Suites numériques

Convergence

QCOP SUIT. 1

Soient $(u_n)_n, (v_n)_n, (w_n)_n$ trois suites réelles. Soit $\ell \in \mathbb{R}$.

- **1.** Définir « $(u_n)_n$ converge vers ℓ ».
- **2.** On suppose que :

 $\exists N_0 \in \mathbb{N}: \ \forall n \geqslant N_0, \ u_n \leqslant v_n \leqslant w_n.$ Montrer que :

$$\begin{vmatrix}
u_n & \longrightarrow \ell \\
w_n & \longrightarrow \ell
\end{vmatrix} \implies v_n \longrightarrow \ell.$$

- **3.** On suppose que $u_n \longrightarrow \ell$ et $\ell > 0$. Que dire de $(u_n)_n$?
- **4.** On suppose que $(u_n)_n$ est bornée et que $v_n \longrightarrow 0$. Que dire de la suite $(u_n v_n)_n$?

QCOP SUIT.2

Soient $(u_n)_n, (v_n)_n \in \mathbb{R}^{\mathbb{N}}$. Soient $\ell, \ell' \in \mathbb{R}$.

- 1. Rappeler le théorème d'encadrement pour les suites réelles.
- **2.** On suppose que $u_n \longrightarrow \ell$ et $\ell > 0$. Montrer que :

$$\exists N_1 \in \mathbb{N} : \forall n \geqslant N_1, u_n > 0.$$

- **3.** On suppose que $u_n \longrightarrow \ell$ et, à partir d'un certain rang, $u_n \geqslant 0$. Que dire de ℓ ?
- **4.** On suppose que :

$$\begin{cases} u_n \longrightarrow \ell \\ v_n \longrightarrow \ell' \\ \exists N_1 \in \mathbb{N} : \forall n \geqslant N_1, \ u_n \leqslant v_n. \end{cases}$$

Comparer ℓ et ℓ' .

QCOP SUIT.3

Soit $(u_n)_n$ une suite convergente.

- 1. Que dire de la suite $(u_{n+1})_n$?
- **2.** Montrer que $(u_{n+1} u_n)_n$ converge et déterminer sa limite.
- **3.** Donner deux exemples de suites $(u_n)_n$ non convergentes, telles que $u_{n+1} u_n \longrightarrow 0$. Justifier.

QCOP SUIT.4 ★

- 1. Soit $(u_n)_n$ une suite réelle croissante et bornée.
 - a) Justifier l'existence de $\ell := \sup_{n} u_n$.
 - **b)** Montrer que : $\forall \varepsilon > 0, \ \exists \textit{N}_{\varepsilon} \in \mathbb{N} : \ \ell \varepsilon < \textit{u}_{\textit{N}_{\varepsilon}} \leqslant \ell.$
 - c) Montrer que $u_n \longrightarrow \ell$.
- **2.** Décrire les alternatives pour la convergence d'une suite monotone.

QCOP SUIT.5

Soit $(u_n)_n$ une suite numérique. Soit $\ell \in \mathbb{C}$.

- 1. Donner la définition de « la suite $(u_n)_n$ converge vers ℓ ».
- 2. Montrer que :

$$u_n \longrightarrow \ell \implies |u_n| \longrightarrow |\ell|.$$

3. Montrer que :

$$u_n \longrightarrow \ell \quad \iff \quad \left[\mathfrak{Re}(u_n) \longrightarrow \mathfrak{Re}(\ell) \text{ et } \mathfrak{Im}(u_n) \longrightarrow \mathfrak{Im}(\ell). \right]$$

4. Soit $\alpha>0$. Soit $\theta\in\mathbb{R}\smallsetminus 2\pi\mathbb{Z}$. On admet que $\left(\sum_{n=1}^N \frac{\mathrm{e}^{\mathrm{i} n\theta}}{n^\alpha}\right)_{N\geqslant 1}$ converge.

$$\text{Montrer que } \left(\sum_{n=1}^N \frac{\cos(n\theta)}{n^\alpha} \right)_{N\geqslant 1} \text{ et } \left(\sum_{n=1}^N \frac{\sin(n\theta)}{n^\alpha} \right)_{N\geqslant 1} \text{ convergent.}$$

Suites extraites

QCOP SUIT.6

Soit $(u_n)_n$ une suite numérique. Soit $\ell \in \mathbb{R}$.

