1 Численные расчёты

1.1 Простейшие случаи

Рассмотрим работу процедуры в простейших случаях на данном примере:

Рис. 1: Макетный пример

Пусть расстояние будет в метрах, а скорость в метрах в секунду. Файл с данными точек:

```
9
a -100 0 0 5 10
b -50 0 0 5 10
c 0 0 0 5 10
d 50 0 0 5 10
e 200 0 0 4 6
f 50 100 0 4 8
g -50 50 0 5 10
h -200 50 0 5 10
r 400 0 0 2 5 LAND
```

Файл с данными схем:

3 1

Name1 (e)(r):

Name2 (a)(e): a Str(f) b c d /Str f e

NameSt1 (0): b g h

Файл с данными потоков:

3

Flow1 e

Flow2 a

1.1.1 Движение по прямой

Рассмотрим движение по прямой на примере первого потока:

$$T_{min} = \frac{2S}{v_{max}^e + v_{max}^r} = \frac{2 \cdot \sqrt{(400 - 200)^2}}{6 + 5} \approx 36.(36) \ sec$$

$$T_{max} = \frac{2S}{v_{min}^e + v_{min}^r} = \frac{2 \cdot \sqrt{(400 - 200)^2}}{4 + 2} \approx 66.(66) \ sec$$

И результат процедуры:

Flow1:

 $e \rightarrow [0 \text{ sec}, 0 \text{ sec}]$

 $r \to [36.36 \text{ sec}, 66.67 \text{ sec}]$

1.1.2 Движение по вееру и прямым участкам

Движение по вееру и прямым участкам рассмотрим на примере второго потока. Рассчитаем временной интервал для точки f:

$$T_{min} = \frac{2S_{a-b}}{v_{max}^b + v_{max}^a} + \frac{2S_{b-f}}{v_{max}^f + v_{max}^b} = \frac{2 \cdot \sqrt{(-50 + 100)^2}}{10 + 10} + \frac{2 \cdot \sqrt{(50 + 50)^2 + (100 - 0)^2}}{8 + 10} \approx 20.71348 \ sec$$

$$T_{max} = T_{max}^{a-b} + T_{max}^{b-c} + T_{max}^{c-d} + T_{max}^{d-f} = \frac{2S_{a-b}}{v_{min}^b + v_{min}^a} + \frac{2S_{b-c}}{v_{min}^c + v_{min}^b} + \frac{2S_{c-d}}{v_{min}^d + v_{min}^c} + \frac{2S_{d-f}}{v_{min}^d + v_{min}^c} = \frac{2 \cdot \sqrt{(50-50)^2}}{5+5} + \frac{2 \cdot \sqrt{(50-50)^2}}{5+5} + \frac{2 \cdot \sqrt{(50-50)^2 + (100-0)^2}}{5+5} = 10 + 10 + 10 + 22.(2) = 52.(2) \ sec$$

Результат процедуры: Flow2:

 $a \rightarrow [0 \text{ sec}, 0 \text{ sec}]$

 $b \rightarrow [5 \text{ sec}, 10 \text{ sec}]$

 $c \rightarrow [10 \text{ sec}, 20 \text{ sec}]$

 $d \rightarrow [15 \text{ sec}, 30 \text{ sec}]$

 $f \to [20.71 \text{ sec}, 52.22 \text{ sec}]$

 $e \to [46.47 \text{ sec}, 97.29 \text{ sec}]$

 $r \to [82.83 \text{ sec}, 163.96 \text{ sec}]$

1.1.3 Движение по вееру и прямым участкам со стандартной схемой

Теперь изменим файл схем следующим образом — добавим одно повторение к стандартной схеме:

3 1

Name1 (e)(r):

Name2 (a)(e): a Str(f) b c d /Str f e

NameSt1 (1): b g h

И запустим поток с точки а:

