Spring 2013

信號與系統 Signals and Systems

Feng-Li Lian NTU-EE Feb13 – Jun13

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

- Representation of Aperiodic Signals:
 the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property

Systems Characterized by
 Linear Constant-Coefficient Difference Equations

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-3

DT Fourier Transform of an Aperiodic Signal:

$$\tilde{x}[n] = \sum_{k=\langle N \rangle} a_k e^{jk(w_0)n}$$

$$= \sum_{\mathbf{k}=< N>} a_{\mathbf{k}} e^{j\mathbf{k}(2\pi/N)n}$$

$$\frac{a_k}{a_k}$$

$$=\frac{1}{N}\sum_{n=< N}\left(\tilde{x}[n]e^{-jk(w_0)n}\right)$$

$$\left(\tilde{x}[n]e^{-jk(w_0)n}\right) = \frac{1}{N} \sum_{n=\langle N \rangle} \tilde{x}[n]e^{-jk(2\pi/N)n}$$

$$\Rightarrow \mathbf{a_k} = \frac{1}{N} \left(\sum_{n=-N_1}^{N_2} x[n] e^{-jk(w_0)n} \right) = \frac{1}{N} \left(\sum_{n=-\infty}^{+\infty} x[n] e^{-jk(w_0)n} \right)$$

DT Fourier Transform of an Aperiodic Signal:

ss4-10

• Define $X(e^{jw})$:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

• Then, $a_k = -$

$$\underbrace{a_{k}} = \frac{1}{N} X(e^{jkw_0})$$

$$w = \underbrace{kw_0}$$

• Hence,

$$\tilde{x}[n] = \sum_{k=\langle N \rangle} \frac{1}{N} X(e^{jkw_0}) e^{jkw_0 n}$$

$$= \frac{1}{2\pi} \sum_{k=\langle N \rangle} X(e^{jkw_0}) e^{jkw_0 n} w_0$$

Example 3.5: $T a_k = T \frac{\sin(k2\pi \frac{T_1}{T})}{r}$

$$T a_k = T =$$

$$T = 4T_1$$

$$Ta_k = T \frac{\sin(k\frac{\pi}{2})}{k\pi}$$

$$T = 8T_1$$

$$Ta_k = T$$

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-5

DT Fourier Transform of an Aperiodic Signal:

ss4-11

$$ullet$$
 As $N o \infty$, $ilde{x}[n] o x[n]$

$$w_0N = 2\pi$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

- inverse Fourier transform eqn
- synthesis eqn

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

- $X(e^{jw})$: Fourier transform of x[n] spectrum
- analysis eqn

$$a_k = \frac{1}{N} X(e^{jw}) \Big|_{w = kw_0}$$

$$w_0 = \frac{2\pi}{N}$$

X(ejw)

Periodicity of DT Fourier Transform:

$$X[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-jwn}$$

$$= X(e^{jw})$$

High-Frequency & Low-Frequency Signals:

(c)

high-frequency signal

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-8

• Example 5.1:

$$x[n] = \underbrace{a^n} u[n], \quad |a| < 1$$

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} u[n] e^{-jun}$$

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-9

Example 5.2:
$$x[n] = a^{|n|}, \quad 0 < a < 1$$

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} \underbrace{a^{|n|}}_{e^{-jwn}} e^{-jwn}$$

$$= \sum_{n=0}^{+\infty} d^n e^{-jwn} + \sum_{n=-\infty}^{-1} a^{-n} e^{-jwn}$$

$$= \sum_{n=0}^{+\infty} (ae^{-jw})^n + \sum_{m=1}^{\infty} (ae^{jw})^m$$

$$=\frac{1}{1-ae^{-jw}}+\frac{ae^{jw}}{1-ae^{jw}}$$

$$= \frac{1 - a^2}{1 - 2a\cos w + a^2} = \frac{1 - a^2}{(1 - a)^2} \quad \text{W=0}$$

$$= \frac{1 - a^2}{(1 + a)^2} \quad \text{W=7}$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-10

Example 5.3:

$$X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$$

$$x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases}$$

$$\Rightarrow X(e^{jw}) = \sum_{n = -N_1}^{N_1} e^{-jwn} \left(e^{-jwn} \right) \left(e^{-jwn} \right)$$

$$= e^{-jw(-N_1)} + \dots + e^{-jw(N_1)} \quad 2N_1 \uparrow \uparrow$$

$$= e^{-jw(-N_1)} + \dots + e^{-jw(N_1)} 2N_1 t$$

$$= e^{-jw(-N_1)} \left(\frac{1 - (e^{-jw})^{2N_1 + 1}}{1 - (e^{-jw})} \right)$$

$$=e^{jw(N_1)}\left(\frac{(e^{-jw})^{N_1+1/2}((e^{jw})^{N_1+1/2}(e^{-jw})^{N_1+1/2})}{(e^{-jw/2})((e^{jw/2})(e^{-jw/2}))}\right)^{N_1+1/2}$$

