

Circles Ex 16.5 Q18

Answer:

(i) It is given that $BC \parallel AD$, $\angle ADC = 110^{\circ}$ and $\angle BAC = 50^{\circ}$

We have to find $\angle DAC$

In cyclic quadrilateral

$$\angle A + \angle C = 180^{\circ} \dots (1)$$

$$\angle B + \angle D = 180^{\circ} \dots (2)$$

Since
$$\angle ADC = 110^{\circ}$$

So

$$\angle B = 180^{\circ} - \angle D$$

= $180^{\circ} - 110^{\circ}$
= 70°

Therefore in $\triangle ABC$, $50^{\circ} + 70^{\circ} + \angle BCA = 180^{\circ}$

So
$$\angle BCA = 60^{\circ}$$
 (3)

Now $\angle BCA = \angle CAD$ ($BC \parallel AD$ and AC is transversal)

$$\Rightarrow \angle BCA = \angle CAD = \boxed{60^{\circ}}$$

(ii) It is given that, $BC \parallel AD \angle DBC = 80^{\circ}$ and $\angle BAC = 40^{\circ}$

We have to find $\angle BCD$

$$\angle BAC = \angle BDC = 40^{\circ}$$
 (Same segment)

$$\angle DCB = 180^{\circ} - (80^{\circ} + 40^{\circ})$$

$$=180^{\circ}-120^{\circ}$$

$$=60^{\circ}$$

Hence $\angle BCD = 60^{\circ}$

(iii) It is given that, $\angle BCD = 100^{\circ}$ and $\angle ABD = 70^{\circ}$ We have to find $\angle ABD$

Now

$$\angle A + \angle C = 180^{\circ}$$

 $\angle A = 180^{\circ} - 100^{\circ}$
 $= 80^{\circ}$

In AABD we have

$$\angle A + \angle ABD + \angle BDA = 180^{\circ}$$
$$\angle ADB = 180^{\circ} - 150^{\circ}$$
$$= 30^{\circ}$$

Hence
$$\angle ABD = 30^{\circ}$$