Rev. 6, 11/2018

MPC5748G

MPC5748G Microcontroller Data Sheet

Features

- 2 x 160 MHz Power Architecture® e200Z4 Dual issue, 32-bit CPU
 - Single precision floating point operations
 - 8 KB instruction cache and 4 KB data cache
 - Variable length encoding (VLE) for significant code density improvements
- 1 x 80 MHz Power Architecture® e200Z2 Single issue, 32-bit CPU
 - Using variable length encoding (VLE) for significant code size footprint reduction
- · End to end ECC
 - All bus masters, for example, cores generate single error correction, double error detection (SECDED) code for every bus transaction
 - SECDED covers 64-bit data and 29-bit address
- Memory interfaces
 - 6 MB on-chip flash supported with the flash controller
 - 3 x flash page buffers (3 port flash controller)
 - 768 KB on-chip SRAM across three RAM ports
- · Clock interfaces
 - 8-40 MHz external crystal (FXOSC)
 - 16 MHz IRC (FIRC)
 - 128 KHz IRC (SIRC)
 - 32 KHz external crystal (SXOSC)
 - Clock Monitor Unit (CMU)
 - Frequency modulated phase-locked loop (FMPLL)
 - Real Time Counter (RTC)
- 2x System Memory Protection Unit (SMPU) each with 16 region descriptors and 16-byte region granularity
- 16 Semaphores to manage access to shared resource
- Interrupt controller (INTC) capable of routing interrupts to any CPU
- Multiple crossbar switch architecture for concurrent access to peripherals, flash, and RAM from multiple bus masters
- 32-channels eDMA controller with multiple transfer request sources using DMAMUX

- Boot Assist Flash (BAF) supports internal flash programming via a serial link (LIN / SCI)
- Analog
 - Two analog-to-digital converters (ADC), one 10-bit and one 12-bit
 - Three analogue comparators
 - Cross Trigger Unit to enable synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
- Communication
 - Four Deserial Peripheral Interface (DSPI)
 - Six Serial Peripheral interface (SPI)
 - 18 serial communication interface (LIN) modules
 - Eight enhanced FlexCAN3 with FD support
 - Four inter-IC communication interface (IIC)
 - One USB OTG Controller (USB_0) and One USB SPH Controller (USB_1) with ULPI Interface.
 - ENET complex (10/100 Ethernet) that supports Multi queue with AVB support, 1588, and MII/ RMII
 - 2 x ENET with L2 switch
 - Secure Digital Hardware Controller (uSDHC)
 - Dual-channel FlexRay Controller
- Audio
 - 3 x Synchronous Audio Interface (SAI)
 - Fractional clock dividers (FCD) operating in conjunction with the SAIs
- Configurable I/O domains supporting FLEXCAN, LINFlex, Ethernet, USB, MLB, uSDHC and general I/O
- Supports wake-up from low power modes via the WKPU controller
- On-chip voltage regulator (VREG)
- Debug functionality
 - e200Z2 core:NDI per IEEE-ISTO 5001-2008
 Class3+
 - e200Z4 core(s): NDI per IEEE-ISTO 5001-2008
 Class 3+

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Three System Timer Module (STM)
 - Four Software WatchDog Timers (SWT)
 - 96 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) and 1149.7 (cJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS and TDM) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL compliance
- Multiple operating modes
 - Includes enhanced low power operation

Table of Contents

1	Block	k diagrai	m	4			6.3.5	Flash me	mory AC timing specifications	40
2	Fami	ly comp	arison	4			6.3.6	Flash rea	d wait state and address pipeline control	
3	Orde	ring part	is	9				settings.		41
	3.1	Determ	nining valid orderable parts	9		6.4	Comm	unication is	nterfaces	41
	3.2	Orderi	ng Information	9			6.4.1	DSPI tim	ing	41
4	Gene	ral		10			6.4.2	FlexRay	electrical specifications	47
	4.1	Absolu	ate maximum ratings	10				6.4.2.1	FlexRay timing	47
	4.2	Recom	nmended operating conditions	11				6.4.2.2	TxEN	48
	4.3	Voltag	ge regulator electrical characteristics	13				6.4.2.3	TxD	49
	4.4	Voltag	ge monitor electrical characteristics	16				6.4.2.4	RxD	50
	4.5	Supply	current characteristics	18			6.4.3	uSDHC s	specifications	51
	4.6	Electro	ostatic discharge (ESD) characteristics	21			6.4.4	Ethernet	switching specifications	52
	4.7	Electro	omagnetic Compatibility (EMC) specifications	22			6.4.5	MediaLE	(MLB) electrical specifications	54
5	I/O p	aramete	rs	22				6.4.5.1	MLB 3-pin interface DC characteristic	ics 54
	5.1	AC sp	ecifications @ 3.3 V Range	22				6.4.5.2	MLB 3-pin interface electrical	
	5.2	DC ele	ectrical specifications @ 3.3V Range	23					specifications	54
	5.3	AC sp	ecifications @ 5 V Range	24			6.4.6	USB elec	etrical specifications	56
	5.4	DC ele	ectrical specifications @ 5 V Range	25				6.4.6.1	USB electrical specifications	56
	5.5	Reset	pad electrical characteristics	26				6.4.6.2	ULPI timing specifications	56
	5.6	PORS	T electrical specifications	28			6.4.7	SAI elect	rical specifications	58
6	Perip	heral op	erating requirements and behaviours	28		6.5	Debug	specificati	ons	60
	6.1	Analog	g	28			6.5.1	JTAG int	erface timing	60
		6.1.1	ADC electrical specifications	28			6.5.2	Nexus tir	ning	62
		6.1.2	Analog Comparator (CMP) electrical specification	ns 32			6.5.3	WKPU/N	NMI timing	64
	6.2	Clocks	s and PLL interfaces modules	33			6.5.4	External	interrupt timing (IRQ pin)	65
		6.2.1	Main oscillator electrical characteristics	33	7	Then	mal attri	butes		65
		6.2.2	32 kHz Oscillator electrical specifications	35		7.1	Therm	al attribute	S	65
		6.2.3	16 MHz RC Oscillator electrical specifications	35	8	Dime	ensions			67
		6.2.4	128 KHz Internal RC oscillator Electrical			8.1	Obtain	ing packag	e dimensions	67
			specifications	36	9	Pinou	ıts			68
		6.2.5	PLL electrical specifications	36		9.1	Packag	ge pinouts a	and signal descriptions	68
	6.3	Memo	ry interfaces	37	10	Reset	t sequen	ce		68
		6.3.1	Flash memory program and erase specifications	37		10.1	Reset	sequence du	ıration	68
		6.3.2	Flash memory Array Integrity and Margin Read			10.2	BAF e	xecution du	ıration	68
			specifications	38		10.3	Reset	sequence de	escription	69
		6.3.3	Flash memory module life specifications	39	11	Revis	sion Hist	tory		71
		6.3.4	Data retention vs program/erase cycles	39						

1 Block diagram

Figure 1. MPC5748G block diagram

2 Family comparison

The following table provides a summary of the different members of the MPC5748G family and their proposed features. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest peripheral number (for example: STM_0) or memory address and end at the highest available peripheral number or memory address (for example: MPC574xC have 2 STM, ending with STM_1).

Table 1. MPC5748G Family Comparison1

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G	
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4	
	e200z2	e200z2	e200z4	e200z4	e200z4	
			e200z2	e200z2	e200z2	
FPU	e200z4	e200z4	e200z4	e200z4	e200z4	
			e200z4	e200z4	e200z4	
Maximum	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	
Operating Frequency ²	80MHz (z2)	80MHz (z2)	160MHz (z4)	160MHz (z4)	160MHz (z4)	
Frequency			80MHz (z2)	80MHz (z2)	80MHz (z2)	
Flash memory	4 MB	6 MB	3 MB	4 MB	6 MB	
EEPROM support	32 KB to 128	KB emulated	32	KB to 192 KB emula	ted	
RAM	512 KB		768 KB			
ECC			End to End			
SMPU	SMPU_0: 12 entry, SMPU_1: 12 entry				16 entry	
DMA		32 channels				
10-bit ADC			48 Standard channels	3		
			32 External channels			
12-bit ADC			16 Precision channels	3		
			16 Standard channels	3		
			32 External channels			
AnalogComparator			3			
BCTU			1			
SWT	2	2		4 ³		
STM	2	2		3		
PIT-RTI			16 channels PIT			
			1 channels RTI			
RTC/API			Yes			
Total Timer I/O ⁴			96 channels			
			16-bits			
LINFlexD	1 M/S	, 15 M		1 M/S, 17 M		
FlexCAN		8 with	h optional CAN FD su	pport		
DSPI/SPI			4 x DSPI			
			6 x SPI			

Table continues on the next page...