$$=\frac{\sin\left(w(N_1+\frac{1}{2})\right)}{\sin(w/2)}$$

• Example 5.3:

$$\Rightarrow X(e^{jw}) = \sum_{n=-N_1}^{N_1} e^{-jwn}$$

$$= \frac{\sin\left(w(N_1 + \frac{1}{2})\right)}{\sin(w/2)}$$

$$N_1 = 2 \qquad = \frac{\sin\left(w(\frac{2}{2})\right)}{\sin(w/2)}$$

$$(W1) \Rightarrow \frac{0}{0} \Rightarrow \frac{5}{2} = 5$$

$$W_{2}^{5} = 77, 27.37(1) W = \frac{277}{5} \frac{477}{5}$$

Fourier Series Representation of DT Periodic Signals

Feng-Li Lian © 2013 NTUEE-SS3-FS-12

• Example 3.12:

$$a_k = \frac{1}{N} \frac{\sin\left[\left(\frac{2\pi}{N}\right)k(N_1 + \frac{1}{2})\right]}{\sin\left[\left(\frac{\pi}{N}\right)k\right]}$$

Convergence of DT Fourier Transform:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

- The analysis equation will converge:
 - Either if x[n] is absolutely summable, that is,

Or, if x[n] has finite energy, that is,

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-14

 $\sum_{n} x[n] = \delta[n]$

 $X(e^{jw})$

Example 5.4:

$$x[n] = \delta[n]$$
, i.e., unit impulse

$$\Rightarrow X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$\downarrow +\infty$$

$$=\sum_{n=-\infty}^{+\infty} \delta[n] e^{-jwn} = 1$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$=\frac{1}{2\pi}\int_{2\pi}e^{jwn}dw$$

Approximation

$$\widehat{x}[n] = \frac{1}{2\pi} \int_{-W}^{+W} X(e^{jw}) e^{jwn} dw = \frac{\sin Wn}{\pi n}$$

 $X(e^{j\omega})$

X(jω)

Feng-Li Lian © 2013 NTUEE-SS5-DTFT-15

Approximation of an Aperiodic Signal:

4/1/13 11:16an

- Representation of Aperiodic Signals:
 the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals

- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by
 Linear Constant-Coefficient Difference Equations

 2π

X(jw)

ss4-22

Fourier Transform from Fourier Series:

$$x(t) = e^{jw_0t} \leftarrow CTFT \rightarrow X(jw) = 2\pi\delta(w - w_0)$$

$$x[n] = e^{jw_0 n} \leftarrow \mathcal{D}T\mathcal{F}T \rightarrow$$

$$X(e^{jw}) = \cdots + 2\pi\delta(w - w_0 + 2\pi) + 2\pi\delta(w - w_0) + 2\pi\delta(w - w_0 - 2\pi) +$$

$$= \sum_{l=-\infty}^{+\infty} 2\pi \delta(w - w_0 - 2\pi l)$$

$$\frac{1}{2\pi} \left(\int_{2\pi} X(e^{jw}) e^{jwn} dw \right) = \frac{1}{2\pi} \left(\int_{2\pi} X(e^{jw}) e^{jw} dw \right) = \frac{1}{2\pi} \left(\int_{2\pi} X(e^{jw}) e^{jw} dw \right) = \frac{1}{2\pi} \left(\int_{2\pi} X($$

$$= e^{j(w_0 + 2\pi y)} p = \left(e^{jw_0 n}\right)$$

$$w_0 = \frac{2\pi}{N}$$

$$2\pi\delta(w-w_0-2\pi l)e^{jwn}$$

Fourier Transform from Fourier Series:

$$w_0 = \frac{2\pi}{N}$$

more generally,

$$= \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$X(e^{jw}) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta (w - kw_0)$$

$$= \sum_{k=-\infty}^{+\infty} 2\pi \, a_k \, \delta \left(w - k \frac{2\pi}{N} \right)$$

