

Energetische Optimierung der Wassergewinnung von Brunnenfeldern

28. Mülheimer Wassertechnisches Seminar

9. März 2017

Michael Rustler, Victor Philippon & Hauke Sonnenberg (Kompetenzzentrum Wasser Berlin gGmbH)

Projekt finanziert von: **VEOLIA**

Das Kompetenzzentrum Wasser Berlin

KOMPETENZZENTRUM WasserBerlin

Applied Research on the Urban Water Cycle

KOMPETENZZENTRUM Wasser Berlin

Bereich Grundwasser

- Naturnahe Wasseraufbereitung durch Uferfiltration und künstliche Grundwasseranreicherung
- Optimierung von Brunnenbau und Betrieb
- Energieeffiziente Wasserförderung

T-Mon
Eignung saisonaler
Temperaturgänge zur
Fließzeitüberwachung

RWE-BO Leistungserhalt und Energieeffizienz von Entwässerungsbrunnen in Tagebauen

OPTIWELLS Energieeffizienter Brunnenfeldbetrieb

System Wassergewinnung

Energetische Optimierung durch:

1) "Smarter" Brunnenfeldbetrieb

2) Pumpenerneuerung

3) "Smarter" Brunnenfeldbetrieb & Pumpenerneuerung

Bestimmung der Systemkennlinie (erforderliche Förderhöhe)

Statische Förderhöhe

Dynamische Förderhöhe

Hintergrund

Energiebedarf

$$E = f\left(\frac{Q \times H}{\eta_{global}}\right)$$

Ziele

Modellierung und Optimierung des spezifischen Energieverbrauchs von Brunnenfeldern

- Pumpenaudits für drei Fallstudien zur Ermittlung der gegenwärtigen Pumpeneigenschaften
- Testen der entwickelten Modellierungs- und Optimierungsmethodiken für die drei Fallstudien und Ableiten von energetischen Optimierungsempfehlungen für die Brunnenfeldbetreiber
- Sensitivitätsanalysen zur Beurteilung des Einflusses der Modelleingangsdaten auf dessen Progosegüte

	A	В	C
Brunnenanzahl	6	5	12
Pumpenanzahl	6	6	16
Ø Förderrate des Brunnenfeldes	70 m³/h	400 m³/h	480 m³/h
Statische Förderhöhe	~ 32 m	35 – 75 m	~ 11 m
Ø spezifischer Energieverbrauch	0,23 kWh/m³	0,45 kWh/m³	0,10 kWh/m³

Pumpenalter (zum Zeitpunkt des Audits)

Fallstudie C
KOMPETENZZENTRUM
Wasser Berlin

Systemkomponenten

Betriebsdatenverfügbarkeit

		Fallstudie			
Verfügbare Parameter		Α	В	С	
Förderrate	e je Pumpe	2-wöchig (Handmessung)	Volumen-Logger (alle 10 Minuten)		
Wasserstand	d im Brunnen	Brunnen 2-wöchig (Handmessung) Wasserstands-Logger			
Druck je Pumpe		X			
Leistungs- aufnahme	Je Pumpe		X		
	Brunnenfeld	wöchentlich	2-wöchig	monatlich	

Methodik

Pumpenaudit (für alle drei Fallstudien)

Methodik

Pumpenaudit (für alle drei Fallstudien)

Entscheidungsunterstützung

Modellierung

Datenanforderungen	Modellierungsansatz		
	Prozess- basiert	Daten- basiert	
Rohrleitungsnetz	٧	x	
Brunnenabsenkkurven für jeden Brunnen	٧	х	
Pumpeneigenschaften			
Pumpenkurven (Q, H)	V	X	
Globale Effizienzkurven je Pumpe (Q, H, E)	V	x	
Spezifische Energieverbauchskurven je Pumpe (Q, E)	X	٧	
Betriebsdaten			
Fördermenge je Pumpe (V)	V	٧	
Förderrate je Pumpe (Q)	V	V	
Leistungsaufnahme je Pumpe (E)	V	V	
Förderhöhe je Pumpe (H)	V	X	
Spezifischer Energieverbrauch des Brunnenfeldes (E/Q)	V	V	

Prognosegüte der Modellierung

Sensitivitätsanalyse für prozessbasierte Modellierung

Audit Pumpeneigenschaften

Hersteller Pumpeneigenschaften

Daten-basierte Optimierungsmodellierung

Wichtigste Ergebnisse

- Sensitivitätsanalyse: aktuelle Pumpeneigenschaften (abgeleitet durch Pumpenaudits) anstelle der Herstellerangaben als Modelleingang verbesserte die energetische Prognosegüte um bis zu 40 % (Fallstudie B, mit bis zu 40 Jahre alten Pumpen)
- Energetische Optimierungsmodellierung
 - Daten-basierter Ansatz ist
 - Weniger zeitaufwendig bei geringeren Datenanforderungen im Vergleich zum prozess-basierten Ansatz, hat aber
 - Ähnlich hohe Progosegüte (~ 5% Fehler i.V. zu Messdaten)
 - Maximales energetisches Einsparpotenzial:

Managamantstratogia	Prozess-basiert		Daten-basiert	
Managementstrategie	Studie A	Studie B	Studie C	
"Smarter" Brunnenfeldbetrieb	3 %	18 %	12 - 20 %	
Kombination von "smartem" Brunnenfeldbetrieb & Pumpenerneuerung	3 %	48 %	Nicht möglich	

Fazit

- Unzureichende Betriebsdaten für Modellierung:
 - beseitigt durch *Pumpenaudits für alle drei Fallstudien*, aber
 - bieten nur einen `Schnappschuss` der Leistungsfähigkeit (d.h. schnell veraltet bei Pumpenerneuerung)
- Umrüstung auf Frequenzumrichter aus energetischer Sicht <u>nicht</u> sinnvoll! (<u>für alle drei Fallstudien:</u> Förderratenschwankungen < ±10%)
- Pumpenerneuerung mit anderem Pumpentyp ist indiziert falls:
 - Falsch dimensioniert (außerhalb von 80 120 % der optimalen Förderrate) oder
 - Globale Effizienz am optimalen Betriebspunkt signifikant niedriger im Vergleich zur gegenwärtig besten verfügbaren Pumpe aus den Herstellerkatalogen

Vergleich mit Pumpendatenbank (D.2.2)

Search a Pump							
⊏Look for pump	with Best E	fficienc	y Point at —				İ
			,	Clear Pump Si	ze and Tolerance Class Filt	er	
Q in m3/h:	200.00	+/-	20.00 %	Pump Size:		•	
H in m:	40.00	+/-	10.00 %	Tolerance Class::	ISO 9906 (1999) - Class 2	•	Search
							,

Entscheidungsunterstützung

Dank an unsere Partner

für die Projektfinanzierung und die gute Zusammmenarbeit (B. David, M. Alary, K. Böhm und M. Biegel)

für die fachliche Unterstützung und die Durchführung der Pumpenaudits (Fachbereich Fluidsystemdynamik, Prof. Thamsen: S. Wulff, S. Gerlach, A. Bauer)

Dank an unsere Partner

für die Projektfinanzierung und die gute Zusammmenarbeit (B. David, M. Alary, K. Böhm und M. Biegel)

für die fachliche Unterstützung und die Durchführung der Pumpenaudits (Fachbereich Fluidsystemdynamik, Prof. Thamsen: S. Wulff, S. Gerlach, A. Bauer) www.kompetenz-wasser.de/OPTIWELLS-2.547.0.html

Q Suchen

FORSCHUNG

Grundwasser

- → OPTIWELLS 2
- → T-MON
- → Archiv

Oberflächenwasser

- → FLUSSHYGIENE
- → KURAS
- → netWORKS
- → NITROLIMIT
- → RELIABLE SEWER.
- → SEMA-Berlin
- → Archiv

Wasseraufbereitung und Abwasserbehandlung

- → AquaNES
- → DEMOWARE
- → IST4R
- → NewFert
- → OEMP
- → PHORWarts
- → POWERSTEP
- → SMART-Plant
- → TestTools
- → Archiv

Mitwirkung an

OPTIWELLS 2 - Betriebsoptimierung von Trinkwasserbrunnen

Projekttitel Optimierung der Energieeffizienz des Brunnenfeldbetriebes

(Phase 2)

Projektnehmer Kompetenzzentrum Wasser Berlin gGmbH mit Kooperationspartner TU

Berlin, Fachgebiet Fluidsystemdynamik

Projektvolumen 400.190 €

Projektbeginn 01.06.2012

Laufzeit 28 Monate

Kurzbeschreibung Vor dem Hintergrund steigender Energiepreise und der Debatte zum

Klimawandel spielt das Thema der Energieeffizienz auch in der

Trinkwassergewinnung eine immer größere Rolle.

Die in der ersten Projektphase durchgeführte Machbarkeitsstudie hat gezeigt, dass die wesentlichen Energieeinsparungen durch intelligente Brunnenfeldsteuerung sowie Investitionen in neue Pumpentechnik erzielt werden können. Dabei ist das aufeinander abgestimmte Zusammenwirken von Pumpen, Brunnen, Grundwasser- und Rohwasserleitungen der Schlüssel für einen energieoptimierten Brunnenfeldbetrieb.

In der zweiten Projektphase soll nun über mathematische Modelle die Kopplung dieser Systemkomponenten simuliert und anschließend im technischen Betrieb validiert werden. Am Ende der theoretischen und praktischen Untersuchungen steht die Entwicklung eines Werkzeugs, das Wasserversorgern dabei unterstützen kann, bei der Suche nach Einsparmöglichkeiten im Brunnenbetrieb die wesentlichen Optimierungskriterien und Randbedingungen zu identifizieren. Das Vorhaben wird zusammen mit der TU Berlin, Fachgebiet Fluidsystemdynamik, durchgeführt. Veolia finanziert das Vorhaben

alsSponsor.

Download Fact Sheet

Optiwells-2 Synthesis Report

