

Instituto Superior Técnico Controlo LEEC

Controlo de velocidade de um motor \mid 2º Laboratório

Grupo: **25**

Alunos:

Afonso Brito Caiado Alemão | 96135 Inês Isabel Ferreira Fernandes | 96231 Rui Pedro Canário Daniel | 96317

Docente:

Professor Carlos Filipe Gomes Bispo

26 de junho de 2022

Conteúdo

	Introdução	1
2	Modulação Dinâmica	1
	2.1	1
3	Identificação do Sistema	2
	3.1	2
	3.2	2
	3.3	3
	3.4	3
	3.5	4
4	Loop Shaping Control Design	4
	4.1	4
	4.2	5
	4.3	6
	4.4	6
	4.5	6
	4.6	8
5	Conclusão	8
6	Bibliografia	8

1 Introdução

O objetivo deste laboratório consiste em modelar, identificar e desenvolver um controlador baseado em retroação capaz de controlar a velocidade de um motor DC com uma carga de engrenagem. Será então necessário identificar e validar experimentalmente os parâmetros do modelo tendo por base a resposta do sistema ao degrau unitário e a resposta em frequência. Pretendemos projetar o controlador de velocidade de acordo com um conjunto de especificações, utilizando técnicas de *loopshaping*. Após isto, temos com objetivo testar o controlador em simulação assegurando que as especificações são satisfeitas e, por fim, implementar o controlador na prática e avaliar o seu desempenho.

2 Modulação Dinâmica

Servindo como introdução para o resto do trabalho laboratorial, pretende-se primeiramente compreender o funcionamento do motor DC descrito no enunciado. Começamos por descrever o seu comportamento através de um modelo simplificado, definindo a sua função transferência e os seus parâmetros.

2.1

Pretendemos demonstrar que o modelo dinâmico simplificado do motor é dado por um sistema de 1ª ordem com a função de transferência da equação 1.

$$G(s) = \frac{\Omega(s)}{V(s)} = k_0 \cdot \frac{a}{s+a} \tag{1}$$

Sendo $\Omega(s)$ e V(s) as transformadas de Laplace de $\omega(t)$ e v(t), respetivamente, é então possível escrever expressões para k_0 e para a em função de J, b, R, K_e e K_n .

Considerando que $R \gg L$, podemos utilizar a aproximação na equação (2) do enunciado. Desta forma, podemos obter que o movimento de rotação do eixo do motor é dado pela equação 2.

$$J\dot{w}(t) = -bw(t) + K_n \left(\frac{v(t) - K_e w(t)}{R}\right) \tag{2}$$
 Deste modo, desenvolveu-se a equação anterior e aplicou-se a transformada de Laplace (para $w(0^-) = 0$) obtendo-se assim

Deste modo, desenvolveu-se a equação anterior e aplicou-se a transformada de Laplace (para $w(0^-) = 0$) obtendo-se assim a equação 3.

$$s\Omega(s) + \Omega(s)\frac{1}{J}\Big[b + \frac{K_nK_e}{R}\Big] = \frac{K_n}{RJ}V(s) \tag{3}$$
 Tendo agora uma equação dependente apenas de $J,\,b,\,R,\,K_e$ e K_n , torna-se possível determinar $G(s)$ em função destes

Tendo agora uma equação dependente apenas de J, b, R, K_e e K_n , torna-se possível determinar G(s) em função destes parâmetros, permitindo relacioná-los com k_0 e com a. Desta forma, fica demonstrado que o modelo dinâmico simplificado do motor é dado por um sistema de 1^a ordem com a função de transferência da equação 1.

$$G(s) = \frac{\Omega(s)}{V(s)} = \frac{\frac{K_n}{RJ}}{s + \frac{b}{I} + \frac{K_n K_e}{RJ}} = k_0 \cdot \frac{a}{s + a}$$

$$\tag{4}$$

Obteve-se assim as seguintes expressões para k_0 e a:

$$k_0 = \frac{K_n}{Rb + K_n K_e} \tag{5}$$

$$a = \frac{1}{J} \left(b + \frac{K_n K_e}{R} \right) \tag{6}$$

3 Identificação do Sistema

Pretende-se, experimentalmente, identificar e validar os parâmetros do sistema de primeira ordem, analisando, por isso, a resposta quando se aplica à entrada do sistema um escalão unitário e a resposta em frequência do sistema. Tal como foi dito anteriormente na análise do motor DC, é possível medir, a partir do taquímetro, a velocidade angular do motor, $\omega(t)$, sendo este sistema descrito pela função de transferência:

