IONOSPHERIC DATA

ISSUED MAY 1951

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON,D.C.

IONOSPHERIC DATA

CONTENTS

					Į.	Page	
Symbols, Terminology, Conventions	• •	0	0	٥	2		
World-Wide Sources of Ionospheric Data .	0 0	0	•	9	5		
Hourly Ionospheric Data at Washington, D.	C.	•	6	0	7.	12, 19, 4	5
Ionospheric Storminess at Washington, D. (3.	0	9	0	7.	31	
Radio Propagation Quality Figures		٠		0	7.	32	
Observations of the Solar Corona	6 9	۰	•	e	9,	34	
Relative Sunspot Numbers	0 0	•	٥	6	8,	33	
Observations of Solar Flares		0		0	10,	40	
Indices of Geomagnetic Activity	9 0	0		Ф	10,	41	
Sudden Ionosphere Disturbances	9 0	0	•	•	11,	42	
Tables of Ionospheric Data	• •	•	•	•	12		
Graphs of Ionospheric Data	0 0	Φ.	•	•	45		
Index of Tables and Graphs of Ionospheric	Date	3					
in CRPL-F81		0		0	66		

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less-than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when for is less than or equal to for, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Pre	dicted :	Supepot	Humber	,	
	1951	1950	1949	1948	1947	1946	1945
December		86	108	114	126	85	38
Movember		87	112	115	124	83	36
October		90	114	116	119	81	23
September		91	115	117	121	79	22
August		96	111	123	122	77	20
July		101	108	125	116	73	
June .		103	108	129	112	67	
May		102	108	130	109	67	
April	764	101	109	133	107	62	
March	78	103	111	133	105	51.	
February	82	103	113	133	90	46	
January	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 42 and figures 1 to 84 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, Western Australia

University of Graz: Graz, Austria Radio Wave Research Laboratories, National Taiman University, Taipeh, Formosa, China: Formosa, China

French Ministry of Naval Armaments (Section for Scientific Research):

Dakar. French West Africa

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Poitiers, France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:
Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt, Holland

All India Badio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Radio Regulatory Commission, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:
Christchurch, New Zealand
Barotonga, Cook Is.

Morwegian Defense Research Establishment, Kjeller per Lillestrom, Morway: Oslo. Morway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden: Kiruna, Sweden

United States Army Signal Corps: Okinawa I.

White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Eaton Rouge, Louisiana (Louisiana State University)

Boston, Massachusetts (Harvard University)

Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui, Hawaii

San Francisco, California (Stanford University)

Trinidad, British West Indies

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 43 to 54 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D. C.

Table 55 presents ionosphere character figures for Washington. D. C., during April 1951, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 56 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, March 1951, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths; the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the C-figure scale. Each report is given a statistical weight which is the reciprocal

f the departure from linearity. The half-daily radio propagation quality ligure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

RELATIVE SUNSPOT NUMBERS

Table 57 lists the daily provisional Zurich relative sunspot mambers, Rz, as communicated by the Swiss Federal Observatory. The American sunspot numbers which in the past were included in this table are now being prepared on a slower schedule and therefore do not appear in this issue.

OBSERVATIONS OF THE SOLAR CORONA

Tables 58 through 60 give the observations of the solar corona during April 1951 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 61 through 63 list the coronal observations obtained at Sacramento Peak, New Mexico, during April 1951, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 58 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 59 gives similarly the intensities of the first red (6374A) coronal line; and table 60, the intensities of the second red (6702A) coronal line; all observed at Climax in April 1951.

Table 61 gives the intensities of the green (5303A) coronal line; table 62, the intensities of the first red (6374A) coronal line; and table 63, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in April 1951.

The following symbols are used in tables 58 through 63: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

OBSERVATIONS OF SOLAR FLARES

Table 64 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories:
Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High
Altitude at Sacramento Peak, New Mexico. The remainder report to
Meudon (Paris), and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares
reported from Sacramento Peak, New Mexico, communicated by the High
Altitude Observatory at Boulder, Colorado, are provided by Harvard
University as the result of work undertaken on an Air Material Command
Research and Development Contract administered by the Air Force Cambridge
Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 65 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale O (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of

each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5 is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published-in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Tables 66, 67, 68, 69, and 70 list the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, April 1951; in England, March and April 1951; at Point Reyes, California, April 1951; at Riverhead, New York, April 1951; and at Hong Kong, China, February 1951, respectively.

				Table	e <u>1</u>			
Washing	ton, D.	0. (38.7	°N. 77.1	W)				April 1951
Time	h!F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	4.2						2.7
01	300	4.1						2.7
02	290	3.8						2.8
03	280	3.4						2.8
Off	280	3.0						2.8
05	300	3.0						2.9
06	270	4.2	250	*****	120	2.0		3.1
07	300	5.0	240	3.8	110	2.5		3.1
08	340	5.3	220	4.1	110	2.9		3.0
09	360	5.6	210	14 . 14	110	3.1		2.9
10	420	5.4	200	4.5	110	3.2		2.8
11	380	6.0	200	4.6	110	3.4		2.8
12	380	6.3	210	4.7	100	3.4		2.8
13	350	6.8	220	4.7	110	3.5		2.8
14	330	6.8	230	4.5	110	3.4		2.9
15	330	6.8	230	4.5	110	3.3		3.0
16	310	6.6	230	4.2	110	3.0		3.0
17	290	6.8	240	4.0	110	2.7		3.0
18	270	7.0	250	40*0-	120	2.1		3.0
19	240	6.8			-	-		3.0
20	240	6.2						3.0
21	250	5.2						2.8
22	270	5.0						2.8
23	290	4.6						2.7

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

		0		Table 3				
Oslo,	Morway (6	0.0°H, 1	1.0°E)					March 1951
Time	E.135	folia	h'Fl	foF1	h ! E	fol	fBs	(M3000)F2
00	305	2.5					2.2	2.8
01	3 15	2.4					2.4	(2.8)
02	310	2.3					2.6	2.8
03	300	2.2					2.4	2.9
04	305	(2.0)					2.4	2.9
05	300	1.9					2.2	3.0
06	265	2.4					2.4	3.1
07	245	3.7			115	2.0		3.2
08	245	5.0	220		110	2.2	2.2	3.2
09	260	5.4	215	3.5	106	2.4		3.2
10	265	5.7	210	3.8	105	2.6		3.1
11	280	6.3	200	4.0	105	2.7		3.2
12	275	6.3	200	4.1	100	2.8		3.2
13	275	6.3	210	4.0	100	2.8		3.2
14	270	6.2	210	4.0	105	2.7		3.2
15	250	6.6	216	3.6	105	2.6		3.2
16	245	6.4	225	3.1	110	2.4		3.3
17	230	6.2	230		120	2.1		3.3
18	230	6.0			130	1.9	2.0	3.2
19	230	6.1					2.0	3.2
50	235	5.2						3.1
21	245	(4.6)						(3.1)
23	360	3.4						3.0
23	290	(8,8)						(3.0)

23 290 (2,8)

Time: 15,0°B,

Sweep: 1.3 Mc to 14.0 Mo in 8 minutes, automatic operation.

Gras.	Anstria	(47.1°N.	15.5°E)	Table	<u>5</u>			March 1961
Time	P.155	fol2	h'F1	foF1	h ! E	fol	fBs	(H3000)F2
00	T							
01	1							
02	1							
03	İ							
04								
05	380	2.9						
06	. 280	3.5						
07	230	5.2						
08	220	6.3		(3.4)	110	2.8	3.5	
0.9	250	6.9	500	4.0	110	2.9	3.6	
10	280	7.7	200	4.3	110	3.2	3.7	
11	280	7.6	200	4.5	110	3.2	3.5	
12	280	7.6	500	4.5	110	3.3	3.7	
13	280	7.4	200	4.4	100	3.3	3.7	
14	280	7.3	500	4.2	110	3.2	3.6	
15	250	7.2	310	(3.9)	110	3.0	(3.6)	
16	240	7.5	(330)			(2.7)	(3.5)	
17	240	7.3					(3.5)	
16	230	7.0						
19	250	6.3						
30	250	4.6						
21	1							
33								
23								

Time: 15.0°B.
Sweep: 2.6 No to 12.0 No in 2 minutes.

				Table	2			
kimma,	Sweden	(67.8°N,	30.5°£)					March 1951
Time	F:15	foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)#2
20	(330)	3.0					4.1	
01	325	2.9					3.8	
02	(315)	2.8					2.7	
03	305	2.8					2.8	
04	300	2.4						
05	290	2.7						
06	580	3.5				or whole		
07	260	4.1			110	1.8 -		
08	245	4.9	220	3.5	110	2.0		
09	265	5.0	230	3.6	105	3.1		
10	280	5.4	230	3.7	110	3.3		
11	390	3.7	820	3.6	105	2.4		
12	290	5.8	250	3.7	110	2.4		
13	280	5.9	550	3.7	110	2.4		
3.4	260	5.8	220	3.4	110	2.2		
15	230	5.5			110	2.2		
16	240	5.2			110	1.8		
17	250	4.6				1.8	2.2	
18	250	4.2					2.7	
19	255	4.2					3.4	
20	260	3.5					2.9	
21	2 95	3.1					3.2	
22	(290)	3.0					3.5	
23	(335)	2.9					4.0	

23 | (335) 2.9 Time: 15.00E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

				Table	4			
De Bil	t, Hollan	d (52.1°	N. 5.20		_		М	arch 1951
Time	P;15	foF2	h'Fl	foFl	h!E	foE	₹Es	(M3000)35
00	300	3,2						2,8
01	300	3.2					2.0	2.7
02	300	3.0					2.0	2.8
03	290	3.0					2.2	2,8
04	290	2.6					2.1	2.8
05	(290)	2.5					2.0	2.8
06	250	3.8				1.7		3,1
07	225	5.2	220	3.3	110	2,1		3.2
08	250	6.0	210	3.4	105	2.5		3.2
09	275	6.3	210	4.0	105	2.7	3.3	3,1
10	290	7.2	205	4.4	105	3.0	3.6	3.1
11	270	7.2	200	4.5	105	3.0		3.2
12	290	7.2	200	4.5	105	3.1		3.1
13	290	7.4	210	4.4	105	3.1		3,2
14	280	7.6	216	4.3	105	3.0		3.2
15	270	7.4	220	4.0	105	2.8		3.1
16	240	7.0	230	3.5	110	2.4		3.2
17	240	6.9			115	2.0		3.2
18	220	6.9				1.4		3.1
19	230	6.1						3.1
20	225	5.3						3.1
21	255	4.2						2.9
22	285	3.7						2.8
23	300	3.4						2.8

Z3 | 300 3.4

Time: 0.0°.

Sweep: 1.4 Mc to 16.0 Mc in 7 minutes, automatic operation.

Boston.	Massach	usette (42.4 ⁹ N	Table (<u>5</u>			March 1951
Time	h'72	foF2	h [†] F1	foF1	h'E	foE	fla	(M3000)F2
00	290	3.2						3.0
01	280	3.0						3.0
02	280	2.8						2.9
03	270	(2.9)						(3.0)
04	280	2.8						3.0
05	290	2.6						3.0
06	230	3.4						3.3
07	230	4.8			110	2.3		3.4
08	220	5.6	200	3.8	110	2.6		3.3
09	250	6.0	190	3.9	100	2.8		3.3
10	270	6.4	180	4.0	100	2.9		3.3
11	280	6.7	190	4.2	100	3.1		3.3
12	290	6.7	200	4.4	100	3.1		3.2
13	280	6.9	200	4.3	110	3.1		3,2
14	280	6.9	210	4.2	110	3.0		3.2
15	270	7.0	210	4.0	110	2.8		3,2
16	250	6.8	220	3.7	110	2.6		3.2
17	220	6.9			120	2.3		3.4
18	210	6.6						3.3
19	330	6.9						3.3
20	230	6.6						3,2
21	240	4.6						3,2
22	260	3.9						3.0
23	280	(3.6)						(3.0)

Time: 76.0°W.
Sweep: 0.8 Mc to 15.0 Mo in 1 minute.

				Tabla '				
San Fr	ancisco.	Californ	ia (37.4	°N, 122.	20 W)		М	arch 1951
Time	P.LS	foF2	h'F1	foFl	h'E	foE	fEs	(M3000) F2
00	300	3.7						2.9
01	300	(3.7)						(2.9)
02	300	(3.6)						(2.9)
03	300	(3.7)						(2.9)
04	290	3.6						2.9
05	300	(3.2)						(8.9)
06	300	3.8						3.0
07	250	5.4						3,2
08	260	7.2	240	3.7	130	2.5		3,2
09	260	7.6		4.3	120	(2.9)		3.1
10	290	7.8	550	4.5	120			3.0
11	300	8.5	220	4.7	120			2.9
12	290	9.2	220	4.8	120			3.0
13	290	8.6		4.8	120			3.0
14	280	8.4	230	4.6	120			3.1
15	280	8.2		4.4	120			3,1
16	260	7.6		4.0	120			3,2
17	250	7.6		3.7	3 20	2.4		3.3
18	240	6.8						3.3
19	240	5.1						3.2
20	250	4.4						3.1
21	280	3.9						3.0
5.5	280	(3,8)					2.2	(2.9)
23	300	(3.7)						(8.8)

Time: 120.0°W.
Sweep: 1.3 Mc to 18.0 Mc in 4 minutes.

				Table	9			
Okinaw	a 1. (26.	3°8. 127	.8°E)					March 1951
Time	P112	foF2	h'F1	foFl	h ! E	fol	flic	S4(000EM)
00	260	5.3						2.9
01	250	5.1						2.9
02	240	4.9						3.1
03	550	4.6						3.2
04	230	3.2						3.0
05	250	3.0						3.0
06	260	3.6						3.1
07	230	6.6			110	2.2		3.3
08	260	8.0	230		110	8.8		3.2
09	280	9.4	S S 0		110	3.1		3.1
10	280	10.8	SS0		110	(3.3)	3.2	3.1
11	300	11.9	\$50		110	3.4	3.3	3.0
12	290	13.2	220		110	3.4	3.6	3.0
13	280	14.2	550		110	3.5	3.3	3.1
14	270	14.2	SS0		110	3.4	3.6	3.1
15	260	14.1	220		110	3.2	2.9	3.1
16	250	12.4	230		110	2.9	3.5	3.1
17	240	11.1	230		110	2.4	3.3	3.2
18	230	10.2					2.2	3,2
19	\$50	8.7					1.9	3.2
20	550	7.2						(3.0)
21	250	6.6						2.8
55	280	6.2						2.9
23	280	5.8						2.9

Time: 127.5°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 escends.

Ouam 1	. (13.6°N,	144.90	E)	Table 1	1		March 1951		
Time	₽1 <u>1</u> S	foF2	h'F1	foFl	hIE	fol	fEs	(M3000)F2	
00	240	9.8					3.0	3,2	
01	230	9.2					2.1	3,3	
02	230	7.9						3.4	
03	230	5.9						3.3	
04	230	4.8					1.5	3.3	
05	240	3.7					2.3	3.3	
06	250	3.0					2.9	3.2	
07	250	6.3			130	2.0	3.6	3.3	
08	(260)	8.2	230		110	2.7	3.8	3.2	
09	280	9.6	550		110	3.0	4.1	2.8	
10	300	10.5	210	4.6	110	3.3	4.1	2.4	
11	310	10.1	200	4.7	110	3.4		2.5	
12	310	10.0	200	4.8	110	3.5		2.4	
13	310	10.2	200	4.8	110	3,5		2.4	
14	310	11.0	200	4.7	110	3.4		2.5	
15	310	11.7	210		110	3.2		2.7	
16	290	12.6	230		110	3.0	3.8	2.9	
17	(270)	12.6	240		120	2.7	4.2	2.9	
18	250	12.7			130	2.0	4.0	2.9	
19	280	12.5					3.5	2.8	
20	300	12.1					2.6	2.7	
21	260	11.6					1.8	2.9	
SS	240	11.1					1.9	2.9	
23	230	10.4					1.8	3.0	

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

White	Sanda, New	Mexico	(32.3°N,	Table		м	March 1951		
Time	P.LS	foF2	h'F1	foFl	h'E	fol	fBs	(M3000)13	
00	280	3,6		-				2.8	
01	280	3.6						2.9	
0.2	280	3.7						2.9	
03	260	3.7						3.0	
04	250	3.6						3.0	
05	250	3.4						3.0	
06	260	3.8						3.0	
07	240	5.7	230		110	2.0		3.3	
08	250	6.8	550		110	2.6		3.2	
09	270	7.6	210	4.2	110	2.9		3.2	
10	290	8.2	200	4.6	100	3.1		3.1	
11	290	8.6	200	4.7	100	3.2		3.0	
12	290	9.5	210	4.8	110	3.4		3.0	
13	280	9.6	220	4.8	100	3,4		3.0	
14	280	9.3	220	4.6	110	3.3		3.1	
15	270	8.8	220	4.4	110	3.1		3.2	
16	250	8.6	230		110	2.8		3,2	
17	240	8.2	230		110	2.3	2.4	3.3	
18	520	7.1					2.5	3.3	
19	S 2 0	5.6					2.3	3.2	
20	230	4.3					2.1	3.1	
21	(250)	3.9					1.9	3.0	
55	(270)	3.8						2.9	
23	(280)	3.8						2.9	

23 | (280) 3.8

Time: 105.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Maui, I	Hawaii (2	0.8°5, 1	56.5°W)				1.8 3.0 1.5 3.0 3.0 3.1 3.0 2.9 1.7 2.7 9 3.3 6 3.2 0 5.3 3.0 2 4.7 2.9 4 4.8 2.9 5 4.6 2.8 5 4.4 2.9 4 4.6 3.0 3 4.8 3.0 0 6 3.5 3.2		
Time	P.LS	foF2	h'Fl	foFl	h'E	foE	fBs	(M2000)F2	
00	250	4.5					1.8	3.0	
01	260	3.7					1.5	3.0	
02	260	3.5						3.0	
03	250	3.0						3.1	
04	270	2.8						3.0	
05	270	2.5						2.9	
06	280	2.4					1.7	2.7	
07	250	5.4			130	1.9		3.3	
08	250	7.3	240		120	2.6		3.2	
09	280	8.7	220	3.7	120	3.0	5.3	3.0	
10	300	10.0	220	(4.7)	110	3, 2	4.7	2.9	
11	310	11.0	320	(4.9)	110	3,4	4.8	2.9	
12	310	12.0	220	4.9	120	3.5	4.6	2.8	
13	320	12.5	210	(4.9)	110	3.5	4.4	2.9	
14	300	13.0	220	4.8	110	3.4	4.6	3.0	
15	290	13.0	230	(4.7)	110	3.3	4.8	3.0	
16	280	12.3	230	4.4	120	3.0	4.3	3.0	
17	250	11.7	240		120	2.6	3.5	3.2	
18	240	10.0			120	1.9	8.7	3.3	
19	230	8.1					3.7	3.2	
20	230	6.6					2.1	3.0	
21	240	6.1					2.0	3.0	
22	280	4.9					2.1	2.7	
23	270	4.5					2,1	2.9	

23 270 4.5 Time: 150.0°W, Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table				
Trinid	ad, Briti	sh weet	Indies	(10.75%,	61.6°W)			March 1951
Time	2,114	foF2	h'I'l	roF1	h ! E	folk	fBe	(M2000)F2
00	270	6.0						3.0
01	250	5.8						3.2
02	230	5.4						3.2
03	S S 0	4.8						3.3
04	250	3.8						3.1
05	270	3.2						2.9
06	270	3.5						3.1
07	550	6.0			120	2.2	3.0	3,5
08	240	7.3	220	4.2	110	2.8	3.4	3.4
09	260	8.5	220	4.6	110	3,2	3,8	3.2
10	280	10.0	220	5.0	100	3.6	4.2	3.1
11	280	11.1	200	5.0	100	3.7	4.3	3.1
12	280	11.5	200	5.0	100	3.8	4.3	3.1
13	280	11.8	200	5.0	100	3.8	4,4	3.1
14	270	12.0	200	4.9	100	3.6	6,4	3.1
15	270	12.0	200	4.7	100	3.4	4.4	3,1
16	250	11.5	220	4.3	110	3.1	4.3	3.2
17	240	10.6	220	3.8	110	2.6	3.6	3,2
18	230	9.9					3.0	3,2
19	230	8.7					2.2	3.2
20	230	8.1						3.0
21	240	7.3						2.9
55	270	6.2						2.8
23	280	6.0						2,9

Time: 60.0° W.
Sweep: 1.2 Mc to 19.5 Mc, manual operation.

