

CHROMATE CONTENT BIAS VERSUS OVERSPRAY PARTICLE SIZE IN THREE AIRCRAFT PRIMER PAINTS

THESIS

Brian S. Rhodes, Captain, USAF AFIT/GEE/ENV/02M-11

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

CHROMATE CONTENT BIAS VERSUS OVERSPRAY PARTICLE SIZE IN THREE AIRCRAFT PRIMER PAINTS

THESIS

Presented to the Faculty

Department of Systems and Engineering Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Engineering and Environmental Management

Brian S. Rhodes, BS

Captain, USAF

March 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

CHROMATE CONTENT BIAS VERSUS OVERSPRAY PARTICLE SIZE IN THREE AIRCRAFT PRIMER PAINTS

Brian S. Rhodes, BS Captain, USAF

Approved:		
	//signed//	13 Mar 02
	Maj Peter T. LaPuma, PhD (Chairman)	date
	<u>//signed//</u>	13 Mar 02
	Michael L. Shelley, PhD (Member)	date
	<u>//signed//</u>	13 Mar 02
	Glen P. Perram, PhD (Member)	date

Acknowledgements

I would like to express my gratitude to my thesis advisor, Major Peter LaPuma, for his guidance and motivation throughout the entire length of this research effort. Your suggestions, red ink, and, most of all, patience was appreciated. I would also like to thank my research sponsors, the Pollution Prevention Research and Development Program Office (AFRL/MLQL) and the Air Force Material Command Pollution Prevention Branch at HQ AFMC/CEVV, for your interest and support. A special thanks goes to professionals at the Air Force Coating Integrations Technology Office (CTIO)—especially Doug Hufnagle and Ken Chitwood for the use of the paint booth and facilities as well as Scott Lanter, George Pancida, and Elmer Baldwin for their experience and insight into painting equipment and paint behavior. Without your help, the completion of this thesis would not be possible. I also wish to express my appreciation to Dr. Ed Kimmel of the Naval Toxicology Laboratory for sharing his extensive knowledge of cascade impactors with me.

I would also like to thank my thesis committee, Dr. Glen Perram and Dr. Michael Shelley, for their expertise and encouragement. To my fellow researchers, Brad Bugg, Bryan Opperman, and Ruth Zolock, thanks for the camaraderie in the laboratory during some tedious hours. To my colleague, Rick Schilke, thank you for the patience and diligence during so many hours spent in the lab, booth, classroom, and nebulous thought on chromium. Thank you for your friendship.

Lastly, but most importantly, I offer my deepest gratitude to my wife and son for their love, understanding, and support during a demanding time.

Brian S. Rhodes

Table of Contents

Page	
cknowledgementsiv	Ac
ist of Figuresviii	Lis
ist of Tablesx	Lis
bstractxi	Ab
Introduction	I. I
Air Force Primer Paint Overview	
. Literature Review4	II.
Chromium 4 Health Effects of Chromate Exposure 5 Particle Deposition in the Lung 7 USAF Primer Paint 8 Solvent-Based Epoxy-Polyamide 8 Water-Based Epoxy-Polyamide 9 Solvent-Based Elastomeric Polyurethane 9 Regulatory Exposure Limits 11 Particle Kinetics 12 Atomization Overview 12 Paint Atomization Device 13 Liquid Properties 14 Air-to-Paint Ratio 15 Secondary Atomization 16 Particle Collection 18 Paint Overspray Distribution 22 Previous Overspray Exposure Research 22 Cr ⁶⁺ Content Bias 24	P P P P C C
I. Methodology	
Overview26Painting Operation26Recorded Data26Air-to-Paint Ratios27Background Runs29	P
Overspray Collection30Particle Size Ranges32Sampling System35Sample Preparation36Sample Substrates36	

	Page
Analytical Mass Determination.	
Sample Digestion.	
Sample Dilution.	
Sample Analysis Calculation of Chromium Content in Dry Paint	38
IV. Results	
Cr ⁶⁺ Content per Mass of Dry Paint	41
A/P Ratio Influence on Cr ⁶⁺ Content	
Comparison of Cr ⁶⁺ Content Bias to Previous Study	
V. Discussion	47
Cr ⁶⁺ Content Bias in Different Primers	
Influence of A/P Ratio on Cr ⁶⁺ Content	48
Implications of Cr ⁶⁺ Content Bias	48
Possible Sources of Cr Blas	
APPENDIX A-1: Calculation for Cr ⁶⁺ Content in Solvent EP	54
APPENDIX A-2: Calculations for Cr ⁶⁺ Content in Water EP	56
APPENDIX A-3: Calculations for Cr6+ Content in Polyurethane	57
APPENDIX B: Deft® Product Data Sheets and MSDS for	
Solvent-Based Epoxy-Polyamide Primer Paint	58
APPENDIX C: Deft® Product Data Sheets and MSDS for	
Water-Based Epoxy-Polyamide Primer Paint	62
APPENDIX D: Deft® Product Data Sheets and MSDS for	
Solvent-Based Elastomeric, Polyurethane Primer Paint	66
APPENDIX E-1: Raw Data Table for	
Solvent-Based Epoxy-Polyamide Primer Paint	70
APPENDIX E-2: Raw Data Table for	
Water-Based Epoxy-Polyamide Primer Paint	71
APPENDIX E-3: Raw Data Table for	
Solvent-Based Elastomeric, Polyurethane Primer Paint	72

	Page
Bibliography	
Vita	76

List of Figures

Page
Figure 1. Fractional Deposition of Particles
Figure 2. Illustration of Typical Air Cap (Kwok, 1991)
Figure 3. Schematic Design of a Cascade Impactor (Hinds, 1982:120)
Figure 4. Actual and Ideal Impactor Cutoff Curves (Hinds, 1982:117) 20
Figure 5. Comparison of Mass Cr per Mass Dry Paint by Manufacturer
(Novy, 2001)25
Figure 6. HVLP Spray Paint Gun with Sample Collection Set-up
Figure 7. Impactor Layout (Not to Scale)
Figure 8. Particle Size Range by Stage
Figure 9. Sampling System Layout at CTIO Paint Booth
Figure 10. Sample Collection Vacuum Pumps with Rotometers
Figure 11a. Mass of Cr ⁶⁺ per Mass of Dry Paint: Solvent-Based Epoxy-Polyamide
42
Figure 11b. Mass of Cr ⁶⁺ per Mass of Dry Paint: Water-Based Epoxy-Polyamide 43
Figure 11c. Mass of Cr ⁶⁺ per Mass of Dry Paint: Solvent-Based Elastomeric
Polyurethane43
Figure 12a. Comparison of Mean Percent Cr ⁶⁺ for Different A/P Ratios:
Solvent-Based Epoxy-Polyamide44
Figure 12b. Comparison of Mean Percent Cr ⁶⁺ for Different A/P Ratios:
Water-Based Epoxy-Polyamide45
Figure 12c. Comparison of Mean Percent Cr ⁶⁺ for Different A/P Ratios:

Page
Solvent-Based Elastomeric Polyurethane45
Figure 13. Comparison of Mass of Cr ⁶⁺ per Mass of Dry Paint by Study 46
Figure 14a. Cr ⁶⁺ Deposition in Lung: Solvent-Based Epoxy-Polyamide
(Small Particle-Size Impactor)50
Figure 14b. Cr ⁶⁺ Deposition in Lung: Solvent-Based Epoxy-Polyamide
(Large Particle-Size Impactor) 50
Figure 15a. Cr^{6+} Deposition in Lung: Water-Based Epoxy-Polyamide
(Small Particle-Size Impactor)51
Figure 15b. Cr^{6+} Deposition in Lung: Water-Based Epoxy-Polyamide
(Large Particle-Size Impactor)
Figure 16a. Cr^{6+} Deposition in Lung: Solvent-Based Elastomeric-Polyurethane
(Small Particle-Size Impactor)
Figure 16b. Cr ⁶⁺ Deposition in Lung: Solvent-Based Elastomeric-Polyurethane
(Large Particle-Size Impactor) 52

List of Tables

	Page
Table 1. Summary of Primer Product Codes and Chromium Content.	10
Table 2. Primer Preparation Specifications (Deft, 2000)	27
Table 3. Pressure Settings and A/P Ratios	28
Table 4. Small Particle Size Range Impactor (18 L/min)	33
Table 5. Large Particle Size Range Impactor (8 L/min)	33
Table 6. Sample Digestion Program	37
Table 7. AAS Graphite Furnace Parameters	39
Table 8. Average Cr ⁶⁺ Content per Mass of Dry Primer Paint	41

Abstract

The United States Air Force relies on the corrosion inhibiting properties of chromate-containing primer paints to protect the aluminum skin of its aircraft. Hexavalent chromium (Cr⁶⁺)—the ingredient responsible for the corrosion inhibiting characteristics of these primers—is a known human carcinogen. The concentration of Cr⁶⁺ in different particle sizes of paint overspray is important to understand health implications to painters as well as filtration efficiency. Previous research indicates disproportionately less Cr⁶⁺ content in smaller particles collected in the overspray of solvent-based epoxy-polyamide paint primers (MIL-P-2377G).

This research explores the possibility of a particle size bias in the Cr^{6+} content of three commonly used aircraft primers: solvent-based epoxy-polyamide, water-based epoxy-polyamide (MIL-PRF-85582C), and solvent-based polyurethane (TT-P-2760A). The mass ratio of air flow to paint flow (A/P ratio) was varied during initial atomization. Seven-stage cascade impactors collected overspray particles into distinct bins with particle size cutoff diameters ranging from 0.7 μ m to 34.1 μ m. The mass of the dry paint collected in each bin was determined and analyzed for Cr^{6+} with an Atomic Absorption Spectrometer.

In all three primers, smaller particles contained disproportionately less Cr^{6^+} per mass of dry paint than larger particles. Particles with an aerodynamic diameter under 7 μ m contained less Cr^{6^+} per mass of dry paint as the particles became smaller. Particles less than 2.6 μ m have a mean Cr^{6^+} content of approximately one-third of the expected

value. The range of A/P ratios tested in this study had no effect on the Cr^{6+} content in the overspray.

CHROMATE CONTENT BIAS VERSUS OVERSPRAY PARTICLE SIZE IN THREE AIRCRAFT PRIMER PAINTS

I. Introduction

Air Force Primer Paint Overview

The United States Air Force (USAF) relies on the corrosion inhibiting properties of paint coating systems to protect its aircraft, which must endure extreme environmental conditions. These coating systems are typically comprised of a surface preparation, a primer coat, and topcoat paint. The primer coat, which is between the surface and the topcoat, provides an adhesive surface for the topcoat. Additionally, the primer contains additives that inhibit oxidation of the aircraft's aluminum skin. These additives are typically chromate (CrO₄²⁻)-containing compounds.

The most commonly used corrosion control additive in primers, strontium chromate (SrCrO₄), presents the greatest risk of cancer for aircraft painters (California Department of Health Services, 1992). The most commonly used military specifications (MIL-P-23377G, MIL-P-85582B, and MIL-P-87112) and federal specification (TT-P-2760A) that regulate primer paint designate SrCrO₄ or barium chromate as the default corrosion inhibitors (T.O. 1-1-8). Strontium chromate contains chromium in its hexavalent state (Cr⁶⁺). Cr⁶⁺ is considered a carcinogen by most national and international health and medical agencies (International Agency for Research on Cancer (IARC), 1990).

The primary cancer risk associated with exposure to Cr^{6+} is through inhalation of Cr^{6+} -containing dusts, mists, and fumes. Most epidemiology studies that have focused on exposure of workers involved in the production of chromates and Cr^{6+} -containing

pigments show an excess risk of respiratory cancer. Similar studies that examine the risk of cancer for workers that use Cr^{6+} -containing compounds, such as spray painters, are relatively fewer in number and demonstrate a less definitive risk (Dalager *et al.*, 1980:25). It has been suggested that the type of aerosol generated in a process (e.g., liquid aerosols, mists, or dusts) is an important factor in determining the health risk of Cr^{6+} (Finley *et al.*, 1992:170).

A number of factors are important when characterizing the harmful effects of Cr^{6+} inhalation. As with any inhalation hazard, particle size distribution determines the how much material will deposit in various regions of the respiratory system. In general, smaller particles will deposit more deeply in the respiratory system and larger particles will deposit in the upper respiratory region primarily due to impaction, sedimentation, and interception (Schlesinger, 19XX:192). Furthermore, the determination of the percentage of Cr^{6+} in the particles that are of a size that is readily inhalable is important. Also, investigating any dependence of Cr^{6+} content on particle size is important since smaller particles tend to deposit more deeply into the respiratory system. The deeper a particle penetrates into the respiratory system, the longer the particle will remain in the system.

In the aircraft painting industry, workers are exposed to Cr^{6^+} in the paint overspray created from the application of primer on the aircraft surface. The suspension of these Cr^{6^+} -containing particles presents an inhalation exposure risk to the painters. Therefore, in order to determine the risk to the worker, the distribution of the Cr^{6^+} over the range of particle sizes in the overspray must be characterized.

Thesis Objective

This study follows previous work, which found that the larger particles contain disproportionately more Cr⁶⁺ than smaller particles in the overspray of military specification MIL-P-23377G primer, which is a solvent-based epoxy-polyamide primer paint hereinafter referred to as solvent EP primer. (Fox, 2000; Novy, 2001). The focus of this study is to quantify the Cr⁶⁺ distribution as a function of particle size for three commonly used Cr⁶⁺-containing aircraft primer paints.

The objectives of this study are to:

- Quantify the Cr⁶⁺ content in the oversprays of solvent EP, military specification MIL-PRF-85582C (a water-based epoxy-polyamide primer paint hereinafter referred to as water EP primer), and federal specification TT-P-2760A primer paint (a solvent-based elastomeric, polyurethane primer paint hereinafter referred to as polyurethane primer), and
- Observe whether the air-to-paint (A/P) ratio—a measure describing certain operating conditions of the spray gun—will influence the Cr⁶⁺ distribution in various particle sizes for the solvent EP, water EP, and polyurethane primer paint overspray.

II. Literature Review

Chromium

Chromium is a naturally occurring element commonly found in the earth's crust. It typically exists in the trivalent (Cr^{3+}) , hexavalent (Cr^{6+}) , or elemental (Cr) states, however, short-term intermediate states can be found including Cr^{2+} , Cr^{4+} , and Cr^{5+} . Chromium has been recognized as an important metal in a variety of industrial applications as well as an active component in a number of biological processes.

Due to its strong oxidative characteristics, Cr^{6^+} is used in a wide range of industries, including chemical and metallurgical. Hexavalent chromium—a key component in stainless steel—can be found in the alloy to inhibit oxidation of the iron as well as the protective casing of "chrome-plated" steel compounds. Similarly, Cr^{6^+} compounds are popular in the painting industry because of their corrosion inhibiting behavior. Additionally, Cr^{6^+} is universally used as a pigment in paint, ink, and plastic production industries.

Besides its industrial uses, chromium plays an important role in a few key metabolic pathways in the human body. Cr^{3+} is an essential micronutrient for humans. Although only very small quantities are needed, Cr^{3+} is necessary for the metabolism of glucose through the potentiation of insulin (Felter, 1997: 43). The National Research Center recommends a minimum Established Safe and Adequate Daily Dietary Intake of 50-200 μ g (National Center for Complementary and Alternative Medicines, 2000). Although the beneficial aspects of Cr^{3+} are well documented, more attention is given to the deleterious health effects of Cr^{6+} , which are discussed in the following section.

Health Effects of Chromate Exposure

The primary pathways of Cr^{6+} exposure are inhalation, ingestion, and dermal contact of chromate-containing compounds. Ingestion is a more prevalent pathway of exposure for children, although workers have been found to ingest Cr^{6+} due to poor hygiene at meal and smoking breaks. Dermal contact is generally associated with localized, non-cancerous health effects. The majority of epidemiology studies performed on workplace exposure to Cr^{6+} focuses on the excess cancer risks from inhalation, which is also the pathway of greatest concern.

The source of inhalable Cr⁶⁺, predominately found in the form of mists, dusts, and fumes, varies depending on the industrial use of the chromate-containing substance. In spraying operations, fine mists are created during the atomization of the coating liquid. Although respiratory protection and ventilation controls are frequently required in these operations, workers still risk inhalation exposure, as these controls sometimes fail or are overwhelmed. Similarly, in plating operations, chromic acid mist presents an inhalation hazard created by vapor that diffuses to the surface of drip tanks and carries liquid chromic acid particles into the air. Welding is another commonly cited activity that is associated with Cr⁶⁺ inhalation. In this case, the Cr⁶⁺ exposure results from the intense heat applied to the stainless steel or chromium-coated material, thus changing the solid metal into a Cr⁶⁺ fume (CDHS, 1992).

As previously noted, Cr⁶⁺ is widely recognized for its carcinogenic potential. IARC sites numerous studies that show evidence for carcinogenicity of chromate-containing compounds, including strontium chromate, in experimental animals. In a study of the carcinogenicity potential of chromium-containing materials, Levy *et al.*

found that strontium chromate and, to a lesser extent, zinc chromate caused bronchial carcinomas in rat lungs (Levy *et al.*, 1986: 243). In this study, an intrabronchial implantation system was used to dose the rats with the test material in pellet form.

The IARC and other agencies also conclude that Cr⁶⁺ compounds are carcinogenic to humans based, in part, on several epidemiology studies of workers in the chromate production, chromate pigment production, and chromium plating industries (IARC, 1997) which show an elevated risk of lung cancer.. In an early study, Mancuso (1975) reported an elevated risk of lung cancer in chromate production workers. However, this study did not record the smoking habits of the study group. Therefore, smoking—a leading cause of bronchial carcinomas—could not be discounted as a possible confounding factor. Gibb *et al.* (2000) repeated this effort in a cohort study of 2357 workers in the chromate production industry. With improved background history of the study subjects, Gibb *et al.* were able to determine that the excess risk of lung cancer was not confounded by the prevalence of smoking among workers.

As compared to the findings in the aforementioned industries, the relatively few studies that focused on the carcinogenicity of chromium in the painting industry have reported conflicting data. In a study of 4760 deceased spray painters from ten automobile assembly plants that used paints with chromate pigments, no statistically significant proportionate mortality ratio (PMR) (as compared to expected deaths in the general population) was found at any of the locations (Chiazze *et al.*, 1980:526). Additionally, a cohort study of 2429 aerospace workers, found no link to increased risk of respiratory cancer among painters with chromate containing paint exposure (Alexander *et al.*, 1996:1257). However, in a study of 202 deaths among over 40,000 workers employed at

two government-owned aircraft maintenance bases where zinc chromate was used in painting operations, a statistically significant elevation of the proportionate cancer mortality ratio (PCMR) was noted at one base (Dalager *et al.*, 1980:28). No information was available on the smoking status of the workers. Consequently, the authors of the study suggested that smoking could not be discounted as a possible confounding factor given the higher prevalence of smoking among painters as compared to the general population. There is not a clear link between lung cancer and spray painters exposed to Cr^{6+} due to the inconsistency of the studies.

