Notes for Math 597 – Real Analysis

Yiwei Fu

WN 2022

Contents

Office hour is Mon 12:30 - 1:30, Tue 12:30 - 1:30 in person EH 5838, Th 1 - 2 online.

Chapter 1

Abstract Measure

1.1 σ -Algebra

Definition 1.1. Let X be a set. A collection \mathcal{M} of subsets of X is called a σ -algebra on X if

- $\emptyset \in \mathcal{M}$.
- \mathcal{M} is closed under complements: $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- \mathcal{M} is closed under <u>countable unions</u>: $E_1, E_2, \ldots \in \mathcal{M} \implies \bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$.

SIMPLE PROPERTIES:

- $X = \emptyset^c \in \mathcal{M}$.
- $\bigcap_{i=1}^{\infty} E_i = \left(\bigcup_{i=1}^n E_i^c\right)^c \in \mathcal{M}$. It is closed under countable intersections.
- $\bigcup_{i=1}^{N} E_i = E_i \cup ... \cup E_n \cup \emptyset \cup ...$ It is closed under finite unions (similarly, intersections).
- $E \setminus F = E \cap F^c \in \mathcal{M}, E \triangle F = (E \cap F^c) \cup (F \cap E^c) \in \mathcal{M}.$

Example 1.2. (a) A = P(X) power algebra.

- (b) $A = {\emptyset, X}$ trivial algebra.
- (c) Let $B \subset X, B \neq \emptyset, B \neq X. A = \{\emptyset, B, B^c, X\}.$

Lemma 1.3. (An intersection of σ -algebras is a σ -algebra) Let $\mathcal{A}_{\alpha}, \alpha \in I$, be a family a σ -algebras of X. Then $\bigcap_{\alpha \in I} A_{\alpha}$ is a σ -algebra. (I can be uncountable.)

Proof. DIY

Measures Yiwei Fu

Definition 1.4. For $\mathcal{E} \subset \mathcal{P}(X)$ (not necessarily a σ -algebra), let $\langle \mathcal{E} \rangle$ be the intersection of all σ -algebras on X that contains \mathcal{E} . Call it the σ -algebra generated by \mathcal{E} .

• $\langle \mathcal{E} \rangle$ is the <u>smallest</u> σ -algebra containing \mathcal{E} and is unique.

•
$$\{\emptyset, B, B^c, X\} = \langle \{B\} \rangle = \langle \{B^c\} \rangle = \langle \{\emptyset, B\} \rangle$$
.

The above definition gives us (potentially) lots of examples of σ -algebra on a set X

Lemma 1.5. (a) Suppose $\mathcal{E} \subset \mathcal{P}(X)$, \mathcal{A} a σ -algebra on X. $\mathcal{E} \in \mathcal{A} \implies \langle \mathcal{E} \rangle \in \mathcal{A}$.

(b)
$$E \subset F \subset \mathcal{P}(X) \implies \langle \mathcal{E} \rangle \subset \langle \mathcal{F} \rangle$$
.

Proof.

Definition 1.6. For a topological space X, the Borel σ -algebra $\mathcal{B}(X)$ is the σ -algebra generated by the collection of open sets.

Example 1.7. $(X = \mathbb{R}) \mathcal{B}(\mathbb{R})$ contains the following collections

$$\mathcal{E}_{1} = \{(a, b) \mid a < b\}, \quad \mathcal{E}_{2} = \{[a, b] \mid a < b\},$$

$$\mathcal{E}_{3} = \{(a, b) \mid a < b\}, \quad \mathcal{E}_{4} = \{[a, b) \mid a < b\},$$

$$\mathcal{E}_{5} = \{(a, \infty) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_{6} = \{[a, \infty) \mid a \in \mathbb{R}\},$$

$$\mathcal{E}_{7} = \{(-\infty, a) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_{8} = \{(-\infty, a] \mid a < b\}$$

Proposition 1.8. $\mathcal{B}(\mathbb{R}) = \langle \mathcal{E}_i \rangle$ for each i = 1, ..., 8.

Proof. ??. ■

Definition 1.9. (X, A) is called a measurable space.

