PgDay France 2023

PostgreSQL & Unicode

@DanielVerite

A propos de moi

Daniel Vérité -- daniel@manitou-mail.org

Consultant indépendant, expert bases de données spécialisé PostgreSQL.

Projets PostgreSQL:

- Contributeur occasionnel (psql et ICU)
- Extension ICU: https://github.com/dverite/icu_ext
- Mail en base de données: https://manitou-mail.org

Présence en ligne

- Blog Postgres en français: https://blog-postgresql.verite.pro
- Forum https://forums.postgresql.fr
- StackOverflow / dba.stackexchange.com: https://stackoverflow.com/users/238814
- Twitter @DanielVerite

La mission d'Unicode

Unicode est d'abord un **projet** démarré en 1988 avec une mission: établir un **jeu universel de caractères**

- incluant toutes les langues
- comprenant tous les symboles textuels
- utilisable par toutes les plateformes et langages
- disponible sur tous les périphériques

L'organisation Unicode

Consortium, non-profit corporation

https://www.unicode.org/consortium/consort.html

Full Members (Voting)

Institutional Members (Voting)

Unicode induit une norme ISO

ISO/IEC 10646:2020, 2800 pages.

https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Définit l'Universal Coded Character Set (UCS) et les encodages UTF-8, UTF-16, UTF-32.

Unicode = un standard évolutif

- Unicode 1.0 publié en 1991
- Unicode 15.0 publié en 2022
- 149186 points de code au total dans 327 blocs
- 161 scripts (latin, grec, thai, hiragana...)

https://www.unicode.org/versions/stats/

Unicode: riche et complexe

https://www.unicode.org/reports/

- 14 documents "Standard Annexes"
- 8 documents "Technical Standards"
- 7 documents "Technical Report"

Intégration Unicode dans PostgreSQL

Le code de PostgreSQL gère l'encodage UTF-8 mais délègue le reste à des bibliothèques.

- jusqu'avant la version 10: la bibliothèque C (libc) uniquement
- depuis la version 10: libc et ICU (International Components for Unicode)

Initialisation avec libc

```
$ initdb [--locale=nom]
ou [--lc-ctype=nom --lc-collate=nom]
-D /chemin/vers/pgdata
```

Les noms de locales (voir locale -a):

- langue_REGION.encodage (ex: fr_CA.utf8)
- langue: code ISO 639
- REGION: code ISO 3166

Initialisation par défaut

Par défaut c'est l'environnement (\$LANG) qui détermine la locale des bases **template0** et **template1**

```
$ echo $LANG
fr_FR.UTF-8

$ /usr/lib/postgresql/15/bin/initdb -D data
...
L'instance sera initialisée avec la locale « fr_FR.UTF-8 ».
L'encodage par défaut des bases de données a été configuré en conséquence avec « UTF8 ».
La configuration de la recherche plein texte a été initialisée à « french ».
...
```

Les locales non linguistiques

"C" ou "POSIX"

« Les localisations "C" et "POSIX" sont portables, leur partie LC_CTYPE correspond au jeu de caractères ASCII 7 bits.»

- LC_COLLATE = C trie par octets (non linguistique)
- LC_CTYPE = C ne connaît que le jeu de caractères US-ASCII (127 premiers caractères Unicode)

PostgreSQL gère ces locales en interne et garantit le même comportement sur tous les systèmes d'exploitation

Locale C.UTF-8

Depuis GNU libc 2.35 (février 2022) la locale **C.UTF-8** ou **C.utf8** est définitivement gérée

- permet de trier par octets comme "C"
- connaît tous les caractères Unicode contrairement à "C"

Elle existe aussi sur des libc d'autres systèmes Unix (FreeBSD par exemple).

Initialisation personnalisée

Il est intéressant de configurer le tri binaire nonlinguistique (C) en conjonction avec la caractérisation des caractères Unicode.

Performance tri linguistique versus binaire

Exemple de tris sur des données de taille moyenne (2,1 millions de lignes, 34 Mo de données brutes).

