BEDLAM

CONTENTS

1. Notation
2. Set Theory
2. Set Theory
4. Topology
5. Measure Theory
5.1. Introduction
5.2. Caratheodory Extension Theorem
5.3. Lebesgue Measure
6. Probability Theory
7. Optimal Transport

1. NOTATION

Definition 1.1 (symmetric difference):

Let A, B be sets. The symmetric difference is the operation, denoted $S \triangle T$, and defined $(S \setminus T) \cup (T \setminus S)$

Definition 1.2 (half-open rectangle):

Let $a_0, b_0, ..., a_n, b_n \in \mathbb{R}$. The set $\times_{i=0}^n [a_i, b_i]$ is called an n-dimensional half-open rectangle. The collection of all n-dimensional half-open rectangles is denoted with \mathcal{I}_h^n .

Definition 1.3 (restriction):

Let $f: X \longrightarrow Y$. Let $X' \subseteq X$. Let Y' such that $f(X') \subseteq Y' \subseteq Y$. A **restriction of f over** $X' \times Y'$, denoted $f|_{X' \text{ times } Y'}$ is a function $X' \longrightarrow Y'$ such that $f|_{X \text{ times } Y} = \{x \mapsto f(x) \mid x \in X', f(x) \in Y'\}$

Example 1.1 (restriction):

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x) = x^2$ power operator over the real numbers. Now, consider $g: \mathbb{N} \longrightarrow \mathbb{N}$ such that $g(x) = x^2$ power operator over the natural number only. Then g is a *restriction* of f.

- 1. $\mathbb{N} \subseteq \mathbb{R}$.
- 2. $f(\mathbb{N}) \subseteq \mathbb{N} \subseteq \mathbb{R}$.
- 3. $\{(x, g(x)) | x \in \mathbb{N}, y \in \mathbb{N}\} \subseteq \{(x, f(x) | x \in \mathbb{R}, y \in \mathbb{R})\}$

Definition 1.4 (extension):

Let $f: X \longrightarrow Y$. Let $X' \subseteq X$. Let $f|_{X' \text{ times } Y'}$ be a *restriction* of f. Then f is said an **extension** of $f|_{X \text{ times } Y}$

Definition 1.5 (inverse function):

Let $f: X \longrightarrow Y$ be a function. The inverse function $f^{-1}: Y \longrightarrow X$ is a function such that $f^{-1}(y \in Y) = x \in X$ if f(x) = y.

Definition 1.6 (preimage):

Let $f: X \longrightarrow Y$ be a function. Let $E \subseteq Y$. The **preimage** is the set $f^{-1}(E) = \{x \in X \mid f(x) \in E\}$.

2. SET THEORY

Definition 2.1 (cover):

Let A be a set. A collection of sets $\mathcal C$ is a cover of S iff. $A\subseteq\bigcup_{C\in\mathcal C}C$

Proposition 2.1 (unions as disjoint unions):

Let $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of sets. Let $\{A'_n\}_{n\in\mathbb{N}}$ be a sequence of set such that $A'_n=A_n\setminus A_1\setminus\ldots\setminus A_{n-1}$. Then $\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in\mathbb{N}}A'_n$ and $\{A'_n\}_{n\in\mathbb{N}}$ are pairwise disjoint.

Proof 2.1 (of *Proposition 2.1*):

1. Let us show that $\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} A_n$:

$$\begin{split} \bigcup_{n\in\mathbb{N}} A_n &= A_1 \cup A_2 \cup A_3 \cup \dots \\ &= A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus A_1 \setminus A_2) \cup \dots \\ &= A_1' \cup A_2' \cup A_3' \cup \dots \\ &= \bigcup_{n\in\mathbb{N}} A_n' \end{split}$$

2. Let us show that $\{A'_n\}_{n\in\mathbb{N}}$ are pairwise disjoint. Consider A'_a and A'_b where, without loss of genrality, a < b. Then $A'_a \cap A'_b = \emptyset$ since A'_b results from A_b without A_a (among other sets) and $A'_a \subseteq A_a$

6

3. ABSTRACT ALGEBRA

Definition 3.1 (monoid):

 $(X, \cdot : X \times X \longrightarrow X)$ is a **monoid** iff.

1. $\forall a, b, c \in X : a \cdot (b \cdot c) = (a \cdot)b \cdot c$. Associativity.

2. $\exists e \in X : \forall a \in X : e \cdot a = a \cdot e = a$. Identity element.

Definition 3.2 (semiring):

 $(X, +: X \times X \longrightarrow X, \cdot: X \times X \longrightarrow X)$ is a semiring iff.

- 1. (X, +) is a *monoid* with identity element 0.
- 2. (X, \cdot) is *monoid* with identity element 1.
- 3. + is commutative.
- 4. $a \cdot 0 = 0 \land 0 \cdot a = 0$. is annihilated by the identity element of +.
- 5. $a \cdot (b+c) = a \cdot b + a \cdot c \wedge (b+c) \cdot a = b \cdot a + c \cdot a$. distributes over +.

