Computer vision: 3D Geometry Fundamentals

Richard Xu

January 12, 2021

A Simple Camera Model

lt's rather odd to look at it upside down

Simpler Model

lt's rather odd to see an inverted model like this

How object location relates to an image point?

Naturally:

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{P} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- It's NOT helpful to lump the whole projection matrix into a single 3×4 matrix **P**
- determine the 3D ray from 2D image point x

$$\mathbf{X}_{3\mathsf{D}}(\lambda) = \mathbf{P}^+\mathbf{x} + \lambda\mathbf{C}$$
 where $\mathbf{PP}^+ = \mathbf{I}$

Camera calibration

- Intrinsic parameter $\mathbf{K} = \begin{bmatrix} f_a & \gamma & u_0 \\ 0 & f_b & v_0 \\ 0 & 0 & 1 \end{bmatrix}$
- ► Extrinsic parameter $[\mathbf{R} | \mathbf{t}] = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix}$

CHECKPOINT: Intrinsic Parameter Calibration

Intrinsic Parameter Calibration

Intrinsic Camera calibration

Z. Zhang, "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations," in International Conference on Computer Vision, 1999, pp. 666-673

Homography

$$\mathbf{x} = \mathbf{HM}$$

$$\begin{bmatrix} 34.12 \\ 65.21 \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} 4 \\ 5 \\ 1 \end{bmatrix}$$
 as an example

"Data" collection: use Homography **H** as data

- Homography H acts like our "data", because it can be computed beforehand without camera geometry
- let's define **M** to be **X** without z^{th} component

$$\mathbf{x} = \mathbf{HM}$$

$$\underbrace{\begin{bmatrix} u \\ v \\ 1 \end{bmatrix}}_{\mathbf{x}} = \mathbf{H} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Get 4 pair of points and we are done, yeah?
- ▶ Where is the catch? Image points have noises!

$$\sum_{i} \left[\left(\boldsymbol{x}_{i} - \boldsymbol{\hat{x}}_{i} \right)^{\top} \boldsymbol{\Lambda}^{-1} \left(\boldsymbol{x}_{i} - \boldsymbol{\hat{x}}_{i} \right) \right]$$

• for simplicity, can just assume: $\Lambda = \sigma^2 \mathbf{I}$

$$\min_{\mathbf{H}} \sum_{i} \|\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}\|$$

Brings things to 3D

$$s \mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{r} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_a & \gamma & u_0 \\ 0 & f_b & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

let's assume the board is a planar surface, and z = 0:

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \\ 1 \end{bmatrix}$$
$$= K \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$= K \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} M$$

obviousness, we need to re-arrange to cancel auxiliary variable r and t

Combine the two case together

substitute x = HM

$$\begin{split} s & \mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \mathbf{M} \\ &= \mathbf{H} \mathbf{M} \\ \\ \Longrightarrow & \mathbf{H} = \lambda \mathbf{K} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \qquad \lambda = \frac{1}{s} \end{split}$$

kept on going:

$$\begin{split} \mathbf{H} &= \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{K} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \\ & \Longrightarrow \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 \end{bmatrix} = \lambda \mathbf{K} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} \qquad \text{we do not need } \mathbf{h}_3 \text{ and } \mathbf{t} \\ & \Longrightarrow \mathbf{h}_1^\top \mathbf{K}^{-\top} \mathbf{K}^{-1} \mathbf{h}_2 = \mathbf{0} \quad \boxed{1} \end{split}$$
 also
$$\Longrightarrow \mathbf{h}_1^\top \mathbf{K}^{-\top} \mathbf{K}^{-1} \mathbf{h}_1 = \mathbf{h}_2^\top \mathbf{K}^{-\top} \mathbf{K}^{-1} \mathbf{h}_2 \quad \boxed{2} \end{split}$$

so r and t are completely disappeared

$$\begin{aligned} \textbf{H} &= \textbf{K} \begin{bmatrix} \textbf{r}_1 & \textbf{r}_2 & \textbf{t} \end{bmatrix} \\ \Longrightarrow \begin{bmatrix} \textbf{h}_1 & \textbf{h}_2 & \textbf{h}_3 \end{bmatrix} &= \textbf{K} \begin{bmatrix} \textbf{r}_1 & \textbf{r}_2 & \textbf{t} \end{bmatrix} \\ \textbf{h}_1 &= \textbf{K} \textbf{r}_1 &\Longrightarrow \textbf{r}_1 &= \textbf{K}^{-1} \textbf{h}_1 \\ \textbf{h}_2 &= \textbf{K} \textbf{r}_2 &\Longrightarrow \textbf{r}_2 &= \textbf{K}^{-1} \textbf{h}_2 \\ \textbf{r}_1^\top \textbf{r}_2 &= \begin{pmatrix} \textbf{K}^{-1} \textbf{h}_1 \end{pmatrix}^\top \textbf{K}^{-1} \textbf{h}_2 \\ &= \textbf{h}_1^\top \textbf{K}^{-\top} \textbf{K}^{-1} \textbf{h}_2 &= \textbf{0} \end{aligned}$$

