Section 11.2

Sterling Jeppson

January 27, 2021

Problem 1

The following is a formal definition for Ω -notation, written using quantifiers and variables: f(x) is $\Omega(g(x)) \iff \exists$ positive real numbers a and A such that $\forall x > a$,

$$A|g(x)| \le |f(x)|.$$

- a. Write the formal negation for the definition using the symbols \forall and \exists .
- b. Restate the negation less formally without using the symbols \forall and \exists .

Solution

- a. f(x) is not $\Omega(g(x)) \iff \forall$ positive real numbers a and A, $\exists x > a$, such that A|g(x)| > |f(x)|.
- b. f(x) is not $\Omega(g(x)) \iff$ no matter what positive real numbers a and A are chosen, it is possible to find a number x>a so that

$$A|g(x)| > |f(x)|.$$

Problem 2

The following is a formal definition for O-notation, written using quantifiers and variables: f(x) is $O(g(x)) \iff \exists$ positive real numbers b and B such that $\forall x > b$,

$$|f(x)| \le B|g(x)|.$$

- a. Write the formal negation for the definition using the symbols \forall and \exists .
- b. Restate the negation less formally without using the symbols \forall and \exists .

Solution

- a. f(x) is not $O(g(x)) \iff \forall$ positive real numbers b and B, $\exists x > b$, such that |f(x)| > B|g(x)|.
- b. f(x) is not $\Omega(g(x)) \iff$ no matter what positive real numbers a and A are chosen, it is possible to find a number x > a so that

Problem 3

The following is a formal definition for Θ -notation, written using quantifiers and variables: f(x) is $\Theta(g(x)) \iff \exists$ positive real numbers k, A, and B such that $\forall x > k$,

$$A|g(x)| \le |f(x)| \le B|g(x)|.$$

- a. Write the formal negation for the definition using the symbols \forall and \exists .
- b. Restate the negation less formally without using the symbols \forall and \exists .

Solution

- a. f(x) is not $\Theta(g(x)) \iff \forall$ positive real numbers k, A, and B, $\exists x > k$, such that A|g(x)| > |f(x)| or |f(x)| > B|g(x)|.
- b. f(x) is not $\Theta(g(x)) \iff$ no matter what positive real numbers k, A, and B are chosen, it is possible to find a number x > k so that either

$$A|g(x)| > |f(x)|$$
 or $|f(x)| > B|g(x)|$.

In 4-9, express each statement using Ω -, O-, or Θ - notation.

Problem 4

$$|5x^8-9x^7+2x^5+3x-1| \leq 6|x^8|$$
 for all real numbers $x>3.$ (Use $O\text{-notation.})$

Solution

Let B = 6 and b = 3. The given statement translates to

$$|5x^8 - 9x^7 + 2x^5 + 3x - 1| \le B|x^8|$$
 for all real numbers $x > b$.

So by definition of O-notation, $x^8 - 9x^7 + 2x^5 + 3x - 1$ is $O(x^8)$.

Problem 5

$$|x| \le \left| \frac{(x^2 - 1)(12x + 25)}{3x^2 + 4} \right| \le 6|x|$$
 for all real numbers $x > 2$. (Use Θ -notation.)

Solution

Let A = 1, B = 6, and k = 2. The given statement translates to

$$A|x| \le \left| \frac{(x^2 - 1)(12x + 25)}{3x^2 + 4} \right| \le B|x|$$
 for all real numbers $x > k$.

So by definition of Θ -notation, $\frac{(x^2-1)(12x+25)}{3x^2+4}$ is $\Theta(x)$.

Problem 6

$$|x^{7/2}| \le \left| \frac{(x^2 - 7)^2 (10x^{1/2} + 3)}{x + 1} \right|$$
 for all real numbers $x > 4$. (Use Ω -notation.)

Solution

Let A=1 and a=4. Then the given statement translates to

$$A|x^{7/2}| \le \left| \frac{(x^2 - 7)^2 (10x^{1/2} + 3)}{x + 1} \right|$$
 for all real numbers $x > a$

So by definition of Ω -notation, $\frac{(x^2-7)^2(10x^{1/2}+3)}{x+1}$ is $\Omega(x^{7/2})$.

Problem 7

 $|3x^6 + 5x^4 - x^3| \le 9|x^6|$ for all real numbers x > 1. (Use O-notation.)

Solution

Let B = 9 and b = 1. Then the given statement translates to

$$|3x^6 + 5x^4 - x^3| \le B|x^6|$$
 for all real numbers $x > b$.

So by definition of O-notation, $3x^6 + 5x^4 - x^3$ is $O(x^6)$.

Problem 8

 $\frac{1}{2}x^4 \leq |x^4 - 50x^3 + 1|$ for all real numbers x > 101. (Use $\Omega\text{-notation.})$

Solution

First note that $\frac{1}{2}x^4 = \frac{1}{2}|x^4|$. Now let $A = \frac{1}{2}$ and a = 101. Then the given statement translates to

$$A|x^4| \le |x^4 - 50x^3 + 1|$$
 for all real numbers $x > a$.

So by definition of Ω -notation, $x^4 - 50x^3 + 1$ is $\Omega(x^4)$.

Problem 9

 $\frac{1}{2}x^2 \leq |3x^2 - 80x + 7| \leq 3|x^2|$ for all real numbers x > 33.

Solution

First note that $\frac{1}{2}x^2 = \frac{1}{2}|x^2|$. Now let $A = \frac{1}{2}$, B = 3, and k = 33. Then the given statement translates to

$$A|x^2| \le |3x^2 - 80x + 7| \le B|x^2|$$
 for all real numbers $x > k$.

So by definition of Θ -notation, $3x^2 - 80x + 7$ is $\Theta(x^2)$.

In each of 10-14 assume f and g are real-valued functions defined on the same set of nonnegative real numbers.

Problem 10 and Solution

Prove that if g(x) is O(f(x)), then f(x) is $\Omega(g(x))$.

Proof. Suppose that g(x) is O(f(x)). By definition of O-notation, there exists a positive real number B and a nonnegative real number b such that

$$|g(x)| \leq B|f(x)|$$
 for all real numbers $x > b$.

Divide both sides by B to obtain

$$\frac{1}{B}|g(x)| \le |f(x)|$$
 for all real numbers $x > b$.

Now let A=1/B and a=b. Then A is a positive real number and a is a nonnegative real number a such that

$$A|g(x)| \le |f(x)|$$
 for all real numbers $x > a$.

It follows by the definition of Ω -notation, that f(x) is $\Omega(g(x))$.

Problem 11 and Solution

Prove that if f(x) is O(g(x)) and c is any nonzero real number, then cf(x) if O(g(x)).

Proof. Suppose that f(x) is O(g(x)). By definition of O-notation, there exists a positive real number B and a nonnegative real number b such that

$$|f(x)| \le B|g(x)|$$
 for all real numbers $x > b$.

Multiply both sides by |c| to obtain

$$|c| \cdot |f(x)| \le |c| \cdot B|g(x)|$$
 for all real numbers $x > b$.

It follows from exercise 4.4.44 that $|c| \cdot |f(x)| = |cf(x)|$. It follows from the associative property of the real numbers that $|c| \cdot B|g(x)| = (|c| \cdot B)|g(x)|$. Also since $c \neq 0$ and B > 0, $|c| \cdot B > 0$. Finally we have that

$$|cf(x)| \le (|c| \cdot B)|g(x)|$$
 for all real numbers $x > b$.

It follows by the definition of O-notation, that cf(x) is O(g(x)).

Problem 12 and Solution

Prove that if f(x) is O(h(x)) and g(x) is O(k(x)), then f(x) + g(x) is O(G(x)), where, for each x in the domain, $G(x) = \max(|h(x)|, |k(x)|)$.

Proof. Suppose that f, g, h, and k are real valued functions defined on the same set D of nonnegative real numbers and suppose that f(x) is O(h(x)) and g(x) is O(k(x)). By definition of O-notation, there exist positive real numbers B_1 and B_2 and nonnegative real numbers b_1 and b_2 such that

$$|f(x)| \le B_1 |h(x)|$$
 for all real numbers $x > b_1$

and

$$|g(x)| \le B_2|k(x)|$$
 for all real numbers $x > b_2$.

Now define a function G such that for each $x \in D$, $G(x) = \max(|h(x)|, |k(x)|)$. Also define real numbers $B = B_1 + B_2$ and $b = \max(b_1, b_2)$. Note that by the triangle inequality for absolute value (theorem 4.4.6),

$$|f(x)| + |g(x)| \le |f(x) + g(x)|$$

for all real numbers $x \in D$. Suppose that x > b. Then because $b = \max(b_1, b_2)$,

$$|f(x)| \le B_1 |h(x)|$$
 and $|g(x)| \le B_2 |k(x)|$

Adding the inequalities gives

$$|f(x)| + |g(x)| \le B_1|h(x)| + B_2|k(x)|$$

Thus, by the transitive law for inequalities,

$$|f(x) + g(x)| \le B_1|h(x)| + B_2|k(x)|.$$

Now since $G(x) = |G(x)| = \max(|h(x)|, |k(x)|),$

$$B_1|h(x)| + B_2|k(x)| \le B_1|G(x)| + B_2|G(x)| = (B_1 + B_2)|G(x)|.$$

Finally by transitive law for inequalities and because $B = B_1 + B_2$,

$$|f(x) + g(x)| \le B|G(x)|$$
 for all real numbers $x > b$.

Hence, by definition of O-notation, f(x) + g(x) is O(G(x)).

Problem 14 and Solution

Prove that f(x) is $\Theta(f(x))$.

Proof. Let f be a real-valued function defined on a set of nonnegative real numbers D. Also, suppose that $0 < A \le 1$, $1 \le B$, and let $k \ge \inf\{D\}$. Then,

$$A|f(x)| \le |f(x)| \le B|f(x)|$$
 for all real numbers $x > k$.

Hence, by definition of Θ -notation, f(x) is $\Theta(f(x))$.

