МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №1 по дисциплине «Теория принятия решений»

Тема: Принятие решений в матричных играх

Студентка гр. 7381	Алясова А.Н
Преподаватель	Попова Е.В

Санкт-Петербург

Цель работы.

Изучение различных инструментальных средств для решения задач поддержки принятия решения, а также овладение навыками принятия решения на основе матричных игр.

Основные теоретические положения.

Рассмотрим простейшую математическую модель конечной конфликтной ситуации, в которой имеется два участника и выигрыш одного равен проигрышу другого. Такая модель называется антагонистической игрой двух лиц с нулевой суммой. Игра состоит из двух ходов: игрок A выбирает одну из возможных a_i , i=1..m стратегий, а игрок Б выбирает одну из возможных стратегий b_j , j=1..m. Каждый выбор производится при полном незнании выбора соперника. В результате выигрыш игроков составит соответственно a_{ij} и $-a_{ij}$. Цель игрока A — максимизировать величину a_{ij} , а игрока Б — минимизировать эту величину. Критерием принятия решения является функция, выражающая предпочтение лица, принимающего решение, и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.

Матрица, составленная из величин a_{ij} , i = 1..m, j = 1..n.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}. \tag{1}$$

Матрица (1) называется платежной матрицей, или матрицей игры. Каждый элемент платежной матрицы a_{ij} , i=1..m, j=1..n, равен выигрышу А (проигрышу Б), если он выбрал стратегию A_i , i=1..m, а игрок Б выбирал стратегию B_i , j=1..n.

Задача каждого из игроков — найти наилучшую стратегию игры, при этом предполагается, что противники одинаково разумны и каждый из них делает все, чтобы получить наибольший доход.

Найдем наилучшую стратегию первого игрока. Если игрок A выбрал стратегию A_i , i=1..m, то в худшем случае (например, если его ход известен Б) он

получит выигрыш $\alpha_i = \min_j a_{ij}$. Предвидя такую возможность, игрок A должен выбрать такую стратегию, чтобы максимизировать свой минимальный выигрыш.

$$\alpha = \max_{i} \alpha_{i} = \max_{i} \{ \min_{j} \alpha_{ij} \}.$$
 (2)

Представленная в (2) величина α — гарантированный выигрыш игрока А называется нижней ценой игры. Стратегия A_i , обеспечивающая получение выигрыша α , называется максиминной. Если первый игрок будет придерживаться своей максиминной стратегии, то у него есть гарантия, что он в любом случае выиграет не меньше α . Аналогично определяется наилучшая стратегия второго игрока. Игрок Б при выборе стратегии B_j , j=1...n, в худшем случае получит проигрыш $\beta_j = \max_i a_{ij}$. Он выбирает стратегию B_j при которой его проигрыш будет минимальным и составит

$$\beta = \min_{j} \beta_{j} = \min_{j} \{ \max_{i} \alpha_{ij} \}. \tag{3}$$

Представленная в (3) величина β — гарантированный проигрыш игрока Б называется верхней ценой игры. Стратегия β_j , обеспечивающая получение проигрыша β , называется минимаксной. Если второй игрок будет придерживаться своей минимаксной стратегии, то у него есть гарантия, что он в любом случае проиграет не больше β . Фактический выигрыш игрока А (проигрыш игрока Б) при разумных действиях партнеров ограничен верхней и нижней ценой игры. Для матричной игры справедливо неравенство $\alpha \leq \beta$. Если $\alpha = \beta = \nu$, т.е.

$$\max_{i} \left\{ \min_{j} \alpha_{ij} \right\} = \min_{j} \max_{i} \alpha_{ij} = \nu, \tag{4}$$

то выигрыш игрока А (проигрыш игрока Б) определяется числом ν. Оно называется ценой игры.

В соответствии с (4), если $\alpha = \beta = \nu$, то такая игра называется игрой с седловой точкой. Элемент матрицы α_{ij} , соответствующий паре оптимальных стратегий (A_i, B_j) , называется седловой точкой матрицы. Этот элемент является ценой игры.

Седловой точке соответствуют оптимальные стратегии игроков. Их совокупность — решение игры, которое обладает свойством: если один из игроков придерживается оптимальной стратегии, то второму отклонение от своей оптимальной стратегии не может быть выгодным. Если игра имеет седловую точку, то говорят, что она решается в чистых стратегиях.

