JP2001321192 A

METHOD FOR PREPARING PROTEIN SAMPLE FOR STRUCTURAL ANALYSIS

AJINOMOTO CO INC

Abstract:

PROBLEM TO BE SOLVED: To provide a method for preparing a protein sample for the structural analysis suitable for the structural analysis of a protein.SOLUTION: This method for preparing a protein sample for the structural analysis comprises (i) reacting a protein with a compound containing a primary amino group by the action of a transglutaminase and/or (ii) reacting a protein with a peptide containing a glutamine residue by the action of a transglutaminase.

inventor(s):

SHINBA NOBUHISA SUZUKI EIICHIRO YOKOYAMA KEIICHI

Application No. 2000141151 JP2000141151 JP, **Filed** 20000515, **A1 Published** 20011120

Original IPC(1-7): C12P02102

G01N03368 C07K005027

Patents Citing This One No US, EP, or WO patent/search reports have cited this patent.

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出題公開番号 特開2001-321192 (P2001-321192A)

(43)公開日 平成13年11月20日(2001.11.20)

(51) Int.Cl.7	識別記号	 .F I			テーマコート*(参考)
C12P 2	21/02	C 1 2 P	21/02	В	2G045
G01N 3	3/68	G01N	33/68		4B064
// C07K	5/027 Z N A	C07K	5/027	ZNA	4H045

審査請求 未請求 請求項の数6 OL (全 11 頁)

(21)出願番号	特顧2000-141151(P2000-141151)	(71)出願人 000000066 味の素株式会社		
(22)出顧日	平成12年5月15日(2000.5.15)	東京都中央区京橋1丁目1	5番1号	
(22) (1) 勝其日	TM127 0 /3 10 H (2000: 0: 10)	(72)発明者 榛葉 信久		
		素株式会社中央研究所内		
		(72)発明者 鈴木 榮一郎	•	
		神奈川県川崎市川崎区鈴木 素株式会社中央研究所内	ト町1-1 味の	
		(74)代理人 100059959		
		弁理士 中村 稔 (外、	3名)	

最終頁に続く

(54) 【発明の名称】 構造解析用タンパク質試料の調製方法

(57)【要約】

【解決課題】 タンパク質の構造解析に適した構造解析 用タンパク質試料を調製する方法を提供する。

【解決手段】 (i)トランスグルタミナーゼの作用によってタンパク質と1級アミノ基を含む化合物を反応させること、および/または、(ii)トランスグルタミナーゼの作用によってタンパク質とグルタミン残基を含むペプチドを反応させること、を含む、構造解析用タンパク質試料の調製方法。

【特許請求の範囲】

(i)トランスグルタミナーゼの作用に 【請求項1】 よってタンパク質と1級アミノ基を含む化合物を反応さ せること、および/または、(ii) トランスグルタミナ ーゼの作用によってタンパク質とグルタミン残基を含む ペプチドを反応させること、を含む、構造解析用タンパ ク質試料の調製方法。

1級アミノ基を含む化合物、及び/又は 【請求項2】 グルタミン残基を含むペプチドが安定同位体を含む、請 求項1記載の方法。

1 級アミノ基を含む化合物が、更に親水 【請求項3】 性の官能基又は水素結合のドナー若しくはアクセプター となる官能基を含んだ化合物である、請求項1または2 に記載の方法。

【請求項4】 1級アミノ基を含む化合物がヒドロキシ ルアミン、グリシン、リジン、硫酸水素アミノエチル、 リン酸アミノエチル、アミノエタノールおよびリジンを 含むペプチドからなる群より選ばれる、請求項1~3の いずれか1項に記載の方法。

グルタミン残基を含むペプチドがN-カル 【請求項5】 ボベンゾキシ-L-グルタミル-グリシン、N-カルボベンゾ キシ-L-グリシル-グリシル-グルタミル-グリシンおよび N-カルボベンゾキシ-L-グリシルーグリシルーグルタミ ル-グリシンからなる群より選ばれる、請求項1~4の いずれか1項に記載の方法。

構造解析がNMR構造解析または結晶構造 【請求項6】 解析である請求項1~5に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、構造解析用タンパ ク質試料の調製方法に関する。より具体的には、タンパ ク質の物性を向上させることにより、立体構造の解析に 適したタンパク質試料を調製する方法に関する。

[0002]

