Vorlesungsskript

LinA II* SoSe 24

LinA II* SoSe 24 Konrad Rösler

Inhaltsverzeichnis

1	. Eigenwerte und Eigenvektoren	3
	1.1. Definition und grundlegende Eigenschaften	
	1.2. Das charakteristische Polynom	
	. Diagonalisierbarkeit und Normalform	
	2.1. Diagonalisierbarkeit	
	2.2. Dualräume	21
	2.3. Zyklische <i>f</i> -invariant Unterräume	24

Definitionen

1.

1.1:	Eigenwert und Eigenvektor
1.2:	Eigenwert und Eigenvektor
1.7:	Eigenraum
1.10:	Geometrische Vielfachheit
1.12:	Charakteristisches Polynom
1.17:	ähnliche Matrizen
1.20:	Algebraische Vielfachheit

2 .

2.1:	Diagonalisierbar
2.8:	Jordan
2.9:	Linearform, Dualraum
2.12:	duale Abbildung
2.15:	nilpotent vom Grad
2.16:	equation

2.16: equation2.17: Bilinearform2.19: Grad von

Wiederholung:

K sei ein beliebiger Körper, V ein n-dimensionaler K-Vektorraum,

$$L(V,V) = \{f: V \to V \mid f \text{ lin. Abbildung}\}$$

 $f\in L(V,V)$ heißt Endomorphismus. Ist $f\in L(V,V)$, so läßt sich f bezüglich einer Basis $B=\{v_1,...,v_n\}$ von V eindeutig durch eine Matrix

$$A_f^{B,B} = \left(a_{ij}\right)_{1 < i,j < n} \in K^{n,n}$$

Es gilt

$$f(v_j) = \sum_{i=1}^n a_{ij} v_i \qquad 1 \le j \le n$$

Abbildung

$$F:L(V,V)\to K^{n,n}$$

ist ein Isomorphismus.

Basiswechsel? Basen B, C von V

(siehe Lem. 5.27, LinA I*)

Eine zentrale Frage: Sei $f\in L(V,V)$, existiert eine Basis $B=\{v_1,...,v_n\}$ von V, so dass $A_f^{B,B}$ eine möglichst einfache Form besitzt?

z.B. Diagonalmatrix:

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Wir werden:

• Endomorphismen charakterisieren, die sich durch eine Diagonalmatrix beschreiben lassen.

Wenn ja: Dann gilt $f(v_j) = \lambda_j v_j$

 $\Longrightarrow f$ ist eine Streckung von v_i um den Faktor λ_i .

• Die Jordan-Normalform herleiten.

LINA II* SOSE 24 Konrad Rösler

1. Eigenwerte und Eigenvektoren

Eigenwerte charakterisieren zentrale Eigenschaften linearer Abbildungen. Z.B.

- Lösbarkeit von linearen Gleichungssystemen
- Eigenschaften von physikalischen Systemen
 - \rightarrow gewöhnliche Differentialgleichungen
 - → Eigenschwingungen / Resonanzkatastrophe

Zerstörung einer Brücke über dem Fluß Maine / Milleanium-Bridge London

1.1. Definition und grundlegende Eigenschaften

Definition 1.1: Eigenwert und Eigenvektor (Endomorphismus)

Sei V ein K-Vektorraum. Ein Vektor $v \in V, v \neq 0_V$, heißt **Eigenvektor** von $f \in L(V,V)$, falls $\lambda \in K$ mit

$$f(v) = \lambda v$$

existiert. Der Skalar $\lambda \in K$ heißt der **Eigenwert** zum Eigenvektor $v \in V$.

Definition 1.2: Eigenwert und Eigenvektor (Matrix)

Sei K ein Körper und $n\in\mathbb{N}$. Ein Vektor $v\in K^n$, $v\neq 0_{K^n}$, heißt Eigenvektor von $A\in K^{n,n}$, falls $\lambda\in K$ mit

$$Av = \lambda v$$

existiert. Der Skalar $\lambda \in K$ heißt der Eigenwert zum Eigenvektor $v \in V$.

Bemerkungen:

- In Def 1.1 kann $\dim(V)=\infty$ sein. Dies ist für viele Definitionen/Aussagen in denen wir Endomorphismen betrachten, der Fall.
- Für $\dim(V) < \infty$ kann man jedes $f \in L(V, V)$ eindeutig mit einer Matrix A identifizieren. Dann: Def 1.2 ist Spezialfall von Def 1.1.

• Achtung: $0 \in K$ kann ein Eigenwert sein:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Der Nullvektor $0 \in V$ ist **nie** ein Eigenvektor.

Für $\dim(V) = 0$ besitzt f keinen Eigenvektor für $f \in L(V, V)$.

• Ist v Eigenvektor zum Eigenwert λ , so ist auch αv für jedes $\alpha \in K \setminus \{0\}$ ein Eigenvektor

$$f(\alpha v) = \alpha f(v) = \alpha \lambda v = \lambda(\alpha v)$$

Zentrale Frage dieses Kapitels:

Existens von Eigenwerten? Wenn sie existieren: Weitere Eigenschaften?

Beispiel 1.3: Sei $I\subset\mathbb{R}$ ein offenes Intervall und V der unendlichdimensionale Vektorraum der auf I beliebig oft differenzierbaren Funktionen. Ein Endomorphismus $f\in L(V,V)$ ist gegeben durch

$$f(\varphi) = \varphi' \qquad \forall \varphi \in V$$

Die Abbildung f hat jedes $\lambda \in \mathbb{R}$ als Eigenwert, da für $c \in \mathbb{R} \setminus \{0\}$ und die Funktion

$$\varphi(x) \coloneqq c \cdot e^{\lambda x} \ \neq \ 0_V \qquad \forall x \in I$$

gilt

$$f(\varphi(x)) = f(c \cdot e^{\lambda x}) = \lambda(ce^{\lambda x}) = \lambda\varphi(x)$$

Hier: $\varphi'(x) = f(\varphi)$ ist eine gewöhnliche Differentialgleichung.

Beispiel 1.4: Wir betrachten die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$, welche durch

$$f\binom{x_1}{x_2} = \binom{x_2}{-x_1} = \binom{0}{-1} \binom{x_1}{x_2}$$

definiert ist. Sei x ein Eigenvektor, dann gilt

$$f\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\iff x_2 = \lambda x_1 \text{ und } -x_1 = \lambda x_2$$

O.B.d.A: $x_2 \neq 0$

D.h. f besitzt keinen Eigenwert/-vektor. Für $f:\mathbb{C}^2\to\mathbb{C}^2$ ändert sich dies! \Longrightarrow Die Wahl von K entscheidet!