 $G(s) = k_0 \cdot \frac{a}{s+a}$ (7)

3.1

Primeiramente, recorreu-se ao cálculo da resposta ao degrau unitário da função de transferência G(s). Deste modo, sendo Y(s) a transformada de Laplace da resposta do sistema, e sabendo que a transformada de Laplace de u(t), U(s), é igual a $\frac{1}{2}$, temos que:

> $Y(s) = \frac{1}{s} \cdot \frac{k_0 \cdot a}{s+a} \cdot = \frac{A}{s} + \frac{B}{s+a}$ (8)

É possível calcular $A \in B$ da seguinte forma:

$$A = \lim_{s \to 0} s \cdot Y(s) = \lim_{s \to 0} k_0 \cdot \frac{a}{s+a} = k_0$$

$$B = \lim_{s \to -a} (s+a) \cdot Y(s) = \lim_{s \to -a} k_0 \cdot \frac{a}{s} = -k_0$$
(9)

$$B = \lim_{s \to -a} (s+a) \cdot Y(s) = \lim_{s \to -a} k_0 \cdot \frac{a}{s} = -k_0 \tag{10}$$

De onde resulta a seguinte expressão:

$$Y(s) = k_0 \cdot (\frac{1}{s} - \frac{1}{s+a})$$
 (11)
Sabendo que $\omega(t) = y(t)$, de seguida, com vista à obtenção da resposta ao escalão unitário no domínio do tempo, aplicou-se

a transformada de Laplace inversa:

$$\omega(t) = k_0 \cdot (1 - e^{-at}) \cdot u(t) \tag{12}$$

Recorrendo à equação 12, é possível calcular a velocidade angular do motor em regime estacionário, $\omega(t\to\infty)$, e no instante de tempo $t = \frac{1}{a}$, que corresponde à constante de tempo τ do sistema.

$$\omega(t \to +\infty) = \lim_{t \to +\infty} k_0 \cdot (1 - e^{-at}) = k_0 \tag{13}$$

$$\omega\left(t \to \frac{1}{a}\right) = k_0 \cdot (1 - e^{-1}) \approx 0,63212 \cdot k_0 \tag{14}$$

É assim evidente pelo resultado da equação 13 que o valor de k_0 deverá ser aproximadamente igual ao valor de $\omega(t)$ para valores de t elevados. Por exemplo, podemos considerar suficientemente elevado o instante $t = \frac{5}{a}$, para o qual $\omega(t) \approx 0,993 \cdot k_0$.

Partindo da equação 14, uma possível forma de determinar o valor de a seria procurar o instante de tempo, para o qual $\omega(t) = 0,63212 \cdot k_0.$

3.2

Uma outra forma de determinar os parâmetros k_0 e a seria a partir da análise em frequência, analisando o diagrama de Bode do sistema com função de transferência G(s).

Tendo em conta que o sistema é de primeira ordem e que o seu único polo é igual a -a, podemos então assumir que na representação da magnitude do seu diagrama de Bode assintótico, a partir do momento em que ω atinge o valor de a, existirá um decaimento de 20 dB por década.

Para além disso, podemos obter o ganho estático, G(0), pela equação 15.

$$G(0) = k_0 \tag{15}$$

Desta forma, é possível esboçar o diagrama de Bode assintótico do sistema: figura 1. A preto representamos o diagrama de Bode assintótico e a rosa representamos um esboço do diagrama de Bode real do sistema.

Figura 1: Diagrama de Bode assintótico do sistema (preto) e esboço do diagrama de Bode real do sistema (rosa).

Dito isto, o valor de k_0 poderá ser obtido através da obtenção da resposta do sistema em baixa frequência pela equação 15. De modo a obter o valor de a, dever-se-á adotar uma estratégia na qual se efetua a interseção das assíntotas de baixa e de alta frequência do diagrama de Bode assintótico de magnitude. A primeira destas retas (baixa frequência) corresponde a uma assíntota horizontal de magnitude igual a $k_{0_{dB}}$. A segunda reta (alta frequência) deve ser obtida através duma regressão linear dos valores obtidos para altas frequências (comparativamente com $\omega = a$).

3.3

Recorrendo ao modelo Simulink disponibilizado no laboratório, aplicámos à entrada do sistema, um degrau de amplitude 1V com a transição em t=1s e registámos o gráfico das respostas medida e simulada, durante 5s, sendo que cada um destes foi gerado através de 5001 amostras.

