

双模导航定位模块 TAU1102

数据手册 V1.2

免责声明

本文档提供有关深圳华大北斗科技有限公司(以下简称"华大北斗")的产品信息,以支持客户使用华大北斗产品进行产品设计开发与产品应用。在使用本文档前,请您务必仔细阅读并透彻理解本声明。您使用本文档的行为将被视为对本声明全部内容的认可和接受。在法律允许的范围内,华大北斗对本文档所包含的信息、软件、产品和服务不提供任何相关陈述、担保和承诺。所有此类信息、软件、产品和服务均按"原样"提供,并未附加任何类型的陈述、担保或承诺,包括对于产品适销性、特定用途适用性、所有权和不侵权的所有默示担保和承诺。

华大北斗将在任何情况下,都不对用户或者任何人士承担任何间接的、偶然的、附带的、特殊的、后果性(其中包括其他收入或利润损失)、惩罚性的或惩戒性的损害赔偿责任或受公平或禁令救济(无论是基于违反合同、侵权、疏忽、严格责任或其他)所产生的任何责任或索赔。

本文档及其包含的所有内容为华大北斗所有,受中国法律及适用的国际公约中有关著作权法律的保护。未经明确的书面授权,任何人不得以任何形式复制、转载、改动、散布或以其它方式使用本文档部分或全部内容,违者将被依法追究责任。华大北斗拥有随时修改本文档的权利,本文档内容如有更改,恕不另行通知。

更多产品信息与文档更新,请访问 www.allystar.com。

版权所有©深圳华大北斗科技有限公司,2019年。保留所有权利。

目 录

1	产	品概述	8
	1.1	产品简介	8
	1.2	产品特性	8
	1.3	产品图片	8
	1.4	系统框图	9
	1.5	性能指标	9
2	模块	块引脚定义	11
3	电	气特性	13
	3.1	极限条件	13
	3.2	IO 端口特性	13
		3.2.1 PRRSTX、PRTRG 端口特性	13
		3.2.2 USB 端口特性	13
		3.2.3 其他 IO 端口特性	14
	3.3	直流特性	15
		3.3.1 工作条件	15
		3.3.2 功耗	15
4	功能	能描述	16
	4.1	电源	16
	4.2	天线	16
	4.3	复位与工作模式控制	16
	4.4	串口通讯	17
5	机	戒规格	18
6	参	考设计	19

	6.1	原理图	图参考设计	19
	6.2	LAYO	UT 注意事项	20
7	软件	牛接口		21
	7.1	NME	A 消息格式	21
		7.1.1	GGA - Global Positioning System Fix Data	21
		7.1.2	GLL-Geographic Position – Latitude/Longitude	22
		7.1.3	GSA-GNSS DOP and Active Satellites	23
		7.1.4	GSV-GNSS Satellites in View	24
		7.1.5	RMC-Recommended Minimum Specific GNSS Data	25
		7.1.6	VTG-Course Over Ground and Ground Speed	26
		7.1.7	ZDA-Time & Date	26
		7.1.8	GST- GNSS Pseudorange Error Statistics	27
		7.1.9	TXT-ANT & USR message	28
	7.2	专属_	_进制消息	28
	7.3	模式酉	记置	29
		7.3.1	CFG-SIMPLERST	29
8	包装	麦与处	理	30
	8.1	包装须	页知	30
	8.2	包装		30
		8.2.1	模块包装	30
		8.2.2	运输包装	31
	8.3	存储		31
	8.4	ESD 久	心理	32
		8.4.1	ESD 注意事项	32

9	文♯	当版本	记录	33
	8.5	湿敏等	等级	32
			1,54 3,400	
		8.4.2	ESD 防护措施	32

图目录

	图 1 TAU1102 产品图	8
	图 2 系统框图	9
	图 3 引脚定义图	11
	图 4 模块机械尺寸图	18
	图 5 参考设计原理图	19
	图 6 卷带	30
	图 7 卷盘	31
表目]录	
	表格 1 性能指标	9
	表格 2 引脚定义说明	12
	表格 3 极限条件	13
	表格 4 PRRSTX、PRTRG 端口特性	13
	表格 5 USB 端口特性	13
	表格 6 其他 IO 端口特性	14
	表格 7 工作条件	15
	表格 8 功耗	15
	表格 9尺寸	18
	表格 10 天线状态 NMEA 输出	19
	表格 11 NMEA 输出消息	21
	表格 12 GGA 数据格式	21
	表格 13 Position Fix Indicators	22

