AD-A286 308

TATION PAGE

Form Approved
OMB No. 0704-0188

to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, ving the collection of information. Send comments regarding this burden estimate or any other aspect of this in, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

	t, Paperwork Reduction Project (0704-018)	
, 4. NCPUKI DATE 3	3. REPORT TYPE AND DATES	COVERED
A. TITLE AND SUBTITLE BASIN F OVERBURDEN AND SOIL SAMPLING AND ANALYSIS STUDY, ROCKY ARSENAL 5. AUTHOR(S) MYERS, T.; THOMPSON, D.	10	ING NUMBERS
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		ORMING ORGANIZATION RT NUMBER
ARMY ENGINEER WATERWAYS EXPERIMENT STATION. ENVIRONMENTAL ENGI VICKSBURG, MS		2350R01
ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY ABERDEEN PROVING GROUND, ND		SORING/MONITORING ICY REPORT NUMBER
11. SUPPLEMENTARY NOTES NOV 1 0 1994	30580	4835 —
SAMPLING PROTOCOL, SAMPLE COLLECTION, LEACH T PREPARATION. THIS REPORT SUMMARIZES THE WORK CONTRACTORS, DOCUMENTS THE DATA OBTAINED, PRE	AMINANT DISTRIBUTION TUDY INCLUDED DEVELO ESTING, ANALYSIS, AN CONDUCTED BY THE VA SENTS THE RESULTING	OPMENT OF ND REPORT ARIOUS CONCLUSIONS,
AND PROVIDES CERTAIN RECOMMENDATIONS. BORING APPENDED.	LOGS AND DATA REPOR	TS HAVE BEEN
∀	DTIC QUALITY INCPEC	TED 5
14. SUBJECT TERMS LINER CONDITION, ANALYTICAL RESULTS		15. NUMBER OF PAGES
		16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. OF THIS PAGE UNCLASSIFIED	SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRAC

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

BASIN F OVERBURDEN AND SOIL SAMPLING AND ANALYSIS STUDY ROCKY MOUNTAIN ARSENAL

Environmental Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

. 50 Rocky Mountain Arser Information Center Commerce City, Colora

Towny E. Myers and Douglas W. Thomps Commerce City, Colora

A

May 1982

FILE COPY

Wester W US Army Toxic and Hazardous Materials Agency
Aberdeen Proving Ground, Maryland 21010

.

BASIN F OVERBURDEN AND SOIL SAMPLING AND ANALYSIS STUDY ROCKY MOUNTAIN ARSENAL

BY

Tommy E. Myers and Douglas W. Thompson

Environmental Engineering Division

US Army Engineer Waterways Experiment Station

Vicksburg, MS 39180

May 1982 Draft Report

Accesia	on For	
NTIS	CRA&I	Þ
DTIC	TAB	<u> </u>
Unann	ounced	
Justific	ation	
By Distrib	ution /	
A	vailabilit	y Codes
Dist	Avail a Spe	
A-1		

Prepared for: US Army Toxic and Hazardous Materials Agency Aberdeen Proving Ground, Maryland 21010

CONTENTS

	rage
PART I: INTRODUCTION	
Background	4
Regulatory Setting	5
Date Requirements	7
Scope of Report	7
PART II: METHODS AND PROCEDURES	
Field Procedures	8
On-Site Laboratory Procedures	14
Leaching Procedure	18
Sample Analyses	18
PART III: RESULTS AND DISCUSSION	
Depth of Overburden	20
Liner Condition	20
Classification of Soils Beneath the Liner	21
Analytical Results	24
Significance of Data with Respect to Basin F Closure	26
PART IV: CONCLUSIONS AND RECOMMENDATIONS	
Conclusions	30
Recommendations	32
REFERENCES	33
FIGURES	34
APPENDIX A: BASIN F BORING PROTOCOL	A1
APPENDIX B: BASIN F BORING LOGS	B1
APPENDIX G: USATUAMA MEMORANDES ON SOIL FEMOLUG PROTOCOLS	C1

APPENDIX	D:	CILS	
APPENDIX	E:	ETHODS FOR BUT AMALYSIS OF BASIN F SAMPLES E1	
APPENDIX	F:	NALYTICAL RESULTS	

<u>...</u>

.

··
·

BASIN F OVERBURDEN AND SOIL SAMPLING AND ANALYSIS STUDY PART I: INTRODUCTION

Background

- 1. Rocky Mountain Arsenal (RMA) located near Denver, Colorado, has been a chemical manufacturing and demilitarization facility since 1342. Military operations at the Arsenal have included the production of various chemical warfare agents, as well as the fabrication of munitions containing these agents and additional munitions containing White Phosphorous. Over the past decade, additional military missions at the Arsenal have included the demilitarization or destruction of various chemical agents and associated munitions and a Hydrazine blending operation. In addition to these military operations, private corporations have operated and continue to operate industrial facilities on the Arsenal under lease agreements for production of pesticides and other industrial chemicals.
- 2. Wastes from various chemical processes were discharged into unlined basins until an asphalt-lined evaporation basin designed for total waste retention was completed in 1956. This basin, designated Basin F, is located in the northwest part of the Arsenal in Section 26 (See Figure 1). At the maximum fluid level, Basin F had a surface area of 93 acres with a capacity of approximately 243 million gallons. The Basin, roughly oval in shape, was created in a natural depression by constructing a dike around the area. It measured approximately 2,900 feet across at the north end and 1,600 feet across at the south end. The average depth of the Basin was 10 feet. An asphaltic membrane (approximately 3/3 inches thick) was pluced on the Basin bottom, extending to a projected high water elevation at the edge of the seal area. After the asphalt had been placed, a soil layer, one foot thick, was placed on top of the membrane to protect it. The asphaltic membrane was considered to have a design life of 15 years.
- 3. Through the years, wastes from the various Army operations and from the on-site production of pesticides by private corporations were disposed of in the Basin. These wastes included numerous inorganic and organic contaminants. Chemical analysis of the liquid in the Basin has been made periodically. A summary of an extensive chemical characterization analysis in 1977 is presented

- in Table 1 (1). Waste disposal into Basin F was continued by various organizations through 1978. Since then and until recently, the primary flow into the Basin has been approximately 300,000 gallons per year from a Hydrazine blending facility and an undetermined amount of groundwater that infiltrates into the influent sewer line to the Basin. With the reduction in flow to the Basin, the volume of liquid contained has been steadily decreasing. The actual volume at any one time varies depending on climatological conditions, and the current estimated volume of liquid contained in the Basin is 30 million gallons. This reduced volume can be attributed primarily to loss through natural evaporation.
- 4. In early FY 82, an MCA program was initiated which includes the removal of the chemical sewer line back to the South Plants Area and the construction of a dike through the Basin to reduce the amount of surface water run-off into the existing liquid pool. Upon completion of the program, flow into the Basin will essentially be eliminated. The volume of liquid in the Basin should decrease due to evaporation to a point where 10 to 15 million gallons remain. Enhanced evaporation techniques under consideration for the liquid could reduce this volume even further.

Regulatory Setting

- 5. Basin F has been operated through the years essentially without restrictions on the amount or type of waste disposed in it. Clean up or control of the Basin was first addressed indirectly in 1975 by the "ceast and desist" orders issued by the Colorado Department of Health to the Shell Chemical Company and to RMA. Specifically, Shell and RMA were ordered to "take whatever steps are necessary to clean up all sources of the substances DTMP and DCPD and to perform all work necessary to ensure that ... DTMP and DCPD cannot enter the water of the state."
- 6. Then, in 1976, the Resource Conservation and Recovery Act (RCRA) was inacted. The resulting regulations were applicable to Basin F since it was an operating facility on 19 November 1980, and contained hazardous waste material. A notice of hazardous waste activity and Part A of the RCRA permit application was filed with EPA listing Basin F as a hazardous waste surface impoundment. As a result, the interim status standards as set forth in 40 CFR Part 265 are

Table I

Chemical Characterization of Basin F Liquid (1977)

Compound		Concentration
or Parameter	Units	Range*
pH	•	6.9 - 7.2
Aldrin	ppm	50 - 400
Isodrin	pph	2 - 15
Dieldrin	ppb	5 - 110
Endrin	bbp	5 - 40
Dithiane	ppo	30 - 100
DIMP	ррш	10 - 20
DMIP	ppm	500 - 2,000
Sulfoxide	מסק	4 - 10
Sulfone	ppm	25 - 60
Chioride	ppm	48,000 - 56,000
Sulfate	ppm	21,000 - 25,000
Copper	ppm	700 - 750
Iroa	mqq	5 - 6
Nitrogen	bòm	120 - 145
Phosphorus (total)	ppm	2,050 - 2,150
Hardness	bbar .	2,100 - 2,800
Fluotida	ppm	110 - 117
Arsenic	ppm	1.0 - 1.3
Magnesium	p p or	35 + 40
Marcury	pps	26 - 29
Cyanide	₽ pm	1.45 - 1.55
COD	ppm .	24,500 - 26,000
TOC	ppm	20,500 - 22,500

^{*} Based on the analysis of various samples from different locations and depths in the Basin.

applicable to Basin F. One of the major requirements under the interim status standards for such facilities is a written closure plan including a description of how and when the facility will be closed. These regulations are contained in 40 CFR Part 265, Subpart G. The closure plan was due 19 May 1981.

Data Requirements

7. In order to properly address the closure of Basin F, information is needed on the extent of contamination in the Basin area. Several field studies have been conducted in the Basin previously including sample collection and analysis (1, 2), but no information is available on the distribution of contamination below the liner. If contaminants have penetrated the liner and are contained in the underlying soils in high concentrations, the requirement for removal or clean up of the soils will have to be addressed in the final closure alternative. Additional information on the contaminant distribution in the sediment or overburden above the liner is also required.

Scope of Report

8. A study aimed at developing the required contaminant distribution information was authorized and funded by the US Army Toxic and Hazardous Materials Agency (USATHAMA). Computer Sciences Corporation (CSC) Inc., NSTL, MS was tasked to conduct the study with the support of RMA and US Army Engineer Waterways Experiment Station (WES) personnel. The study included development of a sampling protocol, sample collection, leach testing, analysis, and report preparation. RECRA Research, Inc., Amherst, N.Y., developed the sampling protocol; WES and CSC conducted the sample collection; Systems, Science, and Software (S-Gubed), Inc., LaJolla, CA performed the leach testing; Midwest Research (MRI), Inc., Kansas City, MO, conducted the sample analyses; and, WES prepared the final report. This report summarizes the work conducted by the various groups, documents the data obtained, presents the resulting conclusions, and provides certain recommendations. Boring logs and data reports have been appended.

PART II: METHODS AND PROCEDURES

Field Procedures

9. Proposed boring locations (a total of twenty) and recommended procedures for conducting the sample collection were developed by RECRA, Inc. and detailed in a sampling protocol which has been reproduced and is presented in Appendix A. Every attempt was made to follow the protocol during sample collection, however, certain minor modifications were made in the field as necessary to complete the work under the difficult conditions encountered (including savere sold weather, potential health hazards to personnel, and coordination with the construction activities on-going in the Basin). Four boring sites on the north end of the Basin were eliminated from the list of proposed sites due to the steep bank slopes encountered and the potential for personnel to come in contact with the liquid pool. The modified procedures used for sample collection and preparation are detailed below.

Establishment of boring locations

10. Based on the recommended sita locations given in the protocol, a preliminary survey of the Basin was conducted and the proposed boring sites were
located. A temporary bench mark (TBM) was established near the northeast gate
of the Basin security fence from which the boring site locations were off-set.
The surface elevation at each site was tied-in to the TBM. All locations were
marked with a numbered, flagged stake for easy identification. Prior to initiation of sample collection, some of the sites had to be relocated to avoid interfering with the dike construction activities on-going in the Basin. The final
sixteen boring locations are presented in Figure 2. No formal final survey of
the completed boring sites was made, but such a survey can be made in the future
if required.

Overburden removal and sampling

11. Overburden was removed from an area approximately 2.5 ft in diameter using shovels. Extreme care was exercised so as not to disturb the liner. Clean cloth rags were used to wipe the surface of the liner. A 2.0 ft diameter, steel caisson was placed in the hole and bentonits was poured around the outside of the bottom of the caisson. The outside of the caisson was then backfilled

to approximately 0.3 ft with overburden. The overburden and bentonite were mixed with a shovel in order to effect a seal between the liner and the bottom of the caisson. Overburden was then backfilled around the caisson to the original surface elevation. A plywood working surface was laid around the caisson, and the liner was re-wiped with clean cloth rags in order to remove excess bentonite. At this point, site preparation was complete.

- 12. At selected borings, the overburden was sampled by cutting down the face of the excavation after the liner had been wiped clean but before the caisson was placed. Each composite sample was placed in a 500 ml glass jar, sealed with a teflon lined lid, and labeled according to boring location and sample type. The liner was then re-cleaned with rags before the caisson was placed. This sampling procedure was used at borings No. 01, 14, 31, and 70. Two (2) 500 ml glass jars of overburden were collected for interlaboratory quality control purposes from stockpiled overburden at boring No. 11.
- 13. The overburden was field classified as to general appearance, color, and moisture. The liner condition was noted with regard to its presence (or absence), continuity, and general appearance. These observations were recorded for each hole on boring logs which are presented in Appendix 3.

Soil boring and sampling

- 14. All soil sampling was done with a split-spoon sampler equipped with a basket shoe and a plastic sleeve (Figure 3). The sampler was manually advanced into the soil by driving with a 10-15 maul. Ramoval of the sampler from the hole was accomplished using pipe wrenches and a twisting/turning/puiling motion. Once out of the hole, great care was taken to avoid contacting the sampler with any contaminated surfaces. The sampler was broken down while supported in a cantilever fashion over a bucket. The plastic sleeve was removed, and the material lodged in the shoe of the sampler was pressed out and placed in the bottom of the sleeve. In this way, an undisturbed sample of the soil profile was obtained. The ends of the sleeve were then capped and labeled as to top or bottom and as to boring number and sample interval. The sleaves were transported to an on-site laboratory for classification and sampling for chemical analysis.
- 15. Setween Crives, the sampler was classed with a wire brush and wiped with clean cloth rags before a new plastic slower was inserted. The plastic slower prevented cross-contamination between drives. The drive rods were also

brushed and wiped clean. Each drive sampled a 1.5 ft interval. Three (3) drives were made on all but one hole, boring No. 23 where only two drives were made. After each drive, the depth of the hole was measured to confirm that the specified 1.5 ft interval had been sampled. Then using a 3 in. auger, the hole was cleaned out to the bottom of the completed drive. The auger was cleaned with a wire brush and wiped with clean cloth rags between drives. At this point the hole was ready for the next drive.

16. At borings No. 13, 14, 15, 21, 22, and 23 the liner was not trimmed prior to making the first drive with the sampler. For the remaining borings, the liner was trimmed away prior to the first drive using a flathead screwdriver. This technique was found to produce a better sample of the liner. The hole in the liner was cut so as not to contaminate the soils beneath the liner with liner material. The cut-out from the liner was tagged and placed in a glass jar for future reference. These samples (along with liner samples from the untrimmed holes) have been stored in 31dg. 802, RMA for future reference. At boring locations 01, 12, 14, 31, 33, and 70, a second hole was opened in order to obtain an extra soil sample from the 0.0-1.5 ft interval for bulk chemical analysis. The number and depth intervals of samples collected over the entire sampling effort are summarized in Table 2.

Closure of berings

17. Each boring was grouted with a mixture of Portland Type V cement and bentonite in ratio of 9:1 and 6-7 gal of water per bag of cement. (Type V Portland is a low tri-calcium aluminate cement that when compared to other cements has superior resistance to hydration and expansion caused by sulfate ion substitution). As grout was slowly poured into the hole, a wooden pole was used to vibrate voids to the surface. A permanent location marker and liner seal was established over the hole by filling a 12-in. ID sonotube mold with grout to an elevation of 0.4 ft above the surface of the overburden. In the case of borings No. 01, 12, 14, 31, 33, and 70 where a second hole was opened in order to obtain an extra soil sample, an 13-in. ID sonotube form was used. The larger ID was necessary in order to cover both holes. After the grout had set for a minimum of 24 hrs, the steel caisson was pulled and overburden was used to back-fill around the marker. The measural height of the marker and overburden above the liner are presented in Table 3. Figure 4 provides details of a typically completed hole.

Table 2
Basin F Sediment and Soil Sampling Summary

		Drives (6 ft)		
BFB No.	0-1.5	1.5-3.0	3.0-4.5	Overburden
10	*22.	X	X	×
02	X	X	
11	X	Х.	X	X
12	XX	x	X	X
13	X.	×	X	
14	XX	X	*	**
15	x	X	x	
21	x	X.	x	
22	y	X	x	
23	χ.	X		
31	:22:	x	x	×
32	X	X	X	
33	XX	X	x ·	
50	x	X	X	
60	x	X	x	
70	xx	x	x	X

^{*} Double X's indicate sites where an extra drive was made for bulk analysis samples.

Table 3
Final Post and Overburden Elevations

•		Overburden
	Post Elev.	Surface Elev.
Boring No.	Above Liner (ft)	Above Liner (ft)
01	1.7	1.3
02	1.75	1.35
11	1.95	1.55
12	์ เ.63	1.25
13	1.05	0.65
14	1.9.	1.5
15	1.6	1.2
21	1.65	1.25
22	1.6	1.2
23	1.7	1.3
31	2.0	1.6
32	2.0	1.6
33 .	2.2	1.3
50	2.1	1.7
60	2.2	1.8
70	1.8	1.4

13. During the course of the sampling effort, severe weather conditions with sustained sub-freezing temperatures occurred forcing termination of the boring closure activity. Open holes were protected by taping a plastic sheet over the top of the steel caisson. Although the cold temperatures may have affected curing of the grout in some holes, an inspection made upon completion of the grouting revealed only minor sloughing from 1/2 to 1 in. of the marker top at some borings. The grout in immediate contact with the liner was not affected, thus insuring that each hole punched through the liner was securely sealed.

Photographic documentation

19. A color photograph was taken documenting the liner condition at each boring location either immediately before the caisson was placed or after site preparation for making the drives had been completed. Photographic documentation was also made of the boring procedures and of the grouting procedures. Complete sets of these photographs are on file at RMA and WES.

Safaty procedures

- 20. Considerable efforts were made to insure the safe conduct of the work in the Basin F area. All personnel were required to wear disposable coveralls, rubber gloves and boots, safety galsses, and hard hats while in the Basin to prevent contact with any contaminated material. In addition, all personnel used respirators or air packs to prevent the inhalation of noxious or toxic fumes. All clothing, supplies, and materials other than respirators, air packs, and core samplers were disposed of in 55-gal drums which were left in the Basin. The aquipment recovered was properly cleaned prior to removal from the basin area.
- 21. The safety proceduras employed were reviewed by the RMA Safety Office and approved prior to initiation of work. These procedures complied with those specified by the RMA Safety Office and the CE, Omaha District for private contractors working in Basin F. Additional details are included in the sampling protocol or are available from the RMA Safety Office.

Cn-Sita Laboratory Procedures

Sample preparation

22. The samples were processed and prepared for subsequent chemical analyses in an on-site laboratory located in Bldg. 741. Samples were removed from the plastic sleeves by tilting the sleeve and allowing the sample to slide out, top-end first, into lined core trays. Some samples were assisted by using a plunger to apply a slight force on the bottom end. Identification tags were placed on each core. Then color photographs of the individual cores were taken. Next, the cores were arranged and prepared for visual soil classification.

Soil classification

23. Field classification according to the Unified Soil Classification System (USCS) (3) was made by visual examination of the sample cores by an experienced geologist from WES who is familiar with the various types of soil found at RMA. Soil color was compared to standard soil color plates and appropriately noted along with the USCS calssification and soil taxture. Texture was determined by visual examination. All classification information on the overburden and soils was noted on the boring logs. For reference, a summary table of the USCS has been reproduced and is included with the boring logs in Appendix B.

Subsampla collection for chemical analysis

24. After the cores had been photographed and classified, the core from each boring was divided into four separate subsamples, each subsample consisting of all the soil in a particular one-foot interval. The intervals collected included 0.0-1.0 ft, 1.0-2.0 ft, 2.0-3.0 ft, and 3.0-4.0 ft, based on the depth below the liner. The subsamples were placed in 500 ml glass jars equipped with Taflon lined lids and labeled. The jars were sealed with tape, packed in an ice chest with blue-ice, and air freighted to S-Cubed for further testing. All samples arrived at S-Cubed on the day following collection. Those samples to be used for bulk analysis determinations were packaged in the same manner and air freighted to MRI. A list of the subsamples prepared is presented in Table 4. All residual soil and other materials from the cores were composited and returned to Basin 7. Appropriate safety measures were taken in the laboratory to prevent immediate contact with the cores or inhalation of fumes by any personnel.

Table 4
Basin F Sediment and Soil Subsample Identification

BFB* No.	RMA Mo.	Sample Type	Interval (ft)
21	\$20001	Core	0-1
21	\$20002	Core	1-2
21	\$20003	Core	2-3
21	\$20004 [†]	Core	3-4
22	\$20005	Core	0-1
2:2	\$20006	Core	1-2
22	S20007	Cora	2-3
22	s2000s†	Core	3-4
23	\$20009	Core	0-1
23	\$20010	Core	1-2
23	S20011	Cora	2-3
13	\$20012	Cors	0-1
13	520013	Core	1-2
13	S20014 [†]	Core	2-3
13	s20015 [†]	Core	3-4
14	S20016	Core	0-1
14	S20017	Core	1-2
14	\$20018	Core	2-3
14	320019 [†]	Cora	3-4
14	\$20020	Surface	•
15	\$20021	Core	0-1
13	\$20022	Cora	1-2
15	S20023	Core	2-3
15	s20024 ¹	Cora	3-4
70	\$20025	Surface	•
70	\$20026	Cora	0-1
70	\$20027	Core	1-2
70	\$20028	Core	2-3
70	s20029†	Core	3-4

^{*} Basin F Boring.

[?] Indicates that the subsample was held and not extracted using the STLP.

Table 4 (Continued)

BFB No.	RMA No.		Sample Type	Interval (ft)
60	\$20030		Core	0-l
63	\$20031		Core	1-2
60	s20032 [†]		Core	2-3
60	s20033 [†]		Core	3-4
32	\$20034		Core	0-1
32	\$20035		Core	1-2
32	S20036	~~	Core	2-3
32	\$20037 [†]		Core	3-4
31	S20038		Surface	-
31	520039		Core	0-1
31	\$20040		Cora	1-2
31	520041		Cora	2-3
31	520042 [†]		Core	3-4
33	\$20043		Cors	0-1
33	520044		Cora	1-2
33	s20045 [†]		Core	2-3
33	s20046 [†]		Core	3-4
12	520047		Core	0-1
12	S20048		Core	1-2
12	\$20049		Core	2-3
12	320050		Core	3-4
01	520051		Surfaca	-
οι	\$20052		Core	9-1
01	\$20053		Core	1-2
01 -	\$20054		Cura	2-3
91	\$20055		Core	3-4
11	\$20056		Core	0-1
11	\$20057		Core	1-2
11	320058		Core	2-3
11	\$20059		Core	3-4
50	\$20070		Cors	0-1
50	S20061		Core	1-2
		(Co	ncinued)	

Table 4 (Concluded)

BF3 No.	RMA No.	Sample Type	Interval (ft)
50 ·	S20062	Core	2-3
50	\$20063	Core	3-4
02	S20064	Core	0-1
02	\$20065	Core	1-2
02	S20066	Core	2-3
02	\$20067	Core	3-4
11	S20053	Surface	-
14	\$20059	Core (buik)	0-1
70	\$20070	Core (bulk)	0-1
33	\$20071	Core (bulk)	0-1
12	S20072	Core (bulk)	0-1
12	S20073	Surface (bulk)	→ ,
31	S20074	Core (bulk)	0-1
31	s20075	Surface (bulk)	•
01	S20076	Core (bulk)	0-1
11	\$20077	Surface (bulk)	•

Leaching Procedure

25. Selected subsamples of the cores were leached using the Solid Maste Leaching Procedure (SWL2) as requested by USATHAMA. The procedure is detailed in a memorandum prepared by USATHAMA that has been reproduced and included in Appendix C. The SWLP involves a distilled water extraction of approximately 100 g of sample. The solution is mixed for 24 hours followed by filtration and analysis of the extract. S-Cubed performed the SWLP only on the fifty subsamples specified by RMA and WES personnel. After review of the results of the initial tasts, five additional subsamples were extracted by S-Cubed using the SWLP (see Table 4). All remaining cores and excess soil not needed for testing were transferred to WES to be held for future testing if required. S-Cubed prepared a detailed summary of the extraction work conducted which has been reproduced and included in Appendix D.

Sample Analyses

Analysis of SWLP extracts

26. The SWLP extracts were air freighted to MRI for chemical analysis. A list of parameters for analysis of the samples was prepared by RMA and WES personnel. This list is as follows:

рН	Dithiane
Aldrin	Sulfana
Dieldrin	Sulfoxide
Endrin	DBCP
Isodria	Mercury
DIMP	Arsenic
DMMP	Fluoride

MRI conducted these analyses using procedures approved by USATHAMA. Details of these procedures along with a propriate quality control data are on file at MRI and RMA.

Analysis of bulk samples

27. Bulk analyses were conducted on nine samples (as indicated in Table 4) for both regamin and inorganic contaminants. Machiled written analytical methods for the bulk analyses were prepared by MRI which have been reproduced

and are included in Appendix E. In general, the organic analyses were conducted using standard GC/MS techniques while metal analyses were conducted using an inductively coupled plasma (ICP) emission spectrometer. Mercury and arsenic were analyzed using cold vapor and hydride generation AA spectrophotometry techniques, respectively. Fluoride analysis was conducted using an ion selective electrode method.

Control and distribution of analytical results

28. The completed analytical data were submitted by MRI to the analytical QA/QC group at RMA for review and concurrence. Copies of the data were then distributed to RMA and WES personnel for evaluation and use in this report.

PART III: RESULTS AND DISCUSSION

Depth of Overburden

- 29. The sediment or overburden as referred to in this report is the material located above the liner in Basin F. During construction of the Basin, a layer of sand approximately one foot in thickness was placed over the liner as a protective measure. Through the years of operation, additional material has been deposited in and on this sand layer probably due to precipitation of salts from the liquid, deposition of wind blown soil, and dumping of waste solids into the Basin. In certain areas of the basin where the overburden has been exposed (not covered with liquid) for long periods of time, it appears that some of the original cover sand has been lost, probably due to wind erosion.
- 30. In order to provide an overall picture of the depth of overburden in the Basin, a contour map was developed based on the measurements taken during the boring operations as presented in Table 3. This contour map is presented in Figure 5. The minimum depth found 0.65 ft, was at boring No. 13 which is in an area of the Basin exposed the longest time. The maximum depth found, 1.3 ft, was at borings No. 60 and 33, which are located in proximity to the two entrance gates in the fence on the east side of the Basin. The increased overburden depth in these areas may be the result of historic dumping of solid material into the Basin at these points due to their easy sccess. No information was obtained on sadiment depths under the liquid, alchaegh past reports (1, 2) have indicated that the sediment is thicker in this area. This is probably true, since the various salts continue to precipitate from the liquid as additional water evaporates.

Liner Condition

31. During the conduct of the boring in the Basin, special attention was given to determining the condition of liner as the overburden was removed. The field personnel inspected the liner and noted its condition on the associated boring log. Overall, the liner was found to be in good condition with the exception of boring No. 2. In this area, the liner was liquified and had dispersed to some degree making it difficult to identify. Email holes, I to 2 inches in diameter, were found in the liner at boring sites No. 13 and 15.

The field personnel indicated that the liner irregularities at these two sites were probably the result of poor application technique.

Classification of Soils Beneath the Liner

- 32. As previously discussed, the cores taken in the Basin were field classified based on the USCS with the resulting information reported on the boring logs (Appendix B). This information was obtained in anticipation of future construction activities in the Basin where such information might be useful. In addition, certain contaminants can often be associated with specific soils with regard to adsorption or precipitation. Therefore, if certain intervals were found to be contaminated, it might be possible to relate contaminant distribution to soil type.
- 33. In order to illustrate the variations in soil types found with depth, a series of three horizontal cross-sections were prepared delineating the soil classifications in the intervals 0.1-1.0 ft, 1.0-2.0 ft, and 2.0-3.0 ft. Very little difference was found between the 2.0-3.0 ft and 3.0-4.0 ft intervals and therefore no cross-section was prepared for the deepest interval. The cross-section are presented in Figures 6, 7, and 8. Each specific soil group is identified using a standard symbol. The group symbols are described in Table 5.
- 34. The predominant soil groups identified include silty clays, inorganic silts, and inorganic clays. Inorganic clays become more predominant with increasing depth. The variation in soil types with depth over much of the Basin can be partially explained by considering the physical setting of the Basin. The Basin was constructed in a natural depression with the ground surface elevation decreasing from east to west and south to north. Therefore, dikes were constructed on the north and west sides of the Basin which entailed placement of fill. The soils found in the southeast section of the Basin probably represent the original, undisturbed surface.
- 35. All of the soil types identified provide some capacity for holding-up or retaining of contaminants since they are fine grained or contain clay or both. Generally, the higher the concentration of clay in a soil, the higher the capacity for retaining contaminants. In any case, if contaminants have passed through the liner in the Basin, sufficient amounts should have been retained in these soils to be avident.

Table 5
Descriptions of USCS Soil Groups (3)

Group Symbol	Typical group description	Example of corresponding USDA soil textural description
CW	Well-graded (poorly-sorted) gravels, gravel-sand mix-	Gravel, gravelly sand
	tures, iitue of no fines	
GР	Poorly-graded (well-sorted) gravels, or gravel-sand	Same дз above
	mixtures, little or no fines	
ΨS	Silty gravels, gravel-sand-silt mixtures	'i Very gravelly sand or
		silt loam
25	Clayey gravels, gravel-sand-clay mixtures	Very gravelly clay loam
SIV	ہے۔ Well-graded (poorly-sarted) sands, gravelly sands,	Same as above
	little or no fines	
SP	Poorly-graded (well-sorted) sands, gravelly sands,	Coarse to fine sand
	little or no fines	
SM	Stity cande canded a mixture	Tount cand or cando loam
.	and some forms of the mixed forms of the first of the fir	LOANILY SAIRU OL SAIRUY LOANIL
SC	Clayey sands, sand-cluy mixtures	Sandy clay loam or sandy
		clay
	(Continued)	

Table 5 (Concluded)

Group Sychol	Typical group description	Example of corresponding USDA soil textural description
Ħ	Inorganic silts, very fine sands, clayey silts, low plasticity	Silt or silt loam
70	Inorganic clays, low to medium plasticity, lean clays	Sifty clay loam or clay loam
10	Organic silts and organic silty clays of low plasticity	Mucky silt loam
Ħ	Inorganic silts, micaceous or diatomaceous fine, sandy of silty soils, clastic silts	Micaceous or diatomaceous silt
CH	Inorganic clays or high plasticity, fat clays	Silty clay
НО	Organic clays of medium to high plasticity, organic silts	Mucky silty clay
Pt	Peat and other highly organic soils	Mucks and peats

Analytical Results

36. Due to the volume of the combined analytical data, the results of the analyses on the SWLP extracts and the bulk analyses are detailed in Appendix F. A separate list of tables for Appendix F has been prepared and is included in the front of the appendix to aid in locating particular data of interest. The analytical results are addressed only in a summary fashion in the following sections.

Results of analyses on the SWLP extracts

- 37. As indicated by the data tables in Appendix F, the concentration of many of the contaminants in the SWLP extracts were very low or below detectable limits. As a result, it was decided to purge the data base of these low values thus enabling the development of a less cluttered visible representation of the data. Action level concentrations for the contaminants were used as a reference for either climinating or retaining a data point in the purged data base. An action level concentration is the EPA drinking water standard for a particular contaminant, if one exists, or a recommended maximum concentration established by the Army for those contaminants without regulated drinking water standards.
- 38. A list of action level concentrations has been prepared by USATHAMA for use at RMA. The action levels for the contaminants of interest in the SWLP extracts area as follows:

Parameter	Action Level
Aldrin	Hold to a minimum (assume 0.2 ppb)
Dieldrin	Hold to a minimum (assume 0.2 ppb)
Endrin	0.2 ppb
Isodrin	Hold to a minimum (assume 0.2 ppb)
DIMP	0.5 ppm
DMMP	No level set (assume 0.5 ppm)
Dithiane)	
Sulfone }	100 ppb (total of all organo-sulfurs)
Sulfoxide	
DBCP	0.2 ppb
Mercury	2.0 ppb
Arsenic	50.0 ppb
Fluoride	2.4 ppm

- 39. A plin map was developed for the purpose of summarizing the purged data base (Figure 9). All the contaminants found above their respective action levels in the SWLP extracts of the boring cores from the four intervals under the liner (0.0-1.0 ft, 1.0-2.0 ft, 2.0-3.0 ft, and 3.0-4.0 ft) are identified with respect to each boring site on the map. Those intervals from which either samples were not analyzed or no contaminants were found in the extracts above their action levels, are also identified.
- 40. The contamiants found in the SWL? extracts above their respective action level concentrations include Aldrin, Dieldrin, Endrin, Isodrin, organosulfars, D&C?, arsenic, and fluoride. Some of the borings (No. 21, 22, 23, 50, and 70) had no associated extracts with contaminant concentrations above the action levels. Borings No. 1 and 2 (in "Little F") were found to have the greatest number of contaminants in the extracts for all intervals. They were the only borings in which the extracts of the cores from the 3.0-4.0 ft interval were found to contain organic contaminant concentrations above the action levels. The concentrations of the contaminants in the extracts associated with borings No. 1 and 2 were in general higher than those associated with the other borings. Overall, the results indicated that subliner soils associated with the borings outside of "Little F" are not highly contaminated. No particular correlation was found between contaminant distribution and soil type. This is probably due to the fact that all the soils identified contain significant amounts of clay and/or fine grained material.
- 41. The SWLP was conducted on overburden samples collected at five boring sites including Nos. 1, 11, 14, 31, and 70. The contaminants concentrations in these extracts were found to be much higher than in those associated with the below lines samples. In addition to the contaminants identified in the boring core extracts, concentrations of DEMP and DCPD were found in some of the overburden extracts.

Results of the bulk analyses

42. Bulk analyses were conducted on samples taken from the 0.0-1.0 ft core interval from borings No. 1, 12, 14, 31, 33, and 70, and on overburden samples from borings No. 11, 12, and 31. The results of these organic and metal analyses, as previously indicated, are presented in Appendix 7. It should be noted that the concentrations of organics reported for the bulk analyses are

semi-quantitative in nature and should not be taken as absolute. The concentrations of contaminants in the bulk analyses range from 2 to 5 orders of magnitude greater than the concentrations in the SWLP extracts. This indicates that the SWLP extracted only a small fraction of the total amount of the contaminants present. The bulk analyses also indicated the presence of contaminants other than those analyzed for in the SWLP extracts. The reader is referred to the appropriate tables in Appendix F where these additional contaminants are identified. The additional contaminants identified in the core samples are not of particular concern due to their chemical natures and/or the generally low concentrations found. Of the overburden samples analyzed, the one from boring No. 11 was found to have the greatest number and highest concentration of organic contaminants other than those analyzed for in the SWLP extracts. A number of these contaminants could be of concern with respect to disposal of the overburden material, even though specific criteria or standards are not available.

Significance of Data with Respect to Basin F Closure

43. The RCRA regulations pertaining to the closure of a surface impoundment operating under interim status are contained in 40 CFR, Part 265, Subpart K, Section 265.228. The regulations specify two methods for closure of a surface impoundment. First, if the owner or operator elects to remove the following: (1) standing liquids, (2) waste and waste residues, (3) the liner, and (4) underlying and surrounding contaminated soil; or can demonstrate that none of these materials remaining at any stage of removal are hazardous: the surface impoundment can be closed without being subject to additional requirements of Part 265 regulations. Secondly, if the owner or operator does not remove all the impoundment materials or does not make the non-hazardous demonstration, the impoundment must be closed and post-closure care provided as for a landfill. The specific requirements for closure as a landfill are in general negotiable but at a minimum the remaining liquid must be removed by either treatment or drying. The specific requirements could vary from placement of a final cover along with a demonstration of positive control to prevent contaminant migration as detailed in Section 265.310, to construction of a liner (possibly including a leachate collection system) and placement of a final cover as detailed in Part 267, Subpart D. Sections 267.21, 267.22, and 267.22.

- 44. In order to evaluate the methods, a determination must be made of which impoundment materials are hazardous. A solid waste is defined as a hazardous wasta under RCRA if it specifically listed in Section 261.31 (Hazardous Wasta from Nonspecific Sources), Section 251.32 (Hazardous Wasta from Specific Sources), or in 261.33 (Discarded Commercial Chemical Product, Off-Specification Species, Container Residues, and Spill Residues Thereof); if it is a mixture of solid waste and one or more hazardous wastes listed in Sections 251.31, 261.32, or 261.33; or if exhibits the characteristics of ignitability, corrosivity, reactivity, or EP toxicity. The liquid and sediment in the Basin are hazardous wastes since they are mixtures of solid waste and one or more hazardous wastes identified in the lipts. The listed hazarious wastes disposed of in the Basin can in general be associated with leasee operations in the South Plants. In addition, the liquid and an EP extract of the overburden from the Basin have been shown to contain Endrin in excass of the 0.02 ppm criteria thus exhibiting the characteristic of EP toxicity. This information was developed as required for filing of Part A of the RCRA permit application.
- 45. Therafore, it is left to determine if the liner and the underlying and surrounding soils are contaminated. No specific tests have been conducted on the liner material and therefore no absolute determination can be made as to its hazardous or non-hazardous nature although, based on the RCRA criteria, the asphalt liner would probably not be classified as hazardous. However, in any anticipated construction activity in the Basin involving removal of the liquid and sediment, it would be impractical if not impossible to captrate the liner material from the waste materials classified as hazardous.
- 46. With respect to the surrounding soils, a determination must be made as to the extent of contamination. The words "contaminated soils" as used in the RCRA regulations concerning surface impoundments have not been specifically defined in the regulations. However, based on the current philosophy being used by EPA in developing the regulations, any criteria developed concerning such contaminated soils will probably be based on the potential for the soils to act as a significant source of the contamination with respect to migration to underlying groundwater due to leaching. The extent to which a contaminated soil must be removed will probably have to be negotiated with the appropriate regulatory agency.
- 47. In the interim, until such time as the regulations are finalized and/or negotiations have been completed, USATRAMA has developed a criteria based

on the results of the SWLP and directed that it be used as a guideline in determining if contaminated spils represent a migration source. The criteria is detailed in the memorandum prepared by USATHAMA which has been included in Appendix C. In summary, the criteria is as follows: If the concentration of a particular contaminant in the SWLP extract of a soil exceeds 100 times the action level for that contaminant, then the soil is considered to have the ability to release the contaminant through leaching at a level requiring positive control or removal to prevent degradation of groundwater quality. Therefore, this criteria was applied to the soil samples collected from beneath the Basin F liner to determine which soil areas would require positive control or removal.

- 48. In applying the criteria, the action levels (as given in paragraph 38 of this report) were multiplied by 100 and the resulting values compared to the concentrations found in the SWLP extracts of the cores. Only the extracts from the cores collected at boring No. 2 from the 0.0-1.0 ft and 1.0-2.0 ft intervals exhibited concentrations exceeding the criteria (Figure 9). For the 0.0-1.0 ft interval, the concentrations of Aldrin, Dieldrin, Endrin, and Isodrin in the extract exceed the criteria. In the 1.0-2.0 ft interval, only the concentration of Dieldrin in the extract exceeds the criteria, although the concentration of Endrin is only slightly below the criteria. Thus, the soil beneath the lines around boring No. 2 was the only area found requiring positive control or removal based on the interim criteria.
- 49. As discussed previously, boring No. 2 was the only location in the study where the liner was found to be in poor condition. Contamination in the sediment in this area was probably able to migrate in high concentrations into the soil due to the deteriorated condition of the liner. In the other areas of the basin evaluated in this study, the liner appears to have maintained sufficient integrity to prevent the migration of large amounts of contaminants to the underlying soils.
- 50. Although the liquid and overburden in the Basin have been identified as hazardous wastes, the interim criteria were applied to the SVLP extracts conducted on the five overburden samples to determine if the contaminant concentrations found exceeded the criteria. Concentrations in the entracts from four of the five samples were found to exceed the criteria. Only the contaminant concentrations in the SVLP extract on the overburden sample from boring

No. 70 did not exceed the criteria. The contaminants identified whose concentrations in the extracts from the other samples exceeded the criteria are as follows:

Boring No.	Contaminants
1	Dieldrin, Endrin
11	Dieldrin, Endrin
14	Endrin, organo-sulfurs
31	Aldrin, Dieldrin

Therefore, based on the interim criteria, some positive control or removal action is required for the Basin F-sediment regardless of the requirements imposed by the RCRA regulations.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 51. The conclusions drawn from the evaluation of data obtained in this study are as follows:
 - a. The depth of overburden found above the liner in Basin ? varies from 0.65 to 1.8 ft. This variation is probably due to wind erosion and deposition, precipitation of salt from the liquid, and dumping of wasta solids into the Basin. The depth of sediment beneath the current liquid pool will probably be as great or greater than the maximum depth of overburden identified in this study due to continued deposition of material as the water portion of the liquid evaporates.
 - b. In general, the liner in Basin F in the study area is in good condition with the exception of the area around boring No. 2. It appears that the asphalt has been attacked and dissolved in this area. Therefore, the possibility exists that there may be other areas in the Basin not investigated in this study in which the liner has deteriorated.
 - c. The predominant soil groups identified as underlying the Basin ? liner include silty sands. Inorganic silts, and inorganic clays. Inorganic clays become more predominant with increasing depth. All of the soil types identified provide some capacity for retaining contaminants due to their clay contant and fine grained characteristics. Therefore, of the contaminants passing through the liner, sufficient amounts should have been retained in the soil to be evident in the tests conducted.
 - d. Contaminants found in the SWLP extracts of the below liner soil cores in excess of their respective action level concentration include Aldrin, Dieldrin, Endrin, Isodrin, organo-sulfur, DBGP, arsenic, and fluoride. Borings No. 1 and 2 in "Little F" had the greatest number of contaminants in the extracts for all intervals. In general, the soils associated with the borings placed outside of "Little F" were not found to be highly contaminated.

- e. No particular correlation was found between contaminant distribution and soil type.
- f. The concentrations of contaminants in the bulk analyses were generally found to be several orders of magnitude greater than the concentrations in the SWLP extracts indicating that the SWLP extracted only a small percentage of the total amount of each contaminant present. Therefore, if the SWLP is assumed to simulate natural leaching conditions, the soils and overhurden represented by the samples collected in this study could potentially continue to serve as sources of contaminants for a long period of time.
- g. The liquid and overburden in the Basin are hazardous wastes since: (1) they are mixtures of solid waste and one or more hazardous wastes specifically identified in the RCRA regulations, and (2) the liquid and or RP extract of the overburden have been previously shown to contain Endrin in excess of the 0.02 ppm criteria and therefore exhibit the characteristics of EP toxicity.
- h. Although under the current RCRA criteria, the asphalt liner would probably not be classified as hazardous, it would be impractical if not impossible to separate the liner material from the waste materials classified as hazardous.
- i. Based on the criteria developed by USATMAMA, the soils associated with 0.0-1.0 ft and 1.0-2.0 ft intervals at boring No. 2 (in "Little F") were the only underlying soils evaluated in this study that were determined to represent a contaminant migration source. The conceminant whose concentrations in the SWL2 extracts were found to exceed the criteria include Aldrin, Dieldrin, Endrin, and Isodrin.
- 1. Contamination in the overburden in proximity to boring site No. 2 was probably able to migrate in high concentrations into the undarlying soil due to the deteriorated condition of the liner. In the other areas of the basin evaluated in this study, the liner appears to have maintained sufficient integrity to saverly limit such digration.

k. Concentrations of certain contaminants in the SWL? extracts of the overburden in the Dasin exceeded the USATHAMA criteria and thus the overburden was determined to represent a contaminant migration source in addition to being previously identified as a hazardous waste.

Recommendations

- 52. The following recommendations are made with regard to the eventual closure of Basin F:
 - a. Any final closure alternative considered for Basin 7 should address the removal and/or treatment of the liquid, overburden, and liner to the degrae required under the RCRA regulation in effect at that time. In addition, positive control or removal actions should be included for the contaminated soil underlying the liner in "Little F." If removal is selected as the appropriate action in the "Little F" area, the soil should be excavated to a minimum depth of 2 ft.
 - b. As the liquid pool remaining in Basin 7 decreases in size, additional investigations should be conducted in that area to determine the extent of contamination in the soil underlying the liner at that point. The results of this study indicate that a simple physical inspection of the liner will provide a good indication of potential trouble spots without additional extensive boring, sampling, and analysis. Future investigations should be concentrated in areas where the liner is found to be detariorated or breached.

