MLD Project Phase 3

Topic: Dementia Prediction using ML

By: 1. Vishwashree V Karhadkar [Student ID: 202307962]

2. Gagandeep Singh [Student ID: 202303876]

INTRODUCTION

In phase 3 of our project, we have included the feedback from phase 2 by adding the missing redundancy aware feature selection in our df-analyze script and executed it on our main dataset file. Also as per the suggestions on the task to be done from phase 1, we have further divided the dataset into gender-specific groups. These Datasets were also analyzed using df-analyze which provided us valuable insights based on male and female subgroups in terms of predicting dementia. This report presents detailed findings on the methods, prediction accuracy, feature selection, and statistical performance of different models with supporting result tables including a full dataset, and male and female-specific results attached in the report.

1. Materials and Methods

1.1 Dataset Description:

The dataset in our tabular project has been used to predict if the individual has dementia or not based on various health metrics and lifestyle factors. It includes 24 feature measurements in total. The dataset has been collected from the Kaggle website and as per the description, it was assembled and collected in 2023 from various medical sources, publication sites, and studies to aim at understanding the factors associated with dementia and predicting using ML.[1] The Dataset has a total number of **1000** samples in total. According to that, **485** entries of the dataset are diagnosed with dementia (value=1) which is our group of interest, and the remaining **515** samples are represented without dementia (value=0) (not group of interest).

For the scope of this phase, we are diving our dataset into male and female entries and we would be noticing the findings on how df analyze software presents results on the basis of these 2 main features.

So according to that, we have now 2 different datasets.

Female entries:

Group of interest (Dementia = 1): **244** entries

Not a group of interest (Dementia = 0): **260** entries

Male entries:

Group of interest (Dementia = 1): 241 entries

Not a group of interest (Dementia = 0): **255** entries

1.1.2 Target Variable Description:

Our target variable for this dataset selected is dementia, a **Binary Classification** represented in the last column. It can be derived as Dementia =1 and not dementia =0. If the value stands at 1, we can consider that that person is likely to have dementia based on the input features provided.

1.1.3 Feature Measurements:

The following two tables given below in this section show feature measurements for continuous as well as categorical variable values with the feature (column name), and its mean, the Standard deviation value for those specific columns and are divided based on a group of interest and not the group of Interest.

- Table 1.1.1 shows continuous values for full dataset samples. [given below]
- Table 1.1.2 shows Categorical Valuesor full dataset samples. [given below]

We have attached the other gender-specific datasets tables for males and females in the Appendix **section** [A] which describes the feature measurement values and their mean and median based on the male dataset and female dataset for their continuous and categorical variables.

These are labeled as follows:

- 1. Table 1.2.1 shows continuous values for Male dataset samples.
- 2. Table 1.2.2 shows Categorical Valuesor Male dataset samples.
- 3. Table 1.3.1 shows continuous values for Female dataset samples.
- 4. Table 1.3.2 shows Categorical Valuesor Female dataset samples.

Table 1.1.1. Continues Values for Full Dataset									
Column	Group of	f Interest	Group of N	lot-Interest					
	Deme	entia=1	Deme	ntia=0					
	Mean	Std Deviation	Mean	Std Dev					
Diabetic	0.536	0.499	0.491	0.500					
Alcohol Level	0.098	0.059	0.098	0.058					
Heart Rate	79.536	12.127	79.238	12.098					
BloodOxygen	95.010	2.886	95.529	2.957					
BodyTemp	36.775	0.423	36.747	0.438					
Weight	73.585	15.027	75.016	13.898					
Age	74.325	9.339	75.456	8.832					

CognitiveTest	3.620	2.310	8.984	0.808
Dementia	1	0	0	0

	Table 1.1.2. Categorical Values for Full Dataset								
Column	Values	Group of Interest	Group of Not-Interest						
		Dementia=1	Dementia=0						
Prescription	Galantamine	125	NA						
	Donepezil	113	NA						
	Rivastigmine	119	NA						
	Memantine	128	NA						
Education level	Primary School	181	208						
	Secondary School	155	149						
	Diploma/Degree	51	101						
	No School	98	57						
Dominanat Hand	Left	251	268						
	Right	234	247						
Gender	Male	241	255						
	Female	244	260						
Family History	No	255	225						
	Yes	230	290						
Smoking Status	Current smoker	90	90						
	Former smoker	252	206						
	Never smoker	233	219						
APOE_e4	Positive	435	259						

