# **Marketing Research Assignment**

2018100116 LIJIAXUE 2017105589 ZHANG MENG 2017105591 ZHANGYUZHUO 2012100249 SANGHYUK SON

- We used Python Libraries(Numpy, Pandas, Matplotlib, scipy) to explore the Data.
- We wrote this document by using Jupyter Notebook, Typora, and Markdown.
- Due to the lack of spcae, many pre-processing processes have been omitted. You can see all raw codes in the link below.

https://github.com/saanghyuk/deep\_learning\_2019\_fall/tree/master/MarketingResearch (Github)

#### Form the two hypotheses to the Data

| Data           | Hypothesis Question                                                                                                                           |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Credit<br>Risk | Is the total savings(combined checking and savings account balance) of Population 2800?                                                       |
| Credit<br>Risk | Does the total savings(combined checking and savings account balance) have a correlation with the number of months as a customer of the bank? |
| Facebook       | Does the Hours online/week have a correlation with Friends?                                                                                   |

#### In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from pandas.plotting import scatter_matrix
import seaborn as sns
sns.set(style="ticks", color_codes=True)

%matplotlib inline

mpl.rcParams['axes.unicode_minus'] = False
```

```
In [2]:
```

```
df = pd.read_excel('Data_Sets.xlsx')
```

#### **Explore the Data**

There are 10 columns in this Data

```
In [67]:
```

```
data.head()
```

#### Out[67]:

|   | Loan<br>Purpose    | Checking | Savings | Months<br>Customer | Months<br>Employed | Gender | Marital<br>Status | Age | Housing | Yeaı |
|---|--------------------|----------|---------|--------------------|--------------------|--------|-------------------|-----|---------|------|
| 1 | Small<br>Appliance | 0        | 739     | 13                 | 12                 | М      | Single            | 23  | Own     |      |
| 2 | Furniture          | 0        | 1230    | 25                 | 0                  | М      | Divorced          | 32  | Own     |      |
| 3 | New Car            | 0        | 389     | 19                 | 119                | М      | Single            | 38  | Own     |      |
| 4 | Furniture          | 638      | 347     | 13                 | 14                 | М      | Single            | 36  | Own     |      |
| 5 | Education          | 963      | 4754    | 40                 | 45                 | М      | Single            | 31  | Rent    |      |

#### We have to divde Categorical and Numerical Data to deep dive into Data.

#### In [19]:

#### In [75]:

```
cate_data = data[cate_list]
```

# In [76]:

```
num_data = data[num_list]
num_data = num_data.infer_objects()
```

## We want to see the approximate description of these two data

#### In [79]:

```
cate_data.describe()
```

#### Out[79]:

|        | Loan Purpose    | Gender | Marital Status | Housing | Job     | Credit Risk |
|--------|-----------------|--------|----------------|---------|---------|-------------|
| count  | 425             | 425    | 425            | 425     | 425     | 425         |
| unique | 10              | 2      | 3              | 3       | 4       | 2           |
| top    | Small Appliance | М      | Single         | Own     | Skilled | Low         |
| freq   | 105             | 290    | 233            | 292     | 271     | 214         |

```
In [80]:
```

```
num_data.describe()
```

## Out[80]:

|       | Checking     | Savings      | Months<br>Customer | Months<br>Employed | Age        | Years      |
|-------|--------------|--------------|--------------------|--------------------|------------|------------|
| count | 425.000000   | 425.000000   | 425.000000         | 425.000000         | 425.000000 | 425.000000 |
| mean  | 1048.014118  | 1812.562353  | 22.896471          | 31.896471          | 34.397647  | 2.840000   |
| std   | 3147.183472  | 3597.285020  | 12.267599          | 32.259321          | 11.045126  | 1.087146   |
| min   | 0.000000     | 0.000000     | 5.000000           | 0.000000           | 18.000000  | 1.000000   |
| 25%   | 0.000000     | 228.000000   | 13.000000          | 6.000000           | 26.000000  | 2.000000   |
| 50%   | 0.000000     | 596.000000   | 19.000000          | 20.000000          | 32.000000  | 3.000000   |
| 75%   | 560.000000   | 921.000000   | 28.000000          | 47.000000          | 41.000000  | 4.000000   |
| max   | 19812.000000 | 19811.000000 | 73.000000          | 119.000000         | 73.000000  | 4.000000   |

## I want to sum 'Checking' and 'Savings' as 'saving\_total' column.

```
In [81]:
```

```
frames = [cate_data, num_data]
```

```
In [82]:
```

```
data_2 = pd.concat(frames, axis=1, sort=False)
data_2['saving_total'] = data_2['Checking ']+data_2['Savings']
```

```
In [83]:
```

```
assign_data=data_2
```

assign\_data is the final version data after pre-processing

#### In [84]:

#Data Check (5 rows)
assign\_data.head()

#### Out[84]:

|   | Loan<br>Purpose    | Gender | Marital<br>Status | Housing | Job        | Credit<br>Risk | Checking | Savings | Months<br>Customer |
|---|--------------------|--------|-------------------|---------|------------|----------------|----------|---------|--------------------|
| 1 | Small<br>Appliance | М      | Single            | Own     | Unskilled  | Low            | 0        | 739     | 13                 |
| 2 | Furniture          | М      | Divorced          | Own     | Skilled    | High           | 0        | 1230    | 25                 |
| 3 | New Car            | М      | Single            | Own     | Management | High           | 0        | 389     | 19                 |
| 4 | Furniture          | М      | Single            | Own     | Unskilled  | High           | 638      | 347     | 13                 |
| 5 | Education          | М      | Single            | Rent    | Skilled    | Low            | 963      | 4754    | 40                 |

#### In [33]:

num\_data.describe()

#### Out[33]:

|       | Checking     | Savings      | Months<br>Customer | Months<br>Employed | Age        | Years      |
|-------|--------------|--------------|--------------------|--------------------|------------|------------|
| count | 425.000000   | 425.000000   | 425.000000         | 425.000000         | 425.000000 | 425.000000 |
| mean  | 1048.014118  | 1812.562353  | 22.896471          | 31.896471          | 34.397647  | 2.840000   |
| std   | 3147.183472  | 3597.285020  | 12.267599          | 32.259321          | 11.045126  | 1.087146   |
| min   | 0.000000     | 0.000000     | 5.000000           | 0.000000           | 18.000000  | 1.000000   |
| 25%   | 0.000000     | 228.000000   | 13.000000          | 6.000000           | 26.000000  | 2.000000   |
| 50%   | 0.000000     | 596.000000   | 19.000000          | 20.000000          | 32.000000  | 3.000000   |
| 75%   | 560.000000   | 921.000000   | 28.000000          | 47.000000          | 41.000000  | 4.000000   |
| max   | 19812.000000 | 19811.000000 | 73.000000          | 119.000000         | 73.000000  | 4.000000   |

# 1. Is the total savings (combined checking and savings account balance) of Population 2800?

One population Mean Testing about Savings sample mean = 2860.576471 sample std = 4826.993904

H0 : µ=2800 H1 : µ≠2800

```
In [86]:
import statsmodels.api as sm
import numpy as np
import pandas as pd
In [96]:
savings total = assign data['saving total']
In [97]:
print('The number of data : ',len(savings_total))
print('Sample Mean : ', savings_total.mean())
print('Sample Std : ', savings total.std())
The number of data: 425
Sample Mean: 2860.576470588235
Sample Std: 4826.993904117601
In [98]:
sm.stats.ztest(savings total, value=2800, alternative='two-sided')
Out[98]:
(0.2587150425540816, 0.7958551123461524)
P-value pretty high here, and then we can't reject the H0
In [ ]:
2. Does the total savings (combined checking and savings account balance)
have a correlation with the number of months as a customer of the bank?
H0: Two variables are not correlated.
H1: Two variables are correlated.
In [92]:
from scipy.stats import pearsonr
In [93]:
```

In [94]:

savings=assign data['saving total']

months customer=assign data['Months Customer']

```
In [95]:
```

```
ax1 = assign_data.plot.scatter(x='saving_total', y='Months Customer', c='DarkBlu
e')
```



#### In [90]:

```
corr, p = pearsonr(savings, months_customer)
```

#### In [91]:

```
print(corr, p)
```

-0.06121000781711819 0.2079070784127837

correlation coefficient = -0.06121000781711819 p-value = 0.2079070784127837

In this pearsonr function, The null hypothesis is that the two variables are uncorrelated. The p-value is a number between zero and one that represents the probability that your data would have arisen if the null hypothesis were true.

corr is near 0, and P-value is really big. So, we cannot reject the null hypothesis(Uncorrelated)

```
In [ ]:
```

# Start pre-processing of Facebook Data

```
In [121]:
```

```
df = pd.read_excel('Data_Sets.xlsx', 'Facebook')
```

```
In [117]:
```

```
df1=df
df1.head()
```

## Out[117]:

| Unnamed: 3 | Unnamed: 2        | Unnamed: 1 | FACEBOOK SURVEY DATA |   |
|------------|-------------------|------------|----------------------|---|
| NaN        | NaN               | NaN        | NaN                  | 0 |
| Friends    | Hours online/week | Gender     | Student              | 1 |
| 150        | 4                 | female     | 1                    | 2 |
| 400        | 10                | female     | 2                    | 3 |
| 260        | 9                 | female     | 5                    | 4 |

## In [118]:

```
df1 = df1.shift(-1)
```

## In [123]:

```
new_col_names = pd.Series(df1.iloc[0])
df1.columns=list(new_col_names)
```

## In [124]:

```
df1=df1.drop(df1.index[0])
df1=df1.drop(df1.index[33])
df1.head()
```

#### Out[124]:

|   | Student | Gender | Hours online/week | Friends |
|---|---------|--------|-------------------|---------|
| 1 | 1       | female | 4                 | 150     |
| 2 | 2       | female | 10                | 400     |
| 3 | 5       | female | 9                 | 260     |
| 4 | 6       | female | 5                 | 70      |
| 5 | 7       | female | 7                 | 90      |

```
In [109]:
```

```
df1=df1.drop(df1.index[0])
df1=df1.drop(df1.index[33])
df1.head()
```

#### Out[109]:

|   | FACEBOOK SURVEY DATA | Unnamed: 1 | Unnamed: 2 | Unnamed: 3 |
|---|----------------------|------------|------------|------------|
| 1 | 1                    | female     | 4          | 150        |
| 2 | 2                    | female     | 10         | 400        |
| 3 | 5                    | female     | 9          | 260        |
| 4 | 6                    | female     | 5          | 70         |
| 5 | 7                    | female     | 7          | 90         |

#### In [126]:

```
df2= df1.infer_objects()
```

#### In [129]:

```
assign2_data = df2
```

Final version data after preprocessing = assign2\_data

## 3. Does the Hours online/week have a correlation with Friends?

H0: Two variables are not correlated.

H1: Two variables are correlated.

## In [130]:

```
hours=assign2_data['Hours online/week']
friends=assign2_data['Friends']
```

#### In [133]:

```
assgin2_data.plot.scatter(x='Hours online/week', y='Friends')
```

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.

#### Out[133]:

<matplotlib.axes. subplots.AxesSubplot at 0x1c22287c18>



#### In [134]:

```
corr, p = pearsonr(hours, friends)
```

#### In [135]:

```
print(corr, p)
```

0.6918339795143523 8.224280934770067e-06

Correlation is about 0.7, and p-value is 8.22e-06(So Low).

So, We can reject the null hypothesis(No-correlation) This two data can be positively-correlated.