PSALTer results panel $S = \iiint \left(\frac{1}{4}\left(-2a_{0} \mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + 2a_{0} \mathcal{A}^{\alpha\beta} \mathcal{A}^{\chi}_{\beta\chi} + 4 \mathcal{A}^{\alpha\beta\chi} \mathcal{W}_{\alpha\beta\chi} + 4 \mathcal{T}^{\alpha\beta} h_{\alpha\beta} + 2a_{0} h^{\alpha\beta} \partial_{\beta}\mathcal{A}^{\chi}_{\alpha\chi} - 2a_{0} h^{\alpha\beta} \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} - a_{0} h^{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + a_{0} h^{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\chi} - a_{0} h^{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\chi} - a_{0} h^{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\chi} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\chi} - a_{0} h^{\alpha} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\chi} - h_{0} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\chi} - h_{0} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\beta} - h_{0} \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{\chi}_{\beta} + h_{0} \partial_{\beta}\mathcal{A}^{$

Saturated propagator

	${\overset{0^+}{{}_{\scriptscriptstyle\bullet}}}\mathcal{T}^\perp$	${}^{0^{\scriptscriptstyle +}}\mathcal{T}^{\parallel}$	°•Ws ^{⊥t}	^{0⁺} Ws [∥]	^{0⁺} Ws ^{⊥h}										
${\overset{0^+}{ullet}}\mathcal{T}^{oldsymbol{\perp}}$ †	$-\frac{4 k^2}{3 a_{\cdot 0} (4+k^2)^2}$	0	$-\frac{8 i k}{3 a \cdot (4+k^2)^2}$	$\frac{10 i k}{12 a +3 a k^2}$	$\frac{4 i \sqrt{2} k}{12 a + 3 a k^2}$										
^{⊙⁺} ∕⁄″ [∥] †	0	$\frac{4}{a \cdot k^2}$	0	$-\frac{2i}{\sqrt{3}}a.k$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$										
^{0⁺} Ws ^{⊥t} †	$\frac{8 i k}{3 a_{0} (4+k^{2})^{2}}$	0	$-\frac{16}{3 a_{\cdot 0} (4+k^2)^2}$	$\frac{20}{12 a +3 a \cdot k^2}$	8 1/2										
^{0⁺} Ws †	$-\frac{10 i k}{12 a.+3 a. k^{2}}$	$\frac{2i}{\sqrt{3} a.k}$	$\frac{20}{12 a +3 a k^2}$	0	0										
°°Ws ^{⊥h} †	$-\frac{4 i \sqrt{2} k}{12 a + 3 a k^{2}}$	$-\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	$\frac{8 \sqrt{2}}{12 a_{0} + 3 a_{0} k^{2}}$	0	0	$^{1^{+}}_{\bullet}W_{S}{^{\perp}}_{\alpha\beta}$	$^{1^{-}}\mathcal{T}^{\perp}{}_{\alpha}$	¹-˙Ws¹tα	¹⁻Ws ^{∥t} α	¹⁻-Ws ^{⊥h} α	${}^{1}_{\cdot}\mathcal{W}_{S}{}^{\parallelh}{}_{lpha}$				
·					$^{1^{+}}_{\cdot}W_{S}^{\perp}\dagger^{\alpha\beta}$	$\frac{4}{a}$	0	0	0	0	0				
					$^{1}_{ullet}\mathcal{T}^{\perp}$ lpha	0	$\frac{6 a_0 k^2 + 8 k^4 h_2}{a_0 (2 + k^2)^2 (3 a_0 + k^2 h_2)}$	$-\frac{2 i \sqrt{\frac{2}{3}} k \left(3 a_{0} (1+k^{2})+2 k^{4} h_{2}\right)}{a_{0} (2+k^{2})^{2} \left(3 a_{0}+k^{2} h_{2}\right)}$	$\frac{i \sqrt{\frac{10}{3}} k \left(3 a + 2 k^2 h_2\right)}{a \cdot (2 + k^2) \left(3 a + k^2 h_2\right)}$	$\frac{2 i k \left(3 a_{0} (4+k^{2})+2 k^{2} (6+k^{2}) h_{2}\right)}{\sqrt{3} a_{0} (2+k^{2})^{2} \left(3 a_{0}+k^{2} h_{2}\right)}$	$\frac{4 i \sqrt{\frac{2}{3}} k \left(-3 a + k^2 h\right)}{a (2 + k^2) \left(3 a + k^2 h\right)}$				
					1-Ws ^{1t} †	Θ	$\frac{2 i \sqrt{\frac{2}{3}} k \left(3 a_{0} (1+k^{2})+2 k^{4} h_{1}\right)}{a_{0} (2+k^{2})^{2} \left(3 a_{0}+k^{2} h_{1}\right)}$	$-\frac{4\left(a_{\cdot \cdot}\left(13+10 k^{2}+k^{4}\right)+4 k^{2}\left(1+k^{2}\right) h_{\cdot \cdot}\right)}{3 a_{\cdot \cdot}\left(2+k^{2}\right)^{2}\left(3 a_{\cdot \cdot}+k^{2} h_{\cdot \cdot}\right)}$	$\frac{2\sqrt{5}\left(a_{0}(5+k^{2})+2k^{2}h_{2}\right)}{3a_{0}(2+k^{2})\left(3a_{0}+k^{2}h_{2}\right)}$	$\frac{2\sqrt{2}\left(a_{0}\left(4+k^{2}+k^{4}\right)-2k^{2}\left(-2+k^{2}\right)h_{2}\right)}{3a_{0}\left(2+k^{2}\right)^{2}\left(3a_{0}+k^{2}h_{2}\right)}$	$\frac{8(a.+2 a. k^2+k^2 h.)}{3 a. (2+k^2)(3 a. +k^2 h.)}$				
