(54) FLATTENING METHOD FOR INSULATING FILM

(11) 3-151636 (A)

(43) 27.6.1991 (19) JP

(21) Appl. No. 64:290474 (22) 8.11.1989 (71) FUJI ELECTRIC CO LTD (72) ATSUO HIRABAYASHI

(51) Int. Cl⁵. H01L21/316

PURPOSE: To unnecessitate the forming process of a resist pattern, and reduce the number of processes, by forming an insulating film bottom-protruding layer of noncontact with a circuit wiring in a non-wiring region, at the same time as the formation of a circuit wiring on the substrate surface.

CONSTITUTION: When a circuit wiring is formed, an insulting film bottomprotruding layer 8 of the same material as the circuit wiring is simultaneously formed in the region where the circuit wiring 6 is not formed, so as not to come into contact with at least the circuit wiring 6. The circuit wiring 6 and the insulating film bottom-protruding layer 8 are coated with an insulating film 10, on which a resist film 14 is formed. The whole surface of the substrate 2 is etched back until the coating film is eliminated. The recessed parts of corrugation of the insulating film 10 are raised, and the corrugation is relieved, so that the surface can be completely flattened by spreading the coating film 14 having fluidity. Thereby the formation of a resist pattern is unnecessitated, and the number of processes can be reduced.

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE AND PLASMA CVD

EQUIPMENT (11) 3-151637 (A)

(43) 27.6.1991 (19) JP

(21) Appl. No. 64-289957 (22) 9.11.1989

(71) KOWA KURIEITAA K.K. (72) ISAO SERITA

(51) Int. Cl⁵. H01L21/318,H01L21/205

PURPOSE: To simply prevent the warping of a semiconductor substrate, the disconnection and contact of wiring, and obtain a uniform substrate free from strain, by supplying discharge frequency electric power of different frequencies, forming thin films with different stress directions on a semiconductor substrate, and controlling the total stress by alternately stacking the thin films.

CONSTITUTION: By using plasma CVD method and changing discharge frequencies of high frequency power supplies 7, 8, thin films with different stress directions are formed on a semiconductor substrate 10. A thin film 12 generating compression stress and a thin film 11 generating tensile stress are alternately stacked, thereby controlling stress. When compression stress is generated, the substrate is bent so as to protrude outside. When tensile stress is generated, the substrate is bent so as to protrude inside. Hence, by combining both of the films, the stresses are cancelled, and the semiconductor substrate can be so controlled that external force is not applied. Thereby the generation of warp of the substrate, the disconnection of wiring on the substrate, and the mutual contact of wires can be prevented.

(54) MANUFACTURE OF SEMICONDUCTOR INTEGRATED CIRCUIT

(11) 3-151638 (A)

(43) 27.6.1991 (19) JP

(21) Appl. No. 64-290800 (22) 8.11.1989

(71) NISSAN MOTOR CO LTD (72) KOICHI KUSUYAMA

(51) Int. Cl⁵. H01L21/3205, H01L21/306

PURPOSE: To facilitate the size control of a contact hole and the like, and prevent the contact hole and the like from being buried, by depositing a CVD layer on the surface of a step-difference part, and then eliminating the CVD layer so as to leave it only on the sidewall of the contact hole by anisotropic etching.

CONSTITUTION: When a second insulating layer 5 is deposited in the inside of a contact hole 4 and the surface of a first insulating layer 3, the second insulating layer 5 deposited on the edge part of the contact hole turns to a smooth curved surface whose radius is R. When the second insulating film 5 is etched by anisotropic etching by a height of R in the direction vertical to a substrate 1, the second insulating layer 5 is left only on the sidewall of the contact hole 4. The upper end edge comes to have roundness and turns to a taper type as a whole. Hence a step-difference part of the contact hole 4 is smoothed, and a step coverage part is formed, so that the disconnection is hard to be caused in the wiring layer 6. Thereby the dimension of the contact hole and the like can be easily controlled, and the contact hole and the like are not buried.

