## Universidade do Minho

# Departamento de Informática Curso: MIEI / LEI



# Entrega final - Relatório de DSS

### Grupo nº2

Alexandre Eduardo Vieira Martins A93242
Guilherme Rodrigues do Outeiro Cunha Marques A94984
Hugo dos Santos Martins A95125
José Eduardo da Cunha Rocha A97270
João Bernardo Teixeira Escudeiro A96075
<a href="https://github.com/Eduard0Rocha/ProjetoDSSGrupo2">https://github.com/Eduard0Rocha/ProjetoDSSGrupo2</a>

7 de janeiro de 2023



**Hugo Martins** 



José Rocha



João Escudeiro



Alexandre Martins



Guilherme Marques

# Índice

| Introdução                             | 2 |
|----------------------------------------|---|
| Objetivos                              | 2 |
| Diagrama de classes                    | 2 |
| Subsistema Piloto                      | 2 |
| Subsistema Carro                       | 2 |
| Subsistema Campeonato.                 | 2 |
| Subsistema Users.                      | 3 |
| Subsistema Circuitos                   | 3 |
| Subsistema Data                        | 3 |
| Subsistema Business                    | 3 |
| Diagramas de sequências                | 3 |
| Diagrama Máquina de Estado             | 4 |
| Estratégias utilizadas                 | 4 |
| Manual de utilização da aplicação      | 5 |
| Análise crítica dos resultados obtidos | 6 |
| Conclusão                              | 6 |
| Anexos                                 | 7 |

### Introdução

Nesta fase final do projeto tivemos como principal foco a implementação do sistema com base nos diagramas realizados nas fases anteriores, alguns modelos dos desenvolvidos previamente foram alterados ou apagados completamente de maneira a ficarem de acordo com o sistema realizado. Tendo isto em conta, desenvolvemos os problemas dados e concluímos totalmente este projeto.

### **Objetivos**

Nesta fase final do projeto, foi pedido e passo a citar "Os modelos necessários à descrição da implementação do sistema; Implementação do sistema; Terceira parte do relatório". Tendo isto em conta, e sendo que nas fases anteriores desenvolvemos os modelos de descrição da implementação do sistema, o nosso foco foi dado quase na totalidade à implementação do sistema, e fizemos isto, como pedido, com base nos diagramas desenvolvidos anteriormente. Tivemos também que desenvolver uma base de dados para servir de apoio ao código, gerindo os dados de forma eficiente.

### Diagrama de classes

Após a análise da segunda fase, mantivemos os subsistemas criados nessa fase com algumas alterações, e adicionamos 2 packages novos.

#### Subsistema Piloto

Foram alteradas as funções presentes na interface *SGestPiloto* assim como foram adicionados atributos e operações que se encontram agora presentes no *PilotosFacade*. Está agora também presente neste diagrama o *PilotoDAO* onde se encontram mencionadas as conexões com as outras classes.

#### **Subsistema Carro**

Foram alteradas as funções presentes na interface SGestCarro assim como foram adicionados atributos e operações que se encontram agora presentes no CarrosFacade. Está agora também presente neste diagrama o CarroDAO onde se encontram mencionadas as conexões com as outras classes. Por fim foram adicionadas as funções e os atributos relacionados com as diferentes categorias dos carros(C1, C2, GT, SC) assim como os seus equivalentes híbridos.

#### Subsistema Campeonato.

Foram alteradas as funções presentes na interface *SGestCampeonato* assim como foram adicionados atributos e operações que se encontram agora presentes no *CampeonatosFacade*. Está agora também presente neste diagrama o *CampeonatoDAO* e o *CircuitoDAO* onde se encontram mencionadas as conexões com as outras classes.

#### Subsistema Users.

Foram alteradas as funções presentes nas interfaces *SGestUsers* e SGestUser assim como foram adicionados atributos e operações que se encontram agora presentes no *UsersFacade* e no *UserFacade*. Está agora também presente neste diagrama os *DAOs AdminDAO*, *GuestDAO*, *JogadorAutenticadoDAO*, *JogadorDAO* onde se encontram mencionadas as suas conexões com as outras classes.

