A fast sampler for data simulation from spatial, and other, Markov random fields

Andee Kaplan

Iowa State University ajkaplan@iastate.edu

June 22, 2017

Slides available at http://bit.ly/kaplan-phd
Joint work with M. Kaiser, S. Lahiri, and D. Nordman

Overview

Thesis: On advancing MCMC-based methods for Markovian data structures with applications to deep learning, simulation, and resampling

Goal: Develop statistical inference via Markov chain Monte Carlo (MCMC) techniques in complex data problems related to statistical learning, the analysis of network/graph data, and spatial resampling.

Challenge: Develop implementations which are both *statistically rigorous* and *computationally scalable* by exploiting conditional independence.

- Statistical quantification of graph models used in deep machine learning and image classification (Ch. 2 & 3)
- Past methods for simulating spatial, network, and other data (Ch. 4 & 5)

Goal

- Markov random field models are popular for spatial or network data
- Rather than specifying a joint distribution directly, a model is specified through a set of full conditional distributions for each spatial location
- Assume the spatial data are on a regular lattice (wrapped on a torus)

Goal: A new, provably fast approach for simulating spatial/network data.

Spatial Markov random field (MRF) models

Notation

- Variables $\{Y(\boldsymbol{s}_i): i=1,\ldots,n\}$ at locations $\{\boldsymbol{s}_i: i=1,\ldots,n\}$
- ullet Neighborhoods: \mathcal{N}_i specified according to some configuration
- Neighboring Values: $\mathbf{y}(\mathcal{N}_i) = \{y(\mathbf{s}_j) : \mathbf{s}_j \in \mathcal{N}_i\}$
- Full Conditionals: $\{f_i(y(s_i)|y(\mathcal{N}_i),\theta): i=1,\ldots,n\}$
 - $f_i(y(s_i)|y(\mathcal{N}_i), \theta)$ is conditional pmf/pdf of $Y(s_i)$ given values for its neighbors $y(\mathcal{N}_i)$
 - Often assume a common conditional cdf $F_i = F$ form $(f_i = f)$ for all i

Exponential family examples

Conditional Gaussian (3 parameters):

$$f_i(y(\mathbf{s}_i)|\mathbf{y}(\mathcal{N}_i), \alpha, \eta, \tau) = \frac{1}{\sqrt{2\pi}\tau} \exp\left(-\frac{[y(\mathbf{s}_i) - \mu(\mathbf{s}_i)]^2}{2\tau^2}\right)$$

 $Y(s_i)$ given neighbors $y(\mathcal{N}_i)$ is normal with variance τ^2 and mean

$$\mu(\mathbf{s}_i) = \alpha + \eta \sum_{\mathbf{s}_j \in \mathcal{N}_i} [y(\mathbf{s}_j) - \alpha]$$

② Conditional Binary (2 parameters): $Y(s_i)$ given neighbors $y(\mathcal{N}_i)$ is Bernoulli $p(s_i, \kappa, \eta)$ where

$$\operatorname{logit}[p(\boldsymbol{s}_i, \kappa, \eta)] = \operatorname{logit}(\kappa) + \eta \sum_{\boldsymbol{s}_i \in \mathcal{N}_i} [y(\boldsymbol{s}_j) - \kappa]$$

In both examples, η represents a dependence parameter.

Concliques

Cliques – Hammersley and Clifford (1971)

Singletons and sets of locations such that each location in the set is a neighbor of all other locations in the set

Example: Four nearest neighbors gives cliques of sizes 1 and 2

The Converse of Cliques – Concliques

Sets of locations such that no location in the set is a neighbor of any other location in the set

4 Nearest Neighbors		4	Concliques 4 Nearest Neighbors			8 Nearest Neighbors	Concliques 8 Nearest Neighbors	
			Ne	eighb	ors			TVCIBITIOUS
•	*	•					* * *	
*	s	*	1	2	1	2	* s *	1 2 1 2
•	*		2	1	2	1	* * *	3 4 3 4
			1	2	1	2		1 2 1 2
			2	1	2	1		3 4 3 4

Illustrative Example

- Spatial dataset from Besag (1977)
- \bullet Binary observations located on a 14 \times 179 indicating the presence or absence of footrot in endive plants

Figure 1: The endive dataset, a 14×179 rectangular lattice with binary data encoding the presence or absence of footrot in endive plants from Besag (1977).

