Математический анализ 1. Лекция 2.6 Формула конечных приращений. Частные производные и дифференциалы высших порядков.

Формула Тейлора для функций нескольких вещественных переменных

20 ноября 2023 г.

Формула конечных приращений

Частные производные высших порядков

Классы гладкости. Теорема о независимости производных высших порядков гладких функций от порядка дифференцирования

Матрица Гессе и дифференциалы высших порядков

Формула Тейлора

Напоминание. Дифференцируемость функции и ее дифференциал Пусть дана скалярная функция $f:X\to\mathbb{R}$, где $X=D(f)\subset\mathbb{R}^n$. Если она дифференцируема в точке $\mathbf{x}\in D(\mathbf{f})$, то ее приращение в этой точке имеет вид

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = df(\mathbf{h}) + \mathbf{r}(\mathbf{h})$$
 при $|\mathbf{h}| \leqslant \delta$,

с дифференциалом

$$df(\mathbf{x})(\mathbf{h}) = \frac{\partial f(\mathbf{x})}{\partial x_1} h_1 + \ldots + \frac{\partial f(\mathbf{x})}{\partial x_n} h_n = (\nabla f(\mathbf{x}), \mathbf{h})$$

и остаточным членом $\mathbf{r}(\mathbf{h}) = o(|\mathbf{h}|)$ при $\mathbf{h} \to \mathbf{0}$. Переменные h_1, h_2, \ldots, h_n часто обозначаются через dx_1, dx_2, \ldots, dx_n . В этих обозначениях имеем

$$df(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_1} dx_1 + \ldots + \frac{\partial f(\mathbf{x})}{\partial x_n} dx_n.$$

Дифференциальный анализ функций нескольких вещественных переменных часто проводится на языке дифференциалов.

Для дифференциалов скалярных функций верны следующие формулы (их вид одинаков для скалярных функций одной и нескольких переменных):

- $1. \ d(u+v) = du + dv,$
- $2. \ d(uv) = vdu + udv,$
- 3. $d\frac{u}{v} = \frac{vdu udv}{v^2}$ при $v \neq 0$.

Пример

$$d(x\sin(xy)) = \sin(xy)dx + xd\sin(xy)$$

= \sin(xy)dx + x\cos(xy)(ydx + xdy)
= (\sin(xy) + xy\cos(xy))dx + x^2\cos(xy)dy

(дополнительные аргументы обозначены не через h_1 и h_2 , а через dx и dy, как это часто делается).

Формула конечных приращений для скалярных функций нескольких вещественных переменных

Областью называется открытое связное множество в \mathbb{R}^n .

Теорема (обобщенная формула Лагранжа)

Пусть скалярная функция f дифференцируема в каждой точке выпуклой области $D \subset \mathbb{R}^n$. Тогда для любых точек

 $\mathbf{x}=(x_1,\dots,x_n), \mathbf{a}=(a_1,\dots,a_n)\in D$ существует число $\theta=\theta(\mathbf{x},\mathbf{a})\in(0,1)$ такое, что

$$f(\mathbf{x}) - f(\mathbf{a}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a}))(x_i - a_i).$$

Вспомним, что множество $\{{\bf a}+t({\bf x}-{\bf a}),\, 0\leqslant t\leqslant 1\}$ – это отрезок, соединяющий точки ${\bf a}$ и ${\bf x}.$

При n=1 получаем формулу Лагранжа (при несколько огрубленных условиях)

$$f(x) - f(a) = f'(\xi)(x - a), \quad \xi = a + \theta(x - a).$$

Следствие. Если функция f дифференцируема в каждой точке области D и $\frac{\partial f}{\partial x_i}(\mathbf{x})\equiv 0$ в $D,\,i=1,\ldots,n$, то функция $f(\mathbf{x})\equiv \mathrm{const}$ в D. Выпуклость D здесь уже не нужна.

Доказательство. Фиксируем $\mathbf{x}, \mathbf{a} \in D$ и рассмотрим функцию одной переменной $\varphi(t) = f(\mathbf{a} + t(\mathbf{x} - \mathbf{a}))$. Она определена и дифференцируема (как композиция дифференцируемых функций) при $t \in [0,1]$. По (одномерной) теореме Лагранжа имеем:

$$\varphi(1) - \varphi(0) = \varphi'(\theta) \tag{a}$$

для некоторого $\theta \in (0,1)$. Здесь

$$\varphi(0) = f(\mathbf{a}), \quad \varphi(1) = f(\mathbf{x}).$$
 (b)

Используя формулу дифференцирования композиции функций, имеем

$$\varphi'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{a} + t(\mathbf{x} - \mathbf{a})) \frac{d}{dt} (a_i + t(x_i - a_i)) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{a} + t(\mathbf{x} - \mathbf{a})) (x_i - a_i).$$
(c)

Формула конечных приращений немедленно следует из (a), (b) и (c).

