CÁLCULO NUMÉRICO

Aula 16

SPLINES

 \Box Se f(x) está tabelada em (n + 1) pontos e a aproximarmos por um polinômio de grau n que a interpola sobre os pontos tabelados, o resultado pode ser desastroso.

 \Box Veja o exemplo a seguir, onde aproximou-se f(x) por um polinômio de grau 5.

□ Uma alternativa é interpolar *f* (*x*) em **grupos de poucos pontos**, obtendo-se polinômios de grau menor, e impor condições para que a função de aproximação seja contínua e tenha derivadas contínuas até uma certa ordem.

Aproximação Linear por Partes

□ Vejamos o caso de aproximação por uma **função linear** por partes:

Aproximação linear por partes

Observe que a função $S_I(x)$ é contínua, mas não é derivável em (x_0, x_4) , uma vez que $S_I'(x)$ não existe para $x = x_i$, 1 < i < 3.

Podemos optar também por, a cada três pontos (x_i, x_{i+1}, x_{i+2}) passar um **polinômio de grau 2** e, neste caso, teremos também garantia só de continuidade da função que vai aproximar f(x).

Cálculo Numérico

□ No caso das funções *spline*, a opção feita é aproximar a função tabelada, em cada subintervalo $[x_i, x_{i+1}]$, por um polinômio de grau p, com algumas imposições.

Definição

 \Box Considere a função f(x), definida em [a, b] e tabela nos pontos:

$$a = x_0 < x_1 < ... < x_n = b$$

Uma função $S_p(x)$ é denominada **spline de grau p** com nós nos pontos x_i , i = 0, 1, ..., n, se satisfaz as seguintes condições:

Definição

- □ Em cada subintervalo $[x_i, x_{i+1}], i = 0, 1, ..., (n-1), S_p(x)$ é um polinômio de grau $p: s_k(x)$;
- \Box $S_p(x)$ é contínua e tem derivada contínua até ordem (p-1) em [a, b].
- \square Se além disso, $S_p(x)$ também satisfaz a condição:
 - $S_p(x_i) = f(x_i), i = 0, 1, ..., n$

ENTÃO, SERÁ DENOMINADA SPLINE INTERPOLANTE.

Spline Linear Interpolante

□ A função *spline* linear interpolante de f(x), $S_1(x)$, nos nós x_0 , x_1 , ..., x_n pode ser escrita em cada subintervalo $[x_{i-1}, x_i]$, i = 1, 2, ..., n, como:

$$\left| s_i(x) = f(x_{i-1}) \frac{x_i - x}{x_i - x_{i-1}} + f(x_i) \frac{x - x_{i-1}}{x_i - x_{i-1}}, \forall x \in [x_{i-1}, x_i] \right|$$

□ Achar a função *spline* linear que interpola a função tabelada:

i	0	1	2	3
x_i	1	2	5	7
$f(x_i)$	1	2	3	2,5

□ Assim:

$$S_{1}(x) = \begin{cases} x, & se \ x \in [x_{i-1}, x_{i}] \\ \frac{1}{3}(x+4), & se \ x \in [x_{i-1}, x_{i}] \\ \frac{1}{2}(-0,5x+8,5), & se \ x \in [x_{i-1}, x_{i}] \end{cases}$$

Spline Cúbica Interpolante

Uma *spline* **cúbica**, S_3 (x), é uma função polinomial por partes, contínua, onde cada parte, s_k (x), é um **polinômio de grau 3** no intervalo [x_{k-1} , x_k], k = 1, 2, ..., n.

