

Depto de Matemática. Primer Cuatrimestre de 2022 Teoría de la Medida Práctica 5: Integral de Lebesgue

Ejercicio 1. Por medio de la definición de integral de función no negativa, hallar el valor de las integrales:

$$\int_0^\infty \sum_{n=1}^\infty \chi_{\left[n,n+\frac{1}{2^n}\right)} \quad \text{y} \quad \int_0^\infty \sum_{n=1}^\infty \alpha_n \chi_{\left[n,n+\frac{1}{2}\right)},$$

donde $\alpha_n \geq 0$.

Ejercicio 2: Criterio de Lebesgue para la integrabilidad Riemann; El criterio establece que si $f:[a,b]\to\mathbb{R}$ es acotada entonces son equivalentes

- a) f es integrable Riemann.
- b) Si Z es el conjunto de puntos donde f es discontinua entonces $m_*(Z)=0$.

Ayuda: Para a)⇒ b) observar que

$$Z = \{x : \omega(f; x) > 0\} = \bigcup_{n=1}^{\infty} S_n := \bigcup_{n=1}^{\infty} \left\{ x : \omega(f; x) \ge \frac{1}{n} \right\}.$$

Luego usar que $m_*(S_n) \leq c_e(S_n)$.

Para b) \Rightarrow a). Notar que $m_*(S_n) = 0$. Luego, para todo $\varepsilon > 0$ se puede hallar una colección de intervalos abiertos y disjuntos I_j tales que $S_n \subset \bigcup_{j=1}^\infty I_j$ y $\sum_j m(I_j) < \varepsilon$. Demostrar que S_n es compacto y de allí se cubre por finitos I_j . Finalemnte invocar la caracterización de Haenkel.

Ejercicio 3. Mostrar que la función $x^{p-1}e^{-x}$ es integrable sobre $(0,\infty)$ si y sólo si p>0. Quizás es más importante que aprenda cuando las funciones $1/x^p$ son integrales en (0,1) y $(1,\infty)$. ¿no?

Ejercicio 4. La función $\frac{\sec x}{x}$ no es integrable sobre $(0,\infty)$, aunque existe el límite $\lim_{R\to\infty}\int_0^R \frac{\sec x}{x} \,dx$.

Ejercicio 5. Probar que la integral $\int_0^1 \frac{1}{x} \operatorname{sen}\left(\frac{1}{x}\right) dx$ existe como integral impropia de Riemann pero no existe como integral de Lebesgue.

Ejercicio 6. Este resultado no estaría contemplado con el ejercicio 9a?

Supóngase que f es integrable de Riemann sobre un intervalo infinito (tal integral sólo puede existir en el sentido impropio). Demostrar que f es integrable de Lebesgue sobre el mismo intervalo si y sólo si la integral impropia converge absolutamente.

Ejercicio 7. Probar, usando el Teorema de la Convergencia Mayorada, la fórmula

$$\lim_{n \to \infty} \int_0^1 \frac{n^{\frac{3}{2}} x}{1 + n^2 x^2} \, dx = 0.$$

Ejercicio 8. Usando integración término a término probar que

$$\int_0^\infty \frac{x}{e^x - 1} \, dx = \sum_{n=1}^\infty \frac{1}{n^2}.$$

- 1. Supóngase que $f \ge 0$, integrable de Riemann en $[0,a] \ \forall a > 0$ y que además tiene integral impropia. Probar que f es integrable de Lebesgue en \mathbb{R} ¿Capaz que sea en $[0,+\infty)$, no?.
- 2. Supóngase que $f \ge 0$, integrable de Riemann en $[a+\epsilon,b]$ y que existe la integral impropia. Probar que f es integrable de Lebesgue en [a,b].

Ejercicio 10.ea f una función medible no negativa sobre \mathbb{R} y sea (E_k) una sucesión creciente de conjuntos cuya unión es E.

- 1. Probar que $\int_E f = \lim_{k \to \infty} \int_{E_k} f$.
- 2. Extender a cualquier función f integrable sobre E.

Ejercicio 11. Si se considera la sucesión de funciones $f_n(x) = n\chi_n(x)$ en el intervalo $0 \le x \le 1$, donde χ_n es la función característica del intervalo $\left(0,\frac{1}{n}\right)$, ¿es posible que exista una función g(x) integrable en dicho intervalo, tal que $f_n(x) \le g(x)$ para cualquier n y cualquier x?