- ▶ because rotation matrix **R** is orthogonal: $\mathbf{r}_i^{\top} \mathbf{r}_j = 0 \forall i \neq j$
- λ won't matter:

$$\begin{split} \textbf{h}_1 &= \lambda \textbf{K} \textbf{r}_1 \implies \textbf{r}_1 = \frac{1}{\lambda} \textbf{K}^{-1} \textbf{h}_1 \\ \textbf{h}_2 &= \lambda \textbf{K} \textbf{r}_2 \implies \textbf{r}_2 = \frac{1}{\lambda} \textbf{K}^{-1} \textbf{h}_2 \\ &\implies \frac{1}{\lambda^2} \textbf{h}_1^\top \textbf{K}^{-\top} \textbf{K}^{-1} \textbf{h}_2 = 0 \end{split}$$

prove
$$\mathbf{h}_1^{\top}\mathbf{K}^{-\top}\mathbf{K}^{-1}\mathbf{h}_1 = \mathbf{h}_2^{\top}\mathbf{K}^{-\top}\mathbf{K}^{-1}\mathbf{h}_2$$

$$\mathbf{r}_{1}^{\top}\mathbf{r}_{1} = \left(K^{-1}\mathbf{h}_{1}\right)^{\top}K^{-1}\mathbf{h}_{1}$$
$$= \mathbf{h}_{1}^{\top}K^{-\top}K^{-1}\mathbf{h}_{1} = \mathbf{1}$$

similarly,

$$\mathbf{r}_{2}^{\top}\mathbf{r}_{2} = \left(\mathbf{K}^{-1}\mathbf{h}_{2}\right)^{\top}\mathbf{K}^{-1}\mathbf{h}_{2}$$
$$= \mathbf{h}_{2}^{\top}\mathbf{K}^{-\top}\mathbf{K}^{-1}\mathbf{h}_{1} = \mathbf{1}$$

together:

$$\implies \boldsymbol{h}_1^{\top}\boldsymbol{K}^{-\top}\boldsymbol{K}^{-1}\boldsymbol{h}_1 = \boldsymbol{h}_2^{\top}\boldsymbol{K}^{-\top}\boldsymbol{K}^{-1}\boldsymbol{h}_2$$

again, because rotation matrix **R** is orthogonal

now you have a linear system

a linear system:

$$\begin{aligned} & \textbf{h}_1^\top \textbf{K}^{-\top} \textbf{K}^{-1} \textbf{h}_2 = 0 \\ & \textbf{h}_1^\top \textbf{K}^{-\top} \textbf{K}^{-1} \textbf{h}_1 - \textbf{h}_2^\top \textbf{K}^{-\top} \textbf{K}^{-1} \textbf{h}_2 = 0 \\ & \Longrightarrow \textbf{h}_1^\top \textbf{B} \textbf{h}_2 = 0 \\ & \textbf{h}_1^\top \textbf{B} \textbf{h}_1 - \textbf{h}_2^\top \textbf{B} \textbf{h}_2 = 0 \end{aligned} \quad \text{let: } \textbf{B} = \textbf{K}^{-\top} \textbf{K}^{-1} \end{aligned}$$

- $\blacktriangleright \text{ knowing } \mathbf{K} = \begin{bmatrix} f_a & \gamma & u_0 \\ 0 & f_b & v_0 \\ 0 & 0 & 1 \end{bmatrix}$
- you can perform python code to get expression of $\mathbf{B} = \mathbf{K}^{-\top} \mathbf{K}^{-1}$

Solve for B

notice B is symmetrical matrix, so there are only 6 degree-of-freedom

$$\begin{bmatrix} B_{1,1} & B_{12} & B_{13} \\ B_{12} & B_{22} & B_{23} \\ B_{13} & B_{23} & B_{33} \end{bmatrix}$$

▶ so we let $\mathbf{B} = [B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}]^{\top}$

$$\begin{aligned} \mathbf{h}_1^\top \mathbf{B} \mathbf{h}_2 &= 0\\ \mathbf{h}_1^\top \mathbf{B} \mathbf{h}_1 - \mathbf{h}_2^\top \mathbf{B} \mathbf{h}_2 &= 0 \end{aligned} \qquad \text{can be written as:}$$

$$\begin{bmatrix} h_{11}h_{21} & h_{11}h_{22} + h_{12}h_{21} & h_{11}h_{22} + h_{12}h_{21} & h_{12}h_{22} & h_{12}h_{22} & h_{11}h_{23} + h_{13}h_{21} \\ h_{11}h_{11} - h_{21}h_{21} & 2h_{11}h_{12} - 2h_{21}h_{22} & h_{12}h_{12} - h_{22}h_{22} & 2h_{11}h_{13} - 2h_{21}h_{23} & h_{13}h_{22} + h_{12}h_{23} & h_{13}h_{23} \\ & & & & & & & & & & & & \\ \begin{bmatrix} h_{11} \\ h_{12} \\ h_{22} \\ h_{23} \\ h_{23} \\ h_{23} \\ h_{23} \\ h_{23} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