Para a simulação utilizámos os valores $k_0 \approx 1,3754$ e $a \approx 66,6667$, cujo cálculo irá ser detalhado de seguida.

Apresentamos na figura 2 estas respostas do sistema, que representam a evolução da velocidade angular do eixo do motor, $\omega(t)$.

Figura 2: Resposta do sistema a um degrau de amplitude 1 V, com transição em 1 s.

Através da resposta medida, podemos obter estimativas para os valores dos parâmetros k_0 e de a da função de transferência G(s).

Recorrendo à equação 13, verificamos que podemos obter uma estimativa do k_0 , sendo este aproximadamente igual à resposta medida num instante após o período de transição. Analisando a figura, é evidente que para $t \approx 5s$, a resposta já ultrapassou este período transitório, apresentando-se com pequenas oscilações (ruído) em torno de um ponto de equilíbrio constante.

Desta forma, tendo em vista a obtenção de k_0 , considerámos a sua estimativa igual à média aritmética das últimas 100 amostras obtidas para a resposta medida, de modo a tentar desprezar o efeito do ruído. Obtemos $k_0 \approx 1,3754$.

Tendo em vista a obtenção da constante a, calculou-se o instante em que a resposta medida atinge pelo menos 63,212% da sua amplitude final, através da equação 14. Assim obtemos a constante de tempo do sistema de $1^{\underline{a}}$ ordem, $\tau \approx 0,0150s$. Desta forma, obtemos $a \approx 66,6667$.

Podemos verificar que os gráficos obtidos experimentalmente e por simulação são extremamente semelhantes, possuindo o comportamento típico de um sistema de $1^{\underline{a}}$ ordem. A diferença entre estes consiste na existência de ruído na medição da resposta experimental.

O código utilizado para gerar os gráficos e para a obtenção de k_0 e de a encontra-se no ficheiro $ex3_3.m$ e o workspace utilizado no ficheiro $ex3_3.mat$.

3.4

Recorrendo ao modelo Simulink disponibilizado no laboratório, aplicámos à entrada do sistema um sinal sinusoidal com amplitude 0,5V e obtemos a sua resposta experimental e de simulação para um conjunto de frequências entre [a/10,5a], dentro das possibilidades do modelo.

Apresentamos, na tabela 1, cada frequência utilizada para o sinal sinusoidal de entrada, as amplitudes medidas do sinal de saída e o ganho correspondente ao sistema em dB.

Para as frequências que permitem a obtenção de um sinal de saída com pelo menos seis períodos, registámos como amplitude de saída o valor da média das primeiras cinco amplitudes máximas da resposta, sendo que ignorámos a primeira amplitude máxima, visto que esta medição pode ser afetada pelo facto de o sistema estar no seu arranque. Caso contrário, registámos como amplitude de saída o valor da média das amostras disponíveis das amplitudes máximas da resposta.

$\omega_{entrada}(rad/s)$	Amplitude de saída (V)	Ganho(dB)
1,151	0,6184	1,85
2,695	0,61355	1,78
5,031	0,6087	1,71
7,055	0,5941	1,50
10,83	0,5844	1,35
14,41	0,5795	1,28
17,41	0,5795	1,28
25,39	0,5503	0,83
38,04	0,5016	0,03
54,04	0,4441	-1,03
85,05	0,3798	-2,39
94,76	0,3847	-2,28
125	0,21995	-7,13
250	0,1229	-12,19

Tabela 1: Resposta ao sistema para uma entrada sinusoidal de amplitude 0,5V para diferentes $\omega_{entrada}$

Apresentamos, como exemplo, os gráficos da resposta do sistema, experimental (medida) e simulada, para as velocidades angulares da tensão de entrada iguais a $\{2,695;54,04\}$ rad/s.

Figura 3: Resposta ao sistema para uma entrada sinusoidal de amplitude 0,5V para diferentes $\omega_{entrada}$.

Ao comparar os resultados experimentais e de simulação, verificamos que a frequência da resposta é igual para ambos. Em relação às amplitudes, verifica-se que a amplitude do sinal medido é ligeiramente inferior à de simulação, o que se deve à existência de distorção do crossover.

O código utilizado para gerar os gráficos da figura 3 e para calcular as primeiras 6 (ou menos) amplitudes máximas do sinal de saída encontra-se no ficheiro ex3_4.m. Os workspaces utilizados para as situações da figura 3 encontram-se nos ficheiros $ex3_4-w2_695.mat e ex3_4-w54_04.mat.$

3.5

Através dos dados da tabela 1, traçamos o diagrama de Bode de magnitude obtido experimentalmente para o sistema em estudo, na figura 4(b).

