

ETC3250

Business Analytics

Week 2.

Assessing model accuracy

3 August 2015

Outline

1 Regression problems

2 Classification problems

Statistical learning Regression problems

2/24

Assessing model accuracy

Suppose we have a regression model $y = f(x) + \varepsilon$.

Estimate \hat{f} from some training data, $Tr = \{x_i, y_i\}_1^n$. One common measure of accuracy is:

Training Mean Squared Error

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2 = \frac{1}{n} \sum_{i=1}^{n} [(y_i - \hat{f}(x_i))]^2$$

Assessing model accuracy

Suppose we have a regression model $y = f(x) + \varepsilon$.

Estimate \hat{f} from some training data, $Tr = \{x_i, y_i\}_1^n$.

One common measure of accuracy is:

Training Mean Squared Error

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2 = \frac{1}{n} \sum_{i=1}^{n} [(y_i - \hat{f}(x_i))]^2$$

Measure real accuracy using **test data** $Te = \{x_j, y_j\}_1^m$

Test Mean Squared Error

$$\mathsf{MSE}_{\mathsf{Te}} = \underset{j \in \mathsf{Te}}{\mathsf{Ave}} [y_j - \hat{f}(x_j)]^2 = \frac{1}{m} \sum_{i=1}^m [(y_j - \hat{f}(x_j)]^2$$

Statistical learning

Training vs Test MSEs

- In general, the more flexible a method is, the lower its training MSE will be. i.e. it will "fit" the training data very well.
- However, the test MSE may be higher for a more flexible method than for a simple approach like linear regression.
- Flexibility also makes interpretation more difficult. There is a trade-off between flexibility and model interpretability.

Example: splines

Black: true curve
Orange: linear regression

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Example: splines

Black: true curve Orange: linear regression

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Example: splines

Black: true curve

Orange: linear regression

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Bias-variance tradeoff

There are two competing forces that govern the choice of learning method: **bias** and **variance**.

Bias

is the error that is introduced by modeling a complicated problem by a simpler problem.

- For example, linear regression assumes a linear relationship when few real relationships are exactly linear.
- In general, the more flexible a method is, the less bias it will have.

Bias-variance tradeoff

There are two competing forces that govern the choice of learning method: **bias** and **variance**.

Variance

refers to how much your estimate would change if you had different training data.

- In general, the more flexible a method is, the more variance it has.
- The size of the training data has an impact on the variance

The bias-variance tradeoff

MSE decomposition

If $Y = f(x) + \varepsilon$ and $f(x) = E[Y \mid X = x]$, then the expected **test** MSE for a new Y at x_0 will be equal to

$$\mathsf{E}[(\mathsf{Y} - \hat{f}(\mathsf{x}_0))^2] = [\mathsf{Bias}(\hat{f}(\mathsf{x}_0))]^2 + \mathsf{Var}(\hat{f}(\mathsf{x}_0)) + \mathsf{Var}(\varepsilon)$$

Test $MSE = Bias^2 + Variance + Irreducible variance$

- The expectation averages over the variability of *Y* as well as the variability in the training data.
- As the flexibility of \hat{f} increases, its variance increases and its bias decreases.
- Choosing the flexibility based on average test MSE amounts to a **bias-variance trade-off**.

Statistical learning Regression problems 10/24

Bias-variance trade-off

Optimal prediction

MSE decomposition

If $Y = f(x) + \varepsilon$ and $f(x) = E[Y \mid X = x]$, then the expected **test** MSE for a new Y at x_0 will be equal to

$$\mathsf{E}[(Y-\hat{f}(x_0))^2] = [\mathsf{Bias}(\hat{f}(x_0))]^2 + \mathsf{Var}(\hat{f}(x_0)) + \mathsf{Var}(\varepsilon)$$

The optimal MSE is obtained when

$$\hat{f} = f = \mathsf{E}[\mathsf{Y} \mid \mathsf{X} = \mathsf{x}].$$

Then bias=variance=0 and

MSE = irreducible variance

This is called the "oracle" predictor because it is not achievable in practice.

Statistical learning Regression problems 12/24

Outline

1 Regression problems

2 Classification problems

Classification problems

Here the response variable Y is qualitative.

- \blacksquare e.g., email is one of $\mathcal{C} = (\text{spam}, \text{ham})$
- e.g., voters are one ofC = (Liberal, Labor, Green, National, Other)

Our goals are:

- **1** Build a classifier C(x) that assigns a class label from C to a future unlabeled observation X.
- Assess the uncertainty in each classification (i.e., the probability of misclassification).
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Classification problems

Here the response variable Y is qualitative.

- \blacksquare e.g., email is one of $\mathcal{C} = (\text{spam}, \text{ham})$
- e.g., voters are one ofC = (Liberal, Labor, Green, National, Other)

Our goals are:

- Build a classifier C(x) that assigns a class label from C to a future unlabeled observation x.
- 2 Assess the uncertainty in each classification (i.e., the probability of misclassification).
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Classification problem

In place of MSE, we now use:

Error rate

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{f}(x_i))$$

where $\hat{f}(x_i)$ is the predicted class label and $I(y_i \neq \hat{f}(x_i))$ is an indicator function.

- That is, the error rate is the fraction of misclassifications.
- The training error rate is misleading (too small).
- We want to minimize the test error rate: $E(I(y_0 \neq \hat{y}_0))$

Classification problem

In place of MSE, we now use:

Error rate

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{f}(x_i))$$

where $\hat{f}(x_i)$ is the predicted class label and $I(y_i \neq \hat{f}(x_i))$ is an indicator function.

- That is, the error rate is the fraction of misclassifications.
- The training error rate is misleading (too small).
- We want to minimize the test error rate: $E(I(y_0 \neq \hat{y}_0))$

Optimal classifier

Suppose the K elements in \mathcal{C} are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x.

Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Optimal classifier

Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x. Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Optimal classifier

Suppose the K elements in \mathcal{C} are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x. Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Bayes error rate

Bayes error rate

$$1 - \mathsf{E}\left(\mathsf{max}_{j}\,\mathsf{Pr}(Y=j|X)\right)$$

- The "Bayes error rate" is the lowest possible error rate that could be achieved if we knew exactly the "true" probability distribution of the data.
- It is analogous to the "irreducible error" in regression.
- On test data, no classifier can get lower error rates than the Bayes error rate.
- In reality, the Bayes error rate is not known exactly.

Bayes optimal classifier

 X_1

Statistical learning

k-Nearest Neighbours

One of the simplest classifiers. Given a test observation x_0 :

- Find the K nearest points to x_0 in the training data: \mathcal{N}_0 .
- Estimate conditional probabilities

$$Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$

■ Apply Bayes rule and classify x_0 to class with largest probability.

$$K = 3.$$

KNN: K=10

 X_1

KNN: K=1 KNN: K=100

22/24

A fundamental picture

Model Complexity

A fundamental picture

Model Complexity

Model Complexity