SHC 798 R-code

Richard Lubega

2025-07-02

Introduction

R Markdown Preamble

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

See also the R Markdown Cookbook)

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Sample Inbuilt Data Set

summary(cars)

```
##
        speed
                         dist
                           : 2.00
##
    Min.
          : 4.0
                    Min.
                    1st Qu.: 26.00
##
    1st Qu.:12.0
##
    Median:15.0
                    Median : 36.00
           :15.4
                           : 42.98
    3rd Qu.:19.0
                    3rd Qu.: 56.00
##
    Max.
           :25.0
                    Max.
                           :120.00
```

Including Plots - Example

Embed Plot

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Another Plot

Let's create another Test plot

```
plot(cars, col = "red", xlab = "Speed (mph)", ylab = "Distance (miles)" )
```


A summary of the data frame is given below

```
pacman::p_load(knitr)
kable(summary(cars))
```

speed	dist
Min.: 4.0	Min.: 2.00
1st Qu.:12.0	1st Qu.: 26.00
Median:15.0	Median: 36.00
Mean $:15.4$	Mean: 42.98
3rd Qu.:19.0	3rd Qu.: 56.00
Max. $:25.0$	Max. $:120.00$

Start of My SHC 798 R-code

R basics

- 1. Why install **Rtools**?
- 2. R Shiny $\mathbf{Gallery}$: There's Shiny for R and Shiny for Python

R Operations 1

What can be done?

```
# R as a calculator
sqrt(12)
## [1] 3.464102
x <- 3
y <- x^2
x+y
## [1] 12
# Creating Vectors
v1 \leftarrow c(1,5, 80)
v1
## [1] 1 5 80
v2 <- 2:11
v2
## [1] 2 3 4 5 6 7 8 9 10 11
a \leftarrow c(1,6,10,22,7,13)
mean(a)
## [1] 9.833333
# Incomplete Statement
3*(4 +
+2)
## [1] 18
#Assignments and Function Calls
t.a <- 3*(4+2)
t.b <- t.a + 2.5
mn <- mean(c(t.a,t.b))</pre>
## [1] 19.25
```

R Help

Resources

- 1. Very useful and helpful R Q&A Website
- 2. Paradis 2005 R for Beginners [Textbook]
- 3. R Reference Card [in the notes, 6 pages Material from R for Beginners]
- 4. Base R Cheat Sheet [in the notes, 2 pages]
- 5. Venables et al 2017 An introduction to R [Textbook]
- 6. R for Data Science, r4ds or the r4ds-2e
- 7. W³Schools R Certification

R Operations 2

Importing Data sets

```
# Import Data: Website
url <- "https://stat.ethz.ch/Teaching/Datasets/WBL/sport.dat"</pre>
d.sport <- read.table(url, header = TRUE)</pre>
head(d.sport)
##
              weit kugel hoch disc stab speer punkte
## OBRIEN
             7.57 15.66 207 48.78 500 66.90
                                                 8824
## BUSEMANN
             8.07 13.60 204 45.04 480 66.86
                                                 8706
## DVORAK
              7.60 15.82 198 46.28 470 70.16
                                                 8664
## FRITZ
             7.77 15.31 204 49.84 510 65.70
                                                 8644
## HAMALAINEN 7.48 16.32 198 49.62 500 57.66
                                                 8613
## NOOL
             7.88 14.01 201 42.98 540 65.48
                                                 8543
# Setting the Working Directory
# Use:
getwd() #Prints the current working directory
```

[1] "D:/2025 MEng Transportation/SHC 798 R-Proj"

```
# setwd("D:/2025 MEng Transportation/SHC 798 R-Proj") ~ Sets the working directory
# Alternatively, use "Session" → "Set Working Directory" → "Choose Directory..."
# Import Data: Files
# - Different ways depending on the format (csv, txt, xlsx, etc.)
# - Alternative: use the "Import Dataset" tool in RStudio (upper-right panel)
# Save data or write data to a file
# - Text files
# - Excel files: use CSV
```

R Objects & Indexing

Statistics

lm(y ~ x, data=df)
 Linear model.

glm(y ~ x, data=df)
Generalised linear model.

summary

Get more detailed information out a model.

t.test(x, y)
Perform a t-test for
difference between
means.

pairwise.t.test
Perform a t-test for
paired data.

Test for a difference between proportions.

aov Analysis of variance.

