NUMBER SYSTEMS AND DATA REPRESENTATION

There are 10 kinds of people in the world, those who use binary, and those who don't.

Base 10 (Decimal numbers)

What does 157 mean?

$$157 = 1 \times 100 + 5 \times 10 + 7 \times 1$$
$$= 1 \times 10^{2} + 5 \times 10^{1} + 7 \times 10^{0}$$

Decimal Numbering System

The Arabic numbering system uses ten symbols and is a base ten numbering system. In any numbering system the base is raised to consecutive powers to determine positional (place) values.

10^{3}	10^{2}	10^{1}	10^{0}	base ^{powers}
1000	100	10	1	place values
	2	3	1	←
	4	1	3	
7	8	6	0	
		231	l = 2 * 10	$0^2 + 3 * 10^1 + 1 * 10^0$

Computer Representation Binary System

At the hardware level computers must store numbers using either the presence or absence of a voltage. Then there are only two states (symbols) available for number representation. So base 2 (binary) is a suitable system for computers.

2^6	2^5	2^4	2^3	2^2	2^1	2^{0}	basepowers
64	32	16	8	4	2	1	place values

Positional Systems

What value does 1110 represent?

Undetermined until the numbering system base is stated.

Base 10 place values:	10,000 1	,000	100	10	1	
Base 2 place values:	16	8	4	2	1	
		1	1	1	0	

<u>base</u>		<u>base 10</u>
10?	1*1000 + 1*100 + 1*10 + 0*1	1,110
2?	1*8 + 1*4 + 1*2 + 0*1	14

Base 10 vs Base 2

Base 10

157

$$157 = 1 \times 100 + 5 \times 10 + 7 \times 1$$
$$= 1 \times 10^{2} + 5 \times 10^{1} + 7 \times 10^{0}$$

Base 2

$$1011 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

 $1011 = 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1$

Binary to Base Ten

01010010

Binary to Base Ten

01010010

Base 10 to Binary

What is 157₁₀ in binary?

Answer: 10011101

Binary mathematics

Representing Negative Integers

TOY words are 16 bits each.

- We could use 16 bits to represent 0 to 2¹⁶ 1.
- We want negative integers too.
- Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property. If x is an integer, then the representation of -x, when added to x, is zero.

Two's Complement Integers

To compute -x from x:

■ Flip bits.

Add one.

Two's Complement Integers

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dec	hex								bin	ary							
+32767	7FFF	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
									•	•							
+4	0004	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
+3	0003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
+2	0002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
+1	0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
+0	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-2	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
-3	FFFD	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
-4	FFFC	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
									•								
-32768	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Hexadecimal (base 16)

Binary code is too long in representation. Hex is much shorter.

Converting a binary number to a Hex number is relatively easy

Every 4 bits can convert to a single Hex value

Problem: we are short of numbers

■ A=10 B=11 C=12 D=13 E=14 F=15

Hexadecimal (Base 16) Representation

Binary	HEX
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	HEX
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Example

Result

BF2C

Bits, Bytes, and Words

Information in the computer are stored as a groups of binary digits. An individual digit is called a **bit**.

Bits are grouped into 8-bit collections called **bytes**. Memory is normally measured in terms of bytes.

- 256 possible values from 0-255 base 10 or
- 00000000 to 11111111 base 2

Bytes are further grouped into 4 or more byte groupings to make up a computer **word**. The most common word sizes in modern computers is 32 bits (4 8-bit bytes) or 64-bits

