Logistic Regression and Softmax Regression

Prof. Mingkui Tan

SCUT Machine Intelligence Laboratory (SMIL)

Contents

1 Logistic Regression

2 Softmax Regression

3 Variant of Softmax Loss

Contents

1 Logistic Regression

² Softmax Regression

3 Variant of Softmax Loss

Data Example

Dataset:
$$\mathcal{D} = \{(\mathbf{x}_{1}, y_{1}), ..., (\mathbf{x}_{n}, y_{n})\}$$

- $\mathbf{x}_i \leftarrow \text{health information}$
- $y_i = \pm 1 \leftarrow \text{did he have a heart attack or not}$
- Given the health information of one person:

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"

How to infer the **probability of heart attack?**

Linear Classification and Regression

The linear signal:

$$z = \mathbf{w}^{\mathrm{T}}\mathbf{x}$$

Linear Classification

Linear Regression

Probability Function

To infer the probability of heart attack $P[y = +1|\mathbf{x}]$, the probability function of logistic function is as follows:

$$h_{\mathbf{w}}(\mathbf{x}) = g(z) = g\left(\sum_{i=1}^{m} w_i x_i\right) = g(\mathbf{w}^{\mathrm{T}} \mathbf{x})$$

Here, $z = \mathbf{w}^{\mathrm{T}}\mathbf{x}$, $g(\cdot)$ is a logistic function:

$$g(z) = \frac{1}{1 + e^{-z}}$$

Properties of Logistic Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

- The function is a continuous function
- If $z \to +\infty$, then $g(z) \to 1$; if $z \to -\infty$, then $g(z) \to 0$

$$g(z) = \frac{1}{1 + e^{-z}} = \frac{e^{z}}{1 + e^{z}}$$
$$g(-z) = \frac{1}{1 + e^{z}} = 1 - g(z)$$

Intuitively, similar to SVM, we need to define a Loss Function to find a good $h_{\mathbf{w}}(\mathbf{x})$ so that it fits the following targets well:

$$h_{\mathbf{w}}(\mathbf{x})$$
 is good if:
$$\begin{cases} h_{\mathbf{w}}(\mathbf{x}) \approx 1, & y = 1 \\ h_{\mathbf{w}}(\mathbf{x}) \approx 0, & y = -1 \end{cases}$$

Can we use the least square loss below?

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}_i) - \frac{1}{2}(1 + y_i))^2$$
 Questions: Why the least square loss is in this way?

- Can we use this loss? The answer is Negative! Why?
- Probability $h_{\mathbf{w}}(\mathbf{x})=1.001$ which is better than $h_{\mathbf{w}}(\mathbf{x})=0.9$
- But $h_{\mathbf{w}}(\mathbf{x})$ denotes the probability, thus $h_{\mathbf{w}}(\mathbf{x})$ must satisfy:

$$h_{\mathbf{w}}(\mathbf{x}) \leq 1$$
.

We need to define a Loss Function to find a good $h_{\mathbf{w}}(\mathbf{x})$ so that it fits the following targets well:

$$h_{\mathbf{w}}(\mathbf{x})$$
 is good if:
$$\begin{cases} h_{\mathbf{w}}(\mathbf{x}) \approx 1, & y = 1 \\ h_{\mathbf{w}}(\mathbf{x}) \approx 0, & y = -1 \end{cases}$$

- The least square loss is no longer valid here since $h_{\mathbf{w}}(\mathbf{x})$ is a probability function with $h_{\mathbf{w}}(\mathbf{x}) \leq 1$.
- Here, we introduce a new loss called logistic loss as below:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i \mathbf{w}^{\mathrm{T}} \mathbf{x}_i})$$

Why the logistic loss is in this form?

Probabilistic View of Training Samples

Recall $h_{\mathbf{w}}(\mathbf{x})$ is a probability function to predict the probability of an instance \mathbf{x} being to the label $y_i \in \{-1,1\}$ as below:

$$P(y|\mathbf{x}) = \begin{cases} g(\mathbf{w}^{\mathrm{T}}\mathbf{x}), & y = 1\\ 1 - g(\mathbf{w}^{\mathrm{T}}\mathbf{x}) = g(-\mathbf{w}^{\mathrm{T}}\mathbf{x}), & y = -1 \end{cases}$$

- The training sample (\mathbf{x}_i, y_i) can be considered as **random variables** sampled from a sample space $\{\mathcal{X}, \mathcal{Y}\}$.
- The instance \mathbf{x}_i and its label y_i follow a **conditional probability**:

$$P(y_i|\mathbf{x}_i) = g(y_i\mathbf{w}^{\mathrm{T}}\mathbf{x}_i)$$

The label y_i is definitely determined by the observation \mathbf{x}_i , namely y_i is condition on \mathbf{x}_i

Recall that the training samples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ can be considered as random variables following the a conditional probability as below:

$$P(y_i|\mathbf{x}_i) = g(y_i\mathbf{w}^{\mathrm{T}}\mathbf{x}_i)$$

Likelihood of training examples:

Assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are independently sampled, the joint distribution (or likelihood) $P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n)$ of $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ satisfies:

$$P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n P(y_i | \mathbf{x}_i)$$

Note the parameter **w** determines the distribution $P(y_i|\mathbf{x}_i) = g(y_i\mathbf{w}^T\mathbf{x}_i)$

- Given the likelihood $P(y_1, ..., y_n | \mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1}^n P(y_i | \mathbf{x}_i)$, we can estimate \mathbf{w} with Maximum Likelihood Estimation (MLE)
- What is Maximum Likelihood Estimation?

