

S3A7 Microcontroller Group

Datasheet

Renesas SynergyTM Platform Synergy Microcontrollers S3 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

S3A7 Microcontroller Group

Datasheet

High efficiency 48-MHz Arm® Cortex®-M4 microcontroller, up to 1-MB code flash memory, 192-KB SRAM, Segment LCD Controller, Capacitive Touch Sensing Unit, USB 2.0 Full-Speed Module, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features

Features

■ Arm Cortex-M4 Core with Floating Point Unit (FPU)

- Armv7E-M architecture with DSP instruction set
- Maximum operating frequency: 48 MHz
- Support for 4-GB address space
- Arm Memory Protection Unit (Arm MPU) with 8 regions
- Debug and Trace: ITM, DWT, FPB, TPIÚ, ETB
- CoreSight™ Debug Port: JTAG-DP and SW-DP

Memory

- Up to 1-MB code flash memory
- 16-KB data flash memory (100,000 program/erase (P/E) cycles)
- Up to 192-KB SRAM
- Flash Cache (FCACHE)
- Memory Protection Unit (MPU)
- Memory Mirror Function (MMF)
- 128-bit unique ID

■ Connectivity

- USB 2.0 Full-Speed Module (USBFS)
 - On-chip transceiver with voltage regulator
 - Compliant with USB Battery Charging Specification 1.2
- Serial Communications Interface (SCI) × 6
- UART
- Simple IIC
- Simple SPI
- Serial Peripheral Interface (SPI) × 2
- I²C bus interface (IIC) × 3
- Controller Area Network (CAN) module
- Serial Sound Interface (SSI) × 2
- SD/MMC Host Interface (SDHI)
- Quad Serial Peripheral Interface (QSPI)
- IrDA interface
- · External address space
 - 8- or 16-bit bus space selectable per area

Analog

- 14-Bit A/D Converter (ADC14)
- 12-Bit D/A Converter (DAC12) × 2
- High-Speed Analog Comparator (ACMPHS) \times 2
- Low-Power Analog Comparator (ACMPLP) × 2
- Operational Amplifier (OPAMP) × 4
- Temperature Sensor (TSN)

■ Timers

- General PWM Timer 32-bit (GPT32) × 10
- Asynchronous General-Purpose Timer (AGT) × 2
 VBATT support
- Watchdog Timer (WDT)

■ Safety

- Error Correction Code (ECC) in SRAM
- SRAM parity error check
- Flash area protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO readback level detection
- Register write protection
- Main oscillator stop detection
- Illegal memory access

■ System and Power Management

- Low power modes
- Realtime Clock (RTC) with calendar and Battery Backup support
- Event Link Controller (ELC)
- DMA Controller (DMAC) × 4
- Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- · Low Voltage Detection (LVD) with voltage settings

■ Security and Encryption

- AES128/256
- GHASH
- True Random Number Generator (TRNG)

■ Human Machine Interface (HMI)

- Segment LCD Controller (SLCDC)
 - Up to 52 segments × 4 commons
 - Up to 48 segments × 8 commons
- Capacitive Touch Sensing Unit (CTSU)

■ Multiple Clock Sources

- Main clock oscillator (MOSC)
 - (1 to 20 MHz when VCC = 2.4 to 5.5 V)
 - (1 to 8 MHz when VCC = 1.8 to 2.4 V)
- (1 to 4 MHz when VCC = 1.6 to 1.8 V)
- Sub-clock oscillator (SOSC) (32.768 kHz)
- High-speed on-chip oscillator (HOCO) (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V)
 - (24, 32, 48 MHz when VCC = 1.8 to 5.5 V)
 - (24, 32 MHz when VCC = 1.6 to 5.5 V)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- IWDT-dedicated on-chip oscillator (15 kHz)
- Clock trim function for HOCO/MOCO/LOCO
- Clock out support

■ General Purpose I/O Ports

- Up to 124 input/output pins
 - Up to 3 CMOS input
- Up to 121 CMOS input/output
 - Up to 10 input/output 5-V tolerant
- Up to 2 high current (20 mA)

■ Operating Voltage

• VCC: 1.6 to 5.5 V

■ Operating Temperature and Packages

- $Ta = -40^{\circ}C \text{ to } +85^{\circ}C$
 - 145-pin LGA(7 mm × 7 mm, 0.5 mm pitch)
- 121-pin BGA (8 mm × 8 mm, 0.65 mm pitch)
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
 - 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
 - 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
 - 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)
 - 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit MCUs that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU provides an optimal combination of low power, high performance Arm Cortex®-M4 core running up to 48 MHz with the following features:

- Up to 1-MB code flash memory
- 192-KB SRAM
- Segment LCD Controller (SLCDC)
- Capacitive Touch Sensing Unit (CTSU)
- USB 2.0 Full-Speed Module (USBFS)
- 14-bit A/D Converter (ADC14)
- 12-bit D/A Converter (DAC12)
- Security features.

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M4	Maximum operating frequency: up to 48 MHz Arm Cortex-M4 Revision: r0p1-01rel0 Armv7E-M architecture profile Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008. Arm Memory Protection Unit (Arm MPU) Armv7 Protected Memory System Architecture 8 protected regions. SysTick timer Driven by SYSTICCLK (LOCO) or ICLK.

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 1-MB code flash memory. See section 48, Flash Memory in User's Manual.
Data flash memory	16-KB data flash memory. See section 48, Flash Memory in User's Manual.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset. See section 7, Option-Setting Memory in User's Manual.
Memory Mirror Function (MMF)	The Memory Mirror Function (MMF) can be configured to mirror the desired application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User's Manual.
SRAM	On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). An area in SRAM0 provides error correction capability using ECC. See section 47, SRAM in User's Manual.

Table 1.3 System (1 of 2)

Feature	Functional description
Operating modes	Two operating modes: Single-chip mode SCI/USB boot mode. See section 3, Operating Modes in User's Manual.
Resets	14 resets: RES pin reset Power-on reset VBATT-selected voltage power-on reset Independent watchdog timer reset Watchdog timer reset Voltage monitor 0 reset Voltage monitor 1 reset Voltage monitor 2 reset SRAM parity error reset SRAM ECC error reset Bus master MPU error reset Bus slave MPU error reset CPU stack pointer error reset Software reset. See section 6, Resets in User's Manual.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the detection level can be selected using a software program. See section 8, Low Voltage Detection (LVD) in User's Manual.
Clocks	 Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) PLL frequency synthesizer IWDT-dedicated on-chip oscillator Clock out support. See section 9, Clock Generation Circuit in User's Manual.
Clock Frequency Accuracy Measurement Circuit (CAC)	The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock to be used as a measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User's Manual.
Interrupt Controller Unit (ICU)	The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt Controller Unit (ICU) in User's Manual.
Key Interrupt Function (KINT)	A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function (KINT) in User's Manual.
Low power modes	Power consumption can be reduced in multiple ways, such as by setting clock dividers, controlling EBCLK output, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. See section 11, Low Power Modes in User's Manual.
Battery backup function	A battery backup function is provided for partial powering by a battery. The battery-powered area includes RTC, AGT, SOSC, LOCO, Wakeup Control, Backup Memory, VBATT_R Low Voltage Detection, and switches between VCC and VBATT. During normal operation, the battery powered area is powered by the main power supply, the VCC pin. When a VCC voltage drop is detected, the power source is switched to the dedicated battery backup power pin, the VBATT pin. When the voltage rises again, the power source is switched from the VBATT pin to the VCC pin. See section 12, Battery Backup Function in User's Manual.
Register write protection	The register write protection function protects important registers from being overwritten due to software errors. See section 13, Register Write Protection in User's Manual.

Table 1.3 System (2 of 2)

Feature	Functional description
Memory Protection Unit (MPU)	Four MPUs and a CPU stack pointer monitor function are provided for memory protection. See section 16, Memory Protection Unit (MPU) in User's Manual.
Watchdog Timer (WDT)	The WDT is a 14-bit down-counter. It can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and be used as the condition for detecting when the system runs out of control. See section 26, Watchdog Timer (WDT) in User's Manual.
Independent Watchdog Timer (IWDT)	The IWDT consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by a refresh of the count value in the registers. See section 27, Independent Watchdog Timer (IWDT) in User's Manual.

Table 1.4 Event link

Feature	Functional description
Event Link Controller (ELC)	The ELC uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User's Manual.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A DTC module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User's Manual.
DMA Controller (DMAC)	A 4-channel DMAC module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User's Manual.

Table 1.6 External bus interface

Feature	Functional description
External bus	 CS area: Connected to the external devices (external memory interface) QSPI area: Connected to the QSPI (external device interface).

Table 1.7 Timers

Feature	Functional description
General PWM Timer (GPT)	The GPT is a 32-bit timer with 10 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User's Manual.
Port Output Enable for GPT (POEG)	Use the POEG function to place the General PWM Timer (GPT) output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in User's Manual.
Asynchronous General Purpose Timer (AGT)	The AGT is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and they can be accessed with the AGT register. See section 24, Asynchronous General Purpose Timer (AGT) in User's Manual.
Realtime Clock (RTC)	The RTC has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 25, Realtime Clock (RTC) in User's Manual.

Table 1.8 Communication interfaces (1 of 2)

Feature	Functional description
Serial Communications Interface (SCI)	The SCI is configurable to five asynchronous and synchronous serial interfaces: • Asynchronous interfaces (UART and asynchronous communications interface adapter (ACIA)) • 8-bit clock synchronous interface • Simple IIC (master-only) • Simple SPI • Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured individually using an on-chip baud rate generator. See section 29, Serial Communications Interface (SCI) in User's Manual.
IrDA Interface (IrDA)	The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 30, IrDA Interface in User's Manual.
I ² C Bus Interface (IIC)	The 3-channel IIC module conforms with and provides a subset of the NXP I ² C bus (Inter-Integrated Circuit bus) interface functions. See section 31, I2C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent SPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices. See section 33, Serial Peripheral Interface (SPI) in User's Manual.
Serial Sound Interface (SSI)	The SSI peripheral provides functionality to interface with digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The SSI supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSI includes 8-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 36, Serial Sound Interface (SSI) in User's Manual.
Quad Serial Peripheral Interface (QSPI)	The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 34, Quad Serial Peripheral Interface (QSPI) in User's Manual.
Controller Area Network (CAN) Module	The CAN module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 32, Controller Area Network (CAN) Module in User's Manual.

Table 1.8 Communication interfaces (2 of 2)

Feature	Functional description
USB 2.0 Full-Speed Module (USBFS)	The full-speed USB controller can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on the user system. The MCU supports revision 1.2 of the battery charging specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply 3.3 V. See section 28, USB 2.0 Full-Speed Module (USBFS) in User's Manual.
SD/MMC Host Interface (SDHI)	The SDHI provides the functionality needed to connect a variety of external memory cards to the MCU. The SDHI supports both 1-bit and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes. See section 37, SD/MMC Host Interface (SDHI) in User's Manual.

Table 1.9 Analog

Feature	Functional description
14-bit A/D Converter (ADC14)	A 14-bit successive approximation A/D converter is provided. Up to 28 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 39, 14-Bit A/D Converter (ADC14) in User's Manual.
12-bit D/A Converter (DAC12)	The 12-bit D/A converts data and includes an output amplifier. See section 40, 12-Bit D/A Converter (DAC12) in User's Manual.
Temperature Sensor (TSN)	The on-chip temperature sensor determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC14 for conversion and can be further used by the end application. See section 41, Temperature Sensor (TSN) in User's Manual.
High-Speed Analog Comparator (ACMPHS)	ACMPHS compares the test voltage with a reference voltage and to provide a digital output based on the result of conversion. Both the test and reference voltages can be provided to the comparator from internal sources such as the DAC12 output and internal reference voltage, and an external source. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 43, High-Speed Analog Comparator (ACMPHS) in User's Manual.
Low-Power Analog Comparator (ACMPLP)	ACMPLP compares a reference input voltage and analog input voltage. The comparison result can be read by software and also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting the high-speed mode decreases the response delay time, but increases current consumption. Setting the low-speed mode increases the response delay time, but decreases current consumption. See section 44, Low Power Analog Comparator (ACMPLP) in User's Manual.
Operational Amplifier (OPAMP)	OPAMP amplifies small analog input voltages and outputs the amplified voltages. A total of four differential operational amplifier units with two input pins and one output pin are provided. See section 42, Operational Amplifier (OPAMP) in User's Manual.

Table 1.10 Human machine interfaces

Feature	Functional description
Segment LCD Controller (SLCDC)	 The SLCDC provides the following functions: Waveform A or B selectable The LCD driver voltage generator can switch between an internal voltage boosting method, a capacitor split method, and an external resistance division method Automatic output of segment and common signals based on automatic display data register read The reference voltage generated when operating the voltage boost circuit can be selected in 16 steps (contrast adjustment) The LCD can be made to blink. See section 49, Segment LCD Controller/Driver (SLCDC) in User's Manual.
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does not come into direct contact with the electrodes. See section 45, Capacitive Touch Sensing Unit (CTSU) in User's Manual.

Table 1.11 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) Calculator	The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC generation polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 35, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 46, Data Operation Circuit (DOC) in User's Manual.

Table 1.12 Security

Feature	Functional description
Secure Crypto Engine 5 (SCE5)	Security algorithm: Symmetric algorithm: AES. Other support features: TRNG (True Random Number Generator) Hash-value generation: GHASH.

1.2 Block Diagram

Figure 1.1 shows the block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.13 shows a product list.

Figure 1.2 Part numbering scheme

Table 1.13 Product list

Part number	Ordering part number	Package	Code flash	Data flash	SRAM	Operating temperature
R7FS3A77C2A01CLK	R7FS3A77C2A01CLK#AC1	PTLG0145KA-A	1 MB	16 KB	192 KB	-40 to +85°C
R7FS3A77C3A01CFB	R7FS3A77C3A01CFB#AA1	PLQP0144KA-B	1 MB	16 KB	192 KB	-40 to +105°C
R7FS3A77C2A01CBJ	R7FS3A77C2A01CBJ#AC1	PLBG0121JA-A	1 MB	16 KB	192 KB	-40 to +85°C
R7FS3A77C3A01CFP	R7FS3A77C3A01CFP#AA1	PLQP0100KB-B	1 MB	16 KB	192 KB	-40 to +105°C
R7FS3A77C2A01CLJ	R7FS3A77C2A01CLJ#AC1	PTLG0100JA-A	1 MB	16 KB	192 KB	-40 to +85°C
R7FS3A77C3A01CFM	R7FS3A77C3A01CFM#AA1	PLQP0064KB-C	1 MB	16 KB	192 KB	-40 to +105°C
R7FS3A77C3A01CNB	R7FS3A77C3A01CNB#AC1	PWQN0064LA-A	1 MB	16 KB	192 KB	-40 to +105°C

1.4 Function Comparison

Table 1.14 Function comparison

Parts number		R7FS3A77C2A01CLK R7FS3A77C3A01CFB R7FS3A77C2A01CBJ R7FS3A77C3A01CFP R7FS3A77C2A01CLJ R7FS3A77C2A01CLJ<														
Pin count		145	144	121	100	100	64									
Package		LGA	LQFP	BGA	LQFP	LGA	LQFP/QFN									
Code flash mem	ory			1	MB		•									
Data flash memo	ory			16	S KB											
SRAM				19	2 KB											
	Parity			17	6 KB											
	ECC			16	S KB											
System	CPU clock			48	MHz											
	Backup registers	512 bytes														
	ICU	Yes														
	KINT	8														
Event control	ELC	Yes														
DMA	DTC	Yes														
	DMAC				4											
BUS	External bus	16-b	it bus		8-bit bus		No									
Timers	GPT32	10	10	10	10	10	9									
	AGT	2	2	2	2	2	2									
	RTC															
	WDT/IWDT	Yes														
Communication	SCI	6														
	IIC		3			2										
	SPI				2											
	SSI			2			1									
	QSPI			1			No									
	SDHI			1			No									
	CAN				1											
	USBFS			١	/es											
Analog	ADC14	2	28	26	25	25	18									
	DAC12				2											
	ACMPHS				2											
	ACMPLP				2											
	OPAMP	4	4	4	4	4	3									
	TSN			<u> </u>	/es											
НМІ	SLCDC	4 com s or 8 com	× 52 seg x 48 seg	4 com × 38 seg or 8 com x 34 seg	4 com × 26 seg or 8 com x 22 seg	4 com × 26 seg or 8 com x 22 seg	No									
	CTSU		31		2	26	14									
Data .	CRC			١	/es		-									
processing	DOC			١	/es											
Security		SCE5														

1.5 Pin Functions

Function	Signal	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect to the system power supply. Connect this pin to VSS through a 0.1-µF capacitor. Place the capacitor close to the pin.
	VCL	Input	Connect this pin to the VSS pin through the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
	VBATT	Input	Backup power supply pin
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through
	EXTAL	Input	the EXTAL pin.
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator
	XCOUT	Output	between XCOUT and XCIN.
	EBCLK	Output	Outputs the external bus clock for external devices
	CLKOUT	Output	Clock output pin
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin
Interrupt	NMI	Input	Non-maskable interrupt request pin
	IRQ0 to IRQ15	Input	Maskable interrupt request pins
KINT	KR00 to KR07	Input	A key interrupt (KINT) can be generated by inputting a falling edge to the key interrupt input pins
On-chip debug	TMS	I/O	On-chip emulator or boundary scan pins
	TDI	Input	
	TCK	Input	
	TDO	Output	
	SWDIO	I/O	Serial wire debug data Input/output pin
	SWCLK	Input	Serial wire clock pin
	SWO	Output	Serial wire trace output pin
External bus interface	RD	Output	Strobe signal indicating that reading from the external bus interface space is in progress, active-low
	WR	Output	Strobe signal indicating that writing to the external bus interface space is in progress, in 1-write strobe mode, active-low
	WR0, WR1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00, D15 to D08) is valid in writing to the external bus interface space, in byte strobe mode, active-low
	BC0, BC1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00, D15 to D08) is valid in access to the external bus interface space, in 1-write strobe mode, active-low
	WAIT	Input	Input pin for wait request signals in access to the external space, active-low
	CS0 to CS3	Output	Select signals for CS areas, active-low
	A00 to A16	Output	Address bus
	D00 to D15	I/O	Data bus
Battery Backup	VBATWIO0 to VBATWIO2	I/O	Output wakeup signal for the VBATT wakeup control function. External event input for the VBATT wakeup control function.

