Université de Skikda 20 août 1955 Département de technologie

2^{eme} année LMD Sciences et Techniques

Solution détaillée de l'examen de : LANGAGE

Exercice 01

1. La commande Matlab **clc** supprime toutes les variables.

Faux, La commande **clc** efface seulement l'écran de commandes et laisse les variables intactes. (Pour supprimer toutes les variables on peut utiliser **clear**)

2. \forall n,m \in N, \forall k \in R, l'expression suivante donne toujours la valeur 1 : isequal (K*ones (n,m), K+zeros (n,m))

Vrai, puisque les deux expression K*ones(n,m) et K+zeros(n,m) donnent

toujours la même matrice: $\begin{pmatrix} k & k & \dots & k \\ k & k & \dots & k \\ \dots & \dots & \dots & \dots \\ k & k & \dots & k \end{pmatrix} \text{, donc la fonction isequal va}$

retourner la valeur 1

3. Pour une matrice non carrée M (le nombre de lignes \neq le nombre de colonnes), il est possible de calculer l'expression : M^2

Faux, La multiplication des matrices nécessite que le nombre de colonnes de la première matrice soit identique au nombre de lignes de la deuxième matrice. Or, avec une matrice non carrée $m \times n$ (donc $m \neq n$) on obtient une matrice $(m \times n)$ multipliée par la même matrice $(m \times n)$, et le critère devient inapplicable.

4. Pour inverser les éléments d'un vecteur V, il est possible d'utiliser : V (end: -1:1)

Vrai, car l'expression V (end:-1:1) va présenter les éléments de V en commençant par le dernier élément (end), et en descendant (-1) jusqu'au premier élément (1)

5. L'instruction **for** est utilisée généralement quand nous ignorons le nombre d'itérations à l'avance.

Faux, L'instruction **for** est utilisée généralement quand nous connaissons le nombre d'itérations à l'avance (autrement, on utilise l'instruction **while**)

Université de Skikda 20 août 1955

Département de technologie

2^{eme} année LMD Sciences et Techniques

Exercice 02

Soit les deux matrices :

$$\mathbf{A} = \begin{pmatrix} 0 & 3 \\ -1 & 1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}$$

A =

ans =

ans =

>> B+ones(2)

ans =

>> A*eye(2)

ans =

>> A+(B(2,1)+zeros(2,2))

ans =

Université de Skikda 20 août 1955 Département de technologie

2^{eme} année LMD Sciences et Techniques

Exercice 03

1. Donnez le résultat affiché par ce programme pour les valeurs suivantes : (a=3), (a=4)

Pour (a = 3)

· oa. (a o)			
а	R	i	
3	0		
3	3	1	
3	6	2	
3	9	3	

Afficher 9

а	R	i
4	0	
4	4	1
4	8	2
4	12	3
4	16	4

Afficher 16

Donc: Pour **a=3** le programme affiche **9**

Pour **a=4** le programme affiche **16**

2. Que fait ce programme?

Ce programme calcule a^2 (a puissance 2) pour n'importe quelle nombre naturel a.

3. Remplacez **for** par **while** en gardant la fonctionnalité intacte.

```
a = input('Entrez un nombre naturel:');
R = 0;
i = 1;
while i <= a
    R = R + a;
    i = i + 1;
end
disp(R)</pre>
```

Université de Skikda 20 août 1955 Département de technologie

2^{eme} année LMD Sciences et Techniques

Exercice 04

1. Donnez les commandes Matlab nécessaires pour dessiner les courbes des deux fonctions suivantes :

1)
$$f(x) = -2x^2 + 3x - 1$$
 pour $x \in [-4, 4]$, pas = 0.2;
2) $g(x) = x \sin(x)$ pour $x \in \left[\frac{-5\pi}{2}, \frac{5\pi}{2}\right]$, pas = $\frac{\pi}{12}$;

Pour la première fonction :

Pour la deuxième fonction :

2. Donnez les commandes pour dessinez la courbe de f(x) en changeant les limites des axes des abscisses en [-1,3] et les limites des axes des ordonnées en [-20,5]

```
>> x = -4:0.2:4;
>> f = -2*x.^2+3*x-1;
>> plot(x , f)
>> axis([-1,3,-20,5])
```