Graphs: Intro

The Internet 2003

The OPTE Project (2003)

Map of the entire internet; nodes are routers; edges are connections.

HAMLET

TROILUS AND CRESSIDA

Who's the real main character in Shakespearean tragedies?

Martin Grandjean (2016)

<u>https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say</u>

This graph can be used to quickly calculate whether a given number is divisible by 7.

- 1. Start at the circle node at the top.
- 2. For each digit **d** in the given number, follow **d** blue (solid) edges in succession. As you move from one digit to the next, follow **1** red (dashed) edge.
- 3. If you end up back at the circle node, your number is divisible by 7.

3703

"Rule of 7"

Unknown Source
Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph

Unknown Source Presented by Cinda Heeren, 2016

Class Hierarchy At University of Illinois Urbana-Champaign

A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

MP Collaborations in CS 225

Unknown Source Presented by Cinda Heeren, 2016

Graphs

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

Graphs: Vocabulary

Graph Vocabulary


```
Incident Edges:
```

$$I(v) = \{ (x, v) \text{ in } E \}$$

Degree(v): ||

Adjacent Vertices:

$$A(v) = \{ x : (x, v) \text{ in } E \}$$

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

```
G = (V, E)
                       (2, 5)
```

```
Subgraph(G):

G' = (V', E'):

V' \subseteq V, E' \subseteq E, \text{ and}

(u, v) \subseteq E \boxtimes u \subseteq V', v \subseteq V'
```

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? Minimum edges:

Not Connected:

Connected*:

Maximum edges:

Simple:

Not simple:

$$\sum_{v \in V} \deg(v) =$$

Graphs: Connected Graphs

Connected Graphs

Proving the size of a minimally connected graph

Theorem:

Every minimally connected graph **G=(V, E)** has **|V|-1** edges.

Thm: Every minimally connected graph G=(V, E) has |V|-1 edges.

Proof: Consider an arbitrary, minimally connected graph **G=(V, E)**.

Lemma 1: Every connected subgraph of **G** is minimally connected. (Easy proof by contradiction left for you.)

Inductive Hypothesis: For any **j < |V|**, any minimally connected graph of **j** vertices has **j-1** edges.

Suppose |**V**| = **1**:

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: |V|-1 edges $\frac{1}{1}$ 1-1 = 0.

Suppose |**V**| > **1**:

Choose any vertex **u** and let **d** denote the degree of **u**.

Remove the incident edges of **u**, partitioning the graph into ____ components: $C_0 = (V_0, E_0), ..., C_d = (V_d, E_d)$.

By Lemma 1, every component C_k is a minimally connected subgraph of G.

By our _____: _____.

Finally, we count edges:

Graphs: Edge List Implementation

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

Graphs: Adjacency Matrix Implementation

Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

Graphs: Adjacency List Implementation

Graph Implementation: Adjacency List

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n+m	n²
insertVertex(v)	1	n	1
removeVertex(v)	m	n	deg(v)
insertEdge(v, w, k)	1	1	1
removeEdge(v, w)	1	1	1
incidentEdges(v)	m	n	deg(v)
areAdjacent(v, w)	m	1	min(deg(v), deg(w))