Family comparison

Table 1. MPC5748G Family Comparison1 (continued)

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G	
I ² C			4		•	
SAI/I ² S			3			
FXOSC			8 - 40 MHz			
SXOSC			32 KHz			
FIRC			16 MHz			
SIRC			128 KHz			
FMPLL			Yes			
LPU			Yes			
FlexRay 2.1 (dual channel)			Yes, 128 MB			
MLB150	()		1		
USB 2.0 SPH	()		1		
USB 2.0 OTG	()		1		
SDHC			1			
Ethernet (RMII, MII + 1588, Muti queue AVB support)			Up to 2			
3 Port L2 Ethernet Switch		Optional				
CRC	1					
MEMU		2				
STCU			1			
HSM-v2 (security)			Optional			
Censorship			Yes			
FCCU			1			
Safety level		Specifi	c functions ASIL-B ce	rtifiable		
User MBIST			Yes			
User LBIST			Yes			
I/O Retention in Standby			Yes			
GPI		17 (176 LQFF	P-EP), 18 (256 BGA),	18 (324 BGA)		
GPIO		129 (176 LQFP	-EP), 178 (256 BGA),	246 (324 BGA)		
Debug			JTAGC,			
			cJTAG			
Nexus			Z4 N3+			
			Z2 N3+			
Packages			176 LQFP-EP			
			256 BGA, 324 BGA			

^{1.} Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

^{2.} Based on 125°C ambient operating temperature and subject to full device characterisation.

^{3.} Additional SWT included when HSM option selected

4. Refer device datasheet and reference manual for information on to timer channel configuration and functions.

Table 2. MPC5748G Family Comparison - NVM Memory Map 1

		·			-	
Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

Family comparison

Table 3. MPC5748G Family Comparison - NVM Memory Map 2

Start Address	End Address	Flash block	RWW	MPC5747C	MPC5746G
				MPC5748C	MPC5747G
					MPC5748G
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	available	available
0x00FB0000	0x00FB7FFF	32 KB data Flash	2	not available	available
0x00FB8000	0x00FBFFFF	32 KB data flash	3	not available	available
0x00FC0000	0x00FC7FFF	32 KB data flash	0	available	available
0x00FC8000	0x00FCFFFF	32 KB data flash	0	available	available
0x00FD0000	0x00FD7FFF	32 KB data flash	1	available	available
0x00FD8000	0x00FDFFFF	32 KB data flash	1	available	available
0x00FE0000	0x00FEFFFF	64 KB data flash	0	available	available
0x00FF0000	0x00FFFFF	64 KB data flash	1	available	available

Table 4. MPC5748G Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size [KB]	MPC5747C	MPC5748C MPC5746G MPC5747G MPC5748G
0x4000000	0x40001FFF	8	available	available
0x40002000	0x4000FFFF	56	available	available
0x40010000	0x4001FFFF	64	available	available
0x40020000	0x4003FFFF	128	available	available
0x40040000	0x4007FFFF	256	available	available
0x40080000	0x400BFFFF	256	not available	available

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: MPC5748G.

3.2 Ordering Information

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Table 5. Absolute maximum ratings

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$V_{DD_HV_A}, V_{DD_HV_B}, \ V_{DD_HV_C^2}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
$V_{DD_HV_FLA}^{3, 4}$	3.3 V flash supply voltage (when supplying from an external source in bypass mode)	_	-0.3	3.63	V
V _{DD_LP_DEC} ⁵	Decoupling pin for low power regulators ⁶	_	-0.3	1.32	٧
V _{DD_HV_ADC1_REF} ⁷	3.3 V / 5.0 V ADC1 high reference voltage	_	-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage	_	-0.3	6.0	V
V _{DD_HV_ADC1}					
$V_{SS_HV_ADC0}$	3.3V to 5.5V ADC supply ground	_	-0.1	0.1	V
$V_{SS_HV_ADC1}$					
V _{DD_LV} ^{8, 9, 10, 11}	Core logic supply voltage	_	-0.3	1.32	V
V_{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V _{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	– 5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition	_	- 50	50	mA
T_{ramp}	Supply ramp rate	_	0.5 V / min	100V/ms	_
T _A ¹²	Ambient temperature	_	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

^{1.} All voltages are referred to VSS_HV unless otherwise specified

^{2.} VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.

11

- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD HV FLA must be disconnected from ANY power sources when VDD HV A = 5V
- 5. This pin should be decoupled with low ESR 1 μ F capacitor.
- 6. Not available for input voltage, only for decoupling internal regulators
- 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum $T_J = 150$ °C, remaining time as defined in footnotes 10
- 9. Allowed 1.38 1.45 V– for 10 hours cumulative time at maximum $T_J = 150$ °C, remaining time as defined in footnote 11.
- 10. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum $T_{.I} = 150 \, ^{\circ}C$.
- 11. If HVD on core supply $(V_{HVD_LV_x})$ is enabled, it will generate a reset when supply goes above threshold.
- 12. T_J=150°C. Assumes T_A=125°C

NXP Semiconductors

Assumes maximum θJA. SeeThermal attributes

Recommended operating conditions 4.2

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD HV A is in 5.0V range, VDD HV FLA should be externally supplied using a 3.3V source. If VDD HV A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD HV A, VDD HV B and VDD HV C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions $(VDD_HV_x = 3.3 V)'$ and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Table 6. Recommended operating conditions ($V_{DD\ HV\ x} = 3.3\ V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
$V_{DD_HV_A}$	HV IO supply voltage	_	3.15	3.6	V
$V_{DD_HV_B}$					
$V_{DD_HV_C}$					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V

Table continues on the next page...

General

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 \text{ V}$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	1	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	_	-3.0	3.0	mA
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
T _J	Junction temperature under bias	_	-40	150	°C

- 1. All voltages are referred to V_{SS HV} unless otherwise specified
- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.
- 5. VIN1_CMP_REF ≤ VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions $(V_{DD_HV_x} = 5 \text{ V})$

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
$V_{DD_HV_A}$	HV IO supply voltage	_	4.5	5.5	٧
$V_{DD_HV_B}$					
$V_{DD_HV_C}$					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V

Table continues on the next page...

13

Table 11 Hoodining applaining containing (1), HV X = 0 1, (containable)	Table 7.	Recommended	operating condition	s (V _{DD HV x} =	5 V) (continued)
---	----------	-------------	---------------------	---------------------------	------------------

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{IN1_CMP_REF} ⁵	Analog Comparator DAC reference voltage	_	3.15	5.5	V
I _{INJPAD}	Injected input current on any pin during overload condition	_	-3.0	3.0	mA
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
T _J	Junction temperature under bias	_	-40	150	°C

- 1. All voltages are referred to V_{SS HV} unless otherwise specified
- Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with Cflash req.
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. This supply is shorted VDD_HV_A on lower packages.

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- \bullet Low voltage detector low threshold (LVD_IO_A_LO) for $V_{DD_HV_IO_A\ supply}$
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A supply}
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

General

Figure 2. Voltage regulator capacitance connection

Table 8. Voltage regulator electrical specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	_	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	_	0.001	_	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31	1	4.7		
C _{flash_reg} ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	_	0.001	_	0.03	Ohm

Table continues on the next page...

Table 8. Voltage regulator electrical specifications (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$C_{HV_VDD_A}$	VDD_HV_A supply capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_VDD_B}	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_VDD_C}	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47	_	_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_	_	0.1	Ohm
t _{SU}	Start-up time after main supply stabilization	Cfp_reg = 3 μF	_	74	_	μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{\text{fp_reg}} = 3 \; \mu\text{F}$		1.0		μs

- 1. Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
- 2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.
- 5. 1. For VDD_HV_A, VDD_HV_B, and VDD_HV_C, 1µf on each side of the chip
 - a. 0.1 µf close to each VDD/VSS pin pair.
 - b. 10 µf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - 2. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter
- 6. Only applicable to ADC1

General

- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, V_{DD_HV_BALLAST} must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may cause the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

4.4 Voltage monitor electrical characteristics

Table 9. Voltage monitor electrical characteristics

Symbol	Parameter	State	Conditions	Configuration			7	hresho	ld	Unit		
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Max	٧		
V _{POR_LV}	LV supply	Fall	Untrimmed	Yes	No	POR	0.930	0.979	1.028	٧		
	power on reset detector		Trimmed				0.959	0.979	0.999	٧		
		Rise	Untrimmed								0.980	1.029
			Trimmed				1.009	1.029	1.049	٧		

Table continues on the next page...

