Quantified Boolean Formulas: Solving and Proofs

Separations

Dr. Joshua Blinkhorn

Friedrich-Schiller-Universität Jena https://github.com/JoshuaBlinkhorn/QBF

Simulation Order of Some QBF Proof Systems

What We Know From the Equality Formulas

- Exponential-size refutations in
 - QU-Res (hence also in Q-Res)
 - IR-calc (hence also in ∀Exp+Res)
- Linear-size refutations in LD-Q-Res
- Lower bound technique: minimal countermodel range $\sigma(\Phi)$

Definition: We define $\sigma(\Phi)$ as the minumum cardinality of the range of a countermodel for a false QBF Q:

$$\sigma(\Phi) := \min\{|\operatorname{rng}(h)| : h \text{ is a countermodel for } \Phi\}$$

- $\forall \mathsf{Exp} + \mathsf{Res} : \ \sigma(\Phi)$ is a lower bound for any QBF
- QU-Res: $\sigma(\Phi)$ is a lower bound for Σ_3 QBFs

1

Q-Res versus $\forall Exp+Res$

∀Exp+Res Does Not Simulate Q-Res

Use the interleaved equality formulas:

$$EQI_{n} := \exists x_{1} \forall u_{1} \exists z_{1} \cdots \exists x_{n} \forall u_{n} \exists z_{n} \cdot \left(\bigwedge_{i \in [n]} (x_{i} \vee u_{i} \vee z_{i}) \right) \wedge \left(\bigwedge_{i \in [n]} (\overline{x_{i}} \vee \overline{u_{i}} \vee z_{i}) \right) \wedge \left(\bigvee_{i \in [n]} \overline{z_{i}} \right)$$

- Q-Res upper bound linear-size refutations
- $\forall \text{Exp+Res lower bound } \sigma(EQI_n) = 2^n$

Q-Res Upper Bound

∀Exp+Res Lower Bound

- EQI_n does not have a unique countermodel
- However, for every countermodel f, $\langle u_1, \ldots, u_n \rangle \subseteq \operatorname{rng}(f)$
- Hence $\sigma(EQI_n) = 2^n$
- To see this:
 - let $\alpha \in \langle u_1, \dots, u_n \rangle$
 - prove that \exists -player can play s.t. α is the only winning response
 - e.g. take α_0 the zero assignment
 - \exists -player plays the zero assignment β_0 , which forces α_0
 - Hence, in any countermodel f, $f(\beta_0) = \alpha_0$

Interlude - the Parity Function

• The parity function on n Boolean variables:

$$\bigoplus(x_1,\ldots,x_n):=\begin{cases} 1\,, & \text{if the number of set bits is odd} \\ 0\,, & \text{otherwise} \end{cases}$$

• Essentially counting modulo 2:

$$\bigoplus (0,1,1,0,1) = 1$$

 $\bigoplus (1,0,0,0,1) = 0$

Circuit lower bound: parity requires exponential size AC⁰ circuits

Bounded-Depth Circuits

- In circuit class AC_d^0 , circuits have depth at most $d \in \mathbb{N}$
- $AC^0 := \bigcup_{d \in \mathbb{N}} AC_d^0$

The Parity Formulas

```
PA_{n} := \exists x_{1} \cdots \exists x_{n} \forall u \exists z_{1} \cdots \exists z_{n} \cdot (x_{1} \vee \overline{z_{1}}), 
 (\overline{x_{1}} \vee z_{1}), 
 (x_{i+1} \vee z_{i} \vee \overline{z_{i+1}}), \text{ for } i \text{ in } [n-1], 
 (\overline{x_{i+1}} \vee \overline{z_{i}} \vee \overline{z_{i+1}}), \text{ for } i \text{ in } [n-1], 
 (x_{i+1} \vee \overline{z_{i}} \vee z_{i+1}), \text{ for } i \text{ in } [n-1], 
 (\overline{x_{i+1}} \vee z_{i} \vee z_{i+1}), \text{ for } i \text{ in } [n-1], 
 (u \vee \overline{z_{n}}), 
 (u \vee z_{n}).
```

- To satisfy existential clauses: $z_n = \bigoplus (x_1, \dots, x_n)$
- To satisfy remaining clauses: $z_n = u$
- Hence, universal player wins by playing $\mathbf{u} \neq \bigoplus (x_1, \dots, x_n)$
- This is the unique countermodel

Q-Res Does Not Simulate ∀Exp+Res

- Use the parity formulas
- ∀Exp+Res upper bound: linear-size refutations (easy construction)
- Q-Res lower bound: strategy extraction
 - from a Q-Res refutation, extract AC⁰ circuits computing a countermodel
 - the extraction is efficient (polynomial-time computable)
 - the parity circuits are superpolynomial-size
 - therefore so are the Q-Res refutations

Decision Lists

- A computational model for Boolean functions
- Actually a circuit class
- A decision list over a set of variabes X is a sequence of clause-bit pairs

$$L:=(C_1,b_1),\ldots,(C_k,b_k),\qquad {\sf vars}(C_i)\subseteq X,\ b_i\in\{0,1\}$$
 where C_k is the empty clause. The size of L is k .

