Introduction to Basic Renal Processes

Dr. Denny C.W. Ma

Urinary System

Kidneys

• Weight: $\sim 150 \text{ g}$ (average value in adult)

• Dimensions: 12 cm long; 6 cm wide; 3 cm thick (average value in adult)

Bean-shaped

Urinary System

 Paired ureters – transports urine from kidneys to bladder

Urinary bladder –
provides a temporary
storage reservoir for urine

 Urethra – transports urine from the bladder <u>out of</u> the body

Functions of the Kidneys

- Filter 200 liters of blood daily, allowing toxins, metabolic wastes & excess ions to leave the body in urine
- Regulate volume & chemical makeup of blood
- Maintain the proper balance between <u>water & salts</u>, and acids & bases
- Produce renin to help regulate <u>blood pressure</u> & erythropoietin to stimulate red blood cell production

Mechanism of Urine Formation

Urine formation & adjustment of blood composition involves 3 major processes:

- 1. Glomerular filtration
- 2. Tubular reabsorption
- 3. Secretion

Renal Circulation

Renal Circulation

Nephron

Each kidney contains over 1
 <u>million</u> tiny blood processing
 unit is called nephrons, which
 carry out the processes that
 form urine

1. Renal corpuscle

- Glomerulus & Bowman's capsule
 - Glomerulus a clump of capillaries associated with a renal tubule
 - Bowman's capsule cup-shaped end of a renal tubule that completely surrounds the glomerulus

2. Renal tubule

Capillary Beds of the Nephron

Each nephron has 2 capillary beds:

- 1. Glomerulus
- 2. Peritubular capillaries

Each glomerulus is:

- Fed by an afferent arteriole
- <u>Drained</u> by an <u>efferent arteriole</u>

Peritubular Capillaries

Low-pressure, porous capillaries adapted for absorption

- Arise from efferent arterioles
- Cling to adjacent renal tubules

Empty into the renal venous system

Vasa recta (of juxtamedullary nephrons)

Capillary Beds of the Nephron

Pathway of Renal Blood Flow

- Aorta → Renal artery →
- Afferent arteriole → Glomerular capillaries → Efferent arteriole → Peritubular capillaries & vasa recta →
- Renal vein → Inferior vena cava

Glomerular Filtration

endothelium – endothelium – endothelium of fenestrated capillaries that allows solute-rich, virtually protein-free filtrate to pass from blood into glomerular capsule

Filter that lies between blood & interior of glomerular capsule

Composed of 3 layers:

- Endothelium of fenestrated capillaries
- Visceral membrane of glomerular capsule (podocytes)
- Basement membrane composed of fused basal laminas of other layers

Glomerular Filtration

- Glomerulus is more efficient than other capillary beds because:
 - Filtration membrane has fenestrated capillaries
 - → significantly more permeable
 - Glomerular blood pressure is higher (55 mmHg)
 - → higher filtration pressure
- Filtration membrane allows molecules smaller than ~5 nm to pass from blood into renal tubule (e.g. water, glucose, amino acids & wastes)
 - Larger molecules (e.g. protein) cannot pass the membrane into the tubule

Glomerular Filtration

- Kidneys filter the body's entire plasma volume 60 times each day
- Filtrate contains all plasma components except protein
 - → Loses water, nutrients & essential ions to become urine
- Urine contains metabolic wastes & unneeded substances

Glomerular Filtration Rate (GFR)

Total amount of filtrate formed per minute by the kidneys

Factors governing filtration rate at capillary bed are:

- Total surface area available for filtration [constant]
- Filtration membrane permeability [constant]
- Net filtration pressure [variable]

Changes in GFR normally result from changes in glomerular blood pressure

Net Filtration Pressure (NFP)

NFP: Pressure responsible for filtrate formation

Glomerular hydrostatic (blood) pressure is the major factor forcing fluids & solutes out of the blood

This is opposed by colloid osmotic pressure of blood & hydrostatic pressure within glomerular capsule

Net Filtration Pressure (NFP)

NFP: Pressure responsible for filtrate formation

NFP =
$$HP_g - (OP_g + HP_c)$$

= 55 - (30 + 15)
= 10 mm Hg

Glomerular Filtration Rate (GFR)

Female:

115 mL/min = 160 litres/day

Male:

125 mL/min = 180 litres/day

Renal Tubular Transport

Renal Tubular Transport

Nephron

Renal Tubule

- Proximal convoluted tubule (PCT)
 - Cuboidal cells with numerous microvilli & mitochondria
 - Reabsorbs water & solutes from filtrate into blood (> secretes substances from blood into filtrate)

Renal Tubule

- Loop of Henle (hairpin-shaped)
 - Consists of descending (thin) & ascending (think) segments
 - Water & salt conservation

Renal Tubule

- Distal convoluted tubule (DCT)
 - Cuboidal cells without microvilli
 - Secretion > Reabsorption

Collecting Tubules

- Collecting duct
 - Cuboidal cells with microvilli (for acid-base balance)
 - Cuboidal cells without microvilli (for water & salt balance)

Renal Tubular Transport

Tubular Reabsorption

Substances move from the tubule lumen into peritubular capillaries

Tubular Reabsorption

Substances move from the tubule lumen into peritubular capillaries

- All organic nutrients are reabsorbed
- Water & ion reabsorption is hormonally controlled (ADH & aldosterone)

Tubular Secretion

Substances move <u>from peritubular capillaries</u> (or tubule cells) <u>into filtrate</u>

Tubular Secretion

- Substances move <u>from peritubular capillaries</u> (or tubule cells) <u>into filtrate</u>
- Active transport

- Important for:
 - Disposing of substances not already in filtrate
 - Eliminating undesirable substances such as urea
 - Removing H⁺ ion to control blood pH
 - Ridding the body of excess K⁺ ions (mainly at collecting duct)

- Filtrate is diluted in ascending loop of Henle
- <u>Dilute urine is created</u> if antidiuretic hormone (ADH) is not being secreted
- Without ADH, collecting ducts (in deep medullary regions) remain impermeable to water
 - → No further water reabsorption occurs

- Antidiuretic hormone (ADH) inhibits urine output
- ADH is the signal to produce concentrated urine

 ADH increases no. of water-filled channels of collecting ducts, so that water passes easily into interstitial space

(b) Presence of ADH

Water Balance in the Body

Water intake: drinking & eating

Water loss: urine, feces, sweat, expiration

Kidney conserves water, such that gain = loss

Water Balance in the Body

Summary of Nephron Function

Key Points

Functions of the Kidneys

Nephron

- Renal corpuscle
 - Glomerulus
 - Bowman's capsule
- Renal tubule
- Capillary beds of nephron

Mechanism of Urine Formation

- Glomerular filtration
 - Filtration membrane
 - Glomerular filtration rate (GFR)
- Tubular reabsorption
- Tubular secretion