

Course Setup

- Goal: Enabled you to develop machine learning algorithms from scratch
 - We will pick the pace that helps you to get excited; please interrupt and ask questions!
- Format: We have one topic per week with a lecture and tutorial
 - Lecture: Tuesday, 9:15am 10:45pm (HS2)
 - Tutorial: Wednesday: 3:15pm 4:45pm (HS3)
- Assignment: Five assignments to solve them (groups of two). They account for 40% of all points (8 points each)
 - Handed out every other week on Monday (starting 2nd week, October 20)
 - Each assignment has a theory and a practice part
- **Tutorial**: Supporting the material of the lecture and the assignments
 - In the tutorial, Rainer will solve similar exercises to the assignments with you
 - We will answer questions you have with the actual assignments
- **Exam (60 points)**: Counts for 60% of all points; 120 minutes long (**February 24**)

Advanced Probabilistic Machine Learning

Course Material

- **Books**: All our material and communication will happen over Moodle
 - Bishop, C. <u>Pattern Recognition and Machine Learning</u>. Springer. 2006.
 - MacKay, D. <u>Information Theory, Inference, and Learning Algorithms</u>. CUP. 2003
- Moodle: Share our lecture slides, tutorials, solutions
 - Location: https://moodle.hpi.de/course/view.php?id=982
 - Announcements: https://moodle.hpi.de/mod/forum/view.php?id=33393
- GitHub Repository: Supporting material as well as code samples
 - Location: https://github.com/HPI-Artificial-Intelligence-Teaching/pml-wise2025
 - If you find mistakes, please submit <u>issues</u> and <u>pull requests</u>
- GitHub Classrooms: Used for all our assignments
 - If you do not have a GitHub account, please create one now
 - Find a team member as assignments are solved in groups of two
 - More details tomorrow in the first tutorial

Advanced Probabilistic Machine Learning

Course Structure

Foundation

- 1. Probability Theory (Unit 1)
- Linear Algebra (Unit 2)

Methods

- 3. Graphical Models (Unit 3)
- 4. Exact Inference (Unit 4)
- 5. Approximate Inference: Expectation Propagation (Unit 5)
- 6. Approximate Inference: Variational Inference (Unit 6)
- 7. Approximate Inference: Mixture Models (Unit 7)
- 8. Approximate Inference: Message Approximation (Unit 8)

Applications

- 8. Text: Topic Models (Unit 9)
- 9. Images: Conditional Markov Random Fields (Unit 10)
- 10. Policies: Reinforcement Learning (Unit 11)

Advanced Probabilistic Machine Learning

Julia

- 2012 developed by Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B. Shah at MIT
- Used for numerical and scientific computing with high performance
 - Execution speed is similar to C and FORTRAN
 - Hierarchical and parameterized type system as well as method overloading ("multiple dispatching") as central concepts
 - Native calls from C-(compiled) code possible (without wrappers)
- Unicode is efficiently supported (e.g., UTF-8)
- Alongside C, C++ and FORTRAN, the only programming language that has entered the "PetaFlop Club"

Jeff Bezanson (1981–)

Alan Edelman (1963 –)

Stefan Karpinski (1981–)

Viral Shah

Advanced Probabilistic
Machine Learning

Overview

- 1. Probability in Machine Learning
- 2. Probability Theory
- 3. Exponential Family Distributions

Advanced Probabilistic Machine Learning

Overview

- 1. Probability in Machine Learning
- 2. Probability Theory
- 3. Exponential Family Distributions

Advanced Probabilistic Machine Learning

What is Probability?

Weather forecast: A meteorologist says

"Tomorrow, it is going to rain in Bangalore with 60%"

■ Two interpretations:

- 1. The meteorologist has analyzed all regions which have similar environmental conditions than Bangalore today. His (**objective**) estimate based on past data is that the procedure which predicts rain tomorrow is correct 60% of the time.
- 2. The meteorologist *believes* that it is more likely that it rains tomorrow in Bangalore (than it is to not rain tomorrow). 60% is the quantification of the (**subjective**) belief of the meteorologist.