Problem 14 and Solution

Prove that if f(x) is O(h(x)) and g(x) is O(k(x)), then f(x)g(x) is O(h(x)k(x)).

Proof. Suppose that f, g, h, and k are real valued functions defined on the same set D of nonnegative real numbers and suppose that f(x) is O(h(x)) and g(x) is O(k(x)). By definition of O-notation, there exist positive real numbers B_1 and B_2 and nonnegative real numbers b_1 and b_2 such that

$$|f(x)| \le B_1 |h(x)|$$
 for all real numbers $x > b_1$

and

$$|g(x)| \leq B_2|k(x)|$$
 for all real numbers $x > b_2$.

Now define real numbers $B = B_1B_2$ and $b = \max(b_1, b_2)$. Note that by exercise 4.4.44,

$$|f(x)| \cdot |g(x)| = |f(x)g(x)|$$
 and $|h(x)| \cdot |k(x)| = |h(x)k(x)|$

for all real numbers $x \in D$. Suppose that x > b. Then because $b = \max(b_1, b_2)$,

$$|f(x)| \le B_1 |h(x)|$$
 and $|g(x)| \le B_2 |k(x)|$

Multiplying the inequalities gives

$$|f(x)| \cdot |g(x)| \le B_1 |h(x)| \cdot B_2 |k(x)| = B_1 B_2 |h(x)| \cdot |k(x)|$$

Now, by the transitive law for equality, and since $B = B_1 B_2$,

$$|f(x)q(x)| \le B|h(x)k(x)|$$
 for all real numbers $x > b$.

Hence, by definition of O-notation, f(x)g(x) is O(h(x)k(x)).

Problem 15

- a. Use mathematical induction to prove that if x is any real number with x > 1, then $x^n > 1$ for all integers n > 1.
- b. Prove that if x is any real number with x > 1, then $x^m < x^n$ for any integers m and n with m < n.

Solution

a. *Proof.* Let x be any real number such that x > 1 and suppose that for all integers $n \ge 1$,

$$x^n > 1$$
 $\leftarrow P(n)$

Show that P(1) is true: Let n = 1. Then $x^n = x^1 = x > 1$. Hence P(0) is true.

Show that for all integers $k \ge 1$, $P(k) \implies P(k+1)$: Let k be any integer with $k \ge 1$ and suppose that

$$x^k > 1$$
 $\leftarrow P(k)$ IH

We must show that this implies that

$$x^{k+1} > 1$$
 $\leftarrow P(k+1)$

But the left-hand side of P(k+1) is

$$x^{k+1} = x \cdot x^k$$
 by inductive hypothesis $= x$ by definition of x

which is the right-hand side of P(k+1).

b. Proof. Let x be any real number such that x>1 and suppose that m and n are any integers such that m< n. It follows that n-m>0. However since m and n are integers n-m must also be an integer and so $n-m\geq 1$. Now

$$x^{n-m}>1$$
 by part (a)
$$\frac{x^n}{x^m}>1$$
 by the laws of exponents
$$x^n>x^m \qquad \qquad \text{multiply both sides by } x^m \qquad \qquad \square$$

Problem 16

- a. Show that for any real number x, if x > 1 then $|x^2| \le |2x^2 + 15x + 4|$.
- b. Show that for any real number x, if x > 1 then $|2x^2 + 15x + 4| \le 21|x^2|$.
- c. Use the Ω and O-notations to express the results of parts (a) and (b).
- d. What can you deduce about the order of $2x^2 + 15x + 4$?

Solution

- a. For any real number x > 1, $0 \le x^2 + 15x + 4$ because all terms are nonnegative. Adding x^2 to both sides gives $x^2 \le 2x^2 + 15x + 4$. Because both sides are nonnegative, absolute value signs may be added to both sides of the inequality to give $|x^2| \le |2x^2 + 15x + 4|$.
- b. For all real numbers x > 1,

$$\begin{split} |2x^2 + 15x + 4| &= 2x^2 + 15x + 4 & \text{all terms are positive} \\ &< 2x^2 + 15x^2 + 4x^2 & \text{because by (11.2.1), } x < x^2 \text{ and } 1 < x^2, \\ &= 21x^2 \\ &= 21|x^2| & x > 1 \text{ and so } x^2 \text{ is positive} \end{split}$$

c. Let A=1 and a=1. Then the results of part (a) translates to $A|x^2| \leq |2x^2+15x+4|$ for all real numbers x>a.

Hence, by definition of Ω -notation, $2x^2 + 15x + 4$ is $\Omega(x^2)$.

Let B=21 and b=1. Then the results of part (b) translates to $|2x^2+15x+4| \leq 21|x^2|$ for all integers x>b.

Hence, by definition of O-notation, $2x^2 + 15x + 4$ is $O(x^2)$.

d. It follows by theorem 11.2.1 part 1 that since $2x^2 + 15x + 4$ is $\Omega(x^2)$ and $O(x^2)$, $2x^2 + 15x + 4$ is $\Theta(x^2)$.

Problem 17

- a. Show that for any real number x, if x > 1 then $|x^4| \le |23x^4 + 8x^2 + 4x|$.
- b. Show that for any real number x, if x > 1 then $|23x^4 + 8x^2 + 4x| \le 35|x^4|$.
- c. Use the Ω and O-notations to express the results of parts (a) and (b).
- d. What can you deduce about the order of $23x^4 + 8x^2 + 4x$?

Solution

- a. For any real number x > 1, $0 \le 22x^4 + 8x^2 + 4x$ because all terms are nonnegative. Adding x^4 to both sides gives $x^4 \le 22x^4 + 8x^2 + 4x$. Because both sides are nonnegative, absolute value signs may be added to both sides of the inequality to give $|x^4| \le |23x^4 + 8x^2 + 4x|$.
- b. For all real numbers x > 1,

$$\begin{split} |23x^4 + 8x^2 + 4x| &= 23x^4 + 8x^2 + 4x & \text{all terms are positive} \\ &< 23x^4 + 8x^4 + 4x^4 & \text{because by (11.2.1), } x^2 < x^4 \text{ and } x < x^4, \\ &= 35x^4 \\ &= 35|x^4| & x > 1 \text{ and so } x^4 \text{ is positive} \end{split}$$

c. Let A=1 and a=1. Then the results of part (a) translate to $A|x^4| < |23x^4 + 8x^2 + 4x| \quad \text{for all real numbers } x > a.$

Hence, by definition of Ω -notation, $23x^4 + 8x^2 + 4x$ is $\Omega(x^4)$.

Let B=35 and b=1. Then the results of part (b) translate to $|23x^4+8x^2+4x| \leq B|x^4|$ for all real numbers x>b.

Hence, by definition of O-notation, $23x^4 + 8x^2 + 4x$ is $O(x^4)$.

d. It follows by theorem 11.2.1 part 1 that since $23x^4 + 8x^2 + 4x$ is $\Omega(x^4)$ and $O(x^4)$, $23x^4 + 8x^2 + 4x$ is $\Theta(x^4)$.

Problem 18 and Solution

Use the definition of Θ -notation to show that $5x^3 + 65x + 30$ is $\Theta(x^3)$.

Proof. First note that for any real number $x>1,\ 0\leq 4x^3+65x+30$ because all terms are nonnegative. Adding x^3 to both sides gives $x^3\leq 5x^3+65x+30$. Because both sides are nonnegative, absolute value signs may be added to both sides of the inequality to give $|x^3|\leq |5x^3+65x+30|$. Now let A=1 and a=1 and it follows that

$$A|x^3| \le |5x^3 + 65x + 30|$$
 for all real numbers $x > a$.

Hence, by definition of Ω -notation, $5x^3 + 65x + 30$ is $\Omega(x^3)$.

Next note that for any real number x > 1,

$$|5x^{3} + 65x + 30| = 5x^{3} + 65x + 30$$
 all terms are positive
$$< 5x^{3} + 65x^{3} + 30x^{3}$$
 because by (11.2.1), $x < x^{3}$ and $1 < x^{3}$, and so $65x < 65x^{3}$ and $30 < 30x^{3}$
$$= 100|x^{3}|$$
 $x > 1$ and so x^{3} is positive

Now let B = 100 and b = 1 and it follows that

$$|5x^3 + 65x + 30| \le B|x^3|$$
 for all real numbers $x > b$.

Hence, by definition of *O*-notation, $5x^3+65x+30$ is $O(x^3)$. It follows by theorem 11.2.1 part 1 that since $5x^3+65x+30$ is $\Omega(x^3)$ and $O(x^3)$, $5x^3+65x+30$ is $\Theta(x^3)$.

Problem 19 and Solution

Use the definition of Θ -notation to show that $x^2 + 100x + 88$ is $\Theta(x^2)$.

Proof. First note that for any real number $x>1,\ 0\leq 100x+88$ because all terms are nonnegative. Adding x^2 to both sides gives $x^2\leq x^2+100x+88$. Because both sides are nonnegative, absolute value signs may be added to both sides of the inequality to give $|x^2|\leq |x^2+100x+88|$. Now let A=1 and a=1 and it follows that

$$A|x^2| \le |x^2 + 100x + 88|$$
 for all real numbers $x > a$.

Hence, by definition of Ω -notation, $x^2 + 100x + 88$ is $\Omega(x^2)$.

Next note that for any real number x > 1,

$$|x^2 + 100x + 88| = x^2 + 100x + 88$$
 all terms are positive
$$< x^2 + 100x^2 + 88x^2$$
 because by (11.2.1), $x < x^2$ and $1 < x^2$, and so $100x < 100x^2$ and $88 < 88x^2$
$$= 189x^2$$

$$= 189|x^2|$$
 $x > 1$ and so x^2 is positive

Now let B=189 and b=1 and it follows that $|x^2+100x+88| \leq B|x^2| \quad \text{for all real numbers } x>b.$

Hence, by definition of O-notation, $x^2+100x+88$ is $O(x^2)$. It follows by theorem 11.2.1 part 1 that since $x^2+100x+88$ is $\Omega(x^2)$ and $O(x^2)$, $x^2+100x+88$ is $\Theta(x^2)$.

