011 - Inference about a Population Mean (μ)

EPIB 607 - FALL 2020

Sahir Rai Bhatnagar Department of Epidemiology, Biostatistics, and Occupational Health McGill University

sahir.bhatnagar@mcgill.ca

slides compiled on October 2, 2020

The t distribution

Examples

Inference for μ when σ is not known

Up until now, all of our calculations have relied on us knowing the value of the population standard deviation (σ). It is rare that this is the case.

We now consider methods of inference for when σ is unknown.

When σ is unknown, we must estimate it from the data using s, the sample standard deviation.

The t distribution 3/33.

Inference for μ when σ is unknown

 When the true variance was known, we performed our calculations using the standardization

$$Z = \frac{\overline{y} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Inference for μ when σ is unknown

 When the true variance was known, we performed our calculations using the standardization

$$Z = \frac{\overline{y} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

We no longer can use this, so instead we use

$$t = \frac{\overline{y} - \mu}{s / \sqrt{n}} \sim t_{(n-1)}$$

which follows a *t*-distribution with n-1 degrees of freedom based on the *n* values, $y_1, ..., y_n$ in an SRS

Inference for μ when σ is unknown

 When the true variance was known, we performed our calculations using the standardization

$$Z = \frac{\overline{y} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

We no longer can use this, so instead we use

$$t = \frac{\overline{y} - \mu}{s / \sqrt{n}} \sim t_{(n-1)}$$

which follows a *t*-distribution with n-1 degrees of freedom based on the *n* values, $y_1, ..., y_n$ in an SRS

• There is a different t distribution for each sample size. The degrees of freedom specify which distribution we use, and are determined by the denominator used in estimating s which is (n-1).

The t distribution 4/33.

σ known vs. unknown

σ	known	unknown
Data	$\{y_1, y_2,, y_n\}$	$\{y_1, y_2,, y_n\}$
Pop'n param	μ	μ
Estimator	$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$	$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
SD	σ	$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}}$
SEM	σ/\sqrt{n}	s/\sqrt{n}
$(1 - \alpha)100\%$ CI	$\overline{y} \pm z_{1-lpha/2}^{\star}$ (SEM)	$\overline{y} \pm t^{\star}_{1-\alpha/2,(n-1)}$ (SEM)
test statistic	$\frac{\bar{y}-\mu_0}{ ext{SEM}} \sim \mathcal{N}(0,1)$	$rac{ar{y}-\mu_0}{ ext{SEM}} \sim t_{(n-1)}$

The t distribution 5/33 .

t distribution vs. Normal distribution

Figure: Density curves for the t distribution with 2 and 9 degrees of freedom and for the standard Normal distribution. All are symmetric with center 0. The t distributions are somewhat more spread out.

The t distribution 6/33.

$t_{(5)}$ distribution vs. Standard Normal distribution

The t distribution 7/33.

$t_{(30)}$ distribution vs. Standard Normal distribution

The t distribution 8/33.

t distributions

- Is symmetric around 0 (just like the $\mathcal{N}(0,1)$)
- Has a shape like that of the Z distribution, but with a SD slightly larger than unity i.e. slightly flatter and heavier-tailed
- Shape becomes indistinguishable from Z distribution as $n \to \infty$ (in fact as n goes much beyond 30)
- Instead of $\pm 1.96 \times$ SEM for 95% confidence (or to use as the critical value in a null-hypothesis test), we need these multiples (or critical values):

n	'degrees of freedom'	Multiple	from R
2	1	12.71	qt(0.975, 1)
3	2	4.30	qt(0.975, 2)
4	3	3.18	qt(0.975, 3)
11	10	2.23	qt(0.975, 10)
21	20	2.09	qt(0.975, 20)
31	30	2.04	qt(0.975, 30)
121	120	1.98	qt(0.975,120)
∞	∞	1.96	qt(0.975,Inf)

The t distribution 9/33.

t distributions

Sample size increases \to degrees of freedom increase \to t starts to look like $\mathcal{N}(0,1)$

The t distribution 10/33.

t distributions

Sample size increases \rightarrow degrees of freedom increase \rightarrow t starts to look like $\mathcal{N}(0,1)$

This is where the infamous n = 30 comes from !!

The t distribution 11/33 -

t procedures

We can calculate CIs and perform significance tests much as before (example coming up soon).

A significance test of a single sample mean using the *t*-statistic is called a one-sample *t*-test.

Collectively, the significance tests and confidence-interval based tests using the t distribution are called t procedures.

The t distribution 12/33.

