Departamento de Ingeniería Electrónica

SISTEMAS DIGITALES DE INSTRUMENTACIÓN Y CONTROL

TEMA 6

Sistemas Digitales de Control en Tiempo Discreto

Rafael Ramos Lara Febrero 2007

1

Índice (I)

- 6.1. Sistemas de control digital
 - 6.1.1. Introducción al diseño de sistemas de control digital
 - 6.1.2. Discretización de sistemas analógicos
 - 6.1.3. Ejemplo: modelo discreto de un motor DC
- 6.2. Diseño de un control digital PID
 - 6.2.1 Introducción al control PID digital
 - 6.2.2 Aproximación rectangular del control PID
 - 6.2.3 Aproximación trapezoidal del control PID
- 6.3. Arquitecturas de realización de controladores digitales
 - 6.3.1. Programación directa
 - 6.3.2. Programación estándar
 - 6.3.3. Programación serie
 - 6.3.4. Programación paralelo
 - 6.3.5. Programación en escalera

Índice (II)

- 6.4. Ejemplo de diseño: control de un motor DC mediante el driver L293E
 - 6.4.1. Introducción al sistema de control digital de un motor
 - 6.4.2. Modelo equivalente eléctrico del motor DC
 - 6.4.3. Interface con el motor: L293E
 - 6.4.4. Control en lazo abierto de la velocidad de giro
 - 6.4.5. PWM digital
 - 6.4.6. Monitorización de la velocidad de giro
 - 6.4.7. Regulación de la velocidad de giro

Tema 6: Sistema Digitales de Control en Tiempo Discreto

3

6.1 Sistemas de control digital

6.1.1 Introducción al diseño de sistemas de control digital

5

Componentes de un sistema de control

Los componentes principales de un sistema de control son:

- Sensores
- Actuadores
- Controlador: permite obtener el comportamiento deseado del sistema a controlar, manteniendo al mismo tiempo la estabilidad del sistema Tipos de controladores:
 - <u>Controladores analógicos</u>: implementados con amplificadores, resistencias, condensadores que realizan estructuras semejantes a filtros que modifican la respuesta frecuencial del sistema
 - <u>Controladores digitales</u>: implementados con microprocesadores, microcontroladores, DSP, FPGA, CPLD, etc... Necesitan conversores ADC y DAC

Controladores analógicos vs. digitales

Controlador	Ventajas	Desventajas
Analógico	Elevado ancho de bandaElevada resoluciónFácil de diseñar	 Envejecimiento de componentes Derivas con la temperatura Bueno para diseños simples
Digital	 Diseño programable Comportamiento preciso Implementación algoritmos complejos Fácilmente ampliable 	 Dificultad de diseño Necesita procesadores de altas prestaciones Genera problemas numéricos

Tema 6: Sistema Digitales de Control en Tiempo Discreto

7

Diseño de un sistema de control digital

Pasos de diseño de un sistema de control:

- Obtención del modelo del sistema a controlar
- Diseño del controlador para obtener el comportamiento deseado del sistema a controlar

El diseño de controles digitales implica la conversión del sistema en una forma discreta. Dos métodos de conversión:

- Diseño analógico y conversión a discreto para su implementación
- Diseño discreto ⇒ se debe obtener el modelo de la planta en forma discreta (transformada Z)

6.1.2 Discretización de sistemas analógicos

9

Técnicas de discretización de sistema analógicos

Tres técnicas para convertir un sistema analógico en discreto:

- Mantenedor de orden zero (ZOH)
- Correspondencia polos-ceros
- Transformación bilineal

Mantenedor de orden cero (ZOH)

Esta técnica asume que el controlador tiene a la entrada un mantenedor de orden cero

Tema 6: Sistema Digitales de Control en Tiempo Discreto

11

Correspondencia Polo-Cero

Los polos y ceros " s_i " de D(s) se mapean como polos y ceros de D(z) de acuerdo con:

$$z_i = e^{s_i T}$$
 T = periodo de muestreo

Si D(s) tiene más polos que ceros se añaden ceros en z=-1 en el numerador para igualar el número de polos y ceros.

