

Foundations of linear mixed models

Luis Fernando Delgado Munoz

luis.delgado@cgiar.org Faisalabad, November 2023

#Alliance4Science

The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) is part of CGIAR, a global research partnership for a food-secure future

The (very) basics about mixed models

Mixed models consist of:

Fixed terms

Interest in specific levels

 Parameters of interest are individual treatment effects

Random terms

- Treatment levels are chosen to represent a population of possible treatments
- Parameters of interest variance parameters

Analysis of large experiments.

Analysis steps:

- 1. Fit a model with genotypes as random
 - to calculate trial heritability
 genotype means are called 'BLUPs'
- 2. Fit a model with genotypes as fixed
 - to extract genotype adjusted means (BLUEs) to be used for variety selection, GxE analysis or QTL detection.

Heritability (broad sense)

$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_\epsilon^2}{n}}$$

H² = 0
variation is not
explained by
the genotypes

H² = 1
variation is fully
explained by the
genotypes

 $\sigma_g^2 = \text{genotypic variance}$ $\sigma_\epsilon^2 = \text{error variance (residual)}$

n= number of replicates

Analysis of large experiments

Example: each experiment has:

- 150 barley genotypes
- 2 replicates
- The only difference is the design that was used:
 - a) RCBD
 - b) Alpha
 - c) Row-column
 - d) Resolvable row-column

Uniformity trial (barley)

- 15 rows x 48 columns grid
- Variation across experiment due to uncontrolled conditions (="noise")oMinimum 1.490 ton/ha
- Maximum 2.290 ton/ha
- Variance = 0.084 (ton/ha)2
- Std = 0.289 ton/ha

The use of uniformity data in the design and analysis of cotton and barley variety trials

ER Williams and DJ Luckett

Australian Journal of Agricultural Research 39(3) 339 - 350

Published: 1988

https://doi.org/10.1071/AR9880339

Suppose we plan a trial in this field ...

- 150 barley genotypes
- 2 reps each

Two complete blocks = RCBD

Estimates: surrogates of true value

Phenotype	Phenotypic mean	BLUE	BLUP	PBLUP	GBLUP
The phenotypic value of a single observation (e.g. plant or plot) is a surrogate of the observation's true genetic value. However, the phenotype deviates from the true genetic value due to nongenetic effects like environment and random chance. How much phenotypes deviate from the true genetic value can be estimated by measuring heritability. If phenotypes have high heritabilities, they are relatively accurate estimates of true value. If not, they are relatively inaccurate, and other surrogates can increase accuracy.	Phenotypic means of multiple observations are generally more accurate than single phenotypic values. This is because the error component of phenotypes is random, so the mean of the phenotypes is closer to the true genetic value than a single phenotype. Phenotypic means derived from phenotypes with high heritabilities still have higher accuracies than phenotypic means derived from phenotypes with low heritabilities. The increase in accuracy from using the phenotypic mean vs. phenotype is higher if the phenotypes have low heritabilities.	Best linear unbiased estimates can be obtained from linear regression of phenotypes on fixed effects, e.g.: Pheno ~ mean + block + genotype + error BLUEs allow more complex evaluation strategies which can increase accuracy (e.g. blocking) and accounting for non-genetic effects. In absence of non-genetic effects besides error and with equal replication, BLUEs of genetic value are equal to phenotypic means. BLUEs can increase accuracy compared to using phenotypic means indirectly by enabling use of experimental designs which increase accuracy.	Best linear unbiased predictions can also be obtained from linear regression of phenotypes, but the regression is on random effects or a mix of fixed and random effects, e.g.: Pheno ~ mean + block + genotype + error The random genotype effects, which estimate genetic value, are shrunk to the mean by an estimate of heritability for the genotype. Genotypes with fewer replications (as in unbalanced data) have lower heritabilities, so estimates of their genetic value are shrunk more to anticipate their regression to the mean. This can increase accuracy.	Pedigree best linear unbiased predictions are similar to BLUPs, but the random genetic effects are not assumed to be independent (since genotypes are related): Pheno ~ mean + block + genotype + error A B A 1 0.50 B 0.5 1 The genetic effects are not only shrunk by heritability, but also weighted by the pedigree expectation of their relatedness to other observations. This borrowing of information from relatives can increase accuracy in some scenarios.	Genomic best linear unbiased predictions are quite similar to PBLUPs, except that genotype relatedness is estimated from markers rather than pedigree expectations. Pheno ~ mean + block + genotype + error A B A 1 0.54 B 0.54 1 Genotype relatedness deviates from pedigree expectations because of recombination (Mendelian sampling), so accounting for this deviation can increase accuracy compared to PBLUP in some scenarios.