- L computes a Boolean function $f:\langle X \rangle \to \{0,1\}$ as follows:
 - for $\alpha \in \langle X \rangle$, find the first C_i falsified by α
 - output $f(\alpha) = b_i$

Example - Decision Lists for Parity

$$\begin{array}{ccccc} 1 & (x_1 \lor x_2) & & \mapsto & & 0 \\ 2 & (x_1) & & \mapsto & & 1 \\ 3 & (\overline{x_1} \lor \overline{x_2}) & & \mapsto & & 0 \\ 4 & \bot & & \mapsto & & 1 \end{array}$$

<i>x</i> ₁	<i>x</i> ₂	triggers at line	$f(x_1,x_2)$
0	0		
0	1		
1	0		
1	1		

Decision Lists as Circuits

A decision list $L := (C_1, b_1), \dots, (C_k, b_k)$ computes the same function as the following depth-3 formula:

$$F_L := \bigvee_{i=1}^k \left(\neg C_i \wedge b_i \wedge \bigwedge_{j=1}^{i-1} C_j \right)$$

- Suppose $\alpha \in \langle X \rangle$ triggers at line t
- The disjunct $\left(\neg \mathit{C}_t \wedge b_t \wedge \bigwedge_{j=1}^{t-1} \mathit{C}_j \right)$ evaluates to b_t
- Every disjunct $\left(\neg C_i \wedge b_i \wedge \bigwedge_{j=1}^{i-1} C_j \right)$ with $i \neq t$ evaluates to 0
- Hence the disjunction evaluates to b_t
- Notice that $|F_L|$ is quadratic in |L| = k

Extracting Decision Lists From Q-Res Refutations

- Let us consider a QBF Φ with a single universal variable
- To extract a decision list from a Q-Res refutation of Φ:
 - Consider the subsequence of clauses C_1, \ldots, C_k derived by universal reduction
 - Associate with each clause C_i the literal a_i that was reduced in its derivation $(C_i \lor a_i \vdash C_i)$
 - If a_i is positive, take $b_i = 0$, otherwise take $b_i = 1$
 - Form the clause-bit sequence $(C_1, b_1), \ldots, (C_k, b_k), (\perp, 0)$

Example

$$\exists x \forall \mathbf{u} \exists z \cdot (x \vee \mathbf{u} \vee z) \wedge (\overline{x} \vee \overline{\mathbf{u}} \vee z) \wedge (\overline{z})$$

Parity Q-Res Lower Bound - Wrap-up

Theorem: Let Π be a Q-Res refutation of a QBF Φ with a single universal variable. There exists a decision list of size at most $|\Pi|$ computing a countermodel for Φ .

Corollary: PA_n requires Q-Res refutations of size 2^n .

- Let Π_n be a Q-Res refutations of PA_n
- There exist DLs computing parity of size $|\Pi_n|$
- Hence there exists depth-3 circuits computing parity of size $O(|\Pi_n|^2)$
- Hence $O(|\Pi_n|^2)$ is superpolynomial
- Thus $|Pi_n|$ is superpolynomial

Q-Res Lower Bounds by Strategy Extraction into Circuits

- Strategy extraction into circuits via decision lists
- Works for the general case (more than one universal variable)
- Also works for QU-Res
- Usually applied on formulas with a unique universal variable and unique countermodel f
- Large bounded-depth circuits for f implies large refutations
- Complexity of strategy extraction here is crucial: from short refutations we get small circuits
- In contrast: lower bounds via $\sigma(\Phi)$ work by strategy extraction, but there neither the extraction algorithm nor the countermodel representation is efficient

2

Q-Res versus QU-Res

The Famous Formulas of Kleine Büning et al.

The KBKF family is the QBF family whose n^{th} instance is

$$KBKF_{n} := \exists x_{1}y_{1} \forall u_{1} \cdots \exists x_{n}y_{n} \forall u_{n} \exists z_{1} \cdots z_{n} \cdot (\overline{x_{1}} \vee \overline{y_{1}}),$$

$$(x_{i} \vee u_{i} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}}), \quad \text{for } i \text{ in } [n-1],$$

$$(y_{i} \vee \overline{u_{i}} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}}), \quad \text{for } i \text{ in } [n-1],$$

$$(x_{n} \vee u_{n} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}),$$

$$(y_{n} \vee \overline{u_{n}} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}),$$

$$(u_{i} \vee z_{i}), \quad \text{for } i \text{ in } [n],$$

$$(\overline{u_{i}} \vee z_{i}), \quad \text{for } i \text{ in } [n].$$

The four sets $X_n := \{x_1, \dots, x_n\}$, $Y_n := \{y_1, \dots, y_n\}$, $U_n := \{u_1, \dots, u_n\}$, and $Z_n := \{z_1, \dots, z_n\}$ partition the variables of KB_n .

