Kapitel 5

Timing:

- 1. Physikalische Eigenschaften
- 2. Timing wichtiger Komponenten
- 3. Exaktes Timing von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Timing - Übersicht

- Timing für ein paar (bereits bekannte) Schaltpläne:
 - RS-Flipflop
 - D-Latch
 - D-Flipflop
- Timing weiterer Komponenten, die bei der Realisierung der ReTI genutzt werden:
 - Kontrolllogik
 - Register mit Clock-Enable
 - ALU
 - Speicher

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

Senke /S zur Zeit t_0 ab und hebe zu $t_0 + \underline{x}$ wieder an (einen solchen Signalverlauf nennt man Puls).

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1. $t_{P/SQ} = t_{PLH_1 NAND}$

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1.

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1.
- Nach Zeit $t_{P/S/Q}$ ist t/Q = 0. $t_{P/S/Q} = t_{PLH_1NAND} + t_{PHL_1NAND}$

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1.
- Nach Zeit $t_{P/S/Q}$ ist /Q = 0.

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit $\underline{t_0}$ ab und hebe zu $\underline{t_0 + x}$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1.
- Nach Zeit $t_{P/S/Q}$ ist /Q = 0.
- Wähle *x* so, dass kein Spike entsteht.

Übergang - graphisch

Spikefreier Übergang

Nach den Regeln des spikefreien Umschaltens von Gattern entsteht kein Spike, falls:

$$(t_0 + x) - (t_0 + 0.27) \ge 0.41 \Leftrightarrow x \ge 0.68 ns$$

■ Wechsel von Zustand Q = 1 zu Zustand Q = 0 aus Symmetriegründen analog.

Symbole und Bezeichnungen

Symbol	Bezeichnung	t ^{min}	t ^{max}
Х	x Pulsweite		
$ au_{P/SQ}$	Verzögerungszeit von /S bis Q	0.01	0.15
$ au_{P/S/Q}$	Verzögerungszeit von /S bis /Q	0.02	0.27
$ au_{P/RQ}$	Verzögerungszeit von /R bis Q	0.02	0.27
$ au_{P/R/Q}$	Verzögerungszeit von /R bis /Q	0.01	0.15

D-Latch

■ W ist active high.

$$\blacksquare$$
 $W = 0 \Rightarrow /S, /R$ inaktiv

■
$$W = 1 \Rightarrow \begin{cases} /S \text{ aktiv,} & \text{falls } D = 1 \\ /R \text{ aktiv,} & \text{falls } D = 0 \end{cases}$$

Wie beim RS-Flipflop (minimale Pulsweite!) muss man auch beim D-Latch bestimmte Forderungen an den zeitlichen Verlauf der Signale stellen, um Spikefreiheit zu garantieren.

RS-FF

7/22

Timing-Bedingungen für das D-Latch

- W muss beim Schreiben lange genug 1 sein, um minimale Pulsweite x des RS-FFs zu garantieren.
- Vor $W: 0 \rightarrow 1$ werden Daten für Zeit t_{SDW} stabil gehalten, um Spikes auf /S, /R zu vermeiden (der kritischste Fall ist das Verhindern von Spikes auf /R bei Schreiben von 1).
- Nach $W: 1 \rightarrow 0$ werden Daten für Zeit t_{HWD} stabil gehalten, um Spikes auf /S, /R zu vermeiden (der kritischste Fall ist das Verhindern von Spikes auf /S beim Schreiben von 0).

Man rechnet nach:

Der Schreibvorgang beim D-Latch funktioniert mit den Parameterwerten aus der Tabelle (siehe Übung).

