

Agenda

MEIOS DE TRANSMISSÃO

 A informação, para ir da origem ao destino, é enviada por um canal de comunicação.

O canal de comunicação tem um limite de dados que consegue transmitir.

Assim, usa-se o termo largura de banda para se referir à capacidade de transmissão do canal de comunicação

 A largura de banda define a taxa máxima de um canal e é medida em bits por segundo (bps).

 Já o throughput (capacidade de fluxo) é a capacidade real do canal de comunicação.

- O meio de transmissão é o meio que serve de interligação a todos os equipamentos da rede (hosts, servidores, dispositivos de rede), é por onde as informações trafegam.
- Os meios de transmissão podem ser guiados (temos o controle exato de por onde a informação está trafegando) e não guiados (a informação trafega sem um delimitador do sinal)

- Fatores que influenciam a escolha do meio de transmissão:
 - Custo
 - Facilidade de instalação
 - Capacidade de transmissão (largura de banda)
 - Atenuação (alcance / perda)
 - Interferência
- Podem ser: cabo coaxial, par trançado, fibra óptica e o ar.

CABO COAXIAL

- Possui melhor blindagem que os cabos par trançado, e pode se estender a distâncias mais longas, mas não atinge as mesmas velocidades e por isso deixou de ser usado.
- Além disso, o cabo par trançado é mais barato e mais fino (se ajusta melhor nos espaços).
- Trata-se de um meio de transmissão guiado.

- Os cabos coaxiais são cabos constituídos de 4 camadas:
 - Um condutor central (o fio de cobre que transmite os dados);
 - Uma camada isolante de plástico, chamada de dielétrico que envolve o cabo interno;
 - Um condutor externo (malha de metal que protege as duas camadas internas);
 - A capa.

Conector BNC

 BNC (British Naval Connector ou Bayonet Neil Concelman ou Bayonet Nut Connector) Conector para cabos coaxiais.

Placa de rede com conector para cabo coaxial (BNC)

CABO PAR TRANÇADO

- Possui 4 pares de fios de cobre trançados revestidos por material isolante.
- O trançamento dos fios ocorre para diminuir a interferência que um fio produz no outro.
- Trata-se de um meio de transmissão guiado.

Existem sete categorias desse cabo, mas as mais utilizadas em redes de computadores são as categorias 5, 6 e 7

O cabo par trançado pode ser blindado (STP) ou não blindado (UTP).

Cabo Par Trançado não Blindado

- O cabo par trançado não blindado é conhecido pela sigla UTP (Unshielded Twisted Pair) e ele é fácil de ser instalado e custa menos por metro do que qualquer outro tipo de cabeamento de rede.
- Atenuação a 100m
- Sua taxa de transmissão pode chegar até 10 Gbps
- Desvantagens: mais propenso a ruído e interferência elétrica.

Par trançado não blindado (UTP)

Cabo Par Trançado Blindado

- O cabo par trançado blindado é conhecido pela sigla STP (Shielded Twisted Pair) e possui uma blindagem interna (isolando cada um dos quatro pares).
- Com isso, ele consegue reduzir os problemas de interferências interna e externa.
- A desvantagem é o seu custo: é mais caro que o cabeamento UTP e sua instalação é mais complexa.

Par trançado blindado (STP)

 Qualquer cabo, para ser ligado aos hosts e servidores, precisa de um conector.

 O conector usado no cabo par trançado é o RJ-45

A crimpagem dos cabos no conector deve seguir a ordem especificada pela norma TIA/EIA-568

Essa norma especifica dois tipos de montagem, a 568-A e a 568-B. As duas montagens apresentam as mesmas características em termos de desempenho

- Podemos ter cabo par trançado:
 - Rollover (ou direto): usado para conectar dispositivos diferentes, como host → switch, switch → roteador. Ambas as extremidades devem ser crimpadas ou com 568-A ou com 568-B
 - Crossover (ou cruzado): usado para conectar dispositivos semelhantes, como computador → computador. As extremidades devem ser crimpadas com tipos de montagem diferentes: uma ponta 568-A, e a outra, 568-B

FIBRA ÓPTICA

- Fibra de vidro (sílica) com revestimento plástico (2 fibras separadas por revestimento reflexivo, kevlar e o revestimento externo)
- A fibra óptica é extremamente fina e sensível
- O cabo de fibra óptica é muito frágil e se quebra muito facilmente.
- Trata-se de um meio de transmissão guiado.

