

La salud del trabajador ocupacionalmente expuesto a RRII.

III Jornadas de Integración

Sociedad de Radiología e Imagenología
Asociación de Técnicos Radiólogos e Imagenólogos
del Uruguay

10 de junio de 2017, Hotel HN Columbia

Prof. Agda. Dra. Stella de Ben

Departamento Salud Ocupacional, Facultad de Medicina,

UdelaR

SALUD OCUPACIONAL

Estudia la vinculación entre ambos procesos y las formas como uno, puede ser influido por el otro.

CONDICIONES Y MEDIO AMBIENTE DE TRABAJO CYMAT

Determina: diferentes perfiles epidemiológicos de S-E en los diferentes colectivos de trabajadores, o en los mismos, en diferentes contextos históricos sociales.

salud ocupacional

Factores de riesgos laborales

■ Grupo I:

Microclima laboral

(Temperatura, Iluminación, Ventilación, Humedad)

■ Grupo II:

Contaminantes

Físicos:

(Ruido, Vibraciones, Radiaciones)

Químicos:

(Gases, Humos, Vapores, Polvos)

Biológicos: (Virus, Bacterias, Hongos, Parásitos) ■ Grupo III: Carga física

Estática: posturas inadecuadas

Dinámica: levantamiento pesos, Mov.repetitivos, traslado de cargas.

Grupo IV: Psicosocial turnos, pausas, contenido del trabajo, ritmo, relacionamiento humano, participación, estatus, remuneración, identificación con la tarea, iniciativa,

estabilidad laboral, estilo de mando

■ Grupo V: Seguridad

orden y limpieza, instalaciones eléctricas, protección de maquinarias Señalización, Manipulación de sustancias peligrosas

Propiedad intrínseca "naturaleza" del agente

Personal Ocupacionalmente Expuesto a RRII

- ✓ Trabajadores que tienen riesgo de exponerse a dosis límites anuales mayores que el público general.
- ✓ Deben cumplir con los siguientes criterios:
 - Trabajar próximos a fuentes de Radiaciones Ionizantes en actividad al ejecutar lo esencial de sus funciones en forma habitual.
 - Estar asignados a tareas que implican su permanencia en zonas controladas o supervisadas.

Límites de exposición para trabajadores.

- ✓ Dosis efectiva
 - 20 mSv/año (promedio) y 100mSv en 5 años

salud ocupaciona

- no más de 50mSv en un solo año.

- ✓ No se permite el trabajo con exposición a RRII a menores de 18 años ni a embarazadas.
- ✓ En período de lactancia se adoptaran medidas para que la trabajadora no ingrese a áreas en que se trabaje con fuentes no selladas, especialmente las relacionadas con Medicina Nuclear. ARNR.

Zona Controlada

- ✓ Zona controlada es aquella en la que se estima que el personal puede exponerse a dosis anuales, iguales o mayores de 3/10 del límite anual de dosis (6 mSv). Recomendación No 60 (1990) de la CIPR
- ✓ Requiere que los trabajadores actúen de acuerdo a procedimientos escritos y prácticas claramente establecidas.
- ✓ Corresponden a <u>Categoría A</u> y deben usar <u>Dosímetro</u>.

Zona Supervitada

- ✓ Las condiciones de trabajo son mantenidas bajo supervisión, pero sin que se requieran procedimientos especiales de trabajo.
- ✓ Los trabajadores pueden presentar menos de 3/10 del límite anual 20 mSv (<6 mSv/año).
- ✓ El personal corresponde a la Categoría B.

Efectos de las RRII sobre la salud.

- ✓ <u>Efecto determinista</u>: se producen cuando la dosis alcanza un valor umbral determinado y la gravedad depende de la dosis recibida ej. Radiodermitis.
- ✓ <u>Efecto estocástico</u>: no precisan umbral, la probabilidad aumenta con la dosis, ej. Cáncer radioinducido.
- ✓ <u>Efectos de la exposición prenatal</u>: se conjugan efectos deterministas y estocásticos, dependientes de la dosis y la edad gestacion

Efectos deterministas

- ✓ La exposición aguda a dosis elevadas de RRII puede producir efectos inmediatos variables en función de la dosis y de los órganos afectados.
- ✓ La naturaleza, frecuencia y gravedad de los efectos dependen del tipo de radiación, de la dosis y condiciones de exposición.
- ✓ Estos niveles son muy infrecuentes y solo pueden ocurrir en caso de accidentes.

