제 3류 위험 물(자연발화 성 물질 및

CONTENTS

- I 공통 성질
- Ⅲ 칼륨 및 나트륨(K, Na)
- Ⅲ 알킬알루미늄
- IV 황린(P₄)
- ∨ 알칼리금속 및 알칼리토금속
- VI 금속의 수소화물
- Ⅷ 금속의 인화물
- Ⅷ 칼슘 또는 알루미늄의 탄화물
- IX 염소화규소화합물
- X 기출 문제

출제포인트

- 이 섹션에서는 칼륨과 나트륨의 일반적인 성질과 저장 방법 에 대해 묻는 문제가 출제된다.
- 황린에 대해서는 제2류 위험물인 적린과 비교해서 정리하도록 한다.
- 또한 인화칼슘과 탄화칼슘은 물과 반응 시 발생가스에 대한 출제 빈도가 높다.
- 나머지 부분도 꾸준하게 출제되고 있으니 소홀히 하지 않도록 한다.

공통 성질

• 일반적 성질

- 자연발화성물질 및 금수성물질 : 고체 또는 액체로서 공기 중에서 발화의 위험성이 있거나 물과 접촉하여 발화하거나 가연성 가스를 발생할 위험성이 있는 물질
- 예외적으로 황린은 물에 녹지 않으므로 물속에 저장한다.
- 황린, 칼륨, 나트륨, 알킬알루미늄은 연소하고 나머지는 연소하지 않는다.
- 대부분 불연성 물질이다(칼륨, 나트륨은 가연성).

• 위험성

- 산화제와의 혼합 시 충격 등에 의해 폭발할 위험이 있다.
- 물과 접촉하면 가연성 가스를 발생한다(황린 제외).
- 금속화합물은 화재 시 유독가스를 발생한다.

공통 성질

- 저장 및 취급
 - 저장용기는 밀봉하여 공기, 물과의 접촉을 방지해야 한다.
 - 황린은 물속에 저장한다.
 - 칼륨, 나트륨 및 알칼리금속은 석유류에 저장한다.
 - 자연발화성물질은 고온체와의 접근을 피한다.

• 소화방법

- 건조사, 팽창질석, 팽창진주암을 이용한 피복소화, 분말소화기를 이용 한 질식소화가 효과적이다.
- 금수성물질: 탄산수소염류 등을 이용한 분말소화약제 및 금수성 위 험물에 적응성이 있는 분말소화약제를 이용한다.
- 자연발화성만 가진 위험물(황린)의 소화에는 물 또는 강화액 포소화 제가 효과적이다.

칼륨 및 나트륨(K, Na)

구분	비중	융점	비점	불꽃반응
칼륨	0.857	63.5℃	762℃	보라색
나트륨	0.97	97.8℃	880℃	노란색

• 일반적 성질

- 은백색 광택의 무른 경금속이다.
- 공기 중에서 수분과 반응하여 수소를 발생한다.
- 물과 반응하여 수산화물과 수소를 만든다.
- 알코올과 반응하여 수소를 발생하고 알콕시화물이 된다.

• 위험물

■ 이산화탄소 및 사염화탄소와 폭발반응을 일으킨다.

• 불꽃반응색

- 칼륨-보라색
- 나트륨-노란색
- 리튬-빨간색
- 구리-청록색

칼륨 및 나트륨(K, Na)

구분	비중	융점	비점	불꽃반응
칼륨	0.857	63.5℃	762℃	보라색
나트륨	0.97	97.8℃	880℃	노란색

• 저장 및 취급

- 공기 중 수분 또는 산소와의 접촉을 막기 위하여 석유, 경유, 등유 또 는 유동성 파라핀 속에 저장한다.
- 물과의 접촉을 피한다.
- 피부에 닿지 않도록 한다.
- 가급적 소량으로 나누어 저장한다.

• 소화 방법

■ 마른 모래 또는 금속화재용 분말소화약제를 이용하여 소화한다.

칼륨 및 나트륨(K, Na)

구분	비중	융점	비점	불꽃반응
칼륨	0.857	63.5℃	762℃	보라색
나트륨	0.97	97.8℃	880°C	노란색

• 화학반응식

- 물과의 반응식 2K + 2H₂O → 2KOH + H₂↑ + 92.8kcal ^{칼륨} 물 수산화칼륨 수소
- 알코올과의 반응식
 2K + 2C₂H₅OH → 2C₂H₅OK + H₂↑
 칼륨 에틸알코올 칼륨에틸라이드 수소
- 이산화탄소와의 반응식(폭발반응)
 4K + 3CO₂ → 2K₂CO₃ + C
 ^{칼륨} 이산화탄소 탄산칼륨 탄소
- 사염화탄소와의 반응식(폭발반응)
 4K + CCl4 → 4KCl + C
 칼륨 사염화탄소 염화칼륨 탄소