Table 9. Voltage monitor electrical characteristics (continued)

Symbol	Parameter	State	Conditions		Conf	iguration	1	Thresho	ld	Unit
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Max	V
V _{HVD_LV_cold}	LV supply high	Fall	Untrimmed	No	Yes	Functional	Disable	ed at Sta	rt	•
	voltage monitoring,		Trimmed				1.325	1.345	1.375	٧
	detecting at	Rise	Untrimmed				Disable	ed at Sta	rt	
	the device pin		Trimmed				1.345	1.365	1.395	V
V _{LVD_LV_PD2_hot}	LV supply low	Fall	Untrimmed	Yes	No	POR	1.080	1.120	1.160	V
	voltage monitoring,		Trimmed				1.125	1.143	1.160	V
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	٧
the PD2 cr (hot) area	the PD2 core (hot) area		Trimmed				1.145	1.163	1.180	V
V _{LVD_LV_PD1_hot}	LV supply low	Fall	Untrimmed	Yes	No	POR	1.080	1.120	1.160	٧
	voltage monitoring,		Trimmed				1.114	1.137	1.160	V
	detecting in the PD1 core (hot) area	Rise	Untrimmed				1.100	1.140	1.180	V
			Trimmed				1.134	1.157	1.180	V
V _{LVD_LV_PD0_hot}	LV supply low	Fall	Untrimmed	Yes	No	POR	1.080	1.120	1.160	V
	voltage monitoring,		Trimmed				1.114	1.137	1.160	V
	detecting in	Rise Untrimmed				1.100	1.140	1.180	V	
	the PD0 core (hot) area		Trimmed				1.134	1.157	1.180	V
V _{POR_HV}	HV supply	Fall	Untrimmed	Yes	No	POR	2.700	2.850	3.000	V
	power on reset detector	Rise	Untrimmed				2.750	2.900	3.050	V
V _{LVD_IO_A_LO} , ²	HV IO_A	Fall	Untrimmed	Yes	No	POR	2.750	2.923	3.095	٧
	supply low voltage		Trimmed				2.978	3.039	3.100	٧
	monitoring -	Rise	Untrimmed				2.780	2.953	3.125	٧
	low range		Trimmed				3.008	3.069	3.130	V
V _{LVD_IO_A_HI} ²	HV IO_A	Fall	Trimmed	No	Yes	Functional	Disable	ed at Sta	rt	
	supply low voltage						4.060	4.151	4.240	V
	monitoring - high range	Rise	Trimmed					ed at Sta 4.201	rt 4.3	V
V		Fall	Untrimmed	No	Yes	Functional	4.115	ed at Sta		V
V _{LVD_LV_PD2_cold}	LV supply low voltage	гап	Trimmed	INO	res	Functional	1.14			V
	monitoring,	Rise		-	_			1.158	1.175	V
	detecting at the device pin	nise	Untrimmed Trimmed	-			1.16	ed at Sta 1.178		V
the device pin		riiiiinea				1.16	1.1/8	1.195	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a POR reset.

^{2.} There is no voltage monitoring on the $V_{DD_HV_ADC0}$, $V_{DD_HV_ADC1}$, $V_{DD_HV_B}$ and $V_{DD_HV_C}$ I/O segments. For applications requiring monitoring of these segments, either connect these to $V_{DD_HV_A}$ at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Table 10. Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_FULL}	RUN Full Mode	LV supply + HV supply + HV Flash supply +	_	219	292	mA
2, 3	Operating current	2 x HV ADC supplies				
		T _a = 85°C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C	_	230	328	mA
		T _a = 125 °C	_	249	400	mA
I _{DD_GWY} 5, 6	RUN Gateway Mode Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	183	260	mA
0, 0	current	T _a = 85°C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C	<u> </u>	196	294	mA
		$T_a = 125^{\circ}C^4$	_	215	348	mA
I _{DD_BODY_1} 7, 8	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	149	223	mA
	current	T _a = 85 °C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	_	158	270	mA
		T _a = 125°C ⁴		175	310	mA
IDD_BODY_2 ^{9, 10}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	105	174	mA
	current	T _a = 85 °C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				

Table continues on the next page...

Table 10. Current consumption characteristics (continued)

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
		T _a = 105 °C	_	114	206	mA
		T _a = 125 °C ⁴	_	131	277	mA
I _{DD_STOP}	STOP mode	T _a = 25 °C	_	11	_	mA
	Operating current	$V_{DD_LV} = 1.25 \text{ V}$				
		T _a = 85 °C	_	19.8	105	
		$V_{DD_LV} = 1.25 \text{ V}$				
		T _a = 105 °C		29	145	
		$V_{DD_{\perp}V} = 1.25 \text{ V}$				
		T _a = 125 °C ⁴	_	45	160	
		$V_{DD_LV} = 1.25 \text{ V}$				
I _{DD_HV_ADC_REF} ^{11, 12}	ADC REF	T _a = 25 °C	_	200	400	μΑ
	Operating current	2 ADCs operating at 80 MHz				
		V _{DD_HV_ADC_REF} = 3.6 V				
		T _a = 125 °C ⁴	_	200	400	
		2 ADCs operating at 80 MHz				
		V _{DD_HV_ADC_REF} = 5.5 V				
I _{DD_HV_ADCx} 12	ADC HV	T _a = 25 °C	_	1	2	mA
	Operating current	ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 \text{ V}$				
		T _a = 125 °C ⁴	_	1.2	2	
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
I _{DD_HV_FLASH}	Flash Operating	$T_a = 125 ^{\circ}C^{4}$	_	40	45	mA
	current during read access	3.3 V supplies				
	1000 000000	x MHz frequency				

- 1. The content of the Conditions column identifies the components that draw the specific current.
- 2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @160 MHz, e200Z2 at 80 MHz, Platform @160MHz, DMA (SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked), ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O supply current excluded.
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.
- 4. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum 0JA. SeeThermal attributes
- 5. Enabled Modules in Gateway mode: 2 x e200Z4 @ 160 MHz (Instruction and Data cache enabled), Platform @ 160MHz, e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated), 1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4

General

- x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX, ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded
- 6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.
- 7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @120Mhz(Instruction and Data cache enabled), Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- Recommended Transistors:BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.
- 9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache enabled), Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C
- 11. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM,	T _a = 25 °C	_	8.9		mA
	but only one RAM being accessed	SYS_CLK = 16MHz				
	Joing doctood	ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 25 °C		10.2		
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 85 °C	_	12.5	22	
		T _a = 105 °C	_	14.5	24	
		T _a = 125 °C , ²	_	16	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	_	0.535		mA
		T _a = 85 °C	_	0.72	6	
		T _a = 105 °C	_	1	8	
		$T_a = 125 ^{\circ}\text{C}^{\ 2}$		1.6	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal
 attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit	
STANDBY0	STANDBY with	T _a = 25 °C		71	_	μΑ	
	8K RAM	T _a = 85 °C		175	800		
		T _a = 105 °C		338	1725		
		T _a = 125 °C		750	2775		
STANDBY1	STANDBY with	T _a = 25 °C		72	_	μΑ	
	64K RAM	T _a = 85 °C		176	815		
		T _a = 105 °C		350	1775		
		T _a = 125 °C		825	3000		
STANDBY2	STANDBY with	T _a = 25 °C	_	75	_	μΑ	
	128K RAM	T _a = 85 °C		182	830		
		T _a = 105 °C		366	1825		
		T _a = 125 °C	_	900	3250		
STANDBY3	STANDBY with	T _a = 25 °C		80	_	μΑ	
	256K RAM	T _a = 85 °C		197	860		
		T _a = 105 °C	-	400	1875		
		T _a = 125 °C		975	3500		
STANDBY3	FIRC ON	T _a = 25 °C		500	_	μΑ	

1. The content of the Conditions column identifies the components that draw the specific current.

NOTE

For the Precision channel Analog inputs, SIUL2_MSCRn[PUS] must be configured to 0 before entering STANDBY. An increase in current would be observed when SIUL2_MSCRn[PUS] is configured to be 1, irrespective of the state of IBE or PUE. The current numbers would increase irrespective of whether the pad is pulled low/high externally.

