

Application Note

AN000666

SMUX Configuration

How to Configure SMUX for Reading Out Results

v1-01 • 2021-Mar-15

Content Guide

1	Introduction 3	5	Revision Information10
2	SMUX Multiplexer Mapping 4	6	Legal Information11
3	Configuration Example 1 6		
4	Configuration Example 2 8		

1 Introduction

The AS7341 integrates a so-called super multiplexer (SMUX). With the SMUX, it is possible to map all available photodiodes to one of the six available light-to-frequency converters (CH0 ADC to CH5 ADC). Every pixel has a multiplexer to map it to one of the engines – this multiplexer can be configured with 3 bits. (0 = pixel disabled / connected to GND; 1 to 6 = ADC 0 to ADC 5).

The figures below show the SMUX pixel ID mapping to every individual diode. In addition to the 4x4 pixel array, flicker detection, NIR, and CLEAR diodes, three IDs are available for external photodiodes connected to pin GPIO and INT, as well as an on-chip DARK photodiode (PD covered with black filter). Unmentioned and grey pixel IDs are not used, and shall be programmed with "0".

Reading and writing pixel configuration uses the first 20 bytes of the RAM starting at address 00h. For easier usage, the pixel configuration is stored in nibbles within the RAM (4bits per pixel configuration, MSB not used). It is recommended to write the 20 bytes at once and configure all pixels together within one page write command.

Figure 1: Sensor Array (left) and SMUX Pixel ID Mapping to Diodes (right)

Figure 2: Chain Map Pixel ID vs Filter

2 SMUX Multiplexer Mapping

The following table shows the mapping of the SMUX pixel IDs to address configuration bit positions, in I^2C and RAM address space.

Figure 3: SMUX Multiplexer Mapping

I ² C ADDR	RAM ADDR	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>	
0x00	_		Pixel ID 1	[6:4]			Unused			
0x01	_ 0		Unused			Pixel ID 2	Pixel ID 2 [2:0]			
0x02	- 1		Unused	Unused			Unused	Unused		
0x03	ı		Pixel ID 7 [6:4]			Unused				
0x04	_ 2		Unused			Pixel ID 8	Pixel ID 8 [2:0]			
0x05			Pixel ID 1	Pixel ID 11 [6:4]			Pixel ID 1	Pixel ID 10 [2:0]		
0x06	– 3		Pixel ID 13 [6:4]			unused				
0x07	_ 3		Unused	Unused			Pixel ID 1	Pixel ID 14 [2:0]		
80x0	_ 4		Pixel ID 1	7 [6:4]			Unused			
0x09	4		Pixel ID 19 [6:4]			Unused				
0x0A	- 5		Unused				Pixel ID 2	0 [2:0]		
0x0B			Unused				Unused			
0x0C	- 6		Pixel ID 2	5 [6:4]			Unused			
0x0D	O .		Unused			Pixel ID 26 [2:0]				
0x0E	- 7		Pixel ID 2	9 [6:4]			Pixel ID 2	8 [2:0]		
0x0F			Pixel ID 31 [6:4]			Unused				
0x10	– 8		Pixel ID 3	3 [6:4]			Pixel ID 3	2 [2:0]		
0x11	8		Pixel ID 3	5 [6:4]			Pixel ID 3	4 [2:0]		
0x12	_ 9		Pixel ID 3	7 [6:4]			Unused			
0x13	_ 9		Pixel ID 3	9 [6:4]			Pixel ID 3	8 [2:0]		

Figure 4:

Addr: 0x00 - 0x13 SMUX Multiplexer Mapping

Bit	Bit Name	Default	Access	Bit Description
7	Not used	0	RW	Reserved

Bit	Bit Name	Default	Access	Bit Description
				0: Connected to Ground / disabled
				1: Pixel connected to ADC0
		0		2: Pixel connected to ADC1
C-4	DivaLIDy		DW	3: Pixel connected to ADC2
6:4	Pixel IDx		RW	4: Pixel connected to ADC3
				5: Pixel connected to ADC4
				6: Pixel connected to ADC5 (Flicker)
				7: Reserved
3	Not used	0	RW	Reserved
		0		0: Connected to Ground / disabled
				1: Pixel connected to ADC0
	Pixel IDy			2: Pixel connected to ADC1
0.0			DW	3: Pixel connected to ADC2
2:0			RW	4: Pixel connected to ADC3
				5: Pixel connected to ADC4
				6: Pixel connected to ADC5 (Flicker)
				7: Reserved

3 Configuration Example 1

The following example shows how to map individual PDs to dedicated ADCs using the SMUX. In the example below, each box in the chain map represents one nibble (4-bit per pixel ID). The number within the box is the value, which needs to be programmed to map the pixel to the desired ADC.

F1 mapped to ADC0, F2 mapped to ADC1, F3 mapped to ADC2, F4 mapped to ADC3, CLEAR mapped to ADC4, and NIR mapped to ADC5.

