Пусть (Ω, F, P) — некоторое вероятностное пространство и $X_1, X_2, ..., X_n$ — случайные величины, заданные на нем.

Пусть (Ω, F, P) — некоторое вероятностное пространство и $X_1, X_2, ..., X_n$ — случайные величины, заданные на нем.

$$\omega \in \Omega \implies (X_1(\omega), X_2(\omega), ..., X_n(\omega)) \equiv (X_1, X_2, ..., X_n) \in \mathbb{R}^n.$$

Пусть (Ω, F, P) — некоторое вероятностное пространство и $X_1, X_2, ..., X_n$ — случайные величины, заданные на нем.

$$\omega \in \Omega \implies (X_1(\omega), X_2(\omega), ..., X_n(\omega)) \equiv (X_1, X_2, ..., X_n) \in \mathbb{R}^n.$$

Случайным вектором или n-мерной случайной величиной будем называть вектор $X = (X_1, X_2, ..., X_n)$.

Пусть (Ω, F, P) — некоторое вероятностное пространство и $X_1, X_2, ..., X_n$ — случайные величины, заданные на нем.

$$\omega \in \Omega \implies (X_1(\omega), X_2(\omega), ..., X_n(\omega)) \equiv (X_1, X_2, ..., X_n) \in \mathbb{R}^n.$$

Случайным вектором или n-мерной случайной величиной будем называть вектор $X = (X_1, X_2, ..., X_n)$.

Например, ω - обращение пациента к врачу; X_1 - возраст, X_2 - частота пульса, X_3 - давление крови и т.д.

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

Замечания. 1. $F_{X_1,...}$ - чтобы различать, например,

$$F_{X_2,X_5}(1,2)$$
 и $F_{X_1,X_3}(1,2)$;

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

Замечания. 1. $F_{\overline{[X_1,...]}}$ - чтобы различать, например,

$$F_{X_2,X_5}(1,2)$$
 и $F_{X_1,X_3}(1,2)$;

2. запись $P(A_1,...,A_n)$ эквивалентна $P(A_1 \cdot ... \cdot A_n)$.

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

Замечания. 1. $F_{\overline{|X_1,...|}}$ - чтобы различать, например,

$$F_{X_2,X_5}(1,2)$$
 и $F_{X_1,X_3}(1,2)$;

2. запись $P(A_1,...,A_n)$ эквивалентна $P(A_1 \cdot ... \cdot A_n)$.

Для простоты, при фиксированном множестве $X_1,...,X_n$ будем вместо $F_{X_1,...,X_n}(x_1,...,x_n)$ писать $F(x_1,...,x_n)$.

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

Замечания. 1. $F_{\overline{|X_1,...|}}$ - чтобы различать, например,

$$F_{X_2,X_5}(1,2)$$
 и $F_{X_1,X_3}(1,2)$;

2. запись $P(A_1,...,A_n)$ эквивалентна $P(A_1 \cdot ... \cdot A_n)$.

Для простоты, при фиксированном множестве $X_1,...,X_n$ будем вместо $F_{X_1,...,X_n}(x_1,...,x_n)$ писать $F(x_1,...,x_n)$.

Основные свойства совместных функций распределения

1.
$$0 \le F(x_1, x_2, ..., x_n) \le 1$$

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

Замечания. 1. $F_{\overline{|X_1,...|}}$ - чтобы различать, например,

$$F_{X_2,X_5}(1,2)$$
 и $F_{X_1,X_3}(1,2)$;

2. запись $P(A_1,...,A_n)$ эквивалентна $P(A_1 \cdot ... \cdot A_n)$.

Для простоты, при фиксированном множестве $X_1,...,X_n$ будем вместо $F_{X_1,...,X_n}(x_1,...,x_n)$ писать $F(x_1,...,x_n)$.

Основные свойства совместных функций распределения

1.
$$0 \le F(x_1, x_2, ..., x_n) \le 1$$

2. Если
$$x_1 < y_1, x_2 < y_2, ..., x_n < y_n$$
, то $F(x_1, ..., x_n) \le F(y_1, ..., y_n)$.