▶ then you can solve for K from B

CHECKPOINT: Extrinsic Parameter Calibration

Extrinsic Parameter Calibration, aka Camera Pose

How to calibrate extrinsic

$$s \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \underbrace{\begin{bmatrix} p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} \\ p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} \\ p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} \end{bmatrix}}_{\mathbf{p}} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -\mathbf{p}_1 - \\ -\mathbf{p}_2 - \\ -\mathbf{p}_3 - \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{X} \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{p}_1^T \mathbf{X} \\ \mathbf{p}_2^T \mathbf{X} \\ \mathbf{p}_3^T \mathbf{X} \end{bmatrix}$$

$$\Rightarrow u = \frac{\mathbf{p}_{1}^{\top} \mathbf{X}}{\mathbf{p}_{3}^{\top} \mathbf{X}} \qquad v = \frac{\mathbf{p}_{2}^{\top} \mathbf{X}}{\mathbf{p}_{3}^{\top} \mathbf{X}}$$
$$\Rightarrow \mathbf{p}_{1}^{\top} \mathbf{X} - \mathbf{p}_{3}^{\top} \mathbf{X} u = 0 \qquad \mathbf{p}_{2}^{\top} \mathbf{X} - \mathbf{p}_{3}^{\top} \mathbf{X} v = 0$$

another system of linear equation

single point:

$$\mathbf{p}_{1}^{\top}\mathbf{X} - \mathbf{p}_{3}^{\top}\mathbf{X}u = 0 \qquad \mathbf{p}_{2}^{\top}\mathbf{X} - \mathbf{p}_{3}^{\top}\mathbf{X}v = 0 \implies \begin{bmatrix} \mathbf{X}^{\top} & \mathbf{0} & -u\mathbf{X}^{\top} \\ \mathbf{0} & \mathbf{X}^{\top} & -v\mathbf{X}^{\top} \end{bmatrix} \begin{vmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{vmatrix} = \mathbf{0}$$

N points:

$$\begin{bmatrix} \mathbf{X}_{1}^{\top} & \mathbf{0} & -u\mathbf{X}_{1}^{\top} \\ \mathbf{0} & \mathbf{X}_{1}^{\top} & -v\mathbf{X}_{1}^{\top} \\ \vdots & \vdots & \vdots \\ \mathbf{X}_{N}^{\top} & \mathbf{0} & -u\mathbf{X}_{N}^{\top} \\ \mathbf{0} & \mathbf{X}_{N}^{\top} & -v\mathbf{X}_{N}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{1}^{\top} & \mathbf{0} & -u\mathbf{X}_{1}^{\top} \\ \mathbf{0} & \mathbf{X}_{1}^{\top} & -v\mathbf{X}_{1}^{\top} \\ \vdots & \vdots & \vdots \\ \mathbf{X}_{N}^{\top} & \mathbf{0} & -u\mathbf{X}_{N}^{\top} \\ \mathbf{0} & \mathbf{X}_{N}^{\top} & -v\mathbf{X}_{N}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{1,1} \\ \mathbf{p}_{1,2} \\ \mathbf{p}_{2,1} \\ \mathbf{p}_{2,2} \\ \mathbf{p}_{2,3} \\ \mathbf{p}_{2,4} \\ \mathbf{p}_{3,1} \\ \mathbf{p}_{3,2} \\ \mathbf{p}_{3,3} \\ \mathbf{p}_{3,4} \end{bmatrix} = \mathbf{0}$$

Solve this

if we to solve:

$$\hat{\mathbf{p}} = \operatorname*{arg\,min}_{\mathbf{p}} \|\mathbf{A}\mathbf{p}\|^2$$

- ightharpoonup most obvious solution is ho = 0!
- **>** so we need a constraint, imagine let $\|\mathbf{P}\|_F = s$, i.e., Frobenius norm = s

$$s \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} \rho_{1,1} & \rho_{1,2} & \rho_{1,3} & \rho_{1,4} \\ \rho_{2,1} & \rho_{2,2} & \rho_{2,3} & \rho_{2,4} \\ \rho_{3,1} & \rho_{3,2} & \rho_{3,3} & \rho_{3,4} \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\Rightarrow s \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} \begin{bmatrix} \rho_{1,1} & \rho_{1,2} & \rho_{1,3} & \rho_{1,4} \\ \rho_{2,1} & \rho_{2,2} & \rho_{2,3} & \rho_{2,4} \\ \rho_{3,1} & \rho_{3,2} & \rho_{3,3} & \rho_{3,4} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} s\rho_{1,1} & s\rho_{1,2} & s\rho_{1,3} & s\rho_{1,4} \\ s\rho_{2,1} & s\rho_{2,2} & s\rho_{2,3} & s\rho_{2,4} \\ s\rho_{3,1} & s\rho_{3,2} & s\rho_{3,3} & s\rho_{3,4} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

scale the matrix **P** by s won't change image points

why constraining $\|\mathbf{p}\| = 1$

objective function:

$$\hat{\boldsymbol{p}} = \mathop{\text{arg\,min}}_{\boldsymbol{p}} \|\boldsymbol{A}\boldsymbol{p}\|^2 \qquad \text{s.t. } \|\boldsymbol{p}\|^2 = 1$$