Definition: Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a statistical method used to make inferences about parameters of the underlying probability distribution of a given data set.

How to estimate parameter **w** in $h_{\mathbf{w}}(\mathbf{x})$ with MLE?

Estimate **w** by maximizing the likelihood

$$\max_{\mathbf{w}} P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n P(y_i | \mathbf{x}_i)$$

$$\max \prod_{i=1}^{n} P(y_i | \mathbf{x}_i) \Leftrightarrow \max \log(\prod_{i=1}^{n} P(y_i | \mathbf{x}_i))$$

$$\equiv \max \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i)$$

$$\Leftrightarrow \min -\frac{1}{n} \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i)$$

Estimate **w** by maximizing the likelihood $\max_{\mathbf{w}} \prod_{i=1}^{n} P(y_i | \mathbf{x}_i)$

$$\max \prod_{i=1}^{n} P(y_{i}|\mathbf{x}_{i}) \Leftrightarrow \max \log(\prod_{i=1}^{n} P(y_{i}|\mathbf{x}_{i}))$$

$$\Leftrightarrow \min \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{P(y_{i}|\mathbf{x}_{i})}$$

$$\equiv \min \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{g(y_{i} \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})}$$

$$\equiv \min \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_{i} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}})$$

$$\equiv \min \mathcal{L}(\mathbf{w})$$

Definition: Logistic regression

$$\max_{\mathbf{w}} \prod_{i=1}^{n} P(y_i | \mathbf{x}_i) = \min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i \cdot \mathbf{w}^T \mathbf{x}_i})$$

Regularization Required

Similar to SVM, we employ Regularization to avoid overfitting issue

We have the following objective function for logistic regression:

$$J(\mathbf{w}) = \mathcal{L}(\mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

Here, $\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i \cdot \mathbf{w}^T \mathbf{x}_i})$ is called **Logistic Loss** and λ is the regularization parameter.

Why need regularization?

- "Simple" model
- Less prone to overfitting

SVM vs Logistic Regression

SVM:

min
$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

logistic regression:

$$\min J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

- The regularization term $||\mathbf{w}||_2^2$ is called L_2^2 regularizer
- Connections to SVM:
 - Both are supervised algorithms
 - Both are used to solve binary classification problem

Graphical Comparison of Loss Functions

Comparison of Different Loss Functions

logistic loss:

$$\mathcal{L}(\mathbf{x}_i; \mathbf{w}) = \log(1 + e^{-y_i \mathbf{w}^{\mathrm{T}} \mathbf{x}_i})$$

hinge loss:

$$\mathcal{L}(\mathbf{x}_i; \mathbf{w}) = \max(0, 1 - y_i \mathbf{w}^{\mathrm{T}} \mathbf{x}_i)$$

exponential loss (for adaboost):

$$\mathcal{L}(\mathbf{x}_i; \mathbf{w}) = e^{-y_i \mathbf{w}^{\mathrm{T}} \mathbf{x}_i}$$

zero one loss:

$$\mathcal{L}(\mathbf{x}_i; \mathbf{w}) = \begin{cases} 0, & y_i \mathbf{w}^{\mathrm{T}} \mathbf{x}_i > 0 \\ 1, & y_i \mathbf{w}^{\mathrm{T}} \mathbf{x}_i \leq 0 \end{cases}$$

Graphical Comparison of Three Loss Functions

Minimize $J(\mathbf{w})$ by (Stochastic) Gradient Descent: $\min_{\mathbf{w}} J(\mathbf{w})$

Compute gradient $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$ of $J(\mathbf{w})$ with respect to \mathbf{w} :

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = -\frac{1}{n} \sum_{i=1}^{n} \frac{y_i \mathbf{x}_i e^{-y_i \mathbf{w}^T \mathbf{x}_i}}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}} + \lambda \mathbf{w}$$

Update parameters with learning rate η

$$\mathbf{w} \coloneqq \mathbf{w} - \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$$

Note:
$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial (\log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}))}{\partial \mathbf{w}} + \lambda \mathbf{w} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}} \cdot \frac{\partial (e^{-y_i \mathbf{w}^T \mathbf{x}_i})}{\partial \mathbf{w}} + \lambda \mathbf{w}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}} \cdot e^{-y_i \mathbf{w}^T \mathbf{x}_i} \cdot (-y_i \mathbf{x}_i) + \lambda \mathbf{w} = -\frac{1}{n} \sum_{i=1}^{n} \frac{y_i \mathbf{x}_i e^{-y_i \mathbf{w}^T \mathbf{x}_i}}{1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}} + \lambda \mathbf{w}$$

Logistic Regression for $y_i \in \{0,1\}$

Previous study considers $y_i \in \{-1, +1\}$, but what if $y_i \in \{0, 1\}$ and what if $y_i \in \{0, 1, ..., K - 1\}$?

