Team Note of 세상에 나쁜 알고리즘은 없다

hamuim, overnap, pani

Compiled on August 2, 2024

Contents				4	4 Fast Fourier Transform		13
					4.1	Fast Fourier Transform	13
1	Dat	a Structures	2		4.2	Number Theoretic Transform	14
	1.1	Sparse Table	2		4.3		
	1.2	Merge Sort Tree	2				
	1.3	Persistence Segment Tree	2	5	\mathbf{Str}	ring	15
	1.4	Segment Tree Beats	3		5.1	Knuth-Moris-Pratt	15
	1.5	Fenwick RMQ	4		5.2	Rabin-Karp	15
	1.6	Randomized Meldable Heap	4		5.3	Manacher	16
	1.7	Link/Cut Tree	5		5.4	Suffix Array and LCP Array	16
					5.5	Aho-Corasick	16
2	Graph & Flow		8				
	2.1	Hopcroft-Karp & Kőnig's	8	6	DP	P Optimization	17
	2.2	Min Cost Max Flow	9		6.1	Convex Hull Trick w/ Stack	17
	2.3	Dinic's	9		6.2	Convex Hull Trick w/ Li-Chao Tree	18
	2.4	Strongly Connected Component	10		6.3	Divide and Conquer Optimization	18
	2.5	Biconnected Component	10		6.4	Monotone Queue Optimization	19
	2.6	Lowest Common Ancestor	11		6.5	Aliens Trick	19
	2.7	Heavy-Light Decomposition	11		6.6	Knuth Optimization	19
	2.8	Centroid Decomposition	11		6.7	Slope Trick	20
					6.8	Sum Over Subsets	20
3	\mathbf{Gec}	ometry	12				
	3.1	Counter Clockwise	12	7	Nu	umber Theory	20
	3.2	Line intersection	12		7.1	Modular Operator	20
	3.3	Graham Scan	12		7.2	Modular Inverse in $\mathcal{O}(N)$	20
	3.4	Monotone Chain	12		7.3	Extended Euclidean	20
	3.5	Rotating Calipers	12		7.4	Miller-Rabin	20
	3.6	Bulldozer Trick	13		7.5	Chinese Remainder Theorem	21
	3.7	Point in Convex Polygon	13		7.6	Pollard Rho	21

```
8 ETC
                                      21
 Data Structures
1.1 Sparse Table
 Usage: RMQ | r: min(lift[]][len], lift[r-(1<<len)+1][len])
 Time Complexity: \mathcal{O}(N) - \mathcal{O}(1)
int k = ceil(log2(n));
vector<vector<int>> lift(n, vector<int>(k));
for (int i=0; i<n; ++i)</pre>
  lift[i][0] = lcp[i];
for (int i=1; i<k; ++i) {
  for (int j=0; j<=n-(1<<i); ++j)
    lift[j][i] = min(lift[j][i-1], lift[j+(1<<(i-1))][i-1]);
}
vector<int> bits(n+1);
for (int i=2; i<=n; ++i) {
  bits[i] = bits[i-1];
  while (1 << bits[i] < i)
    bits[i]++;
  bits[i]--;
}
  Merge Sort Tree
 Time Complexity: \mathcal{O}(N \log N) - \mathcal{O}(\log^2 N)
struct mst {
 int n;
 vector<vector<int>> tree;
```

```
void init(vector<int> &arr) {
    n = 1 << (int)ceil(log2(arr.size()));</pre>
    tree.resize(n*2);
    for (int i=0; i<arr.size(); ++i)</pre>
      tree[n+i].push_back(arr[i]);
    for (int i=n-1; i>0; --i) {
      tree[i].resize(tree[i*2].size() + tree[i*2+1].size());
      merge(tree[i*2].begin(), tree[i*2].end(),
        tree[i*2+1].begin(), tree[i*2+1].end(), tree[i].begin());
 }
  int sum(int 1, int r, int k) {
    int ret = 0;
    for (1+=n, r+=n; 1<=r; 1/=2, r/=2) {
      if (1%2)
        ret += upper_bound(tree[1].begin(), tree[1].end(), k) -
        tree[1].begin(), 1++;
      if (r\%2 == 0)
        ret += upper_bound(tree[r].begin(), tree[r].end(), k) -
        tree[r].begin(), r--;
    return ret;
 }
};
```

1.3 Persistence Segment Tree

```
Time Complexity: O(log² N)
struct pst {
    struct node {
        int cnt = 0;
        array<int, 2> go{};
    };
    vector<node> tree;
    vector<int> roots;
    pst() {
        roots.push_back(1);
        tree.resize(1 << 18);
        for (int i = 1; i < (1 << 17); ++i) {
            tree[i].go[0] = i * 2;
        }
}</pre>
```

```
tree[i].go[1] = i * 2 + 1;
  }
}
int insert(int x, int prev) {
  int curr = tree.size();
  roots.push_back(curr);
  tree.emplace_back();
  for (int i = 16; i \ge 0; --i) {
    const int next = (x >> i) & 1;
    tree[curr].go[next] = tree.size();
    tree.emplace_back();
    tree[curr].go[!next] = tree[prev].go[!next];
    tree[curr].cnt = tree[prev].cnt + 1;
    curr = tree[curr].go[next];
    prev = tree[prev].go[next];
  tree[curr].cnt = tree[prev].cnt + 1;
  return roots.back();
int query(int u, int v, int lca, int lca_par, int k) {
  int ret = 0:
  for (int i = 16; i \ge 0; --i) {
    const int cnt = tree[tree[u].go[0]].cnt +
    tree[tree[v].go[0]].cnt -
                    tree[tree[lca].go[0]].cnt -
                    tree[tree[lca_par].go[0]].cnt;
    if (cnt >= k) {
      u = tree[u].go[0];
     v = tree[v].go[0];
      lca = tree[lca].go[0];
      lca_par = tree[lca_par].go[0];
    } else {
     k -= cnt:
     u = tree[u].go[1];
      v = tree[v].go[1];
      lca = tree[lca].go[1];
      lca_par = tree[lca_par].go[1];
      ret += 1 << i;
  }
```

```
return ret:
};
1.4 Segment Tree Beats
  Usage: Note the potential function
  Time Complexity: \mathcal{O}(\log^2 N)
struct seg {
  vector<node> tree:
  void push(int x, int s, int e) {
    tree[x].x += tree[x].1;
    tree[x].o += tree[x].1;
    tree[x].a += tree[x].1;
    if (s != e) {
      tree[x*2].1 += tree[x].1;
      tree[x*2+1].l += tree[x].l;
    tree[x].l = 0;
  void init(int x, int s, int e, const vector<int> &a) {
    if (s == e)
      tree[x].x = tree[x].o = tree[x].a = a[s];
    else {
      const int m = (s+e) / 2:
      init(x*2, s, m, a);
      init(x*2+1, m+1, e, a);
      tree[x] = tree[x*2] + tree[x*2+1];
   }
  void off(int x, int s, int e, int l, int r, int v) {
    push(x, s, e);
    if (e < 1 || r < s || (tree[x].o & v) == 0)
      return;
    if (1 <= s && e <= r && !(v & (tree[x].a^tree[x].o))) {
      tree[x].1 -= v & tree[x].o;
      push(x, s, e);
    } else {
      const int m = (s+e) / 2;
      off(x*2, s, m, 1, r, v);
```

