Espaços vetoriais

Resumo de alguns resultados importantes

No que se segue, V designa um espaço vetorial real e $\mathbf{v}_1, \dots \mathbf{v}_n$ são n vetores de V.

- 1. Seja V tal que dim V=m. Tem-se:
 - (a) se n < m, então $\mathbf{v}_1, \dots \mathbf{v}_n$ não geram V;
 - (b) se n > m, então $\mathbf{v}_1, \dots \mathbf{v}_n$ não são linearmente independentes;
 - (c) se n=m e $\mathbf{v}_1,\ldots\mathbf{v}_m$ geram V, então $(\mathbf{v}_1,\ldots\mathbf{v}_m)$ é um base de V;
 - (d) se n=m e $\mathbf{v}_1,\ldots\mathbf{v}_m$ são linearmente independentes, então $(\mathbf{v}_1,\ldots\mathbf{v}_m)$ é um base de V;
 - (e) se U é um subespaço de V e dim U=m, então U=V.

2.

$$\langle \mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v} \rangle = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle \iff \mathbf{v} \in \text{combinação linear de } \mathbf{v}_1, \dots, \mathbf{v}_n$$

$$\iff \mathbf{v} \in \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$$

- 3. $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle, \ \alpha \neq 0$
- 4. $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 \dots, \mathbf{v}_n \rangle$
- 5. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são linearmente independentes e $\alpha \neq 0 \iff \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são linearmente independentes.
- 6. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são linearmente independentes $\iff \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n$ são linearmente independentes.
- 7. Se $(\mathbf{v}_1, \dots \mathbf{v}_n)$ é uma base V, então todo o vetor $\mathbf{v} \in V$ pode escrever-se, de forma única, como combinação linear de $\mathbf{v}_1, \dots, \mathbf{v}_n$. (Os coeficientes da combinação linear são chamados as *coordenadas* de \mathbf{v} relativamente a essa base).

Nota: Ver a resolução do exercício 4.18.

- 8. \mathbf{v}_1 é linearmente independente $\iff \mathbf{v}_1 \neq \mathbf{0}$
- 9. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \ (n \ge 2)$ são linearmente dependentes \iff (pelo menos) um dos vetores é combinação linear dos restantes.
- 10. v_1, v_2 são linearmente independentes \iff nenhum dos vetores é um múltiplo escalar do outro.

Resultados válidos no espaço $V = \mathbb{R}^m$

Dados $\mathbf{v}_1,\ldots,\mathbf{v}_n\in\mathbb{R}^m$ e $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$, vamos denotar por A a matriz $m\times n$ que tem $\mathbf{v}_1,\ldots,\mathbf{v}_n$ como colunas, i.e. $A=\begin{pmatrix}\mathbf{v}_1&\ldots&\mathbf{v}_n\end{pmatrix}$, e por α o vetor $\alpha=\begin{pmatrix}\alpha_1\\\vdots\\\alpha_n\end{pmatrix}$.

- 1. $\dim \mathbb{R}^m = m$
- 2. O único subespaço de \mathbb{R}^m com dimensão m é o próprio \mathbb{R}^m (veja 1.(e) acima).

3.
$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = (\mathbf{v}_1 \quad \cdots \quad \mathbf{v}_n) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = A \boldsymbol{\alpha}.$$

4.

$$\boxed{\mathbf{v} \in \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle} \iff \exists \, \alpha_1, \dots, \alpha_n \in \mathbb{R} : \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \mathbf{v}$$

$$\iff \exists \, \boldsymbol{\alpha} : A \, \boldsymbol{\alpha} = \mathbf{v}$$

$$\iff \text{o sistema de matriz ampliada } (A|\mathbf{v}) \text{ tem solução}$$

$$\iff \boxed{\mathsf{car}(A) = \mathsf{car}(A|\mathbf{v})}$$

Nota: Como car $(X) = \text{car}(X^T)$, também podemos ver se car $\begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{pmatrix} = \text{car} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{pmatrix}$, onde, neste caso,

dispomos os vetores como linhas de uma matriz.