Countermodels for KBKF_n

- Fact: the countermodel is not unique
- Observervation: to prolong the game as far as possible,
 ∃-player should assign exactly one of each x_i, y_i to 0.
- Call an assignment to $vars_{\exists}(KBKF_n)$ good if it meets this condition
- Then, to win, \forall -player must set u_i to 0 if, and only if, $x_i = 0$
- Hence, the countermodel is unique on the set of good assignments

Q-Res does not simulate QU-Res

- Use the KBKF_n family
- QU-Res upper bound linear-size refutations, easy construction
- Q-Res lower bound:
 - our general techniques fail for KBKF_n
 - techniques with $\sigma(\Phi)$ fail due to unbounded quantifier alternation
 - strategy extraction via decision lists fails because the countermodel has small circuits
 - we need an ad hoc lower bound proof

Lower Bound Proof - Overview

- Main idea: show that the negation of every $\beta \in \langle U \rangle$ appears as a subclause in every Q-Res refutation of $KBKF_n$
- Let Π be a Q-Res refutation of $KBKF_n$
- Let $G \subseteq \langle X_n \cup Y_n \rangle$ be the set of good assignments
- For each α ∈ G, let β_α be the unique winning assignment for the ∀-player
- We will prove that the negation of β_{α} appears as a clause in $\Pi[\alpha]$, and hence appears as subclause of Π
- Hence $|\Pi| \ge 2^n$, since $\{\beta_\alpha : \alpha \in G\} = \langle U \rangle$

Lower Bound Proof - Ingredients (1)

- Closure under restrictions: Lemma: Let Π be a Q-Res refutation of a QBF Φ , let α be a partial assignment to vars $_{\exists}(\Phi)$. Then $\Pi[\alpha]$ is an Q-Res refutation of $\Phi[\alpha]$ whose every clause is a subclause in Π .
- First block universal literals: Lemma: Let Π be a Q-Res refutation of a QBF Φ whose first block U is universal. Then all the U-literals appearing in Π form a subclause of Π .

Lower Bound Proof - Ingredients (2)

Lemma: Let Π be a Q-Res refutation of $KBKF_n$ and let $\alpha \in G$.

- (a) Every universal variable in U appears in $\Pi[\alpha]$
- (b) For every $i \in [n]$, there exists a subassignment α_i of α such that the u_i literal satisfied by β_{α} does not appear in $\Pi[\alpha_i]$

Lower bound proof argument:

- by (a) and first-block universal literals, there exists a full universal clause C_{α} in $\Pi[\alpha]$
- by closure under restrictions, C_{α} is a subclause in Π
- Now consider applying α variable by variable
- By (b), each literal satsified by β_{α} disappears
- Hence C_{α} is exactly the negation of β_{α}

Q-Res Does Not Simulate QU-Res

Theorem: $KBKF_n$ requires Q-Res refutations of exponential size.

Theorem: $KBKF_n$ has linear-size QU-Res refutations.

Corollary: Q-Res does not simulate QU-Res.

3

QU-Res versus LD-Q-Res:

Modifications of KBKF_n

Short Refutations of KBKF_n in LD-Q-Res

• Step 1: make the following resolution steps:

Short Refutations of $KBKF_n$ in LD-Q-Res

• Step 2: for each i, derive the clauses

$$(x_i \vee u_i \vee u_{i+1}^* \cdots u_n^* \vee \overline{z_1} \vee \cdots \vee \overline{z_{i-1}}),$$

$$(y_i \vee \overline{u_i} \vee u_{i+1}^* \cdots u_n^* \vee \overline{z_1} \vee \cdots \vee \overline{z_{i-1}})$$

$$(x_{i} \vee u_{i} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}}) \qquad (x_{i+1} \vee u_{i+1}^{*} \vee u_{i+2}^{*} \cdots u_{n}^{*} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{i}})$$

$$(x_{i} \vee u_{i} \vee \overline{y_{i+1}} \vee u_{i+1} \vee u_{i+2}^{*} \cdots u_{n}^{*} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{i}})$$

$$(y_{i+1} \vee \overline{u_{i+1}} \vee u_{i+2}^{*} \cdots u_{n}^{*} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{i}})$$

$$(x_{i} \vee u_{i} \vee u_{i+1}^{*} \vee \cdots u_{n}^{*} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{i}})$$

$$(x_{i} \vee u_{i} \vee u_{i+1}^{*} \vee \cdots u_{n}^{*} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{i-1}})$$

Short Refutations of KBKF_n in LD-Q-Res

• Step 3: derive the empty clause

QU-Res and LD-Q-Res are Incomparable

- KBKF_n is easy in both QU-Res and LD-Q-Res
- For incomparability, work with two modifications of KBKF_n
- Modification 1:
 - Doubling of universal variables
 - Renders universal resolution useless (generic technique)
 - Hard for QU-Res but still easy in LD-Q-Res
- Modification 2:
 - Addition of literals to block long-distance resolution
 - Not a generic technique
 - Hard for LD-Q-Res but still easy in QU-Res