4. Topology

Definition 4.1 (Topology):

Let X bet a set. A **topology over** X is a subset Σ of 2^X such that:

- 1. $A \subseteq \Sigma \Longrightarrow \bigcup_{E \in A} E$. Infinite or finite unions of sets.
- 2. $A, B \in \Sigma \Longrightarrow A \cap B \in \Sigma$. Finite intersections of sets.
- 3. $X \in \Sigma$

Definition 4.2 (Topological Space):

 (X, Σ) is a **topological space** iff. Σ is a *topology* of X.

Definition 4.3 (Everywhere dense):

Let (X, Σ) topological space, and $H \subseteq X$. H is said everywhere dense in Σ iff. $\forall E \in \Sigma, E \neq \emptyset : H \cap E = \emptyset$. We can find a bit of H in every corner of the topology Σ .

Definition 4.4 (Separable):

Let (X, Σ) be a topological space. (X, Σ) is said separable iff it exists $H \subseteq X$, such that H is countable and H is everywhere dense in Σ . There is a set of elements $\{x_n \in X\}_{n=1}^{\infty}$ such that every set in the topology contains at least one them.

Definition 4.5 (Metric Space):

(X,d) is a metric space iff.

- 1. $X \neq \emptyset$
- 2. $d: X \times X \longrightarrow \mathbb{R}_{>0}$ such that (d is a distance):
 - 1. $\forall x, y \in X : d(x, y) = 0 \Longrightarrow x = y$. there are no different elements at zero-distance.
 - 3. $\forall x, y \in X : d(x, y) = d(y, x)$. symmetry.
 - 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$. triangular inequality.

Definition 4.6 (open ε -ball):

Let (X,d) be a metric space, $x \in X$, and $\varepsilon \in \mathbb{R}_{>0}$. We call $B_{\varepsilon}(x) = \{y \in X \mid d(x,y) < \varepsilon\}$ an open ε -ball. A ball of ε radius centered at some point.

Definition 4.7 (Neighborhood):

Let (X, d) be a *metric space*, $S \subseteq X$, $x \in S$, and $\varepsilon \in \mathbb{R}_{>0}$ such that $B_{\varepsilon}(x) \subseteq S$. Then S is said a **neighborhood of** x. A neighborhood of an element is simply a set that contains an open ball containing the element.

Definition 4.8 (Open Set):

Let (X,d) be a metric space and $U\subseteq X$. U is an open set iff. $\forall u\in U: \exists \varepsilon\in\mathbb{R}_{>0}: B_{\varepsilon}(u)\subseteq U$. An open set is simply a set which is also neighborhood for all its points.

Definition 4.9 (Induced Topology):

Let (X, d) be a metric space. Σ is said an induced topology iff. $\Sigma = \{U \subseteq X \mid U \text{ is an open-set in } (X, d)\}$

Definition 4.10 (Metrizable):

Let (X, Σ) be a topological space. (X, Σ) is said **metrizable** iff. it exists (X, d) metric space such that Σ is the induced topology by (X, d).

Definition 4.11 (Cauchy Sequence):

Let (X,d) be a metric space, $[x_n \in X]$ a sequence. $[x_n]$ is said a cauchy sequence iff. $\forall \varepsilon \in \mathbb{R}_{>0}: \exists N \in \mathbb{N}: \forall m,n \in \mathbb{N}: d(x_n,x_m) \leq \varepsilon$. There is a point after which all pairs of elements are close to each other.

Definition 4.12 (Convergent Sequence):

Let (X,d) be a metric space, $l \in X$, $[x_n \in X]$ a sequence. $[x_n]$ is said a convergent sequence to the limit l iff. $\forall \varepsilon \in \mathbb{R}_{>0}: \exists N \in \mathbb{R}_{>0}: \forall n > N: d(x_n, l) < \varepsilon$. If such a limit exists the sequence is simply said convergent.

Definition 4.13 (Complete Metric Space):

Let (X, d) be a metric space (X, d) is said a complete metric space iff. every cauchy sequence is a convergent sequence.

Definition 4.14 (Polish Space):

Let (X, Σ) be a topological space. (X, Σ) is said a Polish Space iff. (X, Σ) is separable, metrizable, and a complete metric space for some metric.

5. MEASURE THEORY

5.1. Introduction

Definition 5.1.1 (Set algebra):

Let X be a set, and $\mathcal{A} \subseteq 2^X$ such that:

- 1. $X \in \mathcal{A}$. Unit.
- 2. $A, B \in \mathcal{A} \Longrightarrow A \cup B \in \mathcal{A}$. Closed under union.
- 3. $A \in \mathcal{A} \Longrightarrow X \setminus A \in \mathcal{A}$. Closed under complement.

Then (X, \mathcal{A}) is called a set algebra.

Definition 5.1.2 (Set ring):

Let X be a set, and $\mathcal{R} \subseteq 2^X$ such that:

- 1. $\mathcal{R} \neq \emptyset$. Non-empty.
- 2. $A, B \in \mathcal{R} \Longrightarrow A \cap B \in \mathcal{R}$. Closed under intersection.
- 3. $A, B \in \mathcal{R} \Longrightarrow A \triangle B \in \mathcal{R}$. Closed under symmetric difference.

