

1. Arquitectura Data4Miners (D4M)

Descripción

La arquitectura del D4M está diseñada para

- Maximizar la eficiencia, la escalabilidad y la facilidad de uso de los datos (Data Management).
- Permite orquestar el flujo de datos desde su origen hasta su análisis final.
- Brinda las capas de Seguridad de datos, Gobierno de datos, Ingesta de datos, Almacenamiento, Servicios de datos, Procesamiento de datos y Análisis de datos.

El D4M, podría ser desplegado en O , y también en Cloud

DATA 4MINERS

2. Flujo Data4Miners (D4M)

Preprocesing

DataHub

- Feature Engineer
- MlOps (MachineLearning

Usuarios Finales

4. Caso de negocio: Optimización Numero de Pases

Descripción: Se busca identificar cual es la cantidad de pases óptimos utilizara el equipo de carguío para llenar el equipo de acarreo, de modo que se aumente la productividad de tonelajes movidos.

Impacto: Con el Modelo final de *XGB(extreme gradient boosting),* se incrementa la producción total(tonelaje movido) en un 0.20% para un periodo de 1 año (01-06-2023 al 01-06-2024) en operación de Hudbay.

Modelos Machine Learning	Suma Toneladas Movidas REAL	Suma Toneladas MODELO	IMPACTO
Regresion Lineal	71 550 379	71 601 220	0.07%
Arbol de Decision	71 550 379	71 395 476	-0.22%
Random Forest	71 550 379	71 512 075	-0.05%
XGB	71 550 379	71 693 431	0.20%
Redes Neuronales MLP	71 550 379	69 313 452	-3.13%

4.1 Modelo Predictivo

Fuentes de datos

• Base de datos C4M

public.tp_cargadescarga (Ciclo Acarreo)
public.ta_factortonelaje (Factor de
Tonelaje)

public.ts_equipos (Equipos y Flotas)

public.tp_palas (Ciclo Carguio)

public.ts_descarga (Descargas)

public.ts_equipos (Equipos y Flotas)

public.ts_locacion (Locacion)

public.ts_poligono (Poligono)

public.ts_turnos (Turnos de Trabajo)

public.tp_nodos (Mapa - Nodos)

public.ta_datacarga_sensores(Pases Carguio)

public.ta_guardias (Guardias)

Variables

Variables Geológicas

- Tonelaje Inicial Polígono Creado
- Densidad inicial polígono creado (tn/m3)
- -Elevación del Polígono (mts)
- -Material dominante en polígono

. Variables Técnicas de Maquinaria

- -Nombre de equipo de Carquío
- -Capacidad en volumen equipo carquío
- -Capacidad en peso equipo acarreo

. Variables Operativas

- -Tiempo de carga(seg)
- -Cantidad de equipos en espera al termino de carga
- -Hora inicio del turno carga

Variable Objetivo

-Número de Pases

Machine Learning

• Regresion Lineal

RMSE: 1.10 pases

• Arbol Decision

RMSE: 1.05 pases

Random Forest

RMSE: 0.94 pases

• XGB

RMSE: 0.84 pases

• Redes Neuronales

RMSE: 1.04 pases

Modelo Matemático

Variables Factores Llenado

- Factor llenado peso
- Factor llenado volumen
- Payload
- capacidad_llenado_vol

&Se puede agregar un pase más?

