Supplementary Materials: Nukplex: An Efficient Local Search Algorithm for Maximum K-Plex Problem

170

1 Detail Results

12

13

15

16

17

18

19

20

21

22

24

25

26

27

28

30

31

32

33

34

38

39

For each instance, max represents the best size found and avg denotes the average size. When max=avg, we do not report avg. In the tables, the bold values denote the best solution obtained among all algorithms. We only report the results for which all algorithms fail to find the same best and average values. Tables 1-6 display the detailed results corresponding to Table 2 in the main paper.

2 Comparisons against MKPP Exact Algorithms on Some Additional Large Sparse Instances

To further verify the performance of our proposed algorithm, we select two sets of large sparse graphs from KpLeX-Gap [Wang et al., 2023], which have been tested in many previous k-plex related studies [Gao et al., 2018; Zhou et al., 2021; Jiang et al., 2021; Chang et al., 2022; Wang et al., 2023]. The first set is the Network-Repo benchmark, which contains 139 large sparse graphs with up to 5.87×10^7 vertices from the Network Data Repository¹ [Rossi and Ahmed, 2015]. The second set is the 10th-DIMACS benchmark, which contains 84 large sparse graphs with up to 5.09×10^7 vertices². Previous works for the MKKP heuristic algorithms focus on solving some small k values (e.g., k = 2, 3, 4, 5), while in KpLeX-Gap [Wang et al., 2023], the authors carry out experiments with k=2,5,10,15,20. In our work, k is set to 2, 3, 4, 5, 10, 15, 20, and thus we consider 1561 instances in total. The time limit of the two exact algorithms KpLeX-Gap and DiseMKP is set to 1800 seconds, whereas the cutoff time of Nukplex is set to 1000 seconds with random seeds from 1

Tables 7-8 display the results of Nukplex, KpLeX-Gap, and DiseMKP. The results indicate that Nukplex, KpLeX-Gap, and DiseMKP are able to obtain the best solutions for 1559, 1521, and 1433 instances, respectively. Nukplex only fails to obtain the best solutions for 2 instances when using 10 different seed values. However, when using 100 different seed values, Nukplex successfully obtains the best solutions for these two instances as well. Furthermore, when using a single seed value of 1, Nukplex achieves the best solutions for 1553 out

of the 1561 instances. These additional experimental results further validate the effectiveness of Nukplex.

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

61

62

References

[Chang et al., 2022] Lijun Chang, Mouyi Xu, and Darren Strash. Efficient maximum k-plex computation over large sparse graphs. Proceedings of the VLDB Endowment, 16(2):127–139, 2022.

[Gao *et al.*, 2018] Jian Gao, Jiejiang Chen, Minghao Yin, Rong Chen, and Yiyuan Wang. An exact algorithm for maximum k-plexes in massive graphs. In *IJCAI*, pages 1449–1455, 2018.

[Jiang et al., 2021] Hua Jiang, Dongming Zhu, Zhichao Xie, Shaowen Yao, and Zhang-Hua Fu. A new upper bound based on vertex partitioning for the maximum k-plex problem. In *IJCAI*, pages 1689–1696, 2021.

[Rossi and Ahmed, 2015] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and visualization. In *AAAI*, pages 4292–4293, 2015.

[Wang *et al.*, 2023] Zhengren Wang, Yi Zhou, Chunyu Luo, and Mingyu Xiao. A fast maximum k-plex algorithm parameterized by the degeneracy gap. In *IJCAI*, pages 5648–5656, 2023.

[Zhou et al., 2021] Yi Zhou, Shan Hu, Mingyu Xiao, and Zhang-Hua Fu. Improving maximum k-plex solver via second-order reduction and graph color bounding. In AAAI, pages 12453–12460, 2021.

