

Topics to be covered

- Comparing several means:
 - ☐ Analysis of Variance (ANOVA)
 - □ Checking assumptions
 - ☐ Planned contrasts
 - □ Post-hoc tests

School of IT & Mathematical Sciences

-

Multiple comparisons

- How do we make many comparisons at once with an overall measure of confidence in all our conclusions?
 - ☐ We can't simply compare two parameters at a time.
- Usually done in two steps:
 - ☐ Step 1 is an overall test if there is good evidence of any differences among the parameters we want to compare.
 - □ Step 2 is a detailed follow up analysis to decide which of the parameters differ and to estimate how large the differences are.

School of IT & Mathematical Sciences

Why not use lots of *t*-tests?

- Suppose there are three groups and we are interested in differences between these groups.
- If we were to carry out three separate t-tests at 5% significance level:
 - ☐ The probability of falsely rejecting the null hypothesis (Type I error) is 5% for each test.
 - The probability of avoiding a Type I error is therefore 95%.
 - ☐ If these tests are independent, the overall probability of no Type I errors is $(0.95)^3 = 0.857$.
 - □ The overall probability of at least one Type I error is then 1 0.857 = 0.143 or 14.3% > 5%.
- In general, experimentwise error rate is $1 (0.95)^n$.

School of IT & Mathematical Sciences

5

The ANalysis Of VAriance (ANOVA)

■ We want to test the null hypothesis that there are *no differences* in mean response among groups:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$$

All population means are equal

- The alternative hypothesis is that there is *a difference*.
 - H_1 : Not all population means are equal
- Comparing several means is the simplest form of ANOVA, called one-way ANOVA.

School of IT & Mathematical Sciences

One-way ANOVA test statistic

$$F_{k-1,N-k} = \frac{variation \ among \ the \ sample \ means}{variation \ among \ individuals \ in \ the \ same \ sample}$$

Between-group variance

Within-group variance

■ If the null hypothesis that all k population means are equal is true, the ANOVA F statistic has the F distribution with k-1 degrees of freedom in the numerator and N-k degrees of freedom in the denominator.

$$N = n_1 + n_2 + ... + n_k$$

k = number of population groups

School of IT & Mathematical Sciences

Conditions for applying ANOVA

- We have *k* independent samples.
- Each of the *k* populations has a Normal distribution with an unknown mean.
- The means may be different in the different populations.
- All of the populations have the same standard deviation σ, whose value is unknown.

■ The results of the ANOVA *F* test are approximately correct when the largest sample standard deviation is *no more than twice as large* as the smallest sample standard deviation.

School of IT & Mathematical Sciences

C

Example: Electronics sales

■ The data set store contains the following variables:

Variable name	Description
Region	Region of the country (North, East, South, West)
Advertising	Advertising (Yes or No)
Gender	Gender of shopper (M or F)
Book_Sales	Amount spent on books
Music_Sales	Amount spent on music
Electronics_Sales	Amount spent ion electronics
Total_Sales	Total sales

School of IT & Mathematical Sciences

- Suppose we want to determine whether the mean of electronics sales varies by region of the country.
- We will check the assumptions and then conduct one way ANOVA using PROC GLM (General Linear Model).

School of IT & Mathematical Sciences

11

Example: Electronics sales

Descriptive Statistics

The MEANS Procedure

Analysis Variable : Electronics_Sales									
Region	N Obs	N	Mean	Median	Std Dev	Lower Quartile	Upper Quartile	Minimum	Maximum
East	36	36	400.556	405.000	72.779	340.000	450.000	270.000	570.000
North	69	69	364.783	360.000	74.648	310.000	410.000	220.000	550.000
South	45	45	345.111	330.000	64.407	300.000	380.000	250.000	510.000
West	50	50	451.800	455.000	76.390	400.000	510.000	270.000	610.000

School of IT & Mathematical Sciences

- Assumptions:
 - ☐ Random and independent samples:
 - This requirement is assumed to be satisfied.
 - □ All four populations should be Normal:
 - We need to test samples for Normality.
 - □ All population standard deviations should be equal:
 - We will test for equality of variances.

School of IT & Mathematical Sciences

- P-values for all Normality tests are greater than 0.05, which suggests that all four samples can be assumed to have come from Normal populations.
- Sample standard deviations appear to be quite similar.
 - ☐ Equality of variances will be tested formally later
- Therefore, we have all the requirements for one-way ANOVA.

School of IT & Mathematical Sciences

Since the P-value = 0.6199 > 0.05, the assumption of equal variances cannot be rejected.

Welch's	ANOVA for	Electronic	s_Sales
Source	DF	F Value	Pr > F
Region	3.0000	20.46	<.0001
Error	99.4478		

Correction for departures from homogeneity of variance.

We should look and report Welch's F-ratio instead of the one in the main table when the assumption of homogeneity of variance has been violated. We didn't actually need it for our data.

School of IT & Mathematical Sciences

19

ANOVA: Follow-up tests

- The *F*-ratio tells us only that group means were different:
 - ☐ It does not tell us specifically which group means differ.
 - ☐ We need additional tests to find out where the group differences lie.
- Multiple *t*-tests:
 - ☐ We saw earlier that this is a bad idea.
- Orthogonal contrasts/comparisons:
 - ☐ Hypothesis driven, planned a priori.
- Post-hoc tests:
 - □ No hypothesis, all pairs of means are compared.

