Problem Statement: In a given data set, Finding the Best camera based on their Cost, Maximum v Resolution, Normal Focus Range, Macro Focus, Weight, Dimensions and Price Using Pandas Library

import pandas as pd

data = pd.read_csv('/content/camera_dataset.csv')

data

-	-	_	
-	→	$\overline{}$	

	Model	Release date	Max resolution		Effective pixels	Zoom wide (W)	Zoom tele (T)	Normal focus range	Macro focus range	Storage included	Weight (inc. batteries)	Dimensions	Price
0	Agfa ePhoto 1280	1997	1024.0	640.0	0.0	38	114.0	70	40	4.0	420	95.0	179.0
1	Agfa ePhoto 1680	1998	1280.0	640.0	1.0	38	114.0	50	0	4.0	420	158.0	179.0
2	Agfa ePhoto CL18	2000	640.0	0.0	0.0	45	45.0	0	0	2.0	0	0.0	179.0
3	Agfa ePhoto CL30	1999	1152.0	640.0	0.0	35	35.0	0	0	4.0	0	0.0	269.0
4	Agfa ePhoto CL30 Clik!	1999	1152.0	640.0	0.0	43	43.0	50	0	40.0	300	128.0	1299.0
1033	Toshiba PDR- M65	2001	2048.0	1024.0	3.0	38	114.0	10	10	8.0	320	120.0	62.0
1034	Toshiba PDR- M70	2000	2048.0	1024.0	3.0	35	105.0	80	9	16.0	390	116.0	62.0
1035	Toshiba PDR- M71	2001	2048.0	1024.0	3.0	35	98.0	80	10	8.0	340	107.0	62.0
1036	Toshiba PDR- M81	2001	2400.0	1200.0	3.0	35	98.0	80	10	16.0	340	107.0	62.0

data.head(10)

 $\overline{\mathbf{T}}$

}	Model	Release date	Max resolution	Low resolution	Effective pixels	Zoom wide (W)	Zoom tele (T)	Normal focus range	Macro focus range	Storage included	Weight (inc. batteries)	Dimensions	Price
C	Agfa ePhoto 1280	1997	1024.0	640.0	0.0	38	114.0	70	40	4.0	420	95.0	179.0
1	Agfa ePhoto 1680	1998	1280.0	640.0	1.0	38	114.0	50	0	4.0	420	158.0	179.0
2	Agfa ePhoto CL18	2000	640.0	0.0	0.0	45	45.0	0	0	2.0	0	0.0	179.0
3	Agfa ePhoto CL30	1999	1152.0	640.0	0.0	35	35.0	0	0	4.0	0	0.0	269.0
4	Agfa ePhoto CL30 Clik!	1999	1152.0	640.0	0.0	43	43.0	50	0	40.0	300	128.0	1299.0
5	Agfa ePhoto CL45	2001	1600.0	640.0	1.0	51	51.0	50	20	8.0	270	119.0	179.0

-	₩
*	
	<u> </u>

	Model	Release date	Max resolution	Low resolution	Effective pixels	Zoom wide (W)	Zoom tele (T)	Normal focus range	Macro focus range	Storage included	Weight (inc. batteries)	Dimensions	Price
10	Toshiba 33 PDR- M65	2001	2048.0	1024.0	3.0	38.0	114.0	10.0	10.0	8.0	320.0	120.0	62.0
10	Toshiba 34 PDR- M70	2000	2048.0	1024.0	3.0	35.0	105.0	80.0	9.0	16.0	390.0	116.0	62.0
10	Toshiba 35 PDR- M71	2001	2048.0	1024.0	3.0	35.0	98.0	80.0	10.0	8.0	340.0	107.0	62.0
10	Toshiba 36 PDR-	2001	2400.0	1200.0	3.0	35.0	98.0	80.0	10.0	16.0	340.0	107.0	62.0

Start coding or generate with AI.

→ Finding the Best camera based on their Cost

data.columns

data.dtypes

→	a
Model	object
Release date	int64
Max resolution	float64
Low resolution	float64
Effective pixels	float64
Zoom wide (W)	float64
Zoom tele (T)	float64
Normal focus range	float64
Macro focus range	float64
Storage included	float64
Weight (inc. batteries)	float64
Dimensions	float64
Price	float64
dtvne: object	

Finding the Null Values
data.isnull().sum()

```
\overline{\Rightarrow}
                               0
               Model
                               0
           Release date
                               0
          Max resolution
          Low resolution
                               0
          Effective pixels
                               0
          Zoom wide (W)
                               0
           Zoom tele (T)
                               0
        Normal focus range
        Macro focus range
                               1
         Storage included
       Weight (inc. batteries) 2
            Dimensions
                               2
               Price
                               0
     dtvne: int64
## Finding the Duplicated Values
```

data.duplicated().sum()

→ 0

Start coding or generate with AI.

