https://data.mendeley.com/datasets/wj9rwkp9c2/1 Rashid, Ahlam (2020), "Diabetes Dataset", Mendeley Data, V1, doi: 10.17632/wj9rwkp9c2.1

```
!wget https://data.mendeley.com/public-files/datasets/wj9rwkp9c2/files/2eb60cac-96b8-46ea-b971-6415e972afc9/file downloaded
    --2024-05-02\ 17:17:24-- \ \underline{https://data.mendeley.com/public-files/datasets/wj9rwkp9c2/files/2eb60cac-96b8-46ea-b971-6415e9} \\ Resolving \ data.mendeley.com \ (data.mendeley.com)... \ 162.159.130.86, \ 162.159.133.86
    Connecting to data.mendeley.com (data.mendeley.com)|162.159.130.86|:443... connected.
    HTTP request sent, awaiting response... 302 Found
    Location: https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/e205d80e-2bc6-49ed-bfcc-4215b6b516
      -2024-05-02 17:17:25-- https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/e205d80e-2bc6-49ed-
    Resolving prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com (prod-dcd-datasets-public-files-eu-west-1.
    Connecting to prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com (prod-dcd-datasets-public-files-eu-wes
    HTTP request sent, awaiting response... 200 OK
    Length: 49511 (48K) [application/vnd.ms-excel] Saving to: 'file_downloaded'
    file_downloaded
                          100%[=========] 48.35K --.-KB/s
                                                                             in 0.1s
    2024-05-02 17:17:26 (341 KB/s) - 'file_downloaded' saved [49511/49511]
!pip install shap
    Collecting shap
      Downloading shap-0.45.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86
                                                     538.2/538.2 kB 4.3 MB/s eta 0:00:00
    Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from shap) (1.25.2)
    Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from shap) (1.11.4)
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from shap) (1.2.2)
    Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from shap) (2.0.3)
    Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.10/dist-packages (from shap) (4.66.2)
    Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.10/dist-packages (from shap) (24.0)
    Collecting slicer==0.0.7 (from shap)
      Downloading slicer-0.0.7-py3-none-any.whl (14 kB)
    Requirement already satisfied: numba in /usr/local/lib/python3.10/dist-packages (from shap) (0.58.1)
    Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from shap) (2.2.1)
    Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba->shap)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->shap) (2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->shap) (2023.4)
    Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->shap) (2024.1)
    Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->shap) (1.4.0
    Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->shap)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas-
    Installing collected packages: slicer, shap
    Successfully installed shap-0.45.0 slicer-0.0.7
pip install --upgrade xgboost
    Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (2.0.3)
    Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.25.2)
    Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.11.4)
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import shap
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeRegressor
from xgboost.sklearn import XGBClassifier
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix,ConfusionMatrixDisplay
df = pd.read_csv('/content/file_downloaded')
df
```


Next steps:

df.info()

```
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):
#
     Column
                Non-Null Count
                                 Dtype
                 1000 non-null
     ID
                                  int64
     No_Pation
 1
                1000 non-null
                                  int64
                 1000 non-null
     Gender
                                  object
 3
     AGE
                 1000 non-null
                                  int64
 4
     Urea
                 1000 non-null
                                  float64
 5
     Cr
                 1000 non-null
                                  int64
 6
     HbA1c
                 1000 non-null
                                  float64
     Chol
                 1000 non-null
                                  float64
 8
     TG
                 1000 non-null
                                  float64
 9
     HDL
                 1000 non-null
                                  float64
 10
     LDL
                 1000 non-null
                                  float64
     VLDL
                 1000 non-null
 11
                                  float64
     BMI
                 1000 non-null
                                  float64
13
     CLASS
                 1000 non-null
                                  object
dtypes: float64(8), int64(4), object(2)
memory usage: 109.5+ KB
```

