Data Analysis and Imputation of Survey Dataset

Table of contents

1	1 Task 1: Summarize the Data	Str	uct	ur	e														1
2	2 Task 2: Data Imputation																		4
3	3 Task 3: Exploratory Data Ar	alysi	is																8
	3.1 Part 1:			٠										•	*		٠	•8	8
	3.2 Part 2:					•	 •	٠	٠		٠				•	•	•	•	9
4	4 Task 4: Visual Analysis																		10
	4.1 Part 1:																٠		10
	4.2 Part 2:																		

1 Task 1: Summarize the Data Structure

Explaining Variable Types:

Variable	Type
Case_id	Numerical (discrete)
123	Numerical (continuous)
1	Categorical (nominal)
Mstatus	Categorical (nominal)
Totper.	Numerical (discrete)
Adults.	Numerical (discrete)
Parent.	Categorical (nominal).
Age.	Numerical (discrete).
Education	Categorical (ordinal).
Income.	Numerical (continuous)
Hispanic	Categorical (nominal).

Variable	Type
Race.	Categorical (nominal).
Partyln.	Categorical (nominal).
Polview.	Categorical (ordinal).
Sex.	Categorical (nominal).
Religion	Categorical (nominal).
Date.	Numerical (discrete).
Q1.	Categorical (nominal).
Q2	Categorical (ordinal)
Q3a	Categorical (nominal).
Q3b	Categorical (nominal).
Q4	Categorical (ordinal).
Q5a	Categorical (nominal)
Q5b	Categorical (nominal).
Q5c	Categorical (nominal).
Q5d	Categorical (nominal).
Q5e	Categorical (nominal).
Q5f	Categorical (nominal).
Q6	Categorical (nominal).
Country2	Categorical (nominal).
servey.	Numerical (discrete).

Code to find the count of 'refused' and 'NA' values in each column

```
library(readxl)
df <- read_excel("Mini_Group_Project_1.xlsx")

for (i in 1: ncol(df)){
    a = as.integer(table(df[i])["Refused"])
    b = as.integer(table(df[i])["NA"])

    print(c(i, a, b))
}

[1] 1 NA NA
[1] 2 NA NA
[1] 3 NA NA
[1] 4 6 NA
[1] 5 11 NA
[1] 6 11 NA
[1] 7 1 796</pre>
```

- [1] 8 23 NA
- [1] 9 5 NA
- [1] 10 65 NA
- [1] 11 9 NA
- [1] 12 21 NA
- [1] 13 NA 634
- [1] 14 19 NA
- [1] 15 NA NA
- [1] 16 22 NA
- [1] 17 NA NA
- [1] 18 NA NA
- [1] 19 NA NA
- [1] 20 NA NA
- [1] 21 NA NA
- [1] 22 NA NA
- [1] 23 NA NA
- [1] 24 NA NA
- [1] 25 NA NA
- [1] 26 NA NA
- [1] 27 NA NA
- [1] 28 NA NA
- [1] 29 NA NA
- [1] 30 NA NA
- [1] 31 NA NA

Missing Values:

Variable	Refused	NA
Case_id	0	0
123	0	0
1	0	0
Mstatus	6	0
Totper.	11	0
Adults.	11	0
Parent.	1	796
Age.	23	0
Education	5	0
Income.	65	0
Hispanic	9	0
Race.	21	0
Partyln.	0	634
Polview.	19	0

Variable	Refused	NA
Sex.	0	0
Religion	22	0
Date.	0	0
Q1.	0	0
Q2	0	0
Q3a	0	0
Q3b	0	0
Q4	0	0
Q5a	0	0
Q5b	0	0
Q5c	0	0
Q5d	0	0
Q5e	0	0
Q5f	0	0
Q6	0	0
Country2	0	0
servey.	0	0

2 Task 2: Data Imputation

Code to replace 'Refused' and 'NA' values with mode of the column for categorical variables

Code to replace 'Refused' and 'NA' values with mode of the column for numerical variables Finding the standard statistical properties of numerical columns like mean, median, etc.

```
# Statistics of numerical variable "Weight"
  df$weight <- as.numeric(df$weight)</pre>
  min(df$weight)
[1] 0.25
  max(df$weight)
[1] 3.9598
  mean(df$weight)
[1] 1
  median(df$weight)
[1] 0.82
  sd(df$weight)
[1] 0.6364925
  IQR(df$weight)
[1] 0.72455
  # Statistics of numerical variable "age"
  df$age <- as.numeric(df$age)</pre>
  min(df$age)
[1] 18
```

```
max(df$age)

[1] 96

mean(df$age)

[1] 49.83019

median(df$age)

[1] 49

sd(df$age)

[1] 16.78972

IQR(df$age)
```

