Übungsserie 12

Aufgabe 1: Stehende Wellen (4+4)

a) Betrachten Sie die beiden einander entgegenlaufenden Wellen

$$\mathbf{E_1} = E_0 \cos(kz - \omega t)\mathbf{e_x}$$
 und $\mathbf{E_2} = E_0 \cos(kz + \omega t)\mathbf{e_x}$

deren Summe eine stehende Welle ist. Berechnen Sie das zu der stehenden elektrischen Welle gehörende Magnetfeld \mathbf{B} , in dem Sie

- die Magnetfelder zu jeder der beiden fortlaufenden Wellen bestimmen und diese addieren.
- die Maxwell Gleichungen benutzen und von der stehenden elektrischen Welle ausgehen.
- b) Betrachten Sie die stehende Welle

$$\mathbf{E} = 2E_0 \sin \frac{2\pi y}{\lambda} \cos \frac{2\pi ct}{\lambda} \mathbf{ez}, \qquad \mathbf{B} = -2\frac{E_0}{c} \cos \frac{2\pi y}{\lambda} \sin \frac{2\pi ct}{\lambda} \mathbf{e_x}$$

- Skizzieren Sie die Energiedichte w(y,t) for die ωt -Werte $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ und π .
- Skizzieren sie die y-Komponente $S_y(y,t)$ des Poynting-Vektors für die ωt -Werte $\frac{\pi}{4}$, $\frac{\pi}{2}$ und $\frac{3\pi}{4}$ und erklären Sie, wie diese Skizzen mit denen für die Energiedichte korrespondieren.

Aufgabe 2: Eichtransformation (2+2+2)

Die Potentiale Φ und \mathbf{A} sind in der Elektrodynamik nicht eindeutig gegeben, sondern können durch Eichtransformationen geändert werden, ohne dass sich die dazugehörigen \mathbf{E} und \mathbf{B} Felder ändern.

a) Zeigen Sie die Invarianz der elektromagnetischen Felder E und B unter der Eichtransformation

$$\mathbf{A}' = \mathbf{A} + \nabla \Lambda \qquad \Phi' = \Phi - \frac{\partial}{\partial t} \Lambda,$$

wobei Λ eine zweifach differenzierbare skalare Funktion ist.

b) Zeigen Sie, dass die Vektorpotentiale die

$$\mathbf{A} = \frac{1}{2}B_0\mathbf{e_z} \times \mathbf{r}, \qquad \mathbf{A_1} = -B_0y\mathbf{e_x}, \qquad \mathbf{A_2} = B_0x\mathbf{e_y}$$

die gleiche magnetische Flussdichte **B** liefern.

c) Bestimmen Sie die Eichfunktionen Λ_1 und Λ_2 unter denen **A** in $\mathbf{A_1}$ bzw. $\mathbf{A_2}$ transformiert.

Aufgabe 3: Polarisaition und Poynting-Vektor (1+1+3+2)

Betrachten Sie eine transversale elektromagnetische Welle im nichtleitenden Medium, die durch

$$\mathbf{E} = \frac{E_0}{\sqrt{1+\varepsilon^2}} \begin{pmatrix} \cos(kz - \omega t) \\ \varepsilon \sin(kz - \omega t) \\ 0 \end{pmatrix} \quad \text{mit} \quad 0 \le \varepsilon \le 1$$

gegeben ist.

- a) In welche Richtung breitet sich diese Welle aus?
- **b)** Berechnen Sie $\mathbf{B}(\mathbf{r},t)$.
- c) Betrachten Sie nun die Spezialfälle $\varepsilon = 0$ und $\varepsilon = 1$. Um welche Arten der Polarisation handelt es sich hierbei? Berechnen Sie die zugehörigen Energiestromdichten und skizzieren Sie diese für z = 0 für mindestens eine Periode.
- d) Berechnen Sie für die beiden Spezialfälle aus c) die zeitlich gemittelte Energiestromdichte und vergleichen Sie Ihre Ergebnisse.