¹http://lcs.ios.ac.cn/caisw/Resource/realworld%20graphs.tar.gz

²https://networkrepository.com/dimacs10.php

Instance	k	Nukplex max(avg)	DCCplex max(avg)	KLS max(avg)	Instance	k	Nukplex max(avg)	DCCplex max(avg)	KLS max(avg)
					1				
brock400_3	2	31 (30.64)	30	31	brock800_3	3	30	30 (29.98)	30
brock400_4	2	33	33 (32.84)	33	C1000.9	3	96(95.96)	96 (94.98)	96 (95.94)
brock800_4	2	26(25.96)	26 (25.6)	26 (25.94)	C2000.5	3	23 (22.5)	23 (22.16)	23(22.99)
C1000.9	2	82(81.98)	82 (81.88)	82 (81.88)	C2000.9	3	109(108.64)	108(107.18)	109 (107.85
C2000.5	2	20(19.78)	20 (19.68)	20 (19.68)	C4000.5	3	25(24)	24(23.32)	24
C2000.9	2	94(93.42)	94 (92.28)	93(92.06)	C500.9	3	81	81 (80.82)	81
C4000.5	2	21(20.58)	22 (20.92)	21	frb100-40	3	156 (153.06)	156(153.36)	154(152.55
frb100-40	2	131(128.02)	130(127.52)	129(127.6)	frb35-17-2	3	55(54.32)	55 (54.02)	55(54.32)
frb40-19-1	2	55	55 (54.28)	55	frb35-17-4	3	57	57 (56.1)	57
frb40-19-3	2	53	53 (52.92)	53 (52.98)	frb35-17-5	3	56	56 (55.8)	56
frb45-21-3	2	60	60 (59.32)	60	frb40-19-1	3	66	66 (65.7)	66
frb45-21-4	2	61(60.98)	61 (60.16)	61 (60.88)	frb40-19-2	3	65	65 (64.92)	65
frb45-21-5	2	59	59 (58.70)	59 (58.98)	frb40-19-4	3	63	63 (62.94)	63
frb50-23-1	2	67	67 (66.24)	67	frb45-21-1	3	71(70.9)	71 (70.06)	71 (70.56)
frb50-23-2	2	67(66.38)	66	67 (66.35)	frb45-21-2	3	71	71 (70.46)	71
frb50-23-3	2	65(64.82)	65 (64.04)	65 (64.57)	frb45-21-3	3	72(71.74)	71(70.96)	72 (71.32)
frb50-23-4	2	67(66.02)	66(65.98)	66	frb45-21-4	3	73(72.4)	73 (71.9)	73 (72.22)
frb50-23-5	2	67(66.98)	67 (66.24)	67 (66.9)	frb45-21-5	3	71(70.74)	71 (69.94)	71 (70.54)
frb53-24-1	2	71	71 (70.88)	71 (70.71)	frb50-23-1	3	80(79.06)	79(78.96)	79
frb53-24-2	2	70	70 (69.96)	70	frb50-23-2	3	79	79 (78.96)	79
frb53-24-3	2	70	70 (69.84)	70	frb50-23-3	3	77(76.4)	76(75.80)	77(76.4)
frb53-24-4	2	70(69.98)	70 (69)	70 (69.68)	frb50-23-4	3	79	79 (78.96)	79
frb53-24-5	2	69(68.44)	68	69 (68.41)	frb50-23-5	3	80(79.4)	80 (79.16)	80 (79.38)
frb56-25-1	2	75	75 (74.28)	75 (74.47)	frb53-24-1	3	85	85 (84.2)	85
frb56-25-2	2	75	75 (74.48)	75 (74.4)	frb53-24-2	3	83(82.92)	83 (82.16)	83 (82.91)
frb56-25-3	2	74	74 (73.48)	74 (73.66)	frb53-24-3	3	84(83.18)	83(82.9)	83
frb56-25-4	2	74(73.98)	74 (72.96)	74 (73.4)	frb53-24-4	3	84(83.7)	84 (82.56)	84 (83.69)
frb56-25-5	2	74(73.98)	74 (73.1)	74 (73.64)	frb53-24-5	3	82	82 (81.52)	82 (81.94)
frb59-26-1	2	79(78.98)	78	79 (78.22)	frb56-25-1	3	90(89.46)	89(88.96)	89
frb59-26-2	2	79(78.96)	79 (78.16)	79 (78.3)	frb56-25-2	3	89	89 (88.48)	89
frb59-26-3	2	78(77.98)	78 (77.04)	78 (77.28)	frb56-25-3	3	88(87.92)	88 (87.1)	88 (87.78)
frb59-26-4	2	79(78.1)	78(77.2)	78(77.44)	frb56-25-4	3	88(87.66)	88 (86.66)	88 (87.04)
frb59-26-5	2	78	78 (77.92)	78 (77.6)	frb56-25-5	3	88(87.48)	88 (86.8)	88 (87.46)
gen400_p0.9_55	2	68(67.8)	68 (67.56)	68 (67.76)	frb59-26-1	3	94(93.44)	93(92.64)	93
gen400_p0.9_55 gen400_p0.9_65	2	74	74 (73.08)	74	frb59-26-2	3	94(93.66)	94 (92.86)	94 (93.56)
gen400_p0.9_05 gen400_p0.9_75	2	80	7 4 (73.08)	80 (79.99)	frb59-26-3	3	94(92.98)	94 (91.98)	94 (92.70)
MANN_a27	2				frb59-26-4	3			, ,
	2	236 (235.96)	236	236 (235.96)	frb59-26-5	3	93(92.9) 93(92.88)	93 (92.14)	93 (92.76)
san1000		18 (17.06)	18 (17)	18(17.28)			` ′	93 (91.69)	93 (92.58)
san200_0.7_2	2	26 (25.4)	26	26 (25.4)	keller6	3	93	93 (91.46)	93
san400_0.5_1	2	15	15 (14.86)	15	p_hat1500-3	3	133	133 (132.98)	133
san400_0.7_1	2	42 (41.14)	42 (41.06)	42	san1000	3	25	25 (24.96)	25
san400_0.7_2	2	33(32.46)	32(32)	33 (32.07)	san200_0.7_1	3	46	46 (45.94)	46
san400_0.7_3	2	28	28 (27.02)	28 (27.87)	san400_0.5_1	3	22	22 (21.84)	22
san400_0.9_1	2	103(102.98)	103 (102.12)	103 (102.46)	san400_0.7_2	3	47 (46.1)	47 (46.22)	47
brock800_1	3	30(29.9)	30 (29.32)	30 (29.84)	san400_0.7_3	3	39(38.36)	39 (38.02)	39 (38.34)

Table 1: Experimental results of Nukplex, DCCplex and KLS on classic instances I. All algorithms are executed for 100 independent runs, with a cutoff time of 1000 seconds for each run.

