Matemática Discreta Tópicos da Linguagem e da Lógica Matemáticas

Texto da Semana 2, Parte 2

Conectivos e Simbolização

Sumário

Conectivos: simbolização e sintaxe	15
Enunciados componentes	18
2.1 Observação	18
Legendas	19
	21
Simbolização de enunciados com conectivos	22
4.1 Observações	24
	Enunciados componentes 2.1 Observação

Neste texto, abordamos os conceitos de conectivo (Seção 1); enunciados componentes (Seção 2); legenda (Seção 3); e simbolização baseada em uma legenda (Seção 4). Introduzimos, também, os símbolos para os concetivos (Seção 1).

Depois de estudarmos este texto, vamos ser capazes de: reconhecer os componentes de um enunciado (Exercícios 1 e 2); determinar uma legenda para a simbolização de um enunciado (Exercício 3); e simbolizar um enunciado usando uma legenda (Exercícios 4, 5, e 6).

1 Conectivos: simbolização e sintaxe

O estudo da formação de enunciados consiste em, dado um enunciado:

- (1) analisá-lo, classificando-o como atômico ou molecular e, quando molecular,
- (2) explicitar a maneira como ele é formado a partir de enunciados atômicos.

A <u>principal ferramenta</u> empregada no estudo da formação de enunciados é a simbolização.

Inicialmente, vamos simbolizar apenas enunciados formados por aplicações das partículas

não é o caso que , e , ou , se ... então , se, e somente se a enunciados atômicos. Posteriormente, vamos simbolizar enunciados formados por aplicações de mais duas partículas.

As partículas

não é o caso que $\ , \ \ e \ , \ \ ou \ , \ \ se \dots então \ , \ \ se, e somente se$

são chamadas de *conectivos lógicos*, quando são usadas na formação de enunciados da maneira que será especificada.

A simbolização começa com a atribuição de símbolos aos conectivos.

Simbolizamos os conectivos de acordo com a tabela:

conectivo	símbolo
não	7
е	\wedge
ou	\vee
se então	\rightarrow
se e somente se	\leftrightarrow

Estes são os únicos símbolos adotados para a simbolização dos conectivos.

Além disso, denotamos enunciados genéricos pelas letras gregas minúsculas:

 α alfa β beta γ gama δ delta θ teta λ lambda μ mi ρ rô σ sigma τ tau ϕ fi ψ psi,

usualmente indexadas por números naturais. Também vamos utilizar a letra grega ϕ estilizada, escrevendo-a como φ .

Sintaxe dos conectivos

Quanto à sua aplicação na formação de enunciados, os conectivos seguem as seguintes regras bem determinadas:

Regra de formação do não:

O conectivo

não

é aplicado a um enunciado φ e forma o enunciado

 $\neg \varphi$,

chamado a negação de φ .

Para eliminar ambiguidades, podemos usar parênteses (chaves, colchetes, ...) escrevendo $\neg(\varphi)$, $(\neg\varphi)$ ou até mesmo $(\neg(\varphi))$.

Regra de formação do e:

O conectivo

е

é aplicado a dois enunciados φ e ψ , não necessariamente distintos e tomados na ordem dada, e forma o enunciado

$$\varphi \wedge \psi$$
,

chamado a conjunção de φ e ψ .

Para eliminar ambiguidades, podemos usar parênteses (chaves, colchetes, ...) escrevendo $(\varphi) \wedge (\psi)$, $(\varphi \wedge \psi)$ ou até mesmo $((\varphi) \wedge (\psi))$.

Regra de formação do ou:

O conectivo

ou

é aplicado a dois enunciados φ e ψ , não necessariamente distintos e tomados na ordem dada, e forma o enunciado

$$\varphi \lor \psi$$
,

chamado a disjunção de φ e ψ .

Para eliminar ambiguidades, podemos usar parênteses (chaves, colchetes, ...) escrevendo $(\varphi) \vee (\psi)$, $(\varphi \vee \psi)$ ou até mesmo $((\varphi) \vee (\psi))$.

Regra de formação do se ... então:

O conectivo

é aplicado a dois enunciados φ e ψ , não necessariamente distintos e tomados na ordem dada, e forma o enunciado

$$\varphi \to \psi$$
,

chamado a implicação de ψ por φ (observe a ordem em que os enunciados são mencionados).

Para eliminar ambiguidades, podemos usar parênteses (chaves, colchetes, ...) escrevendo $(\varphi) \to (\psi)$, $(\varphi \to \psi)$ ou até mesmo $((\varphi) \to (\psi))$.

