46) Έστω $X=Y=[0,1], \quad \mathcal{M}=\mathcal{N}=\mathcal{B}[0,1], \ \mu=$ μέτρο Lebesgue, $\nu=$ μέτρο απαρίθμησης (δεν είναι σ-πεπερασμένο, το [0,1] δεν γράφεται ως αριθμήσιμη ένωση πεπερασμένων συνόλων γιατί τότε θα ήταν αριθμήσιμο.)

Έστω $D = \{(x, x), 0 \le x \le 1\}$ και $f = X_D$. Ισχύει ότι $\int X_D d(\mu \times \nu) = (\mu \times \nu)(D)$;

$$\int_{0}^{1} \left(\int_{0}^{1} X_{D}(x, y) d\mu(x) \right) d\nu(y) = \int_{0}^{1} 0 d\nu(y) = 0$$

$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) d\nu(y) \right) d\mu(x) = \int_{0}^{1} 1 d\mu(x) = 1 \neq 0$$

με f(x,y) = 0 αν $y \neq x$ και 1 αν x = y.

Για το $(\mu \times \nu)(D)$ (μπορεί και να μην είναι μετρήσιμο αλλά μπορώ να βρω σε μέτρο)

$$(\mu \times \nu)(D) = \inf \left\{ \sum_{j=1}^{\infty} \mu(A_j)\nu(B_j), \quad D \subseteq A_j \times B_j \right\}$$

Έστω $(x,x) \in D$ και $(x,x) \in A_i \times B_i$ δηλαδή $A_i \cap B_i \neq \emptyset$.

$$(\mu \times \nu)(D) = \inf \left\{ \sum_{j=1}^{\infty} \mu(A_j)\nu(B_j), \quad D \subseteq A_j \times B_j, \quad A_j \cap B_j \neq \emptyset \right\} =$$

$$= \inf \left\{ \sum_{j=1}^{\infty} \mu(A_j)\nu(A_j), \quad D \subseteq A_j \times A_j \right\}$$

γιατί $D\cap (A_j\times B_j)=D\cap ((A_j\cap B_j)\times (A_j\cap B_j))$. Αν $D\subseteq \cup A_j\times A_j$ τότε $[0,1]=\cup_j A_j$, υπάρχει j_0 τέτοιο ώστε $\mu(A_{j_0})\geq 0$ και άρα $\nu(A_{j_0})=\infty$. Άρα υπάρχει j τέτοιο ώστε $\mu(A_j)\nu(A_j)=\infty$. Άρα $(\mu\times nu)(D)=\infty$.

1 Θεώρημα Fubini

Θεώρημα. Έστω $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ χώροι σ-πεπερασμένου μέτρου . Έστω $f \in L^1(\mu \times \nu)$. Τότε:

- 1. $H f_x \in L^1(\nu)$ για μ -σχεδόν όλα τα $x \in X$. $H f^y \in L^1(\mu)$ για ν -σχεδόν όλα τα $y \in Y$.
- 2. Οι $g(x) = \int f_x d\nu$, $h(y) = \int f^y d\mu$ είναι στους $L^1(\mu)$ και $L^1(\nu)$ αντίστοιχα.
- 3. $\int f d(\mu \times \nu) = \int_{\mathcal{X}} g(x) d\mu(x) = \int_{\mathcal{X}} h(y) d\nu(y)$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Γράφουμε $f=f^+-f^-$. Επειδή $f\in L^1(\mu\times\nu)$ έχω ότι $\int f^+d(\mu\times\nu), \int f^-d(\mu\times\nu)<\infty$. Παρατηρώ ότι αν $f,g,h:X\times Y\to\mathbb{R}$ και f=g-h τότε $f_x=g_x-h_x$ και $f^y=g^y-h^y$ (προφανές). Άρα $(f^+)_x-(f^-)_x=f_x$ και $(f^+)^y-(f^-)^y=f^y$. Θεωρώ την $f^+\in L^1(\mu\times\nu)$. Από το Tonelli, οι $(f^+)_x,(f^+)^y$ είναι μετρήσιμες για κάθε x,y και:

$$\int f^+ d(\mu \times \nu) = \int_X \left(\int_Y (f^+)_x d\nu \right) d\mu = \int_Y \left(\int_X (f^+)^y d\mu \right) d\nu < \infty$$