Advanced Probabilistic Machine Learning

Frequentist vs. Subjectivist Interpretation

Frequentist Interpretation

- Probability is a property of the event ("it rains tomorrow in Bangalore")
- Is operationalized by repeated experiments
- Typically used by scientists and engineers

Subjective Interpretation

- Probability is an expression of belief of the person that makes a statement
- Is subjective and people-dependent: Two people with identical data can come to different probabilities
- Typically used by philosophers and economists
- 1. Probability is not a physical measure but a thought model for randomness!
- 2. The mathematical rules for probability are **identical** for both interpretations!

Advanced Probabilistic Machine Learning

Rules of Probability

- Mathematical Definition. A number $P(A) \in [0,1]$ assigned to an event or statement A that indicates how likely A is to occur.
- **Set Theory**. We model events and statements via set theory and assume
 - □ A countably infinite total set $\Omega \supseteq A$
 - If A(x) is a 1st order logic statement, then $A := \{x \mid A(x)\}$ and
 - $A \subseteq B \equiv \forall x : A(x) \rightarrow B(x)$ and $A^c \equiv \forall x : \neg A(x)$
 - $A \cup B \equiv \forall x : A(x) \vee B(x)$ and $A \cap B \equiv \forall x : A(x) \wedge B(x)$
- **Rules**: For all $A, B \subseteq \Omega$
 - **Monotonicity**: If $A \subseteq B$ then $P(A) \le P(B)$
 - □ Complement Rule: $P(A^c) = 1 P(A)$
 - □ Sum Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Product Rule:
$$P(A \cap B) = \frac{P(A \cap B)}{P(B)} \cdot P(B)$$

Advanced Probabilistic Machine Learning

Frequentist vs. Subjective Probabilities

- Kolmogorov (1933): The rules of probability for sets follow from the following 3 axioms
 - 1. $P(A) \ge 0$ for all $A \subseteq \Omega$
 - 2. $P(\Omega) = 1$
 - 3. $P(\bigcup_i A_i) = \sum_i P(A_i)$ if for all $i \neq j$: $A_i \cap A_j = \emptyset$
- Cox (1944): The rules of probability for logic follow from the following 3 axioms
 - 1. $P(A) \in [0,1]$ for all logical statements A
 - 2. P(A) is independent of how the statement is represented
 - 3. If P(A|C') > P(A|C) and $P(B|A \wedge C') = P(B|A \wedge C)$ then $P(A \wedge B|C') \ge P(A \wedge B|C)$

Andrey Kolmogorov (1903 - 1987)

Richard Threlkeld Cox (1898 - 1991)

Advanced Probabilistic Machine Learning

The Role of Probability in Machine Learning

Objective probability over the repeated

draw of

training sets D

Theory: How likely is it, that the accuracy of a predictor A(D) learned from training data D is good?

 $P(Accuracy(\mathcal{A}(D)) < \varepsilon) \le \delta$

Typical Assumptions

- Independent identically distributed data (IID)
- 2. Accuracy is an expected performance measure on the next test example
- Frequentist view on probability: Over *N* applications of the learning algorithm and draws of random training data *D*, for how many is the learned predictor accurate?

Practice: What can we say about the plausibility of a single predictor f in light of training data D?

P(f|D)

Typical Assumptions

- Independent identically distributed data (IID)
- Known conditional dependence of data and predictor
- Subjectivist view on probability: Given the certain and known training data *D*, what is the remaining uncertainty over the right predictor for (future) data?

Subjective belief that *f* is the right predictor given *D*

Advanced Probabilistic Machine Learning

Overview

- 1. Probability in Machine Learning
- 2. Probability Theory
- 3. Exponential Family Distributions

Advanced Probabilistic Machine Learning

Probability Theory: Law of Total Probability

■ **Total Probability Theorem**. Let $A_1, A_2, ..., A_n \subseteq \Omega$ be disjoint events that form a partition of the sample space Ω and $P(A_i) > 0$ for all A_i . Then, for any event $B \subseteq \Omega$

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Geometric Proof

Advanced Probabilistic Machine Learning

Probability Theory: Bayes Rule

Bayes' Theorem. Let $A_1, A_2, ..., A_n$ be disjoint events that form a partition of the sample space S and $P(A_i) > 0$ for all A_i . Then, for any event B with P(B) > 0