1.2 Measures

Definition 1.10. A measure on (X, A) is a function $\mu : A \to [0, \infty]$ *s.t.*

- 1. $\mu(\emptyset) = 0$
- 2. (countable additive) For $A_1, A_2, \ldots \in A$ disjoint we have

$$\mu\left(\bigcup_{1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Measures Yiwei Fu

 (X, \mathcal{A}, μ) is then called a measure space.

Example 1.11. 1. For any (X, A), $\mu(A) = \#A$ counting measure.

2. For any (X, A), let $x_0 \in X$. The Dirac measure at x_0 is

$$\mu(A) = \begin{cases} 1 & x_0 \in A, \\ 0 & x_0 \notin A. \end{cases}$$

3. For $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, let $a_1, a_2, \ldots \in [0, \infty)$. $\mu(A) = \sum_{i \in A} a_i$ is a measure.

(X, A) measurable space

 (X, \mathcal{A}, μ) measure space

 $\mu: \mathcal{A} \to [0, \infty] \ s.t. \ \mu(\emptyset) = 0$, countable additivity.

NOTE: $A, B \in \mathcal{A}, A \subset B$, then $\mu(B \setminus A) + \mu(A) = \mu(B) \implies \mu(B \setminus A) = \mu(B) - \mu(A)$ if $\mu(A) < \infty$.

Theorem 1.13. (X, \mathcal{A}, μ) *measure space*

1. (monotonicity)

$$A,B\in \mathcal{A},A\subset B\implies \mu(A)\leq \mu(B).$$

2. (countable subadditivity)

$$A_1, A_2, \dots, \in \mathcal{A}, \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i).$$

3. (continuity from below/(MCT) from sets)

$$A_1, A_2, \ldots \in \mathcal{A}, A_1 \subset A_2 \subset A_3 \subset \ldots \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

4. (continuity from above)

$$A_1, A_2, \ldots \in \mathcal{A}, A_1 \supset A_2 \supset A_3 \supset \ldots, \mu(A_1) < \infty \implies \mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

Proof. 1, 2, DIY.

For 3, let $B_1 = A_1, B_i = A_i \setminus A_{i-1}, i \geq 2.B_i \in A$ and are disjoint.

$$\bigcup_{i}^{\infty} A_{i} = \bigcup_{i}^{\infty} B_{i}$$

$$\implies \mu\left(\bigcup_{i}^{\infty} A_{i}\right) = \mu\left(\bigcup_{i}^{\infty} B_{i}\right) = \sum_{i}^{\infty} \mu(B_{i}) = \lim_{n \to \infty} \sum_{i}^{n} \mu(B_{i}) = \lim_{n \to \infty} \mu(A_{n}).$$

For 4, let $E_i = A_1 \setminus A_i$. Hence $E_i \in \mathcal{A}, E_1 \subset E_2 \subset \dots$ We have

$$\bigcup_{i=1}^{\infty} E_{i} = \bigcup_{i=1}^{\infty} (A_{1} \setminus A_{i}) = A_{1} \setminus \left(\bigcap_{1=1}^{\infty} A_{i}\right) \implies \bigcap_{1=1}^{\infty} A_{i} = A_{1} \setminus \left(\bigcup_{1=1}^{\infty} E_{i}\right).$$

Hence

$$\mu\left(\bigcap_{1}^{\infty}A_{i}\right) = \mu(A_{1}) - \mu\left(\bigcup_{1}^{\infty}E_{i}\right) = \mu(A_{1}) - \lim_{n \to \infty}\mu(E_{n}) = \mu(A_{1}) - \lim_{n \to \infty}\mu(A_{1}) - \mu(A_{n}).$$

NOTE: the condition that $\mu(A_1) < \infty$ cannot be dropped.

For example, in $(\mathbb{N}, \mathcal{P}(N), \text{counting measure})$, let $A_n = \{n, n+1, n+2\}, A_1 \supset A_2 \supset A_3 \supset \ldots$ We have $\bigcap_1^\infty = \emptyset \implies \mu\left(\bigcap_1^\infty A_i\right) = 0$.

