

# AN4913 应用笔记

## 在RF通信期间,能量采集传输对ST25DVxxx行为的影响

### 引言

本ST25DVxxx 为双EEPROM设备,可通过两个不同的接口访问:有线I<sup>2</sup>C接口和符合ISO 15693协议的标准非接触式RFID接口。

ST25DVxxx 的一个特征是能量捕获传输,在于将RF接收到能量的一部分传输到V\_EH输出引脚。

V\_EH上的电平是通过RF信号整流、以非稳压直流电压的形式产生的,该电压在RF输入钳位电路的限制下,仅为5.5 V以下。

能量采集主要用于通过平滑V\_EH电平的滤波电路向传感器或极低功率应用供电,以便限制快速消耗切换的影响。

本文件旨在介绍激活ST25DVxxx 能量采集的方法,以及与RF通信可能产生的影响。

本应用笔记适用于表1中所列产品。

表1. 适用产品

| 参考        | 产品编号      |
|-----------|-----------|
|           | ST25DV04K |
| ST25DVxxx | ST25DV16K |
|           | ST25DV64K |

目录 AN4913

# 目录

| 1 | 缩略词 | <b>吾及符号</b> 约 | 约定             |                   |       |           | <br> | <br> | 5    |
|---|-----|---------------|----------------|-------------------|-------|-----------|------|------|------|
|   | 1.1 | 二进制数          | (表示            |                   |       |           | <br> | <br> | 5    |
|   | 1.2 | 十六进制          | ]数表示           |                   |       |           | <br> | <br> | 5    |
|   | 1.3 | 十进制数          | 表示             |                   |       |           | <br> | <br> | 5    |
| 2 | 能量의 | 采集传输设         | <b>设置和复位</b>   |                   |       |           | <br> | <br> | 6    |
| 3 | 能量? | 采集对ST         | 25DVxxx行       | 「为的影 <sup> </sup> | 响     |           | <br> | <br> | 8    |
|   | 3.1 | 能量采集          | 电流传输测          | 量                 |       |           | <br> | <br> | 8    |
|   | 3.2 | 能量采集          | 电流传输测          | 量                 |       |           | <br> | <br> | . 10 |
|   |     | 3.2.1         | EH传输工作         | 范围受限-             | 于I_EH | <b>追流</b> | <br> | <br> | 11   |
|   |     | 3.2.2         | EH传输工作         | 范围受限 <del>-</del> | ₹P_EH | 电流        | <br> | <br> | 12   |
| 4 | RF控 | 制恢复           |                |                   |       |           | <br> | <br> | . 13 |
| 5 | 表征约 | 吉果            |                |                   |       |           | <br> | <br> | . 14 |
|   | 5.1 | 通过能量          | 是采集传输功         | 率                 |       |           | <br> | <br> | . 14 |
|   | 5.2 | 具有能量          | <b>采集的RF</b> 功 | b能域               |       |           | <br> | <br> | . 16 |
| 6 | 应用原 | 京理图 .         |                |                   |       |           | <br> | <br> | . 18 |
| 7 | 附录  |               |                |                   |       |           | <br> | <br> | . 19 |
|   | 7.1 | 相对于El         | H的静态寄存         | 字器                |       |           | <br> | <br> | . 19 |
|   | 7.2 | 相对于El         | H的动态寄存         | 字器                |       |           | <br> | <br> | . 19 |
| 8 | 版本原 | 5史            |                |                   |       |           | <br> | <br> | . 22 |



AN4913 表格索引

# 表格索引

|      | 适用产品                |     |
|------|---------------------|-----|
| 表2.  | 缩略语列表               | . 5 |
|      | EH电流传输值             |     |
|      | 能量采集测量,其中AM = 100 % |     |
|      | 能量采集测量,其中AM = 10 %  | 10  |
|      | EH_MODE 寄存器         | 19  |
|      | GPO_CTRL_Dyn        | 19  |
|      | EH_CTRL_Dyn         | 21  |
|      | 文档版本历史              | 22  |
| 表10. | 中文文档版本历史            | 22  |
|      |                     |     |