表格	14 GLL Data Format	22
表格	15 GSA Data Format	23
表格	16 Mode 1	23
表格	17 Mode 2	23
表格	18 GSV Data Format	24
表格	19 RMC Data Format	25
表格	20 VTG Data Format	26
表格	21 ZDA Data Format	26
表格	22 GST Data Format	27
表格	23 TXT Data Format	28
表格	24 TAU1102 专有命令集	28
表格	25 包装结构	30
表格	26 包装规格汇总	31

1 产品概述

1.1 产品简介

TAU1102 是一款低成本、高性价比的双模定位模块,搭载了华大北斗的 CYNOSURE II GNSS SoC 芯片,支持接收 BDS B1、GPS L1、SBAS 等卫星信号。TAU1102 尺寸小、集成度高且易于应用,非常适合对成本要求高的 GNSS 规模应用。

1.2 产品特性

- 12.2mm x 16.0mm 小尺寸、低功耗、低成本、高性价比
- 支持单系统独立定位和多系统联合定位
- 支持 A-GNSS 辅助定位功能
- 兼容主流 GPS 模块, 节省替换成本
- 支持有源天线检测与保护
- SMD 表贴模式 , 方便批量生产
- 支持 BDS B1I / GPS L1CA / SBAS

1.3 产品图片

图 1 TAU1102 产品图

1.4 系统框图

图 2 系统框图

1.5 性能指标

表格 1 性能指标

类别	性能指标				
GNSS 通道	72				
	GPS/QZSS: L1 C/A				
卫星接收频段	BDS: B1I				
	SBAS: WAAS, EGNOS, MSAS, GAGAN, SDCM				
数据更新率	最大 5Hz				
完/c/集庆(4)	GNSS	2.5m CEP			
定位精度[1]	SBAS	2.0m CEP			
	GNSS	0.1m/s CEP			
速度及时间精度	SBAS	0.05m/s CEP			
	1PPS	25ns			

首次定位时间	热启动	1s	
自父廷可則可	冷启动	28s	
	冷启动	-148dBm	
ヲ毎度は	热启动	-158dBm	
灵敏度[2]	重捕获	-159dBm	
	跟踪	-162dBm	
☆ ₩ 17 17 17 17 17 17 17 17	速度	515m/s	
应用极限	高度	18,000m	
安全检测	内置天线短路保护,开	路检测	
	USB(FS, 12Mbps)	1	
\ 区/ ≟+☆□	UART	1	
通信接口	SPI ^[3]	1	
	12C	1	
数据格式	NMEA 0183 协议 Ver. 3.0 Cynosure GNSS 接收机协		
	主电源电压	3.0 ~ 3.6V	
工作情况	I/O 电压	3.0 ~ 3.6V	
	备电电压	1.6 ~3.6V	
功耗	运行模式 (GNSS,L1 频段)	31mA	
	待机模式	14uA	
工作温度	-40°C ~ +85°C		
储存温度	-40°C ~ +85°C		
封装尺寸	12.2mm X 16.0mm X 2.45mm 邮票孔封装		
符合标准	RoHS 及 REACH 标准		

^{* [1]} 开阔天空

^{* [2]} 测试时需使用高性能外部 LNA

^{* [3]}定制固件输出

2 模块引脚定义

13 GND	GND 12
14 ANT_ON	RF_IN 11
15 SPICK	GND 10
16 SPIDO	ANT_BIAS 9
17 SPIDI	PRRSTX 8
TAU1102	
TOP VIEW	
18 SDA	AVDUSB 7
19 SCL	USBDP 6
20 UOUTO	USBDN 5
21 UINO	EXTINT 4
22 AVDD_BAK	PPS 3
23 VDD	PRTRG 2
24 GND	SPICX 1