Problem 20

- a. Show that for any real number x, if x > 1 then $|x^2| \le |\lceil x^2 \rceil|$.
- b. Show that for any real number x, if x > 1 then $|\lceil x^2 \rceil| \le 2|x^2|$.
- c. Use the Ω and O-notations to express the results of parts (a) and (b).
- d. What can you deduce about the order of $[x^2]$?

Solution

- a. By definition of ceiling, for any real number x, $\lceil x^2 \rceil$ is that integer n such that $n-1 < x^2 \le n$. Hence, by substitution, $x^2 \le \lceil x^2 \rceil$. Since x > 1, both sides of the inequality are positive, and so $|x^2| \le |\lceil x^2 \rceil|$.
- b. By definition of ceiling, for any real number x, $\lceil x^2 \rceil$ is that integer n such that $n-1 < x^2 \le n$. Adding 1 to all parts of this inequality gives $n < x^2 + 1 \le n + 1$. It follows that $\lceil x^2 \rceil < x^2 + 1$. Thus if x is any real number with x > 1, then

$$\begin{split} |\lceil x^2 \rceil| &= \lceil x^2 \rceil & \qquad \lceil x^2 \rceil \text{ is positive} \\ &< x^2 + 1 & \qquad \text{by the argument above} \\ &< x^2 + x^2 & \qquad \text{by (11.2.1), } 1 < x^2 \\ &= 2x^2 \\ &= 2|x^2| & \qquad \text{because } x^2 \text{ is positive} \end{split}$$

c. Let A=1 and a=1. Then the results of part (a) translate to $A|x^2| \leq |\lceil x^2 \rceil|$ for all real numbers x>a.

Hence, by definition of Ω -notation, $\lceil x^2 \rceil$ is $\Omega(x^2)$.

Let B=2 and b=1. Then the results of part (b) translate to $\lceil x^2 \rceil \leq B |x^2|$ for all real numbers x>b.

Hence, by definition of O-notation, $\lceil x^2 \rceil$ is $O(x^2)$.

d. It follows by theorem 11.2.1 part 1 that since $\lceil x^2 \rceil$ is $\Omega(x^2)$ and $O(x^2)$, $\lceil x^2 \rceil$ is $\Theta(x^2)$.

Problem 21

- a. Show that for any real number x, if x > 1 then $||\sqrt{x}|| \le |\sqrt{x}|$.
- b. Show that for any real number x, if x > 1 then $|\sqrt{x}| \le 2||\sqrt{x}||$.
- c. Use the Ω and O-notations to express the results of parts (a) and (b).
- d. What can you deduce about the order of $|\sqrt{x}|$?

Solution

- a. By definition of floor, for any real number x, $\lfloor \sqrt{x} \rfloor$ is that integer n such that $n \leq \sqrt{x} < n+1$. Hence, by substitution, $\lfloor \sqrt{x} \rfloor \leq \sqrt{x}$. Since x > 1, both sides of the inequality are positive, and so $||\sqrt{x}|| \leq |\sqrt{x}|$.
- b. By definition of floor, for any real number x, $\lfloor \sqrt{x} \rfloor$ is that integer n such that $n \leq \sqrt{x} < n+1$. It follows that $\sqrt{x} \leq \lfloor \sqrt{x} \rfloor + 1$. Thus if x is any real number with x > 1, then

$$\begin{split} |\sqrt{x}| &= \sqrt{x} & \qquad |\sqrt{x}| \text{ is positive} \\ &\leq \lfloor \sqrt{x} \rfloor + 1 & \text{by the argument above} \\ &\leq \lfloor \sqrt{x} \rfloor + \lfloor \sqrt{x} \rfloor & \text{by (11.2.1), } 1 < \sqrt{x} \text{ and so } 1 \leq \lfloor \sqrt{x} \rfloor \\ &= 2 \lfloor \sqrt{x} \rfloor & \qquad |\sqrt{x}| \text{ is positive} \end{split}$$

c. Let B=1 and b=1. Then the results are part (a) translate to $|\lfloor \sqrt{x}\rfloor| \leq B|\sqrt{x}| \quad \text{for all integers } x>b.$

Hence, by definition of O-notation, $\lfloor \sqrt{x} \rfloor$ is $O(\sqrt{x})$.

Let $A = \frac{1}{2}$ and a = 1. Then the results of part (b) translate to $A|\sqrt{x}| \le ||\sqrt{x}||$ for all integers x > b.

Hence, by definition of Ω -notation, $|\sqrt{x}|$ is $\Omega(\sqrt{x})$.

d. It follows by theorem 11.2.1 part 1 that since $\lfloor \sqrt{x} \rfloor$ is $\Omega(\sqrt{x})$ and $O(\sqrt{x})$, $\lfloor \sqrt{x} \rfloor$ is $\Theta(\sqrt{x})$.

Problem 22

- a. Show that for any real number x, if x > 1 then $|7x^4 95x^3 + 3| \le 105|x^4|$.
- b. Use O-notation to express the result of part (a).

Solution

a. *Proof.* For all real numbers x > 1,

$$\begin{array}{ll} |7x^4 - 95x^3 + 3| \leq |7x^4| + |95x^3| + |3| & \text{by the triangle inequality} \\ &= 7x^4 + 95x^3 + 3 & \text{all terms are positive} \\ &< 7x^4 + 95x^4 + 3x^4 & \text{because by (11.2.1), } x^3 < x^4 \text{ and } 1 < x^4, \\ &= 105x^4 \\ &= 105|x^4| & x > 1 \text{ and so } x^4 \text{ is positive} \end{array}$$

b. Now let B = 105 and b = 1 and it follows that

$$|7x^4 - 95x^3 + 3| \le 105|x^4|$$
 for all real numbers $x > b$.

Hence, by definition of O-notation, $7x^4 - 95x^3 + 3$ is $O(x^4)$.

Problem 23

- a. Show that for any real number x, if x > 1 then $\left| \frac{1}{5}x^2 42x 8 \right| \le 51|x^2|$.
- b. Use O-notation to express the result of part (a).

Solution

a. *Proof.* For all real numbers x > 1,

$$\begin{split} |\frac{1}{5}x^2 - 42x - 8| &\leq |\frac{1}{5}x^2| + |42x| + |8| & \text{by the triangle inequality} \\ &= \frac{1}{5}x^2 + 42x + 8 & \text{all terms are positive} \\ &< \frac{1}{5}x^2 + 42x^2 + 8x^2 & \text{because by (11.2.1), } x < x^2 \text{ and } 1 < x^2, \\ &< x^2 + 42x^2 + 8x^2 & \frac{1}{5} < 1. \\ &= 51x^2 \\ &= 51|x^2| & x > 1 \text{ and so } x^2 \text{ is positive} \end{split}$$

b. Now let B = 51 and b = 1 and it follows that

$$\left| \frac{1}{5}x^2 - 42x - 8 \right| \le 51|x^2|$$
 for all real numbers $x > b$.

Hence, by definition of O-notation, $\frac{1}{5}x^2 - 42x - 8$ is $O(x^2)$.

Problem 24

- a. Show that for any real number x, if x > 1 then $\left| \frac{1}{4}x^5 50x^3 + 3x + 12 \right| \le 66|x^5|$.
- b. Use O-notation to express the result of part (a).

Solution

a.
$$Proof.$$
 For all real numbers $x>1$,
$$|\frac{1}{4}x^5-50x^3+3x+12|$$

$$\leq |\frac{1}{4}x^5|+|50x^3|+|3x|+|12| \quad \text{by the triangle inequality}$$

$$=\frac{1}{4}x^5+50x^3+3x+12 \quad \text{all terms are positive}$$

$$<\frac{1}{4}x^5+50x^5+3x^5+12x^5 \quad \sup_{1<|x|^5 \text{ and so } 50x^3|<50x^5, \ 3x<|3x^5, \ and \ 12<|12x^5|}$$

$$< x^5+50x^5+3x^5+12x^5 \quad \frac{1}{4}<1.$$

$$=66x^2$$

$$=66|x^5| \quad x>1 \text{ and so } x^5 \text{ is positive}$$

b. Now let B=66 and b=1 and it follows that

$$\left| \frac{1}{4}x^5 - 50x^3 + 3x + 12 \right| \le 66|x^5|$$
 for all real numbers $x > b$.

Hence, by definition of O-notation, $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ is $O(x^5)$.

Problem 25

Show that x^5 is not $O(x^2)$.

Solution

Proof. Suppose that x^5 is $O(x^2)$. Then, by definition of O-notation, there exists a positive real number B and a nonnegative real number b such that

$$|x^5| \le B|x^2|$$
 for all real numbers $x > b$.

Now let x be a real number such that x > b, and $x > B^{1/3}$. Then

$$|x^5|=x^5$$
 $x>0$ and so $x^5>0$.
 $=x^3\cdot x^2$ $>B\cdot x^2$ $x>B^{1/3}$ and so $x^3>B$
 $=B|x^2|$ $x>0$ and so $x^2>0$

But now we have that $|x^5| \leq B|x^2|$ and $|x^5| > B|x^2|$ which is a contradiction. Hence the supposition that x^5 is $O(x^2)$ is false.

Problem 26

Suppose that $a_0, a_1, a_2, ..., a_n$ are real numbers and $a_n \neq 0$. Use the generalization of the triangle inequality to n integers (exercise 43, section 5.5) to show that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $O(x^n)$.