Beispiel 1.5: Wieder $f: \mathbb{R}^2 \to \mathbb{R}^2$, diesmal

$$f\bigg(\binom{x_1}{x_2}\bigg) = \binom{2x_2}{2x_1} = \underbrace{\binom{0}{2} \binom{2}{2}}_{\equiv :A} \binom{x_1}{x_2}$$

 $\begin{aligned} & \text{Dann gilt f\"{u}r} \ v_1 = \binom{1}{0}, v_2 = \binom{1}{1}, v_3 = (-1,1) \ \text{dass} \ f(v_1) = \binom{0}{2}, f(v_2) = \binom{2}{2} = 2 \cdot v_2 \ \text{und} \\ & f(v_3) = \binom{2}{-2} = (-2) \cdot v_3. \end{aligned}$

Beobachtung: $\dim(V) = 2$

zwei Eigenwerte: 2, -2, es existieren keine Weiteren,

zwei Eigenvektoren: $v_2 = \binom{1}{1}, v_3 = \binom{-1}{1}$, sind linear unabhängig

Lemma 1.6: Es sei $f \in L(V, V)$ ein Endomorphismus. Eigenvektoren zu paarweise verschiedenen Eigenwerten von f sind linear unabhängig.

Beweis: Es seien $v_1,...,v_m$ Eigenvektoren zu den paarweise verschiedenen Eigenwerten $\lambda_1,...,\lambda_m$ von f. Beweis durch Induktion:

Induktionsanfang: m=1, $\lambda_1,v_1\neq 0\Longrightarrow v_1$ lin. unabh.

Induktionsschritt: $m-1 \rightarrow m$

Induktionsvorraussetzung: Behauptung gelte für m-1

Betrachte

$$\begin{split} &\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m = 0 \ (*) \quad \alpha_m \in K \\ &\overset{\mathrm{EV, \, f}()}{\Longrightarrow} \ \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m = 0 \\ &\overset{(*) \cdot \lambda_m}{\Longrightarrow} \ \lambda_m \alpha_a v_1 + \lambda_m \alpha_2 v_2 + \ldots + \lambda_m \alpha_m v_m = 0 \end{split}$$

Wir bilden die Differenz aus Zeile 1 und 2

$$\underbrace{(\lambda_1-\lambda_m)}_{\neq 0}\alpha_1v_1+\underbrace{(\lambda_2-\lambda_m)}_{\neq 0}\alpha_2v_2+\ldots+\underbrace{(\lambda_{m-1}-\lambda_m)}_{\neq 0}\alpha_{m-1}v_{m-1}=0$$

 $v_1,...,v_{m-1}$ lin. unabh. $\Longrightarrow \alpha_1=\alpha_2=...=\alpha_{m-1}=0$ Einsetzen in (*) liefert

$$\alpha_m \underbrace{v_m}_{\neq 0} = 0 \Longrightarrow \alpha_m = 0$$

 $\Longrightarrow v_1,...,v_m$ lin unabh.

Folgerung: Es gibt höchstens $n = \dim(V)$ verschiedene Eigenwerte für $n = \dim(V) < \infty$.

Definition 1.7: Eigenraum

Ist $f \in L(V, V)$ und $\lambda \in K$, so heißt

$$\operatorname{Eig}(f, \lambda) = \{ v \in V \mid f(v) = \lambda v \}$$

der **Eigenraum** von f bezüglich λ .

Es gilt:

- $\operatorname{Eig}(f,\lambda) \subseteq V$ ist ein Untervektorraum
- λ ist Eigenwert von $f \iff \text{Eig}(f, \lambda) \neq \{0\}$
- Eig $(f, \lambda) \setminus \{0\}$ ist die Menge der zu λ gehörenden Eigenvektoren von f.
- $\operatorname{Eig}(f, \lambda) = \ker(f \lambda \operatorname{Id})$
- $\dim(\operatorname{Eig}(f,\lambda)) = \dim(V) \operatorname{rg}(f-\lambda \operatorname{Id})$
- Sind $\lambda_1,\lambda_2\in K$ verschiedene Eigenwerte, so ist $\mathrm{Eig}(f,\lambda_1)\cap\mathrm{Eig}(f,\lambda_2)=\{0\}$

Die letzte Aussage kann verallgemeinert werden zu:

Lemma 1.8: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Sind $\lambda_1,...,\lambda_m,m\leq n$, paarweise verschiedene Eigenwerte von f, so gilt

$$\operatorname{Eig}(f,\lambda_i) \cap \sum_{\substack{j=1\\j\neq i}}^m \operatorname{Eig}\big(f,\lambda_j\big) = \{0\} \qquad \forall i=1,...,m$$

Beweis: Summe von Vektorräumen, vgl. Def 3.32 LinA I.

Sei $i \in \{1, ..., m\}$ fest gewählt.

$$v \in \mathrm{Eig}(f,\lambda_i) \cap \sum_{\substack{j=1 \\ i \neq j}}^m \mathrm{Eig}\big(f,\lambda_j\big)$$

Also ist

$$v = \sum_{\substack{j=1\\j \neq i}}^m v_j \quad \text{für } v_j \in \mathrm{Eig}\big(f, \lambda_j\big) \quad \text{für } j \neq i$$

 $\Longrightarrow -v + \sum_{\substack{j=1 \\ j \neq i}}^m v_j = 0$ Aus Lemma 1.6 folgt damit v = 0.

Über die Identifikation von Endomorphismen und Matrizen für $\dim(V) < \infty$ erhält man:

6

Korollar 1.9: Für ein $n \in \mathbb{N}$ und einem Körper K sei $A \in K^{n,n}$. Dann gilt für jedes $\lambda \in K$, dass

$$\dim(\operatorname{Eig}(A,\lambda)) = n - \operatorname{rg}(A - \lambda I_n)$$

Insbesondere ist $\lambda \in K$ ein Eigenwert von A, wenn $\operatorname{rg}(A - \lambda I_n) < n$ ist.

Definition 1.10: Geometrische Vielfachheit

Ist $f \in L(V, V)$ und $\lambda \in K$ ein Eigenwert von f, so heißt

$$g(f,\lambda)\coloneqq \dim(\mathrm{Eig}(f,\lambda)) \qquad (>0)$$

die geometrische Vielfachheit des Eigenwerts λ .

1.2. Das charakteristische Polynom

Wir bestimmt man Eigenwerte?

Lemma 1.11: Seien $A \in K^{n,n}$ und $\lambda \in K$. Dann ist

$$\det(A - \lambda I_n)$$

ein Polynom n-ten Grades in λ .