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n).$$

Замечания. 1. $F_{\overline{|X_1,...|}}$ - чтобы различать, например,

$$F_{X_2,X_5}(1,2)$$
 и $F_{X_1,X_3}(1,2)$;

2. запись $P(A_1,...,A_n)$ эквивалентна $P(A_1 \cdot ... \cdot A_n)$.

Для простоты, при фиксированном множестве $X_1,...,X_n$ будем вместо $F_{X_1,...,X_n}(x_1,...,x_n)$ писать $F(x_1,...,x_n)$.

Основные свойства совместных функций распределения

1.
$$0 \le F(x_1, x_2, ..., x_n) \le 1$$

- 2. Если $x_1 < y_1, x_2 < y_2, ..., x_n < y_n$, то $F(x_1, ..., x_n) \le F(y_1, ..., y_n)$.
- 3. $\lim_{X_k \to -\infty} F(x_1, x_2, ..., x_n) = 0$, $\forall k = 1, ..., n$ как вероятность невозможного события.

4.
$$\lim_{X_k \to +\infty} F_{X_1, \dots, X_k, \dots, X_n} (x_1, \dots, x_k, \dots, x_n) =$$

$$= F_{X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n} (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n), \forall k = 1, \dots, n$$

4.
$$\lim_{X_k \to +\infty} F_{X_1, \dots, X_k, \dots, X_n} (x_1, \dots, x_k, \dots, x_n) =$$

$$= F_{X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n} (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n), \forall k = 1, \dots, n$$

Доказательство. При $x_k \to +\infty$ событие $X_k < x_k$ стремится к достоверному событию, поэтому событие $\{X_1 < x_1,...,X_k < x_k,...,X_n < x_n\}$

4.
$$\lim_{X_k \to +\infty} F_{X_1, \dots, X_k, \dots, X_n} (x_1, \dots, x_k, \dots, x_n) =$$

$$= F_{X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n} (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n), \forall k = 1, \dots, n$$

Доказательство. При $x_k \to +\infty$ событие $X_k < x_k$ стремится к достоверному событию, поэтому событие

$$\{X_1 < x_1, ..., X_k < x_k, ..., X_n < x_n\}$$

эквивалентно событию

$$\{X_1 < x_1, ..., X_{k-1} < x_{k-1}, X_{k+1} < x_{k+1}, ..., X_n < x_n\}.$$

4.
$$\lim_{X_k \to +\infty} F_{X_1, \dots, X_k, \dots, X_n} (x_1, \dots, x_k, \dots, x_n) =$$

$$= F_{X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n} (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n), \forall k = 1, \dots, n$$

Доказательство. При $x_k \to +\infty$ событие $X_k < x_k$ стремится к достоверному событию, поэтому событие

$${X_1 < x_1, ..., X_k < x_k, ..., X_n < x_n}$$

эквивалентно событию

$$\{X_1 < x_1, ..., X_{k-1} < x_{k-1}, X_{k+1} < x_{k+1}, ..., X_n < x_n\}$$

5. Свойство непрерывности слева: для возрастающей последовательности $y_1, y_2, ..., y_m, ...,$ (где $y_m < x_k, y_m \to x_k$) выполняется:

$$F(x_1,...,y_m,...,x_n) \to F(x_1,...,x_k,...,x_n)$$

при $m \to \infty$.

Доказывается аналогично одномерному случаю.

6. (вероятность попадания в полуполосу): Для двумерной случайной величины (X,Y) справедливо: $P(x_1 \le X < x_2, Y < y) = F(x_2, y) - F(x_1, y)$

6. (вероятность попадания в полуполосу): Для двумерной случайной величины (X,Y) справедливо: $P(x_1 \le X < x_2, Y < y) = F(x_2, y) - F(x_1, y)$

Доказательство.

Событие

$${X < x_2, Y < y} =$$

$$= {X < x_1, Y < y} + {x_1 \le X < x_2, Y < y}$$

6. (вероятность попадания в полуполосу): Для двумерной случайной величины (X,Y) справедливо:

$$P(x_1 \le X < x_2, Y < y) = F(x_2, y) - F(x_1, y)$$

Доказательство.