[1] 26Statistical Properties of numerical columns

Variable	Min.	Max	Mean	Median	Standard Deviation	Interquartile range
Weight	0.25	3.9598	1	0.82	0.6264925	0.72455
Age	18	96	49.83019	49	16.78972	26

```
for(i in list(3, 4, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
    a = names(which.min(table(df[, i])))
    b = names(which.max(table(df[, i])))
    print(c(i, a, b))
}
```

```
[1] "3" "AK" "CA"
[1] "4"
                "Separated" "Married"
[1] "7"
        "No" "NA"
[1] "9"
[2] "Don't know"
[3] "Four year college or university degree/Bachelor.s degree (e.g., BS, BA, AB)"
                 "Don't Know" "No"
[1] "11"
[1] "12"
                         "Other Race"
                                               "White Non-Hispanic"
                                  "Neither/Other (DO NOT READ)"
[1] "13"
[3] "NA"
[1] "14"
                 "Don't know" "Moderate"
[1] "15"
             "Female" "Male"
[1] "16"
                               "Don't know"
[3] "Catholic, Roman Catholic"
Γ1] "18"
                     "Australia"
                                      "United Kingdom"
[1] "19"
                    "Very bad"
                                    "Somewhat good"
[1] "20"
[2] "VOL: Neither"
[3] "Having a close relationship to Germany"
[1] "21"
[2] "VOL: Neither"
[3] "Having a close relationship to Germany"
                      "Very unlikely"
[1] "22"
                                        "Somewhat likely"
[1] "23"
                        "No, not a partner" "Yes, as a partner"
[1] "24"
                        "No, not a partner" "Yes, as a partner"
[1] "25"
                        "No, not a partner" "Yes, as a partner"
[1] "26"
                        "No, not a partner" "Yes, as a partner"
[1] "27"
                        "No, not a partner" "Yes, as a partner"
[1] "28"
                        "No, not a partner" "Yes, as a partner"
[1] "29"
[2] "Countries will cooperate more with other countries"
[3] "Everything will be the same as before the crisis"
                    "United States" "United States"
[1] "30"
```

Variabl	e State	Mstatus Parent	Educ	Hispan	icRace	Partyln	Polview	sex	religion	
Min	AK	SeparateNo	Don't Know	Don't Know	Other Race	Neither	Don't Know	Don't Know		
Max	CA	Married NA	4 Years	No	White Non- Hispani	NA ic	Modera	t e Male	Catholic	

3 Task 3: Exploratory Data Analysis

3.1 Part 1:

```
library(ggplot2)
  df <- read_excel("Mini_Group_Project_1.xlsx")</pre>
  df_new<-df[df[, 14] == "Moderate" & df[, 15] == "Female" &
            df$Q3b != "DK/Refused" & df$Q3b != "Both relationships are equally important"
         & df$Q3b != "VOL: Neither",]
  df_new$age <- as.numeric(df_new$age)</pre>
Warning: NAs introduced by coercion
  dt1 <- df_new[df_new[, 8] < 30,]
  dt2 <- df_new[(df_new[, 8] < 50 & df_new[, 8] > 29), ]
  dt3 \leftarrow df_{new}[(df_{new}[, 8] < 65 \& df_{new}[, 8] > 49),]
  dt4 <- df_new[df_new[, 8] > 64 ,]
  table(dt1$Q3b)
  Having a close relationship to China Having a close relationship to Germany
                                                                               10
  table(dt2$Q3b)
  Having a close relationship to China Having a close relationship to Germany
                                     36
                                                                               30
  table(dt3$Q3b)
  Having a close relationship to China Having a close relationship to Germany
```

20

coord_flip()

Having a close relationship to China Having a close relationship to Germany

```
Relation = c("Having a close relationship to China", "Having a close relationship to Germa frequency = c(9, -10, 36, -33, 12, -20, 6, -26)

age = c("Age between 18 and 29", "Age between 18 and 29", "Age between 30 and 49", "Age between 40 <- data.frame(Relation, frequency, age)

ggplot(d, aes(x = age, y = frequency, fill = Relation))+

geom_bar(stat = "identity")+
```


3.2 Part 2:

From the graph, we can infer that as older females prefer having a closer relationship with Germany over China, while in younger females, the ratio is more even. So, we can see a similar pattern as in the graph of Younger Americans.

4 Task 4: Visual Analysis

4.1 Part 1:

```
q1 = df[df$Q5a == 'Yes, as a partner',]
  q2 = df[df$Q5b == 'Yes, as a partner',]
  q3 = df[df$Q5c == 'Yes, as a partner',]
  q4 = df[df$Q5d == 'Yes, as a partner',]
  q5 = df[df$Q5e == 'Yes, as a partner',]
  q6 = df[df$Q5f == 'Yes, as a partner',]
  tot_f = nrow(df[df$sex == 'Female',])
  tot_m = nrow(df[df$sex == 'Male',])
  table(q1$sex)
Female
         Male
   376
          401
  table(q2$sex)
Female
         Male
   292
          312
  table(q3$sex)
Female
         Male
   270
          303
  table(q4$sex)
Female
         Male
   385
          410
  table(q5$sex)
Female
         Male
   396
          414
```

```
table(q6$sex)
```

Female Male 369 407

```
Questions = c('Q1', 'Q1', 'Q2', 'Q2', 'Q3', 'Q3', 'Q4', 'Q4', 'Q5', 'Q5', 'Q6', 'Q6')
Percent = c(c(as.numeric(table(q1\$sex)['Female']/tot_f*100),
              -as.numeric(table(q1$sex)['Male']/tot_m*100)),
            c(as.numeric(table(q2$sex)['Female']/tot_f*100),
              -as.numeric(table(q2$sex)['Male']/tot_m*100)),
            c(as.numeric(table(q3$sex)['Female']/tot_f*100),
              -as.numeric(table(q3$sex)['Male']/tot_m*100)),
            c(as.numeric(table(q4$sex)['Female']/tot_f*100),
              -as.numeric(table(q4$sex)['Male']/tot_m*100)),
            c(as.numeric(table(q5$sex)['Female']/tot_f*100),
              -as.numeric(table(q5$sex)['Male']/tot_m*100)),
            c(as.numeric(table(q6$sex)['Female']/tot_f*100),
                -as.numeric(table(q6$sex)['Male']/tot_m*100))
)
sx = c('Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', '
d <- data.frame(Questions, Percent, sx)</pre>
ggplot(d, aes(x = Questions, y = Percent, fill = sx))+
  geom_bar(stat = "identity")+
  coord_flip()
```


4.2 Part 2:

Looking at the graph, we can see that percent of males who think Germany as a partner on key issues is more than female percent in all the six questions, although they differ by a very small amount. So we can conclude that sex isn't a major factor in affecting the data.