

Westinghouse Power Semiconductor User's Manual and Data Book

Assemblies/Rectifiers/Thyristors/Transistors

POWER SEMICONDUCTOR USER'S MANUAL AND DATA BOOK

Editor: Woodson J. Savage III

WESTINGHOUSE ELECTRIC CORPORATION SEMICONDUCTOR DIVISION YOUNGWOOD, PENNSYLVANIA 15697

ACKNOWLEDGEMENTS

This book is the result of the efforts of a number of dedicated individuals. Contributing authors include:

J.D. Balenovich R.L. Bonkowski	T.B. Geary W.H. Karstaedt	W.S. Przybocki D.E. Rieth
R.F. Chick	R.J. Lambie	G.M. Sherbondy
P.J. DelPalazzo	K.G. Longenecker	J.E. Steiner
J.F. Donlon	M. Morozowich	K.S. Tarneja

It is hoped that the **(*)** Power Semiconductor User's Manual and Data Book will enable anyone using power semiconductors to do so more effectively. Any suggestions on how future editions of this book can be improved to better serve your needs will be greatly appreciated.

Westinghouse Electric Corporation Semiconductor Division Youngwood, Pa. 15697

January 1978

COPYRIGHT® 1978 BY
WESTINGHOUSE ELECTRIC CORPORATION
All Rights Reserved

Information furnished in this book is believed to be accurate and reliable. However, Westinghouse can assume no responsibility for its use, nor any infringements of patents, or other rights of third parties which may result from its use. No license is granted by implication or other use under any patent or patent rights of Westinghouse.

POWER SEMICONDUCTOR USER'S MANUAL

Authors R.S. Harm H.R. Emerick W.J. Savage

WESTINGHOUSE ELECTRIC CORPORATION SEMICONDUCTOR DIVISION YOUNGWOOD, PENNSYLVANIA 15697

B POWER SEMICONDUCTOR

USER'S MANUAL

TABLE OF CONTENTS

CHAPTER	1	INTRODUCTION
	2. 3. 4.	Purpose
CHAPTER	2	SELECTING THE PROPER POWER SEMI- CONDUCTOR FOR YOUR APPLICATION
	2. 3.	Basic Semiconductor Parameters Defined
CHAPTER	3	SEMICONDUCTOR PROCUREMENT
	2. 3. 4. 5.	Spend Semiconductor Dollars Wisely27Evaluating A Power Semiconductor Supplier28Buyer's Checklist31Entering An Order31In-Process Order Information32Shipping Methods and Insurance38
CHAPTER	4	STANDARD OPERATING PROCEDURES FOR THE POWER SEMICONDUCTOR USER
	2. 3. 4. 5. 6. 7. 8.	Receiving. 41 Incoming Inspection 41 Claims 41 Installation, Mounting, and Cooling Considerations 42 Operating Power Semiconductor Equipment 43 Preventative Maintenance 46 Trouble Shooting and Servicing 47 Identification and Replacement 52 Safety 55

CHAPTER	5 RELIABILITY
	1. Understanding Semiconductor Reliability572. Quality Control633. Responsibilities65
CHAPTER	6 MANUFACTURING @ POWER SEMICONDUCTORS
	1. Facilities672. Product Breakthroughs683. Key Manufacturing Innovations724. Technology Leadership75
APPENDIX	SEMICONDUCTOR GLOSSARY
	Begins on page77
INDEX	
	Begins on page79

1 INTRODUCTION

1. PURPOSE

The purpose of this book is to enable persons in any job function (i.e. Purchasing, Design, Production, Engineering, Plant operation and maintenance, Quality Control, Marketing, etc.) to deal with power semiconductors more effectively, regardless of his or her technical background or experience level. Every effort has been made to present this material in a straightforward, easy-to-use formats of that the reader can readily apply many of these practical suggestions and ideas directly to his or her job. The reader should note that, although Westinghouse forms and procedures are highlighted in the User's Manual, the information being presented is generally applicable to any manufacturer of power semiconductors.

The term "user" in this book refers to both the Original Equipment Manufacturer (OEM) who manufactures equipment utilizing power semiconductors and the End User who purchases, uses, and maintains this equipment.

Engineering terms and other "jargon" perculiar to power semiconductors are used only when needed in the User's Manual and are usually defined within the text or in the appendix. Note: No effort is made in this book to "educate" the reader on how a power semiconductor "operates" in a circuit or how a power semiconductor "works". There are many fine texts on these subjects for those persons interested in these engineering and physics phenomena.

The User's Manual and Data Book is actually two books in one! A brief description of how these two books are organized:

The **User's Manual** is arranged in a somewhat natural sequence of events—Selecting the Proper Power Semiconductor, Semiconductor Procurement, Incoming Inspection, Testing, Device Installation, Equipment Operation, Preventative Maintenance, Troubleshooting, Replacements, Safety, Reliability and Quality Control plus a special section on the manufacture of @ Power Semiconductors. Sections can be read independently or in any desired sequence depending upon the reader's interest and need.

The Data Book offers detailed specifications on the complete line of Westinghouse Power Semiconductors. The General section includes a master cross reference type number index by JEDEC 1N, 2N, and 3N part numbers and industry alpha and numeric part numbers. Using this index, the reader can rapidly locate any power semiconductor part number for which Westinghouse offers an exact or suggested replacement along with the page number of the data sheet for the recommended Westinghouse device. In addition, this section contains the Selling Policy, Warranty Information, Delivery Lead Time Guide Lines, Military/Hi-Rel Product Capabilities, General Application Data Sheets, a Quick Service Directory listing key contacts for special assistance, and a complete listing of Semiconductor Sales Offices and Authorized Semiconductor Distributors. The remaining four product sections—Assemblies, Rectifiers Thyristors (SCR's and RBDT), and Transistors each are subdivided into their respective major product subgroups. Easy-to-use Product Capability Graphs and Product Selector Guides are provided at the beginning of each product section to enable the reader to quickly locate technical data for any given product.

2. POWER SEMICONDUCTOR OVERVIEW

Westinghouse is a world leader in the manufacture of high power semiconductors. In 1952, Westinghouse introduced the first silicon rectifier; in 1957, the first high voltage rectifier stack assemblies were introduced; in 1958, silicon transistors were added, followed by a line of SCR's in 1959. From this infancy, the semiconductor market has mushroomed into virtually every industrial, military, and consumer market. These markets include steel mill drives, space vehicles, and calculators, to name just a few. Even though Westinghouse was a pioneer in many areas of semiconductor development and currently holds basic patents used today by almost every semiconductor manufacturer, the strategic decision was made to concentrate efforts in the power segment (1 ampere and above) of the semiconductor spectrum (see figure 1.1) with primary emphasis on the 40 ampere and above market.

The semiconductor industry's business spectrum is not as homogeneous as one might expect. Each of these power segments represent different technologies, industries, applications, and markets. One popular

Figure 1.1 Semiconductor Business Spectrum

misconception about the semiconductor industry involves pricing. Integrated circuits, for example, have generally exhibited tremendous price declines—often tenfold or more. People usually assume that since integrated circuits exhibit this type of falling price phenomenon so should all other semiconductors. A little analysis will show why this theory does not hold. Integrated circuit prices, as well as all discrete product prices, fluctuate with volume—not with time as many people mistakenly observe. Integrated circuits serve very high volume markets and are made and tested with highly automated equipment. The power semiconductor market (especially the higher power areas), by comparison, is a much smaller, lower volume market serving primarily industry and military needs. These products are more custom made and tested to a customer's specification than to common generic type number. Historically, power semiconductor prices did show modest declines as new products were brought on the market initially at premium prices so the semiconductor manufacturers could attempt to recoup the substantial R&D expenses necessary to develop these products. Now, however, many new products—especially higher current and/or voltage extensions of existing products are priced more consistent with prevailing market prices. Today, many power semiconductor types are in the mature stage of their product life cycles. As a result, there are less cost reduction possibilities to offset the ever increasing inflation caused by higher material, labor, and factory expense costs. Therefore, price trends on many power semiconductors now and in the future will be upward instead of downward.

3. POWER SEMICONDUCTOR PRODUCT LINE

Westinghouse offers a comprehensive line of power semiconductors including rectifiers, thyristors—SCR's (silicon controlled rectifiers) and RBDT (reverse blocking diode thyristor), transistors, and assemblies.

General Purpose Rectifiers

1-2200 Amperes Up to 4KV

Fast Recovery Rectifiers

6-1400 Amperes Up to 3.2 KV .2-5μs

• Phase Control SCR's

10-1400 Amperes Up to 3 KV

40-900 Amperes • Fast Switching SCR's Up to 2.2KV $10-80 \mu s$ 22-80 Amperes Reverse Blocking Diode Thyristor (RBDT) Up to 1 KV $2,000-4,000A/\mu s$.5-15 Amperes General Purpose Transistors 30-150V 1.5-25 Amperes • High S.O.A. Transistors 30-250V 50 Amperes • High Power Switching Transistors

Many of these products are available in a variety of packages including axial lead mount, diamond mount, flat base, studless, stud mount, and disc mount. All of these products are available mounted on air, oil, or water cooled heat sinks in a variety of circuit configurations; these assemblies offer average current ratings from .5 amperes to 10,000 amperes or more with voltage capabilities as high as 688 KV for some high voltage stack designs.

400-500V

The w Data Book covers the vast majority of products and assemblies currently available; however, increased current ratings, voltage ratings, and/or improved turn-off and reverse recovery times will continue to evolve as a result of new product developments and improved production yields. Therefore, the reader is encouraged to contact a Westinghouse sales representative regarding any application(s) that might fall into any of these "fringe" areas.

4. IMPORTANCE OF POWER SEMICONDUCTORS

Power semiconductors have grown from laboratory curiosities to brute-force industrial components which have become competitive necessities in the marketplace. The potential advantages of solid-state power electronics over electromechanical equipment are well known: increased reliability and service life, reduced size and maintenance. In some cases, there is a sizeable cost advantage, while in other cases the performance capabilities can be achieved in no other way. Table 1.1 shows a complete matrix of industrial applications that can use Westinghouse Power Semiconductors (See page 13).

At least three current trends indicate that power semiconductors will become even more important to the user:

- 1. The growing shortage of oil and gas and the growing environmental concern will stimulate the utilization of clean electrical power in countless new areas now predominantly served by other forms of energy.
- 2. Efficiency in the manipulation and control of electrical power will have increasing priority as the rising cost of power forces the abandonment of techniques which are "short-term cheap but long-term wasteful."
- 3. The evolution of present applications and the creation of new applications will cause increasing demands for speed, precision, and reliability in power control that can be satisfied by no other technology.

For these reasons, power semiconductors are penetrating many new application areas and outmoding many traditional design approaches. Product engineering departments accustomed to well established design procedures involving Ward-Leonard drives, relay logic, or selenium rectifiers are faced with extinction overnight if they cannot adapt to the higher levels of complexity and analytical sophistication made possible and made necessary by solid-state electronics. While many technologies evolve over a period of decades—leaving adequate reaction time for business planning—this is not usually the case with power electronics. Solid state technology typically moves from an insignificant share of a market to a dominant share in a period of only 2 to 4 years. The universal S-curve showing the capture of a market by a product which takes advantage of power electronics is shown in Figure 1.2. Thus, a company which does not keep up-to-date in this new technology can easily lose a secure market position because of inadequate reaction time.

Figure 1.2 Universal s-curve showing market penetration by a product which takes advantage of power electronics.

5. MANUFACTURER /OEM/ END USER RELATIONSHIP

Historically, this relationship has tended to be split into two independent relationships: (1) The semiconductor manufacturer and the customer, the original equipment manufacturer (OEM). (2) The OEM and the customer, the end user. With the growth and acceptance of power semiconductors into virtually every market segment, as well as the emergence of trends brought on by energy, environmental, and safety considerations,

Figure 1.3 Semiconductor Manufacturer, OEM, End User Relationship.

the manufacturer, OEM, and end user relationship has become much more dynamic and comprehensive (shown by the diagram in Figure 1.3). The semiconductor manufacturer has come to recognize that both the OEM and the end user are "Users" of power semiconductors, whether directly or indirectly. The end user is really the ultimate customer—the one who purchases, uses, and maintains the equipment that was built and sold by the OEM who, in turn, purchased power semiconductors from the component manufacturer. The end user wants reliable, efficient, easy-to-maintain equipment that will meet the necessary environmental and safety standards while providing maximum performance at minimum cost. Not until the semiconductor manufacturer, the OEM, and the end user collectively work together can a semiconductor be produced and a piece of equipment be designed that will fulfill all of the end user's needs. This is a shared relationship that, if properly performed, will be mutually rewarding for all concerned.

	RECTI	FIERS	THYR	ISTORS/SC	R's	TRA	NSIST	ORS		ASSEI	MBLIES	;	
	General Purpose	Fast Recovery	Phase Control	Fast Switching	RBDT	General Purpose	High SOA	High Pwr. Switching	Modular	Gold Line Stud Mt.	Air Disc	Liquid Disc	H.V. Stacks
POWER DISTRIBUTION EQUIPMENT													
Fusion Energy Research	•	•	•			}		}	ł		•		
Generator/Exciter	•	•					•	•	i				
H.V.D.C. Transmission		•	•	<u> </u>				1			•		
Nuclear Fission	•	•	•	•						•	•		
Solar	•	•	•	•				•					
Uninterruptible Power Supplies (UPS)					1		İ						l
	•	•	•	<u> </u>	ļ	•		<u> </u>	ļ	•	•	•	
Wind Generators	•	•	•	•						•	•		
TRANSPORTATION SYSTEMS				j	1		1	l	ł				Ì
Electric Vehicle	•		•		1	•	•		l		•		1
Elevator/Electric Stairway	•	•	•		 	<u>-</u> -				•	•		
Locomotives					┼	 	 	 	 	•		 	
Mass Transit	•	•	÷	:		 		 	 	-:-	:		
People Movers	·	·	- :		 	 		 	 		·		
			<u> </u>	<u> </u>	 		-	 	 		<u> </u>		
INDUSTRIAL CONTROLS				1	1	1			1			1	1
AC Motor Controls	•	•	•	•	l	•	•	•	•	•	•	•	
AC Motor Starters			•				T	Π	Γ		•		1
Air Conditioning	•	•	•	•						•	•	•	
Conveyor	•	•	•							•	•		
Crane & Hoist	•	•	•				1				•		
DC Motor Control	•	•	•	•	1	•	•	•	•	•	•	•	
Electric Discharge													
Machining (EDM)	• .		•	•	L	•		<u> </u>	•	•			
Electric Space Heating			•										
Furnace	•		•							•	•	•	
Heating & Melting	•	•	•	•	<u> </u>	<u> </u>	L	•		•	•	•	•
Lift Trucks	•	•	•	•	 	ļ	<u> </u>	L				<u> </u>	
Lighting	•	<u> </u>	· •	:		-		 	:	•	•		
Machine Tool Off Road Vehicles	-	-:-	•	<u> </u>	├ ──	<u> </u>	├	 :	<u> </u>	-	•	ļ	
Off Shore Oil Well		-	<u> </u>	 	 	 	├──				<u> </u>		
Drilling .	•			1	1	1	1	i				ł	
Power Factor Correction				 	 		 				•	•	
Pump & Pipeline	•	•	•	· •	 	 	 		•	•	•	-	
Solid State Contactors	•		•		 	 	 			·	•	•	
Steel Mill Drives	·	-	·	•	 	 	├				•	-	
Welding, Capacitor Discharge	•		•	<u> </u>	 		 			•	•	•	•
Welding, Resistance			•	 	 		 				•	•	
												 	
POWER SUPPLIES			1	1	1	1	l		ł	}		1	
Accelerators	•	l		Į.	l		ļ	l	l	1	•	•	•
Aircraft	•	•		•		•	•	•					
Aluminum Reduction	•		•		Ī		1				•	•	
Anodizing	•		•					1		•	•	•	
Arc Heaters	•	•	•								•	•	
Battery Chargers	•		•						•	•	•		
Computer	•	•	•	•		•	•	•	•		•		
Consumer	•	•	•			•			•				
Dielectric Heating	•												•
Electrochemical	•		•								•	•	
Electroplating	•		•		<u> </u>		<u> </u>			•	•	•	
Electron Beam Welding			•		<u> </u>		-			ļ	•		<u> </u>
Electrostatic Precipitators			•	ļ		ļ	ļ		<u> </u>		•		•
Induction Heating	•	•	•	-	ļ		-	<u> </u>		•	•	<u> </u>	•
Laser	•	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ	ļ	ļ	•	•		•
Military	•	•	<u> </u>	•	•		·	•		<u> </u>	<u> </u>		•
Mining Power Centers	•	ļ	<u> </u>	 	 	 	 _ _	 		<u> </u>		 	
Radar/Sonar Test Equipment		•	 	<u> </u>	•		:	•	-		•	-	<u> </u>
	•	•	•	•	L	•	•	•	ı•	•			•
					T			T					1 -
Transmitters, Radio & TV Water Treatment	•										•		•

Table 1.1 APPLICATIONS FOR POWER SEMICONDUCTORS

2 SELECTING THE PROPER POWER SEMICONDUCTOR FOR YOUR APPLICATION

1. BASIC SEMICONDUCTOR PARAMETERS DEFINED

The primary tool for selecting the proper semiconductor to meet a given requirement is the technical data sheet. In order to use the data sheets effectively, one must first understand the significance of some of the more important parameters used in rating these semiconductors. The following apply to all types of semiconductors:

T_{J(MAX)}—Maximum allowable junction temperature. This is a very critical parameter upon which all device ratings are based. Typically, most SCR's have an upper operating junction temperature limit of 125°C(with some high temperature series up to 150°C capability); most transistors have an upper operating junction temperature limit in the range of 150°C to 175°C; and most rectifiers have an upper operating junction temperature limit in the range of 175°C to 200°C. If these respective values are exceeded, the device becomes vulnerable to rapid failure. Of course, proper derating below these maximum limits is necessary in the actual application to assure reliable performance.

 $T_{c(MAX)}$ —Maximum allowable case temperature. Since the user of semiconductors has no way of actually measuring the junction temperature inside of a device package, the case temperature becomes a practical, useful value which can be measured and monitored. As a result, data sheets usually show the current carrying capability of a device as a function of its case temperature. The case temperature is directly related to the junction temperature by the device characteristic, $R_{\theta JC}$ (thermal impedance).

 $R_{\theta JC}$ —Thermal impedance, junction to case. $R_{\theta JC}$ is measured in degrees centigrade per watt and is determined by the device construction and materials used. This parameter indicates the ability of the device to transfer heat away from the junction and out through the device case—the lower the value, the better.

Other basic device parameters by family type that are essential for the semiconductor user to know in the selection effort are as follows:

Family Type	Input/ Control	Output	Losses	Overload	Other Special
RECTIFIERS	NONE	(1) I F (av) VRRM (2)	V _{FM,} I _{RRM} (4)	I _{FSM} (5)	t _{rr} (6)
SCR's	^I GT ⁽⁶⁾	I _{T(av),} (1)V _{RRM} (2)	V _{TM,} I _{RRM} (4)	I TSM	di/dt, $^{(7)}$ dv/dt, $^{(8)}$ t _{on} , $^{(9)}$ t q $^{(10)}$
TRANSISTORS	I B ⁽⁶⁾	^I C, ⁽¹⁾ V CE ⁽²⁾	V _{CE} (SAT), (3) V _{BE} (SAT), (4) (5)	NONE	SOA, (7) t _{on,} (8) t _{off,} (9) hFE (10)

Table 2.1 BASIC SEMICONDUCTOR DEVICE PARAMETERS

The following expansion of the items in the table explain their importance:

RECTIFIERS

(1) I_{F(av)}—Maximum full cycle average forward current (measured with an average reading meter) at a

- specified case temperature. This is the maximum amount of current that can be controlled or rectified by any given device.
- (2) V_{RRM} —Maximum repetitive peak reverse voltage. This is the maximum allowable voltage that a device will block in the reverse direction. An associated parameter, V_{RSM}, defines the device capability to withstand non-repetitive reverse voltage peaks of less than five millisecond duration. This parameter typically ranges from zero to 25% above the repetitive values.
- (3) V_{FM} —Maximum forward voltage drop at a specified forward current and device case temperature. The large majority of the losses in a rectifier are due to the forward voltage drop. Therefore, low forward drops are very desirable in high power devices because less power is dissipated (P=V_{FM} X I_{F(qv)}).
- (4) I_{RRM} —Maximum reverse leakage current at V_{RRM} . Low reverse leakage currents are desirable for the same reason as a low V_{FM} , less power (watts) to be dissipated (P=V_{RRM} X I_{RRM}).
- (5) I_{FSM} —Maximum one-half cycle (60H_Z) peak surge current (under load). Ability to withstand current surges in excess of the rated operating current extends the application capability of a rectifier. This characteristic is non-repetitive in nature and, by definition, may occur only 100 times within the life of the device. An associated parameter, I²t, is used to coordinate sub-cycle fuse clearing time with sub-cycle fault rating of a rectifier.
- (6) trr —Maximum reverse recovery time relates to the time required for the reverse current spike to dissipate after a rectifier stops conducting forward current. This characteristic is especially important on a class of rectifiers called "fast recovery" devices. Because all rectifiers are essentially "self-operated" switches, they have finite switching times. This characteristic becomes important when one wishes to rectify (or switch) at high frequencies.

SCR's

- (1) I_{T (av)} —Maximum allowable average forward current at a specified conduction angle and case temperature. If a conduction angle of 180° is specified, this parameter would be the same as I_{F (av)} in a rectifier. However, unlike a rectifier, the conduction angle of an SCR can be controlled from 0 to 180° (typically, a data sheet lists five or six of these angles). The conduction angle defines that part of the sine wave during which the device is conducting current.
- (2) V_{RRM} —Maximum repetitive reverse blocking voltage. The same comments apply here as for V_{RRM} of a rectifier. The SCR in addition to having reverse blocking capability will also block voltage in the forward direction. V_{DRM} is the designation for the maximum value of repetitive forward blocking voltage. Most SCR designs are symmetrical in nature—that is, the forward and reverse repetitive blocking voltage capabilities for a given device are equal (V_{DRM} = V_{RRM}). Both repetitive voltage ratings (V_{RRM} V_{DRM}) have corresponding non-repetitive voltage ratings, V_{RSM} and V_{DSM}
- (3) V_{TM} —Maximum forward voltage drop at a specified forward current and device case temperature. The same comments apply here as for V_{FM} in a rectifier.
- (4) I_{RRM} —Maximum reverse leakage current at V_{RRM} . Again, as with a rectifier, low leakage currents, I_{RRM} , are desirable as less power will be dissipated in the blocking (off-state) mode. In addition, as an SCR has repetitive forward voltage capability, V_{DRM} , it also has a forward leakage current, I_{DRM}
- (5) I_{TSM} —Maximum peak surge current for a given number of cycles at 60H_Z. As with a rectifier, this characteristic is by definition non-repetitive and may occur only 100 times within the life of the device. In addition, following this current surge, the repetitive forward blocking voltage, V_{DRM}, is not guaranteed. This subject is treated in more detail in the Thyristor Surge Suppression Ratings Application Data Sheet in the General section of the Data Book. An associated parameter, I²t, is used for fuse coordination.
- (6) I_{G T} —Minimum DC gate current to trigger (turn-on) an SCR at stated conditions of temperature and forward blocking voltage. This characteristic specifies the absolute minimum amount of current that must be provided from a logic source to switch an SCR from blocking voltage (off-state) to conducting current (on-state). For more information, see the SCR Gate Turn-on Characteristics Application Data Sheet in the General section of the Data Book.
- (7) di/dt—Maximum rate of rise of peak current allowable with respect to time during SCR turn-on. Because an SCR requires a finite time to turn on, only a very small area of the junction is conducting current at the instant the device is triggered on. If the current is building up very quickly, it must all go through this very small area. When the specified di/dt limit is exceeded, the device can develop a hot spot which can destroy the unit. This is generally not a problem in 60H_Z phase control applications but becomes a problem in DC switching applications (e.g. inverters) or in capacitor discharge circuits. When comparing di/dt ratings of different manufacturers be sure the ratings are both repetitive or nonrepetitive and that the ratings are based on the same set of test conditions.

- (8) dv/dt—Minimum rate of rise of peak voltage with respect to time which will cause switching from the offstate to the on-state. When the dv/dt limit is exceeded, the potential danger exists of turning the SCR back on when it should remain off. As with di/dt this is generally only a problem in square wave or step function applications. Review all test conditions when comparing dv/dt ratings of different manufacturers—dv/dt can be expressed as either a linear or an exponential function.
- (9) t_{on} —Time required for the forward current to reach 90 percent of its final (or maximum) value when switching from the off-state to the on-state under specified conditions. Switching times are important for two reasons—they affect the upper frequency at which the device may be operated and to some degree they determine the system efficiency. When considering frequency of operation (or in pulse applications, the desired pulse width), it becomes simply a matter of whether or not the device can be turned on and off fast enough to satisfy the requirements. Power losses when switching from blocking voltage to conducting current can be a significant consideration for determining system efficiency.
- (10) t_q. —Turn-off time relates to the time required for an SCR to switch from conducting current to blocking forward voltage. Turn-off time is important for essentially the same reasons as turn-on time. Turn-off time is not critical in most 60 cycle phase control applications; however, a special class of SCR's called "fast switching" devices are used in inverters, choppers, and other high frequency circuits. In these types of applications, the designer must be careful to select a device offering the optimum combination of current handling capability, voltage blocking capability, and turn-off time capability. Due to the wide variety of fast switching applications, data sheet turn-off conditions do not necessarily reflect actual circuit operating conditions. Contact (a) if help is needed in selecting the proper device.

TRANSISTORS

- (1) I_C—Collector current. In most applications, this is the current that is manipulated to perform some desired function. In a series regulator, for example, the collector current can be increased or decreased by base current control, depending upon what the load requires.
- (2) V_{CE} —Collector-to-emitter voltage. This is similar to V_{RRM} in rectifiers and SCR's in that it represents the device blocking capability in the off-state. There are many related designations: V_{CEO} , V_{CES} , V_{CER} , etc. They differ only in the third subscription letter which indicates the condition of the base: O-open, R-resistor, S-shorted, etc.
- (3) V_{CE} (SAT) —Collector-emitter saturation voltage. When driving the base of a transistor, a point is reached where increased base current no longer results in decreased collector-emitter voltage. This is saturation. V_{CE} (SAT) is a measure of the voltage across that junction under saturation and is comparable to forward voltage drop in rectifiers and SCR's. V_{CE} (SAT) and I_C lead to power losses in the transistor during saturated operation and therefore, are important considerations.
- (4) V_{BE (SAT)} —Base-emitter saturation voltage. The same general comments apply here as for V_{CE (SAT)} except the comments now refer to a base-emitter rather than a collector-emitter condition. High V_{BE (SAT)} or large variations in V_{BE (SAT)} will cause corresponding changes in V_{CE (SAT)}
- (5) I_{CEO} —Collector-to-emitter leakage current with the base open. This is usually the primary leakage loss in a transistor. This characteristic is comparable to I_{RRM} in rectifiers or SCR's. While low values of leakage are desirable to minimize power losses, low leakage is not necessarily synonymous with reliabilitv.
- (6) I_B —Base current. The function of the base current in a transistor is similar to that of the gate current in an SCR. However, in a transistor, current must be provided into the base as long as the transistor is to be kept on, whereas, the SCR only requires an initial pulse of current to turn it on.
- (7) SOA—Safe Operating Area. SOA is a voltage-current plot which describes an area in which the transistor can operate safely. A time limit is given for the collector voltage and collector current that can occur simultaneously in the transistor. Forward bias SOA ratings require the base-emitter to be forward-biased throughout the time that the peak power condition exists and is usually measured in a resistive circuit. A related term is forward current stability, denoted by the symbol I_{SB}. Safe operation of a transistor during inductive switching when a transistor in series with an inductor is turning off necessitates consideration of additional characteristics. The inductance will keep current flowing for some period of time. During this time, the voltage is increasing across the transistor creating a VxI product or power dissipation. Because the base-emitter is reverse-biased, the transistor cannot dissipate as much power. The energy that a transistor can support is denoted by the abbreviation E_{SB}. Inductive switching ratings can be used as a guide to compare transistor capabilities, but actual capabilities must be verified in the actual circuit.
- (8) & (9) ton & toff —Turn-on time and turn-offtime. These are important parameters in transistors for essentially the same reasons given in the SCR remarks.

(10) h_{FE} —DC current gain under specified conditions of collector current and collector-emitter voltage. This transistor characteristic is the ratio of DC collector current to DC base current. This amplification factor determines the amount of output (I_C) that is generated by a given input (I_B). For example, if h_{FE} is 20 at I_B =1 ampere, then I_C is 20 amperes.

2. CONFUSING TERMINOLOGY—MANUFACTURER VERSUS USER INTERPRETATION

Many users and designers have either been lucky or have learned the hard way how to properly interpret a semiconductor manufacturer's data sheet. Unfortunately, many conventional semiconductor terms and definitions can have double meanings, depending upon whether they are being interpreted from the manufacturer's or the user/designer's point of view. What a semiconductor manufacturer might define as a maximum (minimum) value on a data sheet could well be a minimum (maximum) value for the designer and user. A few examples utilizing SCR terminology will illustrate this dilemma:

Data Sheet Terminology	User or Designer's Interpretation Might Be	Semiconductor Mfgr's Actual Meaning	Remarks
(1) Maximum I _{GT} = 150 ma	Does this mean that no more than 150 ma is needed to turn-on these SCR's?	All SCR's supplied will have gate currents less than or equal to 150 ma. User must supply more than 150 ma to assure proper SCR turn-on. In fact, 3 to 5 times as Max. Ict is desirable for SCR turn-on in certain applications.	Here, a value defined as maximum by the manufacturer is for the user or designer, an absolute minimum design limit.
(2) Maximum blocking or off-state voltage V DRM , V RRM = 1200 volts.	Does this mean that some devices received will block or support less than 1200 volts?	All devices supplied will support at least 1200 volts; however, this limit cannot be exceeded in the application.	In this case, the manufacturer's maximum is also, the designer's or user's maximum limit.
(3) Minimum di/dt – 200 A/μs	Does this mean that 200 A/µs can be exceeded in a given application?	All devices supplied will withstand a rate of current rise (di/dt) of at least 200 A/µs; however, this limit cannot be exceeded in the application.	Here, the manufacturer's minimum value becomes the user's or designer's maximum design limit.
(4) Typical turn off time $t_q = 40 \mu_s$	Can this typical turn- off time be relied on in a given application?	This 40 _{µs} turn-off time only represents an average value for the product family and is not a guaranteed limit.	Typical values should not be relied upon by the designer or user as guaranteed values.

Table 2.2 Confusing Data Sheet Terminology

Realistically, data sheets should be written from the user and designer's view point rather than the manufacturer's device-oriented point of view—however, since most users and designers have been "weaned" on this existing terminology, a change in philosophy would create only more confusion. To help those who have yet to conquer data sheet terminology, the following suggestions are offered:

The safest way to interpret a maximum or minimum data sheet limit is to recognize that (1) they both represent worst case designer or user conditions, (2) they both are guaranteed by the semiconductor manufacturer. As for "typical" values, don't rely on them as maximum or minimum design limits in an application. If a "worst case" limit rather than a "typical" value is needed for a particular application, have the semiconductor manufacturer guarantee the design limit needed either by actual testing or written certification. If still in doubt about how to interpret a given data sheet parameter, call the semiconductor manufacturer for clarification.

3. HOW TO USE THE WESTINGHOUSE DATA BOOK

There are four easy ways to locate technical data in the Westinghouse Data Book:

Device Type Number Search

(1) IF ONLY THE PRODUCT TYPE NUMBER IS KNOWN:

Go to the Master Cross Reference Type Number Index in the GENERAL section of the Data Book. Using this JEDEC and alpha/numeric industry index, the reader can rapidly locate any power semiconductor product type number for which Westinghouse offers an exact or suggested replacement along with the page number of the recommended Westinghouse product data.

(2) IF BOTH THE PRODUCT FAMILY AND THE PRODUCT TYPE NUMBER ARE KNOWN:

Go the the alpha/numeric Product Type Number index at the beginning of the approprate generic PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors). Using this index, the reader can turn directly to the page location of a given product type number.

General Application Search

(3) IF A SPECIFIC PRODUCT APPLICATION REQUIREMENT IS KNOWN:

Go to the appropriate PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors), look under the appropriate product subgroup (i.e. General Purpose or Fast Recovery for Rectifiers), and scan the Product Capability Graphs and Product Selector Guides. These graphs and guides are presented in order of increasing average current so the reader can quickly locate a suitable Westinghouse product type and corresponding page number data location.

(4) IF BOTH A SPECIFIC PRODUCT APPLICATION REQUIREMENT AND THE DESIRED PRODUCT PACKAGE IS KNOWN:

Go to the w Data Book Table of Contents for the location of the appropriate PRODUCT section, product subgroup, and package type. The page number shown marks the beginning of the desired data section; the data for a given package type is listed in order of increasing average current rating to simplify the reader's search.

4. KNOW YOUR APPLICATION REQUIREMENTS

Many applications using general purpose rectifiers or transistors and phase control SCR's require the user only to consider such basic parameters as current, voltage, and temperature when developing a new design, working on a conversion or an equipment upgrade, or looking for a replacement device. However, there can be many secondary parameters which can adversely affect desired equipment operation—especially if devices are used in series and/or parallel combinations. Most fast recovery rectifiers, high power switching transistors, and fast switching SCR's require close scrutiny by the user on essentially all device parameters to assure proper equipment operation.

To assist the user in selecting the proper power semiconductor for a given application, Westinghouse has developed a series of Application Checklist/Work Sheets in the following areas: (1) General Purpose and Fast Recovery Rectifiers (2) Phase Control SCR's (3) Fast Switching SCR's (4) Power Transistors (5) Assemblies. To use a particular form, simply make a xerox copy and fill it out. With your application requirements down on paper in a logical order, it will be easier to locate a suitable device by self-selection or by calling or writing the semiconductor manufacturer for a device recommendation.

P.S. Even if you have already selected a device yourself, it might be worthwhile getting a confirmation from the manufacturer.

To assist the user in searching for replacement devices, a handy Device Identification Checklist has been developed. A copy of this form is presented on page 54.

GENERAL PURPOSE AND FAST RECOVERY RECTIFIER APPLICATION CHECKLIST

(Make copy for each use)

1. APPLICATION:	□ LEAD MOUNT
	□ STUD MOUNT - { OR
2. CIRCUIT:	□ DISC MOUNT
Sketch circuit	□ OTHER
(showing all component values	□ NO PREFERENCE
including inductances) or attach drawing	Special size, weight, or other restrictions
3. CIRCUIT VOLTAGE;	FOR APPLICATIONS REQUIRING FAST RECOVERY CHARACTERISTICS, COMPLETE THE FOLLOWING SECTION -
Maximum reverse voltage across rectifier	T DECOMEDY CHARACTERISTICS: (16 required shoots were
Maximum expected transient voltage	 RECOVERY CHARACTERISTICS: (If required, sketch waveform(s) on back of page)
Desired voltage safety factor	Maximum reverse recovery time allowable, t r r
Preferred rectifier device voltage	Recovery time, t _a
ratingV	Recovery time, t _b
• Other	Maximum overshoot current, IR(REC)
4. CIRCUIT CURRENT: (sketch waveform(s) on back of page)	• Peak current, I _{FM} A
Average forward current* A	• Pulse width, tp
- Waveform and frequency	 Rate of current fall, diR/dtA/us
- Duty cycle	• Waveform
Overload peak current (waveform) A	Maximum junction temperature°C
- Duty cycle	
- Pulse width	1 _{EM}
- Resume operation following overload	
Peak surge current (waveform) A	
- Pulse width	
- Number of cycles	t _o 0.50 I _{R (RE}
• Othér	V.3024(AA
*If paralleling is required, state method of current sharing	IR(REC) or I OS
5. THERMAL:	8. PROJECT REQUIREMENTS: Quotation Due Date
Cooling Medium (check one) -	
☐ AIR - ☐ Natural Convection, altitude feet or	Quantity Required Person Requesting Information
□ Forced LFMCFM**	• Timetable Name
	Long-range Potential Phone X
**Duct cross-sectional area	Other Remarks Job Function
□ WATER GPM flow rate	Company
□ OIL (immersed) - Type Manufacturer	Address
□ OTHER	□ Special screening and/or City State
Cooling medium maximum temperature, °C	quirements are attached. Bldg Zin
• If heat sink is known, specify Rasa °C/W.	□ Also quote on this application
Other thermal considerations MECHANICAL:	using @ assemblies. Please complete a copy of this form for each different application. Forward this form to Westinghouse Electric Corporation,
Desired package type (check one) -	Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 for a quote.

W PHASE CONTROL SCR APPLICATION CHECKLIST (Make copy for each use)

. APPLICATION:	6. THERMAL:
	 Cooling Medium (check one) -
	□ AIR - □ Natural Convection, altitudefeet or
CIRCUIT: Sketch circuit	□ ForcedLFMCFM *+
(showing all	
component values	**_
including	**Duct cross-sectional area
inductances) or attach drawing	□ Water GPM flow rate
	□ OIL (immersed) - Type Manufacturer
	□ OTHER
CIRCUIT VOLTAGE:	Cooling medium maximum temperature, °C
Maximum peak forward and/or reverse voltage across SCR	• If heat sink is known, specify R_{e} SA °C/W.
Maximum expected transient voltage	Other thermal considerations
Desired voltage safety factor	7. MECHANICAL:
Preferred SCR voltage rating	Desired package type (check one) -
• Other	,
CIRCUIT CURRENT: (sketch waveform(s) on back of page)	□ STUD MOUNT
Maximum continuous SCR current* -	□ DISC MOUNT
DC, DAVERAGE, or DRMS	□ INTEGRAL HEAT SINK
• Phase - □1¢, □3¢, □6¢, or □OTHER	□ FLAT BASE
Conduction angle - □Sine or □Square, degrees	□ OTHER
Current waveform, frequency, and duty cycle	□ NO PREFERENCE
	Special size, weight, or other restrictions
Overload peak current (waveform)	
- Duty Cycle	
- Pulse Width	8. PROJECT REQUIREMENTS: Quotation Due Date
	Quantity Required Person Requesting Informatio
- Resume Operation Following Overload □YES □NO	Quality Required Ferson Requesting information
	Timetable Name
Peak surge current (waveform) A	Long-range Potential Phone X
- Pulse Width	Other Remarks Job Function
- Number of Cycles	
A (1 /D Ai-)	Company
- Assymetry (L/R ratio)	Address
• Other	□ Special screening and/or
*If paralleling is required, state method	right reliability test re-
of current sharing:	Also quote on this Bldg ZIP
. GATE DRIVE AVAILABLE:	application using 😭 assemblies.
	using (#) assembles.
• G2	
• IGT (max) 25°Cma	
Forward gate source voltage	Please complete a copy of this form for each different application
G2	Forward this form to Westinghouse Electric Corporation Semiconductor Division, Attention: Sales Department
<i> </i> \	Youngwood, Pa. 15697 for complete quotation. If you need faste
1 /:\	service, please call (412) 925-7272 for a quote.
1 / 1 \	
, / i \	
GT _(max)	

-- GR -- GP-

- 1GS -

(22) FAST SWITCHING SCR APPLICATION CHECKLIST

(Make copy for each use)

1. APPLICATION:		5. SWITCHING:	
		□ Soft Commutation or □	Hard Commutation
2. CIRCUIT:		Maximum available turn-o	ff time, t _q µs @ T _J °C
Sketch circuit (showing all		Reapplied dv/dt	V/µs
component values	Ì	Maximum operating frequent	encyor duty cycle%
including		6. GATE DRIVE AVAILABLE:	
inductances) or attach		• I _{G2} A	- • t _{GP} μs
drawing		• t _{GR}	• tgs <u>µs</u>
3. CIRCUIT VOLTAGE:		• IGT (max) @ 25 °C	ma
Peak forward blocking voltage, VDRM	<u>v</u>	Forward gate source voltage	geV
Peak reverse blocking voltage, V RRM	v	7. THERMAL:	
Maximum expected transient voltage	v	 Cooling Medium (check of 	one) -
Desired voltage safety factor		☐ AIR - ☐ Natural Convec	•
Preferred SCR voltage rating	v	□ Forced	LFM CFM **
• Other			
CONCURRENT VOLTAGE & CURRENT INFORMATION ACROSS AN SCR AT		**D	uct cross-sectional area
SET THE PRINCIPLE TO SHARE TO SHARE THE PRINCIPLE THE PRINCIPLE THE PRINCIPLE THE PRINCIPLE TO SHARE THE PRINCIPLE THE PRINCIPLE THE PRINCIPLE THE PRINCIPLE THE PRINCIPLE THE PRINCIPL	-	□ WATER GPN	flow rate
CORWARD		□ OIL (immersed) - Type_	Manufacturer
1 V V V	•	□ OTHER	
V _{RRM}		Cooling medium maximum	m temperature, ºC
F TURN-OFF tq →		• If heat sink is known, spe-	cify ^R
M 1 17M		Other thermal considerati	ons
ਹੈ ਹੈ ਉਵ		8. MECHANICAL:	
ORR OF THE PROPERTY OF THE PRO		 Desired package type (ch 	eck one) -
THE RECO OF THE RE		□ STUD MOUNT	
a → □ ta → □ ← □ □ ta → □ l	(e)	□ DISC MOUNT	
on back of page)	(5)	□ INTEGRAL HEAT SINK	
, ,		□ FLAT BASE	
Worst Case Pulsewidth Conditions		OTHER	AND AND A STATE OF THE STATE OF
Maximum peak current, I _{TM}	A	□ NO PREFERENCE	
- Pulsewidth, t _P	μs	 Special size, weight, or ot 	ther restrictions
- Waveshape	.,	9. PROJECT REQUIREMENT	S: Quotation Due Date
Initial rate of current rise, di/dt	Α/μs	Quantity Required	Person Requesting Information
Rate of current fall, diR/dt	A/µs	Timetable	Name
Reverse recovered charge, QRR	μcoul.	Long-range Potential	Phone X
- Max, overshoot current I R(REC)		Other Remarks	Job Function ————
- Recovery time, t _a	μs	4	Company
- Recovery time t _b	μς	-	Address
Peak surge current (waveform)		 Special screening and/or high reliability test re- 	City State
- Pulsewidth		quirements are attached. Also quote on this	Bldg Zip
- Number of cycles		application	
- Assymetry (L/R ratio)		using w assemblies. Please complete a copy of this	form for each different application.
• Other		Forward this form to Westing	house Electric Corporation, Semi-
*If paralleling is required, state method of current		15697 for complete quotation	Sales Department, Youngwood, Pa. If you need faster service, please
sharing:		call (412) 925-7272 for a quot	e.

TRANSISTOR APPLICATION CHECKLIST (Make copy for each use)

1. APPLICATION:	• Turn-off storage time, t,
	• Turn-off fall time, t _f μs
	Maximum junction temperature C
2. CIRCUIT: Sketch circuit (show all	6. THERMAL:
component values	Cooling Medium (check one) -
including inductances)	□ AIR - □ Natural Convection, altitudefeet or
or attach drawing	□ ForcedLFMCFM**
. CIRCUIT VOLTAGE:	** Duct cross-sectional area
Source voltage	<u>∨</u> □ WATER GPM flow rate
Maximum circuit voltage across transistor	□ OIL (immersed) - Type Manufacturer
□ clamped or □ unclamped	D OTHER -
Maximum expected transient voltage	<u>v</u>
Maximum emitter base reverse	Cooling medium maximum temperature, Cooling medium temperatu
voltage during operation	If heat sink is known, specify Re SA °C/W. Y
Desired voltage safety factor	Other thermal considerations
Preferred transistor voltage rating	γ
• Other	7. MECHANICAL:
	Desired package type (check one) -
CIRCUIT CURRENT: (Include lead line elected w/weelernee	□ DIAMOND MOUNT (TO-66/TO-3)
. CIRCUIT CURRENT: (Include load line sketch w/unclampe	
inductances specified)	. □ DISC MOUNT
Maximum collector current*	□ OTHER
Collector current duty cycle% and frequency F	dz □ NO PREFERENCE
Current gain	Special size, weight, or other restrictions
Other If possibly in a required state mathed of aurent sharing.	
If paralleling is required, state method of current sharing SWITCHING:	8. PROGRAM REQUIREMENTS: Quotation Due Date
¹ B(ON)	Quantity Required Person Requesting Information
S(SN)	• Timetable Name
0-	Long-range Potential Phone X
	Other Remarks Job Function
B(OFF)	Company
	Address
90%	□ Special screening and/or City State
10%	quirements are attached.
0 10%	□ Also quote on this ^{Blog.} ————————————————————————————————————
TURN ON TIME TURN OFF TIME	Please complete a copy of this form for each different application
Maximum base current, I B (ON)	Forward this form to Westinghouse Electric Corporation Semiconductor Division, Attention: Sales Departmen
Maximum base current, I B (OFF)	Youngwood, Pa. 15697 for complete quotation. If you need faste service, please call (412) 925-7272 for a quote.
Turn-off base supply voltage	V
• Turn-on delay time, t _d	μs
• Turn-on rise time, t _r	μs

. APPLICATION:	□ WATER GPM flow rate
	□ OIL (immersed) - Type Manufacturer
	OTHER -
OIRGUIT	Cooling medium maximum temperature, °C
c. CIRCUIT: Sketch circuit	Other thermal considerations
(showing all component	
values including inductances) or	
attach drawing	6. MECHANICAL:
	Special semiconductor device package requirements
. CIRCUIT VOLTAGE:	If YES, specify desired package type
Maximum forward and/or reverse voltage across	 List any size, weight, mounting, or other requirements
assembly	<u>v</u>
Maximum expected transient voltage	<u> </u>
Desired voltage safety factor	
Preferred assembly voltage rating	7. PROJECT REQUIREMENTS: Quotation Due Date
• Other	
I. CIRCUIT CURRENT: (sketch waveform(s) on back of p	Quantity Required Person Requesting Information
Maximum output current*	A • Timetable Name
□AVG., □ RMS, or □ PEAK	Long-range Potential Phone X
- Waveform and frequency	Other Remarks Job Function
- Duty cycle	% Company
Overload peak current (waveform)	A Address
- Duty cycle	% □ Special screening and/or City State
- Pulse width	quirements are attached. Bldg Zip
- Resume operation following overload	□NO
Peak surge current (waveform)	
- Pulse width	
- Number of cycles	Please complete a copy of this form for each different application Forward this form to Westinghouse Electric Corporation
•	Semiconductor Division, Attention: Sales Departmen
•	Semiconductor Division, Attention: Sales Departmen Youngwood, Pa. 15697 for complete quotation. If you need faste service, please call (412) 925-7272 for a quote.
Transformer KVA and percent impedance Other If paralleling is required, state method of	Youngwood, Pa. 15697 for complete quotation. If you need fast
Transformer KVA and percent impedance Other	Youngwood, Pa. 15697 for complete quotation. If you need fast
Transformer KVA and percent impedance Other *If paralleling is required, state method of current sharing:	Youngwood, Pa. 15697 for complete quotation. If you need fast
Transformer KVA and percent impedance Other 'If paralleling is required, state method of current sharing: THERMAL:	Youngwood, Pa. 15697 for complete quotation. If you need fast

3 SEMICONDUCTOR PROCUREMENT

1. SPEND SEMICONDUCTOR DOLLARS WISELY.

Each user must consider several facets of device and supplier capability in order to make intelligent procurement decisions concerning power semiconductors. Suggestions for evaluation of the "total" value of a power semiconductor supplier are provided in Section 2. Section 1 deals briefly with other suggestions for consideration prior to selecting a device and placing an order: (1) "total" cost, including costs over and above the price of the device and (2) engineering-related financial considerations, such as efficiency, reliability, and device availability versus electrical capability.

Total Cost. The price of a power semiconductor is certainly one of the major items for consideration prior to selection of a device to satisfy the user's needs. However, a user must also consider other costs in order to optimize "total" cost. Packaging, transportation, insurance charges, and hardware requirements associated with a device are easily measurable, although often disregarded. Other total cost considerations are not measured as easily, but can prove to be very significant alternatives. For example, blanket contracts, blanket orders, letters of intent, and other types of purchase agreements are generally vehicles used to obtain lower device prices, however, these agreements help to reduce other cost factors. When a power semiconductor manufacturer has advance knowledge of on-going user requirements, better planning is possible. The net result is improved reproducibility, reduced delivery lead time which helps to minimize user safety stock, and better on-time shipping performance.

Often when a user buys several different semiconductor type numbers in the same product family, a savings can be obtained by ordering only the best rated unit (current, voltage, etc.) for all needs, thus qualifying for a larger volume price discount. Combining purchases for device types of different voltage ratings is usually the most practical way to achieve a higher volume price discount (this is especially true for the lower voltage ratings of a given product type); sometimes combining various current ratings of the same package type will also result in savings. If in doubt, ask the manufacturer to review your semiconductor procurement list and recommend the most economical purchase option. The manufacturer will be glad to help since it is easier to fill one large order for a single device type than many small orders for different part numbers. In addition, the user saves time and money in incoming inspection, inventory costs, improved delivery performance, and standardization of parts.

Another frequently overlooked cost factor relates to special handling. Costly set-up charges can be avoided and better price stability and shorter delivery lead times can be realized if the user limits the number of releases and maximizes release quantities for each device. A decision to enter an order through an authorized distributor to avoid the generally higher minimum release of a manufacturer can often be a reduction in total cost even though the individual device price may be higher; however, beware of counterfeit rebranded devices. Deal only with authorized distributors. Trying to save a few dollars on a unit price basis can add significantly to total costs if the devices are determined to be defective at a later date. Extra inspection steps, such as a requirement for government source inspection, also can cause delayed shipments and increased costs because of delays incurred while waiting for arrival of inspectors.

Engineering Related Financial Considerations. Efficiency of equipment, cost of maintenance, reliability, and the cost of auxiliary and protective circuitry are significant items for review in order to obtain a true picture of the cost of a particular power semiconductor. It is often difficult to determine a dollar value for each of these factors, but each item must be considered, nonetheless, if an intelligent procurement decision is to be made.

In a field of rapid technological improvement such as power semiconductors, new devices are introduced at frequent intervals. A single new device often replaces two or more existing device types and/or procurement of new completely tested assemblies of devices on heat sinks (where semiconductor purchase dollars may rise, but total equipment costs decline) is often more economical for the user than handling individual parts. Review of the latest available devices is, therefore, an essential ingredient in wise power semiconductor procurement.

The user must also determine the optimum trade-off between electrical parameters as these parameters relate to the ability of the device manufacturer to reproduce devices consistently. For example, selection of a fast switching SCR often requires trade-offs among blocking voltage, current rating, and turn-off time to assure availability in large quantities.

Adequate safety factors on device ratings are another significant cost-related design consideration. Manufacturers of power semiconductors normally warrant products to meet specific electrical parameters. The designer must apply safety factors to assure the integrity of the application, but application of excessive safety factors can be costly.

Power semiconductor manufacturers spend considerable time and money to develop device families with useful, user-acceptable, ratings. When possible, users should attempt to incorporate these "standard" devices into applications to assure themselves of the best price and product availability. Special electrical test requirements and/or mechanical modifications normally add to cost and delivery lead times.

2. EVALUATING A POWER SEMICONDUCTOR SUPPLIER

The traditional method for evaluating the value of a supplier-price, delivery, service (P,D,S)—is a gross oversimplification of the measurement criteria. The P,D,S rule could cause one to "short change" oneself and prevent the company from realizing the total value of capabilities and services offered by truly good suppliers. Eighteen key items to be used for comparing suppliers have been identified and discussed below under four major categories—General Support, Pre-Order Period, Order Period, and Post-Order Period (see Table 3.1).

Each of the categories (or each of the individual items) must be weighted according to the needs or requirements of each user organization. That user must then evaluate each available supplier for the most important categories (or items). The manufacturer(s) scoring the highest total rating represents the best "total value" supplier to the user.

This method for evalution is presented as a tool to aid in the selection of a supplier. The method is not simply a means of reducing the values of a supplier to a numerical score; the purpose is to identify and quantify the key areas where potential power semiconductor supplier(s) can represent real value to a user.

GENERAL SUPPORT

- -Sales coverage
- —Distributor support
- -Technological leadership
- -Product reproducibility

PRE-ORDER PERIOD

- —Technical information support
- -Application engineering assistance
- -Sample/prototype service
- —Quotation response
- -Competitive price and delivery

ORDER PERIOD

- -Order acknowledgement
- -Customer information service
- -On-time shipments
- Advance warning of shipping delays
- -Condition of shipments

POST-ORDER PERIOD

- -Reliability
- -Settlement of claims
- --Warranty
- -Replacement of obsolete device types

Table 3.1 Supplier Evaluation Checklist

GENERAL SUPPORT

Sales coverage is the primary link between a power semiconductor manufacturer and the user. A good factory salesperson or manufacturer's representative is a problem solver, not merely an "order taker". A good salesperson is knowledgeable about the total product offering and service capability of the manufacturer and can therefore resolve pre-order, order, or post-order problems or obtain anwers to questions that might arise during these periods.

Distributor support is an important factor in complete service support. Authorized distributors supply local, reliable service for production as well as emergency requirements by providing ample inventories and many value-added features. In addition, these distributors offer a broad spectrum of complimentary products.

Technological leadership assures the user that product which is purchased is manufactured with modern techniques and exhibits state-of-the-art electrical parameters and mechanical configurations. Power semiconductor manufacturers invest millions of dollars annually to keep products and processes up-to-date. New generations of devices or redesigned, upgraded versions of existing products can drastically affect the competitive market position of the user. New power semiconductors can lower or at least maintain equipment costs, offer improved energy utilization, support a cleaner, quieter environment, provide greater system reliability, reduce equipment size and weight, provide increased safety to equipment operators and employees, and can offer new and expanded operating capabilities. Since successful users must incorporate new technologies in equipment in order to remain competitive, they must be extremely conscious of the technological leadership qualities of their power semiconductors suppliers.

Product reproducibility is an often overlooked, but extremely important term for evaluation of power semiconductor manufacturers. Many design engineers have experienced the unfortunate situation of designing a system which incorporates a new state-of-the-art device sample produced under laboratory conditions and then be unable to obtain the device in sufficient volume and/or at a reasonable price. The yield-dependent nature of power semiconductor production dictates the necessity for a manufacturer to maintain a well-controlled production process in order to provide adequate quantities at acceptable price levels. A total value power semiconductor supplier must combine those controls with a full understanding of user requirements—device specifications, required quantities, production timetables.

PRE-ORDER PERIOD

Technical information support includes such items as product data sheets, application data sheets, seminars, technical papers, application handbooks, product newsletters, price lists, cross reference guides, and other semiconductor information. These written communications are the user's most reliable and most comprehensive source of information regarding a given manufacturer's products, services, and capabilities. The completeness and accuracy of the material presented, its pertinence to the user's application, and the rate of response in supplying the requested information are all important factors in providing meaningful, technical information.

Application engineering assistance can be a valuable resource if properly used. While application engineers cannot be expected to design a customer's circuit, they can help a customer avoid misapplication of devices or can assist in solving many different product-related application problems. Frequently, special ratings and other data can be generated for particular customer applications. Failed semiconductors can be examined to determine the cause of failure so that corrective action(s) can be taken. Good application assistance means easy access to engineers who possess a high level of expertise and a willingness to help solve a problem for the customer.

Sample/prototype service relates to the semiconductor manufacturer's willingness to provide samples for qualification for new designs as well as for second source approval. The delivery of the sample(s) must be prompt, with test data when appropriate. Prompt sales follow-up to assure satisfactory performance in the application is required for "total-value" service.

Quotation response refers to such items as speed, accuracy, and completeness of quotation information. Good performance at this phase of a negotiation is essential to prevent serious errors in the order processing and post-order periods.

Competitive price and delivery are treated as a single entity because both items usually must fall within some pre-determined maximum allowable user limit in order to be considered as a valid quotation. The price quoted must fairly reflect the product and services being provided by the semiconductor manufacturer. The delivery time quoted must be realistic; and when a fast delivery is required, the delivery time quoted must truly reflect a best effort from the manufacturer.

ORDER PERIOD

Order acknowledgement must be prompt and accurate to assure timely shipment. Delays at this point are

totally unnecessary and are completely avoidable if the items in the General Support and Pre-Order Periods have been treated properly by the power semiconductor manufacturer.

Customer information service reduces user cost when provided promptly in a complete and accurate manner. Little or no effort on the part of the user should be required to determine the status of most orders.

On-time shipments are a true measure of the stated capability of a power semiconductor manufacturer. Historical on-time shipment performance becomes a benchmark for determination of supplier "believability" in all facets of service. Willingness to recognize and discuss reasons for missed delivery promises is another item to consider when evaluating a power semiconductor supplier.

Advance warning of shipping delays is essential if a user is to have time to adjust equipment production schedules to accommodate the delay. Major causes of late semiconductor deliveries are usually the result of shifts in production yields, test correlation problems, production and/or equipment through-put limitations, and/or out-of-spec incoming material component parts. Knowledge of an impending delay must be transmitted to the user immediately.

Condition of shipments when received at the user's plant, to a great extent, depends upon how the product was packaged for shipment and the quality control procedures observed prior to and during shipment. Experienced packers using specially designed cartons and packing material for power semiconductors can make the difference as to whether or not a shipment of product will survive the trip from supplier to user. However, condition of shipments is also a function of the freight carrier employed to move the product and the types of carriers available from the supplier's facility to the user's facility is an important consideration.

POST-ORDER PERIOD

Reliability generally refers to long term product performance - actual field service experience. Reliability is a shared responsibility among the semiconductor manufacturer, the original equipment manufacturer, and the end user and is often regarded as the single most important item by all three groups.

Settlement of claims is often not considered as being very important; however, one only needs to have a single bad experience to really appreciate its value. Settlement of claims includes such things as shipment shortages, incorrect pricing and invoicing, rejected material, transportation charges, customer rework orders, and cancellation charges. There can be a wide discrepancy among various semiconductor manufacturers as to how promptly, efficiently, and fairly such claims are handled.

Warranty is like insurance — no one ever needs it until it is too late. If nothing else, a warranty is at least an indication of the confidence a manufacturer has in the products and services provided. A warranty should define the extent of coverage and the time span of the guarantee. The size of a semiconductor manufacturer and more importantly, the ability to financially handle a large claim must be considered — especially on certain jobs where a high percentage of the equipment cost is due to the power semiconductors.

Replacement of obsolete device types is a continuous problem for the user — both the original equipment manufacturer and the end user of the equipment. Although a fairly high degree of standardization exists within the power semiconductor industry, new designs are evolving constantly, often with slightly different mechanical dimensions and configurations and more often with improved electrical ratings. A "total value" manufacturer provides information and, whenever possible, product as replacement for old or obsolete designs. Since the end user of equipment is usually attempting to procure a few spare parts to get equipment back into operation, it is important for the OEM to maintain a small inventory of replacement semiconductors to support renewal parts business or to support orders for old equipment designs without expensive and lengthy engineering redesign. The ability of the power semiconductor manufacturer to support those needs is another significant criteria for selecting a supplier.

Several precautions must be taken when evaluating suppliers using this or any other method. The person (s) responsible for evaluating suppliers must recognize that within the organization different departmental functions (purchasing, engineering, production, maintenance, general management, research and development, etc.) will place a different degree of importance on each of the items under consideration. Therefore, an attempt should be made to at least subjectively provide a composite weighting for each of the items that reflects the needs of the total organization. One should also recognize that the type of product or services being sought (commodity-type device versus special device type) as well as the amount of business to be placed (quantity required, lead time, second source requirements) can significantly alter the choice of suppliers. Thus, the best supplier choice under one set of conditions may not be the best choice under a different set of conditions. Finally, nothing is really ever stagnant. User needs change ... Supplier's products, services, and capabilities also change over time. Therefore, a user must periodically (every 18 months to 2 years) re-evaluate or review the situation to determine whether or not the existing lineup of suppliers is still the best total value.

3. BUYER'S CHECKLIST

PRE-ORDER

Having selected the product required for a given application and having chosen the supplier, the following checklist will help to make the buyer's job easier and to minimize errors and delays:

- If a new customer, establish credit with the supplier prior to placing the purchase order.
- Identify the required device by describing with a single term, either drawing number plus revision, JEDEC number, or manufacturer part number.
- Establish total quantity required.
- Optimize total cost and delivery by considering available purchase agreements, minimum releases, authorized distributors, hardware, packaging and data requirements, standard catalog items versus specials.
- Specify requested shipping date or in-plant date.
- Provide complete and accurate "Ship To" and "Bill To" information.
- Specify shipping method (consider cost, transmit time, traceability, insurance cost.)
- Reference negotiation number or quotation number, if applicable.
- Specify tax exemption status.
- Send purchase order directly to manufacturer or authorized distributor.

ORDER

- Proofread acknowledgment.
- Contact supplier directly concerning order status.

POST-ORDER

- Contact the Returned Material Coordinator at the manufacturer concerning administrative errors, such as discrepancies on packing lists or invoices.
- Contact the Returned Material Coordinator at the manufacturer for authorization and specific return instructions prior to returning any material.

4. ENTERING AN ORDER

After selecting a device and a supplier, speed and accuracy are primary factors to consider when placing a purchase order. If a power semiconductor manufacturer can translate the information on the purchase order into factory working language quickly and accurately, the user has a much greater chance to receive the required parts in a timely manner. Chances for production line shutdowns and/or decreased production rates due to parts shortages are greatly reduced.

A concise, but complete, description of the following information on each purchase order will minimize supplier translation time and enhance translation accuracy. Remember that too much information can create as many translation errors as too little information.

- 1. "Ship To" address. Be sure to include company name, street, plant, department or building number, if applicable, city, state, and zip code.
 - 2. "Charge To" or "Bill To" address. Provide the same information as in (1) above.
 - 3. Purchase order number in a conspicuous location.
 - 4. Note any special marks required on order acknowledgements, packing lists, or invoices.
- 5. Tax information concerning exemption from state and local taxes. Taxes must be charged if exemption information does not appear on the purchase order or if an exemption certificate, resale certificate, or direct pay permit is not on file with the supplier. Remember that state taxes are based on the "Ship To" address.
- 6. Description of parts required. In order of preference the best method for part description is (1) user part number or drawing number, specifying most recent revision, (2) JEDEC number, (3) manufacturer part number. Only one of the methods should be used for a single item on a purchase order. Use of more than one method of description (e.g. XYZ Corp. part number 378A94 Revision C or 1N1203) requires order entry personnel to cross check to assure that both descriptions identify exactly the same device. Avoid listing deviations to the device specified on the purchase order. If a JEDEC or supplier part number does not adequately

describe the required part, agree upon the deviations and assign a part number prior to entering the purchase order.

- 7. Quantity of parts required.
- 8. Unit price of parts required.
- 9. Special charges. List charges for environmental testing, special tooling, and/or service charges as separate items if pre-order quotation specified them in that manner.
- 10. Shipment method preferred. Remember that "best way" or "cheapest way" for the supplier may not be the best or cheapest method for the user.
 - 11. Requested shipping date or in-plant date. Be certain to explain which date is being specified.
- 12. Negotiation or quotation number. If the supplier has assigned a number to the pre-order discussions, it is always good practice to repeat the number on the purchase order.
 - 13. Special insurance charges, if applicable.

If accurate information is supplied in each of the categories above, entering the order and shipping product will be handled more smoothly. However, the user must consciously make an effort to reduce the time required to transmit an order to the supplier, while minimizing the possibility of interpretation and transmission errors. The best solution is obviously to eliminate extra steps in the order entry process. Time delays and the possibility of errors are automatically inserted when a purchase order is routed through a sales office or through some other intermediate mail stop. Transmission of order information via wire or telephone introduces additional possibilities for interpretation and transmission errors and legally, a manufacturer cannot begin work on an order without the confirming order document. Therefore, for most accurate and efficient order processing, a user should send the purchase order directly to the manufacturer or authorized distributor, when possible.

5. IN-PROCESS ORDER INFORMATION

Significant time intervals occur between the time a user generates a purchase order and the time the user receives the parts against that order. During that period of time it becomes the responsibility of the power semiconductor manufacturer or authorized distributor to keep the user advised of the status of the purchase order. Presentation of order status information by the manufacturer minimizes the time and expense that the user must incur to determine "what's happening."

Order Acknowledgement. The first step the supplier must take is to properly acknowledge receipt of a purchase order and advise the user of a shipping schedule. Although the manufacturer generally checks for accuracy, the user, upon receipt of the acknowledgement, should compare the information to the original order to determine if the order entry process was correct. Many production, shipping, receiving, and incoming inspection problems can be avoided by careful review of documents at this stage of the order.

Order Status. Information to the user does not stop at the order acknowledgement stage. In order to reduce expediting time and expense the manufacturer must continually reconfirm shipping schedules and provide advance warning for shipping delays that may occur.

The manufacturer must also establish a contact point at the factory so that schedule changes and/or questions that do arise can be handled quickly and effectively. The responsible salesperson is a good contact point, however, travel schedules often make that individual difficult to reach and a designated contact at the supplier is most often more convenient for the user.

Invoicing. The invoicing process differs slightly from supplier to supplier, however, a few key items must be presented:

- Invoices must be traceable to the original purchase order of the user. User purchase order number, device type, and unit price are normally considered critical criteria.
- Specific payment terms and address to which payment is to be remitted.
- Delineation of charges not specifically covered by the original purchase order such as transportation charges, insurance charges, special handling fees, etc.
- Date of invoice and date of shipment. These dates normally coincide, however, deviations do occur and
 must be presented clearly in order to prevent problems with terms of payment.

Test Data. User specifications sometimes specifically require the manufacturer to serialize devices and record test results on a sample basis or for 100% of the devices shipped. Additional requirements, such as a mercury exclusion clause or a certificate of compliance, are often specified. The manufacturer must present such information clearly and include the data with each shipment to reduce receiving and incoming inspection delays at the user's facility.

® Order Acknowledgement. After a purchase order has been entered at the factory, a computergenerated order acknowledgement (yellow) for each item is sent to the customer.

(A sample acknowledgement is shown in Figure 3.1). (a) terms and conditions of sale are printed on the reverse side of the form. Orders generally are acknowledged within twenty-four hours after receipt at the factory.

- (2) Customer purchase order number.
- (3) "Charge To" address.
- (4) "Ship To" address.
- (5) Special remarks required on shipping or invoice documents.
- (6) Shipment method if specified on purchase order.
- (7) Item number.
- (8) Quantity for specified item.
- (9) Product type, part number.
- (10) Unit price.
- (11) Total value of specified item.
- (12) Administrative notes.
- (13) Requested ship date.
- (14) w scheduled ship date.
- (15) Customer Services Representative responsible for this order.
- (16) (2) telephone number.

Any inquiries concerning an open purchase order should be directed to the designated Customer Services Representative at the factory.

W Purchase Order Status Report. **Description** publishes an open purchase order status report to each customer on a weekly basis. The report has been designed to reduce expediting time and expense by providing timely order information and is mailed each Friday (with an identical copy to the responsible **Description** sales representative).

A sample of the order status report appears in Figure 3.2.

- (1) Customer purchase order number.
- (2) Quantity of parts on open order on the date of the report.
- (3) JEDEC number, w type, or customer drawing number and revision as specified on the purchase order.
 - (4) Date that the order was entered at the (2) factory and the requested ship date.
 - (5) Original (2) scheduled ship date and advance warning for revised schedule date, if required.
 - (6) Quantity of parts shipped by item since previous report, date of shipment, and shipment method.
 - (7) Pertinent product and/or planning information.
- (8) Name of Customer Services Representative responsible for these orders. Any inquiries concerning an open purchase order should be directed to the designated Customer Services Representative.

In addition to the order status information, this report enables each customer to quickly identify any errors which may have occurred in the order entry process. Early detection of such errors can reduce post-shipment problems.

Each was authorized distributor receives a copy of the order status report for purchase orders which they have placed with the factory so that the ultimate customer can receive quick order status information about power semiconductors whether the order is placed directly with or through an authorized of distributor.

Westinghouse Electric Cor	-			ACK	NOW! E	DGEMEN	J=-	
SEMICONDUCTOR DIVISION YOUNGWOOD GEN L ORDER NO DAY R NEG. NO.	03769 006			IS .	ACCEPTE	SUBJEC	T 07 T	
CUSTOMER ORDER 23 706143 10 136 87-06-143		2	CONDITIONS SIDE OF THIS			ED ON T	HE REVER	SE
08110-P(3) (1) (2)								
YZ CORP. 268 MAIN ST. YANT 1 HICAGO, ILLINOIS 60609								
YZ CORP. 234 MAIN ST. HICAGO, ILLINOIS 60609								
PS								
	UCT DESCRIPTION		PC	* UN	IT PRICE	MULT.	AMOUN	T
	(a)		96 100 100 100 100 100 100 100 100 100 10		18) 21 75		(H) 630	75
THYRISTOR	©	T510068	00740		1 1			
GOV T. SOURCE INSPECTION REC AT YWD.) " D.		OU/AQ	L	<u>i</u> 1			L
M. NOTES GÖV'T. SOURCE INSPECTION REC	ניס.	1,31,000			i			<u></u>
M. NOTES GÖV'T. SOURCE INSPECTION REQ AT YWD.	Q'D.	19	OU/AQ					
WESTINGHOUSE CUSTOMER: THIS FORM IS ISSUED TO ACI PROVIDE YOU WITH A COPY O PRODUCT DESCRIPTIONS AND IF ANY PART OF OUR INTER	KNOWLEDGE R FOUR WRITEUP OTHER DATA	ECEIPT OF WHICH IN	THE ABOVE CLUDES PRIC	ES, SH	IIPPING I	PROMISES TIONABLI	S, E,	
WESTINGHOUSE CUSTOMER: THIS FORM IS ISSUED TO ACI PROVIDE YOU WITH A COPY O PRODUCT DESCRIPTIONS AND	KNOWLEDGE R FOUR WRITEUP OTHER DATA PRETATION AP CLARIFICATION 72)	ECEIPT OF WHICH IN	THE ABOVE CLUDES PRIC	ES, SH	IIPPING I	PROMISES TIONABLI	S, E,	
WESTINGHOUSE CUSTOMER: THIS FORM IS ISSUED TO ACI PROVIDE YOU WITH A COPY O PRODUCT DESCRIPTIONS AND IF ANY PART OF OUR INTER PLEASE OBTAIN IMMEDIATE C BELOW. (PHONE 412-925-727	KNOWLEDGE REOUR WRITEUP OTHER DATA RPRETATION APPLARIFICATION (2)	ECEIPT OF WHICH IN	THE ABOVE CLUDES PRIC	ES, SH	IIPPING I	PROMISES TIONABLI	S, E,	
WESTINGHOUSE CUSTOMER: THIS FORM IS ISSUED TO ACI PROVIDE YOU WITH A COPY O PRODUCT DESCRIPTIONS AND IF ANY PART OF OUR INTER PLEASE OBTAIN IMMEDIATE C BELOW. (PHONE 412-925-727	KNOWLEDGE REOUR WRITEUP OTHER DATA RPRETATION APPLARIFICATION (2)	ECEIPT OF WHICH IN	THE ABOVE CLUDES PRIC BE INCORR PERSON WI	ES, SH ECT, C HOSE	IIPPING I	PROMISES TIONABLI	S, E,	

Figure 3.1 (2) Order Acknowledgement

Figure 3.2 Current Open Order Status Report

- **Packing List.** The sample packing list in Figure 3.3 accompanies each shipment of power semiconductors. This document serves as the shipping label and provides the following information.
 - (1) Shipping date.
 - (2) Customer purchase order number.
 - (3) "Ship To" address.
 - (4) "Charge To" address.
 - (5) Special remarks required on shipping or invoice documents.
 - (6) Shipment method if specified on purchase order.
 - (7) Freight charges.
 - (8) Gross shipping weight.
 - (9) Carrier.
 - (10) Item number.
 - (11) Quantity of specified item in this shipment.
 - (12) Product type, part number.
 - (13) Administrative notes.
 - (14) Certificate of Compliance signed by a

 Quality Investigator.

Note: A Certificate of Compliance accompanies each shipment. No special request for this information is necessary!

Westinghouse Electric Corpora				
Mestingiionse Electric corhora	tion	1	SHIPPING DATE 28 OCT 176	SHIPMENT NUMBER
SEMICONDUCTOR DIVISION YOUNGWOOD, PA. 1564 GEN L ORDER NO DATE INC. DATE INC. 04683	00687	COR.		
CUSTOMER ORDER NO. ▼	CUST. CODE A		PACKI	NG LIST
23 101155 1001 6 81-01-155 98314-P(5) (2)	CARRIER	2	FREIGHT BILL NO. TA	X % COLL. P./CHG. PPD.
XYZ CORP.	UPS		GROSS WEIGHT	SHIPPED WITH
1268 MAIN ST. (3)	7) 1.0		8) 3 OZ.	
PIANT 1 CHICAGO, ILLINOIS 60609	CERT	IFICA	TE OF CO	MPLIANCE
XYZ CORP.	THIS IS TO	CERTIFY THA	T BY ACTUAL INS	PECTION AND OR TESTS
1234 MAIN ST. CHICAGO, ILLINOIS 60609				THE DRAWINGS AND OR REPORTS WHERE REQUIRED
Caracter Car	ARE ON FILE	AND CAN BE	MADE AVAILABLE FO	OR INSPECTION.
INDO	(I	SUBMITTED BY	WI	rwe,
ITEM QUANTITY PRODUCT DESC	PIRTION	JOHNIII IED BI		ND RELIABILITY DEPT.
1A 1000 0554955555645549557568	First Contract And A	2744		
ADM. NOTES	1N5406		.	
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.	1n5406			
ADM. NOTES	1 n 5406			
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.	1N5406			
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.	1N5406			
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.	1N5406			
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.	1N5406			
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.	1N5406			
ADM. NOTES 12 GOV'T. SOURCE INSPECTION REQ'D.			ING NOTE:	
IRAD MOUNT RECT. GOV T. SOURCE INSPECTION REQ D. WESTINGHOUSE PLEASE EXAMINE THIS SHIPMENT IMMEDIATELY	CUSTOME TO BE IF	R RECEIV	NT SHOWS ANY	EVIDENCE OF CARRIER
IBAD MOUNT RECT. GOV T. SOURCE INSPECTION REQ D. WESTINGHOUSE	CUSTOME TO BE IF HOUSE DA	R RECEIV	NT SHOWS ANY J SHOULD IMME	

Figure 3.3

Packing List

Invoice. Three copies of each invoice are sent to the customer at the time of shipment. A sample invoice is shown in Figure 3.4.

Figure 3.4 W Invoice

- (2) Invoice number and date of shipment.
- (3) "Charge To" address.
- (4) "Ship To" address.
- (5) Terms of sale.
- (6) Item(s) included in this shipment.
- (7) Quantity shipped against specified item.
- (8) Part number.

- (9) Product type.
- (10) Unit price.
- (11) Total value shipped against specified item.
- (12) Shipment method.
- (13) Gross shipping weight.
- (14) Total value of items shipped on this invoice.
- (15) Transportation charges, if applicable. (Note: @ sales policy is freight collect.)
- (16) Total value of invoice.
- (17) Address to which payment must be sent.
- Test Data. The documents in Figure 3.5 illustrate the method used to present test data when requested by the user. It should be noted that a Certificate of Compliance appears on the method packing list and accompanies each shipment. Therefore, no special request for this information is necessary.

Figure 3.5 Standard W Test Data Documents

6. SHIPPING METHODS AND INSURANCE

Power semiconductors vary in size and weight from a small axial lead rectifier (.1 oz.) to large assemblies of devices on heatsinks (50 lbs.) This wide spectrum of sizes and weights enables the supplier to use several different types of shipping methods to transport the devices. However, these methods differ widely in cost, speed, size and weight limits, geographic coverage, traceability, and available insurance coverage. Since most power semiconductors are shipped on an f.o.b., point of shipment, freight collect basis, the supplier normally honors any specified routing from the user. If the user does not specify a preferred shipping method, the supplier will pick the most economical carrier who provides good service to the shipping facility. Remember, however, that "Best Way" or "Cheapest Way" to the supplier may not be best or cheapest to the user; all services are not available between all points. Therefore, it is a good practice to specify a particular shipment method on all purchase orders.

A brief description of the most common methods for shipping power semiconductors is given below. See Table 3.2 for a comparison of these methods relative to geographic coverage, size and weight limits, insurance, etc.

UPS

This carrier is probably the most popular for small parcel shipments. Transport is handled via truck and/or air (UPS Blue Label), depending upon distance. UPS limits shipments to 50 pounds per carton and 100 pounds per day to a single location.

PARCEL POST

Parcel Post is a branch of the U.S. Postal Service. The service is available to any domestic location with postal service. Packages are transported via truck and/or air. Weight is limited to 50 pounds per carton.

AIR PARCEL POST

Same as Parcel Post except with guaranteed air service. Rates are slightly higher than Parcel Post.

TRUCK

This method is the most economical for shipments over 100 pounds. Trucking firms are licensed to pick up and to deliver to specific states. Care must be taken when routing shipments to assure that the specified carrier can/will deliver to the desired destination. Transfers from one trucking firm to another are common.

AIR FREIGHT

Air shipments can be made via air freight forwarders or via conventional air lines cargo. Air freight forwarders, such as Emery, use any number of airline carriers and, therefore, can route packages quickly to almost any location. Some air forwarders, such as Federal Express, use their own fleet of aircraft to provide the same services. The forwarders are usually more expensive than conventional air lines cargo; however, specific airlines serve limited areas because of federal route restrictions and usually restrict service to scheduled flights of their own airline. Time is the big factor favoring air freight; most carriers offer next-day service to any served location for specific fee.

BUS

This method is seldom used, but is required when quick deliveries from other carriers is not available to remote areas.

		Geographic Coverage from			Frequency of Service From Pactory			
Method	Weight Limits	Youngwood, Pa.	Traceability	Insurance	in Youngwood, Pa.			
UPS	50 lbs./carton, 100 lbs. to a single location per day.	Continental U.S.	Must be traced from point of shipment. Takes from 1 to 3 weeks.	A utomatic \$50. Available up to \$5,000 maximum.	1 pickup per day.			
UPS Blue	50 lbs./carton, 100 lbs. to a single location per day.	California, Oregon, Washington, Georgia, Florida.	Must be traced from point of shipment. Takes from 1 to 3 weeks.	Automatic \$50. Available up to \$5,000 maximum.	1 pickup per day.			
Parcel Post/Air Parcel Post	50 lbs./carton.	Worldwide.	Can only trace insured cartons. Takes from 4 to 8 weeks.	None automatic. Check Postal Service for rates.	2 pickups per day.			
Truck	None.	Continental Ü.S.	Can be traced from either direction. Takes less than 1 week.	Depends on com- modity rate. No extra available.	On demand.			
Air Freight	None.	Worldwide.	Can be traced from either direction. Takes less than 1 week.	Full value coverage possible.	3 pickups per day.			
Bus	50 lbs./carton.	Continental U.S.	Must be traced from point of shipment.	Automatic \$50.00. Available up to \$250.00 maximum.	Must deliver to ter- minal.			

Table 3.2 Comparison of shipping methods for power semiconductors.

Receiving

Incoming Inspection

Installation

Cleaning

Trouble Shooting

Identification and Replacement

4 STANDARD OPERATING PROCEDURES FOR THE POWER SEMICONDUCTOR USER

1. RECEIVING

Most users have a fixed procedure for receiving shipments of power semiconductors. If a procedure does not exist, one should be established as quickly as possible to avoid receipt of damaged goods into inventory. An important item to remember is to examine each shipment carefully for evidence of rough handling and container damage. Most power semiconductor manufacturers ship on an f.o.b. point of shipment basis and, therefore, responsibility for the material is transferred at time of shipment. Users must note package damage when signing for a shipment and file a claim against the carrier. Accepting a damaged shipment without noting this fact when signing for the shipment practically eliminates the possibility of a successful claim at a later date.

2. INCOMING INSPECTION

After material has been accepted from the carrier, each shipment normally is examined for administrative, physical, and/or electrical discrepancies. Suggested inspection criteria include:

- (1) Match packing list with purchase order to assure compliance.
- (2) Validate quantity.
- (3) Visually inspect parts for physical damage and proper marking.
- (4) Sample check critical mechanical dimensions, if applicable.

Extensive electrical testing normally is not necessary since the manufacturer has fully tested product prior to shipment. If some electrical testing is desired, the tests should be conducted on a sample basis at room temperature (25°C). Caution is advised when testing electrical parameters because devices can be damaged and/or inaccurate data obtained by:

- (1) Exceeding maximum operating temperatures with poor test procedures and/or improperly calibrated equipment.
 - (2) Poor test methods or inexperienced personnel.
 - (3) Use of different test circuits and/or conditions than used by the manufacturer.

3. CLAIMS

Administrative errors, such as discrepancies on packing lists or invoices, can best be treated by contacting the Returned Material Coordinator at the supplier.

Any decision to return product must be properly authorized in advance. Contact the Returned Material Coordinator at the manufacturer for authorization and specific return instructions. Product should be returned in the original shipping container, when possible. Receipt of *unauthorized* returns at the manufacturer's location often results in delay of resolution of invoices as well as potential loss of material and loss of time required to retest and reship. The minimum information requested prior to authorization includes:

- (1) SPECIFIC REASON FOR REJECTION AND RETURN ("does not work" or "failed" is not an adequate explanation).
 - (2) Quantity and description (part number) of product.

- (3) Original order number.
- (4) Original ship date.
- (5) Original invoice number.
- (6) Material and financial disposition requested.
- (7) Detailed replacement instructions, if applicable.

4. INSTALLATION, MOUNTING, AND COOLING CONSIDERATIONS

Before installing power semiconductors, it is important to understand why so much emphasis is placed on using proper mounting techniques. In order to obtain maximum efficiency and greater reliability in the use of power semiconductors, it is imperative that the heat developed by power dissipation at the junction be removed as fast as possible. There are usually three distinct obstacles in the path of this heat transfer: (a) interface and material between the semiconductor element and the semiconductor device mounting surface (b) interface between the device mounting surface and the heat sink (c) transfer of heat through the heat sink to the ambient, which might be natural convection air, forced air, oil, or water. These "obstacles" are referred to as thermal resistances: (a) $R_{\theta JC}$ - Junction-to-Case(b) $R_{\theta CS}$ - Case-to-Sink (c) $R_{\theta SA}$ - Sink-to-Ambient. This thermal transfer is depicted using an electrical analog in Figure 4.1.

Figure 4.1 Conventional thermal circuit using an electrical analog.

The junction-to-case thermal resistance is generally a function of device construction and design and is determined by the semiconductor manufacturer. Except for disc mount devices which require the user to apply the correct mounting force to assure the proper $R_{\theta,C}$, the user has no control over $R_{\theta,C}$ once a device has been selected. The user's only option then is to select semiconductors that offer low junction-to-case thermal resistances. The other two thermal resistances, however, are quite variable, and the user must carefully consider the various methods and techniques available to insure long life and efficiency.

Primary considerations in obtaining a low case-to-sink thermal resistance are the degree of flatness and surface finish of the device and heat sink mating surfaces, the use of a thermal joint compound, and the proper amount of force (torque) applied. A complete discussion of these considerations and others are presented in the Westinghouse application data sheet "Mounting Power Semiconductors" in the General section of the Data Book. Every user is encouraged to read this application data sheet as it offers many practical suggestions on mounting and remounting all types of power semiconductors — stud mount, disc mount, flat base, etc. A couple of suggestions are worth highlighting: Use a torque wrench to insure proper mounting force. Use thermal joint compounds sparingly — it only takes a thin film between the device and heat sink mounting interface

— most people apply too much compound! Remember, when using insulating hardware, that the case-to-sink thermal resistances will increase about tenfold!

The final obstacle in the heat removal path is the sink-to-ambient thermal resistance. The semiconductor user can minimize this value by choosing the proper heat sink and most effective cooling method. A semiconductor can be no better than its heat sink! A wide range of heat sink materials, configurations, sizes, and finishes are available that will meet almost any space, cost, and heat dissipation requirement.

The most cost effective and popular air cooled heat sinks are made from aluminum extrusion. For natural convection air, aluminum heat sinks can be black anodized or painted black to optimize their ratings. For example, painting heat sinks black improves natural convection ratings by as much as 25% compared to unpainted heat sinks of equivalent size. For higher output current at less cost, forced convection is the answer. Forced air can frequently allow the user to more than double the output current of a given device/heat sink assembly over natural convection rating capability. Why buy more semiconductors than are really needed to do the job? A few fans and some baffling may provide a substantial savings in system design costs. Use forced air in lieu of natural convection air when possible.

Water cooling is the most efficient type of cooling in general use today. In order to optimize the thermal efficiency of a water-cooled heat sink, pure copper heat sinks should be used. Copper alloys, bronze, aluminum, etc. generally have much lower thermal conductivities and thus are not as efficient. Figure 4.2 shows 1000 ampere SCR's mounted on comparable air cooled and water cooled heat sinks. The water cooled assembly offers from 1.5 to 4 times more output current than the air cooled assembly, weighs only one-third as much, occupies about 40% of the space, and costs about the same. Therefore, when heat sinks are compared, water cooling (if available) is usually the most economical choice; forced convection air is next; and natural convection air is last.

Figure 4.2 1,000A Disc SCR's mounted on comparable water cooled and air cooled heat sinks.

A final consideration when installing power semiconductors is to place them where the surrounding ambient temperature is as low as possible. Do not mount semiconductors near or above transformers or other heat generating components in a cabinet and avoid "dead air" pockets. Mount semiconductors heat sinks vertically so as to take advantage of the natural chimney-effect or up-draft of air flow. When using forced air or water to cool various components in a cabinet, make sure the cooling medium reaches the power semiconductors first. Good installation practices when mounting and cooling power semiconductors will insure good operating performance and long life.

5. OPERATING POWER SEMICONDUCTOR EQUIPMENT

There is still a tendency to consider the "state-of-the-art" in the design, manufacture, and application of power semiconductors as something new, mysterious, and glamorous. Not so! Industry has long been using

silicon power semiconductors and a vast knowledge in the use of these devices has evolved. Along with this knowledge has come a new "state-of-the-art" for using and maintaining semiconductor equipment. The emphasis placed on selecting, purchasing, and installing devices is part of it, but of equal importance is the proper use and maintenance of equipment employing power semiconductors.

Protect power semiconductors from excessive heat. Semiconductors are composed of materials having different rates of thermal expansion. Therefore, both short and long term temperature excursions not only impair the electrical characteristics of these devices, but also set up internal mechanical stresses at each of the material interfaces. These combined effects of high temperature excursions can ultimately lead to device malfunction and destruction. The maximum temperature limits of various materials used in semiconductors vary from 150°C for soft solder to 1300°C for silicon. Once these materials are combined into a fabricated device, however, electrical deterioration begins at lower temperatures.

For example, forward and reverse blocking capability of a junction begins to decrease and leakage currents increase when allowable maximum junction temperatures are exceeded. (These temperatures are generally between 125°C and 200°C, far below the maximum temperature limit of silicon itself.)

Periodic monitoring of ambient temperatures, cooling fan operation, cooling water temperatures, and case temperatures of the semiconductors themselves will pinpoint many malfunctions before they cause catastrophic failures. Because of the importance of preventing high temperatures from developing, this monitoring must be emphasized in the operating procedures for the equipment operator.

Avoid overloading equipment. Avoid overloading the semiconductor, which in effect, means protect against overloading the equipment that the semiconductors are feeding and/or controlling. For example, overloading a motor operated with semiconductor controls puts a direct overload on the semiconductors. Even if this overload is only for a short time, the semiconductor's useful life can be shortened. Controls are designed to include motor overloads and the maximum values of overload should never be exceeded. Continued short term overloads above the control specifications can cause undetectable additive damage resulting in random, often unexplainable semiconductor failures.

Operator induced overload conditions that could result in excessive semiconductor currents include high on/off duty cycle or jogging for high production needs, rapid reversing, motor jam, and long acceleration time. Some mechanical problems that can cause motor overloads are high equipment temperature due to lack of cooling, wiring or bearing failure due to improper installation or maintenance, phase failure due to blown fuses or loose connections, phase imbalance, overvoltage, transient overvoltage and contaminants or dirty environment.

Table 4.1 shows various motor stress conditions and the common protection. This table can be used to determine adverse load conditions and the type of protection that should be used. In properly designed system, overload conditions are considered and provisions are made to accommodate the overloads. The user or operator has an obligation to operate the equipment within the design ratings. The table shows the equipment user and designer methods to prevent overloading a motor, and hopefully, to avoid the situation that would cause semiconductor failure or reduce semiconductor life.

Protect power semiconductors from transient overloads. Silicon semiconductors are inherently long life devices if they are adequately protected against surge currents and transient voltage spikes. The protection against failure due to these phenomena are relatively simple and normally this protection is designed into the circuit. In industrial plant environments, most voltage transients in semiconductor circuits arise from three major causes:

Switching is the most common source. Whenever current is switched on or off in an inductive circuit, a transient voltage is generated at the switch terminals. Transformers and motor windings are highly inductive components, and the circuit wiring itself is inductive. Surges caused by lightning contribute to switching transients. These transients can originate in remote circuits and still feed back to the semiconductor circuit through the supply line. Protection of semiconductors from such transients is primarily a matter of attenuating the surge to a level the semiconductor can tolerate.

Commutation transients are associated with the reverse recovery characteristic of a rectifier junction. Since, in normal use, a semiconductor is continually switching from a conducting state to a non-conducting state, there are rapid changes of current (high di/dt). For this reason, and especially where fast switching rectifiers are used, it is imperative to keep circuit inductance at a minimum. Here again, suitable suppression networks should be designed into the circuit.

Regenerative surges in inductive or dynamic loads is the third major source of reverse voltage transients. Such loads include motors, lifting magnets, solenoids, relays, and many other devices involving stored inductive energy in the form of high induced voltage. Suppression of these transient voltages usually requires protective devices with high energy storage capacity.

Problem	Cause	Motor Current Variance	Semiconductor Current or Voltage Variance	Common Semiconductor Protection	Comments		
Overload	Operators Choice	Increases three phase current approaching 200%.	Increases semiconductor current, even- tual motor burnout can cause surge on semiconductors.	Thermal overload on semiconduc- tors and motors. Design for semicon- ductor current overload.			
Motor Jam	Load Blockage	High operating time at locked rotor current to 600%.	Increases semiconductor current, even- tual motor burnout can cause surge on semiconductors.	Thermal overload on semiconduc- tors and motors. Design for semicon- ductor current overload.			
High On/Off Duty Cycle	Jogging for High Production Needs	High operating time at locked rotor current to 600%.	Increases semiconductor current, even- tual motor burnout can cause surge on semiconductors.	Thermal overload on semiconduc- tors and motors. Design for semicon- ductor current overload.	Operation at thermal overload con- ditions can reduce semiconductor		
Rapid Reversing	Production Needs	High operating time at locked rotor current to 600%.	Increases semiconductor current, even- tual motor burnout can cause surge on semiconductors.	Thermal overload on semiconduc- tors and motors. Design for semicon- ductor current overload.	life. Depending on the design up to 600% increases in semiconductor currents are possible resulting in reduced life		
Long Acceleration Time	High inertia slow starting loads	High operating time at locked rotor current to 600%	Increases semiconductor current, eventual motor burnout can cause surge on semiconductors.	Thermal overload on semiconduc- tors and motors. Design for semicon- ductor current overload.	or shorted semiconductors Surge currents can also reduce semiconductor lifetime and cause semiconductor failures.		
High Equipment Temperature.	High ambient temperatures. Lack of cooling.	No increase but can cause wiring and insulation failure.	Increases semiconductor current, eventual motor burnout can cause surge on semiconductors.	Thermal overload on semiconduc- tors and motors. Design for semiconductor current overload.	High ambient temperatures produce the same results as high currents i.e., reduced life and failed semiconductors.		
Motor Wiring or Bearing Failure.	Overcurrent, Improper Installation or Maintenance.	Locked rotor current to 600%.	Increases semiconductor current, eventual motor burnout can cause surge on semiconductors.	Thermal overload on semiconductors and motors. Design for semiconductor current overload.	Never operate semiconductors without proper cooling.		
Phase Failure	Blown Fuse, Loose Connection	Decrease in current until motor core reaches saturation and current increases.	Increases semiconductor current, eventual motor burnout can cause surge on semiconductors.	Thermal overload Phase failure relay.			
Phase Unbalance	Unbalanced single phase loads on same line, poorly regulated service.	Decrease in one phase and in- crease in the other two phases of current.	Increases semiconductor current, even- tual motor burnout can cause surge on semiconductors.	Thermal overload Phase failure relay.			
Overvoltage	High source	Slight voltage increase decreases current. Large increase may saturate core and increase current.	Decrease or increase semiconductor current.	Overvoltage relay.	Increase of currents can cause semiconductor failure and reduced life.		
Transient Overvoltage	Lightning, opening in- ductive switches etc.	Slight average current increases.	High transient voltages across semicon- ductor when semiconductor is in the off position.	Capacitor-Resistor Networks, Voltraps, MOV, etc.	Short duration high transients can cause semiconductor failure.		
Underload	Operators choice	Decrease in motor current.	Decrease in semiconductor current.	None	Light load increases semiconductor life.		
Contaminants	Dirty environment	Causes corona	Causes corona	Clean room filters	Clean equipment periodically even with filters.		
					Corona carbonizes dirt and causes eventual semiconductor shorts.		

Table 4.1 Motor Overloads and Their Effects on Semiconductors

Some of the common devices used for transient protection are capacitors, zener diodes, free wheeling diodes, WVoltraps, and varistors (MOV/ZNR).

Protect power semiconductor circuits from current overloads. The power semiconductor circuit must be protected from heavy current loads caused by short circuits or other component breakdowns. Several methods are available for this type of protection.

Fuses — Semiconductor fuses protect against overloads and, when properly applied, remove the semiconductor from the power source when an overload occurs. However, the result is downtime and higher operating costs. Therefore, fusing is generally limited to applications where the power source can damage components before slower breakers remove the power.

Mechanical breakers — Magnetically operated breakers provide an inexpensive means of limiting current. This type of breaker operates best under short circuit conditions and offers speedy, low-cost restarting and relatively fast circuit interruption.

Thermal breakers — These employ heating elements to operate bimetallic contact actuators. This type of breaker offers reasonable protection for wires and good protection for components with high thermal capacity. Their ability to protect semiconductors is, however, limited.

Overrated semiconductors — Semiconductors with current ratings high enough to accommodate anticipated current overloads is another method of protection. This approach allows the cost of fuses, wiring, and mounting to be put into the semiconductor. It also allows minimal protection, so safety considerations require a conventional circuit breaker to disable the circuit in extreme malfunctions.

Combinations — Combining circuit breakers with fuses, oversized semiconductors, or current feedback circuits are frequently applied techniques. Another approach is using special branch protection. For example, each leg of a single phase bridge might be separately protected instead of using a single fuse or breaker for the entire converter; a motor armature circuit can be protected by a breaker, while the mains are fused. This arrangement prevents overstressing a motor while the semiconductor devices are operating at high current peaks that are within fuse limits.

Keep power semiconductors clean. Semiconductors and semiconductor equipment must be kept clean. Why? Because on high power semiconductors, the glass or ceramic seal on the semiconductor package can be a source of trouble when dirt accumulates. Even when good engineering practices are followed in the positioning of components and support material to reduce or eliminate excess voltage stress and voltage gradients, these gradients can change with moisture, dirt, pressure, temperature and aging. With a clean system, high transients can initiate corona which will then be extinguished upon return to normal voltage. However, with any accumulation of moisture or dirt on the insulating glass or ceramic surface, the corona will remain when the voltage returns to normal, and can cause extensive damage to the circuit. Even semiconductors without a visible layer of contaminants may be covered with conductive particles that can cause corona. Therefore, periodic cleaning is advisable. The time between cleanings could be lengthened by the proper use of filters, but filters will not eliminate the need for cleaning. A good maintenance program is essential to proper operation of semiconductors.

6. PREVENTATIVE MAINTENANCE

The key to successful and efficient operation of high power semiconductors is a good, well-planned maintenance program. Routine maintenance of semiconductor equipment involves putting into actual practice the good operating procedures listed in section 5 with emphasis placed on (a) temperature build-up, (b) dirt accumulation, and (c) loose mounting and/or connections. A regular schedule should be followed for checking and eliminating these conditions.

- (a) Temperature build-up may be caused by excess ambient temperature, poor or blocked air circulation, failure of cooling devices, such as fans or water circulating equipment, dirty heat sinks, and air filters, or equipment overloading. Since temperature build-up is usually gradual, it should be constantly monitored with strategically placed thermocouples. A suggested method of affixing a thermocouple to a semiconductor base or heat sink is to drill a small shallow hole, fit the thermocouple into it, and then peen the surface around the hole to secure it. Equipment designed for forced air cooling or water cooling should never be energized without proper air or water flow.
- (b) Dirt accumulation on the glass or ceramic surfaces of semiconductor packages must be periodically and thoroughly removed. When cleaning semiconductors, the safest cleaning method consistent with desired

results should be used. Solvents can be hazardous and should be used with care. Even a solvent that is considered non-toxic can kill or injure when used with improper ventilation. One of the safest methods of cleaning is by wiping with clean cloths. Often due to space limitations, the areas that need to be cleaned cannot be properly reached and, therefore, a liquid cleaner must be used. Table 4.2 lists solvents that could be used as cleaners.

Solvent	Fire Hazard	Explosion Hazard	Toxicity Hazard	Electrically Conductive	Attacks Rubber Insulation	Precautions					
Water, tap	None	None	None	Yes	None	Rinse with distilled water, dry thoroughly					
Water, distilled	None	None	None	No	None	Dry thoroughly					
Water/detergent	None	None	None	Yes	None	Rinse with distilled water, dry thoroughly					
Methyl alcohol	High	High	High	No	Slight	Avoid skin contact, use ventilation					
Ethyl alcohol	High	High	High	No	Slight	Can cause internal damage; ingestion can cause blindness					
isopropyl alcohol	High	High	High	No	Slight	Mix with distilled water to reduce hazards					
Paint thinner (mineral spirits)	Low	Low	Low	No	Slight	Use proper ventilation; limit exposure to rubber					
Acetone	High	Moderate	Low	No	Slight	Limit exposure to prevent rubber degeneration					
Perchloroethylene (dry-cleaning solvent)	Low	Low	Moderate	No	Slight	Use short exposure to prevent rubber damage; irritates eyes and causes headaches; heating causes fumes					
Trichloroethylene	Low	Low	Moderate	No	Slight	Use adequate ventilation; limit exposure time to prevent rubber damage					
Freon	Low	Low	Low	No	Slight	Use adequate ventilation; limit exposure time					
Maltier XL-100	Low	Low	Low	No	Slight	Use adequate ventilation; limit exposure time					
Miller Stephenson MS-180	Low	Low	Low	No	Slight	Use adequate ventilation; limit exposure time					

Table 4.2 Semiconductor Cleaning Solvent Characteristics

The safest method of cleaning semiconductors, as shown in Table 4.2, is to use a detergent wash and then flush with distilled water. The system must be completely dry before the reapplication of power. Regular tap water can contain many conductive impurities and should not be used as a final rinse.

Methyl, Ethyl, or Isopropyl alcohol could be used for cleaning, but they can attack sleevings and insulations. Before using alcohol or any solvent, its use should be checked on a small sample of sleeving and insulation to determine if they are attacked. Since time of exposure to a solvent determines any adverse effects, the time of exposure during the test should be the same as the time expected during actual cleaning. Any elongation, softening or actual decomposition could eliminate the use of the solvent. A temporary softening may not be detrimental. Remember that alcohol is toxic and should be used with care.

Follow all safety precautions when using any solvents. Read the labels on all the chemicals. Do not mix solvents (or any chemicals) unless recommended. The information regarding solvents, their fire, explosion and toxicity hazards, etc., are believed to be accurate, but it cannot be guaranteed. This information is given as a general recommendation for information only.

(c) Along with scheduled periodic cleaning, a systematic checking of mounting and terminal connection tightness should be specified. If a loosely mounted device is discovered, it should be removed, both mounting surfaces thoroughly cleaned, thermal compound reapplied, and then remounted with the specified torque.

7. TROUBLE SHOOTING AND SERVICING

Properly protected semiconductor devices incorporated in well-designed circuits should last for the life of the equipment. Semiconductors should not be a major problem for the maintenance engineer. However, experience shows that up to a 10-15% failure rate can occur during equipment lifetime, due chiefly to misuse, misapplication, or neglect of the equipment and overloads caused by natural forces, such as lightning. Therefore, to operate efficiently, the maintenance department must have the proper tools and equipment. Most

of these essential items are elementary and relatively inexpensive when compared to the wide array of measuring devices and instrumentation available for the study of power semiconductors and associated circuitry. Suggested equipment for moderate service work:

- 1. Volt-ohmmeter (voltmeter)
- 2. Clamp-on ammeter
- 3. Probe-type temperature indicator
- 4. SCR/Rectifier blocking voltage test circuit (see Figure 4.3)
- 5. Transistor blocking voltage and gain test circuits (see Figures 4.4 and 4.5)
- 6. Torque wrench and complete standard tool kit
- 7. Oscilloscope

An oscilloscope is used for viewing the current and voltage waveshapes within a semiconductor circuit. Eventually, all technicians become familiar with a "scope". It is the most important and useful tool available to the troubleshooter.

Equipment Breakdowns and Malfunctions. What should maintenance personnel look for when equipment breaks down? Are there visual signs to indicate why a semiconductor failed? As with any other type of equipment, there is much that can be learned from one's own senses and experience. With electronics, heat is still the number one symptom of impending failure. So be alert for charred or discolored components—that is a sign that too much current flows or has flowed through the component, and if it has not failed, it soon will. Although the trouble could be limited to the failed component, it is possible that some other component is at fault through failure or misadjustment. A thorough knowledge of the theory of operation of the equipment will be invaluable in tracking down *real* causes of component failure.

Voltage related failures, on the other hand, are a bit more difficult to locate because there is usually no outward sign of failure. However, this type of failure is, more often than not, catastrophic, and shorted devices result. Shorted devices are much easier found than downgrades or control malfunctions. One of the most destructive causes of failed semiconductor components is lightning storms. The electrical forces generated by nature are enormous, so watch for equipment malfunctions during and just after an electrical storm. The maintenance engineer should also monitor closely any equipment that is pushed to its operating limit, thereby increasing the possibility of failures.

As a general procedure for checking out a suspect semiconductor, the following sequence of test checks should be performed:

- (1) Look at the suspect device(s) [with the system power off]using a volt-ohmmeter—check for shorts.
- (2) If no short exists, apply power (reduce power, if possible) and using a voltmeter or scope, check to see if the suspect device is blocking voltage.
- (3) If the unit is blocking voltage, the user should then check to see whether or not any current is flowing. This current flow can be measured with a clamp-on ammeter, voltmeter in conjunction with a current shunt or resistor that is in series with the suspect unit, or a scope.
- (4) Finally, the suspect unit should be checked along with the other power semiconductor components in the circuit to confirm that the devices are all operating within their maximum allowable case temperature. This maximum allowable case temperature can be determined from the manufacturer's technical data sheet by knowing the device's circuit configuration and actual current magnitude and waveform. A probe-type temperature indicator can be used for making case temperature measurements.

If the suspect device(s) fail any of the above test checks, the system power should be turned off and the suspect devices removed from the circuit for further test and evaluation. In some instances, the devices can be tested without the need of removal, test, reinstallation, and down time. However, the user should make certain that the measurement being taken is that of the device under test by disconnecting one power lead (also gate lead in case of SCR) for circuit isolation. Disc devices, because of their double-sided mounting, may be difficult to isolate and may have to be removed from the circuit. In this case, the disc device must be clamped with sufficient force (approximately 200 lbs.) to get a valid reading.

Rectifier/SCR Testing

Volt-ohmmeter—An ohmmeter can be used to check rectifier polarity or as a quick check to determine whether an SCR or rectifier (diode) has failed open or short. Note: An ohmmeter is not a valid tester for measur-

ing blocking voltage capability. If an SCR anode-cathode measurement shows a short in either direction or if the gate-cathode measurement shows a short in both directions, then the SCR is a short. For an SCR to be open, the anode-cathode measurement as well as the gate-cathode measurement must show an infinite resistance in both directions. Likewise, a rectifier must show zero resistance in both directions for a short and infinite resistance in both directions for an open. A rectifier normally shows low resistance in the forward direction and high resistance when the ohmmeter probes are reversed. Thus, the ohmmeter can be a check for rectifier polarity. An open failure on a

high power SCR or rectifier is a rare event due to compression bonded encapsulation (CBE) device construction.

SCR/Rectifier Blocking Voltage Test Circuit—The following test circuit (Figure 4.3) describes a simple blocking voltage tester that is capable of testing devices up to 1800 volts and can be built for about \$100.00. The

Figure 4.3 SCR/Rectifier Blocking Voltage Test Circuit

safety switch S2 must be depressed to allow voltage application and the variac controls the amount of voltage to the device under test. After each device is tested, the variac setting should be returned to zero so as not to risk damaging a subsequent device under test that might have a lower voltage rating. Never exceed the device's rated voltage when testing. Since this test is conducted at room (ambient) temperature, the measured maximum allowable leakage limit should not exceed one-half the maximum junction temperature leakage current value listed on the manufacturer's technical data sheet. When testing an SCR, the gate lead must be left open (Note: Some non-Westinghouse devices may require a gate bias termination to meet rating). V RRM (reverse voltage) is measured when SCR cathode is connected to J3 and SCR anode is connected to J4; V DRM (forward voltage) is measured when SCR anode and cathode terminals are reversed. The voltage is read indirectly by M2 voltmeter (V RRM = 3.14 X DC meter reading). I RRM or I DRM leakage current is monitored directly with a scope across J2 and J1 or indirectly by M1 milliamp meter across D2 (I RRM or I DRM \simeq 3.14 X average leakage over full cycle meter reading). For rectifiers (diodes), the V RRM (reverse blocking voltage) is tested the same as an SCR. Since most rectifiers are available in standard or reverse polarity, be sure to check the polarity symbol device marking to identify the anode and cathode.

Transistor Testing

The following simple test circuits can be used for a quick check of transistor parameters but are not recommended for classifying devices. Other, more accurate, measuring equipment that has a pulsed duty cycle should be used for incoming inspection. A good curve tracer such as the Tektronix 576 will measure gain,

currents, and voltages at a pulsed duty cycle. Other, less accurate, measuring instruments, some in kit form, can be obtained from electronic supply stores for use in troubleshooting a circuit.

Volt-ohmmeter—The only valid ohmmeter measurements on transistors are short or open determinations. A shorted transistor will show a short (resistance approaches zero) in both directions across the base-emitter, collector-emitter or collector-base terminals. This test is accomplished by removing the transistor from the circuit and first measuring the resistance in one direction and then reversing the ohmmeter probes across the terminals. A good transistor will show a low resistance (conduction) in one direction and a high resistance when the probes are reversed. If any of the three tests (i.e., collector-base, collector-emmitter, or base-emmitter) are faulty, then the transistor is faulty. A faulty transistor will have either a low resistance in both directions (shorted) or a high resistance (open).

Note: This ohmmeter test is correct when it indicates a shorted or open transistor, but when it shows a good transistor, it may not be correct because of the low voltages used in the ohmmeter test. Further tests must be made to determine the condition of the transistor.

Transistor Blocking Voltage Test Circuit—The voltage capability of a transistor is measured using the circuit in Figure 4.4. The transistor is connected in one of the three desired modes (i.e., V_{CE} , V_{CB} or V_{EB}). The

Figure 4.4 Transistor Blocking Voltage Test Circuit

current meter should be capable of 1 ma to 10 ma, the voltmeter and power supply to hundreds of volts and the load resistors should limit the current to about 10 ma if the transistor shorts. The voltage is set to the data sheet limits and the current is read. Any current reading within data sheet limit would indicate a good transistor. If a data sheet is not available then set V_{CE} and V_{CB} to the circuit voltage using 10 ma maximum as an acceptable current. When measuring V_{EB} , if no data sheet is available, set the voltage at 4 volts and use 10 ma as a maximum acceptable current.

Transistor Gain Test Circuit—Gain measurements should be made on a curve tracer or a high current pulsed test set. A D.C. gain measurement can be made if precautions are taken to limit the power dissipation and a heat sink is used. The case temperature should be monitored. A resistor to drop about 2 volts is used in the base as shown in Figure 4.5. The base voltage is slowly increased until the desired collector current is

Figure 4.5 Transistor Gain Test Circuit

reached. The collector and base currents are then read. The collector-emitter voltage of 4 volts is usually used. This test is a continuous power test and should be done as quickly as possible to limit internal junction temperature. The gain ($h_{\rm FE}$) is calculated as follows: $h_{\rm FE} = I_{\rm C}/I_{\rm B}$

Common Causes of Power Semiconductor Failure. Most of the advice given thus far deals with the proper installation and operation of power semiconductors. However, in the event all of this advice was not followed or accidentally missed, the knowledgeable maintenance person has a good jump on discovering the reason a particular device has failed by pursuing the following checklists.

Many power semiconductor failures are the result of improper mounting and electrical application. The first step in evaluating any failure should be to assure that good engineering practices have been used in both the mechanical as well as the electrical application of the semiconductor. Faulty mechnical practices often result in eventual electrical failures.

MECHANICAL CHECKLIST

- 1. Torque—are semiconductors torqued properly?
- 2. Flatness—are mounting surfaces flat and free of defects?
- 3. Thermal Compound—is thermal compound used properly?
- 4. Stress—is there any undue stress placed on the semiconductors?
- 5. Insulation—are the terminals or case contaminated causing electrical conductive paths?
- 6. Heat Sink—is it large enough and is it clean and efficient?
- 7. Other pertinent mechanical details.

Torque—torque wrenches must be used, and the maximum torque rating must not be exceeded. Some semiconductors can be mechanically damaged by too much torque or thermally damaged by too little.

Flatness—heat sink must be flat, free of burrs and ridges, with holes and edges chamfered. These defects could prevent the proper seating of the semiconductor, resulting in thermal or mechanical damage.

Thermal Compound—should always be used according to the manufacturer's instructions. Either too little or too much compound could result in poor thermal impedance. When applying thermal compound, be certain that the threads remain dry. Lubricated torque specs mean that the mating surfaces are lubricated. Apply thermal compound to both sides of insulating washers, when used.

Stress—semiconductor should not be used as a support for heavy electrical leads. Lead stress can cause mechanical seal cracks resulting in hermeticity problems. Mechanical stess can also be transmitted to the junction causing cracks in the element or solders, resulting in failures.

Insulation—insulation between semiconductor terminals or terminals and case is often very small. When operating the semiconductors in moist or contaminated areas where voltage creepage can become a problem, additional protection should be used against such electrical conductive paths.

Heat Sink—should be large enough for proper heat transfer. Undersize heat sinks often cause junction temperature to exceed maximum ratings. All types of corrosion and oils should be removed with solvents or emery cloth to insure the lowest possible thermal impedance between mounting surface and heat sink.

ELECTRICAL CHECKLIST

- 1. Overcurrent—is current exceeding maximum ratings?
- 2. Overvoltage—are maximum voltage ratings exceeded?
- 3. Surge Current—is there a possibility of a fault that could cause a one-time surge?
- 4. Transient Voltage—are transient suppressors used?
- 5. Power—is the semiconductor operated within rated power?
- 6. Testing—is the testing damaging the semiconductor?
- 7. Specs—is the semiconductor operated within the data sheet?

Overcurrent and overvoltage—absolute maximum ratings should never be exceeded under worst case operating conditions. For reliable operation with a minimum number of failures, current, voltage and temperature should be derated. Usually the greater the derating, the more reliable the semiconductor becomes. The semiconductor manufacturer should be contacted for assistance in derating specific semiconductors. Load, component, and environmental variations (especially temperature) should be investigated as probable causes of voltage or current problems.

Surge—surge current is a fault rating that the semiconductor may see under a fault condition. This fault could happen perhaps only once in the lifetime of the equipment. Surge currents and in-rush currents should

be limited to semiconductor capability or, semiconductors with greater capability should be chosen. Since the thermal time constant of the element is small, even a very short surge current can damage a semiconductor. The surge can cause a localized (hot spot) junction temperature to be exceeded even though the case temperature is cool. These localized hot spots can result in degraded or shorted semiconductors.

Transient Voltage—should never exceed maximum rated voltages. These transients can cause a semiconductor to conduct when it should be in a nonconducting period, causing catastrophic failure. Transients that exceed the maximum rated voltage can cause a slow downgrading of the semiconductor spec. Transient protection should be used if occasional or constant transients are suspected.

Power—check power rating for current, voltage and temperature of operation. Power, voltage and current must be derated with an increase in temperature. Never exceed junction temperature even though case temperature is within spec.

Testing—never insert or remove a semiconductor from a test circuit with the power on. Never exceed maximum ratings when testing. Always use proper, calibrated test equipment.

Specification—special characteristics of a semiconductor can be specified to reduce or avoid failures. Burn-in and other hi-rel testing is available to reduce failures.

If after a thorough mechanical and electrical investigation, the user is unable to determine the cause of failure, he should contact the original equipment manufacturer (OEM) for assistance. Any unusual operating or mechanical conditions found in the above investigation, along with a history of use, should be given to the OEM for review.

HISTORY OF USE CHECKLIST

- 1. When was the semiconductor purchased?
- 2. What is the date code?
- 3. How many were purchased?
- 4. How many failed?
- 5. How many were installed in equipment?
- 6. Other history.

The history of the semiconductor's use helps in failure analysis. Was the semiconductor used previously, how much, and with what failure rate? What is the failure rate with the present group? What is the date code? Have other components been changed? What were the operating conditions at the time of failure? These types of questions help isolate a problem and result in an accurate failure analysis.

At this point, if the OEM is unable to determine the probable cause of failure for the user, the OEM can have the semiconductor manufacturer perform a failure analysis. Analysis of the failed semiconductor, along with the information collected above, should aid in a prompt and accurate diagnosis of the cause of the failure.

Semiconductor reliability is a shared responsibility among the semiconductor manufacturer, the circuit and equipment design engineer, and the end user of the equipment. The manufacturer must design and build a reliable semiconductor, the engineer must use good engineering practices when designing the equipment, and the user must operate the equipment within its ratings and see that it is running properly and that its environment is clean. If these conditions are met, high power semiconductors will be reliable.

8. IDENTIFICATION AND REPLACEMENT

Many semiconductors are identified by a JEDEC number. JEDEC numbers for rectifiers begin with a "1N" prefix (i.e. 1N4001, 1N1206A, etc.) whereas SCR's and transistors begin with a "2N" prefix (i.e. 2N681, 2N3055, etc.). A JEDEC number is an attempt by the industry (Joint Electronic Device Engineering Council) to standar-dize electrical and mechanical parameters so that products of one manufacturer will be interchangeable with those of another manufacturer. The user should, however, be careful when making a direct JEDEC substitution of another manufacturer because the JEDEC registered parameters do not always cover all of the critical parameters. As a result, manufacturers using completely different manufacturing processes often sell devices to meet the same JEDEC number. While this may not pose a problem in most general purpose and phase control applications, the user must recognize that various manufacturer's devices marked with the same JEDEC number can exhibit completely different secondary characteristics and safety margins. An engineer may have unknowingly designed his circuit around a particular JEDEC type number from a manufacturer with process A

and a big safety factor (i.e. 6 ampere rated device that really has a 12 ampere actual capability). Everything works fine until the user chooses a replacement JEDEC from another manufacturer... then the new devices keep failing in the circuit. Therefore, to be safe, all JEDEC substitutions should be evaluated thoroughly before use.

Most power semiconductors (especially those rated over the 40 to 100 ampere range) are marketed under their respective manufacturer's part number. Even though each manufacturer uses its own device nomenclature, the mechanical packages and electrical ratings are reasonably well-standardized throughout the industry. Therefore, second sourcing and device substitution is not difficult providing the user has a good cross reference guide and the technical data sheets for the devices being evaluated. The Westinghouse Master Cross Reference Type Number Index is located in the General section of this User's Manual and Data Book. Using this JEDEC and alpha/numeric industry index, the user can rapidly locate any power semiconductor product type number for which Westinghouse offers an exact or suggested replacement along with the page number of the corresponding Westinghouse technical data sheets. As with ANY cross reference guide, the user MUST determine the ultimate substitution acceptability by reviewing the detailed electrical and mechanical characteristic of the devices being considered. This comparison will assure that the manufacturer's suggested replacement will perform properly in the given application.

In the event that the device type number being sought is either unknown (marking is obliterated) or not listed in the a Master Cross Reference Type Number Index, a copy of the Replacement Device Identification Checklist should be completed. Chances are Westinghouse can help identify the part and provide a direct or equivalent replacement. Simply call the nearest authorized distributor or local sales representative for a fast response and prompt delivery. See page 54 for checklist.

Replacement. Be sure to order the exact part number—if in doubt, include the *entire* device marking on your order. The most likely place to get "off the shelf" delivery of an exact replacement is directly from the equipment manufacturer. The OEM normally carries an ample supply of renewal parts to service its equipment market. In the event a replacement cannot be obtained from the OEM, the user should contact a local industrial or electronic distributor that handles power semiconductors. A user should only buy a given manufacturer's type number from the manufacturer's authorized distributor outlet or directly from the manufacturer's factory. To do otherwise, the user could receive inferior and/or counterfeit devices from an unknown source. Play it safe . . . deal only with a manufacturer or an authorized distributor.

The maintenance engineer must be thoroughly familiar with equipment service manuals, with the power semiconductors and their technical data sheets, and with the various tools and instruments available for testing and replacing semiconductors. It is wise to carry spare semiconductor components in stock in case of equipment breakdown—especially for critical pieces of equipment.

Many phase control applications—i.e. welding, battery chargers, DC motor controls, and general purpose power supplies can utilize rectifiers, SCR's and/or transistors with fairly broad parameters so long as the device selected has an adequate current and voltage rating and fits mechanically. The user must be extremely careful in selecting a replacement semiconductor when general purpose or phase control devices are used in series and/or parallel combination, when fast recovery rectifiers and fast switching SCR's are used in inverters, choppers, etc. or when semiconductor devices are marked with special (non-catalog) part numbers. Specially selected, tested, and/or matched units may be required for the semiconductor to operate properly in the equipment. Failure to use the correct semiconductor device could result in device failures, equipment damage, and plant downtime.

When selecting a device for replacement, the user can always use one with a higher voltage rating provided all other device ratings are equal or better. Likewise, a higher current rated unit can be selected so long as all of the other ratings are equal or better and the mechanical package is the same. By following these guidelines, the user can often locate a suitable replacement faster, reduce spare parts inventory by standardizing on a fewer number of replacement semiconductors, and gain increased reliability with greater voltage and/or current safety factors. Of course, the additional cost for the higher rated semiconductor must be weighed against the savings in inventory reduction, fewer failures, and reduced down time.

In the absence of any other information, a good "rule of thumb" for specifying the proper device voltage rating (based upon the supply voltage to the semiconductor equipment) is as follows: 110V line—use a 300 volt device, 220V line—use a 600 volt device, and a 440V line—use a 1200 volt device. If in doubt about what device to use, call the semiconductor manufacturer and ask for a recommendation.

The user must realize that power semiconductors, like any other component, fail for a reason. It is acceptable to just replace a suspect semiconductor if that is all that is wrong. However, frequently a suspect semiconductor fails as a result of a current or voltage overload elsewhere in the circuit. Simply replacing the suspect semiconductor in these instances will only result in destroying more semiconductors. Therefore, always look for the *cause* of failure before replacing any devices.

Replacement Device Identification Checklist

(make copy for each use)

If you have been unable to locate your power semiconductor part number in the @ Master cross reference index, simply complete a copy of this form. Chances are @ can help you identify the part and provide you with a direct or equivalent replacement. Call your nearest authorized distributor or your local sales representative for a fast response and prompt delivery.