Three models

- Isotropic centered autologistic model (Caragea and Kaiser 2009; Besag 1972; Besag 1977)
- Centered autologistic model with two dependence parameters
- **3** Centered autologistic model as in (2) but having large scale structure determined by regression on the horizontal coordinate u_i of each spatial location $s_i = (u_i, v_i)$.

Three models (Cont'd)

Conditional mass function of the form

$$f_i(y(\mathbf{s}_i)|\mathbf{y}(\mathcal{N}_i), \boldsymbol{\theta}) = \frac{\exp[y(\mathbf{s}_i)A_i\{\mathbf{y}(\mathcal{N}_i)\}]}{1 + \exp[y(\mathbf{s}_i)A_i\{\mathbf{y}(\mathcal{N}_i)\}]}, \quad y(\mathbf{s}_i) = 0, 1,$$

with

Model	Natural parameter function
(1)	$A_i\{y(\mathcal{N}_i)\} = \log\left(\frac{\kappa}{1-\kappa}\right) + \eta \sum_{i} \{y(s_i) - \kappa\}$
(2)	$A_i\{\boldsymbol{y}(\mathcal{N}_i)\} = \log\left(\frac{\kappa}{1-\kappa}\right) + \eta_u \sum_{\boldsymbol{s}_j \in N_{u,i}}^{\boldsymbol{s}_j \in \mathcal{N}_i} \{y(\boldsymbol{s}_j) - \kappa\} + \eta_v \sum_{\boldsymbol{s}_j \in N_{v,i}} \{y(\boldsymbol{s}_j) - \kappa\}$
(3)	$ A_i\{\boldsymbol{y}(\mathcal{N}_i)\} = \log\left(\frac{\kappa_i}{1-\kappa_i}\right) + \eta_u \sum_{\boldsymbol{s}_j \in N_{u,i}} \{y(\boldsymbol{s}_j) - \kappa_i\} + \eta_v \sum_{\boldsymbol{s}_j \in N_{v,i}} \{y(\boldsymbol{s}_j) - \kappa_i\}, $
	$\log\left(rac{\kappa_i}{1-\kappa_i} ight)=eta_0+eta_1 u_i$

Table 1: Full conditional distributions of three binary MRF models for the endive data.

Bootstrap percentile confidence intervals

- Fit three models of increasing complexity to these data via pseudo-likelihood (Besag 1975)
- Apply simulation (parametric bootstrap) to obtain reference distributions for statistics based on the resulting estimators

	Mode	el (1)	Model (2)			Model (3)			
	η	κ	$\eta_{\scriptscriptstyle m U}$	$\eta_{ m v}$	κ	$\eta_{\scriptscriptstyle \it u}$	η_{v}	eta_{0}	β_1
2.5%	0.628	0.107	0.691	0.378	0.106	-0.225	-0.221	-1.822	-0.003
50%	0.816	0.126	0.958	0.660	0.125	0.000	0.004	-1.600	-0.001
97.5%	1.001	0.145	1.220	0.921	0.145	0.209	0.214	-1.391	0.001

Table 2: Bootstrap percentile confidence intervals in all three autologistic models.

Sampling distributions of dependence parameters

Figure 2: Sampling distribution of the dependence parameters $(\eta, \eta_u, \text{ and } \eta_v)$ for the three centered autologistic models.

Common Spatial Simulation Approach

With common conditionally specified models for spatial lattice, standard MCMC simulation approach via Gibbs sampling is:

Starting from some initial $\boldsymbol{Y}_*^{(j)} \equiv \{Y_*^{(j)}(\boldsymbol{s}_1), \ldots, Y_*^{(j)}(\boldsymbol{s}_n)\}$,

• Moving row-wise, for $i=1,\ldots,n$, individually simulate/update $Y_*^{(j+1)}(s_i)$ for each location s_i from conditional cdf F given

$$Y_*^{(j+1)}(\boldsymbol{s}_1), \dots, Y_*^{(j+1)}(\boldsymbol{s}_{i-1}), \quad Y_*^{(j)}(\boldsymbol{s}_{i+1}), \dots, Y_*^{(j)}(\boldsymbol{s}_n)$$

- 2 n individual updates provide 1 full Gibbs iteration.
- **3** Repeat 1-2 to obtain M resampled spatial data sets $\mathbf{Y}_*^{(j)}$, $j=1,\ldots,M$ (e.g., can burn-in, thin, etc.)

