Mandatory Assignment 1, Functional Analysis

Name: Yuting Hou ID: dwl 584

Problem 1 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be (non-zero) normed vector spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $T: X \to Y$ be a linear map. Set $||x||_0 = ||x||_X + ||Tx||_Y$, for all $x \in X$. Show that $||\cdot||_0$ is a norm on X. Show next that the two norms $||\cdot||_X$ and $||\cdot||_0$ are equivalent if and only if T is bounded.

Proof. For $x, y \in X$, since $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are normed vector spaces, we have $\|x+y\|_X \le \|x\|_X + \|y\|_X$ and $\|Tx + Ty\|_Y \le \|Tx\|_Y + \|Ty\|_Y$. Hence,

$$||x + y||_{0} = ||x + y||_{X} + ||Tx + Ty||_{Y}$$

$$\leq ||x||_{X} + ||y||_{X} + ||Tx||_{Y} + ||Ty||_{Y}$$

$$= (||x||_{X} + ||Tx||_{Y}) + (||y||_{X} + ||Ty||_{Y})$$

$$= ||x||_{0} + ||y||_{0}.$$

For $\alpha \in \mathbb{K}$ and $x \in X$,

$$\|\alpha x\|_{0} = \|\alpha x\|_{X} + \|T(\alpha x)\|_{Y}$$

$$= \alpha \|x\|_{X} + \alpha \|Tx\|_{Y}$$

$$= \alpha (\|x\|_{X} + \|Tx\|_{Y})$$

$$= \alpha \|x\|_{0}.$$

For every $x \in X$

$$\begin{split} \|x\|_0 &= 0 \Leftrightarrow \|x\|_X + \|Tx\|_Y = 0 \\ &\Leftrightarrow \|x\|_X = 0 \text{ and } \|Tx\|_Y = 0, \text{ since } \|x\|_X \geq 0 \text{ and } \|Tx\|_Y \geq 0. \\ &\Leftrightarrow x = 0. \end{split}$$

Therefore, $\|\cdot\|_0$ is a norm on X.

Since $||Tx||_Y \le ||T|| ||x||_X$, $||x||_0 = ||x||_X + ||Tx||_Y \le ||x||_X + ||T|| ||x||_X = (1 + ||T||) ||x||_X$. Put c = 1 and C = 1 + ||T||.

T is bounded $\Leftrightarrow \|T\| < \infty \Leftrightarrow C = 1 + \|T\| < \infty$. T banded \Rightarrow norm

Hence, T is bounded \Leftrightarrow there exist $0 < c \le C < \infty$ such that $c \|x\|_X \le \|x\|_0 \le C \|x\|_X \Leftrightarrow \|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent.

(b) Show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional.

Proof. Suppose that X is finite dimensional, $\dim X = n$. Consider a basis of X, denoted as

 $\{e_1, e_2, \dots, e_n\}$. Then every $x \in X$ can be written as

$$x = \sum_{i=1}^{n} a_i e_i, \ a_i \in \mathbb{K}.$$

So

$$Tx = \sum_{i=1}^{n} a_i Te_i, \ a_i \in \mathbb{K}.$$

Then we have

$$||Tx||_Y = ||\sum_{i=1}^n a_i Te_i||_Y \le \sum_{i=1}^n |a_i|||Te_i||_Y.$$

Since X is a finite vector space, then any two norms on X are equivalent. Therefore, $\|\cdot\|_{\infty}$ and $\|\cdot\|_X$ are equivalent. It follows that there exist $0 < c_1 \le c_2 < \infty$ such that

 $c_1 ||x||_X \le ||x||_\infty \le c_2 ||x||_X$.

Let $M = \max_i ||Te_i||_Y$. Then

$$||Tx||_Y \le M \sum_{i=1}^{n} |a_i| = M ||x||_{\infty} \le M c_2 ||x||_X$$

$$||T|| = \sup_{x \in X, x \neq 0} \frac{||Tx||_Y}{||x||_X} \le Mc_2.$$

Therefore, T is bounded.

(c) Suppose that X is infinite dimensional. Show that there exists a linear map $T: X \to Y$, which is not bounded (= not continuous).