Influence langue/région

Exemples de différences entre fr_FR.utf8 et fr_CA.utf8:

```
WITH x(mot) AS (VALUES
    ('16devel'), ('16~~devel'),
    ('1A'), ('1a'),
    ('1-2ans'), ('12 ans'),
    ('amené'), ('amène'))
SELECT mot FROM x
ORDER BY mot;
```

Exécutons cette requête sur Linux Ubuntu 22.04 (GNU libc 2.35)

Influence langue/région

Locale "fr_FR.utf8"

Locale "fr_CA.utf8"

Locale "C.utf8"

mot

12 ans

1-2ans

16devel

16~~devel

1a

1A

amené

amène

mot

1-2ans

12 ans

16~~devel

16devel

1A

1a

amène

amené

mot

1-2ans

12 ans

16devel

16~~devel

1A

1a

amené

amène

Tri linguistique, voulu ou subi?

A propos du coût du tri linguistique versus tri binaire:

R.Haas blog, 2012, "The Perils of Collation-Aware Comparisons":

« I suspect there are a lot of people out there who are paying it more or less accidentally and don't really care very much about the underlying sorting behavior»

https://rhaas.blogspot.com/2012/03/perils-of-collation-aware-comparisons.html

Classification des caractères

La déclaration **LC_CTYPE** influe sur:

- les expressions régulières
- la mise en majuscules/minuscules
- l'analyseur lexical de la recherche plein texte

En principe, il n'y a aucune variabilité «culturelle» (langue/région) des résultats, contrairement aux tris.

Variabilité LC_CTYPE

D'un système à l'autre, la classification des caractères n'est pas 100% identique.

Est ce que *TAMIL DIGIT ONE* (U+B0E7) ou *MATHEMATICAL SANS-SERIF DIGIT ONE* (U+1D7E3) sont des chiffres?

Linux glibc 2.35, collation fr_FR.UTF-8

```
SELECT 's' ~ '\d';
=> false
SELECT '1' ~ '\d';
=> false
```

FreeBSD 12.4, collation fr_FR.UTF-8

```
SELECT 's' ~ '\d';
=> true
SELECT '1' ~ '\d';
=> true
```

Création d'une base

Une base peut remplacer les locales choisies à la création de l'instance.

```
CREATE DATABASE nom
  [LOCALE = ...]
  ou bien [LC_COLLATE = ... LC_CTYPE = ...]
TEMPLATE = 'template0';
```

Si la locale n'est pas celle de la création de l'instance, il faut se référer à *template0* qui est la base modèle "100% d'origine".

Création d'une collation

On peut utiliser d'autres locales que celle de la base en créant des collations à l'intérieur de la base.

```
CREATE COLLATION [schema.]nom
  [LOCALE = ...]
  ou [LC_COLLATE = ... LC_CTYPE = ...];
```

Généralement ce n'est pas utile car **initdb** importe les collations liées aux locales accessibles via libc dès l'initialisation de l'instance.

Clause COLLATE 1/2

Toute déclaration de colonne de type texte peut être suivie d'une clause COLLATE

```
CREATE TABLE produit (
   code_produit TEXT COLLATE "C"
   ...
);
```

Si un index est créé sur cette colonne, il sera trié en **binaire** (par ordre des points de code).

Clause COLLATE 2/2

Toute expression de type texte peut être suivie d'une clause COLLATE désignant un nom de collation:

```
SELECT * FROM produit
ORDER BY code_produit COLLATE "default";

SELECT 'abc' < 'ABC' COLLATE "C";
=> false
SELECT upper('été' COLLATE "C");
=> éTé
```

Premiers pas vers ICU

ICU a été introduit comme «fournisseur de collation» supplémentaire dans PostgreSQL 10 (2017)

Pourquoi offrir une alternative à libc?

