北京邮电大学 2008——2009 学年第 2 学期

《数据库系统原理》期末考试试题(A)

考	一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须												
试	按照监考教师指定座位就坐。												
注	二、书本、参考资料、书包等物品一律放到考场指定位置。												
意	三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考												
事	场违约	已或作弊	行为都	皆, 挖	安相应	拉规定严	E肃处理	፟.					
项	四、学	生必须	将答是	0.内容	 ド做在	E试题智	答卷上,	做在	试题	及草稿	纸上一	一律无效	汝。
	五、墳	空题用	英文智	筝, 片	中文智	\$对得-	一半分。						
考证	考试			考证	考试时间			2008 年 6月 16日					
课程	Ē												
题号	<u></u>	11	<u>=</u>	四	五	六	七	八	九	+	+	+	总
											_	1	分
满久	9	10	6	13	8	10	10	12	4	6	6	6	
得分	}												
10.7	,												
阅考	Ŕ												
教师	ji												

1. Fill in blanks. (1×9 points)

(1) The collection of information stored in the database at a particular moment is called an
of the database.
(2)The database system provides users with three levels of data abstraction, the
level of abstraction describes only part of the entire database.
(3)Database design involves the following phases: requirements analysis,schema
design, logical schema design and physical schema design.
(4) Let $r_1(R_1)$ and $r_2(R_2)$ be relations with primary keys K_1 and K_2 respectively, the subset α of
R ₂ is called thereferencing K_1 in relation r_1 , if for every t_2 in r_2 there
must be a tuple t_1 in r_1 such that $t_1[K_1] = t_2[\alpha]$
(5) Thetakes a query-evaluation plan, executes that plan, and returns
the answers to the query.
(6) Query optimization is conducted by two strategies, and heuristic optimization.
(7) when applying "set union, set intersection and set difference" on two relations, the
of these two relations must equal, the corresponding attribute value must
come from the same domain.
(8) The concurrent control component of a database system supports the atomicity and

of the_transaction
(9) The several concurrent control strategies are protocols, timestamp-based
protocols, validation-based protocols and multiversion schemes.
2. Choice (1×10 points)
(1)A is a language for specifying the database schema as well as other properties of the data.
A DML B DDL C DCL D DSL
(2)If an entity in the higher-level entity set belongs to no more than one lower-level entity set
within a single generalization, then the generation is
A total generalization B partial generalization
C disjoint D overlapping
(3) Consider the relation R(A, B, C, D, E, P) and the functional dependencies set $F=\{A\rightarrow B,$
C \rightarrow P, E \rightarrow A, CE \rightarrow D }, we decompose R into {R1(A,B,E), R2(C,D,E,P)}, which of the
following statement is right?
A It is a lossy and dependency preservation decomposition
B It is a lossless and dependency preservation decomposition
C It is a lossy and not dependency preservation decomposition
D It is a lossless and not dependency preservation decomposition
(4)Consider the following rules about the functional dependencies:
i) If $AB \rightarrow C$, then $A \rightarrow C$
ii). If $A \rightarrow C$, then $AB \rightarrow C$
iii). If $A \rightarrow B$, then $B \rightarrow C$
iv). IF $A \to B$, $BC \to D$, then $AC \to D$
Which are right?
A i) and iv) B ii) and iii) C i) and iii) D ii) and iv)
(5) Given a table <i>Employees</i> and some SQL queries on it, which queries are right?
Employees(employee-id, company-id, employee-city, age, salary)
i) create table <i>Employees</i>
(employee-id char(20),
company-id char(20),
employee-city char(20),
age integer,
salary integer,

