

8/10 points (80%)

	Congratulations! You passed!	Next Item						
~	1/1 point							
1. Which	1. Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?							
0	$a^{[3]\{8\}(7)}$							
Corr	ect							
	$a^{[8]\{3\}(7)}$							
	$a^{[8]\{7\}(3)}$							
	$a^{[3]\{7\}(8)}$							
	1/1							
	point							
2. Which	of these statements about mini-batch gradient descent do you agree with?							
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is fa	aster than one iteration of batch gradient						
	descent.							
Corr	ect							
	Training one epoch (one pass through the training set) using mini-batch gradient deusing batch gradient descent.	scent is faster than training one epoch						
	You should implement mini-batch gradient descent without an explicit for-loop over algorithm processes all mini-batches at the same time (vectorization).	different mini-batches, so that the						
×	0 / 1 point							
3.								
Why is	the best mini-batch size usually not 1 and not m, but instead something in-between?							
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usu descent.	ally slower than mini-batch gradient						
This should not be selected								
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in t	he mini-batch.						

← ^{Cor}	Optimization algorithms Quiz, 10 questions	8/10 points (80%)			
	If the mini-batch size is 1, you end up having to process the entire training set before making any pro	gress.			
Un-	Un-selected is correct				
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole tr making progress.	aining set before			
Correct					
4.	1 / 1 point				

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			

1 / 1

Optimization algorithms Suppose நடிகளுள்ளார் in Casablanca over the first three days of January are the same:

8/10 points (80%)

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $v_2 = 10$, $v_2^{corrected} = 10$
- $v_2=10$, $v_2^{corrected}=7.5\,$
- $v_2=7.5$, $v_2^{corrected}=7.5$
- $v_2=7.5$, $v_2^{corrected}=10\,$

Correct

1/1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

- $\alpha = \frac{1}{\sqrt{t}} \alpha_0$
- $lpha=0.95^tlpha_0$
- $lpha=e^tlpha_0$

Correct

1/1 point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta \Omega p timizat) \alpha n leads below was computed using <math>\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$. What would happen to your red curve as you vary $\beta = 0.9$.

1/1 point

Un-selected is correct

8. Consid Optimization algorithms
Quiz, 10 questions

8/10 points (80%)

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

0/1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try initializing all the weights to zero

Un-selected is correct

Try using Adam

Correct

Try better random initialization for the weights

This should be selected

Try mini-batch gradient descent

← Corr	Optimization algorithms Quiz, 10 questions	8/10 points (80%)
	Try tuning the learning rate $lpha$	
Corr	ect	
~	1/1 point	
10. W hich	of the following statements about Adam is False?	
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.99$	9, $arepsilon=10^{-8}$)
	Adam combines the advantages of RMSProp and momentum	
0	Adam should be used with batch gradient computations, not with mini-batches.	
Corr	ect	
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	