					${}^{1}\mathcal{W}_{S}$ ${}^{\parallelt}$ ${}^{\alpha}$	Θ	$i \sqrt{\frac{10}{3}} k \left(3 a_0 + 2 k^2 h_2 \right)$	$\frac{2\sqrt{5}\left(a_{0}(5+k^{2})+2k^{2}h_{1}\right)}{2}$	$\frac{4}{3a_0} - \frac{5}{9a_0 + 3k^2h_2}$	$\sqrt{10} \left(-a_{0} \left(-4+k^{2} \right) +4 k^{2} h_{1} \right)$	$4 \sqrt{5} \left(a_0 + k^2 h_2 \right)$				
					¹⁻ws ^{⊥h} † ^α	Θ		$ 3 a \cdot (2+k^2) \left(3 a \cdot k^2 h \cdot h $	$\sqrt{10} \left(-a_{0} \left(-4+k^{2} \right) +4 k^{2} h_{2} \right)$	$3 a_{0} (2+k^{2}) (3 a_{0}+k^{2} h_{2})$ $-2 a_{0} (-32-8 k^{2}+k^{4})+16 k^{2} (4+k^{2}) h_{2}$	$ \frac{3 a \cdot (3 a + k^{2} h)}{3 a \cdot (5 + k^{2} - k^{2} h)} $ $ - \frac{8 \sqrt{2} (a \cdot (5 + k^{2} - k^{2} h)}{(5 + k^{2} - k^{2} h)} $				
							$\sqrt{3} \ a_{0} (2+k^{2})^{2} (3 \ a_{0}+k^{2} \ h_{2})$ $4 \ i \ \sqrt{\frac{2}{3}} \ k (3 \ a_{0}-k^{2} \ h_{2})$	$3 a_{.0} (2+k^2)^2 (3 a_{.0}+k^2 h_{.2})$ $8 (a_{.0}+2 a_{.0} k^2+k^2 h_{.2})$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 a_{0} (2+k^{2})^{2} (3 a_{0}+k^{2} h_{2})$ $8 \sqrt{2} (a_{0} (5+k^{2})-k^{2} h_{2})$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
					1-W _s ∥h † ^α	0	$a_{\stackrel{\circ}{0}}(2+k^2)\left(3 a_{\stackrel{\circ}{0}}+k^2 h_{\stackrel{\circ}{2}}\right)$	$3 a_{0} (2+k^{2}) (3 a_{0}+k^{2} h_{2})$	$\overline{3 a. \left(3 a. + k^2 h.\right)}$	$-\frac{1}{3 a_{0}(2+k^{2})\left(3 a_{0}+k^{2} h_{2}\right)}$	$\frac{4}{3} \left(\frac{5}{a_0} - \frac{16}{3 a_0 + k^2 h_2} \right)$		$W_{S}^{\parallel}_{\alpha\beta} \stackrel{2^{+}}{\cdot} W_{S}^{\perp}_{\alpha\beta}$	β $2^{-}W_{S} _{\alpha\beta\chi}$	1
											${}^{2^+}\mathcal{T}^{\parallel} \stackrel{lphaeta}{ au}$	$-\frac{8}{a_{0}k^{2}}$	$\frac{4i}{\sqrt{3}} \frac{a_{\cdot k}}{a_{\cdot k}} - \frac{8i\sqrt{\frac{2}{3}}}{a_{\cdot k}}$	- 0	
											$^{2^{+}}W_{s}^{\parallel}$ † $^{\alpha\beta}$		$-\frac{8}{3a_{\bullet}} \qquad \frac{4\sqrt{2}}{3a_{\bullet}}$	0	
											$^{2^{+}}W_{s}^{\perp}\dagger^{lphaeta}$	$\frac{8 i \sqrt{\frac{2}{3}}}{a \cdot k}$	$\frac{4\sqrt{2}}{3a_{\stackrel{\circ}{0}}} - \frac{4}{3a_{\stackrel{\circ}{0}}}$	0	
											${}^{2^{-}}W_{s}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0 0	$\frac{4}{a}$	$3^{-}W_{s} _{\alpha\beta\chi}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k \cdot \mathcal{W}_{S}^{\perp t} + 2 i \cdot \mathcal{T}^{\perp} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$2 k ^{1} W_{S}^{\perp h^{\alpha}} + k ^{1} W_{S}^{\perp t^{\alpha}} + 6 i ^{1} \mathcal{T}^{\perp \alpha} = 0$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} w^{\beta \alpha \chi} == 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} w^{\beta \chi \delta}$	3
Total expected gauge generators:		4

Massive spectrum

Massive particle

Pole residue:	$\left \frac{75 a68 h.}{0 \frac{2}{3 a. h2 h.^{2}}} > 0 \right $
Square mass:	$-\frac{3a}{\frac{h}{2}} > 0$
Spin:	1
Parity:	Odd

Massless spectrum

Massless particle

Pole residue:	$-\frac{p^2}{a} > 0$		
Polarisations:	2		

Unitarity conditions

a. < 0 && h. > 0