Practical Linear-value Approximation Techniques for First-order MDPs

Scott Sanner & Craig Boutilier
University of Toronto
UAI 2006

Why Solve First-order MDPs?

Relational desc. of (prob) planning domain in (P)PDDL:

- **Can solve a** *ground MDP* for *each* domain instantiation:
 - ◆ 3 trucks: ♣ ♣ 2 planes: ★★ 4 boxes: ■ ■
- Or solve *first-order MDP* for *all* domain inst. at once!
 - ◆ Lift PPDDL MDP specification to first-order (FOMDP)
 - Soln makes value distinctions for all dom. instantiations!

Background / Talk Outline

1) Symbolic DP for first-order MDPs (BRP, 2001)

- Defines FOMDP / operators / value iteration
- ◆ Requires FO simplification for compactness ☺

2) First-order approx. linear prog. (SB, 2005)

- Approximate value with linear comb. of basis funs.
- No simplification \rightarrow project onto weight space \odot

3) Many practical questions remaining (SB, 2006)

- ◆ Other algorithms first-order API?
- Where do basis functions come from?
- How to efficiently handle universal rewards?
- Optimizations for scalability?

FOMDP Foundation: SitCalc

- Deterministic Actions: loadS(b,t), unloadS(b,t), ...
- Situations: S_0 , do(loadS(b,t), S_0), ...
- \blacksquare Fluents: BIn(b,c,s), TIn(t,c,s), On(b,t,s)
- Successor-state axioms (SSAs) for each fluent F:
 - ◆ Describe how action affects fluent (like det. FO-DBN)
 - Ex: BIn(b,c,do(a,s)) =
 (1) Bin(b,c,s) AND a ≠ loadS(b,t)
 OR (2) for some t: a = unloadS(b,t) AND TIn(t,c,s)
- Regression Operator: Regr(φ) = φ'
 - Takes a formula φ describing a *post-action* state
 - ♦ Uses SSAs to build φ' describing *pre-action* state
 - Crucial for backing up value fun to produce Q-fun!

FOMDP Case Representation

- Case: Assign value to first-order state abstraction
 - ◆ E.g., can express reward in BoxWorld FOMDP as...

- Operators: Define unary, binary case operations
 - ♦ E.g., can take "cross-sum" \oplus (or \otimes , \ominus) of two cases...

$$\exists x.A(x) \quad 10 \\ -\exists x.A(x) \quad 20 \quad \Rightarrow \quad \exists y.A(y) \land B(y) \quad 3 \\ -\exists y.A(y) \land B(y) \quad 4 \quad \Rightarrow \quad \exists x.A(x) \land \exists y.A(y) \land B(y) \quad 13 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 14 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 23 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\ -\exists x.A(x) \land \neg \exists y.A(y) \land B(y) \quad 24 \\$$

◆ Must remove inconsistent elements (i.e., red bar ———)

FOMDP Actions and FODTR

- SitCalc is deterministic, how to handle probabilities?
 - **◆** User's stochastic actions: load(b,t)
 - ◆ Nature's deterministic choice: loadS(b,t), loadF(b,t)
 - **♦** Probability distribution over Nature's choice:

```
P(loadS(b,t) \mid load(b,t)) = \begin{cases} snow(s) & .1 \\ - snow(s) & .5 \end{cases}
```

```
P(loadF(b,t) | load(b,t)) = 1 \ominus P(loadS(b,t) | load(b,t))
```

- **■** First-order decision-theoretic regression (FODTR):
 - ◆ Given value fun vCase(s) and user action, produces first-order description of "Q-fun" (modulo reward)

```
"Q-Fun" = FODTR[ vCase(s), load(b,t) ] =
Regr[ vCase( after load5... ) ] ⊗ P( load5... | load... )

⊕ Regr[ vCase( after loadF... ) ] ⊗ P( loadF... | load... )
```

FOMDP Backup Operators

In fact, there are 3 types of "Q-funs"/backup operators:

1)
$$B^{A(x)}[vCase(s)] = rCase(s) \oplus \gamma \cdot FODTR[vCase(s)]$$

Let
$$B^{load(b,t)}[vCase(s)] = \begin{bmatrix} \phi(b,t) & .9 \\ -\phi(b,t) & 0 \end{bmatrix}$$

Think of as Q(A(x),s), note the free vars!