Событие

$$\{X < x_2, Y < y\} =$$

$$= \{X < x_1, Y < y\} + \{x_1 \le X < x_2, Y < y\}$$

$$\downarrow \downarrow$$

$$P(x_1 \le X < x_2, Y < y) = P(X < x_2, Y < y) - P(X < x_1, Y < y)$$

6. (вероятность попадания в полуполосу): Для двумерной случайной величины (X,Y) справедливо:

$$P(x_1 \le X < x_2, Y < y) = F(x_2, y) - F(x_1, y)$$

Доказательство.

Событие

$$\{X < x_2, Y < y\} =$$

$$= \{X < x_1, Y < y\} + \{x_1 \le X < x_2, Y < y\}$$

$$\qquad \qquad \qquad \downarrow$$

$$P(x_1 \le X < x_2, Y < y) = P(X < x_2, Y < y) - P(X < x_1, Y < y)$$

Аналогично, $P(X < x, y_1 \le Y < y_2) = F(x, y_2) - F(x, y_1)$

$$P(x_1 \le X_1 < x_2, y_1 \le Y < y_2) = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1).$$

$$P(x_1 \le X_1 < x_2, y_1 \le Y < y_2) = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1).$$

Доказательство. Так как

$$\begin{aligned} &\{x_1 \leq X_1 < x_2, Y < y_2\} = \\ &\{x_1 \leq X_1 < x_2, y_1 \leq Y < y_2\} + \{x_1 \leq X_1 < x_2, Y < y_1\}, \end{aligned}$$

$$P(x_1 \le X_1 < x_2, y_1 \le Y < y_2) = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1).$$

Доказательство. Так как

$$\{x_1 \le X_1 < x_2, Y < y_2\} =$$

$$\{x_1 \le X_1 < x_2, y_1 \le Y < y_2\} + \{x_1 \le X_1 < x_2, Y < y_1\},$$

то по свойству 6,

$$P(x_1 \le X_1 < x_2, y_1 \le Y < y_2) = F(x_2, y_2) - F(x_1, y_2) - (F(x_2, y_1) - F(x_1, y_1)) =$$

$$P(x_1 \le X_1 < x_2, y_1 \le Y < y_2) = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1).$$

Доказательство. Так как

$$\begin{aligned} &\{x_1 \leq X_1 < x_2, Y < y_2\} = \\ &\{x_1 \leq X_1 < x_2, y_1 \leq Y < y_2\} + \{x_1 \leq X_1 < x_2, Y < y_1\}, \end{aligned}$$

то по свойству 6,

$$P(x_{1} \le X_{1} < x_{2}, y_{1} \le Y < y_{2}) =$$

$$F(x_{2}, y_{2}) - F(x_{1}, y_{2}) - (F(x_{2}, y_{1}) - F(x_{1}, y_{1})) =$$

$$= F(x_{2}, y_{2}) - F(x_{1}, y_{2}) - F(x_{2}, y_{1}) + F(x_{1}, y_{1}).$$

Независимость случайных величин

Определение. Случайные величины $X_1, X_2, ..., X_n$ называются независимыми (в совокупности), если для любой комбинации различных индексов $i_1, ..., i_k$ ($2 \le k \le n$) выполняется:

$$F_{X_{i_1},...,X_{i_k}}(x_{i_1},...,x_{i_k}) = F_{X_{i_1}}(x_{i_1}) \cdot ... \cdot F_{X_{i_k}}(x_{i_k}).$$

Независимость случайных величин

Определение. Случайные величины $X_1, X_2, ..., X_n$ называются независимыми (в совокупности), если для любой комбинации различных индексов $i_1, ..., i_k$ ($2 \le k \le n$) выполняется:

$$F_{X_{i_1},...,X_{i_k}}(x_{i_1},...,x_{i_k}) = F_{X_{i_1}}(x_{i_1}) \cdot ... \cdot F_{X_{i_k}}(x_{i_k}).$$

Случайные величины $X_1, X_2, ..., X_n$ попарно независимы, если независимы любые две из них.

