1. Influence of d(x) and r(x) on α_R

If not stated otherwise, P_2 elements are used for the standard FEM, and $P_4/P_3^{\rm disc}$ elements are used for the mixed FEM.

1.1.
$$p = (2\pi c_1)^{-2} \sin(2\pi c_1 x)$$

1.1.1.
$$d=10, r=0$$

Table 1 Ratio of α_R for d = 10 to that for d = 1.

c	The standard FEM			The mixed FEM		
	u	u_x	u_{xx}	u	u_x	u_{xx}
10^{-2}	0.8	1.0	1.0	1.0	10.0	10.0
10^{-1}	0.8	1.0	1.0	1.0	10.0	10.0
10^{0}	1.0	0.5	1.0	0.1	10.0	10.0
10^{1}	1.3	0.5	1.0	1.0	10.0	10.0
10^{2}	1.3	1.3	1.0	1.0	10.0	10.0

1.2.
$$p=e^{-(x-0.5)^2}$$

1.2.1.
$$d=1+0.5\sin(cx)$$
, $r=0$

For c ranging from 1 to 10^4 , $||d||_2$ is of order 1, see Fig. 1. Note that, the oscillation of d magnifies when c increases.

Fig. 1. Change of $||d||_2$ with the coefficient c for section 1.2.1.

Using both the standard FEM and the mixed FEM, $\alpha_{\rm R}$ are shown below.

Fig. 2. $\alpha_{
m R}$ for the Poisson, diffusion and Hemlholtz equations with $p=e^{-(x-0.5)^2}$.

The standard FEM. The truncation error increases when the d oscillates relatively large, i.e. when c is larger than 10.

The lines approximating the round-off error for the solution and first derivative are not affected by the oscillation of d, but that for the second derivative moves up a bit when c is larger than 10.

The mixed FEM. The truncation error increases when d oscillates relatively large. The lines approximating the round-off error are not affected.

Last but not least, the offsets α_R for the diffusion equation tend to be smaller than that for the Poisson equation.

1.2.2. $d=1+0.5\sin(x)$, r=c

Here, c ranges from 1 to 10^8 . For larger c, α_R is denoted by lighter color.

The standard FEM. $\alpha_{\rm R}$ for different c are summarized in Fig. 2.

The mixed FEM.

1.3. $p = \sin(2\pi x)$

Fig. 3. α_R for the Poisson, diffusion and Hemlholtz equations with $p = \sin(2\pi x)$.

1.3.1. d=1+cx

c ranges from 10^{-4} to 10^4 . The values of $||d||_2$ for different c are given in Fig. 4. It shows that when c < 1, $||d||_2$ are basically the same; when c > 1, $||d||_2$ increases quickly.

Fig. 4. Change of $||d||_2$ with the coefficient c for the diffusion equation.

The standard FEM. Using scheme S, the errors are shown in Fig. 5. When c < 1, like $||d||_2$, α_R for different c are basically the same; when c > 1, α_R increases with c, and the magnitude of the increase is larger for higher-order derivatives.

Fig. 6 proves that the element degree does not affect the round-off error. Fig. 7 proves that only using Dirichlet boundary conditions produces smaller $\alpha_{\rm R}$.

The mixed FEM. Not using scaling, the errors are shown in Fig. 8. It shows that when c is relatively large, $\alpha_{\rm R}$ for the first and second derivatives increases. This is because the magnitude of the first derivative, which is $||du_x||_2$, increases with c when c > 1.

If we use scheme M_1 in [1], the errors are shown in Fig. 9, where the convergence behavior of α_R is observed. Note that, $||v||_2$ is $||du_x||_2$ for the diffusion equation.

Fig. 5. Absolute errors for the benchmark diffusion equation using the standard FEM with scheme S, c variant.

Fig. 6. Absolute errors for the benchmark diffusion equation using the standard FEM with scheme S, c=1e4, degree variant.

Fig. 7. Absolute errors for the benchmark diffusion equation but only imposed by Dirichlet boundary conditions using the standard FEM with scheme S, c variant.

References

[1] Jie Liu, Matthias Möller, and Henk M Schuttelaars. Balancing truncation and round-off errors in practical fem: one-dimensional analysis. arXiv preprint arXiv:1912.08004, 2019.

Fig. 8. Absolute errors for the benchmark diffusion equation using the mixed FEM with P_4/P_3^{disc} elements, $v = -du_x$, coefficient variant, no scaling.

Fig. 9. Absolute errors for the benchmark diffusion equation using the mixed FEM with P_4/P_3^{disc} elements, $v = -du_x$, coefficient variant, scheme M_1 .