Project Presentation

Dynamic Graph Neural Networks For Monitoring Pandemics And Risk Factors

By - Sripath Mishra, Vishnu Devarakonda, Jason Kao, Boya Ouyang

Data Source

- CDC State wise daily infection data
 - COVID-19 Case Surveillance Public Use Data | Data | Centers for Disease Control and Prevention (cdc.gov)
 - Submission_date,state,tot_cases,conf_cases,prob_cases,new_case,pnew_case,tot_death,conf_death,prob_death,new_death,pnew_death,created_at,consent_cases,consent_deaths
 - 17,641 rows of data.
- Nytimes county level Covid infection data
 - o nytimes/covid-19-data: An ongoing repository of data on coronavirus cases and deaths in the U.S. (github.com)
 - date,county,state,fips,cases,deaths
 - 803,684 rows of data.

Data Source (Continued)

- Safegraph State visitor monthly data
 - O Places Schema (safegraph.com)
 - Year,month,state,num_visits,num_unique_visitors
 - 602 rows of data.
- Safegraph state population weekly data
 - Places Schema (safegraph.com)
 - Date_range_start,date_range_end,state,census_block_group,number_devices_residing
 - 5,062,411 rows of data.

Data merging and cleaning

- Removed all data related to probability.
- Removed the columns of data which have a granularity lower than states.
- Made the formats same between dates and other common fields.
- Final data columns for states data(17,461 rows of data):
 Date,State,Total_cases,Confirmed_cases,New_cases,Total_deaths,Confirmed_death,New_deaths,State_resident_number,State_visitor_number
- Final data columns for county data(803,684 rows of data):
 Date, State, County_Name, County_Fips, Cases, Deaths

Approach

- The goal is to forecast the possible new cases in each state/USA.
- There are multiple ways to make forecasts.
- Measure our performance by comparing with other approaches for forecasting data.
- ARIMA Autoregressive integrated moving averages.
- LSTM Long Short Term Memory Network.
- GNN Forecasting with Graph Neural Network.

Exploratory Data Analysis

First, let's get an idea as to how the data looks.

EDA - Continued

Cases in the most populous states.

Daily New Cases in CA, NY, TX

EDA - Continued

Rolling Averages in each state.

EDA - Continued

Pandemic in the USA

Daily Cases in USA

Daily Deaths in USA

Autoregressive Integrated Moving Averages

- Autoregressive integrated moving averages or ARIMA typically operates on time series data.
- It is designed to capture the patterns in time series data and consists of 3 parts.
- Autoregressive model.
- Moving-average model.
- Differencing.

Autocorrelation plot for USA total cases, new cases, and new deaths.

Forecasting With ARIMA

- Forecasting with ARIMA requires us to identify the appropriate parameters for the 3 models described earlier.
- The plots on the right help us determine these values.
- Left plot is difference.
- Middle plot is for autocorrelation.
- Right plot is for partial autocorrelation.

Forecasting Total Cases In USA

Forecasting New Cases In USA

Forecast US New Covid-19 Cases for next 30 Days

Forecasting New Deaths In The USA

Forecast US New Covid-19 Deaths for next 30 Days

LSTM

- LSTM's are deep learning models that are designed to work with sequential data sets.
- They store internal state information that influences predicts.
- This should allow us to capture temporal features in these data sets.

LSTM Forecasts

New Cases

Forecast US New Covid-19 Cases for next 30 Days

New Deaths

Forecast US New Covid-19 Cases for next 30 Days

- ARIMA models are very good.
- LSTMs on the other hand fail to capture the
- But they only capture temporal features.
- Can we do better by including spatial features as well?

	Total Cases MAE	New Cases MAE	New Deaths MAE
ARIMA	5337.5	5382.0	152.017
LSTM		2988.0	8

Message passing neural networks (MPNNs)

$$\mathbf{A}^{(t)} \, \mathbf{X}^{(t)} = \begin{bmatrix} w_{1,1}^{(t)} & w_{2,1}^{(t)} & \dots & w_{n,1}^{(t)} \\ w_{1,2}^{(t)} & w_{2,2}^{(t)} & \dots & w_{n,2}^{(t)} \\ \vdots & \vdots & \vdots & \vdots \\ w_{1,n}^{(t)} & w_{2,n}^{(t)} & \dots & w_{n,n}^{(t)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^{(t)} \\ \mathbf{x}_2^{(t)} \\ \vdots \\ \mathbf{x}_3^{(t)} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \vdots \\ \mathbf{z}_3 \end{bmatrix}$$

Message passing neural networks (MPNNs)

Overview of the MPNN architecture

Overview of the MPNN LSTM architecture

Our Implementation - Libraries

- Tensorflow/Keras LSTM modules
- Spektral MPNN modules
- SciPy Data representation

Available Data

- Adj 52x52 Adjacency matrix
 - 50 states, Washington DC, and US
 - Weighted
- X 52x5 Node feature matrix
 - Number of cases in each node in the past 5 days
- County level data follows a similar structure with finer granularity.

Our Implementation - Network Structure

Project Status

- The model construction in code is still to be completed.
- Evaluation using ARIMA will be underway as soon as the model is ready.
- County data will also have to be evaluated.

Challenges

- Lack of mobility data between states.
- Modifying static graph neural network models to accommodate evolving data.

Thank you

Questions