Méréselmélet I. házi feladat

A házi feladat a becsléselmélet témaköreihez kapcsolódik. A feladat névre szólóan paraméterezett, a hozzárendelések a mellékelt táblázatban találhatók. A feladat megoldásához célszerűen a MATLAB (Lásd az ajánlott irodalmakat [1], [2], [3], [4]!) használatát ajánljuk, de bármilyen, hasonló célú programrendszer alkalmazása megengedett.

1. Készítsen jelgenerátort, amely alkalmas az $u(t) = Asin(2\pi f_0 t) + Bcos(2\pi f_0 t) + C$ időfüggvényű jel mintáinak előállítására. A frekvencia értéket teljesen pontosnak tekintjük, de A, B és C beállítása nem egészen az. A bizonytalanságot azzal fejezzük ki, hogy A, B és C értékeit Gauss eloszlású valószínűségi változók reprezentációjának tekintjük, és előzetes tapasztalataink birtokában μ_A, μ_B és μ_C várható értékkel, valamint Σ_{aa} kovariancia mátrixszal jellemezzük!

$$\Sigma_{aa} = \sigma_a^2 \begin{bmatrix} 1 & \rho_1 & \rho_1^2 \\ \rho_1 & 1 & \rho_1 \\ \rho_1^2 & \rho_1 & 1 \end{bmatrix},$$

Ennek megfelelően – ezen valószínűségi változók egy konkrét reprezentációjának feltételezésével – működtesse a generátort, és vegyen mintákat a generátor jeléből a $t=t_0+n\Delta t$ időpontokban (n=0,1,...,N-1)! Sajnos a mintavételezett értékek sem teljesen pontosak, amit előzetes tapasztalataink birtokában a mintavétel során a generátor kimeneti jeléhez adódó w(t) nagyságú, Gauss eloszlást $N(\mathbf{0},\mathbf{C})$ követő zaj-értékekkel írunk le!

$$\mathbf{C} = \sigma_w^2 \begin{bmatrix} 1 & \rho_2 & \rho_2^2 & \cdots & \rho_2^{N-1} \\ \rho_2 & 1 & \rho_2 & \cdots & \vdots \\ \rho_2^2 & \rho_2 & 1 & \cdots & \rho_2^2 \\ \vdots & \vdots & \vdots & \ddots & \rho_2 \\ \rho_2^{N-1} & \cdots & \rho_2^2 & \rho_2 & 1 \end{bmatrix}$$

A feladat tehát t=0 időpontban indítani egy ismert f_0 frekvenciájú, egyenkomponenst is tartalmazó, véletlen paraméterek által meghatározott szinusz jelet, amihez a megfigyelés során véletlen zaj adódik, majd az ebből vett mintákra alapozva végrehajtani az ábra szerinti mérési eljárást. A véletlen paraméterek, ill. a zaj mintái a ρ_1 , ill. ρ_2 értékkel paraméterezett mértékben korreláltak. (max. 6 pont.)

Ezzel előállt egy kísérletezésre alkalmas, szimulált környezet. Most kivételesen ismerni fogjuk a megmérendő értékeket, hiszen mi generáljuk őket, így lehetőségünk lesz a mérési eljárásaink megfelelőségének ilyen szintű vizsgálatára.

2. A rendelkezésre álló információk felhasználásával alkalmazza az MS becslési eljárást az A, B és C paraméterek becslőinek, valamint a becslési hiba kovarianciájának és a becslés esetleges (feltételes) torzításának meghatározására¹! Adja meg a becsléshez felhasznált összefüggéseket! Végezze el a mérést – a megadott paraméterek mellett – N=5,10,15,..., összesen 20 különböző mintaszámú regisztrátum esetére² először úgy, hogy a minták a jel egy teljes periódusából származnak, majd pedig úgy, hogy a teljes periódus egy tizedéből! Ismételje meg a méréseket arra az esetre is, amikor $\rho_1=\rho_2=$