Figure 5: Chain Map Example Read Out F1 to F4, CLEAR and NIR

Figure 6: I²C Commands Example 1

Step	I ² C Command	Description
1	I2C_write(0x80, 0x01)	Enable power (set PON = "1") and disable SP_EN (SP_EN="0") Register: ENABLE / 0x80
2	I2C_write(0xB2, 0x10)	Enable special interrupt (SINT_SMUX). As soon as SMUX command has finished interrupt is activated. Register: CFG9 / 0xB2
3	I2C_write(0xF9, 0x01)	Enable special interrupt SIEN Register: INTENAB / 0xF9
4	I2C_write(0xAF, 0x10)	Write SMUX configuration from RAM to set SMUX chain Register: CFG6 / 0xAF
5	I2C_write(0x00, 0x30)	F3 left set to ADC2
6	I2C_write(0x01, 0x01)	F1 left set to ADC0
7	I2C_write(0x02, 0x00)	
8	I2C_write(0x03, 0x00)	F8 left disabled
9	I2C_write(0x04, 0x00)	F6 left disabled
10	I2C_write(0x05, 0x42)	F4 left connected to ADC3 / F2 left connected to ADC1
11	I2C_write(0x06, 0x00)	F5 left disabled
12	I2C_write(0x07, 0x00)	F7 left disabled
13	I2C_write(0x08, 0x50)	CLEAR connected to ADC4
14	I2C_write(0x09, 0x00)	F5 right disabled
15	I2C_write(0x0A, 0x00)	F7 right disabled
16	I2C_write(0x0B, 0x00)	
17	I2C_write(0x0C, 0x20)	F2 right connected to ADC1

Step	I ² C Command	Description
18	I2C_write(0x0D, 0x04)	F4 right connected to ADC3
19	I2C_write(0x0E, 0x00)	F6/F8 right disabled
20	I2C_write(0x0F, 0x30)	F3 right connected to ADC2
21	I2C_write(0x10, 0x01)	F1 right connected to ADC0
22	I2C_write(0x11, 0x50)	CLEAR right connected to ADC4
23	I2C_write(0x12, 0x00)	
24	I2C_write(0x13, 0x06)	NIR connected to ADC5
25	I2C_write(0x80, 0x11)	Start SMUX command while keeping power on (SMUXEN = "1" and PON = "1")
26		Wait for interrupt
27	I2C_write(0x80, 0x00)	Power down (PON = "0")

4 Configuration Example 2

The following example shows how to map individual PDs to dedicated ADCs using the SMUX.

F5 mapped to ADC0, F6 mapped to ADC1, F7 mapped to ADC2, F8 mapped to ADC3, CLEAR mapped to ADC4, and NIR mapped to ADC5.

Figure 7: Chain Map Example Read Out F5 to F8, CLEAR and NIR

Figure 8: I²C Commands Example 2

Step	I ² C Command	Description
1	I2C_write(0x80, 0x01)	Enable power (set PON = "1") and disable SP_EN (SP_EN="0") Register: ENABLE / 0x80
2	I2C_write(0xB2, 0x10)	Enable special interrupt (SINT_SMUX). As soon as SMUX command has finished interrupt is activated. Register: CFG9 / 0xB2
3	I2C_write(0xF9, 0x01)	Enable special interrupt SIEN Register: INTENAB / 0xF9
4	I2C_write(0xAF, 0x10)	Write SMUX configuration from RAM to set SMUX chain Register: CFG6 / $$ 0xAF
5	I2C_write(0x00, 0x00)	F3 left disabled
6	I2C_write(0x01, 0x00)	F1 left disabled
7	I2C_write(0x02, 0x00)	
8	I2C_write(0x03, 0x40)	F8 left connected to ADC3
9	I2C_write(0x04, 0x02)	F6 left connected to ADC1
10	I2C_write(0x05, 0x00)	F4/F2 disabled
11	I2C_write(0x06, 0x10)	F5 left connected to ADC0
12	I2C_write(0x07, 0x03)	F7 left connected to ADC2
13	I2C_write(0x08, 0x50)	CLEAR connected to ADC4
14	I2C_write(0x09, 0x10)	F5 right connected to ADC0
15	I2C_write(0x0A, 0x03)	F7 right connected to ADC2
16	I2C_write(0x0B, 0x00)	
17	I2C_write(0x0C, 0x00)	F2 right disabled
18	I2C_write(0x0D, 0x00)	F4 right disabled
19	I2C_write(0x0E, 0x24)	F8 right connected to ADC3 / F6 right connected to ADC1

Step	I ² C Command	Description
20	I2C_write(0x0F, 0x00)	F3 right disabled
21	I2C_write(0x10, 0x00)	F1 right disabled
22	I2C_write(0x11, 0x50)	CLEAR right connected to ADC4
23	I2C_write(0x12, 0x00)	
24	I2C_write(0x13, 0x06)	NIR connected to ADC5
25	I2C_write(0x80, 0x11)	Start SMUX command while keeping power on (SMUXEN = "1" and PON = "1")
26		Wait for interrupt
27	I2C_write(0x80, 0x00)	Power down (PON = "0")

Revision Information 5

Changes from previous version to current revision v1-01	Page
Initial version	all

- Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- Correction of typographical errors is not explicitly mentioned.

6 Legal Information

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Information in this document is believed to be accurate and reliable. However, ams AG does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Applications that are described herein are for illustrative purposes only. ams AG makes no representation or warranty that such applications will be appropriate for the specified use without further testing or modification. ams AG takes no responsibility for the design, operation and testing of the applications and end-products as well as assistance with the applications or end-product designs when using ams AG products. ams AG is not liable for the suitability and fit of ams AG products in applications and end-products planned.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data or applications described herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

ams AG reserves the right to change information in this document at any time and without notice.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters

ams AG

Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Please visit our website at www.ams.com

Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support
Provide feedback about this document at www.ams.com/Document-Feedback
For sales offices, distributors and representatives go to www.ams.com/Contact
For further information and requests, e-mail us at ams_sales@ams.com