- Let us first consider the simple case: $y_i \in \{0,1\}$
- Similar to the case $y_i \in \{-1,1\}$, we define the probability of \mathbf{x}_i being with the label $y_i \in \{0,1\}$ as follows:

$$P(y_i|\mathbf{x}_i) = \begin{cases} h_{\mathbf{w}}(\mathbf{x}_i), & y = 1\\ 1 - h_{\mathbf{w}}(\mathbf{x}_i), & y = 0 \end{cases}$$

■ More specifically, the instance \mathbf{x}_i and its label y_i follow the conditional probability as below:

$$P(y_i|\mathbf{x}_i) = h_{\mathbf{w}}(\mathbf{x}_i)^{y_i} \cdot \left(1 - h_{\mathbf{w}}(\mathbf{x}_i)\right)^{1 - y_i}$$

Again, Resort to Maximum Likelihood Estimation

Note the parameter **w** determines the distribution

$$P(y_i|\mathbf{x}_i) = h_{\mathbf{w}}(\mathbf{x}_i)^{y_i} \cdot \left(1 - h_{\mathbf{w}}(\mathbf{x}_i)\right)^{1 - y_i}$$

Likelihood of training examples:

Assuming that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are independently sampled, the joint distribution (or likelihood) $P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n)$ of $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ satisfies $P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n P(y_i | \mathbf{x}_i)$

■ We can estimate w with Maximum Likelihood Estimation (MLE)

Similar to $y_i \in \{-1,1\}$, we maximize the likelihood to estimate **w**

$$\max_{\mathbf{w}} P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^{n} P(y_i | \mathbf{x}_i)$$

Similar to $y_i \in \{-1,1\}$, we maximize the likelihood to estimate **w**

$$\max_{\mathbf{w}} P(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^{n} P(y_i | \mathbf{x}_i)$$

$$\max \prod_{i=1}^{n} P(y_i | \mathbf{x}_i) \Leftrightarrow \max \log(\prod_{i=1}^{n} P(y_i | \mathbf{x}_i))$$

$$\equiv \max \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i)$$

$$\Leftrightarrow \min -\frac{1}{n} \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i)$$

Estimate **w** by maximizing the likelihood $\max_{\mathbf{w}} \prod_{i=1}^{n} P(y_i | \mathbf{x}_i)$

$$\max \prod_{i=1}^{n} P(y_i | \mathbf{x}_i) \Leftrightarrow \max \log(\prod_{i=1}^{n} P(y_i | \mathbf{x}_i))$$

$$\equiv \min -\frac{1}{n} \sum_{i=1}^{n} \log \left(h_{\mathbf{w}}(\mathbf{x}_i)^{y_i} \cdot \left(1 - h_{\mathbf{w}}(\mathbf{x}_i) \right)^{1 - y_i} \right)$$

$$\equiv \min -\frac{1}{n} \sum_{i=1}^{n} (y_i \log h_{\mathbf{w}}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(\mathbf{x}_i)))$$

$$\equiv \min \mathcal{L}(\mathbf{w})$$

Regularization Required

We employ Regularization to avoid overfitting issue

We have the following objective function for logistic regression:

$$J(\mathbf{w}) = \mathcal{L}(\mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

Now, the **logistic loss** becomes

$$\mathcal{L}(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log h_{\mathbf{w}}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(\mathbf{x}_i)))$$

Minimize $J(\mathbf{w})$ by (Stochastic) Gradient Descent: $\min_{\mathbf{w}} J(\mathbf{w})$

Minimize $J(\mathbf{w})$ by (Stochastic) Gradient Descent: $\min_{\mathbf{w}} J(\mathbf{w})$

Compute gradient $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$ of $J(\mathbf{w})$ with respect to \mathbf{w} :

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i) \mathbf{x}_i + \lambda \mathbf{w}$$

Update parameters with **learning rate** η

$$\mathbf{w} \coloneqq \mathbf{w} - \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$$

Details of Calculate $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$

Note:

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \left(-y_i \cdot \frac{1}{h_{\mathbf{w}}(\mathbf{x}_i)} \cdot \frac{\partial h_{\mathbf{w}}(\mathbf{x}_i)}{\partial \mathbf{w}} + (1 - y_i) \cdot \frac{1}{1 - h_{\mathbf{w}}(\mathbf{x}_i)} \frac{\partial h_{\mathbf{w}}(\mathbf{x}_i)}{\partial \mathbf{w}} \right) + \lambda \mathbf{w}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(-y_i \cdot \frac{1}{h_{\mathbf{w}}(\mathbf{x}_i)} \cdot \frac{\partial h_{\mathbf{w}}(\mathbf{x}_i)}{\partial \mathbf{w}} + (1 - y_i) \cdot \frac{1}{1 - h_{\mathbf{w}}(\mathbf{x}_i)} \frac{\partial h_{\mathbf{w}}(\mathbf{x}_i)}{\partial \mathbf{w}} \right) + \lambda \mathbf{w}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(-y_i \cdot \frac{\mathbf{x}_i h_{\mathbf{w}}(\mathbf{x}_i) \left(1 - h_{\mathbf{w}}(\mathbf{x}_i) \right)}{h_{\mathbf{w}}(\mathbf{x}_i)} + (1 - y_i) \cdot \frac{\mathbf{x}_i h_{\mathbf{w}}(\mathbf{x}_i) (1 - h_{\mathbf{w}}(\mathbf{x}_i))}{1 - h_{\mathbf{w}}(\mathbf{x}_i)} \right) + \lambda \mathbf{w}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i) \mathbf{x}_i + \lambda \mathbf{w}$$

Contents

1 Logistic Regression

2 Softmax Regression

3 Variant of Softmax Loss

Extension to Multi-class Classification

Previous study considers $y \in \{0,1\}$, but what if $y \in \{0,1,...,K-1\}$?

