A Presentation on PCA & SVD

PRESENTED BY

MSc. student, N. I. MD. ASHAFUDDULA

STUDENT ID: 18204016

Outlines

- ☐ Feature Reduction
- ■Why Dimension Reduction?
- Application of SVD & PCA
- ☐ Recent Works
- ☐ Keywords & Terms
- □ PCA
- **□**SVD
- ☐ Implementation of PCA & SVD
- Result Comparison (SVD/PCA vs Original Data)
- Conclusion

Feature Reduction

☐ Dimensionality reduction refers to techniques for reducing the number of input variables in training data.

Feature Reduction

□ When dealing with high **dimensional** data, it is often useful to **reduce** the **dimensionality** by projecting the data to a lower dimensional subspace which captures the "essence" of the data.

Dim. Reduction

(PCA/SVD)

Table: 5D input (Original data)

Record	F1	F2	F3	F4	F5
1	1	1	1	0	0
2	2	2	2	0	0
3	3	3	3	0	0
4	4	4	4	0	0
5	0	2	0	4	4
6	0	0	0	5	5
7	0	1	0	2	2

Table: 2D input (Reduced Dim)

Record	F1	F2
1	1.72	-0.22
2	5.15	-0.67
3	5.87	-0.89
4	8.58	-1.12
5	1.91	5.62
6	0.90	6.95
7	0.95	2.81

Why Dimension Reduction?

- ☐To compress data
- ☐ To remove redundant features
- ☐ To use less Computation & Disk space
- ☐ To Speed up learning algorithm
- **☐** To Increase system performance
- ■To visualize data

Application of SVD & PCA

- ☐ Fingerprint Recognition
- ☐ Recommendation System
- ☐ Image Classification
- □ Computer vision
- ☐ Dimension Reduction
- ☐ Analysis Input variables

And many more.

Recent Works

- [1] A Machine Learning Approach to Detect Self-Care Problems of Children with Physical and Motor Disability. (2018)
- [2] Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques. (2020)
- [3] Improving detection of Melanoma and Naevus with deep neural networks. (2020)
- [4] Dimension reduction of image deep feature using PCA. (2019)
- [5] Analysis of Dimensionality Reduction Techniques on Big Data. (2020)
- [6] Image Classification base on PCA of Multi-view Deep Representation. (2019)

Recent Works (Result Comparison)

Work	Original Input Features	Reduced Features	Method	Without Feature Reduction	With Feature Reduction
[1]	205	53	PCA, KNN	Acuu: 81.43%	Accu: 84.29%
[2]	15	To Analyze	PCA, RF	-	Accu: 97.4%
[3]	2 Dataset	-	PCA, CNN	-	Accu: 96.8%
[4]	3727	887	PCA	Accu: 88.3%	Accu: 91.3%
[5]	36	26	PCA, RF	Acuu: 98.59%	Acuu: 98.3% (Performane of Other Metrices was better)
[6]	Multiple Image	-	PCA, Proposed	-	Accu: 85.33±0.47

- ■Variance
- ☐ Eigen vector
- ☐ Eigen values
- ■Orthogonal
- Orthonormal
- ☐ Co-variance
- Correlation

□Variance:

Variance (σ^2) in statistics is a measurement of the spread between numbers in a data set. That is, it measures how far each number in the set is from the mean and therefore from every other number in the set.

□Formula:

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

Where: x^i = the i^{th} data point

 \bar{x} = the mean of all data points

n = the number of data points

☐ Eigenvector & Values:

- ✓ Eigenvectors and values exist in pairs: every Eigenvector has a corresponding Eigenvalue.
- ✓ An Eigenvector is a direction, in the example the Eigenvector is the direction of the line (vertical, horizontal, 45 degrees etc.) . An Eigenvalue is a number, telling us how much Variance there is in the data in that direction.
- ✓ In the example the **Eigenvalue** is a number telling us how spread out the data is on the line.
- **✓** The Eigenvector with the highest Eigenvalue is therefore the Principal Component.

Fig. (a)

Fig. (b)

[1] https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/

□Eigenvector & Values:

- ✓ If we take **Age and Height** of students, there are 2 variables, it's a 2-D data set, therefore there are 2 eigenvectors/values.
- ✓ Similarly If take **Age, height, Class** of students there are 3 variables, 3-D data set, so 3 eigenvectors/values.
- √ The Eigenvectors have to be able to span the whole x-y area, in order to do this (most effectively), the two directions need to be orthogonal (i.e. 90 degrees) to one another.

[1] https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/

☐ Eigenvector & Values:

- ✓ The **Eigenvectors** gives us much more useful axis to frame the data in. So, We can now re-frame the data in these new dimensions.
- ✓ These directions are where there is most variation found, and that is where there is more information.
- ✓ Another way we can say, **No variation of data means No information**. In this case the **Eigenvalue for that dimension would equal Zero**, because there is no variations.

