \\ 0.6606 & -0.1671 \end{bmatrix}$$

$$b_{hh} = \begin{bmatrix} 0.6599 \\ -0.2662 \end{bmatrix}$$

Temperature forecasting

Back to Temperature forecasting

```
sequence_length = 64 embed_dim = 1
output_dim = 1 hidden_dim = 32
```

```
class RNNModel(nn.Module):
    def __init__(self, hidden_dim, output_dim):
        super(RNNModel, self).__init__()
        self.rnn = nn.RNN(1, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)
    def forward(self, x):
        output_rnn, hidden_rnn = self.rnn(x)
        last_hidden = hidden_rnn[-1,:,:]
        output = self.fc(last_hidden)
        return output
                          (num_rnn_layers, N, hidden_size)
model = RNNModel(hidden dim=32, output dim=1)
```


Stack of three RNNs

```
sequence_length = 64 embed_dim = 1
output_dim = 1 hidden_dim = 32
```

```
class RNNModel(nn.Module):
    def __init__(self, hidden_dim, output_dim):
        super(RNNModel, self). init ()
        self.rnn = nn.RNN(1, hidden_dim,
                          num_layers=3,
                          batch first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)
    def forward(self, x):
        output_rnn, hidden_rnn = self.rnn(x)
        last_hidden = hidden_rnn[-1,:,:]
        output = self.fc(last_hidden)
        return output
model = RNNModel(hidden_dim=32, output_dim=1)
```


Data preparation

```
def prepare data(data, lag, ahead, train ratio, batch size):
 2
        # Create sequences
        X, y = create sequences(data, lag, ahead)
        # Flatten all the features of a sample for RNN
        X = X.reshape(X.shape[0], -1, 1)
 6
                                          (N,L,H_{in}) when batch_first=True
        # Split the data
 8
 9
        train_size = int(len(X) * train_ratio)
        X_train, X_test = X[:train_size], X[train_size:]
10
        y_train, y_test = y[:train_size], y[train_size:]
11
12
13
        # Convert to PyTorch tensors
14
        X train tensor = torch.tensor(X train, dtype=torch.float32)
15
        y train tensor = torch.tensor(y train, dtype=torch.float32)
16
        X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
17
        y test tensor = torch.tensor(y test, dtype=torch.float32)
18
19
```

```
def create sequences(data, lag, ahead):
         X, y = [], []
         for i in range(len(data) - lag - ahead + 1):
             X.append(data[i:(i + lag)])
             y.append(data[(i + lag):(i + lag + ahead)])
  6
         return np.array(X), np.array(y)
                    X, y = create_sequences(data, lag, ahead)
                    print(X.shape)
                    print(y.shape)
                    (96389, 64)
                    (96389, 1)
     train_data_length = 5
lag = sequence_length = 3
                  ahead = 1
         I lag
                   ahead
                                           lag
                                                  ahead
```

range(5-3-1+1) = range(2) \rightarrow 0, 1

Train

```
def train_model(model, criterion, optimizer, train_loader, num_epochs):
        for epoch in range(num epochs):
            model.train()
            for i, (sequences, labels) in enumerate(train loader):
                sequences, labels = sequences.to(device), labels.to(device)
                # Forward pass
                outputs = model(sequences)
                loss = criterion(outputs, labels)
                # Backward and optimize
                optimizer.zero_grad()
10
11
                loss.backward()
                optimizer.step()
12
13
        return model, losses
```


R2 Score: 0.984 MAE: 0.71 MSE: 1.23

Common Metrics for TS Data

$$\hat{y}$$
 -0.33 -0.61 1.35

$$y - \hat{y}$$
 11.51 12.27 7.62

$$(y - \hat{y})^2$$
 | 132.48 | 150.55 | 50.06

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$\bar{y} = \frac{1}{3}(11.18 + 11.66 + 8.97)$$

= 10.6

$$y - \overline{y}$$
 0.58 1.06 -1.63

$$(y-\overline{y})^2$$
 0.336 1.123 2.656

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$MSE = \frac{1}{3}(132.48 + 150.55 + 50.06)$$
$$= 111.03$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

$$MAE = \frac{1}{3}(|11.51| + |12.27| + |7.62|)$$

= 10.46

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y}_{i})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y}_{i})^{2}}$$

$$R^{2} = 1 - \frac{132.48 + 150.55 + 50.06}{0.3364 + 1.123 + 2.6569}$$

$$= -79.91$$

Outline

- > RNN in PyTorch
- > RNNs for Time-Series Data
- > RNNs for IMDB dataset
- > From RNN to LSTM
- > LSTM Applications

