

Operativni sistemi

 Uvod i pregled operativnih sistema -

Računarstvo i informatika

Katedra za računarstvo Elektronski fakultet u Nišu

Operativni sistemi

Računarstvo i informatika

Softver

- Softver
 - Sistemski softver
 - Aplikativni softver
- Sistemski softver
 - Sva programska sredstva neophodna za razvoj i izvršenje korisničkih i sistemskih programa na računaru i upravljanje resursima računarskog sistema
 - Namenjen je svim korisnicima računarskog sistema
- Aplikativni softver
 - Sva programska sredstva namenjena rešavanju konkretnih problema korisnika u određenom domenu

Operativni sistem (OS)

- OS predstavlja organizovanu kolekciju programa čije su osnovne funkcije i ciljevi:
 - Pogodnost Da omogući lako i pogodno korišćenje računara
 - Efikasnost Da obezbedi efikasno korišćenje i upravljanje resursima računara
 - Mogućnost razvoja Da obezbedi osnovu za efikasno evoluiranje i razvoj novih funkcija sistema
- OS je interfejs između korisnika i HW računarskog sistema
 - Programi obično zahtevaju servise OS-a pomoću **sistemskih poziva** (system call)
 - Korisnici mogu direktno interagovati sa OS-om pomoću komandi komandnog jezika ili preko elemenata grafičkog korisničkog intrefejsa (GUI)

OS kao interfejs između korisnika i računara

- Korisnik vidi računarski sistem kao skup aplikacija
- Programer razvija aplikacije korišćenjem sistemskog softvera (pomoćnih programa i operativnog sistema). OS sakriva detalje hardvera od programera i obezbeđuje mu jednostavan i prikladan interfejs za korišćenje računarskog sistema
- OS omogućava aplikacionim programima pristup i korišćenje funkcija i servisa OS u pristupu hardverskim resursima

Servisi operativnog sistema

- Operativni sistem obezbeđuje servise u sledećim domenima
 - Razvoj programa
 - Izvršavanje programa
 - Pristup U/I uređajima
 - Kontrolisan pristup datotekama
 - Pristup sistemu i uporavljanje pristupom resursima
 - Detekcija grešaka i odgovor na greške
 - Evidencija korišćenja resursa sistema i nadgledanje performansi

OS kao upravljač resursa

- OS upravlja resursima računarskog sistema
- Resursi su hardverski uređaji (procesor, memorija, štampač, disk, kamera,...) ili strukture podataka (datoteka, semafor, slog u bazi podataka, bafer poruka,...) koji su na raspolaganju korisnicima i programima
 - Apstrakcija resursa
 - OS prikriva detalje o tome kako HW radi tako što koristi apstraktni model resursa
 - Slični resursi imaju zajednički apstraktni model (npr. hard disk i USB flash)
 - Ovi modeli su specifični za OS
 - Npr. procesi su apstrakcija rada procesora, datoteke su apstrakcije sekundarnih memorijskih jedinica
 - Raspodela i zajedničko korišćenje resursa
 - Dodela i oslobađanje resursa
 - Evidentiranje korišćenja resursa
 - Obračun korišćenja resursa
 - Rešavanje konfliktnih zahteva za resursima od strane različitih programa i korisnika

OS kao upravljač resursa

- Deo OS se nalazi u glavnoj memoriji
 - Kernel (jezgro) sadrži najčešće korišćene funkcije u okviru OS
 - Delovi OS koji su trenutno u upotrebi
- Ostatak glavne memorije sadrži korisničke programe i podatke

Zajedničko korišćenje resursa

- Više programa koji se konkurentno izvršavaju mogu deliti (zajednički koristiti) resurse
- Postoje dva načina deljenja (multipleksiranja) resursa:
 - U vremenu različiti programi ili korisnici koriste resurs naizmenično
 - Na primer, na računaru sa jednim CPU i više programa, operativni sistem dodeljuje CPU jednom programu, zatim drugom, itd., eventualno opet prvom (drugi primer: štampač)
 - Određivanje vremenske raspodele resursa, kome i koliko vremena će resurs biti dodeljen, je zadatak OS-a
 - U prostoru svaki program ili korisnik dobija jedan deo resursa
 - Na primer, glavna memorija je obično podeljena na više trenutno aktivnih programa, a OS vodi računa o prostornoj raspodeli i zaštiti od pristupa tuđem delu memorijskog prostora
- Od prirode resursa zavisi način deljenja u vremenu ili prostoru
 Uvod i pregled operativnih sistema

