

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO						
Disciplina:				Código da Disciplina:		
Materiais de Construção Mecân	ica I			ETM203		
Course:				1		
Mechanical Construction Materials I						
Materia:						
Materiales de Construcción Med	cánica I					
Periodicidade: Anual	Carga horária total:	80	Carga horária semar	nal: 01 - 00 - 01		
Curso/Habilitação/Ênfase:	•	,	Série:	Período:		
Engenharia de Produção			2	Diurno		
Engenharia de Produção			2	Noturno		
Engenharia de Produção			2	Noturno		
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação		
Marcelo Ferreira Moreira		Engenheiro Me	talúrgico	Mestre		
Professores:		Titulação - Graduaç	ção	Pós-Graduação		
Marcelo Ferreira Moreira Engenheiro Metalúrgico		Mestre				
Susana Marraccini Giampietri Lebrao Engenheiro Metalúrgico		talúrgico	Doutor			
MODALIDADE DE ENSINO						

Presencial: 50%

Mediada por tecnologia: 50%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Ciência dos materiais. Ligas metálicas. Diagramas de equilíbrio. Introdução aos aços de construção mecânica. Diagrama de equilíbrio Fe-C. Diagramas TTT. Ferros Fundidos. Ligas de alumínio. Ligas de cobre. Cerâmicas. Polímeros. Processamento, degradação e reciclagem de polímeros. LABORATÓRIO: Estudo e realização dos principais ensaios mecânicos: tração, dureza, impacto. Líquidos penetrantes e partículas magnéticas. Metalografia dos aços e do alumínio. Ensaio de fadiga. Ensaios mecânicos de polímeros.

SYLLABUS

Materials science. Metal alloys. Equilibrium diagrams. Introduction to mechanical construction steels. Fe-C equilibrium diagram. TTT diagrams. Cast Iron. Aluminum alloys. Copper alloys. Ceramics. Polymers. Processing, degradation and recycling of polymers. LAB: Study and realization of the main mechanical tests: tensile, hardness, impact. Penetrant and magnetic particles. Metallography of steels and aluminum. Fatigue test. Mechanical tests polymers.

2021-ETM203 página 1 de 9

TEMARIO

Ciencia de los materiales. Aleaciones de metal. Diagramas de equilibrio. Introducción a aceros de construcción mecánicas. Fe-C diagrama de equilibrio. Diagramas TTT. Hierro fundido. Las aleaciones de aluminio. Las aleaciones de cobre. Cerámica. Polímeros. Procesamiento, la degradación y el reciclado de polímeros. LAB: Estudio y realización de las principales pruebas mecánicas: resistencia a la tracción, dureza, impacto. Penetrantes y partículas magnéticas. Metalografía de aceros y aluminio. Prueba de resistencia. Ensayos mecánicos polímeros.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Química- ligações químicas

Física- Conceitos de dilatação térmica, densidade, condutibilidade térmica e elétrica, unidades de medida, análise dimensional

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

A disciplina estabelece correlações entre propriedades mecânicas, microestruturas e composições químicas. Isso promove competências relacionadas à identificação de padrões, estabelecimento de conexões e pensamento estruturado.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

O curso objetiva a disseminação de conhecimentos, habilidades e competências consideradas introdutórias aos materiais de construção mecânica.

São considerados os seguintes conhecimentos:

- C1- Conceitos e princípios fundamentais de metalurgia e ciência dos materiais.
- C2- Conceitos de propriedades físicas e mecânicas dos materiais.
- C3- Noções básicas sobre processos de fabricação e aplicações dos materiais.
- C4- Noções básicas do processo de seleção dos materiais.

As seguintes habilidades a serem desenvolvidas:

- H1- Estabelecer correlações entre composição química, propriedades mecânicas e microestrutura em materiais.
- H2- Identificar fenômenos destrutivos em materiais.

E os seguintes valores:

V1- Compreensão mais fundamentada sobre a constituição dos materiais, suas propriedades, aplicações e limitações.

V2- Visão crítica sobre o processo de seleção de materiais

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

2021-ETM203 página 2 de 9

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Experimentação
- Simulação

METODOLOGIA DIDÁTICA

Aulas expositívas, aulas práticas de laboratório, exercícios, discussão e resolução de casos

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_p)$: 7,0 Peso de $MT(k_T)$: 3,0

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

Os conhecimentos adquiridos na disciplina fazem parte da fundamentação teórica básica de um engenheiro, sendo aplicados rotineiramente em sua vida profissional. A premissa é que o engenheiro projetará, construirá ou ainda, administrará a produção de componentes e que estes serão fabricadas com algum material. Assim, a disciplina possibilitará ao aluno compreender a constituição dos materiais metálicos de um ponto de vista mais amplo, envolvendo sua estrutura cristalina, sua microestrutura e as relações destas com as propriedades mecânicas.

