

R4.04 Méthodes d'optimisation

Tom Ferragut, Thibault Godin & Lucie Naert

IUT de Vannes Informatique

retour au lycée :

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

$$S = 2\pi r^2 + 2\pi r.h$$

$$V = \pi r^2 h$$

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

$$S = 2\pi r^2 + 2\pi r.h$$

$$V = \pi r^2 h$$

Si on fixe le volume à $1L=1000cm^3$ on obtient $h=\frac{1000}{\pi r^2}$,

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

$$S = 2\pi r^2 + 2\pi r.h$$

$$V = \pi r^2 h$$

Si on fixe le volume à $1L=1000 \, cm^3$ on obtient $h=\frac{1000}{\pi r^2}$,

Donc
$$S(r) = 2\pi r^2 + \frac{2V}{r}$$

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

$$S = 2\pi r^2 + 2\pi r.h$$

$$V = \pi r^2 h$$

Si on fixe le volume à $1L=1000cm^3$ on obtient $h=\frac{1000}{\pi r^2}$,

Donc
$$S(r) = 2\pi r^2 + \frac{2V}{r}$$

Le minimum s'obtient en dérivant $S: S'(r) = \frac{4\pi r^3 - 2V}{r^2}$

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

$$S = 2\pi r^2 + 2\pi r.h$$

$$V = \pi r^2 h$$

Si on fixe le volume à $1L=1000cm^3$ on obtient $h=\frac{1000}{\pi r^2}$,

Donc
$$S(r) = 2\pi r^2 + \frac{2V}{r}$$

Le minimum s'obtient en dérivant $S: S'(r) = \frac{4\pi r^3 - 2V}{r^2}$

On cherche donc $4\pi r^3 - 2V = 0 \rightsquigarrow r = \sqrt[3]{\frac{2V}{4\pi}} \approx 5,42cm$

retour au lycée :

Un industriel cherche à optimiser la quantité de métal utilisée pour la fabrication d'une boite de conserve

$$S = 2\pi r^2 + 2\pi r.h$$

$$V = \pi r^2 h$$

Si on fixe le volume à $1L=1000cm^3$ on obtient $h=\frac{1000}{\pi r^2}$,

Donc
$$S(r) = 2\pi r^2 + \frac{2V}{r}$$

Le minimum s'obtient en dérivant $S: S'(r) = \frac{4\pi r^3 - 2V}{r^2}$

On cherche donc
$$4\pi r^3 - 2V = 0 \Rightarrow r = \sqrt[3]{\frac{2V}{4\pi}} \approx 5,42cm$$

D'où $S_{min} \approx 554cm^2$ (et $h \approx 10,84cm$)

Caractérisation du minimum

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Si f admet un minimum ou un maximum local en x^* alors f' s'annule en x^*

Caractérisation du minimum

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Si f admet un minimum ou un maximum local en x^* alors f' s'annule en x^*

Algorithme de la descente de gradient 1D

Soit une fonction $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ dont on sait calculer la dérivée f'(x).

Algorithme de la descente de gradient 1D

Soit une fonction $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ dont on sait calculer la dérivée f'(x).

Données.

- ▶ Un point initial $x_0 \in \mathbb{R}$.
- ▶ Un niveau d'erreur $\varepsilon > 0$.

Algorithme de la descente de gradient 1D

Soit une fonction $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ dont on sait calculer la dérivée f'(x).

Données.

- ▶ Un point initial $x_0 \in \mathbb{R}$.
- Un niveau d'erreur $\varepsilon > 0$.

Itération. On calcule une suite de points $x_1, x_2, \ldots \in \mathbb{R}$ par récurrence de la façon suivante. Supposons que l'on ait déjà obtenu le point x_k :

- ightharpoonup on calcule $f'(x_k)$,
- on choisit un pas δ_k et on calcule

$$x_{k+1} = x_k - \delta_k f'(x_k).$$

Algorithme de la descente de gradient 1D

Soit une fonction $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ dont on sait calculer la dérivée f'(x).

Données.

- ▶ Un point initial $x_0 \in \mathbb{R}$.
- Un niveau d'erreur $\varepsilon > 0$.