※ 나트륨의 반응식은 칼륨과 동일

알킬알루미늄

- 일반적 성질
 - 알루미늄에 알킬기(R)가 결합한 유기금속화합물이다.
- 위험성
 - 공기 또는 물과 접촉하여 자연발화한다(C₁~C₄).
- 저장 및 취급
 - 용기는 완전 밀봉하고, 용기 상부는 불연성 가스(질소, 아르곤, 이산화 탄소 등)로 봉입한다.
 - 벤젠(C₆H₆), 헥산, 툴루엔 등의 희석제를 넣어준다.
 - 요오드(I₂) 염소(CI₂) 등의 할로겐 원소와의 접촉을 피한다.
- 소화 방법
 - 마른 모래, 팽창질석, 팽창진주암에 의한 소화가 가장 효과적이다.

알킬알루미늄

- 종류
 - 트리에틸알루미늄((C₂H₅)₃Al)
 - ❖무색의 투명한 액체이다.
 - ❖물과 반응하여 에탄을 발생한다.
 - ❖ 200°C이상으로 가열 시 가연성가스인 에틸렌이 발생한다.
 - ❖ 산, 할로겐(염소, 브롬, 요오드 등), 알코올과 접촉하면 심하게 반응한다.
 - ❖ 공기와 접촉하면 자연발화한다.
 - ❖화학반응식
- 연소반응식
 2(C2H5)3AI + 21O2 →
 트리에틸알루미늄 산소
 12CO2 + Al2O3 + 15H2O + 1,470.4kcal
 탄산가스 산화알루미늄 물
- 물과의 반응식
 (C2H5)3AI + 3H2O → AI(OH)3 + 3C2H6↑
 트리에틸알루미늄 물 수산화알루미늄 에탄
- 메탄올과의 반응식 (C2H5)3AI + 3CH3OH → 트리에틸알루미늄 메탄을 AI(CH3O)3 + 3C2H6↑ 트리메톡시알루미늄 에탄

알킬알루미늄

- 종류
 - 트리메틸알루미늄((CH₃)₃Al)
 - ❖무색의 가연성 액체이다.
 - ❖물과 반응하여 메탄을 발생한다.
 - ❖ 저장 시 할로겐과의 접촉을 피하고 불연성 가스로 밀봉한다

황린(P₄)

비중	증기비중	착화점	융점	비점	분자량
1.82	4.3	50°C	44°C	280°C	124

• 일반적 성질

- 담황색 또는 백색의 고체로 백린이라고도 한다.
- 이황화탄소, 벤젠에는 녹지만, 물에는 녹지 않는다.

• 위험성

- 발화점이 낮고 화학적 활성이 커서 공기 중에서 자연발화할 수 있다.
- 자체 증기도 유독하다.
- 연소하면서 마늘 냄새 같은 특이한 악취가 나며 오산화인 (P₂O₅)이라 는 백색 연기를 낸다.
- 수산화칼륨(KOH) 수용액과 반응하여 유독한 포스핀가스가 발생한다.
- 공기를 차단한 상태에서 250℃정도로 가열하면 적린이 된다.

황린(P₄)

비중	증기비중	착화점	융점	비점	분자량
1.82	4.3	50°C	44°C	280°C	124

- 저장 및 취급
 - 물속에 보관한다.
 - 보호액을 pH 9로 유지 : 인화수소(PH3)의 생성 방지
 - 직사광선을 피하고 온도 상승을 방지한다.
 - 산화제 및 화기의 접촉을 피한다.
 - 피부에 닿지 않도록 주의한다.
 - 독성이 강하므로 공기호흡기를 쪽 착용한다.
- 소화 방법
 - 마른 모래, 주수소화
- 화학반응식
 - 연소반응식 P4 + 5O2 → 2P2O5 황린 산소 오산화인

• 알칼리금속

구분	비중	융점	비점
리튬	0.534	179°C	1,336℃
루비듐	1.53	39.31℃	688°C
세슘	1.873	28.44°C	671℃
프랑슘	-	27°C	677°C

- 리튬(Li)
 - ❖은백색의 무른 금속으로 금속 중 가장 가볍다.
 - ❖물, 산, 알코올과 반응하여 수소를 발생한다.
 - ❖ 직사광선을 피하고 환기가 잘되는 건조한 냉소에 저장한다.
 - ❖ 소화 방법 · 마른 모래를 이용한 피복소화
 - ❖화학반응식

• 알칼리금속

구분	비중	융점	비점
리튬	0.534	179°C	1,336℃
루비듐	1.53	39.31℃	688°C
세슘	1.873	28.44°C	671℃
프랑슘	-	27°C	677°C

■ 루비듐(Rb)

- ❖은백색의 무른 금속이다.
- ❖물과 반응하여 폭발하듯이 불꽃을 내며, 대량의 수소를 발생한다.
- ❖ 저장 : 공기나 물과 접촉하지 못하도록 석유 속에 보관한다.