Definição de Spline Cúbica

Supondo que f(x) esteja tabelada nos pontos x_i , i = 0, 1, 2, ..., n, a função $S_3(x)$ é chamada **spline cúbica interpolante** de f(x) nos nós x_i , se existem n polinômios de grau $3, s_k(x), k = 1, 2, ..., n$, tais que:

i)
$$S_3(x) = S_k(x)$$
 para $x \in [x_{k-1}, x_k], k = 1, ..., n$;

ii)
$$S_3(x_i) = f(x_i), i = 0, 1, ..., n;$$

iii)
$$s_k(x_k) = s_{k+1}(x_k), k = 1, 2, ..., (n-1);$$

iv)
$$s'_k(x_k) = s'_{k+1}(x_k), k = 1, 2, ..., (n-1);$$

v)
$$s''_{k}(x_{k}) = s''_{k+1}(x_{k}), k = 1, 2, ..., (n-1).$$

□ Para simplicidade de notação, escreveremos:

$$s_k(x) = a_k(x - x_k)^3 + b_k(x - x_k)^2 + c_k(x - x_k) + d_k, \quad k = 1, 2, \dots, n$$

 \square Assim, o cálculo de S_3 (x) exige a determinação de 4 coeficientes para cada k, num total de 4n coeficientes:

$$a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, \dots, a_{n}, b_{n}, c_{n}, d_{n}$$

- □ Impondo as condições para que S_3 (x) seja *spline* interpolante de f em x_0 , ..., x_n , teremos:
 - \square (n+1) condições para que $S_3(x)$ interpole f(x) nos nós;
 - $\square (n-1)$ condições para que $S_3(x)$ esteja bem definida nos nós (continuidade de $S_3(x)$ em $[x_0, x_n]$);
 - \square (n-1) condições para que S_3 '(x) seja contínua em $[x_0, x_n]$; e
 - \square (n-1) condições para que S_3 " (x) seja contínua em $[x_0, x_n]$.
- \square Totalizando: n + 1 + 3(n 1) = 4n 2 condições.

□ Como precisamos determinar 4n coeficientes, precisamos de mais duas condições, para determinar todos os coeficientes:

$$a_1, b_1, c_1, d_1, a_2, b_2, \dots, a_n, b_n, c_n, d_n$$

□ Essas condições podem ser impostas de acordo com informações físicas do problema.

□ Podemos supor:

- \Box S_3 " $(x_0) = g_0 = 0$ e S_3 " $(x_n) = g_n = 0$, que é chamada **spline natural**, que é equivalente a supor que os polinômios cúbicos nos intervalos extremos ou são **lineares ou próximos de funções lineares**;
- $g_0 = g_1$, $g_n = g_{n-1}$, que é equivalente a supor que as cúbicas são aproximadamente **parábolas**, nos extremos;
- □ Impor valores para as inclinações em cada extremo, o que fornecerá duas equações adicionais.

- \square Para satisfazer as condições de (i) à (v) de uma *spline* interpolante de f em $x_0, ..., x_n$.
- \square Usando as notações s_k " $(x_k) = g_k$ e $f(x_k) = y_k$, teremos:

$$a_k = \frac{g_k - g_{k-1}}{6h_k},$$

$$b_k = \frac{g_k}{2},$$

$$c_{k} = \left[\frac{y_{k} - y_{k-1}}{h_{k}} + \frac{2h_{k}g_{k} + g_{k-1}h_{k}}{6}\right],$$

$$d_k = y_k$$

 \square Vemos que os coeficientes estão relacionados com $g_j = s_j$ " (x_j) .

□ Para obter g_j , ainda da condição (iv) $(s_k'(x_k) = s'_{k+1}(x_k), k = 1, 2, ..., (n - 1))$, teremos:

$$\left| h_k g_{k-1} + 2(h_k + h_{k+1}) g_k + h_{k+1} g_{k+1} = 6 \left(\frac{y_{k+1} - y_k}{h_{k+1}} - \frac{y_k - y_{k-1}}{h_k} \right) \right|$$

que é um sistema de equações lineares com (n-1) equações (k=1,...,(n-1)) e (n+1) incógnitas: $\mathbf{g_0}$, $\mathbf{g_1}$, $\mathbf{g_{n-1}}$, $\mathbf{g_n}$.

□ Temos, então, um sistema indeterminado, Ax = b, onde $x = (g_0, g_1, ..., g_n)^T$.

$$A = \begin{pmatrix} h_1 & 2(h_1 + h_2) & h_2 \\ h_2 & 2(h_2 + h_3) & h_3 \\ \vdots & \vdots & \ddots & \vdots \\ h_{n-1} & 2(h_{n-1} + h_n) & h_n \end{pmatrix}_{(n-1)\times(n+1)}$$

$$b = 6 \begin{pmatrix} \frac{y_2 - y_1}{h_2} - \frac{y_1 - y_0}{h_1} \\ \frac{y_3 - y_2}{h_3} - \frac{y_2 - y_1}{h_2} \\ \vdots \\ \frac{y_n - y_{n-1}}{h_n} - \frac{y_{n-1} - y_{n-2}}{h_{n-1}} \end{pmatrix}_{(n-1) \times 1}$$

- □ Para resolvermos este sistema, vimos que são necessárias mais duas condições.
- □ No caso da **spline natural**, ou seja, S_3 " $(x_0) = g_0 = 0$ e S_3 " $(x_n) = g_n = 0$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & & & & \\ & h_2 & 2(h_2 + h_3) & h_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & h_{n-1} & 2(h_{n-1} + h_n) & h_n \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{(n-1)\times(n+1)}$$

$$b = 6 \begin{pmatrix} 0 \\ \frac{y_2 - y_1}{h_2} - \frac{y_1 - y_0}{h_1} \\ \frac{y_3 - y_2}{h_3} - \frac{y_2 - y_1}{h_2} \\ \vdots \\ \frac{y_n - y_{n-1}}{h_n} - \frac{y_{n-1} - y_{n-2}}{h_{n-1}} \\ 0 \end{pmatrix}_{(n-1)}$$

 \Box Vamos encontrar uma aproximação para f(0,25) por *spline* cúbica natural interpolante da tabela:

X	0	0,5	1,0	1,5	2,0
f(x)	3	1,8616	-0,5571	-4,1987	-9,0536

□ Como queremos a spline cúbica natural, $g_0 = g_4 = 0$, e lembrando que $h = x_i - x_{i-1} = 0,5$, o sistema a ser resolvido será:

$$\begin{bmatrix} 4h & h & 0 \\ h & 4h & h \\ 0 & h & 4h \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} = \frac{6}{h} \begin{bmatrix} y_2 - 2y_1 + y_0 \\ y_3 - 2y_2 + y_1 \\ y_4 - 2y_3 + y_2 \end{bmatrix}$$

□ Substituindo os valores para $h \in y_i$, $0 \le i \le 4$:

$$\begin{bmatrix} 2 & 0.5 & 0 \\ 0.5 & 2 & 0.5 \\ 0 & 0.5 & 2 \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} = \begin{bmatrix} -15,3636 \\ -14,6748 \\ -14,5598 \end{bmatrix}$$

□ Resolvendo pelo Método de Eliminação de Gauss:

$$g_3 = -6,252;$$
 $g_2 = -4,111;$ $g_1 = -6,6541$

- □ Levando estes valores em a_k , b_k , c_k , d_k , encontramos $s_1(x)$, $s_2(x)$, $s_3(x)$ e $s_4(x)$.
- □ Como queremos uma aproximação para f(0,25), $f(0,25) \approx s_1(0,25)$

$$s_1(x) = a_1(x - x_1)^3 + b_1(x - x_1)^2 + c_1(x - x_1) + d_1$$

onde:

$$a_1 = \frac{g_1 - g_0}{6h} = -2,2180$$

$$b_1 = \frac{g_1}{2} = -3,3270$$

$$c_1 = \frac{y_1 - y_0}{h} + \frac{2hg_1 + g_0h}{6} = -3,3858$$

$$d_1 = y_1 = 1,8616$$

□ Assim, por spline cúbica natural interpolante:

$$f(0,25) \approx s_1(0,25) = 2,5348$$