图 3 引脚定义图

表格 2 引脚定义说明

功能	管脚名称	管脚编号	信号类型	描述		
	VDD	23	Power	主电源输入		
	GND	10,12,13, 24	VSS	地		
电源	AVDD_BAK	22	Power	备用电源输入,不能悬空		
	AVDUSB	7	Power	USB 电源输入,当使用 USB 功能时接电源,不使用时保持悬空		
	RF_IN	11	ı	天线输入,阻抗 50Ω		
天线	ANT_BIAS	9	0	天线偏置电压输出,可供外部有源天线电源使用 有源天线电流不能超过 25mA		
ф.	иоито	20	0	UARTO 输出		
串口	UIN0	21	I	UARTO 输入		
USB	USBDN	5	1/0	USB 数据输入/输出,如未使用保持悬空		
ОЗБ	USBDP	6	I/O	USB 奴佔和八州山,如不使用床付总工		
	SPICX	1	0	SPI 片选 , 如未使用保持悬空		
SPI ^[1]	SPICK	15	0	SPI 时钟输出,如未使用保持悬空		
2hl ₁₋₁	SPIDO	16	0	SPI 数据输出,如未使用保持悬空		
	SPIDI	17	I	SPI 数据输入,如未使用保持悬空		
I ² C	SDA	18	1/0	12C 数据输入,如未使用保持悬空		
1-0	SCL	19	0	12C 时钟输出,如未使用保持悬空		
	PRTRG	2	ı	工作模式选择,或唤醒信号输入		
	PRRSTX	8	ı	外部复位信号输入,低电平有效		
其他	PPS	3	0	秒脉冲信号,如未使用保持悬空		
	EXTINT	4	I	外部中断输入,如未使用保持悬空		
	ANT_ON	14	0	外部天线使能控制输出,如未使用保持悬空		

^{* [1]} 定制固件输出

3 电气特性

3.1 极限条件

表格 3 极限条件

符号	参 数	最小值	最大值	单 位
VDD	主电源电压	-0.5	3.6	V
AVDUSB	USB 输入电压	-0.5	3.6	V
AVDD_BAK	备份电源电压	-0.5	3.6	V
VI _{max}	I/O 引脚输入电压	-0.5	3.6	V
T _{storage}	存储温度	-40	85	°C
T _{solder}	回流焊温度		260	°C
Ta	环境温度	-40	85	°C

3.2 IO 端口特性

3.2.1 PRRSTX、PRTRG 端口特性

表格 4 PRRSTX、PRTRG 端口特性

符号	参 数	条件	最小值	典型值	最大值	单位
l _{IZ}	漏电流输入				+/-1	uA
V _{IH}	高电平输入电压		AVDD_BAK*0. 67		AVDD_BAK	V
VIL	低电平输入电压		0		AVDD_BAK* 0.27	V
Vон	高电平输出电压	I _{OH} =11.9 mA, AVDD_BAK=3.3V	2.64			V
		I _{OH} =1.2 mA, AVDD_BAK=1.8V	1.53			V
V	/// (古 亚 /	I _{OL} =3.9 mA, AVDD_BAK=3.3V			0.4	V
Vol	低电平输出电压	I _{OL} =1.9 mA, AVDD_BAK=1.8V			0.45	V
Ci	输入电容				11	pF
R _{PU}	上拉电阻		35		84	kΩ

3.2.2 USB 端口特性

表格 5 USB 端口特性

符号	参 数	条件	最小值	典型值	最大值	单位
I _{IZ}	漏电流输入				+/-10	uA
V _{IH}	高电平输入电压		AVDUSB*0.9		AVDUSB	V
VIL	低电平输入电压		0		AVDUSB* 0.1	V

Vон	高电平输出电压	I _{OH} =10 mA, AVDUSB=3.3V	2.35	 	V
V _{OL}	低电平输出电压	I _{OL} =10 mA, AVDUSB=3.3V		 0.5	V
R _{PUIDEL}	上拉电阻 , 空闲状态		0.9	 1.575	kΩ
RPUACTIVE	上拉电阻 , 活动状态		1.425	 3.09	kΩ

3.2.3 其他 IO 端口特性

表格 6 其他 10 端口特性

符号	参 数	条 件	最小值	典型值	最大值	单位
lız	漏电流输入				+/-1	uA
ViH	高电平输入电压		AVDD_BAK *0.67		AVDD_BAK	V
VIL	低电平输入电压		0		AVDD_BAK *0.27	V
N.	Von 高电平输出电压	I _{OH} =5.3 mA, AVDD_BAK=3.3V	2.64			V
V ОН		I _{OH} =1.2 mA, AVDD_BAK=1.8V	1.53			V
V	作中亚松山中 区	I _{OL} =3.9 mA, AVDD_BAK=3.3V			0.4	V
Vol	低电平输出电压	I _{OL} =1.9 mA, AVDD_BAK=1.8V			0.45	V
Ci	输入电容				11	pF
R _{PU}	上拉电阻		35		84	kΩ

