SÉCURITÉ

Madame Khaoula ElBedoui-Maktouf

2^{ème} année Ingénieur Informatique

Plan

- I. Objets protégés et méthodes de protection
- II. Protection de l'accès
- III. Protection des fichiers
- IV. Authentification

1. Objets protégés

Un Système Informatique est sujet d'attaques

1. Objets protégés

Un Système Informatique est sujet d'attaques

Matériel

Processeur

Mémoire

Périphérique d'E/S

Logiciel

Processus

Base des données

Fichiers

Objets et méthodes

SE Chap 7. Sécurité

1. Objets protégés

Un Système Informatique est sujet d'attaques

Intentionnelles

Vols Modifications interdites Dévulgation **Accidentelles**

Pertes

Erreurs

Fausses manipulations

- 1. Objets protégés
- Un système sécurisé doit vérifier les 4 propriétés suivantes (DICT) :
 - Disponibilité : garantir la continuité de service et maintenir son bon fonctionnement.

1. Objets protégés

- Un système sécurisé doit vérifier les 4 propriétés suivantes (DICT) :
 - Disponibilité : garantir la continuité de service et maintenir son bon fonctionnement.
 - Intégrité : garantir l'exactitude et la validité du système. Éviter sa modification, par erreur ou par malveillance.

Objets protégés

- > Un système sécurisé doit vérifier les 4 propriétés suivantes (DICT) :
 - Disponibilité : garantir la continuité de service et maintenir son bon fonctionnement.
 - Intégrité : garantir l'exactitude et la validité du système. Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : garantir que le système n'est ni disponible, ni divulgué aux personnes, entités ou processus non autorisés.

1. Objets protégés

- Un système sécurisé doit vérifier les 4 propriétés suivantes (DICT) :
 - Disponibilité : garantir la continuité de service et maintenir son bon fonctionnement.
 - Intégrité : garantir l'exactitude et la validité du système. Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : garantir que le système n'est ni disponible, ni divulgué aux personnes, entités ou processus non autorisés
 - Traçabilité : garantir la possibilité de reconstituer un traitement à des fins de contrôle (audit) et de preuves

- Les mesures de protection par critère de sécurité :
 - Disponibilité : garantir la continuité de service et maintenir son bon fonctionnement.
 - □ Intégrité: garantir l'exactitude et la validité du système. Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : garantir que le système n'est ni disponible, ni divulgué aux personnes, entités ou processus non autorisés.
 - Traçabilité : garantir la possibilité de reconstituer un traitement à des fins de contrôle (audit) et de preuves.

- Les mesures de protection par critère de sécurité :
 - Disponibilité : duplication matérielle et logicielle, sauvegarde, tolérance aux pannes
 - □ Intégrité : garantir l'exactitude et la validité du système. Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : garantir que le système n'est ni disponible, ni divulgué aux personnes, entités ou processus non autorisés.
 - Traçabilité : garantir la possibilité de reconstituer un traitement à des fins de contrôle (audit) et de preuves.

- Les mesures de protection par critère de sécurité :
 - Disponibilité : duplication matérielle et logicielle, sauvegarde, tolérance aux pannes
 - Intégrité : certification, contrôle d'accès et de la validité du système Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité: garantir que le système n'est ni disponible, ni divulgué aux personnes, entités ou processus non autorisés.
 - Traçabilité : garantir la possibilité de reconstituer un traitement à des fins de contrôle (audit) et de preuves.

2. Méthodes de protection

- Les mesures de protection par critère de sécurité :
 - Disponibilité : duplication matérielle et logicielle, sauvegarde, tolérance aux pannes
 - Intégrité : certification, contrôle d'accès et de la validité du système Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : contrôle d'accès et chiffrement , ni divulgué aux personnes, entités ou processus non autorisés.
 - Traçabilité : garantir la possibilité de reconstituer un traitement à des fins de contrôle (audit) et de preuves.

- 2. Méthodes de protection
- Les mesures de protection par critère de sécurité :
 - Disponibilité : duplication matérielle et logicielle, sauvegarde, tolérance aux pannes
 - Intégrité : certification, contrôle d'accès et de la validité du système Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : contrôle d'accès et chiffrement , ni divulgué aux personnes, entités ou processus non autorisés.
 - Traçabilité: authentification, fichiers logs et archivage authentification, reconstitution des données

- Les mesures de protection par critère de sécurité :
 - Disponibilité : duplication matérielle et logicielle, sauvegarde, tolérance aux pannes
 - Intégrité : certification, contrôle d'accès et de la validité du système Éviter sa modification, par erreur ou par malveillance.
 - Confidentialité : contrôle d'accès et chiffrement , ni divulgué aux personnes, entités ou processus non autorisés.
 - Traçabilité : authentification, fichiers logs et archivage authentification, reconstitution des données

SE Chap 7. Sécurité

- 1. Domaine de protection
- Un objet est une entité dans le système informatique
- Chaque objet peut être utilisé par un ou plusieurs sujets

