UNIVERSAL

CONJUNTOS

Elementos de Álgebra

Los conceptos de "conjunto" y "elemento" se utilizan, en matemática, como términos básicos y su significado coincide con los que conocemos en nuestro idioma

Notación:

Conjuntos: letras mayúsculas: A, B, C, ..., X, Y, Z

Elementos: letras minúsculas: a, b, c, ..., x, y, z

Simbolos $\in y \notin$

Dado un conjunto A

- $a \in A$: "a" es un objeto de A, es decir, "a" cumple con la condición que define al conjunto A
- $a \in A$ se lee: "a" pertenence a A, "a" es un elemento de A, "a" está en A o "a" en A
- $a \notin A$: "a" no es un objeto de A, es decir, "a" no cumple con la condición que define al conjunto A
- $a \notin A$ se lee: "a" no pertenence a A, "a" no es un elemento de A o "a" no está en A
- $a \notin A$ equivale $a \sim (a \in A)$, esto es,

$$a \notin A \iff \sim (a \in A)$$

CONJUNTOS NUMERICOS

Algunos conjuntos numéricos importantes poseen su propio símbolo:

N : es el conjunto de todos los números naturales

 \mathbb{N}_0 : es el conjunto de todos los números naturales más el número cero

Z : es el conjunto de todos los números enteros

 \mathbb{Z}^+ : es el conjunto de todos los números enteros positivos, este conjunto coincide con el conjunto de los números naturales.

 \mathbb{Z}^- : es el conjunto de todos los números enteros negativos

Q : es el conjunto de todos los números racionales

I : es el conjunto de todos los números irracionales

 \mathbb{R} : es el conjunto de todos los números reales

 \mathbb{R}^+ : es el conjunto de todos los números reales positivos

 \mathbb{R}^- : es el conjunto de todos los números reales negativos

 \mathbb{R}^* : es el conjunto de todos los números reales no nulos

C : es el conjunto de todos los números complejos

Conjuntos por Extensión y Comprensión

Un conjunto está bien definido, o bien determinado, cuando podemos precisar cuáles son sus elementos. Una forma de hacerlo es por <u>EXTENSIÓN</u> nombrando uno a uno todos los objetos que lo componen y encerrando esta lista entre llaves. Por ejemplo, si el conjunto A está formado por los elementos 1, 2, 3 y 4 podemos describir este conjunto escribiendo:

$$A = \{1, 2, 3, 4\}.$$

Este método de describir un conjunto puede ser poco práctico o imposible en algunos casos, y deberemos usar otras formas de notación. Por ejemplo, {1, 2, 3, ..., 99, 100} describe el conjunto de todos los números enteros positivos menores o iguales que 100.

Otras veces, para definir un conjunto lo hacemos por <u>COMPRENSIÓN</u> indicando una propiedad común a todos sus elementos y tal que sólo sus elementos la tengan. Así por ejemplo, los elementos del conjunto $A = \{1, 2, 3, 4\}$ pueden ser caracterizados como aquellos elementos x que cumplen la propiedad: $x \in \mathbb{N}$ y x < 5. Escribimos entonces:

$$A = \{ x \in \mathbb{N} \colon x < 5 \}$$

Conjuntos Especiales

Conjunto Universal: está formado por todos los elementos que intervienen en la disciplina de estudio

Al conjunto universal lo fijaremos con anterioridad al desarrollo del tema que estemos tratando. Lo denotaremos con $\mathcal U$

Conjunto vacío: es el conjunto que carece de elementos

Puede ser definido por cualquier propiedad que sea una contradicción. Lo notaremos por " \emptyset " o $\{\ \}$

Conjunto Unitario: es el que tiene un único elemento.