图片索引 AN4913

# 图片索引

|     | 能量采集设置                        |    |
|-----|-------------------------------|----|
|     | EH电流传输                        |    |
|     | EH传输工作范围, 其中AM = 100 % (电流限定) |    |
|     | EH传输工作范围, 其中AM = 10 % (电流限定)  |    |
|     | EH传输工作范围, 其中AM = 100 % (功率限定) |    |
|     | EH传输工作范围, 其中AM = 10 % (功率限定)  |    |
|     | 能量采集电压传输                      |    |
|     | 具有能量采集的功能域                    |    |
| 图9. | 应用原理图                         | 18 |
|     |                               |    |



AN4913 缩略语及符号约定

## 1 缩略语及符号约定

表2. 缩略语列表

| 缩略语              | 定义                  |
|------------------|---------------------|
| AM               | 幅度调制                |
| DSC              | 双副载波                |
| EH               | 能量捕获                |
| I <sup>2</sup> C | 内置集成电路              |
| ISO/IEC          | 国际标准化组织 / 国际电子技术委员会 |
| HDR              | 高数据率                |
| RF               | 射频                  |

如未特别说明,下面的约定和符号适用于整个文档。

### 1.1 二进制数表示

二进制数由数字0和1组成的字符串表示,左侧为最高有效位,右侧为最低有效位,末尾添加后缀"b"。

示例: 11110101b

### 1.2 十六进制数表示

十六进制数字由0到9之间组成的数字字符串和从A到F的字母表示,末尾添加后缀 "h"。左侧为最高有效位,右侧为最低有效位。

示例: F5h

### 1.3 十进制数表示

十进制数直接使用数字表示,不加任何尾随字符。

示例: 245



### 2 能量采集传输设置和复位

当ST25DVxxx进入RF场时,ST25DVxxx能够在启动之后自动激活能量采集。当EH\_MODE 位的值为0b时,该模式使能。EH\_MODE位是位于系统区域的EH\_MODE寄存器的最低有效位。对EH\_MODE位的编程可以通过RF接口或I<sup>2</sup>C接口完成。

注: 访问 EH MODE 位要求先通过RF或PC出示系统密码。

默认出厂设置下,禁用ST25DVxxx的能量采集功能(寄存器EH\_MODE的EH\_MODE位设置为 1b)。因此,在RF启动之后,EH\_CTRL\_Dyn寄存器的EH\_EN位复位,V\_EH输出保持高阻态。

在启动之后, V\_EH的行为如下:

- 当EH\_MODE设置为0b时, V\_EH在设备启动后由捕获的场自动供电。
- 当EH\_MODE设置为1b时, V\_EH在设备启动后保持高阻态。

无论EH\_MODE位的值如何,均可以借助EH\_EN动态位,通过RF或 $I^2$ C进一步激活或禁用 $V_EH$ 传输。该指令不受密码保护。

注: 通过RF或I<sup>2</sup>C将EH\_MODE位的配置设置为0b后,EH\_EN位自动设置为1b,如果存在RF场, 则传输能量采集。相反,当EH\_MODE复位为1b时,动态位EH\_EN保持置位,直到存在RF场 或直到复位为止。

能量采集设置见图 1第7页描述。





### 3 能量采集对ST25DVxxx行为的影响

ST25DVxxx的行为取决于使用情形,特别是预期进行能量采集传输时。

接收功率的一部分用于提供ST25DVxxx活动,而剩余的功率流向V EH输出。

捕获的能量与RF场强度、耦合和所涉及的天线尺寸存在函数关系。

在RF通信期间,HF场由读卡器或ST25DVxxx调制。这可以导致输入功率暂时降低。在EH激活时,如果无法保证整个功能域的无缝衔接而关闭EH,内部槽路电容器可以防止ST25DVxxx复位。