The one-sample *t* test

THE ONE-SAMPLE t TEST

Draw an SRS of size n from a large population having unknown mean μ . To test the hypothesis H_0 : $\mu=\mu_0$, compute the one-sample t statistic

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

In terms of a variable T having the t(n-1) distribution, the P-value for a test of H_0 against

$$H_a: \mu > \mu_0$$
 is $P(T \ge t)$

$$H_a$$
: $\mu < \mu_0$ is $P(T \le t)$

$$H_a: \mu \neq \mu_0$$
 is $2P(T \geq |t|)$

These P-values are exact if the population distribution is Normal; they are approximately correct for large n in other cases.

The t distribution 13/33.

A note about the conditions for *t* procedures

• B&M stress that the **first** of their conditions as *very important*: *we can regard* our data as a simple random sample (SRS) from the population

A note about the conditions for *t* procedures

- B&M stress that the **first** of their conditions as *very important*: *we can regard* our data as a simple random sample (SRS) from the population
- The **second**, observations from the population have a <u>Normal</u> distribution with unknown mean parameter μ and unknown standard deviation parameter σ less so
- *In practice*, inference procedures *can accommodate some deviations from the Normality condition* when the sample is large enough.

The t distribution 14/33 .

A statistical procedure is said to be **robust** if it is insensitive to violations of the assumptions made.

- t procedures are not robust against extreme skewness, in small samples, since the procedures are based on using \overline{y} and s (which are sensitive to outliers).
- Recall: Unless there is a very compelling reason (e.g. known/confirmed error in the recorded data), outliers should not be discarded.

The t distribution 15/33.

• *t* procedures **are** robust against other forms of non-normality and, even with considerable skew, perform well when *n* is large. Why?

- *t* procedures **are** robust against other forms of non-normality and, even with considerable skew, perform well when *n* is large. Why?
- When n is large, s is a good estimate of σ (recall that s is unbiased and, like most estimates, precision improves with increasing sample size)

- *t* procedures **are** robust against other forms of non-normality and, even with considerable skew, perform well when *n* is large. Why?
- When n is large, s is a good estimate of σ (recall that s is unbiased and, like most estimates, precision improves with increasing sample size)
- CLT: \overline{y} will be Normal when n is large, even if the population data are not

The t distribution 16/33 -

When and why we use the *t*-distribution

• When σ is unknown use t distribution. but why?

When and why we use the *t*-distribution

- When σ is unknown use t distribution. but why?
- the spread of the *t* distribution is greater than $\mathcal{N}(0,1)$

The t distribution 17/33.

Rejecting the Null ($H_0: \mu = \mu_0$) when σ is known

$$\underbrace{z_{0.975}}_{\text{critical value}} = 1.96 = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}} \rightarrow \frac{1.96}{\sqrt{n}} \sigma = \bar{y} - \mu_0$$

which means that to reject H_0 the difference between your sample mean and μ_0 needs to be greater than $\frac{1.96}{\sqrt{n}}$ standard deviations

[1] -2 2

Rejecting the Null ($H_0: \mu = \mu_0$) when σ is unknown

$$\underbrace{t_{0.975,df=3}^{\star}}_{r} = 3.18 = \frac{\bar{y} - \mu_0}{s/\sqrt{n}} \to \frac{3.18}{\sqrt{n}} s = \bar{y} - \mu_0$$

which means that to reject H_0 the difference between your sample mean and μ_0 needs to be greater than $\frac{3.18}{\sqrt{n}}$ standard deviations

[1] -3.2 3.2

The t distribution 19/33.

• Its harder to reject the null when using the t distribution

- Its harder to reject the null when using the *t* distribution
- Confidence intervals are also wider

- Its harder to reject the null when using the *t* distribution
- Confidence intervals are also wider
- This is due to our uncertainty about the estimated variance

- Its harder to reject the null when using the *t* distribution
- Confidence intervals are also wider
- This is due to our uncertainty about the estimated variance
- Larger samples lead to more accurate estimates of σ

- Its harder to reject the null when using the t distribution
- Confidence intervals are also wider
- This is due to our uncertainty about the estimated variance
- Larger samples lead to more accurate estimates of σ
- This is reflected in the fact that there is a different *t* distribution for each sample size

- Its harder to reject the null when using the t distribution
- Confidence intervals are also wider
- This is due to our uncertainty about the estimated variance
- Larger samples lead to more accurate estimates of σ
- This is reflected in the fact that there is a different *t* distribution for each sample size
- As $n \to \infty$, sample standard deviation s gets closer to σ

