2021 Fall MAS 101 Chapter 10: Infinite Sequences and Series

Donghwan Kim

KAIST

Oct/26,28, Nov/2,4,9,11, 2021

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Infinite Sequences and Series

•
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\bullet \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{40320} - \cdots$$

Chapter 10 1 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Representing Sequences

• A sequence is a list of numbers

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

in a given order.

Convergence and Divergence

- $\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$
- $\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots\}$
- $\{1, -1, 1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$

3/82

Convergence and Divergence (cont'd)

Definition 1

The sequence $\{a_n\}$ converges to the number L if for every positive number ϵ there corresponds to an integer N such that for all n,

$$n > N \qquad \Rightarrow \qquad |a_n - L| < \epsilon.$$

If no such number L exists, we say that $\{a_n\}$ diverges. If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty}a_n=L$, or simply $a_n\to L$, and call L the **limit** of the sequence.

- $\lim_{n\to\infty}\frac{1}{n}$
- $\{1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$
- $\lim_{n\to\infty} \sqrt{n}$

Chapter 10 4 / 82

Convergence and Divergence (cont'd)

Definition 2

The sequence $\{a_n\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than N, $a_n > M$. If this condition holds we write

$$\lim_{n\to\infty}a_n=\infty,\quad \text{or}\quad a_n\to\infty.$$

Similarly, if for every number m there is an integer N such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

$$\lim_{n\to\infty} a_n = -\infty, \quad \text{or} \quad a_n \to -\infty.$$

• A sequence may diverge without diverging to infinity or negative infinity.

Chapter 10 5 / 82

Calculating Limits of Sequences

Theorem 1

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let A and B be real numbers. The following rules hold if $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.

- Sum Rule: $\lim_{n\to\infty} (a_n + b_n) = A + B$
- Difference Rule: $\lim_{n\to\infty} (a_n b_n) = A B$
- Constant Multiple Rule: $\lim_{n\to\infty}(k\cdot b_n)=k\cdot B$ (any number k)
- Product Rule: $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$
- Quotient Rule: $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$ if $B\neq 0$
- Do sequences $\{a_n\}$ and $\{b_n\}$ have limits if their sum $\{a_n+b_n\}$ has a limit?

Chapter 10 6 / 82

Calculating Limits of Sequences (cont'd)

Theorem 2 (The Sandwich Theorem for Sequences)

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$ also.

 $extinting <math>\frac{\cos n}{n} o 0$

Chapter 10 7 / 82

Calculating Limits of Sequences (cont'd)

Theorem 3 (The Continuous Function Theorem for Sequences)

Let $\{a_n\}$ be a sequence of real numbers. If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \to f(L)$.

• $2^{1/n}$

Chapter 10 8 / 82

Using L'Hôpital's Rule

Theorem 4

Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x \to \infty} f(x) = L \qquad \Rightarrow \qquad \lim_{n \to \infty} a_n = L.$$

• $\lim_{n\to\infty} \frac{\ln n}{n}$

Chapter 10 9 / 82

Commonly Occurring Limits

The following six sequences converge to the limits listed below:

- $\lim_{n\to\infty}\frac{\ln n}{n}$
- $\lim_{n\to\infty} \sqrt[n]{n}$
- $\lim_{n\to\infty} x^{1/n}$
- $\lim_{n\to\infty} x^n$
- $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$
- $\lim_{n\to\infty}\frac{x^n}{n!}$

Chapter 10 10 / 82

Recursive Definitions

- Sequences are often defined recursively by giving
- 1. The value(s) of initial term or terms, and
- 2. A rule, called a **recursion formula**, for calculating any later term form terms that precede it.

Chapter 10 11 / 82

Bounded Monotonic Sequences

Definition 3

A sequence $\{a_n\}$ is bounded from above if there exists a number M such that $a_n \leq M$ for all n. The number M is an upper bound for $\{a_n\}$. If M is an upper bound for $\{a_n\}$ but no number less than M is an upper bound for $\{a_n\}$, then M is the least upper bound for $\{a_n\}$. If $\{a_n\}$ is bounded from above and below, then $\{a_n\}$ is bounded. If $\{a_n\}$ is not bounded, then we say that $\{a_n\}$ is an **unbounded** sequence.