当V\_EH吸收的功率很高时,会出现工作性能的限制。因此,当激活能量采集时,功能域限制在缩小的工作范围。

提供的测量图进一步显示了工作范围,该工作范围受到最大可用电流(8 3和8 4第 11  $\sigma$ )或最大传输功率(8 5和8 6第 12 $\sigma$ )的限制。超出这些限制时,ST25DVxxx 停止与RF读卡器通信。

注: 当读卡器使用100%幅度调制而不是10%幅度调制时,工作范围变窄,导致RF指令期间的 能量损失更高。

当RF通信因能量采集传输而丢失时,可以通过增加捕获能量条件或通过关闭RF场以禁用能量采集传输,从而恢复RF通信。

仅当EH\_Mode复位为1b时,后者才可以实现。在所有其他情况下,在RF启动后,ST25DVxxx立即重新激活能量采集传输。

以下部分介绍:

- 在ISO 1类天线上设置ST25DVxxx且RF功能的固有值和有限值均得到保持时的电流传输能力。
- 相应的电压、电流和功率,表征V\_EH引脚与RF场的函数关系。

### 3.1 能量采集电流传输测量

图 2和表 3显示通过ST25DVxxx焊接在RF场内ISO 1类天线上时所传输的能量采集电流:

- 红色曲线不考虑RF通信功能。
- 绿色曲线显示当驱动器电流受限时, RF通信的边界。





#### 图2. EH电流传输

表3. EH电流传输值

| H<br>(A/m rms) | I Max<br>(mA) | I Com<br>(mA) | V_EH Imax<br>(V) | V_EH Icom<br>(V) |
|----------------|---------------|---------------|------------------|------------------|
| 1              | 4.1           | 0.7           | 1.8              | 3.1              |
| 1.5            | 6.7           | 0.7           | 1.8              | 3.1              |
| 2              | 6.9           | 0.9           | 1.8              | 3.1              |
| 2.5            | 7.5           | 0.9           | 2                | 3                |
| 3              | 7.5           | 1.3           | 2                | 2.9              |
| 3.5            | 7.7           | 1.7           | 2                | 2.9              |
| 4              | 7.7           | 2.1           | 2                | 2.9              |
| 4.5            | 7.9           | 2.5           | 2                | 2.9              |
| 5              | 7.9           | 2.9           | 2                | 2.7              |
| 5.5            | 8             | 3.3           | -                | -                |



### 3.2 能量采集电流传输测量

本节介绍了ST25DVxxx连接到ISO / IEC 1类天线(调谐13.6 MHz)时获得的最大电流传输结果,该天线位于由传输H\_EH场的RF读卡器所驱动的ISO 15693塔上。

功能测试仅限于对于接收到的询卡命令的有效响应(AM然后是DSC HDR)。

#### 使用以下符号:

- V\_EH: 在 ST25DVxxx V\_EH输出上传输的DC电压
- I\_EH: 在 ST25DVxxx V\_EH输出上吸收的DC电流
- P\_EH:在ST25DVxxx V\_EH输出上传输的合成功率

表 4 显示在AM = 100 %和RF正常工作,情况下获得的表征测量结果。

表4. 能量采集测量, 其中AM = 100 %

| H_EH<br>(A/m rms) | 0.5  | 1     | 1.5   | 2     | 2.5   | 3     | 3.5   | 4     | 4.5   | 5     | 5.5  |
|-------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| V_EH (V)          | 3.3  | 3.35  | 3.29  | 3.29  | 3.23  | 3.23  | 3.13  | 3.05  | 3.03  | 3.08  | 3.2  |
| I_EH (mA)         | 0.7  | 0.7   | 0.7   | 0.7   | 0.9   | 0.9   | 1.3   | 1.7   | 1.9   | 2.3   | 2.7  |
| P_EH (mW)         | 2.31 | 2.345 | 2.303 | 2.303 | 2.907 | 2.907 | 4.069 | 5.185 | 5.757 | 7.084 | 8.64 |

