A DIRICHLET MODEL FOR INTERVAL RESPONSES

Matthias Kloft

1 - INTRODUCTION

"I like being around other people"

WHY USE INTERVAL RESPONSES?

Motivating Example:

- Whole Trait Theory (Fleeson, 2001)
 - Trait: Distribution of states

- Accounting for variability
- Range of valid values

2 – IRT MODELS

TESTING SCENARIO

Respondents: 1 ... I Items: 1 ... J Response: x_{ij}

INTERVAL RESPONSE

Manifest Response:

Interval Location (Midpoint):

$$\frac{y_{ij}^{(L)} + y_{ij}^{(U)}}{2}$$

Interval Width: $y_{ij}^{(U)}$ - $y_{ij}^{(L)}$

INTERVAL RESPONSE

Manifest Response:

Latent Space:

COMPOSITIONAL DATA

Components must sum to one: simplex

RESTRICTIONS

No support for zero-components

Single Response:

$$0 < x_{ij} < 1$$

> Interval Response:

$$0 < y_{ij}^{(L)} < y_{ij}^{(U)} < 1$$

BETA RESPONSE MODEL (BRM) Noel & Dauvier (2007)

$$x_{ij} \sim \text{Beta}(a_{ij}, d_{ij});$$

$$E(x_{ij}) = \frac{a_{ij}}{a_{ij} + d_{ij}}$$

$$a_{ij} = \exp[\alpha(\theta_i - \delta_j) + \tau_j] \qquad d_{ij} = \exp[-\alpha(\theta_i - \delta_j) + \tau_j]$$

Parameters: Ability / Difficulty

$$a_{ij} = \exp\left[\alpha(\theta_i - \delta_j) + \tau_j\right] \qquad d_{ij} = \exp\left[-\alpha(\theta_i - \delta_j) + \tau_j\right]$$

 θ_i : Person ability

Classic interpretation

 δ_i : Item difficulty

Parameters: Scaling

$$a_{ij} = \exp\left[\alpha(\theta_i - \delta_j) + \tau_j\right] \qquad d_{ij} = \exp\left[-\alpha(\theta_i - \delta_j) + \tau_j\right]$$

 $\pm \alpha > 0$: Scaling

Continuous model: Not a discrimination parameter!!

Parameters: Precision

 $\tau_i > 0$: Item precision (both additive!)

Steeper density curves

Parameters: Exponential Link

Example:

- $\theta_i \delta_i = 0$; $\tau_i = 0$
- $\triangleright \exp(0) = 1$
- ► Beta(1,1): uniform

BRM: EXAMPLES

 $\tau_j = 0.5$

RESPONSE INTERVALS - TERNARY SPACE

Response intervals

Location in ternary space

RESPONSE INTERVALS - TERNARY SPACE

Location in ternary space

DIRICHLET DISTRIBUTION

The beta distribution generalizes to the Dirichlet distribution.

Uniform

Unimodal

Multimodal

BETA RESPONSE MODEL (BRM) Noel & Dauvier (2007)

$$x_{ij} \sim \text{Beta}(a_{ij}, d_{ij});$$

$$E(x_{ij}) = \frac{a_{ij}}{a_{ij} + d_{ij}}$$

 $d_{ij} = \exp[\alpha(\theta_i - \delta_i) + \tau_i]$ $d_{ij} = \exp[-\alpha(\theta_i - \delta_i) + \tau_i]$

DIRICHLET DUAL RESPONSE MODEL (DDRM) Latent Parameterization

$$\mathbf{y}_{ij} \sim \text{Dirichlet}(a_{ij}, e_{ij}, d_{ij});$$

$$E(\mathbf{y}_{ij}) = \frac{a_{ij}}{a_{ij} + e_{ij} + d_{ij}}, \frac{e_{ij}}{a_{ij} + e_{ij} + d_{ij}}, \frac{d_{ij}}{a_{ij} + e_{ij} + d_{ij}}$$

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

DIRICHLET DUAL RESPONSE MODEL (DDRM)

Parameters: Precision

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] \quad d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

- Location dimension: equivalent to the BRM
- Expansion dimension: controls the interval width
- Scaling $\alpha_{\lambda}/\alpha_{\epsilon}$ per dimension
- Precision τ_i across both dimensions

DIRICHLET DUAL RESPONSE MODEL (DDRM) Parameters: Expansion Dimension

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

 η_i : Person expansion (preference for wider intervals)

 γ_i : Item expansion (strength to evoke wider intervals)

Higher values = wider response intervals

DIRICHLET DUAL RESPONSE MODEL (DDRM) Exponential Link

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

Example:

- $\theta_i \delta_j = 0;$ $\eta_i + \gamma_j = 0;$ $\tau_j = 0$
- $> \exp(0) = 1$
- \triangleright Dirichlet(1,1,1): uniform distribution over the simplex

DDRM EXAMPLES

50 randomly drawn intervals

Response distribution density

- Red vertical line: expected interval location (midpoint)
- Blue vertical lines: expected lower and upper bound

DDRM EXAMPLES

Comparison: Precision

DDRM Examples

Comparison: Precision

3 – EMPIRICAL EXAMPLE

EMPIRICAL EXAMPLE Methods

Two Extraversion scales:

- IPIP: 36 items (Interval Responses)
- BFI-2: 12 items (Single Responses)

Sample: n = 222 (f: 140, m: 80, d: 2)

POSTERIOR PREDICTIVE CHECKS Ternary

Empirical

Replicated

POSTERIOR PREDICTIVE CHECKS Binary Marginal Densities

Dark lines: empirical;

Lightlines: replicated

4 - WHY DO WE NEED A MODEL?

BOUNDEDNESS

Scale-Inherent Correlation

ADSM: Absolute Distance from Scale Midpoint

BOUNDEDNESS

Scale-Inherent Correlation

ADSM: Absolute Distance from Scale Midpoint

Negative correlation between ADMS and Interval Width

BOUNDEDNESS Comparison of Correlations

Manifest correlation: person mean scores

- ADSM
- Interval Width

Latent variable correlation: person parameters

- Absolute Location ($|\theta|$; remember: $M(\theta) = 0$)
- Expansion (η)

BOUNDEDNESS Comparison of Correlations

	Mean scores	Model parameters
Empirical:	r =57	r =19
Simulation:	r =74	r =02
True:		(r =002)

> The model accounts for the scale-inherent correlation

CONVERGENT VALIDITY: RESPONSE FORMATS Mean Scores vs. Estimates

Manifest correlation: person mean scores

- Single response
- Interval location (midpoint)

Latent variable correlation: person parameters

- Person location θ_{BRM}
- Person location θ_{DDRM}

CONVERGENT VALIDITY: RESPONSE FORMATS Correlations in the Empirical Study:

Mean scores:

$$r = .81$$

Model Parameters:

$$r = .87$$

> Latent model improves convergence

TAKE HOME POINTS

High convergent validity of response formats

Model accounts for boundedness

- Additional information: expansion dimension
 - Validity? What does it measure?
- Useful tool for analysis of interval responses

THANKS TO:

Prof. Dr. Andreas Voss

Dr. Raphael Hartmann

Contact: kloft@uni-marburg.de

Slides: https://github.com/matthiaskloft/

REFERENCES

- Danner, D., Rammstedt, B., Bluemke, M., Lechner, C., Berres, S., Knopf, T., Soto, C. J., & John, O. P. (2019). Das Big Five Inventar 2: Validierung eines Persönlichkeitsinventars zur Erfassung von 5 Persönlichkeitsdomänen und 15 Facetten. *Diagnostica*, 1–12. https://doi.org/10.1026/0012-1924/a000218
- Fleeson, W. (2001). Toward a structure- and process-integrated view of personality: Traits as density distributions of states. *Journal of Personality and Social Psychology*, 80(6), 1011–1027. APA PsycArtides. https://doi.org/10.1037/0022-3514.80.6.1011
- Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. *Personality psychology in Europe*, 7(1), 7–28.
- Noel, Y. (2014). A beta unfolding model for continuous bounded responses. *Psychometrika*, *79*(4), 647–674. https://doi.org/10.1007/s11336-013-9361-1
- Noel, Y., & Dauvier, B. (2007). A beta item response model for continuous bounded responses. Applied Psychological Measurement, 31(1), 47–73. https://doi.org/10.1177/0146621605287691
- Samejima, F. (1973). Homogeneous case of the continuous response model. Psychometrika, 38(2), 203–219. https://doi.org/10.1007/BF02291114
- Soto, C. J., & John, O. P. (2017). The Next Big Five Inventory (BFI-2): Developing and Assessing a Hierarchical Model With 15 Facets to Enhance Bandwidth, Fidelity, and Predictive Power. *Journal of Personality & Social Psychology*, 113(1), 117–143. https://doi.org/10.1037/pspp0000096

ADDITIONAL SLIDES

INTERVAL TYPES

- I) Conjunctive Set:
 - All valid values
 - Conceptualization we used

II) Disjunctive Set:

Only one valid value

BETA RESPONSE MODEL (BRM)