- $1, 2, 3, \ldots, n \ldots$
- \bullet $-\frac{1}{2}, -\frac{2}{2}, -\frac{3}{4}, \ldots, -\frac{n}{n+1}, \ldots$
- Is a convergent sequence bounded?
- Is a bounded sequence convergent?

12 / 82

Bounded Monotonic Sequences (cont'd)

Definition 4

A sequence $\{a_n\}$ is **nondecreasing** if $a_n \leq a_{n+1}$ for all n. That is, $a_1 \leq a_2 \leq a_3 \leq \ldots$ The sequence is nonincreasing if $a_n \geq a_{n+1}$ for all n. The sequence $\{a_n\}$ is **monotonic** if it is either nondecreasing and nonincreasing.

- $1, 2, 3, \ldots, n, \ldots$
- \bullet $-\frac{1}{2}, -\frac{2}{3}, -\frac{3}{4}, \ldots, -\frac{n}{n+1}, \ldots$
- $1, -1, 1, -1, \dots$

Chapter 10 13 / 82

Bounded Monotonic Sequences (cont'd)

Theorem 6 (The Monotonic Sequence Theorem)

If a sequence $\{a_n\}$ is both bounded and monotonic, then the sequence converges.

- Is a convergent and bounded sequence monotonic?
- Does a nondecreasing and bounded sequence converge?

Chapter 10 14 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Infinite Series

Definition 5

Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

is an infinite series. The number a_n is the nth term of the series. The sequence $\{s_n\}$ defined by

$$s_1 = a_1, \quad s_2 = a_1 + a_2, \quad \cdots,$$

 $s_n = a_1 + a_2 + \cdots + a_n = \sum_{k=1}^n a_k, \quad \cdots$

is the sequence of partial sums of the series, the number s_n being the nth partial sum. If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L.

Chapter 10 15 / 82

Geometric Series

• Geometric seris are series of the form

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

in which a and r are fixed real numbers and $a \neq 0$.

- If |r| < 1,
- If $|r| \ge 1$,

Chapter 10 16 / 82

The nth-Term Test for a Divergent Series

Theorem 7

If $\sum_{n=1}^{\infty} a_n$ converges, then

Chapter 10 17 / 82

Combining Series

Theorem 8

If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then

- Sum Rule: $\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B$
- Difference Rule: $\sum (a_n b_n) = \sum a_n \sum b_n = A B$
- Constant Multiple Rule: $\sum ka_n = k \sum a_n = kA$ (any number k).

Chapter 10 18 / 82

Adding or Deleting Terms

• One can add a finite number of terms to a series or delete a finite number of terms without altering the series' convergence or divergence.

Chapter 10 19 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Nondecreasing Partial Sums

Corollary 1

A series $\sum_{n=1}^{\infty} a_n$ of nonnegative terms converges if and only if its partial sums are

$$\bullet \ \sum_{n=1}^{\infty} \frac{1}{n}$$

Chapter 10 20 / 82

Nondecreasing Partial Sums (cont'd)

• How about $\sum_{n=1}^{\infty} \frac{1}{n^2}$?

Chapter 10 21 / 82

The Integral Test

Theorem 9 (The Integral Test)

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n=f(n)$, where f is a continuous, positive, decreasing function of x for all $x\geq N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty}a_n$ and the integral $\int_{N}^{\infty}f(x)dx$ both converge or both diverge.

Chapter 10 22 / 82

The Integral Test (cont'd)

$$\bullet \ \sum_{n=1}^{\infty} \frac{1}{n^p}$$

Chapter 10 23 / 82

The Integral Test (cont'd)

$$\bullet \ \sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln n}$$

Chapter 10 24 / 82

The Integral Test (cont'd)

$$\bullet \ \textstyle\sum_{n=1}^{\infty} ne^{-n^2}$$

Chapter 10 25 / 82

Error Estimation

• Bounds for the Remainder in the integral Test: Suppose $\{a_k\}$ is a sequence of positive terms with $a_k=f(k)$, where f is a continuous positive decreasing function of x for all $x\geq n$, and that $\sum a_n$ converges to S. Then the remainder $R_n=S-s_n$ satisfies the inequalities

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx.$$

• Estimate the sum of the series $\sum (1/n^2)$ using the inequalities using n=10.

