Package 'IDSL.CSA'

June 29, 2023

Type Package
Title Composite Spectra Analysis (CSA) for High-Resolution Mass Spectrometry Analyses
Version 1.2
Depends R (>= 4.0)
Imports IDSL.MXP, IDSL.IPA, IDSL.FSA, readxl
Author Sadjad Fakouri-Baygi [aut] (https://orcid.org/0000-0002-6864-6911), Dinesh Barupal [cre, aut] (https://orcid.org/0000-0002-9954-8628)
Maintainer Dinesh Barupal <dinesh.barupal@mssm.edu></dinesh.barupal@mssm.edu>
Description A fragmentation spectra detection pipeline for high-throughput LC/HRMS data processing using peaklists generated by the 'IDSL.IPA' workflow <doi:10.1021 acs.jproteome.2c00120="">. The 'IDSL.CSA' package can deconvolute fragmentation spectra from Composite Spectra Analysis (CSA), Data Dependent Acquisition (DDA) analysis, and various Data-Independent Acquisition (DIA) methods such as MS^E, All-Ion Fragmentation (AIF) and SWATH-MS analysis. The 'IDSL.CSA' package was introduced in <doi:10.1021 acs.analchem.3c00376="">.</doi:10.1021></doi:10.1021>
License MIT + file LICENSE
<pre>URL https://github.com/idslme/idsl.csa</pre>
<pre>BugReports https://github.com/idslme/idsl.csa/issues</pre>
Encoding UTF-8
Archs i386, x64
NeedsCompilation no
Repository CRAN
Date/Publication 2023-06-29 14:00:07 UTC
R topics documented:
aligned_fragmentation_spectra_annotator 2 CSA_adductAnnotator 3 CSA_alignedMetaSpectraCataloger 3

Index		20
	positiveAdducts	19
	negativeAdducts	
	IDSL.CSA_xlsxAnalyzer	18
	IDSL.CSA_workflow	17
	IDSL.CSA_referenceMSPgenerator	17
	IDSL.CSA_MSPgenerator	16
	DIA_xlsxAnalyzer	16
	DIA_workflow	
	DIA_MS2_fragmentationPeakDetection	
	DIA_MS1_fragmentationPeakDetection	13
	DDA_xlsxAnalyzer	12
	DDA_workflow	
	DDA_rawSpectraDeconvolution	11
	DDA_fragmentationPeakDetection	10
	DDA2msp	
	CSA_xlsxAnalyzer	9
	CSA_workflow	
	CSA_reference_xlsxAnalyzer	
	CSA_PARAM_SPEC	
	CSA_fragmentationPeakDetection	
	CSA_AlignedTable_xlsxAnalyzer	
	CSA_alignedPeaksTanimotoCoefficientCalculator	4

aligned_fragmentation_spectra_annotator

Aligned Fragmentation Spectra Annotator

Description

This function detects frequent matched compounds across multiple samples on the aligned peak table matrix.

Usage

aligned_fragmentation_spectra_annotator(PARAM_AT, output_path)

Arguments

PARAM_AT a parameter driven from the 'CSA_AlignedTable_xlsxAnalyzer' module. output_path output path

Value

This function stores '.Rdata' and '.csv' data from dataframe of aligned fragmentation spectra.

CSA_adductAnnotator 3

Description

This function updates IDSL.IPA peaklists with IDSL.CSA grouping

Usage

```
CSA_adductAnnotator(IPApeakList, CSA_peaklist, massError)
```

Arguments

IPApeakList IDSL.IPA peaklist

CSA_peaklist A dataframe peaklist of co-detected CSA analysis.

massError Mass accuracy in Da

Value

IDSL.IPA peaklists with IDSL.CSA grouping

```
{\tt CSA\_alignedMetaSpectraCataloger}
```

CSA Aligned Meta-Spectra Cataloger

Description

This function generates integrated and most abundant aligned spectra from the aligned spectra

Usage

```
CSA_alignedMetaSpectraCataloger(address_input_msp, peakXcol, peak_height, CSA_aligned_property_table, groupedID, minTanimotoCoefficient = 0.5, number_processing_threads = 1)
```

Arguments

```
address_input_msp
```

address of the .msp files generated via IDSL.IPA DIA grouping

peakXcol aligned indexed peak table peak_height aligned peak height table

CSA_aligned_property_table

a matrix of three columns of "IPA detection frequency", "median_height", and "median_R13C" for the aligned peak table

groupedID A 2-column dataframe of 'Co-detectedIDs' and 'TanimotoCoefficients' from the

'CSA_alignedPeaksTanimotoCoefficientCalculator' module

minTanimotoCoefficient

minimum Tanimoto coefficient

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A list of two objects for 'MSP_integrated_aligned_spectra' and 'MSP_most_abundant_aligned_spectra'

 ${\tt CSA_alignedPeaksTanimotoCoefficientCalculator}$

CSA Aligned Peaks Tanimoto Coefficient Calculator

Description

This function groups co-detected peaks on the aligned table.