RCBD

150 barley genotypes 2 reps each

							R	CBD							
	122	40	5	99	100	41	118	33	131	142	49	68	97	30	47
	24	2	74	124	73	65	144	7	88	46	96	54	87	136	63
	20	1	9	89	145	4	123	22	77	29	1	~	52	58	39
	12	51	128	*	80	139	32	103	18	35	(21)	113	92	71	19
	86	147	125	(3)	115	79	117	149	18	15	140	\sim	83	137	28
	70	101		$\boldsymbol{\smile}$	62	106	64	75	66	59	57	91	45	111	120
	48	93	133	107	104	43	23	44	135	67	60	105	108	6	112
ast	130	116	141	72	76	134	150	90	56	11	16	109	127	128	61
ш	148	8	14	143	146	26	119	98	10	121	78	85	55	27	114
100	82	38	42	36	31	-95	94	50	110	69	132	126	102	34	25
West to	42	57	51	1	48	139	55	143	30	138	6	91	70	14	113
e	93	58	2	(3)	89	68	90	99	52	133	22	13	54	11	00
3	86	17	82	120	27	40	147	16	120	39	123	137	109	98	144
11/200	136	25	72	92	29	77	37	7	19	83	96	63	35	111	129
	44	126	59	73	131	84	62	71	142	103	1	132	65	26	66
	53	97	-	127	34	9	47	130	118	31	106	104	61	115	12
	114	145	125	49	81	135	32	41	43	100	88	74	121	140	75
	117	108	90	64	76	116	28	18	23	110	87	10	146	102	(21)
	141	5	67	24	46	78	15	56	122	94	101	60	150	149	154
	105	112	4	119	124	50	36	38	79	80	107	33	20	85	8

North to South

□ All 150 present once within each replicate (green and orange area).

Analysis RCBD trial (genotypes random = BLUPs)

$$y_{ik} = \mu + b_k + G_i + \epsilon_{ik}$$

$$G_i \sim N(0, \sigma_g^2)$$

 $\epsilon_{ik} \sim N(0, \sigma_\epsilon^2)$

```
m1 \leftarrow lmer(yield \sim block + (1|geno), data = mytrial_RCBD$book) summary(m1)
```

```
Random effects:
```

Groups Name Variance Std.Dev. geno (Intercept) 0.01946 0.1395 Residual 0.08233 0.2869 Number of obs: 300, groups: geno, 150

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 2.50360 0.02605 287.49000 96.110 < 2e-16 ***
block2 -0.12587 0.03313 149.00000 -3.799 0.000211 ***
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1

$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_\epsilon^2}{n}}$$

$$H^2 = \frac{0.01946}{0.01946 + \frac{0.08233}{2}} = 0.32$$

Analysis RCBD trial (genotypes fixed = BLUEs)

$$y_{ik} = \mu + b_k + G_i + \epsilon_{ik} \quad \epsilon_{ik} \sim N(0, \sigma_{\epsilon}^2)$$

```
geno lsmean SE df lower.CL upper.CL 2.654493 0.202887 149 2.253585 3.055400 2 2.498493 0.202887 149 2.097585 2.899400 3 2.086625 0.202887 149 1.685717 2.487532 4 1.928961 0.202887 149 1.528053 2.329868 5 2.140785 0.202887 149 1.739877 2.541692 6 2.303412 0.202887 149 1.902504 2.704319 7 2.808384 0.202887 149 1.902504 2.704319 7 2.808384 0.202887 149 2.407476 3.209291 8 2.400185 0.202887 149 1.999278 2.801093 9 2.282892 0.202887 149 1.881985 2.683800 10 2.834490 0.202887 149 2.433583 3.235398
```

