

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Departement of Computer Science Prof. Dennis Hofheinz Julia Kastner Information Security Lab 2022 Module 02 - Reductions - Week 2 October 17 - 21

Theory Exercises

Exercise 1 (Ex. 11.6 in Katz and Lindell [KL21]). Consider a cyclic group \mathbb{G} of prime order p and let \mathbf{g} be a generator of \mathbb{G} . We look at the following PKE scheme for bits. The public key is $\mathsf{pk} = (\mathbf{g}, \mathbf{h} = \mathbf{g}^x)$, the secret key is $\mathsf{sk} = x$. In order to encypt a bit b the sender does the following:

case b = 0: Choose a uniform $y \in \mathbb{Z}_p$ and compute $c_1 := \mathbf{g}^y$ and $c_2 := \mathbf{h}^y$. Output the ciphertext (c_1, c_2) .

case b = 1: Choose uniform $y, z \in \mathbb{Z}_p$ and compute $c_1 := \mathbf{g}^y$ and $c_2 := \mathbf{g}^z$. Output the ciphertext (c_1, c_2) .

Prove that this encryption scheme is IND-CPA secure if \mathbf{DDH} is hard in \mathbb{G} . Name two disadvantages of this scheme, compared to the standard ElGamal PKE.

Exercise 2. Consider the following signature schemes:

 $\Sigma_1 = (\mathsf{KeyGen}_1, \mathsf{Sign}_1, \mathsf{Verify}_1)$ over a group $\mathbb G$ of prime order p with generator $\mathbf g$ works as follows:

 $\mathsf{KeyGen}_1 \text{ sample } x \overset{\$}{\leftarrow} \mathbb{Z}_p. \text{ Set } \mathsf{sk} = x \text{ and } \mathsf{pk} = \mathbf{g}^x.$

 $\mathsf{Sign}_1(\mathsf{sk} = x, m)$ for a message $m \in \mathbb{Z}_p$ it computes $\sigma = x + m$ and outputs σ .

Verify₁(pk, m, σ) outputs 1 iff $g^m \cdot pk = g^{\sigma}$.

 $\Sigma_2 = (\mathsf{KeyGen}_2, \mathsf{Sign}_2, \mathsf{Verify}_2)$ over a group $\mathbb G$ of prime order p with generator $\mathbf g$ works as follows:

 $\mathsf{KeyGen}_2 \text{ sample } x \overset{\$}{\leftarrow} \mathbb{Z}_p. \text{ Set } \mathsf{sk} = x \text{ and } \mathsf{pk} = \mathbf{g}^x.$

Sign₂(sk = x, m) For a message $m = (m_1, m_2) \in \mathbb{G} \times \mathbb{G}$ computes $\sigma = m_1^{-x} \cdot m_2$ and outputs σ . We note that this corresponds to the decryption algorithm of ElGamal.

Verify₂(pk, m, σ) outputs 1 iff ElGamal.Enc(pk, σ) = m.

Answer the following questions about the schemes:

- (a) Is the scheme correct?
- (b) If the scheme is correct, assuming that the discrete logarithm problem is hard in \mathbb{G} , is the scheme EUF-NMA secure?
- (c) If the scheme is correct, assuming that the discrete logarithm problem is hard in \mathbb{G} , is it EUF-CMA secure?

Exercise 3. Given an IND-CCA secure PKE scheme E_0 construct:

- (a) a PKE scheme E_1 that is IND-CPA secure but not IND-CCA1 secure
- (b) a PKE scheme E_2 that is IND-CCA1 secure but not IND-CCA secure

References

[KL21] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. eng. Third edition. Chapman & Hall/CRC cryptography and network security. Boca Raton, Florida ; CRC Press, 2021. ISBN: 1-351-13303-9.