Частные производные высших порядков.

Пусть функция $f:X \to \mathbb{R}$, где $X=D(f)\subset \mathbb{R}^n$, имеет частную производную $g_i(\mathbf{x})=\dfrac{\partial f(\mathbf{x})}{\partial x_i}$ в некоторой окрестности точки а при некотором $1\leqslant i\leqslant n$. Тогда можно поставить вопрос о существовании частных производных 2-го порядка

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}) = \frac{\partial g_i}{\partial x_j}(\mathbf{a}) = \frac{\partial}{\partial x_j} \left(\frac{\partial f(\mathbf{x})}{\partial x_i} \right) \Big|_{\mathbf{x} = \mathbf{a}}$$

при $1 \leqslant j \leqslant n$.

Обозначения для вторых частных производных в точке \mathbf{x} : $\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})$,

 $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$, $f_{x_i x_j}^{\prime\prime}(\mathbf{x})$, а также $\frac{\partial^2 f(\mathbf{x})}{\partial x_i^2}$ вместо $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_i}$. 2-е производные по переменным $x_i \neq x_j$ называются *смешанными*.

Пример. 2-е производные функции $f(x,y) = x^y$, x > 0.

Более общее определение. Пусть дана функция $f:X \to \mathbb{R}$, где $X=D(f)\subset \mathbb{R}^n$, и упорядоченный набор (не обязательно различных) переменных x_{i_1},\dots,x_{i_k} из множества $\{x_1,\dots,x_n\}$, где $k\geqslant 2$. Частная производная k-го порядка функции f в точке $\mathbf{x}\in X$ по этому набору переменных определяется рекуррентно

$$\frac{\partial^k f(\mathbf{x})}{\partial x_{i_1} \dots \partial x_{i_k}} = \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f(\mathbf{x})}{\partial x_{i_1} \dots \partial x_{i_{k-1}}} \right).$$

Пример

Пусть $f(x, y, z) = xy^2z^3$. Тогда

$$\begin{split} f'_x &= y^2 z^3, \qquad f'_y = 2xyz^3, \qquad f'_z = 3xy^2 z^2, \Rightarrow \\ f''_{xx} &= 0, \qquad f''_{xy} = 2yz^3, \qquad f''_{xz} = 3y^2 z^2, \\ f''_{yx} &= 2yz^3, \qquad f''_{yy} = 2xz^3, \qquad f''_{yz} = 6xyz^2, \\ f''_{zx} &= 3y^2 z^2, \qquad f''_{zy} = 6xyz^2, \qquad f''_{zz} = 6xy^2 z. \end{split}$$

Если существуют все частные производные до некоторого порядка k скалярной функции f от n вещественных переменных в точке $\mathbf{x} \in D(f)$, то

- ightharpoonup первых производных n,
- ightharpoonup вторых производных n^2 , . . .,
- ightharpoonup k-х производных n^k .

При этом некоторые из частных производных могут совпадать.

В примере $f_{xy}^{\prime\prime}=f_{yx}^{\prime\prime},\,f_{xz}^{\prime\prime}=f_{zx}^{\prime\prime}$ и $f_{yz}^{\prime\prime}=f_{zy}^{\prime\prime}.$ Случайно это или нет?

Классы гладкости

Определение

Пусть D – область в \mathbb{R}^n .

Класс $C^0(D)$ состоит из всех скалярных функций, непрерывных в D, т.е. в каждой точке области D.

Класс $C^k(D),\ k\geqslant 1$ состоит из всех скалярных функций, определенных и имеющих любые непрерывные частные производные до порядка k включительно в D, т.е. в каждой точке D.

При этом

$$\ldots \subset C^3(D) \subset C^2(D) \subset C^1(D) \subset C^0(D).$$

Все включения собственные, т.е. отличны от =.

Класс $C^k(D)$ с обычными операциями сложения функций и умножения их на вещественное число становится **линейным пространством**, причем **бесконечномерным** (т.е. не являющимся конечномерным) (почему?).