Noel & Dauvier, 2007

- A: Agreement
- D: Disagreement

BETA RESPONSE MODEL (BRM)

Noel & Dauvier, 2007

- A: Agreement
- D: Disagreement

$$A_{ij} \sim \Gamma(a_{ij}, s)$$

$$D_{ij} \sim \Gamma(d_{ij}, s)$$

$$\triangleright x_{ij} \sim \text{Beta}(a_{ij}, d_{ij})$$

BETA DISTRIBUTION

DIRICHLET DUAL RESPONSE MODEL (DDRM)

$$y_{ij}^{(L)}$$
 $y_{ij}^{(U)}$ $y_{ij}^{(L)}$ $1 - y_{ij}^{(U)}$

$$\frac{A_{ij}}{A_{ij}+E_{ij}+D_{ij}}\,\frac{E_{ij}}{A_{ij}+E_{ij}+D_{ij}}\,\frac{D_{ij}}{A_{ij}+E_{ij}+D_{ij}}$$

- A: Agreement
- E: Expansion
- D: Disagreement

DIRICHLET DUAL RESPONSE MODEL (DDRM)

$$y_{ij}^{(L)}$$
 $y_{ij}^{(U)}$ $y_{ij}^{(L)}$ $1 - y_{ij}^{(U)}$

$$\frac{A_{ij}}{A_{ij}+E_{ij}+D_{ij}}\,\frac{E_{ij}}{A_{ij}+E_{ij}+D_{ij}}\,\frac{D_{ij}}{A_{ij}+E_{ij}+D_{ij}}$$

- A: Agreement
- E: Expansion
- D: Disagreement

$$A_{ij} \sim \Gamma(a_{ij}, s)$$

 $E_{ij} \sim \Gamma(e_{ij}, s)$
 $D_{ij} \sim \Gamma(d_{ij}, s)$

$$\succ x_{ij} \sim \text{Dirichlet}(a_{ij}, e_{ij}, d_{ij})$$

DIRICHLET DUAL RESPONSE MODEL (DDRM) Parameters: Ability / Difficulty

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] \quad d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

 θ_i : Person location (ability)

 δ_i : Item location (difficulty)

Classic interpretation

DIRICHLET DUAL RESPONSE MODEL (DDRM) Parameters: Scaling

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

 $\pm \alpha_{\lambda} > 0$: Scaling, location dimension

 $\pm \alpha_{\epsilon} > 0$: Scaling, expansion dimension

Not a discrimination parameter!

DIRICHLET DUAL RESPONSE MODEL (DDRM)

Parameters: Precision

$$a_{ij} = \exp\left[\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right] d_{ij} = \exp\left[-\alpha_{\lambda}(\theta_{i} - \delta_{j}) + \tau_{j}\right]$$

$$e_{ij} = \exp\left[\alpha_{\epsilon}(\eta_{i} + \gamma_{j}) + \tau_{j}\right]$$

 $\tau_j > 0$: Item precision (all three additive!)

Steeper density curves

ITEM INFORMATION Location Dimension

ITEM INFORMATION Location Dimension

ITEM INFORMATION Comparison with Beta Response Model

BRM (Noel & Dauvier, 2007)

ITEM INFORMATION Expansion Dimension

ITEM INFORMATION Expansion Dimension

ITEM INFORMATION Conclusion

High sensitivity when:

- Location dimension = low / high (away from zero)
- Expansion dimension: high

➤ More information when response needs to be pushed towards the bounds of the response scale

3 - SIMULATION

for the DDRM

SETUP

Numbers of

- Persons: 100, 250, 500
- Items: 10, 15, 20, 30
- Replications per condition: 200

Person Parameters:

• $\theta_i, \eta_i \sim N(0,1)$

Item Parameters:

- δ_j , γ_j ~ sequence [-2, 2] by $4/n_{items}$
- $\tau_i \sim U(0,2)$

Scaling Parameters:

• α_{λ} , $\alpha_{\epsilon} = 0.5$

FIT MEASURES

Correlation: true vs. estimated

- Mean Signed Difference (Bias)
- Root Mean Squared Error (RMSE)
- Coverage: 90%CIs

RESULTS

RESULTS

RECOMMENDATIONS

• Use more than 200 persons

Use more than 15 items

PARAMETER ESTIMATES Top: Person Bottom: Item

6 – FUTURE RESEARCH

FUTURE RESEARCH

- Application to rating- and forecasting data
 - > Cultural consensus models
 - ➤ Are certain respondents more accurate?
- Test-retest reliability
- Discriminant validity:
 - > useful information vs. response biases