Dataset: $\mathcal{D} = \{(\mathbf{x}_{1}, y_{1}), ..., (\mathbf{x}_{n}, y_{n})\}$

- \mathbf{x}_i is the observation for the i^{th} instance
- $y_i \in \{0, 1, ..., K-1\}$ is the label for the i^{th} instance
- Task: Predict the probability of a testing instance \mathbf{x} being to any class $j \in \{0, 1, ..., K-1\}$ as o_j
- **Then** o_i must follow:

$$0 \le o_j \le 1, \qquad \sum_j o_j = 1$$

Softmax Regression for Multi-class Classification

To handle **multi-class** task, for each class $j \in \{0, ..., K-1\}$, we define a weight vector \mathbf{w}_j associated with this class

 $\mathbf{W} := [\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_{K-1}]$ is a matrix of K weight vectors

$$\mathbf{W} = \begin{bmatrix} | & | & | & | \\ \mathbf{w}_0 & \mathbf{w}_1 & \cdots & \mathbf{w}_{K-1} \\ | & | & | & | \end{bmatrix}_{m \times K}$$

Here, m is the dimension of the sample, K is the number of classes

Let $z_j = \mathbf{w}_j^T \mathbf{x}$. We define the probability of an instance \mathbf{x} being to any class $j \in \{0, 1, ..., K-1\}$ as:

$$o_j = P(y = j | \mathbf{x}; \mathbf{W}) = \frac{e^{\mathbf{z}_j}}{\sum_{l=0}^{K-1} e^{\mathbf{z}_l}} = \frac{e^{\mathbf{w}_j^T \mathbf{x}}}{\sum_{l=0}^{K-1} e^{\mathbf{w}_l^T \mathbf{x}}}$$

Softmax Regression for Multi-class Classification

Recall that the probability of an instance \mathbf{x} being to any class j is:

$$o_{j} = P(y = j | \mathbf{x}; \mathbf{W}) = \frac{e^{Zj}}{\sum_{l=0}^{K-1} e^{Zl}} = \frac{e^{\mathbf{w}_{j}^{T} \mathbf{x}}}{\sum_{l=0}^{K-1} e^{\mathbf{w}_{l}^{T} \mathbf{x}}}$$

- The function $\frac{e^{z_J}}{\sum_{l=0}^{K-1} e^{z_l}}$ is called **Softmax function**, where $\sum_{l=0}^{K-1} e^{z_l}$ is a normalization term to make all the elements **be summed to 1**
- Obviously, o_j follows:

$$0 \leq o_j \leq 1, \sum_j o_j = 1 \qquad z_2$$

Softmax Regression for Multi-class Classification

For an instance \mathbf{x} , it can belong to any class j with probability:

$$H_{\mathbf{W}}(\mathbf{x}) = \begin{bmatrix} P(y = 0 | \mathbf{x}; \mathbf{W}) \\ \vdots \\ P(y = j | \mathbf{x}; \mathbf{W}) \\ \vdots \\ P(y = K - 1 | \mathbf{x}; \mathbf{W}) \end{bmatrix} = \frac{1}{\sum_{l=0}^{K-1} e^{\mathbf{w}_l^T \mathbf{x}}} \begin{bmatrix} e^{\mathbf{w}_0^T \mathbf{x}} \\ \vdots \\ e^{\mathbf{w}_j^T \mathbf{x}} \\ \vdots \\ e^{\mathbf{w}_{K-1}^T \mathbf{x}} \end{bmatrix}$$

Prediction: Given any parameters W, we can predict the label by:

Prediction:
$$\hat{y} = \operatorname{argmax}_{j \in \{0,1,\dots,K-1\}} P(y = j | \mathbf{x}; \mathbf{W})$$

How to learn a good W to ensure correct prediction?

Cross-Entropy Loss for Multi-class Classification

To learn $W := [w_0 \ w_1 \ ... \ w_{K-1}]$, relying on the softmax function, we introduce the following **Cross-Entropy loss**:

$$\mathcal{L}(\mathbf{W}) = -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{j=0}^{K-1} \mathbb{I}\{y_i = j\} \log \frac{e^{\mathbf{w}_j^{\mathrm{T}} \mathbf{x}_i}}{\sum_{l=0}^{K-1} e^{\mathbf{w}_l^{\mathrm{T}} \mathbf{x}_i}} \right]$$

where $\mathbb{I}\{\cdot\}$ is the indicator function as follows:

$$\mathbb{I}\{A\} = \begin{cases} 1, & \text{if A is a true statemet} \\ 0, & \text{if A is a false statemet} \end{cases}$$

■ The cross-entropy loss can be derived by Maximum Likelihood Estimation (MLE). Here, we omit the details.

Regularization Required

We employ Regularization to avoid overfitting issue

We have the following objective function for softmax regression:

$$J(\mathbf{W}) = \mathcal{L}(\mathbf{W}) + \frac{\lambda}{2} ||\mathbf{W}||_2^2$$

Here,
$$\mathcal{L}(\mathbf{W}) = -\frac{1}{n} \left[\sum_{i=1}^n \sum_{j=0}^{K-1} \mathbb{I}\{y_i = j\} \log \frac{e^{\mathbf{w}_j^T \mathbf{x}_i}}{\sum_{l=0}^{K-1} e^{\mathbf{w}_l^T \mathbf{x}_i}} \right] \text{ is called}$$

Cross-Entropy Loss and λ is the regularization parameter.

Update parameters W by (Stochastic) Gradient Descent:

$$\mathbf{W} \coloneqq \mathbf{W} - \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$

How to compute
$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$
?

