Tarea 3.

Profesor: Manuel Díaz Díaz Ayudante:Gerardo Rubén López Hernández Alumnos: César Eduardo Jardines Mendoza, Emiliano Galeana Araujo

26 de junio de 2020

- 1. Sea $\mathbb{E}: y^2 + 20x = x^3 + 21 \pmod{35}$ y sea $\mathbb{Q} = (15, -4) \in \mathbb{E}$.
 - a) Factoriza 35 tratando de calcular 3Q. Sea E la curva eliptica de la forma $y^2 = x^3 - 20x + 21 \mod 35$ y considerando que P = (15,-4). Como primer paso debemos calcular la linea tangente pendiente del punto P y dado que solo se contempla un punto tenemos que usar la siguente formula:

$$m = \frac{dy}{dx} = \frac{3x_1^2 + A}{2y_1}$$

y contemplando que debemos de encontrar en P el punto m y aplicando la formula mencionada con anterioridad tendríamos que:

$$m = \frac{3x_1^2 + A}{2y_1} = \frac{3(15)^2 - (20)}{2(-4)} = -\frac{25}{8} \mod 35$$

Con lo que se obtendrá el máximo común divisor del denominador m y teniendo el módulo p, gcd(8,35) = 1. Dado que es 1 se calculará el inverso módulo p del denominador de la pendiente m el cual tenemos que $8^-1 \equiv 22 \mod 35$. Con esto tendremos el inverso y la pendiente queda como:

$$-\frac{25}{8} \cdot (8^-1) = -\frac{25}{8} \cdot (22) \equiv 10 \mod 35$$

teniendo todo esto y para encontrar 2p con P y utilizando la pendiente tenemos que considerar lo siguente:

Si
$$P_1 = P_2 \wedge y1 \supset 0x3 = m^2 - 2x1, y3 = m(x1 - x3) - y1$$
 donde tenemos que $m = \frac{3x_1^2 + A}{2y_1}$

Y sustituyendo en nuestra fórmula previa para calcular 2P = (x,y) con m = 10 se tiene que:

$$x \equiv (10)^2 - 2(15) \equiv 0, y \equiv (10)((15) - (0)) - (-4) \equiv 14$$

teniendo todo esto con 2P = (0,14) y desarrollando esto para calcular 3P debemos de sumar bajo la opearación del grupo a P y 2P con la formula:

Si
$$x1 \neq x2$$
 entonces $x_3 = m^2 - x1 - x_2, y_3 = m(x1 - x3) - y1$ donde m = $\frac{y_2 - y_1}{x_2 - x_1}$

con lo que tendríamos que:

$$\frac{14 - (-4)}{0 - 15} = -\frac{19}{15}$$

Y teniendo el denominador de m previo y con p (el primo) tendremos que $gcd(15,35) = 5 \square 1$ por lo que 15^{-1} mod 35 y no se puede evaluar la tangente que se tiene por lo que hemos encontrado un factor de 35 que es 5 por lo que tenemos que:

$$35 = 5.7$$

b) Factoriza 35 tratando de calcular $4\mathbb{Q}$ duplicándolo. Recordemos que podemos ver a $4\mathbb{Q}$ como $2\mathbb{Q}+2\mathbb{Q}$. Calculamos

$$2Q = (0, 14)$$

Recordando que

$$m = \frac{3x_1^2 + A}{2y_1}$$

Calculamos la pendiente:

$$m = \frac{3(0)^2 + (-20)}{2(14)} = -\frac{20}{28} (mod35)$$

Calculamos el $GCD(35,28) = 7 \neq 1$. Por lo que la factorización queda de la siguiente manera.

$$35 = 7.5$$

c) Calcula $3\mathbb{Q}$ y $4\mathbb{Q}$ sobre $\mathbb{E}(mod5)$ y sobre $\mathbb{E}(mod7)$ explica por qué el factor 5 se obtiene calculando $3\mathbb{Q}$ y por qué el factor 7 se obtiene calculando $4\mathbb{Q}$.

	3Q	4Q
mod5	(0,0)	(0,1)
mod7	(1,4)	(0,0)

Para $3\mathbb{Q}$ obtuvimos una pendiente que tenía un 5 en el denominador, por lo tanto fue infinito modulo5. Por otro lado el orden de $\mathbb{Q}(mod7)$ es 4.