Symbol	Bezeichnung	t ^{min}	t ^{max}
у	Pulsweite des Schreibimpulses	0.79	
t _{SDW}	Setupzeit von D bis W	0.49	
t _{HDW}	t _{HDW} Holdzeit von W nach D		
$ au_{PWQ}$	Verzögerungszeit von W bis Q	0.02	0.39
_(τ _{PDQ}	Verzögerungszeit von D bis Q		0.54)

Mögliche Realisierung: D-Flipflop

Timing: D-Flipflop

- Vorgehen analog zu RS-Flipflop und D-Latch, aber wesentlich komplizierter.
- Wir verzichten auf die Analyse.
- Die NanGate-Bibliothek enthält bereits ein D-FF mit folgenden charakteristischen Zeiten (in ns):

Symbol	Bezeichnung	t ^{min}	t ^{max}	X
t_{SDC}	Setupzeit von D bis ck	0.08		حاجا
t _{HCD}	Holdzeit von <i>D</i> nach <i>ck</i>	0.14		*SOC *HCD
$ au_{PCQ}$	Verzögerungszeit von ck bis Q	0.12	0.26	9
				~

Aufbau der Kontrolllogik, zur Erinnerung

- Generierung der Kontrollsignale (OE von Treibern, ALU-Ansteuerung, ...).
- Ist ein Kontrollsignal active low, dann bezeichnen wir es z.B. mit /x. Das Ausgangssignal /x ergibt sich dann durch Negation des Ausgangssignals x eines entsprechenden FFs mit Eingangssignal xpre.
- Ist ein Kontrollsignal active high, dann bezeichnen wir es z.B. mit x. Das Ausgangssignal x entspricht dem Ausgangssignal eines FFs mit Eingangssignal xpre

Kontrolllogik

- Die Dauer eines Taktes bezeichnen wir als Zykluszeit t_c .
- tmax INV tmin Active-High-Ausgangssignale der Kontrolllogik, bei denen das 0.15 0.01 τ_{PLH} FF mit ck gesteuert ist, sind gegenüber der steigenden Flanke au_{PHL} 0.00 0.08 von ck um Zeit $(\tau_{p,ah}^+)$ verzögert (resultiert aus Thing = [0.12,020] D-FF-Verzögerung)
- Active-Low-Ausgangssignale der Kontrolllogik, bei denen das FF mit ck gesteuert ist, sind gegenüber der steigenden Flanke von *ck* um Zeit $\tau_{p,al}^+$ verzögert (resultiert aus D-FF-Verzögerung + Inverterverzögerung).
- Active-High-Ausgangssignale der Kontrolllogik, bei denen das FF mit /ck gesteuert ist, sind gegenüber der letzten steigenden Flanke von ck um Zeit $\tau_{p,ah}^- = (\tau_{p,ah}^+) + t_c/2 + \tau_{PLH,Inv}$ verzögert.
- Active-Low-Ausgangssignale der Kontrolllogik, bei denen das FF mit /ck gesteuert ist, sind gegenüber der letzten steigenden Flanke von ck um Zeit $\tau_{p,al}^- = \tau_{p,al}^+ + t_c/2 + \tau_{PLH,lnv}$ verzögert.

Timing: Kontrolllogik

Mit geeigneter Implementierung des kombinatorischen Teiles erhält man folgende charakteristische Zeiten.

Symbol	Bezeichnung	t ^{min}	t ^{max}	
$ au_{ m extit{p,ah}}^+$	Verzögerungszeit ck bis Q, active high	0.12	0.26	
$ au_{p,al}^+$	Verzögerungszeit ck bis Q, active low	0.12	0.41	
$ au_{p,ah}^-$	Verzögerungszeit <i>ck</i> bis <i>Q</i> (von / <i>ck</i> angesteuert, active high)	$t_c/2 + 0.13$	$t_c/2 + 0.41$	
$ au_{p,al}^-$	Verzögerungszeit <i>ck</i> bis <i>Q</i> (von / <i>ck</i> angesteuert, active high)	$t_c/2 + 0.13$	$t_c/2 + 0.56$	
t_{SDC}^+	Setupzeit von <i>D</i> bis <i>ck</i>	0.88	& Stellyne + mag	reit D-FF Verogerun n 20mb, SK
t_{SDC}^-	Setupzeit von <i>D</i> bis /ck	0.88		
t_{HCD}^+	Holdzeit von <i>D</i> nach <i>ck</i>	0.06	€ Reliquit D min. Ver Emb. SKA	-FF - Söyring des
t _{HCD}	Holdzeit von <i>D</i> nach / ck	0.06	Romb. SKA	

Register mit Clock-Enable

Bei der Implementierung benötigen wir noch einen Treiberbaum der Tiefe 2, um Regcken auf 32 1-Bit-Multiplexer zu verteilen.