Itération. On calcule une suite de points $x_1, x_2, \ldots \in \mathbb{R}$ par récurrence de la façon suivante. Supposons que l'on ait déjà obtenu le point x_k :

- ightharpoonup on calcule $f'(x_k)$,
- on choisit un pas δ_k et on calcule

$$x_{k+1} = x_k - \delta_k f'(x_k).$$

Arrêt. On s'arrête lorsque $||f'(x_k)|| \le \varepsilon$ (ou après un nombre prédéterminé de pas).

 $f: \mathbb{R} \to \mathbb{R}: f(a) = a^2 + 1.$ a^* ?

$$f: \mathbb{R} \to \mathbb{R}: f(a) = a^2 + 1.$$

a* ?

 \rightsquigarrow gradient

$$a_{k+1} = a_k - \delta \nabla f(a)$$

où δ est le pas et

$$\nabla f(a) = f'(a) = 2a.$$

$$f: \mathbb{R} \to \mathbb{R}: f(a) = a^2 + 1.$$

a* ?

 \rightsquigarrow gradient

$$a_{k+1} = a_k - \delta \nabla f(a)$$

où δ est le pas et

$$\nabla f(a) = f'(a) = 2a.$$

$$a_{k+1}=a_k-2\delta a_k.$$

$$f: \mathbb{R} \to \mathbb{R}: f(a) = a^2 + 1.$$

a* ?

 \rightsquigarrow gradient

$$a_{k+1} = a_k - \delta \nabla f(a)$$

où
$$\delta$$
 est le pas et

$$\nabla f(a) = f'(a) = 2a.$$

$$a_{k+1}=a_k-2\delta a_k.$$

$$\delta=0.2$$
 $a_0=2$

-2

-1

$$f: \mathbb{R} \to \mathbb{R}: f(a) = a^2 + 1.$$

a* ?

5 / 15

→ gradient

$$a_{k+1} = a_k - \delta \nabla f(a)$$

où δ est le pas et

$$\nabla f(a) = f'(a) = 2a.$$

$$a_{k+1}=a_k-2\delta a_k.$$

$$\delta = 0.2$$
 $a_0 = 2$

$\delta = 0.2 \ a_0 = 2.$											
k	a_k	$f'(a_k) = \nabla f(a_k)$	$f(a_k)$								
0	2	4	5								
1	1.2	2.4	2.44								
2	0.72	1.44	1.5184								
3	0.43	0.86	1.1866								
4	0.25	0.5184	1.0671								
5	0.15	0.31	1.0241								
6	0.093	0.186	1.0087								
7	0.055	0.111	1.0031								
8	0.033	0.067	1.0011								
9	0.020	0.040	1.0004								
10	0.012	0.024	1.0001								

$$f: \mathbb{R} \to \mathbb{R}: f(a) = a^2 + 1.$$

a* ?

 \rightsquigarrow gradient

$$a_{k+1} = a_k - \delta \nabla f(a)$$

où δ est le pas et

$$\nabla f(a) = f'(a) = 2a.$$

$$a_{k+1}=a_k-2\delta a_k.$$

$$\delta=0.2$$
 $a_0=2$

$\delta =$	0.2	an	=	2.
0 —	0.2	au		۷.

o =	$0.2 a_0$	$_{0}=2.$	
k	a_k	$f'(a_k) = \nabla f(a_k)$	$f(a_k)$
0	2	4	5
1	1.2	2.4	2.44
2	0.72	1.44	1.5184
3	0.43	0.86	1.1866
4	0.25	0.5184	1.0671
5	0.15	0.31	1.0241
6	0.093	0.186	1.0087
7	0.055	0.111	1.0031
8	0.033	0.067	1.0011
9	0.020	0.040	1.0004
10	0.012	0.024	1.0001
	· ~ ~ ·		

$$\delta = 0.2$$
 $a_0 = -1.5$

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

On a un vecteur $\mathbf{x} = (x_i)_i$ de tailles et un autre $\mathbf{y} = (y_i)_i$ de poids.

poids 49 50 51 52 54 56 58 59 60 62 63 64 66			5 158 160	163 165	168 170	173	175	178 180	183
poids 49 50 51 52 54 56 58 59 60 62 63 64 66	poids	9 50 51 52	54 56	58 59	60 62	63	64	66 67	68

On a un vecteur $\mathbf{x} = (x_i)_i$ de tailles et un autre $\mathbf{y} = (y_i)_i$ de poids.