Chapter 10 26 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Comparison Tests

Theorem 10

Let $\sum a_n$, $\sum c_n$, and $\sum d_n$ be series with nonnegative terms. Suppose that for some integer N

$$d_n \le a_n \le c_n$$
 for all $n > N$.

- If $\sum c_n$ converges, then $\sum a_n$ also converges.
- If $\sum d_n$ diverges, then $\sum a_n$ also diverges.
- $\sum_{n=1}^{\infty} \frac{4}{2n-1}$
- $\bullet \ \sum_{n=1}^{\infty} \frac{1}{n!}$

Chapter 10 27 / 82

The Limit Comparison Test

Theorem 11

Suppose that $a_n > 0$ and $b_n > 0$ for all n > N (N an integer).

- If $\lim_{n\to\infty}\frac{a_n}{b}=c>0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- $\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$
- $\sum_{n=1}^{\infty} \frac{1}{2n-1}$

28 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Absolute Convergence

Definition 6

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges.

Theorem 12 (The Absolute Convergence Test)

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{1.5}}$$

Chapter 10 29 / 82

Tests for Absolute Convergence

- The ratio test
- The root test

Chapter 10 30 / 82

The Ratio Test

Theorem 13 (The Ratio Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho.$$

Then (a) the series converges absolutely if $\rho < 1$, (b) the series diverges if $\rho > 1$ or ρ is infinite, (c) the test is inconclusive if $\rho = 1$.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n!}$$

Chapter 10 31 / 82

The Root Test

$$ullet$$
 $\sum a_n$, where $a_n = egin{cases} n/2^n, & n \text{ odd}, \ 1/2^n, & n \text{ even}. \end{cases}$

Chapter 10 32 / 82

The Root Test (cont'd)

Theorem 14 (The Root Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho.$$

Then (a) the series converges absolutely if $\rho < 1$, (b) the series diverges if $\rho > 1$ or ρ is infinite, (c) the test is inconclusive if $\rho = 1$.

- \bullet $\sum a_n$, where $a_n = \begin{cases} n/2^n, & n \text{ odd,} \\ 1/2^n, & n \text{ even.} \end{cases}$
- $\bullet \ \sum_{n=1}^{\infty} \frac{n^2}{2^n}$

Chapter 10 33 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Alternating Series

$$\bullet \ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Chapter 10 34 / 82

Alternating Series Test

Theorem 15 (The Alternating Series Test)

The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if all three of the following conditions are satisfied:

- The u_n 's are all positive.
- The positive u_n 's are (eventually) nonincreasing: $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- \bullet $u_n \to 0$.
- $u_n = \frac{1}{n}$
- $u_n = \frac{10n}{n^2 + 16}$

Chapter 10 35 / 82

Alternating Series Estimation

Theorem 16 (The Alternating Series Estimation Theorem)

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1}u_n$ satisfies the three conditions of Theorem 15, then for $n \geq N$,

$$s_n = u_1 - u_2 + \dots + (-1)^{n+1} u_n$$

approximates the sum L of the series with an error whose absolute value is less than u_{n+1} , the absolute value of the first unused term. Furthermore, the sum L lies between any two successive partial sums s_n and s_{n+1} , and the remainder, $L-s_n$, has the same sign as the first unused term.