□ Compare means using sed

$$sed = \sqrt{2 \times MSE/n} = \sqrt{2 \times 0.08233/2} = 0.287$$

(k=1...n), n= 2 replicates

RCBD Precision experiment \rightarrow Least Significant Difference LSD = 2 * sed = 2 * 0.287 = 0.574 ton/ha

Standard error of the difference RCBD – the same

Because all genotypes are tested in all blocks, the s.e.is the same for all genotype comparisons

```
diff_rcbd[1:20,1:4]
              estimate
 contrast
       2 -0.466782955 0.2744649
          -0.013491128 0.2744649
          -0.107449108 0.2744649
          -0.150717265 0.2744649
          -0.289928923 0.2744649
          -0.061383326 0.2744649
       11 -0.157999909 0.2744649
       12 -0.066398252 0.2744649
          0.067532540 0.2744649
          0.226920294 0.2744649
          -0.450909076 0.2744649
          -0.030708723 0.2744649
         -0.017941970 0.2744649
          0.161718042 0.2744649
          0.126490129 0.2744649
          0.703500385 0.2744649
   1 - 21 0.015052154 0.2744649
```


Alpha design

- □ Resolvable: 2 full replicates
- □ 15 Incomplete blocks within each replicate
 - Blocks occur along the columns direction
 - A subset of genotypes within a particular block
 - Partially-balanced: genotypes occur together in a block either once $(\lambda_2 = 1)$ or never $(\lambda_1 = 0)$ over the whole experiment $\rightarrow \alpha(0,1)$ design

Analysis α -design trial (genotypes random = BLUPs)

$$y_{ijk} = \mu + R_j + b_{k(j)} + G_i + \epsilon_{ijk}$$

$$b_{k(j)} \sim N(0, \sigma_g^2)$$

$$b_{k(j)} \sim N(0, \sigma_b^2)$$

$$\epsilon_{ijk} \sim N(0, \sigma_e^2)$$

When analysing an alpha design, blocks MUST be random, because they are incomplete

```
Groups Name Variance Std.Dev.
geno (Intercept) 0.02508 0.1584
block:replication (Intercept) 0.03463 0.1861
Residual 0.03840 0.1960
```

Number of obs: 300, groups: geno, 150; block:replication, 30

Fixed effects:

Random effects:

```
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 2.50360 0.05227 28.41700 47.902 <2e-16 ***
replication2 -0.12587 0.07162 25.38300 -1.758 0.0909 .

---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

$$H^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \frac{\sigma_{\epsilon}^{2}}{n}}$$

$$H^{2} \cong \frac{0.02508}{0.02508 + \frac{0.03840}{2}} = 0.56$$

Analysis α -design trial (genotypes fixed = BLUEs)

$$y_{ijk} = \mu + R_j + b_{k(j)} + G_i + \epsilon_{ijk}$$

```
b_{k(j)} \sim N(0, \sigma_b^2)
\epsilon_{ijk} \sim N(0, \sigma_\epsilon^2)
```