Particle Deposition in the Lung

Given that pulmonary carcinoma is the primary adverse health effect from Cr⁶⁺ exposure, the distribution of Cr⁶⁺ containing particles in the respiratory system is of interest. The size of the inhaled particle affects the location that particle will deposit in the lungs. Specifically, it is the aerodynamic diameter (d_{ae}) of a particle or the mass median aerodynamic diameter (MMAD) of an aerosol (i.e., the d_{ae} at which half of the mass of an aerosol distribution is less than) that is important in determining the characteristics of the deposition of particles with geometric diameters greater than 0.5 μm (Schlesinger, 1995). Schlesinger lists five main mechanisms responsible for particle deposition in the respiratory system: impaction, sedimentation, Brownian diffusion, electrostatic precipitation, and interception (Schlesinger, 19xx:192). Each of these mechanisms will dominate in different regions of the respiratory system for different sized particles, though impaction is responsible for the majority of deposition in the conductive zone—from the nasal passage or mouth to the terminal bronchioles—for

particles having MMAD greater than 0.5 µm. A typical deposition pattern for an adult male is shown in Figure 1 (Godish, 1991:156).

Figure 1. Fractional Deposition of Particles (Task Group on Lung Dynamics, 1966)
USAF Primer Paint

Solvent EP, water EP, and polyurethane primers are the most commonly used primer paints on USAF aircraft surfaces. While the specifications corresponding to all three of primers list SrCrO₄ as the default corrosion inhibiting additive, the chemical and physical properties of these primers differ. This section gives a general description and chromium content of each type of primer used in this study.

Solvent-Based Epoxy-Polyamide.

Solvent EP primer is a two-component (base and catalyst) epoxy-polyamide primer. This solvent-borne primer is a low volatile organic compound (VOC). Low VOC, as defined by the Environmental Protection Agency, is a paint that has a VOC

content less than 340 grams per liter at application. The solvent EP primer is the most frequently used primer paint in the Air Force and is known for its solvent and chemical resistance. The mix ratio of solvent EP primer is 3 parts base to 1 part catalyst. The base component contains 25% SrCrO₄ by weight (w/w) according to the Material Safety Data Sheet (MSDS). Accounting for the mix ratio, densities of components, and mass fraction of Cr⁶⁺ in SrCrO₄, the expected Cr⁶⁺ content (as Cr⁶⁺) in the mixed paint is 5.2% (w/w). Since the mixed primer is 72.72% non-volatiles (w/w), the expected Cr⁶⁺ content in the non-volatile fraction of this primer is 7.13% (w/w). Sample calculations of the expected chromium content in mixed paints are given in Appendix A.

Water EP.

The water-reducible epoxy-polyamide primer is sometimes substituted as a lower VOC content alternative to the solvent EP primer. The base-to-catalyst ratio is specified as 2:1, with a 4.1-part water reduction (*i.e.*, the mixed paint is—by volume—about 58% water, 28% base component, and 14% catalyst component). Although the base component is 30% SrCrO₄ (w/w) according to the MSDS, the actual chromium content in the mixed primer paint is only 2.54% (w/w). Due to the large water content, the non-volatile fraction of the paint comprises only 34.08% (w/w) of the primer, yielding an expected Cr⁶⁺ content in the non-volatile fraction of the paint at 7.46% (w/w).

Polyurethane.

Federal specification TT-P-2760A is a two-component, solvent-borne polyurethane primer. This elastomeric, low VOC primer has excellent flexibility characteristics. This primer paint is composed of equal parts (by volume) of base and catalyst components. Accounting for the different densities of the components, the

chromium content in the mixed primer is 3.03% (w/w). Since the mixed primer is 70.84% solids (w/w), the expected Cr^{6+} content in the solids fraction of this primer is 4.28% (w/w).

Deft, Inc manufactured all three primer paints investigated in this study. A summary of the primer specifications and chromium content is listed in Table 1. (A more detailed listing of primer component specifications is given in excerpts from the product data sheets and MSDS, which can be found in Appendices B, C, and D.)

Table 1. Summary of Primer Product Codes and Chromium Content

	Solvent EP	Water EP	Polyurethane
Military or Federal Specification	MIL-P-23377G Type I, Class C	MIL-PRF-85582C Type I, Class C2	TT-P-2760A Type I, Class C
Manufacture (Deft®) Product Code	02-Y-40	44-GN-72	09-Y-2
Basic Description	Solvent-based, epoxy polyamide	Water-reducible, epoxy polyamide	Solvent-based, elastomeric polyurethane
Batch Numbers Tested	Base: 46517 Catalyst: 46518	Base: 45699 Catalyst: 45700	Base: 45526 Catalyst: 45527
Mfg Dates	July 2001	April 2001	March 2001
SrCrO ₄ Content (w/w) in Base Component	25%	30%	20%
Cr ⁶⁺ Content (w/w) in Mixed Primer (as specified)	5.19%	2.54%	3.03%
Percent Non- Volatiles in Mixed Primer	73.10%	34.08%	70.84%
Cr ⁶⁺ Content (w/w) in Dry Primer	7.13%	7.46%	4.28%

Regulatory Exposure Limits

In the United States, the Occupational Safety and Health Administration (OSHA) is the government agency charged with establishing regulations to protect workers from hazardous exposure to chemicals. OSHA accomplishes this primarily through the establishment of permissible exposure limits (PELs). These limits are determined after a thorough review of all relevant scientific data from industry, government, and the research communities. The PEL, a ceiling that can never be exceeded at any time, for chromate is 0.1 mg/m³ (as CrO₃) (29 CFR 1910.1000, Table Z-2). In 1993, however, OSHA was petitioned by the Oil, Chemical, and Atomic Workers International Union (OCAW) and Public Citizen's Health Research Group (HRG) for an emergency temporary standard (ETS) to reduce limits to occupational exposures to Cr⁶⁺. Although the request for an ETS was denied, it prompted OSHA to offer a proposed rule which would replace the current PEL with an eight-hour, time-weighted average (TWA) of 0.0005 mg Cr⁶⁺/m³ (OSHA, 1996).

This proposed limit is identical to the current eight-hour Threshold Limit Value (TLV-TWA) set by the American Congress of Governmental Industrial Hygienists (ACGIH). ACGIH is a private organization of professionals that establishes exposure limits intended to protect workers from adverse health effects. Although limits set by ACGIH are not legally enforceable, OSHA and industry often reference ACGIH guidelines. Like OSHA, ACGIH relies on the most relevant scientific data on the health effects of exposure levels to establish a limit for a chemical. Much of the information regarding the exposure to Cr⁶⁺-containing compounds is based on the chromium

production, chromium-pigment production, and chromium plating industries (Finley *et al.*, 1992:170).

Particle Kinetics

In order to understand the distribution of chromate in the overspray of aircraft paint, it is necessary to characterize the nature of the overspray. A brief review of the atomization process that the liquid paint must undergo reveals a number of parameters that may affect the mean particle size, the size distribution of the paint particles, and the bias in the Cr^{6+} content over the range of particle sizes. This section describes the atomization process as well as some of the key parameters relevant to spray painting.

Atomization Overview.

In general, the atomization process of spray painting, like all types of atomization, involves the disintegration of a liquid into drops (*i.e.*, the dispersed phase) suspended in a gaseous media (*i.e.*, the continuous phase) due to an acting force (Bayvel and Orzechowski, 1993:37). As the liquid stream of paint emerges from the nozzle of the gun, external forces, mostly from an air stream applied at the nozzle exit, and turbulent properties of the fluid begin to break the jet into thin ligaments, which eventually further disintegrate into drops. Because of this progression of droplet formation, many characteristics of the spray, such as drop size distribution and drop velocity, are functions of both space and time (Lefebvre, 1989:2). Lefebvre notes that these characteristics are influenced by many parameters including the geometry of the spray gun and nozzle, the properties of the air into which the paint is discharged, and the physical properties of the liquid paint (1989:2).

Paint Atomization Device.

As sprays can be produced by a number of different atomization processes, the atomization devices will differ in geometry, operational design, and operational settings to produce sprays with various characteristics. In the case of spray painting, the nozzle and air cap of the spray gun can be classified as an airblast atomizer. In this type of atomizer, the paint is discharged through the nozzle into a thin stream. The air cap, which is mounted at the end of the paint nozzle, has two protrusions on the outer edge

Figure 2. Illustration of Typical Air Cap (Kwok, 1991)

called air horns. Closer to the center of the cap, two sets of holes can be found from which compressed air jets are formed. The closest sets of jets, the primary atomization holes, are on opposing sides of the nozzle as shown in Figure 2. The primary atomization

holes release high volume jets of air, which shear the liquid stream to begin atomization. The paint stream is broken into thinner streams that move in an outward direction as the energy from the air has changed the original vector of the paint stream. The outer pairs of holes at the base of each air horn are the containment holes. The air from the containment holes will send the particles in an elongated elliptical pattern towards the target (Kwok, 1991:5). The adjustable volume of air released from the fan holes serves as an additional control on the pattern width of the paint. The number, layout, and size of atomization and containment holes will vary in different air caps.

Liquid Properties.

The properties of the paint—primarily, density, surface tension, and viscosity—will also determine particle size distribution. Theoretically, mass flow rate will increase proportionally with the square root of the liquid density. However, the change in density of a liquid will almost always result in a change in the other properties of a liquid which also influence particle size distribution (Lefebvre, 1989:11).

Surface tension is related to the force with which the liquid will resist the change in surface area (*i.e.*, the formation of new surface due to atomization). Thus, the minimum energy required to atomize a given volume of liquid is equal to the surface tension multiplied by the ratio of atomized surface area to original surface area (Lefebvre, 1989:11). Given the difficulty in quantifying the increase in surface area, the effects of viscosity on flow and spray characteristics may be more beneficial to monitor.

The influence of paint viscosity on particle distribution can be seen prior to the atomization process. A more viscous liquid will prevent the development of instabilities in the jet considering an increase in viscosity will lower the Reynolds number.

Therefore, with a more viscous liquid, the disintegration of the liquid jet will occur at lower energy farther from the nozzle, resulting in larger droplet diameters (Lefebvre, 1989:11). Furthermore, the liquid flow rate through the nozzle will usually decrease as viscosity increases. However, the diameter of the droplets produced by airblast atomizers does not vary much due to a change in viscosity (Lefebvre, 1989:14). Lefebvre claims that the influence of viscosity on drop sizes is more pronounced in pressure atomizers that have a higher liquid velocity relative to airblast atomizers. However, experimental evidence contradicts this logic. By increasing viscosity of the paint from 57 centistokes (measure of a materials kinematic viscosity equal to mm^2/s) to 106 centistokes, the MMAD increased slightly from 38 μ m to 46 μ m (Kwok, 1991:192). Although an increase in pressure caused an increase in average particle size, Kwok found that the shape of the distribution of the collected overspray was not influenced by a change in viscosity.

Air-to-Paint Ratio.

Given the liquid properties of a paint and design parameters of a spray gun, only the operational settings are likely to affect the atomization quality of the paint. Of the operational settings, the ratio of air mass flow to paint mass flow through the gun has the greatest influence on the degree of atomization (Kwok, 1991; Carlton and Flynn, 1997). Kwok observed that increasing the A/P ratio resulted in smaller particles as well as more overspray (*i.e.*, lower transfer efficiency). Since increasing the A/P ratio changes the magnitude of forces responsible for atomization, it may influence the Cr⁶⁺ content of paint particles as well. It is worth noting that while increasing the A/P ratio will always provide for more atomization (*i.e.*, smaller particles), the effect that this parameter has on

transfer efficiency—defined as the percentage of mass of paint sprayed that remains on target—depends on other factors. Since transfer efficiency is a function of the Stokes number, which is proportional to the square of the particle diameter times the particle's velocity, the change in the velocity of the particle is important to determine if the particle will impact the target (Kwok, 1991).

Secondary Atomization.

With the basic theory of atomization described above, it is important to mention the concept of secondary atomization. An understanding of the process by which larger particles, created from the initial atomization, are subsequently atomized into smaller particles is helpful in order to gain insight about possible explanations of a bias in the Cr^{6-} content toward larger overspray particles. The likelihood of a suspended liquid drop breaking up in air largely depends on the Weber number of that drop exceeding its critical Weber number (We>We*) (Bayvel and Orzechowski, 1993:70; Lefebvre, 1989).

$$We^* = \frac{8}{C_0} \tag{1}$$

where

 $C_D = drag$ coefficient of the drop,

and

$$We = \frac{\rho_L V_L^2 D}{\sigma}$$
 (2)

where

 ρ = liquid density

 V_L = liquid velocity in outlet orifice

D = drop diameter

 σ = surface tension of liquid

Criteria other than the critical Weber number may also determine the degree of secondary atomization, such as the type of load acting on the initial drop, liquid viscosity, time of disintegration, and drop diameter (Bayvel and Orzechowski, 1993: 74).

In general, a few different mechanisms have been observed that describes the disintegration of a drop. The three most common mechanisms that describe the formation of smaller drops from a larger drop are the "parachute"-type disintegration mechanism, the chaotic mechanism, and the shear mechanism. The major difference in the various processes is the orientation of the deformation of the spherical drop. A drop that is flattened, forming an oblate ellipsoid, may stretch to the point to which it forms a ring-like shape that disintegrates into several smaller drops (a.k.a. "parachute"-type disintegration or bag mechanism). Bayvel and Orzechowski describe a particular scenario involving several parachutes developing simultaneously on a single drop—the chaotic mechanism. A drop, which becomes elongated into a cigar-shape, may develop into ligaments from which smaller drops are sheared—the shear mechanism. Additionally, local deformations may develop on a drop that result in the occurrence of the shear mechanism or the burst mechanism—a situation where "shear-type" disintegration proceeds very rapidly (Bayvel and Orzechowski, 1993:72; Lefebvre, 1989; 30).

Understanding possible mechanisms responsible for the atomization of particles may help explain the disproportionate decrease in the Cr^{6+} content in smaller particles in the overspray. Varying the A/P ratio in this study should vary the forces involved in secondary atomization. The effect of these forces on the Cr^{6+} content in a given particle

size range may help explain possible mechanisms responsible for the bias in Cr^{6+} as a function of particle size.

Particle Collection

Since part of the motivation behind this research is to characterize the relative quantity of Cr⁶⁺ in various sizes of paint particles, it was desirable to select a method of particle collection that would separate a particle stream according to size in a manner similar to the mechanism of particle deposition in the human respiratory system. While many different collection techniques that rely on mechanisms such as gravitational settling and thermal precipitation have been used to collect and analyze particle distributions, most collection devices are based on the mechanism of inertial impaction (Marple *et al.*, 1993:206). Inertial impaction—not simply particle size—is the most important factor determining particle deposition. Not only is impaction responsible for a particle depositing on the target surface of painting operations, impaction is responsible for most particle deposition is the lungs. Impactors (single- or multi-stage) have become the standard collection instrument used in the determination of particle distributions of paint overspray (Kwok, 1991; Chan *et al.*, 1986; Ackley, 1980).

The principle of inertial classification is based on categorizing particles based on their inertia. Basically, a particular flow condition is set so that a particle entering a collection device will either possess enough inertia so that it escapes the trajectory of the gas streamline or possess too little inertia so that it remains in the gas streamline.

Particles that break free of the gas flow will continue in a new trajectory until they impact on a collection plate.

Cascade impactors, which are used as the particle collection device in this study, contain multiple numbers of collection plates called stages. Each subsequent stage in these impactors has smaller inlet jets that create progressively greater velocities of the particle-laden gas stream, which allow for impaction of smaller particles that possessed less inertia in the previous stage. (A schematic drawing of a typical cascade impactor is shown in Figure 3. As Figure 3 illustrates, a stage is consists of the area from the inlet nozzle to the impaction plate on which the nozzle flow impinges (Hinds, 1982:120)).

Figure 3. Schematic Design of a Cascade Impactor (Hinds, 1982:120)

Each stage of the cascade impactor collects particles in a specific size range based on aerodynamic diameter. The nominal measurement of that stage is usually referred to as the effective cutoff diameter (ECD₅₀) or, simply, cutoff size. In operation, the

Figure 4. Actual and Ideal Impactor Cutoff Curves (Hinds, 1982:117)

aerodynamic diameter of the particles collected on a particular stage is assumed to be larger than the ECD₅₀ of that stage and smaller than the ECD₅₀ of the previous stage (Lehtimaki and Willeke, 1993:117). The ECD₅₀ of a stage is defined by the aerodynamic diameter of a particle that is captured with 50% efficiency by that stage—in other words, the lower cutoff size. As displayed by Figure 4, it can be assumed that, for this particle size, the "mass of particles larger than the cutoff size that get through (upper shaded area)

equals the mass of particles below the cutoff size that are collected (lower shaded area)." (Hinds, 1982:117).

As shown in Figure 4, the cutoff size is often recorded in terms of the square root of a dimensionless parameter, the Stokes number (*Stk*) defined as:

$$\sqrt{Stk} = \sqrt{\frac{\rho_{p} C_{c} d_{p}^{2} U}{9 \mu W}}$$
 (3)

where

 ρ_p = particle density

Cc = slip correction

U = average air velocity at the nozzle exit $(=Q/\pi(W/2)^2)$ for a round nozzle

 d_p = particle diameter

 $\mu = air dynamic viscosity$

W = nozzle diameter

Q = volumetric flow rate through the nozzle

To calculate the cutoff sizes for each stage rearrange the equation as shown:

$$d_{50} = \sqrt{\frac{9\eta W}{\rho_p C_c U}} \sqrt{St k_{50}}$$
 (4)

where

 $d_{50} = ECD_{50}$ for any given stage (Marple *et al.*, 1993:207-11).

In this study, the ECD₅₀ was calculated for each stage based on the following version of equation (4):

$$ECD_{50} = \sqrt{\frac{(.495)(\mu)(D_j^3)(n)(\pi)}{(Q)(\rho_p)}}$$
 (5)

where

0.495 = Stokes number for round jets (Hinds, 1982:118)

 D_i^3 = jet diameter in cm

n = number of jets on the stage

 $\pi = 3.1416$

 $Q = \text{volumetric flow in cm}^3/\text{sec}$

 ρ_p = partial density for aerodynamic equivalent = 1 g/cm³

 μ = viscosity of air at 22° C = 1.83 x 10⁻⁴ g/cm-sec

This equation is equivalent to equation (4), but re-arranged in terms of volumetric air flow, Q. Also, the nozzle width, W, from equation (4) is replaced by the term $(D_j^3)(n)$ in equation (5).

Paint Overspray Distribution

Several studies have sought to characterize the particle size distribution of various types of paint. Although the overspray of different paints produce different particle size distributions, significant reductions in the MMADs of the overspray were reported with increasing atomization pressures. Chan *et al.* (1986) used an air spray gun to generate overspray of high-solids acrylic base coat and clear coat. Spraying with atomization pressures of 30 to 65 psig, they measured the MMAD of the overspray at 6.5 to 4.5 μm, respectively. Another study by Ackley (1980) found that lacquer and enamel paint overspray generated from air-blasting had an average MMAD of 6 μm. Kwok (1991) found that acrylic enamel paint produces an overspray with MMADs of 30 and 52 μm when sprayed with atomization pressures of 68 and 20 psig, respectively (Kwok, 1991).