Conclique-based Gibbs sampler

Using the conditional independence of random variables at locations within a conclique we propose a conclique-based Gibbs sampling algorithm for sampling from a MRF.

- **1** Split locations into Q disjoint concliques, $\mathcal{D} = \bigcup_{i=1}^{Q} \mathcal{C}_i$.
- ② Initialize the values of $\{Y^{(0)}(s): s \in \{\mathcal{C}_2, \dots, \mathcal{C}_Q\}\}$.
- **③** Starting from C_1 for the i^{th} iteration, draw $\{Y^{(i)}(s) : s \in C_1\}$ as random sample where $Y^{(i)}(s) \stackrel{iid}{\sim} F(y(s)|Y^{(i-1)}(t), t \in \mathcal{N}(s))$
- Update observations conclique-wise (using previous conclique updates).
 - For $j=2,\ldots,Q$, draw $\{Y^{(i)}(s):s\in\mathcal{C}_j\}$ as random sample where $Y^{(i)}(s)\stackrel{iid}{\sim} F(y(s)|\{Y^{(i)}(t),t\in\mathcal{N}(s)\cap\mathcal{C}_k \text{ where } k< j\}, \{Y^{(i-1)}(t),t\in\mathcal{N}(s)\cap\mathcal{C}_k \text{ where } k>j\})$

This works by conditional independence & because neighbors for updating one conclique always belong to other concliques.

It's (computationally) fast!

 Because we are using batch updating vs. sequential updating of each location, this approach is computationally fast.

 A flexible R package using Rcpp (called conclique, to appear on CRAN) that implements a conclique-based Gibbs sampler while allowing the user to specify an arbitrary model.

It's (provably) fast!

- While computationally fast, the MCMC sampler is also provably geometrically ergodic (i.e., the MCMC mixes at a fast rate) in a general sense, which is unusual for spatial data.
- State-of-the-art general theory for proving geometric ergodicity of Gibbs samplers exists only for two-state samplers (i.e., drift & minorization conditions) (Johnson and Burbank 2015).
 - For common 4-nearest neighbor spatial models, there are exactly 2 concliques (two stages in the conclique-based Gibbs sampler).
 - One can formally prove that the spatial sampler proposed is geometrically ergodic for many conditional spatial models (Gaussian, Gamma, Inverse-gamma, Beta, Binomial, etc.)

Simulation comparisons

Quantitative framework from Turek et al. (2017) to compare conclique-based and sequential Gibbs sampler efficiency

- Mixing effectiveness (algorithmic efficiency)
- Computational demands of the algorithm (computational efficiency)

Algorithmic efficiency:

$$A = \min_{1 \le i \le n} \left\{ \left(1 + 2 \sum_{j=1}^{\infty} \rho_i(j) \right)^{-1} \right\},\,$$

Computational efficiency:

$$C = \begin{cases} \sum\limits_{k=1}^{Q} \mathsf{samp}(\{Y(\boldsymbol{s}_i) : \boldsymbol{s}_i \in \mathcal{C}_k\} | \mathcal{C}_j, j \neq k) & \mathsf{Conclique\text{-based}} \\ \sum\limits_{k=1}^{Q} \mathsf{samp}(Y(\boldsymbol{s}_k) | Y(\boldsymbol{s}_j), j \neq k) & \mathsf{Sequential} \end{cases}$$

Simulation comparisons (Cont'd)

Gibbs	M	odel (a)	M	odel (b)	Model (c)	
	Α	С	Α	С	А	С
Conclique	0.807	2.9×10^{-4}	0.745	2.7×10^{-4}	0.72	3×10^{-4}
Sequential	0.809	0.029	0.749	0.029	0.704	0.024

Table 3: Measures of algorithmic and computational efficiency, A and C, for three autologistic models on a 40×40 grid. We compare the metrics for a conclique-based Gibbs sampler and a sequential sampler.

Endive data timing

- Endive example dataset simulations performed with the proposed (conclique-based) Gibbs sampler
- Reported results would have been virtually identical with the same number of iterations to the standard sequential Gibbs sampler
- Generation of the reference distribution using the standard sampler would have taken approximately
 - 1 25.31 minutes longer
 - 31 minutes longer
 - 40.7 minutes longer
- Conclique MRF sampler had running times
 - 8.15 seconds
 - 14.74 seconds
 - 95.71 seconds

Timing simulations

Figure 3: Comparisons of log time for simulation of M=100,1000,5000,10000 four-nearest neighbor Gaussian MRF datasets on a lattice of size $m\times m$ for various size grids, m=5,10,20,30,50,75, using sequential and conclique-based Gibbs samplers.

