BEST AVAILABLE COPY

- ATGGCTATGATGGAGGTCCAGGGGGGACCCAGCCTGGGACAGACCTGCGTGCTGATCGTGATCTTCACAGTGCTCCTGCAGTCTCTCTGT MetAlaMetMetGluValGlnGlyGlyProSerLeuGlyGlnThrCysValLeuIleValIlePheThrValLeuLeuGlnSerLeuCys TTTCCTCACTGACTATAAAGAATAGAAGGAAGGGCTTCAGTGACCGGCTGCCTGGCTGACTTACAGCAGTCAGACTCTGACAGGATC
 - GTGGCTGTAACTTACGTGTACTTTACCAACGAGCTGAAGCAGATGCAGGACAAGTACTCCAAAAGTGGCATTGCTTGTTTCTTAAAAGAA ValalavalthrtyrvaltyrphethrasnGluLeuLysGlnMetGlnAspLysTyrSerLysSerGlyIleAlaCysPheLeuLysGlu 181 31
- gatgacagttattgggaccccaatgacgaagagagtatgaacagccctgctggcaagtcaagtggcaactccgtcagctcgttagaaag AspAspSerTyrTrpAspProAsnAspGluGluSerMetAsnSerProCysTrpGlnValLysTrpGlnLeuArgGlnLeuValArgLy 61
- ATGATTTTGAGAACCTCTGAGGAAACCATTTCTACAGTTCAAGAAAAGCAACAAAATATTTCTCCCCTAGTGAGAGAAAGGGTCCNCAG Metileleuargthrserglugluthrileserthrvalglnglulysglngln**asn**ileserproleuvalarggluargglyProgln 146 191
- <u> AGAGTAGCAGCTCACATAACTGGGACCAGAGGAAGAAGCACATTGTCTTCTCCAAAACTCCAAGAATGAAAAGGCTCTGGGCCGCAAA</u> Argval Ala Ala His Ile Thr Gly Thr Arg Gly Arg Ser Asn Thr Leu Ser Pro Asn Ser Lys Asn Glu Lys Ala Leu Gly Arg Ly 421
- ataaactcctgggaatcatcaaggagtgggcattcattcctgagcaacttgcacttgaggaatggtgaactggtcatccatgaaaaaggg 341 回51
 - IleAsnSerTrpGluSerSerArgSerGlyHisSerPheLeuSerAsnLeuHisLeuArgAsnGlyGluLeuValIleHisGluLysGly F31
- TACAAATACACAAGTTATCCTGACCCTATATTGTTGATGAAAAGTGCTAGAAATAGTTGTTGGTCTAAAGATGCAGAATATGGACTCTAT TyrLysTyrThrSerTyrProAspProIleLeuLeuMetLysSerAlaArgAsnSerCysTrpSerLysAspAlaGluTyrGlyLeuTyr 227
- SerIleTyrGlnGlyGlyIlePheGluLeuLysGluAsnAspArgIlePheValSerValThrAsnGluHisLeuIleAspMetAspHi
- gaagecagttttteggggcetttttagttggetaactgacetggaaagaaaaagaataacetcaaagtgactatteagtttteagat GlualaSerPhePheGlyAlaPheLeuValGlyStp

SUBSTITUTE SHEET (RULE 26)