La ganancia se escoge adecuadamente para que se cumpla:

$$D(z)\big|_{z=1} = D(s)\big|_{s=0}$$

Transformación Bilineal

También denominada aproximación de Tustin o trapezoidal, utiliza la siguiente relación

 $s = \frac{2}{T} \frac{(z-1)}{z+1}$ T = periodo de muestreo

para transformar el dominio en "s" en un dominio en "z"

Tema 6: Sistema Digitales de Control en Tiempo Discreto

13

6.1.3 Modelo discreto de un motor DC

Modelo de la planta (I)

El primer paso en el diseño de un control es obtener el modelo de la planta Ejemplo: modelo de un motor DC de imán permanente

Características eléctricas: $L\frac{di}{dt} + Ri = V - emf$

$$L\frac{di}{dt} + Ri = V - emf$$

L: inductancia del motor

R: resistencia

V: tensión de alimentación

i: corriente

emf: fuerza contraelectromotriz = $K_{\rho} \cdot \theta$

 K_e : constante de fuerza contraelectromotriz

Tema 6: Sistema Digitales de Control en Tiempo Discreto

15

Modelo de la planta (II)

Características mecánicas: $J_M \frac{d^2\theta}{dt^2} + B \frac{d\theta}{dt} + K\theta = T_L - J_L \frac{d^2\theta}{dt^2}$

 J_{M} : inercia del motor

 θ : desplazamiento angular

K: constante de rigidez

B: coeficiente de fricción viscosa

 J_L : inercia de la carga= $K_t \cdot i$

 T_L : par de rotación de la carga

 K_t = constante de par de rotación

Modelo de la planta (III)

$$L\frac{di}{dt} + Ri = V - emf$$

Modelo mecánico $L\frac{di}{dt} + Ri = V - emf \qquad \int_{M} \frac{d^{2}\theta}{dt^{2}} + B\frac{d\theta}{dt} + K\theta = T_{L} - J_{L}\frac{d^{2}\theta}{dt^{2}}$

Parámetros del motor

DC Pittman 9412G316

$$R = 6.4\Omega$$

 $J = J_m + J_L = 60 \cdot 10^{-6} \text{ kg} \cdot \text{m}^2$
 $K_t = 0.0207 (N \cdot m)/A$
 $K_e = 0.0206 \text{ volt/(rad/s)}$

$$G(s) = \frac{\theta(s)}{V(s)} = \frac{J^{-1}(K_t/R)}{s(s + J^{-1}(K_tK_e/R))}$$

$$G_m(s) = \frac{\theta(s)}{V(s)} = \frac{53.906}{s(s+1.116)}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

17

Conversión a formato discreto (I)

Transformación ZOH:
$$G(z) = (1 - z^{-1}) \mathbf{Z} \left[\mathbf{L}^{-1} \left(\frac{G(s)}{s} \right) \right]$$

$$\frac{G(s)}{s} = \frac{b}{s^{2}(s+a)} = \frac{A_{1}}{s} + \frac{A_{2}}{s^{2}} + \frac{A_{3}}{s+a} \qquad b = J^{-1}(K_{t}/R)$$

$$a = J^{-1}(K_{t}/R)$$

$$\frac{G(s)}{s} = \frac{\left(-b/a^2\right)}{s} + \frac{\left(b/a\right)}{s^2} + \frac{\left(b/a^2\right)}{s+a}$$
 $T: \text{ periodo de muestreo}$

$$T = 0.001$$

$$G(z) = \frac{b/a^2 \left(e^{-aT} - 1 + aT\right)z^{-1} + b/a^2 \left(1 - e^{-aT} - aTe^{-aT}\right)z^{-2}}{1 - \left(1 + e^{-aT}\right)z^{-1} + e^{-a}Tz^{-2}}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Conversión a formato discreto (II)

$$G(z) = \frac{b/a^2 (e^{-aT} - 1 + aT)z^{-1} + b/a^2 (1 - e^{-aT} - aTe^{-aT})z^{-2}}{1 - (1 + e^{-aT})z^{-1} + e^{-a}Tz^{-2}}$$

$$a = 1.116$$
 $b = 53.906$
 $T = 0.001$

 K_m : Factor de ganancia

$$G(z) = \frac{\theta(z)}{V(z)} = \frac{0.2694z^{-1} + 0.2693z^{-2}}{1 - 1.999z^{-1} + 0.999z^{-2}} \cdot K_m$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