				Table 1	13					
Huanca	yo, Peru	(12.0°S,	75.3°W)		_		ж	arch 1951		
Time	P.LS	foF2	h'F1	foFl	h'E	foE	fEe	SI(000EK)		
00	220	8.9					3.5	3.2		
01	220	8.0					3.7	3.1		
02	230	6.3					3.7	3.2		
03	250	5.6					3.5	3.2		
04	260	5.0					3.2	3,2		
05	280	4.5					3.1	3.2		
06	280	4.9			110		3.2	3.1		
07	250	8.0			100	2.5	4.1	3.3		
08	280	9.9	220		110	3.0	7.5	3.1		
09	300	10.8	220	(4.8)	110	3.2	10.5	2.8		
10	300	10.4	210	4.8	310	(3.5)	10.8	2.4		
11	320	10.1	210	4.9	110	(3.6)	10.6	2.5		
12	320	9.2	210	4.8	110	(3.6)	10.7	2.5		
13	320	9.2	210	4.8	110	(3.6)	10.6	2.5		
14	300	9.4	210	4.7	110	(3.6)	10.7	2.5		
15	300	9.9	210		110	(3.5)	10.6	2,5		
16	550	10.2	200		110	(2.9)	10.3	2.5		
17	260	9.9			100	2.4	8.0	2.5		
18	280	9.9			110		3.2	2.5		
19	320	9.0					2.9	2.4		
20	310	9.2					3.1	2.5		
21	280	9.6					3.0	2.8		
22	230	9.1					3.2	3.0		
23	230	9.2					3,2	3.0		

Time: 75.0°W.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Graz,	wstria (-	47.1°N,	15.5°E)	Table 1	15	February 1951		
Time	P. ES	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	250 230 220 220 220 250 250 250 220 220 220 22	4.2 5.8 7.2 8.0 7.9 7.7 7.6 7.6 7.6 5.7 4.6	(220) 210 210 210 210 210	(3,9) 3.8 4.3 4.3 4.3	h'E	for	3.0 3.1 3.0	(83000)F2
21 22 23								

Time: 15.0°E.
Sweep: 2.5 Mc to 12.0 Mo in 2 minutes.

Wakkan	ai, Japan	(45.4°H	. 141.70	E)			Feb	ruary 1951
Time	F.LS	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	300	3.5						2.8
01	300	3.4						2.8
02	300	3.4						8.8
03	300	3.5						2.9
04	280	3.4						3.0
05	280	3.3						2.9
06	250	3.6						3.0
07	230	5.8			110	1.7		3,2
08	240	7.5			110	2.2		3,2
09	250	8.5	240		110	2.6		3.2
10	270	8.7	250		110	2.9		3.2
11	270	9.2	250		110	2.9		3.2
12	260	8.8	250		110	3.0		3.2
13	260	8.5	330		110	3.0		3.3
14	260	8.1	230		110	2.9		3.3
15	250	7.6			110	2.6		3.3
16	250	7.1	-		110	2,3		3.2
17	230	6.2			100	1.7		3.2
18	240	5.4					1.6	3.1
19	240	4.6						3.2
20	280	4.0						3.0
21	290	3.8						3.0
22	300	3.6						2.9
23	300	3.7						2.8

Time: 135,0°E.
Sweep: 1.0 Mo to 17.0 Mc in 15 minutes, manual operation.

				18016 1	14			
Kiruna,	Sweden	(67.8°N.	20.5°E)		_		Febr	uary 1951
Time	P,15	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	(300)	(3.4)					4.2	
01	(305)	3.4					3.7	
02	(280)	3.6					3.7	
03	280	2.9					2.6	
04	280	3.3					2.4	
05	260	2.9						
06	270	2,5						
07	260	3.0						
08	250	4.1				-		
09	2.10	4.7						
10	240	5.4				2.0		
11	240	5.8				2.1		
12	240	6.0						
13	240	6.3						
14	240	5.6				1.9		
15	240	5,2						
16	230	4.1					1.0	
17	225	3.6					2.0	
18	250	3.3					2,8	
19	(255)	3,4					3.9	
20	(275)	(3.1)					4.2	
21	(290)	3.2					4.2	
22		(3.0)					4.2	

22 --- (3.0) 23 --- (3.3) Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 eeconds.

Schware	enburg,	Switzerl	and (46	Table			Fehr	uary 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(HZ000)F:
00	320	3,2						
01	300	3.1						
02	300	3.1						
03	300	3.0						
04	310	2.9						
05	300	2.7						
06	300	2.3						
07	300	2.9						
08	250	4.8			110	1.8		
09	230	6.5			100	2.1		
10	230	7.0			100	2,5		
11	230	7.0			100	2.7		
12	220	7.5			100	2.9		
13	220	7.6			100	2.8		
14	220	7,5			100	2.8		
15	230	7.5			100	2.6		
16	240	7.5			100	2.4		
17	230	7.0			110	2.0		
18	220	6.5			100	1.8		
19	230	5.0				-		
20	250	4.3						
21	300	3.5						
22	300	3.1						
23	300	3.0						

Time: 15.0°E.
Sweep: 1.0 Mc to 25.0 Mc, automatic operation.

Akita,	Japan (3	9.7°N, 1		able 18			Febr	uary 1951
Time	P.LS	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	290	3.8						2,9
01	280	3.6						2.9
02	280	3.7						2.9
03	270	3.4						2.9
04	260	3.5						3.0
05	270	3.4						2.9
06	270	3.3						3.1
07	230	5.8			130	1.9		3.4
08	230	7.7			120	2.4		3,4
09	240	8.7	230		110	2.8		3.4
10	250	9.6	230		120	3.0		3,3
11	250	9.9	230		120			3,3
12	250	9.3	240		110			3.4
13	250	8.8	230		120	3.0		3,3
14	240	8.5	220		110	3.0		3.3
15	240	8.0	220		120	2,8		3.4
16	240	7,7			120	2.4		3,4
17	230	6.6			120	1.9		3.3
18	230	5.8					1.9	3.2
19	240	5.1						3,2
20	250	4.2					2.0	3.2
21	270	3.8					.,,	3.0
22	280	3.8						3.0
23	290	3.8						2.9

Time: 135,0°E.
Sweep: 1.0 Mo to 17.0 Mc in 15 minutes, manual operation.

Tokyo,	Japan (3	5.7°N, 1	39.5°E)	Table 19	_		Febr	uary 1951
Time	h'T2	foF2	h'F1	foF1	h‡E	foE	fEe	(M3000)F2
00	270	3,8					1.8	2.9
01	260	3.7					1.6	3.0
02	250	3.8					1.8	3.0
03	260	3.3					1.6	3.0
04	250	3.1					1.5	3.0
06	270	3.0						2.9
06	260	3.0						3.0
07	240	6.1			130	1.6		3.4
08	240	7.5	230	-	110	2.4		3.4
09	250	9.0	230		110	2.9		3.2
10	260	10.3	230		100	3.2		3.2
11	260	10.1	230		100	3.3		3.3
12	250	10.3	240		110	3,4		3.8
13	260	8.6	220		100	3.2		3.3
14	250	8.4	230		110	3.2		3.3
15	250	8.0	230		110	2.9		3.3
16	250	7.5	240		110	2.5		3.4
1?	220	8.9			. 110	1.8	2.5	3.3
18	230	5.8					2.4	3.3
19	230	5.0					2.0	3.2
20	240	4.3					2.2	3.2
21	250	3.8					2.2	3.0
22	270	3.6					1.9	3.0
23	260	3,8					1.6	2.8

Time: 135.0°E. Sweep: 1.0 Nc to 18.5 Mo in 2 minutes.

Baton I	Rouge, Lo	uisiana (30.5°H,	Table 21 91.2°W)			February 1951		
Time	h'T2	foF2	h'Fl	foFl	h1E	foE	1Bq	(M3000)F2	
00	330	(3.6)						(8.8)	
01	310	3.8						2.8	
02	320	3.8						2.9	
03	310	(3.8)						(2.8)	
04	300	3.8						2.9	
05	320	3.6						2.9	
06	320	3.6						2.8	
07	270	5.6						3.2	
08	270	7.0	250	-	130	-		3.2	
09	290	7.7	240	-	130	00000		3.1	
10	290	8.6	250		120			3.0	
11	300	8.9	240		120			2.9	
12	310	9.3	250	(4.8)	(120)	-		2.9	
13	320	9.4	250	(4.8)	120	-		2.9	
14	300	9.4	260	(4.6)	(120)			3.0	
15	290	8.7	260	-	120			2.9	
16	290	8.8	270		130			3.0	
17	270	8.4						3.2	
18	250	6.8						3.1	
19	270	5.5						3.2	
20	290	4.1						3.0	
21	300	(3,5)						2.8	
22	320	3.2						2.8	
23	340	(3.5)						(27)	

23 340 (3,5)
Time: 90,0°W.
Sweep: 2.05 Mc to 14,3 Mc in 5 minutes, automatic operation.

Table 23 Johanneeburg, Union of S. Africa (23.2°S, 28.1°E) February 1951											
Time	Fills	foF2	h'F1	foFl	h * E	foE	fEg	(M\$000)JES			
00	280	4.4						2.9			
01	250	4.2					1.8	3.0			
02	250	3.8					2.1	3.0			
03	260	3, 5					1.8	2,9			
04	260	3.0						3.0			
05	260	2.8					1.6	3.9			
06	260	4.1			140	1.7		3.1			
07	270	5.8	240		120	2.4		3,1			
08	300	6.6	230	4.4	110	2.9	3.6	2.9			
09	330	7.4	220	4.6	110	3.2	4.0	3.8			
10	340	8.0	210	4.8	110	3.4	4.2	2.8			
11	330	8.9	210	4.8	110	3.6	4.2	2.8			
13	320	9.2	210	4.9	110	3.7	4.0	2.9			
13	320	9.0	210	4.8	110	3.7	4.0	2.8			
14	320	8.6	210	4.8	110	3.6	3.8	2.9			
15	300	8.5	210	4.7	110	3.5	4.0	3.0			
16	300	8.0	550	4.5	110	3.2	4.0	3.0			
17	230	7.2	230	(4.0)	120	2.9	3.5	3,1			
18	250	7.0	240		120	2.2	3.0	3.2			
19	240	6.6			49-140-150		1.0	3,1			
20	240	6.0					2.0	3.0			
21	250	5.1					3.0	3.0			
22	260	4.0					2.1	2.9			
23	280	4.4					2.0	3.8			

Time: 50.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconde.

Yamaga	wa, Japan	Peb	ruary 1951					
Time	h'T2	foF2	h'\$1	foFl	h1E	foB	fEs	(M3000)F2
00	280	3,8					1.7	3.0
01	290	3.6						2.9
02	270	3.5						3.0
03	270	3.5						3.1
04	260	3.2						3.0

Table 20

00	280	3.8					1.7	3.0	
01	290	3.6						2.9	
02	270	3.5						3.0	
03	270	3.5						3.1	
04	260	3.2						3.0	
05	270	2.8						3.0	
06	300	2.6						2.9	
07	280	4.2				E		3.1	
08	250	7.2	230		110	2.2		3.4	
09	250	8.4	230		110	2.7	3.3	3.3	
10	280	9.2	550		110	3.0	3.6	3.2	
11	280	11.7	230		100	3.3	4.0	3.2	
12	270	11.7	220		100	3.5	4.4	3.3	
13	270	10.6	220		110	3.4	4.1	3.2	
14	270	10.2	230	-	100	3.4	4, 3	3.2	
15	270	9.6	230		110	3.2	4.0	2.3	
16	260	8.9	230		110	2.7	3.8	3.3	
17	250	8.5	240		110	2.4	3.8	3.3	
18	230	7.2		PR-00-19	110	1.7	2.6	3.4	
19	230	6.0					2.6	3.3	
20	240	5.4					2.2	3.2	
21	240	4.8						3.2	
22	260	4.0						3.0	
2.2	200	7 0							

23 | 290 3,9
Time: 135,0°E.
Sweep: 1.0 Mc to 18,5 Mc in 15 minutes, manual operation.

				Table	22			
Formosa	. China	(25.0°E,	121.0°E)				Febr	uary 1951
Time	P.1.S	foF2	h'F1	foFl	h I Z	foB	fEe	(M3000)13
00	(240)	(4.6)						(3,7)
01	(240)	(4.6)						(3.8)
02	(235)	(4.2)						(3.8)
03	(280)	(3,6)						(3.5)
04	(280)	(3.6)						(8.8)
05	(250)	(3.8)			-			(2,5)
06	280	3.0						3,5
07	240	6.3	210	4.1		-		3.7
08	230	9.9	200	4.2	100	3.0	3.1	3,9
09	240	9.7	200	4.5	100	3.0	3.5	2.7
10	245	12.4	200	4.6	100	3.1	4.2	3.6
11	240	13.4	200	4.7	200	3.4	4.6	3.6
12	245	13.8	200	5.0	100	3.4	4.8	3.5
13	265	18.0	200	4.9	100	2.4	4.4	3.5
14	260	13.8	S00	4.6	100	2.2	4,3	3.6
15	250	12.3	510	4.6	100	3.3	4.3	3.4
18	240	12.2	510	4.1	100	3.4	3,8	3.8
17	220	11.3	210	3.9	100	3.1	3.1	3.7
18	240	11.0			-			3,3
19	240	10.5	77 (0.00)	********		-		3.5
20	(300)	(7.6)	63-79-61	#14 ET (FF)				(4.0)
21	(200)	(7.2)						(3.7)
33	(215)	(6.6)		-				(3.7)
23	(230)	(5.7)						(2.2)

Tine: 120.0°B. Swaep: 2,3 Me to 14.5 Me in 15 minutes, ganual operation.

Table 24								
Capeto	ma, Union	of S.Af	rica (34	.208, 18	. 3°B)		Feb	ruery 1951
Time	Fills	foF2	h1F1	foFl	h ! Z	foB	2Bs	(MSOOO)#2
00	280	4.0						2.8
01	230	3.6					1.6	3.8
02	270	3.6					1.8	2.9
03	370	3.3					2.1	2.9
04	270	3.2					2.1	2.9
05	290	3.0					3.0	8.8
06	\$80	3, 1			-	B		9.2
07	250	5.0	280	*****	1.30	2.0		3.1
08	300	5.8	240	4.1	120	2.6		3.0
09	340	6.6	230	4.4	110	3.0	3.5	8.8
10	350	7.2	220	4.6	110	3.2	3.8	2,8
11	340	8.0	330	4.6	110	2.4	4.0	3.6
12	330	8.4	210	4.8	110	2.5	4.0	2.8
13	340	8.4	210	4.9	110	3.6	3.9	3.0
14	340	8.2	310	4.8	110	2.6	3.9	2,8
15	320	8.1	550	4.9	110	3.4	3,7	3.9
16	310	6,1	320	4.6	110	2.2	3.8	2.9
17	\$30	7.2	230	4.3	120	3.1	3.6	3.0
18	270	6.6	230	3,9	120	2.7	3.2	3.1
19	360	8,2	250	-	120	8.0	2,4	3.1
30	560	6.0						3.1
\$1	240	. 5.1						3.0
22	350	4.0						3.0
23	280	4.0						3.8

Finot 20.0°E. Swamp: 1 Mc to 16.0 Me in ? seconds.

				Table	25			
Kiruna,	Sweden	(67.8°№,	20.5°E)				Jan	ary 1951
Time	p.ES	foF2	h'F1	foFl	h1E	foE	fEe	(M3000)F2
00		(3.6)					4.4	
01	(300)	3.6					3.6	
03	(295)	3.3					3.3	
03	280	3.4					2.4	
04	270	3.1					2.5	
05	260	8.8						
08	250	2.6						
07	(260)	2.3						
08	250	2.6						
09	230	4.0						
10	220	4.9			105	1.9		
11	215	5.6			100	2.0		
12	220	6.1			100	2.1		
13	210	5.8						
14	210	5.3						
15	550	4.3						
16	240	3.2						
17	(260)	3.5					2.3	
18		(3.0)					3.9	
19		(3.7)					4.3	
20	(280)	(3.1)					4.2	
21		(2.9)					4.4	
22		(4.1)					5.0	

23 --- (3.8)
Time: 15.0°E.
Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

Sohwarsenburg, Switserland $(46.8^{\circ}\overline{B}, 7.3^{\circ}\overline{E})$ January										
Time	P.ES	foF2	h'F1	foF1	h1E	foE	fBe	(M3000)F2		
00	260	3.4								
01	300	3.2								
03	290	3,3								
03	280	3.5								
04	250	3.3								
05	230	2.9								
06	250	2.6								
07	270	2.5								
08	220	4.2					2.1			
09	200	6.1			110	2.2				
10	310	7.3			100	2.4		•		
11	550	8.0			100	3.7	•	•		
12	200	7.6			100	2.8				
13	210	7.5			100	2.8				
14	220	7.4			100	2.7				
15	220	7.0			100	a. 5				
16	210	6.5			100	2.2				
17	210	6.2			110	1.9				
18	810	4.7								
19	220	4.0								
50	240	3,7					2.4			
21	250	3.3								
33	300	3.2								
23	300	3,2								

Time: 15.0°E. Sweep: 1.0 Nc to 25.0 Nc. automatic operation.

Schwar	Table 29 Chwarsenburg, Switzerland (46.8 ⁶ H, 7.3 ⁶ H) December 1960											
Time	Fils	foF2	h'Fl	foF1	h1E	foB	fEg	(M3000)F2				
00	300	3.3										
01	260	3.4										
02	360	3.4										
03	270	3.2				10.00						
04	260	3.0										
05	260	2.7										
06	250	3.0				de directo						
07	230	2.8			~ ~ ~							
80	210	4.1				-						
C9	200	8.1			110	2.2						
10	200	7.0			100	2.5						
21	210	7.7			100	2.7						
12	210	7.6			100	2.8						
13	200	7.4			100	2.7						
14	210	7.5			100	2.8						
15	210	7.1			110	3.4						
16	300	6.4			110	3.3						
17	300	5.6			100	2.0						
18	200	4.1				40.000						
19	550	3.8										
20	240	3.4										
21	250	3.2										
22	280	3,2										
23	300	3.0										

Time: 15.0°E, Sweep: 1.0 Fo to SS.0 Me, automatic operation.

				Table	26			
Lindau,	Harz, Ger	many (5	1.6°N, 10	0.1°E)			J	anuary 1951
Time	h'F2	foF2	h'F1	foFl	h1E	foE	fBg	\$1(000SK)
00	280	2.8					2,2	2.9
01	280	2.9					2.4	2.8
02	280	2.9	•				2.4	2.8
03	260	2.8					2.6	2.9
04	260	2.6					2.4	2.9
05	250	2.4					2.4	3.0
06	250	2.0					2.5	3.0
07	280	5.0					2.4	3.0
08	230	3.9					2.8	3,2
09	210	6.0			110	1.8	3.3	3.4
10	210	6.8			100	2.2	3.5	3.4
11	210	7.4			100	2.4	3.6	3.4
12	210	7.8			100	2.6	4.6	3.4
13	210	7.2			100	2,5	5.0	3.4
14	320	6.8			110	2.4	4.0	3.4
15	210	6.6			110	2.1	3.5	3.4
16	210	6,1			120	1.7	3.3	3.4
17	210	5.5					2.8	3.3
18	210	4.3					2.3	3.2
19	220	3.4					2.3	3.2
50	260	2.8					1.8	3.0
21	290	2.8					2.0	2.9
22	290	2.8					2.0	2.9
23	290	2.8					2.4	2.7
-								

Time: 15.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Wather	00, W. Au	stralia	(30.3°S,	115.9°E	:)	_	January 1951		
Time	h'F2	foF2	h'F1	foFl	h1E	foE	fBo	(M3000)F2	
00	270	5,5					4.7	2.9	
01	260	4.9					4.8	2.9	
SO	250	4.4					4.0	2.9	
03	250	3.9					3.6	2.9	
04	260	3.6					3,3	2.9	
05	270	3.4					2.9	2.8	
06	250	4.3	260	3.3		1.9	3.4	3.1	
07	310	5.0	230	4.1		2.6	3.8	3.1	
08	350	5.5	230	4.4		3.1	4.5	2.9	
09	390	5.8	210	4.6		3.3	4.5	2.8	
10	380	6.4	220	4.7		3.5	5.4	2.9	
11	360	7.4	200	4.8		3.6	5.7	2.8	
12	350	7.4	200	4.8		3.7	4.8	2.8	
13	350	7.6	210	4.8		3.6	4.5	2.9	
14	340	7.4	200	4.8		3.6	4.6	2.9	
15	330	7.3	210	4.7		3.4	4.6	2.9	
16	320	7.0	230	4.5		3.3	4.6	3.0	
17	300	6.5	220	4.3		3.0	4.0	3.0	
18	260	6.2	230	3.7		2.5	4.0	3.1	
19	250	6.0					3,2	3.1	
20	250	6.2					3.4	3.0	
21	260	6.0					3.6	2.9	
22	290	5.4					3.6	2.9	
23	290	5.7					4.2	2.9	

Time: 120,0°E, Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Baroto	nga I. (21	.3°3, 15	9.8°W)	Table	30		Dec	ember 1950
Time	h'F2	foF2	h'F1	foF1	h 1 E	foE	fEs	(M3000)F2
00	290	8.3					3,9	3,0
01	280	7.7					3.9	3.0
02	300	8.5					3.2	3.7
03	300	8.0					2.8	3.8
04	310	8.1						2.8
05	320	5.8					3.6	2.8
06	260	6.8					3.5	2.8
07	260	8.9	240	5.1	110	2.6	5.0	3.0
09	300	9.8	240	4.8	110	3.2	5.2	3.0
C9	330	9.5	550	5.6	110	3.5	5.2	2.8
10	350	10.4	220	5.5	100	3.7	5.2	2.8
11	250	11.4	220	5.4	110	3,7	5.1	2.8
12	340	11.8	240	5.4	110	3.8	5.0	2.8
13	350	12.8	250	5.4	110	3.8	5.0	2.9
14	320	13.1	320	5.1	110	3.6	4.6	3.9
15	210	13.4	220	4.9	110	3,5	4.6	2.9
16	320	11.0	250	5.0	110	3.3	4.6	2.9
17	300	11.4	240	4.8	110	3.1	4.8	2.9
18	250	9.8				-	5.0	3.9
19	270	9.5					5.0	3.0
20	300	9.1					5.0	2.9
31	300	8.4					5.0	2.9
22	\$30	8.2					4.7	3.0
23	200	8.0					4.0	3.0

Time: 167.5°W. Sweep: 2.0 Me to 16 0 Mc, manual operation.