■ 세슘(Cs)

- ❖ 알칼리금속 중 반응성이 가장 크고 가장 연한 금속
- ❖물과 맹렬하게 반응하여 수소를 발생한다.
- 프랑슘(Fr)
 - ❖ 알칼리 금속 중에서 가장 무거운 방사선 원소

• 알칼리토금속

구분	비중	융점	비점
칼슘	1.55	842°C	1,484°C
스트론튬	2.6	777°C	1,377℃
바륨	3.51	727°C	1,845°C
라듐	5.0	700°C	1,737℃

- 칼슘(Ca)
 - ❖은백색의 무른 경금속이다.
 - ❖물, 산, 알코올과 반응하여 수소를 발생한다.
 - ❖화학반응식
 - 물과의 반응식

 Ca + 2H2O → Ca(OH)2 + H2↑

 칼슘 물 수산화칼슘 수소

• 알칼리토금속

구분	비중	융점	비점
칼슘	1.55	842°C	1,484°C
스트론튬	2.6	777°C	1,377℃
바륨	3.51	727°C	1,845℃
라듐	5.0	700°C	1,737℃

■ 스트론튬(Sr)

- ❖ 화학반응성이 아주 강한 은회백색의 금속으로 칼슘보다 무르다.
- ❖ 공기 중에서 산소와 반응하여 산화스트론륨으로 되면서 변색한다.
- ❖물과 반응하여 수소를 발생한다.

■ 바륨(Ba)

- ❖은백색의 무른 금속이다.
- ❖ 알칼리토금속 중 반응성이 가장 크다.
- ❖ 공기 중에서 산소와 반응하여 산화바륨을 생성한다.
- ❖물과 반응하여 수소를 발생한다.

• 알칼리토금속

구분	비중	융점	비점
칼슘	1.55	842°C	1,484°C
스트론튬	2.6	777°C	1,377℃
바륨	3.51	727°C	1,845℃
라듐	5.0	700°C	1,737℃

- 라듐(Ra)
 - ❖ 밝은 곳에서는 흰색을 내며, 어두운 곳에서는 푸른빛(형광)을 낸다.
 - ❖ 우라늄이 핵분열하여 붕괴되는 과정에서 생겨난다.

- 금속이나 준금속 원자에 1 개 이상의 수소원자가 결합하고 있는 화합물
- 수소화칼륨(KH)

비중	융점
1.43	400°C

- 회백색의 결정성 분말이다.
- 물과 반응하여 수산화칼륨과 수소를 발생한다.
- 고온에서 암모니아와 반응하여 칼륨아미드와 수소를 발생한다.
- 화학반응식

• 수소화나트륨(NaH)

비중	분해온도	융점	분자량
1.36	425°C	800°C	24

- 회백색의 미분말이다.
- 고온 · 고압에서 수소가 액체 나트륨과 반응하여 생성
- 물과 반응하여 수산화나트륨과 수소를 발생한다.
- 주수소화 시 발열반응을 일으키므로 부적합하다.
- 화학반응식
 - 물과의 반응식

 NaH + H2O → NaOH + H2↑

 수소화나트륨 물 수산화나트륨 수소

• 수소화리튬(LiH)

비중	분해온도	융점	분자량
0.82	400°C	680°C	7.9

- 회색의 고체결정이다.
- 고온 · 고압에서 수소가 액체 리튬과 반응하여 생성
- 물과 반응하여 수산화리튬과 수소를 발생한다.
- 알칼리금속 수소화물 중 가장 안정하다.
- 알코올에 녹지 않는다.
- 대용량의 용기에 저장할 때는 아르곤 등의 불활성 기체를 봉입한다.

수소화칼슘(CaH₂)

비중	분해온도	융점	분자량
1.9	600°C	815℃	42

- 회색의 분말이다.
- 물과 반응하여 수산화칼슘과 수소를 발생한다.
- 화학반응식

• 수소화알루미늄리튬(LiAlH₄)

비중	분해온도	분자량
0.92	125℃	37.9

- 회색의 결정성 분말이다.
- 물과 알코올에 녹는다
- 물, 산과 반응하여 수소를 발생한다.
- 수소화알루미늄(AlH₃)

비중	융점
1.48	150°C

- 백색 또는 회색의 분말이다.
- 습기, 물, 산과 격렬히 반응하여 수소를 발생하며, 자연발화한다.