19

6.2 Diseño de un control digital PID

Algoritmos de control

- **Técnicas de compensación**: el controlador añade polos y ceros al sistema para obtener la respuesta deseada .
- **PID**: el control PID es la suma de tres términos: **P**roporcional al error + **I**ntegral del error + **D**erivada del error. Es el algoritmo de control más utilizado.
- Deadbeat: Se utiliza cuando se desea una respuesta rápida. Se diseña en el dominio Z
- Modelos en el espacio de estado: describen matricialmente el modelo de sistema a controlar. Se utiliza cuando hay muchas variables de estado a controlar.
- Control óptimo: se utiliza cuando se desea minimizar un parámetro específico del sistema (p.e. Tiempo de establecimiento, energía, ...). El controlador o compensador debe minimizar el parámetro.
- Control adaptativo: se utiliza en sistemas cuyos parámetros cambian con el tiempo haciendo inestable el control. El control adaptativo sigue los cambios de la planta y rediseña el controlador para obtener un control óptimo del sistema.

Tema 6: Sistema Digitales de Control en Tiempo Discreto

21

6.2.1 Introducción al control PID digital

Expresión general control PID

$$u(t) = K_p e(t) + K_i \int d_t dt + K_d \frac{de}{dt}$$

Minimiza el error

Reduce el error a cero en régimen permanente

- Incrementa la estabilidad de la planta
- Acción anticipativa que reduce el sobreimpulso

K_p: constante proporcional

K_i: constante integral
K_d: constante derivativa
u(t): salida del control

e(t): señal de error

Tema 6: Sistema Digitales de Control en Tiempo Discreto

23

Controlador PID analógico y discreto

Función de transferencia

$$U(s) = K_p E(s) + K_i \frac{E(s)}{s} + K_d s E(s)$$

Control PID digital

Función de transferencia

$$U(z) = K_p E(z) + D_I(z)E(z) + D_D(z)E(z)$$

Existen diversos modos de implementar D_I(z)

Implementación del control PID discreto

Dos técnicas de implementación del control PID digital:

- Aproximación rectangular:
 - El diseño se realiza en el dominio analógico y a continuación se transfiere al dominio discreto
 - Es fácil de implementar y proporciona resultados satisfactorios
- Aproximación trapezoidal:
 - El diseño se realiza en el dominio discreto directamente utilizando técnicas de ubicación de polos

Tema 6: Sistema Digitales de Control en Tiempo Discreto

25

6.2.2 Aproximación rectangular del control PID

Aproximación rectangular del PID (I)

Término proporcional

$$K_{p}e(t) = K_{p}e(n)$$

 $\frac{\text{Término integral}}{K_i \int e(t) = K_i T \sum_i e_i}$

<u>Término derivativo</u>

Si T es suficientemente pequeño se puede aproximar por:

$$K_d \frac{e(t)}{dt} = K_d \frac{e(n) - e(n-1)}{T}$$

Si se conoce e(n+1) se puede obtener una mejor aproximación de la derivada:

$$K_d \frac{e(t)}{dt} = K_d \frac{e(n+1) - e(n)}{T}$$

Algoritmo de posición

$$u(n) = K_p e(n) + K_i T \sum_i e_i + K_d [e(n) - e(n-1)]/T$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

27

Aproximación rectangular del PID (II)

Algoritmo de posición

$$u(n) = K_p e(n) + K_i T \sum_i e_i + K_d [e(n) - e(n-1)]/T$$

Inconveniente: en caso de malfuncionamiento del sistema digital que calcula u(n) se podría generar una salida u(n)=0

Algoritmo de velocidad

$$\Delta u(n) = u(n) - u(n-2)$$

- Es el algoritmo que se utiliza habitualmente
- El sistema de control solo calcula el incremento de la señal de control
- Presenta mejor comportamiento en arranque y frente a transitorios bruscos en la señal de referencia.