REFERENCES

- 1. Buhts, R. E., Francingues, N. R., and Green, A. J. 1979. "Basin F Investigative Studies: Report I, Chemical Assessment and Survey," US Army Engineer Waterways Experiment Station, CE, Vicksburg, MS.
- 2. Mullen, J. C., Olsen, R. L., and Taylor, D. S. 1980. "Investigation of Basin F Solution Alternatives," D'appolonia Consulting Engineers, Inc., Denver, CO.
- 3. US Army Engineer Materways Experiment Station. 1960. "The Unified Soil Classification System," Technical Memorandum No. 3-357, Vol. 1, Vicksburg, MS.

FIGURES -

Figure 2. Location of boring sites within Basin F.

Figure 3. Cut-away view of split-spoon sampler

Figure 4. Typical detail of completed boring.

Plgure 5 Basin P sediment depth (ft).

Distribution of soil types in Basin P, 0.0 - 1.0 ft. below the liner. Phenre 6.

Distribution of soil types in Basin P, 1.0 - 2.0 ft. below the liner.

Distribution of soil types in Basin F, 2.0 - 3.0 ft. below the liner. Plynce 8.

E NUMBERS IN PARENTHESES
DENOTE INTERVALS BELOW
LINER AS FOLLOWS:
(1) = 0.0 - 1.0 FT
(2) = 1.0 - 2.0 FT
(3) = 2.0 - 3.0 FT
(4) = 3.0 - 4.0 FT

5

APPENDIX A: BASIN F BORING PROTOCOL

SOIL BORING PROTOCOL WITHIN BASIN F

ROCKY MOUNTAIN ARSENAL COMMERCE CITY, COLORADO

prepared for

Computer Sciences Corporation
National Space Technology Laboratories
NSTL Station
Mississippi 39529

prepared by
Robert K. Wyeth and Richard L. Crouch
Recra Research, Inc.
4248 Ridge Les Road
Amherst, NY 14226

November 30, 1981

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
	1.1 Overview	. 1
	1.2 Liquid Composition	. 4
	1.3 Geologic Character	. 7
	1.4 Hydrologic Setting	. 8
2.0	BORING/SAMPLING PROGRAM DESIGN	13
3.0	FIELD PROCEDURES	. 13
	3.1 Establishment of Staging Area	. 13
	3.2 Establishment of Boring/Sample Locations	. 15
	3.3 Boring/Sampling Procedures	. 15
•	3.4 Sample Custody	. 19
	3.5 Grouting/Boring Closure Procedure	. 20
4.0	SAFETY PROCEDURES	22
5.0	EQUIPMENT LIST	23
	5.1 Survey/Marker Equipment	23 .
	5.2 Frring/Sampling Equipment	23
	5.3 Chosure Supplies and Equipment	26
••	5.4 Safety Equipment	27
6.0	REFERENCES	28

ATTACHMENT - Chain of Custody Sheet

LIST OF FIGURES

Figure Number		Fage
1	RMA-Denver Vicinity	. 2
. 2	General Map of RMA	• 3
3	Basin F and Underlying Soils	. 9
4	Water Table Elevations	. 10
5	Base of the Alluvial Aquifer Contours	. 11
6	Alluvium Water Levels (1959-60)	• 12
7	Basin F Grid/Boring Location Map	. 14

LIST OF TABLES

Table Number					
1	Waste Basin Liquid Analysis	5			
2	Waste Basin Sediment Analysis	6			

SOIL BORING PROTOCOL WITHIN BASIN F ROCKY MOUNTAIN ARSENAL

1.0 INTRODUCTION

1.1 Overview

Rocky Mountain Arsenal (RMA) is located in Commerce City, Colorado, north of Denver (Figure 1). Since its establishment in 1942, RMA has produced numerous munitions or has been involved in the demilitarization of chemical munitions. In 1946, portions of the manufacturing facilities at RMA were leased to private industry for production of various pesticide materials. Since 1952, the major lease holder has been the Shell Oil Company.

On-site industrial waste effluents have been discharged into storage basins/impoundments located on the arsenal. The capacity of these basins was, by necessity, increased over time in order to accommodate greater volumes of waste effluents from increased on-site production activities. On-site storage lagoons were identified as Basins A. B. C. D. E and F (Figure 2).

Basin F was constructed in 1955-1956. This basin is approximately 93 acres in size and has a capacity of greater than 243,000,000 gallons. Construction of Basin F included a low permeability liner to prevent chemical waste infiltration into the groundwater system. This liner consists of catalytically blown asphalt with an additional 12-inch thick sand layer.

Initially, waste input to the basin was pumped from Basin A. Problems associated with storage of liquid wastes in Basin F are basically as old as the basin itself. Initially, problems encountered were due to overflow of liquid as a function of wind induced wave activity and the lack of riprap. Tears in the liner were also found and after pumping some of the basin contents into Basin C, the liner was repaired and riprap installed.

Figure 1. RMA-Denver vicinity (Kolmer and Anderson, 1977)

Figure 2. General map of RMA (Kolmer and Anderson, 1977)

Currently, no effluent waste streams are directed to Basin F. To date influent to the basin is limited to infiltration to the sewer line which originally fed the basin.

Studies of and in relation to Basin F have indicated that the torn liner has been exposed to liquid waste and that groundwater contamination has occurred as a result of this basin.

Numerous RMA and Basin F specific remediation scenarios have been proposed and studied. To date, the remediation afforts have been based on natural liquid evaporation of the basin contents. At this time, the liquid in the basin is estimate to be less than 50 million gallons.

The purpose of this effort is to develop a boring/sampling protocol in order to collect below-liner soils to quantify the degree of contamination, if any, and depth. This effort and the subsequent leachate analysis programs will be used to develop the design criteria for proper closure of Basin F.

1.2 Liquid Composition

The aqueous wastes present in Basin F are primarily the result of on-site munitions manufacturing and demilitarization operations, and pesticide manufacturing by Shell Oil.

Major components 'n the Basin F liquid are presented in Table 1 and sedimented/solid waste constituents are presented in Table 2. These data are based upon analytical results reported in August, 1978. Concentrations of these constituents in the aqueous phase may be higher than listed in Table 1 as a function of the volume reduction/evaporation processes currently underway. Additionally, other organic constituents have also been qualitatively confirmed as being present in Basin F liquid. These constituents include p-chlorophenylmethylsulfide

TABLE 1 WASTE BASIN LIQUID ANALYSIS

COMPONENT	COMPONENT ANALYSIS RANGE
	PARTS PER BILLION
Aldrin	20 - 480
Isodrin	<1 - 17
Dieldrin	5 - 110
Endrin	<20 - 123
	PARTS PER MILLION
Diisopropylmethylphosphonate	6 - 55
Dimethylmethylphosphonate	320 - 3,750
p-Chlorophenylmethylsulfoxide	4 - 10
p-Chlorophenylmethylsulfone	19 - 76
Chloride	47,500 - 57,500
Sulfate	20,500 - 32,500
Copper	709 - 760 .
Iron	5 - 13
Nitrogen	112 - 150
Orthophosphate	99 - 131
Hardness (as CaCO ₃)	2,090 - 2,850
Total Solids	140,000 - 174,000
Fluoride	110 - 117
Total phosphorus	2,060 - 2,170
Arsenic	1.0 - 1.3
Magnesium	35.6 - 41.2
Mercury	0.026 - 1.53
Cyanide	1.44 - 1.53
COD	24,400 - 26,000
TOC	20,200 - 22,800

(Source: Asselin and Hildebrands, 1978)

TABLE 2
WASTE BASIN SEDIMENT ANALYSIS

COMPONENT	COMPONENT ANALYSIS RANGE
	PARTS PER MILLION
Aldrin	16 - 10,700
Isodrin	2 - 870
Dieldrin =	4 - 3,600
Endrin	2 - 1,100
DDT	<2 - 198
Diisopropylmethylphosphonate	1 - 10
Dimethylmethylphosphonata	<1 - 82
p-Chlorophenylmethylsulfone	14 - 290
Copper	230 - 21,000
Iron	190 - 11,000
Total Phosphate	<1 - 34,300

(Source: Asselin and Hildebrandt, 1978)

and oxathione. .

Varying concentrations of some of these same constituents have been found in surrounding groundwater monitoring well samples indicating Easin F as a contaminant source.

1.3 Geologic Character

The general subsurface conditions in the vicinity of Basin F consist of a surface fine to medium grained sand that varies in thickness from less than one foot to as much as fifteen feet. Underlying this surface layer is a clay-like silt to clay-like sandy silt to clay-like sand that may be as much as twenty feet thick. Underlying this sediment is coarse to very coarse sand that, in some places, is quite gravelly. This is the unit that makes up much of the near-surface aquifer over the Arsenal and, in the vicinity of Basin F, it is saturated in the lower portions. The underlying bedrock is predominantly a mudstone of the Denver-Arapahoe formation that varies in depth from about thirty to sixty feet.

This underlying bedrock surface is the subcrop of the Paleocene Denver formation. The Denver formation contains clays (or clay shales), sands, silt-stone and sandstone layers or lenses, and a variable thickness (described as being up to 100 feet) basal shale (but also described as containing sandy materials). The shale strata is part of the Denver formation and is considered by personnel of the State of Colorado Division of Water Resources to be a "buffer zone" forming the basal Denver formation which overlies the Cretacaous Arapahoe formation.

In the vicinity of the basin, the bedrock surface, on the basis of the borings around the reservoir, appears to have little relief on it and the general slope on that surface is northward. The highest bedrock in the vicinity of Basin F occurs in the southeast corner where depth to bedrock is less than 40 fact.

.4 Hydrologic Setting

The general hydrogeologic conditions at Basin F are schematically illustrated in Figure 3. This illustration assumes direct leakage from the basin and presents an oversimplified description of the existing subsurface soil conditions.

In order to understand the groundwater conditions in the vicinity of Basin F, 27 monitoring wells were installed around its perimeter. These wells are used for both water quality, as referenced in section 1.2, and water level determinations.

The groundwater pattern in the vicinity of Basin F based upon the perimeter monitoring wells is illustrated in Figure 4. Additional water table (alluvial aquifer) contours for the region morth of the basin and for the majority of the arsenal as a whole are presented in Figure 5 and 6 respectively.

The principal flow component undermeath Basin F is in a northerly direction. Along the north side of the basin a groundwater divide occurs and results in two principal flow components, one in a north-westerly direction towards the northwest boundary, and the other in a northeast direction towards the north boundary. Along the east side of the basin, a minor northeast flow component occurs. Minor west and northwest flow components also occur along south and southwest areas of Basin F, respectively. The gradients on the water table vary between a high of about 0.04 to less than 0.002. The average gradient is about 0.01. The steepest gradient occurs in the vicinity of the southeast corner of Basin F and may relate to the fact that this is the area in which the fine to medium grained bedrock sand occurs.

BASIN F	SOIL SAUNTE GROUNDWATER LEVEL SOIL SOIL SOIL SOIL GROUNDWATER LEVEL KARK KRELATIVELY IMPERVIOUS BOIL (BED ROCK) BRELATIVELY IMPERVIOUS BOIL (BED ROCK)
UPER FINE-GRAINED BOILS	COMPICER SOIL SAINED SOIL SAINED SOIL SAINED SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL

Figure 3. Basin F and underlying soils

(Source: Hiller, 1979)

Note Contour interval of 1 foot

Figure 4. Water Table Elevations

(Source: Interim Report on Basin F, 1978)

Figure 5. Base of the Alluvial Aquifer Contours (Source: Zebell, 1979)

Figure 6. Alluvium Water Levels (1959-60)

(Source: Zebell, 1979)

2.0 BORING/SAMPLING PROGRAM DESIGN

The boring and sampling program has been designed to obtain a sufficient number of soil samples such that the ultimate goal of developing a design criteria for closure of Basin F can be accomplished. Therefore, the boring/ sampling program must be a cost effective and expediate study.

The boring/sampling program consists of twenty (20) boring sites located within Basin F and "Little F" (Figure 7). This program, as presented in greater detail in a later section of this report, will be based on split spoon sampling to a depth of four and one half feet. During this field effort, it is estimated that approximately 100 samples will be generated.

3.0 FIELD PROCEDURES

3.1 Establishment of Staging Area

Prior to any work being undertaken within the fenced area of the basin, a staging area immediately adjacent to Basin F should be established. At a minimum, the staging area should include the necessary equipment and materials to be used for one day's activities. This area should also be located in close proximity to the boring sites but outside the fenced area. Possibly, the buildings located adjacent to the basin could serve as this staging area. This area will also serve as the personnel decontamination cone prior to any personnel involved in the boring program leaving the vicinity of the basin for any purpose.

It is anticipated that this staging area-could house all equipment and supplies. Additionally, it is proposed that a truck towing a small water tank will accompany the personnel responsible for the actual boring work, into the basin area and will be located on the perimeter road as close to the working area/bore hole as possible.

The actual equipment to be stored in the staging area is presented in a later section of this document.

3.2 Establishment of Boring/Sample Locations

Prior to any boring activities, stakes/markers will be placed at the approximate location of the proposed boring sites as indicated in Figure 7.

Location of the boring sites within Basin F can be accomplished using a surveying tape and a Brunton compass. Special attention will have to be paid to the sites located around the liquid boundary. These boring sites must be located as near to the liquid boundary as possible.

Upon completion of all boring activities, the exact location and elevation of the boring sites will be established via standard land surveying procedures.

3.3 Boring/Sampling Procedures

Upon staking/marking of the bore holes, the following step-by-step procedure should be followed to collect the sub-liner soil samples. The following program must be strictly adhered to in order to avoid any cross contamination of samples from sludge materials above the liner and/or from different depths below the liner. Failure to follow these procedures could produce results that would indicate a greater contamination depth than actually exists. This inaccuracy due to sampling error, could easily result in millions of dollars of additional remedial expenses if excavation and disposal of soils beneath the basin are eventually undertaken.

- STEP 1 Locate boring position and pre-label all sample bottles/boxes prior to actual boring activity.
- STEP 2 Remove all overburden (sludge) down to the asphalt liner within an area of approximately 3' in diameter. Use extreme care so as not to break the liner material.

- STEP 3 Seat a 24" ID \times 1 1/2' tall galvanized steel casing into but not through the asphalt, sealing the outside contact between the casing and asphalt with bentonite
- STEP 4 Place the 5' x 5' plywood working platform with its 30" center opening, around the galvanized steel collar.
- STEP 5 Carefully clean out any remaining sludge or debris within the collar.
- STEP 6 If necessary, apply absorbent material inside the collar to remove any liquid. Throughout the boring/sampling operation, careful attention must be given to any fluids entering the collar. If this occurs, add additional absorbent and remove with a small shovel or similar device.
- STEP 7 Construct a hole in the center of the asphalt, enclosed by the collar. This hole should be constructed with a hard auger through the asphalt but should not be allowed to penetrate the underlying soils. The auger used for this purpose shall not be used for purposes of sample collection.
- STEP 8 Set a 4" ID x 2' SCH 40 PVC flush threaded joint casing through the asphalt and into the soil. This step and later steps referencing PVC casing may not be necessary if the subsurface soils are capable of maintaining the integrity of the hole without support
- STEP 9 Using a split spoon sampler equipped with a plastic liner and attached to an A or AW rod, advance the split spoon 1 1/2'.

 Advancement of the split spoon will be accomplished by striking a coupling with a solid top attached to the end of the A or AW rod with a sledge nammer.

- STEP 10 Retrieve the split spoon with the use of pipe wrenches and twisting/turning/pulling the split spoon and A or AW rod out of the boring. If retrieval of the split spoon and A or AW rod cannot be accomplished with the use of pipe wrenches, it can be retrieved by using a tripod and pulley set up.
- STEP 11 Place the portion of the sample retained in the shoe of the split spoon into a wide mouth jar. Remove the plastic liner from the split spoon and cap. Label both the jar and plastic liner as to bore hole #, sample #, sample interval and date. Place all pertinent information including sample interval, field description and sample number on the boring log for this location/sampling point.
- STEP 12 With a wire brush, clean off all soil from the split spoon and any other equipment or utensils used in obtaining the sample.
- STEP 13 Place split spoon and/or other equipment over a bucket and thoroughly rinse with water and then acetone. A second clean split spoon can be used for sampling while the other is being cleaned in order to hasten the sampling process.
- STEP 14 Advance the bore hole with a hand auger to the base of the split spoon sample interval depth.
- STEP 15 Attach another 2' section of PVC casing onto the first section.

 Throughout the boring process always attach the next section of PVC before the threaded portion of the casing is advanced below the top of the collar. This procedure is necessary in case the use of strap wrenches is needed to tighten the casing sections.

- STEP 16 'Advance PVC casing to bottom of hole. Note that casing is settling at the proper depth. If not, remove enough soil to set the casing properly and remove any soil debris from the hole.
- STEP 17 Advance split spoon 1 1/2 feet and remove. Place sample within the shoe of the split spoon into sample jar and cap plastic liner. Follow labelling and logging procedures as outlined above.
- STEP 18 Follow cleaning procedures presented in Steps 12 and 13.
- STEP 19 Advance PVC casing as described in steps 15 and 16.
- STEP 20 Continue sampling procedure as presented in step 17 until field analytical results indicate sampling can be terminated or at a maximum depth of 4 1/2 feet.
- STEP 21 Upon completion of the bore hole, move samples to the staging area.
- STEP 22 At the staging area, cograph each split spoon sample using a 35 mm camera attached to a tripod. Describe the physical characteristics of the sample recording this description on the boring log.
- STEP 23 Obtain samples, at least 106 grams, from 0, 1', 2', 3', 4' depths and at any depth where a noticeable lithological transition occurs. Place each sample into side mouth jars. Label each jar as to bore hole #, sample #, sample interval and date. Seal sample jar with custody tape and initiate chain of custody sheet. Wrap remaining split spoon sample and label as to bore hole #, sample interval and date.
- STEP 24 Place sample jars and remaining split spoon sample in labelled box and in an ice chest. Maintain samples under refrigerated conditions.

3.4 Sample Custody

Upon collection of subsurface Basin F soil samples each subsample will be placed in pre-cleaned and labelled glass jar. All jars should be sealed with custody tape and immediately placed within an ice chest for eventual sample shipment.

After sample collection, all pertinent information should be immediately logged on the chain of custody record sheet. An example chain of custody form, which in this or a modified form would be useable for this purpose, is appendiced. It is anticipated that each boring location would utilize a separate custody sheet. Upon completion of each boring the sheet must be signed by the sampler and maintained with the samples. Upon relinquishing the samples, the shipper should sign/date the first "received by" block on the form and the sampler should also sign the first "relinquished by" block. If as is often the case, the shipper does not agree to sign the custody form, this should be so noted in the "comments" block. The form would then be placed inside the ice chest and the chest itself should then also be sealed with custody tape.

If the shipper agrees to signing the form, the form should be affixed to the outside of the ice chest where the receiving party could retrieve and sign upon receipt. It is also necessary at this time for the shipper to re-sign the form in the second "relinquished by" block.

If the shipper did not agree to sign the document, the receiving party should:

- 1) examine the custody tape on the chest
- 2) remove the custody tape on the thest
- 3) note in the comment block the condition of receipt (ice chest and individual sample)

At this time, with or without the signature of the shipper, the third copy of the form should be returned to the sampler/firm responsible for sampling. The original should accompany the samples until disposal of or archives with the second copy being maintained by the sample custodian receiving the sample shipment

3.5 Grouting/Boring Closure Procedure

Upon completion of the boring/sample acquisition to the 8' depth or depth indicated by field testing procedures outlined in section 3.5, each boring must be closed via the following grouting procedure. Failure to close the bore holes properly willlead to sub-surface contamination if such contamination has not already occurred.

- STEP 1 At the staging area, prepare a grout consisting of Portland cament and bentonite. Use 10% bentonite and no more than 7 gallons of water per bag of cament.
- STEP 2 Grout shall be placed by slowly pouring the above material down the casing and slowly removing the casing simultaneously. The casing will not be reused.
- STEP 3 If removal of the casing by hand is not possible, a tripod and pulley should be set up on the working platform. By wrapping a rope around the casing and using the pulle, the casing can be removed.
- STEP 4 Grout materials should be added until completely filling the hole up to the top of the galvanized steel casing. During the period of the first day after placement of the grout, inspection of the closed bore hole must be made in order to evaluate any subsidence of the grout material within the bore hole. If subsidence has occurred, additional grouting material should be added.

- STEP 5 Upon completion of the grouting, the numbered stake should be re-established into the cement/bentonite grout. Upon completion of all bore hole closures, the exact location and elevation will be determined via standard surveying techniques.
- STEF 6 Clean all equipment according to the procedures outlined in Section 3.4. Remove used PVC casing and store separately within the confines of the fenced area of Basin F. Empty waste solvent/ wastewater into a waste solvent container. Collect and inventory all equipment.

4.0 SAFETY PROCEDURES

From both a safety and operations point of view the above program will involve a full time commitment of at least three (3) people for the duration of the boring/sampling program. Only personnel well trained and experienced in decontamination/safety procedures should be employed for purposes of completing this work effort.

All personnel will wear the following equipment during all times within the fenced area of Basin F:

- 1) steel toe boots
- 2) disposable all purpose coveralls
- 3) knee high rubber boots
- 4) cotton gloves
- 5) plastic/rubber overgloves
- 6) hard har
- 7) full face cartridge type respirator

If for any reason personnel must leave the area, standard personnel decontamination procedures including removal of and/or disposal of protective equipment, washing etc. will be accomplished. All respirator cartridges will be replaced on a daily basin or whenever odors are detected. No eating, smoking or chewing will be allowed when personnel are within the fenced area of Basin F.

All disposable supplies and equipment should be deposited in a 55 callon drum for eventual disposal either on- or off-site based upon the current RMA policy.

Additionally, prior to beginning any work at the basin, an emergency communication network should be established with the arsenal's security staff.

The staging area will hold the supply of those safety articles previously mentioned and will also house ancillary safety items included in the equipment list provided in section 5. Specifically the required ancillary equipment will

include Scott air packs, first aid kit, eye wash bottles, fire extinguisher(s) and spray attachment for water tank to be used in the case of emergency.

Special attention must be paid to the control of contaminant materials on personal clothing upon daily/final departure of the site area and regularly worm clothing and/or articles such as watchbands, and hard hat liners.

5.0 EQUIPMENT LIST

The following equipment list assures a muitable staging area and a truck.' vehicle capable of pulling a portable water rank and holding necessary ancillary supplies.

5.1 Survey/Marker Equipment

- a.) Brunton compass
- b.) 100' steel surveying tape
- c.) Survey equipment including tripod, transit and stadia rod
- d.) Stakes (40) and flags

5.2 Boring/Sampling Equipment

- a.) 5' x 5' x 3/4" plywood with centered 2-1/2' diameter hole
- b.) 2' sections of 4" I.D. SCH 40 PVC flush joint casing (70)*
- c.) 3-1/4" cylinder diameter regular hand auger head (3)
- d.) Cross handle for auger (2)
- e.) Auger extensions
 - 4' extension (1)
 - 3' extension (1)
 - 2' extension (2)

- f.) 1-1/2' sections of 3' I.D. galvanized steel casing (33)
- g.) Portable water tank (1)
- h.) Absorbent materials (50 lbs.)
- i.) Ice chests
- j.) Reagent grade acetone (5 gallons)
- k.) Waste solvent container (1)
- 1.) Tripod (1)
- m.) Pulley and rope with snap hook (1)
- n.) Split spoon sampler with basket shoe and coupling to attach toA or AW rod (2)
- o.) Plastic tube inserts for center section of split spoon (150') and caps (120)
- p.) A or AW rods
 - 5' section (1)
 - 3' section (1)
 - 2' section (2)
- q.) Threaded couplings for A or AW rods (4)
- r.) Coupling for A or AW rods with solid top (3)
- s.) Coupling for A or AW rods with ring attachment
- t.) I' wire or rope with snap hooks at each end (1)
- u.) Wash bottles (4)

v.) Miscellaneous tools and supplies

- boring logs
- chain of custody record and sealing tape
- pens, pencils, magic marker, chalk and/or crayons
- wide mouth bottles (2 gross; precleaned)
- bottle labels
- 14" pipe wrenches (2)
- machinist files (2)
- 1 lb. sledge hammer (2)
- 6 lb. sledge hammer (2)
- 8" screw driver (2)
- wire brushes (2)
- cleaning brushes (2)
- hammer (2)
- hack saw (1) with blades
- putty knife (1)
- strap wrenches (2)
- coal shovels (2)
- wisk brooms (2)
- hand spade (1)
- 5 gallon buckets (3)
- 16' retractable carpenter tape (2)

-25-

w.) Photographic equipment

- 35mm camera with flash attachment
- engineer scale or equivalent
- tripod
- close-up extension device

* Note: If during the advancement of a hole the use of casing is not necessary to maintain the integrity of the hole, the PVC casing may be eliminated.

5.3 Closure Supplies and Equipment

In addition to equipment and supplies already available as a function of the boring/sampling procedure, the following is required:

- a.) Portland Cement
- b.) Bentonite
- c.) Trough for mixing of cement, bentonite and water
- d.) l'diameter wood dowel (6')

5.4 Safety Equipment

- a.) Disposable all purpose coveralls
- b.) Knee high rubber boots
- c.) Cotton gloves
- d.) Plastic/rubber overgloves
- e.) Hard hats
- f.) Hard hat liners
- g.) Full face respirators with supply of replacement cartridges
- h.) Open top 55 gallon drum
- i.) Scott or equivalent air packs
- j.) First aid kit
- k.) Eye wash (2)
- 1.) Fire extinguisher(s)
- m.) Emergency shower/spray attachment for water tank

6.0 REFERENCES

- "An Analyses of the Subsurface Investigations Conducted Around Basin F"; Rocky Mountain Arsenal; March 1978.
- "Basin F Containment Hydrogeology Assessment"; Geotechnical Laboratory; August 1979.
- Bunts, Robert E. and Norman Francingues; "Basin F Investigative Studies"; Problem Definition; Final Report.
- Buhts, Robert E., Norman Francingues and Andrew Green: "Easin F Investigative Studies"; Historical Review; June 1979.
- "Contamination Control Strategies for Rocky Mountain Arsenal"; Interim Report; August 1981.
- Department of the Army; "Installation Restoration at Rocky Mountain Arsenal Part II"; August 1980.
 - "Investigation of Basin F Solution Alternatives"; Project No. RM80-192; Rocky Mountain Arsenal; November, 1980.
- Kolmer, Joseph and Gerald A. Anderson; "Installation Restoration of Rocky Mountain Arsenal, Part I Pilot Containment Operations"; Department of the Army; July , 197
- "Laboratory Evaporation Studies of Rocky Mountain Arsenal Basin F Fluid"; Test Summary; December 1979.
- McKown, Dr. Gary L. and Dr. Lee G. Taft; "Alternatives for Reducing the Liquid Portion of the Contents of Basin F, Rocky Mountain Arsenal"; Report #DRXTH-IS-CR-80059; November, 1980.
- Miller, Samuel P.; "Geotechnical Containment Alternatives for Industrial Waste Basin F"; Technical report GL-79-23; September, 1979.
- Thompson, Douglas W. and Paul Law; "Basin F North Boundary Area"; Volume II; Draft Report; October, 1979.
- Zebell, Robert; "Basin F North Boundary Area"; Volume I; Geotechnical Definition; 1979.

APPENDIX B: BASIN F BORING LOGS

Table Bl Descriptions of USCS Soil Groups (3)

Example of corresponding USDA soil textural description Gravel, gravelly sand	Same as above	Very gravelly sandor	Very gravelly clay loam	Sамс ав аbove	Coarse to fine sand	Loamy sand or sandy loam	Sandy clay loam or sandy clay
Typical group description Well-graded (poorly-sorted) gravels, gravel-sand mix- tures, little or no fines	Poorly-graded (well-sorted) gravels, or gravel-sand wixtures, little or no fines	Silty gravels, gravel-sand-silt mixtures	Clayey gravels, gravel-sand-clay mixtures	Well-graded (poorly-sorted) sands, gravelly sauds, little or no fines	Poorly-graded (well-sorted) sands, gravelly sands, little or no fines	Silty sands, sand-silt mixtures	Clayey sands, sand-clay mixtures (Continued)
Group Symbol	d 9	3	ວຍ	PSS .	a.	¥s)SC

Table B1 (Concluded)

Group Symbol	Typical group description	Example of corresponding USDA soil textural Jescription
H	Inorganic silts, very fine sands, clayey silts, low plasticity	Silt or silt loam
ני	Inorganic clays, low to medium plasticity, lean clays	Silty clay losm or clay losm
70	Organic silts and organic silty clays of low plasticity	Mucky silt loam
퓢	Inorganic silts, micaceous or diatomaceous fine, sandy or silty soils, elastic silts	Micaceous or diatomaceous silt
. 25	Inorganic clays or high plasticity, fat clays	Silty clay
HO	Organic clays of medium to high plasticity, organic silts	Mucky silty clay
P.	Peat and other highly organic soils	Mucks and peats

Project_	1 1 .	Sub-Liner Conti			ion Survey	(ey	201-	BORING LOG FIELD DATA	Basin F	Date 30 Jan 82
Drill Rig	1 1				6 В.Н.		Operator	Dan Taylor	Surface El	Job No. E708 El Boring No. 01
SAMPLE	DATE		STRATUM	DRIVE	VE	SAMPLE	P.E.	TYPE OF		
NUNBER	TAKEN	FROM	TO	FROM	Т0	FROM	10	SAMPLER		CLASSIFICATION AND REMARKS
	1/30	12.0						shovel		brown, moist sludge from surface to
										epage.
			0.0							
		0.0						split-spoon		M. sdy, silt, containing mica
										flakes, firm (probably reworked)
			0.7							fill, moist, dk, gray br, 2,5% 4/2
		0.7								CL-CH, clay w/minor silt & sd,
										containing mica flakes, firm-hard,
						j				matsr very dk gray hr 2.5x 3/2
									-	becoming somewhat 11ghter toward
			5		1					horrow
		-2-								CL. silty, clay mottled w/caliche.
										firm-hard, moist, dk grayish hr.
										2.5Y 4/2. caliche is it. grav
										(2.5% 7/2) rather than normal chite
			4.5							to pale vel. hor ar 6 5'
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WES JAN 72 819

EDITION OF NOV 1971 MAY BE USED

BORING LOG FIELD DATA	Project Sub-Liner Contamination Survey Sile Basin F Date 1 Feb 82 Location Rocky Mountain Arsenal	I. & R.H. Operator Dan Taylor Surface El		FROM TO FROM TO FROM TO SAMPLER	1.35 shovel dk, br. wet sludge, liner very	soft with locally emulsified	pockets, impossible to remove over	0.0 burden W/O disturbing liner.	0.0 split-spoon ML, sandy-clayey silt, w/mica	flakes & minor sd, firm, very moist	very dk gray br. in upper 0.2',	2.5Y 3/2; below 0.2' spl is olive	br. 2.3X 4/4, gradually changing to	1r. olive br. (2,5% 5/4) w/depth	1.7 (possibly reworked fill)				FINITION OF NAVIEW OF THE CO. T. C
	Contamin tain Ars	nspector T	TUN				-	0.0							17				
	Liner (y Mount	 	STRA	FROM	1.35				0.0										
	Sub-	504	DATE	TAKEN	2/1														010
	Project. Location	Drill Rig	SAMPLE	MUNIBER															WEC FORM

	Sin P Date 1 Feb 82 Job No. E708 Surface El Boring No. 02		CLASSIFICATION AND REMARKS	CL, silty clay w/minor sd and mica	caliche veinlets, lt. olive br	(2.5v 5/4) gradually changing to	yel, br. (10YR 5/6) with depth,	CL, silty clay, calcareous w/minor	sd, soft very moist, very pale br.	10YR 7/4	Ch. Stley clay w/minor sd. w/mica	flakes, soft-firm, very moist	yel br. 10YR 5/4 bgt. at 4.5			-	
BORING LOG FIELD DATA	Sile Basin P Dan Taylor Surfa	TVBC OF	SAMPLER	split-spoon													
81.	Operator	SAMPLE	TO														
		SAM	FRCM														
	Sub-Liner Contamination Survey Rocky Mountain Arsenal Inspector T.M & R.H.	DRIVE	10														
	Arsena X T.M	ď	FROM														
	Contaminat ntain Arsen Inspector T.M	STRATUM	10				3.3			4.3			4.5				
	cy Mou	STR	FROM	1.7				3.3		:	4.3						
	1 1 1	DATE	TAKEN	2/1						•							
	Project Location Drill Rig	SAMPLE	NUMBER														

Sheet 2

EDITION OF NOV 1971 MAY BE USED

WES JAN 74 819

							<u> </u>	BORING LOG FIELD DATA		
Project 1 acation	1 .	Sub-Liner Contaminat Rocky Mountain Arsen	Contan	dnatio	tion Survey	ka,		Site_B	Site Basin F	Date 30 Jan 82 Job No. E708
Drill Rig	1 1		Inspector T.M	r T.M.	. & R.H.	1 1	serator_	Operator Dan Taylor	Surface El	
SAMPLE	DATE	STR	STRATUM	DRIVE	IVE	SAM	SAMPLE	TYPE OF		SHEET ATTENDED BELLADING
NUMBER		FROM	10	FROM	10	FROM	10	SAMPLER		CLASSIFICATION AND REMAINS
	1/30	1.55						shovel		1t. br. sandy sludge to 0.2', br
										wet sludge to liner, mod. seepage
			0.0							Ifner in good shape.
		0.0						split-spoon		ML-SM, sdy, silt-silty very fine
										sand containing mica flakes, firm
										moist-slightly moist. (Probably
										reworked fill), dk. gray br.
								eralmer um umade er tre alleurse allegangles a		2.5Y 4/2 4n top 0.3' changing to
			1.7							11t. 014xx br. in bottom (2,5x 5/4).
		1.7								CL, silty clay, w/minor sd.
										containing mica flakes, occ. caliche
										inclus, firm-hard, moist dk, yel.
			2.4							br. 10YR 4/6.
			, , , , , , , , , , , , , , , , , , , ,		++- <u>-</u>					
										•

WES JAN 74 819 EDITION OF NOV 1871 MAY BE USED

							ш,	BORING LOG FIELD DATA		
Project Location		Sub-Liner Contaminari Rocky Mountain Arsena	Contar	ninati Arsena	lon Survey	vey		Site	Site Basin F	Date 30 Jan 82
Orill Rig	5		Inspector T.M.	T.H.	6 R.H.		Operator Dan	Dan Taylor	Surface El	El Boring No. 11
SAMPLE		STR,	STRATUM	O	DRIVE	SAN	SAMPLE	TYPE OF		
NUMBER	TAKEN	FROM	10	FROM	T0	FROM	10	SAMPLER		CLASSIFICATION AND REMARKS
		2.4						split-spoon		CL, silty clay, w/minor sd & occ.
										small pea grav. contains mica
										flakes, firm, moist, very pale br.
			4.5							to yel, 10YR 7/4-7/6 bot, at 4.5
									-	
	:	:								
										-
WES JAN 74	7, 819	EDITIO	EDITION OF NOV 1971 M.	/ 1971 MA	AY BE USED	٥				Sheet 2 of 2 Sheets

							سا –	BORING LOG FIELD DATA		į	
Project	1	-Liner	Sub-Liner Contaminati	minati	on Survey	vey		Site	Site Basin F	Di-	Date 29 Jan 82
Location		ky Mou	Rocky Mountain Arsenal	Arsena							Job No. E708
Orill Rig	Pig .		Inspecti	inspector T.M.	& R.H.		perator]	Operator Dan Taylor	ms	Surface El	
SALIPLE			STRATUM	ď	DRIVE	SAM	SAMPLE	TYPE OF			
NUMBER	TAKEN	FROM	T0	FROM	10	FROM	TO	SAMPLER			CLASSIFICATION AND RELIARKS
	1/29	1.25						shovel			lt. br. sandy to 0.7', black wet
										- 	sludge to liner, moderate seepage,
			0.0								liner in good shape
		0.0						split-spoon		744	ML, clayer, sandy, silt containing
										s	mica flakes, firm, moist, dk. yel.
			2.1								br. 10YR 4/4
		2.1								J	CL, silty clay, w/minor sd.
										9	containing mica flakes, hard, moist
										_ _ = 	dk. yel. br. 1078 6/4, upperous
			4.0							υ	small caliche veinlets & inclus.
		4.0								<u>ی</u>	CL, silty clay, soft-firm
										, 0	calcareous very nale by
			4.5								10VP 7// 15 50 1 5
										-	
										-	

WES JAM 14 819 EDITION OF NOV 1971 MAY BE USED

_ Sheets

	In F Date 27 Jan 82	Surface El Boring No. 13		CLASSIFICATION AND REMARKS	brown sandy over burden mofer no	active of the form of the control	uver enefula	rough, (probably due to poor prep.	of base during construction),	3/8" plastic asphalt at rop,	SM, very silty fine sand soft	(slightly_ta_non=cohesive)_very	molst, yel. br. 10xR.5/4.to.10xR.	5/6, contains mica flakes.	CL, silty clay w/minor sand, firm,	moist, numerous small caliche	vainlets and inclusions in bottom	ft. (color as above), contains mica	flakes, bot, at 4,5'	
BORING LOG FIELD DATA	Site Basin P	Operator Dan Taylor	TYPE OF	SAMPLER	shovel					split-spoon										
811		perator I	SAMPLE	10														,	٠	
	хех		SAM	FROM																
	rion Survey	6 R.H.	DRIVE	то																
·		Inspector T.M.	ă	FROM																
	Conta	Inspecto	STRATUM	10					0.0					2.8					4.5	
	Sub-Liner Contaminal Rocky Mountain Arser		STR	FROW	0.65					0.0					2.8					
		5	DATE	TAKEN	1/27															
	Project _ Location	Drill Rig	SAMPLE	NUMBER																

EDITION OF NOV 1971 MAY DE USED WES JAH 74 819

B10

Sheets

	Date 27 Jan 82	Joh No. E708	Boring No. 14		CLASSIFICATION AND REMARKS	hypem candy to 0.21 than black
			Surface El			hy.05
	asin F		Surfa			<u> </u>
BORING LOG FIELD DATA	Site Basin F	•	Operator Dan Taylor	TYPE OF	SAMPLER	chovel
81			perator	SAMPLE	10	
	œy			SAM	TO FROM	
	n Sur	ina]	T.H. & R.H.	VE		
	tnatio	reenal	T.H.	DRIVE	FROW	
	Contai	Location Rocky Mountain Argenal	Inspector	STRATUM	10	
	Liner	y Mour			FR944 TO	1.5
	Project Sub-Liner Contamination Survey	Rock		DATE	TAKEN	1/27
	Project.	Location	Dritt Rig	SAMPLE	NUMBER TAKEN	

WES JAM 819 EQITION OF HOV 1971 MAY BE USED

-Shocki

	Date 27 Jan 82 Job No. E708	e El	CLASSEL LATERAL AND DEMADYS	CLASSITICATION AND REMARKS	SH, silty, very fine sand, w/occ,	small grav, at base, Soft, (non-	cohesive), moist-very moist, yel.	br. 10YR 5/4,	Cl. silty-sdy clay, mottled w/	caliche, firm-very firm, moist, dk.	yel. br. 10YR 4/6 bor. at 4.5"						٠	
	sin F	_ Surface El					′				l							
BORING LOG FIELD DATA	Sile Basin F	Operator Dan Taylor	TYPE OF	SAMPLER	split-spoon													
B		erator <u>D</u>	, CE	10														
	ey	o	SAMPLE	FROM														
	on Survey	& R.H.	DRIVE	10														
	ination Irsenal	Inspector T.N. & R.H.	DR	FRUA														
	Contain A	Inspecto	STRATUM	10				2.9			4.5		-	:				
	Sub-Liner Contaminat Rocky Mountain Arsen		STR	FROM	2.5				2.9									
	_	6	DATE	TAKEU	1/27													
	Project Location	Dritt Rig.	SAMPLE	NUAMER														

Sheets

_of 2

Spect 2

WES JAN 14 819 EDITION OF HOV 1971 MAY BE USED

					·		6 01 -	BORING LOG FIELD DATA			
Project Location	_	-Liner	Sub-Liner Contaminat Rocky Mountain Arsen		ion Survey al	yey		Sile Basin F	Basin	(e.	Date 27 Jan 82 Job No. E708
Drill Rig	1 1		Inspector T. H	T.H.	I. 6 R.H.		perator	Operator Dan Taylor	S	Surface El	
SAMPLE	DATE	STR	STRATUM	DA	DRIVE	SAM	SAMPLE	TYPE OF			
NUMBER	TAKEN	FROM	10	FROM	10	FROM	T0	SAMPLER			CLASSIFICATION AND REMARKS
		1.2						shovel			over burden tan Wsoil-like
											texture, moist, no-seepage, one-
											hole (1"x2") in liner, (probably
											caused by construction mishap),
											otherwise liner in good shape.
			0.0								1/2" plastic asphalt atp.
-		0.0						split-spoon			SM-ML, very fine silty sandy-sdy
											silt, firm, yel. br. 10YR 5/4-5/6.
				ļ							to ju sujudoj "Tajaŭ Kjov-jajajon
			1.0								flakes.
		1.0									SM, very silty fine sand, soft,
								·			(slightly cohesive) maist-very
					.]						moist, yel. br. 10YR 5/4-5/6,
			4.5								contains mica flakes, bot, at 4.5'
					·						
										·	
WES JAH 74	618	EDITIO	N OF HCY	/ 1971 WA	EDITION OF HCV 1971 MAY BE USED	۵					Sheet 1 of 1 Sheets

BORING LOG FIELD DATA

Project Sub	-Liner	Sub-Liner Contamination	ainat ic	on Survey	'ey		Site Basin	in F	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_!	ky Mou	ntain !	\rsen.ı]						1
Dritt Riy		Inspector T.M.		6 R.H.		perator 1	Operator Dan Taylor	Surface El	
SAMPLE DATE	STR	STRATUM	DRIVE	IVE	SAM	SAMPLE	TYPE OF		
NUMBER TAKEN	FROM	7.0	FROM	10	FROM	10	SAMPLER		CLASSIFICATION AND REJARKS
1/25	1.25						shovel		1t. br. crust, bk, wet sludge to
		0.0	•	•					shape 1/4" plastic asphalt at top.
1/26	0.0						split-spoon		CL-CM, silty clay-clayey silt, firm
								1	minor fine sand, moist very dk.
									Bray brown, 2,5Y 3/2 (lighter with
									depth), changing to dk, gray brown
		1.7							(2,5X 4/2 in bottom)
	11.7		Ì						Ch.M. (as aboxe) but color changes.
									to yellow br. 10YR 5/4 becomes more
								3	silty widerth caliche nodules in
		4.4							barrow 0.5" har at 4.4"
									-

WES JAILTA 819 EDITION OF NOV 1971 MAY DE USED

Sheet. ____ of ___ Sheets

								BORING LOG FIELD DATA		
Project Location] }	Liner ky Mou	Conta	minari Arsena	g .			Site	Sile Basin F	Date 26 Jan 82 Job No. E708
Orill Rig	Đị.		Inspecto	Inspector T.11. &	6 R.H.		perator	Operator Dan Taylor	Surfa	Surface El Boring No. 22
SAMPLE			STRATUM	DR	DRIVE	SAL	SAMPLE	TYPE OF		
NUMBER		FROM	10	FROM	To	FROM	3.0	SAMPLER		CLASSIFICATION AND REMARKS
	1/25	1.2						shovel		br. wet sludge to 1.0', br. very
										wet sludge to liner, heavy seepage,
										liner in good shape. 1/4" plastic
			0.0							(pliable) asphalt at top.
	1/26	0.0						split-spoon		CL, clay, silty, w/minor sand, firm
										moist, very dk gray br. 2.5Y 3/2,
										gradual color change at 1.3 to dk
										Bray, br, 2.5Y 4/2, gradually
			3.7.		İ					becoming Hehier in cotor widepin.
		3.7								CL, silty clay mottled w/caliche,
			4.1							2.57 7/4, firm, moist
		4.1								Ch. silty clay, firm-hard, pale
			4.4							yellow, 2.5%-7/4-bot. at 4.4'
								The state of the s		
F06										

WES FORM 819 EDITION OF NOV 1971 MAY BE USED

Sheet 1 of 1 Sheets

WES JAN 14 819 EDITION OF NGV 1971 MAY HE USED

			٠					FIELD DATA		•
Project	-qns	Liner	Sub-Liner Contamination	inatio	n Survey	ey.		Site	Basin F	Date 29 Jan 82
Locatio	Location Rocky Mountain Arsenal	y Moun	ıtain A	rsenal				٠		Job No. E708
Drill Kay	-		inspector T.M.	T.M.	6 R.H.		Operator Dan	Dan Taylor	Surface El	
SAMPLE	DATE	STRATUM	TUM	DRIVE	VE	SAMPLE	PLE	TYPE OF		CIACCIEICATION AND DEUADKC
NUMBER	TAKEN	FROM	10	FROM	10	FROM	0.1	SANIPLER		
		- 0						shovel		rust, bk,
										to 0.2', dk. br. wet sludge to 0.7'
										bk. very wet sludge to liner, heavy
			0.0							secpage, liner in good shape
		0.0						split-spoon		CI, sinty clay, wocc. caliche
										inclusions, hard, contains mica .
							<u> </u>			flakes, dry to very slightly moist,
			1.3							lt. olive br. 2.5Y 5/4.
		1,3								MCL, clayey silt-silty clay, firm
								•		dry, minor sd, occ. caliche vein-
										lets, contains mica flakes, yel.
			2.5							br. 10yr 5/6
		2.5								CL, silty clay wimingr sd, mottled
										Wealishe, hard, dry-very slightly
										moist, yel, br. to dr. yel, br.
										10yR 5/5-4/6, contains mica flukes,
										•

WES 1...... 819 EDITION OF NOV 1874 MAY DE USED

								BORING LOG FIELD DATA		
Project S.	ucky	Moun	Contai	Sub-Liner Contamination Rocky Mountain Arsenal	on Survey 1	yey.		Site	Site Basin F	Date 28 Jan 82
Drill Rig			Inspecto	Inspector T. M.	δ R.II.		Operator Dan	Dan Tayior	Surfac	Surface El. Boring No. 32
SAMPLE DATE	LE L	STRATUM	TUAN	Ž	DRIVE	SA	SAMPLE	TYPE OF		
		FROM	10	FRUM	10	FROM	0.0	SAMPLER		CLASSIFICATION AND REMARKS
1/28		9.1						shovel		br. wet sludge to 6.2', then dk
										br. grading grad. to 1t. br. wet
		Ì								sludge at 1.0', bk, very wet sludge
	<u> </u>									to liner, heavy seepage, liner in
	<u> </u>		0.0							good shape,
	01	0.0						split-spoon		Cl., silty clay, hard, moist, very
	+									dt. gray br. 2.5y 3/2 becomes
	<u> </u>				İ					lighter and Sandy in bor 0.3' (dk.
		,	9-1							Bray hr.) 2.5x 9/2.
	1	q								Ci. silty sandy clay, hard,
	<u> </u>									slightly_moist,_numerous_caliche
	1		7							weinlets dk yel br. 10xR 4/4.
	7	7.7								Ci. silty-sdy clay, hrrd slightly,
		+								moist, mottled w/caliche, hard, dr,
	-	+	4.5							yel. br. 10YR 4/4. bot. at 4.5'
	1									
	_									

WES JAH 34 BIP EDITION OF NOV 1971 MAY BE USED

__ Sheets

	1 Date 30 Jan 82	Surface El Boring No. 50		CLASSIFICATION AND REMARKS	green crust, bk wet sludge to 0.2'	br wet sludge to 0.7', bk very wer	sludge to liner, mod, scepage.	liner in good shape.	SN-NI. silty fine sand=sandy silt,	soft, non to alightly cohesive,	(probably reworked fill) slightly	modst, contains mica flakes, dk	Eng. br. 2.5v 4/2 in top 0.2-0.3'	dk yel br. (10YR 4/6), below 0.3'	gradually changing to yel, hr.	10YK 5/4 with depth					
BURING LOG FIELD DATA	Sile Basin F	Operator Dan Taylor	TYPE OF	SAMPLER	shovel				split-spoon												
BIT		Operator D	SAMPLE	M TO																	
	vey.		L'	FROM						_							_				
	l Sul	5 R.H.	DRIVE	10					İ						j						
	trsena	T.N.	Da	FRCAL																	
	Contar	Inspector T. N.	TUM	TO				0.0								2.3					
	Sub-Liner Contamination Survey Rocky Mountain Arsenal	7	STRATUM	FROM	1.7		j		0.0			:		1				<u> </u>		<u> </u>	
	Sub-I Rocky		DATE	TAKEN	1/30						-		'								
	Project Location	Drill Rig.		HUAWIL R			+				:	i	:								

_ Sheets

Spect 1

WES JAN 14 819 EDITION OF HOV IN MAY BE ULED

			. •				81 -	BORING LOG FIELD DATA		
Project	_	Sub-Liner Contamination Survey Rocky Mountain Arsenal	Contam	inatio rsena	on Surv			Site	Site Basin F	Date 30 Jan 82 Job No. R708
Drill Rig	9		Inspector T. M	T.H.	6 R.H.	0	perator 1	Operator Dan Taylor	Surface El	
SAMPLE	-		STRATUM	DR	DRIVE	SAM	SAMPLE	TYPE OF		SHO 2H 30 UNA MOLEACH STORY
NUMBER	TAKEN	FROM	10	FROM	TO	FROM	10	SAMPLER		
		2.3						splft-spaan.		Cf. silty clay w/minor sd & occ.
								•		Small Pea grav., occ. caliche
									İ	velulets (increasing in bot. 0.5).
										firm hard rotat, yel, br. 10x18.
			4.5							5/6, contains mica flakes, bor. 4.5
	:	1								
	- Maraki									
				į						

WES JAN 819 EDITION OF NOV 1971 MAY HE USED

							601	BORING LOG FIELD DATA		
ProjectLocation	Sub-	Liner y Mour	Sub-Liner Contamina Rocky Mountain Arse		tion Survey			Site	Sile Basin F	Date 28 Jan 82 Job No. E708
Drill Rig_			Inspector T.1	о Т.Н.	6 R.H.		perator	Operator Dan Taylor	Surfa	Surface El Boring No. 60
	DATE	STR	STRATUM	Ξ	1:KIVE	SAM	SAMPLE	TYPE OF		
NAMBER T	TAKEN	FROM	10	FROM	10	FROM	70	SAMPLER		CLASSIFICATION AND REMARKS
	1/28	1.8						shovel		br., moist, sandy sludge to 1.0',
										bk, wet sludge to liner, mod.
			0.0	j						se page, Ther in good shape,
	:	0.0		j				noods=111ds	1	Mi, sindy-clayey silt, firm
				.						contains mica flakes, dry to
	ĺ			_						s) ight tx matst near top (probably.
	Ì								<u> </u>	rewarked & compacted fill) dk br.
									İ	10712. 3/3_in_tip_0.2!brto_dk
			=							brbulow.0.2'
		+								Cl. M., silty.claysclaycy.silt,_firm
										dry_numerous.caliche_veinleta
			3.1							yel-br-10YR-5/4-contains-mica-
		3.1								SM-ML, silty very fine sand to
										Sandy silt, non-cohesive, contains
<u> </u>										mica flakes, dry dk. yel. br.,
			4.0							10YR 4/4.

