CSCI5654 (Linear Programming, Fall 2013) Lecture-8

Today's Lecture

- 1. Recap of dual variables and strong duality.
- 2. Complementary Slackness Theorem.
- 3. Interpretation of dual variables.
- 4. Primal and Dual Simplex.

Primal-Dual correspondences

Variable to constraint correspondence:

Dual variable (y_j) \leftrightarrow Primal constraint $A_j \vec{x} \leq b_j$

Primal variable $(x_i) \leftrightarrow \text{Dual constraint } A_i^{\text{\tiny T}} \vec{y} \geq c_i$

Correspondence in dictionary:

Dual decision variable $y_j \leftrightarrow \text{Primal slack variable } x_{n+j}$.

Primal decision variable $(x_i) \leftrightarrow \text{Dual dictionary slack variable } y_{m+i}$.

Illustrate in class with an example.

Strong Duality Theorem: If x_1^*, \ldots, x_m^* is primal optimal then there exists a dual optimal solution y_1^*, \ldots, y_m^* that satisifies

$$\sum_{i} c_i x_i^* = \sum_{j} b_j y_j^*.$$

(... if primal has optimal solution then the dual has optimum with the same value as primal).

Proof: This is theorem 5.1 in Chvátal (pages 58-59).

Example

Example (final dictionary)

$$\begin{aligned}
 x_1 &= 2 &+ \frac{x_5}{2} &- \frac{x_6}{2} \\
 x_2 &= 3 &- \frac{x_5}{2} &+ \frac{x_6}{2} \\
 x_3 &= \cdots \\
 x_4 &= \cdots \\
 z &= 8 &- \frac{1}{2}x_5 &- \frac{3}{2}x_6
 \end{aligned}$$

Insight: Dual variables correspond to primal slack variables.

$$x_3 \leftrightarrow y_1, x_4 \leftrightarrow y_2, x_5 \leftrightarrow y_3, x_6 \leftrightarrow y_4$$
.

Read off dual solution by from objective row of final dictionary:

$$y_1:0,y_2:0,y_3:\frac{1}{2},y_4:\frac{3}{2}$$
.

Proof of Strong Duality

Final Dictionary:

$$x_i = b_i + \sum_{j \in Independent} a_{ij}x_j$$

$$\vdots$$

$$z = z^* + c_1^*x_1 + \cdots + c_{n+m}^*x_{n+m}$$

Note: $c_i^* = 0$ if $i \in Basis$ $c_i^* \le 0$ if $i \in Independent$.

Claim: Set variable $y_i = -(c_{n+i}^*)$. This is a dual feasible solution with optimal value z^* .

Lecture 8

Relationship Between Primal/Dual

		Primal		
		Optimal	Infeasible	Unbounded
Dual	Optimal	Possible	Impossible	Impossible
	Infeasible	Impossible	Possible	Possible
	Unbounded	Impossible	Possible	Impossible

Primal and Dual Infeasible

Primal:

max.
$$x_2$$

s.t. $x_1 \leq -1$
 $-x_2 \leq -1$
 $x_1, x_2 \geq 0$

Dual:

min.
$$-y_1 - y_2$$

s.t. $y_1 \ge 0$
 $-y_2 \ge 1$
 $y_1, y_2 \ge 0$

Complementary Slackness Theorem I

Let $x_1, \ldots, x_n, \underbrace{x_{n+1}, \ldots, x_{n+m}}$ be a primal feasible.

Let $y_1, \ldots, y_m, \underbrace{y_{m+1}, \ldots, y_{m+n}}_{slack}$ be dual feasible.

Slack Variables:

$$x_{n+i} = b_i - \sum_{k=1}^{n} a_{ik} x_j$$

 $y_{m+j} = c_k - \sum_{k=1}^{m} a_{kj} y_j$

The following conditions are necessary and sufficient for \vec{x} and \vec{y} to be optimal solutions to the primal and dual:

$$x_i y_{m+i} = 0, \ j = 1, \dots, n$$

 $y_j x_{n+j} = 0, \ i = 1, \dots, m$

Proof: \vec{x} is a primal feasible solution. Therefore,

$$A\vec{x} \leq \vec{b}, \ \vec{x} \geq 0$$
.

Complementary Slackness Theorem II

Similarly, \vec{y} is dual feasible. Therefore,

$$A^{\mathrm{T}}\vec{y} \geq \vec{c}, \ \vec{y} \geq 0.$$

Applying these facts, we obtain

$$ec{c}^{^{\mathrm{T}}}\vec{x} \leq (A^{^{\mathrm{T}}}\vec{y})^{^{\mathrm{T}}}\vec{x}(\equiv \vec{y}^{^{\mathrm{T}}}A\vec{x})$$
 $\leq \vec{y}^{^{\mathrm{T}}}\vec{b}$

 \vec{x} and \vec{y} can be optimal solutions for primal/dual resp. iff the inequalities above all hold with equalities.

Therefore,

$$\vec{y}^{^{\mathrm{T}}}\vec{b} = \vec{y}^{^{\mathrm{T}}}A\vec{x} \tag{1}$$

$$\vec{c}^{^{\mathrm{T}}}\vec{x} = \vec{y}^{^{\mathrm{T}}}A\vec{x} \tag{2}$$

Complementary Slackness Theorem III

From the equation (1), we obtain

$$\vec{y}^{\mathrm{T}}(\vec{b} - Ax) = 0$$
, or $\sum_{i=1}^{m} y_i(b_i - A_i\vec{x}) = 0$.