2)
$$B^{A}[vCase(s)] = \exists x. B^{A(x)}[vCase(s)]$$
 (action abstraction!)

$$B^{load}[vCase(s)] = \begin{cases} \exists b,t. \ \phi(b,t) & .9 \\ \exists b,t. \ \neg\phi(b,t) & 0 \end{cases}$$

Think of as $\sim Q(A,s)$, no free vars but now overlap!

3)
$$B_{\text{max}}^{A}[vCase(s)] = max(B_{\text{max}}^{A}[vCase(s)])$$

Think of as Q(A,s), no free vars and no overlap!

First-order Approx. Linear Prog. (FOALP)

Represent value fn as linear comb. of k basis fns:

$$\mathbf{vCase(s)} = \mathbf{w_1}^{\bullet} \begin{array}{c} \exists \mathbf{b}, c \ \mathsf{BIn(b}, c, s) & 1 \\ \neg \ \exists \mathbf{b}, c \ \mathsf{BIn(b}, c, s) & 0 \end{array} \\ \oplus \dots \oplus \mathbf{w_k}^{\bullet} \begin{array}{c} \exists t, c \ \mathsf{TIn(t}, c, s) & 1 \\ \neg \ \exists t, c \ \mathsf{TIn(t}, c, s) & 0 \end{array}$$

Reduces MDP solution to finding good weights... generalize <u>approx. LP</u> used by (van Roy, GKP, SP):

 $\begin{array}{ll} \text{Vars:} & w_i\text{; } i \leq k \\ \\ \text{Minimize:} & \sum_s \sum_{i=1..k} w_i \cdot b \text{Case}_i(s) \\ \\ \text{Subject to:} & 0 \geq B^a_{\max} [\bigoplus_{i=1..k} w_i \cdot b \text{Case}_i(s)] \\ & \quad \ominus \bigoplus_{i=1..k} w_i \cdot b \text{Case}_i(s); \quad \forall a \in A, s \\ \end{array}$

- **FOALP issues resolved in (SB, 2005):**
 - → sum in objective: We give principled approximation
 - ◆ constraints: Only finite set of distinct constraints, solve exactly & efficiently w/ constraint gen. (SP)

First-order Approx. Policy Iter. (FOAPI)

- Need an explicit representation of a policy:
 - $\pi Case(s) = max(\cup_{i=1..m} B^{Ai}[vCase(s)])$
 - ◆ Each case partition should retain mapping to A_i
- Now separate partitions in A_i -specific policies:
 - $\pi Case_{Ai}(s) = \{ part \in \pi Case(s) s.t. part \rightarrow A_i \}$
 - ◆ Specifies states where policy would apply A_i
- **FOAPI: Direct generalization of GKP (exact objective!)**
 - Start w/ $w_i^0=0$, $\pi Case^0(s)$; iterate LP solu until $\pi^{j+1}=\pi^j$:

```
Vars: w_i^{(j+1)}; i \leq k
```

Minimize: $\phi^{(j+1)}$

Subject to:
$$\phi^{(j+1)} \ge |\pi Case_a^j(s) \oplus B^a_{max}(\bigoplus_{i=1..k} w_i^{(j+1)} \cdot bCase_i(s))$$

 $\oplus \bigoplus_{i=1..k} w_i^{(j+1)} \cdot bCase_i(s)|; \forall a \in A, s$

Use cgen; if converges, obtain bounds on policy (GKP)!

Generating Basis Functions

- Where do basis functions come from?
 - Major question for automation!
 - ◆ Huge candidate space if systematically building basis functions for all first-order formulae
- Idea (GT, 2004): Regressions from goal make good candidate basis functions!
 - ◆ Given initial basis function for reward: ∃b.Bin(b,P,s)
 - Regr w/ unload: $\exists b.Bin(b,P,s) \lor (\exists b*,t*.TIn(t*,P,s)\land On(b*,t*,s))$
- Render basis disjoint from parents, will use later
- Iteratively solve FOMDP
 - \bullet Retain all basis functions with wgt. > threshold τ
 - ◆ Generate new basis fns from retained set

Problems w/ Universal Reward

- Universal rewards are difficult for FOMDPs, e.g.
 - Given reward:

◆ Exact n-stage-to-go value function has form:

$$\forall b,c. \ Dest(b,c) \Rightarrow BIn(b,c,s) \ \ \frac{1}{\gamma}$$

$$vCase^n(s) = \frac{1 \ box \ not \ at \ dest}{\gamma}$$

$$\cdots$$

$$m-1 \ boxes \ not \ at \ dest$$

$$\gamma^{n-1}$$

- Exact value function has infinitely many values!
- Cannot compactly represent such structure with piecewise-constant case approximation of value fn

Additive Goal Decomposition

Solution for universal rewards:

When reward in simple implicative form, solve for single goal with distinguished constants.