Sheet.__1_of_2___Sheets

WES JAH 819 COLTION OF HOV 1971 HAY BE USED

322

Sheets

EDITION OF HOY 1971 MAY BE ULED

WES JAN 74 819

B24

APPENDIX C: USATHAMA MEMORANDUM ON SOIL LEACHING PROTOCOLS

DRXTH S

MEMORANDUM TO: ALL RMA IR PROGRAM PARTICIPANTS INVOLVED IN SOIL CONTAMINATION DETERMINATIONS

SUBJECT: Protocol to Determine Migration Potential of Contaminated Soils (Solid Waste Leaching Procedure)

1. Objective: To establish program policy for the determination of migration potential of contaminated soils at RMA.

2. Discussion:

- a. Problem definition studies performed to date at RMA have been oriented to (1) define the extent of groundwater pollution beneath the Arsenal and (2) locate its primary sources. Through guidance from the State of Colorado, the "action level" for these studies have been set to be drinking water criteria established by EPA or the State, whichever is more stringent. Development of Government control strategies for the migration pathways is initiated when groundwater contamination reaches the aforementioned "action level."
- b. Difficulty arises when one examines the source areas to determine the extent (area and volume) of contaminated material that should be controlled. Historical records are often imprecise. Groundwater surveys typically are not detailed enough to locate accurately the point of pollutant introduction into the aquifer. Lastly, due to the lack of corresponding "action levels" for pollutants in soil, any previous soil sampling has been only exploratory at best.
- c. Various regulatory agencies have wrestled with the preceeding lack of soil criteria for several years. To date no state or federal guidance has been promulgated addressing this specific issue. The closest regulatory attempt has been the batch leaching acceptability protocol (EP Toxicity Test) for hazardous wastes in the implementation guidelines to the Resource Conservation Recovery Act (inclosures 1 and 2). Discussions with EPA reveal that the EP toxicity test may be the closest soil contamination criteria industry and Government will receive for some time. Severe research and development funding cut backs in EPA has delayed ongoing research in this area.
- d. Formulation of FY82 program plans for the RMA IR project has resulted in the immediate need to apply a protocol to investigate if select contaminated soils on the Arsenal represent a migration source. Similar requirements at other USATHAMA IR sites necessitated a rapid review of current regulatory statutes to establish interim USATHAMA policy. The USATHAMA Technology Division performed the assessment with support from Field Systems, Industrial Systems and Environmental/Safety Divisions. Inclosure 3 represents their guidance on the subject issue until such time regulatory agencies promulgate appropriate criteria.

18 Movember 1981 DRXTH! S Protocol to Determine Higration Potential of Contaminated Soils (Solid SUBJEL.. Waste Leaching Procedure)

e. To place the inclosed Battelle/EPA soil leaching protocol into its proper frame of reference on the RMA IR project, the following categorization of their use is provided: available extraction techniques and

TABLE 1

__:

....

USE EXTRACTION TECHNIQUE Laboratory analytical technique to: 1. Solvent Extraction qualitatively determine types of organics within a solid waste* Protocol to determine if a waste is EP Toxicity hazardous under RCRA. Alternately, a technique to assess whether a treated RCRA waste still is considered hazardous. Assumes disposal in a municipal landfill. 3. Solid Waste* Leaching Procedure Protocol to determine whether a solid media has the ability to leach a con-(SWLP) taminant at a level requiring control strategies to be employed. Assumes waste material remains contained under in-situ conditions.

*MOTE: "Solid Waste" refers to a solid media containing or having a potential to contain process wastes from Arsenal operations.

f. Three tasks within the FY82 RNA IR project are anticipated to require use of a solid extraction technique. A listing of those tasks keyed against the probable extraction protocol follows:

TABLE 2

TASK	SOLVENT EXTRACTION	EP TOXICITY	SWLP
Basin F Soil Contamination Survey	x		X
Basin F Solidification Study		X	. x
Potential Source Area Definition	X		X

G. The rationale used by EPA for selecting a 100 fold attenuation factor, between the point at which the leachate leaves the waste media and the point of human or environmental exposure, is well documented at inclosure 1. EPA recognized that choosing an attenuation factor which reasonably represents the amount of attenuation likely to occur in the real world was one of the most difficult

DRXTH I 'S SYBJE(I) Protocol to Determine Migration Potential of Contaminated Soils (Solid Waste Leaching Procedure)

problems faced in formulating any extraction protocol. Specific site parameters greatly control the degree of natural forces acting on the leachate. All things considered, however, EPA decided, pending the completion of further studies, to adopt an "across-the-board" attenuation factor of 100.

- h. USATHAMA concurs with EPA's approach of adopting an interim attenuation factor of 100 until RMA site specific data can be reviewed to establish a more accurate factor. Upon updating of the general attenuation factor, the State of Colorado will be approached for concurrence. As long as the leaching procedure itself does not change, a re-assessment of the leachate data can always be undertaken at a later time with the new attenuation factor. The above 100 fold factor would be applied against all drinking water standards now in effect (inclosure 4).
- i. Modification to the SWLP to focus on-site specific conditions has been permitted by allowing tayloring of the leaching medium pH and number of sequential extractions.
- (1) pH of the leaching medium may be altered from in-situ conditions if it is felt that anomallus natural phenomena (e.g., acid rains) would be encountered at the site. For the case of RHA, this phenomena is a real occurrence and should be incorporated into the leaching procedure for near surface soils.
- (2) Sequential extraction steps simulate repeated perculation events at a site. Its use at a recent contamination spill/landfill site would be a valuable tool in providing a qualitative estimate of the degree (increasing, decreasing, or steady state) of future leaching. However, its use at a historic site would appear to be marginal. Each task manager should consider the usefulness and cost effectiveness of sequential extractions within their tasks.
- j. If there are any questions regarding this policy during implementation, please contact the undersigned at ext 2041.

4 Incl

...

DONALD L. CAMPRELL Senior Project Engineer

legislative history of RCRA is replete with indications that such groundwater contamination was one of Congress' primary areas of concern. In the proposed regulation. EPA addressed this problem by developing a test procedure called the Extraction Procedure (EP) designed to identify wastes likely to leach hazardous concentrations of particular toxic constituents into the groundwater under conditions of improper management. Under this procedure, constituents were extracted from the waste in a manner designed to simulate the leaching action that occurs in landfills. This extract was then analyzed to determine whether it possessed any of the toxic contaminants identified in the National Interim Primary Drinking Water Standards (NIPDWS). If the extract contained any of the contaminants in concentrations 100 times greater than that specified in the National Interim Primary Drinking Water Standards, the waste was 16.75 considered to be hazardous.

Like other test procedures employed to identify hazardous characteristics, the EP was intended to serve as a quick test for identifying westes which are capable. of posing a substantial present or -----potential hazard when improperly managed. Consequently, in devising the test. EPA necessarily had to make certain assumptions about the improper management to which toxic wastes capable of contaminating groundwater are likely to be subjected. In making such assumptions, EPA believed it important to employ a reasonably conservative mismanagement scenario-in view of the statutory mandate to protect human health and the environment, the broad statutory definition of hazardous waste and also because the phenomenon of long term \cdot leaching is only incompletely understood. On the other hand, EPA considered it important not to utilize a wholly implausible mismanagement scenario, since by doing so it would end up regulating as hazardous those wastes which were quite unlikely to ever cause a problem.

The result of these deliberations was a decision to model the EP upon a mismanagement scenario for toxic wastes which constitutes a prevalent form of improper management—namely, the co-disposal of toxic wastes in an actively decomposing municipal landfill which overlies a groundwater aquifer. EPA realized in making its co-disposal assumption that actively decomposing municipal waste landfills generate more aggressive leachate media than other landfills and thus, that its assumption was a relatively conservative one, it

E. Section 281.24 (Characteristic of EP Toxicity)

There is persuasive evidence that the contamination of groundwater through the leaching of waste contaminants from land disposed wastes is one of the most prevalent pathways by which toxic waste constituents migrate to the environment. EPA's damage files contain numerous incidents of groundwater pollution resulting from the indiscriminate dumping and improper landfilling of wastes. Additionally, the

NCL I

nevertheless believed the co-disposal assumption to be reasonable, first, because wastes are customarily landfilled, second, because most categories of waste have the potential to be disposed of in municipal waste landfills, third, because the predicted degree of contaminant concentration in leachate could occur with respect to wastes which are not likely to be disposed of in municipal landfills and fourth, because Congress expressed particular concern about the disposal of toxic wastes in municipal landfills. EPA also realized its assumption that the landfill overlies a groundwater aquifer was a relatively conservative one. It believed, however, that this assumption was consistent with its concern for the dispusal of wastes in environmentally sensitive areas and with the fact that a groundwater body, once contaminated. may remain contaminated for a number of years. Furthermore, it believed this assumption to be somewhat mitigated by its further assumption that there would be some attenuation in the concentration of toxicants in the leachate between the point the leachate leaves the disposal site and the point the toxicants reach environmenu. receptors.

Taking these assumptions as its framework. EPA developed the EP test to simulate the physical processes which would occur in an actual landfill characterized by these assumptions. To simulate the acidic leaching medium which occurs in actively decomposing municipal landfills, EPA chose to employ an acetic acid leaching medium with a pH of 5.0 (±0.2). To simulate the leaching process. EPA specified a procedure requiring mixing of the solid component of the waste with the acidic leaching medium for a period of 24 hours. To duplicate the attenuation in concentration expected to occur between the point of leachate generation and the point of human or environmental exposure. EPA applied a dilution factor of 10% the concentration of toxic constituents observed in the test extract

EPA was convinced that the proposed EP represented a valid and acceptable test for identifying wastes likely to leach toxic constituents into groundwater. Because, however, this test was innovative in character and reflected a fair amount of groundbreaking inquiry, it drew the greatest response from the public of all the test protocols utilized in identifying the characteristics. The most important of these comments are discussed below.

A number of commenters expressed disagreement with EPA's proposed use

of a 10-fold dilution factor to calculate the attenuation in toxicant concentration expected to occur between the point at which the leachate leaves the waste and the point of human or environmental exposure. Some commenters thought that the 10-fold dilution factor was too liberal and that no dilution factor would be more appropriate. The majority felt that the 10-fold dilution factor was too conservative and that a higher dilution factor would be more appropriate.

Choosing an attentuation factor which reasonably represents the amount of attenuation likely to occur in the real world was one of the most difficult problems EPA faced in formulating the EP-a problem which reflects in microcosm many of the difficulties of modeling complex physical processes with a short term test. As leachate migrates vertically from the landfill site towards the groundwater strata. a number of attenuating processes can occur-including adsorption, absorption, ion exchange, filtration, and dilution. When the leachate enters the groundwater zone its movement changes from vertical to horizontal and it will tend to form a siug or plume of contaminated water rather than mix generally with the groundwater flow. This plume of contaminants may experience some dilution, depending on the local geology, the groundwater flow. and the nature of the contaminants. Once the plume of contaminated water is drawn into a pumping well, some further dilution tends to take place. depending upon the amount of water withdrawn and the rate at which it is withdrawn. Unfortunately, all these attenuation mechanisms are dependent upon site specific conditions. While some sites may exhibit attenuation of 500-fold, others will exhibit very little attenuation at all. Moreover over time, a site that originally exhibits 500-fold attenuation may become so saturated. that the attenuation mechanisms no longer work and the site begins to flush at the same rate at which it is charged.

In order to formulate a reasonable dilution factor. EPA assumed in the proposed regulations that leachate from the landfill passed unattenuated through the soil underlying the landfill to the groundwater zone and that drinking water wells were situated 500 feet down gradient from the landfill site. Relying on projections from a mathematical model which incorporated these assumptions and on empirical data from field analyses. EPA concluded that a dilution factor of 10 was a conservative, but reasonable, figure.

EPA has had an opportunity to carefully re-evaluate its original choice of a ditution factor and is now of the opinion that the 10-fold dilution factor was inappropriate. A number of considerations have prompted it to come to this conclusion. In the first place, EPA is concerned that, while the dilution factor plays a critically important role in determining the scope of coverage of the EP, there is relatively little empirical data upon which to base such an attenuation factor. It is consequently somewhat troubled by its assumption that the soil underlying the landfill is a delay mechanism only and that there is no attenuation in the concentration of toxic contaminants between the point of actual leachate generation and arrival at the groundwater aquifer. Second. in view of this uncertainty. EPA attaches some importance to the fact that there is no variance or "delisting" procedure for wastes which fail the EP. This absence of a variance procedure, while perfectly permissible, tends to magnify the consequences of a wastes being anomalously brought into the system by the EP. Third, EPA believes the EP to be a somewhat less precise instrument than the listing mechanism for determining hazard, inasmuch as the EP fails to take. into account factors such as the beautiful. concentration of toxicants in the waste itself and the quantity of waste generated which could have a bearing on the hazardousness of the waste. EPA consequently prefers to entrust determinations of marginal hazard to the listing mechanism rather than to the EP.

On the basis of these considerations. EPA has decided, pending the completion of jurther studies, to alter the proposed dilution factor by adopting an attenuation factor of 100. EPA is adopting a 100-fold attenuation factor because it is confident that anything which fails the EP at this factor has the potential to present a substantial hazard regardless of the attentuation mechanisms at play. If forthcoming studies demonstrate that another attenuation factor is more appropriate EPA will adjust the dilution factor accordingly.

EPA does not intend this alteration in the dilution factor to constitute what may be perceived as an untoward retaxation of the EP. It is simply electing to exercise a degree of caution in the face of the lack of empirical substantiation for its EP leaching test to ensure that the EP only captures wastes which are certain to present a substantial hazard. Since this alteration of the attenuation factor is based as much on EPA's desire to engage in.

100 - 100 BY 10 BY 10 BY 10 BY

cautionary rulemaking as on an environmental re-evaluation of the attenuative processes which influence concentrations in leachate. EPA has listed and intends to continue to list wastes which have extract concentrations of less than 100-times drinking water standards. This listing will to a significant degree compensate for the alteration in the attenuation factor and will prevent the overall coverage of the Subtitle C regulations from being measurably reduced.

A number of commenters argued that EPA improperly based the EP on a mismanagement scenario which assumed co-disposal in the acidic environment of a municipal waste landfill. These commenters generally argued that the co-disposal assumption is inapplicable to numerous classes of waste which are never co-disposed with municipal wastes and which do not leach at the aggressive rates characteristic of co-disposal situations. These commenters suggested that EPA employ an alternative leachate medium. such as distilled water, for those wastes which are unlikely to be co-disposed with municipal wastes.

EPA disagrees with these commenters. EPA believes that the level of leachate concentration predicted by the EP is reasonably in keeping with the concentrations which could realistically occur in most waste management situations and that employment of an acidic leaching medium is therefore appropriate. Most wastes, even those which are unlikely to be disposed of in a municipal landfill, are likely to come into contact with some form of acidic leaching media during their management histories or could otherwise encounter environments which could cause them to leach comparable levels of toxic constitutents. Furthermore, inasmuch as the phenomenon of long term leaching is not well understood and there is no consensus within the scientific community on a short term leaching test. EPA believes it has the power to employ a leaching model which fails to take into account the physical processes affecting particular generators even if this model errs on the side of caution. See, Ethyl Corp. v. EPA. 541 F.2d 1, 24-29 (D.C. Cir. 1976 en banct: Hercules. Inc. v. EPA, 598 F.2d 91, 104-106 (D.C. Cir. 1978).

In any event, the change to an attenuation factor of 100 lays to rest the concerns of those who argued that the acidic leaching medium was too aggressive to apply to them. EPA is quite convinced that any waste which fails the EP at the 100-times standard presents the potential for substantial hazard if improperly managed no matter

what leaching media it is actually exposed to.

A number of commenters argued that the EP is not sufficiently reproducible for use in defining hazardous waste. Some commenters, basing their argument on studies which have been conducted on the reproducibility of the EP, argued that these studies demonstrate an unacceptable variability in the results obtained by the EP. Other commenters, who did not base their arguments on these studies, argued simply that EPA has not shown the EP to be reproducible and therefore may not appropriately employ the EP in a regulatory framework.

EPA disagrees. Sensitive throughout the process of developing the EP to the issue of ensuring reproducibility. EPA commissioned a number of studies to evaluate the EP, including a study by the NUS Corporation, a study by the American Electroplaters' Society, and an ongoing study being conducted by the Oak Ridge National Laboratory. In addition, a study commissioned by the Electric Power Research Institute (EPRI) has been completed. None of these studies present enough data to draw any hard and fast conclusions. However, data from the EPRI report—the only report which was able to separate out the reproducibility of the EP from the reproducibility of the analytical procedures-suggests that the reproducibility of the EP itself is of the same order of magnitude as the analytical procedures used to analyze the toxic constituents in the extract Since these analytical procedures have proven to be widely acceptable to private industry. EPA believes that the EP should also prove acceptable.

EPA concedes that the preliminary data indicate some variability in the results obtained by the EP. This. however, is true of all analytical procedures and test methods, especially those which are novel in character. Furthermore, variability can be easily corrected by running further replicates of the test to achieve greater certainty in the results. To accommodate any problems with variability, EPA intends to provide generators with guidance on the number of extractions which they can perform if they want to ensure confidence in the result. In addition, EPA is engaged in research studies which will enable it to further isolate and get a handle on the causes of this

A number of commenters argued that extract from the EP should be tested for toxic contaminants other than those specified in the National Interim Primary Orinking Water Standards.

EPA originally intended the extraction procedure to identify toxic contaminants other than those specified in the National Interim Primary Drinking Water Standards. EPA has been unable to do this, however, because no other chronic exposure threshold levels relating to drinking water consumption have been established for other contaminants. This should not cause a problem, because EPA is requiating wastes containing non-drinking water standard contaminants through the listing process. EPA will reassess its position on this issue, when thresholds are developed for additional contaminants or when the Clean Water Act Water Quality Criteria are adopted in final form.

The proposed EP required generators to separate the liquid and solid portions of their waste as the first step of the procedure, based on the assumption that the liquid portion of the waste would flow out of the landfill independent of any leaching action. Generators were then required to mix the separated solid portion with the acidic leaching medium and, after a further separation, combine the resulting extract with the originally separated liquid portion for analysis. EPA gave generators the option of using either centrifugation or filtration to perform the initial solid-liquid separation and to perform the subsequent separation of solid from leaching solution. However, information obtained since publication of the proposed regulation indicates that use of centrifugation alone is not as efficient as filtration and can lead to carryover of particles larger than 0.45 um. Since a filter the size of 0.45 um was originally selected because particles larger than 0.45 um are expected to be filtered out by the soil prior to reaching the groundwater. EPA has revised the EP to require filtration of both the liquid portion and the extract prior to analysis.

A number of commenters said they encountered severe operational problems when performing the EP on liquids containing very small percentages of solids. To accommodate this problem, EPA is amending the proposed regulation so generators need not perform the EP on liquids containing less than 0.5% solids. Instead, the liquid itself, after filtration, should be considered the extract and directly analyzed for its toxic constituents.

Appendix II—EP Toxicity Test Procedure

A. Extraction Procedure (EP)

1. A representative sample of the waste to be tested (minimum size 100 grams) should be obtained using the methods specified in Appendix I or any other methods capable of yielding a representative sample within the meaning of Part 250. [For detailed guidance on conducting the various aspects of the EP see "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods." SW-846, U.S. Environmental Protection Agency Office of Solid Waste, Washington, D.C. 20461."

2. The sample should be separated into its component liquid and solid phases using the method described in "Separation Procedure" below. If the solid residuo a obtained using this method totals less than 0.5% of the original weight of the waste, the residue can be discarded and the operator should treat the liquid phase as the extract and proceed immediately to Step

3. The solid material obtained from the Separation Procedure should be evaluated for its particle size. If the solid material has a surface area per gram of material equal to, or greater than, 3.1 cm² or passes through a 9.5 mm (0.375 inch) standard sieve, the operator should proceed to Step 4. If the surface area is smaller or the particle size larger than specified above, the solid material should be prepared for extraction by crushing, cutting or grinding the material so that it passes through a 9.5 mm (0.375 inch) sieve or, if the material is in a single piece, by subjecting the material to the "Structural Integrity Procedure" described below.

4. The solid material obtained in Step 3 should be weighed and placed in an extractor with 18 times its weight of deionized water. Do not allow the material to dry prior to weighing. For purposes of this test, an acceptable extractor is one which will impart sufficient agitation to the mixture to not only prevent stratification of the sample and extraction fluid but also insure that all sample surfaces are continuously

*Cooles may be obtained from Solid Waste Information, U.S. Environmental Protection Agency, 28 W. St. Clair Street, Cincinnati, Chio 45298.

The percent volule is determined by drying the filter pad at 81° C until it reaches constant werent and then calculating the percent suida using the following equation:

- (Late weapt) of past)

------ × 100 - >

Appendix I—Representative Sampling Method

The nethods and equipment used for sampling waste materials will vary with the form and consistency of the waste materials to be sampled. Samples collected using the sampling protocols listed below, for sampling waste with properties similar to the indicated materials, will be considered by the Agency to be representative of the waste.

Extremely viscous liquid—ASTM Standard D140-70 Crushed or powdered material—ASTM Standard D145-75 Soil or rock-like material—ASTM Standard D420-89 Soil-like material—ASTM Standard D1432-85 Fly Ash-like material—ASTM Standard D2214-76 (ASTM Standards are available from ASTM, 1916 Race St., Philadelphia, PA 19103)

Containerized liquid wastes—"COLIWASA" described in "Test Methods for the Evaluation of Solid Waste, Physical/ Chemical Methods," 1U.S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C. 20460. [Copies may be obtained from Solid Waste Information, U.S. Environmental Protection Agency, 28 W. St. Clair St., Cincinnati, Ohio 45208] Liquid waste in pits, ponds, lagoons, and similar reservoirs,—"Pond Sampler" described in "Test Methods for the Evaluation of Solid Waste Physical/

described in "Test Methods for the Evaluation of Solid Waste, Physical/ Chemical Methods."

This manual also contains additional information on application of these protocols.

*These methods are also described in "Sampiero and Sampling Procedures for Huzardous Waste Streams," EPA txt0/2-mi-418, January 1083.

·CLI

brought into contact with well mixed extraction fluid.

5. After the solid material and deionized water are placed in the extractor, the operator should begin agitation and measure the pH of the salution in the extractor. If the pH is greater than 5.0, the pH of the solution should be decreased to 5.0 ± 0.2 by adding 0.5 N acetic acid. If the pH is equal to or less than 5.0, no acetic acid should be added. The pH of the solution should be monitored, as described below, during the course of the extraction and if the pri rises above 5.2. 0.5N acetic acid should be added to bring the pH down to 5.0 ± 0.2 . However, in no event shall the aggregate amount of acid added to the solution exceed 4 ml of acid per gram of solid. The mixture should be agitated for 24 hours and maintained at 20°-10° C (68°-104° F) during this time. It is recommended that the operator monitor and adjust the pH during the course of the extraction with a device such as the Type 45-A pH Controller manufactured by Chemtrix, Inc., Hillsboro, Oregon 97123 or its equivalent, in conjunction with a metering pump and reservoir of 0.5N acetic acid. If such a system is not available, the following manual procedure shall be employed:

(a) A pH meter should be calibrated in secondance with the manufacturer's specifications.

(b) The pH of the solution should be checked and, if necessary, 0.5N acetic acid should be manually added to the extractor solution should be adjusted at 15, 30 and 60 minute intervals, moving to the next longer, interval if the pH does not have to be edjusted more than 0.5N pH units.

(c) The adjustment procedure should be

(d) If at the end of the 24-hour extraction period, the pH of the solution is not below 5.2 and the maximum amount of acid (4 ml per gram of solids) has not been added, the pH should be adjusted to 5.0 ± 0.2 and the extraction continued for an additional four hours, during which the pH should be adjusted at one hour intervals.

8. At the end of the 24 hour extraction period, deionized water should be added to the extractor in an amount determined by the following equation:

V= (20)(W) = 15(W) = A
V= mi deionized water to be added
W= weight in grams of solid charged to
extractor

A= mi of 0.5N scatic acid added during

7. The material in the extractor should be separated into its component liquid and solid phases as described under "Separation Procedure."

& The liquids resulting from Steps 2 and 7 should be combined. This

combined liquid (or the waste itself if it has less than 's percent solids, as noted in Step 2) is the extract and should be analyzed for the presence of any of the contaminants specified in Table I of \$ 251.24 using the Analytical Procedures designated below.

Separation Procedure

Equipment: A filter holder, designed for filtration media having a nominal pore size of 0.45 micrometers and capable of applying a 5.3 kg/cm² (75 psi) hydrostatic pressure to the solution being filtered snail be used. For mixtures containing nonabsorptive solids, where separation can be affected without imposing a 5.3 kg/cm² pressure differential, vacuum filters employing a 0.45 micrometers filter media can be used. (For further guidance on filtration equipment or procedures see "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods.")

Procedure: 3

(i) Following manufacturer's directions, the filter unit should be assembled with a filter bed consisting of a 0.43 micrometer filter membrane. For difficult or slow to filter mixtures a prefilter bed consisting of the following prefilters in increasing pore size (0.65 micrometer membrane, fine glass fiber prefilter, and coarse glass fiber prefilter) can be used.

(ii) The waste should be poured into the filtration unit.

(iii) The reservoir should be slowly pressurized until liquid begins to flow from the filtrate outlet at which point the pressure in the filter should be immediately lowered to 10–15 psig. Filtration should be continued until liquid flow ceases.

(iv) The pressure should be increased stepwise in 10 psi increments to 75 psig and filtration continued until flow ceases or the pressurizing gas begins to exit from the filtrate outlet.

(v) The filter unit should be depressurized, the solid material removed and weighed and then transferred to the extraction apparatus, or, in the case of final filtration prior to analysis, discarded. Do not allow the

material retained on the filter pad to dry prior to weighing.

(vi) The liquid phase should be stored at 4°C for subsequent use in Step 8.

B. Structural Integrity Procedure.

Equipment: A Structural Integrity
Tester having a 3.18 cm (1.25 in.)
diameter hammer weighing 0.33 kg (0.73 lbs.) and having a free fall of 15.24 cm (8 in.) shall be used. This device is available from Associated Design and Manufacturing Company, Alexandria.
VA., 22314, as Part No. 125, or it may be fabricated to meet the specifications shown in Figure 1.

Procedure:

1. The sample holder should be filled with the material to be tested. If the sample of waste is a large monolithic block, a portion should be cut from the block having the dimensions of a 3.3 cm (1.3 in.) diameter x 7.1 cm (2.8 in.) cylinder. For a fixated waste, samples may be cast in the form of a 3.3 cm (1.3 in.) diameter x 7.1 cm (2.8 in.) cylinder for purposes of conducting this test. In such cases, the waste may be allowed to cure for 30 days prior to further testing.

2. The sample holder should be placed into the Structural Integrity Tester, then the hammer should be raised to its maximum height and dropped. This should be repeated fifteen times.

 The material should be removed from the sample holder, weighed, and transferred to the extraction apparatus for extraction.

Analytical Procedures for Analyzing Extract Contaminants

The test methods for analyzing the extract are as follows:

(1) For arsenic, barium, cadmium, chromium, lead, mercury, selenium or silver: "Methods for Analysis of Water and Wastes," Environmental Monitoring and Support Laboratory. Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45288 (EPA-600/4-79-020, March 1979).

(2) For Endrin: Lindane:
Methoxychlor: Toxaphene: 2,4-D: 2,3.5-TP Silver: in "Methods for Benzidine.
Chlorinated Organic Compounds.
Pentachlorophenol and Pesticides in
Water and Wastewater," September
1978. U.S. Environmental Protection
Agency. Environmental Monitoring and
Support Laboratory, Cincinnati, Ohio
42568.

as standardized in "Test Methods for the Evaluation of Solid Wuste, Physical/ Chemical Methods."

For all unalyses, the method of standard addition shall be used for the quantification of species concentration.

This method is described in "Test Methods for the Evaluation of Solid Waste." (It is also described in "Methods for Analysis of Water and Wastes.")

BELLING COOK 6500-61-46

This procedure is intended to result in " eparation of the "free" liquid portion of the weste m any solid matter having a particle size >0.45um. If the sample will not filter, various other separation techniques can be used to aid in the filtrauge. As described abo we, pressure filtration is employed to speed up the filtration process. This does not after the nature of the separation. If liquid does not separate during filtration, the weste can be centrifuged. If separation occurs during contribution the liquid portion (contributed is filtered through the 0.45um filter prior to becoming mixed with the liquid portion of the weste obtained from the initial filtration. Any material that will not pass through the filter siter centriugation is andered a solid and is extracted.

US ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY INTERIM POSITION PAPER SOLID WASTE LEACHING PROCEDURE

Contamination of groundwater through the leaching of waste contaminants from land disposed wastes is one of the most prevalent pathways by which toxic waste constituents migrate to the environment. Land disposal includes both landfilling of solid and liquid wastes and lagoon storage/disposal of liquid waste. For many years the Army has disposed of explosives contaminated waste water, organic solvents, pesticides and other chemicals in unlined lagoons that have failed and are proving to be a source of groundwater contamination. This groundwater contaminating leachate arises from the liquid present in the waste and from infiltration of rainwater, surface water or groundwater into the waste.

Obtaining permission from regulatory agencies (EPA/State) to close lagoons/landfills contaminated with explosives wastes and other chemicals that are the source (potential source) of groundwater contamination is a current problem for Army installations and USATHAMA. In the absence of soil standards for these explosive wastes, their degradation products and other chemicals, the recurring question becomes "to what level (concentration) must these soils/sediments be removed and/or treated to permit closure of the lagoon/landfill (what levels of explosive/chemicals are/are not acceptable in the soil)?"

Under the Resource Conservation and Racovery Act (RCRA), EPA developed a test procedure called the Extraction Procedure (EP) designed to identify wastes likely to leach hazardous concentrations of toxic constituents into the groundwater under conditions of improper management. This improper management is based on the co-disposal of toxic wastes in an actively decomposing municipal landfill which overlies a groundwater aquifer. EPA assumes the this landfill will produce an aggressive acidic leaching media that will migrate to the groundwater.

To simulate the acidic leaching medium, EPA chose to employ an acetic acid leaching medium with pH of $5.0~(\pm~0.2)$. To simulate the leaching process, the solid component of the waste will be mixed with the acidic leaching medium for 24 hrs. To simulate the dilution expected to occur in the groundwater, a 100-fold attenuation factor is applied.

Currently, the EP is used to determine the concentration of 8 heavy metals and 6 insecticides/herbicides identified in the National Interim Primary Drinking Water Standards. If the extract contains any of the contaminants in concentrations 100 times greater than that specified in the drinking water standards, the waste is considered to be hazardous.

A small minority of the landfills and none of the lagoons at Army Installations would fit the "improper management scenario" of the EP test. Therefore, the acidic leaching medium may not be representative of the conditions at many installations.

Leaching procedures utilize either columns or batch/shake tests. Column tests require 6 months to 2 or 3 years of time for completion and a considerable cost outlay in manpower and laboratory set-up. The batch/shake test can be accomplished (several tests) in a 2 week period with a considerable savings in cost and time as compared to the column test.

A USATHAMA tesm composed of a member from Technology Division, Field Systems Division, Industrial Systems Division and Environmental and Safety Division has reviewed the EP test method, the column leaching method, and the Battelle Solid Waste Leaching Procedura (SWLP), developed under contract to EPA, to determine which procedure would best meet the requirements of problems peculiar to Army Installations. The column leaching test was ruled out by time and economic considerations. The Battelle method which permits other than an acidic leaching medium was chosen by the team because the leaching medium could be tailored to site specific needs and because the method tracks closely the EP test methods. The multiple extractions of the same sample of solid waste will not be performed as given in the Battelle method.

Since no soil standards exist for explosives and other chemicals of interest, standards/criteria for specific waste leachate constituents will have to be negotiated with the regulatory agency (EPA/State) on a site by site basis. In keeping with the philosophy and procedures of the EP test, the same 100-fold attenuation factor (groundwater dilution) will be applied (attenuation factor part of negotiations with regulatory agency), i.e. a leachate constituent concentration greater than 100 times the applicable standard/criteria will be considered hazardous.

This protocol (Battelle Method attached) will be used on an interim basis by USATHAMA and its sub-performers to determine the extent of polluted soil underlying landfills/lagoons that is or has the potential to result in contaminant migration. When EPA or state regulators pass appropriate soil criteria or superceeding soil contamination protocols, the above USATHAMA policy will be so revised.

SOLID WASTE LEACHING PROCEDURE Battelle Columbus Laboratories 1981

TABLE OF CONTENTS

				PAGE	
1.0	EXPER	IMENTAL PARAMETERS			
		Contact Area/Particle	e Size	1	
		Leachning Medium		1	
		Temperature		1	
		Method of Mixing		2 2	
		Time of Mixing	•	4 4	
	1.5	Solid to Liquid Ratio	9		
2.0	EXPE	IMENTAL	·		
	2.1	Apparatus and Materia	als	3	
		2.1.1 Extraction Ap		4	
		2.1.2 Separation Ap		4	
		2.1.3 General Labwa	re	7	
	2.2	Reagents		7	
		2.2.1 Leaching Medi	um.	7	
•	•	2.2.2 Nitric Acid		. 7	
•	2.3	Sampling	•	7	
		2.3.1 Sample Collec	tion and Handling	7	
		2.3.2 Sample Preser		8	
	2.4	Leachate Generation	•	8	
		2.4.1 Extraction		8	
		2.4.2 Further Extra	actions	10	
3.0	QUALITY CONTROL				
	3.1	Introduction		10	
	3.2	Leachate Generation		10	
		3.2.1 Preliminary		· 10	
		3.2.2 Sample Testin	ng	11	
4.0	exan	INATION OF DATA			
	4.1	Calculation of Conce	entration	11	
	, ,	# 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		12	

••	PAGE
5.0 REFERENCES	12
APPENDIX A. SUPPLIERS	14

٠

٠.

FIGURES

NUMBER	CAPTION	PAGE
1	NBS-design Rotary Extractor	5
2	EPRI/Acurex Rotary Extractor	6

SOLID WASTE LEACHING PROCEDURE (SWLP)

1.0 EXPERIMENTAL PARAMETERS

1.0 Contact Area/Particle Size

The contact area of the sample should be 3.1 cm²/g or sized to pass through a 9.5mm standard sieve, unless the solid waste is monolithic. The requirement for contact area and particle size is designed to approach the conditions likely to be encountered in the field disposal environment due to mechanical filling operations and weathering. Some wastes are naturally monolithic. These wastes will not have their particle size reduced as this would cause them to be more leachable than under field conditions. Any waste passing the Structural Integrity Procedure (as given in EPA manuel, SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods) will be considered to be monolithic and will be tested as a whole rather than at a reduced particle size.

1.2 Leaching Medium

Laboratory reagent water is suggested for use as the leaching medium. This water should be free from interferences that might interact with the sample and should conform to one of the grades of Reagent Water consistent with Federal Test Method Standard No. 7916.

Where environmental conditions warrant, the use of an alternative medium, such as one to duplicate acid rain, might be justified. However, in the case of acid rain, the acidity of the medium must reflect any changes brought about by passage of the rain through overlying layers of waste and soil, which serve to neutralize both sulfur-based acid precipitation from such causes as the burning of sulfur-containing fuel and naturally occurring acids that arise from biological activity.

1.3 Temperature

The temperature should be normal room/laboratory temperature. The temperature has a decided effect upon the sclubility, rate of reaction, and, perhaps leaching of most species. Although ambient temperatures to be expected at land disposal sites range form extremely cold (-40 C) to very high (45 C), the temperatures for the leachates associated with these sites are likely to be less varied. The overlying soil and waste layers with which the leachate is associated have a dampening effect on variations in temperature. Consequently, the temperature for the leachate emerging from the bottom of a disposal site is likely to be that of the soil at the same depth. The limits on seasonal fluctuations in soil temperature at various depths are probably obtainable from disposal site data or can be measured during preliminary site investigations. If the expected temperatures differ substantially from the range of normal laboratory temperatures, then the use of other temperatures is justified.

1.4 Method of Mixing

Any mixing device can be used that will impart sufficient agitation to the mixture such that stratification of the leaching medium-sample mixture is avoided and sample surfaces are continuously brought into contact with the leaching medium.

The specification given in the SWLP follows that contained in EPA's Extraction Procedure (EP) Toxicity Test (40 CFR251.24). Currently only the rotary mixer meets these criteria for preventing stratification and ensuring continuous liquid-solid contact. Examples of rotary extractors are shown in Figures 1 and 2.

1.5 Time of Mixing

The approximate time of mixing is 24 hours. The time specified for each leaching ideally should be sufficient to allow equilibrium to be attained. However, due to the diversity of constituents and effects, no reasonable time per leaching is likely to be satisfactory for all situations. Therefore, the specification of leaching time has to be made out of consideration of factors other than attainment of equilibrium. A time of approximately 24 hours is normally convenient for laboratory scheduling and is consistent with the time specified for other related leaching procedures.

1.6 Solid to Liquid Ratio

The ratio of solid to liquid used for each leaching is calculated to incorporate both an amount sufficient to wet the sample and an excess amount to allow sufficient liquid for proper mixing and subsequent analyses.

The amount of liquid necessary to wet the sample can be determined by packing the sample into a column having some sort of drain, such as a stopcock, at the bottom. A known mass of sample is packed in the column to the density specified for the solid waste and soil cover at the land disposal site. If land disposal site density is not known, the textbook density value for specific soil types can be used. A measured column of liquid is added stepwise to the packed column to avoid edge effects and channeling. Liquid is added until it begins to flow from the column. The volume of liquid added equals the amount needed to wet the sample. For some samples, the waste contains sufficient free liquid that very little or possibly no additional liquid will be needed to wet the sample.

The amount of liquid in excess of that sufficient to wet the sample is added in the ratio of ten volumes per unit weight of sample; that is, a liquid to solid ration of ten to one.

Examples below illustrate the calculation of the proper volume of leaching medium, where the amount of sample to be tested by the SWLP is 100 g.

Example 1. A. Volume to wet sample = Vwet = Volume liquid added to column

Mass sample in column

Vwet = $\frac{450m1}{300 \text{ g}}$ = 1.5 m1/g or 150 m1/100-g sample

- B. Excess Volume = Vex = (10m1/g) amount sample
 Vex = (10m1/g)(100 g) = 1000m1
- C. Total Volume = Vtor = (Volume to wet sample) + (Excess Volume)
 Vtot = Vwet + Vex = 150 mi + 1000 ml = 1150 ml or 1.15 l

Example 2. A. Volume to wet sample = Vwet = 0 (that is, sample contained * sufficient liquid such that any added to the packed column freely drained out.)