Inclusión

Inclusión

<u>Definición</u>: Dados dos conjuntos A y B, se dice que A está incluido en B, o que A es un parte de B, o que A es un subconjunto de B, o que B contiene A, si todo elemento de A pertenece a B. Se escribe $A \subseteq B$ o $B \supseteq A$.

$$A \subseteq B \iff \text{para todo } x : x \in A \Rightarrow x \in B.$$

Negación de la inclusión

Negación de la relación de inclusión $A \nsubseteq B$

$$A \nsubseteq B \stackrel{\text{(1)}}{\Longleftrightarrow} \sim A \subseteq B \stackrel{\text{(2)}}{\Longleftrightarrow} \sim (\forall \ a \in \mathcal{U} : \ a \in A \implies a \in B) \iff$$

$$\stackrel{\text{(3)}}{\Longleftrightarrow} \exists \ a \in \mathcal{U} / \sim (a \in A \implies a \in B) \stackrel{\text{(4)}}{\Longleftrightarrow} \exists \ a \in \mathcal{U} / \ a \in A \land \ a \notin B)$$

$$A \nsubseteq B \iff (\exists a \in \mathcal{U} / \ a \in A \land \ a \notin B)$$

Referencias:

- (1) cambio de notacion
- (2) definición de inclusión
- (3) negación del cuantificador universal
- (4) negación de la implicación

Cuando el conjunto universal está sobrentendido no se expresa en la definición de inclusión o en su negación, es decir, escribiremos

$$A \subseteq B \iff (\forall a: a \in A \implies a \in B), \quad A \nsubseteq B \iff (\exists a/a \in A \land a \notin B)$$

Igualdad de Conjuntos

<u>Definición</u>: Se dice que el conjunto A es igual al conjunto B, si $A \subseteq B$ y $B \subseteq A$. Lo indicamos A = B.

Luego A = B cuando todo elemento de A es un elemento de B y todo elemento de B es elemento de A, es decir A y B tienen los mismos elementos.

Veamos que la igualdad de conjuntos se traduce en una equivalencia lógica

$$A = B \stackrel{\text{(1)}}{\Longleftrightarrow} A \subseteq B \land B \subseteq A \iff$$

$$\stackrel{\text{(2)}}{\Longleftrightarrow} (\forall a \in \mathcal{U} : a \in A \implies a \in B) \land (\forall a \in \mathcal{U} : a \in B \implies a \in A) \iff$$

$$\iff \forall a \in \mathcal{U} : (a \in A \implies a \in B) \land (a \in B \implies a \in A) \iff$$

$$\stackrel{\text{(3)}}{\Longleftrightarrow} \forall a \in \mathcal{U} : a \in A \iff a \in B$$

$$A = B \iff (\forall a \in \mathcal{U} : a \in A \iff a \in B)$$

Referencias:

- (1) definición de igualdad de conjuntos (2)
- (2) definición de inclusión

(3) definición de equivalencia

Igualdad de Conjuntos-Negación

Cuando el conjunto universal esté sobrentendido no lo escribirimos al usar la definición de igualdad de conjuntos, es decir,

$$A = B \iff (\forall a : a \in A \iff a \in B)$$

Se deja como ejercicio demostrar que

$$A \neq B \iff \exists x \in \mathcal{U} : (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$

Observaciones:

 Si A ⊆ B pero A ≠ B diremos que A está contenido o incluido estrictamente en B y notaremos

$$A \subset B$$
 o $A \subsetneq B$

Lógicamente la inclusión estricta se puede expresar

$$A \subset B \iff (\forall x : x \in A \implies x \in B) \land (\exists x/x \in B \land x \notin A)$$

La demostración de esta equivalencia se deja como ejercicio

Propiedades de la Relación inclusión

La relación de inclusión verifica las siguientes propiedades

Reflexiva: cualquiera sea el conjunto A se verifica,

$$A \subseteq A$$

Antisimétrica: cualesquiera sean los conjuntos A y B se tiene,

$$(A \subseteq B \land B \subseteq A) \implies A = B$$

Transitiva: cualesquiera sean los conjuntos A, B y C se verifica,

$$(A \subseteq B \land B \subseteq C) \implies A \subseteq C$$

Propiedades de Igualdad

La relación de igualdad verifica las siguientes propiedades

Reflexiva: cualquiera sea el conjunto A se verifica,

$$A = A$$
.