<class 'pandas.core.frame.DataFrame'>

```
df['ID'].nunique()
```

800

```
df['CLASS'].nunique()
```

```
df['CLASS'].value_counts()
```

```
CLASS
      840
N
       102
P
        53
Υ
         4
Ν
         1
Name: count, dtype: int64
```

```
02/05/2024, 14:47
                                                                  01_02_Begin.ipynb - Colab
   df['CLASS'].unique()
        array(['N', 'N', 'P', 'Y', 'Y'], dtype=object)
   df['CLASS'] = df['CLASS'].str.replace(' ', '')
   df['CLASS'].value_counts()
        CLASS
             844
        Ν
             103
        Р
             53
        Name: count, dtype: int64
   df['Gender'].nunique()
        3
   df['Gender'].value_counts()
        Gender
             434
               1
        Name: count, dtype: int64
   df['Gender'].unique()
        array(['F', 'M', 'f'], dtype=object)
   df['Gender'] = df['Gender'].apply(str.upper)
   df['Gender'].value_counts()
        Gender
             565
        М
             435
        Name: count, dtype: int64
   df['Gender'].value_counts().plot(kind = 'bar')
        <Axes: xlabel='Gender'>
```



```
df['AGE'].nunique()
```

```
age_range_buckets = ["[{0} - {1})".format(age, age + 10) for age in range(20, 100, 10)]
age_range_buckets
      ['[20 - 30)',
      '[30 - 40)',
'[40 - 50)',
       '[50 - 60)',
       '[60 - 70)',
'[70 - 80)',
       '[80 - 90)',
'[90 - 100)']
```

```
df['age_range'] = pd.cut(x=df['AGE'], bins=8, labels=age_range_buckets)
df
```