PRODUCT CLASSIFICATION	□ Rectifier □ Thyristor (SCR) □ Transistor	□ Other: □ Do not know.									
	Polarity)	Example: # R4041040 7710 1 2 3 4 Other: Sketch No symbol 3. Complete Device part number: 4. Manufacturer's date and/or lot code:									
PHYSICAL DESCRIPTI	ON	3. Lead Terminal Description:									
1. Package Type:	2. Approximate Sizes:	□ □ □ ←									
	Stud Size (A) 0.190"—32	FLEX (CABLE) LEAD	FLAG LEAD								
□ DISC ← d→ -	Mounting surface diameter (d): (Smallest diameter) Package height (H):	STUD STUD	STANDARD TERMINAL LEAD								
INTEGRAL HEATSINK	Fin size (LxWxH) 5"x4"x2" Other:	PIN LEAD	AXIAL LEAD								
	Distance across the flats of the hex: 1.25" 1.75" Other:	OTHER: Power and/or Control Lengths:	and/or Control Lead								
OTHER:	List critical dimensions:	Sketch 4. Physical Appearance (i.e. ceramic or glass-to-metal seal or package, nickel plating, etc.):	seal, color o								
DEVICE ELECTRICAL	RATINGS	EQUIPMENT DESCRIPTION									
	2. Voltage:surge current, t on , t off , etc.):	Type: 2. Manufacturer: Approximate age:									
	~~~										
CURRENT REQUIREMENT		REQUESTED BY									
Application: □ Replacement	ent □ New Design □ Conversion	Name: Job Function	1:								
2. Quantity required:	3. Required delivery:	Company: Phone No.: (	.)								
4. Other considerations:		Address:									
*		City: State:	_ Zip:								

When removing a defective semiconductor, care must be taken so as not to mar the mounting contact surfaces or damage adjacent components and to preserve all identifying device markings. It is wise to tag the smaller leads (i.e. gate, cathode potential, etc.) for ease of identification. Installing a replacement power semiconductor is discussed in the Westinghouse application data sheet "Mounting Power Semiconductors"—located in the General section of the Westinghouse Data Book. The most important considerations in remounting or replacing devices are to maintain clean mounting and contact surfaces, to continue using a good thermal compound at the mounting interfaces, and to apply the specified torque.

## 9. SAFETY

Safety in operating and servicing solid state equipment is especially important. Unlike mechanical equipment which has rotating parts, moving contactors, etc., there is nothing to warn one that the equipment is energized. There is also a tendency for the uninitiated to believe that voltage and current levels associated with semiconductor electronics are too low to be dangerous—don't bet your life on it! Obvious safety measures must be carefully observed. Most high power equipment includes built in safety interlocks to make certain that the equipment is turned off before anyone can gain access to the circuit areas.

However, maintenance personnel often defeat these interlocks to simplify their service work. This is both careless and stupid. In cases when circuits must be checked while energized there are a few simple rules which could save both personal pain and equipment damage. First, if possible, always work with another person present—one who knows how to shut-down the equipment in a hurry. Second, when working around high voltages, be sure that the floor is covered with a rubber mat, and follow the good practice of working with one hand in your pocket. This sounds simple, but it could prevent one from completing a circuit through the body. Finally, always use insulated tools to avoid short circuits that could further damage electronic components. Some of the common shop practices for safety are too often overlooked or ignored. To name a few:

- 1. Always wear safety glasses—hot metal from a short or a soldering iron can ruin an eye as quickly as a metal chip.
  - 2. Keep long hair contained with a cap or net.
  - 3. Lock out the disconnect or breaker for the circuit you are about to service.
  - 4. Check with a voltmeter to be sure the circuit is completely dead.
- 5. Maintain "off limit" areas for high voltage equipment. Access should be allowed only to authorized personnel.

Too many accidents are caused by carelessness or laziness. Bear in mind that it can happen, so be careful.

## Westinghouse Semiconductor Lifetime Guarantee

Westinghouse warrants to the original purchaser that it will correct any defects in workmanship or material, by repair or replacement, F.O.B. factory or, at its option, issue credit at the original purchase price, for any silicon power semiconductor bearing this symbol during the life of the equipment in which it is originally installed, provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice. The foregoing warranty is exclusive and in lieu of all other warranties of quality whether written, oral, or implied (including any warranty of merchantability or fitness for purpose).

# For this you still have no second source.

## 5 RELIABILITY

## 1. UNDERSTANDING SEMICONDUCTOR RELIABILITY

**Explanation of reliability.** Much has been written about reliability, and it usually ends up in mountains of charts, tables, graphs, curves, and equations which require a mathematical background plus several good courses in statistics to understand. Of course, a great deal of reliability is expressed in statistical terms, such as AQL (Acceptance Quality Level), LTPD (Lot Tolerance Percent Defective), MTBF (Mean Time Between Failures), etc. It will be the object of this section to discuss reliability so that the user, the supplier, the purchasing agent, the salesman and the engineer can understand just what is required and what can be supplied in terms of a reliable product, and to what degree, and at what cost.

The age old requirements of a good newsworthy article are: Who, What, Why, When, and Where. Then, to make this a technical discussion, we add the word, "How".

The Who in reliability must refer to the manufacturer. Is the manufacturer dependable? Does back-up data and a good "history" of product usage in the field exist? Can the manufacturer speak knowledgeably in the realm of reliability? These things must be considered when an MTBF figure is discussed or when an LTPD value is specified.

Next, we come to the big question: What is Reliability? The dictionary describes it as "worthy of confidence; trustworthy." From the word rely, "to depend on; trust; repose confidence upon". This is all quite graphic and needs no further explanation. However, another parameter enters the picture here and that is the degree of reliability. It has become customary in the semiconductor industry to refer to any device which is a cut above the standard as a Hi-Rel device, no matter how reliable (or unreliable) the standard product is or to what degree it has been improved. So now it becomes necessary to define degree or level of reliability required and to do so in a universal language which will put us all in the same ball park. For this reason we turn to the common denominator of statistics.

In the field of semiconductors, the standard for quality has been set by the military, and rightly so, since in many of their applications life itself depends upon the reliability of the device being used. The basic document is Specification Mil-S-19500, "Semiconductors, General Specifications For." This specification provides an excellent table for evaluating or planning device reliability. Table 5.1 provides a sampling plan for testing a lot of devices with a reasonable assurance (90% confidence level) that, 9 out of 10 times, the number of defective units that may be found in the lot (regardless of size) will not exceed the percentage indicated by the chosen LTPD number. As an example, let us assume that a certain lot of units has been processed to meet an LTPD of 10. From the table we select a test sample of 38 devices, which allows one failure (a = 1). This would be an actual failure rate for the test sample of 2.63%. The difference between 10% and 2.63% takes into account a statistical probability of picking out defective units in the same proportion as they may appear in a lot, with a small random sample. Note that the larger the sample the greater the percent defective allowed; if we select a sample size of 326 (in the 10% column), the acceptance number is 25. This gives an actual percent defective in the test sample of 7.67%. In other words, if we continue testing the entire lot the acceptance number approaches 10%. This means that if the acceptance number is not exceeded in the first test sample (usually small), one may be sure (90%) that the number of defective units in this particular lot (one manufacturing run) will not exceed the LTPD to which we are testing. Usually, the actual quality of a group of devices is much better than is indicated by the LTPD to which they have been tested, for the simple reason that a manufacturer cannot afford to process devices to the exact degree where each test sample will produce the allowable number of defectives and no more. A rejected lot can be very expensive. Note also that, as data accumulates in "small sample" testing, the better the overall LTPD becomes.

In the example just cited, if a lot is tested to an LTPD of 10 with a sample size of 38, the lot is accepted at this level (10% LTPD) with one reject. If 10 lots in a row are accepted, each with maximum allowable failures, the total sample size becomes 380 and the acceptance number is 10. From the table this would indicate (by extrapolation) an LTPD of 3.7 for the total product. It is evident that a product with a history of lot acceptances must be considered more reliable than a similar new product, even though both are tested to the same specifications and at the same level; hence, there is a definite resistance to change by users of proven semiconductor products, even though the manufacturer has devised numerous tests to show that the product has been improved. Another reason for this "resistance" is the fact that very often changes in product are instituted for

				,												,	
Max.Percent Defective (LTPD) or λ	50	30	20	15	10	7	5	3	2	1.5	1	0.7	0.5	0.3	0.2	0.15	0. 1
Acceptance Minimum Sample Sizes																	
Number (c) (For device-hours required for life test, multiply by 1000)																	
$(\mathbf{r} = \mathbf{c} + 1)$	(1 - C + 1)																
0	5	8	11	15	22	32	45	76	116	153	231	328	461	767	1152	1534	2303
· · · · · · · · · · · · · · · · · · ·	(1.03)	(0.64)	(0.46)	(0.34)	(0.23)	(0.16)	(0.11)		(0.04)	(0.03)	(0.02)	(0.02)	(0.01)	(0.007)	(0. 005)	(0.003)	(0.002)
1	8	13	18	25	38	55	77	129	195	258	390	555	778	1296	1946	2592	3891
-	(4.4)	(2.7)	(2.0)	(1.4)	(0.94)	(0.65)	(0.46)	(0. 28)	(0.18)	(0.14)	(0.09)	(0.06)	(0.045)	(0.027)	(0.018)	(0. 013)	(0.009)
2	11	18	25	34	52	75	105	176	266	354	533	759	1065	1773	2662	3547	5323
-	(7.4)	(4.5)	(3.4)	(2. 24)	(1.6)	(1.1)	(0.78)	(0.47)	(0.31)	(0.23)	(0. 15)	(0.11)	(0. 080)	(0. 045)	(0. 031)	(0. 022)	(0.015)
3	13	22	32	43	65	94_	132	221	333	444	668	953	1337	2226	3341	4452	6681
	(10.5)	(6. 2)	(4.4)	(3. 2)	(2.1)	(1.5)	(1.0)	(0.62)	(0.41)	(0.31)	(0.20)	(0.14)	(0.10)	(0.062)	(0.041)	(0. 031)	(0.018)
4	16	27 (7.3)	38	52 (3. 9)	78	113	158	265	398	531	798	1140	1599	2663	3997	5327	7994
	(12.3)		(5.3)		(2.6)	(1.8)	(1.3)	(0.75)	(0.50)	(0.37)	(0. 25)	(0.17)	(0. 12)	(0.074)	(0.049)	(0. 037)	(0. 025)
5	19	31	45	60	91	131	184	308	462	617	927	1323	1855	3090	4638	6181	9275
	(13. 8)	(8.4)	(6.0)	(4.4)	(2.9)	(2.0)	(1.4)	(0.85)	(0.57)	(0.42)	(0. 28)	(0.20)	(0.14)	(0. 085)	(0. 056)	(0.042)	(0. 028)
6	21	35	51	68	104 (3.2)	149	209	349 (0. 94)	528 (0. 62)	700	1054 (0.31)	1503 (0. 22)	2107	3509 (0. 093)	5267	7019	10533
	(15. 6)	(9.4)	(6.6)	(4. 9)		(2.2)	(1.6)			(0.47)			(0.155)		(0. 062)	(0. 047)	(0. 031)
7	24	39 (10. 2)	57	77 (5. 3)	116	166	234 (1.7)	390	589 (0.67)	783	1178 (0, 34)	1680 (0, 24)	2355	3922	5886	7845	11771
	(16.6)		(7.2)		(3.5)	(2.4)		(1.0)	, ,	(0.51)			(0.17)	(0.101)	(0.067)	(0.051)	(0.034)
8	26	43 (10. 9)	63 (7.7)	85 (5.6)	128 (3.7)	184	258 (1.8)	431 (1.1)	648 (0.72)	864 (0.54)	1300 (0. 36)	1854 (0.25)	2599 (0.18)	4329	6498	8660	12995
	(18. 1)		69	(5. 6) 93		(2. 6) 201	282	471	709	945	1421	2027	2842	(0. 108) 4733	(0.072)	(0. 054) 9468	(0.036)
9	28 (19. 4)	47 (11. 5)	(8.1)	(6. 0) _.	140 (3. 9)	(2.7)	(1.9)	(1.2)	(0.77)	(0.58)	(0.38)	(0.27)	(0.19)	(0.114)	7103 (0. 077)	(0. 057)	14206 (0. 038)
	31	51	75	100	152	218	306	511	770	1025	1541	2199	3082	5133	7704	10268	15407
10	(19.9)	(12. 1)	(8.4)	(6.3)	(4.1)	(2.9)	(2.0)	(1.2)	(0.80)	(0.60)	(0.40)	(0.28)	(0.20)	(0. 120)	(0.080)	(0. 060)	(0.040)
	33	54	83	111	166	238	332	555	832	1109	1664	2378	3323	5546	8319	11092	16638
11	(21.0)	(12, 8)	(8.3)	(6. 2)	(4.2)	(2.9)	(2.1)	(1.2)	(0.83)	(0.62)	(0.42)	(0.29)	(0.21)	(0.12)	(0.083)	(0.062)	(0.042)
	36	59	89	119	178	254	356	594	890	1187	1781	2544	3562	5936	8904	11872	17808
12	(21.4)	(13. 0)	(8.6)	(6.5)	(4.3)	(3.0)	(2.2)	(1.3)	(0.86)	(0.65)	(0.43)	(0.3)	(0.22)	(0.13)	(0. 086)	(0.065)	(0.043)
	38	63	95	126	190	271	379	632	948	1264	1896	2709	3793	6321	9482	12643	18964
13	(22. 3)	(13.4)	(8.9)	(6.7)	(4.5)	(3.1)	(2. 26)	(1.3)	(0.89)	(0.67)	(0.44)	(0.31)	(0.22)	(0. 134)	(0. 089)	(0.067)	(0.045)
	40	67	101	134	201	288	403	672	1007	1343	2015	2878	4029	6716	10073	13431	20146
14	(23. 1)	(13.8)	$(\hat{9}, \hat{2})$	(6. 9)	(4.6)	(3, 2)	(2.3)	(1.4)	(0.92)	(0.69)	(0.46)	(0.32)	(0. 23)	(0. 138)	(0. 092)	(0. 069)	(0. 046)
	43	71	107	142	213	305	426	711	1066	1422	2133	3046	4265	7108	10662	14216	21324
15	(23.3)	(14. 1)	(9.4)	(7.1)	(4.7)	(3.3)	(2.36)	(1.41)	(0.94)	(0.71)	(0.47)	(0.33)	(0.235)	(0.141)	(0.094)	(0.070)	(0.047)
16	45	74	112	150	225	321	450	750	1124	1499	2249	3212	4497	7496	11244	14992	22487
10	(24.1)	(14.6)	(9.7)	(7.2)	(4.8)	(3.37)	(2.41)	(1.44)	(0.96)	(0.72)	(0.48)	(0.337)	(0.241)	(0.144)	(0.096)	(0.072)	(0. 048)
17	47	79	118	158	236	338	473	788	1182	1576	2364	3377	4728	7880	11819	15759	23639
11	(24. 7)	(14.7)	(9.86)	(7.36)	(4. 93)	(3. 44)	(2.46)	(1.48)	(0.98)	(0.74)	(0.49)	(0.344)	(0.246)	(0. 148)	(0. 098)	(0.074)	(0.049)
18	50	83	124	165	248	354	496	826	1239	1652	2478	3540	4956	8260	12390	16520	24780
10	(24. 9)	(15.0)	(10.0)	(7.54)	(5, 02)	(3.51)	(2.51)	(1.51)	(1.0)	(0.75)	(0.50)	(0.351)	(0.251)	(0.151)	(0.100)	(0.075)	(0. 050)
19	52	86	130	173	259	370	518	864	1296	1728	2591	3702	5183	8638	12957	17276	25914
	(25. 5)	(15.4)	(10.2)	(7.76)	(5.12)	(3.58)	(2.56)	(1.53)	(1.02)	(0.77)	(0. 52)	(0.358)	(0.256)	(0.153)	(0. 102)	(0.077)	(0.051)
20	54	90	135	180	271	386	541	902	1353	1803	2705	3864	5410	9017	13526	18034	27051
40	(26.1)	(15. 6)	(10.4)	(7.82)	(5.19)	(3. 65)	(2.60)	(1.56)	(1.04)	(0.78)	(0.52)	(0.364)	(0.260)	(0.156)	(0.104)	(0. 078)	(0. 052)
25	65	109	163	217	326	466	652	1086	1629	2173	3259	4656	6518	10863	16295	21726	32589
20	(27. 0)	(16.1)	(10.8)	(8.08)	(5. 38)	(3.76)	(2.69)	(1.61)	(1.08)	(0.807)	(0. 538)	(0.376)	(0. 269)	(0. 161)	(0.108)	(0.081)	(0.054)
	<u> </u>	L	<b></b>	L	L	L	L	L	ــــــــــــــــــــــــــــــــــــــ			L	L	l	l	L	L

TABLE 5.1 LTPD sampling plans 1/2/

Minimum size of sample to be tested to assure, with a 90 percent confidence, that a lot having percent-defective equal to the specified LTPD proximate AQL) required to accept (on the average) 19 of 20 lots is shown in parenthesis for information only.

the sole purpose of cost reduction; then the change is made on an "as good as" basis, and only a similar history of successful usage will convince a user. In this respect, the market is often fickle because it forces many reliable manufacturers to compete with "junk dealers" on price alone, and then it pays a high price to have reliability processed into the device.

In spite of this resistance to changing an established product, it is necessary for a manufacturer to keep abreast of the state-of-the-art and, as is usually the case, an old (and proven) line of devices must be discontinued in favor of the new before enough data has been accumulated to call it equivalent. In these instances, one has to use a "projected" failure rate rather than an actual failure rate. As an example, if we take the factual LTPD of 3.7 as determined above and go back to the Table (by extrapolation), we find that we may expect one failure in 111 units; if the test is a 1000-hour operation life test, we may now say that the product has an established MTBF of 110,000 hours. For the new product, we claim the same MTBF, on the basis of starting with the same test level and including enough processing to give a reasonable assurance that the succeeding lots will pass operating life test. This is considered a projected MTBF. When the LTPD figure is applied to 1000-hour life tests or LTPD per thousand hours, it becomes the life test failure rate, (Lambda), which is expressed as percent defective per 1000-hour operation.

To sum up what is meant by reliability in semiconductors, we find that:

- The degree of reliability must be defined; the term "hi-rel" device is meaningless by itself.
- Degree or level is defined (usually) by a Mean Time Between Failure figure, along with a given confidence level.
- There is a distinction between High Reliability and Established Reliability. A device may be designed for High Reliability, but Established Reliability is achieved only from actual data covering hundreds of thousands of device hours of actual use.
- A good yardstick for estimating a "projected reliability" is the LTPD figure to which the device lot is tested, as set forth in the Table of Mil-S-19500 with a 90% confidence level.

Why is so much emphasis being placed on reliability? As semiconductors are being designed into more complex and sophisticated equipment, it becomes more and more essential to avoid "down" time or malfunctions. Also, in the missile and space program, "expected" failures cannot be tolerated. Although the greatest Hi-Rel requirements are found in such applications as aircraft, military and space projects, the equipment manufacturers and industrial users are beginning to demand more reliability in the semiconductors which they use. Here again, the cost of replacing a component must be weighed against the cost of procuring a sufficiently high reliability device to minimize or eliminate the need for replacement. This becomes our when of reliability; when the cost of processing a manufactured lot of semiconductors is attractive when compared to a possible malfunction of a standard device, or when the added reliability of a piece of equipment enhances the manufacturer's reputation for dependability.

Where is reliability introduced into a device—from beginning to end. It starts with the choice of suppliers of component parts and continues with incoming inspection, in-line processes and controls, processing after construction, end of line screening and testing, quality assurance testing, storage and marking methods and controls, and shipping tests and it ends with the user's incoming inspection and application with special emphasis on conformance to the parameters as set forth for the device.

This method of using actual test failures, together with a history of (accumulated data) similar devices, to obtain a projected MTBF is probably an over-simplification, but it does provide a ball park figure which, if anything, would be conservative. No matter what complicated and time consuming system is used, the results will still be an approximation.

## How to achieve reliability.

How is this "extra" reliability to be obtained? We have often heard it stated that one cannot test quality into a product. This is very true; however, we can process non-quality out. First, let us consider some of the possible causes of semiconductor failure, not necessarily in order of importance:

- Excessive junction temperature
- Thermal fatigue
- Aging
- Poor construction, misalignment of parts
- Foreign particles
- Mechanical stress
- · Lack of hermeticity

- Inconsistencies in crystal, doping, element
- Improper curing of junction coating
- Improper use—nonconformance to limiting parameters assigned to the device

No doubt there are many other causes of failures, but these are the ten most obvious. Many of these "faults" can be greatly minimized by rigid incoming inspections and constant monitoring of fusion furnace temperatures, etching processes, assembly practices, soldering temperature, junction coating and curing, and visual inspection up to encapsulation. This in-line control is essential for good reliability in a product and is a "must" if we are to maintain a reasonable confidence level. However, even the best controls cannot enable one to predict the effect of electrical, mechanical, and environmental stresses upon a device. For this reason, various conditioning procedures have been developed to simulate some of the above listed causes of failure. It is an attempt to prevent and/or weed out devices which may be subject to "infant mortality"-that is, failure in the first week or two of operation. It has been found from experience and many thousands of hours of operation that once a semiconductor survives the first week or two of operation, its chance of reaching the expected lifetime is more than doubled.

Normally, one would believe that with exacting in-line controls, such faults as misalignment, foreign particles, hermeticity, and improper curing would be eliminated, but this is not so. Many things can happen to a device during the encapsulation procedure which usually involves heat stresses from welding and soldering temperatures and mechanical stresses from pressures on the internal lead and pinch-off and crimping operations. Also, the amount of in-line controls must be dictated by the quality and cost required to meet competition in the volume market. Once this criterion is met, we start considering the various procedures for producing a high reliability product. There are three major contributing factors in planning a Hi-Rel program: (a) Level of reliability required; (b) Cost of achieving the required level of reliability and (c) Volume—number of units to be processed. Naturally, the customer wants the most reliability for the least cost and the customer must decide what level can be tolerated. Before going into the various levels of reliability, it would be wise to look into the various tests and procedures that are available to achieve these levels and to consider the good and bad features of each.

- 1. **Temperature Cycling:** Cycles from minimum to maximum rated junction temperatures and back again in a specified time. This operation is done on a batch basis and is relatively inexpensive. It is designed to weed out those devices that may have a tendency to fail due to expansion and contraction of the various materials in the device package which could crack an element or break a solder connection.
- 2. **Stabilization Bake:** A bake at the maximum rated temperature. The purpose of this step is to stabilize the device by further curing of the junction coating. This is also an inexpensive procedure. These first two steps are essential before proceeding with further processing. In many instances, especially in the case of military products, it is included in the standard procedure.
- 3. **X-Ray Examination:** A very expensive operation, made more so because of the elaborate requirements of some semiconductor X-ray specifications which require that all devices be serialized. Film must be processed and examined and careful lot control maintained so that corresponding units and film are shipped together. The equipment is expensive and the operators must be well-trained. This is the only way, however, by which faulty construction or the presence of foreign particles can be detected after encapsulation. The test becomes much more effective if performed after shock and/or vibration tests. Needless to say, the sooner this procedure can be changed from a 100% basis to a sample basis without jeopardizing the confidence level, the happier all concerned will be.
- 4. **Operating Life:** Perhaps the best single process for improving the reliability of a device. This process consists of actually operating the unit at stated parameters for a specific period of time. Usually, the operating conditions are the maximum rated forward current, reverse voltage, and case temperature. Times vary depending on need. This operation is expensive because every device must be handled separately, it ties up life test equipment for long periods, and scheduling times are often prohibitive. The cost of building special equipment for any particular order is also prohibitive. For this reason, volume and delivery requirements are important considerations in using this procedure.

The reason Operating Life is so highly regarded is graphically illustrated by a Failure Rate versus Operating Time Curve, Figure 5.1. This curve falls very steeply during the initial operating time, then gradually levels out to the inherent value for the device.

5. **Blocking Life:** This process has the rated peak reverse voltage (either full or half wave rectified) applied to the units while in an ambient equal to the maximum rated junction temperature for a determined time period. This is often done in conjunction with Stabilization Bake with a moderate increase in cost because a connec-



Figure 5.1 Effect of operating life burn-in on semiconductor failure rate over time.

tion must be made to each device, which then limits the number of devices that can be handled at one time. It is no longer a "batch" operation. Blocking Life is a very good alternative for Operating Life.

- 6. Power Cycling (Thermal Fatigue): The Power Cycling test may also be used as a substitute for Operating Life. However, care must be taken as to the number of cycles specified for conditioning because this is a severe test and probably reduces the actual lifetime of the device. The test consists of heating the device up to its operating case temperature by the application of forward current and then force-cooling it back to approximately room temperature. The device under test is subjected to a continuous expansion and contraction of materials which sets up stresses in the soldered and brazed connection within the device package and simulates, in an accelerated manner, the effects of actual usage. Reverse voltage is usually not applied during this test. Here again, a great deal of equipment is involved, depending on the quantities (and size) of units to be conditioned. The equipment is not very complicated and should be relatively inexpensive when compared to operating life test equipment.
- 7. Monitored Shock and Vibration: Used to determine the mechanical stability of the device. The units are subjected to specified vibrations and /or shocks while in an operating state. The current, either forward or reverse, is monitored to detect instantaneous opens or shorts or electrical "noise". This is a slow, therefore expensive, test since only a few units can be processed at a time. When this procedure is called for, it should be done before X-Ray and Hermeticity tests.
- 8. Hermeticity Test: This test is used to determine the effectiveness of the package seal which protects the element. The entrance of damaging contaminants will reduce the effective life of a semiconductor, hence, a good package seal is imperative in a high reliability device. This is a fairly expensive test when done on a 100% basis. It requires a good commercial tester and is not a batch operation.

Of these procedures, you will note that 1, 2, 4, 5, and 6 are conditioning processes, while 3, 7, and 6 are selection or "weeding out" type of tests. Naturally, any conditioning should be done before the selection asks. The monitored shock and vibration tests can be considered as both conditioning and selecting, and should be performed before hermeticity tests or X-Ray.

All of these procedures become more effective when accompanied by limitations on changes in characteristics, that is, maximum allowable  $\Delta V_F$  and  $\Delta l_R$ . This assures a more stable end product but may also eliminate a lot of good devices and prove quite expensive.

After a lot of semiconductors has been stabilized and most of the "weak sisters" removed by some combination of the above mentioned procedures, there is a final process which will enhance reliability tremendously and that is "derating" the device in some (or all) of its parameters. For instance, an 800 volt, 12 amp at Tc =150° C rectifier will be more reliable if rated as a 600 volt device and even more reliable as a 600 volt, 6 amp at Tc =125° C device. The intended application of the rectifier would dictate which parameters should be derated for the best results. If the unit may be subjected to high transient voltages, then the voltage should be derated. If the unit is to be used in a circuit with frequent on-off operations or subjected to many temperature excursions, then the current and/or temperature should be derated.

To illustrate to the semiconductor equipment designer and user the value of derating as a reliability tool, graphs of the failure rates per 1000 hours for thyristors, transistors, and rectifiers are shown in figures 5.2, 5.3, and 5.4.



Figure 5.2 Estimated degradation failure rate for thyristors at less than 50 amps per  $\mu$ sec. For catastrophic failures, use 10% of these values.



Figure 5.3 Estimated failure rate for transistors. For catastrophic failures, use 10% of these values.



Figure 5.4 Estimated failure rate for rectifiers. For catastrophic failures, use 10% of these values.

These graphs show that one key to enhancing reliability is derating. Derate any of the reliability sensitive parameters, such as the temperature and the voltage to which the semiconductor is subjected, and derate the related parameters of current, power, thermal impedance, and time, and the reliability will be increased. A study of the derating curves shows that a reduction of the junction temperature gives a larger reduction in the failure rate than a similar reduction in applied voltage. Also, a larger percentage of failures is expected at 100% of rated voltage than at a lower (derated) voltage. Using figure 5.2, the failure rate for 125°C and 100% rated voltage is 3%. If the voltage is lowered to 75% of rated value and the junction temperature is decreased to 75°C, the failure rate is 0.15%, or 20 times lower.

This discussion has endeavored to reduce the complicated business of semiconductor reliability, whether achieving, proving, calculating or projecting, to a few undeniable truths, as follows:

- The chief reasons for unreliability must be recognized and dealt with.
- There are only a certain number of processes or procedures that can be applied to a semiconductor device to enhance its quality, once manufacturing is completed.
- There are so many variables in both the manufacture and use of these devices that each type has an inherent degree of reliability which cannot be improved upon with any amount of processing.
- Because of economic and practical considerations, one must sample test to determine and project reliability. Use of Table 5.1 provides a good method for this.
- Expense must be balanced with need in specifying a degree of reliability. Reliability can be a practical thing; it does not have to be a tool for statisticians, nor does it require exotic computer programming.

So let us keep in mind, whether buying or selling reliability, that a Hi-Rel product is a good thing, but the degree of reliability must be handled intelligently. We do not want to waste money, but we do want a device we can depend on—a reliable device.

## 2. QUALITY CONTROL

To insure reliability, the Westinghouse Semiconductor Division uses a quality control program, a statistical method that monitors the manufacture and testing of semiconductors. The quality of a semiconductor is determined by quality controls, such as incoming materials inspections, control of the silicon processing and chemical purity, electrical tests, environmental tests, packaging and many other controls used in the manufacturing process. These controls are inserted to insure uniform quality.

## Testing for reliability

During the design of a semiconductor, and particularly before final manufacturing approval is given, operating, storage, and environmental tests are conducted to determine the integrity and reliability of the semiconductor. The tests can be operated at accelerated stress levels to help determine margins in the device design and to predict the reliability at low application stress levels. A partial list of these tests follows:

- Centrifuge, shock, and thermal shock are evaluated to determine the mechanical features of a design.
- Operating and storage life tests are used to evaluate the physical and chemical stability of the semiconductor design.
- Current surge data is gathered to verify the semiconductor current handling capability and the short, high current capability of the internal connections,
- Thermal fatigue data is used for checking element mounting integrity.
- Thermal impedance measurements are made to insure proper junction temperature during operation.
- Blocking life tests are used to determine if reliability is affected by junction temperature and voltage.
- Step stress testing can be run to show the threshold of failure and the accelerated stress areas such as junction temperature, voltage or environment.

During the manufactured life, a family plan of testing determines if the reliability test results are still valid. The goal of the family plan is to achieve maximum device yield economy consistent with sufficient assurance that end-of-life limits will not be exceeded during the semiconductor equipment lifetime. These results can be used as an interpretation of the reliability of similar device families. Other voltage and current parameters can be extrapolated from similar device characteristics.

Improved reliability is achieved through many corrective actions involving the design, process, fabrication, material, and device assembly inspections. Before any of these are changed, the reliability impact is studied and appropriate testing is instituted. Over the years, there have been improvements in the element surfaces, the element material, and the packaging that have resulted in generally lower failure rates.

Testing to determine the quality of the semiconductors is done on various parameters. This testing is repeated many times as the semiconductor element continues through the manufacturing cycle and is repeated again when the element is assembled in a package. Reliability testing, such as blocking life, is done on a sampling basis in the element state, as well as in the completed package. Surge capability and thermal impedance are used as reliability measurement tools.

## Types of failures

Quality is closely related to reliability, which in turn, is dependent on failure rate. There are three types of semiconductor failures: the early or freak failures, the chance failures, and the wearout failures. These failures are shown in Fig. 5.5 in relation to semiconductor lifetime.

Early failures result when semiconductors have some production defect, material defect, or other deficiency. Even with good quality control, semiconductors will always have a small percentage of early failures, but these can be eliminated by doing quality conformance testing on all the units or by sample testing. One or more of the following tests, which could take from 2 hours to 168 hours or more, could be chosen: stabilization bake, operation life, or blocking life. Tests that are not time dependent could include temperature cycling, salt spray and hermeticity.

Wearout failures are practically non-existent in properly applied semiconductors during the normal life of a system. Where they do occur, wearout mechanisms exist both in structural flaws and in internal encapsulated contaminants. Because semiconductors cannot be made completely free of these flaws or contaminants, early failures can happen. But in well-designed, properly applied semiconductors, the wearout should occur long after the useful life of the system itself.

Chance failures occur between the early failures and the much later wearout period. This is the long period of useful life of a semiconductor during which there is small expectation of failures. The failures that do occur are time, temperature, current, and voltage dependent.



Figure 5.5 The probability of failure as a function of semiconductor lifetime.

## Quality and reliability testing defined

Testing for quality and reliability is usually divided into four catagories; Group A, Group B, Group C, and Special.

- Group A includes all the standard electrical tests required to assure that a semiconductor meets the voltage, current, switching times, control functions, etc. as stated in the device specification. Group A is performed on every lot.
- Group B testing provides assurance that the semiconductor is properly constructed, durable, and will
  operate under extreme environmental conditions. These tests include operating life tests, stabilization
  bake, hermeticity tests, humidity, shock and vibration, etc. Once a manufacturer has established a consistent parts supplier and fabrication cycle, group B testing (which is expensive) may be performed on combined lots or alternate lots.
- Group C testing, in essence, checks whether or not the semiconductor is properly designed to meet certain
  special criteria. These tests include such things as high altitude test, salt atmosphere test, and thermal
  resistance tests. Usually, these tests are necessary only when there is a change of material, design, or
  process in the manufacturing cycle.
- Special testing. In some instances, a customer application puts unique stresses on semiconductors so that extra testing of certain parameters, or even specially designed testing, is required to assure that the semiconductor will perform as required.
  - Table 5.2 on page 65 illustrates a typical test plan and preferred order of grouping as recommended in Mil-S-19500.

## 3. RESPONSIBILITIES

User responsibility: The user has the responsibility of insuring proper operation of the equipment. The maximum rating of the equipment must never be exceeded. The voltage and current must never be raised above maximum ratings to increase production. The cooling system must be monitored periodically to insure proper cooling at all times. The semiconductors and associated equipment must be kept clean. It is imperative to reliable operation that a schedule be set up for cleaning, tightening connections, etc. In short, exercise good operating and maintenance procedures.

**Shared responsibility:** Semiconductor reliability is a shared responsibility among the semiconductor manufacturer, the original equipment manufacturer (OEM), and the end user of the equipment. The manufacturer must design and build a reliable semiconductor, the OEM must use good engineering practices when designing the equipment, and the user must operate the equipment within its ratings and in a clean environment. If these conditions are met, power semiconductors will be reliable.

Failure analysis as a reliability tool: Failure analysis involves the gathering and analyzing of all possible information about the cause of a failed semiconductor. Knowing the reason for failure, the user can modify the circuit to eliminate any repetitions of this failure mode, or the manufacturer can take corrective action in device fabrication or testing. Proper analysis may determine if a failure is due to voltage, current, over-temperature or surge. However, a failed semiconductor may show more than one mode of failure; a history of the use of the device is then necessary. For instance, if the installation was trouble-free until a certain point in time, when new or different equipment was added or a new operator was being trained, the problem may be easily resolved. Thus, failure analysis can often be specific and give the actual failure mode but, just as often, the actual cause of failure is masked, and help in the form of historical data is needed. A "burn-out" of a semiconductor is often violent enough to mask out much, if not all, of the original cause of failure. So, the more background furnished, the more meaningful the analysis. A good failure analysis will determine the reason for failure and corrective action can then be taken.

## • Group A Inspection

Visual & mechanical examination Electrical performance tests

## Group B Inspection Subgroup 1

Physical dimensions

## Subgroup 2

Solderability Temperature cycling Thermal shock Terminal strength Hermetic Seal Misture resistance

## Subgroup 3

Shock

Vibration fatique

Vibration, variable frequency Constant acceleration

## Subgroup 4 Terminal strength

## Subgroup 5

High temperature life, non-operating

## Subgroup 6

Operating life

## Group C Inspection

Barometric pressure (altitude) Salt atmosphere Other periodic tests

Table 5.2 Typical Test Plan



From silicon rod . . .



slicing . . .



diffusion . . .



element testing . . .



package assembly . . .



to finished devices.

## 6 MANUFACTURING W POWER SEMICONDUCTORS

## 1. FACILITIES

The Westinghouse Semiconductor Division facility (Figure 6.1) in Youngwood, Pa. is the most modern high power semiconductor manufacturing plant in the world. At the Youngwood facility, nestled in the foothills of the Allegheny Mountains, the silicon elements which house all the electrical characteristics of the power semiconductor component are made. This single location for element production extends its capability for supplying superior high power semiconductor devices to identical assembly facilities in Le Mans, France (Figure 6.2) and San Juan, Puerto Rico (Figure 6.3) with a new facility opening in Brazil to serve the Latin American market.



Figure 6.1 Westinghouse-Youngwood, Paemploying the most modern, up-to-date techniques in high power semiconductor manufacturing.



Figure 6.2 Westinghouse, LeMans, France—power semiconductor manufacturing in Europe.

Figure 6.3 Westinghouse, Puerto Rico—power semiconductor assembly in Gurabo (San Juan).



## 2. PRODUCT BREAKTHROUGHS

Several product breakthroughs have been instrumental in making the manufacturing concept a reality. One key to success is the ability to manufacture, test, and store the semiconductor element independent of the device package. First, element sizes have been standardized for rectifiers, SCR's and transistors. Comparable semiconductor element sizes for high power rectifiers and SCR's are shown in Figure 6.4. The early process-



Figure 6.4 Westinghouse Power Semiconductor Elements

ing stages for slicing and diffusing the silicon are identifical for rectifiers and SCR's. An all-diffused process for making rectifiers and SCR's offers good reproducibility and process precision. All Westinghouse high power SCR designs feature center-fired, di/namic gate structures for fast turn-on capability, high repetitive di/dt capability, and low switching losses. This gate structure is comparable to a device built with a pilot SCR to turn on a main SCR (Figure 6.5). Westinghouse developed a special di/namic mid-gate SCR for high peak



Figure 6.5 Equivalent electrical circuit for the di/namic gate design.

current and narrow pulse width fast switching applications. By using an irradiation process (see Figure 6.6) to produce fast recovery rectifiers and fast switching SCR's, Westinghouse has the advantage of being able to



Figure 6.6 Exclusive w irradiation process for manufacturing Fast Switching SCR's and Fast Recovery Rectifiers.

apply this technique after the semiconductor element has completed its processing cycle. This process promotes greater manufacturing flexibility and better control in producing fast switching and fast recovery characteristics. Westinghouse's special emitter shunt designs make possible dv/dt capabilities of 300 to 1000 volts per microsecond—the highest available in the industry. Exclusive processes for passivating semiconductor elements, enabling sealing and stabilization of the elements with no danger of degradation, complete the element breakthroughs necessary to establish a World Element Bank (Figure 6.7)—an inventory center for storing completely tested and passivated elements.



Figure 6.7 The World Element Bank, an inventory center for storing completely tested, passivated semiconductor elements, ready for assembly anywhere in the world.

Originally, power semiconductors were offered only in stud mount packages. Later, by placing the same element in an integral heat sink package, (Figure 6.8), a 40% improvement in current rating was obtained



Figure 6.8 An integral heat sink package offers up to a 40% improvement in current rating over the same element size in a stud mount package.

because one thermal interface (case to sink) was eliminated. However, the real innovation in packaging was the disc; with double-sided cooling (Figure 6.9), the same element offers up to an 80% improvement in current rating over the same element in a stud mount package. An additional benefit is that it is easy to stack these disc devices in a series arrangement or a back-to-back arrangement and devices can simply be "flipped over" for reversing polarity. Initially low power semiconductor elements were bonded to the device package with a low temperature or soft solder. Later, hard solder or high temperature soldering techniques were used, and they improved device thermal cycling capabilities by an order of magnitude. However, as element sizes increased and applications became more severe, a more fatigue-free construction was required and compression bonded encapsulation (CBE) was developed. This CBE technique completely eliminates solder connections



Figure 6.9 Disc packages offer up to 80% improvement in current rating over the same element size in a stud mount package.

between the element and the package. The metallic bond is replaced by a constant-pressure spring washer system (Figure 6.10) which supplies a constant load force to the element. Today, this technique is used to manufacture thermal fatigue free SCR's, rectifiers, and transistors that are magnitudes better than hard solder devices. CBE simplifies the manufacturing process and improves semiconductor reliability. This same design philosophy is employed in the disc package except that the spring clamp system is supplied externally by the user. The Westinghouse worldwide assembly concept owes its success to this patented CBE product breakthrough.

## 3. KEY MANUFACTURING INNOVATIONS

At the Westinghouse Semiconductor plant, innovative manufacturing procedures are the cornerstone of a large scale manufacturing concept, wherein power semiconductor elements, the heart of the semiconductor device, are the common denominator among worldwide manufacturing plants. This concept is being used to serve the power semiconductor user by guaranteed element availability from an element bank, independent of package requirements. By making package commitment at the last moment, faster delivery, at the required ratings, is made, and an inventory reduction on the part of the user can be realized. Applications, today, require a wide variety of electrical needs. In addition, regional demands require these ratings in an even wider range of



Figure 6.10 Compression Bonded Encapsulation (CBE)

packages or assemblies. This function is well served by the Westinghouse element-oriented manufacturing system wherein the optimum application charcteristics are ensured in processing, test, and package assembly.

Several basic techniques (Figure 6.11) support this element manufacturing system. The spreading resistance probe, developed to predict a product's characteristics instantly, weeks before the product is completed, means better visibility of design characteristics early in the manufacturing cycle. A Westinghouse 2500 process control computer plays an important role in the diffusion cycle by monitoring furnace temperature cycles and cool-down rate to indicate when a deviation from profile occurs. Through the effective use of the computer, the various process cycles are more controllable and predictable, providing a distribution and yield of products to match requirements. A high volume paced conveyor element test line is used to fully characterize an element before committing it to a device package. All standard and special hot or cold tests can be performed on various size elements simultaneously on this test line. After testing, these passivated elements are quality checked and bubble-packed for storage in the World Element Bank until needed. Fundamental to the element system is Compression Bonded Encapsulation (CBE)—a pressure-mounted contacting means for assembling semiconductor elements into a variety of packages—stud, disc, integral heat sink, or flat base. CBE ensures reliability and flexibility in assembly while eliminating thermal fatigue problems inherent in conventional solder construction designs. Accurate and sophisticated testing have made Westinghouse high power semiconductors among the most reliable to be found anywhere. All this adds up to the advantages of predictable, reproducible element characteristics, World Bank stocking, guaranteed emergency delivery, and reduced inventory and cash flow for users of Westinghouse power semiconductors.



Spreading resistance probe.



High power conveyor.



Paced element test line.



In-line product marking.



Patented compression bonded encapsulation.



Bubble-packed elements completely identified, quality checked and ready for World Bank.

Figure 6.11 Key manufacturing innovations.

#### 4. TECHNOLOGY LEADERSHIP

Indicative of Westinghouse's leadership role in manufacturing high power semiconductors, UNITRA of Poland selected Westinghouse from among suppliers worldwide to provide them with semiconductor technology, facilities, and training. This agreement, for Westinghouse the largest sale of technology ever, was the first of its type by a U.S. manufacturer.

The Semiconductor Division also enjoys the support of the Westinghouse Research and Development Center (Figure 6.12) located in Churchill, Pennsylvania, only twenty-five miles from Youngwood. Thus, a continuous program to provide long range product development and the latest technology and manufacturing techniques is carried on from year to year. Westinghouse invests millions of dollars each year to provide the user with products which offer more efficient energy utilization, promote a cleaner environment, result in greater reliability, reduce size and weight, provide for increased safety, and offer new and expanded capabilities at the lowest possible cost.



Figure 6.12 Westinghouse Research and Development Center located in nearby Churchill, Pa.



A powerful part of your life.

#### **User's Manual** SEMICONDUCTOR GLOSSARY

AQL-Acceptance Quality Level.

Ambient Temperature—Medium or free air temperature in which device is being operated.

Anode—One of two high current terminals of rectifier or SCR: other terminal is cathode.

Assemblies-Combination of discrete devices on heat sinks connected in various circuit configurations.

Average Current—Current integrated over a full cycle. Current measured on DC ammeter.

Base—Control terminal of a transistor.

Beta-See gain.

Blocking Voltage—Ability of a semiconductor to withstand a specific voltage stress without conducting

Breakdown Voltage—Maximum voltage a semiconductor can support in its nonconducting direction.

Bridge—Combination of discrete devices on heat sinks; generally in circuit configurations to change A.C. current to D.C. current.

CBE-Encapsulation technique which replaces conventional solder, metallic bonds with a constantpressure, spring, washer system. This technique eliminates thermal fatique due to solder joints.

CFM—Cubic feet per minute - amount of air being moved (CFM = LFM x cross-sectional area of heat sink).

Case Temperature—Temperature of package measured at a specific location. Indirect method for determining junction temperature. For stud devices, proper thermocouple location is center of any hex flat - for disc devices, mount thermocouple on rim (radial edge) of pole face.

Cathode—One of two high current terminals of rectifier or SCR; other terminal is anode. In electronic symbol for rectifier or SCR, arrow points toward cathode.

Chip-Small semiconductor element, usually for one to forty amp discrete device ratings.

Collector—One of high current terminals of a transistor; other terminal is emitter.

Commutation—Transfer of current flow from one circuit element to another.

Conduction Angle—Number of electrical degrees that current flows. A full cycle of A.C. voltage or current is 360 electrical degrees.

Creepage Distance—Shortest distance across surface of an insulator between positive and negative terminals. Dice—See chip.

Diode—See rectifier.

Disc-Semiconductor package that can be cooled from both sides. Various industry names include Pow-R-Disc, Press Pak, Hockey Puck, etc.

Duty Cycle—Ratio of operating time to total operating plus nonoperating time.

Element—Silicon wafer that has been processed to create a semiconductor junction(s), passivated, tested and ready for assembly into a device package.

**Emitter**—One of high current terminals of a transistor; other terminal is collector.

Encapsulation—Refers to process of assembling a semiconductor element into device package.

End User—Refers to individuals and/or companies who purchase, use, and maintain equipment utilizing power semiconductors.

Failure—Termination of ability of a device to perform its required function. Also see failure mode.

Failure Mode—Refers to type of failure rather than to cause of failure. Component failures are generally either catastrophic (sudden and complete) failures or degradation (parameter drift) failures. Short- and open-circuit failures are catastrophic and usually occur at random. Degradation failures result in deviations from acceptable limits without complete cessation of the function required.

Fast Recovery Rectifier—Term used to describe rectifiers characterized for fast operating response. This class of devices is used for free wheeling diodes and a vari-

ety of high frequency applications.

Fast Switching SCRs—Term used to describe SCRs characterized for turn-off time capability and other speed characteristics. This class of devices is used in choppers, inverters, and other high frequency applications.

Flag Lead—Term used to describe top terminal on some stud mount devices. Terminal is a rigid, metal, flagshaped connection.

Flat Base—Commonly used to describe a studiess (clamp down) or a square base (bolt down) device package.

Flex Lead—Term used to describe top terminal on some stud mount devices. Terminal is made from flexible stranded cable.

Forward Direction—The direction of current flow in a semiconductor.

Forward Polarity—See standard polarity rectifier.

Free Wheeling Rectifier (Diode)—Rectifier that is used to bypass the current due to the stored energy in the in-

Full Control-Circuit utilizing all SCR's for controlling both half-cycles in an A.C. circuit.

Fusion—See element.

GPM—Gallons per minute. Water flow rate through liquid cooled heat sink.

Gain-The ratio of output to input. Normally used to characterize amplification properties of a transistor. Gate—Control terminal of an SCR.

General Purpose Rectifier—Term used to describe rectifiers for conventional power control applications where operating speed is not a prime consideration.

Half Control—An arrangement of rectifiers and SCRs that controls only half the cycle in A.C. circuits.

Hard Solder—A high temperature solder having an expansion coefficient very compatible to the element and package base material.

High Voltage Stack-An assembly of a number of semiconductors connected in series to obtain extra high voltage ratings.

Hi-Rel—Abbreviated version of high reliability. Denotes a device having an established level of reliability above that of standard production line product.

Hockey Puck-See disc.

Integral Heat Sink—Refers to a device package which incorporates its own heat sink. Package is very efficient as the element is mounted directly to the heat sink eliminating the case to sink thermal resistance.

JAN—Refers to device specifications for military use, with Joint Army and Navy sponsorship.

JEDEC—Joint Electronic Device Engineering Council. Sets parameters and specifications for a standard line of devices throughout the industry.

**Junction**—A transition region between the positive and negative layers of a semiconductor.

**LFM**—Linear feet per minute. Rate of air flow moving across a cooling surface.

LTPD-Lot Tolerance Percent Defective.

Leakage Current—The small currents which get through or around the blocking characteristic of a semiconductor device, capacitor, or insulator.

MRO—Term stands for Maintenance, Repair, and Operations of a factory, plant, hospital, etc., and refers to the industrial replacement and retrofit market.

MTBF-Mean Time Between Failures.

**OEM**—Original Equipment Manufacturers who build and sell equipment utilizing power semiconductors.

OSHA—Occupational Safety and Health Administration. Establish and enforce national standards of safety and health in industry.

Parameter—A value, condition, or characteristic that is a measurable property of a device. It may be electrical, mechanical, or thermal and can be expressed for a given set of operational and environmental conditions.

Passivation—A process by which a semiconductor junction is protected against oxidation and contamination.

Pellet-See element.

**Phase Control SCR's**—Term used to describe SCRs where fast turn-off time is not a prime requirement.

Pole Face—Mounting surface on a disc device; each disc has two pole faces.

Pow-R-Disc—See disc.

Press-Pak-See disc.

Procurement—Overall process of obtaining a semiconductor. Period between selection of required device and receipt of that device.

**Pulse**—A flow of electrical energy of short duration which is deliberately generated.

RBDT—Reverse Blocking Diode Thyristor. Two-terminal thyristor, ideal for pulse applications because of its high di/dt and fast switching capabilities.

RMS—Abbreviation stands for root-mean-square and refers to the effective heating value of current.

Rating—The ultimate or limiting condition stated for a given device parameter (either maximum or minimum) beyond which the device will not operate properly and/or is not guaranteed by the manufacturer.

Rectifier—A two-terminal device where current can flow in only one direction — from anode to cathode. Low current rectifiers are frequently called diodes.

Reliability—The probability that a system or device will operate for a given period of time and under given operating conditions.

Reproducibility—The ability to produce a group of semiconductors having the exact characteristics of previously produced groups.

Reverse Direction—Describes the direction in which a semiconductor is nonconducting.

Reverse Polarity Rectifier—Denotes the direction of current flow where stud mount base is the anode and the top terminal is the cathode.

SCR—Silicon Controlled Rectifier—Principal member of the thyristor family — is basically a rectifier with a control feature added. This three-terminal device (anode, cathode, and gate) is a controllable on-off switch.

Soft Solder—Any solder that is not "hard solder". Usually has a melting point of approximately 230°C, as compared to the melting point of hard solder which is in excess of 400°C.

Solid State—An electrical device or circuit using semiconductor devices. (Uses no tubes and has no moving parts.) Mechanical relays, switches, rotaries, m-g sets, thyratrons, ignitrons, and vacuum tubes are replaced by semiconductors.

**Spike**—An unintended flow of electrical energy of short duration. Graphically displayed on a scope as a very high voltage or current having a very short duration—usually in the microsecond range.

Standard Polarity Rectifier—Denotes direction of current flow where stud mount base is the cathode and the top terminal is the anode.

Strike Distance—The shortest distance in air between points of opposite potential. It is the distance through which arcing might occur.

Stud Top—Term used to describe top terminal on some stud mount devices. Terminal is a threaded stud.

Supplier—Power semiconductor manufacturer or authorized distributor.

Thermal Fatigue—The mechanical stress placed on semiconductor interfaces due to the different expansion rates of the various metals being joined.

Thermal Impedance (Resistance)—The resistance to heat flow through a material or from one material to another. The unit is °C/W, which means the centigrade degrees of temperature rise of the material per each watt of power dissipated at the source.

Thermal Shock—Mechanical stresses placed on material or, more expressly, where two different materials are joined together, due to a sudden large change in temperature. Can be destructive.

**Thyristor**—One of three primary groups of solid state power devices — rectifiers, transistors, and thyristors. Principal members of the thyristor family includes SCR, triac, RBDT, GATT, GCS, GTO, etc.

**Transient (Surge) Suppressor**—An electrical device used to absorb the energy of extraneous high peaks of voltage or current. Used to protect semiconductors from ruinous overloads.

Transient Voltages—Extraneous spikes of high voltage which appear across a device due to switching, commutating, interruptions, etc. in associated circuitry or by natural forces such as lightning. Transients are of very short duration, usually in the microsecond range.

**Transistor**—Three-terminal (base, collector, emitter) device used primarily for switching and amplification applications.

User—Refers to both the original equipment manufacturer (OEM) who manufactures equipment utilizing power semiconductors and the end user who purchases, uses, and maintains this equipment.

Vendor—See supplier.

Wafer—A very thin disc of silicon that has been cut from a silicon rod.

#### **SUBJECT INDEX**

Acceptance Quality Level (AQ	(L) 57, 58	Distributors	27, 29, 53
Applications	,	(see Data Book G61, G62)	
checklists	19-25	Expediting Orders	30, 32-39
engineering assistance	19-25, 29	Failure	,
uses	13	causes of	51, 52
Assemblies	.0	protection from	43-47
advantages	27	rates of	61, 62
application checklist	25	replacing	30, 52-55
product line	10, 11	trouble shooting	47-52
uses	13	types of	63, 64
(see Data Book A1-A80)	10	Failure Analysis	33, 31
Checklist		checklist	51, 52
assembly applications	25	procedure	30, 31, 41, 42, 52
buyer's	31	reliability tool	65
device identification	54	Firing Circuits, SCR	
failure analysis	51, 52	(see Data Book G51-G54)	
rectifier application	21	Heat	
replacement device	54	effects of 15. 4	1-46, 48, 51, 52, 59-62
scr application, fast switching		protection from	42-46, 52, 61, 62, 65
scr application, phase contr	•	(see Data Book G43-G49)	12, 12, 12, 11, 12, 12
supplier evaluation	28-30	Incoming Inspection	41
transistor application	24	Insurance	38, 39
trouble shooting	47, 48	Installation	,
Claims	30, 31, 41, 42	mounting considerations	42, 55
Cleaning	46, 47, 51	cooling considerations	43
Cooling	, ,	(see Data Book G43-G49)	•
cost	42, 43	Invoicing	32, 37, 38
need for	42-46, 48, 51, 52, 65	JEDEC	52, 53
reliability	52, 59-62, 65	LTPD	57-59
types of	42-44	MTBF	57, 59
(see Data Book G43-G49)		Maintenance	•
Cost		preventative	46, 47
cooling	42-44	replacement	52-55
engineering	27, 28	servicing	47-52
expediting	30, 32-39	testing	47-52
insurance	38, 39	trouble shooting	47-55
parameter trade-off	27, 28, 52, 53	Manufacturing	
procurement	26-42	facilities	67
reliability	59-62	innovations	72-74
safety factor	28, 53, 62	product breakthroughs	68-72
shipping	38, 39	technology leadership	75
testing	28, 41, 47-51, 60-65	Military	57-59, 65
total	27	(see Data Book G42)	
Cross Reference Guide	9, 19, 53	Mounting	42, 43, 51, 55
(see Data Book G3-G37)		(see Data Back G43-G49)	
Damage		Overload	
see shipments		current	46, 51, 52
Data		equipment	44
product	9, 10, 19	motor	44, 45
technical	9, 10, 15-19	voltage transient	44, 46, 51, 52
test	32, 38	(see Data Book G55-G60)	
(see Data Book)		Packing List	35, 36
Delivery	27-39	Parameters	
(see Data Book G41, G61)		basic	15-18
Diode		confusing terminology	18, 19
see rectifier		cost trade-offs	27, 28, 52, 53

Pricing	9, 10, 27-29	Standardization	
(see Data Book G61, G62)		JEDEC	52, 53
Procurement	26-42	manufacturing	68-70
Protection		value of	27, 28, 52, 53
see overload	00	Supplier Evaluation	28-30
Prototype Purchase Order	29	Table	13
acknowledgement	29, 30, 32-35	applications cleaning solvents	47
entering	31, 32	group A, B, and C testing	65
expediting	30, 32-39	LTPD sampling plans	58
status	29, 30, 32-35	motor overloads	45
Quality Control	41, 63-65, 73	parameters, basic	15
Quotation Response	29	shipping method	39
(see Data Book G61, G62)		supplier evaluation	28
RBDT	11	terminology, confusing	18
(see Data Book S1, S95-S98)		Terminology	
Receiving	30, 41	basic	15-18
Rectifier (diode)	04	confusing	18, 19
application checklist parameters	21 15, 16	glossary rectifier (diode)	77, 78 15, 16
product line	10, 11	scr	15, 16
testing	48, 49	transistor	15, 17, 18
uses	13	Test	10, 11, 10
(see Data Book R1-R78)		cost	28, 41, 47-51, 60-65
Reliability		data	32, 38
cost	59-62	equipment	47-51
definition	57, 59	incoming inspection	41
responsibility	52, 65	rectifier (diode)	48, 49
testing	59-65	reliability	57-65
(see Data Book G42)		scr	48, 49
Repair		transistor	49-51
see replacements Replacements		Thyristor see SCR	
checklist	54	Traceability	38, 39
procedures	42, 43, 51-55	Transistor	00, 00
(see Data Book G43-G49)	,,	application checklist	24
Reproducibility	29, 68-70, 72-75	parameters	15, 17, 18
Returned Material	30, 31, 41, 42	product line	11
SCR		testing	49-51
application checklists	22, 23	uses	13
parameters	15-17	(see Data Book T1-T34)	
product line	10, 11	Trouble Shooting	47 40
testing	48, 49 13	checklist	47, 48
uses (see Data Book S1-S94)	13	equipment procedures	47-51 47-55
Safety	55	Vendor Evaluation	41-00
Safety Factor	28, 51-53, 62	see supplier evaluation	
Sales Coverage	29	Warranty	28, 30, 41, 42, 56
(see Data Book G62)		(see Data Book G39, G40,	
Samples	29	A2, R2, S1, T1)	
Shipments		Weights	38, 39
advance warning of delays	30, 32, 33, 35	(see Data Book)	1
condition	30, 41		
cost damage	38, 39 30, 41, 42		
methods	30, 41, 42		
on-time	30, 33-39		
receipt of	30, 41		
return of	30, 31, 41, 42		



#### POWER SEMICONDUCTOR DATA BOOK Assemblies, Rectifiers, Thyristors, and Transistors

#### How To Use This Book

#### **DEVICE TYPE NUMBER SEARCH**

If only a JEDEC or Industry Type Number is known: Go to the Master Cross Reference Type Number Index (GENERAL section -Page G3). Using this index, the reader can rapidly locate any power semiconductor JEDEC or industry type number for which Westinghouse offers an exact or suggested replacement along with the page number of the referenced technical data.

• If both the Product Family and the JEDEC or (2) Type Number are known: Go to the Type Number Index at the beginning of the appropriate PRODUCT section. Using this index, the reader can turn directly to the page location for any JEDEC or (2) type number that is listed.

#### GENERAL APPLICATION SEARCH

• If a Specific Product Application Requirement is known: Go to the appropriate PRODUCT section and scan the Product Capability Graphs and Product Selector Guides under the appropriate product subgroup. These graphs and guides are presented in order of increasing current rating so the reader can quickly locate a suitable Westinghouse product type along with the page number of the referenced technical data.

 If both a Specific Product Application Requirement and the Desired Device Package are known:

Go to the Table of Contents (GENERAL section - Page G2) for the location of the appropriate PRODUCT section, product subgroup, and device package type. The page number reference marks the beginning of the desired data section; the data for a given device package type is presented in order of increasing current rating to simplify the reader's search.

The Power Semiconductor Data Book supersedes all loose-leaf technical data issued prior to January 2, 1978. This technical data is applicable for all @ power semiconductors manufactured in Youngwood, Pennsylvania.

The semiconductor devices and arrangements disclosed herein may be covered by patents of Westinghouse Electric Corporation or others. Neither the disclosure of any information herein nor the sale of semiconductor devices by Westinghouse Electric Corporation conveys any license under patent claims covering combinations of semiconductor devices with other devices or elements. In the absence of an express, written agreement to the contrary, Westinghouse Electric Corporation assumes no liability for patent infringement arising out of any use of the semiconductor devices with other devices or elements by any purchaser of semiconductor devices or others.

#### POWER SEMICONDUCTOR DATA BOOK Assemblies, Rectifiers, Thyristors, and Transistors



#### TABLE OF CONTENTS

GENERAL	
<ul> <li>Master Cross Reference Type Number Index</li> <li>— JEDEC 1N, 2N, 3N Part Numbers</li> <li>— Alpha Industry Part Numbers</li> </ul>	G3 G4 G6 G22
Numeric Industry Part Numbers	GZZ
Westinghouse Selling Policy/Warranty	G39
Delivery Lead Time Guidelines	G41
Military and High Reliability Products	G42
<ul> <li>Application Data</li> <li>— Mounting Power Semiconductors</li> <li>— SCR Gate Turn-On Characteristics</li> <li>— Thyristor Surge Suppression Ratings</li> </ul>	G43 G51 G55
Westinghouse Quick Service Directory	G61
ASSEMBLIES Introduction, Product Family Index, Selector Guide  Modular Rectifier Bridges Gold Line, Stud Mount Devices Air and Liquid Cooled Disc Manifold AC Switch, Liquid Cooled Kits and Sinks High Voltage Rectifier Stacks	A1 A3 A5 A37 A52 A65
RECTIFIER Introduction, Type Number Index, Selector Guides  • General Purpose	R1
<ul> <li>— Axial Lead Mount</li> <li>— Stud Mount</li> <li>— Disc Mount</li> </ul>	R9 R13 R39
<ul> <li>Fast Recovery</li> <li>— Stud Mount</li> <li>— Disc Mount</li> </ul>	R55 R67
THYRISTOR Introduction, Type Number Index, Selector Guides  • Phase Control SCR's	S1
Stud Mount     Disc Mount     Integral Heat Sink     Flat Base	S9 541 S71 S73
• Fast Switching SCR's	
— Stud Mount — Disc Mount	S77 S83
Reverse Blocking Diode Thyristor (RBDT)	
— Stud Mount — Disc Mount	S95 S97
TRANSISTOR Introduction, Type Number Index, Selector Guides	T1
NPN Power     — General Purpose (TO-66/TO-3)	Т5
— High S.O.A. (Stud Mount)	T15
- High Power Fast Switching (Stud and Disc Mount)	T33

#### MANUFACTURER'S CODES

ATS—Atlantic Semiconductor/Diodes, Inc. PSI—Power Semiconductors, Inc.

**DEL—Delco Electronics** 

EDI—Electronic Devices, Inc.

**EDL**—Edal Industries

**GE—General Electric** 

Gl—General Instrument

IR—International Rectifier

JAN—JAN (Military)

JED-JEDEC (E.I.A. P/N)

MOT—Motorola

**NAT—National Electronics** 

PPC—Power Physics Corp.

RCA—RCA

SAR—Sarkes Tarzian

SET—Semtech

SOL—Solitron

SSD—Solid State Devices

SYN—Syntron (FMC)

TUN—Tungsol

**UNI—Unitrode** 

VAR-Varo

WCE-Westcode

WES—Westinghouse Electric

The replacements represent what we believe to be equivalents for the products listed. Emphasis has been placed on providing the user with a replacement device of the same current and voltage rating when possible. The user must determine the substitution acceptability by reviewing the electrical, mechanical, and thermal characteristics presented in the referenced technical data sheets. Westinghouse assumes no responsibility for guaranteeing the acceptability of any suggested replacement in this master cross reference type number index.

#### PRODUCT TYPE NOTES

A—Assembly

D—Drawing (Consult Factory)

R—Rectifier

S—SCR

T—Transistor

#### REPLACEMENT NOTES

**CF—Consult Factory** 

SO—Special Order—limited availability

XX(5th & 6th digits of @ Product Description Number)-Replace with appropriate two-

digit numeric voltage code.



Part Number	Type Mfgr.	Suggested W Replacement	Page	Part Number	Туре	Mfgr.	Suggested War	Page	Part Number	Type Mfgi	Suggested (28) Replacement	Page
IN248A IN248B IN248C IN249A IN249B	R JED R JED R JED R JED R JED	IN248A IN248B IN248C IN249A IN249B	CF CF CF CF	IN1281 IN1282 IN1283 IN1284 IN1285	R R R R	JED JED JED JED	CF CF CF CF	CF CF CF CF	IN1676 IN2054 IN2054R IN2055 IN2055R	R JED R JED R JED R JED	IN3169 IN2054 IN2054R IN2055	CF CF CF CF
IN249C IN250A IN250B IN250C	R JED R JED R JED R JED	IN249C IN250A IN250B IN250C	CF CF CF	IN1286 IN1287 IN1291 IN1292 IN1293	R R R R	JED JED JED JED	CF CF CF CF	CF CF CF CF	IN2056 IN2056R IN2057 IN2057R IN2058	R JED R JED R JED R JED	IN2056R IN2057 IN2057R	CF CF CF CF
IN1124 IN1124A IN1125 IN1125A IN1126	R JED R JED R JED R JED R JED	IN1124 IN1124A IN1125 IN1125A IN1126	CF CF CF CF	IN1294 IN1295 IN1296 IN1297 IN1330	R R R R	JED JED JED JED	CF CF CF CF	CF CF CF CF	IN2058R IN2059 IN2059R IN2060	R JED R JED R JED R JED	IN2059 IN2059R IN2060	CF CF CF CF
IN1126A IN1127 IN1127A IN1128 IN1128A	R JED R JED R JED R JED	IN1126A IN1127 IN1127A IN1128 IN1128A	CF CF CF CF	IN1331 IN1332 IN1333 IN1334 IN1335	R R R R	JED JED JED JED	CF CF CF CF	CF CF CF CF	IN2061 IN2061R IN2063 IN2063R IN2064	R JED R JED R JED R JED	IN2061 R IN2063 IN2063 R	CF CF CF CF
IN1183 IN1183A IN1184 IN1184A IN1185	R JED R JED R JED R JED R JED	IN1183 IN1183A IN1184 IN1184A IN1185	R15 R15 R15 R15 R15	IN1336 IN1341 IN1341A IN1341B IN1342	R R R R	JED JED JED JED	CF IN1341 IN1341A IN1341B IN1342	6F R13 R13 R13 R13	IN2064R IN2065 IN2065R IN2066 IN2066R	R JED R JED R JED R JED	IN2065 IN2065R IN2066	CF CF CF CF
IN1185A IN1186 IN1186A IN1187 IN1187A	R JED R JED R JED R JED R JED	IN1185A IN1186 IN1186A IN1187 IN1187A	R15 R15 R15 R15 R15	IN1342A IN1342B IN1343 IN1343A IN1343B	R R R R	JED JED JED JED	IN1342A IN1342B IN1343 IN1343A IN1343B	R13 R13 R13 R13 R13	IN2067 IN2067R IN2068 IN2068R IN2128	R JED R JED R JED R JED	IN2067R IN2068 IN2068R	CF CF CF R17
IN1188 IN1188A IN1189 IN1189A IN1190	R JED R JED R JED R JED R JED	IN1188 IN1188A IN1189 IN1189A IN1190	R15 R15 R15 R15 R15	IN1344 IN1344A IN1344B IN1345 IN1345A	R R R R	JED JED JED	IN1344 IN1344A IN1344B IN1345 IN1345A	R13 R13 R13 R13 R13	IN2129 IN2130 IN2131 IN2132 IN2133	R JEC R JEC R JEC R JEC R JEC	R4040260 R4040260 R4040360	R17 R17 R17 R17 R17
IN1190A IN1191 IN1191A IN1192 IN1192A	R JED R JED R JED R JED R JED	IN1190A IN1191 IN1191A IN1192 IN1192A	R15 R15 R15 R15 R15	IN1345B IN1346 IN1346A IN1346B IN1347	R R R R	JED JED JED JED	IN1345B IN1346 IN1346A IN1346B IN1347	R13 R13 R13 R13 R13	IN2135 IN2137 IN2138 IN2154 IN2155	R JEC R JEC R JEC R JEC	R4040560 R4040660 IN2154	R17 R17 R17 R15 R15
IN1 193 IN1 193A IN1 194 IN1 194A IN1 195	R JED R JED R JED R JED R JED	IN1193 IN1193A IN1194 IN1194A IN1195	R15 R15 R15 R15 R15	IN1347A IN1347B IN1348 IN1348A IN1348B	R R R R	JED JED JEd JED	IN1347A IN1347B IN1348 IN1348A IN1348B	R13 R13 R13 R13 R13	IN2156 IN2157 IN2158 IN2159 IN2160	R JEC R JEC R JEC R JEC	IN2157 IN2158 IN2159	R15 R15 R15 R15 R15
IN1195A IN1196 IN1196A IN1197 IN1197A	R JED R JED R JED R JED R JED	IN1195A IN1196 IN1196A IN1197 IN1197A	R15 R15 R15 R15 R15	IN1376 IN1377 IN1378 IN1379 IN1380	R R R R	JED JED JED JED	CF CF CF CF	CF CF CF CF	IN3085 IN3085R IN3086 IN3086R IN3087	R JED R JED R JED R JED	R5D10115 R5D00215 R5D10215	R23 R23 R23 R23 R23
IN1198 IN1198A IN1199 IN1199A	R JED R JED R JED R JED	IN1198 IN1198A IN1199 IN1199A	R15 R15 R13 R13	IN1381 IN1382 IN1396 IN1397 IN1398	R R R	JED JED JED JED	CF CF R5100010 R5100110 R510+110	CF CF R23 R23 R23	IN3087R IN3088 IN3088R IN3089 IN3089R	R JEC R JEC R JEC R JEC	R5D00415 R5D10415 R5D00515	R23 R23 R23 R23 R23
IN1 199B IN1 200 IN1 200A IN1 200B IN1 201	R JED R JED R JED R JED R JED	IN1 199B IN1 200 IN1 200A IN1 200B IN1 201	R13 R13 R13 R13 R13	IN1399 IN1400 IN1401 IN1402 IN1403	R R R R	JED JED JED JED	R5100210 R5100310 R5100410 R5100510 R5100610	R23 R23 R23 R23 R23	IN3090 IN3090R IN3091 IN3091R IN3092	R JEC R JEC R JEC R JEC	R5D10615 R5D00815 R5D10815	R23 R23 R23 R23 R23
IN1201A IN1201B IN1202 IN1202A	R JED R JED R JED R JED	IN1201A IN1201B IN1202 IN1202A	R13 R13 R13 R13	IN1581 IN1582 IN1583 IN1584 IN1585	R R R R	JED JED JED JED	IN1581 IN1582 IN1583 IN1584 IN1585	CF CF CF CF	IN3092R IN3111 IN3111R IN3161 IN3161R	R JEC R JEC R JEC R JEC	R5D00015 R5D10015 N3161	R23 R23 R23 CF CF
IN1202B IN1203 IN1203A IN1203B IN1204	R JED R JED R JED R JED R JED	IN1202B IN1203 IN1203A IN1203B IN1204	R13 R13 R13 R13 R13	IN1586 IN1587 IN1612 IN1613 IN1614	R R R R	JED JED JED JED	IN1586 IN1587 IN1612 IN1613 IN1614	CF CF R13 R13 R13	IN3162 IN3162R IN3163 IN3163R IN3164	R JEI R JEI R JEI R JEI	) IN3162R ) IN3163 ) IN3163R	CF CF CF CF
IN1204A IN1204B IN1205 IN1205A IN1205B	R JED R JED R JED R JED R JED	IN1204A IN1204B IN1205 IN1205A IN1205B	R13 R13 R13 R13 R13	IN1615 IN1616 IN1660 IN1661 IN1662	R R R	JED JED JED JED	IN1615 IN1616 IN3260 IN3261 IN3262	R13 R13 R27 R27 R27	IN3164R JAN IN3164 JAN IN3164R IN3165 IN3165R	R JEI R JAI R JEI R JEI	N JAN IN3164 N JAN IN3164R D IN3165	CF G42 G42 CF CF
IN1206 IN1206A IN1206B IN1271 IN1272	R JED R JED R JED R JED R JED	IN1206 IN1206A IN1206B CF CF	R13 R13 R13 CF CF	IN1663 IN1664 IN1665 IN1666 IN1670	R R R R	JED JED JED JED	IN3263 IN3265 IN3267 IN3268 IN3161	R27 R27 R27 R27 CF	IN3166 IN3166R IN3167 IN3167R IN3168	R JED R JED R JED R JED	IN3166R IN3167 IN3167R	CF CF CF CF
IN1273 IN1274 IN1275 IN1276 IN1277	R JED R JED R JED R JED R JED	CF CF CF CF	CF CF CF CF	IN1671 IN1672 IN1673 IN1674 IN1675	R R R R	JED JED JED JED	IN3162 IN3163 IN3164 IN3166 IN3168	CF CF CF CF	IN3168R JAN IN3168 JAN IN3168R IN3169 IN3169R	R JED R JAN R JAN R JED R JED	JAN IN3168 JAN IN3168R	CF G42 G42 CF CF



Part Number	Suggested Type Mfgr. Replacement	t Page Part Number	Suggested [∰] Type Mfgr: Replacement Page Part Nur	Suggested (28) nber Type Mfgr. Replacement Page
IN3170	R JED IN3170	CF JAN IN3293R	R JAN JAN IN3293R G42 IN4007	R JED IN4007 R29
IN3170R	R JED IN3170R	CF IN3294A	R JED IN3294A R19 IN4044	R JED IN4044 R29
JAN IN3170	R JAN JAN IN3170	G42 IN3294AR	R JED IN3294AR R19 IN4044R	R JED IN4044R R29
JAN IN3170R	R JAN JAN IN3170R	G42 JAN IN3294	R JAN JAN IN3294 G42 IN4045	R JED IN4045 R29
IN3171	R JED IN3171	CF JAN IN3294R	R JAN JAN IN3294 G42 IN4045R	R JED IN4045R R29
IN3171R	R JED IN3171R	CF IN3295A	R JED IN3295A R19 IN4046	R JED IN4047 R29
IN3172	R JED IN3172	CF IN3295AR	R JED IN3295AR R19 IN4046R	
IN3172R	R JED IN3172R	CF JAN IN3295	R JAN JAN IN3295 G42 IN4047	
JAN IN3172	R JAN JAN IN3172	G42 JAN IN3295R	R JAN JAN IN3295R G42 IN4047	
JAN IN3172R	R JAN JAN IN3172	G42 IN3296A	R JED IN3296A R19 IN4048	
IN3173	R JED IN3173	CF IN3296AR CF IN3297A CF IN3297AR CF IN3615 G42 IN3616	R JED IN3296AR R19 IN4049R	R JED IN4048R R29
IN3173R	R JED IN3173R		R JED IN3297A R19 IN4049	R JED IN4049 R29
IN3174	R JED IN3174		R JED IN3297AR R19 IN4049R	R JED IN4049R R29
IN3174R	R JED IN3174R		R JED IN3615 R13 IN4060	R JED IN4050 R29
JAN IN3174	R JAN JAN IN3174		R DED IN3616 R13 IN4060	R JED IN4050 R29
JAN IN3174R	R JAN JAN IN3174R	G42 IN3617	R JED IN3617 R13 IN4051	R JED IN4051 R29
IN3208	R JED IN3208	R15 IN3618	R JED IN3618 R13 IN4051R	R JED IN4051R R29
IN3209	R JED IN3209	R15 IN3619	R JED IN3619 R13 IN4052	R JED IN4052 R29
IN3210	R JED IN3210	R15 IN3620	R JED IN3620 R13 IN4062	R JED IN4052R R29
IN3211	R JED IN3211	R15 IN3621	R JED IN3621 R13 IN4063	R JED IN4053 R29
IN3212	R JED IN3212	R15 IN3622	R JED IN3622 R13 IN4053R	R JED IN4053R R29
IN3213	R JED IN3213	R15 IN3623	R JED IN3623 R13 IN4054	R JED IN4054 R29
IN3214	R JED IN3214	R15 IN3624	R JED IN3624 R13 IN4054R	R JED IN4054R R29
IN3260	R JED IN3260	R27 IN3670	R JED IN3670 R13 IN4055	R JED IN4055 R29
IN3260R	R JED IN3260R	R27 IN3670A	R JED IN3670A R13 IN4055R	R JED IN4055R R29
IN3261 IN3261R IN3262 IN3262R IN3263	R JED IN3261 R JED IN3261 R JED IN3262 R JED IN3262 R JED IN3263	R27 IN3671 R27 IN3671A R27 IN3672 R27 IN3672 R27 IN3672A R27 IN3673	R JED IN3671 R13 IN4056 R JED IN3671A R13 IN4056R R JED IN3672 R13 IN4136 R JED IN3672A R13 IN4137 R JED IN3673 R13 IN4138	R JED IN4056 R29 R JED IN4056R R29 R JED R4040270 R17 R JED R4040470 R17 R JED R4040670 R17
IN3263R	R JED IN3263R	R27 IN3673A	R JED IN3673A R13 IN4458	R JED IN4458 R13
JAN IN3263	R JAN JAN IN3164	G42 IN3735	R JED IN3735 CF IN4459	R JED IN4459 R13
JAN IN3263R	R JAN JAN IN3164R	G42 IN3735A	R JED IN3735A CF IN4587	R JED IN4587 R21
IN3264	R JED IN3264	R27 IN3736	R JED IN3736 CF IN4587	R JED IN4587R R21
IN3264R	R JED IN3264R	R27 IN3736R	R JED IN3736 CF IN4587	R JED IN4588 R21
IN3265 IN3265R IN3266 IN3266R IN3267	R JED IN3265 R JED IN3265R R JED IN3266 R JED IN3266R R JED IN3267	R27 IN3737 R27 IN3737R R27 IN3738 R27 IN3738 R27 IN3738R R27 IN3739	R JED IN3737 CF IN4588R R JED IN3737R CF IN4589 R JED IN3738 CF IN4589R R JED IN3738R CF IN4590 R JED IN3739 CF IN4590R	R JED IN4590 R21
IN3267R	R JED IN3267R	R27 IN3739R	R JED IN3739R CF IN4591	R JED IN4591 R21
JAN IN3267	R JAN JAN IN3168	G42 IN3740	R JED IN3740 CF IN4591R	R JED IN4591R R21
JAN IN3267R	R JAN JAN IN3168R	G42 IN3740R	R JED IN3740R CF IN4592	R JED IN4592 R21
IN3268	R JED IN3268	R27 IN3741	R JED IN3741 CF IN4592	R JED IN4592R R21
IN3268R	R JED IN3268R	R27 IN3741R	R JED IN3741R CF IN4593	R JED IN4593 R21
IN3269 IN3269R JAN IN3269 JAN IN3269R IN3270	R JED IN3269 R JED IN3269R R JAN JAN IN3170 R JAN JAN IN3170R R JED IN3270	R27 IN3742 R27 IN3742R G42 IN3743 G42 IN3743R R27 IN3744	R JED IN3742 CF IN4593R R JED IN3742R CF IN4594 R JED IN3743 CF IN4594R R JED IN3743R CF IN4595 R JED IN3744 CF IN4595R	R JED IN4594 R21 R JED IN4594R R21 R JED IN4595 R21
IN3270R IN3271 IN3271R JAN IN3271	R JED IN3270R R JED IN3271 R JED IN3271R R JAN JAN IN3172	IN3744R   R27   IN3765   R27   IN3766   R27   IN3767   G42   IN3768	R JED IN3744R CF IN4596 R JED IN3765 R15 IN4596R R JED IN3766 R15 IN4816 R JED IN3767 R15 IN4817 R JED IN3768 R15 IN4818	R JED IN4596 R21 R JED IN4596R R21 R JED IN4816 R9 R JED IN4817 R9 R JED IN4818 R9
JAN IN3271R	R JAN JAN IN3172R	G42 IN3879	R JED IN3879 R55 IN4819	R JED IN4819 R9 R JED IN4820 R9 R JED IN4821 R9 R JED IN4822 R9 R JED IN5052 R9
IN3272	R JED IN3272	R27 IN3880	R JED IN3880 R55 IN4820	
IN3272R	R JED IN3272R	R27 IN3881	R JED IN3881 R55 IN4821	
IN3273	R JED IN3273	R27 IN3882	R JED IN3882 R55 IN4822	
IN3273R	R JED IN3273R	R27 IN3883	R JED IN3883 R55 IN5052	
JAN IN3273	R JAN JAN IN3174	G42 IN3889	R JED IN3889 R55 IN5053	R JED IN5053 R9 R JED IN5054 R9 R JED R5C01215 CF R JED R5C11215 CF R JED IN5331 CF
JAN IN3273R	R JAN JAN IN3174R	G42 IN3890	R JED IN3890 R55 IN5054	
IN3274	R JED IN3274	R27 IN3891	R JED IN3891 R55 IN5162	
IN3274R	R JED IN3274R	R27 IN3892	R JED IN3892 R55 IN5162R	
IN3275	R JED IN3275	R27 IN3893	R JED IN3893 R55 IN5331	
IN3275R	R JED IN3275R	R27 IN3899	R JED IN3899 R57 IN5332	R JED IN5332 CF
IN3276	R JED IN3276	R27 IN3900	R JED IN3900 R57 IN5391	R JED IN5391 R9
IN3276R	R JED IN3276R	R27 IN3901	R JED IN3901 R57 IN5392	R JED IN5392 R9
IN3288A	R JED IN3288A	R27 IN3902	R JED IN3902 R57 IN5393	R JED IN5392 R9
IN3288AR	R JED IN3288AR	R19 IN3903	R JED IN3903 R57 In5394	R JED IN5394 R9
IN3289A	R JED IN3289A	R19 IN3909	R JED IN3909 R57 IN5395	R JED IN5395 R9 R JED IN5396 R9 R JED IN5397 R9 R JED IN5398 R9 R JED IN5399 R9
IN3289AR	R JED IN3289AR	R19 IN3910	R JED IN3910 R57 IN5396	
JAN IN3289	R JAN JAN IN3289	G42 IN3911	R JED IN3911 R57 IN5397	
JAN IN3289R	R JAN JAN IN3289R	G42 IN3912	R JED IN3912 R57 IN5398	
IN3290A	R JED IN3290A	R19 IN3913	R JED IN3913 R57 IN5399	
IN3290AR	R JED IN3290AR	R19 IN3987	R JED IN3987 It13 IN5400	R JED IN5400 R9 R JED IN5401 R9 R JED IN5402 R9 R JED IN5403 R9 R JED IN5404 R9
IN3291A	R JED IN3291A	R19 IN3988	R JED IN3988 R13 IN5401	
IN3291AR	R JED IN3291AR	R19 IN3989	R JED IN3989 R13 IN5402	
JAN IN3291	R JAN JAN IN3291	G42 IN3990	R JED IN3990 R13 IN5403	
JAN IN3291R	R JAN JAN IN3291	G42 IN4001	R JED IN4001 R9 IN5404	
IN3292B	R JED IN3292B	R19 IN4002	R JED IN4002 R9 IN5405	R JED IN5405 R9 R JED IN5406 R9 R JED IN5407 R9 R JED IN5408 R9 S JED 2N681 S11
IN3292BR	R JED IN3292BR	R19 IN4003	R JED IN4003 R9 IN5406	
IN3293A	R JED IN3293A	R19 IN4004	R JED IN4004 R9 IN5407	
IN3293AR	R JED IN3293AR	R19 IN4005	R JED IN4005 R9 IN5408	
JAN IN3293	R JAN JAN IN3293	G42 IN4006	R JED IN4006 R9 2N681	



Part Number	Type Mfgr	Suggested 🖫	Page	Part Number	Туре	Mfgr.	Suggested ⁽²²⁾ Replacement	Page	Part Number	Туре	Mfgr	Suggested  Replacement	Page
2N682 2N683 2N685 2N687 2N688	S JED S JED S JED S JED S JED	2N682 2N683 2N685 2N687 2N688	S11 S11 S11 S11 S11	2N2113 2N2114 2N2116 2N2117 2N2118	T T T	JED JED JED JED	CF CF CF CF	CF CF CF CF	2N3772 2N3773 2N3884 2N3885 2N3886	T T S S	JED JED JED	2N3772 2N3773 2N3884 2N3885 2N3886	T11 T11 S31 S31 S31
2N689 2N690 2N691 2N692 2N1015	S JED S JED S JED T JED	2N689 2N690 2N691 2N692 2N1015	S11 S11 S11 S11 T19	2N2119 2N2120 2N2123 2N2124 2N2125	T T T	JED JED JED	CF CF CF CF	CF CF CF CF	2N3887 2N3888 2N3889 2N3890 2N3891	s s s s	JED JED JED JED	2N3887 2N3888 2N3889 2N3890 2N3891	S31 S31 S31 S31 S31
2N1015A 2N1015B 2N1015C 2N1015D 2N1015E	T JED T JED T JED T JED T JED	2N1015A 2N1015B 2N1015C 2N1015D CF	T19 T19 T19 T19 CF	2N2126 2N2130 2N2131 2N2132 2N2133	T T T T	JED JED JED JED	CF CF CF CF	CF CF CF CF	2N3892 2N3893 2N3894 2N3895 2N3896	s s s s	JED JED JED JED	2N3892 2N3893 2N3894 2N3895 2N3896	S31 S31 S31 S31 S31
2N1016 2N1016A 2N1016B 2N1016C 2N1016D	T JED T JED T JED T JED T JED	2N1016 2N1016A 2N10168 2N1016C 2N1016D	T19 T19 T19 T19 T19	2N2226 2N2227 2N2228 2N2229 2N2230	T T T	JED JED JED JED	2N2226 2N2227 2N2228 2N2229 2N2230	T25 T25 T25 T25 T25 T25	2N3896 2N3897 2N3898 2N3899 2N4347	S S S T	JED JED JED JED	T400012208 T400022208 T400032208 T400042208 2N4347	S13 S13 S13 S13 CF
2N1016E 2N1792 2N1793 2N1794 2N1795	T JED S JED S JED S JED S JED	CF 2N1792 2N1793 2N1794 2N1795	CF S19 S19 S19 S19	2N2231 2N2232 2N2233 2N2739 2N2740	T T T	JED JED JED JED JED	2N2231 2N2232 2N2233 CF CF	T25 T25 T25 CF CF	2N4348 2N4361 2N4362 2N4363 2N4364	T S S S	JED JED JED JED JED	2N4348 2N4361 2N4362 2N4363 2N4364	CF S21 S21 S21 S21
2N1796 2N1797 2N1798 2N1799 2N1800	S JED S JED S JED S JED S JED	2N1798 2N1799	S19 S19 S19 S19 S19	2N2741 2N2742 2N2745 2N2746 2N2747	T T T	JED JED JED JED JED	CF CF CF CF	CF CF CF CF	2N4365 2N4366 2N4367 2N4368 2N4371	s s s s	JED JED JED JED	2N4365 2N4366 2N4367 2N4368 2N4371	S21 S21 S21 S21 S21
2N1801 2N1802 2N1803 2N1804 2N1805	S JED S JED S JED S JED S JED	2N1802 2N1803 2N1804	S19 S19 S19 S19 S19	2N2751 2N2752 2N2753 2N2754 2N2757	T T T T	JED JED JED JED	CF CF CF CF 2N2757	CF CF CF CF T29	2N4372 2N4373 2N4374 2N4375 2N4376	s s s	JED JED JED	2N4372 2N4373 2N4374 2N4375 2N4376	S21 S21 S21 S21 S21
2N1806 2N1807 2N1809 2N1810 2N1811	S JED S JED T JED T JED T JED	2N1807 CF	S19 S19 CF CF CF	2N2758 2N2759 2N2760 2N2761 2N2763	T T T T	JED JED JED JED	2N2758 2N2759 2N2760 2N2761 2N2763	T29 T29 T29 T29 T29	2N4377 2N4378 2N5168 2N5169 2N5170	s s s s	JED JED JED JED	2N4377 2N4378 T400001608 T400021608 T400041608	S21 S21 S13 S13 S13
2N1812 2N1813 2N1814 2N1816 2N1817	T JED T JED T JED T JED T JED	CF CF CF	CF CF CF CF	2N2764 2N2765 2N2766 2N2769 2N2770	T T T T	JED JED JED JED	2N2764 2N2765 2N2766 2N2769 2N2770	T29 T29 T29 T29 T29	2N5171 2N5204 2N5205 2N5206 2N5207	s s s	JED JED JED JED	T400061608 2N5204 2N5205 2N5206 2N5207	\$13 \$13 \$13 \$13 \$13
2N1818 2N1819 2N1820 2N1823 2N1824	T JED T JED T JED T JED T JED	CF CF CF	CF CF CF CF	2N2771 2N2772 2N2775 2N2776 2N2777	T T T T	JED JED JED	2N2771 2N2772 2N2775 2N2776 2N2777	T29 T29 T29 T29 T29	2N6253 2N6254 2N6257 2N6262 2N6263	T T T T	JED JED JED JED	2N3055 2N6254 2N3771 2N6262 2N3441	T7 T9 T11 T9 T5
2N1825 2N1826 2N1830 2N1831 2N1832	T JED T JED T JED T JED T JED	CF CF CF	CF CF CF CF	2N2778 2N3054 2N3055 2N3232 2N3233	T T T T	JED JED JED JED	2N2778 2N3054 2N3055 2N3232 2N3233	T29 T5 T7 CF CF	2N6371 3N221 3N222 A28A A28B	T A R R	JED JED JED GE GE	2N6254 3N221 3N222 IN3890 IN3891	T9 A52 A52 R55 R55
2N1833 2N1842A 2N1843A 2N1844A 2N1845A	T JED S JED S JED S JED S JED	2N1842A 2N1843A 2N1844A	CF S9 S9 S9 S9	2N3234 2N3236 2N3429 2N3430 2N3431	T T T T	JED JED JED JED JED	2N6262 2N3236 2N3429 2N3430 2N3431	T9 CF T21 T21 T21	A28C A28D A28F A29A A29B	R R R R	GE GE GE GE	IN3892 IN3893 IN3898 IN3890R IN3891R	R55 R55 R55 R55 R55
2N1846A 2N1847A 2N1848A 2N1849A 2N1850A	S JED S JED S JED S JED S JED	2N1847A 2N1848A 2N1849A	59 59 59 59 59	2N3432 2N3433 2N3441 2N3442 2N3470	T T T T	JED JED JED	2N3432 2N3433 2N3441 2N3442 2N3470	T21 CF T5 T7 T27	A29C A29D A29F A40A	R R R	GE GE GE	IN3892R IN3893R IN3889R IN3209	R55 R55 R55 R15
2N1909 2N1910 2N1911 2N1912 2N1913	S JED S JED S JED S JED	2N1910 2N1911 2N1912	S19 S19 S19 S19 S19	2N3471 2N3472 2N3473 2N3474 2N3475	T T T T	JED JED JED JED	2N3471 2N3472 2N3473 2N3474 2N3475	T27 T27 T27 T27 T27	A40B A40C A40D A40E A40F	R R R R	GE GE GE GE	IN3210 IN3211 IN3212 IN3213 IN3208	R15 R15 R15 R15 R15
2N1914 2N1915 2N1916 2N2023 2N2024	S JEC S JEC S JEC S JEC S JEC	2N1915 2N1916 2N2023	S19 S19 S19 CF CF	2N3476 2N3477 2N3530 2N3531 2N3532	T T S S	JED JED JED JED	2N3476 2N3477 2N3530 2N3531 2N3532	T27 T27 CF CF CF	A40M A41A A41B A41C A41D	R R R R	GE GE GE GE	IN3214 IN3209R IN3210R IN3211R IN3212R	R15 R15 R15 R15 R15
2N2025 2N2026 2N2027 2N2028 2N2029	S JED S JED S JED S JED S JED	2N2O26 2N2O27 2N2O28	CF CF CF CF	2N3533 2N3534 2N3535 2N3536 2N3537	s s s s	JED JED JED JED	2N3533 2N3534 2N3535 2N3536 2N3537	CF CF CF CF	A41E A41F A41M A50HXX0210 A50HXX0510	R R T T	GE GE GE WES WES	IN3213R IN3208R IN3214R A50HXX0210 A50HXX0510	R15 R15 R15 CF CF
2N2O3O 2N21O9 2N211O 2N2111 2N2111	S JED T JED T JED T JED T JED	CF CF CF	CF CF CF CF	2N3538 2N3539 2N3540 2N3541 2N3771	S S S T	JED JED JED	2N3538 2N3539 2N3540 2N3541 2N3771	CF CF CF T11	A51HXX0510 A60GXX1010 A60GXX1040 A60HXX1010 A60HXX1510	T T T T	WES	A51HXX0510 A60GXX1010 A60GXX1040 CF CF	CF CF CF CF



Part Number	Suggested (S		Suggested (**) Type Mfgr. Replacement Page	Suggested ⁽²⁾ Part Number Type Mfgr. Replacement Pag
A60HXX2010 A61HXX1010 A61HXX1510 A61HXX2010 A61HXX2510	T WES CF	CF A180D CF A180E CF A180M CF A180N CF A180P	R GE R5100415 R23 R GE R5100515 R23 R GE R5100615 R23 R GE R5100815 R23 R GE R5101015 R23	A197B R GE R6020225FJ R63 A197C R GE R6020325FJ R63 A197D R GE R6020425FJ R63 A197E R GE R6020525FJ R63 A197M R GE R6020625FJ R63
A67GXX1010 A67GXX1040 A67HXX1010 A67HXX1510 A67HXX2010	T WES A67GXX1010 T WES A67GXX1040 T WES A67HXX1010 T WES A67HXX1510 T WES A67HXX2010	CF A180PA CF A180PB CF A180PC CF A180PD CF A180PE	R GE R5001115 R23 R GE R5001215 R23 R GE R5001315 R23 R GE R5001415 R23 R GE SO R23	A197N R GE R6020825FJ R63 A197P R GE R6021025FJ R63 A197PA R GE R6021125FJ R63 A197PB R GE R6021225FJ R63 A197PC R GE R6021325FJ R63
A67HXX2510 A70A A70B A70C A70D	T WES A67HXX2510 R GE R5100110 R GE R5100210 R GE R5100310 R GE R5100410	CF A180RA R23 A180RB R23 A180RC R23 A180RD R23 A180RE	R GE R5110115 R23 R GE R5110215 R23 R GE R5110315 R23 R GE R5110415 R23 R GE R5110515 R23	A197PD R GE R6021425FJ R63 A197PE R GE R6021525FJ R63 A197RA R GE R6030125FJ R63 A197RB R GE R6030225FJ R63 A197RC R GE R6030325FJ R63
A70E A70M A70N A70P A70PB	R GE R5100510 R GE R5100610 R GE R5100810 R GE R5101010 R GE R5001210	R23 A180RM R23 A180RN R23 A180RP R23 A180RPA R23 A180RPB	R GE R5110615 R23 R GE R5110815 R23 R GE R5111015 R23 R GE R5011115 R23 R GE R5011215 R23	A197RD R GE R6030425FJ R63 A197RE R GE R6030525FJ R63 A197RM R GE R6030625FJ R63 A197RN R GE R6030625FJ R63 A197RP R GE R6031025FJ R63
A70S A70T A71A A71B A71C	R GE R5100710 R GE R5100910 R GE R5110110 R GE R5110210 R GE R5110310	R23 A180RPC R23 A180RPD R23 A180RPE R23 A180RS R23 A180RT	R GE R5011315 R23 R GE R5011415 R23 R GE SO R23 R GE R5110715 R23 R GE R5110915 R23	A197RPA R GE R6031125FJ R63 A197RPB R GE R6031225FJ R63 A197RPC R GE R6031325FJ R63 A197RPD R GE R6031425FJ R63 A197RPE R GE R6031525FJ R63
A71D A71E A71M A71N A71P	R GE R5110410 R GE R5110510 R GE R5110610 R GE R5110810 R GE R5111010	R23 A180S R23 A180T R23 A187A R23 A187B A187C	R GE R5100715 R23 R GE R5100915 R23 R GE R5020110FJ R59 R GE R5020210FJ R59 R GE R5020310FJ R59	A197RS R GE R6030725FJ R63 A197RT R GE R6030925FJ R63 A197S R GE R6020725FJ R63 A197T R GE R6020925FJ R63 A291PC R GE R6011325 R31
A71PB A71S A71T A90A A90B A90C	R 6GE R5111210 R GE R5110710 R GE R5110910 R GE R6100125 R GE R6100325 R GE R6100325	R23 A187D R23 A187E R23 A187M R31 A187N R31 A187P R31 A187P	R GE R5020410FJ R59 R GE R5020510FJ R59 R GE R5020610FJ R59 R GE R5020810FJ R59 R GE R5021010FJ R59	A291PD         R         GE         R6011425         R31           A291PE         R         GE         R6011525         R31           A291PM         R         GE         R6011625         R31           A291PN         R         GE         R6011825         R31           A291PS         R         GE         R6011725         R31
A90D A90E A90M A90N A90P	R GE R6100425 R GE R6100525 R GE R6100625 R GE R6100825 R GE R6101025	A187PA R31 A187PB R31 A187PC R31 A187PD R31 A187PE	R GE R5021110FJ R59 R GE R5021210FJ R59 R GE R5021310FJ R59 R GE R5021410FJ R59 R GE SO R59	A295B         R         GE         R7010205         R35           A295C         R         GE         R7010305         R35           A295D         R         GE         R7010405         R35           A295E         R         GE         R7010505         R36           A295M         R         GE         R7010605         R35
A90PA A90PB A90S A90T A91A	R GE R6001125 R GE R6001225 R GE R6100725 R GE R6100925 R GE R6110125	A187RA R31 A187RB R31 A187RC R31 A187RD R31 A187RE R31	R GE R5030110FJ R59 R GE R5030210FJ R59 R GE R5030310FJ R59 R GE R5030410FJ R59 R GE R5030510FJ R59	A295N         R         GE         R7010805         R35           A295P         R         GE         R7011005         R35           A295PA         R         GE         R7011105         R35           A295PB         R         GE         R7011205         R35           A295PC         R         GE         R7011305         R35
A91B A91C A91D A91E A91M	R GE R6110225 R GE R6110325 R Ge R6110425 R GE R6110525 R GE R6110625	A187RM R31 A187RN R31 A187RP R31 A187RPA R31 A187RPB R31	R GE R5030610FJ R59 R GE R5030810FJ R59 R GE R5031010FJ R59 R GE R5031110FJ R59 R GE R5031210FJ R59	A295PD         R         GE         R7011405         R35           A295PE         R         GE         R7011505         R35           A295PM         R         GE         R7011605         R35           A295PN         R         GE         R7011805         R35           A295PS         R         GE         R7011705         R35
A91N A91P A91PA A91PB A91S	R GE R6110825 R GE R6111025 R GE R6011125 R GE R6011225 R GE R6110725	A187RPC R31 A187RPD R31 A187RPE R31 A187RS R31 A187RT R31	R GE R5031310FJ R59 R GE R5031410FJ R59 R GE SO R59 R GE R5030710FJ R59 R GE R5030910FJ R59	A295S         R         GE         R7010705         R35           A295T         R         GE         R7010905         R35           A296B         R         GE         CF         CF           A296C         R         GE         CF         CF           A296D         R         GE         CF         CF
A91T A96A A96B A96C A96D	R GE R6110925 R GE R6020125FJ R GE R6020225FJ R GE R6020325FJ R GE R6020425FJ	A187S R31 A187T R63 A190C R63 A190D R63 A190E R63	R GE R5020710FJ R59 R GE R5020910FJ R59 R GE R6100325 R31 R GE R6100425 R31 R GE R6100525 R31	A296E         R         GE         CF         CF           A296M         R         GE         CF         CF           A296N         R         GE         CF         CF           A296P         R         GE         CF         CF
A96E A96M A96N A96P A96S	R GE R6020525FJ R GE R6020625FJ R GE R6020825FJ R GE R6021025FJ R GE R6020725FJ	A190M R63 A190N R63 A190P R63 A190PA R63 A190PB	R GE R6100625 R31 R GE R6100825 R31 R GE R6101025 R31 R GE R6001125 R31 R GE R6001225 R31	A296PA         R         GE         CF         CF           A296PB         R         GE         CF         CF           A296PC         R         GE         CF         CF           A296PD         R         GE         CF         CF
A96T A97A A97B A97C A97D	R GE R6020925FJ R GE R6030125FJ R GE R6030225FJ R GE R6030325FJ R GE R6030425FJ	R63 A190PC R63 A190PD R63 A190PE R63 A190RC R63 A190RC	R GE R6001325 R31 R GE R6001425 R31 R GE R6001525 R31 R GE R6110325 R31	A296PE R GE CF CF A296PM R GE CF CF A296PN R GE CF CF A296PS R GE CF CF
A97E A97M A97N A97P A97S	R GE R6030525FJ R GE R6030625FJ R GE R6030825FJ R GE R6031025FJ R GE R6030725FJ	A190RD R63 A190RE R63 A190RM R63 A190RN R63 A190RP R63	R GE R6110425 R31 R GE R6110525 R31 R GE R6110625 R31 R GE R6110825 R31 R GE R6111025 R31	A296S R GE CF CF A296T R GE CF CF A390A R GE R6200140 R39 A390B R GE R6200240 R39 A390C R GE R6200340 R39
A97T A170PC A170PD A170PE A170RPC	R GE R6030925FJ R GE R5001310 R GE R5001410 R GE S0 R GE R5011310	A190RPA R63 A190RPB R23 A190RPC R23 A190RPD R23 A190RPE R23	R GE R6011125 R31 R GE R6011225 R31 R GE R6011325 R31 R GE R6011425 R31 R GE R6011525 R31	A390D R GE R6200440 R39 A390E R GE R6200540 R39 A390N R GE R6200640 R39 A390P R GE R6200840 R39 A390P R GE R6201040 R39
A170RPD A170RPE A180A A180B A180C	R GE R5011410 R GE S0 R GE R5100115 R GE R5100215 R GE R5100315	A190RS R23 A190RT R23 A190S R23 A190T R23 A197A R23	R GE R6110725 R31 R GE R6110925 R31 R GE R6100725 R31 R GE R6100925 R31 R GE R6020125FJ R63	A390PA R GE R6201440 R39 A390PB R GE R6201240 R39 A390S R GE R6200740 R39 A390T R GE R6200940 R39 A396A R GE R6200940 R39



Part Number	Type Mfg	Suggested W	Page	Part Number	Туре	Mfgr.	Suggested W Replacement	Page	Part Number	Туре	Mfgr	Suggested (22)	Page
A396B A396C A396D A396E A396M	R GE R GE R GE R GE R GE	R6220240FJ R6220340FJ R6220440FJ R6220540FJ R6220640FJ	R67 R67 R67 R67 R67	A540LA A540LB A540LC A540LD A540M	R R R R	GE GE GE GE	CF CF CF CF R7200612	CF CF CF R43	B50D B50F B50Z B55-14 B110-14	A A S S	TUN TUN TUN PSI PSI	MB12A10V40 MB12A10V60 MB12A10V05 T500144003AQ T500148004AQ	A3 A3 A3 S23 S23
A396N A396P A396S A396T A397A	R GE R GE R GE R GE R GE	R6220840FJ R6221040FJ R6220740FJ R6220940FJ R6220140FJ	R67 R67 R67 R67 R67	A540N A540P A540PA A540PB A540PC	R R R R	GE GE GE GE	R7200812 R7201012 R7201112 R7201212 R7201312	R43 R43 R43 R43 R43	BD125-01 BD125-02 BD125-04 BD125-06 BD125-08	R R R R	PSI PSI PSI PSI PSI	R5100110 R5100210 R5100410 R5100610 R5100810	R23 R23 R23 R23 R23
A397B A397C A397D A397E A397M	R GE R GE R GE R GE R GE	R6220240FJ R6220340FJ R6220440FJ R6220540FJ R6220640FJ	R67 R67 R67 R67 R67	A540PD A540PE A540PM A540PN A540PS	R R R R	GE GE GE GE	R7201412 SO SO SO SO	R43 R43 R43 R43 R43	BD125-10 BD125-12 BD125-14 BD150-01 BD150-02	R R R R	PSI PSI PSI PSI PSI	R5101010 R5001210 R5001410 R5100115 R5100215	R23 R23 R23 R23 R23
A397N A397P A397PA A397PB A397PC	R GE R GE R GE R GE R GE	R6220840FJ R6221040FJ R6221140FJ R6221240FJ R6221340FJ	R67 R67 R67 R67 R67	A540PT A540S A540T A570A A570B	R R R R	GE GE GE GE	SO R7200712 R7200912 R9200111 R9200211	R43 R43 R43 R47 R47	BD150-04 BD150-06 BD150-08 BD150-10 BD150-12	R R R R	PSI PSI PSI PSI PSI	R5100415 R5100615 R5100815 R5101015 R5001215	R23 R23 R23 R23 R23
<b>A397PD A397PE</b> A397S A397T A430A	R GE R GE R GE R GE R GE	R6221440FJ R6221540FJ R6220740FJ R6220940FJ R7200112	R67 R67 R67 R67 R43	A570C A570D A570E A570M A570N	R R R R	GE GE GE GE	R9200311 R9200411 R9200511 R9200611 R9200811	R47 R47 R47 R47 R47	BD150-14 C30A C30B C30C C30D	R S S S	PSI GE GE GE GE	R5001415 T400011608 T400021608 T400031608 T400041608	R23 S13 S13 S13 S13
A430B A430C A430D A430E A430M	R GE R GE R GE R GE	R7200212 R7200312 R7200412 R7200512 R7200612	R43 R43 R43 R43 R43	A570P A570S A570T A596N A596P	R R R R	GE GE GE GE	R9201011 R9200711 R9200911 R7220808EJ R7221008EJ	R47 R47 R47 R71 R71	C30F C35A C35B C35C C35D	s s s s	GE GE GE GE	T400001608 T400012208 T400022208 T400032208 T400042208	S13 S13 S13 S13 S13
A430N A430P A430PA A430PB A430PC	R GE R GE R GE R GE	R7200812 R7201012 R7201112 R7201212 R7201312	R43 R43 R43 R43 R43	A596PA A596PB A596T A640L A640LA	R R R R	GE GE GE GE	R7221108EJ R7221208EJ R7220908EJ R9202016 R9202116	R71 R71 R71 R47 R47	C35E C35F C35M C35N C35S	\$ \$ \$ \$	GE GE GE GE	T400052208 T400002208 T400062208 T400082208 T400072208	S13 S13 S13 S13 S13
A430PD A430PE A430S A430T A437A	R GE R GE R GE R GE	R7201412 SO R7200712 R7200912 R7220108EJ	R43 R43 R43 R43 R71	A640N A640P A640PA A640PB A640PC	R R R R	GE GE GE GE	R9200816 R9201016 R9201116 R9201216 R9201316	R47 R47 R47 R47 R47	C36A C36B C36C C36D C36E	s s s s s s	GE GE GE GE	T400011008 T400021008 T400031008 T400041008 T400051008	S13 S13 S13 S13 S13
A437B A437C A437D A437E A437M	R GE R GE R GE R GE R GE	R7220208EJ R7220308EJ R7220408EJ R7220508EJ R7220608EJ	R71 R71 R71 R71 R71	A640PD A640PE A640PM A640PN A640PS	R R R R	GE GE GE GE	R9201416 R9201516 R9201616 R9201816 R9201716	R47 R47 R47 R47 R47	C36F C36M C36N C36S C37A	s s s	GE GE GE GE	T400001008 T400061008 T400081008 T400071008 T400011608	S13 S13 S13 S13 S13
A437N A437P A437PA A437PB A437PC	R GE R GE R GE R GE	R7220808EJ R7221008EJ R7221108EJ R7221208EJ R7221308EJ	R71 R71 R71 R71 R71	A640PT A640S A640T A670XX0515 A670XX0525	R R T T	GE GE GE WES WES		R47 R47 R47 CF CF	C37B C37C C37D C37E C37F	s s s s s	GE GE GE GE	T400021608 T400031608 T400041608 T400051608 T400001608	S13 S13 S13 S13 S13
A437PD A437PE A437S A437T A500L	R GE R GE R GE R GE R GE	SO R7221508EJ R7220708EJ R7220908EJ R7202009	R71 R71 R71 R71 R43	AD45-01 AD45-02 AD45-04 AD45-06 AD45-08	R R R R	PSI PSI PSI PSI PSI	IN1184A IN1186A IN1188A IN1190A R4100840	R15 R15 R15 R15 R15	C37M C37N C37S C38A C38B	S S S S	GE GE GE GE	T400061608 T400081608 T400071608 CF CF	'S13 S13 S13 CF CF
A500LA A500LB A500LC A500LD A500LE	R GE R GE R GE R GE	R7202109 R7202209 R7202309 R7202409 R7202509	R43 R43 R43 R43 R43	AD45-10 AD45-12 AD65-01 AD65-02 AD65-04	R R R R	PSI PSI PSI PSI	R4101040 R4101240 R4040170 R4040270 R4040470	R15 R15 R17 R17 R17	C38C C38D C38E C38M C45A	s s s s s	GE GE GE GE	CF CF CF CF T510015004AB	CF CF CF S27
A500LM A500LN A500LP A500LS A500LT	R GE R GE R GE R GE	R7202609 R7202809 R7203009 R7202709 R7202909	R43 R43 R43 R43 R43	AD65-06 AD65-08 AD65-10 AD65-12 AL-10-5	R R R R	PSI PSI PSI PSI EDL	R4040670 R4048070 R4041070 R4041270 MB12A25V05	R17 R17 R17 R17 A3	C45B C45C C45D C45E C45F	s s s s	GE GE GE GE	T510025004AB T510035004AB T510045004AB T510055004AB T510005004AB	\$27 \$27 \$27 \$27 \$27 \$27
A500P A500PA A500PB A500PC A500PD	R GE R GE R GE R GE	R7201009 R7201109 R7201209 R7201309 R7201409	R43 R43 R43 R43 R43	AL-10-10 AL-10-20 AL-10-30 AL-10-40 AL-10-50	A A A	EDL EDL EDL EDL	MB12A25V10 MB12A25V20 MB12A25V30 MB12A25V40 MB12A25V50	A3 A3 A3 A3 A3	C45G C45H C45M C45N C45P	s s s s	GE GE GE GE	T510025004AB T510035004AB T510065004AB T500084004AA T500104004AA	\$27 \$27 \$27 \$23 \$23
A500PE A500PM A500PN A500PS A500PT	R GE R GE R GE R GE	R7201509 R7201609 R7201809 R7201709 R7201909	R43 R43 R43 R43 R43	AL-10-60 AL-25-5 AL-25-10 AL-25-20 AL-25-30	A A A	EDL EDL EDL EDL	MB12A25V60 MB12A25V05 MB12A25V10 MB12A25V20 MB12A25V30	A3 A3 A3 A3 A3	C45PA C45PB C45S C45T C45U	s s s	GE GE GE GE	T500114004AA T500124004AA T500074004AA T500094004AA T510005004AB	S23 S23 S23
A500XX0111 A500XX0118 A510XX0115 A510XX0125 A540A	T WE T WE T WE R GE		CF CF CF CF R43	AL-25-40 AL-25-50 AL-25-60 B1 0A B1 0B	A A A A	EDL EDL EDL TUN TUN	MB12A25V40 MB12A25V50 MB12A25V60 MB12A25V10 MB12A25V20	A3 A3 A3 A3 A3	C46A C46B C46C C46D C46E	S S S S	GE GE GE GE	T510015004AQ T510025004AQ T510035004AQ T510045004AQ T510055004AQ	S27 S27 S27
A540B A540C A540D A540E A540L	R GE R GE R GE R GE R GE	R7200212 R7200312 R7200412 R7200512 CF	R43 R43 R43 CF	B10D B10F B10Z B50A B50B es and W Repla	A A A A	TUN TUN TUN TUN	MB12A25V40 MB12A25V60 MB12A25V05 MB12A10V10 MB12A10V20	A3 A3 A3 A3 A3	C46F C46G C46H C46M C46N	s s s s	GE GE GE GE	T510005004AQ T510025004AQ T510035004AQ T510065004AQ T500084004AQ	S27 S27 S27



Part Number	Type Mfgr.	Suggested  Replacement	Page	Part Number	Туре	Mfgr.	Suggested (2) Replacement	Page	Part Number	Туре	Mfgr	Suggested <b>②</b> Replacement	Page
C46P C46PA C46PB C46S	S GE T5 S GE T5 S GE T5	500104004AQ 500114004AQ 500124004A( 500074004AQ	S23 S23 S23	C152P C152PA C152PB	S S S	GE GE GE	T500108004AA T500118004AA T500128004AA	S23 S23 S23	C180A C180B C180C C180D	S S S	GE GE GE	T610011504BT T610021504BT T610031504BT T610041504BT	S33 S33 S33 S33
C46U C50A C50B C50C C50D	S GE T5 S GE T5 S GE T5 S GE T5	5100094004AQ 510005004A 510018004AQ 510028004AQ 510038004AQ 510048004AQ	S27 S27 S27 S27	C152PC C152S C152T C153E C153M C153N C153P	5555555	GE GE GE GE GE	T500138004AA T500078004AA T500098004AA T507058054AA T507068054AA T507088054AA T507108054AA	\$23 \$23 \$23 \$77 \$77 \$77 \$77	C180E C180M C180N C180P C180PA C180PB	s s s s s	GE GE GE GE GE	T610051504BT T610061504BT T600081504BT T600101504BT T600111504BT T600121504BT	S33 S33 S33 S33 S33 S33
C50E C50F C50G C50H C50M	S GE T5 S GE T5 S GE T5	510058004AQ 510008004AQ 510028004AQ 510038004AQ 510068004AQ	S27 S27 S27	C153PA C153S C153T C154A C154B	s s s	GE GE GE GE	T507118054AA T507078054AA T507098054AA T507018084AQ T507028084AQ	S77 S77 S77	C180PC C180S C180T C185A C185B	s s s s	GE GE GE GE	T600131504BT T600071504BT T600091504BT T607011864BT T607021864BT	S33 S33 S33 S79 S79
C50N C50P C50PA C50PB C50S	S GE T5 S GE T5 S GE T5	500088004AQ 500108004AQ 500118004AQ 500128004AQ 500078004AQ	S23 S23	C154C C154D C154E C154M C155A	s s s s	GE GE GE GE	T507038084AQ T507048084AQ T507058084AQ 1507068084AQ T507018064AQ	S77 S77 S77	C185C C185D C185E C185M C185N	SSSSS	GE GE GE GE	T607031864BT T607041864BT T607051864BT T607061864BT T607081864BT	S79 S79 S79 S79 S79
C50T C50U C52A C52B C52C	S GE T5 S GE T5 S GE T5	510018004AB	S23 S27 S27 S27 S27 S27	C155B C155C C155D C155E C155M	s s s s	GE GE GE GE	T507028064AQ T507038064AQ T507048064AQ T507058064AQ T507068064AQ	S77 S77 S77	C185S C186N-30 C186N-40 C186P-30 C186P-40	s s s s	GE GE GE GE	T607071864BT T607081554BT T607081544BT T607101554BT T607101544BT	S79 S79 S79 S79 S79
C52D C52E C52F C52G C52H	S GE T5 S GE T5 S GE T5	510018004AB 510058004AB 510008004AB 510028004AB 510038004AB	S27 S27 S27 S27 S27 S27	C156A C156B C156C C156D C156E	s s s s	GE GE GE GE	T507018084AA T507028084AA T507038084AA T507048084AA T507058084AA	\$77 \$77 \$77 \$77 \$77	C186PA-30 C186PA-40 C186PB-30 C186PB-40 C186S-30	s s s s	GE GE GE GE	T607111554BT T607111544BT T607121554BT T607121544BT T607071554BT	S79 S79 S79 S79 S79
C52M C52N C52P C52PA C52PB	S GE T5 S GE T5 S GE T5	500118004AA	S27 S23 S23 S23 S23 S23	C156M C157A C157B C157C C157D	sssss	GE GE GE GE	T507068084AA T507018064AA T507028064AA T507038064AA T507048064AA	S77 S77 S77	C186S-40 C186T-30 C186T-40 C220A C220B	s s s s	GE GE GE GE	T607071544BT T607091554BT T607091544BT T400011008 T400021008	S79 S79 S79 S13 S13
C52S C52T C52U C60A C60B C60C	S GE T5 S GE T5 S GE T5 S GE T5	500078004AA 500098004AA 510008004AB 515018004AQ 515028004AQ 515038004AQ	S23 S27 CF	C157E C157M C158E C158M C158N	s s s	GE GE GE GE	T507058064AA T507068064AA T507058054AQ T507068054AQ T507088054AQ	S77 S77 S77	C220C C220D C220E C220F C220M	\$ \$ \$ \$	GE GE GE GE	T400031008 T400041008 T400051008 T400001008 T400061008	S13 S13 S13 S13 S13
C60D C60E C60F C60G	S GE T5 S GE T5 S GE T5 S GE T5	515048004AQ 515058004AQ 515008004AQ 515028004AQ	CF CF CF	C158P C158PA C158PB C158S C158T	s s s s	GE GE GE GE	T507108054AQ T507118054AQ T507128054AQ T507078054AQ T507098054AQ	S77 S77 S77	C235-15 C280N C280P C280PA C280PB	s s s s	PSI GE GE GE GE	T600151503BT T700082504BY T700102504BY T700112504BY T700122504BY	S33 S37 S37 S37 S37
C60H C60U C62A C62B C62C	S GE T5 S GE T5 S GE T5 S GE T5	515018004AB 515028004AB	CF CF	C159E C159M C159N C159P C159PA	s s s s	GE GE GE GE	T507058054AA T507068054AA T507088054AA T507108054AA T507118054AA	S77 S77 S77	C280PC C280PD C280PE C280PM C280PN	s s s s	GE GE GE GE	T700132504BY T700142504BY T700152504BY T700162504BY T700182504BY	S37 S37 S37 S37 S37
C62D C62E C62F C62G	S GE T5 S GE T5 S GE T5	515058004AB 515008004AB 515028004AB	CF CF	O159PB C159S C159T C160-15	s s s	GE GE GE PSI	T507128054AA T507078054AA T507098054AA T600151303BT	S77 S77 S77 S33	C280PS C280S C280T C281N	s s s	GE GE GE	T700172504BY T700072504BY T700092504BY T680083504BY	S37 S37 S37 S75
C62H C62U C702LC C702LD C137E	S GE T5 S GE T9 S GE T9			C164A C164B C164C C164D C164E	ssss	GE GE GE GE	T507017084AQ T507027084AQ T507037084AQ T507047084AQ T507057084AQ		C281P C281PA C281PB C281PC C281PD	s s s s	GE GE GE GE	T780103504BY T780113504BY T780123504BY T780133504BY T780143504BY	S75 S75 S75 S75 S75
C137M C137N C137P C137PB	S GE T4 S GE T4 S GE T4	100062208 100062208 100082208 100102208 100122208	\$13 \$13 \$13 \$13 \$13	C164M C165A C165B C165C	s s s	GE GE GE	T507067084AQ T507017064AQ T507027064AQ T507037064AQ	S77 S77 S77 S77	C281PE C281PM C281PN C281PS	S S S	GE GE GE	T7801535C4BY T780163504BY T780183504BY T780173504BY	S75 S75 S75 S75
C137S C137T C150E C150M C150N	S GE T4 S GE T5 S GE T5		\$13 \$13 \$27 \$27 \$23	C165D C165E C165M O165N	s s s	GE GE GE	T507047064AQ T507057064AQ T507067064AQ	S77 S77	C281S C281T C282N C282P	s s s	GE GE	T780073504BY T780093504BY T700082504BY T700102504BY	\$75 \$75 \$37 \$37
C150P C150PA C150PB C150PC	S GE T5 S GE T5 S GE T5	500138004AQ	S23 S23 S23	C165S C178A C178B C178C C178D	s s s	GE GE GE GE	T507077064AQ T610011504BT T610021504BT T610031504BT T610041504BT	\$77 \$33 \$33 \$33 \$33	C282PA C282PB C282PC	SS S	GE GE GE	T700112504BY T700122504BY T700132504BY T700142504BY	\$37 \$37 \$37 \$37
C150S C150T C151E C151M	S GE TE S GE TE S GE TE	500078004AQ 500098004AQ 507058054AQ 507068054AQ	S23 S77 S77	C178E C178M C178N	S S S	GE GE GE	T610051504BT T610061504BT T600081504BT	S33 S33 S33	C282PE C282PM C282PN C282PS	S S S S S	GE GE GE	T700152504BY T700162504BY T700182504BY T700172504BY	S37 S37 S37 S37
C151N C151P C151PA C151PB C151S	S GE TE S GE TE S GE TE	507088054AQ 507108054AQ 507118054AQ 507128054AQ 507078054AQ	S77 S77 S77	C178P C178PA C178PB C178S C178T	s s s	GE GE GE GE	T600101504BT T600111504BT T600121504BT T600071504BT T600091504BT	S33 S33 S33 S33 S33	C282S C282T C283N C283P C283PA	s s s s	GE GE GE GE	T7000725C4BY T700092504BY T780083504BY T780103504BY T780113504BY	S37 S37 S75 S75 S75
C151T C152E C152M C152N	S GE TE S GE TE	507078054AQ 507098054AQ 510058004AB 510068004AB 500088004AA	\$77 \$27 \$27						C283PB C283PC C283PD C283PE C283PM	s s s s	GE GE GE GE	T780123504BY T780133504BY T780143504BY T780153504BY T780163504BY	S75 S75 S75 S75 S75
				s and @ Parlac				_		-	-		



Part Number	Suggested (STATE OF TYPE Mfgr. Replacement		Part Number	Type Mfg	Suggested [®] r. Replacement	Page	Part Number	Type Mfg	Suggested (2) r. Replacement	Page
C283PN C283PS C283S C283T C286N	S GE T780183504B' S GE T780173504B' S GE T780073504B' S GE T780093504B' S GE T7000825C4B'	975 975 975	C364B C364C C364D C364E C364M	S GE S GE S GE S GE	T627022084DN T627032084DN T627042084DN T627052084DN T627062084DN	S87 S87 S87	C393A C393B C393C C393D C393E	S GE S GE S GE S GE S GE	T727014074DN T727024074DN T727034074DN T727044074DN T727054074DN	S91 S91 S91 S91 S91
C286P C286PA C286PB C286PC C286PD	S GE T700102504B' S GE T700112504B' S GE T700122504B' S GE T700132504B' S GE T700142504B'	9 S37 9 S37 9 S37	C365A C365B C365C C365D C365E	S GE S GE S GE S GE	T627012064DN T627022064DN T627032064DN T627042064DN T627052064DN	S87 S87 S87	C393M C394A C394B C394C C394D	S GE S GE S GE S GE	T727064074DN T727014884DN T727024884DN T727034884DN T727044884DN	S91 S91 S91 S91 S91
C286PE C286PM C286S C286T C287N	S GE T700152504B S GE T700162504B S GE T70072504B S GE T700092504B S .GE T780083504B	S37 S37 S37	C365M C380A C380B C380C C380D	S GE S GE S GE S GE	T627062064DN T620013004DN T620023004DN T620033004DN T620043004DN	S43 S43 S43	C394E C394M C395A C395B C395C	S GE S GE S GE S GE	T727054884DN T727064884DN T727014874DN T727024874DN T727034874DN	S91 S91 S91 S91 S91
C287P C287PA C287PB C287PC C287PD	S GE T7801035048\ S GE T7801135048\ S GE T7801235048\ S GE T7801335048\ S GE T7801435048\	S75 S75 S74	C380E C380M C380N C380P C380PA	S GE S GE S GE S GE	T620053004DN T620063004DN T620083004DN T620103004DN T620113004DN	S43 S43	C395D C395E C395M C397E C397M	S GE S GE S GE S GE S GE	T727044874DN T727054874DN T727064874DN T727064874DN T727064544DN T727064544DN	S91 S91 S91 S91 S91
C287PE C287PM C287S C287T C290A	S GE T780153504B S GE T780163504B S GE T780073504B S GE T780093504B S GE T700013504B	S75 S75 S75	C380PB C380PC C380S C380T C384A	S GE S GE S GE S GE	T620123004DN T620133004DN T620073004DN T620093004DN T627012584DN	S43 S43 S43 S43 S87	C397N C397P C397PA C397PB C397S	S GE S GE S GE S GE S GE	T727084544DN T727104544DN T727114544DN T727124544DN T727074544DN	S91 S91 S91 S91 S91
C290B C290C C290D C290E	S GE T700023504BY S GE T700033504BY SS GE T700043504BY S GE T700053504BY	S37 S37	C384B C384C C384D C384E C384M	S GE S GE S GE S GE	T627022584DN T627032584DN T627042584DN T627052584DN T627062584DN	S87 S87 S87 S87 S87	C397T C398E C398M C398N C398P	S GE S GE S GE S GE	T727094544DN T727054554DN T727064554DN T727084554DN T727104554DN	S91 S91 S91 S91 S91
C290F C290M C290N C290P C290PA	S GE T700013504B\ S GE T700063504B\ S GE T700083504B\ S GE T700103504B\	S37 S37 S37 S37	C385A C385B C385C C385D C385E	S GE S GE S GE S GE S GE	T627012564DN T627022564DN T627032564DN T627042564DN T627052564DN	S87 S87 S87 S87 S87 S87	C398PA C398PB C398S C398T	S GE S GE S GE S GE	T727114554DN T727124554DN T727074554DN T727094554DN	S91 S91 S91 S91
C290PB C290S C290T C291A	S GE T700123504B\ S GE T700073504B\ S GE T700093504B\ S GE T7800135C4B\	S37 S37 S37 S75	C385M C385N C385S C386N-30 C386N-40	S GE S GE S GE	T627062564DN T627082564DN T627072564DN T627082554DN	S87 S87 S87 S87	C440 C440 C441 C445 C448	S GE S GE S GE S GE S GE	CF CF CF CF	CF CF CF CF
C291B C291C C291D C291E C291M	S GE T780023504B\ S GE T780033504B\ S GE T780043504B\ S GE T780053504B\ S GE T780063504B\	S75 S75 S75	C386P-30 C386P-40 C386PA-30 C386PA-40	S GE S GE S GE S GE S GE	T627082544DN T627102554DN T627102544DN T627112554DN T627112544DN	\$87 \$87 \$87 \$87 \$87	C501 P C501 PA C501 PB C501 PC	S GE S GE S GE S GE S GE	T720085504DN T720105504DN T720115504DN T720125504DN T720135504DN	S51 S51 S51 S51 S51
C291N C291P C291PA C291PB C291S	S GE T780083504B\ S GE T780103504B\ S GE T780113504B\ S GE T780123504B\ S GE T780073504B\	S75 S75 S75	C386PB-30 C386PB-40 C386S-30 C386S-40 C386T-30	S GE S GE S GE S GE S GE	T627122554DN T627072544DN T627072554DN T627072544DN T627092554DN	S87 S87 S87 S87	C501 PD C501 PE C501 PM C501 S	S GE S GE S GE S GE	T720145504DN T720155504DN T720165504DN T720075504DN	S51 S51 S51 S51
.C291T C350A C350B C350C C350D	S GE T780093504B\ S GE T520012004DI S GE T520021304DI S GE T520031304DI S GE T520041304DI	N S41 N S41 N S41	C386T-40 C387E C387M C387N	S GE S GE S GE S GE	T627092544DN T7270535554DN T727063554DN T727083554DN	\$87 \$87 \$91 \$91 \$91	C501T C502PE C502PM C509 C520A	S GE S GE S GE S GE S GE	T720095504DN T720155504DN T720165504DN CF T720015504DN	S51 S51 S51 CF S51
C350E C350M C350N C350P C350PA	S GE T520051304DI S GE T520061304DI S GE T520081304DI S GE T520111304DI S GE T520111304DI	I S41 I S41 I S41	C387P C387PA C387PB C387S C387T	S GE S GE S GE S GE S GE	T727103554DN T727113554DN T727123554DN T727073554DN T727093554DN	S91 S91 S91 S91 S91	C520B C520C C520D C530A	S GE S GE S GE	T720025504DN T720035504DN T720045504DN T720015504DN	S51 S51 S51 S51
C350PB C350PC C350S C350T	S GE T520111304DI S GE T520121304DI S GE T520131304DI S GE T520071304DI S GE T520091304DI	N S41 N S41 N S41	C388E C388M C388N C388P	S GE S GE S GE S GE	T727054064DN T727054064DN T727064064DN T727084064DN T727103564DN	S91 S91 S91 S91	C530B C530C C530D C530E C530M	S GE S GE S GE S GE S GE	T720025504DN T720035504DN T720045504DN T720055504ND T720065504DN	S51 S51 S51 S51 S51
C354A C354B C354C C354D	S GE T52701138401 S GE T52702138401 S GE T52702138401 S GE T52704138401	S83 S83 S83	C388PA C388PB C388S	S GE S GE S GE S GE S GE	T727113564DN T727123564DN T727074064DN T727093564DN	S91 S91 S91	C600 C601 C602 C609	S GE S GE S GE	CF CF CF	CF CF CF
C354E C354M C355A C355B	S GE T527051384DI S GE T527061384DI S GE T527011364DI S GE T527021364DI	I S83 I S83 I S83 I S83	C390E C390M C390N C390P	S GE S GE S GE	T720055504DN T720065504DN T720085504DN T720105504DN	S51 S51 S51 S51	C612 C701PA C701PB C701PC	S GE S GE S GE S GE	CF T9G0111203DH T9G0121203DH T9G0131203DH	CF S61 S61
C355C C355D C355E C355M	S GE T527031364DI S GE T527041364DI S GE T527051364DI S GE T527061364DI	1 S83 1 S83 1 S83	C390PA C390PB C390PC C390S C390T	S GE S GE S GE S GE S GE	T720115504DN T720125504DN T720135504DN T720075504DN T720095504DN	S51 S51 S51 S51 S51	C701PD C701PE C701PM C702L C702LA	S GE S GE S GE S GE S GE	T9G0141203DH T9G0151203DH T9G0161203DH T9G0201003DH T9G0211003DH	S61 S61 S61