Beweis: Mit der Leibniz-Formel folgt,

$$\begin{split} \det(\underbrace{A-\lambda I_n}_{\tilde{a}_{ij}}) &= \sum_{\sigma \in S_1} \operatorname{sgn}(\sigma) \cdot \tilde{a}_{1\sigma(1)} \cdot \ldots \cdot \tilde{a}_{n\sigma(n)} \\ &= \underbrace{(a_{11}-\lambda) \cdot (a_{22}-\lambda) \cdot \ldots \cdot (a_{nn}-\lambda)}_{\sigma = \operatorname{Id}} + \underbrace{S}_{\substack{\sigma \neq \operatorname{Id} \\ \in \mathcal{P}_{n-2} \text{ in } \lambda}}_{\in \mathcal{P}_{n-2} \text{ in } \lambda} \end{split}$$

Weiter gilt:

$$(a_{11} - \lambda) \cdot \ldots \cdot (a_{nn} - \lambda) = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} (a_{11} + \ldots + a_{nn}) + \underbrace{S_1}_{\in \mathcal{P}_{n-2} \text{ in } \lambda}$$

Insgesamt: Es existieren Koeffizienten $a_0,...,a_n \in K$ mit

$$\begin{split} \det(A-\lambda I_n) &= a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 \\ a_n &= (-1)^n \\ a_{n-1} &= (-1)^{n-1} (a_{11} + \ldots + a_{nn}) \end{split}$$

man kann zeigen: $a_0 = \det(A)$

Man nennt $a_{11}+a_{22}+\ldots+a_{nn}$ auch die ${\bf Spur}$ von A.

Definition 1.12: Charakteristisches Polynom

Sei $A \in K^{n,n}$ und $\lambda \in K$. Dann heißt das Polynom n-ten Grades

$$P_A(\lambda) \coloneqq \det(A - \lambda I_n)$$

das charakteristische Polynom zu A.

Lemma 1.13: Sei $A \in K^{n,n}$ und $\lambda \in K$. Der Skalar λ ist genau dann Eigenwert von A, wenn

$$P_A(\lambda) = 0$$

gilt.

Beweis: Die Gleichung

$$Av = \lambda v \iff Av - \lambda v = 0 \iff (A - \lambda I_n)v = 0$$

hat genau eine Lösung $v \in V, v \neq 0$, wenn $\operatorname{rg}(A-\lambda I_n) < n$, vgl. Satz 6.3 aus Lin
A I. Dies ist genau dann der Fall, wenn

$$\det(A - \lambda I_n) = 0$$
, vlg. D10 aus Lin
A I

Beispiel 1.14: Eigenwerte und -vektoren von

$$A = \begin{pmatrix} 3 & 8 & 16 \\ 0 & 7 & 8 \\ 0 & -4 & -5 \end{pmatrix}$$

Regel von Sarrus liefert

$$\begin{split} P_A(\lambda) &= \begin{pmatrix} 3-\lambda & 8 & 16 \\ 0 & 7-\lambda & 8 \\ 0 & -4 & -5-\lambda \end{pmatrix} \\ &= (3-\lambda)\big(-35-7\lambda+5\lambda+\lambda^2+32\big) \\ &= (3-\lambda)[(7-\lambda)(-5-\lambda)-8(-4)]-8(0-0)+16(0-0) \\ &= (3-\lambda)(\lambda^2-2\lambda-3) = (3-\lambda)(\lambda+1)(\lambda-3) \end{split}$$

 \Longrightarrow Eigenwerte sind $\lambda = 3$ und $\lambda = -1$

Zugehörige Eigenvektoren?

 $\lambda = -1$:

$$Av = -v \iff (A + I_3)v = 0$$

$$\begin{pmatrix} 4 & 8 & 26 \end{pmatrix} \begin{pmatrix} v_1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 8 & 26 \\ 0 & 8 & 8 \\ 0 & -4 & -4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

LGS lösen: $\Longrightarrow v_2 = -v_3, v_1 = -2v_3$

Damit ist z.B.: $\boldsymbol{w}_1 = (2,1,-1)^\top$ Eigenvektor.

 $\lambda = 3$:

$$(A - 3I_3)v = 0 \Longleftrightarrow$$

$$\begin{pmatrix} 0 & 8 & 16 \\ 0 & 4 & 8 \\ 0 & -4 & -8 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \in \mathbb{R}^3 \Longleftrightarrow v_2 + 2v_3 = 0$$

Damit sind z.B.: $\boldsymbol{w}_2 = (1,2,-1)^\top, \boldsymbol{w}_3 = (-1,2,-1)$ Eigenvektoren.

 $\lambda=-1$: einfache Nullstelle und $\dim(\mathrm{Span}(w_1))=1$ passt zu $\mathrm{rg}(A-(-1)I_n)=2$ und $\dim(\mathrm{Eig}(A_1-1))=3-2=1.$

 $\lambda=-3$: doppelte Nullstelle und $\dim(\mathrm{Span}(w_2,w_3))=2$ passt zu $\operatorname{rg}(A-3I_n)=1$ und $\dim(\mathrm{Eig}(A,3))=3-1=2$

Lemma 1.15: Sei $A \in K^{n,n}$. Dann gilt

$$p_A(.) = p_{A^\top}(.)$$

D.h. eine Matrix und ihre Transponierte haben die gleichen Eigenwerte.

Beweis:

$$p_A(\lambda) = \det(A - \lambda I_n) \stackrel{\mathrm{D12}}{=} = \det\left(\left(A - \lambda I_n\right)^\top\right) = \det(A^T - \lambda I_n) = p_{A^\top}(\lambda)$$

Achtung: Die Eigenwerte bleiben gleich, aber nicht die Eigenvektoren.

Beispiel 1.16: Für die Matrix A aus Bsp. 1.14 gilt

$$\begin{split} A^\top &= \begin{pmatrix} 3 & 0 & 0 \\ 8 & 7 & -4 \\ 16 & 8 & -5 \end{pmatrix} \Longrightarrow \det(A^\top - \lambda I_n) = (3 - \lambda)[(7 - \lambda)(-5 - \lambda) + 4 \cdot 8] \\ &= -(\lambda - 3)^2(\lambda + 1) \end{split}$$

Aber

$$\begin{pmatrix} 3 & 0 & 0 \\ 8 & 7 & -4 \\ 16 & 8 & -5 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 27 \\ 45 \end{pmatrix} \neq (-1) \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

Man kann ausrechnen:

$$\tilde{w}_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \;\; \text{EV zu EW} - 1, \\ \tilde{w}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \\ \tilde{w}_3 \;\; \text{EV zu EW 3}$$

Übertragung auf Endomorphismen?

$$p_f(\lambda)\ f\in L(V,V), B$$
Basis $\Rightarrow \exists ! A_f^{B,B}, C$ Basis $\Longrightarrow \exists ! A_f^{C,C}$

$$p_{A_f^{B,B}}(\lambda) \stackrel{?}{=} p_{A_f^{C,C}}(\lambda)$$

Definition 1.17: ähnliche Matrizen

Zwei Matrizen $A, B \in K^{n,n}$ heißen **ähnlich**, wenn es eine Matrix $T \in GL_n(K)$ gibt, so dass $A = TBT^{-1}$ gilt.

Man kann leicht beweisen, dass die Ähnlichkeit von Matrizen eine Äquivalenzrelation auf der Menge der quadratischen Matrizen ist.