Утверждение

Если элементарная функция f (от n вещественных переменных) имеет все частные производные всех порядков до k включительно в каждой точке некоторой области D, то $f \in C^k(D)$.

Теорема (о независимости производных высших порядков гладких функций от порядка дифференцирования)

Пусть D – область в \mathbb{R}^n , f – функция из класса $C^s(D)$, $s\geqslant 2$, а x_{i_1},\dots,x_{i_k} – упорядоченный набор переменных из множества $\{x_1,\dots,x_n\}$, $2\leqslant k\leqslant s$, Пусть x_{j_1},\dots,x_{j_k} – любой упорядоченный набор переменных, полученный из x_{i_1},\dots,x_{i_k} с помощью некоторой их перестановки. Тогда

$$\frac{\partial^k f(\mathbf{x})}{\partial x_{j_1} \dots \partial x_{j_k}} = \frac{\partial^k f(\mathbf{x})}{\partial x_{i_1} \dots \partial x_{i_k}}.$$

Здесь среди переменных x_{i_1},\dots,x_{i_k} могут быть и одинаковые, и при k>n это заведомо так.

В частности, при k=2 имеем

$$rac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = rac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i}$$
 при любых i,j от $1,\ldots,n.$

В том числе при n=2 и k=2 это сводится к одному равенству

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}.$$

Замечание. Количество различных частных производных k-го порядка скалярной функции $f \in C^k(D)$ от n вещественных переменных в точке $\mathbf{x} \in D$ не превосходит числа целых неотрицательных решений уравнения

$$k_1+\ldots+k_n=k,$$

где $k_1\geqslant 0,\dots,k_n\geqslant 0$ — это количества дифференцирований по переменным x_1,\dots,x_n при взятии частной производной k-го порядка.

Из комбинаторных соображений следует, что это число равно

$$C_{k+n-1}^{k} = \frac{(k+n-1)!}{k!(n-1)!}$$

Например, скалярная функция $f \in C^3(D)$ трех вещественных переменных x,y,z имеет не более

$$C_5^3 = \frac{5!}{3!2!} = \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} = 10$$

различных частных производных 3-го порядка из общего их количества 27.

Матрица Гессе

Пусть скалярная функция f имеет все частные производные 2-го порядка в точке $\mathbf{x}=(x_1,\dots,x_n)\in D(f)\subset\mathbb{R}^n.$ Из них можно составить квадратную матрицу n-го порядка

$$H_f(\mathbf{x}) = \begin{pmatrix} f''_{x_1x_1}(\mathbf{x}) & f''_{x_1x_2}(\mathbf{x}) & \dots & f''_{x_1x_n}(\mathbf{x}) \\ f''_{x_2x_1}(\mathbf{x}) & f''_{x_2x_2}(\mathbf{x}) & \dots & f''_{x_2x_n}(\mathbf{x}) \\ \dots & \dots & \dots & \dots \\ f''_{x_nx_1}(\mathbf{x}) & f''_{x_nx_2}(\mathbf{x}) & \dots & f''_{x_nx_n}(\mathbf{x}) \end{pmatrix} = \{f''_{x_ix_j}(\mathbf{x})\}_{1 \leqslant i \leqslant n, \ 1 \leqslant j \leqslant n},$$

часто называемую матрицей Гессе функции f в точке ${f x}.$

Замечание

Из последней теоремы следует, что если функция f принадлежит классу $C^2(D)$ в некоторой окрестности D точки ${\bf x}$, то ее матрица Гессе в этой точке **симметрична**:

$$H_f^T=H_f$$
, т.к. $f_{x_ix_j}''(\mathbf{x})=f_{x_jx_i}''(\mathbf{x})$ при всех $1\leqslant i\leqslant n,\, 1\leqslant j\leqslant n.$

Пример. Выше найдены все частные производные 2-го порядка функции $f(x,y,z)=xy^2z^3.$ Ее матрицы Гессе в любой точке (x,y,z) и конкретной точке (1,1,1) таковы

$$H_f(x,y,z) = \left(\begin{array}{ccc} 0 & 2yz^3 & 3y^2z^2 \\ 2yz^3 & 2xz^3 & 6xyz^2 \\ 3y^2z^2 & 6xyz^2 & 6xy^2z \end{array} \right) \, \Rightarrow \, H_f(1,1,1) = \left(\begin{array}{ccc} 0 & 2 & 3 \\ 2 & 2 & 6 \\ 3 & 6 & 6 \end{array} \right).$$