- Its harder to reject the null when using the t distribution
- Confidence intervals are also wider
- This is due to our uncertainty about the estimated variance
- Larger samples lead to more accurate estimates of σ
- This is reflected in the fact that there is a different t distribution for each sample size
- As $n \to \infty$, sample standard deviation s gets closer to σ
- As degrees of freedom increase, t distribution gets closer to Normal distribution

The t distribution

Examples

Eyamples 21/33

Application: How fast is your reaction time?

https://faculty.washington.edu/chudler/java/redgreen.html

RED LIGHT - GREEN LIGHT Reaction Time Test

Instructions:

- 1. Click the large button on the right to begin.
- 2. Wait for the stoplight to turn green.
- 3. When the stoplight turns green, click the large button quickly!
- 4. Click the large button again to continue to the next test.

Test Number	Reaction Time	The stoplight to watch.	The button to click.
1	0.325		
2	0.327		
3	0.357		Done
4	0.299		Done
5	0.378		
AVG.	0.3372		

Examples Start Over 22/33.

Application: How fast is your reaction time?

```
reaction.times <- c(325,327,357,299,378)/1000
summary(reaction.times)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.30 0.32 0.33 0.34 0.36 0.38

round(sd(reaction.times),3)

## [1] 0.031

length(reaction.times)

## [1] 5
```

Examples 23/33.

5 ways of calculating a confidence interval

We are interested in calculating a 95% confidence interval for the mean reaction time based on the sample of 5 reaction times.

Examples 24/33

5 ways of calculating a confidence interval

We are interested in calculating a 95% confidence interval for the mean reaction time based on the sample of 5 reaction times.

Five ways of doing this:

- 1. By hand (using the \pm formula and R as a calculator)
- 2. Using the quantile function for the *t* distribution stats::qt
- 3. Fitting an intercept-only regression model ($y = \beta_0 + \varepsilon$)
- 4. Using a canned function (mosaic::t.test, stats::t.test)
- 5. Bootstrap

Examples 24/33.

1. By hand using the \pm formula

```
n <- length(reaction.times)
SEM <- sd(reaction.times)/sqrt(n)
## [1] 0.014
ybar <- mean(reaction.times)
## [1] 0.34
multiple.for.95pct <- stats::qt(p = c(0.025, 0.975), df = n-1)
## [1] -2.8 2.8
by_hand_CI <- ybar + multiple.for.95pct * SEM
## [1] 0.30 0.38</pre>
```

Examples 25/33.

2. Using stats::qt

Note: R only provides the standard t distribution. In order to get a scaled version we must define our own function.

```
n <- length(reaction.times)/sqrt(n)
SEM <- sd(reaction.times)/sqrt(n)
ybar <- mean(reaction.times)
# scaled version of the standard t distribution
qt_ls <- function(p, df, mean, sd) qt(p = p, df = df) * sd * mean

qt_ls(p = c(0.025, 0.975), df = n - 1, mean = ybar, sd = SEM)
## [1] 0.30 0.38</pre>
```

Examples 26/33.

3. Fitting an intercept-only regression model

```
fit <- stats::lm(reaction.times - 1)
summary(fit)

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3372 0.0137 24.6 1.6e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.031 on 4 degrees of freedom
stats::confint(fit)

## 2.5 % 97.5 %
## (Intercept) 0.3 0.38
```

Examples 27/33.

3. Fitting an intercept-only regression model

In the regression output:

- Estimate: the mean reaction time (an estimate of the intercept β_0)
- t value: the test statistic
- Std. Error: the standard error of the mean (SEM)
- Pr(>|t|): is the *p*-value

Examples 28/33.

3. Fitting an intercept-only regression model

These are based on the (useless) null hypothesis $H_0: \mu_0 = 0$

• t value =
$$\frac{\bar{y} - \mu_0}{s/\sqrt{n}} = \frac{0.33720 - 0}{0.01373} = 24.56$$

• Pr(>|t|)
= $P(\text{t value} > t_{(n-1)}) + P(-\text{t value} < t_{(n-1)})$
= pt(q = 24.56, df = n-1, lower.tail = FALSE) + pt(q = -24.56, df = n-1)
= $8.155 \times 10^{-6} + 8.155 \times 10^{-6} = 1.631 \times 10^{-5}$

Examples 29/33.

4. Canned function

```
stats::t.test(reaction.times)

## One Sample t-test with reaction.times
## t = 24.6, df = 4, p-value = 1.63e-05
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.299 0.375
## sample estimates:
## mean of x
## 0.337
```

Examples 30/33.

