Дискретная математика Лабораторная работа по булевым функциям, 2017 год

Задача А. Форма Крома

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам дана булева функция в форме Крома, требуется проверить, является ли она тождественным нулем.

Формат входных данных

В первой строке заданы два целых числа n и m — количество переменных и дизъюнктов, соответственно ($1 \le n \le 15$; $1 \le m \le 10^5$). В последующих m строках содержатся описания дизъюнктов. В i+1 строке содержатся два целых числа a_i и b_i - аргументы i-го дизъюнкта ($1 \le |a_i|, |b_i| \le n$), причем, если число отрицательно, то оно соответствует отрицанию переменной.

Формат выходных данных

В единственной строке выведите «YES» (без кавычек), если формула является тождественным нулем, «NO» (без кавычек) иначе.

Примеры

стандартный ввод	стандартный вывод
2 3	NO
-1 2	
-2 -2	
2 -1	
2 4	YES
-1 2	
-2 -2	
2 -1	
1 1	

Замечание

В первом примере входные данные соответствуют следующей формуле: $(\overline{x_1} \lor x_2) \land (\overline{x_2} \lor \overline{x_2}) \land (x_2 \lor \overline{x_1})$. При $x_1 = 0$ и $x_2 = 0$ данная формула обращается в 1.

Задача В. Функция Хорна

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В этой задаче задана булева функция в форме Хорна. Требуется проверить является ли она тождественным нулем.

Формат входных данных

Первая строка входных данных содержит два натуральных числа n, k — количество литералов и дизъюнктов (скобок в формуле) соответственно ($1 \le n, k \le 100$).

Следующие k строк описывают дизъюнкт в следующем формате: n чисел $x_i \in \{-1, 0, 1\}$.

 $x_i = 1 - i$ -й литерал входит в дизъюнкт без отрицания.

 $x_i = 0 - i$ -й литерал входит в дизъюнкт с отрицанием.

 $x_i = -1 - i$ -й литерал не входит в дизъюнкт.

Формат выходных данных

Выведите «YES» (без кавычек), если функция — тождественный ноль. Иначе выведите «NO» (без кавычек).

Примеры

стандартный ввод	стандартный вывод
3 3	NO
1 0 -1	
0 1 0	
-1 0 1	
1 2	YES
1	
0	

Замечание

В первом примере формула выглядит следующим образом: $(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3)$ Второй пример: $(x_1) \land (\overline{x_1})$

Дискретная математика Лабораторная работа по булевым функциям, 2017 год

Задача С. Полный набор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам даны n булевых функций, заданных таблицами истинности. Требуется проверить набор на полноту.

Формат входных данных

В первой строке находится одно целое число n — количество функций ($1 \le n \le 1000$).

В следующих n строках дано описание функций. Первым в строке дано число s_i — количество аргументов очередной функции ($0 \le s_i \le 5$). Далее дана строка a_i из 2^{s_i} символов 0 и 1, она описывает таблицу истинности. Функция возвращает a_{ij} , если ей на вход подать представление j в двоичной системе счисления. Порядок аргументов соответствует порядку от младших битов к старшим.

Формат выходных данных

В единственной строке выведите «YES», если набор полон, и «NO» иначе.

Примеры

стандартный ввод	стандартный вывод
3	YES
2 0111	
2 0001	
1 10	
2	NO
2 0110	
1 01	

Задача D. К или Д?

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано целое число n и n неотрицательных целых чисел. Требуется проверить, можно ли составить формулу, используя побитовые $\mathrm{U}(\mathsf{\&\&})$, $\mathrm{И}\mathrm{J}\mathrm{U}(\mathsf{\&|})$, $\mathrm{HE}(\mathsf{\&\tilde{}})$, круглые скобки($\mathsf{\&(s, a)}$) и данные числа, чтобы ее результатом являлось число s. Если да, то выведите любую. Вместо самих чисел в формуле должны быть их порядковые номера во входных данных. Для лучшего понимания разберите тесты из условия.

Формат входных данных

На первой строке содержится целое число $n\ (1\leqslant n\leqslant 5).$

Во второй n целых чисел a_i ($0 \le a_i \le 2^{32} - 1$).

В последней строке содержится ровно одно целое число s.

Формат выходных данных

Выведите формулу, описанную выше, или «Impossible» (без кавычек), если ответа не существует. Если ответов несколько, выведите любой из них.

Примеры

стандартный ввод	стандартный вывод
1	1
8	
8	
2	Impossible
48 83	
68	
2	2&~1
20 8	
8	
1	Impossible
1	
4294967295	

Замечание

Коды символов в ASCII: «&» — 38, «|» — 124, «~» — 126, «(» — 40, «)» — 41.

Задача Е. Схема из функциональных элементов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана схема из функциональных элементов в порядке топологической сортировки (то есть листьяпеременные имеют минимальные номера, а корень схемы — максимальный). Вам предстоит определить ее глубину, а также таблицу истинности для всевозможных входных данных.

Формат входных данных

В первой строке указано натуральное число n — количество вершин в схеме ($1 \leqslant n \leqslant 27$). В следующих строках описано устройство схемы.

Элементы даны в порядке от первого до n-го. Каждый элемент описывается либо одной (если это переменная-лист), либо двумя строчками (если это функция). Первое целое число m в первой строчке из описания i-го элемента — количество входов для этого элемента ($0 \le m \le 5$) (если элемент — переменная, то m = 0). Далее в этой же строке перечислены m натуральных чисел — номера элементов, значения с которых подаются на вход i-му.

Если m>0, то в следующей строке дано 2^m целых чисел $a_0,a_1,...a_{2^m-1}$. Где a_j — ответ, который выдает i-ый элемент, если на входы подать двоичное представление числа j ($0 \le a_j \le 1$). Более старшим разрядам j соответствуют более ранние (с меньшими индексами) входы, в порядке, написанном в предыдущей строке.

Формат выходных данных

В первой строке выведите одно число — глубину данной схемы.

Назовем количество переменных-листьев k. В следующей строке выведите битовую строчку длины 2^k , где в позиции j будет число, выдаваемое схемой если на вход подается число j, старшим разрядам j соответствуют листы, имеющие меньшие индексы.

Пример

стандартный ввод	стандартный вывод
5	2
0	01011001
0	
2 1 2	
1 1 0 1	
0	
2 3 4	
1 0 0 1	

Замечание

Обозначим как ans_i — число, которое получается в i-м элементе. Тогда в данном примере значения функций, например, для 3-го элемента означают

ans_1	ans_2	ans_3
0	0	1
0	1	1
1	0	0
1	1	1

Дискретная математика Лабораторная работа по булевым функциям, 2017 год

Задача F. Полином Жегалкина

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана таблица истинности. Найдите по ней коэффициенты полинома Жегалкина.

Формат входных данных

В первой строке дано число n — количество переменных в функции ($1 \le n \le 10$). Следующие 2^n строчек имеют следующий вид: значения переменных x_1, x_2, \ldots, x_n и значение функции при этих переменных. Строки даны в лексикографически возрастающем порядке значений переменных.

Формат выходных данных

Вывести 2^n строчек в следующем формате: значения переменных, через пробел значение коэффициента полинома Жегалкина для этой записи. Порядок строк должен быть таким же, как и в входном файле.

Примеры

стандартный ввод	стандартный вывод
2	00 0
00 0	01 1
01 1	10 0
10 0	11 0
11 1	
2	00 1
00 1	01 1
01 0	10 1
10 0	11 0
11 1	