【従来の技術】タンパク質の構造解析にはX線やNMRを利 用する場合が多いが、前者による解析には試料となるタ ンパク質の溶解性および結晶性が、後者による解析には 該タンパク質の溶解性及び安定性が高いことが要求され る。そのような構造解析を行なうために適したタンパク 質試料を調製する目的で、タンパク質の物性を穏やかに 改善する方法がいくつか報告されている。例えば、結晶 構造解析においては、膜タンパク質の疎水面同士の会合 を回避するために抗体を結合させたり脂質を混入する方 法 (Iwata, S. et al. (1995) Nature 376, 660. Shin zawa-Itoh, K. etal. (1995) J. Mol. Biol. 246, 57 2.) などが挙げられ、NMR解析においては、界面活性剤 や塩を含んだ溶媒を用いてタンパク質の会合を防ぐ方法 (Anglister, J. et al. (1993) J. Biomol. NMR 3, 12 1. Zhang, O. et al. (1995) Biochemistry 34, 678

4.) などがある。しかしながら、これらの条件は生理条

件とは異なるため、生体内における構造を反映しない場 合があるという問題があった。また、タンパク質の性質。 に依存して溶解条件や結晶化条件を試行錯誤により検討 する必要があり、労力や時間を省略するためにも適用範 囲の広い手法の開発が望まれていた。構造解析に基づい てタンパク質工学又はドラッグデザインが行なわれてい る現在、前述のような物性が改善された、構造解析用タ ンパク質試料を調製する意義は大きい。

【0003】構造解析用タンパク質試料の調製を目的と してタンパク質の物性を改善する方法の一つとして、部 位特異変異が挙げられる。しかし、この方法は、個別の タンパク質で発現系を構築する必要がある上、アミノ酸 残基固有の官能基であるカルボキシアミド基や水酸基な どしか導入することができないという問題があった。例 えばスルホニル基やリン酸基の導入により溶解性の向上 が期待できるが、部位特異変異ではこれらの官能基を導 入することができない。化学反応によって修飾しアミノ 酸残基固有の官能基以外を導入することも可能である が、この場合はタンパク質の変性や副次的な反応を回避 する必要があり、導入できる官能基の種類が限られてい る。

【0004】一方、トランスグルタミナーゼは、タンパ ク質のペプチド鎖内にある y ーカルボキシアミド基のア シル転移反応を触媒する酵素である。本酵素をタンパク 質に作用させると $arepsilon - (\mathsf{y} - \mathsf{Glu}) - \mathsf{Lys}架橋形成反応、$ グルタミン残基の脱アミド化によるグルタミン酸残基へ の置換反応が起こりうる。トランスグルタミナーゼは、 ゼラチン、チーズ、ヨーグルト、豆腐、蒲鉾、ハム、ソ ーセージ、麺類などの食品の製造や食肉の肉質改善等に 広く利用されている(特開昭64-27471)。また、熱に安 定なマイクロカプセルの素材、固定化酵素の担体などの 製造に利用されているなど、産業上利用性の高い酵素と して知られている。それにもかかわらず、トランスグル タミナーゼの産業応用は、タンパク質の架橋に伴うゲル 化や、それに付随した代謝・分解の抑制といった分野に とどまっている。また、研究への応用については、蛍光 試薬又はキレート試薬を導入することによってトランス グルタミナーゼの活性を評価したり、担体をカラム樹脂 に結合させる等、極めて限られた目的に利用しているに 過ぎなかった。

[0005]

【発明が解決しようとする課題】本発明の目的は、タン パク質の構造解析に適した構造解析用タンパク質試料を 調製する方法を提供することである。

[0006]

【課題を解決するための手段】本発明者は、タンパク質 分子中のグルタミン残基及び/又はリジン残基を特定の 化合物で修飾すると、その構造を大きく変化させること なくタンパク質の物性を変化させ得ることに注目し、更 に、上記課題を解決するために鋭意検討を行った結果、

トランスグルタミナーゼによる触媒反応を利用してタンパク質のグルタミン残基を1級アミノ基を含む化合物で修飾する、及び/又はリジン残基をグルタミン残基を含むペプチドにより修飾すると、そのタンパク質の物性を構造解析に適したものに改善することができること、また、安定同位体を含む官能基の導入も可能であること見出し、本発明を完成するに至った。即ち、本発明は、

(i)トランスグルタミナーゼの作用によってタンパク質と1級アミノ基を含む化合物を反応させること、および/または、(ii)トランスグルタミナーゼの作用によってタンパク質とグルタミン残基を含むペプチドを反応させること、を含む、構造解析用タンパク質試料の調製方法である。

[0007]