Making KBKF_n Hard for QU-Res

The $KBKF^{QU}$ family is the QBF family whose n^{th} instance is

$$\begin{split} \textit{KBKF}_{n}^{\textit{QU}} &:= \exists x_{1}y_{1} \forall \textit{u}_{1} \textit{u}_{1}' \cdots \exists x_{n}y_{n} \forall \textit{u}_{n} \textit{u}_{n}' \exists z_{1} \cdots z_{n} \cdot \\ & (\overline{x_{1}} \vee \overline{y_{1}}) \,, \\ & (x_{i} \vee \textit{u}_{i} \vee \underline{\textit{u}_{i}'} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}}) \,, \qquad \text{for } \textit{i} \text{ in } [n-1] \,, \\ & (y_{i} \vee \overline{\textit{u}_{i}} \vee \overline{\textit{u}_{i}'} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}}) \,, \qquad \text{for } \textit{i} \text{ in } [n-1] \,, \\ & (x_{n} \vee \textit{u}_{n} \vee \underline{\textit{u}_{n}'} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}) \,, \\ & (y_{n} \vee \overline{\textit{u}_{n}} \vee \overline{\textit{u}_{n}'} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}) \,, \\ & (\underline{\textit{u}_{i}} \vee \underline{\textit{u}_{i}'} \vee z_{i}) \,, \qquad \text{for } \textit{i} \text{ in } [n] \,, \\ & (\overline{\textit{u}_{i}} \vee \underline{\textit{u}_{i}'} \vee z_{i}) \,, \qquad \text{for } \textit{i} \text{ in } [n] \,. \end{split}$$

Compared to KBKF: every universal literal is doubled

Making KBKF_n Hard for QU-Res

- Doubling universal variables blocks all universal resolutions:
 - 1 Any universal resolution produces a tautology in the double variable, unless..
 - 2 The doubled variable has been universally reduced, in which case..
 - 3 The pivot variable could also have been reduced
- Hence, if we assume aggressive universal reduction, no universal resolution steps are possible
- Thus, a QU-Res refutation of $KBKF_n^{QU}$ is a Q-Res refutation
- Under a simple translation, a Q-Res refutation of KBKF_n^{QU} becomes a Q-Res refutation of KBKF_n of the same size
- So the Q-Res lower bound for $KBKF_n$ lifts to $KBKF_n^{QU}$

QU-Res Does Not Simulate LD-Q-Res

Theorem: $KBKF_n^{QU}$ requires exponential-size QU-Res refutations.

Theorem: $KBKF_n^{QU}$ has linear-size LD-Q-Res refutations.

· Doubling does not interfere with merging

Corollary: QU-Res does not simulate LD-Q-Res.

A Generic Modification for QU-Res

- Doubling of universal variables is a generic technique
- Lifts Q-Res lower bound to QU-Res
 - take QBFs $\{\Phi_n\}_{n\in\mathbb{N}}$ requiring T(n)-size Q-Res refutations
 - double the universal variables: $\{\Phi'_n\}_{n\in\mathbb{N}}$
 - assuming aggressive reduction, QU-Res refutations of Φ'_n are translated with no size increase to Q-Res refutations of Φ_n
 - $\{\Phi'_n\}_{n\in\mathbb{N}}$ require T(n)-size QU-Res refutations

Making KBKF_n Hard for QU-Res

The $KBKF^{LD}$ family is the QBF family whose n^{th} instance is

$$KBKF_{n}^{LD} := \exists x_{1}y_{1} \forall u_{1} \cdots \exists x_{n}y_{n} \forall u_{n} \exists z_{1} \cdots z_{n} \cdot (\overline{x_{1}} \vee \overline{y_{1}} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}),$$

$$(x_{i} \vee u_{i} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}), \quad \text{for } i \text{ in } [n-1],$$

$$(y_{i} \vee \overline{u_{i}} \vee \overline{x_{i+1}} \vee \overline{y_{i+1}} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}), \quad \text{for } i \text{ in } [n-1],$$

$$(x_{n} \vee u_{n} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}),$$

$$(y_{n} \vee \overline{u_{n}} \vee \overline{z_{1}} \vee \cdots \vee \overline{z_{n}}),$$

$$(u_{i} \vee z_{i} \vee \overline{z_{i+1}} \vee \cdots \vee \overline{z_{n}}), \quad \text{for } i \text{ in } [n],$$

$$(\overline{u_{i}} \vee z_{i} \vee \overline{z_{i+1}} \vee \cdots \vee \overline{z_{n}}), \quad \text{for } i \text{ in } [n].$$

Compared to KBKF: negative z_i literals added

Making KBKF_n Hard for QU-Res

- Main idea: to block merging steps
- But the intuition is unclear!
- Ad hoc proofs of hardness for
 - LD-Q-Res [Balabanov et al. 2014]
 - IRM-calc [Beyersdorff et al. 2019]
- This lower bound does not come under the scope of any general techniques
- Lower bound techniques for LD-Q-Res are absent

LD-Q-Res Does Not Simulate QU-Res

Theorem: $KBKF_n^{LD}$ requires exponential-size LD-Q-Res refutations.

