Aircraft Equations of Motion - 1

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014

Learning Objectives

- · What use are the equations of motion?
- How is the angular orientation of the airplane described?
- What is a cross-product-equivalent matrix?
- · What is angular momentum?
- How are the inertial properties of the airplane described?
- How is the rate of change of angular momentum calculated?

Reading: Flight Dynamics 155-161

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/Flight[Dynamics.html

1

Assignment #5 due: End of day, Oct 24, 2014

- Takeoff from Princeton Airport, fly over Princeton and Lake Carnegie, and land at Princeton Airport
- "HotSeat" cockpit simulation of the Cessna 172
- 3- and 4-member teams; each member successfully flies the circuit
- Individual flight testing reports

Ordinary Differential Equations Fall Into 4 Categories

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f} [\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$$

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t) \right]$$

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{L}(t)\mathbf{w}(t)$$

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$$

3

What Use are the Equations of Motion?

- Nonlinear equations of motion
 - Compute "exact" flight paths and motions
 - · Simulate flight motions
 - · Optimize flight paths
 - · Predict performance
 - Provide basis for approximate solutions

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f} [\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$$

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$$

- Linear equations of motion
 - Simplify computation of flight paths and solutions
 - Define modes of motion
 - Provide basis for control system design and flying qualities analysis

Examples of Airplane Dynamic System Models

- Nonlinear, Time-Varying
 - Large amplitude motions
 - Significant change in mass

- Linear, Time-Varying
 - Small amplitude motions
 - Perturbations from a dynamic flight path

- Nonlinear, Time-Invariant
 - Large amplitude motions
 - Negligible change in mass

- Linear, Time-Invariant
 - Small amplitude motions
 - Perturbations from an equilibrium flight path

_

Translational Position

Cartesian Frames of Reference

- Two reference frames of interest
 - I: Inertial frame (fixed to inertial space)
 - B: Body frame (fixed to body)

Common convention (z up)

- Translation
 - Relative linear positions of origins
- Rotation
 - Orientation of the body frame with respect to the inertial frame

Aircraft convention (z down)

7

Measurement of Position in Alternative Frames - 1

- Two reference frames of interest
 - Inertial frame (fixed to inertial space)
 - B: Body frame (fixed to body)

Differences in frame orientations must be taken into account in adding vector components

Euler Angles Measure the Orientation of One Frame with Respect to the Other

- Conventional sequence of rotations from inertial to body frame
 - Each rotation is about a single axis
 - Right-hand rule
 - Yaw, then pitch, then roll
 - These are called Euler Angles

Yaw rotation (ψ) about z_l

Pitch rotation (θ) about y_1

Roll rotation (φ) about x_2

Other sequences of 3 rotations can be chosen; however, once sequence is chosen, it must be retained

^

Euler Angles

10

Effects of Rotation on Vector Transformation from Inertial to Body Frame of Reference

Yaw rotation (ψ) about z_i – Intermediate Frame 1

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{1} = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{I} = \begin{bmatrix} x_{I} \cos \psi + y_{I} \sin \psi \\ -x_{I} \sin \psi + y_{I} \cos \psi \\ z_{I} \end{bmatrix}; \quad \mathbf{r}_{1} = \mathbf{H}_{I}^{1} \mathbf{r}_{I}$$

Pitch rotation (θ) about y_1 – Intermediate Frame 2

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \quad \mathbf{r}_{2} = \mathbf{H}_{1}^{2}\mathbf{r}_{1} = [\mathbf{H}_{1}^{2}\mathbf{H}_{I}^{1}]\mathbf{r}_{I} = \mathbf{H}_{I}^{2}\mathbf{r}_{I}$$

Roll rotation (φ) about x_2 - Body Frame

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2}; \quad \mathbf{r}_{B} = \mathbf{H}_{2}^{B}\mathbf{r}_{2} = \begin{bmatrix} \mathbf{H}_{2}^{B}\mathbf{H}_{1}^{2}\mathbf{H}_{1}^{1} \end{bmatrix} \mathbf{r}_{I} = \mathbf{H}_{I}^{B}\mathbf{r}_{I}$$

11

The Rotation Matrix

 The three-angle rotation matrix is the product of 3 single-angle rotation matrices:

$$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) = \mathbf{H}_{2}^{B}(\phi)\mathbf{H}_{1}^{2}(\theta)\mathbf{H}_{I}^{1}(\psi)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