Solution

Proof. Suppose that $a_0, a_1, a_2, ..., a_n$ are real numbers and $a_n \neq 0$. Then,

$$\begin{aligned} |a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0| \\ & \leq |a_n x^n| + |a_{n-1} x^{n-1}| + \ldots + |a_1 x| + |a_0| & \text{by the generalized triangle inequality} \\ &= |a_n| \cdot |x^n| + |a_{n-1}| \cdot |x^{n-1}| + \ldots + |a_1| \cdot |x| + |a_0| & \text{by exercise 4.4.44} \\ &< |a_n| \cdot |x^n| + |a_{n-1}| \cdot |x^n| + \ldots + |a_1| \cdot |x^n| + |a_0| \cdot |x^n| & \text{by theorem 11.2.1} \\ &= |x^n| \cdot (|a_n| + |a_{n-1}| + \ldots + |a_1| + |a_0|) \end{aligned}$$

Now let $B = (|a_n| + |a_{n-1}| + ... + |a_1| + |a_0|)$ and b = 1 and it follows that for all real numbers x > b,

$$|a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0| \le B \cdot |x^n|$$

Hence, by definition of O-notation.

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $O(x^n)$.

Problem 27

Suppose $a_0, a_1, a_2, ..., a_n$ are any real numbers and that $a_n > 0$. Show that $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ is $\Omega(x^n)$ by letting

$$d = 2\left(\frac{|a_0| + |a_1| + |a_2| + \dots + |a_{n-1}|}{|a_n|}\right)$$

and letting $a = \max(d, 1)$.

Solution

Proof. Since x > a, it follows that

$$x > 2\left(\frac{|a_0| + |a_1| + |a_2| + \ldots + |a_{n-1}|}{|a_n|}\right)$$

$$x > 2\frac{|a_0|}{|a_n|} + 2\frac{|a_1|}{|a_n|} + 2\frac{|a_2|}{|a_n|} + \ldots + 2\frac{|a_{n-1}|}{|a_n|}$$

$$x > 2\frac{|a_0|}{|a_n|} \frac{1}{x^{n-1}} + 2\frac{|a_1|}{|a_n|} \frac{1}{x^{n-2}} + 2\frac{|a_2|}{|a_n|} \frac{1}{x^{n-3}} + \ldots + 2\frac{|a_{n-1}|}{|a_n|} \quad \underset{\text{for all } i = 1, 2, \ldots, n-1}{x^{s} < 1}$$

$$\frac{|a_n|x^n}{2} > |a_0| + |a_1|x + |a_2|x^2 + \ldots + |a_{n-1}|x^{n-1} \qquad \text{multiply both sides by } \frac{|a_n|x^n}{2}$$

$$\frac{a_nx^n}{2} > |a_0| + |a_1|x + |a_2|x^2 + \ldots + |a_{n-1}|x^{n-1} \qquad a_n > 0 \text{ and so } |a_n| = a_n$$

$$\frac{a_nx^n}{2} > -a_0 - a_1x - a_2x^2 - \ldots - a_{n-1}x^{n-1} \qquad |a_i| \ge -a_i \text{ for all } i = 1, 2, \ldots, n-1$$

$$a_nx^n - \frac{a_nx^n}{2} > -a_0 - a_1x - a_2x^2 - \ldots - a_{n-1}x^{n-1}$$

Now by adding $\frac{a_n x^n}{2}$ and $a_0 + a_1 x + a_2 x + ... + a_{n-1} x^{n-1}$ to both sides we obtain

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 > \frac{a_n x^n}{2}$$

Now since $a_n > 0$ and $x^n > 0$ it follows that $\frac{a_n x^n}{2} > 0$. Since this is the case it must also be true that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 > 0$$

Finally let $A = \frac{a_n}{2}$ and it follows that

$$|a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0| \ge A|x^n|$$
 for all real $x > a$

Hence, by definition of Ω -notation,

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $\Omega(x^n)$.

In 28-30: (a) Let d be the number obtained by adding up the absolute values of the coefficients of the lower-order terms of the given polynomial, dividing by the absolute value of the highest-order term, and multiplying the result by 2. Let a be the maximum number of d and 1, and let A be half the coefficient of the absolute value of the highest-order term of the polynomial. (b) Show that if x > a, then the absolute value of the polynomial will be greater than the product of A and the absolute value of x^4 , where a is the degree of the polynomial. (c) Deduce the result given in the exercise.

Problem 28 and Solution

Use the definition of Ω -notation to show that $7x^4 - 95x^3 + 3$ is $\Omega(x^4)$.

$$Proof. \text{ Let } a = 2\left(\frac{95+3}{7}\right) = 28 \text{ and let } A = \frac{7}{2}. \text{ If } x > a \text{ then}$$

$$x > 2\left(\frac{95+3}{7}\right)$$

$$x > 2 \cdot \frac{95}{7} + 2 \cdot \frac{3}{7}$$

$$x > 2 \cdot \frac{95}{7} + 2 \cdot \frac{3}{7} \cdot \frac{1}{x^3} \quad x > 28 \implies 1/x^3 < 1$$

$$\frac{7}{2} \cdot x^4 > 95x^3 + 3 \qquad \text{multiply both sides by } \frac{7x^3}{2}$$

$$\left(7 - \frac{7}{2}\right)x^4 > 95x^3 - 3 \qquad \frac{7}{2} = 7 - \frac{7}{2} \text{ and } -3 < 3$$

$$7x^4 - \frac{7}{2}x^4 > 95x^3 - 3$$

$$7x^4 - 95x^3 + 3 > \frac{7}{2}x^4 \qquad \text{add } \frac{7}{2}x^4 \text{ to both sides and subtract } (95x^3 - 3) \text{ from both sides}$$

$$\begin{aligned} 7x^4 - 95x^3 + 3 &> Ax^4 \\ |7x^4 - 95x^3 + 3| &> A|x^4| \end{aligned} \qquad A = \frac{7}{2}$$
$$|7x^4 - 95x^3 + 3| &> Ax^4 &> 0 \text{ and so } \\ |7x^4 - 95x^3 + 3| &= 7x^4 - 95x^3 + 3 \end{aligned}$$

Hence, by definition of Ω -notation, $7x^4 - 95x^3 + 3$ is $\Omega(x^4)$.

Problem 29 and Solution

Use the definition of Ω -notation to show that $\frac{1}{5}x^2 - 42x - 8$ is $\Omega(x^2)$.

$$Proof. \text{ Let } a = 2\left(\frac{42+8}{1/5}\right) = 500 \text{ and let } A = \frac{1/5}{2}. \text{ If } x > a \text{ then}$$

$$x > 2\left(\frac{42+8}{1/5}\right)$$

$$x > 2 \cdot \frac{42}{1/5} + 2 \cdot \frac{8}{1/5}$$

$$x > 2 \cdot \frac{42}{1/5} + 2 \cdot \frac{8}{1/5} \cdot \frac{1}{x} \quad x > 500 \implies \frac{1}{x} < 1$$

$$\frac{1/5}{2} \cdot x^2 > 42x + 8 \qquad \text{multiply both sides by } \frac{1/5x}{2}$$

$$\left(\frac{1}{5} - \frac{1/5}{2}\right) x^2 > 42x + 8 \qquad \frac{1}{5} - \frac{1/5}{2} = \frac{1/5}{2}$$

$$\frac{1}{5}x^2 - \frac{1/5}{2}x^2 > 42x + 8$$

$$\frac{1}{5}x^2 - 42x - 8 > \frac{1/5}{2}x^2$$

$$\frac{1}{5}x^2 - 42x - 8 > Ax^2 \qquad A = \frac{1/5}{2}$$

$$|\frac{1}{5}x^2 - 42x - 8| > A|x^2| \qquad \frac{1}{5}x^2 - 42x - 8| = \frac{1}{5}x^2 - 42x - 8$$

Hence, by definition of Ω -notation, $\frac{1}{5}x^2 - 42x - 8$ is $\Omega(x^2)$.

Problem 30

Use the definition of Ω -notation to show that $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ is $\Omega(x^5)$.

Proof. Let
$$a = 2\left(\frac{50+3+12}{1/4}\right) = 520$$
 and let $A = \frac{1/4}{2}$. If $x > a$ then
$$x > 2\left(\frac{50+3+12}{1/4}\right)$$
$$x > 2 \cdot \frac{50}{1/4} + 2 \cdot \frac{3}{1/4} + 2 \cdot \frac{12}{1/4}$$
$$x > 2 \cdot \frac{50}{1/4} \cdot \frac{1}{x} + 2 \cdot \frac{3}{1/4} \cdot \frac{1}{x^3} + 2 \cdot \frac{12}{1/4} \cdot \frac{1}{x^4} \quad x > 520 \implies \frac{1}{x^4} < \frac{1}{x^3} < \frac{1}{x} < 1$$

$$\begin{split} \frac{1/4}{2} \cdot x^5 &> 50x^3 + 3x + 12 & \text{multiply both sides by } \frac{1/4x^4}{2} \\ \left(\frac{1}{4} - \frac{1/4}{2}\right) x^5 &> 50x^3 + 3x + 12 & \frac{1}{4} - \frac{1/4}{2} = \frac{1/4}{2} \\ \frac{1}{4} x^5 - \frac{1/4}{2} x^5 &> 50x^3 - 3x - 12 & -3x < 3x \text{ and } -12 < 12 \\ \frac{1}{4} x^5 - 50x^3 + 3x + 12 &> \frac{1/4}{2} x^5 \\ \frac{1}{4} x^5 - 50x^3 + 3x + 12 &> Ax^5 & A = \frac{1/4}{2} \\ |\frac{1}{4} x^5 - 50x^3 + 3x + 12| &> A|x^5| & |\frac{1}{4} x^5 - 50x^3 + 3x + 12| &> Ax^5 > 0 \text{ and so } \\ |\frac{1}{4} x^5 - 50x^3 + 3x + 12| &= \frac{1}{4} x^5 - 50x^3 + 3x + 12|$$

Hence, by definition of Ω -notation, $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ is $\Omega(x^5)$.

Problem 31

Refer to the results of exercises 22 and 28 to find an order for $7x^4 - 95x^3 + 3$ from among the set of power function.

Solution

By exercise 22, $7x^4 - 95x^3 + 3$ is $O(x^4)$, and by exercise 28, $7x^4 - 95x^3 + 3$ is $\Omega(x^4)$. Hence, by theorem 11.2.1 (1) $7x^4 - 95x^3 + 3$ is $\Theta(x^4)$.

