Synchronous Irregular Counters

Design a synchronous irregular counter with the following count sequence: $3 \rightarrow 7 \rightarrow 1 \rightarrow 4 \rightarrow 6 \rightarrow 3$

STEP-3: Counter Table (filling the present state and next state values)
STEP-5: Use transition table on the right to fill up J0, K0, J1, K1, J2, K2 Values

	Present state			Nex	Next state							
	Q2	Q1	Q0	Q2	Q1	Q0	JO	K0	J1	K1	J2	K2
3	0	1	1	1	1	1	Х	0	Х	0	1	Х
7	1	1	1	0	0	1	Χ	0	Χ	1	Χ	1
1	0	0	1	1	0	0	Χ	1	0	Χ	1	Χ
4	1	0	0	1	1	0	0	Χ	1	Χ	Χ	0
6	1	1	0	0	1	1	1	Χ	Χ	0	Χ	1

Transition Table:					
$Q_P \rightarrow Q_N$	J	K			
0 → 0	0	Х			
0 → 1	1	Х			
1 → 0	Х	1			
1 → 1 X 0					

STEP-4 : Creating Transition Table: (Look at the smaller version on the to	op right corner)
---	------------------

$Q_P \rightarrow Q_N$	J		K		Comment
0 → 0	0	0	0	Х	No Change
0 7 0	0	0	1	^	Reset
0 → 1	1	1	0	Х	Set
071	1	1		^	Toggle
1 → 0	0	Х	1	1	Reset
170	1	^	1	1	Toggle
1 → 1	0	V	0	0	No Change
171	1	^	0	U	Set

STEP-6: Filling up K-MAPs for J0, K0, J1, K1, J2, K2

J0 Map

J0=Q1

К0 Мар

_			
	$Q0 \mid 0$)	1
Q2Q1		\	\
Q2Q1 00		X	1)
01		X	0
11		Χ	0
10		X	X
		1	1
	K	(0=O1'	,

J1 Map

Q0	0		1
Q2Q1			
00		X	0
01		Χ	Χ
11		Х	Х
10		1	Χ

J1=Q0' / Q2

K1 Map

Q0		
	0	1
Q2Q1		
00	Χ	Χ
01	Χ	0
11	0	1
10	Χ	X

K1=Q2.Q0

J2 Map

Q0		1
	0	
Q2Q1		
Q2Q1 00	X	1
01	X	1
11	Х	Х
10	X	X

J2=1

K2 Map

Q0		
	0	1
Q2Q1		
00	X	X
01	X	X
11	1	1
10	0	X

K2= Q1

Final Output Connections

J0=Q1, K0=Q1'

J1=Q0', K1=Q2.Q0

J2=1, K2=Q1

STEP-7: Connecting the output connections in the diagram

J-K FLIP-FLOP TRUTH TABLE

J	K	Q	COMMENT
0	0	Q_0	No Change
0	1	0	Reset
1	0	1	Set
1	1	Q_0	Toggle

Counter with Innegular count sequence Using J-K Flip-Flop design a counter with count sequance.

Step1: Flip-Flop nequined = 3

Step2: Next state table: All other states are don't care

	Prier.	pent S Q ₁	tate Qo	Next Q2	Sta	nte Qo	J2 K2 J1 K1 J0 K	6
			1				o x o l x x l	
			0	13	0	10	XIX XI IX	(
5	1	0	1	1.0	1	d.	X Q I X ·X ()
¥	1	1	1	0	0	1	× 1 × 1 × c)

Step 3:

Transition table for J-K Flip-Flop

Output Transitions QN QN+1	Flip-Flop. inputs
$0 \longrightarrow 0$	0 X
0> 1	1 X
1 -> 0	lupant Atio no
Him nothing a counten with	X o

Step 4 %

Q201	3.0	51
00	X	0
01	T	X
11	X	X
10	x	X

Q2Q1	00	task t
	X	X
01	X	X
11	X	1
10	X	0

