Present neatly. Justify for full credit. No Calculators.

Name _____ Score ____ ~10 minutes / A

- 1. Find the points on the curve $y = (\cos x)/(2 + \sin x)$ at which the tangent line is horizontal. [5 points]
- 2. Evaluate or explain why it does not exist. [5 points] a)

$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2}$$

$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x}$$

1.

$$f(x) = \frac{\cos x}{2 + \sin x}$$

$$f'(x) = \frac{(2 + \sin x)(-\sin x) - \cos x * \cos x}{(2 + \sin x)^2}$$

$$f'(x) = \frac{-2\sin x - \sin^2 x - \cos^2 x}{(2+\sin x)^2} = \frac{-2\sin x - (\sin^2 x + \cos^2 x)}{(2+\sin x)^2} = \frac{-2\sin x - 1}{(2+\sin x)^2} = 0$$

$$\rightarrow -2\sin x - 1 = 0$$

$$\Rightarrow \sin x = \frac{-1}{2}$$

$$\rightarrow x = 2k\pi - \frac{\pi}{6}, x = 2k\pi - \frac{5\pi}{6}$$

$$f\left(\frac{-\pi}{6}\right) = \frac{1}{\sqrt{3}}$$

$$f\left(\frac{-5\pi}{6}\right) = -\frac{1}{\sqrt{3}}$$

Points:
$$\left(2k\pi - \frac{\pi}{6}, \frac{1}{\sqrt{3}}\right), \left(2k\pi - \frac{5\pi}{6}, \frac{-1}{\sqrt{3}}\right)$$

Below we confirm our findings with Mathematica:

 $ln[1]:= Plot[{Cos[x] / (2 + Sin[x]), 1 / Sqrt[3], -1 / Sqrt[3]}, {x, -10, 10}]$

2.

a`

$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2} = \lim_{x \to 1} \frac{\sin(x-1)}{(x-1)(x+2)} = \lim_{x \to 1} \left(\frac{\sin(x-1)}{(x-1)} \frac{1}{x+2} \right)$$
$$= \lim_{x \to 1} \left(\frac{\sin(x-1)}{(x-1)} \right) * \lim_{x \to 1} \left(\frac{1}{x+2} \right) = 1 * \frac{1}{3} = \frac{1}{3}$$

b)

$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{\sin x - \cos x} = \lim_{x \to \frac{\pi}{4}} \frac{1 - \frac{\sin x}{\cos x}}{\sin x - \cos x} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{\cos x - \sin x}{\cos x}}{\sin x - \cos x} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{\cos x - \sin x}{\sin x - \cos x}}{\sin x - \cos x} = \lim_{x \to \frac{\pi}{4}} \frac{-(\sin x - \cos x)}{\cos x (\sin x - \cos x)} = \lim_{x \to \frac{\pi}{4}} \frac{-1}{\cos x} = \frac{-1}{\frac{\sqrt{2}}{2}} = -\sqrt{2}$$

Present neatly. Justify for full credit. No Calculators.

Name _____ Score ____ ~10 minutes / F

1.

For what values of x does the graph of $f(x) = x + 2 \sin x$ have a horizontal tangent?

[5 points]

2.Find

$$\frac{d^{35}}{dx^{35}}(x\sin x)$$
 [2 points]

3.

Suppose
$$f(\pi/3) = 4$$
 and $f'(\pi/3) = -2$, and let $g(x) = f(x) \sin x$ and $h(x) = (\cos x)/f(x)$. Find (a) $g'(\pi/3)$ (b) $h'(\pi/3)$

[3 points]

1.

$$f(x) = x + 2\sin x$$

$$f'(x) = 1 + 2\cos x = 0 \rightarrow \cos x = \frac{-1}{2} \rightarrow x = \frac{2\pi}{3} + 2k\pi, x = \frac{-2\pi}{3} + 2k\pi$$

2.

$$f^{(0)}(x) = x \sin x$$

$$f^{(1)}(x) = \sin x + x \cos x$$

$$f^{(2)}(x) = \cos x + \cos x - x \sin x = 2\cos x - x \sin x$$

$$f^{(3)}(x) = -2\sin x - (\sin x + x\cos x) = -3\sin x - x\cos x$$

$$f^{(4)}(x) = -3\cos x - (\cos x + x(-\sin x)) = -4\cos x + x\sin x$$

$$f^{(5)}(x) = 4\sin x + \sin x + x\cos x = 5\sin x + x\cos x$$

$$f^{(6)}(x) = 5\cos x + \cos x - x\sin x = 6\cos x - x\sin x$$

....

$$f^{(35)}(x) = -35\sin x - x\cos x$$

3.

a)

$$g'(x) = f'(x)\sin x + f(x)\cos x \rightarrow g'(\pi/3) = (-2)*\frac{\sqrt{3}}{2} + 4*\frac{1}{2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}$$

b)

$$h'(x) = \frac{f(x)(-\sin x) - f'(x)\cos x}{\left(f(x)\right)^2} \to h'(\pi/3) = \frac{4*(\frac{-\sqrt{3}}{2}) - (-2)*\frac{1}{2}}{\left(4\right)^2} = \frac{1 - 2\sqrt{3}}{16}$$