Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica 19 aprile 2012

Matricola	Cognome	Nome:	

1) Del circuito seguente:

- a) calcolare il valore V_X della tensione di ingresso V_{IN} per $t < t_0$ che determina una tensione di uscita $V_{OUT} = A'V$;
- b) con V_X calcolato, tracciare il grafico dell'andamento della tensione di uscita nel tempo determinando i punti significativi $V_C(\infty)$, $V_C(t_0)$ e τ .

Amplificatore Operazionale ideale;

$$L^{+} = -L^{-} = 5 \text{ V}$$

 Q_1 :

$$V_x = 2 \text{ V}$$

$$V_T = 2 \text{ V}; \qquad K = 0.25 \text{ mA/V}^2;$$

$$\lambda = 0, \ \chi = 0$$

$$R_1 = 2 \text{ k}\Omega$$
; $R_2 = 8 \text{ k}\Omega$; $R_D = 5 \text{ k}\Omega$;

$$= 5 k\Omega$$

- 2) Calcolare il guadagno di tensione per piccoli segnali di un amplificatore NMOS con carico a svuotamento.
- 3) Disegnare un inverter CMOS, confrontare tra loro i tempi di ritardo H-L e L-H utilizzando il luogo dei punti di lavoro del circuito nelle due commutazioni.