Mit $\det(A^{-1}) \stackrel{\mathrm{D11}}{=} (\det(A))^{-1}$ folgta für zwei ähnliche Matrizen A und B, dass

$$\det(A) = \det(TBT^{-1}) = \det(T)\det(B)\det(T^{-1}) = \det(B)$$

Beispiel 1.18: Sei $f \in L(\mathbb{R}^3, \mathbb{R}^3)$, d.h. $V = \mathbb{R}^3$, gegeben durch

$$f\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\right) = \begin{pmatrix} x_1 \\ -4x_1 + 7x_2 \\ 3x_1 + 5x_2 + 3x_3 \end{pmatrix}$$

Wir betrachten für den \mathbb{R}^3 die Basen

$$E = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\},$$

$$B = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\},$$

$$C = \left\{ \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix} \right\}$$

Für darstellende Matrix von f bezüglich der Standardmatrix E erhalten wir aus Satz 5.18, LinA I,

$$f(e_j) = \sum_{i=1}^3 a_{ij} e_i \quad \forall j \in \{1, 2, 3\}$$

dass

$$A_f^{E,E} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 7 & 0 \\ 3 & 5 & 3 \end{pmatrix}$$

Das zugehörige kommutative Diagramm ist gegeben durch

Für die Basis B erhalten wir

$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} = 5\begin{pmatrix} 1\\0\\0 \end{pmatrix} + (-7)\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + 3\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$f\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\3\\8 \end{pmatrix} = (-2)\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + (-5)\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + 8\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$f\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\3\\11 \end{pmatrix} = (-2)\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + (-8)\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} + 11\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\Rightarrow A_f^{B,B} = \begin{pmatrix} 5&-2&-2\\-7&-5&-8\\3&8&11 \end{pmatrix}$$

Herleitung bezüglich Matrizen?

Koordinaten
abbildung $\Phi_B?$

Abbildung vom \mathbb{R}^3 + Standardbasis E in den $V(=\mathbb{R}^3)$ + Basis B.

$$\begin{split} \Phi_B = (e_i) &= v_i \quad \text{für} \quad B = \{v_1, v_2, v_3\} \\ \Longrightarrow A_{\Phi_B}^{E,B} &= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

Damit folgt insgesamt:

$$\begin{split} A_f^{B,B} &= \left(A_{\Phi_B}^{E,B}\right)^{-1} I_n A_f^{E,E} I_n^{-1} A_{\Phi_B}^{E,B} = \left(A_{\Phi_B}^{E,B}\right)^{-1} A_f^{E,E} \underbrace{A_{\Phi_B}^{E,B}}_{\in \mathrm{GL}_n(\mathbb{R})} \end{split}$$

$$\Longrightarrow A_f^{B,B} \text{ und } A_f^{E,E} \text{ sind \"{a}hnlich}$$

Für die Basis C erhalten wir

$$f\left(\begin{pmatrix} 0\\0\\-1 \end{pmatrix}\right) = \begin{pmatrix} 0\\0\\-3 \end{pmatrix} = 3\begin{pmatrix} 0\\0\\-1 \end{pmatrix} + 0\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 0\begin{pmatrix} 0\\-1\\0 \end{pmatrix}$$
$$f\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} = (-3)\begin{pmatrix} 0\\0\\-1 \end{pmatrix} + 1\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 4\begin{pmatrix} 0\\-1\\0 \end{pmatrix}$$
$$f\left(\begin{pmatrix} 0\\-1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\-7\\-5 \end{pmatrix} = 5\begin{pmatrix} 0\\0\\-1 \end{pmatrix} + 0\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 7\begin{pmatrix} 0\\-1\\0 \end{pmatrix}$$

Als Darstellungsmatrix erhält man

$$A_f^{C,C} = \begin{pmatrix} 3 & -3 & 5 \\ 0 & 1 & 0 \\ 0 & 4 & 7 \end{pmatrix}$$

Als Matrizenmultiplikation

Darstellung von $\Phi_C?\,\Phi_C(e_i)=w_i\quad \text{für}\quad C=\{w_1,w_2,w_3\}$

$$A_{\Phi_C}^{E,C} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$

$$A_f^{C,C} = \left(A_{\Phi_C}^{E,C}\right)^{-1} I_n A_f^{E,E} I_n^{-1} A_{\Phi_C}^{E,C} = \left(A_{\Phi_C}^{E},C\right)^{-1} A_f^{E,E} A_{\Phi_C}^{E,C}$$

Also auch: $A_f^{C,C}$ ist ähnlich zu $A_f^{E,E}$.

Alternativ:

$$\begin{split} A_f^{C,C} &= \left(A_{\Phi_C}^{E,C}\right)^{-1} I_n I_n^{-1} A_{\Phi_B}^{E,B} A_f^{B,B} \left(A_{\Phi_B}^{E,B}\right)^{-1} I_n A_{\Phi_C}^{E,C} \\ &= \underbrace{\left(A_{\Phi_C}^{E,C}\right)^{-1} A_{\Phi_B}^{E,B}}_{\in \mathrm{GL}_n(\mathbb{R})} A_f^{B,B} \left(A_{\Phi_B}^{E,B}\right)^{-1} A_{\Phi_C}^{E,C} \end{split}$$

Jetzt allgemein: $f \in L(V, V)$, $\dim(V) < \infty$, B, C seien Basen von $V \Longrightarrow$

$$A\coloneqq A_f^{B,B} \qquad \tilde{A}\coloneqq A_f^{C,C}$$

und es existiert $T\in \mathrm{GL}_n(K)$ als Basistransformationsmatrix, so dass

$$\tilde{A} = TAT^{-1}$$

Dann gilt

$$\begin{split} p_{\tilde{A}}(\lambda) &= \det \left(\tilde{A} - \lambda I_n \right) = \det \left(TAT^{-1} - \lambda TT^{-1} \right) \\ &= \det \left(T(A - \lambda I_n) T^{-1} \right) \\ &= \det (T) \det (A - \lambda I_n) \det \left(T^{-1} \right) \\ &= p_A(\lambda) \end{split}$$

D.h. für einen Endomorphismus ist das charakteristische Polynom der zugehörigen Darstellungsmatrix unabhängig von der Wahl der Basis!

Damit ist es sinnvoll, für $f \in L(V, V)$, $\dim(V) < \infty$,

$$p_f(.) \coloneqq p_A(.)$$

für Aals Darstellungsmatrix $A_f^{B,B}$ für eine Basis B.

Lemma 1.19: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Dann sind folgende Aussagen äquivalent:

- 1. $\lambda \in K$ ist ein Eigenwert von f.
- 2. $\lambda \in K$ ist ein Eigenwert der Darstellungsmatrix $A_f^{B,B}$ für eine gewählte B von V.