Function	Signal	I/O	Description
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	External trigger input pins
	GTIOC0A to GTIOC9A, GTIOC0B to GTIOC9B	I/O	Input capture, output capture, or PWM output pins
	GTIU	Input	Hall sensor input pin U
	GTIV	Input	Hall sensor input pin V
	GTIW	Input	Hall sensor input pin W
	GTOUUP	Output	3-phase PWM output for BLDC motor control (positive U phase)
	GTOULO	Output	3-phase PWM output for BLDC motor control (negative U phase)
	GTOVUP	Output	3-phase PWM output for BLDC motor control (positive V phase)
	GTOVLO	Output	3-phase PWM output for BLDC motor control (negative V phase)
	GTOWUP	Output	3-phase PWM output for BLDC motor control (positive W phase)
	GTOWLO	Output	3-phase PWM output for BLDC motor control (negative W phase)
AGT	AGTEE0, AGTEE1	Input	External event input enable signals
	AGTIO0, AGTIO1	I/O	External event input and pulse output pins
	AGTO0, AGTO1	Output	Pulse output pins
	AGTOA0, AGTOA1	Output	Output compare match A output pins
	AGTOB0, AGTOB1	Output	Output compare match B output pins
RTC	RTCOUT	Output	Output pin for 1-Hz/64-Hz clock
	RTCIC0 to RTCIC2	Input	Time capture event input pins
SCI	SCK0 to SCK4, SCK9	I/O	Input/output pins for the clock (clock synchronous mode)
	RXD0 to RXD4, RXD9	Input	Input pins for received data (asynchronous mode/clock synchronous mode
	TXD0 to TXD4, TXD9	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode)
	CTS0_RTS0 to CTS4_RTS4, CTS9_RTS9	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low
	SCL0 to SCL4, SCL9	I/O	Input/output pins for the I ² C clock (simple IIC)
	SDA0 to SDA4, SDA9	I/O	Input/output pins for the I ² C data (simple IIC)
	SCK0 to SCK4, SCK9	I/O	Input/output pins for the clock (simple SPI)
	MISO0 to MISO4, MISO9	I/O	Input/output pins for slave transmission of data (simple SPI)
	MOSI0 to MOSI4, MOSI9	I/O	Input/output pins for master transmission of data (simple SPI)
	SS0 to SS4, SS9	Input	Chip-select input pins (simple SPI), active-low
IIC	SCL0 to SCL2	I/O	Input/output pins for the clock
	SDA0 to SDA2	I/O	Input/output pins for the data
SSI	SSISCK0	I/O	SSI serial bit clock pins
	SSISCK1		
	SSIWS0	I/O	Word select pins
	SSIWS1		
	SSITXD0	Output	Serial data output pin
	SSIRXD0	Input	Serial data input pin
	SSIDATA1	I/O	Serial data input/output pin
	AUDIO_CLK	Input	External clock pin for audio (input oversampling clock)

Function	Signal	I/O	Description
SPI	RSPCKA, RSPCKB	I/O	Clock input/output pin
	MOSIA, MOSIB	I/O	Input or output pins for data output from the master
	MISOA, MISOB	I/O	Input or output pins for data output from the slave
	SSLA0, SSLB0	I/O	Input or output pins for slave selection
	SSLA1, SSLA2,	Output	Output pins for slave selection
	SSLA3, SSLB1,		
0001	SSLB2, SSLB3	0 1 1	CODI I I I I I I I
QSPI	QSPCLK	Output	QSPI clock output pin
	QSSL	Output	QSPI slave output pin
	QIO0	1/0	Master transmit data/Data 0
	QI01	1/0	Master input data/Data 1
CAN	QIO2, QIO3	I/O	Data 2, Data 3
CAN	CRX0	Input	Receive data
	CTX0	Output	Transmit data
USBFS	VSS_USB	Input	Ground pins
	VCC_USB_LDO	Input	Power supply pin for USB LDO regulator
	VCC_USB	I/O	Input: Power supply pin for USB transceiver. Output: USB LDO regulator output pin. This pin should be connected to an
			external capacitor.
	USB_DP	I/O	D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of
	002_2.	., 0	the USB bus.
	USB_DM	I/O	D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of the USB bus.
	USB_VBUS	Input	USB cable connection monitor pin. Connect this pin to VBUS of the USB
	005_1500	mpat	bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a device controller.
	USB EXICEN	Output	Low power control signal for external power supply (OTG) chip
	USB_VBUSEN	Output	VBUS (5 V) supply enable signal for external power supply chip
	USB_OVRCURA,	Input	Connect the external overcurrent detection signals to these pins. Connect
	USB_OVRCURB		the VBUS comparator signals to these pins when the OTG power supply chip is connected.
	USB_ID	Input	Connect the MicroAB connector ID input signal to this pin during operation in OTG mode
SDHI	SD0CLK	Output	SD clock output pin
	SD0CMD	I/O	Command output pin and response input signal pin
	SD0DAT0 to SD0DAT7	I/O	SD and MMC data bus pins
	SD0WP	Input	SD write-protect signal
Analog power	AVCC0	Input	Analog voltage supply pin
supply	AVSS0	Input	Analog voltage supply ground pin
	VREFH0	Input	Analog reference voltage supply pin
	VREFL0	Input	Reference power supply ground pin
	VREFH	Input	Analog reference voltage supply pin for DAC12
	VREFL	Input	Analog reference ground pin for DAC12
ADC14	AN000 to AN027	Input	Input pins for the analog signals to be processed by the ADC14
	ADTRG0	Input	Input pins for the external trigger signals that start the A/D conversion, active-low
DAC12	DA0, DA1	Output	Output pins for the analog signals to be processed by the D/A converter
Comparator output	VCOUT	Output	Comparator output pin
ACMPHS	IVREF0 to IVREF5	Input	Reference voltage input pin
	IVCMP0 to IVCMP5	Input	Analog voltage input pins
ACMPLP	CMPREF0, CMPREF1	Input	Reference voltage input pins
	CIVIFICELL		
	CMPIN0, CMPIN1	Input	Analog voltage input pins
OPAMP		Input Input	Analog voltage input pins Analog voltage input pins
ОРАМР	CMPIN0, CMPIN1		

Function	Signal	I/O	Description
CTSU	TS00, TS01, TS03 to TS22, TS26 to TS27, TS29 to TS35	Input	Capacitive touch detection pins (touch pins)
	TSCAP	-	Secondary power supply pin for the touch driver
I/O ports	P000 to P015	I/O	General-purpose input/output pins
	P100 to P115	I/O	General-purpose input/output pins
	P200	Input	General-purpose input pin
	P201 to P206, P212, P213	I/O	General-purpose input/output pins
	P214, P215	Input	General-purpose input pins
	P300 to P315	I/O	General-purpose input/output pins
	P400 to P415	I/O	General-purpose input/output pins
	P500 to P507, P511, P512	I/O	General-purpose input/output pins
	P600 to P606, P608 to P614	I/O	General-purpose input/output pins
	P700 to P705, P708 to P713	I/O	General-purpose input/output pins
	P800 to P809	I/O	General-purpose input/output pins
	P900 to P902	I/O	General-purpose input/output pins
SLCDC	VL1, VL2, VL3, VL4	I/O	Voltage pin for driving the LCD
	CAPH, CAPL	I/O	Capacitor connection pin for the LCD controller/driver
	COM0 to COM7	Output	Common signal output pins for the LCD controller/driver
	SEG00 to SEG51	Output	Segment signal output pins for the LCD controller/driver

1.6 Pin Assignments

Figure 1.3 to Figure 1.9 show the pin assignments.

				R	7FS	3A7	77C	2A0	1CL	.K				R7FS3A77C2A01CLK														
	Α	В	С	D	E	F	G	Н	J	К	L	М	N	_														
13	P407	P409	P412	P708	P711	VCC	P212 /EXTAL	P215 /XCIN	VCL	P702	P405	P402	P400	13														
12	USB_DM	USB_DP	P410	P414	P710	VSS	P213 /XTAL	P214 /XCOUT	VBATT	P701	P404	P511	vcc	12														
11	VCC_ USB	VSS_ USB	VCC_ USB_LDO	P411	P415	P712	P705	P704	P703	P403	P401	P512	VSS	11														
10	P205	P206	P204	P408	P413	P709	P713	P700	P406	P003	P000	P002	P001	10														
9	P203	P313	P202	P314						P004	P006	P009	P008	9														
8	P900	P901	P200	P315						P005	AVSS0	P011 /VREFL0	P010 /VREFH0	8														
7	VSS	P902	RES	P310						P007	AVCC0	P013 /VREFL	P012 /VREFH	7														
6	vcc	P201/MD	P312	P305						P505	P506	P015	P014	6														
5	P309	P311	P308	P303	NC					P503	P504	VSS	vcc	5														
4	P307	P306	P304	P109/TDO /SWO	P114	P608	P604	P600	P105	P500	P502	P501	P507	4														
3	P808	P809	P301	P112	P115	P610	P614	P603	P107	P106	P104	P803	P802	3														
2	P302	P300/TCK /SWCLK	P111	P806	P609	P612	VSS	P605	P601	P805	P800	P101	P801	2														
1	P108/TMS /SWDIO	P110/TDI	P113	P807	P611	P613	VCC	P606	P602	P804	P103	P102	P100	1														
	Α	В	С	D	E	F	G	Н	J	К	L	М	N	ı														

Figure 1.3 Pin assignment for 145-pin LGA (top view)

Figure 1.4 Pin assignment for 144-pin LQFP (top view)

Figure 1.5 Pin assignment for 121-pin BGA (top view)

Figure 1.6 Pin assignment for 100-pin LQFP (top view)

R7FS3A77C2A01CLJ Α С D Ε G Κ P212/ P215/ P407 P409 P412 VCC VCL P403 P400 P000 10 10 **EXTAL XCIN** P213/ P214/ USB_DM USB_DP P413 VSS VBATT P405 P401 P001 9 9 **XTAL XCOUT** VCC VSS VCC_US P708 P404 P003 P002 8 P411 P415 P004 8 USB USB B_LDO P204 P206 P408 P414 P406 P006 P007 P008 P005 7 P205 7 P011/ P010/ VCC P202 P203 P402 P505 AVSS0 6 VSS P410 6 VREFL0 VREFH0 P013/ P012/ 5 P200 P201/MD P307 RES P113 P600 P504 AVCC0 5 VREFL VREFH P305 P304 P808 P306 P115 P601 P503 P100 P015 P014 4 4 P110/TDI P602 P107 3 P809 P303 P111 P609 P103 VSS VCC 3 P300/ 2 TCK/ P302 P301 P114 P610 P603 P106 P101 P501 P502 2 SWCLK P108/ P109/ TDO/ P112 P608 VCC VSS P105 P500 1 1 TMS/ P104 P102 SWDIO SWO В С Е F Κ D J

Figure 1.7 Pin assignment for 100-pin LGA (top view)

Figure 1.8 Pin assignment for 64-pin LQFP (top view)

Figure 1.9 Pin assignment for 64-pin QFN (top view)

1.7 Pin Lists

Pin nu	ımber						J				Timer	s			Comn	nunica	tion int	terface	s		Analog	gs		нмі	
LGA145	LQFP144	BGA121	LQFP100	LGA100	LQFP64	QFN64	Power, System, Clock, Debug, CAC, VBATT	Interrupt	I/O ports	External bus	AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN	SCI)II	SPI/QSPI	ISS	SDHI	ADC14	DAC12, OPAMP	ACMPHS, ACMPLP	эсэс	стѕи
N13	1	L11	1	J10	1	1		IRQ0	P400				GTIOC 6A_A			SCK4_ B	SCL0_ A		AUDIO _CLK						TS20
L11	2	K11	2	J9	2	2		IRQ5	P401			GTET RGA_ B	GTIOC 6B_A		CTX0_ B	CTS4_ RTS4_ B/ SS4_B	SDA0_ A								TS19
M13	3	J10	3	F6	3	3	VBAT WIO0	IRQ4	P402		AGTIO 0_B/ AGTIO 1_B			RTCIC 0	CRX0_ B	004_B									TS18
K11	4	J11	4	H10			VBAT WIO1		P403		AGTIO 0_C/ AGTIO 1_C		GTIOC 3A_B	RTCIC 1					SSISC K0_A						TS17
L12	5	H9	5	G8			VBAT WIO2		P404				GTIOC 3B_B	RTCIC 2					SSIWS 0_A						TS16
L13	6	H10	6	H9					P405				GTIOC 1A_B						SSITX D0_A						TS15
J10	7	H11	7	F7					P406				GTIOC 1B_B						SSIRX D0_A						TS14
H10	8	G6							P700				GTIOC 5A_B												TS32
K12	9	G7							P701				GTIOC 5B_B												TS33
K13	10	G8							P702				GTIOC 6A_B												TS34
J11	11								P703				GTIOC 6B_B												
H11	12								P704																
G11 J12	13 14	G10	8	G9	4	4	VBATT		P705																
J13 H13	15 16	G11 F11	9 10	G10 F10	5 6	5 6	VCL XCIN		P215																
H12	17	F10	11	F9	7	7	XCOU		P214																
F12	18	G9	12	D9	8	8	VSS																		
G12	19	E10	13	E9	9	9	XTAL	IRQ2	P213			GTET RGC_ A				TXD1_ A/ MOSI1 _A/ SDA1_ A									
G13	20	E11	14	E10	10	10	EXTAL	IRQ3	P212		AGTE E1	GTET RGD_ A				RXD1_ A/ MISO1 _A/ SCL1_ A									
F13 G10	21 22	F9	15	D10	11	11	VCC		P713				GTIOC												
F11	23								P712				2A_B GTIOC												
E13	24								P711				2B_B			CTS1_									
2.0	- '															RTS1									
E12	25	F8							P710							B/ SS1_B SCK1_									TS35
	26	F7						IRQ10								B TXD1_									TS13
	20								. 100							B/ MOSI1 _B/ SDA1_ B									
D13	27	E9	16	F8			CACR EF_B	IRQ11	P708							RXD1_ B/ MISO1 _B/ SCL1_		SSLA3 _B							TS12
E11	28	D10	17	E8					P415							В		SSLA2							TS11
	29	D11		E7					P414									_B SSLA1		SD0W					TS10
	30	E8	19	C9					P413			GTOU				CTS0		_B SSLA0		P SD0CL					TS09
												UP_B				CTS0_ RTS0_ B/ SS0_B		_B		K					
C13	31	D9	20	C10					P412			GTOU LO_B				SCK0_ B		RSPC KA_B		SD0C MD					TS08

Pin nu	umbe	er						بد	Π			Timer	's			Comn	nunica	tion int	terface	s		Analo	gs		НМІ	
LGA145		LQFP144	BGA121	LQFP100	LGA100	LQFP64		QFN64 Power, System, Clock, Debug, CAC, VBATT			External bus			GPT	RTC	USBFS,CAN		IIC	SPI/QSPI	ISS		ADC14	DAC12, OPAMP	ACMPHS, ACMPLP	SLCDC	CTSU
D11	32	C ²	11	21	D8	12	12		IRQ4	P411		AGTO A1	GTOV UP_B	GTIOC 9A_A			TXD0_ B/ MOSI0_ B/ SDA0_ B/ CTS3_ RTS3_ A/ SS3_A		MOSIA _B		ATO					TS07
C12	33	C1	10	22	E6	13	13		IRQ5	P410		AGTO B1	GTOV LO_B	GTIOC 9B_A			RXD0_B/ MISO0_B/ SCL0_B/ SCK3_		MISOA _B		SD0D AT1					TS06
B13	34	Cs	9	23	B10	14	14		IRQ6	P409			GTOW UP_B			USB_E XICEN _A	A TXD3_ A/ MOSI3 _A/ SDA3_ A									TS05
D10	35	B1		24	D7 A10	15	15		IRQ7	P408			GTOW LO_B		RTCO	USB_I D_A USB_V	RXD3_ A/ MISO3 _A/ SCL3_ A	SDA0	SSLB3			ADTR				TS04
B11	37	BS		26	B8	17	17	VSS_U	J	1407					UT	BUS	RTS4_ A/ SS4_A	B B	_A			G0_B				1303
A12	38	A1	10	27	A9	18	18	SB								USB										
B12	39	B1		28	B9	19	19	-								DM USB_										
A11	40	AS		29	A8	20	20	VCC_								DP										
C11		B8						USB VCC_																		
CII	41	ь	,	30	C8	21	21	USB_L DO	-																	
B10	42	C	3	31	C7	22	22	50	IRQ0	P206	WAIT		GTIU_ A			USB_V BUSE N_A	RXD4_ A/ MISO4 _A/ SCL4_	SDA1_ A	SSLB1 _A	SSIDA TA1_A						TS01
A10	43	AS	3	32	A7	23	23	CLKO UT_A	IRQ1	P205	A16	AGTO 1	GTIV_ A	GTIOC 4A_B		USB_ OVRC URA	A/ MOSI4 _A/ SDA4_ A/ CTS9_ RTS9_ A/	SCL1_A	SSLB0 _A	SSIWS 1_A	SD0D AT3					TSCA P_A
C10	44	D8	3	33	B7	24	24	CACR EF_A		P204			GTIW_ A	GTIOC 4B_B		USB_ OVRC URB	SS9_A SCK4_ A/ SCK9_ A	SCL0_ B	RSPC KB_A	SSISC K1_A	SD0D AT4				SEG23	TS00
A9	45	A7		34	D6				IRQ2	P203				GTIOC 5A_A		CTX0_ A	CTS2_ RTS2_ A/ SS2_A / TXD9_ A/ MOSI9 _A/ SDA9_ A		MOSIB _A		SD0D AT5				SEG22	TSCA P_B
C9	46	B7	,	35	C6				IRQ3	P202	WR1/ BC1			GTIOC 5B_A		CRX0_ A	SCK2_ A/ RXD9_ A/ MISO9 _A/ SCL9_ A		MISOB _A		SD0D AT6				SEG21	
B9	47	C7	7					+		P313		+									SD0D	1			SEG20	
D9	48	D7					L			P314											AT7				SEG4	
D8 A8	49 50	E7	7				1		1	P315 P900												1			SEG5 SEG6	
B8	51	\pm								P901															SEG7	
B7 A7	52 53	A6	,]	36	A6		-	VSS		P902		1										1			SEG8	
A6	54	B6	3	37	B6			VCC																		
C7 B6	55 56	C6		38 39	D5 B5	25 26	25 26	RES MD		P201		1										1				
C8	57	E		40	A5	27	27		NMI	P200	L	L			L				L		L	L				
C6	58									P312	CS3														SEG9	