Instance	k	Nukplex	DCCplex	KLS may(aya)	Instance	k	Nukplex	DCCplex	KLS	
		max(avg)	max(avg)	max(avg)	<u> </u>		max(avg)	max(avg)	max(avg)	
brock800_1	4	34	34 (33.88)	34	brock400_4	5	46	46 (45.98)	46	
brock800_2	4	34	34 (33.06)	34	brock800_2	5	38	38 (37.08)	38	
brock800_3	4	34	34 (33.78)	34	C1000.9	5	122(121.26)	121(119.88)	122 (121.24	
brock800_4	4	34 (33.08)	33	34(33.98)	C2000.5	5	28	28	29(28.11)	
C1000.9	4	110(109.28)	109(107.96)	110 (109.26)	C2000.9	5	137(136.34)	136(134.20)	137 (136.01	
C2000.5	4	26 (25.08)	25	26(25.74)	C4000.5	5	30(29.94)	30 (29.08)	30 (29.92)	
C2000.9	4	123(122.62)	123 (121.20)	123 (122.02)	C500.9	5	104(103.62)	103(102.78)	104 (103.56	
C4000.5	4	28 (26.70)	27(26.08)	28(27.02)	c-fat200-2	5	24	24 (23.99)	24	
C500.9	4	93(92.9)	93 (92.18)	93(92.9)	c-fat200-5	5	58	58 (57.94)	58	
c-fat200-5	4	58	58 (57.94)	58	DSJC1000.5	5	27	27 (26.64)	27	
c-fat500-5	4	64	64 (63.98)	64	frb100-40	5	202(199.28)	201(198.98)	200(198.59	
DSJC1000.5	4	24(23.82)	24 (23.74)	24 (23.8)	frb30-15-5	5	63	63 (62.98)	63	
frb100-40	4	179(176.9)	178(176.48)	177(175.82)	frb35-17-1	5	73	73 (72.98)	73	
frb30-15-2	4	55(54.68)	55 (54.12)	55 (54.58)	frb35-17-2	5	72(71.82)	72 (71.14)	72 (71.78)	
frb30-15-4	4	56(55.88)	56 (55.34)	56 (55.78)	frb35-17-4	5	74	74 (73.94)	74	
frb30-15-5	4	56	56 (55.94)	56	frb35-17-5	5	74(73.7)	74 (73.04)	74 (73.36)	
frb35-17-3	4	67	67 (66.22)	67	frb40-19-1	5	88	88 (87.92)	88	
frb35-17-4	4	66(65.26)	65	66 (65.06)	frb40-19-2	5	85(84.66)	84	85 (84.48)	
frb40-19-1	4	77	77 (76.96)	77	frb40-19-3	5	83(82.66)	82(81.98)	83 (82.38)	
frb40-19-2	4	75(74.98)	75 (74.12)	75 (74.94)	frb40-19-4	5	81	81 (80.86)	81	
frb40-19-4	4	73(72.98)	73 (72.08)	73 (72.94)	frb40-19-5	5	83(82.7)	83 (82.02)	83 (82.48)	
frb40-19-5	4	74	74 (73.62)	74 (73.96)	frb45-21-1	5	93(92.68)	92(91.68)	93 (92.58)	
frb45-21-1	4	82	82 (81.04)	82 (81.94)	frb45-21-2	5	92(91.88)	92 (91.04)	92 (91.7)	
frb45-21-2	4	82(81.12)	81(80.76)	82 (81.06)	frb45-21-3	5	94(93.28)	94 (92.82)	94(93.22)	
frb45-21-3	4	83(82.98)	83 (82.44)	83 (82.80)	frb45-21-4	5	94	94 (93.84)	94	
frb45-21-4	4	84(83.18)	84 (83.04)	84 (83.08)	frb45-21-5	5	92	92 (91.52)	92	
frb45-21-5	4	82(81.66)	82 (80.78)	82 (81.52)	frb50-23-1	5	104(103.56)	103(102.48)	103	
frb50-23-1	4	92	92 (91.22)	92	frb50-23-2	5	104(103.6)	104 (102.32)	103	
frb50-23-2	4	92(91.7)	92 (90.7)	92 (91.68)	frb50-23-3	5	99	99 (98.14)	99	
frb50-23-3	4	88	88 (87.4)	88	frb50-23-4	5	104(103.28)	104 (102.42)	103	
frb50-23-4	4	92(91.2)	91(90.78)	92 (91.18)	frb50-23-5	5	104	104 (102.98)	103	
frb50-23-5	4	92	92 (91.04)	92	frb53-24-1	5	112	112 (110.98)	111	
frb53-24-1	4	99(98.98)	99 (97.96)	99(98.98)	frb53-24-2	5	108(107.76)	107(106.60)	107	
frb53-24-2	4	96(95.5)	96 (94.66)	96 (95.48)	frb53-24-3	5	110(109.1)	109(108.14)	109	
frb53-24-3	4	97(96.84)	97 (96.02)	97 (96.82)	frb53-24-4	5	109	109 (107.94)	109	
frb53-24-4	4	97(96.32)	96(95.54)	96	frb53-24-5	5	107(106.28)	106(105.12)	105	
frb53-24-5	4	94	94 (93.67)	94	frb56-25-1	5	118(117.34)	117(116.24)	117	
frb56-25-1	4	104(103.88)	104 (103.05)	104 (103.86)	frb56-25-2	5	117(116.32)	116(115)	115	
frb56-25-2	4	104(103.04)	103(102.84)	103(102.89)	frb56-25-3	5	114	114 (112.82)	114 (113.89	
frb56-25-3	4	101(100.98)	101 (100.06)	101 (100.97)	frb56-25-4	5	114(113.2)	113(112.14)	113	
frb56-25-4	4	101(100.52)	101 (100.00)	101 (100.57)	frb56-25-5	5	115(114.12)	114(112.86)	114	
frb56-25-5	4	102(101.04)	101(100.08)	101	frb59-26-1	5	122(121.8)	122 (120.8)	121	
frb59-26-1	4	102(101.04)	108 (106.96)	108 (107.69)	frb59-26-2	5	122(121.8)	122 (120.8) 122 (120.3)	121	
frb59-26-2	4	108(107.92)	108 (106.90)	108 (107.09) 108 (107.73)	frb59-26-3	5	121(120.96)	122 (120.3) 121 (119.76)	121	
frb59-26-3	4	108(107.90)	107(106.12)	107(106.98)	frb59-26-4	5	121(120.96)	121(119.76)	119	
frb59-26-4	4	108(107.12)	107 (106.12) 107 (105.84)	107 (106.98) 107 (106.49)	1	5	120(119.98)			
frb59-26-5	4	107(106.96)	, ,		frb59-26-5	5		120 (118.54)	119 515(512.6)	
	4	69(68.08)	106(105.48)	107 (106.2)	hamming10-2 hamming10-4	5	521(516.98) 80 (79.02)	515(514.48)	515(512.64 80	
hamming10-4			69(68.04)	70(69.05)				79(78.88)		
hamming8-2	4	130	130 (129.32)	130	keller6	5	125	125	126(125.1)	
keller6	4	117 (113.40)	117(114.66)	117 (114.49)	p_hat1500-2	5	117	117 (116.48)	117	
p_hat1500-2	4	107	107 (106.82)	107	p_hat1500-3	5	165(164.9)	164(163.98)	165 (164.8	
san1000	4	33	33 (32.94)	33	p_hat500-3	5	90	90 (89.12)	90	
san400_0.5_1	4	29	29 (28.58)	29	san1000	5	41	41 (40.92)	41	
san400_0.7_1	4	81(80.82)	81 (80.8)	81 (80.8)	san400_0.5_1	5	36 (35.28)	36 (35.14)	36	
san400_0.7_3	4	50(49.82)	50 (49.78)	50 (49.78)						

Table 2: Experimental results of Nukplex, DCCplex and KLS on classic instances II. All algorithms are executed for 100 independent runs, with a cutoff time of 1000 seconds for each run.