```
m2f <- lmer(yield ~ replication + (1|block:replication) + geno,
             data = mytrial_alpha$book)
Least Squares Means table:
         replication geno Estimate Standard Error DF t-value Lower CI Upper CI
                                          0.151 142
                            2.315
                                                      15.3
geno 1
                                          0.151 142
geno 2
                      63
                            2.289
                                                      15.2
                                                              1.99
                                                                       2.59
geno 3
                 NA 74
                            2.379
                                                                       2.68
                                          0.151 142
                                                      15.8
                                                              2.08
                                                                       2.56
geno 4
                            2.257
                                          0.151 142
                                                      14.9
                                                              1.96
geno 5
                     96
                            2.507
                                          0.151 142
                                                      16.6
                                                              2.21
                                                                       2.81
                                                                       2.92
geno 6
                 NA 107
                            2.621
                                          0.151 142
                                                     17.4
                                                              2.32
                 NA 118
                            2.596
                                          0.151 142
                                                                       2.89
geno 7
geno 8
                                                     17.8
                                                                       2.98
                            2.686
                                          0.151 142
geno 9
                 NA 140
                            2.203
                                          0.151 142
                                                      14.6
                                                              1.90
                                                                       2.50
geno 10
                            2.381
                                          0.151 142
                                                      15.8
                                                              2.08
                                                                       2.68
```

- □ Adjusted means (≠ simple average over two reps).
- □ Lower standard errors! (was 0.202 and now 0.151!)
- □ Standard error of difference = 0.206

Higher precision than the RCBD $\rightarrow LSD = 2 \times 0.206 = 0.412 \ ton/ha$

Standard error of the difference α-design

- It might differ between pairs
- The SE depends on the incomplete block and error variance and on with whom the genotypes occur together in incomplete blocks

```
> diff_alpha$contrasts
           estimate
 contrast
          -7.44e-01 0.235
          -2.69e-01 0.234
          -3.78e-01 0.236
          -1.87e-01 0.235
          -4.43e-01 0.236
          -8.44e-02 0.236
         -1.46e-01 0.234
         -1.89e-01 0.234
        -2.50e-01 0.235
         -3.81e-01 0.226
         -4.66e-01 0.234
         -2.51e-01 0.235
         -3.27e-01 0.234
        -1.77e-01 0.234
         -5.75e-01 0.234
          -2.36e-01 0.226
```


Double blocking: row-column designs

- \square Regard the field as a full $(r \times c)$ grid.
- □ Rows and columns → incomplete blocks over both directions.

Double direction blocking

Rows

Row Column design

North to South

Analysis of a row-column design (genotypes random = BLUPs)

$$G_i \sim N(0, \sigma_g^2)$$

$$R_j \sim N(0, \sigma_r^2)$$

$$C_k \sim N(0, \sigma_c^2)$$

$$\epsilon_{ijk} \sim N(0, \sigma_\epsilon^2)$$

$$H^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \frac{\sigma_{\epsilon}^{2}}{n}}$$

$$H^{2} \cong \frac{0.02096}{0.02096 + \frac{0.03217}{2}} = 0.57$$

- □ Note that the model consists of rows and columns
 - Non-resolvable design because subsets of rows/cols do not form complete replicates
- \square Similar H^2 as with the α -design (and better than RCBD).

Analysis of a row-column design (genotypes fixed>BLUEs)

$$y_{ijk} = \mu + R_j + C_k + G_i + \epsilon_{ijk}$$

m3f <- lmer(yield ~ (1|Row) + (1|Col) + Geno, data = rowcol1\$Book)