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

I/O parameters

temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 13. ESD ratings

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	СЗА	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

^{1.} All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Table 14. Functional Pad AC Specifications @ 3.3 V Range

Symbol	1	Prop. Delay (ns) ¹ L>H/H>L		Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	Min	Max	Min	Max	† †	MSB,LSB
pad_sr_hv		6/6		1.9/1.5	25	11
(output)	2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
(output)	6.4/5	19.5/19.5	3.5/2.5	12/12	200	
	2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
	0.090	1.1	0.035	1.1	asymmetry ²	
	2.9/3.5	12.5/11	1/1	7/6	50	
	11/8	35/31	7.7/5	25/21	200	
	8.3/9.6	45/45	4/3.5	25/25	50	01
	13.5/15	65/65	6.3/6.2	30/30	200	
	13/13	75/75	6.8/6	40/40	50	00 ³
	21/22	100/100	11/11	51/51	200	
pad_i_hv/ pad_sr_hv		2/2		0.5/0.5	0.5	NA

^{2.} Data based on characterization results, not tested in production.

Table 14. Functional Pad AC Specifications @ 3.3 V Range

Symbol	· -	elay (ns) ¹ /H>L	Rise/Fall Edge (ns)		Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	Min	Max	Min	Max		MSB,LSB
(input) ⁴						

- 1. As measured from 50% of core side input to Voh/Vol of the output
- This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.
- 3. Slew rate control modes
- 4. Input slope = 2ns

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

5.2 DC electrical specifications @ 3.3V Range

Table 15. DC electrical specifications @ 3.3V Range

Symbol	Parameter	Va	lue	Unit
		Min	Max	
VDD	LV (core) Supply Voltage	1.08	1.32	V
VDD_HV_x	I/O Supply Voltage	3.15	3.63	V
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.72*VDD_HV_ x	VDD_HV_x + 0.3	V
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV - 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.11*VDD_HV_ x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.67*VDD_HV_ x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.57 * VDD_HV_x	VDD_HV_x + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V

Table continues on the next page...

Table 15. DC electrical specifications @ 3.3V Range (continued)

Symbol	Parameter	Va	lue	Unit
		Min	Max	
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	15		μΑ
Pull_IIH (pad_i_hv)	Weak Pullup Current High		55	μΑ
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² Low	28		μΑ
Pull_IIL (pad_i_hv)	Weak Pulldown Current ¹ High		85	μΑ
Pull_loh	Weak Pullup Current ³	15	50	μΑ
Pull_lol	Weak Pulldown Current ⁴	15	50	μΑ
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μΑ
Voh	Output High Voltage ⁵	0.8 *VDD_HV_x	_	V
Vol	Output Low Voltage ⁶	_	0.2 *VDD_HV_x	V
	Output Low Voltage ⁷		0.1 *VDD_HV_x	
loh_f	Full drive loh ⁸ (SIUL2_MSCRn[SRC 1:0]= 11)	18	70	mA
lol_f	Full drive Iol ⁸ (SIUL2_MSCRn[SRC 1:0]= 11)	21	120	mA
loh_h	Half drive Ioh ⁸ (SIUL2_MSCRn[SRC 1:0]= 10)	9	35	mA
lol_h	Half drive Iol ⁸ (SIUL2_MSCRn[SRC 1:0]= 10)	10.5	60	mA

- 1. Measured when pad=0.69*VDD_HV_x
- 2. Measured when pad=0.49*VDD_HV_x
- 3. Measured when pad = 0 V
- 4. Measured when pad = VDD_HV_x
- 5. Measured when pad is sourcing 2 mA
- 6. Measured when pad is sinking 2 mA
- 7. Measured when pad is sinking 1.5 mA
- 8. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.3 AC specifications @ 5 V Range

Table 16. Functional Pad AC Specifications @ 5 V Range

Symbol	Prop. D	elay (ns) ¹	Rise/Fal	l Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	L>l	H/H>L				
	Min	Max	Min	Max] [MSB,LSB
pad_sr_hv		4.5/4.5		1.3/1.2	25	11
(output)		6/6		2.5/2	50	
(output)		13/13		9/9	200	
		5.25/5.25		3/2	25	10
		9/8		5/4	50	
		22/22		18/16	200	
		27/27		13/13	50	01 ²
		40/40		24/24	200	
		40/40		24/24	50	00 ²

Table continues on the next page...

Table 16. Functional Pad AC Specifications @ 5 V Range (continued)

Symbol	Prop. De	elay (ns) ¹	Rise/Fall	Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	L>H	/H>L				
	Min	Max	Min	Max		MSB,LSB
		65/65		40/40	200	
pad_i_hv/ pad_sr_hv		1.5/1.5		0.5/0.5	0.5	NA
(input)						

- 1. As measured from 50% of core side input to Voh/Vol of the output
- 2. Slew rate control modes

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Va	lue	Unit
		Min	Max	
VDD_LV	LV (core) Supply Voltage	1.08	1.32	V
VDD_HV_x	I/O Supply Voltage	4.5	5.5	V
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV- 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x	VDD_HV_x + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V

Table continues on the next page...

I/O parameters

Table 17. DC electrical specifications @ 5 V Range (continued)

Symbol	Parameter	Va	lue	Unit
		Min	Max	
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	23		μΑ
Pull_IIH (pad_i_hv)	Weak Pullup Current High		82	μΑ
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² Low	40		μΑ
Pull_IIL (pad_i_hv)	Weak Pulldown Current ¹ High		130	μΑ
Pull_loh	Weak Pullup Current ³	30	80	μΑ
Pull_lol	Weak Pulldown Current ⁴	30	80	μΑ
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μΑ
Voh	Output High Voltage ⁵	0.8 * VDD_HV_x	_	V
Vol	Output Low Voltage ⁶ Output Low Voltage ⁷	_	0.2 * VDD_HV_x 0.1*VDD_HV_x	V
loh_f	Full drive loh8 (SIUL2_MSCRn[SRC 1:0]= 11)	38	132	mA
lol_f	Full drive Iol ⁸ (SIUL2_MSCRn[SRC 1:0]= 11)	48	220	mA
loh_h	Half drive loh ⁸ (SIUL2_MSCRn[SRC 1:0]= 10)	19	66	mA
lol_h	Half drive Iol ⁸ (SIUL2_MSCRn[SRC 1:0]= 10)	24	110	mA

^{1.} Measured when pad=0.69*VDD_HV_x

5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

^{2.} Measured when pad=0.49*VDD_HV_x

^{3.} Measured when pad = 0 V

^{4.} Measured when pad = VDD_HV_x

^{5.} Measured when pad is sourcing 2 mA

^{6.} Measured when pad is sinking 2 mA

^{7.} Measured when pad is sinking 1.5 mA

^{8.} Ioh/lol is derived from spice simulations. These values are NOT guaranteed by test.

27

Figure 3. Start-up reset requirements

Figure 4. Noise filtering on reset signal

Table 18. Functional reset pad electrical specifications

Symbol	Parameter	Conditions		Valu	ie	Unit
			Min	Тур	Max	
V _{IH}	Input high level TTL (Schmitt Trigger)	_	2.0	_	V _{DD_HV_A} +0.4	V
V _{IL}	Input low level TTL (Schmitt Trigger)	_	-0.4	_	0.8	V
V _{HYS}	Input hysteresis TTL (Schmitt Trigger)	_	300	_	_	mV

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Peripheral operating requirements and behaviours

Table 18. Functional reset pad electrical specifications (continued)

Symbol	Parameter	Conditions		Value		
			Min	Тур	Max	
V_{DD_POR}	Minimum supply for strong pull-down activation	_	_	_	1.2	V
I _{OL_R}	Strong pull-down current ¹	Device under power-on reset	0.2	_	_	mA
		V _{DD_HV_IO} = V _{DD_POR}				
		$V_{OL} = 0.35^*V_{DD_HV_IO}$				
		Device under power-on reset	11	_	_	mA
		$3.0 \text{ V} < \text{V}_{\text{DD_HV_IO}} < 5.5 \text{ V}$				
		$V_{OL} = 0.35^*V_{DD_HV_IO}$				
W _{FRST}	RESET input filtered pulse	_	_	_	500	ns
W _{NFRST}	RESET input not filtered pulse	_	2000	_	_	ns
II _{WPU} I	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	_	82	μA

^{1.} Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter	Value			
		Min	Тур	Max]
W _{FPORST}	PORST input filtered pulse	_	_	200	ns
W _{NFPORST}	PORST input not filtered pulse	1000	_	_	ns
V _{IH}	Input high level	_	0.65 x V _{DD_HV_A}	_	V
V _{IL}	Input low level	_	0.35 x V _{DD_HV_A}	_	V

Peripheral operating requirements and behaviours

6.1 **Analog**

ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018 28 **NXP Semiconductors**

Figure 5. ADC characteristics and error definitions

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	_	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	_	_	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	_	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	_	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	_	_	
C _S	ADC input sampling capacitance	_	_	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	_	_	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	_	_	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V _{REF} range = 4.5 to 5.5 V	_	_	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V	_	_	875	Ω

Table continues on the next page...