Previous Overspray Exposure Research

While research has been done to characterize the distribution of the particles generated from spray painting, little research has explored the chemical composition of the particles within that distribution of particles. Furthermore, many studies have sought to estimate the exposure of workers to paint overspray (Brosseau *et al.*, 1992; Carlton and Flynn, 1997). In these studies, however, the effort was focused on the concentration of particles, not the concentration of a specific chemical, in the worker's breathing zone. It is generally assumed that the exposure hazard is directly proportional to the overall distribution of particles collected without regard to any variation in the chemical

composition of the various particle sizes. Without information available on the chemical composition of different sized particles, it is often assumed that the particles in the overspray are identical in composition to the bulk analysis of the liquid paint.

Few studies have investigated the possible non-uniformity of chemical composition throughout a particle distribution of paint overspray. D'Arcy and Chan investigated the differences between the distribution of overspray aerosol and the distributions of various inorganic species used as pigments or luster enhancers in six different high-solids automotive primer paint (D'Arcy and Chan, 1990). After collecting overspray aerosol using seven-stage cascade impactors, MMADs of the overspray were reported between 2.9 to 9.7 µm. Atomic absorption spectrometry (AAS) was used to determine the mass distribution of aluminum and iron in the overspray collected on the impactor stages. In all samples, the overall MMAD of iron was less than or equal to the MMAD of the total overspray aerosol. However, most aluminum distributions were found to have a higher MMAD than that of the overspray aerosol. They concluded, "using the size distribution of the total overspray aerosol to estimate the respiratory tract penetration of an inorganic species can produce estimates which differ from those based on the chemical distribution of the species," (D'Arcy and Chan, 1990:3877). These results demonstrate the importance of knowing the chemical composition of the overspray particles throughout the entire size distribution to evaluate the true exposure of Cr⁶⁺ to the painter.

Cr⁶⁺ Content Bias

A previous study explored the Cr^{6+} content (μg Cr/mg dry paint) in overspray particles as a function of aerodynamic diameter using solvent-based epoxy-polyamide primer paint (Fox, 2000). His data revealed a statistically significant difference in the Cr^{6+} content in particles with an aerodynamic diameter (d_{ae}) less than 2.5 μm

 $(18 \frac{\mu gofCr}{mgof\ drypaint})$ as compared to particles with a d_{ae} larger than 2.5 μ m

 $(70 \frac{\mu gofCr}{mgof\ drypaint})$. Based on the likely location of deposition of particles with a d_{ae} greater than 2.5 μ m, this finding suggests that a greater mass fraction of Cr⁶⁺ is deposited in the upper respiratory tract than reaches the respiratory zone.

Novy also studied solvent EP primer, using the same military specification paint from two different manufacturers (Deft Inc., Irvine, CA and PRC-DeSoto International, Mojave, CA) (Novy, 2001). Novy was able to demonstrate a more detailed bias in Cr^{6+} content as a function of aerodynamic particle size. Figure 5 shows the Cr^{6+} content in dry solvent EP plotted as a function of the impaction stage ECD_{50} . This study will focus on the Cr^{6+} content in the particles of solvent EP as well as two other primers not previously investigated for Cr^{6+} bias.

Figure 5. Comparison of Mass Cr per Mass Dry Paint by Manufacturer (Novy, 2001)

III. Methodology

Overview

This chapter describes the equipment and methods used to generate, collect, and analyze the Cr⁶⁺ content by particle size for three different types of primer paints. Since this study also investigates the possible influence of A/P ratio on Cr⁶⁺ content of paint particles, the spray painting operation parameters are discussed.

Painting Operation

All painting operations were conducted in a paint booth at the Coatings

Technology Integration Office (CTIO) at Wright-Patterson Air Force Base, Ohio. The

dimensions of this environmentally controlled booth are 10' wide by 14' long by 9' high.

Temperature and humidity were maintained at 24 degrees Celsius (± 4 degrees) and 8%

(± 6%), respectively, for each sampling event. The ventilation inside the booth was set at

100 linear feet per minute—the minimum ventilation rate required by OSHA in paint

spraying operations.

Recorded Data.

Thirty-four painting runs were performed: eight with solvent EP, sixteen with water EP, and ten with polyurethane. Each of the paints was prepared in accordance with the respective product data sheets. A summary of the mixing ratios and selected specifications of these paints is given in Table 2.

Table 2. Primer Preparation Specifications (Deft, 2000)

	N	Iix Rat	io		Viscosity	
Primer Type	Base	Catalyst	Water	Collection Runs	Test (Ford #4 cup)	
Solvent-based, epoxy polyamide	75%	25%	0%	8	20-40 sec	
Water-reducible, epoxy polyamide	28%	14%	58%	16	18-22 sec	
Solvent-based, elastomeric polyurethane	50%	50%	0%	10	14-24 sec	

To generate the paint overspray, a DeVilbiss model JGHV-531 HVLP spray gun, fitted with a DeVilbiss model 46MP air cap, was used. A two-quart, pressure fed paint supply cup was attached to the spray gun. After the paint was prepared, the viscosity of the primer was tested using a Ford #4 cup. Once the viscosity test yielded results within the specifications given in Table 2, the primer was loaded into the paint supply cup. After the spray pattern was checked and the desired nozzle pressure was set, the spray conditions were held constant throughout the paint run.

A/P Ratios.

This study examines the effects on the Cr⁶⁺ content among different overspray particle sizes by varying one of the operational parameters of spray painting—the A/P ratio. The nozzle pressure was adjusted on different paint runs so that each of the three types of primers would be tested at two different A/P ratios. A higher A/P ratio was achieved by increasing pressure at the nozzle of the air cap (thus, increasing the air mass flow rate), while maintaining the same pressure to the supply cup (thus, minimizing changes to the paint flow rate). Using calibration data from the gun manufacturer, the

nozzle pressure can be used to estimate an air mass flow rate. Paint mass flow rates were calculated from the measured mass of paint used and the elapsed spray time of each run.

Pressure Settings.

For each of the paints, multiple sampling events were conducted at both a high A/P ratio and a low A/P ratio. Adjusting the wall pressure, which controlled the nozzle pressure, altered this ratio. However, the nozzle pressures were held constant for all runs within each category (i.e., high A/P ratio or low A/P ratio). The pressure in the supply cup (*i.e.*, pot pressure) remained at 14 psig for all sampling events. The pressure settings for all sampling events are documented in Table 3.

Table 3. Pressure Settings and A/P Ratios

			Pressur	re (psig)		Avg.	
Paint Type	High or Low A/P	Number of Sample Runs	Pot	Nozzle	Air Mass Flow Rate (g/s)	Paint Mass Flow Rate (g/s)	Avg. A/P Ratio
Solvent EP	Low	4	14	2.5	5.59	0.76	7.4
Solvent Er	High	4	14	8.0	11.0	0.88	12
Water EP	Low	10	14	7.0	9.92	1.16	8.8
water EF	High	6	14	9.0	11.9	1.39	9.9
Polyurethane	Low	6	14	4.0	7.26	0.72	10
1 ory are mane	High	4	14	8.0	11.0	0.69	16

The nozzle and pot pressures were established based on recommendations from painting technicians and guidelines from the primer product data sheets. As suggested by the conventional definition of HVLP, the nozzle pressure should be held under 10 psig. Product data sheets recommend a minimum of seven psig to establish enough atomization for an acceptable spray, although lower settings are commonly used in the field. The determination of an acceptable spray was based on qualitative assessment of experienced technicians.

Paint Mass Flow Rate.

After calculating the air mass flow rate, the A/P ratio can be determined by estimating the paint mass flow rate. The rate of paint flow was determined by two separate methods. In one measurement, the air jets that atomize the paint after exiting the nozzle were shut off. Closing these jets eliminated the source of atomization air without affecting the source of air used to pressurize the paint pot. A small mixing cup was used to collect and weigh approximately 30 mL of paint. The time needed to fill the test cup was used to calculate a mass flow rate.

The other method of testing the paint mass flow rate was conducted by measuring the net mass of the paint sprayed during the sampling event. The mass of paint sprayed was determined by recording the pre-weights and post-weights of the gun, pot, and connected hoses. Dividing the mass of the paint used by the recorded elapsed spray time provides the paint mass flow rate.

The latter method of estimating the paint mass flow rate was used to determine the A/P ratio since it accounts for possible variations in the paint flow rate during sample collection. A difference in the apparent density of particles in the overspray was visually observed towards the end of most sampling events. The former method was used as a quality control check. The average paint mass flow rate for each nozzle pressure is displayed in Table 3.

Background Runs.

In addition to the thirty-four painting runs, three sampling runs were conducted without any painting operations. These runs were performed to assess the background concentration of Cr⁶⁺ in the paint booth. The collection procedures for these events were

identical to all other sampling events with the exception of paint spraying. The average mass of Cr^{6-} collected on each stage during the background runs was subtracted from the appropriate stage of each paint run to ensure that the Cr^{6-} found on a stage of a paint run was from overspray particles.

Overspray Collection

To generate the paint overspray, the HVLP gun was aimed at a cardboard target and the overspray was allowed to draft toward the cascade impactors. This 15"x15" target was placed perpendicular to the direction of paint flow, eight inches from the tip of the gun's nozzle as depicted in Figure 6. Furthermore, the centerline of the paint stream

Figure 6. HVLP Spray Paint Gun with Sample Collection Set-up

from the gun to the target was 12" from the front edge of the cardboard enclosure that contained the sample collection equipment. The enclosure was used to slow the velocity of the overspray particles, thus increasing the number of particles collected. Booth ventilation directed the overspray toward the cardboard enclosure located downdraft of the HVLP gun. The face of the enclosure was 27" wide by 25" high. The face of the block was recessed 13.5" from the edge of the enclosure—25.5" from the centerline of the paint stream leaving the HVLP gun. Four cascade impactors (manufactured by In-Tox Products) were used for overspray collection—two large-particle size range impactors and two small-particle size range impactors. The placement of the impactors is shown in Figure 7.

Figure 7. Impactor Layout (Not to Scale)

The flow rate through the impactors was calibrated prior to the start of the sampling run. After each sampling event, the calibrations were checked. All post-calibration air flow readings were within 1% of the pre-calibrations. All calibrations were performed using a Gilibrator Airflow Calibration System #800286 with a high-flow bubble chamber.

After the impactors were calibrated, the trigger on the HVLP gun was held to a fully open position with a plastic zip tie for the duration of the sampling period. The durations of the sampling events varied from approximately 6 to 30 min. These times varied mostly due to the varying volumes (640 to 1000 mL) used during different painting runs. The volume of paint was varied to optimize sample collection without overloading the impactors.

Particle Size Ranges.

Four seven-stage cascade impactors were used to collect primer overspray particles and separate them into discrete size ranges (see Tables 4 and 5) based on their aerodynamic diameter. The ECD₅₀ was calculated for each stage based on equation (5). In equation (5), the volumetric air flow rate through the impactors is the only variable able to affect the ECD₅₀ of a stage. For this reason, the air flow rate was calibrated for each impactor to establish the ECD₅₀ values. The large-particle size range impactors were calibrated at 8.000 (+/- 0.050) L/min; while, the small-particle size range impactors were set with a flow rate of 18.00 (+/- 0.10) L/min. The calculated ECD₅₀ values at the designed flow rates for the impactors used in this study are given in Tables 4 and 5.

Table 4. Small Particle Size Range Impactor (18 L/min)

Stage#	1	2	3	4	5	6	7
Number of Jets per Stage	1	2	3	4	6	9	12
Average Jet Diameter (cm)	1.1125	0.0635	0.4003	0.2636	0.1679	0.1082	0.07315
ECD ₅₀ (μm) (18 L/min)	11.4	7.0	4.3	2.6	1.6	1.0	0.7
Particle Size Range of Stage	>11.4	7.0 to	4.3 to	2.6 to	1.6 to	1.0 to	0.7 to
		11.4	7.0	4.3	2.6	1.6	1.0

Table 5. Large Particle Size Range Impactor (8 L/min)

Stage#	1	2	3	4	5	6	7
Number of Jets per Stage	1	1	2	2	3	4	6
Average Jet Diameter (cm)	1.7582	1.3208	0.7884	0.5636	0.3914	0.2692	0.1788
ECD ₅₀ (μm) (8 L/min)	34.1	22.2	14.5	9.5	6.2	4.1	2.7
Particle Size Range of Stage	>34.1	22.2 to	14.5 to	9.5 to	6.2 to	4.1 to	2.7 to
		34.1	22.2	14.5	9.5	6.2	4.1

Figure 8 illustrates the particle size ranges collected by stage for both types of impactors. This demonstrates the wide range of particle diameters collected with two different impactor designs, with an overlap of several stages for comparison between the two impactors. Note that there is no upper bound on the size of particles collected on the first stage of both impactors. On each impactor, the seventh stage is followed by a back filter (0.8-µm pore size, not shown in figure 8), which collects most particles less than the ECD₅₀ of the seventh stage.

Figure 8. Particle Size Range by Stage

Figure 9. Sampling System Layout at CTIO Paint Booth

Sampling System.

Figure 9 illustrates the layout of the sampling system. Two Gast pumps provided the vacuum source for airflow through the impactors. Each pump supplied two impactors, on which individual valves equipped with rotameters regulated the airflow rates separately. A five-gallon receiving tank was attached in series to each pump (between the rotometer and the vacuum pump) as a means of balancing air flow fluctuations. Figure 10 shows the air flow control system for the impactors, which was located outside of the paint booth since the pumps are an ignition source and the paint poses a fire hazard. The hoses from the rotometer inlets continue under the booth door with the plastic tubing connecting to the impactors.

Figure 10. Sample Collection Vacuum Pumps with Rotometers

Sample Preparation

After particles were collected, samples containing the captured paint particles were dried, weighed, and digested in preparation for analysis. Since each separate collection plate (seven stages plus one back plate per impactor) represents an individual sample, each painting run resulted in 16 individual samples (8 high range and 8 low range) that required preparation. This section documents the procedures followed for each sample.

Sample Substrates.

Overspray particles were collected on 0.22-µm (pore-size) cellulose ester filters (CEFs), manufactured by Millipore. These CEFs covered the entire surface area of the impaction plates, ensuring efficient capture of particles entering the impactors. The ease of removal of these filters from the impactors further improved the efficient transfer of collected particles into a sample solution for analysis. Additionally, CEFs are digestible, thus, eliminating the need for additional processing to remove collected sample from the filter before digesting.

Analytical Mass Determination.

Each CEF was weighed before and after the sampling event so that the dry mass of collected paint particulates could be determined for each stage. All weighing operations were conducted inside an air-tight glove box (which contained Drierite anhydrous calcium sulfate). To minimize fluctuation due to non-evaporated water and solvent content, each CEF was stored in the sealed glove box for 24 hours before taking the pre-paint mass and post-paint mass of the CEF. After weighing, the glove box was opened only for the brief time required to exchange a tray (one tray per painting run) of

filters—less than ten seconds per tray. The glove box was never opened during the 24-hour drying periods leading up to the weighing or during the weighing operations.

All weighing operations were performed using a Mettler-Toledo microbalance model MT5 (precision 0.001 mg). Each sample was weighed and recorded in triplicate. Furthermore, each sample was passed through a Haug U-electrode ionizer model PRX-U prior to placing in the weighing chamber to reduce the effects of static charge carried by the filter.

Sample Digestion

Before a sample could be analyzed, the solid particles and filter must be digested into a liquid sample. Each paint sample (i.e., CEF and collected paint) was placed in a Teflon digestion vessel along with trace-metals grade, 70% (w/w) nitric acid and digested in an OI analytical microwave. 5.0 mL of the nitric acid were added to most samples, but due to the large mass of paint collected on some first-stage samples, as much as 20 mL of nitric acid was added for complete digestion. Sealed pressure vessels were loaded into carousels and digested according to a pressure-controlled program based on NIOSH method 7082—used for digestion of paint chips. Pressure was held at a minimum of 70 psig so that a minimum temperature of 140 degrees C was maintained for at least 20 min. Table 6 details the digestion program used.

Table 6. Sample Digestion Program

Stage	Power	Set Point	Dwell Time	Max Time
Stage	(%)	(psig)	(mm:ss)	(mm:ss)
1	75	20	02:00	03:00
2	100	70	20:00	30:00
3	0	0	02:00	02:00

Sample Dilution.

Following digestion, vessels were allowed to cool before opening. Once opened, the contents of the Teflon vessels were transferred into a 30-mL high-density polyethylene (HDPE) sample bottle. The Teflon vessels were triple rinsed with a total of 20 mL of deionized water. This rinsate was transferred to the HDPE bottle, yielding approximately 25-mL of sample for analysis.

More precise sample volumes were calculated based on the mass of each liquid sample. The mass of the liquid in each HDPE bottle was measured with a Mettler-Toledo balance model AB204-S (precision 0.1 mg). Based on the loaded filter weight and the densities of the 70% nitric acid and deionized water, the volume of sample contained in each HPDE bottle was calculated:

Sample Volume
$$(mL) = \frac{m_{sample} - m_{filter+paint} - (V_{70\%} \cdot \rho_{70\%})}{\rho_{di}} + V_{70\%}$$
 (6)

where

 $\begin{array}{l} m_{sample} = Net \ weight \ of \ \underline{liquid} \ \ in \ HDPE \ sample \ bottle \ (g) \\ m_{filter+paint} = Mass \ of \ CEF \ \underline{and} \ paint \ sample \ (g) \\ \rho_{70\%} = Density \ 70\% \ nitric \ acid \ (g/mL) \\ \rho_{di} = Density \ of \ deionized \ water \ (g/mL) \\ V_{70\%} = Volume \ of \ 70\% \ nitric \ acid \ used \ for \ digestion \ (mL) \end{array}$

Based on these calculated sample volumes and the net mass of the paint collected on each filter, the mass of dry paint per unit volume of the liquid sample is known.

Sample Analysis

Analytical determination of the Cr⁶⁺ content in each sample was performed on a GBC Avanta atomic absorption spectrometer (AAS). This AAS is capable of sample

analysis using either a graphite furnace or flame method. The graphite furnace was used for analysis of liquids expected to contain less than one part per million (ppm) chromium; the flame method was used to analyze liquid samples expected to contain between 1 and 15 ppm. When necessary a sample was diluted, either manually or automatically (by the AAS), so that the chromium concentration was within the calibration range of the method.

For the graphite furnace method, a five-point (7.5, 20, 40, 60, 75-parts per billion (ppb)) calibration (R² > 0.98) was performed using the auto-dilution feature on the AAS with a certified 75-ppb Cr standard. Three replicate measurements per sample were performed. A 75-ppb check sample was performed for at least every ten samples analyzed for quality assurance. Each check sample was followed by a sample blank to detect for instrument drift. The auto-dilution feature was able to dilute samples containing more than 75 ppb Cr. For these samples above the calibration range, up to two consecutive 1:4 dilutions were performed using deionized water. Table 7 summarizes the method for the graphite furnace.

