- Pour communiquer sur un réseau :
 - Préciser les règles de communication
 - **Protocoles** (« langage » commun)
 - émetteur et destinataire
 - vitesse, rythme commun
 - confirmation ou d'accusé de réception
 - Règles varient en fonction du contexte
 - confirmation nécessaire par le destinataire pour les messages importants
 - confirmation non demandé pour les messages moins importants

- Caractéristiques des communications
 - 3 éléments :
 - la **source** du message ou l'expéditeur ;
 - le **destinataire** du message ;
 - le **canal**, constitué par le support qui fournit la voie par laquelle le message peut se déplacer depuis la source vers la destination.

- Qualité de la communication
 - Facteurs internes

BTS SIO

- Caractéristiques des communications
 - Segmentation des messages

Division des messages en parties de taille moins importante et plus facilement gérables pour les envoyer sur le réseau.

- Caractéristiques des communications
 - Multiplexage des messages

Plusieurs conversations différentes peuvent s'entremêler sur le réseau

- Caractéristiques des communications
 - Fiabilité des communications réseau.
 - Les différentes parties de chaque message n'ont pas besoin de parcourir le même chemin sur le réseau
 - Si encombrement ou défaillance d'un lien, un autre chemin est utilisé
 - **Retransmission** uniquement des parties manquantes selon le protocole

- Les périphériques utilisateur
 - Périphériques finaux appelés hôtes.
 - Chaque hôte est identifié par une adresse.
 - Pour communiquer un hôte utilise l'adresse de l'hôte de destination pour indiquer où le message doit être envoyé.
 - Un hôte joue le rôle de **client**, de **serveur**, ou les deux selon le logiciel installé qui détermine son rôle sur le réseau.

- Utilisation d'un modèle en couches
- Un standard: TCP/IP
 - fonctionnalités différentes de chaque couche de protocoles
 - Protocoles implémentés sur les hôtes émetteurs et récepteurs.
 - Interagissent pour fournir une livraison de bout en bout d'applications sur un réseau.
- Un modèle de référence OSI (Open System Interconnection)
 - référence commune pour tous types de protocoles et de services réseau
 - Ne précise pas les spécifications d'implémentation BTS SIO

Modèle TCP/IP (années 70)

Modèle TCP/IP

Modèle TCP/IP

- A chaque couche de protocoles est associé un adressage spécifique
- Création de données sur la couche application
- Segmentation et encapsulation des données lorsqu'elles descendent la pile de protocoles
- Génération des données sur les supports au niveau de la couche d'accès au réseau de la pile
- Transport des données via l'inter-réseau
- Réception des données au niveau de la couche d'accès au réseau
- Décapsulation et assemblage des données lorsqu'elles remontent la pile dans le périphérique de destination
- Transmission de ces con l'application de destination

- Unités de données de protocole et encapsulation
 - Forme d'une donnée dans une couche : unité de données de protocole (PDU)
 - En descendant la pile de protocoles, ces différents protocoles ajoutent des informations à chaque niveau
 - -> processus d'encapsulation.
 - Chaque couche suivante encapsule l'unité de données de protocole qu'elle reçoit de la couche supérieure en respectant le protocole en cours d'utilisation.
 - A chaque couche, le nom de l'unité de données de protocole change
 - Nommage des unités de données de protocoles en fonction des protocoles de la suite TCP/IP.

- Unités de données de protocole et encapsulation
 - Segment : unité de données de protocole de la couche transport
 - Paquet : unité de données de protocole de la couche inter-réseau
 - Trame : unité de données de protocole de la couche d'accès réseau
 - **Bits** : unité de données de protocole utilisée lors de la transmission physique de données à travers le support

- Modèle OSI (Open Systems Interconnection)
 - conçu par **l'Organisation internationale de normalisation** (ISO, International Organization for Standardization)
 - fournir un cadre dans lequel concevoir une suite de protocoles système ouverts (non propriétaires).
 - Mais le rapide développement d'Internet a promu TCP/IP
 - OSI a apporté des contributions essentielles au développement d'autres protocoles et produits pour tous les types de nouveaux réseaux.
 - fournit une liste exhaustive de fonctions et de services de chaque couche
 - Décrit l'interaction entre couche directement supérieures et inférieures.

Modèle OSI

• Chaque couche est indépendante des autres et ne communique qu'avec la couche adjacer

•Modèle OSI

7 – Application	fournit des services aux applications de l'utilisateur, exemple : l'utilisateur a créé une page web, il va pouvoir la diffuser sur le réseau grâce au protocole http.
6 – Présentation	se charger d'encoder les informations pour qu'elles soient compréhensibles par l'autre système informatique, exemple : les données texte seront codées au format ASCII.
5 – Session	ouvre, gère et ferme la communication en veillant en particulier à la synchronisation de la transmission.
4 – Transport	segmente, transfert et réassemble les données: On obtient ici des segments.