	$\cos heta\cos\psi$	$\cos heta\sin\psi$	$-\sin\theta$
=	$-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$	$\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$	$\sin\phi\cos\theta$
	$\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi$	$-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$	$\cos\phi\cos\theta$

Properties of the Rotation Matrix

$$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}_{I}^{B}$$

$$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) = \mathbf{H}_{2}^{B}(\phi)\mathbf{H}_{1}^{2}(\theta)\mathbf{H}_{I}^{1}(\psi)$$

$$\left[\mathbf{H}_{I}^{B}(\phi,\theta,\psi)\right]^{-1} = \left[\mathbf{H}_{I}^{B}(\phi,\theta,\psi)\right]^{T} = \mathbf{H}_{B}^{I}(\psi,\theta,\phi)$$

- The rotation matrix produces an orthonormal transformation
 - Angles are preserved
 - Lengths are preserved

$$\begin{vmatrix} \mathbf{r}_I | = |\mathbf{r}_B| & ; & |\mathbf{s}_I| = |\mathbf{s}_B| \\ \angle(\mathbf{r}_I, \mathbf{s}_I) = \angle(\mathbf{r}_B, \mathbf{s}_B) = x \deg \end{vmatrix}$$

13

Properties of the Rotation Matrix

Inverse relationship; interchange sub- and superscripts

$$\mathbf{r}_B = \mathbf{H}_I^B \mathbf{r}_I$$
 ; $\mathbf{r}_I = \left(\mathbf{H}_I^B\right)^{-1} \mathbf{r}_B = \mathbf{H}_B^I \mathbf{r}_B$

- Because transformation is orthonormal.
 - Inverse = transpose
 - Rotation matrix is always non-singular

$$\mathbf{H}_{B}^{I} = \left(\mathbf{H}_{I}^{B}\right)^{-1} = \left(\mathbf{H}_{I}^{B}\right)^{T} = \mathbf{H}_{1}^{I}\mathbf{H}_{2}^{1}\mathbf{H}_{B}^{2}$$

$$\mathbf{H}_B^I \mathbf{H}_I^B = \mathbf{H}_I^B \mathbf{H}_B^I = \mathbf{I}$$

Measurement of Position in Alternative Frames - 2

Inertial-axis view

$$\mathbf{r}_{particle_I} = \mathbf{r}_{origin-B_I} + H_B^I \Delta \mathbf{r}_B$$

Body-axis view

$$\mathbf{r}_{particle_B} = \mathbf{r}_{origin-I_B} + H_I^B \Delta \mathbf{r}_I$$

15

Angular Momentum

Angular Momentum of a Particle

- Moment of linear momentum of differential particles that make up the body
 - (Differential masses) x components of the velocity that are perpendicular to the moment arms

$$d\mathbf{h} = (\mathbf{r} \times dm\mathbf{v}) = (\mathbf{r} \times \mathbf{v}_m)dm$$
$$= (\mathbf{r} \times (\mathbf{v}_o + \boldsymbol{\omega} \times \mathbf{r}))dm$$

$$\mathbf{\omega} = \left[\begin{array}{c} \omega_x \\ \omega_y \\ \omega_z \end{array} \right]$$

• Cross Product: Evaluation of a determinant with unit vectors (i, j, k) along axes, (x, y, z) and (v_x, v_y, v_z) projections on to axes

$$\mathbf{r} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ v_x & v_y & v_z \end{vmatrix} = (yv_z - zv_y)\mathbf{i} + (zv_x - xv_z)\mathbf{j} + (xv_y - yv_x)\mathbf{k}$$

17

Cross-Product- Equivalent Matrix

$$\mathbf{r} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ v_x & v_y & v_z \end{vmatrix} = (yv_z - zv_y)\mathbf{i} + (zv_x - xv_z)\mathbf{j} + (xv_y - yv_x)\mathbf{k}$$

$$= \begin{bmatrix} (yv_z - zv_y) \\ (zv_x - xv_z) \\ (xv_y - yv_x) \end{bmatrix} = \tilde{\mathbf{r}}\mathbf{v} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