Algoritmo PID de velocidad

Algoritmo de velocidad

$$\Delta u(n) = u(n) - u(n-2)$$

$$u(n) - u(n-2) = K_p[e(n) - e(n-2)] + K_i T[e(n) + e(n-1)] + K_d / T[e(n) - 2e(n-1) + e(n-2)]$$

$$u(n) = u(n-2) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

$$K_1 = K_p + K_d / T + K_i T$$

$$K_2 = K_i T - 2K_d / T$$

$$K_3 = K_d / T - K_p$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

29

Determinación coeficientes PID

Método del margen de fase (MF) y margen de ganancia (MG)

Se escoge como parámetros de diseño:

- MF = 55°
- Frecuencia de transición (fase:-180°) = 100Hz

Aplicando técnicas de control clásico en el dominio frecuencial se obtiene:

$$K_n = 4181$$

$$K_d = 9.569$$

$$K_i = 1$$

$$MG = 77dB (f=100Hz)$$

$$K_1 = 13751$$

$$K_2 = -19138$$

$$K_3 = 5387$$

$$u(n) = u(n-2) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

31

Respuesta al escalón con el control PID

Tema 6: Sistema Digitales de Control en Tiempo Discreto

6.2.3 Aproximación trapezoidal del control PID

Aproximación trapezoidal

- Se utiliza cuando se requiere una mayor precisión en la conversión discreta
- La integral se determina con la suma de trapezoides

Área del trapezoide: $\frac{T}{2}[e(n)+e(n-1)]$

Función transferencia término integral

$$u(n) = u(n-1) + K_{I} \frac{T}{2} [e(n) + e(n-1)]$$

$$U(z)(1-z^{-1}) = K_I \frac{T}{2}[1+z^{-1}]E[z]$$

$$D_I(z) = \frac{U(z)}{E(z)} = K_I \frac{T}{2} \frac{(1+z^{-1})}{(1-z^{-1})}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

35

Aproximación trapezoidal PID

$$u(n) = K_p e(n) + K_i T \sum_i e_i + K_d [e(n) - e(n-1)]/T$$
Transformada Z de cada término

$$U(z) = K_p E(z) + K_I \frac{T}{2} \frac{(1+z^{-1})}{(1-z^{-1})} E(z) + \frac{K_d}{T} (1-z^{-1}) E(z)$$

Función de transferencia discreta

$$D(z) = \frac{U(z)}{E(z)} = K_p + K_I \frac{T}{2} \frac{(1+z^{-1})}{(1-z^{-1})} + \frac{K_d}{T} (1-z^{-1})$$

Reordenando términos

$$D(z) = \frac{(2TK_p + K_1T^2 + 2K_d) + (K_1T^2 - 2K_pT - 4K_d)z^{-1} + 2K_dz^{-2}}{2T(1 - z^{-1})}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

$$G_{PID}(z) = \frac{K_1 + K_2 z^{-1} + K_3 z^{-2}}{1 - z^{-1}}$$

Con:
$$K_1 = K_p + \frac{K_i}{2}T + \frac{K_d}{T}, K_2 = -K_p + \frac{K_i}{2}T - \frac{2K_d}{T}, K_3 = \frac{K_d}{T}$$

$$G_p(z) = \frac{\theta(z)}{V(z)} = \frac{0.2694z^{-1} + 0.2693z^{-2}}{1 - 1.999z^{-1} + 0.999z^{-2}} \cdot K_m$$