Proof: ad hoc and complicated

Theorem: $KBKF_n^{LD}$ has linear-size QU-Res refutations.

- Unit clauses (z_i) derived easily with universal resolution
- Extra negative $\overline{z_i}$ literals can be resolved away, leaving $KBKF_n$

Corollary: LD-Q-Res does not simulate QU-Res.

4

Instantiation

Overview of Instantiation

- Natural extention of ∀Exp+Res
- Based on resolution in first-order logic
- Annotations are partial assignments to the dependency set
- Annotations can be extended by instantiation
- Naturally simulates both ∀Exp+Res and Q-Res

Partial Annotations

 All annotations in ∀Exp+Res are total assignments to the depedency set of the base variable:

$$x^{\tau} \Rightarrow x \in \text{vars}_{\exists}(\Phi), \ \tau \in \langle \underline{L}(x) \rangle$$

- each variable naturally represents a value in a model
- i.e. x^{τ} represents value of x for τ
- a satisfying total assignment to the set of such annotated variables defines a model, and vice versa
- Annotations in IR-calc are partial assignments to the depedency set of the base variable:

$$x^{\tau}$$
 \Rightarrow $x \in \text{vars}_{\exists}(\Phi), \ \tau \in \langle\langle L(x) \rangle\rangle$

- now variables can represent multiple values simultaneously
- i.e. x^{τ} represents value of x for all assignments in $\langle L(x) \rangle$ extending τ

IR-calc Axioms - The Weak Expansion of a QBF

- Let $\Phi := P \cdot F$ be a QBF
- Let C be a clause in F and let τ_C be the negation of the universal subclause of C. Then the weak expansion of C w.r.t. P is the clause

$$\exp_{IR}(C,P) := C[\tau_C \cup \{x^{\tau_C \upharpoonright L(x)} : x \in \mathsf{vars}_\exists(P)\}]$$

• The weak expansion of the QBF Φ is the CNF

$$\exp_{IR}(\Phi) := \bigwedge_{C \in F} \exp_{IR}(C, P)$$

Weak Expansion - Example

$$\Phi := \exists x_1 \exists x_2 \forall u_1 \forall u_2 \exists z_1 \exists z_2 \cdot (x_1 \vee u_1 \vee z_1) \wedge (\overline{x_1} \vee \overline{u_1} \vee z_1) \wedge (x_2 \vee u_2 \vee z_2) \wedge (\overline{x_2} \vee \overline{u_2} \vee z_2) \wedge (\overline{z_1} \vee \overline{z_2})$$

$$\exp_{\mathit{IR}}(\varPhi) = (x_1 \vee z_1^{\overline{u_1}}) \wedge (\overline{x_1} \vee z_1^{u_1}) \wedge (x_2 \vee z_2^{\overline{u_2}}) \wedge (\overline{x_2} \vee z_2^{u_2}) \wedge (\overline{z_1} \vee \overline{z_2})$$

- Annotations are partial assignments to the dependency sets
- No resolution steps over the annotated z_i are possible
- This CNF is in fact satisfiable!
- We need to extend the annotations via instantiation

Enabling Instantiation - The o Operator

- o is a binary operator on Boolean assignments
- ullet For au and ho Boolean assignments, we have

$$\tau \circ \rho := \tau \cup \left(\rho \upharpoonright_{\mathsf{dom}(\rho) \backslash \mathsf{dom}(\tau)}\right)$$

$$\{u\mapsto 0,\ v\mapsto 1\}\circ \{v\mapsto 0,\ w\mapsto 1\}=\{u\mapsto 0,\ v\mapsto 1,w\mapsto 1\}$$

- if dom(τ), dom(ρ) are disjoint, then $\tau \circ \rho = \tau \cup \rho$
- if $dom(\rho) \subseteq dom(\tau)$ are disjoint, then $\tau \circ \rho = \tau$
- otherwise, $\tau\circ\rho$ extends τ with the assignments in ρ not 'contradicted' by τ
- The set of all Boolean assignments under o forms a non-commutative monoid

Definition of IR-calc

ullet Consider a QBF Φ

axiom:
$$C$$
 is a clause in $\exp_{IR}(\Phi)$ resolution: $C \vee x^{\tau}$ $C \vee \overline{x^{\tau}}$ C and D are clauses x^{τ} is a variable instantiation:
$$\frac{x_1^{\tau_1} \vee \cdots \vee x_r^{\tau_r} \vee \overline{y_1^{\rho_1}} \vee \cdots \vee \overline{y_s^{\rho_s}}}{x_1^{\tau_1'} \vee \cdots \vee x_r^{\tau_r'} \vee \overline{y_1^{\rho_1'}} \vee \cdots \vee \overline{y_s^{\rho_s'}}}$$
 σ is a partial a assignment to $\operatorname{vars}_{\forall}(\Phi)$ $\tau_i' = (\tau_i \circ \sigma) \upharpoonright_{L(x_i)}, \; \rho_i' = (\rho_i \circ \sigma) \upharpoonright_{L(y_i)}$

