

Master Project Final Report

First-principles studies of quantum defect candidates in 2D WS2

Ning Siyuan

18/06/2024

Background

Quantum point defect

Background

Quantum point defect in 2D material

Controllable Defect Positions: Current experimental techniques enabling nearly deterministic defect positions. Also, strain, electric and magnetic fields can be intentionally engineered.

Stacking: 2D materials offer substantial flexibility in forming multi-layer structures . The layer-dependent electronic structures and interlayer couplings provide opportunities by incorporating an atom or molecule between layers

Surface: 2D materials inherently serve as excellent platforms for quantum sensing due to their surface properties. The embedding of SPEs in monolayers circumvents issues like total internal reflection common in 3D color centers, significantly improving light extraction efficiency.

Background Key quantities

Category	Defect properties			
Basic ground-state properties	Geometries, defect formation energies, charge-state transition levels, ground-state spin multiplicity			
Specific ground-state properties	Magnetic interactions (zero-field splitting, spin-orbit, hyperfine), vibrational modes and frequencies, electron-phonon coupling, spin-phonon coupling			
Excited-state properties	Excited-state energies and geometries, multiplet structure, transition dipole moments, radiative rates, optical lineshapes, nonradiative transitions			

Background

Defects as spin qubits

- **Deep defect levels:** Enhance the fidelity of stored quantum information. To prevent resonance with pristine band edges, quantum defects should have energy levels distinctly separated from the band edges.
- High spin states: Essential for the initialization, operation, and readout of spin qubits.
 The simplest example of this would be two parallel unpaired spins.
- Radiative recombination rate: Should be greater than the non-radiative rate, it ensures effective readout of spin qubits.
- Weak coupling with environmental factors: When there's limited interaction with elements like phonons and nuclear spins, spin lifetime at room temperature is extended. This improves the duration of stored information and reduces qubit errors.

Workflow

Substitutional defects in monolayer WS₂

Determine defect supercell manually set different initial dopant positions ground state structure with possible symmetry distortion **Calculate formation energy** defect charge states within pristine bandgap **Evaluate spin configuration** Singlet or triplet ground state **Bandstructure Analysis** defect level

Defect Supercell

Initial Disruption Setting - relax the defect structures in symmetry broken supercells

Defect Supercell

Defect Formation Energy

$$\Delta H_{\mathrm{D,q}}(E_F,\mu) = \begin{bmatrix} E_{\mathrm{D,q}} - E_{\mathrm{H}} \end{bmatrix} + \sum_{i} n_i \mu_i + q E_F + E_{\mathrm{corr}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow$$

Goyal, A. et al, Comp. Mat. Sci., 2017, 130,

1-9 **D** = defect **q** = charge state **H** = host

 \mathbf{n}_{i} = number of atoms added to (negative) or removed from (positive) the host

 μ_i = chemical potential i = atomic species

© Copyright National University of Singapore. All Rights Reserved.

DOS

Chemical Potential Feasible Region & Limits

Anand, S. et al. *Acc. Mater. Res.* **2022**, *3* (7), 685–696.

Atom Chemical Potential

Constraints by phase stability:

$$\mu_{W} + 2\mu_{S} = E[WS_{2}] \quad \text{(1)} \qquad \qquad \Delta\mu_{W} + 2\Delta\mu_{S} = \Delta E[WS_{2}] \quad \text{(7)}$$

$$x\mu_{Nb} + y\mu_{S} \leq E[Nb_{x}S_{y}] \quad \text{(2)} \qquad \qquad x\Delta\mu_{Nb} + y\Delta\mu_{S} \leq \Delta E[Nb_{x}S_{y}] \quad \text{(8)}$$

$$\mu_{W} \leq E[W] \quad \text{(3)} \qquad \Delta\mu_{A} = \mu_{A} - \mu_{A}^{0} \quad \text{(6)} \qquad \Delta\mu_{W} \leq 0 \quad \text{(9)}$$

$$\mu_{S} \leq E[S] \quad \text{(4)} \qquad \qquad \Delta\mu_{S} \leq 0 \quad \text{(10)}$$

$$\mu_{Nb} \leq E[Nb] \quad \text{(5)} \qquad \qquad \mu_{A}^{0} = E[A] \qquad \Delta\mu_{Nb} \leq 0 \quad \text{(11)}$$

E[A]: energy per formula unit

$$\Delta E[A_x B_y] = E[A_x B_y] - x E[A_x] - y E[B_y]$$
 (12)

 μ_A^0 In electronic-structure calculations, chemical potentials can be referenced to the total energy of the elemental phases at T = 0 K.

 ΔE Energy enthalpy and formation energy are considered to have the same value ΔH since the pressure is small enough after relaxation.

Atom Chemical Potential

As specifically corrected to fit experimental formation enthalpies, the formation enthalpy data from the Materials Project is implemented here to build constraints

Charge Correction

Supercell approach: The isolated charged defect → periodically repeated array of defects → artificial electrostatic interactions

The FNV scheme: $\Delta E^{\rm corr} = E^{\rm iso}_{\rm model} - E^{\rm periodic}_{\rm model} + QC$

Image charge

- Determine the z-dependent dielectric function
- use a model charge distribution to emulate the behavior of the defect charge state,
 and find the model potential by solving the Poisson equation.

$$\rho(\mathbf{r}) = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^3} e^{-\frac{(\mathbf{r} - \mathbf{r_0})^2}{2\sigma^2}}.$$

• Do it twice with periodic boundary conditions and zero boundary conditions. The electrostatic energy is given by:

$$U = \frac{1}{2} \int_{\Omega} \rho V$$

Charge Correction

Potential alignment:

Manually set C until potential alignment:

$$\Delta V^{DFT} - V^{model} - C \rightarrow 0$$
 (away form defect)

Correction Energy: +1: 0.094 eV -1: 0.071 eV

Formation Energy Diagram

Table 3 Formation energy values of charge states +1, 0, -1.

Defect	q	$E_{{\scriptscriptstyle D},q}$ - $E_{{\scriptscriptstyle Host}}$	$qE_{\scriptscriptstyle VBM}$	Σn _i μ _i (S-rch/Wrich)	E_{corr}	$Ef(E_F = VBM)$ (S-rch/W-rich)
Nb_{W}^{+1}	+1	4.076	-1.518	-2.001/-1.675	0.094	0.651/0,977
$Nb_{\scriptscriptstyle W}{}^{\scriptscriptstyle o}$	0	2.232	0	-2.001/-1.675	0	0.231/0.557
$Nb_{\scriptscriptstyle W}^{-1}$	-1	1.098	1.518	-2.001/-1.675	0.071	0.686/1.012

$$\sum n_i \mu_i = 1\Delta \mu_W - 1\Delta \mu_{Nb} =$$

$$= (\Delta \mu_W + \mu_W^0) - (\Delta \mu_{Nb} + \mu_{Nb}^0)$$

$$= \begin{cases} -2.001 \text{eV S rich} \\ -1.675 \text{eV W rich} \end{cases}$$

Charge Transition Level

Spin Configuration

TM Defect	Charged state	Symmetry	(Singlet-Triplet)(eV)
Rh	+1		0.06
Hg	0		0.04
	0		0.03
	-1		-0.05

In-plane strain for triplet ground state structure:

Bandstructure

Calculated band structure of triplet ground state defects