•
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

Chapter 10 36 / 82

Conditional Convergence

Definition 7

A convergent series that is not absolutely convergent is **conditionally convergent**.

$$\bullet \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$$

Chapter 10 37 / 82

Rearranging Series

$$\bullet \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Theorem 17 (The Rearrangement Theorem for Absolutely Convergent Series)

If $\sum_{n=1}^{\infty} a_n$ converges absolutely, and $b_1, b_2, \ldots, b_n, \ldots$ is any arrangement of the sequence $\{a_n\}$, then $\sum b_n$ converges absolutely and

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n.$$

Chapter 10 38 / 82

Summary of Tests

- The *n*th-Term Test: If it is not true that $a_n \to 0$, then the series diverges.
- **Geometric series:** $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- p-series: $\sum 1/n^p$ converges if p > 1; otherwise it diverges.
- Series with nonnegative terms: Try the Integral Test or try comparing to a known series with the Comparison Test or the Limit Comparison Test. Try the Ratio or Root Test.
- Series with some negative terms: Does $\sum |a_n|$ converge by the Ratio or Root Test, or by another of the tests listed above? Remember, absolute convergence implies convergence.
- Alternating series: $\sum a_n$ converges if the series satisfies the conditions of the Alternating Series Test.

Chapter 10 39 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 10.7 Power Series
- 8 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Power Series

- ullet Power series: infinite series of powers of some variable (e.g., x)
- Section 10.8 Taylor and Maclaurin Series
- Section 10.9 Convergence of Taylor Series

Chapter 10 40 / 82

Power Series and Convergence

Definition 8

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$

in which the center a and the coefficients $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

Chapter 10 41 / 82

• Letting $c_n = 1$ yields

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

Chapter 10 42 / 82

• For -1 < x < 1,

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots$$

$$\bullet P_n(x) = \sum_{i=0}^n x^i$$

Chapter 10 43 / 82

• Letting $c_n = \left(-\frac{1}{2}\right)^n$ and a=2 yields

$$1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 - \cdots$$

Chapter 10 44 / 82

• For what values of x do the following power series converge?

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sum_{n=0}^{\infty} n! x^n$$

Chapter 10 45 / 82

Theorem 18

If the power series $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$ converges at $x = d \neq 0$, then it converges absolutely for all x with |x| < |d|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

• For series of the form $\sum c_n(x-a)^n$ we can replace x-a by x'.

Chapter 10 46 /

The Radius of Convergence of a Power Series

Corollary 2

The convergence of the series $\sum c_n(x-a)^n$ is described by one of the following three cases:

- There is a positive number R such that the series diverges for x with |x-a|>R but converges absolutely for x with |x-a|< R. The series may or may not converge at either of the endpoints x=a-R and x=a+R.
- The series converges absolutely for every x ($R = \infty$).
- The series converges at x = a and diverges elsewhere (R = 0).

Chapter 10 47 / 82

The Radius of Convergence of a Power Series (cont'd)

• R is called the **radius of convergence** of the power series, and the interval of radius R centered at x=a is called the **interval of convergence**.

Chapter 10 48 / 82

How to Test a Power Series for Convergence

• Use the Ratio Test (or Root Test) to find the interval where the series converges absolutely. Ordinarily, this is an open interval

$$|x-a| < R$$
 or $a-R < x < a+R$.

- If the interval of absolute convergence is finite, test for convergence or divergence at each endpoint. Use a Comparison Test, the Integral Test, or the Alternating Series Test.
- If the interval of absolute convergence is a R < x < a + R, the series diverges for |x-a|>R (it does not even converge conditionally) because the nth term does not approach zero for those vales of x.

49 / 82

How to Test a Power Series for Convergence (cont'd)

Theorem 19

Suppose that $c_n \neq 0$ for all sufficiently large n and that the limit

$$R = \lim_{n \to \infty}$$

exists or diverges to inifinity. Then the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has radius of convergence R.

Chapter 10 50 / 82

Operations on Power Series

Theorem 20

If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then

- Sum Rule: $\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B$
- Difference Rule: $\sum (a_n b_n) = \sum a_n \sum b_n = A B$
- Constant Multiple Rule: $\sum ka_n = k \sum a_n = kA$ (any number k).

