

암호기술 개요

NOTE 01

한국기술교육대학교 컴퓨터공학부 김상진

sangjin@koreatech.ac.kr www.facebook.com/sangjin.kim.koreatech

교육목표

- 정보보호 서비스와 암호기술
 - 비밀성, 무결성, 인증, 부인방지, 프라이버시
- 통신계층과 암호기술
- 암호기술 관련 기본 용어
- 암호기술의 한계
- 정보보호 서비스는 응용의 보안 요구사항을 말함
- 이 교과에서 고려하는 응용은 주로 통신 프로토콜을 이용하여 이루어짐
- 통신 프로토콜은 원격에 있는 참여자 간의 메시지 교환을 통해 진행되는 프로토콜을 말함

보안 목적 (1/4)

- 비밀성(confidentiality, secrecy, privacy): 인가된 개인, 단체, 장치, 프로세스만 데이터의 내용을 볼 수 있도록 해주는 서비스 (기밀성)
 - 예) 웹 서비스에서 통신 채널로 전달하는 패스워드
 - 고려 요소: 데이터의 중요도, 비밀을 유지해야 하는 기간(cover time)
 - 고려 요소에 따라 처리하는 방법(보안 강도)이 다름
- 무결성(integrity): 비인가된 데이터의 변경을 발견할 수 있도록 해주는 서비스
 - 예) 인터넷 뱅킹에서 이체 금액
 - 변경의 종류: 삽입, 삭제, 교체
 - 비밀성은 보장해야 하는 서비스이지만 무결성은 발견만 할 수 있으면 됨

3/15

보안 목적 (2/4)

- 인증(authentication): 식별(identification)+검증(verification)
 - 주장된 것을 검증하는 것
- 유형
 - 메시지 인증: 무결성과 같음
 - 메시지 원천지 인증: 무결성 + 메시지가 송신된 위치 또는 송신자를 검증
 - 위치(정보보호에서 보통 중요하지 않음)와 무관하게 서비스를 이용할 수 있어야 함. 하지만 보안 향상을 위해 위치나 기기 인증을 활용 가능
 - 개체 인증(entity authentication): 주장된 신원을 검증 (최근성 필요)
- 개체 인증을 위해 사용하는 요소
 - 사용자만이 알고 있는 지식 (what one knows): 예) 패스워드
 - 사용자만의 독특한 특징 (what one is): 예) 생체정보
 - 사용자만이 가지고 있는 것 (what one have): 예) ID 카드
- 2가지 요소를 함께 이용하면 2-factor 인증이라 함
 - 참고. 2단계 인증(2 step identification/verification)

123456

보안 목적 (3/4)

- <mark>부인방지</mark>(non-repudiation): 개체가 지난 행위나 약속(commitment)을 부인하지 못하도록 하는 서비스
 - 보통 제3자가 확인할 수 있어야 함
- 메시지 송수신과 관련된 부인방지
 - 송신 부인방지(Non-Repudiation of Origin, NRO)
 - 전달 부인방지(Non-Repudiation of Delivery, NRD)
 - 제출 부인방지(Non-Repudiation of Submission, NRS)
 - 수신 부인방지(Non-Repudiation of Receipt, NRR)

서비스	부인방지 내용	부인자	제공자
NRO	메시지의 송신	송신자	송신자
NRR	메시지의 수신	수신자	수신자
NRS	메시지의 제출	메시지 전달 기관	메시지 전달 기관
NRD	메시지의 수신	수신자	메시지 전달 기관

ISO/IEC 13888

5/15

보안 목적 (4/4)

● 부인방지 모델

- 보통 통신 메시지는 동시에 서로 교환하는 것은 아님
- 한쪽이 메시지를 보내면 그것에 반응하여 메시지를 보내는 형태임
- 공정한 교환(fair exchange)이라는 개념도 있음

NRS: 제출된 사실 부인방지(중계자에 의한 부인) NRD: 중계된 사실 부인방지(수신자에 의한 부인), NRR이 포함됨

- 직접 통신하는 경우와 중계자를 이용하여 통신하는 경우가 있음
- 부인방지 토큰은 보통 해당 행위를 부인할 수 있는 주체가 제공해야 하는 것임

프라이버시 (1/4)

- 정보화의 부작용 중 오늘날 큰 이슈가 되고 있는 것 중 하나가 프라이버시 (privacy) 침해임
- 프라이버시란 개인이나 집단이 자신 또는 자신의 정보를 선택적으로 노출할 수 있는 권리를 말함
 - 개인은 자신과 연관된 정보가 수집되고 저장되는 것(by whom. to whom)을 직접 제어하거나 영향을 줄 수 있어야 함
 - 프라이버시는 매우 광범위한 의미를 지니고 있음
 - 정보보호에서 관심을 가지고 있는 것은 개인정보 노출을 포함하여 컴퓨팅 서비스를 사용하는 과정에서 침해되는 프라이버시를 보호하는 것임
 - 사용자의 <mark>익명성(anonymity)</mark>을 보장하는 것과 유사함
- Big Brother: George Orwell의 소설 1984에 나오는 등장인물로서 소설에 등장하는 나라의 독재자임, 이 독재자는 모든 국민을 완전히 감시할 수 있음
 - "Big Brother is watching you"