Distributions

	Random Variates	Density Function	Cumulative Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
Poisson	rpois	dpois	ppois	qpois
Binomial	rbinom	dbinom	pbinom	qbinom
Uniform	runif	dunif	punif	qunif

Learn more at web page or vignette • package version • Updated: 3/15

Figure 1: Snippet from Resource 4

```
# R Objects: Data frames (Most essential)
str(d.sport)
## 'data.frame': 15 obs. of 7 variables:
## $ weit : num 7.57 8.07 7.6 7.77 7.48 7.88 7.64 7.61 7.27 7.49 ...
## $ kugel : num 15.7 13.6 15.8 15.3 16.3 ...
## $ hoch : int 207 204 198 204 198 201 195 213 207 204 ...
## $ disc : num 48.8 45 46.3 49.8 49.6 ...
## $ stab : int 500 480 470 510 500 540 540 520 470 470 ...
## $ speer : num 66.9 66.9 70.2 65.7 57.7 ...
## $ punkte: int 8824 8706 8664 8644 8613 8543 8422 8318 8307 8300 ...
# R Objects: Vectors
 # (e.g., a column from the data set d.sport)
kugel <- d.sport$kugel</pre>
str(kugel)
## num [1:15] 15.7 13.6 15.8 15.3 16.3 ...
participant <- rownames(d.sport)</pre>
str(participant)
## chr [1:15] "OBRIEN" "BUSEMANN" "DVORAK" "FRITZ" "HAMALAINEN" "NOOL" ...
# Select elements
participant[4]
## [1] "FRITZ"
d.sport[c(3,6,4), c(1:3,7)]
         weit kugel hoch punkte
## DVORAK 7.60 15.82 198 8664
## NOOL 7.88 14.01 201
                           8543
## FRITZ 7.77 15.31 204 8644
d.sport["FRITZ", ]
        weit kugel hoch disc stab speer punkte
## FRITZ 7.77 15.31 204 49.84 510 65.7
# Accessing Parts of an Object
# To access only part of an object, use []
 # For vectors: myvector[x]
 # For two-dimensional objects, e.g. data frames or matrices: mydata.frame[x,y]
d.sport[ , ]
```

```
weit kugel hoch disc stab speer punkte
## OBRIEN
              7.57 15.66 207 48.78
                                     500 66.90
                                                  8824
## BUSEMANN
              8.07 13.60
                          204 45.04
                                      480 66.86
                                                  8706
## DVORAK
              7.60 15.82
                         198 46.28
                                     470 70.16
                                                  8664
## FRITZ
              7.77 15.31
                          204 49.84
                                      510 65.70
                                                  8644
## HAMALAINEN 7.48 16.32 198 49.62
                                     500 57.66
                                                  8613
## NOOL
              7.88 14.01
                          201 42.98
                                      540 65.48
                                                  8543
## ZMELIK
              7.64 13.53 195 43.44
                                     540 67.20
                                                  8422
## GANIYEV
              7.61 14.71
                          213 44.86
                                      520 53.70
                                                  8318
              7.27 16.91
                          207 48.92
## PENALVER
                                     470 57.08
                                                  8307
## HUFFINS
              7.49 15.57
                          204 48.72
                                     470 60.62
                                                  8300
## PLAZIAT
              7.82 14.85
                          204 45.34
                                     490 52.18
                                                  8282
## MAGNUSSON
              7.28 15.52
                          195 43.78
                                      480 61.10
                                                  8274
## SMITH
              7.47 16.97
                          195 49.54
                                      500 64.34
                                                  8271
## MUELLER
              7.25 14.69
                          195 45.90
                                      510 66.10
                                                  8253
## CHMARA
              7.75 14.51
                          210 42.60
                                      490 54.84
                                                  8249
c(1,3,7)
## [1] 1 3 7
1:10
    [1]
              3 4 5 6 7 8 9 10
d.sport[1:10, ]
##
              weit kugel hoch disc stab speer punkte
## OBRIEN
              7.57 15.66
                          207 48.78
                                     500 66.90
                                                  8824
## BUSEMANN
              8.07 13.60
                          204 45.04
                                      480 66.86
                                                  8706
## DVORAK
              7.60 15.82
                          198 46.28
                                      470 70.16
                                                  8664
## FRITZ
              7.77 15.31
                          204 49.84
                                      510 65.70
                                                  8644
## HAMALAINEN 7.48 16.32
                          198 49.62
                                      500 57.66
                                                  8613
              7.88 14.01
## NOOL
                          201 42.98
                                      540 65.48
                                                  8543
## ZMELIK
              7.64 13.53
                          195 43.44
                                      540 67.20
                                                  8422
## GANIYEV
              7.61 14.71
                          213 44.86
                                     520 53.70
                                                  8318
## PENALVER
              7.27 16.91
                          207 48.92
                                     470 57.08
                                                  8307
              7.49 15.57
                          204 48.72
