6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Naive Bayes algorithms for learning and classifying text

LEARN NAIVE BAYES TEXT (Examples, V)

Examples is a set of text documents along with their target values. V is the set of all possible target values. This function learns the probability terms $P(w_k | v_j)$, describing the probability that a randomly drawn word from a document in class v_j will be the English word w_k . It also learns the class prior probabilities $P(v_j)$.

- 1. collect all words, punctuation, and other tokens that occur in Examples
 - $Vocabulary \leftarrow c$ the set of all distinct words and other tokens occurring in any text document from Examples
- 2. calculate the required $P(v_j)$ and $P(w_k|v_j)$ probability terms
 - For each target value v_i in V do
 - $docs_i \leftarrow$ the subset of documents from *Examples* for which the target value is v_i
 - $P(v_i) \leftarrow |docs_i| / |Examples|$
 - $Text_i \leftarrow$ a single document created by concatenating all members of $docs_i$
 - $n \leftarrow$ total number of distinct word positions in $Text_i$
 - for each word w_k in *Vocabulary*
 - $n_k \leftarrow$ number of times word w_k occurs in $Text_i$
 - $P(w_k|v_i) \leftarrow (n_k+1)/(n+|Vocabulary|)$

CLASSIFY_NAIVE_BAYES_TEXT (Doc)

Return the estimated target value for the document Doc. ai denotes the word found in the ith position within Doc.

- positions \leftarrow all word positions in *Doc* that contain tokens found in *Vocabulary*
- Return V_{NB} , where

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_{i \in positions} P(a_i | v_j)$$

Examples:

	Text Documents	Label	
1	I love this sandwich	pos	
2	This is an amazing place	pos	
3	I feel very good about these beers	pos	
4	This is my best work	pos	
5	What an awesome view	pos	
6	I do not like this restaurant	neg	
7	I am tired of this stuff	neg	
8	I can't deal with this	neg	
9	He is my sworn enemy	neg	
10	My boss is horrible	neg	
11	This is an awesome place	pos	
12	I do not like the taste of this juice	neg	
13	I love to dance	pos	
14	I am sick and tired of this place		
15	What a great holiday pos		
16	That is a bad locality to stay neg		
17	We will have good fun tomorrow pos		
18	I went to my enemy's house today neg		

Program:

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.feature extraction.text import CountVectorizer
from sklearn.naive bayes import MultinomialNB
from sklearn import metrics
msg=pd.read csv('naivetext.csv', names=['message', 'label'])
print('The dimensions of the dataset', msg.shape)
msg['labelnum']=msg.label.map({'pos':1, 'neg':0})
X=msq.message
y=msq.labelnum
#splitting the dataset into train and test data
xtrain, xtest, ytrain, ytest=train test split(X, y)
print ('\n The total number of Training Data :',ytrain.shape)
print ('\n The total number of Test Data :',ytest.shape)
#output of count vectoriser is a sparse matrix
cv = CountVectorizer()
xtrain dtm = cv.fit transform(xtrain)
xtest dtm=cv.transform(xtest)
print('\n The words or Tokens in the text documents \n')
print(cv.get feature names())
df=pd.DataFrame(xtrain dtm.toarray(),columns=cv.get feature na
mes())
# Training Naive Bayes (NB) classifier on training data.
clf = MultinomialNB().fit(xtrain dtm,ytrain)
predicted = clf.predict(xtest dtm)
#printing accuracy, Confusion matrix, Precision and Recall
print('\n Accuracy of the classifer is',
metrics.accuracy score(ytest, predicted))
print('\n Confusion matrix')
print(metrics.confusion matrix(ytest, predicted))
print('\n The value of Precision' ,
metrics.precision score(ytest, predicted))
```

```
print('\n The value of Recall' ,
metrics.recall score(ytest,predicted))
```

Output:

The dimensions of the dataset (18, 2)

The total number of Training Data: (13,)

The total number of Test Data: (5,)

The words or Tokens in the text documents

['about', 'am', 'amazing', 'an', 'awesome', 'bad', 'beers', 'boss', 'can', 'deal', 'do', 'enemy', 'feel', 'fun', 'good', 'great', 'have', 'holiday', 'horrible', 'house', 'is', 'juice', 'like', 'locality', 'love', 'my', 'not', 'of', 'place', 'restaurant', 'sandwich', 'stay', 'stuff', 'taste', 'that', 'the', 'these', 'this', 'tired', 'to', 'today', 'tomorrow', 'very', 'view', 'we', 'went', 'what', 'will', 'with']

Accuracy of the classifier is 0.6

Confusion matrix

[[2 0]

[2 1]]

The value of Precision 1.0

Basic knowledge

Confusion Matrix

		Actual		
76		Positive	Negative	
cted	Positive	True Positive	False Positive	
Predi	Negative	False Negative	True Negative	

True positives: data points labelled as positive that are actually positive

False positives: data points labelled as positive that are actually negative

True negatives: data points labelled as negative that are actually negative

False negatives: data points labelled as negative that are actually positive

$$\begin{aligned}
\text{Recall} &= \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \\
&= \frac{\textit{True Positive}}{\textit{Total Actual Positive}}
\end{aligned}$$

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

$$\begin{aligned} & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Positive}} \\ & = \frac{\textit{True Positive}}{\textit{Total Predicted Positive}} \end{aligned}$$

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative
Щ			

Example:

		Actual			
		Positive		Negative	
dicted	Positive	1	TP	3	FP
redi	Negative	0		1	-
F			FN		TN

$$Precision = \frac{TP}{TP + FP} = \frac{1}{1+3} = 0.25$$

$$Recall = \frac{TP}{TP + FN} = \frac{1}{1+0} = 1$$

Accuracy: how often is the classifier correct?

Accuracy =
$$\frac{\text{TP} + \text{TN}}{\text{Total}} = \frac{1+1}{5} = 0.4$$