实验五: 抢答器

实验成员:

实验目的:

- 1. 综合运用 D 触发器、门控时钟、计数器等;
- 2. 用 LED 和数码管显示抢答成功的组号;
- 3. 了解小型综合数字系统实验的调试和故障排除方法。

实验原理:

1. 抢答模块:

抢答开始前,由主持人按下RD复位开关,74LS175的Q0-Q3的输出为0。 当抢答开始后,反应最快的参赛者按下开关,对应的LED点亮,同时,切断了74LS175的时钟信号,电路不再接受其他参赛者的抢答。(1KHz接实验箱或信号源上的连续脉冲源),如图所示:

2. 数码管显示模块:

实现在1个数码管上显示抢答成功的组号"1"、"2"、"3"、"4"

3. 分频模块:

1/2 >	V4	位十	一讲制	lit	数器	74I	S390
-------	-----------	----	-----	-----	----	-----	------

输	入	输 出	
清 0	时 钟		功 能
$\mathbf{R}_{\mathbf{D}}$	CLK ₀ CLK ₁	$Q_3Q_2Q_1Q_0$	
1	××	0 0 0 0	异步清 0
	↓ 1	0~1	二进制计数
	1 ↓	000~100 -	五进制计数
0	$\downarrow Q_0$	0000 ~ 1001 8421BCD码	十进制计数
	$Q_3 \downarrow$	Q ₀ Q ₃ Q ₂ Q ₁ 输出 5421BCD码	十进制计数
	1 1	不 变	保 持

4. 倒计时模块:

十进制计数器74LS192功能表

输 入									输	出	
R _D	LD'	CLK _U	CLKD	D ₃	D ₂	\mathbf{D}_1	$\mathbf{D_0}$	Q_3	Q_2	\mathbf{Q}_{1}	Q_0
1	×	×	×	×	×	×	×	0	0	0	0
0	0	×	×	d	c	b	a	d	c	b	a
0	1	1	1	×	×	×	×	加计数			
0	1	1	1	×	×	×	×		减计	数	

加计数											
输入胚	0	1	2	3	4	5	6	7	8	9	
	Q_3	0	0	0	0	0	0	0	0	1	1
输出	Q_2	0	0	0	0	1	1	1	1	0	0
和山口	Q_1	0	0	1	1	0	0	1	1	0	0
	Q_0	0	1	0	1	0	1	0	1	0	1
减计数											

电路各个模块功能正常后,将图上的复位开关连在一起,由主持人手动复位,如图所示:

实验内容:

1. 按图连接好抢答模块电路 race (时钟信号接实验箱上连续脉冲源,取频率约 1KHz)并实现在 1 个数码管上显示抢答成功的组号,测试其功能,画出电路图 race:

观察到扳动 D0 时数码管显示 "1"; 扳动 D1 时数码管显示 "2"; 扳动 D2 时数码管显示 "3"; 扳动 D3 时数码管显示 "4"。说明抢答模块没有问题。其中,数码管电路如下:

2. 搭建分频电路模块,用示波器测量其输出频率,观察到输出的理论 1Hz 的脉冲周期 T=1s,占空比为 10%,如图所示 divider:

3. 将倒计时电路连好并接入总电路,并在倒计时电路中增加 D 触发器。触发器

reset、倒计时模块 timer、总电路依次如图所示:

观察到开启电路后,倒计时锁定在"9"。扳动 D0D1D2D3 任意开关后,倒计时启动。当倒计时以"0"结束后,重新锁定在"9"

思考题:

1. 在本实验基础上设计一个60秒的答题倒计时电路,要求计时显示精确到秒

对于race、divider、reset 部分,和原模块完全一致;对于timer 模块,内容如下所示:

其中: Q00~Q03 为个位输出, Q10~Q13 为十位输出, 其余引脚与基础实验相同