## HUFFINS
                                     470 60.62
                                                  8300
d.sport[-c(1, 3,7), ] #negative indices are excluded
##
              weit kugel hoch disc stab speer punkte
## BUSEMANN
              8.07 13.60
                          204 45.04
                                     480 66.86
                                                  8706
## FRITZ
              7.77 15.31
                          204 49.84
                                      510 65.70
                                                  8644
## HAMALAINEN 7.48 16.32
                          198 49.62
                                      500 57.66
                                                  8613
## NOOL
              7.88 14.01
                          201 42.98
                                      540 65.48
                                                  8543
## GANIYEV
              7.61 14.71
                          213 44.86
                                     520 53.70
                                                  8318
## PENALVER
              7.27 16.91
                          207 48.92
                                      470 57.08
                                                  8307
## HUFFINS
              7.49 15.57
                          204 48.72
                                      470 60.62
                                                  8300
## PLAZIAT
              7.82 14.85
                          204 45.34
                                      490 52.18
                                                  8282
## MAGNUSSON 7.28 15.52 195 43.78
                                     480 61.10
                                                  8274
```

```
## SMITH
             7.47 16.97 195 49.54 500 64.34
                                                8271
## MUELLER
             7.25 14.69 195 45.90 510 66.10
                                                8253
## CHMARA 7.75 14.51 210 42.60 490 54.84
                                                8249
d.sport[ , 2:3]
##
             kugel hoch
## OBRIEN
             15.66 207
## BUSEMANN
             13.60 204
## DVORAK
             15.82 198
## FRITZ
             15.31 204
## HAMALAINEN 16.32 198
## NOOL
             14.01 201
             13.53 195
## ZMELIK
## GANIYEV
             14.71 213
## PENALVER 16.91 207
## HUFFINS
             15.57 204
## PLAZIAT
             14.85 204
## MAGNUSSON 15.52 195
## SMITH
             16.97 195
## MUELLER
           14.69 195
## CHMARA
             14.51 210
d.sport[c(1,3,6), 2:3]
##
         kugel hoch
## OBRIEN 15.66 207
## DVORAK 15.82 198
## NOOL 14.01 201
# Function Calls
mean(kugel)
## [1] 15.19867
quantile(kugel)
##
      0%
          25%
                50% 75% 100%
## 13.53 14.60 15.31 15.74 16.97
quantile(kugel,probs = c(.75, 0.9))
     75%
##
            90%
## 15.740 16.674
# Functions consist of mandatory and optional arguments:
 \# mean(x, trim = 0, na.rm = FALSE, ...)
  # x: mandatory argument
  # trim: optional argument, default is 0
  # na.rm: optional argument, default is FALSE
# The arguments of a function have a defined order and each argument has its own unique name
mean(x = kugel, na.rm = TRUE)
```

```
## [1] 15.19867
mean(x = kugel, ,TRUE)
## [1] 15.19867
# Useful Functions
nrow(d.sport)
## [1] 15
ncol(d.sport)
## [1] 7
dim(d.sport)
## [1] 15 7
summary(d.sport)
##
                      kugel
                                      hoch
                                                     disc
                                                                    stab
        weit
## Min. :7.250
                  Min. :13.53
                                 Min. :195.0 Min. :42.60
                                                               Min. :470
## 1st Qu.:7.475
                  1st Qu.:14.60
                                 1st Qu.:196.5
                                                1st Qu.:44.32
                                                               1st Qu.:480
## Median :7.600
                 Median :15.31
                                 Median :204.0
                                                Median :45.90
                                                               Median:500
## Mean :7.597
                                                               Mean :498
                  Mean :15.20
                                 Mean :202.0
                                                Mean :46.38
   3rd Qu.:7.760
                  3rd Qu.:15.74
                                 3rd Qu.:205.5
                                                3rd Qu.:48.85
                                                               3rd Qu.:510
##
## Max. :8.070
                  Max. :16.97
                                 Max. :213.0
                                                Max. :49.84
                                                               Max. :540
##
       speer
                      punkte
## Min.
        :52.18
                  Min. :8249
##
  1st Qu.:57.37
                  1st Qu.:8278
## Median :64.34
                  Median:8318
## Mean
         :61.99
                  Mean
                         :8445
   3rd Qu.:66.48
                  3rd Qu.:8628
## Max. :70.16
                  Max.
                         :8824
# apply(d.sport)
head(d.sport)
##
             weit kugel hoch disc stab speer punkte
## OBRIEN
             7.57 15.66 207 48.78 500 66.90
                                              8824
## BUSEMANN
             8.07 13.60 204 45.04 480 66.86
                                              8706
## DVORAK
             7.60 15.82 198 46.28 470 70.16
                                              8664
## FRITZ
             7.77 15.31 204 49.84 510 65.70
                                              8644
## HAMALAINEN 7.48 16.32 198 49.62 500 57.66
                                              8613
```