Если платежная матрица не имеет седловой точки, т.е. $\alpha < \beta$ и $\alpha \le \nu \le \beta$ то поиск решения игры приводит к применению сложной стратегии, состоящей в случайном применении двух и более стратегий с определенными частотами.

Сложная стратегия, состоящая в случайном применении всех стратегий с определенными частотами, называется смешанной.

Постановка задачи.

Используя инструментальные средства компьютерной алгебры решить матричные задачи.

Вариант.

Вариант 30.

Выполнение работы.

1) С помощью инструментального средства определить границы выигрыша и наличие седловой точки для матрицы C_1 . Матрица C_1 представлена в (5).

$$C_1 = \begin{pmatrix} 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 5 \\ 7 & 6 & 8 & 10 \\ 8 & 5 & 3 & 7 \end{pmatrix} \tag{5}$$

Результат выполнения программы, представленной в приложении A, показан на рис. 1.

```
Нижняя цена игры равна 6
Верхняя цена игры равна 6
Седловая точка существует. Её координаты равны (3, 2).
```

Рисунок 1 — Результат выполнения программы для матрицы \mathcal{C}_1

2) Графически и аналитически решить матричную игру 2×2 для матрицы C_2 . Матрица C_2 представлена в (6).

$$C_2 = \begin{pmatrix} 9 & -2 \\ 3 & 6 \end{pmatrix} \tag{6}$$

Решим данную задачу аналитически.

Требуется проверить, есть ли седловая точка для исходной платежной матрицы. В случае если платежная матрица имеет седловую точку, необходимо выписать решение игры в чистых стратегиях.

Найдем нижнюю (7) и верхнюю (8) цену игры.

$$\alpha = \max_{i} \{ \min_{j} \alpha_{ij} \} = \max\{ (-2, 3) \} = 3$$
 (7)

$$\beta = \min_{j} \{ \max_{i} \alpha_{ij} \} = \min \{ (9, 6) \} = 6$$
 (8)

Получаем, что $\alpha \neq \beta$, а значит нет седловой точки и решение в чистых стратегиях не существует.

Найдем цену игры ν . Известно, что $3 \le \nu \le 6$.

В таком случае игрок A должен выбрать свои смешанные стратегии так, чтобы получить максимальный средний выигрыш. Аналогично, игрок Б должен выбрать свои смешанные стратегии так, чтобы минимизировать средний выигрыш игрока A.

Для этого запишем две системы (9) и (10) уравнений и решим их. Для игрока A:

$$\begin{cases}
9p_1 + 3p_2 = \nu \\
-2p_1 + 6p_2 = \nu \Rightarrow \\
p_1 + p_2 = 1
\end{cases}
\begin{cases}
\nu = \frac{30}{7} \\
p_1 = \frac{3}{14} \\
p_2 = \frac{11}{14}
\end{cases}$$
(9)

Для игрока Б:

$$\begin{cases}
9q_1 - 2q_2 = \nu \\
3q_1 + 6q_2 = \nu \Rightarrow \\
q_1 + q_2 = 1
\end{cases}
\begin{cases}
\nu = \frac{30}{7} \\
q_1 = \frac{4}{7} \\
q_2 = \frac{3}{7}
\end{cases}$$
(10)

Оптимальная стратегия игрока А: $P = \left(\frac{3}{14}, \frac{11}{14}\right)$.

Оптимальная стратегия игрока Б: $Q = \left(\frac{4}{7}, \frac{3}{7}\right)$.

Цена игры: $\nu = \frac{30}{7} = 4\frac{2}{7}$.

Решим данную задачу графически. Результаты представлены на рис. 2 и 3.

Рисунок 2 — Гарантированный выигрыш первого игрока в матрице платежей \mathcal{C}_2

Рисунок 3 — Гарантированный проигрыш второго игрока в матрице платежей C_2

По рис. 2 и 3 можно определить, что стратегии игроков A и Б приблизительно равны $P = \left(\frac{3}{14}, \frac{11}{14}\right), Q = \left(\frac{4}{7}, \frac{3}{7}\right)$, цена игры $-\nu = 4\frac{2}{7}, \alpha = 3, \beta = 6$. Так как $\alpha \neq \beta$, можем сделать вывод о том, что седловой точки не существует.