Proof. Take a linearly independent sequence $\{e_i\}\subseteq X$. Define a linear map $S:X\to\mathbb{K}$ by $S(e_i)=i$ and $S(e_i)=i$ and $S(e_i)=i$ by $S(e_i)=i$ and $S(e_i)=i$ by $S(e_i)=i$ and $S(e_i)=i$ by $S(e_i)=i$ and $S(e_i)=i$ by $S(e_i)=i$ by S(e $S(e_i) = i||e_i||$, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . We can extend this sequence of linearly independent vectors to a Hamel basis of X, then every vector in X can be written as

$$x = \sum_{i} \lambda_i e_i, \ \lambda_i \in \mathbb{K}.$$

Define S at the other vectors in the basis to be 0. For $x \in X$,

$$(5x) = T(\sum_{i} \lambda_{i} e_{i}) = \sum_{i} \lambda_{i} T(e_{i}) = \sum_{i} \lambda_{i} i ||e_{i}||.$$

Assume that $||e_i|| = 1$ for each i, then $S(e_i) = i||e_i|| = i$. Therefore, $S(e_i)$ is not bounded, which means S is not bounded.

Define a linear map $T: X \to Y$ by T(x) = yS(x), where $0 \neq y \in Y$. Then T is a linear map from X to Y which is not bounded.

(d) Suppose again that X is infinite dimensional. Argue that there exists a norm $||x||_0$ on X, which is not equivalent to the given norm $||x||_X$, and which satisfies $||x||_X \le ||x||_0$ for all $x \in X$. Conclude that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

Proof. Suppose that X is a Banach space. Take $||x||_0 = ||x||_X + ||Tx||_Y$ as is stated in (a), where $T: X \to Y$ defined the same as it in (c).

Let $(x_n)_{n\geq 1}$ be a sequence in $(X,\|\cdot\|_0)$, where $x_i=\frac{1}{i}e_i$. Then

$$||x_{m} - x_{n}||_{0} = ||x_{m} - x_{n}||_{X} + ||Tx_{m} - Tx_{n}||_{Y}$$

$$= ||x_{m} - x_{n}||_{X} + ||yi\frac{1}{i} - yi\frac{1}{i}||_{Y}$$

$$= ||x_{m} - x_{n}||_{X}$$

$$= ||\frac{1}{m}e_{m} - \frac{1}{n}e_{n}||_{X}$$

$$\leq ||\frac{1}{m}e_{m}||_{X} + ||\frac{1}{m}e_{m}||$$

$$= \frac{1}{m} + \frac{1}{n} \to 0, \text{ as } m, n \to \infty.$$

conveye to C

This individual Then $(x_n)_{n\geq 1}$ is Cauchy in $(X,\|\cdot\|_0)$ and $(X,\|\cdot\|_X)$. Since $(X,\|\cdot\|_X)$ is complete, the Cauchy sequence $(x_n)_{n\geq 1}$ has a limit, i.e. $\|x_n\|_X \to 0$ as $n\to\infty$.

In $(X,\|\cdot\|_0)$, $x_n=\frac{1}{n}e_n\to 0$ as $n\to 0$, while

If $x_n=1$ in $x_n=1$ is cauchy in $x_n=1$ in $x_n=1$ in $x_n=1$.

$$||x_n - 0||_0 = \left\| \frac{1}{n} e_n \right\|_Y + ||y||_Y \to ||y||_Y, \text{ as } n \to 0.$$

Hence, the Cauchy sequence $(x_n)_{n\geq 1}$ is not convergent in $(X,\|\cdot\|_0)$. Therefore $(X,\|\cdot\|_0)$ is not complete.

(e) Give an example of a vector space X equipped with two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ satisfying $||x||' \le ||x||$, for all $x \in X$, such that $(X, ||\cdot||)$ is complete, while $(X, ||\cdot||')$ is not.

Proof. Take
$$(X, \|\cdot\|) = (\ell_1(\mathbb{N}), \|\cdot\|)$$
 and $(1.1)^{?}$

$$||x||' = \sum_{n} \frac{|x_n|}{n}$$
 for $x \in \ell_1(\mathbb{N})$.