Все компоненты

дискретные случайные величины Все компоненты

непрерывные случайные величины

Смешанный случай

Рассмотрим случай двух дискретных случайных величин X_1, X_2 ; их распределение можно задать таблицей:

		X_2				
X		$b_{\scriptscriptstyle 1}$	• • •	$b_{_{j}}$	• • {	$b_{\scriptscriptstyle m}$
	a_1	p_{11}	• • •	p_{1j}	• •	$p_{_{1m}}$
X_1	• • •	• • •	• • •	• • •	• •	• • •
	a_{i}	p_{i1}	• • •	p_{ij}	• • {	p_{im}
	• • •	• • •	• • •	• • •	• •	• • •
	a_l	p_{l1}	• • •	p_{lj}	• •	p_{lm}

где
$$p_{ij} = P(X_1 = a_i, X_2 = b_j)$$
. Очевидно, что $\sum_{i,j} p_{ij} = 1$.

Рассмотрим случай двух дискретных случайных величин X_1, X_2 ; их распределение можно задать таблицей:

		X_2				
X		b_{1}	• • •	$b_{_{j}}$	• •	$b_{\scriptscriptstyle m}$
	a_1	p_{11}	• • •	p_{1j}	• •	$p_{_{1m}}$
X_1	• • •	• • •	• • •	• • •	• •	• • •
	a_{i}	p_{i1}	• • •	p_{ij}	• •	p_{im}
	• • •	• • •	• • •	• • •	• •	• • •
	a_l	p_{l1}	• • •	p_{lj}	• •	p_{lm}

где
$$p_{ij} = P(X_1 = a_i, X_2 = b_j)$$
. Очевидно, что $\sum_{i,j} p_{ij} = 1$.

Кроме того,

$$\sum_{i=1}^{l} p_{ij} = \sum_{i=1}^{l} P(X_1 = a_i, X_2 = b_j) = P(\bigcup_{i=1}^{l} \{X_1 = a_i\}, X_2 = b_j\}) =$$

Рассмотрим случай двух дискретных случайных величин X_1, X_2 ; их распределение можно задать таблицей:

		X_2				
X		b_{1}	• • •	$b_{_{j}}$	• •	$b_{\scriptscriptstyle m}$
	a_1	p_{11}	• • •	p_{1j}	• •	$p_{_{1m}}$
X_1	• • •	• • •	• • •	• • •	• •	• • •
	a_{i}	p_{i1}	• • •	p_{ij}	• •	p_{im}
	• • •	• • •	• • •	• • •	• •	• • •
	a_l	p_{l1}	• • •	p_{lj}	• •	p_{lm}

где
$$p_{ij} = P(X_1 = a_i, X_2 = b_j)$$
. Очевидно, что $\sum_{i,j} p_{ij} = 1$.

Кроме того,

$$\sum_{i=1}^{l} p_{ij} = \sum_{i=1}^{l} P(X_1 = a_i, X_2 = b_j) = P(\bigcup_{i=1}^{l} \{X_1 = a_i\}, X_2 = b_j) = P(X_2 = b_j) = P(X_2 = b_j) = P(X_1 = a_i), X_2 = b_j$$

$$\sum_{j=1}^{m} p_{ij} = \sum_{j=1}^{m} P(X_1 = a_i, X_2 = b_j) = P(X_1 = a_i)^{\text{def}} = p_i.$$

$$\sum_{j=1}^{m} p_{ij} = \sum_{j=1}^{m} P(X_1 = a_i, X_2 = b_j) = P(X_1 = a_i) \stackrel{\text{def}}{=} p_i.$$

 $p_{i}.,\,p_{\cdot\,j}\,$ - маргинальные вероятности значений случайных величин $X_{1},X_{2}.$

$$\sum_{j=1}^{m} p_{ij} = \sum_{j=1}^{m} P(X_1 = a_i, X_2 = b_j) = P(X_1 = a_i) \stackrel{\text{def}}{=} p_i.$$

 $p_{i}.,\,p_{\cdot\,j}\,$ - маргинальные вероятности значений случайных величин $X_{1},X_{2}.$

Для дискретных случайных величин X_1, X_2 их независимость равносильна выполнению равенства

$$p_{ij} = p_{i\cdot} \cdot p_{\cdot j}$$

Пусть $X_1,...,X_n$ - непрерывные случайные величины.