Simétrica: cualesquiera sean los conjuntos A y B se tiene,

$$A = B \implies B = A$$

Transitiva: cualesquiera sean los conjuntos A, B y C se verifica,

$$(A = B \land B = C) \implies A = C$$

Ejemplo

Ejemplo

Sean $A = \{x \in \mathbb{Z} : x \text{ es impar}\}\ y \ B = \{x \in \mathbb{Z} : x + 5 \text{ es par }\}.$ Probar que A = B.

Demostremos primero que $A \subseteq B$

$$x \in A \implies x \text{ es impar} \implies \exists t \in \mathbb{Z}/x = 2t+1 \implies \exists t \in \mathbb{Z}/x+5 = 2t+1+5 \implies \exists t \in \mathbb{Z}/x+5 = 2t+6 = 2(t+3) \implies \exists I \in \mathbb{Z}, \ I = t+3/x+5 = 2I \implies x+5 \text{ es par}, \implies x \in B$$

Luego $A \subseteq B$

Probemos ahora que $B \subseteq A$

$$x \in B \implies x + 5 \text{ es par} \implies \exists s \in \mathbb{Z}/x + 5 = 2s \implies \exists s \in \mathbb{Z}/x = 2s - 5 \implies$$

$$\implies \exists s \in \mathbb{Z}/x = 2s - 4 - 1 = 2(s - 2) - 1 \implies$$

$$\implies \exists r \in \mathbb{Z}, \ r = s - 2/x = 2r - 1 \implies x \text{ es impar} \implies x \in A$$

Entonces $B \subseteq A$

Como $A\subseteq B \land B\subseteq A$, podemos deducir usando la definición de igualdad de conjuntos que

$$A = B$$

OPERACIONES ENTRE CONJUNTOS

Complemento de un conjunto

Sea $\mathcal U$ un conjunto universal y sea A un subconjunto de $\mathcal U$

Definición

El **complemento** de A consiste de todos los elementos de U que no pertenecen a A. Notaremos

$$A' = \{ x \in \mathcal{U} : x \notin A \}$$

Lógicamente: $x \in A' \iff x \notin A \iff \sim (x \in A)$ y

$$x \notin A' \iff \sim (x \in A') \iff \sim \sim (x \in A) \iff x \in A$$

Notaciones: $A' = A^{C} = CA = -A$

Diagrama de Venn de A'

Ejemplo

- a) Dados los conjuntos $U = \{x \in \mathbb{Z} / |x| \le 10\}$, $A = \{x \in \mathbb{N} / x < 11\}$, $B = \{x \in \mathbb{Z} / -3 \le x < 2\}$, $C = \{x \in \mathbb{Z} / x = 2k, k \in \mathbb{Z}, -8 \le x \le 10\}$ y $D = \{-5, -1, 0, 1, 3\}$, encontrar los siguientes conjuntos:
 - i. D' A, realizar el diagrama de Venn.

 $A' - (C \cup B)$, realizar el diagrama de Venn it Tools Help a) Dados los conjuntos $U = \{x \in \mathbb{Z} \mid |x| \le 10\}, A = \{x \in \mathbb{N}/x < 11\},$ $B = \{x \in \mathbb{Z}/-3 \le x < 2\}, C = \{x \in \mathbb{Z}/x = 2k, k \in \mathbb{Z}, -8 \le x \le 10\}$ y $D = \{-5, -1, 0, 1, 3\}$, encontrar los siguientes conjuntos: D' - A, realizar el diagrama de Venn ii. $A' - (C \cup B)$, realizar el diagrama de Venn. -10,-9,-8,-7,-6,-5,-4,-3,5,-10 15,6,7,8,9,167

