Raport

Przetwarzanie i analiza danych przestrzennych

Oracle spatial

Imiona i nazwiska: Bartłomiej Chwast, Jakub Domogała

Celem ćwiczenia jest zapoznanie się ze sposobem przechowywania, przetwarzania i analizy danych przestrzennych w bazach danych (na przykładzie systemu Oracle spatial)

Swoje odpowiedzi wpisuj w miejsca oznaczone jako:

Wyniki, zrzut ekranu, komentarz

-- ...

Do wykonania ćwiczenia (zadania 1-7) i wizualizacji danych wykorzystaj Oracle SQL Develper. Alternatywnie możesz wykonać analizy w środowisku Python/Jupyter Notebook

Do wykonania zadania 8 wykorzystaj środowisko Python/Jupyter Notebook

Raport należy przesłać w formacie pdf.

Należy też dołączyć raport zawierający kod w formacie źródłowym.

Np.

- · plik tekstowy .sql z kodem poleceń
- plik .md zawierający kod wersji tekstowej
- notebook programu jupyter plik .ipynb

Zamieść kod rozwiązania oraz zrzuty ekranu pokazujące wyniki, (dołącz kod rozwiązania w formie tekstowej/źródłowej)

Zwróć uwagę na formatowanie kodu

Zadanie 1

Zwizualizuj przykładowe dane

US_STATES

SELECT * FROM us_states;

50 stanów USA

US_INTERSTATES

SELECT * FROM us_interstates;

Autostrady międzystanowe są skoncentrowane w miejscach o większej gęstości zaludnienia, możemy to zauważyć na mapie, poprzez gęstszą siatkę w północno-wschodniej części kraju oraz na samym zachodnim wybrzeżu.

US_CITIES

SELECT * FROM us_cities;

Miasta są skoncentrowane wzdłuż wybrzeży, wzdłuż rzek oraz w miejscach o większej gęstości zaludnienia.

US_RIVERS

SELECT * FROM us_rivers;

Więcej rzek znajduje się w północno-wschodniej oraz w środkowej części kraju.

US_COUNTIES

SELECT * FROM us_counties;

Hrabstwa są liczniejsze w miejscach o większej gęstości zaludnienia, widać to na przykład w północno-wschodniej części kraju.

US_PARKS

Parki narodowe są skoncentrowane w miejscach o mniejszej gęstości zaludnienia, widać to na przykład w północno-zachodniej części kraju.

Zadanie 2

Znajdź wszystkie stany (us states) których obszary mają część wspólną ze wskazaną geometrią (prostokątem)

Pokaż wynik na mapie.

prostokąt

```
SELECT sdo_geometry (2003, 8307, null,
sdo_elem_info_array (1,1003,3),
sdo_ordinate_array (-117.0, 40.0, -90., 44.0)) g
FROM dual
```


Użyj funkcji SDO_FILTER

```
SELECT state, geom FROM us_states
WHERE sdo_filter (geom,
sdo_geometry (2003, 8307, null,
sdo_elem_info_array (1,1003,3),
sdo_ordinate_array ( -117.0, 40.0, -90., 44.0))
) = 'TRUE';
```


Użyj funkcji SDO_ANYINTERACT

```
SELECT state, geom FROM us_states
WHERE sdo_anyinteract (geom,
sdo_geometry (2003, 8307, null,
sdo_elem_info_array (1,1003,3),
sdo_ordinate_array ( -117.0, 40.0, -90., 44.0))
) = 'TRUE';
```

Porównaj wyniki sdo_filter i sdo_anyinteract

Pokaż wynik na mapie

na zółto widzimy wystające części wyniku funkcji filter,
zielonawy kolor przedstawia wyniki anyinteract

funkcja sdo_anyinteract daje lepsze wyniki,
funkcja filter znajduje stany które w ogóle nie dotykają naszego prostokąta.

Dzieje się tak poniewaz funkcja filter robi filtracje na bazie bounding box'u,
a nie dokładnej geometrii obiektów.

