1. Suppose that a string of length 2 has its ends clamped so that $a^2 = 3$. If its initial displacement is $5\sin(4\pi x)$ and its initial velocity is zero, then what is its displacement at any t > 0. What is the first value of t_0 so that $u(x,t_0) = 0$? What is the displacement of the string at time $t = \frac{1}{12\sqrt{3}}$. Is it just a constant times the initial displacement?

ANS. The solution is $5\sin(4\pi x)\cos(\sqrt{3}4\pi t)$. The first value of t_0 so that $u(x,t_0)=0$ is determined by setting $\sqrt{3}4\pi t_0=\pi/2$, ie, $t_0=1/(8\sqrt{3})$. The displacement of the string at time $t=\frac{1}{12\sqrt{3}}$ is

$$5\sin(4\pi x)\cos(\frac{\pi}{3}) = \frac{1}{2}5\sin(4\pi x)$$

which is just 1/2 of the original displacement.

- 2. Assume the string in Problem 1 has initial displacement is f(x) = 1 |1 x| and initial velocity equal to zero. Draw a sketch of the displacement of the string at time $t = \frac{1}{12\sqrt{3}}$. You need to use the Java applet for plotting solutions of the wave equation to answer this part of this problem. Is it just a constant times the initial displacement?
- **ANS.** We need to find a sine series for the function

$$f(x) = 1 - |1 - x| = \begin{cases} x & \text{if } 0 < x < 1\\ 2 - x & \text{if } 1 < x < 2 \end{cases}$$

And we have the following formula for b_n :

$$b_n = \frac{2}{2} \int_0^2 f(x) \sin\left(\frac{n\pi}{2}x\right) dx$$
$$= \int_0^1 x \sin\left(\frac{n\pi}{2}x\right) dx + \int_1^2 (2-x) \sin\left(\frac{n\pi}{2}x\right) dx$$

The above calculations involve two integration by parts For the first one we obtain:

$$\int_0^1 x \sin\left(\frac{n\pi}{2}x\right) dx = -\left(\frac{2}{n\pi}\right) \left[x \cos\left(\frac{n\pi}{2}x\right)\right]_0^1 + \left(\frac{2}{n\pi}\right) \int_0^1 \cos\left(\frac{n\pi}{2}x\right) dx$$
$$= -\left(\frac{2}{n\pi}\right) \cos\left(\frac{n\pi}{2}\right) + \left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi}{2}\right)$$

For the second one we obtain:

$$\int_{1}^{2} (2-x) \sin\left(\frac{n\pi}{2}x\right) dx = -\left(\frac{2}{n\pi}\right) \left[(2-x)\cos\left(\frac{n\pi}{2}x\right)\right]_{1}^{2} - \left(\frac{2}{n\pi}\right) \int_{1}^{2} \cos\left(\frac{n\pi}{2}x\right) dx$$
$$= \left(\frac{2}{n\pi}\right) \cos\left(\frac{n\pi}{2}\right) + \left(\frac{2}{n\pi}\right)^{2} \sin\left(\frac{n\pi}{2}\right)$$

Adding these two finally gives us:

$$b_n = 2\left(\frac{2}{n\pi}\right)^2 \sin\left(\frac{n\pi}{2}\right)$$

3. Assume the elastic string in Problem 1 has initial displacement zero and initial velocity given by $g(x) = 3\sin(4\pi x)$, then what is its displacement at any t > 0? What is the first value of t_0 so that $u(x, t_0) = 0$?

ANS. We would like to try $3\sin(4\pi x)\sin(\sqrt{3}4\pi t)$ as the solution. However, when we differentiate with respect to t and set t=0 we are left with an extra factor of $\sqrt{3}4\pi$. So the correct formula for the displacement is

$$u(x,t) = \frac{3}{\sqrt{3}4\pi} \sin(4\pi x) \sin(\sqrt{3}4\pi t)$$

To find the first value of t_0 so that $u(x,t_0)=0$ we solve $\sqrt{3}4\pi t_0=\pi$. That is, $t_0=(\sqrt{3}4)^{-1}$

4. For the string in Problem 1 verify that the solution can be rewritten as:

$$u(x,t) = \frac{1}{2}(f(x+at) + f(x-at))$$

ANS. The solution to Problem 1 is: $u(x,t) = 5\sin(4\pi x)\cos(\sqrt{3}4\pi t)$. We use the identity:

$$\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B))$$

to write u(x,t)

$$u(x,t) = \frac{5}{2} \left(\sin \left(4\pi (x + \sqrt{3}t) \right) + \sin \left(4\pi (x - \sqrt{3}t) \right) \right) = \frac{5}{2} (f(x + \sqrt{3}t) + f(x - \sqrt{3}t))$$

where $f(x) = \sin(4\pi x)$.

©2009 by Moses Glasner