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$
 law of total probability

(Rev) Thomas Bayes (1701 – 1761)

Proof. Follows from the definition of conditional probability and "multiply-by-1"

$$P(A_i \cap B) \cdot \frac{P(B)}{P(B)} = P(A_i \cap B) \cdot \frac{P(A_i)}{P(A_i)}$$
 =1 (by definition $P(A_i) > 0$ and $P(B) > 0$)
$$P(A_i|B) \cdot P(B) = P(B|A_i) \cdot P(A_i)$$
 by definition of conditional probability
$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}$$

• **Simplified view** when looking at the probabilities as functions of A_i

Advanced Probabilistic Machine Learning

$$P(A_i|B) \propto P(B|A_i) \cdot P(A_i)$$
posterior likelihood prior

Bayes Rule: False-Positive Puzzle

- **Situation**: A test for a rare disease is assumed to be correct 95% of the time (i.e., the probability that the test shows the disease or lack thereof is 95%). It's a rare disease that occurs in 0.1% of the population. If you have a positive test outcome, what is the probability that you have the disease?
- Solution:

$$A = \text{"Person has the disease"}$$

$$B = \text{"Test result is positive"}$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\neg A) \cdot P(\neg A)}$$

$$P(A|B) = \frac{0.95 \cdot 0.001}{0.95 \cdot 0.001 + 0.05 \cdot 0.999} \approx 0.0187$$

Unit 1 – Probability Theory

■ **Counterintuitive**: According to *The Economist* (February 20, 1999), 80% of leading American hospital staff guessed the probability to be 95%!

Probability Theory: Independence

■ **Independence**. We say that the events $A_1, A_2, ..., A_n$ are independent if

$$P\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}P(A_i)$$
, for all subsets I of $\{1,\ldots,n\}$

■ **Intuition**. Knowledge of an event A with P(A) > 0 does not provide information about the probability of an independent event B

$$P(B|A) = P(B) \Leftrightarrow P(B|A) \cdot P(A) \stackrel{\checkmark}{=} P(B) \cdot P(A)$$

- Important modelling assumption (often implicitly) used in machine learning when making assumptions about training and test data generation: knowing one training example provides no information about the probability of any other training example (realistic?!)
- Counterintuitive geometry: If *A* and *B* are disjoint, they are **not** independent!

Advanced Probabilistic Machine Learning

 $= P(B \cap A)$

Probability Theory: Random Variable

- **Random Variable**. A random variable is a real-valued function of the outcome of the experiment. A function of a random variable defines another random variable.
 - Examples:
 - Tossing a coin N times, the number of heads
 - Given an image, the pixel intensity of the top-left pixel (in 8-bit)
- **Probability Mass Function**. The probability mass function p(x) assigns each value x the probability that the random variable takes the value x.
 - **Example**: Coin toss: If N = 2 then

$$p(0) = P(\text{tail}, \text{tail})$$

$$p(1) = P(\text{head}, \text{tail}) + P(\text{tail}, \text{head})$$

$$p(2) = P(\text{head}, \text{head})$$

Advanced Probabilistic Machine Learning

Probability Theory: Expectation and Variance

Expected Value. The expected value E[X] (also called expectation) of a random variable X is defined by

$$E[X] := \sum_{x} x \cdot p(x)$$

Intuition. Center of gravity when placing the weight p(x) at position x on a straight line

• **Variance**. The variance var[X] of a random variable X is defined by

$$var[X] := \sum_{x} (x - E[X])^{2} \cdot p(x) = E[(X - E[X])^{2}]$$

Advanced Probabilistic Machine Learning

Overview

- 1. Probability in Machine Learning
- 2. Probability Theory
- 3. Exponential Family Distributions

Advanced Probabilistic Machine Learning

Probability Distributions

- Only defined for random variables, not for events or logic statements!
 - Discrete random variables: $p: \mathbb{Z} \mapsto [0,1]$ and $\sum_{x} p(x) = 1$
 - **Continuous random variables**: $p: \mathbb{R} \to \mathbb{R}^+$ and $\int p(x) dx = 1$
 - Note that, by definition, they are only a model for real data!
- In computational statistics some classes of probability distributions have emerged whose distributions can be fully described with a small number of parameters $\theta \in \mathbb{R}^d$
 - Advantages:
 - **1. Storage Efficiency**: Only *d* real numbers for whole function!
 - **2. Compute Efficiency**: Only O(d) computation for rules of probability!
 - Disadvantages:
 - 1. **Real World**: Too restrictive to represent true phenomena in real data
 - 2. Bayes' Rule: Function classes often not closed under Bayes' rule