Usage

```
CSA_alignedPeaksTanimotoCoefficientCalculator(address_input_msp, peakXcol, minPercenetageDetection = 5, minNumberFragments = 2, minTanimotoCoefficient = 0.1, RTtolerance = 0.05, number_processing_threads = 1)
```

Arguments

address_input_msp

address of the .msp files generated via IDSL.IPA CSA aggregation

peakXcol aligned indexed peak table

minPercenetageDetection

minimum CSA frequency detection

minNumberFragments

minimum frequency

minTanimotoCoefficient

minimum Tanimoto coefficient

RTtolerance retention time tolerance to detect common peaks

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A 2-column dataframe of 'Co-detectedIDs' and 'TanimotoCoefficients'

CSA_AlignedTable_xlsxAnalyzer

CSA Aligned Table xlsx Analyzer

Description

This function processes the spreadsheet of the 'AlignedTable' tab to ensure the parameter inputs are consistent with the requirements of the IDSL.CSA pipeline.

Usage

CSA_AlignedTable_xlsxAnalyzer(spreadsheet)

Arguments

spreadsheet 'AlignedTable' tab of the parameter spreadsheet

Value

This function returns the aligned table parameters to feed the 'aligned_fragmentation_spectra_annotator' function.

CSA_fragmentationPeakDetection

CSA peakList MSP generation

Description

This function detects fragmentation peaks for the Composite Spectra Analysis (CSA) using IDSL.IPA peaklists.

Usage

```
CSA_fragmentationPeakDetection(CSA_hrms_address, CSA_hrms_file, tempAlignedTableSubsetsFolder = NULL, peaklist, selectedIPApeaks = NULL, RTtolerance, massError, minSNRbaseline, smoothingWindowMS1, scanTolerance, nSpline, topRatioPeakHeight, minIonRangeDifference, minNumCSApeaks, pearsonRHOthreshold, outputCSAeic = NULL)
```

Arguments

CSA_hrms_address

path to the HRMS file

temp Aligned Table Subsets Folder

peaklist IDSL.IPA peaklist

selectedIPApeaks

A vector of selected IDSL.IPA peaks only when a number of IDSL.IPA peaks from one peaklist is processed. When 'NULL' is selected, the entire peaks in the peaklist are processed.

RTtolerance retention time tolerance to detect common peaks

massError Mass accuracy in Da

minSNRbaseline A minimum baseline S/N threshold for IDSL.IPA pseudo-precursor m/z

smoothingWindowMS1

number of scans for peak smoothing.

scanTolerance a scan tolerance to extend the chromatogram for better calculations.

nSpline number of points for further smoothing using a cubic spline smoothing method

to add more points to calculate Pearson correlation rho values

topRatioPeakHeight

The top percentage of the chromatographic peak to calculate Pearson correlation

rho values

minIonRangeDifference

Minimum distance (Da) between lowest and highest m/z to prevent clustering

isotopic envelopes

minNumCSApeaks Minumum number of ions in a CSA cluster

pearsonRHOthreshold

Minimum threshold for Pearson correlation rho values

outputCSAeic When 'NULL' CSA EICs are not plotted. 'outputCSAeic' represents an address

to save CSA EICs figures.

Value

A dataframe peaklist of co-detected CSA analysis.

References

[1] Fakouri Baygi, S., Kumar, Y., Barupal, D.K. (2022). IDSL.IPA Characterizes the Organic Chemical Space in Untargeted LC/HRMS Data Sets. *Journal of Proteome Research*, 21(6), 1485-1494, doi:10.1021/acs.jproteome.2c00120

[2] Fakouri Baygi, S., Fernando, S., Hopke, P.K., Holsen, T.M., Crimmins, B.S. (2021). Non-targeted discovery of novel contaminants in the Great Lakes region: A comparison of fish fillets and fish consumers. *Environmental Science & Technology*, 55(6), 3765-3774, doi:10.1021/acs.est.0c08507

CSA_PARAM_SPEC 7

CSA_PARAM_SPEC

CSA PARAM SPEC

Description

default values for PARAM SPEC

Usage

```
data("CSA_PARAM_SPEC")
```

Format

A data frame on the following 2 variables.

