Nonlinear Optimization Lecture 7 Garrick Aden-Buie

Tuesday, February 2, 2016

Theorem. For the following optimization problem, where $f \in C^1$, f convex and X convex

 $\bar{x} \in S$ is a global minimum $\Leftrightarrow [\nabla f(\bar{x})]^T (x - \bar{x}) \ge 0 \ \forall x \in S$.

The necessary and sufficient condition is called the variational inequality problem.

More generally, if f is not differentiable:

 $\bar{x} \in S$ is a global min $\Leftrightarrow \exists$ a subgradient ξ at \bar{x} such that $\xi^T(x - \bar{x}) \geq 0 \ \forall x \in S$.

Corollary (1).

- (1) $\nabla f(x) = 0 \Rightarrow \bar{x}$ is a global min. Proof: $\nabla f(\bar{x}) = 0 \Rightarrow \nabla f(x)^T (x - \bar{x}) \ge 0 \ \forall x \in S$.
- (2) \exists subgradient $\xi = 0$ at $\bar{x} \in S \Rightarrow \bar{x} \in S$ is a global min.

Corollary (2).

Let $\bar{x} \in \text{Int}S$.

- (1) \bar{x} global min $\Rightarrow \nabla f(\bar{x}) = 0$
- (2) \bar{x} global min $\Rightarrow \exists$ subgradient $\xi = 0$ at \bar{x} .

Example: consider an LP:

min
$$c^T x = f(x)$$

s.t $Ax = 6$
 $x \ge 0$

Definition. Let S be a convex set. An extreme point of S is a point that cannot be represented as a strict convex combination of two distinct points in S.

Representation Theorem

Suppose S is closed, convex and bounded. Then any point in S can be represented as a convex combination of extreme points of S.

Theorem. Let $S \subset \mathbb{R}^n$ be compact (closed and bounded) and convex, and f be convex.

Then there exists a global optimal solution at an extreme point of S.

Proof. \bar{x} global maximum $\Leftrightarrow f(\bar{x}) \geq f(x) \ \forall x \in S$.

Let the extreme point of S be x^1, x^2, \ldots

$$\bar{x}\sum_{j}\lambda_{j}x^{j}, \sum_{j}\lambda_{j}=1, \lambda_{j}\geq 0$$

Let x^k : $f(x^k) = \max_j f(x^j)$.

$$f(\bar{x}) = f(\sum \lambda_j x_j) \le \lambda_j f(x_j)$$
 (by convexity of f)
$$\le f(x^k) \sum \lambda_j = f(x^k)$$

$$\Rightarrow f(\bar{x}) \le f(x^k)$$

if \bar{x} is a global maximum, then x^k is a global maximum.

If f is convex:

$$\bar{x}$$
 local min $\Rightarrow \bar{x}$ global min
$$\nabla f(\bar{x}) = 0 \Rightarrow \bar{x}$$
 global min

If f is strictly convex:

$$\bar{x}$$
local min $\Rightarrow \bar{x}$ unique global min
$$\nabla f(\bar{x}) - 0 \Rightarrow \bar{x}$$
unique global min

Definition. Quasiconvex. Let $f: S \to \mathbb{R}$, S convex, $S \subset \mathbb{R}^n$, $S \neq \emptyset$.

f is quasiconvex on S if

$$f(\lambda \hat{x} + (1 - \lambda)\bar{x}) \le \max\{f(\hat{x}), f(\bar{x})\}, \ \forall \hat{x}, \bar{x} \in S, \ \lambda \in [0, 1]$$

Theorem. f is quasiconvex on $S \Leftrightarrow S_{\alpha} = \{x \in S : f(x) \leq \alpha\}$ (level set).

Proof. (
$$\Rightarrow$$
) $\bar{x}, \hat{x} \in S_{\alpha}, \ \lambda \in [0,1] \Rightarrow f(\hat{x}) \leq \alpha \text{ and } f(\bar{x}) \leq \alpha.$

We know that $f(\lambda \hat{x} + (1 - \lambda)\bar{x}) \leq \max\{f(\hat{x}), f(\bar{x})\} \Rightarrow \lambda \hat{x} + (1 - \lambda)\bar{x} \in S_{\alpha} \Rightarrow S_{\alpha}$ is convex.

Proof. (\Leftarrow) $\bar{x}, \hat{x} \in S_{\alpha}$, $\lambda \in [0, 1]$. Let $\alpha = \max\{f(\hat{x}), f(\bar{x})\}$, then $\hat{x}, \bar{x} \in S_{\alpha}$. Since S_{α} is convex, $f(\lambda \hat{x} + (1 - \lambda)\bar{x}) \leq \alpha \Rightarrow f$ is quasiconvex.

Definition. Given $f: S \to \mathbb{R}$, S = S convex, $S \subset \mathbb{R}^n$, $S \neq \emptyset$. f is strictly quasiconvex on S if

$$f(\lambda \hat{x} + (1 - \lambda)\bar{x}) < \max\{f(\hat{x}), f(\bar{x})\}\$$

 $\forall \hat{x}, \bar{x} \in S, \ \lambda \in (0,1) \text{ and } f(\hat{x}) \neq f(\bar{x}). \ (Eliminates \ all \ flat \ spots \ except \ at \ the \ bottom).$ Note.

- A strictly convex function is a convex function.
- A strictly quasiconvex function may not be a quasiconvex function.

Example: $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$$

This is a strictly quasiconvex function, but not a convex function.

Definition. f strongly quasiconvex on S if

$$f(\lambda \hat{x} + (1 - \lambda)\bar{x}) < \max\{f(\hat{x}), f(\bar{x})\}, \ \forall \hat{x}, \bar{x} \in S, \ \lambda \in (0, 1), \hat{x} \neq \bar{x}$$

- Strictly convex \Rightarrow strongly quasiconvex.
- Strongly quasiconvex \Rightarrow strictly quasiconvex.
- Strongly quasiconvex \Rightarrow quasiconvex.

Theorem. $S \subset \mathbb{R}^n$ non-empty, open convex. $f: S \to \mathbb{R}, f \in C^1(S)$. f is quasiconvex if and only if

$$f(\hat{x}) \le f(\bar{x}) \Rightarrow [\nabla f(\bar{x})]^T (\hat{x} - \bar{x}) \le 0, \ \forall \bar{x}, \hat{x} \in S$$

Theorem. $f: \mathbb{R}^n \to \mathbb{R}$ strongly quasiconvex. $S \subset \mathbb{R}^n$ non-empty convex.

If \bar{x} is a local min, then \bar{x} is the unique global min.