Лабораторная работа № 13

Статическая маршрутизация в Интернете. Планирование

Демидова Екатерина Алексеевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Планирование	8
	4.1 Первоначальная настройка оборудования	13
	4.2 Контрольные вопросы	25
	4.3 1. Случаи использования статической маршрутизации	26
	4.4 2. Принципы статической маршрутизации между VLANs	26
5	Выводы	28

Список иллюстраций

4.1	Схема L1 сети с дополнительными площадками	9
4.2	Схема L2 сети с дополнительными площадками	10
4.3	Схема L3 сети с дополнительными площадками	11
4.4	Медиаконвертер с модулями PT-REPEATER-NM-1FFE и PT-	
	REPEATER-NM-1CFE	14
4.5	Маршрутизатор msk-eademidova-q42-gw-1 с дополнительным ин-	
	терфейс NM-2FE2W	15
4.6	Новый город Сочи	15
4.7	Новое здание 42-го квартала в Москве	16
4.8	Перенесенное оборудование в филиал в Сочи	17
4.9	Перенесенное оборудование в 42-ой квартал Москвы	18
4.10	Маршрутизатор msk-eademidova-q42-gw-1 с дополнительным ин-	
	терфейс NM-2FE2W	19
4.11	Первоначальная настройка маршрутизатора msk-q42-eademidova-	
	gw-1	20
	Первоначальная настройка коммутатора msk-q42-eademidova-sw-1	21
4.13	Первоначальная настройка маршрутизирующего коммутатора	
	msk-hostel-eademidova-gw-1	22
4.14	Первоначальная настройка коммутатора msk-hostel-eademidova-	
	sw-1	23
	Первоначальная настройка коммутатора sch-sochi-eademidova-sw-1	24
4.16	Первоначальная настройка маршрутизатора sch-sochi-eademidova-	
	gw-1	25

Список таблиц

4.1	Таблица VLAN	11
4.2	Таблица ІР для филиала в г. Сочи	12
4.3	Таблица IP для связующих разные территории линков	13

1 Цель работы

Провести подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

2 Задание

- 1. Внести изменения в схемы L1, L2 и L3 сети, добавив в них информацию о сети основной территории (42-й квартал в Москве) и сети филиала в г. Сочи.
- 2. Дополнить схему проекта, добавив подсеть основной территории организации 42-го квартала в Москве и подсеть филиала в г. Сочи.
- 3. Сделать первоначальную настройку добавленного в проект оборудования.

3 Выполнение лабораторной работы

4 Планирование

Внесем изменения в схему L1 сети, добавив в неё сеть квартала 42 и сеть в Сочи с указанием названий оборудования и портов подключения(рис. [4.1]).

Рис. 4.1: Схема L1 сети с дополнительными площадками

Внесем изменения в схемы L2(рис. [4.2]) и L3 (рис. [4.3]) сети, указав ір-адреса и VLAN.

Рис. 4.2: Схема L2 сети с дополнительными площадками

Рис. 4.3: Схема L3 сети с дополнительными площадками

Скорректируем таблицу VLAN(табл. [4.1]), добавим распределение IP-адресов в Сочи (табл. [4.2]) и для связующих разные территории линков (табл. [4.3]).

Таблица 4.1: Таблица VLAN

Nº VLAN	Имя VLAN	Примечание
1	default	Не используется
2	management	Для управления устройствами
3	servers	Для серверной фермы
4	nat	Зарезервировано
5	q42	Линк в сеть квартала 42 в Москве
6	sochi	Линк в сеть филиала в Сочи

Nº VLAN	Имя VLAN	Примечание
101	dk	Дисплейные классы (ДК)
102	departments	Кафедры
103	adm	Администрация
104	other	Для других пользователей
201	q42-main	Основной для квартала 42 в Москве
202	q42-	Для управления устройствами 42-го квартала в
	management	Москве
301	hostel-main	Основной для общежитий в квартале 42 в
		Москве
401	sochi-main	Основной для филиала в Сочи
402	sochi-	Для управления устройствами в филиала в
	management	Сочи

Таблица 4.2: Таблица ІР для филиала в г. Сочи

IP-адреса	Примечание	VLAN
10.130.0.0/16	Вся сеть филиала в Сочи	
10.130.0.0/24	Основная сеть филиала в Сочи	401
10.130.0.1	sch-sochi-gw-1	
10.130.0.200	pc-sochi-1	
10.130.1.0/24	Сеть для управления устройствами в	402
	Сочи	
10.130.1.1	sch-sochi-gw-1	

Таблица 4.3: Таблица IP для связующих разные территории линков

ІР-адреса	Примечание	VLAN
10.128.255.0/24	Вся сеть для линков	
10.128.255.0/30	Линк на 42-й квартал	5
10.128.255.1	msk-donskaya-gw-1	
10.128.255.2	msk-q42-gw-1	
10.128.255.4/30	Линк в Сочи 6	6
10.128.255.5	msk-donskaya-gw-1	
10.128.255.6	sch-sochi-gw-1	
10.129.0.0/16	Вся сеть квартала 42 в Москве	
10.129.0.0/24	Основная сеть квартала 42 в Москве	201
10.129.0.1	msk-q42-gw-1	
10.129.0.200	pc-q42-1	
10.129.1.0/24	Сеть для управления устройствами в	202
	сети квартала 42 в Москве	
10.129.1.1	msk-q42-gw-1	
10.129.1.2	msk-hostel-gw-1	
10.129.128.0/17	Вся сеть hostel	
10.129.128.0/24	Основная сеть hostel	301
10.129.128.1	msk-hostel-gw-1	
10.129.128.200	pc-hostel-1	