Then (X, \mathcal{R}) is called a **set ring**

Proposition 5.1.1 (intersection of set rings is a set ring):

Let (X, \mathcal{R}_0) and (X, \mathcal{R}_1) be two set rings. Then $(X, \mathcal{R}_0 \cap \mathcal{R}_1)$ is a set ring.

Proof 5.1.1 (of *Proposition 5.1.1*):

Given two set rings (X, \mathcal{R}_0) and (X, \mathcal{R}_1) . We need to show that $(X, \mathcal{R} = \mathcal{R}_0 \cap \mathcal{R}_1)$ is a set ring:

1. Suppose $A_0 \in \mathcal{R}_0$ and $A_1 \in \mathcal{R}_1$ (such A_0 and A_1 exists since \mathcal{R}_0 and \mathcal{R}_1 are non-empty). Then $\emptyset \in \mathcal{R}_0$ since $\emptyset = A_0 \triangle A_1 \in \mathcal{R}_0$. Similarly, $\emptyset \in \mathcal{R}_1$. Therefore $\emptyset \in \mathcal{R}_0 \cap \mathcal{R}_1$

П

- 2. Suppose $A, B \in \mathcal{R}$. Then $A, B \in \mathcal{R}_0$ and $A, B \in \mathcal{R}_1$. Then $A \cap B \in \mathcal{R}_0$ and \mathcal{R}_1 . Therefore $A \cap B \in \mathcal{R}$.
- 3. Suppose $A,B\in\mathcal{R}$. Then $A,B\in\mathcal{R}_0$ and $A,B\in\mathcal{R}_1$. Then $A\bigtriangleup B\in\mathcal{R}_0$ and \mathcal{R}_1 . Therefore $A\bigtriangleup B\in\mathcal{R}$.

Definition 5.1.3 (σ -algebra):

Let X be a set. $\Sigma \subseteq 2^X$ is said a sigma algebra of X iff.:

- 1. $X \in \Sigma$
- 2. $E \in \Sigma \Longrightarrow X \setminus E \in \Sigma$. close under complement.
- 3. $\{A_n \in \Sigma\}_{n=1}^{\infty} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$. close under infinite unions.

Proposition 5.1.2 (a σ -algebra is a set ring):

Let (X, Σ) be a σ -algebra, then (X, Σ) is a set ring

Proof 5.1.2 (of *Proposition 5.1.2*):

We need to show that, given a σ -algebra (X, Σ) the axioms of set rings hold:

- 1. $\Sigma \neq \emptyset$. This is true since $X \in \Sigma$.
- 2. $A, B \in \Sigma \Longrightarrow A \cap B \in \Sigma$. This is true since $A \cap B = (X \setminus A) \cup (X \setminus B)$ (a σ -algebra is closed under \cup and \setminus).
- 3. $A, B \in \Sigma \Longrightarrow A \triangle B \in \Sigma$. This is true since $A \triangle B = (A \setminus B) \cup (B \setminus A)$ (a σ -algebra is closed under \cup and \setminus).

Definition 5.1.4 (generate σ -algebra):

Let X be a set and $G \subseteq 2^X$. The σ -algebra generated by G, denoted $\sigma_X(G)$, is the smallest σ -algebra such that:

- 1. $G \subseteq \sigma_X(G)$.
- 2. $\forall \Sigma$ σ -algebra : $G \subseteq \Sigma \Longrightarrow \sigma_X(G) \subseteq \Sigma$. Every other σ -algebra that contains G contains also the generated one, $\sigma_Y(G)$.

Definition 5.1.5 (borel σ -algebra):

Let (X,G) be a topological space. We refer to $\sigma_X(G)=\mathcal{B}(X,G)$ as a Borel σ -algebra.

Definition 5.1.6 (σ -algebra product):

Let Σ_1 and Σ_2 be σ -algebra on X_1 and X_2 respectively. The **product** σ -algebra denoted $\Sigma_1 \otimes \Sigma_2$ is defined as $\sigma_{X_1 \times X_2}(\{S_1 \times S_2 \mid S_1 \in \Sigma_1, S_2 \in \Sigma_2\})$

Definition 5.1.7 (measurable space):

 (X, Σ) is said **measurable** iff. Σ is a σ -algebra of X.

Definition 5.1.8 (measure):

Given (X, Σ) measurable space. $\mu : \Sigma \longrightarrow \mathbb{R} \cup \{+\infty, -\infty\}$ is said a measure iff.

- 1. $\mu(\emptyset) = 0$ Empty set.
- 2. $E \in \Sigma \Longrightarrow \mu(E) \geq 0$. Positiveness.
- 3. $\{E_n \in \Sigma\}_{n \in \mathbb{N}}$ pairwise disjoint $\Longrightarrow \mu(\cup_{n \in \mathbb{N}} E_b) = \sum_{n \in \mathbb{N}} \mu(E_n)$. Countable additivity.

Definition 5.1.9 (measure space):

 (X, Σ, μ) is said a measure space iff. (X, Σ) is a σ -algebra and μ is a measure of (X, Σ) .