37

Determinación coeficientes PID

$$G_s(z) = \frac{G_p(z)G_c(z)}{1 + G_p(z)G_c(z)}$$
 Función de transferencia global del sistema

Matlab ⇒ ubicación de polos en 0.96, 0.95, 0.2 y 0.15

Resolviendo el denominador para la ubicación de polos propuesta se obtiene:

$$K_1 = 1.4795$$

 $K_2 = -2.845$
 $K_3 = 1.3636$

$$G_{PID}(z) = \frac{K_1 + K_2 z^{-1} + K_3 z^{-2}}{1 - z^{-1}}$$

$$u(n) = u(n-1) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

$$u(n) = u(n-1) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

39

Respuesta al escalón con el control PID

Polos cerca del círculo unidad:

- Aumenta el tiempo de respuesta
- El sistema puede hacerse inestable

Polos cerca del origen:

- Disminuye el tiempo de respuesta
- Aumenta el sobre impulso

$$u(n) = u(n-1) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

41

6.3 Arquitecturas de realización de controladores digitales

Diagrama de bloques de un controlador digital

Expresión general de la función de transferencia del controlador digital

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

43

Elementos para realizar de un controlador digital

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

Elementos de retardo

Registro de "n" bits

Sumadores c.a.2

Multiplicadores c.a.2

Estructuras de implementación

- Programación directa: implementa la ecuación en diferencias
- Programación estándar: reduce el número de registros a utilizar
- Programación en serie
- Programación en paralelo
- Programación en escalera

La función de transferencia se descompone en funciones de primer y segundo orden para disminuir los errores de truncado de coeficientes

Tema 6: Sistema Digitales de Control en Tiempo Discreto

45

6.3.1 Programación directa

Descomposición de la función de transferencia

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

$$E_{2}(z)[a_{0} + a_{1}z^{-1} + a_{2}z^{-2} + \dots + a_{p}z^{-p}] = E_{1}(z)[b_{0} + b_{1}z^{-1} + b_{2}z^{-2} + \dots + b_{m}z^{-m}]$$

Transformada "z" inversa

$$a_0 \cdot e_2(n) + \sum_{i=1}^p a_i e_2(n-i) = \sum_{i=0}^m b_i e_1(n-i)$$

Salida actual
$$\longrightarrow e_2(n) = \frac{1}{a_0} \sum_{i=0}^m b_i e_1(n-i) - \frac{1}{a_0} \sum_{i=1}^p a_i e_2(n-i)$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

47

Implementación directa

Los coeficientes a_i y b_i aparecen de forma directa

Salidas anteriores

Recursos utilizados:

- M+P elementos de retraso "Z-1"
- M+P+1 multiplicadores
- · M+P sumadores

Tema 6: Sistema Digitales de Control en Tiempo Discreto

6.3.2 Programación estándar

49

Descomposición de la función de transferencia

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}} = \frac{E_2(z)}{H(z)} \frac{H(z)}{E_1(z)}$$

$$\frac{E_2(z)}{H(z)} = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m} \qquad \frac{H(z)}{E_1(z)} = \frac{1}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

Transformada "z" inversa

$$E_2(z) = \left[b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}\right] \cdot H(z) \qquad \Longrightarrow e_2(n) = \sum_{i=0}^m b_i h(n-i)$$

$$H(z) = \frac{1}{a_0} E_1(z) - \frac{1}{a_0} \left[a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p} \right] \cdot H(z) \Rightarrow h(n) = \frac{1}{a_0} e_1(n) - \frac{1}{a_0} \sum_{i=1}^p a_i h(n-i)$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Implementación estándar

Recursos utilizados:

- P elementos de retraso "Z-1"
- P+M+2 multiplicadores
- P+M+1 sumadores

Fuentes de error

La precisión en la implementación de controles digitales es importante para obtener un buen resultado

Hay tres fuentes de error que afectan a la precisión:

- El error de cuantificación de los ADC
- Redondeo en las operaciones aritméticas
- Truncamiento de los coeficientes a_i y b_i ⇒ este error aumenta al aumentar el orden de la función de transferencia ⇒ un pequeño error en los coeficientes de un filtro de orden elevado provoca un gran error en la ubicación de polos y ceros

Este error se puede reducir matemáticamente descomponiendo las funciones de transferencia de orden elevado en combinaciones de funciones de primer y segundo orden

6.3.3 Programación serie

53

Descomposición de la función de transferencia

La función de transferencia se descompone en un producto de funciones sencillas de primer o segundo orden

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}} = D_1(z) \cdot D_2(z) \cdot \dots \cdot D_r(z) = \prod_{k=1}^r D_k(z)$$

Las funciones de transferencia $D_i(z)$ dependen de los polos y ceros de D(z):

Polo y cero reales $D_i(z) = \frac{1 + b_i z^{-1}}{1 + b_i z^{-1}}$

$$D_i(z) = \frac{1 + b_i z^{-1}}{1 + a_i z^{-1}}$$

Polos y ceros complejo conjugados

$$D_i(z) = \frac{1 + e_i z^{-1} + f_i z^{-2}}{1 + c_i z^{-1} + d_i z^{-2}}$$

Implementación estándar

Implementación funciones D_i(z) (I)

Polos y ceros complejo conjugados

$$\frac{Y(z)}{X(z)} = \frac{1 + e_i z^{-1} + f_i z^{-2}}{1 + c_i z^{-1} + d_i z^{-2}}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

57

6.3.4 Programación paralelo

Descomposición de la función de transferencia

La función de transferencia se descompone en suma de fracciones parciales de primer y segundo orden:

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}} = A + D_1(z) + D_2(z) + \dots + D_q(z)$$

$$= A + \sum_{i=1}^{j} D_i(z) + \sum_{i=j+1}^{q} D_i(z) = A + \left[\sum_{i=1}^{j} \frac{b_i}{1 + a_i z^{-1}} \right] + \left[\sum_{i=j+1}^{q} \frac{e_i + f_i z^{-1}}{1 + c_i z^{-1} + d_i z^{-2}} \right]$$

Polos reales

Polos complejos

Tema 6: Sistema Digitales de Control en Tiempo Discreto

59

Implementación funciones D_i(z) (I)

Polos complejos conjugados
$$\frac{Y(z)}{X(z)} = \frac{e_i + f_i z^{-1}}{1 + c_i z^{-1} + d_i z^{-2}}$$

$$x(n) \xrightarrow{+} Z^{-1}$$

$$z \xrightarrow{-} Z^{-1}$$

$$z \xrightarrow{-} Z^{-1}$$

61

6.3.5 Programación en escalera

Descomposición de la función de transferencia

$$D(z) = A_0 + D_1^{(B)}(z)$$

$$D_{i}^{(B)}(z) = \frac{1}{B_{i}z + G_{i}^{(A)}(z)} \quad con \quad i = 1, 2, ..., p - 1$$

$$D_{i}^{(A)}(z) = \frac{1}{A_{i} + G_{i+1}^{(B)}(z)} \quad con \quad i = 1, 2, ..., p - 1$$

$$D_{p}^{(B)}(z) = \frac{1}{B_{p}z + \frac{1}{A_{p}}}$$

$$D_i^{(A)}(z) = \frac{1}{A_i + G_{i+1}^{(B)}(z)}$$
 con $i = 1, 2, ..., p$

$$D_p^{(B)}(z) = \frac{1}{B_p z + \frac{1}{A_p}}$$

$$D(z) = A_0 + \frac{1}{B_1 z + \frac{1}{A_1 + \frac{1}{B_2 z + \frac{1}{\vdots}}}}$$

$$A_{p-1} \frac{1}{B_p z + \frac{1}{A}}$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