1

Flow1 a

Посчитаем время минимальной и максимальной задержки на «тромбоне»: Вычислим радиус поворота, как половину от расстояния между b и g:

$$R = \frac{1}{2} \cdot \sqrt{(-50 + 50)^2 + (50 - 0)^2} = 25$$

Длину плеча найдём, как расстояние между h и g:

$$S = \sqrt{(-200 + 50)^2 + (50 - 50)^2} = 150$$

$$T_{min} = \frac{2\pi R}{v_{max}^b} = \frac{2\pi \cdot 25}{10} = 5\pi \approx 15.7$$

$$T_{max} = \frac{2(S + \pi R)}{v_{min}^b} = \frac{2(150 + \pi \cdot 25)}{5} = 60 + 10\pi \approx 91.4$$

Результат процедуры:

Flow1:

 $a \rightarrow [0 \text{ sec}, 0 \text{ sec}]$

 $b \to [5 \text{ sec}, 10 \text{ sec}] [20.71 \text{ sec}, 101.42 \text{ sec}]$

 $c \to [10 \text{ sec}, 20 \text{ sec}] [25.71 \text{ sec}, 111.42 \text{ sec}]$

 $d \rightarrow [15 \text{ sec}, 30 \text{ sec}] [30.71 \text{ sec}, 121.42 \text{ sec}]$

 $f \to [20.71 \text{ sec}, 143.64 \text{ sec}]$

 $e \to [46.47 \text{ sec}, 188.71 \text{ sec}]$

 $r \to [82.83 \text{ sec}, 255.37 \text{ sec}]$

Как можно заметить, появился новый временной интервал соответствующий проходу по стандартной схеме.

1.2 Расчёты для аэропорта «Кольцово»

Рассмотрим работу программы на примере аэропорта Кольцово.

Общий вид зоны Кольцово представлен на рис. 2. Вид внутренней зоны представлен на рис. 3

Koltsovo01.png

Рис. 2: Общий вид зоны Кольцово

Koltsovo02.png

Рис. 3: Прибывающие потоки и веерные схемы их слияния.

Рассмотрим поток BIKMA начинающийся в точке RALUB.

Результаты работы процедуры для потока ВІКМА с нулём повторений стандартной схемы:

Flow1BIKMA:

 $RALUB \rightarrow [0 \text{ sec}, 0 \text{ sec}]$

 $TUNED \rightarrow [474.52 \text{ sec}, 548.67 \text{ sec}]$

 $BIKMA \rightarrow [818.27 \text{ sec}, 947.42 \text{ sec}]$

 $SS014 \rightarrow [1240.52 \text{ sec}, 1443.1 \text{ sec}]$

 $SS015 \rightarrow [1482.57 \text{ sec}, 1734.04 \text{ sec}]$

 $SS025 \rightarrow [1578.33 \text{ sec}, 1853.75 \text{ sec}]$

 $SS003 \rightarrow [1684.27 \text{ sec}, 1991.08 \text{ sec}]$

 $RW08L \rightarrow [1792.31 \text{ sec}, 2132.36 \text{ sec}]$

Результаты работы процедуры для потока ВІКМА с однократным повторением стандартной схемы:

Flow1BIKMA:

RALUB $\rightarrow [0 \text{ sec}, 0 \text{ sec}] [389.33 \text{ sec}, 992.17 \text{ sec}]$

 $TUNED \rightarrow [474.52 \text{ sec}, 548.67 \text{ sec}] [863.86 \text{ sec}, 1540.84 \text{ sec}]$

 $BIKMA \rightarrow [818.27 \text{ sec}, 947.42 \text{ sec}] [1207.61 \text{ sec}, 1939.58 \text{ sec}]$

 $SS014 \rightarrow [1240.52 \text{ sec}, 1443.1 \text{ sec}] [1629.85 \text{ sec}, 2435.26 \text{ sec}]$

 $SS015 \rightarrow [1482.57 \text{ sec}, 1734.04 \text{ sec}] [1871.9 \text{ sec}, 2726.21 \text{ sec}]$

 $SS025 \rightarrow [1578.33 \text{ sec}, 1853.75 \text{ sec}] [1967.66 \text{ sec}, 2845.91 \text{ sec}]$

 $SS003 \rightarrow [1684.27 \text{ sec}, 1991.08 \text{ sec}] [2073.6 \text{ sec}, 2983.24 \text{ sec}]$

 $RW08L \rightarrow [1792.31 \text{ sec}, 2132.36 \text{ sec}] [2181.64 \text{ sec}, 3124.52 \text{ sec}]$

Рассмотрим поток NEKER начинающийся в точке ARBUP.