C358E C358M C358N C358P C358PA	S GE T527051354DI S GE T527061354DI S GE T527081354DI S GE T527101354DI	S83   S83   S83   S83	C391PC C391PD C391PE C391PM C392A	S GE S GE S GE S GE S GE	T720135504DN T720145504DN T720155504DN T720165504DN	S51 S51 S51 S51	C702LB C712L C712PE C712PM	S GE S GE S GE S GE	T9G0221003DH CF CF CF	S61 CF CF CF
C358PB C358PS C358S C358T C364A	S GE T527111354DI S GE T527121354DI S GE T527071354DI S GE T527091354DI S GE T627012084DI	1 583 1 583 1 583	C392B C392C C392D C392E C392M	S GE S GE S GE S GE S GE		S91 S91 S91 S91 S91 S91	C712PN C712PS C712PT CD160-01 CD160-02 CD160-04	S GE S GE S GE R PSI R PSI R PSI	CF CF CF IN3261 IN3263 IN3267	CF CF CF R27 R27 R27



Part Number	Ту	pe Mf	Suggested & Replacement		Part Number	Туре	Mfgr.	Suggested W Replacement	Page	Part Number	Туре	Mfgr.	Suggested (W) Replacement	Page
CD160-06 CD160-08 CD160-10 CD160-12 CD160-14	R R R R	PSI PSI PSI PSI PSI	IN3269 IN3271 IN3273 IN3274 IN3275	R27 R27 R27 R27 R27	D470 D480XX0320 D480XX0420 D480XX0520 D480XX0815	S T T T	PSI WES WES WES	T700—3004BT D480XX0320 D480XX0420 D480XX0520 D480XX0815	S37 CF CF CF CF	ESP05B1 ESP1B1 ESP2B1 ESP4B1 ESP6B1	A A A A	SYN SYN SYN SYN SYN	MB11A02V05 MB11A02V10 MB11A02V20 MB11A02V40 MB11A02V60	A3 A3 A3 A3
CD160-16 CD250-01 CD250-02 CD250-04 CD250-06	R R R R	PSI PSI PSI PSI PSI	IN3276 R6100125 R6100225 R6100425 R6100625	R27 R31 R31 R31 R31	D480XX1015 D1197 D1245 D2406A D2406AR	T S R R	WES WCE WCE RCA RCA	D480XX1015 T9GHXX08-4 CF IN3880 IN3880R	CF S39 CF R55 R55	ESP8B1 ESP10B1 F180 F220 F300	A S S S	SYN SYN PSI PSI PSI	MB11A02V80 MB11A02W10 CF CF CF	A3 CF CF CF
CD250-08 CD250-10 CD250-12 CD250-14 CD250-16	R R R R	PSI PSI PSI PSI PSI	R6100825 R6101025 R6001225 R6001425 R6001625	R31 R31 R31 R31 R31	D2406B D2406BR D2406C D2406CR D2406D	R R R R	RCA RCA RCA RCA RCA	IN3881 IN3881R IN3882 IN3882R IN3883	R55 R55 R55 R55 R55	F400 F500 F600 FD600-05 FD600-10	S S R R	PSI PSI PSI PSI PSI	CF CF CF R7200606 R7201006	CF CF CF R43 R43
CD300-01 CD300-02 CD300-04 CD300-06 CD300-08	R R R R	PSI PSI PSI PSI PSI	R6100130 R6100230 R6100430 R6100630 R6100830	R31 R31 R31 R31 R31	D2406DR D2406F D2406FR D2406M D2406MR	R R R R	RCA RCA RCA RCA RCA	IN3883R IN3879 IN3879R R3020606 R3030606	R55 R55 R55 R55 R55	FD600-12 FD600-16 FD600-18 FD600-20 FD600-22	R R R R	PSI PSI PSI PSI PSI	R7201206 R7201606 R7201806 R7202006 R7202206	R43 R43 R43 R43 R43
CD300-10 CD300-12 CD300-14 CD300-16 CH119A	R R R R	PSI PSI PSI PSI TUN	R6101030 R6001230 R6001430 R6001630 R5100115	R31 R31 R31 R31 R31 R23	D2412A D2412AR D2412B D2412BR D2412C	R R R R	RCA RCA RCA RCA RCA	IN3890 IN3890R IN3891 IN3891R IN3892	R55 R55 R55 R55 R55	FD600-24 FD600-30 FD900-06 FD900-10 FD900-12	R R R R	PSI PSI PSI PSI PSI	R7202406 R7203006 R7200610 R7201010 R7201210	R43 R43 R43 R43 R43
CH119AR CH119AZ CH119AZR CH119B CH119BR	R R R R	TUN TUN TUN TUN	R5110115 R510+115 R511+115 R5100215 R5110215	R23 R23 R23 R23 R23	D2412CR D2412D D2412DR D2412F D2412F	R R R R	RCA RCA RCA RCA RCA	IN3892R IN3893 IN3893R IN3889 IN3889R	R55 R55 R55 R55 R55	FD900-16 FD900-18 FD900-20 G300-1 G300-2	R R S S	PSI PSI PSI PSI PSI	R7201610 R7201810 R7202010 T720013504DN T720023504DN	R43 R43 R43 S51 S51
CH119C CH119CR CH119D CH119DR CH119E	R R R R	TUN TUN TUN TUN TUN	R5100315 R5110315 R5100415 R5110415 R5100515	R23 R23 R23 R23 R23	D2412M D2412MR D2520A D2520AR D2520B	R R R R	RCA RCA RCA RCA	R3020612 R3030612 IN3900 IN3900R IN3901	R55 R55 R57 R57 R57	G300-3 G300-4 G300-5 G300-6 G300-7	s s s s	PSI PSI PSI PSI PSI	T720033504DN T720043504DN T720053504DN T720063504DN T720073504DN	S51 S51 S51 S51 S51
CH119ER CH119F CH119FR CH119Z CH119ZR	R R R R	TUN TUN TUN TUN	R5110515 R5100615 R5110615 R5100015 R5110015	R23 R23 R23 R23 R23	D2520BR D2520C D2520CR D2520D D2520D	R R R R	RCA RCA RCA RCA RCA	IN3901R IN3902 IN3902R IN3903 IN3903R	R57 R57 R57 R57 R57	G300-8 G300-9 G300-10 G300-12 G300-14	s s s s	PSI PSI PSI PSI PSI	T720083504DN T720093504DN T720103504DN T720123504DN T720143504DN	S51 S51 S51 S51 S51
CH10912A CH10912AR CH10912AZ CH10912AZR CH10912B	R R R R	TUN TUN TUN TUN TUN	R5100115 R5110115 R510+115 R511+115 R5100215	R23 R23 R23 R23 R23	D2520F D2520FR D2520M D2520MR D2540A	R R R R	RCA RCA RCA RCA RCA	IN3899 IN3899R R4020620 R4030620 IN3910	R57 R57 R57 R57 R57	G300-16 G300-18 G300-20 G300-22 G400-1	s s s s	PSI PSI PSI PSI PSI	T720163504DN T720183504DN T720203504DN T720223504DN T720013504DN	S51 S51 S51 S51 S51
CH10912BR CH10912C CH10912CR CH10912D CH10912DR	R R R R	TUN TUN TUN TUN	R5110215 R5100315 R5110315 R51100415 R5110415	R23 R23 R23 R23 R23	D2540AR D2540B D2540BR D2540D D2540D	R R R R	RCA RCA RCA RCA RCA	IN3910R IN3911 IN3911R IN3913 IN3913R	R57 R57 R57 R57 R57	G400-2 G400-3 G400-4 G400-5 G400-6	s s s s	PSI PSI PSI PSI PSI	T720023504DN T720033504DN T720043504DN T720053504DN T720063504DN	S51 S51 S51 S51 S51
CH10912E CH10912ER CH10912F CH10912FR CH10912Z	R R R R	TUN TUN TUN TUN	R5100515 R5110515 R5100615 R5110615 R5100015	R23 R23 R23 R23 R23	D2540F D2540FR D2540M D2540MR D3610	R R R R	RCA RCA RCA RCA SYN	IN3909 IN3909R R4020630 R4030630 R4040160	R57 R57 R57 R57 R17	G400-7 G400-8 G400-9 G400-10 G400-12	s s s s	PSI PSI PSI PSI	T720073504DN T720083504DN T720093504DN T720103504DN T720123504DN	S51 S51 S51 S51 S51
CH10912ZR CS131A CS131AR CS131AZ CS131AZR	R R R R	TUN TUN TUN TUN	R5110015 IN4045 IN4045R IN4046 IN4046R	R23 R29 R29 R29 R29	DRS-250 DRS-250R DRS-251 DRS-251R DRS-252	R R R R	DEL DEL DEL DEL	R6100825 R6110825 R6101025 R6111025 R6001225	R31 R31 R31 R31 R31	G400-14 G400-16 G400-18 G400-20 G400-22	s s s s	PSI PSI PSI PSI PSI	T720143504DN T720163504DN T720183504DN T720203504DN T720223504DN	S51 S51 S51 S51 S51
CS131B CS131BR CS131C CS131CR CS131D	R R R R	TUN TUN TUN TUN	IN4047 IN4047R IN4049 IN4049R IN4050	R29 R29 R29 R29 R29	DRS-252R DRS-253 DRS-253R DRS-254 DRS-254R	R R R R	DEL DEL DEL DEL DEL	R6011225 R6001425 R6011425 R6001625 R6011625	R31 R31 R31 R31 R31	G500-1 G500-2 G500-3 G500-4 G500-5	s s s s	PSI PSI PSI PSI PSI	T720013504DN T720023504DN T720033504DN T720043504DN T720053504DN	
CS131DR CS131E CS131ER CS131F CS131F	R R R R	TUN TUN TUN TUN TUN	IN4050R IN4051 IN4051R IN4052 IN4052R	R29 R29 R29 R29 R29	E180 E220 E300 E400 E500	s s s s	PSI PSI PSI PSI PSI	CF CF CF CF	CF CF CF CF	G500-6 G500-7 G500-8 G500-9 G500-10	s s s s	PSI PSI PSI PSI PSI	T720063504DN T720073504DN T720083504DN T720093504DN T720103504DN	S51 S51 S51
CS131Z CS131ZR D60T405010 D60T455010 D60T505010	R R T T	TUN TUN WES WES		R29 R29 T33 T33	EHF1B1 EHF2B1 EHF3B1 EHF4B1 EHF5B1	A A A A	SYN SYN SYN SYN SYN	MB12A10V10 MB12A10V20 MB12A10V30 MB12A10V40 MB12A10V50	A3 A3 A3 A3	G500-12 G500-14 G500-16 G500-18 G500-20	s s s s s	PSI PSI PSI PSI PSI	T720123504DN T720143504DN T720163504DN T720183504DN T720203504DN	S51
D235 D350 D390XX0520 D390XX0525 D400	S S T T S	PSI PSI WES WES PSI		S33 S33 CF CF S33	EHF6B1 EMF1B1 EMF2B1 EMF4B1 EMF6B1	A A A A	SYN SYN SYN SYN SYN	MB12A10V60 MB12A25V10 MB12A25V20 MB12A25V40 MB12A25V60	A3 A3 A3 A3	G650-1 G650-2 G650-3 G650-4 G650-5	s s s s	PSI PSI PSI PSI PSI	T720014504DN T720024504DN T720034504DN T720044504DN T720054504DN	S51 S51 S51



Part Number	Suggested W Type Mfgr. Replacement Page	Part Number	Type Mfgr	Suggested ∰ . Replacement Page	Part Number	Suggested (22) Type Mfgr. Replacement Page
G650-6	S PSI T720064504DN S51	H800-12	S PSI	T920120602DW S55	KBH25005	A GI MB12A25V05 A3
G650-7	S PSI T720074504DN S51	H800-14	S PSI	T920140602DW S55	KBPC102	A GI MB11A02V20 A3
G650-8	S PSI T720084504DN S51	H800-16	S PSI	T920160602DW S55	KBPC104	A GI MB11A02V40 A3
G650-9	S PSI T720084504DN S51	H800-18	S PSI	T920180602DW S55	KBPC106	A GI MB11A02V60 A3
G650-10	S PSI T720104504DN S51	H800-20	S PSI	T920200602DW S55	KBPC108	A GI MB11A02V80 A3
G650-12	S PSI T720124504DN S51	H800-22	S PSI	T920220602DW S55	KBPC110	A GI MB11A02W10 A3
G650-14	S PSI T720144504DN S51	H800-24	S PSI	T920240602DW S55	KBPC810	A GI MB11A06W10 A3
G650-16	S PSI T720164504DN S51	H800-26	S PSI	T920260602DW S55	KBPC1005	A GI MB11A02V05 A3
G650-18	S PSI T720184504DN S51	H800-28	S PSI	T920280602DW S55	KBPC8005	A GI MB11A06V05 A3
G850-1	S PSI T720015504DN S51	H800-30	S PSI	T920300602DW S55	KBPC8025	A GI MB11A06V20 A3
G850-2	S PSI T720025504DN S51	H1000-6	S PSI	T920060702DW S55 T920120702DW S55 T920180702DW S55 T920200702DW S55 T920220702DW S55	KBPC8045	A GI MB11A06V40 A3
G850-3	S PSI T720035504DN S51	H1000-12	S PSI		KBPC8065	A GI MB11A06V60 A3
G850-4	S PSI T720045504DN S51	H1000-18	S PSI		KBPC8085	A GI MB11A06V80 A3
G850-5	S PSI T720055504DN S51	H1000-20	S PSI		KD6000-2	R PSI CF CF
G850-6	S PSI T720065504DN S51	H1000-22	S PSI		KD6000-4	R PSI CF CF
G850-7	S PSI T720075504DN S51	H1200-6	S PSI	T920060902DW S55	KD6000-6	R PSI CF CF
G850-8	S PSI T720085504DN S51	H1200-10	S PSI	T920100902DW S55	MB11A02VXX	A WES MB11A02VXX A3
G850-9	S PSI T72008504DN S51	H1200-12	S PSI	T920120902DW S55	MB11A06VXX	A WES MB12A06VXX A3
G850-10	S PSI T720105504DN S51	H1200-14	S PSI	T920140902DW S55	MB12A10VXX	A WES MB12A10VXX A3
G850-12	S PSI T720105504DN S51	H1200-16	S PSI	T920160902DW S55	MB12A25VXX	A WES MB12A25VXX A3
G850-14	S PSI T720145504DN S51	H1400-6	S PSI	T920061002DW S55	MB13A10V05	A WES MB12A10V05 A3 A WES MB12A10V10 A3 A WES MB12A10V20 A3 A WES MB12A10V30 A3 A WES MB12A10V30 A3 A WES MB12A10V40 A3
G850-16	S PSI T720165504DN S51	H1400-8	S PSI	T920081002DW S55	MB13A10V10	
G850-18	S PSI T720185504DN S51	H1400-10	S PSI	T920101002DW S55	MB13A10V20	
G850-20	S PSI T720205504DN S51	H1400-12	S PSI	T920121002DW S55	MB13A10V30	
G950-1	S PSI T720205504DN S51	H1400-14	S PSI	T920141002DW S55	MB13A10V40	
G950-2	S PSI T720025504DN S51	H1400-16	S PSI	T920161002DW S55	MB13A10V50	A WES MB12A10V60 A3
G950-3	S PSI T720035504DN S51	H1600-6	S PSI	T920061002DW S55	MB13A10V60	A WES MB12A10V60 A3
G950-4	S PSI T720045504DN S51	H1600-8	S PSI	T920081002DW S55	MB13A15V10	A WES MB12A25V10 A3
G950-5	S PSI T720055504DN S51	H1600-10	S PSI	T920101002DW S55	MB13A15V20	A WES MB12A25V20 A3
G950-6	S PSI T720065504DN S51	H1600-12	S PSI	T920121002DW S55	MB13A15V30	A WES MB12A25V30 A3
G950-7	S PSI T720075504DN S51	H1600 14	S PSI	T920141002DW S55	MB13A15V40	A WES MB12A25V40 A3
G950-8	S PSI T720085504DN S51	H1800	S PSI	CF CF	MB13A15V50	A WES MB12A25V60 A3
G950-9	S PSI T720095504DN S51	HD1500 6	R PSI	R9200611 R47	MB13A15V60	A WES MB12A25V60 A3
G950-10	S PSI T720105504DN S51	HD1500 10	R PSI	R9201011 R47	MB13A20V10	A WES MB12A25V10 A3
G950-12	S PSI T720125504DN S51	HD1500 12	R PSI	R9201211 R47	MB13A20V20	A WES MB12A25V20 A3
G950-14	S PSI T720145504DN S51	HD1500-16	R PSI	R9201611 R47	MB13A20V30	A WES MB12A25V30 A3
G950-16	S PSI T720165504DN S51	HD1500-18	R PSI	R9201811 R47	MB13A20V40	A WES MB12A25V40 A3
G950-18	S PSI T720185504DN S51	HD1500-20	R PSI	R9202011 R47	MB13A20V50	A WES MB12A25V60 A3
GA2	A WES GA2 A19	HD1500-22	R PSI	R9202211 R47	MB13A20V60	A WES MB12A25V60 A3
GA3	A WES GA3 A28	HD1500-24	R PSI	R9202411 R47	MCR39-35	S MOT T400002208 S13
GB1	A WES GB1 A12	HD1500-30	R PSI	R9203011 R47	MCR45-05	S MOT T510005007AB S27
GB2	A WES GB2 A20	HD2100-6	R PSI	R9200620 R47	MCK45-10	S MOT T510015007AB S27
GB3	A WES GB3 A29	HD2100-10	R PSI	R9201020 R47	MCR45-15	S MOT T510025007AB S27
GC1	A WES GC1 A10	HD2100-12	R PSI	R9201220 R47	MCR45-20	S MOT T510025007AB S27
GD1	A WES GD1 A9	HD2100-16	R PSI	R9201620 R47	MCR45-25	S MOT T510035007AB S27
GD2	A WES GD2 A18 A WES GD3 A27 R PSI R7200609 R43 R PSI R7201009 R43 R PSI R7201209 R43	HD2100-18 HD2100-20 HD2500-2 HD2500-4 HD2500-6	R PSI R PSI R PSI R PSI R PSI	R9201820 R47 R9202020 R47 R9200220 R47 R9200420 R47 R9200620 R47	MCR45-30 MCR45-40 MCR45-50 MCR45-60 MCR45-70	S MOT T510035007AB S27 S MOT T510045007AB S27 S MOT T510055007AB S27 S MOT T510065007AB S27 S MOT T500074004AA S23
GD800-16 GD800-18 GD800-20 GD800-22 GD800-24	R PSI R7201609 R43 R PSI R7201809 R43 R PSI R7202009 R43 R PSI R7202209 R43 R PSI R7202409 R43	HD2500-8 HD2500-10 HD2500-12 HD3000-1 HD3000-2	R PSI R PSI R PSI R PSI R PSI	R9200820 R47 R9201020 R47 R9201220 R47 CF CF CF	MCR45-80 MCR45-90 MCR45-100 MCR45-110 MCR45-120	S MOT T500084004AA S23 S MOT T500094004AA S23 S MOT T500104004AA S23 S MOT T500114004AA S23 S MOT T500124004AA S23
GD800-30 GD1400-06 GD1400-10 GD1400-12 GD1400-16	R PSI SO R43 R PSI R7200612 R43 R PSI R7201012 R43 R PSI R7201212 R43 R PSI SO R43	HD3000-4 HD3000-6 HH	R PSI R PSI A WES S PSI S PSI	CF	MCR46-05 MCR46-10 MCR46-15 MCR46-20 MCR46-25	S MOT T510005007AQ S27 S MOT T510015007AQ S27 S MOT T510025007AQ S27 S MOT T510025007AQ S27 S MOT T510035007AQ S27
GD1400-18 GD1400-2J GE1 GE2 GE3	R PSI SO R43 R PSI SO R43 A WES GE1	J3000-6 J3000-8 J3000-10 J3000-12 JD4500-2	S PSI S PSI S PSI S PSI R PSI	CF	MCR46-30 MCR46-35 MCR46-40 MCR46-50 MCR46-60	S MOT T510035007AQ S27 S MOT T510045007AQ S27 S MOT T510045007AQ S27 S MOT T510055007AQ S27 S MOT T510065007AQ S27
GEB100	A GE MB11A02V05 A3	JD4500-4	R PSI	CF	MCR46-70	S MOT T500074004AQ S23
GEB101	A GE MB11A02V10 A3	JD4500-6	R PSI		MCR46-80	S MOT T500084004AQ S23
GEB102	A GE MB11A02V20 A3	JD4500-8	R PSI		MCR46-90	S MOT T5000940004AQ S23
GEB104	A GE MB11A02V40 A3	JD4500-10	R PSI		MCR46-100	S MOT T500104004AQ S23
GEB106	A GE MB11A02V40 A3	JD4500-12	R PSI		MCR46-110	S MOT T500114004AQ S23
GEB108 GEB110 GF2 GF3	A GE MB11A02V80 A3 A GE MB11A02W10 A3 A WES GF2 A22 A WES GF3 A31 A WES GN1 A11	JD6000-2 JD6000-4 JD6000-6 KBH02 KBH04	R PSI R PSI R PSI A GI A GI	CF CF CF CF CF MB12A10V20 A3 MB12A10V40 A3	MCR46-120 MCR50-05 MCR50-10 MCR50-15 MCR50-20	S MOT T500124004AQ S23 S MOT T510008007AB S27 S MOT T510018007AB S27 S MOT T510028007AB S27 S MOT T510028007AB S27
GR1 GS1 GT3 GY1 H800-6	A WES GR1 A8 A WES GS1 A14 A WES GT3 A26 A WES GY1 A15 S PSI T920060602DW S55	KBH06 KBH005 KBH2502 KBH2504 KBH2506	A GI A GI A GI A GI	MB12A10V60 A3 MB12A10B05 A3 MB12A25V20 A3 MB12A25V40 A3 MB12A25V60 A3	MCR50-25 MCR50-30 MCR50-35 MCR50-40 MCR50-50	S MOT T510038007AB S27 S MOT T510038007AB S27 S MOT T510048007AB S27 S MOT T510048007AB S27 S MOT T510058007AB S27



Part Number	Suggested Type Mfgr. Replacement	) : Page Par	t Number Ty	ype Mfgr.	Suggested [®] Replacement	Page p	Part Number	Type Mfgr.	Suggested (2) Replacement Page
MCR50-60 MCR50-70 MCR50-80 MCR50-90 MCR52-10	S MOT T510068007AB S MOT T500078007AA S MOT T500088007AA S MOT T500098007AA S MOT T507017044AA	A S23 M A S23 M A S23 M	ICR157-20 ICR157-30 ICR157-40 ICR157-50 ICR157-60	S MOT S	T507027064AA T507037064AA T507047064AA T507057064AA T507067064AA	\$77 \$77 \$77 \$77 \$77	MCR250B-110 MCR250B-120 MCR250B-130 MCR250B-140 MCR250B-150	S MOT S MOT S MOT	T500118005AQ S23 T500128005AQ S23 T500138005AQ S23 T500148005AQ S23 T500158005AQ S23
MCR52-20 MCR52-30 MCR52-40 MCR52-50 MCR52-60	S MOT T507027044AA S MOT T507037044AA S MOT T507047044AA S MOT T507057044AA S MOT T507067044AA	A S77 M A S77 M A S77 M	ICR158-10 ICR158-20 ICR158-30 ICR158-40 ICR158-50	S MOT S	T507017054AQ T507027054AQ T507037054AQ T507047054AQ T507057054AQ	\$77 \$77 \$77 \$77 \$77 \$77	MCR250L-10 MCR250L-20 MCR250L-30 MCR250L-40 MCR250L-50	S MOT S MOT S MOt	T510018005AB S27 T510028005AB S27 T510038005AB S27 T510048005AB S27 T510058005AB S27
MCR52-70 MCR52-80 MCR52-90 MCR60-05 MCR60-10	S MOT T507077044AA S MOT T507087044AA S MOT T507087044AA S MOT T510008007A0 S MOT T510018007A0	A \$77 M A \$77 M D \$27 M	ICR158-60 ICR158-70 ICR158-80 ICR158-90 ICR158-100	S MOT S	T507067054AQ T507077054AQ T507087054AQ T507097054AQ T507107054AQ	\$77 \$77 \$77 \$77 \$77	MCR250L-60 MCR250L-70 MCR250L-80 MCR250L-90 MCR250L-100	S MOT S MOT S MOT	T510068005AB S27 T500078004AA S23 T500088005AA S23 T500098005AA S23 T500108005AA S23
MCR60-15 MCR60-20 MCR60-25 MCR60-30 MCR60-40	S MOT T510028007A0 S MOT T510028007A0 S MOT T510038007A0 S MOT T510038007A0 S MOT T510048007A0	1 S27 M 2 S27 M 1 S27 M	CR158-110 ICR158-120 ICR158-130 ICR159-10 ICR159-20	S MOT S	T507117054AQ T507127054AQ T507137054AQ T507017054AA T507027054AA	\$77 \$77 \$77 \$77 \$77	MCR250L-110 MCR250L-120 MCR250L-130 MCR250L-140 MCR250L-150	S MOT S MOT S MOT	T500118005AA S23 T500128005AA S23 T500138005AA S23 T500148005AA S23 T500158005AA
MCR60-50 MCR62-05 MCR62-10 MCR62-15 MCR62-20	S MOT T510058007A0 S MOT T510008007AB S MOT T510018007AB S MOT T510028007AB S MOT T510028007AB	3 S27 M 3 S27 M 3 S27 M	ICR159-30 ICR159-40 ICR159-50 ICR159-60 ICR159-70	S MOT S	T507037054AA T507047054AA T507057054AA T507067054AA T507077054AA	\$77 \$77 \$77 \$77 \$77	MCR251B-10 MCR251B-20 MCR251B-30 MCR251B-40 MCR251B-50	S MOT S MOT S MOT	T510015005AQ S27 T510025005AQ S27 T510035005AQ S27 T510045005AQ S27 T510055005AQ S27
MCR62-25 MCR62-30 MCR62-40 MCR62-50 MCR150-05	S MOT T510038007AB S MOT T510038007AB S MOT T510048007AB S MOT T510058007AB S MOT T510008005A0	3 S27 M 3 S27 M 3 S27 M	ICR159-80 ICR159-90 ICR159-100 ICR159-110 ICR159-120	S MOT S MOT S MOT	T507087054AA T507097054AA T507107054AA T507117054AA T507127054AA	\$77 \$77 \$77 \$77 \$77	MCR251B-60 MCR251B-70 MCR251B-80 MCR251B-90 MCR251B-100	S MOT S MOT S MOT	T510065005AQ S27 T500074005AQ S23 T500084005AQ S23 T500094005AQ S23 T500104005AQ S23
MCR150-10 MCR150-20 MCR150-30 MCR150-40 MCR150-50	S MOT T510018005A0 S MOT T510028005A0 S MOT T510038005A0 S MOT T510048005A0 S MOT T510058005A0	N S27 M N S27 M N S27 M	ICR159-130 ICR235-10 ICR235-20 ICR235-30 ICR235-40	S MOT S MOT S MOT	T507137054AA T620012004DN T620022004DN T620032004DN T620042004DN	S77 S43 S43 S43 S43	MCR251B-110 MCR251B-120 MCR251B-130 MCR251B-140 MCR251B-150	S MOT S MOT S MOT	T500114005AQ S23 T500124005AQ S23 T500134005AQ S23 T500144005AQ S23 T500154005AQ S23
MCR150-60 MCR150-70 MCR150-80 MCR150-90 MCR150-100	S MOT T510068005A0 S MOT T500078004A0 S MOT T500088004A0 S MOT T500098004A0 S MOT T500108004A0	D S23 M D S23 M D S23 M	ICR235-50 ICR235-60 ICR235-70 ICR235-80 ICR235-90	S MOT S MOT S MOT	T620052004DN T620062004DN T620072004DN T620082004DN T620092004DN	\$43 \$43 \$43 \$43 \$43	MCR251L-10 MCR251L-20 MCR251L-30 MCR251L-40 MCR251L-50	S MOT S MOT S MOT	T510015005AB S27 T510025005AB S27 T510035005AB S27 T510045005AB S27 T510055005AB S27
MCR150-110 MCR150-120 MCR150-130 MCR150-140 MCR150-150	S MOT T500118004A0 S MOT T500128004A0 S MOT T500138004A0 S MOT T500148004A0 S MOT T500158004A0	D S23 M D S23 M D S23 M	ICR235-100 ICR235-110 ICR235-120 ICR235-130 ICR235-140	S MOT S	T620102004DN T620112004DN T620122004DN T620132004DN T620142004DN	\$43 \$43 \$43 \$43 \$43	MCR251L-60 MCR251L-70 MCR251L-80 MCR251L-90 MCR251L-100	S MOT S MOT S MOT	T510065005AB S27 T500074005AA S23 T500084005AA S23 T500094005AA S23 T500104005AA S23
MCR152-05 MCR152-10 MCR152-20 MCR152-30 MCR152-40	S MOT T510008004AE S MOT T510018004AE S MOT T510028004AE S MOT T510038004AE S MOT T510048004AE	8 S27 M 8 S27 M 8 S27 M	CR235-150 CR235A-10 ICR235A-20 ICR235A-30 ICR235A-40	S MOT S	T620152004DN T627011584DN T627021584DN T627031584DN T627041584DN	S43 S87 S87 S87 S87	MCR251L-110 MCR251L-120 MCR251L-130 MCR251L-140 MCR251L-150	S MOT S MOT S MOT	T500114005AA S23 T500124005AA S23 T500134005AA S23 T500144005AA S23 T500154005AA S23
MCR152-50 MCR152-60 MCR152-70 MCR152-80 MCR152-90	S MOT T510058004AB S MOT T510068004AB S MOT T500078004AB S MOT T500088004AB S MOT T500098004AB	8 S27 M N S23 M N S23 M	CR235A-50 CR235A-60 ICR235B-10 ICR235B-20 ICR235B-30	S MOT S	T627051584DN T627061584DN T627011574DN T627021574DN T627031574DN	S87 S87 S87 S87 S87	MCR380-10 MCR380-20 MCR380-30 MCR380-40 MCR380-50	S MOT S MOT S MOT	T620013004DN S43 T620023004DN S43 T620033004DN S43 T620043004DN S43 T620053004DN S43
MCR152-100 MCR152-110 MCR152-120 MCR152-130 MCR152-140	S MOT T500108004AA S MOT T500118004AA S MOT T500128004AA S MOT T500138004AA S MOT T500148004AA	S23 M S23 M S23 M	CR235B-40 CR235B-50 ICR235B-60 ICR235B-70 ICR235B-80	S MOT S	T627041574DN T627051574DN T627061574DN T627071574DN T627081574DN	S87 S87 S87 S87 S87	MCR380-60 MCR380-70 MCR380-80 MCR380-90 MCR380-100	S MOT S MOT S MOT	T620063004DN S43 T620073004DN S43 T620083004DN S43 T620093004DN S43 T620103004DN S43
MCR152-150 MCR154-10 MCR154-20 MCR154-30 MCR154-40	S MOT T500158004AA S MOT T507017084AC S MOT T507027084AC S MOT T507037084AC S MOT T507047084AC	1 S77 M 1 S77 M 1 S77 M	ICR235C-10 ICR235C-20 ICR235C-30 ICR235C-40 ICR235C-50	S MOT S MOT S MOT	T627011564DN T627021564DN T627031564DN T627041564DN T627051564DN	S87 S87 S87 S87 S87	MCR380-110 MCR380-120 MCR380-130 MCR380-140 MCR380-150	S MOT S MOT S MOT	T620113004DN S43 T620123004DN S43 T620133004DN S43 T620143004DN S43 T620153004DN S43
MCR154-50 MCR154-60 MCR155-10 MCR155-20 MCR155-30	S MOT T507057084A0 S MOT T507067084A0 S MOT T507017064A0 S MOT T507027064A0 S MOT T507037064A0	2 S77 M 2 S77 M 2 S77 M	ICR235C-60 ICR235C-70 ICR235C-80 ICR235C-90 ICR235C-100	S MOT S	T627061564DN T627071564DN T627081564DN T627091564DN T627101564DN	S87 S87 S87 S87 S87	MCR380B-10 MCR380B-20 MCR380B-30 MCR380B-40 MCR380B-50	S MOT S MOT S MOT	T627012574DN S87 T627022574DN S87 T627032574DN S87 T627042574DN S87 T627052574DN S87
MCR155-40 MCR155-50 MCR155-60 MCR156-10 MCR156-20	S MOT T507047064AC S MOT T507067064AC S MOT T507067064AC S MOT T507017084AA S MOT T507027084AA	D S77 M D S77 M S S77 M	ICR250B-10 ICR250B-20 ICR250B-30 ICR250B-40 ICR250B-50	S MOT S	T510018005AQ T510028005AQ T510038005AQ T510048005AQ T510058005AQ	S27 S27 S27 S27 S27	MCR3808-60 MCR380B-70 MCR380B-80 MCR380C-10 MCR380C-20	S MOT S MOT S MOT	T627062574DN S87 T627072574DN S87 T627082574DN S87 T627012564DN S87 T627022564DN S87
MCR156-30 MCR156-40 MCR156-50 MCR156-60 MCR157-10	S MOT T507037084AA S MOT T507047084AA S MOT T507057084AA S MOT T507067084AA S MOT T507017064AA	S77 M S77 M S77 M	ICR250B-60 ICR250B-70 ICR250B-80 ICR250B-90 ICR250B-100	S MOT S	T510068005AQ T500078005AQ T500088005AQ T500098005AQ T500108005AQ	S23 S23 S23	MCR380C-30 MCR380C-40 MCR380C-50 MCR380C-60 MCR380C-70	S MOT S MOT	T627032564DN S87 T627042564DN S87 T627052564DN S87 T627062564DN S87 T627072564DN S87



Part Number	Suggested (22) Type Mfgr. Replacement	Page Part Number	Type Mfgr.	Suggested ^② Replacement	Page	Part Number	Type Mfgr.	Suggested (2) Replacement	Page
MCR380C-80 MCR380C-90 MCR380C-100 MCR380D-10 MCR380D-20	S MOT T627082564DN S MOT T627092564DN S MOT T627102564DN S MOT T627012554DN S MOT T627012554DN	\$87 MCR550D-110 \$87 MCR550D-120 \$87 MCR800-10 \$87 MCR800-20 \$87 MCR800-30	S MOT S MOT S MOT S MOT S MOT	T727123554DN T720015504DN T720025504DN	S91 S51 S51	MP011BBH MP011BBK MP011BBM MP011BBP MP011BBS	A WES A WES	MB11A02V40 MB11A02V60 MB11A02V60 MB11A02V80 MB11A02V80	A3 A3 A3 A3
MCR380D-30 MCR380D-40 MCR380D-40 MCR380D-60 MCR380D-70	S MOT T627032554DN S MOT T627042554DN S MOT T627052554DN S MOT T627062554DN S MOT T627072554DN	\$87 MCR800-40 \$87 MCR800-50 \$87 MCR800-60 \$87 MCR800-70 \$87 MCR800-80	S MOT S MOT S MOT S MOT S MOT	T720055504DN T720065504DN T720075504DN	S51 S51 S51	MP011BBV MP011BBZ MP012JBA MP012JBB MP012JBD	A WES A WES A WES A WES	MB11A02W10 MB12A10V05 MB12A10V10	A3 A3 A3 A3
MCR380D-80 MCR380D-90 MCR380D-100 MCR380D-110 MCR380D-120	S MOT T627082554DN S MOT T627092554DN S MOT T627102554DN S MOT T627112554DN S MOT T627112554DN	\$87 MCR800-90 \$87 MCR800-100 \$87 MCR800-110 \$87 MCR800-120 \$87 MCR800-130	S MOT S MOT S MOT S MOT S MOT	T720105504DN T720115504DN T720125504DN	I S51 I S51 I S51	MP012JBF MP012JBH MP012JBK MP012JBM MP013MBB	A WES A WES A WES A WES	MB12A10V30 MB12A10V40 MB12A10V60 MB12A10V60 MB12A25V10	A3 A3 A3 A3
MCR420D-50 MCR420D-60 MCR420D-70 MCR420O-80 MCR420D-90	S MOT T627052554DN S MOT T627062554DN S MOT T627072554DN S MOT T627082554DN S MOT T627092554DN	\$87 MCR800-140 \$87 MCR800-150 \$87 MCR2918-1 \$87 MCR2918-2 \$87 MCR2918-3	S MOT S MOT S MOT S MOT S MOT	T720155504DN T400001608	S51 S51 S13 S13 S13	MP013MBD MP013MBF MP013MBH MP013MBK MP013MBM	A WES A WES A WES	MB12A25V20 MB12A25V30 MB12A25V40 MB12A25V60 MB12A25V60	A3 A3 A3 A3
MCR420D-100 MCR470-10 MCR470-20 MCR470-30 MCR470-40	S MOT T627102554DN S MOT T620013004DN S MOT T620023004DN S MOT T620033004DN S MOT T620043004DN	\$87 MCR2918-4 \$43 MCR2918-5 \$43 MCR2918-6 \$43 MCR2918-7 \$43 MCR2918-8	S MOT S MOT S MOT S MOT	T400041608 T400051608	\$13 \$13 \$13 \$13 \$13	MP013RBB MP013RBD MP013RBF MP013RBH MP013RBK	A WES A WES A WES A WES	MB12A25V10 MB12A25V20 MB12A25V30 MB12A25V40 MB12A25V60	A3 A3 A3 A3
MCR470-50 MCR470-60 MCR470-70 MCR470-80 MCR470-90	S MOT T620053004DN S MOT T620063004DN S MOT T620073004DN S MOT T620083004DN S MOT T620093004DN	S43 MCR3918-1 S43 MCR3918-2 S43 MCR3918-3 S43 MCR3918-4 S43 MCR3918-5	S MOT S MOT S MOT S MOT	T400001608 T400011608 T400021608	\$13 \$13 \$13 \$13 \$13	MPO13RBM MR681 MR860 MR860R MR861R	A WES R MOT R MOT R MOT	MB12A25V60 IN3910 IN3909 IN3909R IN3910R	A3 R57 R57 A57 R57
MCR470-100 MCR470-110 MCR470-120 MCR470-130 MCR470-140	S MOT T620103004DN S MOT T620113004DN S MOT T620123004DN S MOT T620123004DN S MOT T620133004DN	S43         MCR3918-6           S43         MCR3918-7           S43         MCR3918-8           S43         MCR3935-2           S43         MCR3935-3	S MOT	T400061608 T400002208	S13 S13 S13 S13 S13	MR862 MR862R MR864 MR864R MR866	R MOT R MOT R MOT	IN3911 IN3911R IN3913 IN3913R R4020630	R57 R57 R57 R57 R57
MCR470-150 MCR470C-10 MCR470C-20 MCR470C-30 MCR470C-40	S MOT T620153004DN S MOT T627012564DN S MOT T627022564DN S MOT T627032564DN S MOT T627042564DN	\$43 MCR3935-4 \$87 MCR3935-5 \$87 MCR3935-6 \$87 MCR3935-7 \$87 MCR3935-7	S MOT S MOT S MOT S MOT S MOT	T400042208 T400052208	S13 S13 S13 S13 S13	MR866R MR1120 MR1120R MR1121 MR1121R	R MOT R MOT R MOT		R57 R13 R13 R13 R13
MCR470C-50 MCR470C-60 MCR470C-70 MCR470C-80 MCR470D-10	S MOT T627052564DN S MOT T627062564DN S MOT T627072564DN S MOT T627082564DN S MOT T627012554DN	\$87 MDA922-2 \$87 MDA922-3 \$87 MDA922-4 \$87 MDA922-5 \$87 MDA922-5	A MOT	MB11A02V20 MB11A02V30	A3 A3 A2 A3 A3	MR1122 MR1122R MR1124 MR1124R MR1126	R MOT R MOT R MOT R MOT R MOT	IN1204AR	R13 R13 R13 R13 R13
MCR470D-20 MCR470D-30 MCR470D-40 MCR470E-10 MCR470E-20	S MOT T627022554DN S MOT T627032554DN S MOT T627042554DN S MOT T627012544DN S MOT T627012544DN	\$87 MDA922-7 \$87 MDA922-8 \$87 MDA922-9 \$87 MDA952-1 \$87 MDA952-2	A MOT A MOT A MOT A MOT A MOT	MB11A02W10 MB11A06V05	A3 A3 A3 A3	MR1126R MR1128 MR1130 MR1210SB MR1210SL	R MOT	IN1206AR IN3671A IN3673A CF CF	R13 R13 R13 CF CF
MCR470E-30 MCR470E-40 MCR470E-50 MCR470E-60 MCR470E-70	S MOT T627032544DN S MOT T627042544DN S MOT T627052544DN S MOT T627062544DN S MOT T627072544DN	\$87 MDA952-3 \$87 MDA952-4 \$87 MDA952-5 \$87 MDA980-1 \$87 MDA980-2	A MOT A MOT A MOT	MB11A06V40	A3 A3 A3 A3 •A3	MR1210SLR MR1211SB MR1211SBR MR1211SL MR1211SLR	R MOT R MOT R MOT R MOT R MOT	CF	CF CF CF CF
MCR470E-80 MCR470E-90 MCR470E-100 MCR470E-110 MCR470E-120	S MOT T627082544DN S MOT T627092544DN S MOT T627102544DN S MOT T627112544DN S MOT T627112544DN	\$87 MDA980-3 \$87 MDA980-4 \$87 MDA980-5 \$87 MDA980-6 \$87 MDA990-1	A MOT		A3 A3 A3 A3 A3	MR1212SB MR1212SBR MR1212SL MR1212SLR MR1213SB	R MOT R MOT R MOT R MOT R MOT	CF	CF CF CF CF
MCR550C-10 MCR550C-20 MCR550C-30 MCR550C-40 MCR550C-50	S MOT T727104064DN S MOT T627024064DN S MOT T727034064DN S MOT T727044064DN S MOT T727054064DN	S91         MDA990-2           S91         MDA990-3           S91         MDA990-4           S91         MDA990-5           S91         MDA990-6	A MOT A MOT A MOT	MB12A25V10 MB12A25V20 MB12A25V30 MB12A25V40 MB12A25V60	A3 A3 A3 A3	MR1213SBR MR1213SL MR1213SLR MR1214SB MR1214SBR	R / MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF
MCR550C-60 MCR550C-70 MCR550C-80 MCR550C-90 MCR550C-100	S MOT T727064064DN S MOT T727074064DN S MOT T727084064DN S MOT T727093564DN S MOT T727103564DN	S91         MP010ABA           S91         MP010ABB           S91         MP010ABD           S91         MP010ABD           S91         MP010ABF           S91         MP010ABH	A WES A WES	MB11A02V05 MB11A02V10 MB11A02V20 MB11A02V30 MB11A02V40	A3 A3 A3 A3 A3	MR1214SL MR1214SLR MR1215SB MR1215SBR MR1215SL	R MOT R MOT R MOT R MOT R MOT	CF CF	CF CF CF CF
MCR550D-10 MCR550D-20 MCR550D-30 MCR550D-40 MCR550D-50	S MOT T727014054DN S MOT T727024054DN S MOT T727034054DN S MOT T727044054DN S MOT T727044054DN	S91         MP010ABK           S91         MP010ABM           S91         MP010ABP           S91         MP010ABS           S91         MP010ABS           S91         MP010ABV	A WES A WES	MB11A02V60 MB11A02V60 MB11A02V80 MB11A02V80 MB11A02W10	A3 A3 A3 A3 A3	MR1215SLR MR1216SB MR1216SBR MR1216SL MR1216SLR	R MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF
MCR550D-60 MCR550D-70 MCR550D-80 MCR550D-90 MCR550D-100	S MOT T727064054DN S MOT T727074054DN S MOT T727074054DN S MOT T727084054DN S MOT T727093554DN S MOT T727103554DN	S91         MP010ABZ           S91         MP011BBA           S91         MP011BBB           S91         MP011BBB           S91         MP011BBD           S91         MP011BBF	A WES	MB11A02V05 MB11A02V10 MB11A02V20	A3 A3 A3 A3 A3	MR1217SB MR1217SBR MR1217SL MR11217SLR MR1218SB	R MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF



Part Number	Suggested Suggested Suggested		Part Number	Type Mfgr	Suggested (26) Replacement	Page	Part Number	Туре	Mfgr.	Suggested (W) Replacement	Page
MR1218SBR MR1218SL MR1218SLR MR1219SB MR1219SBR	R MOT CF	CF CF CF CF	MR1231SL MR1231SLR MR1232FB MR1232FBR MR1232FL	R MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF	MR1245FLR MR1245SB MR1245SBR MR1245SL MR1245SLR	R R R R		R7000304 R7010304 CF	CF R35 R35 CF CF
MR1219SL MR1319SLR MR1220FB MR1220FB MR1220FBR	R MOT CF	CF CF CF CF	MR1232FLR MR1232SB MR1232SBR MR1232SL MR1232SLR		R610+130 R611+130 CF	CF R31 R31 CF CF	MR1247FB MR1248FBR MR1247FL MR1247FLR MR1247SB	R R R R	MOT MOT	CF CF	CF CF CF CF R35
MR1220FL MR1220FLR MR1220SB MR1220SBR MR1220SL	R MOT CF R MOT CF R MOT R6100020 R MOT R6110020 R MOT CF	CF CF R31 R31 CF	MR1233FB MR1233FBR MR1233FL MR1233FLR MR1233SB	R MOT R MOT R MOT R MOT R MOT	CF CF	CF CF CF CF R31	MR1247SBR MR1247SL MR1247SLR MR1248FB MR1811SBR	R R R R	MOT MOT	CF CF	R35 CF CF CF CF
MR1220SLR MR1221FB MR1221FBR MR1221FL MR1221FL	R MOT CF	CF CF CF CF	MR1233SBR MR1233SL MR1233SLR MR1235FB MR1235FBR	R MOT R MOT R MOT R MOT R MOT	CF CF	R31 CF CF CF CF	MR1248FL MR1248FLR MR1248SB MR1248SBR MR1248SL	R R R <b>R</b>		CF R7000504 R7010504	CF CF R35 R35 CF
MR1221SB MR1221SBR MR1221SL MR1221SLR MR1222FB	R MOT R6100120 R MOT R6110120 R MOT CF R MOT CF R MOT CF	R31 R31 CF CF CF	MR1235FL MR1235FLR MR1235SB MR1235SBR MR1235SL		CF R6100330 R6110330	CF CF R31 R31 CF	MR1248SLR MR1249FB MR1249FBR MR1249FL MR1249FLR	R R R R	6MOT 6MOT MOT MOT MOT	CF CF CF	CF CF CF CF
MR1222FBR MR1222FL MR1222FLR MR1222SB MR1222SBR	R MOT CF R MOT CF R MOT CF R MOT R610+120 R MOT R611+120	CF CF CF R31 R31	MR1235SLR MR1237FB MR1237FBR MR1237FL MR1237FLR	R MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF	MR1249SB MR1249SBR MR1249SL MR1249SLR MR1260FL	R R R R	MOT MOT MOT	R7000604 R7010604 CF CF	R35 R35 CF CF CF
MR1222SL MR1222SLR MR1223FB MR1223FBR MR1223FL	R MOT CF	CF CF CF CF	MR1237SB MR1237SBR MR1237SL MR1237SLR MR1238FB		ČF	R31 R31 CF CF CF	MR1260FLR MR1261FL MR1261FLR MR1262FL MR1262FLR	R R R R	MOT MOT MOT MOT MOT	CF CF CF	CF CF CF CF
MR1223FLR MR1223SB MR1223SBR MR1223SL MR1223SLR	R MOT CF R MOT R6100220 R MOT R6110220 R MOT CF R MOT CF	C <u>F</u> R31 R31 CF CF	MR1238FBR MR1238FL MR1238FLR MR1238SB MR1238SBR	R MOT R MOT R MOT R MOT R MOT	CF CF	CF CF CF R31 R31	MR1263FL MR1263FLR MR1265FL MR1265FLR MR1267FL	R R R R	MOT	CF CF CF	CF CF CF CF
MR1225FB MR1225FBR MR1225FL MR1225FLR MR1225SB	R MOT CF R MOT CF R MOT CF R MOT CF R MOT R6100320	CF CF CF CF R31	MR1238SL MR1238SLR MR1239FB MR1239FBR MR1239FL	R MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF	MR1267FLR MR1268FL MR1268FLR MR1269FL MR1269FLR	R R R R	MOT MOT	CF CF CF CF	CF CF CF CF
MR1225SBR MR1225SL MR1225SLR MR1227FBR MR1227FL	R MOT R6110320 R MOT CF R MOT CF R MOT CF R MOT CF	R31 CF CF CF CF	MR1239FLR MR1239SB MR1239SBR MR1239SL MR1239SLR		R6100630 R6110630 CF	CF R31 R31 CF CF	MR1810SB MR1810SBR MR1810SL MR1810SLR MR1811SB	R R R R	MOT MOT MOT		R23 R23 CF CF R23
MR1227FLR MR1227SB MR1227SBR MR1227SL MR1227SLR	R MOT CF R MOT R6100420 R MOT R6110420 R MOT CF R MOT CF	CF R31 R31 CF CF	MR1240FB MR1240FBR MR1240FL MR1240FLR MR1240SB	R MOT R MOT R MOT R MOT R MOT	CF CF	CF CF CF CF R35	MR1811SBR MR1811SL MR1811SLR MR1812SB MR1812SBR	R R R R	MOT MOT MOT	R5110110 CF & CF R510+110 R511+110	R23 CF CF R23 R23
MR1228FB MR1228FBR MR1228FL MR1228FLR MR1228SB	R MOT CF R MOT CF R MOT CF R MOT CF R MOT R6100520	CF CF CF R31	MR1240SBR MR1240SL MR1240SLR MR1241FB MR1241FBR	R MOT R MOT R MOT R MOT R MOT	CF CF	R35 CF CF CF CF	MR1812SL MR1812SLR MR1813SB MR1813SBR MR1813SL	R R R R	MOT	CF R5100210 R5110210	CF CF R23 R23 CF
MR1228SBR MR1228SL MR1228SLR MR1229FB MR1229FBR	R MOT R6110520 R MOT CF R MOT CF R MOT CF R MOT CF	R31 CF CF CF CF	MR1241FL MR1241FLR MR1241SB MR1241SBR MR1241SL		CF R7000104 R7010104	CF CF R35 R35 CF	MR1813SLR MR1814SB MR1814SBR MR1814SL MR1814SLR	R R R R	MOT MOT MOT MOT MOT	R510+210 R511+210 CF	CF R23 R23 CF CF
MR1229FL MR1229FLR MR1229SB MR1229SBR MR1229SL	R MOT CF R MOT CF R MOT R6100620 R MOT R6110620 R MOT CF	CF CF R31 R31 CF	MR1241SLR MR1242FB MR1242FBR MR1242FL MR1242FLR	R MOT R MOT R MOT R MOT R MOT	CF CF CF	CF CF CF CF	MR1815SB MR1815SBR MR1815SL MR1815SLR MR1816SB	R R R R	MOT MOT MOT		R23 R23 CF CF R23
MR1229SLR MR1230FB MR1230FBR MR1230FBR MR1230FL	R MOT CF	CF CF CF CF	MR1242SB MR1242SBR MR1242SL MR1242SLR MR1243FB		CF	R35 R35 CF CF CF	MR1816SBR MR1816SL MR1816SLR MR1817SB MR1817SBR	R R R R	MOT MOT MOT	R511+310 CF CF R5100410 R5110410	R23 CF CF R23- R23
MR1230SB MR1230SBR MR1230SL MR1230SLR MR1231FB	R MOT R6100030 R MOT R6110030 R MOT CF R MOT CF R MOT CF	R31 R31 CF CF CF	MR1243FBR MR1243FL MR1243FLR MR1243SB MR1243SBR		CF	CF CF CF R35 R35	MR1817SL MR1817SLB MR1818SB MR1818SBR MR1818SL	R R R R		CF R5100510 R5110510	CF CF R23 R23 CF
MR1231FBR MR1231FL MR1231FLR MR1231SB MR1231SBR	R MOT CF R MOT CF R MOT CF R MOT R6100130 R MOT R6110130	CF CF CF R31 R31	MR1243SL MR1243SLR MR1245FB MR1245FBR MR1245FL	R MOT R MOT R MOT R MOT R MOT	CF CF	CF CF CF CF	MR1818SLR MR1819SB MR1819SBR MR1819SL MR1819SLR	R R R R		R5100610 R5110610 CF	CF R23 R23 CF CF



Part Number	Туре	Mfgr	Suggested (26) Replacement	Page	Part Number	Туре	Mfgr.	Suggested W Replacement	Page	Part Number	Туре	Mfgr.	Suggested (2) Replacement	Page
MR750 MR751 MR752 MR754 MR756	R R R R	MOT MOT MOT	R3400006 R3400106 R3400206 R3400406 R3400606	R9 R9 R9 R9	NL-C50G NL-C50H NL-C50M NL-C50N NL-C50S	s s s s s s	NAT NAT NAT NAT	T510028007A0 T510038007A0 T510068007A0 T500088007A0 T500078007A0	S27 S27 S23	NL-C154A NL-C154B NL-C154C NL-C154D NL-C154E	s s s s	NAT NAT NAT NAT NAT	T507018083AQ T507028083AQ T507038083AQ T507048083AQ T507058083AQ	S77 S77 S77
N5082A N5082B N5082C N5082D N5082E	R R R R	WES WES WES	N5082A N5082B N5082C N5082D N5082E	CF CF CF CF	NL-C50T NL-C52A NL-C52B NL-C52C NL-C52D	s s s s	NAT NAT NAT NAT NAT	T500098007A0 T510018007AE T510028007AE T510038007AE T510048007AE	S S27 S S27 S S27	NL-C154M NL-C156A NL-C156B NL-C156C NL-C156D	s s s s	NAT NAT NAT NAT	T507068083AQ T507018083AA T507028083AA T610011302BT T507048083AA	S77 S77 S77
N5082F N5082G N5082H NK511-3 NL36N	R R S S	WES	N5082G	CF CF CF S13 S13	NL-C52E NLC52G NL-C52H NL-C52N NL-C52S	s s s s	NAT NAT NAT NAT	T510058007AE T510028007AE T510038007AE T500088007AA T500078007AA	S S27 S S27 S S23	NL-C156E NL-C156M NL-C157A NL-C157B NL-C157C	ss ss s	NAT NAT NAT NAT	T507058083AA T507068083AA T507018063AA T507028063AA T507038063AA	S77 S77 S77
NLC36S NL511-4 NL511-6 NL570A NL570B	s s s s	NAT NAT NAT NAT	T400072008 T400102008 T400121008 CF CF	S13 S13 S13 CF CF	NL-C52T NL-C55A NL-C55B NL-C55C NL-C55D	s s s s	NAT NAT NAT NAT	T500098007AA T507018067AC T507028067AC T507038067AC T507048067AC	1 S77 1 S77 1 S77	NL-C157D NL-C157E NL-C157M NL-C178A NL-C178B	s s s s	NAT NAT NAT NAT	T507048063AA T507058063AA T507068063AA T610011302BT T610011302BT	S77 S77 S33
NL57OC NL57OD NL57OE NL57OM NLC35A	s s s s	NAT NAT NAT NAT NAT	CF CF CF CF T400012208	CF CF CF S13	NL-C55E NL-C55G NL-C55H NL-C55M NL-C56A	55555	NAT NAT NAT NAT	T507058067AC T507028067AC T507038067AC T507068067AC T507018067AA	1 S77 1 S77 1 S77	NL-C178C NL-C178D NL-C178E NL-C178M NL-C178N	s s s s	NAT NAT NAT NAT NAT	T610031302BT T610041302BT T610051302BT T610061302BT T600081302BT	S33 S33 S33 S33 S33
NLC35B NLC35C NLC35D NLC35E NLC35F	s s s s	NAT NAT NAT NAT	T400022208 T400032208 T400042208 T400052208 T400002208	\$13 \$13 \$13 \$13 \$13	NL-C56B NL-C56C NL-C56D NL-C56E NL-C56G	s s s s	NAT NAT NAT NAT	T507028067AA T507038067AA T507048067AA T507058067AA T507028067Aa	S77 S77 S77	NL-C178P NL-C178PA NL-C178PB NL-C178S NL-C178T	s s s s	NAT NAT NAT NAT	T600101302BT T600111302BT T600121302BT T600071302BT T600091302BT	S33 S33 S33 S33 S33
NLC35M NLC35N NLC35P NLC35T NLC36A	s s s s	NAT NAT NAT NAT	T400062208 T400082208 T400072208 T400092208 T400012008	\$13 \$13 \$13 \$13 \$13	NL-C56H NL-C56M NL-C60A NL-C60B NL-C60C	. S S S S	NAT NAT NAT NAT	T507038067AA T507068067AA T515018007AC T515028007AC T515038007AC	S77 CF CF	NL-C180A NL-C180B NL-C180C NL-C180D NLC180E	s s s s	NAT	T610011504BT T610021504BT T610031504BT T610041504BT T610051504BT	S33 S33 S33 S33 S33
NLC36B NLC36C NLC36D NLC36E NLC36F	SSSS	NAT NAT NAT NAT	T400022008 T400032008 T400042008 T400052008 T400001008	S13 S13 S13 S13 S13	NL-C60D NL-C60E NL-C60G NL-C60H NL-C601	s s s s	NAT NAT NAT NAT	T515048007AC T515058007AC T515028007AC T515038007AC CF	CF CF	NL-C180M - NL-C180N NL-C180P NL-C180PA NL-C180PB	s s s s	NAT	T610061504BT T600081504BT T600101504BT T600111504BT T600121504BT	S33 S33 S33 S33 S33
NLC36M NLC36N NLC36S NLC37A NLC37B	s s s s	NAT NAT NAT NAT	T400062008 T400082008 T400072008 T400011608 T400021608	\$13 \$13 \$13 \$13 \$13	NL-C62A NL-C62B NL-C62C NL-C62D NL-C62E	s s s s	NAT NAT NAT NAT	T515018007AE T515028007AE T515038007AE T515048007AE T515058007AE	CF CF CF	NL-C180PC NL-C180S NL-C180T NL-C181A NL-C181B	s s s s	NAT NAT NAT	T600131504BT T600071504BT T600091504BT T610011502BT T610021502BT	S33 S33 S33 S33 S33
NLC37C NLC37D NLC37E NLC37F NLC37M	s s s	NAT NAT NAT NAT	T400031608 T400041608 T400051608 T400001608 T400061608	\$13 \$13 \$13 \$13 \$13	NL-C62G NL-C62H NLC137E NLC137M NLC137N	s s s s	NAT NAT NAT NAT	T515028007AE T515038007AE T400062208 T400062208 T400082208	S CF S CF S13 S13 S13	NL-C181C NL-C181D NL-C181E NL-C181M NL-C181N	s s s s	NAT NAT	T610031502BT T610041502BT T610051502BT T610061502BT T600081502BT	S33 S33 S33 S33 S33
NLC37N NLC37S NLC38A NLC38B NLC38C	s s s s	NAT	T400081608 T400071608 CF CF CF	S13 S13 CF CF CF	NLC137P NLC137PB NLC137S NLC137T NL-C150E	S S S S	NAT NAT NAT NAT	T400102208 T400122208 T400072208 T400092208 T510058004A0	\$13 \$13 \$13 \$13 \$13 \$27	NL-C181P NL-C181S NL-C181T NL-C185A NL-C185B	s s s s	NAT NAT NAT	T600101502BT T600071502BT T600091502BT T607011564BT T607021564BT	\$33 \$33 \$33 \$79 \$79
NLC38D NLC38E NLC38M NL-C45A NL-C45B	s s s	NAT	CF	CF CF CF S27 S27	NL-C150M NL-C150N NL-0150P NL-C150PA NL-C150PB	s s s s	NAT NAT NAT NAT	T510068004A0 T500088004A0 T500108004A0 T500118004A0 T500128004A0	1 S23 1 S23 1 S23	NL-C185C NL-V286F NL-C185E NL-C185M NL-C290A	s s s	NAT NAT NAT	T607031564BT T607041564BT T607051564BT T607061554BT T700013004BY	S79 S79 S79 S79 S37
NL-C45C NL-C45D NL-C45E NL-C45G NL-C45H	s s s s	NAT NAT NAT	T510035007AB T510045007AB T510055007AB T510025007AB T510035007AB	S27 S27 S27 S27 S27	NL-C150PC NL-C150S NL-C150T NL-C151E NL-C151M	s s s s	NAT NAT	T500138004A0 T500078004A0 T500098004A0 T507058034A0 T507068034A0	S23 S23	NL-C290B NL-C290C NL-C290D NL-C290E NL-C290M	S S S S S S	NAT NAT NAT	T700023004BY T700033004BY T700043004BY T700053004BY T700063004BY	S37 S37 S37 S37 S37
NL-C45M NL-C45N NL-C45S NL-C45T NL-C46A	s s s	NAT NAT NAT	T510065007AB T500084007AA T500074007AA T500094007AA T510015007AQ	S23 S23 S23	NL-C151N NL-C151P NL-C151S NL-C151T NL-C152D	s s s s	NAT NAT NAT NAT	T507088034A0 T507108034A0 T507078034A0 T507098034A0 T510048004AB	S77 S77 S77	NL-C290N NL-C290P NL-C290PA NL-C290PB NLC290S	s s s s	NAT	T700083004BY T700103004BY T700113004BY T700123004BY T700073004BY	S37 S37 S37 S37 S37
NL-C46B NL-C46C NL-C46D NL-C46E NL-C46G	S S S S	NAT NAT NAT NAT	T510025007AQ T510035007AQ T510045007AQ T510055007AQ T510025007AQ	S27 S27 S27	NL-C152E NL-C152M NL-C152N NL-C152P NL-C152PA	s s s s	NAT NAT NAT NAT	T510058004AE T510068004AE T500088004AA T500108004AA T500118004AA	S S27 S S23 S S23	NL-C290T NL-C291A NL-C291B NL-C291C NL-C291D	s s s s	NAT NAT	T700093004BY T780013504BY T780023504BY T780033504BY T780043504BY	S37 S75 S75 S75 S75
NL-C46H NL-C46M NL-C46N NL-C46S NL-C46T	s s s s	NAT NAT NAT NAT	T510035007AQ T510065007AQ T500084007AQ T500074007AQ T500094007AQ	S27 S23	NL-C152PB NL-C152PC NL-C152S NL-C152T NL-C153E	s s s s	NAT NAT NAT NAT	T500128004AA T500138004AA T500078004AA T500098004AA T507058034AA	A S23 A S23 A S23	NL-C291E NL-C291M NL-C291N NL-C291P NL-C291PA	S S S S	NAT NAT NAT	T780053504BY T780063504BY T780083504BY T780103504BY T780113504BY	S75 S75 S75 S75 S75
NL-C50A NL-C50B NL-C50C NL-C50D NL-C50E	S S S S	NAT NAT NAT NAT NAT	T510018007AQ T510028007AQ T510038007AQ T510048007AQ T510058007AQ	S27 S27	NL-C153M NL-C153N NL-C153P NL-C153S NL-C153T	s s s s	NAT NAT NAT NAT	T507088034AA T507108034AA T507078034AA	A S77 A S77 A S77	NL-C291PB NL-C291S NL-C291T NL-C295A NL-C295B	s s s s	NAT NAT NAT	T780123504BY T780073504BY T780093504BY T707013364BY T707023364BY	S75 S75 S75 S81 S81



Part Number	Type Mf	Suggested @ gr. Replacement	Page	Part Number	Typ	e Mfgr.	Suggested © Replacement	Page	Part Number	Туј	e Mfgı	Suggested &	) Page
NL-C295C NL-C295D NL-C295E NL-C295M	S NA S NA S NA	T707053364BY	S81 S81 S81 S81	NL-C1580S NL-C1580T NL-F150B NL-F150C NL-F150D	s s s s	NAT T NAT T	T720074504DN T720094504DN T510028004AQ T510038004AQ T510048004AQ	S51 S51 S27 S27 S27	NL-F180E NL-F180M NL-F180N NL-F180P NL-F180S	SSSSS	NAT NAT NAT	T600051504BT T600061504BT T600081504BT T600101504BT T600071504BT	S33 S33 S33 S33 S33
NL-C297A NL-C297B NL-C297C NL-C297D NL-C297E	S NA S NA S NA S NA	T787023064BY T787033064BY T787043064BY	CF CF CF CF	NL-F150E NL-F150M NL-F150N NL-F150P NL-F150S	SSSS	NAT NAT NAT	T510058004AQ T510068004AQ T500088004AQ T500108004AQ T500078004AQ	S27 S27 S23 S23 S23	NL-F180T NL-F185A NL-F185B NL-F185C NL-F185D	s s s s	NAT NAT NAT	T600091504BT T607011564BT T607021564BT T607031564BT T607041564BT	S33 S79 S79 S79 S79
NL-C297M NL-C350A NL-C350B NL-C350C NL-C350D	S NATS NATS NATS	T520011304DN T520021304DN T520031304DN	CF S41 S41 S41 S41	NL-F150T NL-F151B NL-F151C NL-F151D NL-F151E	s s s s	NAT :	T500098004AQ T507028034AQ T507038034AQ T507048034AQ T507058034AQ	S23 S77 S77 S77 S77	NL-F185E NL-F185M NL-F290A NL-290B NL-F290C	s s s s s	NAT NAT NAT	T607051564BT T607061564BT T700013004BT T700023004BY T700033004BY	S79 S79 S37 S37 S37
NL-C350E NL-C350M NL-C350N NL-C350P NL-C350PA	S NAT S NAT S NAT S NAT	T T520061304DN T T520081304DN T T520101304DN	S41 S41 S41 S41 S41	NL-F151M NL-F151N NL-F151P NL-F151S NL-F151T	s s s s	NAT NAT	T507068034AQ T507088034AQ T507108034AQ T507078034AQ T507098034AQ	\$77 \$77 \$77 \$77 \$77	NL-F290D NL-F290E NL-F290M NL-F290N NL-F290P	55555	NAT NAT NAT	T700043004BY T700053004BY T700063004BY T700083004BY T700103004BY	S37 S37 S37 S37 S37
NL-C350PB NL-C350PC NL-C350S NL-C350T NL-C354A	S NAT S NAT S NAT S NAT	T520131304DN T520071304DN T520091304DN	S41 S41 S41 S41 S83	NL-F152B NL-F152C NL-F152E NL-F152M NL-F152N	s s s s	NAT NAT NAT	T510028004AB T510038004AB T510058004AB T510068004AB T500088004AA	S27 S27 S27 S27 S23	NL-F290S NL-F290T NL-F291A NL-F291B NL-F291C	s s s s	NAT NAT NAT	T700073004BY T700093004BY T780013504BY T780023504BY T780033504BY	S37 S37 S75 S75 S75
NL-C354B NL-C354C NL-C354D NL-C354E NL-C354M	S NAT S NAT S NAT S NAT	T527031384DN T527041384DN T527051384DN	S83 S83 S83 S83 S83	NL-F152P NL-F152S NL-F152T NL-F153B NL-F153C	s s s s	NAT NAT NAT	T500108004AA T500078004AA T500098004AA T507028034AA T507038034AA	S23 S23 S23 S77 S77	NL-F291D NL-F291E NL-F291M NL-F291N NL-F291P	s s s s	NAT NAT NAT	T780043504BY T780053504BY T780063504BY T780083504BY T780103504BY	S75 S75 S75 S75 S75
NL-C355A NL-C355B NL-C355C NL-C355D NL-C355E	S NAT S NAT S NAT S NAT S NAT	T527021364DN T527031364DN T527041364DN	S83 S83 S83 S83 S83	NL-F153D NL-F153E NL-F153M NL-F153N NL-F153P	s s s s	NAT NAT NAT	T507048034AA T507058034AA T507068034AA T507088034AA T507108034AA	\$77 \$77 \$77 \$77 \$77	NL-F291S NL-F291T NL-F295A NL-F295B NL-F295C	s s s s	NAT	T780073504BY T780093504BY T707013364BY T707023364BY T707033364BY	S75 S75 S81 S81 S81
NL-C355M NL-C380A NL-C380B NL-C380C NL-C380D	S NAT S NAT S NAT S NAT S NAT	T620013004DN T620023004DN T620033004DN	S83 S43 S43 S43 S43	NL-F153S NL-F153T NL-F154A NL-F154B NL-F154C	s s s s	NAT NAT NAT	T507078034AA T507098034AA T507018084AQ T507028084AQ T507038084AQ	\$77 \$77 \$77 \$77 \$77	NL-F295D NL-F295E NL-F295M NL-F297A NL-F297B	s s s s	NAT NAT NAT NAT NAT	T707043364BY T707053364BY T707063364BY T787013064BY T787023064BY	S81 S81 S81 CF CF
NL-C380E NL-C380M NL-C380N NL-C380P NL-C380PA	S NAT S NAT S NAT S NAT S NAT	T620063004DN T620083004DN T620103004DN	S43 S43 S43 S43 S43	NL-F154D NL-F154E NL-F154M NL-F155A NL-F155B	s s s s	NAT NAT NAT	T507048084AQ T507058084AQ T507068084AQ T507018064AQ T507028064AQ	\$77 \$77 \$77 \$77 \$77	NL-F297C NL-F297D NL-F297E NL-F297M NL-F350A	s s s s	NAT NAT NAT NAT NAT	T787033064BY T787043064BY T787053064BY T787063064BY T520011304DN	CF CF CF CF S41
NL-C380PB NL-C380PC NL-C380S NL-C380T NL-C385A	S NAT S NAT S NAT S NAT S NAT	T620133004DN T620073004DN T620093004DN	S43 S43 S43 S43 S87	NL-F155C NL-F155D NL-F155E NL-F155M NL-F156A	s s s s	NAT NAT NAT	T507038064AQ T507048064AQ T507058064AQ T507068064AQ T507018084AA	\$77 \$77 \$77 \$77 \$77	NL-F350B NL-F350C NL-F350D NL-F350E NL-F350M	S S S S	NAT NAT NAT NAT NAT	T520021304DN T520031304DN T520041304DN T520051304DN T520061304DN	S41 S41 S41 S41 S41
NL-C385B NL-C385C NL-C385D NL-C385E NL-C385M	S NAT S NAT S NAT S NAT S NAT	T627033064DN T627043064DN T627053064DN	S87 S87 S87 S87 S87	NL-F156B NL-F156C NL-F156D NL-F156E NL-F156M	s s s s	NAT NAT NAT	T507028084AA T507038084AA T507048084AA T507058084AA T507068084AA	\$77 \$77 \$77 \$77 \$77	NL-F350N NL-F350P NL-F350S NL-F350T NL-F354A	s s s s	NAT NAT NAT NAT NAT	T520081304DN T520101304DN T520071304DN T520091304DN T527011384DN	S41 S41 S41 S41 S83
NL-C501 A NL-C501 B NL-C501 C NL-C501 D NL-C501 E	S NAT S NAT S NAT S NAT S NAT	T720025504DN T720035504DN T720045504DN	S51 S51 S51 S51 S51	NL-F157A NL-F157B NL-F157C NL-F157D NL-F157E	s s s s	NAT NAT NAT	T507018064AA T507028064AA T507038064AA T507048064AA T507058064AA	\$77 \$77 \$77 \$77 \$77	NL-F354B NL-F354C NL-F354D NL-F354E NL-F354M	S S S S S	NAT NAT NAT NAT	T527021384DN T527031384DN T527041384DN T527051384DN T527061384DN	\$83 \$83 \$83 \$83 \$83
NL-C501 M NL-C501 N NL-C501 P NL-C501 PA NL-C501 PB	S NAT S NAT S NAT S NAT S NAT	T720085504DN T720105504DN T720115504DN	S51 S51 S51 S51 S51	NL-F157M NL-F158A NL-F158B NL-F158C NL-F158D	s s s s	NAT NAT NAT	T507068064AA T507018044AQ T507028044AQ T507038044AQ T507048044AQ	S77 S77	NL-F355A NL-F355B NL-F355C NL-F355D NL-F355E	s s s s	NAT NAT NAT NAT	T527011364DN T527021364DN T527031364DN T527041364DN T527051364DN	\$83 \$83 \$83 \$83 \$83
NL-C501 PC NL-C501 PD NL-C501 PE NL-C501 S NL-C501 T	S NAT S NAT S NAT S NAT	T720145504DN T720155504DN T720075504DN	S51 S51 S51 S51 S51	NL-F158E NL-F158M NL-F158N NL-F158P NL-F158S	s s s s	NAT NAT NAT	T507058044AQ T507068044AQ T507088044AQ T507108044AQ T507078044AQ	S77 S77 S77	NL-F355M NL-F355N NL-F355P NL-F355S NL-F355T	s s s s	NAT NAT NAT NAT	T527061364DN T527081364DN T527101364DN T527071364DN T527091364DN	S83 S83
NL-C1580A NL-C1580B NL-C1580C NL-C1580D NL-C1580E	S NAT S NAT S NAT S NAT S NAT	T720024504DN T720034504DN T720044504DN	S51 S51 S51 S51 S51	NL-F158T NL-F159A NL-F159B NL-F159C NL-F159D	s s s s	NAT NAT NAT	T507098044AQ T507018044AA T507028044AA T507038044AA T507048044AA	S77 S77 S77 S77 S77	NL-F358A NL-F358B NL-F358C NL-F358D NL-F358E	s s s s	NAT NAT NAT NAT NAT	T527011344DN T527021344DN T527031344DN T527041344DN T527051344DN	S83 S83 S83
NL-C1580M NL-C1580N NL-C1580P NLC1580PA NL-C1580PB	S NAT S NAT S NAT S NAT	T720084504DN T720104504DN T720114504DN	S51 S51 S51 S51 S51	NL-F159E NL-F159M NL-F159N NL-F159P NL-F159S	s s s s	NAT NAT NAT	T507058044AA T507068044AA T507088044AA T507108044AA T507078044AA	\$77 <b>\$77</b> <b>\$7</b> 7 \$77 \$77	NL-F358M NL-F358N NL-F358P NL-F358S NL-F358T	s s s s	NAT NAT NAT NAT NAT	T527061344DN T527081344DN T527101344DN T527071344DN T527091344DN	S83 S83 S83
NL-C1580PC NL-C1580PD NL-C1580PE NL-C1580PM NL-C1580PS	S NAT S NAT S NAT S NAT	T720144504DN T720154504DN T720164504DN	S51 S51 S51 S51 S51	NL-F159T NL-F180A NL-F180B NL-F180C NL-F180D	s s s s	NAT NAT NAT	T507098044AA T600011504BT T600021504BT T600031504BT T600041504BT	\$77 \$33 \$33 \$33 \$33 \$33	NL-F380A NL-F380B NL-F380C NL-F380D NL-F380E	SSSSS	NAT NAT NAT NAT	T620013004DN T630023004DN T620033004DN T620043004DN T620053004DN	S43 S43 S43



Part Number	Type Mfgr	Suggested (¥). Replacement	Page	Part Number	Туре	Mfgr.	Suggested [©] Replacement	Page	Part Number	Тур	e Mfgr	Suggested  Replacement	Page
NL-F380M NL-F380N NL-F380P NL-F380S NL-F380T	S NAT S NAT S NAT S NAT S NAT	T620063004DN T620083004DN T620103004DN T620073004DN T620093004DN	S43 S43 S43 S43 S43	R600XX25 R600XX28 R600XX30 R601XX16 R601XX20	R R R R	WES WES	R600XX25 R600XX28 R600XX30 R601XX16 R601XX20	R31 CF R31 CF R31	R3205 R3210 R3215 R3220 R3225	R R R R	SYN SYN SYN SYN SYN	IN1184R IN1184R IN1186R IN1186R IN1187R	R14 R15 R15 R15 R15
NL-F390E NL-F390M NL-F390N NL-F390P NL-F390PA	S NAT S NAT S NAT S NAT S NAT	T720055504DN T720065504DN T720085504DN T720105504DN T720115504DN	S51 S51 S51 S51 S51	R601XX24 R601XX25 R601XX28 R601XX30 R602XX20	R R R R	WES WES	R601XX24 R601XX25 R601XX28 R601XX30 R602XX20	CF R31 CF R31 R63	R3230 R3240 R3245 R3250 R3260	R R R R	SYN SYN SYN SYN SYN	IN1187R IN1188AR IN1189AR IN1189R IN1190R	R15 R15 R15 R15 R15
NL-F390PB NL-F390PC NL-F390S NL-F390T NL-F394A	S NAT S NAT S NAT S NAT S NAT	T720125504DN T720135504DN T720075504DN T720095504DN T727014873DN	S51 S51 S51 S51 S91	R602XX25 R603XX20 R603XX25 R610XX16 R610XX20	r R R R	WES WES	R602XX25 R603XX20 R603XX25 R610XX16 R610XX20	R63 R63 R63 CF R31	R3270 R3280 R3290 R3405 R3410	R R R R	SYN SYN SYN SYN SYN	IN3765R IN3766R IN3767 IN1184AR IN1184AR	R15 R15 R15 R15 R15
NL-F394B NL-F394C NL-F394D NL-F394E NL-F394M	S NAT S NAT S NAT S NAT S NAT	T727024873DN T727034873DN T727044873DN T727054873DN T727064873DN	S91 S91 S91 S91 S91	R610XX24 R610XX25 R610XX28 R610XX30 R611XX16	R R R R	WES WES	R610XX24 R610XX25 R610XX28 R610XX30 R611XX16	CF R31 CF R31 CF	NL-F397PB NL-F397S NL-F397T NL-F398A NL-F398B	S S S S	NAT NAT NAT	T727124544DN T727074544DN T727094544DN T727094554DN T727014554DN T727024554DN	S91 S91 S91 S91 S91
NL-F395A NL-F395B NL-F395C NL-F395D NL-F395E	S NAT S NAT S NAT S NAT S NAT	T727014863DN T727024863DN T727034863DN T727044863DN T727054863DN	S91 S91 S91 S91 S91	R611XX20 R611XX24 R611XX25 R611XX28 R611XX30	R R R R	WES WES WES	R611XX20 R611XX24 R611XX25 R611XX28 R611XX30	R31 CF R31 CF R31	NL-F398C NL-F398D NL-F398E NL-F398M NL-F398N	s s s s	NAT NAT NAT	T727034554DN T727044554DN T727054554DN T727064554DN T727064554DN T727084554DN	S91 S91 S91 S91 S91
NL-F395M NL-F397A NL-F397B NL-F397C NL-F397D	S NAT S NAT S NAT S NAT S NAT	T727064863DN T727014544DN T727024544DN T727034544DN T727034544DN	S91 S91 S91 S91 S91	R620XX30 R620XX40 R620XX50 R622XX35 R622XX40	R R R R	WES WES	R620XX30 R620XX40 R620XX50 R622XX35 R622XX40	R39 R39 R39 R67 R67	NL-F398P NL-F398PA NL-F398PB NL-F398S NL-F398T	s s s s	NAT NAT	T727104554DN T727114554DN T727124554DN T727124554DN T727074554DN T727094554DN	S91 S91 S91 S91 S91
NL-F397E NL-F397M NL-F397N NL-F397P NL-F397PA	S NAT S NAT S NAT S NAT S NAT	T727054544DN T727064544DN T727084544DN T727104544DN T727114544DN	S91 S91 S91 S91 S91	R700XX03 R700XX04 R700XX05 R701XX03 R701XX04	R R R R	WES WES WES	R700XX03 R700XX04 R700XX05 R701XX03 R701XX04	R35 R35 R35 R35 R35	NL-F701E NL-F701M NL-F701N NL-F701P NL-F701PA	s s s s	NAT NAT NAT NAT	T9G0051203DH T9G0061203DH T9G0081203DH T9G0101203DH T9G0111203DH	S61 S61 S61 S61 S61
R303XX06 R303XX12 R310XX03 R310XX05 R310XX06	R WES R WES R WES	R310XX03	R55 R55 CF CF CF	R701XX05 R720XX06 R720XX09 R720XX12 R722XX05	R R R R	WES WES WES	R701XX05 R720XX06 R720XX09 R720XX12 R722XX05	R35 R43 R43 R43 R17	NL-F701PB NL-F701PC NL-F701PD NL-F701PE NL-F701PM	\$ \$ \$ \$	NAT NAT NAT NAT NAT	T9G0121203DH T9G0131203DH T9G0141203DH T9G0151203DH T9G0161203DH	S61 S61 S61 S61 S61
R310XX12 R310XX16 R311XX03 R311XX05 R311XX06	R WES R WES R WES	R311XX03	CF CF CF CF	R722XX06 R722XX08 R780XX03 R780XX04 R780XX05	R R R R		CF	R71 R71 CF CF CF	NL-F701S NL-F701T PA	S A A A	NAT NAT WES WES EDI	T9G0071203DH T9G0091203DH PA PB MB12A25V05	S61 S61 A37 CF A3
R311XX12 R311XX16 R340XX06 R402XX20 R402XX30	R WES R WES R WES	R311XX12 R311XX16 R340XX06 R402XX20 R402XX30	CF CF R9 R57 R57	R781XX03 R781XX04 R781XX05 R920XX11 R920XX16	R R R R	WES WES WES WES	CF CF CF R920XX11 R920XX16	CF CF CF R47 R47	PB10 PB20 PB40 PB60 PC	A A A A	EDI EDI EDI EDI WES	MB12A25V10 MB12A25V20 MB12A25V40 MB12A25V60 PC	A3 A3 A3 CF
R403XX20 R403XX30 R404XX60 R404XX70 R405XX60	R WES R WES R WES	R404XX60	R57 R57 R17 R17 R17	R920XX20 R2005 R2010 R2015 R2030	R R R R	WES SYN SYN SYN SYN	R920XX20 IN1199AR IN1200AR IN1202AR IN1203AR	R47 R13 R13 R13 R13	PD	A A A A	WES EDI EDI EDI EDI	PD MB11A02V05 MB11A02V10 MB11A01V20 MB11A02V40	A37 A3 A3 A3 A3
R405XX70 R410XX15 R410XX18 R410XX20 R410XX22	R WES R WES R WES R WES	R410XX18 R410XX20	R17 CF CF CF CF	R2060 R2070 R2080 R2090 R2100	R R R R	SYN SYN SYN SYN SYN	IN1206AR IN3670AR IN3671AR IN3672AR IN3673AR	R13 R13 R13 R13 R13	PD60 PD80 PD100 PE PE05	A A A A	EDI EDI EDI WES EDI	MB11A02V60 MB11A02V80 MB11A02V10 PE MB11A06V05	A3 A3 A3 CF A3
R410XX25 R410XX35 R410XX40 R411XX15 R411XX18	R WES R WES R WES	R410XX25 R410XX35 R410XX40 R411XX15 R411XX18	CF CF R15 CF CF	R2105 R2110 R2115 R2120 R2125	R R R R	SYN SYN SYN SYN SYN	IN3615R IN3616R IN3618R IN3618R IN3619R	R13 R13 R13 R13 R13	PE10 PE20 PE40 PE60 PF	4444	EDI EDI EDI WES	MB11A06V10 MB11A06V20 MB11A06V40 MB11A06V60 PF	A3 A3 A3 CF
R411XX20 R411XX22 R411XX25 R411XX35 R411XX40	R WES R WES R WES	R411XX20 R411XX22 R411XX25 R411XX35 R411XX40	CF CF CF R15	R2130 R2140 R2150 R2160 R2170	R R R R	WES SYN SYN SYN SYN	IN3619R IN3620R IN3621R IN3622R R3110716	R13 R13 R13 R13 CF	PH	A A A A	WES WES WES	PH PM PN PP PQ	CF CF Cf CF
R500XX10 R500XX15 R501XX10 R501XX15 R502XX08	R WES R WES R WES	R500XX10 R500XX15 R501XX10 R501XX15 R502XX08	R23 R23 R23 R23 R59	R2180 R2190 R3105 R3110 R3115	R R R R	SYN SYN SYN SYN SYN		R13 CF R15 R15 R15	PR	AAAS	WES	PR	A37 A37 A37 CF CF
R502XX10 R503XX08 R503XX10 R510XX10 R510XX15	R WES	R502XX10 R503XX08 R503XX10 R510XX10 R510XX15	R59 R59 R59 R23 R23	R3120 R3125 R3130 R3140 R3145	R R R R	SYN SYN SYN SYN SYN		R15 R15 R15 R15 R15	R5C0XX10 R5C0XX15 R5C1XX10 R5C1XX15 R5D0XX10	R R R R	WES WES	R5C0XX10 R5C0XX15 R5C1XX10 R5C1XX15 R5D0XX10	R23 R23 R23 R23 R23
R511XX10 R511XX15 R600XX16 R600XX20 R600XX24	R WES	6 R511XX10 6 R511XX15 6 R600XX16 6 R600XX20 6 R600XX24	R23 R23 CF R31 CF	R3150 R3160 R3170 R3180 R3190	R R R R	SYN SYN SYN SYN SYN	IN1198A R4110722 R4110822	R15 R15 CF CF CF	R5D0XX15 R5D1XX10 R5D1XX15 R9G0XX13 R9G0XX18	R R R R	WES WES	R5D0XX15 R5D1XX10 R5D1XX15 R9G0XX13 R9G0XX18	R23 R23 R23 R15 R51



Part Number	Suggested (Suggested (	) t Page Part Number	Suggested [®] Type Mfgr. Replacement Page	Suggested [®] Part Number Type Mfgr. Replacement Page
R9G0XX22	R WES R9G0XX22	R51 R4270	R SYN R5110715 R23	R50420         R         SYN         R6110230         R31           R50425         R         SYN         R611+230         R31           R50430         R         SYN         R6110330         R31           R50435         R         SYN         R611+330         R31           R50440         R         SYN         R6110430         R31
R9G2XX09	R WES R9G2XX09	R75 R4280	R SYN R5110815 R23	
R9G2XX11	R WES R9G2XX11	R75 R4290	R SYN R5110915 R23	
R9G2XX14	R WES R9G2XX14	R75 R4305	R SYN R5110015 R23	
R9H0XX15	R WES R9H0XX15	CF R4310	R SYN R5110115 R23	
R9HOXX24 R040XX10 R050B R050C R050E	R WES R9H0XX24 R WES R040XX10 A WES CF A WES CF A WES CF	CF R4320 CF R4330 CF R4340 CF R4350 CF R4360	R SYN R5110215 R23 R SYN R5110315 R23 R SYN R5110415 R23 R SYN R5110515 R23 R SYN R5110615 R23	R50445         R         SYN         R611+430         R31           R50450         R         SYN         R6110630         R31           R50460         R         SYN         R6110630         R31           R50470         R         SYN         R6110730         R31           R50480         R         SYN         R6110830         R31
R050N R051B R051C R051E R051N	A WES CF	CF R4370 CF R4380 CF R4390 CF R5110 CF R5120	R SYN R5110715 R23 R SYN R5110815 R23 R SYN R5110915 R23 R SYN IN3261R R27 R SYN IN3263R R27	R50490         R         SYN         R6110930         R31           R51100         R         SYN         R6111016         CF           R53100         R         SYN         R6111025         R31           R53120         R         SYN         R6011225         R31           R54100         R         SYN         R6111030         R31
R052B R052C R052E R052N R052S	A WES CF	CF R5130 CF R5140 CF R5150 CF R5160 CF R5170	R SYN IN3265R R27 R SYN IN3267R R27 R SYN IN3268R R27 R SYN IN3268R R27 R SYN IN3269R R27 R SYN IN3270R R27	R503100         R         SYN         R6111025         R31           R503110         R         SYN         R6011125         R31           R503120         R         SYN         R6011125         R31           R504100         R         SYN         R6111030         R31           R504110         R         SYN         R6011130         R31
R052Y	A WES CF	CF R5180	R SYN IN3271R R27	R504120         R         SYN         R6011230         R31           S612-3         A         SAR         MB11A06V40         A3           S612-5         A         SAR         MB11A06V60         A3           S622-4         A         SAR         MB11A02W10         A3           S2005         R         SYN         IN1199A         R13
R053B	A WES CF	CF R5190	R SYN IN3272R R27	
R053C	A WES CF	CF R5305	R SYN R6110025 R31	
R053E	A WES CF	CF R5310	R SYN R6110125 R31	
R053N	A WES CF	CF R5320	R SYN R6110225 R31	
R053S	A WES CF	CF R5330	R SYN R6110325 R31	S2010         R         SYN         IN1200A         R13           S2015         R         SYN         IN1201A         R13           S2030         R         SYN         IN1203A         R13           S2060         R         SYN         IN1206A         R13           S2070         R         SYN         IN3670A         R13
R053Y	A WES CF	CF R5340	R SYN R6110425 R31	
R054B	A WES CF	CF R5350	R SYN R6110525 R31	
R054C	A WES CF	CF R5360	R SYN R6110625 R31	
R054E	A WES CF	CF R5370	R SYN R6110725 R31	
R054N R054S R054Y R055E R055S	A WES CF	CF R5380 CF R5390 CF R5410 CF R5420 CF R5430	R SYN R6110825 R31 R SYN R6110925 R31 R SYN R6110130 R31 R SYN R6110230 R31 R SYN R6110230 R31	\$2080         R         SYN         IN3671A         R13           \$2090         R         SYN         IN3672A         R13           \$2100         R         SYN         IN3673A         R13           \$2105         R         SYN         IN3615         R13           \$2110         R         SYN         IN3616         R13
R055Y R061B R061C R061E R061N	A WES CF	CF R5440 CF R5450 CF R5460 CF R5470 CF R5480	R SYN R6110430 R31 R SYN R6110530 R31 R SYN R6110630 R31 R SYN R6110730 R31 R SYN R6110730 R31	S2115         R         SYN         IN3617         R13           S2120         R         SYN         IN3618         R13           S2125         R         SYN         R310+216         CF           S2130         R         SYN         IN3619         R13           S2140         R         SYN         IN3620         R13
R061S	A WES CF	CF R5490	R SYN R6110930 R31	S2150         R         SYN         IN3621         R13           S2160         R         SYN         IN3622         R13           S2170         R         SYN         R3100716         CF           S2180         R         SYN         IN3623         R13           S2190         R         SYN         R3100916         CF
R061Y	A WES CF	CF R20020	R SYN IN1202AR R13	
R062E	A WES CF	CF R20025	R SYN IN1203AR R13	
R062Y	A WES CF	CF R20040	R SYN IN1204AR R13	
R063B	A WES CF	CF R20050	R SYN IN1205AR R13	
R063C R063E R063N R063S R063Y	A WES CF	CF R21100 CF R23130 CF R23140 CF R23150 CF R23160	R SYN IN3624R R13 R SYN R6011325 R31 R SYN R6011425 R31 R SYN R6011525 R31 R SYN R6011625 R31	S3105         R         SYN         IN1191A         R15           S3110         R         SYN         IN1192A         R15           S3115         R         SYN         IN1193A         R15           S3130         R         SYN         IN1194A         R15           S3125         R         SYN         R410+222         CF
R140XX15	R WES R140XX15	CF R31100	R SYN R4111022 R15	S3130         R         SYN         IN1195A         R15           S3135         R         SYN         R410+322         CF           S3140         R         SYN         IN1196A         R15           S3145         R         SYN         R410+422         CF           S3150         R         SYN         IN1197A         R15
R150XX15	R WES R150XX15	CF R32100	R SYN R4111030 CF	
R240XX30	R WES R240XX30	CF R34100	R SYN R4111040 R15	
R302XX06	R WES R302XX06	R55 R36100	R SYN R4051060 R17	
R302XX12	R WES R302XX12	R55 R42100	R SYN R5111015 R23	
R3420	R SYN IN1186AR	R15 R42110	R SYN R5011115 R23	S3160         R- SYN 1N1198A         R15           S3170         R SYN R4100722         CF           S3180         R SYN R4100822         CF           S3190         R SYN R4100922         CF           S3205         R SYN R4100030         CF
R3425	R SYN IN1187AR	R15 R42120	R SYN R5011215 R23	
·R3430	R SYN IN1187AR	R15 R42130	R SYN R5011315 R23	
R3440	R SYN IN1188AR	R15 R42140	R SYN R5011415 R23	
R3445	R SYN IN1189AR	R15 R42150	R SYN SO R23	
R3450	R SYN IN1189AR	R15 R42160	R SYN SO R23	S3210         R         SYN         R4100130         CF           S3215         R         SYN         R410+130         CF           S3220         R         SYN         R4100230         CF           S3225         R         SYN         R410+230         CF           S3230         R         SYN         R4100330         CF
R3460	R SYN IN1190AR	R15 R43100	R SYN R5111015 R23	
R3470	R SYN R4110740	CF R43110	R SYN R5011115 R23	
R3480	R SYN R4110840	R15 R43120	R SYN R5011215 R23	
R3490	R SYN R4110940	CF R43130	R SYN R5011315 R23	
R3605	R SYN R4050060	R17 R43140	R SYN R5011415 R23	S3235         R         SYN         R410+330         CF           S3240         R         SYN         R4100430         CF           S3245         R         SYN         R410+430         CF           S3250         R         SYN         R4100530         CF           S3260         R         SYN         R4100630         CF
R3615	R SYN R4050260	R17 R43150	R SYN SO R23	
R3620	R SYN R4050260	R17 R43160	R SYN SO R23	
R3625	R SYN R4050360	R17 R50305	R SYN R6110025 R31	
R3630	R SYN R4050360	R17 R50310	R SYN R6110125 R31	
R3635	R SYN R4050460	R17 R50315	R SYN R611+125 R31	S3270         R         SYN         R4100730         CF           S3280         R         SYN         R4100830         CF           S3290         R         SYN         R4100930         CF           S3410         R         SYN         IN1184A         R15           S3415         R         SYN         IN1185A         R15
R3640	R SYN R4050460	R17 R50320	R SYN R6110225 R31	
R3645	R SYN R4050560	R17 R50325	R SYN R611+225 R31	
R3650	R SYN R4050560	R17 R50330	R SYN R6110325 R31	
R3660	R SYN R4050660	R17 R50335	R SYN R611+325 R31	
R3670	R SYN R4050760	R17 R50340	R SYN R6110425 R31	S3420         R         SYN         IN1186A         R15           S3425         R         SYN         R410·240         CF           S3430         R         SYN         IN1187A         R15           S3435         R         SYN         R410·340         CF           S3440         R         SYN         IN1188A         R15
R3680	R SYN R4050860	R17 R50345	R SYN R611+425 R31	
R3690	R SYN R4050960	R17 R50350	R SYN R6110525 R31	
R4205	R SYN R5110015	R23 R50360	R SYN R6110625 R31	
R4210	R SYN R5110115	R23 R50370	R SYN R6110725 R31	
R4220	R SYN R5110215	R23 R50380'	R SYN R6110825 R31	S3445         R         SYN         R410-440         CF           S3450         R         SYN         IN1189A         R15           S3460         R         SYN         IN1190A         R15           S3470         R         SYN         R4100740         CF           S3480         R         SYN         R4100840         R15
R4230	R SYN R5110315	R23 R50390	R SYN R6110925 R31	
R4240	R SYN R5110415	R23 R50405	R SYN R6110030 R31	
R4250	R SYN R5110515	R23 R50410	R SYN R6110130 R31	
R4260	R SYN R5110615	R23 R50415	R SYN R611+130 R31	



Part Number	Туре	e Mfg	Suggested (29) r. Replacement	Page	Part Number	Ту	pe Mf	Suggested (gr. Replacemen	v t Page	Part Number	Ту	pe Mfg	Suggested (2 r. Replacement	Page
S3490 S3605 S3615 S3620 S3625	R R R R	SYN SYN SYN SYN SYN	R4100940 R4040060 R404+160 R4040260 R404+260	CF R17 R17 R17 R17	\$6230-2 \$6230-3 \$6230-4 \$6305 \$6310	A A A R R	SAR SAR SAR SYN SYN	MB11A02V80 MB11A02W10 CF	A3 A3 A3 CF CF	\$50430 \$50435 \$50440 \$50445 \$50450	R R R R	SYN SYN SYN SYN SYN	R6100330 R610+330 R6100430 R610+430 R6100530	R31 R31 R31 R31 R31
\$3630 \$3635 \$3640 \$3645 \$3650	R R R R	SYN SYN SYN SYN SYN	R4040360 R404+360 R4040460 R404+460 R4040560	R17 R17 R17 R17 R17	S6315 S6323-1 S6323-2 S6323-3	R A A	SYN SAR SAR SAR	MB12A10V10 MB12A10V20	CF A3 A3 A3	\$50460 \$50470 \$50480 \$50490 \$51100	R R R R	SYN SYN SYN SYN SYN	R6100630 R6100730 R6100830 R6100930 IN3273	R31 R31 R31 R31 R27
S3660 S3670 S3680 S3690 S4205	R R R	SYN SYN SYN SYN SYN	R4040660 R4040760 R4040860 R4040960 R5100015	R17 R17 R17 R17 R23	\$6323-4 \$6323-5 \$6323-6 \$6324-2 \$6324-4	A A A A	SAR SAR SAR SAR	MB12A10V60 MB11A02V20	A3 A3 A3 A3	\$53100 \$53120 \$54100 \$60100 \$63100	R R R R	SYN SYN SYN SYN SYN	R6101025 R6001225 R6101030 CF CF	R31 R31 R31 CF CF
S4210 S4220 S4230 S4240 S4250	R R R	SYN SYN SYN SYN SYN	R5100115 R5100215 R5100315 R5100415 R5100515	R23 R23 S23 R23 R23	S6324-6 S6324-8 S6324-10 S6325 S6327-1	A A R A	SAR SAR SAR SYN SAR	MB11A02V80 MB11A02W10 CF	A3 A3 A3 CF A3	S63110 S63120 S63130 S63150 S63160	R R R R	SYN	CF CF CF CF	CF CF CF CF CF
S4260 S4270 S4280 S4290 S4305	R R R	SYN SYN SYN SYN SYN	R5100615 R5100715 R5100815 R5100915 R5100015	R23 R23 R23 R23 R23	S6327-2 S6327-4 S6327-6 S6327-8 S6327-10	A A A A	SAR SAR SAR SAR	MB11A06V20 MB11A06V40 MB11A06V60 MB11A06V80 MB11A06W10	A3 A3 A3 A3 A3	\$503100 \$503110 \$503120 \$504100 \$504110	R R R R	SYN SYN SYN SYN SYN	R6101025 R6001125 R6001225 R6101030 R6001130	R31 R31 R31 R31 R31
S4310 S4320 S4330 S4340 S4350	R R R	SYN	R5100115 R5100215 R5100315 R5100415 R5100515	R23 R23 R23 R23 R23	S6330 S6335 S6340 S6345 S6350	R R R R	SYN SYN SYN SYN SYN	CF CF CF CF	CF CF CF CF CF	S504120 SBSBR05 SBR10 SBR10A05	RAAAA	SYN WES SET SET SET	R6001230 SB MB11A02V05 MB11A02V10 MB12A10V05	R31 A69 A3 A3 A3
\$4360 \$4370 \$4380 \$4390 \$5110	R R R	SYN	R5100615 R5100715 R5100815 R5100915 IN3261	E12 R23 R23 R23 R27	S6360 S6370 S6380 S6390 S6458-05	R R R R	SYN SYN SYN SYN SAR	CF CF CF CF MB12A25V05	CF CF CF CF A3	SBR10A1 SBR10A2 SBR10A4 SBR10A6 SBR15	A A A A	SET SET SET SET SET	MB12A10V10 MB12A10V20 MB12A10V40 MB12A10V60 MB11A02V10	A3 A3 A3 A3 A3
S5120 S5130 S5140 S5150 S5160	R R R	SYN SYN SYN SYN SYN	IN3263 IN3265 IN3267 IN3268 IN3269	R27 R27 R27 R27 R27	\$6458-2 \$6458-4 \$6458-6 \$20020 \$20025	AAARR	SAR SAR SAR SYN SYN	MB12A25V20 MB12A25V40 MB12A25V60 IN12O2A R310+212	A3 A3 A3 R13 CF	SBR25 SBR45 SBR65 SBR85 SC	A A A A	SET SET SET SET WES	MB11A02V20 MB11A02V40 MB11A02V60 MB11A02V80 SC	A3 A3 A3 A3 A69
S5170 S5180 S5190 S5305 S5310	R R R	SYN SYN SYN SYN SYN	IN3270 IN3271 IN3272 R6100025 R6100125	R27 R27 R27 R31 R31	\$20040 \$20050 \$21100 \$23130 \$23140	R R R R R	SYN SYN SYN SYN SYN	IN1204A IN1205A IN3624 R6001325 IN3744	R13 R13 R13 R31 R31	SCBA05 SCBA1 SCBA2 SCBA4 SCBA6	A A A A	SET SET SET SET SET	MB12A25V05 MB12A25V10 MB12A25V20 MB12A25V40 MB12A25V60	A3 A3 A3 A3 A3
\$5320 \$5330 \$5340 \$5350 \$5360	R R R	SYN SYN SYN SYN SYN	R6100225 R6100325 R6100425 R6100525 R6100625	R31 R31 R31 R31 R31	S23150 S23160 S31100 S32100 S34050	R R R R	SYN SYN SYN SYN SYN	R6001525 R6001625 R4101022 R4101030 IN1183A	R31 R31 R15 CF R15	SDSDA117A SDA117B SDA117C SDA117D	A A A A	WES SSD SSD SSD SSD	SDMB11A02V05 MB11A02V10 MB11A02V20 MB11A02V40	A69 A3 A3 A3 A3
S5370 S5380 S5390 S5410 S5430	R R R	SYN SYN SYN SYN SYN	R6100725 R6100825 R6100925 R6100130 R6100230	R31 R31 R31 R31 R31	S34100 S36100 S42100 S42110 S42120	RRRRR	SYN SYN SYN SYN SYN	R4101040 R4041060 R5101015 R5001115 R5001215	R15 R17 R23 R23 R23	SDA117E SDA117F SDA117G SDA138A SDA138B	A A A A	SSD SSD SSD SSD SSD	MB11A02V60 MB11A02V80 MB11A02W10 MB11A06V05 MB11A06V10	A3 A3 A3 A3 A3
S5430 S5440 S5450 S5460 S5470	R R R	SYN SYN SYN SYN SYN	R6100330 R6100430 R6100530 R6100630 R6100730	R31 R31 R31 R31 R31	\$42130 \$42140 \$42150 \$42160 \$43100	RRRR	SYN SYN SYN SYN SYN	R5001315 R5001415 S0 S0 R5101015	R23 R23 R23 R23 R23	SDA138C SDA138D SDA138E SDA138F SDA138G	A A A A	SSD SSD SSD SSD SSD	MB11A06V20 MB11A06V40 MB11A06V60 MB11A06V80 MB11A06W10	A3 A3 A3 A3 A3
\$5480 \$5490 \$6010 \$6020 \$6030	R R	SYN	R6100830 R6100930 CF CF CF	R31 CF CF CF	\$43110 \$43120 \$43130 \$43140 \$43150	R R R R	SYN SYN SYN SYN SYN	R5001115 R5001215 R5001315 R5001415 S0	R23 R23 R23 R23 R23	SE	A	WES WES WES	\$E	A69 A69 A69
\$6040 \$6050 \$6060 \$6070 \$6080	R R R R	SYN SYN SYN		CF CF CF CF	\$43160 \$50305 \$50310 \$50315 \$50320	R R R R	SYN SYN SYN SYN SYN	S0 R6100025 R6100125 R610+125 R6100225	R23 R31 R31 R31 R31	ST2FR10P ST2FR20P ST2FR30P ST2FR40P ST2FR60P	R R R R	SAR SAR SAR SAR SAR	IN3890 IN3891 IN3892 IN3893 R3020612	R57 R57 R57 R57 R55
\$6090 \$6121 \$6121-1 \$6121-6 \$6121-7	R A A A	SAR SAR SAR SAR	CF MB11A06V10 MB11A06V20 MB11A06V80 MB11A06W10	Cf A3 A3 A3 A3	\$50325 \$50330 \$50335 \$50340 \$50345	R R R R	SYN SYN SYN SYN SYN	R610+225 R6100325 R610+325 R6100425 R610+425	R31 R31 R31 R31 R31	ST3FR20 ST3FR30 ST3FR40 ST3FR60 ST3FR100P	R R R R	SAR SAR SAR SAR SAR	IN3911 IN3912 IN3913 R4020630 IN3910	R57 R57 R57 R57 R57
S6210A S6210B S6210D S6210M S6211	S S S A	RCA RCA RCA SAR	T400011608 T400021608 T400041608 T400061608 MB11A02V20	S13 S13 S13 S13 A3	\$50350 \$50360 \$50370 \$50380 \$50390	R R R R	SYN SYN SYN SYN SYN	R6100525 R6100625 R6100725 R6100825 R6100925	R31 R31 R31 R31 R31	ST4FR10P ST4FR20 ST4FR30 ST4FR40 ST4FR60	RRRR	SAR SAR SAR SAR SAR	IN3910 IN3911 IN3912 IN3913 R4020630	R57 R57 R57 R57 R57
S6211-1 S6211-2 S6211-3 S6230 S6230-1	A A A A	SAR SAR SAR SAR SAR	MB11A02V40 MB11A02V60 MB11A02V80 MB11A02V20 MB11A02V40	A3 A3 A3 A3 A3	\$50405 \$50410 \$50415 \$50420 \$50425	R R R R	SYN SYN SYN SYN SYN	R6100030 R6100130 R610+130 R6100230 R610+230	R31 R31 R31 R31 R31	ST5A10P ST5A20P ST5A30P ST5A40P ST5A50P	R R R R	SAR SAR SAR SAR	R4040160 R4040260 R4040360 R4040460 R4040560	R17 R17 R17 R17 R17



Part Number	Suggeste Type Mfgr. Replacer		Part Number	Type Mfg	Suggested gr. Replacement	) Page	Part Number	Suggested ⁽¹²⁾ Type Mfgr. Replacement	Page
ST5A60P ST5A80P ST5A100P ST5A120P ST6A10N	R SAR R4040660 R SAR R4040860 R SAR R4041060 R SAR R4041260 R SAR CF	R17 R17 R17 R17 CF	ST880P ST910N ST910P ST920N ST920P	R SAR R SAR R SAR R SAR R SAR	IN4045R IN4045 IN4047R	CF R29 R29 R29 R29	ST16100P ST16120N ST16120P ST16140N ST16140P	R SAR R5011215 F R SAR R5001215 F R SAR R5011415 F	R23 R23 R23 R23 R23
ST6A10P ST6A20N ST6A20P ST6A30N ST6A30P	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST930N ST930P ST940N ST940P ST950N	R SAR R SAR R SAR R SAR R SAR	IN4049 IN4050R IN4050	R29 R29 R29 R29 R29	ST20100N ST20100P ST20120N ST20120P ST20140N	R SAR R6101030 F R SAR R6011230 F R SAR R6001230 F	R31 R31 R31 R31 R31
ST6A40N ST6A40P ST6A50N ST6A50P ST6A60N	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST950P ST960N ST960P ST980N ST980P	R SAR R SAR R SAR R SAR R SAR	IN4052R IN4052 IN4054R	R29 R29 R29 R29 R29	ST20140P ST22100N ST22100P ST22120N ST22120P	R SAR R7011005 F R SAR R7001005 F R SAR R7011205 F	R31 R35 R35 R35 R35
ST6A60P ST6A80N ST6A80P ST6A100N ST6A100P	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST1110P ST1120P ST1130P ST1140P ST1150P	R SAR R SAR R SAR R SAR R SAR	R4040270 R4040370 R4040470	R17 R17 R17 R17 R17	ST22140N ST22140P T4V0XX22 T9G9XX08 T9G0XX10	R SAR R7001405 F S WES T400XX22 S S WES T9G0XX08 S	R35 R35 S13 S61 S61
ST6A120N ST6A120P ST6A140N ST6A140P ST16A10N	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST1160P ST1180P ST1610N ST1610P ST1620N	R SAR R SAR R SAR R SAR R SAR	R4040870 R5110115 R5100115	R17 R17 R23 R23 R23	T9G0XX12 T9GHXX08 T9GHXX09 T4ORXX22 T72HXX25	S WES T9GHXX08 S S WES T9GHXX09 S S WES T40RXX22 S	S61 S61 S61 S95 S89
ST16A10P ST16A20N ST16A20P ST16A30N ST16A30P	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST1620P ST1630N ST1630P ST1640N ST1640P	R SAR R SAR R SAR R SAR R SAR	R5110315 R5100315 R5110415	R23 R23 R23 R23 R23	T72HXX35 T72HXX45 T92HXX06 T92HXX07 T400XX10	S WES T72HXX45 S S WES T9GHXX08 S S WES T9GHXX09 S	S89 S89 S93 S93 S13
ST16A40N ST16A40P ST16A50N ST16A50P ST16A60N	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST1660N ST1660P ST1680N ST1680P ST2010N	R SAR R SAR R SAR R SAR R SAR	R5100615 R5110815 R5100815	R23 R23 R23 R23 R31	T400XX16 T400XX22 T500XX40 T500XX80 T507XX40	S WES T400XX22 S WES T400XX40 S WES T500XX80	S13 S13 S23 S23 S23
ST16A60P ST16A80N ST16A80P ST16A100N ST16A100P	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST2010P ST2020N ST2020P ST2030N ST2030P	R SAR R SAR R SAR R SAR R SAR	R6110230 R6100230 R6110330	R31 R31 R31 R31 R31	T507XX70 T507XX80 T510XX50 T510XX80 T520XX13	S WES T507XX80 S WES T510XX50 S WES T510XX80	S77 S77 S27 S27 S41
ST16A120N ST16A120P ST16A140N ST16A140P ST210E	R SAR CF R SAR CF R SAR CF R SAR CF R SAR IN3616	CF CF CF CF R13	ST2040N ST2040P ST2050N ST2050P ST2060N	R SAR R SAR R SAR R SAR R SAR	R6100430 R6110530 R6100530	R31 R31 R31 R31 R31	T527XX12 T527XX13 T527XX60 T600XX13 T600XX15	S WES T527XX13 S S WES T527XX60 S S WES T600XX13 S	S83 S83 S83 S83 S83 S33
ST210P ST220E ST220P ST230E ST230P	R SAR IN1200A R SAR IN3617 R SAR IN1201A R SAR IN3619 R SAR IN1203A	R13 R13 R13 R13 R13	ST2060P ST2080N ST2080P ST2100E ST2100P	R SAR R SAR R SAR R SAR R SAR	R6110830 R6100830 IN3624	R31 R31 R31 R13 R13	T600XX18 T607XX13 T607XX15 T607XX18 T610XX13	S WES T607XX13 S S WES T607XX15 S S WES T607XX18	S33 S79 S79 S79 S33
ST240E ST240P ST250E ST250P ST260E	R SAR IN3620 R SAR IN1204A R SAR IN3621 R SAR IN1205A R SAR IN3622	R13 R13 R13 R13 R13	ST2120E ST2120P ST2210N ST2210P ST2220N	R SAR R SAR R SAR R SAR R SAR	R3101212 R7010105 R7000105	R13 R13 R35 R35 R35	T610XX15 T610XX18 T620XX13 T620XX15 T620XX20	S WES T610XX18 S WES T620XX15 S WES T620XX15	S33 S33 S43 S43 S43
ST260P ST280E ST280P ST310P ST320P	R SAR IN1206A R SAR IN3622 R SAR IN3671A R SAR IN2155 R SAR IN2156	R13 R13 R13 R13 R13	ST2220P ST2230N ST2230P ST2240N ST2240P	R SAR R SAR R SAR R SAR R SAR	R7010305 R7000305 R7010405	R35 R35 R35 R35 R35	T620XX30 T625XX25 T625XX30 T625XX40 T627XX15	S WES T625XX25 S WES T625XX30 S WES T625XX40	S43 S47 S47 S47 S87
ST330P ST340P ST350P ST360P ST380P	R SAR IN2157 R SAR IN2158 R SAR IN2159 R SAR IN2160 R SAR R4100825	R13 R13 R13 R13 CF	ST2250N ST2250P ST2260N ST2260P ST2280N	R SAR R SAR R SAR R SAR R SAR	R7000505 R7010605 R7000605	R35 R35 R35 R35 R35	T627XX20 T627XX25 T680XX18 T700XX25 T700XX30	S WES T627XX25 S WES T680XX18 S WES T700XX25	S87 S87 S73 S37 S37
ST410P ST420P ST430P ST440P ST450P	R SAR IN1184A R SAR IN1186A R SAR IN1187A R SAR IN1188A R SAR IN1189A	R15 R15 R15 R15 R15	ST2280P ST3100P ST3120P ST4100P ST4120P		R4101025	R35 CF CF R15 CF	T700XX35 T707XX20 T707XX25 T707XX28 T707XX30	S WES T707XX25 S S WES T707XX25 S S WES T707Xx28 S	S37 S81 S81 S81 S81
ST460P ST480P ST810N ST810P ST820N	R SAR IN1190A R SAR R4100840 R SAR CE R SAR CF R SAR CF	R15 R15 CF CF CF	ST8100N ST8100P ST8120N ST8120P ST8140N	R SAR R SAR R SAR R SAR R SAR	CF CF CF CF	CF CF CF CF CF	T707XX33 T720XX35 T720XX45 T720XX55 T727XX25	S WES T720XX35 S WES T720XX45 S WES T720XX55	S81 S51 S51 S51 S51
ST820P ST830N ST830P ST840N ST840P	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST8140P ST9100N ST9100P ST9120N ST9120P	R SAR R SAR R SAR R SAR R SAR	IN4056R IN4056 R6011228	CF R29 R29 CF CF	T727XX35 T727XX40 T727XX45 T727XX48 T760XX30	S WES T727XX40 S S WES T727XX45 S S WES T727XX48 S	S91 S91 S91 S91 S71
ST850N ST850P ST860N ST860P ST880N	R SAR CF R SAR CF R SAR CF R SAR CF R SAR CF	CF CF CF CF	ST9140N ST9140P ST11100P ST11120P ST16100N	R SAR R SAR R SAR R SAR R SAR	R6001428 R4041070 R4041270	CF CF R17 R17 R23	T780XX35 T920XX06 T920XX07 T920XX08 T920XX09	S WES T920XX06 S S WES T920XX07 S S WES T920XX08 S	S75 S55 S55 S55 S55



Part Number	Type Mfg	Suggested [©] ır. Replacement	Page	Part Number	Тур	e Mfgı	Suggested ^w	Page	Part Number	Тур	e Mfg	Suggested <b>(2)</b> r. Replacement	Page
T920XX10 TA20XX12 TA20XX14 VH048 VH148		MB11A06V05	S55 S67 S67 A3 A3	6FLR20 6FLR30 6FLR40 6FLR50 6FLR60	R R R R	IR IR IR IR	IN3881R IN3882R IN3883R R3030506 R3030606	R55 R55 R55 R55 R55	22RC10 22RC20 22RC30 22RC40 22RC50	s s s s	IR IR IR IR	CF CF CF CF	CF CF CF CF
VH248 VH448 VH648 VH848 VJ048	A VAR A VAR A VAR A VAR	MB11A06V40 MB11A06V60 MB11A06V80	A3 A3 A3 A3 A3	6FR5A 6FR10A 6FR20A 6FR30A 6FR40A	R R R R	IR IR IR IR	IN1341AR IN1342AR IN1344AR IN1346AR IN1346AR	R13 R13 R13 R13 R13	22RC60 25PP5 25PP10 25PP20 25PP40	S A A A	IR PPC PPC PPC PPC	CF MB12A25V05 MB12A25V10 MB12A25V20 MB12A25V40	CF A3 A3 A3 A3
VJ148 VJ248 VJ448 VJ648 VK048	A VAR A VAR A VAR A VAR	MB12A10V20 MB12A10V40 MB12A10V60	A3 A3 A3 A3 A3	6FR50A 6FR60A 6FR80A 6FR100A 6PP5	R R R R	IR IR IR IR PPC	IN1347AR IN1348AR IN3988AR IN3990 MB11A06V05	R13 R13 R13 R13 A3	25PP60 3ODBIT 3ODB2T 3ODB3T 3ODB4T	AAAAS	PPC IR IR IR IR	MB12A25V60 MB11A02V10 MB11A02V20 MB11A02V30 MB11A02V40	A3 A3 A3 A3
VK148 VK248 VK448 VK648 VS048	A VAR A VAR A VAR A VAR	MB12A25V20 MB12A25V40 MB12A25V60	A3 A3 A3 A3	6PP10 6PP20 6PP40 6PP60 6PP80	A A A A	PPC PPC PPC PPC PPC	MB11A06V10 MB11A06V20 MB11A06V40 MB11A06V60 MB11A06V80	A3 A3 A3 A3 A3	30DB5T 30DB6T 30DB8T 30DB05T 30DB10T	A A A A	IR IR IR IR	MB11A02V50 MB11A02V60 MB11A02V80 MB11A02V10 MB11A02W10	A3 A3 A3 A3 A3
VS148 VS248 VS448 VS648 VS848	A VAR A VAR A VAR A VAR	MB11A02V20 MB11A02V40 MB11A02V60	A3 A3 A3 A3 A3	6PP100 6VL50 10H3P 10HR30 10RC10A	A R R R S	PPC IR SAR SAR IR	MB11A06W10 R3020506 R3100106 R3020106 T400011608	A3 R55 CF CF S13	30H3P 30HR30 36RA50 36RA60 36RA80	RRSSS	SAR SAR IR IR IR	IN1345 IN3882 T510055004AQ T510065004AQ T500088004AQ	R13 R55 S27 S27 S23
ZBCP-05 ZBCP-1 ZBCP-2 ZBCP-3 ZCCP-05	R SOL R SOL R SOL R SOL R SOL	IN3880 IN3881 IN3882	R55 R55 R55 R55 R55	10RC20A 10RC30A 10RC40A 10RC50A 10RC60A	SSSR	IR IR IR IR	T400021608 T400031608 T400041608 T400051608 T400061608	S13 S13 S13 S13 S13	36RA100 36RA110 36RA120 36RA130 36RA140	\$ \$ \$ \$	IR IR IR IR	T500108004AQ T500118004AQ T500128004AQ T500138004AQ T500148004AQ	S23 S23 S23 S23 S23 S23
ZCCP-1 ZCCP-2 ZCCP-3 ZECN-05 ZECN-1	R SOL R SOL R SOL R SOL R SOL	IN3891 IN3892 IN3899	R55 R55 R55 R57 R57	10RC70A 10RC80A 10RC90A 10RC100A 10RC;10A	s s s s	IR IR IR IR	T400071608 T400081608 T400091608 T400101608 T400111608	S13 S13 S13 S13 S13	36RA150 36RC10A 36RC20A 36RC30A 36RC40A	s s s s	IR IR IR IR	T500158004AQ T510015007AQ T510025007AQ T510035007AQ T510045007AQ	\$23 \$27 \$27 \$27 \$27 \$27
ZECN-2 ZECN-3 2PP5 2PP10 2PP20	R SOL R SOL A PPC A PPC	IN3901 MB11A02V05 MB11A02V10	R57 R57 A3 A3 A3	10RC12CA 12A700 12A800 12A900 12A1000	S R R R	IR SOL SOL SOL SOL	T400121608 IN3670A IN3671A IN3672A IN3673A	S13 R13 R13 R13 R13	36RC50A 36RC60A 36RC80A 36REH60 36REH80	s s s s	IR IR IR IR	T510055007AQ T510065007AQ T500088007AQ T515068004AQ T505088004AQ	S27 S27 S23 CF CF
2PP40 2PP60 2PP80 2PP100 5SCBR05	A PPC A PPC A PPC A PPC	MB11A02V60 MB11A02V80 MB11A02W10	A3 A3 A3 A3	12F5A 12F10A 12F20A 12F30A 12F40A	R R R R	IR IR IR IR	IN1199A IN1200A IN1202A IN1203A IN1204A	R13 R13 R13 R13 R13	36REH100 36REH110 36REH120 36REH130 37RA50	S S S S	IR IR IR IR	T505108004AQ T505118004AQ T505128004AQ T505138004AQ T510055004AB	CF CF CF CF S27
5SCBR1 5SCBR2 5SCBR4 5SCBR6 6A1	A SET A SET A SET A SET R ATS		A3 A3 A3 A3 R9	12F50A 12F60A 12F80A 12F100A 12FL5	R R R R	IR IR IR IR	IN1205A IN1206A IN3671A IN3673A IN3889	R13 R13 R13 R13 R55	37RA60 37RA80 37RA100 37RA110 <b>37RA13</b> 0	s s s <b>s</b>	IR IR IR IR	T510065004AB T500088004AA T500108004AA T500118004AA T <b>500138004A</b> A	\$27 \$23 \$23 \$23 \$23 <b>\$23</b>
6A2 6A4 6A6 6A05 6A15	R ATS R ATS R ATS R ATS R SOL	R3400406 R3400606 R3400006	R9 R9 R9 R9 R13	12FL10 12FL20 12FL30 12FL40 12FL50	R R R R	IR IR IR IR	IN3890 IN3891 IN3892 IN3893 R3020512	R55 R55 R55 R55 R55	37RA140 37RA150 37RC10A 37RC20A 37RC30A	s s s s	IR IR IR IR	T500148004AA T500158004AA T510015007AB T510025007AB T510035007AB	\$23 \$23 \$27 \$27 \$27
6A30 6A50 6A100 6A200 6A300	R SOL R SOL R SOL		R13 R13 R13 R13 R13	12FL60 12FLR5 12FLR10 12FLR20 12FLR30	RRRR	IR IR IR IR	R3020612 IN3889R IN3890R IN3891R IN3892R	R55 R55 R55 R55 R55	37RC40A 37RC50A 37RC60A 37RC80A 37REH60	s s s s	IR IR IR IR	T510045007AB T510055007AB T510065007AB T500088007AA T515068004AA	S27 S27 S27 S23 CF
6A400 6A500 6A600 6A700 6A800	R SOL R SOL	- IN1346A - IN1347A - IN1348A - IN3987 - IN3988	R13 R13 R13 R13 R13	12FLR40 12FLR50 12FLR60 12FR5A 12FR10A	RRRRR	IR IR IR IR	IN3893R R3030512 R3030612 IN1199AR IN1200AR	R55 R55 R55 CF CF	37REH80 37REH100 37REH110 37REH120 37REH130	s s s s	IR IR IR IR	T505088004AA T505108004AA T505118004AA T505128004AA T505138004AA	CF CF CF CF
6A900 6A1000 6A1200 6F5A 6F10A	R SOL R SOL R IR R IR		R13 R13 CF R13 R13	12FR2OA 12FR3OA 12FR4OA 12FR5OA 12FR6OA	R R R R	IR IR IR IR	IN1202AR IN1203AR IN1204AR IN1205AR IN1206AR	CF CF CF CF	37T 38T 39T 40A50 40A100	SSRR	WCE	T500XX4005AA T500XX4005AA T500XX8005AA IN1183A IN1184A	S23 S23 S23 CF CF
6F20A 6530A 6F40A 6F50A 6F60A	R IR R IR R IR R IR R IR	IN1344A IN1345A IN1346A IN1347A IN3988	R13 R13 R13 R13 R13	12FR80A 12FR100A 15PP5 15PP10 15PP20	R R A A	IR IR PPC PPC PPC	IN3671AR IN3673AR MB12A10V05 MB12A10V10 MB12A10V20	CF CF A3 A3	40A150 40A200 40A300 40A400 40A500	R R R R	SOL SOL SOL	IN1185A IN1186A IN1187A IN1188A IN1189A	CF CF CF CF
6F80A 6F100A 6FK20 6FL5 6FL10	R IR R IR R IR R IR	IN3988 IN3990 IN3881 IN3879 IN3880	R13 R13 R55 R55 R55	15PP40 15PP60 16RC10A 16RC20A 16RC30A	A S S S	PPC PPC IR IR IR	MB12A10V40 MB12A10V60 T400012208 T400022208 T400032208	A3 A3 S13 S13 S13	40A600 40H3P 40HF5 40HF10 40HF20	R R R R	SOL SAR IR IR IR	IN1190 R3100406 IN1183A IN1184A IN1186A	CF CF R15 R15 R15
6FL30 6FL40 6FL60 6FLR5 6FLR10	R IR R IR R IR R IR R IR	IN3882 IN3883 R3020606 IN3879R IN3880R	R55 R55 R55 R55 R55	16RC40A 16RC50A 16RC60A 20H3P 20HR3P	S S R R	IR IR IR SAR SAR		S13 S13 S13 R13 R55	40HF30 40HF40 40HF50 40HF60 40HF80	R R R R	IR IR IR IR	IN1187A IN1188A IN1189A IN1190A R4100840	R15 R15 R15 R15 R15



Part Number	Type Mfg	Suggested 🖫	Page	Part Number	Type Mfgr.	Suggested (2) Replacement	Page	Part Number	Type Mfg	Suggested (22) r. Replacement	Page
40HF100 40HFR5 40HFR10 40HFR20 40HFR30	R IR R IR R IR R IR	R4101040 IN1183AR IN1184AR IN1186AR IN1187AR	R15 R15 R15 R15 R15	55C40B 55C40F 55C401L 55C45 55C45B	S SYN S SYN S SYN S SYN S SYN	T510048005AQ T510048005AB T510048005AQ T510058005AQ T510058005AQ	S27 S27 S27	70C25IL 70C30 70C30B 70C30F 70C30IL	S SYN S SYN S SYN S SYN S SYN	T510038005AQ	S27 S27 S27 S27 S27
40HFR40 40HFR50 40HFR60 40HFR80 40HFR100	R IR R IR R IR R IR R IR	IN1188AR IN1189AR IN1190AR R4110840 R4111040	R15 R15 R15 R15 R15	55C45F 55C45IL 55C50 55C50B 55C50F	S SYN S SYN S SYN S SYN S SYN	T510058005AB T510058005AQ T510058005AQ T510058005AQ T510058005AB	S27 S27	70C35 70C35B 70C35F 70C35IL 70C40	S SYN S SYN S SYN S SYN S SYN	T510048005AQ T510048005AB T510048005AQ	S27 S27 S27 S27 S27
40HR3P 45KL10A 45KL20A 45KL30A 45KL40A	R SAR R IR R IR R IR	IN3883 R5100115 R5100215 R5100315 R5100415	R55 R23 R23 R23 R23	55C5OIL 55C6O 55C6OB 55C6OF 55C6OIL	S SYN S SYN S SYN S SYN S SYN	T510058005AQ T510068005AQ T510068005AQ T510068005AB T500068005AQ	S27 S27 S27	70C40B 70C40F 70C40IL 70C45 70C45B	S SYN S SYN S SYN S SYN S SYN	T510048005AB T510048005AQ	S27 S27 S27 S27 S27
45KL50A 45KL60A 45KL80 45KL100A 45KL120A	R IR R IR R IR R IR	R5100515 R5100615 R5100815 R5101015 R5001215	R23 R23 R23 R23 R23	55C70 55C70B 55C70F 55C70IL 55C80	S SYN S SYN S SYN S SYN S SYN	T500078005AQ T500078005AQ T500078005AA T500078005AQ T500088005AQ	S23 S23 S23	70C45F 70C45IL 70C50 70C50B 70C50F	S SYN S SYN S SYN S SYN S SYN	T510058005AQ T510058005AQ	S27 S27 S27 S27 S27
45KLR10A 45KLR20A 45KLR30A 45KLR40A 45KLR50A	R IR R IR R IR R IR	R5110115 R5110215 R5110315 R5110415 R5110515	R23 R23 R23 R23 R23	55C80B 55C80F 55C80IL 55C90 55C90B	S SYN S SYN S SYN S SYN S SYN	T500088005AQ T500088005AQ T500088005AQ T500098005AQ T500098005AQ	S23 S23 S23	70C50IL 70C60 70C60B 70C60F 70C670IL	S SYN S SYN S SYN S SYN S SYN	T510068005AQ T510068005AQ T510068005AB	S27 S27 S27 S27 S27 S27
45KLR60A 45KLR80A 45KLR100A 45KLR120A 45L5	R IR R IR R IR R IR R IR	R5110615 R5110815 R5111015 R5011215 R5D00015	R23 R23 R23 R23 R23	55C90F 55C90IL 55C100 55C100B 55C100F	S SYN S SYN S SYN S SYN S SYN	T500098005AA T500098005AQ T500108005AQ T500108005AQ T500108005AA	S23 S23 S23	70C70 70C70B 70C70F 70C70IL 70C80	S SYN S SYN S SYN S SYN S SYN	T500078005AQ T500078005AA T500078005AQ	S23 S23 S23 S23 S23
45L10 45L15 45L20 45L25 45L30	R IR R IR R IR R IR R IR	R5D00115 R5D0+115 R5D00215 R5D0+215 R5D00315	R23 R23 R23 R23 R23	55C100IL 55C110 55C110B 55C110F 55C110IL	S SYN S SYN S SYN S SYN S SYN	T500108005AQ T500118005AQ T500118005AQ T500118005AA T500118005AQ	S23 S23 S23	70C80B 70C80F 70C80IL 70C90 70C90B	S SYN S SYN S SYN S SYN S SYN	T500088005AA T500088005AQ T500098004AQ	S23 S23 S23 S23 S23
45L35 45L40 45L45 45L50 45L60	R IR R IR R IR R IR R IR	R5D0+315 R5D00415 R5D0+415 R5D00515 R5D00615	R23 R23 R23 R23 R23	55C1 20 55C1 20B 55C1 20F 55C1 20IL 55C1 30	S SYN S SYN S SYN S SYN S SYN	T500128005AQ T500128005AQ T500128005AA T500128005AQ T500138005AQ	S23 S23 S23	70C90F 70C90IL 70C100 70C100B 70C100F	S SYN S SYN S SYN S SYN S SYN	T5000980C5AQ T500108004AQ T500108005AQ	S23
45L70 45L80 45L90 45L100 45L120	R IR R IR R IR R IR R IR	R5D00715 R5D00815 R5D00915 R5D01015 R5C01215	R23 R23 R23 R23 R23	55C13OB 55C13OF 55C13OIL 55C14O 55C14OB	S SYN S SYN S SYN S SYN S SYN	T500138005AQ T500138005AQ T500138005AQ T500148005AQ T500148005AQ	S23 S23 S23	70C100IL 70C110 70C110B 70C110F 70C110IL	S SYI S SYI S SYI S SYI S SYI	T500118004AQ T500118005AQ T500118005AA	S23 S23 S23
45LR5 45LR10 45LR15 45LR20 45LR25	R IR R IR R IR R IR	R5D10015 R5D10115 R5D1+115 R5D10215 R5D1+215	R23 R23 R23 R23 R23	55C14OF 55C14OIL 55C15 55C15B 55C15F	S SYN S SYN S SYN S SYN S SYN	T500148005AA T500148005AQ T510028005AQ T510028005AQ T510028005AB	S23 S27 S27	70C120 70C120B 70C120F 70C120IL 70C130	S SYI S SYI S SYI S SYI S SYI	T500128005AQ T500128005AA T500128005AQ	S23 S23 S23
45LR30 45LR35 45LR40 45LR45 45LR50	R IR R IR R IR R IR	R5D10315 R5D1+315 R5D10415 R5D1+415 R5D10515	R23 R23 R23 R23 R23	55C15IL 55C150 55C150B 55C150F 55C150IL	S SYN S SYN S SYN S SYN S SYN	T510028005AQ T500158005AQ T500158005AQ T500158005AA T500158005AQ	S23 S23 S23	70C130B 70C130F 70C130IL 70C140 70C140B	S SYI S SYI S SYI S SYI S SYI	T500138005AA T500138005AQ T500148004AQ	S23 S23 S23
45LR60 45LR70 45LR80 451R90 45LR100	R IR R IR R IR R IR	R5D10615 R5D10715 R5D10815 R5D10915 R5D11015	R23 R23 R23 R23 R23	60FB05L 60FB1L 60FB2L 60FB4L 60FB6L	A IR A IR A IR A IR	MB11A06V05 MB11A06V10 MB11A06V20 MB11A06V40 MB11A06V60	A3 A3 A3 A3 A3	70C140F 70C140IL 70C150 70C150B 70C150F	S SYI S SYI S SYI S SY	T500148005AQ T500158004AQ T500158005AQ	S23 S23 S23
45LR120 46T 47T 50H3P 55C10	R IR S WCE S WCE R SAR S SYN	T680XX2504BT IN1347A	R13	60FB8L 60H3P 60HR3P 60S1 60S2	A IR R SAR R SAR R IR R IR	MB11A06V80 IN1348A R3020606 R3400106 R3400206	A3 R13 R55 R9 R9	70C15IL 70C150IL 70H10 70H20 70H30	S SY S SY R IR R IR R IR		
55C10B 55C10F 55C101L 55C20 55C20B	S SYN S SYN S SYN S SYN S SYN	T510018005AB T510018005AQ T510028005AQ	\$27 \$27 \$27	60S4 60S6 60S8 60S05 61T	R IR R IR R IR S WCE	R3400406 R3400606 R3400806 R3400006 T680XX1804BT	R9 R9 R9 CF	70H40 70H50 70H60 70H80 70H100	R IR R IR R IR R IR	R4040470 R4040570 R4040670 R4040870 R4041070	R17 R17 R17 R17 R17
55C2OF 55C2O1L 55C25 55C25B 55C25F	S SYN S SYN S SYN S SYN S SYN	T510028005AQ T510038005AQ T510038005AQ	S27 S27 S27	62T 70C10 70C10B 70C10F 70C10IL	S WCE S SYN S SYN S SYN S SYN	T510018005AQ T510018005AB	S27 S27 S27	70HR10 70HR20 70HR30 70HR40 70HR50	R IR R IR R IR R IR	R4050170 R4050270 R4050370 R4050470 R4050570	R17 R17 R17 R17 R17
55C251L 55C30 55C30B 55C30F 55C301L	S SYN S SYN S SYN S SYN S SYN	T510038005AQ T510038005AQ T510038005AB	S27 S27 S27	70C15 70C15B 70C15F 70C20 70C20B	S SYN S SYN S SYN S SYN S SYN	T510028005AB T510028005AQ	S27 S27 S27	70HR60 70HR80 70HR100 70ST 70T	R IR R IR R IR S WO	R4050670 R4050870 R4Q51070 E T600XX1804BT E T780XX3504BY	
55C35 55C35B 55C35F 55C351L 55C40		T510048005AQ T510048005AB	S27 S27 S27 S27	70C20F 70C20IL 70C25 70C25B 70C25F	S SYN S SYN S SYN S SYN S SYN	T510028005A0 T510038005A0 T510038005A0 T510038005AB	S27 S27 S27	70U5 70U10 70U15 70U20 70U25	R IR R IR R IR R IR R IR	R6100030 R6100130 R610+130 R6100230 R610+230	R31 R31 R31 R31 R31



Part Number	Type Mfgr	Suggested (26)	Page	Part Number	Type Mfgr	Suggested w	Page	Part Number	Type Mi	Suggested gr. Replacement	) Page
70U30 70U40 70U45 70U50 70U60	R IR R IR R IR R IR R IR	R6100330 R6100430 R610+430 R6100530 R6100630	R31 R31 R31 R31 R31	72RB130 72RB140 72RB150 72RC2B 72RC5B	S IR S IR S IR S IR	T500138004AA T500148004AA T500158004AA T510018004AB T510018004AB		82RM80 82RM100 84T 91T 94T		T507088064AA T507108064AA E T780XX3504BY E T780XX3504BY	\$77 \$75
70U70 70U80 70U90 70U100 70U120	R IR R IR R IR R IR	R6100730 R6100830 R6100930 R6101030 R6001230	R31 R31 R31 R31 R31	72RC10A 72RC10B 72RC15B 72RC20A 72RC20B	S IR S IR S IR S IR	T510018007AB T510018004AB T510028004AB T510028007AB T510028004AB	S27 S27 S27 S27 S27 S27	100C10 100C10B 100C15 100C15B 100C20	S SYI S SYI S SYI S SYI S SYI	T610011304BT T610021304BT T610021304BT	S33 S33 S33 S33 S33
70UR5 70UR10 70UR15 70UR20 70UR25	R IR R IR R IR R IR	R6110030 R6110130 R611+130 R6110230 R611+230	R31 R31 R31 R31 R31	72RC25B 72RC30A 72RC30B 72RC40A 72RC40B	S IR S IR S IR S IR	T510038004AB T510038007AB T510038004AB T510048007AB T510048004AB		100C20B 100C25 100C25B 100C30 100C30B	S SY S SY S SY S SY	N T610031304BT N T610031304BT N T610031304BT	S33 S33 S33 S33 S33
70UR30 70UR35 70UR40 70UR45 70UR50	R IR R IR R IR R IR	R6110330 R611+330 R6110430 R611+430 R6110530	R31 R31 R31 R31 R31	72RC50A 72RC50B 72RC60A 72RC60B 72RC80A	S IR S IR S IR S IR	T510058007AB T510058004AB T510068007AB T510068004AB T500088007AA	S27 S27	100C35 100C35B 100C40 100C40B 100C45	S SY S SY S SY S SYI S SYI	N T610041304BT N T610041304BT N T610041304BT	S33 S33 S33 S33 S33
70UR60 70UR70 70UR80 70UR90 70UR100	R IR R IR R IR R IR	R6110630 R6110730 R6110830 R6110930 R6111030	R31 R31 R31 R31 R31	72REH60 72REH80 72REH100 72REH110 72REH120	S IR S IR S IR S IR	T515068004AA T505088004AA T505108004AA T505118004AA T505128004AA	CF €F CF	100C45B 100C50 100C50B 100C60 100C60B	S SY S SY S SY S SY S SY	N T610051304BT N T610051304BT N T610061304BT	S33 S33 S33 S33 S33
70UR120 71RA50 71RA60 71RA80 71RA100	R IR S IR S IR S IR	R6011230 T510058004AQ T510068004AQ T500088004AQ T500108004AQ	S27 S23	72REH130 73T 74T 80H3P 80T	S IR S WCE S WCE R SAR S WCE	T780XX3504BY IN3988	S75	100C70 100C70B 100C80 100C80B 100C90	S SY S SY S SY S SYI S SYI	T600071304BT T600081304BT T600081304BT	S33 S33 S33 S33 S33
71RA110 71RA120 71RA130 71RA140 71RA150	S IR S IR S IR S IR	T500118004A0 T500128004A0 T500138004A0 T500148004A0 T500158004A0	S23 S23 S23	81RL10 81RL20 81RL30 81RL40 81RL50	S IR S IR S IR S IR	T507018054Aq T507028054AQ T507038054AQ T507048054AQ T507058054AQ	S77 S77	100C90B 100C100 100C100B 100C110 100C110B	S SY S SY S SY S SY S SY	N T600101304BT N T600101304BT N T600111304BT	S33 S33 S33 S33 S33
71RB50 71RB60 71RB80 71RB100 71RB110	S IR S IR S IR S IR	T510058004A0 T510068004A0 T500088004A0 T500108004A0 T500118004A0	S27 S23 S23	81RL60 81RL80 81RL100 81RLA50 81RLA60	S IR S IR S IR S IR	T507068054AQ T507088054AQ T507108054AQ T510058004AQ T510068004AQ	S77 S77 S27	100C120 100C120B 100C130 100C130B 100C140	S SY S SY S SY S SY S SY	N T600121304BT N T600131304BT N T600131304BT	S33 S33 S33 S33 S33
71RB120 71RB130 71RB140 71RB150 71RC5B	S IR S IR S IR S IR	T500128004A0 T500138004A0 T500148004A0 T500158004A0 T510018007A0	S23 S23 S23	81RLA80 81RLA100 81RLA110 81RLA120 81RLB50	S IR S IR S IR S IR	T500088004AQ T500108004AQ T500118004AQ T500128004AQ T507058044AQ	S23 S23 S23	100C140B 100C150 100C150B 100H3P 100PB1P	S SY S SY R SA A IR	N T600151304BT N T600151304BT	S33 S33 S33 R13 A3
71RCIOA 71RC10B 71RC15B 71RC20B 71RC2OA	S IR S IR S IR S IR	T510018007AC T510018007AC T510028007AC T510028007AC	1 S27 1 S27 1 S27	81RLB60 81RLB80 81RLB100 81RLB110 81RLB120	S IR S IR S IR S IR	T507068044AQ T507088044AQ T507108044AQ T507118044AQ T507128044AQ	S77 S77 S77	100PB2P 100PB3P 100PB4P 100PB5P 100PB6P	A IR A IR A IR A IR	MB12A10V20 MB12A10V30 MB12A10V40 MB12A10V50 MB12A10V60	A3 A3 A3 A3
71RC25B 71RC30A 71RC30B 71RC40A 71RC40B	S IR S IR S IR S IR S IR	T510038007A0 T510038007A0 T510038007A0 T510048007A0 T510048007A0	1 S27 1 S27 1 S27	81RM10 81RM20 81RM30 81RM40 81RM50	S IR S IR S IR S IR	T507018064AQ T507028064AQ T507038064AQ T507048064AQ T507058064AQ	\$77 \$77 \$77	100PB05P 101KL40S15 101KL40S20 101KL40S30 101KL60S15	A IR R IR R IR R IR	MB12A10V05 R5020410FJ R5020410EJ R5020410CJ R5020610FJ	A3 R59 R59 R59 R59
71RC50A 71RC50B 71RC60A 71RC60B	S IR S IR S IR S IR	T510058007A0 T510058007A0 T510068007A0 T510068007A0	1 S27 1 S27	81RM60 81RM80 81RM100 81T 82RL10	S IR S IR S IR S WCE S IR	T507068064AQ T507088064AQ T507108064AQ T780XX3504BY T507018054AA	\$77 \$77 \$75	101KL60S20 101KL60S30 101KL80S15 101KL80S20 101KL80S30	R IR R IR R IR R IR	R5020610EJ R5020610CJ R5020810FJ R5020810EJ R5020810CJ	R59 R59 R59 R59 R59
71RC80A 71REH60 71REH80 71REH100 71REH110	S IR S IR S IR S IR	T500088007A0 T515068004A0 T505088004A0 T505108004A0 T505118004A0	CF CF CF	82RL20 82RL30 82RL40 82RL50 82RL60	S IR S IR S IR S IR	T507028054AA T507038054AA T507048054AA T507058054AA T507068054AA	S77 S77 S77	101KL100S15 101KL100S20 101KL100S30 101KL120S20 101KL120S30	R IR R IR R IR R IR	R5021010FJ R5021010EJ R5021010CJ R5021210EJ R5021210CJ	R59 R59 R59 R59 R59
71REH120 71REH130 71T 72RA50 72RA60	S IR S IR S WC S IR S IR	T505128004A T505138004A0 E T780XX3504B° T510058004A0 T510068004A0	Y S75 3 S27	82RL80 82RL100 82RLA50 82RLA60 82RLA80	S IR S IR S IR S IR	T507088054AA T507108054AA T510058004AB T510068004AB T500088004AA	S77 S27 S27	101KL130S30 101KL140S30 101KL150S30 101KL160S30 101KLR40S15	R IR R IR R IR R IR	R5021310CJ R5021410CJ SO SO R5030410FJ	R59 R59 R59 R59 R59
72RA80 72RA60 72RA80 72RA100 72RA110	S IR S IR S IR S IR	T500088004A T510068004A T500088004A T500108004A T500118004A	B S27 A S23 A S23	82RLA100 82RLA110 82RLA120 82RLB50 82RLB60	S IR S IR S IR S IR	T500108004AA T500118004AA T500128004AA T507058044AA T507068044AA	S23 S23 S77	101KLR40S20 101KLR40S30 101KLR60S15 101KLR60S20 101KLR60S30	R IR R IR R IR R IR	R5030410EJ R5030410CJ R5030610FJ R5030610EJ R5030610CJ	R59 R59 R59 R59 R59
72RA120 72RA130 72RA140 72RA150 72RB50	S IR S IR S IR S IR	T500128004A T500138004A T500148004A T500158004A T510058004A	A S23 A S23 A S23	82RLB80 82RLB100 82RLB110 82RLB120 82RM10	S IR S IR S IR S IR S IR	T507088044AA T507108044AA T507118044AA T507128044AA T507018064AA	S77 S77 S77	101KLR80S15 101KLR80S20 101KLR80S30 101KLR10OS15 101KLR10OS20	R IR R IR R IR R IR	R5030810FJ R5030810EJ R5030810CJ R5031010FJ R5031010EJ	R59 R59 R59 R59 R59
72RB60 72RB80 72RB100 72RB110 72RB120	S IR S IR S IR S IR S IR	T510068004A T500088004A T500108004A T500118004A T500128004A	A S23 A S23 A S23	82RM20 82RM30 82RM40 82RM50 82RM60	S IR S IR S IR S IR	T507028064AA T507038064AA T507048064AA T507058064AA T507068064AA	A S77 A S77 A S77	101KLR100S30 101KLR120S20 101KLR120S30 101KLR130S30 101KLR140S30	R IR R IR R IR R IR	R5031010CJ R5031210EJ R5031210CJ R5031310CJ R5031410CJ	R59 R59 R59 R59 R59



Part Number	Тур	e Mfgi	Suggested © r. Replacement	Page	Part Number	Тур	e Mfg	Suggested @ r. Replacement	Page	Part Number	Тур	e Mfg	Suggested <b></b>	
101KLR150S30 101KLR160S30 101RA50 101RA60 101RA80	RRSSS	IR IR IR IR	S0 S0 T610051303BT T610061303BT T600081303BT	R59 R59 S33 S33 S33	140PM60 141AZN 141AZP 141ZNP 141ZP	S R R R	TUN TUN TUN	T627062084DN W141AZN W141AZP W141ZN W141ZN W141ZP	SB7 CF CF CF CF	150LR25A 150LR30A 150L40A 150LR50A 150LR60A	RRRR	IR IR IR IR	R5D1+215 R5D10315 R5D10415 R5D10515 R5D10615	R23 R23 R23 R23 R23
101RA100 101RA110 101RA120 107	S S T T	IR IR IR WES WES	T600101303BT T600111303BT T600121303BT CF CF	S33 S33 S33 CF CF	150C10 150C10B 150C15 150C15B 150C20	s s s s	SYN SYN SYN	T610011504BT T610011504BT T610021504BT T610021504BT T610021504BT	S33 S33 S33 S33 S33	150LR70A 150LR80A 150LR90A 150LR100A 150LR120A	R R R R R	IR IR IR IR	R5D10715 R5D10815 R5D10915 R5D11015 R5C11215	R23 R23 R23 R23 R23
118 118UA33 118UA46 118ZN 118ZP	T T R R	WES	CF CF CF W118ZN W118ZP	CF CF CF CF	150C20B 150C25 150C25B 150C30 150C30B	s s s s	SYN SYN SYN	T610021504BT T610031504BT T610031504BT T610031504BT T610031504BT	S33 S33 S33 S33 S33	151-XX 151RA50 151RA60 151RA80 151RA100	T S S S	WES IR IR IR	151-XX T610051504BT T610061504BT T600081504BT T600101504BT	CF \$33 \$33 \$33 \$33
119ZN 119ZP 120H3P 125PAL10 125PAL20	R R R S S	TUN TUN SAR IR IR	W119ZN W119ZP R3101206 T627012054DN T627022054DN	CF CF CF S87 S87	150C35 150C35B 150C40 150C40B 150C45	s s s s	SYN	T610041504BT T610041504BT T610041504BT T610041504BT T610051504BT	S33 S33 S33 S33 S33	151RA110 151RA120 151RA130 151RA140 151RA150	s s s s	IR IR IR IR	T600111504BT T600121504BT T600131504BT T600141504BT T600151504BT	S33 S33 S33 S33 S33
125PAL30 125PAL50 125PAL60 125PAL80 125PAL100	s s s s	IR IR IR IR	T627032054DN T627052054DN T627062054DN T627082054DN T627102054DN	S87 S87 S87 S87 S87	150C45B 150C50 150C50B 150C60 150C60B	s s s s	SYN SYN SYN SYN SYN	T610051504BT T610051504BT T610051504BT T610061504BT T610061504BT	S33 S33 S33 S33 S33	151RB50 151RB60 151RB90 151RB100 151RB110	SSSSS	IR IR IR IR	T610051503BT T610061503BT T600081503BT T600101503BT T600111503BT	S33 S33 S33 S33 S33
125PALB50 125PALB60 125PALB80 125PALB100 125PALB110	s s s s	IR IR IR IR	T627052044DN T627062044DN T627082044DN T627102044DN T627112044DN	S87 S87 S87 S87 S87	150C70 150C70B 150C80 150C80B 150C90	SSSS	SYN SYN SYN SYN SYN	T600071504BT T600071504BT T600081504BT T600081504BT T600091504BT	S33 S33 S33 S33 S33	151RB120 151RB130 151RB140 151RB150 151RC10	\$ \$ \$ \$ \$	IR IR IR IR	T600121503BT T600131503BT T600141503BT T600151503BT T610011504BT	S33 S33 S33 S33 S33
125PALB120 - 125PAM10 125PAM20 125PAM30 125PAM30	s s s s	IR IR IR IR	T627122044DN T627012064DN T627022064DN T627032064DN T627052064DN	S87 S87 S87 S87 S87	150C90B 150C100 150C100B 150C110 150C110B	s s s s	SYN SYN SYN SYN SYN	T600091504BT T600101504BT T600101504BT T600101504BT T600111504BT	S33 S33 S33 S33 S33	151RC10A 151RC20 151RC20A 151RC30 151RC30A	s s s s	IR IR IR IR	T610011504BT T610021504BT T610021504BT T610031504BT T610031504BT	S33 S33 S33 S33 S33
125PAM60 125PAM80 125PAM100 125PL10 125PL20	s s s s	IR IR IR IR	T627062064DN T627082064DN T627102064DN T627012054DN T627022054DN	S87 S87 S87 S87 S87	150C120 150C120B 150C130 150C130B 150C140	5 5 5 <b>5</b>	SYN SYN SYN SYN SYN	T600121504BT T600121504BT T600131504BT T600131504BT T600141504BT	S33 S33 S33 S33 S33	151RC40 151RC40A 151RC50 151RC50A 151RC60	s s s s	IR IR IR IR	T610041504BT T610041504BT T610051504BT T610051504BT T610061504BT	S33 S33 S33 S33 S33
125PL30 125PL50 125PL60 125PL80 125PL100	s s s s s	IR IR IR IR	T627032054DN T627052054DN T627062054DN T627082054DN T627102054DN	\$87 \$87 \$87 \$87 \$87 \$87	150C140B 150C150 150C150B 150K10A 150K15A	SSRR	SYN	T600141504BT T600151504BT T600151504BT R5100115 R510+115	S33 S33 S33 R23 R23	151RC60A 151RC80 151RC80A 151RF5 151RF10	s s s s	IR IR IR IR	T610061504BT T600081504BT T600081504BT T607001563BT T607011563BT	S33 S33 S33 S79 S79
125PL110 125PL120 125PLB50 125PLB60 125PLB80	s s s s	IR IR IR IR	T627112054DN T627122054DN T627052044DN T627062044DN T627082044DN	S87 S87 S87 S87 S87	150K20A 150K25A 150K30A 150K40A 150K50A	R R R R R		R5100215 R510+215 R5100315 R5100415 R5100515	R23 R23 R23 R23 R23	151RF15 151RF20 151RF25 151RF30 151RF40	s s s s	IR IR IR IR	T607021563BT T607021563BT T607031563BT T607031563BT T607041563BT	S79 S79 S79 S79 S79
125PLB100 125PLB110 125PLB120 125PM10 125PM20	s s s s	IR IR IR IR	T627102044DN T627112044DN T627122044DN T627012064DN T627022064DN	S87 S87 S87 S87 S87	150K60A 150K70A 150K80A 150K90A 150K100A	RRRR	IR IR IR IR	R5100615 R5100715 R5100815 R5100915 R5101015	R23 R23 R23 R23 R23	151RF50 151RF60 151RL50 151RL60 151RL80	s s s s	IR IR IR IR	T607051563BT T607061563BT T607051553BT T607061553BT T607081553BT	S79 S79 S79 S79 S79
125PM30 125PM50 125PM60 125PM80 125PM100	s s s s	IR IR IR IR	T627032064DN T627052064DN T627062064DN T627082064DN T627102064DN	\$87 \$87 \$87 \$87 \$87 \$87	150K120A 150KR10A 150KR15A 150KR20A 150KR25A	R R R R	IR IR IR IR	R5001215 R5110115 R511+115 R5110215 R511+215	R23 R23 R23 R23 R23	151RL100 151R110 151RL120 151RM50 151RM60	s s s s	IR IR IR IR	T607101553BT T607111553BT T607121553BT T607051563BT T607061563BT	S79 S79 S79 S79 S79
125PM110 125PM120 140PAL10 140PAL20 140PAL30	s s s s	IR IR IR IR	T627112064DN T627122064DN T627012064DN T627022064DN T627032064DN	S87 S87 S87 S87 S87	150KR30A 150KR40A 150KR50A 150KR60A 150KR70A	R R R R	IR IR IR IR	R5110315 R5110415 R5110515 R5110615 R5110715	R23 R23 R23 R23 R23	151RM80 151RM100 151RM110 151RM120 151-XX	S S S T	IR IR IR IR WES	T607081563BT T607101563BT T607111563BT T607121563BT 151-XX	S79 S79 S79 S79 T15
140PAL40 140PAL50 140PAL60 140PAM10 140PAM20	s s s s	IR IR IR IR	T627042064DN T627052064DN T627062064DN T627012084DN T627022084DN	S87 S87 S87 S87 S87	150KR80A 150KR90A 150KR100A 150KR120A 150L10A	R R R R	IR IR IR IR	R5110815 R5110915 R5111015 R5011215 R5D00115	R23 R23 R23 R23 R23	152-XX 153-XX 154-XX 156H21 161RL10	T T T T S	WES	152-XX 153-XX 154-XX CF T607011864BT	T15 T17 T17 CF S79
140PAM30 140PAM40 140PAM50 140PAM60 140PL10	s s s s s	IR IR IR IR	T627032084DN T627042084DN T627052084DN T627062084DN T627012064DN	S87 S87 S87 S87 S87	150L15A 150L20A 150L25A 150L30A 150L40A	R R R R	IR IR IR IR	R5D0+115 R5D00215 R5D0+215 R5D00315 R5D00415	R23 R23 R23 R23 R23	161RL20 161RL30 161RL40 161RL50 161RL60	s s s s	IR IR IR IR	T607021864BT T607031864BT T607041864BT T607051864BT T607061864BT	S79 S79 S79 S79 S79
140PL20 140PL30 140PL40 140PL50 140PL60	SSSSS	IR IR IR IR	T627022064DN T627032064DN T627042064DN T627052064DN T627062064DN	S87 S87 S87 S87 S87	150L50A 150L60A 150L70A 150L80A 150L90A	R R R R	IR IR IR IR	R5D00515 R5D00615 R5D00715 R5D00815 R5D00915	R23 R23 R23 R23 R23	161RM10 161RM20 161RM30 161RM40 161RM50	s s s s	IR IR IR IR	T607011884BT T607021884BT T607031884BT T607041884BT T607051884BT	\$79 \$79 \$79 \$79 \$79
140PM10 140PM20 140PM30 140PM40 140PM50	s s s s	IR IR IR IR	T627012084DN T627022084DN T627032084DN T627042084DN T627052084DN	\$87 \$87 \$87 \$87 \$87 \$87	150L100A 150L120A 150LR10A 150LR15A 150LR20A	R R R R	IR IR IR IR	R5D01015 R5C01215 R5D10115 R5D1+115 R5D10215	R23 R23 R23 R23 R23	161RM60 163-XX 164-XX 171C10 171C10B	S T T S S	IR WES WES SYN SYN	T607061884BT 163-XX 164-XX T620012004DN T620012004DN	S79 T23 T23 S43 S43



Part Number	Type Mfgr.	Suggested (22) Replacement	Page	Part Number	Туре	Mfgr.	Suggested (22) Replacement	Page	Part Number	Туре	Mfgr.	Suggested W Replacement	Page
171C15 171C15B 171C20 171C20B 171C25 171C25B	S SYN S SYN S SYN S SYN S SYN S SYN	T620022004DN T620022004DN T620022004DN T620022004DN T620032004DN T620032004DN	S43 S43 S43 S43 S43 S43	202V 202Z 202ZD 203A 203B	R R R R		202V 202Z 202ZD 203A 203B	CF CF CF CF	213P51 213S 213S51 213V 213V51	s s s s	WES WES WES WES	213P51 213S 213S51 213V 213V51	CF CF CF CF
171C30 171C30B 171C35 171C35B 171C40	S SYN S SYN S SYN S SYN S SYN	T620032004DN T620032004DN T620042004DN T620042004DN T620042004DN	S43 S43 S43 S43 S43	203D 203F 203H 203K 203M	R R R R	WES WES WES WES	203D 203F 203H 203K 203M	CF CF CF CF	213Z 213Z51 218A 218B 218C	s s s s	WES WES WES	213Z 213Z51 218A 218B 218C	CF CF CF CF
171C40B 171C45 171C45B 171C50 171C50B	S SYN S SYN S SYN S SYN S SYN	T620042004DN T620052004DN T620052004DN T620052004DN T620052004DN	S43 S43 S43 S43 S43	203P 203S 203V 203Z 203ZD	R R R R	WES WES WES WES	203P 203S 203V 203Z 203ZD	CF CF CF CF	218D 218E 218F 218H 218K	s s s s	WES WES	218E 218F	CF CF CF CF
171C60 171C60B 171C70 171C70B 171C80	S SYN S SYN S SYN S SYN S SYN	T620062004DN T620062004DN T620072004DN T620072004DN T620082004DN	S43 S43 S43 S43 S43	209A 209B 209C 209D 209E	s s s s	WES	209A 209B 209C 209D 209E	CF CF CF CF	218M 218P 218S 218V 218Z	s s s s	WES WES	218M 218P 218S 218V 218Z	CF CF CF CF
171C80B 171C90 171C90B 171C100 171C100B	S SYN S SYN S SYN S SYN S SYN	T620082004DN T620092004DN T620092004DN T620102004DN T620102004DN	S43 S43 S43 S43 S43	209F 209H 209K 209M 209P	s s s	WES WES WES WES	209F 209H 209K 209M 209P	CF CF CF CF	218ZB 218ZD 218ZF 218ZH 218ZK	s s s s	WES WES WES	218ZB 218ZD 218ZF 218ZH 218ZK	CF CF CF CF
171C110 171C110B 171C120 171C120B 171C130	S SYN S SYN S SYN S SYN S SYN	T620112004DN T620112004DN T620122004DN T620122004DN T620132004DN	S43 S43 S43 S43 S43	209S 209V 209Z 209ZB 209ZD	s s s	WES WES WES WES	209S 209V 209Z 209ZB 209ZD	CF CF CF CF	218ZM 219A 219A51 219B 219B51	<b>S S S S S</b>	WES WES WES	218ZM 219A 219A51 219B 219B51	CF CF CF CF
171C130B 171C140 171C140B 171C150 171C150B	S SYN S SYN S SYN S SYN S SYN	T620142002DN T620142004DN T620152004DN	S43 S43 S43	209ZF 209ZH 209ZK 209ZM 211A	s s s s	WES WES WES	209ZF 209ZH 209ZK 209ZM 211A	CF CF CF CF	219C 219C51 219D 219D51 219E	s s s s	WES WES	219C 219C51 219D 219D51 219E	CF CF CF CF
175PA50 175PA60 175PA80 175PA100 175PA110	S IR S IR S IR S IR	T620052003DN T620062003DN T620082003DN T620102003DN T620112003DN	S43 S43 S43	211B 211C 211D 211E 211F	s s s s	WES WES		CF CF CF CF	219E51 219F 219F51 219H 219H51	s s s s	WES WES	219E51 219F 219F51 219H 219H51	CF CF CF CF
175PA120 175PA130 175PA140 175PA150 175RA50	S IR S IR S IR S IR	T620122003DN T620132003DN T620142003DN T620152003DN T610051804BT	S43 S43 S43	211H 211K 211M 211P 211S	s s s s	WES WES WES	211H 211K 211M 211P 211S	CF CF CF CF	219K 219K51 219M 219M51 219P	s s s s	WES WES	219K 219K51 219M 219M51 219P	CF CF CF CF
175RA60 175RA80 175RA100 175RA110 175RA120	S IR S IR S IR S IR	T610061804BT T600081804BT T600101804BT T600111804BT T600121804BT	S33 S33 S33	211V 211Z 211ZB 211ZD 211ZD	s s s	WES WES WES	211V 211Z 211ZB 211ZD 211ZF	CF CF CF CF	219P51 219S 219S51 219V 219V51	S S S S	WES WES WES	219P51 219S 219S51 219V 219V51	CF CF CF CF
200UB5 200UB10 200UB20 200UB30 200UB40	R IR R IR R IR R IR	R6100020 R6100120 R6100220 R6100320 R6100420	R31 R31 R31 R31 R31	211ZH 211ZK 211ZM 212A 212B	s s s s	WES WES	211ZH 211ZK 211ZM 212A 212B	CF CF CF CF	219Z 219Z51 219ZB 219ZB 219ZB51 219ZD	S S S S S	WES WES WES	219Z 219Z51 219ZB 219ZB51 219ZD	CF CF CF CF
200UB50 200UB60 200UBR5 200UBR10 200UBR20	R IR R IR R IR R IR R IR	R6100520 R6100620 R6110020 R6110120 R6110220	R31 R31 R31 R31 R31	212C 212D 212E 212F 212H	s s s s	WES WES WES	212C 212D 212E 212F 212H	CF CF CF CF	219ZD51 219ZF 219ZF51 219ZH 219ZH51	\$ \$ \$ \$	WES WES	219ZF51	CF CF CF CF
200UBR30 200UBR40 200UBR50 200UBR60 201A	R IR R IR R IR R IR R WE	R6110320 R6110420 R6110520 R6110620 S 201A	R31 R31 R31 R31 CF	212K 212M 212P 212S 212V	s s s s	WES WES WES	212K 212M 212P 212S 212V	CF CF CF CF	219ZK 219ZK51 219ZM 219ZM51 220A	s s s s	WES WES	219ZK 219ZK51 219ZM 219ZM51 22OA	CF CF CF CF
201B 201D 201F 201H 201K	R WE	S 201B S 201D S 201F S 201H S 201K	CF CF CF CF	212Z 213A 213A51 213B 213B51	s s s s s	WES WES	212Z 213A 213A51 213B 213B51	CF CF CF CF	220B 220D 220F 220H 220K	s s s s	WES	220B 220D 220F 220H 220K	CF CF CF CF
201M 201P 201S 201V 201Z	R WE	S 201M S 201P S 201S S 201V S 201Z	CF CF CF CF	213C 213C51 213D 213D51 213E	s s s s	WES	213C 213C51 213D 213D51 213E	CF CF CF CF	220M 220P 220S 220V 220Z	s s s s	WES	220M 220P 220S 220V 220Z	CF CF CF CF
201ZD 202A 202B 202D 202F	R WE	S 201ZD S 202A S 202B S 202D S 202F	CF CF CF CF	213E51 213F 213F51 213H 213H51	s s s s	WES WES	213E51 213F 213F51 213H 213H51	CF CF CF CF	220ZB 220ZD 220ZF 220ZH 220ZK	s s s s	WES WES	220ZB 220ZD 220ZF 220ZH 220ZK	CF CF CF CF
202H 202K 202M 202P 202S	R WE R WE	S 202H S 202K S 202M S 202P S 202S	CF CF CF CF	213K 213K51 213M 213M51 213P	s s s s	WES WES	213K 213K51 213M 213M51 213P	CF CF CF CF	220ZM 221ZB 221ZF 221ZF 221ZH 221ZK	s s s s	WES	6 220ZM 6 CF 6 CF 6 CF 6 CF	CF CF CF CF



Part Number 221ZM 222A 222B 222C 222D	Type Mfgr. Replaceme S WES CF S WES 222A S WES 222B S WES 222C S WES 222C S WES 222D		Part Number 229E 229F 229H 229K 229M	Suggested © Replacement S WES 229E S WES 229F S WES 229H S WES 229K S WES 229M	Page Part Number  CF 242T  CF 244T  CF 250A  CF 250A51  CF 250B	S WCE CF C S WCE CF C S WES 250A C S WES 250A51	Page CF CF CF CF
222F 222H 222K 222M 222P	S WES 222F S WES 222H S WES 222K S WES 222M S WES 222P	CF CF CF CF	229P 229S 229V 229Z 229ZB	S WES 229P S WES 229S S WES 229V S WES 229Z S WES 229ZB	CF 250B51 CF 250C CF 250C51 CF 250D CF 250D51	S WES 250C C S WES 250C51 C S WES 250D C	CF CF CF CF
222S 222V 222Z 222ZB 222ZD	S WES 222S S WES 222V S WES 222Z S WES 222ZB S WES 222ZD	CF CF CF CF	229ZD 229ZF 229ZH 229ZK 229ZM	S WES 229ZD S WES 229ZF S WES 229ZH S WES 229ZK S WES 229ZM	CF 250E CF 250E51 CF 250F CF 250F CF 250F51 CF 250JB1P	S WES 250E51 C S WES 250F C S WES 250F51 C	CF CF CF A3
222ZF 222ZH 222ZK 222ZM 223D	S WES 222ZF S WES 222ZH S WES 222ZK S WES 222ZM S WES 223D	CF CF CF CF	231T 233T 234T 240A 240B	S WCE CF S WCE CF S WCE CF S WES T4000022 S WES T4000122	CF 250JB2P CF 250JB3P CF 250JB4P S13 250JB5P S13 250JB6P	A IR MB12A25V30 A A IR MB12A25V40 A A IR MB12A25V50 A	43 43 43 43 43
223F 223H 223K 223M 223P	S WES 223F S WES 223H S WES 223K S WES 223M S WES 223P	CF CF CF CF	240D 240F 240H 240M 240P	S WES T4000222 S WES T4000322 S WES T4000422 S WES T4000622 S WES T4000722	\$13         250JB05P           \$13         250K           \$13         250K51           \$13         250M           \$13         250M51	S WES 250K C S WES 250K51 C S WES 250M C	A3 CF CF CF CF
223S 223V 223Z 223ZB 223ZD	S WES 223S S WES 223V S WES 223Z S WES 223ZB S WES 223ZD	CF CF CF CF	240PAL10 240PAL20 240PAL30 240PAL40 240PAL50	S IR T627012564DN S IR T627022564DN S IR T627032564DN S IR T627042564DN S IR T627052564DN	N S87 250P51 N S87 250PA50 N S87 250PA60	S WES 250P51 C S IR T620053004DN S S IR T620063004DN S	CF CF S43 S43 S43
223ZF 223ZH 223ZK 223ZM 224B	S WES 223ZF S WES 223ZH S WES 223ZK S WES 223ZM S WES 224B	CF CF CF CF	240PAL60 240PAL80 240PAL100 240PAM10 240PAM20	S IR T627062564DN S IR T627082564DN S IR T627102564DN S IR T627012584DN S IR T627022584DN	N S87 250PA110 N S87 250PA120 N S87 250PA130	S IR T620113004DN S S IR T620123004DN S S IR T620133004DN S	643 643 643 643 643
224D 224F 224H 224K 224M	S WES 224D S WES 224F S WES 224H S WES 224K S WES 224M	CF CF CF CF	240PAM30 240PAM40 240PAM50 240PAM60 240PAM80	S IR T627032584DN S IR T627042584DN S IR T627052584DN S IR T627062584DN S IR T627082584DN	S87 250PA160 S87 250PAC10 S87 250PAC20	S IR T620163004DN S S IR T620013004DN S S IR T620023004DN S	543 543 543 543 543
224P 224S 224V 224Z 224ZD	S WES 224P S WES 224S S WES 224V S WES 224Z S WES 224ZD	CF CF CF CF	240S 240V 240M 240Z 240ZB	S WES T4000822 S WES T4000922 S WES T4000622 S WES T4001022 S WES T4001122	\$13     250PAC40       \$13     250PAC50       \$13     250PAC60       \$13     250PAL10       \$13     250PAL20	S IR T620053004DN S S IR T620063004DN S S IR T627012554DN S	543 543 543 587 587
224ZH 224ZM 227A 227B 227C	S WES 224ZH S WES 224ZM S WES 227A S WES 227B S WES 227C	CF CF CF CF	240ZD 241C10 241C10B 241C15 241C15B	S WES T4001222 S SYN T620013004DN S SYN T620023004DN S SYN T620023004DN S SYN T620023004DN	S43 250PAL50 S43 250PAL60	S IR T627042554DN S S IR T627052554DN S S IR T627062554DN S	587 587 587 587 587
227D 227E 227F 227H 227K	S WES 227D S WES 227E S WES 227F S WES 227H S WES 227H	CF CF CF CF	241C20 241C20B 241C25 241C25B 241C30	S SYN T620023004DN S SYN T620023004DN S SYN T620033004DN S SYN T620033004DN S SYN T620033004DN	S43 250PAM30 S43 250PAM40 S43 250PAM50	S IR T6270325B4DN S S IR T6270425B4DN S S IR T6270525B4DN S	S87 S87 S87 S87 S87
227M 227P 227S 227V 227Z	S WES 227M S WES 227P S WES 227S S WES 227V S WES 227V	CF CF CF CF CF	241C30B 241C35 241C35B 241C40 241C40B	S SYN T620033004DN S SYN T620043004DN S SYN T620043004DN S SYN T620043004DN S SYN T620043004DN	I S43 250RA20 I S43 250RA30 I S43 250RA40	S IR T700022504BY S S IR T700032504BY S S IR T700042504BY S	S37 S37 S37 S37 S37
227ZB 227ZD 227ZF 227ZH 227ZK	S WES 227ZB S WES 227ZD S WES 227ZF S WES 227ZH S WES 227ZK	CF CF CF CF	241C45 241C45B 241C50 241C50B 241C60	S SYN T620053004DN S SYN T620053004DN S SYN T620053004DN S SYN T620053004DN S SYN T620063004DN	N S43 250RA80 N S43 250RA100 N S43 250RA110	S IR T700082504BY S S IR T700102504BY S S IR T700112504BY S	S37 S37 S37 S37 S37
228A 228B 228D 228F 228H	S WES 228A S WES 228B S WES 228D S WES 228F S WES 228H	CF CF CF CF	241C60B 241C70 241C70B 241C80 241C80B	S SYN T620063004DN S SYN T620073004DN S SYN T620073004DN S SYN T620083004DN S SYN T620083004DN	N S43 250RA140 N S43 250RA150 N S43 250RA160	S IR T700142504BY S S IR T700152504BY S S IR T700162504BY S	537 537 537 537 537
228K 228M 228P 228S 228V	S WES 228K S WES 228M S WES 228P S WES 228S S WES 228V	CF CF CF CF	241C90 241C90B 241C100 241C100B 241C110	S SYN T620093004DI S SYN T620093004DI S SYN T620103004DI S SYN T620103004DI S SYN T620113004DI	N S43 250RL80 N S43 250RL100 N S43 250RL110	S IR T707083024BY S S IR T707103024BY S S IR T707113024BY S	S81 S81 S81 S81 S81
228Z 228ZB 228ZD 228ZF 228ZF	S WES 228Z S WES 228ZB S WES 228ZD S WES 228ZF S WES 228ZH	CF CF CF CF	241C110B 241C120 241C120B 241C130 241C130B	S SYN T620113004DI S SYN T620123004DI S SYN T620123004DI S SYN T620133004DI S SYN T620133004DI	N S43 250S51 N S43 250V N S43 250V51	S WES 250S51 C S WES 250V C S WES 250V51 C	CF CF CF CF
228ZK 228ZM 229A 229B 229D	S WES 228ZK S WES 228ZM S WES 229A S WES 229B S WES 229D	CF CF CF	241C140 241C140B 241C150 241C150B 241T	S SYN T620143004DI S SYN T620143004DI S SYN T620153004DI S SYN T620153004DI S WCE CF	N S43 250ZB N S43 250ZB51 N S43 250ZD CF 250ZD51	S WES 250ZB C S WES 250ZB51 C S WES 250ZD C	CF CF CF CF



Part Number	Туј	e Mfg	Suggested &	Page	Part Number	Тур	e Mfgr	Suggested (22)	Page	Part Number	Тур	e Mfg	Suggested <b>(</b> r. Replacement	
250ZF 250ZF51 250ZH 250ZH51 250ZK	s s s s	WES WES WES WES	250ZF51 250ZH 250ZH51	CF CF CF CF	254B51 254C 254C51 254D 254D51	s s s s	WES WES WES	254B51 254C 254C51 254D 254D51	CF CF CF CF	263V 263Z 263ZB 263ZD 263ZF	s s s s		263ZD	CF CF CF CF
250ZK51 250ZM 250ZM51 251A 251A51	s s s s	WES WES WES WES	250ZM 250ZM51	CF CF CF CF	254E 254E51 254F 254F 254F51 254H	s s s s	WES WES WES		CF CF CF CF	263ZH 263ZK 263ZM 270A 270B	s s s s	WES WES WES WES	263ZK 263ZM	CF CF CF CF
251B 251B51 251C 251C51 251D	s s s s	WES WES WES WES	251B51 251C 251C51	CF CF CF CF	254H51 254K 254K51 254P 254P51	S S S S	WES WES WES WES	254K 254K51	CF CF CF CF	270C 270P 270S 270V 270Y30B60	SSSS	WES	270C 270P 270S 270V 270Y30B60	CF CF CF CF
251D51 251E 251E51 251F51 251F51	S S S S	WES WES WES WES	251E 251E51	CF CF CF CF	254V 254V51 254Z 254Z51 254ZB	S S S S S	WES WES WES WES	254V 254V51 254Z 254Z51 254ZB	CF CF CF CF	270Y30B70 270Y30B80 270Y30B90 270Y30C10 270Y30C11	s s s s	WES	270Y30B70 270Y30B80 270Y30B90 270Y30C10 270Y30C11	CF CF CF CF
251H 251H51 251K 251K 251K51 251M	SSSS	WES WES WES WES	251K 251K51	CF CF CF CF	254ZB51 254ZF 254ZF51 254ZH 254ZH	s s s s			CF CF CF CF	270Y30C12 270Y30C13 270Y30C14 270Y30C15 270Y30C16	s s s s	WES WES WES	270Y30C12 270Y30C13 270Y30C14 270Y30C15 270Y30C16	CF CF CF CF
251M51 251P 251P51 251S 251S51	SSSS	WES WES WES WES		CF CF CF CF	254ZK 254ZK51 256T 258T 260A	s s s s	WES WCE WCE	CF	CF CF CF CF	270Y30C17 270Y30C18 270Y30C19 270Y30C20 270Z	s s s s	WES WES	270Y30C17 270Y30C18 270Y30C19 270Y30C20 270Z	CF CF CF CF
251UL40S15 251UL40S20 251UL40S30 251UL60S15 251UL60S20	S R R R	IR IR IR IR	R6020425FJ R6020425EJ R6020425CJ R6020625FJ R6020625EJ	R63 R63 R63 R63 R63	260B 260D 260F 260H 260K	s s s s	WES WES WES WES	260B 260D 260F 260H 260K	CF CF CF CF	270ZB 270ZD 270ZF 270ZH 270ZK	S S S S	WES WES	270ZB 270ZD 270ZF 270ZH 270ZK	CF CF CF CF
251UL60\$30 251UL80\$15 251UL80\$20 251UL80\$30 251UL100\$15	R R R R	IR IR IR IR	R6020625CJ R6020825FJ R6020825EJ R6020825CJ R6021025FJ	R63 R63 R63 R63 R63	260M 260P 260RL10 260RL20 260RL30	s s s s	WES WES IR IR IR	260M 260P T707013364BY T707023364BY T707033364BY	CF CF S81 S81 S81	271A 271B 271C 271D 271F	S S S S S	WES	271A 271B 271C 271D 271F	CF CF CF CF