How to compute $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$?

For \mathbf{w}_j (j = 0, ..., K - 1), $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_j}$ can be computed as follows:

$$\begin{split} \frac{\partial J(\mathbf{W})}{\partial \mathbf{w}_{j}} &= \frac{\partial \left\{ -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{j=0}^{K-1} \mathbb{I}\{y_{i}=j\} \log \frac{e^{\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x}_{i}}}{\sum_{l=0}^{K-1} e^{\mathbf{w}_{l}^{\mathsf{T}} \mathbf{x}_{i}}} \right] + \frac{\lambda}{2} ||\mathbf{W}||_{2}^{2} \right\}}{\partial \mathbf{w}_{j}} \\ &= -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \sum_{j=0}^{K-1} \mathbb{I}\{y_{i}=j\} \left(\log e^{\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x}_{i}} - \log \sum_{l=0}^{K-1} e^{\mathbf{w}_{l}^{\mathsf{T}} \mathbf{x}_{i}} \right)}{\partial \mathbf{w}_{j}} + \lambda \mathbf{w}_{j} \\ &= -\frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{I}\{y_{i}=j\} \mathbf{x}_{i} - \frac{1}{\sum_{l=0}^{K-1} e^{\mathbf{w}_{l}^{\mathsf{T}} \mathbf{x}_{i}}} \cdot \frac{\partial \sum_{l=0}^{K-1} e^{\mathbf{w}_{l}^{\mathsf{T}} \mathbf{x}_{i}}}{\partial \mathbf{w}_{j}} \right] + \lambda \mathbf{w}_{j} \\ &= -\frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{I}\{y_{i}=j\} \mathbf{x}_{i} - \frac{\mathbf{x}_{i} e^{\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x}_{i}}}{\sum_{l=0}^{K-1} e^{\mathbf{w}_{l}^{\mathsf{T}} \mathbf{x}_{i}}} \right] + \lambda \mathbf{w}_{j} \\ &= -\frac{1}{n} \sum_{i=1}^{n} (P(y_{i}=j|\mathbf{x}_{i}; \mathbf{W}) - \mathbb{I}\{y_{i}=j\}) \mathbf{x}_{i} + \lambda \mathbf{w}_{j} \end{split}$$

Example of Softmax Regression

Softmax Classifier (Multinomial Logistic Regression)

Softmax Regression for Binary Classification

Previous cases consider softmax regression for multi-class classification. Can we use it for binary classification i.e., a special case where K = 2?

Recall that an instance \mathbf{x} can belong to any class j with probability:

$$H_{\mathbf{W}}(\mathbf{x}) = \begin{bmatrix} P(y = 0 | \mathbf{x}; \mathbf{W}) \\ \vdots \\ P(y = j | \mathbf{x}; \mathbf{W}) \\ \vdots \\ P(y = K - 1 | \mathbf{x}; \mathbf{W}) \end{bmatrix} = \frac{1}{\sum_{l=0}^{K-1} e^{\mathbf{w}_l^T \mathbf{x}}} \begin{bmatrix} e^{\mathbf{w}_0^T \mathbf{x}} \\ \vdots \\ e^{\mathbf{w}_j^T \mathbf{x}} \\ \vdots \\ e^{\mathbf{w}_{K-1}^T \mathbf{x}} \end{bmatrix}$$

When K = 2, we have:

$$H_{\mathbf{W}}(\mathbf{x}) = \begin{bmatrix} P(y = 0 | \mathbf{x}; \mathbf{W}) \\ P(y = 1 | \mathbf{x}; \mathbf{W}) \end{bmatrix} = \frac{1}{e^{\mathbf{w}_0^{\mathrm{T}} \mathbf{x}} + e^{\mathbf{w}_1^{\mathrm{T}} \mathbf{x}}} \begin{bmatrix} e^{\mathbf{w}_0^{\mathrm{T}} \mathbf{x}} \\ e^{\mathbf{w}_1^{\mathrm{T}} \mathbf{x}} \end{bmatrix}$$

Then, softmax regression is reduced to logistic regression

Softmax Regression for Binary Classification

- Recall that the weight matrix is $W := [\mathbf{w}_0 \ \mathbf{w}_1]$
- When K = 2, we have

$$H_{\mathbf{W}}(\mathbf{x}) = \begin{bmatrix} P(y = 0 | \mathbf{x}; \mathbf{W}) \\ P(y = 1 | \mathbf{x}; \mathbf{W}) \end{bmatrix}$$

$$= \frac{1}{e^{\mathbf{w}_{0}^{T} \mathbf{x}} + e^{\mathbf{w}_{1}^{T} \mathbf{x}}} \begin{bmatrix} e^{\mathbf{w}_{0}^{T} \mathbf{x}} \\ e^{\mathbf{w}_{1}^{T} \mathbf{x}} \end{bmatrix}$$

$$= \frac{1}{e^{(\mathbf{w}_{0} - \mathbf{w}_{1})^{T} \mathbf{x}} + e^{(\mathbf{w}_{1} - \mathbf{w}_{1})^{T} \mathbf{x}}} \begin{bmatrix} e^{(\mathbf{w}_{0} - \mathbf{w}_{1})^{T} \mathbf{x}} \\ e^{(\mathbf{w}_{1} - \mathbf{w}_{1})^{T} \mathbf{x}} \end{bmatrix}$$

$$= \frac{1}{e^{(\mathbf{w}_{0} - \mathbf{w}_{1})^{T} \mathbf{x}} + e^{(0)^{T} \mathbf{x}}} \begin{bmatrix} e^{(\mathbf{w}_{0} - \mathbf{w}_{1})^{T} \mathbf{x}} \\ e^{(0)^{T} \mathbf{x}} \end{bmatrix}$$