Cross-product-equivalent matrix

$$\tilde{\mathbf{r}} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

Angular Momentum of the Aircraft

Integrate moment of linear momentum of differential particles over the body

$$\mathbf{h} = \int_{Body} (\mathbf{r} \times (\mathbf{v}_o + \mathbf{\omega} \times \mathbf{r})) dm = \int_{x_{\min}}^{x_{\max}} \int_{y_{\min}}^{y_{\max}} \sum_{z_{\min}}^{z_{\max}} (\mathbf{r} \times \mathbf{v}) \rho(x, y, z) dx dy dz = \begin{bmatrix} h_x \\ h_y \\ h_z \end{bmatrix}$$

$$\rho(x, y, z) = \text{Density of the body}$$

Choose the center of mass as the rotational center

$$\mathbf{h} = \int_{Body} (\mathbf{r} \times \mathbf{v}_o) dm + \int_{Body} (\mathbf{r} \times (\mathbf{\omega} \times \mathbf{r})) dm$$

$$= 0 - \int_{Body} (\mathbf{r} \times (\mathbf{r} \times \mathbf{\omega})) dm = -\int_{Body} (\mathbf{r} \times \mathbf{r}) dm \times \mathbf{\omega}$$

$$= -\int_{Body} (\tilde{\mathbf{r}}\tilde{\mathbf{r}}) dm\mathbf{\omega}$$

19

Location of the Center of Mass

$$\mathbf{r}_{cm} = \frac{1}{m} \int_{Body} \mathbf{r} \, dm = \int_{x_{\min}}^{x_{\max}} \int_{y_{\min}}^{y_{\max}} \int_{z_{\min}}^{z_{\max}} \mathbf{r} \rho(x, y, z) \, dx \, dy \, dz = \begin{bmatrix} x_{cm} \\ y_{cm} \\ z_{cm} \end{bmatrix}$$

The Inertia Matrix

21

The Inertia Matrix

$$\mathbf{h} = -\int_{Bo \, dy} \tilde{\mathbf{r}} \, \tilde{\mathbf{r}} \, \mathbf{\omega} \, dm = -\int_{Bo \, dy} \tilde{\mathbf{r}} \, \tilde{\mathbf{r}} \, dm \, \mathbf{\omega} = \mathbf{I} \mathbf{\omega}$$

$$\mathbf{\omega} = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

where
$$I = -\int_{Body} \tilde{\mathbf{r}} \, \tilde{\mathbf{r}} \, dm = -\int_{Body} \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} dm$$

$$= \int_{Body} \begin{bmatrix} (y^2 + z^2) & -xy & -xz \\ -xy & (x^2 + z^2) & -yz \\ -xz & -yz & (x^2 + y^2) \end{bmatrix} dm$$

 Inertia matrix derives from equal effect of angular rate on all particles of the aircraft

Moments and Products of Inertia

Inertia matrix

$$I = \int_{Body} \begin{bmatrix} (y^2 + z^2) & -xy & -xz \\ -xy & (x^2 + z^2) & -yz \\ -xz & -yz & (x^2 + y^2) \end{bmatrix} dm = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}$$

- Moments of inertia on the diagonal
- Products of inertia off the diagonal
- If products of inertia are zero, (x, y, z) are principal axes --->
- All rigid bodies have a set of principal axes

$$\begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}$$

23

Inertia Matrix of an Aircraft with Mirror Symmetry

$$I = \int_{Body} \begin{bmatrix} (y^2 + z^2) & 0 & -xz \\ 0 & (x^2 + z^2) & 0 \\ -xz & 0 & (x^2 + y^2) \end{bmatrix} dm = \begin{bmatrix} I_{xx} & 0 & -I_{xz} \\ 0 & I_{yy} & 0 \\ -I_{xz} & 0 & I_{zz} \end{bmatrix}$$

 Nose high/low product of inertia, I_{xz}

Nominal Configuration

Tips folded, 50% fuel, W = 38,524 lb x_{cm} @ 0.218 \overline{c} $I_{xx} = 1.8 \times 10^6 \text{ slug-ft}^2$ $I_{yy} = 19.9 \times 10^6 \text{ slug-ft}^2$ $I_{xx} = 22.1 \times 10^6 \text{ slug-ft}^2$ $I_{xz} = -0.88 \times 10^6 \text{ slug-ft}^2$

Historical Factoids

Technology of World War II Aviation

- 1938-45: Analytical and experimental approach to design
 - Many configurations designed and flight-tested
 - Increased specialization; radar, navigation, and communication
 - Approaching the "sonic barrier"
- Aircraft Design
 - Large, powerful, high-flying aircraft
 - Turbocharged engines
 - Oxygen and Pressurization