3.3 直流特性

3.3.1 工作条件

表格 7 工作条件

符号	参数	最小值	典型值	最大值	单位
VDD	主电源电压	3.0	3.3	3.6	V
AVDUSB	USB 输入电压	3.0	3.3	3.6	V
AVDD_BAK	备份电源电压	1.6	3.3	3.6	V
ICC _{max}	VDD 上最大操作电流			200	mA
T _{env}	工作环境温度	-40		85	°C
T _{storage}	存储温度	-40		85	°C

3.3.2 功耗

表格 8 功耗

参数	工作模式	条件	条件 典型值[2]	
平均捕获电流[1]	运行模式	-130dBm 3.3V	33	mA
平均跟踪电流	运行模式	-130dBm 3.3V	31	mA
平均备份电流	待机模式	AVDD_BAK	14	uA

^{* [1]} 平均捕获电流指启动至首次定位成功的平均电流

^{* [2]} 根据定位模式及功能不同会有所差异

4 功能描述

4.1 电源

为了保证定位的性能,应尽量控制模块电源的纹波,建议使用 100mA 以上的 LDO 供电。

备用电源作用于模块的基本电源管理系统,并让模块能在主电切断后保持用于热启动的星历数据。备用电源可接电池、超级电容或其他电源,如无需热启动,备用电源应接到模块的主电上,不能悬空。

4.2 天线

本模块的射频部分内置 LNA 和 SAW,外部推荐连接有源天线,天线的增益不超过 30dB。 模块内置有源天线检测与天线过流保护功能,可以检测有源天线正常连接、开路和短路的状态,并在 NMEA 数据发出提示信息。

4.3 复位与工作模式控制

本模块的工作模式由 PRRSTX (nRESET)和 PRTRG(BOOT)两个引脚共同控制。模块上电或 PRRSTX 接受上升沿时,模块将复位(如果 AVD_BAK 不断电,该复位将不会影响备电区的星历数据)。如果在模块产生复位时 PRTRG 检测到低电平输入,模块将在 PRTRG 的低电平释放到悬空状态时进入升级模式,接受升级指令;如果在模块产生复位时 PRTRG 保持悬空,模块将进入正常工作模式。

PRRSTX 和 PRTRG 在与主控系统 IO 连接时,应禁用 IO 的上拉电阻和下拉电阻。

模块在正常工作模式时,应保持 PRRSTX 和 PRTRG 在悬空状态。

4.4 串口通讯

本模块提供一路 TTL 电平的通用异步收发器(UART),数据格式为:1位起始位、8位数据位、1位停止位、无校验位,默认波特率为9600。模块正常上电后,串口自动发送 NMEA 数据,上位机可以通过串口进行设置模块工作模式、波特率等操作。

模块应用于具体系统时,可能会出于省电策略而关闭模块的主电,此时为了进一步降低功耗,并且避免系统串口线的高电平影响模块的工作状态,建议关闭模块主电的同时,将串口线一同切断,也可以将串口线设置为输入态+下拉电阻的状态,或者高阻+下拉电阻状态。

5 机械规格

图 4 模块机械尺寸图

表格 9尺寸

编号	最小值(mm)	典型值(mm)	最大值(mm)
A	12.1	12.2	12.3
В	15.9	16.0	16.3
С	2.4	2.45	2.5
D	0.9	1.0	1.3
E	1.0	1.1	1.2
F	2.9	3.0	3.1
G	0.9	1.0	1.3
Н		0.8	
К	0.4	0.5	0.6
M	0.8	0.9	1.0
N	0.7	0.8	0.9

6 参考设计

6.1 原理图参考设计

如下是 TAU1102 模组的参考设计,当需要使用有源天线连接时,请保证 39NH 电感处于贴片状态,用于给有源天线供电。当使用无源天线连接时,39NH 电感可以不需要贴片。请保证从 RF_IN 端口到天线接口处的射频线的共面波导阻抗为 50Ω。

图 5参考设计原理图

表格 10 天线状态 NMEA 输出

有源天线状态	GNSS 模组输出消息
短路	\$GNTXT,01,01,01,ANT_SHORT*06
正常工作	\$GNTXT,01,01,01,ANT_OK*50
开路	\$GNTXT,01,01,01,ANT_OPEN*40