}

fenwick(const vector<int> &a) : arr(a) {

```
off(x*2+1, m+1, e, l, r, v);
      tree[x] = tree[x*2] + tree[x*2+1];
    }
  }
  void on(int x, int s, int e, int l, int r, int v) {
    push(x, s, e);
    if (e < 1 || r < s || (tree[x].a & v) == v)
      return;
    if (1 <= s && e <= r && !(v & (tree[x].a^tree[x].o))) {
      tree[x].1 += v & ~tree[x].o;
      push(x, s, e);
    } else {
      const int m = (s+e) / 2;
      on(x*2, s, m, 1, r, v);
      on(x*2+1, m+1, e, 1, r, v);
      tree[x] = tree[x*2] + tree[x*2+1];
    }
  int sum(int x, int s, int e, int l, int r) {
    push(x, s, e);
    if (e < 1 | | r < s)
      return 0:
    if (1 <= s && e <= r)
      return tree[x].x;
    const int m = (s+e) / 2;
    return \max(\text{sum}(x*2, s, m, 1, r), \text{sum}(x*2+1, m+1, e, 1, r));
};
1.5 Fenwick RMQ
  Time Complexity: Fast \mathcal{O}(\log N)
struct fenwick {
  static constexpr pii INF = \{1e9 + 7, -(1e9 + 7)\};
  vector<pii> tree1, tree2;
  const vector<int> &arr;
  static pii op(pii l, pii r) {
    return {min(l.first, r.first), max(l.second, r.second)};
```

```
const int n = a.size();
    tree1.resize(n + 1, INF);
    tree2.resize(n + 1, INF);
    for (int i = 0; i < n; ++i)
      update(i, a[i]);
  void update(int x, int v) {
    for (int i = x + 1; i < tree1.size(); i += i & -i)</pre>
      tree1[i] = op(tree1[i], {v, v});
    for (int i = x + 1; i > 0; i = i & -i)
      tree2[i] = op(tree2[i], {v, v});
  pii query(int 1, int r) {
    pii ret = INF;
   1++, r++;
    int i:
    for (i = r; i - (i \& -i) >= 1; i -= i \& -i)
     ret = op(tree1[i], ret);
   for (i = 1; i + (i \& -i) \le r; i += i \& -i)
     ret = op(tree2[i], ret);
   ret = op(\{arr[i-1], arr[i-1]\}, ret);
    return ret:
 }
};
```

1.6 Randomized Meldable Heap

Usage: Min-heap H is declared as Heap<T> H. You can use push, size, empty, top, pop as std::priority_queue. Use H.meld(G) to meld contents from G to H. Time Complexity: O(logn)

```
namespace Meldable {
mt19937 gen(0x94949);
template<typename T>
struct Node {
   Node *1, *r;
   T v;
   Node(T x): 1(0), r(0), v(x){}
};
template<typename T>
Node<T>* Meld(Node<T>* A, Node<T>* B) {
```

```
if(!A) return B; if(!B) return A;
  if (B->v < A->v) swap (A, B);
  if(gen()\&1) A->1 = Meld(A->1, B);
  else A \rightarrow r = Meld(A \rightarrow r, B);
  return A;
template<typename T>
struct Heap {
  Node<T> *r; int s;
  Heap(): r(0), s(0){}
  void push(T x) {
    r = Meld(new Node < T > (x), r);
    ++s;
  int size(){ return s; }
  bool empty(){ return s == 0;}
  T top(){ return r->v; }
  void pop() {
    Node<T>* p = r;
    r = Meld(r->1, r->r);
    delete p;
    --s;
  void Meld(Heap x) {
    s += x->s;
    r = Meld(r, x->r);
 }
};
}
     Link/Cut Tree
struct Node {
  Node *1, *r, *p;
  bool flip;
  int sz;
  T now, sum, lz;
  Node() {
   l = r = p = nullptr;
    sz = 1;
```

```
flip = false;
  now = sum = lz = 0:
}
bool IsLeft() const { return p && this == p->1; }
bool IsRoot() const { return !p || (this != p->l && this != p->r);
friend int GetSize(const Node *x) { return x ? x->sz : 0; }
friend T GetSum(const Node *x) { return x ? x->sum : 0; }
void Rotate() {
  p->Push();
  Push();
  if (IsLeft())
   r \&\& (r->p = p), p->l = r, r = p;
  else
   1 \&\& (1->p = p), p->r = 1, 1 = p;
  if (!p->IsRoot())
    (p->IsLeft() ? p->p->l : p->p->r) = this;
  auto t = p;
  p = t->p;
  t->p = this;
  t->Update();
  Update();
void Update() {
  sz = 1 + GetSize(1) + GetSize(r);
  sum = now + GetSum(1) + GetSum(r);
void Update(const T &val) {
  now = val;
  Update();
void Push() {
  Update(now + lz);
 if (flip)
    swap(1, r);
  for (auto c : {1, r})
   if (c)
      c->flip ^= flip, c->lz += lz;
  1z = 0:
  flip = false;
```

```
}
};
Node *rt:
Node *Splay(Node *x, Node *g = nullptr) {
  for (g || (rt = x); x->p != g; x->Rotate()) {
    if (!x->p->IsRoot())
      x \rightarrow p \rightarrow p \rightarrow Push();
    x \rightarrow p \rightarrow Push();
    x \rightarrow Push();
    if (x->p->p != g)
       (x->IsLeft() ^ x->p->IsLeft() ? x : x->p)->Rotate();
  }
  x \rightarrow Push();
  return x;
Node *Kth(int k) {
  for (auto x = rt;; x = x->r) {
    for (; x-Push(), x->1 && x->1->sz > k; x = x->1)
    if (x->1)
      k = x->1->sz:
    if (!k--)
       return Splay(x);
  }
Node *Gather(int s, int e) {
  auto t = Kth(e + 1);
  return Splay(t, Kth(s - 1))->1;
Node *Flip(int s, int e) {
  auto x = Gather(s, e);
  x\rightarrow flip ^= 1;
  return x;
Node *Shift(int s, int e, int k) {
  if (k \ge 0) \{ // \text{ shift to right } 
    k \% = e - s + 1;
    if (k)
      Flip(s, e), Flip(s, s + k - 1), Flip(s + k, e);
  } else { // shift to left
```

```
k = -k:
    k \% = e - s + 1:
    if (k)
      Flip(s, e), Flip(s, e - k), Flip(e - k + 1, e);
  return Gather(s, e);
int Idx(Node *x) { return x->l->sz; }
//////// Link Cut Tree Start /////////
Node *Splay(Node *x) {
 for (; !x->IsRoot(); x->Rotate()) {
    if (!x->p->IsRoot())
      x \rightarrow p \rightarrow p \rightarrow Push();
    x \rightarrow p \rightarrow Push();
    x->Push();
    if (!x->p->IsRoot())
       (x->IsLeft() ^ x->p->IsLeft() ? x : x->p)->Rotate();
  x \rightarrow Push();
  return x;
void Access(Node *x) {
  Splav(x);
  x->r = nullptr;
  x->Update();
  for (auto y = x; x \rightarrow p; Splay(x))
    y = x-p, Splay(y), y-r = x, y-Update();
int GetDepth(Node *x) {
  Access(x);
  x \rightarrow Push();
  return GetSize(x->1);
Node *GetRoot(Node *x) {
  Access(x):
  for (x->Push(); x->1; x->Push())
    x = x -> 1;
  return Splay(x);
Node *GetPar(Node *x) {
```

```
Access(x):
  x \rightarrow Push():
  if (!x->1)
    return nullptr;
  x = x->1;
  for (x->Push(); x->r; x->Push())
    x = x->r;
  return Splay(x);
void Link(Node *p, Node *c) {
  Access(c);
  Access(p);
  c->1 = p;
  p->p = c;
  c->Update();
void Cut(Node *c) {
  Access(c);
  c \rightarrow 1 \rightarrow p = nullptr;
  c->1 = nullptr;
  c->Update();
Node *GetLCA(Node *x, Node *y) {
  Access(x);
  Access(v);
  Splay(x);
  return x->p ? x->p : x;
Node *Ancestor(Node *x, int k) {
  k = GetDepth(x) - k;
  assert(k >= 0);
  for (;; x->Push()) {
    int s = GetSize(x->1);
    if (s == k)
      return Access(x), x;
    if (s < k)
      k -= s + 1, x = x -> r;
    else
      x = x->1;
  }
```

```
void MakeRoot(Node *x) {
  Access(x):
  Splay(x);
 x->flip ^= 1;
 x->Push();
bool IsConnect(Node *x, Node *y) { return GetRoot(x) == GetRoot(y);
void PathUpdate(Node *x, Node *y, T val) {
  Node *root = GetRoot(x); // original root
  MakeRoot(x);
  Access(y); // make x to root, tie with y
  Splay(x);
  x\rightarrow lz += val;
  x \rightarrow Push():
  MakeRoot(root); // Revert
  // edge update without edge vertex...
  Node *lca = GetLCA(x, y);
  Access(lca);
  Splay(lca);
  lca->Push():
  lca->Update(lca->now - val);
T VertexQuery(Node *x, Node *y) {
  Node *1 = GetLCA(x, y);
  T ret = 1->now;
  Access(x);
  Splay(1);
  if (1->r)
    ret = ret + 1 -> r -> sum;
  Access(y);
  Splay(1);
  if (1->r)
    ret = ret + 1 -> r -> sum;
  return ret:
Node *GetQueryResultNode(Node *u, Node *v) {
 if (!IsConnect(u, v))
    return 0:
```

```
MakeRoot(u);
Access(v);
auto ret = v->1;
while (ret->mx != ret->now) {
   if (ret->l && ret->mx == ret->l->mx)
     ret = ret->l;
   else
     ret = ret->r;
}
Access(ret);
return ret;
} // code from justicehui
```