Symbol	Bezeichnung	
t _{SDC}	Setup-Zeit von D vor ck	0.23
t _{HDC}	Hold-Zeit von D nach ck	0.11
t _{SEC}	Setup-Zeit von Regcken vor ck	0.46
t _{HEC}	Hold-Zeit von Regcken nach ck	0.08

- t_{SDC} ergibt sich aus Setupzeit D-FF + maximale Verzögerungszeit Multiplexer (Daten bis Ausgang) (0.08 + 0.15).
- t_{HDC} ergibt sich aus Holdzeit D-FF minimale Verzögerungszeit Multiplexer (Daten bis Ausgang) (0.14 - 0.03).
- t_{SEC} ergibt sich aus Setupzeit D-FF + maximale Verzögerungszeit Multiplexer (Select bis Ausgang) + 2 x maximale Verzögerungszeit Treiber (0.08 + 0.16 + 2 x 0.11).
- t_{HEC} ergibt sich aus Holdzeit D-FF minimale Verzögerungszeit Multiplexer (Select bis Ausgang) - 2 x minimale Verzögerungszeit Treiber (0.14 - 0.02 - 2 x 0.02).

Schaltrealisierung der ALU

Timing: ALU

■ Annahme: ALU mit 32-Bit-Addierer (Conditional Sum).

Man zeigt:

Längster Pfad über ALU läuft durch den Addierer.

Annahme:

- Die Funktion–Select–Bits sind mindestens $t_{select} = 0.28$ ns vor den Operanden gültig.
- Dann ist garantiert, dass der kritische Pfad nicht durch die select-Eingänge bestimmt wird.

Zeitverhalten der ALU:

Symbol	Bezeichnung	t ^{min}	t ^{max}
t _{select}		0.28	
t _{ALU}	Verzögerungszeit von <i>a</i> , <i>b</i> bzw. <i>c_{in}</i> bis Ausgang		3.25

SRAM

Timing: SRAM

- Auch hier wäre das Vorgehen analog zu den bereits vorgestellten Analysen möglich. Zuvor muss man sich noch Gedanken machen um das Timing von:
 - Dekodierer
 - Treiberbäume
 - OR-Baum
- Eine detaillierte Timinganalyse ist aufwändig.
- Für die folgenden Timinganalysen orientieren wir uns an dem kommerziell angebotenen SRAM CY7C1079DV33 der Firma Cypress Semiconductor (siehe folgende Folien).

Interface zu CY7C1079DV33

Timing: CY7C1079DV33

Aus dem Datenblatt entnimmt man:

Symbol	Bezeichnung	t ^{min}	t ^{max}
t _{acc}	Lesezugriffszeit		12.0
t _{OED}	Zeit von / SMDdoe = 0 bis D		7.0
t _{OEZ}	Zeit von / SMDdoe = 1 bis high-Z		7.0
t _{wc}	Schreibzykluszeit	12.0	
t _{SAW}	Setupzeit von A bis W	0.0	
t _{SAW}	Setupzeit von A bis Ende W	9.0	
t _{HWA}	Holdzeit von A nach W	0.0	
W	Schreibpulsweite	9.0	
t _{SDEW}	Setupzeit von D bis Ende W	7.0	
t _{HWD}	Holdzeit von <i>D</i> nach <i>W</i>	0.0	

WS 2015/16 CS – Kapitel 5 22 / 22