¹ Egy ilyen feladat megfogalmazása egyáltalán nem ördögtől való: ilyenkor valójában egy szinusz-jelet illesztünk a mért jelhez. Ennek számos alkalmazása van az energetikai rendszerek vizsgálatától kezdve az A/D átalakítók teszteléséig bezárólag. Ez utóbbi esetben az A/D átalakító bemenetére több egészszámú periódusból álló szinusz-jelet vezetünk, majd a digitális kimenet értékeiből hisztogramot készítünk, és abból következtetünk a kódátmenetekhez tartozó tényleges kódváltási szintekre. Ahhoz, hogy ezt kellő pontossággal meg tudjuk tenni, kellő pontossággal ismernünk kell az A/D átalakító bemenetére vezetett szinusz-jel paramétereit. Mivel az torzítások és zavarások következtében bizonytalansággal terhelt, ezért el kell végeznünk a szinusz-illesztési feladatot.

² A mintavételek számának növelésével csak az additív zaj hatása mérsékelhető, az "ismeretlen" paraméterekről többlet-információhoz nem jutunk.

- 0! N függvényében ábrázolja grafikusan lehetőség szerint egy-egy diagramban³ a) a becsült és a tényleges értékek eltérését, b) a becslés torzítását és c) a becsült értékek szórását! (Összesen négy esetben!) Az eredményeket vesse össze a mérési bizonytalanságot okozó véletlen folyamat paramétereivel! Az eredmények mennyiben felelnek meg előzetes várakozásainak? (max. 10 pont.)
- 3. Az 1. feladatban generált véletlen jelparaméter- és zaj-értékeket használva végezze el a paraméterek becslését a legkisebb négyzetes hibájú (LS) becslőt alkalmazva is N mind a 20 értéke és a mintavételi idő mindkét értéke mellett! Ismételje meg a méréseket arra az esetre is, amikor $\rho_1 = \rho_2 = 0!~N$ függvényében ábrázolja grafikusan lehetőség szerint egy diagramban a becsült és a tényleges értékek eltérését! (Összesen négy esetben!) Megítélése szerint melyik becslő ad jobb eredményt? (max. 6 pont.)
- 4. Ismételje meg a 2. feladat szerinti valamennyi mérést M-szer⁴ (M = 5, 10, 100), és határozza meg a paraméter-becslők átlagát, valamint empirikus szórását! Itt is adja meg a használt összefüggéseket! N függvényében ábrázolja grafikusan lehetőség szerint egy-egy diagramban a) a paraméter-becslők átlagának és a paraméter (a priori) várható értékének eltérését, valamint b) az empirikus szórás és a paraméter (a priori) szórásának eltérését! (Összesen 3*négy esetben!) Értékelje az eredményeket (max. 6 pont)! Itt ugye minden ismételt futtatás mind a paraméterek, mind az additív zajt illetően más véletlen értékekkel történik!
- 5. A 4. ponthoz hasonlóan eljárva, az ott használt véletlen jelparaméter- és zajértékek mellett, határozza meg az LS paraméter-becslők átlagát, valamint empirikus szórását! N függvényében ábrázolja grafikusan lehetőség szerint egy-egy diagramban a) a paraméter-becslők átlagának és a paraméter (a priori) várható értékének eltérését, valamint b) az empirikus szórás és a paraméter (a priori) szórás értékének eltérését! (Összesen 3*négy esetben!) Értékelje az eredményeket (max. 4 pont)!
- 6. Tételezze fel, hogy a generátort éppen a 2. pontban kapott azon paraméterbecslő értékek szerinti állítjuk be, amelyeket a ρ_2 értékkel paraméterezett mértékben korrelált zaj mellett kaptunk. Határozza meg az alapharmonikus frekvencia varianciájának CRLB értékét ezen frekvencia függvényében! Az összefüggést N=5,10,100 értéke mellett ábrázolja grafikus formában is! A frekvenciát a $[0,1/(2\Delta t)]$ intervallumban a grafikus ábrázoláshoz szükséges felbontású diszkrét lépésekben változtassa! Mit tapasztal? Milyen tervezési szempontok fogalmazhatók meg az eredmények ismeretében? (max. 8 pont)

Ügyeljen arra, hogy a numerikus eredmények összehasonlíthatósága érdekében a 2. és 3. feladatok esetében ugyanazt a regisztrátumot dolgozza fel, azaz az A, B és C véletlen értékeket, valamint az additív zaj N=100 mintáját is csak egyszer generálja, és ebből használjon fel szükség szerinti számút! Hasonlóképpen járjon el a 4. és 5. feladatoknál, azaz mindkettőnél ugyanazt az M regisztrátumot dolgozza fel! (Ne feledje, hogy itt minden regisztrátum új A, B és C véletlen értékkel és additív zajjal generálandó, hiszen közelítő statisztikákat készít! Készítsen el M=100 regisztrátumot, és abból válassza az első 5-öt, majd az első 10-et és végül valamennyit!)