•Modèle OSI

3 – Réseau	assure l'adressage des message, la sélection du meilleur chemin, en ajoutant à chaque segment des informations réseau chaque segment est encapsulé dans des paquets.
2 – Liaison	assure l'accès au support de transmission, en contrôle le flux et de la notification des erreurs de transmission Elle ajoute un en-tête et une queue de trame à chaque paquet qui devient une trame.
1 – Physique	comprend les connecteurs, supports de transmission, transceivers chargés de générer le signal électrique ou autre pour véhiculer les donnéesChaque trame est traduite en binaire, transformée en signal et transmise.

BTS SIO

Comparaison des modèles OSI et TCP/IP

- Comparaison de TCP/IP par rapport à OSI
 - couche d'accès au réseau : ne spécifie pas quels protocoles utiliser lors de la transmission à travers un support physique : décrit uniquement la remise depuis la couche Internet aux protocoles réseau physiques.
 - couche **Internet** : le protocole IP contient la fonctionnalité décrite à la couche 3.
 - couche **transport**: (accusé de réception, reprise sur erreur, segmentation)
 - protocole TCP (Transmission Control Protocol) de contrôle de transmission
 - protocole **UDP** (User Datagram Protocol)
- couche **application** : inclut plusieurs protocoles correspondant à des applications différentes

- Adressage dans le réseau local
 - 1er identificateur : **adresse physique** de l'hôte contenu dans l'en-tête de l'unité de données de protocole de la couche 2 appelée **trame**.
 - La couche 2 est chargée de la livraison des messages sur un **réseau local unique** :
 - adresse de couche 2 est unique sur le réseau local
 - Réseau Ethernet : adresse MAC (Media Access Control)
 - Les trames contiennent les **adresses MAC** de destination et source.
 - Dans la trame reçue, les adresse MAC sont supprimées lors de la décapsulation des données et de leur déplacement vers la couche 3.

- Adressage dans le réseau local
 - utilisées uniquement pour communiquer entre des périphériques sur un réseau local unique,
 - Ajout successif des identificateurs d'adresse aux données lors de l'encapsulation

- La trame des réseaux locaux Ethernet II
 - norme IEEE 802.3 définit structure et contenu trame Ethernet :

• champ Ethertype décrit le contenu de la trame

Valeur	Protocole
0x0800	Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x86DD	Internet Protocol, Version 6 (IPv6)

- Acheminement des données dans l'inter-réseau
 - Adresse de la couche 3
 - conçus pour déplacer des données depuis un réseau local vers un autre réseau local au sein d'un inter-réseau.
 - Adresses de la couche 3 incluent des informations utilisés par les périphériques réseau intermédiaires pour localiser des hôtes sur différents réseaux.
 - Partie adresse de réseau de l'adresse IP
 - Partie adresse d'hôte de l'adresse IP
 - Rôle du routeur à la limite de chaque réseau local

Paquet – datagramme IPv4

Paquet – datagramme IPv4

- **Version**: Version: IPv4 ou IPv6
- **IHL** : Longueur de cet en-tête
- **Type de service** : qualité de service souhaitée (VoIP, vidéo, etc.)
- Longueur totale : en octets du paquet
- Identification : valeur assignée par l'émetteur pour identifier les éventuels fragments
- **Drapeaux** (3 bits) : utilisé pour la fragmentation
- Numéro de fragment (Offset du fragment)
- **Temps de vie** (TTL) : décrémenté par chaque routeur, lorsqu'il atteint 0 le paquet est détruit
- **Protocole** : de niveau supérieur (typiquement TCP ou UDP)
- Somme de contrôle (Checksum) : pour l'en-tête, détection d'erreurs de transmission
- Adresse IP source : adresse IP de l'émetteur
- Adresse IP destination : adresse IP du destinataire
- Optionnel : parfois, un champ "options" peut être renseigné.

- Acheminement des données dans l'inter-réseau
 - Rôle du routeur à la limite de chaque réseau local :

- Acheminement des données jusqu'à l'application adéquate
 - **couche 4** : l'en-tête d'unité de données de protocole identifient le service
 - Mais les hôtes (clients ou serveurs sur Internet) peuvent exécuter simultanément plusieurs applications réseau.
 - A chaque application ou service de la couche 4 est associé un **numéro de port**
 - Dialogue unique entre périphériques identifié par une paire de numéros de port source et de destination de la couche 4 qui représentent les deux applications qui communiquent
 - Examen du numéro de port pour quelle application ou service constitue la destination correcte des données.

•Acheminement des données jusqu'à l'application adéquate

