SEMINARIO COBB-PRODUSS

ALBERTO MINORU MIYASAKA FRANGO SERTANEJO LTDA GERENTE DE PRODUCCION

E-MAIL - minoru@gruposertanejo.com.br

FORMULACION POR AMINOACIDOS DIGESTIBLES

• EXISTE UNA GRAN VARIACION EN LA DIGESTIBILIDAD DE LOS AMINOACIDOS ENTRE ALIMENTOS

MAIORKA, 1998

AMINOACIDOS DIGESTIBLES (PRACTICA))

- INGREDIENTES: DIGESTIBILIDAD MENOS QUE 100%
- ALTA VARIABILIDAD ENTRE LOS INGREDIENTES
- EL USO DE LOS AA DIGESTIBLES PROPORCIONA:
 - **▼VALOR NUTRICIONAL MAS CERCA DE LA REALIDAD**
 - FORMULACION DE DIETAS MAS AJUSTADAS A LAS NECESIDADES DE LOS ANIMALES
- SUGERENCIA: CONVERTIR TODOS LOS VALORES DE AA TOTALES PARA DIGESTIBLES Y CONVERTIR LAS EXIGENCIAS TAMBIEN PARA AA DIGESTIBLES.

COEFICIENTE DE DIGESTIBILIDAD DE DIFERENTES MATERIAS PRIMAS

INGREDIENTE	AAs	1	2	3	4	5	6	7	8	9	10	11	PRO	DEV
MAIZ	Lis	79	89	81	81	82	81	92		81	81	81	82.8	4.2
	Tre	84	88	83	84	85	83	87		82	84	83	84.3	1.9
	Met	90	94	91	91	93	91	94		91	91	90	91.6	1.5
	Trp		86	87		90	79			90		86	86.3	4.0
	M+C	86	90	88	88	88	87	89			88	86	87.8	1.3
	Arg	89	95	90	89	93	90	95		87	89	95	91.2	3.0
HAR SOYA	Lis	90	89	91	91	89	91	92		91	91	89	90.4	1.1
	Tre	89	88	88	88	87	88	87		88	88	88	87.9	0.6
	Met	91	91	92	92	91	92	94		89	92	90	91.4	1.3
	Trp		92	91		84	88			91		92	89.7	3.1
	M+C	87	87	88	87	88	88	88			87	87	87.4	0.5
	Arg	92	91	95	92	94	93	92		92	92	91	92.4	1.3
HAR CARNE	Lis	78	78	82	79	78	81**	76	78	90	79	80	79.8	3.9
	Tre	77	77	79	79	76	80	75	78	84	79	78	78.4	2.4
	Met	84	83	79	85	84	85	82	81	87	85	84	83.5	2.2
	Trp		78	76		71	79		75	81		78	76.9	3.2
	M+C	71	73	77	72	70	75	71	69		72	72	72.2	2.3
	Arg	83	82	80	85	83	85	78		88	85	84	83.3	2.8
HAR VISCERA	Lis	80*	88*	78	80	71	80**	80	75	84	80	84	79.0	4.4
	Tre	78	87	76	80	71	81	77	74	82	80	83	79.0	4.4
	Met	80	90	80	86	68	86	83	75	85	86	86	82.3	6.2
	Trp		79	81			79		74	84		80	79.5	3.3
	M+C	66	87	72	74	62	77	75	65		74	77	72.9	7.2
	Arg	85	92	81	88	83	89	84		84	88	89	86.3	3.4
HAR PLUMAS	Lis	67	72	70	66	62	65	62	64		66	69	66.3	3.3
	Tre	74	77	73	73	64	74	71	69		73	73	72.1	3.5
	Met	75	82	76	76	67	74	72	71		76	77	74.6	4.0
	Trp		83	61		46	83		46			80	66.5	17.9
	M+C	66	76	51	68	60	64	58	55		68	70	63.6	7.6
	Arg	85	85	84	83	74	83	81			83	84	82.4	3.4