- 2. Sea \mathbb{E} la curva elíptica $y^2 = x^3 + x + 28$ definida sobre \mathbb{Z}_{71} .
 - a) Calcula y muestra el número de puntos de E.
 Los 71 puntos (Sin contar el infinito) calculados son 1:

(1, 32)	(1, 39)	(2, 31)	(2, 40)	(3, 22)	(3, 49)	(4, 5)
(4, 66)	(5, 4)	(5, 67)	(6, 26)	(6, 45)	(12, 8)	(12, 63)
(13, 26)	(13, 45)	(15, 9)	(15, 62)	(19, 27)	(19, 44)	(20, 5)
(20, 66)	(21, 3)	(21, 68)	(22, 30)	(22, 41)	(23, 19)	(23, 52)
(25, 22)	(25, 49)	(27, 0)	(31, 32)	(31, 39)	(33, 1)	(33, 70)
(34, 23)	(34, 48)	(35, 14)	(35, 57)	(36, 12)	(36, 59)	(37, 33)
(37, 38)	(39, 32)	(39, 39)	(41, 7)	(41, 64)	(43, 22)	(43, 49)
(47, 5)	(47, 66)	(48, 11)	(48, 60)	(49, 24)	(49, 47)	(52, 26)
(52, 45)	(53, 0)	(58, 27)	(58, 44)	(61, 15)	(61, 56)	(62, 0)
(63, 17)	(63, 54)	(65, 27)	(65, 44)	(66, 18)	(66, 53)	(69, 35)
(69, 36)						

¹Usamos un programa, si se requiere, podemos brindarlo.

b) Muestra que \mathbb{E} no es un grupo cíclico.

Podemos ver de manera rapida que E al ser un grupo finito se cumple que para cualquier $P \in E$ con $x \in \mathbb{Z}$ y $xP = (x \mod n)P$ donde $n = |E - \{O\}|$. Con esto podemos observar que si tenemos k-racionales puntos (los 3 puntos) de E tales que su orden 2 lo que vendrían siendo:

- **(27,0)**
- **(53,0)**
- (62,0)

lo antes mencionado nos da a entender que al ser 2 el minimo entero que cumple para los tres puntos anteriores que 2P = O, donde O al ser el punto al infinito el cual es el elemento neutro del grupo. Con esto tenemos que los dons puntos distinto P_1yP_2 tales que $P_1 \neq P_2$ y $2P_1 = 2P_2 = O$. Supongamos que E es un grupo cíclico, por definición tendría que existir un elemento generador y sea P_G con $\forall P \in Ex \in \mathbb{Z}$ tal que $xP_G = P$, en especial $xP_G \neq O$ para cualquier 0 ;x ;n.

$$2P_1 = O \rightarrow 2(x_1)P_G = O \rightarrow (2x_1)P_g = (2x_1 mod n)P_G = O$$

Esto nos lleva a que

$$x_1 = n \times 2^{-1} mod n$$

Análogamente a lo que hicimos anteriormente, tenemos:

$$2P_2 = 2(x_2P_G) = O \rightarrow (2x_2)P_G = (2x_2modn)P_G = O$$

Por lo anterior, vemos que:

$$x_2 = n \times 2^{-1} mod n$$

Por lo que
$$2P_1 = 2x_1P_G = O = 2x_2P_G = 2P_2 \rightarrow P_1 = P_2$$
.

Y por $(P_1 \neq P_2)$, llegamos a una contradicción.

Por lo que \mathbb{E} no es un grupo cíclico.

c) ¿Cuál es el máximo orden de un elemento en \mathbb{E} ?, encuentra un elemento que tenga este orden.

Haciendo uso del programa del inciso *a*), y modificando un poco, tenemos que el orden de cada punto es el siguiente:

(1, 32), 18	(1, 39), 19	(2, 31), 6	(2, 40), 6	(3, 22), 12	(3, 49), 12	(4, 5), 36
(4, 66), 36	(5, 4), 4	(5, 67), 4	(6, 26), 18	(6, 45), 18	(12, 8), 18	(12, 63), 18
(13, 26), 36	(13, 45), 36	(15, 9), 36	(15, 62), 36	(19, 27), 6	(19, 44), 33	(20, 5), 11
(20, 66), 3	(21, 3), 36	(21, 68), 72	(22, 30), 51	(22, 41), 18	(23, 19), 40	(23, 52), 36
(25, 22), 18	(25, 49), 39	(27, 0), 2	(31, 32), 9	(31, 39), 48	(33, 1), 62	(33, 70), 62
(34, 23), 33	(34, 48), 72	(35, 14), 72	(35, 57), 72	(36, 12), 9	(36, 59), 12	(37, 33), 72
(37, 38), 72	(39, 32), 6	(39, 39), 49	(41, 7), 22	(41, 64), 36	(43, 22), 49	(43, 49), 22
(47, 5), 72	(47, 66), 61	(48, 11), 46	(48, 60), 35	(49, 24), 72	(49, 47), 72	(52, 26), 26
(52, 45), 72	(53, 0), 2	(58, 27), 57	(58, 44), 57	(61, 15), 72	(61, 56), 60	(62, 0), 2
(63, 17), 24	(63, 54), 55	(65, 27), 72	(65, 44), 72	(66, 18), 12	(66, 53), 8	(69, 35), 33
(69, 36), 18						

Por que el orden máximo es el 72, así que cualquier punto con este orden funciona, nosotros daremos el punto (21, 68).