Christ	church, N	December 1950						
Time	P.LS	foF2	h'F1	foF1	h1E	foE	fEe	(M3000)Is
00	270	6.4					3.3	5.8
01	880	5.8					3.1	2.8
02	270	5.5					3.4	8.8
03	270	4.6					2.9	2.8
04	280	4.2					3.0	2.8
05	260	4.6	260	3.0		1.8	3.0	3.0
06	300	6.C	260	3.8		2.4	3.4	3.0
07	320	5.7	240	4.4		2.8	4.2	3.0
08	350	6.2		4.6		3.2	4.9	2.9
09	330	6.8	\$50	4.7		3.3	5.8	3.0
10	360	7.0	220	4.9		3.4	6.0	5.6
11	350	7.3	210	4.9		3.5	6.0	2.9
12	340	7.2	220	4.8		3.4	6.0	2.9
13	340	7.0	250	4.9		3.4	4.4	2.9
14	340	6.9	550	4.0		3.4	3.7	2.9
16	330	6.9	230	4.7		3.4		3.0
16	330	7.2	240	4.5		3.2	3.7	2.9
17	310	7.2	240	4.2		2.8	3.8	2.9
18	280	7.2	250	3.7		2.4	3.6	3.0
19	270	7.5		3.0		1.6	4.3	2.9
20	260	7.7					3.9	2.8
21	270	7.5					3.6	2.7
22	280	7.1					3.5	2.7
23	280	6.6					3,3	2,7

Time: 172.6°E. Sweep: 1.0 Mc to 13.0 Mc.

				Table 33				
Delhi,	lndia (2	8.6°N,	77.1°E)				00	tober 1950
Time		foF2	h'F1	foF1	h1E	foE	f%s	SE(000EM)
00	300	3.7						3.1
01	310	3.4						
02								
03								
04	310	3.8						3.5
06	300	3.7						
06	260	5.0						
07	250	8.2						
08	250	9.8						3.5
09	270	10.1						
10	280	10.8						
11	280	10.9						
12	300	12.0						3.3
13	300	12.6						
14	590	13.1						
15	280	13.0						
16	280	12.6						3.6
17	260	11.8						
18	260	10.1						
19	250	7.9						
20	260	5.8						3.0
21	280	4.6						
SS	300	4.2						
23	320	3.6						

23 | 320 3.6
Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 6 minutes, manual operation.
"Height at 0.83 foFz.
"Average values; other columne, median values.

Madras. India (13.0°N. 80.2°E)

Madras.	India	(13.0°N.	80.2°E)		October 1950			
Time	+	foF2	h'F1	foF1	h¹E	foE	ГEе	SE(000EM)
00								
01								
0.5								
03								
04								
06								
06								
07	360	8.4						
08	360	9.5						8.8
09	390	10.4						
10	420	10.6						
11	420	10.4						
13	450	10.6						2.5
13	450	10.8						
14	450	11.7						
15	450	12.0						
16	450	12.6						2.6
17	440	12.7						
18	420	12.6						
19	420	12.2						
50	420	11.5						2.8
51		(10.8)						
22	=~-	(10.4)						
23		~						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

"Height at 0.83 foF2.

"Aworage values; other columns, median values.

								' '								
Barotor	nga 1. (2	1.3°S. 1	59.8°W)	Table 32 Hovember 19												
Time	p.ls	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)12								
00	260	7.5					3.2	3.0								
01	300	7.3					3.0	3.1								
02	250	6.6					2.6	3.2								
03	300	6.0						3.0								
04	300	6.4					2.6	3.0								
06	290	6.0					3.0	3.0								
06	250	6.8					3.4	3,2								
07	290	8.9	250	5.0	110	2.8	4.2	3,2								
08	300	9.6	240	6.0	110	3,2	4.7	3.1								
09	300	10.4	250	5.0	110	3,5	6.0	3.1								
10	310	11.5	250	5.8	110	3.6	5.2	3.0								
11	310	12.3 -	250	5.7	105	3.7	5.1	3.0								
12	300	12.5	250	5.5	110	3.9	4.9	3.0								
13	300	12.3	240	6.5	110	3.8	4.6	2.9								
14	300	12.8	250	5.6	110	3.7	5.0	3.0								
15	300	12.9	250	6.6	110	3.6	4.7	3.0								
16	300	12.7	250	6.2	110	3.4	4.6	3.1								
17	300	12.0	250	5.1	110	3.0	4.3	3.1								
18	280	10.5					4.5	3.0								
19	280	9.6					5.0	2.9								
50	300	9.2					4.9	2.9								
21	300	8.5					4.4	2.9								
22	290 8.4						3.8	2.9								
23	280	8.0					3.7	2.9								

Time: 167.5°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Bombay,	lndia (19.0°N,	73.0°B)	Table 34			Oc	tober 1950
Time	•	foF2	h'F1	foF1	P₁E	fol	fEe	(M3000)F2
00								
01								
cs								
03								
04								
06								
06								
07	300	8.9						
08	360	10.3						2.8
09	390	10.6						
10	420	11.8						
11	420	12.8						
12	450	12.9						8.6
13	480	13.2						
14	480	13.7						
15	480	13.9						
16	480	14.2						2.6
17	480	14.4						
18	480	14.2						
19	420	13.3						
20	420	12.7						2.6
21	390	11.3						
22	390	10.6						2.8
23	380	10.0						

23 380 10.0

Time: Local.
Sweep: 1.8 Me to 16.0 Me in 5 minutes, manual operation.
*Height at 0.83 foF2.

**Average values; other columns, median values.

Tiruch	y, lmáia	(10.8°H,	78.8°E)	Table	<u> 36</u>		00	tober 1950
Time	۰	foF2	h'F1	foF1	h E	foE	fEq	(M3000) F2
00								
01	1							
02								
03								
04								
06								
06								
07	360	8.3						
08	420	9.9						2.7
09	450	10.0						
10	480	9.9						
11	480	10.0						
12	480	9.3						2.3
13	480	9.7						
14	510	10.4						
16	(510)	(11.0)						
16	610	11.0						2.3
17	510	11.3						
18	480	10.7						
19	480	10.2						
50	450	9.8						2.6
21	420	9.8						
5.5	420	9.8						2.6

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Hoight at 0.83 forz.
"skyerage values: other columns, median values.

1 10			
			Table 37
		4	-0-20
Brishens.	Australia	(27.5°S.	153.0~16)

October 1950

Pime .	h'F2	foF2	h'F1	foF1	h1E	foE	fEs	(M3000) I/S
00	250	6.0					1.9	3.0
01	240	5.5					2.5	3.0
03	250	4.8					2.0	2.8
03	\$60	4.4						2.0
04	265	4.4						2.8
05	275	4.2			150	1.3		3.0
06	245	5.8	250		120	2.3		3.2
07	270	7.0	240	4.3	100	2.7	3.4	3.2
03	270	7.5	220	4.5	100	3,1		3.1
09	280	7.6	210	4.7	100	3.4		3.1
10	295	8.5	200	4.9	100	3.4	3.7	3.0
11	300	8.3	500	4.8	100	3.6		3.0
12	300	8.5	200	4.7	1.00	3.5	3.2	3.0
13	290	8.6	200	4.8	100	3.6		3.0
14	300	8.4	205	4.7	100	3.4		3.0
15	290	8.3	220	4.5	100	3.2		3.0
16	270	8.1	230	4.1	100	2.8		3.1
17	250	8.0			110	2.3		3.1
10	240	8.0						3.0
19	250	7.0						2.8
20	280	6.8						2.8
33	285	6.8						8.8
23	290	6.5						2.8
23	260	6.5					2.0	2.9

Time: 150.0°E. Zweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

			Table 39	
Bobart,	Tasmania	(42.8°S.	147.4°E)	Octo

Bobart,	Tasmani.	a (42.8°	0c	October 1950					
Time	p.ES	foF2	h'F1	foFl	h E	foE	fEe	SE(000EM)	
00	250	3.9						3.0	
01	250	3.7						3.0	
03	250	3.0						3.0	
03	250	2.5						3.0	
04	250	2.5						3.9	
05	260	3.0				E		3.0	
06	240	4.0	-		100	2.0		3.3	
07	235	4.9	220	4.0	100	2.5		3.2	
08	265	5.5	210	4.2	100	2.8		3.2	
09	300	6.2	200	4.5	100	3.0		3.2	
02	300	6.8	200	4.5	100	3.2		3.2	
11	300	7.0	300	4.6	100	3.3		3.2	
12	310	7.0	200	4.5	100	3.3		3.1	
13	300	7.2	500	4.5	100	3.3		3.1	
14	300	7.5	200	4.5	100	3.2		3.1	
15	275	7.2	200	4.4	100	3.0		3,2	
16	260	7.2	200	4.0	95	2.9		3.3	
27	240	6.8	215	3.5	100	2.4		3,2	
18	240	6.8			110	1.8		3.2	
19	550	6.8				22		3.1	
20	230	6.0						3.0	
21	240	5.3						3.0	
53	250	4.7						2.9	
23	250	4.1						2.9	

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 eeconde.

Poitiers, France (46.6°H, 0.3°E) Table 41 July 1950

- 42 42 0	ra a victorio	0 (-0.0	., 0.0 -	,				
Time	h.ls	foF2	h'Fl	foFl	h1E	foE	fEe	(M3000)F2
00	310	(6.1)						
01	320	(5.9)						(8.8)
03	320	5.9						(2.8)
03	310	5.5						00 Marqua
04	320	5.2						(2.8)
05	280	5.4						(2.8)
06	300	6.1	250	3.9			3.8	3.1
07	300	6.6	230	4.3			4.8	(3.0)
08	330	6.6	225	4.6			5.2	(3.0)
09	330	7.1	230	4.7			5.5	3.0
10	300	7.3	215	4.8			5.0	3.0
11	335	7.0	210	4.9			5.0	3.0
13	330	7.0	550	4.9			5.1	3.0
13	350	7.3	210	5.0			5.0	2.9
14	335	7.1	220	4.9			4.8	2.9
15	330	7.1	230	4.8			4.4	3.0
26	350	7.0	550	4.5			4.0	3.0
17	310	7.3	230	4.4			4.4	3.0
18	390	7.6	250				4.1	3.0
19	270	8.0	270				3.8	3.0
20	260	8.0					3.3	(3.0)
31	275	7.4						(3.0)
23	280	7.0						(3.0)
23	300	6.4					3.5	(2.8)

Pinet 0.00. Sweep: 3.1 Me to 1',8 Br as 1 winte 10 second

Canber	Canberra, Ametralia (35.3°S, 149.0°S) October 1950 Ottober 1950 Ottober 1950 Ottober 1950 Ottober 1950														
Time	h'F2	foF2	h'F1	foF1	h ! E	foE	fEe	(M3000)F2							
00	260	5.0					2.3	2.9							
01	250	4.7					2.5	3.0							
02	250	4.2					2.5	3.0							
J3	250	3.7					2.4	2.9							
04	270	3.6					2.5	2.8							
05	280	3.4				E	2.5	2.9							
06	245	4.6			110	1.8	2.7	3.1							
07	250	5.5	230		110	2.5	3.4	3.1							
08	290	6.2	250	4.4	100	3.0		3.2							
09	300	6.4	210	4.5	100	3.2		3.1							
10	315	6.5	200	4.5	100	3.3		3.0							
11	330	7.0	200	4.5	100	3.4		3.0							
12	305	7.4	200	4.5	100	3.5	3.5	3.1							
13	300	7.4	200	4.5	100	3.4	3.4	3.0							
14	300	7.4	200	4.5	100	3.4	3.5	3.0							
15	290	6.8	210	4.5	100	3.2	3.5	3.1							
16	280	7.0	220		110	3.0	3, 4	3.1							
17	240	7.1	230		110	2.4	2.5	3.1							
18	240	7.2				<1.5	3.0	3.1							
19	240	6.7						2.9							
20	250	6.2					2.2	2.9							
21	260	6.0					2.3	2.8							
22	265	5.8					2.5	2.8							
23	260	(5.5)						2.8							

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconde.

				Table	40			T-
Dakar,	French	West Afri	ca (14.6°	N, 17.4	W)		A	uguet 1950
Time	h'F2	foF2	h'F1	foF1	h E	foE	fEe	(M3000)F2
00	350	5.2						
01	330	5.1					2.3	
02	300	4.6					2.2	
03	265	4.4					2.4	
04	270	4.5					2.5	
05	265	4.0					2.2	
06	250	5.9			155	2.0	2.7	
07	245	6.8	230		125	2.8	2.8	
08	255	7.4	230		120		3.9	
09	310	8.0	215		118			
10	355	9.2		5.4	115			
11	350	10.4		5.3	120			
12	385	11.4		5.3	110	-		
13	395	12.4		5.2	-			
14	355	13.1		5.1				
15	330	(>14.0)	235		120	-		
16	320	14.0	230		120	3.2		
17	290	13.9	245			m areas	3.4	
18	260	12.8					2.9	
19	260	10.7					2.9	
20	310	8.4						
21	352	6.8						

23 350

Time: Local.
Sweep: 1.4 Mc to 20.0 Mc in 10 minutes, automatic operation.

5.4

Poitie	re, Franc	e (46.6 ⁰	N. O.3 ⁰ E)	Table 4	200		•	June 1950
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEg	(M3000)#2
00	310	6.9						2.6
01	320	6.6						2.7
02	305	6.4						2.7
03	330	6.0						2.7
04	300	5.9						2.8
05	380	6.3	270					2.8
06	300	6.9	230	(4.0)			3.4	2.9
07	300	7.2	220				4.8	2.9
08	300	7.6	550	4.6			4.9	3.0
09	320	7.5	225	4.8			5.0	2.9
10	330	7.5	220	4.9			5.1	2.9
11	350	7.5	210	(5.0)			5.0	2.8
12	350	7.6	225	5.0			5.0	2.8
13	350	7.5	225	4.9			4.3	2.8
14	350	7.4	225	5.0			5.0	2.8
15	330	7.5	225	5.0			5.1	2.9
16	320	7.6	230	4.7			5.0	2.9
17	320	7.6	240				4.8	2.8
18	300	8,3	250				4.8	2.9
3.9	285	8.5	270				4.8	2.9
20	260	8,2					4.6	2.9
23	270	8.2					4.1	2.8
22	280	7.6						2.7
23	280	7.5						2.7

Time: 0.0°.

TABLE 43

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

form adopted June 1946

National Bureau of Standards

(Institution)

April (Month)

(Charocheristic) (Unit)

Washington, D.C.

IONOSPHERIC DATA

Manual C Automatic B

Form adopted June 1946

TABLE 44
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

20																																					
		ζ.															- P.																				
Notional Bureau of Standards	A. C. K	A. C. K			4 5	<i>H</i> S	F	A.		*	5		2	Ь	7		^	5			5	· ·	F.	24				, ,	F								
of Sto	(Institution)		23	5.6	3.3	5 (3.1) #	3.6	3.0	3.8	30	7 E S	m	3.95	414	x 6.9 x	3.5	5.0	$(4.0)^{5}_{\tilde{r}}$	5.8	48	7.€	5.1	K 43 F	3.7	4.9	50	5.0	52	5.3	4.9	4.5	4.5	5.6			7.7	9
redu	C. (Ins	O.	22		3.74	13.43	t.	137	3.9	30,	3.7	(3.5)		50	6.8	39	6,2	5.0	5.8	5.0	3.75		1 4.5K		5.0	52	5.1	5.0	188	5.2	4.7	4.9	1.7			0.0	30
200	McC	McC	12	62	- 1	3.6 4 4	L J	x 4.63	3(0 +)	324	403	1 7	5.18	52	7.0 K	4.3	1.7	6.2F	9.9	5.8	423	6.6 F	4.75	43 X	56	5.7	52	5.3	1 2	5.8	54	5.3	9.9			5.2	8
Notio	Scaled by:	Calculated by:	20	99		5.8 1		4 6.43	(56)		584	515	6.05		7.6 *	6.0	7.0	755	8.25	6.9	505	20.5	x 0 7		6.9	9.9	5.7	5.9	1.4	4.9	9.9	4.9	7.7			7.9	30
	Scale	Calcu	6	14	5.41	6.8 X		7.6 K	5(+9)	5.4 K	4.5	2.4	6.2	X 8.5	7.3 K	8.9	8.2	848	6.6	7.7 3	S.6.8	7.8 5	8 4 K	x(1.9)	J 12	87	5.7	2+5	8.6	8.9	0.8	5%	[64]			6.9	30
			81	8.2		68 4	6.0	* 78 3	4.9	5.6	5 0.9	55	7.7	56 K	717	6.6 K	8.3	8.8	88	8.0	51 F	2.6	x 88	x 65	7.7	68	5.9	56 K	7.6	4.9	14	7.6	7.5			7.0	30
5, D.C.			17	83	5.6 *	6.6 %	5.5	7.0 K	7.2 5	x +.9	6:5	6.0 3	7.3	S 6 A	66 X	N 8.9	8.2	4.8	80	2.6	40.7	7.4	(62)H			4.9	57	X 8.5	7.9	7.4	7.2	2.6	2.7			6.9	3
hington 2			91	48	64	684	8.5	6.0 x	(24)	177	07	6.2	2.0	52 K	67	641	8.2	8.6	1.8	7.6	544	7.7	N 6.2	5.6 K	49.9	4.9	6.0	5.7 K	8.0	2.0	8.9	7.2	2.6			2.0	ŝ
ards, Was	ಠ		15	85	74%	7.6 *	6.5	64	7.4	6.2 4	49	72	69	5.37	6.7	4 7.7	82	9.0	85	2.8	524	7.6	60 K	8.5 K	x 4.9	6.2	49	564	78	77	65	2.5	8.6			6.8	30
of Stand	DAL	me	4	78	8.6 #	8.0 X	7.9	5.8	E 8.7	407	4.9	7.4	7.0	5.24	69	623	08	8.8	98	2.8	A 0 2	2.6	5.7 K	A E 2	56 K	13	7 7	S.7 K	9.8	2.8	62	83	7.8			8.9	30 25 min
1 Bureau		Mean Time	13	80	92 X	7.1 *	63	60 5	7 9	S.5 K	09	8.9	7.3	524	7.2	63 X	7.7	18	85	7.4	S1. F	7.5	54 K	5.3 K	544	0 9	6.7	55K	82	2.0	09	7.5	7.5			8.7	30 30 30 Mr to 25.0 Mr in 0.25 min
, Nationa	TER	75°W	12	7.5	9.3 *	6 6 X	0 7	58	56 F	50K	55	7 9	7.3	(5.2)3	62	SPX	74	8.0	08	7.0	4436	7.2	5.3 K	544	5.6 K	58	7 9	S 2 K	7.5	29	56	8.9	7.4			6.3	30 17
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.	IONOSPHERIC	7	=	7.2	804	6.0 5	56 A	5.3 F	526	[4.6]X	5.0	62	87	524	1.9	x 6.7	2.6	2.6	2.5			(P.O)	5.1 ×	5.5 H	514	5.5	6.0	5.3 *	7.4	62	5.6 W	7.0	7.2			0.0	30 Campon 2
agation L			0	7.4	2.8	S.0 X X	5.0	464	6.4	84.13		56	# 79	5.1 4	59	50 *	6.8	7.4	7.3			6.4		5.3 K	4.7 X	8.3	54	×++>	2.8	5.6	5.4 #	(1.1)	6.8			75	30
dio Prop			60	67	26 4	4+4	5.2	4.7	4.5 K	43 K	6.7	5.2	6.5	4.6 H	57	(4.2.6)	1.7	7.6	76			4 O.9	4.7 %	5.9 A	5/ H)	54"		4.7 4	14	8.5	S.6 J	6.5 #	6.6 ×			2.6	8
antral Ra			98	6.7	129	42KK	45K	4.2	<386>	(3.9%	4.5	5.0	6.2	4.7 K	5.3	x 8 #	6.2 1	14	2.6			58 "	5.0 A	6.0 K	(4/6)	5.2 H	5.5	4.7 *	(44)	534	(0.7)	6.6 #	6.5 H			5.3	30
Š			07	7.9	7.9	38 K	4.2 1	3.8	3.6 %	4.0 %	1.7	4.7	5.2	4.3	48 J	4.C X	5.7	22	7.7	0.9	4.6 K	5.2	5.0	6.2 H		5.1 #	5.0	4.6		H 6.7	_	62 #	8.9			ه نی	8
			90	87	* *	2.9 K	3.1 K	3 /	2.9 4	3.0	3.3	3.5	9.€	3.8	3.8	x 1 x	4.5	50 F	5.6 5	5.0	4.6 x	4.2	4.3	5.0 K	3.P X	4.4	44	4.0	4.6 5	40 5	53	4.8	5.6 11			4.2	30
-			99	(30) 5	3.8	7. W. X	7.1 7	(2.6)	[2 2] S	[2.1]3	1.8 K	2.3 F	4(7.2)		2.7	3.7	3.0 F	3.4 6	1.7		3.0 F	26 5	3.5	298	2.4	3.1 6	3.7	7 8.7	3.4 F	3.2	3.5	3.2	3.6 "			3.0	9
r.C		77.1°W	0.4	(3.4)3	74	244	21/	2.7 F	1 3 (2 2)		183		29 (7.8 F	3.6 4	2.9 F	3.7°	4.2	4.2	3.2 F	2.40	3.6	x(2.9) \$	4.4	3.3 F	3.6 F	2 8 E	3.4F	3.3	3.0	3.1	3.7			3.0	*
Anril	10	Long 77	03	403	87	220	(25) 5	3.0 5	2.5 FK		20 3 K	2.3 F	3.1.5	3.7	3.17	4.0.4	3.2	4.2	4.45	4.6	3.2 F	2.4 6	3.00		×	4.0.4	4.7	3.1 F	3.5	9.6	3.5	3.6	38			3.4	30
	ton, D	38.7°N	02	42		(24) 5 K		27 F	K(2.8) 3 K	3.3 F	26 KK	25 F	75.5			50 K	3 4 F	43F	4.45		(4.0)F	2.7	445	3.8 X		L I	48.7	(3.5)	4.2 ~	4.0 F	3.7	00	4.0			+	30
Z	Washington,	Lot 38	ō	45 F	-	3.0 5 K	(25) 3 ((27) 3	2.7 3 K		8 6 A	30 5	3.6 5			6.3 %	3.4.5	40F	4.5.4	5.4	4.1	287	456	3.7 %	3.6 r	7.6	4.7	- 1	4.5 ~	44	38	4.2	4.1 F		\dashv		on on
for F2	istic	5	00	469		3.5 K	31 KK	3.1 F (2.9 3 K		28 54	3.2 F	3.6	504	87	6.5 *	3.5	464	4.75	56	- 1		764	_	3.6	4.55	-	4.8	7++	47	1 #	42	43		-	1	e e
ţ,	(Character	200	Day	-	2	10	4	ιn	9	7	80	Ø	01	=	12	-33	4	15	16	17	81	6	20	21 ×	22 ×	23	24	25	26	27	28	59	30	31		adian	onut
				-																				,	-	,											,