Результаты работы процедуры для потока NEKER с нулём повторений стандартной схемы:

Flow10NEKER:

 $ARBUP \rightarrow [0 \text{ sec}, 0 \text{ sec}]$

 $NEKER \rightarrow [463.24 \text{ sec}, 533.96 \text{ sec}]$

 $SS006 \rightarrow [1015.68 \text{ sec}, 1175.5 \text{ sec}]$

 $SS007 \rightarrow [1140.14 \text{ sec}, 1321.61 \text{ sec}]$

 $SS008 \rightarrow [1249.54 \text{ sec}, 1451.18 \text{ sec}]$

```
\begin{array}{l} \mathrm{SS009} \to [1331.5 \; \mathrm{sec}, \; 1548.45 \; \mathrm{sec}] \\ \mathrm{SS010} \to [1413.66 \; \mathrm{sec}, \; 1645.98 \; \mathrm{sec}] \\ \mathrm{SS011a} \to [1496.1 \; \mathrm{sec}, \; 1743.82 \; \mathrm{sec}] \\ \mathrm{SS012a} \to [1578.68 \; \mathrm{sec}, \; 1841.84 \; \mathrm{sec}] \\ \mathrm{SS013a} \to [1661.3 \; \mathrm{sec}, \; 1939.91 \; \mathrm{sec}] \\ \mathrm{SS014aaa} \to [1743.95 \; \mathrm{sec}, \; 2038 \; \mathrm{sec}] \\ \mathrm{SS015} \to [1455.79 \; \mathrm{sec}, \; 2330.19 \; \mathrm{sec}] \\ \mathrm{SS025} \to [1551.56 \; \mathrm{sec}, \; 2449.89 \; \mathrm{sec}] \\ \mathrm{SS003} \to [1657.5 \; \mathrm{sec}, \; 2587.22 \; \mathrm{sec}] \\ \mathrm{RW08L} \to [1765.54 \; \mathrm{sec}, \; 2728.5 \; \mathrm{sec}] \end{array}
```

Результаты работы процедуры для потока NEKKER с однократным повторением стандартной схемы в точке ARBUP:

Flow10NEKER:

```
ARBUP \rightarrow [0 sec, 0 sec] [234.91 sec, 925.33 sec]

NEKER \rightarrow [463.24 sec, 533.96 sec] [698.15 sec, 1459.29 sec]

SS006 \rightarrow [1015.68 sec, 1175.5 sec] [1250.59 sec, 2100.83 sec]

SS007 \rightarrow [1140.14 sec, 1321.61 sec] [1375.04 sec, 2246.93 sec]

SS008 \rightarrow [1249.54 sec, 1451.18 sec] [1484.45 sec, 2376.51 sec]

SS009 \rightarrow [1331.5 sec, 1548.45 sec] [1566.4 sec, 2473.78 sec]

SS010 \rightarrow [1413.66 sec, 1645.98 sec] [1648.57 sec, 2571.31 sec]

SS011a \rightarrow [1496.1 sec, 2669.15 sec]

SS012a \rightarrow [1578.68 sec, 2767.16 sec]

SS013a \rightarrow [1661.3 sec, 2865.24 sec]

SS014aaa \rightarrow [1743.95 sec, 2963.33 sec]

SS015 \rightarrow [1455.79 sec, 3255.51 sec]

SS025 \rightarrow [1551.56 sec, 3375.21 sec]

SS003 \rightarrow [1657.5 sec, 3512.54 sec]

RW08L \rightarrow [1765.54 sec, 3653.83 sec]
```