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

On a un vecteur $\mathbf{x} = (x_i)_i$ de tailles et un autre $\mathbf{y} = (y_i)_i$ de poids.

On cherche $a, b \in \mathbb{R}$ tels que $\mathbf{y} \approx a\mathbf{x} + b$

On va créer une fonction mesurant la qualité de l'approximation

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$ (c'est la somme des (carrés des) distances entre les points et la droite)

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$ (c'est la somme des (carrés des) distances entre les points et la droite) \leadsto on va minimiser cette fonction

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$ (c'est la somme des (carrés des) distances entre les points et la droite) \leadsto on va minimiser cette fonction

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$ (c'est la somme des (carrés des) distances entre les points et la droite) \leadsto on va minimiser cette fonction

Problème: on a 2 paramètres

- On va créer une fonction mesurant la qualité de l'approximation
- On va chercher les paramètres donnant la meilleur estimation (selon cette mesure)

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$ (c'est la somme des (carrés des) distances entre les points et la droite) \leadsto on va minimiser cette fonction

Problème: on a 2 paramètres $E(a,b) = \sum_{i} (y_i - (ax_i + b))^2$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \quad \frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

$$\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h} \quad \frac{\partial f}{\partial y}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0,y_0+h) - f(x_0,y_0)}{h}.$$

on fait "comme si" f était une fonction d'une variable et on dérive par rapport à celle-ci.

$$\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h} \quad \frac{\partial f}{\partial y}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0,y_0+h) - f(x_0,y_0)}{h}.$$

on fait "comme si" f était une fonction d'une variable et on dérive par rapport à celle-ci.

On vectorise souvent : $grad(f)(x_0, y_0) = \nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$

$$\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h} \quad \frac{\partial f}{\partial y}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0,y_0+h) - f(x_0,y_0)}{h}.$$

on fait "comme si" f était une fonction d'une variable et on dérive par rapport à celle-ci.

On vectorise souvent :
$$grad(f)(x_0, y_0) = \nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Soit $f: \mathbb{R}^2 \to \mathbb{R}$. Si f admet un minimum ou un maximum local en (x^*, y^*) alors f le gradient est le vecteur nul en ce point, autrement dit :

$$\frac{\partial f}{\partial x}(x^*, y^*) = 0$$
 et $\frac{\partial f}{\partial y}(x^*, y^*) = 0$.

a. C'est même une équivalence si la dérivée de f est continue et que f est convexe

Optimisation, minimum et dérivées

$$\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h} \quad \frac{\partial f}{\partial y}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0,y_0+h) - f(x_0,y_0)}{h}.$$

on fait "comme si" f était une fonction d'une variable et on dérive par rapport à celle-ci.

On vectorise souvent :
$$grad(f)(x_0, y_0) = \nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Soit $f: \mathbb{R}^2 \to \mathbb{R}$. Si f admet un minimum ou un maximum local en (x^*, y^*) alors f le gradient est le vecteur nul en ce point, autrement dit :

$$\frac{\partial f}{\partial x}(x^*, y^*) = 0$$
 et $\frac{\partial f}{\partial y}(x^*, y^*) = 0$.

a. C'est même une équivalence si la dérivée de f est continue et que f est convexe

Même chose avec plus de dimensions/variables/paramètres

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(a,b) \longmapsto a^2 + b^2$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a^2 + b^2$$

$$\nabla f(a,b) = (2a,2b)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a^2 + b^2$$

$$\nabla f(a,b) = (2a,2b)$$

$$a^* = b^* = 0$$

$$\rightsquigarrow \text{ minimum en } (0,0)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a^2 + b^2$$

$$\nabla f(a,b) = (2a,2b)$$

$$a^* = b^* = 0$$

$$\rightsquigarrow \text{ minimum en } (0,0)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(a,b) \longmapsto -a^2 + b^2$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a^2 + b^2$$