Table 20. ADC conversion characteristics (for 12-bit) (continued)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	_	_	_	825	Ω
INL	Integral non-linearity (precise channel)	_	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	_	-3	_	3	LSB
DNL	Differential non-linearity	_	-1	_	1	LSB
OFS	Offset error	_	-6	_	6	LSB
GNE	Gain error	_	-4	_	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_	_	250	nA
(pad going to one ADC)	Max leakage (standard channel)	150 °C	_	_	2500	nA
7.50)	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
	Max positive/negative injection		-5	_	5	mA
TUE _{precision channels}	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

- 1. Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- 3. During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 2.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

NOTE

The ADC input pins sit across all three I/O segments, VDD_HV_A, VDD_HV_B and VDD_HV_C.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

6.1.2 Analog Comparator (CMP) electrical specifications Table 21. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μΑ
V _{AIN}	Analog input voltage	V_{SS}	_	V _{IN1_CMP_RE}	V
V _{AIO}	Analog input offset voltage ¹	-42	_	42	mV
V_{H}	Analog comparator hysteresis ²	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	CR0[HYSTCTR] = 01	_	40	70	mV
	CR0[HYSTCTR] = 10	_	60	105	mV
	• CR0[HYSTCTR] = 11				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) 1,3	_	_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) 1,3	_	5	21	μs
	Analog comparator initialization delay, High speed mode ⁴	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)		1	1	
	3.3V Reference Voltage	_	6	9	μΑ
	5V Reference Voltage	_	10	16	μΑ
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

- 1. Measured with hysteresis mode of 00
- 2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_HV_A}$ -0.6V
- 3. Full swing = VIH, VIL
- 4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
- 5. $1 LSB = V_{reference}/64$

6.2 Clocks and PLL interfaces modules

Main oscillator electrical characteristics 6.2.1

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018 **NXP Semiconductors** 33

Figure 7. Oscillator connections scheme

Table 22. Main oscillator electrical characteristics

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
f _{XOSCHS}	Oscillator frequency	FSP/LCP		8		40	MHz
9 _m XOSCHS	Driver	LCP			23		mA/V
	Transconduct ance	FSP			33		
V _{XOSCHS}	Oscillation	LCP	8 MHz		1.0		V _{PP}
	Amplitude		16 MHz	1	1.0		
			40 MHz		0.8		
T _{XOSCHSSU}	Startup time	FSP/LCP	8 MHz		2		ms
			16 MHz		1		
			40 MHz		0.5		
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit supply current		16 MHz	1	2.2		
	Supply current		40 MHz		3.2		

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Table 22. Main oscillator electrical characteristics (continued)

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger		Oscillator supply=3.3			1.25	V

6.2.2 32 kHz Oscillator electrical specifications

Table 23. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	s

^{1.} This parameter is characterized before qualification rather than 100% tested.

6.2.3 16 MHz RC Oscillator electrical specifications

Table 24. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Max	
F _{Target}	IRC target frequency	_	_	16	_	MHz
PTA	IRC frequency variation after trimming	_	-5	_	5	%
T _{startup}	Startup time	_		_	1.5	us
T _{STJIT}	Cycle to cycle jitter		_	_	1.5	%
T _{LTJIT}	Long term jitter		_	_	0.2	%

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

^{2.} Proper PC board layout procedures must be followed to achieve specifications.

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 25. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μA
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 26. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 27	ps	NON SSCG mode
TIE			See Table 27		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 27. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth	0.1% of pllclkout1,2	$\begin{array}{c} +/\text{-}(J_{SN}+J_{SDM}+J_{SSCG}+N^{[4]}\\ \times J_{RJ}) \end{array}$
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

^{1.} This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

- 2. This jitter component is added when the PLL is working in the fractional mode.
- 3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
- 4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding specified value of jitter table

Table 28. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 29 shows the estimated Program/Erase times.

Table 29. Flash memory program and erase specifications

Symbol	Characteristic ¹	Typ ²	Factory Fiel Programming ^{3, 4}		ield Update		Unit	
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifeti	me Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Memory interfaces

Table 29. Flash memory program and erase specifications (continued)

Symbol	Characteristic ¹	Typ ²		Factory Find Programming ^{3, 4}		ield Upda	Unit	
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifeti	me Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	_	ms

- 1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.
- 2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.
- 3. Conditions: ≤ 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}\text{C} \le T_{\text{J}} \le 150^{\circ}\text{C}$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 30. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	_	_	512 x Tperiod x Nread	_
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	_
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	_	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	_	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	_	1,339.5	μs

6.3.3 Flash memory module life specifications

Table 31. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks.	_	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks.	_	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	_	Years
		Blocks with 100,000 P/E cycles.	20	_	Years
		Blocks with 250,000 P/E cycles.	10	_	Years

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

6.3.5 Flash memory AC timing specifications

Table 32. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock	11.5 plus four system clock	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	periods 16 plus four system	periods 20.8 plus four system	μs
			clock periods	clock periods	
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_	_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

Table 33. Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

6.4 Communication interfaces

6.4.1 DSPI timing

Table 34. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spe	ed Mode ¹	low Spe	ed mode	Unit
				Min	Max	Min	Max	1
1	t _{SCK}	DSPI cycle	Master	25	_	50	_	ns
		time	Slave (MTFE = 0)	40	_	60	_	
2	t _{csc}	PCS to SCK delay	_	16	_	_	_	ns
3	t _{ASC}	After SCK delay	_	16	_	_	_	ns
4	t _{SDC}	SCK duty cycle	_	t _{SCK} /2 - 10	t _{SCK} /2 + 10	_	_	ns
5	t _A	Slave access time	SS active to SOUT valid	_	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	SS inactive to SOUT High-Z or invalid	_	10	_	_	ns
7	t _{PCSC}	PCSx to PCSS time	_	13	_	_	_	ns
8	t _{PASC}	PCSS to PCSx time	_	13	_	_	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	_	20	_	ns
		time for inputs	Slave	2	_	2	_	
		Inputo	Master (MTFE = 1, CPHA = 0)	15	_	8 ²	_	

Table continues on the next page...

Table 34. DSPI electrical specifications (continued)

No	Symbol	Parameter	Conditions	High Spe	ed Mode ¹	low Spe	ed mode	Unit
				Min	Max	Min	Max	7
			Master (MTFE = 1, CPHA = 1)	15	_	20	_	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	_	- 5	_	ns
		time for inputs	Slave	4	_	4	_	
		Inputs	Master (MTFE = 1, CPHA = 0)	0	_	11 ²	_	
			Master (MTFE = 1, CPHA = 1)	0	_	-5	_	
11	t _{SUO}	Data valid	Master (MTFE = 0)	_	NA	_	4	ns
		(after SCK edge)	Slave	_	15	_	23	
		cuge)	Master (MTFE = 1, CPHA = 0)	_	4	_	16 ²	
			Master (MTFE = 1, CPHA = 1)	_	4	_	4	
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	NA	_	-2	_	ns
			Slave	4	_	6	_	
			Master (MTFE = 1, CPHA = 0)	-2	_	10 ²	_	
			Master (MTFE = 1, CPHA = 1)	-2	_	-2	_	

- 1. Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode. See Table 3.
- 2. SMPL_PTR should be set to 1

NOTE

Restriction For High Speed modes

- DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master mode SCK
- DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave SCK frequency
- Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode. See Table 36.
- For Master mode MTFE will be 1 for high speed mode
- For high speed slaves, their master have to be in MTFE=1 mode or should be able to support 15ns tSUO delay