Miután átolvasta valamennyi feladatot, rendszerezze a teendőket, és tervezze meg milyen függvények, programok szükségesek, milyen ábrákat kell elkészítenie! Az ábrák elkészítésénél törekedjen arra, hogy azok érthetőek, értelmezhetőek legyenek!

Beadandók a becslési eljárások eredményei az egyes pontokban megadott formában, a felhasznált programok kommentezett listája, továbbá minden megoldott részfeladatra vonatkozóan a tapasztalatok átfogó, szöveges összegzése.

Kérjük a dokumentumon is szerepeltetni készítője nevét, Neptun-kódját és email elérhetőségét.

A feladatok megoldását elektronikusan, *pdf* formátumban, egyetlen fájlban, a https://hf.mit.bme.hu portál felületén kérjük.

A kiadás dátuma: 2022. március 2. A beadási határidő: 2022. április 6.

A feladat elfogadásához szükséges minimális pontszám: 16 Jó munkát!

³ Fontolja meg, hogyan célszerű a függőleges tengelyt úgy léptékezni, hogy az ábra minél kifejezőbb legyen! Ugye felmerülhet logaritmikus skála, eltolt nullpontú lineáris skála, szükség esetén paraméterenként külön diagram!

⁴ A "kísérletek" számának növelésével várhatóan az "ismeretlen" paraméterekről többlet-információhoz jutunk, az újbóli átlagolás révén az additív zaj hatását tovább csökkentjük.

A Méréselmélet I. házi feladat paraméterei

Neptun kód	μ_A	μ_B	$\mu_{\mathcal{C}}$	σ_a	σ_{w}	$ ho_1$	$ ho_2$	t0	f0
-	V	V	V	V	V	- / -		ms	Hz
A50PVY	.5	.5	.5	.1	.1	.1	.1	5	40
A65BYS	1	1	1	.1	.1	.1	.1	10	50
A93C8G	1	-1	2	.1	.1	.2	.1	10	50
AELQUH	1	2	1	.1	.2	.1	.2	10	50
ALEGEU	2	1	1	.2	.3	.1	.3	5	50
ANNBWP	1	-2	2	.2	.2	.2	.2	5	50
AR4G0T	2	2	1	.2	.1	.1	.1	5	50
B1ICCG	2	1	-2	.3	.1	.2	.1	5	50
BBBLAN	2	2	2	.1	.3	.1	.3	1	40
BF2VW5	.5	-1	1	.2	.3	.1	.3	2	40
BVWP8E	1	.5	1	.3	.1	.2	.1	3	40
BVYHRR	1	1	.5	.2	.3	.1	.3	4	40
C1HSKN	.5	.5	.5	.1	.1	.1	.1	5	40
C29QYZ	2	2	1	.2	.1	.1	.1	5	40
C4W6E3	2	-1	2	.3	.1	.2	.1	5	40
CE21DE	0	1	1	.1	.1	.1	.1	10	50
CER1QC	1	0	2	.1	.1	.2	.1	10	50
CUUYRM	1	2	0	.1	.2	.1	.2	10	50
CV4F00	2	0	1	.2	.3	.1	.3	5	50
D493LH	0	2	2	.2	.2	.2	.2	5	50
D52IKH	2	0	1	.2	.1	.1	.1	5	50
D9J06Y	2	1	0	.3	.1	.2	.1	5	50
DC4UO1	2	0	2	.1	.3	.1	.3	1	40
DEH4TX	0	1	1	.2	.3	.1	.3	2	40
DLSBCC	1	.5	1	.3	.1	.2	.1	3	40
FLOAOQ	1	1	.5	.2	.3	.1	.3	4	40
FM8TIK	.5	.5	.5	.1	.1	.1	.4	5	40
FXBL78	2	-2	0	.2	.1	.1	.1	5	40
G09F7X	2	1	2	.3	.1	.2	.1	5	40
GB918V	2	0	1	.2	.3	.1	.3	5	50
H3R8SE	0	2	2	.2	.2	.2	.2	5	50
HFITES	2	0	1	.2	.1	.1	.1	5	50
HOTQM1	2	-1	0	.3	.1	.2	.1	5	50
HQXCD0	2	0	2	.1	.3	.1	.3	1	60
HYP4VW	0	1	1	.2	.3	.1	.3	2	60
I45AYB	1	.5	1	.3	.1	.2	.1	3	60
16FRZS	1	1	.5	.2	.3	.1	.3	4	60
18P836	.5	.5	.5	.1	.1	.1	.1	5	60
JB3JZA	2	2	0	.2	.1	.1	.1	5	60
JC74ZC	2	1	2	.3	.1	.2	.1	5	60
J00019	1	2	0	.1	.2	.1	.2	10	50
JPXSOM	2	0	1	.2	.3	.1	.3	5	50
JWV9WR	0	2	2	.2	.2	.2	.2	5	50
KCIOUJ	2	0	1	.2	.1	.1	.1	5	50
LJ0MS5	2	-1	0	.3	.1	.2	.5	5	50
M0C3IY	2	0	2	.1	.3	.1	.3	1	40
M5M1YZ	0	1	1	.2	.3	.1	.3	2	40
MEVPIT	1	5	1	.3	.1	.2	.1	3	40
NO887J	1	1	.5	.2	.3	.1	.3	4	40
NZYH9Q	1	-2	2	.2	.2	.2	.2	5	50
OEC3E0	2	2	1	.2	.1	.1	.1	5	50
OH9I5E	2	1	-2	.3	.1	.2	.1	5	50
OHJIJL				ر. ا	•±	٠.۷			50