Pin nu	number						ۍر ک				Timer	s			Comm	nunicat	ion int	erface	s		Analo	gs		НМІ	
LGA145	LQFP144	BGA121	LQFP100	LGA100	LQFP64	QFN64	Power, System, Clock, Debug, CAC, VBATT	Interrupt	I/O ports		AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN	SCI	SII	SPI/QSPI	SSI	SDHI	ADC14	DAC12, OPAMP	ACMPHS, ACMPLP	SCCDC	стѕп
B5 D7	59 60								P311 P310	CS2 A15														SEG10 SEG11	
A5	61	B5							P309	A14														SEG12	
C5 A4	62 63	A5 C5	41	C5					P308 P307	A13 A12														SEG13 SEG14	
B4	64	B4		D4					P306	A11														SEG15	
D6 C4	65 66	A4 E5		A4 B4	28	28			P305 P304	A10 A09			GTIOC											SEG16 SEG17	
A3	67	C4	45	C4					P808				7A_A											SEG18	
В3	68	A3	46	A3					P809															SEG19	
D5	69	В3	47	B3	29	29			P303	A08			GTIOC 7B_A											SEG3/ COM7	
A2	70	D5	48	B2	30	30		IRQ5	P302	A07		GTOU UP_A	GTIOC 4A_A			TXD2_ A/ MOSI2 _A/ SDA2		SSLB3 _B						SEG2/ COM6	
C3	71	A2	49	C2	31	31		IRQ6	P301	A06		GTOU LO_A	GTIOC 4B_A			A RXD2_ A/ MISO2 _A/ SCL2		SSLB2 _B						SEG1/ COM5	
B2	72	A1	50	A2	32	32	TCK/ SWCL		P300				GTIOC 0A_A			A A		SSLB1 _B							
A1	73	B2	51	A1	33	33	K TMS/ SWDI O		P108				GTIOC 0B_A			CTS9_ RTS9_ B/		SSLB0 _B							
												0701	07100			SS9_B									
D4	74	B1	52	B1	34	34	TDO/ SWO/ CLKO UT_B		P109			GTOV UP_A	GTIOC 1A_A			TXD9_ B/ MOSI9 _B/ SDA9_ B		MOSIB _B							
B1	75	СЗ	53	С3	35	35	TDI	IRQ3	P110			GTOV LO_A	GTIOC 1B_A			CTS2_ RTS2_ B/ SS2_B / RXD9_ B/ MISO9 _B/ SCL9_ B		MISOB _B					VCOU T		
C2	76	D3	54	D3	36	36		IRQ4	P111	A05			GTIOC 3A_A			SCK2_ B/ SCK9_ B		RSPC KB_B						CAPH	
D3	77	C1	55	C1	37	37			P112	A04			GTIOC 3B_A			TXD2_ B/ MOSI2 _B/ SDA2_ B			SSISC K0_B					CAPL	
C1	78	C2		E5	38	38			P113	A03						RXD2_ B/ MISO2 _B/ SCL2_ B			SSIWS 0_B					SEG0/ COM4	
E4	79	D4	57	D2					P114	A02									SSIRX D0_B					SEG24	
E3	80	D1	58	E4					P115	A01									SSITX D0_B					SEG25	
D2	81								P806										ם_ט_ם					SEG26	
D1 F4	82 83	D2	59	D1					P807 P608	A00/														SEG27 SEG28	
										BC0															
F3	84 85	E3 E1		E3 E2					P609 P610	CS1 CS0														SEG29 SEG30	
E1	86	E4							P611															SEG31	
F2 F1	87 88	F5 E2							P612 P613	D08 D09														SEG32 SEG33	
G3	89	LZ							P614	D10														SEG34	
G1 G2	90 91	F1 G1		E1 F1	39 40	39 40	VCC VSS																		
H1	91	31	03	1-1	40	40	v33		P606															SEG35	
H2	93	F2							P605	D11														SEG36	
G4 H3	94 95	F3 F4	64	F2		1			P604 P603	D12 D13														SEG37 SEG38	
J1	96	G2	65	F3		L			P602	EBCLK														SEG39	
J2 H4	97 98	G5 G4		F4 F5					P601 P600	WR/ WR0 RD														SEG40 SEG41	
K2	99	Ė	Ė	Ė					P805	Ē														SEG42	
K1	100								P804															SEG43	

Pin n	umber						1.5	1	1		Timer	s			Comm	nunicat	tion int	erfaces			Analo	as		нмі	
							힣투								- 2.1111							<u> </u>			
 LGA145	LQFP144		LQFP100	LGA100			Power, System, Clock, Debug, CAC, VBATT		I/O ports		AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN	SCI	2	SPI/QSPI	ISS	SDHI	ADC14	DAC12, OPAMP	ACMPHS, ACMPLP	SLCDC	стѕп
J3	101	H1	68	G3	41	41		KR07	P107	D07			GTIOC 8A_A											COM3	
K3	102	G3	69	G2	42	42		KR06	P106	D06			GTIOC 8B A					SSLA3 A						COM2	
J4	103	H2	70	G1	43	43		KR05/ IRQ0	P105	D05		GTET RGA_ C						SSLA2 _A						COM1	
L3	104	НЗ	71	H1	44	44		KR04/ IRQ1	P104	D04		GTET RGB_ B						SSLA1 _A						COM0	
L1	105	J1	72	НЗ	45	45		KR03	P103	D03		GTOW UP_A	GTIOC 2A_A			CTS0_ RTS0_ A/		SSLA0 _A			AN024		CMPR EF1	VL4	
M1	106	J2	73	J1	46	46		KR02	P102	D02	AGTO 0	GTOW LO_A	GTIOC 2B_A			SS0_A SCK0_ A		RSPC KA_A			AN025 / ADTR		CMPIN 1	VL3	
M2	107	K1	74	H2	47	47		KR01/ IRQ1	P101	D01	AGTE E0	GTET RGB_				TXD0_ A/	SDA1_ B	MOSIA _A			G0_A AN026		CMPR EF0	VL2	
												A				MOSI0 _A/ SDA0_ A/ CTS1_ RTS1_ A/ SS1_A									
N1	108	L1	75	H4	48	48		KR00/ IRQ2	P100	D00	AGTIO 0_A	GTET RGA_ A				RXD0_ A/ MISO0_ A/ SCL0_ A/ SCK1_ A	SCL1_ B	MISOA _A			AN027		CMPIN 0	VL1	
L2	109	L2							P800	D14														SEG44	
N2 N3	110 111	K2							P801 P802	D15														SEG45 SEG46	
M3	112						-		P803															SEG47	
K4	113	K3	76	K1	49	49			P500		AGTO				USB_V			QSPC			AN016			SEG48	
M4	114	L3	77	J2	50	50		IRQ11	P501		A0 AGTO	B GTIV_			BUSE N_B USB_			LK QSSL			AN017			SEG49	
L4	115	J3	78	K2	51	51		IRQ12	P502		B0	B GTIW_			OVRC URA USB_			QIO0			AN018			SEG50	
K5	116	J4	79	G4					P503			B GTET			OVRC URB USB_E			QIO1			AN019			SEG51	
L5	117	H4	80	G5					P504			RGC_ B GTET			XICEN _B USB_I			QIO2			AN020				
												RGD_ B			D_B										
K6	118	J5	81	G6				IRQ14										QIO3			AN021				
L6 N4	119 120	H5						IRQ15	P506												AN022 AN023				
N5	121	L4	82	K3			VCC																		
M5 M6	122 123	K4 K5	83 84	J3 J4	52	52	VSS	IRQ13	P015												AN015		IVCMP 5/ IVCMP		
N6	124	L5	85	K4	53	53			P014												AN014		2 IVREF 5/ IVREF		
M7 N7	125 126	K6 L6	86 87	J5 K5	54 55	54 55	VREFL VREF		P013 P012												AN013 AN012	AMP1+	2		
L7	127	I6	88	H5	56	56	H AVCC0				ļ	1													
L8	127	J6 J7	88 89	H6	56 57	56 57	AVCC0																		
M8	129	K7	90	J6	58	58	VREFL 0	IRQ15														AMP2+			TS31
N8	130	L7	91	K6	59	59	VREF H0	IRQ14														AMP2-			TS30
M9 N9	131	HE	92	J7	<u> </u>	-	-	IRQ13 IRQ12			<u> </u>										AN009 AN008				TS29
K7	132 133	H6 H7	92 93	J7 H7				inų 12	P008 P007													AMP3 O	IVCMP 4/		1029
L9	134	H8	94	G7				IRQ11	Pnne												AN006		IVCMP 1 IVREF		TS27
LB	1.04	110	J-4	91				in WII													DUUNIN		IVREF 4/ IVREF 1		1021
K8	135	L8	95	K7				IRQ10	P005												AN005	AMP3+	IVREF 0		TS26
K9	136	J8	96	J8	60	60	1	IRQ9	P004												AN004		IVCMP 0		
	<u> </u>	1	<u> </u>	1	I	1	1	1	1		<u> </u>	l .	l .			<u> </u>	1	ıl				J	J		

Pin nu	mber							,				Timers	3			Comm	nunica	tion int	erfaces	3		Analo	gs		НМІ	
LGA145	LQFP144	BGA121	LQFP100	LGA100	OFP64	4	QFN64	Power, System, Clock, Debug, CAC, VBATT	Interrupt	I/O ports	External bus	AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN	SCI	2	SPI/QSPI	SSI	IHOS	ADC14	DAC12, OPAMP	ACMPHS, ACMPLP	SLCDC	CTSU
K10	137	K8	97		61	61				P003												AN003	AMP1 O	IVREF 3/ IVCMP 3		
M10	138	J9	98	K8	62	62			IRQ8	P002												AN002	AMP0 O	IVREF 2/ IVCMP 2		
N10	139	K9	99	K9	63	63			IRQ7	P001												AN001		IVREF 1/ IVCMP 1		TS22
L10	140	L9	100	K10	64	64			IRQ6	P000												AN000	AMP0+	IVREF 0/ IVCMP 0		TS21
	141							VSS																		
N12	142							VCC																		
M11	143	L10							IRQ14					GTIOC 0A_B			B/ MOSI4 _B/ SDA4_ B	SCL2								
M12	144	K10							IRQ15	P511				GTIOC 0B_B			RXD4_ B/ MISO4 _B/ SCL4_ B	SDA2								
E5		F6						NC																		

Note: Some pin names have the added suffix of _A, _B, and _C. The suffix can be ignored when assigning functionality.

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

 $VCC^{\star 1} = AVCC0 = VCC_USB^{\star 2} = VCC_USB_LDO^{\star 2} = 1.6 \text{ to } 5.5\text{V}, \text{VREFH} = \text{VREFH0} = 1.6 \text{ to } \text{AVCC0}, \text{VBATT} = 1.6 \text{ to } 3.6\text{V}, \text{VSS} = \text{AVSS0} = \text{VREFL} = \text{VREFL0} = \text{VSS}_USB = 0\text{V}, \text{Ta} = \text{T}_{opr}$

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pin to meet your conditions.

Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the AC specification of each function is not guaranteed.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings

Parameter		Symbol	Value	Unit
Power supply voltage		VCC	-0.5 to +6.5	V
Input voltage	5V-tolerant ports*1	VCC		
	P000 to P015	V _{in}	-0.3 to AVCC0 + 0.3	V
	Others	V _{in}	-0.3 to VCC + 0.3	V
Reference power supply	voltage	VREFH0	-0.3 to +6.5	V
		VREFH		V
VBATT power supply volt	age	VBATT	-0.5 to +6.5	V
Analog power supply volta	age	AVCC0	-0.5 to +6.5	V
USB power supply voltage	е	VCC_USB	-0.5 to +6.5	V
		VCC_USB_LDO	-0.5 to +6.5	V
Analog input voltage	When AN000 to AN015 are used	V _{AN}	-0.3 to AVCC0 + 0.3	V
	When AN016 to AN027 are used	1	-0.3 to VCC + 0.3	V
LCD voltage	VL1 voltage	V _{L1}	-0.3 to +2.8	V
	VL2 voltage	V_{L2}	-0.3 to +6.5	V
	VL3 voltage	V_{L3}	-0.3 to +6.5	V
	VL4 voltage	V_{L4}	-0.3 to +6.5	V
Operating temperature*2	*3 *4	T _{opr}	-40 to +85	°C
			-40 to +105	°C
Storage temperature		T _{stg}	-55 to +125	°C

Note 1. Ports P205, P206, P400 to P404, P407, P511, P512 are 5V-tolerant.

Caution:

Permanent damage to the MCU may result if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 μF as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance.

Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. The capacitor must be placed close to the pin. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements.

Note 2. See section 2.2.1, Tj/Ta Definition.

Note 3. Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability.

Note 4. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, refer to section 1.3, Part Numbering

Table 2.2 **Recommended operating conditions**

Parameter	Symbol	Value	Min	Тур	Max	Unit
Power supply voltages	VCC*1, *2	When USBFS is not used	1.6	-	5.5	V
		When USBFS is used USB Regulator Disable	VCC_USB	-	3.6	V
		When USBFS is used USB Regulator Enable	VCC_USB _LDO	-	5.5	V
	VSS		-	0	-	V
USB power supply voltages	VCC_USB	When USBFS is not used	-	VCC	-	V
		When USBFS is used USB Regulator Disable (Input)	3.0	3.3	3.6	V
	VCC_USB_LDO	When USBFS is not used	-	VCC	-	V
		When USBFS is used USB Regulator Disable	-	VCC	-	V
		When USBFS is used USB Regulator Enable	3.8	-	5.5	V
	VSS_USB		-	0	-	V
VBATT power supply voltage	VBATT	When the battery backup function is not used	-	VCC	-	V
		When the battery backup function is used	1.6	-	3.6	V
Analog power supply voltages	AVCC0*1, *2		1.6	-	5.5	V
	AVSS0		-	0	-	V
	VREFH0	When used as ADC14	1.6	-	AVCC0	V
	VREFL0	Reference	-	0	-	V
	VREFH	When used as DAC12	1.6	-	AVCC0	V
	VREFL	Reference	-	0	-	V

Note 1. Use AVCC0 and VCC under the following conditions:

AVCC0 and VCC can be set individually within the operating range when VCC \geq 2.2 V and AVCC0 \geq 2.2 V AVCC0 = VCC when VCC \leq 2.2 V or AVCC0 \leq 2.2 V Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin.

2.2 **DC** Characteristics

2.2.1 Tj/Ta Definition

Table 2.3 **DC Characteristics**

Conditions: Products with operating temperature (T_a) -40 to +105°C

Parameter	Symbol	Тур	Max	Unit	Test conditions
Permissible junction temperature	Tj	-	125	°C	High-speed mode
			105* ¹		Middle-speed mode Low-voltage mode Low-speed mode Subosc-speed mode

Make sure that Tj = T_a + θ ja × total power consumption (W), where total power consumption = (VCC - V_{OH}) × Note: $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC} \max \times VCC.$

Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature as 85°C, then Tj max is 105°C, otherwise it is 125°C.

2.2.2 $I/O V_{IH}, V_{II}$

Table 2.4 I/O V_{IH} , V_{IL} (1) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 2.7 to 5.5 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Schmitt trigger	IIC*1 (except for SMBus)	V _{IH}	VCC × 0.7	-	5.8	V	-
input voltage		V _{IL}	-	-	VCC × 0.3		
		ΔV_T	VCC × 0.05	-	-		
	RES, NMI	V _{IH}	VCC × 0.8	-	-		
	Other peripheral input pins excluding IIC	V _{IL}	-	-	VCC × 0.2		
Input voltage	CACIDATING ITO	ΔV_{T}	VCC × 0.1	-	-		
Input voltage	IIC (SMBus)*2	V _{IH}	2.2	-	-		VCC = 3.6 to 5.5 V
(except for		V _{IH}	2.0	-	-		VCC = 2.7 to 3.6 V
Schmitt trigger input pin)		V _{IL}	-	-	0.8		-
	5V-tolerant ports*3	V _{IH}	VCC × 0.8	-	5.8		
		V _{IL}	-	-	VCC × 0.2		
	P000 to P015	V _{IH}	AVCC0 × 0.8	-	-		
		V _{IL}	-	-	AVCC0 × 0.2		
	EXTAL	V _{IH}	VCC × 0.8	-	-		
	D00 to D15 Input ports pins except for P000 to P015	V _{IL}	-	-	VCC × 0.2		
When V _{BATT}	P402, P403, P404	V _{IH}	V _{BATT} × 0.8	-	V _{BATT} + 0.3		
power supply is selected		V _{IL}	-	-	V _{BATT} × 0.2		
23.30104		ΔV _T	V _{BATT} × 0.05	-	-		

Note 1. SCL0_A, SDA0_A, SCL1_A, SDA1_A, SCL2, SDA2, SDA0_B (total 7 pins).

Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 10 pins). Note 3. P205, P206, P400 to P404, P407, P511, P512 (total 10 pins).

Table 2.5 I/O V_{IH} , V_{IL} (2) Conditions: VCC = 1.6 to 2.7 V, AVCC0 = 1.6 to 2.7 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions		
Schmitt trigger	RES, NMI	V _{IH}	VCC × 0.8	-	-	V	-		
input voltage	Peripheral input pins	V _{IL}	-	-	VCC × 0.2				
		ΔV_{T}	VCC × 0.01	-	-				
Input voltage	5V-tolerant ports*1	V _{IH}	VCC × 0.8	-	5.8				
(except for		V _{IL}	-	-	VCC × 0.2				
Schmitt trigger input pin)	P000 to P015	V _{IH}	AVCC0 × 0.8	-	-	-			
		V _{IL}	-	-	AVCC0 × 0.2				
	EXTAL	V _{IH}	VCC × 0.8	-	-				
	D0 to D15 Input ports pins except for P000 to P015	V _{IL}	-	-	VCC × 0.2				
When V _{BATT} power supply is selected	P402, P403, P404	V _{IH}	V _{BATT} × 0.8	-	V _{BATT} + 0.3				
		V _{IL}	-	-	V _{BATT} × 0.2				
		ΔV_{T}	V _{BATT} × 0.01	-	-				

Note 1. P205, P206, P400 to P404, P407, P511, P512 (total 10 pins)

I/O I_{OH} , I_{OL} 2.2.3

Table 2.6 I/O I_{OH} , I_{OL} Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit
Permissible output current	Ports P000 to P015,	-	I _{OH}	-	-	-4.0	mA
(average value per pin)	Ports P212, P213		I _{OL}	-	-	4.0	mA
	Ports P408, P409	Low drive*1	I	-4.0	mA		
			I _{OL}		4.0	mA	
		Middle drive*2	I _{OH}	-		-8.0	mA
		VCC = 2.7 to 3.0 V	I _{OL}	-	-	8.0	mA
		Middle drive*2	I _{OH}	-	-	-20.0	mA
		VCC = 3.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Ports P100 to P115,	Low drive*1	I _{OH}	-	-	-4.0	mA
	P201 to P204, P300 to P315, P500 to P503, P600 to P606,		I _{OL}	-	-	4.0	mA
	P608 to P614, P800 to P809, P900 to P902	Middle drive*2	I _{OH}	-	-	-4.0	mA
	(total 67 pins)		I _{OL}	-	-	8.0	mA
	Other output pin*3	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{OH}	-		-8.0	mA
		Middle drive*2		8.0	mA		
Permissible output current	Ports P000 to P015,	Sample	-4.0	mA			
Max value per pin)	Ports P212, P213		Ioh - -	mA			
	Ports P408, P409	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
			I _{OH}	-	-	-8.0	mA
		VCC = 2.7 to 3.0 V	I _{OL}	-	-	8.0	mA
			IOH	-	-20.0	mA	
		VCC = 3.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Ports P100 to P115,	Low drive*1	I _{OH}	-	-	-4.0	mA
	P201 to P204, P300 to P315, P500 to P503, P600 to P606,	Middle drive*2 VCC = 2.7 to 3.0 V I _{OL} I _{OH} I _{OL} Middle drive*2 I _{OH} I _{OL} VCC = 3.0 to 5.5 V I _{OL} I _{OH} I _{OL} Low drive*1 I _{OH} I _{OL} I _{OL}	I _{OL}	-	-	4.0	mA
	P608 to P614, P800 to P809, P900 to P902	Middle drive*2 I _{OH} - - Middle drive*2 I _{OH} - - Middle drive*2 I _{OH} - - VCC = 3.0 to 5.5 V I _{OH} - - I _{OL} - - I _{OH} - -	-	-	-4.0	mA	
	(total 67 pins)		-	8.0	mA		
	Other output pin*3	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	t .	-	-	-8.0	mA
				-	-	8.0	mA
Permissible output current	Total of ports P000 to P015	1		-	-	-30	mA
max value total pins)				-	-	30	mA
max value total pilloj	Total of all output pin			-	-	-60	mA
				-	-	60	mA

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 $\mu s. \,$

- Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in PmnPFS register.
- Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
- Note 3. Except for ports P200, P214, P215, which are input ports.