2 Graph & Flow

2.1 Hopcroft-Karp & Kőnig's

 $\mathbf{Usage:}$ Dinic's variant. Maximum Matching = Minimum Vertex Cover = S - Maximum Independence Set

```
Time Complexity: \mathcal{O}(\sqrt{V}E)
while (true) {
  vector<int> level(sz, -1);
  queue<int> q;
 for (int x : 1) {
    if (match[x] == -1) {
      level[x] = 0;
      q.push(x);
   }
  while (!q.empty()) {
    const int x = q.front();
    q.pop();
    for (int next : e[x]) {
      if (match[next] != -1 \&\& level[match[next]] == -1) {
        level[match[next]] = level[x] + 1;
        q.push(match[next]);
   }
```

```
if (level.empty() || *max_element(level.begin(), level.end()) ==
  -1)
    break:
  function \langle bool(int) \rangle dfs = [\&](int x) {
    for (int next : e[x]) {
      if (match[next] == -1 | |
          (level[match[next]] == level[x] + 1 && dfs(match[next])))
        match[next] = x;
        match[x] = next;
        return true;
    return false;
  };
  int total = 0;
  for (int x : 1) if (level[x] == 0) total += dfs(x);
  if (total == 0) break;
  flow += total;
set<int> alt; // Konig
function<void(int, bool)> dfs = [&](int x, bool left) {
 if (alt.contains(x)) return;
  alt.insert(x);
 for (int next : e[x]) {
    if ((next != match[x]) && left) dfs(next, false);
    if ((next == match[x]) && !left) dfs(next, true);
};
for (int x : 1) if (match[x] == -1) dfs(x, true);
int test = 0;
for (int i : 1) {
 if (alt.contains(i)) {
    auto &[y, x] = pos[i];
    s[y][x] = 'C';
 }
for (int i : r) {
 if (!alt.contains(i)) {
    auto &[y, x] = pos[i];
```

s[y][x] = 'C';

```
}
     Min Cost Max Flow
  Time Complexity: \mathcal{O}(VEf)
void mcmf(){
  int cp = 0;
  while(cp<2){</pre>
    int prev[MN],dist[MN],inq[MN]={0};
    queue <int> Q;
    fill(prev, prev+MN, -1);
    fill(dist, dist+MN, INF);
    dist[S] = 0; inq[S] = 1;
    Q.push(S);
    while(!Q.empty()){
      int cur= Q.front();
      Q.pop();
      ing[cur] = 0;
      for(int nxt: adj[cur]){
        if(cap[cur][nxt] - flow[cur][nxt] > 0 &&
            dist[nxt] > dist[cur]+cst[cur][nxt]){
          dist[nxt] = dist[cur] + cst[cur][nxt];
          prev[nxt] = cur;
          if(!inq[nxt]){
            Q.push(nxt);
            inq[nxt] = 1;
          }
       }
      }
    if(prev[E]==-1) break;
    int tmp = INF;
    for(int i=E;i!=S;i=prev[i])
      tmp = min(tmp, cap[prev[i]][i]-flow[prev[i]][i]);
    for(int i=E;i!=S;i=prev[i]){
      ans += tmp * cst[prev[i]][i];
      flow[prev[i]][i] += tmp;
      flow[i][prev[i]] -= tmp;
```

```
cp++;
2.3 Dinic's
  Time Complexity: \mathcal{O}(V^2E), \mathcal{O}(\min(V^{2/3}E, E^{3/2})) on unit capacity
while (true) {
  vector<int> level(n * 2 + 2, -1);
  queue<int> q;
  level[st] = 0;
  q.push(st);
  while (!q.empty()) {
    const int x = q.front();
    q.pop();
    for (int next : e[x]) {
      if (level[next] == -1 \&\& cap[x][next] - flow[x][next] > 0) {
        level[next] = level[x] + 1;
        q.push(next);
  if (level[dt] == -1)
    break:
  vector < int > vis(n * 2 + 1);
  function \langle int(int, int) \rangle dfs = [&](int x, int total) {
    if (x == dt)
      return total:
    for (int &i = vis[x]; i < e[x].size(); ++i) {</pre>
      const int next = e[x][i];
      if (level[next] == level[x] + 1 && cap[x][next] -
      flow[x][next] > 0) {
        const int res = dfs(next, min(total, cap[x][next] -
        flow[x][next]));
        if (res > 0) {
          flow[x][next] += res;
          flow[next][x] -= res;
          return res;
```

```
}
    return 0;
};
while (true) {
    const int res = dfs(st, 1e9 + 7);
    if (res == 0)
        break;
    ans += res;
}
```

2.4 Strongly Connected Component

Time Complexity: O(N)

```
int idx = 0, scnt = 0;
vector\langle int \rangle scc(n, -1), vis(n, -1), st;
function<int (int)> dfs = [&] (int x) {
  int ret = vis[x] = idx++;
  st.push_back(x);
  for (int next : e[x]) {
    if (vis[next] == -1)
      ret = min(ret, dfs(next));
    else if (scc[next] == -1)
      ret = min(ret, vis[next]);
  }
  if (ret == vis[x]) {
    while (!st.empty()) {
      const int t = st.back();
      st.pop_back();
      scc[t] = scnt;
      if (t == x)
        break;
    scnt++;
  return ret;
};
```

2.5 Biconnected Component

```
Time Complexity: O(N)
int idx = 0;
vector<int> vis(n, -1);
vector<pii> st;
vector<vector<pii>> bcc;
vector<bool> cut(n); // articulation point
function<int (int, int)> dfs = [&] (int x, int p) {
    int ret = vis[x] = idx++;
    int child = 0;
    for (int next : e[x]) {
        if (next == p)
            continue;
        if (vis[next] < vis[x])</pre>
            st.emplace_back(x, next);
        if (vis[next] !=-1)
            ret = min(ret, vis[next]);
        else {
            int res = dfs(next, x);
            ret = min(ret, res);
            child++;
            if (vis[x] <= res) {
                if (p != -1)
                    cut[x] = true;
                bcc.emplace_back();
                while (st.back() != pii{x, next}) {
                    bcc.back().push_back(st.back());
                    st.pop_back();
                bcc.back().push_back(st.back());
                st.pop_back();
            } // vis[x] < res to find bridges</pre>
    if (p == -1 \&\& child > 1)
        cut[x] = true;
    return ret;
```

2.6 Lowest Common Ancestor

```
Usage: Query with the sparse table 

Time Complexity: \mathcal{O}(N \log N) - \mathcal{O}(\log N)

for (int i=1; i<16; ++i) {

for (int j=0; j<n; ++j)

par[j][i] = par[par[j][i-1]][i-1];

}
```

