Phase 2 Executive Summary for Advanced Model Development

Project Title

Automating Comment Handling in Collaborative Documents using Hierarchical Capsule Networks and Advanced AI Techniques

Team Members

- Sravani Pati
- Vamsi Krishna Pasam

Abstract

This project aims to develop a system to automate the handling of comments in collaborative documents using advanced machine learning models, including Hierarchical Capsule Networks and Large Language Models (LLMs).

Advanced Model Development (Phase 2)

Hierarchical Capsule Network Implementation

1. Initial Model Training:

The initial phase involves training a baseline model using standard parameters without optimizations. This helps establish a benchmark for further improvements.

Metrics:

Accuracy: 0.1181Precision: 0.2662Recall: 0.2418F1-Score: 0.2476

Results: The initial results were modest, indicating the need for significant enhancements to improve model performance.

2. Learning Rate Scheduling and Model Checkpointing:

Adjusting the learning rate dynamically can help the model converge more efficiently. Model checkpointing saves the best model during training to prevent overfitting.

Metrics:

Accuracy: 0.2052Precision: 0.4115Recall: 0.3510F1-Score: 0.3621

Results: Implementing these techniques improved the model's performance, demonstrating the effectiveness of better learning rate management and model preservation methods.

Class Weights Implementation:

Applying class weights helps address class imbalance by giving more importance to minority classes, thereby improving the model's performance on these classes.

Metrics:

Accuracy: 0.2743Precision: 0.4547Recall: 0.3970F1-Score: 0.4121

Results: The model showed further improvement, indicating that balancing the class weights effectively enhanced the model's ability to handle imbalanced data.

4. Increased Epochs and Early Stopping:

Training for more epochs allows the model to learn more complex patterns, while early stopping prevents overfitting by halting training when performance on a validation set stops improving.

Metrics:

Accuracy: 0.2933Precision: 0.5413Recall: 0.4238F1-Score: 0.4462

Results: This approach yielded better results, suggesting that more extended training with careful monitoring can significantly improve model performance.

5. Data Augmentation:

Data augmentation techniques generate additional training samples by transforming existing data, which can improve model generalization.

Metrics:

Accuracy: 0.3053Precision: 0.5414Recall: 0.4497F1-Score: 0.4731

Results: The model's performance further improved, highlighting the benefits of augmenting the training data to enhance the model's generalizability.

6. Using BERT Large and Learning Rate Scheduling:

BERT Large, a larger variant of the BERT model, can capture more nuanced text representations while learning rate scheduling optimizes the training process.

Metrics:

Accuracy: 0.1982Precision: 0.3384Recall: 0.4558F1-Score: 0.3704

Results: Despite the model's potential, it achieved lower accuracy, indicating that the BERT Large model might require more fine-tuning or different configurations to outperform smaller models.

7. Gradient Accumulation:

Gradient accumulation allows for practical training with larger batch sizes by accumulating gradients over multiple steps before updating model parameters.

Metrics:

Accuracy: 0.1872Precision: 0.3762Recall: 0.5505F1-Score: 0.4086

Results: The model improved, suggesting that gradient accumulation can help when hardware limitations restrict batch sizes.

8. Adjusting Weights:

Fine-tuning the model's weights based on performance metrics helps improve accuracy and overall model robustness.

Metrics:

Accuracy: 0.1642Precision: 0.4238Recall: 0.7588F1-Score: 0.5085

Results: This adjustment significantly improved recall, demonstrating a better balance between precision and recall.

9. Redefining the Training Loop with Learning Rate Scheduler:

Implementing a more refined training loop with dynamic learning rate adjustments can lead to better model convergence.

Metrics:

Accuracy: 0.1682Precision: 0.3199Recall: 0.4184

- F1-Score: 0.3377

Results: The model achieved modest improvements, indicating the need for further refinement.

10. Updating Training Loops with More Epochs:

Prolonged training with a well-defined loop helps the model learn deeper patterns, although it needs to be balanced to avoid overfitting.

Metrics:

Accuracy: 0.1762Precision: 0.3217Recall: 0.4162F1-Score: 0.3407

Results: While additional epochs can improve performance, they must be carefully managed to prevent overfitting.

11. Implementing Weight Decay Regularization:

Weight decay regularization helps prevent overfitting by penalizing large weights, encouraging the model to maintain more straightforward weight values.

Metrics:

Accuracy: 0.1852Precision: 0.3483Recall: 0.3713F1-Score: 0.3485

Results: Regularization techniques helped maintain model performance, preventing overfitting.

12. Advanced Regularization Using BERT:

Advanced regularization techniques with BERT can help enhance model performance by preventing overfitting and improving generalization.

Metrics:

Accuracy: 0.0180Precision: 0.3613Recall: 0.8154F1-Score: 0.4462

Results: This approach showed potential for further tuning and optimization, significantly improving recall.

13. Further Hyperparameter Tuning with Optuna:

Hyperparameter tuning with Optuna, an automated hyperparameter optimization framework, helps find the model's optimal parameters.

Metrics:

- Ensemble Accuracy: 0.0030

- Precision: 0.5988- Recall: 0.7263- F1-Score: 0.6197

Results: Comprehensive hyperparameter tuning significantly boosted the model's performance, achieving the highest F1-score of 0.6197.

Conclusion

The project has made significant advancements in **Phase 2**, improving model performance through various advanced techniques. The **highest F1-score** achieved is **0.6197**, demonstrating the effectiveness of hyperparameter tuning and advanced model training strategies. Further improvements and testing will continue to enhance the system's accuracy and usability.