Jednostavna evolucija OS

- Operativni sistemi moraju biti sposobni da evoluiraju tokom vremena iz sledećih razloga:
 - Unapređenje hardvera i razvoj novih tipova hardvera
 - Novi servisi: kao odgovor na zahteve korisnika ili sistemskih administratora
 - Korekcija grešaka
- Operativni sistem mora biti modularne strukture sa jasno definisanim interfejsima između modula i dobro dokumentovan

Istorija operativnih sistema

- Serijska obrada (1945 1955)
 - Vakumske cevi, bušene kartice, mašinski jezik
 - Nema OS-a, programeri su pristupali direktno hardveru
- Jednostavni paketni sistemi (batch systems) (1955 1965)
 - Tranzistori, mainframe računari, asemblerski jezik, FORTRAN, COBOL
 - Monitor jednostavan OS (IBSYS IBM OS za 7090/7094 računare)
- Multiprogramski batch sistemi
- Multiprogramski sistemi sa podelom vremena (time sharing) (1965-1980)
 - Integrisana kola, mini računari i radne stanice, C, UNIX
 - Multiprogramiranje, timesharing
 - IBM System/360, Compatible Time-Sharing System (CTSS), UNIX,...
- Personalni računari (1980 danas)
 - LSI/VLSI, mikroprocesori, personalni računari (PC), mikroračunari
 - Windows, Apple Mac OS, UNIX, Linux, ...
- Distribuirani, paralelni, mobilni računari (1990 danas)
 - Multiprocesorski sistemi, distribuirani sistemi, sistemi za rad u realnom vremenu, mobilni računari (pametni telefoni, tableti), ugrađeni i sveprisutni računari

Sistemi paketne obrade (batch sistemi)

Stari mainframe računari

- Bušene kartice se unose u IBM 1401
- Čitanje sa kartica i snimanje na magnetnu traku
- Postavljanje trake na IBM 7094 koji obavlja obradu i rezultat snima na magnentu traku
- Postavljanje trake na IBM 1401 i štampanje

Monitor u *batch* sistemu

- Struktura tipičnog posla (job) zadatog bušenim karticama
- Operativni sistem Monitor
 - FMS (Fortran Monitor System)
 - IBSYS (IBM-ov OS za 7094 računar)
- Instrukcije se monitoru zadaju preko *Job* Control Language (JCL)
- **Monitor** je stalno smešten u glavnoj memoriji i izvršava se u *kernel* modu
- Čita sa ulaznog uređaja jedan po jedan posao, smešta instrukcije i podatke u korisnički deo memorije i startuje izvršenje posla u korisničkom (*user*) modu.
- Po završetku, monitor učitava i izvršava sledeći posao.

Uvod i pregled operativnih si

Operativni sistemi

Monitor – operativni sistem

- Monitor (operativni sistem sa paketnom obradom) je računarski program koji je smešten u deo glavne memorije i naizmenično se izvršava sa korisničkim programima
- Poželjna svojstva hardvera
 - Zaštita memorije koju zauzima monitor
 - Tajmer
 - Priviligeovane instrukcije može ih izvršiti samo monitor
 - Prekidi
- Dva režima rada
 - Kernel režim (mod)
 - Monitor (operativni sistem) se izvršava u kernel modu
 - Korisnički režim (mod)
 - Korisnički programi se izvršavaju u korisničkom modu, koriste samo podskup iz skupa instrukcija i samo neke mogućnosti HW (generalno, instrukcije za U/I i zaštitu memorije su zabranjene u korisničkom modu)
 - Za ostalo korisnički programi pozivaju funkcije (servise) OS-a

Uvod i pregled operativnih sistema

Multiprogramski paketni sistemi

Multiprogramiranje (multitasking) – Operativni sistem istovremeno smešta u memoriju više poslova; u jednom trenutku samo jedan od poslova se izvršava na CPU, ukoliko se blokira izvršenjem U/I operacije (npr. čitanje podataka sa diska), aktivira se planiranje poslova

Planiranje poslova (Job scheduling) – OS mora da iz skupa svih poslova izabere one koji će biti smešteni u memoriju i odrediti jedan koji će se izvršavati - planiranje CPU (CPU

scheduling)

U/I prekidi i DMA

Upravljanje memorijom

Operativni sistemi:

- SOS/360
- MULTICS
- UNIX (System V, BSD)

Multiprogramiranje

Uniprogramiranje - CPU mora da čeka dok se ne završi U/I

instrukcija

Read one record from file	15 μs
Execute 100 instructions	1μ s
Write one record to file	<u>15 μs</u>
TOTAL	31 µs
D CDITION O	1 0.022 2.2%
Percent CPU Utilization =	$\frac{1}{31} = 0.032 = 3.2\%$