NOTE

For numbers shown in the following figures, see Table 34

Table 35. Continuous SCK timing

Spec	Characteristics	Pad Drive/Load	Value	
			Min	Max
tSCK	SCK cycle timing	strong/50 pF	100 ns	-
-	PCS valid after SCK	strong/50 pF	-	15 ns
-	PCS valid after SCK	strong/50 pF	-4 ns	-

Table 36. DSPI high speed mode I/Os

DSPI	High speed SCK	High speed SIN	High speed SOUT
DSPI2	GPIO[78]	GPIO[76]	GPIO[77]
DSPI3	GPIO[100]	GPIO[101]	GPIO[98]
SPI1	GPIO[173]	GPIO[175]	GPIO[176]
SPI2	GPIO[79]	GPIO[110]	GPIO[111]

Figure 8. DSPI classic SPI timing — master, CPHA = 0

Figure 9. DSPI classic SPI timing — master, CPHA = 1

Figure 10. DSPI classic SPI timing — slave, CPHA = 0

Figure 11. DSPI classic SPI timing — slave, CPHA = 1

Figure 12. DSPI modified transfer format timing — master, CPHA = 0

Figure 13. DSPI modified transfer format timing — master, CPHA = 1

Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

6.4.2.2 **TxEN**

Figure 17. TxEN signal

Table 37. TxEN output characteristics¹

Name	Description	Min	Max	Unit
dCCTxEN _{RISE25}	Rise time of TxEN signal at CC	_	9	ns
dCCTxEN _{FALL25}	Fall time of TxEN signal at CC	_	9	ns
dCCTxEN ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxEN ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V}$ -5%, +±10%, TJ = -40 °C / 150 °C, TxEN pin load maximum 25 pF

Figure 18. TxEN signal propagation delays

6.4.2.3 TxD

Figure 19. TxD Signal

Table 38. TxD output characteristics

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output	_	9 ²	ns

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Table 38. TxD output characteristics (continued)

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

- 1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF.
- 2. For 3.3 V \pm 10% operation, this specification is 10 ns.

^{*}FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 RxD

Table 39. RxD input characteristic

Name	Description ¹	Min	Max	Unit
C_CCRxD	Input capacitance on RxD pin	_	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

51

1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, $+\pm10\%$, TJ = -40 oC / 150 oC.

6.4.3 uSDHC specifications

Table 40. uSDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit			
	Card input clock							
SD1	fpp	Clock frequency (Identification mode)	0	400	kHz			
	fpp	Clock frequency (SD\SDIO full speed)	0	25	MHz			
	fpp	Clock frequency (SD\SDIO high speed)	0	40	MHz			
	fpp	Clock frequency (MMC full speed)	0	20	MHz			
	f _{OD}	Clock frequency (MMC full speed)	0	40	MHz			
SD2	t _{WL}	Clock low time	7	_	ns			
SD3	t _{WH}	Clock high time	7	_	ns			
SD4	t _{TLH}	Clock rise time	_	3	ns			
SD5	t _{THL}	Clock fall time	_	3	ns			
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)				
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns			
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)							
SD7	t _{ISU}	SDHC input setup time	5	_	ns			
SD8	t _{IH}	SDHC input hold time	0	_	ns			

Figure 21. uSDHC timing

6.4.4 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.4.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

NOTE

ENET0 supports the following xMII interfaces: MII, MII_Lite and RMII. ENET1 supports the following xMII interfaces: MII_Lite.

NOTE

It is only possible to use ENET0 and ENET1 simultaneously when both are configured for MII_Lite.

NOTE

In certain pinout configurations ENET1 MII-Lite signals can be across multiple VDD_HV_A/B/C domains. If these configuration are used, VDD_HV IO domains need to be at the same voltage (for example: 3.3V)

Table 41. MII signal switching specifications

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	_	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Figure 22. RMII/MII transmit signal timing diagram

Figure 23. RMII/MII receive signal timing diagram

6.4.4.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Table 42. RMII signal switching specifications

Num	Description	Min.	Max.	Unit
_	EXTAL frequency (RMII input clock RMII_CLK)	_	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

MediaLB (MLB) electrical specifications

Connecting two MPC5748G MCUs via ENET without a PHY

To connect two MPC5748G MCUs for an application together through ENET without a PHY, the following steps should be followed:

- 1. MCU #1 ENET_0 should be connected to MCU #2 ENET_0
- 2. MCU #1 ENET_1 should be connected to MCU #2 ENET_1

This ensures conformity to ENET set-up and hold times. Note that the MPC5748G datasheet quotes worst case set-up and hold times when connecting MCU #1 ENET_0 to MCU #2 ENET 1.

MediaLB (MLB) electrical specifications 6.4.5

6.4.5.1 **MLB 3-pin interface DC characteristics**

The section lists the MLB 3-pin interface electrical characteristics.

Table 43. MediaLB 3-Pin Interface Electrical DC Specifications

Parameter	Symbol	Test Conditions	Min	Max	Unit
Maximum input voltage	_	_	_	3.6	٧
Low level input threshold	V _{IL}	_	_	0.7	٧
High level input threshold	V _{IH}	See Note ¹	1.8	_	٧
Low level output threshold	V _{OL}	I _{OL} = -6 mA	_	0.4	٧
High level output threshold	V _{OH}	I _{OH} = -6 mA	2.0	_	V
Input leakage current	IL	0 < Vin < VDD	_	±10	μΑ

^{1.} Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

6.4.5.2 MLB 3-pin interface electrical specifications

This section describes the timing electrical information of the MLB module.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018 54 NXP Semiconductors

Figure 24. MediaLB 3-Pin Timing

Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Table 44. MLB 3-Pin 256/512 Fs Timing Parameters

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r		3	ns	V _{IL to V_{IH}}
MLBCLK fall time	t _{mck} f		3	ns	V _{IH to V_{IL}}
MLBCLK low time ¹	t _{mck} l	30	_	ns	256xFs
		14			512xFs
MLBCLK high time	t _{mck} h	30	_	ns	256xFs
		14			512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	_
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	_
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mck} l	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	4	_	ns	2

^{1.} MLBCLK low/high time includes the pluse width variation.

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

^{2.} The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

USB electrical specifications

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Table 45. MLB 3-Pin 1024 Fs Timing Parameters

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK Operating Frequency ¹	f _{mck}	45.056	-	MHz	1024 x fs at 44.0 kHz
		-	51.2	MHz	1024 x fs at 50.0 kHz
MLBCLK rise time	f _{mckr}		1	ns	V _{IL to} V _{IH}
MLBCLK fall time	f _{mckf}		1	ns	V _{IH to} V _{IL}
MLBCLK low time	t _{mckl}	6.1	_	ns	2
MLBCLK high time	t _{mckh}	9.3	_	ns	2
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	_	ns	3

^{1.} The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLBCLK.

6.4.6 USB electrical specifications

6.4.6.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

6.4.6.2 ULPI timing specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in the following table. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin.

^{2.} MLBCLK low/high time includes the pluse width variation.

The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the
maximum load capacitance listed.

Table 46. ULPI timing specifications

Num	Description	Min.	Тур.	Max.	Unit
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle	_	50	_	%
U1	USB_CLKIN clock period	_	16.67	_	ns
U2	Input setup (control and data)	5	_	_	ns
U3	Input hold (control and data)	1	_	_	ns
U4	Output valid (control and data)	_	_	9.5	ns
U5	Output hold (control and data)	1	_	_	ns

Figure 25. ULPI timing diagram

6.4.7 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

Table 47. Master mode SAI Timing

no	Parameter	Va	alue	Unit
		Min	Max	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	-	BCLK period
S4	SAI_BCLK pulse width high/low	45%	55%	ns
S5	SAI_BCLK to SAI_FS output valid	-	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	-	ns
S7	SAI_BCLK to SAI_TXD valid	-	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	-	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	-	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	-	ns

Figure 26. Master mode SAI Timing

Table 48. Slave mode SAI Timing

No	Parameter	Value		Unit
		Min	Max	
	Operating Voltage	2.7	3.6	V
S11	SAI_BCLK cycle time (input)	80	-	ns
S12	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	-	ns
S14	SAI_FS input hold after SAI_BCLK	2	-	ns
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	-	28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	-	ns
S17	SAI_RXD setup before SAI_BCLK	10	-	ns
S18	SAI_RXD hold after SAI_BCLK	2	-	ns

Debug specifications

Figure 27. Slave mode SAI Timing

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 49. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK Cycle Time ²	62.5	_	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	_	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5	_	ns
6	t _{TDOV}	TCK Low to TDO Data Valid	_	20 ³	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0	_	ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance	_	15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	_	600 ⁴	ns
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	_	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	_	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	_	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

Figure 28. JTAG test clock input timing

Figure 29. JTAG test access port timing

Debug specifications

Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 50. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			s			
1	t _{MCYC}	MCKO Cycle Time	_	15.6	_	ns
2	t _{MDC}	MCKO Duty Cycle	_	40	60	%
3	3 t _{MDOV} MCKO Low to MDO, MSEO, EVTO Data Valid ²		_	-0.1	0.25	tMCYC
4	4 t _{EVTIPW} EVTI Pulse Width		_	4	_	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	_	1	_	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	_	62.5	_	ns
7	t _{TDC}	TCK Duty Cycle	_	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time	_	8	_	ns

Table continues on the next page...

