Patrolling Games

Thomas Lowbridge

University Of Nottingham

December 13, 2017

Outline

- Literature review
 - Introduction to Game
 - Pure game
 - Mixed game
 - Solved Graphs
 - Hamiltonian graphs
 - Complete bipartite graph
 - Star graph
 - Line graph
- Problem with line graph strategy
- Correction of line graph strategy
- Extension of correction strategy
- Introduction to the elongated star
- Future work

A Patrolling game, G=G(Q,T,m) is made of 3 major components

- A Graph, Q = (N, E), made of nodes, N (|N| = n), and a set of edges, E.
- A time horizon parameter, T (with set $T = \{0, 1, ..., T 1\}$).
- An attack time parameter, m.

3 / 28

A Patrolling game, G = G(Q, T, m) is made of 3 major components

- A Graph, Q = (N, E), made of nodes, N (|N| = n), and a set of edges. E.
- A time horizon parameter, T (with set $T = \{0, 1, ..., T 1\}$).
- An attack time parameter, m.

The game involves two players, the patroller and the attacker.

- The patroller's strategy is a walk (with waiting) on the graph, $W:\mathcal{T}\to N$
- ullet The attacker's strategy is a node, i and starting time, au .

The strategies are collected into the sets, \mathcal{W} and \mathcal{A} , for the patroller and attacker respectively, with some arbitrary labelling inside the set to form strategies W_i and A_i .

The game is formulated as win-lose (a zero-sum game) with a payoff for the patroller of

$$P(W,(i,\tau)) = \left\{ \begin{array}{l} 1 \text{ if } i \in \{W(\tau), W(\tau+1), ..., W(\tau+m-1)\}, \\ 0 \text{ if } i \notin \{W(\tau), W(\tau+1), ..., W(\tau+m-1)\}. \end{array} \right.$$

With a pure payoff matrix $\mathcal{P} = (P(W_i, A_j))_{i \in \{1, \dots, |\mathcal{W}|\}, j \in \{1, \dots, |\mathcal{A}|\}}$

Patroller:
$$W(0)=1$$
 , $W(1)=6$, $W(2)=7$, $W(3)=3$, $W(4)=3$, $W(5)=4$, $W(8)=8$ Attacker: $(8,2)$

$$t = 0$$

$$t = 1$$

The game played on ${\cal Q}$ as below with m=3 and T=7

The attacker fails to catch the patroller, therefore the patroller loses (and the attacker wins) meaning a payoff of 0 for the patroller (and -1 for the attacker).

5 / 28

Both the patroller and attacker will play their pure(realised) strategies with certain probabilities, let π be a mixed strategy for the patroller and let ϕ be a mixed strategy for the attacker. We collect these into the sets Π and Φ for the patroller and attacker respectively.

Then the payoff for the patroller of this mixed game becomes

$$P(oldsymbol{\pi},oldsymbol{\phi}) = \sum_{i=1}^{|\mathcal{W}|} \sum_{j=1}^{|\mathcal{I}|} \mathcal{P}_{i,j} oldsymbol{\pi}_i oldsymbol{\phi}_j = oldsymbol{\pi} \mathcal{P} oldsymbol{\phi}_j$$

By using the pure payoff as 1 when capture occurs and 0 otherwise, the mixed payoff is equivalent to the probability of capture.

Mixed Nash equilibrium

A choice of π^* and ϕ^* is said to be in Nash equilibrium if

$$P(\boldsymbol{\pi}^*, \boldsymbol{\phi}^*) \ge P(\boldsymbol{\pi}, \boldsymbol{\phi}^*) \quad \forall \boldsymbol{\pi} \in \Pi,$$

 $P(\boldsymbol{\pi}^*, \boldsymbol{\phi}^*) \ge P(\boldsymbol{\pi}^*, \boldsymbol{\phi}) \quad \forall \boldsymbol{\phi} \in \Phi.$

There will only be one Nash equilibrium, unless the patroller can guarantee capture.

We do this by searching for the games value,

$$V(G) \equiv \max_{\boldsymbol{\pi} \in \Pi} \min_{\boldsymbol{\phi} \in \Phi} P(\boldsymbol{\pi}, \boldsymbol{\phi}) = \min_{\boldsymbol{\phi} \in \Phi} \max_{\boldsymbol{\pi} \in \Pi} P(\boldsymbol{\pi}, \boldsymbol{\phi})$$

This is done by achieving both upper and lower bounds on the value of the game.

7 / 28

Solved graphs: Hamiltonian graphs

A graph is Hamiltonian if it is possible to find a cycle which visits every node exactly one (apart from the start/finish).