Advanced Probabilistic Machine Learning

Efficient Bayes' Rule

■ **Bayes' rule** over random variables *X* and *Y*

$$p(x|y) = \frac{p(y|x) \cdot p(x)}{p(y)} = \frac{1}{p(y)} \cdot \left[\int p(y|x) \, dx \right] \cdot \left[\frac{p(y|x)}{\int p(y|x) \, dx} \right] \cdot p(x)$$
Normalization constant independent of x

Probability distribution distribution $p_y(\cdot)$ over x

• **Idea**: If p(y|x) and p(x) are exponentials of a linear function of transformation of x then (up to normalization), the product becomes a linear operation!

Advanced Probabilistic Machine Learning

Exponential Family

Exponential Family Distribution. A distribution $p(\cdot | \theta)$ over a random variable X is called an exponential family distribution if it can be expressed as follows:

$$p(x|\boldsymbol{\theta}) = \exp\left(\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{T}(x) - A(\boldsymbol{\theta})\right)$$

where $\boldsymbol{\theta}$ is called the natural parameters of the distribution, $\boldsymbol{T}(\cdot)$ is called the sufficient statistics and $\boldsymbol{A}(\boldsymbol{\theta})$ is the log-normalization given by

$$A(\boldsymbol{\theta}) = \log \left(\int \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{T}(x) \right) dx \right)$$

■ Every discrete probability distribution over the outcome $x \in \{1, ..., K\}$ is an exponential family distribution with

Edwin J. G. Pitman (1897 – 1993)

Georges Darmois (1888 - 1960)

Bernhard O. Koopman (1900 – 1981)

Advanced Probabilistic Machine Learning

Exponential Family Distributions: Categorical Distribution

Categorical Distribution. Given $\eta \in \mathbb{R}^K$ or a probability vector $\pi \in [0,1]^K$ such that $\sum_{k=1}^{K} \pi_k = 1$, a discrete random variable X over the first K unit vectors is said to have a categorical distribution if the density is given by

$$C(x; \boldsymbol{\eta}) = \frac{\exp(\boldsymbol{\eta}^{\mathrm{T}} x)}{\sum_{k=1}^{K} \exp(n_k)}$$
 Cat $(x; \boldsymbol{\pi}) = \boldsymbol{\pi}^{\mathrm{T}} x$

lacob Bernoulli (1655 - 1705)

Properties:

$$E[X_i] = \frac{\exp(\eta_i)}{\sum_{k=1}^K \exp(\eta_k)} = \pi_i$$
$$var[X_i] = \pi_i \cdot (1 - \pi_i)$$

$$T(x) = \begin{bmatrix} x_1 \\ \vdots \\ x_K \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} \log(\pi_1) \\ \vdots \\ \log(\pi_K) \end{bmatrix}$$

Conversions:

$$\mathcal{C}(\boldsymbol{x};\boldsymbol{\eta}) = \operatorname{Cat}\left(\boldsymbol{x}; \frac{1}{\sum_{k=1}^{K} \exp(\eta_{k})} \cdot \begin{bmatrix} \exp(\eta_{1}) \\ \vdots \\ \exp(\eta_{K}) \end{bmatrix} \right) \qquad \operatorname{Cat}(\boldsymbol{x}; \boldsymbol{\pi}) = \mathcal{C}\left(\boldsymbol{x}; \begin{bmatrix} \log(\pi_{1}) \\ \vdots \\ \log(\pi_{K}) \end{bmatrix} \right) \qquad \text{Advanced Probabilistic Machine Learning}$$

$$\text{Unit 1 - Probability Theory}$$

Advanced Probabilistic

Importance. The categorical distribution plays a key role in selection processes and classification and is also known as the generalized Bernoulli distribution.