Des weiteren gilt auch. Für zwei ähnliche A und B gilt $p_A(\lambda) = p_B(\lambda)$

$$A, B$$
 ähnlich $\Longrightarrow p_A(\lambda) = p_B(\lambda)$

z.B.

$$A=\begin{pmatrix}1&0\\2&1\end{pmatrix} \qquad B=\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

$$p_A(\lambda)=(1-\lambda)^2=p_B(\lambda), \text{aber für jedes } T\in \mathrm{GL}_2(\mathbb{R}) \text{ gilt}$$

$$TBT^{-1}=TT^{-1}=I\neq A \text{ also } A, B \text{ nicht \"ahnlich}$$

Weitere Beobachtung: Aus Lemma 1.13 und Lemma 1.19 folgt, dass die Eigenwerte von $f \in L(V,V)$ die Nullstellen des charakteristischen Polynoms der Matrix $A_f^{B,B}$ für eine Basis B ist. Dies gilt **nicht** i.a. für Darstellungsmatrizen $A_f^{B,C}$ für $B \neq C$.

Definition 1.20: Algebraische Vielfachheit

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty.$ Ist $f\in L(V,V)$ und $\tilde{\lambda}$ ist Eigenwert von f hat das charakteristische Polynom $p_f(\lambda)$ die Form

$$p_f(\lambda) = \left(\lambda - \tilde{\lambda}\right)^d \cdot \tilde{p}(\lambda)$$

für ein $\tilde{p}(.) \in \mathbb{K}[\lambda]$ mit $\tilde{p}(\tilde{\lambda}) \neq 0$, so nennt man d die **algebraische Vielfachheit** von $\tilde{\lambda}$ und bezeichnet sie $a(f, \tilde{\lambda})$.

Lemma 1.21: Seien V ein K-Vektorraum, $\dim(V)=n<\infty$, und $f\in L(V,V)$. Für Eigenwert $\tilde{\lambda}$ von f gilt

$$g(f, \tilde{\lambda}) \le a(f, \tilde{\lambda})$$

Beweis: Ist $\tilde{\lambda}$ EW von f mit der geometrischen Vielfachheit $m:=g\left(f,\tilde{\lambda}\right)$, so gibt es nach Def. 1.10 zu $\tilde{\lambda}$ m linear unabhängige Eigenvektoren $v_1,...,v_m\in V$.

Gilt $m=n=\dim(V)$ sind $\{v_1,...,v_m\}$ schon Basis von V.

Gilt m < n, so folgt aus dem Basisergänzungssatz (Satz 3.21, LinA I), dass man $\{v_1,...,v_m\}$ zu einer Basis $\{v_1,...,v_m,v_{m+1},...,v_n\}$ =: B ergänzen. Wegen $f(v_j)=\tilde{\lambda}v_j, 1\leq j\leq m$, gilt

$$A_f^{B,B} = \begin{pmatrix} \tilde{\lambda} I_n & A_1 \\ 0 & A_2 \end{pmatrix} \in K^{n,n}$$

für zwei Matrizen $A_1 \in K^{m,n-m}, A_2 \in K^{n-m,n-m}$

Mit D9 aus LinA I folgt

$$p_f(\lambda) = \left(\tilde{\lambda} - \lambda\right)^m \cdot \det \bigl(A_2 - \lambda I_{n-m,n-m}\bigr)$$

 \Longrightarrow EW $\tilde{\lambda}$ ist mindestens m-fache Nullstelle von $p_f(\lambda)$. Für $m=n\Longrightarrow A_f^{B,B}=\tilde{\lambda}I_n\Longrightarrow p_f(\lambda)=\left(\tilde{\lambda}-\lambda\right)^m$

LINA II* SOSE 24 Konrad Rösler

2. Diagonalisierbarkeit und Normalform

2.1. Diagonalisierbarkeit

Definition 2.1: Diagonalisierbar

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$. Ein $f\in L(V,V)$ heißt **diagonalisierbar**, wenn es eine Basis B von V gibt, so dass $A_f^{B,B}$ eine Diagonalmatrix ist. D.h. es existieren $\lambda_1,...,\lambda_n\in K$ mit

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} \in K^{n,n}$$

Entsprechend nennen wir eine Matrix $A \in K^{n,n}$ diagonalisierbar, wenn es eine Matrix $T \in \mathrm{GL}_n(K)$ und eine Diagonalmatrix $D \in K^{n,n}$ gibt mit

$$A = TDT^{-1}$$

D.h. A ist ähnlich zu einer Diagonalmatrix.

Satz 2.2: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Dann sind folgende Aussagen äquivalent:

- 1. f ist diagonalisierbar
- 2. Es gbit eine Basis B von V bestehend aus Eigenvektoren von f.
- 3. Das charakteristische Polynom $p_f(.)$ zerfällt in n Linearfaktoren über K, d.h.

$$p_f(\lambda) = (\lambda - \lambda_1) \cdot \ldots \cdot (\lambda - \lambda_n)$$

mit Eigenwerten $\lambda_1,...,\lambda_n\in K$ für f und für jeden Eigenwert $\tilde{\lambda}$ gilt $a\big(f,\tilde{\lambda}\big)=g\big(f,\tilde{\lambda}\big).$

Beweis:

"1 \Longrightarrow 2": f diagonalisierbar \Longrightarrow $\exists \{v_1,...,v_n\}=B$ Basis von $V,\lambda_1,..,\lambda_n\in K$:

$$\tilde{A} \coloneqq A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} \qquad f(v_j) = \sum_{i=1}^n a_{ij} v_i$$

 $\Longrightarrow f(v_j)=\lambda_i v_i, 1\leq i\leq n, v_i\neq 0. \Longrightarrow$ Damit sind $\lambda_1,...,\lambda_n$ Eigenwerte von f mit zugehörigen Eigenvektoren $v_1,...,v_n.\Longrightarrow 2.$

"2 \Longrightarrow 1": Ist $B=\{v_1,...,v_n\}$ eine Basis von V bestehend aus Eigenvektoren, so gibt es zugehörige Eigenwerte $\lambda_1,...,\lambda_n$ mit $f(v_j)=\lambda_j v_j,$ $1\leq j\leq n\Longrightarrow$

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

"2 \Longrightarrow 3": Sei $B=\{v_1,...,v_n\}$ eine Basis von Eigenvektoren, $\lambda_1,...,\lambda_n$ seien die zugehörigen Eigenwerte \Longrightarrow

$$\begin{split} p_f(\lambda) &= p_{A_f^{B,B}}(\lambda) = \det \left(A_f^{B,B} - \lambda I_n \right) \\ &= (\lambda_1 - \lambda) \cdot (\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda) \end{split}$$