SE Chap 7. Sécurité

1. Domaine de protection

- Un objet est une entité dans le système informatique
- Chaque objet peut être utilisé par un ou plusieurs sujets
- Un sujet est une entité active du système qui agit sur un objet
- le sujet peut être : processus, utilisateur, groupe d'utilisateurs, ...
- Chaque sujet a des droits d'accès sur un objet

SE Chap 7. Sécurité

1. Domaine de protection

- Un objet est une entité dans le système informatique
- Chaque objet peut être utilisé par un ou plusieurs sujets
- Un sujet est une entité active du système qui agit sur un objet
- 💠 le sujet peut être : processus, utilisateur, groupe d'utilisateurs, ...
- Chaque sujet a des droits d'accès sur un objet
- Un domaine = (objet, droits)
- Le domaine correspond à un sujet
- Lampson (1971) propose de modéliser les domaines par une matrice de protection

- 1. Domaine de protection
- Objets et sujets

- Domaine de protection
- Objets et sujets

(Objet 2, lecture / écriture) (Objet 3, exécution)

1. Domaine de protection

Matrice de protection

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	x
Domaine 3	Х		R

(Objet 1, lecture)

(Objet 1, exécution) (Objet 3, lecture)

(Objet 2, lecture/écriture) (Objet 3, exécution)

Mme. K. ElBedoui-Muktouf

SE Chap 7. Sécurité

1. Domaine de protection

Matrice de protection

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	x
Domaine 3	х		R

SE Chap 7. Sécurité

1. Domaine de protection

Matrice de protection

	Objet 1	Objet 2	Objet 3	
Domaine 1	R			Sujet 1
Domaine 2		R W	x	Sujet 2
Domaine 3	X		R	Sujet 3

- + Préciser les droits d'accès pour tous les sujets
- Matrice imposante et creuse

SE Chap 7. Sécurité

1. Domaine de protection

Matrice de protection

	Objet 1	Objet 2	Objet 3	
Domaine 1	R			Sujet 1
Domaine 2		R W	х	Sujet 2
Domaine 3	х		R	Sujet 3

- + Préciser les droits d'accès pour tous les sujets
- Matrice imposante et creuse stocker les cellules non vides

- 1. Domaine de protection
- Matrice de protection

	Objet 1	Objet 2	Objet 3	
Domaine 1	R			Sujet 1
Domaine 2		R W	x	Sujet 2
Domaine 3	х		R	Sujet 3

- + Préciser les droits d'accès pour tous les sujets
- Matrice imposante et creuse

stocker les cellules non vides

colonne par colonne ou ligne par ligne

SE Chap 7. Sécurité

2. ACL (Access control List)

Les cellules non vides de la matrice de protection sont stockées colonne par colonne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	X		R

2. ACL (Access control List)

Les cellules non vides de la matrice de protection sont stockées colonne par colonne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	х		R

Objet $1 \rightarrow \text{Sujet } 1: R \text{ ; Sujet } 3: X$

2. ACL (Access control List)

Les cellules non vides de la matrice de protection sont stockées colonne par colonne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	х		R

Objet $1 \rightarrow \text{Sujet } 1: R \text{ ; Sujet } 3: X$

Objet $2 \rightarrow \text{Sujet } 2 : RW$

2. ACL (Access control List)

Les cellules non vides de la matrice de protection sont stockées colonne par colonne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	х		R

Objet $1 \rightarrow \text{Sujet } 1: R \text{ ; Sujet } 3: X$

Objet $2 \rightarrow \text{Sujet } 2 : RW$

Objet $3 \rightarrow \text{Sujet } 2: X \text{ ; Sujet } 3: R$

SE Chap 7. Sécurité

2. ACL (Access control List)

* Les cellules non vides de la matrice de protection sont stockées colonne par colonne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	х		R

Objet $1 \rightarrow \text{Sujet } 1: R \text{ ; Sujet } 3: X$

Objet $2 \rightarrow \text{Sujet } 2 : RW$

Objet $3 \rightarrow \text{Sujet } 2: X \text{ ; Sujet } 3: R$

- + la suppression d'un objet est facile (suppression de son ACL)
- La suppression d'un sujet est complexe

SE Chap 7. Sécurité

3. C-List (Capability List)

Les cellules non vides de la matrice de protection sont stockées ligne par ligne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	X		R

SE Chap 7. Sécurité

3. C-List (Capability List)

Les cellules non vides de la matrice de protection sont stockées ligne par ligne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	x
Domaine 3	х		R

Sujet $1 \rightarrow \text{Objet } 1: R$

SE Chap 7. Sécurité

3. C-List (Capability List)

Les cellules non vides de la matrice de protection sont stockées ligne par ligne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	x		R

Sujet $1 \rightarrow \text{Objet } 1: R$

Sujet $2 \rightarrow \text{Objet } 2 : RW ; \text{Objet } 3 : X$

SE Chap 7. Sécurité

3. C-List (Capability List)

Les cellules non vides de la matrice de protection sont stockées ligne par ligne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	x
Domaine 3	X		R

