



## **Theory of Computation CS F351**

Vishal Gupta
Department of Computer Science and Information Systems
Birla Institute of Technology and Science
Pilani Campus, Pilani



## Lecture 21

## Closure properties of CFL

- Closure properties consider operations on CFL that are guaranteed to produce a CFL
- The CFL's are \_\_\_\_\_ under union, concatenation, Kleene star, reversal.
- CFL's are \_\_\_\_ under intersection, complementation, and set-difference.
- But the intersection of a CFL and a regular language is always a \_\_\_\_\_??

CFL's are closed under union operation.

**Proof by Construction:** 

## Input

- CFG  $G_1 = (V_1, \Sigma, R_1, S_1)$
- CFG  $G_2 = (V_2, \Sigma, R_2, S_2)$

### Output

- CFG  $G_3 = (V_3, \Sigma, R_3, S_3)$ 
  - $V_3 = V_1 \cup V_2 \cup \{S\}$ 
    - Variable renaming to insure no names shared between V<sub>1</sub> and V<sub>2</sub>
    - S is a new symbol not in  $V_1$  or  $V_2$  or  $\Sigma$
  - $S_3 = S$
  - $R_3 = ?$

## **Set Concatenation**

CFL's are closed under concatenation operation.

Proof by Construction:

## Input

- CFG  $G_1 = (V_1, \Sigma, R_1, S_1)$
- CFG  $G_2 = (V_2, \Sigma, R_2, S_2)$

### Output

- CFG  $G_3 = (V_3, \Sigma, R_3, S_3)$ 
  - $V_3 = V_1 \cup V_2 \cup \{S\}$ 
    - Variable renaming to insure no names shared between V<sub>1</sub> and V<sub>2</sub>
    - S is a new symbol not in  $V_1$  or  $V_2$  or  $\Sigma$
  - $S_3 = S$
  - $R_3 = ?$



## Kleene Star



CFL's are closed under Kleene star operation.

- Let L be an arbitrary CFL
- Let  $G_1$  be a CFG s.t.  $L(G_1) = L$ 
  - $G_1$  exists by definition of  $L_1$  in CFL
- Construct CFG G<sub>2</sub> from CFG G<sub>1</sub>
- Argue  $L(G_2) = L^*$
- There exists CFG  $G_2$  s.t.  $L(G_2) = L^*$
- L\* is a CFL



## Kleene Star

CFL's are closed under Kleene star operation.

## **Proof by Construction:**

### Input

- CFG 
$$G_1 = (V_1, \Sigma, R_1, S_1)$$

## Output

- CFG 
$$G_2 = (V_2, \Sigma, R_2, S_2)$$

- $V_2 = V_1$  union {S}
  - S is a new symbol not in  $V_1$  or  $\Sigma$

• 
$$S_2 = S$$

• 
$$P_2 = P_1 U_{\blacksquare}$$

## Kleene Star





## Kleene Star (V, E, R, S)

Suppose CFG  $G_1 = (\{S\}, \{a, b\}, \{S \rightarrow aa \mid ab \mid ba \mid bb\}, S)$ 

CFG  $G_2$  such that  $L(G_2) = L(G_1^*)$  is:



Vishal Gupta





## **Transpose Operation**













## Intersection of a CFL and RL

#### Is intersection of a CFL and RL a RL?

### Suppose:

- L is a CFL and corresponding PDA M1 = (Q1, ∑, τ1, Δ1, s1, F1)
- R is a RL, and corresponding DFA M = (Q2,  $\Sigma$ ,  $\delta$ , s2, F2)

#### **Construction of PDA** M =

$$(Q, \Sigma, \tau, \Delta, s, F), s.t. L(M) = L(M1) \cap L(M2)$$

$$Q = Q1 \times Q2$$

$$\tau = \tau 1$$

$$s = (s1, s2)$$

$$F = F1 \times F2$$



## Intersection of a CFL and RL

#### Suppose:

L21



#### Suppose:

- L is a CFL and corresponding PDA M1 = (Q1,  $\Sigma$ ,  $\tau$ 1,  $\Delta$ 1, s1, F1)
- R is a RL, and corresponding DFA M =  $(Q2, \Sigma, \delta, s2, F2)$

#### Construction of PDA M =

$$(Q, \Sigma, \tau, \Delta, s, F)$$
, s.t.  $L(M) = L(M1) \cap L(M2)$ 

 $Q = Q1 \times Q2$ 

 $\tau = \tau 1$ 

s = (s1, s2)

 $F = F1 \times F2$ 

#### Where $\Delta$ is defined as:

- For each transition of PDA (q1, a, β) (p1, γ) and for each state q2 ∈ Q2, add the following transition to  $\Delta$ :  $((9, 9, 1), a, \beta)$  ((P, S(9, a)), Y)
- For each transition of PDA (q1,  $\epsilon$ ,  $\beta$ ) (p1,  $\gamma$ ) and for each state q2  $\epsilon$  Q2, add the following transition to A: ((91,92), 6, B) ((P,92), Y)



Vishal Gupta







## **Intersection Operation**

Are CFL's closed under intersection operation?

Let L1 = 
$$\{a^n b^n c^m | m, n \ge 0\}$$
  
L2 =  $\{a^n b^m c^m | m, n \ge 0\}$ 

$$L1 \cap L2 = ??$$





## **Complement Operation**

Are CFL's closed under complement operation?





lead

# Thanks!