6.2 LAYOUT 注意事项

- (1) 去耦电容就近模组电源管脚放置,并保证电源走线宽度在 0.5mm 以上;
- (2) 模组贴片底部禁止走线;
- (3) 模组 RF 端口到天线接口处的射频走线至少要保证在 0.2mm~0.3mm , 并且采用共面波导阻抗模型 , 走线到地铜皮之间的间距控制在 1 倍的间距左右 , 并且保证阻抗为 50Ω ;
- (4) 模组 RF 端口到天线接口处的走线参考第二层地,并且保证第二层地平面比较完整;
- (5) 模组切勿放置在干扰源附近,如通信模块天线、射频走线,晶振,大电感以及高频数字信号线附近。

7 软件接口

7.1 NMEA 消息格式

表格 11 NMEA 输出消息

NMEA	Sub ID	描述
GGA	0x00	Global positioning system fixed data
GLL	0x01	Geographic position - latitude/longitude
GRS	0x02	GNSS Overall satellite data
GSA	0x03	GNSS Overall satellite data
GSV	0x04	GNSS Detailed satellite data
RMC	0x05	Recommended minimal data for GNSS
VTG	0x06	Course over ground and ground speed
ZDA	0x07	Date and time
GST	0x08	GNSS Pseudorange Error Statistics
ТХТ	0x20	Antenna status

^{*} 模组默认输出 GGA GSA GSV RMC ZDA TXT 消息

7.1.1 GGA - Global Positioning System Fix Data

表格 12 的示例输出如下:

\$GNGGA,074144.000,3957.79941,N,11619.02981,E,1,19,0.83,105.5,M,-8.4,M,,*65

表格 12 GGA 数据格式

名称	示例	单位	描述
Message ID	\$GNGGA		GGA 协议标头
UTC Time	074144.000		hhmmss.sss
Latitude	3957.79941		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	11619.02981		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Position Fix Indicator	1		参考表格 13
Satellites Used	19		Number of satellites in use, 00-24

HDOP	0.83		Horizontal Dilution of Precision (meters)
MSL Altitude	105.5	meters	Antenna Altitude above/below mean-sea-level (geoid) (in meters)
Units	M	meters	Units of antenna altitude, meters
Geoidal Separation	-8.4	meters	
Units	M	meters	Units of geoidal separation, meters
Age of diff. GNSS data		second	Null fields when DGPS is not used
Diff. Ref. Station ID			Differential reference station ID, 0000-1023
Checksum	*65		Checksum
<cr> <lf></lf></cr>			End of message termination

表格 13 Position Fix Indicators

数值	描述		
0	Fix not available		
1	GNSS fix		
2	Differential GNSS fix		

7.1.2 GLL-Geographic Position – Latitude/Longitude

表格 14 的示例输出如下:

\$GNGLL,2503.71465,N,12138.73922,E,062052.000,A,A*45

表格 14 GLL Data Format

名称	示例	单位	描述
Message ID	\$GNGLL		GLL protocol header
Latitude	2503.71465		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12138.73922		dddmm.mmmm
E/W indicator	Е		E=east or W=west
UTC Time	062052.000		hhmmss.sss
Status	А		A=data valid or V=data not valid
Mode	А		A=Autonomous, D=DGPS, N=Data not valid,
Checksum	*45		
<cr> <lf></lf></cr>			End of message termination

7.1.3 GSA-GNSS DOP and Active Satellites

表格 15 的示例输出如下:

\$GPGSA,A,3,01,11,18,30,28,07,17,22,03,,,,1.10,0.79,0.77,1*12 \$BDGSA,A,3,10,07,08,12,03,13,01,11,02,04,05,,1.10,0.79,0.77,4*0B

表格 15 GSA Data Format

名称	示例	单位	描述
Message ID	\$GPGSA		GSA protocol header
Mode 1	Α		See Table 16
Mode 2	3		See Table 17
ID of satellite used	01		Sv on Channel 1
ID of satellite used	11		Sv on Channel 2
ID of satellite used			Sv on Channel 12
PDOP	1.10		Position Dilution of Precision
HDOP	0.79		Horizontal Dilution of Precision
VDOP	0.77		Vertical Dilution of Precision
System ID	1		Satellites used in GPS 1= GPS 4=BD
Checksum	*12		
<cr> <lf></lf></cr>			End of message termination

