Matlab exercises

Tutors: Ellya Kawecki & Hamza Alawiye

October 23, 2018

For each example, you should write a code script that we generate the desired outcome, with the given inputs. I.e., if the question has a vector and and a number listed as the inputs, your script should be prepared to accept those kinds of inputs. Feel free to jump between the questions.

Plotting:

1. Using the plot command, plot the graph of $y(x) = e^{\sin(x^2)}$ on the interval 0 and 2π . Name the script MyPlot1.

Inputs: 0, 2π , and a functionhandle (i.e., f = @(x) ...).

2. Adapt the script from question 1 as follows: Label the axes, and add a title that includes your name and the College name.

Inputs: should be the same as in question 1.

- 3. Adapt this script further: it should now accept another value $x \in [0, 2\pi]$ and output that value in a sensible way (e.g. use the "disp" command to tell us something about the value. Optional: can you use an "if" statement to demand that the extra value x actually does belong to $[0, 2\pi]$? Inputs: The same as questions 1 and 2, with the extra input x.
- 4. Write a new script, based off of question 1 and 2 (i.e., it doesn't have the extra input given by question 3), that takes an arbitrary interval [a,b], and plots the function $f(x)=e^{\sin(x^2)}$ on this interval. The interval should consist of N equally spaced values. Name the script MyPlot2

Optional: can you use an "if" statement that allows your code to run the same way, regardless of which order the values a and b are entered? I.e., MyPlot2(a,b,N) and MyPlot2(b,a,N) should do the same thing.

Inputs: a, b, f, N.

5. Directly from the command window, use the "hold on" command, in conjunction with your MyPlot2 script, to plot the three following functions:

$$f(x) = e^{\sin x^2}$$
, $g(x) = e^{\cos(x^2)}$, $h(x) = \ln(x)$,

on the interval $[\pi, 3\pi]$. The interval should consist of 50 equally spaced points.

Iterative schemes: Consider the following numerical methods:

- Fixed Point method: $x_{n+1} = g(x_n), \quad n = 1, 2, \dots$
- Newton's method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}, \quad n = 1, 2, \dots$
- Bisection method: For an interval [a, b], and a function $f: [a, b] \to \mathbb{R}$ satisfying

$$sign(f(a)) = -sign(f(b)).$$

Define $a_0 = a$, $b_0 = b$ and $c_k = (a_k + b_k)$, k = 1, 2, ...

If $sign(f(c_k)) = sign(f(a_b))$, set $a_{k+1} = c_k$ and $b_{k+1} = b_k$. Otherwise set $a_{k+1} = c_k$ and $b_{k+1} = c_k$.

Newton's method and the Bisection method are both used to solve problems of the form: find $x \in [a, b]$ such that

$$f(x) = 0$$
,

where $f:[a,b]\to\mathbb{R}$.

The fixed point method is used to solve problems of the form: find $x \in [a, b]$ such that

$$g(x) = x$$

where $g:[a,b] \to [a,b]$ (i.e., x is a fixed point of g, since g maps x to x).

1. Write a script that implements the fixed point method, with a limit on the amount of iterations, and ensures (upon converging) that either the error $|x_k - x|$ or the residual $|g(x_k) - x|$ is smaller than a given tolerance ε .

Inputs: N (maximum number of iterations), x_0 (initial guess), ε (tolerance), and a function handle (the function g).

2. Write a script that implements Newton's method, with a limit on the amount of iterations, and ensures (upon converging) that either the error $|x_k - x|$ or the residual $|f(x_k)|$ is smaller than a given tolerance ε .

Inputs: N (maximum number of iterations), x_0 (initial guess), ε (tolerance), and two function handles (the function f, and it's derivative f').

3. Write a script that implements the Bisection method, with a limit on the amount of iterations, and ensures (upon converging) that either the error $|x_k - x|$ or the residual $|f(x_k)|$ is smaller than a given tolerance ε .

Inputs: N (maximum number of iterations), x_0 (initial guess), ε (tolerance), a function handle (the function f), and the interval end points a and b.

4. Test the script for the Fixed Point method that you have written with the following examples:

- $x = g_1(x) = \frac{1}{13}(14 x^3), \quad x_0 = 0,$
- $x = g_2(x) = e^{-x}, \quad x_0 = 1,$
- $x = g_3(x) = x^3 + 3x^2 3$, $x_0 = 0.5$, or $x_0 = -0.5$.

5. Test the scripts for the Bisection method and Newton's method that you have written with the following examples (start with $x_0 = 1/2$):

- $f_1(x) = \cos(x)$, [a, b] = [-0.5, 3],
- $f_2(x) = x \cos(x)$, [a, b] = [-1, 1],
- $f_3(x) = \sin(x)\sinh(x)$, [a, b] = [-1, 1],
- $f_4(x) = x \sin(x)$.

Fibonacci: The Golden Ratio is a number that occurs in nature and art. It is defined as

$$\varphi = \frac{1 + \sqrt{5}}{2}.$$

It is related to the sequence of Fibonacci numbers F_n (defined recursively by $F_1 = 0, F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}, n \ge 2$) by taking the limit of ratios of successive Fibonacci numbers,

$$\varphi = \lim_{n \to \infty} \frac{F_n}{F_{n-1}}.$$

1. Write a script that generates the n^{th} Fibonacci number. Inputs: n. 2. Write a function that generates the $first\ n$ Fibonacci numbers. Inputs: n.

than 10^{-7} in the code for question 4. Plot these errors against n.

- 3. Using either the script from question 1 or question 2, write a script that outputs the n^{th} approximation to the Golden Ratio (i.e., F_n/F_{n-1}). Inputs: n
- 4. Adapt the script from question 3, so that gives an approximation to the golden ratio, with accuracy 10^{-7} (Note 1e-7 = 10^{-7} in Matlab). Inputs: n, 10^{-7} .
- 5. Write a script that calculates the error from the approximation of the Golden ration, i.e., $e_n := |\varphi F_n/F_{n-1}|$ (note that abs(x) = |x| in Matlab. Let n run from n = 1 to n = N, where N corresponds to the F_n/F_{n-1} that produces error less

Inputs: $n, 10^{-7}$.