Centre Universitaire de Mila

Institut: ST, Département: MI

Master 1 – STIC

Travaux dirigées en « Traitement d'images » Solutions de la série d'exercices N°02

Année universitaire 2021-2022

Exercice 01:

a) La forme générale: $s = T(r) = Ae^{-Kr^2}$. Pour la condition montrée dans la figure de l'exercice, $Ae^{-KL_0^2} = A/2$. La résolution pour K va donner :

$$-KL_0^2 = \ln(0.5)$$
$$K = 0.693/L_0^2$$

Donc

$$s = T(r) = Ae^{-\frac{0.693}{L_0^2}r^2}$$

b) La forme générale: $s = T(r) = B(1 - e^{-Kr^2})$. Pour la condition montrée dans la figure de l'exercice, $B(1 - e^{-KL_0^2}) = B/2$.

$$s = T(r) = B\left(1 - e^{-\frac{0.693}{L_0^2}r^2}\right)$$

c) La forme générale est : $s = T(r) = (D - C)(1 - e^{-Kr^2}) + C$.

Exercice 02 : La solution de cet exercice est donnée au cours de traitement d'image.

Exercice 03 : La solution de cet exercice est donnée au cours de traitement d'image.

Exercice 04:

1- L'histogramme de l'image :

Commande Matlab: >> hist(I(:))
Pour plus d'infos: >> doc hist

2- Cette image n'est pas contrastée. On peut remarquer l'existence de deux objets dans l'image :

- (i) L'arrière-plan représenté par les deux niveaux 0 et 1
- (ii) L'objet qui est représenté par les deux niveaux de gris 2 et 3.
- 3- Le passage de l'image originale (I) vers l'image finale (F) peut être fait sur deux étapes :
 - (i) Un simple seuillage:

$$F(x,y) = \begin{cases} 1 & si \ I(x,y) > 2 \\ 0 & sinon \end{cases}$$

- (ii) Suivi d'un filtre moyenne de 3×3 .
- 4- Le contour de l'image binaire.

ie.							
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	0	0	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

5- Application du masque sur l'image :

-3	5	-5	5	-5	5	-5	6
5	2	-1	-1	0	1	1	3
-7	-4	1	0	2	-16	5	0
1	11	4	3	5	5	10	-2
-10	8	2	1	1	3	10	1
2	2	4	-8	3	7	-12	-5
-4	-1	12	8	10	-3	4	-1
-1	-4	-8	-2	0	-6	-2	-1
0	0	-1	-2	-2	-1	0	0

Conclusion : ce masque est un masque passe bas qui pourrai être utilisé pour la détection de contour ainsi que l'amélioration du contraste.

Exercice 05:

1- Les histogrammes.

- 2- $I' = I^2$
- 3- Transformation linéaire d'image.

$$s = T(r) = \frac{255}{(max - min)}(r - min)$$

Méthode simple

Pour i=1 à N

Pour j=1 à M

I'(i,j) = 255*(I(i,j)-minI)/(maxI-minI);

4- Application de la transformation linéaire sur l'image I.

	0	1	2	3	4	5	6	7
0	255	227	198	227	227	198	198	198
1	255	227	198	227	227	198	198	198
2	255	227	85	57	28	0	170	227
3	255	227	85	57	28	0	170	227
4	255	227	85	57	28	0	170	227
5	255	227	85	57	28	0	170	227
6	255	227	198	170	170	170	170	198
7	255	227	198	227	227	198	198	198

5- Montrer comment procéder pour améliorer cet algorithme.

Utilisation d'une LUT (Look Up Table)

/* Initialisation de la LUT */

Pour i=0 à 255

LUT[i] = 255*(i-minI)/(maxI-minI);

/* Transformation d'histogramme */

Pour i=1 à N

Pour j = 1 à M

I'(i,j) = LUT[I(i,j)];

6- Soit H_1 et H_2 les filtres de convolution définis, respectivement, par les noyaux suivants :

$$H_1 = \begin{array}{c|ccc} -1 & 0 & 1 \\ -2 & 0 & 2 \\ \hline -1 & 0 & 1 \end{array}$$

$$H_2 = \frac{1}{15} \times \begin{array}{|c|c|c|c|c|c|}\hline 1 & 2 & 1 \\ \hline 2 & 3 & 2 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$$

7- Types des filtres H_1 et H_2 :

 H_1 : Filtre passe bas (détection de contour)

 H_2 : Filtre passe haut (Lissage)

8- Application des deux filtres sur l'image I :

	0	1	2	3	4	5	6	7		
0	0	0	0	0	0	0	0	0		
1	0	0	0	1	0	2	8	0		
2	0	0	0	0	0	14	24	0		
3	0	0	0	0	0	20	32	0		
4	0	0	0	0	0	20	32	0		
5	0	0	0	0	0	15	25	0		
6	0	0	0	0	0	4	10	0		
7	0	0	0	0	0	0	0	0		
	H_1									

	0	1	2	3	4	5	6	7
0	7	9	8	9	9	8	8	6
1	9	12	11	10	10	10	10	8
2	9	11	9	8	7	7	9	8
3	9	11	8	6	5	6	9	8
4	9	11	8	6	5	6	9	8
5	9	11	9	7	6	7	9	8
6	9	12	10	10	9	9	10	8
7	7	9	8	8	8	8	8	6
				H_2				

9- Application du filtre H_3 sur l'image I :

	0							
	0	1	2	3	4	5	6	7
0	0	11	11	11	11	11	11	0
1	12	12	12	11	11	11	11	11
2	12	12	11	7	6	10	11	10
3	12	12	7	6	5	5	10	10
4	12	12	7	6	5	5	10	10
5	12	12	10	7	6	10	10	10
6	12	12	11	10	10	10	11	10
7	0	11	11	10	10	10	10	0

- 10-Comparaison et discussion des résultats obtenus par les trois filtres H_1 , H_2 et H_3 :
 - Le filtre H_1 est un filtre passe bas qui permet de détecter les contours verticaux,
 - Le filtre H_2 est permet la réduction de bruit en diminuant le contraste de l'image,
 - Le filtre H_3 permet de supprimer le bruit dans l'image en utilisant la propriété de la médiane pour supprimer les valeurs aberrantes.

Exercice 06:

- 1- La taille des images = 16*16 = 256 bits = 32 octets.
- 2- Histogrammes:

140 120 100 80 60 40 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Images B, C et D

3- Calcul des opérations logiques entre images :

A AND D

A OR D NOT C AND C

4- Les formules des opérations d'addition, soustraction et multiplication d'images :

Addition:

• Si f et g sont deux images, on peut définir l'addition R pixel à pixel de ces deux images par:

$$R(x,y) = Min(f(x,y)+g(x,y); 255)$$

- L'addition d'images peut permettre
 - De diminuer le bruit d'une vue dans une série d'images
 - D'augmenter la luminance en additionnant une image avec elle-même

Soustraction:

• On peut définir la soustraction S pixel à pixel de deux images f et g par :

$$S(x,y) = Max(f(x,y)-g(x,y); 0)$$

- La soustraction d'images peut permettre
 - Détection de défauts
 - Détection de mouvements

Multiplication:

• La multiplication S d'une image f par un ratio (facteur) peut se définir par:

S(x,y) = Max(f(x,y)*ratio; 255)

- La multiplication d'images peut permettre d'améliorer le contraste ou la luminosité
- 5- Calcul des opérations arithmétiques entre images :