Multiprogramiranje sa tri aktivirana programa

Uvod i pregled operativnih sistema

Primer multiprogramiranja

Table 2.1 Sample Program Execution Attributes

	JOB1	JOB2	JOB3
Type of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min	15 min	10 min
Memory required	50 M	100 M	75 M
Need disk?	No	No	Yes
Need terminal?	No	Yes	No
Need printer?	No	No	Yes

Histogram iskorišćenosti resursa

Uvod i pregled operativnih sistema

Time-sharing sistemi

- Time-sharing procesorsko vreme je podeljeno između više korisnika.
- Koristi multiprogramiranje za višekorisnički rad pri čemu svaki korisnik pristupa sistemu interaktivno putem terminala
- Svakom korisničkom programu se dodeljuje po jedan mali vremenski period (deo procesorskog vremena) za izvršavanje, pre nego što se pređe na drugi program.
- Jedan od prvih time-sharing OS je CTSS (Compatible Time-Sharing System) razvijen 1961. na MIT za IBM 709, a kasnije prenet na IBM 7094
 - Računar sa glavnom memorijom od 32000 36-bitnih reči, pri čemu monitor koristi 5000 reči

Primer rada CTSS

JOB1: 15000

JOB2: 20000

JOB3: 5000

JOB4: 10000

Figure 2.7 CTSS Operation

Glavni koncepti i dostignuća OS

- Procesi
- Upravljanje memorijom
- Zaštita i sigurnost informacija
- Planiranje i upravljanje resursima
- Struktura sistema

Procesi

- Proces je program u izvršenju
- Proces se sastoji od tri komponente
 - izvršni program
 - podaci koji se obrađuju u programu
 - izvršni kontekst (stanje procesa)
- Tipična implementacija procesa na slici

Uvod i pregled operativnih sistema

Upravljanje memorijom

- Osnovni zahtevi
 - Izolacija procesa
 - Automatska alokacija i upravljanje
 - Podrška za modularno programiranje
 - Zaštita i kontrola pristupa
 - Korišćenje trajne memorije
- Koncept virtuelne memorije (straničenje paging) i file sistema
 - Virtuelna adresa
 - Realna (fizička) adresa u glavnoj memoriji

A.1			
	A.0	A.2	
	A.5		
B.0	B.1	B.2	B.3
		A.7	
	A.9		
		A.8	
	B.5	B.6	

Main Memory

Disk

Adresiranje virtuelne memorije

Zaštita i sigurnost informacija

- Dostupnost
 - Zaštita sistema od prekida funkcionisanja
- Tajnost
 - Zaštita podataka od neovlašćenog pristupa
- Integritet podataka
 - Zaštita podataka od neautorizovane modifikacije
- Autentikacija
 - Pogodna verifikacija identiteta korisnika i validnosti poruka i podataka

Planiranje i upravljanje resursima

Struktura sistema

- Operativni sistem treba da bude modularne strukture sa jasno definisanim intrerfejsima između modula
- Struktura operativnog sistema kao skup hijerarhijskih slojeva (nivoa)
 - Svaki sloj izvršava odgovarajući podskup funkcija
 - Svaki sloj izvršenje svojih funkcija zasniva na sledećem nižem sloju u strukturi i njegovom izvršenju primitivnijih funkcija
 - Ovim se problem rastavlja na određeni broj lakših pod-problema

Hijerarhija dizajna OS

Level	Name	Objects	Example Operations
13	Shell	User programming environment	Statements in shell language
12	User processes	User processes	Quit, kill, suspend, resume
11	Directories	Directories	Create, destroy, attach, detach, search, list
10	Devices	External devices, such as printers, displays, and keyboards	Open, close, read, write
9	File system	Files	Create, destroy, open, close, read, write
8	Communications	Pipes	Create, destroy, open, close, read, write
7	Virtual memory	Segments, pages	Read, write, fetch
6	Local secondary store	Blocks of data, device channels	Read, write, allocate, free
5	Primitive processes	Primitive processes, semaphores, ready list	Suspend, resume, wait, signal
4	Interrupts	Interrupt-handling programs	Invoke, mask, unmask, retry
3	Procedures	Procedures, call stack, display	Mark stack, call, return
2	Instruction set	Evaluation stack, microprogram interpreter, scalar and array data	Load, store, add, subtract, branch
1	Electronic circuits	Registers, gates, buses, etc.	Clear, transfer, activate, complement

