Théorie des Langages

Examen du 22 juin 2011 - Durée 1h30 - 2 pages (recto-verso) Aucun document n'est autorisé Aucun dispositif électronique n'est autorisé Le barême est donné à titre indicatif et peut être modifié

Exercice 1 (4 points) - Soit $\Sigma = \{a, b\}$. Soit l'automate M suivant

- 1. Cet automate est il déterministe? Complet? Justifiez.
- 2. Construire l'automate complémentaire à M

Exercice 2 (4 points) - Soit l'automate à pile suivant reconnaissant le langage L par état final :

- 1. Cet automate est-il déterministe? Justifiez.
- 2. Donner les différentes étapes de reconnaissance du mot abb
- 3. Quel langage est généré par cet automate?
- 4. Modifier l'automate de façon à avoir une reconnaissance par pile vide

Exercice 3 (6 points) - Soit $\Sigma = \{a, b\}$. Soient les deux automates M_1 et M_2 suivant

− Automate *M*₁

- Automate M₂

- 1. Construire l'automate M qui reconnaît le langage $\mathcal{L}(M) = \mathcal{L}(M_1) + \mathcal{L}(M_2)$
- 2. Construire l'automate M qui reconnaît le langage $\mathcal{L}(M) = \mathcal{L}(M_1).\mathcal{L}(M_2)$
- 3. Donnez l'expression régulière équivalente à l'automate M_1 . Vous utiliserez au choix le théorème d'Arden ou la méthode d'élimination des états

Exercice 4 (6 points) - Soient les langages L_1 et L_2 construits sur l'alphabet $\Sigma = \{a, b\}$.

$$L_1 = a^*b(a+b)^* L_2 = \{a^nb(a+b)^n, n \in \mathbb{N}\}$$

- 1. Montrez que les langages L_1 et L_2 ne sont pas égaux
- 2. Donnez les grammaires qui engendrent L_1 et L_2
- 3. Construire l'automate fini M_1 tel que $\mathcal{L}(M_1) = L_1$ en utilisant le théorème d'Arden
- 4. Construire l'automate à pile **par état final** M_2 tel que $\mathcal{L}(M_2) = L_2$