Определение. Совместная функция распределения называется абсолютно непрерывной, если существует функция $f(u_1,...,u_n)$, такая что для любого $x = (x_1,...,x_n)$

$$F(x_1,...,x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} f(u_1,...,u_n) du_1...du_n.$$

Пусть $X_1,...,X_n$ - непрерывные случайные величины.

Определение. Совместная функция распределения называется абсолютно непрерывной, если существует функция $f(u_1,...,u_n)$, такая что для любого $x = (x_1,...,x_n)$

$$F(x_1,...,x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} f(u_1,...,u_n) du_1...du_n.$$

 $f(u_1,...,u_n)$ - плотность многомерного распределения.

Основные свойства многомерных плотностей

1.
$$f(x_1,...,x_n) = \frac{\partial^n F(x_1,...,x_n)}{\partial x_1...\partial x_n}$$
.

Основные свойства многомерных плотностей

1.
$$f(x_1,...,x_n) = \frac{\partial^n F(x_1,...,x_n)}{\partial x_1...\partial x_n}$$
.

2.
$$f(x_1,...,x_n) \ge 0$$
.

Основные свойства многомерных плотностей

1.
$$f(x_1,...,x_n) = \frac{\partial^n F(x_1,...,x_n)}{\partial x_1...\partial x_n}$$
.

2.
$$f(x_1,...,x_n) \ge 0$$
.

3.
$$\int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_1 ... dx_n = 1.$$

Основные свойства многомерных плотностей

1.
$$f(x_1,...,x_n) = \frac{\partial^n F(x_1,...,x_n)}{\partial x_1...\partial x_n}$$
.

- **2.** $f(x_1,...,x_n) \ge 0$.
- 3. $\int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_1 ... dx_n = 1.$
- 4. (случай n = 2) Маргинальные плотности распределения для X_1, X_2 равны:

$$f(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2$$
; $f(x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_1$.

Основные свойства многомерных плотностей

1.
$$f(x_1,...,x_n) = \frac{\partial^n F(x_1,...,x_n)}{\partial x_1...\partial x_n}$$
.

- **2.** $f(x_1,...,x_n) \ge 0$.
- 3. $\int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_1 ... dx_n = 1.$
- 4. (случай n = 2) Маргинальные плотности распределения для X_1, X_2 равны:

$$f(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2$$
; $f(x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_1$.

5. Независимость случайных величин $X_1,...,X_n$ (в совокупности) равносильна выполнению равенства:

$$\forall i_1,...,i_k, f(x_{i_1},...,x_{i_k}) = f(x_{i_1}) \cdot ... \cdot f(x_{i_k}).$$

$$P(X \in A) = \int ... \int f(x_1, ..., x_n) dx_1 ... dx_n$$
.

$$P(X \in A) = \int ... \int f(x_1, ..., x_n) dx_1 ... dx_n$$
.

Доказательство (случай n = 2). Вероятность попадания в элементарный прямоугольник, примыкающий к точке (x, y):

$$P(x, y) = F(x + \Delta x, y + \Delta y) - F(x, y + \Delta y) -$$

$$-(F(x + \Delta x, y) - F(x, y)).$$
_{y↑}

 χ

$$P(X \in A) = \int ... \int f(x_1, ..., x_n) dx_1 ... dx_n$$
.

Доказательство (случай n = 2). Вероятность попадания в элементарный прямоугольник, примыкающий к точке (x, y):

$$P(x, y) = F(x + \Delta x, y + \Delta y) - F(x, y + \Delta y) -$$

$$-(F(x + \Delta x, y) - F(x, y)).$$
_{y↑}

По теореме Лагранжа,

$$P(x,y) \approx \frac{\partial^2 F(x,y)}{\partial x \partial y} \Delta x \Delta y$$

$$P(X \in A) = \int ... \int f(x_1, ..., x_n) dx_1 ... dx_n$$
.

Доказательство (случай n = 2). Вероятность попадания в элементарный прямоугольник, примыкающий к точке (x, y):

$$P(x, y) = F(x + \Delta x, y + \Delta y) - F(x, y + \Delta y) -$$

$$-(F(x + \Delta x, y) - F(x, y)).$$
_{y↑}

По теореме Лагранжа,

$$P(x,y) \approx \frac{\partial^2 F(x,y)}{\partial x \partial y} \Delta x \Delta y$$

$$\downarrow$$

$$P(X \in A) =$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \sum_{i} \sum_{j} f(x_i, y_j) \Delta x \Delta y$$

$$P(X \in A) = \int ... \int f(x_1, ..., x_n) dx_1 ... dx_n$$
.

