COMP1588 – Computer Systems Architectures Mock Theory Test

You have **110** minutes to answer all questions.

Student Number	
Surname	
Forename	

- 1. If the CPU's data bus is 7 bits wide
 - A) What is the minimum and maximum unsigned integer the machine can store. Show them in decimal and binary format. [/4]
 - B) What is the minimum and maximum two's complement number the machine can store. Show them in signed decimal and two's complement representation. [/6]

2. Develop a logic circuit that can be used to check if two 3-bit binary numbers are equal. [10]

3. Using only Boolean algebra (and not a Karnaugh map or truth table), prove that z = bd+cd [/10]

 $z = \ \overline{a}.\,\overline{b}.\,c.\,d + \ \overline{a}.\,b.\,\overline{c}.\,d + \ \overline{a}.\,b.\,c.\,d + \ a.\,\overline{b}.\,c.\,d + a.\,b.\,\overline{c}.\,d + a.\,b.\,c.\,d$

4. This is the Karnaugh map of a logic expression.

cd\ab	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	0	0	0
(1)10	1	0	0	1
(1)	•	•	•	•

A. Draw the corresponding logic circuit before simplification

[/7]

B. Draw the corresponding logic circuit after simplification using the Karnaugh Map [/8]

5. Draw the timing diagram for an SR latch (cross coupled NORS), showing the following event sequence. (S = 1, R = 0), (S = 0, R = 0), (S = 0, R = 0), (S = 0, R = 1). At the initial state of the latch, S+R=0, Q=0, Q=0,

- 6. A) Draw a flowchart to compute 1+2+3+4+5+ ...+1000 using a loop. [/5] B) Draw a flowchart to compute 1+2+3+4+5+ ...+1000 without using any loop.
 - B) Draw a flowchart to compute 1+2+3+4+5+...+1000 without using any loop. (Hint: 1+1000 = 2+999 = 3+998 = ...) [/5]
 - C) Draw a flowchart to compute the sum of n numbers without using any loop [/10]

7. Draw a state transition diagram and State Table that reads a string of four characters ('A', 'C',
'G' and 'T') and asserts an output if it finds the sequence 'ATG'.

[/20]

Boolean Algebra rules:

1. Commutative laws

a)
$$A + B = B + A$$

b)
$$A.B = B.A$$

2. Associative laws

a)
$$A + (B + C) = (A + B) + C$$

b)
$$A.(B.C) = (A.B).C$$

3. Distributive laws

a)
$$A.(B + C) = (A.B) + (A.C)$$

b)
$$A + (B.C) = (A + B).(A + C)$$

4. Tautology laws

a)
$$A.A = A$$

c)
$$A + A = 1$$

$$b) A + A = A$$

$$\overrightarrow{A} \cdot \overrightarrow{A} = 0$$

5. Absorption laws

a)
$$A + (A.B) = A$$

b)
$$A.(A + B) = A$$

6. Common Sense laws

a)
$$0.A = 0$$

d)
$$0 + A = A$$

b)
$$1 + A = 1$$

c)
$$1.A = A$$

$$e)0 =$$

e)
$$0 = 1$$
 f) $1 = 0$

7. De Morgan's law

a)
$$\overline{A} + \overline{B} = \overline{A.B}$$

b)
$$\overline{A + B} = \overline{A} \cdot B$$