MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Résumé 12 : Topologie (3)

 $(E, \|.\|)$ est un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I COMPACITÉ

§ 1. **Suites d'un compact.**— On prend ici la propriété de Bolzano Weierstrass pour une définition :

Définition I.1

On dit d'une partie K de E qu'elle est **compacte**, ou qu'elle vérifie la **propriété de Bolzano-Weierstrass**, lorsque toute suite d'éléments de K admet une valeur d'adhérence, i.e si $(u_n) \in K^{\mathbb{N}}$, alors il existe $\ell \in K$ et $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Ainsi, [a,b] est un compact, ainsi que toute partie finie de $E.\ [a,b[$ et $B(0_E,1)$ ne le sont pas.

Proposition I.2

- (i) Si K est compacte, K est fermée et bornée.
- (ii) Si K est compacte, une partie F de K est compacte \iff F est fermée.

Nous utiliserons très souvent, notamment pour prouver que la convergence absolue d'une série entraine sa convergence :

Proposition I.3

Soit K un compact et (u_n) une suite dont l'image est dans K. On a équivalence entre :

- (i) (u_n) converge.
- (ii) (u_n) admet exactement une valeur d'adhérence.
- (iii) (u_n) admet au plus une valeur d'adhérence.
- § 2. *Continuité et compacité.* Ce qui va nous fournir de nombreux exemples de compacts.

Proposition I.4

Soit f une fonction continue définie sur une partie compacte A d'un espace vectoriel normé. Alors,

(i) f est uniformément continue.

- (ii) f(K) est compact.
- (iii) f est bornée et si elle est à valeurs réelles, elle atteint ses bornes.

II CONNEXITÉ PAR ARCS

Définition II.1 (Chemin continu joignant deux points)

Soit Ω une partie non vide de E. Soient deux points $a,b \in \Omega$. On appelle chemin continu de a à b dans Ω toute application continue $f:[0,1] \to \Omega$ telle que f(0)=a et f(1)=b.

On appelle composantes connexes de Ω les classes d'équivalence de cette relation d'équivalence.

 Ω est dite connexe par arcs lorsqu'elle ne contient qu'une seule composante connexe.

Le programme dit : "dans les cas simples, une figure convaincante vaut preuve de connexité par arcs".

- ▶ Les parties connexes par arcs de \mathbb{R} sont les intervalles.
- Les parties convexes et les parties étoilées sont connexes par arcs.
- $ightharpoonup \mathbb{R}^*$ n'est pas connexe par arcs, mais \mathbb{C}^* l'est.

Généralisons le théorème des valeurs intermédiaires :

Théorème II.2

Si une partie Ω d'un espace vectoriel normé E est connexe par arcs, et si $f:\Omega\to F$ est continue, alors $f(\Omega)$ est connexe par arcs.

III CAS DE LA DIMENSION FINIE

Théorème III.1

Si E est un \mathbb{K} espace vectoriel de dimension finie, toutes les normes sur E sont équivalentes.

En dimension finie, il n'y a donc qu'une seule Topologie d'espace vectoriel normé. Il sera dorénavant inutile de préciser pour quelle norme une partie de E est ouverte, ou compacte, ou bornée,..., puisque si elle l'est pour au moins une norme, elle l'est pour toutes les autres.

- L'application $GL_n(\mathbb{K}) \longrightarrow GL_n(\mathbb{K})$ est continue sur l'ouvert $A \longmapsto A^{-1}$
 - $GL_n(\mathbb{K})$.

Résumé 12 : Topologie (3)

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

- La convergence d'un suite dans \mathbb{R}^n est équivalente à celle de chacune de ses coordonnées. Idem pour une suite de matrices.
- ▶ Un sous-espace vectoriel de dimension finie d'un espace vectoriel normé quelconque est fermé.

