CMPS 6610 Problem Set:

Name: Pavan Kumar Sanjay Student-ID: 287009125.

1. Asymptotic notation

1a Yes 2n+1 & O(2n) as 2n asymptotically dominates 2n+1. To prove this the following statement can be written as:

 $2^{n+1} \le c \cdot 2^n$ (Pefination of asymptotic dominance where c is a constant)

Here C=2For any value of C above 2 or equal to 2 $2^{n+1} \in O(2^n)$.

16. No the statement 22° ∈ O(2°) is not true.

Proof:

To prove that 2° does not asymptotically dominate 22° we must disprove 1 for a values of c and as n.

2275 C. 27 where n is the input size and c is a constant.

To disprove this statement lets take two cases:

(1) C=5 and D=3LHS (Left Hand side): $2^2=2^3=2^8$ Here the LHS=256.

PHS (Right hard side): C.2" = 5x23 = 40.

- statement 22° < c. 2° is false.
- Similar to before $2^{2n} > c \cdot 2^n$
 - $(2^{2^n} \notin O(2^n))$ as (2^{2^n}) asyptotically dominates
- 1c. No, n'of (O(log2n) as polynomial growth is always typically larger than lograthmic growth.
- This can be proved by disproving

 him 5 C. log2n for any

 Here let C=3 and n=50
 - On substituting values of card n in (1):
 - $(50)^{1.01} \le 3.(\log 50)^2$
 - = 51.99 > 8.659
 - proving n'of \ O(log^2n)

8

4 d. Yes, n'0 ∈ 12 (log 2n), To prove this statement we must prove this:

n'ol > c. lag2n if there exists a c and no such that n?no.

Take the example C=3 and n=30.

 $h^{1.01} = 31.037$. $C. \log^2 n = 3. (\log 30)^2 = 6.54$.

-> Here n''01 > c. log2n and for any n >30 and with c=3 this applies.

-> Similarly for any other cand no this equation eur proven true.

i. n''of E D (log2n)

1e. Yes, In & O (log3n). This can be proved by finding a c and no sew such that Insc. log3n for any n > no.

Let C = 3 and $D_0 = 11$ $\Rightarrow \sqrt{n_0} = \sqrt{11} = 3.31$ $3.\log^3 n_0 = 3.(\log 11)^3 = 3.38$

Here for C=3 and no= 11 Th < C. log3 n

This behaviour can be proven for to any n>11. In 60 (log3n). and comp. 653.

16. No $\sqrt{n} \notin \Omega$ (log3n) as proved previously when c=3 and $n_0 > 11$ $\sqrt{n} \leq c \cdot \log^3 n$ and therefore $\log^3 n$ can not be used as a lower bound for \sqrt{n} .

1290

19.

As per the defination of "little o". If there are two functions of (n) and gen) then fin 60(gen) if for every c and some any no the equation:

f (n) < c, g (n) is satisfied for n > no.

> This defination is analogous for "little w".
Except for every c and a no

(cn) > c2.5(n) > for n>

Ly for every n7, no.

8

arti.

MILITY TO

- As there are no is no point at which for) = C. gcn) or (2. gcn). There is no shared common point.
- > This . Therefore there no common values between O(gcn)) and w(gcn))
- -> Hence, O(gcn)) N w(gcn)) is an empty set.

> The function takes two numbers as arguments and returns the larger number between the two numbers > For example: if the two chosen numbers were 125and

28. Then 125 would be returned.

20.	
	This algorithm is similar to the Eucledian algorithm which depends on the number of recursive steps it takes for a 7.6 w a mod b where a is the smaller number to reach zero.
>	The work and span of this algorithm is Octogeninea, Octogeninea,
<i>→</i>	Similarly in this algorithm y mod a is being performed where y is the larger number. Although this still means that the smaller number is being driven to zero.
-7	There for Therefore & work and coan of this about the

There fore Therefore & work and span of this algorithm is O (log (min (a, b))) where a and b are two numbers.

36

- The iterative method works on the basis of sequentially identifying all possible combinations of a key in the array.
- > In almost any case it will iterate through the array so the work and span will both be OCN).

3d.

- The function works based on splitting the array into two halves and using recursion for them.
- -> Therefore the work = 26 2 W(1/2) + 1

Here WCN12) is the work done on one array. Constant time is to used to represent the work done before recursion.

> We can use the masters theorem here:

T(n) = aT(n/b) + (cn)

Here a=2, b=2 and f(n)=1

- \Rightarrow As f(n)=1, $T(n)=O(n^{\log_6 \alpha})=O(n^{\log_2 2})$ = O(n).
- Therefore workdone is O(n). Our span will also be O(n) as there is no parallelization.

- The work will be the same as before which is
- -> The span accounts for parallelization so:

S(n) = S(n12) + 1

- In this specific application the divide and conquer method divides our array into branches of two and merges them. This is a direct use of a binary tree.
- > Therefore our span is O (layn).