Parameter ID a character vector

User provided input a numerical vector

Examples

```
data(CSA_PARAM_SPEC)
```

CSA_reference_xlsxAnalyzer

CSA reference xlsxAnalyzer

Description

CSA reference xlsxAnalyzer

Usage

```
CSA_reference_xlsxAnalyzer(ref_xlsx_file, input_path_hrms = NULL, PARAM = NULL,
PARAM_ID = "", checkpoint_parameter = TRUE)
```

Arguments

```
ref_xlsx_file ref_xlsx_file
input_path_hrms
```

 $input_path_hrms$

PARAM PARAM_ID PARAM_ID checkpoint_parameter

checkpoint_parameter

CSA_workflow

Value

```
ref_table ref_table

PARAM PARAM

checkpoint_parameter

checkpoint_parameter
```

CSA_workflow

CSA workflow

Description

This function executes the CSA workflow.

Usage

```
CSA_workflow(PARAM_CSA)
```

Arguments

PARAM_CSA PARAM_CSA

Value

This module generates '.msp' files from DDA analysis.

Examples

```
s_path <- system.file("extdata", package = "IDSL.CSA")</pre>
SSh1 <- paste0(s_path,"/CSA_parameters.xlsx")</pre>
## To see the results, use a known folder instead of the `tempdir()` command
temp_wd <- tempdir()</pre>
temp_wd_zip <- paste0(temp_wd, "/idsl_csa_test_files.zip")</pre>
spreadsheet <- readxl::read_xlsx(SSh1, sheet = "CSA")</pre>
PARAM_CSA <- cbind(spreadsheet[, 2], spreadsheet[, 4])</pre>
download.file(paste0("https://github.com/idslme/IDSL.CSA/blob/main/",
                      "CSA_educational_files/idsl_csa_test_files.zip?raw=true"),
              destfile = temp_wd_zip, mode = "wb")
unzip(temp_wd_zip, exdir = temp_wd)
PARAM_CSA[2, 2] <- "NO"
PARAM_CSA[3, 2] <- "NO"
PARAM_CSA[5, 2] <- temp_wd
PARAM_CSA[8, 2] <- temp_wd
PARAM_CSA[9, 2] <- "NA"
PARAM_CSA[11, 2] <- temp_wd
## To ensure `PARAM_CSA` is consistent with the `CSA_workflow`
PARAM_CSA <- CSA_xlsxAnalyzer(PARAM_CSA)
CSA_workflow(PARAM_CSA)
```

CSA_xlsxAnalyzer 9

CSA_xlsxAnalyzer

CSA xlsx Analyzer

Description

This function processes the spreadsheet of the CSA parameters to ensure the parameter inputs are consistent with the requirements of the IDSL.CSA pipeline.

Usage

```
CSA_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet

CSA tab of the parameter spreadsheet

Value

This function returns the CSA parameters to feed the 'CSA_workflow' function.

DDA2msp

DDA to msp

Description

DDA to msp

Usage

```
DDA2msp(input_path_hrms, file_name_hrms = NULL, number_processing_threads = 1)
```

Arguments

```
input_path_hrms
```

path to the HRMS file

file_name_hrms file_name_hrms
number_processing_threads

Number of processing threads for multi-threaded processing

Value

This module generates '.msp' files from DDA analysis.

Examples

DDA_fragmentationPeakDetection

DDA Fragmentation Peaks Detection

Description

This function detects fragmentation peaks for the Data-Dependent Acquisition (DDA) analysis.

Usage