Instance	timelimit	k	Nukplex	DCCplex	KLS	Instance	timelimit	k	Nukplex	DCCplex	KLS
			max(avg)	max(avg)	max(avg)				max(avg)	max(avg)	max(avg)
rt-retweet-crawl	100	2	14	14 (13.3)	14	soc-orkut	100	3	59	58(53.1)	59
soc-digg	100	2	57	57 (55.3)	57 (56.8)	rt-retweet-crawl	100	4	16	16 (15.5)	16
socfb-A-anon	100	2	28	28 (27.3)	28	soc-digg	100	4	69	69 (68.7)	69
socfb-B-anon	100	2	27	27 (26.6)	27	socfb-A-anon	100	4	35(34.88)	34	34
soc-FourSquare	100	2	35	35 (34.9)	35	socfb-B-anon	100	4	33	33 (32.96)	33
soc-gowalla	100	2	30	30 (29.3)	30	soc-pokec	100	4	32 (31.6)	32 (30.4)	32
soc-pokec	100	2	31(30.8)	26(25.7)	26	soc-orkut	100	4	62	60(48.7)	61
soc-orkut	100	2	52	52 (49.3)	52	cage15	100	5	11	11	11 (10.98)
audikw1	100	3	39	39	39 (38.71)	soc-digg	100	5	72	72 (71.4)	72 (71.4)
rt-retweet-crawl	100	3	15	15 (14.4)	15	socfb-B-anon	100	5	35(34.88)	35 (34.5)	35 (34.5)
soc-digg	100	3	63	63 (61.8)	63	soc-orkut	100	5	67(66.2)	66(49.9)	63
socfb-A-anon	100	3	32	32 (31.2)	32	soc-orkut	1000	2	52	52 (51.7)	52
socfb-B-anon	100	3	30	30 (29)	30	soc-orkut	1000	3	59	59 (58.6)	59
soc-FourSquare	100	3	39	39 (38.7)	39	soc-orkut	1000	4	63(62.6)	61	62(61.4)
soc-pokec	100	3	32(31.12)	29(28.8)	29	soc-orkut	1000	5	68(66.8)	66(64.5)	63

Table 3: Experimental results of Nukplex, DCCplex and KLS on large sparse instances.

Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max	Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max	Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max
frb100-40	2	131(128.02)	82	93	san1000	2	18(17.06)	10	16	johnson16-2-4	3	16	8	16
frb30-15-1	2	40	25	34	san200_0.7_1	2	31	30	30	johnson32-2-4	3	32	16	32
frb30-15-2	2	39 40	26	33 35	san200_0.7_2	2	26(25.4)	15 51	24	keller5	3	45 93	24	35
frb30-15-3 frb30-15-4	2	39	26 26	33 34	san200_0.9_2 san200_0.9_3	2	71 54	35	70 48	keller6 p_hat1000-1	3	93 15	50 9	64 15
frb30-15-5	2	40	26	34	san400_0.5_1	2	15	13	14	p_hat1000-1	3	67	44	64
frb35-17-1	2	46	29	38	san400_0.7_1	2	42(41.14)	40	40	p_hat1000-3	3	98	62	94
frb35-17-2	2	46	30	39	san400_0.7_2	2	33(32.46)	18	30	p_hat1500-1	3	17	11	16
frb35-17-3	2	47	31	40	san400_0.7_3	2	28	16	24	p_hat1500-2	3	93	60	90
frb35-17-4	2	47	31	40	san400_0.9_1	2	103(102.98)	99	100	p_hat1500-3	3	133	88	127
frb35-17-5	2	46	31	40	sanr200_0.9	2	51	38	49	p_hat300-3	3	52	33	51
frb40-19-1	2	55	35	43	sanr400_0.5	2	15	12	15	p_hat500-1	3	14	9	14
frb40-19-2	2	54 53	34	46 42	sanr400_0.7	2	26	19	24	p_hat500-2	3	50 72	34 47	49 70
frb40-19-3 frb40-19-4	2	53 52	34 35	42 45	frb100-40 frb30-15-1	3	156(153.06) 48	82 25	118 44	p_hat500-3 p_hat700-1	3	15	14	15
frb40-19-5	2	53	35	48	frb30-15-2	3	48	26	42	p_hat700-1	3	62	41	60
frb45-21-1	2	59	38	50	frb30-15-3	3	48	26	44	p_hat700-3	3	89	60	88
frb45-21-2	2	59	39	44	frb30-15-4	3	47	26	42	san1000	3	25	10	24
frb45-21-3	2	60	38	47	frb30-15-5	3	48	26	44	san200_0.7_1	3	46	30	45
frb45-21-4	2	61(60.98)	39	51	frb35-17-1	3	55	29	49	san200_0.7_2	3	37	15	36
frb45-21-5	2	59	39	48	frb35-17-2	3	55(54.32)	30	47	san200_0.9_3	3	73	35	72
frb50-23-1	2	67	44	55	frb35-17-3	3	57 57	31	50	san400_0.5_1	3	22	13	21
frb50-23-2 frb50-23-3	2	67(66.38) 65(64.82)	44 44	55 51	frb35-17-4 frb35-17-5	3	57 56	31 31	51 49	san400_0.7_1	3	61 47 (46.1)	40 18	60 45
frb50-23-4	2	65(64.82) 67(66.02)	44	53	frb40-19-1	3	56 66	35	49 59	san400_0.7_2 san400_0.7_3	3	4 7(46.1) 39(38.36)	16	45 36
frb50-23-5	2	67(66.98)	42	50	frb40-19-2	3	65	34	57	san400_0.7_3	3	150	99	150
frb53-24-1	2	71	45	54	frb40-19-3	3	63	34	55	sanr200_0.7	3	26	16	26
frb53-24-2	2	70	45	53	frb40-19-4	3	63	35	54	sanr200_0.9	3	61	38	57
frb53-24-3	2	70	45	56	frb40-19-5	3	63	35	54	sanr400_0.5	3	18	12	18
frb53-24-4	2	70(69.98)	45	58	frb45-21-1	3	71(70.9)	38	60	sanr400_0.7	3	30	19	28
frb53-24-5	2	69(68.44)	45	53	frb45-21-2	3	71	39	59	frb100-40	4	179(176.9)	82	142
frb56-25-1	2	75 75	48	59	frb45-21-3	3	72(71.74)	38	61	frb30-15-1	4	55	25	51
frb56-25-2	2	75 74	47 48	58 57	frb45-21-4 frb45-21-5	3	73(72.4)	39 39	64 62	frb30-15-2	4	55(54.68)	26	49 51
frb56-25-3 frb56-25-4	2	74 74(73.98)	48 48	58	frb50-23-1	3	71(70.74) 80(79.06)	39 44	62 66	frb30-15-3 frb30-15-4	4	56 56(55.88)	26 26	49
frb56-25-5	2	74(73.98)	48	56	frb50-23-2	3	79	44	67	frb30-15-5	4	56	26	51
frb59-26-1	2	79(78.98)	51	62	frb50-23-3	3	77(76.4)	44	62	frb35-17-1	4	64	29	57
frb59-26-2	2	79(78.96)	49	59	frb50-23-4	3	79	43	65	frb35-17-2	4	63	30	56
frb59-26-3	2	78(77.98)	50	60	frb50-23-5	3	80(79.4)	42	66	frb35-17-3	4	67	31	61
frb59-26-4	2	79(78.1)	50	62	frb53-24-1	3	85	45	69	frb35-17-4	4	66(65.26)	31	60
frb59-26-5	2	78	50	57	frb53-24-2	3	83(82.92)	45	72	frb35-17-5	4	65	31	60
brock200_1	2	26	20	25	frb53-24-3	3	84(83.18)	45	68	frb40-19-1	4	77	35	71
brock400_1	2	30	23	28	frb53-24-4	3	84(83.7)	45	68	frb40-19-2	4	75(74.98)	34	67
brock400_2 brock400_3	2	30 31(30.64)	23 22	29 28	frb53-24-5 frb56-25-1	3	82 90(89.46)	45 48	66 76	frb40-19-3 frb40-19-4	4	74 73(72.98)	34 35	64 65
brock400_3	2	33	23	28	frb56-25-2	3	89	47	76	frb40-19-5	4	74	35	65
brock800_1	2	25	19	23	frb56-25-3	3	88(87.92)	48	73	frb45-21-1	4	82	38	73
brock800_2	2	25	19	23	frb56-25-4	3	88(87.66)	48	73	frb45-21-2	4	82(81.12)	39	71
brock800_3	2	25	19	23	frb56-25-5	3	88(87.48)	48	72	frb45-21-3	4	83(82.98)	38	72
brock800_4	2	26(25.96)	18	23	frb59-26-1	3	94(93.44)	51	80	frb45-21-4	4	84(83.18)	39	75
C1000.9	2	82(81.98)	60	66	frb59-26-2	3	94(93.66)	49	77	frb45-21-5	4	82(81.66)	39	74
C125.9	2	43	33	42	frb59-26-3	3	94(92.98)	50	74	frb50-23-1	4	92	44	79
C2000.5	2	20(19.78)	15	17	frb59-26-4	3	93(92.9)	50	75	frb50-23-2	4	92(91.7)	44	82
C2000.9 C250.9	2	94(93.42) 55	68 41	74 50	frb59-26-5 brock200_1	3	93(92.88) 30	50 20	78 29	frb50-23-3 frb50-23-4	4	88 92(91.2)	44 43	74 77
C4000.5	2	21(20.58)	15	18	brock200_3	3	20	13	20	frb50-23-5	4	92(91.2)	42	77
C500.9	2	69	50	61	brock200_4	3	23	15	23	frb53-24-1	4	99(98.98)	45	86
DSJC1000.5	2	18	14	16	brock400_1	3	36	23	32	frb53-24-2	4	96(95.5)	45	82
DSJC500.5	2	16	12	16	brock400_2	3	36	23	34	frb53-24-3	4	97(96.84)	45	80
gen200_p0.9_44	2	53	38	50	brock400_3	3	36	22	33	frb53-24-4	4	97(96.32)	45	84
gen200_p0.9_55	2	57	40	52	brock400_4	3	36	23	33	frb53-24-5	4	94	45	79
gen400_p0.9_55	2	68(67.8)	47	56	brock800_1	3	30(29.9)	19	26	frb56-25-1	4	104(103.88)	48	91
gen400_p0.9_65 gen400_p0.9_75	2	74 80	48 47	64 74	brock800_2 brock800_3	3	30 30	19 19	28 26	frb56-25-2 frb56-25-3	4	104(103.04) 101(100.98)	47 48	90 87
hamming10-4	2	48	36	41	brock800_4	3	29	18	25	frb56-25-4	4	101(100.52)	48	85
johnson16-2-4	2	10	8	10	C1000.9	3	96(95.96)	60	83	frb56-25-5	4	102(101.04)	48	85
johnson32-2-4	2	21	16	21	C125.9	3	51	33	50	frb59-26-1	4	108(107.92)	51	92
keller5	2	31	24	30	C2000.5	3	23(22.5)	15	20	frb59-26-2	4	108(107.96)	49	93
keller6	2	63	50	62	C2000.9	3	109(108.64)	68	88	frb59-26-3	4	108(107.12)	50	90
MANN_a27	2	236(235.96)	236	234	C250.9	3	65	41	59	frb59-26-4	4	107(106.96)	50	90
MANN_a45	2	662	342	660	C4000.5	3	25(24)	15	20	frb59-26-5	4	107(106.64)	50	91
MANN_a81	2	2162	1096	2160	C500.9	3	81	50	73	brock200_1	4	35	20	33
p_hat1000-2 p_hat1000-3	2	56 82	44 62	55 78	c-fat500-10 DSJC1000.5	3	126 21	126 14	0 20	brock200_2	4	18 23	10	18 23
p_nat1000-3 p_hat1500-1	2	82 14	62 11	/8 14	DSJC500.5	3	19	14 12	20 18	brock200_3 brock200_4	4	23 26	13 15	23 26
p_hat1500-1 p_hat1500-2	2	80	60	74	gen200_p0.9_44	3	66	38	64	brock400_1	4	41(40.98)	23	36
p_hat1500-3	2	114	88	109	gen200_p0.9_55	3	64	40	62	brock400_2	4	41(40.98)	23	39
p_hat300-3	2	44	33	43	gen400_p0.9_55	3	87	47	82	brock400_3	4	41	22	38
p_hat500-2	2	42	34	42	gen400_p0.9_65	3	101	48	96	brock400_4	4	41	23	37
p_hat500-3	2	62	47	60	gen400_p0.9_75	3	114	47	111	brock800_1	4	34	19	31
p_hat700-2	2	52	49	50	hamming10-4	3	64	36	51	brock800_2	4	34	19	30
p_hat700-3	2	76	60	73	hamming8-4	3	20	16	20	brock800_3	4	34	19	30