- ▶ imagine for a **vector** \mathbf{p} s.t. $\|\mathbf{p}\| = 1$ and $\hat{\mathbf{p}} = \mathbf{sp}$
- we found the solution by constraining $\|\hat{\mathbf{p}}\| = s$:

$$\begin{aligned} \| \boldsymbol{s} \boldsymbol{p} \| &= \sqrt{\boldsymbol{s} \boldsymbol{p}^{\top} \boldsymbol{s} \boldsymbol{p}} \\ &= \boldsymbol{s} \| \boldsymbol{p} \| \end{aligned}$$

meaning: constraining $\|\hat{\mathbf{p}}\| = s$ has the same effect of constraining $\|\mathbf{p}\| = 1$

Rayleigh quotient's view

$$\begin{split} \hat{\boldsymbol{p}} &= \mathop{\text{arg min}}_{\boldsymbol{p}} \|\boldsymbol{A}\boldsymbol{p}\|^2 \qquad \text{s.t. } \|\boldsymbol{p}\|^2 = 1 \\ &\Longrightarrow \, \boldsymbol{p}^* = \mathop{\text{arg min}}_{\boldsymbol{p}} \left\|\boldsymbol{A}\frac{\boldsymbol{p}}{\|\boldsymbol{p}\|}\right\|^2 \quad \text{same as finding unconstrained } \boldsymbol{p} \\ &= \mathop{\text{arg min}}_{\boldsymbol{p}} \left(\frac{\boldsymbol{p}^\top \boldsymbol{A}^\top \boldsymbol{A} \boldsymbol{p}}{\boldsymbol{p}^\top \boldsymbol{p}}\right) \end{split}$$

a form of Rayleigh quotient:

$$R(M, x) := \frac{x^{\top} Mx}{x^{\top} x}$$
 where

Rayleigh quotient reaches its min value:

$$R(M, x_{\min}) = \lambda_{\min}$$

smallest eigenvalue of M, when $x = v_{min}$ the corresponding eigenvector.

Rayleigh quotient reaches its max value:

$$R(M, x_{\text{max}}) = \lambda_{\text{max}}$$

largest eigenvalue of M, when $x = v_{\text{max}}$ the corresponding eigenvector.

where have you seen this before?

from SVD perspective

$$\begin{split} \|\mathbf{A}\|_{2}^{2} &= \sup_{\|\mathbf{x}\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2}^{2} \\ &\sup_{\|\mathbf{x}\|_{2}=1} (\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x}) \\ &= \max_{\|\mathbf{x}\|_{2}=1} \mathbf{x}^{\top} U \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}) U^{\top}\mathbf{x} \\ &= \max_{\|\mathbf{y}\|_{2}=1} \mathbf{y}^{\top} \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}) \mathbf{y} \quad \text{ since } U \text{ is orthogonal matrix } \|\mathbf{x}\|_{2} = \|\underbrace{U\mathbf{x}}_{\mathbf{y}}\|_{2} \\ &= \max_{\|\mathbf{y}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{y}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \max_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2} \\ &= \min_{\|\mathbf{x}\|_{2}=1} \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^$$

- Question: what is wrong with instead finding a vector $[y_1^2 \dots y_n^2]$ that is in the same direction as $[\lambda_1 \dots \lambda_n]$?
- ► Answer: $\|\mathbf{y}\|_2 = 1 \implies [y_1 \dots y_n]$ is a unit vector and $[y_1^2 \dots y_n^2]$ is not!
- for example, in 2D, $\mathbf{y} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is unit vector, and $\mathbf{y} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is not!

Decompose further: $P \rightarrow (R, t)$

$$\begin{split} \textbf{P} = \begin{bmatrix} \rho_{1,1} & \rho_{1,2} & \rho_{1,3} \\ \rho_{2,1} & \rho_{2,2} & \rho_{2,3} \\ \rho_{3,1} & \rho_{3,2} & \rho_{3,3} \\ \end{bmatrix} \begin{vmatrix} \rho_{1,4} \\ \rho_{2,4} \\ \rho_{3,4} \\ \end{bmatrix} = \textbf{K}[\textbf{R} \mid \textbf{t}] = \textbf{K}[\textbf{R} \mid \underbrace{-\textbf{Rc}}_{\textbf{t}}] \end{split}$$

c is the camera center

something on change co-ordinate system

 $\blacktriangleright \ \ \text{leave out K for now: if we were to transform} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} \ \text{by just the extrinsic/pose matrix} \ [\mathbf{R} \quad \ \mathbf{t}]$

$$\begin{split} & [R \quad t] \begin{bmatrix} X \\ 1 \end{bmatrix} = RX + t \\ & = [R \quad -Rc] \begin{bmatrix} X \\ 1 \end{bmatrix} = RX - Rc = R(X - c) \qquad \text{expression using } c \end{split}$$

making sure second expression is correct, let

$$\mathbf{X} = \mathbf{c} \implies [\mathbf{R} \quad -\mathbf{R}\mathbf{c}] \begin{bmatrix} \mathbf{c} \\ 1 \end{bmatrix} = \mathbf{R}\mathbf{c} - \mathbf{R}\mathbf{c} = \mathbf{0}$$