Definition 5.1.10 (measurable function):

Let (X_1, Σ_1) and (X_2, Σ_2) be measurable spaces. $f: X_1 \longrightarrow X_2$ is said a measurable function iff. $\forall E \in \Sigma_2: f^{-1}(E) \in \Sigma_1$. The preimage of each measurable set is again measurable.

Definition 5.1.11 (pushforward):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. The pushforwad of μ under f is the mapping $f_{\#}\mu: \Sigma_2 \longrightarrow \mathbb{R}_{>0} \cup \{\infty\}$ defined as:

$$\forall E \in \Sigma_2: f_\# \mu = \mu\big(f^{-1}(E)\big)$$

The pushforward is simply a function that generates a measure for a measurable space starting from a different measure space and a measurable function acting as bridge between the two spaces.

Proposition 5.1.3 (pushforward of a measure is a measure):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. Then $(X_2, \Sigma_2, f_\# \mu)$ is a measure space.

Proof 5.1.3 (of *Proposition 5.1.3*):

To prove that statement, we need to prove only the axioms of a *measure*.

- 1. Let $E \in \Sigma_2$, we need to show that $f_{\#}\mu(E) \geq 0$. This is trivial by definition of pushforward and measure.
- 2. Let $[E_n \in \Sigma_2]_{n=1}^{\infty}$ be a sequence of pairwise disjoint sets. We need to show that: $f_{\#}\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} f_{\#}\mu(E_n)$.

$$\begin{split} f_{\#}\mu\bigg(\bigcup_{n=1}^{\infty}E_n\bigg) &= \mu\bigg(f^{-1}\bigg(\bigcup_{n=1}^{\infty}E_n\bigg)\bigg) \text{ definition of pushforward} \\ &= \mu\bigg(\bigcup_{n=1}^{\infty}f^{-1}(E_n)\bigg) \\ &= \sum_{n=1}^{\infty}\mu(f^{-1}(E_n)) \text{ definition of measure} \\ &= \sum_{n=1}^{\infty}f_{\#}\mu(E_n) \text{ definition of pushforward} \end{split}$$

3. We need to show that $\exists E \in \Sigma_1$ such that $f_\# \mu(E) \geq 0$. Let $E' \in \Sigma_1$ such that $\mu(E') \geq 0$ (such E' exists by defintion of measure). Then, f(E') is a set that meets the requirements, that is

$$f_{\#}\mu(f(E')) = \mu(f^{-1}(f(E'))) = \mu(E') \ge 0$$

Example 5.1.1 (pushforward example):

Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu(E) = |E|)$. Consider the measurable space $(\mathbb{R}, \sigma_{\mathbb{R}}(\mathcal{I}_h^n))$. Consider the measurable function $f: \mathbb{N} \longrightarrow \mathbb{R}$ such that f(x) = x. Consider pushforward $f_{\#}\mu : \mathbb{R} \longrightarrow \mathbb{R}_{>0} \cup \{\infty\}$. Then $f_{\#}\mu$ is a measure for the *measurable space* $(\mathbb{R}, \sigma_{\mathbb{R}}(\mathcal{I}_h^n))$ since:

- 1. $f_{\#}\mu(E \in \sigma_{\mathbb{R}}(\mathcal{I}_{h}^{n})) = |\{n \in \mathbb{N} \mid n \in E\}| \ge 0.$ 2. Let $\{E_{n}\}_{n=1}^{\infty}$ pairwise disjoint, then $f_{\#}\mu\left(\bigcup_{n=1}^{\infty}E_{n}\right) = \mu\left(f^{-1}\left(\bigcup_{n=1}^{\infty}E_{n}\right)\right) = \mu\left(\bigcup_{n=1}^{\infty}f^{-1}(E_{n})\right) = \sum_{n=1}^{\infty}\mu(f^{-1}(E_{n})) = \sum_{n=1}^{\infty}f_{\#}\mu(E_{n}).$ 3. $f_{\#}\mu(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$

Definition 5.1.12 (pre-measure):

Let (X, Σ) be a set algebra. Let $\mu: S \longrightarrow R_{>0} \cup \{+\infty\}$. μ is said a pre-measure iff.

- 1. $\mu(\emptyset) = 0$. Empty set.
- 2. Given a collection of pairwise disjoint sets $\{A_n \in S\}_{n \in \mathbb{N}}$ such that $\bigcup_{n \in \mathbb{N}} A_n \in S \Longrightarrow \mu(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$ Countable additivity.
- 3. $\forall A \in S : \mu(A) \geq 0$. Positiveness.

A pre-measure is a precursor of a full-fledge measure. The main difference is that a measure is defined on σ -algebras, meanwhile the pre-measure is defined on a simple collection of subsets. Further, given that this collection is not necessarily closed under unions as a σ -algebra does, we also need to check that, in the second requirement, the union of A_n is indeed contained in the collection.

Definition 5.1.13 (Outer measure):

Let *X* be a set. An **outer measure** $\mu: 2^X \longrightarrow \mathbb{R}_{>0} \cup \{\infty\}$ such that:

- 1. (...) => ... empty set.
- 2. (...) => ... Monotonicity.
- 3. (...) => ... Countable subadditivity.