Αφού $\int\limits_X g_1(x)d\mu < \infty$ έπεται ότι $g_1(x) < \infty$ μ -σχεδόν παντού και άρα $(f^+)_x \in L^1(\nu)$ μ -σχεδόν παντού. Όμοια $(f^+)^y \in L^1(\mu)$ ν -σχεδόν παντού. Επίσης, $\int g_1 d\mu = \int h_1 d\nu < \infty$ και άρα $g_1 \in L^1(\mu)$ και $h_1 \in L^1(\nu)$. Όμοια $g_2 = \int (f^-)_x \in L^1(\mu)$ και $h_2(y) = \int (f^-)^y \in L^1(\nu)$. Καθώς και

$$\int g_2 d\mu = \int h_2 d\nu = \int f^- d(\mu \times \nu)$$

Αφαιρώντας κατά μέλη, παίρνω ότι

$$g_1(x) - g_2(x) = \int ((f^+)_x - (f^-)_x) d\nu = \int f_x d\nu \in L^1(\mu)$$
$$h_1(y) - h_2(y) = \int ((f^+)^y - (f^-)^y) d\mu = \int f^y d\mu \in L^1(\nu)$$

καθώς και

$$\int f d(\mu \times \nu) = \int (f^+ - f^-) d(\mu \times \nu) = \int (g_1 - g_2) d\mu = \int \left(\int f_x d\nu \right) d\mu =$$
$$= \int (h_1 - h_2) d\nu = \int \left(\int f^y d\mu \right) d\nu$$

1.1 Τρόπος Εφαρμογής

Δίνεται $f: X \times Y \to \mathbb{R}$ και θέλω να υπολογίσω το $\int f d(\mu \times \nu)$.

• Δείχνω ότι $f \in L^1(\mu \times \nu)$. Συνήθως δείχνω ότι ισοδύναμα $|f| \in L^1(\mu \times \nu)$. Από Tonelli θα έχουμε:

$$\int |f| d(\mu \times \nu) = \int\limits_{X} \left(\int\limits_{Y} |f(x,y)| d\nu(y) \right) d\mu(x) < \infty$$

• Αν αυτό ισχύει, τότε το θεώρημα Fubini μου επιτρέπει να υπολογίσω το $\int f d(\mu \times \nu)$ σαν $\int\limits_X \left(\int\limits_Y f_x\right)$ ή $\int\limits_Y \left(\int\limits_X f^y\right)$.

2 Το n-διάστατο μέτρο και ολοκήρωμα Lebesgue

Θεωρώ το μέτρο Lebesgue m στο \mathbb{R} (ορισμένο σε μια κάση $\mathcal{L} \supset \mathbb{B}(\mathbb{R})$).

Ορισμός. Θεωρώ τον $(\mathbb{R},\mathbb{B}(\mathbb{R}),m)$ n φορές $(n\geq 2)$. Ορίζεται η σ-άλγεβρα γινόμενο $\mathbb{B}(\mathbb{R})\otimes\cdots\otimes\mathbb{B}(\mathbb{R})=$ $\mathbb{B}(\mathbb{R}^n)$ με την Ευκλείδεια μετρική και το μέτρο γινόμενο $m\times\cdots\times m$ στην $\mathbb{B}(\mathbb{R}^n)$. Το τελικό μέτρο (m^n) θέλουμε να είναι πλήρες. Ορίζουμε m^n να είναι η πλήρωση του $m\times\cdots\times m$. Η πλήρωση ενός μ ορισμένου στην \mathcal{M} είναι το $\bar{\mu}$ που ορίζεται στην $\bar{\mathcal{M}}=\{E\cup A:\ E\in\mathcal{M}$ και υπάρχει $F\in\mathcal{M}$ τέτοιο ώστε $A\subseteq F$ με $\mu(F)=0\}$ από την σχέση $\bar{\mu}(E\cup A)=\mu(A)$.

Παρατήρηση. Το γινόμενο δύο πλήρων μέτρων δεν είναι σχεδόν ποτέ πλήρες (άρα κάποια διαδικασία πλήρωσης στον ορισμό του m^n είναι απαραίτητη)

Έστω $(X,\mathcal{M},\mu),(Y,\mathcal{N},\nu)$ πλήρεις χώροι μέτρου και έστω ότι υπάρχει $A\neq\varnothing,A\subseteq X$ με $\mu(A)=0$ και $\mathcal{N}subset\mathcal{P}(Y)$ (δηλαδή υπάρχει $B\subseteq Y$ μη μετρήσιμο, για παράδειγμα $X=Y=\mathbb{R},\mathcal{M}=\mathcal{N}=\mathcal{L},\mu=\nu=m$). Τότε $(X\times Y,\mathcal{M}\otimes\mathcal{N},\mu\times\nu)$ δεν είναι πλήρης. Θέλω $E\subseteq X\times Y,E\subseteq F\in\mathcal{M}\otimes\mathcal{N}$ με $\mu(F)=0$ αλλά $E\not\in\mathcal{M}\otimes\mathcal{N}$.

