Model Regularization

Overfitting, Bias-variance decomposition, L1 and L2 regularization, probabilistic interpretation

Machine Learning and Data Mining, 2021

Artem Maevskiy

National Research University Higher School of Economics

The problem of overfitting

Overfitting in classification

Test set

Large points = classification error

How to check whether a model is good?

Check the loss on the **test data** – i.e. data that the learning algorithm hasn't seen

The goal is to find the right level of limitations – not too strict, not too loose

Model Complexity

Assume there's the following (unknown) relation between the features and targets:

$$y = f(x) + \varepsilon$$

where ε is some random noize:

$$\mathbb{E}[\varepsilon] = 0$$

$$\mathbb{D}[\varepsilon] = \sigma_{\varepsilon}^2$$

Assume there's the following (unknown) relation between the features and targets:

$$y = f(x) + \varepsilon$$

where ε is some random noize:

$$\mathbb{E}[\varepsilon] = 0$$

$$\mathbb{D}[\varepsilon] = \sigma_{\varepsilon}^2$$

Let's denote our training set as τ .

We want to study the **expected squared error** for the model \hat{f}_{τ} trained on it:

exp. sq. err(x) =
$$\mathbb{E}_{\tau,y|x} \left[\left(\hat{f}_{\tau}(x) - y \right)^2 \right]$$

$$\exp. \operatorname{sq. err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$\exp. \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] + \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - y \right)^{2} \right]$$

Prediction of the "expected model"

$$\exp. \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] + \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) + f(x) - y \right)^{2} \right]$$
Ground truth

(without the noise)

$$\exp \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(grouping the terms, then expanding the square)

model

$$\exp \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(easy to show that all the cross term expectations are 0)

$$= \mathbb{E}\left[\left(\hat{f}_{\tau}(x) - \mathbb{E}\left[\hat{f}_{\tau'}(x)\right]\right)^{2}\right] + \left(\mathbb{E}\left[\hat{f}_{\tau'}(x)\right] - f(x)\right)^{2} + \mathbb{E}\left[\left(f(x) - y\right)^{2}\right]$$
Variance of the

i.e. how "unstable" the model is wrt

the noise in the training data

$$\exp. \operatorname{sq.} \operatorname{err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(easy to show that all the cross term expectations are 0)

$$= \mathbb{E}\left[\left(\hat{f}_{\tau}(x) - \mathbb{E}\left[\hat{f}_{\tau'}(x)\right]\right)^{2}\right] + \left(\mathbb{E}\left[\hat{f}_{\tau'}(x)\right] - f(x)\right)^{2} + \mathbb{E}\left[\left(f(x) - y\right)^{2}\right]$$

how much the "expected model" differs from the ground truth

Squared bias

$$\exp \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(easy to show that all the cross term expectations are 0)

$$= \mathbb{E}_{\tau} \left[\left(\hat{f}_{\tau}(x) - \mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] \right)^{2} \right] + \left(\mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] - f(x) \right)^{2} + \mathbb{E}_{y|x}[(f(x) - y)^{2}]$$

Irreducible

error

$$(=\mathbb{E}[\varepsilon^2] = \sigma_{\varepsilon}^2)$$

Bias-variance tradeoff

Typically there's a **tradeoff** between the two sources of error

Bias and variance error components can be calculated analytically for linear models

Simplification:

for each expectation term \mathbb{E} let's consider the features fixed, i.e. $X_{\tau} \equiv X$ (the design matrix is constant), and only the target vector y_{τ} is random)

Bias and variance error components can be calculated analytically for linear models

Simplification:

for each expectation term \mathbb{E} let's consider the features fixed, i.e. $X_{\tau} \equiv X$ (the design matrix is constant), and only the target vector y_{τ} is random)

Recall the solution for the linear regression model with the MSE loss:

$$\widehat{f_{\tau}}(x) = \theta_{\tau}^{\mathrm{T}} x = x^{\mathrm{T}} \theta_{\tau}$$

$$\theta_{\tau} = \left(X^{\mathrm{T}} X \right)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$bias(x) = \mathbb{E}_{\tau}[\widehat{f_{\tau}}(x)] - f(x)$$

Let's look at the **bias term** from the error decomposition:

We'll also assume that the true dependence is linear indeed

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y_{\tau}\right] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$
$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbb{E}[y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y_{\tau}\right] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbb{E}[y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}X$$

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y_{\tau}\right] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbb{E}[y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}X\theta_{\mathrm{true}} - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

Let's look at the **bias term** from the error decomposition:

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{T}(X^{T}X)^{-1}X^{T}y_{\tau}\right] - x^{T}\theta_{\text{true}}$$

$$= x^{T}(X^{T}X)^{-1}X^{T}\mathbb{E}[y_{\tau}] - x^{T}\theta_{\text{true}}$$

$$= x^{T}(X^{T}X)^{-1}X^{T}X\theta_{\text{true}} - x^{T}\theta_{\text{true}}$$

$$= x^{T}\theta_{\text{true}} - x^{T}\theta_{\text{true}} = 0$$

I.e. linear regression model is **unbiased**

as long as the true dependence is linear

Now let's look at the **variance term**:

variance
$$(x) = \mathbb{E}_{\tau} \left[\left(\hat{f}_{\tau}(x) - \mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] \right)^2 \right]$$

It can then be shown that:

variance(
$$x$$
) = $\sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x$

So the variance error component is a **quadratic form**, defined by the $(X^TX)^{-1}$ matrix.

[derivation]

Now let's look at the **variance term**:

variance(x) =
$$\mathbb{E}_{\tau} \left[\left(\hat{f}_{\tau}(x) - \mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] \right)^2 \right]$$

Note that $\widehat{f_{\tau}}(x)$ can be thought of as a **linear transformation** to the training targets vector y_{τ} :

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} \theta_{\tau} = x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} y_{\tau} = h^{\mathrm{T}}(x) y_{\tau}$$

$$h^{\mathrm{T}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}}$$

[derivation]

variance
$$(x) = \mathbb{E}\left[\left(h^{\mathrm{T}}(x)y_{\tau} - \mathbb{E}[h^{\mathrm{T}}(x)y_{\tau'}]\right)^{2}\right] = \mathbb{E}\left[\left(h^{\mathrm{T}}(x)\left(y_{\tau} - \mathbb{E}[y_{\tau'}]\right)\right)^{2}\right]$$

$$= \underset{\tau}{\mathbb{E}} \left[h^{\mathrm{T}}(x) \left(y_{\tau} - \underset{\tau'}{\mathbb{E}} [y_{\tau'}] \right) \left(y_{\tau} - \underset{\tau'}{\mathbb{E}} [y_{\tau'}] \right)^{\mathrm{T}} h(x) \right]$$

$$= h^{\mathrm{T}}(x) \mathbb{E}_{\tau} \left[\left(y_{\tau} - \mathbb{E}_{\tau'}[y_{\tau'}] \right) \left(y_{\tau} - \mathbb{E}_{\tau'}[y_{\tau'}] \right)^{\mathrm{T}} \right] h(x)$$

$$= h^{\mathrm{T}}(x) \operatorname{cov}_{\tau}[y_{\tau}, y_{\tau}] h(x) = \sigma_{\varepsilon}^{2} h^{\mathrm{T}}(x) h(x)$$

[derivation]

$$variance(x) = \sigma_{\varepsilon}^2 h^{T}(x)h(x)$$

$$= \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} X (X^{\mathrm{T}} X)^{-1} x \qquad \qquad h^{\mathrm{T}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}}$$

$$= \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x$$

So the variance error component is a quadratic form, defined by the $(X^TX)^{-1}$ matrix.

We can diagonalize $X^{T}X$:

variance
$$(x) = \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x = \sigma_{\varepsilon}^2 \tilde{x}^{\mathrm{T}} \Lambda^{-1} \tilde{x}$$

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_d\}$ is the matrix of eigenvalues of X^TX .

We can diagonalize $X^{T}X$:

variance
$$(x) = \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x = \sigma_{\varepsilon}^2 \tilde{x}^{\mathrm{T}} \Lambda^{-1} \tilde{x}$$

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_d\}$ is the matrix of eigenvalues of X^TX .

This means that small eigenvalues amplify the model variance.

