Exercise # 6.2 Date___ Q_1 u = (-1,5,2) , V = (2,4,-9)coso = / <u,v> $\langle u, v \rangle = (-1)(2) + (5)(4) + (2)(-9)$ = -2 + 20 - 18 = -20 + 20 = 0(OSO = 020) $u = (1,0,1,0) \quad v = (-3,-3,-3,-3)$ cos0 = <u, v> TUN HVI $\langle u, v \rangle = (1)(-3) + 0(-3) + (1)(-3) + 0(-3)$ = -3 + 0 - 3 + 0||u| = | 12+12 = 36 = 6 9+9+9+9 co(0 = Gear DS No. -

Date
Q3-4: Find the wrine of the angle
$P = -1 + 5x + 2x^2$, $y = 2 + 4x - 9x^2$
$\cos\theta = 1 \cos \alpha$
$\cos\theta = \left(\frac{\langle \rho, q \rangle}{\ \rho\ \ q\ }\right)$
$\langle p,q \rangle = (-1)(2) + (5)(4) + (2)(-9)$
2 + 20 - 18
= 0
$\cos \theta = 0$
0030 = 0
$p = x - x^2$, $q = 7 + 3x + 3x^2$
$\langle p,q \rangle = (0)(7) + (1)(3) + (-1)(3)$
= 0 + 1/3 - 1/3 = 0
$\cos \theta = 0$
Q5-6: Find the corne of the angle between A and B
$A = [3 \ C]$ $B = [3 \ 2]$
$A = \begin{vmatrix} 2 & 6 & B = \begin{vmatrix} 3 & 2 \\ 1 & -3 & \end{vmatrix}$
$cos\theta = tr(u^{\dagger}v)$ $tr(v^{\dagger}u) = 2 + 6 + 1 + 3^{2}$
[str(viv)] [tr(viv)] = 3+2+1+0
= 6 + 12 + 1 + 0
$\cos\theta = 19$
10 7
Signature No

Q7-8: Determine whether the vectors are orthogonal w.r.t the euclidean inner product.

$$u = (-2, -2, -2)$$
 $V = (1, 1, 1)$

$$\langle u, v \rangle = (-2)(1) + (-2)(1) + (-2)(1)$$

= -2 -2 -2 = -6 \(\phi \) not orthogonal.

$$\langle u,v \rangle = (-4)(2) + (6)(1) + (-10)(-2) + (1)(9)$$

= $-8 + 6 + 20 + 9$
= $-2 + 20 + 9$

$$= 18 + 9 = 27 \neq 0$$
 not orthogonal

$$u = (u_1, u_2, u_3)$$
 $v_1 = (0, 0, 0)$

$$\langle u, v \rangle = (u_1)(0) + (u_2)(0) + (u_3)(0)$$

= 0 orthogonal

$$p = -1 + 71 + 2x^2$$
, $q_1 = 2x + x^2$

$$\langle p,q\rangle = (-1)(0) + (1)(2) + (2)(1)$$

= 0 + 2 + 2 = 4 \ \def 0 \ not \ orthogonal

$$p = 2-3x + x^2$$
, $q = 4 + 2x - 2x^2$

$$\langle p, q \rangle = (2)(4) + (-3)(2) + (1)(-2)$$

= 8 - 6 - 2

Signature______ No.____

Date. U $tr(U^{T}V) = (2)(-3) + (1)(0) + (-1)(0) + (3)(2)$ = -6+0+0+6 o orthogonal Q19 Let P2 have the evaluation inner product at the points $\chi_0 = -2$, $\chi_1 = 0$, $\chi_2 = 2$ Show that the vectors p = x and q = x2 are orthogonal with respect to this inner product. < p, q> = p(x0) q(x0) + p(x1) q(x1) + p(x2) q(x2) p(-2)q(-2)+p(0)q(0)+p(2)q(2)(-2)(4) + (0)(0) + (2)(4)Q18. Show that the vectors u= are orthogonal writ to the inner prod [3] on Ry that is generated by 2 1 Au, Av 10 -8 (-18) = 18/+ = 0 --3 orthogonal MC

Exercise # 6.3	Date:
Q27. let R'have the euclidean inner product	and use the GSP
to transform the basis & u, u23 into an out	nonormal basis > 21,12
	ATTENDED TO SECURE
$V_1 = (1, -3)$ $U_2 = (2, 2)$	2+2=10+2
$V_1 = U_1 = (1, -3)$	3
V2 = , U2 - < U2, V1 > V1	2 - 6 = 10 - 6
1.71	2-6=10-6
= (2,2) - (2-6)(1,-3)	5 5
710	7
$= (2,2) - (-4)^{2} (1,-3)$	
= (2,2) - (-2)(1,-3) =	=) (2,2)-(-2 6)
= (2,2) - (-5)(1,3)	(5/5/
$=(2,2)-(-\frac{2}{5},\frac{6}{5})=($	12 , 4\
-(/ (5 5)	5 5).
$91 = V_1 = (1/-3) = (1$	-3
Will 110 11	0 10)
(12,11)	13 1
$\sqrt{2} = \sqrt{2} = (\frac{12}{5}, \frac{1}{5})$	(3/10/10)
11/211	(10, 10)
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Pg No.	Sandai

Q.R DECOMPOSITION Date:
MATRIX \(A = QR
ORTHONORMAL
Q = \q_1 \q_2 \q_3
$R = \langle u_1, q_1 \rangle \langle u_2, q_1 \rangle \langle u_3, q_1 \rangle$
0 (42,92) (43,92)
Q. Find Q.R decomposition of the matrix
A = 1 0 2
Solution: $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
Find V1, V2 and V3 by GISP then find 91, 912 & 90
$Q_{1} = (\frac{1}{15}, 0, \frac{1}{12}) Q_{2} = (\frac{1}{13}, \frac{1}{13}, \frac{1}{13})$ $Q_{3} = (\frac{2}{124}, \frac{1}{124}, \frac{2}{124})$
$Q = \begin{bmatrix} \frac{1}{52} & \frac{1}{53} & \frac{2}{524} \\ 0 & \frac{1}{53} & \frac{4}{524} \\ \frac{1}{52} & \frac{1}{53} & \frac{2}{524} \end{bmatrix}$
$Q = \begin{cases} \langle u_1, u_1 \rangle & \langle u_2, a_1 \rangle & \langle u_3, a_1 \rangle \\ 0 & \langle u_2, a_2 \rangle & \langle u_3, q_2 \rangle \end{cases}$
Pg No