⑩ 日本 国特許庁(JP)

⑪特許出願公開

平3-151637

⑫ 公 開 特 許 公 報 (A)

®Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成3年(1991)6月27日

H 01 L 21/318 21/205 M

6940-5F 7739-5F

審査請求 有 請求項の数 2 (全5頁)

図発明の名称

半導体装置の製造方法及びプラズマCVD装置

②特 顯 平1-289957

②出 願 平1(1989)11月9日

⑫発 明 者

芹 田

功

埼玉県鳩ケ谷市坂下町3丁目27番11号

⑪出 願 人

株式会社幸和クリエイ

埼玉県川越市芳野台2丁目8番36号

ター

個代 理 人 弁理士 井上 清子 外1名

明細書

1 発明の名称 半導体装置の製造方法及び プラズマ CVD装置

2 特許請求の範囲

1. プラズマ C V D 法によって周波数の異なる故電周波電力を供給し半導体基板上にストレス方向の異なる薄膜を形成し該薄膜を交互に重ねて全体のストレスを制御するようにしたことを特徴とする半導体装置の製造方法。

2. 半導体基板上に引張応力と圧縮応力をそれぞれ生じさせるべく反応器電極に異なる放電周波電力を供給する手段を備えたことを特徴とするプラズマCVD装置。

3 発明の詳細な説明

(産業上の利用分野)

本発明は、半導体装置の製造方法及びプラズマ CVD装置に関し、特に半導体基板上の配線表面 に形成する絶縁膜、保護膜等の薄膜を形成する方 法及び装置に関する。

(従来の技術)

半導体基板上に薄膜を形成するため各種のCVD法が用いられているが、その内でブラズマCVD法により形成される薄膜(窒化珪素膜)は、一般に大きなストレスを有することが知られている。このために該基板にそりが生じたり、基板上の配線が断線したり、線どうしが接触したりすることがある。

このような問題を解決するために、基板上に異なる種類のCVD法によってそれぞれ圧縮応力を有する窒化珪素膜と、引張応力を有する窒化珪素膜を形成しこれらを交互に重ねる方法が提案されている。

従来の方法は、CVD法が全く異なると、形成される薄膜のストレス方向が異なることに着目したものであるため複数の違った種類のCVD装置を用意し、これを組み合わせて使用するので、装置が複雑化し、保守、操作の面等においても不便であり、また不経済でもあった。

(発明が解決しようとする課題)

本発明の目的は、これらの問題点を解決し、異なる種類のCVD法によらないでストレス方向を 制御した良好な半導体装置を提供することである。

また本発明の目的は、簡便な方法でストレス方向を制御できるようにしたプラズマCVD装置を提供することである。

(課題を解決するための手段)

本発明によれば、上記目的は、プラズマCVD 法によりその放電周波数を変えることによってストレス方向の異なる薄膜を形成し圧縮応力を生じる薄膜と引張応力を生じる薄膜を交互に重ねストレスを制御するようにした半導体装置の製造法により達成される。

(作用)

プラズマCVD法により半導体基板上に引張応力を有する薄膜と圧縮応力を有する薄膜を重ねて形成する。該薄膜はその何れを上下に形成してもよく、又これらの各薄膜を複数の層に重ねて設けてもよい。なお、該薄膜は相互の応力の大きさに応じて適当な厚さに形成される。

- 3 -

反応器1、上部電極2、下部電極3、反応がス導入部4、排気口5、ヒータ6を備えている。 該装置の両電極には、異なる放電周波電力が供給できるよに構成されており、図示のものでは200K 他の高周波電源7と13.56M他の高周波電源8を設け、これらを並列に接続し、スイッチ9によって切り換えるようにしてもよい。