2.7 Heavy-Light Decomposition

```
Usage: Query with the ETT number and it's root node
  Time Complexity: \mathcal{O}(N) - \mathcal{O}(\log N)
vector<int> par(n), ett(n), rt(n), d(n), sz(n);
function<void (int)> dfs1 = [&] (int x) {
    sz[x] = 1;
    for (int &next : e[x]) {
         if (next == par[x]) continue;
        d[next] = d[x]+1;
        par[next] = x:
        dfs1(next):
        sz[x] += sz[next]:
        if (e[x][0] == par[x] || sz[e[x][0]] < sz[next])
             swap(e[x][0], next);
    }
};
int idx = 1;
function \langle void (int) \rangle dfs2 = [\&] (int x) {
    ett[x] = idx++;
    for (int next : e[x]) {
        if (next == par[x]) continue;
        rt[next] = next == e[x][0] ? rt[x] : next;
        dfs2(next);
    }
};
```

2.8 Centroid Decomposition

Usage: cent[x] is the parent in centroid tree Time Complexity: $\mathcal{O}(N \log N)$

```
vector<int> sz(n):
vector<bool> fin(n):
function<int (int, int)> get_size = [&] (int x, int p) {
    sz[x] = 1:
    for (int next : e[x])
        if (!fin[next] && next != p) sz[x] += get_size(next, x);
    return sz[x];
};
function<int (int, int, int)> get_cent = [&] (int x, int p, int all)
    for (int next : e[x])
        if (!fin[next] && next != p && sz[next] *2 > all) return
        get_cent(next, x, all);
    return x;
}:
vector<int> cent(n, -1):
function<void (int, int)> get_cent_tree = [&] (int x, int p) {
    get_size(x, p);
    x = get_cent(x, p, sz[x]);
    fin[x] = true;
    cent[x] = p;
    function < void (int, int, int, bool) > dfs = [&] (int x, int p,
    int d, bool test) {
        if (test) // update answer
        else // update state
        for (int next : e[x])
            if (!fin[next] && next != p) dfs(next, x, d, test);
    };
    for (int next : e[x]) {
        if (!fin[next]) {
            dfs(next, x, init, true);
            dfs(next, x, init+curr, false);
        }
    for (int next : e[x])
        if (!fin[next] && next != p) get_cent_tree(next, x);
};
get_cent_tree(0, -1);
```

3 Geometry

3.1 Counter Clockwise

```
Usage: It returns \{-1,0,1\} - the ccw of b-a and c-b

Time Complexity: \mathcal{O}(1)

auto ccw = [] (const pii &a, const pii &b, const pii &c) {

  pii x = { b.first - a.first, b.second - a.second };

  pii y = { c.first - b.first, c.second - b.second };

  ll ret = 1LL * x.first * y.second - 1LL * x.second * y.first;

  return ret == 0 ? 0 : (ret > 0 ? 1 : -1);

};
```

3.2 Line intersection

Usage: Check the intersection of (x_1, x_2) and (y_1, y_2) . It requires an additional condition when they are parallel

```
Time Complexity: \mathcal{O}(1) ccw(x1, x2, y1) != ccw(x1, x1, y2) && ccw(y1, y2, x1) != ccw(y1, y2, x2)
```

3.3 Graham Scan

```
Time Complexity: O(N log N)

struct point {
   int x, y, p, q;
   point() { x = y = p = q = 0; }
   bool operator < (const point& other) {
      if (1LL * other.p * q != 1LL * p * other.q)
            return 1LL * other.p * q < 1LL * p * other.q;
      else if (y != other.y)
            return y < other.y;
      else
            return x < other.x;
   }
};
swap(points[0], *min_element(points.begin(), points.end()));
for (int i=1; i<points.size(); ++i) {
   points[i].p = points[i].x - points[0].x;</pre>
```

```
points[i].q = points[i].y - points[0].y;
sort(points.begin()+1, points.end());
vector<int> hull;
for (int i=0; i<points.size(); ++i) {</pre>
    while (hull.size() >= 2 && ccw(points[hull[hull.size()-2]],
    points[hull.back()], points[i]) < 1)</pre>
        hull.pop_back();
    hull.push_back(i);
3.4 Monotone Chain
  Usage: Get the upper and lower hull of the convex hull
  Time Complexity: \mathcal{O}(N \log N)
pair<vector<pii>, vector<pii>> getConvexHull(vector<pii> pt){
    sort(pt.begin(), pt.end());
    vector<pii> uh, dh;
    int un=0, dn=0; // for easy coding
    for (auto &tmp : pt) {
        while (un >= 2 \&\& ccw(uh[un-2], uh[un-1], tmp))
            uh.pop_back(), --un;
        uh.push_back(tmp); ++un;
    reverse(pt.begin(), pt.end());
    for (auto &tmp : pt) {
        while (dn \ge 2 \&\& ccw(dh[dn-2], dh[dn-1], tmp))
            dh.pop_back(), --dn;
        dh.push_back(tmp); ++dn;
    return {uh, dh};
} // ref: https://namnamseo.tistory.com
3.5 Rotating Calipers
  Usage: Get the maximum distance of the convex hull
  Time Complexity: \mathcal{O}(N)
auto ccw4 = [&] (point& a1, point& a2, point& b1, point& b2) {
    return 1LL * (a2.x - a1.x) * (b2.y - b1.y) > 1LL * (a2.y - a1.y)
```

* (b2.x - b1.x);

```
};
auto dist = [] (point& a, point& b) {
    return 1LL * (a.x - b.x) * (a.x - b.x) + 1LL * (a.y - b.y) *
        (a.y - b.y);
};
ll maxi = 0;
for (int i=0, j=1; i<hull.size();) {
    maxi = max(maxi, dist(hull[i], hull[j]));
    if (j < hull.size()-1 && ccw4(hull[i], hull[i+1], hull[j],
        hull[j+1]))
        j++;
    else
        i++;
}</pre>
```

3.6 Bulldozer Trick

Usage: Traverse the entire sorting state of 2D points Time Complexity: $\mathcal{O}(N^2 \log N)$

```
struct Line{
  11 i, j, dx, dy; // dx >= 0
  Line(int i, int j, const Point &pi, const Point &pj)
    : i(i), j(j), dx(pj.x-pi.x), dy(pj.y-pi.y) {}
  bool operator < (const Line &1) const {</pre>
    return make_tuple(dy*1.dx, i, j) < make_tuple(1.dy*dx, 1.i,
    1.j);
  }
  bool operator == (const Line &1) const {
    return dy * 1.dx == 1.dy * dx;
  }
}:
void Solve(){
  sort(A+1, A+N+1); iota(P+1, P+N+1, 1);
  vector<Line> V; V.reserve(N*(N-1)/2);
  for(int i=1; i<=N; i++) for(int j=i+1; j<=N; j++)
  V.emplace_back(i, j, A[i], A[j]);
  sort(V.begin(), V.end());
  for(int i=0, j=0; i<V.size(); i=j){</pre>
    while(j < V.size() && V[i] == V[j]) j++;</pre>
    for(int k=i; k<j; k++){</pre>
```

```
int u = V[k].i, v = V[k].j; // point id, index -> Pos[id]
    swap(Pos[u], Pos[v]); swap(A[Pos[u]], A[Pos[v]]);
    if(Pos[u] > Pos[v]) swap(u, v);
    // @TODO
    }
}
// code from justicehui
```

3.7 Point in Convex Polygon

Time Complexity: $\mathcal{O}(\log N)$

```
bool Check(const vector<Point> &v, const Point &pt){
   if(CCW(v[0], v[1], pt) < 0) return false;
   int l = 1, r = v.size() - 1;
   while(l < r){
      int m = l + r + 1 >> 1;
      if(CCW(v[0], v[m], pt) >= 0) l = m; else r = m - 1;
   }
   if(l == v.size() - 1) return CCW(v[0], v.back(), pt) == 0 && v[0]
   <= pt && pt <= v.back();
   return CCW(v[0], v[l], pt) >= 0 && CCW(v[l], v[l+1], pt) >= 0 &&
      CCW(v[l+1], v[0], pt) >= 0;
}
```