- if we to transform point **X** (defined in some "world coordinate") to the "camera coordinate" (with camera center = **c** defined by world coordinate), we need:
 - 1. subtract X by c
 - perform rotation R

alternative is to perform rotation ${f R}$ first, and then translate by $-{f Rc}$

both are the same

CHECKPOINT: 3D Triangulation

3D Triangulation

2D image point \rightarrow 3D point given \boldsymbol{P}

Finding a 3D point from stereo pair of images

▶ now we know **P**, and given a 2D image point **x**, we want to find 3D point **X**:

$$\begin{split} \mathbf{S}\mathbf{X} &= \mathbf{P}\mathbf{X} \\ \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} &= \underbrace{\lambda}_{\frac{1}{s}} \underbrace{\begin{bmatrix} p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} \\ p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} \\ p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{bmatrix} \\ \Longrightarrow \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} &= \lambda \begin{bmatrix} -\mathbf{p}_1 & - \\ -\mathbf{p}_2 & - \\ -\mathbf{p}_3 & - \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{X} \\ 1 \end{bmatrix} \\ = \lambda \begin{bmatrix} \mathbf{p}_1^{\top} \mathbf{X} \\ \mathbf{p}_2^{\top} \mathbf{X} \\ \mathbf{p}_3^{\top} \mathbf{X} \end{bmatrix} \end{split}$$

here comes the cross-product trick:

$$x = \lambda PX \qquad \text{means } x \text{ and } PX \text{ are in same direction}$$

$$\implies x \underset{\text{cross prod}}{\times} PX = 0 \qquad \text{cross product of the same direction} = 0$$

Finding a 3D point from stereo pair of images

$$\begin{aligned} \boldsymbol{x} \times \boldsymbol{P} \boldsymbol{X} &= \boldsymbol{0} \\ \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^\top \boldsymbol{X} \\ \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_3^\top \boldsymbol{X} \end{bmatrix} &= \begin{bmatrix} \boldsymbol{v} \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - \boldsymbol{u} \boldsymbol{p}_3^\top \boldsymbol{X} \\ \boldsymbol{u} \boldsymbol{p}_2^\top \boldsymbol{X} - \boldsymbol{v} \boldsymbol{p}_1^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix} \end{aligned}$$

notice that the last row is a linear combination of the first two:

$$u(\mathbf{v}\mathbf{p}_{3}^{\top}\mathbf{X} - \mathbf{p}_{2}^{\top}\mathbf{X}) + v(\mathbf{p}_{1}^{\top}\mathbf{X} - u\mathbf{p}_{3}^{\top}\mathbf{X})$$

$$= uv\mathbf{p}_{3}^{\top}\mathbf{X} - u\mathbf{p}_{2}^{\top}\mathbf{X} + v\mathbf{p}_{1}^{\top}\mathbf{X} - uv\mathbf{p}_{3}^{\top}\mathbf{X}$$

$$= -u\mathbf{p}_{2}^{\top}\mathbf{X} + v\mathbf{p}_{1}^{\top}\mathbf{X}$$

so we ignore it and to use only the first two equations:

$$\begin{bmatrix} \mathbf{v} \mathbf{p}_3^{\mathsf{T}} - \mathbf{p}_2 \\ \mathbf{p}_1^{\mathsf{T}} - u \mathbf{p}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

adding another camera

adding second pair of camera having P' projection matrix:

$$\begin{bmatrix} \boldsymbol{v}\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2} \\ \boldsymbol{p}_{1}^{\top} - \boldsymbol{u}\boldsymbol{p}_{3} \\ \boldsymbol{v}^{\prime}\boldsymbol{p}_{3}^{\prime}^{\top} - \boldsymbol{p}_{2}^{\prime} \\ \boldsymbol{p}_{1}^{\prime}^{\top} - \boldsymbol{u}^{\prime}\boldsymbol{p}_{3}^{\prime} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$

CHECKPOINT: Epi-polar Geometry

Epi-polar Geometry

Epi-polar Geometry

in this section, we use o for camera centre, instead of c

Line equation

- First, let's look at line equation:
 - 1. a line on a "2D image plane" is an intersection between:
 - image plane" and
 - a particular "plane defined by its normal"
 - 2. the same normal I also defines such a line in that image plane I
- algebraically:

$$ax + by + c = 0$$

$$\implies [x \quad y \quad 1] \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\implies \mathbf{x}^{\mathsf{T}} \mathbf{I} = 0$$

ightharpoonup points \mathbf{x} of plane satisfy $\mathbf{x}^{\top}\mathbf{I}$ forms a particular "plane defined by its normal" \mathbf{I}

Bring it to the camera setting

• if we design the image plane to be z = 1

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 and $\mathbf{e} = \begin{bmatrix} e_x \\ e_y \\ 1 \end{bmatrix}$ intersects with this image plane