Jest to obliczeniowo o wiele lzejszy proces, ale nie da nam idealnych wynikow.
Potencjalnie najbardziej optymalnym podejsciem wydaje sie najpierw uzycie funkcji filter

(bo jest szybka) na całym zbiorze danych, a następnie funkcji anyinteract na wyniku funkcji filter. To pozwoliłoby nam wykonać najmniej obliczeń przy zachowaniu maksymalnej dokładności wyników.

Zadanie 3

Znajdź wszystkie parki (us parks) których obszary znajdują się wewnątrz stanu Wyoming

Użyj funkcji SDO INSIDE

```
SELECT p.name, p.geom
FROM us_parks p, us_states s
WHERE s.state = 'Wyoming'
AND SDO_INSIDE (p.geom, s.geom ) = 'TRUE';
```

	NAME	GEOM
1	Flume Creek Park	[MDSYS.SD0_GEOMETRY]
2	Cinnabar Park	[MDSYS.SD0_GEOMETRY]
3	Sinclair Recreation Park	[MDSYS.SD0_GEOMETRY]
4	Kendrick Park	[MDSYS.SD0_GEOMETRY]
5	Beartrap Meadow County Park	[MDSYS.SDO_GEOMETRY]
6	Casper Mtn County Park	[MDSYS.SDO_GEOMETRY]
7	City Park	[MDSYS.SDO_GEOMETRY]
8	Prosinski Park	[MDSYS.SDO_GEOMETRY]
9	Optimist Park	[MDSYS.SDO_GEOMETRY]
10	Undine Park	[MDSYS.SDO_GEOMETRY]
11	Washington Park	[MDSYS.SDO_GEOMETRY]
12	Municipal Park	[MDSYS.SDO_GEOMETRY]
13	Ayres Natural Bridge Park	[MDSYS.SDO_GEOMETRY]
14	Lewis Park	[MDSYS.SDO_GEOMETRY]
15	Fort Laramie NHS	[MDSYS.SDO_GEOMETRY]
16	Robinson Park	[MDSYS.SDO_GEOMETRY]
17	Pioneer Park	[MDSYS.SDO_GEOMETRY]
18	Jirdon Park	[MDSYS.SDO_GEOMETRY]
19	Jirdon Park	[MDSYS.SDO_GEOMETRY]
20	Devils Tower NMON	[MDSYS.SD0_GEOMETRY]
21	City Park	[MDSYS.SD0_GEOMETRY]
22	Washington Memorial Park	[MDSYS.SD0_GEOMETRY]
23	Fossil Butte NMON	[MDSYS.SDO_GEOMETRY]
24	Mark Iii M.H. Park	[MDSYS.SDO_GEOMETRY]
25	Teton NF	[MDSYS.SDO_GEOMETRY]
26	Grand Teton NP	[MDSYS.SDO_GEOMETRY]
27	John D. Rockefeller, Jr. Memor	[MDSYS.SDO_GEOMETRY]
28	Island Park	[MDSYS.SDO_GEOMETRY]
29	Diversion Dam Park	[MDSYS.SDO_GEOMETRY]
30	Pete Miller Park	[MDSYS.SDO_GEOMETRY]
31	Popo Agie Park	[MDSYS.SDO_GEOMETRY]
32	North Side Park	[MDSYS.SDO GEOMETRY]

W przypadku wykorzystywania narzędzia SQL Developer, w celu wizualizacji na mapie użyj podzapytania

```
SELECT pp.name, pp.geom FROM us_parks pp
WHERE id IN
(
    SELECT p.id
    FROM us_parks p, us_states s
WHERE s.state = 'Wyoming'
    and SDO_INSIDE (p.geom, s.geom ) = 'TRUE'
)
```


SELECT state, geom FROM us_states
WHERE state = 'Wyoming'

Porównaj wynik z:

```
SELECT p.name, p.geom
FROM us_parks p, us_states s
WHERE s.state = 'Wyoming'
AND SDO_ANYINTERACT (p.geom, s.geom ) = 'TRUE';
```

