CHƯƠNG 4. CHIẾU SÁNG

Giảng viên: Ths. Vũ Minh Yến

Bộ môn: Công nghệ đa phương tiện

SDT: 0983087636

Tài liệu tham khảo

- [1] Edward Angel, Dave Shreiner. *Interactive Computer Graphics*. Addison-Wesley, 6th Edition, 2012
- [2] Peter Shirley, Steve Marschner. Fundamentals Of Computer Graphics. A K Peters/CRC, 3 Edition, 2009
- [3] Brian Curless. *Tập bài giảng môn Đồ họa máy tính của trường đại học Washington*, 2017.
- [4] Dave Shreiner, Graham Sellers, John M. Kessenich, Bill M. Licea-Kane. OpenGL Programming Guide. Addison-Wesley, 8th Edition, 2013 (Redbook)
- [5] Vũ Minh Yến, Vũ Đức Huy, Nguyễn Phương Nga. *Giáo trình ĐHMT trường ĐHCNHN*. NBX Khoa học Kỹ thuật, 2015.
- [6] Foley, Van Dam. *Computer Graphics Principles And Practice In C.* Ed Addison Wesley, 2Nd Edition, 1995.

Tạo sao cần chiếu sáng và tô bóng

• Hình cầu khi không chiếu sáng và tô bóng

• Cái chúng ta muốn là hình cầu được tô bóng:

Nguồn gốc của tô bóng là gì? - shading

 Tô bóng được tạo ra bởi các góc khác nhau từ các điểm khác nhau trên đối tượng đến nguồn sáng và đến camera (hoặc mắt quan sát - eye)

Chiếu sáng là gì?

 Bài toán: Tính toán màu sắc của bề mặt dựa trên góc mà bề mặt tạo ra với nguồn sáng và mắt người quan sát.

- Lập trình viên viết code trong vertex shade và fragment shader để tính chiếu sáng tại các đỉnh.
- · Công thức cho tính toán chiếu sáng = mô hình chiếu sáng.

Tô bóng là gì?

- Sau khi tam giác được rasterized (được vẽ trong 2D)
 - Tam giác đã chuyển thành các pixel
 - Việc tính toán chiếu sáng trên mỗi điểm nghĩa là chúng ta biết màu của các pixel tương ứng với các đỉnh. (Các điểm màu đỏ)
- Tô bóng shading: Phần cứng đồ họa tạo ra màu sắc của các pixel phía bên trong.
- Việc tạo ra đó như thế nào? Giả sử biến đổi tuyến tính => Nội suy.

Mô hình chiếu sáng toàn cầu

 Là mô hình tương tác ánh sáng từ tất cả các bề mặt trong cảnh.

Mô hình chiếu sáng địa phương

- Chỉ một lần phản xạ:
 - Không truyền ánh sáng và phản xạ nhiều lần.

- Chiếu sáng toàn cầu (GI) là chính xác và trông giống thật
 - Nhưng raster graphics pipeline (ví dụ: OpenGL) kết xuất mỗi polygon độc lập - chiếu sáng địa phương, không phải là toàn cầu – GI.

Nguồn sáng

- Về khái quát, các nguồn sáng khó tạo mô hình.
- Tại sao? Chúng ta phải tính toán tác động của ánh sáng tới tất cả các điểm trên nguồn sáng.
- → Chúng ta sinh ra các nguồn sáng đơn giản Một nguồn sáng giả thiết là **1 điểm**, dễ hơn để dựng mô hình.

Cường độ ánh sáng có thể là độc lập hoặc phụ thuộc vào khoảng cách giữa đối tượng và nguồn sáng.

Các loại nguồn sáng

- Ambient Nguồn sáng môi trường
- Point light Nguồn sáng điểm
- Spot light Nguồn sáng đèn sân khấu
- Direction light Nguồn sáng xa

Các loại nguồn sáng

- Ambient Nguồn sáng môi trường
 - Ánh sáng đều trong cảnh, giống nhau tại mọi điểm.
 - Vô hướng
 - Được đặc trưng vởi cường độ sáng $I_a = [I_{ar}, I_{ag}, I_{ab}]^T$

Các loại nguồn sáng

- Point light Nguồn sáng điểm
 - Nguồn sáng điểm lý tưởng là sáng đều về mọi hướng
 - Cường độ sáng của nguồn sáng điểm tại P_0 : $I(P_0) = [I_r(P_0), I_g(P_0), I_b(P_0)]^T$
 - Cường độ ánh sáng tại điểm P nhận được từ nguồn sáng P_0 thường bị suy giảm theo khoảng cách với tỉ lệ $1/|P-P_0|^2$.
 - Thực tế, tỉ lệ trên thường được thay thế bằng $1/(a + bd + cd^2)$ với $d=|P-P_0|$, nhằm giảm sự tương phản ánh sáng, tăng độ dịu khi chiếu sáng điểm.

