Chemistry 107: Exam 2B

The 100 pts exam consists of 8 questions and students have 2 hours to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table and formulas are provided at the end. Additional scratch paper will be provided. Fill in your name along with your student ID number.

Problem 1 : Combustion Reaction Methane is a colorless, odorless gas which is used as a fuel in most gas stoves to cook food. Per year, the US uses approximately 31.13 trillion ($\times 10^{12}$) ft³ of methane per year. Approximately 2% of that is used for cooking. Report to 4 significant figures. (14 pts)

(a)	Write the balanced chemical equation including states of the combustion reaction of methane.

(b) In the presence of excess oxygen gas, determine the amount of carbon dioxide is produced in g? Report in scientific notation and the density of methane is 19.06g/ft^3 .

(c) The combustion reaction of methane releases $810.0~\mathrm{kJ/mol}$. Is this an exothermic or endothermic reaction? How much heat is generated from cooking? Report in scientific notation.

Class Id number

Name

(d)	Gas companies add a compound which has an odor to help detect gas leaks should they arise. The compound that is added to natural gas is call t-butyl mercaptan and has the formula C_4H_9SH . Predict the products by writing out the balanced chemical equation including states.
(e)	From part (c), determine the amount of carbon dioxide in kg is produced from 1kg of t-butyl mercaptan.

Problem 2 : Nomenclature Provide either the molecular formula or compound name for the following. (12 pts)

(a)	Magnesium oxide
(b)	Carbon Monoxide
(c)	HClO_4
(d)	$Ca(HCO_3)_2$
(e)	Carbonic acid
(c)	H DO
(1)	$\mathrm{H_{3}PO_{4}}$
(g)	$(\mathrm{NH_4})_2\mathrm{Cr_2O_7}$
(8)	(11114)201207
(h)	BF_3
()	
(i)	Phosphorus pentafluoride
(j)	Sulfurous acid
(k)	Chromium(VI) oxide
(1)	$ m V_2O_5$

 $\textbf{Problem 3: True/False} \ \ \text{Determine whether the statement is true or false. (20 pts)}$

(a)	Catalysts speed up the chemical reaction by lowering the activation Energy. (E_A)				
(b)	Chemical reactions that release heat to the surrounding are endothermic reactions.				
(c)	For a solution at concentration M , doubling the volume of the solution leads to doubling the concentration.				
(d)	When mixing 1L of 90°C water and 0.5L of 10°C water, the final temperature at thermal equilibrium is 50°C.				
	equinorium is 50°C.				
(e)	For a chemical reaction, the theoretical yield of a product depends on the excess reagent.				
(f)	As the wavelength increases, the energy of the photon decreases.				
(1)	The the wavelength increases, the energy of the photon decreases.				
(g)	Chemical equations are balanced by changing the subscripts of the compounds.				
(h)	An example of an endothermic process is the melting of ice into water.				
(i)	Suppose a system is in thermal equilibrium with a heat bath. When the temperature of the heat bath increases, the temperature of the system increases.				
(;)	The Bohr model can accurately predict the spectra of large atoms.				
(j)	The Dom model can accurately predict the spectra of large atoms.				

Problem 4 : Preparing Solutions Anhydrous calcium chloride $(CaCl_2)$ can easily absorb water from the air. To prepare a solution, the stable solid calcium chloride dihydrate $(CaCl_2 \cdot 2H_2O)$ is more suitable to prepare stock solutions. Answer the following questions and report to 3 significant figures. (12 pts)

(a) A scientist prepares 2L stock solution of 5M CaCl₂. Determine what mass (in g) of CaCl₂·2H₂O needed to prepare the solution.

(b) Using the prepared 5M CaCl₂ stock solution, the scientist is diluting the solution to make 250.mL of 1.5M CaCl₂. What volume in L of stock solution is needed to dilute to prepare 250.mL of 1.5M CaCl₂?

(c) From part (b), describe how to dilute concentrated 5M CaCl₂ solution to make 250.mL of 1.5M CaCl₂. Include the solvent and main lab equipment(s) used to perform the dilution.

Problem 5 : Thermal Equilibrium $(12 \mathrm{\ pts})$

specific	.0g of Cu metal block is heated to 350.0°C and then, dropped theats of water and copper are 4.184 $\rm J/(g$ °C) and 0.3850 all temperature at which the Cu and water are in thermal equal temperature.	J/(g °C), respectively. Determine
	scribe using illustrations and/or equations to show how the he initial and final states of the Cu and water.	ermal equilibrium is achieved. In-

Problem 6 : Limiting Reagent and Percent Yield Small amounts of chlorine gas can be generated in the laborator from the reaction of manganese(IV) oxide with hydrochloric acd. Report to 3 significant figures. (14 pts)

(a) Balance the following chemical equation :

 $\label{eq:hcl} HCl(aq) \, + \, MnO_2(s) \, \rightarrow \, H_2O(l) \, + \, MnCl_2(s) \, + \, Cl_2(g).$

(b) What is the theoretical yield of Cl₂ produced from 42.7g HCl and 67.0g MnO₂?