Mas, observe que nunca escrevemos implicações usando a 'seta dupla' ⇒.

Regra de formação do se e somente se:

O conectivo

se, e somente se

é aplicado a dois enunciados φ e ψ , não necessariamente distintos e tomados na ordem dada, e forma o enunciado

$$\varphi \leftrightarrow \psi$$
,

chamado a bi-implicação de φ e ψ .

Para eliminar ambiguidades, podemos usar parênteses (chaves, colchetes, ...) escrevendo $(\varphi) \leftrightarrow (\psi)$, $(\varphi \leftrightarrow \psi)$ ou até mesmo $((\varphi) \leftrightarrow (\psi))$.

Mas, observe que nunca escrevemos bi-implicações usando a 'seta dupla' ⇔.

Exemplo 1 Os enunciados

```
¬ (eu faço os exercícios)

[¬ (eu faço os exercícios)] ∧ (eu quero passar)

(eu faço os exercícios) ∨ [¬ (eu passo na matéria)]

(eu faço os exercícios) → (eu passo na matéria)

[¬ (eu passo na matéria)] ↔ [¬ (eu faço os exercícios)]
```

são uma negação, uma conjunção, uma disjunção, uma implicação e uma bi-implicação, respectivamente.

2 Enunciados componentes

Para analisar e simbolizar um enunciado é essencial que saibamos explicitar corretamente a maneira como ele é formado a partir de enunciados atômicos, em conformidade com as regras de formação dos conectivos. Vamos, agora, estudar este processo de maneira detalhada.

Sejam φ um enunciado e $\varphi_1, \varphi_2, \dots, \varphi_n$ enunciados atômicos.

Dizemos que $\varphi_1, \varphi_2, \ldots, \varphi_n$ são os *componentes* de φ , quando φ é formado a partir de $\varphi_1, \varphi_2, \ldots, \varphi_n$ pela aplicação (zero, uma, ou mais vezes) dos conectivos lógicos.

O primeiro passo para a simbolização é <u>determinar</u> os enunciados componentes.

Exemplo 2 (a) O componente de

x é primo

é

x é primo.

(b) O componente de

ela não gosta de bebidas amargas

é

ela gosta de bebidas amargas.

(c) Os componentes de

está chovendo ou está fazendo sol

são

está chovendo está fazendo sol.

2.1 Observação

Observação 1 Como os componentes são enunciados atômicos, eles não possuem ocorrências de conectivos.

Por exemplo, o componente de

não é o caso que \boldsymbol{x} não é primo

é

x é primo.

Os componentes de

se x não é primo, então x é igual a 1 ou x não tem um fator próprio

são

x é primo x é igual a 1 x tem um fator próprio.

2.2 Exercícios

Exercício 1 Determine o(s) componente(s) de cada enunciado abaixo.

- (i) 2 é ímpar
- (ii) 3 não é par
- (iii) eu trabalho e os outros ficam ricos
- (iv) f(x) não é derivável ou f(x) é contínua
- (v) se estudo para a prova, então não vou à praia e não vou ao cinema
- (vi) sou realizado se, e somente se, planto uma árvore, escrevo um livro e tenho um filho

Exercício 2 Determine o(s) componente(s) de cada enunciado abaixo. Observe que algumas frases (expressões ou propriedades) estão implícitas nos enunciados, mas devem ser escritas explicitamente nos componentes.

- (i) João é esperto
- (ii) Ricardo não é bobo
- (iii) perdoar é fácil e faz bem
- (iv) João ou Ricardo voltou atrás
- (v) se João pediu desculpas, então provou que é humilde
- (vi) se aceitou as desculpas, então ele provou que é generoso

Antes de ler as resoluções, tente resolver os exercícios usando os conceitos estudados.

Resolução do Exercício 1: (i) 2 é ímpar. (ii) 3 é par. (iii) eu trabalho e os outros ficam ricos. (iv) f(x) é derivável e f(x) é contínua. (v) eu estudo para a prova, eu vou à praia e eu vou ao cinema. (vi) eu sou realizado, eu planto uma árvore, eu escrevo um livro e eu tenho um filho. Acrescentamos o pronome pessoal eu aos enunciados atômicos para explicitar os sujeitos das frases. Resolução do Exercício 2: (i) João é esperto. (iii) Ricardo é bobo. (iii) perdoar é fácil e perdoar faz bem. (iv) João voltou atrás e Ricardo voltou atrás. (v) João pediu desculpas e João provou que é humilde. (vi) ele aceitou as desculpas e ele provou que é generoso.