【発明の実施の形態】本発明に使用される酵素であるトランスグルタミナーゼはタンパク質のペプチド鎖内にあるグルタミン残基の γ ーカルボキシアミド基のアシル転移反応を触媒する酵素である。このタンパク質がアシル受容体としてタンパク質中のリジン残基の ε ーアミノ基に作用すると蛋白質分子中及び分子間において ε ー (γ ー Glu) ー Lys結合が形成される。

【0008】本発明は、トランスグルタミナーゼ触媒反 応を利用して、タンパク質のグルタミン残基又はリジン 残基、又はその両方の修飾を行う工程を含む。図1に酵 素反応様式を模式的に示した。式1、式3はそれぞれグル タミン残基、リジン残基を含むタンパク質を示してお り、R₁、R₁'はペプチド鎖、N末端アミノ酸又は水素の いずれか、R₂、R₂、はペプチド鎖、C末端アミノ酸又は 水酸基のいずれかを示し、該タンパク質がトランスグル タミナーゼの基質となる限りにおいて特に制限はない。 式2はトランスグルタミナーゼが作用する1級アミノ基 を含む化合物を示しており、R₃に制限はなく、式2で示 した1級アミノ基を含む化合物の具体例としては、ヒド ロキシルアミン、グリシン、リジン、硫酸水素アミノエ チル、リン酸アミノエチル、アミノエタノール、リジン を含むペプチドなどを挙げることができる。式4はトラ ンスグルタミナーゼが作用するグルタミン残基を含むペ プチドで、R3'はペプチド鎖、N末端アミノ酸又は水素 のいずれか、R₄'はペプチド鎖、C末端アミノ酸又は水 酸基のいずれかを示し、該ペプチドがトランスグルタミ ナーゼの基質となる限りにおいて特に制限はない。式4 で示したグルタミン残基を含むペプチドは、カルボベン ゾキシ基、糖鎖、ミリストイル基、リン酸基のような置 換基で修飾されていてもよく、その具体例としては、N-カルボベンゾキシ-L-グルタミル-グリシン (N-carboben zoxy-L-glutamyl-glycine) (CBZ-Gln-Gly)、N-カルボベ ンゾキシ-L-グルタミル-グルタミル-グリシン(N-carbob enzoxy-L-glutamyl-glutamyl-glycine)(CBZ-Gln-Gln-Gl y)、N-カルボベンゾキシ-L-グリシルーグリシルーグル タミルーグリシン(N-carbobenzoxy-L-glycyl-glycyl-glu tamyl-glycine) (CBZ-Gly-Gly-Gln-Gly)などを挙げることができる。

【0009】本発明の方法において修飾すべきタンパク質としては、アルブミン、イムノグロブリン、血液凝固因子などのヒト血漿成分;プロテアーゼ、トランスフェラーゼなどの酵素;成長ホルモン、エリスロポエチンなどのホルモン;細胞増殖、抑制などの細胞増殖因子;細胞分化、誘導、刺激などの免疫反応調節因子;モノカイン、サイトカイン、リンホカインなどの細胞産性生物学的活性タンパク質;等を広く挙げることができる。これらのタンパク質は、その由来を問わず、動物由来のものであっても、植物由来のものであっても、微生物由来のものであってもよい。また、大腸菌、酵母、動物細胞等にこれらタンパク質の遺伝子を組み込み発現させたタンパク質、又は、無細胞タンパク質合成系を利用して発現させたタンパク質であってもよい。

【0010】トランスグルタミナーゼによって修飾されるタンパク質は、分子中に少なくとも1個のトランスグルタミナーゼの作用を受けるグルタミン残基又はリジン残基を有するものである。分子中のグルタミン残基、又はリジン残基がトランスグルタミナーゼの作用を受けたタンパク質のマススペクトルを測定し、修飾に伴う分子量の増加を検出することで確認することができる。タンパク質がトランスグルタミナーゼの作用を受けるグルタミン残基又はリジン残基を有しない場合には、トランスグルタミナーゼの作用を受けるグルタミン残基又はリジン残基を部位特異変異によって導入することも可能である。