Finding the Maximum cost and Minimum cost of a camera and Name of that 3 cameras using **Pandas**

```
Start coding or generate with AI.
data['Price'].max()
₹ 7999.0
# Filter the cameras that have a price of 7999
Max_Camera_cost = data[data['Price'] == 7999]
# Display the model names of cameras with the price of 7999
print("Cameras with a cost of 7999:")
print(Max_Camera_cost[['Model', 'Price']])
→ Cameras with a cost of 7999:
                                 Price
                          Model
                  Canon EOS-1Ds 7999.0
     53
         Canon EOS-1Ds Mark II 7999.0
     54 Canon EOS-1Ds Mark III 7999.0
Start coding or generate with AI.
min_cost = data['Price'].min()
\ensuremath{\text{\#}} Filter the cameras that have a price of Minimum Cost
Min_Camera_cost = data[data['Price'] == min_cost]
# Display the model names of cameras with the price of Minimum Cost
print("Cameras with a cost of Min-Cost:")
print(Min_Camera_cost[['Model', 'Price']])
→ Cameras with a cost of Min-Cost:
                Model Price
     347 JVC GC-QX3HD
                        14.0
     348 JVC GC-QX5HD 14.0
Start coding or generate with AI.
```

Finding the Best Resolution Camera and that camera Name with their cost

Finding the Effective pixels and that camera Name with their cost

Finding the Best Dimension and that camera Name with their cost

```
data['Dimensions'].isnull().sum()

→ 0

max_dime = data['Dimensions'].max()

max_dime

→ 240.0

## Finding the best dimensions
dim = data[data['Dimensions'] == max_dime]

## Now displaying the Names of Cameras with their cost
print("Cameras with the Best Dimensions:")
print(dim[['Dimensions', 'Model' , 'Price']])

→ Cameras with the Best Dimensions:

Dimensions Model Price
304 240.0 HP Photosmart 635 179.0
```

Start coding or generate with AI.

Finding the Max. Zoom Width

```
data['Zoom wide (W)'] = data['Zoom wide (W)'].astype('int8')
data['Zoom wide (W)'].isnull().sum()
→ 0
max_zoom = data['Zoom wide (W)'].max()
max_zoom
→ 52
zoom = data[data['Zoom wide (W)'] == max_zoom]
## Now displaying the Names of Cameras with their cost
print("Cameras with the Best Zoom Width:")
print(zoom[['Zoom wide (W)','Model' ,'Price']])
\rightarrow Cameras with the Best Zoom Width:
                                     Model Price
         Zoom wide (W)
     477
                      52 Nikon Coolpix 100 229.0
     1025
                           Toshiba PDR-M11 62.0
                      52
Start coding or generate with AI.
```

Finding the Normal Focus Range

Finding the Macro focus range

Finding the Highest Weight of the Camera including BAttery

```
data['Weight (inc. batteries)'] = data['Weight (inc. batteries)'].astype('int')
data['Weight (inc. batteries)'].isnull().sum()
<del>→</del> 0
max_weight = data['Weight (inc. batteries)'].max()
min_weight = data['Weight (inc. batteries)'].min()
print(max_weight)
→ 1860
print(min_weight)
→ 0
weight = data[data['Weight (inc. batteries)'] == max_weight]
## Now Printing the Names of Camera with Highest Weight
print("Cameras with the Highest Weight:")
print(weight[['Weight (inc. batteries)','Model' ,'Price']])
→ Cameras with the Highest Weight:
         Weight (inc. batteries)
                                       Model Price
                          1860 Kodak DCS760 129.0
Start coding or generate with AI.
```

Conclusion

- Based on our analysis, the following cameras are highly recommended
- · By Cost
 - JVC GC-QX3HD and JVC GC-QX5HD with Minimum cost of 14.0 dollars
 - EOS-1Ds,Canon EOS-1Ds Mark II and Canon EOS-1Ds Mark III with Maximum cost of 7999 dollars
- · With Best Resolution
 - Canon EOS-1Ds Mark III with Resolution of 5616 pixels
- · Effective pixels
 - Canon EOS-1Ds Mark III with Pixel of 21.0
- Best Dimension
 - HP Photosmart 635 with Cost of \$179.0 and with Dimension of 240
- Max. Zoom Width
 - \circ Nikon Coolpix 100, Toshiba PDR-M11 with costs of 229.0,62.0 with Max. Zoom width with 52.0

Normal Focus Range

• Name of the Camera is Samsung Digimax 202 and it's cost is \$229.0 and it's Normal focus range is 120

· Macro focus range

 \circ Name of the Cameras are **HP Photosmart 435 and Kodak C310** with costs are of 179.0 and **129.0** and with Macro Focus range of **85.0**

Finally You can Buy any of the Best Cameras based on the Above lists like Cost, Resolution, and Dimenstion. But I recommand

• Canon EOS-1Ds Mark III and HP Photosmart (have 2 models, 635 and 435) cameras having Good Cost and of Quality