• If k = 0, 1, ..., N-1

$$x[n] = \underbrace{a_1}_{e^j} \underbrace{e^{j\left(\frac{2\pi}{N}\right)_n} + \underbrace{a_2}_{e^j} e^{j\left(\frac{2\pi}{N}\right)_n}}_{n}$$

$$+\cdots+a_{N-1}e^{\sum_{N-1}^{N}(N-1)\left(\frac{2\pi}{N}\right)n}$$

$$= x_0 + x_1$$

$$-x_2$$

$$+\cdots+$$
 x_{N-1}

a linear combination of signals with $0, \frac{2\pi}{N}, \frac{2 \cdot 2\pi}{N}, \cdots, \frac{(N-1) \cdot 2\pi}{N}$

$$0, w_0, 2w_0, \cdots, (N-1)w_0$$

Example 5.5:

$$x[n] = \cos(w_0 n)$$

$$\underbrace{\frac{e^{jw_0n}+e^{-jw_0n}}{2}}$$

$$\text{with } w_0 = \frac{2\pi}{5}$$

$$X(e^{jw}) = \sum_{l=-\infty}^{+\infty} \pi \delta\left(w - \frac{2\pi}{5} - 2\pi l\right) + \sum_{l=-\infty}^{+\infty} \pi \delta\left(w + \frac{2\pi}{5} - 2\pi l\right)$$

Example 5.6:

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN]$$

choose
$$0 \le n \le N-1$$

$$\Rightarrow \mathbf{a_k} = \frac{1}{N} \sum_{n = \langle N \rangle} (\mathbf{x}[n]) e^{-j\mathbf{k}(2\pi/N)n} = ($$

$$\Rightarrow X(e^{jw}) = \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta(w - k \frac{2\pi}{N})$$

- Representation of Aperiodic Signals:
 the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform

- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by
 Linear Constant-Coefficient Difference Equations

Section	Property				
5.3.2	Linearity				
5.3.3	Time Shifting				
5.3.3	Frequency Shifting				
5.3.4	Conjugation				
5.3.6	Time Reversal				
5.3.7	Time Expansion				
5.4	Convolution				
5.5	Multiplication				
5.3.5	Differencing in Time				
5.3.5	Accumulation				
5.3.8	Differentiation in Frequency				
5.3.4	Conjugate Symmetry for Real Signals				
5.3.4	Symmetry for Real and Even Signals				
5.3.4	Symmetry for Real and Odd Signals				
5.3.4	Even-Odd Decomposition for Real Signals				
5.3.9	Parseval's Relation for Aperiodic Signals				

Outline

				_	
CTFS	DTFS	CTFT	DTFT	LT	zT
3.5.1		4.3.1	5.3.2	9.5.1	10.5.1
3.5.2		4.3.2	5.3.3	9.5.2	10.5.2
		4.3.6	5.3.3	9.5.3	10.5.3
3.5.6		4.3.3	5.3.4	9.5.5	10.5.6
3.5.3		4.3.5	5.3.6		10.5.4
3.5.4		4.3.5	5.3.7	9.5.4	10.5.5
		4.4	5.4	9.5.6	10.5.7
3.5.5	3.7.2	4.5	5.5		
	3.7.2	4.3.4, 4.3.6	5.3.5, 5.3.8	9.5.7, 9.5.8	10.5.7, 10.5.8
		4.3.4	5.3.5	9.5.9	10.5.7
3.5.6		4.3.3	5.3.4		
3.5.6		4.3.3	5.3.4		
3.5.6		4.3.3	5.3.4		
		4.3.3	5.3.4		
3.5.7	3.7.3	4.3.7	5.3.9		
				9.5.10	10.5.9
	3.5.1 3.5.2 3.5.6 3.5.3 3.5.4 3.5.5 3.5.6 3.5.6 3.5.6	3.5.1 3.5.2 3.5.6 3.5.3 3.5.4 3.5.5 3.7.2 3.7.2 3.5.6 3.5.6 3.5.6	3.5.1 4.3.1 3.5.2 4.3.2 4.3.6 4.3.3 3.5.6 4.3.3 3.5.3 4.3.5 3.5.4 4.3.5 4.4 4.4 3.5.5 3.7.2 4.3.4, 4.3.6 4.3.4 4.3.4 3.5.6 4.3.3 3.5.6 4.3.3 4.3.3 4.3.3 4.3.3 4.3.3	3.5.1 4.3.1 5.3.2 3.5.2 4.3.2 5.3.3 4.3.6 5.3.3 3.5.6 4.3.3 5.3.4 3.5.3 4.3.5 5.3.6 3.5.4 4.3.5 5.3.7 4.4 5.4 3.5.5 3.7.2 4.5 5.5 3.7.2 4.3.4 5.3.5 5.3.8 4.3.4 5.3.5 5.3.8 3.5.6 4.3.3 5.3.4 3.5.6 4.3.3 5.3.4 3.5.6 4.3.3 5.3.4 4.3.3 5.3.4 4.3.3 5.3.4	3.5.1 4.3.1 5.3.2 9.5.1 3.5.2 4.3.2 5.3.3 9.5.2 4.3.6 5.3.3 9.5.3 3.5.6 4.3.3 5.3.4 9.5.5 3.5.3 4.3.5 5.3.6 5.3.7 9.5.4 4.3.5 5.3.7 9.5.4 9.5.6 3.5.5 3.7.2 4.5 5.5 9.5.7 3.7.2 4.3.4 5.3.5 9.5.7 9.5.8 4.3.4 5.3.5 9.5.9 9.5.9 3.5.6 4.3.3 5.3.4 9.5.9 3.5.6 4.3.3 5.3.4 9.5.9 3.5.7 3.7.3 4.3.7 5.3.9

Fourier Transform Pair:

Synthesis equation:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

Analysis equation:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

Notations:

$$X(e^{jw}) = \mathcal{F}\{x[n]\}$$

$$x[n] = \mathcal{F}^{-1}\{X(e^{jw})\}$$

$$x[n] \stackrel{\mathcal{DTFT}}{\longleftrightarrow} X(e^{jw})$$

$$\frac{1}{1 - ae^{jw}} = \mathcal{F}\{a^n u[n]\}$$

$$a^n u[n] = \mathcal{F}^{-1}\{\frac{1}{1 - ae^{jw}}\}$$

$$a^n u[n] \stackrel{\mathcal{DTFT}}{\longleftrightarrow} \frac{1}{1 - ae^{jw}}$$

Periodicity of DT Fourier Transform:

ss5-6

$$X(e^{j(w+2\pi)}) = X(e^{jw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

 $X(e^{jw}) = \sum_{n=0}^{+\infty} x[n]e^{-jwn}$

Linearity:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

ss4-30

$$y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(e^{jw})$$

$$\Rightarrow a \ x[n] + b \ y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} a \ X(e^{jw}) + b \ Y(e^{jw})$$

Time & Frequency Shifting:

$$\Rightarrow x[n-n_0] \longleftrightarrow e^{jw_0n}X(e^{jw})$$

$$\Rightarrow e^{jw_0n}x[n] \longleftrightarrow X(e^{j(w-w_0)})$$

Conjugation & Conjugate Symmetry:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

ss4-34

$$x^*[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(e^{-jw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

•
$$x[n] = x^*[n]$$
 \Rightarrow $X(e^{-jw}) = X^*(e^{jw})$

ss4-35

IF
$$x[n]$$
 is real \Rightarrow $X(e^{jw})$ is conjugate symmetric

Conjugation & Conjugate Symmetry:

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw}) \qquad x^*[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(e^{-jw})$$

ss4-34

• IF
$$x[n] = x^*[n]$$
 & $x[-n] = x[n]$

$$x[-n] = x[n]$$

$$\Rightarrow X(e^{-jw}) = X^*(e^{jw})$$
 & $X(e^{-jw}) = X(e^{jw})$

$$\& X$$

$$X(e^{-jw}) = X(e^{jw})$$

$$\Rightarrow X^*(e^{jw}) = X(e^{jw})$$

ullet IF x[n] is real & even $\Rightarrow X(e^{jw})$ are real & even

ss4-36

ullet IF x[n] is real & odd $\Rightarrow X(e^{jw})$ are purely imaginary & odd

• IF
$$x[n] = x^*[n]$$
 & $x[-n] = -x[n]$

$$x[-n] = -x[n$$

$$\Rightarrow X(e^{-jw}) = X^*(e^{jw})$$
 & $X(e^{-jw}) = -X(e^{jw})$

&
$$X(e^{-jw}) = -X(e^{jw})$$

$$\Rightarrow X^*(e^{jw}) = -X(e^{jw})$$

Conjugation & Conjugate Symmetry:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$\mathcal{E}v\{x[n]\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{R}e\{X(e^{jw})\}$$

$$\mathcal{O}d\{x[n]\} \stackrel{\mathcal{F}}{\longleftrightarrow} j \mathcal{I}m\{X(e^{jw})\}$$

4/8/3 10-10 an

Differencing & Accumulation:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$
$$X(e^{jw}) = \sum_{n=0}^{+\infty} x[n] e^{-jwn}$$

$$x[n] - x[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw}) = e^{-jw}X(e^{jw}) \stackrel{\mathcal{J}}{\longleftrightarrow} X$$

$$X(e^{jw})$$

$$= \sum_{n=1}^{\infty} x[m] \leftarrow \frac{\mathcal{F}}{x[m]}$$

$$= \sum_{m=-\infty}^{n} x[m] \xrightarrow{\mathcal{F}} \left(\frac{1}{1 - e^{-jw}} X(e^{jw}) + \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(w - 2\pi k) \right)$$

dc or average value

$$y[n] = \sum_{m=-\infty}^{n} x[m]$$

$$\Rightarrow \underline{y[n] - y[n-1]} = \underline{x[n]}$$

$$y[n-1] = \sum_{m=-\infty}^{n-1} x[m]$$

$$\Rightarrow \left(1 - e^{-jw}\right) Y(e^{jw}) = X(e^{jw})$$

Differentiation in Frequency:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$\underbrace{\left(\frac{1}{j}nx[n]\right.}_{p}\overset{\mathcal{F}}{\longleftarrow}\underbrace{\frac{d}{dw}X(e^{jw})}$$

$$\underbrace{nx[n]} \overset{\mathcal{F}}{\longleftrightarrow} \underbrace{j}_{dw}^{\underline{d}} X(e^{jw})$$

Time Reversal:

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{jw})$$

$$x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-jw})$$

$$\frac{1}{dw}X(e^{jw}) = \frac{d}{dw}\sum_{n=-\infty}^{+\infty}x[n]e^{-jwn}$$

$$= \sum_{n=-\infty}^{+\infty} (-jn) x[n] e^{-jwn}$$

$$= \underbrace{\left\{ \left(-j \right) \sum_{n=-\infty}^{+\infty} \left[n x[n] \right] e^{-jwn} \right\}}_{n=-\infty}$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$X(e^{j(-w)}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j(-w)n}$$

Time Expansion:

$$\underline{x_{(k)}[m]} = \begin{cases} \underline{x[m/k]}, & \text{if } m \text{ is a multiple of } k \\ 0, & \text{if } m \text{ is not a multiple of } k \end{cases}$$

Properties of DT Fourier Transform

Time Expansion:

$$\underline{m} = nk$$

$$x_{(k)}[nk] = x[n]$$

Example 5.9:

$$x[n] = y_{(2)}[n] + 2y_{(2)}[n-1]$$

$$\underbrace{y_{(2)}[n]} = \begin{cases} y[n/2], & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases}$$

$$\underbrace{y_{(2)}[n]} \longleftrightarrow e^{-j4w} \frac{\sin(5w)}{\sin(w)}$$

$$2y_{(2)}[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} 2e^{-jw}e^{-j4w}\frac{\sin(5w)}{\sin(w)}$$

$$Y(e^{jw}) = (e^{-j2w}) \frac{\sin(5w/2)}{\sin(w/2)}$$

$$X(e^{jw}) = (1 + 2e^{-jw}) \cdot e^{-j4w} \cdot \frac{\sin(5w)}{\sin(w)}$$

Parseval's relation:

Example 5.10:

• x[n] is periodic, real, even, and/or of finite energy?

- \rightarrow even magnitude, odd phase
- $\rightarrow X(e^{jw})$ is NOT real
- $\rightarrow X(e^{jw})$ is finite

 $\Rightarrow x[n]$ is NOT periodic

 $\Rightarrow x[n] \text{ is } \underline{\text{real}}$

 $\Rightarrow x[n]$ is NOT even

 $\Rightarrow x[n]$ is finite

Representation of Aperiodic Signals:
 the Discrete-Time Fourier Transform

The Fourier Transform for Periodic Signals

Properties of Discrete-Time Fourier Transform

The Convolution Property

ss4-51

- The Multiplication Property
 - Duality
 - Systems Characterized by Linear Constant-Coefficient Difference Equations

Convolution Property:

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

ss4-52

[a]

Multiplication Property:

$$\begin{array}{c}
s[n] \\
\hline
\end{array}$$

$$r[n] = s[n]p[n] \stackrel{\mathcal{F}}{\longleftrightarrow} R(e^{jw}) = \frac{1}{2\pi} \int_{2\pi}^{\infty} S(e^{j\theta}) P(e^{j(w-\theta)}) d\theta$$

Example 5.11:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$
$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-jwn}$$

Example 5.12:

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{jw}) e^{jwn} dw$$

$$=\frac{1}{2\pi}\int_{-w_c}^{w_c}e^{jwn}dw$$

$$=\frac{\sin w_c n}{\pi n}$$

- not causal
- oscillatory

Example 5.13:

$$h[n] = \underbrace{a^n u[n]}, \quad |a| \le 1 \qquad \Rightarrow H(\underline{e^{jw}}) = \underbrace{\frac{1}{1 - a(\underline{e^{-jw}})}}_{1}$$

$$x[n] = b^n u[n], \quad |\underline{b}| < 1 \qquad \Rightarrow X(\underline{e^{jw}}) = \underbrace{\frac{1}{1 - b(e^{-jw})}}$$

$$\Rightarrow Y(e^{jw}) = H(e^{jw})X(e^{jw})$$

$$= \frac{1}{1 - ae^{-jw}} \frac{1}{1 - be^{-jw}}$$

Example 5.13:

$$\text{if } a \neq b \qquad Y(e^{jw}) = \left[\left(\frac{a}{a-b} \right) \frac{1}{1-ae^{-jw}} + \left(\frac{-b}{a-b} \right) \frac{1}{1-be^{-jw}} \right]$$

$$\Rightarrow y[n] = \left(\frac{a}{a-b} \right) a^n u[n] - \left(\frac{b}{a-b} \right) b^n u[n]$$

$$\text{if } a = b \quad Y(jw) = \left(\frac{1}{1-ae^{-jw}} \right)^2 = \frac{1}{a} j e^{jw} \frac{d}{dw} \left(\frac{1}{1-ae^{-jw}} \right)$$

$$\text{since } a^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{1}{1-ae^{-jw}}$$

$$\text{and } n a^n u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{d}{dw} \left[\frac{1}{1-ae^{-jw}} \right]$$

$$\text{and } (n+1) a^{n+1} u[n+1] \stackrel{\mathcal{F}}{\longleftrightarrow} j e^{jw} \frac{d}{dw} \left[\frac{1}{1-ae^{-jw}} \right]$$

$$\Rightarrow y[n] = (n+1)a^n u[n+1]$$

Example 5.14:

$$Y(e^{jw}) = W_3(e^{jw}) + W_4(e^{jw})$$

$$= H_{lp}(e^{j(w-\pi)}) X(e^{jw}) + H_{lp}(e^{jw}) X(e^{jw})$$

$$= \left[H_{lp}(e^{j(w-\pi)}) + H_{lp}(e^{jw}) \right] \left(X(e^{jw}) \right)$$

$$H(e^{jw}) = H_{lp}(e^{j(w-\pi)}) + H_{lp}(e^{jw})$$

highpass + lowpass

Convolution Property:

$$y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

$$=\sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Multiplication Property:

ss4-67

$$r[n] = s[n]p[n] \stackrel{\mathcal{F}}{\longleftrightarrow} R(e^{jw}) = \frac{1}{2\pi} \int_{2\pi} S(e^{j\theta}) P(e^{j(w-\theta)}) d\theta$$

$$r[n] = \underbrace{s[n]p[n]}$$

$$\Rightarrow R(e^{jw}) = \sum_{n=-\infty}^{+\infty} r[n]e^{-jwn}$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dv$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$=\sum_{n=-\infty}^{+\infty} s[n] p[n] e^{-jwn}$$

$$= \left(\sum_{n=-\infty}^{+\infty} s[n] \left(\frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) e^{j\theta n} d\theta\right) e^{-jwn}$$

$$=rac{1}{2\pi}\int_{2\pi}P(e^{j heta})\left[\sum_{n=-\infty}^{+\infty}s[n]e^{-j(w- heta)n}
ight]d heta$$

$$= \frac{1}{2\pi} \left(\int_{2\pi} P(e^{j\theta}) S(e^{j(w-\theta)}) d\theta \right) = \frac{1}{2\pi} \left(\int_{2\pi} P(e^{j(w-\theta)}) S(e^{j\theta}) d\theta \right)$$

$$y(\theta) = \int_{\Theta} \frac{7}{(h)h(\theta - \tau)} d\tau$$

periodic convolution

$$y(\theta) = \int_{-\infty}^{+\infty} \frac{x(\tau)h(\theta - \tau)d\tau}{(\tau)}$$

aperiodic convolution

Example 5.15:

$$X(e^{jw}) = \frac{1}{2\pi} \underbrace{\int_{-\pi}^{+\pi} X_1(e^{j\theta}) X_2(e^{j(w-\theta)})}_{d\theta} d\theta$$

$$\widehat{X}_1(e^{jw}) = \begin{cases} X_1(e^{jw}), & \text{for } -\pi < w \leq \pi \\ 0, & \text{otherwise} \end{cases}$$

$$X(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \hat{X}_{1}(e^{j\theta}) X_{2}(e^{j(w-\theta)}) d\theta$$

Example 5.15:

$$X(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \hat{X}_{1}(e^{j\theta}) X_{2}(e^{j(w-\theta)}) d\theta$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{X}_{1}(e^{j\theta}) X_{2}(e^{j(w-\theta)}) d\theta$$

Section	Property	Aperiodic Signal	Fourier Transform
		x[n] y[n]	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of} \\ 0, & \text{if } n \neq \text{multiple of} \end{cases}$	$\frac{k}{k}$ $X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$rac{1}{1-e^{-j\omega}}X(e^{j\omega}) \ rac{1}{1-e^{-j\omega}}X(e^{j\omega})$
			$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.8	Differentiation in Frequency	nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$
			$egin{aligned} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \end{aligned}$
5.3,4	Conjugate Symmetry for Real Signals	x[n] real	$egin{aligned} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \ \Im m\{X(e^{j\omega})\} &= -\Im m\{X(e^{-j\omega})\} \ X(e^{j\omega}) &= X(e^{-j\omega}) \ orall X(e^{j\omega}) &= - orall X(e^{-j\omega}) \end{aligned}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$x_e[n] = \mathcal{E}_v\{x[n]\}$ [x[n] real]	$\Re e\{X(e^{j\omega})\}$
520	No. 10	$x_o[n] = \mathfrak{O}d\{x[n]\}$ [x[n] real]	$j\mathcal{G}m\{X(e^{j\omega})\}$
5.3.9	1.00	lation for Aperiodic Signals	
	\frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \left	$ x ^2 = \frac{1}{ x ^2} \left[x(e^{j\omega}) ^2 d\omega \right]$	
	$\sum_{n=-\infty} x[n] $	$ z ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{n=0}^{+\infty} \Re(n-n) \Re(n)$	$\frac{2\pi}{2\pi} \stackrel{+\infty}{\sim} 8\left(\omega - \frac{2\pi k}{2\pi k}\right)$	$a_k = \frac{1}{2}$ for all k

x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$)13 -55
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$	-
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k	
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$		
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$		
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$		-
$\delta[n]$	1		
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	S <u>l</u> su monaries contacta a Qui o contacta e la visió	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	_	
$(n+1)a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$		
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$		

- Representation of Aperiodic Signals:
 the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality

 Systems Characterized by Linear Constant-Coefficient Difference Equations

DT Fourier Series Pair of Periodic Signals:

 $\bullet \quad x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} \quad a_k: \quad \mathsf{DT} \; \mathsf{Fouries} \; \mathsf{series} \; \mathsf{pair}$

$$\underbrace{\left(x[n]\right)} = \underbrace{\sum_{k=\langle N\rangle} a_k} e^{jkw_0n} = \sum_{k=\langle N\rangle} a_k e^{jk(2\pi/N)n}$$

$$\underbrace{a_{n}}_{N} = \frac{1}{N} \sum_{n=} \underbrace{x[n]}_{n} e^{-jkw_{0}n} = \frac{1}{N} \sum_{n=} x[n] e^{-jk(2\pi/N)n}$$

IF
$$f[k] = \frac{1}{N} \sum_{n=} g[n] e^{-jk(2\pi/N)n}$$

LET
$$k = n, n = -k$$

$$f[n] = \sum_{k=< N>} \frac{1}{N} g[-k] e^{jk(2\pi/N)n}$$

$$g[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} f[k]$$

$$f[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} \frac{1}{N}g[-k]$$

$$a_k :=: \frac{1}{N}x[-n]$$

Duality in DT Fourier Series:

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k e^{-jk(2\pi/N)n_0}$$

$$e^{+jm(2\pi/N)n} x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{k-m}$$

$$\sum_{r=< N>} x[r] y[n-r] \stackrel{\mathcal{FS}}{\longleftrightarrow} Na_k b_k$$

$$x[n] \ y[n] \ \stackrel{\mathcal{FS}}{\longleftrightarrow} \ \sum_{l=\langle N \rangle} a_l \ b_{k-l}$$

Duality between DT-FT & CT-FS:

$$x[n] \xleftarrow{\mathcal{D}T\mathcal{F}T} X(e^{jw})$$

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$$

$$a_k = \frac{1}{T} \int_{T} x(t)e^{-jkw_0 t} dt$$

$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn}$$

$$x[n]$$

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

	Continuous time		Discrete time		
	Tinze domain	Frequency domain	Time domain	Frequency domain	
Fourier Series	$x(t) = \sum_{k=-\infty}^{\infty} a_{ij} e^{jk\omega_{0}t}$ continuous time periodic in time	$a_k = \frac{1}{T_0} \int_{T_0} \mathbf{r}(t) e^{-jk\omega_0 t}$ discrete frequency aperiodic in frequency	$x[n] = \sum_{k=\langle N \rangle} a_k e^{ik(2\pi/N)}$ discrete time periodic in time	$\begin{array}{c c} & a_k \\ \frac{1}{N} \sum_{k \in \langle N \rangle} x[n]e^{-k(2\pi/N)n} \\ \text{uality} & \text{discrete-frequency} \\ & \text{periodic in frequency} \end{array}$	
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)e^{j\omega} d\omega$ continuous time aperiodic in time	$X(j\omega)$ $\int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$ continuous frequency aperiodic in frequency	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$ disercte time aperiodic in time	$X(e^{j\omega})$ $\sum_{n=-\infty}^{+\infty} [n]e^{-j\omega n}$ continuous frequency periodic in frequency	

- Representation of Aperiodic Signals:
 the Discrete-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by
 Linear Constant-Coefficient Difference Equations

A useful class of DT LTI systems:

$$a_0y[n] + a_1y[n-1] + \cdots + a_{N-1}y[n-N+1] + a_Ny[n-N]$$

$$= b_0 x[n] + b_1 x[n-1] + \dots + b_{M-1} x[n-M+1] + b_M x[n-M]$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$Y(e^{jw}) = X(e^{jw})H(e^{jw}) \qquad H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})}$$

Systems Characterized by Linear Constant-Coefficient Difference Equation

Systems Characterized by Linear Constant-Coefficient Difference Total Systems
$$a_k y[n-k]$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$\sum_{k=0}^{N} a_k \left(e^{-jkw}\right) \left(y[e^{jw}\right) = \sum_{k=0}^{M} b_k \left(e^{-jkw}\right) \left(x[e^{jw}\right) = \sum_{k=0}^{M} b_k e^{-jkw}$$

$$\Rightarrow H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})} = \sum_{k=0}^{M} b_k e^{-jkw}$$

$$= \frac{b_0 + b_1 e^{-jw} + \dots + b_M e^{-jMw}}{a_0 + a_1 e^{-jw} + \dots + a_N e^{-jNw}}$$

Systems Characterized by Linear Constant-Coefficient Difference Fenglishing 2013

• Examples 5.18 & 5.19:

$$x[n] \longrightarrow \text{LTI} \longrightarrow y[n]$$
System

ss4-81

$$y[n] - ay[n-1] = x[n] \qquad \Rightarrow H(e^{jw}) = \frac{1}{1 - ae^{-jw}}$$

$$(Y(\cdot)) - (e^{-jw}Y(\cdot)) \Rightarrow h[n] = \underline{a^n u[n]}$$

$$\left| y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] \right| \xrightarrow{\nabla} x[n]$$

$$\Rightarrow H(e^{jw}) = \frac{2}{1 - \frac{3}{4}e^{-jw} + \frac{1}{8}e^{-j2w}} = \frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})}$$

$$= \frac{4}{(1 - \frac{1}{2}e^{-jw})} - \frac{2}{(1 - \frac{1}{4}e^{-jw})}$$

$$\Rightarrow h[n] = 4\left(\left(\frac{1}{2}\right)^n u[n] - 2\left(\left(\frac{1}{4}\right)^n u[n]\right)$$

Systems Characterized by Linear Constant-Coefficient Difference Fenduations 2013

Example 5.20:

$$h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} H(e^{jw}) = \left(\frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})} \right)$$

$$x[n] = \left(\frac{1}{4}\right)^n u[n] \longrightarrow$$

LTI System

$$y[n] = ???$$

ss4-82

= x[n] * h[n]

$$\Rightarrow Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

$$= \underbrace{\begin{bmatrix} \frac{1}{1 - \frac{1}{4}e^{-jw}} \end{bmatrix}}_{2} \underbrace{\begin{bmatrix} \frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})} \end{bmatrix}}_{2}$$

$$= \frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})^2}$$

$$= \frac{8}{(1 - \frac{1}{2}e^{-jw})} - \frac{4}{(1 - \frac{1}{4}e^{-jw})} - \frac{2}{(1 - \frac{1}{4}e^{-jw})^2}$$
 ss5-45

$$\Rightarrow y[n] = 8\left(\frac{1}{2}\right)^n u[n] - 4\left(\frac{1}{4}\right)^n u[n] - 2(n+1)\left(\frac{1}{4}\right)^n u[n+1]$$
$$= \left\{8\left(\frac{1}{2}\right)^n - 4\left(\frac{1}{4}\right)^n - 2(n+1)\left(\frac{1}{4}\right)^n\right\} u[n]$$

Chapter 5: The Discrete-Time Fourier Transform

- Representation of Aperiodic Signals: the DT FT
- The FT for Periodic Signals
- Properties of the DT FT

• Linearity Time Shifting Frequency Shifting

• Conjugation Time Reversal Time Expansion

• Convolution Multiplication

Differencing in Time Accumulation Differentiation in Frequency

Conjugate Symmetry for Real Signals

- Symmetry for Real and Even Signals & for Real and Odd Signals
- Even-Odd Decomposition for Real Signals
- Parseval's Relation for Aperiodic Signals
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations

Signals & Systems (Chap 1)

LTI & Convolution

(Chap 2)

Bounded/Convergent

Periodic

FS CT DT (Chap 3)

Aperiodic

CT (Chap 4)

DT (Chap 5)

Unbounded/Non-convergent

LT

CT (Chap 9)

zT

DT

(Chap 10)

Time-Frequency (Chap 6)

Communication

(Chap 8)

CT-DT

(Chap 7)

Control

(Chap 11)