Definition 1.14. For (X, \mathcal{A}, μ) measure space,

- $A \subset X$ is a μ -null set if $A \in \mathcal{A}$, $\mu(A) = 0$.
- $A \subset X$ is a μ -subnull set if $\exists B, \mu$ -null set $A \subset B$.
- (X, A, μ) is a complete measure space if every μ -subnull set is A-measurable.

Definition 1.15. (X, \mathcal{A}, μ) measure space. A statement $P(x), x \in X$ holds μ -almost everywhere (a.e.) if the set $\{x \in X \mid P(x) \text{ does not hold}\}$ is μ -null.

Definition 1.16. (X, \mathcal{A}, μ) measure space.

- μ is a finite measure is $\mu(X) < \infty$.
- μ is a $\underline{\sigma}$ -finite measure if $X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}, \mu(X_n) < \infty$.

HW: every measure space can be "completed."

1.3 Outer measures

Definition 1.17. An <u>outer measure</u> on X is $\mu^* : \mathcal{P}(X) \to [0, \infty]$ s.t.

- $\mu^*(\emptyset) = 0$
- (monotonicity) $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$.
- (countable subadditivity)

$$\forall A_1, A_2, \ldots \in X, \mu^* \left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu^*(A_i).$$

Example 1.18. For $A \subset \mathbb{R}$,

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} (b_i - a_i) \mid \bigcup_{1}^{\infty} (a_i, b_i) \supset A \right\}.$$

is an outer measure due to the next proposition.

Proposition 1.19. (1.19) Let $\mathcal{E} \in \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$. Then

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) \mid E_i \in \mathcal{E}, \forall i \in N, \bigcup_{i=1}^{\infty} E_i \supset A \right\}$$

is an outer measure on X.

Proof. 1. μ^* is well-defined (inf is taken over non-empty set.)

2.
$$\mu^*(\emptyset) = 0$$

3.
$$A \subset B \implies \mu^*(A) \leq \mu^*(B)$$
.

We check the countable subadditivity.

Let $A_1, A_2, \ldots \subset X$. If one of $\mu^*(A_i) = \infty$, then the result holds. Suppose $\mu^*(A_n) < \infty, \forall n \in \mathbb{N}$.

"Give your self a room of epsilon":

Fix $\varepsilon > 0$. We will show

$$\mu^* \left(\bigcup_{1}^{\infty} A_n \right) \le \sum_{1}^{\infty} \mu^* (A_i) + \varepsilon.$$

For each $n \in \mathbb{N}$, $\exists E_{n,1}, E_{n,2}, \ldots \in \mathcal{E} \ s.t.$

$$\bigcup_{k=1}^{\infty} E_{n,k} \supset A_n \quad \text{and} \quad \mu^*(A_n) + \frac{\varepsilon}{2^n} \ge \sum_{k=1}^{\infty} \rho(E_{n,k}).$$

Then,

$$\bigcup_{1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{n,k} = \bigcup_{(n,k) \in \mathbb{N}^2} E_{n,k}.$$

<u>RECALL:</u> Tonelli's thm for series. If $a_{ij} \in [0, \infty], \forall i, j \in \mathbb{N}$, then

$$\sum_{(i,j)\in\mathbb{N}^2} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1^{\infty}} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

Hence

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \rho(E_{k,n}) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_{k,n}) \le \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n} \right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \varepsilon.$$

We have shown countable subadditivity.

Outer measure is very close to a measure. Here the textbooks diverge.

Tao: introduce Lebesgue measure on \mathbb{R} using topological qualities of subsets of \mathbb{R} . Folland: introduce abstract method by Carathéodory and Kolomogorov.

Definition 1.20. Let μ^* be an outer measure on X. We say $A \subset X$ is Carathéodory measurable with respect to μ^* if $\forall E \subset X, \mu^*(E) = \mu^*(E \setminus A) + \mu^*(E \cap A)$.

Lemma 1.21. Let μ^* be an outer measure on X. Suppose B_1, B_2, \ldots, B_N are disjoint C-measurable sets. Then,

$$\forall E \subset X, \mu^* \left(E \cap \left(\bigcup_{1}^N B_i \right) \right) = \sum_{i=1}^n \mu^* (E \cap B_i)$$

Proof.

$$\mu^* \left(E \cap \left(\bigcup_{1}^N B_i \right) \right) = \mu^* (E \cap B_1) + \mu^* \left(E \cap \left(\bigcup_{1}^N B_i \right) \right)$$

because B_1 is C-measurable. Then, iterate.

