Electromagnetics and Applications

David H. Staelin

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, MA

Copyright © 2011

Table of Contents

Preface		ix
Chapter 1: In	troduction to Electromagnetics and Electromagnetic Fields	11
1.1 Rev	view of foundations	11
1.1.1	Introduction	11
1.1.2	Review of basic physical concepts and definitions	12
1.2 For	ces and the measurement and nature of electromagnetic fields	15
	uss's Law and electrostatic fields and potentials	
1.4 Am	pere's Law and magnetostatic fields	21
Chapter 2: In	troduction to Electrodynamics	23
2.1 Ma	xwell's differential equations in the time domain	23
	ctromagnetic waves in the time domain	
2.3 Ma	xwell's equations, waves, and polarization in the frequency domain	30
2.3.1	Sinusoidal waves	30
2.3.2	Maxwell's equations in the complex-frequency domain	32
2.3.3	Sinusoidal uniform plane waves	34
2.3.4	Wave polarization	35
2.4 Rel	ation between integral and differential forms of Maxwell's equations	37
2.4.1	Gauss's divergence theorem	37
2.4.2	Stokes' theorem	38
2.4.3	Maxwell's equations in integral form	39
2.5 Ele	ctric and magnetic fields in media	41
2.5.1	Maxwell's equations and media	41
2.5.2	Conductivity	42
2.5.3	Permittivity	44
2.5.4	Permeability	47
2.6 Box	undary conditions for electromagnetic fields	50
2.6.1	Introduction	50
2.6.2	Boundary conditions for perpendicular field components	50
2.6.3	Boundary conditions for parallel field components	52
2.6.4	Boundary conditions adjacent to perfect conductors	54
2.7 Pov	ver and energy in the time and frequency domains, Poynting theorem	56
2.7.1	Poynting theorem and definition of power and energy in the time domain	56
2.7.2	Complex Poynting theorem and definition of complex power and energy	58
2.7.3	Power and energy in uniform plane waves	61
2.8 Uni	queness theorem	62
Chapter 3: E	lectromagnetic Fields in Simple Devices and Circuits	65
3.1 Res	istors and capacitors	65
3.1.1	Introduction	65
3.1.2	Resistors	65
3.1.3	Capacitors	
3.2 Ind	uctors and transformers	
3.2.1	Solenoidal inductors	71
3.2.2	Toroidal inductors	75
3.2.3	Energy storage in inductors	78

3.2.4	Transformers	80
3.3 Qu	asistatic behavior of devices	
3.3.1	Electroquasistatic behavior of devices	83
3.3.2	Magnetoquasistatic behavior of devices	
3.3.3	Equivalent circuits for simple devices	
3.4 Ge	neral circuits and solution methods	
3.4.1	Kirchoff's laws	
3.4.2	Solving circuit problems	
3.5 Tw	vo-element circuits and RLC resonators	
3.5.1	Two-element circuits and uncoupled RLC resonators	92
3.5.2	Coupled RLC resonators	
Chapter 4: S	Static and Quasistatic Fields	
	roduction	
4.2 Mi	rror image charges and currents	102
	laxation of fields, skin depth	
4.3.1	Relaxation of electric fields and charge in conducting media	
4.3.2	Relaxation of magnetic fields in conducting media	
4.3.3	Induced currents	
4.4 Sta	atic fields in inhomogeneous materials	
4.4.1	Static electric fields in inhomogeneous materials	
4.4.2	Static magnetic fields in inhomogeneous materials	
4.4.3	Electric and magnetic flux trapping in inhomogeneous systems	
	place's equation and separation of variables	
4.5.1	Laplace's equation	
4.5.2	Separation of variables.	
4.5.3	Separation of variables in cylindrical and spherical coordinates	
	ux tubes and field mapping.	
4.6.1	Static field flux tubes	
4.6.2	Field mapping	
	Electromagnetic Forces	
	rces on free charges and currents	
5.1.1	Lorentz force equation and introduction to force	
	Electric Lorentz forces on free electrons	
5.1.3	Magnetic Lorentz forces on free charges	
	rces on charges and currents within conductors	
5.2.1	Electric Lorentz forces on charges within conductors	
5.2.2	Magnetic Lorentz forces on currents in conductors	
	rces on bound charges within materials	
5.3.1	Introduction	
5.3.2	Kelvin polarization force density	
5.3.3	Kelvin magnetization force density	
	rces computed using energy methods	
5.4.1	Relationship between force and energy	
5.4.2	Electrostatic forces on conductors and dielectrics	
	ectric and magnetic pressure	
	Electromagnetic pressures acting on conductors	