Podemos considerar que a assíntota de baixa frequência é horizontal e constante, correspondendo a

$$\lim_{\omega_{entrada} \to 0} |G(j\omega_{entrada})|_{dB} = k_{0_{dB}}$$
 (16)
Logo experimentalmente podemos aproximar esta assíntota por uma assíntota horizontal de magnitude $|G(j\omega_{low})|_{dB}$, sendo

 $\omega_{low}=1,151rad/s$ a menor frequência utilizada: ($|G(j1,151)|_{dB}\approx1,85dB\approx1,237$). Desta forma, temos uma aproximação do ganho de baixa frequência, sendo este igual a $k_{0_{experimental}} \approx 1,237$, sendo que face ao $k_{0_{teórico}}$ obtido na alínea 3.1, este valor apresenta um erro percentual igual a 10%, que se deve à existência de distorção de crossover.

Em relação à assíntota de alta frequência, teoricamente esta irá encontrar-se a decrescer ($20 \, dB/d\acute{e}cada$) a partir de $(\omega_c = a_{experimental})$. Tendo em vista a obtenção desta reta, realizámos uma representação gráfica com linha de tendência logarítmica utilizando os pontos da tabela 1 cuja $\omega_{entrada} > 1, 4a$. Assim, obtemos a equação no gráfico da figura 4(a).

Assinalamos ambas as assíntotas e o seu ponto de interseção na figura 4(b).

(b): Assíntotas de alta e baixa frequência.

Figura 4: Diagrama de magnitude de Bode obtido experimentalmente.

Teoricamente, a frequência de corte ω_c encontra-se na interseção das assíntotas, logo neste caso obtém-se $\omega_c = a_{experimental}$ $=56,2563 \ rad/s$, sendo que face a $a_{te\acute{o}rico}$ obtido na alínea 3.1, este valor apresenta um erro percentual igual a 16%. De facto, verifica-se que $|G(ja_{experimental})| = k_{0_{experimental}} - 3dB$, o que era esperado, pois |G(ja)| = |G(j0)| - 3dB. O código utilizado para gerar os gráficos da figura 4 encontra-se no ficheiro ex3_5.m.

Loop Shaping Control Design

Iremos agora detalhar o procedimento adotado e os resultados obtidos para a projeção realizada para um controlador de retroação, sendo que utilizámos loop shaping, testámos e validámos experimentalmente o sistema.

4.1

Considerando o sistema de cadeia fechada representado na figura 3 do enunciado, temos que a função de transferência do controlador é dada pela equação 17.

$$K(s) = \frac{k_1(s+z)}{sz} \tag{17}$$

 $K(s) = \frac{k_1(s+z)}{sz}$ Temos como objetivo obter valores para os parâmetros $k_1 \in \mathbb{R}^+$ e $z \in \mathbb{R}^+$, tal que o sistema em cadeia fechada seja estável e satisfaça os seguintes requisitos:

i) Erro estático nulo. ii) Margem de ganho $GM \ge 20 \ dB$. iii) Margem de fase $PM \ge 80^{\circ}$. iv) $|K(j\omega)G(j\omega)|_{dB} < -10 \ dB$, para $\omega > 10a$.

De modo a verificar que a primeira condição é sempre satisfeita para o nosso sistema, aplicámos o teorema do valor final:

$$e(+\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{R(s)}{1 + G(s)K(s)} = \lim_{s \to 0} \frac{1}{1 + G(s)K(s)} = 0$$
 (18) Sabendo que $k_1 > 0$, ao analisar os possíveis valores para z , vemos que existem 3 possíveis situações para a posição de z

no sistema: a) 0 < z < a. b) z = a. c) z > a.

Ao traçar um diagrama $root\ locus$ em função de k_1 genérico para cada um dos sistema, representados na figura 5, retiramos algumas conclusões.

Como temos que $k_1 > 0$, para todas as situações temos a impossibilidade de existirem pólos do sistema em cadeia fechada no semiplano complexo direito, logo o sistema é sempre estável.

O sistema b) é bastante difícil de obter no mundo real, devido à adversidade que provém de tentar que o pólo -a e o zero -z do sistema em cadeia aberta sejam iguais.

Com o auxílio do ControlSystemDesigner, verificámos que tanto para o sistema a), como para o sistema b) não existem quaisquer oscilações na reposta ao degrau unitário, ao contrário do que acontece para o caso c).

