

Justin Chen

Boston University Machine Intelligence Community

TensorFlow Demo

https://github.com/martin-gorner/tensorflow-mnist-tutorial

Machine Learning in a Nutshell

- Types of Learning:
 - Supervised (example, label)
 - Unsupervised (example)
 - Semi-supervised (start supervised and continue unsupervised)
 - Reinforcement (trial and error)
- Dataset: Training, Validation, Testing
 - Split (Pareto principle):
 - ~ 80% training (~70% training, ~10% validation)
 - ~ 20% testing
 - Percentages depend on how much data you have
- Tasks:
 - Classification
 - e.g. Given symptoms, classify illness
 - Regression
 - e.g. Given an image of the road, how many degrees to steer car

Yann LeCun's Deep Learning black forest cake Cherry Reinforcement Learning

Frosting Supervised Learning Inside Unsupervised Learning

Deep Learning in a Nutshell

- Artificial Neuron:
 - Combine neurons to get a network
 - Represent as a **computation graph** artificial neural network (ANN)
- Basic Components of an ANN:
 - Input layer, Hidden layer(s), Output layer
 - Represented as matrices
 - More than 2 hidden layers considered "deep", hence deep neural network (DNN)
- Good with high dimensional and nonlinear data not a silver bullet
- Optimize weights according to cost/objective function SGD and BP

Deobfuscating Deep Learning

Frameworks, Abstractions, Open Source

Deep Learning Frameworks

theano

DL4J DEEPLEARNING 4J

Caffe

Why TensorFlow?

Building and Training Computation Graphs

- 1. Hyperparameters
- 2. Define topology
- 3. Define cost
- 4. Optimizer
- 5. Initialize and train
- 6. Test accuracy

https://www.tensorflow.org/images/tensors_flowing.gif

Fold

Arbitrary Size Data, Dynamic Computation Graphs,
More Abstractions

TensorFlow Fold Combinator Library

Fold: Dynamic Computation Graph

- TensorFlow builds static computation graphs
 - Input must be padded or truncated to the same dimensions
- Fold builds a different computation graph for each input to accommodate different sizes
- Directed acyclic computation graphs
- Can handle tree-structured and graph-structured data

Fold: Dynamic Batching Algorithm

- Assumes different computation graph for every input
- Takes set of computation graphs as input
- Batch same operations that occur at same depth
- Schedules operations automatically

Fold Blocks

- Basic unit is a td. Block
 - I/O: tensors, tuples, lists, dictionaries, combinations
- Block arranged into a tree
 - **Primitive types** form leaves of tree: td.Scalar() and td.Vector((shape))
- Block composition for more complex computation
 - e.g. td. Vector (784) >> td. Function (td. FC (100))
- td.Fold() and td.Reduce() apply operation to given block
- After defining and composing blocks, pass to td.Compiler()
 - Outputs tensors for use in TensorFlow
 - Pass tensors to optimizer and use as normal TF computation graph

Space of Possible Architectures

Exploration v. Exploitation

Neural Network Architectures

Presentation tomorrow at MIT's Machine Intelligence Community

Topic: Revisiting Neuroevolution of Augmenting Topologies

Location: 56-154 (building 56, room 154)

Time: 5 PM EST

Incentive: Free food, machine learning, evolutionary algorithms

References

- [0] Abadi, Martín, et al. "TensorFlow: A system for large-scale machine learning." *Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia, USA*. 2016.
- [1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems*. 2012.
- [2] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).
- [3] Looks, Moshe, et al. "Deep learning with dynamic computation graphs." arXiv preprint arXiv:1702.02181 (2017).