3

4

5

6

7

8

1

1 2

1

2

1

2

1

2

1

2

1

CSECOES CEEC

Meyers-O'Brien 1-8

Claims

What is claimed is:

An optical assembly comprising:

a substrate;

a light emitting device mounted over a major surface of the substrate and having a face;

at least one channel formed in the substrate near the face of the light emitting device; and at least one photodetector optically coupled to the light emitted from the face, the channel including at least one surface adapted to receive a portion of the face light and reflect it away from the photodetector so that the photodetector receives primarily direct light from the face.

- 2. The assembly according to claim 1 wherein the substrate comprises silicon.
- 3. The assembly according to claim 1 wherein the light emitting device comprises a semiconductor laser.
- 4. The assembly according to claim 1 wherein the channel comprises at least one V-groove formed in the substrate.
- 5. The assembly according to claim 4 wherein the V-groove has a vertex which is essentially parallel to the face.
- 6. The assembly according to claim 5 wherein the V-groove has a sloped wall facing the face which makes an angle within the range 10 to 75 degrees with the face.
- 7. The assembly according to claim 4 wherein the substrate is silicon and the V-groove has surfaces in the <111>crystallographic plane.
- 8. The assembly according to claim 4 wherein the channels comprise at least two V-grooves.
 - 9. The assembly according to claim 1 wherein the face is the back face of the device.
 - 10. An optical assembly comprising:
 - a substrate comprising silicon;
- √a semiconductor laser mounted over a major surface of the substrate and having a back face;

 $\begin{cases} 1 \\ 1 \\ 2 \\ 3 \\ 4 \end{cases}$

Meyers-O'Brien 1-8

5	at least one V-groove formed in the substrate near the back face of the laser, the groove
6	including surfaces formed in the <111>crystallographic plane of the substrate; and
7	an army of photodetectors optically coupled to light from the back face of the laser,
8	at least one of the surfaces of the V-groove adapted to receive a portion of the light from
9	the backface and reflect it away from the photodetectors so that the photodetectors receive only
10	direct light from the back face.
1	11. An optical transmitter comprising an optical assembly, an optical filter optically
2	coupled to the assembly, at least one photodetector optically coupled to the filter, and control
3	circuitry electrically coupled to the photodetector, the assembly comprising:
4	a substrate;
5	a light emitting device mounted over a major surface of the substrate and having a face;
6	at least one channel for med in the substrate near the face of the light emitting device, the
7	photodetector being optically coupled to the light emitted from the face, and the channel
8	including at least one surface adapted to receive a portion of the face light and reflect it away
9	from the photodetector so that the photodetector receives primarily direct light from the face.
1	12. An optical network comprising a transmitter, an optical fiber optically coupled to the
2	transmitter, and a receiver optically coupled to the fiber, the transmitter comprising an optical
3	assembly comprising:
4	a substrate;
5	a light emitting device mounted over a major surface of the substrate and having a face;
6	at least one channel formed in the substrate near the face of the light emitting device; and
7	at least one photodetector optically coupled to the light emitted from the face, the channel
8	including at least one surface adapted to receive a portion of the face light and reflect it away
9	from the photodetector so that the photodetector receives primarily direct light from the back
10	face.

Meyers-O'Brien 1-8

	1
1	13. A method of forming an optical assembly comprising the steps of:
2	mounting a light emitting device having a face over a major surface of a substrate;
3	mounting a photodetector so as to receive light emitted from the face; and
4	forming a channel in the substrate in close proximity to the face, the channel including at
5	least one surface adapted to receive a portion of the light from the face and reflect it away from
6	the photodetector so that the photodetector receives primarily direct light from the face.
1	14. The method according to claim 13 wherein the channel is formed by etching the
2	major surface of the substrate.
1	15. The method according to claim 14 where the etching forms at least one V-groove in
2	the channel.
1	16. the method according to claim 15 wherein the substrate is silicon, and the V-groove
2	has walls in the <111> crystallographic plane of the substrate.