251UL100S20 251UL100S30 251UL120S20 251UL120S30 251UL130S30	R R R R	IR IR IR IR	R6021025EJ R6021025CJ R6021225EJ R6021225CJ R6021325CJ	R63 R63 R63 R63 R63	260RL40 260RL50 260RL60 260RM10 260RM20	S S S S S	IR IR IR IR	T707043364BY T707053364BY T707063364BY T707013384BY T707023384BY	S81 S81 S81 S81 S81	271H 271K 271M 271P 271S	s s s s	WES WES WES	271H 271K 271M 271P 271S	CF CF CF CF
251UL140S30 251UL150S30 251UL160S30 251ULR40S15 251ULR40S20	R R R R	IR IR IR IR	R6021425CJ R6021525CJ R6021625CJ R6030425FJ R6030425EJ	R63 R63 R63 R63	260RM30 260RM40 260RM50 260RM60 260V	s s s s	IR IR IR IR WES	T707033384BY T707043384BY T707053384BY T707063384BY 260V	S81 S81 S81 S81 CF	271V 271Z 271ZB 271ZD 271ZF	\$ \$ \$ \$	WES WES WES	271V 271Z 271ZB 271ZD 271ZF	CF CF CF CF
251ULR40S30 251ULR60S15 251ULR60S20 251ULR60S30 251ULR80S15	R R R R	IR IR IR IR	R6030425CJ R6030625FJ R6030625EJ R6030625CJ R6030825FJ	R63 R63 R63 R63 R63	260Z 260ZB 260ZD 260ZF 260ZH	s s s s	WES	260Z 260ZB 260ZD 260ZF 260ZH	CF CF CF CF	271ZH 272	s s s s	WES WES WES	271ZH CF 272A 272B 272C	CF CF CF CF
251ULR80S20 251ULR80S30 251ULR100S15 251ULR100S20 251ULR100S30	R R R R	IR IR IR IR	R6030825EJ R6030825CJ R6031025FJ R6031025EJ R6031025CJ	R63 R63 R63 R63 R63	260ZK 260ZM 261	s s s s		260ZK 260ZM CF 261A 261B	CF CF CF CF	272D 272F 272H 272K 272M	s s s s			CF CF CF CF
251ULR120S20 251ULR120S30 251ULR130S30 251ULR140S30 251ULR150S30	R R R R	IR IR IR IR	R6031225EJ R6031225CJ R6031325CJ R6031425CJ R6031525CJ	R63 R63 R63 R63 R63	261 D 261 F 261 H 261 K 261 M	\$ \$ \$ \$	WES	261D 261F 261H 261K 261M	CF CF CF CF CF	272P 272S 272V 272Z 272ZB	s s s s	WES WES	272P 272S 272V 272Z 272ZB	CF CF CF CF
251ULR160S30 251V 251V51 251Z 251Z51	R S S S	IR WES WES WES		R63 R63 CF CF CF	261 P 261 S 261 V 261 Z 261 ZB	s s s s	WES WES WES	261P 261S 261V 261Z 261ZB	CF CF CF CF	272ZD 272ZF 272ZH 273	s s s s	WES WES WES	272ZD 272ZF 272ZH CF 273A	CF CF CF CF
251ZB 251ZB51 251ZD 251ZD51 251ZF	s s s s	WES WES WES	251ZB 251ZB51 251ZD 251ZD 251ZD51 251ZF	CF CF CF CF	261ZD 261ZF 261ZH 261ZK 261ZM	S S S S S	WES	261ZD 261ZF 261ZH 261ZK 261ZM	CF CF CF CF CF	273B 273D 273F 273H 273K	s s s s	WES WES WES	273B 273D 273F 273H 273K	CF CF CF CF
251ZF51 251ZH 251ZH51 251ZK 251ZK	SSSS	WES WES WES	251ZF51 251ZH 251ZH51 251ZK 251ZK 251ZK51	CF CF CF CF	263A 263B 263C 263E 263F	s s s s	WES WES	263A 263B 263C 263E 263F	CF CF CF CF	273M 273P 273S 273V 273Z	s s s s	WES'	273M 273P 273S 273V 273Z	CF CF CF CF
251ZM 251ZM51 254A 254A51 254B	s s s	WES WES WES	251ZM 251ZM51 254A 254A51 254B	CF CF CF CF	263H 263K 263M 263P 263S	s s s s	WES WES WES	263H 263K 263M 263P 263S	CF CF CF CF	273ZB 273ZD 273ZF 273ZH 273ZK	S S S S S	WES WES	273ZB 273ZD 273ZF 273ZH 273ZK	CF CF CF CF



Part Number	Type Mfg	Suggested <b></b> jr. Replacement	Page	Part Number	Туре	Mfgr.	Suggested (22) Replacement	Page	Part Number	Type Mfgr	Suggested (W) Replacement Page
273ZM 275U5A 275U10A 275U15A 275U20A	S WES R IR R IR R IR R IR	S 273ZM IN4044 IN4045 IN4046 IN4047	CF R29 R29 R29 R29	283ZD 283ZF 283ZH 286B 286D	s s s s	WES WES WES WES	283ZF 283ZH 286B	CF CF CF CF	300RA130 300RA140 300RA150 300RA160 300RA170	S IR S IR S IR S IR	T700133004BY S37 T700143004BY S37 T700153004BY S37 T700163004BY S37 T700173004BY S37
275U25A 275U30A 275U40A 275U50A 275U60A	R IR R IR R IR R IR	IN4048 IN4049 IN4050 IN4051 IN4052	R29 R29 R29 R29 R29	286F 286H 286K 286M 286P	S S S S	WES WES WES WES	286H 286K 286M	CF CF CF CF	300RB10 300RB20 300RB30 300RB40 300RB50	S IR S IR S IR S IR	T700013004BY S37 T700023004BY S37 T700033004BY S37 T700043004BY S37 T700053004BY S37
275U7OA 275U8OA 275U9OA 275U1OOA 275U11OA	R IR R IR R IR R IR R IR	IN4053 IN4054 IN4055 IN4056 R6001128	R29 R29 R29 R29 CF	286S 286V 286Y30B60 286Y30B70 286Y30B80	s s s s	WES WES WES WES	286V 286Y30B60 286Y30B70	CF CF CF CF	300RB60 300RB80 300RB100 300RB110 300RB120	S IR S IR S IR S IR	T700063004BY S37 T700083004BY S37 T700103004BY S37 T700113004BY S37 T700123004BY S37
275U12OA 275UR5A 275UR1OA 275UR15A 275UR2OA	R IR R IR R IR R IR R IR	R6001228 IN4044R IN4045R IN4046R IN4047R	CF R29 R29 R29 R29	286Y30B90 286Y30C10 286Y30C11 286Y30C12 286Y30C13	s s s s	WES WES WES WES	286Y30C10 286Y30C11 286Y30C12	CF CF CF CF	300RB130 300RB140 300RB150 300RB160 300RB170	S IR S IR S IR S IR	T700133004BY S37 T700143004BY S37 T700153004BY S37 T700163004BY S37 T700173004BY S37
275UR25A 275UR30A 275UR40A 275UR50A 275UR60A	R IR R IR R IR R IR	IN4048R IN4049R IN4050R IN4051R IN4052R	R29 R29 R29 R29 R29	286Y30C14 286Y30C15 286Y30C16 286Y30C17 286Y30C18	s s s s	WES WES WES WES	286Y30C15 286Y30C16 286Y30C17	CF CF CF CF	300U10A 300U15A 300U20A 300U25A 300U30A	R IR R IR R IR R IR	R6100130 R31 R610+130 R31 R6100230 R31 R610+230 R31 R6100330 R31
275UR70A 275UR80A 275UR90A 275UR100A 275UR110A	R IR R IR R IR R IR	IN4053R IN4054R IN4055R IN4056R R6011128	R29 R29 R29 R29 CF	286Y30C19 286Y30C20 286Z 286ZD 286ZH	s s s s	WES WES WES WES	286Y30C20 286Z 286ZD	CF CF CF CF	300U40A 300U50A 300U60A 300U70A 300U80A	R IR R IR R IR R IR	R6100430 R31 R6100530 R31 R6100630 R31 R6100730 R31 R6100830 R31
275UR120A 276A 276B 276D 276F	R IR S WES S WES S WES	S 276B S 276D	CF CF CF CF	286ZM 286ZP 288B 288D 288F	s s s s	WES WES WES WES	286ZP 288B 288D	CF CF CF CF	300U90A 300U100A 300U120A 300UR10A 300UR15A	R IR R IR R IR R IR	R6100930 R31 R6101030 R31 R6001230 R31 R6110130 R31 R611+130 R31
276H 276K 276M 276P 276S	S WES S WES S WES S WES	S 276K S 276M S 276P	CF CF CF CF	288H 288K 288M 288P 288S	s s s s	WES WES WES WES	288K 288M 288P	CF CF CF CF	300UR20A 300UR25A 300UR30A 300UR40A 300UR50A	R IR R IR R IR R IR	R6110230 R31 R611+230 R31 R6110330 R31 R6110430 R31 R6110530 R31
276V 276Z 276ZB 276ZF 276ZH	S WES S WES S WES S WES	S 276Z S 276ZB S 276ZF	CF CF CF CF	288V 288Z 288ZD 288ZH 288ZM	s s s s	WES WES WES WES	288ZD 288ZH	CF CF CF CF	300UR60A 300UR70A 300UR80A 300UR90A 300UR100A	R IR R IR R IR R IR	R6110630 R31 R6110730 R31 R6110830 R31 R6110930 R31 R6111030 R31
276ZK 276ZM 278B 278D 278F	S WES	5 276ZM 5 278B 5 278D	CF CF CF CF	300A 300AR 300B 300BR 300C	R R R R	WES WES WES		R23 R23 R23 R23 R23	300UR120A 301C10 301C10B 301C15 301C15B	R IR S SYI S SYI S SYI S SYI	T620013004DN S43
278H 278K 278M 278P 278S	S WES S WES S WES S WES	S 278K S 278M S 278P	CF CF CF CF	300CR 300D 300DR 300E 300ER	R R R R	WES WES WES WES	R5110210 R510+210	R23 R23 R23 R23 R23	301C20 301C20B 301C25 301C25B 301C30	S SYN S SYN S SYN S SYN S SYN	T620023004DN S43 T620033004DN S43 T620033004DN S43
278V 278Z 278ZH 278ZM 282A	S WES S WES S WES S WES	S 278Z S 278ZH S 278ZM	CF CF CF CF	300F 300FR 300G 300GR 300H	R R R R	WES WES WES		R23 R23 R23 R23 R23	301 C30B 301 C35 301 C35B 301 C40 301 C40B	8 SYN 8 SYN 8 SYN 8 SYN 8 SYN	T620043004DN S43 T620043004DN S43 T620043004DN S43
282B 282D 282H 282K 282M	S WES S WES S WES S WES	S 282D S 282H	CF CF CF CF	300HR 300K 300KR 300PA50 300PA60	R R S S	WES WES IR IR		R23 R23 R23 S43 S43	301C45 301C45B 301C50 301C50B 301C60	9 24 142 2 142 2 142 2 142 2	T620053004DN S43 T620053004DN S43 T620053004DN S43
282P 282S 282V 282Z 282ZB	S WES	S 282V	CF CF CF CF	300PA80 -300PA100 300PA110 300PA120 300PAC10	s s s s	IR IR IR IR	T620083004DN T620103004DN T620113004DN T620123004DN T620013004DN	S43 S43	301 C60B 301 C70 301 C70B 301 C80 301 C80B	S SYI S SYI S SYI S SYI S SYI	T620073004DN \$43 T620073004DN \$43 T620083004DN \$43
282ZD 282ZF 282ZH 282ZK 283A	S WES S WES S WES S WES	S 282ZF S 282ZH S 282ZK	CF CF CF CF	300PAC20 300PAC30 300PAC40 300PAC50 300PAC60	s s s s	IR IR IR IR	T620023004DN T620033004DN T620043004DN T620053004DN T620063004DN	S43 S43 S43	301C90 301C90B 301C100 301C100B 301C110	S SYN S SYN S SYN S SYN S SYN	T620093004DN S43 T620103004DN S43 T620103004DN S43
283B 283C 283D 283H 283M	S WES S WES S WES S WES	S 283C S 283D S 283H	CF CF CF CF	300RA10 300RA20 300RA30 300RA40 300RA50	S S S S	IR IR IR IR	T700013004BY T700023004BY T700033004BY T700043004BY T700053004BY	S37 S37 S37 S37 S37	301C110B 301C120 301C120B 301C130 301C130B	S SYN S SYN S SYN S SYN S SYN	I T620123004DN S43 I T620123004DN S43 I T620133004DN S43
283P 283S 283V 283Z 283ZB	S WES S WES S WES S WES	S 283S S 283V S 283Z	CF CF CF CF	300RA60 300RA80 300RA100 300RA110 300RA120	s s s s s	IR IR IR IR	T700063004BY T700083004BY T700103004BY T700113004BY T700123004BY	S37 S37 S37 S37 S37	301C140 301C140B 301C150 301C150B 301U80	S SYI S SYI S SYI S SYI R IR	T620143004DN S43



											•			
Part Number	Тур	e Mfg	Suggested <b>2</b> r. Replacement		Part Number T	Гуре	Mfgr.	Suggested (**) Replacement	Page	Part Number	Туре	Mfgr.	Suggested  Replacement	Page
301U100 301U120 301U140 301U160 301U180	R R R R	IR IR IR IR	R6101030 R6001230 R6001430 R6001630 R6001830	R31 R31 R31 R31 R31	327E 327F 327G 327H 327K	R R R R	WES	CF CF CF CF	CF CF CF CF	339A 339B 339C 339D 339E	R R R R	WES WES WES WES	IN3163 IN3164	R31 R31 R31 R31 R31
301U200 301U210 301U220 301U240 301U250	R R R R	IR IR IR IR	R6002030 R6002130 R6002230 R6002430 R6002530	R31 R31 R31 R31 R31	328A 328B 328C 328D 328E	R R R R	WES WES	CF CF CF CF	CF CF CF CF	339F 339G 339H 339K 341A	R R R R	WES WES WES	IN3166 IN3167 IN3168 IN3169 IN1199A	R31 R31 R31 R31 R13
301UR80 301UR100 301UR120 301UR140 301UR160	R R R R	IR IR IR IR	R6110830 R6111030 R6011230 R6011430 R6011630	R31 R31 R31 R31 R31	328F 328G 328H 328K 329A	R R R R R	WES WES	CF CF CF IN3260	CF CF CF CF R27	341B 341D 341F 341H 341M	R R R R	WES WES WES	IN1 200A IN1 202A IN1 204A IN1 204A IN1 206A	R13 R13 R13 R13 R13
301UR180 301UR200 301UR210 301UR220 301UR240	R R R R	IR IR IR IR	R6011830 R6012030 R6012130 R6012230 R6012230	R31 R31 R31 R31 R31	329B 329C 329D 329E 329F	R R R R	WES WES	IN3261 IN3262 IN3263 IN3264 IN3265	R27 R27 R27 R27 R27	344T 346A 346B 346D 346F	S R R R	WES WES	T620XX3004DN IN1199A IN1200AR IN1202AR IN1204AR	S43 R13 R13 R13 R13
301 UR250 302A 302B 302C 302D	R R R R	WES	R6012530 IN1184A IN1184A IN1186A IN1186A	R31 R15 R15 R15 R15	329G 329H 329K 331A 331B	RRRR	WES WES WES WES	IN3266 IN3267 IN3268 CF	R27 R27 R27 CF CF	346H 346M 350PL50 350PL60 350PL80	RRSSS		IN1204AR IN1206AR T727053544DN T727063544DN T727083544DN	R13 R13 S91 S91 S91
302E 302F 302G 302H 302K	R R R R	WES WES WES WES	IN1188A IN1188A IN1188A IN1188A IN1190A	R15 R15 R15 R15 R15	331C 331D 331F 331H 331K	R R R R	WES WES WES	CF CF CF CF	CF CF CF CF	350PL100 350PL110 350PL120 350PM50 350PM60	s s s s s s	IR IR IR IR	T727103544DN T727113544DN T727123544DN T727053554DN T727063554DN	S91 S91 S91 S91 S91
302M 302P 302S 302Z 303A	R R R	WES WES WES	IN1190A R4100840 R4100840 R4101040 IN1184A	R15 R15 R15 R15 R15	331M 331T 332A 332B 332C	R S R R	WES WCE WES WES	CF T620XX2004DN CF CF CF	CF S43 CF CF CF	350PM80 350PM100 350PM110 350PM120 350PM120	S S S S S S	IR IR IR IR	T727083554DN T727103554DN T727103554DN T727113554DN T727123554DN T700013504BY	S91 S91 S91 S91 S91 S37
303B 303D 303F 303H 303M	R R R R	WES WES WES	IN1184A IN1186A IN1188A IN1188A IN1190A	R15 R15 R15 R15 R15	332D 332F 332H 332H 332K 332M	R R R R	WES WES WES	CF CF CF CF	CF CF CF CF	350RA20 350RA30 350RA40 350RA50 350RA60	s s s s s s	IR IR IR IR	T700013504BY T700023504BY T700033504BY T700043504BY T700063504BY	S37 S37 S37 S37 S37 S37
303S 303Z 304A 304B 304D	R R R R	WES WES	R4100840 R4101040 IN1200A IN1200A IN1202A	R15 R15 R13 R13 R13	332T 333A 333B 333C 333D	S R R R	WCE WES WES WES	T620XX2004DN CF CF CF CF	S43 CF CF CF CF	350RA80 350RA100 350RA110 350RA120 350RA130	S S S S S S	IR IR IR IR	T700083504BY T700103504BY T700113504BY T700123504BY T700133504BY	S37 S37 S37 S37 S37
304F 304H 304M 304S 304Z	R R R R	WES WES	IN1204A IN1204A IN1206A IN3671A IN3673A	R13 R13 R13 R13 R13	333F 333H 333K 333M 333T	R R R R	WES WES WES WES	CF CF CF CF T620XX2004DN	CF CF CF CF S43	350RA140 350RA150 350RA160 350RA170 351T	S S S S S	IR IR IR IR	T700143504BY T700153504BY T700163504BY T700173504BY T627XX2544DN	S37 S37 S37 S37 S37 S87
305 318 319A 319B 319C	R R R R	WES WES	CF CF CF CF	CF CF CF CF	334A 334B 334C 334D 334F	R R R R	WCE WES WES WES	CF CF CF CF	CF CF CF CF	352T 353T 356A 356B 356C	S S R R	WCE WCE WES WES	T627XX1584DN T627XX15B4DN IN3260R IN3261R IN3262R	S87 S87 R27 R27 R27
319D 319E 319F 319G 319H	R R R R	WES WES	CF CF CF CF	CF CF CF CF	334H 334K 334M 334T 335A	R R R S R	WES WES WES WCE	CF CF CF T620XX3004DN IN1184AR	CF CF CF	356D 356F 356H 356K 356M	R R R R	WES WES WES	IN3263R IN3265R IN3267R IN3268R IN3268R IN3269R	R27 R27 R27 R27 R27 R27
319K 320C 322A 322B 322C	R D R R	WES WES WES WES	CF CF CF	CF CF CF CF	335B 335D 335F 335H 335M	R R R R	WES WES	IN1184AR IN1186AR IN1188AR IN1188AR IN1190AR	R15 R15 R15 R15 R15	357A 357B 357C 357D 357F	R R R R	WES WES WES	IN3161R IN3162R IN3163R IN3164R IN3166R	R27 R27 R27 R27 R27 R27
322D 322E 322F 322G 322H	R R R R	WES WES WES WES	CF CF CF	CF CF CF CF	336	D R R R R	WES WES	IN1184AR IN1184AR IN1186AR IN1188AR	CF R15 R15 R15 R15	357H 357K 357M 359A 359B	R R R R	WES WES WES	IN3168R IN3169R IN3170R IN4816 IN4817	R27 R27 R27 R9 R9
322K 325 326A 326B 326C	R R R R	WES WES WES WES	CF CF	CF CF CF CF	336H 336M 337A 337B 337D	R R R R	WES WES WES	IN1188AR IN1190AR IN1199AR IN1200AR IN1202AR	R15 R15 R15 R15 R15	359D 359F 359H 359K 359M	R R R R	WES WES WES	IN4818 IN4819 IN4820 IN4821 IN4822	R9 R9 R9 R9
326D 326E 326F 326G 326H	R R R R	WES WES WES WES	CF CF CF	CF CF CF CF	337F 337H 337M 338A 338B	R R R R	WES WES WES	CF	R15 R15 R15 CF CF	359P 359S 359Z 366A 366B	R R R	WES WES WES	IN5052	R9 R9 R9 R13 R13
326K 327A 327B 327C 327D	R R R R	WES WES WES WES	CF CF CF	CF CF CF CF	338C 338D 338F 338H 338K 338M	R R R R R R	WES WES WES WES WES	CF CF CF	CF CF CF CF CF	366D 366F 366H 366K 366M	R R R R	WES WES WES	IN1202A IN1204A IN1204A IN1206A IN1206A	R13 R13 R13 R13 R13



Part Number	Type Mfg	Suggested ∰ gr. Replacement	) Page	Part Number	Туре	Mfgr.	Suggested <b>©</b> Replacement	Page	Part Number	Туре	Mfgr.	Suggested (W) Replacement	Page
367A 367B 367D 367F 367H	R WES R WES R WES	IN1202A	R13 R13 R13 R13 R13	400G 400H 400K 400M 400P	R R R R	WES WES WES WES	400G 400H 400K 400M 400P	CF CF CF CF	408M 409A 409B 409D 409F	R R R R	WES WES WES	IN1200A	R13 R13 R13 R13
367M 368A 368AR 368B 368BR	R WES R WES	IN3615R	R13 R13 R13 R13 R13	400S 400V 400Z 401A 401B	R R R R	WES WES WES WES	400S 400V 400Z 401A 401B	CF CF CF CF	409H 409K 409M 410A 410AR	R R R R	WES WES WES	IN1206A	R13 R13 R13 CF CF
368D 368DR 368F 368FR 368BR	R WES R WES R WES R WES	IN3619 IN3619R	R13 R13 R13 R13 R13	401C 401D 401E 401F 401G	R R R R	WES WES WES WES	401C 401D 401E 401F 401G	CF CF CF CF	410B 410BR 410C 410CR 410D	RRRR	WES WES WES WES	410BR 410C 410CR	CF CF CF CF
368HR 368K 368KR 368M 368MR	R WES R WES R WES R WES	IN3621R IN3622	R13 R13 R13 R13 R13	401H 401K 401M 401P 401PDA40L15	R R R R	WES WES WES IR	401H 401K 401M 401P R6220440FJ	CF CF CF CF R67	410DR 410F 410FR 410H 410HR	R R R	WES WES WES WES	410FR 410H	CF CF CF CF
374A 374B 374C 374D 374F	R WES	R510+110XXZT R5100210XXZT	R23 R23 R23 R23 R23	401PDA40L20 401PDA40L30 401PDA60L15 401PDA60L20 401PDA60L30	R R R R	IR IR IR IR	R6220440EJ R6220440CJ R6220640FJ R6220640EJ R6220640CJ	R67 R67 R67 R67 R67	410K 410M 410MR 410S 410SR	R R R R	WES WES WES WES	410MR 410S	CF CF CF CF
374H 374K 374M 376A 376B	R WES R WES R WES R WES	R5100510XXZT R5100610XXZT 376A	R23 R23 CF CF	401PDA80L15 401PDA80L20 401PDA80L30 401PDA100L20 401PDA100L30	R R R R	IR IR IR IR IR	R6220840FJ R6220840EJ R6220840CJ R6221040EJ R6221040CJ	R67 R67 R67 R67 R67	410Z 410ZR 411A 411AR 411B	R R R R	WES WES WES	410Z 410ZR 411A 411AR 411B	CF CF CF CF
376C 376D 376F 376H 376K	R WES R WES R WES R WES	376D 376F 376H	CF CF CF CF CF	401PDA120L20 401PDA120L30 401PDA130L30 401PDA140L30 401PDA160L30	R R R R	IR IR IR IR	R6221240EJ R6221240CJ R6221340CJ R6221440CJ R6221640CJ	R67 R67 R67 R67 R67	411BR 411C 411CR 411D 411F	R R R R	WES WES	411CR	CF CF CF CF
376M 377A 377B 377C 377D	R WES R WES R WES R WES	377B 377C	CF CF CF CF	401PDL40S15 401PDL40S20 401PDL40S30 401PDL60S15 401PDL60S20	R R R R	IR IR IR IR	R6220440FJ R6220440EJ R6220440CJ R6220640FJ R6220640EJ	R67 R67 R67 R67 R67	411FR 411H 411HR 411K 411K	R R R R	WES WES	411HR	CF CF CF CF
377F 377H 377K 377M 384A	R WES R WES R WES R WES	377H 377K 377M	CF CF CF CF R9	401PDL60S30 401PDL80S15 401PDL80S20 401PDL80S30 401PDL100S20	R R R R	IR IR IR IR	R6220640CJ R6220840FJ R6220840EJ R6220840CJ R6221040FJ	R67 R67 R67 R67 R67	411M 411MR 411S 411SR 411Z	R R R R	WES WES WES	411S	CF CF CF CF
384B 384D 384F 384H 384K	R WES	IN5394 IN5395	R9 R9 R9 R9	401PDL100S30 401PDL120S20 401PDL120S30 401PDL130S30 401S	R R R R	IR IR IR IR	R6221040CJ R6221240EJ R6221240CJ R6221340CJ 401S	R67 R67 R67 R67 CF	411ZR 412A 412B 412D 412H	R R R R	WES WES WES	411ZR IN1184A IN1184A IN1186A IN1188A	CF R15 R15 R15 R15
384M 384S 384Z 387A 387AR	R WES R WES R WES R WES	IN5399 IN3899	R9 R9 R9 R57 R57	401V 401Z 402A 402B 402D	R R R R		401V 401Z R4040070 R4040170 R4040270	CF CF R17 R17 R17	412M 413A 413B 413D 413H	R R R R	WES WES WES	IN1 190A IN1 184A IN1 184A IN1 186A IN1 188A	R15 R15 R15 R15 R15
3878 387BR 387D 387DR 387F	R WES R WES	IN3901	R57 R57 R57 R57 R57	402F 402M 402P 402S 402V	R R R R	WES WES	R4040370 R4040670 R4040770 R4040870 R4040970	R17 R17 R17 R17 R17	413M 416A 416B 416H 416K	R R R R	WES WES WES WES	IN1190A R4040070 R4040170 R4040470 R4040570	R15 R17 R17 R17 R17
387H 387M 389A 389AR 389B	R WES R WES	IN3903 CF IN3909 IN3909R IN3910	R57 R57 R57 R57 R57	402Z 402ZD 403A 403B 403D	R R R R	WES WES WES	R4041070 R4041270 R4100140 R4100140 R4100240	R17 R17 CF CF CF	416M 416P 416S 416V 416Z	R R R R	WES WES	R4040870	R17 R17 R17 R17 R17
389BR 389D 389DR 389H 389M	R WES	IN3910R IN3911 IN3911R IN3912	R57 R57 R57 R57 R57	403H 403M 404A 404B 404D	R R R R	WES WES	R4100440 R4100640 IN1199A IN1200A IN1202A	CF CF R13 R13 R13	417A 417B 417D 417H 417M	R R R R	WES WES WES	IN1184A IN1184A IN1186A IN1188A IN1190A	R15 R15 R15 R15 R15
398A 398B 398C 398F 398H	R WES		R9 R9 R9 R9	404F 404H 404K 404M 407A	R R R R	WES WES WES	IN1 203A IN1 204A IN1 205A IN1 206A IN1 199A	R13 R13 R13 R13 R13	418A 418B 418D 418H 418M	R R R	WES WES	IN1 184A IN1 184A IN1 186A IN1 188A IN1 190A	R15 R15 R15 R15 R15
398K 398M 398S 398Z 400A	R WES R WES R •WES	IN5407 IN5408	R9 R9 R9 R9 CF	407B 407D 407F 407H 407K	R R R R	WES WES WES	IN1 200A IN1 202A IN1 203A IN1 204A IN1 205A	R13 R13 R13 R13 R13	419A 419B 419D 419H 419H	RRRR	WES WES WES	IN1188A IN1190A	R15 R15 R15 R15
400B 400C 400D 400E 400F	R WES R WES	400B 400C 400D 400E 400F	CF CF CF CF	407M 408A 408B 408D 408H	R R R R	WES WES	IN1 206A IN1 199A IN1 200A IN1 202A IN1 204A	R13 R13 R13 R13 R13	420PA50 420PA60 420PA80 420PA100 420PA110 420PA120	s s s s s s	IR IR IR IR IR	T720054504DN T720064504DN T720084504DN T720104504DN T720114504DN T720124504DN	S51 S51 S51 S51

Note: Manufacturer's Codes, Product Type Notes and @ Replacement Notes are listed on page G3



													,	
Part Number	Тур	e Mfg	Suggested 🕸	Page I	Part Number	Туре	Mfgr.	Suggested W Replacement	Page	Part Number	Type F	Afgr.	Suggested W Replacement	Page
420PA130 420PA140 420PA150 420PA160 420PA170	s s s s	IR IR IR IR	T720134504DN T720144504DN T720154504DN T720164504DN T720174504DN	S51 S51 S51 S51 S51	435M 435P 435S 435V 435Z	RRRRR	WES WES WES WES	R4050670 R4050770 R4050870 R4050970 R4051070	R17 R17 R17 R17 R17	471PD180 471PD200 471PDA120 471PDA140 471PDA160	R R R R	IR IR IR IR	R6201850 R6202050 R6201250 R6201450 R6201650	R39 R39 R39 R39 R39
420PB50 420PB60 420PB80 420PB100 420PB110	s s s s	IR IR IR IR	T720054504DN T720064504DN T720084504DN T720104504DN T720114504DN	S51 S51 S51 S51 S51	435ZD 439A 439AR 439B 439BR	RRRR		R4051270 439A 439AR 439B 439BR	R17 CF CF CF CF	471PDA180 471PDA200 471T 472T 473T	R R S S	IR IR WCE WCE WCE	R6201850 R6202050 CF T727XX4064DN T727XX4874DN	
420PB120 420PB130 420PB140 420PB150 420PB160	s s s s	IR IR IR IR	T720124504DN T720134504DN T720144504DN T720154504DN T720164504DN	S51 S51 S51 S51 S51	439C 439CR 439D 439DR 439E	R R R R	WES	439C 439CR 439D 439DR 439E	CF CF CF CF	474T 476T 477T 478A 478AR	S S R R	WCE	T727XX4554DN T727XX4534DN T727XX3534DN IN3879 IN3879R	S91
420PB170 420PBL50 420PBL60 420PBL80 420PBL100	s s s s	IR IR IR IR	T720174504DN T727054524DN T727064524DN T727084524DN T727104524DN	S51 S91 S91 S91 S91	439ER 439F 439FR 439G 439GR	R R R R	WES WES	439ER 439F 439FR 439G 439GR	CF CF CF CF	478B 478BR 478D 478DR 478F	R R R R	WES WES WES WES	IN3880 IN3880R IN3881 IN3881R IN3882	R55 R55 R55 R55 R55
420PBL110 420PBL120 420PBM50 420PBM60 420PBM80	s s s s	IR IR IR IR	T727114524DN T727124524DN T727054544DN T727064544DN T727084544DN	S91 S91 S91 S91 S91	439H 439HR 439K 439KR 439M	R R R R	WES WES	439H 439HR 439K 439KR 439M	CF CF CF CF	478H 478T 479A 479B 479D	R S R R	WES WES WES WES	IN3883 T720XX3504DN IN3889 IN3890 IN3891	R55 S51 R57 R57 R57
420PBM100 420PBM110 420PBM120 420PL60 420PL80	S S S S	IR IR IR IR	T727104544DN T727114544DN T727124544DN T727064524DN T727084524DN	S91 S91 S91 S91 S91	439MR 441A 441B 441D 441F	R R R R	WES WES WES	439MR R3100012 R3100112 R3100212 R3100312	CF CF CF CF	479F 479H 489A 489B 489D	R R R R	WES WES WES WES	IN3892 IN3893 IN3909 IN3910 IN3911	R57 R57 R57 R57 R57
420PL100 420PL110 420PL120 420PM60 420PM80	\$ \$ \$ \$	IR IR IR IR	T727104524DN T727114524DN T727124524DN T727064544DN T727084544DN	S91 S91 S91 S91 S91	441H 441K 441M 441P 441S	R R R R	WES WES	R3100412 R3100512 R3100612 R3100712 R3100812	CF CF CF CF	489F 489H 500PA5 500PA10 500PA20	R R S S	WES WES IR IR	IN3912 IN3913 T720015504DN T720015504DN T720025504DN	S51
420PM100 420PM110 420PM120 424A	S S S R		T727104544DN T727114544DN T727124544DN IN3909	S91 S91 S91 R57	441V 441Z 142T 144T 146A	R R S R	WES WCE WCE	R3100912 R3101012 T720XX5504DN CF IN1199AR	CF CF S51 CF R13	500PA30 500PA40 500PA50 500PA60 500PBQ50	s s s	IR IR IR IR	T720035504DN T720045504DN T720055504DN T720065504DN T727054544DN	S51 S51 S51
424B 424D 424F 424H 425A	R R R R	WES WES WES	IN3910 IN3911 IN3912 IN3913 IN3909	R57 R57 R57 R57 R57	1468 146D 146F 146H 146K	R R R R	WES WES	IN1200AR IN1202AR IN1203AR IN1204AR IN1205AR	R13 R13 R13 R13 R13	500PBQ60 500PBQ80 500PBQ100 500PBQ110 500PBQ120	\$ \$ \$ \$	IR IR IR IR	T727064544DN T727084544DN T727104544DN T727114544DN T727124544DN	S91 S91 S91
425B 425D 425H 429A 429AR	R R R R	WES	IN3910 IN3911 IN3913 429A 429AR	R57 R57 R57 CF CF	146M 446P 446S 446V 446Z	R R R R	WES WES	IN1206AR IN3670AR IN3671AR IN3672AR IN3673AR	R13 R13 R13 R13 R13	500V5A 500V10A 500V20A 500V30A 500V40A	R R R R	IR IR IR IR	R700005 R7000105 R7000205 R7000305 R7000405	R35 R35 R35 R35 R35
429B 429BR 429C 429CR 429D	R R R R	WES WES WES	429B 429BR 429C 429CR 429D	CF CF CF CF	450PF5 450PF10 450PF20 450PF30 450PF50	s s s s	IR IR IR IR	T727014884DN T727014884DN T727024884DN T727034884DN T727054884DN	S91 S91 S91 S91 S91	500V50A 500V60A 500VR10A 500VR20A 500VR30A	R R R R	IR IR IR IR	R7000505 R7000605 R7010105 R7010205 R7010305	R35 R35 R35 R35 R35
429DR 429E 429ER 429F 429FR	R R R R	WES WES	429DR 429E 429ER 429F 429FR	CF CF CF CF	450PF60 456T 458T 462T 464T	S S S S S	WCE WCE WCE WCE	T727064884DN T720XX5504DN T720XX5504DN CF T920XX0903DW	S91 S51 S51 CF S55	500VR40A 500VR5A 500VR50A 500VR60A 501 PBQ50	R R R R	IR IR IR IR	R7010405 R7010005 R7010505 R7010605 T727054554DN	R35 R35 R35 R35 R35
429G 429GR 429H 429HR 429K	R R R R	WES WES WES WES	429G 429GR 429H 429HR 429K	CF CF CF CF	466T 470PA50 470PA60 470PA80 470PA100	s s s s	WCE IR IR IR IR	CF T720055504DN T720065504DN T720085504DN T720105504DN	CF S51 S51 S51 S51	501 PBQ60 501 PBQ80   501 PBQ100 501 PBQ110 501 PBQ120	s s s	IR IR IR IR	T727064554DN T727084554DN T727104554DN T727114554DN T727124554DN	S91 S91 S91
429KR 429M 429MR 429RC70 430PL10	R R R R	WES WES WES IR	429KR 429M 429MR CF T727014864DN	CF CF CF S91	470PA110 470PA120 470PA130 470PA140 470PA150	S S S S S S	IR IR IR IR	T720115504DN T720122504DN T720135504DN T720145504DN T720155504DN	S51 S51 S51 S51 S51	501V60B 501V80B 501V100B 501V120 501V120B	R R R R	IR IR IR IR	R7000605 R7000805 R7001005 R7001204 R7001205	R35 R35 R35 R35 R35
430PL20 430PL30 430PL40 430PL50 430PL60	SSSS	IR IR IR IR	T727024864DN T727034864DN T727044864DN T727054864DN T727064864DN	S91 S91 S91 S91 S91	470PA160 470PB50 470PB60 470PB80 470PB100	s s s s	IR IR IR IR	T720165504DN T720055504DN T720065504DN T720085504DN T720105504DN	S51 S51	501V140 501V140B 501V160 501V180 501V200	R R R R	IR IR IR IR	R7001404 R7001405 R7001604 R7001804 R7002004	R35 R35 R35 R35 R35
430PM10 430PM20 430PM30 430PM40 430PM50	S S S S S	IR IR IR IR IR	T727014884DN T727024884DN T727034884DN T727044884DN T727054884DN	S91 S91 S91 S91 S91	470PB110 470PB120 470PB130 470PB140 470PB150	s s s s	IR IR IR IR	T720115504DN T720125504DN T720135504DN T720145504DN T720155504DN	S51 S51 S51	501V210 501V220 501V230 501V240 501VR60B	R R R R	IR IR IR IR	R7002104 R7002204 R7002304 R7002404 R7010605	R35 R35 R35 R35 R35
430PM60 435B 435D 435F 435H	S R R R	WES WES	T727064884DN R4050170 R4050270 R4050370 R4050470	S91 R17 R17 R17 R17	470PB160 470T 471PD120 471PD140 471PD160	SRRR	IR WCE IR IR IR	T720165504DN T727XX4524DN R6201250 R6201450 R6201650	S51 S91 R39 R39 R39	501VR80B 501VR100B 501VR120 501VR120B 501VR140	R R R R	IR IR IR IR	R7010805 R7011005 R7011204 R7011205 R7011404	R35 R35 R35 R35 R35

Note: Manufacturer's Codes, Product Type Notes and (19) Replacement Notes are listed on page G3



Part Number	Тур	e Mfgı	Suggested W. Replacement	Page	Part Number	Түре	Mfgr.	Suggested (22) Replacement	Page	Part Number	Туре	Mfgr.	Suggested (2) Replacement	Page
501VR140B 501VR160 501VR180 501VR200 501VR210	R R R R	IR IR IR IR	R7011405 R7011604 R7011804 R7012004 R7012104	R35 R35 R35 R35 R35	679-4 679-6 680-1 680-2 680-4	A A A A	UNI UNI UNI UNI	MB12A25V40 MB12A25V60 MB12A10V10 MB12A10V20 MB12A10V40	A3 A3 A3 A3	750PB140 750PB150 750PB160 750PB170 750PB180	S S S S	IR IR IR IR	T920140804DW T920150804DW T920160804DW T920170804DW T920180804DW	S55 S55 S55
501VR220 501VR230 501VR240 507C	R R D D	IR IR IR WES WES		R35 R35 R35 CF CF	680-6 697-1 697-2 697-3 697-4	A A A A	UNI UNI UNI UNI	MB12A10V60 MB11A06V10 MB11A06V20 MB11A06V30 MB11A06V40	A3 A3 A3 A3	760P 760S 760V 760Z 760ZB	R R R R		760P 760S 760V 760Z 760ZB	CF CF CF CF
550PA5 550PA10 550PA20 550PA30 550PA40	s s s s	IR IR IR IR	T720015504DN T720015504DN T720025504DN T720035504DN T720045504DN	S51 S51 S51 S51 S51	697-5 697-6 700PA50 700PA60 700PA80	A S S S	UNI UNI IR IR IR	MB11A06V50 MB11A06V60 T920050704DW T920060704DW T920080704DW	S55	760ZD 760ZF 760ZH 760ZK 760ZM	R R R R	WES WES WES WES	760ZD 760ZF 760ZH 760ZK 760ZM	CF CF CF CF
550PA50 550PA60 550PB50 550PB60 550PB80	s s s s	IR IR IR IR	T720055504DN T720065504DN T720055504DN T720065504DN T720085504DN	S51 S51 S51 S51 S51	700PA100 700PA110 700PA120 700PA130 700PA140	s s s s	IR IR IR IR	T920100704DW T920110704DW T920120704DW T920130704DW T920140704DW	S55 S55 S55	761P 761S 761V 761Z 761ZB	R R R R	WES WES	761 P 761 S 761 V 761 Z 761 Z B	CF CF CF CF
550PB100 550PB110 550PB120 550PB130 550PB140	s s s s	IR IR IR IR	T720105504DN T720115504DN T720125504DN T720135504DN T720145504DN	S51 S51 S51 S51 S51	700PA150 700PA160 700PA170 700PK50 700PK60	s s s s	IR IR IR IR	T920150704DW T920160704DW T920170704DW T920050704DW T920060704DW	S55 S55 S55	761ZD 761ZF 761ZH 761ZK 761ZM	R R R R	WES WES WES	761ZD 761ZF 761ZH 761ZK 761ZM	CF CF CF CF
550PB150 550PB160 550PBQ10 550PBQ20 550PBQ30	s s s s	IR IR IR IR IR	T720155504DN T720165504DN CF CF CF	S51 S51 CF CF CF	700PK80 700PK100 700PK110 700PK120 700PK130	s s s	IR IR IR IR	T920080704DW T920100704DW T920110704DW T920120704DW T920130704DW	S55 S55 S55	770A 770B 770C 770D 770F	R R R R	WES WES	770A 770B 770C 770D 770F	CF CF CF CF
550PBQ40 550PBQ50 550PBQ60 600PB170 600PB180	5555	IR IR IR IR	CF CF CF T920170604DW T920180604DW		700PK140 700PK150 700PK160 700PK170 710A	S S S R	IR IR IR WES	T920140704DW T920150704DW T920160704DW T920170704DW 710A	S55 S55	770H 770K 770M 770S 770Z	R R R R	WES WES	770H 770K 770M 770S 770Z	CF CF CF CF
600PB190 600PB200 600PB210 600PB220 600PB230	s s s s	IR IR IR IR	T920190604DW T920200604DW T920210604DW T920220604DW T920230604DW	S55 S55 S55	710AR 710B 710BR 710C 710CR	R R R R		710C	CF CF CF CF	770ZD 770ZH 771A 771B 771C	R R R R	WES WES WES	770ZD 770ZH 771A 771B 771C	CF CF CF CF
600PB240 600PB250 651PDB50L20 651PDB50L30 651PDB50L25	S R R R	IR IR IR IR	T920240604DW T920250604DW R7220508EJ R7220508DJ R7220508CJ	S55 S55 R71 R71 R71	710D 710DR 710E 710ER 710F	R R R R	WES WES WES WES	710DR 710E	CF CF CF CF	771D 771F 771H 771K 771M	R R R R	WES WES	771D 771F 771H 771K 771M	CF CF CF CF
651 PDB60L20 651 PDB60L25 651 PDB80L20 651 PDB80L25 651 PDB80L30	R R R R	IR IR IR IR	R7220608EJ R7220608DJ R7220808EJ R7220508CJ R7220808DJ	R71 R71 R71 R71 R71	710FR 710H 710HR 710K 710K	R R R R	WES WES WES		CF CF CF CF	771S 771Z 771ZD 771ZH 782A	R R R R	WES WES WES	771S 771Z 771ZD 771ZH R6200030	CF CF CF CF R39
651 PDB1 00L25 651 PDB1 00L30 651 PDB1 20L25 651 PDB1 20L30	R R R R	IR IR IR	R7221008DJ R7221008CJ R7221208DJ R7220508CJ	R71 R71 R71 R71	710M 710MR 710P 710PR 710S	R R R R	WES WES WES	710MR 710P 710PR	CF CF CF CF	782B 782C 782D 782F 782H	R R R R	WES WES WES	R6200130 R620+130 R6200230 R6200330 R6200430	R39 R39 R39 R39 R39
651PDB130L30 651PDB140L30 651PDB160L30 651PDL50S20 651PDL50S25	R R R R	IR IR IR IR	R7221308CJ R7220508CJ R7221608CJ R7220508EJ R7220508DJ	R71 R71 R71 R71 R71	710SR 710V 710VR 710Z 710ZD	RRRR	WES WES WES	710VR 710Z	CF CF CF CF	782K 782M 783A 783B 783D	R R R R	WES WES WES	R6200530 R6200630 783A 783B 783D	R39 R39 CF CF CF
651PDL50S30 651PDL60S20 651PDL60S25 651PDL80S20 651PDL80S25	R R R R R	IR IR IR IR	R7220508CJ R7220608EJ R72206080J R7220808EJ R7220808DJ	R71 R71 R71 R71 R71	710ZDR 710ZR 720A 720AR 720B	R R R R	WES WES	710ZR 720A	CF CF CF CF	783F 783H 783K 783M 783S	R R R R	WES WES WES WES	783F 783H 783K 783M 783S	CF CF CF CF
651PDL80S30 651PDL100S25 651PDL100S30 651PDL110S25 651PDL110S30	RRRR	IR IR IR IR	R7220808CJ R72210080J R7221008CJ R7221108DJ R7221108CJ	R71 R71 R71 R71 R71	720BR 720C 720CR 720D 720DR	R R R R	WES WES	720C	CF CF CF CF	783Z 783ZD 783ZH 783ZK 783ZM	R R R R	WES WES WES WES	783Z 783ZD 783ZH 783ZK 783ZK 783ZM	CF CF CF CF
651PDL120S25 651PDL120S30 661T 662T 666T	RRSSS	IR IR WCE WCE WCE	T920XX1003DW	S55 S55	720F 720FR 720H 720HR 720K	R R R R	WES	720F 720FR 720H 720HR 720K	CF CF CF CF	784A 784B 784C 784D 784F	R R R R	WES	CF CF CF	CF CF CF CF
668T 669T 673-1 673-2 673-3	SSAAA	WCE WCE UNI UNI UNI	T920XX1003DW MB11A02V10 MB11A02V20 MB11A02V30	S55 A3 A3 A3	720KR 720M 720MR 720S 720SR	R R R R	WES WES	720KR 720M 720MR 720S 720SR	CF CF CF CF	784H 784K 784M 784S 784Z	R R R R	WES WES WES WES	CF CF CF	CF CF CF CF
673-4 673-5 673-6 679-1 679-2	A A A A	UNI UNI UNI UNI	MB11A02V40 MB11A02V50 MB11A02V60 MB12A25V10 MB12A25V20	A3 A3 A3 A3	720Z 720ZR 750PB110 750PB120 750PB130	R R S S	WES WES IR IR	720Z 720ZR T920110804DW T920120804DW T920130804DW	S55	785A 785B 785C 785D 785F	R R R R	WES WES WES WES	CF CF	CF CF CF CF

Note: Manufacturer's Codes, Product Type Notes and @ Replacement Notes are listed on page G3



Part Number	Туре	Mfgr	Suggested 🖾 . Replacement	Page P	art Number	Type !	Mfgr.	Suggested [©] Replacement	Page	Part Number	Туре	Mfgr.	Suggested W Replacement	Page
785H 785K 785M 785S 785Z		WES WES WES WES	CF CF	CF CF CF CF	790ZK 790ZM 790ZS 790ZZ 790ZZD	R R R R	WES WES WES WES	790ZM 790ZS 790ZZ	CF CF CF CF	809ZM51 850PA50 850PA60 850PA80 850PA100	s s s s	WES IR IR IR IR	809ZM51 T920050904DW T920060904DW T920080904DW T920100904DW	S55 S55
788A 788AR 788B 788BR 788C	R R R R	WES WES	788A 788AR 788B 788BR 788C	CF CF CF CF	790ZZK 791A 791B 791C 791D	R R R R	WES		CF R31 R31 R31 R31	850PA110 850PA120 850PA130 850PA140 850PA150	S S S S S	IR IR IR IR	T920110904DW T920120904DW T920130904DW T920140904DW T920150904DW	S55 S55 S55
788CR 788D 788DR 788F 788FR	R	WES WES	788CR 788D 788DR 788F 788FR	CF CF CF CF	791F 791H 791K 791M 791S 791Z	R R R R	WES	IN3169R IN3170R IN3172R	R31 R31 R31 R31 R31 R31	850PA160 850PK50 850PK60 850PK80 850PK100	s s s	IR IR IR IR	T920160904DW T920050904DW T920060904DW T920080904DW T920100904DW	S55 S55 S55
788H 788HR 788K 788KR 788M	R R R R	WES WES	788H 788HR 788K 788KR 788M	CF CF CF CF	791ZD 791ZH 791ZK 791ZM	R R R R	WES WES WES	R6011224 R6011424	CF CF CF CF	850PK110 850PK120 850PK130 850PK140 850PK150	s s s	IR IR IR IR	T920110904DW T920120904DW T920130904DW T920140904DW T920150904DW	S55 S55 S55
788MR 788S 788SR 788Z 788ZD	R R R R	WES	788MR 788S 788SR 788Z 788ZD	CF CF CF CF	791ZS 791ZZ 791ZZK 791ZZD` 801PD60B	R R R R	WES WES WES IR		CF CF CF CF R43	850PK160 900PB50 900PB60 900PB80 900PB100	s s s	IR IR IR IR	T920160904DW T920050904DW T920060904DW T920080904DW T920100904DW	S55 S55 S55
788ZDR 788ZH 788ZHR 788ZK 788ZKR	R R R R	WES WES	788ZDR 788ZH 788ZHR 788ZK 788ZKR	CF CF CF CF	801PD80B 801PD100B 801PD120 801PD120B 801PD140	R R R R	IR IR IR IR	R7200812 R7201012 R7201209 R7201212 R7201409	R43 R43 R43 R43 R43	900PB110 900PB120 1000PA50 1000PA60 1000PA100	\$ \$ \$ \$	IR IR IR IR	T920110904DW T920120904DW T920051004DW T920061004DW T920101004DW	S55 S55 S55
788ZM 788ZMR 788ZR 788ZS 788ZSR	R R R R	WES WES	788ZM 788ZMR 788ZR 788ZS 788ZSR	CF CF CF CF	801PD140B 801PD160 801PD180 801PD200 801PDB60B	R R R R	IR IR IR IR	R7201412 R7201609 R7201809 R7202009 R7200612	R43 R43 R43 R43 R43	1000PA110 1000PA120 1000PA130 1000PA140 1000PA150	s s s s	IR IR IR IR	T920111004DW T920121004DW T920131004DW T920141004DW T920151004DW	S55 S55 S55
788ZZ 788ZZD 788ZZDR 788ZZR 789A	R R R R	WES WES WES WES	788ZZ 788ZZD 788ZZDR 788ZZR 789A	CF CF CF CF	801 PDB80B 801 PDB100B 801 PDB120 801 PDB120B 801 PDB140	R R R R	IR IR IR IR	R7200812 R7201012 R7201209 R7201212 R7201409	R43 R43 R43 R43 R43	1000PA160 1000PK50 1000PK60 1000PK80 1000PK100	s s s s	IR IR IR IR	T920161004DW T920051004DW T920061004DW T920081004DW T920101004DW	S55 S55 S55
789AR 789B 789BR 789C 789CR	R R R R	WES WES	789AR 789B 789BR 789C 789CR	CF CF CF CF	801PDB140B 801PDB180 801PDB160 801PDB200 801PDB210	R R R R	IR IR IR IR IR	R7201412 R7201809 R7201609 R7202009 R7202109	R43 R43 R43 R43 R43	1000PK110 1000PK120 1000PK130 1000PK140 1000PK150	s s s s	IR IR IR IR	T920111004DW T920121004DW T920131004DW T920141004DW T920151004DW	S55 S55 S55
789D 789DR 789F 789FR 789H	R R R R	WES	789D 789DR 789F 789FR 789H	CF CF CF CF	801 PDB220 801 PDB230 801 PDB240 809A 809A51	R R S S	IR IR IR WES WES	R7202209 R7202309 R7202409 809A 809A51	R43 R43 R43 CF CF	1000PK160 1200PN120 1200PN130 1200PN140 1200PN150	\$ \$ \$ \$	IR IR IR IR IR	T920161004DW TA20121204DY TA20131204DY TA20141204DY TA20151204DY	\$55 \$67 \$67 \$67 \$67
789HR 789K 789KR 789M 789MR	R R R R	WES WES WES WES	789HR 789K 789KR 789M 789MR	CF CF CF CF	809B 809B51 809C 809C51 809D	S S S S S	WES WES WES WES	8098 809851 8090 809051 8090	CF CF CF CF	1200PN160 1200PN170 1200PN180 1200PN190 1200PN200	\$ \$ \$ \$	IR IR IR IR IR	TA20161204DY TA20171204DY TA20181204DY TA20191204DY TA20201204DY	S67 S67 S67 S67 S67
789S 789SR 789Z 789ZD 789ZDR	R R R R	WES WES WES WES	789S 789SR 789Z 789ZD 789ZDR	CF CF CF CF	809D51 809E 809E51 809F 809F51	s s s s	WES WES WES WES	809E 809E51 809F	CF CF CF CF	1200PN210 1200PN220 1561-XX03 1561-XX04 1561-XX08	S S T T T	IR IR WES WES WES	TA20211204DY TA20221204DY 1561-XX03 1561-XX04 1561-XX08	S67 S67 CF CF CF
789ZH 789ZHR 789ZK 789ZKR 789ZM	R R R R	WES WES WES	789ZH 789ZHR 789ZK 789ZKR 789ZM	CF CF CF CF	809H 809H51 809K 809K51 809M	s s s s	WES WES WES	809H 809H51 809K 809K51 809M	CF CF CF CF	1561-XX10 1561-XX15 1571-XX20 1571-XX25 1600PN120	T T T T S	WES WES WES IR	1561-XX10 1561-XX15 1571-XX20 1571-XX25 CF	CF CF CF CF
789ZMR 789ZS 789ZSR 789ZR 789ZZ	R R R R	WES WES	789ZMR 789ZS 789ZSR 789ZR 789ZZ	CF CF CF CF	809M51 809P 809P51 809S 809S51	s s s s	WES WES	809P	CF CF CF CF	1600PN130 1600PN140 1600PN150 1600PN160 1601PDK120	S S S R	IR IR IR IR	CF CF CF R9201216	CF CF CF CF R47
789ZZD 789ZZDR 789ZZR 790A 790B	R R R R	WES	789ZZD 789ZZDR 789ZZR 789ZZR 790A 790B	CF CF CF CF	809V 809V51 809Z 809Z51 809ZB	s s s s	WES	809V51 809Z 809Z51	CF CF CF CF	1601PDK140 1601PDK160 1601PDK180 1601PDK200 1601PDK220	R R R R	IR IR IR IR	R9201416 R9201616 R9201816 R9202016 R9202216	R47 R47 R47 R47 R47
790C 790D 790F 790H 790K	R R R R	WES WES WES WES	790D 790F 790H	CF CF CF CF	809ZB51 809ZD 809ZD51 809ZF 809ZF51	s s s s	WES WES WES WES	809ZD 809ZD51	CF CF CF CF	1601PDK240 1601PDK250 2001PD60 2001PD80 2001PD100	R R R R	IR IR IR IR	SO SO R9200620 R9200820 R9201020	CF CF R47 R47 R47
790M 790S 790Z 790ZD 790ZH	R R R	WES	790S 790Z 790ZD 790ZH	CF CF CF CF	809ZH 809ZH51 809ZK 809ZK51 809ZM	s s s s	WES WES WES	809ZH 809ZH51 809ZK 809ZK51 809ZM	CF CF CF CF	2001PD120 2001PD140 2001PD160 2001PDK60 2001PDK80	R R R R	IR IR IR IR	R9201220 R9201420 R9201620 R9200620 R9200820	R47 R47 R47 R47 R47

Note: Manufacturer's Codes, Product Type Notes and (2) Replacement Notes are listed on page G3



Part Number	Тур	Mfgr	Suggested (29)	Page	Part Number	Type M	lfgr.	Suggested (29) Replacement	Page	Part Number	Type N	lfgr.	Suggested W Replacement	Page
2001PDK100 2001PDK120 2001PDK140 2001PDK160 2181B	R R R S	IR IR IR IR WES	R9201020 R9201220 R9201420 R9201620 2181B	R47 R47 R47 R47 CF	2201K 2201M 2201P 2201S 2201V	s s s	WES WES WES WES WES	2201K 2201M 2201P 2201S 2201V	CF CF CF CF	2271P 2271S 2271V 2271Z 2272B	s s s	WES WES WES WES WES	2271P 2271S 2271V 2271Z 2272B	CF CF CF CF
2181D 2181F 2181H 2181K 2181M	s s s s	WES WES WES WES	2181D 2181F 2181H 2181K 2181M	CF CF CF CF	2201Z 2201ZB 2201ZD 2202A 2202B	s s s	WES WES WES WES WES	2201Z 2201ZB 2201ZD 2202A 2202B	CF CF CF CF	2272D 2272F 2272H 2272K 2272M	S S	WES WES WES WES WES	2272D 2272F 2272H 2272K 2272M	CF CF CF CF
2181P 2181S 2181V 2181Z 2182B	s s s s		2181P 2181S 2181V 2181Z 2182B	CF CF CF CF	2202D 2202F 2202H 2202K 2202M	S S S	WES WES WES WES WES	2202D 2202F 2202H 2202K 2202M	CF CF CF CF	2272P 2272\$ 2272V 2272Z 2272Z	s s s	WES WES WES	2272P 2272S 2272V 2272Z 2272ZD	CF CF CF CF
2182D 2182F 2182H 2182K 2182M	s s s s	WES WES WES WES	2182D 2182F 2182H 2182K 2182M	CF CF CF CF	2202P 2202S 2202V 2202Z 2202ZB	S S S	WES WES WES WES WES	2202P 2202S 2202V 2202Z 2202ZB	CF CF CF CF	2291B 2291D 2291F 2291H 2291K	S S S	WES WES WES WES WES	2291B 2291D 2291F 2291H 2291K	CF CF CF CF
2182P 2182S 2182V 2182Z 2182ZD	s s s s	WES WES WES WES	2182P 2182S 2182V 2182Z 2182ZD	CF CF CF CF	2202ZD 2231A 2231B 2231D 2231F	S S S		2202ZD 2231A 2231B 2231D 2231F	CF CF CF CF	2291M 2291P 2291S 2291V 2291Z	S S S	WES WES WES WES WES	2291M 2291P 2291S 2291V 2291Z	CF CF CF CF
2191A 2191A51 2191B 2191B51 2191D	s s s s	WES WES WES	2191A 2191A51 2191B 219B51 2191D	CF CF CF CF	2231H 2231K 2231M 2231P 2231S	s s s	WES WES	2231H 2231K 2231M 2231P 2231S	CF CF CF CF	2292B 2292D 2292F 2292H 2292K	SSS	WES WES WES WES WES	2292B 2292D 2292F 2292H 2292K	CF CF CF CF
2191D51 2191F 2191F51 2191H 2191H51	s s s s	WES WES	2191D51 2191F 2191F51 2191H 2191H51	CF CF CF CF	2231V 2231Z 2231ZB 2231ZD 2232A	S S S	WES WES	2231V 2231Z 2231ZB 2231ZD 2232A	CF CF CF CF	2292M 2292P 2292S 2292V 2292Z	S S S	WES WES WES WES WES	2292M 2292P 2292S 2292V 2292Z	CF CF CF CF
2191K 2191K51 2191M 2191M51 2191P	s s s	WES WES WES	2191K 2191K51 2191M 2191M51 2191P	CF CF CF CF	2232B 2232D 2232F 2232H 2232K	s s s	WES WES	2232B 2232D 2232F 2232H 2232K	CF CF CF CF	2292ZD 2501B 2501D 2501F 2501H	s s s	WES WES WES WES WES	2292ZD 2501B 2501D 2501F 2501H	CF CF CF CF
2191P51 2191S 2191S51 2191V 2191V51	s s s s	WES WES	2191P51 2191S 2191S51 2191V 2191V51	CF CF CF CF	2232M 2232P 2232S 2232V 2232Z	s s s	WES	2232M 2232P 2232S 2232V 2232Z	CF CF CF CF	2501K 2501M 2502B 2502D 2502F	s s s	WES WES WES WES WES	2501K 2501M 2502B 2502D 2502F	CF CF CF CF
2191Z 2191Z51 2192A 2192A51 2192B	s s s s	WES	2191Z 2191Z51 2192A 2192A51 2192B	CF CF CF CF CF	2232ZB 2232ZD 2241B 2241D 2241F	S S S	WES	2232ZB 2232ZD 2241B 2241D 2241F	CF CF CF CF	2502H 2502K 2502M 2502P 2502S	S S S	WES WES WES WES WES	2502H 2502K 2502M 2502P 2502S	CF CF CF CF
2192B51 2192D 2192D51 2192F 2192F51	s s s s	WES WES	2192B51 2192D 2192D51 2192F 2192F51	CF CF CF CF	2241H 2241K 2241M 2241P 2241S	s s s	WES WES	2241H 2241K 2241M 2241P 2241S	CF CF CF CF	2503B 2503D 2503F 2503H 2503K		WES WES WES WES WES	2503B 2503D 2503F 2503H 2503K	CF CF CF CF
2192H 2192H51 2192K 2192K51 2192M	\$ \$ \$ \$		2192H 2192H51 2192K 2192K51 2192M	CF CF CF CF	2241V 2241Z 2242B 2242D 2242F	S S S	WES	2241V 2241Z 2242B 2242D 2242F	CF CF CF CF	2503M 2503P 2503S 2503V 2503Z		WES WES WES WES	2503M 2503P 2503S 2503V 2503Z	CF CF CF CF
2192M51 2192P 2192P51 2192S 2192S51	s s s s	WES WES	2192M51 2192P 2192P51 2192S 2192S51	CF CF CF CF	2242H 2242K 2242M 2242P 2242S	S S S	WES WES WES	2242H 2242K 2242M 2242P 2242S	CF CF CF CF	2503ZD 2503ZH 2505B 2505D 2505F	s s s s	WES WES WES WES		CF CF CF CF
2192V 2192V51 2192Z 2192Z51 2193A	s s s	WES WES	2192V 2192V51 2192Z 2192Z51 2193A	CF CF CF CF	2242V 2242Z 2242ZD 2248B 2248D	S S	WES WES	2242V 2242Z 2242ZD 2248B 2248D	CF CF CF CF	2505H 2505K 2505M 2505P 2505S	s s s s	WES WES	2505H 2505K 2505M 2505P 2505S	CF CF CF CF
2193B 2193D 2193F 2193H 2193K	s s s s	WES WES	2193B 2193D 2193F 2193H 2193K	CF CF CF CF	2248F 2248H 2248K 2248M 2248P	s s s	WES WES	2248F 2248H 2248K 2248M 2248P	CF CF CF CF	2505V 2505Z 2511B 2511D 2511F	s s s s	WES WES	2505V 2505Z 2511B 2511D 2511F	CF CF CF CF
2193M 2193P 2193S 2193V 2193Z	s s s s	WES WES WES	2193M 2193P 2193S 2193V 2193Z	CF CF CF CF	2248S 2248V 2248Z 2248ZD 2271B	S S	WES WES	2248S 2248V 2248Z 2248ZD 2271B	CF CF CF CF	2511H 2511K 2511M 2511P 2511S	s s s s	WES WES	2511H 2511K 2511M 2511P 2511S	CF CF CF CF
2201A 2201B 2201D 2201F 2201H	s s s s	WES WES	2201A 2201B 2201D 2201F 2201H	CF CF CF CF	2271D 2271F 2271H 2271K 2271M	S S	WES WES	2271D 2271F 2271H 2271K 2271M	CF CF CF CF	2511V 2511Z 2512A 2512B 2512D	s s s s	WES WES	2511V 2511Z 2512A 2512B 2512D	CF CF CF CF

Note: Manufacturer's Codes, Product Type Notes and 

Replacement Notes are listed on page G3



										. ,
Part Number	Suggested (STATE OF TYPE Mfgr. Replacement	t Pag€ F	Part Number	Type Mfgr		Page	Part Number	Type Mfgr.	Suggested (2) Replacement	Page
2512F 2512H 2512K 2512M 2512P	S WES 2512F S WES 2512H S WES 2512K S WES 2512M S WES 2512P	CF CF CF CF	2543M 2543M51 2543P 2543P51 2543S	S WE S WE S WE S WE	S 2543M51 S 2543P S 2543P51	CF CF CF CF CF	2632F 2632H 2632K 2632M 2632P	S WES S WES S WES S WES	2632H 2632K 2632M	CF CF CF CF
2512S 2512V 2512Z 2513B 2513D	S WES 2512S S WES 2512V S WES 2512Z S WES 2513B S WES 2513D	CF CF CF CF CF	2543S51 2601B 2601D 2601F 2601H	S WE S WE S WE S WE	S 2601B S 2601D S 2601F	CF CF CF CF	2632S 2632V 2721A 2721B 2721D	S WES S WES S WES S WES	2632V 2721A 2721B	CF CF CF CF
2513F 2513H 2513K 2513M 2513P	S WES 2513F S WES 2513H S WES 2513M S WES 2513M S WES 2513P	CF CF CF CF	2601K 2601M 2601P 2601PDN120 2601PDN140	S WE S WE S WE R IR R IR	S 2601M	CF CF CF CF	2721F 2721H 2721K 2721M 2721P	S WES S WES S WES S WES S WES	2721H 2721K 2721M	CF CF CF CF
2513S 2513V 2513Z 2513ZB 2513ZD	S WES 2513S S WES 2513V S WES 2513Z S WES 2513ZB S WES 2513ZB	CF CF CF CF	2601PDN160 2601PDN180 2601PDN200 2601PDN220 2601PDN240	R IR R IR R IR R IR	CF CF CF CF	CF CF CF CF	2721S 2721V 2721Z 2722A 2722B	S WES S WES S WES S WES S WES	2721V 2721Z 2722A	CF CF CF CF
2515B 2515D 2515H 2515K 2515M	S WES 2515B S WES 2515D S WES 2515H S WES 2515K S WES 2515K	CF CF CF CF	2601PDN250 2601S 2601V 2601Z 2602B	R IR S WE: S WE: S WE: S WE:	S 2601V S 2601Z	CF CF CF CF	2722D 2722F 2722H 2722K 2722M	S WES S WES S WES S WES S WES	2722F 2722H 2722K	CF CF CF CF
2515P 2515S 2515V 2515Z 2541A	S WES 2515P S WES 2515S S WES 2515V S WES 2515Z S WES 2541A	CF CF CF CF	2602D 2602F 2602H 2602K 2602M	S WES S WES S WES S WES	S 2602F S 2602H S 2602K	CF CF CF CF	2722P 2722S 2722V 2722Z 2722ZD	S WES S WES S WES S WES S WES	2722S 2722V 2722Z	CF CF CF CF
2541A51 2541B 2541B51 2541D 2541D51	S WES 2541A51 S WES 2541B S WES 2541B51 S WES 2541D51 S WES 2541D51	CF CF CF CF	2602P 2602S 2602V 2602Z 2605B	S WES S WES S WES S WES	S 2602S S 2602V S 2602Z	CF CF CF CF	2731A 2731B 2731D 2731F 2731H	S WES S WES S WES S WES S WES	2731B 2731D	CF CF CF CF
2541F 2541F51 2541H 2541H51 2541K	S WES 2541F S WES 2541F51 S WES 2541H S WES 2541H51 S WES 2541K	CF CF CF CF	2605D 2605F 2605H 2605K 2605M	S WES S WES S WES S WES	S 2605F S 2605H S 2605K	CF CF CF CF	2731K 2731M 2731P 2731S 2731V	S WES S WES S WES S WES S WES	2731M 2731P 2731S	CF CF CF CF
2541K51 2541M 2541M51 2541P 2541P	S WES 2541K51 S WES 2541M S WES 2541M51 S WES 2541P S WES 2541P51	CF CF CF CF	2605P 2605S 2605V 2605Z 2611B	S WES S WES S WES S WES	S 2605S S 2605V S 2605Z	CF CF CF CF	2731Z 2731ZD 2732A 2732B 2732D	S WES S WES S WES S WES S WES	2731ZD 2732A	CF CF CF CF
2541S 2541S51 2541V 2541V51 2541Z	S WES 2541S S WES 2541S51 S WES 2541V S WES 2541V S WES 2541Z	CF CF CF CF	2611B 2611D 2611F 2611H 2611K	S WES	5 2611D 5 2611F 5 2611H 5 2611K	CF CF CF CF	2732F 2732H 2732K 2732M 2732P	S WES S WES S WES S WES S WES	2732H 2732K 2732M	CF CF CF CF
2541Z51 2542A 2542A51 2542B 2542B	S WES 2541Z51 S WES 2542A S WES 2542A51 S WES 2542B S WES 2542B	CF CF CF CF	2611M 2611P 2611S 2611V 2611Z 2612B	S WES	5 2611P 5 2611S 5 2611V 5 2611Z	CF CF CF CF CF	2732S 2732V 2732Z 2732ZD 2761B	S WES S WES S WES S WES S WES	2732V 2732Z 2732ZD	CF CF CF CF
2542D 2542D51 2542F 2542F51 2542H	S WES 2542D S WES 2542D51 S WES 2542F5 S WES 2542F51 S WES 2542H	CF CF CF CF	2612D 2612F 2612H 2612K 2612M	S WE S WE S WE S WE S WE	S 2612D S 2612F S 2612H S 2612K	CF CF CF CF	2761D 2761F 2761H 2761K 2761M	S WES S WES S WES S WES	2761H 2761K	CF CF CF CF
2542H51 2542K 2542K51 2542M 2542M	S WES 2542H51 S WES 2542K S WES 2542K51 S WES 2542M51 S WES 2542M51	CF CF CF CF	2612P 2612S 2612V 2612Z 2612ZD	S WE S WE S WE	S 2612P	CF CF CF CF	2761P 2761S 2761V 2761Z 2762A		2761S	CF CF CF CF
2542P 2542P51 2542S 2542S51 2542V	S WES 2542P S WES 2542P51 S WES 2542P51 S WES 2542S S WES 2542V	CF CF CF CF	2615B 2615D 2615F 2615H 2615K	S WES	S 2615B S 2615D S 2615F	CF CF CF CF	2762B 2762D 2762F 2762H 2762K	S WES	2762B 2762D 2762F 2762H 2762K	CF CF CF CF
2542V51 2542Z 2542Z51 2543A 2543A51	S WES 2542V51 S WES 2542Z S WES 2542Z51 S WES 2543A S WES 2543A51	CF CF CF CF	2615M 2615P 2615S 2615V 2615Z	S WES	S 2615M S 2615P S 2615S	CF CF CF CF	2762M 2762P 2762S 2762V 2762Z		2762P 2762S 2762V	CF CF CF CF
2543B 2543B51 2543D 2543D 2543D51 2543F	S WES 2543B S WES 2543B51 S WES 2543D S WES 2543D51 S WES 2543F	CF CF CF CF	2631B 2631D 2631F 2631H 2631K	S WES	S 2631B S 2631D	CF CF CF CF	2762ZD 2781A 2781B 2781D 2781F	S WES		CF CF CF CF
2543F51 2543H 2543H51 2543K 2543K51	S WES 2543F51 S WES 2543H S WES 2543H51 S WES 2543K S WES 2543K51	CF CF CF CF	2631M 2631P 2631S 2632B 2632D	S WES	S 2631M S 2631P	CF CF CF CF CF	2781H 2781K 2781M 2781P 2781S	S WES S WES S WES S WES	2781K	CF CF CF CF

Note: Manufacturer's Codes, Product Type Notes and @ Replacement Notes are listed on page G3



Part Number	Туре	Mfgr.	Suggested (29) Replacement	Page	Part Number	Туре	Mfgr	Suggested (22) . Replacement	Page
2781V 2781Z 2782A 2782B 2782D	s s s	WES WES WES	2781V 2781Z 2782A 2782B 2782D	CF CF CF CF	43892 43892R 43893 43893R 43894	R R R R	RCA RCA RCA RCA	IN3892 IN3892R IN3893 IN3893R R3020612	R55 R55 R55 R55 R55
2782F 2782H 2782K 2782M 2782P	\$ \$ \$ \$	WES WES WES WES	2782F 2782H 2782K 2782M 2782P	CF CF CF CF	43894R 43899 43899R 43900 43900R	R R R R	RCA RCA RCA RCA RCA	R3030612 IN3899 IN3899R IN3900 IN3900R	R55 R57 R57 R57 R57
2782S 2782V 2782Z 2782ZD 3001PDN60	SSSSR	WES WES WES IR	2782S 2782V 2782Z 2782ZD CF	CF CF CF CF	43901 43901R 43902 43902R 43903	R R R	RCA RCA RCA RCA RCA	IN3901 IN3901R IN3902 IN3902R IN3903	R57 R57 R57 R57 R57
3001PDN80 3001PDN100 3001PDN120 3001PDN140 3001PDN160	R R R R	IR IR IR IR	CF CF CF CF	CF CF CF CF CF	43903R 43904 43904R	R R R	RCA RCA RCA	IN3903R R4020620 R4030620	R57 R57 R57
40108 40108R 40109 40109R 40110	R R R R	RCA RCA RCA RCA	IN1199A IN1199AR IN1200A IN1200AR IN1202A	R13 R13 R13 R13 R13					
40110R 40111 40111R 40112 40112R	R R R R	RCA RCA RCA RCA	IN1202AR IN1203A IN1203AR IN1204A IN1204AR	R13 R13 R13 R13 R13					
40113 40113R 40114 40114R 40115	R R R R	RCA RCA RCA RCA RCA	IN1205A IN1205AR IN1206A IN1206AR IN3671A	R13 R13 R13 R13 R13					
40115R 40208 40208R 40209 40209R	R R R R	RCA RCA RCA RCA	IN3671AR IN1191 IN1191R IN1192 IN1192R	R15 R15 R15 R15 R15					
40210 40210R 40211 40211R 40212	R R R R	RCA RCA RCA RCA	IN1194 IN1194R IN1195 IN1195R IN1196	R15 R15 R15 R15 R15					
40212R 40213 40213R 40214 40214R	R R R R	RCA RCA RCA RCA RCA	IN1196R IN1197 IN1197R IN1198 IN1198R	R15 R15 R15 R15 R15					
40741 40742 40743 40754 40755	S S S S	RCA RCA RCA RCA RCA	T400011008 T400021008 T400031008 T400011608 T400021608	S13 S13 S13 S13 S13					
40756 40757 40956 40956R 40957	S R R R	RCA RCA RCA RCA RCA	T400061608 T400041608 IN1183A IN1183AR IN1184A	S13 S13 R15 R15 R15					
40957R 40958 40958R 40959 40959R	R R R R	RCA RCA RCA	IN1184AR IN1186A IN1186AR IN1188A IN1188AR	R15 R15 R15 R15 R15					
40960 40960R 43879 43879R 43880	R R R R	RCA RCA RCA	IN1190A IN1190AR IN3879 IN3879R IN3880	R15 R15 R55 R55 R55					
43880R 43881 43881R 43882 43882R	R R R R	RCA RCA RCA	IN3880R IN3881 IN3881R IN3882 IN3882R	R55 R55 R55 R55 R55					
43883 43883R 43884 43884R 43889	R R R R	RCA RCA RCA	IN3883 IN3883R R3020606 R3030606 IN3889	R55 R55 R55 R55 R55					
43889R 43890 43890R 43891 43891R	R R R R	RCA RCA RCA	IN3889R IN3890 IN3890R IN3891 IN3891R	R55 R55 R55 R55 R55					

Note: Manufacturer's Codes, Product Type Notes and @ Replacement Notes are listed on page G3

## Designed with YOU in Mind

Ideal for all users of power semiconductors regardless of job function, technical background, and experience level.



- Two books in one
- 8½ x 11 format
- Easy to read
- Fully indexed
- Master cross reference
- Complete product data
- 432 Pages

## U.S. \$6.50 • Book Rate Postage Included • Elsewhere \$7.50

This valuable reference book will save you time and money when specifying, buying, installing, testing, maintaining, trouble-shooting, servicing, identifying, and replacing power semiconductors. Order your copy today.

Send check or money order (payable in U.S. funds) to:

Westinghouse Electric Corporation Book Order Semiconductor Division Youngwood, Pa. 15697

54-000

## **Acceptance of Orders**

The conditions stated below shall take precedence over any conditions which may appear on your standard form, and no provisions or conditions of such form, except as expressly stated herein shall be binding on Westinghouse. Notice of objection to any additional or different terms is hereby given. ©

## Order Entry

Send all orders for quantities shown in PL 54-020 to our authorized full line Westinghouse distributor. Orders for larger quantities may go to:

Westinghouse Electric Corporation Semiconductor Division Youngwood, Pennsylvania 15697 Telephone: 412-925-7272

TWX: 510-468-2840

## Standard Conditions of Sale Price Policy

Prices are firm for orders specifying delivery within six months from acceptance of order by Westinghouse. Shipments scheduled beyond six months from order acceptance, or held or postponed beyond such six months at the request of buyer, are subject to price adjustment to price in effect at time of shipment. Such adjustment will not apply to products scheduled for shipment within thirty days of the date of notification to buyer of the price adjustment.

## Minimum Billing

The minimum order shall be \$250.00 plus transportation charges.

#### Taxes

The prices do not include any Federal, State or Local property, license, privilege, sales, use, excise, gross receipts or other like taxes which may now or hereafter be applicable to, measured by or imposed upon or with respect to the transaction, the property, its sale, its value or its use, or any services performed in connection therewith. Purchaser agrees to pay or reimburse any such taxes which Westinghouse or Westinghouse's subcontractors or suppliers are required to pay.

## Terms of Payment

Terms of payment are net within 30 days from date of shipment.

#### **Payments**

If, in the judgment of Westinghouse, the financial condition of the purchaser, at any time during the manufacturing period, or at any time product is ready for shipment, does not justify the terms of payment specified. Westinghouse may require full or partial payment in advance.

#### Delivery

F.O.B.-P.S.-Frt./Coll. (Transportation charges, not allowed). This product is delivered Free on Board, Point of Shipment, Freight Collect (Transportation Charges not allowed).

## Loss, Damage, or Delay

Westinghouse shall not be liable for failure to perform or for delay in performance due to fire, flood, strike or other labor difficulty, act of any governmental authority or of the purchaser, riot, embargo, car shortage, wrecks or delay in transportation, inability to obtain necessary labor, materials, or manufacturing facilities from usual sources or due to any other cause beyond its reasonable control.

In the event of delay in performance due to any such cause, the date of delivery or time for completion will be postponed by such length of time as may be reasonably necessary to compensate for the delay.

### Warranty

## Lifetime Guarantee

Westinghouse warrants to the original purchaser that it will correct any defects in workmanship or material, by repair or replacement, F.O.B. factory or, at its option, issue credit at the original purchase price, for any silicon power semiconductor bearing this symbol • during the life of the equipment in which it is originally installed, provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice.

## Other Semiconductor Products

Westinghouse, in connection with products sold, agrees to correct any defect or defects in workmanship or material which may develop under proper or normal use during the period of one year from the date of shipment, by repair or replacement f.o.b. factory, of the defective part or parts, or, at its option, issue credit at the original purchase price.

## **Developmental Products**

Westinghouse semiconductor products designated at the time of sale to be developmental are warranted to meet the applicable preliminary specifications in effect at time of order entry. If any failure to comply with such preliminary specifications appears within 12 months from date of shipment, Westinghouse will correct such non-compliance by repair or replacement fo.b. factory, or, at its option, issue credit at the original purchase price.

The foregoing warranties are exclusive and in lieu of all other warranties of quality whether written, oral, or implied (including any warranty of merchantability or fitness for purpose).

Correction of non-conformities in the manner and for the periods of time specified above shall constitute fulfillment of all liabilities of Westinghouse to the purchaser whether based on contract, negligence or otherwise in respect to such products.

## **Limitation of Liability**

Neither party shall be liable for special, indirect, incidental or consequential damages. The remedies of the purchaser set forth herein are exclusive and the liability of Westinghouse with respect to any contract or sale or anything done in connection therewith, whether in contract, or in tort (including negligence) shall not exceed the price of the equipment or part on which such liability is based.

#### **Patents**

Westinghouse shall at its own expense, defend any suits or proceedings brought against the purchaser, and/or its vendees, mediate and immediate, so far as based on an allegation that any goods, material, equipment, device or article (hereinafter referred to as product) or any part thereof furnished hereunder constitutes an infringement of any claim of any patent of the United States, other than a claim covering a process performed by said product or another product produced by said product, provided that such product is not supplied according to purchaser's design, and is used as sold by Westinghouse, if purchaser

© Changed since previous issue.

January 2, 1978 Supersedes Selling Policy 54-000, pages 1 and 2, Dated February 26, 1976

## Power Semiconductor Products Selling Policy Assemblies, Rectifiers, Thyristors, & Transistors

54-000



### Patents, Continued

shall have made all payments then due hereunder, and if Westinghouse is notified promptly in writing and given authority, information and assistance for the defense of said suit or proceeding, and Westinghouse shall pay all damages and costs awarded in any suit or proceeding so defended, provided that this indemnity shall not extend to any infringement based upon the combination of said product or any part or parts thereof with another product or things not furnished hereunder unless Westinghouse is a contributory infringer. Westinghouse shall not be responsible for any settlement of such suit or proceeding made without its written consent. In case the product or any part thereof furnished hereunder is in any suit or proceeding so defended held to constitute infringement, and its use is enjoined, Westinghouse shall, at its own option and its own expense, either procure for the purchaser the right to continue using said product or part thereof; or replace it with a non-infringing product; or modify it so it becomes non-infringing; or remove it and refund the purchase price and the transportation and installation costs thereof. The foregoing states the entire liability of Westinghouse with respect of patent infringement by said product or any part thereof.

To the extent that said product, or any part thereof, is supplied according to purchaser's design or instructions, or is modified by purchaser, or combined by purchaser with another product or things not furnished hereunder except to the extent that Westinghouse is a contributory infringer, or is used by purchaser to perform a process, or produce another product, and by reason of said design, instruction, modification, combination, performance, or production, a suit or proceeding is brought against Westinghouse, purchaser agrees to indemnify Westinghouse in the manner and to the extent Westinghouse indemnifies purchaser in the preceding paragraph insofar as the terms thereof are appropriate.

### Title - Risk of Loss

The product shall remain the personal property of Westinghouse until fully paid for in cash, and the purchaser agrees to perform all acts which may be necessary to perfect and assure the retention of title to such property by Westinghouse. Risk of loss of the product, or any part of the same, shall pass to the purchaser upon delivery of such product or part, F.O.B., point of shipment.

© Changed since previous issue.

The purchaser should immediately inspect each shipment, and if there is evidence of loss or damage during transit, should file a claim against the carrier. Westinghouse may assist with such claims, but will not accept any responsibility for the claims. Any adjustments in such cases are between the purchaser and the carrier.

### **License Notice**

The sale of any product hereunder does not convey any license, express or implied, under any patent claims on circuits, systems or processes, or on any combination of the product with other devices, elements or things.

## **Termination**[©]

Any order may be terminated by the purchaser only upon payment of reasonable cancellation charges which will be determined by Westinghouse in conjunction with expenses and commitments incurred.

The minimum charge for an order which is cancelled after Engineering has been completed prior to release to Production will be \$250.00, or 2% of the selling price, whichever is greater. If an order is cancelled after it has been released to Production, an additional charge will be made in proportion to the percentage of completion of the order. The additional charge will be based on material, labor, and overhead costs plus a 15% markup to compensate for disruption in scheduling, disruption in planned production, lost profit, and other indirect costs.

## **Returning Product**

Authorization and shipping instructions for the return of any product must be obtained by the purchaser from Westinghouse before returning the product. Product must be returned with complete identification in accordance with Westinghouse instructions or it will not be accepted. Where a purchaser requests authorization to return product for reasons of his own, he will be charged for placing the returned goods in salable condition (restocking charge) and for any outgoing and incoming transportation paid by Westinghouse.

In no event will Westinghouse be responsible for product returned without proper authorization and identification.



## **DELIVERY LEAD TIME GUIDELINES**

This schedule is to be used for general planning guidelines only. These typical factory lead times listed do not include order transmittal time to the semiconductor factory or shipping time to the user's plant. Please contact Westinghouse for specific requirements. Check with the local authorized distributor for off-the-shelf delivery on most rectifier, SCR, transistor, and modular rectifier assembly products.

There are several points worth noting about power semiconductors when planning for volume purchases. Semiconductors are vield dependent devices - once manufactured, if they don't meet the desired specification, they usually cannot be altered or modified. Also, ordering the highest current rating, highest voltage rating, and fastest turn-off time device in a given product family usually results in a longer lead time due to lower production yield. As with most any type of manufactured product, unforeseen delays in shipping product due to late parts delivery, parts shortages, receipt of inferior or outof-spec component parts, can occur. The actual quantity required by the user of a given semiconductor type as well as the general market demand for the device can also affect the product's lead time. Therefore, the user should work closely with the manufacturer to assure on-time delivery of the needed semiconductors.

The best way to assure a steady flow of semiconductors into your plant is to enter a purchase order on the manufacturer with scheduled monthly releases. An alternate approach would be a purchase agreement to buy a certain number of power semiconductors (particular type) in a specified period of time. The purpose of either of these approaches is to provide the semiconductor manufacturer with better planning visibility so that the factory can match its production schedule to your actual requirements.

#### TYPICAL FACTORY LEAD TIMES

Data Book Location	Product Type	Current Ranges	Voltage Range	Shipping Quantity	Typical Factory Lead Time
(Page Number	ers)	(Amperes)	(Volts)		(Weeks)
ASSEMBLII	ES				
A3,A4	Modular Rectifier	2-25	50-1000	500	1-2
A5-A36	Gold Line	12-1650	100-2000	100	4-8
A39-A44	Air Cooled Disc	197-8700	100-4000	100	4-8
A45-A51	Liquid Cooled Disc	588-13,580	100-4000	100	4-8
A52-A55	Liquid Cooled Manifold	900-2200(RMS)	1200-3000	100	4-8
A65-A66	Sinks and Kits	_		50	4-12
A69-A75	H.V. Stacks, Channel	.5-325	1K-688K	50	6-8
A76-A79	H.V. Stacks, Plate	6-450	2K-72K	50	6-10
RECTIFIER		General Purpose			
R9-R12	Axial Lead Mount	1-6	50-1000	1000	2-4
R13,R14	Stud Mount	3-16	50-1000	500	1-2
R15-R18	Stud Mount	15-70	50-1200	500	1-2
R19-R26	Stud Mount	100-150	100-1400	100	2-4 2-4
R27-R38	Stud Mount	160-550	50-4000	100	
R39-R54	Disc Mount	300-2200	100-4000	100	4-6
		Fast Recovery			
R55-R58	Stud Mount	6-30	50-600	100	2-6
R59-R66	Stud Mount	80-250	50-1600	100	4-6
R67-R78	Disc Mount	350-1400	100-3200	100	4-8
THYRISTO		Phase Control SC			
S9-S18	Stud Mount	10-22	25-1200	100	2-4
S19-530	Stud Mount	40-80	25-1500	100	4-6
S31-S40	Stud Mount	125-350	50-2200	100	4-6
S41-S54	Disc Mount	125-550	100-2200	100	4-6
S55-S70	Disc Mount	600-1400	100-3000	100	6-8
S71,S72	Integral H.S.	300	100-2000	50 50	4-6
S73-S76	Flat Base	175-350	100-1600	50	4-6
		Fast Switching So			
S77-S82	Stud Mount	40-325	100-1200	100	4-8
S83-S94	Disc Mount	60-900	100-2200	100	6-10
		RBDT's			
S95,S96	Stud Mount	22	600-1000	100	6-8
S97,S98	Disc Mount	125	600-1000	100	6-10
TRANSIST		General Purpos		*	
T5-T14	TO-66/TQ-3	.5-15*	40-150	1000	4-6
T15 T00	Charl Married	High S.O.A.	20.250	100	4-6
T15-T32	Stud Mount	1.5-25*	30-250	100	4-0
T00 T0 :		n Power Fast Switch			0.40
T33,T34	Stud Mount	50*	400-500	50	8-12
T33,T34	Disc Mount	50*	400-500	50	8-12
*Coin Doton	I Cumant				

*Gain Rated Current

For volume users of high power semiconductors, Westinghouse offers a program that can help save you and your company time and money. Westinghouse will carry your safety stock, at no cost to you, in the form of a bonded element inventory selected to your specifications and with guaranteed delivery time for encapsulating these elements into any device package you desire. In addition, this program will

allow Westinghouse to respond more rapidly to sudden increases in your production levels. Therefore, by letting Westinghouse carry your safety stock, you not only get a guaranteed delivery lead time, but your company realizes an improvement in its cash flow as a result of the reduction in committed captial. For fast delivery and prompt service, specify Westinghouse power semiconductors.

## **MILITARY and HIGH RELIABILITY PRODUCTS**



Westinghouse has been a pioneer in the manufacture of reliable power semiconductors for both commercial and military applications worldwide. From simple conditioning tests to a full-scale high reliability test program, Westinghouse can deliver a product to meet any required level of reliability.

A complete line of high power military rectifiers are available in both standard and reverse polarity. The JAN type numbers and their respective ratings are as follows:

	100 Ampere/DO-8 Package	240 Ampere/DO-9 Package
	MIL-S-19500/246	MIL-S-19500/211
VOLTAGE RATING	TYPE NUMBER	TYPE NUMBER
200V	JAN 1N3289, R	JAN 1N3164, R
400V	JAN 1N3291, R	JAN 1N3168, R
600V	JAN 1N3293, R	JAN 1N3170, R
800V	JAN 1N3294, R	JAN 1N3172, R
1,000V	JAN 1N3295, R	JAN 1N3174, R

For copies of the military specifications, contact the Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa. 15120.

Westinghouse power semiconductors have been selected for use in a variety of high reliability programs.

•NAVY NUCLEAR (SVFC)	• SEA SPARROW
• APOLLO	<ul> <li>AIR LAUNCH CRUISE MISSILE</li> </ul>
• SATURN MISSILE	• F15, F16
• NIKE X	• KC 135
• BQQ SONAR	• ARSR-3
• SHILLELAGH	• TPS-43
<ul> <li>AIRBORNE CAMERA SYSTEM</li> </ul>	• D2W
• MARK 46/48	• SST
MOL PROGRAM	• SQS56
• AWG 10	• DE1160
• A.A.F.S.S.	• SIRDIPS
• LEM PROJECT	• TRC-170
PHASE ARRAY RADAR	• LORAN C
• SPRINT/SPARTAN (A.B.M.)	<ul> <li>TRIDENT SUBMARINE</li> </ul>
• C5A	• E2C RADAR

For the utmost in reliability, specify Westinghouse power semiconductors.



#### Introduction

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Semiconductor devices control large amounts of power with high efficiency and reliability. With ever-increasing circuit and device power levels, the requirement for adequate cooling of semiconductors is mandatory. The problem for the user is to properly assemble the devices into equipment without reducing their capability. Regardless of whether the device is a lead mount, stud type, flat base or disc, certain mounting procedures must be adhered to in order to get the most reliable device operation. The amount of heat involved requires proper mounting to prevent unwanted temperature rise or damage to the semiconductor. This AD sheet discusses proper mounting methods and surface preparation required for successfully applying semiconductors.

### Thermal Resistance Analogs

Semiconductor heat flow is conveniently depicted by the thermal-electrical analog illustrated in Figures 1 and 2. These figures show the heat flow paths for the stud and disc type devices, respectively. The discussion will cover one heat flow path as in Figure 1, but apply equally to Figure 2. In the diagrams, the following quantities are analogs.

Mecha	anical		Analog
Param	neter		
T -	-Temperature	V	—Voltage
ΔT -	-Temperature	ΔV	—Voltage
	Difference		Difference
*R ₀ -	-Thermal	R	— Electrical
	Resistance		Resistance
Р -	- Heat Source	- 1	- Current Source
*	R _O — Units of	°C/\	Vatt
F	Units of W	/atts	

Thermal losses at the junction and in device resistance must be conducted through device and package to the ambient. Under stable operating conditions, the resulting  $\Delta T$ , between the junction and the ambient is expressed as

### $\Delta T_{JA} = P \times R_{\Theta JA}$

For stud and disc types Re is made up of three quantities so the thermal equation may be written:

Stud type thermal resistance (Reuc) is determined by device design. The heat sink thermal resistance, (Resa), is similarly fixed by the dissipator selected and the amount of coolant used. The remaining thermal resistance quantity, Recs, is the variable which should be reduced to lowest practical levels by proper mounting procedures. These procedures include preparation and treatment of the mating surfaces, use of joint compounds, and applying the required force to the mating surfaces.

When using disc devices the Reuc value is effected by how well the recommended mounting force is applied. The case to sink



Fig. 1: Mechanical-Electrical Analog of Stud Mounted Device.



Fig. 2: Mechanical-Electrical Analog of Disc Mounted Device with Double Sided Cooling.

properties for this double side cooled device responds in the same manner described for stud type devices.

Lead mount semiconductors have their internal resistance predetermined by how well they are soldered together. The axial lead, bonded directly onto the wafer takes heat out of the body and radiates it to the surrounding ambient. A detailed thermal analysis is provided in the lead mount data sheet

These lead mount devices are not affected by load force, and surface finish as are the higher power devices mentioned previously.

#### **Surface Requirements**

The condition of the sink mounting surface is one of the most important mounting details.

The following sections describe what limits should be met on flatness and surface finish to minimize mounting resistance due to surface problems.

### a. Surface Flatness

Surface flatness is specified as a total indicator reading (TIR), measuring the maximum distance between the crests and valleys of the mounting surface. The flatness of the mounting plane is referenced to the maximum deviation measured in the device mounting area.

For satisfactory mounting, the device seating area should be held from .0005 to .001 TIR. Commercial extruded heat sinks do not have comparable flatness values. In addition, cast sinks, rough plates, etc. will require additional treatment.



#### b. Surface Finish

A second sink condition of importance is surface finish. All surfaces have a roughness factor. This value is expressed in microinches and is the average of the deviations above and below mean value of the deviations.

In general, the surface finish should be approximately 30-60 microinches, which is the equivalent finish supplied on Westinghouse semiconductor devices. Finer finishes add undue cost and, in general, do not result in lower contact drop at the mounting interfaces.

Table 1 shows the approximate surface roughness obtainable with various production methods. Generally speaking, mill finish or machined surfaces on copper or aluminum will be satisfactory if they are flat and free from deep scratches. Castings or rough extrusions should be spotfaced to insure flatness and finish. A suitable procedure is to measure a sample surface on a production run, and if satisfactory, proceed with production based on machining techniques. Periodic sample testing will assure that tool wear, etc., is not affecting the desired values.

Table 1 Surface Texture vs. Process

All Values are in Micro-inch Average Deviation

Process	Normal Range (Min.) Average Tooling
Polish	4 to 16
Hone	4 to 32
Grind	4 to 63
Electrolytic Grind	8 to 32
Barrel Finish	8 to 32
Bore, Turn	16 to 250
Die Cast	32 to 63
Broach, Ream	32 to 125
Mill	32 to 250

## **Treated Mounting Surfaces**

To produce a reliably low electrical and thermal resistance between the contacting surfaces it is necessary that they be free of all foreign material, oxides, and films. Freshly machined surfaces are generally free of these contaminants if used immediately. Bear in mind that freshly bared aluminum forms an oxide film in a matter of seconds. Other types of metals, such as copper and steel, oxidize more slowly.

As a precautionary measure, all mating surfaces, and particularly aluminum, should be used immediately after machining. If they are stored, a cleaning operation is good practice. A satisfactory cleaning technique is to polish the mounting area with No. 000 fine steel wool, followed by an alcohol or warm soap and water wipe.

Many aluminum heat sinks are black anodized for appearance, durability, and performance; however, anodizing is an electrical and thermal insulator which offers resistance to heat flow. Therefore, it must be removed from the mounting area. Another treated aluminum finish is irridite, or chromate acid dip, which offers low resistances because of its thin surface. But, for optimum performance, the device seating area should be spotfaced to remove the irridite finish. For economy, paint is sometimes used for sinks. When this finish is used, cleaning is mandatory, because of high thermal and electrical resistance.

## Thermal Compounds

Following all the prescribed procedures previously listed, it is still possible to have air voids between mating surfaces. To optimize contacts, thermal joint compounds are used.

The formula for thermal resistance of any substance is:

where Re=thermal resistance of the film in °C/Watt

p = specific thermal resistance of the film

t = average film thickness of the film in inches

A = film area in square inches

The values of  $\rho$  will vary from .10°C inches per watt for copper film to 1200°C inches per watt for air, whereas a satisfactory joint compound will have a resistivity of approximately 60°C inches/watt. Therefore, the voids, deep scratches, and imperfections which are filled with joint compound, will have a thermal resistance of about 1/20th of the original value.

Westinghouse recommends the use of Alcoa #2 electrical joint compound to fill these voids. This compound contains an active chemical in a grease type medium that dissolves the oxide film, present on most heat-sink mounting surfaces, and seals the joint against moisture. Some compounds attack the surface, with localized action going relatively deep. With this compound, however, the surface is lightly etched with no deep localized attack; it attacks the oxide and not the metal.

All heat exchanging surfaces should be cleaned as mentioned previously. Apply Alcoa #2 compound to all heat exchanging surfaces sparingly with the use of a spatula or lintless brush. Another method is to place a predetermined minimal amount at or around the center of the contact area and then rotate the device back and forth while pressing it into the heat sink. In this fashion, excess compound will be forced out and may be wiped clean. Prolonged skin contact with the compound should be avoided since it does contain a fluoride base. It is recommended that after using the compound, any skin areas which were in contact with the compound should be washed clean.

Other approved thermal compounds are Dow Corning 342 available from Dow Corning Corporation in Midland, Michigan or Silicone Oil SF 1154 available from the General Electric Company.

### **Mounting Pressures**

Optimum mounting pressures for device types have been determined by empirical tests. Based on the results of these experiments, the device tabulations were generated for Table 2. Lower than recommended torques or forces can result in overheating and higher values may result in cracked silicon or internal contact problems. For higher or lower torque and force values, contact Westinghouse.



Fig. 3-A: Typical Non-insulating Hardware Kit.



Fig. 3-B: Alternate Non-insulating Hardware.



Fig. 3-C: Typical Insulating Hardware Kit Assembly.

Standard mounting hardware for stud devices includes a nut and locking washer, or a pal nut. With either combination, the nut should be carefully tightened applying the torque indicated for the type of device shown in Table 2.

An illustration of standard mounting hardware for stud devices is shown in Figure 3. Standard hardware kits are available to accomodate mounting all semiconductor types. The appropriate kit is identified by a code number as shown in the last three columns of Table 2. These codes are explained in Table 3 as to what components come in each kit

Alcoa #2 Joint Compound is available from ... Alcoa Conducta Products Company, Division of Aluminum Company of America, Pittsburgh, Pennsylvania.



## Table II Semiconductor Mounting Torque, Force, and Hardware

D1-			Mounting	Mounting h	lardware Code	s
Package Description	Package Outline	② /Applicable JEDEC Series Types	Torque Lb-In (N-M)	Non-insulating	Insulating	Tenz Nut
Stud Mount		Rectifier				
.190-32	DO-4	R302/R303/R310/R311/IN1199, A,B IN1341, A, B/IN1612/IN3615/IN3670, A IN3987/IN4458	20 (2.22)	31	32	25
		Rectifier				
.250-28	DO-5	R402/R403/R404/R405/R410/R411/ IN248, A,B, C/IN1183, A/IN1191, A IN2154/IN3208/IN3765	30 (3.33)	14	34	37
		RBDT				
	DO-5	T40R				
		SCR				
	TO-48	T400/2N681/2N1842, A				
		Transistor				
	MT-52	153/154/2N3429				<u> </u>
		Transistor				
.312-24	MT-1	151/152/2N1015/2N1016/2N2226	50 (5.56)	56	17	19
	MT-33	163/164/2N2757/2N3470				
		Rectifier				
.375-24	DO-8	R500/R501/R502/R503/R510/R511/ IN3288A/IN4587	120 (13.35)	99		98
		Rectifier				
.500-20	DO-30	R5DO/R5D1	130 (14.46)	02	_	01
	TO-94/ TO-83	SCR T500/T507/T510/2N1792/2N1909/ 2N2023/2N4361/2N4371				
		Rectifier				
.750-16	DO-9	R600/R601/R602/R603/R610/R611 IN2054/IN3161/IN3260/IN3735/IN4044	360 (40.06)	03		04
	R70	R700/R701				
		SCR				
	TO-93	T600/T607/T610/2N3884				
	T70	T700/T707				
		Transistor				
	D60	D6OT				
Diamond	TO-66	2N3054/2N3441	10 (1.11)		22*	_
Base Mount	TO-3	2N3055/2N3232-33/2N3236/2N3442/ 2N3771, 2, 3/2N4347-48	10 (1.11)		20*	
Axial Lead	DO-41	IN4001-07	Solder Leads	None	e Required	
Mount	DO-27	IN4816-22/IN5052-54	to Terminals			
	DO-15 ∼DO-27	IN5391-99 IN5400-08				
	R34	R340				
Flat Base Mount	T68	T680 (2.4" Square Base)	25 (2.78) Per Bolt	Four .312-24 bol	ts supplied by (	Customer
	T78	T780 (Studless)	Spring flat and parallel to mounting plane	26**		
Integral Heat- Sink Mount	T76	T760/T767	Bolt used for electrical con- nection only.	.5-20 Bolt supplie	d by customer.	

^{*(2) .138-40} Bolts required per device. Bolts supplied by customer.
**(2) .312-24 Bolts required per device. Bolts supplied by customer.



## Table II Semiconductor Mounting Torque, Force, and Hardware (Continued)

Package Description	Package Outline	(W) Applicable JEDEC Series Types	Mounting Force LB (KN)	Mounting Hardware Codes
Disc Mount				
Interface Dia. In. (mm) .75 (19.05)	R62	Rectifier R620/R622 RBDT T62R	1400 (6.2)	
·	T52 T62	SCR T520/T527 T620/T625/T627 Transistor	1000/4.5 1400 (6.2)	
	D62	D62T	1400 (6.2)	
1.34 (34.04)	R72	Rectifier R720/R722 SCR	2400 (10.7)	Clamp Purchased Separately
	T72	T720/T727/T72H		
1.75 (44.45)	R92	Rectifier R920 SCR	5500 (24.5)	
	T92	T920		
1.90 (48.26)	R9G	R9G0/R9G2	6000 (26.7)	
, ,		SCR	, ,	
	T9G	T9G0/T9GH		
2.48 (62.99)	RA2	Rectifier RA20 SCR	12000 (53.4)	
	TA2	TA20		



Fig. 4: Recommended Mounting Practices and Finishes for Stud Mount Devices.

## **Mounting of Stud Type Devices**

Figure 4 presents an exploded view of a studtype device and shows the various recommendations of surface flatness and finish. It should be noted that the diameter of the mounting hole should not exceed the diameter of the stud by more than 1/64" and that the edge of the hole should have a chamfer not exceeding .01" radius.

The fastening hardware shown consists of a nut and a locking feature, either pal nut or lock washer. Either type will work as long as proper torque is applied. It is very important to apply the torque with a good torque wrench such as those sold by P.A. Sturtevant Co. and Snap-On Tools Corporation or other reputable firms.

It should be noted that Westinghouse does not recommend as standard practice drilling and tapping holes for mounting stud type devices. This is due to the need for ½10 of a degree perpendicularity necessary between the hole and mounting surface.

### Mounting Flat-Base Devices

In mounting flat-base devices the required pressure is obtained by fastening the device corners or edges with bolts. The pressure should be applied in a staggered fashion such as tightening opposite corners to one half the



recommended torque as per Table 2 and then finally apply the necessary remaining torque in the same staggered fashion. Special "studless" devices are mounted by mounting springs as shown in Figure 5. Proper mounting pressure is applied when the spring is flat and parallel to the heat sink surface.

### **Mounting Discs**

Disc's achieve higher current ratings due to improved heat transfer capabilities. This is made possible by two heat paths and greater heat conduction area. Since these devices are fabricated without mounting features, such as studs, plates or retainer assemblies, the devices must be mounted with external force.

The required clamping force must be applied perpendicular to the disc surfaces and should be uniformly distributed over the total contact areas. To achieve this, the clamping system must assure sink-device parallelism via appropriate clamp construction and mounting technique.

Westinghouse offers a clamp which provides uniform distribution of the required pressure. This distribution of pressure is accomplished by a ball and socket type gimbaling mechanism. The force is applied via a spring bar or bars depending on the magnitude of the force to be delivered. This clamp is available with a mechanical force gauge to acknowledge what force is applied. The stud length is variable to accomodate different lengths of clamping columns.

An exploded view of an assembly consisting of a disc type semiconductor with double side cooling and the Westinghouse clamp is shown in Figure 6.

A recommended procedure for mounting disc types is as follows:

- Check mounting surfaces of semiconductor and heat exchanger to insure no large scratches, nicks or irregularities are present.
- 2. Mounting surfaces should be free of oxides, films or foreign materials in order to have good heat exchanging properties. Surfaces should be rubbed lightly with OOO steel wool and swabbed with alcohol immediately prior to assembly. Surfaces should not be touched after cleaning. Parts may be placed on a lint free surface until final assembly.
- Pre-assemble any roll locating pins to be used with a light hammer into the center dowel hole in each heat sink if necessary. A gauge block is useful to prevent excessive length of this pin.
- Polarity of the device should be checked prior to assembly to insure the device is installed in the desired direction.
- For assembly the contact surfaces of the semiconductor and heat sink should be

Table III Semiconductor Mounting Hardware

CODE NUMBER	TYPE	HARDWARE DESCRIPTION	
01	Tenz nut	.5-20 Nut-washer combination	
02	Non-insulating	.5-20 Hex nut and pal nut	
03	Non-insulating	.75-16 Hex nut and pal nut	
04	Tenz nut	.75-16 Nut-washer combination	
14	Non-insulating	.25-28 Hex nut and pal nut	
17	Insulating	.312-24 Nut, mica washer, glass sleeve, solder lug, pal nut and shoulder bushing	
19	Tenz nut	.312-24 Nut washer combination	
20	Insulating	Mica sheet and (2) bushings	
22	Insulating	Mica sheet and (2) bushings	
25	Tenz nut	.190-32 Nut-washer combination	
26	Spring bracket	Spring, spacer and safety bracket. Bolts supplied by customer	
31	Non-insulating	.190-32 Nut and lock washer	
32	Insulating	.190-32 Nut, shoulder bushing, mica washer, lockwasher and solder lug	
34	Insulating	.25-28 Nut, shoulder bushing, mica washer, lockwasher and solder lug	
37	Tenz nut	.25-28 Nut-washer combination	
98	Tenz nut	.375-24 Nut-washer combination	
99	Non-insulating	.375-24 Hex nut and pal nut	

Note: Semiconductor Device Hardware is supplied upon request only. Most standard non-insulating hardware kits are available free of charge if specifically requested when ordering devices. Insulating kits, tenz nuts, and other special hardware kits are available at extra cost—consult factory.



Fig. 5: Mounting Procedures for Studiess Device





Fig. 6: Mounting Procedure For Disc Mounted Devices (Exploded View).

lightly coated with Alcoa #2 (or suitable substitute). The device should then be centered on the heat sink. If dowel pin locators are used the device should be placed with its locator holes over the projections. The device should then be rotated through 180° to distribute the compound.

- 6. The appropriate clamp may now be inserted through the heat sink. The clamp force bar with mechanical force gauge must be initially adjusted to give a zero force reading. The spring bar may now be placed over the studs and the centering pin located in the hole provided. The nuts may now be finger tightened, in an even fashion such that approximately the same number of threads show above each nut.
- To achieve the correct mounting force apply either half or quarter turns per nut in a staggered fashion until the gauge indicates the correct force.

### **Remounting Disc Devices**

In some instances devices must be replaced in the field. The procedure to be used is similar to the mounting procedure just outlined with the following additions:

## 1. Removing the Device

Disassembly should be made by loosening the clamp nuts in a staggered fashion, i.e., one half turn from one nut, one half turn from the other, etc., until the nuts can be removed by hand.

## 2. Re-Zeroing Clamp Gauge

Make sure that the gauge is set to zero before using again. This is done simply by bending the indicator until a zero force is indicated.

Cleaning and Coating of Clamp Threads
While the clamp is disassembled, clean
the threads with a light brushing and then
wipe with a cloth. Prior to using the clamp
a coating of Anti-Seize or Never-Seez nongalling compound should be applied to the
threads.

#### WARNING:

Due to the high load forces placed on these clamps breakage could occur when torsional force is being applied to the threads resulting in the broken bolt becoming a flying projectile. Safety precautions must be taken to prevent bodily harm.

As indicated earlier, proper device loading is necessary to guarantee good thermal performance. With disc devices power dissipating properties are also affected by loading effectiveness. Figures 7a and 7b illustrate the typical effect of mounting force on thermal performance and device forward voltage drop for discs.

### Parallel Mounting of Disc Devices

For applications requiring greater current output than can be obtained from one device, two or more devices can be readily paralleled. It is necessary, however, to take simple precautions to allow for possible variations in height of the devices. A rigid heat sink may be used and will serve as a base for the units to be paralleled, but the other side of the devices should be cooled by individual heat sinks. Individual clamps are required for each device to provide the required pressure.

## Stack Mounting of Disc Devices

The flat symmetrical design of the disc package permits stacking the devices to obtain a number of circuit configurations. A single clamping device can be used with the length of bolt adjusted to clamp the total





Fig. 7A: Typical Junction-Case Thermal Impedance Variation as a Function of Mounting Force for Disc Type Devices.

length of the stack. The limit of stacking, of course, depends on the rigidity of the assembly and the amount of expansion and contraction which can be tolerated during operation. Both problems can be solved by proper fixture design for assembly and by selection of springs with suitable load-deflection characteristics. When stacking devices in one clamped column it is necessary to keep sink mounting surfaces parallel to within .0005 inch if devices are to be mounted on both



Fig. 7B: Typical Forward Voltage Drop Variation as a Function of Mounting Force For Disc Type Devices.

sides of the sink such as in many plate designs.

Figure 8 shows the basic configurations which may be obtained in a single stack. These include parallel, series, center tap, doubler and three-phase, full wave circuits. Many others are possible. The diagrams use diode circuits for simplicity of illustration. They are applicable to SCR's connected in series and to complete isolated circuits

wherein insulated spacers may replace devices in the mechanical assembly.

#### **Heat Sink Considerations**

The previous discussion referred indiscriminately in the various sections to either plate-type or to extruded heat sinks. The plate-type is the simplest to use and may be of copper, aluminum or any thermally conductive material. The aluminum extrusions are the most common heat sinks presently used and furnish a greater exposed surface for heat transfer to the ambient atmosphere.

The heat-transfer characteristics of any heat sink, under normal convection conditions, can be greatly enhanced by using either forced air or some liquid coolant. The use of a liquid coolant is considerably more efficient. Liquid cooled sinks are generally cast or machined. Either is highly efficient but cast heat sinks have very little waste in fabrication and have very low pressure drop. The flow of coolant through the sinks is usually controlled to hold the semiconductor temperature to the designed maximum level.

A complete line of air and liquid cooled heat sinks are available to accommodate all disc type semiconductors. In addition, Westinghouse offers a full line of air and liquid cooled assemblies for all power semiconductors.



Fig. 8: Stack Mounted Disc Assemblies.

## Designed with YOU in Mind

Ideal for all users of power semiconductors regardless of job function, technical background, and experience level.



- Two books in one
- 8½ x 11 format
- Easy to read
- Fully indexed
- Master cross reference
- Complete product data
- 432 Pages

## U.S. \$6.50 • Book Rate Postage Included • Elsewhere \$7.50

This valuable reference book will save you time and money when specifying, buying, installing, testing, maintaining, trouble-shooting, servicing, identifying, and replacing power semiconductors. Order your copy today.

Send check or money order (payable in U.S. funds) to:

Westinghouse Electric Corporation Book Order Semiconductor Division Youngwood, Pa. 15697



## Introduction

The Silicon Controlled Rectifier (SCR) is a thyristor which attains its power control function by gate turn-on. The gate signal causes the SCR to revert from a forward blocking or off-state condition to a current conducting or on-state condition. Turning on an SCR should be simple, but circuit considerations and device trade-offs add some complexity. With an understanding of gate terminology, trade-offs and requirements of an SCR, a designer will have better guidelines for specifying gate turn-on requirements.

### V/I Characteristics of an SCR

The SCR is a three terminal thyristor, properly defined as a Reverse Blocking Triode Thyristor. The V/I characteristics relationship is shown in Figure 1.

Off State or Forward Blocking Voltage



Figure 1. Voltage Current Characteristics Using Gate Control.

Without a gate control signal, the thyristor blocks voltages in both directions, so that power flow is inhibited. To initiate power flow, the SCR is gated only when it is in the forward blocking (V_{DRM}) off state. Increasing the gate signal I_G from 0 to I_{GT} shows that the SCR's ability to block voltage decreases until it turns on. The reverse blocking voltage characteristic (V_{RRM}) is like a rectifier diode. If one were to leave on a gate signal while the SCR becomes reverse biased, it is possible that the SCR would fail due to increased leakage current.

The SCR can be turned on by three methods; viz..

- The recommended application of a gate current and voltage to the gate cathode potential leads.
- Two-terminal turn-on by exceeding the non-repetitive forward blocking (off-state) voltage rating, referred to at times as V_{BO} turn-on.
- dv/dt turn-on due to high dv/dt causing capacitive current triggering action.

The last two methods are not recommended for repetitively turning on an SCR because of restricted anode current rise time (di/dt) and magnitude.

To turn off an SCR in an AC phase control circuit is relatively easy. Suppress the gate signal and the reversal of the AC line voltage causes commutation from the conduction state back to the off state. Of course, there are circuits which require sophisticated methods to achieve turn-off commutation such as choppers and inverters. These are available in the literature.

## **Gate Parameters and Characteristics**

Because of the myriad of SCR applications, a dc gate test condition (Figure 2) with a resistive load was chosen to permit both the manufacturer and the user to ascertain basic gate parameters. It was not intended to reflect operational application requirements. These dc gate trigger requirements are normally given on SCR data sheets.

- I_{GT} is a dc gate current which causes the SCR to latch into conduction and remain "on" (hold); referred to as gate trigger current.
- $\bullet~V_{GT}$  is the dc gate cathode voltage which

causes the SCR to latch into conduction and remain "on" (hold); referred to as gate trigger voltage.

- I_{GNT} is a dc gate current which, when applied to the gate cathode terminal, will still permit the SCR to block rated V_{DRM}; referred to as non-trigger gate current.
- VGNT is a dc gate voltage which, when applied to the gate cathode terminal, will still permit the SCR to block rated VDRM; referred to as non-trigger gate voltage.



Figure 2. DC Gate Characteristics Test Circuit.

There are other gate parameters which must also be considered and are subsequently covered. They include peak gate trigger current for pulse operation, I_{GTM}; peak and average gate power, P_{GM} and P_{G(AV)}; and peak reverse gate voltage, V_{GRM}. The rated values are given in the data sheets.

The maximum gate triggering characteristics for Westinghouse di/namic gate SCR's is given in Figure 3. The di/namic or amplifying gate SCR consists of a pilot and main



Maximum Instantaneous
Gate Trigger Current I_{GTM} Amperes → A

Figure 3. Maximum Gate Triggering Characteristics for Westinghouse di/namic Gate SCR's.



SCR on the same element; this new gating structure provides improved characteristics over previous designs. Note that the ratings are at 25°C and that a recommended load line for moderate di /dt applications is given.

The characteristic effect of junction temperature versus gate trigger current/voltage is depicted in Figure 4 with an SCR I_{GT}=150 ma. Gate Drive Requirements Note that as an SCR is heated to 125°C, the required gate current to trigger typically is one-half the 25°C value, and that the -40°C value is approximately twice the 25°C value.



Minimum Required Gate Current, I_{GT}, -- mA. Figure 4. Typical Gate Triggering Range for Various **Junction Temperatures** 

To relate the measured value of dc gate trigger current to pulsed gate operation required in some applications, the following information is needed and is shown in Figure 5. Whether the SCR design is a conventional center fire gate, di/namic gate, or other, it is necessary to increase the gate drive amplitude for pulse widths less than 20 microseconds. This is due to the charge turn-

on concept (q= \( \langle \) IGT dtp) described in the referenced literature. The minimum gate trigger requirements versus pulse widths are given with respect to junction temperature. This insures that the SCR will latch on and remain on (if provided in circuit) but is not the optimum gate drive requirements.

The present di/namic gate SCR may be triggered with either Soft Gate Drive or Hard Gate Drive. Predecessor devices with center firing and edge firing gates required hard gate drive to achieve uniform current conduction and low switching losses. However, even with the di/namic gate and newer interdigitated geometries, applications still exist which require hard gate drive.

### **Hard Gate Drive**

Demanding applications where hard gate drive is suggested include inverter and chopper circuits of capacitive type loads where high repetitive di /dt is evident; heavy industrial phase control operation with inductive load (or power factor control) and systems where electrical noise is troublesome requiring noiseimmune thyristors and gate signal suppression circuitry (up to IGT). Figure 6 is the suggested Hard Gate Drive for an individual SCR. The cases of anode current conduction interval  $\leq$  20  $\mu$ s or picket fence gate firing are not shown. Reference must be made to the Minimum Pulsed Gate Trigger Requirements (Figure 5) to obtain the proper value of IGT. This value of IGT is then used for the Hard Gate Drive IGTM determination.

Soft Gate Drive shown in Figure 7 is perfectly adequate for resistive and inductive load applications. In general, a gate drive transistor can be eliminated from the gate

Gate Trigger

V_{GTM}, Volts

Voltage,

firing circuitry, providing a cost reduction. If a snubber network is always available to discharge upon signal initiation, soft gate drive may be adequate even for some high di /dt applications, but further assistance is advised from an application engineer.



Figure 6. Hard Gate Drive.



Figure 7. Soft Gate Drive.

Example: A Westinghouse T920 has a data sheet I_{GT}=200 ma @ 25°C. The recommended gate drive, to cover all types of load variations @ T_J=-40°C start-up is as follows:

 $I_{GT} @ -40^{\circ}C = 2 \times I_{GT} @ 25^{\circ}C \text{ (from Figure 4)}$ I_{GT} @ --40°C = 400 ma Hard Gate Drive-IgT = 3.3 to 5 x IgT @ -40°C Igt = 1.3A peak (Min. value)

The conduction period of the anode current "back porch" must have a gate current no lower than the IGT @ -40°C; i.e., 400 ma to ensure conduction for low power factor loads.

## **Recommended Gating Practices**

A di/namic gate SCR is optimized to provide fast turn-on and low switching losses with a soft gate drive signal. Recognition of situations where di/namic gate action is limited along with a number of recommended design practices are given below.

- · Gate the SCR when the anode voltage is positive. Allowing a positive gate while the SCR becomes reverse biased limits device reliability.
- · Design the gate firing sequence such that the snubber network across the SCR is charged prior to gate signal. This gives good di/namic gate action.
- If a dc gate signal is used in a multi-phase system a soft gate drive signal does not



Figure 5. Minimum Pulsed Gate Trigger Requirements.



give good di/namic gate action. No snubber discharge is possible after time zero which results in poor di/namic gate action. In addition, Westinghouse SCR's have high noise-immune characteristics (I_{GNT}) meaning they do not false trigger at very low gate currents. For this particular application hard gate drive is required.

 The gate drive circuitry should have a 1 to 2A average 100V diode in series with the gate and across the gate cathode terminals as shown in Figure 8. These will eliminate two possible failure modes of an SCR. The diodes in series with the gate will prevent negative gate current flow while the diode across the gate cathode limits the reverse gate voltage, V_{GRM}, to ~ 2V by diode clamping.



Figure 8. Protected Gate Cathode

- Provide open circuit gate voltage>20V to prevent gate drive extinction. The instantaneous gate cathode voltage can exceed the source voltage in high di/dt applications.
- Inductive loads can be troublesome if the gate drive is insufficient in amplitude or width. Existing recommended practice is the use of the "picket fence" or hard gate drive. A picket fence is a high frequency gate signal varying from 1 to 15KHz, 200μs to 50μs wide within a 60Hz envelope such that the SCR is continuously gated. The average gate current rating is maintained. In hard gate drive circuits, the "back porch" anticipates worse-case power factor; making the gate pulse width wide enough to ensure SCR latching and holding.
- To prevent noise pickup in the gate potential connections, twist together the gate cathode potential leads of the SCR and use either a twisted wire pair from the gate pulse amplifiers circuit or a coax-type shielded cable. Locate the wires as close as possible to the SCR but away from magnetics or high current carrying members in the circuit. Of course, the gate cathode lead lengths should be as short as possible.
- To minimize △ delay time variations between SCR's, use hard gate drive with as high a gate current risetime (dig/dt) as possible; ref. Figure 6.
- Always use a resistor in series with each gate lead if triggering more than one SCR

from the same source. Generally, 10 to  $25\Omega$  is used to diminish input gate cathode impedance variations.

- Use single point triggering if gating more than one device from the same source.
- If highest total circuit reliability is desired, a power burn-in of the complete gate firing board at rated temperatures and power will eliminate weak components and infant mortality.

### Series Operation

Present application techniques are such that, in many designs, circuit applications exceed device blocking capabilities. For this reason, series connected SCR applications have been, and are prevalent. Figure 9 shows a typical circuit connection, including the compensating components required for proper operation. In such a series connection the last device to turn on may be subject to an overvoltage and dissipates the most energy. A high drive gate signal from a single source is required to minimize delay times and switching losses. The resistors RB are for static voltage balancing due to blocking voltage, leakage current differences. The snubber capacitor C is not only for dv/dt but also for QRR variations.



Figure 9. Typical Series Connection with Single Point Triggering.

It should also be noted that the gate circuitry employs individual resistors. To neglect this point is dangerous, since one low impedance gate consumes an excess of the available energy by voltage clamping of the transformer, thus reducing the energy available to the other devices and possibly causing overvoltage destruction of the device with the maximum delay. In such applications, a good overdrive gate signal is recommended.

One should specify matched  $\triangle$  delay times and  $\triangle$  Q_{RR} (if not diode clamped) for each series connected group of SCR's to optimize voltage sharing.

### **Parallel Operation**

Discrete SCR's must be paralleled because they lack the required current handling

capability, redundancy is required or because reduced junction temperature operation is desired. It is understood that the required type of gate drive circuit is dependent upon the particular circuit and load characteristics.

A specific gate firing problem is encountered with parallel operation of devices. In situations where anode reactors are employed, as shown in Figure 10, care should be exercised because as device "a" turns on, its voltage is supported by the reactor. Until the slow device "b" turns on, no current, except magnetizing current, flows. Therefore, device "a" has low turn-on losses. Device "b" on the other hand has the circuit voltage plus the transformed voltage across it while switching half the load current, and so is stressed harder due to delay variations. Therefore, in this instance the designer should consider the delay variations in gate pulse amplifier design, assuming single point triggering. It must be recognized that with a di/namic gate device and low magnetizing current (~IL), di/namic gate action may not be achieved and high gate drive is recommended.

The necessity for economy sometimes dictates the operation of thyristors without balancing components, as illustrated in Figure 10(b). Unlike the previously described situation, with balancing reactors, device "a" turns on first and is more severely stressed as it must switch both the R-C network energy and the load current. If the load is capacitive or resistive a di/dt problem may exist. The combination of di/dt, device "b" turn-on with very low anode voltages, and long delay times, dictates hard gate drive.





(b) No External Balancing

Figure 10. Parallel Operation of Thyristors.

It is also wise in this type of operation to select device characteristics which provide matching voltage drops and turn-on times. In inverter or commutating SCR applications, the di/namic forward voltage drop matching permits current sharing while steady state voltage drop matching is not necessary.



### **Gate Firing Circuits**

A gate trigger circuit can become quite sophisticated such as in an inverter application. Trigger logic circuits have been designed to do many things—

- Trigger the proper SCR's.
- Suppress the gate at overtemperature conditions.
- Crowbar (trigger) or suppress at fault conditions or overvoltage.
- Not trigger at low gate signal levels or predetermined pulse widths.

These type of circuits require design time and in many cases practical experience. If your experience or time is limited, consider the commercial gate firing circuit manufacturers to implement your required SCR circuit. Shown in Figure 11 are three examples of an SCR's hard gate firing circuit for phase control operation.

In the first circuit, a Shockley diode (4E20-8) provides the trigger pulse by voltage breakover, with AC line synchronization on the primary. In the second circuit, the Westinghouse T507 or other fast turn-on SCR is the trigger pulse, which can be gated within any point of the positive AC voltage. The negative AC voltage causes the SCR to line commutate off. The DC circuit uses a transistor to trigger, since an SCR in this circuit would not naturally commutate off. In all three circuits, the negative gate voltage is clamped by the diode across the gate cathode terminals. Other gate firing circuits are available in the Westinghouse SCR Designer's Handbook and those of other manufacturers.

### Summary

The information provided herein will allow the designer or user to assess the merits of a gate trigger circuit. It is important that the gate drive circuit provide a signal which compensates for temperature and circuit effects. The reliability of a circuit is dependent upon every item within it. A proper gate drive signal will not guarantee improved circuit reliability but certainly is a proper step in achieving total reliability.



Figure 11. Examples of High Drive Circuitry.

#### References

- Rice, L. R., "Westinghouse Silicon Controlled Rectifier Designers Handbook," Second Edition, Westinghouse Electric Corporation, 1970.
- Gentry, F. E., Gutzwiller, F. W., Holonyak, N. and Von Zastrow, E. E. "Semiconductor Controlled Rectifiers," Prentice-Hall, 1964.
- Dewan, S. B., and Straughen, A., "Power Semiconductor Circuits," John Wiley & Sons, 1975.
- Gyugyi, L., and Pelly, B. R., "Static Power Frequency Changers," John Wiley & Sons, 1976.
- Bedford, B. D., and Hoft, R. G. "Principles of Inverter Circuits," John Wiley & Sons, 1964
- 6. Schaefer, J., "Rectifier Circuits, Theory and Design," John Wiley & Sons, 1965.
- Pelly, B. R., "Thyristor Phase Controlled Converter and Cycloconverters," John Wiley & Sons, 1971.

- Grafham, D. R. and Hey, J. C., "General Electric SCR Manual," Fifth Edition, General Electric Company, 1972.
- Hoft, R. G., "International Rectifier SCR Applications Handbook," First Printing, International Rectifier Corporation, 1974.
- Kusko, A., "Solid State DC Motor Drives," The M.I.T. Press, 1969.
- McMurray, W., "The Theory and Design of Cycloconverters," The M.I.T. Press, 1972.
- 12. Ramshaw, R. S., "Power Electronics," Chapman and Hall, 1973.
- Mazda, F. F., "Thyristor Control," John Wiley and Sons, 1973.
- Murphy, J. M. D., "Thyristor Control of AC Motors," Pergamon Press, 1973.
- Davis, R. M., "Power Diode and Thyristor Circuits," Cambridge University Press, 1971.



## Application Data THYRISTOR SURGE SUPRESSION RATINGS Phase Control SCR'S

During the design of any power circuit incorporating thyristors, the designer is faced with choosing between several techniques for protecting the thyristors from load induced faults which would subject them to inordinately high levels of forward current. Many of these faults are of short duration and self-clearing. Conventional fault clearing techniques employing breakers or fuses are costly to maintain as they require varying periods of "downtime" either to reset the breakers or replace blown fuses. A better approach to limiting faults of this nature is surge suppression.

## **Thyristor Surge Suppression**

Surge suppression is a fault clearing technique utilized in AC circuits in which the thyristor "rides thru" the first half cycle of surge current. The gate drive is inhibited at this point and the thyristor recovers to the blocking state isolating the load fault. Gate drive can be re-instituted following the successful clearing of the fault allowing continued use of the equipment with essentially zero downtime due to the load induced fault.

Design of circuits employing surge suppression is more difficult than conventional designs for several reasons. Fault sensing logic must be employed to sense and clear the fault and then perhaps automatically re-institute circuit operation. The exact magnitude of the worst case current fault must be known to properly coordinate the thyristors. Of prime importance, a definitive set of surge suppression ratings must be available for the thyristors to facilitate proper derating for reliable operation.

To aid in your design of a surge suppression circuit, a number of graphs have been developed. The first graph A has been designed to facilitate the determination of the magnitude and width of a fault current pulse given the ratio of resistance (R) to inductive reactance (XL) of the circuit during a fault. Graphs B-1 through B-17 for Westinghouse phase control thyristors give the maximum permissible single cycle surge current that can be reliably utilized in a surge suppression circuit. These current levels are presented as functions of the base width and initial peak junction temperature as the figure illustrates. Graph C gives the voltage rating factor applicable to all Westinghouse phase control devices. Their use is outlined and an illustrative example is as follows:



## **Procedural Outline**

- Determination of fault current magnitude and pulse width.
  - Determine the equivalent resistance a. (R) and inductive reactance (X_L) from
  - detailed analysis of voltage source and circuit loop impedances.

    b. Determine the offset factor. K. from
  - b. Determine the offset factor, K, from the graph A, given the value of  $\frac{R}{X_L}$ .

Then I_{T(asm)} = K×I_{T(sm)} where:
I_{T(asm)} is the peak value of
asymmetric surge current
I_{T(sm)} is the peak value of
symmetric surge current given by:

$$I_{T(sm)} = \frac{V}{(R^2 + X_L^2)} \frac{V}{2}$$

Where: V is the peak open circuit voltage.
R is the value of circuit resistance.
X_L is the value of circuit inductive reactance.

- c. Determine the asymmetric surge current base width from Graph A given the value of  $\frac{R}{X_I}$ .
- 2. Selection of proper thyristor for an anticipated surge.
  - a. Select the proper family of thyristors suited to the specified operating current—voltage—mechanical configuration and cooling requirements of the equipment. Refer to the Westinghouse Short Form Catalog (54-000) or specific data sheets for this information.
  - B. Refer to the appropriate Surge
     Suppression Rating Graph B-1 through
     B-17 for the specific thyristor selected
     in 2a.

- Calculate or estimate the peak junction temperature of the thyristor prior to the anticipated surge. Worst case will be 125°C.
- (2) On the Surge Suppression Rating graph B-1 through B-17, locate the specific ordinate scale pertaining to the anticipated surge current pulse width.
- (3) Locate the specific magnitude of surge current on this scale.
- (4) Move horizontally on this value of surge current until you intersect the peak initial junction temperature curve as determined in 2.b.1.
- (5) Read the peak junction temperature from the abscissa scale.
- (6) Refer to Graph C for the Voltage Rating Factor. Find the value of the maximum junction temperature following surge given in 2.b.5 on the abscissa scale. Follow this value of temperature vertically until you intersect the "standard" curve. The value of the Voltage Rating Factor, F, corresponding to this intersection is the minimum F factor which can be used to establish the device voltage rating by the following expression.

$$V_{Rating} = F \times V_{P}$$

## Where:

- V_{Rating} is the minimum rated voltage for the thyristor,
   V_{DRM} and V_{RRM}.
- F is the voltage rating factor.
- V_P is the peak forward voltage seen by the thyristor following a surge.
- If the voltage rating derived above is greater than that attainable for the device in question there are several options open:
  - a. Repeat 6 using the "selected" curve. If an acceptable rating is attained, a device may be specially selected and tested by the manufacturer to perform at the specified operating levels. Contact your Westinghouse Applications engineer for details if you require a specially selected device.
  - A higher current rated thyristor can be specified and the calculations outlined in 2b-1 thru 2b-6 repeated.
  - Two thyristors can be operated in series to attain the specified voltage rating.

## Application Data THYRISTOR SURGE SUPPRESSION RATINGS Phase Control SCR'S



## Design Example

### Given:

- Maximum junction temperature prior to surge, T_{ji}=110°C.
- Circuit equivalent resistance, R=.01 ohms.
- Circuit equivalent inductive reactance, X_L=.025 ohms.
- Peak open circuit voltage, V_P=400V.
- Assume a 1000V, T920 type thyristor will be used for this application for steady state current and reliable voltage derating requirements.

#### Find

Magnitude and width of fault current pulse. Acceptable device rating for this application. Procedure:

$$\frac{R}{X_L}$$
 ratio =  $\frac{.01}{.025}$  = 0.40

From Graph A find the offset factor, K=1.28

• Calculate magnitude of symmetric surge current I_{T(sm)}.

$$I_{T(sm)} = \frac{V}{(R^2 + X_L^2)^{1/2}} = \frac{400}{[(.01)^2 + (.025)^2]^{1/2}}$$
$$= 14.855A$$

 Calculate magnitude of asymmetric surge current I_{T(asm)}.

$$I_{T(asm)} = K \cdot I_{T(sm)} = 1.28 \cdot 14,860 = 19,000A$$

 Find asymmetric surge current pulse width from Graph A for R

Pulse base width=11.9 msec.
Initial device selection T920, 900 ampere device.

Initial junction temperature given as 110°C. From surge suppression rating curve for T920—09 (Graph B-16).

12 msec. ordinate scale—19000A peak using T_{ii} curve for 110°C.

Peak T_j=173°C from graph. Examining the Voltage Rating Factor curve for a standard device at 173°C, NO F factor is available in the standard rating. The 900 ampere standard device cannot be used under the stated conditions. First Option:

Evaluate the T920—1000 ampere device.

$$T_{ji} = 110$$
°C

from surge suppression curve for T920—10 (Graph B-17).

12 msec. ordinate scale—19,000A using peak  $T_{ij}$ =110°C curve.

Using the Voltage Rating Factor curve for a standard device at Peak T_i=163°C,

$$F = 3.2$$

A standard 1300 volt—1000 ampere T920 thyristor fulfills the minimum requirement for this application.

#### Second Option:

Using the special selection curve of Graph C for  $T_i=173$ °C; F=2.6.

$$V_{Rating} = 2.6 \times 400 = 1040 \text{ V.}$$

A specially selected 1100 volt—900 ampere T920 thyristor may also be used.

## Surge Current Offset Factor—Pulse Width—Graph A





## Application Data THYRISTOR SURGE SUPRESSION RATINGS Phase Control SCR'S



## Application Data THYRISTOR SURGE SUPPRESSION RATINGS Phase Control SCR'S



Junction Temperature Prior to Reapplied VDSM, TJ,



Junction Temperature Prior to Reapplied VDSM, TJ, °C



tp=10 ms 8 0 1 1 1 tp=8.3 ms

140

150

Junction Temperature Prior to Reapplied VDSM, TJ, °C

180 190

6

## Application Data THYRISTOR SURGE SUPPRESSION RATINGS Phase Control SCR'S



## Application Data THYRISTOR SURGE SUPPRESSION RATINGS Phase Control SCR'S



#### Conclusion

A detailed procedure has been outlined which will aid in specifying a device for a given surge suppression requirement. The surge suppression ratings arrived at by this technique are intended to be maximum ratings similar to the maximum blocking voltage and conduction current specifications on device data sheets. As such, a certain degree of derating from this maximum operating condition would greatly increase the reliability of operation. This derating is intended to buffer the detrimental effects of variations in circuit parameters from the values used in the determination of the device specifications.