表格 16 Mode 1

数值	描述
М	Manual-forced to operate in 2D or 3D mode
Α	Automatic-allowed to automatically switch 2D/3D

表格 17 Mode 2

数值	描述
1	Fix not available
2	2D
3	3D

7.1.4 GSV-GNSS Satellites in View

表格 18 的示例输出如下:

\$GPGSV,4,1,15,193,69,35,39,6,50,28,41,137,50,134,34,129,50,134,34*73
\$GPGSV,4,2,15,17,45,137,41,2,42,326,40,5,42,250,40,128,38,243,36*4B
\$GPGSV,4,3,15,9,36,65,42,12,26,285,35,127,12,260,32,19,9,137,35*7D
\$GPGSV,4,4,15,23,8,41,35,25,4,316,36,28,,,*4F
\$BDGSV,3,1,09,8,75,64,39,6,73,237,38,3,58,205,38,1,53,143,38*56
\$BDGSV,3,2,09,9,47,224,38,4,38,118,37,2,35,246,33,5,16,259,31*6C
\$BDGSV,3,3,09,10,2,210,21*62

表格 18 GSV Data Format

名称	示例	单位	描述
Message ID	\$GPGSV		GSV protocol header
Total number of messages ^[1]	4		Range 1 to 6, Total number of GSV messages to be transmitted in this group
Message number ^[1]	1		Range 1 to 6 Origin number of this GSV message within current group
Satellites in view	15		Total number of satellites in view
Satellite ID ^[2]	193		Satellite PRN number
Elevation	69	degrees	Elevation in degrees (Range 00 to 90)
Azimuth	35	degrees	Azimuth in degrees to true north (Range 000 to 359)
SNR (C/No)	39	dB-Hz	SNR in dB (Range 00 to 99, null when not tracking)
Satellite ID	129		Satellite PRN number (Range 01 to 196)
Elevation	50	degrees	Elevation in degrees (Range 00 to 90)
Azimuth	134	degrees	Azimuth in degrees to true north (Range 000 to 359)
SNR (C/No)	34	dB-Hz	SNR in dB Channel 4 (Range 00 to 99, null when not tracking)
Checksum	*73		
<cr> <lf></lf></cr>			End of message termination

^{* [1]:} Depending on the number of satellites tracked multiple messages of GSV data may be required.

^{* [2]:} GPS ID: 01~32, SBAS ID: 127~141, QZSS ID: 193~199, BEIDOU ID: 01~32

7.1.5 RMC-Recommended Minimum Specific GNSS Data

表格 19 的示例输出如下:

\$GNRMC,075939.000,A,2225.56166,N,11412.68199,E,0.000,64.79,020589,0.0,E,A*1D \$GNRMC,074458.000,A,3957.79932,N,11619.03010,E,0.005,0.00,280419,,,A*4B

表格 19 RMC Data Format

名称	示例	单位	描述
Message ID	\$GNRMC		RMC protocol header
UTC Time	075939.000		hhmmss.sss
Status	А		A=data valid or V=data not valid
Latitude	2225.56166		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	11412.68199		dddmm.mmmm
E/W Indicator	E		E=east or W=west
Speed over ground	0.000	knots	Speed over ground
Course over ground	64.79	degrees	Degrees to true north
Date	020589		ddmmyy
Magnetic variation	0.0	degrees	(Not shown)
Variation sense	E		E=east or W=west (Not shown)
Mode	А		A=Autonomous, D=DGPS, N=Data not valid,
Checksum	*4B		
<cr> <lf></lf></cr>			End of message termination

7.1.6 VTG-Course Over Ground and Ground Speed

表格 20 的示例输出如下:

\$GNVTG,0.00,T,0.00,M,0.000,N,0.000,K,A*3D \$GNVTG,0.00,T,,M,0.011,N,0.021,K,A*20

表格 20 VTG Data Format

名称	示例	单位	描述
Message ID	\$GNVTG		VTG protocol header
Course over ground	0.00	degrees	Degrees to true north
Reference	Т		True north
Course over ground		degrees	Degrees to Magnetic
Reference	М		Magnetic
Speed over ground	0.000	knots	Measured speed
Units	N		Knots
Speed over ground	0.000	km/hr	Measured speed
Units	К		Kilometer per hour
Mode	А		A=Autonomous, D=DGPS, N=Data not valid,
Checksum	*3D		
<cr> <lf></lf></cr>			End of message termination

