Point processes (1)

1. A bit of statistics with Poisson processes

We are observing two independent spike trains on the same interval [0, T] and we want to test if their firing rate is the same (again ...). We will assume here that we have two independent Poisson processes N^a and N^b with rate $\lambda_a(.)$ and $\lambda_b(.)$, not necessarily constant.

- (a) What is the distribution of N_T^a and N_T^b , respectively number of points of N^a and N^b in [0,T]? Are these variables independent?
- (b) Compute $\mathbb{P}(N_T^a = k \text{ and } N_T^b = \ell)$ for all k and ℓ .
- (c) Let $N_T = N_T^a + N_T^b$. Compute $\mathbb{P}(N_T = n)$ for all n. Can you give the name and the parameters of this distribution?
- (d) Compute $\mathbb{P}(N_T^a = k | N_T = n)$. You can first see that k has to be less than n and that in this case $N_T^b = n k$. Can you give the name and the parameters of this conditional distribution?
- (e) Under the null hypothesis that $\lambda_a(.) = \lambda_b(.)$, realise that the previous distribution is known and derive from it a test of $H_0: \lambda_a(.) = \lambda_b(.)$ versus $H_1: \lambda_a(.) \geq \lambda_b(.)$.
- (f) Apply it on the data of the STAR package for two different neurons. NB: if $N^1, ..., N^n$ are iid Poisson processes with intensity $\lambda(.)$ then $N = N^1 \cup ... \cup N^n$ is a Poisson process with rate $n\lambda(.)$. You can use that to "glue" all the trials together.

2. Simulation

- (a) Simulate by thinning a Poisson process with intensity $t \to h(t) = (1 t^2)$ when $t \in [0, 1]$ and 0 elsewhere.
- (b) How many points should produce such a process in average? Verify it on your computer.
- (c) Simulate parents T_p according to a Poisson process of rate M. Then for each parent, simulate their children that have appeared after them according to a Poisson process with intenisty $h(t-T_p)$.
- (d) Interpret this process as a particular case of Multivariate Hawkes process with 2 processes, for which you will give spontaneous parameters and intercation functions. Find another way to simulate this by successive thinning.
 - NB: these algorithms are complex, try first to write it down on a sheet of paper before implementing them