It is clear that $||x||' \leq ||x||$, for all $x \in \ell_1(\mathbb{N})$. Consider a sequence $(\delta_j)_{j\geq 1}$, where j-th term is 1 and others are 0. $\|\delta_j\| = 1$ for all j and $\|\delta_j\|' = \frac{1}{j}$. We cannot find $0 < c_1 \le c_2 < \infty$ such that $c_1 \|\delta_j\|' \leq \|\delta_j\| \leq c_2 \|\delta_j\|'$, hence $\|\cdot\|'$ is not equivalent to $\|\cdot\|$. Since $(\ell_1(\mathbb{N}), \|\cdot\|)$ is a Banach space, $(\ell_1(\mathbb{N}), \|\cdot\|')$ cannot be complete. Therefore, we have found $\|\cdot\|'$ such that for every $x \in \ell_1(\mathbb{N}), \|x\|' \le \|x\|$ but $(\ell_1(\mathbb{N}), \|\cdot\|')$ is not complete. How so?

Problem 2 Let $1 \leq p < \infty$ be fixed, and consider the subspace M of the Banach space $(\ell_p(\mathbb{N}), \|\cdot\|_p)$, considered as a vector space over M, given by

$$M = \{(a, b, 0, 0, 0, \dots) : a, b \in \mathbb{C}\}.$$

Let $f: M \to \mathbb{C}$ be given by $f(a, b, 0, 0, 0, \dots) = a + b$, for all $a, b \in \mathbb{C}$.

(a) Show that f is bounded on $(M, \|\cdot\|_p)$ and compute $\|f\|$. (Answer depends on p.)

Proof.

$$\begin{split} |f(a,b,0,0,0,\ldots)| &= |a+b| \le |a| + |b| \\ &\le (|a|^p + |b|^p)^{\frac{1}{p}} (1+1)^{1-\frac{1}{p}} \\ &= 2^{\frac{p-1}{p}} \|(a,b,0,0,0,\ldots)\|_p. \end{split}$$

What are you ving here?

It follows that

$$||f|| = \sup_{0 \neq a, b \in \mathbb{C}} \frac{|f(a, b, 0, 0, 0, \dots)|}{||(a, b, 0, 0, 0, \dots)||_p} \le 2^{\frac{p-1}{p}}.$$
 (1)

Therefore, f is bounded on $(M, \|\cdot\|_p)$.

Set $a = b = \frac{1}{2^{\frac{1}{p}}}$. Then $||(a, b, 0, 0, 0, \dots)||_p = 1$. We also have

$$||f|| = \sup_{\|(a,b,0,0,0,\dots)\|_p = 1} |f(a,b,0,0,0,\dots)| \ge \frac{2}{2^{\frac{1}{p}}} = 2^{\frac{p-1}{p}}.$$
(2)

According to (1) and (2), we conclude that $||f|| = 2^{\frac{p-1}{p}}$

(b) Show that if $1 , then there is a unique linear functional F on <math>\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Proof. Suppose $F: \ell_p(\mathbb{N}) \to \mathbb{C}$ is a linear functional and $||F|| = ||f|| = 2^{\frac{p-1}{p}}$ Let $(e_i)_{i \geq 1}$ be an orthonormal basis of $\ell_p(\mathbb{N})$. Take $x=(a,b,x_3,x_4,\ldots)\in\ell_p(\mathbb{N}),$ then

$$x = e_1 a + e_2 b + e_3 x_3 + e_4 x_4 + \dots$$

Let $F(e_i) = \alpha_i$. For all $i \geq 3$,

Ako not the

Let
$$F(e_i) = \alpha_i$$
. For all $t \ge 3$,
$$|F(x)| = |F(e_1a + e_2b + e_ic_i)| = |a + b + \sum_{i \ge 3} \alpha_i c_i| = |1 \cdot a + 1 \cdot b + \sum_{i \ge 3} \alpha_i c_i|$$

$$\le (|a|^p + |b|^p + \sum_{i \ge 3} |c_i|^p)^{\frac{1}{p}} (1 + 1 + \sum_{i \ge 3} |\alpha_i|^{\frac{p}{p-1}})^{\frac{p-1}{p}}$$

$$= (2 + \sum_{i \ge 3} |\alpha_i|^{\frac{p}{p-1}})^{\frac{p-1}{p}} ||x||_p.$$

Since equality can be obtained, How?