Categorical Distribution: Efficient Products & Divisions

■ Theorem (Multiplication). Given two categorical distributions $C(x; \eta_1)$ and $C(x; \eta_2)$

$$\mathcal{C}(\mathbf{x}; \boldsymbol{\eta}_1) \cdot \mathcal{C}(\mathbf{x}; \boldsymbol{\eta}_2) = \mathcal{C}(\mathbf{x}; \boldsymbol{\eta}_1 + \boldsymbol{\eta}_2) \cdot \frac{\sum_{k=1}^K \exp(\eta_{1,k} + \eta_{2,k})}{\left[\sum_{k=1}^K \exp(\eta_{1,k})\right] \cdot \left[\sum_{k=1}^K \exp(\eta_{2,k})\right]}$$
Additive updates!

Theorem (Division). Given two categorical distributions $C(x; \eta_1)$ and $C(x; \eta_2)$

$$\frac{\mathcal{C}(\boldsymbol{x}; \boldsymbol{\eta}_1)}{\mathcal{C}(\boldsymbol{x}; \boldsymbol{\eta}_2)} = \mathcal{C}(\boldsymbol{x}; \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2) \cdot \frac{\left[\sum_{k=1}^K \exp\left(\eta_{1,k} - \eta_{2,k}\right)\right] \cdot \left[\sum_{k=1}^K \exp\left(\eta_{2,k}\right)\right]}{\left[\sum_{k=1}^K \exp\left(\eta_{1,k}\right)\right]}$$
Subtractive updates!

Correction factor

Correction factor

Advanced Probabilistic Machine Learning

Exponential Family Distributions: Dirichlet Distribution

■ **Dirichlet Distribution**. Given $\alpha \in \mathbb{R}^K$ with $\alpha_k > 0$, a continuous random variable $X \in [0,1]^K$ over the K-1 dimensional simplex (that is, $\sum_{k=1}^K X_k = 1$) is said to have a Dirichlet distribution if the density is given by

$$Dir(x; \alpha) = \frac{1}{\mathcal{B}(\alpha)} \cdot \prod_{k=1}^{K} x_k^{\alpha_k - 1} \qquad \mathcal{B}(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\prod_{k=1}^{K} \alpha_k)}$$

Properties:

$$E[X_i] = \frac{\alpha_i}{\sum_{k=1}^K \alpha_k}$$

$$E[\log(X_i)] = \psi(\alpha_i) - \psi\left(\sum_{k=1}^K \alpha_k\right) \qquad \psi(z) = \frac{\mathrm{d}}{\mathrm{d}z}\log(\Gamma(z))$$

Natural Parameters and Sufficient Statistics:

$$T(x) = \begin{bmatrix} \log(x_1) \\ \vdots \\ \log(x_K) \end{bmatrix} \qquad \theta = \begin{bmatrix} \alpha_1 - 1 \\ \vdots \\ \alpha_K - 1 \end{bmatrix}$$

Importance. The product of a Dirichlet $Dir(\pi; \alpha)$ and a categorical $Cat(x; \pi)$ is again a Dirichlet distribution $Dir(\pi; \alpha + x)$!

Peter Gustav Dirichlet (1805 – 1859)

$$\Gamma(z) = \int_0^\infty t^{z-1} \cdot \exp(-t) dt$$

 $\forall z > 0$: $\Gamma(z+1) = z \cdot \Gamma(z)$

Dirichlet Distribution: Efficient Products & Divisions

■ **Theorem (Multiplication)**. *Given two Dirichlet distributions* $Dir(x; \alpha_1)$ *and* $Dir(x; \alpha_2)$

$$\operatorname{Dir}(x;\alpha_1)\cdot\operatorname{Dir}(x;\alpha_2)=\operatorname{Dir}(x;\alpha_1+\alpha_2-1)\cdot\frac{\mathcal{B}(\alpha_1+\alpha_2-1)}{\mathcal{B}(\alpha_1)\cdot\mathcal{B}(\alpha_2)}$$
 Additive updates!