Problem 32

Refer to the results of exercises 23 and 29 to find an order for $\frac{1}{5}x^2 - 42x - 8$ from among the set of power function.

Solution

By exercise 23, $\frac{1}{5}x^2 - 42x - 8$ is $O(x^2)$, and by exercise 29, $\frac{1}{5}x^2 - 42x - 8$ is $\Omega(x^2)$. Hence, by theorem 11.2.1 (1) $\frac{1}{5}x^2 - 42x - 8$ is $\Theta(x^2)$.

Problem 33

Refer to the results of exercises 24 and 30 to find an order for $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ from among the set of power function.

Solution

By exercise 24, $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ is $O(x^5)$, and by exercise 30, $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ is $\Omega(x^5)$. Hence, by theorem 11.2.1 (1) $\frac{1}{4}x^5 - 50x^3 + 3x + 12$ is $\Theta(x^5)$.

Use the theorem on polynomial orders to prove each of the statements in 34-39.

Problem 34 and Solution

Prove that
$$\frac{(x+1)(x-2)}{4}$$
 is $\Theta(x^2)$.

Proof.

$$\frac{(x+1)(x-2)}{4} = \frac{x^2 - x - 2}{4} = \frac{1}{4}x^2 - \frac{1}{4}x - \frac{1}{2}$$

Hence $\frac{(x+1)(x-2)}{4}$ is $\Theta(x^2)$ be the theorem on polynomial orders.

Problem 35 and Solution

Prove that $\frac{x}{3}(4x^2-1)$ is $\Theta(x^3)$.

Proof.

$$\frac{x}{3}(4x^2 - 1) = \frac{4}{3}x^3 - \frac{1}{3}x$$

Hence $\frac{x}{3}(4x^2-1)$ is $\Theta(x^3)$ by the theorem on polynomial orders.

Problem 36 and Solution

Prove that $\frac{x(x-1)}{2} + 3x$ is $\Theta(x^2)$.

Proof.

$$\frac{x(x-1)}{2} + 3x = \frac{x(x-1)}{2} + \frac{6x}{2} = \frac{x^2 + 5x}{2} = \frac{1}{2}x^2 + \frac{5}{2}x$$

Hence $\frac{x(x-1)}{2} + 3x$ is $\Theta(x^2)$ by the theorem on polynomial orders.

Problem 37 and Solution

Prove that $\frac{n(n+1)(2n+1)}{6}$ is $\Theta(n^3)$.

Proof.

$$\frac{n(n+1)(2n+1)}{6} = \frac{2n^3 + 3n^2 + n}{6} = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

Hence $\frac{n(n+1)(2n+1)}{6}$ is $\Theta(n^3)$ by the theorem on polynomial orders.

Problem 38 and Solution

Prove that
$$\left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
 is $\Theta(n^4)$.

Proof.

$$\left[\frac{n(n+1)}{2}\right]^2 = \left[\frac{n^2+n}{2}\right]^2 = \frac{n^4+2n^3+n^2}{4} = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n$$

Hence $\left[\frac{n(n+1)}{2}\right]^2$ is $\Theta(n^4)$ by the theorem on polynomial orders.

Problem 39 and Solution

Prove that
$$2(n-1) + \frac{n(n+1)}{2} + 4\left(\frac{n(n-1)}{2}\right)$$
 is $\Theta(n^2)$.

Proof.

$$2(n-1) + \frac{n(n+1)}{2} + 4\left(\frac{n(n-1)}{2}\right)$$

$$= (n-1)(2n+2) + \frac{n^2 + n}{2}$$

$$= 2n^2 - 2 + \frac{n^2 + n}{2}$$

$$= \frac{4n^2 - 4}{2} + \frac{n^2 + n}{2}$$

$$= \frac{5n^2 + n - 4}{2} = \frac{5}{2}n^2 + \frac{1}{2}n - 2$$

Hence $2(n-1) + \frac{n(n+1)}{2} + 4\left(\frac{n(n-1)}{2}\right)$ is $\Theta(n^2)$ by the theorem on polynomial orders.

Prove each of the statements in 40-47, assuming n is a variable that takes positive integer values. (Use formulas from the exercise set of section 5.2 and the theorem on polynomial orders as appropriate.)

Problem 40 and Solution

Prove that $1^2 + 2^2 + 3^2 + ... + n^2$ is $\Theta(n^3)$.

Proof. It follows from exercise 5.2.10 that

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Hence by exercise 37, $1^2 + 2^2 + 3^2 + ... + n^2$ is $\Theta(n^3)$.

Problem 41 and Solution

Prove that $1^3 + 2^3 + 3^3 + ... + n^3$ is $\Theta(n^4)$.

Proof. It follows from exercise 5.2.11 that

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Hence by exercise 38, $1^3 + 2^3 + 3^3 + ... + n^3$ is $\Theta(n^4)$.

Problem 42 and Solution

Prove that $2+4+6+\ldots+2n$ is $\Theta(n^2)$.

Proof.

$$2+4+6+...+2n = 2(1+2+3+...+n)$$

$$= 2 \cdot \frac{n(n+1)}{2}$$
 by theorem 5.2.2
$$= n(n+1)$$

$$= n^2+n$$

Hence 2+4+6+...+2n is $\Theta(n^2)$ by the theorem on polynomial orders. \square

problem 43 and Solution

Prove that 5 + 10 + 15 + 20 + 25 + ... + 5n is $\Theta(n^2)$.

Proof.

$$\begin{array}{ll} 5+10+15+20+25+\ldots+5n=5(1+2+3+4+5+\ldots+n)\\ &=5\cdot\frac{n(n+1)}{2}\\ &=\frac{5}{2}n^2+\frac{5}{2}n \end{array} \qquad \text{by theorem 5.2.2}$$

Hence $5+10+15+20+25+\ldots+5n$ is $\Theta(n^2)$ by the theorem on polynomial orders. \Box

Problem 44 and Solution

Prove that
$$\sum_{i=1}^{n} (4i - 9)$$
 is $\Theta(n^2)$.

Proof.

$$\sum_{i=1}^{n} (4i - 9) = 4 \sum_{i=1}^{n} i - \sum_{i=1}^{n} 9$$
 by theorem 5.1.1
$$= 4 \cdot \frac{n(n+1)}{2} - 9n$$
 by theorem 5.2.2
$$= 2(n^2 + n) - 9n$$

$$= 4n^2 + 2n - 9n$$

$$= 4n^2 - 7n$$

Hence $\sum_{i=1}^{n} (4i-9)$ is $\Theta(n^2)$ by the theorem on polynomial orders.

Problem 45 and Solution

Prove that $\sum_{k=1}^{n} (k+3)$ is $\Theta(n^2)$.

Proof.

$$\sum_{k=1}^{n} (k+3) = \sum_{k=1}^{n} k + \sum_{k=1}^{n} 3$$
 by theorem 5.1.1
$$= \frac{n(n+1)}{2} + 3n$$
 by theorem 5.2.2
$$= \frac{n^2 + n}{2} + \frac{6n}{2}$$

$$= \frac{n^2 + 7n}{2}$$

$$= \frac{1}{2}n^2 + \frac{7}{2}n$$

Hence $\sum_{k=1}^{n} (k+3)$ is $\Theta(n^2)$ by the theorem on polynomial orders.

Problem 46 and Solution

Prove that $\sum_{i=1}^{n} i(i+1)$ is $\Theta(n^3)$.

Proof.

$$\sum_{i=1}^{n} i(i+1) = \sum_{i=1}^{n} i^2 + i$$

$$= \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i$$
 by theorem 5.1.1

$$\begin{split} &=\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2} & \text{by exercise 5.2.10} \\ &=\frac{2n^3+3n^2+n}{6}+\frac{n^2+n}{2} \\ &=\frac{2n^3+3n^2+n}{6}+\frac{3n^2+3n}{6} \\ &=\frac{2n^3+6n^2+4n}{6} \\ &=\frac{1}{3}n^3+n^2+\frac{2}{3}n \end{split}$$

Hence $\sum_{i=1}^{n} i(i+1)$ is $\Theta(n^3)$ by the theorem on polynomial orders.

Problem 47 and Solution

Prove that $\sum_{k=3}^{n} (k^2 - 2k)$ is $\Theta(n^3)$.

Proof.

$$\begin{split} \sum_{k=3}^n (k^2 - 2k) &= \sum_{k=3}^n k^2 - 2 \sum_{k=3}^n k \\ &= \sum_{k=1}^n k^2 - 1^2 - 2^2 - 2 \left(\sum_{k=1}^n k - 1 - 2 \right) \\ &= \sum_{k=1}^n k^2 - 5 - 2 \left(\sum_{k=1}^n k - 3 \right) \\ &= \sum_{k=1}^n k^2 - 5 - 2 \sum_{k=1}^n k + 6 \\ &= \sum_{k=1}^n k^2 - 2 \sum_{k=1}^n k + 1 \\ &= \frac{2n^3 + 3n^2 + n}{6} - 2 \cdot \frac{n^2 + n}{2} + 1 & \text{by exercise 5.2.10} \\ &= \frac{2n^3 + 3n^2 + n}{6} - \frac{6n^2 + 6n}{6} + \frac{6}{6} \\ &= \frac{2n^3 - 3n^2 - 5n + 6}{6} = \frac{1}{3}n^3 - \frac{1}{2}n^2 + \frac{7}{6}n + 1 \end{split}$$

Hence $\sum_{k=3}^{n} (k^2 - 2k)$ is $\Theta(n^3)$ by the theorem on polynomial orders. \square

Problem 48

a. Let $a_0, a_1, a_2, ..., a_n$ be real numbers with $a_n \neq 0$. Prove that

$$\lim_{x\to\infty}\left|\frac{a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0}{a_nx^n}\right|=1$$

b. Use the results of part (a) and the definition of limit to prove that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x_1 + a_0$$
 is $\Theta(x^n)$