Unión de Conjuntos

<u>Definición</u>: Dados dos conjuntos A y B, se llama *unión* de A y B al conjunto formado por todos los elementos que pertenecen a A ó a B. En notación:

$$A \cup B = \{ x \in U : x \in A \text{ \'o } x \in B \}$$

EJEMPLO

$$U = \{x \in Z: -9 < x \le 7\}$$

$$A = \{x \in Z: x = 4n, n \in Z, -1 \le n < 2\}$$

$$B = \{-6, -4, 0, 4, 6\}$$

$$A \cup B = \{-6, -4, 0, 4, 6\}$$

De la definición resulta que $A \subseteq A \cup B$ y $B \subseteq A \cup B$.

Propiedades de Unión

• Idempotencia: $A \cup A = A$

Para demostrar una igualdad hay que probar 2 inclusiones:

- i) $A \subseteq A \cup A$
- ii) $A \cup A \subseteq A$

Probar i): Queda Probada por consecuencia de la definición, que todo conjunto esta incluido en la unión de el mismo con otro conjunto

Probar ii) $\mathsf{Dpq}(x \in A \cup A \implies x \in A)$

$$x \in A \cup A \Longrightarrow (1) \ x \in A \lor x \in A \Longrightarrow (2) \ x \in A$$

Por lo tanto: $A \cup A \subseteq A$ (1): Definición de Unión

(2): Idempotencia de la DISYUNCIÓN

Propiedades de Unión

• Conmutativa: $A \cup B = B \cup A$

Para demostrar una igualdad hay que probar 2 inclusiones:

- i) $A \cup B \subseteq B \cup A$
- ii) $B \cup A \subseteq A \cup B$

Probar i) $(x \in A \cup B \implies x \in B \cup A)$ Definición de la inclusión

$$x \in A \cup B \Longrightarrow (1)$$
 $x \in A \lor x \in B \Longrightarrow (2)$ $x \in B \lor x \in A \Longrightarrow (3)$ $x \in B \cup A$
Por lo tanto $A \cup B \subseteq B \cup A$

- (1) Definición de Unión
- (2) Comnutativa de la Disyunción
- (3) Definición de Unión

Probar ii) ($x \in B \cup A \implies x \in A \cup B$) Definición de la inclusión

QUE COMO EJERCICIO

Propiedades de Unión

• Asociativa: $(A \cup B) \cup C = A \cup (B \cup C)$

Para demostrar una igualdad hay que probar 2 inclusiones:

- $i) \quad (A \cup B) \cup C \subseteq A \cup (B \cup C)$
- ii) $A \cup (B \cup C) \subseteq (A \cup B) \cup C$ (Queda como ejercicio para el lector)

Probar i) $(x \in (A \cup B) \cup C \implies x \in A \cup (B \cup C)$ Definición de la inclusión

i) $x \in (A \cup B) \cup C \Longrightarrow (1)$ $(x \in A \lor x \in B) \lor x \in C \Longrightarrow (2)$ $x \in A \lor (x \in B) \lor x \in C) \Longrightarrow (3)$ $x \in A \cup (B \cup C)$

Por lo tanto($A \cup B$) $\cup C \subseteq A \cup (B \cup C)$

- (1) Definición de Unión
- (2) Asociativa de la Disyunción
- (3) Definición de Unión

Intersección de Conjuntos

<u>Definición</u>: Dados dos conjuntos A y B, se llama *intersección de* A y B, y se indica $A \cap B$, al conjunto cuyos elementos son los elementos comunes a A y a B, es decir los elementos que pertenecen simultáneamente a los dos conjuntos.

$$A \cap B = \{ x \in U : x \in A \ y \ x \in B \}$$

De la definición se desprende inmediatamente que $A \cap B \subseteq A$ y $A \cap B \subseteq B$.

