Scale-Space Feature Detection (Ölçek- Uzay Öznitelik Algılama)

Görüntülerin öznitelikleri tüm ölçeklerde benzer şekilde görünür.

Ölçek uzay gösterimleri, ölçek değişmezliği ve yön değişmezliği özniteliklerinin temelini oluşturur. Bir sinyalin ölçek uzay gösterimi

Gaus filtresiyle art arda düzleştirilerek üretilen sinyaller ve 2nci türevin sıfır geçişleri: daha kaba ölçeklerde daha az öznitelik

Görüntülerin ölçek uzay gösterimi

SIFT (Ölçek uzayın oluşturulması)

SIFT (Scale Invariant Feature Transform)

SIFT

Hedef takibinde kullanılan programın akış şeması aşağıda verilmiştir.

HARRIS

Otomatik ölçek seçimi ile "blob" (Damla) algılama

Ölçek uzay gösterimi tüm ölçekleri sağlar; peki hangi ölçek anahtar nokta algılama için en iyidir?

HARRIS algılayıcı

Invariant to shift and rotation

Not invariant to scaling

Ölçeklemeye dayanıklılık

Harris Laplace'ı;

- Harris köşesini ilk ölçekte algılar
- 2. Her bir Harris köşesi için karakteristik ölçeği normalleştirilmiş Laplace ölçeğinin maksimumu gibi algılar
- 3. Anahtar noktayı uzaysal bölgede yerelleştirmek için Harris algılayıcıyı uygular
- 4. 2 ve 3. maddeleri yakınsama oluncaya kadar uygular

SURF Blob detection

SIFT and SURF

Method	Time	Scale	Rotation	Blur	Illumination	Affine
SIFT	common	best	best	best	common	good
SURF	best	good	common	good	best	good