

## Wrocław University of Technology



## Algorytmy Uczenia Maszynowego

Klasyfikacja, czy tekst nadaje się do publikacji

Piotr Nowak 248995



### Algorytm SVC

#### Zalety:

- · Efektywny w wielowymiarowych przestrzeniach
- Efektywny w przypadkach, kiedy wymiarów jest więcej niż próbek danych
- Używa podzbioru danych w funkcji decyzyjnej, co pozwala zaoszczędzić pamięć.
- Wszechstronny nie jesteśmy ograniczeni do wbudowanych funkcji jądra.
  Można użyć własnej funkcji jądra.

#### Wady

• Czas funkcji fit wzrasta co najmniej kwadratowo wraz z liczbą próbek.



### Algorytm MLP

#### Zalety:

- Możliwość w miarę prostego ustawienia, które próbki mają mieć większą wagę podczas tworzenia modelu za pomocą parametru learning\_rate.
- Dobra praca na dużych zbiorach danych.
- Może być używana do nieliniowych problemów.

### Wady

 Funkcjonalność modelu mocno zależy od danych, na podstawie których uczony był model.



### Algorytm K Najbliższych Sąsiadów

#### Zalety:

- Cały czas ewoluuje.
- Możliwość wyboru różnych funkcji wyliczających odległości pomiędzy punktami.
- Dosyć prosty i intuicyjny algorytm.

#### Wady

- Wolna praca algorytmu.
- Słabo pracuje z danymi o wielu zmiennych wejściowych.
- Trzeba znaleźć optymalną liczbę sąsiadów, aby algorytm osiągał najlepsze wyniki.
- Źle pracuje na niezbalansowanych danych w przypadku, gdy mamy 2 klasy, to jedna występuje znacznie częściej.



# Wrocław University of Technology



### Wnioski



# Wrocław University of Technology



### Dziękuję za uwagę