Table 50. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	_	0	25	ns

- 1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.
- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

Figure 31. Nexus output timing

Figure 32. Nexus EVTI Input Pulse Width

Debug specifications

Figure 33. Nexus TDI, TMS, TDO timing

6.5.3 WKPU/NMI timing

Table 51. WKPU/NMI glitch filter

	No.	Symbol	Parameter	Min	Тур	Max	Unit
Ī	1	W _{FNMI}	NMI pulse width that is rejected	_	_	20	ns
	2	W _{NFNMI} D	NMI pulse width that is passed	400	_	_	ns

6.5.4 External interrupt timing (IRQ pin)

Table 52. External interrupt timing specifications

No.	Symbol	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	IRQ pulse width low	_	3	_	t _{CYC}
2	t _{IPWH}	IRQ pulse width high	_	3	_	t _{CYC}
3	t _{ICYC}	IRQ edge to edge time	_	6	_	t _{CYC}

These values applies when IRQ pins are configured for rising edge or falling edge events, but not both.

Figure 34. External interrupt timing

7 Thermal attributes

7.1 Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	45.5	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	23.1	°C/W	1, 2, 3
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	34.8	°C/W	1,3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	16	°C/W	1,3
_	$R_{\theta JB}$	Thermal resistance, junction to board	9.4	°C/W	4
_	R ₀ JCtop	Thermal resistance, junction to case top	9.5	°C/W	5
_	R ₀ JCbotttom	Thermal resistance, junction to case bottom	0.2	°C/W	6

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top	0.2	°C/W	7

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single- layer (1s)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	25.5	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	19.0	°C/W	1,23
Single- layer (1s)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./ min. air speed)	18.1	°C/W	1, 3
Four-layer (2s2p)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./ min. air speed)	14.8	°C/W	1,3
_	$R_{\theta JB}$	Thermal resistance, junction to board	10.4	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top natural convection)	0.45	°C/W	6
_	Ψ_{JB}	Thermal characterization parameter, junction to package top natural convection)	2.65	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance..
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single- layer (1s)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	39.5	°C/W	1, 2
Four-layer (2s2p)	$R_{ heta JA}$	Thermal resistance, junction to ambient (natural convection)	22.9	°C/W	1,23
Single- layer (1s)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./ min. air speed)	28.5	°C/W	1,3
Four-layer (2s2p)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./ min. air speed)	18.3	°C/W	1,3
_	$R_{\theta JB}$	Thermal resistance, junction to board	9.5	°C/W	4
_	$R_{\theta JC}$	Thermal resistance, junction to case	5.8	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	6
_	Ψ_{JB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	6.4	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance..
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in package drawing.

To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing's document number:

Package	NXP Document Number
176-pin LQFP-EP	98ASA00673D
256 MAPBGA	98ASA00346D
324 MAPBGA	98ASA10582D

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Pinouts

Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

Reset sequence duration 10.1

Table 53 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

Table 53. RESET sequences

No.	Symbol	Parameter T _{Reset}			Unit	
		Min Typ		Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	5.730	7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	Destructive Reset Sequence, BIST disabled 0.111 0.182			
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot 5.729 7.793			ms	
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	0.110	0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	0.007	0.009		ms

^{1.} The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

10.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution Min Unit Typ Max duration BAF execution time 200 us (boot header at first location) 320 BAF execution time μs (boot header at last location)

Table 54. BAF execution duration

10.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 53.

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in Table 53 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3.

Reset sequence

Figure 35. Destructive reset sequence, BIST enabled

Figure 36. Destructive reset sequence, BIST disabled

Figure 37. External reset sequence long, BIST enabled

Figure 38. Functional reset sequence long

71

Figure 39. Functional reset sequence short

The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

The following table provides a revision history for this document.

Table 55. Revision History

Rev. No.	Date	Substantial Changes
1	14 March 2013	Initial Release
1.1	16 May 2013	Updated Pinouts section
2	22 May 2014	 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet Revised the feature list. Revised Introduction section to remove classification information. Updated optional information in the ordering information figure. Revised Absolute maximum rating section: Removed category column from table Added footnote at Ta Revised Recommended operating conditions section Added notes Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V) Updated table: Recommended operating conditions (VDD_HV_x = 5 V) Revised Voltage regulator electrical characteristics Updated text describing bipolar transistors Updated figure: Voltage regulator capacitance connection Updated table: Voltage regulator electrical specifications Removed Brownout information Revised Voltage monitor electrical characteristics table
		 Revised Supply current characteristics section Updated table: Current consumption characteristics Updated table: Low Power Unit (LPU) Current consumption characteristics STANDBY Current consumption characteristics

Table continues on the next page...

Table 55. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 Revised Electromagnetic Interference (EMI) characteristics section Revised DC electrical specifications @ 3.3V Range table for naming convections. Revised DC electrical specifications @ 5 V Range table for naming conventions Deleted MLB 6-pin Electrical Specifications Removed PORST characteristics from Functional reset pad electrical characteristics table Added section PORST electrical characteristics Revised Input impedance and ADC accuracy section to remove SNR, THD, SINAD, ENOB, Revised 32 kHz oscillator electrical specifications table to remove 'Vpp' row. Updated 16 MHz RC Oscillator electrical specifications table for statuptime, cycle to cycle jitter, and lonf term jitter Updated 128 KHz Internal RC oscillator electrical specifications table. Updated PLL electrical specifications table Added Jitter Calculation table Added Percentage of Sample exceeding specified value of jitter table
		Revised Memory interfaces section Revised Communication interfaces section Updated note Added Continuous SCK timing table Added DSPI high speed mode I/Os table Updated input transition value in section MLB 3-pin interface electrical specifications Deleted MLB 6-pin interface DC characteristics section Deleted MLB 6-pin interface AC characteristics section Updated JTAG pin AC electrical characteristics table Revised table under Thermal attributes section Updated Obtaining package dimensions section for Freescale Document numbers
3	12 May 2015	Editorial updates throughout the sections Renamed '176 LQFP' package to '176 LQFP-EP' Added following sections: Block diagram Family comparison Ordering Information In table: Absolute maximum ratings as follows: Removed row for symbol: 'V _{SS_HV} ' Added symbol: 'V _{DD_LV} ' Updated 'Max' column for symbol 'V _{INA} ' Added footnote to 'Conditions' column Removed footnote from 'Max' column In section: Recommended operating conditions Added opening text: "The following table describes the operating conditions" Added note: "V _{DD_HV_A} , V _{DD_HV_B} and V _{DD_HV_C} are all" In table: Recommended operating conditions (V _{DD_HV_X} = 3.3 V) Added footnote to 'Conditions' cloumn Updated footnote to 'Conditions' cloumn Removed footnote for 'Min' column Removed footnote from symbols 'V _{DD_HV_A} ', 'V _{DD_HV_B} ', and 'V _{DD_HV_C} ' Removed row for symbol: 'V _{SS_HV} ' Updated 'Parameter' column for symbol 'V _{DD_HV_FLA} ', 'V _{DD_HV_ADC1} ', 'V _{DD_LV} ' Updated 'Min' column for symbol 'V _{DD_HV_ADC0} ' and 'V _{DD_HV_ADC1} ' Updated 'Parameter' 'Min' 'Max' column for symbol 'V _{SS_HV_ADC1} ' Added footnote to symbol 'V _{DD_LV} ' Removed footnote from symbol 'V _{DD_LV} '

Table continues on the next page...