3 Legendas

O segundo passo para a simbolização é <u>simbolizar</u> os componentes. Isto é feito através da noção de *legenda de simbolização*:

(1) Sejam $\varphi_1, \varphi_2, \dots, \varphi_n$ enunciados atômicos, distintos dois a dois.

Uma legenda para $\varphi_1, \varphi_2, \dots, \varphi_n$ é um esquema da forma:

 $l_1 : \varphi_1$ $l_2 : \varphi_2$ \vdots $l_n : \varphi_n$

onde l_1, l_2, \ldots, l_n são n letras distintas, usualmente escolhidas dentre as letras minúsculas do alfabeto.

(2) Seja φ um enunciado.

Uma legenda para φ é uma legenda para os componentes de φ .

Exemplo 3 (a) Uma legenda para o enunciado atômico

ela gosta de bebidas amargas

pode ser:

g: ela gosta de bebidas amargas.

(b) Uma legenda para o enunciado molecular

ela não gosta de bebidas amargas

pode ser a mesma já definida no item (a).

(c) Uma legenda para o enunciado molecular

não é o caso que x não é primo

pode ser:

 $p : x \in \mathsf{primo}.$

(d) Uma legenda para o enunciado molecular

está chovendo ou está fazendo sol

pode ser:

c : está chovendo s : está fazendo sol.

(e) Uma legenda para o enunciado molecular

se x não é primo, então x é igual a 1 ou x não tem um fator próprio

pode ser:

 $p : x \neq primo$ $u : x \neq primo$

f: x tem um fator próprio.

(f) Uma legenda para o enunciado molecular

se 2 é par e 3 é par, então 2 é par

pode ser:

d: 2 é par t: 3 é par.

3.1 Observações

Observação 2 Todos os enunciados que ocorrem nas legendas:

- (1) são atômicos e, por isto, não podem possuir ocorrências de conectivos;
- (2) têm suas expressões, propriedades e relações escritas de maneira explícita e, por isto, enunciados abreviados ou escritos de maneira parcial não podem ocorrer nas legendas.

Observação 3 Em uma legenda para um enunciado φ , cada um dos componentes de φ deve ser denotado por uma letra diferente. Para facilitar a análise dos enunciados, como ilustrado no Exemplo 3, procuramos usar "letras sugestivas".

Observação 4 Dada um enunciado φ , ocorrências distintas de um mesmo enunciado atômico em φ são consideradas como distintas, mas são denotadas pela mesma letra.

Por exemplo, o enunciado

eu vou, eu vou e eu vou

possui três ocorrências do enunciado

eu vou.

Uma legenda para ele é, simplesmente,

v : eu vou.

3.2 Exercício

Exercício 3 Para cada enunciado abaixo, faça o que se pede: (a) Determine seu(s) componente(s). Observe que alguns conectivos foram escritos de uma forma estilizada. Por isto, quando necessário, reescreva o enunciado, de modo a tornar a sua estrutura mais aparente. (b) Baseado na solução do item (a), defina uma legenda para o enunciado

- (i) P é um ponto de acumulação
- (ii) 4 não é um quadrado perfeito
- (iii) 4 nunca foi um número primo
- (iv) eu trabalho e eu ganho dinheiro
- (v) eu trabalho, mas não ganho dinheiro
- (vi) eu não estudo ou eu não me divirto
- (vii) se eu não vou ao jogo, então eu lavo o carro
- (viii) caso eu lave o carro, eu vou ao jogo
- (ix) eu vou ao jogo se eu não lavar o carro
- (x) eu lavo o carro quando vou ao jogo
- (xi) o dia está nublado se, e somente se, o sol está encoberto
- (xii) o dia não está nublado quando, e somente quando, o sol brilha no céu

Antes de ler a resolução, tente resolver o exercício usando os conceitos estudados.