ii) select <i>employee-id</i> from <i>Employees</i> where <i>employee-id</i> =10522 AND company-id = 'ADB' order by <i>employee-id</i> desc iii) select company-id, sum(salary), employee-city from <i>Employees</i> group by company-id having avg(salary)>2000 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ΜΠD(S) B. R S C. Π _B (R) Π _B (S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. iv) With respect to the deferred database modification scheme, before T _i executes write(X), a			, ,	projec iii),	Pillia	ry key (<i>company-i</i>	<i>i))</i>	
where <i>employee-id</i> =10522 AND company-id = 'ADB' order by <i>employee-id</i> desc iii) select company-id, sum(salary), employee-city from <i>Employees</i> group by company-id having avg(salary)>2000 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ⋈ ΠD(S) B. R ∪ S C. Π _B (R) ∩ Π _B (S) D. R ⋈ S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all <i>X</i> -locks and <i>S</i> -locks taken by a transaction are held until that transaction commits.	ii)	select	employee	:-id				
order by <i>employee-id</i> desc iii) select company-id, sum(salary), employee-city from <i>Employees</i> group by company-id having avg(salary)>2000 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ⋈ ΠD(S) B. R ∪ S C. Π _B (R) ∩ Π _B (S) D. R ⋈ S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.		from	Employe	ees				
iii) select company-id, sum(salary), employee-city from <i>Employees</i> group by company-id having avg(salary)>2000 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ⋈ ΠD(S) B. R ∪ S C. Π _B (R) ∩ Π _B (S) D. R ⋈ S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.		where	e employe	e-id=10522 A	ND co	ompany-id = 'ADE	3'	
from Employees group by company-id having avg(salary)>2000 iv) alter table Employees drop age A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ΜΠD(S) B. R C C. Π _B (R) Π _B (S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the commit operation of T _j appears before the commit operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.		order	by employ	vee-id desc				
group by company-id having avg(salary)>2000 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. $\Pi_A(R) \bowtie \Pi \Pi(S)$ B. $R \bowtie S$ C. $\Pi_B(R) \cap \Pi_B(S)$ D. $R \bowtie S$ (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j , if T_j reads a data items previously written by T_i , the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all <i>X</i> -locks and <i>S</i> -locks taken by a transaction are held until that transaction commits.	iii)	select	company	-id, sum(sala	ry), en	nployee-city		
having avg(salary)>2000 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ΜΠD(S) B. R S C. Π _B (R) Π _B (S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.		from	Employee.	S				
 iv) alter table <i>Employees</i> drop <i>age</i> A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π_A(R) ΜΠD(S) B. R S C. Π_B(R) Π_B(S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 		group	by compa	any-id				
A. i), ii) B. ii), iii) C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ΜΠD(S) B. R S C. Π _B (R) Π _B (S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.		havin	g avg(sala	ry)>2000				
 C. ii), iv) D. i), iv) (6). When using natural join for relation R and S, we require R and S contain one or more common	iv)	alter ta	able <i>Emplo</i>	oyees drop ag	ge			
 (6). When using natural join for relation R and S, we require R and S contain one or more common	A. i	i), ii)			B. ii),	iii)		
 (6). When using natural join for relation R and S, we require R and S contain one or more common	C. i	i), iv)		D. i),	iv)		
A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ΜΠD(S) B. R S C. Π _B (R) Π _B (S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.						•	D and C	
A. tuple B. row C. record D. attribute (7) Which of the following does not belong to the basic steps for query processing? A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π _A (R) ΜΠD(S) B. R S C. Π _B (R) Π _B (S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T _i and T _j , if T _j reads a data items previously written by T _i , the <i>commit</i> operation of T _j appears before the <i>commit</i> operation of T _i . ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits.	(6). wne	en usin	g naturai j	join for relat	ion K	and S, we require	e K and S	contain one or more
 (7) Which of the following does not belong to the basic steps for query processing?	common	1						
 A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π_A(R) ΜΠD(S) B. R S C. Π_B(R) Π_B(S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 	A. 1	tuple		B. row		C. record	D. a	attribute
 A. parsing and translation B. evaluation C. sorting D. optimization (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π_A(R) ΜΠD(S) B. R S C. Π_B(R) Π_B(S) D. R S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 	(7) Which	n of the	following	does not bel	ong to	the basic steps for	query prod	cessing?
 (8) There are relations R (A, B, C) and S (B, C, D, E), which is not hold for the following? A. Π_A(R) ⋈ ΠD(S) B. R ∪ S C. Π_B(R) ∩ Π_B(S) D. R ⋈ S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 								
 A. Π_A(R) ⋈ΠD(S) B. R ∪ S C. Π_B(R) ∩ Π_B(S) D. R ⋈ S (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 	•	C				C	1	
 (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 	(8) Ther	e are re	elations R	(A, B, C) at	nd S (I	3, C, D, E), which	ch is not ho	old for the following?
 (9) Considering the following statements, i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 								
 i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 	A.]	$\Pi_{A}(R)$	⊠ _{ПD(S)}	B. R	J _s	C. $\Pi_B(R) \cap \Pi$	$I_B(S)$	D. R⊠S
 i) A recoverable schedule is a schedule, where for each pair of T_i and T_j, if T_j reads a data items previously written by T_i, the <i>commit</i> operation of T_j appears before the <i>commit</i> operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 	(9) Cons	sidering	the follow	wing statemen	nts,			
 items previously written by T_i, the commit operation of T_j appears before the commit operation of T_i. ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all X-locks and S-locks taken by a transaction are held until that transaction commits. 						ere for each pair of	T_i and T_i	if T_i reads a data
 ii) Every cascadeless schedule is also recoverable, but a recoverable may not be a cascadeless schedule. iii) In the strict 2PL protocol, all <i>X</i>-locks and <i>S</i>-locks taken by a transaction are held until that transaction commits. 						•		•
schedule. iii) In the strict 2PL protocol, all <i>X</i> -locks and <i>S</i> -locks taken by a transaction are held until that transaction commits.	oper	ation o	$f T_i$.					
iii) In the strict 2PL protocol, all <i>X</i> -locks and <i>S</i> -locks taken by a transaction are held until that transaction commits.		-	adeless sch	nedule is also	recov	erable, but a recove	erable may	not be a cascadeless
transaction commits.			. ADI	1 11 771		101 1 1		
	· · · · ·		-	ocol, all X -lo	cks an	d S-locks taken by	a transactı	on are held until that
11) 11 11 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14				eferred datab	ase mo	odification scheme	before T _i	executes write(X), a
record $\langle T_i, X, V2 \rangle$ is written into the log, $V2$ is the value to be written to X .	,	-						* **
the correct descriptions are:								
A. i) , ii) B. ii), iii)	A. i)	, ii)			B, ii).	iii)		
						,		