- 수소화티타늄(TiH₂)
 - 흙색의 금속분말이다.
 - 650°C이상에서 수소를 발생한다.
- 펜타보란(B₅H₉)

융점	비점
-46.8°C	60.1℃

- 무색의 인화성 액체이다.
- 탄화수소, 벤젠에 녹는다.
- 공기와 혼합하여 폭발할 수 있다.
- 150℃ 이상에서 분해하여 산소를 발생한다.

금속의 인화물

- 인과 금속원소로 이루어진 화합물
- 인화칼슘(Ca₃P₂)

비중	융점
2.51	1,600°C

- 적갈색의 결정성 분말이다.
- 물과 반응하여 유독 가연성 가스인 포스핀(인화수소, PH₃)과 수산화 칼슘을 발생한다.
- 소화 방법 : 마른 모래에 의한 피복소화가 효과적이다.
- 화학반응식

금속의 인화물

• 인화알루미늄(AIP)

비중	융점
2.4~2.8	1,000°C

- 짙은 회색 또는 황색의 결정이다.
- 물, 산, 알칼리와 반응하여 포스핀가스를 발생한다.
- 연소 시 오산화인을 발생한다.
- 화학반응식

금속의 인화물

• 인화아연(Zn₃P₂)

비중	융점
4.5	420°C

- 암회색의 결정성 분말이다.
- 알코올, 에테르에 녹지 않는다.
- 물과 반응하여 포스핀가스(PH₃)를 발생한다.
- 산과 반응하여 맹독성인 포스겐가스(COCl₂)를 발생한다.

• 탄화칼슘(CaC₂)

비중	융점	비점
2.2	2,160°C	280°C

- 일반적 성질
 - ❖시판품은 회색 또는 회흑색의 불규칙한 괴상이며, 순수한 것은 정방정계 의 무색 투명한 결정이다.
- 위험성
 - ❖물과 반응하여 수산화칼슘(소석회)과 아세틸렌 가스(연소범위 : 2.5-81%)를 발생한다.
 - ❖고온에서 질소와 반응하여 칼슘시안아미드(석회질소)가 생성된다.
- 저장 및 취급
 - ❖ 환기가 잘되고 습기가 없는 냉소에 보관한다.
 - ❖ 밀폐용기에 보관하는 것이 가장 좋으며, 장기간 보관할 때는 불연성 가 스(질소가스, 아르곤가스 등)를 충전한다.
 - ❖ 화기로부터 격리하여 저장한다.
 - ❖ 구리, 구리합금 및 구리염류와 격리하여 저장한다.

• 탄화칼슘(CaC₂)

비중	융점	비점
2.2	2,160°C	280°C

- 소화 방법
 - ❖ 마른 모래, 분말소화약제 사용
 - ❖ 주수소화는 금지한다.
- 화학반응식
 - 물과의 반응식
 CaC₂ + 2H₂O →
 E화칼슘 물
 Ca(OH)₂ + C₂H₂↑ + 27.8kcal
 수산화칼슘 아세틸렌
 • 700℃에서 질소와의 반응
 CaC₂ + N₂ → CaCN₂ + C + 74.6kcal
 E화칼슘 결소 칼슘시안아미드 탄소

• 탄화알루미늄(Al₄C₃)

비중	분해온도
2.36	1,400°C

- 일반적 성질
 - ❖무색 또는 황색의 결정 또는 분말이다.
 - ❖물과 반응하여 수산화알루미늄과 메탄(CH₄)을 발생한다.
- 저장 및 취급
 - ❖ 직사광선을 피하고 건조한 장소에 보관한다.
- 화학반응식
 - 물과의 반응식
 Al4C3 + 12H2O →

 탄화알루미늄 물
 4Al(OH)3 + 3CH4↑ + 360kcal
 수산화알루미늄 메탄

- 탄화망간(Mn₃C)
 - 물과 반응하면 메탄과 수소가 발생한다.
 - 물과의 반응식

 Mn3C + 6H2O → 3Mn(OH)2 + CH4↑ + H2↑

 탄화망간 물 수산화망간 메탄 수소
- 탄화베릴륨(Be₂C)
 - 물과 반응하면 수산화베릴륨과 메탄이 발생한다.
 - 물과의 반응식
 Be2C + 4H2O → 2Be(OH)2 + CH4↑

 탄화베릴륨 물 수산화베릴륨 메탄

- 탄화마그네슘(Mg₂C₃)
 - 물과 반응하면 수산화마그네숨과 프로핀이 발생한다.
 - 물과의 반응식
 Mg2C3 + 4H2O → 2Mg(OH)2 + C3H4↑

 탄화마그네슘 물 수산화마그네슘 프로핀
- 물과 반응시 생성 가스

탄화물	가스명
・ 탄화칼슘・ 탄화칼륨・ 탄화나트륨・ 탄화리튬	아세틸렌가스(C ₂ H ₂)
· 탄화알루미늄 · 탄화베릴륨 · 탄화망간	메탄(CH ₄)

염소화규소화합물

- 트리클로로실란(SiHCl₃)
 - 무색의 유동성 액체이다.
 - 이황화탄소, 사염화탄소에 녹는다.
- 클로로실란(SiH₄Cl)
 - 무색의 휘발성 액체이다.
 - 물에 녹지 않는다.
 - 산화성 물질과 격렬하게 반응한다.