 $\Longrightarrow p_f(.)$ zerfällt in Linearfaktoren. Verschiedene Eigenwerte $\tilde{\lambda}_1,...,\tilde{\lambda}_k,k\leq n$. Der Eigenwert $\tilde{\lambda}_i$ besitzt die algebraische Vielfachheit $m_j\coloneqq a\big(f,\tilde{\lambda}_j\big)$ genau dann, wenn er m_j -mal auf den Diagnolen von $A_f^{B,B}$ steht. Dies ist genau dann der Fall, wenn m_j Eigenvektoren zu $\tilde{\lambda}_j$ in B enthalten sind. Diese sind linear unabhängig \Longrightarrow

$$1.\dim\!\left(\mathrm{Eig}\!\left(f,\tilde{\lambda}_{j}\right)\right) = g\!\left(f,\tilde{\lambda}_{j}\right) \geq m_{j} = a\!\left(f,\tilde{\lambda}_{j}\right)$$

2. Lemma 1.21:
$$g(f, \tilde{\lambda}_j) \leq a(f, \tilde{\lambda}_j)$$

$$1 \wedge 2 \Longrightarrow g(f, \tilde{\lambda}_i) = a(f, \tilde{\lambda}_i)$$

"3 \Longrightarrow 2": Seien $\tilde{\lambda}_1,...,\tilde{\lambda}_k,k\leq n$ die paarweise verschiedenen Eigenwerte von f. Wir wissen: $\mathcal{P}_n\in p_f(.)$ zerfällt in Linearfaktoren, $a\big(f,\tilde{\lambda}_j\big)=g\big(f,\tilde{\lambda}_j\big),1\leq j\leq n$.

$$\dim(V) = n = \sum_{j=1}^k a\Big(f,\tilde{\lambda}_j\Big) = \sum_{j=1}^k g\Big(f,\tilde{\lambda}_j\Big) = \sum_{j=1}^k \dim\Big(\mathrm{Eig}\Big(f,\tilde{\lambda}_j\Big)\Big)$$

Es gilt (Lemma 1.8):

$$\operatorname{Eig}ig(f, \tilde{\lambda}_jig) \cap \sum_{i=1}^k \operatorname{Eig}ig(f, \tilde{\lambda}_iig) = 0 \quad orall j = 1, ..., k$$

Dann folgt (Lemma 3.31, (2), Lemma 3.35, Satz 3.14) (direkte Summe, $U \subset V$ UVR \Longrightarrow $\dim(U) \leq \dim(V), U = V \dim(U) = \dim(V)$, Basis \Longleftrightarrow eindeutige Darstelltung), dass die zu $\tilde{\lambda}_1, ..., \tilde{\lambda}_n$ linear unabhängigen Eigenvektoren, die jeweils eine Basis von $\mathrm{Eig} \left(f, \tilde{\lambda}_j \right)$, $1 \leq j \leq k$, eine Basis von V bilden.

In Verbindung mit Lemma 1.6 folgt unmittelbar:

Korollar 2.3: Sei V ein K-Vektorraum mit $\dim(V) = n < \infty$ und $f \in L(V, V)$ mit n paarweise verschiedenen Eigenwerten, dann ist f diagonalisierbar.

Bemerkung: Das Kriterium der n paarweise verschiedenen Eigenwerte ist nicht notwendig z.B. $V = K^n$, B = E Standardbasis

$$f: \mathrm{Id}: K^n \to K^n, \Longrightarrow A_f^{E,E} = I_n \Longrightarrow 1n$$
-facher Eigenwert

Beispiel 2.4: Fortsetzung von Bsp. 1.14

$$A = \begin{pmatrix} 3 & 8 & 16 \\ 0 & 7 & 8 \\ 0 & -4 & -5 \end{pmatrix}, \text{EW:} -1, 3$$

$$w_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \text{ EV zu } -1, \ w_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, w_3 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} \text{ EV zu } 3$$

 $\Longrightarrow \exists$ Basis von Eigenvektoren $\stackrel{\mathrm{Satz}\ 2.2}{\Longrightarrow} A$ ist diagonalisierbar

$$\begin{split} p_A(\lambda) &= (3-\lambda)(\lambda+1)(\lambda-3)\\ a(f,-1) &= 1 = g(f,-1)\\ a(f,3) &= 2 = g(f,3) \end{split}$$

 $T \in \mathrm{GL}_n(\mathbb{R})$ so, dass $T^{-1}AT = D$?

Die zu $B=\{w_1,w_2,w_3\}$ gehörende Koordinatentransformation Φ_B ist gegeben durch

$$A_{\Phi_B}^{E,B} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$

Dann gilt: Für $f \in L(\mathbb{R}^3, \mathbb{R}^3)$ mit

$$A_f^{E,E} = A$$
 $A_f^{B,B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = D$

Mit Basiswechsel von A zu D

$$D = \left(A_{\Phi_B}^{E,B}\right)^{-1} A \underbrace{A_{\Phi_B}^{E,B}}_{=T}$$

Beispiel 2.5: Nicht jeder Endomorphismus bzw. jede Matrix ist diagonalisierbar. Bsp. 1.4:

$$f:\mathbb{R}^2\to\mathbb{R}^2,\quad f\biggl(\begin{pmatrix}x_1\\x_2\end{pmatrix}\biggr)=\overbrace{\begin{pmatrix}0&1\\-1&0\end{pmatrix}}^A\begin{pmatrix}x_1\\x_2\end{pmatrix},\quad p_f(\lambda)=\lambda^1+1$$

D.h. über \mathbb{R} zerfällt $p_f(.)$ nicht in Linearfaktoren.

Ein weiteres Beispiel

$$A = \begin{pmatrix} 5 & 10 & 7 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix}$$

 $\implies p_A(\lambda) = (5-\lambda)\lambda^2 \implies p_A(.) \quad \text{zerf\"{a}llt} \quad \text{in Linearfaktoren.} \quad a(f,\lambda_i), g(f,\lambda_i)$ für $\lambda_1 = 5, \lambda_2 = 0$. Lemma 1.21: $g(f,\lambda_i) \leq a(f,\lambda_i) \implies g(f,5) = 1 = a(f,5),$ $a(f,0) = 2, g(f,0) \geq 1$ Ein Eigenvektor zu $\lambda = 0$ sind

$$w_1 = \begin{pmatrix} 3 \\ -5 \\ 5 \end{pmatrix} \Longrightarrow g(f,0) = 1 < 2 = a(f,0)$$

 $\Longrightarrow f$ nicht diagonalisierbar.

Mit Satz 2.2 erhält man einen Algorithmus zur Überprüfung, ob ein gegebenes $f \in L(V,V)$ (bzw. $A \in K^{n,n}$) diagonalisierbar ist:

- 1. Bestimme mit einer Basis B von V die Darstellungsmatrix $A=A_f^{B,B}$
- 2. Bestimme für A das charakteristische Polynom $p_A(.)$ (Determinantenberechnung)
- 3. Zerfällt $p_A(.)$ in Linearfaktoren über K? Nein: f nicht diagonalisierbar. Ja: Seien $\lambda_i, 1 \leq i \leq k \leq n = \dim(V)$ die paarweise verschiedene Eigenwerte von f.