COEFICIENTE DE DIGESTIBILIDAD DE DIFERENTES MATERIAS PRIMAS

INGREDIENTE	AAs	1	2	3	4	5	6	7	8	9	10	11	PRO	DEV
MAIZ	Lis			81	81	82	81			81	81	81	81.1	0.4
	Tre	84	88	83	84	85	83	87		82	84	83	84.3	1.9
	Met	90	94	91	91	93	91	94		91	91	90	91.6	1.5
	Trp		86	87		90				90		86	87.8	2.0
	M+C	86	90	88	88	88	87	89			88	86	87.8	1.3
	Arg	89	95	90	89	93	90	95			89	95	91.7	2.8
HAR SOYA	Lis	90	89	91	91	89	91			91	91	89	90.2	1.0
	Tre	89	88	88	88	87	88	87		88	88	88	87.9	0.6
	Met	91	91	92	92	91	92				92	90	91.4	0.7
	Trp		92	91			88			91		92	90.8	1.6
	M+C	87	87	88	87	88	88	88			87	87	87.4	0.5
	Arg	92	91		92	94	93	92		92	92	91	92.1	0.9
HAR CARNE	Lis	78	78		79	78	81**	76	78		79	80	78.6	1.4
	Tre	77	77	79	79	76	80		78		79	78	78.1	1.3
	Met	84	83		85	84	85	82	81	87	85	84	84.0	1.7
	Trp		78	76			79		75	81		78	77.8	2.1
	M+C	71	73		72	70	75	71	69		72	72	71.7	1.7
	Arg	83	82	80	85	83	85				85	84	83.4	1.8
HAR VISCER	Lis	80*		78	80		80**	80		84	80	84	80.6	2.1
	Tre	78		76	80		81	77		82	80	83	79.6	2.4
	Met	80		80	86		86	83		85	86	86	84.0	2.7
	Trp		79	81			79			84		80	80.6	2.1
	M+C	66		72	74		77	75	65		74	77	72.5	4.6
	Arg	85			88	83	89	84		84	88	89	86.3	2.5
HAR PLUMA	Lis	67		70	66	62	65	62	64		66	69	65.7	2.8
	Tre	74		73	73		74	71	69		73	73	72.5	1.7
	Met	75		76	76		74	72	71		76	77	74.6	2.1
	Trp		83	61		46	83		46			80	66.5	17.9
	M+C	66			68	60	64	58			68		64.0	4.2
	Arg	85	85	84	83		83	81			83	84	83.5	1.3

FUENTES

- 1. ADM
- 2. INIFAP
- 3. ROSTAGNO
- 4. NRC
- 5. ADISSEO
- 6. BIOLATINA

- 7. DEGUSSA
- 8. PANCOSMA
- 9. ALBINO
- 10. DALE
- 11. NOVUS

DATOS TABULADOS POR GOLDFUS, 2004

DESEMPEÑO DE POLLOS DE CARNE SOMETIDOS A DIETAS FORMULADAS CON BASE EN VALORES DE AMINOACIDOS TOTALES Y DIGESTIBLES

		DIETA	
	M+FS	AAT	AAD
1 a 21 DIAS			
GANANCIA DE PESO (G/AVE)	696,7 <mark>a</mark>	672,9 <mark>b</mark>	705,7 <mark>a</mark>
CONVERSION ALIMENTO (G/G)	1,473 <mark>a</mark>	1,532b	1,502ab
1 a 42 DIAS			
GANANCIA DE PESO (G/AVE))	2.333 <mark>a</mark>	2.241b	2.330a
CONVERSION ALIMENT (G/G)	1.786 <mark>a</mark>	1.848 <mark>b</mark>	1.799 <mark>a</mark>
RENDIMIENTO DE CANAL (%)	72,63 <mark>a</mark>	72,38 <mark>a</mark>	72,63 <mark>a</mark>
RENDIMIENTO DE PECHUGA (%)	30,05 <mark>a</mark>	28,97 <mark>c</mark>	29,59 <mark>b</mark>

ROSTAGNO et al. (1996), ADAPTADO.