4 Fast Fourier Transform

4.1 Fast Fourier Transform

Usage: FFT and multiply polynomials Time Complexity: $\mathcal{O}(N \log N)$

```
using cd = complex<double>;
void fft(vector<cd> &f, cd w) {
  int n = f.size();
  if (n == 1)
    return;
  vector<cd> odd(n/2), even(n/2);
  for (int i=0; i<n; ++i)
    (i%2 ? odd : even)[i/2] = f[i];</pre>
```

```
fft(odd. w*w):
  fft(even, w*w);
  cd x(1, 0);
  for (int i=0; i< n/2; ++i) {
   f[i] = even[i] + x * odd[i];
   f[i+n/2] = even[i] - x * odd[i];
    x *= w; // get through power to better accuracy
}
vector<cd> mult(vector<cd> a, vector<cd> b) {
  int n;
  for (n=1; n<a.size() || n<b.size(); n*=2);
  n *= 2;
  vector<cd> ret(n);
  a.resize(n):
  b.resize(n):
  static constexpr double PI = 3.1415926535897932384;
  cd w(\cos(PI*2/n), \sin(PI*2/n));
 fft(a, w);
  fft(b, w);
  for (int i=0: i<n: ++i)
   ret[i] = a[i] * b[i]:
  fft(ret, cd(1, 0)/w);
  for (int i=0; i<n; ++i) {
    ret[i] /= cd(n, 0);
    ret[i] = cd(round(ret[i].real()), round(ret[i].imag()));
 return ret;
}
4.2 Number Theoretic Transform
  Usage: FFT with integer - to get better accuracy
  Time Complexity: \mathcal{O}(N \log N)
// w is the root of mod e.g. 3/998244353 and 5/1012924417
void ntt(vector<ll> &f, const ll w, const ll mod) {
  const int n = f.size();
  if (n == 1)
    return;
  vector<11> odd(n/2), even(n/2);
```

```
for (int i=0: i<n: ++i)
    (i\&1 ? odd : even)[i/2] = f[i]:
 ntt(odd, w*w%mod, mod):
 ntt(even, w*w%mod, mod);
 11 x = 1;
 for (int i=0; i<n/2; ++i) {
   f[i] = (even[i] + x * odd[i] % mod) % mod;
   f[i+n/2] = (even[i] - x * odd[i] % mod + mod) % mod;
   x = x*w\mod;
vector<int> mult(vector<int> f, vector<int> g) {
 int sz;
 for (sz = 1; sz < f.size() + g.size(); sz *= 2);
 vector<int> ret(sz):
 f.resize(sz), g.resize(sz);
 int w = modpow(W, (MOD - 1) / sz, MOD);
 ntt(f, w), ntt(g, w);
 for (int i = 0; i < sz; ++i)
   ret[i] = 1LL * f[i] * g[i] % MOD;
 ntt(ret, modpow(w, MOD - 2, MOD));
 const int szinv = modpow(sz, MOD - 2, MOD);
 for (int i = 0; i < sz; ++i)
   ret[i] = 1LL * ret[i] * szinv % MOD;
 while (!ret.empty() && ret.back() == 0)
   ret.pop_back();
 return ret;
vector<int> inv(vector<int> f, const int DMOD) {
 vector<int> ret = {modpow(f[0], MOD - 2, MOD)};
 for (int i = 1; i < DMOD; i *= 2) {
    vector<int> tmp(f.begin(), f.begin() + min((int)f.size(), i *
    2));
   tmp = mult(ret, tmp);
   tmp.resize(i * 2);
   for (int &x : tmp) x = (MOD - x) \% MOD;
    tmp[0] = (tmp[0] + 2) \% MOD;
   ret = mult(ret, tmp);
   ret.resize(i * 2);
```

```
ret.resize(DMOD);
  return ret:
}
vector<int> div(vector<int> a, vector<int> b) {
  if (a.size() < b.size()) return {};</pre>
  const int DMOD = a.size() - b.size() + 1;
  reverse(a.begin(), a.end());
  reverse(b.begin(), b.end());
  if (a.size() > DMOD) a.resize(DMOD);
  if (b.size() > DMOD) b.resize(DMOD);
  b = inv(b, DMOD);
  auto res = mult(a, b);
  res.resize(DMOD);
  reverse(res.begin(), res.end());
  while (!res.empty() && res.back() == 0) res.pop_back();
  return res:
}
vector<int> mod(vector<int> &&a, vector<int> b) {
  auto tmp = mult(div(a, b), b);
  tmp.resize(a.size());
  for (int i = 0; i < a.size(); ++i)</pre>
    a[i] = (a[i] - tmp[i] + MOD) \% MOD:
  while (!a.empty() && a.back() == 0) a.pop_back();
  return a;
}
// kitamasa
vector<int> res = \{1\}, xn = \{0, 1\};
while (n) {
  if (n \& 1) res = mod(mult(res, xn), c);
 n /= 2:
  xn = mod(mult(xn, xn), c);
     Fast Walsh Hadamard Transform
  Usage: XOR convolution
  Time Complexity: \mathcal{O}(N \log N)
void fwht(vector<11> &f) {
  const int n = f.size();
  if (n == 1)
```

```
return:
  vector<11> odd(n/2), even(n/2);
  for (int i=0; i<n; ++i)
    (i\&1 ? odd : even)[i/2] = f[i];
  fwht(odd);
  fwht(even);
  for (int i=0; i<n/2; ++i) {
    f[i*2] = even[i] + odd[i];
    f[i*2+1] = even[i] - odd[i];
    String
5.1 Knuth-Moris-Pratt
  Time Complexity: \mathcal{O}(N)
vector<int> fail(m):
for (int i=1, j=0; i<m; ++i) {
    while (j > 0 \&\& p[i] != p[j]) j = fail[j-1];
    if (p[i] == p[j]) fail[i] = ++j;
vector<int> ans:
for (int i=0, j=0; i<n; ++i) {
    while (j > 0 \&\& t[i] != p[j]) j = fail[j-1];
    if (t[i] == p[j]) {
        if (j == m-1) {
            ans.push_back(i-j);
            i = fail[i];
        } else j++;
5.2 Rabin-Karp
  Usage: The Rabin fingerprint for const-length hashing
  Time Complexity: \mathcal{O}(N)
ull hash, p;
vector<ull> ht;
```

```
for (int i=0: i<=l-mid: ++i) {
    if (i == 0) {
        hash = s[0]:
        p = 1;
        for (int j=1; j<mid; ++j) {
            hash = hash * pi + s[j];
            p = p * pi; // pi is the prime e.g. 13
        }
    } else
        hash = (hash - p * s[i-1]) * pi + s[i+mid-1];
    ht.push_back(hash);
}
5.3
     Manacher
  Usage: Longest radius of palindrome substring
  Time Complexity: \mathcal{O}(N)
vector<int> man(m);
int r = 0, p = 0;
for (int i=0; i<m; ++i) {
    if (i <= r)</pre>
        man[i] = min(man[p*2 - i], r - i);
    while (i-man[i] > 0 \&\& i+man[i] < m-1 \&\& v[i-man[i]-1] ==
    v[i+man[i]+1])
        man[i]++;
    if (r < i + man[i]) {</pre>
        r = i + man[i];
        p = i;
    }
}
    Suffix Array and LCP Array
  Time Complexity: \mathcal{O}(N \log N) - \mathcal{O}(N)
const int m = max(255, n)+1;
vector<int> sa(n), ord(n*2), nord(n*2);
for (int i=0; i<n; ++i) {</pre>
    sa[i] = i;
    ord[i] = s[i];
```

```
for (int d=1; d<n; d*=2) {
    auto cmp = [&] (int i, int j) {
        if (ord[i] == ord[j])
            return ord[i+d] < ord[j+d];</pre>
        return ord[i] < ord[j];</pre>
    };
    vector<int> cnt(m), tmp(n);
    for (int i=0; i<n; ++i)</pre>
        cnt[ord[i+d]]++;
    for (int i=0; i+1<m; ++i)</pre>
        cnt[i+1] += cnt[i];
    for (int i=n-1; i>=0; --i)
        tmp[--cnt[ord[i+d]]] = i;
    fill(cnt.begin(), cnt.end(), 0);
    for (int i=0; i<n; ++i)</pre>
        cnt[ord[i]]++;
    for (int i=0; i+1<m; ++i)
        cnt[i+1] += cnt[i];
    for (int i=n-1; i>=0; --i)
        sa[--cnt[ord[tmp[i]]]] = tmp[i];
    nord[sa[0]] = 1:
    for (int i=1; i<n; ++i)</pre>
        nord[sa[i]] = nord[sa[i-1]] + cmp(sa[i-1], sa[i]);
    swap(ord, nord);
vector<int> inv(n), lcp(n);
for (int i=0; i<n; ++i)
    inv[sa[i]] = i;
for (int i=0, k=0; i<n; ++i) {
    if (inv[i] == 0)
        continue:
    for (int j=sa[inv[i]-1]; s[i+k]==s[j+k]; ++k);
    lcp[inv[i]] = k ? k-- : 0;
     Aho-Corasick
5.5
  Time Complexity: \mathcal{O}(N + \sum M)
```

```
struct trie {
  array<trie *, 3> go;
  trie *fail;
  int output, idx;
  trie() {
   fill(go.begin(), go.end(), nullptr);
   fail = nullptr;
   output = idx = 0;
  ~trie() {
   for (auto &x : go)
      delete x;
  void insert(const string &input, int i) {
   if (i == input.size())
      output++;
    else {
      const int x = input[i] - 'A';
      if (!go[x])
        go[x] = new trie();
      go[x]->insert(input, i+1);
 }
};
queue<trie*> q; // make fail links; requires root->insert before
root->fail = root;
q.push(root);
while (!q.empty()) {
    trie *curr = q.front();
    q.pop();
   for (int i=0; i<26; ++i) {
        trie *next = curr->go[i];
        if (!next)
            continue;
        if (curr == root)
            next->fail = root:
        else {
            trie *dest = curr->fail;
            while (dest != root && !dest->go[i])
                dest = dest->fail:
```

```
if (dest->go[i])
                dest = dest->go[i];
            next->fail = dest;
        if (next->fail->output)
            next->output = true;
        q.push(next);
trie *curr = root; // start query
bool found = false;
for (char c : s) {
    c -= 'a';
    while (curr != root && !curr->go[c])
        curr = curr->fail;
    if (curr->go[c])
        curr = curr->go[c];
    if (curr->output) {
        found = true;
        break;
   }
```

