Estudo de um andar final de amplificação em classe B de simetria complementar.

Montagem do circuito

Monte o circuito da figura anexa utilizando os transístores acoplados ao dissipador que lhe são fornecidos.

Execução

Depois de a sua montagem ter sido verificada pelo docente, aplique tensão ao andar final de acordo com os valores especificados.

Com v_i =0 verifique que v_o =0 e que ambos os transístores se encontram em corte, o andar final em classe B não dissipa potência quando v_i =0.

- a) Aplique uma tensão alternada sinusoidal com f=300Hz na entrada usando o gerador de funções e determine a função de transferência $v_o(v_i)$ variando a amplitude da tensão de entrada de modo apropriado (passos de 0.5V) até se observar a saturação parcial do sinal de saída. Determine simultaneamente a corrente de entrada i_i e a corrente na carga i_o . Determine o ganho de tensão a partir da característica $v_o(v_i)$ obtida. Determine a característica $i_o(i_i)$. Determine o valor máximo da tensão de saída v_{omax} (tensão de saída de amplitude máxima) sem distorção e compare-o com o valor previsível teoricamente. Compare os resultados com as previsões teóricas ou obtidas por simulação.
- b) Com v_o=v_{omax} efectue as medições necessárias para determinar a potência AF fornecida à carga, a potência fornecida pelas fontes e a potência dissipada por Q1 e Q2, calcule a eficiência. Compare os resultados com as previsões teóricas ou obtidas por simulação.
- c) Com v_o = v_{omax} /3 efetue as medições necessárias à determinação das impedâncias de entrada e de saída do andar em classe B. Compare os resultados com as previsões teóricas ou obtidas por simulação.

d) Com $v_o = v_{omax}/3$ varie a frequência da tensão de entrada e represente graficamente $log(i_o/i_i)$ em função de log(f), determinando o limite superior da banda passante a -3db.