ID	No_Pation	Gender	AGE	Urea	Cr	HbA1c	Chol	TG	HDL	LDL	VLDL	BMI
502	17975	F	50	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0
735	34221	М	26	4.5	62	4.9	3.7	1.4	1.1	2.1	0.6	23.0
420	47975	F	50	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0
680	87656	F	50	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0
504	34223	М	33	7.1	46	4.9	4.9	1.0	0.8	2.0	0.4	21.0
200	454317	М	71	11.0	97	7.0	7.5	1.7	1.2	1.8	0.6	30.0
671	876534	М	31	3.0	60	12.3	4.1	2.2	0.7	2.4	15.4	37.2
669	87654	М	30	7.1	81	6.7	4.1	1.1	1.2	2.4	8.1	27.4
99	24004	М	38	5.8	59	6.7	5.3	2.0	1.6	2.9	14.0	40.5
248	24054	М	54	5.0	67	6.9	3.8	1.7	1.1	3.0	0.7	33.0
	502 735 420 680 504 200 671 669 99	502 17975 735 34221 420 47975 680 87656 504 34223 200 454317 671 876534 669 87654 99 24004	502 17975 F 735 34221 M 420 47975 F 680 87656 F 504 34223 M 200 454317 M 671 876534 M 669 87654 M 99 24004 M	502 17975 F 50 735 34221 M 26 420 47975 F 50 680 87656 F 50 504 34223 M 33 200 454317 M 71 671 876534 M 31 669 87654 M 30 99 24004 M 38	502 17975 F 50 4.7 735 34221 M 26 4.5 420 47975 F 50 4.7 680 87656 F 50 4.7 504 34223 M 33 7.1 200 454317 M 71 11.0 671 876534 M 31 3.0 669 87654 M 30 7.1 99 24004 M 38 5.8	502 17975 F 50 4.7 46 735 34221 M 26 4.5 62 420 47975 F 50 4.7 46 680 87656 F 50 4.7 46 504 34223 M 33 7.1 46 200 454317 M 71 11.0 97 671 876534 M 31 3.0 60 669 87654 M 30 7.1 81 99 24004 M 38 5.8 59	502 17975 F 50 4.7 46 4.9 735 34221 M 26 4.5 62 4.9 420 47975 F 50 4.7 46 4.9 680 87656 F 50 4.7 46 4.9 504 34223 M 33 7.1 46 4.9 200 454317 M 71 11.0 97 7.0 671 876534 M 31 3.0 60 12.3 669 87654 M 30 7.1 81 6.7 99 24004 M 38 5.8 59 6.7	502 17975 F 50 4.7 46 4.9 4.2 735 34221 M 26 4.5 62 4.9 3.7 420 47975 F 50 4.7 46 4.9 4.2 680 87656 F 50 4.7 46 4.9 4.2 504 34223 M 33 7.1 46 4.9 4.9 200 454317 M 71 11.0 97 7.0 7.5 671 876534 M 31 3.0 60 12.3 4.1 669 87654 M 30 7.1 81 6.7 4.1 99 24004 M 38 5.8 59 6.7 5.3	502 17975 F 50 4.7 46 4.9 4.2 0.9 735 34221 M 26 4.5 62 4.9 3.7 1.4 420 47975 F 50 4.7 46 4.9 4.2 0.9 680 87656 F 50 4.7 46 4.9 4.2 0.9 504 34223 M 33 7.1 46 4.9 4.9 1.0 200 454317 M 71 11.0 97 7.0 7.5 1.7 671 876534 M 31 3.0 60 12.3 4.1 2.2 669 87654 M 30 7.1 81 6.7 4.1 1.1 99 24004 M 38 5.8 59 6.7 5.3 2.0	502 17975 F 50 4.7 46 4.9 4.2 0.9 2.4 735 34221 M 26 4.5 62 4.9 3.7 1.4 1.1 420 47975 F 50 4.7 46 4.9 4.2 0.9 2.4 680 87656 F 50 4.7 46 4.9 4.2 0.9 2.4 504 34223 M 33 7.1 46 4.9 4.9 1.0 0.8	502 17975 F 50 4.7 46 4.9 4.2 0.9 2.4 1.4 735 34221 M 26 4.5 62 4.9 3.7 1.4 1.1 2.1 420 47975 F 50 4.7 46 4.9 4.2 0.9 2.4 1.4 680 87656 F 50 4.7 46 4.9 4.2 0.9 2.4 1.4 504 34223 M 33 7.1 46 4.9 4.9 1.0 0.8 2.0	502 17975 F 50 4.7 46 4.9 4.2 0.9 2.4 1.4 0.5 735 34221 M 26 4.5 62 4.9 3.7 1.4 1.1 2.1 0.6 420 47975 F 50 4.7 46 4.9 4.2 0.9 2.4 1.4 0.5 680 87656 F 50 4.7 46 4.9 4.2 0.9 2.4 1.4 0.5 504 34223 M 33 7.1 46 4.9 4.9 1.0 0.8 2.0 0.4

1000 rows × 15 columns

Next steps: Generate code with df

View recommended plots

```
df['age_range'].value_counts()
```

Select only numeric columns
numeric_cols = df.select_dtypes(include=[np.number])

Calculate correlation
correlation_values = numeric_cols.corr()

correlation_values

	ID	No_Pation	AGE	Urea	Cr	HbA1c	Chol	
ID	1.000000	0.064920	-0.065980	-0.094434	-0.102457	-0.007571	0.044390	-(
No_Pation	0.064920	1.000000	-0.088006	-0.019160	0.000692	-0.032057	-0.030171	-(
AGE	-0.065980	-0.088006	1.000000	0.105092	0.054941	0.379136	0.036649	(
Urea	-0.094434	-0.019160	0.105092	1.000000	0.624134	-0.023603	0.001852	(
Cr	-0.102457	0.000692	0.054941	0.624134	1.000000	-0.037412	-0.007097	(
HbA1c	-0.007571	-0.032057	0.379136	-0.023603	-0.037412	1.000000	0.177489	(
Chol	0.044390	-0.030171	0.036649	0.001852	-0.007097	0.177489	1.000000	(
TG	-0.055908	-0.039885	0.148204	0.040980	0.056579	0.218556	0.321789	1
HDL	0.026231	-0.013357	-0.020038	-0.036994	-0.023804	0.028933	0.103814	-(
LDL	-0.064305	-0.003171	0.016105	-0.007301	0.039479	0.011057	0.416665	(
VLDL	0.146142	0.113754	-0.087903	-0.011191	0.009615	0.073462	0.076294	(
ВМІ	0.049409	0.017719	0.375956	0.045618	0.054746	0.413350	0.013678	(