Table 55. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 Removed row for symbol 'V_{SS_LV}' Removed footnote from 'Max' column of symbols 'V_{DD_HV_ADC0}' and 'V_{DD_HV_ADC1}'
		In section: Recommended operating conditions In table: Recommended operating conditions (V _{DD_HV_x} = 5 V) Added footnote to 'Conditions' cloumn Updated footnote for 'Min' column Removed footnote from symbols 'V _{DD_HV_A', 'VDD_HV_B} ', and 'V _{DD_HV_C} ' Removed row for symbol: 'V _{SS_HV} ' Updated 'Parameter' column for symbol 'V _{DD_HV_ADC1_REF} ' 'V _{DD_HV_ADC1_REF} ', 'V _{DD_LV} ' Updated 'Min' columnn of symbol 'V _{DD_HV_ADC0} ' and 'V _{DD_HV_ADC1} ' Updated 'Parameter', 'Min' 'Max' column for symbol 'V _{SS_HV_ADC0} ' and 'V _{SS_HV_ADC0} ' Added footnote to symbol 'V _{DD_LV} ' Removed row for symbol 'V _{SS_LV} ' Added row for symbol 'V _{IN1_CMP_REF} ' and corresponding footnotes to the symbol In section: Voltage regulator electrical characteristics In table: Voltage regulator electrical specifications
		 Added note to symbol 'Cbe_fpreg' In section: Voltage monitor electrical characteristics In table: Voltage monitor electrical characteristics Updated column 'Parameter', 'Min' and 'Max' (of fall/rise trimmed condition) for symbol 'V_{HVD_LV_cold}' and 'V_{LVD_IO_A_HI'} Updated column 'Parameter', 'Min' and 'Typ' (of fall/rise trimmed condition) for symbol) 'V_{LVD_LV_PD2_hot}, 'V_{LVD_LV_PD2_cold_LV}' Updated column 'Parameter' for symbol 'V_{LVD_LV_PD0_hot}' Updated column 'Typ' and 'Max' (of fall/rise trimmed condition) for symbol) 'V_{LVD_FLASH}' Updated footnote on symbol 'V_{LVD_IO_A_LO}' and 'V_{LVD_IO_A_HI}'
		In section: Supply current characteristics In table: Current consumption characteristics Updated column 'Typ' for symbol 'I _{DD_FULL} ' for temperature 85, 105, 125 Updated column 'Typ' for symbol 'I _{DD_GWY} ' for temperature 85, 105, 125 and column 'Max' for temperature 105 Updated column 'Typ' for symbol 'I _{DD_BODY1} ' for temperature 85, 105, 125 Updated column 'Typ' for symbol 'I _{DD_BODY2} ' for temperature 85, 105, 125 and 'Max' for temperature 125 Added 'Typ' value for temperature 25 for symbol 'I _{DD_STOP} ' Updated column 'Typ' and 'Max' for symbol 'I _{DD_STOP} ' for temperature 85, 105, 125 In table: Low Power Unit (LPU) Current consumption characteristics Updated column 'Typ' for symbol 'LPU_RUN' for tempeature 25 and 125 Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol 'LPU_RUN' Updated column 'Typ' for symbol 'LPU_STOP' for tempeature 25 and 125 Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol 'LPU_STOP' In table: STANDBY Current consumption characteristics Updated to have one STANDBY

Table continues on the next page...

Table 55. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 In table: Functional Pad AC Specifications @ 3.3 V Range Updated values for symbol 'pad_sr_hv (output)' In table: DC electrical specifications @ 3.3V Range Updtaed values for VDD_HV_x, Vih, Vhys Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys In table: Functional Pad AC Specifications @ 5 V Range Updated values for symbol 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys
		In section: PORST electrical specifications In table: PORST electrical specifications Updated 'Min' value for W _{NFPORST} Corrected 'Unit' for V _{IH} and V _{IL}
		 In section: Peripheral operating requirements and behaviours Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion characteristics (for 10-bit)
		 In section: Analogue Comparator (CMP) electrical specifications In table: Comparator and 6-bit DAC electrical specifications Updated 'Max' value of I_{DDLS} Updated 'Min' and 'Max' for V_{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V_H Updated row for tDHS Added row for tDLS Removed row for VCMPOh and VCMPOI
		 In section: Clocks and PLL interfaces modules Revised table: Main oscillator electrical characteristics In table: 16 MHz RC Oscillator electrical specifications Updated 'Max' of Tstartup In table: 128 KHz Internal RC oscillator electrical specifications Removed Uncaliberated 'Condition' for Fosc Updated 'Min' and 'Max' of Caliberated Fosc Updated 'Temperature dependence' and 'Supply dependence' In table: PLL electrical specifications Removed Input Clock Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Typ' value of Duty Cycle at pllclkout Removed 'Min' from calibration mode of Lock Time In table: Jitter calculation Added 1 Sigma Random Jitter value for Long term jitter
		In section Flash read wait state and address pipeline control settings Revised table: Flash Read Wait State and Address Pipeline Control Removed section: On-chip peripherals
Rev4	Feb 10 2017	 Added vDD_HV_BALLAST footnote in Voltage regulator electrical characteristics Added Note to clarify In-Rush current and pin capacitance in Voltage regulator electrical characteristics Updated SIUL2_MSCRn[SRC 1:0]=11@25pF max value; SIUL2_MSCRn[SRC 1:0]=11@50pF min value; SIUL2_MSCRn[SRC 1:0]=10@25pF min and max values in AC specifications @ 3.3 V Range

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018

Table 55. Revision History (continued)

Rev. No.	Date	Substantial Changes
		Updated VIH min and VIL max values in Main oscillator electrical characteristics Replaced ipp_sre[1:0] by SIUL2_MSCRn[SRC 1:0] in AC specifications @ 3.3 V Range, DC electrical specifications @ 3.3V Range Functional reset sequence short, unsecure boot corrected Reset sequence duration Added NVM memory map and RAM memory map Family comparison Added BAF execution duration section BAF execution duration Supply names (VDD_LV, VSS_LV replace dvss, avss, dvdd, avdd) corrected in Jitter calculation table PLL electrical specifications Updated Ordering information: Fab and Mask version indicator Updated tpsus typical and max values Flash memory AC timing specifications Added Notes on IBIS models use in AC specifications @ 3.3 V Range AC specifications @ 3.3 V Range Updated Vol value in DC electrical specifications @ 3.3V Range DC electrical specifications @ 3.3V Range Added Notes on IBIS models in Functional Pad AC Specifications @ 5 V Range AC specifications @ 5 V Range Updated Vol values in DC electrical specifications @ 5V Range DC electrical specifications @ 5 V Range Updated IDD Current values Supply current characteristics Updated IDD Current values Supply current characteristics Updated STANDBY current consumption with FIRC ON Supply current characteristics FOR_HV Trim values removed Voltage monitor electrical characteristics ADC analog pad leakage for 105 C added ADC electrical specifications IDD STANDBYO, 1, 2 and 3 added Supply current characteristics
Rev5	July 31 2017	 Updated Standby2 value to 125 C in Standby current consumption characteristics Corrected typo in Note from "case" to "cause" Voltage regulator electrical characteristics Updated propagation delay from 14 to 21 in ACMP electrical specifications
Rev6	Nov 23 2018	 Added text "Connecting two MPC5748G MCUsconnecting MCU #1 ENET_0 to MCU #2 ENET_1" under "RMII signal switching specifications" section in Ethernet switching specifications. Removed the footnote "Max power supply ramp rate is 500 V / ms" from Table 17 and Table 15. Changed "V_{DD_HV_A}" to "V_{DD_HV_IO}" and changed the condition from "V_{DD_HV_A}= V_{DD_POR}" to "3.0 V < V_{DD_HV_IO} < 5.5 V" in Table 18. Added footnote to V_{DD_LV} in Table 5. Corrected the number of SMPU descriptors from 32 to 16 in Features and table "MPC5748G Family Comparison" in Family comparison. Updated the second bullet point from "If VDD_HV_A is in 3.3V rangeshould be shorted to VDD_HV_A" to "If VDD_HV_A is in 5.0V rangeshould be shorted to VDD_HV_A" in Recommended operating conditions. Added footnote in "High Speed Mode" column and for Parameter "DSPI cycle time" changed the Condition from "Master (MTFE=0)" to "Master" in DSPI timing. Added 32 and 64 KB flash blocks in Table 3. Added note "For the Precision channel Analog inputspulled low/high externally" in Supply current characteristics. Changed Powerup to POR under the column "Reset Type" in table Voltage monitor electrical characteristics in Voltage monitor electrical characteristics.

How to Reach Us:

Home Page:

nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2018 NXP B.V.

Document Number MPC5748G Revision 6, 11/2018