- ightharpoonup obviously by definition $\mathbf{e}^{\top}\mathbf{I} = 0$
- ▶ I is not unique: infinite planes can intersect with image plane z = 1 and contain

points
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 and $\mathbf{e} = \begin{bmatrix} e_x \\ e_y \\ 1 \end{bmatrix}$ - think what if change the angle of plane intersecting with image plane

however, since o is also co-plane with x and e, making I unique, and since I is normal to all points in this plane:

$$\boldsymbol{I}^{\top}\boldsymbol{o}=\boldsymbol{I}^{\top}\boldsymbol{x}=\boldsymbol{I}^{\top}\boldsymbol{e}=0$$

in the second camera system, we have:

$$\mathbf{I'}^{\top}\mathbf{o'} = \mathbf{I'}^{\top}\mathbf{x'} = \mathbf{I'}^{\top}\mathbf{e'} = \mathbf{0}$$

Essential Matrix

 our desire is to have an essence matrix E to link the pair (x, l') and (x', l), each defined in their respective co-ordinate systems

$$\mathbf{E}\mathbf{x} = \mathbf{I}'$$
 similarly $\mathbf{E}\mathbf{x}' = \mathbf{I}$

if point **x** is on epi-polar line **I** by definition:

$$\mathbf{x}^{\top}\mathbf{I} = 0$$
 similarly $\mathbf{x}'^{\top}\mathbf{I}' = 0$

now putting things together:

$$\begin{aligned} \textbf{E}\textbf{x} &= \textbf{I}'\\ \textbf{x}'^{\top}\textbf{E}\textbf{x} &= \textbf{x}'^{\top}\textbf{I}'\\ &= 0 \end{aligned}$$

- ▶ E encodes epipolar geometry, maps a point to a line
- \triangleright we can learn values of **E** by using **x** and **x**' as data
- then, question is, what is the physcial meaning of E?

Essential Matrix

- we can learn values of **E** by using **x** and **x**' as data,
- note that in here, **x** and **x**' are normalized image co-ordinates
- then, question is, what is the physcial meaning of **E**?
- it turns out that:

$$\textbf{E} = \textbf{R}[\textbf{t}_{\times}]$$

Why $\mathbf{E} = \mathbf{R}[\mathbf{t}_{\times}]$?

- remember in epipolar geometry:
 - 1. x is defined to coordinate o
 - 2. x' is defined to coordinate o'
- but both are the same object! so x can be transformed from systems: o → o'
- ightharpoonup we assume that in camera system m o' = o + t, meaning from m o, o' = t

$$\begin{aligned} \textbf{x}' &= \textbf{R}(\textbf{x} - \textbf{t}) \\ \implies \textbf{R}^{\top}\textbf{x}' &= (\textbf{x} - \textbf{t}) & \text{multiple by } \textbf{R}^{\top} \end{aligned}$$

• we know $(\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$

$$(\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

$$\implies (\mathbf{R}^{\top} \mathbf{x}')^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

$$\implies (\mathbf{x}'^{\top} \mathbf{R}) (\mathbf{t} \times \mathbf{x}) = 0$$
row vector

Why $\mathbf{E} = \mathbf{R}[\mathbf{t}_{\times}]$?

$$\begin{split} &({\boldsymbol{x}'}^{\top}\boldsymbol{\mathsf{R}})(\boldsymbol{t}\times\boldsymbol{x})=0\\ &({\boldsymbol{x}'}^{\top}\boldsymbol{\mathsf{R}})([\boldsymbol{t}_{\times}]\boldsymbol{x})=0 \text{ change cross-product to matrix multiplication}\\ &\boldsymbol{x}'^{\top}\underbrace{\boldsymbol{\mathsf{R}}[\boldsymbol{t}_{\times}]}_{\boldsymbol{\mathsf{E}}}\boldsymbol{x}=0\\ &\boldsymbol{x}'^{\top}\boldsymbol{\mathsf{E}}\boldsymbol{x}=0 \text{ where } \boldsymbol{\mathsf{E}} \text{ is essential matrix} \end{split}$$

$$\textbf{E} = \textbf{R} \, \underbrace{[\textbf{t}_{\times}]}_{\text{rank 2!}}$$

how to change cross product to matrix multiplication:

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_5b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

$$\implies [\mathbf{a}_{\times}]\mathbf{b} = \underbrace{\begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}}_{[\mathbf{a}_{\times}]} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Essential Matrix apply to Epipoles

$$\mathbf{x'}^{\mathsf{T}}\mathbf{E}\mathbf{x} = 0$$
 $\mathbf{x}^{\mathsf{T}}\mathbf{E}^{\mathsf{T}}\mathbf{x'} = 0$ $\mathbf{x'}^{\mathsf{T}}\mathbf{I'}$ $= 0$ $\mathbf{x}^{\mathsf{T}}\mathbf{I} = 0$

look at epi-poles **e** and **e**':