We can diagonalize $X^{T}X$:

variance
$$(x) = \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x = \sigma_{\varepsilon}^2 \tilde{x}^{\mathrm{T}} \Lambda^{-1} \tilde{x}$$

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_d\}$ is the matrix of eigenvalues of X^TX .

This means that small eigenvalues amplify the model variance.

This happens when X^TX is ill-defined e.g. when the features are correlated

MSE loss values as a function of model parameters

High-variance model

Small perturbation in data

U

Large change in prediction

Regularization

How can we reduce the variance?

If only we could increase the eigenvalues of $X^{T}X...$

How can we reduce the variance?

If only we could increase the eigenvalues of $X^{T}X...$

In fact, we can do this manually:

$$X^{\mathrm{T}}X \to X^{\mathrm{T}}X + \alpha I$$
,
 $\alpha > 0 \in \mathbb{R}$,
 I – unit d by d matrix

How can we reduce the variance?

If only we could increase the eigenvalues of $X^{T}X...$

In fact, we can do this manually:

$$X^{\mathrm{T}}X \to X^{\mathrm{T}}X + \alpha I$$
,
 $\alpha > 0 \in \mathbb{R}$,
 I – unit d by d matrix

I.e. we are **changing the solution** to:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

The effect of regularization

Note: the regularized model is **no longer unbiased**!

I.e. we increased bias to reduce variance

We have the solution:

$$\widehat{f}_{\tau}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$\theta_{\tau} = \left(X^{\mathrm{T}} X + \alpha I \right)^{-1} X^{\mathrm{T}} y_{\tau}$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$\theta_{\tau} = (X^{T}X + \alpha I)^{-1}X^{T}y_{\tau}$$
$$(X^{T}X + \alpha I)\theta_{\tau} = X^{T}y_{\tau}$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$\theta_{\tau} = (X^{T}X + \alpha I)^{-1}X^{T}y_{\tau}$$
$$(X^{T}X + \alpha I)\theta_{\tau} = X^{T}y_{\tau}$$
$$X^{T}(X\theta_{\tau} - y_{\tau}) + \alpha\theta_{\tau} = 0$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

Let's reverse engineer the loss function it optimizes:

$$\theta_{\tau} = (X^{T}X + \alpha I)^{-1}X^{T}y_{\tau}$$
$$(X^{T}X + \alpha I)\theta_{\tau} = X^{T}y_{\tau}$$
$$X^{T}(X\theta_{\tau} - y_{\tau}) + \alpha\theta_{\tau} = 0$$

In fact this is the $\partial/\partial\theta_{\tau}\mathcal{L}=0$ equation for:

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|^2$$

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|^2$$

In other words, this linear model:

$$\widehat{f}_{\tau}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

minimizes MSE loss with L2 penalty term on the model parameters.

Such model is also called ridge regression

Example: L2-regularized classification

By regularizing the model we increase the train loss and

> This improves the **generalizability** of the model

Various regularization methods

L2 regularization (Ridge):

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|^2$$

L1 regularization (Lasso):

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|_1$$

Elastic net:

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^{2} + \alpha \|\theta_{\tau}\|^{2} + \beta \|\theta_{\tau}\|_{1}$$

L2 norm:

$$||x||^2 \equiv \sum_{i=1\dots d} x_i^2$$

L1 norm:

$$||x||_1 \equiv \sum_{i=1\dots d} |x_i|$$

Properties of different regularization methods

They all drive the weights towards **smaller values**Yet they **induce different properties** of the solution

Properties of different regularization methods

They all drive the weights towards **smaller values**Yet they **induce different properties** of the solution

Probabilistic view

Let's revisit our assumption about data:

$$y = f(x) + \varepsilon$$

Now we'll assume that label noise is normally distributed:

$$\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

Let's revisit our assumption about data:

$$y = f(x) + \varepsilon$$

Now we'll assume that label noise is normally distributed:

$$\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

This means, that labels are also normally distributed, for a given point x:

$$y|x \sim \mathcal{N}(f(x), \sigma_{\varepsilon}^2)$$

Let's revisit our assumption about data:

$$y = f(x) + \varepsilon$$

Now we'll assume that label noise is normally distributed:

$$\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

This means, that labels are also normally distributed, for a given point x:

$$y|x \sim \mathcal{N}(f(x), \sigma_{\varepsilon}^2)$$

We want our model $\widehat{f}_{\theta}(x)$ to fit the true dependence f(x), i.e. we **define a probabilistic model**:

$$y|x \sim \mathcal{N}(\widehat{f}_{\theta}(x), \sigma_{\varepsilon}^2)$$

Our model can be fitted with the **maximum likelihood** approach:

$$L = \prod_{i=1}^{N} \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2) \to \max_{\theta}$$