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Manual [] Automatic [8]

 $\begin{tabular}{ll} $TABLE 45 \\ \hline \end{tabular} Centrol Rodia Prapagation Laboratory, National Bureau of Stondards, Washington 25, D.C. \\ \hline \end{tabular}$

Form odopted June 1946

National Bureau of Standards

McC

Scaled by:

156

Washington, D.C.

ONOSPHERIC DATA

345 > e e e 3.0 4.1.5 2330 · (0 +) 3 × × 57 3.6 J 00 7.00 48 4.7 500 47 75 Z; 00 64 5 57 ベナ かか 6 30 5.5 P K 30 F 405 70 K 2230 20 (3.5)5 3.65 5.45 418 X BOY 5 33 5.7 34 4.0 000 S. 5.0 64 6 0 .5.7 5 6 ケナ 4.7 ント 5 ·5 A.C. 295 4.0 0 5 (04) 495 7.0 x 54.5 7.8x (F. I.) KYIP 6-1 11 x 332 5.0 2130 و زيا 5.0 5.6 1 / 7:5 5.0 5.2 3 6.3 5 25 5 3 73 x 5.25 454 45 5 (5.3)5 3 t s (49)5 200 000 6.5 5 5.0 × Calculated by: 8 4 D X 525 57 2030 4.73 605 5.5 43 4 5.5 6.5 4:5 201 و ريا 6.7 7.5 9 5.3 85 ∞ e> 20 30 را را 70P 7 5 K 250 (7.1) \$ 6 2 s X X S S 20 x 1930 600 25 7 7 7 7.4 7.2 2 7.8 7.2 1.3 75 50 7:7 000 5.0 7.5 7.7 29 -30 6 8 x X 85 K 7.8 5 5.4.8 72× و د و 5.7 * 565 200 となっ ر اور ا 6.6 1.0 3 00 - 6 7.6 200 7. 0 1830 9 و 5.8 00 00.9 8 50 5 30 7.2 8 × + 5 6.2 K 7.15 7.0 K 6.6 S.9 K 90 × 50.6 × (7.0) 3 6.0 X 603 747 10 الم 9 1730 5.6 5 <u>و</u> ق ~ ~ 50 7.6 7.4 3 7 00 e 7.1 2.8 2.6 30 90 VJ ~ 56 × 6 6 6 X 3.0.5 S 8 K 60 × (70)5 K 6.6 J (7.2) 5 6 # # 00 00 205 かられ 1630 6.7 70 00 5 09 7.2 00 7.6 7.9 6.0 0 4. 2 مح 200 74 7. صر ف 30 6.2 K 16.7]8 6.7x 7.05 4 9.9 5.2 R 5.5 K 5.74 53 5.3 * S. 6. K 1530 6.3 K 8 6.0 6.3 ₩ ?? 6 6.7 2 00 00 0 49 00 7.4 20 00 17 30 5.2 % 787 80 ° ± 57x 6.4× S.3 K 6.2 % 5.4 % 59 % といら 0 0.0 1430 6.4 00 00. 14 1.0 مد ف 70 6.7 00 7.9 700 60 7 e 3.9 34 Mean Time 5.6 × 5.9 x × 20 78 7 x + 5 57 x 52 × 50 K ごから 1330 0.0 7.0 1 50 6.2 6.9 80 50 9 6.4 3 83 7.6 00 30 85 8 7.1 00 7.6 7.6 % ∞ 5.4 4 27 2 9.0× x 8 9 x +5 6.0 F (47), 1230 5.4 * 5.4 K とすら 5.4x 9 6.7 7.4 4.9 000 74 8 76 5 75°W 500 7:5 7.6 00 7.2 5 و و 500 7,2 2 600 <435 5.48 145 G × 9:5 9.0 × 5.6 1 47 4 5.3 1 55 K といら 7.4 7.0 54040 4.9 5 7.5 1130 7 2 5.7 5 45 なら 00 e 9 2 7 5 6.9 مہ ف 30 [44]8 5.0 × 443 G 5.0 x 592 5.3 K S. 1 X 1030 5.2 7.3 45 85 5 12 5:0 KX 5:4 5.0 50 73 7.6 50 7.5 5. 3 00 2 رم 00 7 ς, γ 00 7 23 30 89 4438 S.7H 405 5.0 K H + 9 48K 5 × I x 64 (5.4) おから (4.5)\$ S.0 K 7.44 142)8 # 6 X すら 0930 4:5 0.5 3 و 28 Š 0 14 6.4 70 3 4.5 30 x64 (4.3)\$ <39 G <4.2 G 41 6 44 K 4 th 9 エンナ 6.0 # メタケ 6.2 H S. 4 H 14.7% 5.0 % 5.5 0830 7 49 4.0 74 70 0.9 70 75 43 4.7 3 6.7 69 7 5 30 <3.9 G 4.3 K #64 (43) \$ 5.28 43,5 × 2 0 3 0 4 # X55 4.5.K 6.7 # S 8 H 7.0 F 5.4 1 500 6 2 # 0730 9 30 69 4.7 47 7.6 5.0 7.7 5 43 4 ь Б 5 4.9 X3.7 6.7 5.62 3.5 K 3.8 K (3.9 G 3.50 45K 4.8 × 4.6 5 S.6 F (00) 5.2 カカカ 3.6 403 6.05 7 4 0630 3.6 3.7 4.6 42 43 و د 7.6 7.5 カカ 3.6 5.3 4.6 4.8 49 7.5 30 25 J 41 33 K 3.1 X 3.25 2.1 Ex (2.2) 8 (32)\$ 2.4 457 ري و م 365 445 3.3 (4.5)A 2.5K K2.45 [24] 5 × 2.2 \$ 225 3.00 (23)8 x 74 Y (4.3) 0530 3.6 3.5 4.0 30 3.7 イナ 3.6 43 30 2 6 F 328 200 (30) 3.74 4 1 4 1.93 350 265 (2.3) F 0430 245 250 2.9 F 305 3,5 F 3.0 7.4 77 0 7 3 39 50 Vol. 77.10W 33 5 30 X 1.8 5 3.65 38 2.4× 40. (2.6)F 2.3 4 3.0 € 415 315 2.40 4.6 E 3.05 36 F 40 4 245 43 2.5 K (2.1) B x 25 P (8.8) 37 F 3.3 0330 3.3 3 43 38 7 K (2.9) 30 2.0 (32) (29) 5 4.15 2.63 42F 477 (2.6) P 335 Lot 38.7°N K(24) 5 (3.4) } x 2,35 5 4.2 0.5 0230 5.0 38 32 200 50 3 -3.6 K(23) \$ K [23] 33 3.9 3.9 37 D. è 30 ر ال ال 295 4.0 5 3.4 F 46F (40) [27 2 4.5 F .a. 5 7 × K 3.2 F 44 7 4.65 イステ 4.2 5 3.2 × K273 (3.0) 5 (35) S9 K 457 34F 40 F 0130 K(2.8) 3 4.5 4.0 5,2 2.5 40 2 8. 30 * 5 9 (2.8) 3 (2.9) 2 x 2.8 4 45 P 12.875 385 32 5 405 50 00 17 N 1/4 W. 2+ 27 ナント 457 455 487 457 (42)5 4.2 0030 ムナナ 3 94 4.5 5.2 3.6 50 43 7 8 42 30 Observed at Median Caunt 4 ~ Doy 9 Φ 0 0 = 12 50 4 12 9 _ 8 6 20 23 24 26 30 2 22 27 29 25 28 2

Sweep 1.0 Mc ta 25.0 Mc In 0.25 min Monual [3] Automotic [3] Form adopted June 1946

TABLE 46
Central Radia Propagotion Loboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

A.C.K. A.C.K. National Bureau of Standards McC. McC. Colculated by: Scaled by:

> _ Mean Time 75°W

> > A O CO CO

a

07/0

× O

0.5

0 4

ō

Day

N

ω

თ Lat 38.7°N Lang 77.1°W

Observed of Washington, D. C. (Characteristic) , (Unit)

April (Month)

<u>6</u> v O 07 50 T (1) Ø Q Ø Q NONE 230 250 E260/K 280 200 K 1 30 K 0 * 0 _ A O O K 200 x 02 00 030 030 030 ADOK ADOK 0 40 30 200 A 500 T (0000) C 400% (08 0) 200 K 190K 230K [010] 000 000 0/0 0/10 0/6 190 x X061 000 200 K - 40K 000 000 220 200 0/0 08/ = Q 190 K X 010 0/50 0-07/0

Ţ

a

05.00

Q a

200 K

210K

 03.50

<u>∞</u>

Q

P

a

230 K

210 K

0/0

Sweep 1.0 Mc ta 25.0 Mc In 0.25 min

240 220 210

Median

;

[00c] 010

Monual

Autamatic

Monual

Form odopted June 1946

IONOSPHERIC DATA

ards A.C.K.	A. C. K.																																		
Standal	A	23																															_		
Scaled by: McC. (Institution) A.C.	Colculated by: McC.	19 20 21 22																																	
		18		3	7	7	× 7	0	N D	Ø	7	7	× 7	-1	7	S	0	7	-7	4 7	1	4	× 7	7	7	. 1	× 1	1	- 1	1	3	J			
		21	7	-1	× 1	7	1	7	× 1	3.7	H 7	1	x 7	× 7	39 8	7	-1	1	7	* +	7	* 1 +	Y 0 +	40	7	4.1.7	3.0	7	7	1	1	7		0 +	Q.
		91		1 7"	42	40	X 7	7	404	0 +	1 +	1+	424	PA	4.3 K	7	7	42	43	[+ JB	+ 3	4 7 4		# 7· F	+54	+3	434	7	+5	++	H E-+	+ 27		4.2	23
A		5	7		424	4.7	434	43	73 H	4 4 4	4.3	++	43	46#	x 9.4	47	# 4.5	7 +	45	r + 3 x	+ 1	454		1 + 5 K	7 +	45	x + + x	7	47	4.5	4.0	4.6		4.5	228
DATA	Time	14	9 +	4.3	43	# 43 #	4.5 #		4.34	4.3	44	7 + 6	# 45#	2+ 46	x +.7 x	4.9	45	4.7	50	x + + x	8 +	x + 5	404	4 54	7.8	47	4.5,	45,	4.7	4.5	4.7	7.7		4.5	30 30 30
RIC	Mean Time	13			77	43	4.5	H 5 H	* + + *	43		# 5 #							4.9	44			47 H	× 46	4 8 H	4.8	7 7 6	8.7	4.9	4.7	50 #	7.6		4.7	30
IONOSPHERIC	75°W	12	40		K 43 K	7	" 45 H	4.3	7 3 X	4.4	4 5	47		7 [47]5	1 4 5 H		5.3 H	51	8:4	13		404		7	4.8	-	x +54	5.0	4.9	87	49	4 + 3		4 7	
NOS		=	474	0	x +3	+3	4.4	+3	* +3	+ + _H	9 #	9 F	5	77	++	16+		4.7	5 3	4.3		× + + ×		7 6	+ 7	4.7	34	7- 1	H	4 7	8 + 4	4.7		9 +	30
0		으		45	4 4 3	# 43	42	X 42	1 +	43	2 +	7 +	x + + x		x + + x	6.7	4.5	4.5				x +.+x	1 1	4.3	45	ĺ	X +.+ X		47	4.5	H (4 5)H	[+7]		4.5	30
		60	7	42	7	4.2	1 #		X 4 0 X	4.1	4.7	45	# 4.2 *	4.4	1 42 K	[++]	H 7	77	++			x + + x	x +.+ x	+	7+ + X	2	Xtt	##	45	45	4 43	++		+ +	0°
		0.8	1	-1	30	× 39	30	38	39	0 +	39	7	7	4.1	H K (4.2)	1 7	7	39	1 + 1	40 +	7	4 4	K + X	+ ×	4.3	+ +	*	4.2	[42]4	+ +	40	7		1 +	57
	I	07	1	- 1	a	a	7	36	3 3	7	7	7	7	Ø	x 3 6.	7	7	7	7	7	7	3.7	, 7	300	0 7	7	7	0 +	30	7	7	7		20	80
		90											7	B	Ø	4	Q	8	7	7	O	7	~1	7	7	8	7	4	7	Q	7	7		ł	
<u></u>	W	0.5	-	-																													_		_
(Month)	77.1°W	0.4		_																															_
ا م	N , Lang	0.3	_																														_	-	_
Washington,	Lat 38.7°N	02																																	
istic)		0				-																													
(Characteristic)		Day 00	_	2	3	4	5	9	7	8	o	10	=	12	13	14	15	91	17	18	61	20	21	22	23	24	25	26	27	28	59	30	31	Median	Count

Form adopted June 1946

 $\begin{tabular}{ll} $TABLE 48 \\ Central Rodia Prapagatian Laboratory, National Bureau of Standards, Washington 25, D.C. \\ \end{tabular}$

IONOSPHERIC DATA

110 110 110 110 110 110 110 110 110 110 120 110 110 110 110 120 110 110 110 110 110 120 110 110 110 110 120 110 110 110 120 110 110 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120
1105 1005 1005 1105

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monual D Automatic B

Form odopted June 1946

A.C.K.

National Bureau of Standards

Scaled by:

 $\begin{tabular}{ll} $TABLE 49 \\ Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C. \\ \end{tabular}$

IONOSPHERIC DATA

156

April (Mapth)

foE (Unit) (Unit) (A Observed of Washington, D.C.

A. C. K.	3								prosigner o	an (designation on											- gamagadi a							man, and Alleri	Water-11					ranci
Ì	2																															-		
McC.	22																									_								
	21																																	
Calculated by:	20		_				com.		Paul sal ^{em} a												7)8	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				n de la completa del la completa de	-000	-		ACCOUNT.		erom.
Ca	61		x	×		X	96	×	_			Q.X	×	×			H		×		K (1.7	X	Ţ	2		x Y	ત	0	0]	,
	8	0	×	ΞX	6.1	6K 2.0	H		1.9	1.9	200	6.1 X	X 2.2	X	1.8	7.8		A	σ×	2,	X	X,	is in	8	.8	X.	2	Æ.	2.0	8A A	2.6		2.1	
	17	2.6	2.3	20	19 2.4	8	CE			_	-	2.7	B 2.8 K			2.7	2.6	4	BX BX		×	2.6	2.7	2.8	200	x 2.7	2.0	12.7	2.50	S	2.6		2.7	20
	91	6	4 2.8	X 2.74	(27)8		2.7	x (2.7) 8	2.6	_	30	X 1.8		X 3.1K		3.1	3.1	4	X [3.2]	3.0	X 30	X 3.0	3.0	1.6	1.6	X 3.7	5 3 /	10	.5.0	100	. 3.0		3.0	2
	15	8	X 30'	X 2.9'	0	P 30K	0.0	x 2.9'	0	0	8.3	es es	2.3	w.	40	d) w	w	P 13.27	X 33R	e) e)	x & X		* E	3.4	3.4	W.	8 (33)5	33	w	4 3.35	A		$\frac{u^2}{\omega}$	36
Time	4	28	K 32	1 3.1	3.2	9.	3.0	3.1	3.2	[3.17	3 (3.2)P	J. 4. X		(1)		כי	3 4	w	A	w	x 3 x X	7	X S. 4.	3.6	[3.5]	6 ×	13.470	[3.4]	(")	13.4]A	A		3.4	, 0
Mean Time	12	Ø	3.4	3	6	320	3.2 P	-	3	W.	-	3.5 K	")	J. S. E.	17)		,,)			(3.7)	3.5	3.5	3.5	3 8	3	13418	2.0	বা	(3.4)B	2.6	A		35	3/6
75°W	12	0	3 + ×		0	is		3/8	3.1	3.20	93)0	")	.,)	3.5 R	J.	3.5 P	3.5,	3.6	3.6X		(3	4)	9.5 P	[3.6]	3.5	(3.4)B		[3.4]	13.4]A	∢	A		3.4	36
	=	4)	BX		(3.0)	3.1	3.10	13.07E	3/	31	3.2				3.5	3.4	4.8		× 4	8	(3.4)B	n		າງ	3.5	R [3.4]8		(3 4)A	3.3	4	A		7.6	26
	0	[3.2]		(3.0)8	6	- 1	3.0			3.1		9.2x	~	33K	3.4	330	[3.2]A		A	- 1	3.3K	9	ري. حر	D	37	ti) U	4.6	3	(3.1)5	A			3.2	96.
	60	3.1		7.4		. 1				0.	[2.9]	3.1 K	3.2	3.1 K	3.2 H		304	1.5	3.18	[32]A	BZK	3		3.				W.	5(0.8)	3.20	A		1.6	00
	90	2.7	2.6				2.5 K	7.5 K	2.5	2.5	2.9	(2.7) A	2.9	2.8 4	2.9	3.0	9.8		S		x 6.6	3.1 K	3.0 K	3.0 P	00	2.9 K	3.0	3.0	8.9	5.0	A		29	
	07	2.2	2.9	2.2.K	2.24	23	2.1x	2.2	2.2	2.0	1 7	2.40	2.20	2.2 K	A	2.5	2.5	2.5	2.54	20	2.5	2.74	200	7.8	3.6	2.6×	A	2.6 P	2.5	2.6	A		25	27
	90					Ó			1.6			1.8 P	9(8.1)	8	A	19	6.1	1.9	2.0 K	2.0 %	2.0 P	2 2 K	2.0x	2.0	2.0	2.8	4	2.0	2.0	2.0P	A		0.0	6
	0.5																																	
W 01.7	0.4																																	
Wol. 77. gnc.);	03																																	
38.7°N	02											_																						
Let 35	ō																																	
	00																																	
	Day	-	2	Ю	4	5	9	7	8	6	01	=	12	13	4	15	91	17	18	61	20	21	22	23	24	25	26	27	28	29	30	31	Medlan	Caunt

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

form adopted June 1946

 $\begin{tabular}{lllll} $TABLE & 50 \\ $Central Radio Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C. \\ \end{tabular}$

IONOSPHERIC

1921

April (Month) No. 128.7° N Lana 77.1° W

a

Washington,

Observed at

(Characteristic)

A. C. K. National Bureau of Standards

McC.