Resolução do Exercício 3: Para o item (i) Componente: P é um ponto de acumulação. Legenda: p: P é um ponto de acumulação. (ii) Componente: 4 é um quadrado perfeito. Legenda: q : 4 é um quadrado perfeito (iii) Reescrita: 4 não é um número primo. Componente: 4 é um número primo. Legenda: n: 4 é um número primo. (iv) Componentes: eu trabalho, eu trabalho eu ganho dinheiro. Legenda: (v) Reescrita: eu trabalho e eu não ga-: eu ganho dinheiro. nho dinheiro. Componentes e legenda: os mesmos do item (iv). (vi) Componentes: eu estudo, eu : eu estudo me divirto. Legenda: (vii) Componentes: eu vou ao jogo, eu lavo o carro. eu me divirto. (viii) Reescrita: se eu lavo o carro, então eu vou ao jogo. Componentes e legenda: os mesmos do item (vii). (ix) Reescrita: se eu não lavo o carro, então eu vou ao jogo. Componentes e legenda: os mesmos do item (vii). (x) Reescrita: se eu vou ao jogo, então eu lavo o carro. Componentes e legenda: os mesmos do item (vii). (xi) Componentes: o dia está n : o dia está nublado nublado, o sol está encoberto. Legenda: (xii) Reescrita: o dia não $e \quad : \quad {\rm o \; sol \; est\'a \; encoberto}.$ está nublado se, e somente se, o sol brilha no céu. Componentes: o dia está nublado, o sol brilha no n : o dia está nublado céu. Legenda: b: o sol brilha no céu.

4 Simbolização de enunciados com conectivos

Após definir uma legenda, o último passo para a simbolização é, simplesmente, simbolizar.

Exemplo 4 (a) Dada a legenda

q: ela gosta de bebidas amargas,

o enunciado

ela gosta de bebidas amargas

pode ser simbolizado por

g.

(b) Dada a mesma legenda do item (a), o enunciado

ela não gosta de bebidas amargas

pode ser simbolizado por

 $\neg g$.

(c) Dada a legenda

 $p : x \in \mathsf{primo},$

o enunciado

não é o caso que x não é primo

pode ser simbolizado por

 $\neg(\neg p)$

ou, simplesmente,

 $\neg \neg p$.

(d) Dada a legenda

c : está chovendos : está fazendo sol,

o enunciado

está chovendo ou está fazendo sol

pode ser simbolizado por

 $c \vee s$.

(e) Dada a legenda

 $p: x ext{ \'e primo}$ $u: x ext{ \'e igual a } 1$

f: x tem um fator próprio,

o enunciado

se x não é primo, então x é igual a 1 ou x não tem um fator próprio pode ser simbolizado por

$$(\neg p) \to [u \lor (\neg f)]$$

ou, simplesmente,

$$\neg p \rightarrow (u \lor \neg f).$$

(f) Dada a legenda

d: 2 é par t: 3 é par,

o enunciado

se 2 é par e 3 é par, então 2 é par

pode ser simbolizado por

$$(d \wedge t) \to d$$
.

4.1 Observações

Observação 5 A simbolização de um enunciado é um processo complexo que explicita a sua *forma*, transformando-o em um objeto mais adequado para a análise lógica. Ela consiste, essencialmente, de três partes:

- (1) exame da estrutura do enunciado, de modo a determinar seus componentes e a maneira como ele é formado;
- (2) criação de uma legenda para simbolizá-lo;
- (3) simbolização propriamente dita, baseada na legenda criada.

Observação 6 A simbolização de um enunciado deve <u>mostrar corretamente</u> de que maneira o enunciado é obtido a partir dos enunciados atômicos que o compõem, por aplicações dos conectivos. Isto é, em geral, quando, no processo de simbolização, "não respeitamos" a maneira como um enunciado é formado por aplicações dos conectivos, nem sempre obtemos um enunciado simbolizado com a mesma estrutura que o enunciado original.

Por exemplo, de acordo com a legenda

p:2 é ímpar q:1 é ímpar r:3 é par,

o enunciado

se 2 é ímpar, então 1 é ímpar e 3 é par

pode ser simbolizada como

$$p \to (q \wedge r)$$
.

Mas, ele não pode ser simbolizado como

$$(p \to q) \wedge r$$

pois, como veremos adiante, enquanto a implicação

se 2 é ímpar, então 1 é ímpar e 3 é par

é verdadeira, a conjunção

se 2 é ímpar, então 1 é ímpar; e 3 é par

é falsa.

4.2 Exercícios

Exercício 4 Para cada enunciado abaixo, faça o que se pede: (a) Classifique-o como atômico ou molecular. (b) Se ele for atômico, classifique-o como expressão e propriedade ou mais de uma expressão e relação. (c) Se ele for molecular, classifique-o como negação, conjunção, disjunção, implicação ou bi-implicação, destacando a partícula e os enunciados a partir dos quais ele é formado. (d) Defina uma legenda para o enunciado e simbolize-o de acordo com a legenda definida.