Solution

a. *Proof.* Let $a_0, a_1, a_2, ..., a_n$ be real numbers with $a_n \neq 0$. Then,

$$\begin{split} &\lim_{x \to \infty} \left| \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{a_n x^n} \right| \\ &= \lim_{x \to \infty} \left| \frac{a_n x^n}{a_n x^n} + \frac{a_{n-1} x^{n-1}}{a_n x^n} + \ldots + \frac{a_1 x}{a_n x^n} + \frac{a_0}{a_n x^n} \right| \\ &= \lim_{x \to \infty} \left| 1 + \frac{a_{n-1}}{a_n} \cdot \frac{1}{x} + \ldots + \frac{a_1}{a_n} \cdot \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \cdot \frac{1}{x^n} \right| \\ &= \left| 1 + \frac{a_{n-1}}{a_n} \cdot \lim_{x \to \infty} \frac{1}{x} + \ldots + \frac{a_1}{a_n} \cdot \lim_{x \to \infty} \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \cdot \lim_{x \to \infty} \frac{1}{x^n} \right| \\ &= \left| 1 + \frac{a_{n-1}}{a_n} \cdot 0 + \ldots + \frac{a_1}{a_n} \cdot 0 + \frac{a_0}{a_n} \cdot 0 \right| \\ &= |1 + 0 + \ldots + 0 + 0| = |1| = 1 \end{split}$$

b. Proof. To say that $\lim_{x\to\infty} f(x) = L$ means that given any real number $\epsilon > 0$, there is a real number M > 0 such that $L - \epsilon < f(x) < L + \epsilon$ for all real numbers x > M. Now define a function f as

$$f(x) = \left| \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{a_n x^n} \right|$$

Since $\lim_{x\to\infty} f(x) = 1$, we can select $\epsilon = \frac{1}{2}$ and it follows that there exists a real number M>0 such that for all real numbers x>M,

$$\begin{split} L - \epsilon &< f(x) < L + \epsilon \\ 1 - \frac{1}{2} &< f(x) < 1 + \frac{1}{2} \\ \frac{1}{2} &< f(x) < \frac{3}{2} \\ \frac{1}{2} &< \left| \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{a_n x^n} \right| < \frac{3}{2} \end{split} \tag{1}$$

Proof that $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x_1 + a_0$ is $O(x^n)$:

$$\left| \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{a_n x^n} \right| < \frac{3}{2} \qquad \text{right side of inequality (1)}$$

$$\frac{|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0|}{|a_n x^n|} < \frac{3}{2} \qquad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

$$|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0| < \frac{3}{2} \cdot |a_n x^n|$$

$$|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0| < \frac{3}{2} \cdot |a_n| \cdot |x^n|$$
 by exercise 4.4.44

Finally Let $B = \frac{3}{2} \cdot |a_n|$ and it follows that for all real numbers x > M,

$$|a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0| \le B|x^n|$$

Hence, by definition of O-notation,

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x_1 + a_0$$
 is $O(x^n)$.

Proof that $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x_1 + a_0$ is $\Omega(x^n)$:

$$\frac{1}{2} < \left| \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{a_n x^n} \right| \quad \text{right side of inequality (1)}$$

$$\frac{1}{2} < \frac{|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0|}{|a_n x^n|} \quad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

$$\frac{1}{2} \cdot |a_n x^n| < |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\frac{1}{2} \cdot |a_n| \cdot x^n < |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0| \quad \text{by exercise 4.4.44}$$

Finally let $A = \frac{1}{2} \cdot |a_n|$ and it follows that for all real numbers x > M,

$$A|x^n| \le |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

Hence, by definition of Ω -notation,

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x_1 + a_0$$
 is $\Omega(x^n)$.

Conclusion: Since $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x_1 + a_0$ is $O(x^n)$ and $\Omega(x^n)$ it follows by theorem 11.2.1 (1) that $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x_1 + a_0$ is $\Theta(x^n)$.

Problem 49

Another approach to proving part of the theorem of polynomial orders uses properties of O-notation.

- a. Show that if f, g, and h are functions from \mathbb{R} to \mathbb{R} and f(x) if O(h(x)) and g(x) is O(h(x)), then f(x) + g(x) is O(h(x)).
- b. How does it follow from part (a) and property 11.2.1 that $x^4 + x^2$ is $O(x^4)$?
- c. The result of exercise 11 states that if f is a function from \mathbb{R} to \mathbb{R} , f(x) is O(g(x)), and c is any nonzero real number, then cf(x) is O(g(x)). How does it follows from this result and part (a) that $12x^5 34x^2 + 7$ is $O(x^5)$?
- d. Use the results of part (a) and exercise 11 to show that if n is any positive integer and $a_0, a_1, ..., a_n$ are real numbers with $a_n \neq 0$, then

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $O(x^n)$

Solution

a. Proof. Let f, g, and h be functions from \mathbb{R} to \mathbb{R} and suppose that f(x) is O(h(x)) and g(x) is O(h(x)). Then there exist nonnegative real numbers b_1 and b_2 and positive integers B_1 and B_2 such that

$$|f(x)| \le B_1 |h(x)|$$
 for all real numbers $x > b_1$,

and

$$|g(x)| \le B_2 |h(x)|$$
 for all real numbers $x > b_2$.

Let $B = B_1 + B_2$ and let $b = \max(b_1, b_2)$. Now, for all x > b,

$$|f(x)| + |g(x)| \le B_1|h(x)| + B_2|h(x)|$$
 by hypothesis
$$|f(x) + g(x)| \le B_1|h(x)| + B_2|h(x)|$$
 by the triangle inequality
$$= (B_1 + B_2)|h(x)|$$

$$= B|h(x)|$$

$$B = B_1 + B_2$$

Hence, by definition of O-notation, f(x) + g(x) is O(h(x)).

- b. By property 11.2.1, for all x>1, $x^2< x^4$. Hence $|x^2|\leq 1\cdot |x^4|$ for all x>1. Thus, by definition of O-notation, x^2 is $O(x^4)$. Also $|x^4|\leq 1\cdot |x^4|$ for all x and so x^4 is $O(x^4)$. It follows by part (a) that x^4+x^2 is $O(x^4)$.
- c. By property 11.2.1, for all x>1, $1< x^5$ and $x^2< x^5$. Hence $|1|\le 1\cdot |x^5|$ and $|x^2|\le 1\cdot |x^5|$ for all x>1. Thus, by definition of O-notation, 1 is $O(x^5)$ and x^2 is $O(x^5)$. Also $|x^5|\le 1\cdot |x^5|$ for all x and so x^5 is $O(x^5)$. It now follows by exercise 11 that 7 is $O(x^5)$, $-34x^2$ is $O(x^5)$, and $12x^5$ is $O(x^5)$. Finally it follows by part (a) that $12x^5-34x^2+7$ is $O(x^5)$.
- d. *Proof.* Let n be any positive integer and let $a_0, a_1, ..., a_n$ be any real numbers with $a_n \neq 0$. By property 11.2.1, for all x > 1,

$$x^{n-1} < x^n$$
, $x^{n-2} < x^n$, ..., $x < x^n$, and $1 < x^n$

Hence,

$$|x^{n-1}| \le 1 \cdot |x^n|$$
, $|x^{n-2}| \le 1 \cdot |x^n|$, ..., $|x| \le 1 \cdot |x^n|$, and $|1| \le 1 \cdot |x^n|$

Thus, by definition of O-notation,

$$x^{n-1}$$
 is $O(x^n)$, x^{n-2} is $O(x^n)$, ..., x is $O(x^n)$, and 1 is $O(x^n)$

Also, $|x^n| \le 1 \cdot |x^n|$ for all x and so x^n is $O(x^n)$. It now follows by exercise 11 that

$$a_n x^n$$
 is $O(x^n)$, $a_{n-1} x^{n-1}$ is $O(x^n)$, ..., $a_1 x$ is $O(x^n)$, and a_0 is $O(x^n)$

Finally it follows by part (a) that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $O(x^n)$.

Problem 50

- a. Let x be any positive real number. Use mathematical induction to prove that for all integers $n \ge 1$, if $x \le 1$ then $x^n \le 1$.
- b. Explain how it follows from part (a) that if x is any positive real number, then for all integers $n \ge 1$, if $x^n > 1$ then x > 1.
- c. Explain how it follows from part (b) that if x is any positive real number, then for all integers $n \ge 1$, if x > 1 then $x^{1/n} > 1$.
- d. Let p,q, and s be positive integers, let r be a nonnegative integer, and suppose p/q > r/s. Use part (c) and the result of exercise 15 to prove property 11.2.1. In other words show that for any real number x, if x > 1 then $x^{p/q} > x^{r/s}$.

Solution

a. *Proof.* Let x be any positive real number and let P(n) be the property that for all integers $n \ge 1$, if $x \le 1$ then

$$x^n \le 1$$
 $\leftarrow P(n)$

Show that P(1) is true: Let n = 1. Then $x^n = x^1 = x \le 1$. Hence P(1) is true.

Show that for all integers $k \ge 1$, $P(k) \implies P(k+1)$: Let k be any integer with $k \ge 1$ and suppose that

$$x^k \le 1$$
 $\leftarrow P(k)$ IH

We must show that this implies that

$$x^{k+1} \le 1 \qquad \leftarrow P(k+1)$$

But the left-hand side of P(k+1) is

$$x^{k+1} = x \cdot x^k$$

 $\leq x \cdot 1$ by inductive hypothesis
 $\leq x$
 ≤ 1 by definition of x

which is the right-hand side of P(k+1).