Efectos deterministas

Órganos y tejidos	Exposición en Sievert	Efecto
Piel	6 10 - 20	Eritema Ampollas, necrosis, ulceras
Medula ósea	2-3	Destrucción de linfocitos
Intestino	10	Denudación vellosidades
Gónadas	2-4	Esterilidad
Aparato Respiratorio	6- 10	Neumonia Aguda
Cristalino	5 (prolongado) 0,5 -2 (exp. Corta)	Cataratas

- ✓ En radiología intervencionista se pueden producir altas dosis hasta llegar a umbrales para efectos deterministas, con potenciales radiolesiones, especialmente en cristalino y extremidades.
- ✓ En estos casos la exposición está muy influenciada por el tipo de técnica empleada y la duración del procedimiento.

Efecto estocástico (probabilístico)

salud ocupaciona

- ✓ Alteración del material genético de la célula (ADN) o de sus mecanismos de expresión.
- ✓ Mutación, cáncer (estómago, pulmón, colon, piel, tiroides o leucemia, ...).
- ✓ El riesgo aumenta a partir de cualquier dosis de exposición.
- ✓ Efectos sobre la segunda generación: abortos, malformaciones congénitas, retraso del crecimiento, cáncer.

Efecto estocástico (probabilístico)

- ✓ La atribución de la causalidad del cáncer es un dilema, porque el cáncer es una enfermedad multifactorial y no tiene un marcador específico .
- ✓ Con pocas excepciones, su inducción sólo ha podido detectarse después de dosis equivalentes relativamente grandes (0,5 Sv)

Posible beneficio del consumo de jugo de tomate: estudio piloto en linfocitos humanos de donantes sanos irradiados.

Nakamura A, Itaki C, Saito A y col. Nutr. J. 2017 May 12;16(1).

- Los carotenoides, lycopene and β-carotene, presentes en el jugo de tomate, son limpiadores de radicales libres.
- Objetivo: investigar el efecto del jugo de tomate en los niveles de daño del AND humano y el estrés oxidativo inducido in vitro por exposición a RX.
- Método: ingesta 190g/jugo/día/3 semanas. Miden daño citogenético, estres oxidativo y concentración de carotinoides. Comparan con grupo contro.
- Conclusión: el consumo de jugo de tomate puede suprimir el daño en el ADN causado por la radiación, pero se requieren nuevas investigaciones.

El consumo de espinaca y tomates aumenta la resistencia del ADN de los linfocitos al estrés oxidativo no relacionado con la concentración de carotenoides.

Porrini M, Riso P, Oriani G. Eur J Nutr. 2002 Jun;41(3):

Objetivo: evaluar el efecto del consumo de espinaca y tomate en la resistencia del AND celular al estrés oxidativo.

Método: 9 mujeres sanas con dieta basal enriquecida con 150 g de espinaca por 3 sem.; 2 semanas dieta basal y 3 semanas dieta enriquecida con 150 g de espinaca + pure de tomate. Toman muestras de linfocitos al inicio de cada dieta. Se miden carotenoides y linfocitos (HPLC) daño del AND (ensayo cometa).

Resultado: la resistencia del ADN aumento significativamente despues de ambas dietas enriquecidas (P < 0.01); sin embargo no se observaron efectos aditivos con espinaca + tomate.

Conclusiones: el consumo de alimentos ricos en carotenoides aun por cortos periodos de tiempo protegen contra el estrés oxidativo.

Prevención del riesgo

- ✓ Programa de Seguridad Radiológica
- ✓ Principio ALARA (as low as reasonably achievable): los niveles deben mantenerse tan bajos como sea razonablemente posible.
- ✓ Las normas de protección radiológica serán particulares para cada instalación dependiendo del tipo y magnitud del riesgo, así como de otras características propias.