Os sinais elétricos do computador emissor são convertidos para sinais de luz

Possui altas taxas de transmissão, alta imunidade a interferências e é um meio de transmissão caro

É o meio de transmissão preferido para a transmissão de grande alcance, em particular para cabos submarinos

Um problema com a fibra é o trajeto físico do cabo. Por ser um fio de vidro, ele não se curva facilmente. Entretanto a fibra óptica é mais leve que os outros cabos, o que facilita sua instalação.

Cabo de fibra óptica

- O cabo de fibra óptica é classificado de acordo com o modo como os raios de luz viajam pelo meio.
- Há duas classificações gerais:
 - monomodo (único modo de propagação indicada para interligação de edifícios ou grandes distâncias)
 - multimodo (vários modos de propagação indicada para áreas internas)

Vantagens:

- Não sofre interferência eletromagnética
- Consegue transmitir mais longe e em maior quantidade as informações que um fio de cobre faz com um sinal elétrico.

Desvantagens:

- Requer equipamento especiais para polimento e instalação das extremidades do fio;
- Requer equipamentos especiais para unir um cabo partido;
- Dificuldade em descobrir onde a fibra se partiu dentro do revestimento plástico.
- Alto custo

WIRELESS

- Utiliza ondas eletromagnéticas e o sinal viaja pelo ar
- Traz mobilidade e é muito usada quando há dificuldade para a instalação de cabos ou quando não queremos depender da infraestrutura cabeada

- Muito usada para redes com smartphones, tablets e notebooks
- Tem várias velocidades (conforme estudaremos mais adiante)
- Trata-se de um meio de transmissão não guiado.

PARA SABER MAIS

 Quais são os meios físicos de transmissão de dados? https://www.oficinadanet.co m.br/artigo/redes/quais-saoos-meios-fisicos-detransmissao-de-dados

ATIVIDADE DE FIXAÇÃO

Aguardar 1 minuto até a atividade ser liberada

O que o cabo par trançado não blindado (UTP) utiliza para minimizar a interferência entre pares?

Trançamento de fios

Blindagem

Isolante

Reflexão

Qual meio de transmissão alcança as maiores distâncias?

Fibras ópticas

Par trançado

Coaxial

Par trançado blindado

Determinada organização precisa interligar suas filiais que estão distantes a mais de 5 quilômetros. Que tipo de meio de comunicação físico seria mais apropriado?

Fibra óptica

Cabo UTP

Cabo STP

802.11a

Qual é o limite de distância (em metros) do cabo UTP par trançado?

Qual opção a seguir é a principal desvantagem da fibra óptica?

Custo mais alto quando comparado com cabos metálicos

Impossibilidade de reparação

Perdas com campos eletromagnéticos

Alta latência na transferência de dados

Qual opção a seguir é a principal vantagem da fibra óptica?

Imunidade a interferências eletromagnéticas

Alta capacidade de alimentação elétrica aos dispositivos ativos

Grande resistência física

Quais são os tipos de fibra óptica existentes?

Fibras multimodo e fibra monomodo.

Fibras monomodo e UTPs.

Fibra degrau e fibra multimodo.

Fibra F/UTP e S/UTP.

Qual opção a seguir refere-se a um meio de transmissão não guiados?

Wireless

Cabo par trançado

Cabo coaxial

Fibra ótica

Os meios de transmissão de dados podem ser divididos em várias classes, analise os itens a seguir.

- I. Um meio guiado utiliza um condutor físico para transportar sinais do emissor para o receptor.
- II. Um meio não guiado usa ondas eletromagnéticas em diferentes frequências como um condutor de sinais do emissor para o receptor.
- III. Os meios de transmissão (guiados e não guiados) são usados nas redes, mas elas não precisam dos mesmos para funcionar.

Está correto o que se afirma em:

I e II, apenas.

II e III, apenas.

I, apenas.

II, apenas.

III, apenas.

Quanto aos meios físicos de transmissão de redes de computadores, quando altas taxas de transmissão são necessárias junto com o mínimo de interferências em longas distâncias, é correto afirmar que:

fibra ótica monomodo é o meio mais recomendado, pois não sofre interferência eletromagnética, permitindo altas taxas de transmissão em distâncias superiores aos cabos UTP.

cabo UTP CAT-5e continua sendo o meio de transmissão mais confiável em redes LAN, por não apresentarem interferência e alcançarem altas taxas de transmissão.

cabo UTP CAT-6 é o meio mais adequado, pois apresenta taxas de transmissão mais velozes que os outros meios existentes.

cabo UTP CAT-7 veio para acabar com os problemas de interferências, por isso consegue altas taxas de transmissão por não ter interferência.