BEDLAM

An *outer measures* are weaker wrt. *measures* as they are only countably subadditive rather than countably additive. However, they are able to measure all subset of X rather than only a σ -algebras.

5.2. Caratheodory Extension Theorem

Proposition 5.2.1 (σ -algebra generated by an outer measure):

Let X be a set. Let λ be an outer measure on X. Let $\Sigma_{\lambda} = \{A \in 2^X \mid \forall E \in 2^X : \lambda(E) = \lambda(E \cap A) + \lambda(E \cap (X \setminus A))\}$ The set of subsets in which outer measure cut X in a "good way". Then Σ_{λ} is a σ -algebra.

Proof 5.2.1 (of *Proposition* **5.2.1**):

We need to show that the axiom a σ -algebra hold for Σ_{λ} :

- 1. $(X \in \Sigma_{\lambda})$ Let $E \in 2^x$, we have $\lambda(E \cap X) + \lambda(E \cap (X \setminus X)) = \lambda(E \cap X) = \lambda(X)$.
- 2. $(A \in \Sigma_{\lambda} \Longrightarrow X \setminus A \in \Sigma_{\lambda})$ Suppose $A \in \Sigma_{\lambda} \Longrightarrow \forall E \in 2^{X} \lambda(E \cap A) + \lambda(E \cap (X \setminus A)) = \lambda(E)$. Now consider $\lambda(E \cap (X \setminus A)) + \lambda(E \cap (X \setminus A)) = \lambda(E \cap (X \setminus A)) + \lambda(E \cap A) = \lambda(E)$.
- 3. $(\{A_n\}_{n\in\mathbb{N}}\in\Sigma_\lambda\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\Sigma_\lambda$ (countable unions))
 - 1. $(A, B \in \Sigma_{\lambda} \Longrightarrow A \cup B \in \Sigma_{\lambda}$ (finite unions)) Suppose $A, B \in \Sigma_{\lambda}$ then
 - $\forall E \in 2^X : \lambda(E) = \lambda(E \cap A) + \lambda(E \cap (X \setminus A))$ and,
 - $\forall E \in 2^X : \lambda(E) = \lambda(E \cap B) + \lambda(E \cap (X \setminus B)).$

Then, we have that:

$$\begin{split} &\lambda(E\cap(A\cup B))+\lambda(E\cap(X\smallsetminus(A\cup B)))\\ &=\lambda(E\cap(A\cup B))+\lambda(E\cap(X\smallsetminus A)\cap(X\smallsetminus B))\\ &=\lambda(E\cap(A\cup B)\cap A)+\lambda(E\cap(A\cup B)\cap(X\smallsetminus A))+\lambda(E\cap(X\smallsetminus A)\cap(X\smallsetminus B))\\ &=\lambda(E\cap A)+\lambda(E\cap B\cap(X\smallsetminus A))+\lambda(E\cap(X\smallsetminus A)\cap(X\smallsetminus B))\\ &=\lambda(E\cap A)+\lambda(E\cap(X\smallsetminus A))-\lambda(E\cap(X\smallsetminus A)\cap(X\smallsetminus B))+\lambda(E\cap(X\smallsetminus A)\cap(X\smallsetminus B))\\ &=\lambda(E\cap A)+\lambda(E\cap(X\smallsetminus A))\\ &=\lambda(E\cap A)+\lambda(E\cap(X\smallsetminus A))\\ &=\lambda(E\cap A)+\lambda(E\cap(X\smallsetminus A))\\ &=\lambda(E) \end{split}$$

- 2. Now we proceed to the third property. Let $N \in \mathbb{N}$. Let $\left\{A_n \in \Sigma_\lambda\right\}_{n \in \mathbb{N}}$. Consider the pairwise disjoint $\left\{A'_n\right\}_{n \in \mathbb{N}}$ built as in *Proposition 2.1*. Recall that $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} A'_n = A$.
 - We have that:

$$\begin{split} \lambda \left(E \cap \left(\bigcup_{n=1}^N A_n' \right) \right) + \lambda \left(E \cap \left(X \setminus \bigcup_{n=1}^N A_n' \right) \right) & \qquad \qquad \Sigma_{\lambda} \text{ is closed under finite unions.} \\ & \leq \lambda \left(E \cap \left(X \setminus \bigcup_{n=1}^N A_n' \right) \right) + \sum_{n=1}^N \lambda(E \cap A_n') & \text{definition of outer measure} \\ & = \lambda(E \cap (X \setminus A_1') \cap \ldots \cap (X \setminus A_N')) + \lambda(E \cap A_1') + \ldots + \lambda(E \cap A_N') \text{ expansion} \\ & = \lambda(E \cap (X \setminus A_2') \cap \ldots \cap (X \setminus A_N')) + \lambda(E \cap A_2') + \ldots + \lambda(E \cap A_N') \text{ definition of } \Sigma_{\lambda} \\ & \ldots \\ & = \lambda(E) \end{split}$$

This relation holds for any N, even for $N = \infty$. Therefore:

$$\lambda(E \cap A) + \lambda(E \cap (X \setminus A)) \le \lambda(E)$$

· On the other hand:

$$\lambda(E) = \lambda((E \cap A) \cup (E \cap (X \setminus A))) \le \lambda(E \cap A) + \lambda(E \cap (X \setminus A))$$

Therefore, we have:

$$\lambda(E) \le \lambda(E \cap A) + \lambda(E \cap (X \setminus A)) \le \lambda(E)$$

Or, equivalently:

BEDLAM

$$\lambda(E) = \lambda(E \cap A) + \lambda(E \cap (X \setminus A))$$

Thus: $A \in \Sigma_{\lambda}$

Therefore, Σ_{λ} is a σ -algebra.