Table 4: Experimental results of Nukplex, KpLeX-Gap and DiseMKP on classic instances I. Nukplex is executed for 100 independent runs, with a cutoff time of 1000 seconds for each run, whereas the two exact algorithms are executed with a cutoff time of 1800 seconds.

Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max	Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max	Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max
brock800_4	4	34(33.08)	18	29	frb30-15-1	5	63	25	59	C1000.9	5	122(121.26)	60	106
C1000.9	4	110(109.28)	60	96	frb30-15-2	5	62	26	57	C125.9	5	65	33	64
C125.9	4	58	33	58	frb30-15-3	5	63	26	58	C2000.5	5	28	15	24
C2000.5	4	26(25.08)	15	22	frb30-15-4	5	62	26	57	C2000.9	5	137(136.34)	68	116
C2000.9	4	123(122.62)	68	102	frb30-15-5	5	63	26	57	C250.9	5	84	41	80
C250.9	4	75	41	69	frb35-17-1	5	73	29	65	C4000.5	5	30(29.94)	15	25
C4000.5	4	28(26.7)	15	22	frb35-17-2	5	72(71.82)	30	64	C500.9	5	104(103.62)	50	94
C500.9	4	93(92.9)	50	84	frb35-17-3	5	75	31	69	DSJC1000.5	5	27	14	23
DSJC1000.5	4	24(23.82)	14	21	frb35-17-4	5	74	31	68	DSJC500.5	5	24	12	22
DSJC500.5	4	21	12	20	frb35-17-5	5	74(73.7)	31	68	gen200_p0.9_44	5	84	38	79
gen200_p0.9_44	4	76	38	74	frb40-19-1	5	88	35	81	gen200_p0.9_55	5	80	40	79
gen200_p0.9_55	4	73	40	72	frb40-19-2	5	85(84.66)	34	77	gen400_p0.9_55	5	124	47	119
gen400_p0.9_55	4	112	47	106	frb40-19-3	5	83(82.66)	34	74	gen400_p0.9_65	5	138	48	131
gen400_p0.9_65	4	132	48	123	frb40-19-4	5	81	35	73	gen400_p0.9_75	5	136	47	134
gen400_p0.9_75	4	136	47	134	frb40-19-5	5	83(82.7)	35	73	hamming10-2	5	521(516.98)	512	512
hamming10-4	4	69(68.08)	36	63	frb45-21-1	5	93(92.68)	38	83	hamming10-4	5	80(79.02)	36	73
hamming8-2	4	130	128	128	frb45-21-2	5	92(91.88)	39	81	hamming8-2	5	152	128	134
hamming8-4	4	25	16	25	frb45-21-3	5	94(93.28)	38	84	hamming8-4	5	32	16	32
johnson16-2-4	4	19	8	19	frb45-21-4	5	94	39	85	johnson16-2-4	5	24	8	24
johnson32-2-4	4	38	16	38	frb45-21-5	5	92	39	82	johnson32-2-4	5	48	16	48
keller4	4	23	11	22	frb50-23-1	5	104(103.56)	44	93	keller4	5	28	11	27
keller5	4	53	24	46	frb50-23-2	5	104(103.6)	44	93	keller5	5	61	24	54
keller6	4	117(113.4)	50	93	frb50-23-3	5	99	44	87	keller6	5	125	50	119
p_hat1000-1	4	18	9	17	frb50-23-4	5	104(103.28)	43	89	p_hat1000-1	5	20	9	20
p_hat1000-2	4	76	44	73	frb50-23-5	5	104	42	92	p_hat1000-2	5	84	44	84
p_hat1000-3	4	111	62	106	frb53-24-1	5	112	45	98	p_hat1000-3	5	122	62	116
p_hat1500-1	4	19	11	18	frb53-24-2	5	108(107.76)	45	94	p_hat1500-1	5	21	11	20
p_hat1500-2	4	107	60	103	frb53-24-3	5	110(109.1)	45	94	p_hat1500-2	5	117	112	114
p_hat1500-3	4	150	88	143	frb53-24-4	5	109	45	96	p_hat1500-3	5	165(164.9)	88	158
p_hat300-2	4	41	25	41	frb53-24-5	5	107(106.28)	45	94	p_hat300-3	5	65	33	64
p_hat300-3	4	59	33	58	frb56-25-1	5	118(117.34)	48	106	p_hat500-1	5	18	9	18
p_hat500-1	4	16	14	16	frb56-25-2	5	117(116.32)	47	99	p_hat500-2	5	62	60	61
p_hat500-2	4	57	56	56	frb56-25-3	5	114	48	99	p_hat500-3	5	90	47	87
p_hat500-3	4	81	47	79	frb56-25-4	5	114(113.2)	48	97	p_hat700-1	5	19	17	18
p_hat700-1	4	17	16	17	frb56-25-5	5	115(114.12)	48	100	p_hat700-2	5	79	73	76
p_hat700-2	4	70	67	69	frb59-26-1	5	122(121.8)	51	110	p_hat700-3	5	109	60	107
p_hat700-3	4	100	60	98	frb59-26-2	5	122(121.78)	49	106	san1000	5	41	10	40
san1000	4	33	10	32	frb59-26-3	5	121(120.96)	50	105	san200_0.7_1	5	75	30	75
san200_0.7_1	4	60	30	60	frb59-26-4	5	122(120.86)	50	103	san200_0.7_2	5	60	15	60
san200_0.7_2	4	49	15	48	frb59-26-5	5	120(119.98)	50	104	san200_0.9_2	5	105	51	103
san200_0.9_2	4	105	105	103	brock200_1	5	39	20	37	san200_0.9_3	5	100	35	95
san200_0.9_3	4	96	35	95	brock200_2	5	20	10	20	san400_0.5_1	5	36(35.28)	13	35
san400_0.5_1	4	29	13	28	brock200_3	5	26	13	25	san400_0.7_1	5	100	40	100
san400_0.7_1	4	81(80.82)	40	80	brock200_4	5	30	15	29	san400_0.7_2	5	76	18	75
san400_0.7_2	4	61	18	60	brock400_1	5	46(45.68)	23	42	san400_0.7_3	5	61	16	60
san400_0.7_3	4	50(49.82)	16	48	brock400_2	5	45	23	43	san400_0.9_1	5	200	99	193
san400_0.9_1	4	200	99	193	brock400_3	5	46(45.98)	22	43	sanr200_0.7	5	33	16	31
sanr200_0.7	4	30	16	29	brock400_4	5	46	23	42	sanr200_0.9	5	77	38	74
sanr200_0.9	4	69	38	65	brock800_1	5	37	19	34	sanr400_0.5	5	24	12	22
sanr400_0.5	4	21	12	21	brock800_2	5	38	19	33	sanr400_0.7	5	39	19	36
sanr400_0.7	4	35	19	32	brock800_3	5	38	19	33					
frb100-40	5	202(199.28)	82	170	brock800_4	5	37	18	33					