Text Classification

❖ IMDB dataset

- 50,000 movie review for sentiment analysis
- Consist of: +25,000 movie review for training
 - + 25,000 movie review for testing
- Label: positive negative

"A wonderful little production. The filming technique is very unassuming- very old-time-BBC fashion and gives a comforting, and sometimes discomforting, sense of realism to the entire piece"	positive
"This show was an amazing, fresh & innovative idea in the 70's when it first aired. The first 7 or 8 years were brilliant, but things dropped off after that. By 1990, the show was not really funny anymore, and it's continued its decline further to the complete waste of time it is today"	negative
"I thought this was a wonderful way to spend time on a too hot summer weekend, sitting in the air conditioned theater and watching a light-hearted comedy. The plot is simplistic, but the dialogue is witty and the characters are likable (even the well bread suspected serial killer)"	positive
"BTW Carver gets a very annoying sidekick who makes you wanna shoot him the first three minutes he's on screen."	negative

Text Classification

❖ IMDB dataset

- 50,000 movie review for sentiment analysis
- Consist of: + 25,000 movie review for training + 25,000 movie review for testing

0

- Label: positive – negative

print(train data.shape)

```
print(test_data.shape)
from datasets import load dataset
                                                       (25000, 2)
imdb = load dataset("imdb")
                                                       (25000, 2)
train data, test data = imdb['train'], imdb['test']
tokenizer = get_tokenizer("basic english")
vocab size = 20000
def yield tokens(data iter):
    for data in data iter:
        yield tokenizer(data["text"])
vocab = build vocab from iterator(yield tokens(train data),
                                  min freq = 3,
                                  max tokens=vocab size,
                                  specials=["<pad>", "<s>", "<unk>"])
vocab.set_default_index(vocab["<unk>"])
```

```
print(train_data[0]['text'])

I rented I AM CURIOUS-YELLOW from my video stheard that at first it was seized by U.S. custial" I really had to see this for myself.<br/>
everything she can about life. In particular ought about certain political issues such as denizens of Stockholm about their opinions or me about I AM CURIOUS-YELLOW is that 40 years n, even then it's not shot like some cheaply le in Swedish cinema. Even Ingmar Bergman, and the filmmakers for the fact that any sex so be shown in pornographic theaters in American tended) of Swedish cinema. But really, this print(train_data[0]['label'])
```

Test accuracy: ~68% dim=2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 —Train Accuracy —Test Accuracy hidden_dim=64 RNN Cell RNN Cell RNN Cell RNN Cell RNN Cell RNN Cell embed dim = 128Word-1 Word-2 Word-500

75

70

65

Using RNN

```
class TextClsModel(nn.Module):
        def __init__(self, vocab_size, emb_dim,
                     hidden dim, num layers):
            super().__init__()
            self.embedding = nn.Embedding(vocab_size, emb_dim)
 6
            self.rnn = nn.RNN(emb_dim, hidden_dim,
                              num layers = num layers,
                              batch first = True)
8
            self.fc = nn.Linear(hidden dim, 2)
10
11
        def forward(self, x):
12
            x = self.embedding(x)
13
            _, hidden = self.rnn(x)
14
            last hidden = hidden[-1,:,:]
15
            x = self.fc(last hidden)
16
            return x
Layer (type:depth-idx)
                                          Output Shape
-Embedding: 1-1
                                          [-1, 500, 128]
-RNN: 1-2
                                           [-1, 500, 64]
 -Linear: 1-3
                                           [-1, 2]
```

Outline

- > RNN in PyTorch
- > RNNs for Time-Series Data
- > RNNs for IMDB dataset
- > From RNN to LSTM
- > LSTM Applications