■ **Theorem (Division)**. *Given two Dirichlet distributions* $Dir(x; \alpha_1)$ *and* $Dir(x; \alpha_2)$

$$\frac{\operatorname{Dir}(x; \alpha_1)}{\operatorname{Dir}(x; \alpha_2)} = \operatorname{Dir}(x; \alpha_1 - \alpha_2 + 1) \cdot \frac{\mathcal{B}(\alpha_1 - \alpha_2 + 1) \cdot \mathcal{B}(\alpha_2)}{\mathcal{B}(\alpha_1)}$$
Subtractive updates!

Correction factor

Correction factor

Advanced Probabilistic Machine Learning

Exponential Family Distributions: 1D Gaussian

■ **1D Gaussian Distribution**. A continuous random variable X is said to have a one-dimensional Gaussian distribution if the density is given by

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Properties:

$$E[X] = \mu$$
$$var[X] = \sigma^2$$

- Importance. The 1D Gaussian distribution plays a fundamental role in ML!
 - Data Modelling: The limit distribution for the sum of a large number of independent and identically distributed random variables.
 - Machine Learning: The most common belief distribution for the parameters of prediction functions!
 - Information Theory: The distribution function with the most uncertainty ("entropy") when fixing mean and variance of the random variable.

Carl Friedrich Gauss (1777 - 1855)

Advanced Probabilistic Machine Learning

1D Gaussian Distribution: Representations

Scale-Location Parameters

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Conversions

$$\mathcal{N}(x;\mu,\sigma^2) = \mathcal{G}\left(x;\frac{\mu}{\sigma^2},\frac{1}{\sigma^2}\right)$$

Posterior Inference

Natural Parameters

$$G(x; \tau, \rho) = \sqrt{\frac{\rho}{2\pi}} \cdot \exp\left(-\frac{\tau^2}{2\rho}\right) \cdot \exp\left(\tau \cdot x - \rho \cdot \frac{x^2}{2}\right)$$

Conversions

Two divisions only!

$$G(x;\tau,\rho) = \mathcal{N}\left(\mathbf{x};\frac{\tau}{\rho},\frac{1}{\rho}\right)$$

$$T(x) = \begin{bmatrix} x \\ -\frac{x^2}{2} \end{bmatrix}$$
 $\theta = \begin{bmatrix} \tau \\ \rho \end{bmatrix}$

$$\boldsymbol{\theta} = \begin{bmatrix} \tau \\ \rho \end{bmatrix}$$

Posterior Inference

Advanced Probabilistic Machine Learning

1D Gaussian Distribution: Efficient Products & Divisions

Theorem (Multiplication). Given two one-dimensional Gaussian distributions $G(x; \tau_1, \rho_1)$ and $G(x; \tau_2, \rho_2)$ we have

Gaussian density

$$\mathcal{G}(x;\tau_1,\rho_1)\cdot\mathcal{G}(x;\tau_2,\rho_2)=\mathcal{G}(x;\tau_1+\tau_2,\rho_1+\rho_2)\cdot\mathcal{N}(\mu_1;\mu_2,\sigma_1^2+\sigma_2^2)$$
Additive updates!

■ **Theorem (Division)**. Given two one-dimensional Gaussian distributions $\mathcal{G}(x; \tau_1, \rho_1)$ and $\mathcal{G}(x; \tau_2, \rho_2)$ where $\rho_1 > \rho_2$ we have

Correction factor

Advanced Probabilistic Machine Learning

Limit 1D Gaussian Distributions: Dirac Delta and Uniform

- **Dirac Delta**. The Dirac delta function $\delta(\cdot)$ is defined as the limit $\sigma^2 \to 0$ $\delta(x) = \lim_{\sigma^2 \to 0} \mathcal{N}(x; 0, \sigma^2)$
- **Gaussian Uniform**. The Gaussian uniform $\mathcal{U}(\cdot)$ is defined as the limit $\sigma^2 \to \infty$ $\mathcal{U}(x) = \lim_{\sigma^2 \to +\infty} \mathcal{N}(x; 0, \sigma^2)$
- 0.4 0.3 (S) (D, 2) 0.1 0.0 -3 -2 -1 0 1 2 3
- Theorem (Convolution of Normal with Dirac). For any $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$ $\int_{-\infty}^{+\infty} \delta(x) \cdot \mathcal{N}(x; \mu, \sigma^2) \, \mathrm{d}x = \mathcal{N}(0; \mu, \sigma^2) Gaussian density at x = 0$

