1 Pseudo Algorithms

Algorithm 1 CAPO: Cost-Aware Prompt Optimization

Require: Dataset $\mathcal{D} = \{(X_i, y_i)\}_{i=1}^n$, Meta-LLM $\Phi(x)$, Downstream LLM $\phi(x)$, Cost function $\ell(y, \hat{y})$, Initial instructions $\Lambda = \lambda_1, \ldots, \lambda_p$, Population size p, Block size p, Number of iterations p, Number of crossovers per iteration p

```
1: for \lambda \in \Lambda do
 2:
          num shots \sim U(lower, upper)
          \xi \leftarrow \text{sample}(X, \text{num shots})
                                                                                            ▷ Sample few shot examples
 3:
          \theta \leftarrow \phi(\lambda||\xi)
                                                                               ▷ Generate few shots with reasoning
 4:
          \pi \leftarrow (\lambda, \theta)
 5:
          \Pi \leftarrow \Pi.append(\pi)
 6:
 7: end for
 8: Divide dataset \mathcal{D} into blocks \mathcal{B} = \{B_1, ..., B_k\} where |B_i| = b
 9: for i = 1 to n do
          \Pi_{\text{off}} \leftarrow \text{cross\_over}(\Pi, c)
10:
          \Pi_{\text{off}} \leftarrow \text{mutate}(\Pi_{\text{off}})
11:
          \Pi \leftarrow \text{do racing}(\Pi \cup \Pi_{\text{off}}, k = p)
12:
13: end for
14: best prompt \leftarrow do racing(\Pi, k = 1)
15: return best prompt
```

Is reasoning always necessary? Maybe this is not important for simple tasks and costs a lot of tokens. (Idea: some few shot examples can be included without reasoning)

Algorithm 2 cross_over

Require: Population Π , Meta-LLM $\Phi(x)$, Cross-Over-Meta-Prompt $\lambda_{\mathbb{C}}$, Number of crossovers c

- 1: $\Pi_{\text{off}} \leftarrow []$
- 2: **for** j = 1 to c **do**
- 3: $P_1 \leftarrow \text{sample}(\Pi, 1)$ $\triangleright P_1 = (\lambda_1, \theta_1)$
- 4: $P_2 \leftarrow \text{sample}(\Pi, 1)$ $\triangleright P_2 = (\lambda_2, \theta_2)$
 - $\lambda_{\text{off}} \leftarrow \Phi(\lambda_{\text{C}}||\lambda_1||\lambda_2)$ > Let Meta-LLM cross over the prompts
- 6: $\theta_{\text{off},j} \leftarrow \text{sample}(\theta_1 \cup \theta_2, \left\lfloor \frac{|\theta_1| + |\theta_2|}{2} \right\rfloor)$ > Sample from all few-shot examples
- 7: $\pi_{\text{off},j} \leftarrow (\lambda_{\text{off},j}, \theta_{\text{off},j})$
- 8: $\Pi_{\text{off}} \leftarrow \Pi_{\text{off.append}}(\pi_{\text{off},j})$
- 9: end for
- 10: return Π_{off}

Currently we do a random parent selection. In EvoPrompt they do a roulette wheel selection based on the fitness scores. This would require us to find a way of already having scores here.

We have to clarify where the new few-shot examples are coming from.

Extra Split:

- + no data leakage (fair, comparable assessment of prompts)
- constrained pool of few-shot examples (how to get this pool?) potentially smaller dev Split

From Train Split:

- data leakage (prompts that contain eval data point already as few-shot examples which are already confirmed as correct have advantages)
- + we can use the full train set

Algorithm 3 mutate

Require: Population of offsprings Π_{off} , Meta-LLM $\Phi(x)$, Mutation-Meta-Prompt λ_{M} , Dataset samples X

- 1: for $\pi_{\text{off}} \in \Pi_{\text{off}}$ do
- 2: $\lambda_{\text{off}} \leftarrow \Phi(\lambda_{\text{M}} || \lambda_{\text{off}})$
- $3: num_shots \sim U(lower, upper)$
- 4: $num_new_shots \sim U(lower, num_shots)$
- 5: $\xi \leftarrow \text{sample}(X, \text{num_new_shots})$ \triangleright Sample new few shot examples
- 6: $\theta_{\text{new}} \leftarrow \phi(\lambda_{\text{off}}||\xi)$ \triangleright Generate few shots with reasoning
- 7: $\theta_{\text{old}} \leftarrow \text{sample}(\theta_{\text{off}}, \text{num_shots} \text{num_new_shots})$
- 8: $\theta \leftarrow \theta_{\text{old}} \cup \theta_{\text{new}}$
- 9: $\theta \leftarrow \text{shuffle}(\theta)$
- 10: $\pi_{\text{off}} \leftarrow (\lambda_{\text{off}}, \theta)$
- 11: end for
- 12: **return** Π_{off}

Algorithm 4 do racing

Require: Prompts Π , Top-k k, cost function $\ell(y, \hat{y})$, blocks \mathcal{B} , Downstream LLM $\phi(x)$, number of evaluations a

- 1: survivors $\leftarrow \Pi$
- $2: i \leftarrow 0$
- 3: $scores \leftarrow [0] * len(\Pi)$
- 4: $\operatorname{shuffle}(\mathcal{B})$
- 5: while len(survivors) > $k \wedge i < \text{len}(\mathcal{B}) \text{ do}$
- 6: $i \leftarrow i + 1$
- 7: scores $\leftarrow \frac{1}{i}$ (evaluate(Π, B_i) + (i-1) * scores)
- 8: survivors \leftarrow racing_elimination $(\Pi, \text{scores}, i * b, \alpha, k)$
- 9: end while
- 10: **return** survivors

Algorithm 5 racing_elimination

Require: Prompts Π , scores S, confidence level α , top-k k

1:
$$z_{\alpha} \leftarrow \Phi^{-1}(1 - \alpha/2)$$

▷ Critical value

- 2: survivors $\leftarrow \Pi$
- 3: for $\pi_i \in \Pi$ do
- n_subst_better $\leftarrow \sum_{j \neq i} \mathbf{1}_{\left[(s_j s_i)\sqrt{a} > z_{\alpha}\right]}$ if n_subst_better $\geq k$ then
- survivors \leftarrow survivors $\setminus \{\pi_i\}$

 \triangleright Eliminate π_i

- 7: end if
- 8: end for
- 9: **return** survivors