7.1.7 ZDA-Time & Date

表格 21 的示例输出如下:

\$GNZDA,033900.000,28,10,2015,,*4C

表格 21 ZDA Data Format

名称	示例	单位	描述
Message ID	\$GNZDA		ZDA protocol header
UTC Time	033900.000		hhmmss.sss
Day	28		dd (01 to 31)
Month	10		mm (01 to 12)
Year	2015		уууу (1980 to 2025)
Local zone hours		hour	

Local zone minutes		minute	
Checksum	*4C		
<cr> <lf></lf></cr>			End of message termination

7.1.8 GST- GNSS Pseudorange Error Statistics

表格 22 的示例输出如下:

\$GNGST,081119.000,1.2,,,,0.6,0.5,0.5*52

表格 22 GST Data Format

名称	示例	单位	描述
Message ID	\$GNGST		GST protocol header
UTC Time	081119.000		hhmmss.sss
RMS value	1.2		RMS value of the standard deviation of the range inputs to the navigation process. Range inputs include pseudoranges & DGNSS corrections
Standard semi-major axis of error		Meter	Standard deviation of semi-major axis of error ellipse
Standard semi-minor axis of error		Meter	Standard deviation of semi-minor axis of error ellipse
Orientation of semi-major axis of error		Degree	Orientation of semi-major axis of error ellipse (degrees from true north)
latitude error	0.6	Meter	Standard deviation of latitude error
longitude error	0.5	Meter	Standard deviation of longitude error
altitude error	0.5	Meter	Standard deviation of altitude error
Checksum	*52		

7.1.9 TXT-ANT & USR message

表格 23 的示例输出如下:

\$GNTXT,01,01,01,ANT_OK*50

表格 23 TXT Data Format

名称	示例	单位	描述
Message ID	\$GNTXT		USR message protocol header
Total number	01		Total number of sentences
Sentence Number	01		Sentence number
Identifier	01		Text identifier
Content	ANT_OK		Text message
Checksum	*50	4C	
<cr> <lf></lf></cr>			End of message termination

7.2 专属二进制消息

常用专属命令如表格 24 所示:

表格 24 TAU1102 专有命令集

命令描述	软件命令 [2]
Perform a Cold start	F1 D9 06 40 01 00 01 48 22
Perform a Warm start	F1 D9 06 40 01 00 02 49 23
Perform a Hot start	F1 D9 06 40 01 00 03 4A 24
Perform a Factory reset	F1 D9 06 09 08 00 02 00 00 00 FF FF FF FF 15 01
UART configures as 115200bps	F1 D9 06 00 08 00 00 00 00 00 00 C2 01 00 D1 E0
UART configures as 9600bps	F1 D9 06 00 08 00 00 00 00 00 80 25 00 00 B3 07
Enable ZDA message	F1 D9 06 01 03 00 F0 07 01 02 1E
Disable ZDA message	F1 D9 06 01 03 00 F0 07 00 01 1D
Navigate with GPS only	F1 D9 06 0C 04 00 01 00 00 00 17 A0
Navigate with BEIDOU system only	F1 D9 06 0C 04 00 04 00 00 1A AC
Navigate with GPS+BEIDOU system	F1 D9 06 0C 04 00 05 00 00 00 1B B0
Query firmware version ^[1]	F1 D9 OA 04 00 00 0E 34

^{* [1]} Firmware version will show as Hex mode too.

^{* [2]} Add 0D 0A at the end of command.

7.3 模式配置

7.3.1 CFG-SIMPLERST

Configure soft reset (as system command, there is NO ACK);

F1 D9 06 40 01 00 00 47 21

Configure a cold start (as system command, there is NO ACK);

F1 D9 06 40 01 00 01 48 22

Configure a warm start (as system command, there is NO ACK);

F1 D9 06 40 01 00 02 49 23

Configure a hot start (as system command, there is NO ACK);

F1 D9 06 40 01 00 03 4A 24

Configure GNSS stop (if successful, it would return ACK, else return NAK);

F1 D9 06 40 01 00 10 57 31

Configure GNSS start (if successful, it would return ACK, else return NAK);

F1 D9 06 40 01 00 11 58 32

Configure Clear All TRK Channels (if successful, it would return ACK, else return NAK);

F1 D9 06 40 01 00 80 C7 A1

CFG-SLEEP

Set GNSS task to deep sleep for 5000ms;