Wyniki, zrzut ekranu, komentarz

Tak jak mozna się spodziewać funkcja anyinteract daje nam w wyniku nie tylko parki zawiejające się w środku obszaru, ale równiez te które jedynie częściowo o ten obszar zahaczają.

```
select pp.name, pp.geom from us_parks pp
where id IN
(
    select p.id
    from us_parks p, us_states s
    where s.state = 'Wyoming'
    and SDO_ANYINTERACT (p.geom, s.geom) = 'TRUE'
);
```

Zadanie 4

Znajdź wszystkie jednostki administracyjne (us counties) wewnątrz stanu New Hampshire

```
SELECT c.county, c.state_abrv, c.geom
FROM us_counties c, us_states s
WHERE s.state = 'New Hampshire'
AND SDO_RELATE ( c.geom, s.geom, 'mask=INSIDE+COVEREDBY') = 'TRUE';

SELECT c.county, c.state_abrv, c.geom
FROM us_counties c, us_states s
WHERE s.state = 'New Hampshire'
AND SDO_RELATE ( c.geom, s.geom, 'mask=INSIDE') = 'TRUE';

SELECT c.county, c.state_abrv, c.geom
FROM us_counties c, us_states s
WHERE s.state = 'New Hampshire'
AND SDO_RELATE ( c.geom, s.geom, 'mask=COVEREDBY') = 'TRUE';
```

W przypadku wykorzystywania narzędzia SQL Developer, w celu wizualizacji danych na mapie należy użyć podzapytania (podobnie jak w poprzednim zadaniu)

Obie maski

Maska Inside

Maski dają nam jako wyniki zbiory rozłączne które dają nam jako sumę ten sam obszar, co uzycie ich obu w osobnych zapytaniach.

Co jednak dziwne to funkcja coveredby powinna zwracać pełny zbiór zwracany przez INSIDE + dodatkowe elementy dotykające granic obszaru, jednak tak się nie dzieje. Z tego mozna wnioskowac ze funkcja covered by zwraca tylko wyniki dotykające granic z wyłączeniem tych które są wewnątrz ale granic nie dotykają.

Zmodyfikowane zapytania

```
SELECT pp.county, pp.state_abrv, pp.geom from us_counties pp
where id IN
    select c.id
    FROM us_counties c, us_states s
    WHERE s.state = 'New Hampshire'
    AND SDO_RELATE ( c.geom, s.geom, 'mask=INSIDE+COVEREDBY') = 'TRUE'
);
SELECT pp.county, pp.state_abrv, pp.geom from us_counties pp
where id IN
    select c.id
    FROM us_counties c, us_states s
    WHERE s.state = 'New Hampshire'
    AND SDO_RELATE ( c.geom, s.geom, 'mask=INSIDE') = 'TRUE'
);
SELECT pp.county, pp.state_abrv, pp.geom from us_counties pp
where id IN
    select c.id
    FROM us_counties c, us_states s
```

```
WHERE s.state = 'New Hampshire'
AND SDO_RELATE ( c.geom, s.geom, 'mask=COVEREDBY') = 'TRUE'
);
```

Zadanie 5

Znajdź wszystkie miasta w odległości 50 mili od drogi (us_interstates) 14

Pokaż wyniki na mapie

```
SELECT * FROM us_interstates
WHERE interstate = 'I4'
SELECT * FROM us_states
WHERE state_abrv = 'FL'
SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN
SELECT c.rowid
FROM us_interstates i, us_cities c
WHERE i.interstate = 'I4'
AND sdo_within_distance (c.location, i.geom, 'distance=50 unit=mile'
)
SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN
    SELECT c.rowid
    FROM us_interstates i, us_cities c
    WHERE i.interstate = 'I4'
    AND sdo_within_distance (c.location, i.geom, 'distance=50 unit=mile') = 'TRUE'
);
```

	∯ CITY	\$ STATE_ABRV	LOCATION
1	St Petersburg	FL	[MDSYS.SD0_GEOMETRY]
2	Tampa	FL	[MDSYS.SDO_GEOMETRY]
3	Orlando	FL	[MDSYS.SDO_GEOMETRY]

Dodatkowo:

a) Znajdz wszystkie jednostki administracyjne przez które przechodzi droga I4

```
SELECT c.county, c.state_abrv, c.geom
FROM us_counties c
WHERE ROWID IN
(
    SELECT c.rowid
    FROM us_counties c, us_interstates i
    WHERE SDO_ANYINTERACT(c.geom, i.geom) = 'TRUE'
    AND i.interstate = 'I4'
);
```

		\$ STATE_ABRV	GEOM
1	Osceola	FL	[MDSYS.SD0_GEOMETRY]
2	Polk	FL	[MDSYS.SDO_GEOMETRY]
3	Hillsborough	FL	[MDSYS.SD0_GEOMETRY]
4	Orange	FL	[MDSYS.SD0_GEOMETRY]
5	Seminole	FL	[MDSYS.SD0_GEOMETRY]
6	Volusia	FL	[MDSYS.SDO GEOMETRY]

b) Znajdz wszystkie jednostki administracyjne w pewnej odległości od I4

```
SELECT c.county, c.state_abrv, c.geom
FROM us_counties c
WHERE ROWID IN
(
    SELECT c.rowid
    FROM us_counties c, us_interstates i
    WHERE SDO_WITHIN_DISTANCE(c.geom, i.geom, 'distance=50 unit=mile') = 'TRUE'
    AND i.interstate = 'I4'
);
```

	COUNTY		GEOM
1	Manatee	FL	[MDSYS.SD0_GEOMETRY]
2	Sarasota	FL	[MDSYS.SD0_GEOMETRY]
3	Hardee	FL	[MDSYS.SDO_GEOMETRY]
4	DeSoto	FL	[MDSYS.SD0_GEOMETRY]
5	Highlands	FL	[MDSYS.SDO_GEOMETRY]
6	Pinellas	FL	[MDSYS.SD0_GEOMETRY]
7	Osceola	FL	[MDSYS.SDO_GEOMETRY]
8	Polk	FL	[MDSYS.SD0_GEOMETRY]
9	Hillsborough	FL	[MDSYS.SDO_GEOMETRY]
10	Brevard	FL	[MDSYS.SD0_GEOMETRY]
11	Pasco	FL	[MDSYS.SD0_GEOMETRY]
12	Sumter	FL	[MDSYS.SD0_GEOMETRY]
13	Lake	FL	[MDSYS.SD0_GEOMETRY]
14	Orange	FL	[MDSYS.SD0_GEOMETRY]
15	Hernando	FL	[MDSYS.SD0_GEOMETRY]
16	Seminole	FL	[MDSYS.SD0_GEOMETRY]
17	Volusia	FL	[MDSYS.SDO_GEOMETRY]
18	Citrus	FL	[MDSYS.SD0_GEOMETRY]
19	Marion	FL	[MDSYS.SDO_GEOMETRY]
20	Flagler	FL	[MDSYS.SD0_GEOMETRY]
21	Putnam	FL	[MDSYS.SDO_GEOMETRY]
22	St. Johns	FL	[MDSYS.SDO_GEOMETRY]

c) Znajdz rzeki które przecina droga I4

```
SELECT r.name, r.geom
FROM us_rivers r
WHERE ROWID IN
(
    SELECT r.rowid
    FROM us_rivers r, us_interstates i
    WHERE SDO_ANYINTERACT(r.geom, i.geom) = 'TRUE'
    AND i.interstate = 'I4'
);
```

1 St. Johns [MDSYS.SD0_GEOMETRY]

d) Znajdz wszystkie drogi które przecinają rzekę Mississippi

```
SELECT i.interstate, i.geom
FROM us_interstates i
WHERE ROWID IN
(
    SELECT i.rowid
    FROM us_rivers r, us_interstates i
    WHERE SDO_ANYINTERACT(r.geom, i.geom) = 'TRUE'
    AND r.name = 'Mississippi'
)
```

		GEOM
1	140	[MDSYS.SD0_GEOMETRY]
2	120	[MDSYS.SD0_GEOMETRY]
3	110	[MDSYS.SD0_GEOMETRY]
4	I255	[MDSYS.SD0_GEOMETRY]
5	1270	[MDSYS.SD0_GEOMETRY]
6	I35E	[MDSYS.SD0_GEOMETRY]
7	I35W	[MDSYS.SD0_GEOMETRY]
8	I55	[MDSYS.SD0_GEOMETRY]
9	155/170	[MDSYS.SD0_GEOMETRY]
10	I57	[MDSYS.SD0_GEOMETRY]
11	190	[MDSYS.SD0_GEOMETRY]
12	194	[MDSYS.SD0_GEOMETRY]
13	1494	[MDSYS.SD0_GEOMETRY]
14	174	[MDSYS.SD0_GEOMETRY]
15	180	[MDSYS.SDO GEOMETRY]

e) Znajdz wszystkie miasta w odlegości od 15 do 30 mil od drogi 'I275'

```
SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN
(
    SELECT c.rowid
    FROM us_interstates i, us_cities c
    WHERE i.interstate = 'I275'
    AND sdo_within_distance (c.location, i.geom, 'distance=30 unit=mile') = 'TRUE'
    MINUS
    SELECT c.rowid
    FROM us_interstates i, us_cities c
    WHERE i.interstate = 'I275'
    AND sdo_within_distance (c.location, i.geom, 'distance=15 unit=mile') = 'TRUE'
```

	⊕ CITY	\$ STATE_ABRV	LOCATION
1	Sterling Heights	MI	[MDSYS.SD0_GEOMETRY]
2	Detroit	MI	[MDSYS.SDO_GEOMETRY]
3	Toledo	ОН	[MDSYS.SD0_GEOMETRY]
4	Warren	MI	[MDSYS.SDO_GEOMETRY]

- f) Itp. (własne przykłady)
- f) znajdź wszystkie jednostki administracyjne w odległości od 20 do 50 kilometrów od miasta Detroit

```
SELECT c.county, c.state_abrv, c.geom
FROM us_counties c
WHERE ROWID IN
(
    SELECT a.rowid
    FROM us_counties a, us_cities b
    WHERE SDO_WITHIN_DISTANCE(a.geom, b.location, 'distance=50 unit=KM') = 'TRUE'
    AND b.city = 'Detroit'
    MINUS

SELECT a.rowid
    FROM us_counties a, us_cities b
    WHERE SDO_WITHIN_DISTANCE(a.geom, b.location, 'distance=20 unit=KM') = 'TRUE'
    AND b.city = 'Detroit'
```

	♦ COUNTY	♦ STATE_ABRV	GEOM
1	Monroe	MI	[MDSYS.SDO_GEOMETRY]
2	St. Clair	MI	[MDSYS.SD0_GEOMETRY]
3	Washtenaw	MI	[MDSYS.SDO_GEOMETRY]
4	Livingston	MI	[MDSYS.SDO_GEOMETRY]

Zadanie 6

Znajdz 5 miast najbliższych drogi I4

```
SELECT c.city, c.state_abrv, c.location
FROM us_interstates i, us_cities c
WHERE i.interstate = 'I4'
AND sdo_nn(c.location, i.geom, 'sdo_num_res=5') = 'TRUE';

Wyniki, zrzut ekranu, komentarz

SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN
(
    SELECT c.rowid
```

FROM us_interstates i, us_cities c

```
WHERE i.interstate = 'I4'
AND sdo_nn(c.location, i.geom, 'sdo_num_res=5') = 'TRUE'
)
```

	∯ CITY	⊕ STATE_ABRV	LOCATION
1	Tampa	FL	[MDSYS.SD0_GEOMETRY]
2	Jacksonville	FL	[MDSYS.SDO_GEOMETRY]
3	St Petersburg	FL	[MDSYS.SDO_GEOMETRY]
4	Orlando	FL	[MDSYS.SDO_GEOMETRY]
5	Fort Lauderdale	FL	[MDSYS.SDO_GEOMETRY]

Dodatkowo:

```
SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN
(
    SELECT c.rowid
    FROM us_rivers r, us_cities c
    WHERE r.name = 'Mississippi'
    AND sdo_nn(c.location, r.geom, 'sdo_num_res=5') = 'TRUE'
)
```

		\$ STATE_ABRV	LOCATION
3	St Paul	MN	[MDSYS.SD0_GEOMETRY]
	2 Memphis	TN	[MDSYS.SDO_GEOMETRY]
	St Louis	MO	[MDSYS.SDO_GEOMETRY]
	Minneapolis	MN	[MDSYS.SDO_GEOMETRY]
	Baton Rouge	LA	[MDSYS.SDO_GEOMETRY]

		\$ STATE_ABRV	LOCATION
1	Elizabeth	NJ	[MDSYS.SD0_GEOMETRY]
2	Newark	NJ	[MDSYS.SD0_GEOMETRY]
3	Jersey City	NJ	[MDSYS.SD0_GEOMETRY]

c) Znajdz kilka jednostek administracyjnych (us_counties) z których jest najbliżej do Nowego Jorku

```
SELECT c.county, c.state_abrv, c.geom
FROM us_counties c
WHERE ROWID IN
(
```

```
SELECT c.rowid
FROM us_counties c, us_cities ci
WHERE ci.city = 'New York'
AND sdo_nn(c.geom, ci.location, 'sdo_num_res=5') = 'TRUE'
)
```

	♦ COUNTY	\$ STATE_ABRV	GEOM
1	Kings	NY	[MDSYS.SD0_GEOMETRY]
2	Hudson	NJ	[MDSYS.SD0_GEOMETRY]
3	New York	NY	[MDSYS.SD0_GEOMETRY]
4	Queens	NY	[MDSYS.SD0_GEOMETRY]
5	Richmond	NY	[MDSYS.SDO_GEOMETRY]

d) Znajdz 5 najbliższych miast od drogi 'I170', podaj odległość do tych miast

```
SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN
(
    SELECT c.rowid
    FROM us_interstates i, us_cities c
    WHERE i.interstate = 'I170'
    AND sdo_nn(c.location, i.geom, 'sdo_num_res=5') = 'TRUE'
)
```

		⊕ STATE_ABRV	LOCATION	
1	St Louis	МО	[MDSYS.SDO_GEOMETRY]	8.63086834124045
2	Springfield	IL	[MDSYS.SDO_GEOMETRY]	126.815899024404
3	Peoria	IL	[MDSYS.SDO_GEOMETRY]	227.686805598134
4	Evansville	IN	[MDSYS.SDO_GEOMETRY]	254.637198689794
5	Springfield	MO	[MDSYS.SDO_GEOMETRY]	303.375234373403

e) Znajdz 5 najbliższych dużych miast (o populacji powyżej 300 tys) od drogi 'I170'

		\$ STATE_ABRV	LOCATION
1	Kansas City	МО	[MDSYS.SD0_GEOMETRY]
2	Memphis	TN	[MDSYS.SD0_GEOMETRY]
3	Indianapolis	IN	[MDSYS.SD0_GEOMETRY]
4	Chicago	IL	[MDSYS.SD0_GEOMETRY]
5	St Louis	MO	[MDSYS.SDO GEOMETRY]

- f) Itp. (własne przykłady)
- f) Znajdź 5 najblizszych rzek od Denver

```
SELECT r.name, r.geom
FROM us_rivers r
WHERE ROWID IN
(
    SELECT r.rowid
    FROM us_rivers r, us_cities c
    WHERE c.city = 'Denver'
    AND sdo_nn(r.geom, c.location, 'sdo_num_res=5') = 'TRUE'
```

	♦ NAME	GEOM
1	Colorado	[MDSYS.SDO_GEOMETRY]
2	North Platte	[MDSYS.SDO_GEOMETRY]
3	Arkansas	[MDSYS.SDO_GEOMETRY]
4	Rio Grande	[MDSYS.SD0_GEOMETRY]
5	Canadian	[MDSYS.SDO_GEOMETRY]

Zadanie 7

Oblicz długość drogi I4

```
SELECT SD0_GEOM.SD0_LENGTH (geom, 0.5, 'unit=kilometer') length
FROM us_interstates
WHERE interstate = 'I4';
```