Chapter 10 51 / 82

Theorem 21 (The Series Multiplication Theorem for Power Series)

If $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for |x| < R, and

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0 = \sum_{k=0}^{n} a_k b_{n-k},$$

then $\sum_{n=0}^{\infty} c_n x^n$ converges absolutely to A(x)B(x) for |x| < R:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n.$$

Chapter 10 52 / 82

Theorem 22

If $\sum_{n=0}^{\infty} c_n x^n$ converges absolutely for |x| < R, then $\sum_{n=0}^{\infty} c_n (f(x))^n$ converges absolutely for any continuous function f on |f(x)| < R.

Chapter 10 53 / 82

Theorem 23 (The Term-by-Term Differentiation Theorem)

If $\sum c_n(x-a)^n$ has radius of convergence R>0, it defines a function

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 on the interval $a - R < x < a + R$.

The function f has derivatives of all orders inside the interval, and we obtain the derivatives by differentiating the original series term by term:

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1},$$

$$f''(x) = \sum_{n=1}^{\infty} n(n-1)c_n (x-a)^{n-2},$$

and so on. Each of these derived series converges at every point of the interval a-R < x < a+R.

Chapter 10 54 / 82

Find series for f'(x) and f''(x).

•
$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $-1 < x < 1$

•
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(n!x)}{n^2}$$
 for all x

Chapter 10 55 / 82

Theorem 24 (The Term-by-Term Integration Theorem)

Suppose that

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

converges for a - R < x < a + R (R > 0). Then

$$\sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

converges for a - R < x < a + R and

$$\int f(x)dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C$$

for a - R < x < a + R.

Chapter 10 56 / 82

- Identify the function $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ for -1 < x < 1.
- Identify the function $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$ for -1 < x < 1.
- Identify the function $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Chapter 10 57 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Represeting Function with a Power Series

$$f(x) = \frac{1}{1-x}$$

- Is a power series continuous within its interval of convergence?
- If a function has derivatives of all orders on an interval, can it be expressed as a power series?

58 / 82

Series Representations

• Assume that f(x) is the sum of a power series about x = a,

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

= $a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n + \dots$

with a positive radius of convergence.

Chapter 10 59 / 82

Taylor and Maclaurin Series

Definition 9

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x=a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin series of f is the Taylor series generated by f at x = 0, or

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

Chapter 10 60 / 82

Taylor and Maclaurin Series (cont'd)

• Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 3.

Chapter 10 61 / 82

Taylor Polynomials

• The linearization of a differentiable function f at a point a:

$$P_1(x) =$$

Chapter 10 62 / 82

Taylor Polynomials (cont'd)

Definition 10

Let f be a function with derivatives of order k for $k=1,2,\ldots,N$ in some interval containing a as an interior point. Then for any integer n from 0 through N, the **Taylor polynomial of order** n generated by f at x=a is the polynomial

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x - a)^k + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Chapter 10 63 / 82

Taylor Polynomials (cont'd)

Find the Taylor series and the Taylor polynomials generated by f(x) at x=0.

•
$$f(x) = e^x$$

•
$$f(x) = \cos x$$

•
$$f(x) = \begin{cases} 0, & x = 0, \\ e^{-1/x^2}, & x \neq 0. \end{cases}$$

Chapter 10 64 / 82

Taylor Polynomials (cont'd)

- ullet For what values of x can we normally expect a Taylor series to converge to its generating function?
- How accurately do a function's Taylor polynomials approximate the function on a given interval.

Chapter 10 65 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

Taylor's Theorem

Theorem 25 (Taylor's Theorem)

If f and its first n derivatives $f', f'', \ldots, f^{(n)}$ are continuous on the closed interval between a and b, and $f^{(n)}$ is differentiable on the open interval between a and b, then there exists a number c between a and b such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$$

Chapter 10 66 / 82

Taylor's Theorem

Theorem 26 (The Mean Value Theorem)

Suppose y=f(x) is continuous over a closed interval [a,b] and differentiable on the interval's interior (a,b). Then there is at least one point c in (a,b) at which

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Theorem 27 (Rolle's Theorem)

Suppose that y=f(x) is continuous over the closed interval [a,b] and differentiable at every point of its interior (a,b). If f(a)=f(b), then there is at least one number c in (a,b) at which f'(c)=0.