	Negative	50	256
Physical Activity	Physical Activity Sedentary		173
	Moderate Activity	150	160
	Mild activity	169	182
Depression status	Yes	245	0
	No	240	516
Medical history	Yes	251	263
	No	234	252
Nutrition diet	Low Carb	162	168
	Meditarrean	169	169
	Balanced	154	178
Sleep Quality	Poor	264	270
	Good	221	245
Chronic health condition	Diabetes	260	253
	Heart Disease	65	90
	Hypertension	72	81
	Na	88	0

1.2 Machine Learning

The df-analyze is a Python library package that offers different and multiple utility functions and switches for processing and analyzing datasets for machine learning and prediction. It is a command line tool and can perform AutoML[3] on different datasets which are small to medium-sized tabular datasets (less than 200000 samples and from 50-10 features. Df-analyze automates and runs different ML algorithms and gives extensive and elaborate reports. It includes many important key functionalities which are feature type inference, feature description (e.g. univariate associations and stats), data cleaning (e.g. NaN handling and imputation), training, validation, and test splitting, feature selection, hyperparameter tuning, model selection, and validation. It runs the ML algorithms to proceed with an output with all important results stored in tabular format.[2]

The df-analyze tool provides a lot of sensitivity and specificity metrics which are valuable for very important and have significance for assessing performance in ML models.[2] By utilizing this functionality, we can measure how effectively the model identifies true positives and true negatives which are essential and critical for healthcare datasets such as our dementia prediction dataset where accuracy predictions have very high importance and decision importance.

In our previous iteration, we hypothesized that we would run df-analyze and diagnose based on the dataset whether the person has dementia or not, with the help of using important features available in the given dataset and using Df-analyze. With that specific Run, we have separated our dataset into gender-specific data, where one dataset is male and another is female. Based on this, we have run the df-analyze on both of these datasets to find interesting findings and comparisons to notice how the prediction goes.

The interesting features for prediction found after running the df-analyze in our datasets are as follows which have been listed below. The source of these findings is from [selection>filter>prediction_selection_repot.md] from each run results folder.

When analyzing the interesting features which are across the full dataset run, male and female datasets, various commonalities have been seen which are as follows:

- 1. Cognitive Test Scores, Prescription information, Depression Status and APOE ε4 are shared between all datasets, underscoring the importance of these features that might be helpful in the prediction of dementia.
- 2. Smoking Status appears in both the full and male datasets.
- 3. Physical Activity and Nutrition Diet are seen in common between only the male and female datasets, suggesting the life factors and is an interesting finding as it's only specific and common in gender-specific datasets.

Following are feature selection reports for all 3 dataset Runs:

1. Full dataset

['Cognitive_Test_Scores', 'Dosage_in_mg', 'Weight', 'AlcoholLevel', 'Prescription', 'Depression_Status', 'APOE_£4', 'Education_Level', 'Smoking_Status', 'Family_History', 'Medication_History']

2. Male dataset

['Cognitive_Test_Scores', 'Dosage_in_mg', 'BloodOxygenLevel', 'Age', 'Prescription', 'Depression_Status', 'APOE_£4', 'Smoking_Status', 'Family_History', 'Physical_Activity', 'Nutrition_Diet'].

3. Female dataset

['Cognitive_Test_Scores', 'Dosage_in_mg', 'Weight', 'HeartRate', 'Prescription', 'Depression_Status', 'APOE_£4', 'Education_Level', 'Physical_Activity', 'Nutrition_Diet', 'Diabetic']

1.3 Statistical Analysis

The statistical analysis that is used in this project involves using df-analyze machine learning models which have various feature selection techniques that show predictive outcomes. Various models such as Logistic Regression (LR), Stochastic Gradient Descent (SGD), Random Forest (RF), LightGBM (LGBM), and K-Nearest Neighbors (KNN) were used across the full, male and female datasets. Each model was applied with various feature selection strategies, which include association-based (assoc), predictive (pred), embedded methods (embed_linear, embed_lgbm), and wrapper-based (wrap) models.