Các loại nguồn sáng

- Spot light Nguồn sáng đèn sân khấu
 - $-\;$ Được đặc trưng bởi I $_{_{\! S}}$ và θ
 - Được coi là point light được giới hạn góc θ
 - Ánh sáng trong spot light suy giảm theo góc ϕ , theo hệ số $cos^{\alpha}(\phi)$

Sự suy giảm của spotlight

Sự ảnh hưởng α trong Spotlight

Các loại nguồn sáng

- Direction light Nguồn sáng xa
 - Hầu như không thay đổi cho các điểm trong cảnh
 - Biểu diễn dựa vào nguồn sáng điểm
 - Thay P_0 bằng hướng của nguồn sáng:

$$P_0 = [x, y, z, 0]^T$$

Tương tác ánh sáng và chất liệu

- Án sáng chiếu vào đối tượng, một số được hấp thụ, một số được phản xạ, một số có thể đi xuyên qua.
- Phần phản xạ xác định màu sắc đối tượng và độ sáng.
 - Ví dụ: một bề mặt nhìn thấy màu đỏ dưới ánh sáng trắng bởi vì thành phần đỏ của ánh sáng được phản xạ, còn các bước sóng khác bị hấp thụ.

Mô hình Phong

- Mô hình nguồn sáng đơn giản mà có thể được tính toán nhanh
- · Có 3 thành phần:
 - Diffuse Ánh sáng khuếch tán
 - Specular Ánh sáng phản chiếu sáng chói
 - Ambient Ánh sáng môi trường
- Tính toán trên mỗi thành phần riêng rẽ.
- Chiếu sáng đỉnh= ambient + diffuse + specular
- Các chất liệu phản xạ mỗi thành phần là khác nhau

Mô hình Phong

- Tính toán chiếu sáng (cho mỗi thành phần) tại mỗi điểm (P).
- Sử dụng 4 vector, từ đỉnh P
 - Đến nguồn sáng: l
 - Đến người quan sát: v
 - Vector pháp tuyến: n
 - Hướng gương: r

Tính vector phản xạ - r

- Góc phản xạ = góc tới
- Vector pháp tuyến được xác định bởi hướng của bề mặt
- Ta có: r = 2(l.n) n l
 (Cụ thể: 5.4.2 [1])

Độ thô ráp của bề mặt

- Bề mặt mịn: ánh sáng phản xạ nhiều hơn tập trung vào hướng gương.
- Bề mặt thô: phản chiếu ánh sáng theo mọi hướng

smooth surface

Ví dụ: Chiếu sáng khuếch tán

Tính toán ánh sáng khuếch tán

- · Bao nhiêu ánh sáng nhận được từ nguồn sáng?
- Dựa trên định luật Lambert
 - Sự suy giảm ánh sáng
 - Chúng ta chỉ nhìn thấy thành phần thẳng đứng của ánh sáng tới: khi chiếu sáng thẳng đứng, bề mặt sáng nhất, khi chiếu gần song song với bề mặt, bề mặt tối.

Tính toán ánh sáng khuếch tán (2)

- Ánh sáng từ nguồn sáng chiếu xuống bề mặt và phản xạ giống nhau theo mọi hướng.
- → Không phụ thuộc vào vị trí người quan sát.

Tính toán ánh sáng khuếch tán (3)

 Định luật Lambert: Năng lượng bức xạ D của một mảnh nhỏ bề mặt nhận từ một nguồn sáng là:

$$D = I \times k_D \cos(\theta)$$

- I: cường độ ánh sáng
- θ : góc giữa vector ánh sáng và vector pháp tuyến
- k_D: hệ số phản xạ khuếch tán kiểm soát lượng ánh sáng phản xạ từ bề mặt của ánh sáng khuyết tán.

Ví dụ về ánh sáng phản chiếu specular

Specular là gì?
- Là những điểm chói sáng trên đối tượng.

Sự phân bố của ánh sáng specular

- Ánh sáng tới phản chiếu ra trên một vùng bề mặt nhỏ.
- · Specular sáng theo hướng phản chiếu gương
- Phụ thuộc vào mối quan hệ giữa vị trí người quan sát và hướng phản chiếu gương.

Tính toán ánh sáng specular

- Bề mặt phản xạ hoàn toàn: tất cả ánh sáng specular được nhìn thấy theo hướng gương.
- Bề mặt phản xạ không hoàn toàn: một số ánh sáng specular vẫn được nhìn thấy ở xa hướng gương.
- φ là độ lệch của góc quan sát so với hướng gương.
- φ nhỏ = phản xạ specular cao

Tính toán ánh sáng specular(2)

Hệ số sáng bóng α

- α kiểm soát sự sắc nét của vùng bóng sáng
- Giá trị α cao \rightarrow vùng bóng sáng sắc nét hơn \rightarrow vùng bóng sáng nhỏ hơn và có độ sáng cao hơn và ngược lại.
 - 100 < α < 200: nhìn giống kim loại
 - $5 < \alpha < 10$: nhìn giống plastic

Ánh sáng specular: Ảnh hưởng của α

$$I_s = k_s I \cos^{\alpha} \phi$$

 $\alpha = 10$

 $\alpha = 30$

 $\alpha = 90$

Sự phân bố của ánh sáng môi trường

- Giống như chiếu sáng toàn cầu do phản xạ từ đối tượng này sang đối tượng khác (từ lần thứ 2 trở đi).
- Giả thiết là một hằng số
- Không có hướng
 - Không phụ thuộc vào vị trí nguồn sáng, hướng đối tượng hay vị trí và hướng người quan sát.

