

Adaptive Machine Learning Algorithms with Python

Solve Data Analytics and Machine Learning Problems on Edge Devices

Chanchal Chatterjee

Adaptive Machine Learning Algorithms with Python

Solve Data Analytics and Machine Learning Problems on Edge Devices

Chanchal Chatterjee

Adaptive Machine Learning Algorithms with Python: Solve Data Analytics and Machine Learning Problems on Edge Devices

Chanchal Chatterjee San Jose, CA, USA

ISBN-13 (pbk): 978-1-4842-8016-4 ISBN-13 (electronic): 978-1-4842-8017-1 https://doi.org/10.1007/978-1-4842-8017-1

Copyright © 2022 by Chanchal Chatterjee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Celestin Suresh John Development Editor: James Markham Coordinating Editor: Mark Powers

Copy Editor: Mary Behr

Cover designed by eStudioCalamar

Cover image by Shubham Dhage on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub (https://github.com/Apress). For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

I dedicate this book to my father, Basudev Chatterjee, and all my teachers and mentors who have guided and inspired me.

Table of Contents

About the Author	XV
About the Technical Reviewer	xvii
	xix
Preface	xxi
Chapter 1: Introduction	1
1.1 Commonly Used Features Obtained by Linear Transform	4
Data Whitening	4
Principal Components	6
Linear Discriminant Features	8
Singular Value Features	11
Summary	11
1.2 Multi-Disciplinary Origin of Linear Features	12
Hebbian Learning or Neural Biology	12
Auto-Associative Networks	14
Hetero-Associative Networks	17
Statistical Pattern Recognition	21
Information Theory	21
Optimization Theory	22

1.3 Why Adaptive Algorithms?	23
Iterative or Batch Processing of Static Data	24
My Approach: Adaptive Processing of Streaming Data	25
Requirements of Adaptive Algorithms	27
Real-World Use of Adaptive Matrix Computation Algorithms and GitHub.	28
1.4 Common Methodology for Derivations of Algorithms	29
Matrix Algebra Problems Solved Here	30
1.5 Outline of The Book	31
Chapter 2: General Theories and Notations	33
2.1 Introduction	33
2.2 Stationary and Non-Stationary Sequences	34
2.3 Use Cases for Adaptive Mean, Median, and Covariances	34
Handwritten Character Recognition	35
Anomaly Detection of Streaming Data	36
2.4 Adaptive Mean and Covariance of Nonstationary Sequences	37
2.5 Adaptive Covariance and Inverses	38
2.6 Adaptive Normalized Mean Algorithm	39
Variations of the Adaptive Normalized Mean Algorithm	40
2.7 Adaptive Median Algorithm	41
2.8 Experimental Results	42
Chapter 3: Square Root and Inverse Square Root	47
3.1 Introduction and Use Cases	47
Various Solutions for A ^{1/2} and A ^{-1/2}	51
Outline of This Chapter	51
3.2 Adaptive Square Root Algorithm: Method 1	52
Objective Function	52
Adaptive Algorithm	52

3.3 Adaptive Square Root Algorithm: Method 2	53
Objective Function	53
Adaptive Algorithm	54
3.4 Adaptive Square Root Algorithm: Method 3	54
Adaptive Algorithm	54
3.5 Adaptive Inverse Square Root Algorithm: Method 1	55
Objective Function	55
Adaptive Algorithm	55
3.6 Adaptive Inverse Square Root Algorithm: Method 2	56
Objective Function	56
Adaptive Algorithm	56
3.7 Adaptive Inverse Square Root Algorithm: Method 3	57
Adaptive Algorithm	
3.8 Experimental Results	58
Experiments for Adaptive Square Root Algorithms	59
Experiments for Adaptive Inverse Square Root Algorithms	60
3.9 Concluding Remarks	62
Chapter 4: First Principal Eigenvector	63
4.1 Introduction and Use Cases	63
Outline of This Chapter	65
4.2 Algorithms and Objective Functions	66
Adaptive Algorithms	66
Objective Functions	67
4.3 OJA Algorithm	68
Objective Function	
Adaptive Algorithm	
Rate of Convergence	

4.4 RQ, OJAN, and LUO Algorithms	70
Objective Function	70
Adaptive Algorithms	71
Rate of Convergence	72
4.5 IT Algorithm	73
Objective Function	73
Adaptive Algorithm	73
Rate of Convergence	74
Upper Bound of η_k	74
4.6 XU Algorithm	74
Objective Function	74
Adaptive Algorithm	75
Rate of Convergence	76
Upper Bound of η_k	76
4.7 Penalty Function Algorithm	76
Objective Function	76
Adaptive Algorithm	77
Rate of Convergence	78
Upper Bound of η_k	78
4.8 Augmented Lagrangian 1 Algorithm	78
Objective Function and Adaptive Algorithm	78
Rate of Convergence	79
Upper Bound of η_k	80
4.9 Augmented Lagrangian 2 Algorithm	80
Objective Function	
Adaptive Algorithm	80
Rate of Convergence	81
Upper Bound of η_k	82

