Supplementary Notes for Lecture 3 on Informed Search

Question 1:

What is a simple counter-example ¹that shows that only admissibility (i.e., but not consistency) will be sufficient for the (graph-based) A* search algorithm to produce an optimal solution?

We observe that h is admissible since it always under-estimates h*:

node n	h(n)	h*(n)
S	7	7 or 8
V ₁	5	5
V ₂	1	4
t	0	0

Note that $h^*(n)$ is the actual cost of reaching the goal from n; recall that for admissibility: $\forall n, h(n) \le h^*(n)$

However, in this case, we have:

node n	h(n)	c(n, a, n') + h(n')
child n'		
s, v ₁	7	2 + 5 = 7
s, v ₂	7	4 + 1 = 5
V ₁ , V ₂	5	1 + 1 = 2
v ₂ , t	1	4 + 0 = 4

Notice that changing $h(v_2)$ to 4 makes h consistent. As an exercise trace A^* in this case.

For consistency, for every node n, and every successor of n (reached by a), we require: $h(n) \le c(n, a, n') + h(n')$

We observe that h is not consistent since the above is not the case between (i) s, v_2 and (ii) v_1 , v_2 .

A* (graph search) is applied as follows:

- 1. Add s to Frontier: [(s,7)], where 5 is calculated via: f(s) = g(s) + h(s) = 0 + 7
- 2. Pop Frontier; check goal test on s, and since False: expand node s
- 3. Add $(v_1, 7)$ and $(v_2, 5)$ to Frontier: $[(v_2, 5), (v_1, 7)]$, as $f(v_1) = 2 + 5$ and $f(v_2) = 4 + 1$
- 4. Pop Frontier; check goal test on v₂, and since False: expand node v₂
- 5. Add (t, 8) to Frontier: $[(v_1, 7), (t, 8)]$, as f(t) = 8 + 0
- 6. Pop Frontier; check goal test on v₁, and since False: expand node v₁

¹ Note that we are trying to find an example that shows that if we do NOT have a consistent h, then we may not find an optimal solution.

- 7. However, since v_2 has already been visited, we do not add it (graph search).
- 8. Pop Frontier; check goal test on t, and since True, solution is: $s > v_2 > t$ (not optimal)

Question 2:

Note the following lecture slide. Why can't we have $f(q_1) = f(n)$? (And as such, no contradiction).

Assume that A^* is following an optimal path until at some point, a node n is expanded, which is non-optimal. Let there be a node q_1 on the optimal path, such that n is expanded before q_1 .

For the above to occur, n is expanded before q_1 , and consequently, we must have $f(n) \le f(q_1)$.

However, if q is on the path to n, then $f(q_1) < f(n)$.

The question above contemplates why, for the latter, we do not have $f(q_1) \leq f(n)$ instead.

The reason why we have $f(q_1) < f(n)$ is because if $f(n) = f(q_1)$, then n is on the optimal path (i.e., n is equally as good as q_1 , and q_1 is on the optimal path), which is contrary to our original assumption.