2.2.4 I/O V_{OH}, V_{OL}, and Other Characteristics

Table 2.7 I/O V_{OH} , V_{OL} (1) Conditions: VCC = AVCC0 = 4.0 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	IIC*1, *2		V _{OL}	-	-	0.4	٧	I _{OL} = 3.0 mA
			V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	Ports P408, P409*2, *3		V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA
			V _{OL}	-	-	1.0		I _{OL} = 20 mA
	Ports P000 to P015	Low drive	V _{OH}	AVCC0 - 0.8	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 2.0 mA
		Middle drive	V _{OH}	AVCC0 - 0.8	-	-		I _{OH} = -4.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 4.0 mA
	Other output pins*4	Low drive	V _{OH}	VCC - 0.8	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.8		I _{OL} = 2.0 mA
		Middle drive*5	V _{OH}	VCC - 0.8	-	-		I _{OH} = -4.0 mA
		V _{OL}	-	-	0.8		I _{OL} = 4.0 mA	

- Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 10 pins).
- Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
- Note 3. Based on characterization data, not tested in production.
- Note 4. Except for ports P200, P214, P215, which are input ports.
- Note 5. Except for P212, P213.

Table 2.8 I/O V_{OH} , V_{OL} (2) Conditions: VCC = AVCC0 = 2.7 to 4.0 V

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	IIC*1, *2		V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
			V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	Ports P408, P409*2, *3		V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
			V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Ports P000 to P015	Low drive	V _{OH}	AVCC0 - 0.5	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
		Middle drive	V _{OH}	AVCC0 - 0.5	-	-		I _{OH} = -2.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 2.0 mA
	Other output pins*4	Low drive	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
		Middle	V _{OH}	VCC - 0.5	-	-	1	I _{OH} = -2.0 mA
		drive*5	V _{OL}	-	-	0.5	1	I _{OL} = 2.0 mA

- Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 10 pins).
- Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
- Note 3. Based on characterization data, not tested in production.
- Note 4. Except for ports P200, P214, P215, which are input ports.
- Note 5. Except for P212, P213.

Table 2.9 I/O V_{OH} , V_{OL} (3) Conditions: VCC = AVCC0 = 1.6 to 2.7 V

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	Ports P000 to P015	Low drive	V _{OH}	AVCC0 - 0.3	-	-	V	$I_{OH} = -0.5 \text{ mA}$
			V _{OL}	-	-	0.3		I _{OL} = 0.5 mA
		Middle drive	V _{OH}	AVCC0 - 0.3	-	-		I _{OH} = -1.0 mA
			V _{OL}	-	-	0.3		I _{OL} = 1.0 mA
	Other output pins*1	Low drive	V _{OH}	VCC - 0.3	-	-		I _{OH} = -0.5 mA
			V _{OL}	-	-	0.3		I _{OL} = 0.5 mA
		Middle	V _{OH}	VCC - 0.3	-	-		I _{OH} = -1.0 mA
		drive*2	V _{OL}	-	-	0.3		I _{OL} = 1.0 mA

Note 1. Except for ports P200, P214, P215, which are input ports.

Note 2. Except for P212, P213.

Table 2.10 I/O Other Characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	RES, P200, P214, P215	I _{in}	-	-	1.0	μА	V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5V-tolerant ports	I _{TSI}	-	-	1.0	μА	V _{in} = 0 V V _{in} = 5.8 V
	Other ports (except for ports P200, P214, P215 and 5 V tolerant)		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up resistor	All Ports (except for ports P200, P214, P215)	R _U	10	20	50	kΩ	V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, P100 to P103, P111, P112, P200	C _{in}	-	-	30	pF	V _{in} = 0 V f = 1 MHz T _a = 25°C
	Other input pins		-	-	15	1	

2.2.5 I/O Pin Output Characteristics of Low Drive Capacity

Figure 2.2 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when low drive output is selected (reference data)

Figure 2.3 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data)

Figure 2.4 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data)

Figure 2.5 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data)

Figure 2.6 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when low drive output is selected (reference data)

2.2.6 I/O Pin Output Characteristics of Middle Drive Capacity

Figure 2.7 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when middle drive output is selected (reference data)

Figure 2.8 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 1.6 V when middle drive output is selected (reference data)

Figure 2.9 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data)

S3A7 Datasheet 2. Electrical Characteristics

Figure 2.10 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data)

Figure 2.11 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data)

2.2.7 P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity

Figure 2.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when middle drive output is selected (reference data)

Figure 2.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data)

S3A7 Datasheet 2. Electrical Characteristics

Figure 2.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data)

Figure 2.15 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data)

2.2.8 IIC I/O Pin Output Characteristics

Figure 2.16 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C

Operating and Standby Current 2.2.9

Table 2.11 Operating and standby current (1) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ*10	Max	Unit	Test conditions
Supply current*1	High-speed mode*2	Normal mode	All peripheral clock	ICLK = 48 MHz	I _{CC}	11.8	-	mA	*7
current	mode"2		disabled, while (1) code executing from flash*5	ICLK = 32 MHz		8.6	-		
				ICLK = 16 MHz		5.1	-		
				ICLK = 8 MHz		3.4	-		
			All peripheral clock	ICLK = 48 MHz		18.6	-		
			disabled, CoreMark code executing from flash*5	ICLK = 32 MHz		12.7	-		
			Ŭ	ICLK = 16 MHz		7.2	-		
				ICLK = 8 MHz		4.5	-		
			All peripheral clock	ICLK = 48 MHz		30.1	-		*9
			enabled, while (1) code executing from flash*5	ICLK = 32 MHz		23.2	-		*8
				ICLK = 16 MHz		12.6	-		
				ICLK = 8 MHz		7.3	-		
			All peripheral clock enabled, code executing from SRAM*5	ICLK = 48 MHz		-	75.0		*9
		Sleep mode	All peripheral clock	ICLK = 48 MHz		6.4	-		*7
			disabled*5	ICLK = 32 MHz		4.7	-		
				ICLK = 16 MHz		3.2	-		
				ICLK = 8 MHz		2.4	-		
			All peripheral clock	ICLK = 48 MHz		24.7	-		*9
			enabled* ⁵	ICLK = 32 MHz		19.2	-		*8
				ICLK = 16 MHz		10.7	-		
				ICLK = 8 MHz		6.4	-		
		Increase during	BGO operation*6	•		2.5	-		-
	Middle-speed	Normal mode	All peripheral clock	ICLK = 12 MHz	I _{cc}	3.6	-	mA	*7
	mode*2		disabled, while (1) code executing from flash*5	ICLK = 8 MHz		3.0	-		
			J	ICLK = 1 MHz		1.4	-		
			All peripheral clock	ICLK = 12 MHz		5.2	-		
			disabled, CoreMark code executing from flash*5	ICLK = 8 MHz		4.0	-		
				ICLK = 1 MHz		1.6	-		
			All peripheral clock	ICLK = 12 MHz		9.4	-		*8
			enabled, while (1) code executing from flash*5	ICLK = 8 MHz		6.9	-		
				ICLK = 1 MHz		2.2	-		
			All peripheral clock enabled, code executing from SRAM*5	ock executing - 30.0					
		Sleep mode All peripheral clock ICLK = 12 MHz 2.2 -	1	*7					
			disabled*5 ICLK = 8 MHz 2.0 -						
				ICLK = 1 MHz		1.3	-		
			All peripheral clock	ICLK = 12 MHz		7.9	-		*8
			enabled*5	ICLK = 8 MHz		5.9	-		
				ICLK = 1 MHz		2.1	-	1	
		Increase during	BGO operation*6	1		2.5	-	1	_

Table 2.11 Operating and standby current (1) (2 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ*10	Max	Unit	Test conditions
Supply current*1	Low-speed mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 1 MHz	I _{CC}	0.5	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 1 MHz		0.7	-		
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 1 MHz		1.5	-		*8
			All peripheral clock enabled, code executing from SRAM*5	ICLK = 1 MHz		-	3.2		
		Sleep mode	All peripheral clock disabled*5	ICLK = 1 MHz		0.4	-		*7
			All peripheral clock enabled*5	ICLK = 1 MHz		1.3	-	mA	*8
	Low-voltage mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 4 MHz	Icc	2.5	-		*7
		All peripheral clock disabled, CoreMark code executing from flash*5	-						
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 4 MHz		4.5	-		*8
			All peripheral clock enabled, code executing from SRAM* ⁵	ICLK = 4 MHz		-	11.2		
		Sleep mode	All peripheral clock disabled*5	ICLK = 4 MHz		2.0	-		*7
			All peripheral clock enabled*5	ICLK = 4 MHz		4.0	-		*8
	Subosc- speed mode*4	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 32.768 kHz	Icc	13.5	-	μA	*8
		All peripheral clock enabled, while (1) code executing from flash*5 All peripheral clock enabled, code executing from SRAM*5 ICLK = 32.768 kHz - 214.1							
			214.1						
		Sleep mode	Sleep mode All peripheral clock disabled*5 ICLK = 32.768 kHz	9.5	-				
			All peripheral clock enabled*5	ICLK = 32.768 kHz		21.0) -		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

The clock source is HOCO. Note 2.

Note 3. The clock source is MOCO.

Note 4. The clock source is the sub-clock oscillator.

Note 5. This does not include BGO operation.

Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.

Note 7. FCLK, BCLK, PCLKA, PCLKB, PCLKC and PCLKD are set to divided by 64.

Note 8. FCLK, BCLK, PCLKB, PCLKC and PCLKD are the same frequency as that of ICLK.

Note 9. FCLK, BCLK, and PCLKB are set to divided by 2 and PCLKD are the same frequency as that of ICLK.

Note 10. VCC = 3.3 V.

Figure 2.17 Voltage dependency in High-speed operating mode (reference data)

Figure 2.18 Voltage dependency in Middle-speed mode (reference data)

S3A7 Datasheet

Figure 2.19 Voltage dependency in Low-speed mode (reference data)

Figure 2.20 Voltage dependency in Low-voltage mode (reference data)

Figure 2.21 Voltage dependency in Subosc-speed mode (reference data)

Table 2.12 Operating and standby current (2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter			Symbol	Typ*4	Max	Unit	Test conditions
Supply	Software Standby	T _a = 25°C	I _{CC}	0.9	6.0	μA	PSMCR.PSMC[1:0] = 01b (48 KB
current*1	mode*2	T _a = 55°C		1.6	12.2		SRAM on)
		T _a = 85°C		4.8	27.1		
		T _a = 105°C		12.2	66.7		
		T _a = 25°C		1.1	7.5		PSMCR.PSMC[1:0] = 00b (All SRAM
		T _a = 55°C		2.2	17.0		on)
	T _a = 85°C 7.5	43.3					
		T _a = 105°C	-	19.6	105.9		
	Increment for RTC operation with low-speed on-chip oscillator*3		1	0.5	-		-
	Increment for RTC sub-clock oscillator	•		0.5	-		SOMCR.SODRV[1:0] are 11b (Low power mode 3)
				1.6	-		SOMCR.SODRV[1:0] are 00b (Normal mode)

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The IWDT and LVD are not operating.

Note 3. Includes the current of sub-oscillation circuit or low-speed on-chip oscillator.

Note 4. VCC = 3.3 V.

Figure 2.22 Temperature dependency in Software Standby mode 48 KB SRAM on (reference data)

Figure 2.23 Temperature dependency in Software Standby mode all SRAM on (reference data)

Table 2.13 Operating and standby current (3)

Conditions: VCC = AVCC0 = 0V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V

Parameter			Symbol	Тур	Max	Unit	Test conditions				
Supply	RTC operation	T _a = 25°C	I _{CC}	1.1	-	μA	VBATT = 2.0 V				
current*1	when VCC is off	T _a = 55°C	1	1.2	-		SOMCR.SORDRV[1:0] = 11b (Low power mode 3)				
		T _a = 85°C	1	1.4	-		(Lew power mode o)				
		T _a = 105°C		1.6	-						
		T _a = 25°C	1	1.2	-		VBATT = 3.3 V				
		T _a = 55°C		1.3	-		SOMCR.SORDRV[1:0] = 11b (Low power mode 3)				
		T _a = 85°C		1.5	-		(Lew power mode o)				
		T _a = 105°C		1.7	-						
		T _a = 25°C		1.8	-		VBATT = 2.0 V				
		T _a = 55°C		2.1	-		SOMCR.SORDRV[1:0] = 00b (Normal mode)				
		T _a = 85°C		2.4	-		(Normal mode)				
		T _a = 105°C		2.7	-						
		T _a = 25°C		1.9	-		VBATT = 3.3 V				
		T _a = 55°C		2.2	-		SOMCR.SORDRV[1:0] = 00b (Normal mode)				
		T _a = 85°C		1	1		1		1	2.5	-
		T _a = 105°C		2.8	-						

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Figure 2.24 Temperature dependency of RTC operation with VCC off (reference data)

Table 2.14 Operating and standby current (4)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VREFH0 = 2.7 V to AVCC0

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Analog power	During A/D conversion (at I	nigh-speed conversion)	I _{AVCC}	-	-	3.0	mA	-
supply current	During A/D conversion (at I	ow power conversion)		-	-	1.0	mA	-
	During D/A conversion (per	channel)*1		-	0.4	0.8	mA	-
	Waiting for A/D and D/A co	nversion (all units)*6		-	-	1.0	μA	-
Reference .	During A/D conversion		I _{REFH0}	-	-	150	μA	-
power supply current	Waiting for A/D conversion	(all units)		-	-	60	nA	-
	During D/A conversion		I _{REFH}	-	50	100	μA	-
	Waiting for D/A conversion	(all units)		-	-	100	μA	-
Temperature ser	sor		I _{TNS}	-	75	-	μA	-
Low power	Window mode		I _{CMPLP}	-	15	-	μA	-
Analog Comparator	Comparator High-speed me	ode		-	10	-	μA	-
operating current	Comparator Low-speed mo	ode		-	2	-	μА	-
High-Speed Ana	log Comparator operating curi	rent	I _{CMPHS}	-	70	100	μA	AVCC0 ≥ 2.7 V
Operational	Low power mode	1 unit operating	I _{AMP}	-	2.5	4.0	μA	-
Amplifier operating		2 units operating		-	4.5	8.0	μA	-
current		3 units operating		-	6.5	11.0	μA	-
		4 units operating		-	8.5	14.0	μA	-
	High-speed mode	1 unit operating		-	140	220	μA	-
		2 units operating		-	280	410	μA	-
		3 units operating		-	420	600	μA	-
		4 units operating		-	560	780	μA	-
LCD operating current	External resistance division f _{LCD} = f _{SUB} = 128 Hz, 1/3		I _{LCD1} *5	-	0.34	-	μА	-
	Internal voltage boosting m f _{LCD} = f _{SUB} = 128 Hz, 1/3	ethod bias, and 4-time slice	I _{LCD2} *5	-	0.92	-	μA	-
	Capacitor split method f _{LCD} = f _{SUB} = 128 Hz, 1/3	bias, and 4-time slice	I _{LCD3} *5	-	0.19	-	μA	-
USB operating current	During USB communication following settings and cond Host controller operation Bulk OUT transfer (64 by bulk IN transfer (64 bytes Connect peripheral device cable from the USB port.	itions: is set to Full-speed mode rtes) × 1, s) × 1 es via a 1-meter USB	lusBH*2	-	4.3 (VCC) 0.9 (VCC_USB)*4	-	mA	-
	During USB communication following settings and cond Function controller opera mode Bulk OUT transfer (64 by bulk IN transfer (64 bytes Connect the host device from the USB port.	itions: tion is set to Full-speed rtes) × 1, s) × 1	lusbf*2	-	3.6 (VCC) 1.1 (VCC_USB)*4	-	mA	-
	During suspended state un and conditions: • Function controller opera mode (pull up the USB_I • Software standby mode • Connect the host device from the USB port.	ntion is set to Full-speed DP pin)	Isusp*3	-	0.35 (VCC) 170 (VCC_USB)*4	-	μΑ	-

Note 1. Includes the reference power supply current in the power supply current value for D/A conversion.

Note 2. Includes current consumed by the USBFS only.

Note 3. Includes current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU during the suspended state.

Note 4. When VCC = VCC USB = 3.3 V.

Note 5. Includes current flowing to the LCD controller only. Does not include current flowing through the LCD panel.

Note 6. When the MSTPCRD.MSTPD16 (14-Bit A/D Converter Module Stop bit) is in the module-stop state.

2.2.10 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.15 Rise and fall gradient characteristics

Conditions: VCC = AVCC0 = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VCC	Voltage monitor 0 reset disabled at startup	SrVCC	0.02	-	2	ms/V	-
rising gradient	Voltage monitor 0 reset enabled at startup*1		0.02	-	-		
	SCI/USB Boot mode*2	1	0.02	-	2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.

Table 2.16 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.25 V _{r (VCC)} ≤ VCC × 0.2
		-	-	1	MHz	Figure 2.25 V _{r (VCC)} ≤ VCC × 0.08
		-	-	10	MHz	Figure 2.25 V _{r (VCC)} ≤ VCC × 0.06
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

Figure 2.25 Ripple waveform

2.3 AC Characteristics

2.3.1 Frequency

Table 2.17 Operation frequency value in High-speed operating mode

Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter			Symbol	Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*4	2.7 to 5.5 V	f	0.032768	-	48	MHz
frequency		2.4 to 2.7 V		0.032768	-	16	
	FlashIF clock (FCLK)*1, *2, *4	2.7 to 5.5 V		0.032768	-	32	
		2.4 to 2.7 V		0.032768	-	16	
	Peripheral module clock (PCLKA)*4	2.7 to 5.5 V		-	-	48	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V		-	-	32	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKC)*3, *4	2.7 to 5.5 V		-	-	64	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKD)*4	2.7 to 5.5 V		-	-	64	
		2.4 to 2.7 V		-	-	16	
	External bus clock (BCLK)*4	2.7 to 5.5 V		-	-	24	
		2.4 to 2.7 V		-	-	16	
	EBCLK pin output	2.7 to 5.5 V		-	-	12	
		2.4 to 2.7 V		-	-	8	

Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.

Note 4. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed with the errors of the internal oscillator. For details, on the range for the guaranteed operation, see Table 2.22, Clock timing.

Table 2.18 Operation frequency value in Middle-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max*5	Unit
Operation	System clock (ICLK)*4	2.7 to 5.5 V	f	0.032768	-	12	MHz
frequency		2.4 to 2.7 V	1	0.032768	-	12	
		1.8 to 2.4 V		0.032768	-	8	
	FlashIF clock (FCLK)*1, *2, *4	2.7 to 5.5 V	1	0.032768	-	12	
		2.4 to 2.7 V	1	0.032768	-	12	
		1.8 to 2.4 V	1	0.032768	-	8	
	Peripheral module clock (PCLKA)*4	2.7 to 5.5 V	1	-	-	12	
		2.4 to 2.7 V	1	-	-	12	
		1.8 to 2.4 V	1	-	-	8	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V	1	-	-	12	
		2.4 to 2.7 V	1	-	-	12	
		1.8 to 2.4 V		-	-	8	
	Peripheral module clock (PCLKC)*3, *4	2.7 to 5.5 V	1	-	-	12	
		2.4 to 2.7 V		-	-	12	
		1.8 to 2.4 V		-	-	8	
	Peripheral module clock (PCLKD)*4	2.7 to 5.5 V	1	-	-	12	
		2.4 to 2.7 V			-	12	
		1.8 to 2.4 V		-	-	8	
	External bus clock (BCLK)*4	2.7 to 5.5 V		-	-	12	
		2.4 to 2.7 V	1	-	-	12	
		1.8 to 2.4 V		-	-	8	
	EBCLK pin output	2.7 to 3.6 V		-	-	12	
		2.4 to 2.7 V	1	-	-	8	
		1.8 to 2.4 V		-	-	8	

Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.

