Cálculo 2 - Limite à Duas Variáveis

Definição 1. Seja f uma função cujo domínio $D \subset \mathbb{R}^2$ contém pontos arbitrariamente próximos de (a,b). Dizemos que o **limite de** f(x,y) quando (x,y) tende a (a,b) é L e escrevemos

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

se para todo número $\epsilon > 0$ existe um número correspondente $\delta > 0$ tal que se $(x,y) \in D$ e $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ então $|f(x,y) - L| < \epsilon$.

Exemplo: Verificar que $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$.

Seja $\epsilon > 0$, queremos determinar um $\delta > 0$ tal que se

$$0<\sqrt{x^2+y^2}<\delta$$
então $|\frac{3x^2y}{x^2+y^2}|<\epsilon$

Considerando $x^2>0$ e $y^2>0$, como $x^2+y^2>0$ e $3x^2y>0$ se $y\geq 0$ e $3x^2y<0$ se y<0 com $(x,y)\in D\subset\mathbb{R}^2$, temos

$$0 < \sqrt{x^2 + y^2} < \delta \ ento \ \frac{3x^2|y|}{x^2 + y^2} < \epsilon$$

Como $y^2 \geq 0$ logo $x^2 + y^2 \geq x^2$ assim $\frac{x^2}{x^2 + y^2} \leq 1$ e portanto

$$\frac{3x^2|y|}{x^2+y^2} \le (3|y|) = 3\sqrt{y^2} < 3\sqrt{x^2+y^2}$$

Como, se $3\sqrt{x^2+y^2}<\epsilon$ logo $\frac{3x^2|y|}{x^2+y^2}<\epsilon$ assim se escolhermos $\delta=\frac{\epsilon}{3}$ e fizermos $0<\sqrt{x^2+y^2}<\delta$ tal que,

$$3\sqrt{x^2+y^2}<\epsilon$$
 de forma que $\frac{3x^2|y|}{x^2+y^2}<\epsilon$ obtendo-se $\sqrt{x^2+y^2}<\frac{\epsilon}{3}.$

Assim se escolhermos $\delta = \frac{\epsilon}{3}$ e fizermos $0 < \sqrt{x^2 + y^2} < \delta$ teremos,

$$\left| \frac{3x^2y}{x^2 + y^2} \right| < 3\sqrt{x^2 + y^2} < 3\delta = 3(\frac{\epsilon}{3}) = \epsilon$$

.