Proposition 5.2.2:

The restriction of the outer measure λ to the σ -algebra Σ_{λ} as in Proposition 5.2.1 is a measure for Σ_{λ} .

Proof 5.2.2 (of *Proposition 5.2.2*):

We need to show that the axioms of a measure hold:

1. $(\lambda(\emptyset) = 0)$.

This holds since λ is an outer measure and $\emptyset \in \Sigma_{\lambda}$.

2. $(E \in \Sigma \Longrightarrow \lambda(E) \ge 0)$.

This holds since λ is an *outer measure* and $\forall A \in \Sigma_{\lambda} : \emptyset \subseteq A$

- 3. $(\{E_n \in \Sigma\}_{n \in \mathbb{N}} \text{ pairwise disjoint} \Longrightarrow \lambda(\cup_{n \in \mathbb{N}} E_b) = \sum_{n \in \mathbb{N}} \lambda(E_n))$.
 - 1. $\lambda(\bigcup_{n\in\mathbb{N}} E_n) \leq \sum_{n\in\mathbb{N}} \lambda(E_n)$.

This hold since λ is an outer measure.

2. $\lambda(\cup_{n\in\mathbb{N}}E_n)\geq \sum_{n\in\mathbb{N}}\lambda(E_n).$ From *Proof 5.2.1*, we know that:

$$\lambda(A\cap (X\smallsetminus (\cup_{n\in\mathbb{N}}\ E_n)))+\sum_{n\in\mathbb{N}}(A\cap E_n)\leq \lambda(A)$$

Since this inequality must hold for any A in Σ_{λ} , it must hold also for $\cup_{n\in\mathbb{N}} E_n$:

$$\begin{split} \lambda((\cup_{n\in\mathbb{N}} E_n) \cap (X \smallsetminus (\cup_{n\in\mathbb{N}} E_n))) + \sum_{n\in\mathbb{N}} \lambda((\cup_{n\in\mathbb{N}} E_n) \cap E_n) &\leq \lambda(\cup_{n\in\mathbb{N}} E_n) \\ \lambda(\emptyset) + \sum_{n\in\mathbb{N}} \lambda(E_n) &\leq \lambda(\cup_{n\in\mathbb{N}} E_n) \\ &\sum_{n\in\mathbb{N}} \lambda(E_n) &\leq \lambda(\cup_{n\in\mathbb{N}} E_n) \end{split}$$

Since $\lambda(\cup_{n\in\mathbb{N}}E_n)\leq \sum_{n\in\mathbb{N}}\lambda(E_n)$ and $\lambda(\cup_{n\in\mathbb{N}}E_n)\geq \sum_{n\in\mathbb{N}}\lambda(E_n),$ we have that $\lambda(\cup_{n\in\mathbb{N}}E_n)=\sum_{n\in\mathbb{N}}\lambda(E_n)$

Proposition 5.2.3 (measuring outside the measure domain):

Let (\mathcal{R},X) be s set ring. Let $\mu:\mathcal{R}\longrightarrow\mathbb{R}_{\geq 0}\cup\{\infty\}$ be a measure $\mathcal{R}.$ Let $E\subset X.$ Let $\mathcal{A}=\left\{\left\{A_{n}\right\}_{n\in\mathbb{N}}\mid A_{n}\in\mathcal{R},E\subseteq\bigcup_{n\in\mathbb{N}}A_{n}\right\}$ (Set of all covers of E). Let $\lambda_{\mu}=\inf_{\{A_{n}\}_{n\in\mathbb{N}}\in\mathcal{A}}\left\{\sum_{n\in\mathbb{N}}\mu(A_{n})\right\}$. Then λ_{μ} is an outer measure on X.

Proof 5.2.3 (of *Proposition 5.2.3*):

We need to proove the three axiom for an outer measure.

1. $(\lambda_{\mu}(\emptyset) = 0)$.

Since nothing in \mathcal{R} , we have that $\{\emptyset\} \in \mathcal{A}$. Therefore $\lambda_{\mu}(\emptyset) = 0$.