```
DDA_fragmentationPeakDetection(DDA_hrms_address, DDA_hrms_file, peaklist, selectedIPApeaks, massErrorPrecursor, DDAprocessingMode = 'MostIntenseDDAspectra', outputDDAspectra = NULL, number_processing_threads = 1)
```

Arguments

DDA_hrms_address

path to the HRMS file

DDA_hrms_file DDA HRMS file

peaklist IDSL.IPA peaklist

selectedIPApeaks

A vector of selected IDSL.IPA peaks only when a number of IDSL.IPA peaks from one peaklist is processed.

massErrorPrecursor

Mass accuracy (Da) to find precursor m/z in IDSL.IPA peaklists

DDAprocessingMode

c('MostIntenseDDAspectra', c('DDAspectraIntegration', massErrorIntegration), c('IonFiltering', massErrorIonFiltering, minPercentageDetectedScans, rsdCutoff, pearsonRHOthreshold)). Required variables for each DDA processing mode should be provided in this vector.

outputDDAspectra

When 'NULL' DDA spectra are not plotted. 'outputDDAspectra' represents an address to save DDA spectra figures.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A dataframe peaklist of co-detected DDA analysis.

DDA_rawSpectraDeconvolution

DDA Raw Spectra Deconvolution

Description

This function stacks all DDA scans.

Usage

```
DDA_rawSpectraDeconvolution(DDA_hrms_address, DDA_hrms_file, rawDDAspectraVar = NULL,
number_processing_threads = 1)
```

Arguments

DDA_hrms_address

path to the HRMS file

DDA_hrms_file DDA HRMS file

rawDDAspectraVar

c(NULL, list(precursorMZvec, precursorRTvec, massError, RTtolerance)). When NULL, all scans with precursor values are used for DDA peaklist generation. When the list is provided, it filters the scans with respect to predefined 'precursorMZvec' and 'precursorRTvec' values.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A dataframe stacked DDA scans.

DDA_workflow

DDA Workflow

Description

This function runs the Data-Dependent Acquisition (DDA) analysis.

Usage

DDA_workflow(PARAM_DDA)

12 DDA_xlsxAnalyzer

Arguments

PARAM_DDA DDA parameters

Value

This module generates '.msp' files from DDA analysis.

Examples

```
s_path <- system.file("extdata", package = "IDSL.CSA")</pre>
SSh1 <- paste0(s_path,"/CSA_parameters.xlsx")</pre>
## To see the results, use a known folder instead of the `tempdir()` command
temp_wd <- tempdir()</pre>
temp_wd_zip <- paste0(temp_wd, "/idsl_dda_test_files.zip")</pre>
spreadsheet <- readxl::read_xlsx(SSh1, sheet = "DDA")</pre>
PARAM_DDA <- cbind(spreadsheet[, 2], spreadsheet[, 4])</pre>
download.file(paste0("https://github.com/idslme/IDSL.CSA/blob/main/",
                      "CSA_educational_files/idsl_dda_test_files.zip?raw=true"),
               destfile = temp_wd_zip, mode = "wb")
unzip(temp_wd_zip, exdir = temp_wd)
PARAM_DDA[2, 2] <- "no"
PARAM_DDA[4, 2] <- temp_wd
PARAM_DDA[7, 2] <- temp_wd
PARAM_DDA[8, 2] <- "NA"
PARAM_DDA[11, 2] <- temp_wd
## To ensure 'PARAM_DDA' is consistent with the 'DDA_workflow'
PARAM_DDA <- DDA_xlsxAnalyzer(PARAM_DDA)
DDA_workflow(PARAM_DDA)
```

DDA_xlsxAnalyzer

xlsx Analyzer for DDA analysis

Description

This function processes the spreadsheet of the DDA spreadsheet tab to ensure the parameter inputs are in agreement with requirements of the Data-Dependent Acquisition (DDA) analysis.

Usage

```
DDA_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet DDA spreadsheet tab

Value

DDA parameters to feed the 'DDA_workflow' function.

DIA_MS1_fragmentationPeakDetection

CSA DIA MS1 Fragmentation Peaks Detection

Description

This function detects fragmentation peaks for the Data-Independent Acquisition (DIA) analysis at ms level 1.

Usage

DIA_MS1_fragmentationPeakDetection(DIA_hrms_address, DIA_hrms_file, peaklist, selectedIPApeaks, massError, smoothingWindowMS1, scanTolerance, nSpline, topRatioPeakHeight, intensityThresholdFragment, pearsonRHOthreshold, outputDIAeic = NULL, number_processing_threads = 1)

Arguments

DIA_hrms_address

path to the HRMS file

DIA_hrms_file DIA HRMS file

peaklist IDSL.IPA peaklist

selectedIPApeaks

A vector of selected IDSL.IPA peaks only when a number of IDSL.IPA peaks

from one peaklist is processed.