Our model can be fitted with the **maximum likelihood** approach:

$$L = \prod_{i=1...N} \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2) \to \max_{\theta}$$

$$-\log L = -\sum_{i=1}^{N} \log \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2)$$

Our model can be fitted with the **maximum likelihood** approach:

$$L = \prod_{i=1...N} \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2) \to \max_{\theta}$$

$$-\log L = -\sum_{i=1...N} \log \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2)$$

$$= -\sum_{i=1}^{N} \left[\log \exp \left(-\frac{\left(y_i - \widehat{f}_{\theta}(x_i) \right)^2}{2\sigma_{\varepsilon}^2} \right) - \log \sqrt{2\pi\sigma_{\varepsilon}^2} \right]$$

Our model can be fitted with the **maximum likelihood** approach:

$$L = \prod_{i=1...N} \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2) \to \max_{\theta}$$

$$-\log L = -\sum_{i=1...N} \log \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2)$$

$$= -\sum_{i=1...N} \left[\log \exp\left(-\frac{\left(y_i - \widehat{f}_{\theta}(x_i)\right)^2}{2\sigma_{\varepsilon}^2}\right) - \log\sqrt{2\pi\sigma_{\varepsilon}^2}\right]$$

$$= C \cdot \sum_{i=1...N} \left(y_i - \widehat{f}_{\theta}(x_i)\right)^2 + const$$

Our model can be fitted with the **maximum likelihood** approach:

$$L = \prod_{i=1...N} \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2) \to \max_{\theta}$$

$$-\log L = -\sum_{i=1...N} \log \mathcal{N}(y_i | \widehat{f}_{\theta}(x_i), \sigma_{\varepsilon}^2)$$

$$= -\sum_{i=1}^{N} \left[\log \exp \left(-\frac{\left(y_i - \widehat{f}_{\theta}(x_i) \right)^2}{2\sigma_{\varepsilon}^2} \right) - \log \sqrt{2\pi\sigma_{\varepsilon}^2} \right]$$

MSE loss
$$\Leftrightarrow$$
 Prob. model with normal label noise!
$$= C \cdot \sum_{i=1...N} \left(y_i - \widehat{f_{\theta}}(x_i) \right)^2 + const$$

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

(Reminder) Bayes rule:

$$p(\theta|X,y) = \frac{p(y|\theta,X) \cdot p(\theta)}{\int [p(y|\theta,X) \cdot p(\theta)]d\theta}$$

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

(Reminder) Bayes rule:

 $p(\theta|X,y) = \frac{p(y|\theta,X) \cdot p(\theta)}{\int [p(y|\theta,X) \cdot p(\theta)]d\theta}$

Our prior knowledge about the model parameters

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

(Reminder) Bayes rule:

Likelihood function
$$p(\theta|X,y) = \frac{p(y|\theta,X) \cdot p(\theta)}{\int [p(y|\theta,X) \cdot p(\theta)]d\theta}$$

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

(Reminder) Bayes rule:

$$p(\theta|X,y) = \frac{p(y|\theta,X) \cdot p(\theta)}{\int [p(y|\theta,X) \cdot p(\theta)]d\theta}$$

Posterior knowledge about the model after observing the data

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

(Reminder) Bayes rule:

$$p(\theta|X,y) = \frac{p(y|\theta,X) \cdot p(\theta)}{\int [p(y|\theta,X) \cdot p(\theta)]d\theta}$$

"Evidence" (probability of observing this data when the parameter uncertainty is integrated out)

We are going to treat both data (X, y) and model parameters (θ) as random variables

Estimate the parameter distribution given the observed data

(Reminder) Bayes rule:

$$p(\theta|X,y) = \frac{p(y|\theta,X) \cdot p(\theta)}{\int [p(y|\theta,X) \cdot p(\theta)]d\theta}$$