Théorème III.2

Soit E un espace vectoriel normé <u>de dimension finie</u>. Alors,

- (i) Une partie K de E est compacte \iff elle est fermée et bornée.
- (ii) De toute suite bornée dans *E*, on peut extraire une suite convergente.
- (iii) Une suite d'éléments de E converge \iff elle est bornée et admet exactement une valeur d'adhérence.
- (iv) Soit F un $\mathbb{K}-$ espace vectoriel . Toute $f\in \mathscr{L}(E,F)$ est continue.
- ▶ Soit $E=E_1\times\cdots\times E_p$ un produit d'espaces vectoriels de dimension finie et F un $\mathbb{K}-$ espace vectoriel . Toute application p-linéaire de E dans F est continue. Ainsi, par exemple, les produits scalaires, le produit vectoriel, la multiplication dans l'espace des matrices, la multiplication par un scalaire, les applications $A\longmapsto A^k$ pour $k\in\mathbb{N}$.

IV RETOUR SUR LES SÉRIES

§ 1. Convergence absolue. – Enfin la preuve :

Théorème IV.1 ($CVA \Longrightarrow CV$)

Soit E un $\mathbb{K}-$ espace vectoriel normé de dimension finie. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E. Fixons-nous une norme $\|.\|$ sur E. Alors si la série $\sum_{n\geqslant 0}\|u_n\|$ converge, il en est de même de la série $\sum u_n$.

§ 2. Exponentielle et inverse.— Une norme $\|.\|$ sur $\mathcal{M}_n(\mathbb{K})$ est dite sousmultiplicative lorsque pour toutes matrices A,B on a $\|A\times B\|\leqslant \|A\|\times \|B\|$. Il en existe, par exemple, $\|A\|=n\max_{1\leqslant i,j\leqslant n}|a_{i,j}|$.

Théorème IV.2

On se fixe une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{K})$. Soit aussi $A \in \mathcal{M}_n(\mathbb{K})$ telle que ||A|| < 1,

- (i) la série $\sum_{p\geqslant 0} A^p$ converge.
- (ii) I_n-A est inversible, et si on note $B=\sum_{p=0}^{+\infty}A^p, B=(I_n-A)^{-1}$.

Définition IV.3

Soit $A \in \mathcal{M}_n(\mathbb{K})$. La série $\sum A^p/p!$ converge.

On appelle exponentielle de A la matrice $\exp A = \sum_{p=0}^{+\infty} \frac{A^p}{p!}$.

Propriétés IV.4

- (i) Si A et B commutent, alors $\exp(A+B) = \exp(A) \times \exp(B)$.
- (ii) Pour toute matrice A, la matrice $\exp A$ est inversible et $\exp(-A) = (\exp A)^{-1}$.

V LES FIGURES IMPOSÉES

EXERCICES:

CCP 40

Soit A une algèbre de dimension finie admettant e pour élément unité et munie d'une norme notée $|\ |\ |\ |$.

On suppose que $\forall (u, v) \in A^2$, $||u.v|| \leq ||u||.||v||$.

- 1. Soit u un élément de A tel que ||u|| < 1.
 - (a) Démontrer que la série $\sum u^n$ est convergente.
 - (b) Démontrer que (e-u) est inversible et que $(e-u)^{-1} = \sum_{n=0}^{+\infty} u^n$.
- 2. Démontrer que, pour tout u de A, la série $\sum \frac{u^n}{n!}$ converge.

Résumé 12 : Topologie (3)

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

EXERCICES:

 ${\it CCP}$ 38 On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.

$$\forall P \in E$$
, on pose $N_1(P) = \sum_{i=0}^n |a_i|$ et $N_\infty(P) = \max_{0 \le i \le n} |a_i|$ où $P = \sum_{i=0}^n a_i X^i$ avec

$n \geqslant \deg P$.

- 1. (a) Démontrer que N_1 et N_{∞} sont des normes sur $\mathbb{R}[X]$.
 - (b) Démontrer que tout ouvert pour la norme N_{∞} est un ouvert pour la norme N_{1} .
 - (c) Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.
- 2. On note $\mathbb{R}_k[X]$ le sous-espace vectoriel de $\mathbb{R}[X]$ constitué par les polynômes de degré inférieur ou égal à k. On note N_1' la restriction de N_1 à $\mathbb{R}_k[X]$ et N_∞' la restriction de N_∞ à $\mathbb{R}_k[X]$.

Les normes N_1' et N_{∞}' sont-elles équivalentes?

EXERCICES:

 $GL_n(\mathbb{R})$ est un ouvert dense non borné, non fermé, non connexe par arcs de $\mathscr{M}_n(\mathbb{R})$.

Résumé 12 : Topologie (3)