Apesar disto, para o caso c), é possível obter valores satisfatórios para o tempo de estabelecimento e para o tempo de pico da resposta ao degrau unitário, sendo que estes conseguem ser obtidos para uma posição dos pólos complexos conjugados do sistema em cadeia fechada entre a e 2a, para um determinado k_1 .

Para atingir estes valores nos sistemas a) e b) seria necessário arrastar o pólo do sistema em cadeia fechada para valores de ordem bastante superior e para valores de k_1 superiores aos usados no caso c). Desta forma, decidimos escolher a opção c) para a nossa implementação.

Figura 5: Root locus do sistema para diferentes valores de za

Utilizámos o ControlSystemDesigner para projetar um controlador que satisfaça os restantes requisitos ii), iii) e iv) (figura 6). Em primeiro lugar, colocámos z numa posição em que garantidamente sejam satisfeitos os requisitos ii) e iii) para qualquer valor de $k_1 > 0$. Selecionámos z = 80. Por fim, escolhemos um valor de k_1 que garante valores de tempo de estabelecimento e de tempo de pico satisfatórios, isto é, valores baixos, de forma a garantir rapidez de resposta do sistema. Para além disto, também assegurámos que a sobreelevação existente é baixa. Obtemos então para $k_1 = 138$, $GM = +\infty$, $PM = 86, 1^{\circ}$, $t_s(2\%) = 0,0184s$ e $t_p = 0,0307s$, com sobreelevação de 1,3%.

(a): Diagrama de Bode de magnitude do sistema em cadeia aberta.

(b): Diagrama de Bode de fase do sistema em cadeia aberta.

(c): Diagrama root locus para o sistema.

(d): Resposta ao step para sistema em cadeia fechada.

Figura 6: Resultados obtidos no ControlSystemDesigner para $k_1 = 138$ e z = 80.

4.2

Nesta alínea iremos estudar o efeito de limitação da energia do sinal de atuação por parte do requisito iv). Ao analisar o diagrama de blocos do sistema, é possível relacionar as transformadas de Laplace do sinal de atuação U(s) e do sinal de referência R(s), através da equação 19.

$$\frac{U(s)}{R(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)} \frac{1}{G(s)}$$
(19)

A condição iv) aplica uma técnica para limitar sinais de atuaçã

$$|K(j\omega)G(j\omega)| < \epsilon_l, \omega > k\omega_p, \omega_p = a, k = 10 > 1, \epsilon_l = -10dB$$
(20)

Sendo $\phi_x(\omega)$ a densidade espetral de um sinal x, para o sistema em análise é obtida a equação 21.

$$\phi_u(\omega) = \phi_r(\omega) \left| \frac{U(j\omega)}{R(j\omega)} \right|^2 \tag{21}$$

Logo, podemos obter a energia do sinal de atuação, pela expressão 25

$$Energia^{2}(u) = \int_{0}^{+\infty} \phi_{r}(\omega) \left| \frac{U(j\omega)}{R(j\omega)} \right|^{2} d\omega$$
 (22)

Por simplicidade, iremos considerar $\epsilon_l \ll 1$, apesar desta ser uma aproximação grosseira. Desta forma, podemos considerar a aproximação seguinte.

$$\frac{G(s)K(s)}{1+G(s)K(s)}\approx G(s)K(s) \tag{23} \label{eq:23}$$
 Obtemos então uma expressão aproximada para a energia do sinal de atuação, na equação 24.

$$Energia^{2}(u) \approx \int_{0}^{+\infty} \phi_{r}(\omega) |K(j\omega)|^{2} d\omega < \int_{0}^{+\infty} \phi_{r}(\omega) \left| \frac{\epsilon_{l}}{G(j\omega)} \right|^{2} d\omega$$
 (24)

Pelo diagrama de Bode de $G(j\omega)$, verificamos que $|G(j\omega)| < \epsilon_q$ para $\omega > 10a$, sendo $\epsilon_q \in \mathbb{R}^+$. Desta forma, para $\omega > 10a$, sendo $|G(j\omega)|$ limitado e sendo $|G(j\omega)K(j\omega)|$ limitado, então $|K(j\omega)|$ também será limitado. Assim, fica comprovado que a energia do sinal de atuação é limitada pela aplicação da condição iv): estamos a garantir que a atuação não vai ter valores excessivamente elevados, permanecendo dentro dos limites de atuação do sistema.

