基于 TDD 的量子模型检测中的可达性分析 硕士学位论文答辩

高丁超导师: 应圣钢

中国科学院软件研究所

2024年5月12日

- 1 背景介绍
- 2 研究内容
- 3 研究结果
- 4 学位论文修改情况

背景介绍 ●00000000000

- 1 背景介绍
- 2 研究内容
- 3 研究结果
- 4 学位论文修改情况

ISCAS

- 标题:基于张量网络的量子模型检测中的可达性分析
- 总结:
 - 问题:如何在量子系统中验证命题。
 - 解决方案: 采用量子模型检测。
 - 挑战:原有的方法随着量子比特数量的增加,资源需求指数级增长。
 - ▶ 方法: 引入新的数据结构 TDD 对量子算法进行表示,同时实现了优化算法进一步 减少了时间消耗。

研究结果

量子计算的关键概念

- 量子比特 (Qubits): the quantum version of the classic binary
- 叠加态 (Superposition): $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \left|\begin{array}{c} \alpha \\ \beta \end{array}\right|$
- 纠缠 (Entanglement) : $|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- 量子门 (Quantum Gates)

量子门操作例子

• 单量子门例子:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

• 多量子门例子:
$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• 测量,比如 Z 基测量: 状态为 $|0\rangle$ 输出 1,状态为 $|1\rangle$ 输出 -1。

量子计算例子

背景介绍 0000●000000

图: Grover_3 算法的电路。

ISCAS

研究背景

- 量子计算的快速发展
 - ▶ 规模化拓展
 - IBM: Condor 1121; 中科大: 九章三号 255
 - ▶ 容错计算
 - IonQ: 29; QuEra: 48

研究结果

研究背景

- 量子计算的快速发展
 - ▶ 规模化拓展
 - IBM: Condor 1121; 中科大: 九章三号 255
 - 容错计算
 - IonQ: 29; QuEra: 48
- 现有验证方法
 - 模型检测自动化程度高,但存在资源爆炸的问题
 - 定理证明处理复杂问题有明显优势,但自动化程度低

量子迁移系统

• 迁移系统 (transition system): (S, I, Σ, T)

where
$$\begin{cases} x = x_1, \dots, x_n \\ y = y_1, \dots, y_n \\ \sigma = \sigma_1, \dots, \sigma_m \end{cases}$$

• 量子迁移系统: $(\mathcal{H}, S, \Sigma, \mathcal{T})$

研究结果

可达性问题

ISCAS

量子模型检测例子

图: Grover_3 算法的电路。

- oracle 为 ccx,即 $O|x\rangle|y\rangle = |x\rangle|f(x) \oplus y\rangle$, $f(x) = x_1 \wedge x_2$ 。
- $\bullet \ \, \textbf{model:} \ \, (\mathcal{H}_8, \textit{S} = \textit{span}\{|++-\rangle, |11-\rangle\}, \{1\}, \mathcal{T}_1), \, \mathcal{T}_1 = (2|\Psi\rangle\langle\Psi|-\textit{I})\textit{O}$
- property: $\mathcal{T}_1(S) = S$

张量决策图 (TDD)

- **TDD 定义**: 由节点集 *V*、边集 *E*、索引函数 *index*、值函数 *value*、低高边映射 *low/high* 和权重 *w* 组成。
- ▶ 节点集 V 分为非终端节点 V_N 和终端节点 V_T ,且有唯一根节点 $r_{\mathcal{F}}$ 。
 - ▶ 边集 E 包含所有低边 (v, low(v)) 和高边 (v, high(v))。
 - ightharpoonup 索引函数 index 分配索引,值函数 value 赋予终端节点复数值,w 为边赋权重,特别是根边权重 $w_{\mathcal{F}}$ 。

TDD 例子

$$P = \frac{1}{6} \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 & -3 & 3 \end{bmatrix}$$

图: 可以用 10 个 TDD 节点或者一个 8*8 的矩阵表示子空间 $S = span\{|++-\rangle, |11-\rangle\}$ 投 影算子。其中 TDD 虚线表示低点,实线表示高边。

目录

- 1 背景介绍
- 2 研究内容
- 3 研究结果
- 4 学位论文修改情况

解决方案简介:

- 研究问题: 减缓量子模型检测中的资源消耗
- 基本方法:将转移关系和状态空间转化为TDD表示,然后计算系统的状态转 移。
- 改进算法:
 - ▶ addition partition: 寻找依赖最多的索引项,从而分割线路。
 - contraction partition: 通过预设的参数进行线路分割。
 - ▶ 基于窗函数对 TDD 分割:
 - ▶ 用子空间近似 TDD 表示 |ψ⟩

理论支撑

对于 $(\mathcal{H}, S, \Sigma, \mathcal{T})$ 有:

定理

设T是一个量子操作。则

- 2 若 $\mathcal{T} = (\mathcal{T}_{\sigma})_{\sigma \in \Sigma}$ 且每个 \mathcal{T}_{σ} 有 Kraus 算符和表示 $\mathcal{T}_{\sigma} = \{E_{\sigma j_{\sigma}}\}$ 则 $\mathcal{T}(S) = span\Big(\bigcup_{\sigma,j_{\sigma}} \{E_{\sigma j_{\sigma}} | \psi \rangle : |\psi \rangle \in S\}\Big)$ 。

子空间

- 通过投影算子 *P* 最左侧非零路径所对应的归一化状态 |*v*_i⟩,求解空间的基分解
- 通过施密特正交化方法,向 S_1 中添加 S_2 正交基中不在 S_1 子空间的基,得到 $S_1 \bigvee S_2$ 的正交基

