Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 09. August 2023

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	3	17	Modelle Regulärer Sprachen
2	4	20,5	MINIMIERUNG EINES DFA
3	6	11,5	SYNTAXBAUM UND CYK-ALGORITHMUS
4	7	11	Modelle Kontextfreier Sprachen

1,5 Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	Σ
PUNKTE	17	20,5	11,5	11	60
ERREICHT					
Korrektor					
EINSICHT					

Aufgabe 1: Modelle Regulärer Sprachen

(17 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$, $C \in S$ $C \in S$ die reguläre Sprache $A_1 \triangleq \{a^n(aba)^m a \mid m, n \in \mathbb{N} \}$, die reguläre Grammatik $G_2 \triangleq (\{S, A, B, C\}, \Sigma, P_2, S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \Delta_3, \{q_0, q_2\}, \{q_1\})$ mit:

a. (8 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (5.5 Punkte) $Gib \ L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

c. (3.5 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

,5

Aufgabe 2: Minimierung eines DFA

(20,5 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_5, q_6\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{a, b\}$ und δ :

a. (0.5 Punkte) Gib an: Welche Zustände sind nicht erreichbar?

97

b. (7.5 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs aus. Verwende dabei Kreuze (x) für nicht äquivalente und Kreise (o) für äquivalente Zustände (äquivalent im Sinne von FS 2.3.2 bzw. 2.3.8).

Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt.

Ersatztabelle (falls ein zweiter Ansatz nötig ist)

c. (3.5 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Hierbei ist nach den konkreten Mengen in Mengenschreibweise gefragt. Das heißt, Repräsentanten sind nicht ausreichend.

$$[Q_{3}] = \{Q_{3}, Q_{4}\} S_{4} \qquad [Q_{0}] = \{Q_{0}\} S_{4}$$

$$[Q_{3}] = \{Q_{3}, Q_{4}\} S_{5}$$

$$[Q_{5}] = \{Q_{5}, Q_{6}\} S_{3}$$

d. (6 Punkte) Gib den minimierten DFA M' an.

e. (3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

,5

Aufgabe 3: Syntaxbaum und CYK-Algorithmus

(11,5 Punkte)

Gegeben sei ein Alphabet $\Sigma \triangleq \{a, b, c\}$, sowie die Grammatiken $G_1 \triangleq (\{S_1, A, B, C, D\}, \Sigma, P_1, S_1)$ und $G_2 \triangleq (\{S_2, T, R, Q\}, \Sigma, P_2, S_2)$ mit:

a. (8 Punkte) Berechne: Gegeben sei das Wort $w \triangleq acaba$. Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G_1)$ oder $w \notin L(G_1)$? Fülle dafür die Tabelle vollständig aus.

I	1			1		
$CYK_w(i,j)$						
1: a	EA?	FA3	ø	{A}	₹A,Sn3	
2: c	<i>{B}</i>	30)	{D,B}	FB.C.D]		
3: a	{A} {B} {A} {B,D}	{A}	3513		4 a	5, & CYKW(1,5)
4: b	{B,D}	{C,D}			3 00	DY D CILMONAL
5: a	{A}					

b. (3.5 Punkte) Gegeben sei die folgende Ableitung.

$$\sigma \triangleq S_2 \Rightarrow_{G_2} aTR \Rightarrow_{G_2} aTb \Rightarrow_{G_2} aaTb \Rightarrow_{G_2} aaaQS_2b \Rightarrow_{G_2} aaacS_2b \Rightarrow_{G_2} aaacbcb$$

Gib den zugehörigen Syntaxbaum an.

Aufgabe 4: Modelle Kontextfreier Sprachen

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und die kontextfreie Sprache:

$$A \triangleq \left\{ ba^m w b^{2n} \mid n \in \mathbb{N} \land m \in \mathbb{N}^+ \land w \in \{ b, c \}^* \land |w| = m \right\}$$

a. (5.5 Punkte) Gib eine Typ-2 Grammatik G mit L(G) = A an.

G=
$$\{\{ST, U\}, \Sigma, P, S\}$$
 mit P:
 $S \rightarrow bTU$
 $T \rightarrow aTb[aTc]ab$
 $U \rightarrow bbU$

b. (5.5 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Matrikelnummer:	Name:
Auf dieser Seite löse i	ch einen Teil der Aufgabe — :
Teilaufgabe:	

Matrikelnummer:	Name:
Auf dieser Seite löse i	ch einen Teil der Aufgabe — :
Teilaufgabe:	