For this phase of the project, we will be moving forward and focusing on the **overall accuracy** of the predicted features. It is found in the results directory, a table named 5-fold performance on the holdout set in the file named "results_report.md". We found that multiple models showed the same accuracy as 100% or a value of 1.00. The following table shows the overall result of the Full dataset.

The results for the Male and Female dataset runs are given in the Appendix in **section [B]** where table 3.2 indicates males, and 3.3 indicates denotes female dataset run results.

Table 3.1: Full Dataset Overall Accuracy								
Model	Selection	Embed Selector	Acc					
lr	assoc	none	1.000					
lgbm	pred	none	1.000					
sgd	none	none	1.000					
sgd	embed_linear	linear	1.000					
sgd	embed_lgbm	lgbm	1.000					
sgd	assoc	none	1.000					
rf	wrap	none	1.000					

rf	pred	none	1.000
rf	embed_lgbm	lgbm	1.000
rf	assoc	none	1.000
lr	wrap	none	1.000
lr	pred	none	1.000
lr	embed_linear	linear	1.000
lr	embed_lgbm	lgbm	1.000
lgbm	wrap	none	1.000
sgd	wrap	none	1.000
lgbm	embed_lgbm	lgbm	1.000
lgbm	assoc	none	1.000
knn	wrap	none	1.000
lgbm	embed_linear	linear	1.000
knn	embed_lgbm	lgbm	1.000
lr	none	none	0.997
knn	pred	none	0.960

sgd	pred	none	0.957
knn	none	none	0.828
knn	assoc	none	0.823
knn	embed_linear	linear	0.670
dummy	embed_linear	linear	0.520
lgbm	none	none	0.515
rf	embed_linear	linear	0.515
rf	none	none	0.515
dummy	assoc	none	0.515
dummy	pred	none	0.500
dummy	none	none	0.495
dummy	wrap	none	0.487
dummy	embed_lgbm	lgbm	0.482

2. Results

2.1 Summary results with Table.

The following table is the output after running df-analyze which is summarized below. Table 2.1 shows the performance of various models using a 5-fold performance on the holdout set table from the Full Dataset.

Each model was evaluated based on several metrics, including Accuracy (Acc), Area Under the Receiver Operating Characteristic Curve (AUROC), Balanced Accuracy (Bal-Acc), F1 Score (F1), Negative Predictive Value (NPV), Positive Predictive Value (PPV), Sensitivity (Sens), and Specificity (Spec). Overall, several models demonstrated excellent performance, with many achieving near-perfect results.

We have completed 3 different runs, first for the full dataset run, we have displayed the table here and for the Male and Female dataset results table is displayed in the Appendix section [C] where the result table is 2.2 and 2.3 respectively.

Table: 2.1

	Table: 2.1. 5-fold performance on holdout set table for Full Dataset									
Model	Select ion	Embed Select or	Acc	AURO C	Bal-A cc	F1	NPV	PPV	Sens	Spec
lr	assoc	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lgbm	pred	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sgd	none	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sgd	embe d_line ar	linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sgd	embe d_lgb m	lgbm	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sgd	assoc	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
rf	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
rf	pred	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
rf	embe d_lgb m	lgbm	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

rf	assoc	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lr	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lr	pred	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lr	embe d_line ar	linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lr	embe d_lgb m	lgbm	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lgbm	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sgd	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lgbm	embe d_lgb m	lgbm	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lgbm	assoc	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
knn	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lgbm	embe d_line ar	linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
knn	embe d_lgb m	lgbm	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
lr	none	none	0.997	1.000	0.997	0.997	1.000	0.995	0.997	0.995
knn	pred	none	0.96 0	0.992	0.959	0.960	1.000	0.929	0.959	0.917

