

概述

TM1638是带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集 成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。主要应用于冰箱、 空调 、家庭影院等产品的高段位显示屏驱动。

二、 特性说明

- 采用功率CMOS 工艺
- 显示模式 10 段×8 位
- 键扫描 (8×3bit)
- 辉度调节电路(占空比8 级可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: RC 振荡 (450KHz+5%)
- 内置上电复位电路
- 采用SOP28封装

三、、 管脚定义:

1	K1	STB	28
$\frac{2}{3}$	K2 TM1638	CLK	<u>27</u> 26
5	K3 VDD	DIO GND	25 24
6	SEG1/KS1 SEG2/KS2	GR1 GR2	23
7 8	SEG3/KS3	GR3	<u>22</u> 21
9	SBG4/KS4 SBG5/KS5	GR4 GR5	20
10 11	SEG6/KS6 SEG7/KS7	GR6 GND	19 18
<u>12</u> 13	SEG8/KS8	GR7	<u>17</u> 16
14	SEG9 SEG10	GR8 VDD	15
	1		

四、管脚功能说明:

符号	管脚名称	说明
DIO	数据输入/输出	在时钟上升沿输入/输出串行数据,从低位开始;
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB 为高时,CLK 被忽略
CLK	时钟输入	上升沿输入/输出串行数据。
K1∼K3	键扫数据输入	输入该脚的数据在显示周期结束后被 锁存
Seg1/ks1~seg8/ks8	输出(段)	段输出(也用作键扫描),P管开漏输出
Seg9~Seg10	输出(段)	段输出,P管开漏输出
Grid1∼Grid8	输出(位)	位输出,N管开漏输出
VDD	逻辑电源	5V±10%
GND	逻辑地	接系统地

▲ 注意: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推 荐10K的上拉电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,你可以参考图(6), 在时钟的上升沿读数才时稳定。

五、 显示寄存器地址和显示模式:

该寄存器存储通过串行接口从外部器件传送到TM1638 的数据,地址从00H-0FH共16字节单元, 分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	X	X	X	Х	X	X	
XX	HL(作	氏四位	()	Х	xHU(高	高四位)	2	xxHL (们	氏四位)		xx	HU(高	四位)	
В0	B1	B2	В3	В4	В5	В6	В7	В0	B1	B2	В3	B4	В5	В6	В7	
00	HL			00	HU			0	1HL			01	HU		GR	ID1
02	HL			02	2HU			0	3HL			03	HU		GR	ID2
04	HL			04	HU			0.	5HL			05	HU		GR	ID3
06	HL			06	SHU			0	7HL			07	HU		GR	ID4
08	BHL			90	BHU			0	9HL			09	HU		GR	ID5
0A	HL			0 <i>A</i>	HU			0	BHL			0B	HU		GR	ID6
00	HL			00	CHU			0	DHL			OD.	HU		GR	ID7
0E	HL			0E	EHU			0	FHL			0F	HU		GR.	ID8

图 (2)

写LED显示数据的时候,按照从低位地址到高位地址,从字节的低位到高位操作; 在运用中没有使 用到的SEG输出口,在对应的BIT地址位写0。

六、 键扫描和键扫数据寄存器:

键扫矩阵为8×3bit,如图(3)所示:

键扫数据储存地址如下所示,先发读键命令后,开始读取按键数据BYTE1—BYTE4字节,读数 据从低位开始输出;芯片K和KS引脚对应的按键按下时,相对应的字节内的 BIT位为1。

В0	B1	В2	В3	B4	В5	В6	В7	
 К3	K2	K1	X	К3	K2	K1	X	
KS1 KS2					BYTE1			
KS3	3			KS	BYTE2			
KS5)			KS		ВҮТЕЗ		
KS7	7			KS	88		BYTE4	

图 (4)

- ▲注意: 1、TM1638最多可以读4个字节,不允许多读。
- 2、读数据字节只能按顺序从BYTE1-BYTE4读取,不可跨字节读。例如:硬件上的K2与KS8 对应按键按下时,此时想要读到此按键数据,必须需要读到第4个字节的第5BIT位,才可读出数据; 当K1与KS8, K2与KS8, K3与KS8三个按键同时按下时,此时BYTE4所读数据的B4, B5, B6位均为1
- 3、组合键只能是同一个KS,不同的K引脚才能做组合键;同一个K与不同的KS引脚不可以 做成组合键使用。

七、 指令说明:

指令用来设置显示模式和LED驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一 一条指令。 经过译码,取最高B7、B6两位比特位以 区别不同的指令。

В7	В6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据 无效(之前传送的指令或数据保持有效)。

7.1 数据命令设置

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

MSB LSB

В7	В6	В5	В4	В3	B2	В1	ВО	功能	说明
0	1					0	0	数据读写模式	写数据到显示寄存器
0	1					1	0	设置	读键扫数据
0	1	无关	项,		0			地址增加模式	自动地址增加
0	1	埻	įθ		1			设置	固定地址
0	1			0				测试模式设置	普通模式
0	1			1				(内部使用)	测试模式

7.2 地址命令设设置

MSB							LSB	
В7	В6	В5	B4	ВЗ	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02Н
1	1			0	0	1	1	03Н
1	1			0	1	0	0	04H
1	1			0	1	0	1	05Н
1	1	无关		0	1	1	0	06Н
1	1	填	0	0	1	1	1	07Н
1	1			1	0	0	0	08Н
1	1			1	0	0	1	09Н
1	1			1	0	1	0	OAH
1	1			1	0	1	1	0BH
1	1			1	1	0	0	OCH
1	1			1	1	0	1	ODH
1	1			1	1 4	1	0	0EH
1	1			1	1	1	1	0FH

该指令用来设置显示寄存器的地址。 如果地址设为10H 或更高,数据被忽略,直到有效地址被设定。 上电时,地址默认设为00H。

7.3 显示控制

MSB LSB

В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0		47		0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关			1	0	0	仍儿奴里以且	设置脉冲宽度为 11/16
1	0	填	į 0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月入以且	显示开

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

8.1 数据接收(写数据)

8.2 数据读取(读数据)

▲注意: 读取数据时,从串行时钟CLK 的第8 个上升沿开始设置指令到CLK 下降沿读数据之间需要 一个等待时间Twait(最小1µS)。

九、 显示和按键:

(1) 显示:

1、驱动共阴数码管:

图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1为低电平 的时候让SEG1, SEG2, SEG3, SEG4, SEG5, SEG6为高电平, SEG7为低电平, 查看图(2)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	00Н
В7	В6	В5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

a (0)

图8给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2,GRID3,GRID4,GRID5,GRID6为低电平的时候让SEG1为高电平,在GRID7为低电平的时候让SEG1为低电平。要向地址单元00H,02H,04H,06H,08H,0AH里面分别写数据01H,其余的地址单元全部写数据00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	00H
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	06H
0	0	0	0	0	0	0	1	08H
0	0	0	0	0	0	0	1	OAH
0	0	0	0	0	0	0	0	ОСН
В7	В6	B5	B4	В3	B2	B1	В0	

▲注意: SEG1-10为P管开漏输出,GRID1-8为N管开漏输出,在使用时候,SEG1-10只能接LED的阳极,GRID只能接LED的阴极,不可反接。

(2) 键盘扫描:

你可以按照图(9)用示波器观察观察SEG1/KS1和SEG2/KS2的输出波形,SEGN/KSN输出的波形见图(10)。

IC在键盘扫描的时候SEGN/KSN的波形:

Tdisp和IC工作的振荡频率有关,我司TM1638经过多次完善、振荡频率不完全一致。500US 仅仅提供参考,以实际测量为准。

般情况下使用图(11),可以满足按键设计的要求。

SGE1/KS1 SGE1/KS2 SGE1/KS3 图 (11)

当S1被按下的时候,在第1个字节的B0读到"1"。如果多个按键被按下,将会读到多个"1", 当S2, S3被按下的时候,可以在第1个字节的B1, B3读到"1"。

▲注意: 复合键使用注意事项:

SEG1/KS1-SEG10/KS10是显示和按键扫描复用的。以图(12)为例子,显示需要D1亮,D2灭, 需要让SEG1为"1", SEG2为"0"状态,如果S1,S2同时被按下,相当于SEG1,SEG2被短路,这时 D1, D2都被点亮。

LED 驱动控制专用电路

解决方案:

1、在硬件上,可以将需要同时按下的键设置在不同的K线上面如图(13)所示,

2、在SEG1—SEG N上面串联电阻如图(14)所示,电阻的阻值应选在510欧姆,太大会造成按键的失效,太小可能不能解决显示干扰的问题。

3、或者串联二极管如图(15)所示。

十、 应用时串行数据的传输:

10. 1 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据,最多14BYTE,数据传送完毕才将"STB"置高。

CIK									
DIO	Command1	Command2	Command3	Datal	Data2	*****	Datan	Command4	
STB									

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多14 bytes)

Command4: 显示控制命令 10. 2 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完 毕, "STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2 个数据需要存放的地址,最多14BYTE数据传送完毕, "STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5: 显示控制命令

10. 3 读按键时序

CLK						
DIO	Command1	Data1	Data2	Data3	Data4	
STB						

Command1: 设置显示模式 Data1~4:读取按键数据

10. 4 程序设计流程图

采用地址自动加1的程序设计流程图:

www.titanmec.com

采用固定地址的程序设计流程图:

www.titanmec.com

十一. 应用电路:

11. 1 TM1638驱动共阳数码屏硬件电路,如图(16):

LED 驱动控制专用电路

TM1638

▲注意:

- 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1629芯片放置,加强滤波效果。
- 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V,因此TM1629供电应选用5V。

电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	-0.5 ∼ VDD + 0.5	V
LED Seg 驱动输出电流	I01	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +80	$^{\circ}$

储存温度	Tstg	−65 ~+150	$^{\circ}$ C
------	------	-----------	--------------

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		V	_
高电平输入电压	VIH	0.7 VDD	I	VDD	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	-20	-25	-40	mA	Seg1~Seg11, Vo = vdd-2V
同电干制山电机	Ioh2	-20	-30	-50	mA	Seg1~Seg11, Vo = vdd-3V
低电平输出电流	IOL1	80	140	-	mA	Grid1~Grid6 Vo=0.3V
低电平输出电流	Idout	4	-	_	mA	VO = 0.4V, dout
高电平输出电流容 许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1∼Seg11
输出下拉电阻	RL		10		КΩ	K1~K3
输入电流	II	_	-	±1	μА	VI = VDD / VSS
高电平输入电压	VIH	0. 7 VDD	1		V	CLK, DIN, STB
低电平输入电压	VIL	-	_	0. 3 VDD	V	CLK, DIN, STB
滞后电压	VH	ı	0. 35	ı	V	CLK, DIN, STB
动态电流损耗	IDDdyn	_	_	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件	
振荡频率	fosc	ı	500	ı	KHz	R = 16.5 KΩ	
	tPLZ	I	-	300	ns	CLK → DOUT	
传输延迟时间	tPZL	-	-	100	ns	CL = 15pF, RL = 10K Ω	
	TTZH 1	ı	-	2	μs	Seg1~Seg11	
上升时间	TTZH 2	I	-	0. 5	μs	CL = 300p F Grid1~Grid4 Seg12/Grid7~ Seg14/Grid5	
下降时间	TTHZ	-	-4	120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	1		-	MHz	占空比50%	
输入电容	CI	-		15	pF	-	

时序特性 (Ta = -20 \sim +70℃, VDD = 4.5 \sim 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	I	I	ns	-
选通脉冲宽度	PWSTB	1	l	l	μs	-
数据建立时间	tSETUP	100	l	l	ns	-
数据保持时间	tHOLD	100	l	l	ns	1
CLK →STB 时间	tCLK STB	1	İ	İ	μs	CLK↑→STB↑
等待时间	tWAIT	1	-	-	μs	CLK ↑ → CLK ↓

封装尺寸

尺寸标注	最 小(mm)	最 大(mm)	尺寸标注	最小(mm)	最 大(mm)	
A	17.83	18.03	C4	1.043TYP		
A1	0.400	64TYP	D1	0.70	0.90	
A2	1. 27	7TYP	D2	1.395TYP		
A3	0.5	1TYP	R1	0.508TYP		
В	9. 90 10. 50		R2	0.508TYP		
B1	7.42 7.62		θ 1	7° TYP		
B2	8. 9TYP		θ 2	5°	TYP	
C1	2.24	2.44	θ 3	4°	TYP	
C2	0.204	0.33	θ 4	10°	TYP	
C3	0.10	0.25				

DETAIL "X"

• All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

本应用文档最后更新日期为: 2008-8-4