第一章 随机事件与概率

第五节

独立性

Overview

1 两个事件的独立性

② 多个事件的相互独立性

③ 试验的独立性

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

举例:两个骰子,

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

举例:两个骰子,其他?

 $\Leftrightarrow P(A|B) =$

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

$$\Leftrightarrow P(A|B) = P(A)$$

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

$$\Leftrightarrow P(A|B) = P(A)$$

$$\Leftrightarrow P(AB)/P(B) =$$

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

$$\Leftrightarrow P(A|B) = P(A)$$

$$\Leftrightarrow P(AB)/P(B) = P(A)$$

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

$$\Leftrightarrow P(A|B) = P(A)$$

$$\Leftrightarrow P(AB)/P(B) = P(A)$$

$$\Leftrightarrow P(AB) =$$

直观说法:对于两事件,若其中任何一个事件的发生不影响另一个事件的发生,则这两事件是独立的.

$$\Leftrightarrow P(A|B) = P(A)$$

$$\Leftrightarrow P(AB)/P(B) = P(A)$$

$$\Leftrightarrow P(AB) = P(A)P(B)$$

定义 1.5.1 两个事件的独立性

定义 1.5.1 两个事件的独立性

若事件 A 与 B 满足: P(AB) = P(A)P(B), 则称 A 与 B 相互独立, 简称 A 与 B 独立.

定义 1.5.1 两个事件的独立性

若事件 A 与 B 满足: P(AB) = P(A)P(B), 则称 A 与 B 相互独立,简称 A 与 B 独立. 否则称 A 与 B 不独立或相依.

定义 1.5.1 两个事件的独立性

若事件 A 与 B 满足: P(AB) = P(A)P(B), 则称 A 与 B 相互独立,简称 A 与 B 独立. 否则称 A 与 B 不独立或相依.

结论

A,B 为两个事件, 若 P(A) > 0, 则 A 与 B 独立等价于 P(B|A) =

定义 1.5.1 两个事件的独立性

若事件 A 与 B 满足: P(AB) = P(A)P(B), 则称 A 与 B 相互独立,简称 A 与 B 独立. 否则称 A 与 B 不独立或相依.

结论

A,B 为两个事件, 若 P(A) > 0, 则 A 与 B 独立等价于 P(B|A) = P(B).

举例:书例 1.5.1 (1) 扑克

举例:书例 1.5.1 (1) 扑克

性质 1.5.1

若事件 A 与 B 独立, 则 $A 与 \overline{B}$ 独立, $\overline{A} 与 B$ 独立, $\overline{A} 与 \overline{B}$ 独立

事件独立性的判断

事件独立性的判断

实际应用中, 往往根据经验来判断两个事件的独立性:

事件独立性的判断

实际应用中,往往根据经验来判断两个事件的独立性:例如:

事件独立性的判断

实际应用中,往往根据经验来判断两个事件的独立性:例如:返回抽样、

事件独立性的判断

实际应用中,往往根据经验来判断两个事件的独立性:例如:返回抽样、甲乙两人分别工作、

事件独立性的判断

实际应用中,往往根据经验来判断两个事件的独立性:例如:返回抽样、甲乙两人分别工作、重复试验等.

多个事件的相互独立性

多个事件的相互独立性

• 对于 A、B、C 三个事件,

多个事件的相互独立性

对于 A、B、C 三个事件, 称满足:
 P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C)

多个事件的相互独立性

对于 A、B、C 三个事件, 称满足:
 P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) 则称
 A、B、C 两两独立.

多个事件的相互独立性

- 对于 A、B、C 三个事件, 称满足:
 P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) 则称 A、B、C 两两独立.
- 若还满足: P(ABC) = P(A)P(B)P(C),

多个事件的相互独立性

- 对于 A、B、C 三个事件, 称满足:
 P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) 则称 A、B、C 两两独立.
- 若还满足: P(ABC) = P(A)P(B)P(C), 则称 A、B、C 相互独立.