6 DP Optimization

6.1 Convex Hull Trick w/ Stack

```
Usage: dp[i] = min(dp[j] + b[j] * a[i]), b[j] >= b[j+1]
Time Complexity: O(N log N) - O(N) where a[i] <= a[i+1]

struct lin {
    ll a, b;
    double s;
    ll f(ll x) { return a*x + b; }
};
inline double cross(const lin &x, const lin &y) {
    return 1.0 * (x.b - y.b) / (y.a - x.a);
}
vector<ll> dp(n);
vector st;
```

```
for (int i=1; i<n; ++i) {
    lin curr = { b[i-1], dp[i-1], 0 };
    while (!st.empty()) {
        curr.s = cross(st.back(), curr);
        if (st.back().s < curr.s)</pre>
            break;
        st.pop_back();
    }
    st.push_back(curr);
    int x = -1;
    for (int y = st.size(); y > 0; y /= 2) {
        while (x+y < st.size() && st[x+y].s < a[i])
            x += y;
    dp[i] = s[x].f(a[i]);
}
while (x+1 < st.size() && st[x+1].s < a[i]) ++x; // O(N) case
    Convex Hull Trick w/ Li-Chao Tree
  Usage: update(1, r, 0, { a, b })
  Time Complexity: \mathcal{O}(N \log N)
static constexpr ll INF = 2e18;
struct lin {
 ll a, b;
  11 f(11 x) { return a*x + b; }
};
struct lichao {
  struct node {
    int 1, r;
    lin line;
  vector<node> tree;
  void init() { tree.push_back({-1, -1, { 0, -INF }}); }
  void update(ll s, ll e, int n, const lin &line) {
    lin hi = tree[n].line;
    lin lo = line:
    if (hi.f(s) < lo.f(s))
      swap(lo, hi);
    if (hi.f(e) >= lo.f(e)) {
```

```
tree[n].line = hi:
      return:
    }
    const ll m = s + e >> 1;
    if (hi.f(m) > lo.f(m)) {
      tree[n].line = hi;
      if (tree[n].r == -1) {
        tree[n].r = tree.size();
        tree.push_back(\{-1, -1, \{ 0, -INF \}\});
      update(m+1, e, tree[n].r, lo);
    } else {
      tree[n].line = lo;
      if (tree[n].1 == -1) {
        tree[n].l = tree.size();
        tree.push_back(\{-1, -1, \{ 0, -INF \}\});
      update(s, m, tree[n].1, hi);
  }
  ll query(ll s, ll e, int n, ll x) {
    if (n == -1)
     return -INF;
    const ll m = s + e >> 1;
    if (x \le m)
      return max(tree[n].line.f(x), query(s, m, tree[n].l, x));
      return max(tree[n].line.f(x), query(m+1, e, tree[n].r, x));
};
6.3 Divide and Conquer Optimization
  Usage: dp[t][i] = min(dp[t-1][j] + c[j][i]), c is Monge
  Time Complexity: \mathcal{O}(KN \log N)
vector<vector<ll>> dp(n, vector<ll>(t));
function < void (int, int, int, int, int) > dnc = [&] (int 1, int r,
int s, int e, int u) {
    if (1 > r)
        return;
```

```
const int mid = (1 + r) / 2:
    int opt;
    for (int i=s; i<=min(e, mid); ++i) {</pre>
        11 x = sum[i][mid] + C;
        if (i && u)
            x += dp[i-1][u-1];
        if (x \ge dp[mid][u]) {
            dp[mid][u] = x;
            opt = i;
        }
    }
    dnc(1, mid-1, s, opt, u);
    dnc(mid+1, r, opt, e, u);
};
for (int i=0; i<t; ++i)
    dnc(0, n-1, 0, n-1, i);
```

6.4 Monotone Queue Optimization

```
Usage: dp[i] = min(dp[j] + c[j][i]), c is Monge, find cross Time Complexity: \mathcal{O}(N \log N)
```

```
auto cross = [&](11 p, 11 q) {
  ll lo = min(p, q) - 1, hi = n + 1;
  while (lo + 1 < hi) \{
    const 11 \text{ mid} = (10 + \text{hi}) / 2;
    if (f(p, mid) < f(q, mid)) lo = mid;
    else hi = mid;
  }
  return hi;
};
deque<pll> st;
for (int i = 1; i <= n; ++i) {
  pll curr{i - 1, 0};
  while (!st.empty() &&
           (curr.second = cross(st.back().first, i - 1)) <=</pre>
           st.back().second)
    st.pop_back();
  st.push_back(curr);
  while (st.size() > 1 && st[1].second <= i) st.pop_front();</pre>
```

```
dp[i] = f(st[0].first, i);
6.5 Aliens Trick
  Usage:
             dp[t][i] = min(dp[t-1][j] + c[j+1][i]), c is Monge, find
lambda w/ half bs
  Time Complexity: \mathcal{O}(N \log N)
 11 lo = 0, hi = 1e15;
  while (lo + 1 < hi) {
    const 11 \text{ mid} = (10 + \text{hi}) / 2;
    auto [dp, cnt] = dec(mid); // the best DP[N][K] and its K value
    if (cnt < k) hi = mid:
    else lo = mid;
  cout << (dec(lo).first - lo * k) / 2;
6.6 Knuth Optimization
  Usage: dp[i] = min(dp[i][k] + dp[k][j]) + c[i][j], Monge, Monotonic
  Time Complexity: \mathcal{O}(N^2)
vector<vector<int>> dp(n, vector<int>(n)), opt(n, vector<int>(n));
for (int i=0; i<n; ++i)
    opt[i][i] = i;
for (int j=1; j<n; ++j) {
    for (int s=0; s<n-j; ++s) {
        int e = s+j;
        dp[s][e] = 1e9+7;
        for (int o=opt[s][e-1]; o<min(opt[s+1][e]+1, e); ++o) {
            if (dp[s][e] > dp[s][o] + dp[o+1][e]) {
                dp[s][e] = dp[s][o] + dp[o+1][e];
                opt[s][e] = o;
            }
        dp[s][e] += sum[e+1] - sum[s];
```