Softmax Regression for Binary Classification

Let
$$-\mathbf{w} = \mathbf{w}_0 - \mathbf{w}_1$$
, $H_{\mathbf{w}}(\mathbf{x}) = \begin{bmatrix} P(y = 0 | \mathbf{x}; \mathbf{W}) \\ P(y = 1 | \mathbf{x}; \mathbf{W}) \end{bmatrix}$

$$= \frac{1}{1 + e^{-\mathbf{w}^{\mathrm{T}}\mathbf{x}}} \begin{bmatrix} e^{-\mathbf{w}^{\mathrm{T}}\mathbf{x}} \\ 1 \end{bmatrix}$$

$$P(y|\mathbf{x}) = \begin{cases} 1 - h_{\mathbf{w}}(\mathbf{x}), & y = 0 \\ h_{\mathbf{w}}(\mathbf{x}), & y = 1 \end{cases}$$

Probability in Logistic Regression:
$$P(y|\mathbf{x}) = \begin{cases} 1 - h_{\mathbf{w}}(\mathbf{x}), & y = 0 \\ h_{\mathbf{w}}(\mathbf{x}), & y = 1 \end{cases} = \begin{bmatrix} 1 - \frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}}} \\ \frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 - h_{\mathbf{w}}(\mathbf{x}) \\ h_{\mathbf{w}}(\mathbf{x}) \end{bmatrix}$$

Logistic regression is a special case of softmax regression

Logistic Loss vs Softmax Cross-Entropy Loss

Cross-Entropy loss:
$$E = -\sum_{j=0}^{K-1} \mathbb{I}\{y = j\} \log(o_j)$$

Logistic loss for binary classification (K=2):

Sigmoid

$$O_{j} = \frac{1}{1+e^{-z_{j}}}$$

$$Cross-Entropy loss$$

$$E = -\sum_{j=0}^{1} \mathbb{I}\{y = j\} \log \frac{1}{1+e^{-z_{j}}}$$

Softmax Cross-Entropy loss for multi-class classification:

Softmax
$$Cross-Entropy loss$$

$$O_{j} = \frac{e^{z_{j}}}{\sum_{l=0}^{K-1} e^{z_{j}}}$$

$$E = -\sum_{j=0}^{K-1} \mathbb{I}\{y = j\} \log \frac{e^{z_{j}}}{\sum_{l=0}^{K-1} e^{z_{j}}}$$

Contents

1 Logistic Regression

² Softmax Regression

3 Variant of Softmax Loss

Two Variants of the Softmax Loss

- **Large-Margin Softmax Loss**
- Angular Softmax Loss

Motivation

■ Learn discriminative features

Motivation

Closed-set and Open-set Face Recognition

Motivation

Closed-set and Open-set Face Recognition

Closed-set Face Recognition

Open-set Face Recognition

Given input feature \mathbf{x}_i with the label y_i , the softmax loss function is:

$$\mathcal{L} = \frac{1}{N} \sum_{i} L_{i} = \frac{1}{N} \sum_{i} -\log \frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{j}}}$$

- \blacksquare f_j denotes the j-th element of the vector of class scores f
- N is the number of training data

$$f_{y_i} = \mathbf{w}_{y_i}^{\mathrm{T}} \mathbf{x}_i = \|\mathbf{w}_{y_i}\| \|\mathbf{x}_i\| \cos(\theta_i)$$

$$\mathcal{L}_{i} = -\log \left(\frac{e^{\left\| \mathbf{w}_{y_{i}} \right\| \|\mathbf{x}_{i}\| \cos\left(\theta_{y_{i}}\right)}}{\sum_{j} e^{\left\| \mathbf{w}_{y_{i}} \right\| \|\mathbf{x}_{i}\| \cos\left(\theta_{J}\right)}} \right)$$

lacksquare θ_j (0 $\leq \theta_j \leq \pi$) is the angle between the vector \mathbf{w}_j and \mathbf{x}_i

- Consider the binary classification and a sample x from class 1
- Original softmax

$$\|\mathbf{w}_1\| \|\mathbf{x}\| \cos(\theta_1) > \|\mathbf{w}_2\| \|\mathbf{x}\| \cos(\theta_2)$$

Large-Margin softmax

$$\|\mathbf{w}_1\| \|\mathbf{x}\| \cos(m\theta_1) > \|\mathbf{w}_2\| \|\mathbf{x}\| \cos(\theta_2) \ (0 \le \theta_1 \le \frac{\pi}{m})$$

Large-Margin Softmax Loss:

$$L_{i} = -\log \left(\frac{e^{\left\| \mathbf{w}_{y_{i}} \right\| \|\mathbf{x}_{i}\| \psi(\theta_{y_{i}})}}{e^{\left\| \mathbf{w}_{y_{i}} \right\| \|\mathbf{x}_{i}\| \psi(\theta_{y_{i}})} + \sum_{j \neq y_{i}} e^{\left\| \mathbf{w}_{y_{i}} \right\| \|\mathbf{x}_{i}\| \cos(\theta_{j})}} \right)$$

$$\psi(\theta) = \begin{cases} \cos(m\theta), & 0 \leq \theta \leq \frac{\pi}{m} \\ \mathcal{D}(\theta), & \frac{\pi}{m} \leq \theta \leq \pi \end{cases}$$