Доказательство (случай n = 2). Вероятность попадания в элементарный прямоугольник, примыкающий к точке (x, y):

$$P(x, y) = F(x + \Delta x, y + \Delta y) - F(x, y + \Delta y) - \left(F(x + \Delta x, y) - F(x, y)\right).$$

По теореме Лагранжа,

$$P(x,y) \approx \frac{\partial^2 F(x,y)}{\partial x \partial y} \Delta x \Delta y$$

$$\downarrow$$

$$P(X \in A) =$$

 χ

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \sum_{i} \sum_{j} f(x_i, y_j) \Delta x \Delta y = \iint_A f(x, y) dx dy.$$

Примеры многомерных распределений

- 1. Мультиномиальное (полиномиальное) распределение
- обобщение биномиального распределения. Пусть каждый исход принадлежит одному из $K \ge 2$ типов.

Примеры многомерных распределений

- 1. Мультиномиальное (полиномиальное) распределение
- обобщение биномиального распределения. Пусть каждый исход принадлежит одному из $K \ge 2$ типов.

Обозначим X_i — число появлений события i-го типа, i=1,2,...,K, при N независимых испытаниях.

Примеры многомерных распределений

1. Мультиномиальное (полиномиальное) распределение

- обобщение биномиального распределения. Пусть каждый исход принадлежит одному из $K \ge 2$ типов.

Обозначим X_i — число появлений события i-го типа, i=1,2,...,K, при N независимых испытаниях.

Пусть p_i — вероятность появления события типа i; вероятности остаются неизменными от испытания к испытанию (полиномиальная схема эксперимента).

$$\underbrace{11...1}_{x_1}\underbrace{22...2}_{x_2}....\underbrace{KK...K}_{x_K} \Rightarrow (p_1)^{x_1}(p_2)^{x_2}...(p_K)^{x_K},$$

где
$$x_K = N - \sum_{i=1}^{K-1} x_i$$
, $p_K = 1 - \sum_{i=1}^{K-1} p_i$;

$$\underbrace{11...1}_{x_1}\underbrace{22...2}_{x_2}....\underbrace{KK...K}_{x_K} \Rightarrow (p_1)^{x_1}(p_2)^{x_2}...(p_K)^{x_K},$$

где
$$x_K = N - \sum_{i=1}^{K-1} x_i$$
, $p_K = 1 - \sum_{i=1}^{K-1} p_i$;

$$P(X_1 = x_1, ..., X_{K-1} = x_{K-1}) = \frac{N!}{x_1! ... x_K!} p_1^{x_1} ... p_K^{x_K},$$

(K-1 - мерное распределение).

$$\underbrace{11...1}_{x_1}\underbrace{22...2}_{x_2}....\underbrace{KK...K}_{x_K} \Rightarrow (p_1)^{x_1}(p_2)^{x_2}...(p_K)^{x_K},$$

где
$$x_K = N - \sum_{i=1}^{K-1} x_i$$
, $p_K = 1 - \sum_{i=1}^{K-1} p_i$;

$$P(X_1 = x_1, ..., X_{K-1} = x_{K-1}) = \frac{N!}{x_1! ... x_K!} p_1^{x_1} ... p_K^{x_K},$$

(K-1 - мерное распределение).

$$(X_1,...,X_{K-1}) \sim M(N,p_1,...,p_{K-1})$$

$$\underbrace{11...1}_{x_1}\underbrace{22...2}_{x_2}....\underbrace{KK...K}_{x_K} \Rightarrow (p_1)^{x_1}(p_2)^{x_2}...(p_K)^{x_K},$$

где
$$x_K = N - \sum_{i=1}^{K-1} x_i$$
, $p_K = 1 - \sum_{i=1}^{K-1} p_i$;

$$P(X_1 = x_1, ..., X_{K-1} = x_{K-1}) = \frac{N!}{x_1! ... x_K!} p_1^{x_1} ... p_K^{x_K},$$