기출 문제

- 1. 다음 중 금수성 물질로만 나열된 것은? (13-02)
 - ① K, CaC₂, Na

- ② KClO₃, Na, S
- 3 KNO_3 , CaO_2 , Na_2O_2

- 4 NaNO₃, KClO₃, CaO₂
- 2. 제3류 위험물의 성질을 설명한 것으로 옳은 것은? (09-04)
 - ① 물에 의한 냉각소화를 모두 금지한다.
 - ② 알킬알루미늄, 나트륨, 수소화나트륨은 비중은 모두 물보다 무겁다.
 - ③ 모두 무기화합물로 구성되어 있다.
 - ④ 지정수량은 모두 300kg 이하의 값을 갖는다.
- 3. 위험물안전관리법령에서 정한 제3류 위험물에 있어서 화재예방법 및 화재 시조치 방법에 대한 설명으로 틀린 것은? (15-01)
 - ① 칼륨과 나트륨은 금수성 물질로 물과 반응하여 가연성 기체를 발생한다.
 - ② 알킬알루미늄은 알킬기의 탄소수에 따라 주수 시 발생하는 가연성 기체의 종류가 다르다.
 - ③ 탄화칼슘은 물과 반응하여 폭발성의 아세틸렌가스를 발생한다.
 - ④ 황린은 물과 반응하여 유독성의 포스핀 가스를 발생한다.

기출 문제

- 4. 금속칼륨의 성질로서 옳은 것은? (14-02)

 - ① 중금속류에 속한다. ② 화학적으로 이온화 경향이 큰 금속이다.
 - ③ 물 속에 보관한다.
- ④ 상온, 상압에서 액체형태인 금속이다.
- 5. 안전한 저장을 위해 첨가하는 물질로 옳은 것은? (13-04)
 - ① 과망간산나트륨에 목탄을 첨가 ② 질산나트륨에 유황을 첨가

③ 금속칼륨에 등유를 첨가

- ④ 중크롬산칼륨에 수산화칼슘을 첨가
- 6. 금속칼륨의 성질에 대한 설명으로 옳은 것은? (10-01)
 - ① 화학적 활성이 강한 금속이다. ② 산화되기 어려운 금속이다.
- - ③ 금속 중에서 가장 단단한 금속이다. ④ 금속 중에서 가장 무거운 금속이다.
- 7. 금속칼륨의 보호액으로 가장 적당한 것은? (09-02)
 - ① 알코올

- ② 경유 ③ 아세트산
- 8. 금속칼륨이 물과 반응했을 때 생성물로 옳은 것은? (12-04)
 - ① 산화칼륨 + 수소
- ② 수산화칼륨 + 수소
- ③ 산화칼륨 + 산소
- ④ 수산화칼륨 + 산소

기출 문제

9.	다음 중 물과 접촉하였 ① S ② CH ₃ CC	렸을 때 위험성이 7 DOH ③ C ₂ H ₅ C		4-04) ④ K	
	물과 격렬하게 반응하 은? (07-01)				
	① 염소산나트륨	② 황린	③ 니트로셀룰로오:	<u> </u>	④ 칼륨
11.	등유 속에 저장하는 우 ① 트리에틸알루미늄		③ 탄화칼슘	④ 칼륨	
12.	다음 중 금속칼륨의 보관액으로 가장 적당한 것은? (07-01)				
	① 메탄올				파라핀
13.	칼륨에 관한 설명 중 분 ① 보라색의 불꽃을 내다)		

③ 화재시 탄산가스소화기가 가장 효과적이다.④ 피부와 접촉하면 화상의 위험이 있다.

② 물과 반응하여 수소를 발생한다.

- 14. 칼륨에 대한 설명 중 틀린 것은? (09-04)
 - ① 보호액을 사용하여 저장한다.
 - ② 가급적 소분하여 저장하는 것이 좋다.
 - ③ 화재시 주수소화는 위험하므로 CO2 약제를 사용한다.
 - ④ 화재 초기에는 건조사 질식소화가 적당하다.
- 15. 은백색의 연한 금속으로 적자색의 불꽃을 내며 연소하고 에탄올과 반응하여 알코올레이트를 만드는 이 물질에 화재가 발생하였을 경우 주수소화가 불가 능한 가장 큰 이유는? (08-01)
 - ① 수소가 발생하여 연소가 확대되기 때문이
 - ② 유독가스가 발생하여 위험성이 높아지기 때문에
 - ③ 산소의 발생으로 연소가 확대되기 때문에
 - ④ 수증기의 증발열에 의한 화상 위험 때문에
- 16. 금속나트륨에 대한 설명으로 틀린 것은? (10-02)
 - ① 제3류 위험물이다.
 - ② 융점은 약 297℃ 이다.
 - ③ 은백색의 가벼운 금속이다.
 - ④ 물과 반응하여 수소를 발생한다.

