

Convolutional Networks on Graphs for Learning Molecular Fingerprints

David Duvenaud*, Dougal Maclaurin*, Jorge Aguilera-Iparraguirre Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams

Problem

- How to do regression when input is a graph?
- Graphs can be any size or shape.
- Hard to turn into fixed-length vector.
- Molecules are graphs!
- Australians are it

Circular fingerprints

Aka Morgan fingerprints, or ECFPMap variable-sized molecula

 Map variable-sized molecular graph to fixed-length binary vector

 Binary features indicate presence of substructures

Can be efficiently computed using local operations:

- At each layer, hash the features of each atom and its neighbors/bonds
- More layers correspond to increasing radius of substructures
- At top level, interpret as (modulo) integer and set the entry to one

Convolutional neural nets on graphs

Information flow graph

How to make these differentiable?

 $\mathsf{Hash} \to \mathsf{neural} \; \mathsf{net}$

 $\mathsf{Index} \to \mathsf{softmax}$

 $\mathsf{Write} \to \mathsf{Add}$

Results in an end-to-end differentiable convolutional network

Message passing between neighbors, plus final pooling step

Neural fingerprints are interpretable

When trained with linear layer on top, can see which fragments most contribute to prediction

Fragments most activated by pro-solubility

feature

Fragments most

activated by

anti-solubility

feature

OH

Neural graph fingerprints generalize circular fingerprints

With large random weights, neural graph fingerprints approach circular fingeprints:

Results

Because neural graph fingerprints generalize state of the art, we can't not win:

Dataset Solubility	Drug efficacy	Photovoltaic efficien
Units log Mol/L	EC_{50} in nM	percent
Predict mean 2.07 ± 0.10	1.21 ± 0.03	2.53 ± 0.02
Circular FPs $+$ linear layer 1.31 ± 0.05	$\textbf{1.06}\pm\textbf{0.01}$	1.62 ± 0.03
Circular FPs $+$ neural net 1.18 ± 0.05	1.16 ± 0.04	1.41 ± 0.03
Neural FPs $+$ linear layer 0.87 ± 0.06	$\textbf{1.07}\pm\textbf{0.01}$	1.61 ± 0.06
Neural FPs $+$ neural net $oldsymbol{0.72} \pm oldsymbol{0.05}$	$\textbf{1.08}\pm\textbf{0.01}$	$\textbf{1.20}\pm\textbf{0.04}$
Mean predictive accuracy of neural fingerprints compared to standard		
circular fingerprints.		
		!

Conclusion

- We can compute gradients of learning procedures...
- This lets us optimize thousands of hyperparameters!
- All code for experiments at github.com/HIPS/hypergrad
- We also wrote an autodiff package that works on standard Numpy code: github.com/HIPS/autograd