Definiere ein metrischer Raum (und Metrik).	Sien $M \neq \emptyset$ eine Menge und $d: M: M \times M \to \mathbb{R}$ eine Abbildung, d heißt $Metrik$ in M , wenn $\forall x, y, z \in M$ gilt: 1. (Definitheit) $d(x, y) \geq 0$ und $d(x, y) = 0 \Leftrightarrow x = y$, 2. (Symmetrie) $d(x, y) = d(y, x)$, 3. (Dreiecksungleichung) $d(x, y) \leq d(x, z) + d(z, y)$. (M, d) heißt dann $metrischer\ Raum$.
Definiere einen normieren Raum.	Seien V Vektorraum (über \mathbb{R} oder \mathbb{C}) und $\ \cdot\ : V \to \mathbb{R}/\mathbb{C}$ eine Abbildung. Die Abb. heißt $Norm$ auf V , wenn $\forall x, y \in V, \lambda \in \mathbb{R}(\text{bzw.} \in \mathbb{C})$ gilt: 1. (Definitheit) $\ x\ \geq 0$ und $\ x\ = \Leftrightarrow x = 0$, 2. (Homogenität) $\ \lambda x\ = \lambda \ x\ $, 3. (Dreiecksungleichung) $\ x + y\ \leq \ x\ + \ y\ $. $(V, \ \cdot\)$ heißt $Normierter\ Raum$.
Ein vollständiger normierter Raum heißt	Banach-Raum.
Ein Banach-Raum ist	ein vollständiger normierter Raum.

Wie lautet die Minkowski-Ungleichung?	Sei $1 \le p \le \infty, x,y \in l^p,$ dann $\ x+y\ _p \le \ x\ _p + \ y\ _p$ Also Dreiecksungleichung für die p -Norm. Analoge Aussage gilt für L^p .
Wie lautets die Hölder-Ungleichung?	Für $x\in l^1,y\in l^\infty$ gilt: $xy:=(x_ny_n)_{n\in\mathbb{N}}\in l^1. \text{und} \ xy\ _1\leq \ x\ _1\cdot \ y\ _\infty$
Definiere einen unitären Raum.	Sei V ein Vektorraum über \mathbb{C} . Ein Skalarprodukt auf V ist eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ mit den Eigenschaften $\forall \varphi, \psi, \chi \in V, c \in \mathbb{C}$ gilt: i) $\langle \varphi, \varphi \rangle \geq 0$ und $\langle \varphi, \varphi \rangle = 0 \Leftrightarrow \varphi = 0$, ii) $\langle \varphi, \psi + \chi \rangle = \langle \varphi, \psi \rangle + \langle \varphi, \chi \rangle$, iii) $\langle \varphi, c \cdot \psi \rangle = \cdot \langle \varphi, \psi \rangle$, iv) $\langle \varphi, \psi \rangle = \overline{\langle \varphi, \psi \rangle}$. $(V, \langle \cdot, \cdot \rangle)$ heißt $unit \ddot{a} rer Raum$.
Ein Hilbertraum ist ein	vollständiger unitärer Raum.

Ein vollständiger unitärer Raum heißt	Hilbertraum.
Ein Hilbertraum ${\cal H}$ heißt $seperabel,$ wenn	es eine abzählbare Menge $\{\varphi_n, n \in \mathbb{N}\} \subseteq \mathcal{H}$ gibt, die dicht in \mathcal{H} liegt.
Wie ist ein Abstand von einer Teilmenge in einem Hilbertraum definiert?	Seien \mathcal{H} ein Hilbertraum, $\phi \in \mathcal{H}, K \neq \emptyset, K \subseteq \mathcal{H}$ abgeschlossen und konvex. Dann ist: $\operatorname{dist}(\phi, K) \coloneqq \inf \left\{ \ \phi - \psi\ \psi \in K \right\}$
Wie lautet der Satz über die Existenz des Abstands?	Seine \mathcal{H} ein Hilbertraum, $K \subseteq \mathcal{H}$ eine abgeschlossene, konvexe Menge und $\varphi_0 \in \mathcal{H}$. Dann $\exists ! \ \psi_0 \in \mathcal{H} \ \text{mit} \ \ \varphi_0 - \psi_0\ = \text{dist}(\varphi_0, K)$. Außerdem gilt:
	$\forall \psi \in K : \Re \langle \psi, \varphi_0 - \psi_0 \rangle \le \Re \langle \psi_0, \varphi_0 - \psi_0 \rangle$

Wie ist das orthogonale Komplement definiert?	Seien $\mathcal H$ ein Hilbertraum und $M\subseteq\mathcal H$. Die Menge $M^\perp:=\left\{\varphi\in\mathcal H \forall\psi\in M:\varphi\perp\psi\right\}$ heißt $orthogonales$ $Komplement$ von M .
Wie lautet der Projektionssatz?	Seien $\mathcal H$ ein Hilbertraum, $\mathcal E \subset \mathcal H$ ein abgeschlossener Untervektorraum. Dann hat jedes $\varphi \in \mathcal H$ eine eindeutige Darstellung: $ \varphi = \psi + \psi^\perp \text{mit} \psi \in L \text{ und } \psi^\perp \in L^\perp $ ψ heißt $orthogonale\ Projektion\ von\ \varphi\ \text{auf}\ L.$ Durch $\varphi \mapsto P_\varphi \coloneqq \psi$ wird ein linearer Operator definiert. Es gilt $P^2 = P$ und $\forall \varphi \in \mathcal H: \ P_\varphi\ \leq \ \varphi\ .$
Was sind die Aussagen des Satzes über die Orthonormalsysteme in Hilberträumen?	Seien \mathcal{H} ein Hilbertraum und (ϕ_n) ein Orthonormalsystem in \mathcal{H} . Die folgende Aussagen sind äquivalent: i) $\operatorname{span}\{\varphi_n n\in\mathbb{N}\}$ ist dicht in \mathcal{H} . ii) $\forall \varphi\in\mathcal{H}:\ \phi=\sum_{n=1}^{\infty}\langle\varphi_n,\varphi\rangle\varphi_n\coloneqq\lim_{N\to\infty}\sum_{n=1}^N\langle\varphi_n,\varphi\rangle\varphi_n$ iii) $\forall \varphi\in\ Hi$ gilt die Parservalsche Gleichung: $\ \varphi\ ^2=\sum_{n=1}^{\infty}\left \langle\varphi_n,\varphi\rangle\right ^2$
Sei $\mathcal H$ ein Hilbertraum. Wie ist eine $\mathit{Orthonormalbasis}$ von $\mathcal H$ definiert?	Ein Orthonormalsystem (ϕ_n) in \mathcal{H} , für das span $\{\varphi_n \mid n \in \mathbb{K}\}$ dicht in \mathcal{H} ist, heißt $Orthonormalbasis$.

Was sind die wichtigen Bemerkungen zum Thema Orthogonalbasen nov Hilberträumen?	 Reihenfolge von (φ_n) ist eigentlich nicht relevant.
Erkläre die Isomorphie eines separablen \mathcal{H} zu l^2 .	 (φ_n) ONB von H. Die Abbildung J: H → l², φ ↦ (⟨φ_n, φ⟩)_{n∈ℕ} ist: linear (da das Skalarprodukt im 2. Eintrag es ist.), bijektiv (da Darstellung bzgl. einer ONB eindeutig ist), isometrisch. Mit linear folgt J Vektorraumhomomorphismus weiter mit bijektiv J Vektorraumisomorphismus. mit Isometrie ⇒ isometrische Isomorphie.
Definiere den $Dualraum$ zu \mathcal{H} .	Der Dualraum zu $\mathcal H$ ist der Vektorraum aller linearen stetigen Funktionale auf $\mathcal H$ mit der Norm: $\ f\ _{\mathcal H'} \coloneqq \sup \Big\{ \big f(\varphi) \big \mid \varphi \in \mathcal H, \ \varphi\ \le 1 \Big\}$ Er wird mit $\mathcal H'$ bezeichnet.

jeder Hilbertraum eine Orthonormalbasis hat.

Der Satz über die Orthonormalbasis eines Hilbertraumes

besagt, dass...

Wie lautet der Satz von Riesz?	 ∀f ∈ H' gibt es ein eindeutiges ψ ∈ H so, dass f := f_ψ, wobei f_ψ : H → C, φ ↦ ⟨ψ, φ⟩. Die Abbildung J : H → H', ψ ↦ f_ψ ist bijektiv und konjugiert linear. Es gilt ∀ψ ∈ H : Ψ = f_Ψ _{H'}.