$$\nabla f(a,b) = (2a,2b)$$

$$a^* = b^* = 0$$

$$\rightsquigarrow \text{ minimum en } (0,0)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto -a^2 + b^2$$

$$\nabla f(a,b) = (-2a,2b)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a^2 + b^2$$

$$\nabla f(a,b) = (2a,2b)$$

$$a^* = b^* = 0$$

$$\rightsquigarrow \text{ minimum en } (0,0)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto -a^2 + b^2$$

$$\nabla f(a,b) = (-2a,2b)$$

$$a^* = b^* = 0$$

$$(0,0) \text{ pas d'extremum (point selle)}$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a^2 + b^2$$

$$\nabla f(a,b) = (2a,2b)$$

$$a^* = b^* = 0$$

$$\rightsquigarrow \text{ minimum en } (0,0)$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto -a^2 + b^2$$

$$\nabla f(a,b) = (-2a,2b)$$

$$a^* = b^* = 0$$

$$(0,0) \text{ pas d'extremum (point selle)}$$

Algorithme de la descente de gradient.

Soit une fonction $f: \mathbb{R}^n \to \mathbb{R}$, $P \mapsto f(P)$ de plusieurs variables, avec $P = (a_1, \dots, a_n)$, dont on sait calculer le gradient $\nabla f(P)$.

Algorithme de la descente de gradient.

Soit une fonction $f: \mathbb{R}^n \to \mathbb{R}$, $P \mapsto f(P)$ de plusieurs variables, avec $P = (a_1, \dots, a_n)$, dont on sait calculer le gradient $\nabla f(P)$.

Données.

- ▶ Un point initial $P_0 \in \mathbb{R}^n$.
- ▶ Un niveau d'erreur $\varepsilon > 0$.

Algorithme de la descente de gradient.

Soit une fonction $f: \mathbb{R}^n \to \mathbb{R}$, $P \mapsto f(P)$ de plusieurs variables, avec $P = (a_1, \dots, a_n)$, dont on sait calculer le gradient $\nabla f(P)$.

Données.

- ▶ Un point initial $P_0 \in \mathbb{R}^n$.
- ▶ Un niveau d'erreur $\varepsilon > 0$.

 P_{k+1} P_{k} P_{k}

Itération. On calcule une suite de points $P_1, P_2, \ldots \in \mathbb{R}^n$ par récurrence de la façon suivante. Supposons que l'on ait déjà obtenu le point P_k :

- ▶ on calcule $\nabla f(P_k)$,
- on choisit un pas δ_k et on calcule

$$P_{k+1} = P_k - \delta_k \nabla f(P_k).$$

Algorithme de la descente de gradient.

Soit une fonction $f: \mathbb{R}^n \to \mathbb{R}$, $P \mapsto f(P)$ de plusieurs variables, avec $P = (a_1, \dots, a_n)$, dont on sait calculer le gradient $\nabla f(P)$.

Données.

- ▶ Un point initial $P_0 \in \mathbb{R}^n$.
- ▶ Un niveau d'erreur $\varepsilon > 0$.

Itération. On calcule une suite de points $P_1, P_2, \ldots \in \mathbb{R}^n$ par récurrence de la façon suivante. Supposons que l'on ait déjà obtenu le point P_k :

- ▶ on calcule $\nabla f(P_k)$,
- on choisit un pas δ_k et on calcule

$$P_{k+1} = P_k - \delta_k \nabla f(P_k).$$

Arrêt. On s'arrête lorsque $\|\nabla f(P_k)\| \le \varepsilon$.

Et si le gradient est difficile à calculer?

Approximation numérique du gradient :

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

$$\approx \left(\frac{f(x_0 + \varepsilon, y_0) - f(x_0, y_0)}{\varepsilon}, \frac{f(x_0, y_0 + \varepsilon) - f(x_0, y_0)}{\varepsilon}\right)$$

Et si le gradient est difficile à calculer?

Approximation numérique du gradient :

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

$$\approx \left(\frac{f(x_0 + \varepsilon, y_0) - f(x_0, y_0)}{\varepsilon}, \frac{f(x_0, y_0 + \varepsilon) - f(x_0, y_0)}{\varepsilon}\right)$$

il y a de nombreuses sous-méthodes pour améliorer/adapter la descente de gradient :

Et si le gradient est difficile à calculer?