```
Least Squares Means table:
```

		Geno	Estimate	Standard	Error	DF	t-value	Lower CI	Upper CI	p-value	
Geno	1	1	2.146		0.148	147	14.530	1.85	2.44	<2e-16	***
Geno	2	63	2.360		0.149	147	15.860	2.07	2.65	<2e-16	***
Geno	3	74	2.503		0.147	147	16.990	2.21	2.79	<2e-16	***
Geno	4	85	2.353		0.148	147	15.930	2.06	2.64	<2e-16	保护的
Geno	5	96	2.712		0.148	147	18.310	2.42	3.00	<2e-16	***
Geno	6	107	2.645		0.148	147	17.930	2.35	2.94	<2e-16	按按特
Geno	7	118	2.367		0.148	147	16.040	2.08	2.66	<2e-16	***
Geno	8	129	2.457		0.148	147	16.600	2.16	2.75	<2e-16	***
Geno	9	140	2.249		0.148	147	15.250	1.96	2.54	<2e-16	***
Geno	10	2	2.604		0.148	147	17.580	2.31	2.90	<2e-16	前前前

- □ Adjusted means (≠ simple average over two reps).
- Standard errors slightly lower than with alpha design
- □ Average standard error of difference = 0.192

$$R_j \sim N(0, \sigma_r^2)$$

 $C_k \sim N(0, \sigma_c^2)$
 $\epsilon_{ijk} \sim N(0, \sigma_\epsilon^2)$

When analysing a row-column design, rows and columns MUST be random, because they are incomplete

Standard error of the difference row column design

- It might differ between pairs
- SE depends on row, column, and error variance and which genotypes occur together in rows and columns.

```
> diff_rowcol$contrasts
contrast
           estimate
          -2.14e-01 0.195
         -3.57e-01 0.190
          -2.07e-01 0.195
          -5.66e-01 0.191
       -4.99e-01 0.194
       -2.21e-01 0.189
       -3.11e-01 0.190
       -1.04e-01 0.189
        -4.58e-01 0.195
       -2.79e-01 0.189
       -8.41e-02 0.189
          -2.35e-01 0.190
         -1.83e-01 0.195
        -5.42e-01 0.189
       -4.26e-01 0.197
       -1.82e-01 0.195
       -5.85e-01 0.194
        -2.47e-01 0.194
          -2.54e-01 0.194
```


Resolvable Row-Column design

- □ Define two full replicates → make it resolvable
- □ Within Replicates incomplete rows and columns (as before).

Randomization: resolvable row-column

North to South

- □ All 150 in each half of the field.
- □ Genotypes within same row (column) in rep 1 will not be in the same row (column) in rep 2.

Analysis Resolvable Row-Column design (genotypes random = BLUPs)

$$H^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \frac{\sigma_{\epsilon}^{2}}{n}}$$

$$H^{2} \cong \frac{0.02652}{0.02652 + \frac{0.02464}{2}} = 0.68$$

- Note that rows and columns are **nested** within replicates (the : operator used in R).
- Heritability is the highest among all the designs.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis resolvable row-column (genotypes fixed = BLUEs)

$$y_{ijkm} = \mu + Rep_m + R_{j(m)} + C_{k(m)} + G_i + \epsilon_{ijkm}$$

```
R_{j} \sim N(0, \sigma_{r}^{2})
C_{k} \sim N(0, \sigma_{c}^{2})
\epsilon_{ijkm} \sim N(0, \sigma_{\epsilon}^{2})
```