sgd	pred	none	0.957	0.995	0.956	0.957	0.995	0.928	0.956	0.917
knn	none	none	0.82 8	0.825	0.825	0.825	0.899	0.783	0.825	0.727
knn	assoc	none	0.82	0.944	0.817	0.815	0.984	0.748	0.817	0.644
knn	embe d_line ar	linear	0.670	0.799	0.662	0.643	0.820	0.623	0.662	0.413
dumm y	embe d_line ar	linear	0.52 0	0.500	0.521	0.520	0.505	0.538	0.521	0.557
lgbm	none	none	0.515	0.500	0.500	0.340	nan	0.515	0.500	0.000
rf	embe d_line ar	linear	0.515	0.500	0.500	0.340	nan	0.515	0.500	0.000
rf	none	none	0.515	0.500	0.500	0.340	nan	0.515	0.500	0.000
dumm y	assoc	none	0.515	0.500	0.500	0.340	nan	0.515	0.500	0.000
dumm y	pred	none	0.50 0	0.500	0.500	0.500	0.484	0.516	0.500	0.500
dumm y	none	none	0.49 5	0.530	0.495	0.491	0.478	0.512	0.495	0.500
dumm y	wrap	none	0.487	0.556	0.487	0.486	0.476	0.498	0.487	0.469
dumm y	embe d_lgb m	lgbm	0.48 2	0.530	0.481	0.479	0.463	0.499	0.481	0.433

2.2 Derek's feature selection method results.

For Derek's feature selection task, the wrapper-based method has been used for the full dataset, male and female was the setup approach with liner as wrapper model and hs redundancy aware processing enabled.

Below is a summary of the findings for each of the 3 df-analyze runs followed by selected features.

Full Dataset:

Wrapper method: StepUpWrapper model: LinearRedundancy-aware: True

• Selected Features: ['Prescription_nan', 'HeartRate']

For the full dataset, the most important features selected by the model are related to the missing prescription data Prescription_nan) and the heart rate, which suggests that these may be the key predictors for the outcome in this specific dataset

Female Dataset:

Wrapper method: StepUpWrapper model: LinearRedundancy-aware: True

• Selected Features: ['Prescription_nan', 'Dominant_Hand_nan', 'BloodOxygenLevel']

For the Female dataset, the selected features are missing prescription information (Prescription_nan), dominant hand (Dominant_Hand_nan), and blood oxygen levels, which indicate that physical and prescription data can be significant for predicting dementia in females.

Male Dataset:

Wrapper method: StepUpWrapper model: LinearRedundancy-aware: True

Selected Features: ['Dosage_in_mg_NAN', 'Family_History_nan', 'HeartRate']

For the male datasets, the most important key feature is the missing dosage information (Dosage_in_mg_NAN), family history (Family_History_nan), and heart rate. These might likely to contribute to the prediction accuracy for families

3. References

- 1. "Dementia Prediction Dataset". Retrieved from https://www.kaggle.com/code/mdismielhossenabir/dementia-health-prediction/input
- 2. "Df-analyze python package". Retrieved from GitHub Repository https://github.com/stfxecutables/df-analyze
- 3. Wikipedia contributors. (2024, October 10). *Automated machine learning*. Wikipedia. https://en.wikipedia.org/w/index.php?title=Automated_machine_learning&oldid=11932863

Appendix

A.Mean and Standard deviation table for male and Female dataset

Table 1.2.1

Table 1.2.1 Continuous values for male Dataset								
	Group of	f Interest	Not	t Group of Intrest				
Feature	(Deme	ntia =1)	((Dementia =0)				
	Mean	Std Dev	Mean	Std Dev				
Diabetic	0.547	0.498	0.501	0.0500				
Alcohol Level	0.099	0.057	0.101	0.057				
Heart Rate	80.427	12.096	79.607	12.089				
BloodOxygen	94.902	2.809	95.513	3.010				
BodyTemp	36.825	0.426	36.719	0.430				
Weight	72.947	15.386	75.170	13.882				

Age	9.060	6.599	76.070	8.567
CognitiveTest	74.526	9.443	9.027	0.815
Dosage_in_mg	3.543	2.301	NA	NA
Dementia	1	0	0	0