(K-1 - мерное распределение).

$$(X_1,...,X_{K-1}) \sim M(N,p_1,...,p_{K-1})$$

При K = 2 получим $X_1 \sim Bin(N, p_1)$.

$$\underbrace{11...1}_{x_1}\underbrace{22...2}_{x_2}....\underbrace{KK...K}_{x_K} \Rightarrow (p_1)^{x_1}(p_2)^{x_2}...(p_K)^{x_K},$$

где
$$x_K = N - \sum_{i=1}^{K-1} x_i$$
, $p_K = 1 - \sum_{i=1}^{K-1} p_i$;

$$P(X_1 = x_1, ..., X_{K-1} = x_{K-1}) = \frac{N!}{x_1! ... x_K!} p_1^{x_1} ... p_K^{x_K},$$

(K-1 - мерное распределение).

$$(X_1,...,X_{K-1}) \sim M(N,p_1,...,p_{K-1})$$

При K = 2 получим $X_1 \sim Bin(N, p_1)$.

$$\frac{N!}{x_1!...x_K!}$$
 - полиномиальный коэффициент в

разложении $(p_1 + ... + p_K)^N$ по степеням $p_1, ..., p_K$.

2. Многомерное равномерное распределение

Пусть компоненты вектора $X = (X_1, ..., X_n)$ - непрерывны; задано множество $A \subset R^n$ с конечной мерой (объемом) $\mu(A)$.

2. Многомерное равномерное распределение

Пусть компоненты вектора $X = (X_1, ..., X_n)$ - непрерывны; задано множество $A \subset R^n$ с конечной мерой (объемом) $\mu(A)$.

2. Многомерное равномерное распределение

Пусть компоненты вектора $X = (X_1, ..., X_n)$ - непрерывны; задано множество $A \subset R^n$ с конечной мерой (объемом) $\mu(A)$.

Вектор X подчиняется многомерному равномерному распределению в A, если его плотность распределения равна:

$$f(x) = \begin{cases} 1/\mu(A), ecлu \ x \in A \\ 0, uначе. \end{cases}$$

Пусть компоненты случайного вектора $X = (X_1, ..., X_n)$ - непрерывны. Говорят, что вектор X подчиняется многомерному нормальному распределению, если его совместная плотность распределения определяется формулой:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)\right)$$

Пусть компоненты случайного вектора $X = (X_1, ..., X_n)$ - непрерывны. Говорят, что вектор X подчиняется многомерному нормальному распределению, если его совместная плотность распределения определяется формулой:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)\right)$$
 где $x = (x_1,...,x_n)^T$, $m = (m_1,...,m_n)^T$ — некоторый вектор,

Пусть компоненты случайного вектора $X = (X_1, ..., X_n)$ - непрерывны. Говорят, что вектор X подчиняется многомерному нормальному распределению, если его совместная плотность распределения определяется формулой:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)\right)$$

где $x = (x_1, ..., x_n)^T$, $m = (m_1, ..., m_n)^T$ — некоторый вектор,

 Σ - положительно определенная симметричная матрица (ковариационная матрица),

Пусть компоненты случайного вектора $X = (X_1, ..., X_n)$ - непрерывны. Говорят, что вектор X подчиняется многомерному нормальному распределению, если его совместная плотность распределения определяется формулой:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)\right)$$

где $x = (x_1, ..., x_n)^T$, $m = (m_1, ..., m_n)^T$ – некоторый вектор, Σ - положительно определенная симметричная матрица (ковариационная матрица), $\det(\Sigma)$ – определитель Σ .

Пусть компоненты случайного вектора $X = (X_1, ..., X_n)$ - непрерывны. Говорят, что вектор X подчиняется многомерному нормальному распределению, если его совместная плотность распределения определяется формулой:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)\right)$$

где $x = (x_1, ..., x_n)^T$, $m = (m_1, ..., m_n)^T$ — некоторый вектор, Σ - положительно определенная симметричная

 Σ - положительно определенная симметричная матрица (ковариационная матрица), $\det\left(\Sigma\right)-$ определитель $\Sigma.$

m, Σ — параметры многомерного нормального распределения.

Пример графика плотности двумерного нормального распределения с параметрами

$$m = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
:

