Olympiad stuff you should know (and some stuff that could be nice to know)

By Markus & Joe

Contents

1	\mathbf{Alg}	ebra	1	
	1.1	Identities	1	
	1.2	Sequences, sums and products	2	
	1.3	Functional equations	2	
	1.4	Inequalities	2	
	1.5	Polynomials	3	
2	Discrete mathematics			
	2.1	Combinatorics	4	
	2.2	Graph theory	5	
	2.3	Other that doesn't fit into any category?	5	
3	Geometry			
	3.1	Standard normal geometry	5	
	3.2	Some Slightly Less Standard Geometry	6	
	3.3	Configurations which often come up	6	
	3.4	Bish Bosh Bashing	6	
	3.5	Special Points	7	
	3.6	Weird Geometry Stuff	7	
		3.6.1 Inversion	7	
		3.6.2 Projective	7	
		3.6.3 Complete Quadrilaterals	7	
	3.7	Random High-Tech Theorems and Tricks that are Good to Know	8	
4	Nur	mber Theory	8	
	4.1	Divisibility	8	
	4.2	Modular arithmetic	8	
	4.3	Diophantine equations	9	
	4.4	Abstract algebra stuff	9	
	4.5	Other	9	

1 Algebra

1.1 Identities

• Binomial theorem and multinomial theorem

- Factorization of $a^n b^n$ and $a^n + b^n$
- Brahmagupta's identity
- Euler's four-square identity
- $x^3 + y^3 + z^3 3xyz = (x + y + z)(x^2 + y^2 + z^2 xy yz zx)$

1.2 Sequences, sums and products

- Telescoping series
- Difference equations
- Arithmetic progression/sum, geometric progression/sum, geometric series
- Fibonacci sequence

1.3 Functional equations

- Basic definitions: domain, codomain, injective, surjective, bijective, involution, additive, linear, cyclic, periodic.
- Cauchy's functional equation
- Jensen's functional equation
- Monotonocity and continuity
- Rewriting to recurrence relation
- Polynomial functional equations
 - Expanding to \mathbb{C} and using fundamental theorem of algebra¹
 - Polynomials are continuous

1.4 Inequalities

- Triangle inequality and $x^2 \ge 0$
- Jensen's inequality
- QM-AM-GM-HM
- Power Means generalization of AM-GM
- Muirhead's inequality

¹great example where this is the key part: find all polynomials p(x) such that $p(x^2) = p(x)p(x+1)$.

- Hölder's inequality
- Cauchy-Schwarz, Titus Lemma
- Rearrangement inequality and Chebyshev's inequality
- Karamata's inequality
- Schur's inequality
- Lagrange multipliers (xD)
- Substitutions like Ravi substitution.

1.5 Polynomials

- The fundamental theorem of algebra
- Polynomial division algorithm
- Vietas formulas
- Remainder factor theorem and Rational root theorem
- Roots of unity
- Lagrange interpolation
- Irreducibility
 - Gauss' lemma
 - Eisensteins (expanded) irreducibility criterion
 - Cohn's irreducibility criterion
 - Perron's irreducibility criterion
- Algebraic numbers and the minimal polynomial
- Calculus
 - ${}^{2}(x-a)^{k} | P(x) \implies (x-a)^{k-1} | P'(x)$
 - Intermediate value theorem
 - Rolle's theorem
 - Taylor series
- Symmetric polynomials
- Rouché's theorem
- Chebyshev polynomials

²A nice use of this theorem is to show that the Taylor polynomial of e^x around x = 0 has only simple zeros (in the complex plane)

2 Discrete mathematics

2.1 Combinatorics

- Sets
 - Basic definitions: elements, subsets, union, intersection, difference, complement, cartesian product, function, image, pre-image, injective, surjective, bijective, composition, cardinality.
- Permutations and combinations
- Bijections
- Double counting
- Pascal's triangle and binomial coefficients
 - Symmetry of Pascal's triangle
 - Row-, column- and diagonal-row sums
 - Pascal's identity
 - Hockey-stick identity
 - Vandermonde's identity
- Recursion
- Stars and bars
- Pidegeonhole principle
- PIE (Principle of Inclusion-Exclusion)
- Some abstract algebra stuff
 - Permutation groups
 - Group actions, especially Burnside's formula/lemma
- Hall's marriage theorem
- Dilworth's theorem

2.2 Graph theory

- Basic definitions: graph, vertice, edge, face, adjacent, incident, degree, path, cycle, length of path and cycle, walk, connect/disconnected, tree, forest, Hamiltonian path/cycle, Eulerian circuit, complete, planar, bipartite, k-partite
- Handshake lemma
- Eulerian graphs, planar graphs, the complete graph K_n
- Euler's formula on planar graphs
- Kuratowski's theorem
- Dirac's theorem
- Ore's theorem
- Cayley's theorem
- Turan's lemma
- Four colour theorem
- Zarankiewicz's Lemma
- Ramsey theory

2.3 Other that doesn't fit into any category?

- Bayes' theorem
- Invariants
- Monovariants
- Generating functions
- Game theory

3 Geometry

3.1 Standard normal geometry

- Similar Triangles
- Cyclic Quads
- Circumcentre

- Orthocentre and its Configurations
- Incentre
- Centroid
- Tangents
- Incircles and Excircles
- Incentre/Excentre Lemma
- Power of a Point
- Radical Axis

3.2 Some Slightly Less Standard Geometry

- Homotheties
- Nine-Point Circle
- Basic Trig
- Ceva
- Menelaus

3.3 Configurations which often come up

- Incircle/Excircle Configurations
- Simson Lines
- Midpoints of Altitudes
- Isogonal/Isotomic Conjugates
- Symmedians
- Curvilinear and Mixtilinear Incircles

3.4 Bish Bosh Bashing

- Trig bashing/length chasing
- Cartesians
- Complex Bash
- Areal/Barycentric Bash

3.5 Special Points

- HM Point
- Isogonal Conjugate of above
- Fermat Point
- Isodynamic Point
- Bevan Point

3.6 Weird Geometry Stuff

3.6.1 Inversion

- Definition of Inversion
- Angle Conservation in Inversion
- Overlays
- Orthogonal Circles
- Inversion Distance Formula (never used this but i guess it is in egmo lol)

3.6.2 Projective

- Cross-Ratio
- Harmonic Bundles and Quadrilaterals
- Apollonian Circles
- Poles/Polars and Bruhcard's Theorem
- Pascal's Theorem
- Brianchon's Theorem
- Purely Projective problems
- Projective Transformations

3.6.3 Complete Quadrilaterals

- sorry i haven't covered this so literally just copying it from egmo contents
- Spiral Similarity
- Miquel's Theorem and Miquel Points
- Gauss-Bodenmiller Theorem
- Miquel Points of Cyclic Quadrilaterals

3.7 Random High-Tech Theorems and Tricks that are Good to Know

- Napoleon's theorem
- Cayley-Bacharach
- Sawayama-Thebault
- Circle Tangency through Homotehty Trick (see ISL 2018 G5 or IMO 2011/6)
- Moving Points

4 Number Theory

4.1 Divisibility

- Euclid's algorithm, division algorithm and gcd
- Bezout's identity
- Divisibility relations like Euclid's lemma
- Fundamental theorem of arithmetic

4.2 Modular arithmetic

- Basic congruence rules
- Linear congruences and Chinese remainder theorem
- Euler's theorem and Fermat's little theorem
- Wilson's theorem
- Order of an element
- Primitive roots
- Quadratic congruences
 - Quadratic residues
 - Legendre symbol
 - $-x^2 \equiv -1 \pmod{p} \iff p \equiv 1 \pmod{4}$
 - Euler's criterion
 - Law of quadratic reciprocity

- Lucas' theorem
- Cyclotomic polynomials
- Lagrange's theorem for polynomials

4.3 Diophantine equations

- Linear diophantine equations
- \bullet Finding contradiction modulo n
- p-adic valuation
 - Basic theorems and definition
 - Legendre's formula
 - Lifting the exponent lemma
- Pell's equation
- Hensel's lemma
- Pythagoras' theorem and Fermat's Last Theorem

4.4 Abstract algebra stuff

- Basic definitions: rings, integral domains, fields, ideals and principal ideal domains (PID), Euclidean domains (ED), unique factorization domains (UFD)
- Eisenstein's criterion and Gauss' lemma
- Gaussian integers $\mathbb{Z}[i]$
- Field extensions of \mathbb{Q} like $\mathbb{Q}(\sqrt{d})$ and the ring of integers $\mathbb{Z}[\omega]$ of $\mathbb{Q}(\sqrt{d})$.

4.5 Other

- Infinite descent
- Bertrand's postulate
- Zsigmondy's theorem
- Vieta root jumping
- Chicken McNugget theorem
- Pidgeonhole principle

- $\bullet\,$ Sum of divisor function and number of divisors function
- Fibonacci Numbers, Fermat numbers, Mersenne primes and Euler-Euclid theorem (bijection between perfect numbers and Mersenne primes)