8543

7.88 14.01 201 42.98 540 65.48

NOOL

tail(d.sport)

```
##
            weit kugel hoch disc stab speer punkte
## HUFFINS
            7.49 15.57
                        204 48.72 470 60.62
                                                8300
## PLAZIAT
            7.82 14.85
                        204 45.34
                                    490 52.18
                                                8282
## MAGNUSSON 7.28 15.52 195 43.78
                                    480 61.10
                                                8274
## SMITH
            7.47 16.97
                        195 49.54
                                    500 64.34
                                                8271
## MUELLER
            7.25 14.69
                       195 45.90
                                    510 66.10
                                                8253
## CHMARA
            7.75 14.51 210 42.60
                                    490 54.84
                                                8249
```

R Packages

```
#install.packages("MASS")
#require(MASS) # for every R Session
#library(MASS) # or use this
```

Online resources: University of Pretoria | SHC 798 | Introduction to R 36

- o List of all packages: http://cran.r-project.org/web/packages/
- o By topic: http://cran.r-project.org/web/views/
- o Ask Google / ChatGPT / GroK

Missing Values

```
d.sport.NA <- d.sport
d.sport.NA[2, "kugel"] <- NA
d.sport.NA[3, "hoch"] <- -999
# missing values are coded as NA (not available) and are treated in a special way, e.g. is.na():
is.na(d.sport.NA) #one logical value per element</pre>
```

```
##
            weit kugel hoch disc stab speer punkte
## OBRIEN
            FALSE FALSE FALSE FALSE FALSE FALSE
## BUSEMANN
           FALSE TRUE FALSE FALSE FALSE FALSE
## DVORAK
            FALSE FALSE FALSE FALSE FALSE
                                           FALSE
## FRITZ
            FALSE FALSE FALSE FALSE FALSE FALSE
## HAMALAINEN FALSE FALSE FALSE FALSE FALSE
## NOOL
            FALSE FALSE FALSE FALSE FALSE FALSE
## ZMELIK
            FALSE FALSE FALSE FALSE FALSE
                                           FALSE
## GANIYEV
            FALSE FALSE FALSE FALSE FALSE
## PENALVER
            FALSE FALSE FALSE FALSE FALSE FALSE
## HUFFINS
            FALSE FALSE FALSE FALSE FALSE
## PLAZIAT
            FALSE FALSE FALSE FALSE FALSE FALSE
## MAGNUSSON FALSE FALSE FALSE FALSE FALSE FALSE
## SMITH
            FALSE FALSE FALSE FALSE FALSE FALSE
## MUELLER
            FALSE FALSE FALSE FALSE FALSE FALSE
## CHMARA
            FALSE FALSE FALSE FALSE FALSE FALSE
```

```
sum(is.na(d.sport.NA)) # adds up the TRUE elements
## [1] 1
which(is.na(d.sport.NA), arr.ind = TRUE) # where are the NA's
##
           row col
## BUSEMANN
             2
# Specify missing values after reading in the data:
d.sport.NA[d.sport.NA == -999] <- NA
# Many functions have an argument to handle missing values, e.g. na.rm, na.omit:
sum(d.sport.NA$kugel)
## [1] NA
sum(d.sport.NA$kugel, na.rm = TRUE)
## [1] 214.38
na.omit(d.sport.NA)
##
             weit kugel hoch disc stab speer punkte
## OBRIEN
             7.57 15.66 207 48.78 500 66.90
                                                8824
## FRITZ
             7.77 15.31 204 49.84 510 65.70
                                                8644
## HAMALAINEN 7.48 16.32 198 49.62 500 57.66
                                                8613
             7.88 14.01 201 42.98 540 65.48
## NOOL
                                                8543
             7.64 13.53 195 43.44 540 67.20
## ZMELIK
                                                8422
## GANIYEV
             7.61 14.71 213 44.86 520 53.70
                                                8318
## PENALVER 7.27 16.91 207 48.92 470 57.08
                                                8307
## HUFFINS
             7.49 15.57 204 48.72 470 60.62
                                                8300
## PLAZIAT
             7.82 14.85 204 45.34 490 52.18
                                                8282
## MAGNUSSON 7.28 15.52 195 43.78 480 61.10
                                                8274
## SMITH
             7.47 16.97 195 49.54 500 64.34
                                                8271
## MUELLER
             7.25 14.69 195 45.90 510 66.10
                                                8253
## CHMARA
             7.75 14.51 210 42.60 490 54.84
                                                8249
```

