REDES DE COMUNICACIONES 2

23 de mayo de 2017 - Parte 3

Apellidos

Nombre:

Preguntas	1	2	3	4	5	Total
Puntos	3	2	1,5	2	1,5	10
Calificación		· ·				

Pregunta 1) Suponga que un servidor transmite voz en streaming, y utiliza un esquema simple de Forward Error Correction (FEC). Suponga además que cada paquete codifica 20ms de audio, y que la transmisión está libre de jitter (es decir, jitter=0). Explique cuál deberá ser el tiempo mínimo de buffering de cada cliente para que el sistema funciona correctamente si:

a) Utiliza FEC simple, con un paquete de paridad cada 4 paquetes de audio.

b) Utiliza un flujo redundante de baja calidad: el paquete n contiene copias de baja calidad de las tramas n-2 y n-1.

c) Utiliza FEC entrelazado, donde cada trama se divide en 5 unidades de 4ms cada una.

Pregunta 2) Para los esquemas de FEC de la pregunta anterior, a) ¿cuál sería el efecto de que cada 5 paquetes siempre se pierda el 5º? ¿Qué sistema proporcionaría la mejor calidad de sonido en ese caso?	
b) ¿cuál sería el efecto de que se pierda un paquete por medio? ¿Qué sistema proporcionaría la mejor calidad de sonido en ese caso?	
Pregunta 3) Calcule razonadamente el desperdicio de ancho de banda (overhead) de cada uno de los sistemas de la pregunta 1)	
de cada uno de los sistemas de la pregunta 1)	

Pregunta 4) Suponga una transmisión de video desde un servidor a un cliente. El video está codificado en MP4 a 1Mbps (1000Kbps). La velocidad promedio a la que el cliente recibe es 750Kbps.

a) Si se quiere que el cliente tenga un buffering de 3 segundos antes de empezar a reproducir, ¿cuánto tiempo pasará desde que el cliente comienza a recibir el video hasta que comience la reproducción? Explique su respuesta.

b) Suponiendo el mismo buffer de a), ¿cuánto tiempo pasará antes de que el buffer se vacíe y la reproducción tenga que ser detenida? Explique su respuesta.

Pregunta 5) Suponga una transmisión multimedia utilizando RTP, donde un servidor envía video a una tasa de 2Mbps a 10 clientes. Describa la configuración adecuada de RTCP para esa transmisión, si cada paquete RTCP tiene un tamaño de 2,5 Kbits. ¿Cada cuánto emite un paquete RTCP el servidor? ¿Y cada cliente?