Note 4. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for the guaranteed operation, see Table 2.22, Clock timing.

Table 2.19 Operation frequency value in Low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max*4	Unit
Operation	System clock (ICLK)*3	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	FlashIF clock (FCLK)*1, *3	1.8 to 5.5 V		0.032768	-	1	
	Peripheral module clock (PCLKA)*3	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKC)*2, *3	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3	1.8 to 5.5 V		-	-	1	
	External bus clock (BCLK)*3	1.8 to 5.5 V			-	-	1
	EBCLK pin output	1.8 to 5.5 V		-	-	1	

- Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory.
- Note 2. The lower-limit frequency of PCLKC is 1 MHz when the A/D converter is in use.
- Note 3. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
- Note 4. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for the guaranteed operation, Table 2.22, Clock timing.

Table 2.20 Operation frequency value in Low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max*5	Unit			
Operation	System clock (ICLK)*4	1.6 to 5.5 V	f	0.032768	-	4	MHz			
frequency	FlashIF clock (FCLK)*1, *2, *4	1.6 to 5.5 V		0.032768	-	4				
	Peripheral module clock (PCLKA)*4	1.6 to 5.5 V		-	-	4				
	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4				
	Peripheral module clock (PCLKC)*3, *4	1.6 to 5.5 V		-	-	4				
	Peripheral module clock (PCLKD)*4	1.6 to 5.5 V		-	-	4				
	External bus clock (BCLK)*4	1.6 to 5.5 V		-	-	4				
	EBCLK pin output	1.8 to 5.5 V					-	-	4	
		1.6 to 1.8 V		-	-	2	7			

- Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
- Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-Bit A/D converter is in use.
- Note 4. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
- Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.

Table 2.21 Operation frequency value in Subosc-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit
Operation	System clock (ICLK)*3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	FlashIF clock (FCLK)*1, *3	1.8 to 5.5 V		27.8528	32.768	37.6832	
	Peripheral module clock (PCLKA)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKB)*3 Peripheral module clock (PCLKC)*2, *3	1.8 to 5.5 V		-	-	37.6832	
		1.8 to 5.5 V			-	37.6832	
	Peripheral module clock (PCLKD)*3	1.8 to 5.5 V		-	-	37.6832	
	External bus clock (BCLK)*3	1.8 to 5.5 V		-	-	37.6832	
	EBCLK pin output	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

2.3.2 **Clock Timing**

Table 2.22 Clock timing (1 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
EBCLK pin output cycle time	VCC = 2.7 V or above	t _{Bcyc}	83.3	-	-	ns	Figure 2.26
	VCC = 1.8 V or above		125	-	-		
	VCC = 1.6 V or above		500	-	-		
EBCLK pin output high pulse	VCC = 2.7 V or above	t _{CH}	20	-	-	ns	
width	VCC = 1.8 V or above		30	-	-		
	VCC = 1.6 V or above		150	-	-		
EBCLK pin output low pulse width	VCC = 2.7 V or above	t _{CL}	20	-	-	ns	
	VCC = 1.8 V or above		30	-	-		
	VCC = 1.6 V or above		150	-	-		
EBCLK pin output rise time	VCC = 2.7 V or above	t _{Cr}	-	-	15	ns	
	VCC = 2.4 V or above		-	-	25		
	VCC = 1.8 V or above		-	-	30		
	VCC = 1.6 V or above		-	-	50		
EBCLK pin output fall time	VCC = 2.7 V or above	t _{Cf}	-	-	15	ns	
	VCC = 2.4 V or above		-	-	25		
	VCC = 1.8 V or above		-	-	30		
	VCC = 1.6 V or above		-	-	50		
EXTAL external clock input cycle ti	me	t _{Xcyc}	50	-	-	ns	Figure 2.27
EXTAL external clock input high pu	lse width	t _{XH}	20	-	-	ns	
EXTAL external clock input low pul	se width	t _{XL}	20	-	-	ns	
EXTAL external clock rising time		t _{Xr}	-	-	5	ns	
EXTAL external clock falling time		t _{Xf}	-	-	5	ns	
EXTAL external clock input wait time	ne*1	t _{EXWT}	0.3	-	-	μs	-
EXTAL external clock input frequer	псу	f _{EXTAL}	-	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			-	-	8	1	1.8 ≤ VCC < 2.4
			-	-	1	1	1.6 ≤ VCC < 1.8
Main clock oscillator oscillation free	quency	f _{MAIN}	1	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			1	-	8	1	1.8 ≤ VCC < 2.4
			1	-	4	1	1.6 ≤ VCC < 1.8
LOCO clock oscillation frequency	OCO clock oscillation frequency		27.8528	32.768	37.6832	kHz	-

The 14-bit A/D converter cannot be used. Note 2.

Note 3. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Table 2.22 Clock timing (2 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
LOCO clock oscillation stabiliz	ation time	tLOCO	-	-	100	μs	Figure 2.28
IWDT-dedicated clock oscillation	on frequency	fILOCO	12.75	15	17.25	kHz	-
MOCO clock oscillation freque	ency	f _{MOCO}	6.8	8	9.2	MHz	-
MOCO clock oscillation stabilized	zation time	t _{MOCO}	-	-	1	μs	-
HOCO clock oscillation freque	ncy	f _{HOCO24}	23.64	24	24.36	MHz	Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			22.68	24	25.32		Ta = -40 to 85°C 1.6 ≤ VCC < 1.8
			23.76	24	24.24		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			23.52	24	24.48		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		fHOCO32	31.52	32	32.48		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			30.24	32	33.76		Ta = -40 to 85°C 1.6 ≤ VCC < 1.8
			31.68	32	32.32		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			31.36	32	32.64		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		fHOCO48* ⁴	47.28	48	48.72		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			47.52	48	48.48		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			47.04	48	48.96		Ta = 85°C to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO64*} 5	63.04	64	64.96		Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5
			63.36	64	64.64		Ta = -20 to 85°C 2.4 ≤ VCC ≤ 5.5
			62.72	64	65.28		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
HOCO clock oscillation stabilization time*6, *7	Except Low-Voltage mode	t _{HOCO24} t _{HOCO32}	-	-	37.1	μs	Figure 2.29
		t _{HOCO48}	-	-	43.3		
		t _{HOCO64}	-	-	80.6		
Low-Voltage mode		tHOCO24 tHOCO32 tHOCO48 tHOCO64	-	-	100.9		
PLL input frequency*2		f _{PLLIN}	4	-	12.5	MHz	-
PLL circuit oscillation frequence	PLL circuit oscillation frequency*2		24	-	64	MHz	-
PLL clock oscillation stabilizati	on time*8	f _{PLL}	-	-	55.5	μs	Figure 2.31
PLL free-running oscillation free	equency	f _{PLLFR}	-	8	-	MHz	-
Sub-clock oscillator oscillation	frequency	f _{SUB}	-	32.768	-	kHz	-
Sub-clock oscillation stabilizati	ion time*3	t _{SUBOSC}	-	0.5	-	s	Figure 2.32

- Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.
- Note 2. The VCC range that the PLL can be used is 2.4 to 5.5 V.
- Note 3. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer.
- Note 4. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.
- Note 5. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.
- Note 6. This is a characteristic when HOCOCR.HCSTP bit is set to 0 (oscillation) in MOCO stop state.

 When HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs.
- Note 7. Whether stabilization time has elapsed can be confirmed by OSCSF.HOCOSF.
- Note 8. This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in MOCO stop state.

 When PLLCR.PLLSTP bit is set to 0 (operation) during MOCO oscillation, this specification is shortened by 1 µs.

Figure 2.26 EBCLK pin output timing

Figure 2.27 EXTAL external clock input timing

Figure 2.28 LOCO clock oscillation start timing

Figure 2.29 HOCO clock oscillation start timing (started by setting HOCOCR.HCSTP bit)

S3A7 Datasheet 2. Electrical Characteristics

Figure 2.30 Main clock oscillation start timing

Figure 2.31 PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled)

Figure 2.32 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.23 Reset timing

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
RES pulse width	At power-on	t _{RESWP}	3	-	-	ms	Figure 2.33
	Other than above	t _{RESW}	30	-	-	μs	Figure 2.34
Wait time after RES cancellation	LVD0: enable*1	t _{RESWT}	-	0.7	-	ms	Figure 2.33
(at power-on)	LVD0: disable*2		-	0.3	-		
Wait time after RES cancellation	LVD0: enable*1	t _{RESWT2}	-	0.5	-	ms	Figure 2.34
(during powered-on state)	LVD0: disable*2		-	0.05	-		
Wait time after internal reset cancellation (Watchdog timer reset, SRAM parity error	LVD0: enable*1	t _{RESWT3}	-	0.6	-	ms	
reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset, software reset)	LVD0: disable*2		-	0.15	-		

Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1.

Figure 2.33 Reset input timing at power-on

Figure 2.34 Reset input timing (1)

2.3.4 Wakeup Time

Table 2.24 Timing of recovery from Low power modes (1)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	High-speed mode	Crystal resonator connected to	System clock source is main clock oscillator (20 MHz)*2	t _{SBYMC}	-	2	3	ms	Figure 2.35
		main clock oscillator	System clock source is PLL (48 MHz) with Main clock oscillator*2	t _{SBYPC}	-	2	3	ms	
		External clock input to main clock oscillator	System clock source is main clock oscillator (20 MHz)*3	t _{SBYEX}	-	14	25	μs	
			System clock source is PLL (48 MHz) with Main clock oscillator*3	t _{SBYPE}	-	53	76	μs	
		System clock sou (HOCO clock is 3		t _{SBYHO}	-	43	52	μs	
		System clock sou (HOCO clock is 4		t _{SBYHO}	-	44	52	μs	
		System clock sou (HOCO clock is 6		t _{SBYHO}	-	82	110	μs	
		System clock sou	urce is MOCO	t _{SBYMO}	-	16	25	μs	

Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Table 2.25 Timing of Recovery from Low power modes (2)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	m Software mode resonator main clock oscil		System clock source is main clock oscillator (12 MHz)*2	t _{SBYMC}	-	2	3	ms	Figure 2.35
		main clock oscillator	System clock source is PLL (24 MHz) with Main clock oscillator*2	t _{SBYPC}	-	2	3	ms	
		External clock input to main clock oscillator	System clock source is main clock oscillator (12 MHz)*3	t _{SBYEX}	-	2.9	10	μs	
			System clock source is PLL (24 MHz) with Main clock oscillator*3	t _{SBYPE}	-	49	76	μs	
		System clock sou	urce is HOCO*4	t _{SBYHO}	-	38	50	μs	
		System clock sou	urce is MOCO	t _{SBYMO}	-	3.5	5.5	μs	

Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h.

Note 5. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The system clock is 12 MHz.

Table 2.26 Timing of recovery from Low power modes (3)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Low-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (1 MHz)*2	t _{SBYMC}	-	2	3	ms	Figure 2.35
		External clock input to main clock oscillator	System clock source is main clock oscillator (1 MHz)*3	t _{SBYEX}	-	28	50	μs	
		System clock so	urce is MOCO	t _{SBYMO}	-	25	35	μs	

Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Table 2.27 Timing of recovery from Low power modes (4)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Low-voltage mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (4 MHz)*2	t _{SBYMC}	-	2	3	ms	Figure 2.35
		External clock input to main clock oscillator	System clock source is main clock oscillator (4 MHz)*3	t _{SBYEX}	-	108	130	μs	
		System clock sou	urce is HOCO	t _{SBYHO}	-	108	130	μs	

Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined by the following expression.

Table 2.28 Timing of recovery from Low power modes (5)

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software	Subosc-speed mode	System clock source is sub-clock oscillator (32.768 kHz)	t _{SBYSC}	-	0.85	1	ms	Figure 2.35
Standby mode*1		System clock source is LOCO (32.768 kHz)	t _{SBYLO}	-	0.85	1.2	ms	

Note 1. The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Figure 2.35 Software Standby mode cancellation timing

Table 2.29 Timing of recovery from Low power modes (6)

Parameter	Parameter		Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby	High-speed mode System clock source is HOCO	t _{SNZ}	-	36	45	μs	Figure 2.36
mode to Snooze mode	Middle-speed mode System clock source is MOCO	t _{SNZ}	-	1.3	3.6	μs	
	Low-speed mode System clock source is MOCO	t _{SNZ}	-	10	13	μs	
	Low-voltage mode System clock source is HOCO	t _{SNZ}	-	87	110	μs	

Figure 2.36 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

Table 2.30 NMI and IRQ noise filter

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	
NMI pulse width	t _{NMIW}	200	-	-	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns
		200	-	-		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns
		t _{NMICK} × 3.5*2	-	-			t _{NMICK} × 3 > 200 ns
IRQ pulse width	t _{IRQW}	200	-	-	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns
		200	-	-		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns
		t _{IRQCK} × 3.5*3	-	-			t _{IRQCK} × 3 > 200 ns

Note: 200 ns minimum in Software Standby mode.

Note 1. t_{Pcyc} indicates the cycle of PCLKB.

Note 2. $t_{\mbox{NMICK}}$ indicates the cycle of the NMI digital filter sampling clock.

Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 15).

Figure 2.37 NMI interrupt input timing

Figure 2.38 IRQ interrupt input timing

2.3.6 Bus Timing

Table 2.31 Bus timing (1)

Conditions: Low drive output is selected in the Port Drive Capability bit in PmnPFS register

VCC = AVCC0 = 2.7 to 5.5 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Max	Unit	Test conditions
Address delay	t _{AD}	-	55	ns	Figure 2.39
Byte control delay	t _{BCD}	-	55	ns	to Figure 2.42
CS delay	t _{CSD}	-	55	ns	
RD delay	t _{RSD}	-	55	ns	
Read data setup time	t _{RDS}	37	-	ns	
Read data hold time	t _{RDH}	0	-	ns	
WR delay	t _{WRD}	-	55	ns	
Write data delay	t _{WDD}	-	55	ns	
Write data hold time	t _{WDH}	0	-	ns	
WAIT setup time	t _{WTS}	37	-	ns	Figure 2.43
WAIT hold time	t _{WTH}	0	-	ns	

Table 2.32 Bus timing (2)

Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register

VCC = AVCC0 = 2.4 to 2.7 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Max	Unit	Test conditions
Address delay	t _{AD}	-	55	ns	Figure 2.39
Byte control delay	t _{BCD}	-	55	ns	to Figure 2.42
CS delay	t _{CSD}	-	55	ns	
RD delay	t _{RSD}	-	55	ns	
Read data setup time	t _{RDS}	45	-	ns	
Read data hold time	t _{RDH}	0	-	ns	
WR delay	t _{WRD}	-	55	ns	
Write data delay	t _{WDD}	-	55	ns	
Write data hold time	t _{WDH}	0	-	ns	
WAIT setup time	t _{WTS}	45	-	ns	Figure 2.43
WAIT hold time	t _{WTH}	0	-	ns	

Table 2.33 Bus timing (3) (1 of 2)

Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register

VCC = AVCC0 = 1.8 to 2.4 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Max	Unit	Test conditions
Address delay	t _{AD}	-	90	ns	Figure 2.39
Byte control delay	t _{BCD}	-	90	ns	to Figure 2.42
CS delay	t _{CSD}	-	90	ns	
RD delay	t _{RSD}	-	90	ns	
Read data setup time	t _{RDS}	70	-	ns	
Read data hold time	t _{RDH}	0	-	ns	
WR delay	t _{WRD}	-	90	ns	
Write data delay	t _{WDD}	-	90	ns	
Write data hold time	t _{WDH}	0	-	ns	

Table 2.33 Bus timing (3) (2 of 2)

Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register VCC = AVCC0 = 1.8 to 2.4 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Max	Unit	Test conditions
WAIT setup time	t _{WTS}	70	-	ns	Figure 2.43
WAIT hold time	t _{WTH}	0	-	ns	

Table 2.34 Bus timing (4)

Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register

VCC = AVCC0 = 1.6 to 1.8 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Max	Unit	Test conditions	
Address delay	t _{AD}	-	120	ns	Figure 2.39	
Byte control delay	t _{BCD}	-	120	ns	to Figure 2.42	
CS delay	t _{CSD}	-	120	ns		
RD delay	t _{RSD}	-	120	ns		
Read data setup time	t _{RDS}	90	-	ns		
Read data hold time	t _{RDH}	0	-	ns		
WR delay	t _{WRD}	-	120	ns		
Write data delay	t _{WDD}	-	120	ns		
Write data hold time	t _{WDH}	0	-	ns		
WAIT setup time	t _{WTS} 90 -		ns	Figure 2.43		
WAIT hold time	t _{WTH}	0	-	ns		

Figure 2.39 External bus timing/normal read cycle (bus clock synchronized)

Figure 2.40 External bus timing/normal write cycle (bus clock synchronized)

Figure 2.41 External bus timing/page read cycle (bus clock synchronized)

Figure 2.42 External bus timing/page write cycle (bus clock synchronized)

S3A7 Datasheet 2. Electrical Characteristics

Figure 2.43 External bus timing/external wait control

2.3.7 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing

Table 2.35 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing

Parameter		Symbol	Min	Max	Unit	Test conditions	
I/O Ports	Input data pulse width			1.5	-	t _{Pcyc}	Figure 2.44
	Input/Output data cycle (P002, P003, P004, P007)			10	-	μs	
POEG	POEG input trigger pulse width			3	-	t _{Pcyc}	Figure 2.45
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.46
		Dual edge		2.5	-		
AGT	AGTIO, AGTEE input cycle	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC} *1	250	-	ns	Figure 2.47
		2.4 V ≤ VCC < 2.7 V		500	-	ns	
		1.8 V ≤ VCC < 2.4 V		1000	-	ns	
		1.6 V ≤ VCC < 1.8 V		2000	-	ns	
	AGTIO, AGTEE input high level width, low-level width	2.7 V ≤ VCC ≤ 5.5 V	t _{ACKWH} , t _{ACKWL}	100	-	ns	
		2.4 V ≤ VCC < 2.7 V		200	-	ns	
		1.8 V ≤ VCC < 2.4 V		400	-	ns	
		1.6 V ≤ VCC < 1.8 V		800	-	ns	
	AGTIO, AGTO, AGTOA, AGTOB	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC2}	62.5	-	ns	Figure 2.47
	output cycle	2.4 V ≤ VCC < 2.7 V		125	-	ns	
		1.8 V ≤ VCC < 2.4 V		250	-	ns	
		1.6 V ≤ VCC < 1.8 V		500	-	ns	
ADC14	14-bit A/D converter trigger input pulse width		t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.48
KINT	KRn (n = 00 to 07) pulse width		t _{KR}	250	-	ns	Figure 2.49

Note: tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle

Note 1. Constraints on AGTIO input: $t_{Pcyc} \times 2$ (t_{Pcyc} : PCLKB cycle) < t_{ACYC}

Figure 2.44 I/O ports input timing

Figure 2.45 POEG input trigger timing

Figure 2.46 GPT input capture timing

Figure 2.47 AGT I/O timing

Figure 2.48 ADC14 trigger input timing

Figure 2.49 Key interrupt input timing

2.3.8 CAC Timing

Table 2.36 CAC timing

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse width	t _{PBcyc} ≤ t _{cac} *2	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	-	-	ns	-
		t _{PBcyc} > t _{cac} *2		5 × t _{cac} + 6.5 × t _{PBcyc}	-	-	ns	

Note 1. t_{PBcyc} : PCLKB cycle.

