

B.TECH SECOND YEAR

ACADEMIC YEAR: 2020-2021

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO: 37-38 (THIRTY SEVEN – THIRTY EIGHT)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. VIVEK SINGH

EMAIL-ID : vivek.singh@laipur.manipal.edu

PROPOSED DATE OF DELIVERY: 19 OCTOBER 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- · Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality,

SESSION OUTCOME

"TO UNDERSTAND THE CONCEPT OF ODE AND THEIR APPLICATIONS AND SOLVE THE PROBLEM"

DR. VIVEK SINGH 14-Aug-20 2

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I & II END TERM EXAMINATION

ASSESSMENT CRITERIA'S

DR. VIVEK SINGH 14-Aug-20 3

Boolean Algebra

- Boolean algebra provides the operations and the rules for working with the set **{0, 1}**.
- These are the rules that underlie **electronic circuits**, and the methods we will discuss are fundamental to **VLSI design**.
- We are going to focus on three operations:
 - Boolean complementation,
 - Boolean sum and
 - Boolean product

MUJ | DR. VIVEK SINGH

Boolean Operations

The **complement** is denoted by a bar. It is defined by

$$0 = 1$$
 and $1 = 0$.

The Boolean sum, denoted by + or by OR, has the following values:

$$1 + 1 = 1,$$

 $1 + 0 = 1,$
 $0 + 1 = 1, 0 + 0 = 0$

The Boolean product, denoted by x or by AND, has the following values:

$$1 \times 1 = 1, 1 \times 0 = 0,$$

 $0 \times 1 = 0,$
 $0 \times 0 = 0$

Examples:

- 1) Find the values of $1.0 + (0 + \overline{1}) + \overline{0.0}$
- 2) Show that $(1.1) + [(0.\overline{1}) + 0] = 1$
- 3) Find the values of $(\overline{1} \cdot \overline{0}) + (1 \cdot \overline{0})$

Note:

- The complement, Boolean sum and Boolean product correspond to the logic operators \sim , \vee and \wedge respectively, where 0 corresponds to F (False) and 1 corresponds to T (True)
- Equalities in Boolean algebra can be considered as equivalences of compound propositions.

8

Translate the following into logical equivalence:

1)
$$1.0 + (\overline{0+1}) = 0$$

2)
$$(1.1) + [(0.1) + 0] = 1$$

Translate the logical equivalences into Boolean algebra:

1)
$$(T \wedge T) \vee [\sim (F \wedge T) \vee F] \equiv T$$

2)
$$(T \vee F) \wedge (\sim F) \equiv F$$

Boolean Expressions & Boolean Functions

- Let $B=\{0,1\}$, then $B^n=\{(x_1, x_2, ..., x_n) / x_i \in B \text{ for } I=1 \text{ to } n\}$ is the set of all possible n-tuples of 0's and 1's.
- ♣ Boolean variable: The variable x is called a Boolean variable if it assumes values only from B. i.e. if its only possible values are 0 and 1.
- **Boolean function of degree n:** A function F: $B^n \rightarrow B$, i.e. $F(x_1, x_2, ..., x_n) = x$, is called a Boolean function of degree n.

E.g.

1) F(x, y) = x.y from the set of ordered pairs of Boolean variables to the set {0, 1} is a Boolean function of degree 2 with given values in table:

x	y	\overline{y}	$\boldsymbol{\mathit{F}}$
1	1	0	0
1	0	1	1
0	1	0	0
0	0	1	0

Examples of Boolean Functions

2) Boolean Function:

$$F = x + \overline{y}z$$

← Truth Table

All possible combinations of input variables

x	y	Z	$oldsymbol{F}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Finite Boolean Algebra

Example:

 $S=\{a, b, c\}$ and $T=\{2,3,5\}$. consider the Hasse diagrams of the two lattices $(P(S), \subseteq)$ and $(P(T), \subseteq)$.

Note: the lattice depends only on the number of elements in set, not on the elements.

Finite Boolean Algebras

 \bullet (P(S), \subseteq)

Each x and y in B_n correspond to subsets A and B of S. Then $x \le y$, $x \land y$, $x \lor y$ and x' correspond to $A \subseteq B$, $A \cap B$, A U B and A. Therefore,

 $(P(S), \subseteq)$ is isomorphic with Bn, where n=|S|

* Example

Consider the lattice D_6 consisting of all positive integer divisors of 6 under the partial order of divisibility.

Finite Boolean Algebras

♣ Example

Consider the lattices D_{20} and D_{30} of all positive integer divisors of 20 and 30, respectively.

 D_{20} is not a Boolean algebra (why? 6 is not 2^n)

D₃₀ is a Boolean algebra, D₃₀ ◊ B₃

Finite Boolean Algebras

Example: Show the lattice whose Hasse diagram shown below is not a Boolean algebra.

a and e are both gomplements of g

Theorem (e.g. properties 1~14) is usually used to show that a lattice L is not a Boolean algebra.

THANK YOU

MUJ | DR. VIVEK SINGH