Construct a specific $\psi(\theta)$:

$$\psi(\theta) = (-1)^k \cos(m\theta) - 2k, \theta \in \left[\frac{k\pi}{m}, \frac{(k+1)\pi}{m}\right]$$

where $k \in [0, m-1]$ and k is an integer

Replace $cos(\theta_i)$ with

$$\frac{\mathbf{w}_{j}^{\mathrm{T}}\mathbf{x}_{i}}{\|\mathbf{w}_{j}\|\|\mathbf{x}_{i}\|}$$

Replace $cos(m\theta_{y_i})$ with

$$\begin{split} \cos(m\theta_{y_{i}}) &= C_{m}^{0}cos^{m}(\theta_{y_{i}}) - C_{m}^{2}cos^{m-2}(\theta_{y_{i}})\left(1 - cos^{2}(\theta_{y_{i}})\right) + \\ & C_{m}^{4}cos^{m-4}\left(\theta_{y_{y_{i}}}\right)\left(1 - cos^{2}\left(\theta_{y_{y_{i}}}\right)\right)^{2} + \dots \\ & \left(-1\right)^{n}C_{m}^{2n}cos^{m-2n}(\theta_{y_{y_{i}}})\left(1 - cos^{2}(\theta_{y_{i}})\right)^{n} + \dots \end{split}$$

So we can get:

$$f_{y_{i}} = (-1)^{k} \cdot \|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\| \cos(m\theta_{i}) - 2k \cdot \|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\|$$

$$= (-1)^{k} \cdot \|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\|$$

$$\cdot \left(C_{m}^{0} \left(\frac{\mathbf{w}_{y_{i}}^{T} \mathbf{x}_{i}}{\|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\|}\right)^{m} - C_{m}^{2} \left(\frac{\mathbf{w}_{y_{i}}^{T} \mathbf{x}_{i}}{\|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\|}\right)^{m-2} \left(1 - \left(\frac{\mathbf{w}_{y_{i}}^{T} \mathbf{x}_{i}}{\|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\|}\right)^{2}\right) + \cdots\right)$$

$$-2k \cdot \|\mathbf{w}_{y_{i}}\| \|\mathbf{x}_{i}\|$$

where
$$\frac{\mathbf{w}_{y_i}^{\mathrm{T}} \mathbf{x}_i}{\|\mathbf{w}_{y_i}\| \|\mathbf{x}_i\|} \in \left[\cos\left(\frac{k\pi}{m}\right), \cos\left(\frac{(k+1)\pi}{m}\right)\right]$$
 and k is an integer that to $[0, m-1]$.

Large-Margin Softmax Loss Optimization

$$\begin{split} \frac{\partial f_{y_i}}{\partial \mathbf{x}_i} &= (-1)^k \cdot \left(C_m^0 \left(\frac{m \left(\mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i\right)^{m-1} \mathbf{w}_{y_i}}{\left(\left\|\mathbf{w}_{y_i}\right\| \left\|\mathbf{x}_i\right\|\right)^{m-1}}\right) - \\ & C_m^0 \left(\frac{(m-1)(\mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i)^m \mathbf{x}_i}{\left\|\mathbf{w}_{y_i}\right\|^{m-1} \left\|\mathbf{x}_i\right\|^{m+1}}\right) - C_m^2 \left(\frac{(m-2)(\mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i)^{m-3} \mathbf{w}_{y_i}}{\left(\left\|\mathbf{w}_{y_i}\right\| \left\|\mathbf{x}_i\right\|\right)^{m-3}}\right) \\ & + C_m^2 \left(\frac{(m-3)(\mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i)^{m-2} \mathbf{x}_i}{\left\|\mathbf{w}_{y_i}\right\|^{m-3} \left\|\mathbf{x}_i\right\|^{m-1}}\right) + C_m^2 \left(\frac{m \left(\mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i\right)^{m-1} \mathbf{w}_{y_i}}{\left(\left\|\mathbf{w}_{y_i}\right\| \left\|\mathbf{x}_i\right\|\right)^{m-1}}\right) \\ & - C_m^2 \left(\frac{(m-1)(\mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i)^m \mathbf{x}_i}{\left\|\mathbf{w}_{y_i}\right\|^{m-1} \left\|\mathbf{x}_i\right\|^{m+1}}\right) + \cdots\right) - 2k \cdot \frac{\|\mathbf{w}_{y_i}\| \mathbf{x}_i}{\|\mathbf{x}_i\|} \end{split}$$