Improved version:

 $B_1, B_2, \dots C$ -measurable and $\underline{\text{disjoint}} \implies \mu^* \left(E \cap \bigcup_1^\infty B_n \right) = \sum_1^\infty \mu^* \left(E \cap B_n \right), \forall E \subset X.$

Proof.

$$\sum_{1}^{\infty} \mu^{*}(E \cap B_{n}) \ge \mu^{*} \left(E \cap \bigcup_{1}^{\infty} B_{n} \right)$$

$$\ge \mu^{*} \left(E \cap \bigcup_{1}^{N} B_{n} \right) = \sum_{1}^{N} \mu^{*}(E \cap B_{n}.)$$

Take $N \to \infty$ or note that $N \in \mathbb{N}$ is arbitrary we get the result.

First big theorem:

Theorem 1.22 (Carathéodory extension theorem). Let μ^* be an outer measure on X. Let A be the collection of C-measurable sets with respect to μ^* . Then

- 1. A us a σ -algebra on X.
- 2. $\mu = \mu^*|_{\mathcal{A}}$ is a measure on (X, \mathcal{A}) .
- 3. (X, A, μ) is a complete measure space.

Proof. 1. (a) $\emptyset \in \mathcal{A}$.

- (b) A is closed under complements.
- (c) To show A closed under countable unions.
 - (finite union) $\underline{\text{CLAIM}} \ A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}.$

Figure 1.1: Venn diagram of A, B, E

Fix arbitrary $E \subset X$. We need to show

$$\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \setminus (A \cup B)).$$

i.e.

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2 \cup 3) + \mu^*(4)$$

Since A is C-measurable, we have

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$$
$$\mu^*(1 \cup 2 \cup 3) = \mu^*(1 \cup 2) + \mu^*(3)$$

Similarly since B is C-measurable, we have

$$\mu^*(3 \cup 4) = \mu^*(3) + \mu^*(4)$$

Hence

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$$
$$= \mu^*(1 \cup 2 \cup 3) - \mu^*(3) + \mu^*(3) + \mu^*(4)$$
$$= \mu^*(1 \cup 2 \cup 3) + \mu^*(4).$$

• (countable disjoint unions) Let $A_1, A_2, \ldots \in \mathcal{A}$ and disjoint.

Fix $E \subset X$ arbitrary. Since μ^* is countably subadditive,

$$\mu^*(E) \le \mu^* \left(E \cap \bigcup_{1}^{\infty} \right) + \mu^* \left(E \setminus \bigcup_{1}^{\infty} A_n \right)$$

Fix $n \in \mathbb{N}$.

$$\implies \bigcup_{1}^{N} A_{n} \in \mathcal{A}$$

$$\implies \mu^{*}(E) = \mu^{*} \left(E \cap \bigcup_{1}^{N} \right) + \mu^{*} \left(E \setminus \bigcup_{1}^{N} A_{n} \right)$$

$$\geq \sum_{1}^{N} \mu^{*}(E \cap A_{n}) + \mu^{*} \left(E \setminus \bigcup_{1}^{\infty} A_{n} \right) \text{ by lemma.}$$

Take $n \to \infty$.

- (countable unions) Let $A_1, A_2, \ldots \in \mathcal{A}$. Take $E_1 = A_1, E_n = A_n \setminus \left(\bigcup_1^{n-1} A_i\right)$ for $n \geq 2$. Then $\bigcup A_n = \bigcup E_n$ and E_n 's are disjoint.
- 2. Firstly we have $\mu(\emptyset) = \mu^*(\emptyset) = 0$.

Countable additivty of μ^* on \mathcal{A} follows from the improved lemma with E=X.

3. HW.

1.4 Hahn-Kolmogorov Theorem

RECALL Prop 1.19 Let $\mathcal{E} \subset \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$

$$(\mathcal{E}, \rho) \xrightarrow[1.19]{} (\mathcal{P}(X), \mu^*) \xrightarrow[C-\text{theorem}]{} (A, \mu)$$

QUESTION $\mathcal{E} \subset \mathcal{A}$ and $\mu|_{\mathcal{E}} = \rho$? No!