3) Графически и аналитически решить матричную игру $2 \times N$ для матрицы C_3 . Матрица C_3 представлена в (11).

$$C_3 = \begin{pmatrix} 5 & 6 & 8 & 7 \\ 3 & 9 & 4 & 5 \end{pmatrix} \tag{11}$$

Решим данную задачу аналитически.

Требуется проверить, есть ли седловая точка для исходной платежной матрицы. В случае если платежная матрица имеет седловую точку, необходимо выписать решение игры в чистых стратегиях.

Результат выполнения программы на матрице C_3 , представленной в приложении A, показан на рис. 4.

```
Нижняя цена игры равна 5
Верхняя цена игры равна 5
Седловая точка существует. Её координаты равны (1, 1).
```

Рисунок 4 — Результат выполнения программы для матрицы C_3 Решим данную задачу графически. Результат представлен на рис. 5.

Рисунок 5 – Гарантированный выигрыш первого игрока при различном выборе смешанной стратегии

По рис. 5 можно определить, что стратегия игрока A равна P=(1,0), т.е. игроку A следуют придерживаться 1 стратегии, цена игры – $\nu=5$, $\alpha=5$, $\beta=5$. Так как $\alpha=\beta$, можем сделать вывод о том, что седловая точка существует.

4) Графически и аналитически решить матричную игру $M \times 2$ для матрицы C_4 . Матрица C_4 представлена в (12).

$$C_4 = \begin{pmatrix} 4 & 9 \\ 5 & 4 \\ 3 & 8 \\ 2 & 5 \\ 3 & 2 \end{pmatrix} \tag{12}$$

Решим данную задачу аналитически.

Требуется проверить, есть ли седловая точка для исходной платежной матрицы. В случае если платежная матрица имеет седловую точку, необходимо выписать решение игры в чистых стратегиях.

Найдем нижнюю (13) и верхнюю (14) цену игры.

$$\alpha = \max_{i} \{ \min_{j} \alpha_{ij} \} = \max\{(4, 4, 3, 2, 2)\} = 4$$

$$\beta = \min_{j} \{ \max_{i} \alpha_{ij} \} = \min\{(5, 9)\} = 5$$
(13)

$$\beta = \min_{i} \{ \max_{i} \alpha_{ij} \} = \min\{ (5, 9) \} = 5$$
 (14)

Получаем, что $\alpha \neq \beta$, а значит нет седловой точки и решение в чистых стратегиях не существует.

Найдем цену игры ν . Известно, что $4 \le \nu \le 5$.

В таком случае игрок А должен выбрать свои смешанные стратегии так, чтобы получить максимальный средний выигрыш. Аналогично, игрок Б должен выбрать свои смешанные стратегии так, чтобы минимизировать средний выигрыш игрока А.

Используя инструментальное средство Махіта, найдём симплекс-методом оптимальные стратегии для игроков А и Б. Ввод системы неравенств для игрока А в программу Махіта представлен на рис. 6.

```
(%i5) load(simplex);
     W:1 ·x_1+1 ·x_2+1 ·x_3+1 ·x_4+1 ·x_5;
     e1:4 x 1+5 x 2+3 x 3+2 x 4+3 x 5>=1;
     e2:9 x 1+4 x 2+8 x 3+5 x 4+2 x 5>=1;
     minimize lp(W,[e1,e2]), nonegative lp=true;
```

Рисунок 6 – Ввод системы неравенств для игрока А

Полученное с помощью Махіта решение представлено на рис. 7.

$$\begin{array}{lll} \text{($02)} & & x_5 + x_4 + x_3 + x_2 + x_1 \\ \text{($03)} & & 3 \, x_5 + 2 \, x_4 + 3 \, x_3 + 5 \, x_2 + 4 \, x_1 \geq 1 \\ \text{($04)} & & 2 \, x_5 + 5 \, x_4 + 8 \, x_3 + 4 \, x_2 + 9 \, x_1 \geq 1 \\ \text{($05)} & & \left[\frac{6}{29} \, , \, \left[\, x_5 = 0 \, , \, x_4 = 0 \, , \, x_3 = 0 \, , \, x_2 = \frac{5}{29} \, , \, x_1 = \frac{1}{29} \, \right] \, \right] \end{array}$$