Note that $y_i \ge 0$ and $b_i - A_i \vec{x} \ge 0$. Sum of non-negative terms is zero iff each of the individual terms are zero. Therefore

$$y_i(b_i-A_i\vec{x})=0$$

Note that $b_i - A_i \vec{x}$ is just the slack variable x_{n+i} .

Considering the first equation will derive the remainder of the required complementary slackness conditions.

Duality: Interpretation

Diet problem: Minimize cost, while satisfying dietary constraints.

	FX (\$2)	FY (\$5)	FZ (\$ 15)
Carbs	20	1	1
Protein	1	30	40
Vitamins	1	10	5

- 1. At least 200 units of carbs.
- 2. At least 50 units of protien.
- 3. At least 40 units of vitamins.
- 4. No more than 20 units of FX.
- 5. No more than 10 units of FY.
- 6. No more than 5 units of FZ.

Diet Problem

Optimal: $x_1 \sim 9.84, x_2 \sim 3, x_3 : 0.$

Dual: $y_1 : 0.07, y_2 : 0, y_3 : 0.5, y_4, \dots, y_6 : 0.$

Shadow costs

Experiment: Play around with RHS of inequalities and observe solution.

Shadow Cost (Margin Cost)

CARBS: \$0.07, PROT: free, VIT: \$0.5

Q1: If dual var. corresponding to a constraint is 0 does that mean that we can drop the constraint and still get the same answer?

A1: YES.

Q2: Can we, then, change the RHS of the inequality to arbitrary values?

A2: NO.

Lecture 8

Sensitivity Theorem

Consider **Primal Problem:** decision variables are x_1, \ldots, x_n .

maximize
$$c_1x_1+\cdots+c_nx_n$$

s.t. $a_{j1}x_1+\cdots+a_{jn}x_n\leq b_j$ $j\in\{1,2,\ldots,m\}$
 $x_1,\ldots,x_n\geq 0$

Optimal Value: z^* .

Primal Optimal: x_1^*, \ldots, x_n^* . Dual Optimal: y_1^*, \ldots, y_n^* .

Final simplex dictionary is non-degenerate.

Modified LP:

maximize
$$c_1x_1 + \cdots + c_nx_n$$

s.t. $a_{j1}x_1 + \cdots + a_{jn}x_n \leq b_j+t_j$ $j \in \{1,2,\ldots,m\}$
 $x_1,\ldots,x_n > 0$

Optimal Value: There is $\epsilon > 0$ s.t., if $|t_i| \le \epsilon$, $z' = z^* + \sum_i t_i y_i$. **Shadow Cost:** The dual decision variables are interpreted as "shadow cost".

Lecture 8

Primal-Dual Simplex

Primal and Dual

Consider the following LP:

max.
$$-x_1 - x_2$$

 $-2x_1 - x_2 \le 4$
 $-2x_1 + 4x_2 \le -8$
 $-x_1 + 3x_2 \le -7$
 $x_1, x_2 \ge 0$

Dual LP

The dual LP for our example:

max.
$$-4y_1 +8y_2 +7y_3$$

 $2y_1 +2y_2 +y_3 \le 1$
 $y_1 -4y_2 -3y_3 \le 1$
 $y_1, y_2, y_3 \ge 0$

Primal-Dual Dictionaries

Note: Dual dictionary y_2 enters and y_4 leaves.

Primal-Dual Dictionaries

Complementary pairs:

$$x_3 \leftrightarrow y_1, x_4 \leftrightarrow y_2, x_5 \leftrightarrow y_3$$

 $x_1 \leftrightarrow y_4, x_2 \leftrightarrow y_5$

Rule:

- \triangleright v_1 enters and v_2 leaves dual dictionary. v_1^c leaves and v_2^c enters primal dictionary.
- \triangleright v_1^c enters and v_2^c leaves primal dictionary. v_1 leaves and v_2 enters dual dictionary.

Slide# 22

Primal Dual Example

Primal Dual Examples

Can you write down the primal dictionary??

Dual Simplex

- ► Easy transformation of primal to dual and vice versa.
- ▶ Entering variable for dual \Rightarrow complementary variable leaves primal dictionary.
- ightharpoonup Leaving variable \Rightarrow complementary variable enters primal.
- ightharpoonup Unbounded dual \Rightarrow infeasible primal (and vice versa).

Why Dual Simplex?

- 1. When primal objective coefficients are all non-positive. Avoid need for an initialization phase.
- 2. When primal has more variables than constraints. Simplex usually observed to be sensitive to number of variables.
- 3. As an alternative to the initialization phase!

Initialization using Dual Simplex

Example

maximize
$$-x_1 + 4x_2$$

subject to $-2x_1 - x_2 \le 4$
 $-2x_1 + 4x_2 \le -8$
 $-x_1 + 3x_2 \le -7$
 $x_1, x_2 \ge 0$

Dual:

Problem: Neither primal nor dual initial dictionary is feasible.

Initialization using Dual

Idea: Change of primal objective function can make dual initial dictionary feasible!!

$$-x_1 + 4x_2 \rightarrow -x_1 - x_2$$

Dual:

The change ensures that dual starts at a feasible dictionary.

Initialization Using Dual

- Dualize given problem.
- If dual starting dictionary is infeasible, then change primal objective to make initial dual dictionary feasible.
- Perform dual simplex until a dual optimal dictionary is reached.
- Change final dual dictionary into corresponding primal dictionary.
- Replace the objective function, taking into account new basis variables.