Ö

23

22

2

20

Calculated by: Scaled by:

6 ш ш W b 8 **(**b 5 P \succeq b 5 4 9 b b 6 2 P b B

S b b 6 4 P b b 9

26,40

140

W

Ш

b

Ш L ш

> Ч ш

3.3 /30

3.7/20

P b

6 b J P b P

b P

b

b

36/20

b Ġ

Ш

W

لنا

ننا ш

4.5 110

27 110

ш

b b b 6

P P

P

v B b b b B

> b Ø

W

u L.

W

u

ш

ш

نبا ш ш

B

ш

17100

3.7 100

4.2 130

#7120

6 B

6

6

৬

ш

1.7 100

22 100

128 100

P

D

P b b B

৬ Ŋ

6 b

P S

B

35 1110

37 110

01104

26/20

Ш

¥ W

ш ш Ш يبا ш ш ш Ш

4 5

b

b b B Ò P P

b

G

25,100 49 110 31 130

25 120

48/20

28/40

5

b

ш ш

ч LL

W

¥

ч

ш

2

75 1,00

ш

ш ш

Ш ш ш

2.4/30

ш

b b

P

Ġ J P Ü B B

W ш

ш

b

B b b b 6

10

861,20 10.2 / 110

b

b

75 1,00

J

b 9 b

b

ш لنا

b B

6 b P b

b

Ġ 6 P

b

781,00

62,00

001/66

w

22

66/30

ш

b B

(b b b (b) r

> P b

16,20

P b b 6

b b b Û b

Ш

120

Ġ

00/0/

32,100

b P

 α 6 6

y Ŋ

721/00

011 14

P 00 b

33 100

3.3 /00

b

132 110

20110

27110

b

y

ш

b

Ġ

P

O P

B

æ

b

34100

P

B

b b

13.1 100

301,00 1.8 1,10

> ы ш

ш ш

ш W

H

20

2

P b Q b b

P

17.0 130

Y

Ġ

78 150

ш

W ¥ w ш يبا ш

3.0/100

36,00 3.0 100

32,100

4.7100

5.2 100

b

3.3 110

b

b

b

Ġ

60

ø

6 Ġ

4.5 /20

01104

Ŋ

195 100

U

u

ч ш

Ы

F E

> 9 1 8 <u>6</u>

Ш ш

30,00

31,00

b

G

ш

ننا

ш ш ш u

110

W ш ш

30 110

1.9 120

Ġ

b b

b

70/20 0110.9

b

J

011/06

b Ġ

Ġ

ш

ш

64/100 23/20 30/20

W

10.0/

Y B

17.6/140

96/20

W

Ш

لما

MM

¥ ш

إينا u ш Ш ш ш ш

23

24

b

P

40/20

B P

38 130

011 011)

ı

00/ 49

B G

b

b

901,00

b

b

34 110

36/20

w ш

24/20

27/20

W

ш

ш B Ш

ч ¥

56 27

25

P

B

4.3 110

Ġ b

001/86

ш

2.17110

901/20

1.7 120 20 110

2.4/10

2.7 110

ш

ننا ш 5.2 120

32 110

36/20 32/20

5

42/20 30 110 125 100

P

Ġ

5.8 120

3.0 100

U

B

6

4.3 100 66/100 Ŀ

3.5 110

38/20 3.9 110 46/10 #3/20 #8 110

011 5-4

18/00/ 53 110

b

B

11/120 42 110 56/10

24/20 1

Ш

ч

28 59

01104

102/10 "

011/06

42,00

5.2,00

57/00

30

3

33/40

25,20

ш لنا

ш

b b P 2 P b b 6

b .5 B Ġ h b b 2 b

Mean Time 75° W

= b

0 6

60

P

591,100 461,30 b b P 6 b 5.4 / 110 63 100 5 B b b ৬ b b 011011 68/110 b 6 B P U b b P B ৬ b U P P P b P b P

198/100 7.0 1/30 8.4/20 21.0120 7.4 /30 86 510 y P B P Ġ S 5.8 130 P P b 6 b b P D b b U

> ч W ш ш W ч w ¥ ш ¥ ٤4 W H W 40,50 W ш ш W ш ш ш 34/30 ы Ш Ш W ш Ш ш

> > ω σ

0

ш ш 52 140 ¥ F ¥ Ш ш لنا ш

> 4 S 9

2

b b 110 70/20 07 Ò b B b b P 6 () 18/30 33,00 90 b b ¥ ¥ ш ш Ч O U 122/00 05 Ш 8 ш W W W ш 25 110 04 W 03 02 0 W ш ш ш

** MEDIAN fes LESS THAN MEDIAN fOE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER 30 30 30 30 30 30

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

30

* 30

* 0

**

* 49

*

* 00

* 30

*

* 30

*

* 30

*

*

* 30

*

**

*

*

*

**

*

Median Count

30

30

30

30

30

30

30

30

30

Manual

Automatic

Manual

5 TABLE

Form adopted June 1946

A. G. E.

McC.

u of Standar, 1.

Marional Bureau

Centrol Rodio Prapagation Labaratory, National Bureou of Stondards yeshington 25, 0.C.

DATA IONOSPHERIC

158

April (Month)

D.C.

Washington,

Observed at

6.1

C/J

4 127 9 ∞ 0 0 Ξ

00

(Unit)

(MI500)F2

1.90 7.9.1 29.1 1.7 S 1.90 2(6.1) 76.1 1.9x F1.8 X 1.7 0 1.8 1.7 9. 1.8 30 2.0% 1.8 F 1.8 F 8.20 X. 1.85 1.8 S 1.95 (1.8) \$ 1.85 (1.7) 5 2.1 × 1.9 × 1.75 6.1 6.1 8.1 22 00. 1.7 6.1 B 1.8 K (1.9) 5 1.8 K 1.8F 218 7 3 1.8 F 23 X 2.0 F 0.9.1 0.0 0.0 1.00 :98 1.7 2 6.1 0.8 1.9 1.7 0.0 1.8 5 30 80.7 × 0.50 1.9x 1.95 1.85 × 0.5 2.15 Colculated by: 6. 8.0 0.8 6.1 0 0.0 20 0.0 1.8 1.8 6. x.0.x 1.9K 1.9 K 1.8 X 2.05 (2.2) 2.15 1.9K 20 X 1.9 K 0.8 2.2 2.1 7.7 3.0 0.8 <u>6</u> 2.2 2.0 30 20 2.25 x. 1.x x 0.0 1.7 x 1.95 2.0 K 1.9 K 1.9x 8.0 X 2.0 X 1.8 X 8.0x 20 1.8 2 8 2.0 2. 0.0 2. 7:8 0 6.1 6.1 7.1 2.0 2.0 30 1.9 × 21/5 1.9x 1.8 K 2.0 2.1 2.0 2.0 K 2.1 X 2.0 K 20 x 1.9x 1.9F X(8.1) 1.8 x 2.15 3.0 0.8 2.1 2.1 0.0 6.1 2.0 0.8 30 2.2 2.2 6.1 1 30 2.0 K 4.0 1.6 x 2.0 X 2.0x 1.7 K 1.8 K 1.7H 1.7 X 2.2 0.8 7.7 0.5 0.8 2.0 30 2.0 2.1 0.8 2.0 0 1.8 6.1 7.8 6. 2.0 B X.0.X 1.84 2.0 x 1.6x 1.9 K 1.6 m 1.7 K 2.0 0.8 0.8 2.0 00 2. 6.1 2.0 Š 2.1 2.1 0 1.8 0,0 7.8 2.0 E. 5 1.9 K 1.9K X9.7 1.9K 1.9K 1.6 h 1.7X 1.6 X 7.8 X 1.6x 20 2.0 1.8 14 0.8 0.0 2.0 1.9 1.8 7:00 7. 0.0 0.8 2.0 0.8 1.7 0,0 7.8 30 3 1.8 x 1.6 K 1.6 4 1.8 x 1.4 F 2.0 22 0.8 0.8 1.9 1: 0.8 1.6 % 6.1 6.1 8:1 1.5 6.1 2.0 8.7 1.7 6. 6.1 1.9 K ×6.1 1.6 x 1.7 K 1.7K 0.0 C X-6. 1.6 (1.9) # 1.8 1.7 d 1.8 F 2.0 (1.8)7 1.95 NK 1.9 F 1.6 x 1.7 2.0 2.0 80 6.1 0.8 6.1 1.7 6.7 6.7 6.1 6.1 1.8 1.8 1.9 30 6.1 1.5 K S × 1.6 × 1.4× 1.5 K 1.8 1 (2.0) 1.8 K F.19 S 1.8 K 1.7 K 1.6x 1.8 H > T 8./ 2.0 2.0 2.0 6.1 1.7 = 0.8 8.1 8.0 1.8 7.7 2.1 2.1 6.1 67 1.5-K 1.7 K 1:8 1:8 1:7 H × C \$ 0. E 1.4x 2.1 H (22)H 4.0 H 00 0.50 2.2 1.7 1.8 00. 0 1.3 9 30 2.0X 7.6 H A.0.4 1.6 × 2.3 H 93.1 1. +X X 1.8 # 1.7K H(0.8) 4(8.1) 2.2" 1.8 K 2.0 0.8 7.6 2 2.3 8.2 3.0 1.8 20 7.7 60 %. 8 30 1.7 K 8.2× 1.9x ×.1 V W (6.1) 2.0 < S × 1.8 H 227 1.6 F 2.0 x 2 2 2 2 8.0 23 S. 2.3 30 23 0 5 08 6.1 30 XIX 2.1 2.3 2.1 x 2.1 x 2.1 X × 0 × 1.9F 1.8x 1.94 2.0 X BS 2.0 22 K (2.1) F مي ند ح 2. K 4.8 3. 3 1.9 22 0.8 2.2 2.3 * S. 9 1.8 07 8.2 30 3 2,28 XIX 1.9 K 2.3 K 2.14 2.0X 2 & A 196.1 2.2 2.0 2.05 2.1 1.8 is. 2.2 2.0 2.2 2.0 7:8 .2.2 1.8 2.1 90 3. 30 1.9 K X6.7 1.9E 1.9 K 1.9F 1.9 F 1.9 5 1.7 × 1.8 6 (1.9) = 0(6.1) 2.0 K 1.9 F 2.0E 6.1 2.0 8.1 00 0.8 3.0 8.0 6.1 27 0.5 6.1 1.8 K 1.9F x 6.1 1.8 F 2.0 F 1.80 1.8 / S(8.1) 1.8 F 1.6F 1.9F 1.8 F 16.97 (1.7)3 F(1.6) 5 B(8.1) 2.05 1.7 K 1.6 X 1.7 Lat 38.7°N , Lang 77.1°W 1.9 0.8 8.0 04 7.6 6.1 6.1 8. 1.9 6.1 0.0 00. 30 5(17) X (1.7) X (1.8) Z (1.8) Z (1.8) Z (1.7) X (1.2) Z (1.8) 2.0 F 3.0 F 2.2 K T (1.9) K 76.7 1.8 F 1.9 x 7(1.7) x 7(1.6) x 7(1.8) x 1.9 F 1.8 F 5(6.1) 1.7 F (1.9)3 20.0 7(1.1)5 2.00 71.7) \$ 1.7) \$ (1.7) \$ 1.85 1.8 F 0.0 6.7 03 1.8 6.1 1.9 0:0 1.9 1.8 0.8 1.8 6:1 30 2.00 1.9F (1.8) 5 ×.0 × 1.8 F 1.95 1.7 1.8 F 1(1.1) 1.9 V 1.6 73 1.8 F 6.1 1.9 02 6.1 1.9 00. 6.1 6.1 6.1 00 30 1.9F 34 4 1.8 F 1.77 1.9 F (1.9) x (22 2) K 195 2.0 X 1,87 1.9 2 1.8 F 1.7 8.1 1.9 6.1 0 ō 1.8 00 30 J(1.7) SK/ 1.8 x 1.9 F 1.85 (1.7) 1.95 78.7 1.9 × 1.87 1.8 F 1.8 F 1.85 1.9F

2.0

2 2 1.7

4 15 9 1.9

7

18 6 20 2 ا

23

24

22

9.

25 26 1.00

29

00

30 10 00 30

Median Count

1.7

27 28 Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual [] Autamatic [8] National Bureau of Standards

 $\begin{tabular}{ll} $TABLE 52 \\ $Centrol Rodio Prapagatian Laboratory, Notional Bureau of Standards, Washington 25, D.C. \\ \end{tabular}$

odio Propagation Laboratory, Notional Bureau of Standards, Washingto
IONOSPHERIC DATA

156

April (Manth)

(M3000)F2 (Characteristic) (Unit)

C HOJ	aracteristic	(Characteristic) (Unit)		(Manth)		<u>[</u>					0	IOSF	IONOSPHERIC		DATA	1				S of polocy	DUOLLON	McC	(Institution	National Bureau of Standards (Institution) A.C.K	s ×
Observed at		Lot	121	170	77.1°W							7.	75°W	Mean Time	ле					Calculated by	ed by:	McC.		A	1 1
Day	00	ō	02	03	0 4	90	90	07	80	60	0	=	12	10	4	5	91	17	81	6	20	21 2	22	23	-
-	2.8 F	2.8 F	1 1	(29)3	(29)F	(28)F	31	3.5	34	33	32	3.2	30	31	3.1	3.1	3.1	32	3.2	32	2.9	28	8.8	2.8	_
2	2.80	28	2.8	2.8		30	31	34	3/1	3.1 1	30	27x	28 K	27K	2.8 K	29 X	30x	2.8 K	3.0 K	29 K	31 K		2.9 x	1 × × ×	
ю	29 x	1(20)3	K(25)3	x(2.7) 3	27K	2.8 K	318	30 K	30 x	XXFT	XIX	x 285	2.8 K	X 8 X	2.9.X	X.8.X	J. 6 X	2. 2. x	X 9.5	3.0 ×	31K	28 K K2	126) 5 K	(26)#	
4	2.7 K		(26) 5 K	1(5.5)		28	33 E	318	30 K	00.4	7 4	(28)7	2.7	2.8	29	50	30	3.0	24	29	2.7	27 8 2	7 F	2.7 F	
2	275	(26) 5	25°	(2.7) }	38F		30	30	2.7	77	26 H	2.7 F	3.0	3.1 F	3.0	7 x	30 K	30 × ×	50	S - S	K(32)3K	x328 K3	(3.0)3	28K	
	K(26)3	x(26)3	K(2.7) F		X(2.5)5	S K	32 K	R X	G X	2.7 K	9	30 F	29F	29 (78/3	28	(30)5	315	30 (.	3.1)5 ((2.8)5	(27)5	2.75	3.6	
7	2.0 5	2.85	2.9 F	30F	(2.6)3	B	30	32K	Y 5	27 K	(j) an x	×	28 K	X 8.X	20 K	X SS.X	Į.	2 K	(3.0)x	30 8	S X	L	27×	2.7 K	_
8	K(2.9)3	K(29) F K(32) F	3.2 %	K(2.8)F	K(26)3	28K	32	30	29	3.0	3.1#	27	30	2.9	3.0	30		31		30	3.05	(2.4)5 2	200	285	
6	2.8F		275		2.7 1	29F	32	3.2	3.2	3.0	3.0	3.0	2.9	29	30	3.1	3.1	3.15	1 5	31	3/5	28 (5	5(12)	2.6	
10	27	7.8 %	28	(2.9)5	3.1	(2.9)8	3.2	3.2	33	31	3.0 #	2.9	31	32	3.1	3.1	000	3.2	32	15	3.05	2.8 5	2.8	285	
11	2.75	: I	28	3.0	3.0	295	31	3.2	32K	2.5 X	28 K	26 x	(2.7)x	27 x	2.9 x	30 E	30x	3 / K	X / S	XBX	28	28 2	38	286	
12	3.0	30P	3.0 P	3.0 P	2.90	29	3.1	(3.1)#	31	3.2	3.1	3.0	8.8	31	3.1	3.0	1	30 K	3.0 K	2.7 K	2.8 K	7 K	27 x	X 8 X	
13	27K	30 K	3.0 K	2.7 K	7.8 K	2.8 K	x 9 x	278	78×	R	2.5 K	2.2 ×	2.5 X	2.7 X	27 X	×	3.0 K	30 x	X 6	3/	30	. 9	285	2.6	
14	26	2.7 F	2.8 F	2.8	2.7 F	3.0F	3.2	3.3 7	3.2 1	18	3.0	3.1	3.0	000	30	3 /	30	30	15	3.2	30	30	2.4	281	
15	2.8 F	27F	2.8 F	2.9	3.0 F	2.9 €	3.3	3.3	3.4	33	3.1	31	2.9	5 %	30	30	30	30	31	305	3/5	30F	245	3(3.5)	
91	2.8 g	2.8 F	285	2.95	29	30	3.25	3.4	34	3.2	3.2	2.9	2.9	2.9	2 2	30	31	0.5	30	32	3.15	30	27	17	
17	2.8	- 1	2.8	28		27	3 /	33	3.2	33	2.9 H	2.9	2.9	3.0	3.0	3.0	3.0	31	3/ (.	(32)3	30	29 2	2.8	27	
8	2.7 F	27	(2.7)		- 1	3.0	3.2 K	3.1 F	1 4 K	P.	× 6	G x	A P	22 E	24 E	2.5 K	7 6 X	78K	30×	3.0 S	2.85	27.5	28F	295	
61	275	265	26	2.7 F	2.7 F	2.9 €	3.3	3.2	3.0 "	30#	2.8 V	(3.0)B	2.9	2.9	2.8	2.9	3.0	30	30	3.18	2.73	275	2.8 F	276	
20	2.75	76 €	2.8	2.6	36	2.8	3.0	2.9	2.9 K	2.1 K	22 K	2.4 K	7.4 ×	23 x	XXX	2.6 ×	24× ((2.7) #	2.7 K	X & X	3.04	2.7.K	X 8 K	27 F	
21	X 2.8 F	25 X	25 K	K(26) 5		30E	31 K	3.0 H	32K	ンフス	2.5 K	27x	76x	25 K	N G X	2.7 ×	XTX	2.00.X	28 K	(2.8) s	3.0 x	2.7.X	27 K	2 EX	
22	K(2.6)3	K 27 5	28	2.9 F	x25 F	2.6 K	2.8 K	2.6 K	GK	G X	22 K	2.3 ×	76×	25 ×	2.5 X	2.5 K	2.5 H	285	2 4			-	27	26	
23	(26) =		- 1	2.8 F	2.9 F	2.9	31	3.0	T 00 Y	27#	2.6	3.6	3.6	27	2.7	28	2.8	29	29	30	29	2 8 2	27	27	
24	275	2.5	2.7			2.8	3.2 F	29	2.9	27	2.5	2.6	26	2.7		2.7	28	2.8	2.0	28	27	× 6 X	35	25	
25	2.5	- 1	_	7.6 F	25 F	2.7 F	30	31 K	26 K	3 th K	P	2.3 ×	23 K	34K	ZHK.	26 K	26 K	27 K	29 K	29 x	2.7	2.7 2	26	x 7 F	
26	278	2.8	28	2.7 F	28F	2.8 F	28 F	28	(8.8)#	- 1	3.1	2.8	38	2.9	3.0	24	3.1	31	3.1	30	31	29 3	308	30 F	
27	285	275	27 F	2.7	275	27	295	2.9#	29 H	2.7	3.6	2.6	2.8	3.6	3.0	30	38	2.7	29	30	29	×75	88	N	
28	2.8	2.8	28	3.0	3.0	28	31	31	(42)#	(30)T	26#	2.8 4	2.6	2.8	38	3.0	30	30	3.0	31	3.1	2.8 2	27	26	
59	2.7	2.8		2.9	28	2.9	30	3.2 #	324	3.3 H	(32)#	3.1	8.8	2.7	30	3.0	3.0	30	32	30	30	7 8 7	5 5	00 Y	
30	2.7	275	27	2.7	3.0	31"	3.2 #	3.3	32#	314	3.0 #	28	2.8	2.9	3.0	3.0	3.0	30	29 6	[3.0]	30	2. 4.3	27	77	
3.																									
	_		(\vdash				
Medion		2.7	78	28	2.00	2.5	6	3	3.0	29	2.00	2.8	2.8	00		5.0	30	30	30	30	30	0 1	3 2	17	
Count	30	30	30	30	30	11	30	30	30	30	30	27	30	30	30	30	30	30	30	30	30	0.00	30	30	
											Curo	107	25.05	O C. OVY	25							The second second second			

Sweep_1.0_Mc to_25.0_Mc in_0.25_min Manual [] Automatic [3]

Form adopted June 1946

A.C.K

National Bureau of Standards (Institution)

McC.