Ejercicio 12. Yo creo Sonia que esto estaría bueno dejarlo para los L^p Si $\varphi(x)f(x)$ es integrable sobre E para cualquier función f integrable sobre E, entonces existe una constante finita C, tal que $|\varphi(x)| \leq C$ en c.t.p x de E.

Ejercicio 13. Sea f una función medible no negativa sobre \mathbb{R}^1 tal que $\int_a^b f(x) \, dx > 0$ siempre que a < b, ¿puede concluirse que f(x) > 0 en c.t.p x?

Ejercicio 14. Capaz lo trabaje en el teórico Absoluta continuidad de la integral de Lebesgue. Supóngase que f es integrable de Lebesgue sobre E. Probar que para cada $\epsilon>0$ existe $\delta>0$ tal que $\int_E|f|\,dx<\epsilon$ siempre que $m(E)<\delta$.

Ejercicio 15. Probar que el Teorema de la Convergencia Mayorada se extiende a una familia de funciones medibles $f_t(x)$, a < t < b, dependiente de un parámetro real t, de la manera siguiente:

Supongamos que $au \in (a,b)$ y que en cada punto de E existe el límite $f(x) = \lim_{t \to \tau} f_t(x)$. Si existe una función $\Phi(x)$ integrable sobre E, tal que $|f_t(x)| \le \Phi(x)$ para $x \in E$ y a < t < b; entonces f es integrable sobre E y además

$$\int_{E} f(x) dx = \lim_{t \to \tau} \int_{E} f_t(x) dx.$$

Ejercicio 16. Derivación de una integral paramétrica. Supongamos que la integral

$$\varphi(t) = \int_{\Gamma} f(t, x) dx$$
 $(a < t < b),$

existe para cada $t \in (a,b)$; que f(t,x) es derivable con respecto a t y existe una función g(x) integrable sobre E, tal que

$$\left| \frac{\partial f(t,x)}{\partial t} \right| \le g(x)$$

para $x \in E$ y a < t < b. Probar que φ es derivable y además

$$\varphi'(t) = \int_{E} \frac{\partial f(t, x)}{\partial t} dx$$

para a < t < b.

Sugerencia: Escribir el cociente $\frac{\varphi(t+h)-\varphi(t)}{h}$, emplear el Teorema del Valor Medio del Cálculo Diferencial y el ejercicio anterior.

Ejercicio 17. **Transformada de Fourier**. Si f es integrable sobre \mathbb{R} , la función

$$g(t) = \int_{-\infty}^{\infty} e^{itx} f(x) \, dx$$

es acotada y uniformemente continua.

Si $x^k.f(x)$ es integrable, entonces g es de clase ${\cal C}^k$ y además

$$g^{(k)}(t) = \int_{-\infty}^{\infty} e^{itx} (ix)^k f(x) dx.$$

DE ACA EN ADELANTE, EJERCICIOS DE MEDIDA PRODUCTO. HABRIA QUE VER SI QUEDAN TODOS.

Ejercicio 18. Como vamos a adoptar el enfoque de Fava y Zó no sería adecuado este ejercicio Si $(\mathbb{R}, \mathscr{B})$ denota el espacio medible que consiste de los números reales junto con los conjuntos de Borel, mostrar que todo subconjunto abierto de $\mathbb{R} \times \mathbb{R}$ pertenece a $\mathscr{B} \times \mathscr{B}$. De hecho, esta σ -álgebra es la sigma-álgebra generada por los subconjuntos abiertos de $\mathbb{R} \times \mathbb{R}$. (En otras palabras, $\mathscr{B} \times \mathscr{B}$ es el álgebra de Borel de $\mathbb{R} \times \mathbb{R}$).

Ejercicio 19. Integrar la función no negativa $xe^{-x^2(1+y^2)}$ sobre el conjunto $(0,\infty)\times(0,\infty)$ en dos formas diferentes. Concluir a partir de sus cálculos que

$$\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Ejercicio 20.

1. Integrar la función sen xe^{-xy} sobre el conjunto $(0,a)\times(0,\infty)$. Mostrar que

$$\int_0^a \frac{\sin x}{x} \, dx = \frac{\pi}{2} - \cos a \int_0^{-\infty} \frac{e^{-ay}}{1+y^2} \, dy - a \int_0^{\infty} \frac{y e^{-ay}}{1+y^2} \, dy \tag{1}$$

2. Mostrar que

$$\int_0^\infty \frac{\operatorname{sen} x}{x} \, dx = \frac{\pi}{2}$$

Ayuda: Demostrar que las integrales de miembro derecho de (1) tienden a 0 cuando $a \to \infty$.

