

LC²MOS **Quad SPST Switches**

ADG201A/ADG202A

FEATURES 44V Supply Maximum Rating ±15V Analog Signal Range Low R_{ON} (60 Ω) Low Leakage (0.5nA) **Break Before Make Switching Extended Plastic Temperature Range** $(-40^{\circ}C \text{ to } +85^{\circ}C)$ Low Power Dissipation (33mW) Available in 16-Lead DIP/SOIC and 20-Lead PLCC/LCCC Packages **Superior Second Source:** ADG201A Replaces DG201A, HI-201 ADG202A Replaces DG202

GENERAL DESCRIPTION

The ADG201A and ADG202A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC2MOS process which gives an increased signal handling capability of $\pm 15V$. These switches also feature high switching speeds and low RON.

The ADG201A and ADG202A consist of four SPST switches. They differ only in that the digital control logic is inverted. All devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. Extended Signal Range:

These switches are fabricated on an enhanced LC²MOS process, resulting in high breakdown and an increased analog signal range of ± 15 V.

2. Single Supply Operation:

For applications where the analog signal is unipolar (0V to 15V), the switches can be operated from a single +15Vsupply.

3. Low Leakage:

Leakage currents in the range of 500pA make these switches suitable for high precision circuits. The added feature of Break before Make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

ADG201A IN	ADG202A IN	SWITCH CONDITION		
0	1	ON		
1	0	OFF		

Table I. Truth Table

Telex: 924491

Cable: ANALOG NORWOODMASS

ADG201A/ADG202A — SPECIFICATIONS ($v_{DD} = +15V$, $v_{ss} = -15V$, unless otherwise specified)

	KV	ersion	BV	ersion	TV	ersion	0.	
Parameter	25°C	−40°C to +85°C	25°C	-40°C to +85°C	25°C	−55°C to +125°C	Units	Test Conditions
ANALOG SWITCH Analog Signal Range R _{ON}	± 15 60 90	±15	± 15 60 90	±15	± 15 60 90	±15	Volts Ω typ	$-10V \le V_S \le +10V$ $I_{DS} = 1.0 \text{mA}$
R_{ON} vs. $V_D(V_S)$ R_{ON} Drift R_{ON} Match	20 0.5 5		20 0.5 5		20 0.5 5	- 1.5	% typ %/°C typ % typ	Test Circuit 1 $V_S = 0V, I_{DS} = 1mA$
I _S (OFF) OFF Input Leakage	0.5 2	100	0.5 2	100	0.5 1	100	nA typ nA max	$V_D = \pm 14V$; $V_S \mp 14V$; Test Circuit 2
I _D (OFF) OFF Output Leakage	0.5 2	100	0.5	100	0.5 1	100	nA typ nA max	$V_D = \pm 14V$; $V_S = \mp 14V$; Test Circuit 2
I _D (ON) ON Channel Leakage	0.5 2	200	0.5 2	200	0.5 1	200	nA typ nA max	$V_D = \pm 14V$; Test Circuit 3
DIGITAL CONTROL V_{INH} , Input High Voltage V_{INL} , Input Low Voltage I_{INL} or I_{INH}		2.4 0.8 1		2.4 0.8 1		2.4 0.8 1	V min V max μA max	
DYNAMIC CHARACTERISTICS topen ton¹ toF¹ OFF Isolation Channel-to-Channel Crosstalk C _S (OFF) C _D (OFF) C _D (OFF) C _D , C _S (ON) C _{IN} Digital Input Capacitance Q _{INJ} Charge Injection	30 300 250 80 80 5 5 16 5 20		30 300 250 80 80 5 5 16 5		30 300 250 80 80 5 5 16 5 20		ns typ ns max ns max dB typ dB typ pF typ pF typ pF typ pF typ pC typ	Test Circuit 4 Test Circuit 4 $V_S = 10V(p-p); f = 100kHz$ $R_L = 75\Omega;$ Test Circuit 6 Test Circuit 7 $R_S = 0\Omega; C_L = 1000pF; V_S = 0V$
POWER SUPPLY I _{DD} I _{DD} I _{SS} I _{SS} Power Dissipation	0.6	2 0.2 33	0.6 0.1	2 0.2 33	0.6	2 0.2 33	mA typ mA max mA typ mA max mW max	Test Circuit 5 Digital Inputs = V_{INL} or V_{INH}