Table 1.2.2

Table 1.2.2. Categorical Values for Male Dataset					
Column	Value	Value Group of Interest Group of Not-Interest			
		Dementia=1	Dementia=0		
Prescription	Galantamine	54	Na		
	Donepezil	58	Na		
	Rivastigmine	67	Na		
	Memantine	62	Na		
Education level	Primary School	92	105		
	Secondary School	82	74		
	Diploma/Degree	0	44		
	No School	85	32		
Dominanat Hand	Left	125	140		
	Right	116	115		
Gender	Male	241	0		
	Female	0	0		

Family History	No	122	107
	Yes	119	148
Smoking Status	Current smoker	0	49
	Former Smoker	120	101
	Never Smoker	121	105
APOE_e4	Positive	215	134
	Negative	26	121
Physical Activity	Sedentary	79	90
	Moderate Activity	75	85
	Mild Activity	87	80
Depression status	Yes	116	0
	No	125	225
Medical history	Yes	122	125
	No	119	130
Nutrition diet	Low Carb-78	81	78
	Meditate	87	92
	Balanced	73	85
Sleep Quality	Poor	125	135
	Good	116	120
Chronic health condition	Diabetes	132	128
	Heart Disease	32	37
	Hypertension	33	42
	Nan	44	48

Table 1.3.1

The table 1.3.1 Continuous values for Female dataset samples.				
Feature	Group of Interest		Group of Not-Interest	
	(Deme	ntia=1)	(Deme	ntia=0)
	Mean	Std Dev	Mean	Std Dev
Diabetic	0.536	0.499	0.491	0.500
Alcohol Level	0.098	0.059	0.098	0.0583
Heart Rate	79.536	12.127	79.238	12.098
Blood Oxygen	95.010	2.866	95.42	2.957
Body Temp	36.776	0.423	36.747	0.438
Weight	73.584	15.027	75.016	13.890
Dosage_in_mg	9.213	6.493	NA	NA
Age	74.325	9.339	75.456	8.832
Cognitive	3.620	2.310	8.984	0.808
Dementia	1	0	0	0

Table: 1.3.2

Table 1.3.2 Categorical values for Female dataset samples.				
Column	Value	Group of Interest	Group of Not-Interest	
		Dementia=1	Dementia=0	
Prescription	Galantamine	71	Na	
	Donepezil	55	Na	
	Rivastigmine	52	Na	
	Memantine	66	Na	
Education level	Primary School	89	103	
	Secondary School	73	75	

	Diploma/Degree	29	57
	No School	53	25
Dominanat Hand	Left	126	128
	Right	118	132
Gender	Male	0	0
	Female	244	260
Family History	No	133	118
	Yes	112	142
Smoking Status	Current smoker	0	41
	Former Smoker	132	105
	Never Smoker	112	114
APOE_e4	Positive	220	125
	Negative	24	135
Physical Activity	Sedentary	79	83
	Moderate Activity	83	75
	Mild Activity	82	102
Depression status	Yes	129	0
	No	115	260
Medical history	Yes	129	138
	No	115	122
Nutrition diet	Low Carb-78	81	90
	Meditate	82	77
	Balanced	81	93
Sleep Quality	Poor	139	135
	Good	105	125

Chronic health condition	Diabetes		125
	Heart Disease	33	53
	Hypertension	39	39
	Nan	44	43

B. Statistical analysis Table for overall accuracy of Male and Female

Table 3.1

Table 3.1: Male Dataset Overall Accuracy			
model	selection	embed_selector	асс
sgd	wrap	none	1.000
rf	none	none	1.000
lgbm	pred	none	1.000
lgbm	embed_linear	linear	1.000
lgbm	assoc	none	1.000
knn	wrap	none	1.000
rf	embed_linear	linear	1.000
sgd	pred	none	0.995
sgd	embed_lgbm	lgbm	0.985
sgd	embed_linear	linear	0.985
sgd	assoc	none	0.985