4.10 Summary of Algorithms	82
4.11 Experimental Results	83
Experiments with Various Starting Vectors <i>w</i> ₀	84
Experiments with Various Data Sets: Set 1	89
Experiments with Various Data Sets: Set 2	92
Experiments with Real-World Non-Stationary Data	95
4.12 Concluding Remarks	96
Chapter 5: Principal and Minor Eigenvectors	101
5.1 Introduction and Use Cases	101
Unified Framework	104
Outline of This Chapter	106
5.2 Algorithms and Objective Functions	107
Summary of Objective Functions for Adaptive Algorithms	107
5.3 OJA Algorithms	111
OJA Homogeneous Algorithm	111
OJA Deflation Algorithm	112
OJA Weighted Algorithm	112
OJA Algorithm Python Code	113
5.4 XU Algorithms	114
XU Homogeneous Algorithm	114
XU Deflation Algorithm	114
XU Weighted Algorithm	115
XU Algorithm Python Code	115
5.5 PF Algorithms	116
PF Homogeneous Algorithm	116
PF Deflation Algorithm	117

PF Weighted Algorithm	118
PF Algorithm Python Code	118
5.6 AL1 Algorithms	119
AL1 Homogeneous Algorithm	119
AL1 Deflation Algorithm	120
AL1 Weighted Algorithm	121
AL1 Algorithm Python Code	121
5.7 AL2 Algorithms	123
AL2 Homogeneous Algorithm	123
AL2 Deflation Algorithm	123
AL2 Weighted Algorithm	124
AL2 Algorithm Python Code	125
5.8 IT Algorithms	126
IT Homogeneous Function	126
IT Deflation Algorithm	127
IT Weighted Algorithm	127
IT Algorithm Python Code	128
5.9 RQ Algorithms	129
RQ Homogeneous Algorithm	129
RQ Deflation Algorithm	130
RQ Weighted Algorithm	130
RQ Algorithm Python Code	131
5.10 Summary of Adaptive Eigenvector Algorithms	132
5.11 Experimental Results	135
5.12 Concluding Remarks	144

Chapter 6: Accelerated Computation of Eigenvectors	145
6.1 Introduction	145
Objective Functions for Gradient-Based Adaptive PCA	146
Outline of This Chapter	148
6.2 Gradient Descent Algorithm	149
6.3 Steepest Descent Algorithm	150
Computation of α_k^i for Steepest Descent	152
Steepest Descent Algorithm Code	153
6.4 Conjugate Direction Algorithm	155
Conjugate Direction Algorithm Code	156
6.5 Newton-Raphson Algorithm	159
Newton-Raphson Algorithm Code	161
6.6 Experimental Results	163
Experiments with Stationary Data	163
Experiments with Non-Stationary Data	169
Comparison with State-of-the-Art Algorithms	174
6.7 Concluding Remarks	177
Chapter 7: Generalized Eigenvectors	179
7.1 Introduction and Use Cases	179
Application of GEVD in Pattern Recognition	180
Application of GEVD in Signal Processing	181
Methods for Generalized Eigen-Decomposition	181
Outline of This Chapter	182
7.2 Algorithms and Objective Functions	183
Summary of Objective Functions for Adaptive GEVD Algorithms	183
Summary of Generalized Eigenvector Algorithms	184

7.3 OJA GEVD Algorithms	187
OJA Homogeneous Algorithm	187
OJA Deflation Algorithm	187
OJA Weighted Algorithm	188
OJA Algorithm Python Code	188
7.4 XU GEVD Algorithms	189
XU Homogeneous Algorithm	189
XU Deflation Algorithm	190
XI Weighted Algorithm	190
XU Algorithm Python Code	191
7.5 PF GEVD Algorithms	192
PF Homogeneous Algorithm	192
PF Deflation Algorithm	192
PF Weighted Algorithm	193
PF Algorithm Python Code	193
7.6 AL1 GEVD Algorithms	194
AL1 Homogeneous Algorithm	194
AL1 Deflation Algorithm	195
AL1 Weighted Algorithm	196
AL1 Algorithm Python Code	196
7.7 AL2 GEVD Algorithms	198
AL2 Homogeneous Algorithm	198
AL2 Deflation Algorithm	198
AL2 Weighted Algorithm	199
AL2 Algorithm Python Code	199
7.8 IT GEVD Algorithms	201
IT Homogeneous Algorithm	201
IT Deflation Algorithm	202

IT Weighted Algorithm	202
IT Algorithm Python Code	203
7.9 RQ GEVD Algorithms	204
RQ Homogeneous Algorithm	204
RQ Deflation Algorithm	205
RQ Weighted Algorithm	205
RQ Algorithm Python Code	205
7.10 Experimental Results	207
7.11 Concluding Remarks	212
Chapter 8: Real-World Applications of Adaptive Linear	047
Algorithms	
8.1 Detecting Feature Drift	219
INSECTS-incremental_balanced_norm Dataset: Eigenvector Test	219
References	235
Index	263