Centralization in Proof-of-Stake Blockchains: A Game-Theoretic Analysis of Bootstrapping Protocols

Varul Srivastava, Sankarshan Damle and Sujit Gujar

Machine Learning Lab, International Institute of Information Technology, Hyderabad

May 6, 2024

6th Games, Agents, and Incentives Workshop (GAIW@AAMAS 2024)

□ ▶ ∢□ ▶ ∢ □ ▶ ∢ □ ▶ √□ ♥

Overview

- Introduction
 - Proof-of-Stake (PoS) Blockchains
 - Centralization
- Our Model
- Ideal Bootstrapping Protocol
- CNorm: Quantifying Centralization
 - CNorm Theory
 - CNorm Properties
 - Discussion
- Main Results

Introduction

- PoS Blockchain Public blockchain with n players each holding some stake in the PoS system. Selection as proposer or validator for any player is proportional to their stake.
 - Incentive for high stake players to follow the protocol
 - Stake proportional to their valuation of the PoS System

Introduction: Centralization in PoS Blockchains

- PoS blockchains are prone to centralization during two phases:
 - During bootstrapping allocaiton of stake disproportional to valuation
 - During protocol execution due to entities like staking pools

Blockchain	Top 5%	Top 10%
ICON Network	44.2%	59.8%
Tezos	24.2%	40.8%
Cosmos	30.0%	46.3%
Irisnet	20.9%	33.4%
Kava	26.4%	46.8%

Figure: Centralization in PoS blockchains [1]

Our Model

- $n \text{ players} P = \{p_1, p_2, \dots p_n\}$
- p_i has valuation θ_i for the PoS system with $\sum_i \theta_i = 1$
- existence of sybil-identities is captured through partitions of the set P
- p_i 's disclosed (elicited) value is $\hat{\theta}_i$ with $\sum_i \hat{\theta}_i = 1$
- Utility is given by the equation

$$U_{i}((\hat{\theta}, A_{i}), (\hat{\theta}_{-i}, A_{-i}); \theta_{i}) = b \cdot \hat{\theta}_{i} - \underbrace{\Omega(\cdot)}_{\text{Centralization Metric}} \cdot \underbrace{g(\theta_{i})}_{\text{Cost of centralization}}$$

$$(1)$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ■ 9 0 0 ○

Ideal Bootstrapping Protocol — Properties

"Ideal" Bootstrapping protocol should satisfy – IR, IC and Decentralized

• *Individual Rationality (IR)*. The protocol is IR if $\forall p_i, \forall \theta \in \Delta_{n-1}, \hat{\theta} \in \Delta_{n-1}, \forall \mathbf{A}_{-i}$

$$U((\theta,\{i\}),(\theta_{-i},\boldsymbol{A'_{-i}})) \geq U((\hat{\theta}_{i},A_{i}),(\boldsymbol{\theta_{-i}},\boldsymbol{A_{-i}}))$$

• *Incentive Compatibility (IC)*. The protocol is IC² if $\forall p_i, \forall \theta \in \Delta_n, \theta_{n-1}^{\hat{}} \in \Delta_{n-1}, \forall \mathbf{A}_{-i}$

$$\mathbb{E}[U((\theta,\{i\}),(\theta_{-i},\boldsymbol{A'_{-i}}))] \geq \mathbb{E}[U((0,\emptyset),(\theta_{-i},\boldsymbol{A_{-i}}))]$$

◆□▶◆□▶◆□▶◆□▶ □ 900

 $^{^{1}\}Delta_{n}$ is n-simplex

²Bayesian Incentive Compatibility

Ideal Bootstrapping Protocol — Properties

- (τ, δ, ϵ) -Decentralization. [2] A protocol is (τ, δ, ϵ) decentralized for $\tau \in [0, 1], \delta \in [0, 100]$ and $\epsilon \in \mathbb{R}_{\geq 0}$ if it follows:
 - Minimum Participation $\frac{|P_t|}{|P|} \ge \tau$
 - Proportionality $\frac{\beta_{max}}{\beta_{\delta}} \leq 1 + \epsilon$, where β_{max} is the maximum scaled stake and β_{δ} is δ^{th} percentile scaled stake.
 - Sybil-proofness The ratio $\frac{\beta_{max}}{\beta_{\delta}}$ cannot be reduced by increasing number of identities for a player.

CNorm: Quantifying Centralization in presence of strategic players

- Should capture history of transactions across multiple identities and should be *Sybil-resistance*
- CNorm uses Directed Acyclic Graph (DAG) representation of PoS system to capture current and historical states.
- Effective stake for p_i is $\omega_i = c_i + \underbrace{w_{ij} w_{ji}}_{\mathsf{Net \ currency \ influx}}$

$$\Omega = \max_{m{ heta} \mid m{ heta}_j > 0 orall i} \sum_{i=1}^n |eta_j(m{ heta}) - rac{1}{n}|$$

where,
$$eta_i(m{ heta}) = rac{\omega_i/ heta_i}{\sum_{j \in [n]} \omega_j/ heta_j}$$

HYDERALAD

HYDERALAD

HYDERALAD

Centralization Game

- We measure properties of CNorm through Centralization Game $\Gamma_{cent}\langle\{M_C,M_D\},S_{SA},e_r,Q(\cdot),\kappa\rangle$
- Resitance to Sybil Attacks For CNorm, Γ_{cent} returns correct bit with probability $1 negl(\kappa)$
- Decentralization For any IC protocol, low value of CNorm \Rightarrow system is (τ, δ, ϵ) -Decentralized.