【0011】トランスグルタミナーゼとしてはカルシウ ム非依存性のものとカルシウム依存性のものがあり、何 れも本発明に使用することができる。前者の例として は、放線菌、枯草菌等の微生物由来のもの(例えば、特 開昭64-27471号公報参照。)を挙げることがで きる。後者の例としてはモルモット肝臓由来のもの(例 えば、特公平1-50382号公報参照。)、ヒト表皮 ケラチン細胞トランスグルタミナーゼ (Phillips, M. A. et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 9333.) 、ヒト血液凝固因子XIII (Ichinose, A. et a 1. (1990) Biochemistry 25, 6900.) 、卵菌等の微生物 由来のもの、牛血液、豚血液等の動物由来のもの、サ ケ、マダイ等の魚由来のもの(例えば、関信夫等、「日 本水産学会誌」56巻125~132頁、1990 年)、カキ由来のもの、等を挙げることができる。この 他、遺伝子組み換えにより製造されるもの(例えば、特 開平1-300889号公報、特開平6-225775 号公報、特開平7-23737号公報参照。)等、を挙 げることができる。

【0012】本発明には何れのトランスグルタミナーゼでも使用することができ、起源及び製法に限定されることはない。但し、物性を改善すべきタンパク質の性質に

よってはカルシウムを含む溶媒中での酵素反応に不向き なものもあるため、そのようなタンパク質についてはカ ルシウム非依存性のトランスグルタミナーゼを使用する ことが好ましい。例えば、上記微生物由来のトランスグ ルタミナーゼ(例えば、特開昭64-27471号公報 参照。) 等は何れの条件をも満足するのもであり、現時 点では最適と言うことができる。例えば、ストレプトベ ルチシリウム・グリセオカルネウム(Streptoverticill ium griseocarneum) IFO 12776 、ストレプトベルチシ リウム・シナモネウム(Streptoverticillium cinnamon eum subsp. cinnamoneum) IFO 12852 、ストレプトベ ルチシリウム・モバラエンス (Streptoverticillium mo baraense) IFO 13819等に由来するトランスグルタミナ ーゼである。本発明に使用するトランスグルタミナーゼ の活性単位は、次のようにして測定され、かつ定義され る。即ち、ベンジルオキシカルボニルーLーグルタミニ ルグリシンとヒドロキシルアミンを基質として反応を行 い、生成したヒドロキサム酸をトリクロル酢酸存在下で 鉄錯体に変換させた後、525nmの吸光度で、その量 を測定する。このようにしてヒドロキサム酸の量より検 量線を作成し、1分間に1μモルのハイドロキサメート を生成させる酵素量をトランスグルタミナーゼの活性単 位、1ユニットと定義する。この測定法の詳細は既に報 告されている通り(例えば、特開昭64-27471号 公報等参照。)である。

【0013】タンパク質の構造解析にはX線若しくは中 性子線、またはNMRを利用する場合が多い。X線や中性子 線による解析には高い溶解性と結晶性が、NMRによる解 析には高い溶解性と安定性が要求される。これらの条件 を満たさないものについては、解析対象とするタンパク 質の溶解性、安定性及び結晶性を改善して適切なタンパ ク質試料を調製する必要がある。タンパク質の溶解性の 改善とは、溶媒に溶け得るタンパク質のモル数を増大さ せること、及びタンパク質の会合を回避することであ る。低濃度のタンパク質溶液ではX線あるいは中性子線 結晶解析に必要な結晶化が難しく、また、NMR測定にお いては十分なシグナル強度が得られない。更に、タンパ ク質の会合は、NMRシグナルの広幅化を引き起こし、構 造解析の障害となる。結晶構造解析やNMR解析において は、0.1mM以上の濃度のタンパク質溶液を、より好まし くは0.5mM以上の濃度のタンパク質溶液を作成すること が望ましい。本発明によれば、天然の状態で溶解性の低 いタンパク質からも構造解析に適したタンパク質試料を 調製することができる。

【0014】タンパク質の安定性の改善とは、デグラデーションや変性を起き難くすること、及び温度、pH、塩濃度などの変化に伴う会合や交換反応を含む種々の変化を生じ難くすることである。NMR解析においては、タンパク質分子の回転・並進運動の増大に伴ってシグナル緩和が軽減され、解析し易いスペクトルが得られることが

知られている。そのため、回転・並進運動を増大させるために、タンパク質が安定に保たれる範囲で、なるべくこ高い温度で測定する傾向がある。したがって、高い温度に対して安定なタンパク質はNMR解析に適し、構造解析対象となり得る。また、タンパク質のNMRシグナルを帰属するとき、アミドプロトンシグナルを基軸とすることが多い。しかし、pHの上昇に伴い水との交換速度が増大し、アミドプロトンシグナルが観測できなくなってしまう場合がある。したがって、NMR構造解析には、タンパク質が広い範囲のpH領域において安定であることが望ましい。

