システム制御II

目次

- 中間編
- 微分方程式から状態方程式の求め方
- e^{At}の求め方(対角化で)
- e^{At} の求め方(ラプラス変換で)
- 状態方程式**x**の一般解(積分で)
- 状態方程式**x**の一般解(ラプラス変換で)
- 出力方程式の求め方
- フルランク
- 線形独立
- 可制御の判定(やり方その1)
- 可制御の判定(やり方その2)
- 可観測の判定(やり方その1)
- 可観測の判定(やり方その2)
- 期末編
- 座標変換
- 可制御正準形

中間編

微分方程式から状態方程式の求め方

一番高い階数の微分以外に状態量を割り当てるだけ。形は

$$\mathbf{X'(t)} = A\mathbf{X(t)} + Bu(t)$$
$$Y(t) = CX(t) + Du(t)$$

なお、Du(t)は直立項と呼ばれる。出力に入力が定数倍されてそのまま出る部分。

例えばRLC直列回路の場合

$$e(t) = Ri(t) + Li(t)' + rac{1}{c} \int_0^t i(t)dt$$

となるが、変形して

$$rac{1}{L}e(t)=rac{R}{L}i(t)+i(t)'+rac{1}{cL}\int_0^ti(t)dt$$

入力をe(t)、出力を $y(t)=\int_0^t i(t)dt$ だとおもうと

$$\frac{1}{L}e(t) = y'' + \frac{R}{L}y' + \frac{1}{cL}y$$

となる。ここで一番高い階数の微分以外に状態量を割り当ててる。つまり

$$x_1=y$$
 , $x_2=y'$, $X=egin{pmatrix} x_1\ x_2 \end{pmatrix}$

とおくと、

$$X' = egin{pmatrix} 1 & 0 \ -rac{1}{cL} & -rac{R}{L} \end{pmatrix} X + egin{pmatrix} 0 \ rac{1}{L} \end{pmatrix} u(t)$$

となる。

e^{At} の求め方(対角化で)

公式は

$$e^{At} = Te^{Bt}T^{-1}$$

なお、

$$T^{-1}AT = B$$

である。証明は

$$\begin{split} e^{At} &= I + At + \frac{A^2}{2!}t^2 + \frac{A^3}{3!}t^3 + \cdots \\ &= TT^{-1} + TBT^{-1}t + \frac{TB^2T^{-1}}{2!}t^2 + \frac{TB^3T^{-1}}{3!}t^3 + \cdots \\ &= T(I + Bt + \frac{B^2}{2!}t^2 + \frac{B^3}{3!}t^3 + \cdots)T^{-1} \\ &= Te^{Bt}T^{-1} \end{split}$$

ただしBは例えば $B=egin{pmatrix} 1 & 0 \ 0 & -2 \end{pmatrix}$ のような対角行列なので e^{Bt} は簡単に

$$e^{Bt} = egin{pmatrix} e^t & 0 \ 0 & e^{-2t} \end{pmatrix}$$

となる。

e^{At} の求め方(ラプラス変換で)

公式は

$$e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]$$

証明はu(t)=0とすると

$$X' = AX$$

となるのでラプラス変換して

$$sX(s)-X_0=AX(s) o (SI-A)X(s)=X_0$$

逆行列を左からかけて

$$X(s) = (SI - A)^{-1}X_0$$

よってu(t) = 0ならば

$$X(t) = \mathcal{L}^{-1}[(sI-A)^{-1}]X_0$$

ここでXの一般解は

$$X(t)=e^{At}X_0+\int_0^t e^{A(t- au)}bu(au)d au \mathop{\longrightarrow}\limits_{u(au)=0} X(t)=e^{At}X_0$$

なので比較して

$$e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]$$

となる。

状態方程式xの一般解(積分で)

公式は

$$X=e^{At}X_0+\int_0^t e^{A(t- au)}Bu(au)d au$$

なので e^{At} さえわかれば頑張るだけ。なお、 $\int_0^t e^{A(t- au)} Bu(au) d au$ を忘れたときは、

$$\int_0^t x(t- au)y(au)d au=\mathcal{L}^{-1}[XY]$$

の関係式を思い出して

$$\mathcal{L}^{-1}[(sI-A)^{-1}BU(s)] \underset{X=(sI-A)^{-1},\ Y=BU(s)}{\longrightarrow} \int_0^t e^{A(t- au)}Bu(au)d au$$

とすれば導ける。ラプラス変換の式は次の項へよ

状態方程式xの一般解(ラプラス変換で)