表 5 显示在AM = 10 %和RF正常工作,情况下获得的表征测量结果。

表5. 能量采集测量, 其中AM = 10 %

| H_EH<br>(A/m rms) | 0.5  | 1     | 1.5   | 2     | 2.5   | 3     | 3.5   | 4     | 4.5   | 5      | 5.5    |
|-------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| V_EH (V)          | 3.6  | 3.45  | 3.29  | 3.23  | 3.15  | 3.13  | 3.09  | 2.97  | 2.78  | 2.57   | 2.57   |
| I_EH (mA)         | 0.1  | 0.3   | 0.7   | 0.9   | 1.1   | 1.3   | 1.5   | 2.1   | 3.3   | 4.5    | 4.9    |
| P_EH (mW)         | 0.36 | 1.035 | 2.303 | 2.907 | 3.465 | 4.069 | 4.635 | 6.237 | 9.174 | 11.565 | 12.593 |

#### 3.2.1 EH传输工作范围受限于I\_EH电流

图 3显示当AM = 100 %时获得的结果。



图 4显示当AM = 10%时获得的结果。



#### 3.2.2 EH传输工作范围受限于P\_EH电流

图 5 显示当AM = 100 %时获得的结果。



图 6显示当AM = 10%时获得的结果。



AN4913 RF控制恢复

### 4 RF控制恢复

ST25DVxxx 能够在RF上电后使能或禁用能量采集传输。通过将系统位EH\_MODE分别设置为 0b(启动后激活EH)或1b(启动后保持EH停用)来完成此配置选择。

当使用EH并且ST25DVxxx标签和读卡器之间的通信丢失时,通常由于ST25DVxxx无法正确解析输入的指令(当读卡器使用AM 100%而不是使用AM 10%时,这种情况更常发生)。

恢复RF控制的唯一可能性是返回至可以进行通信和EH传输的情况,可以通过减小工作距离 以增加输入功率,减小作用在负载上的驱动器电流,或关闭RF场来复位能量采集传输,从 而实现上述功能。

建议将EH\_MODE位保持为1b,从而在启动后保持能量采集停用状态。在所有情况下,通过使用动态位EH\_EN可以快速激活EH传输。

在此配置中,在RF场复位(RFOFF/RFON)之后,将复位动态位EH\_EN,并再次建立RF通信。

相反,可能会发生这样的情况:当配置位EH\_MODE设置为0b时,在每次RF加速之后,将传输能量采集,但无法进行通信。在此情况下,唯一的恢复是修改系统的物理参数,增加RF 场或限制吸收的电流。



表征结果 AN4913

## 5 表征结果

按如下方式执行表征:

• 测试设置: ST25DVxxx 在ISO天线上,放置于ISO塔,其中配置位EH\_MODE = 1b,

- H场由RF测试仪/读卡器驱动ISO塔发射。通过ISO校准线圈,借助电压测量来控制场值。
- 在H场设置和ST25DVxxx启动延迟之后,测试仪将应用V EH输出上加载的电流。
- 在功能测试中,在受试的ST25DVxxx和测试仪之间交换写入动态配置和读取动态配置 指令。
- 每次测试后,报告I\_EH传输期间V\_EH上的电压(框中的值)。当V\_EH驱动器输出为高Z 时,V\_EH被当前负载驱动至?-0.7V。

#### 5.1 通过能量采集传输功率

图 7显示传输的电压与EH输出电平和负载电流的函数关系。

- 当不传输V\_EH时,框为橙色或红色。
- 当传输V EH时, 框为绿色(深绿和浅绿色)。
- 红色曲线表示当EH和RF通信在AM = 10%下工作时,域的限制。
- 黄色曲线表示当EH和RF通信在AM = 100 %下工作时,域的限制。