massError Mass accuracy in Da

smoothingWindowMS1

number of scans for peak smoothing.

scanTolerance a scan tolerance to extend the chromatogram for better calculations.

nSpline number of points for further smoothing using a cubic spline smoothing method

to add more points to calculate Pearson correlation rho values

topRatioPeakHeight

The top percentage of the chromatographic peak to calculate Pearson correlation

rho values

intensityThresholdFragment

a value to represent intensity threshold for the fragment at the apex chromatogram

scan

pearsonRHOthreshold

Minimum threshold for Pearson correlation rho values

outputDIAeic When 'NULL' DIA EICs are not plotted. 'outputDIAeic' represents an address

to save DIA EICs figures.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A dataframe peaklist of co-detected DIA analysis.

References

Fakouri Baygi, S., Fernando, S., Hopke, P.K., Holsen, T.M., Crimmins, B.S. (2021). Nontargeted discovery of novel contaminants in the Great Lakes region: A comparison of fish fillets and fish consumers. *Environmental Science & Technology*, 55(6), 3765-3774, doi:10.1021/acs.est.0c08507

DIA_MS2_fragmentationPeakDetection

CSA DIA MS2 Fragmentation Peaks Detection

Description

This function detects fragmentation peaks for the DIA analysis at MS level 2.

Usage

```
DIA_MS2_fragmentationPeakDetection(DIA_hrms_address, DIA_hrms_file, peaklist, selectedIPApeaks, massError, smoothingWindowMS1, smoothingWindowMS2, scanTolerance, nSpline, topRatioPeakHeight, intensityThresholdFragment, pearsonRHOthreshold, outputDIAeic = NULL, number_processing_threads = 1)
```

Arguments

DIA_hrms_address

path to the HRMS file

DIA_hrms_file DIA HRMS file

peaklist IDSL.IPA peaklist

selectedIPApeaks

A vector of selected IDSL.IPA peaks only when a number of IDSL.IPA peaks

from one peaklist is processed.

massError Mass accuracy in Da

smoothingWindowMS1

Number of scans for peak smoothing in MS1 channel

smoothingWindowMS2

Number of scans for peak smoothing in MS2 channel

scanTolerance a scan tolerance to extend the chromatogram for better calculations.

nSpline number of points for further smoothing using a cubic spline smoothing method

to add more points to calculate Pearson correlation rho values

topRatioPeakHeight

The top percentage of the chromatographic peak to calculate Pearson correlation

rho values

DIA_workflow 15

intensityThresholdFragment

a value to represent intensity threshold for the fragment at the apex chromatogram

scan in MS2 channel

pearsonRHOthreshold

Minimum threshold for Pearson correlation rho values

outputDIAeic When 'NULL' DIA EICs are not plotted. 'outputDIAeic' represents an address

to save DIA EICs figures.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A dataframe peaklist of co-detected DIA analysis.

References

Fakouri Baygi, S., Fernando, S., Hopke, P.K., Holsen, T.M., Crimmins, B.S. (2021). Nontargeted discovery of novel contaminants in the Great Lakes region: A comparison of fish fillets and fish consumers. *Environmental Science & Technology*, 55(6), 3765-3774, doi:10.1021/acs.est.0c08507

DIA_workflow

DIA Workflow

Description

This function runs the Data-Independent Acquisition (DIA) analysis.

Usage

DIA_workflow(PARAM_DIA)

Arguments

PARAM_DIA D

DIA parameters

Value

This module generates '.msp' files from DDA analysis.

DIA_xlsxAnalyzer

DIA xlsx Analyzer for DIA analysis

Description

This function processes the spreadsheet of the DIA spreadsheet tab to ensure the parameter inputs are in agreement with requirements of the Data-Independent Acquisition (DIA) analysis.

Usage

```
DIA_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet DIA spreadsheet tab

Value

DIA parameters to feed the 'DIA_workflow' function.

Description

This function creates standard .msp files that can also be used for Pepsearch.

Usage

```
IDSL.CSA_MSPgenerator(CSA_peaklist, msLevel, spectral_search_mode = "dda",
spectral_search_mode_option = NA, number_processing_threads = 1)
```

Arguments