#### **Subsistema Circuitos**

Foram alteradas as funções presentes na interface *SGestCircuitos* assim como foram adicionados atributos e operações que se encontram agora presentes no *CircuitosFacade*. Está agora também presente neste diagrama o *CircuitoDAO* onde se encontram mencionadas as conexões com as outras classes.

#### Subsistema Data

Neste subsistema encontram-se descritas as operações e os atributos de cada DAO (AdminDAO, CampeonatoDAO, CarroDAO, CircuitoDAO, DAOConfig, GuestDAO, JogadorAutenticadoDAO, JogadorDAO e PilotoDAO).

#### **Subsistema Business**

Neste subsistema encontra-se definida a interface *F1Manager* onde se encontram definidas múltiplas funções relacionadas com a aplicação. Também está definida a *LogicaNegocio* onde estão definidas as operações mais importantes do sistema como por exemplo simulação de corridas. Encontram-se aqui também a relação da *LogicaNegocio* com todos os DAOs existentes.

### Diagramas de sequências

Nesta fase final, para complementar a modelação comportamental, adicionamos um novo diagrama de sequência, e alteramos outro. Adicionamos então um para simular uma corrida e e que simula campeonatos. O alterado foi o que adiciona registo.

O Adicionar Registo foi alterado de forma a suportar os *DAO*'s que foram implementados no sistema. Assim, neste modelo é clara a separação de uma camada de base de dados e do resto do sistema. Foram feitos dois diagramas para esta função um referente à operação encontrada na classe *CampeonatosFacade* e outra de mesmo nome que se encontra na classe *LogicaNegocio*.

O novo Diagrama Simula Corrida adicionado modela o comportamento do programa numa das suas funções mais importantes, o de simular uma corrida. O segundo diagrama que foi adicionado é semelhante ao anterior visto que este refere-se à simulação de campeonatos.

### Diagrama Máquina de Estado

Nesta fase final, para complementar a modelação comportamental, adicionamos um novo diagrama de máquinas de estado. Este novo diagrama indica todas as interações possíveis a utilizar pelo utilizador num ciclo de vida dos menus. Através do mesmo consegue facilmente perceber-se de que forma se comporta o produto final , mediante os diferentes inputs do utilizador , bem como a ligação do mesmo com cada um dos packages

### Estratégias utilizadas

Para o desenvolvimento do sistema recorremos a uma metodologia simples metodologia. Começamos por criar packages relativos a cada um dos subsistemas. Cada um destes packages contava com classes facades e interfaces. Estes packages iriam trabalhar com a informação antes de ser inserida na base de dados, e eram aqui efetuadas todas as operações lógicas.

De seguida criamos um package que serviria para auxiliar nas interações com a base de dados. Cada módulo criado interagia diretamente com a tabela a que estava associado. Neste package criamos os *DAO's* que acediam as respectivas tabelas e que geriam as mesmas.

Após estes dois passos completos, passamos então à povoação da base de dados. Para isso limitámo-nos a inserir novos pilotos, carros, jogadores e circuitos, alguns deles reais, outros completamente inventados. A inserção da informação na base de dados deu-se com auxílio de funções criadas nos *DAO*'s.

Enquanto a parte de base de dados era desenvolvida, criamos também o package de lógica de negócio, que possui todas as facades, o que facilita as interações entre a interface e o código.

Para a simulação do campeonato , após a mesma ser realizada , o campeonato não pode voltar a ser simulado , pois é ativa uma flag que não o permite. Esta opção foi pensada ponderadamente pelo grupo pois não faria sentido após duas simulações do mesmo campeonato um jogador conseguir o dobro dos pontos.

A simulação assenta nas características quer do piloto , quer do carro , quer das condições atmosféricas , bem como no circuito e respectivos graus de dificuldade.

O grupo optou por apenas solicitar aos usuários que pretendiam realizar alterações antes da simulação do campeonato , devido à escassez de tempo.

Por fim foi feita a interface principal, interface com a qual o cliente irá interagir. Não utilizamos os handlers como foi lecionado por falta de tempo, utilizamos então o *println*.

No desenvolvimento deste projeto são respeitados os principais paradigmas de Java, o encapsulamento e modularidade tal como seria de esperar.