sgd	none	none	0.970
knn	pred	none	0.960
lgbm	embed_lgbm	lgbm	0.887
knn	embed_lgbm	lgbm	0.854
knn	assoc	none	0.749
knn	none	none	0.744
knn	embed_linear	linear	0.613
dummy	embed_lgbm	lgbm	0.533
rf	wrap	none	0.513
rf	pred	none	0.513
dummy	assoc	none	0.513
rf	embed_lgbm	lgbm	0.513
rf	assoc	none	0.513
lgbm	wrap	none	0.513
dummy	wrap	none	0.513
dummy	pred	none	0.513
dummy	embed_linear	linear	0.513
lgbm	none	none	0.513

dummy	none	none	0.437

Table 3.2

Table 3.2: Female Dataset Overall Accuracy

Model	Selection	Embed_Selector	Acc
SGD	Wrap	None	1.000
LGBM	Embed_Linear	Linear	1.000
SGD	Embed_LGBM	LGBM	1.000
RF	None	None	1.000
RF	Embed_Linear	Linear	1.000
LR	Embed_Linear	Linear	1.000
KNN	Wrap	None	1.000
LR	Embed_LGBM	LGBM	1.000
LGBM	Pred	None	1.000
SGD	Pred	None	0.995
SGD	None	None	0.995
SGD	Assoc	None	0.995
LR	Pred	None	0.995

LR	None	None	0.995
LR	Assoc	None	0.990
SGD	Embed_Linear	Linear	0.985
KNN	Embed_Linear	Linear	0.876
KNN	None	None	0.837
KNN	Embed_LGBM	LGBM	0.805
KNN	Assoc	None	0.792
KNN	Pred	None	0.763
LR	Wrap	None	0.705
Dummy	Embed_Linear	Linear	0.534
LGBM	None	None	0.515
RF	Pred	None	0.515
Dummy	None	None	0.515
Dummy	Wrap	None	0.515
RF	Wrap	None	0.515
RF	Embed_LGBM	LGBM	0.515
LGBM	Embed_LGBM	LGBM	0.515

RF	Assoc	None	0.515
LGBM	Assoc	None	0.515
LGBM	Wrap	None	0.515
Dummy	Assoc	None	0.505
Dummy	Embed_LGBM	LGBM	0.485
Dummy	Pred	None	0.445

C.5-fold performance on the holdout set result Table for Female and Male dataset

Table: 2.2

	Table: 2.2. 5-fold performance on holdout set table for Female Dataset												
Model	Select	Embe d_Sel ector	Acc	AURO C	Bal-A cc	F1	NPV	PPV	Sens	Spec			
SGD	Wrap	None	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
LGBM	Embe d_Lin ear	Linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
SGD	Embe d_LG BM	LGBM	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
RF	None	None	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

RF	Embe d_Lin ear	Linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
LR	Embe d_Lin ear	Linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
KNN	Wrap	None	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
LR	Embe d_LG BM	LGBM	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
LGBM	Pred	None	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
SGD	Pred	None	0.995	1.000	0.995	0.995	1.000	0.991	0.995	0.990
SGD	None	None	0.995	1.000	0.995	0.995	1.000	0.991	0.995	0.990
SGD	Assoc	None	0.995	1.000	0.995	0.995	1.000	0.991	0.995	0.990
LR	Pred	None	0.995	1.000	0.995	0.995	1.000	0.991	0.995	0.990
LR	None	None	0.995	1.000	0.995	0.995	1.000	0.991	0.995	0.990
LR	Assoc	None	0.990	1.000	0.990	0.990	1.000	0.982	0.990	0.979
SGD	Embe d_Lin ear	Linear	0.985	0.986	0.986	0.985	0.973	1.000	0.986	1.000
KNN	Embe d_Lin ear	Linear	0.876	0.996	0.872	0.873	1.000	0.809	0.872	0.745