Chapter 10 67 / 82

Taylor's Formula

• If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \quad \text{for some } c \text{ between } a \text{ and } x.$$

Chapter 10 68 / 82

Taylor's Formula (cont'd)

• If $R_n(x) \to 0$ as $n \to \infty$ for all $x \in I$, we say that the Taylor series generated by f at x = a converges to f on I, and we write

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

• Does the Taylor series generated by $f(x) = e^x$ at x = 0 converge to f(x) for every real value of x?

Chapter 10 69 / 82

Estimating the Remainder

Theorem 28 (The Remainder Estimation Theorem)

If there is a positive constant M such that $|f^{(n+1)}(t)| \leq M$ for all t between x and a, inclusive, then the remainder term $R_n(x)$ in Taylor's Theorem satisfies the inequality

$$|R_n(x)| \le M \frac{|x-a|^{n+1}}{(n+1)!}.$$

If this inequality holds for every n and the other conditions of Taylor's Theorem are satisfied by f, then the series converges to f(x).

Chapter 10 70 / 82

Using Taylor Series

• Find the first few terms of the Taylor series for $e^x \cos x$ using power series operations.

Chapter 10 71 / 82

- 10.1 Sequences
- 2 10.2 Infinite Series
- 3 10.3 The Integral Test
- 4 10.4 Comparison Tests
- 5 10.5 Absolute Convergence; The Ratio and Root Tests
- 6 10.6 Alternating Series and Conditional Convergence
- 7 10.7 Power Series
- 8 10.8 Taylor and Maclaurin Series
- 10.9 Convergence of Taylor Series
- 10.10 The Binomial Series and Applications of Taylor Series

The Binomial Series for Powers and Roots

ullet The Taylor series generated by $f(x)=(1+x)^m$, when m is constant, is

Chapter 10 72 / 82

The Binomial Series

• For -1 < x < 1,

$$(1+x)^m = 1 + \sum_{k=1}^{\infty} {m \choose k} x^k,$$

where we define

$$\binom{m}{k} = \frac{m(m-1)(m-2)\cdots(m-k+1)}{k!}$$

Chapter 10 73 / 82

The Binomial Series

- $(1+x)^{-1}$ $(1+x)^{1/2}$

Chapter 10 74 / 82

Frequently Used Taylor Series

$$\bullet \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

•
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$
, $|x| < 1$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad |x| < \infty$$

•
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad |x| < \infty$$

•
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad |x| < \infty$$

•
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}, -1 < x \le 1$$

•
$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, \quad |x| \le 1$$

Chapter 10 75 / 82

Evaluating Nonelementary Integrals

- Express $\sin x^2$ as a power series.
- Express $\int \sin x^2 dx$ as a power series.

Chapter 10 76 / 82

Evaluating Nonelementary Integrals (cont'd)

• Estimate $\int_0^1 \sin x^2 dx$ with an error of less than 0.001.

Chapter 10 77 / 82

Arctangents

• Recall: A series for $\tan^{-1} x$ was found by differentiating to get

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

and then integrating to get

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

 This uses the term-by-term integration theorem, which we have not proved in class.

Chapter 10 78 / 82

Arctangents (cont'd)

Consider

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \dots + (-1)^n t^{2n} + ?$$

• Integrating both sides from t = 0 to t = x gives

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + R_n(x)$$

Chapter 10 79 / 82

Arctangents (cont'd)

• Leibniz's formula:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots + \frac{(-1)^n}{2n+1} + \dots$$

Chapter 10 80 / 82

Evaluating Indeterminate Forms

- We can sometimes evaluate indeterminate forms by expressing the functions involved as Taylor series.
- $\lim_{x\to 0} \frac{\sin x \tan x}{x^3}$

Chapter 10 81 / 82

Evaluating Indeterminate Forms (cont'd)

$$\bullet \lim_{x\to 0} \frac{\cos(x^2) - e^{x^4}}{\sin(x^4)}$$

Chapter 10 82 / 82