

- Định nghĩa
- Bán kính hội tụ

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

KHOACNCX

Định nghĩa

Chuỗi lũy thừa (power series) là một chuỗi có dạng

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots,$$

trong đó x là biến số và các hằng số c_n được gọi là **các hệ số** (**cofficients**) của chuỗi lũy thừa.

BŐI HCMUT-CNCP

Xét chuỗi lũy thừa:

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

- Khi thay x bởi một giá trị cụ thể, ta được một chuỗi số và chuỗi này có thể hội tụ hoặc phân kỳ.
- Tổng của chuỗi lũy thừa là một hàm số S(x):

TAI LIES(x) =
$$\sum_{n=0}^{\infty} e_n x^n$$
, TAP

với **miền xác định** là tập hợp các giá trị x mà khi thay vào chuỗi lũy thừa ta được chuỗi số hội tụ.

KHOACNCX

Định nghĩa

Chuỗi có dạng

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots,$$

trong đó x là biến số và các c_n là hằng số, được gọi là **chuỗi** l**ũy thừa tâm a (power series centered at a)**.

BŐI HCMUT-CNCP

AKHOACNCD

Định nghĩa

Miền hội tụ của một chuỗi lũy thừa là tập hợp chứa tất cả các giá trị *x* mà khi thay vào chuỗi lũy thừa ta được chuỗi số hội tụ.

Miền hội tụ =
$$\left\{x : \sum_{n=0}^{\infty} c_n (x-a)^n \text{ hội tụ}\right\}$$
BỞI HCMUT-CNCP

Định lý

Xét chuỗi lũy thừa tâm a:

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$

Khi đó, ta chỉ có ba khả năng xảy ra:

- (a) Chuỗi chỉ hội tụ khi x = a.
- (b) Chuỗi hội tụ với mọi x.
- (c) Tồn tại một số dương R sao cho chuỗi hội tụ khi |x-a| < R và phân kỳ khi |x-a| > R.

MOACNC

- Số dương R trong trường hợp (c) được gọi là bán kính hội tụ (radius of convergence).
- Ta quy ước bán kính hội tụ R = 0 trong trường hợp (a) và $R = +\infty$ trong trường hợp (b).

BŐI HCMUT-CNCP

• Bán kính hội tụ của chuỗi lũy thừa $\sum_{n=0}^{\infty} c_n (x-a)^n$ có thể được

Ta gọi tập hợp

là **khoảng hội tụ**.

CHKHOACNCD

Ví dụ

Tìm bán kính hội tụ và miền hội tụ của chuỗi lũy thừa sau đây:

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}.$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Định lý

Cho chuỗi lũy thừa $\sum_{n=0}^{\infty} c_n(x-a)^n$ có bán kính hội tụ là R>0.

Xét hàm số S(x) là **tổng của chuỗi**, tức là

$$S(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
, với x thuộc miền hội tụ. Khi đó,

- (a) S(x) liên tục trên miền hội tụ;
- (b) $S'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$ trên khoảng hội tụ;
- (c) $\int_{a}^{x} S(t)dt = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$, trên khoảng hội tụ.

Tính chất của tổng chuỗi lũy thừa

- Tổng của chuỗi lũy thừa liên tục trên miền hội tụ của nó.
- Trong khoảng hội tụ, đạo hàm (tích phân) của tổng chuỗi bằng chuỗi đạo hàm (tích phân) tương ứng.
- Bán kính hội tụ của chuỗi đạo hàm và chuỗi tích phân bằng bán kính hội tụ của chuỗi ban đầu.

TÀI LIỆU SƯU TẬP

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

B A C H K H O A C N C P . C O N

KHOACNCX

Ví dụ

Tìm tổng của chuỗi số sau:

$$\sum_{n=1}^{\infty} \frac{n+1}{3^n}.$$

HD: Xét chuỗi lũy thừa
$$\sum_{n=1}^{\infty} (n+1)x^n$$
.

BŐI HCMUT-CNCP

Định lý

Nếu f(x) là tổng của một chuỗi lũy thừa tâm a với bán kính hội tụ R, tức là

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n,$$

thì f(x) khả vi vô hạn lần trên khoảng (a - R; a + R), và

$$c_n = \frac{f^{(n)}(a)}{n!}, \quad n = 0, 1, 2, \dots$$
TAILLEU SUU TÂP

Bởi vì chuỗi đạo hàm của chuỗi lũy thừa có cùng bán kính hội tụ với chuỗi ban đầu.

MOVCV

Định nghĩa

Cho hàm số f khả vi vô hạn lần trong khoảng (a-R;a+R). Ta gọi chuỗi lũy thừa tâm a

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

là **chuỗi Taylor** của hàm f tại a. Chuỗi Taylor của hàm f tại a = 0 còn gọi là **chuỗi Maclaurin** của hàm f.

BỞI HCMUT-CNCP

MOACN

Định lý

Cho hàm số f khả vi vô hạn lần trong khoảng (a - R; a + R). Giả sử tồn tại hằng số M > 0 và chỉ số $n_0 \in \mathbb{N}$ sao cho

$$|f^{(n)}(x)| \leq M$$
, với mọi $n \geq n_0$ và với mọi $x \in (a - R; a + R)$.

Khi đó,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
, với mọi $x \in (a-R; a+R)$.

BOI HCMUT-CNCP

1.

Miền hội tự là $D=\mathbb{R}$ TÀI LIÊU SƯU TÂP **B**ỞI HCMUT-CNCP

2.

TÀ Miền hội tụ là
$$D = (-1; 1)$$
 Â P

3.

$$(1+x)^{\alpha}=1+\sum_{n=1}^{\infty}\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n$$

- Nếu $\alpha \in \mathbb{N}$, thì miền hội tụ $D = \mathbb{R}$
- Nếu $\alpha \notin \mathbb{N}$ và $\alpha > 0$, thì miền hội tụ D = [-1; 1].
- Nếu $-1 < \alpha < 0$, thì miền hội tụ D = (-1; 1].
- Nếu $\alpha \leq -1$, thì miền hội tụ D = (-1; 1).

BổI HCMUT-CNCP

4.

Miền hội tụ là D = (-1; 1]**B**ổI HCMUT-CNCP

5.

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

TA Miền hội tụ là $D = \mathbb{R}$ TÂP

6.

TA Miền hội tụ là $D = \mathbb{R}$ TÂP

7.

CHKHOACNCD

Ví du

Hãy sử dụng các chuỗi Maclaurin cơ bản để tìm chuỗi Maclaurin của hàm số sau:

$$f(x) = \ln(1 + x - 2x^2).$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

CHKHOACNCD

Ví du

Hãy sử dụng các chuỗi Maclaurin cơ bản để tìm tổng của chuỗi số sau:

$$\sum_{n=0}^{\infty} \frac{(n+1)\cdot 2^n}{n!}.$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

