QUÍMICA

Profs.: Aleksándros Souza, Diego J. Raposo, Elaine C. Vaz,

Lêda C. Silva, Michelle F. Andrade

Nome:	
CPF:	Turma:

2.º Exercício Escolar - 2024.1

Orientações:

- Responder tudo de caneta azul ou preta, e na ordem
- Todas as respostas e cálculos devem ser realizados APENAS na folha do papel pautado
- É permitido o uso de qualquer tipo de calculadora, com excessão da do celular

Questão 1. (2,0 pontos) Considere o ciclo de Born-Haber da substância de fórmula $AB_{2(s)}$ apresentado a seguir. Informe o nome das energias envolvidas nas etapas ΔH_1 , ΔH_3 e ΔH_4 , e o sinal dessas energias em termos de entalpia.

Questão 2. (2,0 pontos) O tetracloreto de silício (SiCl₄) é um líquido incolor e fumegante, com um odor pungente. É empregado em cortinas de fumaça, para fazer vários produtos químicos contendo silício e em análises químicas. Sobre esse composto responda:

- (a) (0,5 ponto) A estrutura de Lewis, a partir da distribuição eletrônica de cada átomo;
- **(b) (1,0 ponto)** A geometria do composto, mostrando os pares de elétrons ligantes e não ligantes ao redor do átomo central;
- **(c) (0,5 ponto)** A previsão se o composto é polar ou apolar, justificando sua resposta de acordo com o momento de dipolo resultante da combinação dos momentos de dipolo das ligações.

Questão 3. (2,0 pontos) As forças intermoleculares influenciam diversas propriedades dos líquidos, incluindo pontos de fusão e ebulição. Assim, disponha as substâncias H₂NNH₂, CCl₄ e O₃, em ordem crescente do ponto de ebulição. Justifique e defina cada tipo de interação intermolecular.

Questão 4. (2,0 pontos) Em nosso cotidiano é comum presenciarmos pequenos insetos flutuando ou andando sobre a água. Explique tal fenômeno baseando-se nas propriedades dos líquidos.

Questão 5. (2,0 pontos) Sobre a prática "Reações químicas em micro escala", pede-se:

- (a) (1,0 ponto) Escreva a reação química, <u>conforme informada em aula</u>, que representa a queima da vela.
- (b) (1,0 ponto) O que é um indicador ácido-base? Exemplifique.

IA																	VIIIA
1 <u>2,1</u> H	ΠA											III A	IVA	VA	VIA	VIIA	He
3 Li 7	Be											5 <u>2,0</u> B 11	C 12	N 14	O 16	F 19	Ne
Na 23	Mg 24	III B	IV B	VВ	VI B	VII B		VIII B		IB	IIВ	13 1.5 Al 27	Si 28	P 31	S 32	CI 35,5	Ar 40
19 <u>0,8</u> K 39	20 <u>1.0</u> Ca 40	21 1.3 SC 45	22 <u>1.4</u> Ti 48	23 <u>1,6</u> V 51	Cr 52	Mn 55	Fe	Co 59	Ni 58,5	29 1.9 Cu 63,5	30 <u>1.6</u> Zn 65,5	Ga	Ge 72,5	33 <u>2,0</u> As 75	Se 79	Br 80	Kr 84
37 0,8 Rb 85,5	38 1,0 Sr 87,5	39 <u>1,2</u> Y 89	40 <u>1,4</u> Zr 91	Nb 93	MO 96	43 [1,9] TC (98)	44 <u>2.2</u> Ru 101	45 <u>2,2</u> Rh 103	Pd 106,5	47 1.9 Ag 108	48 1.7 Cd 112,5	49 <u>1,7</u> In 115	50 [1,8 Sn 119	51 1.9 Sb 122	Te 127,5	53 <u>2,5</u> 127	Xe 131
55 0.7 CS 133	Ba 137	lantanídeos	72 <u>1.3</u> Hf 178,5	73 1.5 Ta 181	74 1.7 W 184	75 1.9 Re 186	76 22 OS 190	77 <u>2.2</u> r 192	78 <u>2.2</u> Pt 195	79 <u>2.4</u> Au 197	80 1.9 Hg 200,5	81 1.8 TI 204	Pb 207	83 1.9 Bi 209	Po (209)	85 2.2 At (210)	Rn (222)
87 <u>0.7</u> Fr (223)	88 [0.9 Ra (226)	89-103 actinideos	Rf (267)	Db (268)	Sg (269)	Bh (270)	HS (269)	109 Mt (278)	Ds (281)	Rg (281)	Cn (285)	Nh (286)	FI (289)	MC (288)	Lv (293)	Ts (294)	Og (294)

908	57 1,1	58 1,1	59 1,1	60 1,1	61 1,1	62 1,2	63 1,2	64 1,2	65 1,2	66 1,2	67 1,2	68 1,2	69 1,2	70 1.2	71 1,3
anide	La	l Ce l	Pr	Nd	Pm	Sm	l Eu	Gd	Tb	Dv	Ho	l Er	Tm	Yb	Lu
lant	139	140	141	144	(145)	150	152	157	159	162,5	165	167	169	173	175
80	89 1,1	90 1,3	91 1,5	92 1,7	93 1,3	94 1,3	95 1,3	96 1,3	97 1,3	98 1,3	99 1,3	100 1,3	101 1.3	102 1,3	103 1,3
nide	Ac	Th	Pa	U	Nρ	Pu	Am	Cm	Bk	Cf	Es	l Fm	Md	No	l Lr l
acti	227	232	231	238	237	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)