Example IR-calc Refutation

$$\exists x_1 \forall u_1 \exists z_1 \exists x_2 \forall u_2 \exists z_2 \cdot (x_1 \vee u_1 \vee z_1) \wedge (\overline{x_1} \vee \overline{u_1} \vee z_1) \wedge (x_2 \vee u_2 \vee z_2) \wedge (\overline{x_2} \vee \overline{u_2} \vee z_2) \wedge (\overline{z_1} \vee \overline{z_2})$$

Simulation of $\forall Exp+Res$

- Easy simulation of ∀Exp+Res by IR-calc
- Let Π be an $\forall \mathsf{Exp} + \mathsf{Res}$ refutation of a QBF Φ
- Easy to see: any clause in the expansion $\exp(\Phi)$ can be obtained from some clause $\exp_{I\!R}(\Phi)$ by a single instantiation
- All the axioms in Π can be derived in IR-calc in at most $2 \cdot |\Pi|$ steps ($|\Pi|$ axioms $+ |\Pi|$ instantiations)
- All resolutions in Π can be performed in IR-calc

Theorem: IR-calc p-simulates $\forall Exp+Res$.

Simulation of Q-Res

- Let $\Pi = C_1, \dots, C_k$ be a Q-Res refutation of a QBF $\Phi = P \cdot F$
- Every clause C_i is non-tautological hence the negation of the universal subclause of C_i is an assignment τ_i
- Simulation idea: for each C_i derive the IR-calc 'axiom' that would correspond to C_i (i.e. the clause that would appear in the weak expansion of Φ if C_i belonged to F)

$$C'_i := C_i[\underline{\tau_i} \cup \{x^{\underline{\tau_i} \upharpoonright \mathbf{L}(x)} : x \in \mathsf{vars}_\exists(P)\}]$$

- Work by induction on the structure of Π:
 - if C_i is axiom of Π , C'_i can be introduced as IR-calc axiom
 - if C_i is derived by universal reduction from C_j , then $C'_i = C'_i$
 - if C_i is derived by resolution from C_j and C_k , C_i' can be derived by resolution from $inst(C_i', \tau_i, P)$ and $inst(C_k', \tau_i, P)$

Theorem: IR-calc p-simulates Q-Res.

Soundness of IR-calc

Theorem: If a QBF has an IR-calc refutation, then it is false.

- Easiest proof of soundness: transform an IR-calc refutation into an ∀Exp+Res refutation
- This is a 'simulation' of IR-calc by ∀Exp+Res (but not polynomial-time)
- Hence soundness of IR-calc follows from that of ∀Exp+Res

Soundness of IR-calc

Theorem: If a QBF has an IR-calc refutation, then it is false.

Proof sketch:

- Let $\Pi = C_1, \dots, C_k$ be an IR-calc refutation of $\Phi = P \cdot F$
- Notation: For any $\tau \in \langle \mathsf{vars}_{\forall}(\Phi) \rangle$, let $\mathsf{inst}(C_i, \tau, P)$ denote the clause obtained by instantiating C_i by τ w.r.t. P
- Let $S_i := \{ \operatorname{inst}(C_i, \tau, P) : \tau \in \langle \operatorname{vars}_{\forall}(\Phi) \rangle \}$
- Note that, even for distinct τ_1, τ_2 , we may have $inst(C_i, \tau_1, P) = inst(C_i, \tau_2, P)$
- Axiom: If C_i is an axiom of Π , $S_i \subseteq \exp(\Phi)$; that is, each clause in S_i can be derived as axiom in $\forall \text{Exp+Res}$
- Instantiation: If C_i derived by instantiation from C_i , $S_i \subseteq S_i$
- Resolution: If C_i derived by resolution from C_j , C_k , every clause in S_i can be derived by resolution from clauses in S_i , S_k

50 / 71

Lower Bounds for IR-calc

- KBKF_n requires exponential-size IR-calc refutations
- Proof technique: combine strategy extraction with a measure on countermodels
- Strategy extraction based on closure under restrictions
- Measure: countermodel weight, refined version of countermodel range
 - large weight implies large countermodel range
 - large countermodel range does not imply large weight

Useful Facts about IR-calc Refutations

- (1) If the first block is existential (X, say), those variables are not annotated. As a result, IR-calc refutations are *closed* under restriction by assignments to X.
- (2) If the first block is universal (U, say), all annotations to U appearing in the refutation are unapposed appear in the final pivot variable. Let us call this the final annotation β_{fin} . As a result, IR-calc refutations are closed under restriction by $\beta_{fin} \upharpoonright_U$.
 - Here, restriction by $\beta_{\text{fin}} \upharpoonright_{U}$ simply means deleting those annotations uniformly from the refutation.
- (3) In both cases, any annotation appearing after the restriction must have appeared before as a *subannotation*.