Devido a falta de tempo , não conseguimos criar uma versão premium do programa. Em relação às afinações do carro apesar de ser pedido no enunciado que seja possível realizá-las antes das corridas, o grupo optou por escolher apenas ser possível fazê-las antes do campeonato começar, novamente pelo mesmo problema não conseguimos efetuar a implementação pedida.

### Manual de utilização da aplicação

A aplicação baseia-se numa réplica de um F1Manager, em que há uma conexão a uma base de dados local que ajuda a gerir os dados , bem como a guardar todas as informações relativas a cada uma das classes do programa. Quando o programa é iniciado , e após se conseguir estabelecer uma conexão à base de dados , o mesmo verifica se as tabelas existem ou se é necessário criá-las . Após isto , é possível obter as listas quer de jogadores (Autenticados ou Guests) quer de administradores, bem como fazer login ou povoar a base de dados com um conjunto de entidades que o grupo selecionou para ajudar na demonstração da aplicação. Para o administrador, aparece um menu em que pode fazer todas as operações possíveis relativas a carros, pilotos e circuitos como adicionar ou remover, e para os campeonatos consegue obter classificação para os mesmos, adicionar registos assim .Para os jogadores é possível obter remover е carros/pilotos/circuitos/campeonatos disponíveis ,criar um campeonato ou simular um deles.

De uma forma geral a aplicação comporta-se como o esperado , em que é possível fazer um leque de alterações relativas a todas as entidades.

Após uma simulação do programa é possível obter as classificações dos campeonatos , bem como ocorre a atribuição dos pontos.

### Análise crítica dos resultados obtidos

Após a conclusão desta etapa e consequentemente do trabalho final o grupo autoavalia o seu trabalho em positivo considerando todos os requisitos definidos para cada etapa e trabalho final.

A frequentação das aulas práticas e teóricas ajudou os elementos do grupo a ultrapassar barreiras e dificuldades que foram surgindo ao longo da realização do projeto, tendo estas sido consideradas fundamentais para a conclusão do mesmo.

O grupo considera que podia ter tido uma melhor performance em alguns aspetos como por exemplo: inclusão da versão premium, inclusão de handlers em vez de prints e incluir a possibilidade de realizar afinações antes de cada corrida.

Apesar de o maior objetivo ser baseado no cenário 5 o grupo começou optou começar pela criação das entidades pois não faria sentido começar a simulação de campeonatos sem a criação das mesmas. Este processo foi bastante demorado e trabalhoso pois para além de extenso está propenso a bastantes erros.

### Conclusão

Após a conclusão da terceira fase do trabalho prático, e consequentemente da componente prática da UC consideramos ainda que a mesma foi bastante importante para aprimorarmos os nossos conhecimentos relativamente à transferência dos conhecimentos obtidos na modelação concetual para código Java. Desta maneira, foi-nos possível implementar os conceitos abordados nas aulas práticas e teóricas.

Quanto às dificuldades sentidas nesta última fase do projeto, foram sobretudo problemas na conexão com a Base de Dados, falta de conhecimento relativa ao uso dos "Result Sets" e a divisão de tarefas e tempo disponível.

No geral , este trabalho, ajudou bastante a perceber a modelação conceptual assim como a implementação do código baseando-nos em diagramas. Sentimos que nos será bastante útil na vida profissional vindoura, permitindo a criação de código mais eficiente, aumento do tempo útil de programação e sobretudo a descoberta de erros grandes numa fase ainda precoce dos projetos.

## **Anexos**



Figura 1 - Modelação Lógica da base de dados.



Figura 2 - Diagrama Subsistema Circuito.



Figura 3 - Diagrama Subsistema Carro.



Figura 4 - Diagrama Subsistemas Campeonatos.



Figura 5 - Diagrama Subsistema Piloto.



Figura 6 - Diagrama Subsistema User.



Figura 7 - Diagrama Subsistema Data.



Figura 8 - Diagrama Subsistema Business.



Figura 9 - Diagrama de Sequência Simular Corrida.



Figura 10 - Diagrama de Sequência Simular Campeonato.



Figura 11 - Diagrama de Sequência AddRegisto da classe CampeonatoFacade.



Figura 12 - Diagrama de Sequência AddRegisto da classe LogicaNegocio.



Figura 13 - Diagrama de Máquina de Estado(Menus).