Advanced Probabilistic Machine Learning

Exponential Family Distributions: Gamma Distribution

■ **Gamma Distribution**. Given $\beta > -1$ and $\lambda > 0$, a positive continuous random variable X is said to have a Dirichlet distribution if the density is given by

$$Gam(x; \beta, \lambda) = \frac{\lambda^{\beta+1}}{\Gamma(\beta+1)} \cdot x^{\beta} \cdot \exp(-\lambda x) \cdot \mathbb{I}(x > 0)$$

Properties:

$$E[X] = \frac{\beta + 1}{\lambda}$$

$$E[\log(X)] = \psi(\beta + 1) - \log(\lambda) \qquad \psi(z) = \frac{d}{dz} \log(\Gamma(z))$$

Natural Parameters and Sufficient Statistics:

$$T(x) = \begin{bmatrix} \log(x) \\ -x \end{bmatrix} \qquad \theta = \begin{bmatrix} \beta \\ \lambda \end{bmatrix}$$

Importance. The product of a Gamma distribution $Gam(\rho; \beta, \lambda)$ and a Normal distribution $\mathcal{N}(x; \mu, \rho^{-1})$ is again a Gamma distribution $Gam\left(\rho; \beta + \frac{1}{2}, \lambda + \frac{(x-\mu)^2}{2}\right)$!

Karl Pearson (1857 - 1936)

$$\Gamma(z) = \int_0^\infty t^{z-1} \cdot \exp(-t) \, \mathrm{d}t$$

$$\forall z > 0$$
: $\Gamma(z+1) = z \cdot \Gamma(z)$

Gamma Distribution: Efficient Products & Divisions

■ **Theorem (Multiplication)**. *Given two Gamma distributions* $Gam(x; \beta_1, \lambda_1)$ *and* $Gam(x; \beta_2, \lambda_2)$

$$\operatorname{Gam}(x;\beta_1,\lambda_1)\cdot\operatorname{Gam}(x;\beta_2,\lambda_2)=\operatorname{Gam}(x;\beta_1+\beta_2,\lambda_1+\lambda_2)\cdot\frac{\operatorname{Gam}(1;\beta_1,\lambda_1)\cdot\operatorname{Gam}(1;\beta_2,\lambda_2)}{\operatorname{Gam}(1;\beta_1+\beta_2,\lambda_1+\lambda_2)}$$
Additive updates!

■ **Theorem (Division)**. *Given two Gamma distributions* $Gam(x; \beta_1, \lambda_1)$ *and* $Gam(x; \beta_2, \lambda_2)$

$$\frac{\operatorname{Gam}(x;\beta_{1},\lambda_{1})}{\operatorname{Gam}(x;\beta_{2},\lambda_{2})} = \operatorname{Gam}(x;\beta_{1}-\beta_{2},\lambda_{1}-\lambda_{2}) \cdot \frac{\operatorname{Gam}(1;\beta_{1},\lambda_{1})}{\operatorname{Gam}(1;\beta_{1}-\beta_{2},\lambda_{1}-\lambda_{2}) \cdot \operatorname{Gam}(1;\beta_{2},\lambda_{2})}$$

Correction factor

Correction factor

Advanced Probabilistic Machine Learning

Unit 1 – Probability Theory

Subtractive updates!

Summary

Probability in Machine Learning

- Probability is not a physical quantity but a mathematical model of uncertainty
- Two different axiomatic justifications of the same math: one for data and one for parameters!

Probability Theory

- Two key rules of probability theory: (1) Total probability rule and (2) Bayes' rule
- Independence is a concept of probability; it does not require random variables!
- A random variable is a real-valued function of the outcome of the experiment

Exponential Family Distributions

- Density is proportional to an exponential of a *fixed* d-dimensional linear mapping of the random variable (*sufficient statistic*) and a (*natural*) *parameter* vector
- Taking products and divisions of densities is an O(d) operation!
- Key distributions are categorical, Dirichlet, Gaussian and Gamma distributions

Advanced Probabilistic Machine Learning

See you next week!