CAPSTONE PROJECT POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:
Annapurna Kolla
Avanthi Degree and PG College
Master of Computer Applications(MCA)

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Challenge: Power distribution systems are vulnerable to various electrical faults.

- Faults include: Line-to-Ground (LG), Line-to-Line (LL), Line-to-Line-to-Ground (LLG), and Three-Phase (LLL).
- These events lead to equipment damage, power outages, and grid instability.
 Objective: Design a machine learning model to enable rapid and accurate fault identification.
- Goal: Distinguish between normal operating conditions and different fault types.
- Input Data: Real-time electrical measurements (voltage and current phasors).

PROPOSED SOLUTION

- The proposed system aims to predict that enable rapid and accurate fault identification from the data which is given by real -time data sources.
- Data Collection:
 - Gather Real time electrical data from sensors streams into the cloud.
 - Utilize the dataset from kaggle.
- Data Preprocessing:
 - Clean and preprocess the collected data to handle missing values, outliers, and inconsistencies.
 - Feature engineering to extract relevant features from the data that might impact fault demand.
- Machine Learning Algorithm:
 - Implement a machine learning algorithm, such as snap logistic regression and random forest classifier.
 - Consider incorporating other factors like current(A), power load, weather conditions special events to improve prediction accuracy.
- Deployment:
 - Develop a user-friendly interface or application that provides real-time predictions for enable rapid and accurate fault identification.
 - Deploy the solution on a scalable and reliable platform, considering factors like voltage, current, temperature to improve prediction accuracy.
- Evaluation:
 - Assess the model's performance using appropriate real time electrical data and provides accurate result.
 - Fine-tune the model based on feedback and continuous monitoring of prediction accuracy.

SYSTEM APPROACH

Model Building:

- Using Ibm cloud application to build the project.
- In Ibm cloud using watsonx.ai studio resource to build an auto ai and machine learning algorithm.
- In watsonx.ai studio we can build and deploy machine learning models as platform.
- Work with foundation models on watsonx as a service.
- Create a new project after associate runtime service.

SYSTEM APPROACH

Model Training:

- Train chosen model on the preprocessed dataset.
- I also used the scalable compute resources of watsonx.ai to handle large datasets efficiently.
- I use dataset from kaggle.
- It provides appropriate and clean data like which are required voltage, current, weather, etc
- From received data we can predict the result.

SYSTEM APPROACH

Model Evalution:

- Create deployment space for the model.
- Start the experiment with click on run experiment.
- After this we can promote deployment space and predict fault identification.
- After completion of experiment we can see decision tree of Random forest model.

ALGORITHM & DEPLOYMENT

In this it taken random forest classifier algorithm to classification the fault types.

Algorithm Selection:

- We using watsonx ai for model evalution its auto ai select machine learning nodel algorithm for classification.
- After the algorithm it ganerates 9 pipelines.

Data Input:

- The algorithm used such as Current, weather conditions, voltage of electric device, and some relevant factors which is from provided dataset.
- After all of data we can conclude one higher pipeline for deployment space.

Training Process:

- From this deployment we can promote space for prediction.
- In deployment we can read the data types of provided data. In promote space sector we provide details of data.
- After we can predict the fault type.

Prediction Process:

- In this process we can input required data then after all inputing then we can predict the result.
- In this project we can only predict its not a accurate result.
- Auto ai only provide only predictions.

RESULT

CONCLUSION

Summary:

- Our Al-powered fault detection model on IBM Cloud provides a robust, scalable, and intelligent solution for grid management.
- We move beyond traditional methods to a future of proactive, Al-driven grid resilience.
- Future work could focus on deploying this model in real-time environments and exploring more advanced deep learning architectures to improve its performance and adaptability further.
- Call to Action:
- Let's partner to pilot this solution on your network.
- Build a smarter, more reliable grid for a sustainable future.
- The high accuracy and low false-positive rate achieved by our model confirm that machine learning is a viable and potent solution for enhancing network security in an increasingly complex threat landscape.

FUTURE SCOPE

- Time-Series Analysis: Develop and train Recurrent Neural Networks (RNNs) or Transformers using TensorFlow or PyTorch on IBM Cloud's GPU-accelerated infrastructure. These models can analyze the sequence of phasor data to detect subtle, pre-fault anomalies and predict fault type with greater accuracy.
- Transfer Learning: Use pre-trained deep learning models and fine-tune them on your specific grid data, accelerating the development process.
- Data Ingestion: Use IBM Event Streams (Apache Kafka) to ingest high-velocity data from PMUs and other IoT sensors. This creates a robust, scalable data backbone.
- Stream Processing: Process the incoming data in real-time using services like IBM Streams or custom code in IBM Cloud Functions. This allows for immediate feature extraction and model inference.

REFERENCES

- Power System Faults Dataset
- This is the only resource that I used during this project. In this website they provide me two data, one for trained my ML project, and another for the evaluation of the prediction.

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Annapurna Kolla

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

