

CLAIMS

1. A field effect transistor comprising:
a substrate comprising a source region and a
drain region;
- 5 an insulating layer arranged on the substrate;
and
a porous body which has pillar-shaped holes
arranged on the insulating layer, wherein the porous
body includes a semiconductor material.
- 10 2. A field-effect transistor, characterized by
comprising a porous film, which has pillar-shaped
pores almost perpendicular to a substrate, through an
insulating layer on a substrate, wherein the porous
film is formed by removing a pillar-shaped material
- 15 from a structure that the pillar-shaped material
constituted with including a first component
disperses in a member constituted with including a
second component which can form a eutectic with the
first component.
- 20 3. The field-effect transistor according to
claim 2, characterized in that the porous film is
composed of an insulating material or a semiconductor
material.
- 25 4. The field-effect transistor according to
claim 3, characterized in that the semiconductor
material is a material which uses silicon, germanium,
or silicon and germanium as a main component.

5. The field-effect transistor according to
claim 3, characterized in that the insulating
material is a material which uses silicon oxide as a
main component.

5 6. The field-effect transistor according to
claim 1, characterized in that average pore diameter
of the pillar-shaped pores is 20 nm or less, and mean
pore density is 1.5×10^{11} pores/cm² or more.

10 7. The field-effect transistor according to
claim 1, having on surfaces of the pillar-shaped
pores a detected material for detecting a specific
detection material.

15 8. The field-effect transistor according to
claim 7, characterized in that the detection material
is a biomaterial.

9. The field-effect transistor according to
claim 6, characterized in that the detection material
causes a change of an electric charge state by
contacting with a detected material.

20 10. A sensor using the field-effect transistor
according to claim 1.

11. A method for producing a sensor using a
field-effect transistor, characterized by including:
a step of preparing a structure comprising
25 plenty of pillar-shaped members almost perpendicular
 to a substrate, and a structural member enclosing
 these pillar-shaped members;

a step of removing the pillar-shaped members to form pillar-shaped pores in the structural member; and

5 a step of annealing a porous film made of the structural member in which the pillar-shaped pores are formed.