Geometría Básica. Mayo 2016.

Duración 2 horas. No se permite ningún tipo de material.

Justificar concisa y razonadamente todas las respuestas.

Ejercicio 1. (4 puntos)

- a) Probar que las bisectrices de dos ángulos de un paralelogramo o bien se cortan formando un ángulo recto, o bien son paralelas.
- b) Probar que si las bisectrices de un paralelogramo se cortan en cuatro puntos, entonces estos cuatro puntos son los vértices de un rectángulo.

Ejercicio 2. (3 puntos)

Sea $\Delta\{A,B,C\}$ un triángulo rectángulo de modo que $\angle A$ es el ángulo recto. Sea δ una semejanza del plano. Probar que:

$$d(B,C) \times d(\delta(B),\delta(C)) = d(A,B) \times d(\delta(A),\delta(B)) + d(A,C) \times d(\delta(A),\delta(C))$$

donde d(.,.) significa la distancia entre dos puntos.

Ejercicio 3. (3 puntos)

- a) Enunciar una fórmula que relacione los números de vértices, caras y aristas de un poliedro convexo.
- b) Dar un ejemplo de poliedro no convexo donde la fórmula del apartado anterior no se verifique.
- c) ¿Existen poliedros no convexos que verifiquen la fórmula del apartado a)?

SOLUCIONES

Ejercicio 1.

a) Sea $\mathcal{P} = (A, B, C, D)$ un paralelogramo. Dado que \mathcal{P} admite una simetría que es una media vuelta σ tenemos que $\sigma(A) = C$ y $\sigma(B) = D$ y por tanto $\mathcal{L}_{\mathcal{P}}A = \mathcal{L}_{\mathcal{P}}C$ y $\mathcal{L}_{\mathcal{P}}B = \mathcal{L}_{\mathcal{P}}D$. Como $\mathcal{L}_{\mathcal{P}}A + \mathcal{L}_{\mathcal{P}}B + \mathcal{L}_{\mathcal{P}}C + \mathcal{L}_{\mathcal{P}}D = 2\pi$, entonces $\mathcal{L}_{\mathcal{P}}A + \mathcal{L}_{\mathcal{P}}B = \pi$.

Supongamos que a es la bisectriz de $\angle_{\mathcal{P}}A$ y b es la bisectriz de $\angle_{\mathcal{P}}B$. Se tienen que cortar en un punto, pues si fueran paralelas tendríamos que $\angle_{\mathcal{P}}A$ y el suplementario de $\angle_{\mathcal{P}}B$, son alternos-internos, luego $\frac{1}{2}\angle_{\mathcal{P}}A = \pi - \frac{1}{2}\angle_{\mathcal{P}}B$, pero esto no es posible pues $\angle_{\mathcal{P}}A + \angle_{\mathcal{P}}B = \pi$.

Otro modo de justificar esto mismo es usar el axioma V de Euclides (Ejercicio 4.8), dado que el ángulo φ formado por la semirrecta \overline{a} contenida en a con vértice en A y que corta a [B,C] y la semirrecta con vértice A y que contiene a [A,B] mide $\frac{1}{2} \measuredangle_{\mathcal{P}} A$, el ángulo ψ formado por la semirrecta \overline{b} contenida en b con vértice en B y que corta a [A,D] y la semirrecta con vértice B y que contiene a [A,B] mide $\frac{1}{2} \measuredangle_{\mathcal{P}} B$, y $\frac{1}{2} \measuredangle_{\mathcal{P}} A + \frac{1}{2} \measuredangle_{\mathcal{P}} B = \pi/2 < \pi$, se tiene que \overline{a} y \overline{b} se cortan.

Sea $a \cap b = \{O\}$, como A, B y O forman un triángulo \mathcal{T} cuyos ángulos miden: $\frac{1}{2} \measuredangle_{\mathcal{P}} A$, $\frac{1}{2} \measuredangle_{\mathcal{P}} B$ y $\measuredangle_{\mathcal{T}} O$. Como $\frac{1}{2} \measuredangle_{\mathcal{P}} A + \frac{1}{2} \measuredangle_{\mathcal{P}} B = \pi/2$ y $\measuredangle_{\mathcal{T}} A + \measuredangle_{\mathcal{T}} B + \measuredangle_{\mathcal{T}} O = \pi$, tenemos que $\measuredangle_{\mathcal{T}} O = \pi/2$, por tanto a y b son ortogonales.

Otro método: la bisectriz a corta a la recta r_{BC} en un punto P, esto es consecuencia de que r_{AD} y r_{BC} son paralelas y a corta a r_{AD} , por tanto a tiene que cortar a r_{BC} . Sea \mathcal{I} el triángulo cuyos vértices son A, B y P. Por ser r_{AD} y r_{BC} paralelas los ángulos $\angle_{\mathcal{I}}P$ y $\angle\{\overline{a}, [A, D]\}$ son congruentes, pues son alternos internos. Como $\angle_{\mathcal{I}}P = \angle\{\overline{a}, [A, D]\} = \angle_{\mathcal{I}}A$, el triángulo \mathcal{I} es isósceles y la bisectriz b de $\angle_{\mathcal{I}}B = \angle_{\mathcal{P}}B$ es perpendicular al lado $[A, P] \subset a$, es decir a y b son perpendiculares.

Si ahora consideramos las bisectrices a de $\angle_{\mathcal{P}}A$ y c de $\angle_{\mathcal{P}}C$, tenemos que a y c son ambas ortogonales a b, luego son paralelas.

Otro modo de probar esto es simplemente observar que la media vuelta σ que es simetría de \mathcal{P} , lleva $\angle_{\mathcal{P}}A$ a $\angle_{\mathcal{P}}C$ y por tanto también a en c, como además las medias vueltas transforma cada recta en otra paralela tenemos que a y c son paralelas.

b) Sean O_i , i = 1, 2, 3, 4 los puntos de corte de las bisectrices. Como los lados del cuadrilátero (O_1, O_2, O_3, O_4) están contenidos en rectas ortogonales dos a dos, tenemos que dicho cuadrilátero tiene todos los ángulos rectos y por tanto es un rectángulo.

Ejercicio 2.

Es sabido que si δ una semejanza del plano de razón k se tiene que $d(\delta(X), \delta(Y)) = kd(X, Y)$, para cada par de puntos del plano X, Y.

Como $\triangle\{A,B,C\}$ un triángulo rectángulo, sabemos por el teorema de Pitágoras:

$$d(B,C)^2 = d(A,B)^2 + d(A,C)^2$$

Entonces:

$$d(B,C) \times d(B,C) = d(A,B) \times d(A,B) + d(A,C) \times d(A,C)$$

$$d(B,C) \times \frac{d(\delta(B),\delta(C))}{k} = d(A,B) \times \frac{d(\delta(A),\delta(B))}{k} + d(A,C) \times \frac{d(\delta(A),\delta(C))}{k}$$

$$d(B,C) \times d(\delta(B),\delta(C)) = d(A,B) \times d(\delta(A),\delta(B)) + d(A,C) \times d(\delta(A),\delta(C))$$

Ejercicio 3.

a) Teorema de Descartes-Euler: Dado $\mathcal P$ un poliedro convexo, con c caras, l lados y v vértices, entonces:

$$c - l + v = 2$$

- b) Ejemplo de la figura 13-9 del texto base.
- c) Si existen, por ejemplo el poliedro de la figura 13-10 del texto base.