In addition, care must be taken throughout the design of the equipment. The gate drives must be well shielded so as not to present appreciable noise currents to the thyristor during the surge suppression interval. These noise currents could cause retriggering due

to the increased gate sensitivity of the device at the high junction temperature following a surge.

RC dv/dt suppression networks are required to hold the reapplied dv/dt to less than the data sheet rating to prevent dv/dt triggering following the surge. This is the predominant surge suppression failure mode and thus great care should be taken in the suppression network design.

Secondary fault protection techniques must be employed in the event the thyristor fails to successfully suppress the fault. This is usually provided by slow speed fuses or circuit breakers.

### References

1. J. D. Balenovich & W. H. Karstaedt "An SCR Surge Suppression Rating Technique," IEEE Conference Record of IAS, October 1976.

## Voltage Rating Factor—Graph C





## QUICK SERVICE DIRECTORY

## REQUEST

## PRE-ORDER

- PRICE AND DELIVERY QUOTATIONS
   Assemblies, Rectifiers, Thyristors, SCR's, RBDT's, and Transistors
- APPLICATION ENGINEERING ASSISTANCE Assemblies, Rectifiers, Thyristors, SCR's, RBDT's and Transistors.
- TECHNICAL LITERATURE REQUESTS
   Tech Tips, Application Data Sheets, Handbooks,
   Technical Data, User's Manual & Data Book, etc.

## **ORDER**

 IN-PROCESS ORDER INFORMATION (Factory Orders)

## **POST ORDER**

- RETURN MATERIAL AND OTHER CLAIMS
- DEVICE IDENTIFICATION AND REPLACEMENTS

## **♥** FACTORY

WESTINGHOUSE ELECTRIC CORPORATION SEMICONDUCTOR DIVISION YOUNGWOOD, PENNSYLVANIA 15697

## **ACTION**

Contact your local sales representative or authorized distributor (listing on next page). If additional information is required, call the factory and ask for Sales.

Call the factory and ask for Applications Engineering.

Call the factory and ask for Communications.

Call the factory and ask for Customer Service. For factory orders, the name of your customer service representative is located in the lower right-hand corner of your 
weekly open order status report.

Call the factory and ask for the Return Material Coordinator.

Contact your local sales representative or authorized distributor (listing on next page). If additional information is required, call the factory and ask for Sales.

> PHONE (412) 925-7272 TWX 510/468-2840

See 
Sales Representative and Distributor listing on the next page.

## WESTINGHOUSE QUICK SERVICE DIRECTORY



## Westinghouse Worldwide Power Semiconductor Sales Headquarters

## U.S.A. — International

YOUNGWOOD, PENNSYLVANIA

Westinghouse Electric Corporation Semiconductor Division Youngwood, Pa. 15697

Phone: 412/925-7272 TWX: 510/468-2840

### Canada

Westinghouse Canada, Ltd. P.O. Box 5009 Burlington, Ont., Canada L7R4B3

BURLINGTON, ONTARIO

Phone: 416/639-6010 TELEX: 061-8509

### Europe

LE MANS, FRANCE CDS Westinghouse Avenue G. Durand 72003 Le Mans, France

### South America

SAO PAULO, BRAZIL

Semicondutores Industriais Westinghouse LTDA Rua Santa Justina, 41 04545 - SAO Paulo - SP Brasil

## **Westinghouse Power Semiconductor Sales Representatives**

CALIFORNIA, Cuiver City Bestronics, Inc CALIFORNIA, Los Angeles Westinghouse CALIFORNIA, San Diego Bestronics of San Diego, Inc. CALIFORNIA, Sania Clara Magna Sales CALIFORNIA, Mt View Westinghouse COLORADO, Denver Lindberg Co	213/572-4849 714/278-2150 408/985-1750 415/965-0305 303/758-9033	NEW YORK, Syracuse	Advanced Components Corp Inc Westinghouse	315/853-6438 607/785-3191 516/489-2200 315/699-2671 716/889-1429 704/377-3471
CONNECTICUT, Old Saybrook	203/388-4386 203/426-3440	OHIO, Cincinnati OHIO, Cleveland		313/761-5432 216/292-2982
FLORIDA, Orlando Lawrence Assoc , Inc	305/592-8600	OHIO, Day on	S.A I Marketing	513/435-3181
ILLINOIS, Chicago	312/887-8922 317/844-7196		.Westinghouse	513/228-9627 412/925-7272
INDIANA, Indianapolis	319/377-8275	PENNSYLVANIA, Youngwood TEXAS. Dallas	Westinghouse	214/691-4592
MARYLAND, Baltimore			Kruvand Associates, Inc	
		UTAH, Salt Lake City		801/534-1500
MASSACHUSETTS, East LongmeadowGerber Sales Corporation		WASHINGTON, Seattle		206/883-3550
MASSACHUSETTS, WalthamGerber Sales Corporation  MICHIGAN, BrightonS A I Marketing	617/890-8040 313/227-1786	WISCONSIN, Milwaukee	. westingnouse	414/786-0260
MICHIGAN, Grand Rapids S A I Marketing				
MINNESOTA, Minneapolis	612/571-0000		Canada	,
MISSOURI, St. Louis	314/731-5799			
MISSOURI, Independence	314/731-5799		Westinghouse Canada Ltd	204/772-9401
		ONTARIO, Burlington		416/639-6010
NEW JERSEY, Ringwood JL Sales Assoc NEW MEXICO, Albuquerque Lindberg Co	201/962-6315 505/881-1006	QUEBEC, Lachine	. Westinghouse Canada Ltd	514/631-9471 206/454-4946

## **Authorized Westinghouse Power Semiconductor Distributors**

ALABAMA, Birmingham Ack Semiconductors		NEW JERSEY, Mt Laurel	.Hamilton/Avnet	609/234-2133
ALABAMA, Huntsville		NEW JERSEY, Somerset	.Schweber	201/469-6008
ARIZONA, Phc. nix	602/275-7851	NEW MEXICO, Albuquerque	.Hamilton/Avnet	505/765-1500
CALIFORNIA, Costa Mesa Avnet Electronics	714/754-6111	NEW YORK, LI	.Cramer	516/231-5600
CALIFORNIA, Los Angeles		NEW YORK, L I	.Hamilton/Avnet	516/333-5800
CALIFORNIA, Mt View		NEW YORK, L I	.Schweber	516/334-7474
CALIFORNIA, San Diego		NEW YORK, Rochester	.Cramer	716/275-0300
COLORADO, Denver		NEW YORK, Rochester	.Hamilton/Avnet	716/442-7820
CONNECTICUT, Georgetown	203/762-0361	NEW YORK, Rochester	.Schweber	716/461-4000
CONNECTICUT, North Haven	203/239-5641	NEW YORK, Syracuse	.Cramer	315/437-6671
FLORIDA, Hollywood		NEW YORK, Syracuse	.Hamilton/Avnet	315/437-2642
FLORIDA, Ft Lauderdale		NORTH CAROLINA, Winston-Salem	.Cramer	919/725-8711
FLORIDA, Orlando		OHIO, Cincinnati		513/761-5432
GEORGIA, Atlanta		OHIO, Cleveland	.Hamilton/Avnet	216/461-1400
GEORGIA, Atlanta		OHIO, Cleveland	.Sheridan Sales	216/831-0130
GEORGIA, Atlanta		OHIO, Columbus	.Hughes Peters	614/294-5351
GEORGIA, Augusta Specialty Distributing		OHIO, Dayton		
ILLINOIS, Chicago Complete Reading Electric		PENNSYLVANIA, Pittsburgh	.CAM/RPC	412/782-3770
ILLINOIS, Chicago		TEXAS, Dallas		
ILLINOIS, Chicago Semiconductor Specialists	312/279-1000	TEXAS, Dallas	.Hamilton/Avnet	214/661-8661
INDIANA, Ft Wayne		TEXAS, Houston	.Altair	713/462-3029
INDIANA, Indianapolis RA-DIS-CO		TEXAS, Houston	.Complete Reading Electric	713/224-5731
KANSAS, Kansas City		TEXAS, Houston	.Hamilton/Avnet	713/780-1771
MARYLAND, Baltimore		UTAH, Salt Lake City		
MARYLAND, Rockville Cramer (Washington, D.C.)	301/948-0110	WASHINGTON, Seattle		
MASSACHUSETTS, Boston Cramer		WEST VIRGINIA, Charleston	.McJunkin	304/348-4965
MASSACHUSETTS, Boston		WISCONSIN, Milwaukee		
MASSACHUSETTS, BostonSchweber		WISCONSIN, Milwaukee	.Hamilton/Avnet	414/784-4510
MICHIGAN, Detroit	313/522-4700		*	
MICHIGAN, Detroit Semiconductor Specialists	313/478-2700			
MICHIGAN, Detroit				
MINNESOTA, MinneapolisHamilton/Avnet			Canada	
MINNESOTA, Minneapolis Schweber	612/941-5280		Canada	
MINNESOTA, Minneapolis Semiconductor Specialists	612/854-8841			
MISSOURI, Kansas City L-COMP		BRITISH COLUMBIA, Vancouver	.R-A-E Industrial Electronics	604/687-2621
MISSOURI, Kansas City Semiconductor Specialists		MANITOBA, Winnipeg	.Cam-Gard Supply	.204/786-8481
MISSOURI, St Louis	314/731-1144	ONTARIO, Mississauga	.Schweber	416/678-9050
MISSOURI, St. Louis Semiconductor Specialists		ONTARIO, Ottawa		
NEW JERSEY, Camden		ONTARIO, Toronto	.Cesco Electronics	416/661-0220
NEW JERSEY, Cedar Grove Hamilton/Avnet	201/239-0800	ONTARIO, Toronto		
NEW JERSEY, Little Falls Cramer	201/785-4300	ONTARIO, Toronto	.Semiconductor Specialists	416/678-1444
NEW JERSEY, Moorestown Arrow Electronics	609/235-1900	QUEBEC, Montreal	.Hamilton/Avnet	514/331-6443



## **ASSEMBLIES**

## INTRODUCTION

Westinghouse has an extensive line of assembly capabilities with over twenty years of design experience. These products include Modular Bridges, Gold Line-Stud Mount, Air and Liquid Cooled-Disc, High Voltage Stacks, and Custom Designs in a variety of circuit configurations as identified on the following pages.

Westinghouse assemblies offer you savings in money, manpower, and time. Pre-engineered modular designs are available wth expert application assistance. All devices and heat sinks are thermally matched for optimum performance with guarteed ratings and are 100% factory tested. Buying assemblies rather than discrete components minimizes or eliminates tooling and set up charges and means single supplier contact for negotiating, purchasing, and expediting materials. Multiple incoming inspections, inventory investment, assembly time, and other handling costs are reduced. Thus, buying assemblies can save time and money while allowing a company to use its manpower and resources on programs that offer a greater return on investment. Buyers of assemblies also benefit by buying products which utilize the latest assembly techniques as well as those that incorporate the stateof-the-art in power semiconductors and heat sinks.

In addition to the industry's broadest line of "catalog" assemblies, Wesinghouse can offer custom designs to meet virtually any requirement - consumer, industrial, or military. As a semiconductor manufacturer and a knowledgeable assembly supplier who deals with numerous materials and vendors worldwide, Westinghouse can help you minimize your total system cost by optimizing your custom design.



## **ASSEMBLY PRODUCT INDEX**

	PRODUCT FAMILY PAGE
М	MODULAR BRIDGES, SINGLE PHASE RECTIIFER
	Economical, electrically isolated designs provide high surge ratings and small size for applications requiring easy hookup and reductions in assembly time.
G	GOLD LINE
	A complete product line of stud mount rectifier and/or SCR assemblies simplifies any design selection because of circuit, mounting and electrical mounting and electrical variations that are available from standard designs.
Ρ	AIR AND LIQUID COOLED DISC
	Variations of six heat sink designs (three extrusions and three castings) provide a building block approach to the mounting and cooling of a complete line of discrectifiers and/or SCR's.
S	HIGH VOLTAGE STACK, CHANNEL DESIGN
	Fully compensated rectifier modules in conjunction with a varilength mounting channel provide a method of obtaining custom designs from standardized components with very high packaging densities.
Н	HIGH VOLTAGE STACK, PLATE DESIGN
	Provides a viable base design for very high current and high voltage rectifier design combinations requiring repetitive surge capabilities and high reliability.
	SINKS AND KITS
	Sinks developed by Westinghouse are offered in complete kits with all necessary hardware supplied to mount and assemble disc power semiconductors. Extrusions designed for cooling large area power semiconductors are compatible with special fabrications.

## **ASSEMBLIES**



Regardless of heat sink type - plate, fabrication, or extrusion; device type - standard, special, or military; mounting, cooling, and clamping requirements; or other special components - resistors, capacitors, fuses, thermostats, etc., Westinghouse can help. To get this free "added value" service, simply call Westinghouse on your next design project.

All Westinghouse assemblies carry a one year warranty. In addition, spare parts and replacement assemblies are readily available for most designs. Save time and money; consider an assembly and specify Westinghouse!

RE	AVAILABLE CIRCUIT CONFIGURATIONS (SHADED AREAS) CTIFIER	MODULAR	GOLD LINE	AIR COOLED DISC	LIQUID COOLED DISC	MANIFOLD	HIGH VOLTAGE STACKS	сизтом
	Single Device							
	Parallel							
	Doubler							
	Center Tap (Pos. or Neg.)							
	Tripler							
	Quadrupler							
	Sextupler							
	1Ø Bridge							
	1Ø Double Half Wave							
	3Ø Half Wave							
	3Ø Bridge							
	3Ø WYE (Interphase Transformer)							
	3Ø 12 Pulse							
	6Ø Star	<u> </u>						

## HALF CONTROL-RECTIFIER/SCR

Doubler	
AC Switches	
Center Tap (Pos. or Neg.)	
Tripler	
1Ø Bridge	
3Ø Bridge	

## **FULL CONTROL - SCR**

Single Device	
Parallel	
AC Switches	
Doubler	
Center Tap (Pos. or Neg.)	
Tripler	
1Ø Bridge	
3Ø Half Wave	
3Ø Bridge	
3Ø WYE (Interphase Transformer)	
3Ø 12-Pulse	
6Ø Star	



## Modular ASSEMBLIES MB11, MB12

## 2-25 Amp. Rectifier

## **Dimensions: Inches (Millimeters)**







### Features:

- Single phase bridge circuit
- Positive terminal polarity key (MB12)
- Electrically isolated case
- Low V_f, low leakage
- High surge current ratings

### Applications:

- Motor control, AC to DC converters
- · Power supplies, battery chargers

## Benefits:

- Economy Availability
- Easy assembly hook-up
- 25 to 50% reduction in assembly time

## **Ordering Guide**

To order a Westinghouse Modular Assembly simply add the appropriate voltage code suffix from the table to the basic type number of the assembly you have selected. For example, to order the assembly MB12A25 with a 400 Volt rating, add the voltage code suffix—V40. Now the complete ten digit type number description is MB12A25V40.

Module:	Assembly/Cell Voltage Rating	Voltage Code
MB11A02	60	V05
MB11A06	100	V10
MB12A10	200	V20
MB12A25	300	V30
	400	V40
	600	V60
	600	V80
	1000	W10

# 2-25 Amp. Rectifier

## Modular ASSEMBLIES MB11, MB12



## **Maximum Ratings and Characteristics**

	MB11A02 Series	MB11A06 Series	MB12A10 Series	MB12A25 Series
Repetitive Peak Reverse Voltage (PRV)	50-1000V	50-1000V	50-600V	50-600V
Average DC Output Current* at 50°C	2A	6A	10A	25A
Peak One Cycle (Non-repetitive, 60Hz) Surge Current	50A	125A	200A	300A
Forward Voltage Drop per cell at 25°C	1.0 V at 1.0 A DC	1.0 V at 3.0 A DC	1.2 V at 5 A DC	1.2 V at 12.5 A DC
Reverse Leakage per cell at rated PRV at 25°C	10µA	10µA	10µA	10µA
Thermal Resistance—Junction to Case (typical)	_	_	1.5°C/W	1.5°C/W
Operating Temperature Range	-55°C to +125°C	-55°C to +125°C	-55°C to +150°C	-55°C to +150°C
Storage Temperature Range	-55°C to +150°C	-55°C to +150°C	-55°C to +150°C	-55°C to +150°C

^{*}NOTE: 60Hz, resistive or inductive load; for capacitive load, derate current by 20%.

#### **Mechanical Characteristics**

	MB11A02 Series	MB11A06 Series	MB12A10 Series	MB12A25 Series
Case	Electrically Isolated Case	Electrically Isolated Case	Electrically Isolated Metal Case	Electrically Isolated Metal Case
Mounting Position	Any	Any	Any	Any
Mounting Torque	10 inlb. Max.	10 inlb. Max.	20 inlb. Max.	20 inIb. Max.
	(#6 Screw)	(#6 Screw)	(#8 Screw)	(#8 Screw)
Weight	3.5 grams	6 grams	31 grams	31 grams
Terminals/Leads	.030" Dia. Leads	.050" Dia. Leads	.25" Universal Faston	.25" Universal Faston
Polarity Marking	Positive Output: Color dot	Positive Output: Color dot	Inputs: AC	Inputs: AC
	Negative Output: Diagonally opposite positive output	Negative Output: Diagonally opposite positive output	Positive Output: + Negative Output:	Positive Output: + Negative Output: -

## **Bridge Output Current Versus Temperature**



#### Non-Repetitive Surge Current Versus Time





#### How to Select an Assembly

- I. Circuit Funtion
  - A. Rectifier (contains rectifiers only) —
     Go to Page A6
  - B. Half Control (contains both rectifiers and SCR's) Go to Page A16
  - C. Full Control (contains SCR's only) Go to Page .24
- II. Circuit Configuration Select the configuration desired and then turn to the page number referenced.
- III. Current Rating The assemblies are listed in order of increasing current rating on each page. Select the one that best meets your requirements. Each assembly has a table of current ratings as a function of various ambient temperatures, air flow velocity and conduction or delay angles for half and full control assemblies.
- IV. Mounting Select the type number for either floor or wall mounting. Most assemblies offer both types of mounting.
- V. Vc.tage Rating Now from the range of voltage ratings shown, select the voltage rating you require from the voltage code suffix table.
- NOTE: Additional electrical and mechanical data on the assembly you have chosen can be found by referring to the respective key numbers.

For information on current and voltage ratings not shown or for any special electric... and/or mechanical requirements as well as additional information on any of the Gold-Line Assemblies listed, contact your nearest Westinghouse Sales Office.



- Pre-engineered Design
- Fully Tested Assemblies
- Guaranteed Assembly Ratings
- Easy to Read Rating Charts
- General Recommendations for Fuses, Voltraps, Gate Drives, R-C Networks
- Complete Information for Assembly Application
- Value Engineered Design
- Compact Size
- Light Weight

- Low Cost
- Full Range of Current and Voltage Ratings
- All Standard Circuit Configurations Available
- Most Assemblies Built from Stock
- Gold Chromate Finish
- Insulated Mounting
- JEDEC and MIL Approved Devices Available for Most Designs
- Resistor/Capacitor Networks and other Special Frame Modifications Available.



#### **Assembly Ordering Guide**

To order a Westinghouse Gold-Line Assembly, simply add the appropriate voltage code suffix from the table below to the basic Type number of the assembly you have selected. For example, to order the assembly – GB23A41 with a 600 volt rating, add the voltage code suffix – V60. Now the complete ten digit type number description is GB23A41V60.

## Voltage Code Suffix Table

Assemi	bly/Device a Rating	Voltage Code
100		V10
200		V20
300		V30
400		V40
600		V60
800		V80
1000		W10
1200		W12
1400		W14
1600		W16
2000		W20

## Rectifier

## Stud Mount ASSEMBLIES Gold Line



#### **Rectifier Assemblies**

This section describes the circuit configurations available for Rectifier Assemblies. (assemblies using rectifiers only). The chart below shows the schematics, waveform, recommended diode voltage ratings, the basic current ratings available, and the page number where specific rating information for each assembly can be found. On each page the assemblies for a given circuit configuration are listed in order of increasing current rating. The tabulated current ratings for each assembly type number are given as a function of ambient temperature and as a function of air velocity (linear feet per minute – LFM).

Refer to the mechanical and electrical keys specified for the assembly you have selected to obtain assembly weight and dimensions

and other electrical data and recommenda-

Cir	cuit		Assemb	ly Output		
Configuration	Schematic	Wave Form	E _D = Avg. Voltage	E _a = RMS Voltage	Ripple (%)	I _F (AVG)/RE
R – Single Rectifier	~}		.45 E _{RMS}	.707 E _{RMS}	121	l _D
D – Doubler	£ 10	(See Single I	Phase Bridge ''B''	or Three Phase '	'E").	
N → Neg Center Tap			.900 E _{RMS}	1.0 E _{RMS}	48	1/2 I _D
C – Pos Center Tap		<u></u>	.900 E _{RMS}	1.0 E _{RMS}	48	½I _D
B — Single Phase Bridge			.900 E _{RMS}	1.0 E _{RMS}	48	1⁄21 _D
E – Three Phase Bridge	Frank Land	,	1.350 E _{RMS}	1.351 E _{RMS}	4	⅓I _D
S — Six Phase Star	Enur Hyprit 10		1.350 E _{RMS}	1.351 E _{RMS}	4	%I _D
Y—Three Phase Wye (with Interphase Transformer)	Enon lo		1.170 E _{RMS}	1.171 E _{RMS}	4	%I _D



### Description of Rectifier Assemblies Pictured on the Right

- I. Westinghouse GE11A61,  $3\phi$  Bridge, 35-61 Amps, 100-800 Volts on 3 x 3 plates.
- II. Westinghouse GE15B30,  $3\phi$  Bridge, 100-300 Amps, 100-1600 Volts on 1½ x 4 x 5 heat sinks.
- III. Westinghouse GE16B45,  $3\phi$  Bridge, 225-450 Amps, 100-1600 Volts on 4 x 4 x 5 heat sinks.
- IV. Westinghouse GE19B53, 3φ Bridge, 280-530 Amps, 100-2000 Volts on 5 x 5 x 6 heat sinks.
- **V.** Westinghouse GE19B83,  $3\phi$  Bridge, 520-830 Amps, 100-2000 Volts on 5 x 5 x 6 heat sinks.



		Available	Available Assemblies		
Recommended Actual Rectifier		Output C (Amperes	urrent Ratings s) AVG		
Diode Peak Reverse Voltage	Diode Repetitive Voltage Rating	Natural Convection @ 40°C	Forced Convection @40°C & 1000 LFM	For Specific Rating Info See Page	
1.41 E _{RMS} or π E _D	2.8 E _{RMS} or 6.28 E _D	12 to 190	22 to 300	A8	
		12 to 120	45 to 610	А9	
2.828 E _{RMS} or π E _D	5.7 E _{RMS} or 6.28 E _D	26 to 380	45 to 610	A11	
2.828 E _{RMS} or π E _D	5.7 E _{RMS} or 6.28 E _D	26 to 380	45 to 610	A10	
1.414 E _{RMS} or 1.57 E _D	2.8 E _{RMS} or 3.2 E _D	26 to 380	45 to 610	A12	
1.414 E _{RMS} or 1.05 E _D	2.8 E _{RMS} or 2.1 E _D	35 to 520	61 to 830	A13	
2.828 E _{RMS} or 2.1 E _D	5.7 E _{RMS} or 4.2 E _D	57 to 850	100 to 1360	A14	
2.45 E _{RMS} or 2.1 E _D	4.9 E _{RMS} or 4.2 E _D	70 to 1050	120 to 1670	A15	









## Rectifier

## Stud Mount ASSEMBLIES Gold Line





# Current Rating Voltage Ratings

Mounting Floor Wall

Air Velocity (LFM) →

Maximum 40°C

Ambient 60°C

Temperature 80°C

## 12-22 Amps 100-800 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GR11A22	F/W-1	F 1	
(same)	F/ VV - 1	E-1	

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
22	19	17	15	12
19	17	15	14	11
16	14	13	11	9

## 20-38 Amps 100-1000Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GR12A38	F/W-6	E 2
(same)	F/ VV-0	E-Z

#### Output Current (Avg. Amps.)

-		•	•	
1000	400	250	150	N.C.
38	34	30	26	20
32	29	25	22	17
28	25	22	20	15

## 40 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GR13A40	F-7	- 2	
GR43A40	W-9	E-2	

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
40	40	40	40	40
40	40	40	40	40
40	40	40	40	34

# Current Rating Voltage Ratings

Mounting Floor Wall

Air Velocity (L	FM)⇒
Maximum	40°C
Ambient	60°C
Temperature	80°C

## 70-140 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GR15B14	F-9		
GR45B14	W-11	E-3	

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
140	110	99	90	70
125	101	90	80	55
103	85	75	65	47

## 110-150 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GR16B15	F-19	
GR46B15	W-21	E-3

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
160	146	136	126	110
150	127	118	110	93
126	108	99	92	78

## 190-300 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GR19B30	F-33	
GR49B30	W-33	E-0

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
300	281	266	247	190
256	237	224	208	160
216	200	189	175	135





# Current Rating Voltage Ratings

Mounting

Floor Wall

Air Velocity (LFM) →
Maximum 40°C
Ambient 60°C
Temperature 80°C

## 12-20 Amps 100- 800 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GD11A20	F/W-2	F-1	
(same)	F/ VV-2	E-1	

### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
	18	16	15	12
17	15	14	13	10
15	13	12	11	9

## 18-32 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GD12A32	F/W-7	F-2	
(same)	r/ W-7	E-Z	

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
72	31	28	24	18
30	27	24	21	16
26	23	21	18	14

## 19-40 Amps 100-1000 Volts

	Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
1	GD14A40	F-8	r 2
	GD44A40	W-10	E-2
	CO 111110		

### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
40	36	33	30	19
33	32	27	25	16
26	24	20	19	13

# **Current Rating Voltage Ratings**

Mounting Floor

Air Velocity	(LFM)⇒
Maximum	40°C
Ambient	60°C
Temperature	80°C

## 45-135 Amps 100-1600 Volts

Type Number		
GD15B13	F-10	F-3
GD45B13	W-12	E-3

## Output Current (Avg. Amps.)

-		•	_	
1000	400	250	150	N.C.
	104	92	81	45
110	85	75	66	37
85	65	58	51	29

## 75-150 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GD16B15	F-19	F-3	
GD46B15	W-21	E-3	

## Output Current (Avg. Amps.)

-		•	-	
1000	400	250	150	N.C.
160	124	110	93	75
118	100	88	75	60
90	76	68	57	46

## 190-300 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GD19B30	F-35	E 4
GD49B30	W-35	E-4

#### Output Current (Avg. Amps.)

400	250	150	N.C.
270	253	228	190
240	222	201	159
204	188	170	146
	270 240	270 253 240 222	270 253 228 240 222 201





**Current Rating Voltage Ratings** 

> Floor Mounting Wall

Air Velocity (LFM) → Maximum Ambient 60°C Temperature 80°C 26-45 Amps 100-800 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GC11A45	F/W-3	F-1
(same)	F/ W-3	G-1

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
45	40	36	33	.26
38	34	31	28	22
31	28	25	23	18

40-76 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GC12A76	F/W-8	F-2
(same)	F/ VV-8	E-2

#### Output Current (Avg. Amps.)

	1000	400	250	150	N.C.
ſ	76	76	68	59	40
I	65	57	52	45	34
	55	49	44	38	29

60-80 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GC14A80	F-8	F 2
GC44A80	W-10	E-2

1000	400	250	150	N.C.
76	76	68	59	40
65	57	52	45	34
55	49	44	38	29

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
80	80	80	80	60
80	80	80	75	50
80	74	68	61	41

## **Current Rating Voltage Ratings**

<b>Nounting</b>	Floor
nounting	Wall

Air Velocity (LFM) → Maximum Ambient 60°C Temperature

## 90-270 Amps 100-1600 Volts

Mech. Data Pg. A34-35 Type Number Elec. Data

GC15B27	100	F-10	F 2
GC45B27		W-12	E-3

Output	t Curr	Current (Avg. Amps.)				
1000	400	250	150	N.C.		
270	207	185	162	90		
	470	450	400	7.4		

103

90

50

## 155-300 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GC16B30	F-19	F 3	
GC46B30	W-21	E-3	

## 270-510 Amps 100-2000 Volts Mech. Data

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GC19B51	F-34	<b>.</b>	
GC49B51	W-34	E-4	

## Output Current (Avg. Amps.)

-		•	_	
1000	400	250	150	N.C.
300	279	248	209	155
265	225	200	169	125
212	180	160	135	100

# Output Current (Avg. Amps.)

1000	400	250	150	N.C.
510	454	426	378	270
496	395	370	330	235
360	321	302	266	190

## **Current Rating Voltage Ratings**

380-610 Amps 100-2000 Volts

115

150

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GC19B61	F-35	

W-35

Floor Mounting Wali

## Output Current (Avg. Amps.)

GC49B61

Air Velocity (LFM)→ Maximum 40°C Ambient 60°C Temperature 80°C

1000	400	250	150	N.C.
810	564	532	490	380
520	480	455	418	325
425	393	371	342	265





## **Current Rating Voltage Ratings**

Floor Mounting

Air Velocity (LFM) ⇒ 40°C Maximum **Ambient** 60°C Temperature 80°C

## 26-45 Amps 100-800 Volts

Type Number	Mech. Data Pg. A34-35	Pg. A33	
GN11A45	F/W-3	E-1	
(same)	r/ W-3	4-1	

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
45	40	36	33	26
38	34	31	28	22
31	28	25	23	18

## 40-76 Amps 100-1000 Volts

Mech. Data Pg. A34-35 Elec. Data Type Number Pg. A33 GN12A76 F/W-8 E-2 (same)

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
76	76	68	59	40
65	57	52	45	34
55	49	44	38	29

## 60-80 Amps 100-1000Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GN14A80	F-8	F.2
GN44A80	W-10	E-2

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
80	80	80	80	<b>4_60</b>
80	80	80	75	50
80	74	68	61	41

## **Current Rating Voltage Ratings**

Floor Mounting Wall

Air Velocity	(LFM)⇒
Maximum	40°C
Ambient	60°C

80°C

Temperature

## 90-270 Amps 100-1600 Volts

Type Number Elec. Data Pg. A33 Pg. A34-35 GN15B27 F-10 E-3 GN45B27 W-12

Mech. Data

## Output Current (Avg. Amps.)

-		•	-	
1000	400	250	150	N.C.
270	207	185	162	90
220	170	152	133	74
150	115	103	90	50

## 155-300 Amps 100-1600 Volts

Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 GN16B30 F-19 E-3 GN46B30 W-21

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
300	279	248	209	155
265	225	200	169	125
212	180	160	135	100

## 270-510 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GN19B51	F-34	F-4
GN49B51	W-34	E-4

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
510	454	426	378	270
496	395	370	330	235
360	321	302	266	190

## **Current Rating Voltage Ratings**

380-610 Amps 100-2000 Volts

Type	Mech, Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GN19B61	F-35	E A

Mounting

rounting	Wall	GN49B61
		Output Com

Air Velocity (LFM) → Maximum 40°C **Ambient** 60°C **Temperature** 80°C

Output	t Curr	ent (A	vg. An	nps.)
1000	400	250	150	N.C.
610	564	532	490	380
520	480	455	418	325
425	393	371	342	265

## Rectifier

# Stud Mount ASSEMBLIES Gold Line



Elec. Data



## Current Rating Voltage Ratings

Mounting Floor Wall

Air Velocity (LFM) →

Maximum 40°C

Ambient 60°C

Temperature 80°C

## 26-45 Amps 100- 800 Volts

 Type Number
 Mech. Data Pg. A34-35
 Elec. Data Pg. A33

 GB11A45
 F/W-4
 E-1

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
46	40	36	33	2.6
38	34	31	28	22
31	28	25	23	18

## 45-76 Amps 100-1000Volts

 Type Number
 Mech. Data Pg. A34-35
 Elec. Data Pg. A33

 GB12A76 (same)
 F/W-9
 E-2

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
76	76	68	59	45
65	57	52	45•	34
55	49	44	38	29

## 60-80 Amps

100-1000 Volts

Type Mech. Data

Number	Pg. A34-35	Pg. A33
GB14A80	F-11	F-2
GB44A80	W-13	E-2

#### . Amps.) Output Current (Avg. Amps.)

1000	400	250	150	N.C.
80	80	80	80	80
80	80	80	75	50
80	74	68	61	41

# **Current Rating Voltage Ratings**

Mounting Floor

Air Velocity (LFM) →		
Maximum	40°C	
Ambient	60°C	
Temperature	80°C	

## 90-270 Amps 100-1600 Volts

 Type Number
 Mech. Data Pg. A34-35
 Elec. Data Pg. A33

 GB15B27
 F-15
 E-3

 GB45B27
 W-17
 E-3

Output	Current	(Avg.	Amps.)
Output	04	1719.	Ampon,

1000	400	250	150	N.C.
270	207	185	162	90
220	170	152	133	74
150	115	103	90	50

## 155-300 Amps 100-1600 Volts

 
 Type Number
 Mech. Data Pg. A34-35
 Elec. Data Pg. A33

 GB16B30
 F-21
 E-3

 GB46B30
 W-23
 E-3

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
300	279	248	209	165
265	225	200	169	125
212	180	160	135	100

## 270-510 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GB19B51	F-37	
GB49B51	W-37	E-4

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
510	454	426	378	800
496	395	370	330	235
360	321	302	266	190

# Current Rating Voltage Ratings

## 380-610 Amps 100-2000 Volts

 Type Number
 Mech. Data Pg. A34-35
 Elec. Data Pg. A33

 GB19861
 F-41
 E-4

Mounting Floor

# Air Velocity (LFM) → Maximum 40°C Ambient 60°C

80°C

425

393

Temperature

Output Current (Avg. Amps.) 1000 400 250 150 N.C. 564 490 532 280 310 520 480 455 418 325

371

342

265



Rectifier



## **Current Rating Voltage Ratings**

Floor Mounting Wall

Air Velocity (LFM) → Maximum Ambient 60°C Temperature 80°C

## 35-61 Amps 100-800 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE11A61	F/W-5	F-1
(same)	F/ VV-9	E-1

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
61	54	49	45	35
52	46	42	38	30
45	40	36	33	26

## 55-100 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GE12B10	F/W-10	F-2	
(same)	F/ W-10	E-2	

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
100	92	84	73	55
91	81	73	63	48
78	69	62	54	41

## 70-120 Amps 100-1000 Volts

Type Number	Mech. Data Pg. 'A34-35	Elec. Data Pg. A33	
GE14B12	F-14	F-2	
GE44B12	W-16	E-2	

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
120	120	116	107	70
116	115	96	87	58
94	85	72	70	47

## **Current Rating Voltage Ratings**

Floor Mounting Wall

Air Velocity (LFM) → 40°C Maximum Ambient 60°C Temperature 80°C

## 100-300 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GE15B30	F-16	E-3	
GE45B30	W-18	E-3	

## 180-380 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GE16B38	F-21	E-3	
GE46B38	W-23	E-3	

## 225-450 Amps 100-1600 Volts

Number	Pg. A34-35	Pg. A33
GE16B45	F-23	F-3
GE46B45	W-25	E-3

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
300	230	205	180	100
246	189	168	148	82
189	145	130	113	63

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
380	323	288	243	180
307	261	232	196	145
234	198	176	149	110

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
450	405	361	303	225
393	333	290	249	185
297	252	224	188	140

## **Current Rating Voltage Ratings**

Floor Mounting Wall

Air Velocity (LFM) → 40°C Maximum Ambient 60°C Temperature 80°C

## 280-530 Amps 100-2000 Volts

Type Number Pg. A34-35 Pg. A33 GE19B53 F-38 E-4 GE49B53 W-38

Mech. Data

Elec. Data

## 370-700 Amps 100-2000 Volts

Mech, Data Elec, Data Type Number Pg. A34-35 Pg. A33 GE19B70 F-40 E-4 GE49B70 W-40

## 520-830 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Pg. A33		
GE19B83	F-43	E-4		
	grade agrant			

## Output Current (Avg. Amps.)

		•	•	
1000	400	250	150	N.C.
530	470	443	393	280
456	405	382	336	240
360	321	302	266	190

## Output Current (Avg. Amps.)

	-		•	-	
	1000	400	250	150	N.C.
	700	628	581	526	370
	611	552	510	461	325
	517	468	432	391	275
_					

### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
830	770	730	672	520
730	675	638	588	455
617	570	540	500	385

## Rectifier

## Stud Mount **ASSEMBLIES** Gold Line





## **Current Rating Voltage Ratings**

Mounting Wall

Air Velocity (LFM) ⇒ Maximum Ambient 60°C Temperature 80°C 114-195 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GS14B19	F-12	F-2
GS44B19	W-14	E-2

## Output Current (Avg. Amps.) Output Current (Avg. Amps.)

1000	400	250	150	N.C.
195	195	189	171	114
189	187	156	142	95
153	138	117	114	77

163-490 Amps 100-1600 Volts

Type Number		Mech. Data Pg. A34-35	Elec. Data Pg. A33	
	GS15B49	F-17	E 3	
	GSASRAG	W-19	E-3	

1000	400	250	150	N.C.
490	375	344	294	163
401	308	274	241	134
308	236	212	184	103

## 294-620 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GS16B62	F-22		
GS46B62	W-24	E-3	

Output Current (Avg. Amps.)					
1000	400	250	150	N.C.	
620	526	469	396	294	
501	425	378	320	236	
382	323	288	243	118	

## **Current Rating Voltage Ratings**

Floor Mounting Wall

Air Velocity (LFM) →

Maximum Ambient

Temperature

40°C

60°C

80°C

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GS16B73	F-24	F 3	
GS46B73	W-26	E-3	

367-735 Amps

100-1600 Volts

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
735	660	588	494	367
641	543	473	406	302
484	411	366	307	228

## 457-870 Amps 100-2000 Volts

Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 GS19B87 F-39 GS49B87 W-39

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
870	767	722	641	457
744	661	623	548	392
587	523	492	433	310

## 603-1150 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GS19C11	F-40		
GS49C11	W-40	E-4	

## Output Current (Avg. Amps.)

-			_	. ,
1000	400	250	150	N.C.
1150	1022	947	853	603
997	899	832	753	530
843	764	704	638	448

## **Current Rating Voltage Ratings**

Air Velocity (LFM) ⇒ Maximum 40°C Ambient 60°C Temperature 80°C 850-1360 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GS19C13	F-43	E-4
Output C	Current (Avg	. Amps.)

1000	400	250	150	N.C.
1360	1253	1190	1095	850
1190	1100	1038	959	742
1005	930	880	815	628





# Current Rating Voltage Ratings

Mounting

Maximum Ambient

**Temperature** 

T[.]

Floor

Wall

60°C

80°C

140-240 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GY14B24	F-12	F-2
GY44B24	W-14	E-2

## Output Current (Avg. Amps.)

 1000	400	250	150	N.C.
240	240	232	210	140
232	230	192	174	116
188	170	144	140	94

## 200-600 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GY15B60	F-17	F 2	
GY45B60	W-19	E-3	

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
600	460	410	360	200
492	378	336	296	164
378	290	260	226	126

## 360-760 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GY16B76	F-22	F-3	
GY46B76	W-24	E-3	

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
760	646	576	486	380
614	522	464	392	290
468	396	354	298	220

# Current Rating Voltage Ratings

Air Velocity (LFM) ⇒

Mounting Floor Wall

Air Velocity (L	.FM) <b>⇒</b>
Maximum	40°C
Ambient	60°C
Temperature	80°C

450-900 A	<b>Amps</b>
100-1600	Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GY16B90	F-24	F-3
GY46B90	W-26	E-3

## Output Current (Avg. Amps.)

•		•	•	
1000	400	250	150	N.C.
900	810	722	606	460
736	666	580	498	370
594	504	448	376	280
	<b>900</b> 736	<b>900</b> 810 736 666	900         810         722           736         666         580	900         810         722         606           736         666         580         498

## 560-1060 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Pg. A33
GY19C10	F-39	F-4
GY49C10	W-39	E-4

#### Output Current (Avg. Amps.)

		_	
400	250	150	N.C.
940	886	786	560
810	764	672	480
642	604	532	380
	940 810	940 886 810 764	940 886 786 810 764 672

## 740-1400 Amps 100-2000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GY19C14	F-40	<b>.</b>
GY49C14	W-40	E-4

## Output Current (Avg. Amps.)

	1000	400	250	150	N.C.
	1400	1256	1162	1052	740
I	1222	1104	1020	922	650
I	1034	936	864	782	550

# Current Rating Voltage Ratings

1040-1670 Amps 100-2000 Volts

1140

1234

	lype Number	Pg. A34-35	Pg. A33	
Γ	GY19C16	F-43	E-4	

## Mounting Floor

Air Velocity (LFM) →
Maximum
40°C
Ambient
60°C
Temperature
80°C

GY19C16	F-43	E-4
Output	Current (Av	g. Amps.)

. Data

770

1000	400	250	150	N.C.
1670	1540	1460	1344	1040
1460	1350	1276	1176	910

1080

1000

## Half Control

## Stud Mount ASSEMBLIES Gold Line



#### **Half Control Assemblies**

This section describes the standard circuit configurations available for Half Control Assemblies (assemblies using both rectifiers and SCR's). The chart below shows the schematics, waveform, recommended SCR and diode voltage ratings, the basic current ratings available, and the page number where specific rating information for each assembly can be found.

On each page the assemblies for a given circuit configuration are listed in order of

increasing current rating. The tabulated current ratings for each assembly type number are given as a function of ambient temperature, as a function of the conduction or delay angle, and as a function of the air velocity (linear feet per minute – LFM). The conduction angle is defined as the number of electrical degrees the SCR conducts current. The delay angle is defined as the number of electrical degrees the gate trigger pulse is delayed from the time the anode voltage on the SCR starts positive. Refer to the mechanical and electrical keys

specified for the assembly you have selected to obtain assembly weight and dimensions and other electrical data and recommendations.

Circ	euit .		Ass	embly Output		
			Maximum Voltage $E_d = Avg$ .	Maximum SCR	Maximum Diode	
Configuration	Schematic	Waveform	E _a =RMS	Voltage	Voltage	
D-Doubler		(See: Single	Phase Bridge ''B''	or Three Phas	e Bridge "E")	<i>k-1</i>
A - Single Phase AC Switch	Enus En	0 10 10 10 10 10 10 10 10 10 10 10 10 10	E _a = E _{RMS}	1.4 E _{RMS}	1.4 E _{RMS}	2 W.11
B – Single Phase Bridge	CR ₁ CR ₁ CR ₂		E _d = .90 E _{RMS}	1.4 E _{RMS}	1.4 E _{RMS}	
E-Three Phase Bridge	(3) (3) (5) (7) (7) (7) (7) (7) (7)		E _d =1.35 E _{RMS}	2.45 E _{RMS}	2.45 E _{RMS}	
F-Three Phase AC Switch	The Court of the C	- J.L	E _a =E _{RMS}	1.4 E _{RMS}	1.4 E _{RMS}	



- Description of Half Control Assemblies Pictured on the Right Westinghouse GA28B32,  $1\phi$  AC Switch 180-320 Amps, 100-1600 Volts on 4 x 4 x 9 heat sinks.
- Westinghouse GB28B29, 1¢ Bridge, 161-290 Amps, 100-1600 Volts on 4 x 4 x 9 11 heat sinks.
- Westinghouse GE28B42, 3φ Bridge, 232-420 Amps, 100-1600 Volts on 4 x 4 x 9 heat sinks.
- Westinghouse GE24B11,  $3\phi$  Bridge 54-110 Amps, 100-1000 Volts on  $1\% \times 4 \times 5$ heat sinks.
- Westinghouse GF24A89,  $3\phi$  AC Switch 42-89 Amps, 100-1000Volts on 1½ x 4 x 5 heat sinks.



	Available Assemblies Output Current Ratings (Amperes)		
Recommended SCR & Diode Voltage Rating	Natural Convection at 40°C	Forced Convection at 40°C & 1000 LFM	For Specific Rating Info See Page
	12 to 77	19 to 140	A18
2.8 E _{RMS}	28 RMS to 180 RMS	46 RMS to 320 RMS	A19
2.8 E _{RMS} or 3.9 E _d	26 to 161	41 to 290	A20
4.9 E _{RMS} or 2.1 E _d	37 to 232	58 to 420	A21
2.8 E _{RMS}	28 RMS to 180 RMS	46 RMS to 320 RMS	A22









Half

## **Stud Mount ASSEMBLIES Gold Line**





## **Current Rating Voltage Ratings**

Floor Mounting

Maxim Ambieu Tempe	nt Ve	locity FM) <b>⇒</b>
		Ó
1	Delay	60
40°C	Angle	90
		120
i		150
_		_
l		0
	Delay	60
60.C	Angle	90
		120
L		150
		0
	5.1	60
80.C	Delay Angle	90
	•	120
		150

## **Current Rating Voltage Ratings**

Mounting Wall

Maxim Ambie Tempe	nt		ocity M) <b>→</b>
			0
1	Dela	v	60
40°C	Ang		90
			120
L			150
			0
	Dela		60
60°C	Ang		90
			120
L			150
			0
	Dela		60
80°C	Ang		90
			120
			150

## 12-19 Amps 100-1000 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GD23A19	F-1	F-5	
GD53A19	W-1	E-5	

Output Current (Avg. Amps.)				
1000	400	250	150	N.C.
19	17	16	15	12
17	16	15	14	12
16	14	13	12	10
12	12	11	10	9
8	8	8	7	6
16	14	13	12	10
15	13	12	11	9
13	11	11	10	8
11	9	9	8	7
8	7	6	6	5

6

6

5 5

4

150 N.C.

57 **47** 

1000

## 47-72 Amps 100-1200 Volts

**72** 68

10

9

5

10

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GD27A72	F-27	
GD57A72	W-27	E-/

## Output Current (Avg. Amps.)

250

67	63	59	54	43
56	56	54	49	40
45	45	45	42	35
32	32	32	32	28
59	55	51	47	36
55	52	48	44	34
50	46	43	40	31
42	40	38	35	27
32	31	30	27	22
45	41	38	35	26
41	39	36	33	24
37	34	32	30	22
32	30	28	26	19
25	23	22	21	16

## 18-36 Amps 100-1000 Volts

Type Number		Mech. Data Pg. A34-35	Elec. Data Pg. A33
	GD24A36	F-9	E-6
	GD54A36	W-11	E-0

## Output Current (Avg. Amps.)

	Outpu.		our 12	48. ~	· P3. /
	1000	400	250	150	N.C.
	36	35	32	28	18
	33	33	30	27	17
١	28	28	27	24	16
	23	23	23	21	14
[	16	16	16	16	11
l [	35	29	26	23	14
	32	27	25	22	1,3
ll	20	25	22	20	12

	23	21	19	18	11
	16	16	16	14	9
Γ	27	22	20	18	10
ł	25	21	19	17	9
Ì	21	19	17	15	8
	19	16	15	13	7

15	13	12	10
63-1	10 Am	ps	
100-	1600 V	olts	

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GD28B11	F-28	F-8
GD58B11	W-28	E-8

#### Output Current (Avg. Amps.) 250

150 N.C.

23

400

110	104	93	81	63
105	98	89	79	61
88	88	81	72	57
71	71	71	64	50
49	49	49	49	40
92	83	75	65	49
87	80	72	63	47
79	73	65	58	43
69	64	58	52	38
49	49	46	41	32
69	62	55	<b>48</b>	34
65	59	53	47	32
61	55	49	44	30
54	48	43	39	27

35

## 36 Amps 100-1200 Volts

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GD27A36	F-27	F.6

GD27A36	F-27	F-6	
GD57A36	W-27	E-0	

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
36	36	36	36	36
33	33	33	33	33
28	28	28	28	28
23	23	23	23	23
16	16	16	16	16

-	36	36	36	36	29
	33	33	33	33	27
	28	28	28	28	25
	.23	23	23	23	21 -
	16	16	16	16	16
,					
- 1	35	33	30	28	21

35	33	30	28	21
33	31	29	27	20
28	27	25	24	17
23	22	22	21	16
16	16	16	16	12

## 77-140 Amps 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GD28B14	F-28	<b>.</b> .
GD58B14	W-28	E-9

#### Output Current (Avg. Amps.) 400

	100			
140	126	111	97	77
134	121	107	94	74
121	110	98	88	69
98	94	84	75	59
69	69	68	60	48
113	102	91	79	60

113	102	91	79	60
109	99	88	77	57
99	90	79	70	53
86	77	69	61	46
68	62	56	50	37
82	74	67	57	41

_					
Γ	82	74	67	57	41
T	81	73	65	56	39
Ī	74	66	59	53	36
	64	58	52	46	31
Ī	50	47	42	37	26



## **Current Rating Voltage Ratings**

Mounting

Floor

## 28-46 Amps 100-1000 Volts

Mech. Data Pg. A34-35 Type Number Elec. Data Pg. A33

GA23A46	F-1
GA53A46	W-1

## 42-89 Amps 100-1200 Volts

87

89

Mech. Data Pg. A34-35 Elec. Data Pg. A33 Number GA24A89 F-9 E-6 GA54A89 W-11

## 85-89 Amps 100-1200 Volts

89

89

89

89

Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 GA27A89 F-27 E-6 GA57A89

	•	Wall
Maxim Ambier Tempe	nt Ve	r elocity FM) <b>⇒</b>
ł		0
1	Delay	90
40°C	Angle	120
1		150
		180
60°C	Delay Angle	0 90 120 150 180
80°C	Delay Angle	0 90 120
ı		

Outpu	ıt Curr	ent (R	MS A	mps.)
1000	400	250	150	N.C.
46	40	38	34	28
47	42	39	35	30
48	43	40	36	31
49	44	41	38	32
50	45	43	40	34
38	33	31	28	22

50	45	43	40	34
38	33	31	28	22
39	34	32	29	24
40	35	33	30	25
41	37	34	31	26
42	38	36	33	27
- 22				40
29	25	23	- 21	16

29	25	23	- 21	16
30	26	24	22	17
31	27	25	23	17
32	28	26	24	19
33	29	27	26	21

Outpu	it Curr	ent (R	MS A	mps.)
1000	400	250	150	N.C.
89	82	74	66	42

82

73

48

89	89	86	77	51
89	89	89	84	56
89	89	89	87	64
81	68	61	54	33
86	75	67	60	34
89	78	70	63	39
89	85	77	69	43
89	89	85	78	50

69	09	00	/6	50	J
61	50	45	40	23	]
63	53	47	42	24	1
64	54	48	43	25	1
70	59	53	47	27	1
76	64	58	52	30	1

Output	Cur	rent (Ri	MS A	nps.)
1000	400	250	150	N.C.

89

89

89

89

85

89

89	89	89	89	89	
89	89	89	89	89	
89	89	89	89	89	_
					_
89	89	89	86	68	
89	89	89	89	69	
89	89	89	89	73	
89	89	89	89	76	_
89	89	89	89	82	_

- :					
11	80 .	76	71	66	49
] [	83	79	74	69	52
] [	85	81	75	70	53
] [	89	85	80	74	56
] [	89	89	83	78	60

## **Current Rating Voltage Ratings**

150 180

Floor

Wall

## 106-170 Amps 100-1200 Volts

**GA57B17** 

Output Current (RMS Amps.)

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GA27B17	F-27	<b>5</b> 7

## 147-260 Amps 100-1600 Volts

Mech. Data Elec. Data Type Number Pg. A34-35 Pg. A33 GA28B26 F-28 E-8 GA58B26

1	80-	320	) A	mps	•
1	00-	160	٥ ٧	√olt	s

Elec. Data Type Number Pg. A34-35 Pg. A33 GA28B32 F-28 E-9 GA58B32 W-28

Mech. Data

Maximum Ambient Temperature	Air Velocity (LFM)⇒
	` ' (
<b>.</b>	90

Mounting

40°C	Delay	400
i .	Angle	120
		150
L		180
		0
1	Delay	90
60.C	Angle	120
1		150
L		180
		ó
1	Delay	90
80.C	Angle	120

157	147	134	106
164	154	141	111
168	157	144	113
177	176	156	127
177	177	168	136
400	400	400	83
	164 168 177	164 154 168 157 177 176 177 177	164         154         141           168         157         144           177         176         156           177         177         168

130	120	120	100	03
143	134	126	113	85
146	137	128	116	88
155	145	136	126	98
168	159	150	138	106
102	96	88	80	58
108	101	94	85	60

97

103

112

88

95

102

62

70

74

111

117

126

150

180

109

110

118

	Output Current (Avg. Amps.)						
	1000	400	250	150	N.C.		
	260	240	216	196	147		
I	274	256	230	204	159		
١	279	264	237	208	165		
I	279	279	254	227	180		
I	279	279	273	250	198		
I	211	193	173	153	112		
I	225	205	188	161	120		
I	232	212	196	166	125		
	250	230	206	184	137		
1							

272	251	226	202	151
156	143	128	112	78
169	154	137	120	83
175	160	142	124	86
189	171	155	138	95
202	187	169	151	103

Dutput Current (Avg. Amps.)						
1000	400	250	150	N.C.		
320	297	260	227	180		
341	313	276	242	193		
360	321	286	250	200		

346	308	270	212
375	337	302	235
237	209	181	135
252	223	193	145
260	232	200	150
282	252	223	164
309	277	247	180
175	153	132	92
	375 237 252 260 282 309	375 337 237 209 252 223 260 232 282 252 309 277	375         337         302           237         209         181           252         223         193           260         232         200           282         252         223           309         277         247

191	175	153	132	92
209	188	167	141	98
218	195	174	146	102
233	210	190	166	110
256	233	208	185	122





Half

Control

## **Current Rating Voltage Ratings**

Floor

120

30

Floor

120

90

60

30

## 26-41 Amps 100-1000 Volts

Mech. Data Type Number Elec. Data Pg. A34-35 Pg. A33 GB23A41 E-5

38-80 Amps
100-1000 Volts

**GB54A80** 

Mech. Data Elec. Data Type Number Pg. A34-35 Pg. A33 GB24A80 E-6

## 78-80 Amps 100-1200 Volts

Type Number Mech. Data Elec. Data Pg. A34-35 Pg. A33 GB27A80 F-29 E-6 GB57A80

Мо	Mounting	
<b>♣</b> Amb	imum ient perature	
40°C	Condu Angle	1 <b>8</b> 0 ction 90 60 30
60°C	Condu Angle	180 ction 90 60
		180

) <b>→</b>	1000	400	28
180		36	3
120	36	32	3
90	31	28	2
60	24	23	2
30	17	17	1
180	34	30	2
120	30	26	2
90	26	23	2
60	21	19	1
30	15	14 -	1
180	23	20	1
120	20	18	1
90	18	16	1
60	16	15	1

**GB53A41** 

Output Current (Avg. Amps.)					
1000	400	250	150	N.C.	
	36	34	30	20	
36	32	30	27	23	
31	28	26	24	21	
24	23	22	20	18	
17	17	16	13	12	
34	30	27	24	20	
30	26	25	22	18	
26	23	21	20	17	

30	20	20	ZZ	18
26	23	21	20	17
21	19	18	16	14
15	14 -	13	12	10
23	20	18	16	13
20	18	17	13	12
18	16	14	13	11
16	15	13	13	10
12	11	10	10	8

#### Output Current (Avg. Amps.) 1000 400 250 150 N.C.

.000	700	200		
90	74	66	59	- 40
67	67	61	54	35
57	57	54	49	32
45	45	45	43	28
31	31	31	31	22
73	61	54	48	29
65	55	50	44	27
57	49	45	40	24
45	43	38	35	22
31	31	31	27	17

57	49	45	40	24
45	43	38	35	22
31	31	31	27	17
56	46	41	36	20
50	41	38	33	19
43	38	34	31	17
38	32	29	27	15

23

21

12

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
60	80	80	80	76
66	66	66	66	66
56	56	56	56	56
46	46	46	46	46
32	32	32	32	32

80	80	80	78	60
66	66	66	66	54
56	56	56	56	50
46	46	46	46	42
32	32	32	32	32

68	64	60	44
61	58	54	40
54	50	48	34
46	44	42	32
32	32	32	24
	61 54 46	61 58 54 50 46 44	61 58 54 54 50 48 46 44 42

## **Current Rating Voltage Ratings**

Conduction

Angle

100-1200 Volts

GB57B15

133

64

50

59

47

94-150 Amps

Type Number	Mech. Data Pg. A34-35	Elec. Da Pg. A33		
GB27B15	F-29			

130-230	Amps
100-1600	Volts

27

30

Elec. Data Mech. Data Type Number Pg. A34-35 Pg. A33 GB28B23 E 8 **GB58B23** W-30

## 161-290 Amps 100-1600 Volts

Mech. Data Elec. Data Type Number Pg. A34-35 Pg. A33 GB28B29 F-30 GB58B29 W-30

	Wall
Maximum	Air
Ambient	Velocity

Mounting

Temp	ient Velo perature (LFN	
1		180
1	Conduction	120
40°C	Angle	90
		60
		30
Г		180
1	Conduction Angle	120
60°C		90
- 1		60
L_		30
Γ		180

Conduction

Output Current (Avg. Amps.) 1000 400 150 250 N.C. 140 130 120

118

108

52

41

38

32

84

77

26

127

	127		.00	-
113	113	108	99	80
91	91	91	85	69
63	63	63	63	55
122	113	105	97	72
110	104	96	88	68
99	92	86	80	63
85	80	75	70	54
63	62	59	55	44
96	83	76	71	49
82	77	71	66	47
75	69	65	60	45

56

44

1000         400         250         150         N.C.           150         215         194         171         136           211         196         177         157         122           177         177         162         144         114           142         142         142         127         101           99         99         99         99         81           192         174         158         138         100	•				
211         196         177         157         122           177         177         162         144         114           142         142         142         127         101           99         99         99         99         81	1000	400	250	150	N.C.
177         177         162         144         114           142         142         142         127         101           99         99         99         99         81	(20)	215	194	171	1.30
142 142 142 127 101 99 99 99 99 81	211	196	177	157	122
99 99 99 99 81	177	177	162	144	114
	142	142	142	127	101
192 174 158 138 100	99	99	99	99	81
	192	174	158	138	100

Output Current (Avg. Amps.)

160	143	127	93
144	130	116	86
128	116	104	77
99	92	83	64
130	118	104	70
120	107	94	64
107	96	86	58
96	86	78	53
	144 128 99 130 120	144 130 128 116 99 92 130 118 120 107 107 96	144         130         116           128         116         104           99         92         83           130         118         104           120         107         94           107         96         86

70

63

#### Output Current (Avg. Amps.) 1000 N.C. 400 250 150

100	262	227	202	101
268	241	214	187	148
242	220	196	172	137
196	188	168	150	118
138	138	136	120	96
234	212	186	162	122
218	196	176	152	114
198	179	159	140	106
172	154	138	122	92
136	124	112	100	74
174	157	137	118	84

70	174	157	137	118	84
64	161	145	130	112	78
58	148	133	117	107	73
53	128	116	104	92	62
46	100	94	84	74	56

80°C

Elec. Data Pg. A33

E-6



## Stud Mount **ASSEMBLIES** Gold Line



## **Current Rating Voltage Ratings**

## 37-58 Amps 100-1000 Volts

## 54-110 Amps 100-1000 Volts

Type Number

GE24B11

GE54B11

## 110 Amps 100-1200 Volts

Type Number

GE27B11

GE57B11

Mounting		Wall	
Maxim Ambie Tempe	nt	Air Velocity (LFM)➡	
		0	
1	Delay	, 60	
40°C	Angle		
1		120	
ı		150	
_			
		0	
1	Delay	, 60	
60°C	Angle		
1		120	
i.		150	
1		0	
1	Delay	60	
80°C	Angle		
		120	
		150	

Number	Pg. A34-35	Pg. A33
GE23A58	F-4	£-5
GE53A58	W-5	E-3
_		

Number	Pg. A34-35	Pg. A33
GE23A58	F-4	E-5
GE53A58	W-5	E-3
	Current (Avg	. Amps.)

Output Current (Avg. Amps.)					
1000	400	250	150	N.C.	
	52	48	44	37	
52	48	45	41	35	
47	42	39	36	31	
36	35	33	30	27	
25	25	24	20	18	
40		40			
48	43	40	36	30	
45	39	37	33	27	

39	34	32	30	25
32	28	27	24	21
23	21	19	18	15
34	30	27	24	19
30	27	25	20	18
27	24	21	19	16
24	23	19	19	15
18	16	15	15	12

Output Current (Avg. Amps.)						
1000	400	250	150	N.C.		
110	106	95	85	54		
100	100	91	81	52		
85	85	82	73	47		
68	68	68	64	42		
47	47	47	47	34		
104	87	78	69	41		
97	82	75	66	40		
85	74	67	61	37		

Mech. Data

F-18

Pg. A34-35

Elec. Data Pg. A33

E-6

00	/4	0/	01	3/
68	64	58	53	32
47	47	47	42	26
81	67	59	53	29
75	62	56	50	28
64	56	51	46	25
58	49	44	40	22
44	38	35	31	18

Output	t Curr	ent (A	vg. Aı	mps.)
1000	400	250	150	N.C.
110	110	110	110	110
99	99	99	99	99
84	84	84	84	84
69	69	69	69	69
48	48	48	48	48
108	108	108	108	87
99	99	99	99	81
84	84	84	84	75
69	69	69	69	63
40	40		40	40

Mech. Data Pg. A34-35

F-31

J	48	48	48	48	48
1	105	99	90	84	63
1	99	93	87	81	60
1	84	81	75	72	51
	69	67	66	63	48
]	48	48	48	48	30 -
_					

## **Current Rating Voltage Ratings**

Mounting

Floor

60

90

120

150

1	40-	Z	ZU	Α	ın	1p	S
1	00-	1	20	0	٧	oli	ts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GE27B22	F-31	E-7	
GE57B22	W-31	E-/	

Output Current (Avg. Amps.)

250

150 N.C.

188-330 Amps
100-1600 Volts

400

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE28B33	F-32	F-8
GE58B33	W-32	E-0

Output Current (Avg. Amps.)

250

150

232-420 Amps
100-1600 Volts

222

192

150

198

174

141

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE28B42	F-32	ΕQ
GE58B42	W-32	E-9

Maxir Ambid Temp			ocity M) <b>⇒</b>
			0
	Dela	21/	60
40°C	Ang		90
1			120
L			150
Г			0
1	Dela	w	60
60°C	Ang		90
			120
j			150

Delay Angle

80°C

220	203	189	171	140
200	190	177	162	129
168	168	162	148	121
136	136	136	127	104
95	95	95	95	83
177	165	153	140	108
165	156	144	132	102
149	139	129	120	94
127	120	113	105	81
95	93	89	82	65

220	203	189	171	140		330	312	278	243	188
200	190	177	162	129		314	295	266	236	183
168	168	162	148	121		265	265	243	216	171
136	136	136	127	104	ſ	213	213	213	190	151
95	95	95	95	83	ſ	148	148	148	148	121
177	165	153	140	108	١	275	250	224	196	147
165	156	144	132	102		260	240	217	190	141 -
149	139	129	120	94		236	218	196	175	129
127	120	113	105	81		208	192	174	156	115
95	93	89	82	65		148	148	137	124	96
					_			,		
134	122	114	105	77	lſ	208	186	165	145	103
123	116	107	99	71	I	195	178	159	141	96
112	103	97	90	67	ſ	182	164	146	132	91
96	89	84	78	58	T	161	144	129	117	80
75	70	66	62	47		125	115	105	94	68
					_					•

1000

Outpu	t Curr	ent (A	vg. Ar	nps.)
1000	400	250	150	N.C.
420	378	334	291	232
402	364	322	282	222
362	330	294	264	206
294	282	252	225	177
207	207	204	180	144
338	306	272	236	180
327	296	264	230	170
297	268	238	210	158
258	231	207	183	138
204	186	168	150	111
246	222	198	171	123
242	218	194	168	117

176

156

126

159

138

111

108

93

78





## **Current Rating Voltage Ratings**

Mounting Wall

Maximum Air Velocity Ambient Temperature 90 Delay 40°C 120 Angle 150 180 0 90 Delay 60.C Angle 120 150 180 0 90 Delay 80°C 120 Angle 150 180

## 28-46 Amps 100-1000 Volts

Mech. Data Type Number Elec. Data Pg. A34-35 Pa. A33 GF23A46 E-5 GF53A46 W-6

## 42-89 Amps 100-1000Volts

Mech. Data Type Number Elec. Data Pg. A34-35 Pg. A33 **GF24A89** F-18 GF54A89 W-20

## 85-89 Amps 100-1200 Volts

Type Number Mech. Data Elec. Data Pg. A34-35 Pg. A33 **GF27A89** F-31 GF57A89 W-31

#### Output Current (RMS Amps.) 1000 400 250 150

	400	200		
46	40	38	34	28
48	43	40	36	31
49	44	41	38	32
50	45	43	40	34
50	47	45	42	36
38	33	31	28	22
40	35	33	30	25

1	40	30	. 33	30	20
I	41	37	34	31	26
I	42	38	36	33	27
	43	40	37	35	30
-					
	29	25	23	21	16
I	31	27	25	23	17
I	32	28	26	24	19
	33	29	27	26	21
	33	31	29	28	22

## Output Current (RMS Amps.)

89	82	74	66	42
89	89	80	71	46
89	89	86	77	51
89	89	89	84	56
89	89	89	89	64
81	68	61	54	33
85	72	66	57	36

89	85	77	69	43
89	89	85	78	50
61	50	45	40	23
64	54	48	43	25
70	59	53	47	27
76	64	58	52	30
83	72	66	60	36

## **Output Current (RMS Amps.)**

1000	400	250	150	N.C.
89	89	89	89	86
89	89	89	89	89
89	89	89	89	89
89	89	89	89	89
89	89	89	89	89

1	89	89	89	86	68
	89	89	89	89	73
	89	89	89	89	76
	89	89	89	89	82
	89	89	89	89	89
- 1	80	76	71	66	49

80	76	71	66	49
85	81	75	70	53
89	85	80	74	56
89	89	83	78	60
89	89	89	87	87

## **Current Rating** Voltage Ratings

Floor Mounting Wall

Maximum Air Ambient Velocity Temperature (LFM)⇒

Delay

Angle

Delay

Angle

Delay

Angle

0

90

120

150

180

0 90

120

150

180

Maximum

Ambient

40°C

60°C

80°C

1	1	)6	-1	7	0	A	m	p	S
•	1	ነበ	_1	2	n	٦.	V	۸l	tc

Type Mech. Data Elec. Data

Number	Pg. A34-35	Pg. A33
GF27B17	F-31	E-7
GF57B17	W-31	E-/

## 147-260 Amps 100-1600 Volts

Mech. Data Type Elec. Data Number Pg. A34-35 Pg. A33 GF28B26 F-32 E-8 GF58B26 W-32

## 180-320 Amps 100-1600 Volts

Mech, Data Elec. Data Type

	. g. /	. g. / 100
GF28B32	F-32	F 0
GF58B32	W-32	E-9

## Output Current (RMS Amps.)

1000	400	250	150	N.C.
170	157	147	134	106
177	168	157	144	113
177	177	170	156	127
177**	177	177	168	136
177	177	177	177	155

136	128	120	108	83
146	137	128	116	88
155	145	136	126	98
168	159	150	138	106
177	174	164	152	122

	-				
10	2	96	88	80	58
11	1	104	97	88	62
11	7	110	103	95	70
12	6	118	112	102	74
14	0	132	125	115	88

## **Output Current (RMS Amps.)**

250 1000 400 150 N.C. 260 240 147 216 196 279 264 237 208 165 279 279 254 227 180 279 279 273 250 198 279 279 279 279 228

211	193	173	153	112
232	212	196	166	125
<b>250</b>	230	206	184	137
272	251	226	202	151
279	279	261	234	178

	2/9	2/9	201	234	178
٦	156	143	128	112	78
1	175	160	142	124	86
7	189	171	155	138	95
	202	187	169	151	103
	235	218	197	177	125

## **Output Current (RMS Amps.)**

1000	400	250	150	N.C.
320	297	260	227	180
360	321	286	250	200
378	346	308	270	212
390	375	337	302	235
390	390	385	344	278

260	237	209	181	135
288	260	232	200	150
310	282	252	223	164
341	309	277	247	180
381	356	317	285	216

191	175	153	132	92
218	195	174	146	102
233	210	190	166	110
256	233	208	185	122
290	267	240	215	150



## **Full Control Assemblies**



Westinghouse GA33A49,  $1\phi$  AC Switch 34-49 Amps, 100-1200 Volts on 1% x 4 x 3 heat sinks.



Westinghouse GF33A49,  $3\phi$  AC Switch, 34-49 Amps, 1V 100-1200 Volts on 1% x 4 x 3 heat sinks.



Westinghouse GA36B16,  $1\phi$  AC Switch, 104-160 Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks.



Westinghouse GF36B16,  $3\phi$  AC Switch 104-160 Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks.



Westinghouse GA39B34,  $1\phi$  AC Switch 222-340 Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks.



Westinghouse GF39B34,  $3\phi$  AC Switch 222-340 Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks.

## Full Control

## Stud Mount ASSEMBLIES Gold Line



#### **Full Control Assemblies**

This section describes the standard circuit configurations available for Full Control Assemblies (assemblies using SCR's only). The chart below shows the schematics, waveform, recommended SCR voltage ratings, the basic current ratings available, and the page number where specific rating information for each assembly can be found.

On each page the assemblies for a given circuit configuration are listed in order of

increasing current rating. The tabulated current ratings for each assembly type number are given as a function of ambient temperature, as a function of the conduction or delay angle, and as a function of the air velocity (linear feet per minute – LFM). The conduction angle is defined as the number of electrical degrees the SCR conducts current. The delay angle is defined as the number of electrical degrees the gate trigger pulse is delayed from the time the anode voltage on the SCR starts positive. Refer to the mechanical and electrical keys

specified for the assembly you have selected to obtain assembly weight and dimensions and other electrical data and recommendations.

Ci	cuit		Assembly Output	·
Configuration	Schematic	Waveform	Maximum Voltage E _d =Avg. E _a =RMS	Maximum SCR Voltage
T-Single SCR	E _{nMs} F _{RL}	• And	E _d = .45 E _{RMS} E _a = .707 E _{RMS}	1.4 E _{RMS}
D – Doubler		(See: Single Phase B	ridge ''B'' or Three Phas	se Bridge "E")
A – Single Phase AC Switch	E a Sec.		E _a = E _{RMS}	1.4 E _{RMS}
B – Single Phase Bridge	F _{AMS} E _d		E _d = .90 E _{RMS}	1.4 E _{RMS}
E—Three Phase Bridge	East R		E _d =1.35 E _{RMS}	2.45 E _{RMS}
F - Three Phase AC Switch	And		E _a = E _{RMS}	1.4 E _{RMS}



## **Description of Full Control Assemblies Pictured on the Right**

- VII. Westinghouse GB33A44, 1φ Bridge, 34-44 Amps, 100-1200 Volts on 1½ x 4 x 3 heat sinks.
- **VIII.** Westinghouse GB36B14,  $1\phi$  Bridge, 93-140 Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks.
- IX. Westinghouse GB39B31,  $1\phi$  Bridge, 196-310 Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks.
- **X.** Westinghouse GE36B20,  $3\phi$  Bridge, 135-200 Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks.
- **XI.** Westinghouse GE39B44,  $3\phi$  Bridge, 285-440 Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks.



		Output	Available Assemblies Output Current Ratings (Amperes)		
	Recommended SCR Repetitive Voltage Rating	Natural Convection at 40°C	Forced Convection at 40°C & 1000 LFM	For Specific Rating Info See Page	
	2.8 E _{RMS} or 6.2 E _d	17 to 98	22 to 150	A26	
		15 to 105	20 to 150	A27	
4. 1/6. 2	2.8 E _{RMS}	34 RMS to 222 RMS	49 RMS to 340 RMS	A28	
	2.8 E _{RMS} or 3.1 E _d	34 to 196	44 to 310	A29	
	4.9 E _{RMS} or 2.1 E _d	45 to 285	60 to 440	A30	
s	2.8 E _{RMS}	34 RMS to 222 RMS	49 RMS to 340 RMS	A31	









Full

Control

## **Stud Mount ASSEMBLIES Gold Line**





## **Current Rating Voltage Ratings**

17-22 Amps 100-1200 Volts

Type Numbér Elec. Data

Mech. Data Pg. A34-35 Pg. A33

GT33A22 F-1 E-5 GT63A22 W-1

## 36-40 Amps 100-1200 Volts

Mech. Data Pg. A34-35 Elec. Data Pg. A33 Type Number GT36A40 F-19 GT66A40 W-21

## 47-71 Amps 100-1200 Volts

Elec. Data Pg. A33 Type Number Mech. Data Pg. A34-35 GT36A71 F-19 GT66A71 W-21

Maximum	Air
Ambient	Velocity
Temperature	(LFM)→

Mounting

	Temperature		(LFM)⇒	
Γ.		•	180	
1	Condu	ction	120	
40°C	Angle	ouon.	90	
			60	
			30	
			180	

-		
	V	180
60°C	Conduction	120
	Angle	90
	•	60
		30
		180
	Conduction	120
80°C	Angle	90

duction	120
e	90
	60
	30
	180
luction	120
e	90
	60
	30

Floor

Wall

60 30	ì
180	
120	
90	
60	
30	

#### Output Current (Avg. Amps.) 400 250 150 N.C.

22	21	19	18	17
19	18	17	16	14
16	15	14	14	12
13	13	12	11	10
8	8	8	8	7
19	-17	16	15	13
. 16	15	14	13	12
14	13	12	11	10
11	10 -	. 9	9	8
7	7	7	6	6
1.5	13	12	11	10
13	12	11	10	8
11	10	9	8	7

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
40	40	40	40	36
33	33	33	33	32
28	28	28	28	28
22	22	22	22	22
16	16	16	16	16
40	40	39	37	28
33	33	33	33	26
28	28	28	28	23
22	22	22	22	20
16	16	16	16	16
			- 77	
34	32	30	28	21
30	28	27	25	19
27	25	24	23	17
22	21	20	19	14
16	16	15	14	11

## Output Current (Avg. Amps.)

N.C.	1000	400	250	150	N.C.
36	71	66	63	59	47
32	64	60	56	52	42
28	57	54	51	48	39
22	45	45	45	42	34
16	32	32	32	32	32
28	57	54	51	48	37
26	52	49	46	43	33
23	47	44	42	39	30
20	41	39	√36	35	27
16	32	30	29	27	21
21	43	41	38	36	27
19	39	37	34	32	24
17	36	33	32	30	22
14	. 31	29	28	26	20
11	24	23	22	21	16

## **Current Rating Voltage Ratings**

## 77-120 Amps 100-1600 Volts

400

ype	Mech. Data Elec. D	
lumber	Pg. A34-35 Pg. A3	
T39B12	F-33	

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GT39B12	F-33	г.

## 98-150 Amps 100-1600 Volts

5

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33	
GT39B15	F-33	Γ.0	
GT69B15	W-33	E-9	

#### Mounting Wall Maximum Air Velocity

Floor

Temp	erature (LFN	1) 🔷
		180
1	Conduction	120
40°C	Angle	90
		60
L		30
- 1		180
1	Conduction	120
60°C	Angle	90
		60
L		30
_		400
		180

Conduction

Angle

90

60

54

42

50

40

## Output Current (Avg. Amps.) 250

150

N.C.

	120	112	105	96	77
	105	103	96	88	73
I	89	89	89	81	67
	71	71	71	71	59
	50	50	50	50	47
	98	91	85	78	60
	89	83	78	71	57
	82	76	72	66	53
	71	66	62	58	47
	. 50	50	50	46	38
	72	68	63	57	. 43
1	67	62	58	52	41
1	62	58	55	50	39

47

38

44

35

35

28

55

54

	Output Current (Avg. Amps.)				
	1000	400	250	150	N.C.
ı	150	144	134	121	98
	142	132	124	112.	92
I	124	119	113	102	85
	99	99	97	90	74
1	70	70	70	70	60
ı	124	115	108	97	76
١	115	107	99	91	73
1	105	98	92	83	67
1	90	85	79	73	59
	70	67	64	59	48
	92	86	80	72	53
	86	79	74	68	53
	80	74	68	62	48
	69	64	60	55	43

49

45

36

80°C





## **Current Rating Voltage Ratings**

Floor Mounting Wall

Maxim Ambie Tempe	nt	Air Velo (LFI	city M) <b>⇒</b>
40°C	Dela Ang		<b>0</b> 60 90
60°C	Dela Ang		0 60 90
80°C	Dela Ang		0 60 90

## 15-20 Amps 100-1200 Volts

Type Number	•	Mech. Data Pg. A34-35		. Data A33
GD33A2	20	F-3		E-5
GD63A2	20	W-3		G=0
-		rrent (Avg		
1000	400	250	150	N.C.
20	19	18	17	15
18	16	15	15	12
13	12	11	11	10

13	12	11	11	10
17	16	15	14	12
15	14	13	12	10
11	. 10	10	9	8
13	12	11	10	0
11	10	10	9	8
9	8	8	7	6

## 34-36 Amps 100-1200 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GD36A36	F-20	F.0
GD66A36	W-22	E-6

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
36	36	36	36	34
32	32	32	32	31
22	22	22	22	22
36	36	36	35	31
32	32	32	32	25
22	22	22	22	20
32	30	29	27	20
29	27	26	24	18
22	21	20	19	15

## 45-68 Amps 100-1200 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GD36A68	F-20	
GD66A68	W-22	E-/

### Output Current (Avg. Amps.)

	1000	400	250	150	N.C.
3	68	64	60	56	45
	62	58	55	52	41
	45	45	45	42	34
_					
	55	52	49	46	35
	50	47	45	42	32
	41	39	38	36	28
]	42	39	37	34	25
	38	35	34	32	23
	31	29	28	26	19

## **Current Rating Voltage Ratings**

Floor Mounting Wall

Maxim Ambiei Tempe	nt		ocity M) <b>⇒</b>
40°C	Dela		<b>0</b> 60
Ĺ	Ang	le	90
	Dela	av.	0
60°C	Ang		60 90
	Dela		0
80°C	Ang		60 90

## 75-114 Amps 100-1600 Volts

Mech. Data Pg. A34-35 Type Number Elec. Data Pg. A33

GD39B11	F-36	Fo
GD69B11	W-36	E-0

#### Output Current (Avg. Amps.) 1000 400 250 150

ı	714	109	101	92	75
	101	101	96	86	72
	71	71	71	69	58
	94	87	81	74	58
	88	82	77	70	55
	69	65	63	57	46
	70	65	60	55	41
-	66	62	57	52	40

47

43

53

50

## 95-150 Amps 100-1600 Volts

400

1000

N.C.

34

Type Number	Mech. Data Pg. A34-35	Pg. A33
GD39B15	F-36	F O
GD69B15	W-36	E-9

## Output Current (Avg. Amps.) 250

150

N.C.

150	138	129	118	95
137	128	120	108	88
98	98	98	90	74
120	112	104	95	79
113	105	97	88	69
90	85	80	74	59
90	84	78	70	53

90 84 78 70 53 83 78 70 64 48 69 64 60 54 43					
	69	64	60	54	43
90 84 78 70 53	83	78	70	64	48
	90	84	78	70	53





## **Current Rating Voltage Ratings**

Floor Mounting Wall

Maximum Temperature (LFM)→ 180 120 Conduction 40°C Angle 90 60 30 180 120 Conduction 60°C 90 Angle 60 30

## 34-49 Amps 100-1200 Volts

Number	Mech. Data Pg. A34-35	Pg. A33
GA33A49	F-3	
GA63A49	VV - 4	E-5

## 80-89 Amps 100-1200 Volts

Type Number Elec. Data Pg. A33 Mech. Data Pg. A34-35 GA36A89 F-20 **GA66A89** W-22

## 104-160 Amps 100-1200 Volts

Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 GA36B16 F-20 GA66B16 W-22

#### Output Current (RMS Amps.) 150

49	44	42	39	34
50	47	44	41	36
50	48	45	42	38
50	49	46	44	39
50	50	48	46	41
40	37	35	32	28
42	38	36	34	29
43	40	37	35	31
44	41	39	37	32
45	42	40	38	34
31	28	26	25	21
33	30	28	27	22
33	31	29	27	24
34	32	30	29	25
35	33	31	30	26

#### **Output Current (RMS Amps.)** 1000 400 250 N.C.

89	89	89	89	
89	89	89	89	86
89	89	89	89	89
89	89	89	89	89
89	89	89	89	89
89	89	88	83	64
89	89	89	89	68
89	89	89	89	72
89	89	89	89	76
89	89	89	89	86
76	71	67	64	47
81	76	70	66	49
85	80	76	72	53
88	84	80	76	58
89	89	86	81	62

## **Output Current (RMS Amps.)**

1000	400	250	150	N.C.
160	148	140	131	104
171	161	152	142	113
178	172	162	153	122
178	178	175	175	137
178	178	178	178	150

-	129	121	114	107	80
	140	132	124	115	88
۱	148	140	132	124	95
	160	153	144	136	105
	178	168	160	150	118

	97	91	86	80	57
-	107	100	94	86	62
	112	106	100	93	68
	121	115	108	103	75
	133	127	121	115	86

## **Current Rating Voltage Ratings**

Conduction

Angle

80°C

180

90

60

30

180 120

> 90 60 30

## 174-223 Amps 100-1600 Volts

223

165

179

196

223

GA69B22

178

192

208

Type Number Mech. Data Elec. Data Pg. A34-35 Pg. A33 GA39B22 F-36 E-8

## 222-340 Amps 100-1600 Volts

Mech. Data Elec. Data Type Number Pg. A34-35 Pg. A33 **GA39B34** F-36 **GA69B34** 

W-36

#### Maximum Velocity Temperature (LFM) →

Mounting

40°C	40°C Conduction	120	
100		90	
1		60	
		30	
		180	
1	Conduction Angle	120	
60°C		90	
		60	
		30	
Γ		180	
1		120	
0000	Conduction	120	

Angle

#### **Output Current (RMS Amps.)** 1000 400 250 150 N.C.

223

212

141

154

170

186

W-36

223	223	223	223	193
223	223	223	223	210
223	223	223	223	223
223	223	223	223	223
217	203	189	172	135
223	222	208	190	150
223	223	223	207	164
223	223	223	223	182
223	223	223	· 223	211
160	149	139	126	95

155

168

185

212

223	390
223	390
135	280
150	305
164	327
182	355
211	390
95	208

106

118

152

154

Outpu	t Curr	ent (K	MS AI	nps.)
1000	400	250	150	N.C.
340	320	300	272	222
377	350	328	298	244
390	378	355	323	265
390	390	382	355	290
390	390	390	390	333
280	260	245	220	175
305	285	267	242	190

287

314

263

206

230

305

390	376	357	330	267
208	192	180	162	125
228	210	200	180	135
247	230	215	197	147
275	257	247	230	172
305	286	270	250	105

80°C





## **Current Rating** Voltage Ratings

Mounting

Wall

Maximum Air Velocity Ambient Temperature (LFM)→ 180 120 Conduction 40°C 90 Angle 60 30 180 120 Conduction 60°C Angle 90 60 30 180 120 Conduction 80°C 90

## 34-44 Amps 100-1200 Volts

Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33

**GB33A44** F-5 E-5 **GB63A44** W-7

# Output Current (Avg. Amps.)

1000 400 250 150 N.C. 41 34 38 36 35 38 33 31 27 31 30 28 27 24 25 25 23 22 20 17 17 17 16 14 37 34 32 30 26 32 30 28 26 23 27 25 24 22 20 22 20 19 18 17 15 14 14 13

29	26	24	22	19
25	23	22	20	17
21	20	18	17	15
17	16	15	14	13
12	12	11	11	10

## 73-80 Amps 100-1200 Volts

Mech. Data Pg. A34-35 Type Number Elec. Data Pg. A33

GB36A80 F-25 E-6

## Output Current (Avg. Amps.)

1000	400	250	150	N.C.
80	80	80	80	73
66	66	66	66	65
57	57	57	57	57
45	45	45	45	45
32	32	32	32	32
80	80	79	74	57

66	66	66	66	52
57	57	57	57	47
45	45	45	45	40
32	32	32	32	32
68	64	60	56	42

68	64	60	56	42
60	57	54	51	38
54	51	48	46	35
45	43	41	39	29
32	32	30	29	23

## 93-140 Amps 100-1200 Volts

Mech. Data Pg. A34-35 Type Number Elec. Data Pg. A33

GB36B14	F-25	E-7

#### Output Current (Avg. Amps.)

1000	400	250	150	N.C.
140	132	125	117	93
128	128	121	104	84
113	113	102	96	77
90	90	89	84	68
63	63	63	63	53

114	108	102	95	74
104	98	92	86	66
94	88	83	78	60
82	78	72	69	54
63	60	57	54	42

86	81	76	72	54
78	73	68	64	48
71	· 66	63	59	43
62	58	55	52	40
48	45	43	41	31

## **Current Rating Voltage Ratings**

Mounting

Maximum

Ambient Temperature

40°C

60°C

80°C

Angle

ĸΛ 30

Floor

(LFM)⇒ 180 120

90

90

90

60

30

107

84

100

80

Conduction

Conduction

Conduction

Angle

Angle

Angle

154-240 Amps 100-1600 Volts

Mech. Data Type Number Pg. A34-35

Elec. Data Pg. A33 GR39R24

## 196-310 Amps 100-1600 Volts

Type Number Mech. Data Elec. Data Pg. A33 Pg. A34-35 GB39B31 F-42 E-9

Output Current (Avg. Amps.)

G B 3 3 B 2 4	F-42	E-8
Output Cu	rrent (Avg.	Amps.)

1000	400	250	150	N.C.
240	224	210	192	154
210	205	192	175	145
178	178	178	162	134
142	142	142	142	118
99	99	99	99	93
196	182	170	156	120

99	99	99	99	93
196	182	170	150	120
		170	156	120
178	166	156	142	114
163	152	144	131	106
142	132	124	115	94
99	99	99	92	75
144	136	126	114	86
133	124	116	104	82
123	115	109	99	78

94

75

87

70

69

55

1000	400	250	150	N.C.
310	288	268	242	198
283	264	248	224	184
254	238	226	204	170
198	198	194	179	148
140	140	140	140	119
248	230	216	194	152

_					
	248	230	216	194	152
	230	214	198	182	146
	210	196	184	166	134
	180	169	158	146	118
	140	134	127	118	96
	184	172	160	144	106
	172	158	148	135	105

140	134	127	118	96
184	172	160	144	106
172	158	148	135	105
160	148	136	124	96
137	128	120	110	86
110	103	97	90	71

A29





## **Current Rating Voltage Ratings**

Floor Mounting Wall Maximum Air Velocity Temperature (LFM) → Maximum 0 Delay 40°C 60 90 0 Delay 60 Angle 90 0 Delay 80°C 60 Angle 90

## 45-60 Amps 100-1200 Volts

Type Number

GE33A60

26

159

150

GE63A60		W-8		E-5
Output	t Curr	ent (A	vg. An	nps.)
1000	400	250	150	N.C.
60	. 57	54	51	45
54	49	46	44	37
38	37	34	33	30
52	48	45	42	36
45	41	39	37	31
34	31	30	28	25
40	36	33	31	27
34	31	30	28	24

23

22

Mech. Data

Pg. A34-35

F-6

Elec. Data

E-5

19

102

Pg. A33

## 103-110 Amps 100-1200 Volts

400

110

1000

110

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE36B11	F-26	E-6
Output C	irront (Ava	Amne

## Output Current (Avg. Amps.) 250

110

150

N.C.

110 103

I	96	96	96	96	94
	66	66	66	66	66
١	109	109	109	105	82
	96	96	96	96	75
l	66	66	66	66	60
١	97	91	87	81	60
I	87	82	78	73	54
	66	64	61	57	45

## 135-200 Amps 100-1200 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE36B20	F-26	E-7

## Output Current (Avg. Amps.)

Output	Ourici	(~	g. A	ps.,
1000	400	250	150	N.C.
200	192	180	168	135
186	174	166	156	123
135	135	135	126	102
165	156	147	138	105
150	141	135	126	96
123	117	109	103	79
126	117	111	102	79
114	106	102	96	69
93	88	84	78	57

## **Current Rating** Voltage Ratings

Mounting	Floor

Maxim Ambie Tempe	nt	Air Velo (LFN	
	Dale		0
40°C	Dela Ang		60
			90
			0
60°C	Dela Ang		60
L	,9		90
			0
80°C	Dela Ang		60
	9		90

## 225-340 Amps

24

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GE39B34	F-44	E-8

## 100-1600 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE39B34	F-44	E-8

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GE39B34 F-44		E-8
		·

## Output Current (Avg. Amps.)

	1000	400	250	150	N.C.
	340	321	303	276	225
	303	303	288	258	216
	213	213	213	207	174
ı	282	261	243	222	174
	264	246	231	210	165
	207	196	186	171	138
	210	195	180	165	123
	198	186	171	156	120

141

129

## 285-440 Amps 100-1600 Volts

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GE39B44	F-44	E-9

## Output Current (Avg. Amps.)

Outpu	Cuii	cur (v	vg. ~	iips.,
1000	400	250	150	N.C.
440	414	388	354	285
411	384	360	324	264
294	294	294	270	222
360	336	312	285	222
336	315	291	264	207
270	255	240	222	179
270	252	234	210	159
249	234	210	192	144
207	192	180	168	129





## **Current Rating Voltage Ratings**

Mounting	Floor
mounting	Wall

Maxin Ambie Tempe		Air Velocity (LFM) <b>⇒</b>
40°C	Dela Angl	
60°C	Delay Angle	
80°C	Delay Angle	

## 34-49 Amps 100-1200 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33
GF33A49	F-6	F-5
GF63A49	W-8	E-9

Output Current (RMS Amps.)					
1000	400	250	150	N.C.	
49	44	42	39	34	
49	46	43	41	36	
49	48	46	43	39	
40	37	35	32	28	
42	38	36	34	30	
43	40	38	36	32	
31	28	26	25	21	
33	30	29	27	23	

## 80-88 Amps 100-1200 Volts

Type Number	Mech. Data Pg. A34-35	Elec. Data Pg. A33 E-6	
GF36A88	F-26		

## Output Current (RMS Amps.)

N.C.	1000	400	250	150	N.C.
34	88	88	88	88	80
36	88	88	88	88	87
39	88	88	88	88	88
28	88	88	88	84	64
30	88	88	88	88	70
32	88	88	88	88	78
21	76	72	67	64	48
23	81	76	72	68	51
25	88	84	80	76	58

## 104-160 Amps 100-1200 Volts

Number	Pg. A34-35	Pg. A33
GF36B16	F-26	E-7

Outpu	t Curr	ent (H	IVIS A	mps.)
1000	400	250	150	N.C.
160	149	140	132	104

100	149	140	132	104
172	162	153	143	114
177	177	176	165	133
128	120	114	106	80
140	132	124	116	90
160	153	142	135	104

98	91	86	81	58
106	100	94	88	65
122	116	110	103	76

## **Current Rating Voltage Ratings**

Mounting

Floor

174-270 Amps 100-1600 Volts

Type	Mech. Data	Elec. Data	
Number	Pg. A34-35	Pg. A33	
GF39B27	F-44	E-8	

Type	Mech. Data	Elec. Data	
Number	Pg. A34-35	Pg. A33	
GF39B27	F-44	E-8	

## 222-340 Amps 100-1600 Volts

Type	Mech. Data	Elec. Data
Number	Pg. A34-35	Pg. A33
GF39B34	F-44	E-9

Maxin ♣Ambie Tempe		Air Velocity (LFM) <b>⇒</b>
		0
40°C	Dela Ang	
		120
Γ		0
60°C	Dela Ang	
	Allg	120
		0
80°C	Dela Ang	
	· uig	120

Outpu	t Curr	ent (R	MS A	mps.)
1000	400	250	150	N.C.
270	251	235	215	174
285	280	260	240	198
285	285	285	280	235
217	203	189	172	135

	217	203	189	172	135
	242	227	212	195	157
	279	288	250	230	187
1	160	150	139	126	95
	182	170	160	147	112
	212	200	190	172	136

Output Current (RMS Amps.)								
1000	400	250	150	N.C.				
340	320	298	271	222				
379	350	330	303	248				
390	390	383	352	293				
278	258	240	218	173				
210	205	260	247	102				

353	333	313	288	232
208	192	180	162	123
238	217	202	186	138
272	253	238	220	170



#### **Electrical Data**

Tables I and II provide General Recommendations for Transient Voltage Protection. Tables III and IV must be used in conjunction with the electrical key specified with each of the assembly type numbers. These tables cover non-repetitive surge ratings, I2t ratings, general fuse recommendations, recommended gate drive requirements, and recommended RC dv/dt networks for the devices used in the Gold Line Assemblies.

Circuit conditions and economics will dictate which protective devices, if any, are necessary for reliable operation.

#### Table I General Recommendations for Voltrap® Transient Voltage Suppression for Gold-Line Assemblies

This table can be used as a general guide with any Gold Line Assembly. Knowing the Assembly Input Power Transformer KVA and the Secondary Line to Line Voltage, one can obtain the size of the Voltrap® required. The Voltraps® should be connected across each device with the shortest lead lengths practical. For more information regarding the selection and application of Westinghouse Voltraps®, send for T.D. 16-435, pp. 1-14 - Westinghouse Electric Co., General Control Division, Buffalo, N. Y. 14240.

Assembly	Secondary L	Secondary Line to Line Voltages (Volts)							
Input Power Transformer KVA	12	24	60	120	240	480			
1	S04	S03	S01	S01	S01	S01			
2	S05	S04	S02	S01	S01	S01			
5	S06	S05	S03	S02	S01	S01			
10	S06	S05	S04	S03	S01	S01			
20	11	S06	S04	S03	S02	S01			
50		.:	S05	S04	S03	S01			
100				S05	S04	S03			
200					S05	S04			
500		·				S05			

#### Table II General Recommendations for RC Transient Voltage Suppression Across the DC Output Terminals for Gold-Line Assemblies

This table can be used as a general guide with any Gold Line Assembly. R-C networks are generally used when Voltraps® are not considered economical. Only carbon or noninductive wound power resistors and extended foil or computer grade electrolytic work with the shortest lead lengths possible should be connected across the DC Output Terminals of the Rectifier Assembly.

R = Resistor (ohms)

P = Power Rating of Resistor (watts)

C = Capacitor (microfarads)

General recommendations assume that the transformer and line inductance are less than R2C/4.

Assembly		Secondary L	ine to Line Voltage	(Volts)			
DC Output Current Amperes		12	24	60	120	240	480
	R	6	12	30	60	120	240
10	P	1	1	1	1	2	5
	C	10	5	2	1	.5	.25
ulti.	V	50	100	150	300	600	1000
	R	3	6	15	30	60	120
20	P	1	1	1	2	5	10
11.5	C	20	10	4	2	1	.5
	V	50	100	150	300	600	1000
	R	1.2	2.4	6	12	24	48
50	P	1	1	2	5	10	20
	C	50	25	10	. 5	2.5	1.25
	V	50	100	150	300	600	1000
100	l R	.6	1.2	3	6	12	24
	P	1	2	5	10	20	50
2.1	l C	100	50	20	10	5	2.5
	l V	50	100	150	300	600	1000
	R	.3	.6	1.5	3	6	12
200	P	2	5	10	20	50	100
	C	200	100	40	20	10	5
	V	50	100	150	300	600	1000
	R	.12	.24	.6	1.2	2.4	4.8
500	P	5	10	20	50	100	150
	C	500	250	100	50	25	12.5
	I V	50	100	150	300	600	1000
1000	R	.06	.12	.3	.6	1.2	2.4
	P	10	20	50	100	150	250
	C ·	1000	500	200	100	50	25
	V	50	100	150	300	600	1000



#### Table III Electrical Data and General Fuse Recommendations for Rectifier Gold-Line Assemblies

This chart lists the non-repetitive 1-3-5-10 cycle surge current ratings and I²t ratings for the rectifiers used in the Gold Line Assemblies. In addition, general fuse recommendations are presented. Fuses must be mounted in series with each device. The numbers listed in the table are Chase-Shawmut (Newburyport, Mass.) Form 101

Amp-Trap (i). Equivalent fuse types are available from several companies. A partial listing of these companies include:

- Bussmann Mfg, Div. McGraw Edison Co. St. Louis, Missouri 63107
   The Carbone Corporation Boonton, New Jersey 07005
- English Electric Co., Limited Fusegear Division Liverpool, England

Electrical	I _{FSM} Surge	(Amperes)		l²t	Line	Fuse	
Data Number	1	3	5	10	(Amp ² -Sec)	Voltage (Volts)	
E-1	250	     180 	     155 	130	260	120 240 480	A13 x 30 A25 x 30 A60 x 30
E-2	500	   365 	310	245	1000	120 240 480	A13 x 50 A25 x 50 A60 x 30
E-3	3000	2400	2150	1800	37,200	120 240 480	A13 x 250 A25 x 300 A60 x 100
E- <b>4</b>	5500	4500	4100	3500	125,000	120 240 480	A13 x 400 A25 x 400 A60 x 250

Table IV Electrical Data and General Gate Drive, Fuse, and RC dv/dt Network Recommendations for Half and Full Control Gold Line Assemblies

This table lists the non-repetitive 1-3-5-10 cycle surge current ratings, I²t ratings and general fuse recommendations for Half Control and Full Control Gold Line Assemblies. The fuse types shown are Chase-Shawmut Form 101 Amp-Trap®. Their address and the addresses of other fuse manufacturers are listed under Table III. The fuses must be mounted in series with each device.

In addition this chart lists the general gate requirements for the SCR's used in these assemblies. Commercial gate firing packages are available from Firing Circuits, Inc.

Norwalk, Conn. 06852), Vectrol, Inc. (Rockville, Md.) and others. For additional information on selecting gate triggering requirements and designing gate drive circuitry refer to the Westinghouse SCR Gate Turn on Characteristics.

Also, listed in this table are RC dv/dt networks for dv/dt suppression. These RC dv/dt networks must be placed with short lead lengths across each device (rectifiers and SCR's) in the assembly. Only carbon or non-inductive wound power resistors and

only extended foil AC voltage rated capacitors should be used.

R=Resistor (ohms)

P=Power Rating of Resistor (watts)

C=Capacitor (microfarads)

V=Voltage Rating of Capacitor (volts)

are available	110111 1 111119	Circuits, inc.	11011 11			, po,	r resistors and	_					
Electrical	Gate	Recommended	I _{TSM} S	urge (A	mperes	)	l ² t	Line	Fuse	RC	dv/dt	Netw	ork
Data Number	To Trigger Values @ 25°C	Gate Current @1.0 μsec (Rise Time)	1	   3 	   5 	1   10	(Amp ² -sec)	Volt- age (Volts)		R	l   P	С	i I V L
E-5	40 ma 3.0 Volts	150 ma	150	110	98 	90	90	120 240 480	A13 x 50 A25 x 50 A60 x 30	10 10 20	1 w 1 w 2 w	.1 .1 .1	300 600 1000
E-6	100 ma 3.0 Volts	350 ma	1200	950	870 	800 	6,000	120 240 480	A13 x 100 A25 x 100 A60 x 60		1 w 2 w 5 w	.25 .25 .25	300 600 1000
E-7	100 ma 3.0 Volts	350 ma	1600	1250	1150	1080   	10,700	120 240 480	A13 x 100 A25 x 50 A60 x 80	20 20 20	1 w 2 w 5 w	.25 .25 .25	300 600 1000
E-8	150 ma 3.0 Volts	500 ma	3300	2400	2200	2000	45,000	120 240 480	A13 x 300 A25 x 300 A60 x 150	30 30 30	2w 5w 15w	.5 .5 .5	300 600 1000
E-9	150 ma 3.0 Volts	500 ma	5000	3600	3350	3100	100,000	120 240 480	A13 x 400 A25 x 400 A60 x 200	30 30 30	2w 5w 15w	.5 .5 .5	300 600 1000



### **Mechanical Data**

Tables V, VI and VII list the length, width and height, drill plan, mounting hole dimensions and approximate weight for each assembly. These tables are divided into "floor-type" mounting, "wall-type mounting", and "floor and wall type mounting", and must be used in conjunction with the mechanical key specified with each of the assembly type numbers.

Color coding for terminal identification is in accordance with NEMA standards.

Color Code: Yellow - A.C. terminals (input)

Red - Positive terminal

(output)

Black - Negative terminal

(output)

The material for Westinghouse Gold Line heat sinks is aluminum with gold chromate finish. Mounting feet and other mechanical support materials are of flame retardant, non-tracking, NEMA Class B (130°C continuous operation) insulation.



Table V

Floor	Approximate		Dimensions in I	nches	Drill	Plan	Mountin
Mounted	Assembly	Length	Width	Height			Hole
Number	Weight (Lbs.)	L	W	Н	D	E	Diameter
F-1	.8	4.125	3.875	3.875	3.00	2.75	.34
F-2	1.6	8.750	3.875	3.875	7.62	2.75	.34
F-3	1.6	8.750	3.875	4.125	7.62	2.75	.34
F-4	2.4	13.375	3.875	3.875	12.25	2.75	.34
F-5	2.4	8.750	6.125	4.375	7.62	4.94	.34
F-6	3.4	13.375	6.125	4.375	12.25	4.94	.34
₹-7	.7	4.125	3.875	3.875	3.00	2.75	.34
F-8	.8	4.125	3.875	5.750	3.00	2.75	.34
-9	1.2	4.125	4.375	5.875	3.00	2.75	.34
-10	1.4	4.125	3.875	5.750	3.00	2.75	.34
₹-11	2.0	8.750	3.875	5.875	7.62	2.75	.34
-12	2.2	8.750	3.875	6.062	7.62	2.75	.34
-13	2.4	8.750	4.625	5.875	7.62	2.75	.34
-14	2.8	8.750	3.875	5.750	7.62	2.75	.34
-15	2.8	8.750	4.125	5.750	7.62	2.75	.34
⁼ -16	3.3	8.750	4.125	5.750	7.62	2.75	.34
-17	3.3	8.750	4.125	6.062	7.62	2.75	.34
-18	3.6	13.375	4.625	5.875	12.25	2.75	.34
-19	2.7	4.125	6.625	5.750	3.00	5.50	.34
-20	5.6	8.750	6.625	6.250	7.62	5.50	.34
-21	5.6	8.750	6.625	5.750	7.62	5.50	.34
-22	5.9	8.750	6.625	6.062	7.62	5.50	.34
F-23	8.2	13.375	6.625	5.750	12.25	5.50	.34
F-24	8.2	13.375	6.625	6.062	12.25	5.50	.34
F-25	10.8	9.250	11.625	6.250	7.62	10.50	.34
F-26	16.2	13.875	11.625	6.250	12.25	10.50	.34
F-27	4.8	4.125	6.625	9.562	3.00	5.50	.34
-28	5.0	4.125	7.375	9.562	3.00	5.50	.34
-29	9.6	8.750	6.625	9.562	7.62	5.50	.34
=-30	10.0	8.750	7.250	9.562	7.62	5.50	.34
₹-31	14.4	13.375	6.625	9.562	12.25	5.50	.34
-32	15.1	13.375	7.250	9.562	12.25	5.50	.34
-33	4.4	5.125	7.875	6.750	4.00	6.50	.34
-34	4.6	5.125	7.625	6.750	4.00	6.50	.34
F-35	8.0	10.750	7.625	7.125	9.62	6.50	.34
-36	9.0	10.750	7.625	7.250	9.62	6.50	.34
F-37	9.0	10.750	7.625	6.750	9.62	6.50	.34
F-38	10.2	10.750	7.625	6.750	9.62	6.50	.34
F-39	10.2	10.750	7.625	7.125	9.62	6.50	.34
F-40	13.5	16.375	7.625	6.750	15.25	6.50	.34
F-41	15.5	10.750	12.625	6.750	9.62	11.50	.34
F-42	15.8	11.250	14.000	7.250	9.62	12.50	.34
F-43	23.4	16.375	12.625	6.750	15.25	11.50	.34
F-44	23.6	16.875	14.000	7.250	15.25	12.50	.34





#### Table VI

Wall	Approximate		Dimensions in I	nches	Drill	Plan	Mounting
Mounted	Assembly	Length	Width	Height			Hole
Number	Weight (Ibs.)	L	W	н	D	E	Diameter
W-1	.8	5.062	3.500	3.062	4.69		.28 slots
W-2	1.6	10.000	3.750	4.688	9.25	3.75	.34
W-3	1.6	10.000	3.000	3.125	9.25	3.75	.34
W-4	1.6	10.000	3.000	4.688	9.25	3.75	.34
W-5	2.4	14.625	3.750	4.688	13.88	3.75	.34
W-6	2.4	14.625	3.000	4.688	13.88	3.75	.34
W-7	2.4	10.000	5.750	4.688	9.25	3.75	.34
W-8	3.4	14.625	5.750	4.688	13.88	3.75	.34
W-9	.7	5.062	3.380	3.380	4.69		.28 slots
W-10	.8	5.062	3.380	5.062	4.69		.28 slots
W-11	1.2	5.062	4.500	5.062	4.69		.28 slots
W-12	1.4	5.062	4.500	5.062	4.69		.28 slots
W-13	2.0	10.000	3.250	5.125	9.25	3.75	.34
W-14	2.2	10.000	3.000	5.626	9.25	3.75	.34
W-15	2.4	10.000	4.250	5.125	9.25	3.75	.34
W-16	2.8	10,000	3.250	5.125	9.25	3.75	.34
W-17	2.8	10.000	4.000	5.125	9.25	3.75	.34
W-18	3.3	10.000	4.000	5.125	9.25	3.75	.34
W-19	3.3	10.000	4.000	5.625	9.25	3.75	.34
W-20	3.6	14.625	4.250	5.125	13.88	3.75	.34
W-21	2.7	5.375	6.125	5.062	4.62	3.75	.34
W-22	5.6	10.000	6.125	5.125	9.25	3.75	.34
W-23	5.6	10.000	5.880	5.125	9.25	3.75	.34
W-24	5.9	10.000	5.880	5.625	9.25	3.75	.34
W-25	8.2	14.620	5.880	5.125	13.88	3.75	.34
W-26	8.2	14.620	5.880	5.625	13.88	3.75	.34
W-27	4.8	5.375	6.125	9.125	4.62	3.75	.34
W-28	5.0	5.375	7.000	9.125	4.62	3.75	.34
W-29	9.6	10.000	6.125	9.125	9.25	3.75	.34
W-30	10.0	10.000	7.000	9.125	9.25	3.75	.34
W-31	14.4	14.625	6.125	9.125	13.88	3.75	.34
W-32	15.1	14.625	7.000	9.125	13.88	3.75	.34
W-33	4.4	6.375	7.625	6.062	5.62	3.75	.34
W-34	4.6	6.375	6.750	6.062	5.62	3.75	.34
W-35	8.0	12.000	6.7,50	6.625	11.25	3.75	.34
W-36	9.0	12.000	7.625	6.125	11.25	3.75	.34
W-37	9.0	12.000	6.750	6.125	11.25	3.75	.34
W-38	10.2	12.000	6.750	6.125	11.25	3.75	.34
W-39	10.2	12.000	6.750	6.625	11.25	3.75	.34
W-40	13.5	17.625	6.750	6.125	6.50	3.75	.34

Floor or	Approximate		Dimensions in Incl	nes	Drill	Plan	Mounting
Wall	Assembly	Length	Width	Height			Hole
Mounted Number	Weight (lbs.)	L	W	н	D	E-	Slots
F/W-1	.2	3.125	3.062	4.500	2.25	1.00	.22 x .47
F/W-2	.3	3.560	3.062	4.500	2.69	1.00	.22 x .47
F/W-3	.4	4.000	3.062	4.500	3.12	1.00	.22 x .47
F/W-4	.4 .5	4.438	3.062	4.500	3.56	1.00	.22 x .47
F/W-5	.7	5.750	3.062	4.500	4.88	1.00	.22 x .47
F/W-6	.6	3.500	5.062	6.500	2.62	2.50	.28 x .56
						and 1.00	.22 x .47
F/W-7	_{./.,} .7	4.060	5.062	6.500	3.19	2.50	.28 x .56
	* *.					and 1.00	.22 x .47
F/W-8	.8	4.625	5.062	6.500	3.75	2.50	.28 x .56
						and 1.00	.22 x .47
F/W-9	1.0	5.188	5.062	6.500	4.31	2.50	.28 x .56
						and 1.00	.22 x .47
F/W-10	1.5	6.875	5.062	6.500	6.00	2.50	.28 x .56
					•	and 1.00	.22 x .47

# **ASSEMBLIES**

## Stud Mount ASSEMBLIES Gold Line



#### **Thermal Data**

#### **Forced Air Cooling**

The rating charts presented in this brochure cover natural convection and four forced air conditions: 150, 250, 400, and 1000 linear feet per minute (LFM). The air velocity is measured in LFM as it approaches the sink. From the rating charts, it can be seen that the current ratings of a given assembly can be increased considerably by using forced air. All air flow velocity measurements are per JEDEC RS-282, SEC 7-13.

The following is a partial listing of Manufacturers of blowers and fans:

- W. W. Grainger, Inc.
   3812 Penn Ave.
   Pittsburgh, Pennsylvania 15201
- 2. Rotron, Inc. Woodstock, New York 12498
- 3. Rotating Components 1560 5th Ave. Bay Shore, New York 11706
- 4. Pamotor, Inc. 770 Airport Blvd. Burlingame, California
- IMC Magnetics Corporation Eastern Division
   Main Street Westbury, New York

## Oil Cooling

Current ratings for assemblies which are immersed in natural convected oil are approximately equivalent to the 1000 LFM air flow ratings listed in this catalog.

Fahrenheit. Centigrade  -40 -40 -44 -20 32 0 59 15 68 20 77 25 86 30 95 35 104 40 113 45 122 50 131 55 140 60 149 65 158 70 167 75 176 80 194 90 212 100 302 150	Temperature Conversion	
-40 -40 -40 -40 -40 -44 -20 32 0 0 59 15 68 20 77 25 86 30 95 35 104 40 113 45 122 50 131 55 140 60 149 65 158 70 167 75 176 80 194 90 212 100 302 150		
-4     -20       32     0       59     15       68     20       77     25       86     30       95     35       104     40       113     45       122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150	Fahrenheit.	Centigrade
-4     -20       32     0       59     15       68     20       77     25       86     30       95     35       104     40       113     45       122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150		
32 0 59 15 68 20 77 25 86 30 95 35 104 40 113 45 122 50 131 55 140 60 149 65 158 70 167 75 176 80 194 90 212 100 302 150		
59     15       68     20       77     25       86     30       95     35       104     40       113     45       122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150		
68       20         77       25         86       30         95       35         104       40         113       45         122       50         131       55         140       60         149       65         158       70         167       75         176       80         194       90         212       100         302       150		
77 25 86 30 95 35 104 40 113 45 122 50 131 55 140 60 149 65 158 70 167 75 176 80 194 90 212 100 302 150		
86     30       95     35       104     40       113     45       122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150	7. T	
95 35 104 40 113 45 122 50 131 55 140 60 149 65 158 70 167 75 176 80 194 90 212 100 302 150		
104     40       113     45       122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150		
113     45       122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150		
122     50       131     55       140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150		
131 55 140 60 149 65 158 70 167 75 176 80 194 90 212 100 302 150		
140     60       149     65       158     70       167     75       176     80       194     90       212     100       302     150		
149     65       158     70       167     75       176     80       194     90       212     100       302     150		
158     70       167     75       176     80       194     90       212     100       302     150		
176 80 194 90 212 100 302 150		
176 80 194 90 212 100 302 150	167	75
212 100 302 150	176	
302 150	194	90
	212	100
AAA		150
	338	170
392 200	392	200



# Disc ASSEMBLIES Air and Liquid Cooled



Air Cooled Assembly Modules.



New High Current Air Cooled Module.



Liquid Cooled Assembly Modules.

INTRODUCTION Ordering Information Voltage Code Available Circuits Parallel Circuits Series Circuits Liquid Cooled R/C Tabs Kits and Sinks	Air Cooled Assembly Page A38	Liquid Cooled Assembly Page A38
ASSEMBLY RATINGS		
Rectifier		
Single Rectifier	A39	A45
Series Rectifier *	A39	A48
1Ø Bridge	A39	A45
3Ø Bridge	A40	A46
3Ø WYE	A41	A47
6Ø Star	A40	A46
Half Control		
1Ø Bridge	A42	A49
3Ø Bridge	A42	A49
Full Control		
Single SCR	A43	A50
Series SCR *	A43	A48
10 Bridge	A43	A50
3Ø Bridge	A44	A51
AC Switch, 10	A44	A51
JEDEC, Manifold AC Switch		A52
SUPPORTING DATA		
Electrical Data	A56	A56
Mechanical Data	A59, A64	A57, A58, A60-A63
Kits and Sinks	A65, A66	A66
Thermal Data	A68	A67

^{*}Also see Page A38, Series Circuit.



New High Current Water Cooled Module.



Liquid Cooled Manifold AC-Switch.

# Disc ASSEMBLIES Air and Liquid Cooled



Ordering Information All assemblies in this section are keyed to a standard twelve digit part number which describes the assembly frame, heat sink, and device type. Simply insert the two digit voltage code for the desired assembly voltage rating.

Voltage Code Make sure the desired assembly voltage rating does not exceed the Maximum Voltage Available for the assembly under consideration. Then, using Table I, select the appropriate two digit voltage code. Inserting this two digit voltage code into the 9th and 10th positions of the assembly part number completes the required ordering information for all standard designs.

Available Circuits Table II lists the standard circuits available from Westinghouse. A complete index by circuit type is given on page A37. The shaded areas of Table II denote circuits with ratings published in this section. PC (positive center tap - common cathode connection) is available; use the corresponding single phase bridge data for the appropriate current rating. Likewise, the PN (negative centertap - common anode connection) is available; use the corresponding single phase bridge data for the appropriate current rating. Series and parallel circuits are also available.

Parallel Circuits This type of circuit is usually specified when paralleling two or more devices to obtain higher current ratings than available in a single device. Two common techniques for paralleling devices are direct and forced sharing; both techniques usually require specially factory matched test selection to assure proper device performance in the application. The standard Westinghouse PP circuit is provided with common anode connection; common cathode parallel circuit connections can be provided on request.

Series Circuit This type of circuit is usually specified when seriesing two or

more devices to obtain higher voltage ratings than available in a single device. This type of circuit generally requires special QRR matching and other test matching to assure proper voltage sharing across each device in the application.

Standard air cooled assembly modules are only available for two devices in series. To order, simply specify PS frame connection. For current ratings, refer to the appropriate PR on PT circuit frame data; for assembly outline drawings, refer to the PD frame mechanical data.

Liquid cooled assembly ratings for two and three devices in series are presented in this section along with their outline drawings. For applications requiring four or more devices in series, consult Westinghouse for a custom module.

Liquid Cooled R/C Tabs Tab type, .250 push-on terminals are an option available on Westinghouse liquid cooled heat sinks. This option makes the connection of resistors, capacitors, and/or voltage protection devices directly across the semiconductor device an easy task. To order this feature, add suffix "RC" to the standard twelve digit type number - i.e. PDW6T6201230RC.

Kits and Sinks Standard air and liquid cooled disc assembly kits are available to the user who needs design flexibility on small quantity custom designs that might require non-standard factory configurations. Air cooled heat sink extrusions, designed by Westinghouse to optimize the cooling of large area power semiconductors. are available in mill lengths or cut-to-order lengths. See pages A65 and A66 for more information on Westinghouse kits and sinks.



TABLE I

Voltage Code				
Assemblý Device Voltage Rating	Voltage			
100	01			
200	02			
400	04			
600	06			
800	08			
1000	10			
1200	12			
1400	14			
1600	16			
1800	18			
2000	20			
2200	22			
2400	24			
2600	26			
2800	28			
3000	30			
4000	40			

TABLE II
STANDARD AVAILABLE CIRCUITS

Frame	Rectifier	Thyristor	Half Control	Full Control
73			* · ·	* J
PC	• <del>▶ •</del> •		• <b>≱</b> / Å ••	~ <del>• </del>
20	• <del> 4                                    </del>		ş <del> a Î  a</del> ∘	9 <del>4                                    </del>
PN	• <del> 4                                    </del>			~ <del> • • •  </del>
PP	• <del> 4                                    </del>			N. S.
PR	• <b> 4</b> •			
PS	∘ <del> 4  4</del> ∘ ∘ <del> 4  4  4</del> ∘ ∘ <del> 4  4  4</del> ∘	** ***********************************		
PT		~ <b>!•</b> ~		



## Disc ASSEMBLIES Air Cooled

Rectifier

Schematic This Number)  Configura- Voltage Voltage (V)  Voltage (V)	DATA
Configura - Voltage (V)	
	ELEC. DATA
tion Code V OUTPUT CURRENT, AVERAGE AMPS	
PRA6R620 30 1200 187 339 377 401 407 186 326 368 391 397 188 300 338 368 372	
30 2000 179 319 355 378 384 183 302 342 363 369 148 279 314 341 346	E-1
30 3000 147 281 313 333 338 138 263 297 316 321 123 245 276 300 304	
Single Rectifier PRA6R620 40 1200 210 368 414 448 457 167 353 396 431 438 168 337 379 411 420	E-2
R 40 2000 166 344 387 419 427 177 327 367 399 406 163 308 347 376 384 PRA6R620 50 1200 217 395 444 482 492 202 375 424 459 469 188 355 403 436 445	M-1
DANDERS OF LOAD	E-3
06 2000 198 386 448 497 508 100 371 429 479 489 186 350 405 451 463	E-4
06 4000 159 335 389 431 441 145 313 362 404 413 130 289 335 373 383	
PRA7R720 09 1200 255 487 564 623 639 238 460 536 592 607 218 438 512 567 580	E-5
09 2000 228 450 521 576 591 210 424 494 546 559 192 398 465 515 527	
ONE PRA7R720 12 1200 349 643 755 842 865 326 611 721 802 824 303 579 682 762 783  ASSEMBLY	E-6 M-1
REQUIRED PRA9R920 11 1200 600 930 1033 1183 1275 676 875 990 1150 1230 513 855 947 1110 1180	E-7
11 2000 540 875 970 1128 1190 500 835 930 1080 1155 438 800 878 1030 1100 11 3000 410 775 860 1000 1040 375 720 810 945 1010 330 665 745 875 935	
PRA9R920 16 1200 615 987 1104 1280 1372 660 947 1055 1225 1300 630 915 1000 1075 1260	E-8
16 2000 510 930 1025 1192 1270 500 830 1020 1135 1220 498 840 920 1090 1150.	
PRA9R920 20 1200 790 1185 1340 1608 1722 878 1138 1277 1537 1635 633 1090 1222 1440 1766	E-9 M-1
PRA9R9GO 13 1200 648 965 1087 1305 1370 610 930 1040 1230 1315 580 885 995 1170 1250	E-10
13 2000 586 910 1020 1200 1275 528 865 970 1140 1215 488 810 915 1085 1155	
13 3000 435 795 900 1050 1120 390 735 845 990 1050 350 690 780 930 985	
PRA9R9G0 18 1200 678 1015 1153 1368 1455 640 967 1100 1308 1390 670 920 1048 1248 1326	E-11
18 2000 698 949 1072 1280 1360 650 898 1020 1216 1290 632 845 965 1150 1225 PRA9R9GO 22 1200 910 1258 1442 1742 1967 770 1193 1371 1658 1775 686 1128 1297 1570 1682	E-12 M-1
1120 1207 1070 1002	2-12
PDA6R620 30 1200 384 678 754 802 814 370 652 736 782 794 308 600 676 736 744	E-1
30 2000 356 638 710 756 768 336 604 684 726 738 290 558 628 682 692 30 3000 394 562 626 666 676 270 526 594 632 642 300 552 600 608	
PDASPEZO 40 1200 000 000 000 000 000 000 000 000 0	E-2
1	M-1
PDA6R620 50 1200 434 790 888 964 984 404 750 848 918 938 378 710 806 872 890	E-3
PDA7R720 06 1200 432 834 968 1074 1098 400 802 928 1036 1058 378 766 888 988 1014	E-4
06 2000 392 772 896 994 1016 360 742 858 958 978 332 700 810 902 926	
06 4000 318 670 778 862 882 290 626 724 808 826 260 578 670 746 766	
PDA7R720 09 1200 519 974 1128 1246 1278 476 920 1072 1184 1214 436 876 1024 1134 1160 09 2000 456 900 1042 1152 1182 428 848 988 1092 1118 384 796 930 1030 1054	E-5 M-1;
TWO PDA7R720 12 1200 667 1285 1510 1683 1730 661 1222 1441 1604 1647 665 1159 1364 1524 1565	E-6
ASSEMBLIES PRAGROSO 11 1000	E-7
REQUIRED 1750 1960 2066 2366 2360 2550 1150 1750 1980 2300 2460 1026 1710 1894 2220 2360 11 2000 1080 1750 1940 2256 2380 1000 1670 1860 2160 2310 1750 1960 1756 2060 2200	E- /
11 3000 820 1550 1720 2000 2080 750 1440 1620 1890 2020 660 1330 1490 1750 1870	
PDA9R920 16 1200 1974 2208 2560 2744 1120 1894 2110 2450 2600 1060 1830 2000 2150 2520	E-8 M-15
16 2000 1020 1860 2050 2384 2540 1000 1660 2040 2270 2440 990 1680 1840 2180 2300	
PDA9R920 20 1200 1580 2370 2680 3216 2444 1356 2276 2554 3074 3270 1266 2180 2444 2880 3532	E-9
PDA9R9G0 13 1200 1280 1930 2174 2610 2740 1220 1860 2080 2460 2630 1100 1770 1990 2340 2500	E-10
13 2000 1180 1820 2040 2400 2550 1080 1730 1940 2280 2430 930 1620 1830 2170 2310 13 3000 870 1590 1890 1100 2240 788 1470 1690 1980 2100 788 1380 1560 1880 1970	
13 3000 870 1590 1800 1100 2240 780 1470 1690 1980 2100 700 1380 1560 1860 1970	E-11
1	
	M-15

Rectifier



	· · · · · · · · · · · · · · · · · · ·			15x 5 18	300	. 2k.	100 m									
Circuit	Assembly Module Type	Device Maximum	TAmbient	= 40°C		T _{Aml}	bient =	= 50°C	:		TA	mbient	c = 60°	c	Ą	ıTA
Schematic	(Order By This Number)	Voltage		INLET AIR \	/ELOCI	TYLir	VEAR	FEET I	PER MU	NUTE					DATA	МЕСН. DATA
Configura-	Voltage	Available	N.C 300 500	1000 1500		300	500	1000	1500		300	500	1000	1500	ELEC.	ECF
tion	Code V	(∨)		- 0	UTPUT	CURF	ENT.	AVER.	AGE A	MPS		<b></b>		•	ш	2
															,	
<b> </b>	PDA6R620_30	1200	958 1057	1125 1142	132	920	1032	1097	1114	488	846	954	1028	1042	E-1	
<del>  *                                 </del>	30	2000	<b>514</b> 902 995	1060 1076	463	854	959	1019	1035	448	786	887	955	968		
1 Land	30	3000	<b>423</b> 795 877	934 948	388	743 -	834	886	900	363	691	779	839	851		
3 φ Bridge	PDA6R62040	1200		1256 1279	862			1207		524	953	1067	1156	1180	E-2	
	40	2000		1174 1195	505			1118		468	872		1058			
	PDA6R62050	1200	626 1115 1252	1360 1385	584	1064	1194	1295	1322	542	1007	1137	1231	1255	E-3	M-11
	PDA7R72006	1200	<b>627</b> 1186 138	1 1515 1554	579	1140	1321	1462	1496	548	1092	1259	1401	1434	E-4	
	, O6	2000		1 1402 1438	621			1352		483	1001	1154	1284	1314		
	06 PDA7R72009	4000 1200		3 1217 1248	420			1141		379	827		1061			
	09	2000		5 1766 1810 5 1632 1673	689	1210		1676	1718	633		1456			E-5	
THŘEE	PDA7R72012	1200		1 2401 2471	929			2282		666 865		1324 1933			E-6	M-13
ASSEMBLIES	PDA9R92011	1200		<del></del>												77
REQUIRED	11	2000		0 3360 3540 0 3135 3360	1635			3234		1440		2676			E-7	
	11	3000		0 2784 2946	1065	1914		3000 2625		1290 960		2496 2085				
	PDA9R92016	1200		5 3570 3858	1509			3396		1380		2772			E-8	
	. 16	2000	1806 2520 289	5 3360 3540	1290			3174		1209		2520				
	PDA9R92020	1200	<b>2400</b> 3605 384	0 4524 4851	1860	3255	3645	4290	4644	1770	3105	3495	4134	4365	E-9	M-15
. '	PDA9R9G0_13	1200	1755 2634 298	5 3570 3750	1685	2355	2835	3360	3585	1476	2385	2700	2216	2420	E-10	
	13	2000		6 3300 3510				3135		1260		2505				
	13	3000		0 2883 3060	1050			2700		946		2115				
	PDA9R9G018	1200.	1890 2835 320	1 3789 4026	1776	2694	3060	3627	3852	1590		2910			E-11	
**	. 18	2000	1677 2640 298	8 3546 3765	1524	2514	2838	3366	3576	1326	2370	2685	3189	3384		
	PDA9R9G022	1200	<b>2283</b> 3531 401	4 4812 5151	2166	3351	3825	4590	4908	1935	3174	3636	4350	4647	E-12	M-15
	DBAGBGGG 30	1000				<u> </u>									E-1	
「*	PRA6R62030 30	1200 2000		1687 1714	793			1636		735		1500				
	30	3000	793 1387 1500 700 1224 1324	1398 1420	741 646			1528 1332		682 591		1392 1206		- 1		
6φ Star	PRA6R62040	1200		1933 1969	880	1		1850		826		1648		- 1	E-2	
1	40	2000	877 1516 1683	1813 1847	822			1727		766		1529				
1	PRA6R62050	1200	1 <b>036</b> 1758 1968	2115 2153	973	1682	1884	2027	2062	911	1606	1793	1939	1972	E-3	M-10
	PRA7R72006	1200	927 1807 205	6 2259 2297	897	1820	2045	2249	2298	834	1698	1957	2144	2191	E-4	
	06	2000	902 1759 200	2 2199 2236	836	1696	1906	2096	2142	771	1570	1810	1983	2026		
	06	4000	<b>793</b> 1546 175	9 1932 1965	725	1471	1653	1818	1858	659	1342	1547	1695	1732		
İ	PRA7T72009		1183 2199 251	9 2760 2820	1106	2105	2403	2651	2707	1030	2013	2288	2518	2579	E-5	
SIX	09	1 1	1107 2057 235			8				952	1860	2115	2327	2384		
ASSEMBLIES	12	1200	1646 3033 348	2 3831 3925	1649	2912	3332	3687	3766	1452	2791	3183	3514	3602	E-6	M-12
REQUIRED	PRA9R92011	1200	2250 4050 448	8 5412 5520	2040	3852	4302	5010	5340	1872	3660	4080	4788	5118	E-7	
	11	2000	2100 3780 418	2 4908 5220	1908	3588	3978	4650	5005	1698	3390	3780	4422	4770		
	11	3000	1860 3312 3690		ll control	3090						3210				
	PRA9R92016 16	1200 2000	2550 4200 4770		l	1						4320			E-8	
	PRA9R92020	1200	2382 3960 438 3690 5418 606		ll .	\$						3960 5520				
															E-9	M-14
	PRA9R9G013	1	2610 4050 4620		1	8				2190					E-10	
	13 13	1	2310 3750 4290 1710 3180 3720			8				1800						
	PRA9R9G018	1 1	2808 4440 5052		II CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	8						3180 4566			E-11	
	18	1 1	2412 4122 4698		100000000000000000000000000000000000000	8						4200				
	PRA9R9G022	1 1	<b>3780</b> 5730 6516		100000000000000000000000000000000000000	8						5916			E-12	M-14
	L					<u> </u>										



																		7		
Circuit	Assembly M Type	odule	Device Maximum		T Amb	ient =	40°C			TAm	bient =	50°C			[™] A	mbient	= 60°	С	Ą	DATA
Schematic	(Order B This Numb		Voltage				INLET	AIR V	ELOCI	TY LII	NEAR	FEET F	PER MI	NUTE					DATA	. DA
Configura-	Voltage		Available		300	500	1000	1500		300	500	1000	1500		300	500	1000	1500	ELEC.	МЕСН.
tion	Code	<b>†</b>	(V)					0	UTPUT	CURF	RENT.	AVER	AGE AI	MPS			<u> </u>	-	ш	2
Lassie	PRA6R620		1200					2284				2194			1692	1908	2056	2084	E-1	
mm		30	2000									2038					1910			
<del>111111</del>		30	3000				1868					1772					1678			
3 φ Wye (With Interphase	PRA6R620	40 40	1200 2000	1100			2512 2348					2414					2312		E-2	M-11
Transformer)	PRA6R620		1200					2770				2590					2462			
																			E-3	
	PRA7R720		1200					3108				2924		1000			2802		E-4	
		06 06	2000 4000	922				2876				2704					2568			
1	PRA7R720		1200					2496	1376			2282 3352		755			2122 3208			
	/ NA/N/20	09	2000	1318			3264					3090					2916		E-5	M-13
sıx	PRA7R720		1200					4942				4564					4326			
ASSEMBLIES	DDAODOOO		1000																E-6	
REQUIRED	PRA9R920	11	1200 2000						3270			6510		2000			6210		E-7	
1		11	3000						2020 2130			6000		2550			5760			
	PRA9R920		1200						3016			5250 6792		920			4920 6540			
		16	2000	3012					2580			6348					5970		E-8	
	PRA9R920	20	1200						9720			8580					8268			M-15
1		<u> </u>																	E-9	
	PRA9R9G0		1200						3330			6720		1862	4770		6432		E-10	
1		13	2000 3000	3120 2340					2820 2100			6270 5400					5940 5040			
1	PRA9R9G0		1200						3883			7254		1000			6900		j	
		18	2000	3354								6732					6378		E-11	M-15
	PRA9R9G0		1200							6702				1070			8700		E-12	
1																			E-12	

Half Control



Circuit	Assembly M Type	odule	Device Maximum		TAmbi	ent =	40°C			TAm	bient =	50°C			T _A	mbient	= 60	c	Ā	ΤĀ
Schematic	(Order B This Numb		Voltage				INLET	AIR V	ELOCI	ſY LII	NEAR	FEET	PER MI	NUTE				·	. DATA	MECH. DATA
Configura-	Voltage	l,	Available (V)	N.C.	300	500	1000	1500		300	500	1000		N C	300	500	1000	1500	ELEC.	MEC
tion	Code							0	UTPUT	CURI	RENT,	AVER	AGE AN	1PS						
	PDA6T6R6	15	1500	156	300	334	356	376	142	272	304	334	344	128	244	278	306	308	E-1-13	3577
[**_***]		20	1500	167	337	383	418	427	149	308	349	381	389	132	276	315	343	350	E-1-14	
<del>  &gt;+                                 </del>		30	1500	190	381	433	474	484	171	348	395	431	440	151	311	356	388	396	E-1-15	M-11
1 φ Bridge	PDA6T6R6	25	1200	168	364	408	441	456	156	338	378	412	426	144	312	350	382	394	E-2-16	
		34	1200	176	412	462	500	516	180	384	<b>43</b> 0	468	480	168	356	398	434	448	E-2-17.	
		40	1200	244	570	606	650	668	238	504	558	614	628	234	468	528	564	580	E-2 -18	
	PDA7T7R7	35	2000	201	435	504	560	573	179	395	459	508	521	157	352	411	456	467	E-4-19	
		45	2000	223	480	558	615	631	198	436	508	562	576	180	391	454	504	518	E-4-20	M-13
		55	1500	245	545	639	712	730	220	493	576	645	663	190	442	514	573	589	E-4-21	
TWO	PDA9T9R9	06	3000	390	776	872	1028	1106	343	704	790	932	1003	296	626	707	831	896	E-5-22	
ASSEMBLIES		07	. 2200	437	861		11,32		385	779			1105	333	695	782	919	987	E-5 -23	
REQUIRED		08	2200	480	939	1051	1234	1324	423	849	957	1119	1203	366	759	852	1004	1077	E-5 -24	
REGUINED		09	1600	525	1055	1185	1402	1508	461	950	1075	1267	1366	396	845	954	1131	1218	E-5 -25	M-15
		10	1600	573			1561		501	1056	1201	1412	1521	428	934			1357	E-7 -26	
	PDA9T9R9	- ,	3000	366	810		1090		316	740	840		1060	276	670	760	900	960	E-10-27	
		1G	2000	516			1360		460			1244		400	824			1200	E-10-28	
		12	1600	636	1260	1450	1760	1880	550	1150	1316	1590	1710	460	1020	1180	1424	1520	E-10-29	
	PDA6T6R6	15	1500	220	424	473	503	532	200	385	430	472	486	181	345	393	432	436	E-1-13	
[++-++*]		20	1500	240	480	545	594	607	216	439	497	543	555	189	394	449	489	500	E-1-14	
		30	1500	272	542	616	673	688	244	496	561	613	627	216	444	507	552	564	E-1-15	
Ladad	PDA6T6R6	25	1200	237	515	577	625	645	220	478	534	583	602	203	442	495	540	557	E-2;16	M-11
3 φ Bridge		34	1200	249	582	654	707	730	255	543	608	662	679	238	504	563	614	634	E-2 -17	
		40	1200	345	764	857	920	945	337	713	790	869	889	331	662	747	798	821	E-2 -18	
	PDA7T7R7	35	2000	291	621	721	797	817	259	567	655	727	746	227	506	590	652	668	E-4-19	
		45	2000	321	689	795	875	896	286	625	729	801	1202	251	560	651	725	743	E-4-20	M-13
	• .	55	1500	354	785	921	1023	1050	313	710	832	928	953	270	635	741	827	850	E-4-21	
THREE	PDA9T9R9	06	3000	565	1119	1259	1483	1597	498	1016	1140	1347	1447	432	906	1020	1203	1298	E-5-22	
ASSEMBLIES		07	2200	630	1235	1382	1623	1744	557	1125	1257	1476	1586	484	1003	1131	1322	1421	E-5 -23	
REQUIRED		08	2200	691	1350	1509	1774	1902	611	1225	1375	1611	1736	531	1093	1231	1444	1552	E-5 -24	
		09	1600	760	1523	1713	2027	2177	668	1376	1552	1836	1981	577	1223	1382	1636	1764	E-5 -25	M-15
		10	1600	828	1714	1922	2264	2433	727	1547	1746	2055	2214	626	1363	1557	1838	1978	E-7 -26	
	PDA9T9R9	G8	3000	518	1146	1316	1542	1641	447	1047	1188	1406	1500	390	948	1075	1273	1358	E-10-27	
		1G	2000	730	1429	1613	1924	2052	651	1313	1471	1760	1882	566	1166	1332	1590	1698	E-10 -28	
		12	1600	900	1783	2052	2490	2660	792	1627	1862	2250	2420	651	1443	1670	2015	2151	E-10-29	



## Disc ASSEMBLIES Air Cooled

Full Control

Circuit	Assembly Module	Device Maximum		T _{Amb}	ient =	40°C			TAm	bient	= 50°C	· · · · · · · · · · · · · · · · · · ·		T _A	mbient	= 60°	С	Ą	1.A
Schematic	(Order By This Number)	Voltage				INLET	AIR \	ELOCI	TY LI	NEAR	FEET	PER M	NUTE				,	ELEC. DATA	MECH. DATA
Configura- tion	Voltage Code	Available (V)	N.C	300	500	1000	1500		300 CUR	500 RENT,	1000 AVER	1500 AGE A	MPS	300	500	1000	1500	ELEC	MEC
	Ť		Lucasitta					11000000000					I continuous					1	1
	PTA6T620 15	1500	78	150	167	178	188	71	136	152	167	172	64	122	139	153	154	E-13	M-10
.	20	1500	84	169	191	209	213	75	154	175	190	195	86	138	158	172	175	E-14	
1	30	1500	95 84	191	216	237	242	85	174	197	215	220	76	156	178	192	198	E-15 E-16	
Single SCR T	PTA6T625 25	1200 1200	88	182 206	204	221 250	228 258	78 90	169 192	189 215	206	213	72 84	156 178	175 199	191 217	197 224	E-17	M-10
	40	1200	122	270	303	325	334	119	252	279	307	314	117	234	264	282	290	E-18	
	PTA7T720 35	2000	101	218	252	280	287	89	197	229	254	261	78	176	206	228	234	E-19	
	45	2000	111	240	279	308	315	99	218	254	281	288	80	196	227	252	259	E-20	M-12
1	55	1500	123	272	319	356	365	110	247	288	322	331	95	221	257	287	294	E-21	VI- 12
ONE	PTA9T920 06	3000	195	388	436	514	553	171	352	395	466	502	148	313	354	416	448	E-22	
ASSEMBLY	07	2200	218	430	481	566	607	192	390	438	513	552	167	347	391	460	494	E-23	
REQUIRED	08	2200	240	470	525	617	662	212	425	478	559	602	183	379	426	502	539	E-24	M-14
	09	1600	263	527	593	701	754	230	475	538	633	683	198	422	477	566	609	E-25	
į	10	1600	286	589	661	781	840	250	528	601	706	761	214	467	530	631	679	E-26 E-27	
	PTA9T9G0 08	3000 2000	183 258	405 505	465 570	545 680	580 725	168 230	370 464	420 520	497 622	530 665	138	335 412	380 470	450 562	480 600	E-27	
1	12	1600	318	630	725	880	940	280	575	658	795	855	230	510	590	712	760	E-29	M-14
	PTAATA20 12	2200							0,0	-		000						E-30	M-28
1	14	2200																E-31	W-26
و و ا	PDA6T620 15	1500	156	300	334	356	376	142	272	304	334	344	128	244	278	306	308	E-13	M-11
والوا	20	1500	187	337	383	418	427	149	308	349	381	389	132	276	315	343	350	E-14	
	30	1500	190	381	433	474	484	171	348	395	431	440	161	311	356	388 382	396 394	E-15_	
1 φ Bridge	PDA6T625 25	1200 1200	168 176	364 412	408 462	441 500	456 516	180	338	378 430	412 468	426 480	168	312 356	350 398	434	448	E-16 E-17	M-11
	30 40	1200	244	570	606	650	668	238	504	558	614	628	234	468	528	564	580	E-18	
		2000															407	E-19	
	PDA7T720 35 45	2000	201 223	435 480	504 558	560 615	573 631	179	395 436	459 508	508 562	521 576	167	352 391	411 454	456 504	467 518	E-19	M-13
	55	1500	245	545	639	712	730	220	493	576	645	663	190	442	514	573	589	E-21	
	PDA9T920 06	3000	390	776		1028		343	704	790		1003	296	626	707	831	896	E-22	
TWO	07	2200	437	861	962	1132	1213	385	779	876	1026	1105	333	695	782	919	987	E-23	
ASSEMBLIES	08	2200	480	939	1051	1234	1324	423	849	957	1119	1203	366	759	852	1004	1077	E-24	M-15
REQUIRED	09	1600	525	1055	1185	1402	1508	461	950	1075	1267	1366	396	845	954	1131	1218	E-25	
	10	1600	673	1178	1322	1561	1680	501	1056	1201	1412	1521	428	934	1060	1263	1	E-26	
	PDA9T9G0 18	3000	366	810		1090		316	740	840		1060	276	670	760	900	960	E-27	M 15
	10	2000	516			1360		460	928	1040	1244		400	824		1124		E-28	M-15
	12 PDAATA20 12	1600 2200	636	1260	1450	1760	1880	560	1150	1316	1590	1710	460	1020	1180	1424	1520	E-29	
	14	2200																E-30	M-29
L	L																	E-31	

Full Control



Circuit	Assembly Module Type	Device Maximum	• т	Ambi	ent -	40°C			T Am	bient -	50°C	:		T _A	mbien	t = 60°	°C	Α	τA
Schematic	(Order By This Number)	Voltage			1	NLET	AIR V	ELOCI	TY LI	NEAR	FEET	PER MI	NUTE					DATA	МЕСН. DATA
Configura-	Voltage	Available		300	500	1000	1500		300	500	1000	1500		300	500	1000	1500	ELEC.	AEC.
tion	Code ¥	(V)					0	UTPUT	CURI	RENT,	AVER	AGE A	MPS					ш	2
			Language					1 200000000000					L						
١	PDA6T620 15	1500	220	424	473	503	532	200	385	430	472	486	181	345	393	432	436	E-13	100
	20	1500	240	480	545	594	607	215	439	497	543	555	188	394	449	489	500	E-14	
<del>                                    </del>	30	1500		542	616	673	688	244	496	561	613	627	216	444	507	552	564	E-15	M-11
3 φ Bridge	PDA6T625 25	1200 1200		515 582	577 654	625 707	645	220	478	534	583	602	203	442			557	E-16 E-17	
	30 40	1200		582 764	857	920	730 945	288	543 713	608 790	662 869	679 889	331	504 662	563 747	614 798	634 821	E-18	
		2000	251	621		797	817	259	567					506				E-19	
	PDA7T720 35	2000	52.	689	721 795	875	896	296	625	655 729	727 801	746 1202	227 251	560	590 651	652 725	668 743	E-20	M-13
	55	1500	354	785		1023		313	710	832	928	953	270	635	741	827	850	E-21	
THREE	PDA9T920 06	3000	585 1	119	1259	1483	1597	498	1016	1140	1347	1447	432	906	1020	1203	1298	E-22	
ASSEMBLIES	07	2200	630 1	235	1382	1628	1744	567	1125	1257	1476	1586	484	1003	1131	1322	1421	E-23	M-15
REQUIRED	08	2200	691 1	350	1509	1774	1902	611	1225	1375	1611	1736	531	1093	1231	1444	1552	E-24	101-15
	09	1600	760 1	523	1713	2027	2177	668	1376	1552	1836	1981	677	1223	1382	1636	1764	E-25	
	10	1600	828 1	714	1922	2264	2433	727	1547	1746	2055	2214	626	1363	1557	1838	1978	E-26	M-15
	PDA9T9GO 08	3000				1542		447	1047		1406		390			1273		E-27	
	10	2000				1924		661			1760		566			1590		E-28	
	12 PDAATA20 12	1600 2200	900 1	783	2052	2490	2660	792	1627	1862	2250	2420	651	1443	1670	2015	2151	E-29	
	14	2200																E-30	M-29
																		E-31	Wieze
r=\t-1	PAA6T620 15	1500	171	330	367	391	413	156	299	334	367	378	140	268	306	336	339	E-13	
البيا	20	1500	184	371	420	459	468	184	338	384	419	428	145	303	347	377	385	E-14	
1 ¢ AC Switch	30	1500	211	420	475	521	532	188	382	434	474	484	166	342	392	427	436	E-15	M-11
A	PAA6T625 25 30	1200 1200	184	400 453	448 508	486 550	501 567	171	371 422	415 473	453 514	468 528	158	343 391	385 437	420 477	433	E-16 E-17	
AMPS RMS	40	1200	268	594	666	715	734	261	554	613	675	690	267	514	580	620	492 638	E-18	
	PAA7T720 35	2000	221	479	554	616	631	197	434	504	559	573	172	387	453	502	514	E-19	
	45	2000	245	528	614	677	694	218	479	558	618		198	431	499	555	570	E-20	M-13
TWO	55	1500	270	599	703	783	803	242	542	634	709	729	209	486	565	630	648	E-21	
REQUIRED	PAA9T920 06	3000	429	854	959	1130	1216	377	775	869	1025	1103	326	688	778	915	985	E-22	
REGUIRED	07	2200	480	947	1058	1245	1335	423	857	963	1129	1215	367	764	860	1011	1086	E-23	M-15
	08	2200	528	1033	1156	1357	1457	468	934	1053	1231	1323	403	835	938	1104	1185	E-24	141-113
	09	1600				1542		507	1045	1183	1393	1503	435	929	1049	1245	1340	E-25	
	10	1600				1717		551	1162		1553		471	1028	1166		1493	E-26	M-15
	PAA9T9G0 08	3000	402			1199		348	814		,1093		304	737	836		1056	E-27	
	10	2000 1600				1496 1936		508 616	1020		1368 1749	1463	440 506	906		1236 1566	1320	E-28 E-29	
	PAAATA20 12	2200		. 360	1000	1330			1205	1440	1749	1001	508	1122	1298	1505	10/2		
	14	2200																E-30	M-29
							<del></del> -						II.					E-31	WI 29



Circuit	Assembly Module Type (Order By	Device			T _{Water}	= 25°C				T _{Water}	- 40°C		ELEC. DATA	МЕСН. DATA
	This Number)	Maximum Voltage		- 11	NLET WA	TER FLO	WRATE	GALLON	IS PER N	IINUTE			ů.	Ŧ
Schematic	Voltage	Available	1.0	1.2	1.5	3.0	5.0	1.0	1.2	1.5	3.0	5.0	IEC	AEC
Configura-	Code	(V)			0	UTPUT (	URRENT	, AVERAG	F AMPS	·			ш	2
tion												1		
	PRW6R620 30	1200	588	594	601	618	626	542	548	554	570	577		
	30	2000	553	559	565	581	589	518	523	529	545	552	E-1	
	30	3000	493	498	504	518	525	464	459	464	478	484		M-1
Cinala Bastifian	PRW6R620 40	1200	599	604	610	626	633	562	567	574	589	596	E-2	
Single Rectifier R	40	2000	562	567	573	588	594	525	530	536	550	557		
	PRW6R620 50	1200	680	687	695	715	724	639	645	653	672	681	E-3	
	PRW7R720 06	1200	820	830	846	878	895	766	777	790	823	839		