Uvod i pregled operativnih sistema

HW

Hardverski slojevi

- Sloj 1
 - Elektronska kola
 - Objekti su registri, memorijske ćelije i logička kola
 - Operacije su brisanje sadržaja registra ili čitanje iz memorijske lokacije
- Sloj 2
 - Instrukcioni set procesora
 - Operacije poput: add, subtract, load, store,...
- Sloj 3
 - Dodaje koncept procedure ili potprograma, kao i call/return operacije
- Sloj 4
 - Prekidi (*Interrupts*)

Koncepti vezani za multiprogramiranje

- Sloj 5
 - Proces kao program u izvršavanju
 - Suspendovanje i nastavljanje procesa
- Sloj 6
 - Sekundarni memorijski uređaji
 - Transfer blokova podataka
- Sloj 7
 - Kreiranje logičkog adresnog prostora za procese
 - Organizovanje virtuelnog adresnog prostora u blokove

Upravljanje eksternim objektima

- Sloj 8
 - Komunikacija informacijama i porukama između procesa
- Sloj 9
 - Podrška za trajno memorisanje imenovanih datoteka
- Sloj 10
 - Obezbeđuje pristup eksternim uređajima korišćenjem standardizovanih interfejsa
- Sloj 11
 - Održava asocijaciju između eksternih i internih identifikatora u okviru direktorijuma
- Sloj 12
 - Obezbeđuje potpunu funkcionalnost za podršku procesima
- Sloj 13
 - Obezbeđuje interfejs korisnika prema operativnom sistemu

Savremeni operativni sistemi

- Karakteristike i funkcionalnost savremenih operativnih sistema:
 - Mikrokernel arhitektura
 - Višestruke niti (Multithreading)
 - Simetrično multiprocesiranje (symmetric multiprocessing-SMP) – multicore arhitekture
 - Distribuirani operativni sistemi
 - Objektno-orijentisani dizajn

Monolitna struktura

- Operativni sistem je kolekcija procedura. Pri čemu svaka može pozivati svaku poznajući njen interfejs (skup parametara i rezultat) i svaka procedura može pristupati deljivim podacima i strukturama podataka OS
- Jednostavna struktura: glavna, servisne i uslužne procedure
 - Servisne procedure izvršavaju sistemske pozive, a uslužne procedure pomažu jednoj ili više servisnih procedura
- Prednosti:
 - Performanse

Visok nivo zaštite od pristupa spolja

- Nedostaci:
 - Loša proširljivost
 - Komplikovana struktura
 - Loša zaštita između komponenti kernela

OS monolitne strukture

MS DOS, UNIX, Windows (hibridna), Mac OS, Linux

UNIX - OS sadrži dva dela: sistemski programi i kernel - sadrži sve od interfejsa prema hardverskim komponentama do interfejsa ka sistemskim i aplikativnim programima obezbeđenog u vidu sistemskih

poziva

Slojevita struktura

- Operativni sistem je organizovan kao hijerarhija slojeva pri čemu svaki sloj OS obezbeđuje usluge slojevima iznad i koristi usluge slojeva ispod u hijerarhiji
- Sloj OS je implementacija apstraktnog objekta koji enkapsulira podatke i sadrži operacije za manipulaciju tim podacima. Te operacije mogu biti pozvane od operacija u slojevima iznad, a s druge strane one pozivaju operacije u slojevima ispod u hijerarhiji
- Prednost
 - Modularnost obezbeđeno je jednostavno debagiranje i verifikacija operativnog sistema, kao i projektovanje i implementacija slojeva OS
- Nedostaci
 - Neophodna pažljiva definicija slojeva, jer jedan sloj može koristiti i pozivati samo funkcije slojeva ispod u hijerarhiji
 - Slaba efikasnost pri sistemskom pozivu svaki sloj modifikuje parametre, obrađuje podatke i poziva funkcije nižih slojeva generišući dodatan rad i usporavajući izvršenje sistemskog poziva

OS slojevite strukture

THE sistem – Dijkstra (1968) – Tehnički Univerzitet Ajdhoven, Holandija

Sloj	Funkcija
5	Operator
4	Korisnički programi
3	Upravljanje ulazom/izlazom
2	Komunikacija operatora i procesa
1	Upravljanje memorijom i dobošem
0	Dodela procesora i multiprogramiranje

MULTICS

- struktura koncentričnih prstenova
- Procedura u spoljnom prstenu poziva proceduru u unutrašnjem prstenu nekom vrstom sistemskog poziva (provera i smeštanje parametara i TRAP instrukcija)
- OS/2 i prva verzija Windows NT