- 17. 은백색의 금속으로 노란 불꽃을 내면서 연소하고, 수분과 접촉하면 수소를 발생하는 물질은? (08-01)
 - ① 탄화알루미늄 ② 인화석회 ③ 나트륨

- ④ 칼륨
- 18. 금속나트륨이 물과 작용하면 위험한 이유로 옳은 것은? (15-01)
 - ① 물과 반응하여 과염소산을 생성하므로
 - ② 물과 반응하여 염산을 생성하므로
 - ③ 물과 반응하여 수소를 방출하므로
 - ④ 물과 반응하여 산소를 방출하므로
- 19. 알킬알루미늄에 대한 설명 중 틀린 것은? (12-01)
 - ① 물과 폭발적 반응을 일으켜 발화되므로 비산하는 위험물이 있다.
 - ② 이동저장탱크는 외면을 적색으로 도장하고, 용량은 1900L 미만으로 저장한다.
 - ③ 화재시 발생되는 흰 연기는 인체에 유해하다.
 - ④ 탄소수가 4개까지는 안전하나 5개 이상으로 증가할수록 자연발화의 위험성이 증 가하다.

- 20. 다음 위험물 중 물과 반응하여 수소 가스가 발생하여 화재 및 폭발 위험성이 있는 것은? (07-01)
 - ① 황린

② 적린

- ③ 나트륨 ④ 이황화탄소
- 21. 다음 중 나트륨의 보호액으로 가장 적합한 것은? (14-02)
 - 메탄올
 수은
- ③ 물

- ④ 유동파라핀
- 22. 트리에틸알루미늄에 관한 설명 중 틀린 것은? (08-04)
 - ① 무색・투명한 액체이다.
 - ② 화재시 CO₂ 또는 할로겐소화약제가 가장 효과적이다
 - ③ 에탄올과 폭발적으로 반응한다.
 - ④ 수분과의 접촉은 위험하다.
- 23. (C₂H₅)₃AI 의 화재 예방법이 아닌 것은? (11-01)
 - ① 자연발화방지를 위해 얼음 속에 보관한다.
 - ② 공기와의 접촉을 피하기 위해 불연성 가스를 봉입한다.
 - ③ 용기는 밀봉하여 저장한다.
 - ④ 화기의 접근을 피하여 저장한다.

24.	트리에틸알루미늄이 습기와 반① 수소② 아세틸			
25.	물과 접촉하였을 때 에탄이 발생 ① CaC2 ② (C2H5)3AI			
	공기 중에 노출되면 자연발화의 따르는 것은? (08-01) ① CH ₃ COCH ₃ ② (CH ₃) ₃ /			의 위험이
27.	위험물과 보호액을 잘못 연결한 ① 이황화탄소 – 물 ③ 황린 – 물	② 인화칼슘 - 물	O Ti	
	황린을 물 속에 저장할 때 인화 마 정도가 좋은가? (15-04)			pH 는 얼

29.	다음 위험물 중 물속에 ① 황린		한 것은? (10-02) ③ 루비듐	④ 오황화린
30.	다음 중 자연발화 위험 ① 황린	 성이 가장 큰 물 주 ② 황화린		④ 적린
31.	황린에 대한 설명으로 ① 비중은 약 1.82 이다. ③ 저장시 pH를 9 정도로		② 물속에 보관한다	
	황린을 밀폐용기 속에 생성되는 물질은? (14- ① P ₂ O ₅	04)		연소시킬 때 주로
33.	황린의 연소 생성물은 ① 삼황화린		③ 오산화인	④ 오황화린

34.	황린이	자연발화하기	쉬운 이유어	ㅣ대한 섵	설명으로 기	 장 옳은	것은?	(07-02)
-----	-----	--------	--------	-------	--------	--------------	-----	---------

- ① 끓는점이 낮고 증기압이 높기 때문
- ② 인화점이 낮고 가연성이기 때문
- ③ 조해성이 강하고 공기중의 수분에 의해 쉽게 분해되기 때문
- ④ 산소와 친화력이 강하고 착화온도가 낮기 때문

35. 연소생성물로 이산화황이 생성되지 않는 것은? (08-04)

