Question 7.

Algorithms Assignment 1

Faaiq Bilal 23100104

1 Listing from smallest to largest complexity

 $2\log_{10}10^{200},\,10^{200}$ Constant time (O(1))

They belong to the same class as they have a constant size. The complexity does not depend on the value of n.

 $n^2 + \sqrt{n}$, $n^2 + 7 \log n^2$, $n^2 \log 300$ Polynomial (Quadratic, $O(n^2)$) time These expressions all belong to the same complexity class as they are bound by n^2 . We know this because n^2 is the largest term in each of the expressions, and is hence the largest bound.

 $n^2 \log n$ Polynomial time $(O(n^2 \log n))$

This is not as simple as putting it in under $O(n^2)$, as the log(n) term is multiplying, and will hence always overtake $c \cdot n^2$ as n grows infinitely large. The bound for this can also be given as $O(n^3)$, however, the immediate tightest bound is still in the form $O(n^2 \log n)$

g n^4 , $n^4 + n^2 + n^2 \log n$ Polynomial time (Quartic, $O(n^4)$)

All of the expressions belonging to this class have n^4 as the largest term, and hence n^4 bounds the equation. Hence, we can say that they belong to the same complexity class.

 3^{n^2} Exponential time $(k^{f(n)})$