Programa de Protección Radiológica

- ✓ Con dosis dentro de los límites establecidos para la exposición ocupacional no se producirán efectos deterministas y la probabilidad de los estocásticos será muy baja.
- ✓ Meta: evitar efectos de tipo determinista y minimizar los de carácter estocástico.

Programa de Vigilancia de los TOE

✓ Evaluación de las condiciones y medio ambiente laboral.

- ✓ Informar, capacitar-formar y mantener actualizado el conocimiento.
- ✓ Vigilar la zona de trabajo.
- ✓ Controlar las dosimetrías personales comparando con los valores de referencia .

Vigilancia

✓ Vigilancia del Ambiente de Trabajo:

√ Vigilancia de la Salud de los Trabajadores

Vigilancia del Ambiente de Trabajo

Medidas de Prevención:

En la fuente : diseño, mantenimiento de equipos y procedimientos de trabajo.

En el medio: pantallas plomadas, diseño de instalaciones, blindaje, control ambiental, señalización.

En el trabajador: protección personal, dosimetría, capacitación, participación

salud ocupacional

Medidas de protección

- ✓ Limitar el tiempo de exposición.
- ✓ Aumentar la distancia a la fuente.
- ✓ Utilizar barreras y blindajes aislantes.
- ✓ Utilizar protección personal adecuada.

Equipos de protección individual

- ✓ Delantales con Pb (en intervencionismo 0,5mm Pb)
- ✓ Gafas protectoras del cristalino
- ✓ Protector de tiroides (si el trabajador se mantiene durante el procedimiento RD)
- ✓ Guantes plomados (si debe usar las manos en zona proxima al haz de Rd)

Vigilancia de la Salud del TOE

- ✓ Exámen preocupacional, periódico, al reintegro, después de exposiciones anormales y al finalizar la vida laboral.
- ✓ Evaluar la aptitud para el trabajo
- ✓ Interpretar resultados dosimétricos y asesorar a los trabajadores.
- ✓ Recomendar cambios en la actividad laboral o condiciones de exposición.
- ✓ Evaluar el riesgo de exposición y articular con el responsable de protección Radiológica.

salud ocupacional

Vigilancia de la Salud Ordenanza 145/09, MSP

- ✓ Historia Clínica Médico Laboral (importancia para fines médicos – legales y estudios epidemiológicos).
- ✓ Evaluación de Dosimetrías
- ✓ Hemograma con Lámina (anual) .
- La periodicidad de los controles será más frecuente en los casos en que las mediciones de indicadores biológicos obtenidas alcancen, superen o se encuentren próximos a los valores límite establecidos.

ARNR tiene entre sus cometidos: « Brindar al trabajador ocupacionalmente expuesto a las radiaciones ionizantes, la información sobre sus valores de dosis anuales, incluyéndose si fuera del caso el valor integrado si prestara funciones en más de una institución.» (Ley 19056/2013).

Participación de los Trabajadores Decreto 291/009, Convenio 155 OIT

- Empleadores deberán garantizar la salud y seguridad de los trabajadores
- Los trabajadores tienen derecho según legislación y prácticas nacionales, a consultar y efectuar recomendaciones.
- Participación en Comisiones Bipartitas de Salud y Seguridad en el Trabajo

Servicios de Prevención y Salud Decreto 197/014 Salud Grupo 15 Convenio 161

- ✓ Integración multidisciplinaria: Médico y Tecn. Prevencionista o Tecnologo en Salud Ocupacional.
- ✓ Identificación y evaluación de los riesgos
- ✓ Vigilancia de los factores del medio ambiente de trabajo y de las prácticas de trabajo.
- Asesoramiento en materia de salud, de seguridad y de higiene en el trabajo y de ergonomía.
- ✓ Vigilancia de la salud de los trabajadores.
- ✓ Fomento de la adaptación del trabajo a los trabajadores.
- ✓ Asistencia en medidas de rehabilitación profesioi salud occupacional

Gracias!

Departamento de Salud Ocupacional saludocup@fmed.edu.uy