Construction

$$h_0 = 0$$
 $b_{hh} = 0$

$$h_1 = \tanh(W_{xh}X_1 + b_{xh} + W_{hh}h_0 + b_{hh})$$

$$h_2 = \tanh(W_{xh}X_2 + b_{xh} + W_{hh}h_1 + b_{hh})$$

$$h_3 = \tanh(W_{xh}X_3 + b_{xh} + W_{hh}h_2 + b_{hh})$$

$$h_4 = \tanh(W_{xh}X_4 + b_{xh} + W_{hh}h_3 + b_{hh})$$

$$h_5 = \tanh(W_{xh}X_5 + b_{xh} + W_{hh}h_4 + b_{hh})$$

$$h_t = \tanh(W_{xh}X_t + b_{xh} + W_{hh}h_{(t-1)} + b_{hh})$$

***** Construction

$$h_0 = 0$$

$$b = 0$$

$$b_{..} = 0$$
 $c_0 = 0$

$$g_t = \tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg})$$

$$c_t = g_t + c_{t-1}$$

$$h_t = \tanh(c_t)$$

$$\Rightarrow c_1 = g_1$$

***** Construction

$$h_0 = 0$$
 $b_0 = 0$
 $c_0 = 0$

$$i_{t} = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{(t-1)} + b_{hi})$$

$$f_{t} = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{(t-1)} + b_{hf})$$

$$o_{t} = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{(t-1)} + b_{ho})$$

Construction

$$h_0 = 0$$

$$b_{..} = 0$$
 $c_0 = 0$

$$i_{t} = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{(t-1)} + b_{hi})$$

$$f_{t} = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{(t-1)} + b_{hf})$$

$$o_{t} = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{(t-1)} + b_{ho})$$

$$g_{t} = \tanh(W_{ig}x_{t} + b_{ig} + W_{hg}h_{(t-1)} + b_{hg})$$

$$c_{t} = f_{t} \odot g_{t} + i_{t} \odot c_{t-1}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

***** Construction

$$h_0 = \mathbf{0}$$

$$b_{..} = 0$$
 $c_0 = 0$

$$i_{t} = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{(t-1)} + b_{hi})$$

$$f_{t} = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{(t-1)} + b_{hf})$$

$$o_{t} = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{(t-1)} + b_{ho})$$

$$g_{t} = \tanh(W_{ig}x_{t} + b_{ig} + W_{hg}h_{(t-1)} + b_{hg})$$

$$c_{t} = f_{t} \odot g_{t} + i_{t} \odot c_{t-1}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

Text Deep Models

***** Long short-term memory

Outline

- > RNN in PyTorch
- > RNNs for Time-Series Data
- > RNNs for IMDB dataset
- > From RNN to LSTM
- > LSTM Applications

Time-series Data

Temperature forecasting

Date	Temperature (C)
2006-04-01 00	9.47222222
2006-04-01 01	9.35555556
2006-04-01 02	9.37777778
2006-04-01 03	8.288888889
2006-04-01 04	8.75555556
2006-04-01 05	9.22222222
2006-04-01 06	7.733333333
2006-04-01 07	8.772222222
2006-04-01 08	10.82222222
2006-04-01 09	13.77222222
2006-04-01 10	16.01666667
2006-04-01 11	17.14444444
2006-04-01 12	17.8
2006-04-01 13	17.33333333
2006-04-01 14	18.87777778
2006-04-01 15	18.91111111
2006-04-01 16	15.38888889
2006-04-01 17	15.55
2006-04-01 18	14.2555556
2006-04-01 19	13.14444444
2006-04-01 20	11.55
2006-04-01 21	11.18333333
2006-04-01 22	10.11666667
2006-04-01 23	10.2
2006-04-10 00	10.42222222
2006-04-10 01	9.911111111
2006-04-10 02	11.18333333
2006-04-10 03	7.15555556
2006-04-10 04	6.111111111

*** LSTM**

```
class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(1, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

def forward(self, x):
    output_lstm, (hidden_lstm, cell_lstm) = self.lstm(x)
    last_hidden = hidden_lstm[-1,:,:]
    output = self.fc(last_hidden)
    return output
```