Mikrokernel arhitektura

- Struktuiranje operativnog sistema uklanjanjem svih ne značajnih komponenti iz kernela i njihovo implementiranje kao sistemskih ili programa na korisničkom nivou
- Osnovne funkcije kernela: kreiranje i uništenje procesa, planiranje procesa, sinhronizacija i komunikacija procesa, upravljanje memorijom
- Ostale funkcije OS implementirane su kao servisi koji se izvršavaju u korisničkom modu, dok je funkcija kernela da upravlja komunikacijom klijenta i servera (na primer, za čitanje bloka datoteke korisnički proces upućuje zahtev serverskom procesu)

Uvod i pregled operativnih sistema

Mikrokernel arhitektura

- Samo kritični serverski procesi se izvršavaju u modu kernela
 - na primer, U/I drajveri i pristup U/I uređajima
- Prednosti
 - Jednostavno proširenje OS dodavanje novih servisa ne zahteva modifikaciju kernela
 - Jednostavno portovanje OS sa jednog na drugi hardver
 - Pošto se svi serverski procesi izvršavaju u korisničkom modu, nemaju direktan pristup hardveru i pad nekog od njih ne uzrokuje pad OS
 - Može se prilagoditi radu na distribuiranim sistemima

Primeri:

- Mach (Carnegie Mellon University, sredina 1980-ih)
- Tru64UNIX (ranije Digital UNIX)
- Apple MacOS X (Mach kernel + deo BSD kernela)
- QNX, MINIX
- Windows NT/2000/XP (hibridna struktura)

Arhitektura kernela (poglavlje 4.3)

Slojevita i mikrokernel arhitektura

Višestruke niti (Multithreading)

- Proces je podeljen u niti koje mogu da se izvršavaju konkurentno (paralelno)
 - Nit (*thread*)
 - Jedinica izvršenja koja se može planirati i rasporediti za izvršenje
 - Izvršava se sekvencijalno i može biti prekinuta i ponovo nastavljena
 - Proces je skup jedne ili više niti i pridruženih sistemskih resursa, poput memorije koja sadrži kod i podatke, otvorenihe datoteka, i U/I uređaja
- Višenitnost je korisna u aplikacijama koje obavljaju više suštinski nezavisnih zadataka koji ne moraju serijski da se izvršavaju
 - Primer: Web server koji prihvata i opslužuje zahteve klijenata

Simetrično multiprocesiranje (SMP)

- Postoji više procesora u sistemu
- Ovi procesori dele istu glavnu memoriju i U/I resurse
- Svi procesori mogu izvršavati iste funkcije
- Prednosti:
 - Performanse
 - Raspoloživost u slučaju otkaza jednog procesora
 - Inkrementalno povećanje performansi dodavanjem dodatnih procesora
 - Skaliranje može postojati više računarskih konfiguracija sa različitim brojem procesora sa različitom cenom i performansama

Multiprogramiranje (jedan procesor)

(a) Interleaving (multiprogramming, one processor)

Multiprocesiranje (dva procesora)

(b) Interleaving and overlapping (multiprocessing; two processors)

Process 3

Sistemski pozivi

- Sistemski pozivi (system calls) obezbeđuju interfejs između aplikativnih/sistemskih programa i operativnog sistema
- Omogućuju pristup funkcijama operativnog sistema od strane korisničkih programa
 - Unix/Linux POSIX 1003.1 standard
 - Windows Win32 API (Application Programming Iterface)
- Sistemski poziv se obavlja u okviru programa napisanog u programskom jeziku visokog nivoa pozivom funkcije iz standardne biblioteke uključene u prevodilac. U okviru ove funkcije se argumenti funkcije smeštaju na stack, i poziva **trap** instrukcija čiji je argument kod sistemskog poziva. Ova instrukcija izaziva softverski prekid, OS čuva stanje prekinutog procesa, prelazi u mod kernela i aktivira funkciju (rutinu, system call handler) kernela koja implementira sistemski poziv
- Postoje sistemski pozivi za upravljanje procesima, memorijom, datotekama, U/I uređajima, mrežnom komunikacijom, za dobijanje informacija o radu sistema, upravljanje GUI (Windows), itd.

Izvršenje sistemskog poziva

Colored area indicates Executive

Lsass = local security authentication server

POSIX = portable operating system interface

GDI = graphics device interface

DLL = dynamic link libraries

- Verzije
 - System V R4 (SVR4)
 - Solaris 10
 - BSD
 - Linux
- Tradicionalni UNIX kernel

Savremeni UNIX kernel

Komponente Linux kernela

Domaći zadatak

- Pročitati i naučiti poglavlje iz knjige
- 2. Pregled operativnog sistema (2. Operating System Overview)

Animacije funkcija i algoritama operativnog sistema

http://williamstallings.com/OS-Animation/Animations.html