		Proj	ect Information	n			
1. Student Name	Maximilian	Maximilian Meier				3726174	
2. Student Name	Simon Naß	Simon Naß				3460883	
3. Student Name	Yonatan M	Yonatan Mamo				3702473	
4. Student Name							
Group ID	02	02					
	<u> </u>						
Project Title		·	d Managing Ecos	system			
Domain	Domain O Autonomous vehicle						
Туре	Specify the type of the non-residential building (e.g., warehouse, offices) or the type of the autonomous ground vehicle (e.g., delivery van, taxi). Hotel					the type of the	
		Specify what monitoring aspects your system includes.					
	Monitoring	temperature, light, room occupancy, room noise level etc.					
Project	Specify what automation aspects ye				our system includes.		
Description	Auotmation	AC (heating/cooling), blinds, lights, window / ventilation, audio adjustment.					
	Objective	Assist guests by adapting to their activities. Plan efficient cleaning route.					
Give a link to code repository (e.g., GitHub, Bitbucket, etc.). See slide 56 in slides set "01 Overview and logistics".						lides set "01 Overview	
Code Repository Link	https://github.com/SimonNass/SCIoT_G02_2025.git						

System Design						
√		Components		Functionality		
		IoT	,	Collection of data and execution of planned actions		
	7	Context		Ai planing finds activities of guests		
		Problem generation		PDDL problem with newest IoT state		
	7	Planning		plan actuator changes and cleaning order		
System		Execution		mapping actions to actuator change requests		
components		Broker		communication between gateway and backend		
	✓ Knowledge bas			saving curent IoT and system state		
	H	Other. Specify what other logical components your		gical components your system has.		

System Architecture Diagram

Include a clear diagram of your system architecture Ensure the diagram is a logical design and is not dependent on deployment and/or implementation.

	System Distribution	
Number of Machines and Components Distribution	Specify the type of each machine (e.g., PC, cloud, or Raspberry Pi). Type PC (acting as server), Raspberry Pi (acting as gateway for IoT devices) Specify what logical components are deployed on each machine. Components PC: server, broker, frontend, Al planing Raspberry Pi: gateway, sensors, actuators	

IoT									
	Sensor (e.g.,		Dhysical	Software-	Human-	Simulated	Virtual		
Sensors	temperature)		Physical	based	based	Simulated	virtuai		
	RFID		•	0	0	0	0		
	temperature, humidit		0	0	0	0	0		
	light sensor		<u> </u>	0	0		0		
36113013	sound	J	•	0	0				
	Other. Specify the remaining sensors and their types (if more than 4 sensors)								
	motion sensor, physical, simulated								
	pressure sensor								
		1		6.6	11				
	Actuator		Physical	Software-	Human-	Simulated	Virtual		
		_		based	based	Simulated	Virtual		
	light	-	0			Simulated	Virtual		
	light motor	-				8	Virtual		
Actuators	light motor air conditioning AC		0			Simulated	Virtual		
Actuators	light motor air conditioning AC heating	inina	0	based O	based	0 0 0 XO	Virtual O		
Actuators	light motor air conditioning AC	ining	0	based O	based	0 0 0 XO	Virtual O O		
Actuators	light motor air conditioning AC heating	ining	0	based O	based	0 0 0 XO	Virtual O		
Actuators	light motor air conditioning AC heating	ining	0	based O	based	0 0 0 XO	Virtual O O O		

		System Integrat	ion			
Mechanism	√	Publish-subscribe Message queue One-to-one				
Messaging Middleware		JMS ZeroMQ Apache Kafka RabbitMQ Redis IBM WebSphereMQ Apache Qpid Other: Mosquitto	Protocol	MQTT DSS XMPP AMQP Other: REST APIs		
Mechanism		Explain briefly which components of your sy The gateway and backend use indirect and actuator data.				
	T	Visualisation				
	<u>√</u>	Latest plan generated Current state. Briefly specify what exactly:				
What is displayed		List of latest IoT values and room occupancy and other metadata User control. Briefly explain:				
		Other. Briefly explain:				

L

	AI Planning					
AI Planning Technique	Classical planning HTN planning Other:					
	Specify the name and link to the Al planner used in your project:					
	https://github.com/Al-Planning/planning-as-a-service (dual-bfws-ffparser)					
AI Planner	Explain briefly why the chosen AI planner is appropriate for your project:					
	It was possible to make it run locally within our docker enviornment.					
	Explain briefly the main components of your domain model:					
Domain Model	 potential actuator influences on sensor actions actions to detect and check fulfillment of activities save energy actions cleaning team room topology movement algorithm 					
	l Explain briefly what constitues an initial state in your problem instances:					
	Initial State room topology, occupied rooms, IoT state, actuator to IoT map Explain briefly what constitutes a goal in your problem instances:					
	clean with min movement, rooms save energy or fulfill activity					
Problem Instance	Problem instances are generated Once, before system starts. Whenever a state change happens. Other. Explain briefly: after timeout or if frontend requests a new plan					