1 No PEC backing

The computed zeros for the structure with no PEC backing as shown in 1 are obtained through Halley's method performed on the denominator expression:

$$\mathcal{D} = 1 - \overleftarrow{\Gamma_2} \overrightarrow{\Gamma_2} e^{-2jk_{z2}d_1} \tag{1}$$

Figure 1: Structure with no PEC base

where $d_1=z_1-z_0$ and $\overleftarrow{\Gamma_2}$ and $\overrightarrow{\Gamma_2}$ are the left and right looking reflection coefficients from the middle layer:

$$\overleftarrow{\Gamma_2} = \frac{Z_3 - Z_2}{Z_3 + Z_2} \tag{2a}$$

$$\vec{\Gamma}_2 = \frac{Z_1 - Z_2}{Z_1 + Z_2} \tag{2b}$$

An evaluation of \mathcal{D} as in (1) computed zeros is shown in Fig. 2.

2 PEC backing

With PEC backing as shown in 3: Γ_2 now becomes:

Evaluation of Denominator at computed zeros

Figure 2: Evaluation of (1) at computed zeros

$$\overleftarrow{\Gamma_2} = \frac{\Gamma_{3,2} - exp(-4jk_{z3}d)}{1 - \Gamma_{3,2}exp(-4jk_{z3}d)}$$
(3)

where $\Gamma_{3,2}$ is:

$$\Gamma_{3,2} = \frac{Z_3 - Z_2}{Z_3 + Z_2} \tag{4}$$

The evaluation of $\mathcal D$ with a PEC base is shown in Fig. 4.

A comparison of zeros of two cases in the complex k_{ρ} -plane is illustrated in Fig. 5

Figure 3: Structure with PEC base

Figure 4: Evaluation of (1) at computed zeros with PEC

Figure 5: Zeros in the complex plane