We'll make a point estimate (maximum a posteriori):

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(\theta|X, y) = \underset{\theta}{\operatorname{argmax}} p(y|\theta, X) \cdot p(\theta)$$

Maximum a posteriori

Maximum a posteriori estimate:

Suppose we model the data with a normal distribution:

$$y|x \sim \mathcal{N}(\widehat{f}_{\theta}(x), \sigma_{\varepsilon}^2)$$

And the prior is normal as well:

$$\theta \sim \mathcal{N}(0, \sigma_{\theta}^2 I)$$

Suppose we model the data with a normal distribution:

$$y|x \sim \mathcal{N}(\widehat{f}_{\theta}(x), \sigma_{\varepsilon}^2)$$

And the prior is normal as well:

$$\theta \sim \mathcal{N}(0, \sigma_{\theta}^2 I)$$

Then, maximum a posteriori estimate corresponds to minimizing the following loss:

$$\mathcal{L} = -\log p(y|\theta, X) - \log p(\theta)$$

Suppose we model the data with a normal distribution:

$$y|x \sim \mathcal{N}(\widehat{f_{\theta}}(x), \sigma_{\varepsilon}^2)$$

And the prior is normal as well:

$$\theta \sim \mathcal{N}(0, \sigma_{\theta}^2 I)$$

Then, maximum a posteriori estimate corresponds to minimizing the following loss:

$$\mathcal{L} = -\log p(y|\theta, X) - \log p(\theta)$$

$$= C_1 \sum_{i=1...N} (\widehat{f}_{\theta}(x_i) - y_i)^2 + C_2 \|\theta\|^2 + const$$

Suppose we model the data with a normal distribution:

$$y|x \sim \mathcal{N}(\widehat{f_{\theta}}(x), \sigma_{\varepsilon}^2)$$

And the prior is normal as well:

$$\theta \sim \mathcal{N}(0, \sigma_{\theta}^2 I)$$

Then, maximum a posteriori estimate corresponds to minimizing the following loss:

$$\mathcal{L} = -\log p(y|\theta, X) - \log p(\theta)$$

Normal prior ⇔ L2 regularization

$$= C_1 \sum_{i=1...N} (\widehat{f}_{\theta}(x_i) - y_i)^2 + C_2 \|\theta\|^2 + const$$

Prediction error can be decomposed into components corresponding to model bias and variance

- Prediction error can be decomposed into components corresponding to model bias and variance
- Linear regression is **unbiased**, while its variance is large when X^TX matrix is **ill-defined**

- Prediction error can be decomposed into components corresponding to model bias and variance
- \triangleright Linear regression is **unbiased**, while its variance is large when X^TX matrix is **ill-defined**
- Typically regularization reduces the variance with the price of increasing the bias

- Prediction error can be decomposed into components corresponding to model bias and variance
- ▶ Linear regression is **unbiased**, while its variance is large when X^TX matrix is **ill-defined**
- Typically regularization reduces the variance with the price of increasing the bias
- Different regularization techniques induce different properties of the solution

- Prediction error can be decomposed into components corresponding to model bias and variance
- Linear regression is **unbiased**, while its variance is large when X^TX matrix is **ill-defined**
- Typically regularization reduces the variance with the price of increasing the bias
- Different regularization techniques induce different properties of the solution
- There's a probabilistic model behind the loss function

- Prediction error can be decomposed into components corresponding to model bias and variance
- ▶ Linear regression is **unbiased**, while its variance is large when X^TX matrix is **ill-defined**
- Typically regularization reduces the variance with the price of increasing the bias
- Different regularization techniques induce different properties of the solution
- There's a probabilistic model behind the loss function
- Bayessian prior on the model parameters corresponds to some regularization to those parameters

- Prediction error can be decomposed into components corresponding to model bias and variance
- ▶ Linear regression is **unbiased**, while its variance is large when X^TX matrix is **ill-defined**
- Typically regularization reduces the variance with the price of increasing the bias
- Different regularization techniques induce different properties of the solution
- There's a probabilistic model behind the loss function
- Bayessian prior on the model parameters corresponds to some regularization to those parameters

Food for thought: what probabilistic model would correspond to minimizing MAE loss?

Thank you!

Artem Maevskiy