4.3

Iremos agora considerar que existe um atraso temporal τ na transmissão de informação entre o controlador K(s) e o sistema G(s). Este atraso é traduzido por $e^{-s\tau}$ do domínio da frequência. Desta forma, o diagrama de Bode da função de transferência do sistema em cadeia aberta irá ser modificado, sendo obtidas as equações 25 e 26.

$$|K(j\omega)G(j\omega)|_{\tau} = |K(j\omega)G(j\omega)| \tag{25}$$

$$arg(K(j\omega)G(j\omega))_{\tau} = -\omega\tau + arg(K(j\omega)G(j\omega))$$
(26)

Podemos então concluir que com o aumento de τ , a margem de fase diminui, a margem de ganho diminui, $\omega_{180^{\circ}}$ diminui e ω_{0dB} não varia com τ . Deste modo, o sistema com atraso apresenta uma menor estabilidade relativa.

A margem de fase do sistema com atraso é dada pela equação 27.

$$PM(\tau) = PM(\tau = 0) - \omega_{0dB}\tau \tag{27}$$

Da alínea 4.1, sabemos que $PM(\tau = 0) = 86, 1^{\circ} \approx 1,5027 \ rad$. Da expressão 25, obtemos $\omega_{0dB} = 163,0801 \ rad/s$. Deste modo, tendo em vista obter um sistema em cadeia fechada estável, é necessário restringir τ a um intervalo de valores que garantem esta estabilidade, que é dado pela condição PM > 0. Chegamos então à equação 28.

$$0 < \tau < \frac{PM(\tau = 0)}{\omega_{0dB}} \iff 0 < \tau < 9,2147ms. \tag{28}$$

Desta forma, ao aumentar $PM(\tau = 0)$, estamos a aumentar o intervalo de valores toleráveis para τ que garantem a estabilidade do sistema. Por outro lado, ao diminuir ω_{0dB} de $K(j\omega)G(j\omega)$, também estamos a aumentar o intervalo de valores toleráveis para τ que garantem a estabilidade do sistema.

4.4

Ao longo desta e das próximas questões recorremos ao ficheiro ex4.m. Os workspace utilizado encontra-se no ficheiro $ex4_4-z-80-k1-138-tau-0.mat$.

Durante a sessão de laboratório, testámos o comportamento do sistema para os parâmetros $k_1 = 138$ e z = 80, obtidos na projeção do controlador. Obtemos a resposta do sistema experimental e simulada, sendo estas representadas na figura 7.

Figura 7: Resposta do sistema a um degrau de amplitude 1 V, com transição em $0.2~\mathrm{s}.$

Podemos verificar que as respostas são extremamente semelhantes, sendo que as diferenças consistem na existência de ruído na resposta obtida experimentalmente, e nas aproximações efetuadas durante a modelação do sistema. De facto, o sistema comporta-se de forma estável, como era expectável.

4.5

De seguida, analisámos o efeito da alteração dos parâmetros k_1 e z na resposta ao degrau unitário do sistema em cadeia fechada. Obtemos a resposta do sistema experimental e simulada, para os valores de k_1 e de z indicados na tabela 2, sendo estas representadas na figura 8. Os workspaces utilizados encontram-se nos ficheiros, ex4_5-z-20-k1-1-tau-0.mat, ex4_5-z-20-k1-100-tau-0.mat, $ex4_5$ -z-20-k1-500-tau-0.mat, $ex4_5$ -z-140-k1-1-tau-0.mat, $ex4_5$ -z-140-k1-100-tau-0.mat $ex4_5$ -z-140-k1-2000tau-0.mat. Na tabela 2 também estão indicados os valores para a margem de fase, a sobreelevação (S%), o tempo de pico (t_n) e para ω_{0dB} obtidos pelo ControlSystemDesigner.

k_1	z	$PM(^{\circ})$	S%	$\omega_{0dB}(rad/s)$	$t_p(s)$	E(u)	$E(u_{sim})$
1	140	89,4	0	1,38	>7	0,3816	0,1678
100	140	69,2	7,42	95,4	0,0341	0,5819	0,4332
2000	140	83,8	3,49	1320	0,00439	1,3047	0,8328
1	20	92,8	0	1,38	>4,5	0,3768	0,1622
100	20	95,8	0	454	>0,16	0,6427	0,4752
500	20	91,2	0	2290	>0,004	1,0473	0,7347

Tabela 2: Parâmetros da resposta do sistema ao degrau unitário.

Figura 8: Resposta do sistema a um degrau de amplitude 1 V, com transição em 0.2 s, para diferentes valores de k_1 e de z.

De modo a retirarmos algumas conclusões, testámos o sistema para três possíveis situações: 0 < z < a, z > a e z = a.