Next steps: Generate code with correlation_values

View recommended plots

```
plt.figure(figsize=(15,9))
sns.heatmap(correlation_values,annot = True)
```



```
df2 = df.drop(['ID','No_Pation','AGE'], axis=1)
df2
           Gender Urea Cr HbAlc Chol TG HDL LDL VLDL BMI CLASS
                                                                             age_range
       0
                F
                     47
                          46
                                 49
                                       42 09
                                                 24
                                                      1 4
                                                            0.5 24.0
                                                                           Ν
                                                                                 [60 - 70)
                                                            0.6 23.0
       1
                M
                     4.5
                          62
                                 4.9
                                       3.7 1.4
                                                 1.1
                                                      2.1
                                                                           Ν
                                                                                 [20 - 30)
       2
                F
                     4.7
                          46
                                 4.9
                                       4.2 0.9
                                                 2.4
                                                      1.4
                                                            0.5 24.0
                                                                           Ν
                                                                                 [60 - 70)
       3
                F
                     4.7
                          46
                                 4.9
                                       4.2 0.9
                                                 2.4
                                                      1.4
                                                            0.5 24.0
                                                                           Ν
                                                                                 [60 - 70)
                                       4.9 1.0
                                                 0.8
                                                            0.4 21.0
                Μ
                     7.1
                          46
                                 4.9
                                                      2.0
                                                                           Ν
                                                                                 [30 - 40)
      995
                М
                    11.0
                          97
                                 7.0
                                       7.5 1.7
                                                 1.2
                                                      1.8
                                                            0.6 30.0
                                                                           Υ
                                                                                 [80 - 90)
      996
                Μ
                     3.0
                          60
                                12.3
                                       4.1 2.2
                                                 0.7
                                                      2.4
                                                            15.4 37.2
                                                                           Υ
                                                                                 [30 - 40)
      997
                M
                     7.1
                          81
                                 6.7
                                       4.1 1.1
                                                 1.2
                                                      2.4
                                                            8.1
                                                                 27.4
                                                                           Υ
                                                                                 [30 - 40)
      998
                Μ
                     5.8
                                 6.7
                                       5.3 2.0
                                                 1.6
                                                            14.0 40.5
                                                                                 [40 - 50)
                         59
                                                      2.9
      999
                M
                     5.0 67
                                 6.9
                                       3.8 1.7
                                                1.1
                                                      3.0
                                                            0.7 33.0
                                                                           Υ
                                                                                 [60 - 70)
     1000 rows x 12 columns
              Generate code with df2
                                            View recommended plots
 Next steps:
le1 = LabelEncoder()
df2['Gender'] =le1.fit_transform(df2['Gender'])
le2 = LabelEncoder()
df2['CLASS'] =le2.fit_transform(df2['CLASS'])
le3 = LabelEncoder()
df2['age_range'] =le3.fit_transform(df2['age_range'])
le1.classes
     array(['F', 'M'], dtype=object)
```

```
02/05/2024, 14:47
                                                                                        01_02_Begin.ipynb - Colab
    le2.classes_
          array(['N', 'P', 'Y'], dtype=object)
    le3.classes_
          array(['[20 - 30)', '[30 - 40)', '[40 - 50)', '[50 - 60)', '[60 - 70)', '[70 - 80)', '[80 - 90)', '[90 - 100)'], dtype=object)
    df2
```