AN4913 表征结果



l. 垂直轴:I\_EH在V\_EH上拉动电流,单位为mA。 水平轴:ST25DVxxx天线的环境H场,单位为A/m rms。



表征结果 AN4913

## 5.2 具有能量采集的RF功能域

图 8 显示各个域与场电平和负载电流的函数关系。

- 当无可用RF通信时,显示黄色或红色框。
- 绿色(深绿和浅绿色)框表示用于能量采集的 ST25DVxxx RF工作域:在此区域,RF通信在V\_EH传输期间顺利运行。



AN4913 表征结果



<sup>1.</sup> 垂直轴:I\_EH在V\_EH上拉动电流,单位为mA。 水平轴:ST25DVxxx天线的环境H场,单位为A/m rms。



应用原理图 AN4913

### 6 应用原理图

由ST25DVxxx 在V\_EH输出上传输的信号来自于RF场的全波整流。信号电平仅受限于RF输入的钳位电路。其并非稳压。

建议在接收电路之前使用输出滤波器,以使各项变化更加平滑。滤波器的尺寸与其驱动能力、负载电路上允许的纹波以及所需的初始设置时间有关。

在本文档中提供的测试中,在V\_EH和接地之间使用10 nF电容。

我们开发了若干应用程序来演示EH的使用,并可用于ST25DVxxx探索套件:

- 1. 使用不同的电阻负载来量化V\_EH输出电平。
- 2. 通过能量采集向低功耗微控制器供电

#### 图9. 应用原理图



AN4913 附录

## 7 附录

## 7.1 相对于EH的静态寄存器

表 6介绍EH\_MODE寄存器的结构和编程。

#### 表6. EH\_MODE 寄存器

| RF               | 指令      | 读取配置(cmd 代码 A0h) @02h<br>写入配置(cmd 代码 A1h) @02h |         |
|------------------|---------|------------------------------------------------|---------|
|                  | 类型      | 始终为R,如果RF配置安全会话打开且配置未锁定,则W                     |         |
| I <sup>2</sup> C | 地址      | E2 = 1, 0002h                                  |         |
|                  | 类型      | 始终为R,如果l <sup>2</sup> C安全会话打开,则W               |         |
| 位                | 名称      | 功能                                             | 出厂值     |
| b0               | EH_MODE | 0: 开机后强制执行EH<br>1: 仅在需要时使用EH                   | 1b      |
| b7-b1            | RFU     | -                                              | 000000b |

## 7.2 相对于EH的动态寄存器

表 7介绍GPO\_CTRL\_Dyn寄存器的结构和编程。

#### 表7. GPO\_CTRL\_Dyn

| RF               | 指令             | 读取动态配置(cmd 代码 ADh) @00h<br>写入动态配置(cmd 代码 AEh) @00h<br>快速读取动态配置(cmd 代码 CDh) @00h<br>快速写入动态配置(cmd 代码 CEh) @00h |     |  |  |  |  |
|------------------|----------------|--------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| I <sup>2</sup> C | 地址             | i2 = 0, 2000h                                                                                                |     |  |  |  |  |
|                  | 类型             | b0-b6: RO - b7: 始终为R,始终为W                                                                                    |     |  |  |  |  |
| 位                | 名称             | 功能                                                                                                           | 出厂值 |  |  |  |  |
| b0               | RF_USER_EN     | 0: 禁止                                                                                                        | 0b  |  |  |  |  |
|                  |                | 1: GPO输出电平由Manage GPO指令(设置/复位)控制。                                                                            | 05  |  |  |  |  |
| b1               | RF_ACTIVITY_EN | 1: GPO输出电平由Manage GPO指令(设置/复位)控制。 0: 禁止 1: GPO输出电平从RF指令SOF变为响应EOF。                                           | 0b  |  |  |  |  |
| b1               |                | 0: 禁止                                                                                                        |     |  |  |  |  |