Adicionalmente, a disciplina também apresentará aos alunos de engenharia que os materiais, empregados em componentes por eles projetados, também poderão ser projetados ou desenvolvidos para um determinada finalidade, maximizando o desempenho do produto final.

BIBLIOGRAFIA

Bibliografia Básica:

SHACKELFORD, James F. Introduction to materials science for engineers. 4. ed. New Jersey: Prentice-Hall, c1996. 670 p. ISBN 0024097616.

Bibliografia Complementar:

2021-ETM203 página 3 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

ASHBY, Michael F; JONES, David R. H. Engenharia de materiais. Trad. da 3 ed. americana por Arlete Simille Marques. Rio de Janeiro , RJ: Elsevier, 2007. v. 1. 371 p. ISBN 9788535223620.

CALLISTER JR., William D. Ciência e engenharia de materiais: uma introdução. SOARES, Sérgio Murilo Stamile (trad.), d'ALMEIDA, José Roberto Moraes de (Rev.). 7. ed. Rio de Janeiro, RJ: LTC, 2007. 705 p. ISBN 9788521615958.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

CES Edupack

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A nota dos trabalhos será composta por 5,0 pontos referentes aos relatórios realizados e entregues em aula de laboratório e 5,0 pontos referentes aos trabalhos realizados via moodle.

Como todos os trabalhos serão realizados e entregues via moodle, com prazo de uma semana para sua realização e avisados antecipadamente em sala e por mensagem no moodle, não haverá trabalho substitutivo.

A primeira prova deverá ser feita com recursos mediados por tecnologia, com o auxilio do Moodlerooms acompanhado pelo professor no Collaborate, durante no horário de aula.

Esta disciplina opta pela concessão prevista na resolução CEUN-CEPE 02.12.2008.

2021-ETM203 página 4 de 9

OUTRAS INFORMAÇÕES	

2021-ETM203 página 5 de 9

APROVAÇÕES

2021-ETM203 página 6 de 9

	PROGRAMA DA DISCIPLINA			
Nº da	Conteúdo	EAA		
semana				
1 L	Programa de Recepção e Integração dos Calouros (PRINT).	0		
1 Т	Programa de Recepção e Integração dos Calouros (PRINT).	0		
2 L	Dia não letivo - Carnaval.	0		
2 Т	Dia não letivo - Carnaval.	0		
3 L	(L1) Palestra sobre segurança nos laboratórios e assinatura do	1% a 10%		
	termo de compromisso. Apresentação dos laboratórios e dos			
	critérios de avaliação da disciplina.			
3 Т	(T01) Apresentação do professor e da temática do curso.	1% a 10%		
	Apresentação do software CES Edupack e propriedades dos			
	materiais.			
4 L	Não haverá aula	0		
4 T	Não haverá aula	0		
5 Т	(T02) Breve revisão de ligações químicas. Definição de força de	1% a 10%		
	ligação e energia de ligação. Relação entre propriedades físicas			
	e o tipo da ligação química, características gerais dos metais.			
5 L	(L2) Deformação elástica dos materiais: ensaio de tração	91% a		
	instrumentado com extensômetro.	100%		
6 L	Não haverá aula	0		
6 Т	Não haverá aula	0		
7 Т	Exercícios em sala - Lista de exercícios extra sobre energia de	61% a 90%		
	ligação química e propriedades físicas. Resolução individual e			
	correção no final da aula.			
7 L	(L3) Ensaio de tração com escoamento nítido (metais).	91% a		
		100%		
8 L	Não haverá aula	0		
8 T	Não haverá aula	0		
9 Т	(TO3) Estrutura cristalina dos metais, reticulados cristalinos,	1% a 10%		
	parâmetros do reticulado, número de coordenação - estruturas CCC,			
	CFC e HC. Estrutura polimérica e cerâmica.			
9 L	(L4) Ensaio de tração com escoamento não-nítido (limite de	91% a		
	escoamento 0,2%).	100%		
10 L	Provas P1 das disciplinas AN e P1 das disciplinas do S2.	0		
10 T	Provas P1 das disciplinas AN e P1 das disciplinas do S2.	0		
11 L	Feriado Tiradentes	0		
11 T	Não haverá aula	0		
12 T	Exercícios em sala. Fator de empacotamento atômico das estruturas	61% a 90%		
	CCC e CFC. Cálculo de densidade teórica e materiais			
	policristalinos e introdução às imperfeições cristalinas			
12 L	(L5) Materiais cerâmicos e ensaio de flexão em cerâmicas (cálculo	91% a		
	do módulo de ruptura - MOR)	100%		
13 L	Não haverá aula	0		
13 T	Não haverá aula	0		
14 T	(TO4) Imperfeições cristalinas e estruturas não-cristalinas.	1% a 10%		
	, .,	_		

