# How cryptic is cryptic diversity? Machine learning approaches to fine scale variation in the morphology of *Emys marmorata*.

Peter D Smits<sup>1</sup>, Kenneth D Angielczyk<sup>2</sup>, James F Parham<sup>3</sup>

<sup>1</sup>Committee on Evolution Biology, University of Chicago, <sup>2</sup>Department of Geology, Field Museum of Natural History, <sup>3</sup>Department of Geological Sciences, California State University – Fullerton

May 2, 2013

## Cryptic diversity

## Emys marmorata

## Morphological hypotheses

# Phylogenetic hypotheses

#### Methods: morphometrics

- plastral ("belly") shape
- landmarks averaged across bilat axis
- ▶ total 13 landmarks, 7 on bilat axis, 6 off
- geographic information known/inferred

idealized plastral landmarks

#### Methods: unsupervised learning

## Methods: supervised learning

## Results: mophometrics

## Results: gap clustering

#### Results: d-EAC

Results: multinomial logistic regression

#### Results: neural networks

#### Results: random forests

#### Best classification scheme

#### **Future**

#### Acknowledgements

- Ben Frable, Dallas Krentzel, Michael Foote
- COLLECTIONS