Fig. (f)

[1] https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/

Orthogonal:

- ✓ Two vectors are Orthogonal if they are perpendicular to each other. (i.e. the dot product of the two vectors is 0)
- ✓ In Matrix, A square matrix with real numbers or elements is said to be an orthogonal matrix, if its transpose is equal to its inverse matrix or when the product of a square matrix and its transpose gives an identity matrix, then the square matrix is known as an orthogonal matrix.

if, $A^T = A^{-1}$ is satisfied, then, $A A^T = I$

Orthonormal:

A set of vectors is orthonormal if it is an orthogonal set having the property that every vector is a unit vector (a vector of magnitude 1).

 $[2] \ https://byjus.com/maths/orthogonal-matrix/\#: ``:text=If\%20m\%3Dn\%2C\%20which\%20means, 3\%20rows\%20and\%203\%20columns.$

□ Co-Variance & Correlation:

- ✓ Both the terms measure the relationship and the dependency **between** two variables, suppose (x,y).
- ✓ "Covariance" indicates the direction of the linear relationship between variables.
- ✓ "Correlation" on the other hand measures both the strength and direction of the linear relationship between two variables.

^[3] https://towardsdatascience.com/let-us-understand-the-correlation-matrix-and-covariance-matrix-d42e6b643c22

^{[4] &}lt;a href="https://www.youtube.com/watch?v=xZ_z8KWkhXE">https://www.youtube.com/watch?v=xZ_z8KWkhXE

PCA

- □ PCA stands for Principal Component Analysis.
- □PCA finds the principal components of data.

□ PCA **finds the directions** where there is the most variance, the directions where the data is

most spread out.

Fig(g). PCA-1

Fig(h). PCA-2

[5] https://dataconomy.com/2016/01/understanding-dimensionality-reduction/

PCA (Cont'd)

☐ Dimension Reduction tries to find a **Line or Plane** in which most of the data lies and project onto that line So that Every projected data to the line is smallest.

2D to 1D

$$X^1 \in R^2 \rightarrow Z^1 \in R^1$$

 $X^1 \in R^2 \rightarrow Z^1 \in R^1$

$$X^m \in \mathbb{R}^2 \rightarrow Z^m \in \mathbb{R}^1$$

$$Z^{i} = \begin{bmatrix} Z_{1}^{i} \end{bmatrix} = \begin{bmatrix} X^{i} \end{bmatrix}$$

Fig(i). PCA (2D to 1D)

PCA (Cont'd)

<u>3D to 2D</u>

 $X^1 \in R^3 \rightarrow Z^1 \in R^2$ $X^1 \in R^3 \rightarrow Z^1 \in R^2$

 $X^m \in \mathbb{R}^3 \rightarrow Z^m \in \mathbb{R}^2$

$$Z^{i} = \begin{bmatrix} Z_{1}^{i} \\ Z_{2}^{i} \end{bmatrix} = \begin{bmatrix} X^{i} \\ Y^{i} \end{bmatrix}$$

Fig(j). PCA (3D to 2D)

PCA (Cont'd)

■Wrong-Right projection line

√ The projection of every point on the Magenta line (Fig) is huge and also greater than the Red line.

So this is wrong line.

Fig(L). PCA (Wrong-Right projection line)

Implementation of PCA

☐Algorithm:

- 1. Collect dataset
- 2. Preprocessing data (Feature Scaling/ Mean Normalization)

$$\mu_{j} = (1/m) * \sum_{i=1}^{m} (x_{j}^{i})$$
 Where, j = Dimension no. [1,2,3,...] m = total no. of point on that dimension Replace each x_{j}^{i} with $(x_{j} - \mu_{j})$.

We scale data to have comparable range values. E.g if we have x_1 and x_2 features of data where,

$$x_1$$
 = Size of house

$$x_2$$
 = no. of bedroom

Implementation of PCA (Cont'd)

□ Algorithm (Reduced N Dim to K Dim):

3. Compute "Co-variance matrix"

Sigma,
$$\Sigma = (1/m) * \sum_{i=1}^{n} x^{i} (x^{i})^{T}$$
 [Here, x^{i} (n*1) matrix]
In code, Sigma, $\Sigma = (1/m) * X^{T}*X$

4. Computer "Eigen Vectors" of matrix Sigma.

5. U is a (n*n) matrix. Where to reduce in K dim we need to choose K column from U matrix that is (n*k) matrix.

$$U_{reduce} = [:, 1:k]$$

Implementation of PCA (Cont'd)

Algorithm (Choose 'K' the no. of Principle Component):

□PCA minimizes average projection Error.

Eq 1. Avg. projection Error =
$$(1/m) * \sum_{i=1}^{m} (x^i - x^i_{approx})^2$$

Eq 2. Total variation in the data = $(1/m) * \sum_{i=1}^{m} (x^i)^2$

Now, we choose K to be smallest value so that,

$$\frac{Eq.1}{Eq.2} \le 0.01 (1\%)$$

So, that we can maintain 99% variance or our desired variance.

Implementation of PCA (Cont'd)

Algorithm (Choose 'K' the no. of Principle Component):

☐ Previous method was not Efficient to **choose 'K'**

Where, S is a (r*r) diagonal matrix.