- 3. Sea $\mathbb{E}: y^2 2 = x^3 + 333x$ sobre \mathbb{F}_{347} y sea $\mathbb{P} = (110, 136)$
 - a) ¿Es $\mathbb{Q} = (81, -176)$ un punto de \mathbb{E} ?

No, pero (81, 176) sí lo es.

Recordemos ² la siguiente definición:

$$E(K) = \{(x,y) \in K^2 | y^2 = x^3 + ax + b\} \cup \{\infty\}$$

Esto nos dice que E(K) son todos los puntos K-racionales de la curva. Por lo que bastaría con listarlos y posteriormente verificar si \mathbb{P} existe en el conjunto.

b) Si sabemos que $|\mathbb{E}| = 358$. ¿Podemos decir que \mathbb{E} es criptográficamente útil?, ¿Cuál es el orden de \mathbb{P} ? ¿Entre qué valores se puede escoger la clave privada? Considerando que la curva elíptica $y^2 = x^3 + ax + b$ definen un grupo abeliano en F_a si

$$(4a^3 + 27b^2) mod p \neq 0 mod p$$

donde podemos observar que $4*33^3 + 27*2^2 = 236 \mod 347$ po lo que podemos deducir que en la curva se puede usar para encriptirar, ahora tenemos que |E| = 358 = 179*2, en la práctica no sería usada pues su tamaño es muy pequeño.

En pocas palabras lo que el algoritmo se enfoca en hacer los pasos:

- Calcula nuestro Q
- Toma un entero m que cumpla la m > $q^1/4$
- Calcula y guarda los puntos (j=0,1,2,3,4,..,m)
- Calcula Q+k(2mP) para un K=m donde m1,m2,...,m. Esto hasta que se cumpla Q + k(2mP) = ± jP para algunto punto que se presente negativo de los que se estan obteniendo.
- Teniendo a M = q + 1 2mk $\pm j$, se factoriza M con factores que van desde $p_1, p_2, ..., p_r$ (factores primos)
- Calculamos (M/p_i) P para cada i = 1,....,r. Si (M/p_i) P cumple entonces se reemplaza, se factoriza con una nueva M y entra en un loop hasta que se cumpla que (M/p_i) P sea distinto en toda i
- Comprueba si M es el orden de P

Teniendo en consideración los pasos del algoritmo 3 , nosotros tendríamos que M=2*179, sabemos que (M/2)P= inf y $(M/179)P\neq$ inf por lo que concluimos que es el orden de P. Y considerando los valores en los que se puede escoger la llave privada, estos están acotados por el orden P=179 y obtendr íamos que $d\in[1,179-1]$

c) Si tu clave privada es k=101 y algún conocido te ha enviado el mensaje cifrado ($M_1=(232,278), M_2=(135,214)$) ¿Cuál era el mensaje original?

Calculamos $M = M_2 - dM_1 = M_2 - (101)M_1^4$: Obteniendo a M = (74, 87), siendo el mensaje original: m = 74.

Para encontrar el número aleatorio, usamos el algoritmo de Paso grande, paso chico. El cuál nos da como resultado k = 7.

²Definición

³Con el uso del programa nos basamos para resolver de manera más optima el ejercicio

⁴Con el uso de un programa, nos ayudamos para resolver el ejercicio.

4. Sea $\mathbb{E}: \mathbb{F}(x,y) = y^2 - x^3 - 2x - 7$ sobre \mathbb{Z}_{31} con $\#\mathbb{E} = 39$ y $\mathbb{P} = (2,9)$ es un punto de orden 39 sobre \mathbb{E} , el ECIES simplicado definido sobre \mathbb{E} tiene \mathbb{Z}_{31}^* como espacio de texto plano, supongamos que la clave privada es m = 8 Considerando que:

$$E: y^2 = x^3 + 2x + 7$$

a) Calcula $\mathbb{Q} = m\mathbb{P}$.