School of IT & Mathematical Sciences

Defining contrasts using weights

- Rule 1: Choose sensible comparisons. If a group is singled out in one comparisons, it should be excluded from any subsequent contrasts.
- Rule 2: Groups coded with positive weights will be compared against those with negative weights.
- Rule 3: The sum of weights for a comparison should be zero.
- Rule 4: If a group is not involved in a comparison, it is assigned a weight of zero.
- Rule 5: For a given contrast, weights assigned to groups in one chunk of variance should be equivalent to the number of groups in the opposite chunk of variation.

School of IT & Mathematical Sciences

- Contrast 1: West versus East, North and South
 - □ Required weights are -1, -1, -1, 3.
- Contrast 2: East versus North and South
 - □ Required weights are 2, -1, -1, 0.

Parameter	Estimate	Standard Error	t Value	Pr > t
west vs other regions	244.950725	35.8928061	6.82	<.0001
east vs north and south	91.217391	27.9093652	3.27	0.0013

Planned comparisons revealed that electronics sales in the West region were significantly higher compared to the other regions, t(196) = 6.82, P-value < 0.0001, and that sales in the East region were significantly higher than in the North and South, t(196) = 3.27, P-value = 0.0013.

School of IT & Mathematical Sciences

23

Post-hoc procedures

- Used when there is no specific a priori prediction about the data.
- Post-hoc tests consist of pairwise comparisons that are designed to compare all different combinations of treatment groups.
 - \square Experimentwise error is controlled by correcting the level of significance for each test such that the overall Type I error rate α across all comparisons remains at 0.05.
 - ☐ There may be loss of statistical power, i.e. the probability of rejecting an effect that actually exists (Type II error) may be increased.

School of IT & Mathematical Sciences

Post-hoc procedures – points to consider

- Does the test control the Type I error rate?
 - ☐ Bonferroni (has more statistical power when the number of comparisons is small);
 - □ Tukey (more power when comparing a large number of means).
- Does the test also control the Type II error rate?
 - ☐ Ryan, Einor, Gabriel and Welsch Q (REGWQ) procedure (should not be used when group sizes are different).
- Is the test reliable when assumptions of ANOVA have been violated?
 - ☐ Most tests cope well with deviations from Normality, not so well when group sizes are unequal and when population variances are not equal.

School of IT & Mathematical Sciences

25

Tukey's Studentized Range (HSD) Test

Region Comparison	Difference Between Means	Simultaneous 95% Limits		
West - East	51.24	10.13	92.36	***
West - North	87.02	52.08	121.95	***
West - South	106.69	68.04	145.34	**
East - West	-51.24	-92.36	-10.13	**
East - North	35.77	-2.90	74.44	
East - South	55.44	13.39	97.50	**
North - West	-87.02	-121.95	-52.08	**
North - East	-35.77	-74.44	2.90	
North - South	19.67	-16.37	55.71	
South - West	-106.69	-145.34	-68.04	**
South - East	-55.44	-97.50	-13.39	**
South - North	-19.67	-55.71	16.37	

Alpha	0.05
Error Degrees of Freedom	196
Error Mean Square	5269.25
Critical Value of Studentized Range	3.66452

The West region is significantly different from East, North and South.

East is significantly different from South.

Note that corresponding confidence intervals do not contain zero.

School of IT & Mathematical Sciences

In one-way ANOVA, least squares means are the same as 'ordinary' means.

Using P-values:

For the difference between East and North, P-value = 0.081 > 0.05 so these two means are not significantly different.

For the difference between South and West, P-value < 0.0001 so these two means are significantly different.

School of IT & Mathematical Sciences

Example: SAS code

```
proc glm data=store plots=diagnostics;
    class Region;
    /* ANOVA */
   model Electronics_Sales=Region / solution;
    /* Planned contrasts */
    estimate 'west vs other regions' Region -1 -1 -1 3;
    estimate 'east vs north and south' Region 2 -1 -1 0;
    /* Equality of variance test, Welch's corrected
      F-test and post-hoc comparison using Tukey test */
   means Region / hovtest Welch Tukey;
    /* Diffogram of post-hoc comparisons using Tukey-
      Kramer method */
   lsmeans Region / pdiff adjust=Tukey;
run;
quit;
```

School of IT & Mathematical Sciences

29

ANOVA as a General Linear Model (GLM)

- Is there a relationship between a numerical variable (measurement of interest) and a categorical variable (group membership)?
- Recall from linear regression:

outcome = (model) + error
$$\hat{y} = b_0 + b_1 x_1 + ... + b_p x_p + error$$
 Multiple linear regression model

■ In the sales example:

Predictors are dummy variables

$$Sales_i = b_0 + b_1 \times East_i + b_2 \times North_i + b_3 \times South_i + e_i$$
 Response

School of IT & Mathematical Sciences

■ Intercept = mean of the baseline group, West in this case:

$$\overline{x}_{West} = b_0 + b_1 \times 0 + b_2 \times 0 + b_3 \times 0$$
$$b_0 = \overline{x}_{West}$$

■ For all other regions, slope = difference in means relative to the baseline group, e.g. for East:

$$\overline{x}_{East} = b_0 + b_1 \times 1 + b_2 \times 0 + b_3 \times 0$$

$$\overline{x}_{East} = \overline{x}_{West} + b_1$$

$$b_1 = \overline{x}_{East} - \overline{x}_{West}$$

School of IT & Mathematical Sciences


```
Example: SAS code
/* Create dummy variable for level of region */
data work.store_dummies;
    set work.store;
    if Region='North' then North=1;
    else North=0;
    if Region='South' then South=1;
    else South=0;
    if Region='East' then East=1;
    else East=0;
run;
/* Fit a linear regresion model */
proc reg data=work.store_dummies plots=diagnostics;
    model Electronics_Sales=North South East;
    run;
quit;
                     School of IT & Mathematical Sciences
                                                            34
```