Bug des clefs abrégées

Incompatibilité entre *strxfrm()* et *strcoll()* sur la libc GNU (Linux) engendrant des corruptions d'index avec Postgres 9.5.0

https://wiki.postgresql.org/wiki/Abbreviated_keys_glibc_issue

Conclusion: désactivation de la fonctionnalité des « clefs abrégées »

Bug de non-transitivité

Sur la libc Windows, la comparaison linguistique sur certains cas particuliers présente l'anomalite suivante:

- chaine1 < chaine2
- chaine2 < chaine3
- chaine1 > chaine3

Discussions sur pgsql-hackers: Windows UTF-8, non-ICU collation trouble

https://postgr.es/m/20191206063401.GB1629883%40rfd.leadboat.com

Inconsistent results with libc sorting on Windows

https://postgr.es/m/1407a2c0-062b-4e4c-b728-438fdff5cb07@manitou-mail.org

libc hétérogènes

Pas d'homogénéité entre les plateformes: une locale de même nom trie différemment d'un système à l'autre.

Exemple:

```
select * from (values ('"0102"'), ('0102')) as x(x)
order by x collate "en_US.utf8";
```

```
      FreeBSD 11:
      Debian 9:
      Debian 10:

      X
      X

      "0102"
      0102
      "0102"

      0102
      "0102"
      0102
```

Mise à jour glibc v2.28

En 2018 glibc version 2.28 a introduit un changement dans les tris linguistiques affectant considérablement l'ordre des résultats.

- Debian 9 → 10
- RHEL/CentOS 7 → 8

Conséquence: une mise à jour du système sans recréation des index textuels entraîne une corruption de ces index.

https://wiki.postgresql.org/wiki/Locale_data_changes

Figer les collations

Solution de montée de version proposée par Amazon pour Linux RHEL/CentOS: décorréler la partie collation du reste de GNU libc

Présentation PGCon Ottawa 2023

https://www.youtube.com/watch?v=0E6O-V8Jato

https://github.com/awslabs/compat-collation-for-glibc

Code

https://github.com/awslabs/compat-collation-for-glibc

Limitations fonctionnelles de libc

Dans libc, pas de paramétrage des comparaisons de chaînes de caractères:

- insensible à la casse
- insensible aux accents

Solution de contournement via fonctions ou types spécifiques (extensions *unaccent* et *citext*).

Absence de versionnage

Avec libc:

- Pas de versionnage systématique des locales
- Pas d'API pour récupérer un numéro de version par locale

Qu'est-ce qu'apporte ICU?

- (I)nternational
- (C) omponents for
- **U**nicode

Bibliothèque C/C++/Java de référence pour Unicode

https://icu.unicode.org

ICU: collations implicites

Au départ: **initdb** créé automatiquement environ 750 collations ICU déclinant 129 langues

- fr-x-icu (français, région indéfinie)
- fr-BE-x-icu (français parlé en Belgique)
- und-x-icu (langue non définie)
- unicode (Postgres version 16)

Influence langue/région ICU

Exemples de différences entre **fr-FR-x-icu** et **fr-CA-x-icu**:

```
WITH x(mot) AS (VALUES
    ('16devel'), ('16~~devel'),
    ('1A'), ('1a'),
    ('1-2ans'), ('12 ans'),
    ('amené'), ('amène'))
SELECT mot FROM x
ORDER BY mot COLLATE "fr-FR-x-icu";
    -- suivi de "fr-CA-x-icu"
```

Influence langue/région ICU

COLLATE
"fr-FR-x-icu"

COLLATE
"fr-CA-x-icu"

mot

1-2ans

12 ans

16~~devel

16devel

1A

1a

amené amène mot

1-2ans

12 ans

16~~devel

16devel

1A

1a

amène

amené

Paramètres de collations

On peut influer sur le comportement des collations en jouant sur les paramètres linguistiques

```
CREATE COLLATION "fr-CA-bis" (
   PROVIDER = 'icu',
   LOCALE = 'fr-CA-u-kb-false'
);
```

La clé de paramétrage *kb-false* désactive la règle faisant que les accents sont comparés en partant de la fin de la chaîne.

