General Note:

- The design mark distribution for each function is given next to it. Write the design only for those functions.
- For implementation, you are permitted to use the code that you have submitted as an assignment in Eduserver.
- Verify the correctness of your program with the two sample test cases that are uploaded in Eduserver.
- 2. NITC wants to recall the students to the campus after the lockdown period. The Institute would like to record the $vaccination_status$ of each student (whether the student is vaccinated(Y) or not vaccinated(N)), along with their admission number (Ad_No) . Use AVL tree data structure to implement the following operations:
 - Insert(T, k): Insert a new student with $Ad_No = k$ to the AVL tree T. At first, mark the $vaccination_status$ of the student as not vaccinated.
 - Update(T, k): Update the $vaccination_status$ of the student with $Ad_No = k$ to vaccinated.

[1.5 Marks]

- FindDiff(T,k): Let n be the number of students who are not vaccinated among all the students with $Ad_No < k$, and y be the number of students who are vaccinated among all the students with $Ad_No < k$. Find and print the difference between n and y (|n-y|). [1.5 Marks]
- PrintTree(T, k): Print the tree rooted at $Ad_No = k$ in its parenthesis format.

[1 Mark]

Input/Output Format

The input consists of multiple lines. Each line starts with a character from $\{i, u, f, p, t\}$ followed by zero or more integers or characters. The integers, if given, are in the range $[1, 10^5]$.

- Character 'i': Character 'i' will be followed by a positive integer k representing the admission number of a student. Read and store the details of the student with admission number k to the AVL tree T, using Insert() function.
- Character 'u': Character 'u' will be followed by a positive integer k representing the admission number of a student. Update the vaccination status of the student with admission number k to vaccinated, using Update() function.
- Character 'f': Character 'f' will be followed by a positive integer k representing the admission number of a student. Find and print the difference between the number of students that are *not vaccinated* and the number of students that are *vaccinated* among all the students with $Ad_No < k$, using FindDiff() function.
- Character 'p': Character 'p' will be followed by a positive integer k representing the admission number of a student. Print the tree rooted at k in the parenthesis format which is recursively defined as:
 - The string () represents an empty tree.
 - The string (k n y L R) represents a tree whose root node is a student with $Ad_No = k$, where

- * n is the number of students who are not vaccinated among all the students with $Ad_No < k$.
- * y is the number of students who are vaccinated among all the students with $Ad_No < k$.
- * L is the left subtree of the root node in Parenthesis Representation.
- * R is the right subtree of the root node in Parenthesis Representation.
- Character 't': Terminate the program.

Sample Input and Output

Input 1

```
i 401
i 600
i 323
i 200
i 156
p 401
f 401
u 200
u 156
u 401
p 401
f 401
i 601
p 401
f 200
u 601
p 600
t
```

Output 1

```
( 401 3 0 ( 200 1 0 ( 156 0 0 ( ) ( ) ) ) ( 323 0 0 ( ) ( ) ) ) ( 600 0 0 ( ) ( ) ) ) ( 600 0 0 ( ) ( ) ) ) ( 323 0 0 ( ) ( ) ) ) ( 600 0 0 ( ) ( ) ) ) ( 600 0 0 ( ) ( ) ) ) ( 600 0 0 ( ) ( ) ( ) ) ) ( 600 0 0 ( ) ( 601 0 0 ( ) ( ) ) ) ) ( 600 0 0 ( ) ( 601 0 0 ( ) ( ) ) ) ) ( 600 0 0 ( ) ( 601 0 0 ( ) ( ) ( ) ) ) )
```