- (i) eu gosto de Lógica
- (ii) Lógica não é difícil
- (iii) não é o caso que 8 não é maior do que 7
- (iv) Matemática Discreta não é fácil e Matemática Discreta é interessante
- (v) 25 não é um quadrado perfeito e 25 não é um múltiplo de 5
- (vi) eu estudo bastante ou eu não passo em Matemática Discreta
- (vii) f está bem definida e o gráfico de f é uma reta, ou f não é contínua
- (viii) se ela aprende com facilidade, então: eu vou estudar com ela e ela vai me ensinar a matéria
- (ix) se x^2 é ímpar e x não é diferente de 0, então x não é par
- (x) eu passo em Matemática Discreta se, e somente se, eu estudo bastante e eu tiro as minhas dúvidas
- (xi) n é um número primo se, e somente se, n não é igual a 1 e n não possui fatores próprios

Exercício 5 Simbolize os enunciados a seguir, de acordo com a seguinte legenda

 p_1 : Eliane possui um Porsche p_2 : Kátia possui um Porsche p_3 : Marília possui um Porsche f_1 : Eliane possui uma Ferrari f_2 : Kátia possui uma Ferrari f_3 : Marília possui uma Ferrari z_1 : Eliane possui um Zenvo z_2 : Kátia possui um Zenvo z_3 : Marília possui um Zenvo

- (i) Eliane não possui um Porsche e Kátia sim
- (ii) Eliane possui um Porsche e Kátia não
- (iii) nem Eliane nem Kátia possuem Ferraris
- (iv) Kátia ou Marília possui um Zenvo
- (v) Kátia ou Marília não possui um Zenvo

Exercício 6 Simbolize os enunciados a seguir, de acordo com a legenda definida no Exercício 5.

- (i) se Eliane possui um Zenvo, Kátia e Marília não possuem Porches
- (ii) se Eliane não possui um Zenvo, Kátia e Marília sim
- (iii) se Eliane possui um Zenvo, Kátia ou Marília também
- (iv) alguma das três possui uma Ferrari
- (v) alguma das três possui ambos uma Ferrari e um Zenvo
- (vi) nenhuma das três possui um Porche
- (vii) todas as três possuem Porches