Table 5: Experimental results of Nukplex, KpLeX-Gap and DiseMKP on classic instances II. Nukplex is executed for 100 independent runs, with a cutoff time of 1000 seconds for each run, whereas the two exact algorithms are executed with a cutoff time of 1800 seconds.

Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max	Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max	Instance	k	Nukplex max(avg)	KpLeX-Gap max	DiseMKP max
333SP	2	5	5	4	soc-orkut	3	59	59	31	as-22july06	5	24	24	23
kron_*-logn16	2	140	136	138	soc-buzznet	3	41	27	41	cit-Patents	5	31	8	31
rgg_n_2_17_s0	2	16	16	15	soc-flickr	3	77	76	77	audikw1	5	45	45	33
soc-flickr	2	68	64	66	audikw1	4	45	45	33	kron_*-logn16	5	152	136	23
soc-digg	2	57	57	25	cit-Patents	4	26	6	26	WikiTalk	5	44	44	42
soc-orkut	2	52	52	27	kron_*-logn16	4	148	146	147	soc-buzznet	5	50	48	49
audikw1	3	39	39	36	WikiTalk	4	41	40	39	soc-flickr	5	90	89	89
eu-2005	3	390	390	389	soc-buzznet	4	46	27	45	tech-as-skitter	5	75	75	72
kron_*-logn16	3	144	136	143	soc-orkut	4	63 (62.6)	63	34	soc-digg	5	72	71	36
WikiTalk	3	36	35	35	soc-flickr	4	85	56	84	soc-orkut	5	68 (66.8)	68	37
tech-as-skitter	3	71	71	67	tech-as-skitter	4	74	74	69					
soc-digg	3	63	59	29	soc-digg	4	69	66	33					

Table 6: Experimental results of Nukplex, KpLeX-Gap and DiseMKP on large sparse instances. Nukplex is executed for 100 independent runs, with a cutoff time of 1000 seconds for each run, whereas the two exact algorithms are executed with a cutoff time of 1800 seconds.

