Profiling of transcribed cis-regulatory elements in single cells

Edmund Miller

2021-04-07 Wed

Background

CAGE-Seq

- GRO-seq 2008 Dec
- CAGE-Seq 2012 Feb
 - Riken
 - Piero Carninci
 - Leads the FANTOM project
 - Director of Riken Omics in 2008

CAGE-Seq

CAGE-Seq

Pros:

- Measures RNA expression levels and maps TSS in promoter regions
- Provides precise mapping of TSS with single-nucleotide resolution

Cons:

- Only works on total mature RNA
- Detection is biased toward TSS of long-lived transcripts

Introduction

Overview of the experimental designs and benchmark analysis

tCRE and aCRE

- tCREs are defined by merging closely located TSS clusters with +-500nt of gene TSS
- aCREs are defined by the ATAC peak ranges

SCAFE

Results

Performance of sc-RNA-seq methods

Performance of sc-RNA-seq methods

Definition and properties of tCRE

Definition and properties of tCRE

Results

- Comparison of tCRE and aCRE in PBMCs
- Disease-associated variants attCRE and aCRE in PBMCs

Discussion

Discussion

- Can detect eRNAs with sc-end5-seq, however high level of dropouts
 - Use of meta-cells might fix this
 - Alternative library prep with just nuclei or targeting eRNAs
- sc-end5-seqdata can theoretically detect CRE activity with no extra cost
 - Lack of dedicated tools for data analyses prevented the wider adoption