

Vehicle Rebalancing in a Shared Micromobility System with Rider Crowdsourcing

Reporter: Wang Menghang

2023/9/11

Paper Information

Title: Vehicle Rebalancing in a Shared Micromobility System with Rider Crowdsourcing

- Published on *Manufacturing & Service Operations Management*
 - Received: *February 4, 2022*
 - Accepted: *January 16, 2023*
 - Area of Review: /
 - Keywords: shared micromobility; crowdsourcing; allocation and relocation; two-stage stochastic mixed-integer programming; decomposition algorithm.
 - Authors: Ziliang Jin, Yulan Wang, Yun Fong Lim, Kai Pan, Zuo-Jun Max Shen

Jin Ziliang (PhD Student, Hong Kong Polytechnic University)

Education

- Pursuing his Doctor of Philosophy by Dr Pan Kai, Hong Kong Polytechnic University
- Master degree, KTH Royal Institute of Technology, Sweden (2020)
- Bachelor degree, South China University of Technology, China (2018)

■ Publication

- International Transactions in Operational Research
- IEEE Transactions on Industrial Informatics
- MSOM

Research Areas

- Stochastic Optimisation
- Integer Programming
- Robust and Data-Driven Optimisation

Wang Yulan (Professor, The Hong Kong Polytechnic University)

Education

- PHD, Duke University
- Master degree, Bachelor degree, Shanghai Jiao Tong University
- Publication (66 paper, 2642 citations)
 - Management Science
 - Operations Research
 - Manufacturing & Service Operations Management
 - Production and Operations Management

Research Areas

- Operations and supply chain management
- Socially sustainable operations
- Behavioral operations
- Operations-marketing-IS (information systems) interface

Lim Yun Fong (Full Professor, Singapore Management University)

- Education
 - PHD, Georgia Institute of Technology, 2005
 - Master degree, National University of Singapore, 1998
 - Bachelor degree, National Central University, 1996
- Publication (53 paper, 1000 citations)
 - Management Science
 - Operations Research
 - Manufacturing & Service Operations Management
 - Production and Operations Management
- Research Areas
 - e-Commerce and Marketplace Analytics
 - Online Platforms
 - Warehousing and Fulfillment
 - Sustainable Urban Logistics
 - Flexible Workforce and Resource Management

Pan Kai (Associate Professor, Hong Kong Polytechnic University)

- Education
 - PHD, University of Florida, 2012-2016
 - Master degree, University of Florida, 2012-2014
 - Bachelor degree, Zhejiang University, 2006-2010
- Publication (UTD24 (9), IEEE (8), IISE Trans./EJOR (4))
 - Manufacturing and Service Operations Management
 - INFORMS Journal on Computing
 - IEEE
 - POM
 - EJOR
- Research Areas
 - Stochastic and Discrete Optimization
 - Robust and Data-Driven Optimization
 - Energy Market, Smart City Operations
 - Marketing, Supply Chain
 - Transportation, Information Systems

Max Shen Zuo-Jun (Vice-President, the University of Hong Kong)

- Education
 - PHD, Northwestern University
 - Master degree, Tsinghua University
 - Bachelor degree, Shandong University
- Publication (17099 citations)
 - Associate editor for Operations Research
 - Associate editor for Management Science
 - Associate editor for MSOM
- Research Areas
 - Integrated Supply Chain Design and Management
 - Data Driven Logistics and Supply Chain Optimization
 - Design and Analysis of Optimization Algorithms
 - Energy Systems Optimization
 - Transportation System Planning

1. Background

- A two-stage stochastic mixed-integer program:
 - > make the initial vehicle allocation decisions;
 - subsequent make relocation decisions to maximize the expected profit.

■ A micromobility operator:

- > 3PL;
- Crowdsourced Riders.

2. Related literature

Related area	Research content	Published research	Research Gap
OM in shared mobility	vehicle-sharing systems: rent or hail cars from individual	He et al. (2017); Chang et al. (2017); Lu et al. (2018)	Cars vs bike/ e-bike
	Shared micromobility	Kabra et al. (2020); Shu et al. (2013)	Optimize the bicycle flows; initial allocation is given
Fleet operations of shared mobility	inventory redistribution or transshipment (cars)	Benjaafar et al. 2022; Miller-Hooks (2011); He et al. (2020)	Focus on shared cars
	inventory redistribution or transshipment (bicycle)	Dell'Amico et al. (2014); Freund et al. (2020); Li and Liu (2021)	Ignore the capacity design; two relocation strategies
Crowdsourcing	Crowdsourcing in last mile delivery operations	Qi et al. 2018; Fatehi and Wagner 2022; Kafle et al. 2017	two relocation strategies under different temporal demand patterns

3. Model

Construct a time-space network with multiple service regions:

$$\mathcal{V}$$
 set of service regions $\mathcal{V} = \{1, 2, ..., V\}$
 \mathcal{T} operational horizon $\mathcal{T} = \{0, 1, ..., T - 1\}$

 γ_a

number of vehicle allocated to region $i \in \mathcal{V}$ \tilde{x}_i

number of vehicles in the ending period T-1 in region $i \in \mathcal{V}$

realized flow on arc
$$a = (n_{it}, n_{j,t+l_{ij}}) \in \mathcal{A}^i \cup \mathcal{A}^t$$

number of vehicles relocated by the 3PL from region i in period t to region j for each arc $a = (n_{it}, n_{j,t+l_r}) \in \mathcal{A}^r$

3. Model

The operator optimizes the vehicle allocation decisions

$$\Gamma = \min_{\mathbf{x}} \sum_{j \in \mathcal{V}} c_j x_j + \Theta(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathcal{X} = \left\{ \mathbf{x} \in \mathbb{Z}_+^{|\mathcal{V}|} \mid x_j \leq B_j, j \in \mathcal{V}, \sum_{j \in \mathcal{V}} x_j \leq N \right\}, (\mathcal{M})$

where $\Theta(x)$ is realized in the second stage as the operator optimizes the vehicle relocation using rider crowdsourcing and the 3PL.

$$\Theta(\mathbf{x}) = \min_{\mathbf{Y}^k \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\lambda}^k), k \in \mathcal{K}} \left\{ \sum_{k \in \mathcal{K}} p^k \left[\sum_{a \in \mathcal{A}^t} \left(C_p \eta_a^k + \phi_a^k - R l_a (y_a^k - \Lambda_a^k) \right) + \sum_{t \in \mathcal{T}(l_r)} C_r z_t^k \right] \right\}. \tag{P}$$

Given the initial vehicle allocation x, the expected net cost $\Theta(x)$ in the second stage can be determined by solving the network flow optimization problem.

4. Comments

■ Positive comments:

- ✓ Construct a time-space network (fit the problem)
- ✓ Captures the main features of the problem (initial allocation; vehicle relocation; budget; travel time; penalty cost, etc.)
- ✓ Decomposition and acceleration strategies (based on time and scenarios)
- ✓ Good data and good figures

Negative comments:

✓ The method of dealing with demand uncertainty is crude (number of the scenarios is too large)

$$\Theta(\mathbf{x}) = \min_{\mathbf{Y}^k \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\lambda}^k), k \in \mathcal{K}} \left\{ \sum_{k \in \mathcal{K}} p^k \sum_{a \in \mathcal{A}^t} \left(C_p \eta_a^k + \phi_a^k - R l_a (y_a^k - \Lambda_a^k) \right) + \sum_{t \in \mathcal{T}(l_t)} C_t z_t^k \right\}. \tag{P}$$

Thank You!

Reporter: Wang Menghang