For 10,000 iterations/samples on 75 \times 75 grid, conclique-based took 15.05 seconds and sequential took 1.076197 \times 10⁴ seconds \approx 2.99 hours.

Application (Goodness of Fit)

 An important question for Markov random field models with spatial data is

How to assess/diagnose fit?

- Kaiser, Lahiri, and Nordman (2012) provide a methodology for performing GOF tests using concliques
- Conclique-based Gibbs sampling allows for fast approximation of the reference distribution for the GOF test statistics in this methodology

Generalized spatial residuals

Definition

- $F(y|\mathbf{y}(\mathcal{N}_i), \boldsymbol{\theta})$ is the conditional cdf of $Y(\boldsymbol{s}_i)$ under the model
- Substitute random variables, $Y(s_i)$ and neighbors $\{Y(s_j) : s_j \in \mathcal{N}_i\}$, into (continuous) conditional cdf to define residuals:

$$R(\mathbf{s}_i) = F(Y(\mathbf{s}_i)|\{Y(\mathbf{s}_j): \mathbf{s}_j \in \mathcal{N}_i\}, \boldsymbol{\theta}).$$

Key Property

Let $\{C_j : j = 1, ..., q\}$ be a collection of concliques that partition the integer grid. Under the conditional model, **spatial residuals** within a conclique are iid Uniform(0,1)-distributed:

(Kaiser, Lahiri, and Nordman 2012)

Simple example

Gaussian Conditional Model - 20×20 Lattice, 4-nearest Neighbors

Let
$$Y(s_i)|y(\mathcal{N}_i) \sim N(\mu(s_i), \tau^2)$$
, where $\mu(s_i) = \alpha + \eta \sum_{s_j \in \mathcal{N}_i} (y(s_j) - \alpha)$.

Truth: $\alpha = 10, \tau^2 = 2, \eta = 0.24$.

From residuals to test statistics

Residual Empirical Distribution

Divide locations $\{s_i\}_{i=1}^n$ into concliques: C_j , $j=1,\ldots,q$ For j^{th} conclique, empirical cdf and and its difference to Uniform(0,1) cdf

$$G_{jn}(u) = \frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{s}_i \in \mathcal{C}_j} I[R(\mathbf{s}_i) \le u]$$

$$W_{jn}(u) \equiv n^{1/2} [G_{jn}(u) - u]; \quad u \in [0, 1]$$

Test Statistics

$$T_{1n} = \max_{j=1,...,q} \sup_{u \in [0,1]} |W_{jn}(u)|$$

$$T_{2n} = \frac{1}{q} \sum_{i=1}^{q} \left(\int_{0}^{1} |W_{jn}(u)|^{2} du \right)^{1/2}$$

Hypothesis testing

Composite Hypothesis

$$H_0(C)$$
: The conditional distributions of $\{Y(s_i): i=1,\ldots,n\}$ are $F(y(s_i)|y(\mathcal{N}_i),\theta)$

where $oldsymbol{ heta} \in \Theta$ is some $\mathit{unknown}$ parameter value

Theoretical Challenge

Centered residual edfs $W_{jn}(u)$ are *not* independent over concliques & residuals/test statistics computed from estimated parameter, $\hat{\theta}$.

- Asymptotic behavior of test statistics T_{kn} is non-trivial
- ullet Resampling is helpful for approximating test statistic T_{kn} distributions

In practice

In application, a conditional distribution F model is formulated/specified.

- Fit model $\hat{\theta}$ to original data Y_1, \ldots, Y_n
- ② Compute generalized residuals and test statistics: T_{kn}
- **3** Simulate spatial data Y_1^*, \ldots, Y_n^* from fitted cond. cdf: $F_{\hat{\theta}}$
- **9** Fit model to simulated data: $\hat{\boldsymbol{\theta}}^*$
- **5** Compute generalized residuals and test statistics: T_{kn}^* from Y_1^*, \ldots, Y_n^* and $F_{\hat{\mu}^*}$
- O Do 3-5 many times
- **O** Result is reference distribution for test statistic T_{kn}

In simulating/resampling step 3 for spatial data, can use conclique-based Gibbs sampler due to the conditional specification F for each location.

