- 1. Let X_1, \ldots, X_n be iid random variables from the $n(\theta, \theta)$ distribution, $\theta > 0$.
 - (a) Develop expressions for the log-likelihood function, score function, and observed information.
 - (b) Conditions are satisfied in this problem for the MLE $\hat{\theta}$. One can show

$$\sqrt{n}(\hat{\theta} - \theta) \to_d N(0, v_1(\theta)), \text{ as } n \to \infty.$$

Give an expression for $v_1(\theta)$.

(c) Possible estimators of θ are $\bar{X} = \sum_{i=1}^n X_i/n$ and $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$. Show that

$$\sqrt{n}(\bar{X}-\theta) \to_d N(0,\theta),$$

and

$$\sqrt{n}(S^2 - \theta) \to_d N(0, 2\theta^2).$$

(d) Now we have three estimators for θ . Show that 1) $\hat{\theta}$ has the smallest asymptotic variance for every $\theta > 0$; 2) S^2 may have a smaller asymptotic variance than \bar{X} given some θ ; 3) the asymptotic relative efficiency (ARE) of $\hat{\theta}$ and \bar{X} , which is defined by the ratio of the asymptotic variances, converges to 1 when $\theta \to \infty$.

Summarize what you found from these three arguments.

2. The exponential distribution is often used to model survival times. This problem develops a simple model for comparing survival times in two groups of patients. Let X_1, \ldots, X_m be a random sample from an exponential distribution with pdf

$$f(x|\mu_1) = \frac{1}{\mu_1} e^{-x/\mu_1}, \ x > 0, \ \mu_1 > 0,$$

and let Y_1, \ldots, Y_n be a random sample from an exponential distribution with pdf

$$f(y|\mu_2) = \frac{1}{\mu_2} e^{-y/\mu_2}, \ y > 0, \ \mu_2 > 0.$$

Assume that X and Y are independent. Define $\psi = \mu_2/\mu_1$, and let $\bar{X} = m^{-1} \sum_{i=1}^m X_i$ and $\bar{Y} = n^{-1} \sum_{i=1}^n Y_i$ be the sample means.

(a) Show that the **exact** likelihood ratio test statistic for the hypothesis $H_0: \mu_1 - \mu_2 = 0$ against $H_1: \mu_1 - \mu_2 \neq 0$ is

$$\lambda(\boldsymbol{x}, \boldsymbol{y}) = \frac{(m+n)^{m+n}}{m^m n^n} w^m (1-w)^n,$$

where w = m/(m + nr) and $r = \bar{y}/\bar{x}$.

- (b) Demonstrate that the rejection region $\{(\boldsymbol{x},\boldsymbol{y});\lambda(\boldsymbol{x},\boldsymbol{y})< c\}$ is equivalent to $\{r;r< c_1^*\}\cup\{r;r> c_2^*\}$. That means one may reject the null hypothesis by observing either $r< c_1^*$ or $r> c_2^*$. Given a type-I error rate α , find c_1^* and c_2^* using the fact that $\mu_1 \bar{Y}/\mu_2 \bar{X}$ follows $F_{2n,2m}$, which is F distribution with degree of freedoms 2n and 2m.
- (c) Express the critical region of the Wald test for the hypothesis $H_0: \mu_1 \mu_2 = 0$ against $H_1: \mu_1 \mu_2 \neq 0$ given that the type-I error probability is α .
- (d) Explain why $\psi \bar{X}/\bar{Y}$ is a pivotal quantity. Use that pivot to derive an exact 95% confidence interval for ψ .
- 3. An epidemiologist gathers data (x_i, Y_i) on each of n randomly chosen noncontiguous and demographically similar cities in the United States, where x_i , i = 1, ..., n, is the known population size (in millions of people) in city i, and where Y_i is the random variable denoting the number of people in city i with colon cancer. It is reasonable to assume that Y_i , i = 1, ..., n, has a Poisson distribution with mean $E(Y_i) = \theta x_i$, where $\theta > 0$ is an unknown parameter, and that $Y_1, Y_2, ..., Y_n$ are mutually independent random variables.
 - (a) Use the available data (x_i, Y_i) , i = 1, ..., n, construct a uniformly most powerful (UMP) level α test of $H_0: \theta = 1$ versus $H_1: \theta > 1$.
 - (b) Use the available data (x_i, Y_i) , i = 1, ..., n, construct a uniformly most powerful (UMP) level α test of $H_0: \theta \leq 1$ versus $H_1: \theta > 1$. Is this critical region the same as the one used in (a)? Explain.
 - (c) One can show that $S = \sum_{i=1}^{n} Y_i$ follows $Poisson(\theta \sum_{i=1}^{n} x_i)$. If one observes $\sum_{i=1}^{n} x_i = 0.8$, find c^* in the critical region $\mathcal{R} = \{S : S \geq c^*\}$ with size $\alpha = 0.05$. Explain.
 - (If $X \sim \text{Poisson}(0.8)$, then P(X = 0) = 0.449, $P(X \le 1) = 0.808$, $P(X \le 2) = 0.952$, $P(X \le 3) = 0.990$, $P(X \le 4) = 0.999$).
 - (d) What is the power when in reality $\theta = 5$, using the critical region in (c) and $\sum_{i=1}^{n} x_i = 0.8$?
 - (If $X \sim \text{Poisson}(4)$, then P(X = 0) = 0.018, $P(X \le 1) = 0.092$, $P(X \le 2) = 0.238$, $P(X \le 3) = 0.433$, $P(X \le 4) = 0.628$).