Table 7. AAS Graphite Furnace Parameters

Step	Final Temp. (C)	Ramp Time (s)	Hold Time (s)	Gas
Step 1: Inject Sample				*
Step 2: Drying	80°	5	10	Argon
Step 3: Charing	130°	30	10	Argon
Step 4: Pyrolysis	1400°	15	15	Argon
Step 5: Atomize/Read	2500°	1.4	1.6	None
Step 6: Tube Clean	2700°	0.5	1.5	Argon

 0.98) was performed using standards prepared from a certified 250-ppm standard. To ensure consistent atomization, a fuel/oxidant ratio of approximately 1.8/10 was maintained for all samples analyzed by this method. Quality assurance measures identical to those described for the graphite furnace method were implemented for flame atomization using a 10-ppm standard. Since auto-dilution was not available for the flame atomizer, all samples containing over 15 ppm Cr were manually diluted if the sample was above the calibration range for the instrument.

Calculation of Chromium Content in Dry Paint

Chromium concentrations reported by the AAS (μg Cr/L sample) were divided by the mass of dry paint collected in each sample to calculate the Cr⁶⁺ content

 $(\frac{\mu g \operatorname{Cr}^{+6}}{\mu g \operatorname{dry paint}} x 100\%)$ in different size ranges of particles collected. Equation 7 was used

to calculate the chromium content in dry paint on the CEF for each stage:

$$\frac{\mu g \operatorname{Cr}^{+6}}{\mu g \operatorname{dry paint}} = \frac{C_{AAS} \cdot V_{sample}}{m_{paint}}$$
 (7)

where

 C_{AAS} = AAS reported concentration [corrected for dilution, if necessary] (ug/L)

 V_{sample} = sample volume [calculated from Equation (6)] (L)

 M_{paint} = Mass of dry paint sample (μg)

IV. Results

Cr⁶⁺ Content per Mass of Dry Paint

Table 8 presents the results of the Cr⁶⁺ analysis as a function of particle size range collected (by impactor stage) for the three primer paints. The number of samples in each particle size range (n) and the standard deviation of the sample mean (SD) are listed for each primer type.

Table 8. Average Cr⁶⁺ Content per Mass of Dry Primer Paint

Stage*	Particle Size Range	Solven Epoxy-P			Water-Based Epoxy-Polyamide		Solvent-Based Elastomeric Polyurethane		0	
#	(μm)	Mean %Cr ⁶⁺	SD	n	Mean %Cr ⁶⁺	SD	n	Mean %Cr ⁶⁺	SD	n
	4 /									
S7	0.7 ≤d _{ae} < 1.0	0.99%	0.27%	7	0.67%	0.27%	14	0.36%	0.13%	10
S6	1.0 ≤d _{ae} < 1.6	1.18%	0.42%	8	0.72%	0.27%	15	0.51%	0.08%	10
S5	1.6 ≤d _{ae} < 2.6	1.74%	0.67%	8	1.15%	0.29%	16	0.90%	0.13%	10
S4	2.6 ≤d _{ae} < 4.3	2.48%	0.73%	8	2.89%	0.68%	16	1.65%	0.17%	10
L7	2.7 ≤d _{ae} < 4.1	2.90%	0.73%	6	1.89%	0.65%	16	1.70%	0.95%	9
L6	4.1 ≤d _{ae} < 6.2	4.77%	1.42%	7	4.95%	1.04%	14	2.51%	0.72%	9
S3	4.3 ≤d _{ae} < 7.0	4.41%	1.53%	5	4.97%	0.67%	14	2.79%	0.39%	10
L5	6.2 ≤d _{ae} < 9.5	6.17%	0.47%	5	6.50%	1.15%	15	3.77%	0.94%	10
S2	7.0 ≤d _{ae} < 11.4	7.09%	1.65%	В	6.56%	1.36%	16	3.72%	0.70%	10
L4	9.5 ≤d _{ae} < 14.5	7.20%	0.98%	6	6.67%	1.36%	14	3.86%	0.71%	9
L3	14.5 ≤d _{ae} < 22.2	5.17%	0.57%	6	6.27%	1.21%	13	3.76%	0.74%	9
L2	22.2 ≤d _{ae} < 34.1	4.45%	1.37%	6	5.57%	1.22%	14	3.60%	1.06%	10
L1	34.1 ≤d _{ae}	6.94%	1.99%	6	6.03%	1.29%	15	4.34%	0.51%	9

^{*}S denotes small-particle size range impactor; L denotes large particle-size range impactor

The results of the analysis of the samples collected on the first stage of the small particle size range impactor (S1) were not reported. The mass of paint particles collected on the filters from S1 was so large that complete digestion could not be reliably accomplished.

Figures 11a-c display the mean percent Cr⁶⁺ plotted against the particle size range collected. Since some stages from the small and large particle size range impactors overlap, the stages for both impactor types are plotted in two different shades. Dark areas

represent stages of the small particle size range impactors; light areas are for the large particle size range impactor stages. The vertical range of percent Cr^{6+} plotted covers the 95% confidence interval about the mean. A solid line is included on each figure to show the expected Cr^{6+} content per mass of dry paint for the corresponding type of primer (as reported in Table 1). The particle size range collected by the largest stage displayed on these figures has no theoretical upper limit, although the figures are arbitrarily trunc ated at 40 μ m. Nevertheless, it is unlikely that an appreciable number of larger particles entered the impactor as these particles would have impacted on the cardboard target.

Figure 11a. Mass of Cr⁶⁺ per Mass of Dry Paint: Solvent-Based Epoxy-Polyamide

Figure 11b. Mass of Cr⁶⁺ per Mass of Dry Paint: Water-Based Epoxy-Polyamide

Figure 11c. Mass of Cr^{6^+} per Mass of Dry Paint: Solvent-Based Elastomeric Polyurethane

A/P Ratio Influence on Cr6+ Content

Figures 12a-c show the mean percent Cr^{6+} plotted against the ECD_{50} for each impactor stage for the subsets of both the high and low A/P ratios. The percent Cr^{6+} is plotted as a function of the ECD_{50} value of each impactor stage to clearly compare the trends. The error bars on these figures enclose the 95% confidence interval about the mean percent Cr^{6+} . The data points for the high A/P ratio data series are slightly offset to the right so that the error bars for the two series of data are easier to distinguish.

Figure 12a. Comparison of Mean Percent Cr⁶⁺ for Different A/P Ratios: Solvent-Based Epoxy-Polyamide (Bars represent 95% confidence interval about mean)

Figure 12b. Comparison of Mean Percent Cr⁶⁺ for Different A/P Ratios: Water-Based Epoxy-Polyamide (Bars represent 95% confidence interval about mean)

Figure 12c. Comparison of Mean Percent Cr⁶⁺ for Different A/P Ratios: Solvent-Based Elastomeric Polyurethane (Bars represent 95% confidence interval about mean)

The means of the high and low A/P ratio categories were compared for each stage using a paired Student's t analysis. For both epoxy-polyamide primers, the mean percent Cr^{6+} for at least two stages were found to be statistically different (at the $\alpha=0.05$ level). However, due to the small sample sizes and the lack of any repeatable trend, these data suggest that practical variations in the A/P ratios do not impact the Cr^{6+} bias to any appreciable degree.

Comparison of Cr6+ Content Bias to Previous Study

Figure 13 compares the Cr^{6+} content bias found in the solvent-based epoxy-polyamide primer paint during this study to the Cr^{6+} content bias reported by Novy (2001) on the same military specification primer from the same manufacturer. The agreement of the data indicates a high degree of repeatability between these studies. The error bars shown in Figure 13 contain the 95% confidence interval about the mean.

Figure 13. Comparison of Mass of Cr⁶⁺ per Mass of Dry Paint by Study

V. Discussion

Cr⁶⁺ Content Bias in Different Primers

The mean percent Cr^{6+} of the largest particle sizes collected closely match the expected Cr^{6+} content in the dry paint. For all three primers, the Cr^{6+} content per mass of dry paint in the last five stages ($d_{ae} < 7.0 \ \mu m$) of the small particle size range impactor and the last two stages ($d_{ae} < 6.2 \ \mu m$) of the large particle size range impactor was significantly less than the expected Cr^{6+} (at the α =0.05 level of confidence). With the exception of the water EP primer, the mean Cr^{6+} content of the largest stage ($d_{ae} > 34.1 \ \mu m$) was within 2% of the expected value. This observation suggests that the Cr^{6+} content in the larger particles is similar to that of the solids fraction of the homogeneous, mixed primer paint.

The largest particles collected of the water-based epoxy-polyamide primer contained less than the expected amount of Cr^{6+} per mass of dry paint (at the α =0.05 level of confidence). This may be due to water content in the collected paint particles that did not evaporate during the drying phase. Water-based primers have been noted for the slow removal of water during the curing process (Mitchell, 2002). The high reactivity of water with the epoxy resins may have caused some of the water to remain in the dry paint, which would add mass to the dry paint, thus lowering the measured percent Cr^{6+} in the dry paint. Nevertheless, the overall trend of the Cr^{6+} content in the water EP primer followed that of the other two primers. This bias is expected to be less prevalent with smaller particles since water may be able to escape more easily with the larger surface area to volume ratio.

Influence of A/P Ratio on Cr6+ Content

The variation of the A/P ratio during paint atomization did not have a discernable effect on the Cr⁶⁺ content of the particles. Testing over a greater range of A/P ratios may have produced different results. However, the range of A/P ratios tested in this study reflects the normal operating conditions in the field. Higher or lower A/P ratios would have produced unacceptable spray patterns or would not have been possible with an HVLP gun.

Implications of Cr⁶⁺ Content Bias

The repeatable, disproportionate decrease in Cr^{6^+} in the smaller particles of the primer overspray has implications on the health hazards to aircraft spray painters. Considering the dependence of particle size on the penetration depth of an airborne particle in the respiratory system, the bias in Cr^{6^+} content may lead to a lower estimate of Cr^{6^+} exposure than previously thought. Since smaller particles tend to deposit deeper in the lungs, less Cr^{6^+} per mass of material inhaled is delivered than expected if one assumes a uniform distribution of Cr^{6^+} throughout the particle size distribution of the overspray. The results presented here indicate that particles capable of reaching the alveolar sacs in the pulmonary region of the lungs—generally d_{ae} <2.5 μ m—have only about one-third of the Cr^{6^+} that is present in the larger particles.

Figures 14a-16b show an estimate of the Cr^{6+} deposition in the three main regions of the lung—nasopharyngeal, tracheobronchial, and pulmonary—based on the mass of Cr^{6+} collected for each type of primer. A pair of stacked bars are plotted for each region of the lung—one representing the experimentally determined mass of Cr^{6+} collected (the left bar of each pair) and one representing the mass of Cr^{6+} in the collected mass of dry

48

paint based on the assumption that Cr^{6+} is uniformly distributed throughout all particle sizes in the primer overspray (the right bar of each pair). The relative contribution of particles from each impactor stage is shown in the bars. The stages are stacked with those representing largest particles on the bottom and smallest particles on the top. These figures are based assumed probabilities of the median size particle of a stage depositing in each region of the lung. The assumed probabilities were taken from Figure 1.

Figures 14a-16b demonstrate the impact that the disproportionate decrease of Cr^{6+} in smaller particles has on the overall mass of Cr^{6+} delivered to each region of the lung. The impact is more pronounced in Figures 14a, 15a, and 16a since these represent data from the small particle-size range impactors. In general, the areas corresponding to stages representing larger particle sizes do not change from the left bar to the right bar since the Cr^{6+} content closely matched the expected Cr^{6+} content in dry paint.

Figure 14a. Cr^{6+} Deposition in Lung: Solvent-Based Epoxy-Polyamide (Small Particle-Size Impactor)

Figure 14b. Cr⁶⁺ Deposition in Lung: Solvent-Based Epoxy-Polyamide (Large Particle-Size Impactor)

Region of Lung

Note: -Nasoph=Nasopharyngeal, Trach=Tracheobronchial, Pulm=Pulmonary -Order of areas in bars matches order listed in legend (top to bottom)

Figure 15a. Cr^{6+} Deposition in Lung: Water-Based Epoxy-Polyamide (Small Particle-Size Impactor)

Figure 15b. Cr^{6+} Deposition in Lung: Water-Based Epoxy-Polyamide (Large Particle-Size Impactor)

Note: -Nasoph=Nasopharyngeal, Trach=Tracheobronchial, Pulm=Pulmonary -Order of areas in bars matches order listed in legend (top to bottom)

Figure 16a. Cr^{6+} Deposition in Lung: Solvent-Based Elastomeric-Polyurethane (Small Particle-Size Impactor)

Figure 16b. Cr⁶⁺ Deposition in Lung: Solvent-Based Elastomeric-Polyurethane (Large Particle-Size Impactor)

Note: -Nasoph=Nasopharyngeal, Trach=Tracheobronchial, Pulm=Pulmonary -Order of areas in bars matches order listed in legend (top to bottom)

As noted by LaPuma *et al.*, the Cr⁶⁺ bias may also merit the examination of practices used to estimate the fugitive emissions of Cr⁶⁺ from industrial paint booths (LaPuma *et al.*, 2001:348). Since filter efficiency increases with increasing particle size, the smaller, lower Cr⁶⁺-containing particles in overspray are more likely to escape filtration than larger particles that contain more Cr⁶⁺. With the similarity in the bias of the three primers studied, it is likely that the emission of Cr⁶⁺, and possibly other inorganic solids, is overestimated.

Possible Sources of Cr⁶⁺ Bias

Although the exact mechanism explaining the Cr⁶⁺ bias is not known, it is likely that the atomization process itself is responsible for the heterogeneous distribution of Cr⁶⁺ in the overspray. One of the methods of secondary atomization described earlier may have caused the shearing of small, non-Cr⁶⁺-containing droplets off of larger droplets that contained solid SrCrO₄ particles in the core of the droplet. Also, it is possible that some of the smaller particles were formed during initial atomization were too small to contain the larger, solid particles of SrCrO₄. The relatively smaller Cr⁶⁺ concentration detected in these small particles would most likely come from dissolved Cr⁶⁺ in the paint mixture, which is relatively small compared to the Cr⁶⁺ present in solid form (i.e., SrCrO₄ powder).

APPENDIX A-1: Calculation for Cr6+ Content in Solvent EP

This appendix documents the calculations used to determine the percent (by mass) of Cr^{6+} in the dry paint being tested.

First, relevant data from the Product Data Sheets and MSDS are given.

Paint Type: Solvent-Based Epoxy-Polyamide Primer

Parameters from Product Data Sheets and MSDS:

Base Component	Primer Component	Percent (by mass)	Percent (by mass)
Density	Density	Cr ⁶⁺ in Base	Solids in Mixed
(lbs/gal)	(lbs/gal)	Component	Primer Paint
11.21	7.76	25% (w/w)	72.72% (w/w)

Mix Ratio:

3 parts base component to 1 part catalyst component

Additional Information:

Atomic Weight of Cr⁶⁺: 52.0 g/g-mole Molecular Weight of SrCrO₄: 203.6 g/g-mole

Next, the density of the mixed primer is calculated based on the volumetric mix ratios of the primer components and the densities of these components.

Density of Mixed Primer Paint:

$$\left(\frac{3 \text{ parts base}}{4 \text{ parts mix}}\right) x \frac{11.21 \text{ lb}}{\text{gal}} + \left(\frac{1 \text{ part catalyst}}{4 \text{ parts mix}}\right) x \frac{7.76 \text{ lb}}{\text{gal}} = 10.35 \frac{\text{lb}}{\text{gal}} \text{ paint}$$

Given the calculated primer density, the percent (by mass) of SrCrO₄ was determined. The numerator represents the mass of SrCrO₄ in one gallon of mixed primer (note: All SrCrO₄ is from the base component; the catalyst contains no chromium.). The denominator represents the mass of mixed primer (i.e., the density of the mixed primer).

Percent (by mass) SrCrO₄ in Mixed Primer Paint:

$$\frac{25\% \text{ SrCrO}_4 x \left(\frac{3 \text{ parts base}}{4 \text{ parts mix}}\right) x \frac{11.21 \text{ lb}}{\text{gal}}}{10.35 \text{ lb/gal paint}} = 20.3\% \text{ (w/w)SrCrO}_4$$

Next, the percent (by mass) of $SrCrO_4$ in the mixed primer was converted to the percent (by mass) of Cr^{6+} in the mixed primer. This conversion was based on the ratio of the atomic weight of chromium over the molecular weight of $SrCrO_4$.

Percent (by mass) Cr⁶⁺ in Mixed Primer Paint:

$$20.3\% \, \text{SrCrO}_{4} \, x \frac{52.0 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{SrCrO}_{4}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}/\text{g - mol} \, \text{Cr}^{6+}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{co}}{203.6 \, \text{g}/\text{g}} = \frac{5.19\% \, (\text{w/w}) \, \text{Cr}^{6+}}{203.6 \, \text{g}/\text{g}} = \frac{5.19\% \, (\text{w/w}) \,$$

Lastly, the percent (by mass) of Cr^{6+} in the dry primer was determined based on the fraction of non-volatiles in the mixed paint. Multiplying the percent Cr^{6+} in the "wet" primer by this fraction yields the percent Cr^{6+} in the "dry" paint.

Percent (by mass) Cr⁶⁺ in Dry Primer Paint:

5.19% (w/w)
$$Cr^{6+}$$
 in Mixed Primer $x = \frac{.7272 \text{ lb dry paint}}{1 \text{ lb mixed paint}} = \frac{7.13\% \text{ (w/w) } Cr^{6+} \text{ in Dry Paint}}{...}$

This procedure was repeated for the Water EP and Polyurethane primers in Appendices A-2 and A-3.