M+FS = MAIZ + HARINA DE SOYA

AAT = SORGO+ HARINA DE ARROZ+ HARINA DE CARNE Y HUESOS + HARINA DE PLUMA HARINA DE VISCERAS

AD = AAT + DL-METIONINA Y L-LISINA (METIONINA Y LISINA DIGETIBLES IGUAL A M+FS)

EVALUACION ECONOMICA DE DIETAS FORMULADAS CON BASE EN VALORES DE AMINOACIDOS TOTALES Y DIGESTIBLES

		DIETA	
	M+FS	AAT	AAD
COSTO DEL INICIADOR/TON (US\$)	227	213	216
COSTO DE DESARROLLO/TON (US\$)	216	205	208
COSTO CON ALIMENTO/AVE (US\$)	0,911	0,857	0,880
COSTO CON ALIMENTO/KG DE PESO VIVO US\$/KG	0,383	0,375	0,370
COSTO CON ALIMENTO/kg DE CANAL (US\$/KG)	0,529	0,518	0,510
COSTO CON ALIMENTO/KG DE PECHUGA (US\$/KG)	1,759	1,785	1,722

ROSTAGNO et al. (1996), ADAPTADO.

M+FS = MAIZ + HARINA DE SOYA

AAT = SORGO+HARINA DE ARROZ+HARINA DE CARNE Y HUESOS+HARINA DE PLUMAS Y HARINA DE VISCERAS

AAD = AAT + DL-METIONINA Y L-LISINA (METIONINA Y LISINA DIGESTIBLES IGUAL A M+FS)

FORMULACION EN BASE DEL CONCEPTO DE "PROTEINA IDEAL"

PROTEINA IDEAL

 LA PROTEINA IDEAL SE DEFINE COMO EL BALANCEO EXACTO DE AMINOACIDOS CAPACES DE PROMOVER, SIN DEFICIENCIAS, NI EXCESOS, LAS NECESIDADES ABSOLUTAS DE TODOS LOS AMINOACIDOS REQUERIDOS PARA EL MANTENIMIENTO Y AUMENTO MAXIMO DE PROTEINA CORPORAL.

ZAVIEZO (1998)

LISINA COMO REFERENCIA

- 1° AA LIMITANTE P/ CERDOS y 2° P/ AVES
- SE ENCUENTRA ECONOMICAMENTE
 DISPONIBLE EN LA FORMA DE HARINA
- ANALISIS SENCILLO
- TIENE COMO SU FUNCION PRINCIPAL EL INCREMENTO DE PROTIENA ANIMAL
- GRAN NUMERO DE PUBLICACIONES SOBRE DIFERENTES CONDICIONES ALIMENTICIAS, AMBIENTALES Y DE COMPOSICION CORPORAL

CUARON OPINA QUE LA LISINA DEBE SER 5,9% DE LA PROTEINA HASTA LA 3a SEMANA y 5,6% DE LA PROTEINA DESPUES DE LA 3ª SEMANA.

PERÓXIDOS

RECOMENDACIONES DE PROTEINA IDEAL

Lis	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0
Met	38		38	35			37	39	
M +C	72	72	73	75	70	75	70	71	83
Tre	62	74	65	70	66	63	66	57	73
Trp	18		16	17		19	14	17	21
Пе	65	73	66	67	70	71	63	67	71
Le u	92	109		109			108	110	117
Val	69	82	80	80		81	81	80	81
A rg	96		105	108	12 5	112	108	108	87
His	32	32		32			38	32	34

REACCION EN CADENA EN LA AUTOOXIDACION SEGUN ADAMS (1999)

TERMINACIÓN ROO* + ROO* PRODUCTOS ESTABLES
BELLAVER (2003)