To $A \times B = E \subseteq A \times Y$ και $\mu \times \nu(A \times Y) = 0$ αφού $A \in \mathcal{M}, Y \in \mathcal{N}$ και άρα $A \times Y \in \mathcal{M} \otimes \mathcal{N}$ και $\mu \times \nu(A \times Y) = \mu(A)\nu(Y) = 0$. Επιπλέον, $E \notin \mathcal{M} \otimes \mathcal{N}$ γιατί αν ίσχυε θα είχαμε για κάθε $x \in X$ το $E_x \in \mathcal{N}$. Αφού $A \neq \emptyset$, για $x \in A$ έχω $E_x = B \in \mathcal{N}$ άτοπο.

Συμβολίζω με $m=m^n$ το n-διάστατο μέτρο Lebesgue στον \mathbb{R}^n και \mathcal{L}^n την κλάση των Lebesgue μετρήσιμων υποσυνόλων του \mathbb{R}^n .

Θεώρημα. $Εστω E \in \mathcal{L}^n$. Τότε:

- 1. $m(E) = \inf\{m(U): U$ ανοικτό $\mu \in U \supseteq E\} = \sup\{m(K): K$ συμπαγές $\mu \in K \subseteq E\}$.
- 2. $E = A \cup N_1 = B \setminus N_2$ όπου $m(N_1) = m(N_2) = 0$, A είναι F_{σ} -σύνολο, B είναι G_{δ} -σύνολο.
- 3. Αν $m(E)<\infty$, για κάθε $\varepsilon>0$ υπάρχει πεπερασμένη οικογένεια R_1,\ldots,R_N ορθογωνίων που είναι γινόμενα διαστημάτων του \mathbb{R} με $m(E\triangle\bigcup_{i=1}^N)<\infty$.

Θεώρημα. $A\nu f \in \mathcal{L}^n(m)$, τότε για κάθε $\varepsilon > 0$ υπάρχει $\phi = \sum\limits_{j=1}^N a_j X_{R_j}$, R_j γινόμενο διαστημάτων τέτοιο ώστε $\int |f - \phi| dm < \varepsilon$. Επίσης, υπάρχει συνεχής g που μηδενίζεται έξω από ένα φραγμένο σύνολο τέτοιο ώστε $\int |f - g| dm < \varepsilon$.

Θεώρημα. $Εστω a \in \mathbb{R}^n$. Ορίζω $T_a(x) = x + a$.

- 1. $A\nu E \in \mathcal{L}^n$, τότε $T_a(E) \in \mathcal{L}^n$ και $m(T_a(E)) = m(E)$.
- 2. $A\nu f: \mathbb{R}^n \to \mathbb{R}$ Lebesgue μετρήσιμη, τότε η $(f \circ T_a)(x) = f(x+a)$ είναι Lebesgue μετρήσιμη. $A\nu$ επιπλέον $f \geq 0$ ή $f \in \mathcal{L}^1(m)$, τότε $\int f dm = \int (f \circ T_a) dm$.

Θεώρημα. $Εστω T \in GL(n, \mathbb{R})$ (δηλαδή αντιστρέψιμος γραμμικός μετασχηματισμός). Τότε

- 1. $Aν E \in \mathcal{L}^n$, τότε $T(E) \in \mathcal{L}^n$ και $m(T(E)) = |\det T| \cdot m(E)$.
- 2. $A\nu \ f: \mathbb{R}^n \to \mathbb{R}$ Lebesgue μετρήσιμη, τότε η $f \circ T$ είναι Lebesgue μετρήσιμη και αν $f \geq 0$ ή $f \in \mathcal{L}^1(m)$, τότε

$$\int f dm = |\det T| \int (f \circ T) dm$$

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

1) $E=B\cup N$ με $B\in\mathbb{B}(\mathbb{R}^n)$ και $N\subseteq F\in\mathbb{B}(\mathbb{R}^n)$ με m(F)=0.

$$m(B) = \inf\{\sum m(F_j): \quad B \subseteq \cup F_j, \quad F_j \text{ ορθογώνια }\}$$

Επειδή $N\subseteq F$ και $F\in \mathbb{B}(\mathbb{R}^n)$ υπάρχουν $F_j', F\subseteq \cup F_j'$ και $\sum m(F_j')<\frac{\varepsilon}{2}$. Παίρνοντας τα F_j, F_j' μαζί έχω ορθογώνια A_j τέτοια ώστε $E\subseteq A_j$ και $\sum m(A_j)\leq m(E_j)+\varepsilon$.

