Assignment – 3

Abalone Age Prediction

Assignment Date	30 September 2022		
Student Name	Sharan D		
Student Roll Number	195002108		
Maximum Marks	2 Marks		

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import scale
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
```

Task 1 & 2 - Downloading and Loading the Dataset

```
[3] path = '/content/drive/MyDrive/IBM/Assignment 3/abalone.csv'
       df = pd.read_csv(path)
/ [4] df.head()
           Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
                 0.455
                           0.365
                                   0.095
                                                0.5140
                                                                0.2245
                                                                                0.1010
                                                                                               0.150
                                                                                                        15
                 0.350
                           0.265
                                  0.090
                                                0.2255
                                                                0.0995
                                                                                0.0485
                                                                                               0.070
                                                                                                         7
                           0.420
                                                0.6770
                                                                                               0.210
                 0.530
                                   0.135
                                                                0.2565
                                                                                0.1415
                 0.440
                           0.365
                                   0.125
                                                0.5160
                                                                0.2155
                                                                                0.1140
                                                                                               0.155
                                                                                                        10
                                                                                               0.055
                 0.330
                           0.255
                                   0.080
                                                0.2050
                                                                0.0895
                                                                                0.0395
[5] df.shape
       (4177, 9)
```

```
[6] df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4177 entries, 0 to 4176
     Data columns (total 9 columns):
         Column
                        Non-Null Count Dtype
      0
                         4177 non-null
                                        object
          Sex
                         4177 non-null float64
      1
        Length
                         4177 non-null float64
      2
        Diameter
         Height
                         4177 non-null
                                       float64
                                      float64
        Whole weight
                         4177 non-null
         Shucked weight 4177 non-null
                                       float64
          Viscera weight 4177 non-null
                                        float64
          Shell weight
      7
                         4177 non-null
                                       float64
                         4177 non-null
                                        int64
          Rings
```

dtypes: float64(7), int64(1), object(1)

Task - 3 Visualizing the Analysis

0.2

0.1

0.3

0.4

0.5

0.6

memory usage: 293.8+ KB

→ 3.1 Univariate Analysis

1s

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa744495750>

4

[9] plt.pie(df['Sex'].value_counts(), labels=df['Sex'].unique())
 plt.show()

▼ 3.2 Bi - Variate Analysis

[10] sns.lineplot(x=df.Diameter,y=df.Height)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa7443800d0>

[11] plt.bar(df.Sex, df['Whole weight'])

<BarContainer object of 4177 artists>

▼ 3.3 Multi - Variate Analysis

→ Task 4 - Descriptive Statistics

13] df.describe()										
		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
•	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684	
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169	
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000	
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000	
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000	
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000	
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000	

Task 5 - Handle Missing Values

```
/ [14] df.isnull().any()
       Sex
                       False
       Length
                       False
       Diameter
                      False
       Height
                      False
       Whole weight
                      False
       Shucked weight False
       Viscera weight False
       Shell weight
                       False
       Rings
                       False
       dtype: bool

  [15] df.isnull().sum()

       Sex
                        0
                        0
       Length
       Diameter
       Height
       Whole weight
       Shucked weight 0
       Viscera weight 0
       Shell weight
                      0
       Rings
       dtype: int64
```

Task 6 - Find Outliers and Replacing

```
(16] sns.boxplot(x=df['Rings'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fa73e668a10>
```

Rings

30

```
v  [17] sns.boxplot(x=df['Diameter'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fa73e668a50>


```
if (((df[col].dtype)=='float64') | ((df[col].dtype)=='int64')):

q2 = df[col].quantile(0.25)
q3 = df[col].quantile(0.75)
IQR = q3 - q2
upper_limit = q3 + 1.5*IQR
lower_limit = q2 - 1.5*IQR

df[col] = np.where(df[col] < lower_limit, lower_limit, df[col])
df[col] = np.where(df[col] > upper_limit, upper_limit, df[col])
```