- ightharpoonup what would happen is you let $\mathbf{x} = \mathbf{e}$? where should its \mathbf{l}' be?
- ▶ e lies on all epipolar lines in left image, so:

$$\begin{aligned} \mathbf{e}^{\top}\mathbf{I} &= 0 \\ \implies \mathbf{e}^{\top}\mathbf{E}^{\top}\mathbf{x}' &= 0 \\ \implies \mathbf{x}'^{\top}(\mathbf{E}\mathbf{e}) &= 0 \\ \implies \mathbf{E}\mathbf{e} &= \mathbf{0} \end{aligned}$$

look at the diagram atgin, when $\mathbf{x} = \mathbf{e} \implies \mathbf{X}$ moves to the line joining \mathbf{o} and \mathbf{o}'

similarly:

$$\implies e'^{\top}E = 0$$

- \blacktriangleright knowing **Ee** = **0** means that rank(**E**) = 2
- ightharpoonup alternative fact is that rank([\mathbf{t}_{\times}] = 2

Fundamental Matrix

- **Essential matrix require normalized co-ordinates** $(\hat{\mathbf{x}}', \hat{\mathbf{x}})$ i.e., not image points directly
- it require knowledge of **K** and **K**'

$$\hat{\mathbf{x}}'^{\top} \mathbf{E} \hat{\mathbf{x}} = 0$$
where $\hat{\mathbf{x}} = \mathbf{K}^{-1} \mathbf{x}$ $\hat{\mathbf{x}}' = \mathbf{K}'^{-1} \mathbf{x}'$

$$\implies (\mathbf{K}'^{-1} \mathbf{x}')^{\top} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} = 0$$

$$\implies \mathbf{x}'^{\top} \underbrace{\mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}}_{\mathbf{F}} \mathbf{x} = 0$$

$$\implies \mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$$

- Fundamental matrix does **not** require **K** and **K**'
- remember E = R[tx]:

$$\begin{aligned} \boldsymbol{x}'^{\top} \underbrace{\boldsymbol{K}'^{-\top} \boldsymbol{E} \boldsymbol{K}^{-1}}_{\boldsymbol{F}} \boldsymbol{x} &= 0 \\ &\Longrightarrow \ \boldsymbol{F} = \boldsymbol{K}'^{-\top} \boldsymbol{R} [t_{\times}] \boldsymbol{K}^{-1} \end{aligned}$$

Essential matrix from Fundamental matrix

ightharpoonup can be computed in reverse: $\mathbf{F} \to \mathbf{E}$

$$\begin{split} \boldsymbol{F} &= \boldsymbol{K}'^{-\top} \boldsymbol{R}[t_{\times}] \boldsymbol{K}^{-1} \\ \Longrightarrow \boldsymbol{K}'^{\top} \boldsymbol{F} &= \boldsymbol{R}[t_{\times}] \boldsymbol{K}^{-1} \\ \Longrightarrow \boldsymbol{K}'^{\top} \boldsymbol{F} \boldsymbol{K} &= \boldsymbol{R}[t_{\times}] &= \boldsymbol{E} \end{split}$$

the reverse equation is:

$$\textbf{E} = \textbf{K}'^{\top} \textbf{F} \textbf{K}$$

we leave the recovering of R and t in next section

8-point algorithm

 $\mathbf{x}'\mathbf{F}\mathbf{x}=0$:

$$\implies \begin{bmatrix} x' & y' & 1 \end{bmatrix} \begin{bmatrix} f_{1,1} & f_{1,2} & f_{1,3} \\ f_{2,1} & f_{2,2} & f_{2,3} \\ f_{3,1} & f_{3,2} & f_{3,3} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

bring parameters into unknowns:

$$\implies \begin{bmatrix} x_1x_1' & x_1y_1' & x_1 & y_1x_1' & y_1y_1' & y_1 & x_1' & y_1' & 1 \\ \vdots & \vdots \\ x_1x_1' & x_1y_1' & x_1 & y_1x_1' & y_1y_1' & y_1 & x_1' & y_1' & 1 \end{bmatrix} \begin{bmatrix} I_{1,1} \\ f_{1,2} \\ f_{2,1} \\ f_{2,2} \\ f_{3,1} \\ f_{3,2} \\ f_$$

CHECKPOINT: 3D Reconstruction

3D Reconstruction

Reconstruction Framework

- **input** $\{x_1, \dots, x_n\}$ image points of *n* different views of the **same 3D object**
- output {P₁,...,P_n} and X obviously there is only a single static X

How do we perform reconstruction?

- 1. compute $\mathbf{F} : \mathbf{x'}^{\top} \mathbf{F} \mathbf{x} = 0$
- 2. $\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = [\mathbf{P} | \mathbf{0}]$ use first camera as the reference
 - $\mathbf{P}' = \left[\left[\mathbf{e'}_{ imes}
 ight] \mathbf{F} \mid \mathbf{e'}
 ight]$ for the rest of the poses

when we know **K** and **K**' (or $\mathbf{K}=\mathbf{K}'$ if same camera used), we can also obtain $(\mathbf{R}_n,\mathbf{t}_n)$ next page

3. apply triangulation to solve for X:

Decomposing F into R and t when K is known

$$\begin{split} \textbf{E} &= [\textbf{t}_{\times}] \textbf{R} \\ &= \textbf{K}'^{\top} \textbf{F} \textbf{K} \qquad \text{(or } \textbf{K} = \textbf{K}' \text{ if same camera used)} \end{split}$$

