# Model of a single neuron:

Perceptron (a nonlinear neuron)

LMS (a linear neuron)





The LMS algorithm is configured to minimize the instantaneous value of the cost function ,

$$\mathcal{E}(\widehat{\mathbf{w}}) = \frac{1}{2}e^2(n)$$

where e(n) is the error signal measured at time n,

$$e(n) = d(n) - \mathbf{x}^{T}(n)\widehat{\mathbf{w}}(n)$$

Differentiating  $\mathcal{E}(\hat{\mathbf{w}})$  with respect to the weight vector  $\hat{\mathbf{w}}$  yields

$$\frac{\partial \mathcal{E}(\widehat{\mathbf{w}})}{\partial \widehat{\mathbf{w}}} = e(n) \frac{\partial e(n)}{\partial \widehat{\mathbf{w}}(n)}$$
$$\frac{\partial e(n)}{\partial \widehat{\mathbf{w}}(n)} = -\mathbf{x}(n)$$

Thus

where

$$\hat{\mathbf{g}}(n) = \frac{\partial \mathcal{E}(\hat{\mathbf{w}})}{\partial \hat{\mathbf{w}}(n)} = -\mathbf{x}(n)e(n)$$

The LMS algorithm

$$\widehat{\mathbf{w}}(n+1) = \widehat{\mathbf{w}}(n) + \eta \mathbf{x}(n)e(n)$$

### The LMS Algorithm

Training Sample: Input signal vector =  $\mathbf{x}(n)$ 

Desired response = d(n)

User-selected parameter: η

Initialization. Set  $\hat{\mathbf{w}}(0) = \mathbf{0}$ .

Computation. For n = 1, 2, ..., compute

$$e(n) = d(n) - \hat{\mathbf{w}}^{T}(n)\mathbf{x}(n)$$

$$\hat{\mathbf{w}}(n+1) = \hat{\mathbf{w}}(n) + \eta \mathbf{x}(n)e(n)$$

### Remarks on the LMS

- LMS is a stochastic gradient algorithm
- As iteration number n increases,  $\widehat{w}(n)$  performs a random walk (Brownian motion) about the Wiener solution  $w_0$  LMS does not require statistics from the environment
- Langevin force responsible for the none-equilibrium behavior of LMS
- One key assumption in LMS convergence is small learning rate
  η (condition needed for analysis using Kushner's directaveraging method)
- LMS convergence properties sensitive to the condition number of  $R_{\chi\chi}$
- Generally LMS converges slowly

## The Least-Mean Square (LMS) Algorithm

Widrow & Hoff 1960

- Inspired by perceptron, linear combiner
- The first linear adaptive filtering algorithm
- Adaptive version of "Wiener filter" (some properties)
- "linear" complexity, yet very effective in applications, simple to code, robust to disturbances
- It is a stochastic gradient algorithm
- Set the stage for backpropagation

## The Least-Mean Square (LMS) Algorithm

#### - Widrow & Hoff 1960

 Echo cancellation, noise cancellation, channel equalization in communication, system ID...



Multipath propagation outdoor scenario (modeled as time varying finite duration impulse response filter