公式は

$$X(t) = \mathcal{L}^{-1}[(sI-A)^{-1}]X_0 + \mathcal{L}^{-1}[(sI-A)^{-1}BU(s)]$$

忘れたときは

$$\mathbf{X'}(\mathbf{t}) = A\mathbf{X}(\mathbf{t}) + Bu(t)$$

をラプラス変換して

$$sX(s)-X_0=AX(s)+BU(s){\longrightarrow}(sI-A)X(s)=X_0+BU(s)$$

より $(sI-A)^{-1}$ を左からかけて

$$X(s) = (sI - A)^{-1}X_0 + (sI - A)^{-1}BU(s)$$

逆ラプラス変換して

$$X(t) = \mathcal{L}^{-1}[(sI-A)^{-1}]X_0 + \mathcal{L}^{-1}[(sI-A)^{-1}BU(s)]$$

出力方程式の求め方

$$Y(t) = CX(t) + Du(t)$$

に代入するだけ。

フルランク

Aをn imes m行列する。Aのフルランクとは

$$rank(A) = min(n, m)$$

のことを言う。なお、ランクは転置しても変わらない

t l n = m t s

$$rank(A) = n \Leftrightarrow det(A) = 0$$

正方行列がフルランクか調べるなら大抵 $\det(A)=0$ を使った方が早い。問題はせいぜい 4×4 とかの行列だから。

線形独立

Aをn imes m行列する。ここで

$$rank(A) = k$$

だったとする。ここで列ベクトルが線形独立なのかを調べるには(列は縦)

$$k=m \Leftrightarrow 列ベクトルが線形独立$$

を調べればいい。ランクは意味を持つ式の本数なので列数=ランクとなればすべての列ベクトルは意味を持つことになる。

逆に**行ベクトル**が線形独立なのかを調べるには(行は横)

$$k=n\Leftrightarrow$$
 行ベクトルが線形独立

を調べればいい。ランクは意味を持つ式の本数なので行数=ランクとなればすべての行べクトルは意味を持つことになる。

可制御の判定(やり方その1)

定理

行列 $e^{At}B$ の行ベクトルが線形独立ならば可制御

よって $e^{At}B$ のランクを求めて**行数と一致するか調べる**。問題で既 e^{AT} を求めたならこっちの方が楽かな?

可制御はかせい"ぎょう"で調べる。と覚える。

可制御の判定(やり方その2)

状態変数の数(=Aの列数)をnとする。

$$M_C = egin{pmatrix} b & Ab & \dots & A^{n-1}b \end{pmatrix}$$

とすると

$$rankM_c = n$$

が成立すれば可制御。 e^{AT} を求てないならこっちの方が楽かな?

可観測の判定(やり方その1)

定理

行列 Ce^{At} の列ベクトルが線形独立ならば可制御

よって Ce^{At} のランクを求めて**列数と一致するか調べる**。問題で既 e^{AT} を求めたならこっちの方が楽かな?

可観測の判定(やり方その2)

状態変数の数(=Aの列数)をnとする。

$$M_O = egin{pmatrix} C \ CA \ \dots \ CA^{n-1} \end{pmatrix}$$

とすると

$$rankM_c = n$$

が成立すれば可制御。 e^{AT} を求てないならこっちの方が楽かな?

期末編

座標変換

$$\mathbf{X'(t)} = A\mathbf{X(t)} + Bu(t)$$
$$Y(t) = CX(t) + Du(t)$$

に対し、 $\mathbf{X}(\mathbf{t}) = \mathbf{TZ}(\mathbf{t})$ の線形変換を定義すると

$$TZ'(t) = ATZ(t) + Bu(t)$$
$$Y(t) = CTZ(t) + Du(t)$$

の左から \mathbf{T}^{-1} をかけて

$$\mathbf{Z}'(\mathbf{t}) = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{Z}(\mathbf{t}) + \mathbf{T}^{-1}Bu(t)$$
$$Y(t) = C\mathbf{T}\mathbf{Z}(\mathbf{t}) + Du(t)$$

となる。 $ar{A}=\mathbf{T^{-1}AT}$ 、 $ar{B}=\mathbf{T^{-1}}B$ 、 $ar{C}=C\mathbf{T}$ と置けば

$$\mathbf{Z'}(\mathbf{t}) = \bar{A}\mathbf{Z}(\mathbf{t}) + \bar{B}u(t)$$

 $Y(t) = \bar{C}Z(t) + Du(t)$

となる。なお、 $\bar{A}=\mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ は相似な行列の定義そのもので固有値(=固有多項式)や行列式等の行列関係の諸量は等しくなる。固有ベクトルは \mathbf{T}^{-1} を掛けた値となる。

可制御正準形

座標変換のうち特に

$$\mathbf{Z'(t)} = egin{pmatrix} 0 & 1 & 0 & & 0 \ 0 & 0 & 1 & & 0 \ 0 & 0 & 0 & & 0 \ dots & & \ddots & 1 \ -lpha_0 & -lpha_1 & -lpha_2 & \cdots & -lpha_{n-1} \end{pmatrix} \mathbf{Z(t)} + egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 1 \end{pmatrix} u(t)$$

$$Y(t) = ig(eta_1 \quad eta_2 \quad \cdots \quad eta_nig)Z(t) + Du(t)$$

と表せる時、この表現形式を可制御正準形という。固有方程式は \mathbf{A} 、 $\mathbf{\bar{A}}$ について、座標変換後も相似な行列の性質より不変な事に注意すると

$$|sI-A| = |sI-ar{A}| = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0 = 0$$

となり、伝達関数は

$$G(s) = rac{eta_n s^{n-1} + eta_{n-1} s^{n-2} + \dots + eta_2 s + eta_1}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

となる。分子の方が次数が小さいので注意。テストで出るようなシステム制御の問題は基本プロパー(分子の次数 < 分母の次数)になる(気がする)。