2021-ETM203 página 7 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

14 L	(L6) Ensaio de impacto (estudo de caso do Titanic).	91% a
		100%
15 L	SMILE 2021	0
15 T	SMILE 2021	0
16 L	Não haverá aula	0
16 T	Não haverá aula	0
17 T	Esclarecimento de dúvidas e discussão de exercícios	11% a 40%
17 L	(L7) Ensaios de dureza (escalas Brinell, Rockwell, Vickers)	91% a
		100%
18 L	Não haverá aula	0
18 T	Não haverá aula	0
19 L	Provas P2 disciplinas AN e S1; Provas das disciplinas com 1	0
	avaliação no lo sem.	
19 T	Provas P2 disciplinas AN e S1; Provas das disciplinas com 1	0
	avaliação no lo sem.	
20 L	Provas P2 disciplinas AN e S1; Provas das disciplinas com 1	0
	avaliação no lo sem.	
20 T	Provas P2 disciplinas AN e S1; Provas das disciplinas com 1	0
	avaliação no lo sem.	Ü
21 T	Atividades de Planejamento e Capacitação Docente.	0
21 L	Atividades de Planejamento e Capacitação Docente.	0
22 L		0
22 1	Provas PS1 disciplinas AN e S1; Provas das disciplinas com 1	U
22 5	avaliação no lo sem.	0
22 T	Provas PS1 disciplinas AN e S1; Provas das disciplinas com 1	0
22. 7	avaliação no lo sem.	
23 L	Não haverá aula	0
23 T	Não haverá aula	0
24 T	(TO5) Mecanismos de endurecimento aplicáveis aos materiais	1% a 10%
0.4.7	metálicos.	010
24 L	(L8) Observação de estruturas bifásicas (latão alfa e latão	91% a
	alfa-beta) Exercícios - cálculos e sequência de solidificação	100%
25 L	Não haverá aula	0
25 T	Não haverá aula	0
26 T	(T06) Ligas metálicas, generalidades, soluções sólidas -	11% a 40%
	Introdução aos diagramas de equilíbrio. Cálculos e sequência de	
	solidificação no diagrama isomorfo.	
26 L	(L9) Observação de microestruturas hipoeutética, eutética e	91% a
	hipereutética do sistema Al-Si. Exercícios com cálculos e	100%
	sequência de solidificação.	
27 L	Não haverá aula	0
27 Т	Feriado - Independência do Brasil	0
28 T	(T07) Diagramas de equilíbrio. Cálculos e sequência de	11% a 40%
	solidificação nos diagramas eutético, eutetóide e peritético.	
28 L	(L10) Síntese polimérica e caracterização	41% a 60%
29 L	Provas P3 das disciplinas AN e P1 das disciplinas do S2.	0
29 T	Provas P3 das disciplinas AN e P1 das disciplinas do S2.	0
30 L	Não haverá aula	0
30 T	Não haverá aula	0
L		

2021-ETM203 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

31 T	(T08) Introdução ao diagrama Fe-Fe3C. Exercícios sobre diagrama	11% a 40%
	Fe-Fe3C	
31 L	(L11) Ensaios mecânicos em polímeros	91% a
		100%
32 L	Não haverá aula	0
32 T	Feriado - Nossa Senhora Aparecida	0
33 T	Exercícios sobre diagrama Fe-Fe3C	61% a 90%
33 L	(L12) Metalografia e observação de estruturas de aços resfriados	91% a
	lentamente	100%
34 L	Não haverá aula	0
34 Т	Não haverá aula	0
35 T	Feriado - Finados	0
35 L	Atendimento aos alunos.	1% a 10%
36 L	Não haverá aula	0
36 T	Plantão para esclarecimento de dúvidas	1% a 10%
37 L	Provas P4 disciplinas AN e P2 das disciplinas S2; Provas das	0
	disciplinas com 1 avaliação no 2 sem.	
37 T	Provas P4 disciplinas AN e P2 das disciplinas S2; Provas das	0
	disciplinas com 1 avaliação no 2 sem.	
38 T	Provas P4 disciplinas AN e P2 das disciplinas S2; Provas das	0
	disciplinas com 1 avaliação no 2 sem.	
38 L	Provas P4 disciplinas AN e P2 das disciplinas S2; Provas das	0
	disciplinas com 1 avaliação no 2 sem.	
39 Т	Não haverá aula	0
39 L	Revisão de provas	11% a 40%
40 L	Não haverá aula	0
40 T	Plantão para esclarecimento de dúvidas	1% a 10%
41 T	Provas PS2 das disciplinas (AN) e semestrais do S2.	0
41 L	Provas PS2 das disciplinas (AN) e semestrais do S2.	0
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2021-ETM203 página 9 de 9