APPENDIX A-2: Calculations for Cr6+ Content in Water EP

Paint Type: Water-Based Epoxy-Polyamide Primer

Parameters from Product Data Sheets and MSDS:

Base Component	Primer Component	Percent (by mass)	Percent (by mass)
Density	Density	Cr ⁶⁺ in Base	Solids in Mixed
(lbs/gal)	(lbs/gal)	Component	Primer Paint
10.80	9.34	30% (w/w)	34.08% (w/w)

Mix Ratio: 2 parts base component to 1 part catalyst component

with a 4.1 parts water reduction

Additional Information:

Atomic Weight of Cr⁶⁺: 52.0 g/g-mole Molecular Weight of SrCrO₄: 203.6 g/g-mole Water Density: 8.34 lbs/gal

Density of Mixed Primer Paint:

$$\left(\frac{2 \text{ parts base}}{7.1 \text{ parts mix}}\right) x \frac{10.80 \text{ lb}}{\text{gal}} + \left(\frac{1 \text{ part catalyst}}{7.1 \text{ parts mix}}\right) x \frac{9.34 \text{ lb}}{\text{gal}} + \left(\frac{4.1 \text{ parts water}}{7.1 \text{ parts mix}}\right) x \frac{8.34 \text{ lb}}{\text{gal}} = 9.174 \frac{\text{lb}}{\text{gal}} \text{ paint}$$

Percent (by mass) SrCrO4 in Mixed Primer Paint:

$$\frac{30\% \operatorname{SrCrO}_{4} x \left(\frac{2 \operatorname{parts base}}{7.1 \operatorname{parts mix}}\right) x \frac{10.80 \operatorname{lb}}{\operatorname{gal}}}{9.174 \operatorname{lb/gal paint}} = 9.9\% \text{ (w/w)SrCrO}_{4}$$

Percent (by mass) Cr⁶⁺ in Mixed Primer Paint:

9.9% SrCrO₄
$$x \frac{52.0 \frac{g}{g - \text{mol}} \text{Cr}^{6+}}{203.6 \frac{g}{g - \text{mol}} \text{SrCrO}_4} = \frac{2.54\% \text{ (w/w)} \text{ Cr}^{6+} \text{ in Mixed Primer}}{203.6 \frac{g}{g - \text{mol}} \text{ SrCrO}_4}$$

Percent (by mass) Cr⁶⁺ in Dry Primer Paint:

2.54% (w/w)
$$Cr^{6+}$$
 in Mixed Primer $x = \frac{.3408 \text{ lb dry paint}}{1 \text{ lb mixed paint}} = \frac{7.46\% \text{ (w/w) } Cr^{6+} \text{ in Dry Paint}}{1 \text{ lb mixed paint}}$

APPENDIX A-3: Calculations for Cr6+ Content in Polyurethane

Paint Type: Solvent-Based Elastomeric Polyurethane Primer

Parameters from Product Data Sheets and MSDS:

Base Component	Primer Component	Percent (by mass)	Percent (by mass)
Density	Density	Cr ⁶⁺ in Base	Solids in Mixed
(lbs/gal)	(lbs/gal)	Component	Primer Paint
11.63	7.96	20% (w/w)	70.84% (w/w)

Mix Ratio:

1 part base component to 1 part catalyst component

Additional Information:

Atomic Weight of Cr⁶⁺: 52.0 g/g-mole Molecular Weight of SrCrO₄: 203.6 g/g-mole

Density of Mixed Primer Paint:

$$\left(\frac{1 \text{ parts base}}{2 \text{ parts mix}}\right) x \frac{11.63 \text{ lb}}{\text{gal}} + \left(\frac{1 \text{ part catalyst}}{2 \text{ parts mix}}\right) x \frac{7.96 \text{ lb}}{\text{gal}} = 9.795 \frac{\text{lb}}{\text{gal}} \text{ paint}$$

Percent (by mass) SrCrO₄ in Mixed Primer Paint:

$$\frac{20\% \text{ SrCrO}_4 x \left(\frac{1 \text{ parts base}}{2 \text{ parts mix}}\right) x \frac{11.63 \text{ lb}}{\text{gal}}}{9.795 \frac{\text{lb}}{\text{gal}} \text{ paint}} = 11.87\% \text{ (w/w)SrCrO}_4$$

Percent (by mass) Cr⁶⁺ in Mixed Primer Paint:

$$11.87\% \, \text{SrCrO}_{4} \, x \frac{52.0 \, \text{g}_{\text{g - mol}} \, \text{Cr}^{6+}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{SrCrO}_{4}} = \frac{3.03\% \, (\text{w/w}) \, \text{Cr}^{6+} \, \text{in Mixed Primer}}{203.6 \, \text{g}_{\text{g - mol}} \, \text{Cr}^{6+} \, \text{or Mixed Primer}}$$

Percent (by mass) Cr⁶⁺ in Dry Primer Paint:

3.03% (w/w)
$$Cr^{6+}$$
 in Mixed Primer $x = \frac{.7084 \text{ lb dry paint}}{1 \text{ lb mixed paint}} = \frac{4.28\% \text{ (w/w) } Cr^{6+} \text{ in Dry Paint}}{...}$

APPENDIX B-1: Deft® Product Data Sheets for Solvent-Based Epoxy-Polyamide Primer Paint (MIL-P-23377G, Type I, Class C)

PRODUCT INFORMATION DATA SHEET

When a War also shifts and	A marine Self a m. S.
Product Code Base Component	
Product Code Catalyst Component	
Batch Number of Base Component-	(L-12441)
Batch Number of Catalyst component	(L-12393)
Product to meet MIL specification	(MIL-P-23377G Type I Class C)
Product to meet Calor	(Color : Strontium Chromate Yellow)
Miz or catalyst ratio-	(3:1 by volume)
Reduction	(If Necessary)
Reducer	(MIL-T-81772 Type 11)
TY A CUEN AND THE A PLANTAGE VAN CONTRACTOR	
BASE CHARACTERISTICS	CATALYST CHARACTERISTICS
Wt./Gal(11.21)	Wt./Gal(7.76)
% solids by weight(73.10%)	% solids by weight (71.11%)
% solids by volu (55.52%)	% solids by volume (67.64%)
VOC pounds/galle_1(3.01)	VOC pounds/gallon(2.24)
VOC grams per liter(362)	VOC grams per liter(269)
CHARACTERISTICS AS APPLIED (NO RE	DUCTION
Wt./Gal(10.35)	Wt./Gal.of Solids [12.85 lbs]
3-% solids by weight(72.72%)	Sq./Ft. coverage @ 1
% solids by volume(58.55%)	mil dry(937 Sq./Ft.)
VOC pounds per gallon-(2.82)	Grams per aq./Ft. @ 1
VOC grams per liter(338)	mil dry(3.68 grams)
the control of the state of the	St.
QUALIFIED TEST RESULTS	
	ous Extender and
other a	additives = 48%
(2) Pigment Weight Percent of Base Component	ent (3.4.1)= 37.0% min41.01%
(3) Fineness of Grind (ASTM Method D-121)	0) = 5 min
(4) Volatile Organic Compounds (VOC) conte	int (3.4.2) = 340 grams
	per liter maximum
(5) Storage Stability (3.5.3) I year at temper	rature of 35' to 115:fPass
(6) Accelerated Storage Stability (3.5.4) 14 d	iays at 140' + 5'F
(7) Viscosity catalyzed and unreduced (3.6.3 (8) Dry-Time (3.4.3)	() = 40 seconds #4 ford Cup21 sec.
	pec, hour
Tark Free = 5 hours	max hours
Dru Hard = 8 hours	max
man a series of series of series of	

(9) Condition in Container (3.5.1) (Base Component) Will stir	into a smooth.
homogeneous condition.	
(Catalyst Component) Will	be clear & clean.
(10) Adhesion (3.7.4) No loss of adhesion after 24 hours of water	immersion
at temperature of 65' to 85F	No Adhesion Loss
(11) Induction Time (4.5.1) 30 minutes maximum	30 min
(12) Application of primer coating (4.5.1) Apply film at 0.6 to 0.9 r	nils0.9 mile
[13] Water Resistance [3.8.1] Topcoated primer immersed for 4 da	ive
at 120'F + 5'F = No Defects	No defects
	(sl. lose of color)
(14) Flexibility (3.7.5) impact elongation = 10%	to an encourage of contract
(15) Lifting 3.7.3 No lifting of MIL-C-85285B Polyurethane	
Topcoat after:	
Topcoat @ 2 hours (no spec.)	No Fifther
Topcoat @ 3 hours (no spec.)	Na Lieu-
Topcoat @ 5 hours	M- Vial
(16) Strippability 3.7.6) Within 60 minutes with a stripper conform	
to MIL-R-81294, Type 1 = 90% minimum	1418
(17) Salt Spray Resistance (3.8.2.1.1) 2000 hours with a 5% solut	To an an age of many and a second a second and a second a
No blistering, lifting or corrosic (18) Topcoating (3.5.11) To be topcoated with a polyurethane confi	Manager No Delect
h Mf C occord Calagarane come	rming
to MIL-C-85285B. Color # 17925	
the state of the s	
humidity of 80 + 5% = No Defects	No Defects
(20) Pot-Life (3.6.4) After 4 hours at room temperature 65' to 85'F	
catalyzed and unreduced =70 seconds maxim	um30 sec.
(21) Fluid Resistance (3.8.4) No softening, blistering, loss of adhesi	on
or film defects after 24 hours at 250	
MIL-L-23699	No Defects
MIL-H-83282	No Defects

EPOXY POLYAMIDE PRIMER DESCRIPTION AND APPLICATION INFORMATION DESCRIPTION:

Chemically cured two component epoxy-polyamide primer suitable for application on aircraft and aerospace equipment. Component 1 contains the pigment and epoxy resin. Component 11 is the clear non-pigmented aliphatic polyamine-epoxy portion which acts as the hardener or curing agent for Component 1.

AIR POLLUTION REGULATIONS:

This product is formulated for use where the air pollution regulations call out for a maximum VOC of 340 grams per liter.

SPECIAL FEATURES:

This epoxy-polyamide primer is a solvent borne, corrosion inhibiting and chemical and solvent resistant primer

APPLICATION:

This primer will spray satisfactorily in all respects and shall show no running, sagging or streaking. The dry film shall show no dusting, mottling or color separation and shall present a smooth thish free from seeds. The standard film thickness shall be 0.6 to 0.9 mils dry.

APPENDIX B-2: Deft® MSDS for Solvent-Based Epoxy-Polyamide Primer Paint (MIL-P-23377G, Type I, Class C)

```
MATERIAL SAPSTY DATA SHEET Printed: 07/19/01
For Coatings, Resins and Related Materials
Revised: 07/99/01
    Page 1
    SECTION I - PRODUCT INDESTITICATION

Manufactures: DEFT, INC. (CAGE CODE 33%61) Information Phone: (949) 474-0400

Basergency Phone: (BEG: 424-9300 CHEMIREC Phone: 800-424-9300
                                          IRVINE CA
                                                                                                   Product Class Tipe T. CLASS I
Frade Name : MIL PEF-23377G (MIL-P-21377G)
Product Code : 02V040
C A S Namber: NONK
                                                       SECTION 11 - HAZARDOUS INGREDIENTS
                                                                                                       Exposure Limits ----
    REFERENT, 1-CHLORO-4 TRIPLICROMETHYL
BENYENE, 1-CHLORU-2 TRIPLICROMETHYL
N-SYTYL ACETATE
METCHYL APROPYL RETORE
STRONTIUM CHROMATE
                                                                                                        ARCHATIC MYDROCARBON
    MYLENE
        2.4 TRIMETHYLBENZENE
    1.). 2 TREMETHY LIBERTERS
    DIETHYLBEWIEWE
ETHYL BENIEWE
  N-HETHYLPYROLIDONS
                    THE ABOVE LISTED PRODUCTS ARE ON THE TSCA INSENDED LIST
                    ALSO ANY UNLISTED INGREDIENTS
SECTION III - PHYSICAL DATA

Boiling Hange: 213 - 195 Deg. F. Vaput lens.ty deavier than Air Evap. Rate: 1.66 x n-Butyl Acetate Displication of 11.17 rounds

Volatiles vol % 44.8 Wgt% 27.6 Opec Cravity 11.17 rounds

Appearance: YELLOW LIQUID WITH SOLVENT ODOR

V.O.C.; 186 S/L

SOLUBILITY IN SAMEE. Inachable Pri Nut applicable

AUTOIGNITION TEMPERATURE. No information found

CORROSION RATE: SO information found

CORROSION RATE: SO information found

CORROSION TRIPERATURE. No information material

SECTION IV - FIRE AND ENDARGE.
 VISCOSITY This lighed to beauty viscous material

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

Planashitty Class: IB - Firsh Point 46 F NY LEL: 0.90% UEL: 18 50%

EXTRIBUTERING REDIA.

FOAK ALCOWL FOAR, CO2. DPY CHEMICAL, WATER FOG**

- EFECIAL FIRFFIRSTING PROCEDURES:

- buil the fighting equipment with enli-contained breathing apparatus and full protective richting enough be soon by fire lighters taker may be used to rook closed containers to prevent pressure build-up, sure ignition or explosion.

UNDERFAL FIRES & EXPLOSION HAZARDS:

- Keep containers tightly closed, isolate from beat, sparks, electrical explanates tightly closed, isolate from beat, sparks, electrical explanates tightly closed, isolate from beat, sparks, electrical explanates and specifies. Buring emergency conditions requires special precentions During emergency conditions ownerspromyre to decompositions products may cause a health hazard. Symptoms may not be immediately apparent.

SECTION V - HEALTH HAZARD DATA

PERMISSIBLE EXPOSURE LEVEL.
 PERMISSIBLE EXPOSURE LEVEL
SEE SECTION II, HAZARDUNG INCREDIENTS
-EFFECTS OF OVEFERPOSURE
                  TTS OF OVEREXPOSURE INHALATION: Irritation of the respiratory tract L scute nervous system depression characterized by the following progressive steps headache, diszinese, staggering gait, confusion. unconsciousness of coma.

SPIP AND ENE COMPACT: SRIN: Contact with the skin can cause irritation. Symptoms may be swelling, redness, and rash
```

```
MATERIAL SAFETY DATA SHEET Printed : 07/19/01
For Costings, Besins and Related Materials (27/09/01
  Page: 1
    SCITO I - PROCT IDENTIFICATION
  Menufecturer: DEFT, INC. (CAGE CODE 33461) Information Phone: (949) 474-0400
17451 VON KARMAN AVENUE Recreasey Phone: (800) 424-9300
CERTURE Phone: 800-424-9300
                           TRUTHE
  SECTION II - HALARDOUS INGREDIENTS
  Ingredients
 AUTPRESTO ANTHE
  ALTHERTIC ANTHE
  ALTPEATIC ANDER
 ALTPOUTTC ARTES
  sec-BOTYL ALCOHOL
                                                                                                                                                                               H.E. 12.5 € 68F
  AROMATIC HYDROCARBON
                                                                                                                                                                         N.R. 3 8 68F
150 ppm 5.1 8 68F
M.H.
N.E.
  XYLANG
1,2,4 TRIMETHYLSOMSENE
 COMESSE
1,3,5 TRIMETHYLBENGENE
DIETHYLBENGENE
ETHYL BRINGENE
                                                                25360-17-4 < 0.1 H.E. R.E. R.E. R.E.

100-61-4 < 0.1 100 ppm 125 ppm 100 ppm

IMRC has determined that ethylbenzens is possibly

carcinogenic to beams.

1760-24-3 < 1. 200 ppm 250 ppm 200 ppm

90-72-2 < 5. M.E. M.E. H.E. R.E.

71074-39-0 < 1. N.E. H.E. N.E.
                                                                                                                                                                          125 pgm 7.1 8 68F
 amino silame ester
Epust régin hardener
Epost resin hardener
                                                                                                                                                                            250ppm
H.E.
H.E.
           THE AMOVE LISTED PRODUCTS ARE ON THE TSCA INVENTORY LIST. ALSO ART UNLISTED INGREDIENTS.
 M. R. w Black Buttabal Calcard
SECTION III - PHYSICAL DATA
                               SECTION IV - FIRE AND EXPLOSION HAZARD DATA
Flammability Class: IB Flash Point: 67 P TOC LEL: 9.90% UEL: 9.90% UEL: 9.500M. ALCOROL FORM, CO2, DRT CHEMICAL, MATER FOG - SPECIAL FIRST TEMPLET PROCEDURES: Full fire fighting equipment with self-contained breathing apparatus and full protective olothing should be worn by fire fighters. Mater may be used to cool closed containers to prevent pressure build-up, onto ignition or explosion.

-UNISOM: FIRE & EXPLOSION HAZARDS: Rep containers may explode when exposed to extreme heat. Application to hot surfaces requires special precautions. During emergency conditions oversupeaux to decomposition products may cause a health hazard. Symptoms may not be immediately apparent.
                                           Plash Point: 67 P TCC LEL: 0.90% UEL: 9.80%
                                          SECTION V - HEALTH HARARD DATA
-PERMISSIBLE EXPOSURE LEVEL:
SEE SECTION II, RAZARDOUS INGREDIENTS.
-SPPECTS ON OVEREXPOSURE:
          HEMALATION: Irritation of the respiratory tract & acets nerw
system depression characterized by the following progressive
steps: beadache, distincts, staggering gait, confusion,
unconsciousman or come.
```

APPENDIX C-1: Deft® Product Data Sheets for Water-Based Epoxy-Polyamide Prime r Paint (MIL-PRF-85582C, Type I, Class C)

PRODUCT INFORMATION DATA SHEET

	44-GN 72 PROPOSED COLOR
Product Code Catalyst Component	t(44-GN-72 Cata.)
Batch Number of Baze Componer	
Batch Number of Catalyst compos	ment(L-13266)
Product to meet Specification	(MIL-PRF-85582C Type I, Class C2)
Product to meet Color	(Color : PROPOSED COLOR)
Mix or estalyst ratio	(2:1 by volume)
REGUESTOR SOME BUT ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	(4 Parts by volume, approximate)
Reducer versus agrances and contract contract contract	(Distilled or Deionized Water)
BASE CHARACTERISTICS	CATALYST CHARACTERISTICS
Wt./Gal(10.80)	Wt./Gal. new a sea a recovery stream and 9.34 1
% solids by weight (74.25%)	% solids by weight(69.28%)
% solids by volume 58.77%	% solids by volume 67 16%
VOC pounds/gallon(2.80)	VOC pounds/gallon(2,87)
VOC grams per liter (333)	VOC grams per liter
,	
CHARACTERISTICS AS CATALYZES	D (NO REDUCTION)
Wt/Gal	Wt/Galof Solida(12.08 lbs)
% solids by weight (71.75%)	Sq./Ft. coverage @ 1
% solide by volume(61.57%)	mil dry(987 Sq./Ft.)
VOC pounds per gallen-(2.81)	Grama per sq./Pt. @ 1
VOC grams per liter (337)	mil dry (3.46 grams)
DUALIFIED TEST RESULTS	
Classification: (Para.1.2) Type I = Standard	Pigment
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Pigment
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passe
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	coating shall be the natural color of the
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	coating shall be the natural color of the
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	coating shall be the natural color of the Passes of grind of the admixed primer coating
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	coating shall be the natural color of the Passes of grind of the admixed primer coating
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Coating shall be the natural color of the Passes of grind of the admixed primer coating nent A and Component B will stir into a
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passe coating shall be the natural color of the Passe s of grind of the admixed primer coating nent A and Component B will stir into a
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passe coating shall be the natural color of the Passe s of grind of the admixed primer coating nent A and Component B will stir into a Passe # 4 Ford Cup) 20 sec
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passe coating shall be the natural color of the passes of grind of the admixed primer coating nent A and Component B will stir into a Passes # 4 Ford Cup) 20 sec
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passe coating shall be the natural color of the passe s of grind of the admixed primer coating nent A and Component B will stir into a passes # 4 Ford Cup) 20 sec F (when stirred num increase 1 8 sec. max
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passes coating shall be the natural color of the passes of grind of the admixed primer coating nent A and Component B will stir into a passes # 4 Ford Cup) 20 sec # (when stirred num increase
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passes coating shall be the natural color of the Passes of grind of the admixed primer coating nent A and Component B will stir into a Passes # 4 Ford Cup) 20 sec F (when stirred num increase ill meet all requirements after one years in
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passes coating shall be the natural color of the Passes of grind of the admixed primer coating nent A and Component B will stir into a Passes # 4 Ford Cup) 20 sec # (when stirred num increase 8 sec max ill meet all requirements after one years in Passes
Classification: (Para.1.2) Type I = Standard Class C2 = Strontium Chromate	Passe coating shall be the natural color of the passe s of grind of the admixed primer coating nent A and Component B will stir into a Passe: # 4 Ford Cup) 20 sec F (when stirred num increase 3 sec max ill meet all requirements after one years ***