`	With respect to three types of failures in DBS, if the system enters the deadlock state, then eoccurs.
	transaction failure B. logical error C. system crash D. disk failure
3	points) There is a database SPJ, including S, P, J, SPJ four relational schemes:
S	NO, SNAME, STATUS, CITY)
P	PNO, PNAME, COLOR, WEIGHT)
J	NO, JNAME, CITY)
SI	(SNO, PNO, JNO, QTY)
W	re: supplier table S includes supplier number SNO, supplier name SNAME, supplier status
S'	TUS, supplier city CITY; part table P includes part number PNO, part name PNAME, color

where: supplier table S includes supplier number SNO, supplier name SNAME, supplier status STATUS, supplier city CITY; part table P includes part number PNO, part name PNAME, color COLOR, weight WEIGHT; project table J includes project number JNO, project name JNAME, project city CITY; supply condition table SPJ includes supplier number SNO, part number PNO, project number JNO, supply quantity QTY, which indicates the quantity of the part that a supplier supplies to a certain project is QTY. Please use relational algebra to write the following queries.

- (1) find supplier number SNO which supply part with color 红色 for project J1. (2 point)
- (2) find the project number JNO which does not use part with color 红色 and supplier city is 天津. (2 point)
- (3) find the project number JNO that at least uses the whole parts that supplier number S1 supplies. (2 point)

^{4. (13} points). Here is the schema diagram for the bank-customer database.

Use SQL statements to implement the following operations:

- (1) Define the table *account*, it is assumed that the *null* value is inappropriate for the attribute *branch name* and the attribute *balance* ranges from 5000 to 100,000. (3 points)
- (2) Find out the name of each customer who has accounts in only one branch. (5 points)
- (3) Modify the structure of the table *branch*, add a new attribute *account_amount* into it, which describes the total number of *accounts* in a *branch*. And then assign the correct value of *account amount* for each *branch* in the table *branch*. (5 points)

- **5.** (8 Points)A school is going to arrange a sports day for the students. A database to keep track of participants and activities during the sports day is to be created. Consider the following information:
- (1). Participating persons. Each person has a number and a name. The person is identified by the number.
 - (2). Teams. Each team has a number and a name. The team is identified by the number.
- (3). A team consists of several persons, and a person can be a member of several teams.A team must have at least one person, and a person may not participate in any team.
- (4). Activities, such as baseball or long jump. Each activity has a number, a name, and a starting time, and is identified by the number.
- (5). Participation in the activities. Both teams and individual persons can participate in more than one activities. Each person and each team must participate in at least one activity. Each activity can have many teams and many persons.

