# PROCESSAMENTO DE LINGUAGEM NATURAL

Aprendizado de Máquina

### TÓPICOS

- 1. Aprendizado
- 2. Paradigmas de AM
- 3. Classificação
- 4. Avaliação de Classificadores

### DEFINIÇÃO DE APRENDIZADO



Sócrates: Aprender é recordar (Diálogos de Platão)

Definição clássica (Mitchell, 1997)

"Um programa de computador é dito **aprender** a partir de uma experiência **E** com respeito a alguma classe de tarefas **T** e medida de desempenho **P**, se seu desempenho em tarefas de **T**, medido por **P**, melhora com a experiência **E**."

Tom Mitchell (1997)

#### PARADIGMAS DE AM

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado



# GUIADO POR "PROFESSOR" EXTERNO

- Professor possui conhecimento sobre a tarefa
- Representado por conjuntos de pares (x, d)
- Algoritmo de AM gera modelo que busca reproduzir comportamento do professor
- Parâmetros do modelo são ajustados por apresentações sucessivas dos pares (x, d): fase de treinamento
- Após o treinamento, o desempenho do sistema deve ser testado com dados nãovistos: fase de teste



### PARADIGMAS DE AM

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado



# CLASSIFICAÇÃO DE PADRÕES

>Classificar objetos

#### **REGRESSÃO**

➢Previsão de valores contínuos



## **CLASSIFICAÇÃO**



## CLASSIFICAÇÃO – REPRESENTAÇÃO

#### **Modelos Matemáticos**

Regressão Linear/Logística, Redes Neurais Artificiais, Máquinas de Vetores de Suporte

#### Modelos simbólicos

Árvores de Decisão, Regras de decisão, Redes Semânticas

#### Modelos "Lazy"

K-NN, Raciocínio Baseado em Casos (CRB)

#### **Modelos Probabilísticos**

Naïve Bayes, Redes Bayesianas, Misturas Gaussianas, Modelos de Markov

# UMA REPRESENTAÇÃO PARA O CONHECIMENTO ADQUIRIDO

 Modelo de representação do conhecimento

## CLASSIFICAÇÃO – REPRESENTAÇÃO

#### UMA REPRESENTAÇÃO PARA O CONHECIMENTO ADQUIRIDO

Modelo de representação do conhecimento



## CLASSIFICAÇÃO – REPRESENTAÇÃO

#### UMA REPRESENTAÇÃO PARA O CONHECIMENTO ADQUIRIDO

Modelo de representação do conhecimento



# CLASSIFICAÇÃO



### CLASSIFICAÇÃO – TÉCNICA DE APRENDIZADO

#### Algoritmos Baseados em Gradiente

Regressão linear/logística, redes neurais...

#### Algoritmos baseados em Programação Dinâmica

• HMMs...

#### Algoritmos baseados em Divisão e Conquista

• Indução de árvores e regras de decisão

#### Algoritmos baseados em Probabilidades

Naïve Bayes, Redes Bayesianas...

#### Algoritmos baseados em Computação Evolutiva

Aplicável a vários modelos

# Um mecanismo de aprendizado

 Técnica de aprendizado

### **AVALIAÇÃO DE CLASSIFICADORES**

- Espera-se de um classificador que ele apresente desempenho adequado para dados não vistos
  - > Poder de generalização
- Para estimarmos de maneira correta o desempenho do modelo, precisamos seguir um protocolo bem definido
  - Ex.: Holdout, Reamostragem aleatória (Random Subsampling), Validação Cruzada (Cross-Validation), Leave-one-out, Bootstrap

#### **HOLDOUT**

- Técnica mais simples para divisão de dados
- Faz uma única partição (aleatória) da amostra em:
  - Treinamento
  - Teste
- Atenção: em problemas de classificação, recomenda-se que  $p_{tr}(C_j) \approx p_{test}(C_j) \ \forall C_j \in Y$  (holdout estratificado)



### MATRIZ DE CONFUSÃO

- Também chamada de Tabela de Contingência
  - Permite a extração de diversas medidas de desempenho preditivo
  - > Usada para distinguir os tipos de erros
  - Usada para problemas binários ou multiclasse



Acurávialores fora da diagonal principal :=enæssou 85% 25 + 40 + 20 + 10 + 5 100

| Classe<br>Prevista | Classe Verdadeira |          |
|--------------------|-------------------|----------|
|                    | Positiva          | Negativa |
| Positiva           | 70                | 40       |
| Negativa           | 30                | 60       |

| Classe<br>Prevista | Classe Verdadeira |            |
|--------------------|-------------------|------------|
|                    | Positiva          | Negativa _ |
| Positiva           |                   |            |
| Negativa           |                   |            |
| 3 - 3 V V V V      |                   |            |

Acurácia:

| Classe<br>Prevista | Classe Verdadeira |          |
|--------------------|-------------------|----------|
|                    | Positiva          | Negativa |
| Positiva           | 70                | 40       |
| Negativa           | 30                | 60       |

| Classe   | Classe Verdadeira |          |
|----------|-------------------|----------|
| Prevista | Positiva          | Negativa |
| Positiva |                   |          |
| Negativa |                   |          |
|          |                   |          |

Erro:

$$= (1 - acurácia)$$

| Classe<br>Prevista | Classe Verdadeira |          |
|--------------------|-------------------|----------|
|                    | Positiva          | Negativa |
| Positiva           | 70                | 40       |
| Negativa           | 30                | 60       |

| Classe<br>Prevista | Classe Verdadeira |          |
|--------------------|-------------------|----------|
|                    | <b>Positiva</b>   | Negativa |
| Positiva           |                   | FP       |
| Negativa           |                   | VN       |

Sensibilidade: (TVP)



(Recall, Revocação, Benefício)

| Classe<br>Prevista | Classe Verdadeira |          |
|--------------------|-------------------|----------|
|                    | Positiva          | Negativa |
| Positiva           | 70                | 40       |
| Negativa           | 30                | 60       |

| Classe   | Classe Verdadeira |          |
|----------|-------------------|----------|
| Prevista | Positiva          | Negativa |
| Positiva |                   |          |
| Negativa | FN                | VN       |

Precisão: (*Precision*)



### PRECISION X RECALL





O que acontece se um modelo classificar todos exemplos como sendo positivos?

| Classe Ve | erdadeira             |
|-----------|-----------------------|
| Positiva  | Negativa              |
|           | FP                    |
|           | VN                    |
|           | Classe Ve<br>Positiva |

Revocação: (Recall)



### **MEDIDA F**

### MÉDIA HARMÔNICA DE PRECISION E RECALL

> Também conhecida como F<sub>1</sub>score ou F-score

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

### O QUE VIMOS?

- Aprendizado
- Paradigmas de AM
- Classificação
- Avaliação de Classificadores

### PRÓXIMA VIDEOAULA

> Aprendizado Bayesiano