- 1. Qu'est-ce qu'une suite extraite de $(u_n)_n$?
- **2.** Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une extractrice.
 - a) Montrer que :

$$\forall n \in \mathbb{N}, \ \varphi(n) \geqslant n.$$

b) Montrer que :

$$u_n \longrightarrow \ell \implies u_{\varphi(n)} \longrightarrow \ell.$$

- **3.** Montrer que $((-1)^n)_n$ diverge.
- **4.** Montrer que :

$$u_{n+1} \longrightarrow \ell \implies u_n \longrightarrow \ell.$$

QCOP SUIT.7 ★

- 1. Soient $(u_n)_n$, $(v_n)_n \in \mathbb{R}^{\mathbb{N}}$. Définir « $(u_n)_n$ et $(v_n)_n$ sont adjacentes ».
- **2.** Soient $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$. Montrer que :

$$\begin{vmatrix}
u_{2p} & \longrightarrow \ell \\ u_{2p+1} & \longrightarrow \ell
\end{vmatrix} \quad \iff \quad u_n & \longrightarrow \ell.$$

3. Soit $(u_n)_n$ une suite positive, décroissante et convergeant vers 0.

Pour
$$n \in \mathbb{N}$$
, on pose $S_n := \sum_{k=0}^n (-1)^k u_k$.

- a) Montrer que $(S_{2p})_p$ et $(S_{2p+1})_p$ sont adjacentes.
- **b)** En déduire que $(S_n)_n$ converge.

QCOP SUIT.8 *

- 1. Énoncer le théorème de Bolzano-Weierstrass pour les suites numériques.
- **2.** Soient $a, b \in \mathbb{R}$ avec a < b. Soit $(u_n)_n \in [a, b]^{\mathbb{N}}$.
 - a) Par récurrence, construire deux suites réelles $(a_n)_n$ croissante et $(b_n)_n$ décroissante telles que $b_n a_n \longrightarrow 0$ et, pour tout $n \in \mathbb{N}$, $[a_n, b_n]$ contient une infinité de termes de $(u_k)_k$.
 - b) En déduire le théorème de Bolzano-Weierstrass.
- 3. Que dire d'une suite réelle croissante et à valeurs dans un segment ?

Formes indéterminées

QCOP SUIT.9

- **1.** Soit a > 0.
 - a) Justifier l'existence et calculer, à l'aide d'un taux d'accroissement, la limite

d'un taux d'accroissement,
$$\lim_{x\to 0} \frac{\ln(1+ax)}{x}.$$
b) En déduire que :
$$n\ln\left(1+\frac{a}{x}\right) \longrightarrow$$

$$n\ln\left(1+\frac{a}{n}\right)\longrightarrow a.$$

c) En déduire que

$$\left(1+\frac{a}{n}\right)^n\longrightarrow e^a.$$

2. Soit $(u_n)_n \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $u_n \longrightarrow 1$. Que peut-on dire de la nature de $(u_n^n)_n$?

Densité, borne supérieure

QCOP SUIT. 10

- **1.** Soit $A \subset \mathbb{R}$. Rappeler la définition de « Aest dense dans \mathbb{R} ».
- 2. Énoncer et démontrer le théorème de caractérisation séquentielle de la densité.
- **3.** a) Soit $x \in \mathbb{R}$. Soit $n \in \mathbb{N}$. Encadrer $|10^n x|$.
 - **b)** Montrer que \mathbb{D} est dense dans \mathbb{R} .

QCOP SUIT.11 ★

- **1.** Soit A une partie de \mathbb{R} non vide et majorée.
 - a) Montrer que :

$$\forall \varepsilon > 0, \quad \exists x_{\varepsilon} \in A : \sup(A) - \varepsilon < x \leqslant \sup(A).$$

- b) En déduire qu'il existe une suite $(x_n)_n \in A^{\mathbb{N}}$ convergeant vers $\sup(A)$.
- 2. On définit la partie

$$A := \Big\{ (-1)^n + \frac{1}{n+1} \; ; \; n \in \mathbb{N} \Big\}.$$

Montrer que A est bornée et déterminer sup(A) et inf(A).