

End2End Acoustic to Semantic Transduction

Valentin Pelloin¹ Nathalie Camelin¹ Antoine Laurent¹ Renato De Mori^{2,3} Antoine Caubrière¹ Yannick Estève² Sylvain Meignier¹

¹LIUM - Le Mans University - France

²LIA - Avignon University - France

³McGill University - Montréal, Canada

Introduction

We tackle the complex task of Spoken Language Understanding (SLU) in a human-computer dialogue system, based on a frame language to represent semantic domains:

- domain specific frames (e.g. HOTEL, ROOM)
- domain independent frames (e.g. logical connectors)

We propose an end-to-end sequence-to-sequence system for the French MEDIA

- using an attention mechanism to focus on relevant audio semantic contexts
- transduce directly pairs of concepts/values from acoustic representations

Spoken Language Understanding (SLU)

How to obtain concepts and values pairs?

Figure 1. Spoken Language Understanding using a pipeline chain, an end-to-end method with human-rules OR an end-to-end method to fully extract semantic content

Different outputs:

AllWords-C	hello $<$ command i want to book $> <$ object a room $> <$ city in paris $>$
SupWords-C	* $<$ command i want to book $> <$ object a room $> <$ city in paris $>$
NormValues-C	* < command booking > < object hotel-room > < city paris >

End-to-End SLU model

- Attention based encoder-decoder model architecture (Figure 2).
- inputs: MelFBanks
- outputs: sequence of characters, with special characters representing the concepts
- Adapted from the WSJ ASR task recipe provided in Espresso[2].
- Shallow-fusion is used to incorporate an additional LSTM-based Language Model.
- word-based LM
- lookahead-probabilities to provide word and character probabilities during decoding

Figure 2. Our speech encoder-decoder model with it's Language Model used during decoding

Experimental Protocol

1. Datasets

- French ASR generic corpora: mainly broadcast news. Total: 414 hours of audio ASR training
- PORTMEDIA (PM): French SLU telephone calls about theater shows. 7h of audio SLU training
- MEDIA (M): French SLU telephone conversations, requests and lodging booking. 76 different semantic concepts. Total of audio training for SLU: 17h

	Train	Dev	Test
Number of words	95 022	10 870	26 820
Number of frame instances	31 670	3 333	8 788

Table 1. MEDIA datasets statistics

2. Training chain – inspired by the *curriculum-based tranfer learning* procedure proposed in [1]: AllWords-C: ASR \rightarrow ASR M+PM \rightarrow SLU M+PM \rightarrow SLU M* SupWords-C: ASR \rightarrow ASR M+PM \rightarrow SLU M+PM \rightarrow SLU Norm M*

Results

Paper ID: 3182

- Evaluation metrics
- Concept Error Rate (CER): only the sequence of concepts is considered
- Concept-Value Error Rate (CVER): the sequence of pairs concept/value is considered. Both concept AND value must be correct.
- Performances on the French MEDIA dataset

	Dev		Test	
%	CER	CVER	CER	CVER
Witl	hout a La	nguage M	odel	
AllWords-C [1]	_	_	21.6	27.7
AllWords-C	18.1	22.5	15.6	20.4
SupWords-C	17.3	22.0	15.6	20.5
NormValues-C	16.0	21.9	15.4	21.7
W	ith a Lang	guage Mod	del	
AllWords-C [1]	_	_	18.1	22.1
SupWords-C [1]	_	_	16.4	20.9
AllWords-C	16.1	20.4	13.6	18.5
SupWords-C	17.6	22.5	15.5	20.5
NormValues-C	16.1	22.0	15.4	21.6

Table 2. Results obtained on the MEDIA Dev and Test Corpora by our models compared to the State of the art [1].

- Attention mechanism: great results improvements comparing to SOTA (2.8% CER and 2.4% CVER absolute gains)
- Direct transduction from audio features to semantic pairs concept/value: good CER results, CVER results are still quite good (better than SOTA), but no gain with LM

Conclusion and perspectives

- Suitable end-to-End model with attention for the complex MEDIA SLU task
- Good results without hand-made rules. Needs further investigation to:
 find a Language Model that improves these results
- improve value recognition
- Combining multiple decoders might improve the value recognition
- Building **new attention mechanisms** to select suitable semantic sound spans

References

- [1] A. Caubrière, N. Tomashenko, A. Laurent, E. Morin, N. Camelin, and Y. Estève. Curriculum-based transfer learning for an effective end-to-end spoken language understanding and domain portability. *INTERSPEECH*, pages 1198–1202, 2019.
- [2] Y. Wang, T. Chen, H. Xu, S. Ding, H. Lv, Y. Shao, N. Peng, L. Xie, S. Watanabe, and S. Khudanpur. Espresso: A fast end-to-end neural speech recognition toolkit. In *ASRU*, pages 136–143, 2019.