## Week 1

# ???

### 1.1 Holomorphic Functions

3/19: • We begin by reviewing some properties of the **complex numbers**.

• Complex numbers: The field of elements z = x + iy where  $x, y \in \mathbb{R}$  and  $i^2 = -1$ . Denoted by  $\mathbb{C}$ .



Figure 1.1: The complex plane.

- Can be visualized as a two-dimensional plane with the number z corresponding to the point (x, y).
- Real part: The number x. Denoted by Re(z).
- Imaginary part: The number y. Denoted by Im(z).
- Complex conjugate (of z): The complex number defined as follows. Denoted by  $\bar{z}$ . Given by

$$\bar{z} := x - iy$$

- Now recall the definition of a real function that is **differentiable** at a point  $x_0 \in \mathbb{R}$ .
  - $-f'(x_0)(x-x_0)$  is the "best linear approximation" of f near  $x_0$ , where  $f'(x_0)$  is also defined below.
- **Differentiable**  $(f \text{ at } x_0)$ : A function  $f: \mathbb{R} \to \mathbb{R}$  for which the following limit exists. Constraint

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =: f'(x_0)$$

- We now build up to defining a notion of complex differentiability.
  - Observe that the constraint above is equivalent to the constraint

$$f(x) = f(x_0) + \underbrace{[f'(x_0) + e(x)]}_{\Delta(x)}(x - x_0)$$

where  $e(x) \to 0$  as  $x \to x_0$ .

- Note that we are defining a new function  $\Delta(x)$  above, with the property that  $\Delta(x_0) = f'(x_0)$ .

Week 1 (???) MATH 27000

• Holomorphic (f at  $z_0$ ): A function  $f: \mathbb{C} \to \mathbb{C}$  for which the following limit exists. Also known as  $\mathbb{C}$ -differentiable. Constraints

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0) \iff f(z) = f(z_0) + \Delta(z)(z - z_0)$$

where  $\Delta$  is continuous at  $z_0$  and  $\Delta(z_0) = f'(z_0)$ .

- Is this the true definition of "holomorphic" / "C-differentiable" function, or is this just a naive first pass??
- Properties of holomorphic functions: Let  $U \subset \mathbb{C}$  be open.
  - 1. The holomorphic functions on U form a ring  $\mathcal{O}(U)$ .
    - Equivalently, the  $\mathbb{C}\text{-differentiation}$  operator is  $\mathbb{C}\text{-linear}.$
    - Equivalently, if f, g are holomorphic, then f + g and fg are holomorphic, too.
    - Equivalently (and most simply), we have the sum rule and the product rule (and the quotient rule if the function in the denominator is nonzero).
  - 2. We have the chain rule.
  - 3. Holomorphic implies continuous.
- Examples: Polynomials, rational functions p(z)/q(z) (away from their **poles**).
- Noney<sup>[1]</sup>: Consider the function  $f: \mathbb{C} \to \mathbb{C}$  defined by

$$z\mapsto \bar{z}$$

- TPS<sup>[2]</sup>: Why?
- Notice that

$$f(0) = 0 f(t) = t f(it) = -it$$

- Thus,

$$\Delta(t) = 1 \qquad \qquad \Delta(it) = -1$$

- for all t.
- But this means that  $\Delta$  can't be continuous!
- Yet f is clearly  $\mathbb{R}$ -differentiable! What gives?!
- Note that viewing f as a mapping of  $\mathbb{R}^2 \to \mathbb{R}^2$  we have

$$Df = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

### 1.2 Chapter I: Analysis in the Complex Plane

From Fischer and Lieb (2012).

- The preface only contains comments and instructions for an instructor planning to use this textbook for a course.
- The chapter begins with two paragraphs.
  - The first discusses topic covered in the chapter.
  - The second gives some historical background on these topics.

<sup>&</sup>lt;sup>1</sup>What does "Noney" mean??

<sup>&</sup>lt;sup>2</sup>What does "TPS" mean??

Week 1 (???)
MATH 27000

#### Section I.0: Notations and Basic Concepts

- Goal: Reiew the fundamental topological and analytical concepts of real analysis.
- Defines the complex numbers, complex plane, and complex conjugate.
- Absolute value (of z): The Euclidean distance of z from zero. Also known as modulus. Denoted by |z|. Given by

$$|z| := \sqrt{x^2 + y^2}$$

- Imaginary unit. Denoted by i.
- Relating the modulus and complex conjugate.

$$|z| = \sqrt{z\bar{z}}$$

• Open disk (of radius  $\varepsilon$  and center  $z_0$ ): The set defined as follows. Also known as  $\varepsilon$ -neighborhood (of  $z_0$ ). Denoted by  $D_{\varepsilon}(z_0)$ ,  $U_{\varepsilon}(z_0)$ . Given by

$$D_{\varepsilon}(z_0) = U_{\varepsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}$$

• Unit disk: The set defined as follows. Denoted by D. Given by

$$\mathbb{D} := D_1(0)$$

• Unit circle: The set defined as follows. Denoted by S. Given by

$$\mathbb{S}:=\{z\in\mathbb{C}:|z|=\varepsilon\}$$

• Upper half plane: The set defined as follows. Denoted by H. Given by

$$\mathbb{H} := \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}$$

•  $\mathbb{C}^*$ : The set defined as follows. Given by

$$\mathbb{C}^* := \mathbb{C} \setminus \{0\}$$

- 3/21: Neighborhood (of  $z_0$ ): A set U which contains an  $\varepsilon$ -neighborhood.
  - Open (set): A set that is a neighborhood of each of its points.
  - Closed (set): A complement of an open set.
  - Interior (of M): The largest open set contained in M. Denoted by  $\mathbf{M}$ .
  - Closure (of M): The smallest closed set containing M. Denoted by  $\overline{M}$ .
  - Topological boundary (of M): The set defined as follows. Also known as boundary. Denoted by  $\partial M$ . Given by

$$\partial M := \overline{M} \setminus \mathring{M}$$

- Relatively open (set in M): The intersection of an open set U with an arbitrary set M. Also known as open (set in M).
- Relatively closed (set in M): The intersection of a closed set U with an arbitrary set M. Also known as open (set in M).