Дифференциалы высших порядков

Определение. Для скалярной функции $f\in C^k(D)$ от n вещественных переменных дифференциалом k-го порядка функции f в точке $\mathbf{x}=(x_1,\dots,x_n)\in D$ называется величина

$$d^k f(\mathbf{x})(\mathbf{h}) = \sum_{i_1=1}^n \dots \sum_{i_k=1}^n \frac{\partial^k f(x_1, \dots, x_n)}{\partial x_{i_1} \dots \partial x_{i_k}} h_{i_1} \dots h_{i_k},$$

где $\mathbf{h}=(h_1,\dots,h_n)$ – вектор дополнительных аргументов (которые также часто обозначаются через dx_1,\dots,dx_n). Аргументы \mathbf{x} и/или \mathbf{h} для краткости могут быть опущены. Ранее рассмотрен случай k=1.

В частности, дифференциал 2-го порядка функции $f \in C^2(D)$ в точке $\mathbf{x} = (x_1, \dots, x_n) \in D$ – это квадратичная форма

$$d^{2}f(\mathbf{h}) = (H_{f}(\mathbf{x})\mathbf{h}, \mathbf{h}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} h_{i} h_{j}$$

с симметричной матрицей Гессе $H_f(\mathbf{x})$. Ее можно записать также в виде

$$d^2 f(\mathbf{x})(\mathbf{h}) = \mathbf{h}^T H_f \mathbf{h}, \quad \mathbf{h} = \begin{pmatrix} h_1 \\ \dots \\ h_n \end{pmatrix}.$$

В развернутом виде **дифференциал 2-го порядка функции** $f \in C^2(D)$ **двух переменных** имеет вид

$$d^2f(x,y)(dx,dy) = \frac{\partial^2f(x,y)}{\partial x^2}(dx)^2 + 2\frac{\partial^2f(x,y)}{\partial x\partial y}dxdy + \frac{\partial^2f(x,y)}{\partial y^2}(dy)^2.$$

Роль дифференциалов k-го порядка функций из класса $C^k(D)$ раскрывает формула Тейлора для функций нескольких вещественных переменных (см. далее).

Дифференциал k-го порядка $d^k f(\mathbf{x})(\mathbf{h})$ — многочлен k-го порядка по совокупности переменных h_1,\dots,h_n (исключая вырожденный случай, когда все частные производные k-го порядка в точке \mathbf{x} обращаются в 0). Его коэффициентами служат всевозможные частные производные k-го порядка функции f в точке \mathbf{x} .

Для функций f, которые не принадлежат классу гладкости $C^k(D)$, дифференциалы k-го порядка в точках $\mathbf{x} \in D$ обычно не определяются, даже если все частные производные k-го порядка функции f определены в точке \mathbf{x} .

Пример. Найдем дифференциал 2-го порядка функции $f(x,y,z)=xy^2z^3$ в точке (1,1,1). Ранее была найдена матрица Гессе функции f в точке (1,1,1):

$$H_f(1,1,1) = \left(\begin{array}{ccc} 0 & 2 & 3\\ 2 & 2 & 6\\ 3 & 6 & 6 \end{array}\right).$$

Значит, искомый дифференциал равен

$$(H_f(1, 1, 1)\mathbf{h}, \mathbf{h}) =$$
= $2(dy)^2 + 6(dz)^2 + 4dx \, dy + 6dx \, dz + 12dy \, dz$, $\mathbf{h} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$.

Дифференциал 3-го порядка функции $f(x,y,z)\in C^3(D)$ есть, вообще говоря, сумма из 27 слагаемых, которая упрощается до суммы из 10 слагаемых. У нас дифференциалы порядка три и выше будут возникать редко. Если все-таки возникает необходимость записать дифференциал высокого порядка, то лучше начинать с предварительных рассуждений.

Пример. Найдем дифференциал 3-го порядка функции $f(x,y,z)=x^4+yz^2+5xyz$ в точке (1,1,1). Легко заметить, что все частные производные 3-го порядка $f_{uvw}^{\prime\prime\prime}$ функции-многочлена f тождественно равны нулю, кроме следующих случаев:

- 1. u=v=w=x. Это несмешанная частная производная 3-го порядка $f_{xxx}^{\prime\prime\prime}=24x$.
- 2. Среди переменных u,v,w переменная y встречается один раз, а переменная z встречается два раза. Таких смешанных частных производных 3-го порядка всего три, они совпадают: $f_{yzz}^{\prime\prime\prime}=f_{zyz}^{\prime\prime\prime}=f_{zzy}^{\prime\prime\prime}$ и в данном случае тождественно равны 2.
- 3. Все переменные u,v,w различны. Таких частных производных 3-го порядка всего шесть (почему?), все они совпадают и в данном случае тождественно равны 5.

