МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №4

по дисциплине 'ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ'

Вариант: 678

Выполнил: Студент группы Р3113 Кулинич Ярослав Вадимович Преподаватель: Афанасьев Дмитрий Борисович

Содержание

1	Зад	ание		3
2	Тек	ст про	ограммы	3
	2.1	Основ	ная программа	:
	2.2	Подпр	оограмма	4
3	Опі	исание	программы	4
	3.1	Назна	чение программы и реализуемая ею функция	4
		3.1.1	Реализуемая программой функция	
		3.1.2	Реализуемая подпрограммой функция	
		3.1.3	График функции, реализуемый подпрограммой	
	3.2	Облас	ть представления и область допустимых значений исходных данных и результата.	5
		3.2.1	Область представления	5
		3.2.2	Область допустимых значений	5
	3.3	Распо	ложение в памяти ЭВМ программы, исходных данных и результатов	6
		3.3.1	Исходные данные и результат	6
		3.3.2	Программа	6
	3.4	Адрес	а первой и последней выполняемой команд программы	6
4	Таб	лица 1	грассировки	7
5	Вы	вод		8

1 Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

2 Текст программы

2.1 Основная программа

Адрес ячейки	Содержимое ячейки	Мнемоника	Комментарии		
3B8	0200	CLA	Очистка аккумулятора		
3B9	EE18	$\mathrm{ST}\;\mathrm{IP}+24$	Сохраненине 0 в ячейку 0х3D2		
3BA	AE14	$\mathrm{LD}\;\mathrm{IP}+20$	Загрузка в АС содержимого из ячейки 0х3СF		
3BB	0C00	PUSH	Запись АС в стек		
3BC	D6DB	CALL \$6DB	Вызов подпрограммы по адресу 0х6DB		
3BD	0800	POP	Чтение из стека в АС		
3BE	0740	DEC	Декремент АС		
3BF	$4\mathrm{E}12$	ADD IP + 18	Сложение АС с содержимым ячейки 0x3D2		
3C0	EE11	ST IP + 17	Сохраненине АС в ячейку 0х3D2		
3C1	AE0E	LD IP + 14	Загрузка в АС содержимого из ячейки 0х3D0		
3C2	0C00	PUSH	Запись АС в стек		
3C3	D6DB	CALL \$6DB	Вызов подпрограммы по адресу 0х6DВ		
3C4	0800	POP	Чтение из стека в АС		
3C5	6E0C	SUB IP + 12	Вычитание из АС содержимого ячейки 0х3D2		
3C6	EE0B	ST IP + 11	Сохранение АС в ячейку 0х3D2		
3C7	AE09	$\mathrm{LD}\;\mathrm{IP}+9$	Загрузка в АС содержимого ячейки 0х3D1		
3C8	0C00	PUSH	Запись АС в стек		
3C9	D6DB	CALL \$6DB	Вызов подпрограммы по адресу 0х6DВ		
3CA	0800	POP	Чтение из стека в АС		
3CB	0700	INC	Инкремент АС		
3CC	4E05	ADD IP + 5	Сложение АС с содержимым ячейки 0x3D2		
3CD	EE04	ST IP + 4	Сохранение АС в ячейку 0х3D2		
3CE	0100	HLT	Остановка ТГ		
3CF	ZZZZ	Z	Первый аргумент		
3D0	YYYY	Y	Второй аргумент		
3D1	XXXX	X	Третий аргумент		
3D2	0028	R	Результат		

2.2 Подпрограмма

Адрес ячейки	Содержимое ячейки	Мнемоника	Комментарии			
6DB	AC01	LD &1	Чтение из стека входного параметра			
6DC	F204	$\mathrm{BMI}\;\mathrm{IP}+4$	Если значение параметра меньше нуля,			
			то переход в ячейку 0х6Е1			
$6\mathrm{DD}$	F003	m BEQ~IP+3	Если значение параметра равно нулю,			
			то переход в ячейку 0х6Е1			
6DE	7E0A	CMP IP + 10	Сравнение АС с содержимым ячейки 0х6Е9			
6DF	F006	m BEQ~IP+6	Если значение параметра равно содержимому			
			ячейки 0х6Е9, то переход в ячейку 0х6Е6			
6E0	F805	BLT IP + 5	Если значение параметра меньше содержимого			
			ячейки 0х6Е9, то переход в ячейку 0х6Е6			
6E1	0500	ASL	Арифметический сдвиг влево			
6E2	0500	ASL	Арифметический сдвиг влево			
6E3	6C01	SUB &1	Вычитание из АС входного параметра			
$6\mathrm{E}4$	4E05	ADD IP + 5	Сложение с АС сожержимого ячейки 0х6ЕА			
$6\mathrm{E}5$	CE01	BR IP + 1	Безусловный переход в ячейку 0х6Е7			
6E6	AE02	${ m LD~IP}+2$	Загрузка в АС содержимого ячейки 0х6Е9			
$6\mathrm{E}7$	EC01	ST &1	Сохранение АС на место входного			
			параметра в стеке			
6E8	0A00	RET	Возврат из подпрограммы			
6E9	0D2F	a	Локальная переменная			
6EA	0026	b	Локальная переменная			

3 Описание программы

3.1 Назначение программы и реализуемая ею функция

3.1.1 Реализуемая программой функция

$$R = F(X) + F(Y) - F(Z) + 2$$

3.1.2 Реализуемая подпрограммой функция

$$F(x) = \begin{cases} 3x + b & \text{, для } x \leq 0, \\ a & \text{, для } 0 < x \leq a, \\ 3x + b & \text{, для } x > a \end{cases}$$

3.1.3 График функции, реализуемый подпрограммой

3.2 Область представления и область допустимых значений исходных данных и результата

3.2.1 Область представления

Z, Y, X, R - 16-разрядные знаковые числа с фиксированной запятой. Диапазон значений формата: $-2^{15}\dots 2^{15}-1$

3.2.2 Область допустимых значений

Область допустимых значений R совпадает с областью представления.

Область допустимых значений входного аргумента подпрограммы (т.е. X,Y,Z): Пусть F(x) - реализуемая подпрограммой функция, тогда ОДЗ для нее будет $-2^{15}\dots 2^{15}-1$.

1) Пусть $-32768 \le x \le 0$, тогда имеет место система:

$$\begin{cases}
-32768 \le F(x) \le 32767 \\
-98266 \le F(x) \le 38
\end{cases}$$

Откуда $F(x) = 3x + 38 \ge -32768 \Rightarrow x \ge -10935$ В итоге

$$\begin{cases} -10935 \le x \le 0\\ -32768 \le F(x) \le 38 \end{cases}$$

- 2) Пусть $-0 < x \le a$, тогда F(x) = a
- 3) Пусть $a < x \le 32767$, тогда имеет место система:

$$\begin{cases} -32768 \le F(x) \le 32767 \\ 10163 \le F(x) \le 98339 \end{cases}$$

Откуда $F(x) = 3x + 38 \le 32767 \Rightarrow x \le 10909$ В итоге

$$\begin{cases} 3375 \le x \le 10909 \\ 10163 \le F(x) \le 32767 \end{cases}$$

3.3 Расположение в памяти ЭВМ программы, исходных данных и результатов

3.3.1 Исходные данные и результат

```
Z\ (0x3CF) - первый аргумент Y\ (0x3D0) - второй аргумент X\ (0x3D1) - третий аргумент R\ (0x3D2) - результат выполнения программы
```

3.3.2 Программа

```
0x3B8 - 0x3CE - основная программа 0x6DB - 0x6E8 - подпрограмма а (0x6E9), b (0x6EA) - локальные переменные, используемые подпрограммой
```

3.4 Адреса первой и последней выполняемой команд программы

0x3B8 - первая исполняемая команда программы 0x3CE - последняя исполняемая команды программы

4 Таблица трассировки

Выпол	Содердимое регистров после выполнения команды							Ячейка, содержимое			
ком	команда		церди	імое І	регист	гров	после	выш	олнения команды	которо	ой изменилось
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код

5 Вывод

В ходе выполнения данной лабораторной работы я познакомился с реализаций стека в БЭВМ и впервые им пользовался. Также я научился работать с подпрограммами и узнал какими способами можно передавать аргументы в подпрограммы.