Note 2. t_{cac} : CAC count clock source cycle.

2.3.9 SCI Timing

Table 2.37 SCI timing (1) Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Paramete	er			Symbol	Min	Max	Unit*1	Test conditions
SCI	Input clock cycle	Asynchronous		t _{Scyc}	4	-	t _{Pcyc}	Figure 2.50
		Clock synchro	nous	1	6	-		
	Input clock pulse wid	Input clock pulse width			0.4	0.6	t _{Scyc}	
	Input clock rise time	Input clock rise time				20	ns	
	Input clock fall time	Input clock fall time				20	ns	
	Output clock cycle	Asynchronous		t _{Scyc}	6	-	t _{Pcyc}	
		Clock synchro	nous	1	4	-		
	Output clock pulse w	Output clock pulse width				0.6	t _{Scyc}	
	Output clock rise tim	Output clock rise time		t _{SCKr}	-	20	ns	
			1.6 V or above	1	-	30		
	Output clock fall time		1.8 V or above	t _{SCKf}	-	20	ns	7
			1.6 V or above	1	-	30		
	Transmit data delay (master) Clock synchro	-	1.8 V or above	t _{TXD}	-	40	ns	Figure 2.51
		synchronous	1.6 V or above	-	-	45		
	, ,	Clock synchronous	2.7 V or above		-	55	ns	
	(slave)		2.4 V or above		-	60		
			1.8 V or above		-	100		
			1.6 V or above	1	-	125		
	Receive data setup	Clock	2.7 V or above	t _{RXS}	45	-	ns	
	time (master)	synchronous	2.4 V or above	1	55	-		
			1.8 V or above	1	90	-		
			1.6 V or above	1	105	-		
	Receive data setup	Clock	2.7 V or above	1	40	-	ns	
	time (slave) synchronou		1.6 V or above		45	-		
	Receive data hold time (master)	Clock synchro	nous	t _{RXH}	5	-	ns	
	Receive data hold time (slave)	Clock synchro	nous	t _{RXH}	40	-	ns	

Note 1. t_{Pcyc}: PCLKA cycle.

Figure 2.50 SCK clock input timing

Figure 2.51 SCI input/output timing in clock synchronous mode

Table 2.38 SCI timing (2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V

rame	eter			Symbol	Min	Max	Unit	Test condition
nple	SCK clock cycle outp	ut (master	·)	t _{SPcyc}	4	65536	t _{Pcyc}	Figure 2.52
1	SCK clock cycle inpu	t (slave)			6	65536		
	SCK clock high pulse	width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse	width		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	1
	SCK clock rise and fa	all time	1.8 V or above	t _{SPCKr,}	-	20	ns	1
			1.6 V or above	t _{SPCKf}	-	30	1	
	Data input setup	Master	2.7 V or above	t _{SU}	45	-	ns	Figure 2.53 to
	time		2.4 V or above		55	-	1	Figure 2.56
			1.8 V or above	-	80	-		
			1.6 V or above		105	-		
		Slave	2.7 V or above		40	-	1	
			1.6 V or above		45	-		
- - -	Data input hold time	Master	4	t _H	33.3	-	ns	1
		Slave			40	-	1	
	SS input setup time	<u>'</u>				-	t _{SPcyc}	1
	SS input hold time		t _{LAG}	1	-	t _{SPcyc}	1	
	Data output delay	Master	1.8 V or above		-	40	ns	
			1.6 V or above		-	50	1	
		Slave	2.4 V or above		-	65		
			1.8 V or above		-	100		
			1.6 V or above		-	125		
	Data output hold	Master	2.7 V or above	t _{OH}	-10	-	ns	
	time		2.4 V or above		-20	-		
			1.8 V or above		-30	-		
			1.6 V or above	-	-40	-		
		Slave	4	-	-10	-		
	Data rise and fall	Master	1.8 V or above	t _{Dr,} t _{Df}	-	20	ns	1
	time		1.6 V or above	1	-	30		
		Slave	1.8 V or above	1	-	20	1	
			1.6 V or above	1	-	30		
	Slave access time			t _{SA}	-	10 (PCLKA > 32 MHz), 6 (PCLKA ≤ 32 MHz)	t _{Pcyc}	Figure 2.55 an Figure 2.56 PCLKB = PCLKA
	Slave output release	Slave output release time			-	10 (PCLKA > 32 MHz), 6 (PCLKA ≤ 32 MHz)	t _{Pcyc}	

Figure 2.52 SCI simple SPI mode clock timing

Figure 2.53 SCI simple SPI mode timing (master, CKPH = 1)

Figure 2.54 SCI simple SPI mode timing (master, CKPH = 0)

Figure 2.55 SCI simple SPI mode timing (slave, CKPH = 1)

Figure 2.56 SCI simple SPI mode timing (slave, CKPH = 0)

Table 2.39 SCI timing (3) Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter		Symbol	Min	Max	Unit	Test conditions	
Simple IIC	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.57	
(Standard mode)	SDA input fall time	t _{Sf}	-	300	ns		
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns		
	Data input setup time	t _{SDAS}	250	-	ns		
	Data input hold time	t _{SDAH}	0	-	ns		
	SCL, SDA capacitive load	C _b *2	-	400	pF		
Simple IIC	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.57	
(Fast mode)*3	SDA input fall time	t _{Sf}	-	300	ns]	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns]	
	Data input setup time	t _{SDAS}	100	-	ns]	
	Data input hold time	t _{SDAH}	0	-	ns	1	
	SCL, SDA capacitive load	C _b *2	-	400	pF	1	

Note 1. t_{IICcyc} : Clock cycle selected in the SMR.CKS[1:0] bits.

Note 2. Cb indicates the total capacity of the bus line.

Note 3. Middle drive output is selected in the Port Drive Capability in the PmnPFS register

Figure 2.57 SCI simple IIC mode timing

2.3.10 SPI Timing

Table 2.40 SPI timing (1 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability in the PmnPFS register

arar	neter			Symbol	Min	Max	Unit*1	Test conditions
ΡI	RSPCK clock cycle	Master		t _{SPcyc}	2*4	4096	t _{Pcyc}	Figure 2.58
		Slave			6	4096		C = 30 _P F
	RSPCK clock high pulse width	Master		t _{SPCKWH}	$\begin{array}{c} (t_{SPcyc} - t_{SPCKr} \\ - t_{SPCKf}) / 2 - 3 \end{array}$	-	ns	
		Slave			3 × t _{Pcyc}	-		
	RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	-	ns	
		Slave			3 × t _{Pcyc}	-		
	RSPCK clock rise	RSPCK clock rise Output 2.		t _{SPCKr,}	-	10	ns	
	and fall time	2.4 V or above	t _{SPCKf}	-	15	Ì		
			1.8 V or above		-	20		
			1.6 V or above		-	30		
		Input			-	1	μs	
	Data input setup	Master		t _{SU}	10	-	ns	Figure 2.59 to
	time	Slave	2.4 V or above		10	-	=	Figure 2.64 C = 30 _P F
			1.8 V or above		15	-		
			1.6 V or above		20	-		
	Data input hold time	Master (RSPCK i	s PCLKA/2)	t _{HF}	0	-	ns	
	(Master (RSPCK i above.)	s other than	t _H	t _{Pcyc}	-		
		Slave		t _H	20	-		
	SSL setup time	Master	aster		-30 + N × t _{Spcyc} *2	-	ns	1
	Slave				6 × t _{Pcyc}	-	ns	
	SSL hold time	Master		t _{LAG}	-30 + N × t _{Spcyc} *3	-	ns	
		Slave			6 × t _{Pcyc}	-	ns	

Table 2.40 SPI timing (2 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability in the PmnPFS register

ran	neter			Symbol	Min	Max	Unit*1	Test conditions
'n	Data output delay	Master	2.7 V or above	t _{OD}	-	14	ns	Figure 2.59 to
			2.4 V or above]	-	20		Figure 2.64 C = 30 _P F
			1.8 V or above		-	25		0 – оорі
			1.6 V or above		-	30		
		Slave	2.7 V or above		-	50		
			2.4 V or above		-	60		
			1.8 V or above		-	85		
			1.6 V or above		-	110		
	Data output hold	Master		t _{OH}	0	-	ns	
	time	Slave			0	-		
	Successive transmission delay	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
		Slave			6 × t _{Pcyc}	-]
	MOSI and MISO		2.7 V or above	t _{Dr} , t _{Df}	-	10	ns	
	rise and fall time		2.4 V or above		-	15		
			1.8 V or above		-	20		
			1.6 V or above		-	30		
		Input			-	1	μs	
	SSL rise and fall	Output	2.7 V or above	t _{SSLr,}	-	10	ns	
	time		2.4 V or above	t _{SSLf}	-	15		
			1.8 V or above		-	20		
			1.6 V or above		-	30		
		Input			-	1	μs	
	Slave access time		2.4 V or above	t _{SA}	-	2 × t _{Pcyc} + 100	ns	Figure 2.63 and
			1.8 V or above		-	2 × t _{Pcyc} + 140		Figure 2.64
		1.6 V or above		1	-	2 × t _{Pcyc} + 180		C = 30 _P F
	Slave output release	ave output release time 2.4		t _{REL}	-	2 × t _{Pcyc} + 100	ns	
			1.8 V or above	1	-	2 × t _{Pcyc} + 140		
			1.6 V or above	1	-	2 × t _{Pcyc} + 180		

Note 1. t_{Pcyc}: PCLKA cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

Note 4. The upper limit of RSPCK is 16 MHz.

Figure 2.58 SPI clock timing

Figure 2.59 SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to any value other than 1/2)

Figure 2.60 SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to 1/2)

Figure 2.61 SPI timing (master, CPHA = 1) (bit rate: PCLKA division ratio is set to any value other than 1/2)

Figure 2.62 SPI timing (master, CPHA = 1) (bit rate: PCLKA division ratio is set to 1/2)

Figure 2.63 SPI timing (slave, CPHA = 0)

Figure 2.64 SPI timing (slave, CPHA = 1)

2.3.11 QSPI Timing

Table 2.41 QSPI timing

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register

Param	eter		Symbol	Min	Max	Unit*1	Test conditions
QSPI	QSPCLK clock cycle		t _{QScyc}	2*4	48	t _{Pcyc}	Figure 2.65
	QSPCLK clock high-lev	QSPCLK clock high-level pulse width			-	ns	
	QSPCLK clock low-leve	t _{QSWL}	t _{QScyc} × 0.4	-	ns		
	Data input setup time	2.7 V or above	t _{SU}	40	-	ns Figure	Figure 2.66
	1	2.4 V or above		40	-	ns	
		1.8 V or above		80	-	ns	
	Data input hold time		t _{IH}	0	-	ns	
	SSL setup time		t _{LEAD}	(N + 0.5) × t _{Qscyc} - 15*2	$(N + 0.5) \times t_{Qscyc} + 100*2$	ns	
	SSL hold time	SSL hold time		(N + 0.5) × t _{Qscyc} - 15*3	$(N + 0.5) \times t_{Qscyc} + 100*3$	ns	
	Data output delay	2.7 V or above	t _{OD}	-	14	ns	
		2.4 V or above		-	20		
		1.8 V or above		-	30		
	Data output hold time	2.7 V or above	t _{OH}	-3.3	-	ns	
		1.8 V or above		-10	-		
	Successive transmission	n delay	t _{TD}	1	16	t _{Qscyc}	

Note 1. t_{Pcyc}: PCLKA cycle.

Note 2. N is set to 0 or 1 in SFMSLD.

Note 3. N is set to 0 or 1 in SFMSHD.

Note 4. The upper limit of QSPCLK is 16 MHz.

Figure 2.65 QSPI clock timing

Figure 2.66 Transfer/receive timing

IIC Timing 2.3.12

Table 2.42 IIC timing Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Parameter		Symbol	Min* ¹	Max	Unit	Test conditions
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	-	ns	Figure 2.67
(standard mode, SMBus)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
ONDus)	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA input rise time	t _{Sr}	-	1000	ns	
	SCL, SDA input fall time	t _{Sf}	-	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time (When wakeup function is disabled)	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time (When wakeup function is enabled)	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	-	ns	
	START condition input hold time (When wakeup function is disabled)	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time (When wakeup function is enabled)	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 300	-	ns	
	Repeated START condition input setup time	t _{STAS}	1000	-	ns	
	STOP condition input setup time	t _{STOS}	1000	-	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b	-	400	pF	
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	-	ns	Figure 2.6
(Fast mode)*2	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA input rise time	t _{Sr}	-	300	ns	
	SCL, SDA input fall time	t _{Sf}	-	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time (When wakeup function is disabled)	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time (When wakeup function is enabled)	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	-	ns	
	START condition input hold time (When wakeup function is disabled)	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time (When wakeup function is enabled)	t _{STAH}	1(5) × t _{IICcyc} + t _{Pcyc} + 300	-	ns	
	Repeated START condition input setup time	t _{STAS}	300	-	ns	
	STOP condition input setup time	t _{STOS}	300	-	ns]
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns]
	Data input hold time	t _{SDAH}	0	-	ns]
	SCL, SDA capacitive load	C _b	-	400	pF	1

Note:

 $t_{IICcyc} \hbox{: IIC internal reference clock (IICϕ) cycle, t_{Pcyc}: PCLKB cycle} \\ The value in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.$ Note 1.

Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Note 2.

Figure 2.67 I²C bus interface input/output timing

SSI Timing 2.3.13

Table 2.43 SSI timing Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parame	ter		Symbol	Min	Max	Unit	Test conditions
SSI	AUDIO_CLK input	2.7 V or above	t _{AUDIO}	-	25	MHz	-
	frequency	1.6 V or above		-	4		
	Output clock period	•	t _O	250	-	ns	Figure 2.68
	Input clock period	Input clock period		250	-	ns	
	Clock high pulse	1.8 V or above	t _{HC}	100	-	ns	
	width	1.6 V or above		200	-		
	Clock low pulse	1.8 V or above	t _{LC}	100	-	ns	
	width	1.6 V or above		200	-		
	Clock rise time	Clock rise time		-	25	ns	
	Data delay	2.7 V or above	t _{DTR}	-	65	ns	Figure 2.69, Figure 2.70
		1.8 V or above		-	105		
		1.6 V or above		-	140		
	Set-up time	2.7 V or above	t _{SR}	65	-	ns	
		1.8 V or above		90	-		
		1.6 V or above		140	-		
	Hold time	Hold time		40	-	ns	
	SSIDATA output	1.8 V or above	T _{DTRW}	-	105	ns	Figure 2.71
	delay from WS change time	1.6 V or above		-	140		

Figure 2.68 SSI clock input/output timing

Figure 2.69 SSI data transmit/receive timing (SSICR.SCKP = 0)

Figure 2.70 SSI data transmit/receive timing (SSICR.SCKP = 1)

Figure 2.71 SSI data output delay from SSIWSn change time

2.3.14 SD/MMC Host Interface Timing

Table 2.44 SD/MMC host interface signal timing

Conditions: VCC = AVCC0 = 2.7 to 5.5 V

Conditions: Middle drive output is selected in the Port Drive Capability in PmnPFS register

Parameter	Symbol	Min	Max	Unit	Test conditions
SDCLK clock cycle	t _{SDCYC}	62.5	-	ns	Figure 2.72
SDCLK clock high-level pulse width	t _{SDWH}	18.25	-	ns	
SDCLK clock low-level pulse width	t _{SDWL}	18.25	-	ns	
SDCLK clock rising time	t _{SDLH}	-	10	ns	
SDCLK clock falling time	t _{SDHL}	-	10	ns	
SDCMD/SDDAT output data delay	t _{SDODLY}	-18.25	18.25	ns	
SDCMD/SDDAT input data setup	t _{SDIS}	9.25	-	ns	
SDCMD/SDDAT input data hold	t _{SDIH}	23.25	-	ns	

Figure 2.72 SD/MMC host interface signal timing

2.3.15 CLKOUT Timing

Table 2.45 CLKOUT timing

Parameter			Symbol	Min	Max	Unit*1	Test conditions
CLKOUT	CLKOUT pin output cycle*1	VCC = 2.7 V or above	t _{Ccyc}	62.5	-	ns	Figure 2.73
		VCC = 1.8 V or above		125	-		
		VCC = 1.6 V or above		250	-		
	CLKOUT pin high pulse width*2	VCC = 2.7 V or above	t _{CH}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin low pulse width*2	VCC = 2.7 V or above	t _{CL}	15	-	ns	
		VCC = 1.8 V or above		30	-		
		VCC = 1.6 V or above		150	-		
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above		-	50		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	-	12	ns	
		VCC = 1.8 V or above		-	25		
		VCC = 1.6 V or above	1	-	50	7	

Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

Figure 2.73 CLKOUT output timing

2.4 USB Characteristics

2.4.1 USBFS Timing

Table 2.46 USB characteristics

Conditions: VCC = AVCC0 = VCC_USB = 3.0 to 3.6 V

Parameter				Min	Max	Unit	Test conditions	
Input	Input high level volt	age	V _{IH}	2.0	-	V	-	
characteristics	Input low level volta	age	V _{IL}	-	0.8	V	-	
	Differential input se	nsitivity	V _{DI}	0.2	-	V	USB_DP - USB_DM	
	Differential common mode range		V _{CM}	0.8	2.5	V	-	
Output	Output high level ve	oltage	V _{OH}	2.8	VCC_USB	V	I _{OH} = -200 μA	
characteristics	Output low level vo	Itage	V _{OL}	0.0	0.3	V	I _{OL} = 2 mA	
	Cross-over voltage		V _{CRS}	1.3	2.0	V	Figure 2.74,	
	Rise time	FS	t _r	4	20	ns	Figure 2.75, Figure 2.76	
		LS		75	300		rigure 2.70	
	Fall time	FS	t _f	4	20	ns		
		LS		75	300			
	Rise/fall time ratio	FS	t _r /t _f	90	111.11	%		
		LS		80	125			
	Output resistance		Z _{DRV}	28	44	Ω	(Adjusting the resistance of external elements is not necessary.)	
VBUS	VBUS input voltage		V _{IH}	VCC × 0.8	-	V	-	
characteristics			V _{IL}	-	VCC × 0.2	V	-	
Pull-up,	Pull-down resistor		R _{PD}	14.25	24.80	kΩ	-	
pull-down	Pull-up resistor		R _{PUI}	0.9	1.575	kΩ	During idle state	
			R _{PUA}	1.425	3.09	kΩ	During reception	
Battery Charging	D + sink current		I _{DP_SINK}	25	175	μΑ	-	
Specification version 1.2	D – sink current		I _{DM_SINK}	25	175	μΑ	-	
VCISION 1.2	DCD source curren	ıt	I _{DP_SRC}	7	13	μΑ	-	
	Data detection volta	age	V _{DAT_REF}	0.25	0.4	V	-	
	D + source voltage		V _{DP_SRC}	0.5	0.7	V	Output current = 250 μA	
	D – source voltage		V _{DM_SRC}	0.5	0.7	V	Output current = 250 μA	

Figure 2.74 USB_DP and USB_DM output timing

Figure 2.75 Test circuit for Full-Speed (FS) connection

Figure 2.76 Test circuit for Low-Speed (LS) connection

2.4.2 USB External Supply

Table 2.47 USB regulator

Parameter		Min	Тур	Max	Unit	Test conditions
VCC_USB supply current	VCC_USB_LDO ≥ 3.8V	-	-	50	mA	-
	VCC_USB_LDO ≥ 4.5V	-	-	100	mA	-
VCC_USB supply voltage		3.0	-	3.6	V	-

2.5 ADC14 Characteristics

Figure 2.77 AVCC0 to VREFH0 voltage range

Table 2.48 A/D conversion characteristics (1) in High-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	64	MHz	-
Analog input capacitar	nce*2	Cs	-	-	8 (reference data)	pF	High-precision channel
			-	-	9 (reference data)	pF	Normal-precision channel
Analog input resistand	е	Rs	-	-	2.5 (reference data)	kΩ	High-precision channel
			-	-	6.7 (reference data)	kΩ	Normal-precision channel
Analog input voltage r	ange	Ain	0	-	VREFH0	V	-
12-bit mode				.	1	l	1
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 64 MHz) Permissible source impermand Max. = 0.3 l		mpedance	0.70	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.13	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error	•		-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-	
INL integral nonlinearity error			-	±1.0	±3.0	LSB	-
14-bit mode			•			•	
Resolution			-	-	14	Bit	-

Table 2.48 A/D conversion characteristics (1) in High-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
Conversion time*1 (Operation at PCLKC = 64 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	0.80	-	-	μѕ	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.22	-	-	μѕ	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinearity error		-	±4.0	-	LSB	-
INL integral nonlinear	ity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 2.49 A/D conversion characteristics (2) in High-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	48	MHz	-
Analog input capacita	Analog input capacitance*2 Cs		-	-	8 (reference data)	pF	High-precision channel
			-	-	9 (reference data)	pF	Normal-precision channel
Analog input resistan	се	Rs	-	-	2.5 (reference data)	kΩ	High-precision channel
			-	-	6.7 (reference data)	kΩ	Normal-precision channel
Analog input voltage	range	Ain	0	-	VREFH0	V	-
12-bit mode			•	•	•	•	•
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 48 MHz)	source in	Permissible signal source impedance Max. = 0.3 kΩ		-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.50	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error	•		-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonli	nearity erro	r	-	±1.0	-	LSB	-

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH} , V_{OL} , and Other Characteristics.