	06	2000	771	.781	796	826	842	716	726	739	770	785	E-4	
	06	4000	683	692	705	732	746	627	636	647	674	687		
	PRW7R720 09	1200	959	971	988	1030	1048	899	910	926	964	985		M-4
SINGLE	09	2000	900	912	928	967	984	840	851	865	901	919	E-5	
REQUIRED	PRW7R720 12	1200	1186	1202	1219	1262	1282	1119	1128	1149	1191	1211	E-6	
	PRW9R920 11	1200	1497	1522	1553	1628	1670	1410	1432	1462	1533	1577		
	11	2000	1410	1432	1462	1533	1577	1323	1342	1370	1435	1475	E-7	
	11	3000	1255	1280	1308	1370	1408	1158	1177	1200	1267	1300	E-/	
	PRW9R920 16	1200	1592	1640	1675	1767	1820	1510	1535	1572	1650	1700		M-7
	16	2000	1510	1535	1572	1650	1700	1406					E-8	
	PRW9R920 20	1200	2080	2120	2170	2280	2348	1940	1430	1465 2028	1540	1590	E-9	
1	PRW9R9G0 13	1200	1625	1654	1693			1536	1982		2140	2197	E-3	
1	13	2000	ll .			1788	1844		1563	1600	1685	1740	F 40	
		ii .	1535	1563	1600	1685	1740	1436	1467	1498	1580	1633	E-10	
	13	3000	1370	1397	1430	1510	1560	1263	1288	1320	1398	1440		M-7
	PRW9R9G0 18	1200	1756	1793	1841	1940	2000	1648	1680	1726	1830	1900	E-11,	
	18	2000	1648	1680	1726	1830	1900	1535	1563	1602	1702	1765		
	PRW9R9G0 22	1200	2272	2317	2376	2517	2608	2130	2175	2228	2363	2445	E-12	
	PDW6R620 30	1200	1176	1188	1202	1236	1252	1084	1096	1108	1140	1154		
	30	2000	1106	1118	1130	1162	1178	1036	1046	1058	1090	1104	E-1	
<b>&gt;+ &gt;-</b>	30	3000	986	996	1008	1036	1056	908	918	928	956	968		
1 1 1	PDW6R620 40	1200	1198	1208	1220	1252	1266	1124	1134	1148	1178	1192		М-3
1 φ Bridge	40	2000	1124	1134	1146	1176	1188	1050	1060	1072	1100	1114	E-2	
	PDW6R620 50	1200	1360	1374	1390	1430	1448	1278	1290	1306	1344	1362	E-3	
1	PDW7R720 06	1200	1640	1660	1692	1756	1790	1532	1554	1580	1646	1678		
	06	2000	1542	1562	1592	1652	1684	1432	1452	1478	1540	1570	E-4	
1	06	4000	1366	1384	1410	1464	1492	1254	1272	1294	1348	1374	4	
TW0	PDW7R720 09	1200	1918	1942	1976	2060	2096	1798	1820	1852	1928	1970		M-6
TWO ASSEMBLIES		2000	1800	1824	1856	1934	1968	1680	1702	1730	1802	1838	E-5	
REQUIRED	PDW7R720 12	1200	2373	2403	2438	2523	2564	2227	2256	2292	2382	2422	E-6	
	PDW9R920 11	1200	<b> </b>										E-0	
	11	2000	2994	3044	3106	3256	3340	2820	2864	2924	3066	3154		
1		H	2820	2864	2924	3066	3154	2646	2684	2540	2870	2950	E-7	
1	11 PDW9R920 16	3000	2510	2560	2616	2740	2816	2316	2354	2400	2534	2600		M-9
		1200	3184	3280	3350	3534	3640	3020	3070	3144	3300	3400	E-8	
	16	2000	3020	3070	3144	3300	3400	2800	2860	2930	3080	3180		
1	PDW9R920 20 PDW9R9G0 13	1200	4160	4280	4340	4560	2696	2880	3965	4056	4280	4394	E-9	
	13	2000	3250	3308	3386	3576	3688	3070	3126	3200	3370	3480		
1		N .	3070	3126	3200	3370		2870	2934	2996	3160	3266	E-10	
	13 DDW0B0G0 19	3000	2740	2794	2860	3010	3120	2528	2576	2640	2796	2880		M-9
	PDW9R9G0 18	1200	3512	3586	3682	3880	4000	3296	3360	3452	3660	3800	E-11,	
.]	18	2000	3296	3360	3452	3660	3800	3075	3126	3204	3404	3530		
` <b>L</b>	PDW9R9G0 22	1200	4544	4634	4752	5034	5216	4160	4350	4456	4726	4890	E-12	

Rectifier



Circuit	Assembly Module Type	Device			T _{Water}	= 25°C		,		TWater	= 40°C		DATA	МЕСН. БАТА
	(Order By This Number)	Maximum Voltage		1	NLET WA	TER FLO	W RATE	GALLON	IS PER I	MINUTE			70 :	н. Б
Schematic		Available	1.0	1.2	1.5	3.0	5.0	1.0	1.2	1.5	3.0	5.0	ELEC.	AEC
Configura-	Voltage Code	(V)									13.0	1 3.0	ш	2
tion	Code	<b>L</b>	<u> </u>			UTPUT	URRENI	, AVERAG	E AMPS	i 				
	PDW6R620 30	1200	1842	1657	1676	1724	1745	1549	1565	1584	1627	1647		
	30	2000	1544	1558	1576	1621	1641	1448	1463	1480	1521	1539	E-1	
****	30	3000	1376	1389	1405	1445	1463	1270	1283	1298	1334	1350		
N T N	PDW6R620 40	1200	1669	1681	1701	1743	1763	1570	1584	1602	1644	1662		M-3
3 φ Bridge	40	2000	1567	1578	1597	1637	1655	1467	1480	1497	1536	1553	E-2	
'	PDW6R620 50	1200	1904	1921	1942	1,995	2020	1789	1806	1827	1881	1906	E-3	
·	PDW7R720 06	1200	2298	2327	2364	2458	2503	2112	2141	2177	2269	2310		
1	06	2000	2162	2189	2224	2312	2355	2010	2037	2072	2160	2198	E-4	
	06	4000	1915	1939	1970	2048	2086	1760	1784	1814	1891	1925		
	PDW7R720 09	1200	2685	2723	2770	2877	2929	2518	2553	2595	2703	2756		M6
	09	2000	2521	2557	2601	2701	2750	2353	2386	2425	2526	2576	E-5	
THREE	PDW7R720 12	1200	3368	3406	3456	3569	3638	3177	3217	3269	3381	3429	E-6	
ASSEMBLIES	PDW9R920 11	1200	4095	4170	4260	4455	4590	3855	3924	4005	4200	4320		
REQUIRED	11	2000	3855	3924	4005	4200	4320	3600	3660	3744	3930	4050	E-7	
	11	3000	3420	3486	3564	3744	3861	3150	3210	3279	3450	3546	L-/	
	PDW9R920 16	1200	4425	4485	4590	4821	4950	4150	4245	4320	4536	4656		M- 9
	16	2000	4146	4245	4320	4536	4656	3879	3960	4041	4248	4362	E-8	
	PDW9R920 20	1200	5736	5850	5991	6309	6516	5355	5460	5580	5904	6615	E-9	
1	PDW9R9G0 13	1200	4455	4545	4650	4920	5070	4200	42'84	4389	4626	4791		
	13	2000	4200		4389	4626	4791	3936	4014	4104	4332	4479	E-10	
	13	3000	3744	4284 3816	3906	4134	4278	3453	3516	3606	3816	3939		
· .	PDW9R9G0 18	1200	4794	4887	4998	5289	5466	4515	4602	4716	4977	5151		M- 9
	18	2000	4515	4602	4716	4977	5151	4230	4308	4410	4556	4815	E-11,	
	PDW9R9G0 22	1200	6300	6426	6600	6987	7224	5874	6006	6174	6540	6792	E-12	
<u></u>			1 2010000000000000000000000000000000000											
	PRW6R620 30	1200	2463	2483	2525	2581	2605	2340	2361	2387	2453	2482		
「***	30	2000	2329	2347	2387	2441	2463	2197	2216	2241	2302	2329	E-1	
	30	3000	2094	2111	2147	2195	2215	1939	1956	1978	2032	2056		M-1
6φ Star	PRW6R620 40	1200	2511	2533	2559	2625	2647	2380	2400	2423	2482	2513	E-2	
	40	2000	2376	2396	2421	2483	2505	2233	. 2251	2273	2328	2357		
	PRW6R620 50	1200	2901	2928	2961	3041	3079	2744	2768	2798	2871	2905	E-3	
	PRW7R720 06	1200	3467	3513	3568	3702	3765	3182	3222	3270	3394	3456		
	06	2000	3276	3319	3372	3498	3558	3098	3136	3183	3304	3364	E-4	
	06	4000	2938	2977	3024	3137	3191	2722	2756	2797	2903	2956		M-4
	PRW7R720 09	1200	4096	4146	4210	4372	4449	3887	3940	- A - 1	4146	4216	E-5	
	09	lí	3871	3919	3979	4132	4205	3636	3686	3741	3878	3944		
SIX	PRW7R720 12	+	5023	5077	5145	5312	5392	4763	4811	4874	5027	5100	E-6	
ASSEMBLIES	PRW9R920 11	1200	6288	6390	6540	6828	7020	5928	6018	6150	6456	6630		
REQUIRED	1,1	li	5928	6018	6150	6456	6630	5550	<b>564</b> 0	5760	6186	6216	E-7	
	11	1	5280	5376	5496	5760	5940	4866	4962	5058	5328	5490		M-7
	PRW9R920 16		6876	6972	7116	7422	7602	6486	6612	6726	7026	7200	E-8	
	16	1	6486	6612	6726	7026	7200	5940	6210	6312	6618	6786		
	PRW9R920 20		9054	9216	9420	9900	10188	8508	8652	8832	9300	9570	E-9	
	PRW9R9G0 13	l i	6834	6954	7122	7512	7746	6438	6570	6737	7080	7320		
	13	l	6438	6570 ⁻	6737	7080	7320	6600	6168	6300	6660	6870	E-10	
	13		5760	5868	6006	6342	6570	5322	5418	5550	5868	6060		M-7
	PRW9R9G0 18		7374	7500	7668	8070	8298	7002	7122	7272	7632	7872	E-11	
	18	1	7002	7122	7272	7632	7872	6600	6708	6846	7200	7422		
	PRW9R9G0 22	1200	9864	10062	10302	10842	11142	9270	9456	9678	10248	10578	E-12	



Circuit	Assembly Module Type (Order By	Device Maximum			T _{Water}	= 25°C				T _{Water}	= 40°C		DATA	DATA
	This Number)	Voltage		IN	ILET WAT	TER FLO	W RATE	GALLON	IS PER	MINUTE				
Schematic	Voltage	Available	1.0	1.2	1.5	3.0	5.0	1.0	1.2	1.5	3.0	5.0	ELEC.	MECH.
Configura- tion	Code	(V)			0	UTPUT C	URREN	T, AVERAG	E AMPS	S				
	PRW6R620 30	1200	3284	3314	3352	3448	3490	3098	3130	3168	3254	3294		

PRW6R620 30 1200 3284 3314 3352 3448 3490 3098 3130 3168 3254 3294 3078 30 300 3000 2752 2778 2810 2890 2925 2864 2866 2868 2700 3106 3108 3106 3108 3204 3288 3224 3281 3106 3168 3204 3288 3224 3281 3106 3168 3204 3288 3224 3281 3106 3168 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3106 3108 3204 3288 3224 3281 3294 3274 3210 3108 3204 3288 3224 3281 3294 3274 3210 3108 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 324 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3224 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281 3204 3288 324 3288 324 3288 3244 3281 3204 3288 3244 3281 3204 3288 3244 3281																
3 d Wye With Interphase Transformer)    PRWGR620   40   1200   3338   3362   3402   3486   3526   3140   3168   3204   3288   3224   E-2		PRW6R620	30	1200	3284	3314	3352	3448	3490	3098	3130	3168	3254	3294		
A			30	2000	3088	3116	3152	3242	3282	2895	2926	2960	3042	3078	E-1	
## PRWGR620 40 1200 3338 3362 3402 3486 3526 3140 3168 3204 3288 3224   ## PRWGR620 50 1200 3868 3842 3884 3990 4040 3578 3612 3654 3762 3812   ## PRWGR620 50 1200 3868 3842 3884 3990 4040 3578 3612 3654 3762 3812   ## PRWGR620 50 1200 4598 4654 2728 4916 5006 4204 474 4144 4320 4396   ## PRWGR620 50 1200 4324 4378 4448 4624 4710 4020 4074 4144 4320 4396   ## PRWGR620 50 1200 5379 5446 5540 5754 5858   ## PRWGR620 50 1200 5379 5446 5540 5754 5858   ## PRWGR620 50 12 1200 5738 6812 6912 7138 7276   ## PRWGR620 50 12 1200 5738 6812 6912 7138 7276   ## PRWGR620 50 12 1200 8190 8340 8520 8910 9180   ## PRWGR620 50 12 1200 8190 8340 8520 8910 9180   ## PRWGR620 50 12 12 1200 8190 8340 8520 8910 9180   ## PRWGR620 50 12 12 1200 8190 8340 8520 8910 9180   ## PRWGR620 50 12 12 1200 8190 8340 8520 8910 9180   ## PRWGR620 50 12 12 1200 8190 8340 8520 8910 9180   ## PRWGR620 50 12 12 12 12 12 12 12 12 12 12 12 12 12	******		30	3000	2752	2778	2810	2890	2925	2540	2566	. 2596	2668	2700		M.1
Transformer)		PRW6R620	40	1200	3338	3362	3402	3486	3526	3140	3168	3204	3288	3224	E-2	
PRW7R720 06 1200	Transformer)		40	2000	3134	3156	3194	3274	3310	2934	2960	2994	3072	3106		
REQUIRED   PRW9R920 11   1200   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   200	1	PRW6R620	50	1200	3808	3842	3884	<b>39</b> 90	4040	3579	3612	3654	3762	3812	E-3	
SIX ASSEMBLIES REQUIRED PRW9R920 11 1200 PRW9R920 11 1 2000 PRW9R920 11 1 2000 PRW9R920 11 1 3000 PRW9R920 12 1200 PRW9R920 13 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 11 1200 PRW9R920 12 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 13 1200 PRW9R920 15 1200 PRW9R920 15 1200 PRW9R920 1		PRW7R720	06	1200	4596	4654	2728	4916	5006	4224	4282	4354	4538	4620		
PRW7R720 09 1200 5466 5540 5754 5858 5636 5106 5190 5406 5512 654 5114 5202 5402 5500 4706 4772 4850 5052 5152 5152 5152 5152 5152 5152 51			06	2000	4324	4378	4448	4624	4710	4020	4074	4144	4320	4396	E-4	
SIX PRW7R720 12 1200 5642 5114 5202 5402 5500 4706 4772 4850 5052 5152 PRW9R920 11 1200 8736 6812 6912 7138 7276 8354 6434 6538 6762 6858  REQUIRED PRW9R920 11 1200 8490 8340 8520 8910 9180 7210 7848 8010 8400 8640 PRW9R920 16 1200 8840 6972 7128 7488 7722 6300 6420 6558 6900 7092 PRW9R920 16 1200 8856 8970 9180 9642 9900 8300 8490 4640 9072 9312 PRW9R920 16 2000 8296 8490 4640 9072 9312 7758 7920 8082 8496 8724 PRW9R920 13 1200 8910 9090 9300 9840 10140 8400 8568 8778 9252 9582 13 2000 8490 8568 8778 9252 9582 13 3000 7488 7632 7812 8264 8556 890 7032 7212 7632 7878 PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9030 9204 9432 9954 10302  PRW9R9G0 18 1200 5888 9774 9996 10578 10932 9030 9204 9432 9954 10302  PRW9R9G0 18 1200 5642 5500 4776 5500 4776 5106 5100 5406 5512  E-5  E-6  E-7  E-7  E-7  E-7  E-8	1		06	4000	3830	3878	3940	4096	4172	3520	3568	2628	3782	3850		
SIX PRW7R720 12 1200 6735 6812 6912 7138 7276 6354 6434 6538 6762 6858  ASSEMBLIES REQUIRED PRW9R920 11 1200 8390 8340 8520 8910 9180 7710 7848 8010 8400 8640 11 3000 8840 6972 7128 7488 7722 6300 6420 6558 6900 7092 PRW9R920 16 1200 8350 8970 9180 9642 9900 8300 8490 4640 9072 9312 16 2000 8296 8490 4640 9072 9312 7758 7920 8082 8496 8724 PRW9R920 20 1200 11478 11700 11982 12618 13032 10710 10920 11160 11808 13230 PRW9R9G0 13 1200 8400 8568 8778 9252 9582 13 2000 8400 8568 8778 9252 9582 13 3000 7488 7632 7812 8264 8556 8906 7032 7212 7632 7878 PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9030 9204 9432 9954 10302		PRW7R720	09	1200	5370	5446	5540	5754	5858	5036	5106	5190	5406	5512	F	IVI = 4
ASSEMBLIES REQUIRED  PRW9R920 11 1200 8190 8340 8520 8910 9180 7710 7848 8010 8400 8640  11 2000 7710 7848 8010 8400 8640 7200 7320 7488 7860 8100  PRW9R920 16 1200 8860 8970 9180 9642 9900 8300 8490 4640 9072 9312  PRW9R920 20 1200 13470 11700 11982 12618 13032 10710 10920 11160 11808 13230  PRW9R9G0 13 1200 8910 9090 9300 9840 10140 8400 8568 8778 9252 9582  13 2000 8400 8568 8778 9252 9582 7872 8028 8208 8664 8958  PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9930 9204 9432 9954 10302			09	2000	5042	5114	5202	5402	5500	4706	4772	4850	5052	5152	E-5	
REQUIRED  11 2000	SIX	PRW7R720	12	1200	6736	6812	6912	7138	7276	6354	6434	6538	6762	6858	E-6	
11 3000 8840 6972 7128 7488 7722 6300 6420 6558 6900 7092 8860 8970 9180 9642 9900 8300 8490 4640 9072 9312 7768 7920 8082 8496 8724 8490 8296 8296 8490 4640 9072 9312 8296 8490 4640 9072 9312 8296 8490 4640 9072 9312 8296 8490 4640 9072 9312 8296 8490 8296 8296 8296 8296 8296 8296 8296 8296	ASSEMBLIES	PRW9R920	11	1200	8190	8340	8520	8910	9180	7710	7848	8010	8400	8640		
PRW9R920 16 1200 8850 8970 9180 9642 9900 8300 8490 4640 9072 9312 PRW9R920 20 1200 11470 11700 11982 12618 13032 10710 10920 11160 11808 13230 E-9  PRW9R9G0 13 1200 8910 9090 9300 9840 10140 8400 8568 8778 9252 9582 13 2000 8400 8568 8778 9252 9582 9582 9582 13 3000 7498 7632 7812 8264 8556 8906 7032 7212 7632 7878 PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9030 9204 9432 9954 10302 E-11	REQUIRED		11	2000	7710	7848	8010	8400	8640	7200	7320	7488	7860	8100	E-7	
PRW9R920 16 1200 8856 8970 9180 9642 9900 8300 8490 4640 9072 9312 16 2000 8296 8490 4640 9072 9312 7758 7920 8082 8496 8724 1700 1100 1100 1100 1100 1100 1100 110			11	3000	6840	6972	7128	7488	7722	6300	6420	6558	6900	7092		
16       2000       8296       8490       4640       9072       9312       7758       7920       8082       8496       8724         PRW9R920       20       1200       11470       11700       11982       12618       13032       10710       10920       11160       11808       13230         PRW9R9G0       13       1200       8910       9090       9300       9840       10140       8400       8568       8778       9252       9582       7872       8028       8208       8664       8958       8568       8778       9252       9582       7872       8028       8208       8664       8958       8568       8778       9252       9582       7872       8028       8208       8664       8958       8561       8568       87632       7812       8264       8556       8906       7032       7212       7632       7878       7878       7878       7878       996       10578       10932       9930       9204       9432       9954       10302       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11,       8-11, </th <th></th> <th>PRW9R920</th> <th>16</th> <th>1200</th> <th>8850</th> <th>8970</th> <th>9180</th> <th>9642</th> <th>9900</th> <th>8300</th> <th>8490</th> <th>4640</th> <th>9072</th> <th>9312</th> <th>г о</th> <th>: IVI- /</th>		PRW9R920	16	1200	8850	8970	9180	9642	9900	8300	8490	4640	9072	9312	г о	: IVI- /
PRW9R9G0 13 1200 8910 9090 9300 9840 10140 8400 8568 8778 9252 9582 7872 8028 8208 8664 8958 7498 7632 7812 8264 8556 8909 7032 7212 7632 7878 PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9030 9204 9432 9954 10302 E-11,			16	2000	8296	8490	4640	9072	9312	7768	7920	8082	8496	8724	L-0	
13 2000 8400 8568 8778 9252 9582 7872 8028 8208 8664 8958 7488 7632 7812 8264 8556 8906 7032 7212 7632 7878 PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9830 9204 9432 9954 10302 E-11,		PRW9R920	20	1200	11470	11700	11982	12618	13032	10710	10920	11160	11808	13230	E-9	
13 3000 7488 7632 7812 8264 8556 8906 7032 7212 7632 7878 PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9030 9204 9432 9954 10302 E-11,		PRW9R9G0	13	1200	8910	9090	9300	9840	10140	8400	8568	8778	9252	9582		
PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9030 9204 9432 9954 10302 E-11,			13	2000	8400	8568	8778	9252	9582	7872	8028	8208	8664	8958	E-10	
PRW9R9G0 18 1200 9588 9774 9996 10578 10932 9636 9204 9432 9954 10302 E-11			13	3000	7488	7632	7812	8264	8556	6906	7032	7212	7632	7878		
		PRW9R9G0	18	1200	9588	9774	9996	10578	10932	9030	9204	9432	9954	10302	E-11.	IVI - /
			18	2000	9030	9030	9204	9432	10302	8460	8618	8820	9112	9630		
PRW9R9G0 22 1200 12600 12852 13200 13974 14448 11748 12012 12348 13080 13584		PRW9R9G0	22	1200	12600	12852	13200	13974	14448	11748	12012	12348	13080	13584		



Circuit	Assy. Module Type	Device			T _{Water}	= 25°C				T _{Water}	= 40°C		ТА	ATA
	(Order By This Number	Max. Volt.		IN	ILET WAT	ER FLOV	V RATE -	- GALLON	S PER M	INUTE			ELEC. DATA	МЕСН. БАТА
Schematic	Voltage	Avail.	1.0	1,2	1.5	3.0 ,	5.0	1.0	1.2	1.5	3.0	5.0	EC	MEC
Configura- tion	Code	(V)			OL	JTPUT C	JRRENT,	AVERAGE	AMPS					
			L											
<u> </u>	PSW6R620 30	1200	10.22				626					, , , , ,		
	30	2000	588 553	594 559	601 565	618 581	626 589	542 518	548 523	554 529	570 545	577 552	E-1	M-2/
OR	30	3000	493	498	504	518	525	454	459	464	478	484		M-3
	PSW6R620 40	1200	599	604	610	626	633	562	567	574	589	596		or
	40	2000	562	567	573	588	594	525	530	536	550	557	E-2	M-17/
SERIES	PSW6R620 05	1200	680	687	695	715	724	639	645	653	672	681	E-3	M-20
RECTIFIER	PSW7R720 06	1200	820	830	846	878	895	766	777	790	823	839		A4 E /
	06	2000	771	781	796	826	842	716	726	739	770	785	E-4	M-5/ M-6
	06	4000	683	692	705	732	746	627	636	647	674	687	X	or
CINCLE	PSW7R720 09	1200	959	971	988	1030	1048	899	910	926	964	985	E-5	M-18/
SINGLE	09	2000	900	912	928	967	984	840	851	865	901	919		M-21
REQUIRED	PSW7R720 12	1200	1186	1202	1219	1262	1282	1113	1128	1149	1191	1211	E-6	
,	PSW9R920 11	1200	1497	1522	1553	1628	1670	1410	1432	1462	1533	1577		M-8/
	11	2000	1410	1432	1462	1533	1577	1323	1342	1370	1435	1475	E-7	M-9
,	11	3000 1200	1255	1280	1308	1370	1408	1158	1177	1200	1267	1300		or
	PSW9R920 16	2000	1592	1640	1675	1767	1820	1510	1535	1572	1650	1700	E-8	M-19/
	16 PSW9R920 20	1200	1510 2080	1535 2120	1572 2170	1650 2280	1700 2348	1406 1940	1430 1 <b>9</b> 82	1465 2028	1540 2140	1590 2197	E-9	M-22
	PSW9R9G0 13	+	1625	1654	1693	1788	1844	1535	1563	1600	1685	1740		
	13	1	1535	1563	1600	1685	1740	1435	1467	1498	1580	1633	E-10	M-8/
	13	3000	1370	1397	1430	1510	1560	1263	1288	1320	1398	1440		M-9
	PSW9R920 18	1200	1756	1793	1841	1940	2000	1648	1680	1726	1830	1900		or M-19/
	18	2000	1648	1680	1726	1830	1900	1535	1563	1602	1702	1765	E-11	M-22
	PSW9R920 22	1200	2272	2317	2376	2517	2608	2130	2175	2228	2363	2445	E-12	IVI-22
		1	1										E-13	
4.14	PSW6T620 15	1500	265	268	272	280	285	236	238	242	249	253	E-14	M-2/
OR	30	1500 1500	306	309	313	323	327	271	274	278	286	290 329	E-15	M-3
[ <del>*\ *\</del> *\	PSW6T625 25	1200	347	351	355	367	372	307	311 289	314 295	324 303	306	E-16	or
1 1	30	11	316	318	325 370	333 380	336 384	287 326	330	337	346	349	E-17	M-17/
	40	H	359 456	364 463	474	480	486	415	422	432	442	444	E-18	M-20
SERIES	PSW7T720 35	2200	424	430	436	451	459	378	383	389	403	410	E-19	M-5
THYRISTOR	45	2200	473	478	486	503	512	420	425	432	449	457	E-20	M-6 or M-18/
	55	1600	558	564	572	593	603	493	499	508	528	538	E-21	M-21
1	PSW9T920 06	3000	693	709	721	758	779	612	625	635	669	688	E-22	
SINGLE	07	2200	756	772	784	825	848	669	684	696	721	750	E-23	M-8/
ASSEMBLY	08	2200	823	841	854	898	924	728	744	755	796	817	E-24	M-9
REQUIRED	09	1600	947	968	983	1037	1067	833	852	867	914	940	E-25	or
	10	1600	1057	1081	1098	1158	1192	929	951	967	1020	1050	E-26	M-197
	PSW9T9G0 08	3000	734	747	765	810	837	652	665	680	720	745	E-27	M-22
	10	И	915	930	955	1005	1035	820	830	855	900	930	E-28	
	12 DEWATA20 12	_	1200	1220	1250	1330	1370 CF	1060	1080	1110	1170	1215 CF	E-29	1
	PSWATA20 12	11	1320	1360	1400 1585	1660	CF	1325	1360	1400	1485	CF	E-30 E-31	M-27 or C-F
L	14	2200	1490	1530 ,	(585	1000	UF .	1.020	1300	. +00	. 700	<u> </u>		C-F.

^{*}Consult factory for exact type number before ordering.



Half Control

Circuit	Assembly Modul Type (Order By	Devi	· 1L			T _{Water}	= 25°C	ì			T _{Water}	= 40°C		DATA	МЕСН. DATA
	This Number)	Maxim Volta	- 11		11	NLET WA	TER FLO	W RATE	- GALLOI	NS PER N	MINUTE			ن ا	美
Schematic	Voltage	Availa	ble	1.0	1.2	1.5	3.0	5.0	1.0	1.2	1.5	3.0	5.0	ELEC.	MEG
Configura- tion	Code	(V)	Г			0	UTPUT C	URRENT	, AVERAC	SE AMPS					
	L														
			TE						1					E-13	
r⇔rati		15 1500	- 11	530	536	544	560	, 570	472	476	484	498	506		
<del>  &gt; 1   &gt; 1</del>	_	20 1500	- 18	611	618	626	645	654	543	548	556	573	580	E-14 E-15	
1 1 2 1 1		1500	- 68	694	701	711	733	743	615	621	629	648	658		M - 3
1 φ Bridge		25   1200	- 118	630	636	650	666	672	574	578	590	606	612	E-16	
	3	3H 1200	M	718	728	740	760	768	652	660	674	692	698	E-17	
		1200		912	926	948	960	972	830	844	864	884	888	E-18	
		220		849	859 _j	872	903	917	766	766	777	806	820	E-19	
	4	220	- 10	945	957	971	1007	1024	840	851	864	898	914	E-20	M-6
1	_	160	- 16	1115	1128	1145	1186	1206	986	999	1015	1056	1075	E-21	
j	PDW9T9R9 (	300	1	1387	1419	1442	1517	1556	1224	1250	1271	1338	1377	E-22	
TWO ASSEMBLIES		220	1	1511	1545	1568	1651	1696	1338	1368	1391	1462	1501	E-23	M 9
REQUIRED	C	220		1646	1681	1708	1797	1847	1455	1488	1511	1591	1634	E-24	
		1600	1	1893	1936	1967	2075	2135	1667	1704	1733	1828	1880	E-25	
	1	10 1600	1	2113	3161	2196	2316	2385	1859	1903	1934	2040	2099	E-26	M- 9
*OUTPUT CURRENT	PDW9T9R9	38 3000	1	1468	1494	1530	1620	1674	1304	1330	1360	1440	1490	E-27	
AMPS	1	IG 200		1830	1860	1920	2010	2070	1640	1660	1710	1800	1860	E-28	
RMS	1	12 160		2400	2440	2500	2660	2740	2120	2160	2220	2340	2430	E-29	
														E-13	
[ <del>** ] **</del> ]		150	- 188	763	750	761	784	798	679	666	677	697	708	E-14	
<del>  1   1   1</del>		150	- 10	872	881	892	919	931	772	780	790	815	827	E-15	
In the		150	- 18	987	998	1010	1044	1059	876	885	896	924	936	E-16	M - 3
3 φ Bridge		25   120	- 18	882	890	910	932	940	803	809	826	848	856	E-17	
		3H 120	- 116	1005	1019	1036	1064	1075	912	924	943	968	977	E-18	
		120		1276	1296	1327	1344	1360	1162	1181	1209	1237	1243	E-19	
		220		1205	1220	1238	1283	1304	1077	1090	1107	1149	1167		
		15 220		1348	1365	1388	1442	1468	1196	1217	1233	1279	1301	E-20	M-6
		160	- 18	1598	1618	1642	1701	1728	1424	1444	1469	1525	1548	E-21	
	PDW9T9R9	300	)	2003	2047	2079	2190	2252	1766	1806	1835	1939	1993	E-22	
THREE		220	- 18	2175	2223	2260	2376	2442	1929	2970	2001	2105	2165	E-23	
ASSEMBLIES		08 220	- 18	2364	2416	2453	2583	2655	2097	2145	2180	2290	2353	E-24	M-9
REQUIRED		160	- 18	2734	2798	2846	3002	3089	2410	2464	2505	2643	2721	E-25	IVI - 9
		160	- 18	3057	3128	3181	3369	3478	2693	2753	2800	2953	3025	E-26	
1	PDW9T9R9	300	·	2055	2091	2142	2268	2343	1825	1862	1904	2106	2086	E-27	
	1	1G 200	)	2562	2604	2674	2814	2898	2296	2324	2394	2520	2604	E-28	
L		12 160		3360	3416	3500	3724	3836	2968	3024	3108	3276	3402	E-29	

Full Control



Circuit	Assembly Module Type (Order By	Device			T _{Water}	= 25°C				T _{Water}	= 40°C		ATA.	месн. рата
	This Number)	Maximum Voltage			NLET WA	TER FLO	W RATE	GALLO!	NS PER I	MINUTE			ELEC. DATA	E.
Schematic	Voltage	Available	1.0	1.2	1.5	3.0	5.0	1.0	1.2	1.5	3.0	5.0	ELEC	MEC
Configura- tion	Code	(V)			0	UTPUT (	URRENT	, AVERAG	E AMPS	1				
			H											
		1			***************************************					~			E-13	
	PTW6T620 15	1	265	268	272	280	285	236	238	242	249	253	E-14	
	20	11	306	309	313	323	327	271	274	278	286	290	E-15	
Single SCR	30	li	347	351	355	367	372	307	311	314	324	329	E-16	M-1
T	PTW6T625 25	11	315	318	325	333	336	287	289	295	303	306	E-17	
	30	11	359	364	370	380	384	326	330	337	346	349	E-18	
	PTW7T720 35	1200	456	463	474	480	486	416	422	432	442	444	E-19	
[	91W7172U 35	1	424	430	436	451	459	378 420	383 425	389 432	403 449	410 457	E-20	M-4
	55	1	473	478	486	503	512 603	493	425	508	528	538	E-21	
	PTW9T920 06	1	558	564	572	593	779	612	625	635	669	688	E-22	
CINCLE		1	693	709	721	758			684	696	721	750	E-23	
SINGLE	07	li .	756	772	784 854	825 898	848 924	669 728	744	755	796	817	E-24	
ASSEMBLY		1	823	841	983	1037	1067	833	852	867	914	940	E-25	
REQUIRED	09	II	947	968		1158	1192	929	951	967	1020	1050	E-25	M - 7 .
	10	11	1057	1081 747	1098 765	810	837	652	665	680	720	745	E-27	363
	PTW9T9G0 08	1	734			1005	1035	820	830	855	900	930	E-27	
	10	H	916	930	955	1330	1370	1060	1080	1110	1170	1215	E-28	
	12 PTWATA20 12		1200	1220	1250	1490	CF	1160	1190	1230	1310	CF		•
	PTWATA20 14	li .	1490	1530	1585	1660	CF	1325	1360	1400	1485	CF	E-30 E-31	M-26
	FIWAIA20 IS	11 2200												
r <del>&gt;**, **</del> ,	PDW6T620 15	1500	530	536	544	560	570	472	476	484	498	506	E-13	
<del>  &gt;1²  &gt;1² </del>	20	1500	611	618	626	645	654	543	548	556	573	580	E-14	
	30	li i	694	701	711	733	743	615	621	629	648	658	E-15	M - 3
1 φ Bridge	PDW6T625 25	1200	630	636	650	666	672	574	578	. 590	606	612	E-16	
	30	1	718	728	740	760	768	652	660	674	692	698	E-17	
	40		912	926	948	960	972	830	844	864	884	888	E-18	
1	PDW7T720 35	ll .	849	859j	872	903	917	756	766	777	806	820	E-19	
	45	1	945	957	971	1007	1024	840	851	864	898	914	E-20	M-6
TWO	58	1	1115	1128	1145	1186	1206	986	999	1015	1056	1075	E-21	
ASSEMBLIES	PDW9T920 06	)	1387	1419	1442	1517	1556	1224	1250	1271	1338	1377	E-22	
REQUIRED	07	a ·	1511	1545	1568	1651	1696	1338	1368	1391	1462	1501	E-23	9.27.3
	08	2200	1646	1681	1708	1797	1847	1455	1488	1511	1591	1634	E-24	M-9
	09	1600	1893	1936	1967	2075	2135	1667	1704	1733	1828	1880	E-25	
	10	1600	2113	3161	2196	2316	2385	1859	1903	1934	2040	2099	E-26	
1	PDW9T9G0 08	3000	1468	1494	1530	1620	1674	1304	1330	1360	1440	1490	E-27	M-9
	10	2000	1830	1860	1920	2010	2070	1640	1660	1710	1800	1860	E-28	
]	1:	1600	2400	2440	2500	2660	2740	2120	2160	2220	2340	2430	E-29	
	PDWATA20 12	2200	2640	2720	2800	2980	CF	2320	2380	2460	2620	CF	5.20	
	PDWATA20 14	1	2980	3060	3170	3320	CF	2850	2720	2800	2970	CF	E ₁ 30 E-31	M-27
L	FUWATAZU 14	1 2200	II taen	3000	3170	3320	UF.	1 2000	2/20	2000	2370	Ur .	E-31	



## Full Control

Circuit	Assembly Module Type (Order By	Device			T _{Water}	- 25°C				⊤Water	= 40°C		ELEC. DATA	МЕСН. DATA
	This Number)	Maximum Voltage		l l	NLET WA	TER FLO	W RATE	- GALLON	IS PER N	INUTE			C D	Ŧ.
Schematic	Voltage	Available	1.0	1.2	1.5	3.0	5.0	1.0	1.2	1.5	3.0	5.0	ELE(	MEC
Configura-	Code	(V)			o	OUTPUT C	URRENT	, AVERAG	E AMPS					
	L	L	L										!:	
		I											E-13	
	PDW6T620 15	1500	763	750	761	784	798	679	666	677	697	708	E-14	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 30	1500	872	881 998	892 1010	919 1044	931	772	780	790	815	827	E-15	
1-1-1-1	-	1500	987	890				976	885	896	924	936	E-16	M -3
3 φ Bridge	PDW6T625 25 30	1200 1200	1005	1019	910 1036	932 1064	940 1075	803 912	809 924	826 943	848 968	856 977	E-17	
	40	1200	1276	1296	1327	1344	1360	1162	1181	1209	1237	1243	E-18	
	PDW7T720 35	2200	1205	1220	1238	1283	1304	1077	1090	1107	1149	1167	E-19	
	45	2200	1348	1365	1388	1442	1468	1198	1217	1233	1279	1301	E-20	M-6
	55	1600	1598	1618	1642	1701	1728	1424	1444	1469	1525	1548	E-20	
	PDW9T920 06	3000	2003	2047	2079	2190	2252	1766	1806	1835	1939	1993	E-22	
	07	2200	2175	2223	2260	2376	2442	1929	2970	2001	2105	2165	E-23	
THREE	08	2200	2364	2416	2453	2583	2655	2097	2145	2180	2290	2353	E-24	
ASSEMBLIES REQUIRED	09	1600	2734	2798	2846	3002	3089	2410	2464	2505	2643	2721	E-25	
	10	1600	3057	3128	3181	3369	3478	2693	2753	2800	2953	3025	E-26	M-9
	PDW9T9G0 08	3000	2055	2091	2142	2268	2343	1825	1862	1904	2106	2086	E-27	
	10	2000	2582	2604	2674	2814	2898	,2296	2324	2394	2520	2604	E-28	
	12	1600	3360	3416	3500	3724	3836	2966	3024	3108	3276	3402	E-29	
	PDWATA20 12	2200	3748	3862	3976	4231	CF	3294	3379	3493	1310	CF	E-30	
	PDWATA20 14	2200	4231	4345	4501	4717	CF	3763	3862	3976	4217	CF	E-31	M-27
			1					ı					E-13	
	PAW6T620 15	1	583	589	598	616	627	519	523	532	547	556	E-14	
النهنا	20	1500	672	679	688	710	720	597	603	611	630	638	E-15	1 1
1 ø AC Switch	30	1500	763	771	782	806	818	676	683	692	713	723	E-16	M-3
γφασswitch	PAW6T625 25	1200	693	699	715	732	739	631	635	649	666	673	E-17	
	30	1200	789	800	814	836	844	717	726	741	761	767	E-18	
	40 PAW7T720 35	1200 2200	1003	1018	1042	1056	1069	913	928	950	972	976	E-19	
	PAW71720 35	2200	934	945	959	992	1009	832	842	855	887	902		M - 6
	55	1600	1040	1053	1068	1108	1126	923	936	951	988	1005	E-20 E-21	W/- C
	PAW9920 06	3000	1227	1241	1259	1305	1326	1085	1099	1117	1161	1183	E-22	
ONE	07	2200	1525	1561	1586	1668	1715	1346	1376	1398	1472	1515	E-23	
ASSEMBLY REQUIRED	08	2200	1662	1699 1849	1725	1816	1866	1472	1505	1530	1608	1651	E-24	
	09	1600	2083		1878	1977	2032	1601	1636	1662	1750	1798	E-25	
	10	1600	2324	2129 2377	2164 2415	2282 2547	2348 2623	1833	1875	1907	2011	2068 2309	E-26	M-9
*OUTPUT	PAW9T9G0 08	3000	1614	1643	1683	1782			2093	2127	2244		E-27	
CURRENT	10	2000	2013	2046	2101	2211	1841	1434	1463	1496	1584	1639	E-28	
RMS	12	1600	2840	2684	2750	2211	2277 3014	1804	1826	1881	1980	2046 2673	E-29	
	PAWATA20 12	H	2904	2992	3080	3278	3014 CF	2332 2552	2376 2618	2442 2706	2574 2882	26/3 CF	M-30	
	PAWATA20 14	2200	3279											M-27
L	FAVATAZU 14	2200	32.18	3366	3487	3652	CF	2916	2992	3080	3267	CF	E-31	W - 27



- Eleven current ratings available
- Manifold base providing easy mounting and 18" isolating liquid path
- 3N221 and 3N222 types available
- ¼-18 N.P.T. (2) brass fitting supplied with grounding wire
- Water temperature sensing thermostats available for assembly protection



The Westinghouse AC manifold switch provides a fast-access, high performance assembly that has been rated for continuous or duty cycle applications. All mounting and electrical connections meet the JEDEC outlines. Water connections can be made (V) vertical or (H) horizontal. The electrical connections may be supplied either (S) short tangs or (L) tangs. Refer to ② outlines M-16 under mechanical data, this section.

#### AVAILABLE DESIGNS

FRAME	DEVICE	VOLTAGE		CURREN	IT	H₂O INLET	TANG
РАМ7	Т720	1000 through 2200	10 — 22	350 460 550	35 45 55	н V	L S
PAM9	Т920	1000 through 3000	10	600 700 800 900 1000	06 07 08 09 10		
РАМ9	T9G0	1000 through 3000	10 — 30	800 1000 1200	08 10 12		

Storage Temperature*40°C to 65°C
Maximum Ambient Temperature 65°
Maximum Water Pressure (INLET)60 psig
Maximum Water Temperature (INLET) 50°C
Maximum Pressure Drop, 1.25 GPM10 PSIG
*Manifold must be purged of water to avoid freeze up at low temperatures.

Refer to Product Data Sections for complete device information.

EXAMPLE: Obtain optimum device performance for your application by selecting proper order code PAM7 with T7201255 SCR's rated at 1240A RMS with 1.25 GPM t_{water} = 40°C and vertical H²O connection, short tang electrical connections.

FRA TYPI	ME AN	ID SIN	K	DEVI TYPE				VOLT COD	AGE E	DEVI CUR	CE RENT	H₂O	TANG
Р	Α	М	7	Ť	7	2	0	1	2	5	5	V	S
1	2	3	4	5	6	7	8	9	10	11	12	13	14



#### HANDLING PRECAUTIONS:

When the switch is to be placed in operation, all surface moisture must be eliminated before power is applied, otherwise catastrophic electrochemical failure can be induced.

Coordination between cooling water temperature and the prevailing humidity is necessary to avoid condensation on water cooled metallic surfaces and electrical insulation. Ordinarily, this is no problem with 40°C cooling water. With lower temperature water, humidity control may be necessary to completely stop condensation.

**MOUNTING POSITIONS:** No restrictions

#### WATER QUALITY:

The cooling water shall have the following quality:

A neutral or slightly alkaline reaction, i,e, a pH between 7.0 and 9.0.

A chloride content of not more than 20 parts per million; a nitrate content of not more than 10 parts per million; and a sulphate content of not more than 100 parts per million.

A total solids content of not more than 250 parts per million.

A total hardness, as calcium carbonate, of not more than 250 parts per million.

No chemial additives to be used.

#### **MOUNTING**

Visually examine the switch before it is mounted to see that it has not been damaged during handling.

When mounting the insulating base, the following precautions should be taken to avoid distorting the plastic part, a cause of breakage and/or leakage.

The mounting surface is to be flat within .030".

Bolts or nuts which are used to hold the switch into the equipment shall be used with a flat washer against the plastic base. Torque values shall not be exceeded. (8ft-lbs. max. for 1/4" screw).

For pipe connections, a sealing agent, joint compound, shall be used in order to limit the torque needed and in order to get a water -tight joint.









Electrical Data

## Disc ASSEMBLIES Air and Liquid Cooled



#### **RECTIFIER**

ELEC DEVICE		MAX DESIGN	SI	14		
ELEU	TYPE	VOLTAGE	1~	3 ~	10 ∕√	(A ² SEC.)
E-1	R62030 R62030 R62030	1200V 2000V 3000V	5500	4300	3300	125,000
E-2	R62040 R62040	1200V 2000V	6000	4700	3600	150,000
E-3	R62050	1200V	6500	5050	3900	175,000
E-4	R72006 R72006 R72006	1200V 2000V 4000V	7000	5250	4350	204,000
E-5	R72009 R72009	1200V 2000V	8500	6350	5300	301,000
E-6	R72012	1200V	12,500	9,400	7,800	650,700
E-7	R92011 R92011 R92011	1200V 2000V 3000V	16,000	12,000	10,000	1,100,000
E-8	R92016 R92016	1200V 2000V	21,500	16,000	13,300	1,925,000
E-9	R92020	1200V	30,000	22,000	18,500	3,700,000
E-10	R9GO13 R9GO13 R9GO13	1200V 2000V 3000V	16,000	12,000	10,000	1,100,000
E-11	R9GO18 R9GO18	1200V 2000V	21,500	16,000	13,300	1,925,000
E-12	R9G022	1200V	30,000	22,000	18,500	3,700,000

#### SCR

	DEVICE	IGT	dv/dt*	di/dt**	SI	JRGE (Amper	es)	P
ELEC.	TYPE	(MA)	V/µs	A/μs	10	3 ∩	10~	A? SEC
E-13	T62015				3300	2400	2000	45,000
E-14	T62020	150	1000	800	4000	2900	2500	64,400
E-15	T62030				5500	3900	3400	120,000
E-16	T62525				2800	2000	1700	32,500
E-17	T62530	150	1000	800	3600	2600	2250	54,000
E-18	T62540				5000	3500	3000	100,000
E-19	T72035		,		7000	5040	4340	205,000
E-20	T72045	150	1000	800	8400	6050	5200	295,000
E-21	T72055	<u> </u>	1		10,000	7200	6200	416,000
E-22	T92006				13,000	9750	8000	700,000
E-23	T92007	1	l	1	15,000	10,800	9000	937,000
E-24	T92008	200	1000	800	17,000	12,200	10,200	1,203,000
E-25	T92009	1	)		25,000	18,700	15,400	2,600,000
E-26	T92010				27,000	20,200	16,700	3,040,000
E-27	T9G008				13,000	9750	8000	700,000
E-28	T9G010	200	1000	800	17,000	12,200	10,200	1,203,000
E-29	T9G012		<u> </u>		27,000	20,200	16,700	3,040,000
E-30	TA2012	200	1000	800	30,000	25,000	18,000	3.75 x 10 ⁶
E-31	TA2Q14				35,000	30,000	22,000	5.11 x 10 ⁶

Refer to product data sections for complete device information.

^{*}Typical - 300 V/ $\mu$ s minimum, **Non-repetitive value



## Mechanical Data



	M	-1	N	1-4	
Dimension	W	-6	W-7		
DIMITERISION	inches .	mm	inches	mm	
A	8.25 max.	209.6 max.	8.75 max.	222.3 max.	
В.	6.12	155.4	6 62	168.2	
C	5 06 max.	128.5 max	5 06 max	128 5 max	
D	5.00 max.	127.0 max.	5 00 max	127 0 max	
E	1.25	31.7	1 25	31 7	
F	.62	15.7	62	15 7	
G	.53 ref.	13.5 ref	53 ref.	13 5 ref.	
н	.125	3.17	125	3 17	
j	.44	11.10	44	11 10	
K	1.31	33.32	1 31	33.32	
L	3 00 ref	76.2 ref.	3.00 ref.	76.2 ref	
арргох.	lbs	kgs	lbs	kgs	
Wt.	2 75	1.25	3.25	1 48	





	M-7						
Dimension	W-9						
Omini 21011	inches	mm					
A	9.11 max.	231 4 max					
В	7 05	179 1					
C	6 52 max.	165 6 max					
D	5.38 max.	136 7 max					
E	2 00	50 8					
F	88	22.4					
6	53 ref.	13.5 ref					
Н	.250	6 35					
J	.44	11.10					
ĸ	1 53	38 89					
L	4.00 ref	101.6 ref					
approx.	lbs	kgs					
Wt.	7 00	3 18					





	· M	-2	M	-5	
Dimension	W	-6	W-7		
Dimension	inches	mm	inches	mm	
A	9.70 max.	246.4 max.	. 10 61 max	269.5 max	
В	7.54	191.5	8 59	218 2	
С	5.06 max	128.5 max.	5 06 max.	128.5 max.	
D	5.00 max.	127.0 max.	5 00 max	127 0 max.	
E	1.25	31.8	1 25	31 8	
F	.62	15.7	62	15 7	
6	53 ref.	13.5 ref	53 ref	13.5 ref	
Н	.125	3.18	125	3 18	
J	.44	11.10	44	11 10	
K	1.312	33.32	1.312	33 32	
l	3.00 ref	76.2 ref	3 00	76.2 ref	
арргох.	lbs	kgs	ibs	kgs	
Wt.	3.25	1.48	4 25	1 93	





	M-	-8			
Dimension	W-9				
Onne as ion	inches	mm			
Α .	11.06 max.	280.9 max.			
В	9.00	228.6			
C	6.52 max.	165.6 max			
D	5.38 max.	136.7 max			
E .	2.00	50.8			
F	.88	22.4			
G	.53 ref.	13.5			
H	.250	6.35			
ı	.44	11.10			
K	1.531	38.89			
L	4.00 ref.	101.6 ref.			
approx.	ibs	kgs			
wt.	8.75	3.98			

#### Mechanical Data







	M-3					
Dimension	W-6					
DRIIGHSIUH	inches	mm				
A	9.70 max.	246.4 max.				
В	7.54	191.5				
C	5.88 max	149 4 max.				
D	5.00 max.	127.0 max.				
E	1.25	31.8				
F	.62	15.7				
G	.53	13.56 ref.				
Н	.125	3.18				
J	.44	11.10				
K	1.312	33.32				
L	3 00 ref.	76.2 ref.				
M	2.38	60.5				
N						
P	.375	9 53				
R	1.00	25.4				
арргох.	lbs	kgs				
Wt.	3 25	1.50				





	м	-6				
Dimension	W-7					
Danielisiqui	inches	mm				
A	10 61 max	269.5 max.				
В	86	218.2				
С	5.88 max.	149.4 max				
D	5.00 max.	127.0 max.				
E	1 25	31.8				
F	.62	15.7				
G	.53 ref.	13.56 ref.				
Н	.125	3.18				
J	.44	11 10				
K	1 312	33 32				
Ł	3.00 ref.	76.2 ref				
M	2.38	60.5				
N						
P	375	9.53				
R	1.00	25.4				
арргох.	lbs	kgs				
Wt.	7.00	3.17				





	M-9		
Dimension	W-9		
Umension	inches	mm	
A	11.06 max.	280.9 max.	
В	9 00	228.6	
C	8.56 max.	217.4 max.	
D	5.38 max.	136 7 max.	
E	2.00	50.8	
F	.88	22.4	
G	53 ref.	13.5 ref.	
н	.250	6 35	
1	.44	11.10	
K	1.531	38.89	
ι	4.00 ref.	101 6 ref.	
M	3.00	76 2	
N	1.00	25.4	
Р	.375	9.53	
R	2.00	50 8	
approx.	lbs	kgs	
Wt.	9.25	4.22	



#### Disc ASSEMBLIES Air Cooled

#### Mechanical Data





	M-	-10	M	-12
Dimension	A	- 6	A-7	
Dimonsium	inches	mm	inches	mm
A	6.125 max	155.78 max.	6 125 max	155.78 max
В	2.56	65.0	2 56	65 0
C	5 75 max	146 0 max	6 25 max	158 8 max
D	5 125 max	130 18 max	5 125 max	130 18 max
E	4 25 ref	107.9 ref	4 25 ref	107 9 ref.
F	50 ref	12.7 ref	50 ref	12 7 ref
G	344	8 74	344	8 74
н	4 02 ref.	102 1 ref.	4 52 ref.	114 8 ref
арргох.	lbs	kgs :	lbs	kgs
wt.	≃70	≃ 3.2	<b>≃</b> 7.5	≃ 3 4
cross sect.	sq. inches	sq. cm	sq. inches	sq cm
per sink	≃62	≃ 40 0	≃62	≃ 40 0





	M-	11	; M-	13
Dimension	Α-	-6	A	-7
Dimension	inches	mm	inches	mm
A	13 125 max	333 4	13 125	333 4
В	2 56	65.0	2 56	65 O
С	5.75 max.	146 0 max	6 25 max	158 8 max
D	5 125 max.	130.18 max	5 125 max.	130 18 max
E	4.25 ref.	107.9 ref	4 25 ref	107 9 ref
F	50 ref.	12.7 ref.	.50 ref	12 7 ref.
G	344	8.75	.344	8 75
Н	4.02 ref.	102 1	4.52 ref.	1148
j	3 50 ref.	88 9	3.50 ref	88 9
approx.	lbs	kgs	lbs	kgs
wt.	14.75	67	15 75	7 1
cross sect.	sq. inches	sq. cm	sq. inches	sq. cm
per sink	≃ 6.2	40.0	≃ 6.2	-40.0





M-14		
Dimension	A-9	
DIMIGUSION	inches	mm
A	8.125 max.	206 38 max
В	2 50	63 5
C	6.44 max	163.6 max
D	9 938 max	252 43 max
E	2 25 ref	57.2 ref
F	1 00	25.4
G	375	9.53
н	75 ref	19.1 ref
1	315 ref	8 00 ref.
approx.	lbs	kgs
wt.	16.5	7.5
cross sect.	sq. inches	sq. cm
per sink	≃105	67 7





M~15		
Dimension	A-9	
Dimension	inches	mm
A	17 125 max.	434.28 max
В	2 50	63.5
Ċ	6 44 max.	163 6 max
D	9 938 max.	252 43 max
E	2 250 ref.	57 15 ref
F	1.00	25 4
G	.375	9.53
н	750 ref.	19 05 ref.
j	315 ref.	8 00 ref
K	4.50 ref	114.3 ref.
L	.578 ref.	14 68 ref
арргох.	lbs	kgs
Wt.	35 0	15.9
cross sect.	sq. inches	sq. cm
per sink	≃105	67 7

#### Mechanical Data

#### Disc ASSEMBLIES Liquid Cooled



HS & VS ARRANGEMENT

MANIFOLD SWITCH

∠S wide x T long slot (2)





M-16

imension	HS & VS		
	inches	mm	
A	10 94 ref.	277.9 ref.	
В	6 88	174 8	
C	3 00	76.2	
D	3 00	76.2	
E	8 50	215.9	
F	2 44	62.0	
G	3 25	82.6	
H	1.38	35 1	
J	4.50 max	114 3 max	
K	1.00	25.4	
L	6.50	165.1	
M	.25	6.4	
N	2 00	50 8	
Р	72	183	
R	1 50	38 1	
S	37	94	
T	50	12.7	
U	56	14 2	
٧	1 56	39 6	
w	300-max	7.6 max	
X	55 max	14 0 max	
Y	38	9.7	
2	1 06	26 9	
AA	1/4 - 18 NPT		
BB	47	11.9	
CC	1 06	26 9	
DD	ļ		
EE			
FF			
66	44	11 2	
нн	8 50	215 9	

#### HL & VL ARRANGEMENT





Dimension	HL & VL		
Jimension.	inches	mm	
A	12.50 ref	317.5 ref	
В	6 88	174 8	
C .	3 00	76 2	
D	3 00	76.2	
E	8 50	215 9	
F	4 00	101 6	
G			
н	1 38	35 1	
J	4.50 max	114.3 max.	
K	1 00	25 4	
L	6.50	165.1	
M	25	64	
N	2 00	50.8	
P	.72	18.2	
R	1.50	38.1	
S	37	9.4	
ī	.50	12.7	
U	56	14.2	
٧	1.56	39.6	
W	300 max	7.6 max.	
X	55 max	14.0 max.	
Y	.50	12.7	
7	1.00	25.4	
AA	14 - 18 NPT		
88			
CC			
00	1.00	25.4	
EE	.375	9.5	
FF	.75	19.1	
GG			
HH	8.50	215.9	



#### Mechanical Data





M-17		
Dimension	W-6	
Dilliension	Inches	mm
٨	11.15 max.	283.2 max.
В	8.98	228.1
C	5.06 max.	128.5 max.
D	5.00 max.	127.0 max.
E	1.25	31.8
F	.62	15.7
G	.53 ref.	13.5 ref.
Н	.125	3.18
J	.44	11.10
K	1.312	33.32
L	3.00 ref.	76.2 ref.
approx.	lbs	kgs
Wt.	4.6	2.1





₩-7		
Inches	mm	
12.55 max.	318.8 max.	
10.54	267.7	
5.06 max.	128.5 max.	
5.00 max.	127.0 max.	
1.25	31.8	
.62	15.7	
.53 ref.	13.5 ref.	
.125	3.18	
.44	11.10	
1.312	33.32	
3.00 ref.	76.20 ref.	
ibs	kgs	
5.19	2.36	
	Inches 12.55 max. 10.54 5.06 max. 5.00 max. 1.25 .62 .53 ref125 .44 1.312 3.00 ref.	





	M-19		
Dimension	W-9		
Dimension	inches	mm	
Α .	13.02 max.	330.7 max.	
В	10.95	278.1	
С	6.52 max.	165.2 max.	
D	5.38 max.	136.7 max.	
E	2.00	50.8	
F	.88	22.4	
G	.53 ref.	13.5 ref.	
Н	.250	6.35	
J	.44	11.10	
K	1.531	38.89	
L	4.00 ref.	101.6 ref.	
approx.	lbs	kgs	
Wt.	12.3	5.51	





M-20			
Dimension	W-6	-6	
Dimension	inches	mm	l
A	11.12 max.	282.4 max.	
В	9.06	230.1	l
C	5.88 max.	149.4 max.	
D	5.00 max.	127.0 max.	
E	1.25	31.8	
F	.62	15.7	
G	.53 ref.	13.46 ref.	I
Н	.125	3.18	
J	.44	11.10	
K	1.312	33.32	
L	3.00 ref.	76.2 ref.	
M	2.38	60.5	
N			
P	.375	9.53	
R	1.00	25.4	l
approx.	lbs	kgs	
Wt.	4.91	2.23	

Mechanical Data





, M-21		
W-7		
inches	mm	
12.62 max.	320.5 max.	
10.56	268.2	
5.88 max.	149.4 max.	
5.00 max.	127.0 max.	
1.25	31.85	
.62	15.7	
.53 ref.	13.46 ref.	
.125	3.18	
.44	11.10	
1.312	33.32	
3.00 ref.	76.2 ref.	
2.38	60.5	
.375	9.53	
1.00	25.4	
lbs	kgs	
9.00	4.09	
	inches 12.62 max. 10.56 5.88 max. 5.00 max. 1.25 .62 .53 ref. 1.25 .44 1.312 3.00 ref. 2.38 .375 1.00	





	M	-22			
Dimension	W-9				
Dimension	inches	mm			
A	13.03 max.	331.0 max.			
В	10.94	277.9			
С	8.56 max.	217.4 max.			
0	5.38 max.	136.7 max.			
E	2.00	50.8			
F	.88	22.4			
G	.53 ref.	13.46 ref.			
Н	.250	6.35			
J	.44	11.10			
K	1.531	38.89			
L	4.00 ref.	101.6 ref.			
M	3.00	76.2			
N	1.00	25.4			
Р	.375	9.53			
R	2.00	50.8			
approx.	ibs	kgs			
Wt.	13.25	6.02			





	M	-23	M -	24
Dimension	W	1-6	W-	7.
Dimension	inches	mm	inches	mm
A	5.00 max.	127.0 max.	5.50 max.	139.7 max.
В	1.20	30.5	1.70	43.2
C	4.95 max.	125.7 max.	4.95 max.	125.7 max.
D	5.00 max.	127.0 max.	5.00 max.	127.0 max.
E	1.92 ref.	48.8 ref.	1.92 ref.	48.8 ref.
F	2.38	60.5	2.38	60.5
G	.53 ref.	13.5 ref.	.53 ref.	13.5 ref.
. Н				
J	.38	9.53	.38	9.53
K	1.00	25.4	1.00	25.4
approx.	ibs	kgs	lbs	kgs
Wt.	3.0	1.36	7.0	3.18









	N	1-25			
Dimension	<b>W</b> -9				
J	inches	mm			
A	5.91 max.	150.1 max.			
В	1.70	43.2			
C	7.16 max.	181.9 max.			
D	5.38 max.	136.7 max.			
E	2.41 ref.	61.2 ref.			
F	3.00	76.2			
G	.53 ref.	13.5 ref.			
Н	1.00	25.40			
J	.38	9.53			
K	2.00	50.8			
approx.	lbs	kgs			
Wt.	9.25	4.22			





	M	-26			
Dimension	W-A				
ווטו כוושוווט	inches	mm			
A	9.25 max.	235.0 max.			
В	2.18	55 4			
C	9.31 max.	236.5 max.			
D	7.06 max.	179.3 max			
E	2.82	71 6			
F	.42 ref.	10 7 ref			
G	.31	7.9			
н	6.00	152.4			
J	1.00	25.4			
K	2.00	50.8			
Ĺ	22°	22°			
M	3.25	82.6			
N	.50	12.7			
P	1.00	25.4			
R	375	9.53			
S	.62 ref.	•15.7 ref.			
арргох.	lbs	kgs			
Wt.	14.94	6.79			





	M	-27				
Dimension	W-A					
Dilliciisiuli	inches	mm				
A	11.50 max.	292.1 max.				
В	1.87	47.5				
C	9.31 max.	236.5 max.				
D	7.06 max.	179.3 max.				
E	2.82	71.6				
F	.42 ref.	10.7 ref.				
G	.31	7.9				
Н	6.00	152.4				
J	1.00	25.4				
K	2.00	50.8				
L	22°	22°				
M	3.25	82.6				
N	.50	12.7				
P	1.00	25.4				
R	.375	9.53				
S	.62 ref.	15.7 ref.				
approx.	lbs	kgs				
wt.	20.75	9.43				

#### Mechanical Data







	М	-28			
Dimension	A-A				
Uningitation	inches	mm			
A	10 12 max	257.1 max.			
В	12 69 max	322.3 max.			
C	7 84 max.	199.1 max.			
D	50 ref	12.7 ref.			
£	2.78	70.6			
F	.578	14.68			
арргох.	lbs	kgs			
wt.	≃ 44 6	≃ 20.2			
cross sect.	sq. inches	\$q. cm			
per sink	≃ 18 29	≃118.0			





	M	-29				
Dimension	A-A					
Dilliension	inches	mm				
A	21 12 max.	536 4 max.				
В	12 69 max	322.3 max.				
C	7.84 max	199.1 max.				
D	50 ref	12.7 ref.				
E	2 78	70.6				
F	.578	14.68				
арргох.	lbs	kgs				
wt.	≃ 91 0	41.3				
cross sect.	sq. inches	sq. cm				
per sink	18.29	118.0				



#### DISC ASSEMBLIES Sinks and Kits

- One piece aluminum extrusion
- Cooling for 50 mm-75mm disc devices
- A9 available in 3 or 6 foot lengths
- AA available in 7 foot lengths
- Cut to length sections also available

#### EXTRUSION NO. A9, 1/2 SCALE



#### EXTRUSION NO. AA, 1/2 SCALE



A	9		INFORMATION
DIMENSION	IN	мм	
A	2.85	72	Material 6101-T1
В	9.80	249	Lbs./Foot 11.6
С	1.00	24	Thermal Impedance At 1000 LFM
D	2.85	72	.034°C/W
E	1.00 Min.	24	in²/in 100

Α	A		INFORMATION
Dimension	ln	мм	
A	3.5	89	Material 6101-T1 Lbs./Foot
В	12.6	319	21.9
С	1.25	32	Thermal Impedance C.F.
D	3.5	89	
E	1.95 Min.	50	in²/in 165

### DISC ASSEMBLIES Sinks and Kits



- Fully rated and proven designs
- Includes all necessary hardware for mounting, clamping
- Machine finished mounting surfaces
- Gate terminals provided with air cooled designs
- Complete thermal characteristic curves provided
- Clamps/sinks optimized for each device package

C-F — Consult Factory

KIT NUMBER	LIQUID COOLED KIT	MOUNTING DEVICE OUTLINE	MECHANICAL DATA	THERMAL DATA
PRW6M010KT	Single Rectifier	R62	M1	
PRW6M230KT	Single Rectifer	R62	M23	
PTW6M010KT	Single SCR	T62	M1	
PTW6M230KT	Single SCr	T62	M23	T-1
PAW6M030KT	AC Switch	R62/T62	M3	
PDW6M030KT	Doubler - Bridge Leg	R62/T62	M3	
PSW6M020KT	Series - two	R62/T62	M2	
PSW6M170KT	Series - three	R62/T62	M17	
PRW7M040KT	Single Rectifier	R72	М4	
PRW7M240KT	Single Rectifier	R72	M24	
PTW7M040KT	Single - SCR	T72	M4	
PTW7M240KT	Single -SCR	T72	M24	T-2
PAW7M060KT	AC Switch external connection required	R72/T72	M6	
PDW7M060KT	Doubler - Bridge Leg	R72/T72	M6	
PSW7M050KT	Series - two	R72/T72	M5	
PSW7M180KT	Series - three	R72/T72	M18	
PRW9M070KT	Single Rectifier	R92	M7	
PRW9M250KT	Single Rectifier	R92	M25	
PTW9M070KT	Single SCR	T92	M7	
PTW9M250KT	Single SCR	T92	M25	
PAW9M090KT	AC Switch external  Connection Required	R92/T92	M9	T-3
PDW9M090KT	Doubler - Bridge Leg	R92/T92	M9	1
PSW9M080KT	Series - two	R92/T92	M ₈	
PSW9M190KT	Series - three	R92/T92	M19	
PTWAM260KT	Single SCR	TA2	M26	1
PAWAM270KT	AC Switch External Connection Required	TA2	M27	C-F
PDWAM270KT	Doubler - Bridge Leg	TA2	M27	
PSWAMKT	Series, Contact Factory	TA2		

KIT NUMBER	AIR COOLED KITS	MOUNTING DEVICE OUTLINE	MECHANICAL DATA	THERMAL DATA
PRA6M100KT	Single Rectifier	R62	M10	
PTA6M100KT	Single SCR	T62	M10	T-4
PAA6M110KT	AC Switch	R62/T62	M11	
PDA6M110KT	Doubler-Bridge Leg	R62/T62	M11	
PRA7M120KT	Single Rectifier	R72	M12	
PTA7M120KT	Single SCR	T72	M12	T-4
PAA7M130KT	AC Switch	R72/T72	M13	
PDA7M130KT	Doubler-Bridge Leg	R72/T72	M13	
PRA9M140KT	Single Rectifier	R92	M14	
PTA9M140KT	Single SCR	T92	M14	T-5
PAA9M150KT	AC Switch	R92/T92	M15	
PDA9M150KT	Doubler-Bridge Leg	R92/T92	M15	
PRAAM280KT	Single Rectifier		M28	
PTAAM280KT	Single SCR	TA2	M28	
PAAAM290KT	AC Switch	TA2	M29	
PDAAM290KT	Doubler-Bridge Leg	TA2	M29	CF



#### T-1, T-2, W6 AND W7 SINKS

Disc



**ASSEMBLIES** 

Liquid Cooled





**T-3, W9 SINK** 









#### T-4, A6 AND A7 SINKS



Time, t, seconds



T-5, A9 SINK



## High Voltage Stacks, Rectifier ASSEMBLIES Channel Design

#### **Features and Benefits**

- Fully compensated modules for high reliability
- All terminations supplied for ease of installation
- Eight standard modules for wide range of current capability
- Vari-length channels for Package standardization
- · High density packaging for compact designs
- Ratings for oil and air cooling
- Internal wiring available for complex circuit configurations
- Increased ratings by seriesing and/or paralleling individual channels
- Expert application assistance
- · Special custom designs available on request

#### Applications

- RF generators
- · Radio and TV transmitters
- Radar modulators
- Industrial precipitators
- Fusion and high voltage research
- Dielectric heating
- · Voltage multipliers
- Electron Beam Welding

#### Standard Available Circuit Configurations

SH1



SD1



SB5



SE5



SH1 Half Wave



#### **Dimensions in Inches (Millimeters)**









SB5 1 ≠ Bridge

## High Voltage Stacks, Rectifier ASSEMBLIES Channel Design



These modules, consisting of silicon diodes and compensating network, provide the optimum in steady state and transient voltage division. The design of the stacks provides for cooling by free convection air, forced convection air, or oil.

#### **Design Modules**



6,	A14		7.	A12	41	8	A36		9	B11	
				5 .u.							
			4						-		
60 Amp,	DO-5 Stud		12 Amp,	DO-4 Stud		60 Amp,	DO-5 Stud		150 Amp,	, DO-8 Stud	
60 Amp, Cells/Module	DO-5 Stud		12 Amp, Cells/Module	DO-4 Stud		60 Amp, Cells/Module	DO-5 Stud		150 Amp, Cells/Module	, DO-8 Stud	
Cells/Module		M	Cells/Module		M	Cells/Module	·	M	Cells/Module		M
Cells/Module Volts/Cell	4.	M	Cells/Module Volts/Cell	1	M S	Cells/Module Volts/Cell	1	M	Cells/Module Volts/Cell	1	
Cells/Module	.6Kv		Cells/Module	1 .6Kv		Cells/Module	1 .6Kv	- 1	Cells/Module	1 .6Kv	M
Cells/Module Volts/Cell	.6Kv	S	Cells/Module Volts/Cell	1 .6Kv .8Kv	s	Cells/Module Volts/Cell	.6Kv .8Kv	S	Cells/Module Volts/Cell	1 .6Kv .8Kv	M S
Cells/Module Volts/Cell	.6Kv .8Kv 1.0Kv	S Z	Cells/Module Volts/Cell	1 .6Kv .8Kv 1.0Kv	s z	Cells/Module Volts/Cell	.6Kv .8Kv 1.0Kv	S Z	Cells/Module Volts/Cell	.6Kv .8Kv 1.0Kv	M S Z

#### Notes:

- Mounting: Any position for oil cooling or forced convection; horizontal for free air convection.
- Max. ambient operating temperature for free air convection is based upon compensating network
- maximum ratings.
- Storage temperature: —55°C to 100°C.
   Surge ratings are per IEDEC and for per
- Surge ratings are per JEDEC and for non-repetitive applications. For repetitive faults, consult Westinghouse.
- JAN/military qualified Rectifiers are available on 9B11 modules.



## High Voltage Stacks, Rectifier ASSEMBLIES Channel Design

#### Module Electrical Characteristics Current Output vs Ambient Temperature/Max. PRV

Cooling Co			·						
Air Flow	Temp. °C	2A01	3A03	4A05	5Å09	6A14	7A12	8A36	9B11
	40	.65	.8	2.6	2.4	4.0	12.0	15.0	33.0
Natural Convection	50 60	.6 .5	.65 .55	2.4 1.75	2.25 2.15	3.75 3.5	11.5 7.2	12.0 8.0	32.0 30.0
	40	.9	1.1	3.2	4.2	6.8	12.0	22.0	47.0
150 LFM	50 60	.83 .76	1.0 0.9	3.0 2.8	3.9 3.6	6.3 5.8	12.0 12.0	20.8 19.3	44.0 41.0
	40	1.1	1.35	3.7	5.6	8.8	12.0	28.5	69.0
300 LFM	50 60	1.0 0.9	1.25 1.15	3.5 3.3	5.15 4.75	8.1 7.4	12.0 12.0	27.0 25.0	64.0 60.0
	40	1.3	2.3	4.1	7.2	10.8	12.0	32.0	82.0
500 LFM	50 60	1.2 1.1	2.15 2.0	3.9 3.65	6.65 6.1	9.9 9.1	12.0 12.0	30.0 28.0	78.0 73.0
	40	1.5	2.7	4.5	8.8	14.0	12.0	36.5	108.0
1000 LFM	50 60	1.5 1.35	2.5 2.3	4.2 3.8	8.3 7.8	13.0 12.0	12.0 12.0	35.0 33.0	101.0 96.0
0.11	40	1.5	3.0	5.0	10.3	19.5	12.0	36.5	108.0
Oil	60 85	1.5 1.1	3.0 1.8	5.0 3.6	8.4 5.8	15.7 11.0	12.0 12.0	35.0 28.0	96.0 80.0
Maximum Vo	trace "	11.2Kv	11.2Kv	5.6Kv	2.4Kv	2.4Kv	.6Kv	.6Kv	6Kv
Rating Per M (Air or Oil)		(16.0Kv)	(16.0KV)	8.0Kv	3.2Kv 4.0Kv	3.2Kv 4.0Kv	.8Kv 1.0Kv	.8Kv 1.0Kv	.8Kv 1.0Kv

Circuit
SH1  Half Wave (Single Leg)
SD1
Doubler (Two Legs)

Natural Convection	40 50 60	1.3 Amps 1.2 1.0	1.6 1.3 1.1	5.2 4.8 3.5	4.8 4.5 4.3	8.0 7.5 7.0	24.0 23.0 14.4	30.0 24.0 16.0	66.0 64.0 60.0
150 LFM	40	1.8 Amps	2.2	6.4	8.4	13.6	24.0	44.0	94.0
	50	1.66	2.0	6.0	7.8	12.6	24.0	41.6	88.0
	60	1.52	1.8	5.6	7.2	11.6	24.0	38.6	82.0
300 LFM	40	2.2 Amps	2.7	7.4	11.2	17.6	24.0	57.0	138.0
	50	2.0	2.5	7.0	10.3	16.2	24.0	54.0	128.0
	60	1.8	2.3	6.6	9.5	14.8	24.0	50.0	120.0
500 LFM	40	2.6 Amps	4.6	8.2	14.4	21.6	24.0	64.0	164.0
	50	2.4	4.3	7.8	13.3	19.8	24.0	60.0	156.0
	60	2.2	4.0	7.3	12.2	18.2	24,0	56.0	146.0
1000 LFM	40	3.0 Amps	5.4	9.0	17.6	28.0	24.0	73.0	216.0
	50	3.0	5.0	8.4	16.6	26.0	24.0	70.0	202.0
	60	2.7	4.6	7.6	15.6	24.0	24.0	66.0	192.0
Oil	40	3.0 Amps	6.0	10.0	20.6	39.0	24.0	73.0	216.0
	60	3.0	6.0	10.0	16.8	31.5	24.0	70.0	192.0
	85	2.2	3.6	7.2	11.6	22.0	24.0	56.0	160.0

Circuit
SB5  AC  AC  AC
Single Phase
(Open Neĝative— External Wiring Required)

Natural Convection	40 50 60	1.95 1.8 1.5	2.4 1.95 1.65	7.8 7.2 5.2	7.2 6.7 6.4	12.0 11.2 10.5	36.0 34.5 21.6	45.0 36.0 24.0	99.0 96.0 90.0
150 LFM	40	2.7	3.3	9.6	12.6	20.4	36.0	66.0	141.0
	50	2.5	3.0	9.0	11.7	18.9	36.0	62.4	132.0
	60	2.3	2.7	8.4	10.8	17.4	36.0	57.9	123.0
300 LFM	40	3.3	4.05	11.1	16.8	26.4	36.0	85.5	207.0
	50	3.0	3.75	10.5	15.4	24.3	36.0	81.0	192.0
	60	2.7	3.45	9.9	14.2	22.2	36.0	75.0	180.0
500 LFM	40	3.9	6.9	12.3	21.6	32.4	36.0	96.0	246.0
	50	3.6	6.45	11.7	19.9	29.7	36.0	90.0	234.0
	60	3.3	6.0	10.9	18.3	27.3	36.0	84.0	219.0
1000 LFM	40	4.5	8.1	13.5	26.4	42.0	36.0	109.5	324.0
	50	4.5	7.5	12.6	24.9	39.0	36.0	105.0	303.0
	60	4.0	6.9	11.4	23.4	36.0	36.0	99.0	288.0
Oil	40	4.5	9.0	15.0	30.9	58.5	36.0	109.5	324.0
	60	4.5	9.0	15.0	25.2	47.2	36.0	105.0	288.0
	85	3.3	5.4	10.8	17.4	33.0	36.0	84.0	240.0

2.4Kv 3.2Kv 4.0Kv

Circuit	
(Partial	AC AC AC AC AC AC Whase Bly Open— Bl Wiring Bed)

#### High Voltage Stacks, Rectifier **ASSEMBLIES Channel Design**



**Ordering Information** 

Circuit	Module	Cell	Number of Modules per Leg	Channel Number
SH1	2A01 3A03	M (.6 Kv)	01 through 43	01 through 43
SD1	4A05 5A09	P (.7 Kv)	<ul> <li>Check Table I below for maximum voltage allowed per leg vs. circuit configuration.</li> </ul>	Formula for Channel Number Channel Number= (N×S)+C
SB5	6A14 7A12	S (.8 Kv)	<ul> <li>Check Table II A below for maximum number of modules allowed for each circuit configuration.</li> </ul>	N = Total number of modules in channel S = Module spacing factor, Table II B
SE5	8A36 9B11	Z (1.0 Kv)	, , , , , , , , , , , , , , , , , , ,	C=Channel circuit factor, Table II C

#### Table I-Maximum Stack Voltage per Leg vs. **Circuit Configuration**

Module	Maximum Module	Cooling— Oil or	Circuit Configuration						
Module	Voltage	Air	SH1	SD1	SB5	SE5			
2A01	16 Kv	Oil	688 Kv	336 Kv	160 Kv	96 Kv			
2A01	11.2 Kv	Air	313.6 Kv	156.8 Kv	67.2 Kv	44.8 Kv			
3A03	16 Kv	Oil	688 Kv	336 Kv	160 Kv	96 Kv			
3A03	11.2 Kv	Air	313.6 Kv	156.8 Kv	67.2 Kv	44.8 Kv			
4A05	8.0 Kv	Air or Oil	168 Kv	80 Kv	40 Kv	24 Kv			
5A09	4.0 Kv	Air or Oil	172 Kv	84 Kv	40,Kv	24 Kv			
6A14	4.0 Kv	Air or Oil	84 Kv	40 Kv	20 Kv	12 Kv			
7A12	1.0 Kv	Air or Oil	43 Kv	21 Kv	10 Kv	6 Kv			
8A36	1.0 Kv	Air or Oil	43 Kv	21 Kv	10 Kv	6 Kv			
9B11	1.0 Kv	Air or Oil	21 Kv						

Required is a single phase bridge rated (with safety factor) Example at 15 KV per leg, I_{DC} output of 12 amps at 40°C ambient natural convection, and non-repetitive single cycle surge rating of 140 amps.

Module for current and surge from infor-
mation.
7A12, this number is inserted as the 4
through 7 digits in the product description number
Cell voltage letter code from information.
Note, highest voltage available would
give most compact design but may affect delivery
, ,
at times; also, the higher voltage cells operate the
snubber components and diodes closer to
maximum ratings. Z (1.0 KV), this letter code is
inserted as the 8th digit in the product description
number. Number of modules required per leg by
dividing required voltage per leg (with safety
factor) by module voltage (number of cells
, ,
per module times cell voltage) .
15 KV

Table II-A, B, C

			A		В	C				
Module	Mod	ules v	wed T s. Cir uratio	cuit	S Module Spacing	C C Channel Circuit Factor				
	Circuit				Spacing	Circuit				
	SH1	SD1	SB5	SE5	Factor	SH1	SD1	SB5	SE5	
2A01, 3A03 (Oil Only)	43	42	40	36	1.0	0	1	3	5	
5A09, 7A12 & 8A36	43	42	40	36	1.0	0	1	3	5	
2A01, 3A03 (Air)	28	28	24	24	1.5	0	1	3	5	
4A05, 6A14	21	20	20	18	2.0	0	1	3	5	
9B11	21		ł	}	2.0	1	1		151	

Result

1 Cell/Module×1 KV/Cell = 15 modules 15 (9th and 10th digits of product description number).

Step 4 Select Circuit configuration available for your

requirement; check Tables I and II for feasibility. This case, a SB5 7A1215, would not be feasible because

Select (Trial II)

(Trial I)

60 modules exceed the maximum channel length. By dividing assembly into next standard circuit configuration, a doubler design (SD1

Result

can be considered as indicated in Trial 1. SD1 works (1st, 2nd, and 3rd digit of the product description number). Two assemblies are now required for a complete single phase bridge.

Note: This assembly could have been reduced to single leg components by using the SH1 circuit (four assemblies would then be required). The added cost for this is minimal and may be desired should parts or spares

standardization be practical.

Step 5 Calculate Channel number using total number of modules per stack channel (N) and multiplying by module spacing factor (S) per Table II

B, then adding the channel circuit factor (C) per Table II C. N = 15 modules/leg $\times 2$  legs = 30 modules.

Channel number =  $(N \times S) + C$  $=(30\times1)+1=31.$ 

Result 31 (11th and 12th digits of product description number).

SD17A12Z1531 (Two doubler assemblies Answer will be required for this single phase bridge

example).

Step		4			1			2		3		5
Product Description	s	Circui D	it 1	7	Mo	dule 1	2	Cell Z		dule/ .eg 5		nnel mber 1
Number .	1	2	3	4	5	6	7	8	9	10	1.1	12

#### Table III

	Channel No.	Lenç Inches		Channel No.	Leng Inches	
1				Chamile No.	liiches	
	01	4.25	108	23	20.75	527
ı	02	5.00	127	24	21.50	546
1	03	5.75	146	25	22.25	565
1	04	6.50	165	26	23.00	584
	05	7.25	184	27	23.75	603
	06	8.00	203	28	24.50	622
	07	8.75	222	29	25.25	641
	08	9.50	241	30	26.00	660
	09	10.25	260	31	26.75	679
	10	11.00	279	32	27.50	698
	11	11.75	298	33	28.25	717
	12	12.50	318	34	29.00	737
	13	13.25	337	35	29.75	756
	14	14.00	356	36	30.50	775
	15	14.75	375	37	31.25	794
	16	15.50	394	38	32.00	813
	k	1				r
	17	16.25	413	39	32.75	832
	18	17.00	432	40	33.50	851
	19	17.75	451	41	34.25	870
	20	18.50	470	42	35.00	889
	21	19.25	489	43	35.75	908
	22	20.00	508	l	1	l



## High Voltage Stack, Rectifier ASSEMBLIES Channel Design





## High Voltage Stacks, Rectifier ASSEMBLIES Channel Design



#### **Design Modules**

These modules, consisting of silicon diodes and compensating network, provide the optimum in steady state and transient voltage division. The design of the stacks provides for cooling by free convection air, forced convection air, or oil.

					*
6.0 Amp	Lead Mou	nt	6.0 Amp	Lead Mour	nt
6.0 Amp	Lead Mou	nt	6.0 Amp	Lead Mour	nt
		nt M	<u> </u>		nt M
Cells/Module Volts/Cell	8		Cells/Module Volts/Cell	8	
Cells/Module	.6Kv	М	Cells/Module	8	
Cells/Module Volts/Cell	.6Kv	М	Cells/Module Volts/Cell	8	M
Cells/Module Volts/Cell	.6Kv .8Kv	M S	Cells/Module Volts/Cell	8 .6Kv	

#### **Ordering Information**

See previous section, High Voltage Stack Channel Design for ordering details in conjunction with tables below.

Circuit	Module	Cell	Number of Modules per Leg	Channel Number
SH1	BA10	M(.6Kv)	01 through 21	O1 through 43
SD1	CA10	(.5111)	Check Table 1 below for maximum voltage allowd per leg vs. circuit configuration.	Formula for Channel Number Channel Number = (NxS)+C
SB5	CATO	S(.8Kv)	Check Table II A below for maximum number of modules allowed for	N=Total number of modules in channel
SE5			each circuit configuration.	S=Module spacing factor, Table II B C=Channel circuit factor, Table II C

Table I — Maximum Stack Voltage per Leg vs. Circuit Configuration

Maximum Circuit Configuration Cooling Oil or Module Voltage Module SD1 SB5 SE5 BA10 6.4KV Oil or Air 134KV 64KV 32KV 19KV CA10 4.8KV Oil or Air 100KV 48KV 24KV 14KV

Table II - A, B, C

		A			В			С	
Module	Mod	Allo Iules figura			C Channel Circuit Factor				
		Circuit			Spacing	Circuit			
	SH1	SD1	SB5	SE5	Factor	SH1	SD1	SB5	SE5
BA10 or	21	20	2Q	18	2.0	0	1	3	5
CA10									



# High Voltage Stacks, Rectifier ASSEMBLIES Channel Design

Cooling Conditions		BA10	CA10	
Air Flow	Temp,°C	BATO	CATO	
				Circuit
NI-A I	40	3.1	3.1	
Natural	50	2.8	2.8	SH1 a
Convection	60	2.6	2.6	эпі ⊕
	40	4.3	4.3	1 4
150 LFM	50	4.0	4.0	<b>A</b>
	60	3.6	3.6	Ь
	5.3	5.3	5.3	Half Wave
300 LFM	50	5.0	5.0	(Single Leg)
	60	4.6	4.6	(Sirigle Leg)
	40	6.2	6.2	004 0
500 LFM	50	5.8	5.8	SD1 ⊕
	60	5.4	5.4	<del> </del>
	40	7.0	7.0	<b>+</b>
1000 LFM	50	6.6	6.6	Ó AC
	60	6.2	6.2	l T
	40	10.6	10.6	<b>T</b>
Oil	60	9.0	9.0	I Д
	85	7.0	7.0	
				Doubler
Maximum Voltage Sating Per Module I		6.4KV	4.8KV	(Two Legs)
Air or Oili		V.−1\¥		

Natural Convection	40 50 60	6.2 5.6 5.2	6.2 5.6 5.2	Circuit
150 LFM	40 50 60	8.6 8.0 7.2	8.6 8.0 7.2	SB5 ⊕
300 LFM	40 50 60	10.6 10.0 9.2	10.6 10.0 9.2	AC AC
500 LFM	40 50 60	12.4 11.6 10.8	12.4 11.6 10.8	<b>*</b>
1000 LFM	40 50 60	14.0 13.2 12.4	14.0 13.2 12.4	AC
Oil	40 60 85	21.2 18.0 14.0	21.2 18.0 14.0	Single Phase (Open Negative-
Maximum Voltage Baring Per Module (Air or Gill	<b>s</b> pv	6.4KV	4.8KV	External Wiring Required)

Natural	40 50	9.3 8.4	9.3 8.4	Circuit
Convection	60	7.8	7.8	SE5
150 LFM	12.9 50	12.9 12.0	12.9 12.0	<b>⊕</b>
300 LFM	60 40 50	10.8 15.9 15.0	10.8 15.9 15.0	AC
500 LFM	60 40 50 60	13.8 18.6 17.4 16.2	13.8 18.6 17.4 16.2	AC AC
1000 LFM	40 50 60	21.0 19.8 18.6	21.0 19.8 18.6	AC AC
Oil	40 60 85	31.8 27.0 21.0	31.8 27.0 21.0	Three Phase Open-
Maximum Voltage Rating Per Modyle F (Air or Oil)	abA.	6.4KV	4.8KV	External Wiring Required)

# High Voltage Stacks, Rectifier ASSEMBLIES Plate Design



#### Features and Benefits:

- Fully Compensated Modules For High Reliability
- Vari-Length Design For Circuit and
- Mounting Flexibility

  High Density Packaging For Compact
- Ratings For Air and Oil Cooling
- Expert Applications Assistance
   Special Designs Available on Request
- High Repetitive Surge Ratings
- Ingline Repetitive Surge natings
   Compression Bonded Encapsulation For Thermal Cycling Capability
   Availability, Present High Volume Device Production

#### Applications:

- Fusion and High Voltage Research
- High Voltage Free-Wheeling Rectifiers
   Laser Supply Charging Diodes
   Magnetic Metal Forming Supplies

## **DIMENSION IN INCHES (MILLIMETERS)**









Circuits									
НВ1	<del>0</del> №0₩0₩0								
HC1	o <del>N⊕ M</del> o								
HD1	<b>⊕</b> ►( <b>) →</b> ( <b>)</b>								
нӊ1	<del>0 ▶ 0</del>								
HN1	0 <del>140≥1</del> 0								



# High Voltage Stacks, Rectifier ASSEMBLIES Plate Design

## **Design Modules**





## **Module Cell Types**

76,	A or B6A		76B c	or B6B		76C or	в6С	:	76D or B	6 D	)	
Cells/ Module		2	Cells/ Module		2	Cells/ Madule		2	Cells/ Madule		2	
	2.0	20		2.0	20		2.0	2 0		2.0	20	
Cell	2.3	23	Cell	2.3	23	Cell	2.3	2 3	Cell	2.3	23	
Voltäge	2.5	25	Voltage	2.5	25	Voltage	2.5	2 5	Voltage			
KV	2.8	28	KV	2.8	28	ΚV			ΚV			
	3.0	30		3.0	30							
Code			Code			Code			Code			
Surge	2000	1 20	Surge	5500	1~		6000	1 ~	Surge	6500	1~	
60 N	1800	3 🗛	60 <b>ru</b>	4300	3 💊	Surge 60 <b>∧</b>	4700	3 ~	60 N	5050	3 💊	
(Amps)	1450	10 N	(Amps)	3300	10 💊	(Amps)	3600	10 💊	(Amps)	3900	10 %	





# High Voltage Stacks, Rectifier ASSEMBLIES Plate Design



Module Electrical Characteristics Current Output vs. Ambient Temperature/Max. PRV

Cooling Cond Air Flow	itions Temp, °C	76A	76B	76C	76D	B6A	В6В	B6C	B6D	
	40	12	14	18	18	8	9	12	. 12	a
Natural	50	11	12	13	. 13.	6	7	- 8	- 8	Circuit
Convection	60 .	6	7	8.	8	. 3	4	5	5	
	40	23	35	47	54	29	46	. 63	70	нні О
150 LFM	50	20	: 32	44	49	24	41	58	60	+
	60	19	29	39	46	20	36	40	40	<b>→</b>
	40	28	42	56	62	44	62	80	89	0
300 LFM	50	26	39	52	58	37	56	75	83	11-16 \81
000 21111	60	23	35	47	54	31	50	69	71	Half Wave (Single Leg)
	40	32	47	62	68	53	72		103	(Single Leg)
500 LFiM	50	27	42	57	64	44	66	93 88	98	
300 E1 W	60	23	38	53	60	38	60	82	91	ны О
	<u> </u>	33								l <del> </del>
1000 LFM	40 50	33	50 46	67 62	73 69	58 54	86	114	126	<b>↑</b>
1000 LFIN	60	24	40	58	64	49	80 74	106 99	120 116	Å AC
				<b></b>						l Y
<b></b>	40	111	121	131	134	130	138	146	150	+
Oil	60	92	100	108	110	108	118	128	131	<b>1</b>
	85	64	70	76	76	82	90	98	100	0
Maximum Voltage	1.190 .d.	l		h (2011)			ŀ	٠.	100	Doubler
Rating Per Module	PRV									(Two Legs)
(Air or Oil)		6KV	6KV	5KV	4.6KV	6KV	6KV	5KV	4.6KV	
	1 40	24	20	20	20	4.0	T			
Vatural	40 50	24 22	28 24	36 26	36 26	16	18	24	24	Circuit
Convection	60	12	14	16	26 16	12 6	14 8	16 10	16	
Convection					L		L		10	
	40	43	70	94	108	58	92	126	140	0
150LFM	50	40	64	88	98	48	82	116	120	нві 👱
	60	38	58	78	92	40	72	80	80	7
	40	56	84	112	124	88	124	160	178	O AC
300 LFM	50	52	78	104	116	74	112	150	166	<b>—</b>
	60	46	70	94	108	62	100	138	142	+
	40	64	94	124	126	106	144	186	206	
500 LFM	50	34	84	114	128	88	132	176	196	+
	60	46	76	106	120	76	120	164	182	4
	40	66	100	134	146	116	172	228	252	Q AC
1000 LFM	50	60	92	124	138	108	160	212	240	<b>+</b>
	60	48	82	116	128	98	148	198	232	<b>T</b>
	40	222	242	262	268	260	276	292	300	U
Oil	60	184	200	216	220	216	236	256	262	
	85	128	140	152	152	164	180	196	200	Single Phase
·	<del></del>	ł	-							-
		l	ľ	, 1			l			(Open Negative -
Maximum Voltage Rating Per Module	PRV		·			·				External Wiring Required)
(Air or Oil)		6KV	6KV	5KV	4.6KV	6KV	6КV	5KV	4.6KV	n equirea)
	<u> </u>	L								
	40	36	42	E4	F4	24	27	20	00	Circuit
Natural	50	33	36	54 39	54 39	24	27	36	36	Circuit
Convection	60	18	21	24	24	18 9	21 12	24 15	24 15	
CONVECTION			<u> </u>							
150 ) FM	40	69	105	141	162	87	138	189	210	
150 LFM	50	60 57	96	132	147	72	123	174	1,80	<del>                                    </del>
	60	57	87	117	138	60	108	120	120	<b>→</b> → → →
	40	84	126	168	186	132	186	240	267	
300 LFM	50	78	117	156	174	111	168	225	249	3 φ Bridge
	60	69	105	141	162	93	150	207	213	3 φ bridge
	40	96	141	186	204	159	216	279	309	
500 LFM	50	81	126	171	192	132	198	264	294	
	60	69	114	159	180	116	180	246	273	THREE
			<b></b>	201	219	174	258	342	378	HDI
	<del> </del>	00			219			I	3	REQUIRED
1000 LEM	40	99 90	150 138	1	207	162			1 360	
1000 LFM	40 50	90	138	186	207 192	162 147	240	318 297	360	OR
1000 LFM	40 50 60	90 72	138 123	186 174	192	147	222	297	348	OR SIX
	40 50 60 40	90 72 333	138 123 363	186 174 392	192 402	147 390	222 414	297 438	348 450	OR SIX HHI
	40 50 60 40 60	90 72 333 276	138 123 363 300	186 174 392 324	192 402 330	390 324	222 414 354	297 438 384	348 450 393	OR SIX
	40 50 60 40	90 72 333	138 123 363	186 174 392	192 402	147 390	222 414	297 438	348 450	OR SIX HHI
Oil  Maximum Voltage	40 50 60 40 60 85	90 72 333 276	138 123 363 300	186 174 392 324	192 402 330	390 324	222 414 354	297 438 384	348 450 393	OR SIX HHI
1000 LFM Oil Maximum Voltage Rating Per Module (Air or Oil)	40 50 60 40 60 85	90 72 333 276	138 123 363 300	186 174 392 324	192 402 330 228	390 324	222 414 354 270	297 438 384	348 450 393	OR SIX HHI



# High Voltage Stacks, Rectifier ASSEMBLIES Plate Design

#### **Ordering Information**

Circuit Configuration	Plate Design	Module		Diode Voltage		Total No. of Modules	Application
Code (See Front Page)	See Pictures	Rectifier I∧ Surge	Code	VRRM	Code	Code	Code
HB1	7	2000A	6A	2KV	20	01	AA
HC1	В	5500A	6B	2.3KV	23	Thru	Thru
HD1		6000A	6C	2.5KV	25	12	22
нн1		6500A	6D	2.8KV	28		Factory
HN1				3.0KV	30		Assigned

#### Table II **Dimension In Inches**

Frame										
Code	Dimension	Tolerance								
HB1	9.80									
HC1	6.60									
HD1	6.60	± 080								
HH1	5.00									
HN1	6.60									

## Plus

	Wodule								
Code	Dimension	Tolerance							
. 01	2.09								
02	4.19								
03	6.28								
04	8.38								
05	10.47	+.013							
06	12.56	003							
07	14.66	Per							
08 .	16.75	Module							
09	18.85								
10	20.94								
11	23.03								
12	25.13								

EXAMPLE: Required is a single phase bridge rated (with safety factor)

at 60KV per leg, IDC output of 250 amps and a non-repetitive 3 cycle surge rating of 4500 amps (consult 2) for repetitive

surge applications).,

STEP I SELECT Module for current and surge from module electrical characteristics tables.

RESULT **B6C Module** 

B6C, This number will be inserted as the 4 through

6 digits in product description number.

STEP 2 **SELECT** Call voltage code from design module cell types.

> RESULT 25 (2.5KV), This number code is inserted as 7

through 8 digits.

STEP 3 OBTAIN Number of modules required per leg by dividing

required voltage per leg (with safety factor) by

module voltage (2 times cell voltage).

60KV (Total 5KV (Per Module) = 12

RESULT 12 Modules, This number code is inserted as 9

through 10 digits.

STEP 4 **SELECT** Circuit configuration available for your require-

ment by checking maximum allowed modules from

RESULT HH1 configuration is the only available design. .

Four assemblies are required, HH1 is the 1 through

3 digits.

STEP 5 OBTAIN High voltage stack length from Table II frame

adder and module dimension adder.

RESULT (HH1) 5.00"+ .080" plus (12 modules) 25.13

= 30.13 ^{+.093} _{-.083}

STEP	4	1	2	3	5
Product Description	Circuit (Frame)	Module	Cell (Voltage)	Total Module Required	Application Code
Number	HH1	B6C	25	12	Factory Assigned
Digits	1 2 3	4 5 6	7 8	9 10	11 12

# High Voltage Stacks Assemblies Applications Work Sheet



(make copy for each use)

Name			Con	npany	
Phone			_XAdo	Iress	
Job Fun	ction	Section	City	·	State
			·		Zip
Division	omplete a copy of , Attention: Sales all (412) 925-727	f this form for each different applica Department, Youngwood, Pa. 1569 72 for a quote.	ation. Forward this form	n to Westinghouse Electri	c Corporation, Semiconductor
Circuit	☐ Clipper ☐ Charger ☐ De-Queing ☐ Doubler ☐ I φ Bridge ☐ 3 φ Bridge	☐ 3 φ , 12 Pulse Bridge ☐ Other, explain		☐ Transmitter ☐ R F Generator ☐ Precipitator ☐ Accelerator ☐ Hi-Voltage Test Equ ☐ Voltage Multiplier ☐ Other	•
Cooling	☐ Air	☐ Natural Convection, Altitude_☐ Forced Air, LFM	•	•	
	Oil Type	Mfg	am	b. temp. °C	
Current	· ·	rent, IDC RMS			
		of cycles required this application)		•	
	Fault Surge 1 $\sim$	Time	ms		
		Time			
	10~	Time	ms		
		Percent Impeda expected/lifetime			ue. Westinghouse will advise
Voltage	Safety Factor Re	upplyKV quired: Voltage,	, Current		
	Circuit Protection	n:	r	n	
	•	round plane (stacks) mounted from		Sides	
Other Co	onsiderations				
Problem	s experienced in t	he past			
☐ New	Design C	onversion	MFG/Type No		
	/System				
Budgeta Timetabl		stem			
Timetabl	le		Long ran	ge potential	φ
Westing	ghouse Assembly	Recommended			
Negotia	tion Number	Recomme	nded by	Date	3



# **RECTIFIERS**

#### INTRODUCTION

Westinghouse introduced the first silicon rectifier in 1952. Today, Westinghouse offers a complete line of General Purpose and Fast Recovery rectifiers. All rectifier elements use N-type silicon providing soft recovery characteristics which minimize rectifier spike voltages and reduce transient protection requirements. Westinghouse uses an exclusive irradiation process to manufacture fast recovery rectifiers. This process provides precise control for better availability, soft recovery characteristics for less circuit ringing and reduced transient protection, high voltage capabilities up to 3200 volts with low reverse leakage currents, and fast recovery times — 200 nanoseconds for low current (6-30 ampere) rectifiers and 1.5 to 5.0 microseconds for high current (80-1400 ampere) rectifiers.



#### RECTIFIER PRODUCT INDEX

Type Number	Page	Type Number	Page
1N1183,R-90,R	R15	R5D0	R23
1N1183A, AR-90A, AR	R15	R5D1	R23
1N1191, R-98, R	R15	R9G0	R51
1N1191A, AR-98A, AR	R15	R9G2	R75
1N1199, R-1206, R	R13	R302	R55
1N1199A, AR-1206A, AR	R13	R302 R303	R55
1N1199B, BR-1206B, BR	R13	R310	R13
1N1341, R-48, R	R13	R310	R13
1N1341A, AR-48A, AR	R13	R340	R9
1N1341B, BR-48B, BR	R13	N340	пэ
1N1612, R-16, R	R13	R402	R57
1N2154, R-60, R	R15	R403	R57
1N3208, R-14, R	R15	R404	R17
1N3266, R-14, R 1N3260, R-76, R	R27	R405	R17
1N3288A, AR-97A, AR	R19	R410	R15
1N3615, R-24, R	R13	R411	R15
1N3670, R-73, R	R13	R500	R23
1N3670A, AR-73A, AR	R13	R501	R23
1N3765, R-68, R	R15	R502	R59
1N3879, R-83, R	R55	R503	R59
1N3889, R-93, R	R55	R510	R23
1N3899, R-3903, R	R57	R510	R23
1N3909, R-13, R	R57	11311	
1N3987, R-90, R	R13	R600	R31
•		R601	R31
1N4001-07	R9	R602	R63
1N4O44, R-56, R	R29	R603	R63
1N4458, R-59, R	R13	R610	R31
1N4587, R-96, R	R21	R611	R31
1N4816-22	R9	R620	R39
1N5052-54	R9	R622	R67
1N5391-99	R9	R700	R35
1N5400-08	R9	R701	R35
	110	R720	R43
		R722	R71
		R920	R47

## **RECTIFIERS**



The axial lead mount package is the most popular for one to six ampere general purpose rectifier (diode) applications. The axial lead mount design features silver plated copper leads offering excellent heat conduction, solderability, and corrosion resistance. Several axial lead mount types are available with a chamfered body on the cathode end to insure proper polarity identification and correct assembly. Tape and reeling capability is available for those customers using automatic insertion equipment.

All stud mount rectifiers are available in both standard and reverse polarity. Color-coded glass or ceramic seals on all stud mount rectifiers make polarity identification easy and minimize the possibility of installing a device of the wrong polarity. Stud mount rectifiers (80 amperes and above) feature compression bonded encapsulation (CBE). This CBE package encapsulation technique reduces thermal fatigue inherent in conventional solder construction devices by eliminating solder joints.

w disc mount rectifiers offer more amperes per dollar than any other package type. These devices feature double-sided cooling and have reversible mounting polarity. These all-copper non-magnetic packages are ideal in high frequency applications where magnetic noise can be a problem. In addition, the disc glazed ceramic seals are convoluted for long creepage paths which are especially important in applications where dirt, humidity and other contaminants can accumulate and cause arc-over.

Military rectifiers are available in both polarities in the popular stud mount DO-8 and DO-9 packages: JAN IN3289-95 series and JAN IN3164-74 series. Complete test facilities are available for matching devices for series and/or parallel operation, for special test parameter selection, and for full-scale high reliability requirements. © offers a Lifetime Guarantee on all rectifiers bearing this symbol . Specify Westinghouse Rectifiers.



# **RECTIFIER CAPABILITY GRAPHS**

## **GENERAL PURPOSE RECTIFIERS** 1 — 150 Amperes



# **GENERAL PURPOSE RECTIFIERS**



**AVERAGE CURRENT RATING** 

STUD MOUNT DISC

# **RECTIFIER CAPABILITY GRAPHS**



## FAST RECOVERY RECTIFIERS 6 — 1400 Amperes



Note: Reverse recovery times shown represent fastest currently available at given voltage rating.



## **GENERAL PURPOSE RECTIFIERS** 1 — 15 Amperes

JEDEC/.TYPE	IN4001-07	IN4816-22	IN5391-99	IN5400-08	IN1612-16	IN1341,A,B-	R340	IN1199,A,B-	IN3208-14
		IN5052-54			IN4458,59	IN1348,A,B		IN1206,A,B	
		ì				IN3987-90		IN3670,A-73,A	
AVERAGE CURRENT		1.5	1.5	3	8	6	6	12	15
ONE CYCLE SURGE	30	50			- CC900000000000000000000000000000000000		100000000000000000000000000000000000000		25/2003/00/2004/00/2004/00/2004
ONE CYCLE SURGE	30	50	50	200	160	150	400	240	260
VOLTAGE 50	IN4001	IN4816	IN5391	IN5400	IN1612	IN1341,A,B	R3400006	IN1199,A,B	. IN3208
100	IN4002	IN4817	IN6392	IN5401	IN1613	IN1342,A,B	R3400106	IN1200,A,B	IN3209
150		à i:				IN1343,A,B		IN1201,A,B	
200	IN4003	IN4818	IN5393	IN5402	IN1614	IN1344,A,B	R3400206	IN1202,A,B	IN3210
300		IN4819	IN5394	IN5403		IN1345,A,B	R3400306	IN1203,A,B	IN3211
400	IN4004	IN4820	IN5395	IN5404	IN1615	IN1346,A,B	R3400406	IN1204,A,B	IN3212
500		IN4821	IN5398	IN5405		IN1347,A,B	R3400506	IN1205,A,B	IN3213
600	IN4005	IN4822	IN5397	IN5406	IN1616	IN1348,A,B	R3400606	IN1206,A,B	IN3214
700		IN5052				IN3987	R3400706	IN3670,A	
800	IN4006	IN5053	IN5398	IN5407	IN4458	IN3988	R3400806	IN3671,A	
900		5 5				IN3989	R3400906	IN3672,A	
1000	IN4007	IN5054	IN5399	IN5408	IN4459	IN3990	R3401006	IN3673,A	
		Ĭ.							
PACKAGE TYPE	DO-41	DO-27	DO-15	~DO-27	DO-4	DO-4	R34	DO-4	DO-5
PAGE NUMBER	N9	R9	R9	R9	R13	R13	R9	R13	R15

^{*}For JEDEC Reverse Polarity Units — add suffix "R".

## **GENERAL PURPOSE RECTIFIERS** 16 - 70 Amperes

		•	*	*		*	*/**	**	**
JEDEC / TYP	E	IN3615-24	IN1191-98	IN1191A-98A	IN2154-60	IN1183-90	IN1183A-90A	R40460	R404-70
						IN3765-68	R410-40		
					è				
AVERAGE CURI	RENT	16	18	22	25	36	40	60	70
ONE CYCLE SU	IRGE	300	220	500	400	500	800	1200	1200
VOLTAGE !	50	IN3616	IN1191	IN1191A	IN2154	IN1163	IN1183A	R4040060	R4040070
1	00	IN3616	IN1192	IN1192A	IN2155	IN1184	IN1184A	R4040160	R4040170
1	50	IN3617	IN1193	IN1193A		IN1185	IN1185A		
2	00	IN3818	IN1194	IN1194A	IN2156	IN1186	IN1186A	R4040280	R4040270
3	00	IN3619	IN1195	IN1195A	IN2157	IN1187	IN1187A	R4040360	R4040370
4	00	IN3520	IN1196	IN1196A	IN2158	IN1166	IN1188A	R4040460	R4040470
5	00	IN3621	IN1197	IN1197A	IN2159	IN1189	IN1189A	R4040560	R4040570
	00	IN3622	IN1198	IN1198A	IN2160	IN1190	IN1190A	R4040660	R4040670
	00					IN3765			
	00	IN3623				IN3766	R4100840	R4040660	R4040870
	00					IN3767	114100040		114040070
	000	IN3824				IN3788	R4101040	R4041060	R4041070
	.00	******				1140700	R4101240	R4041280	R4041070
12	.00						N4101240	MHCH1200	N4041270
PACKAGE TY	PF	PG-4	DO-5	DO-5	DO-5	00-5	DO-5	DO-5	DO-5
			23-3		20-3		50-5		20-0
PAGE NUMB	ER	и13	R15	M15	R15	R15	R15	R17	R17

^{*}For JEDEC Reverse Polarity Units - add suffix "R"



DO-41

DO-27

DO-15

^{**}For Reverse Polarity Units R410 — R411 R404 — R405



## **GENERAL PURPOSE RECTIFIERS**

100 — 300 Amperes

	••		**			**	**		**
JEDEC/TYPE	R50010	IN3288A-	R50015	IN4587-96	IN3260-76	R60020	R600_25	IN4044-56	R60030
02020, 1112	R61010	97A	R51015			R61020	R61025		R61030
AVERAGE CURRENT	100	100	150	150	180	200	250	275	300
ONE CYCLE SURGE	2300	2300	3000	3000	2000	5500	8000	5000	6500
						*			
VOLTAGE 50					IN3260			IN4044	
100	R5100110	IN3288A	R5100115	IN4587	IN3261	R6100120 .	R6100125	IN4045	R6100130
150					IN3262			IN4046	
200	R5100210	IN3289A	R5100215	IN4588	IN3263	R6100220	R6100226	IN4047	R6100230
250					IN3264			IN4048	
300	R5100310	IN3290A	R5100315	IN4589	IN3265	R6100320	R6100325	IN4049	R6100330
350					IN3286				
400	R5100410	IN3291A	R5100415	IN4590	IN3267	R6100420	R6100425	IN4050	R6100430
500	R5100510	IN3292B	R5100515	IN4591	IN3268	R6100520	R6100525	IN4051	R6100630
600	R5100610	IN3293A	R5100615	IN4592	IN3269	R6100620	R6100625	IN4052	R6100630
700	R5100710		R5100715		IN3270	R6100720	R6100725	IN4053	R6100730
800	R5100810	IN3294A	R5100815	IN4593	IN3271	R6100820	R6100825	IN4054	R6100830
900	R5100910		R5100915		IN3272	R6100920	R6100926	IN4055	R6100930
1000	R5101010 *	IN3295A	R5101015	IN4594	IN3273	R6101020	R6101025	IN4056	R6101030
1200	R5001210	IN3296A	R5001215	IN4595	IN3274	R6001220	R6001225		R6001230
1400	R5001410	IN3297A	R5001415	IN4596	IN3275	R6001420	R6001426	. ~	
1600					IN3276	R6001620	R6001825		
2000						R6002020	R6002025		
2500						R6002520			
3000						R6003020			
						500		DO 0	
PACKAGE TYPE	DO-8	DO-8	DO-8	DO-8	DO-9	DO-9	DO-9	DO-9	DO-8
PAGE NUMBER	R23	R19 .	R23	R21	R27	R31	<b>A31</b>	R29	R31

^{*}For JEDEC Reverse Polarity Units — add suffix "R".

R510 — R511 R600 — R601

## **GENERAL PURPOSE RECTIFIERS** 300 — 600 Amperes

TYPE	R62030	R70003	R62040	R70004	R62050	R70005	R72006
AVERAGE CURRENT	300	300	400	450	500	550	600
ONE CYCLE SURGE	5500	6000	6000	8500	6500	10 000	7000
VOLTAGE 100	R6200130	R7000103	R6200140	R7000104	R6200150	R7000105	R7200106
200	R6200230	R7000203	R6200240	R7000204	R6200250	R7000205	R7200206
300	R6200330	R7000303	R6200340	R7000304	R6200350	R7000305	R7200306
400	R6200430	R7000403	R6200440	R7000404	R6200450	R7000405	R7200406
500	R6200530	R7000503	R6200540	R7000504	R6200550	R7000505	R7200506
600	R8200630	R7000603	R6200640	R7000604	R6200650	R7000605	R7200606
800	R6200830	R7000803	R6200840	R7000804	R6200860	R7000805	R7200806
1000	R6201030	R7001003	R6201040	R7001004	R6201050	R7001005	R7201006
1200	R6201230	R7001203	R6201240	R7001204	R6201250	R7001205	R7201206
1400	R6201430	R7001403	R6201440	R7001404			R7201406
1600	R6201630	R7001603	R6201640	R7001604			R7201606
2000	R8202030	R7002003	R6202040	R7002004			R7202006
2200	R6202230	R7002203					R7202206
2500	R6202530	R7002503					H7202506
2800	R6202830	R7002803					R7202606
3000	R6203030	R7003003					R7203006
3500		R7003503					R7203506
4000		R7004003					R7204006
PACKAGE TYPE	R62	R70	R62	R70	R62	R70	R72
PAGE NUMBER	R30	R35	R39	R35	R39	R35	R43
** For Reverse Pola	rity Units — R	700 — R7	01	•		•	

DO-8

DO-9

R70

**R72** 

^{**}For Reverse Polarity Units — R500 — R501



## **GENERAL PURPOSE RECTIFIERS**

900 — 2200 Amperes

TYPE	R72009	R92011	R72012	R9G013	R92016	R9G018	R92020	R9G022	
AVERAGE CURRENT	900	1100	1200	1300	1600	1800	2000	2200	
ONE CYCLE SURGE	8500	16,200	12.500	16,200	21,500	21,500	30,000	30,000	
VOLTAGE 100	R7200109	R9200111	R7200112	R9G00113	R9200116	R9G00118	R9200120	R9G00122	
200	R7200209	R9200211	R7200212	R9G00213	R9200216	R9G00218	R9200220	R9G00222	
300	R7200309	R9200311	R7200312	R9G00313	R9200316	R9G00318	R9200320	R9G00322	RS
400	R7200408	R9200411	R7200412	R9G00413	R9200416	R9G00418	R9200420	R9G00422	
500	R7200509	R9200511	R7200512	R9G00513	R9200516	R9G00518	R9200520	R9G00522	
600	R7200608	R9200611	R7200612	R9G00613	R9200616	R9G00618	R9200620	R9G00622	
800	R7200809	R9200811	R7200812	R9G00813	R9200816	R9G00818	R9200820	R9G00822	
1000	R7201009	R9201011	R7201012	R9G01013	R9201016	R9G01018	R9201020	R9G01022	
1200	R7201209	R9201211	R7201212	R9G01213	R9201216	R9G01218	R9201220	R9G01222	///
1400	R7201409	R9201411		R9G01413	R9201416	R9G01418			84
1600	R7201609	R9201611		R9G01613	R9201616	R9G01618			100
1800	R7201809	R9201811		R9G01813	R9201816	R9G01818			
2000	R7202009	R9202011		R9G02013	R9202016	R9G02018			
2200	117202003	R9202211		R9G02213	#32U2U1U	N3G02018			
2400		R9202411		R9G02413					
2600		R9202611		R9G02613					
2800		R9202811		R9G02813					
		R9203011							
3000		N9203011		R9G03013					
PACKAGE TYPE	R72	R92	R72	R9G	R92	R9G	R92	R9G	
PAGE NUMBER	R43	R47	R43	R51	R47	R51	R47	R51	

















## FAST RECOVERY RECTIFIERS 6 — 250 Amperes

JEDEC/TYPE	*/** IN3879-83 R30206	*/** IN3889-93 R30212	*/** IN3899-93 R40220	*/** IN3903-13 R40230	## R50208	** R50210	** R60220	R60225
AVERAGE CURRENT	6	12	20	30	80	100	200	250
ONE CYCLE SURGE	75	150	225	300	2200	2500	4500	5000
VOLTAGE 50 100 200 300 400 500 600 800 1000 1200 1400	IN3879 IN3880 IN3881 IN3882 IN3883 R3020506 R3020606	IN3889 IN3890 IN3891 IN3893 R3020512 R3020612	IN3899 IN3900 IN3901 IN3903 IN3903 R4020520 R4020620	IN3909 IN3910 IN3911 IN3912 IN3913 R4020530 R4020630	R5020008 R5020108 R5020208 R5020308 R5020408 R5020508 R5020608 R5021008 R5021008	R5020010 R5020110 R5020210 R5020310 R5020410 R5020510 R5020610 R5020810 R5021010 R5021210	R6020020 R6020120 R6020220 R6020320 R6020320 R6020520 R6020620 R6020820 R6021020 R6021220 R6021420 R6021420 R6021420	R6020025 R6020125 R6020225 R6020325 R6020425 R6020425 R6020625 R6020825 R6021025 R6021225 R6021425 R6021625
REVERSE RECOVERY TIME	200 ns	200 ns	200 ns	200 ns	1.5 µs	1.5 µs	aر 1.5-2	1.5-2 µs
PACKAGE TYPE	DO-4	DO-4	DO-5	DO-5	DO-8	DO-8	DO-9	DO-9
PAGE NUMBER	R55	R55	R57	R57	R59	R59	R63	R63

**For Reverse Polarity Units — R302——R303

R602---- R603



*For JEDEC Reverse Polarity Units -

add suffix "R"







		_						
TYPE	R622_35	R62240	R72205	R72206	R72208	R9G209	R9G211	R9G214
AVERAGE CURRENT	350	400	500	600	800	900	1100	1400
ONE CYCLE SURGE	4500	5000	7000	9500	11,000	12000	15000	25000
VOLTAGE 100	R6220135	R6220140	R7220106	R7220106	R7220108	R9G20109	R9G20111	R9G20114
200	R6220235	R6220240	R7220205	R7220206	R7220208	R9G20209	R9G20211	R9G20214
300	R6220335	R6220340	R7220305	R7220306	R7220308	R9G20309	R9G20311	R9G20314
400	R6220435	R6220440	R7220405	R7220406	R7220408	R9G20409	R9G20411	R9G20414
500	R6220535	R6220540	R7220505	R7220506	R7220508	R9G20509	R9G20511	R9G20514
600	R6220635	R6220640	R7220605	R7220606	R7220608	R9G20609	R9G20611	R9G20614
800	R6220835	R6220840	R7220805	R7220806	R7220808	R9G20809	R9G20811	R9G20814
1000	R6221035	R6221040	R7221005	R7221006	R7221008	R9G21009	R9G21011	R9G21014
1200	R6221235	R6221240	R7221205	R7221206	R7221208	R9G21209	R9G21211	R9G21214
1400	R6221435	R6221440	R7221405	R7221606	R7221408	R9G21409	R9G21411	
1600	R6221635	R6221640	R7221605	R7221606	R7221608	R9G21609	R9G21611	
2000			R7222005 •			R9G22009	R9G22011	
2400			R7222405			R9G22409	R9G22411	
2500			R7222505			R9G22509		
2600						R9G22609		
3000						R9G23009		
3200						R9G23209		
REVERSE RECOVERY	150 -	1 E 2	78.	2 2	2.2	3-5 µs	3-5 με	3 µs
TIME	ε بر 1.5.2	∈1.5-2 µs	2-5 με	2-3 µs	عبر 2-3 عبر 3-2	3-5 μ5	ч о ро	O po
PACKAGE TYPE	R62	R62	R72	R72	R72	R9G	ROG	R9G
PAGE NUMBER	R67	R67	R71	R71	A71	R75	R75	R75



# General Purpose RECTIFIERS

IN4001-07/IN5391-99/IN4816-22 IN5052-54/IN5400-08/R340

1-6 Amps. Avg. Up to 1000 Volts





	Confo	rms to [	00-41		Conforms to DO-15			Conforms to DO-27						
	1N400	1001 Series			1N5391 Series			1N5391 Series 1			1N4816 & 1N5052 Series			
Symbol	Inches		Millimet	ters	Inches		Millimet	ters	Inches		Millimet	ters		
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
φb	.028	.034	.712	.863	.027	.035	.686	.889	.028	.036	.712	.914		
φD	.080	.107	2.04	2.71	.104	.140	2.65	3.55	.190	.210	4.83	5.33		
G	.160	.205	4.07	5.20	.230	.300	5.85	7.62	.285	.375	7.24	9.52		
L	1.10		28.0		1.00		25.40		1.125		28.58			

	Confo	rms to/	∿ DO-27		R34 O	utline		
	1N540	O Serie	s		R340		,	
Symbol	Inches	i	Millimet	ters	Inches		Millimet	ters
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
φb	.046	.056	.712	.914	.046	.056	.712	.914
$\phi D$	.190	.210	4.83	5.33	.360	.390	9.14	9.91
G	.285	.375	7.24	9.52	.250	.350	6.35	8.89
L	1.125		28.58		1.250		31.75	

#### Features:

- All diffused design
- Low forward voltage drops
   Standard JEDEC outlines
- Lifetime Guarantee

#### Applications:

- Phase control
- Motor control
- Power supplies
- Light dimmers

# 1-6 Amps. Avg. Up to 1000 Volts

# General Purpose RECTIFIERS

IN4001-07/IN5391-99/IN4816-22 IN5052-54/IN5400-08/R340



#### **Ordering Information**

VRRM (V)	Forward Current,	lF(av)			
٧	1 Amp	1.5 Amp	1.5 Amp	3 Amp	6 Amp
50	1 N4001	1N4816	1 N5391	1N5400	R3400006
100	1N4002	1N4817	1N5392	1N5401	R3400106
200	1 N4003	1N4818	1N5393	1N5402	R3400206
300	• • •	1N4819	1 N5394	1N5403	R3400306
400	1 N4004	1N4820	1 N5395	1N5404	R3400406
500	• • •	1N4821	1N5396	1 N 5405	R3400506
600	1 N4005	1N4822	1N5397	1N5406	R3400606
700	• • •	1N5052	•••	•••	
800	1 N4006	1 N5053	1 N5398	1N5407	R3400806
900	• • •	•••	•••	•••	
1000	1 N4007	1 N5054	1 N5399	1N5408	R3401006

#### **Ratings and Characteristics**

All Types	Symbol											
Repetitive peak reverse voltage, V	VRRM	50	100	200	300	400	500	600	700	800	900	1000
Non-repetitive transient peak reverse voltage, $\ensuremath{\mathbb{Q}}$ .	VRSM	100	200	300	400	525	650	800	900	1000	1100	1200
	Symbol	1 N4001 - 07	1 N4	816 thru 11	15399	1 N5400-08		R340 Serie	s			
Max forward current, amperes, ②	lF(av)	1.0		1.5		3.0		6.0				
Max current ratings, amperes, ②	IF(av)	◀		See Graph	Α	<del></del>		<del></del>				
Max ½ cycle (60 Hz) peak surge current												
(under load), amperes	IFSM	30		50		200		400				
Max I ² t (t<8 ms) amps ² -second	l²t	3.5		10		165		650				
Max forward voltage drop, peak volts	VFM	Graph C		Graph D		Graph E		Graph F				
Max peak reverse current at rated VRRM, μa				-								
T _A = 25°C	IRRM	10		10		10		50				
T _A =150°C	IRRM	300		300		500		500				
Max operating ambient and storage temp	TA & Tstg	4		T _A =-6	55°C to	+ 175°C, T _{stg}	=-65	° to +175°C				

① Non-recurrent, 8.3 millisecond maximum duration ½ sine wave pulse, Ty=0° to 175°C.

# Graph A—Maximum allowable forward current versus ambient temperature for resistive load (derate 20% for capacitive load).



# Graph B—Maximum allowable peak current versus surge time starting from maximum rated load.





# General Purpose RECTIFIERS

1-6 Amps. Avg. Up to 1000 Volts

IN4001-07/IN5391-99/IN4816-22 IN5052-54/IN5400-08/R340





Graph D—Maximum forward voltage drop of a single diode at 25°C and 150°C junction temperature.



Graph E—Maximum forward voltage drop of a single diode at 25°C and 150°C junction temperatures.



Graph F—Maximum forward voltage drop of a single diode at 25°C and 150°C junction temperature.



# 1-6 Amps. Avg. Up to 1000 Volts

# General Purpose RECTIFIERS

IN4001-07/IN5391-99/IN4816-22 IN5052-54/IN5400-08/R340



#### How To Determine The Operating Junction Temperature of The Lead Mount Rectifier

When using a lead mounted rectifier as with all semiconductors, the maximum junction temperature should never be exceeded. The derating curves shown in graph A are the maximum currents at specified ambient temperatures when the lead mount is terminated in a heat sink within ½ inch of the body. When the lead mounted rectifier is terminated on a terminal strip, printed circuit board or is mounted in an enclosed area, the rectifier could be operating above or below the maximum junction temperature because of the heat sinking area.

To calculate the operating junction temperature, a lead temperature measurement must be made. First a thermocouple is soldered to the lead. A small amount of solder should be used, since excess solder will add to the area of the lead and will give erroneous readings. The thermocouple should be soldered 0.2 inch from the body of the rectifier. Excessive temperature and excessive time should be avoided when soldering to the rectifier lead.

Then the lead mount is operated at the maximum current encountered in the application and the lead temperature is stabilized. The temperature, forward voltage drop and current are recorded. The junction temperature is then calculated using the following formmula:

$$T_J = (TA - TAO) + TL + (ROJL \times P)$$

where T_J = Junction Temperature

TA = Highest ambient temperature to be encountered in the application.

T_{AO} = The operating ambient temperature at which the lead temperature was measured.

TL = Measured lead temperature

ReJL = The value obtained from Graph G for thermal resistance junction to lead at 0.2 inch from the body.

P = The average power calculated from the current and voltage readings.

If the lead temperature is measured at the maximum operating ambient temperature, the formula for calculating the junction temperature reduces to:

#### Example:

The R340 lead mount rectifier is mounted on a printed circuit board to one inch square copper pads on each lead. The leads were ½" measured from the body of the rectifier to the printed circuit board. All measurements are made in accordance with EIA standard RS-282. The following was measured.

I = 6A Avg.

VF(av) = 1.1V

P = 6.5W

TL = 123°C

TA = . TAO =25°C

ReJL = 9°C/W (From Graph G)

The junction temperature can be calculated as follows:

TJ = TL+(ROJLXP)

123 + (9 × 6.5)

= 181.5°C

This example shows that one inch square pads on each lead is not sufficient since the junction temperature exceeds the 175°C maximum. This junction temperature can be reduced by increasing the copper pads, by reducing the length of the leads or by increasing the air flow.

To take full advantage of the thermal transfer capabilities offered by the leads of lead mounted devices, the following are important points to remember:

- Avoid placing semiconductor devices which produce heat in locations where air circulation is restricted.
- Place heat-producing devices on top of a chassis, instead of below, and preferably on one that is vertically mounted.
- A 35-mil lead provides approximately 0.1 square inch of radiating surface per inch of length. For this reason one should not trim off needed cooling capacity.
- Terminal posts and mounting brackets frequently provide more cooling area than the device lead. If possible, take advantage of the cooling offered by terminals and mounting brackets. Mount heat-producing devices close to terminals or brackets.
- Check the ambient temperature inside cabinets. If it is excessive, install a fan: forced air can reduce thermal resistance by as much as 500 per cent.

#### Graph G-Steady State Thermal Resistance Junction to Lead vs Lead Length



# **General Purpose Rectifiers** R310/R311/JEDEC Types

# 3-16 A. Avg. Up to 1000 Volts



Symbol	Inches		Millime	eters
Symbol	Min.	Max.	Min.	Max.
A		.405		10.29
φD		.424		10.77
E F	.424	.437	10.77	11.10
F	.075	.175	1.91	4.45
J		.800		20.32
M		.250		6.35
N	.422	.453	10.72	11.51
$\phi T$	.060	.105	1.52	2.67
φW	10-32	UNF-2A		

Glass to Metal Seal-Creepage & Strike Distance = .07 in. min. (1.75 mm)
(In accordance with NEMA standards.)

(In accordance with NEMA standards.)

Finish—Nickel Plate.
Approx. Weight—2 oz (6g)
R310—Standard Polarity—Gray Glass
R311—Reverse Polarity—Yellow Glass.



Matrix Key Letter	A	В	C	D	Ξ	F	G	Н	
urrent l∍(AV) @Tc, °C	<b>3</b> @150°	<b>5</b> @150°	<b>6</b> @150°	<b>6</b> @150°	<b>6</b> @150°	<b>12</b> @150°	<b>12</b> @150°	<b>12</b> @150°	<b>16</b> @150°
Гезм	40	150	150	150	160	240	240	250	300
1 ² t for Fusing	6	90	90	90	105	240	240	260	375
V _{FM} @l _F (AV) 8 25°C	1.5	1.5	1.4	1,4	1.2	1.8	1.3	1.2	1.2
Reuc	5.0	3.0	3.0	3.0	3.0	2.0	2.0	2.0	1.0.7
Ty (Oper) Range	65 to 175	-65 to 175	-65 to 190	65 to 200	-65 to 200	-65 to 190	-65 to 200	65 to 200	65 to 200
T _{stg} Range	-65 to 175	-65 to 200	=65 to 200	-65 to 200	85 to 200				
50	1 N1 581	1N1612	1N1341	1N1341A	1N1341B	1N1199	1N1199A	1N1199B	1N3615
100	1N1582	1N1613	1 N1342	1N1342A	1N13428	1 N1200	1N1200A	1N1200B	1 N 3 6 1 6
150			1N1343	1N1343A	1N1343B	1N1201	1N1201A	1N1201B	1 N3617
200	1N1583	1N1614	1N1344	1N1344A	1N1344B	1 N1202	1N1202A	1N1202B	1N3618
300	1N1584		1N1345	1N1345A	1N1345B	1N1203	1N1203A	1N1203B	1 N3619
400	1N1585	1N1615	1 N1 346	1N1346A	1N1346B	1N1204	1N1204A	1N1204B	1N3620
500	1N1586		1N1347	1N1347A	1N1347B	1N1205	1N1205A	1N1205B	1 N3621
600	1N1587	1N1616	1N1348	1N1348A	1N1348B	1N1206	1N1206A	1N1206B	1 N 3 6 2 2
700	Transcondistale constant about		<u> </u>	1N3987		1N3670	1N3670A	and the deliberation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se	
800		1N4458		1N3988		1N3671	1N3671A		1 N3623
900				1N3989		1N3672	1N3672A	e poca - sett. d fill 1777. 1. 100 Million	
1000		1N4459		1 N3990		1 N3673	1 N3673A		1N3624
IRRM @ 25°C IRRM @ 175°	1,				——— 200 µ				

#### Features:

- Diffused junction
- Low leakage current
- Lifetime Guarantee

## Applications:

- Power Supplies
- DC to DC Converters
- Battery ChargersMachine Tool Controls

#### NOTES:

- NOTES:

  1. Complete threads to extend to within 2½ threads of seating plane.

  2. Angular orientation of this terminal is undefined.

  3. 10-32 UNF-2A maximum pitch diameter of plated threads shall be basic pitch diameter (.1697*, 4.29 mm).

  Ref. (Screw thread standards for federal services 1957) Handbook H28 P1.

# 3—16 A. Avg. Up to 1000 Volts

# General Purpose Rectifiers R310/R311/JEDEC Types







#### **JEDEC Circuit**





## Non Repetitive Surge Current Versus Time



## **Typical Recovery Time Ranges**

Westing- house Device Family	Test Conditions	Typical t _{rr}
R310, R311	I _{FM} =36 A, diR/dt=25 A/μs	1-2 μs



# **General Purpose Rectifiers** R410/R411/JEDEC Types

# 15—40 A. Avg. Up to 1000 Volts



Symbol	Inches		Millime	eters
	Min.	Max.	Min.	Max.
Α		.450		11.43
В		.080		2.03
φD		.667		16.94
E	.667	.687	16.94	17.45
F	.060	.200	1.52	5.08
J		1.000		25.40
M		.375		9.53
N	.422	.453	10.72	11.51
φΤ	.140	.175	3.56	4.45
Z	.156		3.96	
φW	14-28 L	NF-2A		

Glass To Metal Seal—
Creepage & Strike Distance =
.09 in. min. (2.46 mm)
(In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight—.6 oz (18g)
R410—Standard Polarity—
Gray Glass
R411—Reverse Polarity—

Yellow



Conforms to DO-5 Outline

Matrix Key Letter	A	В	С	D	E	F	G	Н	
urrent I _F (AV) @T _C , °C	<b>15</b> @150°	<b>18</b> @150°	<b>20</b> @150°	<b>20</b> @150°	<b>20</b> @150°	<b>22</b> @150°	<b>25</b> @145°	<b>35</b> @140°	<b>40</b> @150°
lesw	250	220	350	350	350	500	400	500	800
l ² t for Fusing	260	200	510	510	510	1050	676	1050	2600
V _{FM} @I _F (AV) & 25°C	1.5	2.35	1.5	1.5	1.2	2.0	1.8	1.7	1.2
hend .	2,0	1.5	2.0	2.0	1.5	1.5	1.5	1.0	1.0
T, (Oper) Range	-65 to 175	-65 to 175	-65 to 175	-66 to 175	-65 to 175	-65 to 200	-65 to 200	-55 to 200	-55 to 200
T _{sta} flange	-65 to 175	-65 to 175	-65 to 175	-65 to 178	-65 to 175	- 65 to 200	-65 to 200	-85 to 200	-65 to 200
50	1N3208	1N1191	1N248A	1N248B	1N248C	1N1191A	1N2154	1N1183	1N1183A
100	1N3209	1N1192	1N249A	1N249B	1N249C	1N1192A	1N2155	1N1184	1N1184A
150		1N1193				1N1193A		1N1185	1N1185A
200	1N3210	1N1194	1N250A	1N250B	1N250C	1N1194A	1N2156	1N1186	1N1186A
300	1N3211	1N1195				1N1195A	1N2157	1N1187	1N1187A
400	1N3212	1N1196				1N1196A	1N2158	1N1188	1N1188A
500	1N3213	1N1197				1N1197A	1N2159	1N1189	1N1189A
600	1N3214	1N1198	,			1N1198A	1N2160	1N1190	1N1190A
700								1N3765	
800			* .			R4100822		1N3766	R4100840
900								1N3767	
1000	,					R4101022		1 N3768	R4101040
RM @ 5°	k				- 100µA -				

- NOTES:

  1. Complete threads to extend to within 2½ threads of seating plane.

  2. Angular orientation of this terminal is undefined.

  3. ½-28 UNF-2A. Maximum pitch diameter
- of plated threads shall be basic pitch diameter (,2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 P1.

## Features:

- Diffused Junction
- Low Leakage Current
- Low VF
- Lifetime Guarantee

#### **Applications:**

- Power Supplies
- DC to DC Converters
- Battery Chargers
- Magnetic Amplifiers

For JEDEC Reverse Polarity Add Suffix R, i.e., IN1191AR.

# 15—40 A. Avg. Up to 1000 Volts

# General Purpose Rectifiers R410/R411/JEDEC Types







#### **JEDEC Circuit**





# I_{RM} (rec) Recovery Time Waveform

#### **Typical Recovery Time Ranges**

Westing- house Device Family	Test conditions	Typical trr
R410, R411	IFM = 100 A, diR/dt = 25 A/µs	2-4µs



# **General Purpose** Rectifier R404/R405

# 60 and 70 Amperes Up to 1000 Volts



Conforms to DO-5 Outline

#### Features:

- Copper base package
- · Hard solder construction
- Proven reliability in aircraft applications
- Specially designed for cyclic loading and rotating applications

Symbol	Inches		Millimeters					
Symbol	Min.	Max.	Min.	Max.				
A		.450		11.43				
В		.080		2.03				
φD		.667		16.94				
E F	.667	.687	16.94	17.45				
F	.060	.200	1.52	5.08				
J		1.000		25.40				
M		.375		9.53				
N	.422	.453	10.72	11.51				
$\phiT$	.140	.175	3.56	4.45				
Z	.156		3.96					
φW	14-28 L	JNF-2A						

Glass To Metal Seal-Creepage & Strike Distance = .09 in. min. (2.46 mm) (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—.6 oz (18g) R404, —Standard Polarity— Gray Glass R405, —Reverse Polarity— Yellow Glass

#### Applications:

- Aircraft power systems
- Communications equipment
- High reliability power supplies
- Motor controls



- Complete threads to extend to within 2½ threads of seating plane.
   Angular orientation of this terminal is
- undefined.
  3. ¼-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 P1.

#### **Ordering Information**

Туре	Vol	tage	Current				
Code	VRRM (V)	Code	IF(AV) (A)	Code			
R404 (Std. Polarity) R405 (Rev. Polarity)	50 100 200 300 400 500 600 800 1000	00 01 02 03 04 05 06 08 10	60 70	70			

Obtain optimum device performance for your application by selecting proper Order Code.

TYPE R404, forward polarity, rated at 70A average with VRRM = 400V, order as:

	Ту	pe		Vol	tage	Cur	rent
R	4	0	4	0	4	7	0

Parameter	R40460	R40470
Current IF (AV) @TC, °C	<b>60 A</b> @130	<b>70 A</b> @ 130
İFSM	1000 A	1200 A
I2t for Fusing	4160 A²sec	5600 A ² sec
VFM @IF(AV) & 25°C	1.7 V	1.7 V
IRRM@ 190°C	5MA	5MA
Rejc	0.75°C/W	0.65°C/W
TJ (Oper) Range	—65 to 200°C	−65 to 200°C
Tstg Range	65 to 200 °C	—65 to 200°C

# 60 and 70 Amperes Up to 1000 Volts

# General Purpose Rectifier R404/R405



#### Voltage

Blocking State Maximums	Symbo	]				,				
Repetitive peak reverse voltage, V	VRRM	50	100	200	300	400	500	600	800	1000
Non-repetitive transient peak reverse voltage,	VRSM	100	150	300	400	500	600	700	900	1100
voltage tp < 5.0 msec. V										
Reverse leakage current, mA peak, 25.°C	IRRM	-			10	ο μ <b>Ά</b> –				<del>&gt;</del>

#### **Typical Recovery Time Range**

Test Conditions: JEDEC Circuit

IFM = 100 A,  $diR/dt = 25A/\mu s$ 

trr = 2-4 µs











# General Purpose Rectifiers IN3288A, AR - 97A, AR

# 100 A. Avg. Up to 1400 Volts



Conforms to DO-8 Outline

Symbol	Inches		Millimet	Millimeters					
Syllibol	Min.	Max.	Min.	Max.					
A	4.18	4.62	106.17	117.35					
В	.050	.100	1.27	2.54					
φD	.860	1.000	21.84	25.40					
E	1.031	1.063	26.19	27.00					
F	.255	.400	6.48	10.16					
J	2.50		63.50						
M'	.437	.650	11.10	16.51					
N	.605	.645	15.37	16.38					
Q		1.675		42.54					
φT	.250	.291	6.35	7.39					
Ż	.310		7.87						
φW	%-24 U	NF-2A							

Creep & Strike—Distance: Creamic Seal,—.66 in. min. (16.94 mm). Glass Seal —.16 in. min. (4.11 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight—3.5 oz (99g)
Standard Polarity—White Ceramic
Reverse Polarity—Pink Ceramic
Standard Polarity—Gray Glass
Reverse Polarity—Gray Glass
1. Complete threads to extend to within

- 2½ threads of seating plane. 2. Angular orientation of terminal is
- undefined. Pitch diameter of %-24 UNF-2A
- (coated) threads (ASA B1.1-1960).

  4. Dimension "J" denotes seated height with lead bent at right angle.



Syn	nbol	JEDI	EC Nur	nber ①	)'③						
Maximum Ratings and Characteristics Blocking State (T _J = 200°C)  • Available as JAN types		1N3288A	•1N3289A	1N3290A	•1N3291A	1N3292B	1N3293A	•1N3294A	•1N3295A	1N3296A ①	1N3297A ⊕
* Repetitive Peak Reverse Voltage, Volts V	RRM	100	200	300	400	500	600	800	1000	1200	1400
* Non-repetitive Peak Reverse Voltage, Volts V	RSM	200	300	400	525	650	800	1050	1300	1600	1800
* Max. Allowable d-c Blocking Voltage, Volts V	R	100	200	300	400	500	600	800	1000	1200	1400
* Max. Peak Reverse Current at Rated $V_{RRM}$ 100 Amperes Avg. Forward Current, Single Phase @ $T_{C} = 130$ °C, ma	RM	24	24	24	24	21	17	13	11	9	7

Conducting State (T _J =200°C)	1.	All Types
* Max. (fca) ②, Forward Current @ T _C =130°C, Amperes RMS Forward Current, Amps	I _{F(AV)} I _{F(RMS)}	100 160
(Under Load), Amps	FSM	2,300
12t for Fusing (at 60 Hz Half-Wave), Amps2—Sec * Max. Forward Voltage Drop	l² t	22,000
@ 100 Amperes Average, T _C = 130°C, Peak Volts	V _{FM}	1.5
Thermal Characteristics		
* Oper. Junction Temp. Range, °C		-40 ③ to +200
* Storage Temperature Range, °C	Tstg	-40 ③ to +200
* Junction to Case	R _{θJC} R _{θCS}	.40
Case to Sink, Lubricated Mounting Surface	Recs	.15

* JEDEC Registered Parameters.

Mounting: Recommended stud mounting torque, 120 in.-lbs. lubricated.

Consult recommended mounting procedures.

- ① Order reverse polarity units by designating R. ② Full cycle average measured with DC meter. ③ Ceramic package available.

# 100 A. Avg. Up to 1400 Volts

# **General Purpose** Rectifiers IN3288A, AR - 97A, AR





Figure 1. Forward Current vs. Forward Voltage.



Figure 3. Power dissipation vs. Average forward current.



Figure 5. Transient thermal impedance vs. time.



Figure 2. Maximum allowable surge current at rated load conditions.



Figure 4. Forward Current vs. Case Temperature.

- Standard and Reverse Polarities with Color Coded Seals.
- High Surge Current Ratings.
- Electrical Selection for Parallel and Series Operation.
- Compression Bonded Encapsulation.
- Lifetime Guarantee

#### Applications:

- Welders.
- · Battery Chargers.
- Electrochemical Refining.
- Metal Reduction.
- **General Industrial High Current** Rectification.



# General Purpose Rectifiers IN4587,R - 96, R

# 150 A. Avg. Up to 1400 Volts



Conforms to DO-8 Outline

Symbol	Inches		Millimet	ters
- Jyllibol	Min.	Max.	Min.	Max.
Α	4.18	4.62	106.17	117.35
В	.050	.100	1.27	2.54
$\phi D$	.860	1.000	21.84	25.40
E	1.031	1.063	26.19	27.00
F	.255	.400	6.48	10.16
J	2.50		63.50	
M	.437	.650	11.10	16.51
N	.605	.645	15.37	16.38
Q		1.675		42.54
$\phi T$	.250	.291	6.35	7.39
Z	.310		7.87	
φW	%-24 U	NF-2A		

Creep & Strike—Distance: .66 in. min. (16.94 mm)., Ceramic .16 in. min. (4.11 mm)., Glass (In accordance with NEMA standards.) Finish—Nickel Plate.

Approx. Weight—3.5 oz (99g) Standard Polarity—White Ceramic Reverse Polarity—Pink Ceramic Standard Polarity—Gray Glass Reverse Polarity—Yellow Glass

Complete threads to extend to within 2½ threads of seating plane.

Angular orientation of terminal is undefined.

3. Pitch diameter of %-24 UNF-2A (coated) threads (ASA B1.1-1960).4. Dimension "J" denotes seated height

Dimension "J" denotes seated height with lead bent at right angle.



	Symbol	JEI	JEDEC Number① ③								
		1N4587	1N4588	1N4589	1N4590	1N4591	1N4592	1N4593	1N4594	• 1N4595	• 1N4596
* Repetitive Peak Reverse Voltage, Volts	V _{RRM}	100	200	300	400	500	600	800	1000	1200	1400
* Non-repetitive Peak Reverse Voltage, Volts	V _{RSM}	200	300	400	525	650	800	1050	1300	1600	1800
* Max. Allowable d-c Blocking Voltage, Volts	V _R	100	200	300	400	500	600	800	1000	1200	1400
* Max. (fca) ②, Reverse Current at Rated $V_{RRM}$ 150 Amperes Avg. Forward Current, Single Phase @ $T_C=110^{\circ}C$ , ma	I _{R(AV)}	9.5	9.5	9.0	9.0	8.0	6.5	5.5	4.5	4.0	3.5

Conducting State (T _J = 200°C)		All Types
* Max. (fca) ②, Forward Current @ T _C 110°C, Amperes	I _{F (AV)}	150
RMS Forward Current, Amps	I _{F(RMS)}	236
<ul> <li>* Max. Peak ½ Cycle Surge Current (at 60 Hz) (Under Load), Amps</li></ul>	I _{FSM} I ² t V _{FM}	3,000 37,200 1.35
Thermal Characteristics		
* Oper. Junction Temp. Range, °C	TJ	-65  to  +200
* Storage Temperature Range, °C	T _{stg}	-65 to +200
Junction to Case	Rejc	.35
Case to Sink, Lubricated Mounting Surface	Recs	.15

* JEDEC Registered parameters.

#### • Ceramic Seal Supplied

**Mounting:** Recommended stud mounting torque, 120 in.-lbs. lubricated.

Consult recommended mounting procedures.

- ① Order reverse polarity units by designating R.
- ① Full cycle average measured with DC meter.
- ① Ceramic package available.

# 150 A. Avg. Up to 1400 Volts

# General Purpose Rectifiers IN4587,R - 96, R





Maximum Forward Voltage Drop, V_{FM}, Peak Volts

Figure 1. Forward current vs. Forward voltage.



Average Forward Current, I_F (AV), Amperes



Figure 5. Transient thermal impedance vs. time.



Figure 2. Maximum allowable surge current at rated load conditions.



Figure 4. Forward current vs. Case temperature.

## Features:

- Standard and Reverse Polarities with Color Coded Seals.
- High Surge Current Ratings.
- Electrical Selection for Parallel and Series Operation.
- Compression Bonded Encapsulation.
- Lifetime Guarantee.

#### **Applications:**

- Welders.
- Battery Chargers.
- Electrochemical Refining.
- Metal Reduction.
- General Industrial High Current Rectification.



# **General Purpose** Rectifier R510/R511 and R500/R501

# 100 — 150 A Avg. Up to 1400 Volts



Conforms to DO-8 Outline

#### **Features**

- Standard and Reverse Polarities with Color Coded Seals.
- Flag Lead and Stud Top Terminals Available.
- · High Surge Current Ratings.
- Special Electrical Selection for Parallel and Series Operation.
- Compression Bonded Encapsulation.
- ½" Stud Package Available.
- · Lifetime Guarantee

#### **Applications**

- Welders.
- Battery Chargers.
- · Electrochemical Refining.
- Metal Reduction.
- General Industrial High Current Rectification.

Symbol	Inches		Millimet	ters
	Min.	Max.	Min.	Max.
Α	4.18	4.62	106.17	117.35
В	.050	.100	1.27	2.54
φD	.860	1.000	21.84	25.40
E	1.031	1.063	26.19	27.00
F	.255	.400	6.48	10.16
J	2.50		63.50	
М	.437	.650	11.10	16.51
N	.605	.645	15.37	16.38
Q		1.675		42.54
φΤ	.250	.291	6.35	7.39
<u>Z</u>	.310		7.87	
φW	%-24 U	NF-2A		

Creep & Strike—Distance: R500,501—.66 in. min. (16.94 mm). R510,511—.16 in. min. (4.11 mm). (In accordance with NEMA standards.)

(In accordance with NEMA standards.)
Finish—Nickel Plate.
Approx. Weight—3.5 oz (99g)
R500—Standard Polarity—White Ceramic
R501—Reverse Polarity—Pink Ceramic
R510—Standard Polarity—Gray Glass
R511—Reverse Polarity—Yellow Glass
1. Complete threads to extend to within
2½ threads of seating plane

- 2½ threads of seating plane.2. Angular orientation of terminal is undefined.
- Pitch diameter of %-24 UNF-2A (coated) threads (ASA B1.1-1960).
- 4. Dimension "J" denotes seated height with lead bent at right angle.



#### Ordering Information

Туре	Volt	age	Current		Recovery Time		Recove Circ		Leads		
Code	VRRM (V)	Code	IF(av) (A)	Code	t _{rr} (µsec)	Code	Circuit	Code	Case	Code	
R510 (Standard Polarity) R511	100 200 300	01 02 03	100 150	10 15	7 (typ)	X	JEDEC	×	DO-8	WA (150A)	
(Reverse Polarity) *R5D0 (Stendard Polarity)	400 500 600	04 05 06								WC (100A)	
*R5D1 (Reverse Polarity)	700 800 900	07 08 09									
R500 (Standard Polarity)	1000 1100 1200	10 11 12									
R501 (Reverse Polarity)	1300 1400	13 14									

Obtain optimum device performance for your application by selecting proper Order Code.

Type R510 rated at 150A average with V_{RRM} = 300V, and standard flexible lead-order as:

	Т	уре		Vol	tage	Cur	rent	Time	Circuit	Lea	ads
R	5	1	0	0	3	1	5	Х	Х	w	Α

# 100 — 150 A Avg. Up to 1400 Volts

# General Purpose Rectifier R510/R511 and R500/R501



#### Voltage

voitage		
Blocking State Maximums ①	Symbol	
Repetitive peak reverse voltage, V	VRRM	100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Non-repetitive transient peak reverse voltage, tp < 5.0 msec., V	VRSM	200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
voltage, tp<5.0 msec., v	VKSM	
		R510 ALL TYPES ————————————————————————————————————
		R500 ALL TYPES
Reverse leakage current, mA peak	IRRM	30
Current		
Conducting State Maximums	Symbol	R510_10, R511_10 R510_15, R511_15
		R500_10, R501_10 R500_15, R501_15
RMS forward current, A	IF(rms)	160 236
Ave. forward current, A	lF(av)	100 150
One-half cycle surge current②, A	^I FSM	2300 3000
3 cycle surge current②, A	IFSM	1875 2375
10 cycle surge current②, A	IFSM	1350 1750
I2t for fusing (for times=8.3 ms) A2 sec	l²t	22,000 37,500
Forward voltage drop at IFM=470 A and TJ=25°C, V	VFM	1.55
Forward voltage drop at rated single phase average current and case temperature, V		1.37
Typical Reverse Recovery Time		
$I_{FM} = 314A$ , $t_{D} = 40\mu s$		7
$diR/dt=25A/\mu_S$		,
$T_C=25$ °C, $\mu_S$	t _{rr}	
Thermal and Mechanical		
	Symbol	
Max. mounting torque, in lb. 3		120
Thermal resistance		120
Case to sink, lubricated,		
°C/Watt	R∂CS	.20
Min., Max. oper. junction		
temp., °C	TJ	← −65 to 200 −−−−
Min Man standard town 90	<b>-</b>	05000

-65 to 200 ·



- ① At maximum TJ
- ② Per JEDEC RS-282, 4.01 F.3.
- $\ \, \mbox{\Large 3.}$  For R5DO  $\mbox{\Large 1\!\!/}_2\mbox{\Large 2\!\!/}$  stud package use 130 in.-lb.



# General Purpose Rectifier R510/R511 and R500/R501

100 — 150 A Avg. Up to 1400 Volts



# 100 — 150 A Avg. Up to 1400 Volts

# General Purpose Rectifier R510/R511 and R500/R501













# General Purpose Rectifiers IN3260,R - IN3276,R

# 160 A. Avg. Up to 1600 Volts



Conforms to DO-9 Outline

Symbol	Inches		Millimet	ters
	Min.	Max.	Min.	Max.
Α	5.32	6.00	135.13	152.40
В	.063	.172	1.60	4.37
φD	.980	1.065	24.89	27.05
E	1.212	1.250	30.78	31.75
F	.250	.630	6.35	16.00
<u>J</u>	3.250		82.55	
M	.530	.755	13.46	19.18
N	.660	.749	16.76	19.02
Q		2.250		57.15
$\phiT$	.330	.350	8.38	8.89
Z	.440		11.18	
φW	%-16 U	NF-2A		

Creep & Strike Distance: .49 in. min. (12.52 mm). , Ceramic .13 in. min. (3.43 mm). , Glass (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight-8 oz. (226g) Standard Polarity—White Ceramic Reverse Polarity—Pink Ceramic

- Standard Polarity—Yellow Glass
  Reverse Polarity—Yellow Glass
  1. Complete threads to extend to within 2% threads of seating plane.
- Angular orientation of terminal is undefined.
- 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA B1.1-1960).
- 4. Dimension "J" denotes seated height with lead bent at right angle.



Symbol	JEC	DEC N	umbe	r ① ③	)												
Maximum Ratings and Characteristics Blocking State (T _J = 190°C)	1N3260	1N3261	1N3262	1N3263	1N3264	1N3265	1N3266	1N3267	1N3268	1N3269	1N3270	1N3271	1N3272	1N3273	• 1N3274	• 1N3275	• 1N3276,
* Repetitive Peak Reverse Voltage VoltsVRRM	50	100	150	200	250	300	350	400	500	600	700	800	900	1000	1200	1400	1600
<ul> <li>Non-repetitive Transient Peak</li> <li>Reverse Voltage, Volts VRSM</li> </ul>	100	200	250	300	350	400	450	525	650	800	925	1050	1175	1300	1600	1800	2000
* Allowable d-c blocking voltage, Volts V R	40	80	120	160	200	240	280	320	400	480	560	640	720	800	960	1120	1280
* Max. (fca) ③, reverse current at rated V _{RRM} (rep.): 160 amperes avg. forward current, single phase @ Tc=125°C, ma I _{R(AV)}	<b>—</b>									1	2						

Conducting State (T _J = 190°C)	Symbol	All Types
*. Max. (fca) ②, Forward Current at T _C =130°C, amps I	F(AV)	160
RMS Forward Current, Amps 1	F(RMS)	250
* Max. Peak 1/2 Cycle Surge Current (at 60 Hz)		
(Under Load), Amps	FSM	2,000
12t for Fusing (at 60 Hz Half-Wave), Amps2—Sec 12	²t	16,700
* Max. Forward Voltage Drop		
@ @ 160 amperes average, T _C $=$ 125°C, peak volts V	/ _{FM}	1.6
Thermal Characteristics		
* Oper. Junction Temp. Range, °C	۲'	-65 to +190
* Storage Temperature Range, °C	stg	-65  to  +175
Max. Thermal Resistance, °C/Watt		
* Junction to Case R	ReJC	0.30
Case to Sink, Lubricated Mounting Surface	Recs	.15

- · Ceramic seal supplied.
- * JEDEC registered parameters.

Mounting: Recommended stud mounting torque; 360 in.-lbs. lubricated.

- · ① Order reverse polarity units by designating R.
- Full cycle average measured with DC meter.
   Ceramic package available.

# 160 A. Avg. Up to 1600 Volts

# General Purpose Rectifiers IN3260,R - IN3276,R







Maximum Forward Voltage Drop, V_{FRM}, Peak Volts Figure 1. Forward current vs. forward voltage.



Average Forward Current, I_{F(AV)}, Amperes Figure 3. Power dissipation vs. average forward current.



Figure 5. Transient thermal impedance versus time.



Overload Operating Time, Cycles at 60 Hz

Figure 2. Maximum allowable surge current at rated load conditions.



 $\label{eq:maximum Case Temperature, TC(MAX), C} \\ \text{Figure 4. Forward current vs. case temperature.} \\$ 

#### Features:

- Standard and Reverse Polarities with Color Coded Seals
- High Surge Current Ratings
- Electrical Selection for Parallel and Series Operation
- Compression Bonded Encapsulation
- Lifetime Guarantee

## **Applications:**

- Welders
- Battery Chargers
- Electrochemical Refining
- Metal Reduction
- General Industrial High Current Rectification



# General Purpose Rectifiers IN4044,R - IN4056,R

# 275 A. Avg. Up to 1000 Volts



Conforms to DO-9 Outline

Symbol	Inches		Millimeters				
Symbol	Min.	Max.	Min.	Max.			
A Β φD	5.32 .063 .980	6.00 .172 1.065	135.13 1.60 24.89	152.40 4.37 27.05			
E F J	1.212 .250 3.250	1.250 .630	30.78 6.35 82.55	31.75 16.00			
M N Q	.530 .660	.755 .749 2.250	13.46 16.76	19.18 19.02 57.15			
φT Z	.330 .440	.350	8.38 11.18	8,89			
φW	<b>¾</b> -16 U	NF-2A					

Creep & Strike Distance: .49 in, min. (12.52 mm)., Ceramic .13 in. min. (3.43 mm). , Glass (In accordance with NEMA standards.)

Finish—Nickel Plate.

Finish—Nickel Plate.

Approx. Weight—8 oz. (226g)
Standard Polarity—White Ceramic
Reverse Polarity—Pink Ceramic
Standard Polarity—Gray Glass
Reverse Polarity—Yellow Glass
1. Complete threads to extend to within

- 2½ threads of seating plane.2. Angular orientation of terminal is
- undefined.
- Pitch diameter of %-16 UNF-2A
- (coated) threads (ASA B1.1-1960).
  4. Dimension "J" denotes seated height with lead bent at right angle.



JEDEC number(1) (3)														
Maximum Ratings and Characteris Blocking State $(T_J = 190^{\circ}C)$	stics Symbol	1N4044	1N4045	1N4046	1N4047	1N4048	1N4049	1N4050	1N4051	1N4052	1N4053	1N4054	1N4055	1N4056
* Repetitive Peak Reverse Voltage, Volts	V _{RRM}	50	100	150	200	250	300	400	500	600	700	800	900	1000
* Non-repetitive Peak Reverse Voltage, Volts	V _{RSM}	100	200	250	300	350	400	525	650	800	925	1050	1175	1300
* Max. allowable d-c blocking voltage, Volts	V _R	50	100	150	200	250	300	400	500	600	700	800	900	1000
* Max. (fca) ②, reverse current at rated V _{RRM} ; 275 amperes avg. forward current, single phase @ T = 120°C, ma		<b>—</b>		mhal		II Type	<u> </u>	15		! Ch		rietice		<b></b>

© T = 120°C, ma	Symbol	All Types
* Ave. Forward Current (180° Conduction) @ T = 120°C, amps ②	I _{F(AV)}	275
RMS Forward Current, amps	I _{F(RMS)}	435
* Max. Peak 1/2 Cycle Surge Current (at 60 Hz), amps	I _{FSM}	5,000
I ² t for Fusing (at 60 Hz half-wave), amps ² —sec	l²t	104,000
* Max. Forward Voltage Drop @ 275 amperes average, T _C = 120°C, peak volts	V _{FM}	1.35
* Oper. Junction Temp. Range, °C	$T_J$	-65  to  +190
* Storage Temperature Range, °C	T _{stg}	-65  to  +190
Max. Thermal Resistance, °C/Watt		÷
Junction to Case	Relc	.17
Case to Sink, Lubricated Mounting Surface		.15

Finish: Nickel-plated case to maintain low contact resistance and to prevent corrosion.

Mounting: Recommended stud mounting torque; 360 in.-lbs.

Consult recommended mounting procedures.

- * JEDEC registered parameters.
- ① Order reverse polarity units by designating 1N4044R, etc.
- ② Full cycle average (measured with a d-c meter).
- ① Ceramic package available.

# 275 A. Avg. Up to 1000 Volts

# General Purpose Rectifiers IN4044,R - IN4056,R





Maximum Forward Voltage Drop, V_{FM}, Peak Volts

Figure 1. Forward current vs. forward voltage.



Average Forward Current, I_F(AV), Amperes



Figure 5. Transient thermal impedance vs. time.



Figure 2. Maximum allowable surge current at rated load conditions.



Figure 4. Forward current vs. Case temperature.

#### Features:

- Standard and Reverse Polarities with color Coded Seals
- High Surge Current Ratings
- Electrical Selection for Parallel and Series Operation
- Lifetime Guarantee

#### **Applications:**

- Welders
- Battery Chargers
- Electrochemical Refining
- Metal Reduction
- General Industrial High Current Rectification



# General Purpose RECTIFIER R610/R611 And R600/R601

# 200 — 300 A Avg. Up to 3000 Volts



Conforms to DO-9 Outline

#### **Applications**

- Welders
- Battery Chargers
- **Electrochemical Refining**
- **Metal Reduction**
- General Industrial High Current Rectification

Symbol	Inches		Millimet	ers
Symbol	Min.	Max.	Min.	Max.
A B øD	5.32 .063 .980	6.00 .172 1.065	135.13 1.60 24.89	152.40 4.37 27.05
E F J M	1.212 .250 3.250	1.250 .630	30.78 6.35 82.55	31.75 16.00
M N Q	.530 .660	.755 .749 2.250	13.46 16.76	19.18 19.02 57.15
φT Z	.330 .440	.350	8.38 11.18	8.89
φW	%-16 U	NF-2A		

Creep & Strike Distance: R600,601—.49 in. min. (12.52 mm). R610,611—.13 in. min. (3.43 mm). (In accordance with NEMA standards.)