- b. The statement in part(b) is the contrapositive of the statement that was proved in part (a). Since a statement and its contrapositive have the same truth values, proving a statement proves its contrapositive and vice versa.
- c. In part (b) select $x^{1/n}$ to be the positive real number in place of x. Then the statement in (b) becomes if $(x^{1/n})^n = x^{n/n} = x > 1$ then $x^{1/n} > 1$.
- d. Proof. Let p, q, and s be positive integers, let r be a nonnegative integer, let x be a positive real number, and suppose p/q > r/s and x > 1. Then ps > rq and so ps rq > 0. Also $\frac{x^{p/q}}{x^{r/s}} = x^{(p/q r/s)} = x^{(pq rs)/qs}$. Since p, q, r, and s are integers it follows by closure under multiplication and subtraction that ps rq is also an integer. Since ps rq > 0 and ps rq is an integer it must be that $ps rq \ge 1$. Also since q and s are positive integers qs is also a positive integer. Now since qs in place of qs and qs in place qs in place qs in place qs in qs in

$$\begin{split} &(x^{ps-rq})^{1/qs} > 1\\ &\left(\frac{x^{ps}}{x^{rq}}\right)^{1/qs} > 1\\ &\frac{x^{ps/qs}}{x^{rq/qs}} > 1\\ &\frac{x^{p/q}}{x^{r/s}} > 1\\ &x^{p/q} > x^{r/s} \end{split}$$

Explain how each statement in 51 and 52 follows from exercise 50, exercise 13, and parts (a) and (c) of exercise 49.

Problem 51 and Solution

Prove that $4x^{4/3} - 15x + 7$ is $O(x^{4/3})$.

Proof. By part (d) of exercise 50, for all $x>1, x\leq x^{4/3}$ and $x^0=1\leq x^{4/3}$. Hence, by definition of O-notation (since all expressions are positive), x is $O(x^{4/3})$ and 1 is $O(x^{4/3})$. Also, by exercise 13, $x^{4/3}$ is $O(x^{4/3})$ and hence, by theorem 11.2.1 (1), $x^{4/3}$ is $O(x^{4/3})$. Now by part (c) of exercise 49, $4x^{4/3}$ is $O(x^{4/3})$, -15x is $O(x^{4/3})$ and $Y=O(x^{4/3})$. Finally by part (a) of exercise 49, $4x^{4/3}-15x+7$ is $O(x^{4/3})$.

Problem 52 and Solution

Prove that $\sqrt{x}(38x^5 + 9)$ is $O(x^{11/2})$.

Proof. First note that $\sqrt{x}(38x^5+9)=38x^{11/2}+9x^{1/2}$. By part (d) of exercise 50, for all $x>1,\ x^{1/2}< x^{11/2}$. Also, by exercise 13, $x^{11/2}$ is $\Theta(x^{11/2})$ and

hence, by theorem 11.2.1 (3), $x^{11/2}$ is $O(x^{11/2})$. Now by part (c) of exercise 49, $38x^{11/2}$ is $O(x^{11/2})$ and $9x^{11/2}$ is $O(x^{11/2})$. Finally by part (a) of exercise 49, $38x^{11/2} + 9x^{1/2}$ is $O(x^{11/2})$ and so $\sqrt{x}(38x^5 + 9)$ is $O(x^{11/2})$.

Problem 53 and Solution

Prove that if r and s are rational numbers with r > s, then x^r is not $O(x^s)$.

Proof. Suppose that x^r is $O(x^s)$. Then, by definition of O-notation, there exists a positive real number B and a nonnegative real number b such that

$$|x^r| < B|x^s|$$
 for all real numbers $x > b$

Now let x be a real number such that x > b, x > 1, and $x > B^{1/(r-s)}$. Then

$$|x^{r}| = x^{r} \qquad x > 1 \implies x^{r} > 0$$

$$= x^{r-s} \cdot x^{s}$$

$$> B \cdot x^{s} \qquad x > B^{1/(r-s)} \implies x^{r-s} > B$$

$$= B \cdot |x^{s}| \qquad x > 0 \implies x^{s} > 0$$

Thus there is a real number x>b such that $|x^r|>B|x^x|$ which is a contradiction. \Box

In 54-56, use theorem 11.2.4 to find an order for each of the given functions from among the set of rational power functions.

Problem 54 and Solution

 $f(x) = \frac{\sqrt{x}(3x+5)}{2x+1} = \frac{3x^{3/2}+5x^{1/2}}{2x+1}.$ The numerator of f(x) is a sum of rational power functions with highest power 3/2, and the denominator is a sum of rational power functions with highest power 1. Because 3/2-1=1/2, theorem 11.2.4 implies that f(x) is $\Theta(x^{1/2})$.

Problem 55 and Solution

 $f(x) = \frac{(2x^{7/2}+1)(x-1)}{(x^{1/2}+1)(x+1)} = \frac{2x^{9/2}-2x^{7/2}+x-1}{x^{3/2}+x+x^{1/2}+1}.$ The numerator of f(x) is a sum of rational power functions with highest power 9/2, and the denominator is a sum of rational power functions with highest power 3/2. Because 9/2-3/2=6/2=3, theorem 11.2.4 implies that f(x) is $\Theta(x^3)$.

Problem 56 and Solution

$$f(x) = \frac{(5x^2+1)(\sqrt{x}-1)}{4x^{3/2}-2x} = \frac{5x^{5/2}-5x^2+x^{1/2}-1}{4x^{3/2}-2x}.$$
 The numerator of $f(x)$ is a sum of rational power functions with highest power $5/2$, and the denominator is a sum of rational power functions with highest power $3/2$. Because $5/2-3/2=2/2=1$, theorem 11.2.4 implies that $f(x)$ is $\Theta(x)$.

Problem 57

a. Use mathematical induction to prove that for all integers $n \geq 1$,

$$\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n} < n^{3/2}$$

b. Use mathematical induction to prove that for all integers $n \geq 1$,

$$\frac{1}{2}n^{3/2} \le \sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}$$

c. What can you conclude from parts (a) and (b) about an order for $\sqrt{1} + \sqrt{2} + \sqrt{3} + ... + \sqrt{n}$?

solution

a. *Proof.* Let the property P(n) be the inequality

$$\sum_{i=1}^{n} \sqrt{i} \le n^{3/2} \qquad \leftarrow P(n)$$

Show that P(1) is true: Let n = 1. Then $\sum_{i=1}^{n} \sqrt{i} = \sum_{i=1}^{1} \sqrt{i} = \sqrt{1} = 1$ and $n^{3/2} = 1^{3/2} = 1$. Since $1 \le 1$ it follows that P(1) is true.

Show that for all integers $k \ge 1$, $P(k) \implies P(k+1)$: Let k be any integer with $k \ge 1$ and suppose that

$$\sum_{i=1}^{k} \sqrt{i} \le k^{3/2} \qquad \leftarrow P(k) \text{ IH}$$

We must show that this implies that

$$\sum_{i=1}^{k+1} \sqrt{i} \le (k+1)^{3/2} \qquad \leftarrow P(k+1)$$

But the left-hand side of P(k+1) is

$$\sum_{i=1}^{k+1} \sqrt{i} = \sum_{i=1}^{k} \sqrt{i} + \sqrt{k+1}$$
 by definition of \sum
$$\leq k^{3/2} + (k+1)^{1/2}$$
 by inductive hypothesis
$$= k \cdot k^{1/2} + (k+1)^{1/2}$$

$$\leq k \cdot (k+1)^{1/2} + (k+1)^{1/2}$$

$$= (k+1)^{1/2}(k+1)$$

$$= (k+1)^{3/2}$$

which is the right-hand side of P(k+1).

b. Proof. Let the property P(n) be the inequality

$$\sum_{i=1}^{n} \sqrt{i} \ge \frac{1}{2} n^{3/2} \qquad \leftarrow P(n)$$

Show that P(1) is true: Let n = 1. Then $\sum_{i=1}^{n} \sqrt{i} = \sum_{i=1}^{1} \sqrt{i} = \sqrt{1} = 1$ and $\frac{1}{2}n^{3/2} = \frac{1}{2} \cdot 1^{3/2} = \frac{1}{2} \cdot 1 = 1/2$. Since $1 \ge 1/2$ it follows that P(1) is true.

Show that for all integers $k \geq 1$, $P(k) \implies P(k+1)$: Let k be any integer with $k \geq 1$ and suppose that

$$\sum_{i=1}^{k} \sqrt{i} \ge \frac{1}{2} k^{3/2} \qquad \leftarrow P(k) \text{ IH}$$

We must show that this implies that

$$\sum_{i=1}^{k+1} \sqrt{i} \ge \frac{1}{2} (k+1)^{3/2} \qquad \leftarrow P(k+1)$$

Since $k \geq 1$ it follows that,

$$k^2 \geq k^2 - 1$$

$$k^2 \geq (k-1)(k+1)$$

$$\frac{k}{k-1} \geq \frac{k+1}{k}$$
 divide both sides by $k(k+1)$

But $\frac{k+1}{k} \ge 1$ and any number which is greater than or equal to 1 is greater than or equal to its square root. Hence,

$$\frac{k}{k-1} \ge \frac{k+1}{k} \ge \sqrt{\frac{k+1}{k}} = \frac{\sqrt{k+1}}{\sqrt{k}}$$

It follows that

$$k\sqrt{k} \ge (k-1)\sqrt{k+1} = (k+1-2)\sqrt{k+1} = (k+1)\sqrt{k+1} - 2\sqrt{k+1}$$

Thus,

$$k\sqrt{k} + 2\sqrt{k+1} \ge (k+1)\sqrt{k+1}$$

Divide both sides by 2 to obtain

$$\frac{1}{2}k^{3/2} + (k+1)^{1/2} \ge \frac{1}{2}(k+1)^{3/2} \tag{1}$$

Now the left-hand side of P(k+1) is

$$\begin{split} \sum_{i=1}^{k+1} \sqrt{i} &= \sum_{i=1}^k \sqrt{i} + \sqrt{k+1} & \text{by definition of } \sum \\ &\geq \frac{1}{2} k^{3/2} + (k+1)^{1/2} & \text{by inductive hypothesis} \\ &\geq \frac{1}{2} (k+1)^{3/2} & \text{by inequality (1)} \end{split}$$

which is the right-hand side of P(k+1).

c. From (a) and (b) we conclude that $\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}$ is $\Theta(n^{3/2})$.