Ejercicio 21.

1. Mostrar que

$$\int_0^\infty \frac{\sin ax}{x} \, dx = \begin{cases} \frac{\pi}{2} & si & a > 0\\ 0 & si & a = 0\\ -\frac{\pi}{2} & si & a < 0 \end{cases}$$

2. Integrando por partes en el item anterior mostrar que

$$\int_0^\infty \frac{1 - \cos ax}{x^2} \, dx = \frac{\pi}{2} |a|.$$

3. Probar que $\frac{1-\cos ax}{x^2}$ es una función integrable en $(0,\infty)$.

Ejercicio 22. Por integración de e^{-xy} sobre una región apropiada mostrar que

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx = \ln \frac{b}{a} \quad \text{si } a > 0, \ \ b > 0.$$

Los siguientes ejericios me gustan todos, pero ¿No quedará demasiado larga la práctica?. ¿NO te parece que asterisquemos 23,25,26,27?

Ejercicio 23. Sean $a_i>0$ para $1\leq i\leq n$ y $J=(0,1)\times\ldots\times(0,1)$. Probar que

$$\int_J \frac{1}{x_1^{a_1} + x_2^{a_2} + \ldots + x_n^{a_n}} \, dx < \infty \Leftrightarrow \sum_{i=1}^n \frac{1}{a_i} > 1.$$

Ayuda: Sea $G_i = \{x \in J | x_i^{a_j} \le x_i^{a_i} \text{ para todo } j\}.$

Notar que para $x \in G_i$, $x_i^{a_i} \le x_1^{a_1} + x_2^{a_2} + \ldots + x_n^{a_n} \le n x_i^{a_i}$ y $J = \bigcup_{i=1}^n G_i$.

Calcular

$$\int_{G} \frac{dx}{x_{i}^{a_{i}}} = \int_{0}^{1} x_{i}^{a_{i} \left(\sum_{j=1}^{n} \frac{1}{a_{j}} - 1\right) - 1} dx_{i},$$

y usar el hecho de que $\int_0^1 t^{s-1} dt < \infty \Leftrightarrow s > 0$.

Ejercicio 24. Sobre $(0,1)\times(0,1)$ considerar

$$f(x,y) = \begin{cases} x^{-2} & si & y < x < 1 \\ -y^{-2} & si & x < y < 1 \end{cases}$$

y probar que $\int_0^1\,dx\int_0^1f(x,y)\,dy=1$ y $\int_0^1\,dy\int_0^1f(x,y)\,dx=-1$.

Ejercicio 25. Mostrar que si $f(x,y)=\frac{(x^2-y^2)}{(x^2+y^2)^2}$, entonces

$$\frac{\pi}{4} = \int_0^1 dx \int_0^1 f(x, y) \, dy \neq \int_0^1 dy \int_0^1 f(x, y) \, dx = -\frac{\pi}{4}.$$

Ejercicio 26. Mostrar que la función $f(x,y) = \frac{xy}{(x^2+y^2)^2}$ verifica

$$\int_{-1}^{1} dx \int_{-1}^{1} f(x, y) dy = \int_{-1}^{1} dy \int_{-1}^{1} f(x, y) dx$$

a pesar de que f no es integrable sobre el cuadrado $Q = [-1,1] \times [-1,1]$.

Ejercicio 27. Una función no negativa f, definida sobre \mathbb{R}^1 , se llama una **densidad** (de probabilidad) si su integral sobre toda la recta es igual a uno. Probar que:

- 1. La convolución de dos densidades es otra densidad.
- 2. Para cada p > 0, la función

$$f_p(x) = \left\{ \begin{array}{cc} \frac{1}{\Gamma(p)} x^{p-1} e^{-x} & \operatorname{si} x > 0 \\ 0 & \operatorname{si} x \leq 0 \end{array} \right.$$

es una densidad.

3. Si p>0 y q>0, entonces $f_p\ast f_q=f_{p+q}$ y además

$$\int_0^1 (1-t)^{p-1} t^{q-1} dt = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

La integral biparamétrica del primer miembro se denota por B(p,q) y se llama **función beta**.