Math 132 Homework #1

Nathan Solomon

April 6, 2025

Problem 0.1. Chapter I, section 1, exercise 3

Using the facts that $|s|^2 = s\overline{s}$ and $2\Re(s) = s + \overline{s}$ for any $s \in \mathbb{C}$, the equation can be simplified as follows:

$$|z|^{2} - 2\Re(\overline{a}z) + |a|^{2} = \rho^{2}$$

$$z\overline{z} - (\overline{a}z + a\overline{z}) + a\overline{a} = \rho^{2}$$

$$(z - a)(\overline{z} - \overline{a}) = \rho^{2}$$

$$|z - a|^{2} = \rho^{2}$$

$$d(z, a) = \rho.$$

That last line is equivalent to saying z lies in the circle of radius $\rho \geq 0$ centered at $a \in \mathbb{C}$.

Problem 0.2. Chapter I, section 1, exercise 4

Let $a, b \in \mathbb{R}$ be the unique numbers such that z = a + bi. Then the inequality $|z| \le |\Re z| + |\Im z|$ can be rewritten as:

$$|a+bi| \le |a| + |b|$$

$$\sqrt{a^2 + b^2} \le |a| + |b|$$

$$a^2 + b^2 \le a^2 + b^2 + 2|a||b|$$

$$0 \le |2ab|.$$

That inequality is clearly true, and both sides are equal iff a = 0 or b = 0. If you sketch the set of points $z \in \mathbb{C}$ for which equality holds, it will look like a plus-sign centered at the origin (that is, the union of the real and imaginary axes).

Problem 0.3. Chapter I, section 2, exercise 8

Those theorems are true for any $\theta \in \mathbb{C}$, but my proofs below only work when $\theta \in \mathbb{R}$.

$$\cos(2\theta) = \Re(\exp(2i\theta))$$

$$= \Re(\exp(2i\theta)^2)$$

$$= \Re((\cos\theta + i\sin\theta)^2)$$

$$= \Re(\cos^2\theta + 2i\cos\theta\sin\theta - \sin^2\theta)$$

$$= \cos^2\theta - \sin^2\theta.$$

$$\sin(2\theta) = \Im(\exp(2i\theta))$$

$$= \Im(\cos^2\theta + 2i\cos\theta\sin\theta - \sin^2\theta)$$

$$= 2\cos\theta\sin\theta.$$

$$\cos(4\theta) = \Re(\exp(4i\theta))$$

$$= \Re((\cos\theta + i\sin\theta)^4)$$

$$= \Re((\cos\theta + i\sin\theta)^4)$$

$$= \Re(\cos^4\theta + 4i\cos^3\theta\sin\theta - 6\cos^2\theta\sin^2\theta - 4i\cos\theta\sin^3\theta + \sin^4\theta)$$

$$= \cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta.$$

$$\sin(4\theta) = \Im(\exp(4i\theta))$$

$$= \Im((\cos\theta + i\sin\theta)^4)$$

$$= \Im((\cos\theta + i\sin\theta)^4)$$

$$= \Im(\cos^4\theta + 4i\cos^3\theta\sin\theta - 6\cos^2\theta\sin^2\theta - 4i\cos\theta\sin^3\theta + \sin^4\theta)$$

$$= \Im(\cos^4\theta + 4i\cos^3\theta\sin\theta - 6\cos^2\theta\sin^2\theta - 4i\cos\theta\sin^3\theta + \sin^4\theta)$$

$$= 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta.$$

In general, the identities $\cos(x) = \Re(\exp(ix))$ and $\sin(x) = \Im(\exp(ix))$ only work when $x \in \mathbb{R}$. If you wanted these proofs to also work when $\theta \in \mathbb{C}$, you'd have to instead use the identities $\cos(x) = (e^{ix} + e^{-ix})/2$ and $\sin(x) = (e^{ix} - e^{-ix})/(2i)$.