```
\label{eq:condition} \begin{split} \text{CSA\_peaklist} & A \ \text{dataframe peaklist of co-detected peaks} \\ \text{spectral\_search\_mode} & \text{Type of analysis. spectral\_search\_mode} = c("dda", "dia", "csa") \\ \text{msLevel} & \text{MS level} = c(1, 2) \\ \text{spectral\_search\_mode\_option} \\ & \text{Secondary type of analysis. spectral\_search\_mode\_option} = c(NA, "rawddaspectra", "alignedtable") \\ \text{number\_processing\_threads} \\ & \text{Number of processing threads for multi-threaded processing} \end{split}
```

Value

A string of standard .msp file

 ${\tt IDSL.CSA_referenceMSPgenerator}$

IDSL.CSA Reference MSP Generator

Description

This function creates reference standard .msp files.

Usage

```
IDSL.CSA_referenceMSPgenerator(REF_peaklist, refTable, selectedIPApeaks_IDref, msLevel,
spectral_search_mode = "dda", spectral_search_mode_option = NA)
```

Arguments

REF_peaklist A dataframe peaklist of co-detected peaks

refTable reference CSA table

selectedIPApeaks_IDref

selectedIPApeaks_IDref

msLevel MS level = c(1, 2)

spectral_search_mode

Type of analysis. spectral_search_mode = c("dda", "dia", "csa")

spectral_search_mode_option

 $Secondary\ type\ of\ analysis.\ spectral_search_mode_option = c(NA, "rawddaspec-patrick and provided and provided and provided analysis and provided analysis and provided analysis are provided analysis. Spectral_search_mode_option = c(NA, "rawddaspec-patrick analysis and provided analysis and provided analysis and provided analysis and provided analysis are provided analysis. Spectral_search_mode_option = c(NA, "rawddaspec-patrick analysis and provided analysis and provided analysis and provided analysis and provided analysis are provided analysis. The provided analysis are provided analysis and provided analysis are provided analysis and provided analysis and provided analysis. The provided analysis are provided analysis and provided analysis are provided analysis and provided a$

tra", "alignedtable")

Value

A string of standard .msp file

IDSL.CSA_workflow

IDSL.CSA workflow

Description

This function executes the CSA workflow.

Usage

```
IDSL.CSA_workflow(spreadsheet)
```

Arguments

18 negativeAdducts

Value

This function organizes the IDSL.CSA file processing for better performance using the template spreadsheet.

Description

This function processes the spreadsheet of the CSA parameters to ensure the parameter inputs are consistent with the requirements of the IDSL.CSA pipeline.

Usage

```
IDSL.CSA_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet 'Start' tab of the parameter spreadsheet

Value

This function returns the CSA parameters to feed the 'IDSL.CSA_workflow' function.

negativeAdducts

negative adducts

Description

This data consists of adducts and mass differences for common ionization pathways in negative modes.

Usage

```
data("negativeAdducts")
```

Format

A data frame on the following 2 variables.

Adduct a character vector massAdduct a numerical vector

Examples

data(negativeAdducts)

positiveAdducts 19

 ${\tt positiveAdducts}$

positive adducts

Description

This data consists of adducts and mass differences for common ionization pathways in positive modes.

Usage

```
data("positiveAdducts")
```

Format

A data frame on the following 2 variables.

Adduct a character vector massAdduct a numerical vector

Examples

data(positiveAdducts)

Index

```
* datasets
    CSA_PARAM_SPEC, 7
    {\tt negativeAdducts}, \\ 18
    positiveAdducts, 19
aligned_fragmentation_spectra_annotator,
CSA_adductAnnotator, 3
CSA_alignedMetaSpectraCataloger, 3
CSA_alignedPeaksTanimotoCoefficientCalculator,
CSA_AlignedTable_xlsxAnalyzer, 5
CSA_fragmentationPeakDetection, 5
CSA_PARAM_SPEC, 7
CSA_reference_xlsxAnalyzer, 7
CSA_workflow, 8
CSA_xlsxAnalyzer, 9
DDA2msp, 9
DDA_fragmentationPeakDetection, 10
DDA_rawSpectraDeconvolution, 11
DDA_workflow, 11
DDA_xlsxAnalyzer, 12
DIA_MS1_fragmentationPeakDetection, 13
DIA_MS2_fragmentationPeakDetection, 14
DIA_workflow, 15
DIA_xlsxAnalyzer, 16
IDSL.CSA_MSPgenerator, 16
IDSL.CSA_referenceMSPgenerator, 17
IDSL.CSA_workflow, 17
IDSL.CSA_xlsxAnalyzer, 18
negativeAdducts, 18
positiveAdducts, 19
```