Lab 12

Name- Arush Gupta

Roll No-210123008

Question 1

mil ozz. Scienime companing zas mil

1. Consider the following IVP's:

(a)
$$y' = 1 + y/t + (y/t)^2$$
, $1 \le t \le 3$, $y(1) = 0$ with $h = 0.2$; actual solution $y(t) = t \tan(\ln t)$.

(b)
$$y' = -ty + 4ty^{-1}$$
, $0 \le t \le 1$, $y(0) = 1$ with $h = 0.1$; actual solution $y(t) = \sqrt{4 - 3e^{-t^2}}$.

Use Adams-Bashforth and Adams-Moulton methods to approximate the solutions to the IVPs given in Question 1.

(a) Use exact starting values.

Compare the results to the actual values.

Adams Bashforth fourth order scheme

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$, $w_3 = \alpha_3$,
$$w_{i+1} = w_i + \frac{h}{24} [55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3})],$$

Adams Moulton third order scheme

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$,
$$w_{i+1} = w_i + \frac{h}{24} [9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2})],$$

Adams - Bashforth 4 step

>> Lab12Q1			
t I	Actual Value	Approximate Value	Absolute Error
1.0000	0.000000	0.000000	0.000000
1.2000	0.221243	0.221243	0.000000
1.4000	0.489682	0.489682	0.000000
1.6000	0.812753	0.812753	0.000000
1.8000	1.199439	1.199044	0.000395
2.0000	1.661282	1.660307	0.000975
2.2000	2.213502	2.211746	0.001756
2.4000	2.876551	2.873534	0.003017
2.6000	3.678475	3.673329	0.005146
2.8000	4.658665	4.649897	0.008768
3.0000	5.874100	5.858999	0.015101

Adams - Moulton 3-step

t	ī	Actual Value	ī	Approximate Value	ī	Absolute Error
1.0000	i	0.000000	i	0.000000	i	0.000000
1.2000	i	0.221243	İ	0.221243	i	0.000000
1.4000	İ	0.489682	İ	0.489682	İ	0.000000
1.6000	ĺ	0.812753	ĺ	0.812788	ĺ	0.000036
1.8000	ĺ	1.199439	ĺ	1.199514	ĺ	0.000075
2.0000	ĺ	1.661282	ĺ	1.661414	ĺ	0.000132
2.2000	I	2.213502	1	2.213725	1	0.000223
2.4000	ĺ	2.876551	ĺ	2.876922	ĺ	0.000371
2.6000	I	3.678475	1	3.679092	1	0.000617
2.8000	ĺ	4.658665	ĺ	4.659705	ĺ	0.001040
3.0000	I	5.874100	1	5.875892	1	0.001792

B part
Adams - Bashforth 4 step

t	Actual Value	Approximate Value	Absolute Error
0.0000	1.000000	1.000000	0.000000
0.1000	1.014815	1.014815	0.000000
0.2000	1.057181	1.057181	0.000000
0.3000	1.121698	1.121698	0.000000
0.4000	1.201486	1.200815	0.000671
0.5000	1.289805	1.288910	0.000895
0.6000	1.380931	1.379947	0.000985
0.7000	1.470415	1.469607	0.000809
0.8000	1.555031	1.554384	0.000647
0.9000	1.632613	1.632173	0.000440
1.0000	1.701870	1.701562	0.000308

Adams - Moulton 3-step

t I	Actual Value	Approximate Value	Absolute Error	
0.0000	1.000000	1.000000	0.000000	
0.1000	1.014815	1.014815	0.000000	
0.2000	1.057181	1.057181	0.000000	
0.3000	1.121698	1.121749	0.000051	
0.4000	1.201486	1.201567	0.000081	
0.5000	1.289805	1.289891	0.000085	
0.6000	1.380931	1.381006	0.000075	
0.7000	1.470415	1.470474	0.000059	
0.8000	1.555031	1.555075	0.000044	
0.9000	1.632613	1.632644	0.000031	
1.0000	1.701870	1.701891	0.000020	
>>				

Question 2

2. Consider the following problem

$$y' = -2y + 1, \ 0 \le t \le 1, \ y(0) = 1.$$

Solve it by using the following methods:

- (a) Explicit Euler.
- (b) Implicit Euler.
- (c) $y_{n+1} = y_{n-1} + 2hf(t_n, y_n)$.