上記下部電極3上に半導体基板10を載置し、 該基板面に一方の13.56M比の高周波電力を 印加し窒化珪素膜11(HF-SiN)を形成する。これによって得られた薄膜は引張応力を有する。次いで上記スイッチ9によって電源を切り換え、他 方の200K比の高周波電力を印加してその薄膜 の上に窒化珪素膜12(LF-SiN)を形成する(第 2図)。

第3図は上記室化珪素膜111、12を重ねた全体の応力状態が判るようにこれらの薄膜の厚さと該膜の応力の関係を示したもので、この場合該窒化珪素膜12の厚さを500Aと一定にし、窒化

上記薄膜は放電周波電力を変換できるようにしたプラズマCVD装置により形成したり、放電周波電力の異なるプラズマCVD装置を用いることにより形成したりする。

(実施例)

半導体基板上にプラズマCVD装置を用いてシリコン窒化膜の薄膜を形成する場合、該装置の放電周波数の大きさが相違すると引張応力が発生したりすることが判った。そしてこのような薄膜の応力の変化は放電周波数をほぼ1M比以下にすると圧縮応力が発生し、数をほぼ10M比以上にすると引張応力が発生しまたほぼ10M比以上にすると引張応力が発生する傾向にあり、この圧縮応力が生じたとき基板は外方に凸に湾曲される。

そこで引張応力が生じる薄膜と圧縮応力が生じる薄膜を組み合わせることにより、それらの応力を相殺し上記半導体基板に外力が作用しないように制御することができる。

第 1 図はプラズマCVD装置を示し、該装置は

- 4 -

珪素膜11の厚さを変化させた場合の薄膜の応力 状態を示している。これによると、窒化珪素膜1 2だけの場合、圧縮応力は約10.5×10° dyne/cm²であるが、上記窒化珪素膜11の厚さか2500Aになったときに両窒化珪素膜の応力が相殺し全体の応力が0になることが判る。第4 図のものは、半導体基板上に配線13を施し、該配線上に上記窒化珪素膜11を形成しその上に窒化珪素膜12を形成した場合で、該薄膜による配線の断線、接触等を防いでいる。

なお、上記室化珪素膜 1 1、1 2 の組合せは、 複数組積層することもできる。

(発明の効果)

本発明は、上記構成により基板上に形成される 薄膜をプラズマCVDの放電周波数を変えること により制御できるようにしたので、半導体基 板の そりや配線の断線、接触等を簡便に防止し、 歪み のない均一の基板が得られるとともに、その 歩留、 信頼性を向上し、かつ効率よく経済的に得ること ができる。

4 図面の簡単な説明

図面は本発明の実施例を示し、第1図は概略図、第2図は半導体基板上に薄膜を形成した状態を示す一部拡大断面図、第3図は薄膜に作用する応力と薄膜の厚さの関係を示すグラフ、第4図は半導体基板の配線上に薄膜を形成した状態を示す一部拡大断面図である。

2 . 3 : 電極 7 . 8 : 高周波電源 9 : スイッチ 10 : 半導体基板 11.12:

窒化珪素膜 13:配線

特許出願人 株式会社幸和クリェイター 代 理 人 弁理士 井 上 清 子 代 理 人 弁理士 亀 川 義 示 「元子」 「元子」 「元子」 「元子」

- 7 -

 \boxtimes

2

꽶

第3図

手 続 補 正 書

7 補正の内容

平成1年12月5日

別紙のとおり

特許庁長官 吉田 文毅 殿

1 事件の表示 平成1年特許願第289957号

2 発明の名称 半導体装置の製造方法及び プラズマCVD装置

3 補正をする者

事件との関係 特許出願人

名称 株式会社幸和クリエイター

4 代理人

住所 東京都中央区銀座七丁目 1 4 番 3 号 松慶ピルデイング 電話(541) (1776(代) 4572

(4235)氏名 弁理士 井 上 清 子 序脈 (外1名) 空間

5 補正命令の日付 (自発)

平成 年 月 日 (発送日 平成 年 月 日)

6 補正の対象

図面の第1図 カ 特部 1.12 出 部 安

以 上