Basic Graphics

```
# The Plot Function: only 1 mandatory argument i.e., x. The 2nd most important one is y.
    # many optional arguments [col,pch,main,cex, ...]
    # use function par (?par) to set or query graphical parameters

data(iris)
iris
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
	36	5.0 5.5	3.2	1.2	0.2	setosa
##			3.5	1.3	0.2	setosa
	38 39	4.9	3.6 3.0	1.4 1.3	0.1	setosa
	40	4.4 5.1	3.4	1.5	0.2	setosa setosa
	41	5.0	3.4	1.3	0.2	setosa
	42	4.5	2.3	1.3	0.3	setosa
	43	4.4	3.2	1.3	0.3	setosa
	44	5.0	3.5	1.6	0.6	setosa
	45	5.1	3.8	1.9	0.4	setosa
	46	4.8	3.0	1.4	0.3	setosa
	47	5.1	3.8	1.6	0.2	setosa
	48	4.6	3.2	1.4	0.2	setosa
	49	5.3	3.7	1.5	0.2	setosa
	50	5.0	3.3	1.4	0.2	setosa
##		7.0	3.2	4.7		versicolor
##		6.4	3.2	4.5		versicolor
##		6.9	3.1	4.9		versicolor

## 54	5.5	2.3	4.0	1.3 versicolor
## 55	6.5	2.8	4.6	1.5 versicolor
## 56	5.7	2.8	4.5	1.3 versicolor
## 57	6.3	3.3	4.7	1.6 versicolor
## 58	4.9	2.4	3.3	1.0 versicolor
## 59	6.6	2.9	4.6	1.3 versicolor
## 60	5.2	2.7	3.9	1.4 versicolor
## 61	5.0	2.0	3.5	1.0 versicolor
## 62	5.9	3.0	4.2	1.5 versicolor
## 63	6.0	2.2	4.0	1.0 versicolor
## 64	6.1	2.9	4.7	1.4 versicolor
## 65	5.6	2.9	3.6	1.3 versicolor
## 66	6.7	3.1	4.4	1.4 versicolor
## 67	5.6	3.0	4.5	1.5 versicolor
## 68	5.8	2.7	4.1	1.0 versicolor
## 69	6.2	2.2	4.5	1.5 versicolor
## 70	5.6	2.5	3.9	1.1 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 71 ## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 73 ## 74	6.1	2.8	4.7	1.2 versicolor
## 7 1 ## 75	6.4	2.9	4.3	1.3 versicolor
## 75 ## 76	6.6	3.0	4.4	1.4 versicolor
## 77	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80 ## 81	5.7 5.5	2.6 2.4	3.5 3.8	1.0 versicolor 1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica

```
## 108
                7.3
                             2.9
                                          6.3
                                                       1.8 virginica
## 109
                6.7
                             2.5
                                          5.8
                                                       1.8 virginica
## 110
                7.2
                             3.6
                                          6.1
                                                      2.5 virginica
## 111
                6.5
                             3.2
                                          5.1
                                                      2.0 virginica
## 112
                6.4
                             2.7
                                          5.3
                                                       1.9
                                                           virginica
## 113
                6.8
                             3.0
                                          5.5
                                                      2.1 virginica
## 114
                5.7
                             2.5
                                          5.0
                                                      2.0
                                                          virginica
## 115
                             2.8
                                          5.1
                                                      2.4 virginica
                5.8
## 116
                6.4
                             3.2
                                          5.3
                                                      2.3
                                                           virginica
## 117
                6.5
                             3.0
                                          5.5
                                                      1.8 virginica
## 118
                7.7
                             3.8
                                          6.7
                                                       2.2 virginica
## 119
                7.7
                             2.6
                                          6.9
                                                       2.3
                                                           virginica
                6.0
## 120
                             2.2
                                          5.0
                                                      1.5
                                                           virginica
## 121
                6.9
                             3.2
                                          5.7
                                                      2.3
                                                           virginica
## 122
                5.6
                             2.8
                                          4.9
                                                      2.0
                                                           virginica
## 123
                7.7
                             2.8
                                          6.7
                                                      2.0
                                                           virginica
## 124
                6.3
                             2.7
                                          4.9
                                                      1.8 virginica
## 125
                6.7
                             3.3
                                          5.7
                                                      2.1
                                                           virginica
## 126
                7.2
                             3.2
                                          6.0
                                                      1.8 virginica
## 127
                6.2
                             2.8
                                          4.8
                                                       1.8 virginica
## 128
                6.1
                             3.0
                                          4.9
                                                      1.8
                                                           virginica
## 129
                6.4
                             2.8
                                          5.6
                                                      2.1
                                                           virginica
## 130
                7.2
                             3.0
                                                      1.6 virginica
                                          5.8
## 131
                7.4
                             2.8
                                          6.1
                                                      1.9
                                                          virginica
## 132
                7.9
                             3.8
                                          6.4
                                                      2.0 virginica
## 133
                6.4
                             2.8
                                          5.6
                                                      2.2 virginica
## 134
                6.3
                             2.8
                                          5.1
                                                       1.5 virginica
## 135
                6.1
                             2.6
                                          5.6
                                                       1.4
                                                           virginica
## 136
                7.7
                             3.0
                                          6.1
                                                      2.3
                                                           virginica
## 137
                6.3
                             3.4
                                          5.6
                                                      2.4 virginica
## 138
                6.4
                             3.1
                                          5.5
                                                      1.8
                                                           virginica
## 139
                6.0
                             3.0
                                          4.8
                                                      1.8
                                                           virginica
## 140
                6.9
                                          5.4
                             3.1
                                                      2.1
                                                           virginica
## 141
                6.7
                             3.1
                                          5.6
                                                      2.4 virginica
## 142
                6.9
                             3.1
                                          5.1
                                                      2.3
                                                           virginica
## 143
                5.8
                             2.7
                                          5.1
                                                           virginica
                                                      1.9
## 144
                6.8
                             3.2
                                          5.9
                                                      2.3
                                                          virginica
## 145
                6.7
                             3.3
                                          5.7
                                                      2.5 virginica
## 146
                6.7
                             3.0
                                          5.2
                                                      2.3
                                                           virginica
## 147
                6.3
                             2.5
                                          5.0
                                                      1.9 virginica
## 148
                6.5
                             3.0
                                          5.2
                                                      2.0
                                                           virginica
## 149
                6.2
                             3.4
                                          5.4
                                                       2.3 virginica
## 150
                             3.0
                                                       1.8 virginica
                5.9
                                          5.1
```

str(iris)

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```