4.1 Первоначальная настройка оборудования

На схеме предыдущего проекта разместим необходимое оборудование для сети провайдера и сети модельного Интернета: 4 медиаконвертера (Repeater-PT), 2 маршрутизатора типа Cisco 2811, 1 маршрутизирующий коммутатор типа Cisco 3560-24PS, 2 коммутатора типа Cisco 2950-24, коммутатор Cisco 2950-24T, 3

оконечных устройства типа РС-РТ. Затем присвоим названия в соответствии с планом.

На медиаконвертерах заменим имеющиеся модули ли на PT-REPEATER-NM-1FFE и PT-REPEATER-NM-1CFE для подключения витой пары по технологии Fast Ethernet и оптоволокна соответственно(рис. [4.4]).

Рис. 4.4: Медиаконвертер с модулями PT-REPEATER-NM-1FFE и PT-REPEATER-NM-1CFE

На маршрутизаторе msk-q42-gw-1 добавим дополнительный интерфейс NM-2FE2W (рис. [4.5]):

Рис. 4.5: Маршрутизатор msk-eademidova-q42-gw-1 с дополнительным интерфейс NM-2FE2W

В физической рабочей области Packet Tracer добавим добавим город Сочи и в нём здание филиала(рис. [4.6]), а в г. Москва здание 42-го квартала, а затем(рис. [4.7]).

Рис. 4.6: Новый город Сочи

Рис. 4.7: Новое здание 42-го квартала в Москве

Перенесем из сети «Донская» оборудование сети 42-го квартала и сети филиала в соответствующие здания(рис. [4.8], [4.9]).

Рис. 4.8: Перенесенное оборудование в филиал в Сочи

Рис. 4.9: Перенесенное оборудование в 42-ой квартал Москвы

Затем соединим все объекты в соответствии со схемой L1 сети(рис. [4.10]).

Рис. 4.10: Маршрутизатор msk-eademidova-q42-gw-1 с дополнительным интерфейс NM-2FE2W

Перейдем к настройке оборудования. Для всех сетевых устройств установим имя хоста, доступ по паролю, telnet и ssh(рис. [4.11] - [4.16]).

Рис. 4.11: Первоначальная настройка маршрутизатора msk-q42-eademidova-gw-1

Рис. 4.12: Первоначальная настройка коммутатора msk-q42-eademidova-sw-1

Рис. 4.13: Первоначальная настройка маршрутизирующего коммутатора mskhostel-eademidova-gw-1

Рис. 4.14: Первоначальная настройка коммутатора msk-hostel-eademidova-sw-1

Рис. 4.15: Первоначальная настройка коммутатора sch-sochi-eademidova-sw-1

Рис. 4.16: Первоначальная настройка маршрутизатора sch-sochi-eademidova-gw-

4.2 Контрольные вопросы

- 1. В каких случаях следует использовать статическую маршрутизацию? Приведите примеры.
- 2. Укажите основные принципы статической маршрутизации между VLANs.

4.3 1. Случаи использования статической маршрутизации

Статическую маршрутизацию следует использовать в следующих случаях:

- Для небольших сетей: Когда сеть маленькая и не требует динамической маршрутизации.
- **Для резервных маршрутов:** Как резервный путь для динамической маршрутизации в случае сбоев.
- Для контроля трафика: Для направления трафика по конкретным путям, например, чтобы предотвратить перегрузку определенных ссылок.
- Для администрирования сети: Для ручного управления маршрутизацией для целей устранения неполадок или настройки.

Примеры:

- Настройка статического маршрута для подключения к удаленной офисной сети через VPN-соединение.
- Создание резервного маршрута на случай сбоя основного маршрутизатора.
- Направление трафика в определенный VLAN, чтобы отделить его от других видов трафика.
- Использование статической маршрутизации для перенаправления трафика на устройство межсетевого экрана для дополнительной безопасности.

4.4 2. Принципы статической маршрутизации между VLANs

Для статической маршрутизации между VLANs действуют следующие основные принципы:

• **Создание маршрута по умолчанию:** Необходимо создать маршрут по умолчанию для переадресации пакетов, не имеющих конкретного статического маршрута.

- Указание адреса следующего перехода: В каждом статическом маршруте должен быть указан адрес шлюза следующего перехода, через который должен проходить трафик.
- **Раздельное применение на разных VLANs:** Статические маршруты должны применяться отдельно к каждому VLAN, обеспечивая изоляцию трафика и контроль доступа.
- Использование списков доступа (ACL): ACL могут использоваться для управления тем, каким типам трафика разрешено проходить через статические маршруты.
- **Мониторинг и устранение неполадок:** Регулярно проверяйте статические маршруты, чтобы убедиться, что они работают должным образом, и устраняйте любые возникающие проблемы.

5 Выводы

В результате выполнения лабораторной работы провели подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.