Strategy Extraction in IR-calc

$$\Phi := \exists X_1 \forall U_1 \cdots \exists X_n \forall U_n X_{n+1} \cdot F$$

- Similar to strategy extraction in Q-Res
- take any domain element $\alpha \in \langle \text{vars}_{\exists}(\Phi) \rangle$. For each $i \in [n]$:
 - restrict Π by the \exists -move $\alpha \upharpoonright_{X_i}$
 - obtain the \forall -move β_i by collecting the annotations to U_i
 - restrict Π by β_i
- By closure under restrictions, at each step we have a refutation of a false QBF
- As a result, each β_i is a winning move; we construct a countermodel

Strategy Extraction in IR-calc - Formal Definition

Definition: Given an IR-calc refutation Π of a QBF

$$\Phi := \exists X_1 \forall U_1 \cdots \exists X_n \forall U_n X_{n+1} \cdot F$$

the extracted strategy for Π is the function

$$f: \langle \mathsf{vars}_\exists (\Phi) \rangle \to \langle \mathsf{vars}_{\forall (\Phi)} \rangle$$

 $\alpha \mapsto \bigcup_{i=1}^n \frac{\beta_i}{\beta_i}$

where, for each $i \in [n]$:

- (a) α_i is the restriction of α to X_i ,
- (b) β_i' is the set of U_i -literals appearing in the annotations of $\Pi[\bigcup_{i=1}^i \alpha_i \cup \bigcup_{j=1}^{i-1} \beta_j],$
- (c) $\beta_i := \beta_i' \circ \{ \neg u : u \in U_i \}$

Strategy Extraction in IR-calc - Theorem

Theorem: Let Π be an IR-calc refutation Π of a QBF Φ . The extracted strategy for Π is a countermodel for Φ .

Proof:

- Important: parts of the responses in the extracted strategy may not appear as annotations in the refutation
- Idea: identify parts that must appear

Restrictors and Critical Variables

$$\Phi := \exists X_1 \forall U_1 \cdots \exists X_n \forall U_n X_{n+1} \cdot F$$

- A restrictor is a total assignment to vars $\exists (\Phi) \setminus X_{n+1}$
- - (a) $F' \subseteq F$
 - (b) $\exists X_1 \forall U_1 \cdots \exists X_n \forall U_n X_{n+1} \cdot F'$ is false

Example

• Consider the QBF $\Phi := \forall u_1 \cdots \forall u_n \exists z_1 \cdots z_n \cdot F$, where F is the conjuction of the clauses

$$(\underline{u_n} \vee \overline{z_1} \vee \cdots \vee \overline{z_n}),$$

 $(\underline{u_i} \vee z_i),$ for i in $[n],$
 $(\overline{u_i} \vee z_i),$ for i in $[n].$

- For any $i \in [n]$, deleting both $(u_i \lor z_i)$ and $(\overline{u_i} \lor z_i)$ from the matrix produces a true QBF
- Hence, if $F' \subseteq F$ and $\forall u_1 \cdots \forall u_n \exists z_1 \cdots z_n \cdot F'$ is false, F' contains at least one of $(u_i \lor z_i), (\overline{u_i} \lor z_i)$ for each $i \in [n]$
- Hence the critical variables of Φ are $\{u_1, \ldots, u_n\}$.

Critical Responses

- Let f be a countermodel for a false QBF Φ
- Let α be a restrictor for Φ
- Let $\alpha' \in \langle \mathsf{vars}_\exists (\Phi) \rangle$ be any extension of α
- The critical response to α w.r.t. Φ and f is the projection of $f(\alpha')$ to the critical variables of $\Phi[\alpha]$:

$$\operatorname{crit}(\alpha, \Phi, f) := f(\alpha') \upharpoonright_{\operatorname{CV}(\Phi[\alpha])}$$

Lemma: Let Π be a refutation of Φ whose extracted strategy is f. For any restrictor α , $\mathrm{crit}(\alpha, \Phi, f)$ is a subassignment of the final annotation in $\Phi[\alpha]$.

Critical Responses - Example

- Let f be a countermodel of KBKF_n
- Let α be the symmetrical assignment $x_i \mapsto 0, y_i \mapsto 1, i \in [n]$
- Let $\alpha' \in \langle \text{vars}_{\exists}(KBKF_n) \rangle$ be any extension of α
- We know that $f(\alpha')$ is the zero assignment (maps all u_i to 0)
- We also know that all the universal variables of KBKF_n(α) are critical: CV(KBKF_n[α]) = vars_∀(KBKF_n)
- Hence

$$\operatorname{crit}(\alpha, \Phi, f) = f(\alpha') \upharpoonright_{\operatorname{CV}(\Phi[\alpha])} = f(\alpha')$$

• In fact, this holds more generally:

Lemma: Let f be a countermodel for $KBKF_n$ and α be a symmetrical assignment. For any extension $\alpha' \in \langle \text{vars}_{\exists}(KBKF_n) \rangle$ of α , $\text{crit}(\alpha, \Phi, f) = f(\alpha')$

Countermodel Weight

Definition: Let f be a countermodel for a QBF Φ , and let S be the set of critical responses associated with f:

$$S := \{ \operatorname{crit}(\alpha, \Phi, f) : \alpha \text{ is a restrictor for } \Phi \}.$$

The weight W(f) of f is the maximum cardinality of a pairwise inconsistent subset of S.