```
# A factor represents categorical values with different "levels"
# High-level plotting function: opens a plot
plot(x = iris$Sepal.Width, y =iris$Sepal.Length, col = iris[ , "Species"], pch = 19)
#Low-level plotting functions: add to an existing plot
legend("topright", legend = levels(iris[ , "Species"]), pch = 19, col = 1:3) # adds legend
```


In an Rmd file such as this one, you need to call both the plot() & legend() functions at the same ti
pairs(iris[, -5], col = iris[, 5])

Arguments of plot

Statement	Meaning		
type	Style of drawing (single points, lines etc.)		
log	logarithmic scale		
xlim	range of x-coordinates		
ylim	range of y-coordinates		
pch	Plotting character		
col	Coloring points		
lty	line type		
lwd	line width		
main	main title (appears above the plot)		
xlab	label of x-axis		
ylab	label of y-axis		

Figure 2: Plot Arguments

Three categories of R graphics functions:

- High-level plotting functions such as plot() to generate a new graphics display.
- Low-level plotting functions such as legend() to add further graphical elements to an existing plot.

• Interactive functions such as identify() to amend or collect information interactively from a plot.

Low-level plotting functions

Statement	Meaning
points(x, y, pch = 1)	Draws points pictured as pch.
text(x, y, text)	Writes text at coordinate (x, y) .
lines(x, y, lty = 1)	Adds a line to graph.
abline(a, b)	Adds a line with intercept a
	and slope b.
abline(h = y, v = x)	Horizontal and vertical lines.
legend(x, y, text, lty, pch)	Creates a legend.

Figure 3: Low-level plotting functions

Useful plot functions

- plot, pairs, interaction.plot
- boxplot, hist
- plot3d

##

Graphical Output

```
pdf(file = "iris_plot.pdf") # open the graphics device
plot(Sepal.Length ~ Sepal.Width, data = iris)
# add anything else you want in your plots
dev.off() #close the graphic device
## pdf
```

Several plots in one graphical window: splits the graphical window into 3 rows and 2 columns.

```
par(mfrow=c(3,2))
```

Other Graphics: in lattice

The lattice package functions: good for repeating graphs for various groups. See the **Lattice Graphs in R** (at http://www.statmethods.net/advgraphs/trellis.html) for more information.

```
pacman::p_load(lattice)
xyplot(Sepal.Width ~ Sepal.Length | Species, data = iris)
```


Other Graphics: in ggplot2

ggplot2 package: very flexible, based on grammar of graphics.

