2022-18599 0/2/19 HWI (a) $li(\theta) = \frac{1}{2}(Xi\theta - Yi)^2$ Let $XiT = [XiI]_{i}Xiz_{i}$. Let $XiT = [XiI]_{i}Xiz_{i}$. $=\frac{1}{2}\left(\frac{Y}{j=1}\times_{ij}\cdot\theta_{j}-Y_{i}\right)^{2}.$ $\frac{\partial}{\partial \sigma_{j}} li(\theta) = \left(\frac{1}{2} \chi_{ij} \cdot \theta_{j} - \gamma_{i} \right) \cdot \chi_{ij} = \left(\chi_{i}^{T} \theta - \gamma_{i} \right) \cdot \chi_{ij}$ (b) $S(\theta) = \frac{1}{2} |(x\theta - \xi)|^2 = \frac{1}{2} \sum_{i=1}^{N} 2k_i(\theta) = \sum_{i=1}^{N} k_i(\theta)$ $42.0 = 0 - 2f(0^{k}) = 0^{k} - 20^{k} = (1-2)0^{k}$ if 2>2, 10th (= 1(-1)-10th. By induction. |0| = |-3| + |0|. |-3| > |For VN, let t= Tlog 11-21 [00] 7. then $|OH| = |I-J|E|OO| \ge \frac{N}{|OO|} |OO| = N$, hence DE diverges #7. $\nabla f(o^k) = \chi f(\chi o^k - \chi)$ due to (Cb). -- $\theta^{k+1} = \theta^k - 2 \times T(x \theta^k - Y) = (1 - \lambda X^T X) \theta^k + 2 \times T(X \theta^k - Y)$ Say $0^{*} = (X^{T}X)^{T}X^{T}Y$. $\theta^{kH} = (I - \lambda X X) \theta^k + \lambda X^T Y - \theta^X$ $= (I - \lambda XX)(0F - 0X) + \lambda XTY - \lambda XXX0X$

 $= (I-xXX)(0^{k}-0^{x}) + xXX - xXX(xX) + xTF$ $\|0^{k+1} - 0^{x}\| = \det(I-xXX)\|0^{k} - 0^{x}\|.$ $\det(I-xXX) = T(eigen values of xXX)$ $= T((-d.\lambda_i))$ $\lambda_i : eigen value of xIX (\lambda_i > 0)$ $\lambda_i : eigen value of xIX (\lambda_i > 0)$ $\lambda_i : eigen value of xIX (\lambda_i > 0)$

 $2 \rightarrow \frac{2}{\varrho(xTX)} \geq \frac{2}{\lambda i}$, so $|-\lambda,\lambda_i| \leq |-2 = -|-1|$. Hence, $M = |\det(I - \lambda XX)| > 1$. Because $\|\theta^{k+} - \theta^{k}\| = M \|\theta^{k} - \theta^{k}\| = M^{k+} \|\theta^{0} - \theta^{k}\|$, $f = \theta^{0} + \theta^{k}$, $\|\theta^{k} - \theta^{k}\|$ diverges, which wears that θ^{k} diverges as well because θ^{k} is fixed f inite θ^{k} diverges as it diverges a.e. D