Theory for the spatial simulation method

Let $P_{n^*}^{(M)}$ denote the joint distribution of spatial data $\mathbf{Y}_{n^*}^{(M)}$ at the Mth iteration of the conclique-based Gibbs sampler from cond. cdf $F \equiv F_{\hat{\theta}_n}$.

The bootstrap approximation for the GOF statistic is theoretically valid

- As $M \to \infty$, $P_{n^*}^{(M)}(T_{kn}^* \le x) \to P_{n^*}(T_{kn}^* \le x)$
 - Gibbs sampler approximates test distribution from fitted cond. cdf $F_{\hat{\theta}_n}$ because the conclique-based Gibbs sampler is *Harris ergodic*.
- As $n \to \infty$, $F_{\hat{\theta}_n} \stackrel{p}{\to} F_{\theta_0} \& P_{n^*}(T_{kn}^* \le x) P(T_{kn} \le x) \stackrel{p}{\to} 0$ T_{kn}^* -distribution (from joint data distribution induced by fitted cond. cdf $F_{\hat{\theta}_n}$) converges to T_{kn} -distribution (from joint distribution induced by true cond. cdf F_{θ_n})

This is work in progress with regards to the conclique Gibbs sampler.

Simulated example

The GOF procedure is good for distribution discrimination

- Simulated one realization of lognormal conditionals on 20×20 : log $Y(\mathbf{s}_i)$ given neighbors $\{\mathbf{s}_i + (0, \pm 1), \mathbf{s}_i + (\pm 1, 0)\}$ is normal with variance τ^2 and mean $\mu(\mathbf{s}_i) = \alpha + \eta \sum_{\mathbf{s}_i \in \mathcal{N}_i} [\log y(\mathbf{s}_j) \alpha]$
- Fit Gaussian MRF & fit log Gaussian MRF to data $Y(s_i)$ using pseudo-likelihood

	Expected	Conditional		Model
Model	$Value\ \alpha$	Variance $ au^2$	Dependence η	p-value
True	10	2	0.24	
Log-Gaussian	9.83	2.3	0.21	0.4121176
Gaussian	8.70362×10^{4}	3.5162355×10^{10}	0.17	0.00019996

Reference distributions

Figure 3: Bootstrapped reference distributions for the maximum across concliques of the Kolmogorov-Smirnov statistic from data generated from a four-nearest neighbor lognormal MRF with $\tau^2=2, \alpha=10, \eta=0.24$ and fit with a lognormal (left) and Gaussian (right) model.

Agricultural field trials example

The Problem

- Besag and Higdon (1999) JRSS B 36, 691-746 (with discussion)
- Six agricultural field trials with corn
- They discuss appropriate Gaussian MRF model of spatial structure

GOF Procedure

• Can a simple one parameter isotropic Gaussian model be discounted?

$$\mu(\mathbf{s}_i) = \alpha + \eta \sum_{\mathbf{s}_i \in \mathcal{N}_i} \{ y(\mathbf{s}_i) - \alpha \}$$

- Four nearest neighbors, 2 concliques of sizes 93 and 94
- Maximum pseudo-likelihood estimation (e.g., Besag, 1974)
- Parametric bootstrap for 5000 data sets
- Gibbs. burn-in of 500

Agricultural field trials results

	Trial							
Statistic	1	2	3	4	5	6		
$\overline{T_{1n}}$	0.2511	0.2414	0.195	0.5935	0.8034	0.6611		
T_{2n}	0.03	0.2919	0.5133	0.5801	0.8242	0.6551		

Table 4: GOF test statistic p-values for the one-parameter Gaussian model.

conclique

R package (to appear on CRAN) can be installed via GitHub using the following R code.

```
devtools::install_github("andeek/conclique")
```

- Convenience functions lattice_4nn_torus and min_conclique_cover
- Gibbs samplers run_conclique_gibbs and run_sequential_gibbs
- GOF functions spatial_residuals and gof_statistics
- Bootstrap function bootstrap_gof

Extending conclique

One of the **key advantages** to using conclique-based approaches for simulation (and GOF tests) is the ability to consider non-Gaussian conditional models that go beyond a four-nearest neighbor structure.

conclique is generalizable in

- Dependence structure beyond four-nearest neighbor
- Conditional distribution for each spatial location beyond Gaussian and binary
- Generalized spatial residuals for a user-supplied conditional distribution
- GOF statistics aggregation beyond mean and max

