Chapter 3. Problem Solving by Informed Search

Topic 3.1. Al problems and Heuristic Search Techniques

- **a)** Chess playing / planning robot navigation / finding language structures / visual perception: <u>searching</u> through a <u>state space</u> for a <u>goal state</u>
- **b)** Goal-based agents are considered.

Basic Concepts:

1. Initial state

Description of environment that the agent starts with

Classroom / Toy example: 8-puzzle problem

Any placement of tiles, S₀

	6	3	4
	7		5
4	2	1	8

2. Goal state

Description of environment that the agent wants to achieve

An ordered placement of tiles, G_i

1	2	3
4	5	6
7	8	

3. Successor function

That takes a state as argument and returns a set of (action, state) pairs

$$SUCCESSOR(S_0) = \{\langle up, S_1 \rangle, \langle left, S_2 \rangle, ...\}$$

6		4
7	3	5
2	1	8

U)	4
7	5	
2	1	8

6	3	4
	7	5
2	1	8

6	3	4
7	1	5
2		8

4. State Space

Set of states reachable from the initial state; Initial state + successor function

A sequence of states connected by actions

6. Goal test

Test to determine whether a given state is a goal state or not

$$S_0$$
, S_1 , S_2 , ... S_0 , SUCCESSOR

$$S_0$$
 - up - S_1 - right - S_{12} ...

Matching with a given possible goal state

7. Path cost

Sum of <u>step costs</u> Uniform / non-uniform Number of steps / actions in the path; Uniform step cost, 1; $c(n, a, n') = c(S_0, up, S_1) = 1$

8. Solution

A path from the initial state to a goal state

A path in a directed graph or tree constructed by SUCCESSOR, from S_0 to G_i .

9. Optimal Solution

Solution that has the lowest path cost

A specific path, P_s found in the directed graph.

c) Conventional vs Heuristic search

- Search space may be very big
- Efficient algorithms needed
- Uninformed or blind search not usable directly
- Informed or Heuristic search helps
 - Additional prior knowledge
 - Estimation or problem specific rule
 - Helps sometimes, but not always
 - Heuristics: 'to find', 'to discover', 'rule of thumb' or 'judgmental technique'

12/29/2021 4

d) Heuristic Functions

Heuristics is often expressed as a function of a state:

h(s) = <u>Estimated cost</u> of the <u>cheapest path</u> from s to a goal state.

Examples:

i) 8-puzzle problem

Select the generated state s with

 $h_1(s)$ = number of tiles not matching those in the goal.

6	3	4
7		5
2	1	8

Initial

	1	2
3	4	5
6	7	8

Goal

$$h_1(Initial) = 6$$

ii) For finding the shortest path between two towns intended for traveling through other towns:

 $h_2(s) = Straight-line distance from town s to the destination.$

- i: Initial state/node(source)
- g: Goal state/node (destination)

$$h_2(i) = 80$$

e) Good heuristic functions

- Finding a good heuristic function is a big problem.
- Statistical and probabilistic methods help.
- May require additional computational cost (as for h_1), or prior knowledge (as for h_2).
- Good heuristic functions are said to be admissible or consistent.

f) Admissibility of heuristic functions

☐ An admissible heuristic function never over estimates the cost to reach the goal:

$h(s) \le Actual cost to reach the goal from s$

 \square h₁ and h₂ seen above are admissible:

h₁ – any tile that is out of place, must be moved at least once

h₂ – straight line is the shortest of any other lines

12/29/2021

g) Monotonicity or Consistency of heuristic functions

$h(n) \le c(n, a, n') + h(n')$, for any node n and every successor n' of n

It is from triangular inequality: one side is shorter than the sum of the other two.

- ❖ h₁ and h₂ seen above are also consistent.
- * Every consistent heuristic function is also admissible, but vice-versa is not always true.

[May work very well on n', while not so well on n.]

12/29/2021

h) Checking for admissibility and consistency of heuristic functions

$h(s) \le Actual cost to reach the goal from s, for any node s$

$$h(i)=80 \le cost(i-b-e-g)=107 \mid cost(i-b-d-g)=103 \mid ...;$$

• • •

 $h(n) \le c(n, a, n') + h(n')$, for any node n and every successor n' of n

$$h(i)=80 \le c(i, \rightarrow, b) + h(b)=45+42, h(i)=80 \le c(i, \rightarrow, a) + h(a)=35+55;$$

 $h(b)=...;...$