$$2(2,9) = (10,2) \rightarrow 2(10,2) = (15,8)$$

 $\rightarrow 2(15,8) = 8(2,9) = (8,15)^5$

- b) Descifra la siguiente cadena de texto cifrado ((18,1),21),((3,1),18)),((17,0),19),((28,0),8)Siguendo los siguentes pasos y tomando en cuenta que se debe de descomprimir cada tupla en la forma $D_k:((\mathbb{Z}_{31}^*x\mathbb{Z}_2)x\mathbb{Z}_{31}^*)$. Teniendo esto en cuenta y considerandolo, sea $P=((x_1,y_1)y_2)$ tenemos que se ejecutarán los pasos:
 - Se evaluará en x_1 , dando un residuó cuadrático con mod 31, con esto se obtendrán dos raíces (z_1, z_2)

$$P=((18,1)21)$$

$$y_2 = 18^3 + 2(18) + 7 \mod 31 = 16 \rightarrow y = \pm 4$$

 y_1 nos indicará que se tendrá que obtener una z tal que $z \equiv 1 \mod 2$, con lo que se tiene que observar que $-4 \equiv 27 \mod 31$, $27 \equiv 1 \mod 2$ y mod $4 \equiv 0 \mod 2$ con lo que obtendríamos que nuestro punto de comprensión -como se mencionó anteriormente-tenemos que es (18,27).

Entonces tendríamos que:

$$8(18,27) = (15,8)$$

 \rightarrow el inverso de 15 es 29 ya que 15 x 29 \equiv 1 mod 31 \rightarrow n = 29. Con esto se obtendría que:

$$29 \times 21 \mod 31 = 20$$
.

- Se tendrá que determinar cual será la raíz cuadrada la que el cual mediante el calculo se tendrá que cumplir que $z_1 \equiv y_1 \mod 2$. obteniendo los puntos de descomprensión (x_1, z_1) . P=((3,1)18)
 - $y_2 = 3^3 + 2(3) + 7 \mod 31 = 9 \rightarrow y = \pm 3$, despues de tener esto se tendrá que calcular un z tal que z $\equiv 1 \mod 2$, el cual se observa que $-3 \equiv 28 \mod 31$, $20 \equiv 0 \mod 2$ y 3 $\equiv 1 \mod 2$, con lo que nuestro punto de descomprensión es de (3,3).

Se calcula a $8(3,3) = (2,9) \rightarrow 2 \times 16 \equiv 1 \mod 31 \equiv n = 16$, lo que vendría siendo 18 ya que 16 x 18 mod 31 = 9.

- Despues se tendrá que multiplicar el punto de descomprensión hacia la llave privada por lo que se tendrá que multiplicar por ocho lo que se vendría obtendría x_0, y_0 P=((17,0)19)
 - $y^2 = 17^3 + 2(17) + 7 \mod 31 = 25 \rightarrow y = \pm 5$ donde se calcula también a z -como se ha estado haciendo en los otros pasos- el cual queda que -5 \equiv 26 mod 31, 26 \equiv 0 mod 2 y 5 \equiv 1 mod 2 con lo que nuestro punto de descomprensión es (17,26), teniendo esto ahora calculamos 8(17,26)=(30,29).

Ahora el inverso vendría siendo 30 ya que 30 x $30 \equiv 1 \mod 31 \rightarrow n = 30$, con lo que se obtiene que $30 \times 19 \mod 31 = 12$,

⁵Con el uso de los programas se pudo obtener los calculos mencionados

- Se calculará el inverso de x_0 con mod 31 y este multiplicandolo por y_2 mod 31 de igual forma. Esto nos arroja finalmente el número original que se tiene que devolver. P=((28,0)8)
 - $y^2 = 28^3 + 2(28) + 7 \mod 31 = 25 \rightarrow y = \pm 5$, $5 \equiv 26 \mod 31 \equiv y = \pm 6$, y determinando a z se tiene que si $-6 \equiv 25 \mod 31$, $25 \equiv 1 \mod 2$ y $6 \equiv 0 \mod 2$ con lo que obtendremos que nuestro punto de descomprensión es el (28,6).
 - Ahora calculamos a 8(28,6) = (14,19) y encontrando el inverso que es 20 ya que 14 x $20 \equiv 1 \mod 31 \rightarrow n = 20$, por lo que obtendríamos que $20 \times 8 \mod 31 = 5$.
- c) Supongamos que cada texto plano representa un caracter alfabético, convierte el texto plano en una palabra en inglés. Usa la asociación (A \rightarrow 1, ..., Z \rightarrow 26) en este caso 0 no es considerado como un texto plano o un par ordenado.

Con los dicho anteriormente y considerandolo tendremos un esquema de codificación de la forma:

$$\begin{array}{c} 20 \rightarrow T \\ 9 \rightarrow I \end{array}$$

$$12 \rightarrow L$$