Para o primeiro caso, fixámos z=20 e variámos k_1 . Não existe sobreelevação, logo não é possível relacionar S% com PM. À medida que k_1 aumenta, um dos pólos em cadeia fechada desloca-se partindo de 0 em direção a -z, enquanto que o outro pólo parte de -a em direção a $-\infty$. Desta forma, o primeiro destes pólos rege a rapidez do sistema, sendo que o tempo de estabelecimento da resposta (tal como o t_p) diminui à medida que aumentamos k_1 . Podemos também verificar que à medida que k_1 aumenta, ω_{0dB} também aumenta. Assim, um aumento de ω_{0dB} vêm acompanhado por uma diminuição de t_p . Este fenómeno encontra-se representado nas figuras 8(d), 8(e) e 8(f). Também é possível verificar que com o aumento do valor de k_1 , o ruído na resposta do sistema aumenta.

Para o segundo caso, fixámos z = 140 e variámos k_1 .

Numa primeira fase, os pólos em cadeia fechada, à medida que k_1 aumenta, partem da posição dos pólos em cadeia aberta, em direção ao breakaway point $\approx 16,313$. Neste caso, não existe sobreelevação, logo não é possível relacionar S% com PM. Para além disso, um aumento de k_1 leva a um aumento de ω_{0dB} , que vêm acompanhado por uma diminuição de t_p .

Numa segunda fase, os pólos em cadeia fechada, à medida que k_1 aumenta, partem do breakaway point $\approx 16,313$, em direção ao break-in point $\approx 635,13$, descrevendo um percurso que se assemelha a uma circunferência. Neste caso, para $k_1 \approx 16,313$ até $k_1 \approx 210$ a sobreelevação é crescente, enquanto que para $k_1 \approx 210$ até $k_1 \approx 635,13$ a sobreelevação é decrescente. Por outro lado, para a margem de fase, temos que PM é decrescente de $k_1 \approx 16,313$ a $k_1 \approx 101,79$ e é crescente de $k_1 \approx 101,79$ a $k_1 \approx 635,13$. Logo não é possível relacionar PM com S% para este caso. Apenas podemos constatar que: entre $k_1 \approx 16,313$ e $k_1 \approx 101,79$, um aumento de S% vêm acompanhado com uma diminuição de PM; entre $k_1 \approx 101,79$ e $k_1 \approx 210$, um aumento de S% vêm acompanhado com um aumento de PM. Para além disso, um aumento de k_1 leva a um aumento de k_2 , que vêm acompanhado por uma diminuição de k_3 .

Numa terceira fase , os pólos em cadeia fechada, à medida que k_1 aumenta, partem do break-in point $\approx 635, 13$, um deles direção a $+\infty$ e o outro em direção a -z. Neste caso, o aumento de k_1 leva a uma diminuição da sobreelevação da resposta do sistema, e a um aumento de PM. Logo, nesta situação em particular, um aumento de PM vêm acompanhado com uma diminuição de S%. Para além disso, um aumento de k_1 leva a um aumento de ω_{0dB} , que, nesta situação pode vir acompanhado por uma diminuição ou por um aumento de t_p . Por exemplo, para $k_1 = 940$ obtém-se $t_p = 0,00751s$, para $k_1 = 950$ obtém-se $t_p = 0,00741s$ e para $k_1 = 960$ obtém-se $t_p = 0,00749s$.

Caso z=a, não existe sobreelevação, logo não é possível relacionar S% com PM. À medida que k_1 aumenta, um dos pólos em cadeia fechada está fixo na posição -z, enquanto que o outro pólo se desloca partindo de 0 em direção a $-\infty$. Desta forma, o tempo de estabelecimento da resposta (tal como o t_p) diminui à medida que aumentamos k_1 . Podemos também verificar que à medida que k_1 aumenta, ω_{0dB} também aumenta. Assim, um aumento de ω_{0dB} vêm acompanhado por uma diminuição de t_p .

Existem duas últimas colunas na tabela 2 dedicadas à apresentação da energia obtida para o sinal de atuação, experimentalmente e em simulação, quando é colocado à entrada uma referência igual a u(t-0,2)-u(t-1), sendo u(t) o degrau unitário. Na figura 9 representamos o sinal de atuação experimental e obtido para a situação $k_1 = 100$ e de z = 140.

Figura 9: Sinal de atuação experimental e simulado obtido para um sinal de referência igual a u(t-0,2) - u(t-1), sendo u(t) o degrau unitário, para $k_1 = 100$ e z = 140.