Paramètres des collations

COLLATE
"fr-FR-x-icu"

COLLATE "fr-CA-bis"

mot

1-2ans

12 ans

16~~devel

16devel

1A

1a

amène

amené

mot

1-2ans

12 ans

16~~devel

16devel

1A

1a

amène

amené

Paramétrage collations ICU

Clef	Valeurs	Description		
СО	standard, emoji, phonebk	Type de tri		
ka	noignore, shifted	Ignore certain caractères (ponctuation, espaces,)		
kb	true, false	Tri des accents en partant de la droite		
kc	true, false Prendre en compte ou ignorer la casse			
kf	upper, lower, false	Majuscules ou minuscules en premier		
kn	true, false	Prise en compte des nombres		
ks	level1, level2, level3, level4, identic	Niveau de comparaison (pour ignorer notamment casse et accents)		
kv	space, punct, symbol, currency	Précise quels caractères ka-shifted doit ignorer		

Liste complète des paramètres prévus par le standard: https://unicode.org/reports/tr35/tr35-collation.html#Setting_Options

Versionnage des collations

Toutes les collations ICU ont un numéro de version généré automatiquement.

Avertissement de changement de version

Exemple de montée de version du système d'exploitation en gardant la même instance PostgreSQL

```
SELECT 'abc' < 'ABC' COLLATE "fr-x-icu";

ATTENTION: le collationnement « fr-x-icu » a des versions différentes

DÉTAIL: Le collationnement dans la base de données a été créé en utilisant la version 153.14 mais le système d'exploitation fournit la version 153.112.

ASTUCE: Reconstruisez tous les objets affectés par ce collationnement, et lancez ALTER COLLATION pg_catalog."fr-x-icu" REFRESH VERSION, ou construisez PostgreSQL avec la bonne version de bibliothèque.
```

Table système pg_collation

Evolutions de la structure

Tal Colonne		atalog.pg_collatior Collationnement	
oid collname collnamespace collowner collprovider collisdeterministic* collencoding collcollate collctype colliculocale* collversion	oid name oid oid char" boolean integer text text text	 C C C	not null not null not null not null not null not null

(*) collisdeterministic à partir de PostgreSQL 12 colliculocale à partir de PostgreSQL 15, avant utiliser collcollate

Performances des tris

Exemple de tris sur des données de taille moyenne (2,1 millions de lignes, 34 Mo de données brutes).

- fr FR.utf8: collation glibc 2.28 (Debian 10)
- fr-x-icu: ICU 73
- collation "C" (binaire): tri internalisé dans Postgres

Collations non déterministes

Pour bénéficier complètement du paramétrage des collations, il faut désactiver le court-circuitage de Postgres qui pré-suppose que:

« Si deux chaînes ont une représentation binaire différentes, elles ne peuvent pas êtres égales ».

Les collations non déterministes introduites en **version 12**, permettent d'outrepasser cette règle.

Collations insensibles à la ponctuation

```
CREATE COLLATION "no-punct" (
   PROVIDER = 'icu',
   LOCALE = 'und-u-ka-shifted',
   DETERMINISTIC = false
);

SELECT 'Pg-Day' = 'PgDay' COLLATE "no-punct";
=> true
```

Collations insensibles à la casse

```
CREATE COLLATION "niveau2" (
   PROVIDER = 'icu',
   LOCALE = 'und-u-ks-level2',
   DETERMINISTIC = false
);

SELECT 'PgDay' = 'PGDAY' COLLATE "niveau2";
=> true
```

Combinaison de paramètres

```
CREATE COLLATION "matcher" (
   PROVIDER = 'icu',
   LOCALE = 'und-u-ks-level1-kc-true-ka-shifted',
   DETERMINISTIC = false
);
```

- **ks-level1**: comparaison au niveau primaire (lettres de base)
- **kc-true**: prendre en compte la casse (majuscules/minuscules)
- **ka-shifted**: ignorer les caractères de ponctuation

Équivalence canonique

https://fr.wikipedia.org/wiki/Équivalence_Unicode

«L'équivalence canonique est une forme d'équivalence qui préserve visuellement et fonctionnellement les caractères équivalents. Ils ont un codage binaire différents mais représentent un texte identique.»