5.5.2	Electromagnetic pressures acting on permeable and dielectric media	145
5.6 P	hotonic forces	147
Chapter 6:	Actuators and Sensors, Motors and Generators	151
6.1 F	orce-induced electric and magnetic fields	151
6.1.1	Introduction	151
6.1.2	Motion-induced voltages	151
6.1.3	Induced currents and back voltages	153
6.2 E	Electrostatic actuators and motors	154
6.2.1	Introduction to Micro-Electromechanical Systems (MEMS)	
6.2.2	Electrostatic actuators	
6.2.3	Rotary electrostatic motors	159
6.2.4	Dielectric actuators and motors	160
6.2.5	Electrical breakdown	
6.3 R	Cotary magnetic motors	163
6.3.1	Commutated rotary magnetic motors	
6.3.2	Reluctance motors	168
6.4 L	inear magnetic motors and actuators	173
6.4.1	Solenoid actuators	173
6.4.2	MEMS magnetic actuators	
	ermanent magnet devices	
6.5.1	Introduction	
6.5.2	Permanent magnet motors	
	Electric and magnetic sensors	
6.6.1	Electrostatic MEMS sensors	
6.6.2	Magnetic MEMS sensors	
6.6.3	Hall effect sensors	
1	TEM Transmission Lines	
7.1 T	EM waves on structures	
7.1.1	Introduction	
7.1.2	TEM waves between parallel conducting plates	
7.1.3	TEM waves in non-planar transmission lines	
7.1.4	Loss in transmission lines	
	EM lines with junctions	
7.2.1	Boundary value problems	
7.2.2	Waves at TEM junctions in the time domain	
7.2.3	Sinusoidal waves on TEM transmission lines and at junctions	
	Methods for matching transmission lines	
7.3.1	Frequency-dependent behavior	
7.3.2	Smith chart, stub tuning, and quarter-wave transformers	
	EM resonances	
7.4.1	Introduction	
7.4.2	TEM resonator frequencies	
7.4.3	Resonator losses and Q	
7.4.4	Coupling to resonators	
7.4.5	Transients in TEM resonators	226

Chapter 8: F	ast Electronics and Transient Behavior on TEM Lines	229
	opagation and reflection of transient signals on TEM transmission lines	
8.1.1	Lossless transmission lines	
8.1.2	Reflections at transmission line junctions	232
8.1.3	Multiple reflections and reverberations	
8.1.4	Reflections by mnemonic or non-linear loads	
8.1.5	Initial conditions and transient creation.	
8.2 Lir	nits posed by devices and wires	241
8.2.1	Introduction to device models	241
8.2.2	Semiconductor device models	241
8.2.3	Quasistatic wire models	243
8.2.4	Semiconductors and idealized p-n junctions	245
8.3 Dis	stortions due to loss and dispersion	
8.3.1	Lossy transmission lines	
8.3.2	Dispersive transmission lines	252
Chapter 9: E	Electromagnetic Waves	
9.1 Wa	aves at planar boundaries at normal incidence	255
9.1.1	Introduction	
9.1.2	Introduction to boundary value problems	255
9.1.3	Reflection from perfect conductors	
9.1.4	Reflection from transmissive boundaries	258
9.2 Wa	aves incident on planar boundaries at angles	260
9.2.1	Introduction to waves propagating at angles	260
9.2.2	Waves at planar dielectric boundaries	
9.2.3	Evanescent waves	266
9.2.4	Waves in lossy media	269
9.2.5	Waves incident upon good conductors	272
9.2.6	Duality and TM waves at dielectric boundaries	274
9.3 Wa	aves guided within Cartesian boundaries	278
9.3.1	Parallel-plate waveguides	278
9.3.2	Rectangular waveguides	283
9.3.3	Excitation of waveguide modes	286
9.4 Ca	vity resonators	288
9.4.1	Rectangular cavity resonators	288
9.4.2	Perturbation of resonator frequencies	289
9.5 Wa	aves in complex media	
9.5.1	Waves in anisotropic media	291
9.5.2	Waves in dispersive media	295
9.5.3	Waves in plasmas	
Chapter 10:	Antennas and Radiation	301
10.1 Ra	diation from charges and currents	
10.1.1	Introduction to antennas and radiation	
10.1.2	Electric fields around static charges	301
10.1.3	Magnetic fields around static currents	
10.1.4	Electromagnetic fields produced by dynamic charges	304
10.2 Sh	ort dipole antennas	307