63

Ejemplo de programación en escalera (I)

$$D(z) = A_0 + \frac{1}{B_1 z + \frac{1}{A_1 + \frac{1}{B_2 z + \frac{1}{A_2}}}}$$

$$p=2$$

$$D_p^{(B)}(z) = \frac{1}{B_p z + \frac{1}{A_p}}$$

$$D(z) = A_0 + \frac{1}{B_1 z + \frac{1}{A_1 + D_2^{(B)}(z)}} = A_0 + \frac{1}{B_1 z + D_1^{(A)}(z)} = A_0 + D_1^{(B)}(z)$$

 $D_i^{(B)}(z)$ se puede escribir como:

$$D_i^{(B)}(z) = \frac{Y(z)}{X(z)} = \frac{1}{B_i z + D_i^{(A)}(z)} \qquad X_i(z) - D_i^{(A)} Y_i(z) = B_i z Y_i(z)$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Ejemplo de programación en escalera (II)

$$X_i(z) - D_i^{(A)}Y_i(z) = B_i z Y_i(z)$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

65

Ejemplo de programación en escalera (III)

 $D_i^{(A)}(z)$ se puede escribir como:

$$D_{i}^{(A)}(z) = \frac{Y(z)}{X(z)} = \frac{1}{A_{i} + D_{i+1}^{(B)}(z)} \qquad X_{i}(z) - D_{i+1}^{(B)}Y_{i}(z) = A_{i}Y_{i}(z)$$

6.4 Ejemplo de diseño: control de un motor DC mediante el driver L293E

69

Índice

- 6.4.1. Introducción al sistema de control digital de un motor
- 6.4.2. Modelo equivalente eléctrico del motor DC
- 6.4.3. Interface con el motor: L293E
- 6.4.4. Control en lazo abierto de la velocidad de giro
- 6.4.5. PWM digital
- 6.4.6. Monitorización de la velocidad de giro
- 6.4.7. Regulación de la velocidad de giro

6.4.1 Introducción al sistema de control digital de un motor

71

Diagrama de bloques del sistema de control

Elementos básicos:

- FPGA: implementa el sistema digital de control
- *Interface etapa lógica-motor*: etapa de potencia controlada digitalmente que alimenta el motor DC
- *Motor*: sistema a controlar
- Sensor óptico: permite medir la velocidad de giro del motor

6.4.2 Modelo equivalente eléctrico del motor DC

73

Modelo ideal del motor DC

- Transformador ideal de tensión/corriente en velocidad/fuerza
- Relaciones de transformación:

$$K \cdot I_S = F_m$$

$$V_S = K \cdot U_m$$

Modelo real del motor DC con pérdidas

 L_{ρ} y R_{ρ} : Inductancia y resistencia del devanado del rotor

 C_m : modela la resistencia que presenta el motor a cambios de velocidad

 R_m : resistencia mecánica

 R_I : carga del motor

Tema 6: Sistema Digitales de Control en Tiempo Discreto

75

Circuito eléctrico equivalente del motor

Circuito equivalente del secundario visto desde el primario

Modelo eléctrico equivalente de segundo orden

$$\frac{w_A}{V_S} = \frac{1}{s^2 + 2\alpha s + w_o^2}$$
$$w_o = \frac{1}{\sqrt{L_{eq} \cdot C_{eq}}}$$

 $V = D \cdot V_{REF}$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

6.4.3 Interfase con el motor: L293E

77

Driver de cuatro canales Push-Pull

Características:

- Iout: 1A por canal
- Iout de pico: 2 A por canal
- Entrada de inhibición
- Protección contra sobre-temperatura

Control bidireccional del motor DC (II)

Inputs	Function	
V _{inh} = H	C = H; D = L	Turn Right
	C = L; D = H	Turn Left
	C = D	Fast Motor Stop
V _{inh} = L	C = X; D = X	Free Running Motor Stop

Tema 6: Sistema Digitales de Control en Tiempo Discreto

83

6.4.4 Control en lazo abierto de la velocidad de giro

Control en lazo abierto de la velocidad de giro

- Variando la tensión de alimentación del motor se varia su velocidad
- Con un modulador PWM se obtiene una tensión variable de valor: **D·Vcc** donde **D** es el ciclo de trabajo de la señal PWM

