Report - Convolutional Neural Networks

Assignment 4 · Dinesh Jaykumar Kodwani

Part 2: Adding CNN and fully connected layers to recognize handwritten digits on PyTorch.

Introduction

In this assignment, variations of a model is tested based on the 3 following conditions:

- 1. Without CNN layer(s)
- 2. With 1 CNN layer and Max Pooling
- 3. With 2 CNN layers and Max Pooling

Without CNN Layer

Using 2 fully connected layers in the deep neural network and a ReLu activation function, the model achieves an accuracy of 94% on the test set.

With 1 CNN layer

The model with 1 CNN layer was further experimented with 2 different activation functions and 4 different hyperparameter settings each. The various hyperparameter settings are consistent for all parts of experiments where there exists a CNN layer, see *Table 1*. for parameters settings used in these experiments.

Table 1. Various hyperparameter setting types.

Setting Type	Hyperparameters	
A	Batchsize = 32, Epochs = 1, Ir(step size) = 0.01	
В	Batchsize = 64, Epochs = 1, Ir(step size) = 0.01	
С	Batchsize = 64, Epochs = 4, Ir(step size) = 0.01	
D	Batchsize = 64, Epochs = 4, Ir(step size) = 0.05	

To test and find the best model 2 activation functions ReLu and Sigmoid were used with each hyperparameter setting. The resulting layers were then passed through Max Pooling in the subsampling process.

With 2 CNN layers

The model with 2 CNN layers was, similarly, experimented with 2 different activation functions and 4 different hyperparameter settings each. See *Table 1* for hyperparameter settings To test and find the best model 2 activation functions ReLu and Sigmoid were used with each hyperparameter setting. Each resulting layer after passing through a CNN layer was passed through a max pooling layer for sub sampling.

Results

Two models achieved the highest accuracy of 99%, one with 1 CNN layer and other with 2 CNN layers, both with hyperparameter setting type D (Batchsize = 64, Epochs = 4, Ir(step size) = 0.05). It is important to note that both these models had ReLu activation functions. On the other hand, the weakest model, with 1 CNN layer using sigmoid activation function, achieved an accuracy of 10%. It was observed that increasing the step size, the learning rate, always resulted in a higher accuracy. See *Table 2* to see how various models performed differently on different hyperparameter settings.

Table 2. Accuracy with different models on different hyperparameter settings

CNN Layers	Activation Function	Hyperparameter type	Accuracy
No CNN Layer	ReLu	A	94%
1 CNN Layer	ReLu	A	96%
		В	95%
		С	98%
		D	99%
	Sigmoid	A	10%
		В	10%
		С	68%
		D	95%
2 CNN Layers	ReLu	А	96%
		В	96%
		С	98%

	D	99%
Sigmoid	A	21%
	В	64%
	С	61%
	D	68%