- Task - 7 Categorical Columns and Perform Encoding

['M' 'F' 'I']

```
[19] df.head()
           Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
                                                                                                                1
                  0.455
                            0.365
                                    0.095
                                                 0.5140
                                                                                  0.1010
                                                                                                 0.150
                  0.350
                            0.265
                                    0.090
                                                 0.2255
                                                                 0.0995
                                                                                  0.0485
                                                                                                 0.070
                                                                                                          7.0
                                                                                  0.1415
                  0.530
                            0.420
                                    0.135
                                                 0.6770
                                                                 0.2565
                                                                                                 0.210
                                                                                                          9.0
                  0.440
                            0.365
                                    0.125
                                                 0.5160
                                                                  0.2155
                                                                                  0.1140
                                                                                                 0.155
                                                                                                          10.0
                            0.255
                                    0.080
                                                 0.2050
                                                                 0.0895
                                                                                  0.0395
                                                                                                 0.055
                                                                                                          7.0
                  0.330
/ [20] print(df.Sex.unique())
```

```
[21] le = LabelEncoder()

       df.Sex = le.fit_transform(df.Sex)
(22] df.head()
           Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
                 0.455
                          0.365
                                  0.095
                                                              0.2245
                                                                             0.1010
                 0.350
                                  0.090
                                                                                           0.070
                                                                                                    7.0
                          0.265
                                               0.2255
                                                              0.0995
                                                                             0.0485
            0
                 0.530
                          0.420
                                  0.135
                                                              0.2565
                                                                             0.1415
                                                                                           0.210
                                                                                                    9.0
                                              0.6770
                0.440
                           0.365
                                  0.125
                                               0.5160
                                                              0.2155
                                                                             0.1140
                                                                                           0.155
                                                                                                   10.0
           1 0.330
                          0.255
                                 0.080
                                              0.2050
                                                              0.0895
                                                                             0.0395
                                                                                           0.055
                                                                                                    7.0
```

- Task - 8 Split the Data into Dependent and Independent Variables

```
v [23] y = df['Rings']
       X = df.drop('Rings', axis=1)

√ [24] y

               15.0
       0
       1
               7.0
       2
                9.0
       3
               10.0
                7.0
               11.0
       4172
       4173
              10.0
       4174
               9.0
       4175
               10.0
       4176
               12.0
       Name: Rings, Length: 4177, dtype: float64
```

∑_{Ds} [25] X

1

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550
				•••				
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950

4177 rows × 8 columns

- Task - 9 Scale the Independent Variables

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	1.151980	-0.583117	-0.440884	-1.158093	-0.644740	-0.614985	-0.730304	-0.645184
1	1.151980	-1.465694	-1.459762	-1.288751	-1.238208	-1.191637	-1.213890	-1.231390
2	-1.280690	0.047295	0.119499	-0.112828	-0.309436	-0.467362	-0.357253	-0.205531
3	1.151980	-0.709200	-0.440884	-0.374145	-0.640626	-0.656504	-0.610559	-0.608547
4	-0.064355	-1.633804	-1.561650	-1.550067	-1.280378	-1.237770	-1.296790	-1.341303
4172	-1.280690	0.341487	0.425163	0.671120	0.122550	0.056238	0.540835	0.080244
4173	1.151980	0.551624	0.323275	-0.112828	0.285059	0.374550	0.315162	0.164511
4174	1.151980	0.635679	0.679882	1.716385	0.717046	0.773593	0.987576	0.512571
4175	-1.280690	0.845817	0.781770	0.279146	0.549394	0.798966	0.743480	0.424640
4176	1.151980	1.560284	1.494985	1.455069	2.306139	2.711144	1.807369	1.882825

10:

4177 rows × 8 columns

- Task - 10 Split the Data into Training and Testing

```
[27] x_train, x_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.3, random_state=0)

[28] print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

(2923, 8) (1254, 8) (2923,) (1254,)
```

Task - 11 Build the Model

```
vision [29] lr = LinearRegression()
vision [20] lr = LinearR
```

Task - 12 Train the Model

```
[30] lr.fit(x_train, y_train)

LinearRegression()
```

- Task - 13 Test the Model

```
y_pred = lr.predict(x_test)
y_pred

array([12.55446979, 9.47758181, 10.25463091, ..., 7.9886076,
17.03108659, 11.51225618])
```