Finish--Nickel Plate.

Approx. Weight—8 oz. (226g)
R600—Standard Polarity—White Ceramic
R601—Reverse Polarity—Pink Ceramic

- R610—Standard Polarity—First Ceramic R611—Reverse Polarity—Yellow Glass R611—Reverse Polarity—Yellow Glass 1. Complete threads to extend to within 21/2 threads of seating plane.
- Angular orientation of terminal is undefined.
- 3. Pitch diameter of %-16 UNF-2A
- (coated) threads (ASA B1.1-1960). Dimension "J" denotes seated height with lead bent at right angle.

- Standard and Reverse Polarities
- Flag Lead and Stud Top Terminals Available
- **High Surge Current Ratings**
- High Rated Blocking Voltages
- Special Electrical Selection for Parallel and Series Operation



- Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths
- Compression Bonded Encapsulation
- JAN Types Available
- Lifetime Guarantee

#### Ordering Information

Туре	Voltage		Current		Recovery Time		Recovery Time Circuit		Leads	
Code	V _{RRM} (V)	Code	I _{F(av)} (A)	Code	trr μsec	Code	Circuit	Code	Case	Code
R610	100	01	200	20	13	X	JEDEC	Х	D <b>O</b> -9	YA
(Standard Polarity)	200	02								
	400	04	250	25	11	X				
R611	600	06								
(Reverse Polarity)	800	08	300	30	9	X				
	1000	10			(typical)					
R600	1200	_ 12								
(Standard Polarity)	1400	14								
R601	1600 1800	16 18								
(Reverse Polarity)	2000	20								
	2200	22								
1.00	2400	24								
	2600	26								
	2800	28								
	3000	30								

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R610 rated at 250A average with  $V_{RRM}=300V$ , and standard flexible lead — order as:

Obtain optimum device performance for your application by selecting proper Order Code.

Type R600 rated at 300A average with  $V_{RRM} = 1200 \, V$ , and standard flexible lead - order as:

	Туре		Voltage		Current		Time	Circuit	Leads			
F	R	6	1	0	0	3	2	5	Х	Х	Υ	Α

	Type			Vol	tage	Cur	rent	trr	Circuit	Leads		
П	R	6	0	0	1	2	3	0	Х	Х	Υ	Α

# $200-300\ A\ Avg.$ Up to 3000 Volts

# General Purpose RECTIFIER R610/R611 And R600/R601



Voltage Blocking State Maximums ①	Symbol		٠,			;									•		
Repetitive peak reverse voltage , V		100	200	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400 2	600 2	800	3000
Non-repetitive transient peak reverse voltage, $V \leq 5.0 \text{ m}\text{sec}$		200	300	500	700	1000	1200	1400	1600	1800	2000	2200	2400	2600 2	800 3	000	3200
		<b>—</b>		R60	, 00	_20 -	<u> </u>	$\longrightarrow$	<b>←</b> П	600_	20 -		<del></del>	R600	02	20	$\longrightarrow$
		<del></del>			00			$\rightarrow$	<b>←</b> — R	600_	25	$\rightarrow$					
		<del></del>	R	— R60 610 (A	00 II type	_		$\rightarrow$	t						-	,	
Min., Max. oper. junction temp., °C	Tj	$\leftarrow$	65	to 190	<u> </u>		$\longrightarrow$	<b>←</b> -6	55 to 17	75 —		$\rightarrow$	<u> </u>	-65 to	150 -		$\rightarrow$
Min., Max. storage temp., °C	T _{stg}	$\leftarrow$	<del>-</del> 65	to 190	) <u> </u>		$\longrightarrow$	<del>&lt;</del> −6	55 to 19	0 —		$\rightarrow$	<del></del>	-65 to	190 -		$\Rightarrow$
Typical Reverse Recovery Time † FM = 785A, tp = 100 $\mu$ s di R/dt = 25A/ $\mu$ s, $T_{\rm C}$ = 25°C, $\mu$ s	t _{rr}			9					11					13			
Reverse leakage current, mA peak		<b>K</b>							50								$\rightarrow$
Current Conducting State Maximums				002					6002 6102					R600 R610			
Conducting State Maximums	Symbol		R60	102 012 112	20			R6	6012 6112	25				R601.	30		
RMS forward current, A	F(rms)	$t^-$		315					400					4	70		
Ave. forward current, A One-half cycle surge current®, A	F(av)	l		200					250						00		
3 cycle surge current@, A	FSM  FSM	į		5500 4300					6000 4700					65 50			
10 cycle surge current@, A	FSM			3300	1				3600					39			
A ² sec.	l²t	ł	125	000,				1	50,000					175,0	00		
Forward voltage drop at IFM = 800 A and T _J = 25°C, V	$v_{FM}$			1.7					1.5					1	1.4		
Forward voltage drop at rated single phase average current and case temperature, V	v _{FM}			1.45					1.45					1.	45		
Thermal and Mechanical	Symbol																
Max. mounting torque, in lb. 3		•							360								
Thermal resistance ® Case to sink, lubricated, °C/Watt	Recs								1.10								

① At maximum TJ

① Per JEDEC RS-282, 4.01 F.3.

① Consult recommended mounting procedures.



# General Purpose RECTIFIER R610/R611 And R600/R601

200 - 300 A Avg. Up to 3000 Volts



# 200 - 300 A Avg. Up to 3000 Volts

### General Purpose RECTIFIER R610/R611 And R600/R601







# General Purpose Rectifiers R700/R701

# 300-550 A. Avg. Up to 4000 Volts



**R7 Outline** 

Symbol	Inches		Millimet	ters
	Min.	Max.	Min.	Max.
A Β φD	9.76 .063	10.00 .172 1.490	247.90 1.60	254.00 4.37 37.85
E F J	1.620 .430 4.000	1.750 .810	41.15 10.92 101.60	44.45 20.57
M N Q	.530 1.04	.755 1.08 3.100	13.46 26.42	19.18 27.43 78.74
φT Z	.330 .440	.350	8.38 11.18	8.89

#### W 34-16 UNF-2A

Creep Distance—2.12 in. min. (53.98 mm). Strike Distance—1.20 in. min. (30.48 mm). (In accordance with NEMA standards.) Finish—Nickel Plate.

Approx. Weight—16 oz. (454g). R700—Standard Polarity—White Ceramic R701—Reverse Polarity—Pink Ceramic

- Complete threads to extend to within 2½ threads of seating plane.
- Angular orientation of terminal is undefined.
- Pitch diameter of ¾-16 UNF-2A (coated) threads (ASA B1.1-1960).
- 4. Dimension "J" denotes seated height with lead bent at right angle.



#### Features:

- Standard and Reverse Polarities
- Flag Lead and Stud Top Terminals Available
- Flat Base, Flange Mounted Design Available
- High Surge Current Ratings
- High Rated Blocking Voltages
- Electrical Selection for Parallel And Series Operation
- Color Coded Seals
- High Voltage Creepage and Strike Paths
- Compression Bonded Encapsulation
- Lifetime Guarantee

#### Applications:

- Welders.
- Battery Chargers.
- Electrochemical Refining.
- Metal Reduction.
- General Industrial High Current Rectification.

#### **Ordering Information**

Туре	Volt	age	Cur	rent	Recove	ery Time		ery Time cuit	Leads		
Code	V _{RRM} (V)	Code	l _{F (av)} (A)	Code	t _{ir} μsec	Code	Circuit	Code	Case	Code	
R700 (Standard Polarity) R701 (Reverse Polarity)	100 200 400 600 800 1000 1200 1400 1600 2000 2200 2400 2600 2800 3000 3500 4000	01 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 35 40	300 450 550	03 04 05	15 11 9 (typical)	X X	JEDEC	×	R70	UA	

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R700 rated at 450 A average with  $V_{RRM} = 1000V$ , and standard flexible lead—order as:

	Ту	pe		Vol	tage	Cur	rent	trr	Circuit	Lea	ads
R	7	0	0	1	0	0	4	Х	Х	U	Α

# 300-550 A. Avg. Up to 4000 Volts

# General Purpose Rectifiers R700/R701



		1 2	44.00				``									,		31
Voltage																		
Blocking State Maximums① Symbo	ol		1			ļ												
Repetitive peak reverse voltage, V VRRM Non-repetitive transient peak reverse voltage, t ≤ 5.0 m sec, V VRSM	1	200	1	ı		l				l	1		1				3500 3700	1
	k		R	700	03		<del>&gt;</del>	←	_R700	)— —03	3>	k		F	R <b>7</b> 00-	03_		<del></del>
	*			,	04 05			<del>-</del>	_R700	)04	<del>آ</del>							
Reverse leakage current, mA peak IRRM	<b>K</b>			50			>	<del>(</del>		50	<b>→</b>	<u> </u>	.,,		50			>
Switching																		
Typical Reverse Recovery Time  IFM=1500 A, tp=190 µs  diR/dt=25A/µs, T _C =25°C, µs t _{ff}	←	4.		9			->	←	1	I	>	←			15	; ———		->
Thermal and Mechanical																		
Min., Max. oper. junction temp., °C TJ Min., Max. storage temp., °C Tste Max. mounting torque, in lb.@	* *				200 – 200		${\rightarrow}$		65	to 175 to 200	_	W.W.			65 to 65 to - 360	200 -		→ →
Thermal resistance $\bigcirc$ Junction to case, $^{\circ}$ C/Watt				12 04			$\Rightarrow$	<del>-</del>		12 — 04 —	$\Rightarrow$	<u> </u>	A. (44, -4, -4, -4, -4, -4, -4, -4, -4, -4,		12 04			$\Rightarrow$
Current	1		R7	700	03				R700	)(	)4			R	700-	05		
Conducting State Maximums			R7	701-	03				R701		)4			R	701	05		
Ave. forward current, A				470 300 7000	)				4	700 150 500				1	865 550 10,000	)		
3 cycle surge current®, A IFS 10 cycle surge current®, A IFS I²t for fusing (for times= 8.3 ms)	M			15250 4200	)				51	00					7500 6000	)		
A ² sec	м	÷	20	2.15 2.15					266,0	000 1.6				41	16,500 1.4			
Forward voltage drop at rated single phase average current and case temperature, VVF	м			1.45	5				1	.45					1.1	1		

¹ At maximum TJ
2 Per JEDEC RS-282, 4.01 F.3.
3 Consult Westinghouse recommended mounting procedures.



### General Purpose RECTIFIERS R700/R701

# 300 — 550 A. Avg. Up to 4000 Volts













# 300-550 A. Avg. Up to 4000 Volts

### General Purpose Rectifiers R700/R701







# General Purpose Rectifiers R620

# 300-500 A. Avg. Up to 3000 Volts



Symbol	Inches		Millime	eters
Зуппрог	Min.	Max.	Min.	Max.
φD	1.610	1.650	40.89	41.91
$\phi D_1$	.745	.755	18.92	19.18
$\phi D_2$	1.420	1.460	36.07	37.08
Н	.500	.560	12.70	14.22
$\phi J$	.135	.145	3.43	3.68
J,	.072	.082	1.83	2.08
N	.030		.76	

Creep Distance—.49 in. min. (12.60 mm). Strike Distance—.52 in. min. (13.21 mm). (In accordance with NEMA standards).

Finish—Nickel Plate.
Approx. Weight—2.3 oz (66g).
1. Dimension "H" is clamped dimension.



#### **R62 Outline**

#### Features:

- High Surge Current Ratings
- High Rated Blocking Voltages
- Special Electrical Selection For Parallel and Series Operation
- · Available in Factory Assembled Water or Air Heat Exchangers
- Single or double-sided cooling
- · Long creepage & strike paths
- Hermetic seal
  Lifetime Guarantee

#### Applications:

- Rectification
- Free Wheeling
- Battery Chargers
- Resistance Welding

#### **Ordering Information**

Туре	Vo	ltage	Cı	irrent	Recove	ery Time	Recove Cir	ry Time cuit	Leads		
Code	V _{RRM} (V)	Code	I _{F(av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code	
R620	100 200	01 02	300	30	11	X	JEDEC	ж .	R62	00	
	400	04	400	40	9	X					
	600 800	06 08	500	50	6	X					
	1000 1200	10 12			(typical)						
	1400 1600	14 16									
	1800 2000	18 20									
	2200 2400	22 24									
	2600 2800	26 28									
	3000	30									

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R620 rated at 400A average with  $V_{RRM}=$  1000V, Order as:

ı		Ty	ре		Vol	tage	Cur	rent	trr	Circuit	Le	ads
П	R	6	2	0	1	0	4	0	Х	Х	0	0

# 300-500 A. Avg. Up to 3000 Volts

Voltage

## General Purpose Rectifiers R620



Blocking State Maximums ①	Symbol											•					
Repetitive peak reverse voltage $\ \ , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	,	100	200 300	400 500	600 700		1000 1200									1	
		-		R6	20 20	40		>		R620 _ R620 -			<b></b>	Ŗ6:	20	_30	>
Reverse leakage current, mA peak	. I _{RRM}	<b>K</b>		R6:	20 <b>50 -</b>	. 50			<b></b>	<del></del> - 5	io	>		***************************************	<del></del> 50-		>
Switching	Symbol																
Typical Reverse Recovery Time IFM = 785A, $t_p = 100 \mu s$ diR/dt = 25A/ $\mu s$ , $T_C = 25^{\circ}C$ , $\mu s$	t _{rr}	-			- 6-			>	€	<u>(</u>	) ——	>	<b></b>		11		<b></b> →

Symbol			
T _J T _{stg} RøJC RøCS	-65 to 190	-65 to 175	-65 to 150
	T _J T _{Stg}	T _J -65 to 190	T _J -65 to 190 -65 to 175 -3  T _{stg} -65 to 190 -65 to 190 -65 to 190 -3  1000 to 1400 -1000 to 1400 -3

Current Conducting State Maximums	Symbol	R620 30	R620 40	R620 50
RMS forward current, A	lF(rms)	470	625	785
Ave. forward current, A	IF(av)	300	400	500
One-half cycle surge current@, A	IFSM	5500	6000	6500
3 cycle surge current@, A	FSM	4300	4700	5050
10 cycle surge current②, A	FSM	3300	3600	3900
2t for fusing (for times = 8.3 ms) A2 sec.	12t	125,000	150,000	175,000
Max I ² t of package (t=8.3 ms), A ² sec	l ² t	20×10 ⁶	20×10 ⁶	20×10 ⁶
Forward voltage drop at $I_{FM} = 800 \text{ A}$ and $T_{J} = 25^{\circ}\text{C}$ , V	v _{FM}	1.7	1.5	1.4
Forward voltage drop at rated single phase average current and case temperature, V	V _{FM}	1.7	1.85	1.85

- ① At maximum TJ
- ② Per JEDEC RS-282, 4.01 F.3.
- 3 Consult recommended mounting procedures.



## General Purpose RECTIFIERS R620

## 300-500 A Avg. Up to 3000 Volts



## 300-500 A Avg. Up to 3000 Volts

# General Purpose RECTIFIERS R620

















# General Purpose Rectifiers R720

# 600-1200 A. Avg. Up to 3000 Volts



	R72	Outline
--	-----	---------

Symbol	Inches		Millime	eters
	Min.	Max.	Min.	Max.
φD	2.250	2.290	57.15	58.17
$\phi D_1$	1.333	1.343	33.86	34.11
$\phi D_2$	2.030	2.090	51.56	53.09
Н	1.020	1.060	25.91	26.92
$\phi$ J	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
N	.040		1.02	

Creep Distance—1.15 in. min. (29.36 mm). Strike Distance—1.02 in. min. (2591 mm). (In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight—8 oz. (227g).

1. Dimension "H" is clamped dimension.



#### Features:

- High Surge Current RatingsHigh Rated Blocking Voltages
- Special Electrical Selection For Parallel and Series Operation
- Available in Factory Assembled Water or Air Heat Exchangers
- Lifetime Guarantee
- Single or double-sided cooling
- Long creepage & strike paths
- Hermetic seal

#### Applications:

- Rectification
- Free Wheeling
- Battery Chargers
- Resistance Welding

**Ordering Information** 

Type	v	oltage	С	urrent	Recov	ery Time	Recove Cir	ry Time cuit	Leads		
Code	VRRM (V)	Code	IF(av) (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code	
R720	100 200	01 02	600	06	13	X	JEDEC	×	R72	00	
	400 600	04 06	900	09	10						
	800 1000	08 10	1200	12	·7 (typical)						
	1200 1400	12 14			(typiou.)						
	1600 1800	16 18									
	2000 2200	20									
	2400 2600	22 24 26									
	2800 3000	28 30		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R720 rated at 900A average with VRRM=1000V, Order as:

	Ту	pe		Vol	tage	Cur	rent	trr	Circuit	Le	ads
R	7	2	0	1	0	0	9	Х	Х	0	0

# 600-1200 A. Avg. Up to 3000 Volts

## General Purpose Rectifiers R720



Voltage																					
Blocking State Maximums ①	Symbol										*										
Repetitive peak reverse voltage , V	VRRM	100	2	00	400	60	00	800	10	00	1200	140	00	16Ò0	1800	2000	2200	2400	2600	2800	3000
Non-repetitive transient peak reverse voltage,		200	3	00	500	70	00	1000	12	00	1400	160	00	1800	2000	2200	2400	2600	2800	3000	3200
t ≤ 5.0 m sec	VRSM		1	•		1	1		1	1			1		i	i	1	ı	1	ı	!
		<b>k</b>				- R7	20_	06	;		<del></del> >	k		R720_	06	<del></del>	k-	R	720	.06	<del>&gt;</del>
		k_				-R7	20_	09				k		R720	09						
		-						12				1		-		•	1				
Reverse leakage current, mA peak	RRM	<b>K</b>						0			<u> </u>	k		E	0	<del></del>	<del>k</del> -		50 -		<del>&gt;</del>
Switching																					
Typical Reverse Recovery Time		+-		-								T					+			-	
1 FM = 1500 t _p = 190 $\mu$ s		1										1					ļ				
$diR/dt = 25A/\mu s$ , $T_C = 25^{\circ}C$ , $\mu s$	trr	-	_				7				<del>&gt;</del>	*			10		*		<del></del> 13	ļ <del></del>	<del>&gt;</del>
Thermal and Mechanical																	ł				
Min., Max. oper. junction temp., °C	T,					. 6	25 4	200	,					65 t	1.75				65 to 1	50	
Min., Max. storage temp., °C	T _{sta}							0 200							200-				65 to 2		
Min., Max. mounting force, lb3 Thermal resistance3 with double sided cooling		<b>k</b>						240			5	*	—2		ò 2400	)— <u> </u>	*		00 to 24		<del>&gt;</del>
Junction to case, °C/Watt	Rejc	<b>k</b>		,			05	i5			<del>}</del>	*		05	5	;	<del>*-</del>		055		<del>&gt;</del>
Case to sink, lubricated °C/Watt	Recs	<b>K</b>					0:	2			<del>}</del>	⇤		02	2	;	*-		02		<del>&gt;</del>
Current		1		1								1									
Conducting State Maximums					R7	20	_		06			F	372	20 _		09	·	R	720		12
RMS forward current, A	IF(rms)					9.	45							14	115					1885	
Ave. forward current, A	IF(av)	1				6	00							9	900				•	1200	ļ
One-half cycle surge current@, A	^I FSM	1				70	00							89	500				1:	2500	
3 cycle surge current②, A	FSM	1				52								63	350					9400	1
10 cycle surge current(3), A	IFSM	1				43	50							53	300				•	7800	
A ² sec.	l²t				20	04.0	ດດ							301,	200				650	),700	
Max I2t of package (t=8.3 ms), A2sec	l²t	1				30 ×		3							: 106					× 10°	
Forward voltage drop at IFM = 1500A and T ₁ = 25°C, V	V _{FM}						1.8								1.6					1.2	
Forward voltage drop at rated single phase average current and	1.141																				
case temperature, V	V _{FM}	1				2	2.1								2.1					1.6	

① At maximum TJ

② Per JEDEC RS-282, 4.01 F.3.

① Consult recommended mounting procedures.







General Purpose Rectifiers R720

CELEIP TO E C

# 600-1200 A. Avg. Up to 3000 Volts

### General Purpose Rectifiers R720







# General Purpose RECTIFIERS **R920**

## 1100-2000 A Avg. Up to 3000 Volts



Symbol	Inches		Millime	ters
Syllibol	Min.	Max.	Min.	Max.
φD	2.880	2.920	73.15	74.17
$\phi D$ ,	1.744	1.755	44.30	44.58
$\phi D_2$	2.580	2.700	65.53	68.58
Н	1.020	1.060	25.91	26.92
$\phi$ J	1.35	.145	3.43	3.68
J ₁	.075	.090	1.91	2.29
N	.060		1.27	

Creep Distance—.80 in. min. (20.32 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.)

Finish-Nickel Plate.

Approx. Weight—16 oz. (454g.)

1. Dimension "H" is clamped dimension.



#### **R92 Outline**

#### Features:

- High Surge Current Ratings
- High Rated Blocking Voltages
- Special Electrical Selection For Parallel and Series Operation
- Available in Factory Assembled Water or Air Heat Exchangers
- Single or double-sided cooling
- · Long creepage & strike paths
- Hermetic seal
- Lifetime guarantee

#### Applications:

- Rectification
- Free Wheeling
- Battery Chargers
- Resistance Welding

#### **Ordering Information**

Vol	tage	Cu	rrent	Recove	overy Time Recovery Time Circuit			L	Leads		
V _{RRM} (V)	Code	I _{F(av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code		
100 200 400	01 02 04	1100 1600	11 == 16	25 20	X	JEDEC	Х	R92	00		
800 1000 1200	08 10 12	2000	20	15 (typical)							
1400 1600 1800 2000	14 16 18 20										
2200 2400 2600 2800	22 24 26 28						10 10 10 10 10 10 10 10 10 10 10 10 10 1				
	VRRM (V)  100 200 400 600 800 1200 1200 1400 1600 1800 2000 2200 2400 2600	(V)	VRRM (V) Code (A)  100 01 1100 200 02 400 600 6800 1600 1000 10 1200 12 1400 14 1600 16 1800 18 2000 20 2200 22 2400 24 2600 26 2800 28	VRRM (V) Code   IF(av) (A) Code   100	V _{RRM} (V) Code   I _{F(av)} (A) Code   trr μsec   100	VRRM (V) Code   IF(av) (A)   Code   trr μsec   Code   100	Verified (V) Code (A) Code trr μsec Code Circuit  100 01 1100 11 25 X JEDEC  100 04 1600 16 20  1000 10 12 12  1400 14 1600 16 1800 18 2000  2000 220 22  2400 24 12  2600 26 2800 28	VRRM (V) Code   IF(av) (A)   Code   trr μsec   Code   Circuit   Code   100	Verification (V) Code   IF(av) (A)   Code   trr μsec   Code   Circuit   Code   Case    100		

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R920 rated at 1600A average with  $V_{RRM} = 1000V$ , Order as:

Type			Vol	tage	Cur	rent	trr	Circuit	Leads		
R	9	2	0	1	0	1	6	Х	Х	0	0

# $\begin{array}{l} 1100-2000~\textrm{A Avg.} \\ \textrm{Up to 3000 Volts} \end{array}$

## General Purpose RECTIFIERS R920



						٠,		1				7			-	
Voltage												•			٠	
Blocking State Maximums ①	Symbol															
Repetitive peak reverse voltage , V	. V _{RRM}	100	200 40	0 600	800	1000	1200	1400	1600	1900	2000	2200	2400	2600	2800	3000
Non-repetitive transient peak reverse voltage		1	300 50		1	1200	ł	1	l	i	2200	1 4 4	2600	l		
V ≤ 5.0 m sec	VRSM	200	300  50	0 700	1000	1200	1400	1600	1800	2000	2200	2400	2000	2800	3000	3200
				- R920	11_			<u></u>	_B920	11-			R	920	11	
					16-			$\mathbb{D}$		16	•	lacksquare	•	J2 <b>U</b>		
1											-	1				
Davison laskans surrent mA nock	1		***************************************		20-			*		20		1.				
Reverse leakage current, mA peak	RRM			10	00		>	*	7	5	>	*		50-		$\overline{}$
Switching																
Typical Reverse Recovery Time		1						<b>†</b>		-		1				
1 FM = 1500 t _p = 190 $\mu$ s												1				
$diR/dt = 25A/\mu s$ , $T_C = 25^{\circ}C$ , $\mu s$	trr	<del></del>		1	2			ullet	1!	5	<del>&gt;</del>	*		20		$\longrightarrow$
Thermal and Mechanical												-				
Min., Max. oper. junction temp., °C	T,1			65.1	190			<del></del>	65 +	o 175 .		$\vdash$		65 to	150	
Min., Max. storage temp., °C	T _{stg}			-65 to						o 190 ·				65 to 1		$\leq$
Min., Max. mounting force, lb③ Thermal resistance③		<b>R</b>		5000 to			<del></del>	<del>k-</del> -	5000 to			₩—		00 to !		<u> </u>
with double sided cooling Junction to case, °C/Watt	Rejc	1.		•	_				_	•						
Case to sink, lubricated °C/Watt	Recs			.0.					.0. .0.			*-		.03 .01		$\longrightarrow$
								T				T				
Current		Ì														
Conducting State Maximums			R9	20 _	_ 1	1		R92	0	_ 16	6		R92	20 _	_ 20	0
RMS forward current, A	I _{F(rms)}			1725					25	00				31	40	
Ave. forward current, A	IF(av)	1		1100					16					20		
One-half cycle surge current@, A	^I FSM	1		16,000					21,5					30,0		
3 cycle surge current@, A	FSM			12,000					16,0					22,0		
10 cycle surge current@, A	^I FSM	1		10,000					13,3	UU				18,5	UU	
l ² t for fusing (for times ≥ 8.3 ms) A ² sec.	l²t	1	1,1	00,000					,925,0	00			;	3,700,0	00	
Max I ² t of package (t=8.3 ms), A ² sec	l²t	1		90x10	5				90x	10 ⁶				90x	106	
Forward voltage drop at $I_{FM} = 1500A$ and $T_J = 25^{\circ}C$ , $V \dots$	v _{FM}			1.45					1.	20				1.	.05	
Forward voltage drop at rated single phase average current and		1		4						F0					4-	
case temperature, V	$v_{FM}$	1		1.55					л.	50				1.	.45	

① At maximum TJ

② Per JEDEC RS-282, 4.01 F.3.

³ Consult recommended mounting procedures.



### General Purpose RECTIFIERS R920

# 1100 — 2000 A Avg. Up to 3000 Volts













# 1100-2000 A Avg. Up to 3000 Volts

# General Purpose RECTIFIERS R920

















### **General Purpose** RECTIFIER R9G0

## 1300 — 2200 A Avg. Up to 3000 Volts



Symbol	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
φD	2.850	2.900	72.39	73.66
$\phi D_1$	1.845	1.855	46.86	47.12
$\phi D_2$	2.560	2.640	65.02	67.06
Н	1.020	1.060	25.91	26.92
$\phi$ J	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
N	.050		1.27	

Creep Distance—1.15 in. min. (29.36 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.)

Finish—Nickel Plate.
Approx. Weight—1 lb. (454g.)
1. Dimension "H" is Clamped Dimension.



#### **R9G Outline**

#### Features:

- High Surge Current Ratings
  High Rated Blocking Voltages
  Special Electrical Selection For Parallel and Series Operation
- Available in Factory Assembled Water or Air Heat Exchangers
- Low Thermal Impedance
- Single or double-sided cooling
- Long creepage & strike paths

## Applications: • Rectification

- Free Wheeling
- Battery Chargers Resistance Welding
- Cathodic Protection

#### **Ordering Information**

Туре	Vo	ltage	Cı	ırrent	Recove	Recovery Time		ry Time cuit	Leads		
Code	V _{RRM} (V)	Code	I _{F(av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code	
R9GO	100 200 400 600 800 1000 1200 1400 1800 2000 2200 2400	01 02 04 06 08 10 12 14 16 18 20 22	1300 1800 2200	13 18 22	25 20 15 (typical)	X	JEDEC	X	R9G	00	
	2600 2800 3000	26 28 30								Ti.	

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R9G0 rated at 1800A average with  $V_{RRM} = 1000V$ , Order as:

	Ту	pe.		Vol	tage Current		trr	Circuit	Le	ads	
R	9	G	0	1	0	1	8	Х	Х	0	0

# 1300 — 2200 A Avg. Up to 3000 Volts

# General Purpose RECTIFIER R9G0



Voltage				,
Blocking State Maximums ①	Symbol			
Repetitive peak reverse voltage , V	. V _{RRM}	100 200 400 600 800 1	000 1200 1400 1600 1800 2000	2200 2400 2600 2800 3000
Non-repetitive transient peak reverse voltage	١,			
V ≤ 5.0 m sec	VRSM	200 300 500 700 1000 1	200   1400   1600   1800   2000   2200	2400 2600 2800 3000 3200
		← R9G013		<
		← R9GO18		
		← R9G022	——→ ← R9G022 ——>	
Reverse leakage current, mA peak	. I _{RRM}	100	→ <del>75</del> →	50
		1.	/5	30
Switching.				
Switching	Symbol	V _{RRM} ≤ 1200V	1200V < V _{RRM} ≤ 2000V	2000V < V _{RRM} ≤ 3000V
Typical Reverse Recovery Time		1.5		
$FM = 1500 \text{ tp} = 190 \mu \text{s}$		15	20	25
$diR/dt = 25A/\mu s$ , $T_C = 25^{\circ}C$ , $\mu s$	trr			
Thermal and Mechanical				
i nermai and iviecnanicai	O	V 1200V	40001/ 41/ 40001/	20001/ <1/ < 20001/
	Symbol	V _{RRM} ≤ 1200V	1200V < V _{RRM} ≤ 2000V	2000V < V _{RRM} ≤ 3000V
Min., Max. oper. junction temp., °C	TJ	65 to 190	65 to 175	-65 to 150
Min., Max. storage temp., °C	T _{stg}	-65 to 190	-65 to 190	-65 to 190
Thermal resistance®		5000 to 6000	5000 to 6000	5000 to 6000
with double sided cooling Junction to case, °C/Watt	R _{OJC}	.023	.023	.023
Case to sink, lubricated °C/Watt	Recs	.075	.075	.075
Current				
Conducting State Maximums				
	Symbol	R9G0_13	R9G018	R9G0_22
RMS forward current, A	IF(rms)	2040	2825	3455
Ave. forward current, A	IF(av)	1300	1800	2200
One-half cycle surge current@, A	IFSM	16,000	21.500	30,000
3 cycle surge current②, A	FSM	12,000	16,000	22,000
12t for fusing (for times 8.3 ms)	¹ FSM	10,000	13,3000	18,500
A ² sec.	12t	1,100,000	1,925,000	3,700,000
Max I ² t of package (t=8.3 ms), A ² sec	l²t	90x10 ⁶	90x10°	90x10 ⁶
Forward voltage drop at IFM = 1500A and T _I = 25°C, V	v _{FM}	1.45	<b>\$</b> 1.20	1.05
Forward voltage drop at rated single	1 141		- -	
phase average current and case temperature, V	∨ _{FM}	1.55	1.50	1.45
*		i		

① At maximum TJ

① Per JEDEC RS-282, 4.01 F.3.

³ Consult recommended mounting procedures.





**General Purpose** 

RECTIFIER

R9G0

### General Purpose RECTIFIER R9G0







### **Fast Recovery RECTIFIERS** IN3879 - 83, R/IN3889 - 93, R R302/R303

### 6 — 12 A. Avg. Up to 600 Volts 200 ns



Conforms to DO-4 Outline

#### Features:

- Diffused Construction
- Fast Recovery
- Reverse Polarity Available
- Low VF

#### **Ordering Information**

Voltage Rating	6A JEDEC * R302/R303	12A JEDEC R302/R303
50	IN3879	IN3889
100	IN3880	IN3890
200	IN3881	IN3891
300	IN3882	IN3892
400	IN3883	IN3893
500	R3020506	R3020512
600	R3020606	R3020612

R302 - Standard R303 - Reverse

For JEDEC Reverse Polarity add suffice R, i.e., IN3879R ①See JEDEC Circuit

Symbol	Inches		Millimeters			
	Min.	Max.	Min.	Max.		
A		.405		10.29		
$\phi D$		.424		10.77		
E	.424	.437	10.77	11.10		
F	.075	.175	1.91	4.45		
J		.800		20.32		
M		.250		6.35		
N	.422	.453	10.72	11.51		
$\phi T$	.060	.105	1.52	2.67		
φW	10-32	UNF-2A				

Glass to Metal Seal-

Creepage & Strike Distance = .07 in. min. (1.75 mm)
(In accordance with NEMA standards.)

Finish-Nickel Plate. Approx. Weight—.2 oz (6g) Standard Polarity—Green Glass Reverse Polarity—Brown Glass

#### NOTES:

- 1. Complete threads to extend to within 2½ threads of seating plane.2. Angular orientation of this terminal is
- 10-32 UNF-2A maximum pitch diameter of plated threads shall be hasic pitch diameter (.1697", 4.29 mm)
  Ref. (Screw thread standards for federal services 1957) Handbook H28 P1.



#### Applications:

- Computer Power Supplies
- Control Circuits
- Free Wheeling Applications
- By-Pass Rectifiers

#### **Electrical Characteristics**

Parameters	IN3879,R To IN3883,R	IN3889,R To IN3893,R
Current IF (AV)	* 6A	* 12A
@ Tc, °C	@ 100	@ 100
IFSM	* 75A	* 150A
I ² t for Fusing	. 25	90
VFM @ IF (AV) & 25°C	1.5V	1.5V
	* 3.0 MA	* 3.0 MA
	3.0°C/W	3.0 °C.∕W
TJ (OPER) Range	* —65 to 150°.C	* —65 to 150°C
Tstg Range	* —65 to 175°C	* —65 to 175°C
t _{RR} ①	* 200 nls	* 200 ns

^{*} JEDEC Registered Parameters

## 6 — 12 A. Avg. Up to 600 Volts 200 ns

# Fast Recovery RECTIFIERS IN3879 — 83, R/IN3889 — 93, R/IN389 — 93, R/IN389 — 93, R/IN389 — 93, R/IN389 — 93, R/











#### **JEDEC Circuit**



Reverse Recovery Time IN3879 and IN3889 Series IFM=36A, diR/dt=25A/usec trr=200 NS

#### Normalized Rectifier Efficiency Versus Frequenc





# Fast Recovery Rectifiers IN3899-93,R/IN3909-13,R R402/R403

### 20-30A. Avg. Up to 600 Volts 200 ns



Conforms to DO-5 Outline

#### Features:

- Diffused Construction
- Fast Recovery
- Reverse Polarity available
- Low Profile Package
- Low VF

#### **ORDERING INFORMATION**

VOLTAGE	20A JEDEÇ	30A JEDEC
RATING	R402/R403	R402/R403
50	^① IN3899	^① IN3909
100	IN3900	IN3910
200	IN3901	IN3911
300	IN3902	IN3912
400	IN3903	IN3913
500	R4020520	R4020530
600	R4020620	R4020630

R402 — Standard R403 — Reverse

- ① For JEDEC reverse polarity add suffix R, i.e., IN3899R.
- ② See JEDEC circuit.

Symbol	Inches		Millime	Millimeters		
Зуппьог	Min.	Max.	Min.	Max.		
A		.450		11.43		
В		.080		2.03		
$\phi D$		.667		16.94		
E	.667	.687	16.94	17.45		
F	.060	.200	1.52	5.08		
<u>J</u>		1.000		25.40		
M		.375		9.53		
N	.422	.453	10.72	11.51		
$\phi T$	.140	.175	3.56	4.45		
Z	.156		3.96			
φW	¼-28 l	JNF-2A				

Glass To Metal Seal-

Creepage & Strike Distance =

.09 in. min. (2.46 mm)
(In accordance with NEMA standards.)

Finish—Nickel Plate. Approx. Weight—.6 oz (18g) Standard Polarity—Green Glass

Reverse Polarity-Brown Glass

#### NOTES:

- 1. Complete threads to extend to within
- 2½ threads of seating plane.
   Angular orientation of this terminal is undefined.
- 3. ¼-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 P1.



#### Applications:

- Computer Power Supplies
- Control Circuits
- Free Wheeling applications
- **Bypass Rectifiers**

#### **ELECTRICAL CHARACTERISTICS**

PARAMETERS	IN3899,R TO IN3903,R	IN3909,R TO IN3913,R		
Current IF (AV)	*20 A	*30 A		
@ Tc, °C	@100°C	@100°C		
IFSM	*225 A	*300 A		
I²t for Fusing	210A²sec	375A²sec		
VFM @ IF (AV) @ 25°C	1.5 V	1.5,V		
IRRM @ 100°C	*6.0 MA	*10.0 MA		
ReJC	1.0°C/W	1.0°C/W		
TJ (OPER) Range	<b>*-65</b> to 150°C	<b>*-65</b> to 150°C		
Tstg Range	<b>*-65</b> to 175°C	<b>*-65</b> to 175°C		
^② trr	200 ns	200 ns		

^{*} JEDEC Registered Parameters.

Maximum Power Dissipation, Watts Per Diode

## 20—30A. Avg. Up to 600 Volts 200 ns

# Fast Recovery Rectifiers IN3899-93,R/IN3909-13,R R402/R403



















Normalized Rectifier Efficiency Versus Frequency



# Fast Recovery RECTIFIER R502/R503

### 80 — 100A Avg. Up to 1200 Volts 1.5 — 3 μs



Conforms to DO-8 Outline

#### Features:

- Fast Recovery Times
- Standard and Reverse Polarities
- Flag Lead and Stud Top Terminals Available
- High Surge Current Ratings
- High Rated Blocking Voltages
- Special Electrical Selection for Parallel and Series Operation
- Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths
- Compression Bonded Encapsulation for Thermal Cycling Capability in Excess of 100, 000 Thermal Cycles
- Lifetime Guarantee

Symbol	Inches		Millimet	Millimeters		
Symbol	Min.	Max.	Min.	Max.		
Α Β φD	4.18 .050 .860	4.62 .100 1.000	106.17 1.27 21.84	117.35 2.54 25.40		
E F J	1.031 .255 2.50	1.063 .400	26.19 6.48 63.50	27.00 10.16		
M , N Q	.437 .605	.650 .645 1.675	11.10 15.37	16.51 16.38 42.54		
φT Z	.250 .310	.291	6.35 7.87	7.39		
$\phi$ W	%-24 U	NF-2A				

Creep & Strike—Distance:
.66 in. min. (16.94 mm).
(In accordance with NEMA standards.)
Finish—Nickel Plate.
Approx. Weight—3.5 oz (99g)
Standard Polarity—White Ceramic
Reverse Polarity—Pink Ceramic

- 1. Complete threads to extend to within
- 2½ threads of seating plane.2. Angular orientation of terminal is
- undefined.
- 3. Pitch diameter of %-24 UNF-2A (coated) threads (ASA B1.1-1960).
  4. Dimension "J" denotes seated height
- Dimension "J" denotes seated height with lead bent at right angle.



#### Applications:

- Inverters
- Choppers
- Transmitters
- Free Wheeling

#### **Ordering Information**

Туре	Voltage		Current		Recovery Time		Recovery Time Circuit		Leads	
Code	V _{RRM} (V)	Code	I _{F(av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code
R502	100	01	80	08	1.5	F	JEDEC	J	DO-8	WA
(Standard Polarity)	200 300	02	100	10	2.0	È	JEDEC	1	DO-8	WA
R503	400	04	100		2.0		JEDEC		DO-8	
(Reverse Polarity)	500	05			3.0	C	JEDEC	J	DO-8	WA
	600	06		A THEOREM						
	700	07		100000000						
	800 900	08								
	1000	09 10								
	1100	11								
	1200	12								like a second

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R502 rated at 100A average with  $V_{RRM}=1000V$ , recovery time  $=1.5~\mu sec$ , and standard flexible lead—order as

	· T,	ре		Vol	tage	Cur	rent	trr	Circuit	Le	ads
R	5	0	2	1	0	1	0	F	J	W	Α

80 — 100A. Avg. Up to 1200 Volts 1.5 — 3 μs

# Fast Recovery RECTIFIER R502/R503



Voltage ① Blocking State Maximums ①	Symbol												
Repetitive peak reverse voltage , V Non-repetitive transient peak reverse voltage, V $\leq$ 5.0 m sec		100 200	200 300	300 400	400 500	500 600	600 800	700 900	800 1000	900	1000 1200	1100 1300	1200 1400
Reverse leakage current, mA peak	. I _{RRM}	-	•					45					· 
Switching (T _J = 25°C)													
Max. Reverse Recovery Time IFM = 314A tp = 40 $\mu$ s dIR/dt = 25A/ $\mu$ s, Tc = 25°C, $\mu$ s	trr	<del></del>					<b>—</b> 1.5,∶	2.0 & 3.	0				<del>-</del>
Thermal and Mechanical													
Min., Max. oper. junction temp., °C Min., Max. storage temp., °C Max. mounting torque, in lb. ® ③ Thermal resistance ①	T _J T _{stg}							0 to 175 0 to 175 120					,
Junction to case, °C/Watt	R _{ØJC} R _{ØCS}							.27 .12					

Current Conducting State Maximums		R502 08 R503 08	R502 10 R503 10	
RMS forward current, A	IF(rms) IF(av) IFSM IFSM IFSM IFSM	125 80 3000 2500 1800	157 100 3500 2900 2150	
Forward voltage drop at IFM $=$ 314 A and T $_{\rm J}=25^{\rm o}{\rm C}$ , V Forward voltage drop at rated single phase average current and case temperature, V	V _{FM}	37,500 1.65 1.60	51,000 1.45 1.50	·

- ① At maximum TJ ② Per JEDEC RS-282, 4.01 F.3.
- ① Consult recommended mounting procedures.
- For higher voltages contact Westinghouse.















REIEIPOER

 $80-100 \mbox{A}$  . Avg. Up to 1200 Volts  $1.5-3~\mu \mbox{s}$ 

# Fast Recovery RECTIFIER R502/R503











Recovery Time Comparison for Fast Switch and Conventional Rectifiers



### **Fast Recovery** Rectifiers R602/R603

### 200-250A Avg. Up to 1600 Volts $1.5 - 3.0 \, \mu sec$



Conforms to DO-9 Outline

	Inches		Millimet	ers
Symbol	Min.	Max.	Min.	Max.
A B φD	5.32 .063 .980	6.00 .172 1.065	135.13 1.60 24.89	152.40 4.37 27.05
E F J	1.212 .250 3.250	1.250 .630	30.78 6.35 82.55	31.75 16.00
M N Q	.530 .660	.755 .749 2.250	13.46 16.76	19.18 19.02 57.15
φT Z	.330 .440	.350	8.38 11.18	8.89
φW	%-16 U	NF-2A		

Creep & Strike Distance: .49 in. min. (12.52 mm). (In accordance with NEMA standards.)

Finish—Nickel Plate. Approx. Weight—8 oz. (226g)

Approx. Weight—902. (2209)
Standard Polarity—White Ceramic
Reverse Polarity—Pink Ceramic
1. Complete threads to extend to within

- 21/2 threads of seating plane.
- Angular orientation of terminal is undefined.
- 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA B1.1-1960).
  4. Dimension "J" denotes seated height
- with lead bent at right angle.



#### Features:

- Fast Recovery Times
- Standard and Reverse Polarities
- Flag Lead and Stud Top Terminals Available
- High Surge Current Ratings
- High Rated Blocking Voltages
- Special Electrical Selection for Parallel and Series Operation
- Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths
- Compression Bonded Encapsulation for Thermal Cycling Capability in Excess of 100,000 Thermal Cycles
- Lifetime Guarantee

#### Applications:

- Inverters
- Choppers
- Transmitters
- Free Wheeling

#### **Ordering Information**

Туре	Voltage		Current		Recovery Time		Recovery Time Circuit		Leads	
Code	V _{RRM} (V) *	Code	I _{F(av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code
R602 (Standard Polarity)	100 200	01 02	200	20	1.5	F	JEDEC	J	DO-9	YA
R603 (Reverse Polarity)	400 600	04 06	250	25	2.0	E				
(Neverse Foliatity)	800 1000	08 10			3.0	C				
	1200 1400	12 14								
	1600	16								

#### * For higher voltages, consult factory.

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R602 rated at 250A average with  $V_{RRM} = 1000V$ . Recovery time  $\equiv$  1.5  $\mu$ sec, and standard

flexible lead - order as:

	Туре		Voltage		Cur	rent	trr	Circuit	Leads		
R	6	0	2	1	0	2	5	F	J	Υ	Α

## 200-250A Avg. Up to 1600 Volts 1.5 — 3.0 μsec

## Fast Recovery Rectifiers R602/R603



Voltage											
Blocking State Maximums ①	Symbol	٠,٠									
			<del>,</del>		,		,		<del>/</del>		•
Repetitive peak reverse voltage , V		100	200	400	600	800	1000	1200	1400	1600	
Non-repetitive transient peak reverse voltage, $V < 5.0 \text{ m sec} \dots \dots \dots$	VRSM	200	300	500	700	1000	1200	1400	1600	1800	
<u> </u>	KSIVI	200	300			, , , ,					
Reverse leakage current, mA peak	. I _{RRM}	<b></b>				50		<del>-</del>	5	50	
										•	
Switching									,		
_	Symbol										l
Max. Reverse Recovery Time									1		
1 FM = 785A, tp = 100 $\mu$ s									1.		
$diR/dt = 25A/\mu s$ , $T_C = 25^{\circ}C$ , $\mu s$	trr	<b> </b>			1.5, 2.0	& 3.0		<del></del>	2.0 8	3.0	
Thermal and Mechanical											
	Symbol	VRRN	$n \leq 1200V$		1200V	< V _{RRM} S	≤ 1600V				
Min., Max. oper. junction temp., °C	—40 to 175 —40 to 175								1		
Min., Max. storage temp., °C	$T_{stg}$	-40 to 200				-40 to 200					l
Max. mounting torque, in lb.			360			360					1
Thermal resistance Junction to case, °C/Watt	Rejc		.17			.17					1
Case to sink, lubricated, °C/Watt	Recs		.10			.10				*	
Current		B60	)2:	20	B60	02	25				
Conducting State Maximums	Symbol	1	)3			03					
RMS forward current, A	1 >	ļ	045			400			***************************************		-
Ave. forward current, A	lF(rms) lF(av)		315 200			400 250					
One-half cycle surge current®, A	IFSM		4500			5000					
3 cycle surge current②, A	FSM		3500			3900					
10 cycle surge current②, A	FSM		2700			3000					
$1^2$ t for fusing (for times $\geq$ 8.3 ms) A ² sec.	l ² t		85,000		10	04,000					
Forward voltage drop at $I_{FM} = 800 \text{ A}$ and $T_J = 25^{\circ}\text{C}$ , V	$v_{\sf FM}$		1.85			1.65					
Forward voltage drop at rated single											
phase average current and case temperature, V	V _{FM}		1.65			1.58					

① At maximum TJ

② At 60 Hertz.















## 200-250A Avg. Up to 1600 Volts 1.5 — 3.0 μsec

## Fast Recovery Rectifiers R602/R603











Recovery Time Waveform



Recovery Time Comparison for Fast Switch and Conventional Rectifiers



# Fast Recovery Rectifiers R622

350-400 A. Avg. Up to 1600 Volts 1.5 — 3.0 us



Symbol	Inches		Millime	Millimeters			
Symbol	Min.	Max.	Min.	Max.			
φD	1.610	1.650	40.89	41.91			
$\phi D_1$	.745	.755	18.92	19.18			
φD₂	1.420	1.460	36.07	37.08			
Н	.500	' ₃560	12.70	14.22			
φJ	.135	.145	3.43	3.68			
J,	.072	.082	1.83	2.08			
N	.030		.76				

Creep Distance—.49 in. min. (12.60 mm). Strike Distance—.52 in. min. (13.21 mm). (In accordance with NEMA standards).

Finish—Nickel Plate.
Approx. Weight—2.3 oz (66g).
1. Dimension "H" is clamped dimension.



#### R62 Outline

#### Features:

- Fast Recovery Times
- High Surge Current RatingsHigh Rated Blocking Voltages
- Special Electrical Selection For Parallel and Series Operation
- Non Magnetic Package
- Single or double-sided cooling
- Long creepage & strike paths
- Hermetic seal
- Lifetime Guarantee

#### **Applications:**

- Inverters
- Choppers
- Transmitters
- Free Wheeling

#### **Ordering Information**

Grading information												
Туре	Voltage		Current		Recovery Time		Recovery Time Circuit		Leads			
Code	V _{RRM} (V)*	Code	I _{F(av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code		
R622	100 200	01 02	350	35	1.5	F	JEDEC	J	R62	00		
	400 600	02 04 06	400	40	2.0	E						
1000年第二年第二	800 1000 1200	08 10			3.0	C						
	1400 1600	12 14 16										

^{*}for higher voltages, consult factory

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R622 rated at 400A average with  $V_{RRM}\,=\,1200V$ , and 1.5 µsec recovery time order as:

	Type		Vol	tage	Cur	rent	trr	trr Circuit		Leads	
R	6	2	2	1	2	4	0	F	J	0	0

# 350-400 A. Avg. Up to 1600 Volts 1.5 — 3.0 μs

## Fast Recovery Rectifiers R622



Voltage		·	,	·	,	,	·		γ	
Blocking State Maximums ^① Repetitive peak reverse voltage , V	Symbol V _{RRM}	100	200	400	600	800	1000	1200	1400	1600
Non-repetitive transient peak reverse voltage, $V \le 5.0 \text{ m sec} \dots \dots \dots$	VRSM	200	300	500	700	1000	1200	1400	1600	1800
Reverse leakage current, mA peak	IRRM	<b>k</b>	······································		50·	*	<del></del>	>	    	50
Switching	Symbol									4
Max. Reverse Recovery Time † FM $=$ 785A, tp $=$ 100 $\mu$ s di R/dt $=$ 25A/ $\mu$ s, T _C $=$ 25°C, $\mu$ s	trr	<b>-</b>			1.5, 2.0,	, 3.0		>	2.0	, 3.0 — 🗦
Thermal and Mechanical	Symbol									
Min., Max. oper. junction temp., °C	T _J T _{stg}		—40 to 175			40 to 2 40 to 2 1000 to 1	200		<u>.</u>	
with double sided cooling Junction to case, °C/Watt Case to sink, lubricated °C/Watt	R _O CS					.095 .02	5			· · · · · · · · · · · · · · · · · · ·
		1								

Current Conducting State Maximums	Symbol	R62235	R622 40	
RMS forward current, A	IF(rms)	550	625	
Ave. forward current, A	F(av)	350	400	
One-half cycle surge current ②, A	FSM	4500	5000	
3 cycle surge current@, A	FSM	3500	3900	*
10 cycle surge current@, A  I ² t for fusing (for times = 8.3 ms)	I _{FSM}	2700	3000	
A ² sec	l²t	85,000	104,000	
A ² sec	l²t	20 x 10 ⁶	20 x 10 ⁶	*
800 A and T _J = 25°C, V	$V_{FM}$	1.85	1.65	,
case temperature, V	$V_{FM}$	2.25	2.00	•

① At maximum TJ

② At 60 Hertz



## Fast Recovery Rectifiers R622

350-400 A. Avg. Up to 1600 Volts
1.5 — 3.0 us



## Fast Recovery Rectifiers R622







Recovery Time Waveform





Recovery Time Comparison for Fast Switch and Conventional Rectifiers





## Fast Recovery Rectifiers **R722**

500-800 A. Avg. Up to 2500 Volts 2.0 — 5.0 µsec



Symbol	Inches		Millime	eters
- Cyllibol	Min.	Max.	Min.	Max.
φD	2.250	2.290	57.15	58.17
$\phi D_1$	1.333	1.343	33.86	34.11
$\phi D_2$	2.030	2.090	51.56	53.09
Н	1.020	1.060	25.91	26.92
$\phi$ J	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
N	.040		1.02	

Creep Distance—1.15 in. min. (29.36 mm). Strike Distance—1.02 in. min. (2591 mm). (In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight—8 oz. (227g).

1. Dimension "H" is clamped dimension.



R72 Outline

#### Features:

- Fast Recovery Times
- High Surge Current Ratings
  High Rated Blocking Voltages
- Special Electrical Selection For Parallel and Series Operation
- Non Magnetic Package
- Lifetime Guarantee

#### Applications:

- Inverters
- Choppers
- Transmitters
- Free Wheeling

### **Ordering Information**

Туре	Vo	ltage	Cu	rrent	Recove	ery Time Recovery Time Circuit			Leads		
Code	VRRM (V)	Code	I _{F (av)} (A)	Code	t _{rr} μsec	Code	Circuit	Code	Case	Code	
R722	100 200	01 02	500	05	2.0	E	JEDEC	Х	R72	90	
	400 600	04 06	600	06	3.0	С					
	800 1000	08 10	800	08	5.0	А					
	1200 1400	12 14	i								
en en en en	1600 1800	16 18									
	2000 2200 2400	20 22									
	2500 2500	24 25									

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R722 rated at 800A average with  $V_{RRM} = 1200V$ and recovery time = 3.0  $\mu$ sec.

	Ty	ре		Vol	tage	Cur	rent	trr	Circuit	Le	ads
R	7	2	2	1	2	0	8	С	J	0	0

## 500-800 A. Avg. Up to 2500 Volts $2.0 - 5.0 \, \mu sec$

## **Fast Recovery** Rectifiers



1.65



2.6

1.8

 $v_{FM}$ 

¹ At maximum TJ

² Per JEDEC RS-282, 4.01 F.3.

³ Consult Westinghouse recommended mounting procedures.

















500-800 A. Avg. Up to 2500 Volts 2.0 — 5.0 μsec

## Fast Recovery Rectifiers R722







Symbol	Inches		Millime	eters
Symbol	Min.	Max.	Min.	Max.
φD	2.850	2.900	72.39	73.66
$\phi D_1$	1.845	1.855	46.86	47.12
$\phi D_2$	2.560	2.640	65.02	67.06
Н	1.020	1.060	25.91	26.92
$\phi$ J	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
N	.050		1.27	

Creep Distance—1.15 in. min. (29,36 mm). Strike Distance—1.02 in. min. (25,91 mm). (In accordance with NEMA standards.) Finish—Nickel Plate.

Approx. Weight—1 lb. (454 g.)

1. Dimension "H" is Clamped Dimension.



#### **R9G Outline**

#### Features:

- Fast Recovery Times
- High Surge Current RatingsHigh Rated Blocking Voltages
- Special Electrical Selection For Parallel and Series Operation
- Non Magnetic Package

#### Applications:

- Chopper
- DC to AC Inverters
- Transmitters
- High Frequency Rectification

Туре	Voltage	,	Current		Recovery	/ Time	Recovery Circu		Leads	
Code	. Vrrm (V)	Code	IF(av) (A)	Code	µsec	Code	Circuit	Code	Case	Code
R9G2	100	01	900	09	3.0	C	JEDEC	-	R9G	00
	200 400	02 04	1100	11	5.0	А	JEDEC	J		
	600 800	06 08	1400	14						
	1000	10	1400	1.4						
	1200 1400	12 14 16 18								
	1600	16								
	1800	18								
	2000 2200	20 22								
	2400	22 24								
	2600 2800	26 28								
	3000	30								
	3200	32								

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type R9G2 rated ar 1400 A average with VRRM = 1200V and recovery time = 3.0 µsec.

	Ту	ре		Vol	tage	Cur	rent	trr	Circuit	Le	ads
R	9	G	2	1	.2	1	4	С	J	0	0

# 900-1400 A Avg. Up to 3200 Volts $3.0-5.0~\mu s$

## **Fast Recovery RECTIFIER** R9G2



Voltage Blocking State Maximums ① Symbol			
$\label{eq:continuous} \begin{array}{llllllllllllllllllllllllllllllllllll$	1		00 2200 2400 2600 2800 3000 3200 00 2400 2600 2800 3000 3200 3400
Reverse leakage current, mA peak I RRM	R9G2_09— R9G2_11— R9G2_14— 100—	R9G2_09 ————————————————————————————————————	R9G2 _09
Contact in a		1	1
Switching	VRRM≤1200V	1200V~VRRM=2000V	2000V~VRRM≤3200V
Max. Reverse Recovery Time  IFM = 1500 tp = 190us  diR/dt = 25A/us, TC = 25°C, μs	3.0, 5.0	5.0	5.0
Thermal and Mechanical	VRRM≤1200V	1200V <b>&lt;</b> VRRM≤ 2000V	2000V≪VRRM≤3200V
Min., Max. oper. junction temp., °C TJ Min., Max. storage temp., °C Tstg Min., Max. mounting force, lb. ①	40 to 150 40 to 190 5000 to 6000	40 to 150 40 to 190 5000 to 6000	—40 to 150 —40 to 190 5000 to 6000
with double sided cooling Junction to case, °C/Watt ReJC Case to sink, lubricated °C/Watt ReCS	.023 .075	.023 .075	.023 .075

Current	.			
Conducting State Maximums		R9G209	R9G211	R9G214
RMS forward current, A	lF(rms)	1,415	1,730	2,200
Ave. forward current, A	IF(av)	900	1,100	1,400
One-half cycle surge current, A ②	İFSM	12,000	15,000	25,000
3 cycle surge current, A ② · · · · · · · · ·	IFSM	8,600	10,750	17,900
10 cycle surge current, A ②	IFSM	7,200	9,000	15,000
I ² t for fusing (for times=8.3 ms) A ² sec.	l²t	600,000	940,000	2,600,000
Max I2t of package (t = 8.3 ms), A2sec	l²t	90×10 ⁶	90x10 ⁶	90x106
Forward voltage drop at IFM = 3,000A and TJ = 25°C, V	VFM	4.80	3.10	2.50

- ① At maximum TJ
- ② Per JEDEC RS-282, 4.01 F.3.
- 3 Consult recommended mounting procedures.



# Fast Recovery RECTIFIER R9G2

900 - 1400 A Avg. Up to 3200 Volts 3.0 - 5.0  $\mu$ s



900-1400 A Avg. Up to 3200 Volts  $3.0-5.0~\mu s$ 

## Fast Recovery RECTIFIER R9G2















Recovery Time Comparison for Fast Switch and Conventional Rectifiers



## THYRISTORS SCR's and RBDT's

#### INTRODUCTION

Westinghouse thyristors are designed, manufactured, and tested to insure the circuit designer "state-of-the-art" flexibility in design and dependability in operation. Westinghouse high power SCR's feature all-diffused elements and are available in a variety of packages: stud, disc, integral heat sink, and flat base. These SCR's offer high surge current capability with optimized forward voltage drops, soft firing and high di/dt capability with center-fired di/ namic gate designs, and the industry's highest guaranteed dv/dt capability with shorted-emitter designs. All high power Westinghouse stud mount devices utilize compression bonded encapsulation (CBE) construction which reduces thermal fatigue by eliminating solder joints. Westinghouse disc devices feature non-magnetic packages and are cold-welded to avoid thermal stresses on the semiconductor elements during encapsulation.

Westinghouse Phase Control SCR's offer package I²t or explosion ratings for most ceramic packages; in addition, surge suppression ratings are available which enable the designer to better utilize the full capability of Westinghouse SCR's. The Westinghouse T625 now offers the designer of a 150°C operating junction temperature SCR; this device features higher current ratings and better overload characteristics for motor control applications.

Westinghouse Fast Switching SCR's offer turn-off times as low 10 microseconds as a result of an exclusive irradiation process. These center-fired di/namic gate designs all feature low switching losses, high di/dt, low IGT, high current, high voltage, low recovered charges, and fast turn-off times. The Westinghouse mid-gate structure (available only as a T72H or T9GH) is interdigitated gate design which optimizes the device for higher peak currents and narrower pulse widths while providing low switching losses and faster turn-on and turn-off capability.

The Westiinghouse Reverse Blocking Diode Thyristor (RBDT) offers the control of an SCR without the complex firing circuitry. This device blocks vol-



### THYRISTOR (SCR/RBDT) PRODUCT INDEX

Type Number	Page	Type Number	Page
2N681-92	S11	T527	S83
2N1792-1809	S19	T600	S33
2N1842,A-50,A	S9	T607	S79
2N1909-16	S19	T610	S33
2N3884-96	S31	T620	S43
2N4361-68	S21	T625	S47
2N4371-78	S21	T627	S87
2N52O4-O7	S13	T680	S73
T9G0	S61	T700	S37
T9GH	S93	T707	S81
T40R	S95	T720	S51
T62R	S97	T727	S91
T72H	S89	T760	S71
T400	S13	T780	S75
T500	S23	T920	S55
T507	S77	1320	300
T510	S27	TA20	S67
T520	S41		

tage in the forward direction until the appropriate dv/dt pulse is applied. The RBDT offers excellent di/dt capability up to 3,000A/us, and seriesing is easily accomplished for high voltage applications.

Westinghouse offers extensive testing capability for series and/or parallel matching, special parameter selection,

or full high reliability screening. Westingoffers a Lifetime Guarantee on all SCR's bearing the symbol +. In addition, all Westinghouse thyristors are available on factory assembled and tested air or water cooled heat exchangers in a variety of circuit configurations. Specify Westinghouse Power Thyristors.

## THYRISTOR CAPABILITY GRAPHS



### PHASE CONTROL SCR'S 10 — 250 Amperes



## PHASE CONTROL SCR'S



*150°C JUNCTION TEMPERATURE



## THYRISTOR CAPABILITY GRAPHS

#### **FAST SWITCHING SCR'S & RBDT'S**

22 - 250 Amperes



NOTE: Turn off times shown represent fastest currently available at given voltage rating.

## FAST SWITCHING SCR'S 250 — 900 Amperes



NOTE: Turn off times shown represent fastest currently available at given voltage rating.



### PHASE CONTROL SCR'S

				10 —	70 Amp	eres			
то-48	JEDEC/ TYPE	2N1842,A- 2N1850,A	T40010	2N681-92	T40016	T40022	T50040	T51050	2N1792-1807/ 2N1909-2N1916
	AVERAGE CURRENT ONE CYCLE SURGE	10 125	10 150	16 150	16 250	22 360	40 1200	50 1200	70 1000
TO-83	VOLTAGE 25 50 100 150 200 250 300 400 500 600 700 800 900 1000 1200 1400	2N1842,A 2N1844,A 2N1845,A 2N1845,A 2N1846,A 2N1847,A 2N1849,A 2N1850,A	T4000010 T4000110 T4000210 T4000310 T4000410 T4000610 T4000710 T4000810 T4000910 T4001010 T4001210	2N681 2N682 2N683 2N683 2N685 2N685 2N686 2N687 2N688 2N689 2N690 2N691 2N692	T4000016 T4000116 T4000216 T4000316 T4000416 T4000516 T4000616 T4000716 T4000816 T4000916 T4001016 T4001216	T4000022 T4000122 T4000222 T4000322 T4000422 T4000622 T4000622 T4000822 T4000822 T4000822 T4000922 T4001022 T4001022	T5000740 T5000840 T5000940 T5001240 T5001240 T5001540	T5100050 T5100150 T5100250 T5100350 T5100450 T5100450 T5100650	2N1909 2N1792/2N1910 2N1793/2N1911 2N1794/2N1913 2N1796/2N1913 2N1796/2N1915 2N1798/2N1906 2N1799/2N1805 2N1800/2N1806 2N1801/2N1807 2N1802 2N1803 2N1804
	PACKAGE TYPE	TO-48	TO-48	TO-48	TO-48	TO-48	TO-83/TO-94	TO-83/TO-94	TO-83/TO-94
88	PAGE NUMBER	89	S13	511	\$13	513	S23	\$27	S19

### PHASE CONTROL SCR'S 70 - 175 Amperes

JEDEC/ TYPE	2N4361-68/ 2N4371-78	T50080 T51080	T60013 T61013	T52013	T60015 T61015	T62015	2N3884-96	T60018 T61018
AVERAGE CURREN		80	125	125	150	150	175	175
ONE CYCLE SURGE	1600	1800	3300	1600	4000	3300	4500	5500
VOLTAGE 50		T5100080	T6100013	T5200013	T6100015	T6200015	2N3884	T6100018
100	2N4361/2N4371	T5100180	T6100113	T5200113	T6100115	T6200115	2N3885	T6100118
200 300	2N4362/2N4372	T5100280 T5100380	T6100213 T6100313	T5200213 T5200313	T6100215	T6200215	2N3886	T6100218 T6100318
400	2N4363/2N4373		T6100413	T5200413	T6100315 T8100415	T6200315 T6200415	2N3887 2N3888	T6100318
500	2144303/21443/3	T5100480	T6100513	T5200413	T6100515	T6200515	2N3689	T6100518
600	2N4364/2N4374	3	T6100613	T5200613	T8100815	T6200615	2N3890	T6100618
700	219430-7219437-	T5000780	T6000713	T5200713	T8000715	T6200715	2N3891	T6000718
800	2N4365/2N4375		T6000813	T5200713		T6200715	2N3692	T6000718
900	2144300/21443/0	T5000980	T6000913		T6000815		2N3893	T6000918
	2N4366/2N4376	?		T5200913	T6000915	T6200915	80363888887788887777A	
1000			T6001013	T5201013	T8001016	T6201015	2N3894	T6001018 T6001218
1200	2N4367/2N4377	2	T6001213	T5201213	T6001215	T6201215	2N3895	
1500		T5001580	T6001513	T5201513	T6001515	T6201515		T6001518
PACKAGE TYPE	TO-94/TO-83	TO-94/TO-83	TO-93	T52	TO-93	T62	TO-93	TO-93
PAGE NUMBER	S21	S23/S27	\$33	S41	\$33	S43	S31	S33













### PHASE CONTROL SCR'S 175 — 300 Amperes

			*		*			
TYPE	T68018	T62020	T62525	T70025	T62530	T62030	176030	T70030
AVERAGE CURRENT	175	200	250	250	300	300	300	300
ONE CYCLE SURGE	5500	4000	2800	7000	3600	5500	8400	8400
VOLTAGE 100	T6800118	T6200120	T6250125	T7000125	T6250130	T6200130	17800130	T7000130
200	T6800218	T6200220	T6250225	T7000225	T6250230	T6200230	T7600230	T7000230
300	T6800318	T6200320	TB250325	T7000325	T6250330	T6200330	T7600330	T7000330
400	T6800416	T6200420	T6250425	T7000425	T6260430	T6200430	17600430	T7000430
500	T6800518	T6200520	16250525	T7000525	T6250530	T6200530	T7600530	T7000530
600	T6800618	T6200620	T6250625	T7000625	T6250630	T6200630	T7800630	T7000630
700	T5800718	T6200720	T6250725	T7000725	T6250730	T6200730	17600730	T7000730
800	T6800818	T6200820	T6250825	T7000825	T6250830	T6200830	T7600830	T7000830
900	T6800918	T6200920	T6250925	T7000925	T6250930	T6200930	T7600930	T7000930
1000	T6801018	T6201020	T6251025	T7001025	T6251030	T6201030	T7601030	T7001030
1200	T6801218	T6201220	T6251225	T7001225	T6251230	T6201230	T7601230	T7001230
1400	T6801418	T6201420		T7001425		T6201430	T7601430	T7001430
1500	T6801518	T6201520		T7001525		T6201530	17601530	T7001530
1600				T7001625			17601630	T7001630
1800				T7001825			T7601830	T7001830
2000				T7002025			T7602030	T7002030
2200				T7002225				T7002230
PACKAGE TYPE	T68	T62	T62	T70	T62	T62	T76	T70
PAGE NUMBER	573	S43	S47	S37	S47	S43	571	S37

^{*} HIGH TEMPERATURE - 150°C

## PHASE CONTROL 350 - 700 Amperes

				*	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S		777774878027802780000000	
TYPE	T70035	T78035	172035	T62540	T72045	T72055	T920 <b>06</b>	T92007
AVERAGE CURRENT	350	350	350	400	450	550	600	700
ONE CYCLE SURGE	10,000	10,000	7000	5000	8400	10,000	13,000	15,000
VOLTAGE 100	T7000135	T7800135	T7200135	T6250140	17200145	T7200155		
200	T7000235	T7800235	T7200235	T6250240	T7200245	T7200255		
300	17000335	T7800335	17200335	T6250340	T7200345	T7200355		
400	T7000435	T7800435	T7200435	T6250440	T7200445	T7200355		
500	17000535	T7800535	17200535	T6250540	17200545	T7200555		
600	T7000635	T7800635	17200635	T6250640	T7200645	T7200655	T9200606	T9200607
700	T7000735	T7800735	T7200736	T6250740	T7200745	T7200755	T9200706	T9200707
800	T7000835	T7800835	T7200835	T6250840	T7200845	T7200855	T9200806	T9200807
900	T7000935	T7800935	T7200935	T6250940	T7200945	T7200955	T9200906	T9200907
1000	T7001035	T7801035	17201035	T6251040	T7201045	T7201055	T9201006	T9201007
1200	T7001235	T7801235	T7201235	T6251240	T7201245	T7201255	T9201206	T9201207
1400	T7001435	T7801435	T7201435	10201240	T7201445	T7201455	T9201406	T9201407
1600	17001635	T7801635	T7201635		T7201645	T7201655	T9201606	T9201607
1800		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T7201835		T7201845	17201000	T9201806	T9201807
2000			17202035		T7202045		T9202006	T9202007
2200			17202235		T7202245		T9202206	T9202207
2500					1,7-02-10		T9202506	.020220.
2800							T9202806	
3000							T9203006	
3000								
PACKAGE TYPE	170	T78	T72	T62	T72	T72	T92	T92
PAGE NUMBER	S37	S75	S61	S47	\$51	S51	S55	S55

^{*} HIGH TEMPERATURE - 150°C









## PHASE CONTROL SCR'S 800 — 1400 Amperes

	TYPE	T92008	T9G008	T92009	T92010	T9G010	T9G012	TA2012	TA2014
T92	AVERAGE CURRENT	800	800	900	1000	1000	1200	1200	1400
	ONE CYCLE SURGE	17,000	13,000	25,000	27,000	17.000	27,000	30,000	35,000
	VOLTAGE 600	T9200608	T9G00608	T9200609	T9200610	T9G00610	T9G00612	TA200612	TA200614
	700	T9200708	T9G00708	T9200709	T9200710	T9G00710	T9G00712	TA200712	TA200714
	800	T9200B08	T9G00808	T9200809	T9200810	T9G00810	T9G00812	TA200812	TA200814
	900	T9200908	T9G00908	T9200909	T9200910	T9G00910	T9G00912	TA200912	TA200914
T9G	1000	T9201008	T9G01008	T9201009	T9201010	T9G01010	T9G01012	TA201012	TA201014
	1200	T9201208	T9G01208	T9201209	T9201210	T9G01210	T9G01212	TA201212	TA201214
	1400	T9201408	T9G01408	T9201409	T9201410	T9G01410	T9G01412	TA201412	TA201414
	1600	T9201608	T9G01608	T9201809	T9201610	T9G01610	T9G01612	TA201612	TA201614
	1800	T9201808	T9G01808			T9G01810		TA201812	TA201814
	2000	T9202008	T9G02008			T9G02010		TA202012	TA202014
	2200	T9202208	T9G02208			T9G02210		TA202212	TA202214
	2400		T9G02408						
TAG	2600		T9G02608						
TA2	2800		T9G02808						
	3000		T9G03008						
	PACKAGE TYPE	T92	T9G	T92	T92	19G	T9G	TA2	TA2
	PAGE NUMBER	\$55	S61	S55	S55	S61	S61	\$67	S67



### FAST SWITCHING SCR'S and RBDT'S

22 — 125 Amperes

	*						*
TYPE	T40R22	T50740	T62760	T50770	T50780	T52712	T62R13
AVERAGE CURRENT	22	40	60	70	80	115	125
ONE CYCLE SURGE	300	1000	1000	1200	1400	1200	4000
VOLTAGE 100		T5070140	T5270180	T5070170	T5070180	T5270112	
200		T5070240	T5270260	T5070270	T5070280	T5270212	
300		T5070340	T5270360	T5070370	T5070380	T5270312	
400		T5070440	T5270460	T5070470	T5070480	T5270412	
500		T5070540	T5270560	T5070570	T5070580	T5270512	
600	T4040622	T5070640	T5270660	T5070670	T5070680	T5270612	T62R0613
700		T5070740	T5270760	T5070770	T5070780	T5270712	
800	T40R0822	T5070840	T5270860	T5070870	T5070880	T5270812	T62R0813
900		T5070940	T5270960	T5070970	T5070980	T5270912	
1000	T40R1022	T5071040	T5271060	T5071070	T5071080	T5271012	T62R1013
1200		T5071240	T5271260	T5071270	T5071280	T5271212	
TURN OFF TIME	50 µs	10-50 µs	عر 10-60 ps	10-50 µs	10-50 µs	10-50 µs	50 µs
<u>-</u>				•			
PACKAGE TYPE	DO-5	TO-83/TO-94	T62	TO-83/TO-94	TO:83/TO:94	T52	T62R
PAGE NUMBER	\$95	S77	e e e	077	099	000	
FAGE NUMBER		3//	S83	S77	S77	S83	S97

'RBDT - Reverse Blocking Diode Thyristor

### FAST SWITCHING SCR'S 125 — 250 Amperes

TYPE	T <b>627</b> 13	T60713	T60715	T62715	T60718	T62720	T62725
AVERAGE CURRENT	125	125	160	150	175	200	250
ONE CYCLE SURGE	1400	3500	4000	3500	4500	4000	4500
VOLTAGE 100	T6270113	T6070113	T6070115	T6270115	T6070118	T6270120	T6270125
200	T5270213	T6070213	T6070215	T6270215	T6070218	T6270220	T6270225
300	T5270313	T6070313	T6070315	T6270315	T6070318	T6270320	T6270325
400	T5270413	T6070413	T6070415	T6270415	16070418	T6270420	T6270425
500	T5270513	T6070513	T6070515	T6270515	T6070518	T6270520	T6270525
600	T5270613	T6070613	T6070615	T6270615	T6070618	T6270620	T6270625
700	T5270713	T6070713	T6070715	T6270715	T6070718	T6270720	T6270725
800	T5270813	T6070813	T6070815	T6270815	T6070818	T6270820	T6270825
900	T5270913	T6070913	T6070915	T6270915	T6070918	T6270920	T6270925
1000	T5271013	T6071013	T6071015	T6271015	T6071018	T6271020	T6271025
1200	T5271213	T6071213	T6071215	T6271215	T6071218	T6271220	T6271225
TURN OFF TIME	10-50 µs	10-50 µs	10-50 µs	10-50 µs	15-50 µs	10-50 µs	16-50 μs
PACKAGE TYPE	T <b>52</b>	TO-93	TO-93	T62	TO-93	T62	T62
PAGE NUMBER	583	S79	579	S87	S79	S87	\$87







## FAST SWITCHING SCR'S

250 — 350 Amperes

		*	_	•			*
TYPE	T70725	T72H25	170728	T70730	170733	T72735	T72H36
AVERAGE CURRENT	250	250	275	300	325	350	350
ONE CYCLE SURGE	7000	6000	7000	8000	8000	7000	7000
VOLTAGE 100		T72H0 125	T7070128		T7070133		T72H0135
200		T72H0225	T7070228		T7070233		T72H0235
300		T72H0325	T7070328		T7070333		T72H0335
400		T72H0425	T7070428		T7070433		T72H0435
500		T72H0525	T7070528		T7070533		T72H0535
600	T7070625	T72H0625	T7070628	T7070630	T7070633	T7270635	T72H0635
700	T7070725	T72H0725	T7070728	T7070730	17070733	T7270735	T72H0735
800	T7070825	T72H0825	T7070828	T7070830	T7070833	T7270835	T72H0835
. 900	T7070925	T72H0925		T7070930		T7270935	T72H0935
1000	T7071025	T72H1025		T7071030		T7271035	T72H1035
1200	T7071225	T72H1225		T7071230		T7271235	T72H1235
TURN OFF TIME	15.50 µs	25-50 µs	10-50 µs	20-50 µs	10-50 µs	15-50 µs	25-50 µs
PACKAGE TYPE	<b>T70</b>	T <b>72</b>	770	T70	170	T72	172
PAGE NUMBER	\$81	S89	581	S81	\$81	S91	S89

* di/namic mid-gate design



## T9G

## FAST SWITCHING SCR'S 400 — 900 Amperes

			*		*	*
TYPE	172740	T72745	T72H45	T72748	T9GH08	T9GH09
AVERAGE CURRENT	400	450	450	475	800	900
ONE CYCLE SURGE	7000	8000	7500	8000	10,000	13,000
VOLTAGE 100	T7270140		T72H0145	T7270148		
200	17270240		T72H0245	T7270248		
300	T7270340		T72H0345	T7270348		
400	T7270440		T72H0445	T7270448		
500	T7270540	:	T72H0545	T7270548		
600	17270640	T7270645	T72H0645	T7270648	T9GH0608	T9GH0609
700	T7270740	T7270745	T72H0745	T7270748	T9GH0708	T9GH0709
800	17270840	T7270845	T72H0845	T7270848	T9GH0808	T9GH0809
900		T7270945	T72H0945		T9GH0908	T9GH0909
1000		T7271045	T72H1045		T9GH1008	T9GH1009
1200		T7271245	T72H1245		T9GH1208	T9GH1209
1400	300000000000000000000000000000000000000				T9GH1408	T9GH1409
1600					T9GH1608	T9GH1609
1800					T9GH1808	T9GH1809
2000					T9GH2008	
2200					T9GH2208	
TURN OFF TIME	10-50 µs	20-50 µs	30-50 µs	10-50 µs	30-80 jis	30-80 µs
PACKAGE TYPE	<b>172</b>	T72	772	T72	T9G	T9G
PAGE NUMBER	\$91	S91	S89	S91	\$93	S93

* di/namic mid-gate design



## **Phase Control** SCR 2N1842,A—2N1850,A

## 10 A Avg Up to 500 Volts



	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
Α Α, φD	.330	.505 .880 .544	8.38	12.83 22.35 13.82
E F J	.544 .113	.562 .152 1.193	13.82 2.87	14.27 3.86 30.30
M N φT	.210 .422 .125	.300 .453 .165	5.33 10.72 3.18	7.62 11.51 4.19
φT, Z	.060 .120	.075	1.52 3.05	1.91
φW	¼-28 L	NF-2A		***

- Approx. Weight—.33 oz. (10 g).
   Complete threads to extend to within 2% threads of seating plane.
   Contour and angular orientation of terminals is undefined.
   Pitch diameter of %-28 UNF-2A (coated) threads (ASA B1.1-1960).



Conforms to TO-48

Maximum Ratings and Characte	ristics			JEDE	С Туре	es: 2N1	842, T	100=ر	°C; 2N	1842A,	T _J =12	25°C
Blocking State			Symbol	2N1842 2N1842A	2N1843 2N1843A	2N1844 2N1844A	2N1845 2N1845A	2N1846 2N1846A	2N1847 2N1847A	2N1848 2N1848A	2N1849 2N1849A	2N1850 2N1850A
*Repetitive Peak Forward and Reverse Vol	tage, volt	s		25	50	100	150	200	250	300	400	500
*Non-repetitive Transient Peak Forward an	d Reverse V	oltage,	VRRM VRSM	25	30	100	150	200	250	300	400	500
t≤5.0 msec, V				35	75	150	225	300	350	400	500	600
*Forward and Reverse Leakage Current, (fu	ii cycle avera	ige) mA.	IR(AV)	<b>②22.5</b>	<b>19.0</b>	<b>②12.5</b>	6.5	6.0	5.5	5.0	4.0	3.0
Conducting State (Max. Values at Max. T ₁ )	Symbol	2N1842 Series ①		te Para		_	<b>~</b> \		S	Symbol		11842 eries ①
RMS Forward Current, amps	lee	16		ate Curi				:12\/\	ma I	0.7	- 36	80
*Ave. Forward Current (180°Conduction)	IIRMS	10		ate Volta						GI		00
amps	ITAV	10		range (					٠ ١	/ _{GT}		3.5①
Surge Current (at 60 Hz): *1/2 Cycle, amps.		125	*No	on-Trigg								•
3 Cycles, amps.		90	*D.	(Rated								.3① 2
10 Cycles, amps. I ² t for Fusing (at 60 Hz half-wave),	ITSM	75		ak Forv ak Rev								5
amps ² sec	l2t	60		ak Gat								5
Forward Voltage Drop at T _J =25°C				erage (								.5
ITM = 10 A, volts	Vтм	1.6		itching						-(,		
Thermal Characteristics				ical Tu								
*Oper. Junction Temp. Range, °C	T40	to +100(		/DRM = 1				μsec	t _c	n		3
*Storage Temperature Range, °C		to +1250		i. di/dt,					اء ا	l: /d+		25
Max. Thermal Impedance, °C/Watt:	-sig			amps/ہ ical Tui						11/41		25
Junction to Case		1.3		di _R /dt=					max,			
Max. Thread Torque, Lubricated, in. lbs		30		20V/μs					t	q		50
* JEDEC Registered Parameters.				. dv/dt,								100
-			Ŭ T,	N1842A J and T _{sty} ctual test	a = -651	to +125			T=.25.			







Figure 1. Power dissipation vs forward current, rectangular wave.



Figure 3. Power dissipation vs forward current, half-wave sinusoid.



Figure 5. Forward voltage vs forward current.



Figure 2. Case temperature vs forward current, rectangular wave.



Figure 4. Case temperature vs forward current, half-wave sinusoid.



Figure 6. Transient thermal impedance vs time.



## Phase Control SCR 2N681-2N692

## 16 A Avg Up to 800 Volts



Comforms to TO-48 Outline

Maximum Potings and Characteristics

	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
Α Α, φD	.330	.505 .880 .544	8.38	12.83 22.35 13.82
E F J	.544 .113	.562 .152 1.193	13.82 2.87	14.27 3.86 30.30
M N φT	.210 .422 .125	.300 .453 .165	5.33 10.72 3.18	7.62 11.51 4.19
φT, Z	.060 .120	.075	1.52 3.05	1.91
φW	14-28 U	NF-2A		

Creep & Strike Distance.
.27 in. min. (6.96 mm).
(In accordance with NEMA standards.)
Finish—Nickel Plate.
Approx. Weight—.33 oz. (10 g).

- Complete threads to extend to within 2½ threads of seating plane.
   Contour and angular orientation of
- terminals is undefined.

  3. Pitch diameter of ¼-28 UNF-2A (coated) threads (ASA B1.1-1960).



Blocking State (T _J =125°C)	Symbol	ymbol JEDEC Type											
		2N681	2N682	2N683	2N684	2N685	2N686	2N687	2N688	2N689	2N690	2N691	2N692
*Repetitive Peak Forward and Reverse Voltage, volts	V _{DRM}	25	50	100	150	200	250	300	400	500	600	700	800
*Non-repetitive Transient Peak Forward and Reverse Voltaget ≤ 5.0 msec ,V	je, V _{RSM}	35	75	150	225	300	350	400	500	600	780	840	960
*Forward and Reverse Leakage Current, (full cycle average)	nA $^{ID(av)}$	6.5	6.5	6.5	6.5	6.0	5.5	5.0	4.0	3.0	2.5	2.25	2.0

Conducting State (T _J =125°C)	Symbol	All Types
RMS Forward Current, amps* *Ave, Forward Current (180° Conduction)	T (rms)	25
amps	I _{T (av)}	16
Surge Current (at 60 Hz): *1/2 Cycle, amps.	I TSM	150
3 Cycles, amps.	ITSM	110
10 Cycles, amps. 12t for Fusing (at 60 Hz half-wave),	I _{TSM}	90
amps ² sec	I ² t	90
I _F =16 Adc, volts	$V_{\text{TM}}$	1.7

Therm	al Ch	ara	cteris	tics	
*Oper	lunc	tion	Tomp	Range	۰

*Oper. Junction Temp. Range, °C	ΤJ	-65 to	+125
*Storage Temperature Range, °C	T _{stg}	-65 to	+150
Max. Thermal Impedance, °C/Watt:	•		
Junction to CaseR	$\theta$ JC		1.3
Max. Thread Torque, Lubricated, in. lbs			30

^{*} JEDEC Registered Parameters.

Gate Parameters (T _J =25°C)	Symbol	All Types
Gate Current to Trigger (V _{FB} =12V), ma. Gate Voltage to Trigger Over Temper-	I _{GT}	40
ature Range (V _{FB} =12V), volts *Non-Triggering Gate Voltage at T _J =	. V _{GT}	3.0
125°C (Rated V _{FB} ), volts	$V_{GNT}$	.25
*Peak Forward Gate Current, amps		5
*Peak Reverse Gate Voltage, volts		5
*Peak Gate Power, watts*  *Average Gate Power, watts		5 .5
Switching State		
Typical Turn-On Time, $I_T = 10 A$ , 10-90%,		
$V_{DRM}=10 \text{ volts }, T_J=25^{\circ}\text{C}, \mu\text{sec}$	ton	3
Min. di/dt, Linear to 5.0 I _{T(av)} amps/μsec	di/dt	25
Typical Turn-Off Time, $I_T=10 \text{ A}$ , $T_J=125^{\circ}\text{C}$ , $di_B/dt=10 \text{ A}/\mu\text{sec.}$ , $dv/dt=10 \text{ A}/\mu\text{sec.}$		
20V/µsec. Linear to .8 VDRM µsec	ta	50
Typ. dv/dt, Exp. to VDRM volts/µsec	-	100
Typ. dv/dt, Exp. to VDRM Voits/ #sec	uv/ul	100



#### **Electrical Characteristics**



Figure 1. Power dissipation vs forward current, rectangular wave.



Figure 3. Power dissipation vs forward current, half-wave sinusoid.



Figure 5. Forward voltage vs forward current.



Figure 2. Case temperature vs forward current, rectangular wave.



Figure 4. Case temperature vs forward current, half-wave sinusoid.



Figure 6. Transient thermal impedance vs time.



## **Phase Control** SCR T400/2N5204-07

## 10-22 A. Avg. Up to 1200 Volts



Conforms to	TO-48	Outline

Cumahal	Inches		Millime	ters
Symbol	Min.	Min. Max.		Max.
Α Α, φD	.330	.505 .880 .544	8.38	12.83 22.35 13.82
E F J .	.544 .113	.562 .152 1.193	13.82 2.87	14.27 3.86 30.30
M N φT	.210 .422 .125	.300 .453 .165	5.33 10.72 3.18	7.62 11.51 4.19
φΤ, Ζ	.060 .120	.075	1.52 3.05	1.91
φW	¼-28 U	NF-2A		

Finish—Nickel Plate. Approx. Weight—.33 oz. (10 g).

- 2% threads to extend to within 2% threads of seating plane.
  Contour and angular orientation of
- terminals is undefined.
  3. Pitch diameter of ¼-28 UNF-2A (coated) threads (ASA B1.1-1960).



#### **Ordering Information**

Туре	Voltage	Current	Current Turn-off Gate Current		Current Turn-off Gate Current Leads		
Code	V DRM and V RRM (V)	IT (av) Code	tq Code μsec	Igт (ma) <b>Code</b>	Case <b>Code</b>		
T400	50 00 100 01 200 02 300 03 400 04 500 06 600 06 700 07 800 08 900 09 1000 10 1100 11	10 10 16 22 22	not g specified 75 g	40 <b>8</b> 6	TO-48 96		
2N5204 2N5205 2N5206 2N5207	600 800 1000 1200	22 Amperes	75 µsec(typ.)	40 mA.	TO-48		

#### Example

Obtain optimum device performance for your application by selecting proper order codes.

Type T400 rated 35 Amps RMS with  $V_{RRM}/V_{DRM}$ =1200 V, IGT= 40 ma and tq=75  $\mu$ sec max. Order as

	Ту	pe		Vol	tage	Current		Turn Off	Gate Current	Le	ads
Т	4	0	0	0.	3	2	2	1	8	0	0

## 10-22 A. Avg. Up to 1200 Volts

## **Phase Control** SCR T400/2N5204-07



		-					— Ту	pe T40	00 —		· · · · · · · · · · · · · · · · · · ·			-	04	25	9	7
		Ord	der Code										2N5204 2N5205 2N5206			2N5207		
Blocking State	Symbol	00	01	02	03	04	05	06	07	08	09	10 ·	11	12	2N	2	2N	2N
Repetitive Peak Forward and Reverse Voltage ①, volts.	. Vdrm Vrrm	50	100	200	300	400	500	600	700	800	900	1000	1100	1200	600	800	1000	1200
Non-repetitive Transient Peak, Reverse Voltage, volts <u>≤</u> 5.0 msec		75	150	300	400	500	600	700	800	900			1200					
Peak Forward and Reverse Leakage Current mA	.ldrm① lrrm	6.5	6.5	6.0	5.0	4.0	3.5	3.0	2.5	2.2	2.0	1.8	1.6	1.5	3.3	2.5	2.0	1.7

Current—Select Order Code 10, 16, 22	Order Code	10	16	22
Conducting State $(T_C = 120^{\circ}C)$	Symbol			
Max. rms forward current, amps	lT(rms)	16	25	35
Max. ave forward current, amps	lT(av)	10	16	22
Max. ½-cycle② surge current, amps	I _{TSM}	150	250	360 †
Max. I ² T for fusing (at 60 Hz half-wave), ampere ² seconds .	²t	90	260	540 †
Max. forward voltage drop at IT= 3.14X IT(AV) Adc and TJ = 25°C, Vdc	VTM	2.3	2.3	2.3

Switching State	Туре	T400	JEDEC
Min. critical dv/dt, exponential to VDRM, TJ = 125°C volts/µsec		50	100
Min. di /dt , JEDEC Std. #7, Sec. 5.1.2.4. A /μsec di /dt		150	100

† JEDEC TYPES HAVE Iтsм = 300 A. I2t = 375 A2sec

<b>Turn Off</b> —Select Order Code 1 or 0 Symbol		Order Code
Max. turn-off time, $IT = 10$ , $TC = 120^{\circ}C$ , $dir_{dt} = 5A/\mu sec$ reapplied $dv/dt = 100 \ V/\mu sec$ linear to rated $V_{DRM}$ , $\mu sec \dots t_{q}$	75 t _q not specified	1 0

#### Gate Current—Select Order Code 8 or 6

	Symbol		Order Code
Max. gate current to trigger at Tc = 25°C, mA IGT		40 80	8 6

- ① Applies for zero or negative gate voltage.② At 60 Hertz.

Max. holding current, mA  Thermal and Mechanical Characteristics  Min., Max. oper. junction temp., °C	100
Characteristics  Min., Max. oper. junction temp., °C	
Min., Max. storage temp., °C	
Gate Parameters (Tc—25°C) T400  Max. gate voltage to trigger at VD = 5V,	-40 to + 125 -40 to + 150 30
Gate Parameters (Tc—25°C) T400  Max. gate voltage to trigger at VD = 5V,     Tc = -40 to +120°C	1.6
Tc = -40 to +120°C	
TC=+120°C and rated VDRM, volts VGR Peak forward gate current, amps IGTN Peak reverse gate voltage, volts VGR Peak gate power, watts PGN Average gate power, watts PG	3
Peak reverse gate voltage, volts VGR Peak gate power, watts PGN Average gate power, watts PG(	
Peak gate power, watts PGM Average gate power, watts PG(	м .25
Average gate power, watts PG(	
	л 5
JEDEC ITES	л 5 м 10
Peak reverse gate voltage, volts VGR	л 5 м 10
Peak gate power, watts PGN	M 10 1 25 AV) 2
Average gate power, watts PG(	M 5 M 10 1 25 AV) 2





Figure 1. Power dissipation vs. forward current, rectangular wave.



Figure 3. Power dissipation vs. forward current, half wave sinusoid.



Figure 5. Forward voltage vs. forward current.



Figure 2. Case temperature vs. forward current, rectangular wave.



Figure 4. Case temperature vs. forward current, half wave sinusoid.



Figure 6. Transient thermal impedance vs. time.





Figure 7. Power dissipation vs. forward current, rectangular wave.



Figure 9. Power dissipation vs. forward current, half wave sinusoid.



Figure 11. Forward voltage vs. forward current.



Figure 8. Case temperature vs. forward current, rectangular wave.



Figure 10. Case temperature vs. forward current, half wave sinusoid.



Figure 12. Transient thermal impedance vs. time.





Figure 13. Power dissipation vs. forward current, rectangular wave.



Figure 15. Power dissipation vs. forward current, half wave sinusoid.



Figure 17. Forward voltage vs. forward current.



Figure 14. Case temperature vs. forward current, rectangular wave.



Figure 16. Case temperature vs. forward current, half wave sinusoid.



Figure 18. Transient thermal impedance vs. time.

## 10-22 A. Avg. Up to 1200 Volts

## **Phase Control** SCR T400/2N5204-07





Figure 19. Power dissipation vs. forward current, rectangular wave.



Figure 21. Power dissipation vs. forward current, half wave sinusoid.



Figure 23. Forward voltage vs. forward current.



Figure 20. Case temperature vs. forward current, rectangular wave.



Figure 22. Case temperature vs. forward current, half wave sinusoid.



Figure 24. Transient thermal impedance vs. time.



## Phase Control SCR 2N1909/2N1792 Series

## 70 A Avg. Up to 600 Volts



Conforms to TO-94 Outline Features:

- Center fired, di/namic gate
- All diffused design
- Low gate current
- Compression Bonded Encapsulation
- Low VTM
- Lifetime Guarantee

	Inches		Millimeters				
Symbol	Min.	Max.	Min.	Max.			
A	5.775	6.265	146.69	159.13			
Α,	6.850	7.500	173.99	190.50			
В	.055	.075	1.40	1.91			
φD	.860	1.000	21.84	25.40			
Ė	1.031	1.063	26.19	27.00			
F	.255	.400	6.48	10.16			
J	2.50		63.50				
M	.437	.650	11.10	16.51			
N	.796	.827	20.24	21.01			
a		1.675		42.55			
φΤ	.260	.291	6.60	7.39			
Ż	.250		6.35				
φW	½-20 U	NF-2A					

Creep & Strike Distance.

.10 in. min. (2.54 mm). (In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight-5 oz. (142 g).

- 1. Complete threads to extend to within
- 2½ threads of seating plane.2. Angular orientation of terminals is
- 3. Pitch diameter of ½-20 UNF-2A (coated) threads (ASA B1.1-1960).
  4. Dimension "J" denotes seated height with leads bent at right angles.



For TO-83 Outline, see page S23.

#### Applications:

- Phase control
- Power supplies
- Motor control
- Light dimmers

Voltage  ③ Blocking State Maximums (T _J = 125°C)	* Symbol	N1909	2N1910 2N1792	2N1911 2N1793	2N1912 2N1794	2N1913 2N1795	2N1914 2N1796	2N1915 2N1797	2N1916 2N1798	2N1805 2N1799	N1806 N1800
Repetitive peak forward blocking voltage, V Repetitive peak reverse voltage, V Non-repetitive transient peak reverse voltage,	V _{DRM} V _{RRM}	25 25	50 50	100	150 150	200	250 250	300 300	400 400	500 500	600 600
t ≤ 5.0 msec, V Forward leakage current, mA peak Reverse leakage current, mA peak	V _{RSM} I _{DRM} I _{RRM}	35 20 20	75 20 20	150 20 20	225 20 20	300 18 18	350 16 16	400 14 14	500 12 12	600 10 10	700 10 10

Note: For better ratings & higher voltages, see T500 series.

#### Current

Conducting State Maximums (T _J = 125°C)	Symbol	
RMS forward current, A	I _{T (rms)}	110
Ave. forward current, A	I _{T (av)}	70
One-half cycle surge current 3,A	ITSM	1000
$I^2$ t for fusing (for times $\geq 8.3$ ms) $A^2$ sec.	I ² t.	4000
Forward voltage drop at $I_{TM}$ =500A and $T_J = 25$ °C, V	$V_{TM}$	2.3

#### **Switching**

$(T_J = 25^{\circ}C)$	Symbo	1
Typical turn-off time, I _T = 50A		
$T_J = 125^{\circ}C, di_R/dt = 5$		
$A/\mu$ sec, reapplied dv/dt =		
$20V/\mu$ sec linear to $0.8 V_{DRM}$ , $\mu$ sec	tq	100
Typ. turn-on-time, $I_T = 100A$		
V _D = 100V <b>④</b> , μsec	ton	4
Min. critical dv/dt, exponential to VDRM		
T _J = 125°C, V/μsec②⑤	dv/dt	300
Min. di/dt① non-repetitive, JEDEC,		
A/μsec ① ④ ⑤	di/dt	800

#### Gate

Maximum Parameters		
$(T_J = 25^{\circ}C)$	Symbol	1
Gate current to trigger at V _D = 12V, mA	I _{GT}	70
Gate voltage to trigger at V _D = 12V, V	$V_{GT}$	3
Non-triggering gate voltage, TJ		
= 125°C, and rated V _{DRM} , V	V _{GDM}	.25
Peak forward gate current, A	I _{GTM}	4
Peak reverse gate voltage, V	$V_{GRM}$	5
Peak gate power, Watts	P _{GM}	16
Average gate power, Watts	P _{G (av)}	3

#### Thermal and Mechanical

	Symbol	
Min., Max. oper. junction temp., °C	TJ	-40 to + 125
Min., Max. storage temp., °C	Tstg	-40 to + 150
Max. mounting torque, in lb. 1	)	130
Max. Thermal resistance ①		
Junction to case, °C/Watt	ReJC	.40
Case to sink, lubricated		
°C/Watt	Recs	.12

- ① Consult recommended mounting procedures.
- ② Applies for zero or negative gate bias.③ Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.
- *2N1909 Series in TO-49 PKG 2N1792 Series in TO-83 PKG

## 70 A Avg. Up to 600 Volts

# Phase Control SCR 2N1909/2N1792 Series

















## **Phase Control** SCR 2N4361/2N4371 Series

## 70 A Avg. Up to 1400 Volts



Conforms to TO-94 Outline

#### Features:

- · All diffused design
- Low gate current
- Low VTM
- Compression Bonded Encapsulation
- Low Thermal Impedance

#### Voltage

Complete	Inches		Millimeters				
Symbol	Min.	Max.	Min.	Max.			
Α	5.775	6.265	146.69	159.13			
Α,	6.850	7.500	173.99	190.50			
В	.055	.075	1.40	1.91			
φD	.860	1.000	21.84	25.40			
Ε	1.031	1.063	26.19	27.00			
F	.255	.400	6.48	10.16			
J	2.50		63.50				
M	.437	.650	11.10	16.51			
N	.796	.827	20.24	21.01			
a		1.675		42.55			
$\phi T$	.260	.291	6.60	7.39			
Z	.250		6.35				
φW	1/2-20 L	NF-2A					

Creep & Strike Distance.

.50 in. min. (12.85 mm). .10 in. min. (2.54 mm). **

(In accordance with NEMA standards.)

Finish—Nickel Plate. Approx. Weight—5 oz. (142 g).

- 1. Complete threads to extend to within 2½ threads of seating plane.
- Angular orientation of terminals is undefined.
- 3. Pitch diameter of ½-20 UNF-2A
- (coated) threads (ASA B1.1-1960).
  4. Dimension "J" denotes seated height
- with leads bent at right angles.

#### Applications:

- Phase control
- Power supplies
- Motor control
- Light dimmers

	*
	***
T	4

* For TO-83 Outline, see page S23.

Blocking State Maximums ② (TJ = 125°C) Symbol		2N4361 2N4371	2N4362 2N4372	2N4363 2N4373	2N4364 2N4374	2N4365 2N4375	2N4366 2N4376	2N4367 2N4377	2N4368* 2N4378
Repetitive peak forward blocking voltage, V	VDRM	100	200	400	600	800	1000	1200	1400
Repetive peak reverse voltage, V	VRRM	100	200	400	600	800	1000	1200	1400
Non-repetitive transient peak reverse voltage, t≤5 msec, V	VRSM	200	300	500	700	950	1200	1450	1700
Forward leakage current, mA peak	IDRM	<del></del>				<del></del> 10 <del></del>			<del>&gt;</del>
Reverse leakage current, mA peak	IRRM	←				10			<del></del>

#### Current

Guirein			
Conducting State Maximums (TJ = 125°C)	Symbol		
RMS forward current, A	lT(rms)	110	
Ave. forward current, A	IT(av)	70	
One-half cycle surge current, A 3	ITSM	1600	
3 cycle surge current, A ③	ITSM	1250	
10 cycle surge current, A3	ITSM	1080	
I ² t for fusing (for times 8.3 ms) A ² sec	12t	10,700	
Forward voltage drop at ITM = 500A and TJ = 25°C,V	ITM	2.5	

#### **Switching**

(TJ = 25°C)	Symbol	
Typical turn-off time, IT = 50A TJ = 125°C, diR/dt = 5 A/µsec, reapplied dv/dt = 20V/µsec		
linear to 0.8 VDRM, usec	tq	100
Typ. turn-on-time, IT = 100A VD = 100V, µsec	ton	4
Min critical dv dt exponential to VDRM T: 125 C. V µsec ⑤	dv/dt	100
Min di di non repetitive A juseci.	d⊢′dt	800
① ④ ⑤		

#### Gate

Maximum Parameters		
(TJ 25 C)	Symbol	
Gate current to trigger at VD 12V mA	IGT	250
Gate voltage to trigger at VD 12V V	VGT	3
Non-triggering gate voltage, TJ 125 C, and rated VDRM, V	VGDM	0 15
Peak forward gate current, A	IGTM	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	15
Average gate power, Watts	PG(av)	3

#### Thermal and Mechanical

	Symbo	ı
Min., Max. oper. junction temp., °C	TJ	-40 to +125
Min., Max. storage temp., °C	Tstg	40 to +150
Max. mounting torque, ① in lb		130
Max. Thermal resistance ① Junction to case, °C/Watt	Rejc	.28
Case to sink, lubricated °C/Watt	Recs	.12

- ① Consult recommended mounting procedures.
- 3 Applies for zero or negative gate bias.
- ① Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
- ① Per JEDEC standard RS-397, 5.2.2.6.
  - *2N4361 Series in TO-94 PKG. 2N4371 Series in TO-83 PKG.
- **Glass-to-metal seal package.

## 70 A Avg. Up to 1400 Volts

# Phase Control SCR 2N4361/2N4371 Series





Forward Current, ITM, Peak Amperes





Time in Seconds





Average Forward Current, Amperes



## **Phase Control** SCR T500

## 40-80 A Avg Up to 1500 Volts



#### Conforms to TO-94 Outline

	Inches	-	Millimet	ters	
Symbol	Min.	Max.	Min.	Max.	
A	5.775	6.265	146.69	159.13	
A,	6.850	7.500	173.99	190.50	
В	.055	.075	1.40	1.91	
φD	.860	1.000	21.84	25.40	
φD E	1.031	1.063	26.19	27.00	
F	.255	.400	6.48	10.16	
J	2.50		63.50		
M	.437	.650	11.10	16.51	
N	.796	.827	20.24	21.01	
Q		1.675		42.55	
φT	.260	.291	6.60	7.39	
φT Z	.250		6.35		
φW	½-20 U	NF-2A			

Creep & Strike Distance.
T500—.50 in. min. (12.85 mm).
(In accordance with NEMA standards.)
Finish—Nickel Plate.

Approx. Weight-5 oz. (142 g).

- 1. Complete threads to extend to within 2½ threads of seating plane.2. Angular orientation of terminals is
- undefined.
- Pitch diameter of ½-20 UNF-2A (coated) threads (ASA B1.1-1960).
   Dimension "J" denotes seated height
- with leads bent at right angles.



^{**}For lower I GT consult factory.



Conforms to TO-83 Outline

0 1 1	Inches		Millimeters			
Symbol	Min.	Max.	Min.	Max.		
A ₂ C	.070	1.810 .110 .650	1.78	45.97 2.79 16.51		
L L, L ₂ M,	.420 .180 .360	.520	10.67 4.57 9.14	13.21		
$\phi T_1$ $\phi T_2$ $Z_1$	.190 .060 .180	.235	4.83 1.52 4.57	5.97 2.03		
φW	½-20 U	NF-2A				

Approx. Weight-4 oz. (114 g).

1. Basic dimensions of TO-94 and TO-83 are same except as noted.



#### Features:

- Center fired, di/namic gate
- · All diffused design
- Low VTM
- Compression Bonded Encapsulation
- Low Thermal Impedance
- High Surge Current Capability
- Low gate current
- Lifetime Guarantee

#### Applications:

- Phase control Motor control
- Power supplies Light dimmers

#### **Ordering Information**

Туре	Volt	age*	Curr	ent	Turn	-off	Gate	Current	Le	ads
Code	VDRM and VRRM (V)	Code	IT(av) (A)	Code	tq μsec	Code	IGT (ma)	Code	Case	Code
	700	07	40	40	100	0			TO-94	AQ
T500	800	08			(typ)		100	5		
	900	09					150	4		
	1000	10	80	80			**		TO-83	AA
	1100	11								
	1200	12								
•	1300	13								
	1400	14							ĺ	
	1500	15			1					

Obtain optimum device performance for your application by selecting proper Order Code.

Type T500 rated at 80A average with  $V_{DRM}$ =1000 volts I_{GT}=150 ma, and standard flexible lead order as:

	Ţ	уре	1.3	Vol	tage	Cui	rrent	Turn-Off	Gate Current	Lea	ads
I	5	0	0	1	0	8	0	0	4	Α	α

## 40-80 A Avg. Up to 1500 Volts

## **Phase Control** SCR T500



#### Voltage

Blocking State Maximums (3) (TJ=125°C)	Symbol									
Repetitive peak forward blocking		700			4000	4400	4000	4000		
voltage, V	VDRM	700	800	900	1000	1100	1200	1300	1400	1500
Repetitive peak reverse voltage , V.	VRRM	700	800	900	1000	1100	1200	1300	1400	1500
Non-repetitive transient peak reverse										
voltage, t<5.0 msec,V	VRSM	850	950	1100	1200	1300	1450	1550	1700	1800
Forward leakage current, mA peak	IDRM	_				10_				
Reverse leakage current, mA peak	IRRM	_				10_				

#### Current

Conducting State Maximums (T _J =125°C)	Symbol	T50040	T50080
RMS forward current, A	¹ T(rms)	63	125
Ave. forward current, A	lT(av)	40	80
One-half cycle surge current③, A	ITSM	1200	1800
3 cycle surge current(3), A	ITSM	950	1300
10 cycle surge current(3), A	ITSM	800	1170
l²t for fusing (for times≥8.3 ms) A² sec	l²t	6000	13,500
Forward voltage drop at ITM=500A and TJ=25°C, V.		3.7	2.2

_				
	A/I	tr	hı	na

(TJ=25°C)	Symbol		
Typical turn-off time, IT=50A TJ=125°C, dig/dt=5 A/µsec, reapplied dv/dt=20V/µsec linear to 0.8 VDRM, µsec	tq	100	
Typ. turn-on-time, IT=100A VD=100V(4), µsec	ton	4	
Min. critical dv/dt, exponential to VDRM TJ=125°C, V/μsec②⑤	dv/dt	300	
Min. di/dt non-repetitive ① ④ ⑤ A/μsec	di/dt	800	

#### Thermal and Mechanical

	Symbol	
Min., Max. oper. junction temp., °C	TJ	-40 to +125
Min., Max. storage temp., °C	T _{stg}	-40  to  +150
Max. mounting torque, in lb.①		130
Thermal resistance① Junction to case,		00
°C/Watt	$R_{\Theta}JC$	.28
Case to sink, lubricated	Recs	.12

#### Gate

Maximum Parameters		
(TJ=25°C)	Symbol	
Gate current to trigger at VD = 12V, mA	IGT	See Ordering Info.
Gate voltage to trigger at VD =12V, V	VGT	3
Non-triggering gate voltage, T _J =125°C, and rated V _{DRM} , V.	VGDM	0.15
Peak forward gate current, A	IGTM	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG (av)	3

- ① Consult recommended mounting procedures.
- ② Applies for zero or negative gate bias.③ Per JEDEC RS-397, 5.2.2.1.
- ( With recommended gate drive.
- ⑤ Higher dv/dt ratings available, consult factory.
- ® Per JEDEC STD RS-397, 5.2.2.6.















Maximum Power Dissipation VS. Forward Current

160

1500

40

1500

40

160

17500

40

180°

120

Angle A

180°

0

20

40

60

80

Average Forward Current, Amperes







## **Phase Control** SCR T510

### 50-80A Avg. Up to 600 Volts



Conforms to TO-94 Outline

	La ala a		Millimet	
Symbol	Inches		ivillime	ers
Symbol	Min.	Min. Max.		Max.
A	5.775	6.265	146.69	159.13
A,	6.850	7.500	173.99	190.50
B.	.055	.075	1.40	1.91
φD	.860	1.000	21.84	25.40
Ė	1.031	1.063	26.19	27.00
φD E F	.255	.400	6.48	10.16
J	2.50		63.50	
M	.437	.650	11.10	16.51
N	.796	.827	20.24	21.01
a		1.675		42.55
$\phi T$	.260	.291	6.60	7.39
Ź	.250		6.35	
φW	½-20 U	NF-2A		

Creep & Strike Distance.
T500—.50 in. min. (12.85 mm).
T510—.10 in. min. (2.54 mm).
(In accordance with NEMA standards.)
Finish—Nickel Plate.

Approx. Weight-5 oz. (142 g).

- 1. Complete threads to extend to within 21/2 threads of seating plane.
- 2. Angular orientation of terminals is undefined.
- Pitch diameter of ½-20 UNF-2A (coated) threads (ASA B1.1-1960).
   Dimension "J" denotes seated height
- with leads bent at right angles.

Obtain optimum device performance for your application by selecting proper Order Code.

Type T510 rated at 80A average with  $V_{DRM}$  = 300 volts  $I_{GT} = 70$ ma, and standard flexible lead order as:



Conforms to TO-93 Outline

	Inches		Millime	ters
Symbol	Min.	Min. Max.		Max.
A ₂ C		1.810		45.97
C	.070	.110	1.78	2.79
L		.650		16.51
L, L ₂ M,	.420	.520	10.67	13.21
L ₂	.180		4.57	
M₁	.360	.470	9.14	11.94
φT,	.190	.235	4.83	5.97
$\phi T_2$	.060	.080	1.52	2.03
Ż,	.180		4.57	
φW	½-20 U	NF-2A		

Approx. Weight-4 oz. (114 g).

1. Basic dimensions of TO-94 and TO-83 are same except as noted.



- Center fired di/namic gate
- All diffused design
- Low VTM
- Compression Bonded Encapsulation
- · Hermetic glass to metal seal
- · Low gate current
- Lifetime Guarantee

#### Applications:

- Phase control
- Power supplies
- Light dimmers Motor control

**Ordering Information** 

Туре	Voltage	Current	Turn-off	Gate current	Leads
Code	V _{DRM} and V _{RRM} <b>Code</b> (V) *	I _{T (av)} (A) Code	tq μsec <b>Code</b>	I _{GT} (ma) <b>Coda</b>	Case <b>Code</b>
7510	50 <b>QC</b> 100 <b>Q1</b> 200 <b>Q2</b>	50 50	50 <b>0</b> (typical)	70 7 100 <b>5</b> 150 4	TO-94 AG
	300 03 04 04 04 05 05 05 05 06	80 <b>80</b>			TO-83 AB

	Туре	u V		Volta	ige	Cur	rent	Turn Off	Gate Current	Leads		
Т	5	1	0	0	3	8	0	0	7	Α	Q	

^{*}for 700 volts and above see T500

# 50-80A Avg. Up to 600 Volts

## **Phase Control** SCR T510



#### Voltage

Blocking State Maximums ② (T· = 125°C)	Symbol							
Repetitive peak forward blocking voltage, V	V _{DRM}	50	100	200	300	400	500	600
Repetitive peak reverse voltage , V	VRRM	50	100	200	300	400	500	600
Non-repetitive transient peak reverse voltage,								
$t \leq 5.0$ msec, V	V _{RSM}	100	200	300	400	500	600	700
Forward leakagecurrent, mA peak	IDRM	+				10	<del></del>	<b>→</b>
Reverse leakage current, mA peak	IRRM	<del></del>				10		<b></b> →

#### Current

Conducting State Maximums (T _J = 125°C)	Symbol	T510 50	T510 = 80
RMS forward current, A	l _{T (rms)}	80	125
Ave. forward current, A	l _{T(av)}	50	80
One-half cycle surge current 3,A	ITSM	1200	1600
3 cycle surge current 3,A	ITSM	950	1250
10 cycle surge current 3,A	ITSM	800	1080
$I^2$ t for fusing (for times $\geq 8.3$ ms) $A^2$ sec.	l ² t.	6000	10,700
Forward voltage drop at $I_{TM} = 500A$ and $T_J = 25$ °C, V	V _{TM}	2.6	1.8

#### **Switching**

$(T_{J} = 25^{\circ}C$	)	Symbo	ı
Typical turn	-off time, I _T = 50A		
$T_{\rm J} = 125$	5°C, di _R /dt = 5		
A/μsec, r	eapplied dv/dt =		
20V/μse	c linear to 0.8 V _{DRM} , $\mu$ sec	tq	100
Typ. turn-or	n-time, I _T = 100A		
$V_{D} = 10$	0V <b>④</b> , μsec	ton	4
Min. critical	dv/dt, exponential to V _{DRM}		
$T_{\rm J} = 128$	5°C, V/μsec②⑤	dv/dt	300
Min. di/dt r	non-repetitive.		
A/μsec	0	di/dt	100

#### Gate

Maximum Parameters		
$(T_J = 25^{\circ}C)$	Symbol	
Gate current to trigger at V _D = 12V, mA	I _{GT}	See Ordering Info.
Gate voltage to trigger at V _D = 12V, V	V _{GT}	3
Non-triggering gate voltage, T _J		
= 125°C, and rated V _{DRM} , V	$V_{GDM}$	0.15
Peak forward gate current, A	I _{GTM}	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	P _{G(av)}	3

#### Thermal and Mechanical

	Symbol	Manual Amazana
Min., Max. oper. junction temp., °C	TJ	-40 to + 125
Min., Max. storage temp., °C	Tstg	-40 to + 150
Max. mounting torque, in lb.(	D	130
Max. Thermal resistance ①		
Junction to case, *C/Watt	Rejc	.40
Case to sink, lubricated		
°C/Watt	Recs	.12

- Applies for zero or negative gate bias.
   Consult recommended mounting procedures.
   Per JEDEC RS—397, 5.2.2.1.
- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.

















Maximum Case Temperature VS. Forward Current
130

T510_50

120

120

Angle 1

Angle 1

Angle 2

Average Forward Current, Amperes









### **Phase Control SCR** 2N3884 Series

# 175 A. Avg. Up to 1200 Volts



### Features:

- Center fired di/namic gate
- All diffused design
- Guaranteed dv/dt (300 v/µs)
- Low gate current
- Low VTM
- Low thermal Impedance
- · High surge current capability
- Compression Bonded Encapsulation

0	Inches		ers			
Symbol	Min. Max.		Min.	Max.		
A	7.750	8.100	196.85	205.74		
$A_1$	7.750	8.100	196.85	205.74		
В	.063	.172	1.60	4.37		
$\phi D$	.980	1.090	24.89	27.69		
Ė	1.212	1.250	30.78	31.75		
F	.250	.630	6.35	16.00		
J	3.25		82.55			
M	.530	.755	13.46	19.18		
N	1.040	1.077	26.42	27.36		
Q		2.250	Onale	57.15		
$\phi T$	.260	.290	6.60	7.37		
Ż	.340		8.64			
φW	%-16 U	NF-2A				

Creep & Strike Distance:

.69 in. min. (17.60 mm).
(In accordance with NEMA standards.)

Finish-Nickel Plate. Approx. Weight-8 oz. (227 g).

- 1. Complete threads to extend to within
- 21/2 threads of seating plane. 2. Angular orientation of terminals is
- undefined.
- Pitch diameter of %-16 UNF-2A (coated) threads (ASA B1.1—1960).
   Dimension "J" denotes seated height with leads bent at right angles.



#### **Applications:**

- Phase Control
- Power Supplies
- Motor Control
- Light Dimmers

Lifetime Guarantee		48	82	86	37	88	83	9	16	92	93	94	92
Voltage ② Blocking State Maximums (TJ = 125°C)	Symbol	2N38	2N3885	2N38	2N388	2N38	2N3889	2N38	2N38	2N38	2N389	2N38	2N289
Repetitive peak forward blocking voltage, V	VDRM	50	200	200	300	400	500	600	700	800	900	1000	1200
Repetitive peak reverse voltage, V	VRRM	50	100	200	300	400	500	600	700	800	900	1000	1200
Non-repetitive transient peak reverse voltage, t≤5.0 msec,V	VRSM IDRM	150	200	300	400	500	600	720	850 - 25	960	1080	1200	1320
Reverse leakage current, mA peak	IRRM	-							- 25				$\longrightarrow$

#### Current **Conducting State Maximums** (TJ = 125°Č) Symbol RMS forward Current, A ..... IT (rms) 275 175 Ave. forward current, A ..... IT (av) One-half cycle surge current, A3...... 4500 l2t 84,000 I2t for fusing (for times 8.3)A2 sec ..... Forward voltage drop at ITM = 625A and TJ = 25°C, V ..... 1.55

Switching		
(TJ = 25°C)	Symbol	
Typical turn-off time, IT = 150A TJ = 125°C, dirR/dt = 12.5A/µsec, reapplied dv/dt = 20V/µsec linear to 0.8 VDRM, µsec	tq	100
Typ. turn-on-time, IT = 100A VD = 100V(), µsec	ton	5
Min. critical dv/dt, exponential to VDRM TJ = 125°C, V/μsec②⑤	dv/dt	300
Min. di/dt non-repetitive, A/µsec()(a)(6)	di/dt	800

Thermal and Mechanical						
	Symbol					
Min., Max. oper, junction temp., °C	TJ	-40 to +125				
Min., Max. storage temp.,°C	Tstg	-40 to + 150				
Max. mounting torque, in lb.10		360				
Max. Thermal resistance ① Junction to case, °C/Watt	Reuc	.13				
Case to sink, lubricated, ①	11000	.10				
°C/Watt	Recs	.075				

Gate		
Maximum Parameters		
(TJ = 25°C)	Symbol	
Gate current to trigger at VD = 12V, mA	IGT	150
Gate voltage to trigger at VD = 12V,V	VGT	3
Non-triggering gate voltage,TJ = 125°C, and rated VDRM,V	VGDM	0.15
Peak forward gate current, A	IGTM	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	15
Average gate power, Watts	PG(av)	3

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- 3 Higher dv/dt ratings available, consult factory.
- Per JEDEC standard RS-397, 5.2.2.6.

## 175 A. Avg. Up to 1200 Volts

# Phase Control SCR 2N3884 Series

















### **Phase Control** SCR T600/T610

## 125-175 A Avg. Up to 1500 Volts



Conforms to TO-93 Outline

<b>Features</b>	:
-----------------	---

- Center fired di/namic gate
- All diffused design
- · Low gate current
- Low VTM
- Low Thermal Impedance
- High surge current capability
- Compression Bonded Encapsulation
- Lifetime Guarantee

	Inches		Millimet	Millimeters			
Symbol	Min. Max.		Min.	Max.			
A A, B	7.750 7.750 .063	8.100 8.100 .172	196.85 196.85 1.60	205.74 205.74 4.37			
φD E F	.980 1.212 .250	1.090 1.250 .630	24.89 30.78 6.35	27.69 31.75 16.00			
J M N	3.25 .530 1.040	.755 1.077	82.55 13.46 26.42	19.18 27.36			
Ω φΤ Ζ	.260 .340	2.250 .290	6.60 8.64	57.15 7.37			
$\phi W$	¾-16 U	NF-2A					

Creep & Strike Distance: T600—.69 in. min. (17.60 mm). T610—.12 in. min. (3.05 mm). (In accordance with NEMA standards.)

Finish-Nickel Plate. Approx. Weight-8 oz. (227 g).

- 1. Complete threads to extend to within 21/2 threads of seating plane.
- Angular orientation of terminals is undefined.
- Pitch diameter of %-16 UNF-2A
- (coated) threads (ASA B1.1—1960).
  4. Dimension "J" denotes seated height with leads bent at right angles.



Ceramic Package I2t (case rupture) rating: 20 x 106 A2sec.

#### Applications:

- Phase Control
- Motor Control
- Power Supplies
- Welders
- Light Dimmers

#### **Ordering Information**

Туре	Volt	age	Cur	rent	Turi	n-off	Gate	Current	Le	ads
Code	VDRM and VRRM (V)	Code	IT(av) (A)	Code	tq (µsec)	Code	IGT (ma)	Code	Case	Code
T610	100	01	125	13	100	0	150	4	TO-93	ВТ
	200	02			(typ)		*			
	300	03	150	15						
	400 500	04 05	175	18						
	600	06							:	
T600	700	07								
	800	08								
	900	09								
	1000	10								
	1100	11								
	1200 1300	12 13								
	1400	14								
	1500	15								

* for lower IGT consult factory Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T600 rated at 175A average with VDRM= 1000V, I_{GT}=150 ma, and standard flexible lead-order as:

Type		Type Voltage		Current		Turn Off	Gate Current	Leads		
Т	6	0	0	1	0	1	8	0	4	ВТ

## 125-175 A Avg Up to 1500 Volts

## **Phase Control** SCR T600/T610



#### Voltage

Blocking State Maximums (TJ=125°C)	Symbol	.,,		T6	10							T600	)			
Repetitive peak forward blocking voltage, V	VDRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Repetitive peak reverse voltage, V	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Non-repetitive transient peak reverse voltage, t ≤5.0 msec, V	VRSM	200	300	400	500	600	700	850	950	1100	1200	1300	1450	1550	1700	1800
Forward leakage current, mA peak  Reverse leakage current, mA peak	IDRM IRRM	<del>-</del>								25 <del>-</del> 25 <del>-</del>						$\Rightarrow$

#### Current

Conducting State Maximums (TJ=125°C)	Symbol	T600 13 T610 13	T60015 T61015	T600 18 T610 18
RMS forward current, A	IŢ(rms)	200	235	275
Ave. forward current, A	IT(av)	125	150	175
One-half cycle surge current③, A	ITŜM	3300	4000	5500
3 cycle surge current③, A	ITSM	2400	3000	3900
10 cycle surge current③, A	ITSM	2000	2400	3400
I2t for fusing (for times>8.3 ms) A2 sec	l²t	45,000	66,000	120,000
Forward voltage drop at ITM=625A and TJ=25°C, V	۷тм	2.05	1.8	1.55

#### **Switching**

(TJ=25°C)	Symbol	
Typical turn-off time, I _T =150A  T _J =125°C, diR/dt=12.5 A/µsec, reapplied dv/dt=20V/µsec linear to 0.8 V _{DRM} , µsec	ta	100
Typ. turn-on-time, I _T =100A V _D =100V@, μsec	ton	5
Min. critical dv/dt, exponential to VDRM TJ=125°C, V/μsec②⑤	dv/dt	300
Min. di/dt non-repetitive, A/ $\mu$ sec ① ① ①	di/dt	800

#### Gate

Maximum Parameters		
(TJ=25°C)	Symbol	
Gate current to trigger at VD=12V, mA	IGT	150
Gate voltage to trigger at Vp=12V, V.	VGT	3
Non-triggering gate voltage, TJ  = 125°C, and rated VDRM, V	VGDM	0.15
Peak forward gate current, A	IGTM	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

#### Thermal and Mechanical

	Symbol	
Min., Max. oper. junction temp., °C	TJ	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Max. mounting torque, in lb.①	Ū	300
Thermal resistance  Junction to case,		
°C/Watt	$R\theta$ JC	.13
Case to sink, lubricated, °C/Watt	Recs	.075

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.















### **Phase Control** SCR T700

## 250-350 A Avg. Up to 2200 Volts



#### T70 Outline

#### Features:

- · Center fired di/namic gate
- All diffused design
- Low T™
- Compression Bonded Encapsulation
- Guaranteed dv/dt (300 v/ μs)
- · High surge capability
- Long-creep and strike-
- Westinghouse Lifetime Guarantee

0 1 1	Inches		Millimet	Millimeters				
Symbol :	Min.	Max.	Min.	Max.				
Α	9.76	10.00	247.90	254.00				
A,	10.18	10.42	258.57	264.67				
В	.063	.172	1.60	4.37				
φD		1.490	•	37.85				
Ë,	1.620	1.750	41.15	44.45				
F	.430	.810	10.92	20.57				
J	4.000		101.60					
M	.530	.755	13.46	19.18				
N	1:04	1.08	26.42	27.43				
Q .		3.100		78.74				
φT Z	.330	.350	. 8.38	8.89				
Ž	.440		11.18					
φW	%-16 UNF-2A							

Creep Distance—1.76 in. min. (44.91 mm). Strike Distance—.81 in. min. (20.70 mm). (In accordance with NEMA standards.)' Finish—Nickel Plate. Approx. Weight—16 oz. (454 g).

- 1. Complete threads to extend to within 2½ threads of seating plane.
- 2. Angular orientation of terminals is undefined.
- 3. Pitch diameter of %-16 UNF-2A
- (coated) threads (ASA B1.1-1960).
  4. Dimension "J" denotes seated height with leads bent at right angles.

#### Applications:

- Phase Control
- Welding
- **Power Supplies**
- Motor Control



Package I2t (case rupture) rating: 15 x 10⁶ A²sec.

#### **Ordering Information**

Туре	Volt	age	Cu	Current		n-off	Gate	current	Leads		
Code	V _{DRM} and V _{RRM} (V)	Code	IT(av) (A)	Code	tq μsec	Code	I _{GT} (ma)	Code	Case	Code	
	100	01	250	25	150	0	150	4		BY	
. T700	200	Q2			1 1		*		T70		
,	400	04	300	30	(typical)						
,	600	06			' ' '						
	800	08	350	35					1		
,	1000	10			1 .						
	1200	12	1		1			ł	1		
	. 1300	13	1				İ	İ	Ì		
	1400	14						1			
`	1500	15						1			
	1600	16					1	ŀ			
	1700 -	17	1	į							
	1800	18									
/	2000	20			1						
	2200	22			1		1		1		

^{*} For lower IGT consult factory

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T 700 rated at 350 A average with  $V_{DRM} = 1000V$ , I_{GT} = 150 ma, and standard flexible lead—order as:

1	Type				Volta	ge	Currer	nt	Turn Off	Gate Current	Leads	
	Т	. 7	0	0	1	0	3	- 5	0	4	В	Υ

## 250-350 A Avg. Up to 2200 Volts

## **Phase Control** SCR T700



Voltage																
Blocking State Maximums (T _J = 125°C)	Symbol															
Repetitive peak forward blocking voltage $$ , $$ V $$ . $$	[∨] DRM	100	200	400	600	800	1000	1200	1300	1400	1500	1600	1700	1800	2000	2200
Repetitive peak reverse voltage , V	[∨] RRM	100	200	400	600	800	1000	1200	1300	1400	1500	1600	1700	1800	2000	2200
Non-repetitive transient peak reverse voltage, $t \leq 5.0  \text{msec,V} \cdot \dots \cdot \dots \cdot \dots \cdot \dots$	[∨] RSM	200	300	500	700	950	1200	1450	1550	1700	1800	1900	2050	2150	2400	2600
Forward leakage current, mA peak	IDRM	<del></del>							30 ·							$\longrightarrow$
Reverse leakage current, mA peak	IRRM	4							- 30							

Current Conducting State Maximums (T _J = 125°C)	Symbol	T700 25	T700 30	T700 35
RMS forward current, A	^I T(rms)	400	470	550
ve. forward current, A	T(av)	250	300	350
ne-half cycle surge current(3), A	TSM	7000	8400	10,000
3 cycle surge current(3), A	TSM	5040	6050	7200
10 cycle surge current③, A	TSM	4340	5200	6200
2 t for fusing (for times $\geq$ 8.3 ms) A; sec.	l²t .	205,000	295,000	416,000
Forward voltage drop at I _{TM} = 3000 and T _J = 25°C, V	V _{TM}	3.30	2.75	2.15

Switching $(T_J = 25^{\circ}C)$	Symbol	
Typical turn-off time, IT = 250A, T _J = 125°C, dig/dt = 25 A/µsec, reapplied dv/dt =		
$A/\mu$ sec, reapplied dv/dt $\equiv$ 20V/ $\mu$ sec linear to 0.8 VDRM, $\mu$ sec	t q	150
Typ. turn-on-time, $I_T = 100A$ $V_D = 100V_{.}$ , $\mu$ sec	ton	7
Min. critical dv/dt, exponential to V _{DRM} . T _J = 125°C, V/μsec⊚ਿ	dv/dt	300
Min. di/dt non-repetitive, A/μsec ① (§ · · · · · · · · · · · · · · · · · ·	di/dt	800

Thermal and Mechanical		ı
	Symbol	
Min., Max. oper. junction temp., °C	Tj	—40 to <b>+</b> 125
Min., Max. storage temp., °C	Tstg	-40 to +150
Max. mounting torque, in lb. (1) lubricated		360
Thermal resistance (1)		
Junction to case, °C/Watt	$R_{\theta}$ JC	.10
Case to sink, lubricated, °C/Watt	$R_{\theta}CS$	.05

Gate Maximum Parameters (T _J = 25°C)	Symbol	
Gate current to trigger at $V_D = 12V$ , mA	^I GT	150
Gate voltage to trigger at $V_{f D}=12V,V\dots$	$v_{GT}$	3
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V · · · · · · · · · · · · · · · · · ·	V _{GDM} I GTM	0.15 4
Peak reverse gate voltage, V		5
Peak gate power, Watts	^V GRM PGM	16
Average gate power, Watts	PG(av)	3

- Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEDEC RS397, 5.2.2.1.

- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.



















## 250-350 A Avg. Up to 2200 Volts

# Phase Control SCR T700

















## **Phase Control** SCR T520

## 125 A Avg. Up to 1500 Volts



	Inches		Millimet	ers		
Symbol ¹	Min.	Max.	Min.	Max.		
φD	1.610	1.650	40.89	41.91		
$\phi D_1$	.745	.755	18.92	19.18		
$\phi D_2$	1.420	1.460	36.07	37.08		
Н	.500	.560	12.70	14.22		
φJ	.135	.145	3.43	3.68		
J,	.072	.082	1.83	2.08		
L	7.75	8.50	196.85	215.90		
N	.030		.76			

Creep Distance—.34 in. min. (8.64 mm). Strike Distance—.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish—Nickel Plate.
Approx. Weight—2.3 oz. (66 g).

1. Dimension "H" is clamped dimension.



Package I2t (case rupture) rating: 20 x 106 A2sec.

Vo	ltag	jе
----	------	----

Blocking State Maximums ②(TJ=125°C)	Symbol									·						
Repetitive peak forward blocking voltage, V	VDRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Repetitive peak reverse voltage , V	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Non-repetitive transient peak reverse voltage, t <5.0 msec, V	VRSM	200	300	400	500	600	700	850	950	1100	1200	1300	1450	1550	1700	1800
Forward leakage current, mA peak	IDRM	-								25 —						
Reverse leakage current, mA peak	IRRM	-								25 —						

#### Current

Conducting State Maximums (T _J =125°C)	Symbol	T520 —— 13
RMS forward current, A	IT(rms)	200
Ave. forward current, A	[[] T(av)	125
One-half cycle surge current(3), A	TSM	1600
3 cycle surge current③, A	ITSM	1250
10 cycle surge current③, A	ITSM	1080
l²t for fusing (for times>8.3 ms) A² sec	l²t	10,700
Forward voltage drop at ITM = 500A and TJ = 25°C, V	VTM	2.2

#### **Switching**

(TJ=25°C)	Symbol	
Typical turn-off time, I _T =150A T _J =125°C, diR/dt=12.5 A/µsec, reapplied dv/dt=20V/µsec linear to 0.8 V _{DRM} , µsec	ta	100
Typ. turn-on-time, I _T =100A V _D =100V@, μsec	ton	4
Min. critical dv/dt, exponential to VDRM TJ=125°C, V/ $\mu$ sec ② ③	dv/dt	300
Min. di/dt non-repetitive, JEDEC A/μsec ① ① ⑤	di/dt	500

- Consult recommended mounting procedures.
   Applies for zero or negative gate bias.
   Per JEDEC RS397, 5.2.2.1.

- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.

#### Gate

Maximum Parameters		
(TJ=25°C)	Symbol	
Gate current to trigger at VD=12V, mA	IGT	100
Gate voltage to trigger at Vp=12V, V.	VGT	3
Non-triggering gate voltage, TJ =125°C, and rated VDRM, V	VGDM	0.15
Peak forward gate current, A	<b>I</b> GTM	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

#### Thermal and Mechanical

	Symbol	
Min., Max. oper. junction temp., °C	TJ	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to $+150$
Max. mounting force in lb.①	Ū	800 to 1000
Thermal resistance①		
Junction to case, °C/Watt	$R\theta$ JC	.12
Case to sink, lubricated, °C/Watt	R∂CS	.02

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T520 rated at 125A average with VDRM= 1000V, I_{GT}= 100 ma, and standard flexible lead—order as:

Туре	Vol	tage	Current	Turn Off	Gate Current	Leads	3
т 6 2 6	1	0	1 3	0	5	D	N

## 125 A Avg. Up to 1500 Volts

## Phase Control SCR T520

















### **Phase Control** SCR T620

## 150-300 A. Avg. Up to 1500 Volts



C	Inches		Millimet	ters
Symbol	Min.	Max.	Min.	Max.
φD	1.610	1.650	40.89	41.91
$\phi D_1$	.745	.755	18.92	19.18
$\phi D_2$	1.420	1.460	36.07	37.08
Н	.500	.560	12.70	14.22
$\phi$ J	.135	.145	3.43	3.68
Ĵ,	.072	.082	1.83	2.08
L	7.75	8.50	196.85	215.90
N	.030		.76	

Creep Distance—34 in. min. (8.64 mm).
Strike Distance—52 in. min. (13.21 mm).
(In accordance with NEMA standards.)
Finish—Nickel Plate.
Approx. Weight—2.3 oz. (66 g).

1. Dimension "H" is clamped dimension.



Package I2t (case rupture) rating: 20 x 106 A2sec.

#### T62 Outline

#### Features:

- Center fired di/namic gate
- · All diffused design
- Guaranteed dv/dt (300 v/µs)
- Low gate current
   Low VTM
- Low Thermal Impedance
- High surge current capability
- Lifetime Guarantee

#### Applications.

- Phase Control
- Power Supplies
- Motor Controls

#### **Ordering Information**

Туре	Voltage		Cui	rrent	Turn	Turn-off		urrent	Lea	ads
Code	V _{DRM} and V _{RRM} (V)	Code	IT(av) (A)	IT(av) (A) <b>Code</b>		Code	I _{GT} (ma)	Code	Case	
T620	100	01	150	15	100	0	150	4	T62	
	200	02								
	300	03	200	20	(typical)			1. 1. 12		
	400	04	000			40.00		A		7.7
	500	05	300	30						
	600	06								
	700	07		£ 41						
	800 900	08 09		4						
	1000	10								
	1100	11								
	1200	12								
	1300	13						1.0		
	1400	14								
	1500	15								4.4

#### Example

Obtain optimum device performance for your application by selecting proper order code.

	Ту	ре		Vol	tage	Cur	rent	Turn Off	Gate Current	Lea	ads
T	6	2	0	1	0	3	0	0	4	D	N

Type T 620 rated at 300 A average with  $V_{DRM}\,=\,1000V$ ,  $I_{GT} = 150 \text{ ma}$ , and standard flexible lead—order as:

# 150—300 A. Avg. Up to 1500 Volts

# Phase Control SCR T620



ν	o	İt	а	a	e

Blocking State Maximums ② · (T _J = 125°C)	Symbol															
Repetitive peak forward blocking voltage , V	V _{DRM}	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Repetitive peak reverse voltage, V Non-repetitive transient peak reverse voltage,	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
t ≤ 5.0 msec, V	[√] RSM	200	300	400	500	600	700	850	950	1100	1200	1300	1450	1550	1700	1800
Forward leakage current, mA peak	IDRM	+							- 25							<del>&gt;</del>
Reverse leakage current, mA peak	IRRM	<del>`</del>							- 25						···	<del></del>

#### Current

T620 30
,
470
300
5500
3900
3400
120,000
1.55

#### **Switching**

$(T_J = 25^{\circ}C)$	Symbol		
Typical turn-off time, IT = 150A Τ _J = 125°C, dig/dt = 12.5 Α'μενες, reapplied dv/dt = 20V/μsec linear to 0.8 V _{DRM,μ} sec	tq	100	
Typ. turn-on-time, I⊤ = 100A V _D = 100V <b>④</b> , <i>µ</i> sec	ton	5	
Min. critical dv/dt, exponential to V _{DRM} · T _J = 125°C, V/μsec⊚ ⊙	dv/dt	300	
Min. di/dt non-repetitive, A/µsec ①①⑥	di/dt	800	

#### Gate

Maximum Parameters $(T_J = 25^{\circ}C)$	Symbol	
Gate current to trigger at $V_D = 12 \text{V}$ , mA .	IGT	150
Gate voltage to trigger at $V_D = 12V, V \dots$	V _{GT}	3
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V · · · · · · · · · · · · · · · · · ·	V _{GDM}	0.15
Peak forward gate current, A	I GTM	4
Peak reverse gate voltage, V	V _{GRM}	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

#### Thermal and Mechanical

Thornia and modification	Symbol	
Min., Max. oper. junction temp., °C	Тј	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Min., Max. mounting force, lb.①		1000 to 1400
with double sided cooling ① Junction to case, °C/Watt	Rejc	.08
Case to sink, lubricated, °C/Watt	Recs	.02

- ① Consult recommended mounting procedures.

- Onsultipercommended mounting procedures.
  Applies for zero or negative gate bias.
  Per JEDEC RS-397, 5.2.2.1.
  With recommended gate drive.
  Higher dv/dt ratings available, consult factory.
  Per JEDEC standard RS-397, 5.2.2.6.





Transient Thermal Impedance VS. Time

Time, t, Seconds



# Phase Control SCR T620













# Phase Control SCR T620

















### Phase Control, Hi-temp 250—400 A. Avg. SCR Up to 1200 Volts T625



т.	ຂາ	_	+1	:	ne
	υz	. •	uu	и	116

#### Features:

- Center fired di/namic gate
- Full 150°C Junction Temperature Rating
- · All diffused design
- Low gate current
- Low VTM
- Low Thermal Impedance
- High surge current capability
- Lifetime Guarantee

#### Millimeters Symbol Min. Max. Min. Max. 1.610 1.650 40.89 41.91 $\phi D_1$ $\phi D_2$ .745 .755 18.92 19.18 1.420 1.460 36.07 37.08 .500 .560 12.70 Н 14.22 3.43 1.83 3.68 .145 135 .082 .072 7.75 8.50 196.85 215.90 .030 .76

Creep Distance—.34 in. min. (8.64 mm). Strike Distance—.52 in. min. (13.21 mm). (In accordance with NEMA standards.)

Finish—Nickel Plate. Approx. Weight—2.3 oz. (66 g).

1. Dimension "H" is clamped dimension.



Package I2t (case rupture) rating: 20 x 106 A2sec.

#### Applications:

- Phase Control
- Motor Control
- Power Supplies
- Plating supplies

#### **Ordering Information**

Type	Volt	age	Cur	rent	Tur	n-off	Gate	Current	L	eads		
Code	VDRM and VRRM (V)	Code	IT(av) (A)	Code	tq (µsec)					Code	Case	Code
T625	100 200 300 400 500 600 700 800 900	01 02 03 04 05 06 07 08	250 300 400	25 30 46	150 (typ)	0	150	•	T62	DN		
	1000 1100 1200	10 11 12										

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T625 rated at 400A average with  $V_{DRM}$  = 1000V, IGT=150 ma, and standard leadorder as:

	Ty	/ре		Volt	age	Cur	rent	Turn-Off	Gate Current	Lead
Т	6	2	5	1	0	4	0	0	4	D N

## Phase Control, Hi-temp 250—400 A. Avg. Up to 1200 Volts SCR T625



#### Voltage

Blocking State Maximums ③ (TJ=150°C)	Symbol							T625					
Repetitive peak forward blocking voltage, V	VDRM	100	200	300	400	500	600	700	800	900	1000	1100	1200
Repetitive peak reverse voltage, V	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200
Non-repetitive transient peak reverse voltage, t≤5.0 msec, V	VRSM	200	300	400	500	600	700	850	950	1100	1200	1300	1450
Forward leakage current, mA peak	IDRM	-						- 50					<del></del>
Reverse leakage current, mA peak	IRRM	-						-50					

#### Current

Conducting State Maximums (TJ=150°C)	Symbol	T625— —25	T625— —30	T625— —40
RMS forward current, A	IT(rms)	390	470	625
Ave. forward current, A	lT(av)	250	300	400
One-half cycle surge current③, A	ITSM	2800	3600	5000
3 cycle surge current(3), A	ITSM	2000	2600	3500
10 cycle surge current③, A	ITSM	1700	2250	3000
I2t for fusing (for times>8.3 ms) A2 sec	l²t	32,500	54,000	100,000
Forward voltage drop at ITM = 625A and TJ = 25°C, V	VTM	2.60	2.05	1.55

#### **Switching**

(TJ=25°C)	Symbol	
Typical turn-off time, IT=150A TJ=150°C, dig/dt=12.5 A/µsec, reapplied dv/dt=20V/µsec linear		450
to 0.8 VDRM, µsec	tq	150
Typ. turn-on-time, IT=100A VD=500V(4), µsec	ton	3
Min. critical dv/dt, exponential to VDRM TJ=150°C, V/μsec②⑤	dv/dt	300
Min. di/dt repetitive, A/μsec ① ④ ⑤	.di/dt	200
Min. di/dt non-repetitive, A/µsec ① ④ ⑤	di/dt	800

#### Gate

Maximum Parameters		
(T _J =25°C)	Symbol	
Gate current to trigger at Vp=12V, mA	IGT	150
Min. Gate Current to trigger at VD =12V, mA	. IGT(min)	25
Gate voltage to trigger at VD=12V, V.	VGT	3
Non-triggering gate voltage, TJ =150°C, and rated VDRM, V	VGDM	0.25
Peak forward gate current, A	IGTM	4
Peak reverse gate voltage, V	VGRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

#### Thermal and Mechanical

	Symbol	
Min., Max. oper. junction temp., °C	TJ	-40 to+150
Min., Max. storage temp., °C	T _{stg}	-40 to+150
Min., Max. Mounting Force,	lb⊕	1000 to 1400
Thermal resistance with double sided cooling() Junction to case, °C/Watt	R <i>θ</i> .IC	.08
•		
Case to sink, lubricated, ① °C/Watt	R∂CS	.02

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias. ① Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.









# Phase Control, Hi-temp 250—400 A. Avg. Up to 1200 Volts T625



## 250—400 A. Avg. Up to 1200 Volts

### Phase Control, Hi-temp SCR T625

















# Phase Control SCR T720

## 350-550 A Avg Up to 2200 Volts



	Inches		Millimet	ters								
Symbol	Min.	Max.	Max. Min.									
φD	2.250	2.290	57.15	58.17								
$\phi D_1$	1.333	1.343	33.86	34.11								
$\phi D_2$	2.030	2.090	51.56	53.09								
Н	1.020	1.060	25.91	26.92								
$\phi$ J	.135	.145	3.43	3.68								
J,	.075	.090	1.91	2.29								
L	7.75	8.50	196.85	215.90								
N	.040		1.02									
Croon Die	Creen Distance 1 00 in min (25 40 mm)											

Creep Distance—1.00 in. min. (25.40 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish—Nickel Plate.

Approx. Weight—8 oz. (227 g).

1. Dimension "H" is a clamped dimension.



Package I²t (case rupture) rating: 80 x 10⁶ A²sec.

#### T72 Outline

#### Features:

- Center fired di/namic gate
- All diffused design
- Low gate current
- Low VTM
- Low Thermal Impedance
- · High surge current capability
- Lifetime Guarantee

#### Applications:

- Phase Control
- Motor Control
- Power Supplies
- Welding

#### **Ordering Information**

Type	Vol	tage	Cu	rrent	Turi	n-off	Gate	current	Le	ads
Code	V _{DRM} and V _{RRM} (V)	Code	IT(av) (A)	Code	tq (μsec)	Code	I _{GT} (ma)	Code	Case	Code
T720	100	01	350	35	150	0	150	- 4	T72	DN
	200	02	450		(typical)					
	400 600	04 06	450	45						1
	800	08	550	55				10.77		
	1000	10	330							
	1200	12								12.5
	1300	13								130
	1400	14						100		
	1500	15						9.5		
	1600	16	•					100		
**	1700	17								
	1800	18								
	2000	20								
	2200	22								

#### Example

Obtain optimum device performance for your application by selecting proper order code.

Type T720 rated at 550 A average with V  $_{DRM} \equiv$  1000V,  $I_{GT} =$  150  $_{ma},$  and standard flexible lead—order as:

	Ту	ре		Vol	tage	Cur	rent	Turn Off	Gate Current	Lea	ıds
Т	7	2	0	1	0	5 5		0	4	D	N

# 350-550 A Avg Up to 2200 Volts

# Phase Control SCR T720



Voltage Blocking State Maximums (T _J = 125°C)	Symbol															
Repetitive peak forward blocking voltage , V .	V _{DRM}	100		400	600		1000									
Repetitive peak reverse voltage, V	VRRM	100		400	600		1000									1
t ≤ 5.0 msec, V · · · · · · · · · · · · · · · · · ·	^V RSM	200	300	500	700			1450	1550	1700	1800	1900	2050	2150	2400	2600
		<u> </u>				- T72 - T72	0	. 55 – . 35,	T720		45 —	$\rightarrow$	·			$\rightarrow$
Forward leakage current, mA peak	IDRM IRRM	<del>+</del>							- <u>30</u> - - 30 -							

Conducting State Maximums (T _J = 125°C)	Symbol	T720 35	T720 45	T720 55
RMS forward current, A	IT(rms)	550	700	850
Ave. forward current, A	T(av)	350	450	550
One-half cycle surge current®, A	TSM	7000	8400	10,000
3 cycle surge current®, A	TSM	5040	6050	7200
10 cycle surge current③, A	TSM	4340	5200	6200
I 2t for fusing (for times ≥ 8.3 ms) A2 sec.	l2t	205,000	295,000	416,000
Forward voltage drop at ITM = 3000 A and TJ = 25°C, V	∨ _{TM}	3.30	2.75	2.15

Switching		1
$(T_J = 25^{\circ}C)$	Symbol	
Typical turn-off time, IT = 250A, TJ = 125°C, dig/dt = 25 Α/μεες, reapplied dv/dt = 20V/μsec linear to 0.8 V _{DRM,μ} sec	tq	150
Typ. turn-on-time, I _T = 100A V _D = 100V <b>③</b> , µsec	ton	7
Min. critical dv/dt, exponential to V _{DRM} . T _J = 125°C, V/μsec⊙⊙	dv/dt	300
Min. di/dt non-repetitive, A/µsec ① ③	di/dt	600

Thermal and Mechanical	Symbol	
Min., Max. oper. junction temp., °C	T _J	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Min., Max. mounting force, lb.①		2000 to 2400
Junction to case, °C/Watt	Rejc	.06
Case to sink Jubricated °C/Watt	Reco	02



Gate		
Maximum Parameters $(T_J = 25^{\circ}C)$	Symbol	
Gate current to trigger at VD = 12 V, mA	IGT.	150
Gate voltage to trigger at $V_D = 12V, V \dots$	V _G T	3
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V	V _{GDM}	0.15
Peak forward gate current, A	I GTM	4
Peak reverse gate voltage, V	^V GRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

- ① Consult recommended mounting procedures.

- Consult recommended mounting procedures.
  Applies for zero or negative gate bias.
  Per JEDEC RS-397, 5.2.2.1.
  With recommended gate drive.
  Higher dv/dt ratings available, consult factory.
  Per JEDEC standard RS-397, 5.2.2.6.











Average Forward Current, Amperes



Maximum Case Temperature VS. Forward Current



Maximum Power Dissipation Vs. Forward Current



Maximum Power Dissipation VS. Forward Current







## **Phase Control** SCR T920

## 600 — 1000 A Avg. Up to 3000 Volts



T92 Outline

- Center fired di/namic gate

- All diffused design Guaranteed dv/dt (300 v/µs) Low gate current with soft gate control

- Low Virm:
   Low Thermal Impedance
   High surge current capability
   Westinghouse Lifetime Guarantee

#### Inches Millimeters Symbol Min. Max. Min. Max. 2.880 2.920 73.15 74.17 φĎ. 44.30 1.744 1.755 44.58 2.580 2.700 65.53 φD 68.58 Н 1.020 1.060 25.91 26.92 .135 .075 3.68 2.29 3.43 .145 1.91 .090 292.10 317.50 11.50 12.50 .060 1.27

Creep Distance—.80 in. min. (20.32 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—16 oz. (454 g).

1. Dimension "H" is a clamped dimension.



Package  $I^2t$  (Case rupture) rating:  $90 \times 10^6 \ A^2sec$ .

#### Applications:

- Phase ControlMotor Control
- Power Supplies

#### **Ordering Information**

Туре	Volta	ge	Current		Turr	n-off	Gate c	urrent	Leads			
Code	V _{DRM} and V _{RRM} (V)	Code	I _{T(av)} (A)	Code	tq (µsec)	Code	I _{GT} (ma)	Code	Case	Code		
T920	600 800 1000 1200	- 06 06 10 12	600	06	400 (typical)		200	3	3	3	T92 <b>DW</b>	DW
	1400 1600 1800 2000 2200	14 16 18 20 22	700 800	07 66	250 (typical)	0						