Ejemplo

$$U = \{x \in Z: -9 < x \le 7\}$$

$$B = \{-6, -4, 0, 4, 6\}$$

$$C = \{x \in Z: x \ge -2 \land x < 5\}$$

$$B\cap C=\{0,4\}$$

Propiedades de Intersección

• Idempotencia: $A \cap A = A$

Para demostrar una igualdad hay que probar 2 inclusiones:

- i) $A \subseteq A \cap A$
- ii) $A \cap A \subseteq A$

Probar ii) $\mathsf{Dpq} (x \in A \implies x \in A \cap A)$

$$x \in A \Longrightarrow (1) \ x \in A \land x \in A \Longrightarrow (2) \ x \in A \cap A$$

Por lo tanto: $A \subseteq A \cap A$ (por definición de inclusión)

- (1): Idempotencia de la *Conjunción*
- (2): Definición de Intersección

Probar ii) Queda Probada por consecuencia de la definición

Propiedades de Intersección

• Conmutativa: $A \cap B = B \cap A$

Para demostrar una igualdad hay que probar 2 inclusiones:

- i) $A \cap B \subseteq B \cap A$
- ii) $B \cap A \subseteq A \cap B$

Probar i) $(x \in A \cap B \implies x \in B \cap A)$ Definición de la inclusión

$$x \in A \cap B \Longrightarrow (1)$$
 $x \in A \land x \in B \Longrightarrow (2)$ $x \in B \land x \in A \Longrightarrow (3)$ $x \in B \cap A$
Por lo tanto $A \cap B \subseteq B \cap A$

- (1) Definición de Intersección
- (2) Comnutativa de la conjunción
- (3) Definición de Intersección

Probar ii) ($x \in B \cap A \Longrightarrow x \in A \cap B$) Definición de la inclusión

QUE COMO EJERCICIO

Propiedades de Intersección

• Asociativa: $(A \cap B) \cap C = A \cap (B \cap C)$

Para demostrar una igualdad hay que probar 2 inclusiones:

- $i) \quad (A \cap B) \cap C \subseteq A \cap (B \cap C)$
- *ii)* $A \cap (B \cap C) \subseteq (A \cap B) \cap C$ (Queda como ejercicio para el lector)

Probar i) $(x \in (A \cap B) \cap C \implies x \in A \cap (B \cap C)$ Definición de la inclusión

i)
$$x \in (A \cap B) \cap C \Rightarrow (1)$$
 $(x \in A \land x \in B) \land x \in C \Rightarrow (2)$ $x \in A \land (x \in B) \land x \in C \Rightarrow (3)$ $x \in A \cap (B \cap C)$

Por lo tanto
$$(A \cap B) \cap C \subseteq A \cap (B \cap C)$$

- (1) Definición de Intersección
- (2) Asociativa de la Conjunción
- (3) Definición de Intersección

Teorema 1: $A \subseteq B \iff A \cup B = B$

• Debemos probar dos inclusiones:

i)
$$A \subseteq B \Longrightarrow A \cup B = B$$

$$a)A \cup B \subseteq B$$

$$b)B \subseteq A \cup B$$

$$i)$$
 $A \subseteq B \longleftarrow A \cup B = B$

Teorema 1: $A \subseteq B \iff A \cup B = B$

$$i) \quad A \subseteq B \Longrightarrow A \cup B = B$$
$$b)B \subseteq A \cup B$$

- i) a) $x \in A \cup B \Rightarrow (1) \ x \in A \ \lor \ x \in B \Rightarrow (2) \ x \in B \ \lor \ x \in B \Rightarrow (3) \ x \in B$ Por lo tanto $A \cup B \subseteq B$
- (1) Definición de Unión
- (2) Por hipótesis
- (3) Idempotencia de la Disyunción

i) b) $x \in B \implies x \in A \cup B$ Queda demostrada por definición de Unión

Por a) y b) queda demostrada la propiedad (Parte (i))!!!