6.7 Slope Trick

```
Usage: Use priority queue, convex condition
Time Complexity: O(N log N)

pq.push(A[0]);
for (int i=1; i<N; ++i) {
    pq.push(A[i] - i);
    pq.push(A[i] - i);
    pq.pop();
    A[i] = pq.top();
}</pre>
```

6.8 Sum Over Subsets

```
Usage: dp[mask] = sum(A[i]), i is in mask Time Complexity: \mathcal{O}(N2^N) for (int i=0; i<(1<<n); i++) f[i] = a[i]; for (int j=0; j<n; j++) for(int i=0; i<(1<<n); i++) if (i & (1<<j)) f[i] += f[i ^ (1<<j)];
```

7 Number Theory

7.1 Modular Operator

Usage: For Fermat's little theorem and Pollard rho **Time Complexity:** $\mathcal{O}(\log N)$

```
using ull = unsigned long long;
ull modmul(ull a, ull b, ull n) { return ((unsigned __int128)a * b)
% n; }
ull modmul(ull a, ull b, ull n) { // if __int128 isn't available
   if (b == 0) return 0;
   if (b == 1) return a;
   ull t = modmul(a, b/2, n);
   t = (t+t)%n;
   if (b % 2) t = (t+a)%n;
   return t;
```

```
ull modpow(ull a, ull d, ull n) {
    if (d == 0) return 1;
    ull r = modpow(a, d/2, n);
    r = modmul(r, r, n);
    if (d \% 2) r = modmul(r, a, n);
    return r;
ull gcd(ull a, ull b) { return b ? gcd(b, a%b) : a; }
    Modular Inverse in \mathcal{O}(N)
  Usage: Get inverse of factorial
  Time Complexity: \mathcal{O}(N) - \mathcal{O}(1)
const int mod = 1e9+7;
vector<int> fact(n+1), inv(n+1), factinv(n+1);
fact[0] = fact[1] = inv[1] = factinv[0] = factinv[1] = 1;
for (int i=2; i<=n; ++i) {
    fact[i] = 1LL * fact[i-1] * i % mod;
    inv[i] = mod - 1LL * mod/i * inv[mod%i] % mod;
    factinv[i] = 1LL * factinv[i-1] * inv[i] % mod;
}
     Extended Euclidean
  Usage: get a and b as arguments and return the solution (x,y) of equation
ax + by = \gcd(a, b).
  Time Complexity: O(\log a + \log b)
pair<ll, 1l> extGCD(ll a,ll b){
    if (b != 0) {
        auto tmp = extGCD(b, a % b);
        return {tmp.second, tmp.first - (a / b) * tmp.second};
    } else return {111, 011};
}
7.4 Miller-Rabin
```

Usage: Fast prime test for big integers Time Complexity: $O(k \log N)$

```
bool is_prime(ull n) {
    const ull as [7] = \{2, 325, 9375, 28178, 450775, 9780504,
    1795265022}:
    // const ull as[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
    37}; // easier to remember
    auto miller_rabin = [] (ull n, ull a) {
        ull d = n-1, temp;
        while (d \% 2 == 0) \{
            d /= 2;
            temp = modpow(a, d, n);
            if (temp == n-1)
                return true;
        return temp == 1;
    };
    for (ull a : as) {
        if (a >= n)
            break:
        if (!miller_rabin(n, a))
            return false;
    }
    return true;
}
     Chinese Remainder Theorem
  Usage: Solution for the system of linear congruence
  Time Complexity: \mathcal{O}(\log N)
w1 = modpow(mod2, mod1-2, mod1);
w2 = modpow(mod1, mod2-2, mod2);
ll ans = ((_int128)mod2 * w1 * f1[i] + (_int128)mod1 * w2 * f2[i])
% (mod1*mod2);
    Pollard Rho
 Usage: Factoring large numbers fast
 Time Complexity: \mathcal{O}(N^{1/4})
void pollard_rho(ull n, vector<ull> &factors) {
    if (n == 1)
```

```
return;
if (n \% 2 == 0) {
   factors.push_back(2);
   pollard_rho(n/2, factors);
   return;
if (is_prime(n)) {
   factors.push_back(n);
   return;
ull x, y, c = 1, g = 1;
auto f = [\&] (ull x) { return (modmul(x, x, n) + c) % n; };
y = x = 2;
while (g == 1 || g == n) {
   if (g == n) {
        c = rand() \% 123;
        y = x = rand() \% (n-2) + 2;
   x = f(x);
   y = f(f(y));
   g = gcd(n, y>x ? y-x : x-y);
pollard_rho(g, factors);
pollard_rho(n / g, factors);
```

8 ETC

8.1 Gaussian Elimination Time Complexity: $O(\log N)$

```
struct basis {
  const static int n = 30; // log2(1e9)
  array<int, n> data{};
  void insert(int x) {
    for (int i=0; i<n; ++i)
       if (data[i] && (x >> (n-1-i) & 1)) x ^= data[i];
    int y;
    for (y=0; y<n; ++y)</pre>
```

```
if (!data[y] && (x >> (n-1-y) & 1)) break;
if (y < n) {
    for (int i=0; i < n; ++i)
        if (data[i] >> (n-1-y) & 1) data[i] ^= x;
    data[y] = x;
}

basis operator+(const basis &other) {
    basis ret{};
    for (int x : data) ret.insert(x);
    for (int x : other.data) ret.insert(x);
    return ret;
}
```

8.2 Parallel Binary Search

}

```
Time Complexity: \mathcal{O}(N \log N)
vector\langle int \rangle lo(q, -1), hi(q, m), answer(q);
while (true) {
    int fin = 0;
    vector<vector<int>> mids(m);
    for (int i=0; i<q; ++i) {
        if (lo[i] + 1 < hi[i]) mids[(lo[i] + hi[i])/2].push_back(i);
        else fin++:
    }
    if (fin == q) break;
    ufind uf;
    uf.init(n+1):
    for (int i=0; i<m; ++i) {
        const auto &[eig, a, b] = edges[i];
        uf.merge(a, b);
        for (int x : mids[i]) {
            if (uf.find(qs[x].first) == uf.find(qs[x].second)) {
                hi[x] = i;
                 answer[x] = -uf.par[uf.find(qs[x].first)];
            else lo[x] = i;
        }
    }
```

8.3 Hilbert Order

Usage: For Mo's

```
inline int64_t hilbertOrder(int x, int y, int pow, int rotate) {
  if (pow == 0) return 0;
  int hpow = 1 << (pow - 1);
  int seg = (x < hpow) ? ((y < hpow) ? 0 : 3) : ((y < hpow) ? 1 :
  2);
  seg = (seg + rotate) & 3;
  const int rotateDelta[4] = {3, 0, 0, 1};
  int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
  int nrot = (rotate + rotateDelta[seg]) & 3;
  int64_t subSquareSize = int64_t(1) << (2 * pow - 2);
  int64_t and = hilbertOrder(nx, ny, pow - 1, nrot);
  ans += (seg == 1 || seg == 2) ? add : (subSquareSize - add - 1);
  return ans;
} // code from gepardo</pre>
```

8.4 Useful Stuff

- Catalan Number
- 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,742900 $C_n = binomial(n * 2, n)/(n + 1);$
- 길이가 2n인 올바른 괄호 수식의 수
- n + 1개의 리프를 가진 풀 바이너리 트리의 수
- n + 2각형을 n개의 삼각형으로 나누는 방법의 수
- Burnside's Lemma

경우의 수를 세는데, 특정 transform operation(회전, 반사, ..) 해서 같은 경우들은 하나로 친다. 전체 경우의 수는? 각 operation마다 이 operation을 했을 때 변하지 않는 경우의 수를 센다 (단, "아무것도 하지 않는다" 라는 operation도 있어야 함!) 전체 경우의 수를 더한 후, operation의 수로 나눈다. (답이 맞다면 항상 나누어 떨어져야 한다)

- 알고리즘 게임
- Nim Game의 해법 : 각 더미의 돌의 개수를 모두 XOR했을 때 0 이 아니면 첫번째, 0 이면 두번째 플레이어가 승리.
- Grundy Number : 어떤 상황의 Grundy Number는, 가능한 다음 상황들의 Grundy Number를 모두 모은 다음, 그 집합에 포함 되지 않는 가장 작은 수가 현재 state의 Grundy Number가 된다. 만약 다음 state가 독립된 여러개의 state

들로 나뉠 경우, 각각의 state의 Grundy Number의 XOR 합을 생각한다.