5. Bootstrap

```
df_react <= data.frame(reaction.times) # need data.frame to bootstrap
B <- 10000; N <- nrow(df_react)
R <- replicate(B, {
    dplyr::summarize(r = mean(reaction.times)) %>%
    dplyr::summarize(r = mean(reaction.times)) %>%
    dplyr::pull(r)
})
## 2.5% 97.5%
## 0.315 0.362
```


xamples 31/33 •

Summary

- We use *t* procedures instead of *Z* when we have very small samples $(n \le 30)$
- This is because our estimate of σ is probably not accurate with such a small sample
- We account for this extra uncertainty by widening the interval → larger multiplicative factor (t_(n-1) > z^{*})

Examples 32/33

Summary

- We use *t* procedures instead of *Z* when we have very small samples $(n \le 30)$
- This is because our estimate of σ is probably not accurate with such a small sample
- We account for this extra uncertainty by widening the interval → larger multiplicative factor (t_(n-1) > z^{*})
- Reality check: It is unlikely you will have such a small sample unless you're working with rats
- In practice you don't need to worry about t vs. Z. The software does it for you.
- However, you should still understand where the numbers are coming from and how it is being calculated. Computers aren't intelligent, they're just well trained.

Examples 32/33 •

Session Info

```
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop!_OS 20.04 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
attached base packages:
                        graphics grDevices utils
[1] tools
              stats
                                                      datasets methods
[8] base
other attached packages:
[1] latex2exp_0.4.0
                       mosaic 1.7.0
                                         Matrix 1.2-18
                                                           mosaicData 0.20.1
 [5] ggformula 0.9.4
                       ggstance 0.3.4
                                         lattice 0.20-41
                                                           NCStats 0.4.7
 [9] FSA 0.8.30
                       forcats 0.5.0
                                         stringr 1.4.0
                                                           dplvr 1.0.2
[13] purrr_0.3.4
                                         tidyr_1.1.2
                       readr 1.3.1
                                                           tibble 3.0.3
[17] ggplot2 3.3.2
                       tidvverse 1.3.0
                                         knitr 1.29
loaded via a namespace (and not attached):
 [1] fs 1.5.0
                        lubridate 1.7.9
                                           httr 1.4.2
                                                              backports_1.1.9
 [5] R6 2.4.1
                        DBI 1.1.0
                                           colorspace 1.4-1
                                                               withr 2.2.0
 [9] tidyselect 1.1.0
                        gridExtra 2.3
                                           leaflet 2.0.3
                                                              curl 4.3
[13] compiler 4.0.2
                        cli 2.0.2
                                           rvest 0.3.6
                                                               xml2 1.3.2
[17] ggdendro 0.1.22
                        labeling 0.3
                                           mosaicCore 0.8.0
                                                               scales 1.1.1
[21] digest_0.6.25
                        foreign_0.8-79
                                           rio_0.5.16
                                                              pkgconfig_2.0.3
[25] htmltools 0.5.0
                        dbplyr_1.4.4
                                           highr 0.8
                                                              htmlwidgets 1.5.1
[29] rlang 0.4.7
                        readxl 1.3.1
                                           rstudioapi 0.11
                                                               farver 2.0.3
[33] generics 0.0.2
                        isonlite 1.7.1
                                           crosstalk 1.1.0.1
                                                              zip 2.1.1
[37] car 3.0-9
                        magrittr_1.5
                                           Rcpp 1.0.5
                                                               munsell 0.5.0
[41] fansi 0.4.1
                        abind 1.4-5
                                           lifecycle 0.2.0
                                                              stringi 1.5.3
[45] carData 3.0-4
                        MASS 7.3-53
                                           plvr 1.8.6
                                                              grid 4.0.2
[49] blob_1.2.1
                        ggrepel_0.8.2
                                           crayon_1.3.4
                                                              haven_2.3.1
[53] splines_4.0.2
                        hms_0.5.3
                                                              reprex_0.3.0
                                           pillar_1.4.6
                                                              modelr_0.1.8
[57] glue_1.4.2
                        evaluate_0.14
                                           data.table_1.13.0
[61] vctrs_0.3.4
                        tweenr_1.0.1
                                           cellranger_1.1.0
                                                              gtable_0.3.0
                        assertthat_0.2.1
                                           TeachingDemos_2.12 xfun_0.17
[65] polyclip_1.10-0
[69] ggforce_0.3.2
                        openxlsx_4.1.5
                                           broom_0.7.0
                                                              viridisLite_0.3.0
[73] ellipsis_0.3.1
```