Hamiltonian graphs

A Hamiltonian graph has the value $V=\frac{m}{n}$

Two common Hamiltonian graphs are the Cyclic graph (of n nodes C_n) and the Complete graph (of n nodes K_n).

Figure: Examples of Cyclic and Complete graphs

Solved graphs: Complete bipartite graphs

A bipartite graph is a graph made of two non-adjacent sets, the complete version has all connections.

Complete bipartite graph

A complete bipartite graph, $K_{a,b}$ as value $V=rac{m}{2\max(a,b)}$

Figure: Example of a complete bipartite graph

Solved graphs: Star graph

The star graph, S_n , is n nodes adjacent only to the centre.

Star graph

The star $S_n \equiv K_{1,n}$ so has the value $V = \frac{m}{2n}$

Figure: Example of a star graph

The line graph, L_n , made of n nodes each adjacent to two other nodes (apart from the ends)

Line graph

The line graph, L_n has a value dependent on (n,m)

- **1** If m > 2(n-1) then V = 1.
- ② If $n-1 < m \le 2(n-1)$ then $V = \frac{m}{2(n-1)}$
- $\mbox{ If } m=2, n \geq 3 \mbox{ then } V = \frac{1}{\left \lceil \frac{n}{2} \right \rceil}$
- ① If m=n-1 or m=n-2 and m=2k for some $k\geq 2$ then $V=\frac{1}{2}$
- $\text{ If } 3 \leq m \leq n-3 \text{ or } m=n-2 \text{ and } m=2k+1 \text{ for some } k \geq 1 \text{ then } V = \frac{m}{m+n-1}$

Note. The solution for m=1 is know for every graph as $V=\frac{1}{|N|}=\frac{1}{n}$, and if m=n=2 then we know V=1.

11 / 28

Figure: Example of a line graph

Regions are:

- **1** m > 18
- $9 < m \le 18$
- 0 m = 9.8
- $3 \le m < 8,$ m = 1

Figure: Value of the line graph, L_{10}

Focusing in on $n-1 < m \le 2(n-1)$. We will look at the strategies used to get the bounds $V \le \frac{m}{2(n-1)}$ and $V \ge \frac{m}{2(n-1)}$.

- Patroller Strategy, π_H , the embedded random Hamiltonian patrol.
- Attacker Strategy, ϕ_D , the diametric attack.

An embedded random Hamiltonian patrol, π_H , is made by 'expanding' the line to be Hamiltonian (meaning every non-end node becomes two nodes). That is the patroller looks at $C_{2(n-1)}$ instead of L_n , then we get a bound of $V(C_{2(n-1)}) = \frac{m}{2(n-1)}$. Now the patroller cannot do worse in L_n than in $C_{2(n-1)}$, so a lower bound of $V \geq \frac{m}{2(n-1)}$ is achieved. In the line graph this is also known as oscillation.

Figure: C_{10} can be simplified to L_6 by node identifying.

Let d(i,i') is the distance between nodes i and i' with the distance measured by the minimum number of edges.

Definition (Graph Diameter)

The diameter of a graph Q is definded by $\bar{d}=\max_{i,i'\in N}d(i,i')$. The node pairs satisfying this are called diametrical.

A diametric attack, ϕ_D is made by attacking the pair of diametric nodes 1 and n (the ends), starting with equal probability at every available star time. It is stated to give a bound of

$$V \leq \min\{\tfrac{1}{2}, \tfrac{m}{2(n-1)}\} = \left\{ \begin{array}{l} \tfrac{1}{2}, \text{ if } m < n-1 \\ \tfrac{m}{2(n-1)}, \text{ if } n-1 \leq m \leq 2(n-1), \\ \text{however}.... \end{array} \right.$$

Patrolling Games

Problem with the diametric strategy

In the region of $n-1 \le m \le 2(n-1)$ the proposed bound is $V \le \frac{m}{2(n-1)}$. However a simple counter shows this to be false.

Counter-example. Consider L_5 with T=m=5 , then the patroller only needs to walk between the end nodes to win.

The walk $\{1,2,3,4,5\}$ guarantee's the capture of all attacks made.