	2400 2600 2800 3000	24 26 28 30	900 1000	69 10	150 (typical)							

Note: Lower voltage devices available. Consult factory representative,

#### Example

Obtain optimum device performance for your application by selecting proper order code.

Type T920 rated at 600 A average with VDRM = 2600V. IGT = 200 ma. and standard 12 inch leads—order as:

	Ту	pe		Vot	tage	Cur	rent	Turn Off	Gate Current	Lea	ads
Т	9	2	0	2	6	0	6	0	3	D	w

# 600 — 1000 A Avg. Up to 3000 Volts

## **Phase Control** SCR T920



#### Voltage@

Blocking State Maximums (T _J = 125°C)	Symbol		Г											
Repetitive peak forward blocking voltage , V	VDRM	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000
Repetitive peak reverse voltage , V	VRRM	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000
t 5.0 msec, V	VRSM	700	900	1100	1300	1500	1700	1900	2100	2300	2800	3000	3200	3400
		<del>-</del>	Г <b>920</b>	eo.		T920	10 ->						*	
		<b>k</b>	1	9200	)7			- T920	08 _	<del>&gt;</del>		,		
		<del></del>					— т	9200	6					<del>&gt;</del>
Forward leakage current, mA peak	IDRM	←				60								>
Reverse leakage current, mA peak	IRRM:	₭				60								<del>&gt;</del>

#### Current

Conducting State Maximums (T _{.1} = 125°C)	Symbol	T92006	T920—07	T920—08	T920—09	T920—10
RMS forward current, A	17/	940	1100	1255	1415	1570
Ave. forward current, A	T(rms) T(av)	600	700	800	900	1000
One-half cycle surge current(3), A	TSM	13,000	15,000	17,000	25,000	27,000
3 cycle surge current®, A	TSM	9,750	10,800	12,200	18,700	20,200
10 cycle surge current®, A	TSM	8,000	9000	10,200	15,400	16,700
I ² t for fusing (t=8.3 ms), A ² sec	12t	700,000	937,000	1,203,000	2,600,000	3,040,000
Max I2t of package (t=8,3 ms), A2sec	l ² t	90 x 10 ⁶	90 x 10 ⁶	90 x 10 ⁶	90 x 10°	90 x 10 ⁶
Forward voltage drop at I $T_M = 3000$ and $T_J = 25^{\circ}C$ , $V \dots \dots$	v _{TM}	3.0	2.55	2.10	1.90	1.70

Switching	* *									
$(T_J = 25^{\circ}C)$	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
Turn-off time, IT=250A										
$T_J = 125$ °C, $diR/dt = 50$					1					
A/ $\mu$ sec reapplied dv/dt= 20V/ $\mu$ sec linear to 0.8 VDRM, $\mu$ sec	tq		400			250			150	
Turn-On and Delay Time								1		
$ITM = 1000A(4)$ , $tp = 450 \mu sec$	ton		3.5			3.5		1	2.5	
μsec		1	1.5	VD = 1100V		1.5	VD = 600V	1	1.0	VD= 600 V
Critical dv/dt exponential to VDRM TJ=125°C, V/µsec@⑤	dv/dt	300	1000		300	1000		300	1000	
di/dt@non-repetitive,										200
① <b>④ ⑤</b> Aμsec	di/dt	l		800			800			800
Latching Current VD = 75V, mA	. 11		150	- 500		400	1000		300	500
Holding Current		1	.50	300		400	1000		300	500
VD=75V, mA	IH		150	500		150	500		150	500

#### Gate

(TJ=25°C)	Symbol	Min	Тур	Max
Gate current to trigger at V _D =12V, mA	IGT		100	200
Gate voltage to trigger at Vp = 12V, V	VGT		1.5	3.0
Non-triggering gate voltage, TJ=125°C, and rated VDRM, V	VGDM	ľ		.15
Non-triggering Gate Current at VD=12V, mA	IGNT	1	20	
Peak forward gate current, A	IGTM			4
Peak reverse gate voltage, V	VGRM	1		5
Peak gate power, Watts	PGM			16
Average gate power, Watts	PG (av)			3

Thermal and Mechanical Syml	ool Min	Тур	Max
Oper. junction temp., °CTJ	-40		125
Storage temp., °C T _{stg}	-40		150
Mounting force, lb.①	5000		5500
Thermal resistance with double sided cooling①			
Junction to case, °C/Watt		.028	.03
Case to sink, lubricated, °C/Watt R#CS		.008	.01

- O Consult recommended mounting procedures.
  Applies for zero or negative gate bias.
  Per JEDEC RS-397, 5.2.2.1.
  With recommended gate drive.
  Higher dv/dt ratings available, consult factory.
  Per JEDEC standard RS-397, 5.2.2.6.







Phase Control

SCR













Maximum Case Temperature VS. Forward Current



Maximum Case Temperature VS. Forward Current



Maximum Case Temperature VS. Furward Current



Maximum Power Dissipation VS. Forward Current



Maximum Power Dissipation VS. Forward Current



Maximum Power Dissipation VS. Forward Current





# Phase Control SCR T920

## 600 — 1000 A Avg. Up to 3000 Volts









Maximum Case Temperature VS. Forward Current



### Maximum Power Dissipation VS. Forward Current



Maximum Power Dissipation VS. Forward Current



Maximum Power Dissipation VS. Forward Current



# Phase Control SCR T920













### **Phase Control** SCR T9G0

## 800 — 1200 A. Avg. Up to 3000 Volts



0	Inches		Millimeters			
Symbol -	Min.	Max.	Min.	Max.		
$\phi D$	2.850	2.900	72.39	73.66		
$\phi D$ ,	1.845	1.855	46.86	47.12		
$\phi D_2$	2.560	2.640	65.02	67.06		
Н	1.020	1.060	25.91	26.92		
$\phi J$	.135	.145	3.43	3.68		
Ĵ,	.075	.090	1.91	2.29		
L	11.50	12.50	292.10	317.50		
N	.050		1.27			

Creep Distance—1.00 in. min. (25.40 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—1 lb. (454g).

1. Dimension "H" is a clamped dimension.



#### Features:

- Center fired di/namic gate
- · All diffused design
- Guaranteed dv/dt (300 v/µs)
- Low gate current with soft gate control
- Low V™ Strain Buffer
- Low Thermal Impedance
- High surge current capability
- Westinghouse Lifetime Guarantee

#### Applications:

- Phase Control
- Motor Control
- Power Supplies

Package I2t (case rupture) rating: 90 x 106A2sec.

Туре	Voltage		Current		Turn-off		Gate current		Leads	
Code	DRM and VRRM (V)	Code	lΤ(av) (A)	Code	tq (µsec)	Code	IGT (ma)	Code	Case	Code
TBGO	600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000	08 08 10 12 14 15 18 20 22 24 25 28 30	800 1000 1200	08 10 12	400 (typical) 250 (typical) 150 (typical)	0	200		T9G	OH .

Note; Lower voltage devices available. Consult factory representative.

#### Example

Obtain optimum device performance for your application by selecting proper order code.

Type T9G0 rated at 800 A average with VDRM = 2600V. IGT = 200 ma. and standard 12 inch leads—order as:

Туре		Voltage		Current		Turn Off	Gate Current	Leads			
T	a	G	0	2	6	0	8	0	3	D	н

*Note: For voltage Vs. Current Availability see next page.

### 800 — 1200 A. Avg. Up to 3000 Volts

#### Phase Control SCR T9G0



Voltage ② TJ = 125°C	Symbol
Repetitive peak forward blocking, V	VDRM
Repetitive peak reverse, V	VRRM
Non-repetitive transient peak reverse voltage, t ≤ 5.0 msec, V	VRSM
Voltage vs. Type No. Availability	
Blocking State Maximums	
Forward leakage current, mA peak	IDRM

Reverse leakage current, mA peak ...... IRRM

600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000
600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000
						1900	2100	2300	2500	2700	2900	3100
T9G0_12												
←				- T9G0.	_10			<del>&gt;</del>				
<del></del>						T9G0_	_08 -					<del></del>
<b></b>								60 -				
								60 -				
								00 -				

#### Current

Conducting State Maximums	Symbol	T9G008	T9G010	T9G012
RMS forward current, A	IT(rms)	1250	1590	1880
Ave. forward current, A	IT(av)	800	1000	1200
One-half cycle surge current, A 3	ІТЅМ	13,000	17,000	27,000
3 cycle surge current, A ③	ITSM	9,750	12,200	20,200
10 cycle surge current, A ③	пѕм	8,000	10,200	16,700
$I^2t$ for fusing (t = 8.3 ms) $A^2sec$	12t	700,000	1,203,000	3,040,000
Max. I2t of package t = 8.3 ms), A2sec	12t	90 x 106	90 x 10 ⁶	90 x 10 ⁶
Forward voltage drop at ITM = 3000A and TJ = 25°C, V	VTM	3.0	2.10	1.70

#### **Switching**

· · · · · · · · · · · · · · · · · · ·										
(TJ = 25°C)	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Typ.	Max.
Turn-off time, IT = 250A TJ = 125°C, diR/dt = 50 A/µsec reapplied dv/dt = 20V/µsec linear to 0.8 VDRM, µsec	tq		400			250			150	
Turn-On and Delay Time () ITM = 1000A, tp = 450 µsec VD = 1500V, µsec	ton td		3.5 1.5			3.5 1.5			2.5 1.0	
Critical dv/dt exponential to VDRM TJ = 125°C, V/µsec ② ⑤	dv/dt di/dt	300	1000	800	300	1000	800	300	1000	000
di/dt non-repetitive, A/µsec ①④⑥  Latching Current VD = 75V, mA	IL.		500	1250		400	1000		300	800 500
Holding Current VD = 75V, mA	lH		150	500		150	500		150	500

#### Gate

(TJ = 25°C)	Symbol	Min.	Typ.	Max.
Gate current to trigger at VD = 12V,mA	lGT .	30	100	200
Gate voltage to trigger at VD = 12V,V	VGT		1.5	3.0
Non-triggering gate voltage, TJ = 125°C, and rated VDRM, V	VGDM			.15
Non-triggring Gate Current at  VD = 12V, mA	IGNT			20
Peak forward gate current,A	IGTM			4
Peak reverse gate voltage, V	VGRM			5
Peak gate power, Watts	PGM			16
Average gate power, Watts	PG(av)			3

Thermal and Mechanical	Symbol	Min.	Тур.	Max.
Oper. junction temp., °C	TJ	40		125
Storage temp., °C	Tstg	40		150
Mounting force, Ib ①		5000		5500
Thermal resistance ① with double sided cooling				
Junction to case, °C/Watt	Rejc			.023
Case to sink, lubricated, °C/Watt	Recs	1	.006	.0075

- Oconsult recommended mounting procedures.
  Applies for zero or negative gate bias.
  Per JEDEC RS-397, 5.2.2.1.
  With recommended gate drive.
  Higher dv/dt ratings available, consult factory.
  Per JEDEC standard RS-397, 5.2.2.6.



## Phase Control SCR T9G0

### 800 — 1200 A. Avg. Up to 3000 Volts













## Phase Control SCR T9G0













## Phase Control SCR T9G0

### 800 — 1200 A. Avg. Up to 3000 Volts



# Now Available From Westinghouse

### **Introduction to Solid State Power Electronics**



- 81/2 x 11 Format
- \$6.00 U.S. (Includes Book Rate Postage)
- 144 Pages
- \$6.50 Elsewhere (Includes Book Rate Postage)

With the growing importance of power electronics, persons with a basic knowledge of electrical engineering, both in industry and at the university, should find this text a worthwhile investment. Approved text for IEEE short course in Solid State Power Electronics and numerous college and university courses. Volume educational and quantity discounts are available.

Book describes device characteristics and fundamental circuit principles needed to fully comprehend the field of power electronics. Included are numerous references for more detailed research and example problems which illustrate the essential mathematical relationships in power electronics.

To order your copy, send check or money order (payable to Westinghouse Semiconductor in U.S. funds) to:

Westinghouse Electric Corporation Book Order Semiconductor Division Youngwood, Pa. 15697



## Phase Control SCR TA20

### 1200—1400 A. Avg. Up to 2200 Volts



C b l .	Inches		Millimet	ters
Symbol	Min.	Max.	Min.	Max.
$\phi D$	3.910	3.950	99.31	100.33
$\phi D$ ,	2.470	2.480	62.74	63.00
$\phi D_2$	3.440	3.560	87.38	90.42
Н	1.260	1.300	32.00	33.02
$\phi$ J	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
L	11.50	12.50	292.10	317.50
N	.050		1.27	

Creep Distance—1.82 in. min. (46.23 mm.) Strike Distance—1.26 in. min. (32.00mm). (In accordance with NEMA standards.)

Finish—Nickel Plate.
Approx. Weight—2.1 lb. (950 g).

1. Dimension "H" is a clamped dimension.



TA2 Outline

#### Features:

- di/namic Gate design
- All diffused design
- Guaranteed dv/dt (300 v/µs)
- Low gate current with soft gate control
- Low V TM
- Low Thermal Impedance
- High surge current capability
- I²t package rating
- Lifetime Guarantee

#### **Aplications:**

- Steel Mill Drives
- Crane Controls
- Motor Controls

Package I²t (Case Rupture) Rating: 125 x 10⁶A² sec.

#### **Ordering Information**

Туре	Vo	ltage	Cu	rrent	Turi	n-off	Gate o	current	Lea	Leads	
Code	V _{DRM} and V _{RRM} (V)	Code	I _{T(av)} (A)	Code	tq (µsec)	Code	I _{GT} (ma)	Code	Case	Code	
TA20	600	06	1200	12	250	0	200	3	TA2	DH	
	800	08			(typical)						
	1000	10	1400	14							
	1200	12									
	1400	14									
	1500	15									
	1600	16									
	1700	17									
	1800	18									
	1900	19									
	2000	20									
	2100	21									
	2200	22									

NOTE: LOWER VOLTAGE DEVICES AVAILABLE CONSULT FACTORY REPRESENTATIVE

#### Example

Obtain optimum device performance for your application by selecting proper order code.

Type TA20 rated 1200 A Average with VDRM=2000V, IGT=200 ma, and standard 12 inch leads—order as:

	Ту	pe		Vol	tage	Cur	rent	Turn Off	Gate Current	Le	ads
T	Α	2	0	2	0	1	2	0	3	D	Н

### 1200—1400 A. Avg. Up to 2200 Volts

#### **Phase Control** SCR **TA20**



Voltage

Blocking State Maximums ② (T _J = 125°C)	Symbol		Γ											
Repetitive peak forward blocking voltage $$ , $$ V $$ . $$	$v_{DRM}$	600	800	1000	1200	1400	1500	1600	1700	1800	1900	2000	2100	2200
Repetitive peak reverse voltage, V	$\vee_{RRM}$	600	800	1000	1200	1400	1500	1600	1700	1800	1900	2000	2100	2200
Non-repetitive transient peak reverse voltage, t≤ 5.0 msec, V	[∨] RSM	700	900	1100	1300	1500	1600	1700	1800	1900	2000	2100	2200	2300
Forward leakage current, mA peak	^I DRM	-						<del></del> 75 -						
Reverse leakage current, mA peak	^I RRM	-						<del></del> 75-						

Gate

#### Current

Conducting State Maximums $(T_J = 125^{\circ}C)$	Symbol	TA20-12	TA20-14
RMS forward current, A	¹ T(rms)	1900	2200
Ave. forward current, A	T(av)	1200	1400
One-half cycle surge current(3), A	TSM	30,000	35,000
3 cycle surge current③, A	TSM	25,000	30,000
10 cycle surge current®, A	TSM	18,000	22,000
I2t for fusing (t=8.3 ms) A2sec	12t	3.75 x 10 ⁶	5.1 x 10 ⁶
Max I ² t of package (t=8.3 ms), A ² sec	l²t	125 x 10 ⁶	125 x 106
Forward voltage drop at I $_{TM} = 6000A$ and $T_J = 25$ °C, $V \dots \dots$	$V_{TM}$	2.40	2.00

(13-25 C)	Symbol	IVIIII	Typ	IVIAX
Gate current to trigger at VD=12V, mA	^I GT	30	150	200
Gate voltage to trigger at $V_D = 12V$ , $V \dots$	VGT		1.5	3.0
Non-triggering gate voltage, T _J =125°C, and rated V _{DRM} , V	VGNT			.15
Peak forward gate current, A	IGTM			4
Peak reverse gate voltage, V	VGRM			5
Peak gate power, Watts	PGM	1		16
Average gate power, Watts	PG(av)	1		3

Switching (TJ=25°C)	Symbol	Min	Тур	Max
Turn-off time, IT=250A				
$T_J = 125$ °C, $diR/dt = 50$				
A/ $\mu$ sec reapplied dv/dt= 20V/ $\mu$ sec linear to 0.8 VDRM. $\mu$ sec	tq		250	
Turn-On and Delay Time ITM=1000A(), tp=450 $\mu$ sec	ton		4.5	
VD = 1100V, μsec	td	1	2.5	
Critical dv/dt exponential to VDRM TJ=125°C, V/ $\mu$ sec@ $(3)$	dv <b>/</b> dt	300	1000	
di/dt non-repetitive, ①④⑤I Aµsec	dı/dt			800
Latching Current VD=75V, mA	iL.		400	1000
Holding Current	IH.		150	500

Thermal and Mechanical	Symbol	Min	Тур	Max
Oper. junction temp., °C	. Tj	-40		125
Storage temp., °C	. T _{stq}	-40		150
Mounting force, lb.①		8500	11,000	
Thermal resistance with double sided cooling ①				
Junction to case, °C/Watt	. R∂JC		.015	.02
Case to sink, lubricated, °C/Watt	. R∂CS		.006	.0075

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.

- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.



























### **Phase Control** SCR

### 300 A Avg. Up to 2000 Volts



T76 Outline

Current

Construction	Inches		Millimet	ers
Symbol ⁻	Min.	Max.	Min.	Max.
A	9.00	10.00	228.60	254.00
В	.063	.172	1.60	4.37
С	2.980	3.020	75.69	76.71
φD		1.490		37.85
Ĵ	3.750		95.25	
K	.272	.292	6.91	7.42
M	.530	.755	13.46	19.18
N	2.030	2.150	51.56	54.61
P	.500		12.70	
Q		2.670		67.81
R	3.937	4.063	100.00	103.20
S	4.937	5.063	125.40	128.60
$\phiT$	.330	.350	8.38	8.89
U	.970	1.030	24.64	26.16
V	.470	.530	11.94	13.46
Z	.440		11.18	

Creep Distance—1.76 in. min. (44.91 mm). Strike Distance—.81 in. min. (20.70 mm). (In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight-5 lb. (2.3 kg.).

- 1. Angular orientation of terminals are undefined.
  2. Pitch diameter of ½-20 UNF-2A
- (coated) threads (ASA B1.1-1960).
  Dimension "J" denotes seated height with leads bent at right angles.



Package I² (case rupture) rating: 15 x 106 A2sec.

Voltage	(2)
Blocking State	$Maximums (T_{J} = 125^{\circ}C)$

Repetitive peak forward blocking voltage , V
Repetitive peak reverse voltage , V
Non-repetitive transient peak reverse voltage, t $\leq 5.0$ msec, V $\mid$

Forward leakage current, mA peak ...... Reverse leakage current, mA peak . . . . . . . . . . . .

Symbol															
^V DRM	100	200	400	600	800	1000	1200	1300	1400	1500	1600	1700	1800	2000	2200
VRRM .	100	200	400	600	800	1000	1200	1300	1400	1500	1600	1700	1800	2000	2200
[∨] RSM	200	300	500	700	950	1200	1450	1550	1700	1800	1900	2050	2150	2400	2600
	<del></del>						T7	60 _	_ 30						$\longrightarrow$
IDRM	→ 30 →														
^I RRM	$\leftarrow$							<b>— 30</b>							$\longrightarrow$

Symbol	T760 30
T(rms) T(av) TSM	470 300 8400 6050
^I TSM	5200 295,000
V _{TM}	3.30
Symbol	
t a	150
t _{on}	7
dv/dt	300
	T(rms) T(av) TSM TSM TSM TSM TM TM TM TM TSM TOM TOM TOM TOM TOM TOM TOM TOM TOM TO

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T760 rated at 300 A average with  $\rm V_{DRM}=1000V,$   $\rm I_{GT}=150~ma,$  and standard flexible lead—order as:

Gate Maximum Parameters $(T_J = 25^{\circ}C)$	Symbol		
Gate current to trigger at $V_D=12V$ , mA	^I GT	150	
Gate voltage to trigger at $V_D = 12V, V \dots$	$v_{GT}$	3	
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V	V _{GDM}	0.15	
Peak forward gate current, A	I GTM	4	
Peak reverse gate voltage, V	V _{GRM}	5	
Peak gate power, Watts	PGM	16	
Average gate power, Watts	PG(av)	3	

Thermal and Mechanical		I
	Symbol	
Min., Max. oper. junction temp., °C	Tj	-40 to +125
Min., Max. storage temp., °C	Tstg	—40 to +150
Max. mounting torque, in lb.		300
Max Thermal Impedance 9C/Most		

Junction to Ambient @ 1000 LFM airflow ..........  $heta_{\sf JA}$ 

① Consult recommended mounting procedures.

- ② Applies for zero or negative gate bias.③ Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.

	Ту	pe		Vol	tage	Cur	rent	Turn Off	Gate Current	Le	ads
Т	7	6	0	1	0	3	0	0	4	В	Υ

0.18

#### 300 A Avg. Up to 2000 Volts

#### Phase Control SCR T760















-40 to +125-40 to +150

25

.155 .05



#### **Phase Control** SCR T680

### 175 A. Avg. Up to 1500 Volts



C	Inches		Millimet	ters
Symbol	Min.	Max.	Min.	Max.
Α	9.760	10.250	247.90	260.35
Α,	10.000	10.750	254.00	273.05
В	.063	.172	1.60	4.37
С	1.790	1.830-	45.47	46.48
$\phi D$	.980	1.090	24.89	27.69
F	.245	.255	6.22	6.48
J	4.250		107.95	
φK	.338	.348	8.59	8.84
M	.530	.755	13.46	19.18
Q		2.750		69.85
S	2.390	2.430	60.71	61.72
φΤ	.330	.350	8.38	8.89
U	.280	.320	7.11	8.13
Z	.440		11.18	
	.440		11.10	

Creep & Strike Distance. .69 in. min. (17.60 mm). (In accordance with NEMA standards.)

Finish-Nickel Plate.

Approx. Weight—16 oz. (454 g).

- 1. Angular orientation of terminals is undefined.
- undefined.

  2. Dimension "J" denotes seated height with leads bent at right angles.



Voltage

(1)																
Blocking State Maximums (TJ=125°C)	Symbol															
Repetitive peak forward blocking voltage, V	VDRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Repetitive peak reverse voltage, V	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Non-repetitive transient peak reverse voltage, t≤5.0 msec, V	VRSM	200	300	400	500	600	700	850	950	1100	1200	1300	1450	1550	1700	1800
Forward leakage current, mA peak	IDRM	-								25 —						-
Reverse leakage current, mA peak	IRRM	-								25 —						

#### Current

Symbol	T68018
IT(rms)	275
I _{T(av)}	175
ITSM	5500
ITSM	3900
ITSM	3400
l²t	120,000
VTM	1.55
	IT(rms) IT(av) ITSM ITSM ITSM ITSM ITSM ITSM ITSM I

#### Switching

(TJ=25°C)	Symbol		
Typical turn-off time, I _T =150A T _J =125°C, di _R /dt=12.5 A/µsec, reapplied dv/dt=20V/µsec linear to 0.8 V _{DRM} , µsec	ta	150	
Typ. turn-on-time, I _T =100A V _D =100V♠, µsec	ton	5	
Min. critical dv/dt, exponential to VDRM TJ=125°C, V/μsec ②⑤	dv/dt	300	
Min. di/dt non-repetitive, A/μsec ① ④⑤	di/dt	800	

#### ① Consult recommended mounting procedures.

- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2 2.1.

- O With recommended e drive.
  Higher dv/dt ratings available, consult factory.
  Per JEDEC standard RS-397, 5.2.2.6.

#### Gate

Maximum Parameters				Symbol
(TJ=25°C)	Symbol		Min., Max. oper. junction	
Gate current to trigger at VD=12V, mA	IGT	150	temp., °C	TJ -
Gate voltage to trigger at Vp=12V, V.	VGT	3	Min., Max. storage temp., °C	T _{stg}
Non-triggering gate voltage, TJ =125°C, and rated VDRM, V	VGDM	0.15	Max. mounting torque each bolt, in-lb.	
Peak forward gate current, A	IGTM	4	Thermal resistance  Junction to case,	
Peak reverse gate voltage, V	VGRM	5	°C/Watt	$R\theta$ JC
Peak gate power, Watts	PGM	16	Case to sink, lubricated,	
Average gate power, Watts	PG (av)	3	°C/Watt	R⊕CS
	<u></u>			

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T680 rated at 175A average with VDRM = 1000V, IGT = 150 ma, and standard flexible lead-order as:

Thermal and Mechanical

							_
Туре	Vol	tage	Current	Turn Off	Gate Current	Leads	ı
T 6 8 0	1	0	1 8	0	. 4	в т	1

#### 175 A. Avg. Up to 1500 Volts

## Phase Control SCR T680







### **Phase Control** SCR

### 350 A Avg. Up to 1600 Volts



T78 Outline

Voltage Voltage

Blocking State Maximums (T_J = 125°C)

Repetitive peak forward blocking voltage  $\,$  ,  $\,$  V  $\,$  . . Repetitive peak reverse voltage V ..... 

Forward leakage current, mA peak ..... 

0 1 1	Inches		Millimeters			
Symbol	Min.	Max.	Min.	Max.		
Α	9.76	10.00	247.90	254.00		
A,	10.18	10.42	258.57	264.67		
В	.063	.172	1.60	4.37		
С	2.48	2.52	62.99	64.00		
$\phi D$		1.490		37.85		
É	1.620	1.750	41.15	44.45		
F	.430	.810	10.92	20.57		
J	4.00		101.60			
$\phi K$	.360	.400	9.14	10.16		
M	5.30	.755	13.46	19.18		
Q		3.10		78.74		
$\phi$ S	1.590	1.610	40.39	40.89		
φΤ	.330	.350	8.38	8.89		
Z	.440		11.18			

Creep Distance—1.76 in min. (44.91 mm). Strike Distance—.81 in min. (20.70 mm) (In accordance with NEMA standards.)

Finish-Nickel Plate. Approx. Weight-16 oz. (454 g).

- 1. Angular orientation of terminals are undefined.
- Dimension "J" denotes seated height with leads bent at right angles.



Package I2t (case rupture) rating: 15 x 106 A2sec.

Symt	ool
------	-----

^V DRM ^V RRM	100 100	200 200	400 400								1600 1600	
V _{RSM}	200	300	500						1700	1800	1900	
	─────────────────────────────────────											
DRM	30											
¹ RRM	_					30 -						

Switching  $(T_j = 25^{\circ}C)$ 

Current Conducting State Maximums (T _J = 125°C)	Symbol	T780 3!
RMS forward current, A	^I T(rms)	550
Ave. forward current, A	T(av)	350
One-half cycle surge current3, A	TSM	10,000
3 cycle surge current③, A	TSM	7200
10 cycle surge current3, A	TSM	6200
$1^2$ t for fusing (for times $\geq 8.3$ ms) A ² sec.	l2t	416,000
Forward voltage drop at $I_{TM} = 3000A$ and $I_J = 25$ °C, $V \dots$	V _{TM}	2.15

Thermal and Mechanical									
	Symbol								
Min , Max. oper. junction temp , °C	TJ	—40 to +125							
Min , Max. storage temp., °C	Tstg	-40 to +150							
Max. Thermal resistance ①									
Junction to case, °C/Watt	$^{ m R} heta$ JC	.10							
Case to sink Jubricated °C/Watt	Race	.05							

Typical turn-off time, $I_T = 250A$ , $I_J = 125^{\circ}C$ , dig/dt = 25 A/ $\mu$ sec, reapplied dv/dt = 20 $V/\mu$ sec linear to 0.8 $V_{DRM}$ , $\mu$ sec	tq	150	
Typ. turn-on-time, $I_T = 100A$ $V_D = 100V$ , $\mu sec$	ton	7	
Min. critical dv/dt, exponential to V _{DRM} · Τ _J = 125°C, V/μsec② ①	dv/dt	300	
Min. di/dt non-repetitive, JEDEC Std. #7, A/μsec ① ③ ⑤ · · · · · · · · · · · · · · · · · ·	di/dt	800	

Maximum Parameters (T _J = 25°C)	Symbol	
Gate current to trigger at $V_D = 12V$ , mA	^I GT	150
Gate voltage to trigger at $V_D = 12V, V \dots$	^V GТ	3
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V · · · · · · · · · · · · · · · · · ·	V _{GDM}	0.15
Peak forward gate current, A	I GTM	4
Peak reverse gate voltage, V	^V GRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
  Per JEDEC RS397, 5.2.2.1.
  With recommended gate drive.

- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.

Obtain optimum device performance for your application by selecting proper Order Code.

Type T780 rated at 350A average with VDRM = 1000V, IGT=150 ma, and standard leadorder as:

	Type			Voltage		Current		Turn-Off	Gate Current	Lead
Т	7	8	0		0	3	5	0	4	BY

















## **Fast Switching**

## 40—80 A. Avg. Up to 1200 Volts 10 — 50 μs



Conforms to TO-94 Outline

0 1 1	Inches		Millimet	ers			
Symbol	Min.	Max.	Min.	Max.			
A	5.775	6.265	146.69	159.13			
Α,	6.850	7.500	173.99	190.50			
В	.055	.075	1.40	1.91			
φD E F J	.860	1.000	21.84	25.40			
E	1.031	1.063	26.19	27.00			
F	.255	.400	6.48	10.16			
J	2.50		63.50				
M	.437	.650	11.10	16.51			
N	.796	.827	20.24	21.01			
Q		1.675		42.55			
$\phi T$	.260	.291	6.60	7.39			
Ż	.250		6.35				
φW	½-20 UNF-2A						

Creep & Strike Distance. 1500—.50 in. min. (12.85 mm). (In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight-5 oz. (142 g). 1. Complete threads to extend to within

- 2½ threads of seating plane.2. Angular orientation of terminals is
- Pitch diameter of ½-20 UNF-2A (coated) threads (ASA B1.1-1960).
- 4. Dimension "J" denotes seated height with leads bent at right angles.



Conforms to TO-83 Outline

C	Inches		Millime	Millimeters			
Symbol	Min.	Max.	Min.	Max.			
A ₂ C L	.070	1.810 .110 .650	1.78	45.97 2.79 16.51			
L, L ₂ M,	.420 .180 .360	.520 .470	10.67 4.57 9.14	13.21 11.94			
φT, φT ₂ Z,	.190 .060 .180	.235 .080	4.83 1.52 4.57	5.97 2.03			
$\phi$ W	½-20 U	NF-2A					

Approx. Weight-4 oz. (114 g).

1. Basic dimensions of TO-94 and TO-83 are same except as noted.



Note: High frequency sine and square wave data available, consult factory.

#### Features:

- Center fired di/namic
- High di/dt with soft gate control
- High frequency operation
- Sinusoidal waveform operation to 20 KHz
- Rectangular waveform operation to 20 KHz
- Low dynamic forward voltage drop
- · Low switching losses at high frequency • Lifetime Guarantee

#### Applications:

- Inverters for UPS Induction Heating AC Motor Control
- Switching power supplies
- Cycloconverters
- Choppers
- Crowbars

Ord	leri	ng	Info	rma	ati	or

Туре	Vol	lage	Cur	rent	Tur	n-off	Gate current		Leads	
Code	V _{DRM} and V _{RRM} (V)	Code	IT(av) (A)	Code	tq (µsec)	Code	I _{GT} (ma)	Code	Case	Code
T507	100	01	40	40	10	8	150	4	TO-94	AQ
	200	02			15	7		1		
	300	03	70	70	20	× 6		1 1 1 1 1	TO-83	AA
	400	04			25	8	!	1 10 15 15		62836
	500	05	80	80	30	<b>**********</b>				34
	600	06			40	#		3 1 <del>4</del> 2		Part 5
1	700	07			50					1 4 7 4 4
	800	80			l	200 PM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15 756		1. 67.5
	900	09								100
	1000	10						1300		
	1100	11						1377	-	
	1200	12			l			1		111 34 1
				_				1 4 1975		3000
		P. P. A. S. S.		*		馬 助麻羅		1000		
		r zonaska						1000		1 2 2 2

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T 507 rated at 80 A average with  $V_{DRM}\,\equiv$  1000V,  $l_{\rm GT}=150~{
m ma}$ ,  $t_{
m q}=30~{
m \mu sec}$  max. and flex leads—order as:

	Ту	ре		Vol	Voltage		rent	Turn Off	Gate Current	Le	Leads	
Т	5	0	7	1	0	8	0	5	4	Α	Q	

## 40—80 A. Avg. Up to 1200 Volts 10 — 50 μs

## Fast Switching



#### Voltage

Blocking State Maximums. ② (T _J = 125°C)	Symbol										
Repetitive peak forward blocking voltage , V .: Repetitive peak reverse voltage, V	V _{DRM} VRRM	100 100	200 200	300 300	400	500 500	600 600	700 700	800 800		 1200 1200
Non-repetitive transient peak reverse voltage, $t \leq 5.0$ msec, V	VRSM	200								' ' '	1300
Forward leakage current, mA peak	DRM RRM	<del>\</del>					1 1	5		 	 $\xrightarrow{\longrightarrow}$

#### Current

Conducting State Maximums (T _J = 125°C)	Symbol	T50740	T507 70	T507 80	<i>z</i>
RMS forward current, A	^I T(rms)	63	110	125	
Ave. forward current, A	T(av)	40	70	80	
One-half cycle surge current®, A	TSM	1000	1200	1400	
I 2t for fusing (for times ≥ 8.3 ms) A2 sec. Forward voltage drop at I _{TM} = 500A	l²t .	4000	6000	8150	,
and $ij = 25^{\circ}C, V \dots$	V _{TM}	4.2	3.5	3.2	
Min. repetitive di/d1 ① ① ① A/μsec	di/dt	100	100	150	

#### **Switching**

$(T_{J} = 25^{\circ}C)$	Symbol	
Max. turn-off time, IT = 50 A, T _J = 125°C, diR/dt = 5 A/ $\mu$ sec, reapplied dv/dt = 20V/ $\mu$ sec linear to 0.8 VDRM, $\mu$ sec $\frac{1}{2}$	^t q	10 to 50
Typ. turn-on-time, I _T = 100A V _D = 100V _Φ , μsec	ton	3.5
Min. critical dv/dt, exponential to V _{DRM} · T _J = 125°C, V/μsec②③···········	dv/dt	200
Min. di/dt non-repetitive, A/μsec ① ④ ⑥ · · · · · · · · · · · · · · · · · ·	di/dt	800

#### Gate

Maximum Parameters (T _J = 25°C)	Symbol	
Gate current to trigger at $V_D = 12V$ , mA	^I GT	150
Gate voltage to trigger at $V_D = 12V, V \dots$	V _{GT}	3.
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V	V _{GDM}	0.15
Peak forward gate current, A	I GTM	4
Peak reverse gate voltage, V	[∨] GRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

#### I nermal and Mechanical

	Symbol	1
Min., Max. oper. junction temp., °C	T,	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Max. mounting torque, in lb. ①		130
Max. Thermal resistance ① Junction to case, °C/Watt Case to sink, lubricated, °C/Watt	R _{eJC} R _{eCS}	.28 .12

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.
   With recommended gate drive.

- Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.
- $\bigcirc$  For operation with antiparallel diode, consult factory.



#### Transient Thermal Impedance VS. Time





### Fast Switching SCR

## 125 - 175 A. Avg. Up to 1200 Volts $10 - 60 \mu s$



Conforms to TO-93 Outline

#### Features:

- Center fire, di/namic gate
- High di/dt with soft gate control
- High frequency operation
- Sinusoidal waveform operation to 20 KHz
- Rectangular waveform operation to 20 KHz
- Low dynamic forward voltage drop
- · Low switching losses at high frequency
- Westinghouse Lifetime Guarantee

0	Inches		Millimet	ters
Symbol	Min.	Max.	Min.	Max.
A A, B	7.750 7.750 .063	8.100 8.100 .172	196.85 196.85 1.60	205.74 205.74 4.37
φD E F	.980 1.212 .250	1.090 1.250 .630	24.89 30.78 6.35	27.69 31.75 16.00
J M N	3.25 .530 1.040	.755 1.077	82.55 13.46 26.42	19.18 27.36
Ω φΤ Ζ	.260 .340	2.250 .290	6.60 8.64	57.15 7.37
φW	%-16 U	NF-2A		

Creep & Strike Distance: .69 in. min. (17.60 mm).

(In accordance with NEMA standards.) Finish-Nickel Plate.

Approx. Weight-8 oz. (227 g).

- Complete threads to extend to within 2½ threads of seating plane.
- 2. Angular orientation of terminals is undefined.
- 3. Pitch diameter of ¾-16 UNF-2A
- (coated) threads (ASA B1.1—1960).

  4. Dimension "J" denotes seated height with leads bent at right angles.



Note: High frequency sine and square wave data available, consult factory.

#### Applications:

- Inverters for AC motor control Induction heating
- Cycloconverters
- Choppers

#### **Ordering Information**

Туре	Voltage		Cu	Current		Turn-off		Gate current		Leads	
Code	V _{DRM} and V _{RRM} (V)	Code	IT(av) (A)	Code	$_{\mu}^{ ext{tq}}$	Code	l _{GT} (ma)	Code	Case	Code	
T607	100	01	125	13	10	8	150	4	TO-93	ВТ	
	200	02		1 5	15	7					
	300	03	150	15	20	6					
	400	04		138.4	25	В					
	500	05	175	18	30	5					
	600	06			40	4					
	700	07		1 254	50	3					
	800	08			60	2					
	900	09									
	1000	10									
	1100	11		1 - 2 //						the state of	
	1200	12									

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T 607 rated at 175A average with  $V_{DRM}\,\equiv$  1000V,  $I_{GT}=150$  ma, tq=30  $\mu sec$  and standard flex lead — order as

Type		Voltage		Current		Turn Off	Gate Current	Leads			
Т	6	0	7	1	0	1	8	5	4	В	Т

## 125 — 175 A. Avg. Up to 1200 Volts 10 — 60 μs

### Fast Switching SCR T607



#### Voltage

Blocking State Maximums ② (T _J = 125°C)	Symbol													
Repetitive peak forward blocking voltage , V	[∨] DRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	
Repetitive peak reverse voltage , V	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200	
Non-repetitive transient peak reverse voltage, $t \leq 5.0 \text{ m sec, V} \dots$	V _{RSM}	200	300	400	500	600	700	800	900	1000	1100	1200	1300	
Forward leakage current, mA peak	IDRM	$\leftarrow$					2	25					$\longrightarrow$	
Reverse leakage current, mA peak	RRM	<del></del>					2	:5					$\longrightarrow$	

#### Current

Conducting State Maximums (T _J = 125°C)	Symbol	T607 13	T607 15	T607 18
RMS forward current, A	¹ T(rms)	200	235	275
Ave. forward current, A	T(av)	125	150	175
One-half cycle surge current③, A	TSM	3500	4000	4500
12t for fusing (for times ≥ 8.3 ms), A2-sec.	l²t.	50,000	65,000	84,000
Forward voltage drop at ITM = 625A and T _J = 25°C, V	V _{TM}	2.35	2.1	1.85
Min. repetitive di/dt ① ④ ⑥ , A/μsec	di/dt	200	250	300

#### **Switching**

$(T_{\mathbf{J}} = 25^{\circ}C)$	Symbol	
Max. turn-off time, IT =150 A, TJ = 125°C, diR/dt = 12.5 A/ $\mu$ sec, reapplied dv/dt = 20V/ $\mu$ sec linear to .8V DRM, $\mu$ sec $\odot$ .	tq	10 to 60
Typ. turn-on-time, $I_T = 100A$ $V_D = 100V_{\odot}$ , $\mu sec \dots$	ton	3.5
Min. critical dv/dt, exponential to $V_{DRM}$ . $T_{J} = 125^{\circ}C$ , $V/\mu sec@③$	dv/dt	300
Min. di/dt non-repetitive, ① 4 ⑤ , A/μsec	di/dt	800

#### Gate

Maximum Parameters (T _J = 25°C)	Symbol		
Gate current to trigger at $V_D = 12V$ , mA	I _{GT}	150	
Gate voltage to trigger at $V_D = 12V, V \dots$	$v_{GT}$	3	
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V	[∨] GDM	0.15	
Peak forward gate current, A	I GTM	4	
Peak reverse gate voltage, V	^V GRM	5	
Peak gate power, Watts	PGM	16	
Average gate power, Watts	PG(av)	3	

#### Thermal and Mechanical

*	Symbol	
Min., Max. oper. junction temp., °C	Tj	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Max. mounting torque, in lb. ①		300
Junction to case, °C/Watt	ReJC	.13
Case to sink, lubricated, °C/Watt	Recs	.08

- ① Consult recommended mounting procedures.
- ① Applies for zero or negative gate bias.① Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
- ⑤ Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.







### Fast Switching

## 250-325 A Avg. Up to 1200 Volts 10 - 60 µs



T70 Outline

#### Features:

- Center fired di/namic gate
- High di/dt with soft gate control
- High frequency operation
- Sinusoidal waveform operation to 20 KHz
- Rectangular waveform operation to 20 KHz
- Low dynamic forward voltage drop
- Low switching losses at high frequency
- Westinghouse Lifetime Guarantee

	Inches		Millimet	ters
Symbol	Min.	Max.	Min.	Max.
Α	9.76	10.00	247.90	254.00
$A_1$	10.18	10.42	258.57	264.67
В	.063	.172	1.60	4.37
φD		1.490		37.85
E	1.620	1.750	41.15	44.45
F	.430	.810	10.92	20.57
J	4.000		101.60	
M	.530	.755	13.46	19.18
N	1.04	1.08	26.42	27.43
Q		3.100		78.74
$\phiT$	.330	.350	8.38	8.89
Ž	.440		11.18	
φW	%-16 U	NF-2A		

Creep Distance—1,76 in. min. (44,91 mm). Strike Distance— .81 in. min. (20.70 mm). (In accordance with NEMA standards.)
Finish—Nickel Plate.

Approx. Weight-16 oz. (454 g).

- 1. Complete threads to extend to within 21/2 threads of seating plane.
- Angular orientation of terminals is undefined.
- Pitch diameter of %-16 UNF-2A (coated) threads (ASA B1.1-1960).
   Dimension "J" denotes seated height
- with leads bent at right angles.

Note: High frequency sine and square wave data available, consult factory.

#### Applications:

- Inverters for UPS Induction heating AC motor drives
- Cycloconverters
- Choppers
- Crowbar

#### **Ordering Information**

Туре	Volt	age	Cu	rrent	Tui	n-off	Gate o	current	Le	ads
Code	V _{DRM} and V _{RRM} (V)	Code	l T(av) (A)	Code	tq μsec	Code	l _{GT} (ma)	Code	Case	Code
T707	100 200 300 400 500 600	01 02 03 04 05	275 325	28 33	10 15 20 25 30 40 50	8 7 6 8 6 4 3	150	4	Т70	BY
	700 800 900 1000 1100 1200	07 08 09 10 11	250 300	25 30	30 40 50 60	5 4 3 2				

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

	Тy	pe		Vol	tage	Cur	rent	Turn Off	Gate Current	Lea	ads
Т	7	0	7	1	0	3	0	5	4	В	Υ

Type T 707 rated at 300 A average with  $V_{DRM} = 1000 V$ ,  $I_{GT} = 150 \, \text{ma}$ ,  $tq = 30 \, \mu \text{sec}$  and standard flex lead — order as

## 250-325 A Avg. Up to 1200 Volts 10 - 60 µs

## Fast Switching SCR T707

_T707__25;T707__30

T707__ 33

500

325

8000

265,000

2.30

400

600

600

600 700 800

30



Voltage Blocking State Maximums ^② (T _J = 125°C)	Symbo	•				
Repetitive peak forward blocking voltage , V			1 000	100	T 500	Τ,
Repetitive peak reverse voltageV	DITTO		300	400	500 500	16
Non-repetitive transient peak reverse voltage, $t \leq 5.0  \text{msec,V} \dots$	·· V _{RSM}	200 300	400	500	600	1 -
Type designation vs. Voltage availability		<del></del>	—T707.	28; T	707	33 -
		<del></del>		T70	725;	T70
Forward leakage current, mA peak Reverse leakage current, mA peak	I _{DRM}					
Current	I	1				
Conducting State Maximums (T _J = 125°C)	Symbol	T707	_ 28	т	707.	
RMS forward current, A	T(rms)	43	0			500
Ave. forward current, A	T(av)	27				325
One-half cycle surge current®, A	TSM	700	00		8	000
$1^{2}$ t for fusing (for times $\geq 8.3$ ms) A ² sec.	J2t.	2050	00		26	5,00
Forward voltage drop at ITM = 3000A and T _J = 25°C, V	v _{TM}	25	0			2.30
Min. repetitive di/dt , A/μsec ①④⑤	di/dt	30	0			400
Switching						
(T _J = 25°C)	Symbol				Max	ımu
Max. turn-off time, IT = 400A,			-	olts		П
T _J = 125°C, dig/dt =25 A/μsec, reapplied dv/dt =		10 to 60		<u> </u>	6	Ц
20V/ $\mu$ sec. linear to .8V DRM, $\mu$ sec ⁽⁵⁾ Typ. turn-on-time, I _T = 1000A	^t q	10 10 60	1.44	Ę		
V _D = 300V④, μsec	t _{on}	3.0		ģ !	5	$\vdash$
Min. critical dv/dt, exponential to $V_{DRM}$ . $T_J = 125$ °C, $V/\mu sec$ (2)§	dv/dt	300		e Dr		
Min. di/dt, non-repetitive, $\textcircled{1}$ $\textcircled{3}$ $\texttt{A}/\mu \text{sec} \dots$	di/dt	800		oltag	4	П
Gate				, ,	3	Н
Maximum Parameters $(T_J = 25^{\circ}C)$	Symbol			Maximum Forward Voltage Drop, VTM, Volts	2	Ц
Gate current to trigger at $V_D = 12V$ , mA	^I GT	150		E	$^{-}$	Ш
Gate voltage to trigger at $V_D = 12V, V \dots$	V _{GT}	3		Ē.	₁	Ħ
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V · · · · · · · · · · · · · · · · · ·	V _{GDM}	0.15		Maxi		
Peak forward gate current, A	I GTM	4			10	
Peak reverse gate voltage, V	VGRM	5 16	4.11		Forv	varo
Peak gate power, Watts	PGM PG(av)	3	1.4	· 2	*	
Thermal and Mechanical	Symbol			se,		•
Min., Max. oper. junction temp., °C	Тј	-40 to +12	<del>-</del> ,	Juntction To Case	.1	FE
Min., Max. storage temp., °C	Tstg	-40 to +15	o , I	Ĕ	parameter dear	
Max. mounting torque, in lb. ①		360		ction c	8	ange apri
Max. Thermal resistance (1)  Junction to case, °C/Watt	R _{OJC}	.10		ğ .u	2	
Case to sink, lubricated, °C/Watt	Recs	.05		<b>D</b> ,	-	



- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.
   With recommended gate drive.

- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.



800

800

900

700

700

900

900

T707___ 25

400

250

7000

2:90

300

205,000

1000 1100

1000 | 1100 | 1200 | 1300

1000 1100 1200

1200

T707__ 30

475

300

8000

2:60

400

265,000





## Fast Switching SCR T527

#### 60 — 125 A. Avg. Up to 1200 Volts 10 to 50 µs



C	Inches		Millime	ters
Symbol ·	Min.	Max.	Min.	Max.
φD	1.610	1.650	40.89	41.91
$\phi D$ ,	.745	.755	18.92	19.18
$\phi D_2$	1.420	1.460	36.07	37.08
Н	.500	.560	12.70	14.22
$\phi$ J	.135	.145	3.43	3.68
J,	.072	.082	1.83	2.08
L	7.75	8.50	196.85	215.90
N_	.030		.76	

Creep Distance—34 in. min. (8.64 mm). Strike Distance—52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish—Nickel Plate.

Approx. Weight-2.3 oz. (66 g).

1. Dimension "H" is clamped dimension.



Note: High frequency sine and square wave data available, consult factory.

#### T52 Outline

#### Features:

- Center fired di/namic gate
- High di/dt with soft gate control
- High frequency operation
- Sinusoidal waveform operation to 20 KHz
- Rectangular waveform operation to 20 KHz
- Low dynamic forward voltage drop
- Low switching losses at high frequency
- Lifetime Guarantee

#### Applications:

- Inverters for UPS Induction Heating Motor Control
- Choppers
- Crowbars

#### **Ordering Information**

Туре	Vol	tage	Cu	rrent	Tu	rn-off	Gate	current	Le	ads
Code	V DRM and V RRM (V)	Code	IT(av) (A)	Code	tq μsec	Code	l _{GT} (ma)	Code	Case	Code
T527	100	01	60	60	10	8	150	4	T62	DN
May 14 his	200	02	115	12	15	7				
	300	03	125	13	20	6			j	
	400	04			30	5				
	500	05			40	4				
	600	06			50	3		1.		
	700	07								
	800	08		12.32.13.14						
1.	900	09		in the figure						·
	1000	10		* * * *						
	1100	11								
	1200	12								

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T527 rated at 115 A average with V_DRM = 800V, I_GT = 150 ma, tq = 20  $_{\mu \rm sec}$  max, and flex leads — order as:

	Ту	pe		Vol	tage	Cur	rent	Turn Off	Gate Current	Le	ads
T	5	2	7	0	8	1	2	6	4	D	N

#### 60 — 125 A. Avg. Up to 1200 Volts 10 to 50 µs

#### **Fast Switching** SCR T527

400

400

400 500

60

600

600

600 700

500

500

700

700

25

T527__12

180

115

1200

6000

3.5

800

800

900

900 800 | 900 | 1000 | 1100 | 1200 | 1300

1000

1100 1200

1000 1100 1200

T527__13

200

125

1400

8150

3.2 150

300

300



Voltage  Blocking State Maximums (T _J = 125°C)	Symbo	ol .
Repetitive peak forward blocking voltage $$ , $$ V $$	·· V _{DRI}	M 100 200 3
Repetitive peak reverse voltage , V Non-repetitive transient peak reverse voltage,		
t 50 msec, V	·· VRSN	л   200   300   4
Forward leakage current, mA peak Reverse leakage current, mA peak	IDRN	
Current		1
Conducting State Maximums $(T_J = 125^{\circ}C)$	Symbol	T527
RMS forward current, A	I _{T(rms)}	95
Ave. forward current, A	1T(av)	60
One-half cycle surge current(3), A	TSM	1000
I 2t for fusing (for times ≥ 8.3 ms) A ² sec.	l2t	4000
Forward voltage drop at $I_{TM} = 500A$ and $I_J = 25$ °C, $V \dots$	V	4000
	V _{TM}	4.2
Min. repetitive di/dt ,A/μsec ^① ⓒ	di/dt	100
Switching		1
$(T_{J} = 25^{\circ}C)$	Symbol	
Max. turn-off time, IT =50A, TJ = 125°C, dig/dt = 5 A/ $\mu$ sec, reapplied dv/dt = 20V/ $\mu$ sec linear to 0.8 VDRM, $\mu$ sec ③ ①	•	10 to 50
Typ. turn-on-time, $T_T = 100A$	^t q	10 10 50
Typ. turn-on-time, $I_T = 100A$ $V_D = 100V \oplus$ , $\mu sec$	t _{on}	3.5
Min. critical dv/dt, exponential to $V_{DRM}$ . $T_{J} = 125^{\circ}C$ , $V/\mu sec@$ $\odot$	dv/dt	300
A/μsec ① (1) (1)	di/dt	400
Gate		
Maximum Parameters (T _J = 25°C)	Symbol	
Gate current to trigger at $^{ee}\!\!\!/_{D} =$ 12V, mA	^I GT	150
Gate voltage to trigger at V _D = 12V, V Non-triggering gate voltage, T _L = 125°C.	V _{GT}	3
Non-triggering gate voltage, $T_J = 125^{\circ}C$ , and rated $V_{DRM}$ , $V \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	^V GDM	0.15
Peak forward gate current, A	GTM	4
Peak reverse gate voltage, V	^V GRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3
Thermal and Mechanical		
	Symbol	
Min., Max. oper. junction temp., °C	Tj	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Max. mounting force, lb. ①		800 to 1000
Junction to case, °C/Watt	Rejc	.1/35
Case to sink, lubricated, °C/Watt	Recs	.02

				1	00							1	50				
		Ma	nixe	num	Fo	rv	ard '	Volta	ge	vs.	. Fo	rwar	d Cı	ırre	nt		
Ē,	7		T	T	Ш	I		T	П	П	Ш	1	7	1	11	Ш	[
ob, /	6		$\dashv$	+	Н	$\parallel$	T52	76		#	Щ	//		4	Ħ	₩	
مّ	5		$\dashv$	_	Щ	Щ		-	$\ddot{\perp}$	Щ	Д			Ц	11	Щ	
Itage									اا	X	相		_т	527	·	12	
Maximum Forward Voltage Drop, VTM, Volts	4			T	Ш	Ï			1	A	4	H	- T5	27_	_1:	3	
ırwai	3			T	Ш					$\parallel$	$\parallel$		П	П	П	Ш	1
Ē	2			1	#	7		+	H	$\dagger$	Ħ		╁	H	$\dagger$	$\dagger \dagger \dagger$	İ
Ë,	, 1			7	Ш	Щ	-	+	Н	+	Ж		╀	Н	₩	₩	1
Maxir					Ш					Ш	$\parallel$			Ш	Ш	Ш	
	10	)				10	00				10	000				10,0	000
Forward Current, ITM, Peak Amps																	



- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
- ① Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- 3 Higher dv/dt ratings available, consult factory.
- Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.



## Fast Switching SCR T527

60 — 125 A. Avg. Up to 1200 Volts 10 to 50 µs



60 — 125 A. Avg. Up to 1200 Volts 10 to 50 μs

## Fast Switching SCR T527







## Fast Switching SCR

150—250 A. Avg. Up to 1200 Volts 10—50 μs



C	Inches		Millimet	ters
Symbol ⁻	Min.	Max.	Min.	Max.
φD	1.610	1.650	40.89	41.91
$\phi D_1$	.745	.755	18.92	19.18
$\phi D_2$	1.420	1.460	36.07	37.08
Н	.500	.560	12.70	14.22
$\phi$ J	.135	.145	3.43	3.68
J,	.072	.082	1.83	2.08
L	7.75	8.50	196.85	215.90
N	.030		.76	

Creep Distance—.34 in. min. (8.64 mm). Strike Distance—.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—2.3 oz. (66 g).



Note: High frequency sine and square wave data available, consult factory.

#### T62 Outline

#### Features:

- Center fired di/namic gate
- High di/dt with soft gate control
- High frequency operation
- Sinusoidal waveform operation to 20 KHz
- Rectangular waveform operation to 20 KHz
- Low dynamic forward voltage drop
- · Low switching losses at high frequency

#### **Applications:**

- Inverters for Ups Induction Heating Motor Control
- Choppers
- Crowbars

#### **Ordering Information**

Туре	Volt	age	Cur	rent	Tur	n-off	Gate	current	Le	eads
Code	V _{DRM} and V _{RRM} (V)	Code	IT(av) (A)	Code	tq (usec)	Code	l _{GT} (ma)	Code	Case	Code
T627	100 200 300 400 500 600 700 800 900 1000 1100	01 02 03 04 05 06 07 08 09 10	150 200 250	15 20 25	10 15 20 30 40 50	8 7 6 5 4 3	150	4	Т62	DN

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Т s:

	Ту	pe		Vol	tage	Cur	rent	Turn Off	Gate Current	Le	ads
T	6	2	7	1	0	2	0	6	4	D	N

				A average				
GT =	= 150 :	ma, tq	$=$ 20 $\mu$ se	ec max. ai	nd flex	leads	— order	as

^{1.} Dimension "H" is clamped dimension.

## 150—250 A. Avg. Up to 1200 Volts 10—50 μs

### **Fast Switching** SCR T627



#### Voltage

Blocking State Maximums ② (T _J = 125°C)	Symbol												
Repetitive peak forward blocking voltage , V	V _{DRM}	100	200	300	400	500	600	700	800				
Repetitive peak reverse voltage , V	VRRM	100	200	300	400	500	600	700	800	900	1000	1100	1200
$t \leq 5.0$ msec, V	^V RSM	200	300	400	500	600	700	800	900	1000	1100	1200	1300
Forward leakage current, mA peak	^I DRM	$\leftarrow$					25						$\longrightarrow$
Reverse leakage current, mA peak	RRM	4-					25						$\longrightarrow$

#### Current

Conducting State Maximums (T _J = 125°C)	Symbol	T62715	T62720	T62725
RMS forward current, A	I _{T(rms)}	235	315	400
Ave. forward current, A	T(av)	150	200	250
One-half cycle surge current3, A	TSM	3500	4000	4500
I 2t for fusing (for times ≥ 8.3 ms) A2 sec. Forward voltage drop at I _{TM} = 625A	l2t ,	50,000	65,000	84,000
and $T_J = 25$ °C, $V \dots \dots$	V _{TM}	2.35	2.1	1.85
Min. repetitive di/dt(4), A/μsec(1)(6)	di/dt	200	250	300

#### **Switching** $(T_1 = 25^{\circ}C)$

··J/	Symbol	
Max. turn-off time, IT = 150A, TJ = 125°C, diR/dt = 12.5 ① A/ $\mu$ sec, reapplied dv/dt = $20\nu/\mu$ sec ③ linear to $0.8 \nu_{DRM, \mu}$ sec .	t a	10 to 50
Typ. turn-on-time, IT = 100A		3.5
$V_D = 100V_{\odot}$ , $\mu$ sec	ton	3.5
$T_{J} = 125^{\circ}C, V/\mu sec@ §$	dv/dt	300
Min. di/dt Α/μsec ① ④ ⑥ · · · · · · · · · · · · · · · · · ·	di/dt	800

#### Gate

$\begin{array}{ll} \text{Maximum Parameters} \\ (\text{T}_{\text{J}} = 25^{\circ}\text{C}) \end{array}$	Symbol	
Gate current to trigger at $V_D = 12V$ , mA	l _{GT}	150
Gate voltage to trigger at $V_{f D}=$ 12V, $V\dots$	V _{GT}	3
Non-triggering gate voltage, T _J = 125°C, and rated V _{DRM} , V	V _{GDM}	0.15
Peak forward gate current, A	GTM ·	4
Peak reverse gate voltage, V	[∨] GRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3

#### Thermal and Mechanical

	Symbol	
Min., Max. oper. junction temp., °C	Tj	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +150
Min., Max. Mounting Force, Ib. 10		1000 to 1400
Max. thermal resistance, Double side cooled		i
Junction to case, °C/Watt	^R eJC	.08
Case to sink, lubricated, °C/Watt	Recs	.02

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.

- Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.
   For operation with antiparallel diode, consult factory.







## Fast Switching SCR T72H

250—450 A. Avg. Up to 1200 Volts 25 — 50 μs



Cl. al.	Inches		Millimeters					
Symbol	Min.	Max.	Min.	Max.				
φD	2.250	2.290	57.15	58.17				
$\phi D_1$	1.333	1.343	33.86	34.11				
$\phi D_2$	2.030	2.090	51.56	53.09				
Н	1.020	1.060	25.91	26.92				
φJ	.135	.145	3.43	3.68				
J,	.075	.090	1.91	2.29				
L	7.75	8.50	196.85	215.90				
N	.040		1.02					

Creep Distance—1.00 in. min. (25.40 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish—Nickel Plate.

Approx. Weight—8 oz. (227 g).

^{1.} Dimension "H" is a clamped dimension.



#### T72 Outline

#### Features:

- Midway, di/namic Gate structure
- Hard Commutation Turn-Off
- Forward Blocking Capabilities to 1200 Volts
- Low Switching Losses at High Frequency
- Soft Commutation (Feedback Diode) Testing Available

#### Applications:

- Induction Heating
- Transportation
- Inverters

Note: High frequency sine and square wave data available, consult factory.

#### **Ordering Information**

Type	Voltage	Current	Turn-off	Gate curren	t Leads
Code	VDRM and VRRM (V)	IT(av) (A) Code	tq (µsec) Code	IGT (ma) Col	de Case Code
<b>172H</b>	100 01 200 02 300 63 400 94 500 05 600 06 700 97 800 98 900 09 1000 10 1100 11 1200 12	250 350 35 450 25 36 45	25 30 40 50 3	150	

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T72H rated at 450 A average with VDRM = 1000V,  $I_{GT}=150~\rm ma$ ,  $t_g=30~\rm \mu sec$  max. and flex leads—order as:

ı		Ту	pe		Vol	tage	Cur	Current		urn Gate Off Current		Leads	
Г	Т	7	2	Н	1	0	4	5	5	4	D	N	

## 250—450 A. Avg. Up to 1200 Volts 25 — 50 μs

### **Fast Switching** SCR T72H



Vol	tage	2
-----	------	---

Blocking State Maximums (T _J = 125°C)	Symbol											
Repetitive peak forward blocking voltage , V Repetitive peak reverse voltage, V	V _{DRM} VRRM VRSM	100 100 200	200 200 300	300 300 400	400 400 500	500 500 600	600 600 700	700 700 800	800 800 900	900 900 1000	 1100 1100 1200	1200
Forward leakage current, mA peak	I DRM I RRM	$\leftarrow$					— 3 — 3	5 5			 	$\xrightarrow{\longrightarrow}$

Current Conducting State Maximums (T _J = 125°C)	Symbol	T72H25	T72H35	T72H45
RMS forward current, A	^I T(rms)	400	550	700
Ave. forward current, A	T(av)	250	350	450
One-half cycle surge current③, A	TSM	6000	7000	7500
3 cycle surge current(3), A	TSM TSM	4320 3720	5040 4340	5300 4650
A ² sec.	12t .	150,000	205.000	234,000
Forward voltage drop at ITM = 3000A				
and $T_{\mathbf{j}}=25^{\circ}\text{C},\text{V}\dots\dots$	∨ _{TM}	3.80	3.45	3.10
Min. repetitive di/dt ① ④ ® Α/μsec	di/dt	400	500	600

Switching $(T_J = 25^{\circ}C)$		Symbol
Max. turn-off time, IT = 1000A, TJ = 125°C tp = 100 µsec. dirR/dt = 50 A/µsec., reapplied dv/dt = 50 V/µsec. linear to 0.8 VDRM, µsec. ⑤	o① tq	25 to 50
Typ. delay time, ITM = 1000A TD = .8 VDRM (), µsec	td	5
Min. critical dv/dt exponential to .8 VDRM, TJ = 125°C, V/µsec ③⑤	dv/dt	300
Min. di/dt, non-repetitive, A/µsec ① ④ ⑤	di/dt	1200
Gate Maximum Parameters (T _J = 25°C)	Symbol	
Gate current to trigger at $V_D = 12V$ , mA	¹ GT	150
Gate voltage to trigger at V _D = 12V, V Non-triggering gate voltage, T _J = 125°C,	V _{GT}	3
and rated V _{DRM} , V	^V GDM	.25
Peak forward gate current, A	GTM	4
Peak reverse gate voltage, V	[∨] GRM	5
Peak gate power, Watts	PGM	16
Average gate power, Watts	PG(av)	3
Thormal and Machanical		1

Thermal and Mechanical		1
	Symbol	
Min., Max. oper. junction temp., °C	Tj	-40 to +125
Min., Max. storage temp., °C	Tstg	-40 to +125 -40 to +150
Max. mounting force, lb ①		2000 to 2400
Thermal resistance ①, double- side cooling, junction to case,		1
°C/Watt	Rejc	.06
Case to sink, lubricated, °C/Watt	Recs	.02

- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.

- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
   Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.







### Fast Switching SCR T727

### 350 — 475 A. Avg. Up to 1200 Volts 10 — 60 μs



Cumbal	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
φD	2.250	2.290	57.15	58.17
$\phi D$ ,	1.333	1.343	33.86	34.11
$\phi D_2$	2.030	2.090	51.56	53.09
Н	1.020	1.060	25.91	26.92
φJ	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
L	7.75	8.50	196.85	215.90
N	.040		1.02	

Creep Distance—1.00 in. min. (25.40 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.)
Finish—Nickel Plate.
Approx. Weight—8 oz. (227 g).



Note: High frquency sine and square wave data available, consult factory.

#### T72 Outline

#### Features:

- Center fired di/namic gate
- High di/dt with soft gate control
- High frequency operation
- Sinusoidal waveform operation to 20KHz
- Rectangular waveform operation to 20KHz
- Low dynamic forward voltage drop
- Low switching losses at high frequency
- Lifetime Guarantee

#### Applications:

- Inverters UPS Induction heating AC motor drives
- Cycloconverters
- Choppers
- Crowbars

#### **Ordering Information**

Туре	Vol	tage	Cui	rrent	Tur	Turn-off		current	Leads	
Code	V _{DRM} and V _{RRM} (V)	Code	I⊤(av) (A)	Code	tq (μsec)	Code	I _{GT} (ma)	Code	Case	Code
7727	100 200 300 400 500 600	01 02 03 04 05 06	<b>400</b> <b>475</b> 350	40 48 36	10 15 20 25 30 40 50	8 7 6 8 5 4	150	4	T72	DN
	700 800 900 1000 1100 1200	07 08 09 10 11 12	450	45	25 30 40 50 60	B 5 4 3 2			·	

#### **Example**

Obtain optimum device performance for your application by selecting proper Order Code.

		Ту	pe		Vol	tage	Cur	Current		Current Off		Gate Current	Leads	
Γ	Т	7	2	7	1	0	4	5	5	4	D	N		

Type T727 rated at 450 A average with  $V_{\mbox{\footnotesize DRM}}\,\equiv 1000 \mbox{\footnotesize V},$  $I_{GT} = 150 \text{ ma}, t_g = 30 \text{ } \mu \text{sec}$  max. and flex leads—order as:

^{1.} Dimension "H" is a clamped dimension.

### 350-475 A. Avg. Up to 1200 Volts 10 — 60 μs

### Fast Switching SCR T727

400

400

400 500

_40--T727_ _48

500

500

600

600

600

700

30 30

T727——48

750

475

8000

2.30

400

265,000

700

700

800 900

800

800

900

900

550

350

7000

2.90

300

205,000

300

300

2000 to 2400

.06

.02

Rejc

Recs



1100

1100

1200

1200

700

450

8000

2.60

400

265,000

1000

1000

1000 1100 1200 1300

T727——35 T727——45

Voltage		
Blocking State Maximums (T _J = 125°C)	Symbol	
Repetitive peak forward blocking voltage , V	·· V _{DRM}	100 200 3
Repetitive peak reverse voltage $$ , $$ V $$	·· VRRM	100 200 3
Non-repetitive transient peak reverse voltage, $t < 5.0$ msec, $V \dots \dots \dots \dots$	·· V _{RSM}	200 300 4
type designation vs. voltage	noivi	T727
availability Forward leakage current, mA peak	I _{DRM}	t
Reverse leakage current, mA peak	IRRM	
Current		•
Conducting State Maximums		
$(T_{J} = 125^{\circ}C)$	Symbol	T727
RMS forward current, A	I _{T(rms)}	
Ave. forward current, A	IT(av)	625
One-half cycle surge current③, A	^I TSM	400
$1^2$ t for fusing (for times $\geq 8.3$ ms)		7000
A ² sec.	l2t	205,000
Forward voltage drop at I TM = 3000A and T _J = 25°C, V	$v_{TM}$	2.50
Min. repetitive di/dt A/μsec ① ④ ⑥	di/dt	300
Switching		
$(T_J = 25^{\circ}C)$	Symbol	
Max. turn-off time, IT = 400A TJ = 125°C, diR/dt = 25 A/ $\mu$ sec, reapplied dv/dt = 20V/ $\mu$ sec linear to 0.8 $\forall$ DRM, $\mu$ sec		
$T_J = 125^{\circ}C$ , dig/dt = 25		
20V/μsec linear to 0.8 V _{DRM} μ sec · · ·	t q	10 to 60
Typ. turn-on-time, $IT = 1000A$		3.0
V _D = 300V ④, μsec	ton	3.0
Min. critical dv/dt, exponential to $V_{DRM}$ . $T_{J} = 125^{\circ}C$ , $V/\mu sec@$	dv/dt	300
Min. di/dt non-repetitive, A/µsec ① ② ⑤ · · · · · · · · ·	di/dt	800
	!	ì
Gate Maximum Parameters		
$(T_{J} = 25^{\circ}C)$	Symbol	
Gate current to trigger at $V_D = 12V$ , mA	I _{GT}	150
Gate voltage to trigger at $V_D = 12V$ , $V \dots$	V _{GT}	3
Non-triggering gate voltage, T _J = 125°C,		0.15
and rated V _{DRM} , V	VGDM	0.15
Peak forward gate current, A	GTM	4
Peak gate power Watts	VGRM	5
Peak gate power, Watts	P _{GM} P _{G(av)}	16 3
T1	-(,	
Thermal and Mechanical	Symbol	
Min May and junction town 80		40.45 4.65
Min., Max. oper. junction temp., °C Min., Max. storage temp., °C	Tj	-40 to +125
Man, wax. storage temp., C	Tstg	-40  to  +150



Applies for zero or negative gate bias.

Max. mounting torque, in lb. ① . . . . . . .

Max. Thermal resistance ① Double side cooled Junction to case, °C/Watt

Case to sink, lubricated, °C/Watt . . . . .

- ① Per JEDEC RS-397, 5.2.2.1.
- With recommended gate drive.
- Higher dv/dt ratings available, consult factory.
- 1 Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.







## Fast Switching SCR T9GH

800 - 900 A Avg. Up to 2200 Volts 40 — 100 μs



Complete	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
φD	2.850	2.900	72.39	73.66
$\phi D_1$	1.845	1.855	46.86	47.12
$\phi D_2$	2.560	2.640	65.02	67.06
Н	1.020	1.060	25.91	26.92
$\phi$ J	.135	.145	3.43	3.68
J,	.075	.090	1.91	2.29
L	11.50	12.50	292.10	317.50
N	.050		1.27	

Creep Distance—1.00 in. min. (25.40 mm). Strike Distance—1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish—Nickel Plate. Approx. Weight—2 lb. (908 g).

1. Dimension "H" is a clamped dimension.



**T9G** Outline

#### Features:

- Midway, di/namic Gate Structure
- Hard Commutation Turn-Off
- Forward Blocking Capabilities to 2200V
- Low Switching Losses at High Frequency
- Soft Commutation (Feedback Diode) Testing Available

#### Applications:

- Induction Heating
- Transportation
- Inverters

Note: High frequency Sine and Square wave data available, consult factory.

#### **Ordering Information**

Туре	Vol	tage	Cu	Current		n-off	Gate o	urrent	Leads	
Code	V _{DRM} and V _{RRM} <b>∗</b> (V)	Code	I _{T(av)} (A)	Code	tq (µsec)	Code	I _{GT} (ma)	Code	Case	Code
T9GH	600	06	800	08	40	4	300	2	T9G	DH
	800	08			50	3				
	1000	10	900	09	60	2				
	1200	12			70	C				
	1400	14			80	1				
	1500	15			100	K				
	1600	16		ľ						
	1700	17								
	1800	18								
	1900	19								
	2000	20								
	1	March 3007038 Territory 1 1779								
	2100	21								
	2200	22								

#### Example

Obtain optimum device performance for your application by selecting proper order code.

Type T9GH rated at 800A average with VDRM = 1800V

IGT = 300 ma, and standard 12 inch leads -- order as:

	Ту	pe		Vol	tage	Cur	rent	Turn Off	Gate Current	Lea	ads
T	9	G	Н	1	8	0	8	3	2	D	Н

^{*}for lower voltages consult factory

## 800 - 900 A Avg. Up to 2200 Volts 40 — $100~\mu s$

### **Fast Switching** SCR T9GH



Voltage _②														
Blocking State Maximums (T _J = 125°C)	Symbol													
Repetitive peak forward blocking voltage , V	$v_{DRM}$	600	800	1000	1200	1400	1500	1600	1700	1800	1900	2000	2100	2200
Repetitive peak reverse voltage, V  Non-repetitive transient peak reverse voltage,	VRRM	600	800	1000	1200	1400	1500	1600	1700	1800	1900	2000	2100	2200
t ≤ 5.0 msec, V	[∨] RSM	700	900	1100	1300	1500	1600	1700	1800	1900	2000	2100	2200	2300
Forward leakage current, mA peak	IDRM	-						60						
Reverse leakage current, mA peak	RRM	4						60						_

Conducting State Maximums (T _J = 125°C)	Symbol	T9GH08	T9GH09
RMS forward current, A	T(rms)   T(av)   TSM   TSM   TSM   TSM   2t   2t	1250 800 10,000 7,500 6,200 416,000 90 x 10 ⁶ 2.95	1400 900 13,000 9,750 8,000 700,000 90 x 10°
Min. Repetitive di/dt A/usec. ① ①	⑥ di/dt	300	400

Gate (T _J =25°C)	Symbol	Min	Тур	Max
Gate current to trigger at VD=12V, mA	IGT		200	300
Gate voltage to trigger at Vp=12V, V	$V_{GT}$	l	1.5	3.0
Non-triggering gate voltage, T _J =125°C, and rated V _{DRM} , V	V _{GDM}			.15
Non-triggering Gate Current at VD=12V, mA	IGNT		20	
Peak forward gate current, A	¹ GTM	i		10
Peak reverse gate voltage, V	VGRM	ı		5
Peak gate power, Watts	PGM	1		60
Average gate power, Watts	P _G (av)			3

Symbol	Min	Тур	Max
	1		
	j		
tq	40		100
	1		-
ton	l	3.0	
td	1	1.5	
	1		
dv/dt	400		
	1		
di/dt	l		1000
1L	l	500	1000
	ļ		
' IH	100	300	800
	ton td dv/dt di/dt	tq 40 ton td dv/dt 400 di/dt lL	tq 40 ton 3.0 td 1.5 dv/dt 400 di/dt lL 500

Thermal and Mechanical Sym	nbol   Min	Тур	Max
Oper. junction temp., °C	40		125
Storage temp., °C T _{stq}	40 40		150
Mounting force, lb.(1)	5000		5500
Thermal resistance with double sided cooling(1)			
Junction to case, °C/Watt $\ldots$ R $ heta$ J $ heta$	~ ,		.023
Case to sink, lubricated, °C/Watt $R\theta C$	s .006		.0075





- ① Consult recommended mounting procedures.
- Applies for zero or negative gate bias.
   Per JEDEC RS-397, 5.2.2.1.

- With recommended gate drive.
   Higher dv/dt ratings available, consult factory.
- Per JEDEC standard RS-397, 5.2.2.6.
- ① For operation with antiparallel diode, consult factory.



## Reverse Blocking Diode Thyristor RBDT T40R

#### 22 A Avg. Up to 1000 Volts



Conforms to DO-5 Outline

#### **Features**

- di/dt of 2000 to 4000 A/us
- compression Bonded Encapsulation
- All Diffused Design
- Low VTM
- JEDEC DO-5 Package

#### Applications:

- Radar Modulators
- Laser Pulsers

Symbol	Inches		Millime	eters
Syllibol	Min.	Max.	Min.	Max.
A		.450		11.43
В		.080		2.30
φD		.667		16.94
E	.667	.687	16.94	17.45
F	.060	.200	1.52	5.08
J		1.000		25.40
M		.375		9.53
N	.422	.453	10.72	11.51
φT	.140	.175	3.56	4.45
Z	.156		3.96	
φW	¼-28 U	JNF-2A		

Glass To Metal Seal-

Creepage & Strike Distance = .09 in. min. (2.46 mm)

(In accordance with NEMA standards.)

Finish—Nickel Plate.

Approx. Weight -. 6 oz (18g)

#### NOTES:

- Complete threads to extend to within 2½ threads of seating plane.
- Angular orientation of this terminal is undefined.
- ¼-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 P1.



#### **Application**

The reverse blocking diode thyristor is a two-terminal, four-layer PNPN switch. In the forward direction, the device will initially block voltage to its rated  $V_{\rm DRM}$ . However, upon application of a trigger voltage, it switches to a low impedance state where it remains until the anode current is reduced below the holding current.

The T40R employs an all diffused design and is packaged in the standard DO-5 outline case. The exclusive Westinghouse CBE (compression bonded encapsulation) construction technique is employed to eliminate solder joints and, thereby, failures caused by thermal fatique.

These devices are ideal for pulse work because of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers are two prime examples of the kinds of applications particularly suited to the Westinghouse T40R.

#### **Ordering Information**

Туре	Voltage		Current		Turn-o	ff	di/dt		Leads	
Code	V _{DRM} (V)	Code	IT(av) (A) *	Gode	tq (#sec)	Code	di/dt (A/µsec)	Code	Case	Code
T40R	600	06	22	22	50 typ.	0	2000	2	DO-5	00
	800 1000	08 10			.,,,,		3000 4000	3 4		

^{*}Average current rating assigned for ordering information only.

#### Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T40R rated at 22A average with  $V_{DRM} = 800V$ , and di/dt = 2000A/us – order as.

Турє				Voltage	е	Currer	t	Turn Off	di/dt	Lead	ds
Т	4	0	R	0	8	2	2	0	2	0	0

# **THYRISTO**

### 22 A Avg. Up to 1000 Volts

## Reverse Blocking Diode Thyristor RBDT T40R



1/-	14	_	_	_
vo	ıτ	а	œ	е

Blocking State	Symbol	T, (°C)	Min.	Тур.	Max.	Units
Repetitive Peak Forward Blocking Voltage	V _{DRM}	25 to 125	600 800 1000			V V V
Repetitive Peak Forward Leakage Current at V _{DRM}	IDRM	25 125		300 3	500 5	μa ma
Holding Current	I _H	25		15	100	ma

#### Current

Conducting State	Symbol	T, (°C)	Min.	Тур.	Max.	Units
RMS Forward Current at $T_c=40^{\circ}C$ ① Average Forward Current at $T_c=40^{\circ}C$ ① One-half Cycle Surge Current at $T_c=40^{\circ}C$ ① 124 For Fusing (For Times $\geq 8.3$ ms) Forward Voltage Drop at $I_{TM}=1000A$ , Pulse Width $=300\mu s$ , Duty Cycle $=2\%$	_{T (rms)}   _{T (av)}   _{TSM}   ² t 	125 125 125 125 125		4	35 22 300 370 6	A A A ² sec. V

#### **Switching**

	Symbol	T _J (°C)	Min.	Тур.	Max.	Units
Rate of Rise of Current, Sine Wave ①						
at Pulse Width/2 = 0.5 \mu s to 800A	di/dt	25	2000			A/μs
at Pulse Width/2 = $0.5\mu$ s to 1200A	di/dt	25	3000			A/μs
at Pulse Width/2 = 0.25 \mus to 800A	di/dt	25	4000			A/μs
Dynamic Forward Voltage Drop	V _{TM(DYN)}	25		20	40	V
at I _{TM} = 1000A Sine Wave,	(51)					
Pulse Width/2 = $4\mu$ s, Duty Cycle = .25%	,					
Pulse Trigger Voltage	V _T	25 to 125	$V_{DRM} + 50$	1050	1500	٧
at dv/dt ≥ 5000 V/µs, Pulse Width ≥ 200 ns	•					
Pulse Trigger Current	l _T	25 to 125		10		Α
at V _T (Circuit dependent value)	•					
Trigger Response Time	t _{on}	25		100	200	ns
at V _T , I _T for 90% to 10% of V _{DRM}						
Turn-Off Time	t _a	25		50		μs
at $I_{TM} = 300A$ Sine Wave, Pulse Width = $8\mu$ s	•					
$dv/dt = 20 V/\mu s$ to 600V		100		100		μs
Rate of Change of Voltage	dv/dt	25	200	400		V/μs
Exponential to V _{DRM}	•	100	20	100		V/μs

#### Thermal and Mechanical

	Symbol	Min.	Тур.	Мах.	Units
Operating Junction Temperature Storage Temperature Mounting Torque ① Thermal Resistance ①	T _J T _{stg} .	-40 -40		125 150 30	*C *C in.lb.
Junction to Case Case to Sink, Lubricated	R _{euc} Recs			1.25 .25	*C/W

#### ① At 60 Hertz.

 $[\]ensuremath{\mathfrak{D}} \ensuremath{\mathtt{Consult}} \ensuremath{\mathtt{recommended}} \ensuremath{\mathtt{mounting}} \ensuremath{\mathtt{procedures}}.$ 



#### **Reverse Blocking Diode Thyristor RBDT** T62R

### 125 A. Avg. Up to 1000 Volts



Symbol	Inches		Millimeters			
Зуппоог	Min.	Max.	Min.	Max.		
φD	1.610	1.650	40.89	41.91		
φD,	.745	.755	18.92	19.18		
$\phi D_2$	1.420	1.460	36.07	37.08		
Н	.500	.560	12.70	14.22		
$\phi$ J	.135	.145	3.43	3.68		
J,	.072	.082	1.83	2.08		
N	.030		.76			

Creep Distance—.49 in. min. (12.60 mm). Strike Distance—.52 in. min. (13.21 mm). (In accordance with NEMA standards).

Finish-Nickel Plate.

Approx. Weight –2.3 oz (66g).

1. Dimension "H" is clamped dimension.



#### T62R Outline Features:

- di/dt of 2000 to 3000 A/µsec
- All diffused Design
- Low VTM
- High peak switching currents

#### Application

The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block voltage to its rated VDRM. However, upon application of a trigger voltage, it switches to a low impedance state where it remains until the anode current is reduced below the holding current.

These devices are ideal for pulse work because of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers are two prime examples of the kinds of applications particularly suited to the Westinghouse T62R.

#### **Ordering Information**

Туре	Type Voltage		Current		Turn-c	ff	di/dt		Leads	
Code	V _{DRM} (V)	Code	IT(av)* (A)	Code	tq (μsec)	Code	di/dt A/μsec	Code	Case	Code
T62R	600	06	125	13	50 typ.	•	2000	2	R62	90
	800 1000	08 10			.,,		3000	3		

*Average current rating assigned for ordering information only. Example

Obtain optimum device performance for your application by selecting proper Order Code.

Type T62R rated at 125 A average, with VDRM = 800V, order as:

Туре	5 2			Voltag	je	Current		Turn Off	di/dt	Lead	6
T	6	2	R	0	8	1	3	0	2	0	0

# THYRISTOR

# 125 A. Avg. Up to 1000 Volts

# Reverse Blocking Diode Thyristor RBDT T62R



#### Voltage

Blocking State	Symbol	T, (°C)	Min.	Тур.	Max.	Units
Repetitive Peak Forward Blocking Voltage	VDRM	25 to 125	600 800 1000			<b>V V V</b>
Repetitive Peak Reverse Blocking Voltage Repetitive Peak Forward Leakage Current at VDRM	VRRM IDRM	25 to 175 25 125	100	7 15	5 10	V ma ma
Repetitive Peak Reverse Leakage Current	IRRM	25		15	10	ma
VRRM Holding Current	lH	125 25	3	25 100	15 15	ma ma

#### Current

Conducting State	Symbol	T _J (°C)	Max.	Units
Peak Forward Pulse Current ① RMS Forward Current One-half Cycle Surge Current (For Times≤8.3 ms) I²t For Fusing (For Times≤8.3 ms) I²t of package (For Times = 8.3 ms)	ITM IT(RMS) ITSM I ² t I ² t	125 125 125 125 125 125	2500 200 3000 37,500 20 x 10°	A A A A ² sec. A ² sec.

#### **Switching**

	Symbol	T _J (°C)	Min.	Тур.	Max.	Units
Current Rate of Rise						Atun
Code 2, 2000 A @ 1 µsec	di/dt di/dt	25 25	2000 3000			A/μs A/μs
Code 3, 2000 A @ .667 µsec Energy per Pulse	W.S./	125	3000		.30	W.S/Pulse
at ITM = 2500A Square Wave Pulse Width = 3 µs	Pulse	25			.19	W.S./Puls
Pulse Trigger Voltage at dv/dt ≥ 5000 V/µs, Pulse Width ≥ 200 ns	Vī	25 to 125	VDRM + 150	1050	1600	V
Pulse Trigger Current at VT (Circuit dependent value)	lτ	25 to 125		70		Α
Peak Dynamic Forward Voltage Drop	VTM (DYN)	25		8	10	V
at ITM = 2500A Turn-Off Time	ta .	25	50	100	200	μs
at ITM = 2500A Square Wave Pulse Width = 3 µs, dv/dt = 20 V/µs to 600V	tq	100	50	250	200	μs
Critical Rate of Change of Voltage Exponential to VDRM	dv/dt	125	20	100		V/μs

#### Thermal and Mechanical

	Symbol	Min.	Max.	Units
Operating Junction Temperature Storage Temperature Mounting Force ①	Tj Tstg.	-40 -40 1000	125 150 1400	°C °C lb.
Thermal Resistance, double-sided cooling,  Junction to Case Case to Sink, Lubricated	Rejc Recs		.095 .02	°C/W

¹⁾ This value is for a 3 µsec, 400 Hz pulse, 2500 A peak. Consult factory for other pulse ratings.

② Consult recommended mounting procedures.



### **TRANSISTORS**

#### INTRODUCTION

(w) offers a wide range of power transistors designed to match the equipment manufacturer's technical and economic requirements. The designer can choose from various processes, ratings, and package styles to optimize an application: general purpose single-diffused types for economical ruggedness; high S.O.A. alloy types for the ultimate in reliability; and high power, fast switching tripled-diffused types for "state-of-the-art" voltage and power capability.

For linear applications (amplifiers and regulators), general purpose transistors in TO-66 and TO-3 packages offer the most "watts per dollar" value. Excellent Safe Operating Area (SOA) make these types ideal for inductive loads such as DC motor controls or 60 and 400 hertz inverters.

High S.O.A. alloy process transistors from have been used in numerous critical aerospace and defense programs. Alloy construction, hard solder/moly bonding, and hermetic,copper stud, cases have generated a record of superb performance and reliability. For inductive load switching, the forward and reverse bias Safe Operating Areas (SOA) of these devices make alloy the clear choice over other processes.

The newest addition to the **\mathbb{T} transistor line is the super-powered family of triple-diffused switching types. Up to 500 volts of sustaining voltage capability is coupled with a gain rating at 50 amperes; but brute power is not the only feature of the D60T family — switching times under a microsecond and Compression Bonded Encapsulation (CBE) open a new area of application for designers of high speed inverters, switching regulators, AC motor drives and VLF radio transmitters.

Complete test facilities are available for matching, special selection, or high reliability screening. offers a Lifetime Guarantee on all transistors bearing this symbol. Specify Westinghouse Power Transistors.



#### TRANSISTOR PRODUCT INDEX

Type Number	Page
151	T15
152	T15
153	T17
154	T17
163	T23
164	T23
2N1015, A,B,C,D	T19
2N1016, A,B,C,D	T19
2N2226-29	T25
2N2230-33	T25
2N2757-61	T29
2N2763-66	T29
2N2769-72	T29
2N2775-78	T29
2N3054 2N3055 2N3429-32 2N3441 2N3442 2N3470-73 2N3474-77 2N3771 2N3772 2N3773	T5 T7 T21 T5 T7 T27 T27 T11 T11
2N6254	T9
2N6262	T9
D60T	T33
D62T	T33

### TRANSISTOR CAPABILITY GRAPHS



# GENERAL PURPOSE NPN POWER TRANSISTORS

.5 — 15 Amperes (Gain Rated)



# HIGH S.O.A. & HIGH POWER SWITCHING NPN POWER TRANSISTORS





# TRANSISTOR SELECTOR GUIDE

#### **GENERAL PURPOSE NPN POWER TRANSISTORS**

4 — 30 Amperes

JEDEC TYPE	2N3441	2N3054	2N3442	2N6262	2N3055	2N6254	2N3773	2N3772	2N3771
PEAK CURRENT	4 .	4	15	15	15	30	30	30	
PEAK CURRENT	4	4	15	15	15	15	30	30	30
GAIN RATED CURRENT	.5	.5	3	3	4	5	8	10	15
VOLTAGE 40 60 80 140 150	2NS441	. 2N3054	283442	2N6262	2N3055	2N6254	2N3773	2N3772	2N3771
CUTOFF FREQUENCY	1 MHz	1 MHz	1 MHz	1 MHz	1 MHz	1 MHz	1 MHz	1 MHz	1 MHz
PACKAGE TYPE	TO-66	TO-66	TO-3	TO-3	TO-3	TO-3	TO-3	TO-3	TO:3
PAGE NUMBER	75	T5	77	Т9	77	Т9	TII	T11	TII



# HIGH S.O.A. NPN POWER TRANSISTORS 6 — 20 Amperes



JEDEC/TYPE	151	153	162	154	2N1015. A.B.C.D	2N1016, A,B,C,D	2N3429-32	163	184
PEAK CURRENT	8	7.5	<b>4</b> 6	7.5	7.5	7.5	7.5	20	20
GAIN RATED CURRENT	1.5	1.5	1.5	1.5	2	5	5	5	5
VOLTAGE 30					2N1015	2N1016			
40	151-04	153-04	152-04	154-04				163-04	164-04
50	151-05	153-05	152-06	154-05	2N1015A	2N1016A	2N3429	163-05	164-05
60	151-06	153-06	152-06	154-06				163-06	164-06
70	151-07	153-07	152-07	154-07				163-07	164-07
80	161-08	153-08	152-08	154-08				163-08	164-08
90	151-09	153-09	152-09	154-09				163-09	164-09
100	151-10	153-10	152-10	154-10	2N1015B	2N1016B	2N3430	163-10	164-10
120	161-12	153-12	152-12	154-12				163-12	164-12
140	151-14	153-14	152-14	154-14				163-14	164-14
150					2N1015C	2N1016C	2N3431		
160	151-16	153-16	152-16	154-16				163-16	164-16
180	151-18	153-18	152-18	154-18				163-18	164-18
200	151-20	153-20	152-20	154-20	2N1015D	2N1016D	2N3432	163-20	164-20
220	151-22	153-22	152-22	154-22					
240	151-24	153-24	152-24	154-24					
250									
CUTOFF FREQUENCY	5 MHz	.5 MHz	8 MHz	.5 MHz	5 MHz	.5 MHz	5 MHz	.5 MHz	.5 MHz
PACKAGE TYPE	TO-82	MT-52	10-82	MT-52	10-82	TO-82	MT-52	MT-33	MT-33
PAGE NUMBER	T15	T17	T16	T17	T19	T19	T21	T23	T23



# TRANSISTOR SELECTOR GUIDE





## HIGH S.O.A. and HIGH POWER SWITCHING NPN POWER TRANSISTORS

10 — 200 Amperes







	*		•						** /
JEDEC/ TYPE	2N2Z26-29	2N3470-73	3 <b>2N2230-33</b>	2N3474-77	7 2N2757-61	2N2763-66	2N2769-72	2N2775-78	DEOT
DEAK CURRENT	••	10	**	40	20			20	200
PEAK CURRENT	10	10	10	10	30	30	30	30	200
GAIN RATED CURRENT	10	10	10	10	10	15	20	25	50
VOLTAGE 50	2N2226	2N3470	2N2230	2N3474	2N2757	2N2763	2N2769	2N2775	
100	2N2227	2N3471	2N2231	2N3475	2N2758	2N2764	2N2770	2N2776	
150	2N2228	2N3472	2N2232	2N3476	2N2759	<b>2N2765</b>	2N2771	2N2777	
200	2N2229	2N3473	2N2233	2N3477	2N2760	2N2766	2N2772	2N2778	
250					2N2761				
450									D60T4550
CUTOFF FREQUENCY	.5 MHz	.5 MHz	5MH2	.5MHz	5MHz	.5 MHz	.5 MHz	.5 MHz	12 MHz
PACKAGE TYPE	TO-82	MT-33	TO-82	MT-33	MT-33	MT-33	MT-33	MT-33	D60
FACRAGE TIFE	10.07	IVI 1-33	10.04	WII-33	WII+33	IVI 1-33	W11-33	IVI I -33	UOU
PAGE NUMBER	T25	T27	T25	T27	T29	T29	T29	T29	T33

^{*}Darlington

^{**}Also Available in Disc Package — D62T



## **NPN** Power **TRANSISTORS** 2N3054/2N3441

# 4 Amperes 90/120 Volts



	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
A φb φD	.250 .028 .470	.340 .034 .500	6.35 .71 11.94	8.64 .86 12.70
e e, F	.190 .095 .050	.210 .105 .075	4.83 2.41 1.27	5.33 2.67 1.91
L φP q	.360 .142 .950	.152 .970	9.14 3.61 24.13	3.86 24.64
R ₁ R ₂ S	.570	.350 .145 .590	14.48	8.89 3.68 14.99

Finish—Nickel Plate. Approx. Weight—.25 oz. (7 g).



#### Conforms to TO-66 Outline

- No forward bias secondary breakdown up to full voltage rating
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance
- Hermetically sealed
  25 watt dissipation
- 100% Power tested
- Lifetime Guarantee

#### Applications:

- Series and shunt regulators
- High-fidelity amplifiers
  Power switching circuits
- Solenoid drivers

Test	Symbol	2N3054	2N3441
Collector Voltage	VCEO (sus)	55	140

Maximum Ratings and Characteristics Fc = 25°C unless specified	Symbol	JEDEC 2N3054	JEDEC 2N3441	Units
* Operating and storage temperature  * Collector-emitter sustaining voltage  * collector-base voltage  * collector-emitter voltage V BE = - 1.5V.  * Continous collector current	VCEO (sus) V CBO V EBO V/CEV I C	—65 To 200 55 90 7 90 4	—65 To 200 140 160 7 160 3	°C Volts Volts Volts Volts Amps
* Continous base current	lв	2	2	Amps
* Thermal resistance	R _{OJC}	6	7	°C/W
* Power dissipation	Рт	25	25	Watts

^{*}JEDC registered parameters.

## 4 Amperes 90/120 Volts

# NPN Power TRANSISTORS 2N3054/2N3441



## Electrical Specifications T c = 25°C unless otherwise specified

		Test Conditions	2N3	2N3054		2N3441	
Test	Symbol		Min	Max	Min Max		Units
* D.C. Current Gain	h [.] FE	V ce = 4V I c = 0.5A	25	150	25	100	l
* Collector-Emitter Saturation Voltage	V CE (sat)	Ic = 0.5A B = 0.05A		1.0		.1.0	٧
* Base-Emitter Saturation Voltage	V.BE	Ic = 0.5A V CE = 4.0V		1.7		1.7	٧
* Emitter Cutoff Current	I EBO	V _{EB} = 7.0V		1.0		1.0	mA
Turn-On Time	t on	Ic = 0.5A		4		4	μsec
Storage Time	ts	V cc = 30V		2		2	μsec
Fall Time	ţf	IB(on) = I B(off) = 0.05A		4		4	μsec
Output Capacitance	Сюь	V св = 10V, f = 1МН Z		375		375	pF
Gain-Bandwidth	F _T .	V ce = 10V, I c = 0.2A		800		800	KHz
Beta Cutoff Frequency	f hfe	Vcè = 4V, I c = .1A		25		25	KHz
Second Breakdown Collector Current	ls/B	V CE = 60V V CE = 120V		.42		.21	À

#### **Typical Characteristics**









## **NPN** Power **TRANSISTORS** 2N3055/2N3442

# 10/15 Ampere 60/140 Volts



C. mala al	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
Α	.250	.450	6.35	11.43
$\phi$ b	.038	.043	.97	1.09
$\phi D$		.875		22.23
е	.420	.440	10.67	11.18
e ₁	.205	.225	5.21	5.72
F		.135		3.43
L	.312		7.92	
$\phi P$	.151	.161	3.84	4.09
<u>q</u>	1.177	1.197	29.90	30.40
R ₁		.525		13.34
R ₂		.188		4.78
S	.655	.675	16.64	17.15

Finish—Nickel Plate. Approx. Weight—.58 oz. (16.5 g).



#### Conforms to TO-3 Outline

#### Features:

- High reverse bias S.O.A. for inductive loads
- Low thermal resistance
- Hermetically sealed TO-3 type package
- 117 watt dissipation
- 100% Power tested
- Lifetime guarantee

#### **Applications**

- Series and shunt regulators
- High-fidelity amplifiersPower switching circuits
- Solenoid drivers

#### **Voltage Matrix**

Tc = 25°C

Test	Symbol	2N3055	2N3442
Collector Voltage	VCEO (sus)	60	140

Maximum Ratings and Characteristics Tc=25°C unless specified	Symbol	2N3055	2N3442	Units
* Operating and storage temperature		— 65 TO 200	-65 TO 200	°C
* Collector-emitter sustaining voltage	VCEO (sus)	60	140	Volts
* Collector-base voltage	Vсво	100	160	Volts
* Emitter-base voltage	VEBO	7	7	Volts
Collector-emitter voltage VBE = -1.5V	VCEV	100	160	Volts
* Continuous collector current	Ic	15	10	Amperes
* Continuous base current	l _B	7	7	Amperes
Linear power derating factor from Tc =25°C		.67	.67	w/°c
* Thermal resistance	Rejc	1.5	1.5	°C/W
* Power dissipation	₽⊤	115	117	Watts
Power dissipation Tc = 100°C	P⊤	67	67	Watts

^{*} JEDEC Registered Parameters

# 10/15 Ampere 60/140 Volts

# NPN Power TRANSISTORS 2N3055/2N3442



			DC COLLECTOR VOLTAGE	D EMIT OR B	TER ASE	CU	C R—		LIM	ITS			
	CHARACTERISTIC	SYMBOL	V	VOLT			Α	2N3055		2N3442		UNITS	
			V⁄CE	VEB	VBE	^l C	I _B	MIN.	MAX.	MIN.	MAX.		
*	Collector-Cutoff Curent: With base open	l CEO	30 120				0 0		0.7 —		10		
	With base-emitter junction reverse-biased	¹ CEV	140 100		-1.5 -1 5				<del></del> 5		_	mA	
	At T _c = 150°C	I _{CEV}	140 100		-1.5 -1.5				30		30		
*	Emitter-Cutoff Current	I EBO		7	-				5		5	mA	
*	DC Forward Current Transfer Ratio ①	h FE	4			3 4		<u> </u>	— 70	20 —	70 —		
* [	Base-to-Emitter Voltage ①	v _{BE}	4			3 4			 1.8		1.7	٧	
*	Collector-to-Emitter Saturation Voltage ①	V CE (sat)				4 3	0.4 0.3		1.1		1.0	v	
. [	Gain-Bandwidth Product	fΤ	10			1		800			800	kHz	
	Forward-Bias Second Break- down Collector Current	l _{S/b}	60 78			1.95 1.5		1			<u> </u>	sec.	

#### * JEDEC Registered Parameters

¹⁾ Pulse Test 300 microsecond, 2% Duty Cycle







### NPN Power TRANSISTORS 2N6254/2N6262

# 15 Amperes 80/150 Volts



	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
A	.250	.450	6.35	11.43
$\phi$ b	.038	.043	.97	1.09
$\phi D$		.875		22.23
e	.420	.440	10.67	11.18
e,	.205	.225	5.21	5.72
F [']		.135		3.43
L	.312		7.92	
$\phi P$	.151	.161	3.84	4.09
q	1.177	1.197	29.90	30.40
R,		.525		13.34
R ₂		.188		4.78
S	.655	.675	16.64	17.15

Finish—Nickel Plate.

Approx. Weight-...58 oz. (16.5 g).



#### Conforms to TO-3 Outline

#### **Features**

- No forward bias secondary breakdown to 80 Volts
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance
- Hermetically sealed TO-3 type package
- 150 watt dissipation
- 100% Power tested
- Lifetime Guarantee

#### **Applications**

- High Power Switching
- Amplifiers
- Servo Systems
- Regulators
- Modulators

#### Voltage Matrix

	•		
Test	Symbol	2N6254	2N6262
Collector Voltage	VCEO (sus)	80	150

Tc = 25°C

## Maximum Ratings and Characteristics Tc = 25°C unless specified

	Symbol	2N6254	2N6262	Units
* Operating and storage temperature		—65 То 200	—65 To 200	°C
* Collector-emitter sustaining voltage	V CEO (sus)	80	150	Volts
* Collector-base voltage	Vсво	100	170	Volts
* Emitter-base voltage	VEBO	7	7	Volts
* collector-emitter voltage V BE = - 1.5.	V CEV	90	170	Volts
* Continuous collector current	l c	15	15	Amper <b>s</b>
* Continous base current	Iв	7	7	Amper <b>s</b>
* Linear power derating factor from Tc = 25°C		.855	.855	W/°C
* Thermal resistance	Rejc	1.17	1.17	°C/W
* Power dissipation	Рт	150	150	Watts
Power dissipation T c = 100°C	Рт	86	86	Watts

^{*} JEDEC Registered Parameters

# NPN Power TRANSISTORS 2N6254/2N6262



**ELECTRICAL CHARACTERIESTICS** 

(T c) = 25°C

CHARACTERISTIC	SYMBOL	DC COLLECTOR VOLTAGE V	EMI OR I VOL	OC TTER BASE TAGE	D CU RE	IR- NT	LIMITS 2N6254		2N6	3262	UNITS
		<b>V</b> CE	VEB	Vве	lc	lв	MIN.	MAX.	MIN.	MAX.	
* Collector-Cutoff Current: with base open	l ceo	60 110				0 0		1.0		1.0	
With base-emitter junction reverse-biased	Icev	100 150		-1.5 -1.5				0.5		0.1	mA
At Tc = 150°C	ICEV	30 150		-1.5 -1.5				5.0		2.0	
Emitter-Cutoff Current	Ієво		7					0.5		0.2	mA
* DC Forward Current Transfer Ratio	hre	2 2			3 5		20	70	20	70	
* Base-to-Emitter Voltage	Vве	2			5 3			1.5		1.0	
*Collector-to-Emitter Saturation Voltage	VCE (sat)				5 3	0.5 0.3		0.5		0.5	V
Gain-Bandwidth Product	fτ	4			1		800			800	kHz
Forward-Bias Second Break- down Collector Current	S/b	80 100			1.92 1.5			1		1	s

^{*} JEDEC Registered Parameters.







### **NPN Power TRANSISTORS** 2N3771/2N3772/2N3773

# 16-30 Amperes 40-140 Volts



C	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
A φb	.250 .038	.450 .043	6.35 .97	11.43 1.09
$\phi D$		.875		22.23
e e, F	.420 .205	.440 .225 .135	10.67 5.21	11.18 5.72 3.43
L φP q	.312 .151 1.177	.161 1.197	7.92 3.84 29.90	4.09 30.40
R, R ₂ S	.655	.525 .188 .675	16.64	13.34 4.78 17.15

Finish—Nickel Plate. Approx. Weight—.58 oz. (16.5 g).



### Conforms to TO-3 Outline

- No forward bias secondary breakdown to 100 volts D.C.
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance
- Hermetically sealed TO-3 type package
- 150 watt dissipation
- 100% Power tested
- Lifetime Guarantee

#### Applications:

- · Series and shunt regulators
- High-fidelity amplifiers
- Power switching circuits
- Solenoid drivers

Test	Symbol	2N3771	2N3772	2N3773
Collector Voltage	VCEO (sus)	40	6Ó	140

Maximum Ratings and Characteristics c=25°C unless specified	Symbol	2N3771	2N3772	2N3773	Units
Operating and storage temperature		*-65 to 200	*-65 to 200	*-65 to 200	°C
Collector-emitter sustaining voltage	V _{CEO(sus)}	*40	*60	*140	Volts
Collector-base voltage	Vcso	*50	*100	*160	Volts
Emitter-base voltage	V _{EBO}	*5	•7	*7	Volts
Collector-emitter voltage $V_{\text{BE}} = -1.5 V$	·V _{CEV}	*50	*100	*160	Volts
Continuous collector current	Ic	*30	*20	*16	Amperes
Continuous base current	I _E	*7.5	*5	*4	Amperes
Linear power derating factor from $T_c=25^{\circ}\text{C}$		*.855	*.855	*.855	w/°c
Thermal resistance	Rejc	1.17	1.17	1.17	°C/W
Power dissipation	Pr	*150	*150	*150	Watts
Power dissipation $T_c = 100^{\circ}C$	Pτ	86	86	86	Watts

^{^ ¤}egistered Parameters

# 16-30 Amperes 40-140 Volts

# NPN Power TRANSISTORS 2N3771/2N3772/2N3773



#### **ELECTRICAL CHARACTERISTICS**

(Tc) = 25°C

			TE	ST CO	NDITIO	NS					LIN	AITS			
Characteristic	Symbol	Colle Volt	C ector age /)	Em or E Volt	C itter 3ase tage, V)	(	DC Curren (A)	ıt	2N3	1771	2N:	3772	2N3	1773	Units
		Vсв	VCE	VEB	<b>V</b> BE	Ic		lв	Min.	Max.	Min.	Max.	Min.	Max.	
* DC Forward Current Transfer Ratio	HFE		4 4 4 4 4			30 20 16 15 10 8			5 — 15 —	11811	5 — — 15	1 1 1 6 1	5  15		
* Collector-Cutoff Current: With emitter open	Ісво	Rated VCEO								2*		5*		2	mA
With base-emitter junction reverse-biased	ICEV		50 100 140		- 1.5 - 1.5 - 1.5					<u>2</u>		5		<u>-</u> 2	mA
With base-emitter junction reverse-biased & Tc = 150°C	ICEV		30 30 140		- 1.5 - 1.5 - 1.5					10 —		10		— 10	mA
With base open	ICEO		30 50 120					0 0		10 —		10		10	mA
* Emitter-Cutoff Current	IEBO			5 7		0				5 —		<del></del> 5		 5	mA
* Base-to-Emitter Voltage	VBE		4 4 4			15 10 8				2.7 —		2.2		 2.2	٧
* Collector-to-Emitter Saturation Voltage	VCE (sat)					15 10 8		1.5 1 0.8		<u>-</u>		1.4		1.4	>
Second-Breakdown Collector Current With base forward-biased & 1—s, nonrepetitive pulse	ls/b		100 60 40							3.75		2.5		1.5	A
Second-Breakdown Energy With base reverse biased & L = 40 mH, RBE = 100	Es⁄b			- 1.5 - 4.0		5 2.5			500		500		— 125		mJ





#### **Typical Characteristics 2N3771**









#### **Typical Characteristics 2N3772**





## 16-30 Amperes 40-140 Volts

### NPN Power TRANSISTORS 2N3771/2N3772/2N3773



#### **Typical Characteristics 2N3772**





#### **Typical Characteristics 2N3773**











### **NPN Power** TRANSISTORS 151/152

# 6 Amperes 40—240 Volts



Conforms to MT-1 Outline

#### Features:

- Gold Alloy Process
- No forward bias secondary breakdown to 150 volts
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 175 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt VEBO
- Low VCE(sat)
- Lifetime Guarantee

Power dissipation Tc = 100°C

Complement	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
A	.500	.560	12.70	14.22
$\phi B$	.045	.060	1.14	1.52
d	.140	.170	3.56	4.32
$\phi D$	1.240	1.280	31.50	32.51
$\phi D$ ,	.730	.770	18.54	19.56
$\phi D_2$		1.125		28.58
е	.360	.400	9.14	10.16
e,	.180	.200	4.57	5.08
Н	.014	.025	.36	.64
j	.140	.170	3.56	4.32
K	.130	.190	3.30	4.83
L	.550	.590	13.97	14.99
N	.550	.590	13.97	14.99
q	.810	.850	20.57	21.59
Q	.105	.140	2.67	3.56
S	.480	.520	12.19	13.21
$\phiT$	.050	.070	1.27	1.78
$\phi W$	5∕16-24 l	JNF-2A		

Finish—Nickel Plate. Approx. Weight—.9 oz. (25 g).

- Complete threads to extend to within 2½ threads of seating plane.
- 2. Contour and angular orientation of
- terminals is undefined.
  3. Pitch diameter of 5/6-24 UNF-2A (coated) threads (ASA B1.1-1960).

#### Applications:

- High Power Switching
- Amplifiers
- Servo Systems
- Regulators
- Modulators

151 — Low Gain Series 152 — High Gain Series



#### **Maximum Ratings** Voltage

70

Туре		Vсво	VCEO
151-04	152-04	65	40
151-06	152-06	85	60
151-08	152-08	105	80
151-10	152-10	125	100
151-12	152-12	145	120
151-14	152-14	165	140
151-16	152-16	185	160
151-18	152-18	205	180
151-20	152-20	225	200
151-22	152-22	245	220
151-24	152-24	265	240

Watts

aximum Ratings and Characteristics = 25°C unless specified	Symbol	151 /152	Units
Operating and storage temperature		65 to 150	°C
Collector-emitter sustaining voltage	VCEO (sus)	40 to 240	Volts
Collector-base voltage	Vcво	VCEO (sus) + 25	Volts
Emitter-base voltage	VEBO	25	Volts
Continuous collector current	łc	6	Amps
Continuous base current	IB	3	Amps
Linear power derating factor from TC = 80°C		1.4	w/°c
Thermal resistance	Rejc	.71	°C/W
Power dissipation	PT	175	Watts
	1	I	I

## 6 Amperes 40—240 Volts

# NPN Power TRANSISTORS 151/152



#### **Electrical Characteristics**

T _C =25°C unless otherwise specified		Type 151		Type 1	Type 152	
	,	Min.	Max.	Min.	Max.	
Collector cut-off current at V _{CFX} =max. rating, V _{BF} =-1.5 Vdc, mAdc	I _{CEX}		10		10	
Collector cut-off current at V _{CEX} =max. rating, T _C =150°C, V _{BE} =-1.5 Vdc, mAdc	ICEX		20		20	
Emitter cut-off current at V _{EB} =25 Vdc, I _C =0, T _C =150°C, mAdc	I _{EBO}		20		20	
Turn-on time at V _{CC} =12 Vdc, I _C =1.5A, I _B =.4A, microseconds	ton	• • •	7			
Turn-on time at V _{CC} =12 Vdc, I _C =1.5A, I _B =.25A, microseconds	ton	• • •			7	
Turn-off time at $V_{CC}=12$ Vdc, $V_{BE}=-25$ Vdc, $I_{C}=1.5A$ , $I_{B}=4A$ , microseconds	t _{off}		14		• •	
Turn-off time at $V_{CC}=12$ Vdc, $V_{BE}=-25$ Vdc, $I_{C}=1.5$ A, $I_{B}=25$ A, microseconds	t _{off}			• • .	14	
Collector-emitter saturation voltage at I _C =1.5 Adc, I _B =0.25 Adc, Vdc	V _{CE(sat)}		1.30		1.25	
Base-emitter voltage at I _C =1.5 Adc, I _B =0.25 Adc, Vdc	V _{BE(sat)}		2.5		2.0	
Dc current gain at V _{CE} =4 Vdc, I _C =1.5 Adc	h _{FE}	11	••	18		
Collector-emitter sustaining voltage, base open, lc = 200ma	VCEO (sus)	See Vo	Itage Table	•		
(one second test), forward bias, Amperes	. Is/в		.68		.68	
Second breakdown energy, base reverse biased, L =250 mh,						
RB = 50 ohms, VBE = —6.0 volts, Ic = 2.0 Amperes, Joules		• • •	.50	• • •	.50	
Gain-bandwidth, VcE = 10 Volts, lc = 0.5 Amps, Kilohertz	ft	250	• • •	250	•••	

#### **Typical Characteristics**





Characteristics at TC = 25°C

#### Safe Operating Area





### **NPN** Power **TRANSISTORS** 153/154

# 7.5 amperes 40-240 Volts



0 1 1	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
A	.340	.406	8.64	10.31
$\phi D$	.400	.440	10.16	11.18
ė	. 160	.190	4.06	4.83
e,	.080	.095	2.03	2.41
e, E	.544	.562	13.82	14.27
F	.100	.140	2.54	3.56
J		.710		18.03
N	.422	.453	10.72	11.51
$\phi$ T	.040	.055	1.02	1.40
φW	¼-28 l	JNF-2A		

Finish—Nickel Plate.

Approx. Weight-.25 oz. (7 g).

- 1. Complete threads to extend to within
- 2% threads of sexting plane.
  Contour and angular orientation of terminals is undefined.
  Pitch dia. of %-28 UNF-2A (coated) threads (ASA B1.1-1960).



#### Conforms to MT-52 Outline

- Gold Alloy Process
- · No forward bias secondary breakdown to 150 volts
- High reverse bias S.O.A. for inductive loads
  Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt V_{EBO}
- Low VCE (sat)
- Lifetime Guarantee

#### **Applications**

- High Power SwitchingAmplifiers
- Servo Systems
- Regulators
- Modulators

153 - Low Gain Series 154 - High Gain Series

### **Maximum Ratings**

voitage			
Type		V _{СВО}	VCEO (sus)
153-04	154-04	65	40
153-06	154-06	85	60
153-08	154-08	105	80
153-10	154-10	125	100
153-12	154-12	145	120
153-12	154-12	165	140
			•
153-16	154-16	185	160
153-18	154-18	205	180
153-20	154-20	225	200
153-22	154-22	245	220
153-24	154-24	265	240

Maximum Ratings and Characteristics Tc = 25°C unless specified	Symbol	Type 153 154	Units
Operating and storage temperature		–65 To 175	°C
Collector-emitter sustaining voltage	VCEO (sus)	40 To 240	Volts
Collector-base voltage	Vсво	VCEO (sus) + 25	Volts
Emitter-base voltage	<b>V</b> EBO	25	Volts
Continuous collector current	lc	7.5	Amps
Continuous base current	lв	3.	Amps
Linear power derating factor from Tc = 25°C		1.33	W/°C
Thermal resistance	Rojc	.75	°C/W
Power dissipation	P⊤	200	Watts
Power dissipation Tc = 100°C	Р⊤	100	Watts
		•	

# 7.5 amperes 40-240 Volts

## NPN Power TRANSISTORS 153/154



#### **Electrical Characteristics**

Tc = 25°C unless otherwise specified

			All Types		
Test	Symbol	Test Conditions	Min.	Max.	Units
D.C. Current Gain (153 types)	hfE	VCE =4,1c = 1.5A	15	,	
D.C. Current Gain (154 types)	hfE	VCE = 4, Ic = 1.5 A	25		
Collector-Emitter Saturation Voltage (153)	VCE (sat)	Ic = 1.5A, Iв = 250 mA		13	٧
Collector-Emitter Saturation Voltage (154)	VCE (sat)	Ic = 1.5A, Iв = 250 mA		1.25	٧
Base-Emitter Saturation Voltage (153)	VBE (sat)	Ic = 1.5A, ls = 250 mA		2.5	V
Base-Emitter Saturation Voltage (154)	VBE (sat)	Ic = 1.5A, IB = 250 mA		2.0	٧
Emitter Cutoff Current	ІЕВО	VEB = 25V, Tc = 175°C		20	mA
Turn-On Time	ton	Ic = 1.5A		5	μsec
Storage Time	ts	Vcc = 12V,		5	μsec
Fall Time	t _f	IB (ON) = I B (OFF) = 0.3A		5	Msec
Output Capacitance	C _{ob}	VcB = 10V.f = 1 MHz		750	pF
Gain-Bandwidth	f _T	VCE = 10V, I C = 0.5A	250		KHz
Beta Cutoff Frequency	<b>f</b> hfe	Vce = 12V, Ic = 1.5A	14		KHz
Second Breakdown Forward Biased,	I _{SB}	V _{CE} = 80V., t = 1.0 second T _C = 25°C		2.5	Α
Collector Current Second Breakdown, Reversed Biased		L = ImH, Vвв =- V, Rв = 20 $\Omega$ , Ic = 5.6A	15.5		mJ

#### **Typical Characteristics**









# NPN Power TRANSISTORS 2N1015/2N1016

# 7.5 Amperes 30-250 Volts



Conforms to TO-82 Outline

#### Features:

- Gold Alloy Process
- No forward bias secondary breakdown to 100 Volts
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molydenum construction
- 25 volt V EBO
- Low V CE (sat)
- Lifetime Guarantee

	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
A	.500	.560	12.70	14.22
$\phi B$	.045	.060	1.14	1.52
d	.140	.170	3.56	4.32
 φD	1.240	1.280	31.50	32.51
$\phi D_1$	.730	.770	18.54	19.56
$\phi D_2$		1.125		28.58
e	.360	.400	9.14	10.16
e,	.180	.200	4.57	5.08
H	.014	.025	.36	.64
j	.140	.170	3.56	4.32
K	.130	.190	3.30	4.83
L	.550	.590	13.97	14.99
N	.550	.590	13.97	14.99
q	.810	.850	20.57	21.59
ά	.105	.140	2.67	3.56
S	.480	.520	12.19	13.21
φΤ	.050	.070	1.27	1.78
φW	5/16-24	UNF-2A		

Finish—Nickel Plate. Approx. Weight—.9 oz. (25 g).

- 1. Complete threads to extend to within
- 2½ threads of seating plane.2. Contour and angular orientation of terminals is undefined.
- 3. Pitch diameter of %-24 UNF-2A (coated) threads (ASA B1.1-1960).

#### Applications:

- High Power Switching
- Amplifiers
- Servo Systems
- Regulators
- Modulators



#### Maximum Ratings Voltage

JEDEC		V CEO (SOS)
2N1015 💠	2N1016 +	30
2N1015A 🕈	2N1016A +	60
2N1015B 🕈	2N1016B +	100
2N1015C+	2N1016C ♣	150
2N1015D 💠	2N1016D +	200
2N1015E 💠	2N1016E ♣	250

Maximum Ratings and Characteristics Γ c = 25°C unless specified	Symbol	JEDEC 2N1015, 2N1016	Units
* Operating and storage temperature		65 TO 150	°C
Collector-emitter sustaining voltage	VCEO (sus)	30 TO 250	Volts
* Emitter-base voltage	VEBO	25	Volts
* Continous collector current	lc	7.5	Amps
* Continous base current	lв	5	Amps
* Thermal resistance	Rejc	.87	°C/W
* Power dissipation Tc = 45°C	Рт	150	Watts
Power dissipation Tc = 100°C	Pī	87	Watts

^{*} JEDEC Registered Parameters

# 7.5 Amperes 30-250 Volts

# NPN Power TRANSISTORS 2N1015/2N1016



,	Symbol	Minimum	Typical	Max.	Units
2N1015/2N1016					
Collector current at V _{CEX} =V _{CE} (from max. ratings), T _J =150°C, V _{BE} =-1.5 Vdc	ICEX		2	*20	mAdc
Emitter current at V _{EB} =25 Vdc, I _C =0, T _J =150°C	IEBO		3	*20	mAdc
Switching time, delay plus rise time	$t_d + t_r$		3		μsec
Storage plus fall time	$t_s + t_f$		7		μsec
Second breakdown, Collector Current, VcE = 100 V., Tc = 45°C	•				
(one second test), forward bias, Amperes	ls/B			1.5	Adc
Second breakdown energy, base reverse biased, L = 250 mh.,	Es/B	• •		0.5	Joule
RB = 50 ohms, VBE =-6.0 volts, Ic = 2.0 Amperes, Joules					000.0
Gain-bandwidth, VcE = 10 volts, Ic = 0.5 Amps, Kilohertz	ft	250			Khz.
2N1015					
Dc current gain at V _{CE} =4 Vdc, I _C =2 Adc	hfE	*10	14		
Base voltage, at I _C =2 Adc, I _B =300 mAdc	V _{BE} (sat)		1.15		Vdc
Beta cut-off frequency	f _{hfe}		25		kHz
2N1016					
Dc current gain at V _{CE} =4 Vdc, I _C =5 Adc	. hee	*10	18		
Base voltage, at I _C =5 Adc, I _B =750 mAdc			1.25		Vdc
Beta cut-off frequency			30		
*JEDC registered parameters.					

Collector Current, IC, Amperes

#### **Typical Characteristics**



#### SAFE OPERATING AREA



Collector Emitter Voltage, VCE, Volts



### **NPN** Power **TRANSISTORS** 2N3429-33

# 7.5 Amperes 50-250 Volts



Conforms to MT-52 Outline

	Inches		Millimeters		
Symbol	Min.	Max.	Min.	Max.	
A	.340	.406	8.64	10.31	
φD	.400	.440	10.16	11.18	
ė	.160	.190	4.06	4.83	
e,	.080	.095	2.03	2.41	
e₁ E	.544	.562	13.82	14.27	
F	.100	.140	2.54	3.56	
J		.710		18.03	
N	.422	.453	10.72	11.51	
φΤ	.040	.055	1.02	1.40	
φW	¼-28 l	JNF-2A			

Finish—Nickel Plate. Approx. Weight—.25 oz. (7 g).

- 1. Complete threads to extend to within 2½ threads of seating plane.
  2. Contour and angular orientation of
- terminals is undefined.

  3. Pitch dia. of ¼-28 UNF-2A (coated) threads (ASA B1.1-1960).



#### Features:

- Gold Alloy Process
- No forward bias secondary breakdown to
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt B EBO
- Low V CE (sat)
- Lifetime Guarantee

#### Applications:

- High Power Switching
- Amplifiers
- Servo Systems
- Regulators Modulators
- 2N3432 2N3433 Test Symbol 2N3429 2N3430 2N3431 Conditions *Collector-Emitter Base Open VCEO(sus) Sustaining L=1H I_C=200mA Voltage *Collector Cutoff ICEV=2mA VCEV 50 150 200 250 100 Voltage VEB=1.5V *Collector Cutoff VCEVICEV=10mA Voltage  $V_{EB} = 1.5V$ Tc=175°C

Maximum Ratings and Characteristics* $T_c=25^{\circ}\text{C}$ unless specified	Symbol	All Types
*Operating and storage temperature		65°C to 175°C
*Collector-emitter sustaining voltage	VCEO(sus)	50 volts to 250 volts
* Emitter-base voltage	VEBO	25 volts
*Collector-emitter voltage,V _{EB} =1.5V, T _C =175°C	VCEV	50 volts to 250 volts
*Continuous collector current	Ic	7.5 amperes
* Continuous base current	lв	3 amperes
* Linear power derating factor from Tc=60°C		1.33 W /°C
* Thermal resistance	R <b>∂</b> JC	0,75°C/W
• Power dissipation,Tc=60°C	Рт	150 watts

# 7.5 Amperes 50-250 Volts

# NPN Power TRANSISTORS 2N3429-33



<u>-</u>			All Types		
Test	Symbol	Test Conditions	Min.	Max.	Units
*D.C. Current Gain	hFE	VcE=2V, Ic=5A	10	35	
*Collector-Emitter Saturation Voltage	VCE(sat)	Ic=5A, IB=750mA		1.0	٧
*Base-Emitter Saturation Voltage	VBE(sat)	Ic=5A, IB=750mA		2.0	٧
*Emitter Cutoff Current	IEBO	V _{EB} =25V, T _C =175°C	·	10	mA
*Turn-On Time	ton	Ic=5A,		5	μsec
*Storage Time	ts	Vcc=12V,		4	μsec
*Fall Time	tf	$l_B(on)=l_B(off)=1.5A$		8	μsec
Output Capacitance	Cob	VcB=10V,f=1MHz		750	pF
Gain-Bandwidth	fτ	VcE=10V, Ic=0.5A	250		KHz
*Beta Cutoff Frequency	fhfe	VcE=12V, Ic=5A	20		KHz
Second Breakdown forward Biased, collector current	∥s₿.	V _{CE} =30V, I _C =5A t=I second, T _C = 25°C '		1.5	Α
Second Breakdown reversed biased	EsB	L=ImH, V _{BB} =-2V, R _B = 20Ω, I _C =5.6A	15.5	· · · · · · · · · · · · · · · · · · ·	m

^{*}JEDEC registered data.













## **NPN** Power TRANSISTORS 163/164

# 20 Amperes 40-200 Volts



C	Inches		Millimeter		
Symbol	Min.	Max.	Min.	Max.	
Α .	.600	.650	15.24	16.51	
$\phi D$	.650	.700	16.51	17.78	
e,	.185	.205	4.70	5.21	
e	.390	.410	9.91	10.41	
E	.855	.875	21.72	22.23	
F	.156	.250	3.96	6.35	
J ,	1.016	1.076	25.81	27.33	
N	.560	.600	14.22	15.24	
φΤ	.090	.100	2.29	2.54	
$\phi T_1$	.060	.080	1.52	2.03	
φŴ	5⁄16-24 l	JNF-2A			

Finish—Nickel Plate.

Approx. Weight—1 oz (28 g).

- Complete threads to extend to within 2½ threads of seating plane.
- 2. Contour and angular orientation of
- terminals is undefined.
  3. Pitch dia. of 5/6-24 UNF-2A (coated) threads (ASA B1.1-1960).



#### Conforms to MT-33 Outline

#### Features:

- Gold Alloy Process
- No forward bias secondary breakdown to 67 volts
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt VEBO
- Low VCE (set)
- Lifetime Guarantee

#### Applications:

- High Power SwitchingAmplifiers
- Servo Systems
- Regulators
- Modulators

163 — Low Gain Series 164 - High Gain Series

## **Maximum Ratings**

Туре		Vсво	VCEO (sus
163-04	164-04	55	40
163-06	164-06	75	60
163-08	164-08	95	80
163-10	164-10	115	100
163-12	164-12	135	120
163-14	164-14	155	140
163-16	164-16	175	160
163-18	164-18	195	180
163-20	164-20	215	200

Maximum Ratings and Characteristics c = 25°C unless specified	Symbol	Type 163 164	Units
Operating and storage temperature		— 65 TO 175	°C
Collector-emitter sustaining voltage	VCEO (sus)	40 TO 200	Volts
Collector-base voltage	Vсво	VCEO (sus) + 15	Volts
Emitter-base voltage	VEBO	15	Volts
Continuous collector current	1c	30	AMPS
Continuous base current	I _B	7.5	AMPS
Thermal resistance	Reuc	.5	°C/W
Power dissipation Tc = 75°C	₽⊤	200	Watts
Power dissipation Tc = 100°C	PT	150	Watts

## 20 Amperes 40-200 Volts

## NPN Power TRANSISTORS 163/164



#### Electrical Specifications Tc=25°C unless otherwise specified

			16	si3•	16 ₁ 4		
Test	Symbol	Symbol Test Conditions		Max.	Min.	Max.	Units
D.C. Current Gain	h FE	Vce=4V, Ic=5A	15		25		
Collector-Emitter Saturation Voltage	V CE (sat)	lc=5A, lb=0.5A	l.	1.1		1.0	v
Base-Emitter Saturation Voltage	V BE (sat)	Ic=5A, IB=0.5A		2.2		2.0	v
Emitter Cutoff Current	I _{EBO}	V _{FR} ⊨15V, Tc=175°C	İ	25		25	mA
Turn-On Time	t _i on	Ic=5A		6		6	μsec.
Storage Time	ts	Vcc=12V.		5		5	μsec.
Fall Time	tr	lg(on)=lg(off)=0.6A.		7		7	μsec.
Qutput Capacitance	Cob	V _{CB} =10V,f=1MHZ		1500		1500	pF
Gain-Bandwidth	fτ	V _{CE} =10v, lc=1.0A	250		250		KHz
Beta Cutoff Frequency	<b>f</b> 'hfe	V _{CE} ⊨12V, Ic=5A	10		10		KHz
Second Breakdown Forward Biased, Collector Current	l sa	V _{CE} ⊨67V, 1 second Tc=75°C		3		3	A
Second Breakdown Energy Reverse Biased	Es/b	Vcc=30V lc=5A L=.4H Tc= 25°C		1		1	J

#### **Typical Characteristics**







T24



## NPN Power, Darlington TRANSISTORS 2N2226-33

## 10 Ampere 50 - 200 Volts



Conforms to TO-82 Outline

#### **Features**

- Gold Alloy Process
- No forward bias secondary breakdown
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt VEBO
- Low VCE(sat)
- Lifetime Guarantee

	Inches		Millime	ters
Symbol	Min.	Max.	Min.	Max.
Α	.500	.560	12.70	14.22
φB	.045	.060	1.14	1.52
d	.140	.170	3.56	4.32
φD φD, φD ₂	1.240 .730	1.280 .770 1.125	31.50 18.54	32.51 19.56 28.58
e	.360	.400	9.14	10.16
e,	.180	.200	4.57	5.08
H	:014	.025	.36	.64
j	.140	.170	3.56	4.32
K	.130	.190	3.30	4.83
L	.550	.590	13.97	14.99
N	.550	.590	13.97	14.99
Q	.810	.850	20.57	21.59
Q	.105	.140	2.67	3.56
S	.480	.520	12.19	13.21
φT	.050	.070	1.27	1.78
$\phi$ W	5/16-24 €	JNF-2A		

Finish—Nickel Plate. Approx. Weight—.9 oz. (25 g).

- Complete threads to extend to within 2½ threads of seating plane.
   Contour and angular orientation of

- terminals is undefined.

  3. Pitch diameter of %-24 UNF-2A (coated) threads (ASA B1.1-1960).

#### **Applications**

- High Power Switching
- Amplifiers
- Servo Systems
- Regulators
- Modulators



Test	Symbol	2N2226 2N2230	2N2227 2N2231	2N2228 2N2232	2N2229 2N2233
Collector Voltage Sustaining	VCEO(sus)	50	100	150	200

Maximum Ratings and Characteristics Tc = 25°C unless specified	Symbol	JEDEC 2N2226-33	Units
* Operating and storage temperature		—65 То 150	°C
Collector-emitter sustaining voltage	VCEO (sus)	50 To 200	Volts
* Emitter-base voltage	VEBO	15	Volts
* Continuous collector current	lc	10	AMPS
* Continuous base current	IB	1	AMPS
* Thermal resistance	Reuc	.5	°C/W
* Power dissipation Tc = 75°C	Рт	150	Watts
Power dissipation Tc = 100°C	Pτ	100	Watts

^{*} JEDEC Registered Parameters

# 10 Ampere **50** — 200 Volts

# NPN Power, Darlington TRANSISTORS 2N2226-33



Electrical	Characteristics	2N2226-29
------------	-----------------	-----------

T _C =25°C unless otherwise specif	To	√=25°C un	less	otherwise	specifie
----------------------------------------------	----	-----------	------	-----------	----------

	Symbol	iviinimum	турісаі	wax.	Units
Collector current at $V_{CEX} = V_{CE}$ (from max. ratings), $T_C = 150$ °C, $V_{BE} = -1.5$ Vdc	I _{CEX}			20	mAdc
Emitter current at V _{BE} = -15 Vdc, I _C = 0	IEBO			15	mAdc
Emitter current at $V_{BE} = -15$ Vdc, $I_C = 0$ , $T_C = 150$ °C	I _{EBO}			30	mAdc
Gain bandwidth product at I _C =10 Adc	fΤ		500		kc
Saturation voltage at Ic=10 Adc, IB=150m Adc	Vce(sat)		2.2	3.5	Vdc
Dc current gain at V _{CF} =6 Vdc, I _C =10 Adc	h _{FE}	100	360		
Base voltage, at I _C =10 Adc, I _B =150 mAdc	V _{BE} (sat)		3.0	4.0	Vdc
Beta cut-off frequency at V _{CE} =12 Vdc, I _C =7 Adc	f _{hfe}		10		kc
Turn-on time at $I_C=10$ Adc, $I_{B \text{ on}}=400$ mAdc, $V_{CE}=12$ Vdc	$t_d + t_r$		4.5		μsec
Turn-off time at $I_C = 10$ Adc, $I_{Roff} = -400$ mAdc, $V_{CE} = 12$ Vdc, $V_{REoff} = -15$ Vdc.	$t_s + t_f$		25		μsec

#### **Electrical Characteristics**

2N2230-33

T_C=25°C unless otherwise specified

	Symbol	Minimum	Typical	Max.	Units
Collector current at $V_{CFX} = V_{CF}$ (from max. ratings), $T_C = 150^{\circ}$ C, $V_{BF} = -1.5$ Vdc	ICEX			20	mAdc
Emitter current at $V_{RF} = -15 \text{ Vdc}$ , $I_{C} = 0 \dots 10^{-1}$	I _{EBO}			15	mAdc
Emitter current at $V_{BE} = -15$ Vdc, $I_C = 0$ , $T_C = 150$ °C	I _{EBO}			30	mAdc
Gain bandwidth product at I _C =10 Adc	f _T		500		kc .
Saturation voltage at Ic=10 Adc, Ig=150m Adc	Vce(sat)		2.2	3.5	Vdc
Dc current gain at V _{CE} =6 Vdc, I _C =10 Adc	hee	400	660		
Base voltage, at I _C =10 Adc, I _B =40 mAdc	V _{BE} (sat)		3.0	4.0	Vdc
Beta cut-off frequency at V _{CE} =12 Vdc, I _C =7 Adc	f _{hfe}		7		kc
Turn-on time at $I_C = 10$ Adc, $I_{B \text{ on}} = 200$ mAdc, $V_{CE} = 12$ Vdc	$t_d + t_r$		5		$\mu$ sec
Turn-off time at $I_C=10$ Adc, $I_{B \text{ off}}=-200$ mAdc, $V_{CE}=12$ Vdc, $V_{BE \text{ off}}=-15$ Vdc.	$t_s + t_f$		29		$\mu$ sec



Forward current transfer characteristics.

2N2226-29

2N2230-33





Dc gain versus collector current.



Collector Current, I_C, Amperes



### NPN Power, Darlington **TRANSISTORS** 2N3470-77

10 Amperes 50-200 Volts



	Inches		Millimeter		
Symbol	Min.	Max.	Min.	Max.	
A	.600	.650	15.24	16.51	
$\phi D$	.650	.700	16.51	17.78	
e,	.185	.205	4.70	5.21	
е	.390	.410	9.91	10.41	
E	.855	.875	21.72	22.23	
F	.156	.250	3.96	6.35	
J	1.016	1.076	25.81	27.33	
N	.560	.600	14.22	15.24	
$\phiT$	.090	.100	2.29	2.54	
$\phi T_1$	.060	.080	1.52	2.03	
φW	5/16-24	UNF-2A			

Finish—Nickel Plate. Approx. Weight—1 oz (28 g).

- 1. Complete threads to extend to within
- 2½ threads of seating plane.2. Contour and angular orientation of
- terminals is undefined.

  3. Pitch dia. of 5/6-24 UNF-2A (coated) threads (ASA B1.1-1960).

Applications:

Servo Systems

Amplifiers

Regulators

Modulators

• High Power Switching



Low Gain Series	High Gain Series
2N3470	2N3474
2N3471	2N3475
2N3472	2N3476
2N3473	2N3477

#### Conforms to MT-33 Outline

#### Features:

- Gold Alloy Process
- No forward bias secondary breakdown to
- · High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt VEBO
- Low VCE (sat)
- Lifetime Guarantee

#### Voltage Matrix Tc = 25°C

Test	Symbol	2N3470 2N3474	2N3471 2N3475	2N3472 2N3476	2N3473 2N3477
Collector * Voltage (sustaining)	VCEO (sus)	50	100	150	<b>200</b> ;

Maximum Ratings and Characteristics * Tc = 25°C unless specified	Symbol	JEDEC 2N3470-77	Units
* Operating and storage temperature		- 65 TO 150	ပ္
Collector-emitter sustaining voltage	VCEO (sus)	50 TO 200	Volts
* Emitter-base voltage	VEBO	15	Volts
* Continuous collector current	Ic	10	AMPS
* Continous base current	l _B	1	AMPS
* Thermal resistance	Reuc	.5	°C/W
* Power dissipation Tc = 75°C	PT	150	Watts
* Power dissipation Tc = 100°C	Pī	100	Watts

^{*}Jedec Registered Parameters

10 Amperes 50-200 Volts

# NPN Power, Darlington TRANSISTORS 2N3470-77



					,
Electrical Characteristics 2N3470-73 T _C =25°C unless otherwise sp	ecified				
	Symbol	Minimum	Typical	Max.	Units
Collector current at $V_{CEX} = V_{CE}$ (from max. ratings), $T_C = 150$ °C, $V_{BE} = -1.5$ Vdc	ICEX			20	mAd
mitter current at $V_{RF} = -15$ Vdc, $I_C = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	IFRO			15	mAd
mitter current at V _{BE} =-15 Vdc, I _C =0, T _C =150°C	I _{EBO}			30	mAd
ain bandwidth product at I _C =10 Adc	f _T		500		kc
aturation voltage at Ic=10 Adc, IB=150m Adc		• • •	2.2	3.5	Vdc
c current gain at V _{CE} =6 Vdc, I _C =10 Adc	h _{FE}	100	360		
ase voltage, at I _C =10 Adc, I _B =150 mAdc	V _{BE} (sat)	• • •	3.0	4.0	Vdc
eta cut-off frequency at V _{CE} =12 Vdc, I _C =7 Adc	Thfe	• • •	10 4.5		kc
urn-on time at $I_C=10$ Adc, $I_{B \text{ on}}=400$ mAdc, $V_{CE}=12$ Vdcurn-off time at $I_C=10$ Adc, $I_{B \text{ off}}=-400$ mAdc, $V_{CE}=12$ Vdc, $V_{BE \text{ off}}=-15$ Vdc.	td + tr		4.5 25		μsec
Im-off time at IC=10 Adc, IB off=400 mAdc, VCE=12 vdc, VBE off=15 vdc.	is Tif	• • •	25		μsec
Electrical Characteristics 2N3474-77 T _C =25°C unless otherwise	specified				
Total Glid Glid Glid Glid Glid Glid Glid Gli	Symbol	Minimum	Typical	Max.	Unit
ollector current at $V_{CEX} = V_{CE}$ (from max. ratings), $T_C = 150^{\circ}$ C, $V_{BE} = -1.5$ Vdc	I _{CEX}			20	mAc
mitter current at V _{BE} =-15 Vdc, I _C =0	I _{EBO}			15	mAd
mitter current at V _{BF} =-15 Vdc, I _C =0, T _C =150°C	IFBO			30	mAd
ain bandwidth product at I _C =10 Adc	f _T		500		kc
aturation voltage at Ic=10 Adc, IB=150m Adc			2.2	3.5	Vdc
c current gain at V _{CE} =6 Vdc, I _C =10 Adc	h _{FE}	400	660		
ase voltage, at I _C =10 Adc, I _B =40 mAdc	V _{BE} (sat)	• • •	3.0	4.0	Vdc
eta cut-off frequency at V _{CE} =12 Vdc, I _C =7 Adc	thfe	• • •	7		kc
urn-on time at $I_C=10$ Adc, $I_{B\ on}=200$ mAdc, $V_{CE}=12$ Vdcurn-off time at $I_C=10$ Adc, $I_{B\ off}=-200$ mAdc, $V_{CE}=12$ Vdc, $V_{BE\ off}=-15$ Vdc.	td + t _r	• • •	5 29		μsec
10	rs , rt		23		μsec
ió,00				re Wave Pulse	T
T _C =25°C 700			60 C	ps Repetition R	ate 🕽
500			V _{CE} =	6 Volts	1
8 T _C =150°C		T _C =150°C	<u> </u>	***********	##
300					Ш
	`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<del>                                     </del>		Ш
6 200	o T _C =25°C	$N \cap N \cap N$	<del>                                      </del>	<del>                                     </del>	Ш
			2N347	11111111111111111111111111111111111111	Щ
				iiiimuuu	1111
2N3470-73	° III	25%			⊞
# 70	o	23 0			₩
Square Wave Pulse 60 Cps Repetition Rate					Ш
1.75% Duty Cycle				***************************************	##
V _{CE} =6 Volts	。 ————————————————————————————————————	1c=150%			Ш
3 30	- -	<del>                                     </del>	2N3470-73	$\mathcal{M}$	<del>    </del>
Ď 20	o <mark>[[]]]]]]</mark>	111111111111111111111111111111111111111	<u> </u>	111111111111111111111111111111111111111	Щ
2N3470-73    Square Wave Pulse   60 Cps Repetition Rate   1.75% Duty Cycle   Vce=6 Volts   30 20 30 40 50	Collector Current,		-		
Base Current, I _B , Milliamperes	10. Dc gain ver	sus collector curi	ent.		
Forward current transfer characteristics.	15			40 μs <del></del>	_
	15				##
10					₩
	" <b>————</b>			N OUDS	N







### **NPN** Power **TRANSISTORS** 2N2757-78

30 Amperes 50-250 Volts



0 1 1	Inches		Millime	ter
Symbol	Min.	Max.	Min.	Max.
Α	.600	.650	15.24	16.51
φD	.650	.700	16.51	17.78
e,	.185	.205	4.70	5.21
e	.390	.410	9.91	10.41
E	.855	.875	21.72	22.23
F	.156	.250	3.96	6.35
J	1.016	1.076	25.81	27.33
N	.560	.600	14.22	15.24
φT	.090	.100	2.29	2.54
φT, φW	.060 5⁄16-24 l	.080 JNF-2A	1.52	2.03

- Finish—Nickel Plate. Approx. Weight—1 oz (28 g).
- Complete threads to extend to within 2½ threads of seating plane.
   Contour and angular orientation of
- terminals is undefined.

  3. Pitch dia. of 5%-24 UNF-2A (coated) threads (ASA B1.1-1960).



#### Conforms to MT-33 Outline Features:

- Gold Alloy Process
- No forward bias secondary breakdown to 67 volts
- High reverse bias S.O.A. for inductive loads
- Low thermal resistance with copper base
- 150 watt dissipation
- Protection from thermal fatigue with hard solder and molybdenum construction
- 25 volt VEBO
- Low VCE (sat)
- Lifetime Guarantee

#### Applications:

- High Power Switching
- Amplifiers
- Servo Systems
- Regulators
- Modulators

# **Maximum Ratings**

Voltage JED			VCED (sus)
2N2758 2N2759	2N2764 2N2765	2N2770 2N2771	2N277550 2N2776100 2N2777150 2N2778200

Maximum Ratings and Characteristics Tc = 25°C unless specified	Symbol	JEDEC 2N2757-78+	Units
* Operating and storage temperature		- 65 to 175	°C
Collector-emitter sustaining voltage	VCEO (sus)	50 to 250	Volts
* Emitter-base voltage	<b>V</b> EBO	15	Volts
* Continuous collector current	lc lc	30	AMPS
* Continuous base current	IВ	7.5	AMPS
* Thermal resistance	Reuc	.5	°C/W
* Power dissipation Tc = 75°c	Рт	200	Watts
Power dissipation Tc = 100°C	Pτ	150	Watts

^{*} JEDEC Registered parameters



#### **Electrical Characteristics, 2N2757-61 Series**

T_C=25°C unless otherwise specified

	Symbol	Minimum	Typical	Max.	Units
Min. collector-emitter sustaining voltage at I _C =200 ma, I _B =0	V _{CEO(SUS)}	Refer vo	ltage ratin	ıgs	
Collector current at $V_{CEX} = V_{CE}$ (Ref. voltage ratings), $T_C = 175^{\circ}C$ , $V_{BE} = -1.5$ Vdc.	ICEX		8	30	mAdc
Emitter current at $V_{BF} = -15 \text{ Vdc}$ , $I_C = 0$ , $T_C = 175^{\circ}\text{C}$	IEBO		4	25	mAdc
Saturation voltage at I _C =10 Adc, I _B =2 Adc	V _{CE} (sat)		0.4	1.5	Vdc
Dc current gain at V _{CE} =4 Vdc, I _C =10 Adc	hFE	10	14.0		
Base voltage, at I _C =10 Adc, I _B =2 Adc	V _{BE} (sat)		1.35	2.5	Vdc
Beta cut-off frequency at V _{CE} =12 Vdc, I _C =2.5 Adc	f _{hfe}		14.0		kHz
Turn-on time at I _C =10 Adc, I _{B on} =3 Adc, V _{CE} =12 Vdc	$t_d + t_r$		3.0		μsec
Turn-off time at $I_C=10$ Adc, $I_{B \text{ off}}=-3$ Adc, $V_{CE}=12$ Vdc, $V_{BE \text{ off}}=-15$ Vdc	$t_s+t_f$		9.0		μsec

#### Typical Characteristics, 2N2757-61 Series





#### **Electrical Characteristics, 2N2763-66 Series**

T_C=25°C unless otherwise specified

	Symbol	Minimum	Typical	Max.	Units
Min. collector-emitter sustaining voltage at I _C =200 ma, I _B =0	V _{CEO(SUS)}	Refer volta	age ratings	;	
Collector current at V _{CEX} =V _{CE} (Ref. voltage ratings), T _C =175°C, V _{BE} =-1.5 Vdc.	CEX		8	30	mAdc
Emitter current at $V_{BE} = -15$ Vdc, $I_C = 0$ , $T_C = 175^{\circ}C$	I _{EBO}		4	25	mAdc
Saturation voltage at I _C =15 Adc, I _B =3 Adc	V _{CE} (sat)		0.63	1.5	Vdc
Dc current gain at V _{CE} =4 Vdc, I _C =15 Adc	h _{FE}	10	13.5		
Base voltage, at I _C =15 Adc, I _B =3 Adc	V _{BE} (sat)		1.50	25	Vdc
Beta cut-off frequency at V _{CE} =12 Vdc, I _C =3.75 Adc	f _{hfe}		14.5		kHz
Turn-on time at $I_C=15$ Adc, $I_{B \text{ on}}=4.5$ Adc, $V_{CE}=12$ Vdc	$t_d + t_r$		3.8		μsec
Turn-off time at $I_C = 15$ Adc, $I_{B \text{ off}} = -4.5$ Adc, $V_{CE} = 12$ Vdc, $V_{BE \text{ off}} = -15$ Vdc	$t_s + t_f$		10		μsec

#### **Typical Characteristics, 2N2763-66 Series**







# NPN Power TRANSISTORS 2N2757-78

30 Amperes 50-250 Volts

#### Electrical Characteristics, 2N2769-72 Series T_C=25°C unless otherwise specified

	Symbol	Minimum	Typical	Max.	Units
Min. collector-emitter sustaining voltage at I _C =200 ma, I _B =0	V _{CEO(SUS)}	Refer volta	ige ratings	<b>.</b>	
Collector current at $V_{CEX} = V_{CE}$ (Ref. voltage ratings), $T_C = 175^{\circ}C$ , $V_{BE} = -1.5 \text{ Vdc}$ .	ICEX		8	30	mAdc
Emitter current at $V_{BE} = -15$ Vdc, $I_C = 0$ , $T_C = 175^{\circ}C$	I _{EBO}		4	25	mAdc
Saturation voltage at I _C =20 Adc, I _B =4 Adc	V _{CF} (sat)		0.74	1.5	Vdc
Dc current gain at V _{CE} =4 Vdc, I _C =20 Adc	h _{FE}	10	12.5		
Base voltage, at I _C =20 Adc, I _B =4 Adc	V _{BE} (sat)		1.8	2.5	Vdc
Beta cut-off frequency at V _{CE} =12 Vdc, I _C =5 Ac'c	fhfe		16.0		kHz
Turn-on time at I _C =20 Adc, I _{B on} =6 Adc, V _{CE} =12 Vdc	$t_d + t_r$		4.0		μsec
Turn-off time at $I_C = 20$ Adc, $I_{B \text{ off}} = -6$ Adc, $V_{CE} = 12$ Vdc, $V_{BE \text{ off}} = -15$ Vdc	$t_s + t_f$		10.0		μsec

#### Typical Characteristics, 2N2769-72 Series





#### Electrical Characteristics, 2N2775-78 Series

T_C=25°C unless otherwise specified

	Symbol	Minimum	Typical	Max.	Units
Min. collector-emitter sustaining voltage at I _C =200 ma, I _B =0	V _{CEO(SUS)}	Refer volta	ge ratings		
Collector current at V _{CEX} =V _{CE} (Ref. voltage ratings), T _C =175°C,V _{BE} =-1.5 Vdc	ICEX		8	30	mAdc
Emitter current at V _{BE} = -15 Vdc, I _C = 0, T _C = 175°C	IEBO		4	25	mAdc
Saturation voltage at I _C =25 Adc, I _R =5 Adc			0.87	1.50	Vdc
Dc current gain at V _{CF} =4 Vdc, I _C =25 Adc	hFE	10	12.0		
Base voltage, at Ic=25 Adc, IR=5 Adc			1.9	2.5	Vdc
Beta cut-off frequency at V _{CF} =12 Vdc, I _C =5 Adc			14.0		kHz
Turn-on time at I _C =25 Adc, I _{B on} =7.5 Adc, V _{CE} =12 Vdc	t _{rl} +t _r		4.5		μsec
Turn-off time at $I_C=25$ Adc, $I_{B \text{ off}}=-7.5$ Adc, $V_{CE}=12$ Vdc, $V_{BE \text{ off}}=-15$ Vdc	ts+tf		10.0		μsec

#### **Typical Characteristics**, 2N2775-2778 Series





## 30 Amperes 50-250 Volts

# NPN Power TRANSISTORS 2N2757-78



#### Safe Operating Information, 2N2757 through 2N2778

	Symbol	iviaximum	Units
Second Breakdown, forward bias, collector current	ls/B	3.0	Amperes
(Vce = 67V., One Second, Tc = 75°C)			
Second Breakdown, reverse bias, energy	Es/B	1.0	Joule
$(V_{CF} = 30V   I_{C} = 5.0A   I_{C} = 0.4 \text{ mH}   I_{C} = 25^{\circ}C)$			





### **NPN** Power Switching **TRANSISTORS** D60T/D62T

## 200 Amperes 400-500 Volts



D60 Outline

**Maximum Ratings** 

Collector Current (peak): 200 Amperes Collector Current (continuous): 100 Amperes Base Current (continuous): 20 Amperes Power Dissipation: 625 Watts at Tc = 75°C Operating and Storage Temperature: -50°C to +200°C

Combal	Inches	Millimeters				
Symbol	Min.	Max.	Min.	Max.		
A, C L	.110	2.500 .140 .812	2.79	63.50 3.55 20.62		
L, L, M,	.500 .250 .440	.600 .560	12.70 6.35 11.17	15.24 14.22		
φΤ, φΤ ₂ Ζ,	.260 .145 .640	.290 .160	6.60 3.68 16.25	7.36 4.06		
٨١٨/	34-16 LIN	JF-2A				

Creep & Strike Distance. D60T - .690 in. min. (17.60 mm).

(In accordance with NEMA standards.)

Finish-Nickel Plate.

- Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 21/2
- threads of seating plane. 2. Angular orientation of terminals is
- undefined.
- Pitch diameter of 3/4-16 UNF-2A (COATED) threads (ASA B1.1-1960).

#### **Applications**

- High Frequency Inverters
- Motor Controls
- Switching Regulators
- VLF Transmitters



#### **Features**

- Triple Diffused Design
- CBE Construction
- 625 Watt Power Capability

#### **Ordering Information**

Type	Voltage			Current	:	Gain	
*Code	VCEO (SUS)	Vсво	Code	IDC	Code	HFE	Code
DBOT	400	400	40	40	40	10	10
(Stud)	450	450	45	50	50		1
D621 <b>4</b> (Disc)	500	500	50	60	60		а.

Example:

*Note: Disc package (D62T) available, consult factory.

Obtain device performance for your application by selecting proper Order Code.

Туре			Volt	age	Curr	ent	Gain	
D	6	0	Т	4	0	5	0	10

The above number describes a stud mount transistor. rated at 400 volts, with a gain of 10 at 50 amperes.

#### **DEVELOPMENTAL PRODUCT**

These devices are developmental types intended for engineering evaluation. Specifications and data are subject to change without prior notice. Westinghouse assumes no obligation for notice of change or future manufacture of these products.

# 200 Amperes 400—500 Volts

# NPN Power Switching TRANSISTORS D60T/D62T



#### Electrical Characteristics* (TCASE = 25°C unless otherwise specified)

Symbol	Characteristic		Test Conditions	Min.	Тур.	Max.	Units
VCEO (SUS)	Collector-Emitter	Sustaining Voltage	IC = 200mA IB = 0 300µs Pulse		See Page T33		
ICEV	Collector Cutoff ( (Base Emitter Re		At Rated VCE VBE (OFF) = -1.5V,		10	100	. μA _,
ICEV	Collector Cutoff Current (Base Emitter Reverse Biased)		At Rated VCE VBE (OFF) = -1.5V, TC = 150°C		.8	3	mA
IEBO	Emitter Cutoff Current		VEB = 7V			1	mA
HFE	DC Current Gain		IC = 50A, VCE = 2.5V	10	15		
hFE	DC Current Gain		IC = 90A, VCE = 2.5V		5		
VCE (SAT)	Collector-Emitter Saturation Voltage		IC = 50A, IB = 6A		.75	1.25	Volts
VBE (SAT)	Base-Emitter Sat	uration Voltage	IC = 50A, IB = 6A		1.0	1.5	Volts
СОВ	Output Capacitar	nce	fTEST = 1 MHz, VcB = 10V		2500	1	µµf
f _T	Gain-Bandwidth	Product	fTEST = 1 MHz, IC = 5A, VCE = 10V	7	10	_	MHz
Rejc	Thermal Resistar	nce Junction to Case	VCE = 20V			0.2	°C/W
t _D	Turn-On Delay		Vcc = 200v, Ic = 50A			100	ns
t _r	Rise Time	Resistive Load	IB1 = IB2 = 6A, tp = 100µs			0.5	μs
t _s	Storage Time	Switch Times	Duty Cycle < 2%			2.5	μs
t _f	Fall Time					0.5	μs







Consult factory for additional pulsed S.O A. capability curves.