Ví dụ về ánh sáng môi trường

Ambient: Ánh sáng nền, được tán xạ bởi môi trường.

Sự suy giảm ánh sáng do khoảng cách

- Lượng ánh sáng truyền đến một bề mặt thì tỉ lệ nghịch với bình phương khoảng cách d (nghĩa là tỉ lệ thuận với 1/d²).
- Để vùng chuyển tiếp về sự suy giảm ánh sáng được mềm người ta thay hệ số hệ số suy giảm 1/d² bằng 1/(ad + bd +cd²).

Công thức chiếu sáng Phong

 Tổng hợp các thành phần chiếu sáng – chưa có hệ số suy giảm theo khoảng cách

Illumination = Diffuse + Specular + Ambient

$$I = k_d I_d \cos\theta + k_s I_s \cos\phi^{\alpha} + k_a I_a$$

$$= k_d I_d (1 \cdot n) + k_s I_s (\mathbf{v} \cdot \mathbf{r})^{\alpha} + k_a I_a$$

- Lưu ý:
 - $cos\theta = 1 \cdot n$
 - $\cos \phi = v \cdot r$

Áp dụng cho các thành phần RGB riêng

- Mỗi thành phần ánh sáng đều là sự tổng hợp của 3 màu cơ bản R, G, B.
 - Ví dụ: I_{d} có 3 thành phần I_{dr} , I_{dg} , I_{dg}
- Thay cho 3 thành phần sáng I_d , I_s , I_a sẽ có 9 hệ số: I_{dr} , I_{dg} , I_{db} , I_{sr} , I_{sg} , I_{sb} , I_{ar} , I_{ag} , I_{ab}
- Thay cho 3 thành phần chất liệu $k_{\rm d}\,,\,k_{s}\,,k_{a}$ bằng 9 hệ số hấp thụ của chất liệu:

$$k_{dr}$$
 , k_{dg} , k_{db} , k_{sr} , k_{sg} , k_{sb} , k_{ar} , k_{ag} , k_{ab}

Áp dụng cho các thành phần RGB riêng

• Thay công thức chung:

$$I = k_d I_d (l \cdot n) + k_s I_s (\mathbf{v} \cdot \mathbf{r})^{\alpha} + k_a I_a$$

• Bằng các công thức riêng cho từng màu R, G, B

$$\begin{split} & I_r = k_{dr} \ I_{dr} \ \boldsymbol{l} \cdot \boldsymbol{n} \ + k_{sr} \ I_{sr} \ (\boldsymbol{v} \cdot \boldsymbol{r} \)^{\alpha} + k_{ar} \ I_{ar} \\ & I_g = k_{dg} \ I_{dg} \ \boldsymbol{l} \cdot \boldsymbol{n} \ + k_{sg} \ I_{sg} \ (\boldsymbol{v} \cdot \boldsymbol{r} \)^{\alpha} + k_{ag} \ I_{ag} \\ & I_b = k_{db} \ I_{db} \ \boldsymbol{l} \cdot \boldsymbol{n} \ + k_{sb} \ I_{sb} \ (\boldsymbol{v} \cdot \boldsymbol{r} \)^{\alpha} + k_{ab} \ I_{ab} \end{split} \qquad \qquad \text{Green}$$

- · Công thức trên chỉ áp dụng cho 1 nguồn sáng
- Với N nguồn sáng, thực hiện lặp tính toán cho mỗi nguồn:
 Chiếu sáng tổng thể cho điểm P= Σ(chiếu sáng cho mỗi nguồn)

Một số hệ số cho chất liệu thực tế

Material	Ambient Kar, Kag,kab	Diffuse Kdr, Kdg,kdb	Specular Ksr, Ksg,ksb	Exponent, α
Black	0.0	0.01	0.5	32
plastic	0.0	0.01	0.5	
(Nhựa đen)	0.0	0.01	0.5	
Brass (Đồng)	0.329412 0.223529 0.027451	0.780392 0.568627 0.113725	0.992157 0.941176 0.807843	27.8974
Polished	0.23125	0.2775	0.773911	89.6
Silver	0.23125	0.2775	0.773911	
(Bạc)	0.23125	0.2775	0.773911	