```
pacman::p_load(ggplot2)
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) + facet_grid(rows = ~ Species) + geom_point
```


Hypothesis Testing

Approach: Hypothesis testing in 6 steps:

- 1. Declare *model* by which data were generated (e.g. population is normally distributed, large sample size and not known).
- 2. Define null hypothesis, $\mathbf{H_0}$ and alternative hypothesis, $\mathbf{H_A}$; where $\mathbf{H_0}$ is the statement being tested in a test of (statistical) significance and $\mathbf{H_A}$ is the statement that is hoped or expected to be true instead of the null hypothesis
- 3. Choose the level of significance, .
- 4. Determine critical values for the *level of significance and degrees of freedom, df = (n-1)
- 5. Define and calculate **test statistic**, e.g. one-sample test:
- 6. Compare the test statistic to the critical values and make decision to reject or fail to reject H_0

Hypothesis Tests – An Example

```
# Is the sepal length of versicolor different to that of virginica? Let's use a *t-Test and a *Wilcoxon
testdata <- iris[iris$Species != "setosa", c("Sepal.Length", "Species")]
testdata$Species <- droplevels(testdata$Species)
str(testdata) # prepare and check the data

## 'data.frame': 100 obs. of 2 variables:
## $ Sepal.Length: num 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ...</pre>
```

: Factor w/ 2 levels "versicolor", "virginica": 1 1 1 1 1 1 1 1 1 1 ...

```
# Check normality assumption of t-Test using QQ-Plot:
versi.id <- testdata$Species == "versicolor"
par(mfrow=c(1,2))
qqnorm(testdata$Sepal.Length[versi.id]); qqline(testdata$Sepal.Length[versi.id])
qqnorm(testdata$Sepal.Length[!versi.id]); qqline(testdata$Sepal.Length[versi.id])</pre>
```

Normal Q-Q Plot

Normal Q-Q Plot

Theoretical Quantiles

Theoretical Quantiles

```
# Two-sample t-test:
versi.id <- testdata$Species == "versicolor"</pre>
t.test(x =testdata$Sepal.Length[versi.id], y = testdata$Sepal.Length[!versi.id], var.equal = TRUE)
##
##
   Two Sample t-test
##
## data: testdata$Sepal.Length[versi.id] and testdata$Sepal.Length[!versi.id]
## t = -5.6292, df = 98, p-value = 1.725e-07
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   -0.8818516 -0.4221484
## sample estimates:
## mean of x mean of y
       5.936
                 6.588
##
```

T-test rejects the null hypothesis at 5% significance level. Do not forget to visually check the norm


```
# Now, perform the test:
versi.id <- testdata$Species == "versicolor"
wilcox.test(x =testdata$Sepal.Length[versi.id], y = testdata$Sepal.Length[!versi.id], var.equal = TRUE)

##
## Wilcoxon rank sum test with continuity correction
##
## data: testdata$Sepal.Length[versi.id] and testdata$Sepal.Length[!versi.id]
## W = 526, p-value = 5.869e-07
## alternative hypothesis: true location shift is not equal to 0

# Wilcoxon Rank Test also rejects the null hypothesis at 5% significance level.</pre>
```

The Wilcoxon Rank Test is the *preferred* test for a two-sample statistical test.

Hypothesis Tests - Summary

How to proceed:

• Formulate the null & alternative hypotheses

- Choose the appropriate test
- Collate data, i.e., do an experiment
- Look at data: plot(), pairs(), hist(), boxplot()
- Validate assumptions of test (e.g., T-test, Wilcoxon test)
- Carry out the test and interpret result

	1 sample / 2 dep. samples	2 indep. samples
parametric	t-Test	t-Test
	ightarrow normality	ightarrow normality (& equal variance)
non-param.	Wilcoxon Test	Wilcoxon Test
	ightarrow symmetric distribution	ightarrow location shift

Figure 4: Hypothesis Tests

Hypothesis Tests - Chi-squared test of independence

- Hypothesis: H₀: Independence of education and marriage status
- H_A : Dependence of education and marriage status

```
url <- "https://stat.ethz.ch/Teaching/Datasets/edu.txt"</pre>
d.edu <- read.table(url, header = TRUE)</pre>
# Cross-tables in R
# Count number of cases with same value:
table(d.edu[, "Married"])
##
## Married more Married once
##
            205
                         1231
# Cross-table
table(d.edu[, "Education"], d.edu[, "Married"])
##
##
                Married more Married once
                                       550
##
     College
                           61
     No College
                         144
                                       681
# Now we perform a Chi-squared test
chisq.test(d.edu[, "Education"], d.edu[, "Married"])
##
##
   Pearson's Chi-squared test with Yates' continuity correction
##
## data: d.edu[, "Education"] and d.edu[, "Married"]
## X-squared = 15.405, df = 1, p-value = 8.675e-05
```

```
# Result: Reject HO, i.e. education and marriage are dependent.
```

Correlation