9.	Freeze Thaw Stability: (Para.3.4.8) This primer shall pass 5 cycles at 16 hours at	
	1500 4 500 followed by 2 hours at 7700 per cycle	asses
10.	Dry Time: (Para 3.5.2) Under an air flow of 88 feet per minute the primer shall dry as follows:	
	(a) Tack Free (60 minutes maximum)	mates
	(b) Dry Hard (6 hours maximum) 6 l	DUS
13.	Lifting: (Para 3.5.3) There shall be no lifting of the MIL-C-85285B Polyurethane Topcoat after the following:	
	(a) Topcost @ 2 hours No Li	Aing
	(b) Topcoat @ 4 hours No Li	fling
	(c) Topcoat @ 18 hours	fling
8.4	Adhesion = Wet Tape: (Para.3.5.4) No loss of adhesion after 24 hours of immersion	769*
Bunk.	in distilled water at room temperature (77°F)	SASES
71.45	Flexibility: (3.5.5) The primer shall pass an Impact elongation of 10%	asses
8.0	Strippability: (Para.3.5.6) 90% of the primer will be stripped with in 15 minutes	and the contract of
EO.	with remover conforming to MIL-R-91294 Class I at room temperature (77°F)	No amount
a ##	With Period Conforming to Mill-R-71279 Casts of Doors Casts of Conformation Conform	apanene Annene
17.	Infrared Reflection (Para.3.5.7) Type II Primer Only :	
186	Water Resistance: (Para 36.1) The primer coating with and without a topcoat shall	
	with-stand immersion in distilled water maintained at 49°±3°C for four days without	V
	exhibiting any evidence of softening, wrinkling, blistering or other deficiency	'arnes
19	Salt Spray: (Para, 3.6.2,1) With and with-out Topcoat of polyarethane conforming to MIL-C-85285B shall show no blistering after 2000 hours at 5%	
	(a) Aluminum variate extraorente protest prote	house
	(b) Aluminum / Graphite Epoxy	hours
雪点	Filiform: (3.6.2.2) Exhibit no filiform corrosion beyond ¼ inch from scribe.	
a.v	Majority of filaments less than 1/8 inch	agene .
21	Fluid Resistance: (Para. 3.6.3) This primer shall withstand 24 hours immersion of	. Elizabili Milanosia
	the following;	
	(a) MIL-L-23699 Lubricating Oil @ 250°F ± 5°F	asses
	(b) MIL-H-83282 Hydraulic Fluid @ 150°F ± 5°F	

EPOXY POLYAMIDE, WATER REDUCIBLE PRIMER DESCRIPTION AND APPLICATION INFORMATION

DESSCRIPTION: Chemical cured two component epoxy polyamide water reducible primer for application on ferrous and non-ferrous metals. Component A contains the pigment and polyamide resin. Component B is the clear non-pigmented epoxy portion which acts as the hardener or curing agent for Component A.

AIR POLLUTION REGULATIONS: This product is formulated for use where the air pollution regulations call out for a maximum volatile organic compound (VOC) of 340 grams per liter.

SPECIAL FEATURES: This epoxy polyamide primer is a water reducible, corrosion inhibiting chemical and solvent resistant primer.

APPLICATION: This primer will spray satisfactorily in all respects and shall show no running, sagging or streaking. The dry film shall show no dusting, morning or color separation and shall present a smooth finish free from seeds. The standard film thickness shall be 0.6 to 0.9 mile dry.

MIXING INSTRUCTIONS:

Component A 2-Volumes Component B

Water #

1-0

Add all of the Catalyst Component to the short filled can containing the Base Component. Then use one of the following methods for mixing.

Page 2 of 4

(lasued: 3 / 99°)

APPENDIX C-2: Deft® MSDS for Water-Based Epoxy-Polyamide Primer Paint (MIL-PRF-85582C, Type I, Class C)

SARM-Abolt server			evised : 06/16	/98			
CIA. I LUM	î - PRODUCT IN	ABSTEP ICATION					
Servetecturer 17451 Von Kuddan	AVENUE E	information Ph Increase Ph	one: (949) 474 cne: (866) 424 cne: 800-424-9	-0408 -9308			
1EVINE	CA						
Product Class: TYPE I,CL C2,POG Trade Name: NIL-PRF-85582C, Product Code: 4464072 C.A.S. Bumber: NONE	TY I, CL C2	Hasard Rating nome -> extre 0> 4	8: Health Me Fire Reactivity	- 3 - 3 - 1			
At the literate with the second of the secon	- All the Will bin to have been seen and the state of the last of			SECTION OF THE			
na narrow. No cub dib dib dib dib dib dib dib dib dib di				Williams of the same of the same	Limite		
Ingradients Lugaren e e e e e e e e en en en en en en en		Weight	ACG	IH	and the contract of	ÓSBA	VI
Ingredients	CAS #	*	TLN	STEL	PEL	STEL	110
MC-BUTYL ALCORCE TROWTIUM CERCMATE	78-92-2 64742-95-6	25. < 1.	100 ppm M.E.	N.E.	100 ppm N.B.	兴. B. 别. U.	12.5 \$ 688 3 8 688
PERCEPTION CHRONICATES	7789-06-2	éturer recomm 30.	ends a PEG of .	100 ppm.	.1 new	10 . 12 .	
The state of the s	The AC	CIH TWA DOC B	trontium Chrom	ate (CAS	7789-06-23	as Cr	
	is 0.0	005 mg/m3.					
THE ABOVE LISTED PRODUCTS MLSO MAY UNLISTED INCREDI		INVENTORY LI	ST.				
F.B. = Not Established							
SECTI	ON III - PHYSIC	AL DATA					
				erral de arrair			
woiling Range: 211 - 335 Deg Nego. Este: 0.65 x n-Satyl Wolstiles woi t 43.1 Wgrt ggeskance: GRESH LIQUID WITH S	Acetate Liqu 26.9 Wgt	id Density: H per gallon:	eavier than Wal	t-9ac -			
THE RESIDENCE OF THE PROPERTY OF THE PARTY O	formation found	applicable					
DECOMPOSITION TEMPERATURE: No in: DECOMPOSITION TEMPERATURE: No in: DEREOSION RATE: No information (ISCOSITE: This liquid to heavy	nformation found found Viscous materia	1					
DECOMPOSITION TEMPERATURE: No in DERESSION RATE: No information: FISCOSITY: This liquid to heavy SECTION IV	nformation found found viscous materia - PIEE AND EXPLO	i SIOM HASARD D	ATA ·				
MCCOMPOSITION TEMPERATURE: No in DERROSIOM RAYS: Mo information : TESCOSITY: Than liquid to beavy SECTION IV	pformation found found Viscous materia - PIRE AND EXPLO	SIOM HASARD D	ATA				
SCHENOSITION TENDERATURE: No in TESCOSITY: Than liquid to beavy SECTION IV SECTION IV SECTION IV SECTION SECTION IV SECTION SECTION SECTION SECTION SECTION SECTION SE	nformation found found viscous materia - PIBE AND EXPLO h Point:72 P TCC DRY CHEMICAL, WA S:	I SIOM HAZARD D LEL: 1.00	ATA . % URL: 9.801				
SCORPOSITION TEMPERATURE: No in TISCOSUTT: This liquid to heavy SECTION IV SECTION IV SECTION IV SECTION IV SPECIAL FIRSTIGHTIMI PROCEDURES Fell fire Eighting equipm apparatus and full protect Fighters. Nater may be use	nformation found found viscous materia - FIRE AND EXPLO h Poist:72 P TCC new CERMICAL, WA S: ent with self-co tive clothing sh ed to cool close	I SION HAZARD D. LEL: 1.00 TER POS ntained breat ould be worn d containers	ATA 9.800				
SCORPOSITION TEMPERATURE: No information of ENCOSETT: This liquid to heavy SECTION IV SECTION IV SECTION IV SECTION IV SECTION IV PORM, ALCOHOL PORM, CO2, I SPECIAL PRESTIGHTING PROCEDURES Fall fire tighting quipos apparatus and full protect fightars. Nater may be use pressure build-up, auto is	nformation found found viscous materia - FIRE AND EXPLO h Point:72 P TCC DRY CHEMICAL, WAS S: ent with self-co tive clothing sh ed to cool close guition or explo-	I SION HAZARD D. LEL: 1.00 TER POS ntained breat ould be worn d containers	ATA 9.800				
DECOMPOSITION TEMPERATURE: No information in ISCOSITY: This liquid to heavy section IV s	nformation found found viscous materia - PIRE AND EXPLO h Point:72 P TCC DRY CERMICAL, WAS: ent with self-co- tive clothing shed to cool clowe guition or emplo DS: lowed. Isolate f	SION HASARD D LEL: 1.09 TER POS ntained breat ould be worn d containers sion. rom heet, spa	ATA * UEL: 9.800 hing by fire to prevent				
DECOMPOSITION TEMPERATURE: No information of ESCOSITY: This liquid to heavy SECTION IV SECTION SECTION SECTION SECTION SECTION ALONG POAM, CO2, 1 SPECIAL PRESTIGHTING PROCEDURES Full five fighting equipments and full protect inhters. Nater may be used pressure build-up, auto information of the section of the secti	nformation found found viscous materia - FIRE AND EXPLO h Point:72 P TCC TRY CHEMICAL, WAS S: ent with self-co tive clothing sh ed to cool close gmition or emplo DS: losed. Isolate fo open flame. Close open flame. Close	I SION HAZARD D. LEL: 1.00 THE FOG nationed breat ould be worn d containers sion. rom heat, spa ed containers	ATA * UEL: 9.801 hing by fire to prevent rks, may				
SCORPOSITION TEMPERATURE: No information INCORPOSION RAYE: No information INCORPOSION RAYE: No information INCORPOSION IV **CORPOSITION TO SECTION IV **CORPOSITION SECTION IV **CORPOSITION SECTION IV **SPECIAL PERFORMANCE PROCEDURES Fall fire fighting equipme appearance and full protect fighters. Nater may be use presented build-up, auto is presented build-up, auto is presented build-up, auto is consistent fight and complete when expused to explode them.	nformation found found viscous materia - PIRE AND EXPLO h Point:72 P TCC DRY CHESTICAL, MA 5: ent with self-co tive clothing sh ad to cool close guition or explo DS: losed. Isolate fo open flame. Close green thase. App processions. Da processions. Da	SION HAZARD D LEL: 1.00 THE FOG ntained breat ould be worn d containers sion. rom heat, spa ad containers lication to b	ATA * UEL: 9.801 hing by fire to prevent rks, may oc				
DORROSITION TEMPERATURE: No information : ESCOSITY: This liquid to heavy SECTION IV SECTION IV SECTION IV SECTION IV SECTION IV SPECIAL PREFIGHTED PROCEDURE: FORM, ALCOROL POAM, COZ, I SPECIAL PREFIGHTED PROCEDURE: Full fire fighting equipm appearance and full protect fighters. Water may be use pressure build-up, auto is DEMOGRAF FIRE & EMPLOSION HARRHS Hoop containers tightly contents of the contents	nformation found found viscous materia - FIRE AND EXPLO h Poist:72 P TCC ERY CERNICAL, WA S: ent with self-co- tive clothing sh ad to cool close guition or emplo DS: losed Isolate fopen flame. Clos Attrame heat. App precautions. Da o decomposition. Da	SION HAZARD D LEL: 1.09 THE POS ould be worn d containers slos. rom heat, spa ad containers lication to be xing emergence	ATA * UBL: 9.804 hing by fire to prevent rks, may oc Y				
SCHEWOSITION TENDERSATURE: No information : TESCOSITY: Than liquid to beavy SECTION IV **Lammability Class: IB Flast **SECTION IV **SECTION IV **SECTION IV **Lammability Class: IB Flast **SECTION IV **SECTION	nformation found found viscous materia - FIRE AND EXPLO h Point:72 P TCC h Point:74 P TCC h	I SION HAZARD D. LEG.: 1.00 TEE POS ould be worn d containers sion. rom heat, spa ed containers lication to be xing emergency products may eately apparent	ATA * UEL: 9.800 hing by fire to prevent rks, may oc y couse a				
SCORPOSITION TEMPERATURE: No information in ISCOSETT: This liquid to heavy section IV SECTION IV SECTION IV SECTION IV SPECIAL FURSTISHING MEDIA: FORM, ALCOROL POMM, CO2, 1 SPECIAL FURSTISHING PROCEDURE: Full fire fighting equipme appearatus and full protect fighters. Natur may be use pressure build-up, auto is pressure build-up, auto is consular FURS & ENPLOSION MACANS Reep containers tightly conjectived equipment and cuplode when exposed to expuriences requires special conditions overexposure to health bazard. Symptoms as	nformation found found viscous materia - FIRE AND EXPLO & Poist:72 F TCC ERY CHEMICAL, WAS: s: ent with self-co- tive clothing sh ed to cool close gnition or emplo- Ds: losed. Isolate fopen flame. Clos Attrams hast. App precautions. Da- o decomposition may not be immedia	I LEL: 1.09 THE POS notained breat ould be worn id containers sion. Tom heat, spand containers along the street outsiners are the street outside the same of containers are the same outside the	ATA 9.804 hing by fire to prevent rks, may ot y cause a t.				
SCHOOLYTON TENDERATURE: No information in the constitution of the	nformation found found viscous materia - FIRE AND EXPLO h Poist:72 P TCC ERY CERNICAL, WA S: ent with self-co- tive clothing sh ed to cool close guition or explo DS: losed Isolate fopen flame. Clos Atreme heat. App precautions. Da- o decomposition by not be issedi	I LEL: 1.09 THE POS notained breat ould be worn id containers sion. Tom heat, spand containers along the street outsiners are the street outside the same of containers are the same outside the	ATA 9.804 hing by fire to prevent rks, may ot y cause a t.				
SCHOOLITION TEMPERATURE: SO IDEROSION RATE: Mo information : PERCOSITY: This liquid to beavy SECTION IV PLANMADILLY CLASE: IB Flant EXTINGUISHING MEDIA: FORM, ALONG FORM, COZ.; SPECIAL FRESTISHTHE PROCEDURE: Full fire fighting equipme imperature and full protect fightars. Mater may be use pressure build-up, auto is pressure build-up, auto is celectrical equipment and explode when exposed to ex Burfaces requires special conditions overexposed to ex Burfaces requires special conditions overexposure to bealth bazard. Symptoms au SECTION PERMISSIBLE EXPOSURE LEVEL: SEE SECTION II, BAZARDOUS SPECTS OF OVEREXPOSURE:	nformation found found viscous materia - FIRE AND EXPLO h Point:72 P TCC h	I SION HAZARD D. LEL: 1.00 THE POS ntained breat ould be worn d containers sion. rom heat, spa ad containers lication to be ring emergence products may attly apparent ARARD DATA	ATA				
SCORPOSITION TENDERATURE: No information in INCONSULT: This liquid to heavy section IV SECTION IV SECTION IV SECTION IV SECTION IV SPECIAL PREFIGHTING PROCEDURES Fell fire tighting equipm appearance and full protect fighters. Mater may be use pressure build-up, auto in Decision Harman Base of the Procedures of the Company of the Compa	nformation found found viscous materia - FIRE AND EXPLO A Point:72 P FCC h Point:72 P FCC h Point:72 P FCC h Point:74 P FCC h P FC	I SION HARARD D LEL: 1.00 THE FOG ntained breat ould be worn d containers sion. rom heat, spa ad containers lication to b xing seergence products may attely apparent ARARD DATA	ATA * UEL: 9.801 hing by fire to prevent rks, may ot Y cause a t.				
DECOMPOSITION TEMPERATURE: No information its consistent rate: The plant rate: The plant rate: The plant rate: The plant rate: The procedure: Fell fire fighting equipment and full procedify there. Nate: new pressure build-up, auto is pressure build-up, auto is consistent rate equipment and explode when expressive and explode when expressive and explode when expressive and conditions overexposure to be surfaces requires special conditions overexposure to be surfaces requires special conditions overexposure as secreton it, hazardous spraces of consistent rate in the rate of system depression character them is headache, direines unconsciousness or cons.	nformation found found viscous materia - FIRE AND EXPLO & Poist:72 F TCC Rev CERRICAL, WAS: ent with self-cotive clothing shed to cool close gnition or employs: losed Isolate fopen flame. Clos Atrams heat. App precautions. Day of decomposition by so the isosed. We have a supported by the formative by the formative by the formative by the formative with the contact with	SION HASARD D LEL: 1.09 THE POS ntained breat ould be worn d containers sion. rom heat, spa ed containers slication to b xing emergency products may ately apparent AEARD DATA tract & acut llowing progrit, confusion.	hing by fire to prevent rks, may oc y cause a t.				
DECOMPOSITION TEMPERATURE: SO INTROSION RATE: Mo information : FISCOSITY: This liquid to beavy SECTION IV FISCOSITY: This liquid to beavy SECTION IV FISCOSITY: This liquid to beavy SECTION IV FISCOSITY: This liquid to beavy FORMALIZED FORM, COZ., SPECIAL FIREFIGHTED PROCEDURE: Field Live Lighting equipme SECTION ARCHEL EXPLOSION MACANE Reep containers tightly c. electrical equipment and complode when exposed to an autoface of a containers of the containers and complode when exposed to an autoface of a containers of a containers and complete the containers are a contained to the containers of a containers are a contained to the containers of a containers are a contained to the containers of a containers are a contained to the containers of a containers are contained to the cont	nformation found found viscous materia - FIRE AND EXPLO EXPLOSE POINT AND EXPLOSE PROCESS OF THE	I SION HAZARD D. LEG.: 1.00 TER POS ntained breat ould be worn d containers sion. rom heat, spa ed containers lication to be ring emergency attly apparent ARARD DATA tract & acut llowing prognit, comfusion the skin can sees, and real itating and su	ATA . 9.804 hing by fire to prevent rks, may ot y cause a t				
DECOMPOSITION TEMPERATURE: No information itscorpts than liquid to beavy section IV - SECTION SECTION MEDIA: FORM, ALCORDE POAM, COZ SPECIAL PERSTANTING PROCEDURES Full fire fighting equipme appearance build-up, auto is pressure build-up, auto is section exaction execution of the section of the sect	nformation found found viscous material viscous material viscous material PIRE AND EXPLO A Point:72 P TCC he Point:72 P TCC he Point:72 P TCC he Point:74 P TCC he P TCC he Point:74 P TCC he Point:74 P TCC he Point:74 P TCC he P	I SION HARARD D LEE: 1.00 THE POS ntained breat ould be worn id containers sion. To heat, spa ad containers sion to be ad containers according to the servence products may a tract & acut blowing program tract & acut blowing program tract & acut tract &	ATA * URL: 9.801 hing by fire to prevent rks, may ot Y cause a t. c nervous sasive cause h. ry rause g				

MATERIAL SAFETY DATA SHEET PRINCES FOR Coatings, Regins and Related Materials Revised : 06/16/96 Printed: 07/26/00 Page: 1 SECTION I - PRODUCT INDENTIFICATION Manufacturer: DEFT, INC. (CAGE CODE 33461) 17451 VON KARMAN AVENUE Information Phone: (949) 474-0400 Beergency Phone: (800) 424-9300 CHESTRIC Phone: 800-424-9300 IRVINE 92614 Product Class: TYPE I.CL 2, SPOXY 1 Heart Ratings: Health = 3
Trade Name : COMP.B MYL-P-05562 TYPE 1, CLA: 0 ---> 4 Heactivity = 3
Product Code : 44G8972CAT :
C.A.S. Number: HONE SECTION II - NAZARDOUS IMGREDIENTS Weight ACMIH PRIL S77%3L Inoredients 30. 100 ppm W.E. 100 ppm N.R. 16 9 589 NITROSTEARS 79-24-3 THE ABOVE LISTED PRODUCTS ARE ON THE TSCA INVESTORY LIST. ALSO ASY UBLISTED INSREDIESTS. M.E. - Not Established SECTION III - PRISTCAL DATA Boiling Range: 237 - 300 Deg. F Vapor Density: Heavier tham Air.
Evep. Rate: 1.27 x n-Butyl Acetate Liquid Density: Heavier tham Air.
Volstiles vol % 32.2 Wgt% 30.1 Wgt per gallon: 9,38 Pounds.
Spec. Gravity: 1.12605 Appearance: AMSER LIGOID WITH SOLVENT OOCH.

