МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Организация ЭВМ и систем» Тема: Трансляции, отладка и выполнение программ на языке Ассемблера.

Студент гр. 0382	Тихонов С.В.
	 Евфремов М
Преподаватель	A.

Санкт-Петербург 2021

Цель работы.

Изучить трансляцию, отладку и выполнение программ на языке Ассемблера

Задание.

Вариант 2

Часть 1

- 1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h). Выполняемые функцией действия и задаваемые ей параметры следующие: обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$"; требуется задание в регистре аh номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки; используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
- 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
- 4. Протранслировать программу с помощью строки > masm hello1.asm с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
- 5. Скомпоновать загрузочный модуль с помощью строки > link hello1.obj с созданием карты памяти и исполняемого файла hello1.exe.

- 6. Выполнить программу в автоматическом режиме путем набора строки > hello1.exe убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.
- 7. Запустить выполнение программы под управлением отладчика с помощью команды > afd hello1.exe 4 Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды.

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно Κ программе hello2.asm, приведенной каталоге Задания, которая выводит на экран приветствие помощью процедуры WriteMsg, пользователя с также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Выполнение работы.

Часть 1

- 1) Изучена программа hello1.asm. Строка приветствия была изменена в соответствии с личными данными.
- 2) Выполнена трансляция hello1.asm в hello1.obj с созданием файла листинга. Трансляция прошла без ошибок.
- 3) Выполнена компоновка объектного файла с созданием карты памяти и исполняемого файла hello.exe
- 4) Выполнен запуск исполняемого файла в автоматическом режиме. Результатом работы является строка: "hello everybody, its Andrew Zlobin from 0382"
- 5) Выполнен запуск исполняемого файла с помощью отладчика.

Таблица 1. Результаты выполнения hello1.exe в отладчике Начальные значения сегментных регистров: (CS) = 1A05, (DS) = 19F5, (ES) = 19F5, (SS) = 1A0A

Адрес Символиче команды ский код команды		16-ричный	Содержимое регистров и ячеек памяти	
	код команды	до выполнени я	после выполнени я	
0010	MOV AX, 1A07	B8071A	(AX) = 0000 (IP) = 0010	(AX) = 1A07 (IP) = 0013
0013	MOV DS, AX	8ED8	(DS) = 19F5 (IP) = 0013	(DS) = 1A07 (IP) = 0015
0015	MOV DX, 0000	BA0000	(DX) = 0000 (IP) = 0015	(DX) = 0000 (IP) = 0018
0018	MOV AH, 09	B409	(AX) = 1A07 (IP) = 0018	(AX) = 0907 (IP) = 001A
001A	INT 21	CD21	(IP) = 001A	(IP) = 001C
001C	MOV AH, 4C	B44C	(AX) = 0907 (IP) = 001C	(AX) = 4C07 (IP) = 001E
001E	INT 21	CD21	(IP) = 001E	(IP) = 0010

Часть 2.
Проделаем аналогичные шаги для программы hello2.exe
При запуске на экран было выведено: "Hello Worlds! \n
Student from 0382 - Andrew Zlobin"

Начальное значение сегментных регистров: (CS) = 1A0A, (DS) = 19F5, (ES) = 19F5, (SS) = 1A05

команды кий код команды		16-	Содержимое регистров и ячеек памяти	
	ричный код команды	До выполнени я	После выполнени я	
0005	PUSH DS	1E	(IP) = 0005 (DS)=19F5 (SP) = 0018 Stack +0 0000 +2 0000 +4 0000 +6 0000	+2 0000 +4 0000
0006	SUB AX, AX	2BC0	(AX) = 0000 (IP) = 0006	(AX) = 0000 (IP) = 0008
0008	PUSH AX	50	(AX) = 0000 (SP) = 0016 (IP) = 0008 Stack: +0 19F5	(AX) = 0000 (SP) = 0014 (IP) = 0009 Stack: +00000 Stack: +2 19F5
0009	MOV AX,1A07	B8071A	(AX) = 0000 (IP) = 0009	(AX) =1A07 (IP) = 000C
000C	MOV DS, AX	BED8	(DS) = 19F5 (AX) =1A07 (IP) = 000C	(DS) =1A07 (AX) =1A07 (IP) = 000E
000E	MOV DX, 0000	BA0000	(DX) = 0000 (IP) = 000E	(DX) = 0000 (IP) = 0011
0011	CALL 0000	E8ECFF	(SP) = 0014 (IP) = 0011 Stack:	(SP) = 0012 (IP) = 0000 Stack:

			+0 0000 Stack:+2 19F5	+0 0014 +2 0000 +4 19F5
0000	MOV AH, 9	B409	(AX) = 1A07 (IP) = 0000	(AX) = 0907 (IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	С3	(IP) = 0004 (SP) = 0012 Stack: +0 0014 +2 0000 +4 19F5	(IP) = 0014 (SP) = 0014 Stack: +0 0000 +2 19F5
0014	MOV DX, 0010	BA1000	(DX) = 0000 (IP) = 0014	(DX) = 0010 (IP) = 0017
0017	CALL 0000	E6FF	(SP) = 0014 (IP) = 0017 Stack: +0 0000 +2 19F5	(IP) = 0000 Stack: +0 001A
0000	MOV AH, 9	B409	(AX) = 1A07 (IP) = 0000	(AX) = 0907 (IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	С3	(IP) = 0004 (SP) = 0012 Stack:+0 001A +2 0000 +4 19F5	(IP) = 001A (SP) = 0014 Stack:+0 0000 +2 19F5

001A	RET Far	СВ	(IP) = 001A (SP) = 0014 (CS) =1A0B Stack +0 0000 +2 19F5	(SP) = 0018 (CS) = 19F5 Stack +0 0000
0000	INT 20	CD 20	(IP) = 0000	(IP) = 0005

Выводы.

Были изучены основные элементы синтаксиса ассемблера и правила написания программ на нём. Та же были рассмотрены процессы трансляции, компоновки и выполнения программы.

Приложение А Исходный код программы

Название файла: hello1.asm

```
DOSSEG
                                                  ; Задание сегментов под
дос
    .MODEL
          SMALL
                                                         ; Модель памяти-
SMALL(Малая)
   .STACK 100h
                                                   ; Отвести под Стек 256
байт
   .DATA
                                               ; Начало сегмента данных
Greeting LABEL BYTE
                                               ; Текст приветствия
  DB 'hello everybody, its Tikhonov Sergey from 0382',13,10,'$'
   .CODE
                                        ; Начало сегмента кода
   mov
       ax, @data
                                         ; Загрузка в DS адреса начала
                                         ; сегмента данных
   mov
        ds, ax
        dx, OFFSET Greeting
   mov
                                         ; Загрузка в dx смещения
                                        ; адреса текста приветствия
DisplayGreeting:
   mov ah, 9
                                         ; # функции ДОС печати строки
   int
        21h
                                        ; вывод на экран приветствия
       ah, 4ch
                                              ; # функции ДОС завершения
   mov
программы
   int
        21h
                                         ; завершение программы и выход в
ДОС
  END
     Название файла: hello2.asm
; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура
компьютера"
           Программа использует процедуру для печати строки
       ТЕКСТ ПРОГРАММЫ
              '$'
                           Определение символьной константы
EOFLine EQU
                                "Конец строки"
; Стек программы
ASSUME CS:CODE, SS:AStack
AStack
          SEGMENT STACK
          DW 12 DUP('!')
                         ; Отводится 12 слов памяти
AStack
         ENDS
; Данные программы
DATA
          SEGMENT
  Директивы описания данных
          DB 'Hello Worlds!', OAH, ODH, EOFLine
HELLO
GREETING
         DB 'Student from 0382 - Tikhonov Sergey $'
DATA
          ENDS
; Код программы
CODE
         SEGMENT
; Процедура печати строки
WriteMsg PROC NEAR
```

```
mov
                AH, 9
                21h ; Вызов функции DOS по прерыванию
          int
          ret
WriteMsg
          ENDP
; Головная процедура
Main
          PROC FAR
          push DS
                         ;\ Сохранение адреса начала PSP в стеке
                         ; > для последующего восстановления по
          sub
                AX, AX
          push
               AX
                         ;/ команде ret, завершающей процедуру.
                AX, DATA
                                    ; Загрузка сегментного
          mov
                DS, AX
          mov
                                    ; регистра данных.
                DX, OFFSET HELLO
          mov
                                      Вывод на экран первой
          call
                WriteMsg
                                      строки приветствия.
          mov
                DX, OFFSET GREETING; Вывод на экран второй
          call
                                     ; строки приветствия.
                WriteMsq
          ret
                                     ; Выход в DOS по команде,
                                    ; находящейся в 1-ом слове PSP.
          ENDP
Main
CODE
          ENDS
          END Main
```