Neptun kód	μ_A	μ_B	μ_{C}	σ_a	σ_{w}	$ ho_1$	$ ho_2$	t0	f0
	V	V	V	V	V			ms	Hz
OT9IYM	2	2	2	.1	.3	.1	.3	1	40
PBXD6K	.5	-1	1	.2	.3	.1	.3	2	40
Q496O3	1	.5	1	.3	.1	.2	.1	3	40
RCPHY0	1	1	.5	.2	.3	.1	.3	4	40
RJ448X	.5	.5	.5	.1	.1	.1	.1	5	40
RXEIAH	2	2	1	.2	.1	.1	.5	5	40
SHCHJ2	2	-1	2	.3	.1	.2	.1	5	40
ST9OKE	0	1	1	.1	.1	.1	.4	10	50
SWI6GG	1	0	2	.1	.1	.2	.1	10	50
SYRJHP	1	2	0	.1	.2	.1	.2	10	50
TRU7BU	2	0	1	.2	.3	.1	.3	5	50
U8HERV	0	2	2	.2	.2	.2	.2	5	50
UFO7EC	2	0	1	.2	.1	.1	.1	5	50
V3UWB0	2	1	0	.3	.1	.2	.5	5	50
VSD92X	2	0	2	.1	.3	.1	.3	1	40
VVX2Z1	0	1	1	.2	.3	.1	.3	2	40
VWLV0K	1	.5	1	.3	.1	.2	.1	3	40
WBBKA1	1	1	.5	.2	.3	.1	.3	4	40
WGUOHR	.5	.5	.5	.1	.1	.1	.1	5	40
XAPFQ5	2	-2	0	.2	.1	.1	.4	5	40
XL9DSS	2	1	2	.3	.1	.2	.1	5	40
XV9G2J	2	0	1	.2	.3	.1	.3	5	50
Y3QE2D	0	2	2	.2	.2	.2	.2	5	50
YB4RKW	2	0	1	.2	.1	.1	.1	5	50
YLIS5V	2	-1	0	.3	.1	.2	.1	5	50
YLO9ZE	2	0	2	.1	.3	.1	.3	1	60
YWXW6F	0	1	1	.2	.3	.1	.3	2	60
ZVZCX2	1	.5	1	.3	.1	.2	.1	3	60
ZS7VMN	1	1	.5	.2	.3	.1	.3	4	60