Programowanie - laboratorium

Lista nr 4

Janusz Szwabiński

Napisz program, który...

Zad. 1 ... rozwiąże równanie ruchu wahadła matematycznego z tłumieniem oraz okresową siłą wymuszającą,

$$\frac{d^2\theta}{d\tau^2} + \frac{1}{Q}\frac{d\theta}{d\tau} + \sin\theta = \hat{A}\cos(\hat{\omega}\tau),\tag{1}$$

gdzie

$$Q = \frac{mg}{\omega_0 \nu}, \quad \omega_0 = \sqrt{\frac{g}{l}}, \quad \hat{\omega} = \frac{\omega}{\omega_0}, \quad \tau = \omega_0 t, \quad \hat{A} = \frac{A}{mg}$$

dla:

- Q = 2; $\hat{\omega} = 2/3$; $\hat{A} = 0.5$; $\hat{v}_0 = 0$; $\theta_0 = 0.01$;
- Q = 2; $\hat{\omega} = 2/3$; $\hat{A} = 0, 5$; $\hat{v}_0 = 0$; $\theta_0 = 0, 3$;
- Q = 2; $\hat{\omega} = 2/3$; $\hat{A} = 1,35$; $\hat{v}_0 = 0$; $\theta_0 = 0,3$.

Wartości parametrów powinny zostać podane jako argumenty w linii poleceń w kolejności Q, $\hat{\omega}$, \hat{A} , \hat{v}_0 i θ_0 , np.:

python3 oscylator.py 2 2/3 0.5 0 0.01

Ewolucja układu oraz jej obraz w przestrzeni fazowej powinny zostać przedstawione na wykresach.

Teraz "opakuj" ten program skryptem w Pythonie tak, aby przyjmował argumenty w dowolnej kolejności w stylu uniksowym, np.:

python3 oscylator_wrapper.py -Q 2 -w 2/3 -A 0.5 -v 0 -th 0.01

Zad. 2 ... będzie symulował błądzenie losowe jednego agenta na siatce kwadratowej. Program ten ma zrzucać obraz siatki do pliku graficznego (w formacie jpg, eps lub png) w zadanych odstępach czasowych, a następnie wygenerować z tych plików film w formacie avi lub gif¹.

¹Do wygenerowania filmu dopuszczalne jest użycie zewnętrznego programu