24

Power Effects on Stability and Control

- Brewster Buffalo: overarmored and underpowered
- During W.W.II, the size of fighters remained about the same, but installed horsepower doubled (F4F vs. F8F)
- Use of flaps means high power at low speed, increasing relative significance of thrust effects

World War II Carrier-Based Airplanes

- Takeoff without catapult, relatively low landing speed http://www.youtube.com/watch?
 v=4dySbhK1vNk
- Tailhook and arresting gear
- Carrier steams into wind
- Design for storage (short tail length, folding wings) affects stability and control

27

Multi-Engine Aircraft of World War II

- Large W.W.II aircraft had unpowered controls:
 - High foot-pedal force
 - Rudder stability problems arising from balancing to reduce pedal force
- Severe engine-out problem for twin-engine aircraft

WW II Military Flying Boats

Seaplanes proved useful during World War II

Rate of Change of Angular Momentum

Newton's 2nd Law, Applied to Rotational Motion

 In inertial frame, rate of change of angular momentum = applied moment (or torque), M

$$\frac{d\mathbf{h}}{dt} = \frac{d(\mathbf{I}\boldsymbol{\omega})}{dt} = \frac{d\mathbf{I}}{dt}\boldsymbol{\omega} + \mathbf{I}\frac{d\boldsymbol{\omega}}{dt}$$
$$= \dot{\mathbf{I}}\boldsymbol{\omega} + \mathbf{I}\dot{\boldsymbol{\omega}} = \mathbf{M} = \begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix}$$

31

Angular Momentum and Rate

 Angular momentum and rate vectors are not necessarily aligned

$$h = I\omega$$

How Do We Get Rid of *dl/dt* in the Angular Momentum Equation?

· Chain Rule

... and in an inertial frame

$$\frac{d(\boldsymbol{I}\boldsymbol{\omega})}{dt} = \dot{\boldsymbol{I}}\boldsymbol{\omega} + \boldsymbol{I}\dot{\boldsymbol{\omega}}$$

$$\dot{I} \neq 0$$

- Dynamic equation in a body-referenced frame
 - Inertial properties of a constant-mass, rigid body are unchanging in a body frame of reference
 - ... but a body-referenced frame is "non-Newtonian" or "non-inertial"
 - Therefore, dynamic equation must be modified for expression in a rotating frame

33

Angular Momentum Expressed in Two Frames of Reference

- Angular momentum and rate are vectors
 - Expressed in either the inertial or body frame
 - Two frames related algebraically by the rotation matrix

$$\mathbf{h}_{B}(t) = \mathbf{H}_{I}^{B}(t)\mathbf{h}_{I}(t); \qquad \mathbf{h}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{h}_{B}(t)$$

$$\mathbf{\omega}_{B}(t) = \mathbf{H}_{I}^{B}(t)\mathbf{\omega}_{I}(t); \qquad \mathbf{\omega}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{\omega}_{B}(t)$$

Vector Derivative Expressed in a Rotating Frame

• Chain Rule
$$\dot{\mathbf{h}}_{I} = \mathbf{H}_{B}^{I}\dot{\mathbf{h}}_{B} + \dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B}$$

Bate of change

Alternatively

expressed in body frame

$$\dot{\mathbf{h}}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \boldsymbol{\omega}_{I} \times \mathbf{h}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \tilde{\boldsymbol{\omega}}_{I} \mathbf{h}_{I}$$

Consequently, the 2nd term is

$$\dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{h}_{I} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{H}_{B}^{I}\mathbf{h}_{B}$$

... where the cross-productequivalent matrix of angular rate is

$$\tilde{\mathbf{\omega}} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

21

External Moment Causes Change in Angular Rate

Positive rotation of Frame B w.r.t. Frame A is a negative rotation of Frame A w.r.t. Frame B

In the body frame of reference, the angular momentum change is

$$\dot{\mathbf{h}}_{B} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} + \dot{\mathbf{H}}_{I}^{B}\mathbf{h}_{I} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} - \boldsymbol{\omega}_{B} \times h_{B}$$

$$= \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} - \tilde{\boldsymbol{\omega}}_{B}h_{B} = \mathbf{H}_{I}^{B}\mathbf{M}_{I} - \tilde{\boldsymbol{\omega}}_{B}\boldsymbol{I}_{B}\boldsymbol{\omega}_{B}$$

$$= \mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B}\boldsymbol{I}_{B}\boldsymbol{\omega}_{B}$$