Antes de ler as resoluções, tente resolver os exercícios usando os conceitos estudados.

```
Resolução do Exercício 4: (i) Atômico (não possui conectivos). Expressão e propriedade. Le-
genda: g : eu gosto de Lógica. Simbolização: g. (ii) Negação. Formado por aplicação do não
a Lógica é difícil. Legenda: d: Lógica é difícil. Simbolização: \neg d. (iii) Negação. Formado
por duas aplicações do não ao atômico 8 é maior do que 7. Legenda: m: 8 é maior do que 7.
Simbolização: ¬¬m. (iv) Conjunção. Formado por aplicação do e a Matemática Discreta não
é fácil, Matemática Discreta é interessante. O primeiro é negação, formado por aplicação do
                     Matemática Discreta é fácil. O segundo é o atômico Matemática Discreta é
                                 Matemática Discreta é fácil
interessante. Legenda:
                                                                       Simbolização: \neg f \land i. (v)
                                 Matemática Discreta é interessante.
Conjunção. Formado por aplicação do e a 25 não é um quadrado perfeito, 25 não é múltiplo de
5. O primeiro é negação, formado por aplicação do não ao atômico 25 é um quadrado perfeito.
O segundo é negação, formado por aplicação do não ao atômico 25 é um múltiplo de 5. Le-
             : 25 é um quadrado perfeito
                                             Simbolização: \neg q \land \neg m. (vi) Disjunção. Formado por
         m \quad : \quad 25 \ {\rm \acute{e}} \ {\rm um} \ {\rm m\'ultiplo} \ {\rm de} \ 5.
aplicação do ou a eu estudo bastante, eu não passo em Matemática Discreta. O primeiro é atômico.
O segundo é negação, formado por aplicação do não ao atômico eu passo em Matemática Discreta.
           p : eu estudo bastante
Legenda:
                                                       Simbolização: p \vee \neg q. (vii) Disjunção. For-
           q : eu passo em Matemática Discreta.
mado por aplicação do ou a f está bem definida e o gráfico de f é uma reta, f não é contínua. O
primeiro é conjunção, formado por aplicação do e aos atômicos f está bem definida, o gráfico de f é
uma reta. O segundo é negação, formado por aplicação do não ao atômico f é contínua. Legenda:
        f está bem definida
        o gráfico de f é uma reta Simbolização: (d \wedge r) \vee \neg c. (viii) Implicação. Formado por
        f é contínua.
aplicação do se ...então a ela aprende com facilidade, eu vou estudar com ela e ela vai me ensinar a
matéria. O primeiro é atômico. O segundo é conjunção, formado por aplicação do e aos atômicos eu
                                                                      ela aprende com facilidade
vou estudar com ela, ela vai me ensinar a matéria. Legenda:
                                                                      eu vou estudar com ela
                                                             e
                                                                      ela vai me ensinar a matéria.
                                                              m
Simbolização: a \to (e \land m). (ix) Implicação. Formado por aplicação do se ... então a x^2 é ímpar
e x não é diferente de 0, x não é par. O primeiro é conjunção, formado por aplicação do e a x^2
é ímpar, x não é diferente de 0. Este primeiro é atômico. Este segundo é negação, formado por
aplicação do não ao atômico x é diferente de zero. Já x não é par é negação, formado por aplicação
                                               x^2 é ímpar
do \tilde{nao} ao atômico x é par. Legenda:
                                               x é diferente de zero Simbolização: (i \land \neg d) \rightarrow \neg p.
                                       d:
                                        p
                                               x é par.
(x) Bi-implicação. Formado por aplicação do se, e somente se a eu passo em Matemática Discreta,
eu estudo bastante e eu tiro as minhas dúvidas. O primeiro é atômico. O segundo é conjunção,
formado por aplicação do e aos atômicos eu estudo bastante, eu tiro as minhas dúvidas. Legenda:
        eu passo em Matemática Discreta
                                            Simbolização: p \leftrightarrow (e \land d). (xi) Bi-implicação. Formado
        eu estudo bastante
        eu tiro as minhas dúvidas.
por aplicação do se, e somente se a n é um número primo, n não é igual a 1 e n não possui fatores
próprios. O primeiro é atômico. O segundo é conjunção, formada por aplicação do e a n não é igual
a 1, n não possui fatores próprios. Este primeiro enunciado é uma negação, formado por aplicação
do não ao atômico n é igual a 1. Este segundo, é negação, obtido por aplicação do não ao atômico n
                                          n é um número primo
possui fatores próprios. Legenda: i
                                       : n é igual a 1
                                                                     Simbolização: p \leftrightarrow (\neg i \land \neg f).
                                   f
                                     : n possui fatores próprios.
Respostas do Exercício 5: (i) ((\neg p_1) \land p_2). (ii) (p_1 \land (\neg p_2)). (iii) ((\neg f_1) \land (\neg f_2)). (iv) (z_2 \lor z_3).
(v) ((\neg z_2) \lor (\neg z_3)). Simplificando parênteses, estes enunciados também podem ser es-
```

critos como: (i) $\neg p_1 \wedge p_2$. (ii) $p_1 \wedge \neg p_2$. (iii) $\neg f_1 \wedge \neg f_2$. (iv) $z_2 \vee z_3$. (v) $\neg z_2 \vee \neg z_3$. Respostas do Exercício 6: (i) $z_1 \to (\neg p_2 \wedge \neg p_3)$. (ii) $(\neg z_1) \to (z_2 \wedge z_3)$. (iii) $z_1 \to (z_2 \vee z_3)$. (iv) $f_1 \vee (f_2 \vee f_3)$. Também pode ser simbolizado por $(f_1 \vee f_2) \vee f_3$. (v) $(f_1 \wedge z_1) \vee [(f_2 \wedge z_2) \vee (f_3 \wedge z_3)]$. Também pode ser simbolizado por $[(f_1 \wedge z_1) \vee (f_2 \wedge z_2)] \vee (f_3 \wedge z_3)$. (vi) $\neg p_1 \wedge (\neg p_2 \wedge \neg p_3)$. Também pode ser simbolizado por $(\neg p_1 \wedge \neg p_2) \wedge \neg p_3$. (vii) $p_1 \wedge (p_2 \wedge p_3)$. Também pode ser simbolizado por $(p_1 \wedge p_2) \wedge p_3$.

© 2015 Márcia Cerioli e Petrucio Viana Coordenação da Disciplina MD/CEDERJ-UAB