1	ATGGCGCCAC	CACCAGCTAG	AGTACATCTA	GGTGCGTTCC	TGGCAGTGAC
	TACCGCGGTG	GTGGTCGATC	TCATGTAGAT	CCACGCAAGG	ACCGTCACTG
1	MetAlaProP	roProAlaAr	gValHisLeu	GlyAlaPheL	euAlaValTh
			_	_	
51	TCCGAATCCC	GGGAGCGCAG	CGAGTGGGAC	AGAGGCAGCC	GCGGCCACAC
	AGGCTTAGGG	CCCTCGCGTC	GCTCACCCTG	TCTCCGTCGG	CGCCGGTGTG
	rProAsnPro	GlySerAlaA	laSerGlyTh	rGluAlaAla	AlaAlaThrPro
101	CCAGCAAAGT	GTGGGGCTCT	TCCGCGGGGA	GGATŢGAACC	ACGAGGCGGG
		CACCCCGAGA			
35	SerLysVa	lTrpGlySer	SerAlaGlyA	rgIleGluPr	oArgGlyGly
			,		
151		CGCTCCCTAC			
		GCGAGGGATG			
	GIAALAGIA	laLeuProTh	rserMetGly	GlnHisGlyP	roSerAlaArg
201	000000000	0000000000	GA GGA GGGA G	~~~~~	
201		GGGCGCGCCC			
60	712222222	GlyArgAlaP	GICCIGGIC	CGGCCGCCC	CTTCGGTCGG
00	Alanigala	GIYAIGAIAP,	TOGIYPIOAL	gricalaarg	GIUALASETP
251	СТССССТССС	GGTCCACAÁG	ΔΟΟΤΤΟΔΙΩΤ	ጥጥርጥርርጥርርጥ	CCCCCTCCTC
		CCAGGTGTTC			
		gValHisLys			
		3.44270		nevazvazva	101 y vaileu
301	CTGCAGGTCG	TACCTAGCTC	AGCTGCAACC	ATGATCAATC	AATTGGCACA
		ATGGATCGAG			
101	LeuGlnValV	alProSerSe	rAlaAlaThr	IleLysLeuH	isAspGlnSe
				_	-
351		CAGCAATGGG			
		GTCGTTACCC			
	rIleGlyThr	GlnGlnTrpG	luHisSerPr	oLeuGlyGlu	LeuCysProPro
401		TAGATCAGAA			
		ATCTAGTCTT			
135	GlyserHi	sArgSerGlu	ArgProGlyA	laCysAsnAr	gCysThrGlu
4E1		ACACCAATGC	mmaca a ca a m	mmamma amm	22222222 ma
42T		TGTGGTTACG			
		_			
	GI Y VALGI Y I	Arminami	GOCTASHASH	Deurhealac	ysLeuProCys
501	TACAGCTTGT	AAATCAGATG	AAGAAGAGAG	AAGTCCCTGC	ACCACGACCA
		TTTAGTCTAC			
168		LysSerAspG			
	-	-		3	
551		ATGTCAGTGC			
		TACAGTCACG			
	rgAsnThrAl	aCysGlnCys	LysProGlyT	hrPheArgAs	nAspAsnSer
601	GCTGAGATGT	GCCGGAAGTG	CAGCACAGGG	TGCCCCAGAG	GGATGGTCAA
0.0-		CGGCCTTCAC			
201	AlaGluMetC	ysArgLysCy	sSerThrGly	CysProArgG	lyMetValLy
657	CCTC3 3 CC3 C	mama accare	003 cmar cr	0010	C) C) +
027		TGTACGCCCT			
	CCAGIICCIA	ACATGCGGGA	CCTCACTGTA	GCTCACACAG	HisLysGluSer
	avarnasvab	CASTITLETOL	rbserwsbit	ectachangr	TETARGIAZEL

FIG. 2A

3/28

701			TGGGTGATTT		
235			ACCCACTAAA TrpVallleL		
233	GIYASIGI	YMISASHIIE	TIPVALITEL	euvalvalin	rLeuvalval
751	CCGTTGCTGT	TGGTGGCTGT	GCTGATTGTC	TGTTGTTGCA	TCGGCTCAGG
			CGACTAACAG		
	ProLeuLeuL	euValAlaVa	lLeulleVal	CysCysCysI	leGlySerGly

801			GCATGGACAG		
260			CGTACCTGTC		
268	CARCIACIA	Asprobysc	ysMetAspAr	gvaicysene	TrpArgLeuG
851			GCTGAGGACA		
			CGACTCCTGT		
	_		AlaGluAspA		
901			CACTTTCGTC		
			GTGAAAGCAG		
301	SerAsnAlaA	spSerLeuSe	rThrPheVal	SerGluGlnG	lnMetGluSe
951	CCAGGAGCCG	GCAGATTTGA	CAGGTGTCAC	TGTACAGTCC	CCAGGGGAGG .
			GTCCACATGT		
	rGlnGluPro	AlaAspLeuT	hrGlyValTh	rValGlnSer	ProGlyGluAla
1001	CACAGTGTCT	GCTGGGACCG	GCAGAAGCTG	AAGGGTCTCA	GAGGAGGAGG
			CGTCTTCGAC		
335			AlaGluAlaG		
1051	CTGCTGGTTC	CAGCAAATGG	TGCTGACCCC	ACTGAGACTC	TGATGCTGTT
	GACGACCAAG	GTCGTTTACC	ACGACTGGGG	TGACTCTGAG	ACTACGACAA
					euMetLeuPhe
1101	CTTTGACAAG	TTTGCAAACA	TCGTGCCCTT	TGACTCCTGG	GACCAGCTCA
	GAAACTGTTC	AAACGTTTGT	AGCACGGGAA	ACTGAGGACC	CTGGTCGAGT
	-		leValProPh		-
1151			AAAAATGAGA		
			TTTTTACTCT		
	etArgGlnLe	uAspLeuThr	LysAsnGluI	leAspValVa	lArgAlaGly
1201			CTTGTATGCA		
			GAACATACGT		
401	ThrAlaGlyP	roGlyAspAl	aLeuTyrAla	MetLeuMetL	ysTrpValAs
1251			CGATCCACAC		
			GCTAGGTGTG		
	nLysThrGly	ArgAsnAlaS	erlleHisTh	rLeuLeuAsp	AlaLeuGluArg
1301	GGATGGAAGA	GAGACATGCA	AAAGAGAAGA	TTCAGGACCT	CTTGGTGGAC
			TTTCTCTTCT		
435	MetGluGl	uArgHisAla	LysGluLysI	leGlnAspLe	uLeuValAsp
1351	TCTGGAAAGT	TCATCTACTT	AGAAGATGGC	ACAGGCTCTG	CCGTGTCCTT
			TCTTCTACCG		
	SerGlyLysP	helleTyrLe	uGluAspGly	ThrGlySerA	laValSerLeu
1401	GGAGTGA CCTCACT				
468	GluOP*				