(c) How much of the excess reagent in g is leftover?

(d) If 50g of Cl₂(g) is collected, determine the percent yield.

Problem 7 : Predicting Chemical Reactions For the following reagents, determine the products formed by writing the balanced chemical equation including states and if there is no reaction, write "no reaction." (10 pts)

(a)	Solid iron wool ignited in the presence of oxygen gas				
(b)	Placing solid lithium metal into water				
(c)	The combustion of fructose $(C_6H_{12}O_6)$ in the presence of oxygen gas				
(1)					
(d)	Mixing aqueous silver nitrate and aqueous potassium dichromate				
(0)	Mixing against Copper(II) Sulfate and agueous sodium bydravida				
(e)	Mixing aqeuous Copper(II) Sulfate and aqueous sodium hydroxide				
	blem 8 : Acid-Base Reaction To neutralize phosphoric acid, sodium hydroxide is used to a salt and water. Report to 3 significant figures. (6 pts)				
(a)	Write the balanced chemical equation including states.				
(b)	Suppose there is 50mL of 1M phosphoric acid, how much volume in L of 1.25M sodium hydroxide is needed to completely react with phosphoric acid?				

Chemistry 107 : Appendix 1 - Periodic Table

2 Helium 4.003	10 Neon 20.180	18 Argen 39.948	36 Krypton 83.798	54 Xe xenon 131.293	Radon [222]	00g 294]	
	9 Fluorine 18.998	Chlorine 35.45	35 Bromine 79.904	53 — bodine 126.904	85 At Astatine [210]	117 S Fennes sine [293]	
				53 Tellurium 127.60			
	Nitrogen 14.007	D Phosphorus 30.974	AS Arsenic 74.922	S1 Sb Artimony 121.760	83 Bismuth 208.980	MC Moscovium [289]	70 Yb vtterbium 113.045 102 NObelium 1259]
	6 Carbon 12.011	Sicon 28.085	32 Ge Germanium 72.630	Sn 118710	82 Pb Lend 207.2	114 F Ferovium [289]	69 Thulium 168.934 101 Md Neardelevium [258]
	5 Boron 10.81	13 Aluminum 26.982	31 Gallium 69.723	49 Indium 114.818	81 Thallium 204.38	113 Nhonium [286]	68 Er Erbium 167.259 100 FM Femium [257]
			30 Zinc zinc 65.38	48 Cadmium 112.414	81 Mercury 200.592	112 CD copemicium [285]	67 H0 H0mium 164.930 99 Estericium [252]
			Cu Copper 63.546	Ag Silver 107.868	80 Au 608 196.997	Roentgenum [281]	66 Dy Dysprosium 162.500 98 Cf Californium [251]
			28 Nickel 58.693	Pd Palladium 106.42	79 Pt Platinum 195.084	DS Darmstackium [281]	65 Tertium 158.925 97 Berkelium [247]
			27 Cobalt 58.933	Rhodium 102.906	78 	Mt Meitherium [278]	64 Gaddinium 157.25 96 Curium 1247]
			26 Fe Image 55.845	Ruthenium 101.07	76 OSmium 190.23	Hassium [270]	Eucepium Europium 151.964 95 Am Americium [243]
			25 Mn Manganes e 54.938	43 Technetium [97]	75 Renium 186.207	Bohrium [270]	62 Smarrim 150.36 94 PU Plutonium [244]
			24 Cr Chromium 51.996	MO Molybdenum 95.95	74 W Tungsten 183.84	Seaborgium [269]	
			23 Vanadium 50.942	Nicbium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]	60 Necdymium 144.242 92 Unanium 238.029
			22 T Titanium 47.867	40 Z r zirconium 91.224	72 Hafnium 178.49	104 Rutherfordium [267]	59 Praecdyminn 140.908 91 Pa Pa Pa Protactinium 231.036
			21 Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967	103 C r Lawrencium [262]	58 Certim 140.116 90 Th
					* 57 - 70	** 89 - 102	57 Lanthanum 138.905 89 AC Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	20 Calcium 40.078	Srontium Strontium 87.62	56 Ba rium 137.327	88 Radium [226]	de series series
1 Hydrogen 1.008	3 Lithium 6.94	11 Na sodium 22.990	19 K	Rubidium 85.468	55 CS Cesium 132:905	87 Fr Fancium [223]	*Lanthanide series **Actinide series

Chemistry 107 : Apppendix 2 - Formulas and Constants

$$q = mC\Delta T$$

$$E = \frac{hc}{\lambda} = h\nu$$

$$h = 6.626 \times 10^{-34} \text{J s}$$

$$c = \lambda \nu$$

$$c = 3.00 \times 10^8 \text{m/s}$$