```
# Correlation
url1 <- "https://stat.ethz.ch/Teaching/Datasets/basischOhneNA.dat"</pre>
d.basisch <- read.table(url1, header = TRUE)</pre>
str(d.basisch)
## 'data.frame':
                    123 obs. of 4 variables:
##
                   7.33 7.69 7.9 8.14 7.62 ...
            : num
    $ 1.sar : num 0.0969 0.4393 1 1.316 0.0607 ...
    $ height: num 5.91 5.2 4.4 4.5 6.05 6 5.35 5.55 4.95 5.2 ...
                   34.9 27 19.4 20.2 36.6 ...
    $ h.quad: num
# Calculate the (Pearson) correlation of ph and height:
cor(d.basisch$ph, d.basisch$height)
## [1] -0.6925717
# Corresponding plot:
plot(d.basisch$ph, d.basisch$height)
```


All plots show 2 variables with a correlation of 0.7

- one looks good
- another does not
- outlier(s) influence the result
- ALWAYS FIRST LOOK AT PLOTS

Regression

Simple Linear Regression (SLR)

From the d.basisch() data,

- 1. Response variable: height or h.quad: Height of trees or squared height, respectively.
- 2. Possible explanatory variables: ph: pH-values of soil and l.sar: log(sodium absorption ratio)

The simple linear regression model is:

$$Y_i = \alpha + \beta x_i + E_i$$
 with $E_i^{i,i,d} \sim \mathcal{N}(0, \sigma^2)$

Figure 5: The Simple Linear Regression Model

Let us pick the variable ph as the explanatory variable.

```
# Fit to data using lm:
fit <- lm(formula = height ~ ph, data = d.basisch)
summary(fit)
##
## Call:
## lm(formula = height ~ ph, data = d.basisch)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -3.7020 -0.5471 0.0874 0.6663
                                    2.0033
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.7227
                            2.2395
                                     12.82
                                             <2e-16 ***
                            0.2844 -10.56
## ph
                -3.0034
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.008 on 121 degrees of freedom
## Multiple R-squared: 0.4797, Adjusted R-squared: 0.4754
## F-statistic: 111.5 on 1 and 121 DF, p-value: < 2.2e-16
# Estimated equation: height = 28.7 - 3.0pH
# Drawing line into scatterplot:
plot(d.basisch$ph, d.basisch$height) + abline(fit)
```


integer(0)

```
# Fit to data using lm:
fit <- lm(formula = height ~ ph, data = d.basisch)
summary(fit)</pre>
```

```
##
## Call:
  lm(formula = height ~ ph, data = d.basisch)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                      Max
## -3.7020 -0.5471 0.0874 0.6663
                                   2.0033
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
              28.7227
                            2.2395
                                     12.82
                                             <2e-16 ***
## (Intercept)
                                   -10.56
## ph
                -3.0034
                            0.2844
                                             <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.008 on 121 degrees of freedom
## Multiple R-squared: 0.4797, Adjusted R-squared: 0.4754
## F-statistic: 111.5 on 1 and 121 DF, p-value: < 2.2e-16
```

```
# Estimated equation: height = 28.7 - 3.0pH

# Drawing line into scatterplot:
plot(d.basisch$ph, d.basisch$height) + abline(fit)
```

integer(0)

SLR - Residual Analysis Diagnostics plots are straightforward:

```
par(mfrow = c(2,2))
plot(fit)
```


- 1. Tukey-Anscombe plot (is the variance of the errors Ei constant? Is the regression function correct?)
- 2. Q-Q plot (are the errors Ei normally distributed?)
- 3. Scale location plot (similar to Tukey-Anscombe plot)
- 4. Leverage plot (what points have a strong influence on the fit?)

Residual plots by hand:

```
par(mfrow = c(1,2))
plot(fit$fitted,fit$resid)
#Tukey-Anscombe
```


Figure 6: Some bad Tukey-Anscombe plots

Multiple Linear Regression

Expand the simple linear model to more than one explanatory variable.

$$Y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + E_i \qquad with \ E_i^{i,i,d} \sim \mathcal{N}(0, \sigma^2)$$

Figure 7: The Multiple Linear Regression Model

```
# Fit the model with lm
fitm <- lm(height ~ ph + l.sar, data = d.basisch)
summary(fitm)
##
## Call:
## lm(formula = height ~ ph + l.sar, data = d.basisch)
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -4.1314 -0.4911 0.0849 0.6488 2.4754
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 26.9466
                        2.7445
                                  9.818 < 2e-16 ***
## ph
              -2.7558
                           0.3603 -7.649 5.6e-12 ***
## 1.sar
               -0.2519
                         0.2255 -1.117
                                            0.266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.007 on 120 degrees of freedom
## Multiple R-squared: 0.485, Adjusted R-squared: 0.4764
## F-statistic: 56.51 on 2 and 120 DF, p-value: < 2.2e-16
# Look at the same plots as for simple linear regression
plot(fitm)
```


 MLR - Residual Analysis

It may help to plot the explanatory variables against the residuals.
plot(d.basisch\$ph, fitm\$resid)

plot(d.basisch\$1.sar, fitm\$resid)

