

Course > Unit 7: ... > Proble... > 1. Defe...

1. Defective Coin

Problem Set due Apr 8, 2020 05:29 IST Completed

Problem 1. Defective Coin

3/3 points (graded)

A defective coin minting machine produces coins whose probability of Heads is a random variable \boldsymbol{Q} with PDF

$$f_{Q}\left(q
ight)=egin{cases} 5q^{4}, & ext{if }q\in\left[0,1
ight], \ 0, & ext{otherwise}. \end{cases}$$

A coin produced by this machine is tossed repeatedly, with successive tosses assumed to be independent. Let A be the event that the first toss of this coin results in Heads, and let B be the event that the second toss of this coin results in Heads.

1.
$$\mathbf{P}\left(A\right) = \boxed{ 5/6 } \qquad \qquad \checkmark \text{ Answer: 5/6}$$
 (Your answer should be a number.)

2. Find the conditional PDF of ${\cal Q}$ given event ${\cal A}.$ Express your answer in terms of ${\it q}$ using standard notation.

3.
$$\mathbf{P}\left(B\mid A\right)= \boxed{\text{6/7}}$$
 (Your answer should be a number.)

STANDARD NOTATION

Solution:

1. To calculate ${f P}$ (A), we use the continuous version of the total probability theorem:

$$\mathbf{P}\left(A
ight) = \int_{0}^{1} \mathbf{P}\left(A \mid Q = q
ight) f_{Q}\left(q
ight) \, dq = \int_{0}^{1} q \cdot \left(5q^{4}
ight) \, dq = \left[rac{5}{6}q^{6}
ight]_{0}^{1} = rac{5}{6}.$$

2. Using Bayes' rule,

$$egin{aligned} f_{Q|A}\left(q
ight) &=& rac{\mathbf{P}\left(A\mid Q=q
ight)f_{Q}\left(q
ight)}{\mathbf{P}\left(A
ight)} \ &=& \left\{ egin{aligned} rac{q\cdot\left(5q^{4}
ight)}{5/6}, & ext{if } 0\leq q\leq 1, \ 0, & ext{otherwise}, \end{aligned}
ight. \ &=& \left\{ egin{aligned} 6q^{5}, & ext{if } 0\leq q\leq 1, \ 0, & ext{otherwise}. \end{aligned}
ight. \end{aligned}$$

3. Again, we use the continuous version of the total probability theorem:

$$egin{align} \mathbf{P}\left(B\mid A
ight) &=& \int_{0}^{1}\mathbf{P}\left(B\mid A,Q=q
ight)f_{Q|A}\left(q
ight)\,dq \ &=& \int_{0}^{1}\mathbf{P}\left(B\mid Q=q
ight)f_{Q|A}\left(q
ight)\,dq \ &=& \int_{0}^{1}q\left(6q^{5}
ight)\,dq \ &=& 6/7. \end{aligned}$$

The second equality holds because for a given value q of Q, the events A and B are (conditionally) independent.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Problem Set 7a / 1. Defective Coin

Show all posts	ecent activity 🗸
? Wrong answer marked right?	1
Idea/Note sharing for Prob.7a	1
? <u>Staff-Info</u> <u>Dear Professor, I kindly ask you to extend the deadline by 1 day if possible. Thanks.</u>	3
? for Question 1 if $pQ(q)=5q^4$ for $q=1$, then $p(Q \mid q=1)=5$? How could a probability equal to 5?	3
? I can't understand how to tacle the first probrem. How calculate P(a), that is the probability that the first coin of the coin resulted in Head. I think it is	<u>ju</u>
? In #2, are we using a constant as p_X Q? When I do the integration, I end up with the original dist#. Is this somewhat a "word" problem, in the	aat
? How do I find P(A conditioned on Q)? L got the first part of the problem right, but that's not helping me with the rest of it, although I think	<u>sif</u>
? Why independence of tosses (multiplication probability rule) doesn't apply in part 3.?	13
The solved problems actually help! I was lost in my approach, but after when I had fully watched the solved problem and applied some	3 3 <u>3 9 g</u>
? There are no solved Problems for section 7a? There are no solved problems before the problem set for this section? Thanks.	3
Enrichment: Laplace's Rule of Succession Pierre Simon de Laplace used similar methods to estimate the probability of the sun rising tomorro	<u>1</u>
is P A Q(A q) equals to f Q(q)? given Q=q, 0≤q≤1, P(A)=5*q^4?	3
? Number of problems Are there Six OR FIve problems for this problem set? The syllabus indicate Six, but I can only see Five	

I found the TAs evolunation is extremely helpful

© All Rights Reserved