황린

 ② 삼황화린
 ③ 오황화린
 ④ 황

36. 황린이 연소할 때 다량으로 발생하는 흰연기는 무엇인가? (11-02)

(1) P_2O_5

 $(2) P_3 O_7$ $(3) PH_3$

 $(4) P_{\lambda}S_{3}$

37. 화재 발생 시 물을 사용하여 소화할 수 있는 물질은? (15-04)

① K_2O_2

 \bigcirc CaC₂ \bigcirc \bigcirc Al₄C₃

38. 황린의 소화활동상 주의사항에 대한 설명으로 틀린 것은? (08-02)

- ① 증기의 누출에 주의하고 재발화하지 않도록 하여야 한다.
- ② 주수소화시 비산하여 연소가 확대될 위험이 있으므로 주의한다.
- ③ 유독가스사 발생하므로 보호장구 및 공기호흡기를 착용하는 것이 안전하다.
- ④ 연소시 유독한 오황화린을 발생시키므로 주의하여야 한다.

39. 황린의 성질에 대한 설명으로 옳은 것은? (08-02)

- ① 발화점이 260℃ 이상이다.
- ② 독성이 거의 없는 물질이다.
- ③ 물에 잘 용해되고 활발하게 반응한다.
- ④ 공기 중 산화되어 P₂O₅가 생성된다.

40. 황린의 보존 방법으로 가장 적합한 것은? (12-01)

- ① 벤젠 속에서 보존한다. ② 석유 속에서 보존한다.

- ③ 물 속에 보존한다. ④ 알코올 속에 보존한다.

41. 황린에 공기를 차단하고 약 몇 ℃로 가열하면 적린이 되는가? (12-02)

- ① 250°C ② 120°C ③ 44°C

(4) 34°C

- 42. 황린에 대한 설명으로 틀린 것은? (11-04)
 - ① 백색 또는 담황색의 고체로 독성이 있다.
 - ② 물에는 녹지 않고 이황화탄소에는 녹는다.
 - ③ 공기 중에서 산화되어 오산화인이 된다.
 - ④ 녹는점이 적린과 비슷하다.
- 43. 다음 물질 중 황린과 접촉하였을 때 가장 위험한 것은? (08-04)

① NaOH

② H_2O

3 CO₂

 $4 N_2$

44. 다음 위험물의 소화방법으로 주수소화가 적당하지 않은 것은? (08-02)

1 NaClO₃

(2) S

③ NaH

(4) TNT

- 45. 수소화나트륨 저장 창고에 화재가 발생하였을 때 주수소화가 부적합한 이유 로 옳은 것은? (15-02)
 - ① 발열반응을 일으키고 수소를 발생한다.
 - ② 수화반응을 일으키고 수소를 발생한다.
 - ③ 중화반응을 일으키고 수소를 발생한다.
 - ④ 중합반응을 일으키고 수소를 발생한다.

46.	수소화나트륨이 물과 ① 일산화탄소			④ 수소
47.	물과 접촉시 동일한 기 ① 수소화알루미늄리튬, ③ 트리에틸알루미늄, 탄	금속리튬	② 탄화칼슘, 금속킬	슘
48.	물과 작용하여 포스핀 ① P ₄			④ CaC ₂
49.	인화칼슘이 물과 반응 ① PH ₃			④ H ₂ S
50.	인화칼슘이 물과 반응 ① 수소			

51.	인화석회가	물과	반응하여	생성하는	기체는?	(14-02)
-----	-------	----	------	------	------	---------

① 포스핀

② 아세틸렌

③ 이산화탄소 ④ 수산화칼슘

52. 다음 위험물의 저장시 보호액으로 물을 사용하는 것이 적합하지 않은 것은? (09-04)

① 황린

② 인화칼슘 ③ 이황화탄소 ④ 니트로셀룰로오스

53. 위험물의 화재시 주수소화하면 가연성 가스의 발생으로 인하여 위험성이 증 가하는 것은? (12-01)

② 염소산칼륨 ③ 인화칼슘 ④ 질산암모늄

54. 위험물이 물과 반응하였을 때 발생하는 가연성 가스를 잘못 나타낸 것은? (14-04)

① 금속칼륨 - 수소

② 금속나트륨 - 수소

③ 인화칼슘 - 포스겐

④ 탄화칼슘 -아세틸렌

55. 위험물의 저장액(보호액)으로서 잘못된 것은? (10-04)

① 황린 – 물

② 인화석회 - 물

③ 금속나트륨 - 등유

④ 니트로셀룰로오스 - 함수알코올

56. 다음 중 화재 시 물을 사용할 경우 가장 위험한 물질은? (13-01)

① 염소산칼륨 ② 인화칼슘 ③ 황린 ④ 과산화수소

57. 다음 반응식 중에서 옳지 않는 것은? (14-02)

- (1) $CaO_2 + 2HCI \rightarrow CaCl_2 + H_2O_2$
- (2) $CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$
- (3) $Ca_3P_2 + 4H_2O \rightarrow Ca_3(OH)_2 + 2PH_3$
- (4) $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$

58. 다음 중 Ca₃P₂화재시 가장 적합한 소화방법은? (12-04)

- ① 마른 모래로 덮어 소화한다. ② 봉상의 물로 소화한다.
- ③ 화학포 소화기로 소화한다.