PROMOTORES DE CRECIMIENTO

PROMOTORES DE CRECIMIENTO

HISTORICO

- 1996: PROHIBICION DE AVOPARCIN
- 1998: VIRGINIAMICINA, BACITRACINA DE ZINC, SPIRAMICINA Y TILOSINA. PRINCIPIO DE PRECAUCION - RIESGO DE RESISTENCIA
- MERCADO ACTUAL :PROMOTORES DE CRECIMIENTO
 SALINOMICINA (CERDOS)
 MONENSINA (BOVINOS)
 FLAVOMICINA Y AVILAMICINA (AVES)

CONVERSION ALIMENTICIA DE POLLOS A LOS 28 DIAS ALIMENTADOS CON DIFERENTES TIPOS DE ADITIVOS

CONSUMO DE ANTIBIOTICOS EN DINAMARCA

Use of Antibiotics in Danish Pig Production

PROGRAMA PARA OPTIMIZAR LOS COSTOS DE PRODUCCION

DIETAS BASICAS SUMINSTRADAS A LAS AVES

	DIETA 1	DIETA 2	DIETA 3	DIETA 4	DIETA 5
ENERGIA	3000	3070	3170	3220	3300
PROTEINA	22.5	20	19	18.26	17.2
METIONINA	0.57	0.6	0.48	0.5	0.44
TSAA	0.93	0.9	0.81	0.84	0.79
LISINA	1.33	1.23	1	1.09	0.93
ARGININA	1.52	1.3	1.18	1.06	0.99
TRIPTOFANO	0.29	0.23	0.21	0.18	0.16
TREONINA	0.9	0.75	0.74	0.67	0.66

COMPARATIVO DE RESULTADOS

	CURVA	PESO V	'IVO		CONVE		
Att_1	PESO	Actual	PRO	Delta	Actual	PRO	Delta
Tecnico 1	0.7543	2.378	2.411	(0.033)	2.067	2.038	0.028
Tecnico 2	1.4405	2.404	2.384	0.019	2.004	2.019	(0.016)
Tecnico 3	0.5860	2.398	2.413	(0.015)	2.056	2.039	0.017
Tecnico 4	0.6515	2.418	2.439	(0.022)	2.082	2.061	0.021
Tecnico 5	0.5316	2.423	2.391	0.031	2.004	2.029	(0.024)
Tecnico 6	0.7594	2.420	2.394	0.025	2.013	2.033	(0.020)

INFORMACION NECESARIA PARA EL ANALISIS

History 01-Se	ep-01														
Flock#	House	F_Date	No_Birds	Attr_1	Age	Lwt	Fwt	Fwt	Fwt	Fwt	Fwt	Mort	FC	gain	Sex
sexsep01	78	1-Sep	71375	Chico	49.43	2.917	0.173	0.951	1.393	1.761	1.136	3.90	1.856	59.01	M
sexsep01	91	1-Sep	32544	Marcelo	47.50	2.669	0.175	1.157	1.079	1.718	0.831	3.03	1.858	56.19	m
sexsep01	101	1-Oct	5830	Delair	48.00	2.877	0.190	1.058	1.048	2.465	0.750	2.83	1.916	59.93	m
sexsep01	127	1-Oct	20940	Gilson	48.50	2.770	0.193	1.064	1.041	2.219	0.813	4.82	1.924	57.12	m
sexsep01	92	1-Sep	15204	Marcelo	47.00	2.497	0.124	1.021	1.079	2.015	0.591	1.91	1.935	53.12	M
sexsep01	102	1-Oct	42962	Gilson	49.00	2.718	0.196	1.016	1.037	2.259	0.768	2.36	1.941	55.48	m
sexsep01	129	1-Oct	13488	LuisCarlos	50.00	2.803	0.143	1.055	1.088	1.701	1.467	3.66	1.946	56.06	m
sexsep01	74	1-Sep	27647	Marcelo	47.50	2.570	0.123	1.081	1.135	1.943	0.721	5.83	1.946	54.11	M
sexsep01	70	1-Sep	10516	Marcelo	49.50	2.737	0.182	1.218	1.101	2.120	0.710	4.40	1.948	55.29	M
sexsep01	59	1-Sep	8657	Delair	49.50	2.910	0.172	1.193	1.184	2.440	0.687	5.02	1.951	58.78	M