Teorema 1: $A \subseteq B \iff A \cup B = B$

ii)
$$A \subseteq B \longleftarrow A \cup B = B$$

$$x \in A \Longrightarrow (1) \ x \in A \ \lor \ x \in B \Longrightarrow (2) \ x \in A \cup B \Longrightarrow (3) \ x \in B$$

Por lo tanto $A \cup B \subseteq B$

- (1) Adición
- (2) Definición de unión
- (3) Por hipótesis $(A \cup B = B)$

Queda demostrada la propiedad (Parte (ii))!!!

Por i) y ii) Se demuestra el TEOREMA

Teorema 2: $A \subseteq B \iff A \cap B = A$

• Debemos probar dos inclusiones:

i)
$$A \subseteq B \Longrightarrow A \cap B = A$$
b) $A \subseteq A \cap B$

$$i)$$
 $A \subseteq B \iff A \cap B = A$

Teorema 2: $A \subseteq B \iff A \cap B = A$

i)
$$A \subseteq B \Longrightarrow A \cap B = A$$
 b) $A \subseteq A \cap B$

- a) $x \in A \cap B \implies x \in A$ Queda demostrada por definición de intersección
- b) $x \in A \Longrightarrow x \in A \cap B$

$$x \in A \Longrightarrow (1) \ x \in A \land x \in A \Longrightarrow (2) \ x \in A \land x \in B \Longrightarrow (3) \ x \in A \cap B$$

Por lo tanto $A \subseteq A \cap B$

- (1) Idempotencia de la conjunción
- (2) Hipótesis $A \subseteq B$
- (3) Definición de intersección

Por a) y b) queda demostrada la propiedad (Parte (i))!!!

Teorema 2: $A \subseteq B \iff A \cap B = A$

ii)
$$A \subseteq B \longleftarrow A \cap B = A$$

$$x \in A \Longrightarrow (1) \ x \in A \land x \in B \Longrightarrow (2) \ x \in A \cap B \Longrightarrow (3) \ x \in B$$

Por lo tanto $A \cap B \subseteq A$

- (1) Por hipótesis $(A \cap B = A)$
- (2) Definición de Intersección
- (3) Por consecuencia de la Intersección $A \cap B \subseteq B$

Queda demostrada la propiedad (Parte (ii))!!!

Por i) y ii) Se demuestra el TEOREMA

Leyes de Absorción

$$A \cup (A \cap B) = A$$

Justificación: Como $(A \cap B) \subseteq A$, por el Teorema 1, $A \cup (A \cap B) = A$

$$A \cap (A \cup B) = A$$

Justificación: Como A \subseteq A \cup B, por el Teorema 2, A \cap (A \cup B) = A

Leyes Distributivas

1.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

2.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Se pueden ver la demostracciones en el Apunte de Cátedra Sea $\mathcal U$ un conjunto universal y $A,\ B$ y C subconjuntos de $\mathcal U$

- \bigcirc $A \subseteq A \cup B$, $B \subseteq A \cup B$, $A \cap B \subseteq A$, $A \cap B \subseteq B$
- **1** Idempotencia: $A \cup A = A$, $A \cap A = A$
- **6** Conmutativa: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- \bullet $\bullet A \cup \emptyset = A$, $\bullet A \cap \emptyset = \emptyset$, $\bullet A \cup \mathcal{U} = \mathcal{U}$, $\bullet A \cap \mathcal{U} = A$
- O Distributivas: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 1 Leyes de absorción: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- \bullet $A \subseteq B \iff A \cup B = B, \quad A \subseteq B \iff A \cap B = A$
- $\emptyset' = \mathcal{U}, \quad \mathcal{U}' = \emptyset, \quad (A')' = A$
- 1 De Morgan: $(A \cup B)' = A' \cap B'$, $(A \cap B)' = A' \cup B'$

Diferencia

Definición

Sean A y B subconjuntos de un conjunto universal, se llama diferencia entre A y B, al conjunto formado por los elementos que pertenecen a A y no pertenecen a B. Notaremos A–B.