Следовательно, искомый дифференциал 3-го порядка таков

$$d^{3} f(x, y, z)(dx, dy, dz) = 24(dx)^{3} + 3 \cdot 2 \cdot dy (dz)^{2} + 6 \cdot 5 \cdot dx dy dz =$$

$$= 24(dx)^{3} + 6dy (dz)^{2} + 30dx dy dz.$$

Замечание

Дифференциалы высшего порядка иногда удобно вычислять, используя следующее рекуррентное правило:

$$d^k f(\mathbf{x}) = d\left(d^{k-1} f(\mathbf{x})\right).$$

Здесь при вычислении дифференциала от $d^{k-1}f(\mathbf{x})$ мы рассматриваем $d^{k-1}f(\mathbf{x})$ как функцию исходных переменных x_1,\dots,x_n функции f, а аргументы h_1,\dots,h_n выступают в качестве параметров. Например:

$$d^{2}f(x,y) = d(df(x,y)) = d\left(\frac{\partial f}{\partial x}(x,y)h_{1} + \frac{\partial f}{\partial y}(x,y)h_{2}\right) =$$

$$= d\left(\frac{\partial f}{\partial x}(x,y)h_{1}\right) + d\left(\frac{\partial f}{\partial y}(x,y)h_{2}\right) = d\left(\frac{\partial f}{\partial x}(x,y)\right)h_{1} + d\left(\frac{\partial f}{\partial y}(x,y)\right)h_{2} =$$

$$= \left(\frac{\partial^{2} f}{\partial x^{2}}(x,y)h_{1} + \frac{\partial^{2} f}{\partial x \partial y}(x,y)h_{2}\right)h_{1} + \left(\frac{\partial^{2} f}{\partial y \partial x}(x,y)h_{1} + \frac{\partial^{2} f}{\partial y^{2}}(x,y)h_{2}\right)h_{2} =$$

$$= \frac{\partial^{2} f}{\partial x^{2}}(x,y)h_{1}^{2} + 2\frac{\partial^{2} f}{\partial x^{2}}(x,y)h_{1}h_{2} + \frac{\partial^{2} f}{\partial x^{2}}(x,y)h_{2}^{2};$$

Формула Тейлора для функции многих переменных

Теорема

Пусть D – область в \mathbb{R}^n , $f\in C^k(D)$ и отрезок $\mathbf{x}+t\mathbf{h}$, где $0\leqslant t\leqslant 1$, лежит в D. Тогда верны:

1. формула Тейлора с остаточным членом в форме Пеано

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + df(\mathbf{x})(\mathbf{h}) + \frac{1}{2!}d^2f(\mathbf{x})(\mathbf{h}) + \dots + \frac{1}{k!}d^kf(\mathbf{x})(\mathbf{h}) + o(|\mathbf{h}|^k),$$

2. формула Тейлора с остаточным членом в форме Лагранжа

$$f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + df(\mathbf{x})(\mathbf{h}) + \frac{1}{2!}d^2f(\mathbf{x})(\mathbf{h}) + \ldots + \frac{1}{(k-1)!}d^{k-1}f(\mathbf{x})(\mathbf{h}) +$$
$$+r_k(\mathbf{x},\mathbf{h}), \text{ rge } r_k(\mathbf{x},\mathbf{h}) = \frac{1}{k!}d^kf(\mathbf{x}+\theta\mathbf{h})(\mathbf{h}), \text{ a } \theta = \theta(\mathbf{x},\mathbf{h}) \in (0,1) \ .$$

С ростом k функция f всё точнее приближается **многочленом Тейлора нескольких переменных** степени не выше k.