多个事件的相互独立性

- 对于 A、B、C 三个事件, 称满足:
 P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) 则称 A、B、C 两两独立.
- 若还满足: P(ABC) = P(A)P(B)P(C), 则称 A、B、C 相互独立.

定义 1.5.3

若 n 个事件 A_1 , A_2 , ..., A_n 满足: 两两独立. 三三独立,...,n n 独立,

多个事件的相互独立性

- 对于 A、B、C 三个事件, 称满足:
 P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) 则称 A、B、C 两两独立.
- 若还满足: P(ABC) = P(A)P(B)P(C), 则称 A、B、C 相互独立.

定义 1.5.3

若 n 个事件 A_1 , A_2 , ..., A_n 满足: 两两独立. 三三独立,...,n n 独立,则称 n 个事件 A_1 , A_2 , ..., A_n 相互独立.

一些结论

一些结论

若 A、B、C 相互独立,则

• A∪B与 C 独立?

一些结论

若 A、B、C 相互独立,则

- A∪B与C独立?
- A∩B与C独立?

一些结论

若 A、B、C 相互独立,则

- A∪B与C独立?
- A∩B与C独立?
- A − B 与 C 独立?

一些结论

若 A、B、C 相互独立,则

- A∪B与C独立?
- A∩B与C独立?
- A − B 与 C 独立?
- 若 A、B、C 只有两两独立,则上述三种情况如何?

例 1.5.1

两射手独立地向同一目标射击一次,其命中率分别为 0.9 和 0.8, 求目标被击中的概率.

例 1.5.1

两射手独立地向同一目标射击一次,其命中率分别为 0.9 和 0.8, 求目标被击中的概率.

解:

设 A = "甲中", B = "乙中", C = "目标被击中", 所以

例 1.5.1

两射手独立地向同一目标射击一次,其命中率分别为 0.9 和 0.8, 求目标被击中的概率.

解:

设 A = "PP", B = "CP", C = "目标被击中", 所以解法 1:

$$P(C) = P(A \cup B) = P(A) + P(B) - P(A)P(B)$$

例 1.5.1

两射手独立地向同一目标射击一次,其命中率分别为 0.9 和 0.8, 求目标被击中的概率.

解:

设 A = "甲中", B = "乙中", C = "目标被击中", 所以

解法 1:

$$P(C) = P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.9 + 0.8 - 0.9 \times 0.8 = 0.98.$$

例 1.5.1

两射手独立地向同一目标射击一次,其命中率分别为 0.9 和 0.8, 求目标被击中的概率.

解:

设
$$A = "PP", B = "CP", C = "目标被击中", 所以$$

解法 1:

$$P(C) = P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.9 + 0.8 - 0.9 \times 0.8 = 0.98.$$

解法 2:

$$P(C) = P(A \cup B)$$

例 1.5.1

两射手独立地向同一目标射击一次,其命中率分别为 0.9 和 0.8, 求目标被击中的概率.

解:

设
$$A =$$
 "甲中", $B =$ "乙中", $C =$ "目标被击中", 所以

解法 1:

$$P(C) = P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.9 + 0.8 - 0.9 \times 0.8 = 0.98.$$

解法 2:

用对立事件公式

$$P(C) = P(A \cup B)$$

$$= 1 - (1 - 0.9)(1 - 0.8) = 1 - 0.02 = 0.98.$$

例 1.5.2

甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.7,现已知目标被击中,求它是甲击中的概率.。

例 1.5.2

甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.7,现已知目标被击中,求它是甲击中的概率。

解:

设 A = "甲中", B = "乙中", C = "目标被击中", 所以

例 1.5.2

甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.7,现已知目标被击中,求它是甲击中的概率.。

解:

设
$$A = "$$
甲中", $B = "$ 乙中", $C = "$ 目标被击中", 所以

$$P(A|C) = P(AC)/P(C)$$

例 1.5.2

甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.7,现已知目标被击中,求它是甲击中的概率.。

解:

设 A = "PP", B = "CP", C = "目标被击中", 所以

$$P(A|C) = P(AC)/P(C)$$

= $P(A)/[P(A) + P(B) - P(A)P(B)]$

例 1.5.2

甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.7,现已知目标被击中,求它是甲击中的概率.。

解:

设 A = "甲中", B = "乙中", C = "目标被击中", 所以

$$P(A|C) = P(AC)/P(C)$$
= $P(A)/[P(A) + P(B) - P(A)P(B)]$
= $0.6/0.88$
= $15/22$

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

- 两个元件的串联系统:?
- ② 两个元件的并联系统:?
- ③ 五个元件的桥式系统:?

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

● 两个元件的串联系统:

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

① 两个元件的串联系统: $P(A_1A_2) = p_1p_2$

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

- **①** 两个元件的串联系统: $P(A_1A_2) = p_1p_2$
- ② 两个元件的并联系统:

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

- ① 两个元件的串联系统: $P(A_1A_2) = p_1p_2$
- ② 两个元件的并联系统: $P(A_1 \cup A_2) = p_1 + p_2 p_1 p_2 = 1 (1 p_1)(1 p_2)$

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

- **①** 两个元件的串联系统: $P(A_1A_2) = p_1p_2$
- ② 两个元件的并联系统: $P(A_1 \cup A_2) = p_1 + p_2 p_1 p_2 = 1 (1 p_1)(1 p_2)$
- ③ 五个元件的桥式系统: 用全概率公式

例 1.5.5

元件工作独立, 求系统正常工作的概率. 记 A_i = "第 i 个元件正常工作", $p_i = P(A_i)$.

- **①** 两个元件的串联系统: $P(A_1A_2) = p_1p_2$
- ② 两个元件的并联系统: $P(A_1 \cup A_2) = p_1 + p_2 p_1 p_2 = 1 (1 p_1)(1 p_2)$
- ⑤ 五个元件的桥式系统: 用全概率公式 $P((A_1 \cup A_4)(A_2 \cup A_5)) = P(A_1 \cup A_4)P(A_2 \cup A_5)$

试验的独立性

试验的独立性

若试验 E_1 的任一结果与试验 E_2 的任一结果都是相互独立的事件,

试验的独立性

若试验 E_1 的任一结果与试验 E_2 的任一结果都是相互独立的事件,则称这两个试验相互独立,

试验的独立性

若试验 E_1 的任一结果与试验 E_2 的任一结果都是相互独立的事件,则称这两个试验相互独立,或称独立试验.

n 重伯努里试验

n 重伯努里试验

伯努里试验:
 若某种试验只有两个结果 (成功、失败; 黑球、白球; 正面、反面),
 则称这个试验为伯努里试验.

n 重伯努里试验

- 伯努里试验:
 若某种试验只有两个结果 (成功、失败; 黑球、白球; 正面、反面),
 则称这个试验为伯努里试验.
- 在伯努里试验中,一般记"成功"的概率为 p.

n 重伯努里试验

- 伯努里试验:
 若某种试验只有两个结果 (成功、失败; 黑球、白球; 正面、反面),
 则称这个试验为伯努里试验.
- 在伯努里试验中,一般记"成功"的概率为 p.
- n 重伯努里试验: n 次独立重复的伯努里试验.

n 重伯努里试验成功的次数

• 在 n 重伯努里试验中, 记成功的次数为 X.

- 在 n 重伯努里试验中,记成功的次数为 X.
- X 的可能取值为:0,1,...,n

- 在 n 重伯努里试验中,记成功的次数为 X.
- X 的可能取值为:0,1,...,n
- X 取值为 k 的概率为:

- 在 n 重伯努里试验中,记成功的次数为 X.
- X 的可能取值为:0,1,...,n
- X 取值为 k 的概率为:

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$

作业

课本 P59: 4, 5, 6, 15, 19, 20, 21