Κάθε $A_j = A_{j1} \times A_{j2} \times \ldots \times A_{jn}$ με $A_{ji} \in \mathbb{B}(\mathbb{R})$ για κάθε $i = 1, \ldots, n$.

Ξέρω ότι $m(\cup A_i) \leq \sum m(A_i) \leq m(E) + \varepsilon$ και $\cup A_i \supseteq E$.

Για κάθε $j \in \mathbb{N}$ και k = 1, ..., n και $\delta > 0$ μπορώ να βρω ανοικτό $U_{jk} \supseteq A_{jk}$ τέτοιο ώστε $\mu(U_{jk}) \le m(A_{jk}) + \delta$ (αφού ισχύει στο \mathbb{R}), τότε

$$U_{j1} \times \ldots \times U_{jn} \supseteq A_{j1} \times \ldots \times A_{jn}$$
 $=U_i$ ανοιχτό

και $m(U_j)=m(U_{j1})\cdots m(U_{jn})\leq \prod \left(m(A_{jk})+\frac{\varepsilon}{2^j}\right)=m(A_j)+\frac{\varepsilon}{2^j}$ αν δ αρκετά μικρό.

Τώρα αν $U=\cup U_j\supseteq \cup A_j\supseteq E,\ U$ ανοικτό και $m(U)\leq \sum m(U_j)\leq \sum m(A_j)+\sum \frac{\varepsilon}{2^j}\leq m(E)+2\varepsilon.$

- 2) Υποθέτω ότι $m(E)<\infty$ και E φραγμένο. Θεωρώ το $\bar{E}\setminus E$ και βρίσκω από το 1) U ανοικτό τέτοιο ώστε $U\supseteq \bar{E}\setminus E$ και $m(U)\le m(\bar{E}\setminus E)+\varepsilon$. Ορίζω $K=\bar{E}\setminus U\subseteq E$ και $m(K)\ge m(E)-\varepsilon$.
- 1) Υποθέτω ότι $f:\mathbb{R}^n\to\mathbb{R}$ Borel μετρήσιμη. Η T είναι συνεχής σαν γραμμικός μετασχηματισμός, άρα η $f\circ T$ είναι Borel μετρήσιμη.

$$(f\circ T)^{-1}(B)=T^{-1}\left(f^{-1}(B)\right)\in\mathbb{B}(\mathbb{R})$$

2) Αν η $\int f dm = |det T| \int f \circ T dm$ ισχύει για $T, S \in GL(n, \mathbb{R})$ και κάθε Borel μετρήσιμη $f \in L^1(m)$ ή $f \geq 0$ τότε ισχύει και για τον $T \circ S \in GL(n, \mathbb{R})$

$$\int f dm = |\det T| \int (f \circ T) dm$$

$$\int f dm = |\det T| |\det S| \int (f \circ T) \circ S dm$$

$$\int f dm = \det(T \circ S) \int f \circ (T \circ S) dm$$

3) Ορίζω $T_1 = \text{κλάση γραμμικών απεικονίσεων της μορφής } T_1(x_1, \dots x_n) = (x_1, \dots, tx_j, \dots, x_n)$ με $\det T_1 = t, \ t \neq 0.$ $T_2 = \text{κλάση των γραμμικών απεικονίσεων της μορφής } T_2(x_1, \dots, x_n) = (x_1, \dots, x_j + tx_k, \dots, x_n)$ με $t \in \mathbb{R}, k \neq j$ και $|\det T_2| = 1.$ $T_3 = \text{κλάση των γραμμικών απεικονίσεων της μορφής } T_3(x_1, \dots, x_j, \dots, x_k, \dots, x_n) = (x_1, \dots, x_k, \dots, x_j, \dots, x_n)$ με $|\det T_3| = 1.$

Ισχύει ότι κάθε $T \in GL(n, \mathbb{R})$ γράφεται $T = S_N \circ S_{N-1} \circ \ldots \circ S_1$ όπου $S_i \in T_1$ ή T_2 ή T_3 .