$$||F|| = \sup_{x \in \ell_p(\mathbb{N})} \frac{|F(x)|}{||x||_p} = \left(2 + \sum_{i \ge 3} |\alpha_i|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}.$$

Since $||F|| = 2^{\frac{p-1}{p}}$, $\alpha_i = 0$, for every $i \geq 2$. Therefore, there exists a unique linear functional $F: \ell_p(\mathbb{N}) \to \mathbb{C}$ defined by F = a + b.

(c) Show that if p=1, then there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Proof. When p=1, ||f||=1. Let $(e_i)_{i\geq 1}$ be an orthonormal basis of $\ell_1(\mathbb{N})$. Take x=1 $(a, b, x_3, x_4, \ldots) \in \ell_p(\mathbb{N})$, then

$$x = e_1 a + e_2 b + e_3 x_3 + e_4 x_4 + \dots$$

Define $F: \ell_1(\mathbb{N}) \to \mathbb{C}$ satisfying

$$F(e_i) = \alpha_i, \ |\alpha_i| \le 1 \text{ for all } i \ge 3$$

and

$$F(x) = a + b + \sum_{i=3}^{\infty} \alpha_i x_i.$$
(4)

Shullbe lath Edixil

Then

$$||F|| = \sup_{x \in \ell_p(\mathbb{N})} \frac{|a| + |b| + \sum_{i=3}^{\infty} |\alpha_i x_i|}{|a| + |b| + \sum_{i=3}^{\infty} |x_i|} \le \sup_{x \in \ell_p(\mathbb{N})} \frac{|a| + |b| + \sum_{i=3}^{\infty} |\alpha_i| |x_i|}{|a| + |b| + \sum_{i=3}^{\infty} |x_i|} \le 1.$$

Take x = (1, 0, 0, 0, ...), then ||x|| = 1.

$$||F|| = \sup_{\|x\|=1} |F(x)| \ge 1 + 0 + \sum_{i=3}^{\infty} 0 = 1.$$

Hence, ||F|| = 1. Therefore, F defined above satisfying (3) and (4) is as required and there are infinitely many such F.

Problem 3 Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $n \geq 1$ be an integer. Show that no linear map $F: X \to \mathbb{K}^n$ is injective.

Proof. Assume that there is an injective linear map $F: X \to \mathbb{K}^n$. Since X is finite dimensional and \mathbb{K}^n is n-dimensional, F is surjective. Take a linearly independent sequence $\{x_1, x_2, \ldots, x_{n+1}\} \subseteq X$. Then $F(x_1), F(x_2), \ldots, F(x_{n+1})$ are linearly dependent in Y since Y is n-dimensional. Hence there exist $\alpha_1, \alpha_2, \ldots, \alpha_{n+1}$ (not all zero), such that

$$\alpha_1 F(x_1) + \alpha_2 F(x_2) + \ldots + \alpha_{n+1} F(x_{n+1}) = 0.$$

I.e.

$$F(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_{n+1} x_{n+1}) = 0.$$

As assumed, F is injective. So $\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_{n+1} x_{n+1} = 0$. However, it is contradict to the fact that $x_1, x_2, \ldots, x_{n+1}$ are linearly independent. Therefore, no linear map $F: X \to \mathbb{K}^n$ is injective.

$$\bigcap_{j=1}^{n} \ker(f_i) \neq \{0\}.$$

Proof. Define a linear map $F: X \to \mathbb{K}^n$ by $F(x) = (f(x_1), f(x_2), \dots, f(x_n))$. Then

$$\ker(F) = \bigcap_{j=1}^{n} \ker(f_i).$$
 Show this maybe

Assume that $\bigcap_{j=1}^n \ker(f_i) = \{0\}$, i.e. $\ker(F) = 0$, which means that F is an injective linear map from X to \mathbb{K}^n . However, this is contradict to the conclusion of Problem 3 (a). Therefore, $\bigcap_{j=1}^n \ker(f_i) \neq \{0\}$.