Definition 1.23. Let A_0 be an algebra on X. We say $\mu_0 : A_0 \to [0, \infty]$ is a pre-measure if

- 1. $\mu_0(\emptyset) = 0$.
- 2. (finite additivity)

$$\mu_0\left(\bigcup_1^N A_i 1\right) = \sum_1^N \mu_0(A_i) \text{ if } A_1, \dots, A_N \in \mathcal{A}_0 \text{ are disjoint.}$$

3. (countable additivity within the algebra) If $A \in A_0$ and

$$A = \bigcup_{1}^{\infty} A_n, A_n \in \mathcal{A}_0$$
 and are disjoint, then $\mu_0(A) = \sum_{1}^{\infty} \mu_0(A_n)$

<u>NOTATION:</u> Folland uses \mathcal{M} for σ -algebra and \mathcal{A} for algebra. (Jinho) uses \mathcal{A} for σ -algebra and \mathcal{A}_0 for alegbra.

Example 1.24. A_0 finite disjoint unions of (a, b].

$$\mu_0\left(\bigcup_{1}^{\infty}(a_i,b_i)\right) = \sum_{1}^{\infty}(b_i - a_i) \text{ or } b_i^n - a_i^n, e^{b_i} - e^{a_i}, \text{ etc.}$$

Lemma 1.25. • $1 + 3 \implies 2$.

• μ_0 is monotone.

Theorem 1.26 (Hahn-Kolmogorov Theorem). Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. Let μ^* be the outer measure induced by (\mathcal{A}_0, μ_0) in Prop 1.19. Let \mathcal{A} and μ be the Carathéodory σ -algebra and measure for $\mu^* \implies (\mathcal{A}, \mu)$ extends (\mathcal{A}_0, μ_0) i.e. $\mathcal{A} \supset \mathcal{A}_0, \mu|_{\mathcal{A}_0} = \mu_0$.

Proof. 1. $(A \supset A_0)$ Let $A \in A_0$.

Question: $A \in \mathcal{A}$? i.e. is A C-measurable? i.e. $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \subset A$

X.

Fix $E \subset X$.

- (countable) subadditivity of $\mu^* \implies \mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) = \infty$ then $\mu^*(E) = \infty \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) < \infty$.

Fix $\varepsilon > 0$. By the definition of $\mu^*, \exists B_1, B_2, \ldots \in \mathcal{A}_0$ s.t. $\bigcup_{1}^{\infty} B_n \supset E$ and

$$\mu^*(E) + \varepsilon \ge \sum_{1}^{\infty} \mu_0(B_n) = \sum_{1}^{\infty} (\mu_0(B_n \cap A) + \mu_0(B_n \cap A^c)).$$

Note that

$$\bigcup_{1}^{\infty} (B_n \cap A) \supset E \cap A, \quad \bigcup_{1}^{\infty} (B_n \cap A^c) \supset E \cap A^c \implies \geq$$

2. Let $A \in \mathcal{A}_0$. We want to show that $\mu(A) = \mu_0(A)$.

By definition, $\mu(A) = \mu^*(A)$.

• Let
$$B_i = \begin{cases} A & i = 1, \\ \emptyset & i = 2 \end{cases} \in \mathcal{A}_0 \text{ and } \bigcup_{1}^{\infty} B_i \supset A.$$

Hence $\mu^*(A) \leq \sum_{1}^{\infty} \mu_0(B_i) = \mu_0(A)$.

• Let $B_i \in \mathcal{A}_0, \bigcup_1^\infty B_i \supset A$ an arbitrary collection of sets. Let $C_1 = A \cap B_1, C_i = A \cap B_i \setminus \left(\bigcup_{j=1}^{i-1} B_j\right)$. Then $A = \bigcup_1^\infty$ is a disjoint countable union. By countable additivitiy we have

$$\mu_0(A) = \sum_{1}^{\infty} \mu_0(C_i) \implies \mu_0(A) \le \sum_{1}^{\infty} \mu_0(B_i).$$

Hence we have $\mu_0(A) = \mu^*(A) = \mu(A)$. We have completed our proof.