10.2.1	Radiation from Hertzian dipoles	307
10.2.2	Near fields of a Hertzian dipole	
10.2.3	Short dipole antennas	312
10.3 Ant	enna gain, effective area, and circuit properties	314
10.3.1	Antenna directivity and gain	
10.3.2	Circuit properties of antennas	316
10.3.3	Receiving properties of antennas	318
10.3.4	Generalized relation between antenna gain and effective area	
10.3.5	Communication links	
10.4 Ant	enna arrays	324
10.4.1	Two-dipole arrays	
10.4.2	Array antennas with mirrors	327
10.4.3	Element and array factors	329
10.4.4	Uniform dipole arrays	330
10.4.5	Phasor addition in array antennas	
10.4.6	Multi-beam antenna arrays	336
Chapter 11: C	Common Antennas and Applications	
	erture antennas and diffraction	
11.1.1	Introduction	
11.1.2	Diffraction by apertures	
11.1.3	Common aperture antennas	
11.1.4	Near-field diffraction and Fresnel zones.	
11.2 Wir	e antennas	
11.2.1	Introduction to wire antennas.	
11.2.2	Current distribution on wires	
11.2.3	Antenna patterns	
11.3 Pro	pagation of radio waves and thermal emission	
11.3.1	Multipath propagation	
11.3.2	Absorption, scattering, and diffraction	
11.3.3	Thermal emission	
11.3.4	Radio astronomy and remote sensing	
	olications	
	Wireless communications systems	
11.4.2	Radar and lidar	
	Optical Communications	
	oduction to optical communication links	
12.1.1	Introduction to optical communications and photonics	
12.1.2	Applications of photonics	
12.1.3	Link equations	
12.1.4	Examples of optical communications systems	
	ical waveguides	
12.2.1	Dielectric slab waveguides	
12.2.2	Optical fibers	
	ers	
12.3.1	Physical principles of stimulated emission and laser amplification	
	Laser oscillators	

12.4 Optical detectors, multiplexers, interferometers, and switches	389
12.4.1 Phototubes	389
12.4.2 Photodiodes	391
12.4.3 Frequency-multiplexing devices and filters	392
12.4.4 Interferometers	395
12.4.5 Optical switches	396
Chapter 13: Acoustics	399
13.1 Acoustic waves	399
13.1.1 Introduction	399
13.1.2 Acoustic waves and power	399
13.2 Acoustic waves at interfaces and in guiding structures and resonators	404
13.2.1 Boundary conditions and waves at interfaces	404
13.2.2 Acoustic plane-wave transmission lines	407
13.2.3 Acoustic waveguides	408
13.2.4 Acoustic resonators	409
13.3 Acoustic radiation and antennas	414
13.4 Electrodynamic-acoustic devices	417
13.4.1 Magneto-acoustic devices	417
13.4.2 Electro-acoustic devices.	417
13.4.3 Opto-acoustic-wave transducers	418
13.4.4 Surface-wave devices	418
Appendix A: Numerical Constants	421
A.1 Fundamental Constants	421
A.2 Electrical Conductivity σ, S/m	421
A.3 Relative Dielectric Constant $\varepsilon/\varepsilon_0$ at 1 MHz	422
A.4 Relative Permeability μ/μ_0	
Appendix B: Complex Numbers and Sinusoidal Representation	
Appendix C: Mathematical Identities	
Cartesian Coordinates (x,y,z):	
Cylindrical coordinates (r,φ,z):	
Spherical coordinates (r,θ,ϕ) :	
Gauss' Divergence Theorem:	
Stokes' Theorem:	
Fourier Transforms for pulse signals h(t):	
Appendix D: Basic Equations for Electromagnetics and Applications	
Appendix E: Frequently Used Trigonometric and Calculus Expressions	
Index.	