FIG._2B

1 MEQRGQNAPAASGARKRHGPGPREARGARPGLRVPKTLVLVVAAVLLLVSAESALITQQD
61 LAPQQRAAPQQKRSSPSEGLCPPGHHISEDGRDCISCKYGQDYSTHWNDLLFCLRCTRCD
121 SGEVELSPCTTTRNTVCQCEEGTFREEDSPEMCRKCRTGCPRGMVKVGDCTPWSDIECVH
181 KESGIIIGVTVAAVVLIVAVFVCKSLLWKKVLPYLKGICSGGGGDPERVDRSSQRPGAED
241 NVLNEIVSILQPTQVPEQEMEVQEPAEPTGVNMLSPGESEHLLEPAEAERSQRRRLLVPA
301 NEGDPTETLRQCFDDFADLVPFDSWEPLMRKLGLMDNEIKVAKAEAAGHRDTLYTMLIKW
361 VNKTGRDASVHTLLDALETLGERLAKQKTEDHLLSSGKFMYLEGNADSALS

FIG._3A

Met Glu Gln Arg Gly Gln Asn Ala Pro Ala Ala Ser Gly Ala Arg Lys Arg His Gly Pro Gly Pro Arg Glu Ala Arg Gly Ala Arg Pro Gly Pro Arg Val Pro Lys Thr Leu Val Leu Val Val Ala Ala Val Leu Leu Leu Val Ser Ala Glu Ser Ala Leu Ile Thr Gln Gln Asp Leu Ala Pro Gln 50 55 60 Gln Arg Ala Ala Pro Gln Gln Lys Arg Ser Ser Pro Ser Glu Gly Leu 75 Cys Pro Pro Gly His His Ile Ser Glu Asp Gly Arg Asp Cys Ile Ser Cys Lys Tyr Gly Gln Asp Tyr Ser Thr His Trp Asn Asp Leu Leu Phe 100 105 Cys Leu Arg Cys Thr Arg Cys Asp Ser Gly Glu Val Glu Leu Ser Pro 120 Cys Thr Thr Arg Asn Thr Val Cys Gln Cys Glu Glu Gly Thr Phe 130 135 Arg Glu Glu Asp Ser Pro Glu Met Cys Arg Lys Cys Arg Thr Gly Cys 150 Pro Arg Gly Met Val Lys Val Gly Asp Cys Thr Pro Trp Ser Asp Ile 170 Glu Cys Val His Lys Glu Ser Gly Thr Lys His Ser Gly Glu Ala Pro 185 190 Ala Val Glu Glu Thr Val Thr Ser Ser Pro Gly Thr Pro Ala Ser Pro 200 205 Cys Ser Leu Ser Gly Ile Ile Ile Gly Val Thr Val Ala Ala Val Val 215 220 Leu Ile Val Ala Val Phe Val Cys Lys Ser Leu Leu Trp Lys Lys Val 225 230 235 Leu Pro Tyr Leu Lys Gly Ile Cys Ser Gly Gly Gly Asp Pro Glu 250 Arg Val Asp Arg Ser Ser Gln Arg Pro Gly Ala Glu Asp Asn Val Leu 260 265 270 Asn Glu Ile Val Ser Ile Leu Gln Pro Thr Gln Val Pro Glu Gln Glu 275