Table 2.49 A/D conversion characteristics (2) in High-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
INL integral nonlinea	rity error	-	±1.0	±3.0	LSB	-
14-bit mode		•	!	-	, ,	
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 48 MHz)	Permissible signal source impedance Max. = 0.3 kΩ	1.06	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		1.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinearity error		-	±4.0	-	LSB	-
INL integral nonlinearity error		-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 2.50 A/D conversion characteristics (3) in High-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	32	MHz	-
Analog input capacitance*2 Cs				8 (reference data)	pF	High-precision channel	
			-	-	9 (reference data)	pF	Normal-precision channel
Analog input resistan	се	Rs	-	-	2.5 (reference data)	kΩ	High-precision channel
			-	-	6.7 (reference data)	kΩ	Normal-precision channel
Analog input voltage	range	Ain	0	-	VREFH0	V	-
12-bit mode		•	•	•	•	•	•
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 32 MHz)	source i	Permissible signal source impedance Max. = $1.3 \text{ k}\Omega$		-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			2.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error	1		-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH}, V_{OL}, and Other Characteristics.

Table 2.50 A/D conversion characteristics (3) in High-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
DNL differential nonli	nearity error	-	±1.0	-	LSB	-
INL integral nonlinea	rity error	-	±1.0	±3.0	LSB	-
14-bit mode		•	1	•	•	-
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 32 MHz)	Permissible signal source impedance Max. = 1.3 kΩ	1.59	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		2.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinearity error		-	±4.0	-	LSB	-
INL integral nonlinea	rity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 2.51 A/D conversion characteristics (4) in Low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	24	MHz	-
Analog input capacit	tance*2	Cs	-	-	8 (reference data)	pF	High-precision channel
			-	-	9 (reference data)	pF	Normal-precision channel
Analog input resista	nce	Rs	-	-	2.5 (reference data)	kΩ	High-precision channel
			-	-	6.7 (reference data)	kΩ	Normal-precision channel
Analog input voltage range Ain		Ain	0	-	VREFH0	V	-
12-bit mode		•			•	•	•
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 24 MHz)	source impedar	Permissible signal source mpedance Max.		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
	= 1.1 kΩ)	3.38	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error	•		-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH} , V_{OL} , and Other Characteristics.

Table 2.51 A/D conversion characteristics (4) in Low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential non	linearity error	-	±1.0	-	LSB	-
INL integral nonlinea	arity error	-	±1.0	±3.0	LSB	-
14-bit mode		•	•	•	•	
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 24 MHz)	Permissible signal source impedance Max.	2.50	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
	= 1.1 kΩ	3.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential non	linearity error	-	±4.0	-	LSB	-
INL integral nonlinea	arity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 2.52 A/D conversion characteristics (5) in Low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	16	MHz	-
Analog input capacitance	Analog input capacitance*2 Cs		-	-	8 (reference)	pF	High-precision channel
			-	-	9 (reference)	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5 (reference)	kΩ	High-precision channel
			-	-	6.7 (reference)	kΩ	Normal-precision channel
Analog input voltage rang	ge	Ain	0	-	VREFH0	V	-
12-bit mode		•	•	•		•	
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 16 MHz)		issible signal ce impedance = 2.2 kΩ		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			5.06	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH} , V_{OL} , and Other Characteristics.

Table 2.52 A/D conversion characteristics (5) in Low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy	Absolute accuracy		±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonline	arity error	-	±1.0	-	LSB	-
INL integral nonlinearity	/ error	-	±1.0	±3.0	LSB	-
14-bit mode		•	•	•	,	
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 16 MHz)	Permissible signal source impedance Max. = 2.2 kΩ	3.75	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		5.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonline	arity error	-	±4.0	-	LSB	-
INL integral nonlinearity	/ error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH}, V_{OL}, and Other Characteristics.

Table 2.53 A/D conversion characteristics (6) in Low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	8	MHz	-
Analog input capacita	nce*2	Cs	-	-	8 (reference data)	pF	High-precision channel
			-	-	9 (reference data)	pF	Normal-precision channel
Analog input resistand	се	Rs	-	-	3.8 (reference data)	kΩ	High-precision channel
			-	-	8.2 (reference data)	kΩ	Normal-precision channel
Analog input voltage i	ange	Ain	0	-	VREFH0	V	-
12-bit mode		.		1	-	II.	
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 8 MHz)		ible signal mpedance δ kΩ	6.75	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			10.13	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±1.0	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above

Table 2.53 A/D conversion characteristics (6) in Low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
Full-scale error		-	±1.5	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±3.0	±8.0	LSB	High-precision channel
				±12.0	LSB	Other than above
DNL differential nonline	earity error	-	±1.0	-	LSB	-
INL integral nonlinearit	y error	-	±1.0	±3.0	LSB	-
14-bit mode		•	•	•	•	
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 8 MHz)	Permissible signal source impedance Max. = 5 kΩ	7.50	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		10.88	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error	•	-	±4.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Full-scale error		-	±6.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±12.0	±32.0	LSB	High-precision channel
				±48.0	LSB	Other than above
DNL differential nonline	earity error	-	±4.0	-	LSB	-
INL integral nonlinearit	y error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 2.54 A/D conversion characteristics (7) in Low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test conditions		
Frequency			1	-	4	MHz	-		
Analog input capacita	acitance*2 Cs		input capacitance*2 Cs		-	-	8 (reference data)	pF	High-precision channel
			-	-	9 (reference data)	pF	Normal-precision channel		
Analog input resistar	nce	Rs	-	-	13.1 (reference data)	kΩ	High-precision channel		
			-	-	14.3 (reference data)	kΩ	Normal-precision channel		
Analog input voltage range Ain		0	-	VREFH0	V	-			
12-bit mode			•		·	•			
Resolution			-	-	12	Bit	-		
Conversion time*1 (Operation at PCLKC = 4 MHz)		ible signal mpedance).9 kΩ	13.5	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh		
			20.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h		

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH}, V_{OL}, and Other Characteristics.

Table 2.54 A/D conversion characteristics (7) in Low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test conditions
Offset error		-	±1.0	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Full-scale error		-	±1.5	±7.5	LSB	High-precision channel
				±10.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±3.0	±8.0	LSB	High-precision channel
				±12.0	LSB	Other than above
DNL differential nonlin	nearity error	-	±1.0	-	LSB	-
INL integral nonlinear	ity error	-	±1.0	±3.0	LSB	-
14-bit mode			•	•	•	
Resolution		-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 4 MHz)	Permissible signal source impedance Max. = 9.9 kΩ	15.0	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
		21.75	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±4.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Full-scale error		-	±6.0	±30.0	LSB	High-precision channel
				±40.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±12.0	±32.0	LSB	High-precision channel
				±48.0	LSB	Other than above
DNL differential nonlin	nearity error	-	±4.0	-	LSB	-
INL integral nonlinear	ity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (C_{in}), see section 2.2.4, I/O V_{OH} , V_{OL} , and Other Characteristics.

Figure 2.78 Equivalent circuit for analog input

Table 2.55 14-Bit A/D converter channel classification

Classification	Channel	Conditions	Remarks	
High-precision channel	AN000 to AN015	AVCC0 = 1.6 to 5.5 V	Pins AN000 to AN015 cannot be used	
Normal-precision channel	AN016 to AN027		as general I/O, IRQ8, IRQ9 inputs, and TS transmission, when the A/D converter is in use	
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 5.5 V	-	
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 5.5 V	-	

Table 2.56 A/D internal reference voltage characteristics

Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1

Parameter	Min	Тур	Max	Unit	Test conditions
Internal reference voltage input channel*2	1.36	1.43	1.50	V	-
Frequency*3	1	-	2	MHz	-
Sampling time*4	5.0	-	-	μs	-

- Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.
- Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D converter.
- Note 3. This is a parameter for ADC14 when the internal reference voltage is used as the high-potential reference voltage.
- Note 4. This is a parameter for ADC14 when the internal reference voltage is selected for an analog input channel in ADC14.

Figure 2.79 Illustration of 14-bit A/D converter characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 0.03h to 0.00h, though an output code of 0.08h can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actually output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 **DAC12 Characteristics**

Table 2.57 D/A conversion characteristics (1) Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Reference voltage = VREFH or VREFL selected

Parameter	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	bit	-
Resistive load	30	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.35	-	AVCC0 - 0.47	V	
DNL differential nonlinearity error	-	±0.5	±1.0	LSB	-
INL integral nonlinearity error	-	±2.0	±8.0	LSB	-
Offset error	-	-	±20	mV	-
Full-scale error	-	-	±20	mV	-
Output impedance	-	5	-	Ω	-
Conversion time	-	-	30	μs	-

Table 2.58 D/A conversion characteristics (2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V Reference voltage = AVCC0 or AVSS0 selected

Parameter	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	bit	-
Resistive load	30	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.35	-	AVCC0 - 0.47	V	-
DNL differential nonlinearity error	-	±0.5	±2.0	LSB	-
INL integral nonlinearity error	-	±2.0	±8.0	LSB	-
Offset error	-	-	±30	mV	-
Full-scale error	-	-	±30	mV	-
Output impedance	-	5	-	Ω	-
Conversion time	-	-	30	μs	-

Table 2.59 D/A conversioncharacteristics (3)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Reference voltage = internal reference voltage selected

Parameter	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	bit	-
Internal reference voltage (Vbgr)	1.36	1.43	1.50	V	-
Resistive load	30	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.35	-	Vbgr	V	-
DNL differential nonlinearity error	-	±2.0	±16.0	LSB	-
INL integral nonlinearity error	-	±8.0	±16.0	LSB	-
Offset error	-	-	±30	mV	-
Output impedance	-	5	-	Ω	-
Conversion time	-	-	30	μs	-

Figure 2.80 Illustration of D/A converter characteristic terms

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion characteristics and the width of the actual output voltage.

Offset error

Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the ideal output voltage based on the input code.

Full-scale error

Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the ideal output voltage based on the input code.

2.7 TSN Characteristics

Table 2.60 TSN characteristics

Conditions: VCC = AVCC0 = 2.0 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	±1.5	-	°C	2.4 V or above
	-	-	±2.0	-	°C	Below 2.4 V
Temperature slope	-	-	-3.65	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.05	-	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	-	-	5	μs	-
Sampling time	-	5	-	-	μs	-

2.8 OSC Stop Detect Characteristics

Table 2.61 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.81

Figure 2.81 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Table 2.62 Power-on reset circuit and voltage detection circuit characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Voltage detection level*1	Power-on reset (POR)	V _{POR}	1.27	1.42	1.57	V	Figure 2.82, Figure 2.83
	Voltage detection circuit (LVD0)*2	V _{det0_0}	3.68	3.85	4.00	V	Figure 2.84
		V _{det0_1}	2.68	2.85	2.96		At falling edge VCC
		V _{det0_2}	2.38	2.53	2.64		
		V _{det0_3}	1.78	1.90	2.02		
		V _{det0_4}	1.60	1.69	1.82		
	Voltage detection circuit (LVD1)*3	V _{det1_0}	4.13	4.29	4.45	V	Figure 2.85
		V _{det1_1}	3.98	4.16	4.30		At falling edge VCC
		V _{det1_2}	3.86	4.03	4.18		
		V _{det1_3}	3.68	3.86	4.00		
		V _{det1_4}	2.98	3.10	3.22		
		V _{det1_5}	2.89	3.00	3.11		
		V _{det1_6}	2.79	2.90	3.01		
		V _{det1_7}	2.68	2.79	2.90		
		V _{det1_8}	2.58	2.68	2.78		
		V _{det1_9}	2.48	2.58	2.68		
		V _{det1_A}	2.38	2.48	2.58		
		V _{det1_B}	2.10	2.20	2.30		
		V _{det1_C}	1.84	1.96	2.05		
		V _{det1_D}	1.74	1.86	1.95		
		V _{det1_E}	1.63	1.75	1.84		
V		V _{det1_F}	1.60	1.65	1.73		
	Voltage detection circuit (LVD2)*4	V _{det2_0}	4.11	4.31	4.48	V	Figure 2.86
		V _{det2_1}	3.97	4.17	4.34		At falling edge VCC
		V _{det2_2}	3.83	4.03	4.20		
		V _{det2_3}	3.64	3.84	4.01		

Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection.

Note 2. $\,$ # in the symbol V $_{\rm det0_\#}$ denotes the value of the OFS1.VDSEL1[2:0] bits.

Note 3. # in the symbol V_{det1} denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.

Note 4. # in the symbol V_{det2} # denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.

Table 2.63	Power-on reset	circuit and voltage d	etection circuit	characteristics (2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Wait time after power-on reset cancellation	LVD0:enable	t _{POR}	-	1.7	-	ms	-
reset caricellation	LVD0:disable	t _{POR}	-	1.3	-	ms	-
Wait time after voltage monitor 0,1,2 reset	LVD0:enable*1	t _{LVD0,1,2}	-	0.6	-	ms	-
cancellation	LVD0:disable*2	t _{LVD1,2}	-	0.2	-	ms	-
Response delay*3		t _{det}	-	-	350	μs	Figure 2.82, Figure 2.83
Minimum VCC down time	Minimum VCC down time		450	-	-	μs	Figure 2.82, VCC = 1.0 V or above
Power-on reset enable tim	е	t _{W (POR)}	1	-	-	ms	Figure 2.83, VCC = below 1.0 V
LVD operation stabilization enabled)	i time (after LVD is	T _{d (E-A)}	-	-	300	μs	Figure 2.85, Figure 2.86
Hysteresis width (POR)		V _{PORH}	-	110	-	mV	-
Hysteresis width (LVD0, LV	/D1 and LVD2)	V_{LVH}	-	60	-	mV	LVD0 selected
			-	100	-	mV	V _{det1_0} to V _{det1_2} selected.
			-	60	-		V _{det1_3} to V _{det1_9} selected.
			-	50	-		V _{det1_A} or V _{det1_B} selected.
			-	40	-		V _{det1_C} or V _{det1_F} selected.
			-	60	-		LVD2 selected

- Note 1. When OFS1.LVDAS = 0.
- Note 2. When OFS1.LVDAS = 1.
- Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

Figure 2.82 Voltage detection reset timing

Figure 2.83 Power-on reset timing

Figure 2.84 Voltage detection circuit timing (V_{det0})

Figure 2.85 Voltage detection circuit timing (V_{det1})

Figure 2.86 Voltage detection circuit timing (V_{det2})

2.10 Battery Backup Function Characteristics

Table 2.64 Battery Backup Function Characteristics

Conditions: VCC = AVCC0 = 1.6V to 5.5V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Voltage level for switching to battery ba	ckup (falling)	V _{DETBATT}	1.99	2.09	2.19	V	Figure 2.87,
Hysteresis width for switching to battery	V_{VBATTH}	-	100	-	mV	Figure 2.88	
VCC-off period for starting power suppl	t _{VOFFBATT}	300	-	-	μs	-	
Voltage detection level VBATT_Power-on reset (VBATT_POR)	V _{VBATPOR}	1.30	1.40	1.50	V	Figure 2.87, Figure 2.88	
Wait time after VBATT_POR reset time	cancellation	t _{VBATPOR}	-	-	3	mS	-
Level for detection of voltage drop on	VBTLVDLVL[1:0] = 10b	V _{DETBATLVD}	2.11	2.2	2.29	V	Figure 2.89
the VBATT pin (falling)	VBTLVDLVL[1:0] = 11b		1.92	2	2.08	V	
Hysteresis width for VBATT pin LVD		V _{VBATLVDTH}	-	50	-	mV	
VBATT pin LVD operation stabilization to	ime	t _{d_vbat}	-	-	300	μs	Figure 2.89
VBATT pin LVD response delay time	t _{det_vbat}	-	-	350	μs		
Allowable voltage change rising/falling	dt/dVCC	1.0	-	-	ms/V	-	
VCC voltage level for access to the VB	ATT backup registers	V_BKBATT	1.8	-	-	V	-

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 2.87 Power supply switching and LVD0 reset Timing

Figure 2.88 VBATT_POR reset timing

Figure 2.89 VBATT pin voltage detection circuit timing

Table 2.65 VBATT-I/O characteristics

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
VBATWIOn I/O	VCC > V _{DETBATT}	VCC = 4.0 to 5.5 V	V _{OH}	VCC - 0.8	-	-	V	I _{OH} = -200 μA
output characteristics			V _{OL}	-	-	0.8		I _{OL} = 200 μA
(n = 0 to 2)		VCC = 2.7 to 4.0 V	V _{OH}	VCC - 0.5	-	-		I _{OH} = -100 μA
			V _{OL}	-	-	0.5		I _{OL} = 100 μA
		VCC = V _{DETBATT} to 2.7 V	V _{OH}	VCC - 0.3	-	-		I _{OH} = -50 μA
			V _{OL}	-	-	0.3		I _{OL} = 50 μA
	VCC < V _{DETBATT}	VBATT = 2.7 to 3.6 V	V _{OH}	V _{BATT} - 0.5	-	-		I _{OH} = -100 μA
			V _{OL}	-	-	0.5		I _{OL} = 100 μA
		VBATT = 1.6 to 2.7 V	V _{OH}	V _{BATT} - 0.3	-	-		I _{OH} = -50 μA
			V _{OL}	-	-	0.3		I _{OL} = 50 μA

