CS154: Homework #3

Due: Wednesday, July 25, 2012 by 5PM

Problem 1. Let L be a regular language over some alphabet Σ . Prove that the language T, defined as,

$$\mathbf{T} = \{ w \in \Sigma^* \mid \text{ for some string } x, wx \in \mathbf{L} \}$$

is also regular.

Note: Simply describing the DFA is *not* sufficient. You need to give a *formal* proof which has two sides, similar to that given in Lecture 1.

Problem 2. Let $L \subset \{0,1\}^*$ be the language of all strings such that there are two 0's separated by a number of positions that is a **non-zero** multiple of 5. Prove that any DFA for this language must have at least 2^5 states.

Problem 3. Consider two regular languages \mathbf{L}_1 and \mathbf{L}_2 defined over the *same* alphabet Σ . Let the *shuffle* of \mathbf{L}_1 and \mathbf{L}_2 be the language consisting of strings

$$\{w \mid w = a_1b_1a_2b_2\dots a_kb_k, \text{ where } a_1\dots a_k \in \mathbf{L}_1 \text{ and } b_1\dots b_k \in \mathbf{L}_2 \text{ and each } a_i, b_i \in \Sigma\}$$

In other words, the shuffle consists of strings of equal length from \mathbf{L}_1 and \mathbf{L}_2 whose alphabets are **strictly** alternated. Prove that the shuffle of \mathbf{L}_1 and \mathbf{L}_2 is a regular language as well.

Hint: Let $\Sigma' = \Sigma \times \Sigma$ and consider the homomorphism $h: \Sigma' \to \Sigma$ defined as h(a,b) = a.

Problem 4. Consider the transition table of a DFA,

- a) Draw the table of distinguishabilities for this automaton.
- b) Construct the minimum-state equivalent DFA.

Problem 5. Consider the CFG **G** defined by the productions

$$S \rightarrow aSbS \mid bSaS \mid \varepsilon$$

Prove that L(G) is the set of all strings with an equal numbers of a's and b's.