Lemma: For any countermodel f of $KBKF_n$, we have $W(f) = 2^n$.

Theorem: [Weight Theorem] Any IR-calc refutation is at least as large as the weight of the extracted strategy.

Corollary: Any IR-calc refutation of $KBKF_n$ has size at least 2^n .

5

Conclusions and Further Topics

Which lower bound techniques apply?

Techniques for propositional proof systems

- size-width relation [Ben-Sasson & Wigderson 01]
- feasible interpolation [Krajíček 97]
- game-theoretic techniques [Pudlák, Buss, Impagliazzo, ...]

In QBF proof systems

- size-width relations fail for QBF resolution systems
- feasible interpolation holds for QBF resolution systems
- game-theoretic techniques work for weak tree-like systems
 [Beyersdorff et. al 16, 17, Chen 16]

We need new techniques

not derived from propositional proof complexity

Beyond Resolution

- Most relevant to solving: systems built on resolution
- Various ways of handling universal variables:
 - Universal expansion
 - Universal reduction
 - Universal instantiation
 - Long-distance resolution (functions)
- What happens if we swap the base system resolution with another propositional proof system?
 - cutting planes
 - polynomial calculus
 - Frege
 - an arbitrary line-based system

$P + \forall exp$

- Universal expansion works with any propositional proof system
 P (not necessarily line based)
- But it is not very interesting!
- Expansion is just a reduction into SAT
- Minimal countermodel range is always a lower bound
- In fact, it is the only genuine lower bound: if a QBF is hard for $P + \forall exp$, either
 - minimal countermodel range is large (large expansion); or
 - the expansion is hard to refute in P (propositional hardness)
- Hence genuine lower bounds in expansion are independent of the base system P

$P + \forall red$

- Universal expansion works with a suitable line-based propositional proof system P
- P should satisfy some natural properties:
 - logical correctness of all inference rules
 - implicational completeness
 - closure under restrictions
- Universal reduction can be defined on the lines of P:

universal
$$L$$
 $L[u \mapsto b]$ u is a universal variable b is a Boolean constant $vars_{\exists}(L) \subseteq L(u)$

Theorem: Given natural properties of P, $P + \forall red$ is a sound and complete refutational QBF proof system.

Lower Bounds in $P + \forall red$

- Size-width works in Resolution + ∀red (QU-Res)
 - Size-degree in PCR + ∀red?
- Feasible interpolation works in CP + ∀red
- Prover-Delayer games have been extended to Q-Res
- General technique for P + ∀red:
 - size-cost-capacity Theorem
 - generalises countermodel range lower bounds for QU-Res

Size-Cost-Capacity

Theorem: For each $P + \forall red proof \Pi of a QBF \Phi$ we have

$$|\Pi| \geq \frac{cost(\Phi)}{capacity(\Pi)}.$$

- cost: a measure on QBFs based on countermodel range
- capacity: measures expressivity of lines in P
- Hence, if cost is high and capacity is low, refutations are large
- Always yields a genuine lower bound

Example - Equality Formulas

$$|\Pi| \geq \frac{cost(\Phi)}{capacity(P)}.$$

• $cost(EQ_n) = 2^n$ – we have already seen this:

Definition: For each universal block U of a QBF Φ , $\sigma_{U}(\Phi) := \min\{|\operatorname{rng}(h)|_{U}| : h \text{ is a countermodel for } \Phi\}$ $cost(\Phi) := \max\{\sigma_{U}(\Phi) : U \text{ is a universal block in } \Phi\}$.

capacity(Res) = 1

Corollary: EQ_n requires exponential-size refutations in QU-Res.

Theorem: capacity(CP) = 1.

Corollary: EQ_n requires exponential-size refutations in CP + \forall red.

$P + \forall inst$

- Universal instantiation should work with any suitable line-based propositional proof system P
- But this has not been formally proved
- This family of proof systems is not well-researched
- Size-cost-capacity for IR-calc?

Conjecture: EQ_n requires 2^n -size refutations in $CP + \forall inst.$

Some Thoughts on Long-distance Resolution

- Original definition obfuscates the semantics
- 'Merged literals' are placeholders for partial strategies
- Partial strategies not represented explicitly but can be
- Merge Resolution: LD-Q-Res with explicit partial strategies:
 - semantically clearer
 - simulates LD-Q-Res
 - allows sound inferences forbidden in LD-Q-Res
 - open problem: Merge Resolution vs LD-Q-Res?
- Missing: lower-bound techniques for LD-Q-Res
- Reductionless LD-Q-Res: complete without ∀-reduction!
- Gives rise to a new paradigm: P + ∀merge

Some Thoughts on Solving

- New algorithms are viable (even basic implementations)
- Use of SAT solver as an NP oracle is very convenient for practioners
- 'Encodings of Bounded Synthesis'. Faynmonville et al., TACAS 2017
 - workflow tested on SAT, QBF and DQBF
 - QBF was most efficient
- Expressivity of PSPACE makes it a viable encoding for industrial problems
- Therefore QBF solving likely remains an active research area