

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Разработка программного обеспечения для реалистичной визуализации плечевой одежды на примере футболки

Студент: Маслова Марина Дмитриевна ИУ7-53Б

Научный руководитель: Оленев Антон Александрович

Цель и задачи

Цель: разработать программное обеспечение для реалистичной визуализации плечевой одежды на примере футболки, предоставляющее возможность изменения положения камеры.

Задачи:

- •формально описать модель ткани, как части одежды;
- •проанализировать методы визуализации ткани и соединения ее частей для получения одежды;
- •разработать и реализовать алгоритм визуализации футболки;
- •оценить производительность реализованного алгоритма.

Одежда, как объект физического мира

Методы визуализации одежды

- Геометрические:
 - моделирование свисающей ткани,
 - о моделирование складок на рукаве,
 - методы с вмешательством пользователя;
- Физические:
 - модель сплошной среды;
 - энергетическая модель системы частиц;
 - о массо-пружинная модель.

Классификация методов моделирования одежды

Метод	Универсальность	Вмешательство пользователя	Скорость
Свисающей ткани	-	не требуется высокая	
Складок на рукаве	-	не требуется	высокая
С вмешательством пользователя	+	требуется низкая	
Сплошной среды	+	не требуется низкая	
Энергетический	+	не требуется низкая	
Массо-пружинная модель	+	не требуется средняя	

Классификация методов рендера изображения

Метод	Кроссплатформенность	Открытый код	Поддержка Python
OpenGL	+	+	+
Vulkan	+	+	-
DirectX	-	-	+

Существующие программные

обеспечения

Browzwear

Blender

PhysX

Диаграмма классов

Object

Средства реализации

- Язык программирования: Python 3.8.10
- Разработка интерфейса: QtDesigner 4.4.3
- Среда разработки: Vim 8.2.4106
- Библиотеки: numpy, PyQt5, PyOpenGl, glm, ctypes

Примеры работы программы

Интерфейс программы

Интерфейс программы

Результаты эксперимента

Размер, число т. м.	Производительность, кадр/сек
100	60
300	50
500	31
700	22
900	16
1100	13
1300	10
1600	8
3600	5
6400	3

Заключение

В ходе курсовой работы выполнены следующие задачи:

- •формально описана модель ткани, как части одежды;
- •описаны методы визуализации ткани и возможности соединения ее частей для получения одежды;
- •разработан и реализован алгоритм визуализации футболки;
- •выполнена оценка производительности реализованного алгоритма.

Поставленная цель достигнута.