- B. Excess Volume = Vex = (10m1/g) amount sample
 Vex = (10 m1/g)(100 g) = 1000 m1
- C. Total volume = Vtot = Vwet + Vex
 Vtot = 0 + 1000 ml = 1000 ml or 1.0 1

The true solid to liquid ratio that a solid waste will experience is highly sits dependent and very difficult to forecast precisely. In most cases the ratio will be one of a large amount of solid per unit volume of leachate. The specified ration does not truly reflect the likely field conditions; rather it is a workable amount that will allow sufficient liquid for proper mixing and constituent analysis.

2.0 EXPERIMENTAL

2.1 Apparatus and Materials

In general the apparatus and materials used in the solid waste leaching procedure must be demonstrated to be free from species that might interfere with the analysis of the leachates at the minimum levels of detection. In practice, the apparatus and materials chosen for use in the procedure must be selected with concern for potential interactions between the laboratory equipment and the waste-leachate solution. Examples of interactions to be avoided by careful selection of equipment are:

Dissolution of the solution container by the leachate, as might happen with a hydrofluoric acid containing waste contained in a glass vessel.

Preferential sorption of constituents out of the leachate by the sample container or filtration unit, as might happen with some organic compounds when contained in polypropylene vessels.

Contamination of the leachate by constituents of the sample container, as might happen with leachates when nickel and chromium levels are of interest in wastes that are extracted in stainless steel vessels.

.. The following discussion is designed to guide the investigator in selecting various items for use in the procedure. Specification of a particular manufacturer or model is for purposes for guidance only. Addresses of suppliers referenced in this section can be found in Appendix A.

2.1.1 Extraction Apparatus

An extraction apparatus must avoid stratification of the sample of solid waste and soil and the leaching medium which would inhibit adequate contact between the sample and leachate. The type of extraction apparatus deemed acceptable for this procedure is the rotary extractor or tumbler (see Figure 1: NBS-design Extractor and Figure 2: EPRI/Acurex Extractor). The extractor consists of a rack or box device to hold the sample containers, which are rotated through 360 at about 30 revolutions per minute.

A four-place tumbler extractor derived from a design by the National Bureau of Standards is illustrated in Figure 1. This equipment may be fabricated by the investigator or obtained commercially (Associated Design and Manufacturing Company, model #3740-40-BRE (four-place tumbler) or model #3740-6-BRE (six-place tumbler)). A six-place tumbler which may be fabricated by the investigator or obtained commercially (Acurex Corporation, no model number available) is shown in Figure 2.

The tumbler bottles should be sized to fit the particular tumbler, such as Wheaton model #348522 roller culture vessels or equivalent, 1.8 to 2.5 L capacity, with an inert cap liner.

2.1.2 Separation Apparatus

Separation of the solid and liquid layers following the extraction of the waste sample will be accomplished by a combination of settling and filtering. Details on performing these manipulations can be found in Section 3.4, which gives stepwise leachate generation instructions.

- (a) Filter holder. The filter holder must be capable of supporting a 0.45 micrometer membrane filter and withstanding the pressure needed to accomplish separation. These units may be simple vacuum units (Millipore model #XX10-047-00; Nuclepore model #410400; or equivalent). However, the units capable of being pressurized up to 75 psi are more likely to be needed for the majority of solid wastes (Millipore model #YT30-142-HW; Nuclepore model #420800; or equivalent).
- (b) Filter pads. Three sized of filter pads are suggested for use for all filtrations.
 - (1) Coarse glass fiber prefilter pad (Millipore model #AP25-042-00 or #AP25-127-50 or equivalent).
 - (2) Fine glass fiber prefilter pad (Millipore model #AP15-042-00 or #AP15-124-50 or equivalent).
 - (3) 0.45 micrometer nitrocellulose membrane filter (Millipore model #HAWP-047-00 or #HAWP-142-50 or equivalent).

Ļ

Figure 1 RBS-design Rotary Extractor

2.1.3 General Labware

- (a) Analysis sample bottles. The sample bottles used for containing large amounts of waste or leachate should be or suitable materials, such as glass for organic analysis or polypropylene for inorganic analysis; and they should have screw caps with an inert liner, such as TeflonR.
- (b) Sample vials. The container for samples for analysis of volatile organic constituents should have about 40 mL capacity (Pierce Chemical Company model #13075 or equivalent) and have a screw cap with a TeflonR-face silicone septum (Pierce model #12722).
- (c) Syringe. The syringe for use in withdrawing a sample of any water-immiscible liquid in the leachate should be a 50 mL glass hypodermic syringe with Luer-Lok tip and a 20-cm 16 guge stainless steel wide-bore needle (Bolab Incorporated model #BB829 or equivalent).

2.2 REAGENTS

.. .

٠,٠٠٠

2.2.1 Leaching Medium

The leaching medium selected for general use in the SWLP is reagent water. This water must be of sufficient quality that it is free of organic and inorganic interferences at the minimum levels of interest in the subsequent leaching and leachate analyses that will be performed. Water is the recommended leaching medium because it is deemed the best general leaching medium for simulating natural conditions. An acidic leaching medium or a synthetic leaching medium having a multi-component mixture is not recommended for use with this procedure unless justified on the basis of site-specific information. In certain situations, such as the siting of the potential landfill in an area known to have acid rain, a different medium may be justified. In such cases, the investigator must recognize that the use of a different leaching medium alters the comparability of results with those of other investigators using reagent water.

2.2.2 Nitric Acid

A 50% (v/v) mixture trace metals analysis grade concentrated nitric acid (such as J. T. Baker product #9598 or equivalent) and distilled water is recommended for use with this procedure for preservation of leachate samples after collection for analysis of inorganic constituents.

2.3 SAMPLING

2.3.1 Sample Collection and Handling

A representative sample of the solid waste to be tested should be collected using an ASTM standard method that can be applied satisfactorily (such as D140-70, D346-75, D420-69, D1452-65, D223476) or by using one of the methods described in EPA Manuel SW-846. It is particularly important that the solid waste sample be representative of the solid waste.

A minimum sample of 5 kg should be collected and sent to the 'laboratory in a sealed container or containers. The container must be of suitable material such that it will not react with the waste. In many cases a polyproplyene container will be inert to the waste and, hence, adequate for use. However, the suitability of the container should be assessed in light of the likely composition of the waste.

2.3.2 Sample Preservation

Samples that are stabilized with regard to biological or chemical change may be shipped and stored at room temperature. Samples that are not stabilized and might undergo significant biological or chemical change at room temperture must be maintained at 0-5 C, during shipping and storage. If the stability of the waste or soil is uncertain or unknown, shipping and storage of the waste at 0-5 C is recommended.

Leaching of samples must be initiated within one week of sample collection to preclude gross changes in sample composition with storage time, unless the sample is known to be stable to potential changes in composition.

2.4 LEACHATE GENERATION

2.4.1 Extraction

Step 1 (Mixture Preparation) Take a 100-g representative sample of the solid waste and soil that has been prepared for testing and place it in an extraction vessel (tumbler bottle or equivalent container). Add the calculated volume of leaching medium (Section 1.7) to the extraction vessel.

Step 2 (Tumbling) Tighten the cap on the vessel and mix by tumbling, using the rotary extractor. Tumble for $24 (\pm 2)$ hours at room temperature. Stop the rotary extractor, remove the extraction vessel, and allow the mixture to settle for 15 minutes.

Step 3 (Sampling for Volatile Organic Constituents) If a sample of the leachate is needed for analysis of volatile organic constituents, the aliquot should be withdrawn prior to filtration. Obtain a sample for volatile organic constituent analysis by completely filling a 40 mL sample vial with the leachate. Fill the sample vial in such a manner that no air bubbles pass through the sample as the vial is being filled and no air space remains in the vial. Seal the vial with a TeflonR-faced septum and screw-cap. Store it at 0-5 C in an inverted position until the time of analysis. Be certain the sample container is labelled properly to include the date, extraction sequence number, and an appropriate sample identification number.

If a discrete water-immiscible layer is present, withdraw the layer using a syringe with a wide-bore needle. Transfer the layer to a tared sample container of suitable material, such as glass. Determine the mass of the layer and analyze it separately.

Step 4 (Separation) Assemble the filter holder and filter pads following the manufacturer's instructions. Place the 0.45 micrometer nitrocellulose membrane filter pad on the support screen of the filter holder. Add first the fine glass fiber prefilter pad and place the coarse glass fiber prefilter pad on top of the membrane pad, so that the coarse pad will be the one closest to the filter cake.

After assembling the filter apparatus, wet the uppermost filter pad with a small portion of the liquid phase of the extraction mixture. Transfer the remainder of the extraction liquid layer to the filtration unit. Take care to avoid transferring much of the solid from the extraction vessel, because substantial amounts of solid can clog the filter pads. Apply vacuum or gentle pressure (10 to 15 psi) until all liquid passes through the filter.

Stop the filtration when all the liquid has passed throught he filter pads. If this point is not reached under vacuum or using gentle pressure, then increase the pressure stepwise in 10 psi increments to a final maximum pressure of 75 psi.

If liquid remains above the filter pads after 30 minutes of filtration at 75 psi, halt the filtration by slowly venting the pressurizing gas. Be certain to follow the manufacturer's instructions for venting a pressurized filtration apparatus. Some liquid may be trapped in the vent port and may be released. Care must be taken to direct the vent port away from laboratory personnel. After venting, decant the liquid above the filter pads into a suitable container. Place the top-most (coarse) prefilter pad plus any solid/filter cake in a suitable container, such as the extraction vessel for use in the next extraction. Replace the filter pads, placing the fresh pads on the unit in the correct order, and resume filtering.

Repeat the process of replacing the filter pad as often as necessary until all the liquid has been filtered. In each process, retain the topmost (coarse) prefilter pad along with any solid/filter cake.

After halting the filtration, return the unit to atmospheric pressure by either carefully breaking the vacuum or slowly venting the filtration apparatus.

Step 5 (Liquid for pR and Inorganic Constituents Analyses)
Transfer an aliquot (usually 25 to 50 mL) of the liquid/filtrate from Step 4 to
a suitable container, such as a beaker. Determine the pH. If an analysis for
inorganic constituents is needed, add a minimum volume of nitric acid (see
Section 2.2.2) to lower the pH to less than 2. Transfer the acidified sample to
a suitable container, such as a screw-cap polypropylene bottle. Store at room
temperature prior to analysis. The sample container must be labelled properly,
to include the date, extraction sequence number, and an appropriate sample
identification number.

Step 6 (Liquid for Semivolatile Organic Constituents Analysis) Transfer an aliquot (usually 200 mL) of the Liquid filtrate from Step 4 to be used for semivolatile organic constituents analysis to a suitable container, such as a glass bottled with an inert-lined screw-cap. Store the sample at 0-5 C prior to analysis. The sample container must be labelled properly, to include the date, extraction sequence number, and an appropriate sample identification number.

Step 7 (Remainder of Filtrate) Discard any remaining filtrate after samples have been removed for analysis and dispose of it in accordance with approved laboratory procedures for disposal of potentially hazardous liquids. Dispose of the solid/filter cake in accordance with approved laboratory procedures for disposal of potentially hazardous solid waste.

2.4.2 Further Extractions

The need for further extractions is determined based on the interpretation of results. Depending on the amount of solid waste that is dissolved on each extraction, the repeated extraction of the same solid waste sample with fresh leaching medium can be carried on indefinitely. Repeated extractions of the same solid waste sample will suggest trends in a leachate constituent level (increasing, decreasing, or no change as the waste sample is subjected to repeated extractions).

3.0 QUALITY CONTROL

3.1 Introduction

Quality control for the solid waste leaching procedure involves two aspects. Ore aspect ensures that the steps to be taken in carrying out the procedure both are free of interferences and meet the needs of the investigator regarding the reliability of the results. The other aspect monitors the procedure while it is underway to determine whether the desired level of quality is being achieved.

The guidelines given in this section are designed to help the investigator fulfill these two aspects of quality control. The basic method used is to process procedure blanks through the various steps in the procedure. These blanks are analyzed to determine whether interferences do appear. The analytical results are used to either modify the procedure to eliminate the source of the interferences or correct the solid waste sample results for background levels routinely and unavoidably picked up. Replicate samples are processed to monitor the precision and accuracy of the procedure.

At present no solid waste reference material or simulant is available. Consequently, interlaboratory comparisons of results from using the procedure on such a material are not possible.

Analytical procedures shall conform to the Quality Assurance Program for US Army Toxic and Hazardous Materials Agency (USATHAMA) and shall not be performed until method/laboratory certification is issued by USATHAMA.

3.2 Leachate Generation

3.2.1 Preliminary

Before any solid waste sample is tested using the solid waste leaching procedure, demonstrate that the procedure is free from any analytical interferences by processing procedure blanks through the various steps.

Step QC (1) (Mixture Preparation) Using a graduate cylinder, add 1.0 L of the leaching medium to an extraction vessel containing no solid waste sample.

Step QC (2) (Tumbling) Tighten the cap on the vessel and mix by the rotary extractor or selected alternative method. Mix for $24 (\pm 2)$ hours at room temperature. Stop the rotary extractor, remove the extraction vessel, and allow the mixture to settle for 15 minutes.

Step QC (3) (Separation) Prepare the filtration apparatus by the method of Step 4, Section 2.4.1. Filter the extraction mixture in the same manner as that to be used with the solid waste samples.

Step OC (4) (Sampling for Analysis) Remove aliquots of the procedure blank solution for each type of analysis to be run on the solid waste sample (analysis for pH, inorganics, and volatile and semivolatile organic constituents). If sampling for volatile organic analysis is done, follow the method of Step 3, Section 2.4.1 for filling the sample vial. Label all sample containers, to include date and appropriate sample identification number.

Step QC (5) (Results) Examine the results of the analyses and determine whether any interferences are present. Identify the likely sources of the interferences and modify the procedure accordingly. Repeat the processing of a procedure blank on the modified procedure until the interferences have been eliminated.

3.2.2 Sample Testing

Step OC (6) (Procedure Blank) The procedure blank consists of the leaching medium with no waste added. Process one procedure blank for every batch or every ten solid waste samples tested. Carry the procedure blank through the same steps as the solid waste sample. Ensure that the procedure blank is treated identically to the solid waste sample.

4.0 EXAMINATION OF DATA

4.1 Calculation of Concentration

The data accumulated using the solid waste leaching procedure can be used directly in terms of the concentration of the constituent that was found on analysis of the leachate solution. The general method of calculating this concentration is given in Equation 1.

 $C(x)i = C(anal)i \times DF$

Equation 1

In this equation, C(x)i is the concentration x in the leachate solution from extraction sequence number i and has the dimensions of mass of x per unit volume of leachate. C(anal)i is the concentration of x that was found on analysis. DF is the dilution factor or concentration factor for the analysis. The DF gives the extent to which the leachate solution was diluted or concentrated prior to analysis.

4.2 Calculation of Mass Released Per Extraction

The data accumulated can be used to calculate the mass of the constituent released from the solid waste sample for each extraction. The general method for calculating this mass released is given in Equation 2.

$$M(x) = \frac{C(x)}{1}$$

Equation 2

In this equation, M(x)i is the mass of constituent x that was released from the solid waste sample during extraction sequence number i. C(x)i, the concentration of x in the leachate solution for the extraction i, is calculated using Equation 1. S:L is the solid to liquid ratio used in the initial extraction, in terms of the mass of solid waste sample used to the volume of leaching solution. The volume of leachate in the denominators of both C(x)i and S:L must be in the same units, such as liters or milliliters, so that they will cancel. The term M(x)i will then have the dimensions of mass of x released per unit mass of solid waste, such as mg of x per g of waste.

5.0 REFERENCES

- Ham, R. K., M. A. Anderson, R. Stanforth and R. Stegmann. 1978. The
 development of a leaching test for industrial wastes. In: Land
 Disposal of Hazardous Wastes, Proceedings of the Fourth Annual Research
 Symposium, San Antonio, Texas, March 6-8, 1978. EPA-600/9-78-016.
 U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 33-46.
- 2. Ham, R., M. A. Anderson, R. Stegmann and R. Stanforth. 1979.

 Background Study on the Development of a Standard Study on the

 Development of a Standard Leaching Test. EPA-600/2-79-109. U. S.

 Environmental Protection Agency, Cincinnati, Ohio, pp 274.
- 3. Houle, M. J. and D. E. Long. 1978. Accelerated Testing of Waste Leachability and Contaminant Movement in Soils. In: Land Disposal of Hazardous Wastes, Proceedings of the Fourth Annual Research Symposium, at San Antonio, Texas, March 6-8, 1973. EPa-600/9-78-016, U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 152-168.
- 4. Houle, M. J. and D. E. Long. 1980. Interpreting Results from Serial Batch Extraction Tests of Wastes and Soils. In: Disposal of Hazardous Wastes, Proceedings of the Sixth Annual Research Symposium, at Chicago, Illinois, March 17-20, 1980. EPA-600/9-80-011-0, U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 60-81.
- 5. Lowenbach, W. 1978. Compilation and Evaluation of Leaching Test Methods. EPA-600/2-78-095. U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 111.

- .6. Fuller, W. H. 1978. Investigation of Landfill Leachate Pollutant Attenuation by Soils. EPA-600/2-78-158. U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 239.
- 7. Griffin, R. A. and N. F. Shrimp. 1978. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals. EPA-600/2-78-157. U. S. Environmental Protection Agency, Clacianati, Ohio, pp 157.
- 8. Griffin, R. A. and E. S. K. Chian. 1980. Attenuation of Water-Soluble Polychlorinated Biphenyls by Earth Materials. EPA-600/2-80-027. U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 101.
- 9. Office of Solid Waste. 1980. Test Methods for Evaluating Solid Wastes. SW-846. U. S. Environmental Protection Agency, Washington, D.C.
- 10. ASTM D1193-77. 1980 Annual Book of Standards, Part 31: Water.
 American Society for Testing Materials, Philadelphia, PA.
- 11. Fluker, B. J. 1958. Soil temperature. Soil Sci., 86:35-46.
- 12. Epler, J. L., et al. 1979. Toxicity of Leachates. IAG No. DOE-IAG-40-646-77/EPA-IAG-78-D-X0372. Interim progress report to U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 142.
- 13. Epler, J. L., et al. 1980. Toxicity of Leachates. EPA-600/2-80-057. U. S. Environmental Protection Agency, Cincinnati, Ohio, pp 142.
- 14. McKown, M. M., J. S. Warner, R. M. Riggin, M. P. Miller, R. E. Heffelfinger, B. C. Garrett, G. A. Jungclaus and T. A. Bishop. 1981. Development of Methodology for the Analysis of Solid Nastes. Contract No. 68-03-2552. Final report to U. S. Environmental Protection Agency. Battella-Columbus Laboratories, Columbus, Ohio.
- 15. U. S. Environmental Protection Agency. 1979. Guidelines Establishing Test Procedures for the Analysis of Pollutants: Proposed Regulations. Federal Register, 44:69464-69575.
- 16. Kopp, J. F. and G. D. McKee. 1979. Methods for Chemical Analysis of Water and Wastes. FPA-600/4-79-020. U. S. Environmental Protection Agency, Cincinnati, Ohio. pp 460.

APPENDIX A

SUPPLIERS

Acurex Corporation 485 Clyde Avenue Mountain View, CA 94042 (415) 964-3200

Associated Design and Manufacturing Company 814 North Henry Street Alexandria, VA 22314 (703) 549-5999

J. T. Baker Chemical Company 222 Red School Lane Phillipsburg, NJ 08865 (201) 859-2151

Bolab Incorporated, Div. of Water W. Platt Industries 6 Tinkam Avenue Derry, NR 03038 (604) 434-4941

Millipore Corporation Ashby Road Bedford, MA 01730 (800) 225-1380

Nuclepore Corporation 7035 Commerce Circle Pleasanton, CA 94566 (415) 462-2230

Pierce Chemical Company P. O. Box 117 Rockford, IL 61105 (815) 968-0747

Wheaton Scientific 1000 North Tenth Street Millville, NJ 08332 (609) 825-1400

WATER QUALITY CRITERIA

PARAMETER	APPLICABLE CRITERIA	REFERENCE
Aldrin	Hold exposure to a minimum	"Quality Criteria for Water" EPA, 1976.
OBCP	0.0002 mg/1	State of Colorado Department of Health limit per letter to Commander, RMA, 26 Jun 79.
OCPO	1.3 mg/l (toxicity) 0.024 mg/l (odor)	These guidelines are recommended by the US Army Medical Bioengi- neering Research & Development
DIMP	0.5 mg/1	Lab (26 Aug 76) and are based on toxicology studies conducted by the Army. The National Academy of Sciences Committee on Military Environmental Research has reviewed the procedures and results of the toxicology studies and concurred in the drinking water levels (1 Feb 77). The State of Colorado has requested the Army to meet a lower limit of 0.024 mg/l for DCPD based on an odor threshold value.
Dieldrin	Hold exposure to a minimum	"Quality Criteria for Water" EPA. 1976.
Endrin	0.0002 mg/1	EPA Mational Interim Primary Drinking Water Regulation.
, Fluoride	2.4 mg/1	State of Colorado Department of Health limit per letter to Commander, RMA, 2 Aug 79.
Priority Pollutants	See Federal Register for specific guidelines.	Federal Register Vol 45, No. 231, Friday Nov 23, 1980, pp 79818.
All other organics	No available limits. Removal to detectable limits.	Guidance from OTSG.

FIGURE II-I

APPENDIX D: S-CUBED FINAL REPORT ON EXTRACTION OF BASIN F SOILS

Berry

SYSTEMS, SCIENCE AND SOFTWARE

Final Report

Extraction of Basin F Soils

Using the Solid Waste Leachate Procedure

SYSTEMS, SCIENCE AND SOFTWARE

SSS-R-82-5421

EXTRACTION OF BASIN F SOILS USING THE SOLID WASTE LEACHATE PROCEDURE

Final Report

By:
Tobias R. Acciani, Ph.D.
S-Cubed
La Jolla, California 92038

Performed for:

COMPUTER SCIENCES CORPORATION NSTL- ENGINEERING LABORATORY

Contract No. CSC/ATD-82-C-503

February 19, 1982

TABLE OF CONTENTS

Section		Page
1.0	Introduction	1
2.0	Initial Sample Handling	2
3.0	Liquid-to-Solid Ratio	5
4.0	Leaching Experiment	8
5.0	Separation of the Solid and Liquid Layers	11
6.0	pH Determination	14
Appendix	A - Soil Boring Log Field Data	
Appendix	B - Liquid/Solid Ratio (LSR) Determination Data Sheets	
Appendix	C - SWLP Activities Data Sheets	

APPENDIX A SOIL BORING LOG FIELD DATA

1.0 INTRODUCTION

This report provides results of extractions performed by S-Cubed under Contract CSC/ATD-82-C-503 from Computer Science Corporation during the period January 27 through February 15, 1982. The extractions were performed in accordance with the USATHAMA Solid Waste Leaching Procedure (SWLP), prepared by Battelle Columbus, 1981 (Exhibit B, RFP CSC/ATD-82-R-503), on Basin F soil samples supplied by Computer Science Corporation (CSC). Fifty of the total sixty-eight samples received were extracted in accordance with directions from the CSC Project Officers.

This report describes the specific activities undertaken in the execution of the extraction effort. The report is organized in five sections: initial sample handling, liquid-to-solid ratio, leaching, separation of the solid and liquid layer, and pH determination. Raw data are provided in three appendices: Appendix A - copies of data sheets from CSC field team, Appendix B - copies of data sheets for the determination of liquid/solid ratio, and Appendix C - data record of SWLP activities. The S-Cubed SWLP project was successful in that all samples were extracted and shipped to the Midwest Research Institute for chemical analysis.

2.0 INITIAL SAMPLE HANDLING

Samples received by S-Cubed from the CSC field team were stored at 4°C and their receipt documented by filling out a log sheet. Table 1 summarizes the time and date of receipt of samples by S-Cubed. The samples remained in cold storage until they were ready for processing. Appendix A contains the Boring Log Field Data documentation which S-Cubed received along with the samples.

The first step in the SWLP was to grind up the sample to obtain triplicate representative 100-gram samples for extraction. The samples shipped to S-Cubed were between 400- to 500-grams each; only Sample S20011 was less than 300 grams. In this case, two 100-gram replicates were made up and the third only contained 57 grams. The total sample was placed into a mortar which was located in a hood and ground up using a pestle until a particle size of less than a quarter of an inch was obtained. All ground samples were sized with a standard ASTM 1/4-inch sieve. If a sample had an odor, care was exercized by minimizing time of exposure to ambient conditions. After grinding, a 5-gram sample was removed for the liquid/solid ratio determination, the remainder of the sample was returned to the sample container and stored at 4°C.

When the leaching experiment was ready, the sample was taken from storage and poured onto a clean, flat surface. The sample was spread out into a flat disk shape and divided into quarters. Three 100-gram samples were taken, each one was taken from a separate quarter section and the remaining quarter was returned for storage. The 100-gram sample was place into a one-gallon polyethylene container, deionized-distilled water was added, and the sample was leached for 24 hours using a rotating leaching device, e.g., Acurex design.

Table 1
RECEIVING OF SAMPLES

Sample Number	Receiving Time	Sample Date
S20001	12:10 pm	1/27/82
\$20002	12.10 pm	1/27/82
S20003	12:10 pm	1/27/82
\$20004	12.10 pm	1/27/82
\$20005	12:10 pm	1/27/82
S20006	12.10 pm	1/27/82
S20007	12:10 pm	1/27/82
\$20008	12.10 pm	1/27/82
\$20009	12:10 pm	1/27/82
\$20010	12.10 pm	1/27/82
S20011	12:10 pm	1/27/82
S20012	11:30 am	1/28/82
S20013	11:30 am	1/28/82
\$20014	11:30 am	1/28/82
\$20015	11:30 am	1/28/82
S20016	11:30 am	1/28/82
S20017	11:30 am	1/28/82
S20018	11:30 am	1/28/82
S20019	11:30 am	1/28/82
S20020 S20021	11:30 am	1/28/82
S20021 S20022	11:30 am	1/28/82
S20022 S20023	11:30 am 11:30 am	1/28/82
S20023 S20024		1/28/82
	11:30 am	1/28/82
S20025	11:45 am	1/29/82
\$20026	11:45 am	1/29/82
S20027	11:45 am	1/29/82
S20028	11:45 am	1/29/82
S20029 S20030	11:45 am	1/29/82
S20030 S20031	11:45 am 11:45 am	1/29/82
S20031 S20032	• • • •	1/29/82
S20032 S20033		1/29/82
S20034	11:45 am 11:45 am	1/29/82
S20035	11:45 am	1/29/82 1/29/82
S20036	11:45 am	1/29/82
	11114 600	1/63/06

Table 1 (Continued)
RECEIVING OF SAMPLES

Sample Number	Receiving Time	Sample Date
S20037	9:30 am	1/30/82
S20038 S20039	9:30 am	1/30/82
520039 S20040	9:30 am	1/30/82
S20040 S20041	9:30 am	1/30/82
S20041 S20042	9:30 am	1/30/82
S20042 S20043	9:30 am	1/30/82
S20043 S20044	9:30 am	1/30/82
320077	9:30 am	1/30/82
S20045	9:30 am	1/30/82
S20046	9:30 am	1/30/82
S20047	9:30 am	1/30/82
S20048	9:30 am	1/30/82
S20049	9:30 am	1/30/82
S20050	9:30 am	1/30/82
S20051 S20052	3:30 pm	2/2/82
320032	3:30 pm	2/2/82
S20053	3:30 pm	2/2/82
S20054	3:30 pm	2/2/82
S20055	3:30 pm	2/2/82
S20056	3:30 pm	2/2/82
S20057	3:30 pm	2/2/82
\$20058	3:30 pm	2/2/82
S20059	3:30 pm	2/2/82
\$20060	3:30 pm	2/2/82
S20061	3:30 pm	2/2/82
\$20062	3:30 pm	2/2/82
S20063	3:30 pm	2/2/82
S20065	3:30 pm	2/2/82
S20066	3:30 pm	2/2/82
S20067	3:30 pm	2/2/82
. \$20068	3:30 pm	2/2/82

3.0 LIQUID-TO-SOLID RATIO

The Liquid-to-Solid Ratio (LSR) was determined to be the amount of water that naturally sorbs onto the scil extracted. This amount of water must be corrected for in making calculations of extraction efficiencies in accordance with SWLP.

S-Cubed took 5 grams of Basin F sample and placed it into a glass column fitted with a stopcock. The dimensions of this column were 15-cm long by 1-cm internal diameter. The 5-gram sample initially filled the column to about 10 cm. The soil was compressed to 5 cm. S-Cubed was never given any information about soil density, but the packing procedure was consistent for all samples. After the column was packed, 5 ml of deionized-distilled water was added to the column with the stopcock closed. The water was allowed to wet the soil. When the soil was wet, the stopcock was opened and the excess water was allowed to drain into a graduated cylinder. The volume of water retained by the soil was calculated and this number was entered into the data records.

The calculations for the volume of excess water to be added for leaching were:

where

// * volume of water retained by oil, mL

W = weight of soil tested, g

LSR x 100 g = volume of water to be added to leaching solution, mL

In addition to the volume of excess water to be added from the above calculation, one liter of deionized-distilled water was employed as the bulk extraction medium.

When the sample was a sludge, the sludge was initially filtered using an 0.45-micrometer membrane filter. The resulting filtrate was added to the final extracted solution. For these samples, a 100-gram sample was taken from the moist soil sludge sample which remained after filtering without adding excess water.

Table 2 contains the results of the liquid/solid ratio determination.

Table 2

RESULTS OF LIQUID/SOLID RATIO DETERMINATION

Sample Number	Sample Weight	Volume of Water Retained (mL)	Ratio	Volume of Water Added (mL)	Total Water Volume for Extraction (mL)
S20001	5	1.4	0.28	28	1028
\$20002	5	2.0	0.40	40	1040
520003	5	1.5	0.30	30	1030
S20005	5	1.2	0.24	24	1024
S20006	5	1.2	0.24	24	1024
S20007	5555555	1.5	0.30	30	1030
S20009	5	0.8	0.16	16	1016
\$20010	5	1.2	0.24	24	1024
S20011*	5	1.3	0.25	26*	1026*
S20012	5	1.4	0.28	28	1028
S2C013	5	1.1	0.22	22	1022
S20016	5 5 5 5 5 5 5	0.8	0.16	16	1016
S20017	5	1.5	0.30	30	1030
S20018	5	1.3	0.26	26	1026
S20020	sludge				1000
S20021	5	1.0	0.20	20	1020
\$20022	5	1.6	0.32	32	1032

Table 2 (Continued)

RESULTS OF LIQUID/SOLID RATIO DETERMINATION

Sa <u>Nu</u>	nole int	Yolume of Water Retained (mL)	Ratio	Volume of Water Acced	Total Water Yolume for Extraction (mL)
SX	.dge	1.5 1.2 2.0 1.0 1.2 0.6 1.1	0.30 0.24 0.40 0.20 0.24 0.12 0.22	30+00+00	1000 1030 1024 1040 1020 1024 1012 1022
520 (520) 520) 520) 520) 520) 520)	; ; ; ; ; ;	1.6 1.9 2.0 2.3 0.8 0.4 1.5 2.0	0.32 0.38 0.40 0.46 0.16 0.08 0.30 0.40	3 3 4 4 5 8 8 8 9 9	1032 1000 1038 1040 1046 1016 1008 1030 1040
	:udge :: :: :: :: :: ::	0.8 1.6 1.9 2.7 1.0 1.2 1.1	0.16 0.32 0.38 0.54 0.20 0.24 0.22	16 33 33 40 41 41 41 41 41 41 41 41 41 41 41 41 41	1000 1016 1032 1038 1054 1020 1024 1022 1014
Sarta a g Sarta a g Sarta a g Sarta a g Sarta a g Sarta a g	5 5 5 5 5 1 udge	1.3 0.5 0.8 0.6 0.5	0.26 0.10 0.16 0.12 0.10 0.10	25 10 16 12 10	1026 1010 1016 1012 1010 1010

 $^{^{1.0}}$ Mag.). 12011c only used 57 grams, volume for extraction was 585 ml.

4.0 LEACHING EXPERIMENT

S-Cubed employed two Acurex rotary extractors which had the capability to extract twelve 100-gram samples per 24-hour period. After the liquid/solid ratio was determined, three 100-gram replicates of the soil samples were placed into three 1-gallon polyethylene containers. One liter of deionized-distilled water was added to each container, plus the volume determined from the liquid/solid ratio. The container was then placed into the extractor and leached for the 24-hour period. Table 3 lists the total time for each leaching.

Since the rotary extractor was operating continuously for 13 days, the extractions usually ran for 23 hours so that the equipment would have a rest; thus preserving the integrity of the equipment.

Because of an electric power failure and a breakdown of one extractor during the course of the leaching experiment, Samples S20057, S20058, S20060, S20061, S20067, and S20063 were extracted on the eighth day after sample collection and Sample S20062 was extracted on the ninth. The SWLP procedure called for seven days to preclude gross change in sample composition, but the time could be extended if the samples are stable. In order to obtain greater resolution on the stability of these samples, Samples S20053 through S20056 were collected the same day as Samples S20057 through S20061 and the latter series were extracted within the timeframe stipulated by the SWLP. Upon analysis by MRI, it may be estimated whether or not the extra one or two days of storage affected the stability of these samples.

Table 3.
TIME OF SAMPLE LEACHING

Fytraction	F	v	+	,,	•	^	+	4	_	_
------------	---	---	---	----	---	---	---	---	---	---

		EXTr	iction		
•	S	tart	Fin	ish	Total Time in
Sample Number	Time	Date	Time	Date	Hours/Minutes
					nodi 3/1/11/0053
S20001	3:53 pm	1/27/82	3:53 pm	1/28/82	24
S20002	3:53 pm	1/27/82	3:53 pm	1/28/82	24
\$20003	4:05 pm	1/28/82	4:15 pm	1/29/82	24
S20005	4:05 pm	1/28/82	4:15 pm	1/29/82	24/10
S20006 S20007	4:05 pm	1/28/82	4:15 pm	1/29/82	24/10
\$20007 \$20009	4:05 pm	1/28/82	4:15 pm	1/29/82	24/10
S20009 S20010	4:48 pm	1/29/82	4:00 pm	1/30/82	23/22
S20010 S20011	4:48 pm	1/29/82	4:00 pm	1/30/82	23/22
S20011 S20012	4:48 pm	1/28/82	9:15 am	1/31/82*	24/33
320012	4:48 pm	1/28/82	9:15 am	1/31/82*	24/33
S20013	4:15 pm	1/30/82	4:20 pm	1/31/82	24/05
S20016	4:15 pm	1/30/82	4:20 pm	1/31/82	24/05
S20017	5:22 pm	1/31/82	4:35 pm	2/1/82	23/23
S20018	5:22 pm	1/31/82	4:35 pm	2/1/82	23/23
520020	5:00 pm	2/1/82	4:00 pm	2/2/32	23
S20021	5:22 pm	1/31/82	4:35 pm	2/1/82	23/23
\$20022 \$30025	5:22 pm	1/31/82	4:35 pm	2/1/82	23/23
\$20025 \$20026	5:00 pm	2/1/82	4:00 pm	2/2/82	23
\$20026 \$20027	5:00 pm	2/1/82	4:00 pm	2/2/82	23
320027	5:00 pm	2/1/82	4:00 pm	2/2/82	23
520028	5:00 pm	2/2/82	4:00 pm	2/3/82	23
520030	5:00 pm	2/2/82	4:00 pm	2/3/82	23
520031	5:00 pm	2/2/82	4:00 pm	2/3/82	23
S20034	5:00 pm	2/2/82	4:00 pm	2/13/82	23
S20035	5:00 pm	2/3/82	3:55 pm	2/4/82	22/55
\$20036 \$20038	5:00 pm	2/3/82	3:55 pm	2/4/82	22/55
S20038 S20039	5:00 pm	2/3/82	3:55 pm	2/4/82	22/55
S20040	5:00 pm	2/3/82	3:55 pm	2/4/82	22/55
S20040	4:30 pm	2/4/82	8:30 pm	2/5/82**	23
320041	4:30 pm	2/4/82	8:30 pm	2/5/82**	23
\$20043	4:30 pm	2/4/82	8:30 pm	2/5/82**	23
S20044	4:30 pm	2/4/82	8:30 pm	2/5/82**	23
S20047 S20048	8:30 pm	2/5/82	6:30 pm	2/6/82	22
S20048 S20051	8:30 pm	2/5/82	6:30 pm	2/6/82	22
S20052	8:30 pm	2/5/82	6:30 pm	2/6/82	22
46446	8:30 pm	2/5/82	6:30 pm	2/6/82	22

Table 3 (Continued)

TIME OF SAMPLE LEACHING

Extraction

•	St	art	Fini	sh	Total Time in
Sample Number	Time	Date	Time	Date	Hours/Minutes
\$20053	6:30 pm	2/6/82	4:30 pm	2/7/82	22
\$20054	6:30 pm	2/6/82	4:30 pm	2/7/82	22
S20055	6:30 pm	2/6/82	4:30 pm	2/7/82	22
S20056	6:30 pm	2/6/82	4:30 pm	2/7/82	22
\$20057	4:35 pm	2/7/82	4:00 pm	2/8/82	23/25
S20058	4:35 pm	2/7/82	4:00 pm	2/8/82	23/25
\$20060	4:35 pm	2/7/82	4:00 pm	2/8/82	23/25
S20061	4:35 pm	2/7/82	4:00 pm	2/8/82	23/25
S20062	5:45 pm	2/8/82	4:30 pm	2/9/82	22/45
S20064	5:45 pm	2/8/82	4:30 pm	2/9/82	22/45
\$20065	5:45 pm	2/8/82	4:30 pm	2/9/82	22/45
S20066	5:45 pm	2/8/82	4:30 pm	2/9/82	22/45
\$20067	5:30 pm	2/9/82	5:00 pm	2/10/82	23/20
S20068	5:30 pm	2/9/82	5:00 pm	2/10/82	23/20

^{*}Samples \$20011 and \$20012 - rotary extractor breakdown at night, instrument was not repaired until 12:00 pm.

^{**}Samples S20040, S20041, S20043, and S20044 - S-Cubed had a five-hour power failure at night.

5.0 SEPARATION OF THE SOLID AND LIQUID LAYERS

S-Cubed employed six Millipore Hazardous Waste Sample Filtration System devices (Millipore Model No. YT30142HW). The filter pads were the fine glass fiber prefilter pad (Millipore Model AP1512450) and the 0.45 micrometer nitrocellulose membrane filter (Millipore Model HAWP14250). Because the Basin F samples contained clay which clogged the filters continuously, S-Cubed had to modify SWLP filtration procedure. The modification consisted of filtering the sample twice, first with the fine glass fiber prefilter pad, then with the 0.45 micrometer membrane filter. This procedure was employed because placing three filters on top of each other was too slow and the uppermost filter would clog and no sample would pass through the other filters. The following paragraph describes how S-Cubed filtered the Basin F samples. Table 4 contains the times and dates for filtering samples.

After the sample was mixed for 24 hours, it was either filtered immediately or placed into storage at 4°C. A Millipore filtration system was set up with a fine glass fiber prefilter pad, and the sample was poured into the device. Usually, about half of the approximately one-liter sample was filtered at a time. If the filter pad clogged, the remaining unfiltered material was transferred to a beaker and the filter was replaced. The filter device was then reassembled and filtering continued. The second half of the sample contained most of the solids and they were quantitatively transferred to the filter device and filtered. After the sample was filtered, the filter system was taken apart, cleaned with deionized-distilled water, and reassembled with an 0.45-micrometer filter. Again, if clogging of the filter occurred, the filter was replaced and the process continued. The pressure employed for filtration was 75 psi.

When the filtration was complete, the sample extract filtrate was transferred into a one-gallon glass container and stored at 4°C. When the other two replicates were completed, their filtrates were added to the gallon container; the volume of sample extract filtrate totaled three liters. The only exception to this was for Sample S20011, where the volume was 2585 ml because of a small soil sample size.

A 500-mL aliquot of the filtrate was taken from the 3-liter sample and placed into a polyethylene container for pH measurement and preservation for metal analyses (see Section 6.0). The remaining sample was stored at 4° C, waiting for shipment to MRI.

Table 4
SCHEDULE FOR FILTERING

	Fiite	ring	Stor	age
Sample Number	Time	Date	Time	Date
\$20001	4:30 pm	1/28/82	2:00 pm	1/29/82
520002	4:30 pm	1/28/82	2:05 pm	1/29/82
S20003	8:00 am	2/1/82	12:00 pm	2/1/82
S20005	1:00 pm	2/1/82	4:30 pm	2/1/82
\$20006	8:00 am	2/2/82	1:15 pm	2/2/82
S20007	ms CO:8	2/2/82	2:15 pm	2/2/82
\$20009	1:20 pm	2/2/82	2:15 pm	2/3/82
\$20010	2:20 pm	2/2/82	6:30 pm	2/2/82
\$20011	9:00 am	2/3/82	1:00 pm	2/3/82
520012	1:00 pm	2/3/82	2:00 pm	2/3/82
S20013	1:00 pm	2/3/92	3:30 pm	2/3/82
\$20016	8:15 am	2/4/82	10:00 am	2/8/82
S20017	3:30 pm	2/3/82	10:15 am	2/4/82
\$20018	3:30 pm	2/3/82	10:00 am	2/4/82
S20020	10:00 am	2/4/82	11:30 am	2/8/82
S20021	10:00 am	2/4/82	12:00 pm	2/8/82
S20022	11:00 am	2/5/82	12:30 pm	2/8/82
S20025	2:30 pm	2/9/82	5:50 pm	2/9/82
S20026	2:30 pm	2/9/82	9:00 am	2/10/82
S20027	2:30 pm	2/9/82	11:30 am	2/10/82

Table 4 (Continued)
SCHEDULE FOR FILTERING

	Filte	ering	Stor	age.
Sample Number	Time	Date	Time	Date
\$20028 \$20030 \$20031	8:30 am 8:30 am	2/10/82 2/10/82	9:30 am 11:30 am	2/10/82 2/10/82
\$20034 \$20035 \$20036	9:30 am 1:30 pm 8:00 am 8:30 am	2/10/82 2/9/82 2/9/82 2/9/82	12:30 pm 9:00 am 11:30 am 12:00 pm	2/10/82 .2/11/82 2/9/82 2/9/82
\$20038 \$20039 \$20040 \$20041	2:30 pm 8:30 am 8:30 am 9:30 am	2/10/82 2/10/82 2/10/82 2/10/82	9:00 am 1:00 pm 1:30 pm 11:00 am	2/11/82 2/10/82 2/10/82 2/10/82
\$20043 \$20044 \$20047 \$20048 \$20051 \$20052 \$20053 \$20054 \$20055	9:00 am 1:00 pm 11:00 am 10:30 am 1:30 pm 3:30 am 9:30 am 2:55 pm	2/11/82 2/11/82 2/9/82 2/9/82 2/11/82 2/12/82 2/14/82 2/12/82 2/16/82	2:00 pm 9:00 am 3:00 pm 3:00 pm 5:50 pm 3:30 pm 5:15 pm 11:00 am 3:00 pm	2/11/82 2/12/82 2/9/82 2/9/82 2/11/82 2/12/82 2/12/82 2/16/82 2/16/82
\$20056 \$20057 \$20058 \$20060 \$20061 \$20062 \$20064 \$20065 \$20066 \$20067 \$20063	9:00 am 10:30 am 11:00 am 3:30 am 9:00 am 11:30 am 10:00 am 12:00 pm 1:30 pm 4:30 pm 10:30 pm	2/11/82 2/10/82 2/10/82 2/16/82 2/13/82 2/13/82 2/14/82 2/13/82 2/14/82 2/16/82 2/13/82	12:30 pm 2:30 pm 4:50 pm 8:30 pm 4:50 pm 1:30 pm 1:30 pm 2:00 pm 1:30 pm 2:00 pm	2/11/82 2/10/82 2/10/82 2/16/82 2/13/82 2/13/82 2/13/82 2/14/82 2/16/82 2/16/82 2/13/82

6.0 pH DETERMINATION

After filtration, the sample was split into a 500-mL sample (polyethylene container) for inorganic analysis and the remainder of the sample (amber glass, Teflon cap) for organic analysis. The pH of the sample was obtained with an Orion pH meter (Model 407A) and an Orion combination pH electrode (Model 91-05). The Orion pH meter and electrode were calibrated after each determination with two buffer solutions (pH4, pH7). The results of the pH determinations are listed in Table 5.

After determination of the pH, the inorganic aliquot was adjusted to a pH value of less than two, with Ultrex nitric acid (volume of added acid was between one and two milliliters). S-Cubed also provided to MRI a one-liter water blank sample for analysis of organic compounds and a 500-mL (with the added Ultrex sitric acid) inorganic blank.