Perks

Geometric Ergodicity

- Guaranteed convergence rate to the target joint data distribution for many (common) spatial MRF models
- With other established results, can obtain CLTs and Monte Carlo sample size assessments (Chan and Geyer 1994; Jones and others 2004; Hobert et al. 2002; Roberts, Rosenthal, and others 1997)

Speed & Flexibility

- Computationally more efficient alternative to the standard (sequential)
 Gibbs sampler
- Same general applicability in allowing accessible simulation for a wide variety of MRFs
 - Not limited to any one model or family or models
 - Can be applied to irregular lattices and non-standard neighborhoods

Future work and ideas

- Goodness-of-fit test for network data
 - The model-based method of resampling re-frames network into a collection of (Markovian) neighborhoods by using covariate information
 - Creates concliques on a graph structure
 - Use a conditionally specified network distribution (Casleton, Nordman, and Kaiser (2017)) to sample network data in a blockwise conclique-based Gibbs sampler.
- Bootstrap theory for approximating GOF statistics is ongoing work
- More user friendly API for conclique to appear on CRAN

Thank you

Questions?

- Slides http://bit.ly/kaplan-phd
- Contact
 - Email ajkaplan@iastate.edu
 - Twitter http://twitter.com/andeekaplan
 - GitHub http://github.com/andeek

References L

Besag, Julian. 1972. "Nearest-Neighbour Systems and the Auto-Logistic Model for Binary Data." Journal of the Royal Statistical Society. Series B (Methodological). JSTOR, 75–83.

——. 1974. "Spatial Interaction and the Statistical Analysis of Lattice Systems." *Journal of the Royal Statistical Society.* Series B (Methodological). JSTOR, 192–236.

-----. 1975. "Statistical Analysis of Non-Lattice Data." The Statistician. JSTOR, 179-95.

——. 1977. "Some Methods of Statistical Analysis for Spatial Data." Bulletin of the International Statistical Institute 47 (2): 77–92.

Besag, Julian, and David Higdon. 1999. "Bayesian Analysis of Agricultural Field Experiments." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (4). Wiley Online Library: 691–746.

Caragea, Petruta C, and Mark S Kaiser. 2009. "Autologistic Models with Interpretable Parameters." Journal of Agricultural, Biological, and Environmental Statistics 14 (3). Springer: 281.

Casleton, Emily, Daniel J Nordman, and Mark S Kaiser. 2017. "A Local Structure Model for Network Analysis." Statistics and Its Interface 10 (2). International Press of Boston, Inc.: 355–67.

Chan, Kung Sik, and Charles J Geyer. 1994. "Discussion: Markov Chains for Exploring Posterior Distributions." The Annals of Statistics 22 (4). JSTOR: 1747–58.

Hammersley, John M, and Peter Clifford. 1971. "Markov Fields on Finite Graphs and Lattices." Unpublished.

Hobert, James P, Galin L Jones, Brett Presnell, and Jeffrey S Rosenthal. 2002. "On the Applicability of Regenerative Simulation in Markov Chain Monte Carlo." *Biometrika*. JSTOR, 731–43.

Johnson, Alicia A, and Owen Burbank. 2015. "Geometric Ergodicity and Scanning Strategies for Two-Component Gibbs

References II

Samplers." Communications in Statistics - Theory and Methods 44 (15): 3125-45.

Jones, Galin L, and others. 2004. "On the Markov Chain Central Limit Theorem." Probability Surveys 1 (299-320): 5-1.

Kaiser, Mark S. 2007. "Statistical Dependence in Markov Random Field Models." Preprint 1. Citeseer.

Kaiser, Mark S, Soumendra N Lahiri, and Daniel J Nordman. 2012. "Goodness of Fit Tests for a Class of Markov Random Field Models." *The Annals of Statistics* 40 (1). Institute of Mathematical Statistics: 104–30.

Roberts, Gareth O, Jeffrey S Rosenthal, and others. 1997. "Geometric Ergodicity and Hybrid Markov Chains." *Electron. Comm. Probab* 2 (2): 13–25.

Turek, Daniel, Perry de Valpine, Christopher J Paciorek, Clifford Anderson-Bergman, and others. 2017. "Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling." *Bayesian Analysis* 12 (2). International Society for Bayesian Analysis: 465–90.