Draw the E/R diagram for the database based on the information mentioned above.(8 Points)

6 (10points)Consider the relation schema about the sales information :

Sales(Sales-TransactionNo, Item-No, Item-Price, Item-QuantitySold, Seller, SellerDistrict)

The functional dependencies on Sales are shown below:

Sales-TransactionNo, Item-No → Item-QuantitySold

Item-No → Item-Price

Sales-TransactionNo →Seller

Seller→SellerDistrict

- (1) Compute (Sales-TransactionNo, Item-Price)+(2points)
- (2) What is the candidate key of this relation? (2points)
- (3) What is the highest normal form of R? (2points)

(4)Give the lossless-join, dependency-preserving decomposition of this schema into 3NF. (4points)

7.(10 points)Consider the following E/R diagram. Create the relational schema that captures this E/R diagram. For every relation in your schema, specify the primary key of that relation.

8.(12 points) There are three relations in the database, describing the teachers and the universities that the teachers work at,

teacher(teacher-id, t-name, age, sex, t-telephone, t-city) university(university-id, u-name, u-telephone, u-city) works(teacher-id, university-id, salary)

(1) Give an SQL statement to find out the *name* and id of all the teachers, who are female, work at BUPT university, who are older than 40 and whose *salaries* are more than 6000 RMB. (3 points)

(2)	Translate this SQL statement into an initial query tree, and give an optimi it by means of heuristic query optimization.	zed query tree for (9 points)
9.	(4 points) Given the relation student(Sno, Sdept, Sname, Ssocre) as show	n below, which is

organized as a sequential file.

Taking the attribute Sscore as the search key, define a *dense* and secondary index for the indexed file *student*. The index file and index entries in the index file should be drawn. (4 points)

Sno	Sdept	Sname	Ssocre
S1	Automation Dep.	Zhang ming	88
S2	Automation Dep.	Wang gang	90
S3	Computer Dep.	Yu feng	60
S4	Computer Dep.	Li yong	67
S5	Economy Dep.	Wang jin	98
S6	Economy Dep.	Xin xin	67
S7	Finance Dep.	Li ya	67
S8	Finance Dep.	Li dong	82
S9	History Dep.	Wang ying	70

10. (6 points). Given a concurrent schedule S_1 , as shown below,

- (1) Construct the precedence graph for it.
- (2) Is S_1 a serializable schedule? and why?

 S_1

	SI			
T1	T2	Т3	T4	T5
				read(Z)
read(Y)				
	write(X)			
	write(X) read(Y)			
read(Z)				
		read(Z)		
			write(Z)	
				write(X)
			read(Z)	

	(3.7)	
	write(Y)	
	()	

- **11.** (6 points) Considering the concurrent schedule S on the transaction set $\{T1, T2, T3\}$ that is under the timestamp protocol, it is assumed that the timestamps of T1, T2 and T3 are 1, 2, and 3 respectively, the initial values of R-timestamp(X), W-timestamp(X), R-timestamp(Y), W-timestamp(Y), R-timestamp(Z), W-timestamp(Z) are all 0,
- (1) What are the values of R-timestamp(X) and W-timestamp(Y) when T1 commits?

(2 points)

(2) What are the values of R-timestamp(Y) and W-timestamp(Z) when T2 commits?

(2 points)

(3) What are the values of R-timestamp(X) and W-timestamp(Z) when T3 commits?

(2 points)

	S	
T1	T2	Т3
write(Y)		
	write(X)	
		read(Y)
write(Z)		
	read(Y)	
		write(Z)
commit		
	commit	
		write(X)
		commit

12. (6 points) Considering the concurrent transactions T₁, T₂, T₃, T₄ and T₅, and the data items A, B, C and D modified by these transactions. It is assumed that

- the initial values of these data items are A=100, B=0, C=200, D=300.
- immediate database modification and checkpoint techniques are employed

 With respect to the log in the following figure that describes the concurrent executing of

 T₁, T₂, T₃, T₄ and T₅, when a failure occurs, the log-based recovery scheme consults the log to

 determine the recovery operations (i.e. **redo**, **undo**, **ignore**) done on T₁, T₂, T₃, T₄ and T₅.

After recovery operations on T₁, T₂, T₃, T₄ and T₅ are completed,

- (1) what are the values of the data items **A**, **B**, **C** and **D** in the database? (4 points)
- (2) which transaction successfully updates the data item A and determines the final value of A.

(2 points)

```
<T<sub>1</sub> start>
```

$$<$$
checkpoint $\{T_2, T_3, T_4\}>$

^{*}System crash*