

Universidad Carlos III de Madrid Ingeniería Técnica en Informática de Gestión. Grupo 13 Tecnología de Computadores. Prueba parcial. Abril de 2008

Nombre:	<u>Grupo:</u>
Apellidos:	

Problema 1 (2.5 puntos)

Dadas las funciones lógicas

$$f_1 = \sum_{4} (2,3,4,7,11) + \bigwedge_{4} (6,15)$$
$$f_2 = a + \overline{abc} + \overline{cd}$$

se pide:

- a) Obtener una expresión lógica simplificada de f_1 en forma de suma de productos
- b) Obtener una expresión lógica simplificada de f₂ en forma de productos de sumas
- c) Realizar f₂ sólo con puertas NOR
- d) Realizar ambas funciones con un solo decodificador 4:16.

Nota importante: se valorará el uso del menor número de componentes en las soluciones.

Cuestión 1 (1 punto)

Realizar las conversiones siguientes:

- a) 824₁₀ a binario natural, octal y hexadecimal
- b) 1110111₂ a BCD y a BCD exceso 3
- c) 1101111₂ a decimal, suponiendo que el número dado viene expresado en convenio de complemento a 2
- d) Realizar las operaciones (101₁₀-27₁₀), (101₁₀+27₁₀) mediante una suma binaria, expresando los números negativos en complemento a 2. Elija el número de bits más apropiado para la operación

Problema 1

fr= aba+ ac+ cd

abod	٥٥	٥ı	, 1	10	
ಎಂ	1	(6)	(E	ھ	
01	۱ ا	6	1	1 \	
l i	١,	ļ	١	۱ ۱	l
10	١,	t	1	!	}
					١

(a+c+ā)(a+b+ē)

Se necesitan 7 bits para representar el operando más grande.

Si cogiéramos 7+ signo = 8 bits, el rango representathe seria - 128 a 427. La operación 101+29 desbordaria, portanto, uscremos 96its.