- ♦ E.g., given: $\forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s)$
- ◆ Solve FOMDP for: BIn(b*,c*,s)
- ♦ Given solution, gen. Q-funs $Q(A,s)_{b^*,c^*}$ (s) for $\forall a \in A$
- At run-time: Given concrete domain, e.g.
 - \bullet Instantiation: { Dest(b₁,c₁), Dest(b₂,c₂), Dest(b₃,c₃) }
 - ♦ Let overall $Q(A,s) = Q(A,s)_{b1,c1}(s) + Q(A,s)_{b2,c2}(s) + Q(A,s)_{b3,c3}(s)$ for $\forall a \in A$
 - ◆ To execute policy: select action that maximizes sum of values across *all* Q-funs, i.e., Q(A,s)
 - Only heuristic: works in many, but not all cases

Optimizations

- Exploiting disjointness in basis functions:
 - ◆ Worst case for set B of basis functions: must examine 2^{|B|} case partitions in constraint generation
 - ◆ But for any pairwise disjoint set B' of basis functions, need examine only |B'| case partitions in cgen
 - Basis generation enforces disjointness b/w child/parent!
- **Exploiting implicit max in constraint generation:**
 - ♦ In constraints, substitute $0 \ge B^{\alpha}_{max}$...with $0 \ge B^{\alpha}$...
- Removing internal redundancy/inconsistency w/ BDDs:
 - Given: $(\exists x \ A(x)) \land (\exists x \ A(x)) \land (\exists x \ A(x) \land B(x))$

Prop Var	FOL Mapping	Impl.	a ⁄:	a		
<u>a</u>	$\exists x \ A(x) \land B(x)$		→ b \ →	N. A.	→	$\exists x \ A(x) \land B(x)$
Ь	$\exists x \ A(x)$	–b⇒–a	✓ X.×	TF		
						12

Empirical Results: Runtime

Offline solution times for BoxWorld & BlocksWorld:

- Without optimizations, cannot get past iteration 2 (> 36000 sec.)
- BoxWorld: Policies simple, fewer constraints for FOAPI
- BlocksWorld: Policies complex (lots of equality)

Empirical Results: Performance

■ Evaluated *cumulative reward* on ICAPS 2004 Prob. Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

Problem	P	rob. Pl	FO-				
	G2	<u>P</u>	J1	<u>J2</u>	<u>J3</u>	ALP	API
bx c10 b5	438	184	419	376	425	433	433
bx c10 b10	376	0	317	0	346	366	366
bx c10 b15	0	_	129	0	279	0	0
bw b5	495	494	494	495	494	494	490
<i>bw b11</i>	479	466	480	480	481	480	0
bw b15	468	397	469	468	0	470	0
bw b18	352	_	462	0	0	464	0
bw b21	286	_	456	455	459	456	0

G2: temp. logic w/ control knowledge; P: RTDP-based

J1: human-coded policy; J2: inductive FO policy iter.;

J3: deterministic FF-replanner

Related Work

- Direct value iteration:
 - ◆ ReBel algorithm for RMDPs (KvOdR, 2004)
 - ◆ FOVIA algorithm for fluent calculus (KS, 2005)
 - ◆ First-order decision diagrams (JKW, 2006)
 - $\bullet \rightarrow$ all disallow \forall quant., e.g., universal cond. effects
- Sampling and/or inductive techniques:
 - ◆ Approx. linear programming for RMDPs (GKGK, 2003)
 - ◆ Inductive policy selection using FO regression (GT, 2004)
 - ◆ Approximate policy iteration (FYG, 2004)
 - → sampled domain instantiations do not ensure generalization across all possible worlds
 - → nonetheless, these methods have worked well empirically

Conclusions and Future Work

Conclusions:

- ◆ Developed *domain-independent* linear-value approximation techniques / optimization for FOMDPs
- ◆ Encouraging empirical results on ICAPS 2004 IPPC
- ◆ 2nd place in ICAPS 2006 IPPC by # problems solved

■ Future work:

- ◆ Goal decomposition for complex ∀ rewards
 - ♦ $(\forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s)) \lor \exists b.Bin(b,Paris,s)$
- Online search to "patch-up" decomposition error
 - E.g., additive decomposition is inadequate to solve some difficult problems in BlocksWorld
- More expressive rewards
 - Σ_b ($\forall c. Dest(b,c) \Rightarrow BIn(b,c,s)$)