Sujet $1 \rightarrow \text{Objet } 1: R$

Sujet $2 \rightarrow \text{Objet } 2 : RW ; \text{Objet } 3 : X$

Sujet $3 \rightarrow \text{Objet } 1 : X ; \text{Objet } 3 : R$

3. C-List (Capability List)

Les cellules non vides de la matrice de protection sont stockées ligne par ligne

	Objet 1	Objet 2	Objet 3
Domaine 1	R		
Domaine 2		R W	X
Domaine 3	х		R

Sujet
$$1 \rightarrow \text{Objet } 1: R$$

Sujet
$$2 \rightarrow \text{Objet } 2 : RW ; \text{Objet } 3 : X$$

Sujet
$$3 \rightarrow \text{Objet } 1 : X ; \text{Objet } 3 : R$$

- + la suppression d'un sujet est facile (suppression de son C-List)
- La suppression d'un objet est complexe

Protection des fichiers

SE Chap 7. Sécurité

1. Chiffrement (cryptographie)

- Consiste à rendre illisible un fichier et ce afin de le protéger
- Le chiffrement se base sur :
 - Clé
 - Algorithme

SE Chap 7. Sécurité

1. Chiffrement (cryptographie)

- Consiste à rendre illisible un fichier et ce afin de le protéger
- Le chiffrement se base sur :
 - Clé
 - Algorithme

Mme. K. ElBedoui-Muktouf

SE Chap 7. Sécurité

Chiffrement symétrique

- Si la clé de chiffrement et la clé de déchiffrement sont les mêmes (la clé doit rester secrète)
 - + simple
 - La clé peut être interceptée

Texte normal

Mme, K. ElBedoui-Muktouf

SE Chap 7. Sécurité

- Chiffrement symétrique
- **Exemple:**

substitution \rightarrow clé : chaque lettre est remplacée par son suivant

Bonjour

Cpokpvs

Bonjour

Algorithme de chiffrement

Texte chiffré

Algorithme de déchiffrement

Texte norma

SE Chap 7. Sécurité

3. Chiffrement asymétrique

- Si la clé de chiffrement et la clé de déchiffrement sont différentes
- La clé de chiffrement = clé publique (destinée à être transmise)
- La clé de déchiffrement = clé privée (gardée secrète)

Mme. K. ElBedoui-Muktouf

- 3. Chiffrement asymétrique
- Confidentialité = document lu seulement par le destinataire

- 3. Chiffrement asymétrique
- Confidentialité = document lu seulement par le destinataire

- 3. Chiffrement asymétrique
- Confidentialité = document lu seulement par le destinataire

- 3. Chiffrement asymétrique
- Confidentialité = document lu seulement par le destinataire

- 3. Chiffrement asymétrique
- Authentification = s'assurer de l'identité de l'émetteur

- 3. Chiffrement asymétrique
- Authentification = s'assurer de l'identité de l'émetteur

- 3. Chiffrement asymétrique
- Authentification = s'assurer de l'identité de l'émetteur

- 3. Chiffrement asymétrique
- * Authentification = s'assurer de l'identité de l'émetteur

- 4. Signature électronique
- Permet d'authentifier l'émetteur d'un document et de vérifier l'intégrité du fichier

4. Signature électronique

 Permet d'authentifier l'émetteur d'un document et de vérifier l'intégrité du fichier

la clé privée de l'émetteur

4. Signature électronique

 Permet d'authentifier l'émetteur d'un document et de vérifier l'intégrité du fichier

la clé privée de l'émetteur

SE Chap 7. Sécurité

4. Signature électronique

 Permet d'authentifier l'émetteur d'un document et de vérifier l'intégrité du fichier

Déchiffrement avec la clé publique de l'émetteur

SE Chap 7. Sécurité

4. Signature électronique

 Permet d'authentifier l'émetteur d'un document et de vérifier l'intégrité du fichier

Déchiffrement avec la clé publique de l'émetteur

1. Logique

- Par un mot de passe
- Par connaissance d'une information (question secrète)

- + Simple
- Risque d'oubli ou de fraude

Authentification

SE Chap 7. Sécurité

2. Physique

- Par carte magnétique
- Par carte à puce
- Par RFID

- + Simple
- Risque de perte de vol
- Risque d'oubli de mot de passe

2. Physique

Par carte magnétique

- Bande magnétique (140 Ø)
- Les informations sont lues par un terminal
- Le mot de passe est chiffré au moyend'une clé que seule « la banque » connait

2. Physique

Par carte à puce

Les informations sont lues par un terminal qui demande le mot de passe (code PIN)

Authentification

2. Physique

- Par RFID (Radio Frequency IDentification)
 - Ces puces électroniques contiennent un identifiant et éventuellement des données complémentaires

Authentification

3. Biométrique

Pas de Risque de perte, d'oubli ou de fraude

- Doit : empreinte (depuis 1960)
- Voix: sensible aux variations (âge, état)
- Visage : sensible aux variations (âge, état)
- Rétine : peu sensible

FIN

Madame Khaoula ElBedoui-Maktouf

2ème année Ingénieur Informatique