Definition 1.27. Such (A, μ) is called the Hahn-Kolmogorov extension of (A_0, μ_0) , and is also called the Carathéodory *σ*-algebra for (A_0, μ_0) .

Theorem 1.28 (uniqueness of HK extension). Let A_0 be an algebra on X, μ_0 be a pre-measure on A_0 , (A, μ) be the Hahn-Kolmogorov extension of (A_0, μ_0) . And let (A', μ') be another extension of (A_0, μ_0) .

If μ_0 is σ -finite, then $\mu = \mu' = \mathcal{A} \cap \mathcal{A}'$.

NOTE σ -finite means

$$\forall X, X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_n) < \infty.$$

Corollary 1.29. Let μ_0 be a pre-measure on algebra A_0 on X. Suppose μ_0 is σ -finite, then \exists ! mreasure μ on $\langle A_0 \rangle$ that extends A_0 . Furthermore,

1. the completion of $(X, \langle A_0 \rangle, \mu)$ is the HK extension of (A_0, μ_0) .

2.

$$\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(B_i) \mid B_i \subset A_0, \forall i \in \mathbb{N}, \bigcup_{i=1}^{\infty} B_i \supset A \right\}, \forall A \in \overline{\langle A_0 \rangle}.$$

Proof of ??. Let $A \in \mathcal{A} \cap \mathcal{A}'$. We need to show $\mu(A) = \mu^*(A) = \mu'(A)$.

- $\mu^*(A) \ge \mu'(A)$ (HW)
- $\mu(A) \leq \mu'(A)$:
 - (i) Assume $\mu(A) < \infty$. Fix $\varepsilon > 0$. Then $\exists B_i \in \mathcal{A}_0, \forall i \in \mathbb{N}, \bigcup_{1}^{\infty} B_i \supset A \ s.t.$

$$\mu(A) + \varepsilon = \mu^*(A) + \varepsilon \ge \sum_{1}^{\infty} \mu_0(B_i) = \sum_{1}^{\infty} \mu(B_i) \ge \mu\left(\bigcup_{1}^{\infty} B_i\right) = \mu(B)$$

Hence $\mu(B \setminus A) = \mu(B) - \mu(A) \le \varepsilon$.

On the other hand,

$$\mu(B) = \lim_{N \to \infty} \mu\left(\bigcup_{1}^{N} B_i\right) = \lim_{N \to \infty} \mu'\left(\bigcup_{1}^{N} B_i\right) = \mu'(B)$$

by continuity of measure from below.

$$\mu(A) \le \mu(B) = \mu'(B) = \mu'(A) + \mu'(B \setminus A) \le \mu'(A) = \varepsilon.$$

(ii) Assume $\mu(A) = \infty$.

Since μ_0 is σ -finite, $X = \bigcup_1^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_0) < \infty$. Replacing X_n by $X_1 \cup \ldots \cup X_n$, we may assume $X_1 \subset X_2 \subset \ldots$

$$\forall n \in N, \mu(A \cap X_n) < \infty \implies \mu(A \cap X_n) < \mu'(A \cap X)n$$
.

Borel Measures on \mathbb{R} Yiwei Fu

Hence

$$\mu(A) = \lim_{N \to \infty} \mu(A \cap X_n) \le \lim_{N \to \infty} \mu'(A \cap X_n) = \mu'(A).$$

1.5 Borel Measures on \mathbb{R}

Definition 1.30. $F : \mathbb{R} \to \mathbb{R}$ is an increasing function if $F(x) \leq F(y)$ for x < y. $F : \mathbb{R} \to \mathbb{R}$ is increasing and right-continuous $\Longrightarrow F$ is distribution function.

Example 1.31.

$$F(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

•
$$\mathbb{Q} = \{r_1, r_2, \ldots\}, F_n(x) = \begin{cases} 1 & x \ge r_n \\ 0 & x < r_n. \end{cases}$$

$$F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}$$
 is a distribution function.

NOTE If F is increasing, $F(\infty) := \lim_{x \to \infty} F(x), F(-\infty) := \lim_{x \to -\infty} F(x)$ exists in $[-\infty, \infty]$.