Moment = torque = force x moment arm

Rate of Change of Body-Referenced Angular Rate due to External Moment

· In the body frame of reference, the angular momentum change is

$$\dot{\mathbf{h}}_{B} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} + \dot{\mathbf{H}}_{I}^{B}\mathbf{h}_{I} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} - \boldsymbol{\omega}_{B} \times h_{B}$$

$$= \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} - \tilde{\boldsymbol{\omega}}_{B}h_{B} = \mathbf{H}_{I}^{B}\mathbf{M}_{I} - \tilde{\boldsymbol{\omega}}_{B}\boldsymbol{I}_{B}\boldsymbol{\omega}_{B}$$

$$= \mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B}\boldsymbol{I}_{B}\boldsymbol{\omega}_{B}$$

For constant body-axis inertia matrix

$$\dot{\mathbf{h}}_{B} = \mathbf{I}_{B}\dot{\mathbf{\omega}}_{B} = \mathbf{M}_{B} - \tilde{\mathbf{\omega}}_{B}\mathbf{I}_{B}\mathbf{\omega}_{B}$$

· Consequently, the differential equation for angular rate of change is

$$\dot{\boldsymbol{\omega}}_{B} = \boldsymbol{I}_{B}^{-1} \left(\mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B} \right)$$

37

Next Time: Aircraft Equations of Motion - 2

Reading: Flight Dynamics 161-180

SUPPLEMENTAL MATERIAL

39

Direction Cosine Matrix (also called Rotation Matrix)

$$\mathbf{H}_{I}^{B} = \begin{bmatrix} \cos \delta_{11} & \cos \delta_{21} & \cos \delta_{31} \\ \cos \delta_{12} & \cos \delta_{22} & \cos \delta_{32} \\ \cos \delta_{13} & \cos \delta_{23} & \cos \delta_{33} \end{bmatrix}$$

- Cosines of angles between each I axis and each B axis
- Projections of vector components

$$\mathbf{r}_B = \mathbf{H}_I^B \mathbf{r}_I$$

$$I_{x = x \le x} = I_{xz} = \int_{m} (y^{2} + z^{2}) dm,$$

$$I_{y = x \le x} = I_{yy} - \int_{m} (x^{2} + z^{2}) dm,$$

$$I_{z = x \le x} = I_{zz} = \int_{m} (x^{2} + y^{2}) dm,$$

$$I_{zy} = \int_{m} xy dm, \quad I_{yz} = \int_{m} yz dm,$$

$$I_{zz} = \int_{z} zx dm.$$

$$\begin{split} I_{1 \text{ actis}} &= 0, & I_{y \text{ actis}} &= I_{2 \text{ actis}} = \frac{1}{3} \text{ ml}^2, \\ I_{3y} &= I_{yz} = I_{zz} = 0, \\ I_{1 \text{ actis}} &= 0, & I_{y \text{ actis}} = I_{z' \text{ actis}} = \frac{1}{12} \text{ ml}^2, \\ I_{2y'} &= I_{y'z'} = I_{z'x'} = 0. \end{split}$$

$$\begin{split} I_{i',\text{axis}} &= I_{j',\text{axis}} = \frac{1}{4} \, m R^2, \qquad I_{i',\text{axis}} = \frac{1}{2} \, m R^2, \\ I_{j'j'} &= I_{j'j'} = I_{i'j'} = 0. \end{split}$$

Thin circular plate

$$\begin{split} I_{\rm conis} &= \frac{1}{3} \, m h^2, \qquad I_{\rm conis} = \frac{1}{3} \, m b^2, \qquad I_{\rm conis} = \frac{1}{3} \, m (b^2 + h^2), \\ I_{\rm cy} &= \frac{1}{4} \, m b h, \qquad I_{\rm yz} = I_{\rm zx} = 0. \\ I_{\rm conis} &= \frac{1}{12} \, m h^2, \qquad I_{\rm conis} = \frac{1}{12} \, m b^2, \qquad I_{\rm conis} = \frac{1}{12} \, m (b^2 + h^2), \\ I_{\rm cyc} &= I_{\rm y'z'} = I_{\rm y'z'} = 0. \end{split}$$

Moments and Products of Inertia

(Bedford & Fowler)

- Moments and products of inertia tabulated for geometric shapes with uniform density
- Construct aircraft moments and products of inertia from components using parallel-axis theorem
- Model in *Creo*, etc.