	Gender	Urea	Cr	HbA1c	Chol	TG	HDL	LDL	VLDL	BMI	CLASS	age_range
0	0	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	0	4
1	1	4.5	62	4.9	3.7	1.4	1.1	2.1	0.6	23.0	0	0
2	0	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	0	4
3	0	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	0	4
4	1	7.1	46	4.9	4.9	1.0	8.0	2.0	0.4	21.0	0	1
995	1	11.0	97	7.0	7.5	1.7	1.2	1.8	0.6	30.0	2	6
996	1	3.0	60	12.3	4.1	2.2	0.7	2.4	15.4	37.2	2	1
997	1	7.1	81	6.7	4.1	1.1	1.2	2.4	8.1	27.4	2	1
998	1	5.8	59	6.7	5.3	2.0	1.6	2.9	14.0	40.5	2	2
999	1	5.0	67	6.9	3.8	1.7	1.1	3.0	0.7	33.0	2	4

1000 rows x 12 columns

Next steps: Generate code with df2 View recommended plots

```
scaler = MinMaxScaler()
```

```
columns_to_scale = ['Urea','Cr','HbA1c','Chol','TG','HDL','LDL','VLDL','BMI']
columns_scaled = ['Urea_scaled','Cr_scaled','HbA1c_scaled','Chol_scaled','TG_scaled','HDL_scaled','LDL_scaled','VLDL_scaled'
scale_values = df2[columns_to_scale].values
scaled_array = scaler.fit_transform(scale_values)
df2_scaled = pd.DataFrame(scaled_array, columns=columns_scaled)
df2_scaled
```

	Urea_scaled	Cr_scaled	HbAlc_scaled	Chol_scaled	TG_scaled	HDL_scaled
0	0.109375	0.050378	0.264901	0.407767	0.044444	0.226804
1	0.104167	0.070529	0.264901	0.359223	0.081481	0.092784
2	0.109375	0.050378	0.264901	0.407767	0.044444	0.226804
3	0.109375	0.050378	0.264901	0.407767	0.044444	0.226804
4	0.171875	0.050378	0.264901	0.475728	0.051852	0.061856

995	0.273438	0.114610	0.403974	0.728155	0.103704	0.103093
996	0.065104	0.068010	0.754967	0.398058	0.140741	0.051546
997	0.171875	0.094458	0.384106	0.398058	0.059259	0.103093
998	0.138021	0.066751	0.384106	0.514563	0.125926	0.144330
999	0.117188	0.076826	0.397351	0.368932	0.103704	0.092784
1000	rows × 9 columns					

Uron scaled Cr scaled While scaled Challesaled TC scaled WDL scaled

Next steps: Generate code with df2 scaled

View recommended plots

```
df3 = pd.concat([df2,df2_scaled],axis=1)
df3
```

	Gender	Urea	Cr	HbA1c	Chol	TG	HDL	LDL	VLDL	BMI	 age_range	Urea
0	0	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	 4	
1	1	4.5	62	4.9	3.7	1.4	1.1	2.1	0.6	23.0	 0	
2	0	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	 4	
3	0	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	 4	
4	1	7.1	46	4.9	4.9	1.0	0.8	2.0	0.4	21.0	 1	
995	1	11.0	97	7.0	7.5	1.7	1.2	1.8	0.6	30.0	 6	
996	1	3.0	60	12.3	4.1	2.2	0.7	2.4	15.4	37.2	 1	
997	1	7.1	81	6.7	4.1	1.1	1.2	2.4	8.1	27.4	 1	
998	1	5.8	59	6.7	5.3	2.0	1.6	2.9	14.0	40.5	 2	
999	1	5.0	67	6.9	3.8	1.7	1.1	3.0	0.7	33.0	 4	
1000	rowo v 01	مماسمه										

