

Networked Control

Project Presentation (Siljac 01)

Antonello Lagalante

Presentation outline

Open-loop system analysis – Continuous-time system

The state-space representation of the system under control is:

2 inputs acting on x_3 and x_5

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 3.2 & 1.98 \\ 0 & 0 & 1 & -14.72 & 0.49 \\ -8.86 & 8.50 & 9.39 & -7.92 & 36.01 \\ 1.69 & 1.26 & 0.08 & 0 & 1 \\ -7.52 & -5.23 & 0.49 & 32.32 & -1.36 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

All states are measurable

MIMO, 5th order (n=5), linear, time-invariant, strictly-proper system.

Open-loop system analysis – Stability

The **open-loop poles** of the continuous-time and discrete-time systems are:

Open-loop system analysis - Decomposition

The **decomposed system matrices** are the following ones:

$$A = \begin{bmatrix} 0 & 1 & 0 & 3.2 & 1.98 \\ 0 & 0 & 1 & -14.72 & 0.49 \\ -8.86 & 8.50 & 9.39 & -7.92 & 36.01 \\ 1.69 & 1.26 & 0.08 & 0 & 1 \\ -7.52 & -5.23 & 0.49 & 32.32 & -1.36 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad B_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$B_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad B_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Physical coupling between states (neither block diagonal nor banded)

$$C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \qquad C_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Sub-systems input decoupled

So, we have **two channels**:

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \qquad y = \begin{bmatrix} y_{1,3} \\ y_{4,5} \end{bmatrix}$$

Same considerations apply to the discrete-time system.

Centralized control – Fixed modes

The system has no continuous-time centralized fixed modes.

The system has no discrete-time centralized fixed modes.

Centralized control – Continuous time

	Poles region	Parameters	Feasibility	Spectral abscissa	Closed-loop poles
<u>Stabilizing</u>		-	Yes	-0.92	$\begin{bmatrix} -1.2 + 80.5i \\ -1.2 - 80.5i \\ -0.92 + 4.4i \\ -0.92 - 4.4i \\ -1.6 \end{bmatrix}$
<u>Disk</u>		$\alpha = -10, \rho = 1$	Yes	-9.6	$\begin{bmatrix} -10.2\\ -9.88 + 0.05i\\ -9.88 - 0.05i\\ -9.7\\ -9.6 \end{bmatrix}$
<u>D-Region</u> (+speed)		$\theta = \pi/4$ $\alpha = -1$	Yes	-7.1	$\begin{bmatrix} -38.3 \\ -7.1 + 2.9i \\ -7.1 - 2.9i \\ -7.7 \\ -9.3 \end{bmatrix}$
<u>H2 (LQR)</u>		Q = diag(10) $R = diag(0.01)$	Yes	-3.4	$\begin{bmatrix} -14.98 \\ -4.6 + 8.3i \\ -4.6 - 8.3i \\ -3.4 + 2.1i \\ -3.4 - 2.1i \end{bmatrix}$

Centralized control – Continuous time

The comparison between the various continuous-time centralized controllers is reported below:

Centralized control – Discrete time

	Poles region	Parameters	Feasibility	Spectral radius	Closed-loop poles
<u>Stabilizing</u>		-	Yes	0.89	$\begin{bmatrix} 0.81 + 0.26i \\ 0.81 - 0.26i \\ 0.89 \\ 0.40 \\ 0.65 \end{bmatrix}$
Centred Disk		$\rho = 0.6$	Yes	0.51	$\begin{bmatrix} -0.06\\ 0.5 + 0.09i\\ 0.5 - 0.09i\\ 0.4 + 0.23i\\ 0.4 - 0.23i \end{bmatrix}$
<u>Disk</u>		$\alpha = -0.4, \rho = 0.2$	Yes	0.57	$\begin{bmatrix} 0.37 + 0.06i \\ 0.37 - 0.06i \\ 0.47 + 0.07i \\ 0.47 - 0.07i \\ 0.57 \end{bmatrix}$

Centralized control – Discrete time

The comparison between the various discrete-time centralized controllers is reported below:

Decentralized control – Fixed modes

The system has no continuous-time decentralized fixed modes.

The system has no discrete-time decentralized fixed modes.

Decentralized control – Continuous time

	Poles region	Parameters	Feasibility	Spectral abscissa	Closed-loop poles
<u>Stabilizing</u>		-	Yes	-1.03	$\begin{bmatrix} -81.32 \\ -1.03 + 8.4i \\ -1.03 - 8.4i \\ -1.47 \\ -1.13 \end{bmatrix}$
<u>Disk</u>		$\alpha = -10, \rho = 1$	No	+8.68	$ \begin{bmatrix} -9.7 \\ -0.07 + 5.7i \\ -0.07 - 5.7i \\ -0.83 \\ +8.68 \end{bmatrix} $
<u>D-Region</u> (+speed)		$\theta = \pi/4$ $\alpha = -1$	Yes	-1.49	$\begin{bmatrix} -186.2 \\ -143.5 \\ -1.49 \\ -7.6 + 4.7i \\ -7.6 - 4.7i \end{bmatrix}$
<u>H2 (LQR)</u>		Q = diag(10) $R = diag(0.01)$	Yes	-1.24	$\begin{bmatrix} -33.1 \\ -3.3 + 6.2i \\ -3.3 - 6.2i \\ -1.24 \\ -18.6 \end{bmatrix}$