ENZIMAS

IGM

Technica Service

RECOMEDACIONES IGM

	DIETA 1	DIETA 2	DIETA 3	DIETA 4	DIETA 5
ENERGIA KCAL/KG	2920.001	3069.999	3150.001	3189.999	3270.000
TSAA	.927	.881	.801	.830	.805
VALOR KG	.171	1.144	1.115	2.089	.972
IGM DIETA OPTIMA					
ENERGIA KCAL/KG	3128.223	3298.127	3329.530	2999.460	3335.588
TSAA	.989	.948	.826	.949	.949
VALOR KG	.171	1.144	1.115	1.570	.972

 SOBRE EL PUNTO DE VISTA DE LA **NUTRICION, LA VIABILIZACION DE** LAS ENZIMAS EXOGENAS ES UN **PUNTO IMPORTANTE, PUES** PERMITE EL USO DE INGREDIENTES DE UTILIZACION LIMITADA, DEBIDO A LA **COMPOSICION QUIMICA O A LA** PRESENCIA DE INHIBIDORES **NUTRICIONALES**

LA SUPLEMENTACION DE ENZIMAS **EXOGENAS PUEDE AUMENTAR LA** EFICIENCIA DE ACCION DE LAS **ENDOGENAS, REDUCIENDO LA CANTIDAD DE RESIDUOS NUTRICIONALES QUE LLEGAN AL** INTESTINO GRUESO, **DISMINUYENDO LA POSIBILIDAD** DE ACCION DE **MICROORGANISMOS EN ESTA** AREA DE APARATO DIGESTIVO.

WENK (1993)

BIOLOGICAMENTE, **ENZIMAS SON PROTEINAS FUNCIONALES QUE** CATILIZAN O ACELERAN **ACCIONES QUIMICAS ESPECIFICAS**

FERKET, 1993

MATRIZ NUTRICIONAL DEL RONOZIME FITASA

RONOZYME ^{1M} P (CT) PO	LLOS	COMPOSICION DE MATRIZ DE NUTRIENTES	CONTRIBUCION EN LA DIETA TOTAL DE		
USO: 300G/TON = 750 FY	T/KILO	RONOZYME P (CT) POLLOS	POLLOS (300GM/ton)		
FOSFORO DISPONIBLE	(%)	333	0,100		
CALCIO	(%)	333	0,100		
LISINA	(%)	43,3	0,013		
METIONINA	(%)	6,67	0,002		
METIONINA + CISTINA	(%)	30	0,009		
TREONINIA	(%)	43,3	0,013		
PROTEINA CRUDA	(%)	1000	0,300		
E.M.A.	(kc al/kg)	40000	12,000		
UNIDADES DE FITASE	(FYT/kg)	2.500.000	750		

ENZIMAS DISPONIBLES EN EL MERCADO

- AMILASA
- BETA-GLUCANESA
- BETA-MANANASA
- CELULASA
- FITASA
- GALACTOSIDASA

- HEMICELULASA
- PENTOSANESA
- PEPTIDASA
- PROTEASA
- XILANESA
- OTRAS

UTILIZACION DE LA ENERGIA -AVES

ALIMENTO

MAIZ

H. SOYA 44

H. SOYA 48

E. BRUTA

4.493

4.718

4.771

E.M. KCAL/KG MS

3.722 (83%)

2.230 (47%)

2.440 (51%)

FRAPPS, 1944; NRC, 1994

EFECTO DE LA SUPLEMENTACION DE ENZIMAS EN DIETAS DE MAIZ Y SOYA SOBRE EL DESEMPEÑO DE POLLOS DE CARNE CRIADOS HASTA 49 DIAS DE EDAD