$$A-B = \{x \in \mathcal{U} : x \in A \land x \notin B\}$$

Lógicamente

$$x \in A - B \iff x \in A \land x \notin B$$

Diagrama de Venn de $A \cap B$

Observemos que:

$$x \notin A - B \iff^{(1)} \sim (x \in A - B) \iff^{(2)} \sim (x \in A \land x \notin B) \iff^{(1)} \iff \\ \iff \sim (x \in A \land \sim (x \in B)) \iff^{(3)} \sim (x \in A) \lor \sim (\sim (x \in B)) \iff^{(4)} \\ \iff \sim (x \in A) \lor x \in B \iff x \notin A \lor x \in B$$

Luego

$$x \notin A - B \iff x \notin A \lor x \in B$$

Referencias:

(1) Cambio de notación

- (3) De Morgan (negación de la conjunción)
- (2) Definición de diferencia
- (4) Doble negación

Propiedades

Proposición

Sea \mathcal{U} un conjunto universal y A y B sunconjuntos de \mathcal{U} . Entonces

$$\bigcirc$$
 $A - B \subseteq A$, $B - A \subseteq B$

Búsqueda bibliográfica en internet

- ¿Cómo buscar?
 - Identificar palabras clave de la pregunta de investigación
 - Utilizar operadores (términos booleanos) y filtros

AND (+)	A B	Artículos que incluyen los términos Pobreza y Desigualdad
OR	A B	Artículos que incluyen pobreza y/o desigualdad
XOR		Artículos que incluyen pobreza o desigualdad (pero no ambos términos)
NOT (-)	A B	Artículos que incluyen pobreza y no incluyen el término desigualdad

Ejemplo

- a) Dados los conjuntos $U = \{x \in \mathbb{Z} / |x| \le 10\}$, $A = \{x \in \mathbb{N} / x < 11\}$, $B = \{x \in \mathbb{Z} / -3 \le x < 2\}$, $C = \{x \in \mathbb{Z} / x = 2k, k \in \mathbb{Z}, -8 \le x \le 10\}$ y $D = \{-5, -1, 0, 1, 3\}$, encontrar los siguientes conjuntos:
 - i. D' A, realizar el diagrama de Venn.
 - ii. $A' (C \cup B)$, realizar el diagrama de Venn.

Demostraciones

- Demostrar las siguientes propiedades de conjuntos
 - a) Si A ⊆ (B ∪ C') entonces A ∩ C ⊆ B.
 - $H) A \subseteq (B \cup C')$
 - T) $A \cap C \subseteq B$

(Aclaración: debemos demostrar que $A \cap C \subseteq B$, es decir, debemos probar que $\forall x \in A \cap C \Rightarrow x \in B$) Demostración:

$$x \in A \cap C \Rightarrow_{1} x \in A \land x \in C \Rightarrow_{2} x \in (B \cup C') \land x \in C \Rightarrow_{3} (x \in B \lor x \in C') \land x \in C \Rightarrow_{4} (x \in B \land x \in C) \lor (x \in C' \land x \in C) \Rightarrow_{5} (x \in B \land x \in C) \lor c \Rightarrow_{6} (x \in B \land x \in C) \Rightarrow_{7} x \in B.$$

Por lo tanto, $A \cap C \subseteq B$

Justificación de cada implicación:

- Definición de intersección de conjuntos
- Hipótesis A ⊆ (B ∪ C')
- Definición de unión de conjuntos
- 4) Distributiva
- 5) $(x \in C' \land x \in C) \Rightarrow c (contradicción)$
- p ∨ c ⇒ c
- Simplificación

Producto Cartesiano

Definición

Sean A y B dos conjuntos no vacíos, el **producto cartesiano** entre los conjuntos A y B es el conjunto de pares ordenados donde la primera componente del par es un elemento de A y la segunda componente del par es un elementos de B. Notaremos $A \times B$

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Lógicamente:

$$(a,b) \in A \times B \iff a \in A \land b \in B$$

Observaciones:

- Si A es el conjunto vacío o B es el conjunto vacío entonces el producto cartesiano no está definido
- Es importante el orden en que se efectúa el producto cartesiano de los conjuntos porque en algunos casos A × B ≠ B × A
- Si A = B notaremos A^2 para indicar $A \times A$.