Scaled by:__.

 TABLE 53

 Central Radio Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

진

April

(M3000)FI (Choracteristic)

Observed at Washington, D.C.

A.C.K. 23 22 McC. 2 Calculated by: 20 6 00 1 K (C) 3.4 7 7 3.4 1 37 7 337 × PQ (F) 3 7 5 3.5 , K 3.3 m 5.4 9 3 p Ę 5. 5. z. z. ω Ω 70 36 3 3.5 ι. Cη ارد) رم 5 3.6 F. 3 57 3 6×3 3 5 37 * 3.4 w. 3.4 3.6 3.6 3.7 9 9 3.4 4 3 30 Mean Time 3 6 H 34 3.7 # 36# 3.5 K 3 6 X 3.92 36 % 3.5 K 3 7 3 7. E 3.7 K A B 4.0 3 7 3.5 3.6 e m 34 5 9 3 6 3.4 3.6 3.6 3.7 3.6 w S 10 3 ŝ 3.7 K 352 34x 3.7# 3.67 4.0 % 3.7 X 3.7 # 36 s, 3 C X 3.6 37 6.7 3.7 3.7 3 7 9 ات دم 3.6 3 ω Ω W N e 75°W 2 É 3.6 X * 0 × B. C. X A 9.E 3.7 K 3.74 3.7 H S 9 X 417 3.7 3.7 3.6 36 9.5 57 3.7 Ġ W P 0 30 ω ζ 3.6 30 37 3. = 3.0 pa R 35 7 4.0 X 3. B 3.7 X 3.8 K 3.8 4 "(1 t) 3.0 37 3.7 3.0 , 5 5 W. 3.9 39 5.7 9 3 7 9 30 3 w 0, 37 3.7 x 3.6 X 38 X H 7 3.67 3.6 # 4 50 50 394 5.6 € \$ 36 9.7 w P 3 3 4.0 5 2 5.7 3 3.9 36 3.9 3 3.6 3.7 7 60 3.6 3.6 27 3.4 # 4 / 4 3.7 K 34# 3.6 % X(35)# 3.7 # 35 3 6 X 3.5 7 7 6 34 27 x (3.6) 3.4 6.4 3.7 3 s. S 3.8 6.7 3.6 3 6 08 1 23 7 3.3 x 3.5 7 G, 3.7 34 07 10040 90 0 T 0 1 ŀ B 05 Lot 38.7°N Lang 77.1°W 0 4 03 02 ō 00 Median Count Day 0 4 -15 91 17 18 61 22 22 23 24 25 26 30 N 4 5 9 12 5 28 59 31

Sweep 1.0 Mc to 25.0 Mc in 0.25 mi Manual

Autamatic

Manual 30

Form adopted June 1946

A. C. K.

National Bureau of Standards (Institution)

McC

Scaled by:

TABLE 54
Central Radio Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

1351

April (Month)

(MI500)E (Characteristic)

Washington, D.C.

Observed at

A.C.K 23 22 McC. 2 Calculated by: 20 6 (3.9)8 4.0% 3.9 x × 4. B.A ψ. φ. J. 4.0 4.0 0 9. 4.3 3.0 3.9 4.0 3,9 Ø 4.2 1 đ Ø Ð 7 8 T D T XCX 4.2.K 1. 4 4.2 d / 4.3 4.2 4. 8 4.3 1. 4.8 4.0 4 ĥ 8 4.2 4.0 _ 4.82 1. T B (4.0) A 4.3 4. (8.3) 4.7 4.3 4.8 4.3 4 4.0 4.2 0 4.5 5 9 Q 4.1 4.2 4.2.A (3.9) 4.2 4.0 4.2 43 43 3. 4 4 4.8 1 ٦ y. W 4.2 5 48 42 11 Ø Q d 40 x 7.3 K 4.4 4 1.3 4.4 4 4.3 4.0 48 7 40 n n (4.4) 4, Q Ø 1.4 4.4 Q Ø Mean Time × 0.4 (4.3) (3.9) (4.3)8 7. S. K 4.3 7. 4 4.0 40 4.3 10.75 4.2 γ M 4.2 4.0 4.4 Q 7.3 00 4.3 4.2 3 2 3.9 T D (41) x 1. W 4 B (4.3) B 4.2.X 4.0 (4.3) 4.4 43 4. 4. 4 1.1 4.3 4 4 4.2 Q 23 75°W Ø 1,3 9.9 4.1 Ø C ì 2 0 T ∢ Q 1. W. X (4.1) (4,3)K (42) 19 42 4 4.2 (43) x (41) x Y D Y 4 h r (4.4) 4.1 7.2 0 43 2,0 (12) 4.3 40 7 4.2 = 4, 13 Q Q Q Ø Q T d ¥ 0. (4.3) 4.2 4.2 1. 2 x 7.3 7.3 73 4.2 4.3 . y 4.4 6 1, 30 4.0 1 1:1 4 4.0 1 J. Q 0 Q Q d Ø T (4.4) 4.2 K ¥. W 4.4K 1.3 4.82 4.00 4. 4.1 9 1.5 4.02 4.02 1, 5 4 4.4 1 60 Q 4 4.3 4. 1.1 O Ø 4 2 1.1 4.1 T 3 Ø ×(4.0) 4.02 19 1.2 4.2 4.3 4.2 72 40 1,2 1.4 4.2 4 4.5 7.3 4.5 4 4.3 4.1 ί, J 43 1, 1 08 1 T 60 1.0 K 4.2 4.4 1. 1.5 1.1 4.2 4.3 4.0 42 4 2 4.2 3, 1/4 50 4. ; 4.1 11 1.1 20 1.1 T 27 07 Ţ Q k nj 4. P. K (4.2) 4.0 4.1 4 3.9 4.0 4.3 4.0 Do 90 (h) Ø 4.1 0 Q (Q 1, 0.5 Wol. 77 PM , Lang 77.19W 04 03 02 5 00 Median Caunt Day 29 . N М 4 Ŋ 9 7 œ თ 0 13 4 2 9 8 6 20 22 23 24 24 27 28 8 2 7 25 56 _ 2

Sweep 1.0 Mc to 25 0 Mc in 0 25 min

Manual

Autamatic

Manual

Table 55

Ionospheric Storminess at Washington, D. C.

April 1951

Day	Ionospheric character* 00-12 GCT 12-24 GCT	Principal Beginning GCT		Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	1 2 1 4 4 4 4 3 3 3 4 3 3 2 2 1 5 5 0 2 4 2 3 1 1 2 2 3 3 3 3 4 4 2 2 2 2 2 2 3 3 3 3 3 3	1600 1900 1200 2200 1300 1300	1400 1500 1100 1000 2400	2 3 4 4 5 4 4 4 4 4 4 4 4 4 4 5 3 4 4 5 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 4 4 5 4 4 4 3 3 3 2 2 4 2 2 2 2 5 2 4 3 4 2 4 4 2 3 2 2 2 2
28 29 30	1 2 2 3 3 3			2 .3	2 2 2

^{*} Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**} Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

⁻⁻⁻⁻ Dashes indicate continuing storm.

Table 56 Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and Forecasts)

March 1951

	North	CRPL*	CRPL**	North	Geo	
	Atlantic	Warning	Forecast (J-reports)	Pacific quality	mag- netic	•
Day	quality figure		(0-1000108)	figure	Kch	
Day	118016			115u10	-Ch	
	Half day	Half day		Half day	Half day	
	GCT	GCT		GCT	GCT	
	(1) (2)	(1) (2)		(1) (2)	(1) (2)	Scales: Quality Figures
1	(4) 5	w U		(3) 5	3 2	(1) - Useless (2) - Very poor
2	5 5	0		(4) 5	1 2	(3)- Poor
3	5 6			(4) 6	3 2	(4)- Poor to fair 5 - Fair
4	6 6			5 5	2 2	6 - Fair to good 7 - Good
5	7 6			7 6	2 1	8 - Very good
	a ==			6 5		9 - Excellent
6 7	6 7 5 5		x	6 5 5 (4)	3 3 3 3 (4)	Geomagnetic Kch - 0 to 9,
8	(2) (4)	w w	x	(4)(4)	(4) (4)	9 representing the greatest disturbance; Kch > 4 indicates
9	(3) 5	w w	X	(4) 5	(4) (4)	significant disturbance, enclosed in () for emphasis.
10	(3) (3)	W W	X	(3) (4)	(4) 3	Shotosou II () 101 Ompinists.
_			_			Symbols:
11	(2) (4)	W W	X	(4) (4)	(4) 3	W Disturbed conditions
12 13	(2) (4) (2) (4)	W U		(4) (4) (4) (3)	(4) 3 (4) (5)	expected
14	(2) (3)	W W	х	(3)(4)	(4) (5) (4) (4)	U Unstable conditions expected
15	(2) 6	w u	7.	(3) 5	3 2	
	(/	•		(-, -		N No disturbance expected
16	(4) 5	(U)		5 5	3 3	X Probable disturbed date
17	(3) (4)	ט ט		(4) 5	3 3	
18 19	(4) (4) (4) 6	W U		(4) 5 5 6	3 3 2	Scoring: H Storm (Q € 4) hit
20	(4) 6 5 7	U		5 5	2 2	
~				<i>5</i> 5	2 2	(M) Storm severer than predicted
21.	5 7			6 6	2 2	M Storm missed
22	6 6	W	X	6 5	(4) (5)	
23	(3) 5	W W	X	(4) (4)	3 (4)	G Good day forecast
24 25	(4) 5 (4) 5	W U		5 6 5 6	3 3	O Overwarning
	(1)	0 0		5 0	0	Scoring by half day according
26	6 6		X	7 7	3 2	to following table: Quality Figure
27	5 5	W	X	5 5	(4) 1	€3 4 5 > 6
28	6 5			7 7	1 2	ж н н о о
29 30	5 6 (4) 5	ס ס		6 6 8 8	3 4 3 2	U (м) н н O
31	6 6	0 0		6 5	2 2	N M M G G
					~ ~	
Score:		Warning	Forecast			х н. н о о
		N.A. N.P.	N.A. N.P.			
H (M)		28 26 1 0	10 12 0 0			
M		1 3	15 10			
G		27 25	27 32			
0		5 8	10 8		8	

^{*}Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

() broadcast for one-quarter day. Blanks signify N.

**In addition to dates marked X, the following were designated as probable disturbed days on fore-

casts more than eight days in advance of said dates: March 21 and 24.

Table 57

Zurich Provisional Relative Sunspot Numbers

April 1951

Date	Ez*	Date	gras gratinus describeras com con con consecutar en relation de la reconsecutar en relation d
1	and the contract of the contra	17	1.30
s	27	18	148
3	24	19	150
4	20	20	132
5	40		149
6	61	22	144
7	69	23	140
8	78	24	119
9	75	25	115
10	74	26	114
11	84	27	114
13	88	28	98
13	78	29	81
14	103	30	65
15	118		
16	126	Mean:	93.5

*Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Mote: The American sunspot numbers for April will appear in a later issue of this bulletin.

Table 58a

Coronal observations at Climax, Colorado (5303A), east limb

Date					ree														ا	L.						out											
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																								_	_	_											
Apr. 2.6	_	_	_	_	-	_	_	_	_	_	_	_	2	3	3	8	8	8	10	10	10	5	3	3	3	3	3	3	3	2	2	2	2	2	_	-	-
3.8	_	-	_	_	_	_	_	-	_	_	_	_	_	_	3	3	3	5	8	10	10	5	3	5	3	3	3	3	3	2	_	-	-	_	_	_	-
13.8	_	_	_	_	-	_	_	_	-	2	2	3	3	5	17	17	15	25	12	8	5	5	3	3	3	3	3	-	_	_	_	_	-	_	-	_	-
14.7	_	_	_	_	_	_	_	_	_	_	_	_	_	2	3	Ė	8	10	3	2	2	2	2	2	2	_	-	_	_	_	-	_	-	_	_	_	-
16.6	_	_	_	_	_	_	_	_	_	_	3	3	5	5	8	8	10	8	3	1	Ъ	3	3	2	2	-	_	_	_	_	_	_	_	_	_	_	-
21.9	v	_	_	_	_	_	_	_	3	5	~	3	5	10	12	Š	3	3	3	3	3	3	3	3	3	2	_	_	_	_	-		_	_	_	-	-
25.6	Α.	_	_	_	_	_	_	3	~	ัจ	ัจ	5	a	-8	10	12	15	8	3	5	10	12	8	3	2	-	_	_	_	_	_	_	_	_	_	_	-
	-	_	_	_	~	~	~	7	~	7	7	T	5	5	-8	-8	_5	3	3	1 3	- 3	-3	2	2	2	_	_	_	_	_	_	_	_	_	_	Y	T
27.7	A	Y	A	A	A	A	Α	Α.	Α.	Α.	Δ.	Α.	2	70	72		10	10	12	۱۵	2	2	2	2	2	2	2	_	_	_		_	_	_	_	-	_
28.6	_	_	-	_	-	_	_	2	3	ر)))	TO	12	12	10	TO	7	١ ٠	2	>	~	~	~	~	6-	_	_	_	_	_	_	_	_	_	_

Table 59a

Coronal observations at Climax, Colorado (6374A), east limb

Date							ort												00				Deg	ree	8 8	out	h c	of t	the	30.	lar	eqt	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																					-																
Apr. 2.6	2	2	2	2	2	2	2	2	2	3	3	3	3	2	: 3	- 8	5	3	2	3	5	2	2	3	3	3	3	2	2	3	3	3	3	3	3	2	3
3.8	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	5	_ 2	5	5	2	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
13.8	3	2	2	2	_	-	-	-	_	_	-	2	3	3	1.2	: 3	- 8	12	8	3	2	8	8	8	10	3	3	5	3	3	5	3	2	2	2	2	2
14.7	-	-	_	_	-	_	_	-	-	_	-	-	-	-	-	. 3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	-	_	_	-	-	-
16.6	-	2	2	2	2	2	2	2	2	2	2	2	3	3	3	5	3	3	2	2	8	8	2	2	2	2	2	3	3	3	2	2	2	2	2	2	2
21.9	X	3	3	3	3	2	2	2	2	_	-	2	3	8		5	3	2	2	2	3	3	3	3	- 2	2	. 3	3	3	3	્3	3	3	3	3	3	3
25.6	2	2	3	3	3	2	-	-	-	_	-	_	-	-	• 2	12	15	15	5	10	17	5	15	5	5	8	3	3	2	2	2	2	2	2	2	2	2
27.7	X	X	X	X	X	X	X	X	X	X	X	X	2	3	3 5	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Х	X
28.6	2	2	2	2	2.	2	_	2	-	-	2	2	2	3	3 12	10	- 5	2	2	2	3	3	3	5	3	3	3	3	3	2	2	2	3	3	2	2	2

Table 60a

Coronal observations at Climax, Colorado (6702A), east limb

ate										the									00														uato				
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
pr. 2.6	_	-	_	_	_	_	_		_	-	-	-	_		_	_	_	2	2	2	2	-	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_
3.8	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	2	2	2	2	2	2	2	2	2	-	-	_	_	_	_	_	_	_	_	_	_	-
13.8	_	_	-	-	-	_	-	_	-	-	-	2	2	3	3	5	8	8	3	2	2	_	_	_	_	in	_	-	_	_	_	_	_	_	-	_	•
14.7	~	_	_	_	_	_	-	-	_	_	_	-	_	-	_	_	_	_	-	-	_	_	_	_	_	_	***	-	_	_	_	_	_	_	_	_	-
16.6	7	_	_	_	_	-	-	_	-	_	_	-	_	_	_	-	_	_	-	-	-	-	-	_	-	_	_	•	-	_	-	-	_	-	-	-	-
21.9	X	-	_	_	_	-	_	_	_	_	-	-	_	_	_	_	-	-	-	-	_	800	_	_	_	_	_	_	_	_	_	-	_	-	-	-	-
25.6	_	_	_	_	_	_	-	-	_	_	2	2	2	3	3	3	2	_	_	-	2	2	2	2	2	_	_	_	-	_	_	_	_	_	_	-	-
27.7	X	X	Х	X	X	X	X	X	X	X	X	X	2	3	3	3	3	2	2	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	X	I
28.6	-	_	_	_	_	_	-	_	_	_	_	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-

Table 58b

Coronal observations at Climax, Colorado (5303A), west limb

Date				De	gree	98 8	out	th c	of t	he	so.	lar	eqı	nt	or					0			De	gre	88 I	ort	h c	of t	the	ദരി	lar	901	na t.c	77°			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	7 '	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																				-						-		7,0					-	-			
Apr. 2.6	-	-	_	_	_	_	_	_	_	_	2	2	3	3	5	8	12	10	5	12	12	15	12	15	12	5	3	5	3	3	_	_	940	_	_	_	_
3.8	-	-	040	***	-	_	_	_	_	_	_	3	3	3	10	12	10	5				20					3	3	3	3	3	_	_	_	_	_	
13.8	_	-	-	_	-	_	-	_	_	999	_	2	3	3	2	2	3	3				15			3	3	3	3	3	3	3	3	-	_	-	_	_
14.7	-	-		_	-	_	-	-	_	-	_	3	3	2	3	3	5	8	5	8			10	5	3	3	3	***	2	3	2	_	_	_	_	_	_
16.6	-	-	-	-	4	3	3	3	3	3	3	3	3	3	3	8	10	5	3	3	3	3	3	3	3	3	_	_	_	_	_	_	_	_	_	_	-
21.9		X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Y	Y	X	Y	Y
25.6	-	-	440	_	-	_	2	2	2	3	3	2	2	3	8	15	17	12	10	15	20	28	12	15	10	5	5	3	3	3	2	_	_	-	_		000
27.7	X	X	X	X	X	X	X	X	X	X	X	X	Χ	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	Y	Y	Y	Y
28.6	-	-	-	-	-	-	_	-	_	-	_	_	-	_	3	3	3	3	8	12	15	10	8	10	5	3	3	2	2	2	con con	_	_	_	-	27	60
																													_	_							

Note: Yellow line (5694A): Apr. 25.6 at N10-N20, intensity 3.