Appearance: AMSER LIGOID WITH SOLVENT OOCH.

V.O.C.: J45 G/L

SOLUBILITY IN WATER: Insoluble
APPOICHITY IN WATER: Insoluble
APPOICHITY IN TEMPERATURE: No information found
DECOMPOSITION TEMPERATURE: No information found
CORROSION RATE: No information found
VISCOSITY: Thin liquid to heavy viscous material SECTION IV - PIRE AND EXPLOSION HAZARD DATA Plannibility Class: SC Flash Point: S7 P TOC LEL:
-ENYMOUISLES MEDIA:
-POMM, ALCOHOL POMM, CO2, DRY CHEMICAL, MATER POS
-SPECIAL FIREFIRETIES PROCEDURES: 3.40% UEL: -EFFICIAL FIRESIDETING PROCEDURES:

Pull fire fighting equipment with self-contained breathing apparatus and full protective clothing should be worn by fire fighters. Nater may be used to good closed containers to prevent pressure helic-up, auto ignition or emplosion.

-UNUSUAL FIRE & EXPLOSION MARARDS: The FIRE & Explosion Sazards:
Esep containers tightly closed. Isolate from best, sparks,
electrical equipment and open firms. Closed containers may
explode whem exposed to extreme heat. Application to hot
surfaces requires special precautions. During emergency
conditions overexposure to decomposition products may cause a
health hazard. Symptoms may not be immediately apparent. SECTION V - HEALTH HAZARD DATA -PERMISSIBLE EIFOGURE LEVEL: SEE SECTION II, HAZARDOUS INGREDIENTS. -EFFECTS OF OVEREXPOSURE: INSALATION: Irritation of the respiratory tract & acute nervous system degression characterized by the following progressive steps: headache, dixiness, staggering gait, confusion, unconsciousness or come. SEIN AND EYE CONTACT: SKIN: Contact with the skin can cause irritation. Symptoms may be swelling, redness, and rash. SYES: Liquid, areosols, or vapors are irritating and may cause tearing, redness, and swelling accompanied by a stinging semmation. SKIN ABSORPTION: Prolonged or repeated contact can cause moderate irritation, drying, and defatting of the skin which can cause the skin to crack. INGESTION: Acute: Can result in irritation and possible corrosive action in the mouth, stomach tissue and digestive tract. Voniting may cause ampiration of the solvent, resulting in chemical pseumonitis. HEALTH HAZARDS (ACUTE AND CHRONTC) ACUTE: Vapors are irritating to eyes, nose, and throat. Inhalation may cause beedschee, difficult breathing and loss of consciousness.

APPENDIX D-1: Deft® Product Data Sheets for Solvent-Based Elastomeric, Polyurethane Primer Paint (TT-P-2760A, Type I, Class C)

PRODUCT INFORMATION DATA SHEET

Product Code Base Component(0937-27)
Product Code Catalyst Component (99-X-2 Cata.)
Batch Number of Base Component(L-12370)
Batch Number of Catalyst Component(L-10711)
Product to meet MIL Specification(TT-P-2760A Type I Class C)
Product to meet Color Number
Mix or Catalyst Rano
Reduction
Reducer MIL-T-81772B Type I Polyurethane Reducer)

BASE CHARACTERISTICS

CATALYST CHARACTERISTICS

Wt/Gal	Wt/Gal (7.96) % solids by weight (55.06%) % solids by volume (47.02%) VOC pounds/gallon (3.54)
VOC grams per liter (255)	VOC grams per liter(424)

CHARACTERISTICS AS APPLIED OVO REDUCTION

Wt/Gal (9.79) % solids by weight (70.84%) % solids by volume (59.63%) VOC pounds per gallon (2.83)	Wt/Gal. of solids(11.63) Sq./ft. coverage @ 1 mil dry(954 Sq. / Ft.) Grams per sq./ft. @ 1 mil dry(3.29 grams)
WW growns nor liver / 240 \	

OUALIFIED TEST RESULTS

- Scope: (Para I.1) This is a low Volatile Organic Compound (VOC), solvent borne, elastomeric, polytrethane primer coating. This primer coating is formulated primarily for spray application. It is compatible with polytrethane topcoats and is intended for use on aircraft and other equipment subject to structural flexing at low temperatures.
- Classification: (Para 1.2) The coming shall meet the following:

Type I: Standard Pigments

Class I: Strontium Chromate based corrosion inhibitors

- Volatile Organic Compound (VOC) Content: The maximum VOC content of this primer coating at application shall be 340 grams per liter (2.80 lbs, per gallon). The resistivity of the solvents shall be suitable for electrostatic application.
- Condition In Container: (3.5.1) The costing components shall be capable of being easily mixed by hand, with a paddle, to a smooth, homogeneous, pourable condition and free from gelation.
- Storage Stability: (Para.3.5.2) The previously unopened packaged material shall be capable of meeting all
 requirements specified for a period of one year, when stored in an area where the daily temperature of the
 ambient air is with-in the range of (1.7°C to 46°C (35°F to 115°F).

Page 1 of 4

6. Color: (Para 3.5.4) The color of the Type I primer coating shall be the natural color of the corrosion inhibiting pigment used with the exception that tinting to a darker shade is permitted to improve hiding Fineness Of Grind: (Para.3.5.8) The fineness of grind, on the Hegman Scale shall be a minimum. 8. Viscosity: (Para.3.6.4) The viscosity of the admixed coating after thirming Shall be in the range 9. Pot Life: (Para 3.6.5) After 2 hours in a closed container, the viscosity of the admixed conting shall not exceed 60 seconds through a No. 4 Ford Cup. The coating shall not get with-in 4 hours after mixing. Start 21.78 seconds #4 Ford Cup After 4 hours 22.02 seconds, after 8 hours no gel. 10. Drying Time: (Para 3.7.1.) The coaring shall be spray applied to a dry film thickness of (Life to 2 mils) Caution shall be taken when reducing the coating not to exceed the maximum allowable VOC content. The applied coating shall be allowed to dry at (70°F ± 10°F) Tack Free (4-hours) 11. Lifting: (Para 3.7.3) When separately applied to this primer coating that has air dried for 1.4 and 18 hours, the polymerhane topocoat shall exhibit no lifting or other film irresularity. 12. Adhesion: (Para 3.7.4) The primer shall not peel away from the substrate after immersion in water for 24 hours, 13. Ambient Flexibility: (Para 3.7.5.1) The primer coating shall exhibit a minimum impact elongation of 60%.......Passes 14. Low Temperature Flexibility; (Para, 3.7.5.2) The primer coating shall exhibit no cracking 15. Water Resistance: (Para.3.8.1) The primer with the polyurethane topocat shall with-stand immersion for 4 days in distilled water at 120°F with-out exhibiting any softening wrinkling blistering, loss of adhesion or other deficiency. 16. Fluid Resistance : (Para 3.8.3) The primer shall exhibit no softening, blistering, loss of adhesion or other defects after immersion for 24 hours in the following: MIL-H-83282 Hydrandic Fluid (@ 150°F) 17. Salt Spray: (Para 3.8.5.1) The primer coating shall exhibit no blistering, lifting of the

POLYURETHANE DESCRIPTION AND APPLICATION INFORMATION

<u>DESCRIPTION</u>: Chemically cured two component polymerhane elastomeric primer suitable for application on aircraft and aerospace equipment. Component A contains the pigment and the oil-free polyester resin. Component B is the clear non-pigmented aliphatic isocyanate prepolymer portion which acts as the hardener or curing agent for Component A.

PIGMENTS: Shall have exterior durability and be lead free.

AIR POLLUTION REGULATIONS: This product is suitable for use where the air pollution regulations call out for a maximum VOC of 340 grams per liter or les

SURFACE PREPARATION: This product is designed for use over deoxidized aluminum, chromic acid anodized aluminum, sulfuric acid anodized aluminum, titanium, magnesium, steel, fiberglass, and Alodine 1000, 1200 and 1500 equivalent pre treatments.

APPENDIX D-2: Deft® MSDS

Solvent-Based Elastomeric Polyurethane Primer Paint (TT-P-2760A, Type I, Class C)

MATERIAL SAFETY DATA SHEET Printed: 07/19/01
For Coatings, Resins and Related Materials
(Reviseb.: 06/38/95) Page: 1 SECTION I - PRODUCT IMPROPIFICATION Magnifectures: DEFF, THE S (CASE COOR 33461) Information Phone: (949) 474-0400 Baergency Phone: (800) 424-9300 CHEMITERC Phone: 800-424-9300 Product Class: POLTURETHANE | Heart Ratings: Health - 4
| None -> extreme | Fire - 3
| Product Code : 097952. # Reactivity - 1
| Personal Protection - I C.A.S. Number: NOW SECTION II - HAZARDORS INCREDIENTS Incredients D-BUTTL ACETATE 123-86-4 < 5. 150 ppm 200 ppm 150 ppm 200 ppm 13 8 687
763-69-9 10, N.E. N.E. N.E. N.E. N.E. 7 8 687
Manufacturer recommends a workplace exposure limit of
50 PPM-TMA: 100 PPM-STMD.
PMM-STMD: N.E. N.E. N.E. N.E. N.E.
New Jersey Trade Secret Registry Number: 800963-5040
1330-20-7 < 1. 100 ppm 150 ppm 100 ppm 150 ppm 5.1 8 687
100-41-4 < 0.1 100 ppm 125 ppm 100 ppm 125 ppm 7.1 6 587
1ABC has determined that ethylbesisses is possibly carcinogenic to humans.
78-83-1 < 0.1 50 ppm N.E. 30 ppm 1.E. 8.8 9 687
1317-65-3 < 1. 10 mg/M3 N.E. 10 mg/M3 N.E.
7789-06-2 20. 1 ppm N.E. 10 mg/M3 N.E.
13 ppm N.E. 8.8 9 687
13 ppm N.E. 10 mg/M3 N.E. 10 mg/M3 N.E.
15 ppm 70 8 687
123-54-6 < 5. N.E. N.E. N.E. H.E. H.E. 6.9 8 687
123-54-6 < 5. N.E. N.E. N.E. H.E. H.E. 6.9 8 687
77-58-7 < 0.1 N.E. N.E. 1. mg/M3 .1 mg/M3 .2 8320F
Causes skin and eye irritation. Narmful if swellowed or absorbed through skin. May cause liver and kichey damage. ETHYL, 3-ETHOEYPROPICALLYR DIFERENCE AND AND NYL EMB BYRCY'L BROKZENIE ISOBUTYL ALCOHOL AMPI-FLOAT AGENT STROMTION CEROMOTE HETEVL STRYL KETOME DISCOUNTED DISCOURAGE THE ABOVE LISTED PRODUCTS ARE ON THE TOCA INVENTORY LIST. N.R. - Not Established SECTION III - PHYSICAL DATA Vapor Density: Heavier than Air.

Liquid Density: Heavier than Air.

Why per gallon: 11.53 Pounds.

Spec. Gravity: 1.38413 Boiling Range: 175 - 401 Deg. F Evap. Rate: 0.66 x n-Butyl Acetate Volatiles wol & 28.4 Wgt% 19.0 Spec. Gravity:
V.O.C.: 262 G/L
SOLUBILITY IN MATER: Insoluble PH: Not applicable
AUTOIGNITION TEMPERATURE: No information found
CORROSION RATE: No information found
VISCOSTY: This liquid to heavy viscous material Flowmebility Class: IB Flash Point:23 F TCC LEL: 1.00% UEL: 11
-EXTINGUISHING MEDIA:
FORM, ALCOHOL FORM, CO2, DRY CHEMICAL, WATER FOG
-SPECIAL FIREFIGHTING PROCEDURES:
Pull fire fighting equipment with self-contained breathing apparatus and full protective clothing should be worn by fire fighters. Mater may be used to cool closed containers to prevent pressure build-up, auto ignition or explosion.
-UNISUAL FIRE & ENTHOSIUM HAZARDS:
Keep containers tightly closed. Isolate from heat, sparks, electrical equipment and open flame. Closed containers may explode when exposed to extreme heat. Application to hot surfaces requires special precautions. During emergency conditions overexposure to decomposition products may comme a bealth hazard. Symptoms may not be immediately apparent. SECTION IV - FIRE AND EXPLOSION HAZARD DAMA Flash Point: 23 F TCC LEE: 1.00% UEL: 11.40% SECTION V - BEALTH HAZARD DATA -PERMISSIBLE EXPOSURE LEVEL: -PERMISSIBLE RAPOSHER LEVEL:
SEE SECTION II, HAZARDOUS INCREDIBITS.
-REFERENCE OF COMPREKEOSORN:
INSULTION: Invitation of the respiratory tract & south nervous system depression characterized by the following progressive steps: headache, diminess, staggering quit, confusion, unconsciousness or come.

```
MATERIAL SAFETY DATA SHEET Printed: 07/19/01
For Contings, Regins and Related Materials
(#Revised: 06/30/99
   Page: 1
                                                                               SECTION I - PRODUCT INDESCRIPTION
   Namefecturer: DEPT, INC. (CAGE CODE 33461) Information Phone: (949) 474-8480 | Information Phone: (949) 474-8480 | Information Phone: (900) 424-9308 | Information Phone: (949) 474-8480 | Information Phone: (949
                                                       THURSDAY
                                                                                                                                                                            | Hazard Ratings: | Health - 4
| none -> extreme | Fire - 3
| 0 ---> 4 | Reactivity - 1
   Product Class: ALIPHATIC ISOCYANATE
Trade Name : CAT.TT-P-2760A, TYP 1,CL C
Product Code : dgY092taYA
   C.A.S. Mondon: NONE
                                                                                   SECTION II - HAZARDOUS INCREDIENTS
                                                                                                                                                                                                                                   ACGIR CTLV STEL PEL
                                                                                                                                                                                                          Weight
                                                                                                                                                                                                                                                                                                 n osha
Stel pel stel
                                                                                                                                                                                                                                                                                                                                                                                                                              man HiG
                                                                                                                                         ChS 4
                                                                                                                                                                                                                                                          #. B.
   POLIMERIC HEXAMETHELENE DIISOCYAMAT 28182-81-2
                                                                                                                                                                                                                     55.
                                                                                                                                                                                                                                                                                                                                              M.E.
                                                                                                                                                                                                                                                                                                                                                                                        N.B.
                                                                                                                                         822-86-0

HEXAMETRYLEMS DIISOCYAMATE (HDI) CAS No. 822-06-0, free monomer content averages 0.10% based on resin solide at the time of meantfacture. However, after 12 months storage, the free monomer content emp rise to a maximum of 0.14%. The ACRIM has a TLV of 0.005 ppm TSA.

20. 50 ppm 75 ppm 75 ppm 75 ppm 75 ppm 75 ppm 200 ppm 200 ppm
                                                                                                                                                                                                            20.
< 5.
                                                                                                                                                                                                                                              50 ppm
150 ppm
200 ppm
                                                                                                                                         108-10-1
123-86-4
78-93-3
                                                                                                                                                                                                                                                                                         75 ppm
200 ppm
300 ppm
                                                                                                                                                                                                                                                                                                                                    50 ppm
150 ppm
200 ppm
                                                                                                                                                                                                                                                                                                                                                                   75 pças
200 pças
300çças
   METNYL, ISOSUTYL RETORE
D-BUTYL ACETATE
                                                                                                                                                                                                                  20.
                        THE ABOVE LISTED INGREDIENTS ARE ON THE TSCA INVENTORY LIST, ALSO ART UNLISTED INGREDIENTS.
   W.R. m Not Established
BOILING RANGE: 175 - 460 Deg. F Vapor Density: Heavier than Air.

Rwap. Rate: 2.92 x n-Butyl Acetace Liquid Density: Lighter than Mater.

Wolstidas wol % 51.5 Mgt% 43.5 Mgt per gallon: 7.98 Pounds.

Appearance: AMBER LIQUID NITE SOLVENT ODOR

V.O.C.: 420 C/L

SOLUBBILITY IN MATER: Insoluble FH: Not applicable
ADTOIGNITION TEMPERATURE: No information found
DECOMPOSITY: Thin liquid to heavy viscous material
                                                                                                  SECTION III - PHYSICAL DATA
                                                                     SECTION IV - FIRE AND EXPLOSION HAZARD DATA
Planmability Class: EB
                                                                                                   Flash Point:23 F TCC LEL: 1.204 UML: 11.004
                                                                                         SECTION V - HEALTH MAZARD DATA
 -PROMISSIBLE EIPOSURE LAVEL:
SEE SECTION II, HAZARDOUS INGREDIENTS.
-EFFECTS OF OVEREXPOSURE:
IDENLATION: Irritation of the respiratory tract & acute nervous system depression characterized by the following progressive steps: beadache, distinces, staggering gait, confusion, unconsciousness of come.

SKIN AND ETE CONTACT: SKIN: Isocyanates react with skin protein and soisture and can cause irritation. Symptoms may be swelling, redness, and Tash.

EYES: [Liquid, arcosols, or vapors are irritating and may cause tearing, redness, and swelling accompanied by a stinging sensation.

EKIN ABSORPTION: Prolonged or repeated contact can cause
                         SKIN ASSETTION: Prolonged or repeated contact can desse
moderate irritation, drying, and defetting of the skim which can
```

APPENDIX E-1: Raw Data Table for Solvent-Based Epoxy-Polyamide Primer Paint (MIL-P-23377G, Type I, Class C)