(c) Let $x_1, x_2, \ldots, x_n \in X$. Show that there exists $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all $j = 1, 2, \ldots, n$.

Proof. From (b) we know that $\bigcap_{j=1}^n \ker(f_i) \neq \{0\}$. Then choose $z \in \bigcap_{j=1}^n \ker(f_i)$. Let $y = \frac{z}{\|z\|}$, so $\|y\| = 1$. For $0 \neq x_j \in X, j = 1, 2, \ldots, n$, there exists $f_j \in X^*$ such that $\|f_j\| = 1$ and

 $f_j(x_j) = ||x_j||$. Then we have

$$||y - x_j|| = ||f_j|| ||y - x_j||$$

$$\geq |f_j(y - x_j)|$$

$$= |f_j y - f_j x_j|$$

$$= |0 - ||x_j||| = ||x_j||.$$

(d) Show that one cannot cover the unit sphere $S = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0.

Proof. Suppose that there is a finite family of closed balls $\{B_i(x_i, \delta_i)\}\ (j = 1, 2, \dots, n)$, none of which contains 0. Denote

$$M := \bigcap_{j=1}^{n} \ker(f_i).$$

Define

$$f_j(x) = \frac{\|x - x_j\|}{\|x_j\|}$$
 (x_j are the centers of B_j).

As is proved in (c), if $x \in M$, then

$$f_j(x) = \frac{\|x - x_j\|}{\|x_j\|} \ge 1$$
, for all $j = 1, 2, \dots, n$.

Since $0 \notin B_j(x_j, \delta_j)$, for each $x \in B_j(x_j, \delta_j)$,

$$f_j(x) = \frac{\|x - x_j\|}{\|x_i\|} < 1.$$

 $f_{j}(x) = \frac{\|x - x_{j}\|}{\|x_{j}\|} \ (x_{j} \text{ are the centers of } B_{j}).$ $\underbrace{= M, \text{ then}}_{f_{j}(x) = \frac{\|x - x_{j}\|}{\|x_{j}\|}} \geq 1, \text{ for all } j = 1, 2, \dots, n.$ $each \ x \in B_{j}(x_{j}, \delta_{j}),$ $\underbrace{= (x_{j}) - \frac{\|x - x_{j}\|}{\|x_{j}\|}}_{f_{j}(x_{j})} < 1.$

Therefore, $M \cap B_j = \emptyset$, for every j. Since $M \neq \{0\}$, we can find $0 \neq v \in M$. Take $w = \frac{v}{\|v\|}$, then ||w|| = 1, so $w \in S \cap M$. However,

$$w \notin \bigcup_{j=1}^{n} B_j(x_j, \delta_j).$$

Therefore, S cannot be covered by a finite family of closed balls.

Proof. Assume that S is compact. For any $x \in S$, we consider

$$B_x = \{ y \in X \mid ||x - y|| < \frac{1}{2} \}.$$

Then $\{B_x\}_{x\in S}$ is an open cover of S. Since S is compact as assumed, there exists a finite subcover $\{B_{x_1}, B_{x_2}, \dots, B_{x_n}\}$ of S. Take the closures of each B_{x_i} , then $\{\overline{B_{x_1}}, \overline{B_{x_2}}, \dots, \overline{B_{x_n}}\}$ is a finite family of closed balls covering S. This is contradict to the conclusion of (d). Therefore, Sis non-compact.

Problem 4 Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lebesgue spaces on [0,1]. Recall from HW2 that $L_3([0,1], m) \subseteq L_1([0,1], m)$. For $n \ge 1$, define

$$E_n := \left\{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \right\}.$$

(a) Given $n \geq 1$, is the set $E_n \subset L_1([0,1],m)$ absorbing? Justify.

Proof. E_n is not absorbing.

