

Alexis IMBERT Brice Grindel

Recherche opérationel - TP Balade en ville

TABLE DES MATIÈRES

Table des matières

1	Etape 1 : Modéliser, définir le problème formel, associer une classe de complexité	3
2	Etape 2 : l'algoritme	3
3	Etape 3: L'implémentation	3
4	Etape 4: L'adaptation	3

1 Etape 1 : Modéliser, définir le problème formel, associer une classe de complexité

- On propose de représenter par le graphe
 - Les noeuds représenteront les intersections, les addresses et les arrêts de métros.
 - Les arrêtes représenteront les portions de route ou entre 2 stations de métros.

Si le métro est proche de d'un intersection on peut faire l'approximation que c'est le même noeud.

Pour simplifier le graphe : on peut extraire un graphe de distance géodésique entre les adresses tel que :

- Les noeuds représenteront les addresses
- Les arrêtes représenteront les chemins reliant ces addresses.
- Le graphe est non orienté. Pour le passage d'addresse en paramètre on peut passer les arrêtes sur lesquels sont ces arrêtes.
- Représentation sagitale :
- On a deux problèmes formel sous jacents.
 - La recherche de plus cours chemin
 - La recherche d'un cycle hamiltonien

Ce problème peut se ramener au problème du voyageur de commerce.

— Le problème du voyageur de commerce fait parti des problèmes NP-complet. C'est à dire que la résolution de ce type de problème est exponentiel. Toutefois nous ne sommes pas obliger d'abandonner tout de suite car ici le graphe est assez petit : seulement 5 addresses à parcourir. Le problème de plus court chemin peut etre résolu par l'algorithme de Dijkstra qui a une résolution polynomiale.

2 Etape 2: l'algoritme

 $Et at \ de \ l'art \ \ \texttt{https://www.datavis.fr/playing/salesman-problem}$

Une première solution est le brut force : énumération de tout les chemins possible et choix du plus cours.

Algorithme

3 Etape 3 : L'implémentation

4 Etape 4: L'adaptation