			1	1				1		
KNN	None	None	0.837	0.832	0.832	0.832	0.960	0.772	0.832	0.694
KNN	Embe d_LG BM	LGBM	0.805	1.000	0.800	0.736	1.000	0.805	0.800	0.600
KNN	Assoc	None	0.792	0.922	0.785	0.778	0.971	0.723	0.785	0.590
KNN	Pred	None	0.763	0.903	0.756	0.748	0.935	0.696	0.756	0.551
LR	Wrap	None	0.705	1.000	0.700	0.602	1.000	0.705	0.700	0.400
Dumm y	Embe d_Lin ear	Linear	0.534	0.559	0.534	0.526	0.538	0.535	0.534	0.491
LGBM	None	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
RF	Pred	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
Dumm y	None	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
Dumm y	Wrap	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
RF	Wrap	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
RF	Embe d_LG BM	LGBM	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
LGBM	Embe d_LG BM	LGBM	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000

RF	Assoc	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
LGBM	Assoc	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
LGBM	Wrap	None	0.515	0.500	0.500	0.340	NaN	0.515	0.500	0.000
Dumm y	Assoc	None	0.505	0.500	0.508	0.498	0.493	0.524	0.508	0.583
Dumm y	Embe d_LG BM	LGBM	0.485	0.500	0.484	0.480	0.469	0.499	0.484	0.467
Dumm y	Pred	None	0.445	0.550	0.446	0.443	0.435	0.455	0.446	0.448

Table 2.3

	14510 2.5											
	Table: 2.3. 5-fold performance on holdout set table for Male Dataset											
model	selecti on	embe d_sel ector	асс	auroc	bal-ac c	f1	npv	ppv	sens	spec		
sgd	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
rf	none	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
lgbm	pred	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
lgbm	embe d_line ar	linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
lgbm	assoc	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

knn	wrap	none	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
rf	embe d_line ar	linear	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
sgd	pred	none	0.995	0.995	0.995	0.995	0.990	1.000	0.995	1.000
sgd	embe d_lgb m	lgbm	0.985	0.984	0.984	0.985	1.000	0.973	0.984	0.969
sgd	embe d_line ar	linear	0.985	0.998	0.984	0.985	1.000	0.973	0.984	0.968
sgd	assoc	none	0.985	0.985	0.985	0.985	0.982	0.990	0.985	0.989
sgd	none	none	0.970	0.979	0.970	0.970	0.979	0.963	0.970	0.958
knn	pred	none	0.960	0.985	0.959	0.960	1.000	0.931	0.959	0.919
lgbm	embe d_lgb m	lgbm	0.887	0.908	0.886	0.883	0.877	0.892	0.886	0.853
knn	embe d_lgb m	lgbm	0.854	0.852	0.852	0.851	0.960	0.792	0.852	0.732
knn	assoc	none	0.749	0.822	0.744	0.737	0.888	0.689	0.744	0.556
knn	none	none	0.744	0.886	0.737	0.723	0.947	0.676	0.737	0.503
knn	embe d_line ar	linear	0.613	0.715	0.605	0.578	0.705	0.586	0.605	0.358

dumm y	embe d_lgb m	lgbm	0.533	0.557	0.535	0.528	0.528	0.547	0.535	0.537
rf	wrap	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
rf	pred	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
dumm y	assoc	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
rf	embe d_lgb m	lgbm	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
rf	assoc	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
lgbm	wrap	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
dumm y	wrap	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
dumm y	pred	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
dumm y	embe d_line ar	linear	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
lgbm	none	none	0.513	0.500	0.500	0.339	nan	0.513	0.500	0.000
dumm y	none	none	0.437	0.500	0.436	0.433	0.415	0.454	0.436	0.391

Files Included

1. Results Files

Main_Dataset.zip

The generated result is shown in this folder for "dementia_patients_health.csv" (Full Dataset)

• Male_Dataset.zip

The generated result is shown in this folder for the Male Dataset

Female_Dataset.zip

The generated result is shown in this folder for the Female Dataset

2. Analysis Scripts

• df-analyze-script.sh

A shell script containing the commands to run df_analyze on each dataset.

3. Python Script

mean_SD_CALC.py

A Python script that calculates the **mean** and **median** values for any provided dataset (CSV format). It reads the CSV file and computes the statistics. Also, new Python files will be generated when we execute this file.