附录 AN4913

#### 表7. GPO\_CTRL\_Dyn(续)

| RF               | 指令            | 读取动态配置(cmd 代码 ADh) @00h<br>写入动态配置(cmd 代码 AEh) @00h<br>快速读取动态配置(cmd 代码 CDh) @00h<br>快速写入动态配置(cmd 代码 CEh) @00h |     |
|------------------|---------------|--------------------------------------------------------------------------------------------------------------|-----|
|                  | 类型            | RO                                                                                                           |     |
| I <sup>2</sup> C | 地址            | E2 = 0, 2000h                                                                                                |     |
|                  | 类型            | b0-b6: RO - b7: 始终为R,始终为W                                                                                    |     |
| 位                | 名称            | 功能                                                                                                           | 出厂值 |
| b4               | RF_PUT_MSG_EN | 0: 禁止<br>1: 在完成有效的RF写入邮件指令后,在GPO上发出<br>脉冲。                                                                   | 0b  |
| b5               | RF_GET_MSG_EN | 0:禁止<br>1:如果已达到邮件末尾,则在完成有效的RF读取邮件指令后,<br>在GPO上发射脉冲。                                                          | 0b  |
| b6               | RF_WRITE_EN   | 0:禁止<br>1:在EEPROM上完成有效的RF写入后,在GPO上发射脉冲<br>。                                                                  | 0b  |
| b7               | GPO_EN        | 0:禁用GPO输出。GPO为高Z(漏极开路)或0 (CMOS)<br>1:使能 GPO 输出。GPO输出使能中断。                                                    | 1b  |

表 8介绍EH\_CTRL\_Dyn寄存器的结构和编程。

AN4913 附录

### 表8. EH\_CTRL\_Dyn

| RF               | 指令                           | 读取动态配置(cmd 代码 ADh) @02h<br>快速读取动态配置(cmd 代码 CDh) @02h<br>写入动态配置(cmd 代码 AEh) @02h<br>快速写入动态配置(cmd 代码 CEh) @02h |       |  |  |  |  |
|------------------|------------------------------|--------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
|                  | 类型 b0: 始终为R, W - b1 - b7: RO |                                                                                                              |       |  |  |  |  |
|                  | 地址                           | E2 = 0, 2002h                                                                                                |       |  |  |  |  |
| I <sup>2</sup> C | I <sup>2</sup> C             |                                                                                                              |       |  |  |  |  |
| 位                | 名称                           | 功能                                                                                                           | 出厂值   |  |  |  |  |
| b0               | EH_EN                        | 0: 禁用EH特性<br>1: 使能EH特性                                                                                       | 0b    |  |  |  |  |
| b1               | EN_ON                        | 0: 禁用EH特性<br>1: 启用EH特性                                                                                       | 0b    |  |  |  |  |
| b2               | FIELD_ON                     | 0:未检测到RF场<br>1:存在RF场,且ST25DVxxx可在RF中通信                                                                       | 取决于电源 |  |  |  |  |
| b3               | VCC_ON                       | 0: VCC引脚未检测到直流电源或强制执行低功耗模式(LPD为高)<br>1: 存在VCC电源且未强制执行低功耗模式(LPD为低)                                            | 取决于电源 |  |  |  |  |
| b7-b4            | RFU                          | -                                                                                                            | 0000b |  |  |  |  |



版本历史 AN4913

## 8 版本历史

#### 表9. 文档版本历史

| 日期            | 版本 | 变更    |
|---------------|----|-------|
| 2017年3月2<br>日 | 1  | 初始版本。 |

### 表10. 中文文档版本历史

| 日期             | 版本 | 变更      |
|----------------|----|---------|
| 2019年8月<br>28日 | 1  | 中文初始版本。 |

#### 重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。若需 ST 商标的更多信息,请参考 www.st.com/trademarks。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2019 STMicroelectronics - 保留所有权利