Firstly prove that E_n is a convex set. Let $0 \le \alpha \le 1$ and $f, g \in E_n$.

$$\alpha f + (1 - \alpha)g = \int_{[0,1]} |\alpha f|^3 dm + \int_{[0,1]} |(1 - \alpha)g|^3 dm$$

$$= \alpha^3 \int_{[0,1]} |f|^3 dm + (1 - \alpha)^3 \int_{[0,1]} |g|^3 dm$$

$$\leq \alpha^3 n + (1 - \alpha)^3 n = (1 - 3\alpha + 3\alpha^2)n \leq n.$$

Hence, E_n is a convex set.

 $\forall t > 0, \ \exists h = tn^{\frac{1}{3}} + 1 \in L_1([0,1], m), \text{ such that}$

Need to find one h independent

Therefore, E_n is not absorbing in $L_1([0,1], m)$.

(tn3+1) 1/2 E E1

(b) Show that E_n has empty interior in $L_1([0,1],m)$, for all $n \geq 1$. Proof.

(c) Show that E_n is closed in $L_1([0,1],m)$, for all $n \geq 1$.

Proof.

(d) Conclude from (b) and (c) that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Proof. According to (b) and (c), E_n is closed and E_n has empty interior in $L_1([0,1],m)$, so $\overline{E_n} = E_n$ is nowhere dense. And note that

$$L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n.$$

I.e. $L_3([0,1],m)$ can be expressed as the countable union of subsets which are nowhere dense in $L_1([0,1],m)$. Therefore, $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Problem 5 Let H be an infinite dimensional separable Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

(a) Suppose that $x_n \to x$ in norm, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

Proof. Yes.

Since $x_n \to x$ in norm, $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$, such that for every n > N, $||x_n - x|| < \varepsilon$. Notice that

$$||x_n|| = ||(x_n - x) + x|| \le ||x_n - x|| + ||x||.$$

Thus,

$$||x_n|| - ||x|| \le ||x_n - x|| < \varepsilon.$$

It follows that $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$, such that for every n > N, $||x_n|| - ||x|| < \varepsilon$. Therefore, $||x_n|| \to ||x||$, as $n \to \infty$. Need | 11×11 - 11×11/2

(b) Suppose that $x_n \to x$ weakly, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

Proof. Counterexample: Take an orthonormal basis $(e_n)_{n\geq 1}$ in $(\ell_2(\mathbb{N}), \langle \cdot, \cdot \rangle)$. Note that $\ell_2(\mathbb{N}) \cong$

his close not make sense $y=(\eta_1,\eta_2,\ldots), \text{ where } \sum_{i=1}^\infty |\eta_i|^2<\infty,$ which have just himsion.

$$y = (\eta_1, \eta_2, ...), \text{ where } \sum_{i=1}^{\infty} |\eta_i|^2 < \infty$$

then we have

$$\langle e_n, y \rangle = \eta_n \to 0 \text{ as } n \to 0.$$

Therefore, $(e_n)_{n\geq 1}$ converges weakly to 0. However, $||e_n||=1, \forall n=1,2,...$, so $||e_n||\to 1$ as n → ∞. Here you implicity use that H*= {<.,y>} yeH}.

(c) Suppose that $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Is it true that $||x|| \le 1$? Give a proof or a counterexample.

Proof. Suppose that $x_n \to x$ weakly and $||x_n|| \le 1$. Then we have

$$\left| \left\langle \frac{x}{\|x\|}, x_n \right\rangle \right| \le \|x_n\|.$$

Since $x_n \to x$ weakly,

$$\left|\left\langle \frac{x}{\|x\|}, x_n \right\rangle\right| \leq \|x_n\|.$$
Once again uses H*-idn historian without reference.
$$\left|\left\langle \frac{x}{\|x\|}, x_n \right\rangle\right| \rightarrow \left|\left\langle \frac{x}{\|x\|}, x \right\rangle\right| = \|x\|, \text{ as } n \to \infty.$$

Thus,

$$||x|| \le \underline{\lim}_{n \to \infty} ||x_n||.$$

Since $||x_n|| \le 1$, then $||x|| \le 1$.