<ロ > ∢回 > ∢回 > ∢ 直 > √ 直 > りへ⊙

CNorm Description

$$\Gamma_{\text{cent}} = \langle \{M_C, M_D\}, S_{SA}, e_r, Q(\cdot), \kappa \rangle$$

Metric Descriptor (M_C) :

- Samples s₀ ∈ S_{SA} and sets s₁ := e_r(s₀) such that (s₀, s₁) ∈ S_{SA} × S_{NSA}.
 Chooses (a, b) ∈ R {(0, 1), (1, 0)} and communicates
- ⊕ Chooses (a, b) ∈_R {(0, 1), (1, 0)} and communicate
 (s_a, s_b) to M_D.

Metric Challenger (M_D) :

- ① Evaluates $v_a := Q(s_a)$ and $v_b := Q(s_b)$.
- ② Distinguishes between v_a, v_b to get (a', b') using any program D by (a', b') ← D(v_a, v_b).

Success Probability: Consider a random variable D(Q), that takes value I if M_D successfully guesses (a,b) i.e. a' = a,b' = b and 0 otherwise. For $\kappa \in \mathcal{Z}_{\ge 1}$ trials of Γ_{cent} , we have $D_K(Q) = 1$ if all κ trials are successful. M_D 's success depends on the centralization metric it employs. We have,

<u>Ineffective Metric:</u> If $Q(\cdot)$ is an ineffective metric for quantifying centralization, success probability will be as good as a random guess across κ trials. Formally, for κ trials

$$\Pr(D_{\kappa}(Q) = 1) \leq \operatorname{negl}(\kappa)$$

Where $negl(\kappa)$ is a negligible function in κ .

Effective Metric: If $Q(\cdot)$ is an effective metric, then M_D can distinguish between (s_0,s_1) and (s_1,s_0) with very high probability. Formally, $\forall \mathsf{negl}(\kappa)$

$$Pr(D_{\kappa}(Q) = 1) > 1 - \text{negl}(\kappa)$$

CNorm Description

$$\Gamma_{\text{cent}} = \langle \{M_C, M_D\}, S_{SA}, e_r, Q(\cdot), \kappa \rangle$$

Metric Descriptor (M_C) :

- **6** Samples $s_0 \in S_{SA}$ and sets $s_1 := e_r(s_0)$ such that $(s_0, s_1) \in S_{SA} \times S_{NSA}$.
- **②** Chooses $(a,b) \in_R \{(0,1),(1,0)\}$ and communicates (s_a,s_b) to M_D .

Metric Challenger (M_D) :

- ① Evaluates $v_a := Q(s_a)$ and $v_b := Q(s_b)$.
- ② Distinguishes between v_a, v_b to get (a', b') using any program D by (a', b') ← D(v_a, v_b).

Success Probability: Consider a random variable D(Q), that takes value 1 if M_D successfully guesses (a,b) i.e. a' = a, b' = b and 0 otherwise. For $\kappa \in \mathbb{Z}_2$ 1 trials of Γ_{cen} , we have $D_K(Q) = 1$ if all κ trials are successful. M_D 's success depends on the centralization metric it employs. We have.

<u>Ineffective Metric:</u> If $Q(\cdot)$ is an ineffective metric for quantifying centralization, success probability will be as good as a random guess across κ trials. Formally, for κ trials

$$Pr(D_{\kappa}(Q) = 1) \le negl(\kappa)$$

Where $negl(\kappa)$ is a negligible function in κ .

Effective Metric: If $Q(\cdot)$ is an effective metric, then M_D can distinguish between (s_0,s_1) and (s_1,s_0) with very high probability. Formally, $\forall \mathsf{negl}(\kappa)$

$$Pr(D_{\kappa}(Q) = 1) > 1 - \text{negl}(\kappa)$$

Centralization Metric	PoS Systems	
	s_0	s_1
Nakamoto Coefficient (N) [40]	3	3
Entropy (H) [63]	0.1405	0.1405
Gini Coefficient (G) [21]	0.0804	0.0804
C-NORM (Ω^*)	0.6	0

Figure: Distinguishability between Sybil s_0 and Non-Sybil s_1 system

Results on Bootstrapping Protocols

- Airdrop is not IC due to which it has very high potential value of CNorm.
- Proof-of-Burm is not IR (due to a phenomenon called *pegging*).
- W2SB is (1) IC, (2) IR and (3) (τ, δ, ϵ) —decentralized.

References

KWON, Y., LIU, J., KIM, M., SONG, D., AND KIM, Y. Impossibility of full decentralization in permissionless blockchains. In *ACM Conference on Advances in Financial Technologies* (2019), p. 110-123

p. 110-123.

Thank You

Questions?

Machine Learning Lab, IIIT

Paper Link (ArXiV)