- Subtraction Game : 한 번에 k 개까지의 돌만 가져갈 수 있는 경우, 각 더미의 돌의 개수를 k+1로 나눈 나머지를 XOR 합하여 판단한다.
- Index-k Nim : 한 번에 최대 k개의 더미를 골라 각각의 더미에서 아무렇게나돌을 제거할 수 있을 때, 각 binary digit에 대하여 합을 k+1로 나눈 나머지를 계산한다. 만약 이 나머지가 모든 digit에 대하여 0이라면 두번째, 하나라도 0이 아니라면 첫번째 플레이어가 승리.
- Pick's Theorem

격자점으로 구성된 simple polygon이 주어짐. I 는 polygon 내부의 격자점 수, B 는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립하다. A=I+B/2-1

- 가장 가까운 두 점 : 분할정복으로 가까운 6개의 점만 확인
- 홀의 결혼 정리 : 이분그래프(L-R)에서, 모든 L을 매칭하는 필요충분 조건 = L 에서 임의의 부분집합 S를 골랐을 때, 반드시 (S의 크기) <= (S와 연결되어있는 모든 R의 크기)이다.
- 소수: 10 007, 10 009, 10 111, 31 567, 70 001, 1 000 003, 1 000 033, 4 000 037, 99 999 989, 999 999 937, 1 000 000 007, 1 000 000 009, 9 999 999 967, 99 999 997
- 소수 개수 : (1e5 이하 : 9592), (1e7 이하 : 664 579) , (1e9 이하 : 50 847 534)
- 10^{15} 이하의 정수 범위의 나눗셈 한번은 오차가 없다.
- N의 약수의 개수 = $O(N^{1/3})$, N의 약수의 합 = O(Nloglog N)
- $\phi(mn) = \phi(m)\phi(n), \phi(pr^n) = pr^n pr^{n-1}, a^{\phi(n)} \equiv 1 \pmod{n}$ if coprime
- Euler characteristic : v e + f (면, 외부 포함) = 1 + c (컴포넌트)
- Euler's phi $\phi(n) = n \prod_{p|n} \left(1 \frac{1}{p}\right)$
- Lucas' Theorem $\binom{m}{n} = \prod \binom{m_i}{n_i} \pmod{p} m_i, n_i \vdash p^i$ 의 계수
- 스케줄링에서 데드라인이 빠른 걸 쓰는게 이득. 늦은 스케줄이 안들어갈 때 가장 시간 소모가 큰 스케줄 1개를 제거하면 이득.

8.5 Template

```
// precision
cout.precision(16);
cout << fixed:
// gcc bit operator
__builtin_popcount(bits); // popcountll for ll
__builtin_clz(bits);
                          // left
__builtin_ctz(bits);
                          // right
// random number generator
random_device rd;
mt19937 mt(rd());
uniform_int_distribution<> half(0, 1);
cout << half(mt);</pre>
// 128MB = int * 33,554,432
struct custom_hash {
  static uint64_t splitmix64(uint64_t x) {
    // http://xorshift.di.unimi.it/splitmix64.c
    x += 0x9e3779b97f4a7c15;
    x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
    x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
    return x ^(x >> 31);
  size_t operator()(uint64_t x) const {
    static const uint64_t FIXED_RANDOM =
        chrono::steady_clock::now().time_since_epoch().count();
    return splitmix64(x + FIXED_RANDOM);
 }
};
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace "gnu pbds;
template <typename K, typename V, typename Comp = less<K>>>
using ordered_map =
    tree<K, V, Comp, rb_tree_tag,</pre>
    tree_order_statistics_node_update>;
template <typename K, typename Comp = less<K>> // less_equal (MS)
using ordered_set = ordered_map<K, null_type, Comp>;
regex re("^first.[0-9a-z]?*+{n}{n,m}");
regex_match(s, re)
```

8.6 자주 쓰이는 문제 접근법

- 비슷한 문제를 풀어본 적이 있던가?
- 단순한 방법에서 시작할 수 있을까? (brute force)
- 내가 문제를 푸는 과정을 수식화할 수 있을까? (예제를 직접 해결해보면서)
- 문제를 단순화할 수 없을까?
- 그림으로 그려볼 수 있을까?
- 수식으로 표현할 수 있을까?
- 문제를 분해할 수 있을까?
- 뒤에서부터 생각해서 문제를 풀 수 있을까?
- 순서를 강제할 수 있을까?
- 특정 형태의 답만을 고려할 수 있을까? (정규화)
- 특수 조건을 꼭 활용
- 여사건으로 생각하기
- 게임이론 거울 전략 혹은 DP 연계
- 겁먹지 말고 경우 나누어 생각
- 해법에서 역순으로 가능한가?
- 딱 맞는 시간복잡도에 집착하지 말자
- 문제에 의미있는 작은 상수 이용
- 스몰투라지, 트라이, 해싱, 루트질 같은 트릭 생각
- 잘못된 방법으로 파고들지 말고 버리자

8.7 DP 최적화 접근

- C[i, j] = A[i] * B[j]이고 A, B가 단조증가, 단조감소이면 Monge
- l..r의 값들의 sum이나 min은 Monge
- 식 정리해서 일차(CHT) 혹은 비슷한(MQ) 함수를 발견, 구현 힘들면 Li-Chao
- a <= b <= c <= d A[a, c] + A[b, d] <= A[a, d] + A[b, c]
- ullet Monge 성질을 보이기 어려우면 N^2 나이브 짜서 opt의 단조성을 확인하고 찍맞
- 식이 간단하거나 변수가 독립적이면 DP 테이블을 세그 위에 올려서 해결
- 침착하게 점화식부터 세우고 Monge인지 판별
- Monge에 집착하지 말고 단조성이나 볼록성만 보여도 됨

8.8 Fast I/O

```
#pragma GCC optimize("03")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
inline int readChar();
template<class T = int> inline T readInt();
template<class T> inline void writeInt(T x, char end = 0);
inline void writeChar(int x);
inline void writeWord(const char *s);
static const int buf_size = 1 << 18;
inline int getChar(){
    #ifndef LOCAL
    static char buf[buf_size];
    static int len = 0, pos = 0;
    if(pos == len) pos = 0, len = fread(buf, 1, buf_size, stdin);
    if (pos == len) return -1;
    return buf[pos++];
    #endif
inline int readChar(){
    #ifndef LOCAL
    int c = getChar();
    while(c <= 32) c = getChar();</pre>
```

```
return c;
    #else
    char c; cin >> c; return c;
    #endif
}
template <class T>
inline T readInt(){
    #ifndef LOCAL
   int s = 1, c = readChar();
   T x = 0;
    if(c == '-') s = -1, c = getChar();
    while(^{'}0' <= c && c <= ^{'}9') x = x * 10 + c - ^{'}0', c = getChar();
    return s == 1 ? x : -x;
    #else
    T x; cin >> x; return x;
    #endif
}
static int write_pos = 0;
static char write_buf[buf_size];
inline void writeChar(int x){
    if(write_pos == buf_size) fwrite(write_buf, 1, buf_size,
    stdout), write_pos = 0;
   write_buf[write_pos++] = x;
}
template <class T>
inline void writeInt(T x, char end){
   if(x < 0) writeChar('-'), x = -x;
   char s[24]; int n = 0;
   while(x || !n) s[n++] = '0' + x \% 10, x /= 10;
   while(n--) writeChar(s[n]);
   if(end) writeChar(end);
}
inline void writeWord(const char *s){
    while(*s) writeChar(*s++);
}
struct Flusher{
    ~Flusher(){ if(write_pos) fwrite(write_buf, 1, write_pos,
   stdout), write_pos = 0; }
}flusher;
```