F1 D9 06 41 05 00 88 13 00 00 01 E8 56

CFG-PWRCTL

Poll message of power control;

F1 D9 06 42 00 00 13 3F

Set receiver into cyclic sleep mode;

 $\mathsf{F1}\;\mathsf{D9}\;\mathsf{06}\;\mathsf{42}\;\mathsf{14}\;\mathsf{00}\;\mathsf{00}\;\mathsf{05}\;\mathsf{00}\;\mathsf{00}\;\mathsf{B8}\;\mathsf{0B}\;\mathsf{00}\;\mathsf{00}\;\mathsf{60}\;\mathsf{EA}\;\mathsf{00}\;\mathsf{00}\;\mathsf{D0}\;\mathsf{07}\;\mathsf{00}\;\mathsf{00}\;\mathsf{00}\;\mathsf{00}\;\mathsf{00}\;\mathsf{00}\;\mathsf{45}\;\mathsf{F9}$

8 包装与处理

8.1 包装须知

TAU1102 GNSS 定位模块是湿度、静电均敏感设备。在产品的包装和运输过程中,请务必遵循相关处理要求,并采取相应的预防措施以减少产品损坏。下表为产品运输的标准包装结构。

表格 25 包装结构

产品	卷轴	密封的包装袋	装运纸箱
Transfer Ball			

注意:本包装信息不适用于非标准数量的订单。非标准数量的订单包装信息此处不作赘述,请以 实际收发为参考。

8.2 包装

8.2.1 模块包装

TAU1102 GNSS 定位模块采用卷轴(由卷带和卷盘组成)的方式,并使用具有防静电效果的密封袋进行包装,以满足客户高效生产、批量安装和拆卸的需求。下图为卷带的尺寸细节图。

图 6卷带

每卷轴可承装 1000 片模块,下图为卷盘的尺寸细节图:

图 7卷盘

8.2.2 运输包装

由于产品的湿度敏感和静电敏感特性,需使用防静电的密封袋对卷轴进行密封包装,并以纸箱进行运输。运输包装规格如下表格:

表格 26 包装规格汇总

类型	规格
卷轴	1000 片/卷
密封袋	1卷/袋
运输纸箱	5 袋/箱

8.3 存储

为防止产品受潮和静电放电,产品密封包装袋内附有干燥剂和湿度指示卡,用户可通过湿度指示 卡了解产品所处环境的湿度状况。

8.4 ESD 处理

8.4.1 ESD 注意事项

GNSS 定位模块包含高度敏感的电子线路,属于静电敏感器件(ESD)。请注意下面的操作事项,若未按照下述预防措施操作,可能会对模块造成严重损坏!

- 天线贴片前,请先接地。
- 在引出 RF 引脚时,请不要接触任何带电电容和其他器件(例如,天线贴片~10 pF;同轴电缆~50 80 pF/m;焊接烙铁)
- 为防止静电放电,请勿将天线区域暴露在外;若因设计原因暴露在外,请采取适当的 ESD 防护措施。
- 在焊接 RF 连接器和天线贴片时,请确保使用 ESD 安全烙铁。

8.4.2 ESD 防护措施

GNSS 定位模块为静电敏感器件。在操作使用接收机时,必须特别小心,以减少静电的危险。除了标准的 ESD 安全措施外,还需考虑如下措施:

- 在射频输入部分加入 ESD 二极管, 防止静电放电
- 切勿触摸任何暴露的天线区域
- 将 ESD 二极管添加到 UART 接口

8.5 湿敏等级

GNSS 定位模块的湿敏等级为 MSL3。

9 文档版本记录

版本号	发布日期	撰写人	更新记录
V1.0	2019-05-09	Daisy	初版发行
V1.1	2019-08-27	吴小宇	 (1) 添加包装信息; (2) 翻译表头; (3) 更新最小工作电压和 USB 电压数值为3.0V(表格7),以及工作电压的范围; (4) 更新 4.3; (5) 添加 SPI 注释; (6) 更新 7.1.9 表格内容 (7) 更换产品图 (8) 更换产品特性-产品尺寸的单位 (9) 删除 GPIO 接口
V1.2	2019-09-19	吴小宇	(1) 更新包装信息;

www.allystar.com

info.gnss@allystar.com

广东省深圳市龙岗区坂田街道发达路 3 号云里智能园四栋 5 楼