Preface

The initial development of electrical science and engineering a century ago occurred almost entirely within the domain of electromagnetics. Most electrical curricula remained polarized around that theme until the mid-twentieth century when signal, device, and computational subjects became dominant. Continued expansion of the field has currently relegated undergraduate electromagnetics to perhaps a one-semester subject even though electromagnetic technology has expanded substantially and is basic to most applications. To meet the increasing educational challenge of providing both breadth and depth in electromagnetics within a brief presentation, this text uses a more physics-based approach and novel methods of explaining certain phenomena. It introduces students to electrodynamics across the entire range from statics to dynamics, and from motors to circuits, communications, optical fibers, and lasers. For example, we currently cover approximately ninety percent of the text in a one-semester subject meeting with faculty four hours per week. The text could also support undergraduate offerings over two quarters or even two semesters, and could perhaps also be used at the entry graduate level.

The main objectives of the text are to: 1) convey those big ideas essential to understanding the electromagnetic aspects of modern electrical and computer systems, 2) expose students to enough examples to make the big ideas tangible and erase most naiveté about dominant applications, 3) provide computational experience with Maxwell's equations sufficient to treat the basic examples, 4) provide the understanding and skills prerequisite to follow-on subjects, and 5) reinforce prior exposure to physics, mathematics, and electrical systems so as to help integrate student learning, including problem solving and design methods.

The first two chapters are the core of the text. They review the basic physics of electromagnetics and electromechanics and introduce the Lorentz force law, Maxwell's equations, media, boundary conditions, static field solutions, uniform plane waves, and power and energy. Although the chapters are best read sequentially, the four topical areas that follow the core can be read in any sequence and include: 1) Chapters 3, 5, and 6, which treat RLC devices and circuits; electromagnetic forces on charges, conductors, and media; and motors, 2) Chapters 4, 7, and 8, which treat quasistatics, solutions to Laplace's equation, and TEM lines, including matching, resonators, and transients, 3) Sections 4.1–4.3 plus Chapter 9, which treat field relaxation, non-uniform plane waves, reflection, waveguides, and cavity resonators, and 4) Chapters 10 and 11, which treat radiation, wire and aperture antennas, and applications such as communications systems and radar. Two "capstone" chapters then follow: Chapter 12 introduces optical waveguides, laser amplifiers, laser oscillators, and other optical devices (Chapters 9 and 11 are prerequisites), and Chapter 13 reviews most wave phenomena in an acoustic context after Chapters 7, 9, and 10 have been covered. This organization permits use of the text in a wide variety of formats, including one- and two-semester options. prerequisites are reviewed briefly in the Appendix or within the text. Future versions will have home problems and more examples.

Special thanks are owed to the many MIT faculty who have taught this subject and its three merged predecessors while sharing their insights with the author over the past forty years. Without such collegial participation the scope and brevity of this text would not have been

possible. The sections on waves, optics, acoustics, resonators, and statics benefited particularly from interactions with Professors Kong and Haus, Ippen and Bers, Stevens and Peake, Smullin, and Haus and Zahn, respectively. Scott Bressler and Laura von Bosau have been particularly helpful in reducing the graphics and text to the printed page.

This is a preliminary version of the final text and therefore any comments on content or potential additions or corrections would be appreciated.

David H. Staelin

January 5, 2011

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.