A cover for B is also a cover of A since $A \subseteq B$. Therefore $\lambda_{\mu}(A) \leq \lambda_{\mu}(B)$

3. $(\forall \{A_n\}_{n\in\mathbb{N}} : \lambda_{\mu}(\bigcup_{n\in\mathbb{N}} A_n) \leq \sum_{n\in\mathbb{N}} \lambda_{\mu}(A_n)).$

Let $\{A_{n,m}\}_{m\in\mathbb{N}}$ be the respective *cover* for A_n . Without loss of generality given by *Proposition 2.1*, let each *cover* be pairwise disjoint. Since the union of *cover* of sets *covers* the unions of sets $(\bigcup A_n \subseteq \bigcup A_{m,n})$, we have

$$\begin{split} \lambda_{\mu} \bigg(\bigcup_{n \in \mathbb{N}} A_n \bigg) & \leq \lambda_{\mu} \bigg(\bigcup_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} A_{n,m} \bigg) \text{ previous axiom} \\ & \leq \sum_{n \in \mathbb{N}} \mu \bigg(\bigcup_{m \in \mathbb{N}} A_{n,m} \bigg) \quad \text{None of the covers} A_{n,m} \text{ achieves the infinum} \\ & = \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} \mu(A_{n,m}) \qquad A_{n,m_0} \cap A_{n,m_1} = \emptyset \end{split}$$

Proposition 5.2.4 (restriction of λ_{μ}):

The restriction of λ_{μ} as in *Proposition 5.2.3* on $\mathcal R$ is μ .

Proof 5.2.4 (of *Proposition 5.2.4*):

1. $\lambda_{\mu}(A) \leq \mu(A)$

For any $A \in \mathcal{R}$, A itself is a *cover* for A, hence $\lambda_{\mu}(A) \leq \mu(A)$ (λ_{μ} is the inf. of the measure of all *covers*).

2. $\lambda_{\mu}(A) \geq \mu(A)$. Suppose there is a cover $\mathcal{B} = \left\{B_n \in \mathcal{R}\right\}_{n \in \mathbb{N}}$ of A. Let $\mathcal{B}' = \left\{B'_n\right\}_{n \in \mathbb{N}}$ be the respective pairwise disjoint cover according to Proposition 2.1. Let $\mathcal{B}'' = \left\{B'_n \cap A\right\}_{n \in \mathbb{N}}$. We have that \mathcal{B}'' is pairwise disjoint and $A = \bigcup_{B \in \mathcal{B}''} B \subseteq \bigcup_{B \in \mathcal{B}} B$ We have that $\bigcup_{B \in \mathcal{B}''} B = A$ since \mathcal{B}'' is a cover for A intersected with A. Then, $\mu(A) = \mu(\bigcup_{B \in \mathcal{B}''} B) = \sum_{B \in \mathcal{B}''} \mu(B) \leq \sum_{B \in \mathcal{B}} \mu(B) = \sum_{B \in \mathcal{B}} \mu(B)$ since μ is a measure. Therefore, for any cover \mathcal{B} , we have shown that $\mu(A) \leq \sum_{B \in \mathcal{B}} \mu(B)$. Then, $\mu(A) \leq \lambda_{\mu}(A)$, since λ_{μ} is the inf. of all covers.

Putting all togheter:

$$\mu(A) \le \lambda_{\mu}(A) \le \mu(A)$$

Therefore, $\mu(A) = \lambda_{\mu}(A)$.

Theorem 5.2.1 (Carathéodory's Extension Theorem):

Let (X, Σ_0) be a set ring. Let $\mu : \Sigma_0 \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a pre-measure (X, Σ_0) . Then exists unique $\mu : \sigma(\Sigma_0) \longrightarrow \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that (X, Σ, μ) is a measure space and $\mu|_{\Sigma_0} = \mu_0$ (μ is a measure and an extension of μ_0).

Proof 5.2.5 (of *Theorem 5.2.1*):

TODO

5.3. Lebesgue Measure

Definition 5.3.1 (Lebesgue pre-measure):

The Lebesgue pre-measure is a mapping $\lambda^n: \mathcal{I}_h^n \longrightarrow \mathbb{R}_{\geq 0} \cup \{+\infty\}$ (\mathcal{I}_h^n denotes the set half open rectangle) such that $\lambda^n \left(\times_{i=1}^n [a_i, b_i) \right) = \prod_{i=1}^n (b_i - a_i)$ for $a_i, b_i \in \mathbb{R}$ and $a_i \leq b_i$.

Proposition 5.3.1:

The Lebesgue pre-measure is a pre-measure.

Proof 5.3.1 (of Proposition *Proposition 5.3.1*):

1.
$$\lambda^n(\emptyset) = \lambda^n \left(\times_{i-1}^n [a_i, a_i) \right) = \prod_{i=1}^n (a_i - a_i) = 0$$

2. Let $I= X_{i=1}^n [a_i,b_i)$ and $I'= X_{i=1}^n [a_i',b_i')$ be disjoint half-open rectangles. The $I\cup I'$ belongs to \mathcal{I}_h^n if we can stitch one to the other. This can only happen if there is an *i* such that:

1.
$$j = i \Longrightarrow b_i = a'_i$$

2.
$$j \neq i \Longrightarrow b_i = b'_i$$

$$\begin{aligned} &1. \ j=i \Longrightarrow b_j=a_j'. \\ &2. \ j\neq i \Longrightarrow b_j=b_j'. \\ &3. \ j\neq i \Longrightarrow a_j=a_j'. \end{aligned}$$

This can be intuitively visualized in Figure 1 where two 2-dimensional half open rectangles met at one side. The only difference between the rectangles is that one is shifted along a single dimension, in such a way that they met at the open and close edges.