Рисунок 7 — Решение вектора X симплекс-методом матрицы C_4

Ввод системы неравенств и расчет вектора Y для игрока E с помощью программы Maxima представлен на рис. E.

```
(%i18) load(simplex);  
W:1·y_1+1·y_2;  
e1:4·y_1+9·y_2<=1;  
e2:5·y_1+4·y_2<=1;  
e3:3·y_1+8·y_2<=1;  
e4:2·y_1+5·y_2<=1;  
e5:3·y_1+2·y_2<=1;  
maximize_lp(W,[e1,e2,e3,e4,e5]),nonegative_lp=true;  

(%o12) y_2+y_1  
(%o13) 9y_2+4y_1\leq 1  
(%o14) 4y_2+5y_1\leq 1  
(%o15) 8y_2+3y_1\leq 1  
(%o16) 5y_2+2y_1\leq 1  
(%o17) 2y_2+3y_1\leq 1  
(%o17) 2y_2+3y_1\leq 1  
(%o18) [\frac{6}{29},[y_2=\frac{1}{29},y_1=\frac{5}{29}]]
```

Рисунок 8 — Решение вектора Y симплекс-методом матрицы C_4

Опираясь на полученные данные, можно найти цену игры (15) и оптимальные смешанные стратегии игроков A (16) и Б (17):

$$v = \frac{1}{(6/29)} = \frac{29}{6} \tag{15}$$

$$P = X \cdot \nu = \left(\frac{1}{6}, \frac{5}{6}, 0, 0, 0\right) \tag{16}$$

$$Q = Y \cdot \nu = (\frac{5}{6}, \frac{1}{6}) \tag{17}$$

Решим данную задачу графически. Результат представлен на рис. 9.

Рисунок 9 – Гарантированный проигрыш второго игрока при различном выборе смешанной стратегии

Исходя из рис. 9 можно определить, что смешанная стратегия игрока Б приблизительно равна $Q=\left(\frac{5}{6},\frac{1}{6}\right)$, цена игры $-\nu=4.8\approx\frac{29}{6}$, $\alpha=4$, $\beta=5$. Так как $\alpha\neq\beta$, можем сделать вывод о том, что седловой точки не существует. Второму игроку заведомо невыгодны стратегии 3, 4 и 5.

5) С помощью симплекс-метода решить матричную игру $M \times N$ для матрицы C_5 . Матрица C_5 представлена в (18).

$$C_5 = \begin{pmatrix} 6 & 3 & 7 \\ 8 & 5 & 1 \\ 4 & 9 & 12 \\ 3 & 7 & 8 \\ 12 & 4 & 6 \end{pmatrix} \tag{18}$$

С помощью системы компьютерной алгебры «Махіта» симплекс-методом вычислены векторы X и Y (см. рис. 10, 11).

Рисунок 10 – Решение вектора X симплекс-методом матрицы C_5

Рисунок 11 — Решение вектора Y симплекс-методом матрицы C_5

Опираясь на полученные данные, можно найти цену игры (19) и оптимальные смешанные стратегии игроков A (20) и Б (21):

$$v = \frac{1}{(13/92)} = \frac{92}{13} \tag{19}$$

$$P = X \cdot \nu = \left(0, 0, \frac{8}{13}, 0, \frac{5}{13}\right) \tag{20}$$

$$Q = Y \cdot \nu = (\frac{5}{13}, \frac{8}{13}, 0) \tag{21}$$

Выводы.

В ходе выполнения практической работы было реализовано инструментальное средство для нахождения нижней и верхней цен игры и для нахождения координат седловой точки на языке программирования Python, а также были получены навыки работы с системой компьютерной алгебры «Махіта».

Для нахождения оптимальных стратегий в матричных играх были изучены метод нахождения границ выигрыша и седловой точки. При её существовании матричная игра решается в чистых стратегиях. В случае, когда седловой точки не существует, матричная игра решается в смешанных стратегиях.

При решении матричных игр были применены графический и аналитический методы нахождения оптимальных смешанных стратегий, а также был применён симплекс-метод. Решения матричных игр обоими способами дали одинаковый результат, что может свидетельствовать о правильности нахождения оптимальных смешанных стратегий.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД