# 生物化学(下)

王炳武 生命科学与技术学院

# 第八章 代谢总论



# 本章内容

生物体的新陈代谢 生物能学 生物氧化



# 第一节生物体的新陈代谢



#### 新陈代谢的概念

- \* 新陈代谢metabolism
  - \* 合成代谢anabolism与分解代谢catabolism
  - \* 物质代谢与能量代谢

# 新陈代谢的场所

| 物质种类 | 合成代谢方式        | 反应场所              | 分解代谢方式      | 反应场所            |
|------|---------------|-------------------|-------------|-----------------|
| 糖类   | 光合作用          | 叶绿体               | 糖酵解         | 胞浆              |
|      | 糖原合成          | 胞浆                | 三羧酸循环       | 线粒体             |
|      | 糖异生           | 胞浆                | 磷酸戊糖途径      | 胞浆              |
|      |               |                   | 乙醛酸循环       | 微体              |
| 脂类   | 脂肪酸合成         |                   | 脂肪酸β氧化      | 胞浆 (活化)、<br>线粒体 |
| 蛋白质  | 膜蛋白和分泌<br>蛋白  | 核糖体(粗面内质网<br>上的)  | 氨基酸分解       | 线粒体             |
|      | 细胞内含有的<br>蛋白质 | 核糖体(游离在细胞<br>质中的) | 尿素循环        | 肝细胞线粒体、<br>胞浆   |
| 核酸   | 嘌呤、嘧啶合<br>成   | 肝脏的胞浆为主           | 嘌呤、嘧啶分<br>解 | 胞浆              |
|      | 复制、转录         | 细胞核、线粒体、叶<br>绿体   | 核酸的降解       | 胞浆              |

# 新陈代谢的特点

- \* 辅酶与辅基的参与
  - \* 一种辅酶或者辅基可以与多种酶蛋白结合;
  - \* 酶蛋白决定酶的专一性;
- \* 复杂的代谢途径中存在着一些关键步骤
  - \* 限速步骤

#### 新陈代谢的研究方法

- \* 体外实验
  - \* 三羧酸循环
- \*体内实验
  - \* 脂肪酸的β 氧化
- \* 同位素示踪法
- \* 代谢途径阻断法



# 第二节 生物能学



- \*一、生物体内的能量
  - \*自由能、熵、焓
- \*二、生物能与生物化学反应的关系
  - \* 放能反应、吸能反应
  - \*氧化还原电势

#### 三、能量代谢与高能化合物

- \* 1941年Lipman提出高能化合物的概念,用 "~" 表示其中的高能键。
- \* 在生化反应中,可以通过水解反应或者基团转 移反应释放出大量自由能(>20.9kJ/mol)的物质
  - \* 最常见的高能化合物是高能磷酸化合物
  - \*如果高能化合物释放的能量>30.5kJ/mol,就可使 ADP生成ATP

#### 1、ATP: 能量代谢的中心物质

\* 1929 德国生物化学家费斯克 (C.H.Fiske)、萨巴罗 (Y.SubbaRow) 和罗曼 (K.Lohmann),分别独立地从肌肉提取液中分离出ATP,罗曼后来又阐明了ATP的化学结构。



- \* UTP用于多糖合成
- \* CTP用于磷脂合成
- \* GTP用于蛋白质合成
- \*安静状态的成年人每天消耗40kgATP;激烈运动时每分钟可消耗0.5kgATP。
- \*一般情况下,ATP在形成后一分钟内就会被利用, 故严格说来ATP不是能量的贮存形式,而是传递 能量的物质。

#### 2、ATP的释能方式

- \* 转移磷酸基团
- \* 转移焦磷酸基团
- \* 转移AMP基团
- \* 转移腺苷基团







#### 3、能量的贮存形式:磷酸肌酸

#### \* 脊椎动物

# 第三节 生物氧化



## 什么是生物氧化?

- \* 生物体氧化分解有机物、释放能量以及排出代谢终产物的过程
- \* 又称为组织呼吸或细胞呼吸
  - \* 消耗氧, 生成二氧化碳和水
  - \*释放能量

## 一、生物氧化的类型

- \* 本质是电子的转移
- \* 生物氧化的四种形式
  - \* 直接进行电子转移
  - \* 氢原子的转移
  - \* 直接加氧
  - \* 加水脱氢



## 生物氧化的特点

- \* 体外燃烧
  - \* 干燥、高温
  - \* 瞬间释放
  - \* 光、热
- \* 生物氧化
  - \* 在细胞内(体温、中性、水环境)进行
  - \* 能量逐步释放,释放的能量贮存在高能化合物中
  - \* 真核生物在线粒体、原核生物在细胞膜上进行

## 二、生物氧化的研究内容

- \*细胞如何将物质分子中的碳氧化为二氧化碳?
- \*细胞如何将物质分子中的氢氧化为水?
- \*细胞如何贮存和利用氧化时产生的能量?



## 1、二氧化碳的生成

- \* 有机酸的脱羧作用
  - \*α-脱羧、β-脱羧
  - \* 直接脱羧、氧化脱羧



#### 2、水的生成

- \* 代谢物脱下的氢和吸入的氧结合
- \* 脱氢酶、传递体和氧化酶构成生物氧化体系
  - \* 如果最终受氢体为氧则称为呼吸链



## 1)脱氢酶

- \* 以烟酰胺核苷酸为辅酶的脱氢酶
- \* 以核黄素为辅基的脱氢酶 (黄素酶)
  - \* 需氧黄酶
  - \* 不需氧黄酶



#### 需氧黄酶

- \* 氧作为直接受氢体, 生成过氧化氢
- \* 不产生ATP



#### 补充: 过氧化氢与SOD

在生物氧化过程中,呼吸链末端每分子氧必须接受4个电子才能完全还原,并与 $H^+$ 结合生成水,如果电子供给不足,则生成过氧化基团 $0^{2-}$ 或超氧根离子。

$$O_2+4e \rightarrow 2O^2- \rightarrow 2H_2O$$
  
 $O_2+2e \rightarrow O_2^{2-} \rightarrow H_2O_2$   
 $O_2+e \rightarrow O_2^{-}$ 

#### 过氧化氢及超氧根离子的消除

\* 超氧化物歧化酶 (SOD)

$$2O_{2}^{-} + 2H^{+} \Longrightarrow H_{2}O_{2} + O_{2}$$

\* 过氧化氢酶

$$H_2O_2 + H_2O_2 \Longrightarrow 2H_2O + O_2$$

\* 过氧化物酶

$$RH_2 + H_2O_2 \Longrightarrow R + 2H_2O$$

#### 不需氧黄酶

- \* 氢首先传给传递体,最后传给氧生成水
- \* 生成ATP



## 2)呼吸链

- \*代谢物上的氢原子被脱氢酶激活脱落后, 经过一系列的传递体,最后传递给被激活 的氧原子生成水,参与这一过程的体系称 为呼吸链,也称电子传递体系
  - \* NADH氧化呼吸链
  - \*琥珀酸氧化呼吸链 (FAD氧化呼吸链)

#### NADH氧化呼吸链



\* 递氢体 \* 辅酶Q \* 递电子体 \* 细胞色素

#### 1)铁硫蛋白

\* 借助铁的变价进行电子传递

$$Fe^{3+} + c \rightleftharpoons Fe^{2+}$$



#### ②辅酶Q (CoQ)

- \* 脂溶性醌类, 又称泛醌 (UQ)
- \* 异戊二烯基

#### ③细胞色素 а3

- \* 又称细胞色素氧化酶
- \* 不是传递体
- \*与细胞色素a紧密结合,难于分开



#### 琥珀酸氧化呼吸链



# 常见底物的氧化呼吸链



# 判断题

- \* 生物氧化只有在氧气存在的情况下才能进行。
- \*辅酶Q是递氢体,而细胞色素c则为递电子体。

### 填空题

\* SOD是\_\_\_\_酶,它的生理功能是\_\_\_。



- \* 下列哪种物质不是呼吸链的组成成分()
- \* A NADH
- \* B NADPH
- \* C FADH<sub>2</sub>
- \* D FMNH<sub>2</sub>



- \* 呼吸链电子传递体中,有一成分是脂质,它是()
- \* A, NAD+
- \* B、FMN
- \* C. Fe-S
- \* D, CoQ
- \* E、Cyt



### 四、氧化磷酸化

- \* 代谢物的氧化 (脱氢) 作用与ADP的磷酸化作用相偶联而生成ATP的过程
  - \* 底物水平氧化磷酸化
  - \* 呼吸链氧化磷酸化



## 1、底物水平氧化磷酸化

- \* 脱氢后的产物分子内能量重新分布形成 高能磷酸化合物(氧化),随后将能量 转移到ADP上生成ATP(磷酸化)
- \* 底物水平磷酸化与是否有氧的存在无关
  - \*糖分解代谢中的甘油醛-3-磷酸转变为3-磷酸甘油酸

### 2、呼吸链氧化磷酸化

- \* 当电子从NADH或FADH2经过呼吸链传递 给氧形成水时,伴随有ADP磷酸化为ATP, 也称电子传递体系磷酸化
- \* 体内生成ATP的主要方式

$$-0.32 -0.06$$
  $0.00 +0.26 +0.28 +0.82$   
 $N \land D^{+} \rightarrow FMN \rightarrow CoQ \rightarrow b \rightarrow c_{1} \rightarrow c \rightarrow Ra_{3} \rightarrow O_{2}$ 

- \* NADH呼吸链: 2.5ATP或者3ATP
- \* FAD呼吸链: 1.5ATP或者2ATP



#### 3、P/O比

\* 在线粒体内膜上进行电子传递时,每消耗 一摩尔的氧原子,可将多少摩尔的无机磷 转化为有机磷



### 4、非氧化性底物水平磷酸化

\* 不需要氧也没有代谢物的脱氢氧化



# 本章总结

- \*新陈代谢
- \* 生物氧化的方式和特点
- \* 参与生物氧化的酶类
- \*二氧化碳、水的生成
- \* 呼吸链的组成
- \* ATP与氧化磷酸化

# 判断题

\*人体内ATP生成的主要方式是底物水平 磷酸化。



- \* 下列关于电子传递链的叙述错误的是()
- \* A、传递链的递氢体同时也是递电子体
- \* B、传递链的递电子体同时也是递氢体
- \* C、电子传递过程中伴有ADP的磷酸化
- \* D、抑制传递链中细胞色素氧化酶,则整个传递链的功能丧失

- \* 辅酶Q是()
- \* A、NADH脱氢酶的辅基
- \*B、电子传递链的载体
- \* C、琥珀酸脱氢酶的辅基
- \* D、脱羧酶的辅酶

## 需要掌握的单词

- \* decarboxylation
- \* dehydrogenase

- \* biological oxidation
- cellular respiration

\* respiratory chain