Large Particle-Size Range Impactor (Mass Cr ⁶⁺ per Mass Dry Paint) x 100%									
Stage:	1	2	3	4	5	6	7		
	9.63%	4.42%	5.32%	7.69%	6.44%	3.94%	2.45%		
	7.99%	4.38%	4.94%	7.70%	6.34%	4.04%	ND		
	5.61%	4.01%	4.24%	7.08%	ND	3.90%	2.42%		
	ND	ND	ND	ND	6.70%	5.65%	3.20%		
	8.35%	ND	ND	8.55%	ND	7.65%	4.22%		
	ND	2.33%	5.96%	ND	ND		ND		
	5.48%	5.00%	5.44%	5.94%	5.54%	3.77%	2.30%		
	4.58% 6.54% 5.14% 6.28% 5.83% 4.42% 2.84%								
Mean %Cr:	6.94%	4.45%	5.17%	7.20%	6.17%	4.77%	2.90%		
n =	6	6	6	6	5	7	6		
std dev =	1.99%	1.37%	0.57%	0.98%	0.47%	1.42%	0.73%		

Small Particle-Size Range Impactor (Mass Cr ⁶⁺ per Mass Dry Paint) x 100%										
Stage:	1	2	3	4	5	6	7			
		6.33%	ND	2.79%	1.50%	0.83%	0.68%			
		5.56%	4.13%	2.66%	1.82%	1.27%	0.89%			
		7.21%	ND	1.20%	1.19%	0.84%	0.75%			
		4.92%	2.61%	1.77%	0.81%	0.51%	ND			
		8.71%	6.83%	3.66%	2.61%	1.44%	0.98%			
		8.71%	ND	2.46%	2.52%	1.69%	1.42%			
		9.30%	4.40%	2.67%	1.24%	1.25%	0.93%			
	5.97% 4.07% 2.67% 2.25% 1.64% 1.29%									
Mean %Cr:		7.09%	4.41%	2.48%	1.74%	1.18%	0.99%			
n =		8	5	8	8	8	7			
std dev =		1.65%	1.53%	0.73%	0.67%	0.42%	0.27%			

Note: ND denotes data was collected, but lost before analysis was complete

APPENDIX E-2: Raw Data Table for Water-Based Epoxy-Polyamide Primer Paint (MIL-PRF-85582C, Type I, Class C)

Large Particle-Size Range Impactor (Mass Cr ⁶⁺ per Mass Dry Paint) x 100%							
Stage:	1	2	3	4	5	6	7
	ND	5.35%	5.96%	8.78%	8.36%	5.10%	1.79%
	5.60%	4.51%	5.04%	6.46%	6.64%	4.07%	1.29%
	5.69%	6.71%	6.65%	6.23%	ND	5.01%	1.80%
	6.05%	ND	6.39%	6.34%	6.31%	4.52%	2.63%
	6.44%	5.43%	5.99%	5.18%	5.42%	ND	2.21%
	4.43%	4.83%	4.93%	5.95%	6.65%	5.03%	2.27%
	7.27%	ND	ND	6.78%	7.00%	4.54%	2.53%
	5.70%	4.73%	5.30%	ND	6.22%	5.15%	0.55%
	4.98%	5.19%	ND	ND	5.61%	3.85%	1.27%
	4.68%	3.30%	4.35%	6.07%	5.44%	3.54%	1.74%
	4.89%	5.30%	ND	6.45%	6.83%	ND	1.50%
	7.34%	5.57%	7.36%	5.48%	5.83%	4.21%	1.33%
	5.61%	8.23%	8.10%	5.47%	5.97%	7.17%	2.74%
	8.61%	6.16%	8.29%	9.46%	9.58%	6.89%	3.05%
	5.01%	7.20%	7.04%	5.89%	5.42%	4.69%	1.72%
	8.19%	5.41%	6.12%	8.87%	6.19%	5.55%	1.83%
mean %Cr:	6.03%	5.57%	6.27%	6.67%	6.50%	4.95%	1.89%
n =	15	14	13	14	15	14	16
std dev =	1.29%	1.22%	1.21%	1.36%	1.15%	1.04%	0.65%
			-Size R				
			Mass Dr				
Stage:	1	2	3	4	5	6	7
		9.07%	5.82%	2.62%	1.08%	0.70%	0.50%
		7.99%	5.38%	2.14%	0.87%	0.64%	0.62%
		8.74%	6.15%	2.46%	1.05%	1.19%	1.17%
		8.56%	5.16%	3.54%	1.60%	1.14%	ND
		5.68%	ND	2.49%	0.81%	0.54%	0.51%
		7.35%	4.43%	2.41%	0.95%	0.25%	1.17%
		6.36%	6.01%	2.83%	1.20%	0.92%	0.81%
		6.96%	5.36%	2.86%	1.12%	1.07%	1.00%
		5.37%	ND	1.93%		0.92%	0.49%
		5.59%	4.24%	1.87%		0.59%	0.48%
		5.48%	4.65%	3.32%	1.24%	0.52%	0.42%
		5.80%	4.64%	3.19%	1.23%	0.57%	ND 0.500/
		5.46%	4.28%	4.00%	1.59%	0.66%	0.56%
		5.71%	4.61%	4.16%	1.78%	ND 0.54%	0.67%
		4.97%	4.22%	3.40%	1.06%	0.54%	0.39%
maan 9/ C=:		5.93%	4.65%	3.02%	0.99%	0.53%	0.57%
mean %Cr:		6.56%	4.97%	2.89%	1.15%	0.72%	0.67%
n =		16	14	16		15	14
std dev =		1.36%	0.67%	0.68%	0.29%	0.27%	0.27%

APPENDIX E-3: Raw Data Table for Solvent-Based Elastomeric, Polyurethane Primer Paint (TT-P-2760A, Type I, Class C)

Large Particle-Size Range Impactor								
9	(Mass Cr ⁶⁺ per Mass Dry Paint) x 100%							
Stage:	1	2	3	4	5	6	7	
	3.80%	2.77%	3.30%	2.98%	2.82%	ND	ND	
	3.31%	1.91%	2.66%	3.15%	2.67%	1.91%	0.93%	
	4.66%	4.31%	4.62%	ND	4.66%	2.99%	1.57%	
	4.66%	3.92%	ND	4.25%	4.14%	3.25%	1.54%	
	4.47%	3.94%	4.06%	3.86%	3.97%	2.60%	1.22%	
	4.20%	1.80%	3.90%	4.18%	3.66%	2.63%	1.25%	
	4.77%	4.59%	4.17%	4.83%	4.85%	3.03%	1.57%	
	ND	4.52%	4.09%	4.54%	4.29%	3.16%	1.49%	
	4.87%	4.44%	4.46%	4.13%	4.56%	1.13%	4.17%	
	4.31%	3.83%	2.61%	2.87%	2.08%	1.89%	1.58%	
average %Cr:	4.34%	3.60%	3.76%	3.86%	3.77%	2.51%	1.70%	
n =	9	10	9	9	10	9	9	
std dev =	0.51%	1.06%	0.74%	0.71%	0.94%	0.72%	0.95%	

Small Particle-Size Range Impactor (Mass Cr ⁶⁺ per Mass Dry Paint) x 100%							
Stage:	1	2	3	4	5	6	7
		3.30%	2.26%	1.57%	0.92%	0.43%	0.29%
		3.14%	2.12%	1.23%	0.83%	0.48%	0.32%
		3.70%	2.74%	1.59%	1.01%	0.56%	0.28%
		3.35%	2.73%	1.70%	0.93%	0.61%	0.42%
		3.89%	3.42%	1.80%	0.83%	0.43%	0.27%
		4.72%	2.63%	1.68%	0.60%	0.50%	0.35%
		2.33%	2.98%	1.66%	1.00%	0.45%	0.27%
		4.22%	3.02%	1.74%	0.94%	0.65%	0.70%
		4.24%	2.99%	1.70%	1.02%	0.51%	0.29%
		4.28%	2.98%	1.82%	0.92%	0.52%	0.36%
average %Cr:		3.72%	2.79%	1.65%	0.90%	0.51%	0.36%
n =		10	10	10	10	10	10
std dev =		0.70%	0.39%	0.17%	0.13%	0.08%	0.13%

Note: ND denotes data was collected, but lost before analysis was complete

Bibliography

- Ackley, M. W. "Paint Spray Tests for Respirators: Aerosol Characteristics," *American Industrial Hygiene Association Journal*, 41: 309-316 (1980).
- Alexander, Bruce H., Harvey Checkoway, Laurence Wechsler, Nicholas J. Heyer, J. Michael Muhm, and Thomas P. O'Keeffe. "Lung Cancer in Chromate-Exposed Aerospace Workers," *Journal of Occupational and Environmental Medicine*, 38(12): 1253-1258 (December 1996).
- American Conference of Governmental Industrial Hygienists (ACGIH) Worldwide.

 1998 TVL's and BEI's: Threshold Limit Values for Chemical Substances and Physical Agents, Biological Exposure Indices. (1998).
- Bayvel, L. and Z. Orzechowski. *Liquid Atomization*. Washington, D.C., Taylor and Francis, 1993.
- Brosseau, L. M., C. P. Fang, C. Snyder, and B. S. Cohen. "Particle Size Distribution of Automobile Paint Sprays," *Applied and Occupational Environmental Hygiene*, 7(9): 607-612 (September 1992).
- California Department of Health Services (CDHS). "Hazard Alert: Hexavalent Chromium (Updated June 1992)." Government publication. n. pag. http://www.dhs.cahwnet.gov/ohb/HESIS/cr6.htm. 30 May 2001.
- Carlton, Gary N. and Michael R. Flynn. "A Model to Estimate Worker Exposure to Spray Paint Mists," *Applied Occupational Environmental Hygiene*, 12(5): 375-382 (1997).
- ----. "Influence of Spray Painting Parameters on Breathing Zone Particle Size Distributions," *Applied Occupational Environmental Hygiene*, 12(11): 744-750 (1997).
- Chan, T. L., J.B. D'Arcy, and R.M. Schreck. "High Solids Paint Overspray Aerosols in a Spray Painting Booth: Particle Size Analysis and Scrubber Efficiency," *American Industrial Hygiene Association Journal*, 51(3): 411-417 (1986).
- Chiazze, L., L. D. Ferrence, and P. H. Wolf. "Mortality Among Automobile Assembly Workers: I. Spray Painters," *Journal of Occupational Medicine*, 22 (8): 520-526 (August 1980).
- D'Arcy, James B. and Tai L. Chan. "Chemical Distribution in High-Solids Paint Overspray Particles," *American Industrial Hygiene Association Journal*, 51 (3): 132-138 (March 1990).

- Dalager, N. A., T. J. Mason, J. F. Fraumeni, R. Hoover and W. W. Payne. "Cancer Mortality among Workers Exposed to Zinc Chromate Paints," *Journal of Occupational Medicine*, 22 (1): 25-29 (January 1980).
- Felter, Susan P. and Michael L. Dourson. "Hexavalent Chromium-Contaminated Soils: Options for Risk Assessment and Risk Management," *Regulatory Toxicology and Pharmacology*, 25: 43-59 (1997).
- Finley, B. L., D. M. Proctor, and D. J. Paustenbach. "An Alternative to the USEPA's Proposed Inhalation Reference Concentrations for Hexavalent and Trivalent Chromium," *Regulatory Toxicology and Pharmacology*, 16: 161-176 (1992).
- Fox, Joseph M. Chromium Concentration Bias in the Particle Size Distribution of Primer Overspray. MS Thesis, AFIT/GEE/ENV/00M-06. Graduate School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, 2000.
- Gibb, Herman J., Peter S. J. Lees, Paul F. Pinsky, and Brian C. Rooney. "Lung Cancer Among Workers in Chromium Chemical Production," *American Journal of Industrial Medicine*, 38: 115-126 (2000).
- Godish, Thad. Air Quality. 3rd ed. Chelsea, MI: Lewis Publishers, 1991.
- Health Effects Institute. Atmospheric Observations: Helping Build the Scientific Basis for Decisions Related To Airborne Particulate Matter, Report of the PM Measurements Research Workshop. Cambridge: 1998
- Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley & Sons, 1982.
- International Agency for Research on Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risks to Humans. *Chromium and Chromium Compounds*. Vol 49. United Kingdom: World Health Organization, (1997).
- IARC Monographs. Occupational Exposure in Paint Manufacturing and Painting. Vol 47. Lyon, (1998).
- Kwok, Kui-Chiu. *A Fundamental Study of Air Spray Painting*. PhD dissertation. University of Minnesota, 1991 (9116523).
- LaPuma, Peter T., Joseph M. Fox, and Edgar C. Kimmel. "Chromate Concentration Bias in Primer Paint Particles," *Regulatory Toxicology and Pharmacology*, 33: 343-349 (2001).
- Lefebvre, A. H. Atomization and Sprays. New York: Hemisphere Corporation, 1989.

- Lehtimaki, Matti and Klaus Willeke. "Measurement Methods," in *Aerosol Measurement: Principles, Techniques, and Applications*. Eds. Klaus Willeke and Paul A. Brown. New York: Van Nostrand Reinhold, 1993.
- Levy, L. S., P.A. Martin, and P.L. Bidstrup. "Investigation of the Potential Carcinogenicity of a Range of Chromium Containing Materials on Rat Lung," *British Journal of Industrial Medicine*, 43: 243-256 (1986).
- Mancuso, T.F. "Consideration of Chromium as an Industrial Carcniogen," *Int. Conf. Heavy Metals Environm.*, Toronto, Ontario, Canada, pp. 343-356 (1975)
- Marple, Virgil A., Kenneth L. Rubow, and Bernard A. Olson. "Inertial, Gravitational, Centrifugal, and Thermal Collection Techniques," in *Aerosol Measurement: Principles, Techniques, and Applications*. Eds. Klaus Willeke and Paul A. Brown. New York: Van Nostrand Reinhold, 1993.
- "Lead by Flame AAS Chips". NIOSH Manual of Analytical Methods (NMAM) for Elements: Method 7082 Appendix. 4th ed. Aug, 1994.
- Mitchell, Mike. "High Solids or Water Based—The Pro's & Con's." Unpublished article. n. pag. http://www.international-pc.com/pc/technical/wb.htm. 30 January 2002.
- National Center for Complementary and Alternative Medicine (NCCAM). "Chromium to Treat Diabetes." Project Concept Review. n. pag. http://www.nccam.nih.gov/fi/concepts/may2000/chromium.html. 18 January 2002.
- Novy, David B. *Chromate Content Bias as a Function of Particle Size in Aircraft Primer Paint Overspray*. MS Thesis, AFIT/GEE/ENV/01M-12. Graduate School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, 2001.
- Schlesinger, Richard B. "Deposition and Clearance of Inhaled Particles," in *Concepts in Inhalation Toxicity*. Eds. Roger O. McClellan and Rogene F. Henderson. Washington D.C.: Taylor and Francis, 1995.

Vita

Captain Brian S. Rhodes graduated from Pace High School in Pace, Florida in June 1990. He entered undergraduate studies at the University of Florida where he graduated with a Bachelor of Science degree in Environmental Engineering Sciences in December 1994. He was commissioned as a Second Lieutenant through the Officer Training School at Maxwell AFB, Alabama in February 1998.

His first assignment was to the 37th Civil Engineer Squadron, Lackland AFB, Texas, where he served in a variety of capacities. After working as a program manager in the Environmental Flight, he served as the Engineering Advisor in the 37th Training Wing Competitive Sourcing Office. After returning to the Civil Engineer Squadron, he assumed the interim role of Chief of the Privatization Flight, where he was responsible for the oversight of the Department of Defense's first housing privatization initiative. In August 2000, he entered the Graduate School of Engineering and Management, Air Force Institute of Technology. Upon graduation he will remain at AFIT where he will serve as an instructor at the Civil Engineering and Services School.

REPORT	DOCUMENTATION PAGE	Form Approved OMB No. 074-0188
maintaining the data needed, and completing and re suggestions for reducing this burden to Department Suite 1204, Arlington, VA 22202-4302. Responder information if it does not display a currently valid ON PLEASE DO NOT RETURN YOUR FORM T	O THE ABOVE ADDRESS.	or reviewing instructions, searching existing data sources, gathering and en estimate or any other aspect of the collection of information, including on Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, son shall be subject to an penalty for failing to comply with a collection of
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From – To)
26-03-2002	Master's Thesis	Aug 2000 – Mar 2002
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
	VERSUS OVERSPRAY PARTICLE SIZE IN	5b. GRANT NUMBER
THREE AIRCRAFT PRIMER PA	INTS	
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Rhodes, Brian, S., Captain, USAF		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NA Air Force Institute of Technolog Graduate School of Engineering 2950 P Street, Building 640 WPAFB OH 45433-7765 9. SPONSORING/MONITORING AGE HQ AFMC/CEVQ Attn: Lt Col Michael Boucher 4225 Logistics Ave, Rm A128 WPAFB OH 45433-7765 (937) 257-4680 12. DISTRIBUTION/AVAILABILITY ST APPROVED FOR PUBLIC RELEAS	and Management (AFIT/EN) NCY NAME(S) AND ADDRESS(ES) AFRL/MLQL Attn: Mr. Thomas Naguy 2179 12 th Street, Bldg 652, Rm 122 WPAFB, OH 45433-7718 (937) 986-5709 ATEMENT	8. PERFORMING ORGANIZATION REPORT NUMBER AFIT/GEE/ENV/02M-11 10. SPONSOR/MONITOR'S ACRONYM(S) HQ AFMC/CEVQ, AFRL/MLQL 11. SPONSOR/MONITOR'S REPORT NUMBER(S)
aluminum skin of its aircraft. Hexa these primers—is a known human of understand health implications to p This research explores the solvent-based epoxy-polyamide (M. (TT-P-2760A). Seven-stage cascado	ce relies on the corrosion inhibiting properties of avalent chromium (Cr ⁶⁺)—the ingredient responsible carcinogen. The concentration of Cr ⁶⁺ in different ainters as well as filtration efficiency. a possibility of a particle size bias in the Cr ⁶⁺ content (IIL-P-2377G), water-based epoxy-polyamide (MII) de impactors collected overspray particles into dis the mass of the dry paint collected in each bin was	ble for the corrosion inhibiting characteristics of a particle sizes of paint overspray is important to ent of three commonly used aircraft primers: L-PRF-85582C), and solvent-based polyurethanestinct bins with particle size cutoff diameters

In all three primers, smaller particles contained disproportionately less Cr^{6+} per mass of dry paint than larger particles. Particles with an aerodynamic diameter under 7 μm contained less Cr^{6+} per mass of dry paint as the particles became smaller. Particles less than 2.6 μm have a mean Cr^{6+} content of approximately one-third of the expected value.

15. SUBJECT TERMS

Primer, overspray, chromate, chromium, chrome, particle size, lung deposition, aerospace coatings

16. SECUP	RITY CLASSIFIC	ATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON Peter T. LaPuma, Major, USAF (ENV)
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES	19b. TELEPHONE NUMBER (Include area code)
U	U	U	UU	90	(937) 255-6565, ext 4319 Peter.LaPuma@afit.edu