Αρχεί λοιπόν να δείξουμε ότι για κάθε $f:\mathbb{R}^n\to\mathbb{R}$ Borel μετρήσιμη και κάθε T_1,T_2,T_3 γραμμικό μετασχηματισμό ισχύει ότι

$$\int f dm = |\det T| \int (f \circ T) dm$$

 Γ ia $j=2, T\in T_1$

$$\int\limits_{\mathbb{R}^2} f(x,ty) dm \stackrel{Fubini}{=} \int\limits_{\mathbb{R}} \left(\int\limits_{\mathbb{R}} f(x,ty) dy \right) dx = \int\limits_{\mathbb{R}} \left(\frac{1}{|t|} \int\limits_{\mathbb{R}} f(x,y) dy \right) dx = \frac{1}{|t|} \int f dm$$

Αρχεί να το δείξω για μια διάσταση. Για $n=2, T\in T_3$

$$\int\limits_{\mathbb{R}^2} f(y,x) dm = \int\limits_{\mathbb{R}^2} f(x,y) dm$$

$$\int\limits_{\mathbb{D}} \left(\int\limits_{\mathbb{D}} f(y,x) dx \right) dy \ \text{tautologia}$$

4.1) Αν E-Borel, τότε T(E) θα είναι Borel. Αν $f = X_{T(E)}$ και $\int X_{T(E)}(x)dx = |\det T| \int X_{T(E)}(T_x)dx$ τότε $m(T(E)) = |\det T| m(E)$. Ειδικότερα, αν F είναι Borel με m(F) = 0 τότε m(T(F)) = 0, επομένως $E \subseteq F$, E μετρήσιμο, τότε $T(E) \subseteq T(F)$ και άρα $T(E) = T(B) \cup T(N)$. Δηλαδή $m(T(E)) = m(T(B)) + m(T(N)) = |\det B| m(B) + 0 = |\det B| m(E)$.

6

3 Χώροι με νόρμα

X γραμμικός χώρος πάνω από το \mathbb{R} . Συμβολισμός: αν $x \in X$, $\mathbb{R}_x = \{tx : t \in \mathbb{R}\}$. Αν M,N υπόχωροι του X, τότε:

$$M + N = \{x + y : \quad x \in M, y \in N\}$$

Νόρμα στον X είναι μια συνάρτηση $||\cdot||:X\to [0,+\infty)$ τέτοια ώστε:

- 1. $\forall x, y \in X : ||x + y|| \le ||x|| + ||y||$
- 2. $\forall t \in \mathbb{R}, \forall x \in X : ||tx|| = |t| \cdot ||x||$
- $3. ||x|| = 0 \iff x = 0$

Αν ισχύουν μόνο τα 1),2) λέμε ότι έχουμε ημινόρμα. (Από το 2) $x=0 \implies ||x||=0$, αλλα μπορεί να υπάρχουν $x\neq 0$ με ||x||=0.)

Κάθε νόρμα επάγει μια μετρική στον X ως εξής: p(x,y) = ||x-y||. Είναι μετρική, η οποία έχει τις επιπλέον ιδιότητες: p(x+z,y+z) = p(x,y) και p(tx,ty) = |t|p(x,y).

$$Aν \ B(x,r) = \{y \in X: \quad ||y-x|| < r\} \ \text{τότε} \ B(x,r) = x + B(0,r) \ \text{και} \ B(0,tr) = tB(0,r), t > 0.$$

Δύο νόρμες $||\cdot||_1$ και $||\cdot||_2$ στον ίδιο γραμμικό χώρο X λέγονται ισοδύναμες, αν υπάρχουν σταθερές $c_1,c_2>0$ τέτοιες ώστε $c_1||x||_1\leq ||x||_2\leq c_2||x||_1$ για κάθε $x\in X$. Τότε οι αντίστοιχες μετρικές είναι ισοδύναμες και έχουμε τα ίδια ανοικτά σύνολα στους δύο μετρήσιμους χώρους και τις ίδιες ακολουθίες Cauchy.

Ορισμός. Ένας χώρος με νόρμα λέγεται χώρος Banach, αν είναι πλήρης ως προς τη μετρική ρ , που επάγεται από την νόρμα $||\cdot||$ (Δηλαδή αν κάθε ακολουθία Cauchy $\{x_n\}$ στον X ως προς την ρ , συγκλίνει σε κάποιο $x \in X$).

Αν $x_n \in X$ λέμε ότι η $\sum x_n$ συγκλίνει στο $x \in X$ αν $\sum_{n=1}^N x_n \stackrel{N \to \infty}{\longrightarrow} x$. Λέμε ότι συγκλίνει απολύτως αν $\sum_{n=1}^\infty ||x_n|| < \infty$.