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 0$ and $F(-\infty) = 0$.

There are distributions [Folland, Ch9], but these are different from <u>distribution</u> functions.

Definition 1.32. Suppose X a topological space. μ on $(X, \mathcal{B}(X))$ is called <u>locally finite</u> is $\mu(K) < \infty$ for any compact set $K \subset X$.

Lemma 1.33. *Let* μ *be a locally finite Borel measure on* $\mathbb{R} \implies$

$$F_{\mu}(x) = \begin{cases} \mu((0,x]), & x > 0\\ 0, & x = 0 \text{ is a distribution function.} \\ -\mu((x,0]), & x < 0 \end{cases}$$

Proof. DIY. Use continuity of measure.

Definition 1.34. *h*-intervals are \emptyset , (a, b], (a, ∞) , $(-\infty, b]$, (∞, ∞) .

Lemma 1.35. Let \mathcal{H} be the collections of finite disjoint unions of h-intervals. Then \mathcal{H} is an

Borel Measures on $\mathbb R$ Yiwei Fu

algebra on \mathbb{R} .

Proposition 1.36 (Distribution function defines a pre-measure). Let $F : \mathbb{R} \to \mathbb{R}$ be a distribution function. For an h-interval I, define

$$\ell(I) = \ell_F(I) = \begin{cases} 0, & I = \emptyset \\ F(b) - F(a), & I = (a, b] \\ F(\infty) - F(a), & I = (a, \infty) \\ F(b) - F(\infty), & I = (-\infty, b] \\ F(\infty) - F(-\infty), & I = (-\infty, \infty). \end{cases}$$

Define $\mu_0 = \mu_{0,F} : \mathcal{H} \to [0,\infty]$ by

$$\mu_0(A) := \sum_{k=1}^N \ell(I_k)$$
 if $A = \bigcup_{k=1}^N I_k$, finite disjoint union of h-invervals.

Then μ_0 is a pre-measure.

Proof. 1. μ_0 is well-defined.

- 2. μ_0 is finite additive.
- 3. μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ and $A = \bigcup_{1}^{\infty} A_i$ a disjoint union, $A_i \in \mathcal{H}$. It is enough to consider the case A = I, $A_k = I_k$ all h-intervals. (Why?)

Focus on the case I = (a, b]: (HW: check other cases)

We have

$$(a,b] = \bigcup_{1}^{\infty} (a_n,b_n]$$
, a disjoint union.

Check

$$F(b) - F(a)? = \sum_{1}^{\infty} (F(b_n) - F(a_n))$$

 $(a,b]\supset \bigcup_1^N(a_n,b_n]\implies F(b)-F(a)\geq \sum_1^N F(b_n)-F(a_n), \forall N\in\mathbb{N}.$ (Arranging them in decreasing order) Take $N\to\infty$ we have

$$F(b) - F(a) \ge \sum_{1}^{\infty} (F(b_n) - F(a_n)).$$

Borel Measures on $\mathbb R$ Yiwei Fu

Since F is right-continuous, $\exists a' > a \ s.t. \ F(a') - F(a) < \varepsilon$. For each $n \in \mathbb{N}$, $\exists b'_n > b_n \ s.t. \ F(b'_n) - F(b_n) < \frac{\varepsilon}{2^n}$

$$\implies [a',b] \subset \bigcup_{1}^{\infty}(a_n,b'_n) \implies \exists N \in \mathbb{N} \ s.t. \ [a',b] \subset \bigcup_{1}^{n}(a_n,b'_n) \implies F(b)-F(a') \leq \sum_{1}^{N}F(b'_n)-F(a_n) \implies F(b)-F(a) \leq F(b)-F(a')+\varepsilon \leq \sum_{1}^{\infty}(F(b'_n)-F(a_n))+\varepsilon \leq \sum_{1}^{\infty}(F(b_n)-F(a_n))+\varepsilon \leq \sum_{1}^{\infty}(F(b_n)-F(a_n)+\varepsilon \leq \sum_{1}^{\infty}(F(b_n)-F(a_n))+\varepsilon \leq \sum_{1}^{\infty}$$