Observemos que

$$(a,b) \notin A \times B \iff a \notin A \vee b \notin B$$
,

en efecto

$$(a,b) \notin A \times B \stackrel{(1)}{\iff} \sim ((a,b) \in A \times B) \stackrel{(2)}{\iff} \sim (a \in A \land b \in B) \stackrel{(3)}{\iff}$$

 $\iff \sim (a \in A) \lor \sim (b \in B) \stackrel{(1)}{\iff} a \notin A \lor b \notin B$

Referencias:

- (1) Cambio de notación (2) Definición de producto cartesiano
- (3) De Morgan (negación de la conjunción)

Conjuntos de Partes

Definición

Dado un conjunto A, el conjunto formado por los subconjuntos de A, es el conjunto de las partes de A. Notaremos $\mathcal{P}(A)$

$$\mathcal{P}(A) = \{X : X \subseteq A\}$$

Lógicamente

$$X \in \mathcal{P}(A) \iff X \subseteq A$$

Observaciones:

 $m{\circ}$ $\mathcal{P}(A)$ nunca es vacío, pues como $\emptyset\subseteq A$ y $A\subseteq A$ cualquiera sea A, entonces $\emptyset\in\mathcal{P}(A)$ y $A\in\mathcal{P}(A)$

 Sea A es un conjunto finito. La cantidad de elementos del conjunto A lo notaremos con #A o |A|, es decir, si A es un conjunto con "n" elementos entonces #A = n o |A| = n.

Si #A = n entonces el conjunto $\mathcal{P}(A)$ tiene 2^n elementos, es decir, $\#\mathcal{P}(A) = 2^n$

Ejemplo

Sea $A = \{a, b, c, d\}$.

- Hallar P(A)
- Indicar si las siguientes proposiciones son verdaderas o falsas y justificar la respuesta
 - i) $a \in \mathcal{P}(A)$

iii) $\{a,b\}\subseteq \mathcal{P}(A)$

ii) $\{a\} \in \mathcal{P}(A)$

- iv) $\{ \{b\}, \{a, b\} \} \subseteq \mathcal{P}(A)$

 $\{a,b\}\subseteq A, \{a,c\}\subseteq A, \{a,d\}\subseteq A, \{b,c\}\subseteq A, \{b,d\}\subseteq A, \{c,d\}\subseteq A,$

 $\{a,b,c\}\subseteq A, \{a,b,d\}\subseteq A, \{a,c,d\}\subseteq A, \{b,c,d\}\subseteq A \text{ y } A\subseteq A$

Entonces

$$\mathcal{P}(A) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, A \}$$

 $a \in \mathcal{P}(A)$ es falso ya que

$$a \not\subseteq A \stackrel{(1)}{\iff} a \notin \mathcal{P}(A)$$

- ii) $\{a\} \in \mathcal{P}(A)$ es verdadera pues $\{a\} \subseteq A$
- iii) $\{a,b\} \subseteq \mathcal{P}(A)$ esta proposición es falsa, ya que $\{a,b\} \subseteq \mathcal{P}(A) \iff a,b \in \mathcal{P}(A)$ y esta última proposición es falsa
- iv) $\{\{b\}, \{a,b\}\}\subseteq \mathcal{P}(A)$ es verdadera $\{\{b\}, \{a,b\}\}\subseteq \mathcal{P}(A) \stackrel{(2)}{\Longleftrightarrow} \{b\}, \{a,b\}\in \mathcal{P}(A)$ y esta última proposición es verdadera

Referencias:

(1) Definición de conjuntos de parte (2) definición de inclusión