Étude d'un dipôle linéaire passif en régime sinusoïdal

Objectifs:

- Comprendre comment on peut mesurer expérimentalement l'impédance complexe d'un dipôle.
- Savoir mesurer à l'oscilloscope une amplitude et un déphasage.

Préparation: Obligatoire.

Compte rendu : À remettre à la fin de la séance de TP.

1 Préparation (6 points)

Une bobine réelle peut être modélisée par le circuit sérié suivant :

L est l'inductance de la bobine et r sa résistance interne.

- 1. Donner l'expression de l'impédance complexe Z de la bobine réelle.
- 2. Pour mesurer les paramètres de la bobine réelle (L et r), celle-ci est insérée dans le montage suivant :

On prend la tension $u_e(t)$ comme référence. Les expressions instantanées des tensions $u_e(t)$ et $u_s(t)$ sont données ci-dessous ainsi que leur amplitude complexe :

$$u_e(t) = U\cos(\omega t) \Leftrightarrow \underline{U_e} = U$$

$$u_s(t) = U_i\cos(\omega t - \varphi_i) \Leftrightarrow \underline{U_s} = U_ie^{-j\varphi_i}$$

- (a) Montrer que φ_i est le retard angulaire de i(t) sur $u_e(t)$.
- (b) Montrer que:

$$\underline{U_s} = \frac{R_{mes}}{R_{mes} + r + j\omega L} \underline{U_e}$$

et en déduire les relations suivantes :

$$U_{i} = \frac{R_{mes}U}{\sqrt{(R_{mes} + r)^{2} + (\omega L)^{2}}}$$
$$\varphi_{i} = atan\left(\frac{\omega L}{R_{mes} + r}\right)$$

(c) Lorsque la fréquence f du GBF est réglée pour avoir $\varphi_i=\frac{\pi}{4}$, montrer que l'on a alors la relation suivante :

$$L\omega = R_{mes} + r$$

2 Manipulations (14 points)

Pour les manipulations on prend : $R_{mes}=1~k\Omega$ et L=100 mH.

- 1. Mesurer à l'ohmmètre la valeur de la résistance R_{mes} .
- 2. Brancher la bobine sur l'ohmmètre et effectuer la mesure. Que mesure l'ohmmètre? Justifier votre réponse.
- 3. $u_e(t)$ est une tension sinusoïdale de 10 V d'amplitude.
 - (a) Visualiser à l'oscilloscope les tensions $u_e(t)$ et $u_s(t)$.
 - (b) Ajuster la fréquence du GBF afin que $u_s(t)$ soit en retard de $\pi/4$ sur $u_e(t)$. La fréquence réglée est notée f_{mes} .
 - (c) Relever les chronogrammes correspondants avec précision.
 - (d) A l'aide de la relation obtenue à la préparation, donner les valeurs de L de la bobine. Détailler votre démarche.
- 4. Quel est le facteur de qualité Q_b de la bobine à la fréquence f_{mes} ?
- 5. Régler la fréquence à f=10 kHz et relever en concordances des temps les chronogrammes de $u_e(t)$ et $u_s(t)$.
 - (a) Quel est le retard de i(t) sur $u_e(t)$?
 - (b) Calculer le facteur de qualité Q_b de la bobine.
 - (c) Conclure.