Approximation numérique du gradient :

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

$$\approx \left(\frac{f(x_0 + \varepsilon, y_0) - f(x_0, y_0)}{\varepsilon}, \frac{f(x_0, y_0 + \varepsilon) - f(x_0, y_0)}{\varepsilon}\right)$$

il y a de nombreuses sous-méthodes pour améliorer/adapter la descente de gradient :

Gradient stochastique, à pas optimal, conjugué ...

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

La fonction de coût usuelle est $E(a,b) = \sum_{i} (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

ici
$$u_i = (y_i - ax_i - b)$$
 donc $u' = -1$.

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

ici
$$u_i = (y_i - ax_i - b)$$
 donc $u' = -1$.
Alors $\frac{\partial E}{\partial b}(a, b) = \sum_i 2(-1)(y_i - ax_i - b)$.

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

 $E(a,b) = \sum_i (y_i - (ax_i + b))^2$ est une fonction (de b) de la forme somme de u^2 , donc la dérivée est une somme de 2u'(b)u(b)

ici
$$u_i = (y_i - ax_i - b)$$
 donc $u' = -1$.
$$-2\sum_i (y_i - ax_i - b^*) = 0$$

$$-2\sum_i (y_i - ax_i - b^*) = 0$$

$$\sum_i 2(-1)(y_i - ax_i - b).$$

$$b^* \text{ annulant l'équation } \rightarrow$$

$$n.b^* = \sum_i y_i - a\sum_i x_i$$

12 / 15

La fonction de coût usuelle est $E(a,b) = \sum_{i} (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

La fonction de coût usuelle est $E(a,b) = \sum_{i} (y_i - (ax_i + b))^2$

Estimation de b^* On considère $E(a,b)=E_a(b)$ comme une fonction de b.

ici
$$u_i = (y_i - ax_i - b)$$
 donc $u' = -1$.
$$-2\sum_i (y_i - ax_i - b^*) = 0$$
 Alors $\frac{\partial \mathcal{E}}{\partial b}(a,b) = \sum_i 2(-1)(y_i - ax_i - b)$.
$$b^* \text{ annulant l'équation } \rightarrow$$

$$n.b^* = \sum_i y_i - a\sum_i x_i$$

$$b^* = \frac{\sum_i y_i}{n} - a\frac{\sum_i x_i}{n}$$

$$b^* = \overline{y} - a\overline{x}$$

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de a^* On considère $E(a,b)=E_b(a)$ comme une fonction de a.

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de a^* On considère $E(a,b)=E_b(a)$ comme une fonction de a.

On se place au point b^* optimal pour le second paramètre

$$E(a,b^*) = \sum_i (y_i - (ax_i + (\overline{y} - a\overline{x})))^2 = \sum_i (y_i - \overline{y} - ax_i + a\overline{x})^2$$

La fonction de coût usuelle est $E(a,b) = \sum_i (y_i - (ax_i + b))^2$

Estimation de a^* On considère $E(a,b)=E_b(a)$ comme une fonction de a.

On se place au point b^* optimal pour le second paramètre

$$E(a, b^*) = \sum_i (y_i - (ax_i + (\overline{y} - a\overline{x})))^2 = \sum_i (y_i - \overline{y} - ax_i + a\overline{x})^2$$

On développe l'identité remarquable

$$E(a,b^*) = \sum_i \left[a^2 (x_i - \overline{x})^2 \right] + 2 \sum_i \left[-a(x_i - \overline{x})((y_i - \overline{y})) \right] + \sum_i \left[(y_i - \overline{y})^2 \right]$$

La fonction de coût usuelle est $E(a,b) = \sum_{i} (y_i - (ax_i + b))^2$

Estimation de a^* On considère $E(a,b)=E_b(a)$ comme une fonction de a.