Decentralized control – Continuous time

The comparison between the various continuous-time decentralized controllers is reported below:

Decentralized control – Discrete time

	Poles region	Parameters	Feasibility	Spectral radius	Closed-loop poles
<u>Stabilizing</u>		-	No	+1.72	_
<u>Centred Disk</u>		$\rho = 0.6$	No	+1.8	_
<u>Disk</u>		$\alpha = -0.4, \rho = 0.2$	No	+1.9	_

Distributed control (1→2) – Fixed modes

The system has no continuous-time distributed fixed modes.

The system has no discrete-time distributed fixed modes.

Information structure constraint set:

$$\mathcal{N} = \{\{\}, \{1\}\}$$

Distributed control (1→2) – Continuous time

	Poles region	Parameters	Feasibility	Spectral abscissa	Closed-loop poles
Stabilizing		-	Yes	-0.63	$\begin{bmatrix} -0.7 + 27i \\ -0.7 - 27i \\ -1.62 \\ -0.63 + 5.97i \\ -0.63 - 5.97i \end{bmatrix}$
<u>Disk</u>		$\alpha = -10, \rho = 1$	No	+2.6	_
<u>D-Region</u> (+speed)		$\theta = \pi/4$ $\alpha = -1$	Yes	-1.49	$\begin{bmatrix} -124.6 + 25i \\ -124.6 - 25i \\ -1.49 \\ -7.3 + 4.8i \\ -7.3 - 4.8i \end{bmatrix}$
<u>H2 (LQR)</u>		Q = diag(10) $R = diag(0.01)$	Yes	-1.28	$\begin{bmatrix} -30.94 \\ -1.28 \\ -6.2 + 8.1i \\ -6.2 - 8.1i \\ -10.84 \end{bmatrix}$

Distributed control (1→2) – Continuous time

The comparison between the various continuous-time distributed $(1\rightarrow 2)$ controllers is reported below:

Distributed control (1→2) – Discrete time

	Poles region	Parameters	Feasibility	Spectral radius	Closed-loop poles
<u>Stabilizing</u>		-	No	+1.71	_
<u>Centred Disk</u>		$\rho = 0.6$	No	+1.8	_
<u>Disk</u>		$\alpha = -0.4, \rho = 0.2$	No	+1.9	_

Distributed control (2→1) – Fixed modes

The system has no continuous-time distributed fixed modes.

The system has no discrete-time distributed fixed modes.

Information structure constraint set:

$$\mathcal{N} = \{\{2\}, \{\}\}$$

Distributed control (2→1) – Continuous time

	Poles region	Parameters	Feasibility	Spectral abscissa	Closed-loop poles
Stabilizing	•	-	Yes	-0.72	$\begin{bmatrix} -1.38 + 7.99i \\ -1.38 - 7.99i \\ -2.69 \\ -0.72 + 0.28i \\ -0.72 - 0.28i \end{bmatrix}$
<u>Disk</u>		$\alpha = -10, \rho = 1$	No	+2.54	_
<u>D-Region</u> (+speed)		$\theta = \pi/4$ $\alpha = -1$	Yes	-1.44	$ \begin{bmatrix} -68.92 \\ -34.56 \\ -1.44 \\ -6.6 + 5i \\ -6.6 - 5i \end{bmatrix} $
<u>H2 (LQR)</u>		Q = diag(10) $R = diag(0.01)$	Yes	-1.01	$\begin{bmatrix} -1.01 \\ -3.65 + 5.8i \\ -3.65 - 5.8i \\ -18.95 \\ -12.79 \end{bmatrix}$

Distributed control (2→1) – Continuous time

The comparison between the various continuous-time distributed $(2\rightarrow 1)$ controllers is reported below:

Distributed control (2→1) – Discrete time

	Poles region	Parameters	Feasibility	Spectral radius	Closed-loop poles
<u>Stabilizing</u>		-	No	+1.71	_
Centred Disk		$\rho = 0.6$	No	+1.8	_
<u>Disk</u>		$\alpha = -0.4, \rho = 0.2$	No	+1.9	_

Results

In conclusion we can state that:

- 1. As expected, since the **system is controllable**, the centralized controller is feasible both in CT and DT.
- It is not possible to determine a controller with state feedback capable of stabilizing the system in the case of discrete-time decentralized and distributed schemes. One possible solution would be to reduce the sampling time.
- 3. The best controller seems to be the **centralized H2 (LQ)** one, which has at the same time the smallest settling time and overshoot due to the minimum-phase zero.
- 4. Since our system is composed of only two sub-systems, other types of distributed schemes lead to the same result of the string (unidirectional or bidirectional) structure.
- 5. If we adopt the **all-to-all distributed** control scheme, we got the exact same result of the centralized case having at the same time more robustness.