2.11 CTSU Characteristics

Table 2.66 CTSU characteristics

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	-
TS pin capacitive load	C _{base}	-	-	50	pF	-
Permissible output high current	ΣΙοΗ	-	-	-24	mA	When the mutual capacitance method is applied

2.12 Segment LCD Controller/Driver Characteristics

2.12.1 Resistance Division Method

[Static Display Mode]

Table 2.67 Resistance division method LCD characteristics (1)

Conditions: VL4 ≤ VCC ≤ 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
LCD drive voltage	V_{L4}	2.0	-	VCC	V	-

[1/2 Bias Method, 1/4 Bias Method]

Table 2.68 Resistance division method LCD characteristics (2)

Conditions: VL4 ≤ VCC ≤ 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
LCD drive voltage	V_{L4}	2.7	-	VCC	V	-

[1/3 Bias Method]

Table 2.69 Resistance division method LCD characteristics (3)

Conditions: $VL4 \le VCC \le 5.5 V$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
LCD drive voltage	V_{L4}	2.5	-	VCC	V	-

2.12.2 Internal Voltage Boosting Method

[1/3 Bias Method]

Table 2.70 Internal voltage boosting method LCD characteristics

Conditions: VCC = AVCC0 = 1.8 V to 5.5 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
LCD output voltage	V_{L1}	C1 to C4*1 = 0.47 µF	VLCD = 04h	0.90	1.0	1.08	V	-
variation range			VLCD = 05h	0.95	1.05	1.13	V	-
			VLCD = 06h	1.00	1.10	1.18	V	-
			VLCD = 07h	1.05	1.15	1.23	V	-
			VLCD = 08h	1.10	1.20	1.28	V	-
			VLCD = 09h	1.15	1.25	1.33	V	-
			VLCD = 0Ah	1.20	1.30	1.38	V	-
			VLCD = 0Bh	1.25	1.35	1.43	V	-
			VLCD = 0Ch	1.30	1.40	1.48	V	-
			VLCD = 0Dh	1.35	1.45	1.53	V	-
			VLCD = 0Eh	1.40	1.50	1.58	V	-
			VLCD = 0Fh	1.45	1.55	1.63	V	-
			VLCD = 10h	1.50	1.60	1.68	V	-
			VLCD = 11h	1.55	1.65	1.73	V	-
			VLCD = 12h	1.60	1.70	1.78	V	-
			VLCD = 13h	1.65	1.75	1.83	V	-
Doubler output voltage	V_{L2}	C1 to C4*1 = 0.47 µF		2 × V _{L1} - 0.1	2 × V _{L1}	2 × V _{L1}	V	-
Tripler output voltage	V_{L4}	C1 to C4*1 = 0.47 µF		3 × V _{L1} - 0.15	3 × V _{L1}	3 × V _{L1}	V	-
Reference voltage setup time*2	t _{VL1S}			5	-	-	ms	Figure 2.90
LCD output voltage variation range*3	t _{VLWT}	C1 to C4*1 = 0.47 µF		500	-	-	ms	

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

 $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

Note 2. This is the time required to wait from when the reference voltage is specified using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET[1:0] bits in the LCDM0 register to 01b) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

[1/4 Bias Method]

Table 2.71 Internal voltage boosting method LCD characteristics

Conditions: VCC = AVCC0 = 1.8 V to 5.5 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
LCD output voltage	V_{L1}	C1 to C5*1 = 0.47 µF	VLCD = 04h	0.90	1.0	1.08	V	-
variation range			VLCD = 05h	0.95	1.05	1.13	V	-
			VLCD = 06h	1.00	1.10	1.18	V	-
			VLCD = 07h	1.05	1.15	1.23	V	-
			VLCD = 08h	1.10	1.20	1.28	V	-
			VLCD = 09h	1.15	1.25	1.33	V	-
			VLCD = 0Ah	1.20	1.30	1.38	V	-
			VLCD = 0Bh	1.25	1.35	1.43	V	-
			VLCD = 0Ch	1.30	1.40	1.48	V	-
Doubler output voltage	V_{L2}	C1 to C5*1 = 0.47 µF		2V _{L1} - 0.08	2V _{L1}	2V _{L1}	V	-
Tripler output voltage	V_{L3}	C1 to C5*1 = 0.47 µF		3V _{L1} - 0.12	3V _{L1}	3V _{L1}	V	-
Quadruply output voltage	V _{L4} *4	C1 to C5*1 = 0.47 µF		4V _{L1} - 0.16	4V _{L1}	4V _{L1}	V	-
Reference voltage setup time*2	t _{VL1S}			5	-	-	ms	Figure 2.90
LCD output voltage variation range*3	t _{VLWT}	C1 to C5*1 = 0.47 µF		500	-	-	ms	

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits in the LCDM0 register to 01b) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- Note 4. V_{L4} must be 5.5 V or lower.

2.12.3 Capacitor Split Method

[1/3 Bias Method]

Table 2.72 Internal voltage boostingmethod LCD characteristics

Conditions: VCC = AVCC0 = 2.2 V to 5.5 V

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Test conditions
VL4 voltage*1	V_{L4}	C1 to C4 = 0.47 μ F* ²	-	VCC	-	V	-
VL2 voltage*1	V _{L2}	C1 to C4 = 0.47 µF*2	2/3 × V _{L4} - 0.07	2/3 × V _{L4}	2/3 × V _{L4} + 0.07	٧	-
VL1 voltage*1	V _{L1}	C1 to C4 = $0.47 \mu F^{*2}$	1/3 × V _{L4} - 0.08	1/3 × V _{L4}	$1/3 \times V_{L4} + 0.08$	V	-
Capacitor split wait time*1	t _{WAIT}		100	-	-	ms	Figure 2.90

- Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
- Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

Figure 2.90 LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time

2.13 Comparator Characteristics

Table 2.73 ACMPHS characteristics

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VSS = AVSS0 = 0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input offset voltage	V _{IOCMP}	-	±5	±40	mV	-
Input voltage range	V _{ICMP}	0	-	AVCC0	V	-
Internal reference voltage	-	1.36	1.44	1.50	V	-
Input signal cycle	t _{PCMP}	10	-	-	μs	-
Output delay time	t _d	-	50	100	ns	Input amplitude ± 100 mV
Stabilization wait time during input channel switching*1	t _{WAIT}	300	-	-	ns	Input amplitude ± 100 mV
Operation stabilization wait time*2	t _{CMP}	1	-	-	μs	3.3 V ≤ AVCC0 ≤ 5.5 V
		3	-	-	μs	2.7 V ≤ AVCC0 < 3.3 V

Note 1. Period of time from when the comparator input channel is switched until the comparator is switched to output.

Table 2.74 ACMPLP characteristics

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, VSS = AVSS0 = 0 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Reference voltage	range	VREF	0	-	VCC -1.4	V	-
Input voltage rang	nput voltage range		0	-	VCC	V	-
Internal reference voltage		-	1.36	1.44	1.50	V	-
Output delay High-speed mode		Td	-	-	1.2	μs	VCC = 3.0
	Low-speed mode	1	-	-	5	μs	Slew rate of input signal > 50 mV/µs
	Window mode	1	-	-	2	μs	Signal > 00 mv/µs
Offset voltage	High-speed mode	-	-	-	50	mV	-
	Low-speed mode	-	-	-	40	mV	-
	Window mode	-	-	-	60	mV	-
Internal reference voltage for window mode		VRFH	-	0.76 × VCC	-	V	-
		VRFL	-	0.24 × VCC	-	V	-
Operation stabiliza	Operation stabilization wait time			-	-	μs	-

Note 2. Period of time from when the comparator operation is enabled (CMPCTL.HCMPON = 1) until the comparator satisfies the DC/AC characteristics.

2.14 OPAMP Characteristics

Table 2.75 OPAMP characteristics

Conditions: $1.8 \text{ V} \leq \text{AVCC0} = \text{VCC} \leq 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Common mode input	Vicm1	Low power mode		0.2	-	AVCC0 - 0.5	V
range	Vicm2	High-speed mode		0.3	-	AVCC0 - 0.6	V
Output voltage range	Vo1	Low power mode		0.1	-	AVCC0 - 0.1	V
	Vo2	High-speed mode		0.1	-	AVCC0 - 0.1	V
Input offset voltage	Vioff	3σ		-10	-	10	mV
Open gain	Av			60	120	-	dB
Gain-bandwidth (GB)	GBW1	Low power mode		-	0.04	-	MHz
product	GBW2	High-speed mode		-	1.7	-	MHz
Phase margin	PM	CL = 20 pF		50	-	-	deg
Gain margin	GM	CL = 20 pF		10	-	-	dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low power mode	-	230	-	nV/√Hz
	Vnoise2	f = 10 kHz		-	200	-	nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode	-	90	-	nV/√Hz
	Vnoise4	f = 2 kHz		-	70	-	nV/√Hz
Power supply reduction ratio	PSRR		1	-	90	-	dB
Common mode signal reduction ratio	CMRR			-	90	-	dB
Stabilization wait time	Tstd1	CL = 20 pF	Low power mode	650	-	-	μs
	Tstd2	 Only operational amplifier is activated *1 	High-speed mode	13	-	-	μs
	Tstd3	CL = 20 pF	Low power mode	650	-	-	μs
	Tstd4	 Operational amplifier and reference current circuit are activated simultaneously 	High-speed mode	13	-	-	μs
Settling time	Tset1	CL = 20 pF	Low power mode	-	-	750	μs
	Tset2		High-speed mode	-	-	13	μs
Slew rate	Tslew1	CL = 20 pF	Low power mode	-	0.02	-	V/µs
	Tslew2		High-speed mode	-	1.1	-	V/µs
Load current	lload1	Low power mode	1	-100	-	100	μΑ
	Iload2	High-speed mode		-100	-	100	μA
Load capacitance	CL			-	-	20	pF

Note 1. When the operational amplifier reference current circuit is activated in advance.

2.15 Flash Memory Characteristics

2.15.1 Code Flash Memory Characteristics

Table 2.76 Code flash characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Reprogramming/erasure cycle*1		N _{PEC}	1000	-	-	Times	-
Data hold time	After 1000 times of N _{PEC}	t _{DRP}	20*2, *3	-	-	Year	T _a = +85°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 8-byte programming is performed 256 times for different addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 2.77 Code flash characteristics (2)

High-speed operating mode

Conditions: VCC = AVCC0 = 2.7 to 5.5 V

				FCLK = 1	MHz		FCLK = 32	MHz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	8-byte	t _{P8}	-	116	998	-	54	506	μs
Erasure time	2-KB	t _{E2K}	-	9.03	287	-	5.67	222	ms
Blank check time	8-byte	t _{BC8}	-	-	56.8	-	-	16.6	μs
	2-KB	t _{BC2K}	-	-	1899	-	-	140	μs
Erase suspended time	Erase suspended time		-	-	22.5	-	-	10.7	μs
Startup area switching se	etting time	t _{SAS}	-	21.7	585	-	12.1	447	ms
Access window time		t _{AWS}	-	21.7	585	-	12.1	447	ms
OCD/serial programmer ID setting time		t _{OSIS}	-	21.7	585	-	12.1	447	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode tran	sition wait time 2	t _{MS}	5	-	-	5	-	-	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.

Table 2.78 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C

				FCLK = 1 M	Hz	F	CLK = 8 M	Hz	
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	8-byte	t _{P8}	-	157	1411	-	101	966	μs
Erasure time	2-KB	t _{E2K}	-	9.10	289	-	6.10	228	ms
Blank check time	8-byte	t _{BC8}	-	-	87.7	-	-	52.5	μs
	2-KB	t _{BC2K}	-	-	1930	-	-	414	μs
Erase suspended time	Erase suspended time		-	-	32.7	-	-	21.6	μs
Startup area switching	setting time	t _{SAS}	-	22.5	592	-	14.0	464	ms
Access window time	Access window time		-	22.5	592	-	14.0	464	ms
OCD/serial programmer ID setting time		t _{OSIS}	-	22.5	592	-	14.0	464	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode tr	ansition wait time 2	t _{MS}	720	-	-	720	-	-	ns

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.

2.15.2 Data Flash Memory Characteristics

Table 2.79 Data flash characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100,000	1,000,000	-	Times	-
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	-	-	Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5*2, *3	-	-	Year	
	After 1000000 times of N _{DPEC}		-	1*2, *3	-	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited).

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 2.80 Data flash characteristics (2)

High-speed operating mode

Conditions: VCC = AVCC0 = 2.7 to 5.5 V

				FCLK = 4	MHz		FCLK = 32 MHz			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Programming time	1-byte	t _{DP1}	-	52.4	463	-	42.1	387	μs	
Erasure time	1-KB	t _{DE1K}	-	8.98	286	-	6.42	237	ms	
Blank check time	1-byte	t _{DBC1}	-	-	24.3	-	-	16.6	μs	
	1-KB	t _{DBC1K}	-	-	1872	-	-	512	μs	
Suspended time during	g erasing	t _{DSED}	-	-	13.0	-	-	10.7	μs	
Data flash STOP reco	very time	t _{DSTOP}	5	-	-	5	-	-	μs	

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.

Table 2.81 Data flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, $Ta = -40 \text{ to } +85^{\circ}C$

				FCLK = 4 MHz			FCLK = 8 MHz			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Programming time	1-byte	t _{DP1}	-	94.7	886	-	89.3	849	μs	
Erasure time	1-KB	t _{DE1K}	-	9.59	299	-	8.29	273	ms	
Blank check time	1-byte	t _{DBC1}	-	-	56.2	-	-	52.5	μs	
	1-KB	t _{DBC1K}	-	-	2.17	-	-	1.51	ms	
Suspended time durir	ng erasing	t _{DSED}	-	-	23.0	-	-	21.7	μs	
Data flash STOP reco	overy time	t _{DSTOP}	720	-	-	720	-	-	ns	

- Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.
- Note 2. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
- Note 3. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.

2.16 Boundary Scan

Table 2.82 Boundary scan Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	100	-	-	ns	Figure 2.91
TCK clock high pulse width	t _{TCKH}	45	-	-	ns	
TCK clock low pulse width	t _{TCKL}	45	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	
TMS setup time	t _{TMSS}	20	-	-	ns	Figure 2.92
TMS hold time	t _{TMSH}	20	-	-	ns	
TDI setup time	t _{TDIS}	20	-	-	ns	
TDI hold time	t _{TDIH}	20	-	-	ns	
TDO data delay	t _{TDOD}	-	-	70	ns	
Boundary Scan circuit start up time*1	t _{BSSTUP}	t _{RESWP}	-	-	-	Figure 2.93

Note 1. Boundary scan does not function until Power-On-Reset becomes negative.

Figure 2.91 Boundary scan TCK timing

Figure 2.92 Boundary scan input/output timing

Figure 2.93 Boundary scan circuit start up timing

2.17 Joint Test Action Group (JTAG)

Table 2.83 JTAG (Debug) characteristics (1)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	80	-	-	ns	Figure 2.94
TCK clock high pulse width	t _{TCKH}	35	-	-	ns	
TCK clock low pulse width	t _{TCKL}	35	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	
TMS setup time	t _{TMSS}	16	-	-	ns	Figure 2.95
TMS hold time	t _{TMSH}	16	-	-	ns	
TDI setup time	t _{TDIS}	16	-	-	ns	
TDI hold time	t _{TDIH}	16	-	-	ns	
TDO data delay time	t _{TDOD}	-	-	70	ns	

Table 2.84 JTAG (Debug) characteristics (2) Conditions: VCC = AVCC0 = 1.6 to 2.4 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	250	-	-	ns	Figure 2.94
TCK clock high pulse width	t _{TCKH}	120	-	-	ns	
TCK clock low pulse width	t _{TCKL}	120	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	
TMS setup time	t _{TMSS}	50	-	-	ns	Figure 2.95
TMS hold time	t _{TMSH}	50	-	-	ns	
TDI setup time	t _{TDIS}	50	-	-	ns	
TDI hold time	t _{TDIH}	50	-	-	ns	
TDO data delay time	t _{TDOD}	-	-	150	ns	

Figure 2.94 **JTAG TCK timing**

Figure 2.95 JTAG input/output timing

Serial Wire Debug (SWD) 2.17.1

Table 2.85SWD characteristics (1)Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	80	-	-	ns	Figure 2.96
SWCLK clock high pulse width	tswckh	35	-	-	ns	
SWCLK clock low pulse width	tswckl	35	-	-	ns	
SWCLK clock rise time	t _{SWCKr}	-	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	-	-	5	ns	
SWDIO setup time	t _{SWDS}	16	-	-	ns	Figure 2.97
SWDIO hold time	t _{SWDH}	16	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	70	ns	

SWD characteristics (2) **Table 2.86**

Conditions: VCC = AVCC0 = 1.6 to 2.4 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	250	-	-	ns	Figure 2.96
SWCLK clock high pulse width	t _{SWCKH}	120	-	-	ns	
SWCLK clock low pulse width	t _{SWCKL}	120	-	-	ns	
SWCLK clock rise time	t _{SWCKr}	-	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	-	-	5	ns	
SWDIO setup time	t _{SWDS}	50	-	-	ns	Figure 2.97
SWDIO hold time	t _{SWDH}	50	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	150	ns	

Figure 2.96 **SWD SWCLK timing**

Figure 2.97 SWD input/output timing

Appendix 1.Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

Figure 1.1 LGA 145-pin

Figure 1.2 LQFP 144-pin

Figure 1.3 BGA 121-pin

Figure 1.4 LGA 100-pin

Figure 1.5 LQFP 100-pin

Figure 1.6 LQFP 64-pin

Figure 1.7 QFN 64-pin

Revision History 33A7 Microcontroller Group Datasheet	Revision History	S3A7 Microcontroller Group Datasheet
---	------------------	--------------------------------------

Rev.	Date	Summary
1.00	Feb 23, 2016	1st release
1.30	Feb 7, 2018	2nd release
1.40	Oct 29, 2018	3rd release

Website and Support

Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related documentation, and get support.

Synergy Software <u>renesassynergy.com/software</u>

Synergy Software Package <u>renesassynergy.com/ssp</u>
Software add-ons <u>renesassynergy.com/addons</u>

Software glossary <u>renesassynergy.com/softwareglossary</u>

Development tools <u>renesassynergy.com/tools</u>

Synergy Hardware <u>renesassynergy.com/hardware</u>

Microcontrollers <u>renesassynergy.com/mcus</u>

MCU glossary renesassynergy.com/mcuglossary
Parametric search renesassynergy.com/parametric

Kits <u>renesassynergy.com/kits</u>

Synergy Solutions Gallery <u>renesassynergy.com/solutionsgallery</u>

Partner projects renesassynergy.com/partnerprojects
Application projects renesassynergy.com/applicationprojects

Self-service support resources:

Documentation <u>renesassynergy.com/docs</u>

Knowledgebase <u>renesassynergy.com/knowledgebase</u>

Forums renesassynergy.com/forum
Training renesassynergy.com/training
Videos renesassynergy.com/videos
Chat and web ticket renesassynergy.com/support

Proprietary Notice

All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas.

Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.

CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.

Magic Packet™ is a trademark of Advanced Micro Devices, Inc.

SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders.

S3A7 Microcontroller Group Datasheet

Publication Date: Rev.1.40 Oct 29, 2018

Published by: Renesas Electronics Corporation

General Precautions

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation teristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tei: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tei: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 161/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +855-2865-6688, Fax: +855-2868-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #05-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amoorp, Amoorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tei: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 17F. KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.

Renesas Synergy™ Platform S3A7 Microcontroller Group