DIETA	PESO VIVO	CON ALI	
T1 = TESTIGO	2.76	2.06	a
T2 = TESTIGO + 120 FBG U/kg	2.78	1.99	a,b
T3 = T2 + 290 Gal U/kg	2.80	2.00	a,b
T4 = T3 + 1.5 AU/kg	2.79	1.91	b

Zatari e Ferket, 1990

DESEMPEÑO DE POLLOS ALIMENTADOS CON DIETAS EN BASE DE MAIZ Y CEBADA SUPLEMENTADOS O NO CON ENZIMAS

PESO 42 DIA	CONSUMO	CCON ALI	
2088 ь	4334 b	2.12 a	
2327 a	4312 b	1.89 d	
2287 a	4553 a	2.03 b	
2241 a	4491 a	2.05 ь	
2298 a	4418 ab	1.96 c	

PESO PROMEDIO

PELETIZACION

Technica Service

OBJETIVOS DE LA PELETIZACION

- FACILITAR EL MANEJO
- ELIMINAR LAS PARTICULAS FINAS Y AUMENTAR LA PALATABILIDAD
- DISMINUIR LA SEPARACION DE LOS INGREDIENTES Y LA SELECCION POR LOS ANIMALES
- AUMENTAR LA DENSIDAD Y POR CONSEGUIENTE DISMINUIR EL COSTO DE TRANSPORTE Y ESTOQUEO
- MEJORAR EL VALOR NUTRICIONAL DE CIERTOS ALIMENTOS CON EL USO DEL CALOR Y PRESION

CONVERSION ALIMENTICIA

EFECTO DE PELETIZACION SOBRE LA GANANCIA DE PESO Y CONVERSION ALIMENTICIA

Service

LA CALIDAD Y **DURABILIDAD DEL ALIMENTO PELETIZADO** SE VUELVE IMPORTANTE PARA DETERMINAR EL GRADO DE MEJORA EN EL DESEMPEÑO DE UN LOTE

DIFERENCIAS EN ELTIEMPO DE CONSUMO ENTRE DIETAS DE HARINA Y PELETIZADO

	MIN/12 HORA/DIA		G/AVE/12 HORA			
	HARINA	PELLETS	HARINA	PELLETS		
PAVOS 38-45 DIAS DE EDA	136	16	62	57		
POLLOS 21-28 DIAS DE ED	103	34	38	37		
JENSEN ET AL (1962)						

ESTE PROCESO RESULTA EN UN CRECIMIENTO MAS RAPIDO Y GENERALMENTE UNA TASA DE **CONVERSION MAS BAJA. LA RAZON PARA ESTA** MEJORA DEL DESEMPEÑO ES LA ENERGIA DESPRENDIDA POR EL PRENSAJE. AVES **ALIMENTADOS CON ALIMENTOS PELETIZADOS** COMEN CERCA DEL MISMO NUMERO DE **COMIDAS POR DIA QUE AQUELLAS** ALIMENTADAS CON ALIMENTO EN HARINA PERO **GASTAN MENOS TIEMPO CONSUMIENDO LOS** PELLETS.

JANSEN, 2001

INFLUENCIA DE LA CALIDAD DEL PELLET SOBRE LA GANANCIA DE PESO Y CONVERSION ALIMENTICIA

Service

IMPORTANCIA DE LA CALIDAD DEL PELLET

 PARA CADA 10% DE AUMENTO DE FINOS, HAY CERCA DE UN PUNTO DE AUMENTO EN LA TASA DE CONVERSION ALIMENTICIA

JANSEN, 2001

• GRANJA A - 83,2% FINOS GRANJA B - 23,8% FINOS DIFERENCIA DE 6 PUNTOS DE LA C.A SCHEDIDELER, 1995

Technical Service

INFLUENCIA DE LA CALIDAD DEL PELLET SOBRE LA ENERGIA DE LA DIETA

GRACIAS

Technica Service