· ·	Kierunek i grupa: Inżynieria Obliczeniowa Grupa 1
Sprawozdanie z metod równań różniczkowych	

Sprawozdanie

Metody rozwiązania równań różniczkowych

W zadaniu należało użyć trzech różnych metod rozwiązywania równań różniczkowych. Wszystkie metody zaliczają się do metod iteracyjnych. Pierwszą z przedstawianych metod jest metoda Eulera, a dwoma kolejnymi są metody Rungego-Kutty, w których jedna odnosi się do metody Rungego-Kutty drugiego rzędu, a druga przedstawia tą metodę dla czwartego rzędu. Dane początkowe potrzebne do obliczeń, czyli kolejno:

- warunek początkowy "y(0)",
- punkt końcowy "x_n",
- liczba kroków "N"

podawane są przez użytkownika na początku programu. Wartość kroku obliczeń "h" obliczam dzieląc podaną wartość końcową przez liczbę kroków.

Obliczanie równania

Do przedstawienia mojego zadania użyłam równania różniczkowego, gdzie funkcja, przedział oraz warunek początkowy wynoszą odpowiednio:

$$y'(x) = 2x + y(x) + 3$$
, dla $0 \le x \le 3$
 $y(0) = 0$.

Obliczając równanie różniczkowe analitycznie z powyższego równania otrzymujemy:

$$y(x)=\mathrm{c}_0e^x-2\cdot x-5$$

gdzie c_0 jest stałą rzeczywistą, którą możemy obliczyć podstawiając nasz warunek początkowy y(0)=0 do wzoru. Otrzymujemy wtedy wartość stałej równą:

$$c_0 = 5$$
.

Mając już wszystkie wartości potrzebne do obliczeń jesteśmy w stanie wyznaczyć wartość funkcji y(x) w punkcie końcowym dla x=3, która wynosi:

$$y(3)=89.42768.$$

Działanie programu

W moim pierwszym przykładzie rozwiązuję równanie, gdzie liczba kroków wynosi 3. Poniżej przedstawiam screen do tego przykłady:

```
Funkcja uzyta : y'(x) = 2x + y(x) + 3

Podaj warunek poczatkowy y(0)=

0

Podaj punkt koncowy

3

Podaj ilosc krokow

3

Na przedziale <0,3> dokonano 3 krokow co 1

Metoda Eulera: y(3) = 29

Metoda RK2: y(3) = 67.125

Metoda RK4: y(3) = 88.3291
```

W drugim przykładzie dla tej samej funkcji użyłam liczby kroków równej 27. Poniżej przedstawiam screen z działania programu dla tego przypadku:

```
Funkcja uzyta : y'(x) = 2x + y(x) + 3

Podaj warunek poczatkowy y(0)=

0

Podaj punkt koncowy

3

Podaj ilosc krokow

27

Na przedziale <0,3> dokonano 27 krokow co 0.111111

Metoda Eulera: y(3) = 74.9849

Metoda RK2: y(3) = 88.8588

Metoda RK4: y(3) = 89.4273

Press any key to continue . . .
```

Można zauważyć, ze im większa liczba kroków, co za tym idzie mniejsza wartość kroku obliczeniowego, tym uzyskiwane wyniki w programie są bliższe wartości wyznaczonej sposobem analitycznym.