On se place au point b^* optimal pour le second paramètre

$$E(a, b^*) = \sum_i (y_i - (ax_i + (\overline{y} - a\overline{x})))^2 = \sum_i (y_i - \overline{y} - ax_i + a\overline{x})^2$$

On développe l'identité remarquable

$$\textstyle E(a,b^*) = \sum_i \left[a^2 (x_i - \overline{x})^2 \right] + 2 \sum_i \left[-a(x_i - \overline{x})((y_i - \overline{y})) \right] + \sum_i \left[(y_i - \overline{y})^2 \right]$$

on retrouve une fonction (de a) de la forme sommes de u^2 , donc la dérivée est une somme de 2u'(a)u(a), une fonction somme de v(a) et une constante. Donc

La fonction de coût usuelle est $E(a,b) = \sum_{i} (y_i - (ax_i + b))^2$

Estimation de a^* On considère $E(a,b)=E_b(a)$ comme une fonction de a.

On se place au point b^* optimal pour le second paramètre

$$E(a, b^*) = \sum_i (y_i - (ax_i + (\overline{y} - a\overline{x})))^2 = \sum_i (y_i - \overline{y} - ax_i + a\overline{x})^2$$

On développe l'identité remarquable

$$E(a,b^*) = \sum_i \left[a^2 (x_i - \overline{x})^2 \right] + 2 \sum_i \left[-a(x_i - \overline{x})((y_i - \overline{y})) \right] + \sum_i \left[(y_i - \overline{y})^2 \right]$$

on retrouve une fonction (de a) de la forme sommes de u^2 , donc la dérivée est une somme de 2u'(a)u(a), une fonction somme de v(a) et une constante. Donc

$$\frac{\partial E}{\partial a}(a, b^*) = \sum_i \left[2a(x_i - \overline{x})^2 \right] - 2\sum_i \left[(x_i - \overline{x})((y_i - \overline{y})) \right].$$

$$\sum_{i} \left[2a^* (x_i - \overline{x})^2 \right] - 2 \sum_{i} \left[(x_i - \overline{x})((y_i - \overline{y})) \right] = 0$$

$$\sum_{i} \left[2a^{*}(x_{i} - \overline{x})^{2} \right] - 2\sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right] = 0$$

$$2a^{*}\sum_{i} \left[(x_{i} - \overline{x})^{2} \right] - 2\sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right] = 0$$

$$\sum_{i} \left[2a^{*}(x_{i} - \overline{x})^{2} \right] - 2\sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right] = 0$$

$$2a^{*} \sum_{i} \left[(x_{i} - \overline{x})^{2} \right] - 2\sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right] = 0$$

$$a^{*} = \frac{\sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right]}{\sum_{i} \left[(x_{i} - \overline{x})^{2} \right]}$$

$$\begin{split} \sum_{i} \left[2a^{*}(x_{i} - \overline{x})^{2} \right] - 2 \sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right] &= 0 \\ 2a^{*} \sum_{i} \left[(x_{i} - \overline{x})^{2} \right] - 2 \sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right] &= 0 \\ a^{*} &= \frac{\sum_{i} \left[(x_{i} - \overline{x})((y_{i} - \overline{y})) \right]}{\sum_{i} \left[(x_{i} - \overline{x})^{2} \right]} \\ a^{*} &= \frac{Cov(x, y)}{Var(x)} \end{split}$$

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

$$Var(\mathbf{x}) = 119.1$$

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

$$Var(\mathbf{x}) = 119.1$$

$$Cov(\boldsymbol{x}, \boldsymbol{y}) = 67.15$$

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

$$Var(x) = 119.1$$

$$Cov(x, y) = 67.15$$

d'où
$$a^*=0.5638$$
 et

$$b^* = -34.5423$$

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

$$Var(x) = 119.1$$

$$Cov(x, y) = 67.15$$

d'où
$$a^* = 0.5638$$
 et

$$b^* = -34.5423$$

taille	147	150	153	155	158	160	163	165	168	170	173	175	178	180	183
poids	49	50	51	52	54	56	58	59	60	62	63	64	66	67	68

Ici on obtient :

$$Var(x) = 119.1$$

$$Cov(x, y) = 67.15$$

d'où $a^* = 0.5638$ et

$$b^* = -34.5423$$

 \leadsto prédictions : le modèle prédit pour une personne de 177cm un poids de 177 a^*+b^*pprox 65, 3kg