Table 59b

Coronal observations at Climax, Colorado (6374A), wast limb

Date					ree														00				Deg	ree	s n	ort	h o	f t	the	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Apr. 2.6	3	3	3	3	2	3	3	3	3	2	2	2	2	2	5	8	12	2	3	10	10	10	8	5	3	3	2	2	2	2	2	2	2	2	2	2	2
3.8	2	2	2	2	2	5	5	3	3	5	3	3	2	2	12	8	10	8	5	5	31	15	10	12	5	2	2	2	3	2	2	2	2	2	2	2	2
13.8	2	3	3	3	3	3	3	3	2	3	2	3	10	8	8	5	8	10	3	12	12	10	15	2	3	2	2	2	2	2	2	2	2	2	2	2	3
14.7	-	-	-	-	_	_	_	_	_	-	_	2	2	2	2	3	12	8	3	3	2	2	8	3	2	2	2	2	2	_	198	_	_	440	-	_	_
16.6	2	2	2	2	2	2	-	-	040	_	_	_	_	-	2	8	14	15	8	2	2	2	3	3	2	2	2	2	2	2	_	_	100	_	-	_	
21.9	3	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
25.6	2	2	3	3	2	3	2	2	3	3	2	3	3	5	10	3	10	2	15	8	12	5	12	3	10	2	_	2	3	2	2	3	2	3	2	2	2
27.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
28,6	2	2	2	2	2	-	_	_	-	2	2	3	3	2	2	2	2	2	2	3	10	010	5	3	2	2	1072	2	2	_	_	_	-	-	_	_	2

Table 60b

Coronal observations at Climax, Colorado (6702A), west limb

Date							out												00														ato				
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35 .	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Apr. 2.6		***	_	_	_	_	_	_	_	_	040	_	***	940	_	_	2	2	2	2	2	2	2	3	3	2	_	_	_	400	-	_	***	100	_	_	-
3.8	-	_	_	_	_	_	_	_		_	-	_	***		_	2	2	2	3	3	3	3	2	2	2	2	2	2	2	_	***	_	_	_	_	_	-
13.8	_	***	_	_	_	_	_	-	_	-	_		_	990	_	-	_	-	2	3	3	3	3	3	2	_	-	_	-	-	_	480)	-	***	840	_	-
14.7	-	_	-	-	_	-	-	_	_	***	_	-	_	***	-	****	-	2	2	2	2	2	2	2	2	2	-	_	-	_	-	_	_	-	_	_	-
16.6	-	-	-	_	_	-	_	-	_	_	-	_	_	_	000	***	_		-	-	\leftrightarrow	\rightarrow	-	_	-	-	-	_		-	_	_	_	000	-		-
21.9	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
25.6	-	-		-	_	_	_	_	_	_	_		-	2	2	5	5	3	3	5	10	8	5	4	3	2	2	2	2	2	***	048	_	-	_	_	-
27.7	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
28.6	-	_	_	_		-		-	_	_	-	-	_	-	***	_	2	2	3	2	3	3	2	2	2	-	***	-	-	-	_	-	_	-	-	_	-
20.0																				_																	

Table 61a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date	-			Deg	ree	s n	ort	h c	of t	he	sol	ar	eq	ue to)Z°				00		,		Deg	ree	s s	out	h o	f t	he	sol	ar	equ	ato	T			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Apr. 1.7	400	era era	600	ero	603		ст	-	***	***	3	3	3	5	5	8	10	12	10	12	10	8	5	5	3	3	5	5	3	3	-	-	-	_	-	-	-
2.8	-	4960	***	-	-	663	_	cop	3	3	3	3	3	3	5	10	10	10			13	12	8	8	8	8	5	5	5	5	3	-	-	_	-	_	
3.8a	-	_	-	-	***	***	***	_	_	-	_	-	_	3	5	5	8	8	_	10		10	8	8	8	3	3	3	5	3	-	, –	-	-	_	_	•
5.9a	-	_	_	-	6700	669	can	_		400	90	3	3	5	15	12	12	15	12	10		12	15	15	12	10	10	8	***	=	=	-	_	_	_		-
8.7	-	_	_	***	-	-		3	3	3	5	3	8	5	8	10	8	3	5	12	15	8	5	3	3	3	3	3	3	5	5	3	3		-	_	***
9.8a		-	-	~	-	619	0120	400	***	-	-	-	_	_	-	_	8	8	8	5		_	_		_	_	-		_	-	-	•••	-	_	-	-	
10.7	-	_	400	-	600	-	6.68	0.00	3	3	5	8	10		12	_	28	_3	10	25	25	- '	10	10	8	В	5	5	3	5	3	3	_	-		_	-
11.8	-	_	-	emb	-	100	2	3	3	3	5	5	10	10		28	18	15	12		20	15	12	8	5	3	3	3	3	3	3	3	-	***	_	-	900
12.8	-	-	-	_	-	2	3	3	3	3	٥	g	8		15							TO	g	g	5	ځ	3.	ځ.	3	3	3	-	-	_		_	-
13.7	_	-	_	-	_	478	_	3	3	5	8	٥	g	12		20 20	28 2 0		28			10	0	Ö	5	5	5	ک	-	_	_	_	_	_	_	_	-
14.8	-	-	_	-		_	60			.3	2	2	Ω	10	10				123	12	ΤO	ΤΩ	Ω	2	2	2	ر	ر	ر	ر	-		_	_	_	_	_
18.7	-	_	_	cmo	ess	40	***	_		3	ر	0	5	8	12				8	15	8	10	12	2	2	2	2	2	_	_	_			_	_	_	_
21.7	_	_	_	_		_	_	_	2	2	13	12	12				20		"	10	10	10	12	7.2	2	7	ر	_		_		_	_			_	_
22.7	_	_	_	_	_	_	3	3	2	8	10	12					13	8	8		12	10	12	10	8	. 2	2	_	_	_	٠ _	_	_	_	_	_	-
23.6	-	_	_	129	190	450	3	~	ź	5	<u> </u>	-5	8	-8	8	10	10	8	8			12	_		10	8	3	_	-	_	_	-	_	_	_	_	_
25.7	_	-	_	60	-	3	5	8	10	ź	8	8	10	_		20	31	25	15	-			22	12	8	5	3	3	-	_	-	_	_	_	_	_	200
27.9	-	-	4	0.00	can	3	5	5	_5	5	8	10	-8						15	_		12	8	-8	5	5	3	_	_		-	(40	-	-	_	-	-
29.6		-	-	100	_	**	3	3	3	3	5	-5	5	-8			15	10			17	20	5	5	5	3	3	3	3	3	-	_	_		-	_	-
30.6	-	_	-	***	co	-	-	_	_	**	3	3	3	5	-5			-5	8		12		10	5	3	3	3	3	3	_	_	_	_	_	_	_	_
															_			_		-				-													

Notes: Yellow line (5694A): Apr. 10.7 at N10-N15, intensity 5; Apr 11.8 at N10-N15, intensity 4.

Table 62a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

Date			1	Deg	ree	s n	ort	h o	£ t	he a	ىرە	ar (eque	to	-				00				Deg	ree	8 8	out	h o	f t	he	sol	lar	equ	ato	T			-
GCT	90	85	80	75	70	65	60	55	50	45 4	0	35 :	30 2	25 2	20 :	15	10	5	0	5	10			25										75	80	85	90
1951																																					
Apr. 1.7	-	00	010	-	_	-	-	_	-	-	680	-	-	-	-	-	2	2	3	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
2.8	-	983	-	***	_		_	_	_	-	-	2	2	2	2	3	3	3	3	5	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3.8a	-	480	-	-	_	-		-	-	. 🕶	-	-	2	2	3	2	2	2	2	2	2	2	2	2	-	-	-	-	_	-	_	-	-	-	-	_	-
5.9a	-	_	_	-	***	-	2	3	3	3	3	2	2	2	3	3	- 8	10	3	2	10	8	12	5	2	_	-	_	-	_	_	_	~	-	_		_
8.7	2	2	2	860	0130		-	-	-	-	-		CSP.	-	- 1	12	10	5	4	8	10	5	3	2	2	2	2	2	3	3	2	2	2	2	2	2	2
9.8a	-	_		-	-	***	_	-	-	-	-	***	-	-	<u></u>	2	2	2	2	2	2	-	~	_	_	_	_	_	_	-	-	-	_	-	2	2	2
10.7	4600		_	-	000	_	-	_	-	-	-	-	-	3	2	2	12	2	8	g	12	25	2	2	Ö	3	2	2	2	2	_	-	_	_	2	۷.	۷
11.8	***	6607	_	_	-	***	-	_	_	-	-	-		_	_	0	۲	2	- 8	り 12	. 3	TO	2	2	3	2	2	2	_	_	_	_	_	_	_	_	_
12.8	_	_	-	_	_	-	-		_	***	-	_	-	2	2	0 10	٦	10	12	14	2	72	8	2	2	5	2	3	_	_	Ξ	_	_	_	2	2	2
13.7 14.8	emo	_	_	cm	_	_	_	_	_	_	-	_		ر	2	TO.	2	ΤΩ	12	2	2	2	5	١,	j,	3	3	٦	3	3	3	2	2	2	2	2	-
16.8		_	_	_	_	_	_	_	_	_	_	_	_	2	3	3	2	8	5	2	3	Ę.	8	2	2	2	2	3	3	3	_	_	_	_	_	_	_
18.7	_	_		_	_	_	_	_	_	_	_	_	_	3	7	ã	7	12	12	2	12	10	2	2	2	2	2	2	2	2	2		_	-	_	_	-
21.7	2	3	2	2	3	2	2	2	2	2	2	2	2	3	5	8	10	-5	2	3	-5	-5	3	2	2	3	3	3	3	3	2	2	2	3	2	3	3
22.7	3	2	2	2	2	2	2	2	2	2	2	2	. 2	3	8	5	-8	8	5	5	5	3	5	5	3	3	3	5	5	5	2	3	2	3	2	3	2
23.6	2	2	3	3	3	3	2	2	_	-	-	_	2	2	3	3	3	10	8	8	12	10	12	2	3	2	2	2	3	5	3	2	2	2	2	2	3
25.7	3	3	2	2,	2	2	2	2	2	2	000	***		_	_	2	15	12	15	10	15	12	5	13	3	3	5	3	3	3	3	2	2	2	2	2	3
27.9	2	3	3	2	2	2	2	2	3	2	2	2	2	2	5	20	15	5	3	5	8	5	10	8	5	8	8	3	3	3	2	2	2	2	2	3	3
29.6	2	2	3	3	2	2	2	2	2	2	2	5	8 :	10	5	5	5	3	5	5	8	5	3	8	8	8_	5	2	3	2	2	2	3	2	2	2	5
30∙6	2	2	2	-	-	-	_	-	2	2	3	3	3	2	2	3	2	2	3	5	5	3	3	3	5	3	3	3	3	3	3	2	2	2	2	2	2

Table 61b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date				Deg	7700	8 8	out	ch o	of t	the	80.	lar	eqı	nat	OT*				100				Deg	ree	98 I	nort	ch c	of t	he	So.	lar	eat	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10,	5	10	15									60				80	85	90
1951																				-																	, -
Apr. 1.7	_	-	_	_	_	_	_	_	_	_	_	_	3	3	5	8	12	13	13	12	12	13	13	14	12	8	3	3	3	3	_	-	_	_	_	_	_
2.8a	-	_	_	-	_	_	_	_	_	5	5	5	5	5	8	15	20	25	15	12	12	13	15	12	15	10	8	5	5	3	_	_	_	_	_	_	_
3.8a	_	-	-	_	_	_	_	_	3	3	3	3	3	5	8	10	12	10				22	17	15	10	12	5	5	3	3	_	_	-	_	_	-	_
5.9a	_	_	_	_	_	_	_	_	_	_	_	_	-	3	3	5	5	5	5	8	10	8	8	5	5	5	5	3	3	3	3	3	_	_	_	_	_
8.7	_	****	-	_	-	_	_	_	_	_	-	_	3	3	3	5	8	10	5	5	3	5	8	10	15	12	10	8	5	3	_	_	_	_	_	_	_
9.8	_	_	_	_	_	_	_	_	5	5	8	8	10	10	12	13	12	10	8	12	12	10	5	3	_	_	_	_	_	_	-	_	_	_	_	_	_
10.7a	_	_	_	_	_	-	_	_	_	_	_	_	3	5	8	12	17	12	5	5	X	Х	X	Х	X	X	Х	X	X	X	X	X	X	X	X	X	em
11.8	_	_	_	_	_	-	_	_	_	_	_	3	3	5	10	13	8	8	5	3	5	8	10	10	8	8	8	5	3	3	_	_	_	_	****	_	_
12.8	_	_	_	_	_	_		_	_	_	_	3	3	3	5	8	8	8	8	12	20	25	15	12	12	10	8	5	8	10	3	_	_	_	_	_	-
13.7	_	_	_	_	_	_	_	^	_	-	_	3	3	3	5	5	8	10	10	15	22	25	20	17	14	8	8	8	8	8	3	-	_	_	_	_	-101
14.8	_	_	_	_	_	_	_	_	_	_	_	_	3	3	3	8	10	12	15	15	15	18	18	15	8	5	3	3	3	3	3	_	-	_	_	_	-
16.8	_	_	_	_	_	_	_	_	C06	3	3	3	3	5	8	10	12	15	22	15	5	5	3	3	_	_	_	_	-	_	_	1013	_	_	479	-	403
18.7a	_	_	_	-000	_	_	_	-	3	3	3	3	3	5	8	8	8	12	10	5	5	5	3	3	3	_	400	_	mos	-	_	_	_	_	_	_	cme
21.7	_	-	_	_	_	_	3	3	5	5	5	8	8	8	5	5	8	8	10	5	5	8	8	8	8	8	8	8	3	3	-	-	-	-	esc	-	-
22.7	_	_	-	_	_	_	-	3	3	5	8	8	8	8	5	8	8	12	15	12	12	13	13	15	15	15	13	10	5	3	3	5	5	5	3	-	-
23.6	_	_	_	_	-	G170	3	5	8	8	5	8	8	5	8	8	8	15	38	15	20	20	18	18	20	18	15	12	8	5	3	3	3	_	_	-	-
25 - 7	_	_	-	-	_	-100	cas	2	3	3	3	5	8	8	10	12	15	15	12	33	35	38	25	31	12	10	8	5	5	3	3	-	80	con	_	_	1018
27.9a	_	_	-	_	_	-	-	_	-	3	3	5	5	5	8	8	8	8	20	35	38	41		17	15	10	5	5	5	3	3	3	-	-	-	-	des
29.6	_	_	_	_	_	-	3	3	3	3	3	5	8	8	10	10	10		15	15	22	20	15	12	10	10	8	8	5	3	3	400	_	-	_	-	6.03
30.6	-	_	_	Corp.	-	3	5	5	5	5	5	5	5	8	5	5	8	13	IO	10	12	15	17	13	12	15	12	10	X	X	X	X	X	X	Х	Х	X
į																			1																		

Note: Yellow line (5694A): Apr. 25.7 at N10-N15, intensity 5.

 $\underline{\text{Table 62b}}$ Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

		-																		.																	
Date										the									00	L				ree						sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	L	5	10	15	20	25	30	35	40	45	50	55	60	65	70	<u>75</u>	80	85	90
1951																				ľ																	
Apr. 1.7	-	_	_	-	-	-	2	3	3	3	2	2	2	_	-	2	5	12	2	3	3	3	2	2	2	2	2	2	2	2	600	_	_	_	_	-	-
2.8a	2	2	_	_	_	_	2	3	3	3	3	3	2	2	5	3	8	12	3	2	5	5	5	5	5	3	2	2	_	_	-	_	_	_	_	_	_
3.8a	-	-	-	-	_	_	_	2	2	3	3	-		_	2	8	3	3	3	2	12	18	10	5	8	2	_	_	_	_	Ţ	_	_	-	_	-	_
5.9a	_	_	_	-	_	-	-	_	-	-	-	-	-	_	-	_	3	2	2	2	8	3	2	2	_	_	-	-	-	_	-	-	_	-	_	_	_
8.7	2	2	-	-	_	_	-	2	5	3	5	3	2	_	3	8	5	2	3	2	3	3	5	3	2	2	2	2	2	2	2	2	2	2	2	2	2
9.8	2	2	2	-	-	_	_	-	-	-	_	_	_	_	_	2	2	2	5	3	5	5	3	2	2	2	2	2	_	_	-	_	_	-	_	-	-
10.7a	2	2	2	2	2	2	2	2	3	3	2	2	2	2	8	77	12	10	5	5	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	-
11.8	-	-	-	_	_	_	2	3	3	3	3	3	5	3	5	12	13	8	8	10	8	8	10	2	2	-	-	_	_	-	_	****	-	_	-	_	_
12.8		_	-	-	_	_	_	3	3	3	3	3	3	8	10	12	10	8	5	3	8	14	12	2	_	-	_	_	_	~	-	-	-	-	_	_	_
13.7	2	2	2	2	2	2	2	2	2	2	2	3	3	5	3	2	3	5	3	5	10	8	12	5	3	3	2	2	2	2	2	-	_	-	_	_	-
14.8	-	_	_	_	_	_	_	_	-	_	_	2	3	3	2	2	3	10	3	2	2	3	10	5	2	3	2	_	_	_	-	-	_	_	_	_	_
16.8	-	_	_	-	-	-	_	_	-	_	-	_	-	_	-	_	3	20	15	2	3	2	2	2	2	2	2	2	2	2	-	-	_	_	_	_	-
18.7a	-	_	_	-	-	_	_	_	3	_	_	_	-	=	=	2	8	10	3	3	3	2	2	2	2	2	2	2	2	_	-	-	-	-	_	_	_
21.7	3	3	3	2	2	2	2	2	2	2	2	2	2	5	2	2	3	2	5	3	5 ـ	3	2	2	2	2	2	2	=	_	_	_	_	_	_	2	2
22.7	2	2	3	2	2	3	3	3	2	2	2	3	g	5	3	2	3	8	13 1	T5	T2	2	2	2	2	3	3	2	3	3	3	2	2	2	3	3	3
23.6	3	2	2	3	3	2	2	2	2	2	2	3	2	- 2	2	_ 3	8	10	15	9	T5	8	3	2	2	2	2	2	2	2	2	2	2	2	2	2	4
25.7	3	3	3	3	3	3	2	2	2	2	3	2	3	.5	8	TO	10	2	15 2	TÖ	12	3	TO	3	T2	2	3	3	3	2	3	3	3	2	3	3	3
27.9a	3	3	2	2	2	2	2	3	3	3	3	5	8	Τ0	8	3	2	2	25	8	TO	g	T2	5	2	3	2	3	3	2	2	2	3	3	3	3	2
29.6	5	3	3	2	2	2	2	2	3	5	5	5	3	3	3	2	- 3	8	12	5	8	3	2	3	3	5	3	3	3	3	2	2	3	2	3	2	2
30.6	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	3	_ 5	12	8	5	4	3	2	2	2	3	2	X	X	X	. X	Ă	X	X	X	2	2

Table 63a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Date				Deg	gree	38	nori	th o	of t	the	so.	lar	equ	nato	r				00				Deg	ree	8 8	out	h	of t	the	so	lar	eqt	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Apr. 1.7	_	ena	210	-	qualit		wan	_	-	_	-	-	_	_	-	400	_	-	- 1	-	_	-	-	_	440	_	-	-	can	-	000	60	-	-	-	_	-
2.8	_	-	_	-	-	-	60	-	_	000	400	677	-	_	80	-	_	2	2	2	2	2	2	2	-	-	quan	-	-	-	quality.	-	-	-	_	-	-
3.8a	440	_	988	ces	400	6000	953	on	_	4500	-	_	_	_	-	_	40	-	-	-	_	_	-	-	-	_	-	_	_	_	_	\rightarrow	_	-	-	-	-
5.9a	_	com	_	6339	-	-	Bo.	_	-	_	-	_	_	_	2	2	2	3	3	2	2	2	2		que.	-	_	_	_	-	-	- ·	-	-	-		-
8.7	_	_	-	-	oup	1009	\rightarrow	_	-	_	-	_	mp	2	2	2	-	_	-	-	000	_	-	_	-	_	_	_	-	_	_	_	-	_	-	-	-
9.8a	-	_	\rightarrow	049	449	des	480	940	-	917	-	-	_	_	-	-	om.	_	=	-	2	2	2	2	2	2	2	2	***	_	_	-	_	-	-	-	-
10.7		-	_	-	-	emp	-	-	_	_	_	-	_	2	2	2	3	3	3	4	4	3	2	2	2	2	_	-	_	-	_	-	948	-	_	400	-
11.8	-	_	-	on	_	-	_	-	479	-	-	_	-	-	2	2	3	3	3	3	4	2	2	_	-	-	-	_	_	_	_	_	_	-	_	_	-
12.8	-	_	_	-	-	900	_	-	969	09/0	140	90	-	2	3	3	5	3	3	3	3	2	2	-	600	-	_	_	_	_	-	_	-	-	-	-	_
13.7	-	-	_	60	480	-	_	_	-	_	_	\rightarrow	2	2	3	3	3	5	5	3	3	2	2	2	2	_	-	_	-	-	400		_	_	_	-	-
14.8	-		-	477	679	_	670	-	-	1988	an	-	-	2	2	3	3	3	5	3	3	3	000	-	-	_	-	_	_	_	-	_	-	-	_	_	_
16.8	_	_	_	_	-	943	649	_	_	gent	-	429	4000	2	2	2	2	2	-	-	_	_	-	quali	-	_	_	-	_	_	-	-	_	-	_	-	-
18.7	-	-	-	600	_	417	407	OMB	_	-	_	-	een	2	3	2	5	3	000	_	00	_	40	_	-	-	400	_	-	_	-	-	_	-	_	_	-
21.7	-	_	-	_	_	cin	_	_	_	2	2	2	2	2	2	2	2	2	2	2	-	_	_	_	_	-	_	_	-	-	_	-	_	_	_	_	-
22.7	_	_	-	1000	400	em	_	_	407	530	-	2	2	2	2	2	2	2	-		cm	977	-	OND	70	_	-	-	-	_	-	-	-	-	-	_	_
23.6	-	_	_	_	_	_	_	_	-	2	2	2	2	2	2	_	_	_	-	-	***	-	-	_	_	_	_	-			-	-	_	_	_	_	_
25.7	-	_	_	-	-	_	W-9	-	949	00	ave	_	2	2	3	5	3	2	2	2	2	3	3	2	-	_	-	-	-	week	-	-	-	-	_	_	_
27.9	-	_	-	-	_	440		_		4570	900	-	-	2	2	3	3	2	2	-	-	_	-	-	-	-	_	-	-	-	-	-	-	_	_	-	-
29.6	-	-	_	-	-	_	_	***	-	***	_	-	679	-	-	***	677	-	-	2	2	2	2	2	2	-	_	_	-	-	_	_	_	-	-	-	-
30.6	_	_	_	-	66	600	-	_	ma	90	com	-	_	440	679	_	-	400	-	-	_	_	-	_	_	_	-	_	-	_	-	-	-	_	_	_	_