Large-Margin Softmax Loss Optimization

$$\begin{split} &\frac{\partial f_{y_i}}{\partial \mathbf{w}_{y_i}} = (-1)^k \cdot \left(C_m^0 \left(\frac{m \left(\mathbf{w}_{y_i}^T \mathbf{x}_i\right)^{m-1} \mathbf{x}_i}{\left(\left\|\mathbf{w}_{y_i}\right\| \left\|\mathbf{x}_i\right\|\right)^{m-1}}\right) \\ &- C_m^0 \left(\frac{(m-1) \left(\mathbf{w}_{y_i}^T \mathbf{x}_i\right)^m \mathbf{w}_{y_i}}{\left\|\mathbf{w}_{y_i}\right\|^{m+1} \left\|\mathbf{x}_i\right\|^{m-1}}\right) \\ &- C_m^2 \left(\frac{(m-2) \left(\mathbf{w}_{y_i}^T \mathbf{x}_i\right)^{m-3} \mathbf{x}_i}{\left(\left\|\mathbf{w}_{y_i}\right\| \left\|\mathbf{x}_i\right\|\right)^{m-3}}\right) \\ &+ C_m^2 \left(\frac{(m-3) \left(\mathbf{w}_{y_i}^T \mathbf{x}_i\right)^{m-2} \mathbf{w}_{y_i}}{\left\|\mathbf{w}_{y_i}\right\|^{m-1} \left\|\mathbf{x}_i\right\|^{m-3}}\right) \\ &+ C_m^2 \left(\frac{m \left(\mathbf{w}_{y_i}^T \mathbf{x}_i\right)^{m-1} \mathbf{x}_i}{\left(\left\|\mathbf{w}_{y_i}\right\| \left\|\mathbf{x}_i\right\|\right)^{m-1}}\right) - C_m^2 \left(\frac{(m-1) \left(\mathbf{w}_{y_i}^T \mathbf{x}_i\right)^m \mathbf{w}_{y_i}}{\left\|\mathbf{w}_{y_i}\right\|^{m+1} \left\|\mathbf{x}_i\right\|^{m-1}}\right) \\ &+ \cdots - 2k \cdot \frac{\left\|\mathbf{x}_i\right\| \mathbf{w}_{y_i}}{\left\|\mathbf{w}_{y_i}\right\|} \end{split}$$

Geometric Interpretation

Figure: Example of Geometric Interpretation when $\|\mathbf{w_1}\| = \|\mathbf{w_2}\|$

Geometric Interpretation

Figure: Example of Geometric Interpretation when $\|\mathbf{w_1}\| > \|\mathbf{w_2}\|$ and $\|\mathbf{w_1}\| < \|\mathbf{w_2}\|$

The variants of the softmax loss

- Large-Margin Softmax Loss
- Angular Softmax Loss (A-Softmax Loss)

Modified Softmax Loss Function

Normalize $\|\mathbf{w}_j\| = 1$, $\forall j$ in each iteration

$$\mathcal{L}_{modified} = \frac{1}{N} \sum_{i} -\log(\frac{e^{\|\mathbf{x}_i\|\cos(\theta_{y_i}, i)}}{\sum_{j} e^{\|\mathbf{x}_i\|\cos(\theta_{j}, i)}})$$

Modified Softmax Loss Function

Learn a 2-D features on subset of CASIA face dataset

Consider the binary classification and a sample x from class 1

Modified softmax loss need

$$||x||\cos(\theta_1) > ||x||\cos(\theta_2)$$

A-Softmax loss need

$$||x|| \cos(m\theta_1) > ||x|| \cos(\theta_2) \ (0 \le \theta_1 \le \frac{\pi}{m})$$

$$L_{ang} = \frac{1}{N} \sum_{i} -\log(\frac{e^{\|\mathbf{x}_{i}\|\cos(m\theta_{y_{i}}, i)}}{e^{\|\mathbf{x}_{i}\|\cos(m\theta_{y_{i}}, i)} + \sum_{j \neq y_{i}} e^{\|\mathbf{x}_{i}\|\cos(\theta_{j}, i)}})$$

where θ_{y_i} , i has to be in the range of $[0, \frac{\pi}{m}]$

$$L_{ang} = \frac{1}{N} \sum_{i} -\log(\frac{e^{\|\mathbf{x}_{i}\|\psi(\theta_{y_{i}}, i)}}{e^{\|\mathbf{x}_{i}\|\psi(\theta_{y_{i}}, i)} + \sum_{j \neq y_{i}} e^{\|\mathbf{x}_{i}\|\cos(\theta_{j}, i)}})$$

$$\psi(\theta) = \begin{cases} \cos(m\theta), & 0 \leq \theta \leq \frac{\pi}{m} \\ \mathcal{D}(\theta), & \frac{\pi}{m} \leq \theta \leq \pi \end{cases}$$

Construct a specific $\psi(\theta)$:

$$\psi(\theta) = (-1)^k \cos(m\theta) - 2k, \theta \in \left[\frac{k\pi}{m}, \frac{(k+1)\pi}{m}\right]$$

where $k \in [0, m-1]$ and k is an integer

A-Softmax Loss Geometric Interpretation

A-Softmax Loss Decision Boundary

Loss Function	Decision Boundary
Softmax Loss	$(\boldsymbol{W}_1 - \boldsymbol{W}_2)\boldsymbol{x} + b_1 - b_2 = 0$
Modified Softmax Loss	$\ \boldsymbol{x}\ (\cos\theta_1-\cos\theta_2)=0$
A-Softmax Loss	$\ \boldsymbol{x}\ (\cos m\theta_1 - \cos \theta_2) = 0$ for class 1 $\ \boldsymbol{x}\ (\cos \theta_1 - \cos m\theta_2) = 0$ for class 2

 \blacksquare θ_i is the angle between \mathbf{w}_i and \mathbf{x}

■ Learn 2-D features on a subset of CASIA face dataset

Hypersphere Interpretation

References

[1] Liu W, Wen Y, Yu Z, et al. Large-margin softmax loss for convolutional neural networks[C]//ICML. 2016, 2(3): 7.

[2] Liu W, Wen Y, Yu Z, et al. Sphereface: Deep hypersphere embedding for face recognition[C] //Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 212-220.

Thank You