- ④ 산・알칼리 소화기로 소화한다.

59. 다음은 위험물의 성질을 설명한 것이다. 위험물과 그 위험물의 성질을 모두 옳게 연결한 것은? (14-01)

A: 건조 질소와 상온에서 반응한다.

B: 물과 작용하면 가연성 가스를 발생한다.

C: 물과 작용하면 수산화칼슘을 발생한다.

D: 비중이 1이상이다.

① K - A, B, C

② $Ca_3P_2 - B, C, D$

③ Na - A, C, D

4) CaC2 - A, B, D

60. 인화알루미늄의 화재시 주수소화를 하면 발생하는 가연성 기체는? (08-04)

① 아세틸렌

② 메탄 ③ 포스겐 ④ 포스핀

61. 탄화칼슘과 물이 반응하였을 때 생성되는 가스는? (14-01)

 \bigcirc C₂H₂

 $(2) C_2H_4$ $(3) C_2H_6$

(4) CH₄

62. 탄화칼슘은 물과 반응하면 어떤 기체가 발생하는가? (10-04)

① 과산화수소 ② 일산화탄소 ③ 아세틸렌 ④ 에틸렌

63.	탄화칼슘이	물과	반응	했을	때	다음	중	옳은	반응은?	(08-01)
-----	-------	----	----	----	---	----	---	----	------	---------

- ① 탄화칼슘 + 물 → 소석회 + 산소
- ② 탄화칼슘 + 물 → 생석회 + 인화수소
- ③ 탄화칼슘 + 물 → 생석회 + 일산화탄소
- ④ 탄화칼슘 + 물 → 소석회 + 아세틸렌

64. 다음 중 물과 반응하여 수소를 발생하지 않는 물질은? (08-02)

칼륨

② 수소화붕소나트륨

③ 탄화칼슘

④ 수소화칼슘

65. 물과 반응하였을 때 발생하는 가스의 종류가 나머지 셋과 다른 하나는? (11-04)

알루미늄분
 칼슘

③ 탄화칼슘 ④ 수소화칼슘

66. 다음 위험물 중 물과 반응하여 연소범위가 약 2.5 ~ 81%인 위험한 가스를 발생시키는 것은? (10-04)

(1) Na

(2) P

3 CaC₂

4 Na₂O₂

67. 탄화칼슘에 대한 다음 설명 중 옳은 것은? (08-01)

- ① 상온의 건조한 공기 중에서 매우 불안정하여 격렬하게 산화반응을 한다.
- ② 물과 반응하여 생성되는 기체는 산소 기체보다 무겁다.
- ③ 물과 반응하여 생기는 기체의 연소 범위는 약 2.5 ~ 81% 로 매우 넓다.
- ④ 순수한 것은 갈색의 액체상이다.

68. CaC₂의 성질을 설명한 것 중 틀린 것은? (07-02)

- ① 시판품은 흑회색의 불규칙한 고체 덩어리이다.
- ② 물과 반응하여 생석회와 산소가 생성된다.
- ③ 고온에서 질소가스와 반응하여 석회질소가 된다.
- ④ 비중은 약 2.2 정도로 물보다 무겁다.

69. 다음 중 분자량이 약 144이고 비중이 약 2.36 인 물질로 물과 접촉 되었을 때 CH4를 발생시키는 것은? (07-02)

- ① 탄화알루미늄 ② 탄화망간 ③ 탄화마그네슘 ④ 탄화베릴륨

70. ^{[1}	다음 중	탄화알루미늄이	물과	반응할 때	생성되는	가스는?	(08-02)
-------------------	------	---------	----	-------	------	------	---------

1 H₂

2 CH₄

 $\bigcirc 3 \bigcirc 2$

 $(4) C_2H_2$

71. 물과 반응하였을 때 발생하는 가연성 가스의 종류가 나머지 셋과 다른 하나 는? (15-04)

① 탄화리튬(Li₂C₂)

② 탄화마그네슘(MgC₂)

③ 탄화칼슘(CaC₂)

④ 탄화알루미늄(Al₄C₃)

72. 물과 반응하여 CH_4 와 H_2 가스를 발생하는 것은? (12-04)

 \bigcirc K_2C_2

 \bigcirc MgC₂ \bigcirc \bigcirc Be₂C

4 Mn₃C

Thank you