1000 rows × 21 columns

```
X = df3[['Gender','age_range','Urea_scaled','Cr_scaled','HbA1c_scaled','Chol_scaled','TG_scaled','HDL_scaled','LDL_scaled','
y = df3['CLASS'].values
train_set, test_set,train_label,test_label = train_test_split(X,y,test_size=0.20,random_state=0)
X[0]
            0. , 4. , 0.109375 , 0.05037783, 0.26490066, 0.40776699, 0.044444444, 0.22680412, 0.11458333, 0.01146132,
     array([0.
            0.17391304])
xgb_model = XGBClassifier(objective='multi:softmax', num_class=3)
models = []
models.append(('LR', LogisticRegression(solver ='lbfgs',multi_class='auto')))
models.append(('KNN', KNeighborsClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVC', SVC(gamma='scale')))
\label{local_models_append} $$ models.append(('RFC', RandomForestClassifier(n_estimators=100))) $$ models.append(('DTR', DecisionTreeRegressor())) $$
models.append(('XGB', xgb_model))
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits = 10)
    cv_results = model_selection.cross_val_score(model, X, y,cv=kfold, scoring='accuracy')
    results.append(cv_results)
    names.append(name)
    msg = "{}: {}) ({})". format(name, cv_results.mean(), cv_results.std())
    print(msg)
# Create an instance of the RandomForestClassifier
RFC model = RandomForestClassifier()
# Fit the model to your training data
RFC_model_fitted = RFC_model.fit(train_set, train_label)
# Use the fitted model to make predictions on your test set
RFC_model_prediction = RFC_model.predict(test_set)
XGBClassifier_model = XGBClassifier()
XGBClassifier_model_fitted = XGBClassifier_model.fit(train_set,train_label)
XGBClassifier_model_prediction = XGBClassifier_model.predict(test_set)
df3['CLASS'].unique() #0 means No diabetes, 1 means predicted, 2 means diabetes
     array([0, 1, 2])
print('XGB Classifier Accuracy Score:\n', accuracy_score(test_label, XGBClassifier_model_prediction))
print('RFC Accuracy Score:\n', accuracy_score(test_label, RFC_model_prediction))
     XGB Classifier Accuracy Score:
```

RFC Accuracy Score: 0.985

print('XGB Classifier Report:\n', classification_report(test_label, XGBClassifier_model_prediction, target_names=['0','1','2']
print('RFC Classification Report:\n', classification_report(test_label, RFC_model_prediction, target_names=['0','1','2']))

XGB Classifier	Report:			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	16
1	1.00	0.88	0.93	8
2				_
Z	0.99	1.00	1.00	176
accuracy			0.99	200
macro avq	1.00	0.96	0.98	200
weighted avg	1.00	0.99	0.99	200
weighted avg	1.00	0.33	0.33	200
RFC Classifica	tion Report:			
RFC Classifica	tion Report: precision	recall	f1-score	support
RFC Classifica		recall	f1-score	support 16
	precision			
0	0.89 1.00	1.00 0.88	0.94 0.93	16
0 1	precision 0.89	1.00	0.94	16 8
0 1	0.89 1.00	1.00 0.88	0.94 0.93	16 8
0 1 2 accuracy	0.89 1.00	1.00 0.88	0.94 0.93 0.99	16 8 176
0 1 2	0.89 1.00 0.99	1.00 0.88 0.99	0.94 0.93 0.99	16 8 176 200

XGBClassifier_matrix = confusion_matrix(test_label,XGBClassifier_model_prediction)
XGBClassifier_confusion_matrix_display = ConfusionMatrixDisplay(XGBClassifier_matrix)
fig, ax = plt.subplots(figsize=(5,5))
XGBClassifier_confusion_matrix_display.plot(cmap=plt.cm.Blues,ax=ax)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7a5a317276d0>


```
# Generate the confusion matrix
RFC_matrix = confusion_matrix(test_label, RFC_model_prediction)
```

Create a ConfusionMatrixDisplay instance
RFC_confusion_matrix_display = ConfusionMatrixDisplay(RFC_matrix)

Plot the confusion matrix
fig, ax = plt.subplots(figsize=(5,5))
RFC_confusion_matrix_display.plot(cmap=plt.cm.Blues, ax=ax)
plt.show()