For h=0.1

- 1	T.0000	1./010/0	1.701031	0.000020				
	>> Lab1202	2						
	For explicit Euler							
	t I	Actual Value	Approximate Value	Absolute Error				
	0.0000	1.000000	1.000000	,				
	0.1000	0.909365	0.900000	0.009365				
	0.2000			•				
	0.3000		0.756000					
	0.4000	•	0.704800	,				
	0.5000		0.663840					
	0.6000		0.631072	•				
	0.7000		0.604858					
	0.8000		0.583886					
	0.9000	0.582649	0.567109					
	1.0000	0.567668	0.553687	0.013981				
	For implic							
		•	Approximate Value					
	0.0000	1.000000	1.000000	0.000000				
	0.1000							
	0.2000		0.847222					
	0.3000		0.789352					
		0.724664	0.741127					
	0.5000		0.700939					
	0.6000		0.667449					
	0.7000		0.639541					
	0.8000		0.616284	•				
	0.9000		0.596904					
	1.0000	0.567668	0.580753	0.013085				
		1 0'66						
		al Difference	Approximate Value	l Absolute Error				
	0.0000	1.000000						
	0.1000	0.909365	0.909365					
	0.2000		0.836254	•				
	0.3000		0.774864	0.001034				
	0.4000		0.774304					
	0.5000	0.683940 I	0.684341					
	0.6000		0.652572					
	0.7000	0.623298	0.623312					
	0.8000		0.603247	,				
	0.9000	0.582649	0.582013					
	1.0000	0.567668	0.570442					
		01307000	01370112	01002//3				

We can analyse the stability by observing the plots of approximate value error vs nodal points. We check the asymptotic behaviour of plot for different values of h, to check whether it increases exponentially or not.

Blue line denotes Explicit Euler

Red line denotes Implicit Euler

Green line denot central difference

The Explicit Euler's method is conditionally stable for the IVP of the form $y' = c^*y$, y(0) = y0 with the stability region of step size being the interval (0,2/|c|).

The given solution can be split into a homogeneous solution as well as a par \square cular solu \square on and for the homogeneous problem we have the constant c = 2.

So the region of stability for the Explicit Euler Scheme is the interval (0,2/2) which is (0,1)

The Implicit Euler's method is unconditionally stable for the IVP of the form $y' = c^*y$, y(0) = y0 which means the region of stability for the step size h = (0, inf)

The Central Difference method is of order 2 and there is an extraneous root that is associated when we solve the IVP, which is oscillatory in nature and its amplitude is also increasing. The extraneous term is of the form (-1)_n exp(2*tn).

We can easily tell that the central difference method is unstable, while the Euler method, both, are stable as error does not increase exponentially in later case.

Question 3

3. Consider the IVP

$$y' = y - t^2 + 1, \ 0 \le t \le 1, \ y(0) = 0.5.$$

Use the exact solution $y(t) = (t+1)^2 - 0.5e^t$ to get the starting values and h = 0.2 to compare the approximations got by implementing the explicit Adams-Bashforth four-step method and the implicit Adams-Moulton three-step method.

Adams - Bashforth 4 step

>> Lab12Q3	01307000	01370412	1	01002773
t	Actual Value	Approximate Value	1	Absolute Error
0.0000	0.500000	0.500000	1	0.000000
0.2000	0.829299	0.829299	1	0.000000
0.4000	1.214088	1.214088	1	0.000000
0.6000	1.648941	1.648941	1	0.000000
0.8000	2.127230	2.127312	1	0.000083
1.0000	2.640859	2.641081	1	0.000222

Adams - Moulton 3-step

	Actual Value	Approximate Value	Absolute Error
0.0000	0.500000	0.500000	0.000000
0.2000	0.829299	0.829299	0.000000
0.4000	1.214088	1.214088	0.000000
0.6000	1.648941	1.648934	0.000006
0.8000	2.127230	2.127214	0.000016
1.0000	2.640859	2.640830	0.000029

Question 4

4. Apply the Adams fourth-order predictor-corrector method with h=0.2 and starting values from the Runge-Kutta fourth order method to the IVP given in Question 3.

>> Lab1204				
t I	Actual Value	Approximate Value	Τ	Absolute Error
0.0000	0.500000	0.500000	İ	0.000000
0.2000	0.829299	0.829293	İ	0.000005
0.4000	1.214088	1.214076	Ĺ	0.000011
0.6000	1.648941	1.648922	İ	0.000019
0.8000	2.127230	2.127206	Ī	0.000024
1.0000	2.640859	2.640829	Ī	0.000030
>>				