Für i = 1, ..., k

- 1. Bestimme eine Basis von $\mathrm{Eig}(f,\lambda_i)$
- 2. Prüfe, ob $a(f, \lambda_i) = g(f, \lambda_i)$

Gilt $a(f,\lambda_i)=g(f,\lambda_i)$ für alle $i\in\{1,...,k\}$. Nein: f ist nicht diagonalisierbar. Ja: f ist diagonalisierbar.

Beispiel 2.6: Fischer/Springborn

Betrachtet wird: Masse aufgehänt an einer Feder. Zur Zeit t=0 in Position $y(0)=\alpha$ und ausgelenkt in senkrechter Richtung mit Geschwindigkeit $\beta=\dot{y}(0)$

 $y(t) \cong \text{Position der Masse zum Zeitpunkt } t$

Dieses System wird durch die gewöhnliche Differentialgleichungen

$$\ddot{y} + 2\mu\dot{y} + \omega^2 y = 0$$
, $y(0) = \alpha, \dot{y}(0) = \beta$

Umschreiben

$$\begin{split} &\dot{\boldsymbol{y}}_0 = \boldsymbol{y}_1 \\ &\dot{\boldsymbol{y}}_1 = -\omega^2 \boldsymbol{y}_0 - 2\mu \boldsymbol{y}_1 \end{split}$$

 $\text{mit } y_0 = y, \ddot{y}_0 = \ddot{y}, y_0(0) = \alpha, y_1(0) = \beta.$

$$\dot{\tilde{y}} \coloneqq \begin{pmatrix} \dot{y}_0 \\ \dot{y}_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega^2 & -2\mu \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

$$p_A(\lambda) = \lambda^2 + 2\mu\lambda + w^2$$

mit den potentiellen Nulstellen

$$\lambda = -\mu \pm \sqrt{\mu^2 - w^2}$$

Man unterscheidet drei Fälle:

- $0 \le \mu < \omega$, d.h. $\mu^2 \omega^2 < 0 \Longrightarrow$ schwache Dämpfung
- $\mu=\omega$, d.h. $\mu^2=\omega^2$ \Longrightarrow aperiodischer Fall \Longrightarrow $a(A,-\mu)=2$, $\dim(\mathrm{Eig}(A,-\mu))=1$, A nicht diagonalisierbar
- $\mu > \omega$, d.h. $\mu^2 > \omega^2$, starke Dämpfung

Eine solche Eigenwertanalyse kann auch nutzen, um das Langzeitverhalten von Lösungen von gewöhnlichen DGL zu bestimmen.

Satz 2.7: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Dann sind folgende Aussagen äquivalent:

- 1. Das charakteristische Polynom $p_f(.)$ zerfällt über K in Linearfaktoren.
- 2. Es gibt eine Basis B von V, so dass $A_f^{B,B}$ eine obere Dreiecksmatrix ist, d.h.

$$A_f^{B,B} = \begin{pmatrix} 1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & * \end{pmatrix}$$

und f ist damit **triangulierbar**.

Beweis: Beweis von Satz 14.18 im Liesen/Mehrmann

Nun ist das Ziel:

Bestimmung einer Basis B von V, so dass $A_f^{B,B}$ eine obere Dreiecksmatrix ist, die möglichst nah an einer Diagonalmatrix ist und von der geometrischen Vielfachheiten der Eigenwerte abgelesen werden können.

D.h. $p_f(.)$ zerfällt in Linearfaktoren mit den Eigenwerten $\lambda_1,...,\lambda_k$ (notwendig, Satz 2.7) und wir wollen eine Basis B bestimmen, so dass $A_f^{B,B}$ Diagonalblockgestalt hat mit

$$A_f^{B,B} = \begin{pmatrix} J_1(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J_m(\lambda_m) \end{pmatrix}$$

wobei jeder Diagonalblock die Form

$$J_i(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & \lambda_i \end{pmatrix} \in K^{d_i,d_i} \qquad (*)$$

Definition 2.8: Jordan-Block

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty, f\in L(V,V)$ und λ_i ein Eigenwert von f. Eine Matrix der Form (*) heißt **Jordan-Block** der Größe d_i zum Eigenwert λ_i .

Wegen der Bedeutung der Jordan-Normalform gibt es zahlreiche Herleitungen mit unterschiedlichen mathematischen Hilfsmitteln.

Hier: Beweis über die Dualitätstheorie basirend auf einer Arbeit von V. Pt \bar{a} k (1956)

2.2. Dualräume

Definition 2.9: Linearform, Dualraum

Sei V ein K-Vektorraum. Eine Abbildung $f \in L(V, K)$ heißt **Linearform**. Den K-Vektorraum $V^* := L(V, K)$ nennt man **Dualraum**.

Gilt $\dim(V)=n<\infty$ so folgt aus Satz 5.18 Lin
A I, dass $\dim(V^*)=n$ gilt. Ist $B=\{v_1,...,v_n\}$ eine Basis von V und $C=\{1\}$ eine Basis des K-Vektorraum K, dann gilt für

$$f(v_i) = \mu_i \in K$$
 für $f \in V^*$, d.h. $f: V \to K$.

für i = 1, ..., n und damit

$$A_f^{B,C} = (\mu_1,...,\mu_n) \in K^{1,n}$$

Beispiel 2.10: Sei V der \mathbb{R} -Vektorraum der auf dem Intervall [0,1] stetigen, reellwertigen Funktionen und $a \in [0,1]$. Dann sind

$$g_1:V\to\mathbb{R},\quad g_1(f)\coloneqq\int_0^1f(x)dx$$

$$g_2:V\to\mathbb{R},\quad g_2(f)\coloneqq f(a)$$

Linearformen auf V.

Basis des Dualraums?

Satz 2.11: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $B=\{v_1..,v_n\}$ eine Basis von V. Dann gibt es genau eine Basis $B^*=\{v_1^*,...,v_n^*\}$ von $V^*=L(V,K)$ für die

$$v_i^*(v_j) = \delta_{ij} \quad i, j = 1, ..., n$$

gilt. Diese Basis heißt die zu B duale Basis.

Beweis: Lemma 4.10: LinA I. Es gibt eine lineare Abbildung v_i^* für die $v_i^*(v_j) = \delta_{ij}$ für j=1,...,n, für i=1,...,n. Noch zu zeigen: v_i^* sind Basis von V^* . Wir wissen schon: $\dim(V^*)=n$. Also: Es reicht zu zeigen: $\left\{v_i^*\right\}_{i=1,...,n}$ linear unabhängig. Seien $\mu_i\in K$ so, dass

$$\sum_{i=1}^n \mu_i v_i^* = 0 \in V^* = L(V,K)$$

Dann gilt:

$$0_K = 0_{V^*}(v_j) = \sum_{i=1}^n \mu_i v_i^*(v_j) = \mu_j \quad j = 1, ..., n$$

Definition 2.12: duale Abbildung

Seien V und W zwei K-Vektorräume mit den zugehörigen Dualräumen V^* und W^* . Für $f \in L(V,W)$ heißt

$$f^*: W^* \to V^*, \quad f^*(h) = h \circ f$$

die zu f duale Abbildung.