5. Para escrever \mathbf{v} como combinação linear de $\mathbf{v}_1, \dots, \mathbf{v}_n$ (caso isso seja possível), basta encontrar uma solução α do sistema de matriz ampliada $(A|\mathbf{v})$, uma vez que

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha \mathbf{v}_n \iff A \mathbf{\alpha} = \mathbf{v}.$$

Em particular, se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ é uma base de \mathbb{R}^n , o vetor $(\alpha_1, \dots, \alpha_n)$ das coordenadas de um dado vetor \mathbf{v} nessa base é a solução do sistema (possível e determinado) de matriz ampliada $(A|\mathbf{v})$.

6. Por definição, $\mathbf{v}_1,\dots,\mathbf{v}_n$ são linearmente independentes se e só se for válida a seguinte implicação

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0} \Rightarrow \alpha_1 = \dots = \alpha_n = \mathbf{0}.$$

Logo, tem-se:

$$oxed{\mathbf{v}_1,\ldots,\mathbf{v}_n}$$
 linearmente independentes $oxed{\Longleftrightarrow} (A\,oldsymbol{lpha}=\mathbf{0}\Rightarrowoldsymbol{lpha}=\mathbf{0})$

 \iff o sistema homogéneo de matriz A tem apenas a solução nula

$$\iff \boxed{\mathsf{car}(A) = n}$$

Nota: Como car $A = \operatorname{car} A^T$, também podemos ver qual é a característica da matriz que tem por linhas os vetores dados (dispostos em linha).

- 7. Se os vetores $\mathbf{v}_1, \dots, \mathbf{v}_n$ forem linearmente dependentes, para escrever um deles como combinação linear dos restantes, podemos:
 - (i) determinar uma solução não trivial α do sistema homogéneo cuja matriz simples é A (tal solução tem de existir, uma vez que esse sistema é indeterminado);
 - (ii) partindo de $\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$, se, por exemplo, for $\alpha_1 \neq \mathbf{0}$, escrever $\mathbf{v}_1 = -\frac{\alpha_2}{\alpha_1} \mathbf{v}_2 \dots \frac{\alpha_n}{\alpha_1} \mathbf{v}_n$ (ou de modo análogo para qualquer outro $\alpha_i \neq 0$).
- 8. Dada uma matriz $A \in \mathbb{R}^{m \times n}$ e sendo A' equivalente por linhas a A, tem-se:
 - (a) as linhas não nulas de A' formam uma base de $\mathcal{L}(A)$;
 - (b) dim $\mathcal{L}(A) = \operatorname{car} A$;
 - (c) as colunas principais de A formam uma base de C(A);
 - (d) $\dim \mathcal{C}(A) = \operatorname{car} A$;
 - (e) $\dim \mathcal{N}(A) = n \operatorname{car} A$.
- 9. Sendo $U=\langle \mathbf{v}_1,\dots,\mathbf{v}_n \rangle$, com $\mathbf{v}_1,\dots,\mathbf{v}_n \in \mathbb{R}^m$ e sendo $A=\begin{pmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{pmatrix}$, tem-se:
 - (a) as colunas principais de A formam uma base de U;
 - (b) $\dim U = \operatorname{car} A$.

Nota: Esta base é formada por vetores que pertencem ao conjunto $\{v_1, \dots, v_n\}$.

(Aplicação imediata dos resultados 8. (c) e 8. (d).)

10. Sendo $U = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$, com $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^m$, $B = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{pmatrix}$ (com os vetores $\mathbf{v}_1, \dots, \mathbf{v}_n$ dispostos em

linha) e sendo B' um matriz equivalente por linhas a B, tem-se

- (a) as linhas não nulas de B' formam uma base de U;
- (b) $\dim U = \operatorname{car} B$.

Nota: Os vetores que formam esta base não pertencem (em geral) ao conjunto $\{v_1, \ldots, v_n\}$.

(Aplicação imediata dos resultados 8. (a) e 8. (b).)