Развернутая запись при n=2, k=2. Пусть D – область в \mathbb{R}^2 , $f\in C^2(D)$ и все точки $(x+th_1,y+\theta h_2)$, где $0\leqslant t\leqslant 1$, лежат в D. Тогда, во-первых,

$$f(x+h_1,y+h_2) =$$

$$= f(x,y) +$$

$$+\frac{\partial f}{\partial x}(x,y)h_1+\frac{\partial f}{\partial y}(x,y)h_2+$$

$$+o(h_1^2+h_2^2).$$

Линейная по h_1,h_2 часть приращения

$$+\frac{1}{2!}\left(\frac{\partial^2 f}{\partial x^2}(x,y)h_1^2 + 2\frac{\partial^2 f}{\partial x \partial y}(x,y)h_1h_2 + \frac{\partial^2 f}{\partial y^2}(x,y)h_2^2\right) +$$

Значение функции

в точке (x,y)

Квадратичная

по h_1, h_2 часть приращения

или, в другой форме записи,

$$f(x + h_1, y + h_2) =$$

$$= f(x, y) + \nabla f(x, y) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \cdot H_f(x, y) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + o(h_1^2 + h_2^2).$$

Во-вторых,

$$f(x+h_1,y+h_2) =$$

$$= f(x,y) +$$

$$+\frac{\partial f}{\partial x}(x,y)h_1 + \frac{\partial f}{\partial y}(x,y)h_2 +$$

$$+\frac{1}{2!} \left(\frac{\partial^2 f}{\partial x^2} (x + \theta h_1, y + \theta h_2) h_1^2 + \right.$$

$$+2 \frac{\partial^2 f}{\partial x \partial y} (x + \theta h_1, y + \theta h_2) h_1 h_2 +$$

$$+\frac{\partial^2 f}{\partial u^2}(x+\theta h_1,y+\theta h_2)h_2^2$$
,

или, в другой форме записи,

$$f(x+h_1,y+h_2) =$$

$$= f(x,y) + \nabla f(x,y) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \cdot H_f(x+\theta h_1, y+\theta h_2) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix},$$

где
$$\theta \in (0,1)$$
.

Значение функции в точке (x,y)

Линейная по h_1, h_2 часть приращения

Остаточный квадратичный по h_1,h_2 член в форме Лагранжа

Пример. Выпишем формулы Тейлора для функции $f(x,y) = \frac{2x}{x+y}$ в точке (1,1):

- (а) 2-го порядка с остаточным членом в форме Пеано,
- (6) 1-го порядка с остаточным членом в форме Лагранжа.

$$f(1,1) = 1$$

$$\frac{\partial f}{\partial x} = \frac{2y}{(x+y)^2} \quad \Rightarrow \quad \frac{\partial f}{\partial x}(1,1) = \frac{1}{2}$$

$$\frac{\partial f}{\partial y} = -\frac{2x}{(x+y)^2} \quad \Rightarrow \quad \frac{\partial f}{\partial y}(1,1) = -\frac{1}{2}$$

$$\frac{\partial^2 f}{\partial x^2} = -\frac{4y}{(x+y)^3} \quad \Rightarrow \quad \frac{\partial^2 f}{\partial x^2}(1,1) = -\frac{1}{2}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{2(x-y)}{(x+y)^3} \quad \Rightarrow \quad \frac{\partial^2 f}{\partial x \partial y}(1,1) = \frac{\partial^2 f}{\partial y \partial x}(1,1) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{4x}{(x+y)^3} \quad \Rightarrow \quad \frac{\partial^2 f}{\partial y^2}(1,1) = \frac{1}{2}$$

▶ Многочлен Тейлора 2-го порядка функции f в точке (1,1) с остаточным членом в форме Пеано:

$$f(1+h_1, 1+h_2) = 1 + \frac{1}{2}h_1 - \frac{1}{2}h_2 + \frac{1}{2}\left(-\frac{1}{2}h_1^2 + \frac{1}{2}h_2^2\right) + o(h_1^2 + h_2^2).$$

• Формула Тейлора 1-го порядка функции f в точке (1,1) с остаточным членом в форме Лагранжа:

$$f(1+h_1, 1+h_2) = 1 + \frac{1}{2}h_1 - \frac{1}{2}h_2 + \frac{1}{2}\left(-\frac{4(1+\theta h_2)}{(2+\theta(h_1+h_2))^3}h_1^2 + 2 \cdot \frac{2\theta(h_1-h_2)}{(2+\theta(h_1+h_2))^3}h_1h_2 + \frac{4(1+\theta h_1)}{(2+\theta(h_1+h_2))^3}h_2^2\right),$$

где $\theta \in (0,1)$.

Конечно, эти формы записи можно несколько упростить засчет вынесения общих множителей.