3.1 Κριτήριο Πληρότητας

Έστω $(X, ||\cdot||)$ χώρος με νόρμα. Τότε, ο X είναι πλήρης αν και μόνο αν κάθε απολύτως συγκλίνουσα σειρά στον X συγκλίνει.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έστω X πλήρης και έστω ότι $\sum\limits_{n=1}^{\infty}||x_n||<\infty.$ Ορίζουμε $S_N=\sum\limits_{n=1}^Nx_n.$ Αν N>M τότε:

$$||S_N - S_M|| = ||\sum_{n=M+1}^N x_n|| \le \sum_{n=M+1}^N < \varepsilon$$

απο τριγωνική ανισότητα, για τυχόν ε αν $M,N\geq n_0(\varepsilon)$. Άρα $\{S_n\}$ Cauchy και αφού X πλήρης, έπεται ότι υπάρχει $x\in X:S_N\to x$, δηλαδή $\sum\limits_{n=1}^\infty=x.$

Αντίστροφα, έστω $\{x_n\}$ ακολουθία Cauchy στον X. Αρκεί να δείξουμε ότι έχει υπακολουθία που συγκλίνει σε κάποιο $x \in X$. Τότε θα έχουμε και $x_n \to x$ (απόδειξη όπως στο $\mathbb R$). Επειδή η $\{x_n\}$ είναι Cauchy, μπορώ να βρω $n_1 < n_2 < \ldots < n_k < \ldots$ τέτοια ώστε:

$$||x_{n_{k+1}} - x_{n_k}|| \le \frac{1}{2^k}$$
 από ορισμό $Cauchy$

Έχουμε $\sum\limits_{k=1}^{\infty}<\infty$. Άρα υπάρχει x τέτοιο ώστε $\sum\limits_{k=1}^{\infty}y_{\kappa}$ συγκλίνει, δηλαδή $\sum\limits_{k=1}^{s}\sum\limits_{s o\infty}x$. Δηλαδή $x_{n_{s+1}}-x_{n_{1}}\to x$ και άρα $x_{n_{s}}\to x_{n_{1}}+x=x'$.

Παράδειγμα: $L^1(\mu)=$ οι ολοκληρώσιμες $f:X\to\mathbb{R}$ όπου ταυτίζουμε τις $f,g\in L^1(\mu)$ αν f=g μ -σχεδόν παντού. Ορίζουμε $||f||_1=\int |f|d\mu$ (φαίνεται εύκολα ότι είναι νόρμα).

$$\rho(f,g) = \int |f - g| d\mu$$

δηλαδή:

$$f_n \stackrel{L^1(\mu)}{\longrightarrow} f \iff \int |f_n - f| d\mu \to 0$$

Πρόταση. $OL^1(\mu)$ είναι πλήρης.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Θα δείξουμε ότι ο $L^1(\mu)$ ικανοποιεί το κριτήριο πληρότητας. Έστω $\{f_n\}$ στον $L^1(\mu)$ τέτοιο ώστε

$$\sum_{n=1}^{\infty} ||f_n||_1 = \sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$$

Έπεται ότι η $f=\sum\limits_{n=1}^{\infty}f_n$ ορίζεται μ -σχεδόν παντού και $\int f=\sum\limits_{n=1}^{\infty}\int f_n\quad (f\in L^1(\mu)).$ Θέλουμε να δείξουμε ότι $||f-\sum\limits_{n=1}^{N}f_n||_1\stackrel{N\to\infty}{\longrightarrow}0.$ Έχουμε:

$$||f - \sum_{n=1}^{N} f_n|| = ||\sum_{n=N+1}^{\infty} || = \int |\sum_{n=N+1}^{\infty} f_n| d\mu \le$$

$$\leq \int \sum_{n=N+1}^{\infty} |f_n| d\mu = \sum_{n=N+1}^{\infty} \int |f_n| d\mu \stackrel{N \to \infty}{\longrightarrow} 0$$

4 Φραγμένοι Γραμμικοί Τελεστές

Έστω X,Y χώροι με νόρμα. Μια συνάρτηση $T:X\to Y$ λέγεται γραμμικός τελεστής αν $T(\lambda x+\mu y)=\lambda T(x)+\mu T(y)$ για κάθε $x,y\in X$ και $\lambda,\mu\in\mathbb{R}$. Ο T λέγεται φραγμένος αν υπάρχει $C\geq 0$ τέτοιος ώστε για κάθε $x\in X$ να ισχύει $||Tx||_Y\leq C||x||_X$.

