Attention 2 Angio GAN

Synthesizing Fluorescein Angiography from Retinal Fundus Images using Generative Adversarial Networks

Adriano Puglisi Vincenzo Colella

Introduction to Attention 2 Angio

Problem

With Fluorescein Angiography nonfatal complications can arise

attention based generative adversarial network (GAN)

Dataset

• The chosen dataset is taken from the research paper "Diabetic retinopathy grading by digital curvelet transform," Computational and mathematical methods in medicine, vol. 2012, 2012.

Preprocessing

NORMAL

30 pair images

10 pair images

ABNORMAL

30 pair images

7 pair images

20 Random crops 256 x 256 from 720 x 576

Original Image

Random Crop

Attention 2 Angio

Pagina 4

Network

The GAN architecture is composed of two generators and four discriminators:

- Fine Generator → synthesizes FA from fundus images by learning local information
- Coarse Generator → aims to extract and preserve global information
- Fine Discriminator → dictate the fine generator to produce more detailed local features. It takes as input the sample size
- Coarse Discriminator → tries to convince the coarse generator to retain more global features. It takes as input half of the sample size

Network

Network

Our Work

Performance Visualizers

Fréchet Inception Distance (FID) - calculates the distance between feature vectors calculated for real and generated images.

Kernel Inception Distance (KID) - measures the dissimilarity between two probability distributions using samples drawn independently from each distribution.

Loss Function

- → Perceptual Loss
- → Mean Squared Error

Tests

- -input_dim=256 -batch=8 -epochs=100 -n_crops=20 -mod=0
- -input_dim=256 -batch=4 -epochs=100 -n_crops=20 -mod=0
- –input_dim=256 –batch=4 –epochs=100 –n_crops=20 –mod=1
- -input_dim=256 -batch=2 -epochs=200 -n_crops=20 -mod=0
- -input_dim=256 -batch=2 -epochs=200 -n_crops=20 -mod=1
- → Perceptual Loss → 8 hours for 100 epochs and 12 hours for 200 epochs
- \rightarrow Mean Squared Error \rightarrow 6 hours for 100 epochs and 10 hours for 200 epochs

-input_dim=256 -batch=2 -epochs=200 -n_crops=20 -mod=0

```
Found 4 images in the folder /content/drive/MyDrive/C FID real_target : 100% 1/1 [00:02<00:00, 2.83s/it] Found 4 images in the folder /content/drive/MyDrive/C FID fake : 100% 1/1 [00:15<00:00, 15.09s/it] 269.883008789561 compute KID between two folders Found 4 images in the folder /content/drive/MyDrive/C KID real_target : 100% 1/1 [00:02<00:00, 2.79s/it] Found 4 images in the folder /content/drive/MyDrive/C KID fake : 100% 1/1 [00:02<00:00, 2.85s/it] 0.09226782639821335
```

-input_dim=256 -batch=2 -epochs=200 -n_crops=20 -mod=0

-input_dim=256 -batch=2 -epochs=200 -n_crops=20 -mod=1

```
Found 4 images in the folder /content/drive/MyDrive
FID real_target : 100% 1/1 [00:03<00:00, 3.07s/it]
Found 4 images in the folder /content/drive/MyDrive
FID fake: 100% 1/1 [00:15<00:00, 15.03s/it]
426.364288061312
compute KID between two folders
Found 4 images in the folder /content/drive/MyDrive
KID real target : 100% 1/1 [00:03<00:00, 3.01s/it]
Found 4 images in the folder /content/drive/MyDrive
KID fake: 100% 1/1 [00:02<00:00, 2.90s/it]
0.15219275156656853
```

-input_dim=256 -batch=2 -epochs=200 -n_crops=20 -mod=1

Conclusions

- Mean Squared Error
 - Lower training time with still appreciable results

- Perceptual Loss
 - Has a lower FID and KID in all tests
 - \circ Better contrast detection \rightarrow less distorted pictures

- Perceptual Loss > Mean Squared Error
 - **■** but the training time is 33% longer

Attention 2 Angio GAN

Synthesizing Fluorescein Angiography from Retinal Fundus Images using Generative Adversarial Networks

Thank you!