【0015】タンパク質の結晶性の改善とは、タンパク 質をより結晶化し易くすることである。タンパク質の結 晶性は、タンパク質分子表面の電荷の分布や疎水性領域 の露出度などに応じて決まる。そこで、表面電荷や疎水 度を変えることで結晶性を向上させ、結晶構造解析へ利 用することが可能となる。さらに、構造解析には、修飾 する化合物として安定同位体を含んだものを用いること が好ましい。例えば、修飾する化合物を13Cで標識する と、13C編集又はフィルターNMR実験が適用でき、重複し ていたNMRシグナルを分離して観測することが可能とな る。その結果、より正確に構造情報が抽出され、精密な 立体構造決定へと結びつく。修飾する化合物に導入する 安定同位体としては、1Hに対しては2H又は3H、12Cに対 しては13C、14Nに対しては15N、160に対しては170又は 180等が挙げられる。天然のタンパク質には1H、12C、14 N、160が多く含まれているため、これらの核種を同位体 で置換する場合が多いが、本方法は水素原子、炭素原 子、窒素原子、酸素原子の同位体標識に限定されるもの ではない。

【0016】タンパク質の溶解性を向上させるために は、例えば、カルボキシル基、アミノ基、スルホニル 基、リン酸基などの親水性の官能基を含んだ化合物でタ ンパク質を修飾することが望ましく、式2の化合物とし てはグリシン、リジン、硫酸水素アミノエチル、リン酸 アミノエチル、ポリエチレングリコールや多糖を含むア ミノ基供与体、リジンを含むペプチドなど、式4の化合 物としてはCBZ-Gln-Gly、CBZ-Gln-Gln-Gly、CBZ-Gly-Gl y-Gln-Glyなどが挙げられる。安定性を向上させるため には、例えば、カルボキシル基、アミノ基、スルホニル 基、リン酸基などの親水性の官能基を含んだものや水素 結合のドナーやアクセプターとなる官能基を含んだ化合 物でタンパク質を修飾することが望ましく、より具体的 には、式2の化合物としてはヒドロキシルアミン、グリ シン、リジン、硫酸水素アミノエチル、リン酸アミノエ チル、アミノエタノール、リジンを含むペプチドなど、 式4の化合物としてはCBZ-Gln-Gly、CBZ-Gln-Gln-Gly、C BZ-Gly-Gly-Gln-Glyなどが挙げられる。溶解性と安定性 は常に同時達成されるわけではないが、一般には溶解性 が向上すると安定性も増すことが多い。より好ましくは 溶解性と安定性の両方の性質を同時に改善する化合物を利用する。また、結晶性を向上させるためには、修飾すべきタンパク質の表面電荷や疎水性を変えるものが望ましく、式2の化合物として、ヒドロキシアミン、グリシン、抗体、抗体のFcフラグメントおよびその一部などが挙げられる。

【0017】修飾すべきタンパク質と1級アミフ基を含 む化合物又はグルタミン残基を含むペプチドとをトラン スグルタミナーゼの存在下に反応せしめるには、通常の トランスグルタミナーゼの作用条件下で、トランスグル タミナーゼ、修飾すべきタンパク質および1級アミノ基 を含む化合物又はグルタミン残基を含むペプチドを共存 させればよく、例えば、水性溶媒中で約pH5.0~約pH9.0 の範囲で、より好ましくは約pH6.0~約pH8.0の範囲で、 温度約4℃~約55℃の範囲で、より好ましくは約25℃~ 約40℃の範囲で、修飾すべきタンパク質、1級アミノ基 を含む化合物又はグルタミン残基を含むペプチド、及び トランスグルタミナーゼを保持すればよい。反応時間に は特に制限はないが、約30秒~や約7日、より好ましく は約1分~約2日とする。この反応において、修飾すべき タンパク質の濃度は約1M~約40mM、1級アミノ基を含む 化合物又はグルタミン残基を含むペプチドの濃度は約10 μM~約10Mの範囲が望ましく、修飾すべきタンパク質に 対し1級アミノ基を含む化合物又はグルタミン残基を含 むペプチドの濃度を1倍以上とするのがよく、より好ま しくは約20倍以上とする。また、トランスグルタミナー ゼの使用量は、約10nM~約100μMの範囲が望ましく、こ れはタンパク質1mmol当り約0.01~約20ユニットに相当 する。

【0018】かくしてトランスグルタミナーゼを作用さ せることにより、1級アミノ基を含む化合物又はグルタ ミン残基を含むペプチドによりタンパク質が修飾され、 当該タンパク質の物性が構造解析に適したものに改善さ れ、その結果、構造解析用タンパク質試料が調製され る。このような修飾によるタンパク質の溶解性および/ 又は安定性の改善に伴いNMRによる構造解析が可能にな る上、更に、導入した化合物を安定同位体標識すれば精 度の高い構造解析につながる。一方、タンパク質の溶解 性および/又は結晶性の向上は、X線結晶構造解析に役 立つ。両方法によって得られた構造情報は、タンパク質 工学又はドラッグデザインへ反映させることができる。 例えば、レセプターなどの膜タンパク質を水溶媒中に可 溶化することが可能となる。NMR解析及び結晶構造解析 が可能となった可溶化レセプター分子の構造情報をもと に、アゴニスト又はアンタゴニストを設計し、新規薬物 の発見へと発展させることができる。トランスグルタミ ナーゼを利用することによって、グルタミン残基とリジ ン残基の両方、もしくは一方を修飾できることから、当 該タンパク質の配列や形に応じて、さまざまな修飾タン パク質を作成することができる利点がある。更に、酵素 によってタンパク質を修飾する場合、当該タンパク質の表面に位置する官能基が修飾されるため、立体構造が損われにくいと考えられる。これは、タンパク質の立体構造の内部に位置するアミノ酸残基まで修飾される化学的修飾法に比較して大きな利点である。以下、本発明を実施例に従って説明する。尚、本発明は実施例に限定されるものではない。

[0019]

【実施例】以下の実施例において、酵素としてStreptov erticillium由来のトランスグルタミナーゼ(以下MTGと 略す)、1級アミンとしてグリシンを用い、荷電を帯び たカルボン酸を導入することによってタンパク質の物性 改善を試みた。また、グリシンの窒素を15N標識(以 下、15N標識グリシンと呼ぶ)することによって安定同 位体の導入も行った。図2に反応の模式図を示す。図2の 式5はグルタミン残基を含むタンパク質を示しており、R 1はペプチド鎖、N末端アミノ酸又は水素のいずれか、R っはペプチド鎖、C末端アミノ酸又は水酸基のいずれか を示す。トランスグルタミナーゼの作用による修飾過程 又は15N標識過程については、NMRを用いて検出し、1H-N MR測定、1H-15N HSOC測定 (Bodenhausen, G. & Ruben, D. J. (1980) Chem. Phys. Lett. 69, 185.) を必要に 応じて行った。各NMR測定には例えばBruker社製DMX-600 スペクトロメーターを用い、測定試料には磁場の安定性 を保つためのNMRロック用に5%のDoOを添加した。溶媒に は20mMリン酸ナトリウム (pH6)を用い、反応温度は37℃ とした。

【0020】<u>実施例1(モデル化合物の15N標識グリシ</u>ンによる修飾)

修飾すべきタンパク質のモデル化合物としてN-carboben zoxy-L-glutaminyl-glycine (以下CBZ-Gln-Glyと略す) を取り上げ、15N標識グリシンによる修飾過程を追跡す ることにした。CBZ-Gln-Gly 2.0mM、15N標識グリシン 1 0.5mM、MTG 4μMとなるように混合してから157分後に最 初の1H-15N HSQCスペクトルを測定し、その後1時間ごと に同様の測定を行った。図3に反応時間とスペクトルを 示す。各試薬の混合から測定までの時間がトランスグル タミナーゼ反応時間に相当する。1H-15N HSQC測定では 15Nと結合している1H由来のシグナルのみが観測される ため、15N標識過程を定量的に追跡することができる。 ただし、高濃度に存在するプロトン由来のピークを完全 に消去することは難しく、図3では消え残ったピークにx 印を付記してある。反応生成物では1H-15N由来のシグナ ルが観測されることから、徐々にGln残基のカルボキシ アミド窒素と15N標識グリシンの架橋反応が進行してい ることが判明した。以上の結果より、安定同位体を含む 化合物による修飾が可能であること、及び、NMRを用い て修飾過程を追跡できることを示すことができた。ま た、グリシンを修飾することによって、電荷のないカル ボキシアミドにカルボン酸を付加している。新たに電荷 を帯びた官能基を付加できることから、溶解性や安定性といった物性の改変が可能であることを示唆している。 【0021】実施例2(高分子量タンパク質の15N標識 グリシンによる修飾)

高分子量タンパク質として牛血清アルブミン(serum al bumin, bovine、以下BSAと略す)を取り上げ、 15 N標識 グリシンによる修飾を行った。BSA $^{2.4}$ nM、 15 N標識グリシン 127 nM、MTG 32 μ Mとなるように混合し、 2 日間インキュベートした後、 1 H- 15 N HSQC測定を行った。 1 H- 15 N HSQCスペクトル上に 1 つの相関ピークが観測され、少なくても 1 個の 15 N標識グリシンがBSAのグルタミン残基へと結合したことが判明した(図4)。

【0022】<u>実施例3(タンパク質の修飾による溶解性</u>および安定性の改善)

実施例2記載の試料(以下グリシン化BSAと略す)とBSAの物性を比較した。対象試料には、MTGを添加していないこと以外の条件を同じとするために、BSA 2.4mM、^{15N}標識グリシン127mMのみを2日間インキュベートしたものを用いた。室温におけるBSAの溶解性および安定性は高いため、温度を上げてBSAが会合しやすい状態を作り出すことにした。また、NMR解析においては、タンパク質分子の回転・並進運動の増大に伴ってシグナル緩和が軽減され、解析し易いスペクトルが得られることが知られている。そのため、回転・並進運動を増大させるために、タンパク質が安定に保たれる範囲で、なるべく高い温度で測定する傾向がある。したがって、高い温度条件下において溶解性および安定性が改善されることは、NMR解析にとって好ましく、構造解析に有利に働く。

【0023】両試料 $5\mu1$ を72°、10分間インキュベートしたところ、白い沈殿が生じた。これを $995\mu1$ のリン酸バッファーに懸濁した後、15,000rpm、3minにて遠心し、上清について280nmの吸光度(以下 00_{280} と略す)を比較した。濃度が高いほど 00_{280} の値は大きくなり、溶解性及び安定性に優れていることを示している。グリシン化BSAでは $00_{280}=0.459=0.004$ 、BSAでは $00_{280}=0.366=0.006$ となり、グリシン化BSAの方が高い濃度を保持しており、グリシンにより修飾することによって溶解性及び安定性が改善されていることが判明した。なお、測定結果は、2回の実験の平均値及び標準偏差を記載し

た。

【0024】<u>実施例4(タンパク質の立体構造に及ぼす</u>。 <u>修飾の影響)</u>

実施例2記載のグリシン化BSAと、BSAの立体構造を比較するために、¹H-NMRスペクトルを測定した(図5 A,B)。測定温度は37℃である。購入したBSA(Sigma社製品)に含まれていた未知の低分子化合物由来のピークが3.70ppmに、未反応のグリシンのアルファプロトン由来のピークが3.85ppmに、水由来のピークが4.70ppmに観測され、その他のシグナルがグリシン化BSA(図5 A)又はBSA(図5 B)由来のものである。高次構造を保持しているタンパク質に特徴的な0ppm近傍のシグナルをはじめとして、ほとんどのシグナルにおいてグリシン化による化学シフト変化が起こっていない。したがって、BSAの立体構造を損ねることなく、グリシンにより修飾できていることが判明した。

[0025]

【発明の効果】本発明によれば、任意のタンパク質と1級アミン又はグルタミン残基を含むペプチドとにトランスグルタミナーゼを作用させることにより、当該タンパク質をその本来の立体構造を損うことなしに修飾し、立体構造解析に適した構造解析用タンパク質試料を調製することができる。更に、修飾する化合物として安定同位体を含むものを用いることにより、精度の高い構造解析を行うことができる。

【図面の簡単な説明】

【図1】タンパク質グルタミン残基、リジン残基の修飾 工程における反応様式を示したものである。

【図2】グルタミン残基へ15Nグリシンを修飾する工程の反応様式を示したものである。

【図3】 15N標識グリシンによるN-カルボベンゾキシ-L-グルタミニルーグリシンの修飾過程における¹H-¹⁵N HSQ Cスペクトルの経時変化を示したものである。

【図4】¹⁵N標識グリシンによって修飾されたBSAの¹H¹⁵N HSQCスペクトルである。

【図5】(A)はBSAの¹H-NMRスペクトルである。(B)は ¹⁵N標識グリシンによって修飾されたBSAの¹H-NMRスペクトルである。

[図1]

			t t t
ξ.— N	HC — CE, — CE, — C — NER, + 'NH, 0 = C R,		CH2),—NH—C—CH,—CH—— C=0 C=0
(式2)の化合物	+ 'NB₃ - B₃ -		R, (五4)の化合物 HN 0 HC — CH ₂ — CH ₂ — C — NH ₃ 0 = C R ₄
R ₁ (式1)の化合物 	— CB, — CB, —	(B)リジン残基の酵素修飾の構式図	R ₁ (東3)の化合物 HIN HC — (CB ₂), — NH ₃ + + O = C

[図2]

グルタミン残基へいる標識グリシンを修飾する過程を示した模式図

[図3]

【図4】

¹³N標識グリシンによって修飾したBSAの HSQCスペクトル

【図5】

(B) 15 N標識グリシンによって修飾したBSA

【手続補正書】

【提出日】平成13年6月13日(2001.6.13)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項5

【補正方法】変更

【補正内容】

【請求項5】 グルタミン残基を含むペプチドがN-カルボベンゾキシ-L-グルタミニル-グリシン、N-カルボベンゾキシ-L-グルタミニル-グリシンおよびN-カルボベンゾキシ-グリシル-グリシル-L-グルタミニル-グリシンからなる群より選ばれる、請求項 $1\sim4$ のいずれか1項に記載の方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】本発明は、トランスグルタミナーゼ触媒反応を利用して、タンパク質のグルタミン残基又はリジン残基、又はその両方の修飾を行う工程を含む。図1に酵素反応様式を模式的に示した。式1、式3はそれぞれグルタミン残基、リジン残基を含むタンパク質を示しており、 R_1 、 R_1 'はペプチド鎖、N 末端アミノ酸又は水素のいずれか、 R_2 、 R_2 'はペプチド鎖、C 末端アミノ酸又は水酸基のいずれかを示し、該タンパク質がトランスグルタミナーゼの基質となる限りにおいて特に制限はない。式2はトランスグルタミナーゼが作用する1級アミノ基を含む化合物を示しており、 R_3 に制限はなく、式2で示した1級アミノ基を含む化合物の具体例としては、ヒドロキシルアミン、グリシン、リジン、硫酸水素アミノエチル、リン酸アミノエチル、アミノエタノール、リジン

を含むペプチドなどを挙げることができる。式4はトラ ンスグルタミナーゼが作用するグルタミン残基を含むペ プチドで、R3'はペプチド鎖、N末端アミノ酸又は水素 のいずれか、R₄'はペプチド鎖、C末端アミノ酸又は水 酸基のいずれかを示し、該ペプチドがトランスグルタミ ナーゼの基質となる限りにおいて特に制限はない。式4 で示したグルタミン残基を含むペプチドは、カルボベン ゾキシ基、糖鎖、ミリストイル基、リン酸基のような置 換基で修飾されていてもよく、その具体例としては、N-カルボベンゾキシ-L-グルタミニル-グリシン(N-carbob enzoxy-L-glutaminyl-glycine) (CBZ-Gln-Gly)、N-カル ボベンゾキシ-L-<u>グルタミニル-L-グルタミニル</u>-グリシ ン(N-carbobenzoxy-L-glutaminyl-L-glutaminyl-glycin e)(CBZ-Gln-Gln-Gly)、N-カルボベンゾキシ-<u>グリシル-</u> グリシル-L-グルタミニル-グリシン(N-carbobenzoxy-gl <u>ycyl-glycyl-L-glutaminyl</u>-glycine) (CBZ-Gly-Gly-Gln -Gly)などを挙げることができる。

<配列表フリーテキスト>

配列番号1:トランスグルタミナーゼの基質

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0025

【補正方法】変更

【補正内容】

[0025]

【発明の効果】本発明によれば、任意のタンパク質と1級アミン又はグルタミン残基を含むペプチドとにトランスグルタミナーゼを作用させることにより、当該タンパク質をその本来の立体構造を損うことなしに修飾し、立体構造解析に適した構造解析用タンパク質試料を調製することができる。更に、修飾する化合物として安定同位体を含むものを用いることにより、精度の高い構造解析を行うことができる。

【配列表】

SEQUENCE LISTING

```
<110> Ajinomoto CO., Inc.
```

<120> A method of preparing proteins for structural analysis

<130> Y1H0417

<140> 2000-141151

<141> 2000-05-15

<160> 1

<170> PatentIn Ver. 2.1

<210> 1

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<220>

<221> MOD RES

<222> (1)

<223> Xaa is N-carbobenzoxy-glycyl residue

<400> 1

Xaa Gly Gln Gly

1

フロントページの続き

(72)発明者 横山 敬一

神奈川県川崎市川崎区鈴木町1-1 味の 素株式会社中央研究所内 F ターム(参考) 2G045 AA40 BB60 DA36 FA40

4B064 AG01 BH04 CA21 CB30 CD13

CD20 DA13

4HO45 AA20 BA11 BA13 DA89 EA50

FA70