Seien $U\subseteq V$ und $Z\subseteq V^*$ zwei Unterräume. Dann heißt die Menge

$$U^0 \coloneqq \{h \in V^* \mid h(u) = 0 \text{ für alle } u \in U\}$$

Annihilator von U und die Menge

$$Z^0 \coloneqq \{v \in V \mid z(v) = 0 \text{ für alle } z \in Z\}$$

Annihilator von Z.

Man kann sich überlegen:

- Die Mengen $U^0 \subseteq V^*$ und $Z^0 \subseteq V$ sind Untervektorräume von V^* bzw V
- Es gilt für $f \in L(V, V)$

$$\left(f^k\right)^* = \left(f^*\right)^k$$

Des Weiteren besitzt die duale Abbildung folgende Eigenschaften:

Lemma 2.13: Sind V, W und X drei K-Vektorräume. Dann gilt

- 1. Ist $f \in L(V, W)$, dann ist die duale Abbildung f^* linear, d.h. $f^* \in L(W^*, V^*)$
- 2. Ist $f\in L(V,W)$ und $g\in L(W,X)$, dann ist $(g\circ f)^*\in L(X^*,V^*)$ und es gilt $(g\circ f)^*=f^*\circ g^*$
- 3. Ist $f\in L(V,W)$ bijektiv, dann ist $f^*\in L(W^*,V^*)$ bijektiv und es gilt $(f^*)^{-1}=(f^{-1})^*$

Beweis: ÜB

Lemma 2.14: Sei V ein endlichdimensionaler Vektorraum, $f \in L(V, V)$, $f^* \in L(V^*, V^*)$ und $U \subseteq V$, sowie $W \subseteq V^*$ zwei Vektorräume. Dann gilt:

- 1. $\dim(V) = \dim(W) + \dim(W^0)$
- 2. Ist f nilpotent vom Grad m, dann ist die duale Abbildung f^* ebenfalls nitpotent vom Grad m.
- 3. Ist $W \subseteq V^*$ ein f^* -invarianter Vektorraum, dann ist W^0 ein f-invarianter Unterraum.

Beweis: ÜA

Definition 2.15: nilpotent vom Grad m

Sei $\{0\} \neq V$ ein K-Vektorraum. Man nennt $f \in L(V,V)$ nilpotent, wenn ein $m \in \mathbb{N}$ existiert, so dass $f^m = 0 \in L(V,V)$ gilt. Gilt für dieses m, dass $f^{m-1} \neq 0 \in L(V,V)$, so heißt f nilpotent vom Grad m und m is der Nilpotenzindex von f.

Definition 2.16: *f*-invarianter Unterraum

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty, U\subseteq V$ ein Unterraum und $f\in L(V,V)$. Gilt $f(U)\subseteq U$, d.h. ist $f(u)\in U$ für alle $u\in U$, so nennt man U einen f-invarianten Unterraum von V.

Definition 2.17: Bilinearform

Seien V und W zwei K-Vektorräume. Eine Abbildung $a:V\times W\to K$ heißt Bilinearform, wenn

- 1. $a(\cdot, w): V \to K$ für alle $w \in W$ eine lineare Abbildung ist und
- 2. $a(v,\cdot):W\to K$ für alle $v\in V$ eine lineare Abbildung ist

Eine Bilinearform $a(\cdot, \cdot)$ heißt **nicht ausgeartet** in der ersten Variable, wenn aus

$$a(v,w)=0\quad \text{für alle }w\in W$$

folgt, dass v=0 ist. Eine Bilinearform heißt nicht ausgeartet in der zweiten Variable, wenn aus

$$a(v, w) = 0$$
 für alle $v \in V$

folgt, dass w=0 ist. Falls $a(\cdot,\cdot)$ in beiden Variablen nicht ausgeartet ist, so nennt man $a(\cdot,\cdot)$ eine **nicht ausgeartete Bilinearform** und die Räume V,W ein **duales Paar von Räumen** oder **duales Raumpaar** bezüglich $a(\cdot,\cdot)$. Ist V=W, so heißt $a(\cdot,\cdot)$ eine **Bilinearform auf** V. Eine Bilinearform $a(\cdot,\cdot)$ auf V heißt **symmetrisch**, wenn a(v,w)=a(w,v) für alle $v,w\in V$, ansonsten heißt $a(\cdot,\cdot)$ unsymmetrisch.

Bemerkung: Damit V, W ein duales Raumpaar für eine nicht ausgeartete Bilinearform bilden können, muss $\dim(V) = \dim(W)$ gelten.

Lemma 2.18: Sei V ein endlichdimensionaler K-Vektorraum, $f \in L(V, V)$, $f^* \in L(V^*, V^*)$ die duale Abbildung zu $f, U \subseteq V$ und $W \subseteq V^*$ zwei Untervektorräume. Ist die Bilinearform

$$a:U\times W\to K, (v,h)\mapsto h(v)$$

nicht ausgeartet ist, d.h. sind U und W ein duales Raumpaar bezüglich dieser Bilinearform, so ist

$$V = U \oplus W^0$$

Beweis: Sei $u\in U\cap W^0$. Dann gilt h(u)=0 für alle $h\in W$. Weil U,W ein duales Raumpaar bzgl. $a(\cdot,\cdot)$ bilden, folgt u=0. Außerdem $\dim(U)=\dim(W)$ gelten. Damit folgt aus Lemam 2.14, 1., dass

$$\dim(V) = \dim(W) + \dim(W^0)$$
$$= \dim(U) + \dim(W^0)$$

 $\Longrightarrow V = W \oplus W^0$

2.3. Zyklische f-invariant Unterräume

Jetzr: Genauere Analyse der Struktur von Eigenräumen

Beispiel: Ist V ein K-Vektorraum, $f \in L(V, V)$ und $\lambda \in K$ ein Eigenwert von f, so ist $\mathrm{Eig}(f, \lambda)$ ein f-invarianter Unterraum, da: Für $v \in \mathrm{Eig}(f, \lambda)$ gilt $f(v) = \lambda v \in \mathrm{Eig}(f, \lambda)$.

Sei V ein K-Vektorraum mit $\dim(V) = n < \infty$ und $f \in L(V, V)$. Ist $v \in V \setminus \{0\}$, so existiert ein eindeutig definiertes $m = m(f, v) \in \mathbb{N}$, sodass die Vektoren

$$v,f(v),f(f(v)),...,f^{m-1}(v) \\$$

linear unabhängig, die Vektoren

$$v, f(v), ..., f^{m-1}(v)$$

jedoch linear abhängig sind. Wegen $\dim(V) = n$, muss $m \leq n$ gelten!

Definition 2.19: Grad von V

Die eindeutig definiert Zahl $m(f,v)\in\mathbb{N}$ heißt Grad von V bezüglich f.