Table 5

pH YALUES FOR THE LEACHATE SAMPLES

Sample Number	pH Value
S20001	6.9
520002	4.8
S20003	4.9
S2000 5	5.8
S20006	4.8
S20007	4.4
S20009	4.8
S20010	5.4
\$20011	5.9
S20012	8.4
S20013	8.2
S20016	5.6
S20017	5.8
S20018	5.6
S20020	8.1
S20021	5.3

Table 5 (Continued)
pH VALUES FOR THE LEACHATE SAMPLES

Sample Number	pH Ya lue
\$20022 \$20025 \$20026 \$20027 \$20028 \$20030 \$20031 \$20034 \$20035	5.6 8.5 4.7 5.6 5.5 5.6 5.5 5.8
\$20036	5.9
\$20038	8.5
\$20039	5.7
\$20040	5.5
\$20041	5.6
\$20043	5.5
\$20044	5.9
\$20047	5.0
\$20048	5.4
\$20051	7.2
\$20052	6.5
\$20053	8.2
\$20054	8.2
\$20055	8.7
\$20056	5.3
\$20057	4.6
\$20058	6.5
\$20060	6.2
\$20061	5.0
\$20062	5.2
\$20064	9.1
\$20065	9.1
\$20066	9.1
\$20067	9.1
\$20068	8.6

CONTAMINATION SURVEY BASIU F SUB-SOIL

Parte 26 Jan 72

12225	1	KMA-18051. F 0,0 1,0 800	1.0 2.0				7.0 2.0	2.0	3.0 4.0	·		. 0,5	
	27/1400	Soil Boring KmA-Bo				,	H 1,	b	31	7	11	ii ii	
# . E/O A Y S		520001	520002	520003	\$2000 4	53 000 5	2000 23	520107	8 000 55	\$ 000 55	520010	// 00 c s	A-1

						•	81 -	BORING LOG FIELD DATA		·		
Project_ Location		Basis KMA	PS =	1. ios-7Ps	contominetion	minet		burry Sile	Can	Curing E	Date 1/26/82	7
Orill Rig			Inspector	7	Digues S		Operator_	}	3	Surface El		
SAMPLE	DATE		STRATUM	ă	DRIVE	SAI	SAMPLE .	TYPE OF		7,07		1
HUMBER		FROM	2	FROM	10	FRCA	10	SAMPLER		AN	CLASSIFICATION AND REMARKS	
								10 6 F From				
ı	Hiche	4.5	4.	16.5	0						alread on do to the part dans	_
	1/26/22	16.	4/2	0	97			11		135	Loud to hear on	
	1/26/2			1.5	2.7		,	1		7.7		1
			Ţ	1.7	1.F		`	. "		7/		1
					·						14" plastic asphalt at	
3.200el						610	7,0%				609	
524402		0.0				07	3,0				cl - mt silty clan - clan	
Somos						2.0	5.0				June mind	-
Sund					·	6.6	4.0		-			1
·							`				13/2. (Lighter w/24)	5
		1									" Changing to ak alan St.	
		•	7.7								•	
		1:7								,	CL-ML (43 above) but	1
											Ü	
											104 RS/4, becomes more	
			44	-							silty woldentil Chile modules	
WES IN	Fond B19	-	EDITION OF NOV 1971	N 1531 W	AAY BE USED	E0		-			Sheet	≃
				:		٠					in 30%, 0.51	

ı	1				,					10.
7	Res. R	304	30h- 50, /	(en l	/ *** . #	trep.	em, not to sources Sile	Partie E	u u	Date 16 Jan 12
Orill Rig		Inspector	,	T. min	'	Operator_		3	Surface El	
SAMPLE DATÉ		STRATUM	OR	DRIVE	3,4,6	SAMPLE &	TYPE OF		4.5	
	FROM	2	FROM	2	FROM	10	SAMPLER		12601	CLASSIFICATION AND NEWARKS
							split anon			
1/206.	1/2 de surte	41.7	₹	0	1					Bean in the place of the state
CS 1. L / 21/91	11.	į.	0		. •		17		111	
, ,	1	1	9 /	3.7	ļ, 		"		717	
ii ii			1	4.4			"		10	Turned for going & ton.
										and the second s
Sames		•			0.0	07				
ן מאנג					07	2.0				
7 W 23					2.0	20				
52 040 8'					12.0	4.1)				
						•		,		
								-		
	٠					-				. *
	•					-			,	
					;	• 7	•			
·										

			·		:		81	BORING LOG FIELD DATA				
Project Basis	.9	193	6.in-5a.1	9	-teniert's	4,1	Sum?	Sile_	401	I F	Date	,
Drill Rig	1:		Inspector			ō	Operator		Su	Surface El	il Boring No. 259-2 2	, ,
SAMPLE	DATE	STR	STRATUM	S. O.	DRIVE	SAUPLE	PLE	TYPE OF			William Communication	•
	TAKEN	FROM	10	FROM	10	FROM	10	SAMPLER	: :'	:	CLASSIFICATION AND REMARKS	
						2	:			·	Va" plastis (pliable)	T
					:							1:
		0.0			:			•			cke sitte	
									ļ		Sand files mark to	1.
						·		:			7.0	Ī
	•				•						1 color chair	+
];	:	13H) 4 1/ 00 1/2	116
					1	1		:	<u> </u>	:	" born is	ŢĖ.
			3.7		i i	:	;	-	-	:	1000	1
. 1		3,7				:	:				0,0	
						,					sove color	12
·			4.1		;	•		:			2.547/4 600	<u>ا.</u> :
		4.1			•			,	-		ila ficui-	1
			4.4			!	•				100 4 40 10m 7.547	
			•		: :	# I	:			:	1.13	1.
					:		: !					
				·	:							1.
WES FORM 819	819) July	If at you so world?		1 0 0 XVX							1
		i	2 L					•		•	Sheet of Sheets	es es

00 TA	Surface El Boring No. 2 7	יישון פוראז	<u> </u>	27	77	Hs april 1	my sill have	(211)		the standy alast	91011. Seri	0.00	Start Court George S	71000	1/2 × 4/2		1	1048 514 64 1.21.20	i
BORING FIELD D	Operator	SAMPLE TYPE OF	2	mrs 1. 105.	1.1. 50.1.7.		0.7 0.0	20 20	2.0 3.0	1									·
1 5 1 5 Su 1 6	spector	TUM DRIVE TO TO	(E)	0 1.5	- 45 24	Soc		0.5	-		1.3		:	2.5		·		5.0	EDITION OF NOV 1871 MAY LE USED
Project Rasse	Am.A	SAMPLE DATE STRATUM	7	1.7°		0:0	52002 2005	92000 C	5.00 11 WARS	·		7.3			512				WES JAN 74 819 EDITION

A-5

CONTAMENATION SURVEY BASIN F SUB-SOIL

Pule 27 JA119. T thrug

		S'ann's								Surface Clarks Comments	Paris Column Column			
	erert		7.0	<u>_</u> ~	+:	-	1-7	-	7,5	0	1/100	77	3,	11.
	<u>.</u>	.0		.2.	~	0,		7	~	0	0	-	101	10
	LOCATION	Basin F RMA Site 12	1 4	Bosme Sile 1.3	Basinf Site 13	BasinF Site 14	Basinf 5, ce 14	Gassinf Site 14	Basin F Site 141.	Basin F	Bastuff 5,16 116	BasiuF	Bastur Site lik	Paris F
	TYPE Staple	Boring	Baring	Boring	Boring	Boring	BoRING	Borins	Boring	Boring/shu	Boring	Boring	Boring	٠, ٥
4 40	# . 21000	530012	520013	110025	5 20015	5 20016	520019	820018	5 20019	220025	520021	520022	5 200 23	ווישערי

								ľ	1				
									-	BORING LOG FIELD DATA			•
	Project_ Location	1	Rina F	5-6-50.	50.7		7am	inat	H	Contamination Lunge Sile Chas. E	da	14: E	Date 1/27/12
	Drill Rig			Inspector		1	177/						Job 110. 2. D.F.
					1 1	0	2	0	Operator			Surface El	El Boring No. 21.13
	SAMPLE	DATE		STRATUM	\dashv	DRIVE		SAM	SAMPLE	TVBE OF	_	25	,
		IAKEN	FROM	Ç.	一十	FROM	2	FROM	5	SAMPLER	*******	57	CLASSIFICATION AND REMARKS
			7 23	1	-0.65		0,0	•					100 1 1 de 40 To
			A.C.	_	0.0	7	4			2014 1/05		4	1111 G. 11 C
					113	<u> </u>	07			""		4	1 6 Charles Victoria
					3.0	<u>'</u>	4.55			1/		7 /	
												<u> </u>	
L	1												2/9 DIESTIC KEPIAIT at
			0.0		_		$\frac{1}{1}$					1	16/2,
						<u> </u>	\dagger	T			-	1	Sm very silty line sand
<u></u>	7				1	+	\dagger				_	_	- soft (slightly, to, non-cohosive
					1	+	\dagger				_		Very moist yel br. 10 y R s
	1			2.8	1	4	1			•			J. 10VP 511
			812			_					_		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					•								et silly elay the minor sand
										•			SHOUST NAME (GAS
			•										Small Golichy Volulets and
				4.5				İ					7
-						<u> </u>	+	T					(Color asabove) micapous
لبـــا						1	<u> </u> 	T.		•			·
>	WES FORM	. 819	EDITION	EDITION OF NOV 18	V 1831 &	AAY BE	71 MAY BE USED		1	,			
	ı	•	ì				1						Choos /

Sheets

Sheet

EDITION OF NOV 1871 MAY BE USED

							01-	BORING LOG FIELD DATA		
Project Location	32	In E Su	h-1-d		Con Taining	At in	{	Sarany Sile	dasin E	
Drill Rig		1	Inspector	N Thesan	1	0	Operator_		Surface El	El Boring No. 3/
SAMPLE			STRATUM	ao	DRIVE	SAL	SAMPLE	TYPE OF	25	
NUMBER		FROM	10	FROM	TO	FROM	2	SANPLER	4,27	
		2/1	4.4	1'/-	0.0					1 300 Black Gram surfer the tan
		Kouh	c61/4	0.0	1:57			,	07	
				1.65	2.9					
				2.9	4.5				<u> </u> 	
									<u> </u>	
									<u> </u>	
										- F
,										
								٠		
WES !	form 819	EDITA	EDITION OF NOV	W 1831 W	1971 MAY UE USED	g.		·		Sheet of Sheets

	- -				tr.m	100 chr. 20	The years	1								.,			. "		11/2/1/2	// s
	Date 27 Jan 82	El Baring No. 22		CLASSIFICATION AND REMARKS	4.4 1st 1-2" A. A. A. A. A.	TO 1 1. 11. 400 - 1-9"	Les Control		1 5th ap. 12.1	1 (1 () () () () ()	122 100 11 11 11	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 hot 5 2 / 1/2 2 1/4 21	7 CV W/2	1 5.13 Sand C/21	hace shart month	human a Calicha venilate	(wet caker) olkyelber bykyly	66 5 14 -5d, cla hard she	mark-nessel mothled with the	hand (met abs) dt not be 10 11 11	Sheet of Sheets
	Mari F	Surface El	-																			
BORING LOG FIELD DATA	Site		TYPE OF	SAMPLER		L. L. Land																,
8	Ed-Soil Contemnation Surey	Operator	SAMPLE	TO		1000																-
	rat'e		35	FROM							<u>.</u>											16.0
	tem	Lagin	DRIVE	T0		7.5	7,0	4.5														AY UE US
	1 50		ā	FROM		0.0	37	3.0														M 1831 W
	1 - 50.	Inspector	STRATUM	2	00	7.00					:			1.6				7:7		4.5		EDITION OF NOV 1971 MAY UE US
	¥	,]:			27-	100			0.0						1.6	•			7:7	·		EDITIC
	Project <u>22. 22. en.</u> Location	\	DATE	TAKEN		42	14.1	ガイ														618 :
	Project_	Orlii Rig	SAMPLE	NUMBER																		WES JAN 24

BORING LOG FIELD DATA	Date Lagin F Date Date Job Ho.	55	FROM TO FROM TO SAMPLER SAMPLER	0,0	5"	i i	<u> </u>		The court of the c	- Contract of the state of the	ייין ליינינול איניין איניין איניין איניין איניין איניין איניין איניין איניין איניין איניין איניין איניין איניין	11. 2/2/	The tast that the	1640 10:00 1040 1010	from very die grauf br to	- dis star of (2.5 / 3/2 -	10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	11.3 Color Valles from 4el		<i>h/h s//ai</i> — — — — — — — — — — — — — — — — — — —	
	Terres	200	Į.	 	1.5	44															
	(A) (S)		FROM	-13	1	20															
	1-22	maherin —	2	4.55	015														4.5		
	AN F	: _	1 =	Defin	9.75	200	- (9.0							٠						
	150 A		TAKEN																		1
	Project L Location Drill Rio		INCHARGE R												·						THO & OWN

WES JAN 34 819 EDITION OF NOV 1571 MAY UE USED

_Sheets

Sheet

. .__ A-20

	L L	Surface El Borino No / 2		CLASSIFICATION AND REMARKS	+ 1- 15 10 11	19 10 10 March	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-				
BORING LOG	Sile Basis	Surf?	-	SAMPLER											
BORIN	(2ntamination Lucas	Operator	SAMPLE												
		Ima	DRIVE	FROM TO FE	-125 0.0	00 1.55	1.55 3.0								
	Project Frank E S.LLieus	Inspector	STRATUM	FROM TO	ryla Cin							-			
	Project F12.	Drill Rig	SAMPLE DATE								•				

WES JAN 24 819 EDITION OF NOV 1871 MAY BE USED

_Sheets

Sheet_

BOB 31 SOIL CLASS, L'COTIC. E ROS! - 31 TIZ
0.0 - 1.3 - CL 3, Hy C/e -/oce
collèbe inclas. hard misacous
dry to very slightly moist (vet
1.3 - 2.5 mL clayer silt from dry ,
(minor sd) (minor sd) (calicho veinlet micesons,
(metrolor), yell, &r. 104R5/6
2,5-4.5 CL, silly clay w/inings sand.
matted w/ celiche hard, dry to
very slightly moist (wetcaler)
yel. br. to alk yel. br. 1043 51
4/6, micaeous
3.9 BFB 12 1: 0.0 - 2.1 - ML, clayer sand, 5,14 micacus,
from moist (Let celoi)
dk yel. fr. 164/2 4/4
21- OL silly clay whomes end
miches hard, moist (met chr)
4.0' dk 401. 5 1048 4/4 , 1000.
en il intile somble + inclas.
4.0' - 4.5 et silty clay soft-fire parent

150mplus	ions BASTN F SUB-SOIL - CONTAMINATION SUAVEY	TYPE SAMPLE LOCATION From TO	Baring/Sludge Sile DI B O Surga	(Boring Sile 01 0' 1'	3 Boring Site of 1 2'	4 Boring Site D1 2' 3'	S Boring Silcol 3' 4'	6 Boring Site 11 0' 1'	Boring	2 Boring Size 11 2! 31	9 Boring 5/1211 31 41	Boring	Boring Sitesu 1 21	* Boring Sile 50 21 31	Boring Cire Go 121 U.
11504110165	They that's	SANDLE # TYPE	5 2 00 5-1 X Baring/	520052 Borin				1	Sanusg* Bori	S20058 Bori		Szou 60 A Born		C: 0062 * Boring	

	13			12		1/10	,	ckal	49	7 ,	5	Con Stage	18/2	}	56	90		In ist			Sheets
	Action Frant Date 30 Jan E.	Surface El Boring No. 50	CLASSIFICATION AND REMARKS	6/4m guest, 30 Mach 5-6" Tan		5m-416 5.11/ 1/114 5016-300	5.11 soll (nen to shirthy	Cohesive (Probably remo	fill) shifty noist mines	alk aran br 2.51 4/2 11, 100	0.2-0.3" dk 401. 610m	(10 YR 4/6) below 0.3	Changing to 1,01, by 104	with steath.	66 5 16 Clas to 1 minor	+ ore small pour, grav, or	Caliche Ve lots hindred	in bot o. s. I firm horal min	421. 50, 13 VR 5/6 Contine	mice Hakes	Jo
121 -		5																			
RORING LOG FIELD DATA	Site		TYPE OF																		•
BB		Operator	SAMPLE	2																	
	5	0	SAL			1															SED .
	hans		DRIVE	<u> </u>		_															EDITION OF NOV 1971 MAY BE USED
	1,64	8	90 70	3.1.6	_		1														1111 70
	646 - Lin	Inspector	STRATUM TO	0.0	-									2,3							NO NO
	3 2		STR.	1.7		10.0									2.3						EDITIO
·	P.28.cz		DATE Takén		•																FORM 819
	Project_		SAMPLE																		WES JAN 1

		•			7,	{				-			_	<u>ئ</u> ر.	<i>)</i>				2. 1.e.h.	Man	. s
	Date 20. 19- 62	El Boring No. 0.7		CLASSIFICATION AND REMARKS	Brown meist (not west) 3.3.1-1	4		mk at all william	Firm 1 20h		. 1/2	16	Lad house and from - Land	L Ven at ou	27/1/1/20	1.	1	lote from hord mais	1	15 14 cra. (4,5 /7/2) - (2a/let /hon	Sheel of Sheels
	AMA.	Surface El							·												
BORING LOG FIELD DATA	Site		TVDE OF	SAMPLER					÷												
		Operator	SAMPLE	TO TO												·					·
	Emran		_	TO FROM	0,0		•														r BE USED
	5 tc	00	DRIVE	FROM	-13															•	OV 1831 MA
	1-9.5	Inspector	STRATUM	FROM TO	13c 645 4						0.7	2			,,	7.9				45	EDITION OF NOV 1871 MAY BE USED
	Basin F			TAKEN FR	34/45	•	.	2.0				0.7			<u> </u>	<u>. </u>	67				819
	Project Bagin	Drill Rig	SAMPLE	I																	WES JAN 34

Core.						Marital 1		ms-1m	· fiis	ingis	reworkes	27.67	to ht olive		4/1/2	fin - hard		a 5,11,0/2,	Grav. Incorn	Sheet	Vay pulo br.
yile		TYPE OF	SAMPLER				.					•		.			•				,
, South	Operator	SAMPLE	FRUM TO														·			ceo	
		DRIVE		-1.55 0,0		-				-	<u> </u>						•		<i>7</i>	/ 1971 MAY UE US	
1 .	Inspector	STRATUM		,				0,0							7.7		\dashv	2.1		EDITION OF NOT	5./1
-	6	DATE																			
		Inspector	19 Inspector DAIVE S.	19 Inspector DATE STRATUM DRIVE SATAKEN FROM TO FROM	DATE STRATUM DRIVE SATAREN FROM TO FROM	DATE STRATUM DRIVE SATAREM TO FROM TO	DATE STRATUM DRIVE SATERATOM TO FROM T	DATE STRATUM DRIVE SATERATOM TO FROM T	19 DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM: Scylor 26,46, -1.55 0,0	19 Inspector DATE STRATUM DRIVE SA TAKEN FROM TO FROM TO FROM : Scylar 26/45, -1/55 0, 0	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM : Scylor Lelli, -1.55 0,0	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM : Scylar 26/4, -/.55 0, 0 : 0,0	DATE STRATUM DRIVE SATANINE FROM TO FROM TO FROM O, O. O. O. O. O. O. O. O. O. O. O. O. O.	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM SCALA LALL, -1.55 O. O O.O A.O.O.O A.O.O A.O.O.O A.O.O A.O.O.O A.O.O A.O.O A.O.O.O A.O.O.O A.O.O A.O.O.O A.O.O A	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM : Scylar 26/45, -1/55 0, 0 : 16/0	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM : Scylar 2624, -1.55 0, 0 : 1.57 0, 0 1.7 1.7	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM SCALA LALL, -1.55 O. O O.O O.O A.O A.O A.O A.O A.O	19 Inspector DATE STRATUM DRIVE S. TAKEN FROM TO FROM TO FROM : Scyler 26/4, -1/55 0, 0 : 1/2	If Rig Inspector If E DATE STRATUH DRIVE S. SELVER LLA, -1.55 0, 0 O, 0 O, 0 I. 7 I. 8 I.	19 Inspector TAKEN STRATUN DRIVE S. TAKEN TO FROM TO FROM SCALA 26 La1.55 0, 0 O,0 O,0 A.2 L.7 L.7 L.7 L.7 L.7 L.7 L.7 L

A-26

BASTH F SUB-SOIL
COUTAMENATION SURVEY

true Teb82

	PE MARKS					Sur face Studge Samposle-Counses				
	2022	-	~	~	4	Q				
***************************************		O	_	2	~	0	• .	•		-
	1 ocattou	5:402	Sileoz	5,1202	5:100Z	Sile-11				
	Type Shaple	Banka	Boring	Boring	Boring	Borns/Slubse				•
	the stanks	52,00.64	\$20005	\$ 3,00,5 k	520069	520068 Borns/shope				 A-27

- 1) 교	BORING LOC FIELD DATA		
i i	Nasia E	75-	1,00	3.00.5	1		Site	Marca	4MA
Sill Rig		Inspector			ĕ	Operator		Surface El	e El Boring No. 22
SAUPLE DATE		STRATUL	DRIVE	if.	SAMPLE		30 30 3		
	FROM	10	FRCM	10	FROM	10	SAMPLER		CLASSIFICATION AND REMARKS
	" sulpa	lin	-1.35	0.0					And America
									I've very
<u> </u> 									1 :
<u> </u>		.]		.					
									Gentlyner
	0,0					-			11.
									• •
1								 - 	Gran Ar 11, 12,000
					·				102 50/15 3/100 6
	·				·			 ,	1/11101 /
_	.	1:3							0//2
									35.66 rowaled Fill
	1.7								66 5 14. clus. w/ minor 50
									mica 1146 6
									Like vanilats it olive
		3.3					•		2
WES JAN 34 819		EDITION OF NOV 1871 MAY BE USED	/ 1971 MA)	r ok usei	a				Sheet 0 2 Sheets
)				•			yer. br (10yxs/6) with depth
			•	•			*		

A-28

		<u>ā</u>				70		7	3	17/0/01	<u>, </u>			 <u> </u>		 	 		٠.
	Date	Surface El Boring No. 02 (Gradin	SUCCESSION SANTANTINES	CLASSIFICATION AND REMARKS	06 5, 1/2 ola, Whenon	100 3000	ist dor 26	t olar min	11.63 (1.6. C.)	101 / 10 Jen									Sheel 2 of 2 Sheels
BORING LOG FIELD DATA	Site		TYPE OF	SAMPLER				i											
		Operator	SAMPLE.	FROM TO														•	
			DRIVE	FROM TO				•											1971 HAY BE USED
		Inspector	1	10	3,5	•.	7.3	17.3		4.5		·							EDITION OF HOV 1971 MAY BI
	,		DATE	_	;;; ;;;										·		·		819
	Project .	Drill Rig	SAMPLE	W. Complete											·				WES JAN 11

BASINF Sub-liner Soils Analysis

•				•	•	_;
17/e#	Sample Type	Site#	Dap+h (ft)	Shipping Date	Extraction	1
001	Boring	1.21	0-1	26 JAN	×	
07	" 7	- 11	1-2	11	l ×	
`03	'n		2-3	* 1	X.	
04	"	,,	3-4	, 19	NO	
05	: 11	22	0-1	"	×	
06	11	11	1-2	11	· ×	
07	ų	"	2-3	ч	X	
08	11	11	3-4	11	NO	
09	"	23	0-1	11	X	•
10	*		1-2	11	X	
11	14	. VI	2-3	11	×	
12	11	13	0-1	27 Jan	X	
13	la .	11	1-2	11	X	
14	11	11	2-3	1.7	NO	
15)1	11	3-4	11,	NO	
16	1)	14	0-1	11	Χ΄	
12	11	11	1-2		×	
13		, , , , , , , , , , , , , , , , , , ,	2-3	11	X	
19	5	. 10	3.4		· NO	
20	Sarface Sample		-		X	•
21	Boring	15	01	. "	*.	•
,22	,, ,	11	1-2	- 11	X	
23	10)1	2-3	11	NO	.
24	11	- 11	3-4	11	NO	
25	Surface Sample	70		38204.	X	A-30
l	<u> </u>					

Basin F Sub-liner Soils Analysis

						, .
بن ادبنا	Sample	Site#	Depth	Shipping Date	· EXTRACTION	
2789012345678901234547890	Type' Boring Boring III III III SURFACE III III III III III III III	70"""	0-1-3-1-23-1-23-1-23	287AIU 297AIU 11 11 11 11 11 11 11 11 11 11 11 11 11	XXXD XXXD XXXXD XXXD XXXD XXXD XXXD XX	
	:		A-31		16	

Basin F Sub-liner Soils Analysis

		`		·		
sle#		Site#	Dapth	,	ExtRACTION	
	Type			Date		
51	Sample:	01.		2,FEB	Χ	Sampled 303
52	Borning	```	0-1	11	X	
53	11	. 11	1-3.		X:.	
54	1)	11	7-3	11	- X	
55	. "	11	3-4	11	- X	•
56	, 11	11	0-1	11	X	
57	N.		1-2	11	X	
5 8	31	1)	2-3	11	_×	A COMPANIES TO SERVER
59	. 11	11	3-4	· · · ·	NO	
60	: H	50	0-1	11	Χ	
61	11	11	1=2	11	X	\mathcal{L}
62	13	H .	2-3	. 11	Χ	
63	11	١,	3-4	11	No	:
64	"	07	0-1	11	X	Sampled Itels
65	"	٥2	1-2	ij	*	•
66	"	02.	2-3	11	X	
67	"	02	3-4	11	¥	
38	Surface Sample	11		NI.	×	
1					: 16.	•
•						
		,				
		.	·	•		•
				ľ	Total = 50	
^				j	1	
· 1.			A-32		·,	
• :				<u>.</u>	1	

APPENDIX B LIQUID/SOLID RATIO (LSR) DETERMINATION DATA SHEETS

Ratio .L/S
.4 ml .28 28 1000
2,0ml .40 40 1000
1.5 9.4 , 30 30 1000
1.2nd .24 24 1000
1. 2mg , 24 24 1000
1.5 ml , 30 30 1000

/

1

Ż

· 第名

Natio Weet Vex Total Wi. for Extraction Sample Adjusted Volume 1/5 1/6 1/0/6 1
Vwel Vex Total Wt. for Extraction Sample 1000 Volume 1000 g 4.8 1000 Volume
7 Vwet Vex Total Ht. for Extraction 1000 Volume 100 g or
7 Vwet Vex Total 1000 Volume 1000 Volume 1006 10/6 10/6 10/6 10/6 10/6 10/6 10/6
24 Vex 1000 V V V V V V V V V V V V V V V V V
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1.75 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76
Vol. for L/S 0.8 1.2 1.2 1.3 1.4 1.4 0.8
#. for t/s o S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0
Sample Ho. 1903 9 A Standy K Standy K Standy K Standy K Stop In C

A ten then book with was k

<u> </u>															1	\ <i>T</i>		
Volume 500	500			210			540			200			5.00			200	}	
Adjus ted pll	55			22			6			727			CI			77		
Sample pH	5.8			5.6			5.3			5.6			1.8			8.5		
Wt. for Extraction 100 g																		
Total Volume	(030)			1026			1020			1037			7000	1050	3001	1010	1000	anas
Vex 1000														1000				
Vwet	30			2 4			20			32								
Ratio L/S	,30			371			12			.32.								
Vol. for L/S	1.5			[13	i		7.0			1,6								
Ht. for L/S.	5.0			5.0 kg	1		5.0			5.0				51.49.0	"	11		-
Sample No.	5619 -111	850 "	Stvo Li	5410 Le	5,40 13	52:0	54.01	Sec 14	5,00%	5200.	52.02.1	B10 ::	5100210	5.20.01	\$10 E. V.	520022	Sec. 1.	13.181

	·····		·	<u> </u>		· · · · · · · · · · · · · · · · · · ·												
Volume 500	5.00			200			540			570		-	3.00			300		
Adjusted pil	4.22			77			77			77			77			77		
Sample pH	14.7			5,6			5,5			5:2			5.6			5,5		
Wt. for Extraction 100 g							[1]											
Total Volume	1030			1,200			1040			101.0			h701			1012		
Vex 1000	100/			1001												-		
Vwet	30			24			40			20		-	24			(2		
Ratio 1/5	CC ,			,24			.4			12			.2 <i>i</i> j		`	7/1		
Vol. for L/S	1.5			1.2			2.0			0'/			1,2	·		9.0		
Wt. for L/S	5,0			5.0			5.0			5.d			6.0			5,0		
Sample No.	5,002(1	5,00011	510026	5,00,2	\$100.74	520027	520025	Simila	Dans.	1768308	51 co 30 L	510c30c	5200316	\$20031	5200 3/6	52 00 HB	3/6 0015	350025

																		
Volume 500	500			SVO			Sov			200			570			570		
Adjus ted pli	42			77			77			77			77			77		
Sample pH	815			5.9			8.5			63			3'5			77	710	
Wt. for Extraction 100 g																		
Total Volume	A			l l						A						1		
Vex 1000	1022			1032.						1038.7			1040			1046.>		
Vwet	22			32						38	•		40			44		
Ratio L/S	.92			32						38			.40			46.		
Yol. for L/S	1.1			91						7.7			2.0			2.3		
Ht. for L/S	5.0			5.0			5-0			5.0			5.0			6.0		
Sample No.	2005	45500 25	2300325	Sto 0:1A	JE0075	37.0075	Simis.	15:00:25	520 Be	5000911	115005	510038	3500401	राज्या	Noses!	Sie	1///0115	5160015

!				×		·							· · · · · · · · · · · · · · · · · · ·		ļ	777		
Volume 500	5.00	•		STU			200			25			oas			SOD		
Adjus ted pil	77			77			22			22			77			27		
Sample pH	5'5			6.9		-	5.8			5.4			7.1	·		6,5		
Wt. for Extraction 100 g		·				-	1)											
Total Volume	٨			k			/030		•	1040						707		
Vex 1000	-71101			- 9001	٠													
Vwet	16			g.			0%			40		•			·	/i;	-	
Ratio . L/S	1/6			. 08			51			ch.		•				./i.	-	
Vol. for L/S	3,			0.4	,		1.5			2.0						XIC		
Mt. for L/S	5.0			5.0			5,0			3.0			Studice			5.0		
Samp]e Ito.	\$100d3	Sr.vo'436	\$4009	52004	5200411	Similar	Stooth	2110115	SIOUR	180053	Senoffe	Sew4 Pc	5200 57% Studee	5200512	5200; Je	5200171	12,0025	\$2005.90

	1	1			, 		· ·				<u> </u>				·			**
Volume 500	Stell			500			SNO			0,00			Sw)			500		
Adjusted pll	77			77			77	2		77			77		•	77		
Sample pli	0.0			8,2			2.7			53			77			6.5		
Wt. for Extraction 100 g		·					-											
fotal Volume	(032			1038			Way.			/020/			1024			1022		
Vex 1000																		
Vwet	32			38			54			20			24			22		
Ratio L/S	.32			.38			12			7		•	124	•		.22		
Vol. for L/S	97			1.9			2.7			7.0			1.2			///		
Wt. for L/S	5.0			8,0			5,0			5.0			5.0			5.0		
Sample No.	514534	485002	5800x3c	NP JONES	1650015	250054	5210551	13:40015	520055	2400561	23.005.60	Szocze	1250015	7,20025	510013	Szucin	Sichold	28 to 05 de

京大学工作 聖明 中民 小田 中民市

ted Volume 500	5.20			SW			500			500	-		sùo			200.5		
e Adjusted pli	77			77	,		27			77			27			77		
Sample	6,2	·		5,0			5,2			1,7			9.1	•		1%		
Wt. for Extraction 100 g																		
Total	1014			1026			1010			1016			2101			0101		
Vex 1000							7			7			7			7		
Vwet	#/			26			o1		٠	4)			11			0/		
Ratio L/S	11/			.26			0/'			9/'			11.			ai.		
Vol. for L/S	0.7			1.3			0.5			8.0			0.6			9.0		
Ut, for L/S	5.0			5.0			5.0			2.0			5.0			2.0		
Sample flo.	\$ 00 COA	40300 S	St up 60c	\$1800.C	719 00 25	2500 BIC	270,075	5200621	22,000.22	0/500 rs	a opens	52,60c4C	51.00EH	Se your b	7530075	520055	990075	

Volume 500	540			7,90			5:4			704	: 31	0.06	. 28			
Adjus ted pil	77			77			2. >			k. 2	2.5	5 2	7 2			
Sample pH	1"1			9,8	•	·	,			5.5	6-61	4.9	ن ن			
Wt. for Extraction 100 g							,									
Total Volume	0/01	:		7000			1050			1034	10.80	1046	12,30			
Vex 1000																
Vwet	10						5.5			34	36	4 i	30			
Ratio 1./5	ol.						Ň			. 34	-	34.	^ C .			
Vol. for L/S	0.5						4.5			1.7	1.5	2.3	1.5			
Wt. for L/S	5.0			Cooper Studye			5.0			5.5	2 6	2.26	5.0.			
Sample No.	7790675	\$1.80GZ E	5/30015	4.3900 TJ	वाष्ठकाड	Rouble	1.22 5.0	2 1200 C	\$ 166.15.	11 11 11 11 11	5 1000 F	6000000	5 2002 4			

THE PARTY OF THE P

APPENDIX C
SWLP ACTIVITIES DATA SHEETS

	pling	Date	W/s/r	ils/P.	45/Sz	1/8/2	-18/82	2/N/2	c/1/r	1/8/1	71/8/2		1/8/20	1/8/2	18/81	ulyre	1/1/E	1/8/21	
	Shipping	Time	4.50/m 1/3/P2	4:30 M	4:30 (M	4:30 M	9:30 PM	M 05/1	1.30 M	4.30 PM	430 KM		4:50 PM	4:30 PM	4:30 (M	1.30 Ph	4:30 Fm	1:30 PM	
	Storage	Date	6 30 M 1/28/2	1.0/s.	C3/63/	1/18/12	1/12/12	05/65/1	Ts/1/2	2/1/52	4/1/12	1.00 FM 1/27/82	4:30 pm 3/1/2 4:30 pm US/36	4.30 M 2/1/72 4:30 PM 2/8/F.	7///1	4/1/82	1/2/25	11/22	
	Stor	Time		3152AN 1/25/32 8: KUMIN 1/29/52 11:30 MM 1/29/82 4:30 FM 2/8/12	3,53 M 1/15/82 12.15-PM 1/19/82 2:44 PM 1/29/82 4:30 PM 45/82	1/22/2 3:53 FM 1/23/52 4:20/M 1/55/62 6:30 PM 1/68/52 4:30 PM 1/9/52	11.51.PM	1/27/52 3:53 FM 1/27/02 12:15GM 1/58/52 12:18 FM 1/24/59 4/30 FM 2/1/82	M108.11 1/2/1/5 1/50 1/1/50 1/1/50 12:00111 3/1/52 11:30111	1/2x/12 4:15/71 1/25/52 8:00 11 1/83 12:11/11 2/1/52 4:30 pm U/5/12	1/25/12 9 1572/12 8:00 KM 2/1/82 10:11/12 4:30 KM 2/8/30	1.00.17	4:30 FM	4.3011	4. soful 1/1/3 4130 M 2/8/50	1:15801	1/12 4.16.1711 1/2/1/52 1:15 (A) 4/2/12 4:30 Fm 4/1/60	1/21/52 4:14 10 1/11 1/32 4:30 FM 4815.	
	Filtering	Date	3:5564 1/5/12 4308M 1/13/52	129/82	73/67	73/87	1/21/12	1/08/21	C3/1/2	11.183	41/83		2/1/2-5	11/83		Cx/i/i	2/1/2	7/2/2	
	FIIt	Time	430FM	S. Fullin	12.15.PM	WJOZZ	R. Wish	WJS1:21	8.00 MM	WK + D : 8	8:01 AM		14400.1	1.0001	11.50.01	3.00/11	Lity ch. J	V. 1V AN	
	Ish	Date	1/52/12	1/55/37	1/18/12	1/23/52	1/15/52	1/11/12	1121/82	1/25/52	1/3/12	•	1/4/12	1/2/1/27	16:163	1/1/52	1/2/1/27	1/1/52	
ction	Finish	Time	8:9:2	3152.94	3;53 rM	3:53 FM	3:53 FM	3:53 PM	41.111	4:151711	4.15.121		4.15 1711	1/3/12 4.15 PM 1/2/152 1. 000M 4, 153	4.15.01M	4.15 3/11	1111111	1.18 1.11.1	
Extraction	Start	Date	1/27/52	1/21/2	1/:3/12	,	1/:1/:2		28/82/1	1/25/12		,	4 165 1/25/12 4.15 PM 1/4/12 1.00 PM 2/1/52	1/11/12	1/21/12	1/13/12	*	1/11/2	
	Sta	Time	3:55FM	3.53 641	3.53 [4]	3.53 P/4	3:53 6111	WJ 858	4.08 PM.	gos ral	405 Fire		Vill's), h	414711	4.05 FM	FUS FINI	1115111	MASON	
	g Sample	Da te	1127/82	73/cd/	1/13/32	25/67/1	- 2101 2 10171 1/27/32 3:53 PM 1/27/52 3:53 PM 1/23/52 8 10/32 11:31 PM 1/27/52 11:31 PM 2/3/52	1/21/12	MASO. H - 5/22/2	127/52 405 FAI	12 13 9M 123/82 4 05 FM	1/27/52	162/52	1/27/82	5:000 × 1245/11 127/52 4.05 FM 1/5/12 4.15 PM 1/61/52 1:000 1/1/82	5 2000 CA 3: 11 PM 1/27/72 405 PM 1/23/22 4.75 871 1/13/52 8:00 AM 1/1/52 11:15 PM 1/1/52 11:30 PM	Swooth 4. 10 1/1 1/27/02 fustil	12 10 cm 1/2/12 445/W/ 40/12 416 1/W	
	Receiving Sample	Time	17. 10 1. 10 1. 10 1. 16		17. prfM	12.10¢M	12.10.74	13/6/.21 DE 000 1	W./01.71	10:07:07	1818 C10	52000 1 12:10111	S. c. c. c. c. 12 1/1/ PAI	1. wash 13. 10 181 1/27/82	11/2/6/12	S: 10 PM	X1. 10 1/A	1211 874	
	Sample	No.	V13037	23000 1 12 10 18	21000 15	עב מאיי	JE 18015	יו יוטעייי	05 000. 5	5,000 3E	Sevuesa	1 100025	S: 0005#	3. m. 5h	× 000.5	Scoon	A Linear !	י שיניינ (

Time Date Time Date Time Date Time Date Time Time Date Time Time Date Date Date Date Date Date Date Dat	ecelvi	Receiving Sample	35	Extra Start	Extraction	Finish	FILE	Filterina	Sto	Storage	247	30
11/21/12 3:10 MW 2/6/2 2:15 TM 2/6/2 9:30 PM 2/13 1/31/12 3:10 MW 2/6/2 2:15 TM 2/6/2 9:30 PM 2/13 1/31/12 1/31/12 1/30 PM 2/130	Date	a ,	Time	Date	Time	Date	Time	Date	Time	Date	Time	uing Hate
1 1/39/12 2.10 1/10 4/622 2.13 M 4/72 4:30 PM 21 1/39/12 4:30 PM 21 1/30/12 4:30 PM 21 1/	11/1	152	4.05 FM	1/28/82	4:157:11	124/82	8:10 (111.	:/:/22	2:15 rm		9.30 Vm	1/1/2
1/30/12 K-20/NU 42/32 C.15 PM 1/27/82 4:30 PM 1/30/12 4:20 PM 1/30/12 4:20 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 4:30 PM 1/30/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 1:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/3/12 2:00 PM 1/3/12 4:30 PM 1/3/12 2:00 PM 1/	1/2/	2/	LINSTAN	1/11/52	4:150	18/1/2/): a 11/4		2.13 PM	,	4:30 PM	1/5/2
1/30/12 420/m 2/c/82 12:00/m 2/3/52 4:30 PM 1/30/12 420/m 2/c/82 12:00/m 2/3/52 4:30 PM 1/30/12 2:20/m 2/c/82 6:30/M 2/c/82 4:30 PM 1/30/12 2:20/m 2/c/82 6:30/M 2/c/82 4:30 PM 1/30/12 2:20/m 2/c/82 6:30/M 2/c/82 4:30 PM 1/31/12 9:00 PM 3/3/52 1:00/M 2/c/82 4:30 PM 1/31/32 7:00 PM 2/3/52 1:00/M 2/s/2 4:30 PM 1/31/32 1:00 PM 2/3/52 2:00 PM 2/3/72 4:30 PM 1/31/52 1:00 PM 2/3/52 2:00 PM 2/3/72 4:30 PM 1/31/52 1:00 PM 2/3/52 2:00 PM 2/3/72 4:30 PM 1/31/52 1:00 PM 2/3/52 2:00 PM 2/3/72 4:30 PM	1.10 CM 12750	2	1 45 111	11.5/12	4.157.11	Z3/6c/1	W/V DIY	1/1/37	4.15/01/	<u>'</u>	4.30 PM	2 K/ 22
1/30/12 420 FM 2/c/72 12:01/K1 2/3/52 4:30 FM 1/30/52 120 FM 2/5/52 12:01/K1 2/3/52 4:30 FM 1/30/52 2:20 FM 2/5/52 12:01/M 2/3/52 4:30 FM 1/30/52 2:20 FM 2/5/52 6:30 FM 2/3/52 4:30 FM 1/30/52 2:20 FM 2/3/52 1:00 FM 2/3/52 4:30 FM 1/30/52 2:20 FM 2/3/52 1:00 FM 2/3/52 4:30 FM 1/31/32 7:00 FM 2/3/52 1:00 FM 2/3/52 4:30 FM 1/31/32 1:00 FM 2/3/52 2:00 FM 2/3/52 4:30 FM 1/31/52 1:00 FM 2/3/52 2:00 FM 2/3/52 4:30 FM 1/31/52 1:00 FM 2/3/52 2:00 FM 2/3/52 4:30 FM	17:10:KM 1/23/62	3					,		N.W.1	1/27/12		
1/30/52 (2011 2/2/52 12:00/11 2/3/52 4:30 PM 1/30/52 2:20/62 4:30 PM 1/3/52 4:30 PM 1/3/52 4:30 PM 1/3/52 4:30 PM 1/3/52 2:20/62 6:30 PM 1/3/52 4:30 PM 1/3/52 2:20/62 6:30 PM 1/3/52 4:30 PM 1/3/72 1:00 PM 1/3/72 1:00 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 2:00 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 1:00 PM 1/3/72 1:00 PM 1/3/72 2:00 PM 1/3/72 1:00	77	41	1.48PM	1/3/12		1/34/12	420 FM	2/4/82	12:01/k]		1:50 PM	2/8/22
1/30/22 2.20/2 4/22 6.30/M 1/1/32 4:30 PM 1/30/32 2.20/2 4/42 6.30/M 1/1/32 4:30 PM 1/30/32 2.20/7 2/42 6.30/M 1/1/89 4:30 PM 1/30/32 2.20/7 2/42 6.30/M 1/3/92 4:30 PM 1/31/32 7:30/M 2/3/2 1:00/7 2/3/52 4:30 PM 1/31/32 1:00/7 2/3/2 2:00/7 2/3/52 4:30 PM 1/31/32 1:00/7 2/3/2 2:00/7 2/3/52 4:30 PM 1/31/52 1:00 PM 2/3/52 2:00/7 2/3/52 4:30 PM 1/31/52 1:00 PM 2/3/52 2:00/7 2/3/52 4:30 PM	11/27	12		77	4:00 M	C3/08/1		24/2/2	M/ W. 1		W of it	c/5/fr
1 (130/52 2:20/6. 4/6/22 6:30/M 1/1/32 4:30 PM 1/30/52 2:20/6. 2/6/2 6:30/M 1/1/5/ 4:30 PM 1/30/52 2:20/6. 2/6/2 6:30/M 1/1/5/ 4:30 PM 1/3/72 4:30 PM 1/3/72 4:30 PM 1/3/72 4:30 PM 1/3/72 4:30 PM 1/3/72 1:00 PM 2/3/6 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 2/3/72 4:30 PM 1/3/72 1:00 PM 1/3/72	12/1	73	1.47 CM				1.20/10	11/2		13/87	4:30 PM	2/8/82
1/30/82 2:24/1: 2/42 6:30fm 1/1/8/ 4:30 pm 1/31/12 9:00 pm 1/3/12 1:00 pm 1/3/12 4:30 pm 1/31/32 7:40 pm 2/3/12 1:00 pm 1/3/12 4:30 pm 1/31/82 7:40 pm 2/3/12 2:00 pm 2/3/12 4:30 pm 1/31/82 1:00 pm 2/3/12 2:00 pm 2/3/12 4:30 pm 1/31/82 1:00 pm 2/3/12 2:00 pm 2/3/12 4:30 pm	12/1	72	1.15 M	11.9/1)	40014	1/30/12	2:20/K.	4/1/2	6:30 FM	1/1/32	4:30 FM	16/8
1/30/62 2.24 (11) 2/2 6.30 fm 1/1/69 4:30 fm 1/3/12 9:00 fm 1/3/72 4:30 fm 1/3/72 1:04 fm 1/3/72 4:30 fm 1/3/72 1:04 fm 1/3/72 1:04 fm 1/3/72 2:04 fm 1/3/72 4:30 fm 1/3/72 1:04 fm 1/3/72 2:04 fm 1/3/72 4:30 fm 1/3/72 1:04 fm 1/3/72 2:04 fm 1/3/72 4:30 fm 1/3/72 1:04 fm 1/3/72 2:04 fm 1/3/72 4:30 fm 1/3/72 1:04 fm 1/3/72 2:04 fm 1/3/72 4:30 fm	11-1	132	4:18 Pril	1/29/52	4:00 FM	1/30/82	27.11.7		G:10/M		4:30 1h	75/8/2
1/31/52 9:00 AM 3/3/52 1:00 FM 2/5/2 4:30 FM 1/31/32 7:00 FM 2/3/2 1:00 FM 2/3/52 4:30 FM 1/31/32 1:00 FM 2/3/52 2:00 FM 2/3/52 4:30 FM 1/31/52 1:00 FM 2/3/52 2:00 FM 2/3/52 4:30 FM 1/31/52 1:00 FM 3/3/52 2:00 FM 2/3/52 4:30 FM 1/31/52 1:00 FM 3/3/52 2:00 FM 2/3/52 4:30 FM	11/2/1	82	4.48 rm	1/4/27	4:00 FM	1/30/82	2:24 (III		6:30FM	11/189		2/8/2
1/31/32 7:00 AM 2/362 1:00 FM 2/357 4:30 PM 1/31/32 7:00 FM 2/362 1:00 FM 2/3/52 2:00 PM 2/3/52 4:30 FM 1/3/52 1:00 FM 2/3/52 2:00 FM 2/3/52 4:30 FM 1/3/52 1:00 FM 2/3/52 4:30 FM 2/3/52 4:30 FM 2/3/52 4:30 FM	127	82	4.18 PM		1 6.1	1/31/12	9:00 AM	1/3/12				L/1/8c
1/31/82 7:50 AM 2/36c 1:30 PM 2/557 4:30 PM 1/31/82 1:00 PM 2/3/82 2:00 PM 2/3/82 4:50 PM 1/31/52 1:00 PM 2/3/82 2:00 PM 2/3/82 4:30 PM	1/2/	Z	4.18 FM		77	Ce/n/i	T.UMM		i	rfish	Cf:30 PM	2/1/2
1/31/82 1:00 FM 2/3/82 2:00 PM 2/3/82 4:50 FM 1/11/82 1:00 FM 2/3/82 2:00 FM 2/3/82 4:50 FM 1/31/82 1:00 FM 2/3/82 4:30 FM	11/11/	23	9.13 Cm	1:400	7	1/11/32	WYOD'L	2/3/2		£18/7	-	1/F/R
1/21/52 1:40 PM 2/3/82 2:40 rM 2/3/82 4:30 MM	(2)	15.7	4.48 641	11:1/2		1	/: 00 /W	1/1/52	200 PW	43/22		2/2/2
1/29/22 7:15 AM 1/31/82 1:10 TM 2/3/82 4:30 FM	1/25	127	14. J. F. 1VI	1/01/82		1/11/52	lind m		2:00 rM	2/3/52		1/5/5c
	5.23012c 11.30 dAI 1/23	183	WY SA. B	1/29/12	1.15 AM 21.11	(3/13/	W/ 10:				4:30 Am	2/11/2
				,		·						
										-		
			A			Complete Com						