\$ LENGTH 1 212.260756199927 Dodatkowo:

a) Oblicz długość rzeki Mississippi

1 3860.32566492228

```
SELECT SDO_GEOM.SDO_LENGTH (geom, 0.5, 'unit=kilometer') length
FROM us_rivers
WHERE name = 'Mississippi';
```

b) Która droga jest najdłuższa/najkrótsza

```
SELECT interstate, SDO_GEOM.SDO_LENGTH (geom, 0.5, 'unit=kilometer') length FROM us_interstates
ORDER BY length DESC
FETCH FIRST 1 ROW ONLY;

SELECT interstate, SDO_GEOM.SDO_LENGTH (geom, 0.5, 'unit=kilometer') length FROM us_interstates
ORDER BY length
FETCH FIRST 1 ROW ONLY;
```

c) Która rzeka jest najdłuższa/najkrótsza

```
SELECT name, SDO_GEOM.SDO_LENGTH (geom, 0.5, 'unit=kilometer') length
FROM us_rivers
ORDER BY length DESC
FETCH FIRST 1 ROW ONLY;

SELECT name, SDO_GEOM.SDO_LENGTH (geom, 0.5, 'unit=kilometer') length
FROM us_rivers
ORDER BY length
FETCH FIRST 1 ROW ONLY;
```


d) Które stany mają najdłuższą granicę

```
SELECT state, SD0_GEOM.SD0_LENGTH (geom, 0.5, 'unit=kilometer') length
FROM us_states
ORDER BY length DESC
FETCH FIRST 5 ROW ONLY;
```

	∯ STATE	↓ LENGTH
1	Alaska	26138.3745019651
2	Texas	6779.84795094551
3	California	4145.76647746918
4	Michigan	4140.12257047995
5	Florida	3725.07858238253

e) Itp. (własne przykłady)

Wyniki, zrzut ekranu, komentarz (dla każdego z podpunktów)

-- ...

Oblicz odległość między miastami Buffalo i Syracuse

```
SELECT SD0_GEOM.SD0_DISTANCE ( c1.location, c2.location, 0.5) distance
FROM us_cities c1, us_cities c2
WHERE c1.city = 'Buffalo' and c2.city = 'Syracuse';
```

Dodatkowo:

a) Oblicz odległość między miastem Tampa a drogą I4

```
SELECT SDO_GEOM.SDO_DISTANCE ( c.location, i.geom, 0.5) distance
FROM us_cities c, us_interstates i
WHERE c.city = 'Tampa' and i.interstate = 'I4';
```


b) Jaka jest odległość z między stanem Nowy Jork a Florydą

```
SELECT SDO_GEOM.SDO_DISTANCE(s1.geom, s2.geom, 0.5) distance
FROM us_states s1, us_states s2
WHERE s1.state = 'New York' AND s2.state = 'Florida';
```

1 1256583.87785727

c) Jaka jest odległość z między miastem Nowy Jork a Floryda

```
SELECT SDO_GEOM.SDO_DISTANCE(s.geom, c.location, 0.5) distance
FROM us_states s, us_cities c
WHERE c.city = 'New York' AND s.state = 'Florida';
```

d) Podaj 3 parki narodowe do których jest najbliżej z Nowego Jorku, oblicz odległości do tych parków

```
SELECT p.name, SDO_GEOM.SDO_DISTANCE(p.geom, c.location, 0.5) distance
FROM us_parks p, us_cities c
WHERE c.city = 'New York'
ORDER BY distance
FETCH FIRST 3 ROWS ONLY;
```

	NAME	
1	Institute Park	1539.89392335604
2	Prospect Park	1718.06926034585
3	Thompkins Park	2135.55672310316

- e) Przetestuj działanie funkcji
- a. sdo intersection, sdo union, sdo difference
- b. sdo buffer
- c. sdo centroid, sdo mbr, sdo convexhull, sdo simplify
- f) Itp. (własne przykłady)

Wyniki, zrzut ekranu, komentarz (dla każdego z podpunktów)

-- ...

Zadanie 8

Wykonaj kilka własnych przykładów/analiz

Wyniki, zrzut ekranu, komentarz

-- ...

Punktacja

zad	pkt
1	0,5
2	1
3	1
4	1
5	3
6	3
7	6
8	4
razem	20