R2 Score: 0.986 MAE: 0.67 MSE: 1.06

Long short-term memory


```
c_t
                                                         tanh
                                          g_t
                                                         \sigma
                                         ▶ tanh
                                                                       h_t
h_{t-1}
             x_t
        class TextClsModel(nn.Module):
             def init (self, vocab size, emb dim,
                           hidden_dim, num_layers):
                 super(). init ()
```

```
self.embedding = nn.Embedding(vocab size,
                                  emb dim)
    self.lstm = nn.LSTM(emb dim,
                        hidden dim,
                        num_layers = num_layers,
                        batch first=True)
    self.fc = nn.Linear(hidden dim, 2)
def forward(self, x):
    x = self.embedding(x)
    , (hidden, ) = self.lstm(x)
    last_hidden = hidden[-1,:,:]
    x = self.fc(last_hidden)
    return x
```

Long short-term memory

❖ Bidirectional RNN/LSTM/GRU


```
class TextClsModel(nn.Module):
    def __init__(self, vocab_size, emb_dim,
                 hidden_dim, num_layers):
        super(). init ()
        self.embedding = nn.Embedding(vocab_size,
                                      emb dim)
        self.rnn = nn.RNN(emb dim, hidden dim,
                          num layers = 2,
                          bidirectional = True,
                          batch first = True)
        self.fc = nn.Linear(hidden_dim, 2)
    def forward(self, x):
        x = self.embedding(x)
        _, hidden = self.rnn(x)
        last_hidden = hidden[-1,:,:]
        x = self.fc(last hidden)
        return x
```

❖ Bidirectional RNN/LSTM

```
class TextClsModel(nn.Module):
   def __init__(self, vocab_size, emb_dim,
                hidden dim, num layers):
       super(). init ()
       self.embedding = nn.Embedding(vocab size,
                                      emb_dim)
       self.lstm = nn.LSTM(emb dim, hidden dim,
                           num layers = 2,
                            bidirectional = True,
                            batch first = True)
       self.fc = nn.Linear(hidden_dim, 2)
   def forward(self, x):
       x = self.embedding(x)
       _, (hidden, _) = self.lstm(x)
       last_hidden = hidden[-1,:,:]
       x = self.fc(last_hidden)
       return x
```

(LSTM) Test accuracy: ~88%

$$h_0 = \mathbf{0} \qquad b_{hh} = \mathbf{0}$$

$$h_1 = \tanh(W_{xh}X_1 + b_{xh} + W_{hh}h_0 + b_{hh})$$

$$h_2 = \tanh(W_{xh}X_2 + b_{xh} + W_{hh}h_1 + b_{hh})$$

$$h_3 = \tanh(W_{xh}X_3 + b_{xh} + W_{hh}h_2 + b_{hh})$$

$$h_4 = \tanh(W_{xh}X_4 + b_{xh} + W_{hh}h_3 + b_{hh})$$

$$h_5 = \tanh(W_{xh}X_5 + b_{xh} + W_{hh}h_4 + b_{hh})$$

 \rightarrow h_t = tanh(W_{xh}X_t + b_{xh} + W_{hh}h_(t-1) + b_{hh})

Recurrent Neural Networks (RNN) - Classification

$$\frac{\partial J}{\partial W_{xh}} = \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial W_{xh}} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2}$$

* Recurrent Neural Networks (RNN) - Classification

$$\frac{\partial J}{\partial W_{xh}} = \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial W_{xh}} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2} \left(\frac{\partial h_2}{\partial W_{xh}} + \frac{\partial h_2}{\partial h_1} \right) = \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial W_{xh}} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_2}{\partial W_{xh}} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_3}{\partial h_2} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_3}{\partial h_2} \frac{\partial h_3}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_3}{\partial h_3} \frac{\partial h_3}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_3}{\partial h_3} \frac{\partial h_3$$

Recurrent Neural Networks (RNN) - Classification

$$\frac{\partial J}{\partial W_{xh}} = \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial W_{xh}} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_2}{\partial W_{xh}} + \frac{\partial J}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_3}{\partial h_2} \frac{\partial h_1}{\partial W_{xh}}$$

Recurrent Neural Networks (RNN) - Classification

$$\frac{\partial J}{\partial W_{xh}} = \sum_{k=1}^{T} \frac{\partial J}{\partial h_{T}} \frac{\partial h_{T}}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{xh}}$$

$$\frac{\partial h_{T}}{\partial h_{T-1}} \frac{\partial h_{T-1}}{\partial h_{T-2}} ... \frac{\partial h_{k+2}}{\partial h_{k+1}} \frac{\partial h_{k+1}}{\partial h_{k}}$$