Problem 58

a. Use mathematical induction to prove that for all integers $n \geq 1$,

$$1^{1/3} + 2^{1/3} + \ldots + n^{1/3} \le n^{4/3}$$

b. Use mathematical induction to prove that for all integers $n \geq 1$,

$$\frac{1}{2}n^{4/3} \le 1^{1/3} + 2^{1/3} + \dots + n^{1/3}$$

c. What can you conclude from parts (a) and (b) about an order for $1^{1/3} + 2^{1/3} + ... + n^{1/3}$?

Solution

a. Proof. Let the property P(n) be the inequality

$$\sum_{i=1}^{n} i^{1/3} \le n^{4/3} \qquad \leftarrow P(n)$$

Show that P(1) is true: Let n = 1. Then $\sum_{i=1}^{n} i^{1/3} = \sum_{i=1}^{1} i^{1/3} = 1^{1/3} = 1$ and $1^{4/3} = 1$. Since $1 \le 1$ it follows that P(1) is true.

Show that for all integers $k \geq 1$, $P(k) \implies P(k+1)$: Let k be any integer with $k \geq 1$ and suppose that

$$\sum_{i=1}^{k} i^{1/3} \le k^{4/3} \qquad \leftarrow P(k) \text{ IH}$$

We must show that this implies that

$$\sum_{i=1}^{k+1} i^{1/3} \le (k+1)^{4/3} \qquad \leftarrow P(k) \text{ IH}$$

But the left-hand side of P(k+1) is

$$\begin{split} \sum_{i=1}^{k+1} i^{1/3} &= \sum_{i=1}^{k} i^{1/3} + (k+1)^{1/3} & \text{by definition of } \sum \\ &\leq k^{4/3} + (k+1)^{1/3} & \text{by inductive hypothesis} \\ &= k \cdot k^{1/3} + (k+1)^{1/3} & \\ &\leq k \cdot (k+1)^{1/3} + (k+1)^{1/3} & \\ &\leq k \cdot (k+1)^{1/3} + (k+1)^{1/3} & \\ &= (k+1)^{1/3} (k+1) & \\ &= (k+1)^{4/3} & \end{split}$$

which is the right-hand side of P(k+1).

b. *Proof.* Let the property P(n) be the inequality

$$\sum_{i=1}^{n} i^{1/3} \ge \frac{1}{2} n^{4/3} \qquad \leftarrow P(n)$$

Show that P(1) is true: Let n = 1. Then $\sum_{i=1}^{n} i^{1/3} = \sum_{i=1}^{1} i^{1/3} = 1$ and $\frac{1}{2} \cdot 1^{4/3} = 1/2$. Since $1 \ge \frac{1}{2}$ it follows that P(1) is true.

Show that for all integers $k \ge 1$, $P(k) \implies P(k+1)$: Let k be any integer with $k \ge 1$ and suppose that

$$\sum_{i=1}^{k} i^{1/3} \ge \frac{1}{2} k^{4/3} \qquad \leftarrow P(k) \text{ IH}$$

We must show that this implies that

$$\sum_{i=1}^{k+1} i^{1/3} \ge \frac{1}{2} (k+1)^{4/3} \qquad \leftarrow P(k+1)$$

Since $k \geq 1$ it follows that,

$$k^2 \geq k^2 - 1$$

$$k^2 \geq (k-1)(k+1)$$

$$\frac{k}{k-1} \geq \frac{k+1}{k}$$
 divide both sides by $k(k+1)$

But $\frac{k+1}{k} \ge 1$ and any number which is greater than or equal to 1 is greater than or equal to its cube root. Hence,

$$\frac{k}{k-1} \ge \frac{k+1}{k} \ge \sqrt[3]{\frac{k+1}{k}} = \frac{\sqrt[3]{k+1}}{\sqrt[3]{k}}$$

It follows that

$$k \cdot k^{1/3} \ge (k-1)(k+1)^{1/3} = (k+1-2)(k+1)^{1/3} = (k+1)(k+1)^{1/3} - 2(k+1)^{1/3}$$

Thus,

$$k \cdot k^{1/3} + 2(k+1)^{1/3} \ge (k+1)(k+1)^{1/3}$$

Divide both sides by 2 to obtain

$$\frac{1}{2}k^{4/3} + (k+1)^{1/3} \ge \frac{1}{2}(k+1)^{4/3} \tag{1}$$

Now the left-hand side of P(k+1) is

$$\sum_{i=1}^{k+1} i^{1/3} = \sum_{i=1}^{k} i^{1/3} + (k+1)^{1/3}$$
 by definition of \sum
$$\geq \frac{1}{2} k^{4/3} + (k+1)^{1/3}$$
 by inductive hypothesis
$$\geq \frac{1}{2} (k+1)^{4/3}$$
 by inequality (1)

which is the right-hand side of P(k+1).

c. From (a) and (b) we conclude that $1^{1/3} + 2^{1/3} + ... + n^{1/3}$ is $\Theta(n^{4/3})$.

Exercises 59-61 use the following definition, which requires the concept of limit from calculus.

Definition: If f and g are real-valued functions of a real variable and $\lim_{x\to\infty}g(x)\neq 0$, then

$$f(x)$$
 is $o(g(x)) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$

The notation f(x) is o(g(x)) is read "f(x) is little-oh of g(x)."

Problem 59 and Solution

Prove that if f(x) is o(g(x)), then f(x) is O(g(x)).

Proof. Suppose that f(x) is o(g(x)). By definition of o-notation, $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$. By definition of limit this implies that given any real number $\epsilon>0$ there exists a real number x_0 such that

$$\left| \frac{f(x)}{g(x)} - 0 \right| = \left| \frac{f(x)}{g(x)} \right| = \frac{|f(x)|}{|g(x)|} < \epsilon \quad \text{for all } x > x_0.$$

Define a real number $b = \max(0, x_0)$ and let $B = \epsilon$ and it follows that there exists a positive real number B and a nonnegative real number b such that

$$|f(x)| < B|q(x)|$$
 for all $x > b$.

Hence, by definition of O-notation, f(x) is O(g(x)).

Problem 60 and Solution

Prove that if f(x) and g(x) are both o(h(x)), then for all real numbers a and b, af(x) + bg(x) is o(h(x)).

Proof. Suppose that f(x) and g(x) are both o(h(x)). By definition of o-notation, $\lim_{x\to\infty}\frac{f(x)}{h(x)}=0$ and $\lim_{x\to\infty}\frac{g(x)}{h(x)}=0$. By definition of limit this implies that given any real number $\epsilon>0$ there exist real numbers x_1 and x_2 such that

$$\left| \frac{f(x)}{h(x)} \right| < \epsilon$$
 for all $x > x_1$ and $\left| \frac{g(x)}{h(x)} \right| < \epsilon$ for all $x > x_2$

Now define a real number $x_0 = \max(x_1, x_2)$ and it follows that for all $x > x_0$,

$$\left| \frac{f(x)}{h(x)} \right| < \epsilon \quad \text{and} \quad \left| \frac{g(x)}{h(x)} \right| < \epsilon$$

Let a and b be any real numbers such that $a \neq 0$ and $b \neq 0$ and it follows that

$$|a| \cdot \left| \frac{f(x)}{h(x)} \right| < \epsilon |a| \quad \text{and} \quad |b| \cdot \left| \frac{g(x)}{h(x)} \right| < \epsilon |b|$$

Adding the two inequalities give

$$\begin{split} |a| \cdot \left| \frac{f(x)}{h(x)} \right| + |b| \cdot \left| \frac{g(x)}{h(x)} \right| &< \epsilon |a| + \epsilon |b| \\ & \left| \frac{af(x)}{h(x)} \right| + \left| \frac{bg(x)}{h(x)} \right| &< \epsilon |a| + \epsilon |b| \qquad \text{by exercise 4.4.44} \\ & \frac{|af(x)|}{|h(x)|} + \frac{|bg(x)|}{|h(x)|} &< \epsilon |a| + \epsilon |b| \qquad \text{by definition of absolute value} \\ & \frac{|af(x)| + |bg(x)|}{|h(x)|} &< \epsilon |a| + \epsilon |b| \qquad \text{by the triangle inequality} \\ & \frac{|af(x) + bg(x)|}{|h(x)|} &< \epsilon |a| + \epsilon |b| \qquad \text{by definition of absolute value} \\ & \left| \frac{af(x) + bg(x)}{h(x)} \right| &< \epsilon |a| + \epsilon |b| \qquad \text{by definition of absolute value} \\ & \left| \frac{af(x) + bg(x)}{h(x)} \right| &< \epsilon (|a| + |b|) \end{split}$$

This implies that $\lim_{x\to\infty}\frac{af(x)+bg(x)}{h(x)}=0$. In the case that a=0 and b=0, af(x)=0 and bg(x)=0 and so $\lim_{x\to\infty}\frac{af(x)+bg(x)}{h(x)}=0$. In this case that b=0 and $a\neq 0$ we only need to show that $\lim_{x\to\infty}\frac{af(x)}{h(x)}=0$. But by limit laws $\lim_{x\to\infty}\frac{af(x)}{h(x)}=a\cdot\lim_{x\to\infty}\frac{f(x)}{h(x)}=a\cdot0=0$. The case in which a=0 and $b\neq 0$ is analogous. Hence in every case, af(x)+bg(x) is o(h(x)).

Problem 61 and Solution

Prove that for any positive real numbers a and b, if a < b then x^a is $o(x^b)$.

Proof. Let n=b-a>0 and let a real number $\epsilon>0$ be given. Now define a positive real number $N=\frac{1}{\sqrt[n]{\epsilon}}$ and suppose that x>N. Then,

$$x>\frac{1}{\sqrt[n]{\epsilon}} \implies x^n>\frac{1}{\epsilon} \implies \frac{1}{x^n}<\epsilon \implies \left|\frac{x^a}{x^b}-0\right|<\epsilon$$

This means that $\lim_{x\to\infty}\frac{x^a}{x^b}=0$ and so x^a is x^b .