															١			1		
	plng	Date	4/3/2	28/3/2	1//h	/ ,				19/1/81	11.186	14/82	1/0/2	19/6/2	18/6/2	19/6/2	18/6/2	2/1/22	+	
	Shipping	Thue	2/3/12 G. EN CM		WY 08:4					48/81 300 PM 1/9/61	18/82 3:00 PM 2/1/50	7:00 PM	3.00 FA	3:00 PM	3:00 PM	3:00 PM.	2/4/82 3:00 PM 2/9/80	3,00 FM 2/1/52		
	Storage	Date	2/3/12	1/3/82	1/3/12 4:30 PM	161153			1/08/32			1/1/22 1:00 PM 2/1/82	13.9 4.35 for 21 172 3:30 pm 2/3/52 10:15 AM 2/4/12 3:00 PM 1/0/82	1/31/82 5:22 PW 1/31/82 4:35 2M 2/. 102 3:30 PM 2/3/51 10:15 MM 1/1/5~ 3:00 PM 2/9/82	2 9/1/1	1/4/52 3:00 PM 2/9/82	2/4/22			
	Stor	Time	Was;s	1:30 pm	330 PM	17. 34PV			index.	7/st.	75/16/12	न्द्रीक्षीत्र	10:157AM	10:15AM	M.16.1M	10:01111	VO: COMM	W. OU AM	12:30/14	
	Filtering	Da te	21/2/2	i	ab7	•				130/12 4 20 m 1/31/81 BUSAM 214/12 1030	13/1/2 WASI'S 4/12/1 MYOUR COLORIO	13/62 9.20/M 1/31/11 8:15/11 4/62 8 3/11	7,3/2/7	13/8/2	78/8/2	1/31/52 435 FM 21/32 3:30 PM 2/3/57 10:40 MM	1/11/82 4.5 70 21 1/32 3.34 PM 2/3/52 10:00 AM	435 CM V 172 3:30 FM 2/5/2 W.WAM		
	Filt	Ttme	1: WPM	1:11/m	WALLO!					BI 157/M	MPSI. S	Bissins.	1:50 /M	7.30PM	3:30/11	3:30 PM	3.34 PM	3:30 FM		
	ish	Date	173/29 4:09M 1/3//52 1:00FW 2/3/52	112.142 4.20 MM 1/31/12 1:111A 1/5/11	2132 4.24 PM 1/31/52 1:00 VM					15/15/1	1/3//34	1/31/11	1/1.11	21.12	16/1.12	21/1/2	13/12	V /32		•
ction	Finish	Time	J. SOFM	W. 07.7	Wal NZ. p					4:07.11	11.101.1	8. EVIM	4.55/11	4.35.7M	4:35 171	4.55 FM	4.5 TO	455-011		
Extraction	Start	Date		1/1.1/2						1/30/13	1/11/27	1:0/02	, **	1/31/82	1/31/82	1/3//52	1/31/52	1/31/22	, ,	
	Sta	Time	4 n Gal	115/11	4 15/80					4 15FM	4 15 PM	415/19	4.22.FA	Maris	5.24/11/	5:221pr	5.24/21	Missis	-	
	Receiving Sample	Date	123/12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/28/82 115/21	1138/82 4 15/20	18/87/	-Charle	5 French 193	11.57 V	1.1.5/52 4 15PM	1/21/12 Justin	1/:1/32	1/3/12 5.22 FM	1/11/83	- 1	J. 1/82 5000m	11.3/52 5:24/27	Waste Sulli	1 20/2/2 100 ST	
	Receivin	Line	Hay M. 11 VEPONCE	5200134 1130 AM	IN OSTI STONES	5200 1/ 1/ 1/ 1/ 1/ 1/ 1/A	(A) 100 100 100 100 100 100 100 100 100 10	一大大学 大田二日本 の大学	SECOPE ITER AM	5:00 11. A 11:50 ALL	Scotte it & AM	SCUERCE 11.20 11M	1500 P. A. 11 70 AM	71.32 pm	SELLIZ TO BE DAT	1, 30 hel	140 % .	They have	100 8.1	
	Sample	No.	Sec. 134	Franc?	2,100.5	710025	THE PERSON NAMED IN	- distant	\$ 30015	Stank A	dallas	Severice	A. C. O. P. A.	Tron Dr	322617	5.40/5/	Stoulfi	Trace/Fc	Sec.	·

									<u> </u>											
	Shipping	Date	ulth	Mafor	1/6/2	2/9/2	28/0/2	2/9/2	2/9/2	2/6/2	2/4/83			1		1/19fez	1/1/2	24/1/2		
	Shilp	Time	130 PM	3:00 PM	3:00 PM	3:8 PX	sad PM	3:00 PM	3:00 1 2/9/p	3:00 Pt 1/9/13	3:00PM 2/9/82					4:50PM	4: 50 FM	Mark.		
	age	Date	2/8/87	2/8/82	2/3/81	2/8/82	2/8/42 5:00 RM 1/9/82	2/8/32	4/8/82	2/1/80	2//2/5	1/24/82			1/24/2	2/11/82	2/4/82	515090 29/82 AIDM 1/4/82		
	Storage	Time	1.20 AM	11:30 AV	11:30 AV	05.21	0.7.0	00:2	130PM	12:3 g/M	15.30 //	1250121		V	12:30/W/ 1/24/EZ	5,50 PM	5,50PM	5.50 %		
	Filtering	Date	2/2/52 10:04/11 2/4/re 11:20 AM 2 F8 82 300 BM 2/9/p	4.00 KM 2/2/52 14:40 MM 2/4/52 11:30 MM 2/8/82 3:00 PM 2/9/22	122 4:01 4 (52 million 44/82 11:30 AM 2/5/81 3:00 BM 2/9/82	1/82 4.85 PA 2 115. 10:00 14/de 12:00 2/8/82 3:00 PN 2/9/82	2/4/84	1/31/57 4511 21/20 12/00 2/8/02 2:00 PM 2/9/20	1.31.22 435 11 211.52 11:00 m 2/3/54 12:30 m c/3/52	e/spr	13/12 8 25 11 Libra 11:14 M 45/12 10:30 1 2/5/80	•		a Ties Ties as an		2/1/12 4:00 PM 2/2/52 2:30PM 1/4/87 5150PM 2/9 4:50PM 4/14/62	112 4:00 PM 4/4/82 2:0PM 2/9/82" 5,50 PM 2/9/82 4:30/11 2/14/80	152 4001M 2/1/2 2:50M 2/1/82		
	FILE	Time	10:00/H	W/W.W	14:84/8:4/	WKO:01	N/w:01	W.WAN	WYDD:11	MYDEL	1:16 pm					W08:2	Ma.2	W/Q:2		
	Ish	Date	68/1/2	15/2/2	4/1/87	2/1/2	2/11/2	241/2	211132	21,15	26.12	-				75/2/2	4/2/32	rfefre	•	
! !	Finish	Time	1,2 400 pm	g. 10 YM	J.al/M	4.8.12	4. 15. 19	Mick	111.38.1	4 35 110	W 45 11M					4:00 PM	4.00PM	4.00 FM		
Extraction	Start	Date	1/1/2	1//2	1/2	113	1/3/12	1/8//81	1.11.12	1/31/18	dish						1/2	. *:		-
	Sta	Time	5 COVA	111/ 00.5	Sivo Fin	S.M.	11/12	1/1/22 5	3/12.5	Wares	S: cayla					5:30 62	1.11/11.	1.81 KM		
	g Sample	Date	1/28/52	1/25/82	Mi 128/82 Sivo FA	128/84	18 152	30 MM 128/82 5 24/M	1/25/52	128/82	125/27	128/52	You are	J. J.	1/28/82	63/67	1124/12	12.11.82		
	Receiving Sample	Time	SeczoH 11: 30 HA 1/28/52	5200201 11 30 AN 1/25/32 5:00 rul	1 30 11	11 30 MM 1/28/34 5778M	20021 11 30 AM 128 152 6:22 16/12 4 15 MM 2/112: 10:00 2/4/8X 12:00	M 00 11	7200 21 37 AV 1/25/52 5 249	Mas 28/82/ 11 50 11 158/82 SAMM	5240326 11:30 MI 1/25/32 SteryM	52.003A 11. 20 11 123/52	Name of the Party	A STATE OF THE PARTY OF THE PAR	1. 30 11/48/52	1745 AM 337 189	330235 11:45 AN 1127/12	22.00 34 11 45 11W 127/82		
	Sample	8	Que20 H	Second.	52 W 20C 11 30	AICHOS.	412002	stews!c	720C22 A	(250x) 22 }:	224 0222	S200.3A	Traffice and	, and a	52002	12ve 241	130020	11.2 13.22		

C--

				Extraction	ction							
Sample	Receive	Receiving Sample	St	Start	Tinish	ish	Filtering	ring	Storage	age	Shipping	ing
Mo.	Time	Date	T ime	Date	Time	Date	Time	Da te	Time	Date	Time	Date
5220825	14 sp 11	15 20126 11 45 12 1/27 1/2 5140 P. 1. 1	51407.5	1/2	wfosib	delso	2:3P	4.00 4419 2:31 Pm 2/9/82		2/10/82	9:00AM 2/10/82 9:50 Fig 4/15/FE	n.s/21/2
230025	4 45,14	Second 1 4. 14 1/2 5.10 14	Sagra	1/1/52	152 4:00 pm 26/52	4/2	9: 30%	73/17		2/10/82	4.34 Pal 2/1/52	1/2/21
5 t UU 16 F	Me afer	5.44 40 15/2 11/1 1/1/82 5:44 11 2	11/10:5		1/12 GUD /M c/c/82		2:50PM	2/1/82		9:00AN 2/10/BZ	430 1111	2/11/2
VCC 0125	1 45 sh	SCUD 220 1 42 201 1/24 /82 5 20 /21	5.00 (2)	7	152 400 m de/32	1	2:3017	, ,	5,30 PA 2/1/82	यभाष्ट्र	4.30 Mm c/15/82	4/15/82
1620025	15/15/16	3000 27/11-45 1101 1/21/82 5:11 971 2.1	5 W 571	1.4	1/8 1 G. 10 FM	1/2	W0,2		2/9/82 6130PM 24182	241/2	4:50 PM 4/1/P	1/1/2/25
7:0025	1.9. 181	1110 11 1 75/1:/1 14 1/1 220001	1112 43. 8	1/2	11.59 graph	6/2/2	2.309M	1	5130PM 29/82	1 . i	JA 30 PM	1/3//2
2200,51	11.145 1.21	5200 51 11115 AN 1/24/19 5 40 PM 4/2	5 40 PM	152	4.vo 114	1/3/12	8:30nm	4.40 MM 2/3/12 8.2017 2/10/82 (1,30 Am 2/10/32	9:30 An	2/10/32	FX PA	2//2//2
2500028	17.45 AB	5200256 1745 ANT 1/24/32 SIM PA	5:W /m	152	2/2/52 4:00 FM 2/3/12 16: 35th 2/10/52 41319M	1/3/12	12:33/h	2/10/22	पाइ।इम	2/10/82 1/30 MM		1/1/2
5.410 116	wl' h. 1	SA10 46 1.4: 11 11/ 24 22 Silv IM	W/ 11:5	24/2	182 441M 2/3/87 6: 30AM 2/10/82	13/87	4: 30AM	2/10/82	"1.30Ar.	2/10/2	4.34 A 240/82 1.80 MI c/15/BC	c/15/Be
Konss	52052 11 45.MI 1/29/82	1/29/82							Called Medical	1/24/82		
5.200 241	1245 1151	SLOOZO 24 1145 11 11 14/72 570 11M	STUD /IM		4) 12 HW/M 213/12 8.30AM 2/10/67 11:30AM	21/2/2	R:30AM	23/01/2	11.30Ar	2/10/82	2/10/82 1:30 PM 1/8/P2	1/2/12
5200 101	1.4. M	5200 308 11 15 MM 11 27/52 5:10 MM	Sieza	2/2/2	212 9 10 th 4/3/82 8.30My 2/2/22 11:30 AM	78/87	8.30M	190/2	11:30 AM	य्रीजीर	2/10/82 4:30 FM 1/5/12	2//2//2
5200 14	WV 16.1	5200 30 (1.4, MM 1/ 27/82 SIM /M	W/ W.5	7	4. OFIM	18/82	8.3CFM	2/10/22	11:3011	- /10 /x2	4/22 4:00/11 4/82 8"=CRMP 110/22 11:30 AM - 110/82 4:30 PM 4/15/02	26/11/2
5-20, 11.	1.4: 10.1	MW12 56/22 11 101 141 141 5011 605	Sim/m	16/2/2	4:00 PM	2/2/87	9:31m	23/01/2	12.30PM	28/01/2	1/32 400 PM 2/2/87 9:30 PM =/10/52 12.30 PM 710 182 (1:30 871) 1/15/1	1/5//>
11:025	135 AM	Seron 17. AM 1/29/82 SIWPA	5:10/13	17	fire PM	26/87	9:30AM	2/10/82	12.30Pm	2/10/12	12/59 4:00 M = 6/87 9:30AM 2/10/82 12:30PM 2/10/12 4:30 PM 4/15/2	cleps
31: 00%	11.4. 10	500 316 114, AM 1 3/52 5:14 Fit	11/1015	7	2/0/8 9 400 MM	2/8/12	1:3011	1:30 AM 2/10/52	12:30PM	28/01/2	12:30 PM 2/10/82 4/:30 MM 4/15/12	4/15/1/2
S. 20 72	5/2/1 HIV: 11/2/11	1/2/12				•			12 80115	21/1.2/1		
5200 1.7	S 5200 3.3 1 4 7/41 July 2	1/:1/12							12. 30 MM 129/8:	124/3		
		•										

	ng	Date	18/84	11/2/12	12/1	115/1	15.75	No.		118 Are	13/9/11 11/9/11	115/82	11/182	2////2	distr						
	Shipping	Time	1:30PM 2/10/82 4:3, PM ck/fr	8.30rt 45114 8:30 2/10/82 1:30PM 2/10/82 4:30 MM 4/15/12	8.30 pt 2/5/FE 8:30 2/0/82 1:30 PM 410/82 4:30 PM L	4:30 /111 2	FL 7:30 (11/2) 2/2 9:09AM 2/10/8 2 11:00AM 2/10/82 4:30 /111 C/15/12	8:34/m/ 1/5/12 9:30AM 2/10/22 11:00AM 2/10/82 4:30 PM 41x/2		2100PM 2/11/82 431 MM 2/16/2	2.009m 2/11/82 4.30 PM 21/6/32	2/5/2 9:00 AM 2/11/82 2:00PM 2/11/82 4:30 M 415/2	2/5/1/2 Mysogy 3/11/82 A.DOAM 2/12/82 4:30/M 2/13/82								
	Storage	Date	2/10/82	28/01/2	78/01/2	2/10/82	2/10/82	2/10/82	10 AM 1/3/1/2	2811/2	2/11/82	28/11/2	28/11/2	2/5//2 4:00 m 2/11/82 9:00 m 2/12/82 9:34/10	2/5/12 Hy:0012 411/82 9:00 AM 2/12/82 4:30/17	1/30/51			1/39/12		
	Stor	Time	1.30.PM	1:30PM	1:34 PM	II:DOAN	M.ooAM	11.001M	10.11	200PM	2,00PM	2:00PM	9.00AM	9: DUM	9:00AM	W.W.			13/10.10.		
	Filtering	Da te	28/01/c	2/10/82	2/10/87	2/10kr	2/pg 2	2/10/22		28111/2	28/11/2	2/11/82	2/11/83	2/11/PZ	7/11/8x						
	Fi11.	Time	\$:30	8:30	8:30	9.3014	9.00mm	9.30AM		2/5/16 9.00 Am 411/82	2/5/5c 9:00 AM 2/11/82	grod AM	17:00 PA	₩ 0a:h	14:00 th						
	Finish	Date	2/5/56	1/2/16	2/5/2	2/5/2	2/5/1	1/5/2	•	2/5/2	2/5/2				1/8/12	,			-		
ction	Fin	Time	8.30.911	8:30/1A	8.30/M	4.34(M	7:30 PMX	8:3UYAN		8:3 Pm.M	8:30 PH	130 Mil	6.30711X	8:30 Mil	8:307MK			-			i chi
Extraction	Start	Date	13/1/2	2///2	2/4/52	25/p/2	78/6/2	4	,	2/4/81			2///2	*	14/52	*				•	7
	Sti	Time	4.30 pm	4:30 YH	4:30 KM	80/52 9:30 PM	į	4:50 /41 1		4:30 PM	4:30 PM	4:30 PAS	4:30 /48	4:30 PM	34 87 4:30 PM 2,						C CINTO AT
	Receiving Sample	Da te	1/1/1/52	(130/57	1/54/32 430 PM	1/80/52	1/30 / 3x 4:30 PM	31.78	1/30/52	5200 43, 7:30 Med 1/30/52 4:30 PM 214/80	520 0 43, 934 114 1/30/ 52 4:30 PM 2/4/8c	1/30 32 4:30 PM 2/4/FE	1141 1/30 52 430 FM	5209446 7:30 AM 1/30/52 4:30 PAI 2,		1/30/82	187 Bis	24 mains	1/30/32		YAMAY.
	Receivin	Tine	5203401 9 3 JR	XVO 412 1 18 1114 1 130 157	SZVO JEH TOST MAN	5200 41, 9:20 1M	5200 41; Grav 1116	524041, 9:30 AKI 1/	7.30mm	9.30 Met	9.30 114	930 1121	1.30 1181	7:30 ARF	5-2004 11.20 AM!	5200-451 9:30 AKI	1. C. With Line 1. S.	45- 1-30 MM 200-1-74	9.361/11		1915 Me
	Sample	₩o.	100005	AVO CIL	SZVO JER	5200 41,	5-00 dr;	224041	541042	5200 43,	5200431	5200 His Gro	520044 1.3v	520944	5-2004 to	5202:451	*	1.65-	SYUDETE		

C-7

C**-**3

	Shipping	Date	6:308111 8/C/54 4:30 Mil 217 1849: 10 AM 2/12/PM 5, 16 PM 2/12/82 4:30 1/1 2/11/12	2/12/82 4:30 M 2/17/12	1 disk	12/21/21	2/0/2	19/0/61	3. HM 2/16/52 4.30 My 2/17/5,	2/11/2	1 2/17/F2	1 1/11 B	3/0/6	2/17/6	1/1/3/se	2/17/5	2/10/82 2:2080 2/10/82 11.2 an 1/15	Jane	11/1/2	2/2//2 dat/M 2/0/fr 1000 2/0/20 4 110 101/11
	Shi	Time	1 85.4	4.30 1/	4:5. //	11.20 11	41.35 M	G: 30 M	4.30 1/2	d: 30 /M	4.30 M	(4. 2. 1%)	4.5	4.25 Xu	4.20	4.30 14		4.30 (1)	11.00.11	11. 22.1
	Storage	Date	28/21/2	28/21/2	28/21/2	2//1//2	2//2//2	11/1/2	2//8//2	2/1/1/2	29/1/2	211/81	2/11/2	28/11/2	2/10/82	2/10//2	2/10/82	2/10/81	2 holes	/116.107
	Sto	Time	J. 16PM	SASPA	5115PM	11:10 Alm	11: 0v Par	11: va / 1	3.000	3.00/01 2//1//2 M. 20022	3. PU 11"	12,30P	12 5 20 PM	12,30Pm	2, 30PA	2/0/52 2,30Pm 2/10/82 4.30 Au 21,71 F.	2.20Ph	1.50 Pa	11:53 PM	(1 :- 0.
	Filtering	Date	1/11/2	11/27	aspila	4/1/80	1/1/2	4/2/12	430 PM 47/8.4 10:10 AM 2/16/52	2//0//2	2//1/2	4.30 All 2/ 2/ 8/62 90014 7/11/22 12,30P, 211/82 432 14 2/17/12	4:30 PM 2/7/8, 9:00AM 7/11/87 12:20 PM 2/11/86 4:30 M 2/12/8.	430/11 47/P2 9:00AM 9/11/82 12:30 PM 2/11/82 4.25 Mu 2/12/ 8.	2/82 4.35 FM 4/2/82 4:00 FM 2/8/82 10:20m 2/10/52 2,3081 2/10/82 4.30 M4 1/1/82	75/01/2	2/10/82	152 435 PM 2/7/52 Vrd/IM 2/8/82 11:01AM 7 1062 11:50 Ru. 2110181 41.3 M 2/1/6	2 Kh	9/2/2
	Filt	Time	4:30AM	9:30 MA	W 15:8	MJ 55:7	2:55 YM	2:55 VIA	70:10 AV	10:00 AM	BJEC 1X1	9roji4	9:00 AM	9.00AM	10:20m	10 30 An	16.20AM	11.0044	1.CCAM	11,000,11
	Finish	Date	2/7/84	47/81	78/1	18/6/2	2/1/50	2/1/50	7.3/6/7	2/1/52	13/2/2	2/2/52	13/1/2	1/1/20	2/8/22	78/8/2	28/81	1/8/27	18/8/	2/0/1
Extraction	Fin	Time	4:30 MI	4:30 PM	4.30 11	4.30 /111	4:30 MM	Hy oc.;	4.30 PM	4:30 PM 2/7/84 10:10 AM 2/10/12	HA OF. P	4:30 PM	4.30 PM	4.30 PM	4:00 M	JWJ OAT	4.00 1111	d'ru/m	d'a r'm	d'al IM
Extra	Start	Date	B/C/54	8/9/2	26/20	2/4/36	18/3/2	18/82	2/6/50	1/6/52	28/9h	18/3/2	25/2/2	18/8h	28/1/2	28/1/2	1/2/2	28/1/2	2/11/2	2/1/2
	St	Time	6:301/11	6.30 /W	MJ 08, 9	6:30 PM	6:30 /111	6:30 1/11	6:30 1/11	(130 All	6:30 PIII	6:30 Pm	C:30 PM	6:30 All	d:35.17	4.35 PM	4.35-PM	Wa SE h	1.35 PM	4.35 PM
	g Sample	Da te	2/1/13	2/c/89 6:30 TW 6/6/82 4:30 PM 47/82 9:30 MM 2/11/32 5115PM	2/1/22	2/c/32 6:30 PM 2/6/ 84 4/30 PM 2/35 PM 4/1/82 11:19 APM 2/16/824:30 PM 1/1/82	1/1/2	13/5/5	75/2/-	2/2/2	2/452 6:30/11/46/82 430 AM 2/784 DUCAN 2/16/51 3: WIN 2/16/92 4/30 AN 2/17/52	2/2/2	2/1/2	42/2/6:30 AM 46/54	2/2/2	2/2/02 435 PM 2/7/52 4:40 PM 2/8/52 10:30 AM	2/1/82 9:35 PM 2/7/82 G. W. 2/8/82 16.2000	1/2/2/	13/2/2	1458
	Rucelving Sample	Tae	SALOSSA 3:30 PM 2/1/19	5:30 PM	5200 536 3.50 PM 2/6/30 PM 2/6/30 PM 2/6/30 PM 2/6/30 PM 2/1/12 5115PM 2/12/82 4:50 PM 2/1/12	W 15.3	5200516 3:50 PM 2/2/82 6:30 AM 2/6/80 4:30 MM 2/7/80 2:55 MM 2/1/1/2 11:01 PM 2/16/12 4:30 MM 2/10/82	530540 3:34 PM 6/6/ 62 6:30 MM 2/6/ 82 4:30 MM 2/7/84 2:55 4:10 4/6/12 11:40 A 1/2/52 11:40 A 1/2/52 11:40 A 1/2/52	520554 3:34 PM 4/2/52 6:30 pm 2/6/84	:3c PM	Ł	120056H 330 MM 2/2/ F2 6:30 MM 1/6/84	.30 MM	.30 m			3:30 MM	1.30 My	130 M	130 PM 2
	Sample	F0.	52/105311	5200536 3:30 PM	5200 530	SZUOSTA 3:5V PM	5200576	5.3054c 3	5 4550052	520 556 3:36 PM 2/2/52 6:30 AN 2/6/52	5.29655c 3:35 MM	(20056H 3	520 56 3:30 MM 4/1/81 6:30 PM 2/6/52	520454C 3:50 MM	5200574 3:50 MM	Seves 16 3:30 MM	520676 3	12068A 3:30 My 4	CAVEED 3:30 MM 2/2/82 GIM 2/7/74 GIM 2/8/84 11/50AM 2/10/10 Wise M 2/11/5	520058 3:34 PM 4 J5R

					Extraction	ction							
	Sample	Receivi	Receiving Sample	St	Start	Fin	Finish	Filtering	ring	Stol	Storage	Shipping	olng
	No.	Time	Da te	Time	Date	Time	Date	Time	Da te	Time	Date	Time	Date
- 1	52EC 59	3:30 FM	2/2/52							4:00 M	51/1/2		
	SAV CEA	520 CEA 2:30 1M	2/1/2	4.36 MM	2 5/1/2	4.00 CM	4:0014 2/8/82 3:11 PM 2/16/PC 4:30PM 2/16/PC 4:30FM 2/16/PC	Zu Pm	2//6/PL	4:30pH	2/16/52	4:34/H	1/10/12
	Sav Cot	520 COB 3:50 YM C/C/	2/2/21	W/38.W	1/2/52	4:0014	4:00/11 2/5/82 3-10/m	3-10 m	1/11/81	1/11/54 4:30 PM 1/1/1/PC 4:30 PH 2/1//52	2//1/1/2	4.301711	Juler
	5 Avece	52060c 3:30 /M	!	1/2/ 12 4:35 MV	13/4/2	4:00PM	4:00111 2/8/84 SV8/m 1/6/82 4:30 8/4 1/6/82 4:30 314 1/2/84	3. ve/m	1/6/22	4.30 8/11	1/16/Pz	4:30 74	1/2/30
	Sev 614	Sev 614 3 :30 M	/2	1 32 4:35 PM	25/1/2	Hid op:b	4:40 PI 2/8/52 5:001/14 Obit	F.OO.MM	1/1/6	10:5016	1/1/2	2/11/5 14/12/6/13/6/12	1/10/20
	SzcrC1 B	SZEC [B 3, 30 PM	1448	WYSEB	2/1/54	1. 00 Pal	4:40 14 2/8/5c 5:40 AM 1/1/82 10:30 MM	S'do AM	18/11/2	10: 30 Mm		1/2/2 1/3/2/11 2/1/2V	2/1/20
	JAV61C 7:30	NA 05: E	2/2/82	4.85 PM	1/1/82	4:00 PM	4:00 MI -18/82 5:00 MM 2/13/80	7:00 /IM	2/13/8 0	10. com 4/1/2 16.30 /11/2 No. 20/	1/13/12	11/2/1	2/2/20
	520 V CP	STATE COM 3 50 PM	2/2/2	5:45Pm	1/3/81	4'30 fM	4:30 M 2/9/82/1:30 MM 2/13/74	11:30 Km		1.50/m	1/2/12	11/5/14 1/13/12 4:21 MA 21/1	1/2/82
L	Sav (2193.3)	3.50 MM	7	182 5:45pm 2/8/82		4:30 fil	4:30 FM 2/9/82 11:30 MM -113/82	MY S F. 11	113/82	ļ	1/18/12	1.361 ME 18: 4 26/81/2 MOS:1	1/17/82
	JX1626.3.30	3:30 1111	42	22 5:45PM 2/5		430 M	430 1/4 L 9 82 11: 30 AM 2/13/52- 1: SAIM L/13/12 123 WM 4/21 BE	11:30 MM	2/21/2	1.51M	1/18/12	1.3 WM	412186
-10	59 005	Sec 63 7:31 PM	1/2/		, ,					4.curt	2/2/52		
	Szeech	Szec 64 3:20 M	1/2/ 52 5.45PM 2	5:45PM	18/82	430 PM 219 FE	2/6/2	10:00 AM 2/14/5~	2/14/5	2:00 PM	2/////	13 CM My 24 14 M 24 15	Ind P.
<u>بر</u> چچ	Shocik	520 CK 3:30 M	/z /h	72 Sigs PM 1,	1/1/2	4.30411	4:30 Mil 2/9/53 19:00 MM 2/14/92	19: CE AVI	2////2	1	1/1//2	14/50 4.2, My 2/14 82	11.48
<u>~</u>	52 to cyc 3 30	330 PM	t	42/ R 545 MM	15/51	4:30 1/4	4:30 th 2/9/83 widden 2/14/82 2:40 PM	MIDIO	25/10/12	2:vo/m	25/16/1/2	3/5/12 W18. 4 25/6//	2/1/8.
*	Succes 3:30	3:30 pm		My 2 54 /2/2	15/25	4.30 ft	4.30 11 2/5/12: WYKA 2/12/82 1: W.M. 1/8/12 4.20 601 1/13/82	INAM: CI	2/12/82	1:30 PM	118/50	11.50 (11)	11.3/5.
- \tilde{\tiilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tii	5266613 3:30	3:30 pM	fila	110-5/15 28	2/5/2	G.30 MM	930112 1912 12 12 12 14 1/3/76 1.20 1M JASO 420 1M 2/13/2	W/20:55	1/3/50	M/18.1	2(/2/)	4.20 PM	2/13/2
六	520652 3:30	1	Mell	13/12/12	72//3/2	1.30 8/11	4.30 811 -19/51 12:W/M -1/3/8" 1 Syrn	R.WYM.SI	1/13/90-	_,	411/82	11/18 11/18/11/11/11/11/11	1/2/52
	,	•							1			1.7	11/
7	2				T								

dangle delas

Extraction	tart Finish	Date Time Date Time Date Time Date Time	8:45 PM 2/8/5 4:30PM 2/9/82 1.W PM 2/1/92 3:00 VM 2/1/52 430/M	3.40 PM	5:45 PM 2/8/80 4:30/ 2/9/82 1:31/1 4/82 3:41 PM 4/4/82 4:30 MM 2/11/82	300 2/9/50 5:00 MM 2/10/24:31/11 2/16/82 8:20 NM 1/10/84 130 TM 2/11/1/2	30 PM 21/182 5:00 FM 2 /10/82 4:30 FM 2/16/82 8:30 FM 2/13/82 4:30 FM 2/13/82	 		5:30PM 2/9/82 5:40 MM 2/19/8 10:30/MM 2/13/84 12:19/84 1/3/84 1/3/84	•						
	iltering		PM 2/14/8L	28/1/2 W.	c8/h1/2 W	11/6/82	28/1/17 M	M 2/16/82	S/8/1/2 MJ3	1/11/2 1/13/80	•	 					•
			1 13/6/	18/11/18/6/	19/92 1:21	1 12 / 12 / 10/-	108.6 4301	110/94/201	110 82 /0:3	119 Fe 10:34	106/82 10:30				- 7.		
1 _ 1	Finis		4:30fm 2	4:30PM	4:30h 2	5:00jth 2	5:00 PM 2	5:00 PM 2	5 190 Mil 2	Sido MM 2	5:03 1/14 2						•
Extr	tart	Date	18/8	- 2/8/80	2/8/80	12/11/51	21/81	2/9/21	2/9/82	2/9/22	18,85		. =				
	S	Time	8:45 P	5.460	5:45	5:30cm	Nd 06:5	4:30 PM	13 of 15		6:30 PM						
	Receiving Sample	Date	2/2/2	c/c/27	2/1/2	2/2/2	2/c/32 6:30 PM	4/1/52	2/4/2	26/25	2/4/12	. .					
	Receivi	Time		3.31911	St 5200 CBC 3307M	570 67A 330 PM	520 676 3:31 PM	500 67C 334 PM	5200 GRA 3130 FM	5200 GB 3:30 FM	Ch 53062 330 CM				3		
	Sample	110.	W188.8 VD (12 8)	\$ 120 Glb	500 GGC	5.20 G7A	gr 5200 676	2300	5200684	919 oacs	S. Bobbe	2 km	7				

			7																		
t and	Sur	Date	3/8/8	3/1/2	3/8/2	3/8/2	73/6/6	3/8/2	3/9/5.	74/165	3/1/2	3/8/20	3/3/62	23/1/5	18/25	3/1/6	38/8/80				
thinging	dine	T (623	4.00/19	M/Wis	dia 19 3/9/50	1'10 PM	Myobis	4.01 M . 3/9/84	4. surth 3/9/8.	L'ooft	Lynth!	4:81/11	P. VA	E30 / /H	to fa	W. W	V.10 1'H			•	1
	95	Date	1/28/50			30/52	18/05	28/12	30/82	5281081	30/82	I'll R	12/34	12/8%	12/86	हिकि	(2/3c 4				+
	Storage	Time	730 FA	2:50 54	2:30 PM	1 14H 40:0	1 12 osco	13:00 AL 1/31/82	1 15 40:0	P. SO REL	10:00 AM 1/30/82 12WIM 3/0/82	: 00 Pi	100 (FIL 2	Cao Tai 2	470 PH 2/2/82 000 PM 3/8/54	egy fa le	9:10 M 42/ 8c				-
	fing	Date	9.30 AM S17/ Sy 11:00 AM 3/8/82 1230 67 1/28/82	18/82	730 AM 317/82 MINNAM 3/8/82 12:30 PM 1/29/82	9.3. A.4 31 7/82 1:00 F.4 3/8/82 10:00 AA 1/30/52 4:00 F.4 3/9/52	9:30 AM 317/9c 1:00 Pet 3/8/ 3c 10:00 AW 1/50/3c 5:00 FM 5/9/5c	18/8	7:30 AN 317/82 Prs AN 318/82 10:00 AN 1/30/82	78/1/5 Wassin 28/08/1 HD 00:01, 28/8/6 HU Shib	18/82 /	9:30 AN 317182 2:00 M 318 182 9:00 PM 212182 4:01/10 21 9182	9:30 AM SITIEL L'ED PM 31 8/ 94 4/20 PM 2/ 2/ DL PIOV PM 3/9/82	318 182 grav this 2/2/82 grav fit 3/9/52	28/8	9:35AM 2181 82- 3:30 PM318/82 GETT 14 C/2/82 GETT 1818/81/81	18/82				
	Filtering	Tfine	//:08 API	11:01/31 3	Pro APA	Live Fil	(100 /24)	1100 154 3/8/84	2.45 AH 3	PryS AM 3	8.45 AM 3/8/52	:40 FH B	E WAOS:	30 (81 3	3:30fM2	3:30 FM3	3:30 PM 3/8/82				
	Sh	Oate	3/1/82	11/83	11/87	3/1/82	12/82	28/11	17/82	11/2	28/1/	25/1	78/1/8	1930 AM 3/1/ 52 2:00 PM	4.35/Am 3/8/8" 3:30 FM3 8/82	18/8	18/8/				
action	Finish	Time	9.30 AM	9.30 AM	3.30 AM	9.3. 84	1:30 AM 3	29/C/s NA 62	7.30 AV	9:30 PM 5/7 FEE	9:30 621 3/7/92	7. 50 AH 3	1:30 FM	BAR OST	# 35.fm	W175.9	9.35 AM 3/8/8"				
Extrac	1	Date		3/1/82	3/6/82	16/82		1	 	}		1		78/9/	+			┪───		1	
	Start	Time	10:35/1/5	10.55.AM	7 A Di	28 601	10:33 AS 3/C/FE	133 A	D: 33 AH	198 82:0	10.33 RH	TE:33 AM	70:33 BH	135 BA	3/1/8/148 25.6	W) 25.6	9:35 AM 3/7/82			}-	•
	Samole	Date	1.9/82	128/82	28180	1.0/62	tro/Fe k	1120/F2 10:33 RM 3/6/F2	18/81	130/82	20182	13/7/	18/2/	1. 23 /21	12/52	12/ 22	18/7/			1	•
	Perciving Sample	Time	1983	John 17	20 404 65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 CIT. 10	The state of	7 0 0	F 421	A GOV	2 2	2 756	2 mil 2	2 66		1,1			-	•
		Sample	23/9/5 38/10:38/13 5/6/82	3.100:34 11.30 mm 11/28182 10:34 AM 3/1/82 11/83 11/28182 12:30 FM 1/18/82	3100130 11.30 that 11.981.82 10.23 403 3/6/82	530033611.30 from 1/26/62 10138 ALI 2/6/82	- 7 98 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1301/10 1:30 HC 1120/52	C. 10 C. 40 12 01 1/3/82 10:33 44 3/6/82	2.202.2011 1.20 82 No.33 861 3/1/82	STORE 49'ZE BUT 11801 FZ 10:33 HH 3/6/82	20000 213 001 2/2/82 1023 AN 3/6/82	CO. CONSTRUCTOR DE 1 1/2/ 1/2 1/2/ 1/2/ 1/2/ 1/2/ 1/2/ 1/	5100 CO 230 PM 21 J 52 10:33 AN 7/6/82	S. 100 100 100 100 100 100 100 100 100 10	5200 52 62 2/2 PL 9-35-11 3/7/82	23 27 Vis 0:10 27 52	- 6007	-		:

APPENDIX E: METHODS FOR BULK ANALYSIS OF BASIN F SAMPLES

METHODS FOR BULK ANALYSIS OF ROCKY MOUNTAIN ARSENAL (RMA) SURFACE SOIL SAMPLES FOR SEMIVOLATILE ORGANICS

I. Introduction

MRI personnel are currently validating a proposed method for the analysis of hazardous waste samples for organic compounds. Some of the samples have included contaminated soil and sediment samples. We believe the method described below will work very well to determine the identity and amounts of semivolatile organic compounds, including the 10 designated compounds, in the surface soil samples from RMA.

II. Analytical Method .

A. Scope and Application

- 1. This method covers the determination of semivolatile organic compounds in hearly all types of samples, regardless of water content, including aqueous sludges, caustic liquors, acid liquors, waste solvents, oily wastes, tars, mosses, fibrous wastes, polymeric emulsions, filter cakes, spent carbons, spent catalysts, soils, and sediments.
- 2. The method is applicable to the determination of most neutral, acidic, and basic compounds that are soluble in methylene chloride and are capable of being eluted without derivatization as sharp peaks from a gas chromatographic fused silica capillary column coated with a slightly polar silicone. Such compounds include polycyclic aromatic hydrocarbons, chlorinated hydrocarbons and pesticides, phthalate esters, organophosphate esters, nitrosamines, haloethers, aldehydes, ethers, ketones, anilines, pyridines, quinolines, aromatic nitro compounds, and phenols including nitrophenols.
- 3. The detection limit of the method for determining an individual compound is approximately 1 ppm ($\mu g/g$, wet weight). For samples which contain more than 1 mg/g of total solvent extractable material, the detection limit is proportionately higher.
- 4. This method is based upon a solvent extraction, gas chromatographic/mass spectrometric (GC/MS) procedure.
- 5. This method is restricted to use by or under the supervision of analysts experienced in the use of gas chromatograph/mass spectrometers and skilled in the interpretation of mass spectra. Each analyst must demonstrate the ability to generate acceptable results with this method.

B. Summary of the Method

A measured weight of sample, 3.0 g wet weight, is adjusted to pH 7.0 and sonified with 150 ml of methylene chloride. Anhydrous sodium sulface is added to bind the water present. A portion of the methylene chloride supernatant is concentrated and analyzed by GC/MS using a fused

silica capillary column. Qualitative identification is performed using the retention time of the compound and the relative abundance of three or more characteristic ions. Quantitative analysis is performed using an internal standard technique with a single characteristic ion.

C. Safety

The toxicity or carcinogenicity of each sample, reagent, and calibration compound cannot be precisely defined. Thus, each sample and each chemical compound is treated as a potential health hazard. From this viewpoint, exposure to these chemicals must be minimized by whatever means available. All operations involving the use of methylene chloride and the samples will be performed in a hood. Care will be taken to avoid contact of skin with methylene chloride. All work with the sample will be performed in a limited access laboratory. Laboratory coats, safety glasses, and gloves will be worn by all personnel working with the contaminated soil samples.

D. Sample Storage, Preservation, and Handling

The contaminated soil samples will be contained in glass jars having Teflon-lined screw caps. The samples will be refrigerated at 4° C from the time of collection until extraction. All samples will be extracted within 10 days of receipt and completely analyzed within 21 days of receipt.

E. Details of the Analytical Method

- 1. An aliquot of the sample is first extracted to determine the pH.
 - a. Thoroughly mix sample.
 - b. Weight 3.0 g (wet weight) into 200-ml centrifuge tube.
 - c. Add 15 ml methylene chloride and 15 ml of water.
 - d. Sonify mixture for 2 min.
- e. Transfer mixture to 400-ml beaker using 50 ml methylene chloride and 150 ml water as rinses.
- f. Adjust pH of mixture to 7.0 \pm 0.2 by titration with 0.4 M $\rm H_3PO_4$ or 0.4 M $\rm K_3PO_4$ using a pH meter to measure pH. Record volume of acid on base required.
- 2. The extraction with methylene chloride is then performed using a fresh portion of the sample.
- a. Weigh 3.0 g (wet weight) of sample into 200-ml centrifuge tube.
 - b. Add 15 ml methylene chloride.
 - c. Add 1.0 ml of 4 M phosphate buffer.