Instance	k	Nukplex max(avg)	DiseMKP max	KpLeX-Gap max	Instance	k	Nukplex max(avg)	DiseMKP max	KpLeX-Gap max	Instance	k	Nukplex max(avg)	DiseMKP max	KpLeX-Gap max
scc_retweet	2	166	165	166	soc-digg	10	87	53	87	soc-twitter-follows	15	30	26	30
soc-BlogCatalog	2	54	54	52	socfb-A-anon	10	47	43	47	soc-youtube	15	43	41	43
soc-digg	2	57	25	57	socfb-Duke14	10	60	59	60	soc-youtube-snap	15	43	42	43
soc-flickr	2	68	66	64	socfb-MIT	10	57	56	57	tech-as-skitter	15	95	89	95
soc-FourSquare	2	35	33	35	socfb-Stanford3	10	75	57	75	tech-internet-as	15	37	36	37
soc-orkut	2	52	27	52	socfb-UCLA	10	67	66	67	web-spam	15	47	45	47
soc-BlogCatalog	3	60	58	58	socfb-UIllinois	10	82	47	82	web-wikipedia2009	15	37	35	35
soc-buzznet	3	41	41	27	soc-flickr	10	114	113	56	ia-enron-large	15	45	42	45
soc-digg	3	63	29	59	soc-FourSquare	10	53	49	53	ia-wiki-Talk	20	51	22	50
soc-flickr	3	77	77	76	soc-gowalla	10	42	39	42	scc_reality	20	1251 (1248.9)	1248	1251
soc-FourSquare	3	39	36	39	soc-LiveMocha	10	41	25	41	sc-msdoor	20	45	40	45
soc-orkut	3	59	31	59	soc-orkut	10	89 (88.2)	51	89	sc-pkustk11	20	56 (55.3)	56	56
tech-as-skitter	3	71	67	71	soc-youtube-snap	10	35	34	35	sc-pkustk13	20	55	54	55
soc-orkut	4	63 (62.6)	63	34	tech-as-skitter	10	84	80	84	sc-pwtk	20	46	38	46
soc-buzznet	4	46	45	27	web-spam	10	40	39	40	sc-shipsec5	20	44	42	44
soc-digg	4	69	33	66	web-wikipedia2009	10	33	26	33	soc-BlogCatalog	20	123	123	41
socfb-Duke14	4	45	43	45	ia-enron-large	10	38	36	38	soc-buzznet	20	89	88	88
socfb-Indiana	4	57	56	57	ia-wiki-Talk	15	44	42	44	soc-delicious	20	49	48	49
soc-flickr	4	85	84	56	sc-pkustk13	15	50	45	50	soc-digg	20	109	81	109
soc-karate	4	8	7	8	sc-pwtk	15	38	36	38	socfb-A-anon	20	61	58	61
tech-as-skitter	4	74	69	74	soc-BlogCatalog	15	109	109	41	socfb-B-anon	20	64	52	64
soc-BlogCatalog	4	66	64	61	soc-buzznet	15	78	77	76	socfb-CMU	20	67	66	67
soc-buzznet	5	50	49	48	soc-delicious	15	43	42	43	socfb-Stanford3	20	77	75	77
soc-digg	5	72	36	71	soc-digg	15	100	68	100	socfb-Texas84	20	94	93	94
socfb-Duke14	5	48	46	48	socfb-A-anon	15	54	52	54	socfb-UIllinois	20	96	65	96
socfb-Stanford3	5	67	65	67	socfb-B-anon	15	57	45	57	soc-flickr	20	153	152	150
soc-flickr	5	90	89	89	socfb-CMU	15	62	60	62	soc-FourSquare	20	65	54	65
soc-FourSquare	5	44	38	44	socfb-Stanford3	15	77	67	77	soc-LiveMocha	20	60	41	60
soc-orkut	5	68 (66.2)	37	68	socfb-UIllinois	15	89	57	89	soc-orkut	20	108(100.5)	73	111
tech-as-skitter	5	75	72	75	socfb-Wisconsin87	15	67	65	67	soc-pokec	20	55	49	55
soc-BlogCatalog	5	72	69	70	soc-flickr	15	135	133	56	soc-slashdot	20	68	67	68
ia-wiki-Talk	10	35	34	35	soc-FourSquare	15	59	49	59	soc-youtube	20	50	48	50
sc-pkustk11	10	48 (43.8)	48	48	soc-gowalla	15	49	47	49	soc-youtube-snap	20	51	48	51
sc-pwtk	10	33 (31.8)	30	33	soc-LiveMocha	15	52	34	52	tech-as-skitter	20	104	102	104
soc-BlogCatalog	10	93	90	90	soc-orkut	15	99(96.4)	63	101	ia-enron-large	20	51	49	51
soc-buzznet	10	65	64	64	soc-pokec	15	49	42	49	web-wikipedia2009	20	46	44	45

Table 7: Experimental results of Nukplex, KpLeX-Gap and DiseMKP on the Network-Repo instances. Nukplex is executed for 10 independent runs, with a cutoff time of 1000 seconds for each run, whereas the two exact algorithms are executed with a cutoff time of 1800 seconds.

Instance k 1	Nukplex	KpLeX-Gap	DiseMKP	Instance	1/2	Nukplex	KpLeX-Gap	DiseMKP	Instance	1/2	Nukplex	KpLeX-Gap	DiseMKP	
Histalice	K	max(avg)	max	max	Histalice	K	max(avg)	max	max	Histalice	K	max(avg)	max	max
333SP	2	5	5	4	audikw1	5	45	45	33	kron *-logn16	15	182	180	178
kron *-logn16	2	140	136	138	cit-Patents	5	31	8	31	Slashdot0902	15	61	61	60
rgg n 2 17 s0	2	16	16	15	kron *-logn16	5	152	136	23	web-Stanford	15	74	72	74
audikw1	3	39	39	36	WikiTalk	5	44	44	42	WikiTalk	15	70	69	70
eu-2005	3	390	390	389	audikw1	10	48	48	45	Wiki-Vote	15	47	47	46
kron *-logn16	3	144	136	143	Email-EuAll	10	36	36	35	audikw1	20	60 (58)	60	54
WikiTalk	3	36	35	35	kron *-logn16	10	168	165	164	Slashdot0811	20	68	68	67
audikw1	4	45	45	33	WikiTalk	10	58	56	57	lashdot0902	20	69	69	68
cit-Patents	4	26	6	26	audikw1	15	52	52	45	web-Stanford	20	82	82	48
kron *-logn16	4	148	146	147	cit-Patents	15	63	63	62	WikiTalk	20	81	79	79
WikiTalk	4	41	40	39	cond-mat-2005	15	38	38	31					

Table 8: Experimental results of Nukplex, KpLeX-Gap and DiseMKP on the 10th-DIMACS instances. Nukplex is executed for 10 independent runs, with a cutoff time of 1000 seconds for each run, whereas the two exact algorithms are executed with a cutoff time of 1800 seconds.