Problem with the diametric strategy

Example. Consider L_{31} with m=45

Figure: Best Upper Bound achievable under the diametric strategy

Problem with the diametric strategy

The problem is under the diametric attack, a patroller can catch

$$m - \bar{d} + \left(m \times \left(\left\lfloor \frac{T - 2m + 1}{\bar{d}} \right\rfloor + 1\right)\right)_{+} + \left(T - \left(m - 1 + \left(\left\lfloor \frac{T - 2m + 1}{\bar{d}} \right\rfloor + 1\right)\bar{d}\right)\right)_{+} + \left(T - \left(m - 1 + \left(\left\lfloor \frac{T - 2m + 1}{\bar{d}} \right\rfloor + 2\right)\bar{d}\right)\right)_{+}$$
(1)

attacks. From this we can get

Lemma (Condition on T for bound to hold)

When T=m-1+(k+1)(n-1) for some $k\in\mathbb{N}_0$ then the diametric bound holds. Otherwise as $T\to\infty$ then the diametric bound, $V\leq \frac{m}{2(n-1)}$, holds.

Correction to diametric line strategy

We propose a solution to the problem, by limiting the time

Definition (Time limited diametric attack)

When $T \geq m+n-2$ we have the time limited diametric attack (on the line) strategy is for the attacker to attack at both ends of the line with equal probability for starting times 0,1,...,n-2

This restriction to the attacking time guarantees to get the upper bound of $V \leq \frac{m}{2(n-1)}$.

19 / 28

Extension to time limited diametric strategy

Definition (Time limited diametric attack)

When $T \geq m-1+\bar{d}$ we have the *time limited diametric attack* strategy is for the attacker to attack at both ends of the line with equal probability for starting times $\tau, \tau+1, ..., \tau+\bar{d}-1$ (for a chosen initial τ).

Lemma (Time limited diametric bound)

When $T \geq m-1+\bar{d}$ the attacker can get the bound

$$V \leq \frac{m}{2\bar{d}}.$$

Extension to time limited diametric strategy

Definition (Polygonal attack)

A d-polygonal attack is an attack at a set of nodes

 $D=\{i\in N\,|\,d(i,j)=d, \forall j\in D\} \text{ at the time intervals }\tau,\tau+1,...,\tau+d-1 \text{ (for a chosen initial }\tau\text{) all equally probable.}$

Lemma (Polygonal bound)

When $T \geq m+d-1$ and a set D as in the d-polygonal attack exists, the value has an upper bound of $V \leq \max\{\frac{1}{|D|}, \frac{m}{|D|d}\}$.

Example.

Figure: 2-polygonal attack on $D = \{2, 3, 5, 10, 11\}$

Giving $V \leq \max\{\frac{1}{5}, \frac{m}{10}\}$.

We now wish to integrate features of a star into a line. We will form the elongated star S_n^k . We will use the labelling as below

Figure: Labeling on the graph S_4^5 .

Definition (Random Oscillation)

The Oscillation on S_n^k is any embedded Hamiltonian Patrol on $C_{2(n+k)}.$

The Random Oscillation on S_n^k is the embedded Random Hamiltonian Patrol on $C_{2(n+k)}$.

Figure: C_{10} can be simplified to S_3^2 by node identifying.

Lemma

For m < 2(n+k) following the Random Oscillation,

$$V(S_n^k) \ge V(C_{2(n+k)}) = \frac{m}{2(n+k)}$$

and if $m \geq 2(n+k)$ then $V(S_n^k) = 1$, achieved by any Oscillation.

This is again because the patroller can do no worse following the embedded path from $C_{2(n+k)}$ in S_n^k

We adapt the time limited diametric attack to the time-delayed attack.

Definition (Time-delayed attack)

Let the *time-delayed attack*, be the attack that attacks at the extended node labelled 1 with probability $\frac{k+1}{n+k}$ and a particular normal node labelled * with probability $\frac{1}{n+k}.$ If node 1 is chosen have the attack choose probability intervals

with equal probability starting attacks at $\tau, \tau+1, ..., \tau+2k+1$. If a * node is chosen start the attacks at the times $\tau+k, \tau+k+1$ with equal probability.

Lemma

When $T \ge m + 2k$, the upper bound $V \le \max\left\{\frac{k+1}{n+k}, \frac{m}{2(n+k)}\right\}$

Hence we have a partial solution, analogous to region 1 and region 2 for the line.

Theorem

If $T \ge m + 2k$ and $m \ge 2(k+1)$ then we have the value of the game is

$$V = \min\left\{1, \frac{m}{2(n+k)}\right\} \tag{2}$$

26 / 28

Figure: Value of the Star Graph, S_{10}^{5}

- Look at analysing different types of Polygonal attacks, i.e the best choice of *d* and how to select the set *D*.
- Look at finding solutions analogous to region 3,4 and 5 for the line, which may need to be split into more regions, for (m, n, k) instead of (n, m).
- Expand the idea to a more generalised star, $S_n^{k_1,\dots,k_h}$, where elongation of more than one star node may occur.