Diacritiques combinants

 $U+0300 \rightarrow U+036F$

https://www.unicode.org/charts/PDF/U0300.pdf

	030	031	032	033	034	035	036
0	<u>ن</u>) 0310	<u></u>	ા) 0340	^ 6350	8)
1	် 0301	ි ඎ) 0321	<u></u>	် 0341	် 0351	() (361
2	<u>ি</u>	6	્	<u></u>	~ ⊙	়	<u></u>
3	~	ু জ্ঞান্ত	O323	<u> </u>	ે	○ × 0353	а О
4	ੋ	် 0314	: 0324	⊘	ုံ 0344	○ < 0354	e 0 884
5	0304	ু ও	် 825	0335	ု 0345	○ > 0355	i 0
6	<u>ک</u>	Q 0316	ુ 0326	0336	다 0346		°
7	் 0307	<u>ې</u>	ु ७३२७	Ø 0337	을 0347	් 0357	и С 0367

8	ं 0308	다 0318	<i>ု</i> 0328	∮	이 11 0348	ं 0358	С О 0368
9	ै ‱	으 6319	(329) 0339	ှ 0349	*	d ○ ∞
Α	்	031A	032A	0339 033A	~	0359 035A	ћ О
В	<u>″</u>	් 031B	<u></u>	_ 0338	~ ™	් 035B	m ○ 0368
С	> 0300	ှ 031C	<u>ې</u>	<u>~</u>	≈ 0340		r 0
D	্	<u></u>	○ 032D	Š	○ \$ 034D	O35D	t ○ ∞60
Ε	= 830E	다 031E	<u>ှ</u>	5 033€	○ ↑ 034E	O35E	V ○ 036E
F	%	○ + 031F	O32F	033F	CGJ 034F	<u> </u>	X 0

Diacritiques combinants

```
CREATE COLLATION "nd" (
 PROVIDER = 'icu',
 LOCALE = 'fr',
 DETERMINISTIC = false
SELECT U&'a\0300' AS decomp,
 U&'a\0300' = 'à' COLLATE "default" egal_determ,
 U&'a\0300' = 'à' COLLATE "nd" egal_non_determ
decomp | egal_determ | egal_non_determ
```

Normalisation Unicode

A partir de PostgreSQL 13, la normalisation est gérable via des fonctions

- **normalize**(texte, *FORM*): transformation dans la forme indiquée
- texte IS [NOT] FORM

Forme principalement utilisée: NFC (forme composée).

Limitations des collations non déterministes

- La clause LIKE n'est pas fonctionnelle.
- Les expressions régulières non plus.
- Elles ne peuvent pas être en collation par défaut d'une base.
- Les tests d'égalité sont nettement moins rapides que pour les collations déterministes.

PostgreSQL 15 - Base ICU

On peut créer des bases dont la locale par défaut est gérée par ICU

```
CREATE DATABASE nom
  LOCALE_PROVIDER = 'icu'
  ICU_LOCALE = 'fr'
  TEMPLATE = 'template0';
```

PostgreSQL 15 - instance ICU

On peut créer une instance dont la locale par défaut est gérée par ICU

```
$ /usr/lib/postgresql/15/bin/initdb -D data \
    --locale-provider=icu --icu-locale=fr-FR
...
L'instance sera initialisée avec cette configuration de locale :
    fournisseur: icu
    locale ICU: fr-FR
    LC_COLLATE: fr_FR.UTF-8
    LC_CTYPE: fr_FR.UTF-8
    LC_MESSAGES: fr_FR.UTF-8
    LC_MONETARY: fr_FR.UTF-8
    LC_NUMERIC: fr_FR.UTF-8
    LC_TIME: fr_FR.UTF-8
    LC_TIME: fr_FR.UTF-8
L'encodage par défaut des bases de données a été configuré en conséquence avec « UTF8 ».
```

Le futur

- ICU par défaut (à tester dans 16-beta2)?
- Meilleure intégration de C.UTF-8?
- Tri binaire (locale=C/POSIX) avec ICU en gestion de caractères?
- Collations non déterministes acceptées au niveau de la base?
- Multi-versions d'ICU pour lisser la réindexation?