LISTA DE EXERCÍCIOS

- 3.1 Seja a parede plana da Fig. 3.1, que separa dois fluidos, um quente e o outro frio, a temperaturas $T_{\infty,1}$ e $T_{\infty,2}$, respectivamente. Usando balanços de energia nas superfícies x=0 e x=L como condições de contorno (ver a Eq. 2.27), obtenha a distribuição de temperatura no interior da parede e o fluxo de calor em termos de $T_{\infty,1}$, $T_{\infty,2}$, h_1 , h_2 , k e L.
- 3.13 A parede composta de um forno possui três materiais, dois dos quais com condutividade térmica conhecida, $k_A = 20 \text{ W/m} \cdot \text{K}$ e $k_C = 50 \text{ W/m} \cdot \text{K}$, e também e espessura, $L_A = 0.30 \text{ m}$ e $L_C = 0.15 \text{ m}$. O terceiro material, B, que se encontra entre os materiais A e C, possui espessura $L_B = 0.15 \text{ m}$, mas sua condutividade térmica k_B é desconhecida.

Em condições de operação em regime estacionário, medidas revelam uma temperatura na superfície externa do forno de $T_{sup,e} = 20$ °C, uma temperatura na superfície interna de $T_{sup,i} = 600$ °C e uma temperatura do ar no interior do forno de $T_{sup} = 800$ °C. O coeficiente de transferência de calor por convecção no interior do forno é igual a 25 W/m²·K. Qual é o valor de $k_{\rm B}$?

3.24 Um circuito integrado (chip) de silício é encapsulado de tal modo que, sob condições de regime estacionário, toda a potência por ele dissipada é transferida por convecção para uma corrente de fluido, na qual h = 1.000 W/m² · K e T_∞ = 25°C. O chip está separado do fluido por uma placa de alumínio, que tem 2 mm de espessura. A resistência de contato na interface entre o chip e o alumínio é de 0,5 × 10⁻⁴ m² · K/W.

Se a área superficial do *chip* é de 100 mm² e a sua temperatura máxima permissível é de 85°C, qual a potência máxima que pode ser dissipada pelo *chip*?

3.25 Aproximadamente 10^6 componentes elétricos discretos podem $ser_{co.}$ locados em um único circuito integrado (chip), com uma dissipação ter. mica na ordem de 30.000 W/m^2 . O chip, que é muito fino, tem $sua_s su.$ perfície externa exposta a um líquido dielétrico, com $h_e = 1.000 \text{ W/m}^2$. K e $T_{\infty,e} = 20^{\circ}\text{C}$, enquanto sua superfície interna está conectada à placa de circuito impresso. A resistência térmica de contato entre o chipe a placa é de $10^{-4} \text{ m}^2 \cdot \text{K/W}$, e a espessura e condutividade térmica da placa são de $L_p = 5 \text{ mm}$ e $k_p = 1 \text{ W/m} \cdot \text{K}$, respectivamente. A outra superfície da placa está exposta ao ar ambiente, onde $h_i = 40 \text{ W/m}^2 \cdot \text{K}$ e $T_{\infty,i} = 20^{\circ}\text{C}$.

(a) Esboce o circuito térmico equivalente para condições de regime estacionário. Identifique as resistências, temperaturas e fluxos térmicos

(b) Sob condições de regime estacionário e para um fluxo dissipado de calor no *chip* de $q''_c = 30.000 \text{ W/m}^2$, qual é a temperatura do

(c) O fluxo térmico máximo permitido, $q''_{c,m}$, é determinado pela limitação de que a temperatura do *chip* não deve exceder 85°C. Determine o valor de $q''_{c,m}$ para as condições anteriores. Se ar for utilizado no lugar do líquido dielétrico, o coeficiente de transferência de calor por convecção é reduzido em aproximadamente uma ordem de grandeza. Qual o valor de $q''_{c,m}$ para $h_e = 100 \text{ W/m}^2 \cdot \text{K}$? Informar se como resfriamento utilizando ar é possível obter melhorias significativas na transferência de calor usando-se uma placa de circuito impresso feita em óxido de alumínio e/ou empregando-se uma pasta condutiva na interface entre o *chip* e a placa, para a qual $R''_{t,c} = 10^{-5} \text{ m}^2 \cdot \text{K}$

3.66 Uma parede plana, com espessura de 0,1 m e condutividade térmica de 25 W/m·K, apresenta uma taxa volumétrica de geração de calor uniforme de 0,3 MW/m³ e está isolada em um de seus lados, enquanto o outro encontra-se exposto a um fluido a 92°C. O coeficiente de transferência de calor por convecção entre a parede e o fluido é de 500 W/m²·K. Determine a temperatura máxima na parede.

ser ligado e apos els permaneres em fancionamiento por argum tempo. Um elemento de combustível nuclear, com espessura 2L, é coberto com um revestimento de aço que possui espessura b. O calor gerado no interior do combustível, a uma taxa \dot{q} , é removido por um fluido a T_{∞} , que se encontra em contato com uma das superfícies. O coeficiente de convecção nesta superfície é h. A outra superfície encontra-se isolada termi-

vecção nesta superfície é h. A outra superfície encontra-se isolada termicamente. O combustível e o aço possuem condutividades térmicas k_c e k_a , respectivamente.

(a) Obtenha uma equação para a distribuição de temperatura T(x) no combustível nuclear. Expresse seus resultados em termos de \dot{q} , k_c , L, b, k_a , h e T_{∞} .

(b) Esboce a distribuição de temperatura T(x) em todo o sistema.

3.76 A superfície exposta (x = 0) de uma parede plana, com condutividade térmica k, está sujeita à radiação de microondas, que causa um aquecimento volumétrico que varia de acordo com a expressão

$$\dot{q}(x) = \dot{q}_o \left(1 - \frac{x}{L} \right)$$

onde \dot{q}_o (W/m³) é uma constante. A fronteira em x=L está perfeitamente isoláda, enquanto a superfície exposta é mantida a uma temperatura constante T_o . Determine a distribuição de temperatura T(x) em termos de x, L, k, \dot{q}_o e T_o .