Assignment: Probability

T.Sai Raghavendra - FWC22087

- 16.4.3 ¹A die has two faces each with number '1', three faces each with number '2' and one face with number '3'. If die is rolled once, determine
 - (a) Pr (2)
 - **(b)** Pr (1or3)
 - (c) Pr (not3)

Solution:

Variable	Value	Description	Probability	Pr Value
X_1	1	Face of die '1'	$\Pr\left(X_1\right)$	$\frac{1}{3}$
X_2	2	Face of die '2'	$\Pr\left(X_{2}\right)$	$\frac{1}{2}$
X_3	3	Face of dir '3'	$\Pr\left(X_3\right)$	1/6

Table 16.4.3.2: Variable Description.

$$\Pr(X_2) = \frac{1}{2} \tag{16.4.1.1}$$

(b)

$$\Pr(X_1 + X_3) = \Pr(X_1) + \Pr(X_3) - \Pr(X_1 X_3)$$
 (16.4.2.2)

$$= \frac{1}{3} + \frac{1}{6} (: \Pr(X_1 X_3) = 0)$$
 (16.4.2.3)

$$=\frac{3}{6} \tag{16.4.2.4}$$

$$\Pr\left(X_1 + X_3\right) = \frac{1}{2} \tag{16.4.2.5}$$

 $^{^{1}\}mathrm{Read}$ question numbers as (CHAPTER NUMBER). (EXERCISE NUMBER). (QUESTION NUMBER)

(c)

$$\Pr(X_3) = 1 - \Pr(X_3)$$
 (16.4.3.6)

$$=1-\frac{1}{6}\tag{16.4.3.7}$$

$$\Pr(X_{3}') = 1 - \Pr(X_{3})$$
 (16.4.3.6)
= $1 - \frac{1}{6}$ (16.4.3.7)
= $\frac{5}{6}$ (16.4.3.8)