NOTES

ABSOLUTE MAXIMUM RATINGS*

 $(T_A = +25^{\circ}C \text{ unless otherwise stated})$

$\begin{array}{ccccc} V_{DD} \text{ to } V_{SS} & 44V \\ V_{DD} \text{ to } GND & 25V \\ V_{SS} \text{ to } GND & -25V \\ \text{Analog Inputs}^1 & & & & & & & \\ V\text{oltage at S, D} & & V_{SS} - 0.3V \text{ to} \\ & & & & & & & & & \\ V_{DD} + 0.3V & & & & & \\ \text{Continuous Current, S or D} & 30\text{mA} \\ \text{Pulsed Current S or D} & & & & & \\ \text{Ims Duration, 10\% Duty Cycle} & 70\text{mA} \\ \end{array}$	Power Dissipation (Any Package) 470mW Up to +75°C 470mW Derates above +75°C by 6mW/°C Operating Temperature -40°C to +85°C Industrial (B Version) -40°C to +85°C Extended (T Version) -55°C to +125°C Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering 10sec) +300°C
Digital Inputs ¹	
Voltage at IN V_{SS} – 2V to V_{DD} + 2V or 20mA. Whichever Occurs First	NOTE 1 Overvoltage at IN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

¹Sample tested at 25°C to ensure compliance.

Specifications subject to change without notice.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG201AKN	-40°C to +85°C	N-16
ADG201AKR	-40° C to $+85^{\circ}$ C	R-16A
ADG201AKP	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	P-20A
ADG201ABQ	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	Q-16
ADG201ATQ	-55°C to +125°C	Q-16
ADG201ATE	-55°C to +125°C	E-20A
ADG202AKN	-40°C to +85°C	N-16
ADG202AKR	-40°C to +85°C	R-16A
ADG202AKP	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	P-20A
ADG202ABQ	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	Q-16
ADG202ATQ	-55°C to +125°C	Q-16
ADG202ATE	-55°C to +125°C	E-20A

NOTES

¹To order MIL-STD-883, Class B processed parts, add/883B to T grade part numbers. See Analog Devices Military Products Databook (1990) for military data sheet.

²E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; R - 0.15" Small Outline IC (SOIC); P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip.

PIN CONFIGURATIONS

DIP, SOIC

LCCC

ADG201A/ADG202A FUNCTIONAL DIAGRAM

Figure 1. Typical Digital Input Cell

ADG201A/ADG202A—Typical Performance Characteristics

The switches are guaranteed functional with reduced single or dual supplies down to 4.5V.

 R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

 R_{ON} as a Function of V_D (V_S): Single Supply Voltage

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage

Switching Time vs. Supply Voltage (Dual Supply)

Switching Time vs. Supply Voltage (Single Supply)

Test Circuits — ADG201A/ADG202A

Test Circuit 1

Test Circuit 2

Test Circuit 3

Test Circuit 4

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

ADG201A/ADG202A

TERMINOLOGY		t_{ON}	Delay time between the 50% and 90% points of
$\begin{array}{c} R_{ON} \\ R_{ON} \; Match \\ I_{S} \; (OFF) \end{array}$	Ohmic resistance between terminals OUT and S Difference between the R _{ON} of any two channels Source terminal leakage current when the switch is off	t _{OFF}	the digital input and switch "ON" condition Delay time between the 50% and 90% points of the digital input and switch "OFF" condition "OFF" time measured between 50% points of
I_D (OFF)	Drain terminal leakage current when the switch is off		both switches, which are connected as a multi- plexer, when switching from one address state to another Maximum Input Voltage for a Logic Low Minimum Input Voltage for a Logic High Input current of the digital input Most positive voltage supply Most negative voltage supply Positive supply current Negative supply current
$I_{D}(ON)$	Leakage current that flows from the closed switch into the body	$\begin{array}{c} V_{\rm INL} \\ V_{\rm INH} \\ I_{\rm INL} \ (I_{\rm INH}) \\ V_{\rm DD} \\ V_{\rm SS} \\ I_{\rm DD} \\ I_{\rm SS} \end{array}$	
$V_{D}(V_{S})$	Analog voltage on terminal D, S		
C_{S} (OFF) C_{D} (OFF)	Switch input capacitance "OFF" condition Switch output capacitance "OFF" condition		
C_{IN} C_{D} , C_{S} (ON)	Digital input capacitance Input or output capacitance when the switch		
op, o ₃ (o1)	is on		

MECHANICAL INFORMATION

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Terminal Leadless Ceramic Chip Carrier (E-20A)

20-Terminal Plastic Leaded Chip Carrier (P-20A)

