Chapter 8 Disjoint Set / Class

South China University of Technology

College of Software Engineering

Huang Min

Disjoint Union / Find

Equivalence Relations

- A relation R is defined on set S if for every pair of elements a, b ∈S, a R b is either true or false.
- An equivalence relation is a relation R that satisfies the 3 properties:
 - \rightarrow Reflexive: a R a for all a \in S
 - Symmetric: a R b iff b R a; a, b ←S
 - Transitive: a R b and b R c implies a R c

Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements a, b ∈S is such that a R b.
- The equivalence class of an element a is the subset of S of all elements related to a.
- Equivalence classes are disjoint sets

Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
- Requires two operations:
 - > Find the equivalence class (set) of a given element
 - Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Disjoint Union - Find

Maintain a set of pairwise disjoint sets.

```
> {3,5,7}, {4,2,8}, {9}, {1,6}
```

Each set has a unique name, one of its members

```
> \{3, \underline{5}, 7\}, \{4, 2, \underline{8}\}, \{\underline{9}\}, \{\underline{1}, 6\}
```

Union

 Union(x,y) – take the union of two sets named x and y

```
> \{3, \underline{5}, 7\}, \{4, 2, \underline{8}\}, \{\underline{9}\}, \{\underline{1}, 6\}
```

Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},

Find

 Find(x) – return the name of the set containing x.

```
\rightarrow \{3, \underline{5}, 7, 1, 6\}, \{4, 2, \underline{8}\}, \{\underline{9}\},
```

- \rightarrow Find(1) = 5
- \rightarrow Find(4) = 8
- \rightarrow Find(9) = ?

An Application

Build a random maze by erasing edges.

An Application (ct'd)

Pick Start and End

An Application (ct'd)

Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle (we don't want that)

A Good Solution

Good Solution: A Hidden Tree

Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, ..., \{36\} \} \}$ each cell is unto itself. We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), ... \}$ 60 edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Basic Algorithm

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S
pick a random edge (x,y) and remove from E
u := Find(x); v := Find(y);
if u ≠ v then
Union(u,v) //knock down the wall between the cells (cells in //the same set are connected)
else
add (x,y) to Maze //don't remove because there is already
// a path between x and y

All remaining members of E together with Maze form the maze
```

Example Step

	Pick (8,14)								
Start	1	2	3	4	5	6			
	7	8	9	10	11	12			
	13	14	15	16	17	18			
	19	20	21	22	23	24			
	25	26	27	28	29	30			
	31	32	33	34	35	36	End		

```
S
{1,2,<u>7</u>,8,9,13,19}
3
{<u>4</u>}
{<u>5</u>}
{<u>6</u>}
10
{11,<u>17</u>}
<u>{12</u>}
\{14, 20, 26, 27\}
{15,<u>16</u>,21}
{22,23,24,29,30,32
 33,34,35,36}
```

18

Example

```
S
                                                              S
\{1,2,\overline{7},8,9,13,19\}
                                                              {1,2,<del>7</del>,8,9,13,19,14,20 26,27}
                                   Find(8) = 7
{<u>3</u>}
                                                              {<u>3</u>}
{<u>4</u>}
                                   Find(14) = 20
                                                              {<u>4</u>}
{<u>5</u>}
                                                              {5}
{<u>6</u>}
                                                              {<u>6</u>}
                                    Union(7,20)
{<u>10</u>}
                                                              {<u>10</u>}
{11,<u>17</u>}
                                                              {11,<u>17</u>}
                                                              {<u>12</u>}
{14, <u>20, 26, 27</u>}
                                                              {15,<u>16</u>,21}
{15,<u>16</u>,21}
                                                              {22,23,24,29,39,32
{22,23,24,29,39,32
                                                                33,34,35,36}
 33,34,35,36}
```

Example

	Pick	(19,2	20)		S			
		•	-					{1,2, <u>7</u> ,8,9,13,19
011							7	14,20,26,27}
Start	1	2	3	4	5	6		{ <u>3</u> }
	7	8	9	10	11	12		{ <u>4</u> } { <u>5</u> }
	13	14	15	16	17	18		{ <u>6</u> } { <u>10</u> }
	19	20	21	22	23	24		{11, <u>17</u> } { <u>12</u> }
	25	26	27	28	29	30		{15, <u>16</u> ,21}
	31	32	33	34	35	36	End	•
· ·							_	{22,23,24,29,39,32 33, <u>34</u> ,35,36} ₂₀

Example at the End

Up-Tree for DU/F

Initial state

Intermediate state

Roots are the names of each set.

Find Operation

 Find(x) follow x to the root and return the root (which is the name of the class).

Union Operation

 Union(i,j) - assuming i and j are roots, point i to j.

Simple Implementation

Array of indices (Up[i] is parent of i)

	•	_	3	•	•	•	•
up	0	1	0	7	7	5	0

Up [x] = 0 means x is a root.

Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```

Constant Time!

Find

- Design Find operator
 - > Recursive version
 - Iterative version

```
UP x
```

```
Find(up[] : integer array, x : integer) : integer
{
//precondition: x is in the range 1 to size//
???
}
```

if up[x] = 0 then return x else

Find Solutions

Recursive

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}
```

Iterative

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
    x := up[x];
return x;
}
```

A Bad Case

Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree

Example Again

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - > Basis: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all h' < h.</p>

Minimum weight up-tree of height h formed by weighted unions

$$W(T_1) \ge W(T_2) \ge 2^{h-1}$$

$$V(T_2) \ge 2^{h-1}$$

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n > 2^h$
- $\log_2 n \ge h$
- Find(x) in tree T takes O(log n) time.
- Can we do better?

Elegant Array Implementation

Weighted Union

```
W-Union(i,j : index) {
//i and j are roots//
  wi := weight[i];
  wj := weight[j];
  if wi < wj then
    up[i] := j;
    weight[j] := wi + wj;
  else
    up[j] :=i;
    weight[i] := wi +wj;
```

Path Compression

 On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression Find

```
PC-Find(i : index) {
  r := i;
  while up[r] \neq 0 do //find root//
    r := up[r];
  if i ≠ r then //compress path//
    k := up[i];
    while k \neq r do
      up[i] := r;
      i := k;
      k := up[k]
  return(r)
```