É possível verificar que a energia dos sinais de atuação u e u_{sim} é limitada, tal como previmos na alínea 4.2, sendo a energia do sinal obtido experimentalmente superior à energia do sinal obtido por simulação. A energia de um sinal x(t) é dada pela equação 29.

$$E_x = \int_{-\infty}^{+\infty} |x(t)|^2 dt \tag{29} \label{eq:29}$$
 Através do código no ficheiro ex4_energia.m, calculámos a energia dos sinais de atuação que apresentamos na tabela 2.

Através do código no ficheiro $ex4_energia.m$, calculámos a energia dos sinais de atuação que apresentamos na tabela 2. Apenas calculamos o integral da equação 29 até 10s, visto que para t>10s temos que $u(t)\approx 0$, apesar de para o sinal obtido experimentalmente podermos observar que o sinal de atuação não se extingue totalmente até t=10s, fenómeno que parece estar relacionado com a existência de ruído. O workspace para o caso da figura 9 encontra-se no ficheiro $ex4_5$ -EnergiaLimitadaz-140-k1-100-tau-0.mat

4.6

Nesta secção descrevemos o procedimento de análise do efeito de um atraso temporal na performance do sistema. Utilizando o controlador projetado na alínea 4.1, com $k_1=138$ e z=80, é possível garantir a estabilidade do sistema para $0<\tau<9,2147ms$. Deste modo, testámos o sistema para $\tau=0,002s$, e obtemos a resposta experimental e de simulação do sistema com o degrau unitário à sua entrada, durante 10s, representada na figura 10(a).

De facto, podemos confirmar que o sistema apresenta um comportamento estável para este valor de τ , sendo as respostas simulada e experimental bastante semelhantes, com exceção de um pico de atuação inicial existente na resposta experimental.

No entanto, este sistema não garante a estabilidade em cadeia fechada para $\tau = 0,02s$. Com recurso ao ControlSystemDesigner e à função allmargin() do MATLAB, afinámos os parâmetros $k_1 = 20$ e z = 80, de modo a alterar os valores de ω_{0dB} e de $PM(\tau = 0)$ tendo em vista aumentar o intervalo de valores toleráveis para τ que garantem a estabilidade do sistema. Assim, o sistema em cadeia fechada é estável para $0 < \tau < 0,0562s$, intervalo que inclui $\tau = 0,02s$.

Desta forma, de modo a garantir que o sistema em cadeia fechada permanece estável para atrasos temporais maiores, tanto o tempo de estabelecimento como o tempo de pico do sistema aumentam. Ou seja, a rapidez de resposta do sistema é sacrificada em prol de uma tolerância do sistema a maiores atrasos temporais, permanecendo este estável em cadeia fechada.

Por último, testámos o sistema para $k_1 = 20$, z = 80 e $\tau = 0,02s$, e obtemos a resposta experimental e de simulação do sistema com o degrau unitário à sua entrada, durante 10s, representada na figura 10(b), sendo as respostas simulada e experimental bastante semelhantes, com exceção de um pico de atuação inicial existente na resposta experimental, que neste caso é bastante superior ao existente no caso da figura 10(a). A resposta do sistema possui um comportamento estável, tal como era expectável.

Os workspaces utilizados encontram-se nos ficheiros $ex4_6-z80-k1-138-tau-0_002.mat$ e $ex4_6-z-80-k1-20-tau-0_02.mat$.

Figura 10: Resposta do sistema a um degrau de amplitude 1 V, com transição em 0,2 s, para um determinado k_1 , z e τ .

5 Conclusão

Neste trabalho de laboratório modelámos, identificámos e desenvolvemos um controlador baseado em retroação que consegue controlar a velocidade de um motor DC com uma carga de engrenagem. Para tal, foi necessário identificar e validar experimentalmente os parâmetros do modelo, sendo assim possível cumprir um conjunto de especificações, utilizando técnicas de *loop shaping*. Validámos o funcionamento esperado do controlador através de testagem feita em ambiente de laboratório.

6 Bibliografia

- [1] Controlo Slides das Aulas Teóricas 2021/2022, 2º Semestre (LEEC), da professora Rita Cunha;
- [2] 2º Semestre 2021/2022, Controlo, 2º Trabalho de Laboratório, "Speed Control of a DC Motor Laboratory Guide";
- [3] MATLAB, MATLAB R2021a, versão 9.10.0.1739362, 2021;
- [4] Simulink Simulation and Model-Based Design & Control System Designer MathWorks.