Έχουμε ότι $||T(\lambda x)|| = |\lambda|||Tx|| \to \infty$ αν $Tx \neq 0, |\lambda| \to \infty$. Δηλαδή ο μόνος γραμμικός τελεστής που έχει την ιδιότητα $||Tx|| \leq M$ για κάθε $x \in X$ είναι ο μηδενικός.

Φραγμένος τελεστής είναι φραγμένη συνάρτηση στα φραγμένα σύνολα.

Πρόταση. Έστω γραμμικός τελεστής $T: X \to Y$ (X, Y) χώροι με νόρμα). Τα ακόλουθα είναι ισοδύναμα:

- 1. ο Τ είναι συνεχής.
- 2. ο Τ είναι συνεχής στο 0.
- 3. ο Τ είναι φραγμένος.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

1) \implies 2) είναι προφανές.

 $2)\implies 3)$ Για $\varepsilon=1>0$ υπάρχει $\delta>0$ τέτοιο ώστε $||x||<\delta$ έτσι ώστε ||Tx||<1. Έστω $x\in X, x\neq 0,$ τότε:

$$\left|\left|\frac{\delta}{2}\cdot\frac{x}{||x||}\right|\right|=\frac{\delta}{2||x||}\cdot||x||=\frac{\delta}{2}<\delta$$

Άρα

$$||T(\frac{\delta}{2}\frac{x}{||x||})|| < 1$$

Δηλαδή

$$\frac{\delta}{2||x||_X}||Tx||_Y < 1$$

και άρα

$$||Tx||_Y < \frac{2}{\delta}||x||_X$$

3) \implies 1) Θα δείξουμε ότι αν $x_n \to x$, τότε $Tx_n \to Tx$. Υπάρχει από υπόθεση C>0 τέτοιο ώστε για χάθε z

$$||Tz|| \le C||z||$$

Άρα

$$||Tx_n - Tx|| = ||T(x_n - x)|| \le C||x_n - x|| \to 0$$

από την υπόθεση που κάναμε.

Γράφουμε L(X,Y) για το σύνολο των φραγμένων γραμμικών τελεστών $T:X\to Y$.

Ορισμός. Νόρμα ενός $T \in L(X,Y)$ ορίζεται:

$$||T|| = \inf\{C \ge 0: \forall x \in X \ ||Tx|| \le C||x||\}$$

$$= \sup\{||Tx||: \ ||x|| = 1\}$$

$$= \sup\{||Tx||: \ ||x|| \le 1\}$$

$$\sup\{\frac{||Tx||}{||x||}: \ x \ne 0\}$$

Πρόταση. Η απεικόνιση $T \mapsto ||T||$ είναι νόρμα στον L(X,Y) (που είναι γραμμικός χώρος). Επιπλέον, $T \in L(X,Y), S \in L(Y,Z)$ τότε $S \circ T \in L(X,Z)$ και $||S \circ T|| \leq ||S|| \cdot ||T||$. Ειδικότερα, αν $T,S \in L(X,X)$ τότε $S \circ T \in L(X,X)$ και $||S \circ T|| \leq ||S|| \cdot ||T||$. (Ο L(X,X) είναι μια Banach άλγεβρα.)

Θεώρημα. OL(X,Y) είναι πλήρης αν και μόνο αν ο Y είναι πλήρης.

Aπόδειξη. Έστω Y πλήρης και έστω $\{T_n\}$ Cauchy ακολουθία στον L(X,Y). Δηλαδή $\forall \varepsilon>0$ υπάρχει $n_0(\varepsilon)$ τέτοιο ώστε για κάθε $N,M\geq n_0$ να ισχύει $||T_N-T_M||<\varepsilon$. Άρα για κάθε $\varepsilon>0$ υπάρχει $n_0(\varepsilon)$ τέτοιο ώστε για κάθε $N,M\geq n_0$ και για κάθε $x\in X$ να ισχύει:

$$||T_N x - T_M x|| \le \varepsilon ||x||$$

(Βασική ανισότητα $||Tx|| \le ||T|| \cdot ||x||$)

Για κάθε x χωριστά (σταθεροποιώ το x) η $\{Tnx\}$ είναι ακολουθία Cauchy στον Y από την παραπάνω σχέση. Αφού ο Y είναι πλήρης υπάρχει το $Tx:=\lim_{n\to\infty}T_n(x)$. Έτσι ορίζεται μια απεικόνιση $T:X\to Y$ η οποία (εύκολα) είναι γραμμικός τελεστής. Μένει να δείξουμε ότι 1) ο T είναι φραγμένος και 2) $||Tn-T||\to 0$.