- d. Add an amount of $4~\underline{\text{M}}~\text{H}_3\text{PO}_4$ or $4~\underline{\text{M}}~\text{H}_3\text{PO}_4$ equal to one-tenth of the pH 7 acid or base requirement from above.
- e. Sonify mixture for 1 min (cool if necessary to maintain 20 to $30\,^{\circ}\text{C}$).
 - f. Add 135 ml of methylene chloride.
 - g. Sonify mixture for 1 min.
- h. Add an amount of anhydrous sodium sulfate powder equal to 15.0 g plus 3.0 g/ml of the $4~M_{\rm H_3}PO_4$ or $4~M_{\rm K_3}PO_4$ used above.
 - i. Cap centrifuge tube and shake for 1 min.
 - j. Sonify wixture for 2 min.
- k. Obtain clear supernatant by letting sample stand on centrifuging if necessary.
 - 1. Filter a portion (≥ 2 ml) through a 0.2 µ Teflon filter.
- 3. A portion of the metaylene chloride extract is then adjusted to an appropriate volume prior to capillary GC/MS analysis by determining the total solvent extractable constant (TSEC) and screening by capillary GC/FID.
- a. Transfer 0.1 ml of the supernatant from above to a tared aluminum weighing dish.
- b. Place sample 8 cm from heat lamp and allow solvent to evaporate, and weigh on microbalance.
- c. From the residue weight, adjust an appropriate aliquot of sample extract, using Kuderna-Danish concentration, to a final volume such that the TSEC is 1 to 2 mg/ml.
- d. Analyze the appropriately concentrated extract by gas chromatography using the following conditions:

Detection: Flame ionization

Column: 30 m x 0.25 mm ID fused silica capillary column

coated with SE-S2 methyl silicone

Column temperature: 30-40°C (4-min hold), then 8°C/min

to 300°C (10-min hold)

Column flow: 30 cm/sec linear velocity (He)

Injection temperature: 280°C
Detection temperature: 300°C
Injection: Grob-type, splitless

Sample volume: 1 µl

- e. Further adjust volume of extract if necessary, prior to GC/MS analysis, so that the average peak height of five largest peaks corresponds to 500 to 100 ng as determined from analysis of an external anthracene calibration standard.
- 4. The sample is now ready for spiking with internal standards and analysis by GC/MS.
- a. To 1.0 ml of the sample extract with the optimum concentration, add a volume of internal standard solution containing 50 μg of the internal standard, D_{10} -anthracene.
- b. Determine the concentration relative to the original sample that is represented by the 50 μg of each internal standard in the 1.0 ml aiquot of volume-adjusted extract.
- c. Tune and calibrate Finnigan 4000 GC/MS instrument so that EPA-specified tuning criteria are met for DFTPP and so that 50 ng of $\rm B_{10}$ phenanthrene yields about 200,000 counts.
- d. Analyze the sample by GC/MS using the same conditions described above for the GC/FID analysis. The initial column temperature should be 30° C. The mass spectrometer should be scanned from 40 to 450 amu with a 0.75-1.0 search per scan time.
- 5. The GC/MS data from the sample is then ready for inspection, interpretation, evaluation, and compilation as described below.
- a. The raw data are searched for the target compounds of interest using a computer automated reverse search routine.
- b. The quantitation report from the reverse search is inspected to ensure that internal standards were found by the search routine.
- c. The amounts of the target compounds found in the sample are corrected to original sample concentrations.
- d. The mass spectra of major peaks in the sample, which are not target compounds, are searched against the NBS library.
- e. The results of the NBS library search results are examined manually to determine if they provide a reasonable identification for the compound. Additional manual interpretation of the mass spectra is applied when needed.
- f. Quantification of non-target compounds is estimated based on the area counts from the total ionization of the mass spectrum compared to the total ionization area counts of the internal standard.
- 6. The GC/MS data are compiled into a table listing the compounds found and their concentration in the soil samples. If any compounds cannot be identified, the characteristic mass spectral fragmentation ions and the estimated concentration of the compound will be reported.

III. Quality Assurance/Quality Control

The objective of the QA/QC activities associated with this project will be to provide data of known quality. In case the results of the analyses are contested, the information used to generate the data will have been thoroughly documented.

A. QA Objectives

The objectives of the QA/QC activities for this program will be to make certain that the chemical analyses are performed under controlled conditions and that all experimental work is recorded for archival storage.

B. Documentation and Records

The documents for this program will include data reports, letters of transmittal, records of relevant telephone conversations, and all data and all hard-copies data and records associated with effort on the program.

The specific data for which records will be kept will include the following:

· Sample Handling

Date received
Condition and appearance of the samples
Location and temperature of storage
Date extracted
Location and temperature of storage of extracts

Analytical Data

Pate of GC/MS analysis All volumes and weights used Dilution and concentration factors Amounts of internal standards used Internal standard area response Injection volumes Relative response factors used for quantification Total solvent extractable content (TSEC) Scan number and retention time of GC/MS peaks Most intense mass spectral fragmentations Compound identification Total ion chromatograms Library search results 9-Track tape storage files of all GC/MS data Results of analysis of calibration standards Mass spectrometer tuning results Instrument maintenance records

C. Blanks and Spikes

One method blank and one fortified blank will be generated during analysis of the six contaminated soil samples. The method blank sample will consist of all reagents used in sample preparation and carried through the entire sample preparation process and analyzed by GC/MS. This activity will assess purity of reagents and cleanliness of apparatur and environment. The fortified blank will consist of all reagents used in sample preparation plus the 10 target compounds at a level equivalent to 10 μ g/g. This will be carried through the entire sample preparation process and analyzed by GC/MS. This activity will monitor the method recovery for the targeted compounds.

METHODS FOR BULK ANALYSIS OF ROCKY MOUNTAIN ARSENAL (RMA) SURFACE SOIL SAMPLES FOR INORGANICS

I. Introduction

MRI personnel have recently investigated analysis procedures for soil samples, including digestion studies and instrument optimization. The methods described below are expected to be applicable to the soil samples from RMA.

II. Analytical Method

A. Scope and Summary

MRI will apply accepted analytical methods for the analysis of soils and sediments for inorganic constituents. A vigorous nitric acid wet digestion of each sediment sample will be performed to quantitatively remove all Hg, As, F, and other constituents of interest. The acid leachates will first be quantitatively analyzed by inductively coupled plasma (ICP) emission spectrometry for the 28 elements listed on Table 1. Mercury and arsenic will also be determined in the digests by cold vapor and hydride generation atomic absorption spectrophotometry, respectively. Fluoride will be determined by a U.S. Environmental Protection Agency ion selective electrode method.

B. Safety

All samples and extracts will be considered hazardous and will be handled with utmost care. Rigid sample and extract control will be exercised to ensure sample integrity and minimize human exposure. All actual samples and digests will be stored in hoods when not being manipulated in the laboratory.

All pertinent regulations of the MRI Safety and Health Manual and the MRI General Safety Regulations for the Use of Carcinogenic Materials will be followed. In particular, all equipment and containers will be decontaminated as prescribed.

C. Sample Storage, Preservation, Handling

Subsamples for inorganic analysis will be placed in clean plastic bottles fully labelled with the sample name, description, date, and other necessary information. Extract prepared for elemental analysis shall be stored at room temperature in the Atomic Spectroscopy Preparation Lab. Samples for F analysis will be stored at 4°C in darkness and will be analyzed as soon as possible after preparation.

TABLE 1

AVAILABLE ANALYTICAL CHANNELS

Element	Wavelength (A)	Estimated Detection Limit (µg/g sediment
Sn	1899	1.2
Tl	1908	1.6
As	1936	2.0
Hg	1942	1.2
Se	1960 -	3.0
Мо	2020	0.32
Sb	2068	1.2
Zn	2138	0.16
P	2149	2.4
Pb	2203	1.6
Co	2286	0.28
Cd	2288	0.16
Ni	2316	0.60
Be	2348	0.05
Al	2373	1.0
В	2496	0.20
Mn	2576	0.08
Fe	2599	0.28
Cr	2677	0.28
Fe	2714	2.0
Mg	2795	1.2
A1	3082	1.8
Cu	3247	0.24
$\mathbf{A}\mathbf{g}$	3280	0.28
Ti	3349	0.16
Y	3710	0.08
Ca	3968	0.40
Ba	4934	0.08
Na	5890	1.2
K	7665	12

D. Method Descriptions

- 1. Sample preparation: The sediments will be wet digested for dissolution of the total amount of metals and fluoride present:
- a. Five grams of homogenized sediment and 20 g of concentrated Baker Ultrex® HNO₃ will be placed in 250-ml, acid-cleaned Pyrex® graduated Erlenmeyer flasks.
- b. The flasks will be capped with a cleaned glass cap and placed in an oven at 80°C for 2 hr.
- c. The tube will mildly agitate for approximately 5 sec every half hour.
 - d. The flasks will be removed and cooled to room temperature.
 - e. The samples will be diluted to volume with deionized water.

2. <u>Instrumental analysis</u>

a. ICP emission spectrometry

- (1) <u>Instrument description</u>: A 30-channel Jarrell-Ash Model 1155A direct-reading ICP emission spectrometry will be used. This instrument has the following features to enhance sample analysis quality and to be cost-effective:
 - * Triple point background correction
 - * Automatic interelement spectral interference correction
 - * Spectrum scanning for sample matrix diagnostics
 - * 200 sample autosampler
 - * Digital Equipment Corp. PDP 11/23 computer with advanced data management capability

Table 1 lists the analyte emission channels and the instrument detection limits for sediments. The detection limits are defined as three times the standard deviation of replicate midrange analyses.

(2) ICP analysis procedure: ICP analysis will follow the U.S. EPA Interim Method 200.7, "Inductively Coupled Plasma - Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes," November 1980. The analysis quality control features of this procedure are discussed in the next section. The exceptions are that an interference check sample shall be analyzed on an as-needed basis and a 10% nitric acid matrix will be used for calibration standards. Appendix A contains a copy of Interim Method 200.7.

b. Fluoride potentiometry

- (1) <u>Instrument description</u>: An Orion Model 601A digital potentiometer will be used for F analysis. An Orion F selective solid electrode will be the working electrode and a Ag/AgCl electrode will be the reference.
- (2) F potentiometry procedure: Fluoride analysis will follow U.S. EPA Method 340.2. If necessary, the samples will be distilled according to the Rocky Mountain Arsenal procedure.

c. Atomic absorption analysis for As and Hg

- (1) Instrument description: A Varian AA6 and Varian AA5 spectrophotometer will be used for As and Hg analysis, respectively. Both instruments have hydrogen-lamp background correction.
- (2) As and Hg analysis procedures: Arsenic analysis will follow both Rocky Mountain Arsenal procedures and U.S. EPA Method 206.3. A 1 hr hot HCl incubation at 90°C will be used to reduce any As(V) to As(III) instead of KI and SnCl₂.

Mercury analysis will follow both Rocky Mountain Arsenal procedures and U.S. EPA Method 245.1.

III. Quality Assurance Plan

This plan conforms with the overall project QA plan and details actions specific to inorganic analysis of trace metals and fluoride in digestions of contaminated pond sediments.

A. Personnel Responsibilities

Dr. L. Petrie will act as the inorganic analysis task leader for this program. He will:

- * Maintain document control of laboratory data, field data, notes, records, etc.
- * Verify that each entry is valid by initialing at the bottom of each workbook page.
- * Be responsible for chain of custody.
- * Immediately report in memo form any problems which arise during the course of the task.
- * Enforce instrument calibration and maintenance procedures and schedule.

B. Sample Custody

- 1. All field samples shall be stored in a locked refrigerator at 4°C. Analysts shall record in a bound logbook the name, date, time, and amount of each sample taken for preparation and analysis.
- 2. The analyst checking out samples shall complete the appropriate entries on one of the three project data recording sheets (Figures 1-3):
 - Field samples for samples and duplicate subsamples
 - · Spikes for samples fortified for analyte recovery study
 - · Blanks for method blanks

C. Calibration Procedures and Frequency

- 1. Each instrument shall be calibrated at the frequency stated in the analytical methods described in Section D. Generally, calibration shall be at least once every time a batch of samples is analyzed.
- 2. For ICP emission spectrometry, an Instrument Check Standard (ICS) is analyzed after calibration according to Jarrell-Ash instrument operating procedures. If the measured concentration values for the analytes of the ICS are within \pm 5% of the correct values, samples can then be analyzed. If not, the instrument must be recalibrated.
- 3. For atomic absorption analysis, four calibration standards and a reagent blank are analyzed in triplicate. A linear regression of the absorbance values versus standard concentration is performed. If the coefficient of determination (r^2) is ≥ 0.996 , the calibration curve is sufficiently linear and sample analysis may begin. Otherwise, instrument calibration must be repeated.
- 4. For fluoride potentiometric analysis, a six standard calibration curve will be generated before analysis of each sample batch. An Instrument Check Standard (ICS) will be analyzed every hour to assure the instrument is still calibrated.
- 5. A bound Instrument Log Book (ILB) will be kept for each major laboratory instrument requiring calibration and routine maintenance:
 - Mettler Gram-Atic analytical balance
 - Varian AA6 spectrophotometer
 - · Varian AA5 spectrophotometer
 - · General Electric X-ray diffractometer
 - · Jarrell-Ash Model 1155A emission spectrometer
 - · Perkin-Elmer 306 spectrophotometer
 - 6. The ILB shall be kept beside the appropriate instrument.
 - 7. Each ILB will be divided into two sections:
 - · Calibration
 - Maintenance

Field Samples

RMA Sample No.	MRI Sample :	No. 7278-A
Matrix	_	
Composite Date (Soils Only	·)	
Amount Received		for Analysis
Analyses (Specify GC/MS, G		
Date of Sample Preparation		
Date(s) of Analyte Detecti		
Extraction Solvent (Specif		
Solvent Volume		
Solvent Aliquot Taken for		ation
Cleanup Fraction or Final		
-		
Aliquot of Final Concentra	te Taken for:	
	ml Diluted to	ml
	al Concentrated to	
		······································
Additional Dilution/Concen	tunting?	
Describe		m1 h
peactine		ml to ml
OA Sammlas Associated with	Abaa 4a-1a 2070 0	
QA Samples Associated with	tuese Analyses: 7278 Q	
	7278 Q	· *
	Calculation Togetion	Connentment
Compounds Detected	Calculation Location (Book #. p. #)	
COMPOUNTA'S DEFEFFER	(BOOK #, U. #)	Original Matrix
1		
2	.	
3		
4		
5		
6		
6 7		
6 7 8		
6 7		

Figure 1

DULKE:	S	D	i	k	e	5
--------	---	---	---	---	---	---

QA Sample No. 7278-QS	# Cons	Nos. for Specified Analyses
Spe	ecity Analysis Cous.	
Analytes Spiked	Amount	Matrix Spiked
1	••	Matrix Volume
2 .		
3		
4		
•		
5		
6		
7		
8		
9		
10 Date of Sample Preparation	۱۹	
Date of Analyte Detection	<u></u>	Solvent Volume
Extraction Solvent (Special	Closen on Final Conc	entration
Solvent Aliquet Taken 101	Cleanup or rinar conc	
Aliquot of Final Concent	rate Taken for:	=1
Dilution	al Diluted to	
	ml Concentrated t	
Additional Dilution/Conc	entration?	mito~ ol
Describe		al toml
	Calculation Location	Concentration Analyte (µg)/Matrix (g or ml)
Compounds Detected	(Book #. page #)	miles yes (pay) is seen in
1	<u>.</u>	
2		
3		
4		
5		
6		
7		
8		
9		
10		

Figure 2

Blanks

QA Sample No. 7278-QB	#	s. Nos. for Specified Analyses
	Specify Analysis Cons	s. Nos. for Specified Analyses
	tion	
	ion	
Solvent Volume	ecify)	
		centration
creamp traction of tr	nai concentrate volume	
Aliquot of Final Conce	ntrate Taken for:	
Dilution	ml Diluted to	ml
	ml Concentrated	
Additional Dilution/Co	acentration?	
Describe		ml to ml
	Calculation Location	Connection
Compounds Detected		Concentration Analyte (µg)/Matrix (g or ml)
1		
2		
3		
4 .		
5		
6		
7		
3		
9		
10		

- 8. The "Calibration" section will contain a tabular listing of the following entries made in chronological order:
 - · Date
 - · Time
 - · Analyst
 - · Sample Lab ID
 - · Analyte
 - Calibration curve data (atomic absorption)
 - Instrument profiling data (ICP emission spectrometry)
- 9. The "Maintenance" section will contain a chronological narrative entry of any operation difficulties, repairs, or routine maintenance:
 - · Date
 - · Time
 - · Analyte
 - · Description of Event
 - · Corrective Action

D. Data Analysis, Validation and Reporting

1. General policy

- a. A record shall be kept of all samples entering the laboratory according to project, sample type, and arrival date.
- b. The task leader will be responsible for assuring adherence to this procedure.

2. General data entry

- a. All entries of original data or information shall be made with waterproof ink directly into the appropriate permanent record medium.
 - b. Entries shall be both complete and timely.
- c. Calculations and entries of all measured numbers shall be according to the usual significant figure convention.
- d. All original data entry shall be placed in an MRI Technical Record Book.

3. Sample preparation

- a. A "Sample Preparation Sheet" (Figure 4) will be prepared by the task leader.
- b. All samples to be prepared will be batched to include all necessary QC samples.
- c. The project data recording sheets shall be updated by the analyst performing the sample preparation.

SAMPLE PREPARATION SHEET

pojact No		Digestion Code:	
Elements:			
A221751:			
Casa begum:		Dare Completed:	
Pray Dascription:			
Sample Volume (ml Fortification Lev Digest Final Volu) or Mass/g): els (Total g): me (ml):		
Sample Code	Coments	Sample Code	<u>Comes:3</u>
	25		
2.	27		
· · · · · · · · · · · · · · · · · · ·	28		•
4.	29		
3.	30		
é.	31	•	
• ••	32	•	
9.	33	•	•
Ģ.	34	•	•
13.	35	•	
•••	36		
• •	37	•	
13.	38		
14.	39		
13. 16.	40		
10.	41 42		
13.	43		
19.	44		
20.	45		
21.	46		
2::- 6 .	47		
(A).	48		
 	49		
: 3.	50		

Figure 4

4. Sample analysis

a. ICP emission spectrometry

- (1) An "ICP Data Report Sheet" (Figure 5) shall be completed for each set of sample analyses. This sheet described the important instrument operating conditions and where the generated raw is stored on disk in the computer.
- (2) With each sample determination, a terminal printout of the final concentration values also generated will be stored with other raw data records.
- (3) Before quantitative analysis of samples is attempted, a check will be made of potential spectral interferences so that they can be compensated by the computer data calculation programs. The emission spectrum is scanned one angstom on either side of analyte emission peaks for a representative sample. The results of the spectrum scan study will be summarized (Figure 6) and placed in the appropriate MRI Technical Record Book.
- b. Atomic absorption spectrophotometry: A two-page "AA Data Reporting Sheet" (Figure 7) will be completed for each sample analysis session. This sheet contains the following:
 - · Instrument operating parameters
 - · Calibration information
 - · Detection limit calculations
 - · Sample absorbance values
 - · Raw data calculations
- c. Fluoride potentiometry: All calibration curve data, measured electrode potentials, and calculated data will be recorded directly into the appropriate MRI Technical Record Book.
- d. Project data recording: The three project data recording sheets (Figures 1-3) will be completed by the analyst at the time of sample analysis.

The completed sheets will be given to the project leader and a copy will be retained in the appropriate MRI Technical Record Book.

- e. <u>Internal quality control checks</u>: Unless specifically detailed, the following frequency of quality control samples will be carried for As, Hg, and F:
- (1) Reagent blank: A minimum of one per 10 samples. For liquid samples, the same volume of deionized water will be used as used for samples. For solid samples, merely add the preparation chemicals to an empty container.
 - (2) Duplicate sample: A minimum of one per 10 samples.

ICP DATA REPORTING SHEET

Project No.:	Analyst:
Sample Matrix:	Date:
Elements:	Digestion Code:
Instrument Parameters	
Forward Power (kw): Reflected Power (w): Observation Height (mm): Nebulizer Type: (FCF = Fixed crossflow)	Coolant Gas Flow (2/min): Plasma Gas Flow (2/min): Sample Gas Flow (2/min): Solution Uptake (ml/min): Peristaltic Pump Used?:
(HS = High solids)	
	an on Time (sec):s:
Disk Name	:
Quantitatio	
Command S	tring:
Data File	Name:
Disk Name	:
Quantitatio Command S Data File	n and Store tring: Name:
Disk Name	:

Figure 5

SPECTRUM SCAN

Project No:			Date:
Integration Time (sec):			Analyst:
LCN	Element	Wavelength (A)	Comments
1	LV	1001	
1 2	Ag	3230	
3	Al.	3082	
4	Al	2373	
5	As	1937	
6	В	2496	
7	Ва	4934	
8	Be	2348	
9	Ca	3968	
10	Cd	2288	·
11	Co	2286	
12	Cr	2677	
13	Cu	3247	
14	Fe	2599	
15	Fe	2714	
16	Hg	1942	
17	K	7664	
18	Mg	2795 .	
19	Ym	2576	
20	Мо	2020	
21	Na	5890	
22	Ni	2316	
23	P	2149	
24	Pb	2203	
25	Sb	2068	
26	Se	1960	
27	Sa	1899	
23	Ti	3349	
29	Tl	1908	
30	Y	3710	
31	7n	21 18	

Figure 6

AA DATA REPORTING SHEET

Project No.: Element: Realyst: Cats:	. - -		
Instrumental Parameters			
Navelength: Silt: Sackground correction Lamp current: Sackground intensity	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Photomultiplier Voltage Matrix modification Atomization mode: Instrument model: Standard range:	
Initial Calibration		Average	
Standard Concentration	Absorbances	Absorbance	RSD (T)
blank			
Coefficient of determination curve y-intercept of calibration	e (a):		
Decaction Limit = 3 x S x C	•		
Standard deviation of lower concentration of lowest state absorbance of lower lower and lower and lower lowe	tandard (C):		

Figure 7

Ilam	2	; Date:	, , , , , , , , , , , , , , , , , , , 	Analyst:		_; Page	No.:	
Samo	le Analysis							
			Avg.					
	Sample Code	Absortances	Abs.					
1.								
2.								
3.								
<u>.</u> ,								
õ. é.						******		
7.					,			
3.								
9.								
10.	A.C.C. Sample						•	
		····					-	
11. 13.	<					-		
								
2 .3.								
. ś.	,							
17.		***************************************						
15.								
19. 20.	A.O.C. Sample					***************************************		
	A.U.C. Jamble	· · · · · · · · · · · · · · · · · · ·						
<u> </u>	dard Addizions	(Blank + Sam	-1-1/	/ Cnamdamá	1 + 6	1 4 1 /	(C=a=d=a=d	2 ÷ Ca==1
	Sampla Code	mec - anale) onecrosca			. I — samp. Orbanca	16//		r - sampr
	Jamira Anne	nusu . Jane	3		4.76254		*100	
i.		0 /			/			
2.		0 /						_/
			•					Sample
		<u>_2</u>		131		ъ		cracion (b)
			•	-		-		
1.								
1.								

- . (3) Spiked sample: A minimum of one per 10 samples. The sample should be spiked at a sufficiently high level to cause (1) a 50 to 150% increase in the sample analyte concentration or (2) a measurable analyte concentration three times the LOQ. Unknown samples should be spiked instead of reagent blanks.
- (4) <u>Blind QC sample</u>: One per analysis sample set. These samples are prepared by the project QC coordinator.
- f. <u>Corrective action</u>: Two types of corrective action formats will be used according to MRI standard operating procedure QA-10. These formats are immediate (on-the-spot) and long-term (closed loop) corrective action.
 - * Immediate (on-the-spot) corrective action responds quickly to indications of malfunctioning equipment or suspicious data. The QCC and principal investigator will be notified of the problem immediately. They will then take appropriate action and document any changes. The QCC is responsible for and is authorized to halt sampling or analysis if he determines that a serious problem exists.
 - * Long-term, closed-loop, corrective action is used to prevent the reoccurrence of unanticipated problems. Long-term corrective action steps consist of:
 - · Definition of the problem
 - · Investigation to determine the cause
 - · Determination of the appropriate corrective action
 - · Implementation of corrective action
 - Verification of the effectiveness of the corrective action by followup
- 2. Quality assurance reports to management: The QAM will, in cooperation with the program manager, identify critical phases of the project which will be subject to inspection. The inspection will include a review of:

Data entry
Data errors, deletions, and corrections
Records and other information
Configuration control
Equipment maintenance and calibration records
Document control

The results of inspections will be reported to management according to MRI standard operating procedure QA-9.

APPENDIX A

INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECIFICAMETRIC METERO FOR TRACE ELEMENT ANALYSIS OF WATER AND WASTES

ME CHOCK ZUONS

MERM

U. S. ENVIRONMENTAL PROTECTION AGENCY Environmental Monitoring and Support Laboratory Cincinnati, Ohio 45263

Foreword

This method has been prepared by the staff of the Environmental Monitoring and Support Laboratory - Cincinnati, with the cooperation of the EPA-ICP Users Group. Their cooperation and support is gratefully acknowledged.

This method represents the current stata-of-the-art, but as time progresses, improvements are anticipated. Users are encouraged to identify problems and assist in updating the method by contacting the Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, 45268.

INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRIC METHOD FOR TRACE ELEMENT ANALYSIS OF WATER AND WASTES

1. Scope and Application

- 1.1 This method may be used for the determination of dissolved, suspended, or total elements in drinking water, surface water, domestic and industrial wastewaters.
- 1.2 Dissolved elements are determined in filtered and acidified samples. Appropriate steps must be taken in all analyses to ensure that potential interference are taken into account. This is especially true when dissolved solids exceed 1500 mg/l. (See 4.)
- 1.3 Total elements are determined after appropriate digestion procedures are performed. Since digestion techniques increase the dissolved solids content of the samples, appropriate steps <u>must</u> be taken to correct for potential interference effects. (See 4.)
- 1.4 Table 1 lists elements for which this method applies along with recommended wavelengths and typical estimated instrumental detection limits using conventional pneumatic nebulization. Actual working detection limits are sample dependent and as the sample matrix varies, these concentrations may also vary. In time, other elements may be added as more information becomes available and as required.
- 1.5 Because of the differences between various makes and models of satisfactory instruments, no detailed instrumental operating instructions can be provided. Instead, the analyst is referred to the instructions provided by the manufacturer of the particular instrument.

Table 1 - Recommended Wavelengths(1) and Estimated Instrumental Detection Limits

Element	Wavelength, nm	Estimated detection limit, ug/1(2)
Aluminum	308.215	45
Arsenic	193.696	53
Antimony	206.833	32
Barium	455.403	2
Beryllium	313.042	53 32 2 0.3
Boron	249.773	5
Cadmium	225.502	. 4
Calcium	317.933	5 4 10 7 7
Chromium	267.716	7
Cobalt	228.616	7
Copper	324.754	á
Iron	253.940	6 7
Lead	220.353	42
Magnesium:	279.079	30
Manganese	257.610	2
Mo lybdenum	202.030	8
Nickel	231.604	8 15,
Potassium	766.491	see(3)
Selenium	196.026	75
Silica (SiO ₂)	288.158	58
Silver	328.068	7
Sodium	588.995	29
Thallium	190.354	40
Vanadium	292.402	40 8 2
Zinc	213.856	Ž

The wavelengths listed are recommended because of their sensitivity and overall acceptance. Other wavelengths may be substituted if they can provide the needed sensitivity and are treated with the same corrective techniques for spectral interference. (See 4.1.1).

The estimated instrumental detection limits as shown are taken from "Inductively Coupled Plasma-Atomic Emission Spectroscopy-Prominent Lines," EPA-600/4-79-017. They are given as a guide for an instrumental limit. The actual method detection limits are sample dependent and may vary as the sample matrix varies.

⁽³⁾ Highly dependent on operating conditions and plasma position.

2. Summary of Method

2.1 The method describes a technique for the simultaneous or sequential militiesement determination of trace elements in solution. The basis of the method is the measurement of atomic emission by an optical spectroscopic technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where excitation occurs. Characteristic atomic-line emission spectra are produced by a radio-frequency inductively coupled plasma (ICP). The spectra are dispersed by a grating spectrometer and the intensities of the lines are monitored by photomultiplier tubes. The photocurrents from the photomultiplier tubes are processed and controlled by a computer system. A background correction technique is required to compensate for variable background contribution to the determination of trace elements. Background must be measured adjacent to analyte lines on samples during analysis. The position selected for the background intensity measurement, on either or both sides of the analytical line, will be determined by the complexity of the spectrum adjacent to the analyta line. The position used must be free of spectral interference and reflect the same change in background intensity as occurs at the analyte wavelength measured. Background correction is not required in cases of line broadening where a background correction measurement would actually degrade the analytical result. The possibility of additional interferences named in 4.1 (and tests for their presence as described in 4.2) should also be recognized and appropriate corrections made.

Definitions

- 3.1 <u>Dissolved</u> -- Those elements which will pass through a 0.45 um membrane filter.
- 3.2 <u>Suspended</u> -- Those elements which are retained by a 0.45 um membrane filter.
- 3.3 Total -- The concentration determined on an unfiltered sample following vigorous digestion (Section 8.3), or the sum of the dissolved plus suspended concentrations. (Section 8.1 plus 8.2).
- 3.4 <u>Total recoverable</u> -- The concentration determined on an unfiltered sample following treatment with hot, dilute mineral acid (Section 8.4).
- 3.5 <u>Instrumental detection limit</u> The concentration equivalent to a signal, due to the analyte, which is equal to three times the standard deviation of a series of ten replicate measurements of a reagent blank signal at the same wavelength.
- 3.6 <u>Sensitivity</u> -- The slope of the analytical curve, i.e. functional relationship between emission intensity and concentration.
- 3.7 <u>Instrument check standard</u> A multielement standard of known concentrations prepared by the analyst to monitor and verify instrument performance on a daily basis. (See 6.6.1)
- 3.8 <u>Interference check sample</u> A solution containing both interfering and analyte elements of known concentration that can be used to verify background and interelement correction factors. (See 6.6.2.)
- 3.9 <u>Quality control sample</u> -- A solution obtained from an outside source having known, concentration values to be used to verify the calibration standards. (See 6.6.3)

- 3.10 <u>Calibration standards</u> -- a series of known standard solutions used by the analyst for calibration of the instrument (i.e., preparation of the analytical curve). (See 6.4)
- 3.11 <u>Linear dynamic range</u> -- The concentration range over which the analytical curve remains linear.
- 3.12 Reagent blank -- A volume of deionized, distilled water containing the same acid matrix as the calibration standards carried through the entire analytical scheme. (See 5.5.2)
- 3.13 <u>Calibration blank</u> -- A volume of defonized, distilled water acidified with HNO₃ and HC1. (See 6.5.1)
- 3.14 <u>Method of standard addition</u> -- The standard addition technique involves the use of the unknown and the unknown plus a known amount of standard. (See 9.5.1.)

4. Interferences

- 4.1 Several types of interference effects may contribute to inaccuracies in the determination of trace elements. They can be summarized as follows:
 - 4.1.1 Spectral interferences can be categorized as 1) overlap of a spectral line from another element; 2) unresolved overlap of molecular band spectra; 3) background contribution from continuous or recombination phenomena; and 4) background contribution from stray light from the line emission of high concentration elements. The first of these effects can be compensated by utilizing a computer correction of the raw data, requiring the monitoring and measurement of the interfering element. The second effect may require selec-

tion of an alternate wavelength. The third and fourth effects can usually be compensated by a background correction adjacent to the analyte line. In addition, users of simultaneous multi-element instrumentation must assume the responsibility of verifying the absence of spectral interference from an element that could occur in a sample but for which there is no channel in the instrument array. Listed in Table 2 are some interference effects for the recommended wavelengths given in Table 1. The data in Table 2 are intended for use only as a rudimentary guide for the indication of potantial spectral interferences. For this purpose, linear relations between concentration and intensity for the analytes and the interferents can be assumed. The interference information, which was collected at the Ames Laboratory¹, is expressed as analyte concentration eqivalents (i.e. false analyte concentrations) arising from 100 mg/l of the interferent element. The suggested use of this information is as follows: Assume that arsenic (at 193.696 nm) is to be determined in a sample containing

approximately 10 mg/l of aluminum. According to Table 2,

Ames Laboratory, USDOE, Iowa Stata University, Ames Iowa 50011

Table 2. Analyte Concentration Equivalents (mg/1) Arising Frow Interferents at the 100 mg/1 Level

Analyte	Wavelength	=				Inter	Interferent				
		V	Ca	Cr	η	Fe	Mg	£	Z	11	>
Aluminum Antimony Arsenic	308.215 206.833 193.696	0.47	:::	2.9	; ; ; ; 1 !	0.08	1 1 1	0.21	111	.25	1.4 0.45 1.1
Barium Beryllium Boron	455.403 313.042 245.773	0.04	:::	: : :	1.1.1	0.32	:::	:::	1 1 1	0.04	0.05
Cadulum Calcium Chroutum	226.502 317.933 267.716	:::	: : :	0.08	111	0.03 0.003	0.01	0.04	0.02	0.03	0.03 0.04
Cobalt Copper Iron	228.616 324.754 259.940	; ; ;	:::	0.03	111	0.005	;;;	0.12	0.03	0.15	0.02
Lead Nagnesiun Manganese	220.353 279.079 257.610	0.17	0.02	0.01	; ; ;	0.13	0.002	0.25	1 1 1	0.07	0.12
Molybdenum Nickel Selenium	202.030 231.604 196.026	0.05	; ; ;	:::	111	0.03	:::	:::	! ! !	1 1 1	: : :
Silicon Sodiun Thallium	288.158 588.995 190.864	0.30	: : :	0.07	111	! ! !	:::	: : :	1 ! !	0.08	0.01
Vanadium Zinc	292.402 213.856	† † † i	# # E #	0.05	0.14	0.005	: :	: :	0.29	0.02	: ;

100 mg/l of aluminum would yield a false signal for arsenic equivalent to approximately 1.3 mg/l. Therefore, 10 mg/l of aluminum would result in a false signal for arsenic equivalent to approximately 0.13 mg/l. The reader is cautioned that other analytical systems may exhibit somewhat different levels of interference than those shown in Table 2, and that the interference effects must be evaluated for each individual system.

Only those interferents listed were investigated and the blank spaces in Table 2 indicate that measurable interferences were not observed for the interferent concentrations listed in Table 3. Generally, interferences were discarnible if they produced peaks or background shifts corresponding to 2-5% of the peaks generated by the analyte concentrations also listed in Table 3.

At present, information on the listed silver and potassium wavelengths are not available but it has been reported that second order energy from the magnesium 383.231 nm wavelength interferes with the listed potassium line at 766.491 nm.

4.1.2 Physical interferences are generally considered to be effects associated with the sample nebulization and transport processes. Such properties as change in viscosity and surface tension can cause significant inaccuracies especially in samples which may contain high dissolved solids and/or acid concentrations. The use of a peristaltic pump may lessen these interferences. If these types of

interferences are operative, they must be reduced by dilution of the sample and/or utilization of standard addition techniques. Another problem which can occur from high dissolved solids is salt buildup at the tip of the nebulizer. This affects aersol flow rate causing instrumental drift. Wetting the argon prior to nebulization, the use of a tip washer, or sample dilution have been used to control this problem. Also, it has been reported that better control of the argon flow rate improves instrument performance. This is accomplished with the use of mass flow controllers.

- 4.1.3 Chemical Interferences are characterized by molecular compound formation, ionization effects and solute vaporization effects. Normally these effects are not pronounced with the ICP technique, however, if observed they can be minimized by careful selection of operating conditions (that is, incident power, observation position, and so forth), by buffering of the sample, by matrix matching, and by standard addition procedures. These types of interferences can be highly dependent on matrix type and the specific analyta element.
- 4.2 It is recommended that whenever a new or unusual sample matrix is encountered, a series of tests be performed prior to reporting concentration data for analyte elements. These tests, as outlined in 4.2.1 through 4.2.4, will ensure the analyst that neither positive nor negative interference effects are operative on any of

Table 3. Interferent and Analyte Elemental Concentrations Used for Interference Measurements in Table 2.

•			
Analytes	(mg/1)	Interferents	(mg/1)
A1	10	Al	1000
As	10	Ca	1000
8	10	Cr	200
8a	1	Çu	200
8e	1	Fe	1000
Ca	1	Mg	1000
Cd	10	M n	200
Co	1	Ni	200
Cr	1	Ti	200
Cu	1	V.	200
Fe	1	·	
Mg	1		
Mπ	1		
Мо	10		
Na	10	·	
Ni	10		
Pb	10		
Sb	10		
Se	10		
Si	1		
TI	10		
. Ÿ	Ĭ		
Žn	10		

the analyte elements thereby distorting the accuracy of the reported values.

- 4.2.1 <u>Serial dilution</u>—If the analyte concentration is sufficiently high (minimally a factor of 10 above the instrumental detection limit after dilution), an analysis of a dilution should agree within 5 percent of the original determination (or within some acceptable control limit (13.3) that has been established for that matrix.). If not, a chemical or physical interference effect should be suspected.
- 4.2.2 Spike addition—The recovery of a spike addition added at a minimum level of 10X the instrumental detection limit (maximum 100X) to the original determination should be recovered to within 90 to 110 percent or within the established control limit for that matrix. If not, a matrix effect should be suspected. The use of a standard addition analysis procedure can usually compensate for this effect.

<u>Caution</u>: The standard addition technique does not detact coincident spectral overlap. If suspected, use of computerized compensation, an alternate wavelength, or comparison with an alternate method is recommended (See 4.2.3).

4.2.3 Comparison with alternate method of analysis—When investigating a new sample matrix, comparison tests may be performed with other analytical techniques such as atomic absorption spectrometry, or other approved methodology.

4.2.4 <u>Wavelength scanning of analyte line region</u>—If the appropriate equipment is available, wavelength scanning can be performed to detect potential spectral interferences.

5. Apparatus

- 5.1 Inductively Coupled Plasma-Atomic Emission Spectrometer.
 - 5.1.1 Computer controlled atomic emission spectrometer with background correction.
 - 5.1.2 Radiofrequency generator.
 - 5.1.3 Argon gas supply, welding grade or better.
- 5.2 Operating conditions -- Because of the differences between various makes and models of satisfactory instruments, no detailed operating instructions can be provided. Instead, the analyst should follow the instructions provided by the manufacturer of the particular instrument. Sensitivity, instrumental detection limit, precision, linear dynamic range, and interference effects must be investigated and established for each individual analyte line on that particular instrument. It is the responsibility of the analyst to verify that the instrument configuration and operating conditions used satisfy the analytical requirements and to maintain quality control data confirming instrument performance and analytical results.

6. Reagents and standards

- 5.1 Acids used in the preparation of standards and for sample processing must be ultra-high purity grade or equivalent. Redistilled acids are acceptable.
 - 6.1.1 Acetic acid, conc. (sp gr 1.06).
 - 6.1.2 Hydrochloric acid, conc. (sp gr 1.19).

- 6.1.3 <u>Hydrochloric acid</u>, (1+1): Add 500 ml conc. HCl (sp gr 1.19) to 400 ml deionized, distilled water and dilute to 1 liter.
- 6.1.4 Nitric acid, conc. (sp gr 1.41).
- 6.1.5 <u>Nitric acid</u>, (1+1): Add 500 ml conc. HNG₃ (sp. gr 1.41) to 400 ml deionized, distilled water and dilute to 1 liter.
- 6.2 <u>Deionized</u>, <u>distilled water</u>: Prepare by passing distilled water through a mixed bed of cation and anion exchange resins. Use deionized, distilled water for the preparation of all reagents, calibration standards and as dilution water. The purity of this water must be equivalent to ASTM Type II reagent water of Specification 0 1193 (13.6).
- 6.3 <u>Standard stock solutions</u> may be purchased or prepared from ultra high purity grade chemicals or metals. All salts must be dried for 1 h at 105°C unless otherwise specified.

(CAUTION: Many metal salts are extremely toxic and may be fatal if swallowed. Wash hands thoroughly after handling.)

Typical stock solution preparation procedures follow:

- 6.3.1 Aluminum solution, stock, 1 ml = 100 μg Al: Dissolve 0.100 g of aluminum metal in an acid mixture of 4 ml of (1+1) HCl and 1 ml of conc. HNO₃ in a beaker. Warm gently to effect solution. When solution is complete, transfer quantitatively to a liter flask add an additional 10 ml of (1+1) HCl and dilute to 1,000 ml with deionized, distilled water.
- 6.3.2 Antimony solution stock, 1 ml = 100 ug Sb: Dissolve $0.2669 \text{ g K(Sb0)} C_4 H_4 O_5$ in defonized distilled water,

- add 10 ml (1+1) HC1 and dilute to 1000 ml with defonized, distilled water.
- 6.3.3 Arsenic solution, stock, 1 ml = 100 μ g As: Dissolve 0.1320 g of As₂O₃ in 100 ml of deionized, distilled water containing 0.4 g NaOH. Acidify the solution with 2 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 5.3.4 <u>Barium solution, stock</u>, 1 ml = 100 μg Ba: Dissolve 0.1516 g BaCl₂ (dried at 250°C for 2 hrs) in 10 ml deionized, distilled water with 1 ml (1+1) HCl. Add 10.0 ml (1+1) HCl and dilute to 1,000 ml with deionized, distilled water.
- 6.3.5 <u>Beryllium solution, stock</u>, 1 ml = 100 µg Be: <u>Do not dry</u>.

 Dissolve 1.966 g BeSO₄ · 4H₂O, in deionized, distilled water, add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.6 <u>Soron solution. stock</u>, 1 ml = 100 µg 8: <u>Do not dry.</u>

 Dissolve 0.5716 g anhydrous H₃80₃ in deionized, distilled water and dilute to 1,000 ml. Use a reagent meeting ACS specifications, keep the bottle tightly stoppered and store in a desiccator to prevent the entrance of atmospheric moisture.
- 6.3.7 <u>Cadmium solution, stock</u>, 1 ml = 100 µg Cd: Dissolve
 0.1142 g CdO in a minimum amount of (1+1) HNO₃. Heat to
 increase rate of dissolution. Add 10.0 ml conc. HNO₃ and
 dilute to 1,000 ml with deionized, distilled water.
- 6.3.3 Calcium solution, stock, 1 mi = 100 ug Ca: Suspend 0.2498 g

- ${\rm CaCO_3}$ dried at ${\rm 180^{O}C}$ for 1 h before weighing in deion-ized, distilled water and dissolve cautiously with a minimum amount of (1+1) ${\rm HNO_3}$. Add ${\rm 10.0~ml}$ conc. ${\rm HNO_3}$ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.9 Chromium solution, stock, 1 ml = 100 µg Cr: Dissolve
 0.1923 g of CrO₃ in deionized, distilled water. When
 solution is complete, acidify with 10 ml conc. HNO₃ and
 dilute to 1,000 ml with deionized, distilled water.
- 6.3.10 Cobalt solution, stock, 1 ml = 100 µg Co: Dissolve 0.1000 g of cobalt metal in a minimum amount of (1+1) HNO3. Add 10.0 ml (1+1) HCl and dilute to 1,000 ml with deionized, distilled water.
- 6.3.11 Copper solution, stock, 1 ml = 100 µg Cu: Dissolve 0.1252 g
 CuO in a minimum amount of (1+1) HNO3. Add 10.0 ml conc.

 HNO3 and dilute to 1,000 ml with deionized, distilled water.
- 6.3.12 Iron solution, stock, 1 ml = 100 μ g Fe: Dissolve 0.1430 g Fe₂O₃ in 10 ml deionized, distilled water with 1 ml (1+1) HCl. Add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.13 <u>Lead solution, stock</u>, 1 ml = 100 μ g Pb: Oissolve 0.1599 g Pb(NO₃)₂ in a minimum amount of (1+1) HNO₃. Add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.14 Magnesium solution, stock, 1 ml = 100 μ g Mg: Dissolve 0.1658 g MgO in a minimum amount of (1+1) HNO₃. Add 10.0

- mi conc. HNO_3 and dilute to 1,000 ml with deionized, distilled water.
- 6.3.15 Manganese solution, stock, 1 ml = 100 μg Mn: Dissolve 0.1000 g of manganese metal in the acid mixture 10 ml conc. HCl and 1 ml conc. HNO₃, and dilute to 1,000 ml with deionized, distilled water.
- 6.3.16 Molybdenum solution, stock, I ml = 100 μ g Mo: Dissolve 0.2043 $_2$ (NH₄)₂MoO₄ in deionized, distilled water and dilute to 1,000 ml.
- 6.3.17 <u>Nickel solution, stock</u>, 1 ml = 100 ug Ni: Dissolve 0.1000 g of nickel metal in 10 ml hot conc. HNO₃, cool and dilute to 1,000 ml with deionized, distilled water.
- 5.3.18 Potassium solution, stock, 1 ml = 100 μg K: Dissolve 0.1907 g KCl, dried at 110°C, in deionized, distilled water dilute to 1,000 ml.
- 6.3.79 <u>Selenium solution. stock</u>, ! ml = 100 µg Se: <u>Do not dry</u>.

 Dissolve 0.1727 g H₂SeO₃ (actual assay 94.6%) in deionized, distilled water and dilute to 1,000 ml.
- 6.3.20 Silica solution, stock, 1 ml = 100 µg SiO₂: Do not dry.

 Dissolve 0.4730 g Na₂SiO₃ .9H₂O in deionized, distilled water. Add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.21 Silver solution, stock, I ml = 100 µg Ag: Dissolve 0.1575 g

 AgNO₃ in 100 ml of deionized, distilled water and 10 ml

 conc. HNO₃. Dilute to 1,000 ml with deionized, distilled water.

