11. If VE > VO, then $m \angle \frac{?}{} > m \angle \frac{?}{}$.

12. If $m \angle UEO > m \angle UOE$, then $\frac{?}{} > \frac{?}{}$

13. If $\overline{VE} \cong \overline{VO}$ and $m \angle UVE > m \angle UVO$. then $\frac{?}{}$ > $\frac{?}{}$

14. If $m \angle EVU = 60$, $\overline{OE} \cong \overline{OU}$, and $m \angle VOE > m \angle VOU$, then the largest angle of $\triangle UVE$ is $\angle ?$.

16. Given: XS > YS; $\overline{RX} \cong \overline{TY}$; S is the midpoint of \overline{RT} . Prove: $m \angle R > m \angle T$

Algebra Review: Fractions

Simplify the following fractions.

Example

a.
$$\frac{8w}{2}$$

a.
$$\frac{8w}{2}$$
 b. $\frac{5t-10}{15}$

c.
$$\frac{x+6}{36-x^2}$$

Solution

b.
$$\frac{5(t-2)}{15}$$

$$= \frac{t-2}{3}$$

c.
$$\frac{x+6}{(6-x)(6+x)}$$

= $\frac{1}{6-x}$

1.
$$\frac{14}{70}$$

2.
$$\frac{75}{15}$$

2.
$$\frac{75}{15}$$
 3. $\frac{18a}{36}$ 4. $\frac{3x}{x}$

4.
$$\frac{3x}{x}$$

5.
$$\frac{x}{3x}$$

6.
$$\frac{5bc}{10b^2}$$

7.
$$\frac{-8y^3}{2y}$$

8.
$$\frac{-18r^3t}{12rt}$$

9.
$$\frac{3ab^2}{6bc}$$

10.
$$\frac{6a+17}{6}$$

11.
$$\frac{9x - 6}{3}$$

5.
$$\frac{x}{3x}$$
 6. $\frac{5bc}{10b^2}$ 7. $\frac{-8y^3}{2y}$ 8. $\frac{-18r^3t}{12rt}$ 9. $\frac{3ab^2}{6bc}$ 10. $\frac{6a+12}{6}$ 11. $\frac{9x-6y}{3}$ 12. $\frac{33ab-22b}{11b}$

13.
$$\frac{x+2}{3x+6}$$

14.
$$\frac{2c - 2d}{2c + 2d}$$

15.
$$\frac{t^2-1}{t-1}$$

13.
$$\frac{x+2}{3x+6}$$
 14. $\frac{2c-2d}{2c+2d}$ 15. $\frac{t^2-1}{t-1}$ 16. $\frac{5a+5b}{a^2-b^2}$

17.
$$\frac{b^2 - 25}{b^2 - 12b + 35}$$

18.
$$\frac{a^2 + 8a + 10}{a^2 - 16}$$

17.
$$\frac{b^2 - 25}{b^2 - 12b + 35}$$
 18. $\frac{a^2 + 8a + 16}{a^2 - 16}$ 19. $\frac{3x^2 - 6x - 24}{3x^2 + 2x - 8}$