Για το 1) σταθεροποιώ το m και το x και αφήνω το $n \to \infty$. (H || · || είναι πάντα συνεχής συνάρτηση)

Tότε $||Tx - Tm(x)|| = \lim_{n\to\infty} ||T_nx - T_mx|| \le \varepsilon ||x||$. Άρα $||Tx|| \le ||T_mx|| + \varepsilon ||x|| \le ||Tm|| \cdot ||x|| + \varepsilon ||x|| = (||T_m|| + \varepsilon)||x||$.

 Δ ηλαδή, για κάθε $\varepsilon > 0$ υπάρχει n_0 τέτοιο ώστε για κάθε $m \geq n_0$ και για κάθε $x \in X$:

$$||Tx|| \le (||T_m|| + \varepsilon) ||x|| \implies$$

$$||Tx|| \le (\liminf_{m} ||T_m||)||x||$$

Δηλαδή

$$||T|| \leq \liminf_m ||Tm||$$

2) Είδαμε ότι για κάθε $\varepsilon > 0$ υπάρχει n_0 τέτοιο ώστε για κάθε $m \ge n_0$ και $x \in X$ ισχύει $||Tx - T_m(x)|| \le \varepsilon ||x||$. Δηλαδή $T_m \to T$ στον L(X,Y) και $||T - T_m|| \le \varepsilon$.

Το αντίστροφο δεν είναι στα πλαίσια του μαθήματος.

$\mathbf{5}$ Δυϊκός Χώρος του X

Έστω X χώρος με νόρμα. Γραμμικό συναρτησοειδές στον X λέμε κάθε γραμμική απεικόνιση $f:X\to\mathbb{R}$. Ο \mathbb{R} είναι χώρος με νόρμα την απόλυτη τιμή $|\cdot|$ και είναι χώρος Banach. Ο δυϊκός χώρος του X είναι ο $X^*=L(X,\mathbb{R})$, δηλαδή ο χώρος των φραγμένων γραμμικών συναρτησοειδών. Η νόρμα στον X^* είναι η

$$||f||_* = \sup\{|f(x)|: ||x|| = 1\}$$

Ο X^* είναι χώρος Banach (αφού ο $\mathbb R$ είναι πλήρης)

Ορισμός. Έστω X γραμμικός χώρος. Μια $p:X\to\mathbb{R}$ λέγεται υπογραμμικό συναρτησοειδές αν:

- 1. $p(x+y) \le p(x) + p(y)$ για κάθε $x, y \in X$
- 2. $p(\lambda x) = \lambda p(x)$ and $x \in X, \lambda \ge 0$.

Παράδειγμα: Κάθε υπονόρμα είναι υπογραμμικό συναρτησοειδές.

Θεώρημα (Hahn-Banach). Έστω X γραμμικός χώρος πάνω από το \mathbb{R} , $p:X\to\mathbb{R}$ υπογραμμικό συναρτησοειδές, M γραμμικός υπόχωρος του X και $f:M\to\mathbb{R}$ γραμμικό συναρτησοειδές τέτοιο ώστε για κάθε $x\in M$ έχουμε $f(x)\leq p(x)$. Τότε υπάρχει γραμμικό συναρτησοειδές $F:X\to\mathbb{R}$ τέτοιο ώστε $F|_M=f$ και $F(x)\leq p(x)$ για κάθε $x\in X$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έστω $x \in X \setminus M$. Θεωρώ τον $M_1 = M + \mathbb{R}_x = \{y + \lambda x : y \in M, \lambda \in \mathbb{R}\}$. Θα δείξουμε ότι υπάρχει επέχταση g του f στον M_1 τέτοια ώστε $g(y + \lambda x) \leq p(y + \lambda x)$ για χάθε $y \in M, \lambda \in \mathbb{R}$. Επειδή το g θα είναι γραμμιχό, θα πρέπει $g(y + \lambda x) = g(y) + \lambda g(x) = f(y) + \lambda \theta$, όπου $\theta = g(x)$.

Παρατήρηση: Αν $y_1, y_2 \in M$, τότε

$$f(y_1) + f(y_2) = f(y_1 + y_2) \le p(y_1 + y_2) = p(y_1 + x + y_2 - x) \le p(y_1 - x) + p(y_2 + x)$$
$$f(y_1) - p(y_1 - x) \le p(y_2 + x) - f(y_2)$$