Now, for given 'K' we need to check if,
$$\frac{\sum_{i=1}^{k} S^{ii}}{\sum_{i=1}^{n} S^{i}} \ge 0.99$$
 (99% $variance\ retained$)

Implementation of PCA (code)

Input:

```
Dataset = np.array(
                          from sklearn.preprocessing import StandardScaler
     [[1, 1, 1, 0, 0],
                          scaler = StandardScaler() #Standardize features by removing the mean and scaling to unit variance
     [3, 3, 3, 0, 0],
                          scaler.fit(Dataset)
                          scaled data=scaler.transform(Dataset) #making input arrays -> Tranpose
     [4, 4, 4, 0, 0],
     [5, 5, 5, 0, 0],
                          from sklearn.decomposition import PCA
                          pca = PCA(n components = 2) #Here code suggests 25 is good #SCADI-paper took 53 features
     [0, 2, 0, 4, 4],
                          pca.fit(scaled data)
                          x pca=pca.transform(scaled data) #making input arrays -> reverse Tranpose = original
     [0, 0, 0, 5, 5],
                          print('PCA on Dataset(7*5):\n\n',x_pca)
     [0, 1, 0, 2, 2]]
                          plot data(x pca)
```

Output: (Reduced Dim.)

```
[[ 0.06153582 1.4876476 ] [-1.41476273 0.32780438] [-2.152912 -0.25211723] [-2.89106128 -0.83203884] [ 2.01452609 -0.69985245] [ 2.9755685 -0.71530184] [ 1.40710559 0.68385838]]
```

<u>Shape:</u> (7, 2)

SVD

- □SVD stands for Singular Value Decomposition
- □SVD is specific way to reduce features
- □SVD is nothing more than decomposing vectors onto orthogonal axes

Implementation of SVD

□Singular Value Decomposition:

$$A_{m\times n} = U_{m\times m} \sum_{m\times n} V_{n\times n}^{T}$$

Where, $A_{m\times n}$ = input Matrix

 $U_{m \times m}$ = Orthogonal Matrix

 $\sum_{m \times n}$ = Diagonal Matrix

 $V_{n\times n}^{T}$ = Orthogonal Matrix

Fig (M). SVD computation

[7] https://en.wikipedia.org/wiki/Singular_value_decomposition#/media/File:Singular_value_decomposition_visualisation.svg

Implementation of SVD (Cont'd)

□ Singular Value Decomposition Dimension reduced to 'k' Dimension:

$$A_{m \times n} = U_{m \times m} \sum_{m \times n} V_{n \times n}^{T}$$

To find reduced dim of A matrix 'n' dimension to 'k' dimension,

$$Z_{reduced} = U[:,1:k] * \sum [1:k,1:k]$$

Implementation of SVD -1

Input:

```
Dataset = np.array(
                            from scipy.linalg import svd
     [[1, 1, 1, 0, 0],
     [3, 3, 3, 0, 0],
                            n elements = 2
                            U, S, V = svd(Dataset)
     [4, 4, 4, 0, 0],
                            U = U[:,0:n_elements]
     [5, 5, 5, 0, 0],
                            S = np.diag(S)
                            S = S[0:n elements,0:n elements]
     [0, 2, 0, 4, 4],
                            rd = U.dot(S)
     [0, 0, 0, 5, 5],
                            print('Original Data(7*5):\n\n',Dataset)
                            print('\nShort Hand SVD(7*2):\n\n',rd)
     [0, 1, 0, 2, 2]])
```

Output: (Reduced Dim.)

Short Hand SVD (7*2):

```
[[-1.71737671 -0.22451218]
[-5.15213013 -0.67353654]
[-6.86950685 -0.89804872]
[-8.58688356 -1.12256089]
[-1.9067881 5.62055093] [-0.90133537 6.9537622 ] [-0.95339405 2.81027546]]
```

Implementation of SVD-2

Input:

```
Dataset = np.array(
                               from sklearn.decomposition import TruncatedSVD
     [[1, 1, 1, 0, 0],
                          2
                              #Dataset = A
     [3, 3, 3, 0, 0],
     [4, 4, 4, 0, 0],
                              svd = TruncatedSVD(n components=2)
                              svd.fit(Dataset)
     [5, 5, 5, 0, 0],
                              dataset_svd = svd.transform(Dataset)
     [0, 2, 0, 4, 4],
                              print(dataset svd.shape)
                              print(dataset svd)
     [0, 0, 0, 5, 5],
                         10
     [0, 1, 0, 2, 2]])
                               plot data(dataset svd)
```

Output: (Reduced Dim.)

[[1.71737671 -0.22451218] [5.15213013 -0.67353654] [6.86950685 -0.89804872] [8.58688356 -1.12256089] [1.9067881 5.62055093] [0.90133537 6.9537622] [0.95339405 2.81027546]]

<u>Shape:</u> (7, 2)

Result Comparison (SVD/PCA vs Original Data)

Disadvantages of Dimensionality Reduction

- □ It may lead to some amount of **data loss**.
- □ PCA tends to find linear correlations between variables, which is sometimes undesirable.
- □ PCA fails in cases where mean and covariance are not enough to define datasets.
- We may not know how many principal components to keep- in practice, some thumb rules are applied.

THE END