图: 子空间 $S = span\{|++-\rangle\,, |11-\rangle\}$ 投影算子的 TDD 表示

子空间

- 通过投影算子 *P* 最左侧非零路径所对应的归一化状态 |*v*_i⟩,求解空间的基分解
- 通过施密特正交化方法,向 S₁ 中添加 S₂ 正交基中不在 S₁ 子空间的基,得到 S₁ ∨ S₂ 的正交基

图: 子空间

$$|\mathbf{v}_1\rangle = \frac{\sqrt{2}}{\sqrt{3}}|0\rangle|+\rangle|-\rangle + \frac{1}{\sqrt{3}}|1\rangle|0\rangle|-\rangle$$

投影算子的 TDD 表示

窗函数分割

函数对于同一输入,始终满足以下条件:

- $w_1 + \cdots + w_k = 1$
- 对任意 $i \neq j$, $w_i \cdot w_i = 0$

窗函数分割

(a) |v₁〉的 TDD 表示

(b) $|v_1\rangle$ 在 $w_1=\bar{q_0}$ 下的 TDD 表示

(c) $|v_1\rangle$ 在 $w_2=q_0$ 下的 TDD

表示

ISCAS

用子空间近似 TDD 表示 $|\psi\rangle$

- 特定量子态 $|\psi\rangle$,能够通过包含它的适当子空间来近似 $|\psi\rangle$ 。
- 例如通过 {|00-⟩, |01-⟩, |10-⟩} 近似表示
 |v₁⟩

:

adddition partition

- 将量子电路转换为索引依赖图 G。
- 通过图 G 的连通度选择索引进行电路分割。

图: Grover_3 电路的索引依赖图。对索引项 x_3^1, x_3^2 进行线路分割,效果更好。

ISCAS

Contraction partition

- 确定预设参数 k1 和 k2。
- 分割电路, 每部分包括最多 k1 个量子比特, 连接最多 k2 个多比特门。

图: 对 bit flip 电路进行划分,其中 k1=3,k2=2。

研究结果

- 1 背景介绍
- 2 研究内容
- 3 研究结果
- 4 学位论文修改情况

对 TDD 结构的优化

表: TDD 拆分与近似的优化方案

线路	优化方法		k = 0	k = 1	k = 2	k = 3
Grover_40		时间	1,510.42	1,519.24	1,459.02	1,495.20
		最大节点个数	589,865	393,423	393,239	245,814
QFT_100	マウロにか	时间	121.28	118.78	116.69	128.31
	, 上字间处似	最大节点个数	524,369	262,226	262,226	131,155

线路划分技术的参数选择

图: 不同参数 k 对 Grover_15 线路的 additon 划分方案的时间影响,k 不应选择过大

线路划分技术的参数选择

表: 对 grover_15 应用不同的 contration 参数的时间对比, k1, k2 均不应选择过大

k2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
<u>k1</u>	2.8	2.2	2.1	2.0	1.9	2.0	2.1	2.0	2.1	2.0	2.0	2.1	2.2	2.1	2.1
2	2.6	2.0	2.0	1.8	2.0	2.0	2.0	2.0	2.1	2.0	2.3	2.0	2.3	2.3	2.4
3	2.2	1.9	1.8	1.6	2.0	1.9	2.1	2.1	2.5	2.3	2.7	2.3	3.1	2.8	3.3
4	2.3	1.8	2.0	1.7	2.0	2.1	2.2	2.1	2.6	2.3	2.8	2.7	3.3	3.0	3.3
5	2.2	1.7	1.9	1.6	1.9	2.0	2.3	1.9	2.5	2.3	2.8	2.7	3.4	3.0	3.6
6	2.1	1.5	1.8	1.7	2.2	1.9	2.5	2.2	2.9	2.8	3.1	2.9	3.7	3.7	4.2
7	2.1	1.5	1.9	1.6	2.2	1.9	2.5	2.2	2.8	3.0	3.6	3.3	4.2	5.7	5.0
8	2.0	1.7	1.8	1.7	2.1	2.0	2.4	2.2	2.8	2.8	3.7	3.4	4.3	4.8	5.2
9	2.1	1.5	2.0	1.4	2.2	2.0	2.5	2.0	3.3	2.9	3.7	3.5	4.9	4.7	5.8
10	2.3	1.9	2.3	1.6	2.6	2.7	3.1	2.2	4.0	3.6	4.6	3.9	5.6	5.2	7.5
11	3.2	3.2	3.5	3.1	4.7	4.2	5.6	4.2	6.8	7.2	7.6	6.3	9.0	8.1	11
12	5.6	6.0	7.2	6.0	8.3	9.0	8.9	7.8	11	11	12	11	12	15	16
13	11	12	14	12	15	18	18	15	18	20	18	32	32	30	25
14	20	21	24	32	31	44	77	50	86	109	68	133	70	119	142
15	28	30	31	53	69	111	85	81	102	153	114	130	166	162	235

线路划分技术

benchmark	basic	addition	contraction
Grover 20	~5 分	~4 分	~4 秒
Quantum Fourier Transform 20	~20 分	$\sim \! 11$ 分	<1 秒
Quantum Random walk 20	~6 分	\sim 4 分	\sim 15 秒
Bernstein-Vazirani 100	~7 秒	~7 秒	\sim 0.4 秒
GHZ 500	~3 秒	$\sim \! 1.5$ 秒	\sim 1.7 秒

表:对不同量子算法计算一步迁移的时间消耗

- 对于有特殊结构的算法,如 GHZ 算法,addition partiton 有更好的执行效率。
- 对于一般的电路, contraction partition 的执行效率更好。

- 1 背景介绍
- 2 研究内容
- 4 学位论文修改情况

盲审结果与修改情况

● 审稿人意见: 优秀, 良好, 良好

• 表达规范性: 专有名词, 引用学者称呼规范化

• 工作完整性: 算法的正确性保证

谢谢