```
m4f <- lmer(yield ~ Rep + (1|Rep:Row) + (1|Rep:Col) + Geno,
              data = rowcol2$Book)
Least Squares Means table:
          Rep Geno Estimate Standard Error DF t-value Lower CI Upper CI p-value
                     2.379
                                  0.136 140
                                              17.6
                                  0.135 140
                                                                   <2e-16 ***
Geno 2
                    2.379
                                              17.6
                                                               2.62 <2e-16 ***
                    2.355
                                  0.134 139
                                              17.5
                                                      2.09
Geno 4
                    2.241
                                  0.135 139
                                              16.6
                                                      1.97
                                                               2.51 <2e-16 ***
                    2.632
                                  0.135 140
                                              19.5
                                                      2.36
                                                               2.90 <2e-16 ***
Geno 6
          NA 107
                    2.312
                                  0.136 140
                                             17.0
                                                      2.04
                                                               2.58 <2e-16 ***
Geno 7
          NA 118
                    2.347
                                  0.135 140
                                              17.4
                                                      2.08
                                                               2.61 <2e-16 ***
          NA 129
                    2.382
                                             17.9
                                                      2.12
Geno 8
                                  0.133 139
          NA 140
                     2.218
                                  0.135 139
                                              16.5
                                                      1.95
                                                               2.48
                                                                    <2e-16 ***
                     2.484
                                  0.135 139
                                                               2.75 <2e-16 ***
```

- □ Adjusted means (≠ simple average over two reps).
- \square Standard errors lower than with α design and row-column.
- □ Average standard error of difference = 0.178

$$\rightarrow$$
 LSD = 2 × 0.178 = 0.356 ton/ha

Standard error in a resolvable row column design

- It might differ between pairs
- SE depends on row, column, and error variance and which genotypes occur together in rows and columns.

> diff_resrowcol\$contrasts estimate contrast 0.000383 0.165 0.024864 0.181 0.138576 0.183 -0.252565 0.178 0.067122 0.181 0.032708 0.175 -0.002491 0.182 0.161730 0.181 1 - 10 -0.104665 0.176 -0.259703 0.180 -0.073505 0.180 1 - 13 -0.215201 0.177 1 - 14 -0.125324 0.183 1 - 15 -0.006636 0.182 1 - 16 -0.148138 0.180 -0.241101 0.176 0.178004 0.182 0.049960 0.175 1 - 19 1 - 20 -0.098286 0.183

Broad sense heritability

$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_e^2}{n}}$$

RCBD Alpha design
$$H^{2} \cong \frac{0.01946}{0.01946 + \frac{0.08233}{2}} = 0.32 \qquad H^{2} \cong \frac{0.02508}{0.02508 + \frac{0.03840}{2}} = 0.56$$
Row-Col (non-resolvable) Row-Col (resolvable)
$$H^{2} \cong \frac{0.02096}{0.02096 + \frac{0.03217}{2}} = 0.57 \qquad H^{2} \cong \frac{0.02652}{0.02652 + \frac{0.02464}{2}} = 0.68$$

Variance components estimated for models with genotypes as random

Least Significant Difference (LSD) – precision experiments

RCBD

$$\rightarrow$$
 LSD = 2 * 0.287 = 0.574 ton/ha

Alpha design

$$\rightarrow$$
 LSD = 2 × 0.206 = 0.412 ton/ha

Row-Col (non-resolvable)

$$\rightarrow$$
 LSD = 2 × 0.192 = 0.384 ton/ha

Row-Col (resolvable)

$$\rightarrow$$
 LSD = 2 × 0.178 = 0.356 ton/ha

Alliance
Bioversity & CIAT
CGIAF

Shrinkage (genotypes fixed or random?)

Shrinkage: Random effects are pulled towards the mean.

Extreme values are less likely to occur

$$\hat{g}_i = \frac{\sigma_g^2}{(\sigma_g^2 + \frac{\sigma_\epsilon^2}{n})} (\overline{y}_{i.} - \overline{y}_{..})$$

Example: wheat data (next practical)


```
> # calculate the range for BLUES
> range(WH09BB$BLUEs_yield)
[1] -0.2129382  2.6567850
>
> 
> # calculate the range for BLUPS
> range(WH09BB$BLUPs_yield)
[1] 0.4710533  2.1358297
```


Experimental design and analysis

- Good experimental design that helps to control extraneous variation.
 - Soil variability, operator/equipment effects, etc
- Precise data collection/phenotyping.
 - Trait definition (units, measurement procedure, etc)
- Advanced data analysis methods (simple ANOVA models far too restrictive)
 - Mixed models
 - Spatial models

Takeways

- With large trials we need to account for local variability
 - Smaller blocks
 - Row / column effects
- Also true in greenhouses and platforms!
- Clear design = clear analysis
- Useful designs are to separate spatial field variation from genotypic variation:
 - Alpha designs (genotypes assigned to incomplete blocks that form full replicates)
 - Row-column designs (blocking in the row and column directions)
- Design + advanced analyses leads to better/more accurate genotypic evaluation (e.g. higher Heritability)

Thank you.