Linear Systems

September 27, 2019

ECE3150	Test I			
Name:	Robert Campbell			
Signature:	follow.			
Instructions	A production the eligibil elevier to terms of the			

- 1) This exam is closed book, closed notes, and closed neighbor. You may have one $8.5'' \times 11''$ note sheet with notes written on one side only. **Turn in your notesheet with your test**.
- 2) There are 6 pages to this exam including this cover sheet. You have 50 minutes to work the exam. Start when the instructor tells you to start.
- 3) Work the problems on the exam in the space provided. If you need additional space, use the back side of the previous page.
- 4) If you believe a problem cannot be solved, for full credit state exactly why it cannot be solved.
- 5) If you believe a problem has ambiguous notation, ask the instructor for clarification.

	Question #	Max Points	Points	
	1	25	18	
	2	25	13_	
	3	25	23	
	4	25	24	
W. Per seci	Total:	100		

- 1) (25 pts)
 - a) What is the *step response* of a system that performs the *antiderivative* operation?

b) Find an expression for the signal shown in terms of the *singularity functions* u(t) and r(t).

c) Find an expression for the *derivative* of the signal shown in part (b) above and plot it.

$$\frac{\partial_{y}}{\partial t} = u(t+1) - u(t-1) - 2\delta(t-1)$$

d) Check true or false as appropriate.

e) For each LTI system with impulse response shown, check the box if the property holds.

causal stable
$$h(t) = e^{t} \Pi\left(\frac{t-2}{4}\right)$$
causal $h(t) = u(2-t)$

f) For each dynamical system defined below, check the box if the property holds.

linear
$$\square$$
 time-invariant \square $y(t)\cos(t) = \frac{d}{dt}x(t)$

linear \square time-invariant \square $x(t) = \frac{d}{dt}y(t) + y(t)x(t)$

nor linear

- 2) (25 pts) A continuous-time, LTI system has input $x(t) = 3\Pi(t/2)$ and impulse response h(t) = r(t-1).
 - a) Find the *output*, y(t). Clearly show how you arrived at your solution.

 $y(t) = \int_{-\infty}^{\infty} +3\int_{t-\lambda}^{\infty} d\lambda + \int_{t-\lambda}^{\infty} d\lambda + \int$

b) Carefully sketch the graph of y(t). Be sure to *label all critical points* of the graph.

3) (25 pts) A system $y(t) = H\{x(t)\}\$ is known to have the following input/output signal pairs

(a)
$$r(t+1) = H\{u(t)\}$$
, (b) $(t+1)^2 u(t+1) = H\{r(t)\}$, (c) $r(t) = H\{u(t-1)\}$
(d) $2r(t+1) = H\{2u(t)\}$, (e) $(t+1)(t+2)u(t+1) = H\{u(t)+r(t)\}$.

a) Is it plausible for this system to be *Linear*? State your answer (yes/no) and explain it using the input/output signal pairs provided.

(cfd) gmonstrate scaling property 404 mgm) (a) +(d)

additive (a, b, c) you mother (a), (b), +(e)

Hen(+)+r(+)3 = Hen(+)3+Hen(e)3

(t+1)(t+1) = r(t+1)(t+(t+1)^2 u(t+1)

(t+1) + (t+1) u(t+1)

(t+2) u(t) = (t+1) u(t+1)

Does not satisfy additive property ... Not Linear

b) Is it plausible for this system to be *Time-Invariant*? State your answer (yes/no) and explain it using the input/output signal pairs provided. $\chi_{i}(t) = \psi_{i}(t-t_{i}) = \psi_{i}(t) =$

a and e) your match (a) f(c) $x_{1}(t) = u(t) \quad y_{1}(t) = r(t+1)$ $x_{2}(t) = u(t-1) \quad y_{2}(t) = r(t)$ $x_{3}(t+1) = u(t) = x_{1}(t) \quad y_{3}(t+1) = r(t+1) = y_{1}(t)$ $x_{4}(t+1) = u(t) = x_{1}(t) \quad y_{4}(t+1) = r(t+1) = y_{1}(t)$ $x_{4}(t+1) = u(t) = x_{1}(t) \quad y_{4}(t+1) = r(t+1) = y_{1}(t)$ $x_{4}(t+1) = u(t) = x_{1}(t) \quad y_{4}(t+1) = r(t+1) = y_{1}(t)$

c) Is it plausible for this system to be *Causal*? State your answer (yes/no) and explain it using the input/output signal pairs provided.

No, the output precedes the input

d) Is it plausible for this system to be *Stable*? State your answer (yes/no) and explain it using the input/output signal pairs provided.

(ult)) (ult)) (ult)) buthe output is not (n(E+1)).

- 4) (25 pts)
 - a) Create a block diagram that implements the following differential equation. Your diagram may only use the *summer*, *integrator*, and *gain* devices. Each prime denotes derivative.

b) Find the system equation for the system defined by the block diagram shown