Figure 1: Two half open rectangles that can be stitched together.

П

In this situation we have that:

$$\begin{split} \lambda^n(I) + \lambda^n(I') &= \prod_{j=1}^n \bigl(b_j - a_j\bigr) + \prod_{j=1}^n \bigl(b_j', a_j'\bigr) & \text{Lebesgue pre-measure definition} \\ &= ((b_i - a_i) + (b_i' - a_i')) \prod_{\substack{j=1 \\ j \neq i}}^n b_j - a_j \text{ factoring out } \prod_{\substack{j=1 \\ j \neq i}}^n b_j - a_j \\ &= ((b_i - a_i')) \prod_{\substack{j=1 \\ j \neq i}}^n b_j - a_j & \text{stitching half-open rectangles together} \\ &= \lambda^n(I \cup I') \end{split}$$

Thus it is verified that λ^n is finitely additive.

3. The $\forall E \in \mathcal{I}_h^n : \lambda^n(E) \geq 0$ since the product of positive terms is positive.

Given a pre-measure on a set algebra is always possible to extend this pre-measure to a full-fledge measure over a σ -algebra generated by the set algebra. Further, such a measure is unique. This is the subject of the following theorem.

Definition 5.3.2 (Lebesgue Measure):

TODO

Theorem 5.3.1 (Lebesgue Measure Existence and Uniqueness): TODO

Proof 5.3.2 (of *Theorem 5.3.1*):

TODO

6. Probability Theory

Definition 6.1 (Probability Space):

 (Ω, Σ, p) is said a **probability space** iff.

- 1. (Ω, Σ, p) is a measure space.
- 2. $p(\Omega) = 1$.

Intuitively, Ω represents the set of all possible outcomes, it is also known as **sample space**. Σ represents the set of all possible events. These are nothing more than set of outcomes. It is also known as **event space**. p is a *measure* on the event space, it is also known as **probability function**. It maps events to their likelihood.

Example 6.1 (Fair Die):

Consider the *probability space* (Ω, Σ, p) , where:

- 1. $\Omega = \{1, 2, 3, 4, 5, 6\}$ is the sample space, representing the possible outcomes of rolling a standard six-sided die.
- 2. $\Sigma = 2^{\Omega}$ is the event space.
- 3. $p: \Sigma \longrightarrow [0,1]$ is the probability *measure* function, defined as $P(E) = \frac{|E|}{6}$ for any event $E \in \Sigma$.

For example, consider the event $A=\{1,2,3\}$, which represents rolling a 1, 2, or 3. This event is an element of Σ . The probability of event A occurring is $p(A)=\frac{|A|}{6}=\frac{3}{6}=\frac{1}{2}$.

Definition 6.2 (Coupling):

Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be probability spaces. A coupling is a probability space $(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, \gamma)$ such that:

- 1. $\forall E \in \Sigma_1 : \gamma(E \times \Omega_2) = \mu_1(E)$. The left marginal of γ is μ_1 .
- 2. $\forall E \in \Sigma_2 : \gamma(\Omega_1 \times E) = \mu_2(E)$. The right marginal of γ is μ_2 .

Example 6.2 (Coupling a Dice and a Coin):

Consider a probability space $\mathcal{F}_1 = \left(\Omega_1 = \{1,2,3,4\}, \Sigma_1 = 2^{\Omega_1}, p_1 = A \mapsto \frac{|A|}{4}\right)$ (The probability space corresponding to a 4 sided die). Further, consider a probability space $\mathcal{F}_2 = \left(\Omega_2 = \{1,2\}, \Sigma_2 = 2^{\Omega_2}, p_2 = A \mapsto \frac{|A|}{2}\right)$ (The probability space corresponding to a coin). We can define a probability space $\mathcal{F} = (\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, p)$ by coupling \mathcal{F}_1 and \mathcal{F}_2 . Here, sample space and event space are already decided, we need to provide only a proper measure p. Such a measure can be built by providing a coupling table:

$$\begin{pmatrix} p & \{1\} & \{2\} & \{3\} & \{4\} & p_1 \\ \{1\} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2} \\ \{2\} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \\ p_2 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 1 \end{pmatrix}$$

On the top row, we have the possible singleton events from \mathcal{F}_1 . On the left column, we have the possible singleton event from \mathcal{F}_2 . The last row and column corresponds to marginal distributions. These marginals match p_2 and p_1 as required by the definition of *coupling*. The central body of this matrix represents join probabilities of the die and coin. For example, $p(\{1\} \times \{3\}) = \frac{1}{d}$.

Note that we could fill this matrix in such a way that we have a *probability space* but not a *coupling* by breaking the marginal axioms.

Retrieving event probabilities from singleton events is only matter of applying traditional probability rules.

7. OPTIMAL TRANSPORT

aa