Problem 0.4. Chapter I, section 3, exercise 4

If you take a point a + bi on the complex plane, then the corresponding point on the Riemann sphere is (X, Y, Z), where

$$X = \frac{2a}{|a+bi|^2 + 1}$$

$$Y = \frac{2b}{|a+bi|^2 + 1}$$

$$Z = \frac{|a+bi|^2 - 1}{|a+bi|^2 + 1}.$$

Rotating that sphere by 180 degrees about the X axis maps it to (X', Y', Z') = (X, -Y, -Z):

$$X' = \frac{2a}{|a+bi|^2 + 1}$$

$$Y' = \frac{-2b}{|a+bi|^2 + 1}$$

$$Z' = \frac{1 - |a+bi|^2}{|a+bi|^2 + 1}$$

For that new point on the Riemann sphere, the corresponding value of t' (that is, the t defined in I.3 of the textbook) is t' = 1/(1 - Z'):

$$t' = \frac{1}{1 - Z'} = \frac{1}{\frac{|a + bi|^2 + 1}{|a + bi|^2 + 1} - \frac{1 - |a + bi|^2}{|a + bi|^2 + 1}} = \frac{|a + bi|^2 + 1}{2|a + bi|^2}.$$

So after rotating the Riemann sphere, the number on the complex plane which corresponds to the new point is a' + b'i, where

$$a' = t'X' = \frac{a}{|a+bi|^2}$$

$$b' = t'Y' = \frac{-b}{|a+bi|^2}$$

$$a' + b'i = \frac{\overline{a+bi}}{|a+bi|^2} = \frac{1}{a+bi}.$$

Therefore, taking the multiplicative inverse of a point on the complex plane is equivalent to mapping it onto the Riemann sphere, rotating 180 degrees around the X-axis, then mapping back to the complex plane.

Problem 0.5. Chapter I, section 4, exercise 3

The function $f: \mathbb{C} \to \mathbb{C}$ defined by $f(z) = w = z^3$ can be visualized as the function which takes a complex number, cubes its magnitude, and triples its argument. As a point z rotates about the origin, f(z) rotates about the origin in the same direction at 3 times the speed.

Define A_1 to be the subset of C containing 0 and all points with principal argument in $(-\pi/3, \pi/3]$. Similarly, let A_2 be the region with zero and all points whose principal argument is in $(\pi/3, \pi]$, and let A_3 be the region with zero and all numbers whose principal argument is in $(-\pi, -\pi/3]$. Then there are three branch cuts: $f_i : \mathbb{C} \to A_i$, for $i \in \{1, 2, 3\}$. They can be defined as

$$f_1(w) = |w|^{1/3} \exp(i \operatorname{Arg}(w)/3)$$

$$f_2(w) = |w|^{1/3} \exp(i \operatorname{Arg}(w)/3 - 2\pi i/3)$$

$$f_3(w) = |w|^{1/3} \exp(i \operatorname{Arg}(w)/3 + 2\pi i/3)$$

$$f_1(0) = f_2(0) = f_3(0) = 0.$$

The Riemann surface is all of \mathbb{C} .

Problem 0.6. Chapter I, section 5, exercise 3

Let a and b be the real and imaginary components of z, respectively, so

$$e^{\overline{z}} = e^{\overline{a+bi}}$$

$$= e^{a-bi}$$

$$= e^{a}(\cos(-b) + i\sin(-b))$$

$$= e^{a}(\cos b - i\sin b)$$

$$= e^{a} \cdot \overline{(\cos b + i\sin b)}$$

$$= \overline{e^{a}} \cdot \overline{e^{ib}}$$

$$= \overline{e^{a}} e^{i\overline{b}}$$

$$= \overline{e^{z}}.$$

Problem 0.7. Chapter I, section 5, exercise 4

Let $a = \Re(\lambda)$ and $b = \Im(\lambda)$, so $\lambda = a + bi$. Multiplying both sides by e^{-z} gives

$$1 = e^z e^{-z} = e^{z+\lambda} e^{-z} = e^{\lambda} = e^a e^{ib}.$$

The magnitude of that equation is

$$1 = |e^a| |e^{ib}| = |e^a| = e^a,$$

so dividing both sides by $e^a = 1$ gives

$$1 + 0i = e^{ib} = \cos b + i\sin b,$$

which implies $\cos(b) = 1$, so b is an integer multiple of 2π . The condition $e^a = 1$ is equivalent to a = 0, so $\lambda = a + bi$ is an integer multiple of $2\pi i$.

Homework Assignment 1

MATH 132 LEC 1&2

Due April 6th, Sunday 11:59 PM

Please submit your work to Gradescope!

- I.1 Exercises: #3, #4,
- I.2 Exercises: #8,
- I.3 Exercises: #4,
- I.4 Exercises: #3,
- \bullet I.5 Exercises: #3, #4.