Tema 6: Sistema Digitales de Control en Tiempo Discreto

85

Diagrama de bloques del sistema de control en lazo abierto

Variando el ciclo de trabajo D se varia la tensión de alimentación del motor y con ello la velocidad de giro ω_A

$$W_A = D \cdot V_{REF} \cdot \frac{1}{s^2 + 2\alpha s + w_o^2}$$

Modulador de anchura de pulsos (PWM)

$$D = T_{ON}/Tc \text{ con } 0 \le D \le 1$$

• Si el Tc es suficientemente pequeño la tensión equivalente que se aplica al motor es el valor medio de la señal PWM: $D \cdot V_{REF}$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

87

Margen dinámico de la alimentación del motor con driver de puente en H

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Tema 6: Sistema Digitales de Control en Tiempo Discreto

89

6.4.5 PWM digital

6.4.6 Monitorización de la velocidad de giro

Algoritmo de medida de la velocidad de giro

La velocidad se obtiene contando el nº de pulsos por unidad de tiempo:

$$v_{rps} = \frac{N_p}{N_v \cdot T}$$

Vrps: velocidad en revoluciones por segundo

Np: número de pulsos contados*Nv*: número de ventanas del disco*T*: tiempo de cuenta en segundos

Simplificación del cálculo:

Si
$$T = 1/N_v \Rightarrow v_{rps} = N_p$$

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Implementación digital del algoritmo

Tema 6: Sistema Digitales de Control en Tiempo Discreto

101

Dimensionado de componentes Temporizador T

- Para Nv = 24 y con $T = I/Nv \Rightarrow v_{rps} = N_p$
- El valor a temporizar es T = 41.66ms
- Si $f_{CLK} = 50MHz$, 41.66ms equivalen a 2.083.333 pulsos

Temporizador T

Etapa de visualización

- Se debe visualizar valores entre 0 y 99 rps
- Los valores a visualizar se almacenan en la memoria RAM

Tema 6: Sistema Digitales de Control en Tiempo Discreto

105

Ejemplo de visualización

Para Np=50d, el valor del registro es 0110010b

Registro 7 bits 7

Bus de direcciones

9
RAM
512 x 8bits

| Comparison of the content of t

Bus de

Los dos bits de mayor peso del bus de direcciones valen siempre 0

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Contenido de la memoria RAM

INIT 00=3130292827262524232221201918171615141312111009080706050403020100 INIT 01=6362616059585756555453525150494847464544434241403938373635343332 INIT 02=9594939291908988878685848382818079787776757473727170696867666564

Tema 6: Sistema Digitales de Control en Tiempo Discreto

107

Activación de los dígitos

Tema 6: Sistema Digitales de Control en Tiempo Discreto

Control de activación de los dígitos

El control de activación se puede realizar mediante un sistema secuencial

Tema 6: Sistema Digitales de Control en Tiempo Discreto

109

6.4.7 Regulación de la velocidad de giro

Sistema de control en lazo cerrado

El sistema de control ajusta el valor de D para que la velocidad real, w_a se mantenga igual a la velocidad deseada w_d

111

Bibliografía (I)

www.ti.com

- *Application Report SPRA083*: "Implementation of PID and Deadbeat Controllers with the TMS320 Family," Irfan Ahmed
- *Application Report SPRA009*: "Control System Compensation and Implementation with the TMS32010," Charles Slivinsky

www.motorola.com

- AN1213/D: "16-Bit DSP Servo Control With the MC68HC16Z" David Wilson
- AN1249/D: Bruhed DC Motor Control Using the MC68HC16Z1
- AN1712: "Get Your Motor Running" with the MC68HC708MP16

Bibliografia (II)

• Katsuhiko Ogata, "Discrete-Time Control Systems," Ed. Prentice Hall

• L293B/L293E Data Sheet

Tema 6: Sistema Digitales de Control en Tiempo Discreto