- 6.3.22 Sodium solution, stock, 1 ml = 100 μg Na: Dissolve 0.2542 g NaCl in deionized, distilled water. Add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 5.3.23 Thallium solution, stock, 1 ml = 100 µg Tl: Dissolve

 0.1303 g TlNO₃ in deionized, distilled water. Add 10.0 ml

 conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.24 <u>Vanadium solution</u>, stock, 1 ml = 100 μ g V: Dissolve 0.2297 NH₄VO₃ in a minimum amount of conc. HNO₃. Heat to increase rate of dissolution. Add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- 6.3.25 Zinc solution, stock, 1 ml = 100 µg Zn: Dissolve 0.1245 g ZnO in a minimum amount of dilute HNO₃. Add 10.0 ml conc. HNO₃ and dilute to 1,000 ml with deionized, distilled water.
- Mixed calibration standard solutions—Prepare mixed calibration standard solutions by combining appropriate volumes of the stock solutions in volumetric flasks. (See 6.4.1 thru 6.4.5) Add 2 ml of (1+1) HNO3 and 10 ml of (1+1) HCl and dilute to 100 ml with deionized, distilled water. (See Notes 1 and 6.) Prior to preparing the mixed standards, each stock solution should be analyzed separately to determine possible spectral interference or the presence of impurities. Care should be taken when preparing the mixed standards that the elements are compatible and stable.

 Transfer the mixed standard solutions to a FEP fluorocarbon or

unused polyethylene bottle for storage. Fresh mixed standards should be prepared as needed with the realization that concentration can change on aging. Calibration standards must be initially verified using a quality control sample and monitored weekly for stability (See 6.6.3). Although not specifically required, some typical calibration standard combinations follow when using those specific wavelengths listed in Table 1.

- 6.4.1 Mixed standard solution I--Manganese, beryllium, cadmium, lead, and zinc.
- 6.4.2 <u>Mixed standard solution II</u>--Barium, copper, iron, vanadium, and cobait.
- 6.4.3 <u>Mixed standard solution III</u>--Molybdenum, silica, arsenic, and selenium.
- 6.4.4 <u>Mixed standard solution IV</u>--Calcium, sodium, postassium, aluminum, chromium and nickel.
- 6.4.5 <u>Mixed standard solution V</u>--Antimony, boron, magnesium, silver, and thallium.

NOTE I: If the addition of silver to the recommended acid combination results in an initial precipitation, add 15 ml of deionized distilled water and warm the flask until the solution clears. Cool and dilute to 100 ml with deionized, distilled water. For this acid combination the silver concentration should be limited to 2 mg/1. Silver under these conditions is stable in a tap water matrix for 30 days. Higher concentrations of silver require additional HCI.

- 6.5 Two types of blanks are required for the analysis. The calibration blank (3.13) is used in establishing the analytical curve while the reagent blank (3.12) is used to correct for possible contamination resulting from varying amounts of the acids used in the sample processing.
 - 6.5.1 The calibration blank is prepared by diluting 2 ml of (1+1) HNO3 and 10 ml of (1+1) HCl to 100 ml with deionized, distilled water. (See Note 6.) Prepare a sufficient quantity to be used to flush the system between standards and samples.
 - 5.5.2 The reagent blank must contain all the reagents and in the same volumes as used in the processing of the samples. The reagent blank must be carried through the complete procedure and contain the same acid concentration in the final solution as the sample solution used for analysis.
- 6.6 In addition to the calibration standards, an instrument check standard (3.7), an interference check sample (3.8) and a quality control sample (3.9) are also required for the analyses.
 - 6.6.1 The instrument check standard is prepared by the analyst by combining compatible elements at a concentration equivalent to the midpoint of their respective calibration curves.

 (See 11.1.1.)
 - 6.6.2 The <u>interference check sample</u> is prepared by the analyst in the following manner. Select a representative sample which contains minimal concentrations of the analytes of interest but known concentration of interfering elements that will

provide an adequate test of the correction factors. Spike the sample with the elements of interest at the approximate concentration of either 100 µg/l or 5 times the estimated detection limits given in Table 1. (For effluent samples of expected high concentrations, spike at an appropriate level.) If the type of samples analyzed are varied, a synthetically prepared sample may be used if the above criteria and intent are met. A limited supply of a synthetic interference check sample will be available from the Quality Assurance Branch of EMSL-Cincinnati. (See 11.1.2).

- 6.6.3 The <u>quality control sample</u> should be prepared in the same acid matrix as the calibration standards at a concentration near 1 mg/l and in accordance with the instructions provided by the supplier. The Quality Assurance Branch of EMSL-Cincinnati will either supply a quality control sample or information where one of equal quality can be procured.

 (See 11.1.3.)
- 7. Sample handling and preservation
 - 7.1 For the datarmination of trace elements, contamination and loss are of prime concern. Dust in the laboratory environment, impurities in reagents and impurities on laboratory apparatus which the sample contacts are all sources of potential contamination. Sample containers can introduce either positive or negative errors in the measurement of trace elements by (a) contributing contaminants through leaching or surface description and (b) by depleting concen-

trations through adsorption. Thus the collection and treatment of the sample prior to analysis requires particular attention.

Laboratory glassware including the sample bottle (whether polyethylene, polyproplyene or FEP-fluorocarbon) should be thoroughly washed with detergent and tap water; rinsed with (I+1) nitric acid, tap water, (I+1) hydrochloric acid, tap and finally defonized, distilled water in that order (See Notes 2 and 3).

NOTE 2: Chromic acid may be useful to remove organic deposits from glassware; however, the analyst should be cautioned that the glassware must be thoroughly rinsed with water to remove the last traces of chromium. This is especially important if chromium is to be included in the analytical scheme. A commercial product, NOCHROMIX, available from Godax Laboratories, 6 Varick St., New York, NY 10013, may be used in place of chromic acid. Chromic acid should not be used with plastic bottles.

NOTE 3: If it can be documented through an active analytical quality control program using spiked samples and reagent blanks, that certain steps in the cleaning procedure are not required for routine samples, those steps may be eliminated from the procedure.

7.2 Before collection of the sample a decision must be made as to the type of data desired, that is dissolved, suspended or total, so that the appropriate preservation and pretreatment steps may be accomplished. Filtration, acid preservation, etc., are to be performed at the time the sample is collected or as soon as possible thereafter.

- 7.2.1 For the determination of dissolved elements the sample must be filtered through a 0.45-um membrane filter as soon as practical after collection. (Glass or plastic filtering apparatus are recommended to avoid possible contamination.)

 Use the first 50-100 ml to rinse the filter flask. Discard this portion and collect the required volume of filtrate.

 Acidify the filtrate with (1+1) HNO₃ to a pH of 2 or less.

 Normally, 3 ml of (1+1) acid per liter should be sufficient to preserve the sample.
- 7.2.2 For the determination of suspended elements a measured volume of unpreserved sample must be filtered through a 0.45-um membrane filter as soon as practical after collection. The filter plus suspended material should be transferred to a suitable container for storage and/or shipment. No preservative is required.
- 7.2.3 For the determination of total or total recoverable elements, the sample is acidified with (1+1) HNO₃ to pH 2 or less as soon as possible, preferably at the time of collection. The sample is not filtered before processing.

8. Sample Preparation

8.1 For the determinations of dissolved elements, the filtered, preserved sample may often be analyzed as received. The acid matrix and concentration of the samples and calibration standards must be the same. (See Note 6.) If a precipitate formed upon acidification of the sample or during transit or storage, it must be redissolved before the analysis by adding additional acid and/or by

heat as described in 8.3.

- 8.2 For the determination of suspended elements, transfer the membrane filter containing the insoluble material to a 150-ml Griffin beaker and add 4 ml conc. HNO_2 . Cover the beaker with a watch glass and heat gently. The warm acid will soon dissolve the membrane. Increase the temperature of the hot plate and digest the material. When the acid has nearly evaporated, cool the beaker and watch glass and add another 3 ml of conc. HNO_3 . Cover and continue heating until the digestion is complete, generally indicated by a light colored digestate. Evaporate to near dryness (2 ml), cool, add 10 ml HCl (1+1) and 15 ml deionized, distilled water per 100 ml dilution and warm the beaker gently for 15 min. to dissolve any precipitated or residue material. Allow to cool, wash down the watch glass and beaker walls with deionized distilled water and filter the sample to remove insoluble material that could clog the nebulizer. (See Note 4.) Adjust the volume based on the expected concentrations of elements present. This volume will vary depending on the elements to be determined (See Note 6). The sample is now ready for analysis. Concentrations so determined shall be reported as "suspended."
 - NOTE 4: In place of filtering, the sample after diluting and mixing may be centrifuged or allowed to settle by gravity overnight to remove insoluble material.
- 8.3 For the determination of total elements, choose a measured, volume of the well mixed acid preserved sample appropriate for the expected level of elements and transfer to a Griffin beaker. (See

Note 5.) Add 3 ml of conc. HNO2. Place the beaker on a hot plate and evaporate to near dryness cautiously, making certain that the sample does not boil and that no area of the bottom of the beaker is allowed to go dry. Cool the beaker and add another 5 ml portion of conc. HNO2. Cover the beaker with a watch glass and return to the hot plata. Increase the temperature of the hot plate so that a gentle reflux action occurs. Continue heating, adding additional acid as necessary, until the digestion is complete (generally indicated when the digestate is light in color or does not change in appearance with continued refluxing.) Again, evaporate to near dryness and cool the beaker. Add 10 ml of 1+1 HCl and 15 ml of deicnized, distilled water per 100 ml of final solution and warm the beaker gently for 15 min. to dissolve any precipitate or residue resulting from evaporation. Allow to cool, wash down the beaker walls and watch glass with deionized distilled water and filter the sample to remove insoluble material that could clog the nebulizer. (See Note 4.) Adjust the sample to a predetermined volume based on the expected concentrations of elements present. The sample is now ready for analysis (See Note 6). Concentrations so determined shall be reported as "total."

NOTE 5: If low determinations of boron are critical, quartz glass-ware should be used.

NOTE 6: If the sample analysis solution has a different acid concentration from that given in 8.4, but does not introduce a physical interference or affect the analytical result, the same calibration standards may be used.

measured volume of a well mixed, acid preserved sample appropriate for the expected level of elements and transfer to a Griffin beaker. (See Note 5.) Add 2 ml of (1+1) HNO₃ and 10 ml of (1+1) HCl to the sample and heat on a steam bath or hot plate until the volume has been reduced to near 25 ml making certain the sample does not hoil. After this treatment, cool the sample and filter to remove insoluble material that could clog the nebulizer. (See Note 4.) Adjust the volume to 100 ml and mix. The sample is now ready for analysis. Concentrations so determined shall be reported as "total."

9. Procedure

- 9.1 Set up instrument with proper operating parameters established in Section 5.2. The instrument must be allowed to become thermally stable before beginning. This usually requires at least 30 min. of operation prior to calibration.
- 9.2 Initiate appropriate operating configuration of computer.
- 9.3 Profile and calibrate instrument according to instrument manufacturer's recommended procedures, using the typical mixed calibration standard solutions sescribed in Section 5.4. Flush the system with the calibration blank (6.5.1) between each standard. (See Note 7.) (The use of the average intensity of multiple exposures for both standardization and sample analysis has been found to reduce random error.)
 - NOTE 7: For boron concentrations greater than 500 μ g/1 extended flush times of 1 to 2 minutes may be required.

- 9.4 Before beginning the sample run, reanalyze the highest mixed calibration standard as if it were a sample. Concentration values obtained should not deviate from the actual values by more than ± 5 percent (or the established control limits whichever is lower). If they do, follow the recommendations of the instrument manufacturer to correct for this condition.
- 9.5 Begin the sample run flushing the system with the calibration blank solution (6.5.1) between each sample. (See Note 7.) Analyze the instrument check standard (6.6.1) and the calibration blank (6.5.1) each 10 samples.
- 9.6 If it has been found that methods of standard addition are required, the following procedure is recommended.
 - 9.6.1 The standard addition technique (13.2) involves preparing new standards in the sample matrix by adding known amounts of standard to one or more aliquots of the processed sample solution. This technique compensates for a sample constituent that enhances or depresses the analyte signal thus producing a different slope from that of the calibration standards. It will not correct for additive interference which causes a baseline shift. The simplest version of this technique is the single-addition method. The procedure is as follows. Two identical aliquots of the sample solution, each of volume $V_{\rm X}$, are taken. To the first (labeled A) is added a small volume $V_{\rm S}$ of a standard analyte solution of concentration $c_{\rm S}$. To the second (labeled 3) is added the same volume $V_{\rm S}$ of the solvent. The analytical signals of

A and 8 are measured and corrected for nonanalyte signals signals. The unknown sample concentration c_{χ} is calculated:

$$c_{x} = \frac{S_{B}V_{s}c_{s}}{(S_{A} - S_{B})V_{x}}$$

where S_A and S_B are the analytical signals (corrected for the blank) of solutions A and B, respectively. V_S and c_S should be chosen so that S_A is roughly twice S_B on the average. It is best if V_S is made much less than V_X , and thus c_S is much greater than c_X , to avoid excess dilution of the sample matrix. If a separation or concentration step is used, the additions are best made first and carried through the entire procedure.

For the results from this technique to be valid, the following limitations must be taken into consideration:

- 1. The analytical curve must be linear.
- 2. The chemical form of the analyte added must respond the same as the analyte in the sample.
- 3. The interference effect must be constant over the working range of concern.
- 4. The signal must be corrected for any additive interference.

10. Calculation

10.1 Reagent blanks (6.5.2) should be subtracted from all samples. This is particularly important for digested samples requiring large quantities of acids to complete the digestion.

- 10.2 If dilutions were performed, the appropriate factor must be applied to sample values.
- 10.3 Data should be rounded to the thousandth place and all results should be reported in mg/l up to three significant figures.
- 11. Quality Control (Instrumental)
 - 11.1 Check the instrument standardization by analyzing appropriate quality control check standards as follow:
 - 11.1.1 Analyze an appropriate instrument check standard (6.6.1) containing the elements of interest at a frequency of 10%. This check standard is used to determine instrument drift. If agreement is not within ± 5% of the expected values or within the established control limits, whichever is lower, the analysis is out of control. The analysis should be terminated, the problem corrected, and the instrument recalibrated.
 - Analyze the calibration blank (6.5.1) at a frequency of 10%. The result should be within the established control limits of 2 standard deviations of the mean value. If not, repeat the analysis two more times and average the three results. If the average is not within the control limit, terminate the analysis, correct the problem and recalibrate the instrument.
 - 11.1.2 To verify interelement and background correction factors analyze the interference check sample (6.6.2) at the beginning, end, and at periodic intervals throughout the sample run. Results should fall within the established control

limits of 1.5 times the standard deviation of the mean value. If not, terminate the analysis, correct the problem and recalibrate the instrument.

11.1.3 A quality control sample (6.6.3) obtained from an outside source must first be used for the initial verification of the calibration standards. A fresh dilution of this sample shall be analyzed every week thereafter to monitor their stability. If the results are not within ± 5% of the true value listed for the control sample, prepare a new calibration standard and recalibrate the instrument. If this does not correct the problem, prepare a new stock standard and a new calibration standard and repeat the calibration.

12. <u>Precision and Accuracy</u>

12.1 In an EPA round robin phase I study, seven laboratories applied the ICP technique to acid-distilled water matrices that had been dosed with various metal concentrates. Table 4 lists the true value, the mean reported value and the mean % relative standard deviation.

13. References

- 13.1 Winge, R.K., Y.J. Peterson, and V.A. Fassel, "Inductively Coupled Plasma-Atomic Emission Spectroscopy: Prominent Lines, EPA-600/4-79-017.
- 13.2 Winefordner, J.D., "Trace Analysis: Spectroscopic Methods for Elements," Chemical Analysis, Vol. 46, pp. 41-42.
- 13.3 Handbook for Analytical Quality Control in Water and Wastewater Laboratories, EPA-600/4-79-019.

Table 4. ICP Precision and Accuracy Data

		Samole # 1			Sample #2			Sample #3	
Element	True Value µg/l	Mean Reported Value	Mean Percent RSD	True Value µg/l	Hean Reported Value µg/l	Mean Percent RSD	True Value µg/l	Hean Reported Value ug/l	Mean Percent RSD
Be Ma	750 350	733 345	6.2	20	20 15	9.8 6.7	180	176	3.2
۸ As	750 200	749 208	1.8	70	69 10	2.9 23	170 60	169	1.1
ວ່ວ	150 250	149 235	3.8 5.1	91	91	18 40	82	50 67	3.3
Fe Al	600 700	59 4 696	3.0	50 60	19 62	15 33	180 160	178	6.0
0) PJ	50 500	48 512	12 10	2.5	2.9	16 4.1	14	13 108	16 21
P S	250 250	245 23 <i>6</i>	5.8 16	30 24	30	11	008	55 80	14
Zn Se	700 40	201 32	5.6	16	19 8.5	45 42	90 10	82 8.5	ల. 4.ట.

Not all elements were analyzed by all laboratories.

- 13.4 Garbarino, J.R. and Taylor, H.E., "An Inductively-Coupled Plasma Atomic Emission Spectrometric Method for Routine Water Quality

 Testing," Applied Spectroscopy 33, No. 3(1979).
- 13.5 "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-020.
- 13.6 Annual Book of ASTM Standards, Part 31.

APPENDIX F: ANALYTICAL RESULTS

List of Tables

No.		•						Page
Fl	Analytical Boring No.	from	SWLP	Conducted	on	Samples	from	F5
F2	Analytical Boring No.	from	SWLP	Conducted	on	Samples	from	F6
F3	Analytical Boring No.	Erom	SWLP	.= Conducted	on	Samples	from	F7
F4	Analytical Boring No.	from	SWLP	Conducted	on	Samples	from	F8
F5	Analytical Boring No.	from	SWLP	Conducted	on	Samples	from	F9
F6	Analytical Boring No.	from	SWL?	Conducted	on	Samples	from	F1C
ह7	Analytical Boring No.	from	SULP	Conducted	on	Samples	from	F11
F3	Analytical Boring Mo.	from	SWLP	Conducted	on	Samples	from	F12
F9	Analytical Boring No.	from	SWLP	Conducted	on	Samples	from	F13
F10	Analytical Boring No.	from	SWLP	Conducted	on	Samples	from	F14
FII	Analytical Boring No.	from	SWLP	Conducted	oπ	Samples	from	F15

<u>No.</u>		Page
F12	Analytical Results from SWLP Conducted on Samples from	
	Boring No. 32	Flo
F13	Analytical Results from SWLP Conducted on Samples from	
	Boring No. 33	F17
F14	Analytical Results from SWLP Conducted on Samples from	
	Boring No. 50	F18
F15	Analytical Results from SWLP Conducted on Samples from	
	Boring No. 60	F19
F16	Analytical Results from SWLP Conducted on Samples from	
	Boring No. 70	F20
F17	Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample	
• • •	from Boring No. 01	F21
F13	Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample	
1.3	from Boring No. 01	F22
~1 0	Pulls Ourseld Applicate of the Ourselvenies from Ponton Vi. 11	700
F19	Bulk Organic Analysis of the Overburden from Boring No. 11	F23
F20	Bulk Metal Analysis of the Overburden from Boring No. 11	F25
F21	Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 12	F26
722	Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 12	F27
F23	Bulk Organic Analysis of the Overburden from Boring No. 12	F28
		- 24
724	Suit Meral Nazivsis of the Overburden from Bariag No. 12	r20

No.		Page
F25	Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 14	F30
F26	Buik Metal Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 14	F31
F27	Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 31	F32
F28	Buik Metal Analysis of the 0.0-1.0 ft Core Subsample	
. 20	from Boring No. 31	F33
	Trouborting to the second seco	2.3.3
F29	Bulk Organic Analysis of the Overburden from Boring No. 31	F34
F30	Bulk Metal Analysis of the Overburden from Boring No. 31	F35
F31	Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 33	F36
F32	Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 33	F37
F33	Buik Organic Analysis of the 0.0-1.0 ft Core Subsample	
	from Boring No. 70	F38
F34	Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample	
• • •	from Boring No. 70	F 39

Table 71

Analytical Results from SWLP Conducted on Samples from Boring No. 01

•					
		Core Sul	osamples		
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	3.0-4.0 ft	Overburden
pH	6.5*	8.2	8.2	9.7	7.2
Aldrin	0.30	0.61	0.71	0.40	5.07
Dieldrin	0.22	0.013	2.41	0.54	19.5
Endrin	0.40	0.20	2.22	0.91	24.4
Isodria	0.11	0.003	0.005	0.11	0.41
DIMP	70	90	110	110	30
DIMP	- -☆★	-	-	•	
Dithiane	-	-	••	-	<u>.</u>
Sulfone	-	-	-	-	710
Sulfoxida	***	-	. •	-	-
DBCP		-	-	-	0.010
Mercury	•••	-	0.12	0.12	0.22
Arsenia	95	110	110	90	110
Fluorida (ppm)	7.0	9.5	12.3	15.2	3.3

[#] All values other than pH are reported p_{θ} ppb unless otherwise noted.

^{**} Less than detection limit.

Table 72

Analytical Results from SWLP Conducted on Samples from Boring No. 02

	Sample Identification						
		Core Sub	samples				
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	3.0-4.0 ft			
рĦ	9.1*	9.1	9.1	9.1			
Aldrin	49.7	8.10	1.42	0.30			
Dieldrin	59.1	_ 19.5	4.19	0.12			
Endrin	76.3	17.0	4.04	0.40			
Isodrin	20.1	0.52	0.11	0.005			
DIMP	20	30	30	10.8			
DNMP	 **	-	-	-			
Dithiane	40	-	-	•			
Suifone	1600	630	530	760			
Sulfoxide	1070	440	440	760			
DBCP	0.60	0.09	0.09	0.17			
Mercury	0.58	1.0	1.24	0.52			
Arsenic	170	230	160	120			
Fluoride (ppm)	6.1	4.3	7.3	4.3			

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F3

Analytical Results from SWLP Conducted on Samples from Boring No. 11

•					
		Core Sul	hsamples		
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	3.0-4.0 ft	Overburden
pЧ	5.3*	4.5	6.5	6.4	8.6
Aldrin	0.51	-**	U , 90	5 4.	8.51
Dieldrin	. 0.12	0.013	0.12	-	23.6
Endrin	9.04	-	0.71	-	39.4
Isodria	0.005	0.005	0.005	-	0.11
DIMP	30	20	20	7	20
DNDIP	-	-	-	-	0-07
Dithiane	· •	-		-	-
Sulfone	-	_	-		1710
Sulfoxide	-	-	-	~	-
D3C?	-	-	0.022	-	0.07
Mercury	0.12	0.12	0.20	0.16	1.20
Arsenic	-	90	-	20	280
Fluoride (ppm)	0.75	0.95	0.71	1.2	14.8

ĵ٠.

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F4

Analytical Results from SWLP Conducted on Samples from Boring No. 12

	Sample Identification					
		Core Sub	samples			
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	3.0-4.0 ft		
pН	5.8*	5.4	5.5	6.0		
Aldrin	- **	-	-	-		
Dieldrin	-	0.12	-	-		
Endyin	-	0.61	-	· -		
Isodrin	-	-	-	-		
DIMP	30	10	10	6		
DMMP	-	-	<u>.</u>	-		
Dithiane	•	-	-	-		
Sulfone	120	-	-	-		
Sulfoxide	•	-	-	•		
DBCP	-	0.013	-	~		
Marcury	-	0.14	0.24	-		
Arsenic	14	12	20	50		
Fluoride (ppm)	0.48	0.54	0.95	1.95		

Î.

 $[\]tilde{\tau}$ All values other than $\tilde{\rho}^{\rm R}$ are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

F5
Analytical Results from SWLP Conducted on Samples from Boring No. 13

	Sample Iden	itification
•	Core Sub	samples
Analyte	0.0-1.0 ft	1.0-2.0 ft
	3.4*	8.2
Aldrin	_**	~
Dieldrin	-	~
Endrin	. 	-
Isodrin	-	•
DIMP	40	40
DMMP	0.04	0.04
Dithiane	-	-
Suifone	-	-
Sulfoxide	-	-
DBCP	-	-
Mercury	0.14	0.14
Arsenic	64	51
Fluoride (ppm)	1.7	1.1

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F6

Analytical Results from SWLP Conducted on Samples from Boring No. 14

•		Sample Iden	tification	
		Core Subsamples		
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	Overburden
ън	5.6*	5.8	5.6	8.1
Audrin	_**	-	0.02	1.59
Dielarin	<u>.</u> .	0.10	0.21	3.24
Endrin		-	0.07	(4.5
Isodrin	•	-	-	3.1
DIMP	20	20	20	120
DNMP	-	-		0.39
Dithiane	-	•	-	-
Sulfone	40	-	-	9160
Sulfoxide		-	• .	1140
DBCP	-	-	-	1.01
Mercury	0.12	-	0.12	2.14
Arsanic	38	8د	71	226
Fluoride (ppm)	1.9	2.1	2.0	15.2

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F7

Analytical Results from SWLP Conducted on Samples from Boring No. 15

•		Sample Identification	1
		Core Subsamples	
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft
pН	5.3*	5.6	5.7
Aldrin	- **	-	-
Dieldrin	0.10 =	0.10	-
Endrin	0.08	0.07	-
Isodrin	-	-	-
DIMP	40	30	36
DWMB	-	-	-
Dithiane	-	-	-
Sulfone	90	-	-
Sulfoxide	-	-	
DBCP	-		-
Mercury	-	0.12	-
Arsenic	160	170	20
Fluoride (ppm)	0.42	0.40	0,52

\$...

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table 78

Analytical Results from SWLP Conducted on Samples from Boring No. 21

•		Sample Identification	n
		Core Subsamples	
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft
pH	6.9*	4.8	4.9
Aldrin	**	0.01	-
Dieldrin	•	•	-
Endrin	-	-	-
Isodrin	. -	-	~
DIMP	60	40	20
DIMP	•	-	-
Dithiane	-	-	-
Sulfone	•	-	-
Sulfoxide	-	-	·
DBCP	-	-	-
Mercury	0.58	-	-
Arsenic	-	14	11
Fluoride (ppm)	0.90	. 1.52	1.4

<u>.</u>

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F9

Analytical Results from SWLP Conducted on Samples from Boring No. 22

•		Sample Identification	n		
		Core Subsamples			
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft		
рH	4.9*	4.8	4.4		
Aldrin	0.03	- **	-		
Dieidrin -	0.01	-	-		
Endria	. -	-	-		
Isodria	0.08	-	-		
DIMP	130	140	150		
DMMP	-	•	-		
Dithiane	-	-	-		
Suifone	-	72	-		
Sulfoxide	-	-	-		
DBCP	-	-	-		
Mercury	-	-	-		
Arsenic	•	-	14		
Fluoride (ppm)	1.4	0.855	0.24		

<u>.</u>

^{*} All values other than pH are reported as ppb unless otherwise noted.

⁴⁴ Less than detection limit.

Analytical Results from SWLP Conducted on Samples from Boring No. 23

•		Sample Identification	n			
		Core Subsamples				
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft			
pH	4.8*	5.0	5.9			
Aldrin	- **	-	-			
Dieldrin		-	0.01			
Endrin	-	-	-			
Isodria	-	-				
DIMP	60	40	30			
DMMP	-	-	-			
Dithiane	-	-	-			
Sulfone		-	-			
Sulfoxide	-	-	. -			
DBCP	-	-	- '			
Mercury	0.20	- -	-			
Arsenic	15	29	22			
Fluoride (ppm)	0.48	0.64	0.59			

, Te

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table Fll

Analytical Results from SWLP Conducted on Samples from Boring No. 31

•		Sample Iden	tification	
		Core Subsamples		
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	Overburden
pH	5.7*	5.5	5.6	8.5
Aldrin	र्यः मेः क	0.30	-	28.4
Dieldrin	-	1.25	-	20.2
Endrin	-	2.22	-	17.7
Isodrin	0.10	0.005	0.10	8.19
917.1G	20	20	10	310
DMMP	-	-	-	60
Dithiane	-		-	-
Sulfone	-	-	-	3200
Sulfoxida	-	-	•	-
DBCP	-	0.03	-	0.46
Mercury	0.16	0.22	-	0.36
Arsenic	11	25	25	360
Fluoride (ppm)	0.66	1.0	3.9	7.8

.

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F12

Analytical Results from SWLP Conducted on Samples from Boring No. 32

		Sample Identification	n	
	Core Subsamples			
Analyte	0.0-1.0 ft	1.9-2.0 ft	2.0-3.0 ft	
Яq	5.5*	5.8	5.9	
Aldrin	0.20	- .**	0.10	
Dieldrin	0.10	-	0.10	
Endrin	7.10	• '	0.10	
Isodrin	at 	0.10	0.10	
DIMP	170	150	150	
DICIP	-	-	-	
Dithiane	. •	•	-	
Sulfone	100	-	-	
Sulfoxide	-	-	-	
DBCP	•	0.006	-	
Mercury	0.16	0.36		
Arsenio	14	12	14 .	
Fluoride (ppm)	0.57	0.63	0.41	

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

F13

Analytical Results from SWLP Conducted on Samples from Moring Mo. 33

	Sample Iden	tification	
	Core Subsamples		
Analyte	0.0-1.0 ft	1.0-2.0 ft	
pН	5.5*	5.9	
Aldrin	0.20	_ _*★	
Dieldrin	0.10	-	
Endrin	0.20	•	
Isodrin	0.10	-	
DIMP	20	10	
DMMP	-	•	
Dithiane	-	. •	
Sulfone	•		
Sulfoxide	- .	-	
DBCP	0.008	-	
Mercury	-	0.16	
Arsenic	. 14	28	
Fluoride (ppm)	0.67	0.95	

^{*} All values other than off are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F14

Analytical Results from SWLP Conducted on Samples from Boring No. 50

•		Sample Iden	tification		
	Core Subsamples				
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	3.0-4.0 ft	
рĦ	6.2*	5.0	5.2	8.0	
Aldrin	0.40	0.30	0.30	_ **	
Dieidrin	0.43	0.12	0.12	-	
Endrin .	0.71	0.30	0.50	-	
Isodrin	0.11	0.11	0.005	•	
DIMP	30	40	20	17	
DNMP	-	••	-		
Dithiane	-	-	-	-	
Sulfone	40	•	-		
Sulfoxida	-	-	•	~	
DBCP	-	-	-	-	
Mercury	0.12	0.12	0.40	0.33	
Arsenic	-	•	-	20	
Fluorida (ppm)	0.71	0.41	0.62	0.75	

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

F15
Analytical Results from SWLP Conducted on Samples from Boring No. 60

	Sample Iden	tification		
	Core Subsamples			
Analyta	0.0-1.0 ft	1.0-2.0 ft		
PH	5.2*	5.6		
Aldrin	_**	-		
Dieldrin	•	0.10		
Endrin	-	0.10		
Isodrin	0.10	-		
DIMP	20	20		
DMMP	-	-		
Dithiane	<u>-</u>	-		
Sulfone		-		
Sulfoxide	-	-		
DBC?	0.01	-		
Mercury	0.54	0.16		
Arsenic	-	11		
Fluorida (ppm)	0.63	0.41		

^{*} All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F16

Analytical Results from SWLP Conducted on Samples from Boring No. 70

		Sample Iden	tification	
		Core Subsamples		
Analyte	0.0-1.0 ft	1.0-2.0 ft	2.0-3.0 ft	Overburden
pH	4.7*	5.6	5.5	8.5
Aldrin	_**	0.10	-	0.27
Dieldrin	0.10	· -	-	0.10
Endrin	0.70	•	-	0.61
Isodrin	-	0.10	0.10	-
DIMP	40	20	20	40
DMMP	-	-	-	-
Dithiane	-	-	•	-
Sulfone	-	•	•	340
Sulfoxida	-	-	•	-
DBCP	-	- ,	-	-
Mercury	0.22	-	0.42	0.28
Arsenic	12	11	11	81
Fluorida (ppm)	0.35	0.40	0.43	6.4

 $[\]dot{\pi}$ All values other than pH are reported as ppb unless otherwise noted.

^{**} Less than detection limit.

Table F17

Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 01

Tentative Identification	Level (µg/q)
Diisopropylmethylphosphonate	5
Toluene	0.6
1,1,2-Trichloroethane	. 2
Tetrachloroethylene	0.2
Unknown (m/e 79 base)	1
Xylene	0.1
Kylene	0.1
1,1,2,2-Tetrachloroethane	4 .
Pantachioroethane	0.3
Acetophenone	0.1
Unknown (m/e 79 base)	2
Unknown (<u>m/e</u> 79 base)	2
Unknown (m/e 79 base)	6
Unknown (m/e 79 base)	1
S ₆ (molecular sulfur)	1
Sg (molecular sulfur)	16
Unknown (m/e 275 base)	2
4-tert-Butyl-2-(tert-butylthio)pyridine	0.5

<u>۴</u> ..

Table F18

Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 01

Analyte			Concentration $(\mu g/g)$
Silver			1.18
Aluminum			8750
Arsenic	•		<1.8
Boron			7.15
Barium			170
Beryllium			<0.08
Calcium			2130
Cadmium			<0.1
Cobalt			9.29
Chronium			13.1
			<100
Copper			11300
Iron			0.023
Mercury			2630
Potassium			3050
Magnesium			384
Manganese			6.19
Molybdenum			4250
Sodium			14.3
Wickel			579
Phosphorus	•		27.1
Lead			45.0
Antimony		_	<6.2
Selenium		*	< 50
Tin			
Titanium			48.0
Thallium			24.4
Yttrium			16.2
Zinc			49.4
Fluoride			152

Table F19

Bulk Organic Analysis of the Overburden from Boring No. 11

Tentative Identification		Level (µz/g)
Dimethymethylphosphonate		40
Diisopropylmethylphosphonate		-
p-chlorophenylmethylsulfone		250
Chiorophenylmethylsulfone isomer		12
Aidrin		500
Isodrin		08
Dieldrin		530
Endria		450
Benzene		20
Cyclohexene		130
Dimethyl disulfide		2
1,1,2-trichloroethane		6
Jnknown (possibly N-methylacetamide)		80
N 98 unknown	·	80
Weak unknown (<u>m/e</u> 78 base)		30
2° or 3° amine unknown		20
Jnknown (<u>m/e</u> 57 base)		30
Alkane	•	5
Aikane		4
N-nitrosodipropylamine		200
2° or 3° amine unknown		25
M-containing unknown		20
2° or 3° amine unknown	·	30
Methylcyclopentaliene		2
Methylcyclopentadiene isomer		2
Uaknown (m/e 79 base)		270
Hexachlorobutadiene		70
Monochlorinated unknown (MM 158)		177
Aikane		3 .
(Continu	ied)	

Table F19 (Concluded)

Tentative Identification	Level (µg/g)
Hexachiorobicycloheptadiene	800
Aikane	8
Unknown	7 .
Aldrin-type pesticide (?), Weak!	7
Chlorinated unknown (MW 332)	300
Chlorinated unknown	10
Alkane	14
Altane	8
Tetrachlorobenzene	70
Chlorinated unknown	250
Unknown (m/e 57 base)	20
S _g (molecular sulfur)	300
Unknown	35
2° or 3° amine unknown	_ 10
2° or 3° amine unknown	13
2° or 3° amine unknown	40
Aldrin-type chlorinated pesticide	180

Buik Matal Analysis of the Overburden from Boring No. 11

Analyte	Concentration (ug/g
Siiver	0.561
Aluminum	6830
Arsenic	<1.8
Boron	6.48
Barium	94.6
Seryilium	<0.08
Calcium	6110
Cadmium	0.55
Cobalt	5.66
Chronium	10.7
Copper	5220
Iron	7660
Mercury	0.057
Potassium	1810
Magnesium	2740
Manganese	189
Molybdenum	5.55 ·
Sodium	- 23700
Nickel	13.8
Phosphorus	3100
Lead	35.6
Antimony	29.0
Selenium	<6.2
Tin	<u>*</u>
Titanium	63.6
Thailium	15.0
Yttrium	9.56
Zinc	69.7
Fluoride	494

Table F21

Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 12

Theretfiesties	Level (µ2/1)
Tentative Identification	2.1
p-Chiorophenylmethylsulfone	8
Toluene	1.1
l,1,2-Trichloroethane	
Tetrachloroethylene	0.2
MW 98 unknown	30
	0.2
Xylene	5
Unknown (<u>m/e</u> 79 base)	4
1,1,2,2-Tetrachloroethane	0.2
Pentachloroethane	7.9
MV 98 or 134 unknown	
Unknowa	2
S (molecular sulfur)	

≯ ...

Table F22
Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 12

Analyte	Concentration $(\mu g/g)$
Silver	1.26
Aluminum	7190
Arsenic	<1.8
Boron	6.31
Barium	133
Beryllium -	<0.08
Calcium	18700
Cadmium	<0.1
Cobalt	6.34
Chromium	10.5
Copper	<100
Iron	10200
	0.010
Mercury Potassium	1840
•	3060
Magnesium	257
Manganese Molybdenum	5.01
Sodium	
Nickel	9.59
	558
Phosphorus Lead	19.7
	44.0
Antimony	< 5.2
Selenium	< 50
Tin	84.5
Titanium	22.9
Thellium	11.8
Yttrium	37.3
Zinc	95.0
Finoride	₩

Table F23

Bulk Organic Analysis of the Overburden from Boring No. 12

Tentative Identification	Level (µg/g)
Dieldrin	5.4
p-Chlorobenzene methyl sulfoxide	3.6
p-Chiorobenzene methyl sulfone	32
p-Chiorobenzene methyl sulfoxide isomer	1
Aldrin	1.4
Toluene	14
1,1,2-Trichloroethane	1
MV 98 unknown	3
Unknown	7
Xylene	0.3
N.N-dimethylactamide	2
Unknown	5
N-nitrosodipropylamine	20
MW 127 unknown	4
Unknown 2° or 3° amine	24
Weak unknown	1
Unknown (m/e 79 base)	8.
Unknown	20
MW 158 chlorinated unknown	5
Methyl sulfonyl benzene (very weak)	0.3
Weak unknown	1
Sg (molecular sulfur)	30
Unknown (275 base pk)	6
4-tert-Butyl-2(tert-butylthio)pyridine	3
Unknown MW 221 N-containing compound	4
Weak MW 131 unknown	4

Table F24
Bulk Metal Analysis of the Overburden from Boring No. 12

Analyte	Concentration (µz/g)
Silver	1.15
Aluminum	7280
Arsenic	<1.8
Baran	8.08
3arium	115
Beryllium	<0.08
Calcium	4440
Cadmium	<0.1
Cobalt	5.57
Chronium	9.76
Copper	613
Iron	9640
fercury	0.091
Potassium	1790
Magnesium	2350
Manganese	205
Molyhdanum	4.97
Sodium	14100
Nickel	10.4
Phosphorus .	1550
Lead	17.4
Antimony	18.0
Selenium	<6.2
Tin .	<50
Titanium	84.4
Thallium	18.1
Yttrium	9.90
Zinc	41.6
Fluoride	217

Table F25

Buik Organic Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 14

Tentative Identification	Level (µg/z)
D/QIP	2.6
DIMP	1.5
p-Chiorophenylmethylsufone	0.9
Toluene	4.7
1,1,3-Trichloroethane	3.1
Tetrachloro thy lene	n.2
Possibly M-methylacetamide	0.3
MW 98 unknown	3.2
Xylene	9.2
Xylene	0.5
Weak unknown	1.3
Xylene	0.3
1,1,2,2-Tetrachioroethane	11
Pentachloroethane	0.7
Acetophenone	0.5
Unknown (<u>m/e</u> 79 base)	7
S ₆ (molecular sulfur)	5
S _o (molecular sulfur)	20

Table F26

Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 14

Analyte	Concentration (µg/q)
Silver	1.53
Aluminum	6840
Arsenic	<1.8
Boron	9.82
Barium	-120
Bery Llium	<0.08
Calcium	9120
Cadmium	<0.1
Cohalt	7.90
Chronium	11.8
Copper	<100
Tron	10900
Mercury	0.015
Potassium	2200
Magnesium	4920
Manganese	294
Molybdenum	5.41
Sodium	896
Nickel	13.6
Phosphorus	606
Lead	22.5
Antimony	100
Selentum	<6.2
Tin .	<50
Titanium	94.5
Thallium	28.3
Yttrium	14.5
Zinc	47.5
Fluoride	184

Table F27

Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 31

Tentative Identification	Level $(\mu z/z)$
DMMP	1.9
p-Chiorophenylmethylsulfone	0.6
Toluene	1
1,1,2-Trichloroethane	2
Unknown	3
Xylene	0.2
Unknown (<u>m/e</u> 79 base)	t
Xylene	0.1
1,1,2,2-Tetrachloroethane	7
Pentachloroethane	0.3
Acetophenone	0.1
Unknown (m/e 79 base)	4
Weak unknown (contains m/e 79)	2
S ₆ (molecular sulfur)	2
S _e (molecular sulfur)	6

Table F28

Bulk Metal Analysis of the 0.1-1.0 ft Core Subsample from Boring No. 31

Analyte	Concentration (L2/2
Silver	1.47
Aluminum	9270
Arsenic	<1.8
Soron	14.6
Sarium .	177
Jery Llium	<0.08
Calcium	18900
Cadmium	<0.1
Cobalt	8.81
Chromium	14.2
Copper	<100
Iron	12700
Mercury	0.030
Potassium	2680
Magnesium	5050
Manganese	329
Molybdenum	6.85
Sodium	655
Nickel	15.0
Phosphorus	562
Lead	23.6
Antimony	117
Selenium	<6.2
Tin	<50
Titanium	75.1
Thallium	35.2
Yttrium	14.9
Zinc	49.9
Fluoride	224

Table F29
Bulk Organic Analysis of the Overburden from Boring No. 31

Tentative Identification	Level (μ ₂ /g)
Aidrin	3,100
Isodrin	200
p-Chlorophenylmethylsulfone	70
Toluene	30
Hexachlorobutadien	220
Monochlorinated unknown (NW 158)	100
Hemasiclorobicycloheptadiene	1,700
Chiorinated unknown	500
Tetrachlorobenzene	30
S _q (molecular sulfur)	130
Unknown (m/e 275 base)	30
Dieldrin	550
Chiorinated unknown	30
Aldrin-type chlorinated pesticide	200

Table F30

Bulk Metal Analysis of the Overburden from Boring No. 31

Analyte	Concentration (µg/g
Silver	0.65
Aluminum	7460
Arsenic	<1.8
Boron "	3.70
Sarium .	126
Beryllium	<0.08
Calcium _	16100
Cadmium	0.21
Cobalt	6.03
Chromium ş	11.3
Jopper -	2110
Iron .	9190
fercury [0.031
Potassium .	2050
Magnesium	3600
Manganese	219
Colybdenum	5.54
Sodium *	32700
Nickel	13.1
Phosphorus	2980
Lead	25.4
Antimony	55.0
Selenium	<6.2
Tin	<50
Titanium	91.6
Thailium	19.1
Yttrium	9.72
Zinc	49.2
Fluoride	336

Table F31

Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 33

Tentative Identification	Level (ug/g)
p-Chlorobenzene methyl sulfone	0.4
Toluene	. 6
1,1,2-Trichloroethane	2
Tetrachloroethylene	0.2
tsi 98 Unknown	30
Tylene	1 0.2
Unknown (m/e 79 base)	4
Tetrachioroethane	5
Pentachloroethane	0.4
MN 98 or 134 unknown	11
Alkane	0.3

Table F32
Sulk Matal Analysis of the 0.0-1.0 ft Core Subsample from Boring Mo. 33

Analyta	Concentration $(\mu z/z)$
Silver	1.35
Aluminum	11500
Arsenic	<1.8
Boron	8.58
Barium	162
Deryllium	<0.08
Calcium	2990
Cadmium	<0.1
Cobalt	8.71
Chromium	14.8
Copper	<100
Iron	13600
Mercury	0.015
Potassium	2680
Magnesium	3380
Manganese	296
Molyhdenum	
Sodium	9.31
Nickel	1030
Phosphorus	15.1
Lead	432
Antimony	24.6
Selenium	55.0
Tin	<6.2
litanium	<50
Thallium	70.2
(ttrium	32.9
71nc	15.0
Fluoride	49.0
	60.8

Table F33

Bulk Organic Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 70

Tentative Identification	Level (µz/q)
Toluene	10
1,1,2-trichloroethane	3.0
Tetrachloroethylene	0.2
MV 98 unknown	30
Xylene	0.3
Unknown (<u>m/e</u> 79 base)	9
1,1,2,2-Tetrachioroethane	13
Pentachloroethane	0.8
NW 93 or 134 unknown	30
Unknown	0.7
Alkane	2

Table 734

Bulk Metal Analysis of the 0.0-1.0 ft Core Subsample from Boring No. 70

Analyte	Concentration (12/2
Silver	1.23
Aluminum	25 90
Arsenia	<1.8
Boron	9.56
Barium	53.3
Beryllium	<0.08
Salcium	1300
Cadmium -	<0.1
Cobalt	3.34
Chromium	4.49
Copper	<100
Iron	4040
Mercury	0.013
Potassium	885
Magnesium	1050
Manganese	123
Molyhdenum	1.93
Sodium	124
Nickel	4,30
Phospharus	230
Lead	12.4
Antimony	65.0
Seienium	-5.2
Tin _	<50
Titanium	45.4
Thallium	3.77
Yttrium	5.63
Zina	19.3
Floorida	60.8