

Fonte: http://csunplugged.org/sorting-algorithms PF 9

http://www.ime.usp.br/~pf/algoritmos/aulas/mrgsrt.html

Problema: Dados v[p:q] e v[q:r] crescentes, rearranjar v[p:r] de modo que ele fique em ordem crescente.

Para que valores de q o problema faz sentido?

Entra:

Sai:

w

k v 11 22 33

i j w 22 33 55 77 99 88 66 44 11

v 11 22 33 44 55 66

v 11 22 33 44 55 66 77

k 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 |

ij v 22 33 55 77 99 88 66 44 11

v 11 22 33 44 55 66 77 88 99 v 22 33 55 77 99 88 66 44 11

```
def intercale(p, q, r, v):
     e = v[p:q] # clone
     d = v[q:r] # clone
     d.reverse() # método mutador
3
4 \quad w = e + d
5 i = 0
 6
     j = r-p-1
     for k in range(p,r):
         if w[i] \leftarrow w[j]:
 8
9
            v[k] = w[i]
10
             i += 1
11
         else:
12
             v[k] = w[j]
13
                                4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>
```

Consumo de tempo

n := r - p

linha	proporcional a
1–2	?
3	?
4	?
5–6	?
7	?
8–13	?
total	7

Consumo de tempo

$$\mathbf{n} := \mathbf{r} - \mathbf{p}$$

linha	pro	porcional a	
1-2	=	n	
3	\leq	n	
4	=	n	
5–6	=	1	
7	=	$\mathbf{r} - \mathbf{p} + 1 = \mathbf{n} + 1$	1
8–13	=	r-p = n	
total	\sim	$5n \pm 9$	

Conclusão

A função intercale consome 5n+2 unidades de tempo.

O algoritmo intercale consome O(n) unidades de tempo.

Também escreve-se

O algoritmo intercale consome tempo O(n).

Ordenação: algoritmo Mergesort

Fonte: https://www.youtube.com/watch?v=XaqR3G_NVoo

PF 9

http://www.ime.usp.br/~pf/algoritmos/aulas/mrgsrt.html

Ordenação

v[0:n] é crescente se $v[0] \le \cdots \le v[n-1]$.

Problema: Rearranjar um vetor v[0:n] de modo que ele fique crescente.

Entra:

Sai:


```
def merge_sort (p, r, v):
    if p < r-1:
       q = (p + r) // 2
3
       merge_sort(p, q, v)
       merge_sort(q, r, v)
       intercale(p, q, r, v)
5
           33 | 66 | 44 | 99
```

```
def merge_sort (p, r, v):
    if p < r-1:
       q = (p + r) // 2
3
       merge_sort(p, q, v)
       merge_sort(q, r, v)
5
       intercale(p, q, r, v)
           44 | 55 | 66 | 99
```

```
def merge_sort (p, r, v):
    if p < r-1:
       q = (p + r) // 2
3
       merge_sort(p, q, v)
       merge_sort(q, r, v)
5
       intercale(p, q, r, v)
           44 | 55 | 66 | 11 | 22 | 77
```

```
def merge_sort (p, r, v):
1    if p < r-1:
2        q = (p + r) // 2
3        merge_sort(p, q, v)
4        merge_sort(q, r, v)
5        intercale(p, q, r, v)</pre>
```

```
p q r
v 11 22 33 44 55 66 77 88 99
```

```
def merge_sort (p, r, v):
    if p < r-1:
       q = (p + r) // 2
3
       merge_sort(p, q, v)
       merge_sort(q, r, v)
       intercale(p, q, r, v)
5
           22 | 33 | 44 | 55 | 66 | 77
```

	p				q					r
V	55	33	66	44	99	11	77	22	88	

v 55 33

p q r v 33 55

V

66

V

		p	r		
V		44			

66

V

	p		q		r		
٧	33	55	44	66			

		p		r		
v		44	66			

	p				q					r
V	33	44	55	66	99	11	77	22	88	

٧

	p				q					r
٧	33	44	55	66	11	22	77	88	99	

Correção

```
def merge_sort (p, r, v):
1    if p < r-1:
2        q = (p + r) // 2
3        merge_sort(p, q, v)
4        merge_sort(q, r, v)
5    intercale(p, q, r, v)</pre>
```

A função está correta?

A correção da função, que se apóia na correção do intercale, pode ser demonstrada por indução em $\mathbf{n} := \mathbf{r} - \mathbf{p}$.

Consumo de tempo: versão MAC0122

Consumo de tempo: versão MAC0122

O consumo de tempo em cada nível da recursão é proporcional a n.

Há cerca de $\lg n$ níveis de recursão.

nível	consumo de tempo (proporcional a)	
1	$pprox \mathtt{n}$	= n
2	$pprox { t n}/2 + { t n}/2$	= n
3	$\approx {\tt n/4+n/4+n/4+n/4}$	= n
• • •	• • •	
lg n	$\approx 1+1+1+1\cdots+1+1$	= n

Total
$$\approx n \lg n = O(n \lg n)$$

```
def merge_sort (p, r, v) {
1    if p < r-1:
2        q = (p + r) // 2
3        merge_sort(p, q, v)
4        merge_sort(q, r, v)
5    intercale(p, q, r, v)</pre>
```

Consumo de tempo?

```
T(n) := consumo de tempo quando <math>n = r - p
```

```
def merge_sort (p, r, v):
     if p < r-1:
        q = (p + r) // 2
        merge_sort(p, q, v)
        merge_sort(q, r, v)
5
        intercale(p, q, r, v)
        linha consumo na linha (proporcional a)
         T(n) = ?
```

```
def merge_sort (p, r, v):
      if p < r-1:
          q = (p + r) // 2
3
          merge_sort(p, q, v)
4
          merge_sort(q, r, v)
          intercale(p, q, r, v)
5
          linha consumo na linha (proporcional a)
                = 1
          2 = 1
          3 = T(|\mathbf{n}/2|)
                  = T(\lceil \frac{n}{2} \rceil)
                  = n
           T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n + 2
```

$$T(n) := consumo de tempo quando n = r - p$$

$$\begin{split} \mathbf{T}(\mathbf{1}) &= 1 \\ \mathbf{T}(\mathbf{n}) &= \mathbf{T}(\lceil \mathbf{n}/2 \rceil) + \mathbf{T}(\lfloor \mathbf{n}/2 \rfloor) + \mathbf{n} \ \text{para } \mathbf{n} = 2, 3, 4, \dots \end{split}$$

Solução: $T(n) \in O(n \log n)$.

Demonstração: ...

Conclusão

O consumo de tempo da função merge_sort é proporcional a n lg n.

O consumo de tempo da função merge_sort é $O(n \lg n)$.

Consumo de tempo

Total Runtime = Total time required in Divide + Total time required in Combine = 1 * Log(n) + n * Log(n) = n Log(n).

Divisão e conquista

Algoritmos por divisão-e-conquista têm três passos em cada nível da recursão:

Dividir: o problema é dividido em subproblemas de tamanho menor;

Conquistar: os subproblemas são resolvidos recursivamente e subproblemas "pequenos" são resolvidos diretamente;

Combinar: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

Exemplo: ordenação por intercalação (merge_sort).

merge_sort: versão iterativa

```
def merge_sort (n, v):
   b = 1
   while b < n:
       \mathbf{p} = \mathbf{0}
       while p + b < n:
          r = p + 2*b
           if r > n: r = n
           intercale(p, p+b, r, v)
          p = p + 2*b
       b = 2*b
```