Table 63b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date										the													Deg	ree	s r	ort	h	of ·	the	30	lar	eq	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Apr. 1.7	_	-	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	2	2	2	2	2	2	2	2	_	_	-	-	_	_	_	_	_	_
2.8a	_	-	_	_	-	_	_	-	_	-	_	_	-	_	2	2	3	5	3	3	3	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
3.8a	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	\rightarrow	_	_	2	2	2	2	2	2	2	2	2	2	_	_	-	_	_	_	_	-	-
5.9a	-	_	_	_	_	-	_	_	-	_	_	_	_	-	_	_	_	_	-	-	_	_	-	_	_	_	80	-	-	-	-	_	_	-	_	-	-
8.7	-	-	_	-	_	483	_	650	-	_	-		_	_	2	2	2	2	2	2	2	2	2	_	_	_	_	_	-	_	-	_	_	-	-	-	-
9.3	-	_	_	_	_	-	-	-	2	2	2	2	3	3	3	3	3	2	2	-	_	-	_	_	_	_	-	-	_	-	_	_	_	_	-	-	-
10.7a	-	-	-	-	-	_	-	_	-	_	_		-	_	-	_	-	-	-	-	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	-
11.8	_	-	-	-	_	***	_	863	-	uns	-	_	\rightarrow	2	2	2	2	2	-	-	-	-	-	_	-	-	-	_	-	_	_	-	_	-	-	-	-
12.8	_	-	-	-	_	-	-	-	619	-	elec	_	-	_	-	_	_	_	2	2	3	3	3	2	2	2	2	_	_		_	_	_	-	_	-	-
13.7	_	-	_	-	_	163	_	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	-	-	_	_	_	_	_	_	_	-	-	-
14.8	-	-	600	-	_	-	_	-	altro	_	_		-	_	-	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	-	-	463	-
16.8	1000	-	-	_	1380	~	-	-	een	140	348	attro	eca	2	2	3	3	3	2	2	40	_	_	rom.	_	_	_	_	_	_	_	_	_	_	-	-	679
18.7a	œS	-	-	,000	_	1700	-	_	000	907	-	600	400	cop	_	-	-		-	-	2	2	2	2	2	2	2	2	-	-	-	_	-	-	-	-	-
21.7	-	-	-	-	om	-	_	_	_	_	_	_	_	_	-	_	_	_	-	-	_	_	_	_	_	_	-	_	_	_	_	-	-	-		-	
22.7	-		_	-	-	-	-	_	_	_	_	-	_	_	_	_	2	2	2	12	2	2	2	2	3	3	3	2	_	-	_	-	_	-	-	-	-
23.6	_	-	-	_	CHB	_	_	-	-	_	_	James	-	ecols	2	2	3	3	3	3	3	3	3	3	2	2	2	2	_	-	_	_	_	-	-	-	-
25.7	-	_	_	-	_	-	-	-	_	_	_	463	_	qua	2	2	3	2	2	3	2	2	5	5	2	2	2	2	2	come	_	_	_	_	_	-	-
27.9a	_	-	_	-	_		-	-	_	463	60	460	400	_	-	_	2	2	13	13	>	5	2	3	2	2	2	-	_	_	_	_	-	-	-	_	_
29.6	_	_	-	-	_	-	_	_	_	_	_	_	cm O	_	_	_	2	2	12	12	2	2	2	2	-	-	-	-	-		_	_	_	-	-	-	-
30.6		_	_		_	_	000		-	400	6604	-	2	2	2	2	2	2	980	_	_	-	-	SAIR	-	-	-	-	-	-	_	_	-	_	_	_	-

Table 64
Outstanding Solor Flares, March 1951

Observa- tory	Da	te	Tin Obser Begin-		Dura- tion	Area (Mill) (of)	Posi Long- itude	tion Lati- tude	Time of Maxi~	Int. of Maxi-	Rela- tive Area of	Import- ance	SID Obser
	1.9	51	ning (GCT)	ing (GCT)	(Min)	(Visible) (Hemisph)	Diff (Deg)	(Deg)	mum (GCT)	min	Maxi- mum (Tenths)		700
Sacramento	Mar	. 1	1820	2025	125	3 05	1827	\$12	1846	20	6		
Peak McMath	и	1	1835	5			E16*	S13*	ļ			1 /	
Sacramento Peak	13	1	2149	2215	26	53	W74	NO9	2151	10	g	·	
11	11	5	1905	1945	710	52	W29	\$13	1908	15	8		
8	17	11	1805 1830	2010 2025	125 115	126 116	E27	803 N14	1823 1909	15 15	jt jt	•	
8	11	11	2250	2342	52	53	1290	SO 3	2255	20			
13	11	13	1733	1820	47	95	W17	NI3	1749	15	9 5 3 2		
15	15	13	1808	1933	85	180	EOl	803	1824	15	3		1
15	n	13	1820	2131	191	5/15	W17	N13	1918	20	2		
tt .	11	19 19	1550 1603	1625 2000	35 237	2 1 63	E59	NO5 N12	1608 1613	20 15	8 5		
10	15	20	2010	2140	90	52	1825	N13	2020	15	7		
15	15	21	1440	1540	60	190	E36	NO9	1458	25	i ₄		1
15	15	21	1457	1545	4g	126	E19	NI3	1507	10	9		
a	18	21	2215	2250	35	63	W49	N19	2228	10	7		
H	Ħ	22	2220			53	E 06	NOS	2225	15	jt		
15	13	23	1635	1650	15	74	26 14	NJO	1646	10	6		
15	15	23	1651	1703	12	95	MO8	W15	1658	20	Ħ		1
15	11	23	1655 1910	1714 1935	19 25	105 53	201 W18	N10 S09	1701 1921	15 15	3 7		
11	19	23	1925	2015	50	715	WOl	108	1936	15	7		
23	н	23	2104	2113	و	53	W15	N14	2110	15	ģ		
12	10	23	2120	2145	25	158	WIO	N15	2129	25	6		
Edinburgh	18	24	1139		-		W15	N15		-		3	Yes
Nav. Obs.	15	24	1605				W21*	NJ5#				- 1	
McMath	10	24	1930				Alita	N12*				1 /	
Н	15	26	174		76	62	S10*	¥57*	2220	10	-	1	
Sacramento Peak		31	2210	2245	35	63	E50	S14	2220	10	5		1

^{*}Longitude and latitude of calcium or solar area in which solar flare was observed.

Table 65

Indices of Geomagnetic Activity for March 1951

Preliminary values of mean K-indices, Kw, from 38 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

Gr. Day 1951	Values Kw	Sum	C	Values Kp	Sum	Final Sel. Days
1 2 3 4 5	3.7 3.3 2.2 3.0 3.0 2.3 1.5 1.3 0.4 0.6 1.4 1.9 2.9 2.1 1.6 2.6 1.6 2.0 3.1 2.3 2.0 2.3 1.5 0.7 0.2 2.1 2.2 1.3 1.7 1.3 1.5 3.0 0.7 1.5 2.0 1.4 1.3 1.5 1.3 0.8	20.3 13.5 15.5 13.3 10.5	0.8 0.5 0.4 0.4 0.1	4+4+3-3+ 302+1+1+ 000+1+20 3+2+1+2+ 2-30403- 202+2-1- 0030301+ 201+1+30 0+203-2- 102-100+	23- 130 180 150	Five Quiet 2 4 5
6 7 8 9 10	1.3 2.6 4.2 3.2 3.4 2.8 2.8 2.6 2.9 2.6 2.4 3.8 5.1 4.2 4.8 4.3 3.2 2.4 2.9 4.6 4.1 4.6 4.5 4.4 3.7 3.3 3.1 3.3 3.1 3.4 3.7 4.7 4.5 4.6 4.2 3.0 4.1 3.4 3.9 3.6	22.9 30.1 30.7 28.3 31.3	0.9 1.5 1.4 1.1	1+3+503+ 3+3-3-3- 4-3+2+4+ 604+5050 4-304-6- 5-5+505- 4+40404- 3+4-4060 506-503+ 4+4-4040	24+ 340 36- 330 350	21 28
11 12 13 14 15	3.7 3.0 3.6 2.9 2.8 4.3 4.5 2.6 3.7 3.4 3.3 4.1 4.1 3.1 3.7 2.3 2.4 2.6 2.6 4.1 4.3 4.8 5.8 5.4 4.0 3.9 3.8 3.3 4.1 3.9 5.2 3.4 4.9 3.5 2.6 2.4 2.2 2.0 1.6 1.0	27.4 27.7 32.0 31.6 20.2	1.2 1.6 1.4 1.0	404-4+3+ 30505-3- 4+4+4050 5-4-4020 303+3+5- 506-7-6+ 505-5-3+ 5-5-6+4- 6040302+ 2+202-1-	31- 320 380 370 220	Five Dist.
16 17 18 19 20	0.9 2.4 2.6 3.7 3.1 3.1 3.6 2.9 2.1 1.5 4.1 4.4 2.9 3.3 2.4 2.8 2.7 2.8 2.8 4.1 2.7 2.7 2.9 3.3 3.0 2.4 2.9 2.1 1.2 1.6 1.6 1.2 0.7 0.9 1.1 3.6 3.5 2.4 1.4 0.9	22.3 23.5 24.0 16.0 14.5	1.0 0.9 0.9 0.5 0.7	1-30304+ 3+304-30 202-5+5+ 304-3-3- 303+3+5+ 30303-40 3+304-20 1-2-2-1+ 1-101040 403-101-	240 26+ 28= 17+ 150	14 22 Ten
21 22 23 24 25	0.7 0.6 1.7 1.5 1.5 1.2 2.1 3.1 3.3 2.9 2.4 3.9 4.0 5.2 4.9 4.7 3.7 3.3 2.8 3.3 3.4 3.4 4.3 3.9 3.3 2.4 2.3 3.0 3.3 3.2 4.2 3.7 3.2 3.9 1.6 3.5 2.9 2.4 1.7 2.9	12.4 31.3 28.1 25.4 22.1	0.4 1.5 1.1 1.0 0.9	1-10202- 1+10204- 404-305- 5-6-606- 40403+4- 4040504+ 4-303-3+ 4-3+4+40 4-5-2-4+ 3+3-1+30	13+ 37+ 32+ 280 25-	Quiet 2 3 4 5
26 27 28 29 30 31	3.1 2.3 2.6 2.8 2.9 2.3 3.5 3.5 2.9 3.7 2.3 2.3 1.8 2.3 1.8 2.2 1.9 0.6 0.5 0.6 1.4 1.3 1.1 1.6 0.8 3.4 4.1 3.5 4.2 3.8 3.6 3.9 3.5 2.0 1.7 2.5 2.6 1.7 1.5 1.8 1.0 1.2 2.5 1.6 2.0 3.0 2.6 1.6	23.0 19.3 9.0 27.3 17.3 15.5	0.9 0.6 0.1 1.2 0.7 0.6	3+3-3+3+ 302+4-4- 3+5-303- 2+2+2-20 2+1-0+00 lol+lol+ 2-4+5+40 5-40404+ 4-3-203- 3-1+lo2- 1+2-302+ 2-3+2+1+	25+ 220 80 31+ 18- 170	19 20 21 28 30 31
Mean	2.51 2.63 2.95 2.94 2.51 2.94 2.87 2.80	22.15	0.90			

Table 66
Sudden Ionosphere Disturbances Observed at Washington, D. C.

April 1951

1951 Day	GO: Beginnin		Location of transmitte	Relative intensity at minimum*	Other phenomena
April					
2	1730	7850	Ohio, D. C Colombia, England, New Brunswick		Solar flare***
10	1714	1820	Ohio. D. C., Colombia. England, New Brunswick	0.05	
12	2014	2110	Ohio, D. C., Colombia, England	0.01	Solar flare***
13	1558	1625	Chio, D. C.	0.1	Sclar flare*** 1535 Solar flare*** 1600
17	. 1420	1500	Ohio, D. C., England	0.2	Terr.mag.pulse**
17	1721	1735	Ohio. D. C., Colombia	- 0.3	
17	1800	1940	Chio, D. C., Colombia, England		
17	2015	2040	Ohio, D. C., Colombia	0.05	Solar flare*** 2015
18	1625	1650	Ohio, D. C.	0.2	Solar flare***
18	1808	1830	Ohio, D. C.	0.2	
18	2045	2145	Ohio, D. C., Colombia, England	0.0	Solar flare***
19	1507	1740	Ohio, D. C., Colombia, England	0.0	Solar flare***
20-21	2222	0000	Ohio, D. C., England	0.0	-70
23	1345	1410	Ohio, D. C., Colombia, England	0.2	
23	1659	1800	Ohio, D. C., Colombia, England, New Brunswick		Solar flare***
24	1815	1920	Ohio, D. C., Colombia England, New Brunswick	, 0.0	
30	1720	1745	Ohio, D. C., Colombia, England, New Brunswick	0.0	Terr.mag.pulse** 1720-1740

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant for all SID except the following: Station GLE, 13525 kilocycles, received in New York, 5340 kilometers distant was used for the SID on April 12.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic

^{***}Mime of observation at Sacramento Peak, New Mexico.

^{****}Time of observation at Wendelstein Observatory, Germany.

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,

Cable and Wireless, Ltd., as Observed in England

1951 Day	GCT Beginning End				Receiving station	Location of transmitters	Other phenomena
March							
24	1137	1155	Brentwood	Bahrein I., Greece, Iran, Palestine, Spain, U.S.S.R.	Solar flare*		
24	1137	1200	Somerton	Argentina, Australia, Ceylon, China, Egypt, Gold Coast, India, Union of S. Africa	Solar flare*		
April	0.001	0040					
12	0745	0850	Brentwood	Austria, Bahrein I., Barbados, Belgian Congo, French Equatorial Africa, India, Iran, Palestine, Syria, Thailand, Turkey, U.S.S.R.	Solar flare** 0736		
12	0745	0845	Somerton	Ascension I., Ceylon, China, Cyprus, Egypt, India, Union of S. Africa	Solar flare** 0736		
15	0913	Brentwood A		Austria, Bulgaria, Eritrea, India, Iran, Madagascar, Palestine, Spain, Syria, Switzerland, Trans-Jordan, U.S.S.R.			
15	0915	1005	Somerton	Aden, Ascension I., Australia, Ceylon, China, Cyprus			
19	19 0530 0730		Breatwood	Bahrein I., Bulgaria, Eritrea, India, Iran, Kenya, Palestine, Southern Rhodesia, Syria, Trans- Jordan, U.S.S.R.			
19	0535	0730	Somerton	Aden, Ceylon, Cyprus, India			
19	1515	1715	Brentwood	Barbados, Chile, Colombia, Uruguay, Venezuela	Solar flare***		
19	1530	1650	Somerton	Argentina, Brazil, Canada, New York	Solar flare***		
30	0642	0710	Brentwood	Bahrein I., Bulgaria, India, Iran, Southern Rhodesia, Switzerland, Syria			
30	1735	1750	Brentwood	Barbados, Chile, Colombia, Uruguay, Venezuela	Terr.mag.pulse*** 1720-1740		
30	1725	1740	Somerton	Argentina, Brazil, New York	Terr.mag.pulse*** 1720-1740		

^{*}Time of observation at Edinburgh Observatory, Scotland.

^{**}Time of observation at Schauinsland Observatory, Germany.

^{***}Time of observation at Sacramento Peak, New Mexico.

^{****} As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Table 68

Sudden Ionosphere Disturbancee Reported by RCA Communications, Inc.

as Observed at Point Reyes, California

Other	phenomena	Solar flare*	Solar flare® 2320	Solar flares	Solar flare	Terr.mag.pulse**			Terr.mag.pulse.
		otne Is.	Ine.		lna, Sealand,		Java	Philip-	Philip-
	atters	Ph111pg	Indo-Chi	Japan,	Indo-Chi		Јарап,	Јарап,	Japan
	Location of transmitters	Japan,	French a, Kore	Hawail,	French	e Is.	Eawaii, Is.	Hawaii,	Hewell,
	ation o	Hawa11.	China, San, Jav Ie,	China, Ie,	China,	111ppir	China.	China,	China
	Loc	Australia, Hawaii, Japan, Philippine Is.	Australia, China, French Indo-China, Hawaii, Japan, Java, Korea, Okinawa, Philippine Ie.	Australia, China, Hawaii, Japan, Philippine Ie.	Australia, China, French Indo-China, Eawail, Japan, Java, Korea, New Zealand,	Okinawa, Philippine Is.	Australia, China, Hawaii, Japan, Java, Korea, Philippine Is.	Australia, China, Hawaii, Japan, Philip-	Australia, China, Eawail, Japan, Philippine Is.
	End End	2110	2355	2245	900 55		9130	90 50	1745
9CT	Beginning End	2018	2320	2057	2350		00 20	2230	1724
1951	Day	April 12	17	18	18-19		50	20-21	30

*Time of observation at Sacramento Peak, Mew Mexico.

Geodetic Survey.

Table 69

Sudden Ionosphere Disturbancee Reported by RCA Communications, Inc.

as Observed at Riverhead, New York

Other		Solar flare	Solar flare**	Terrang.pulsesse	
Location of transmitters		Argentina, Canada, England, Italy. Panama	England, Italy, Tengier	Argentina, California, Canada, Engaland, Italy, Fanama, Switzerland, Tangier	
T ng End		2115	1000	1740	
GCT Beginning End		2014	0850	1722	
1951 Der	Apr11	12	25	30	

"Time of observation at Sacramento Peak, Mew Mexico
""fime of observation at Wendelatein Observatory, Germany.
"""As observed on Cheltenham magnetogram of the United States Coaet and Geodetic Survey.

Table 70

Sudden lonosphere Disturbances Reported by Engineer-in-Chief.

Oable and Wireless, Ltd., as Observed at Hong Kong, Chins

Location of transmitters	Australia, China, French Indo-China, Japan, Eorea, Philippine Is., Thailand
Location of	Australia, China, French Philippine Is., Thailand
GCT Beginning End	0205 0230
1951 Day	February 26

Mote: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address lettere to the Central Radio Propagation Laboratory. Mational Burecu of Standards, Washington 25, D. C.

Index of Tables and Graphs of Ionospheric Data

in CRPL-F81

	Table page	Figure page
Akita, Japan February 1951	14	53
Baton Rouge, Louisiana February 1951		55
Bombay, India October 1950	_	61
Boston, Massachusetts	·	47
March 1951	12	47
October 1950	18	63
October 1950	18	63
Capetown, Union of S. Africa February 1951	15	56
Christchurch, New Zealand December 1950		60
Dakar, French West Africa		
August 1950	18	64
March 1951	12	46
Delhi, India October 1950	17	61
Formosa, China February 1951	15	55
Graz. Austria		47
March 1951	. 14	47 52
Guam 1. March 1951	_	50
Hobert, Tasmania		_
October 1950	18	64
March 1951	14	51
Johannesburg, Union of S. Africa February 1951	15	56
Kiruna, Sweden March 1951	12	45
February 1951	14	51 57
January 1951 Lindau/Harz, Germany		
January 1951	16	57

Index (CRPL-F81), continued)

Te	ble page	Figure page
Madras, India		
October 1950	17	62
Maui, Hawaii	•	
March 1951	13	49
Okinawa I.		
March 1951	13	49
Oslo, Norway		
March 1951	12	46
Poitiers, France	- 0	
July 1950		65
June 1950	18	65
Barotonga I.	2/	70
December 1950		59 60
November 1950	17	60
San Francisco, California	13	48
March 1951	1)	40
February 1951	14	52
January 1951	- 1	58
December 1950		59
Tiruchy, India	20	
October 1950	17	62
Tokyo, Japan	-,	
February 1951	15	54
Trinidad, British West Indies		
March 1951	13	50
Wakkanai, Japan		
February 1951	14	53
Washington, D. C.		
April 1951	12	45
Watheroo, Western Australia		
January 1951	16	58
White Sands, New Mexico		4.5
March 1951	13	48
Yanagawa, Japan		al.
February 1951	. 15	54

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radic Propagation Laboratory upon request]

Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions-Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13() series.) Ionospheric Data.

CRPL-F.

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Fre-

Criteria for Ionospheric Storminess.

**R6.

R6. Experimental Studies of Lonospheric Propagation as Applied to the Loran System.
R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.
**R12. Short Time Variations in Ionospheric Characteristics.
R14. A Graphical Method for Calculating Ground Reflection Coefficients.
**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

- **R17. Japanese Ionospheric Data—1943.
 R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
- **R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)
 **R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System. **R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena. R26. The Ionosphere as a Measure of Solar Activity.

- R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
- **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

 R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL.

**R34. The Interpretation of Recorded Values of fEs.
R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:
 T1. Radar operation and weather. (Superseded by JANP 101.)
 T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14() Series.
**Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

