Split Adjoint Operators

by Adam Nemecek, Sven Nilsen, 2020

In this paper we generalize split-imaginary numbers to split adjoint operators.

An split-imaginary number^[1] is defined as following:

$$j^2 = 1$$

By adding a minus sign to the each side:

$$-j^2 = -1$$

Using Avatar Covers^[2], it is natural to use the avatar cover `xor` for this product:

$$\mathbf{j} \cdot (-\mathbf{j}) = (-\mathbf{j}) \cdot \mathbf{j} = -1$$

$$mul[neg]_a <=> xor$$

We use the same process as in the paper "Imaginary Adjoint Operators" [3].

Hence, for any symmetric avatar cover `xor`:

$$f[g]_a \ll xor$$

An Split Adjoint Operator `g` is defined as the following relation with `f`:

$$\exists$$
 e { \exists **j** { $f(\mathbf{j}, g(\mathbf{j})) = f(g(\mathbf{j}), \mathbf{j}) = g(e)$ } \land \forall y { $f(y, e) = f(e, y) = y$ } }

Here, `e` is some unit element of `f`.

The element `i` is a split-imaginary element.

Notice that -1 is represented as g(e).

References:

- [1] "Split-complex number"
 Wikipedia
 https://en.wikipedia.org/wiki/Split-complex_number
- [2] "Avatar Covers"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path-semantics/blob/master/papers-wip/avatar-covers.pdf
- [3] "Imaginary Adjoint Operators"
 Adam Nemecek, Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/imaginary-adjoint-operators.pdf