FIG._3B

280

285

Met	Glu 290	Val	Gln	Glu	Pro	Ala 295	Glu	Pro	Thr	Gly	Val 300	Asn	Met	Leu	Ser
Pro 305	Gly	Glu	Ser	Glu	His 310	Leu	Leu	Glu	Pro	Ala 315	Glu	Ala	Glu	Arg	Ser 320
Gln	Arg	Arg	Arg	Leu 325	Leu	Va1	Pro	Ala	Asn 330	Glu	Gly	Asp	Pro	Thr 335	Glu
Thr	Leu	Arg	Gln 340	Сув	Phe	Asp	Asp	Phe 345	Ala	Asp	Leu	Val	Pro 350	Phe	Asp
Ser	Trp	Glu 355	Pro	Leu	Met	Arg	Lys	Leu	Gly	Leu	Met	Asp 365	Asn	Glu	Ile
Lys	Val 370	Ala	Lys	Ala	Glu	Ala 375	Ala	Gly	His	Arg	Asp 380	Thr	Leu	Tyr	Thr
Met 385	Leu	Ile	Lys	Trp	Val 390	Asn	Lys	Thr	Gly	Arg 395	Asp	Ala	Ser	Val	His 400
Thr	Leu	Leu	Asp	Ala 405	Leu	Glu	Thr	Leu	Gly 410	Glu	Arg	Leu	Ala	Lys 415	Gln
Lys	Ile	Glu	Asp 420	His	Leu	Leu	Ser	Ser 425	G1y	Lys	Phe	Met	Tyr 430	Leu	Glu
Gly	Asn	Ala 435	Asp	Ser	Ala	Met	Ser 440	*							

FIG._3C

FIG._4A

9 / 28

Crystallographic Data

	Apo-2L (114-281)	Apo-2L (91-281) D218A	Apo-2L (91-281) D218A
Crystal			
Space Group	P6 ₃	R32	R32
Unit Cell (Å)	a=72.5 c=140	a=66.4 c=197.6	a=66.4 c=197.7
Resolution (Å)	3.9	1.9	1.3
Coverage (%)	94 (96)	93 (99)	100 (100)
<Ι/σ(I)>	5.9	10.1	12.4
# Unique (hkl)	3589	12680	41840
Redundancy	4.9	4.3	12.1
R _{symm} (%)	15.4 (34)	6.2 (27)	6.4 (34)
# Protomers in ASU	2	· 1	1
Refinement			
R _{cryst} (%)	33.8	20	
R _{free} (%)	27.6	22	
rmsd Bonds (Å)	0.009	0.015	0.007
rmsd Angles (°)	1.79	2.0	1.41
Average B-Values		14	14
# Water Molecules	0	170	

Rsymm = $\Sigma_h \Sigma_i (I_{hi} - \langle I_h \rangle)/\Sigma_h I$ where I_h is the mean structure factor intensity of i observations of symmetry-related reflections with Bragg index h. $R_{cryst} = \Sigma_h \Sigma_i IIF_{obs}I-IF_{calc}II)/\Sigma_i IF_{obs}I$ where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes. $R_{free} = \Sigma_{(hkl)} \varepsilon_t IIF_{obs}(hkl)}I-kIF_{(hkl)}I/\Sigma_{(hkl)}\varepsilon_t IF_{obs}(hkl)}I$ where the τ set of reflections is omitted from the refinement process. 10% of the data were included in the τ set for calculation of R_{free} and not included in refinement. Values in parenthesis are for the highest resolution shell.

FIG._4C

11 / 28

FIG._6

12/28

Apo2L • DR5 Patch A

Receptor Sequences:

DR5 90TFREEDSPEMCRKCR¹⁰⁴ DR4 TFRNDNSAEMCRKCS Apo2L = Dark Shading DR5 = Light Shading

FIG._7A

SUBSTITUTE SHEET (RULE 26)

14/28

FIG._8A

Apo-2L Phage Display Libraries

	DR5	DR4
199LB		
Y189	E98	E98
R191	M99	M99
Q193	T90	T90
N199	R104	S104
K201	R101	R101
Y209	E98	E98

• Hard Randomize Libraries: Sort Against DR4 or DR5 +/- Competitor.

FIG._8B

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/019750

. 21/28

PCT/US2003/019750

SUBSTITUTE SHEET (RULE 26)

23 / 28

SUBSTITUTE SHEET (RULE 26)

WO 2004/001009

PCT/US2003/019750

Ġ

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LÍNES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.