- ightharpoonup we need to find some $[t_{\times}]$ and ${f R}$ such that their product is ${f E}$
- from E, it's difficult to perform factorization directly, as [tx] and R have special properties, i.e., can not freely decompose
- ▶ But we can make the factorization on SVD of **E** instead:

$$\mathbf{E} = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}^{\top}$$
 i.e., SVD

Decomposing **F** into **R** and **t** when **K** is known

ightharpoonup according to internal constraints of \mathbf{E} , Σ must consist of two identical and one zero:

$$\Sigma = \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

define

$$\boldsymbol{W} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \quad \boldsymbol{W}^{-1} = \boldsymbol{W}^{\top} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

we claim:

$$[\mathbf{t}_{\times}] = \mathbf{U} \mathbf{W} \mathbf{\Sigma} \mathbf{U}^{\top}$$
 $\mathbf{R} = \mathbf{U} \mathbf{W}^{-1} \mathbf{V}^{\top}$ is one of a solution

multiply together and see:

$$\begin{split} [t]_{\times} & \, \mathbf{R} = \mathbf{U} \mathbf{W} \boldsymbol{\Sigma} \mathbf{U}^{\mathsf{T}} \mathbf{U} \mathbf{W}^{-1} \mathbf{V}^{\mathsf{T}} \\ & = \mathbf{U} \underbrace{\mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^{-1}}_{} \mathbf{V}^{\mathsf{T}} \\ & = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}} \\ & = \mathbf{E} \end{split}$$

why is $[\mathbf{t}_{\times}] = \mathbf{U} \mathbf{W} \Sigma \mathbf{U}^{\top}$ valid?

look at a cross product matrix:
$$[\mathbf{a}_{\times}] = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

- 1. **property one** $[\mathbf{a}_{\times}]$'s diagonal = 0: plug-in definition of (\mathbf{W}, Σ) and a random \mathbf{U} will verify
- 2. property two $[a_{\times}]$ is skew-symmetric:

$$\implies [\boldsymbol{a}_{\times}]^{\top} = -[\boldsymbol{a}_{\times}]$$

let's check for condition to make: $[\mathbf{t}_{\times}]^{\top} = -[\mathbf{t}_{\times}]$:

$$\begin{split} \left[t_{\times}\right]^{\top} &= \left(\mathbf{U} \, \mathbf{W} \, \mathbf{\Sigma} \, \mathbf{U}^{\top}\right)^{\top} \\ &= \mathbf{U} \mathbf{\Sigma}^{\top} \, \mathbf{W}^{\top} \, \mathbf{U}^{\top} = \mathbf{U} \left(\mathbf{W} \, \mathbf{\Sigma}\right)^{\top} \, \mathbf{U}^{\top} \end{split}$$

$$\begin{aligned} (\boldsymbol{W}\boldsymbol{\Sigma})^\top &= \begin{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix}^\top = \begin{pmatrix} 0 & -s & 0 \\ s & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^\top = -\begin{pmatrix} 0 & s & 0 \\ -s & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = -\boldsymbol{W}\boldsymbol{\Sigma} \\ & \Longrightarrow \left[\boldsymbol{t}_{\times}\right]^\top &= \boldsymbol{U}\left(\boldsymbol{W}\boldsymbol{\Sigma}\right)^\top \boldsymbol{U}^\top = -\boldsymbol{U}\boldsymbol{W}\boldsymbol{\Sigma}\boldsymbol{U}^\top = -\boldsymbol{[t_{\times}]} \end{aligned}$$

why is $\mathbf{R} = \mathbf{U} \mathbf{W}^{-1} \mathbf{V}^{\top}$ valid?

- ▶ need to show $\mathbf{R} = \mathbf{U} \mathbf{W}^{-1} \mathbf{V}^{\top}$ is a rotation matrix.
- ightharpoonup product of three orthogonal matrices \implies ightharpoonup too is orthogonal or

$$\det(\textbf{R})=\pm 1$$

- ▶ a rotation matrix must satisfy det(R) = 1
- Since, in this case, E is seen as a projective element this can be accomplished by reversing the sign of E if necessary.

CHECKPOINT: Stereo Disparities

Stereo Disparities

rectified stereo images

▶ figure sourced from: H. Ko, H. S. Shim, O. Choi and C.-C. J. Kuo, "Robust uncalibrated stereo rectification with constrained geometric distortions (USR-CGD)", Image Vis. Comput., vol. 60, pp. 98-114, Apr. 2017.

estimating Stereo Disparities

- **X** is horizontal distance between $O \rightarrow X$, **B** is signed distance between $O \rightarrow O'$
- using similar triangles:

$$\mathbf{x} = f\frac{\mathbf{X}}{Z} \qquad \mathbf{x}' = f\frac{\mathbf{X} - \mathbf{B}}{Z} \quad \text{allow negative distance}$$

$$\implies \text{disparity} = \mathbf{x} - \mathbf{x}' = f\frac{\mathbf{X}}{Z} - f\frac{\mathbf{X} - \mathbf{B}}{Z}$$

$$= \frac{f\mathbf{X} - f\mathbf{X} + f\mathbf{B}}{Z}$$