프라이버시 (2/4)

- 디지털 서비스를 사용할 때 교환된 통신 메시지를 통한 노출을 고려함
- 누구로부터 프라이버시를 보호: 보통 제3자
 - 서비스 제공자도 알 수 없도록 하기는 힘듦
- 프라이버시의 종류
 - 내용 프라이버시: 예) 사용자가 유투브 서비스를 이용하고 있는데. 어떤 동영상을 보고 있는지 숨기고 싶은 것을 말함
 - 비밀성 서비스를 통해 제공할 수 있음
 - 행동 프라이버시: 예) 사용자가 유투브 서비스를 사용하고 있는 것 자체를 숨기고 싶은 것을 말함. 익명기술을 사용하여 제공함
 - 위치 프라이버시: 예) 사용자가 어디서 유투브 서비스를 이용하고 있는지 숨기고 싶은 것을 말함
 - 위치 추적(location tracing): 사용자의 행적을 추적하는 것을 말함
 - 예) 핸드폰, 하이패스, 신용카드, CCTV, 출입카드 등 오늘날 비교적 쉽게 사용자의 행적을 알 수 있음

https://proxify.com/

https://www.privateinternetaccess.com/pages/browse-anonymously/

프라이버시 (3/4)

- 행동 프라이버시 보장을 위한 요구사항
 - 요구사항 1. 불관찰성: 특정 메시지의 송신자 또는 수신자를 알 수 없어야 한다는 것을 말함
 - 요구사항 2. 불연결성: 두 개의 메시지가 주어졌을 때, 두 개의 메시지가 동일 송신자가 전송한 것인지 또는 두 개의 메시지가 동일 수신자에게 보내는 것인지 연결할 수 없어야 한다는 것을 말함
 - 예1) 익명 게시판에 같은 익명으로 계속 글 게시
 - 예2) 비트코인에서 같은 지갑을 이용하여 거래함
 - 불연결성은 특정 메시지의 불관찰성이 깨졌을 때 그 파급효과를 최소화기 위해 제공되어야 함

9/15

프라이버시 (4/4)

- 완전 프라이버시를 제공하면 사용자들에 의해 악용될 수 있기 때문에 이 대신에 조건부 프라이버시(conditional privacy)를 제공함
 - 조건부 프라이버시가 제공되면 신뢰할 수 있는 기관은 필요할 경우
 특정 메시지의 익명을 철회(revocation)할 수 있음
 - 이 경우 특정 기관이 홀로 이 권한을 행사할 수 있으면 권한 남용이 너무 쉬움
 암호기술에서 권한은 키의 보유
- 이와 같은 권한 남용을 제한하기 위해 여러 기관에 권한을 분산하는 것이 필요함
 - 암호기술에서는 이 경우 임계 기반 비밀 공유기법((t, n) threshold based secret sharing)을 사용함
 - ullet n명에게 특정 권한을 분산하고, 이 중에 t명 이상이 동의하면 해당 권한을 수행할 수 있도록 함
 - 여기서 t는 보안 강도를 조절하기 위한 보안 변수임
 - ullet 가용성 측면에서 (n, n)은 바람직하지 않은 형태의 서비스임

통신 계층과 암호기술 (1/2)

통신 메시지의 비밀성/무결성을 보장하기 위한 암호기술의 적용과 통신 계층 간의 관계

	단대단(end-to-end)	홉바이홉(hop-by-hop)
장점	통신망과 독립적으로 수행가능기반구조를 신뢰하지 않아도 됨	트랙픽 분석이 가능하지 않음패킷 단위로 암호화가 가능하므로 오류 발생시 해당 패킷만 재전송
단점	 트래픽 분석이 가능 메시지 단위로 암호화하기 때문에 오류 발생시 암호화하는 방식에 따라 재전송해야 하는 부분이 클 수 있음 	 통신망의 각 호스트/스위치에 기능이 포함되어 있어야 함 기반구조를 신뢰해야 함 (중간 호스트/스위치는 평문을 볼 수 있음) 반복적으로 암호기술을 적용하기 때문에 효율성이 떨어짐
예	TLS(Transport Layer Security)	● IPSec

11/15

통신 계층과 암호기술 (2/2)

기본 용어 (1/2)

정보통신용어 표준 http://word.tta.or.kr/

- 평문(plaintext, cleartext)
- 암호문(ciphertext)
- <mark>암호화</mark>(encryption, encipherment): 평문을 암호문으로 바꾸는 과정
 - 비고. encrypt, encipher: 암호화하다.
- 복호화(decryption, decipherment): 암호문을 평문으로 바꾸는 과정
 - 비고. decrypt, decipher: 복호화하다.

13/15

기본 용어 (2/2)

- <mark>암호기술(cryptography)</mark>: 공격자가 존재하는 상황에서 서비스가 안전하게 이루어지도록 하는 기술
 - 디지털 정보에 직접 적용하는 수학적 이론에 근거를 두는 기술
 - 비고. 암호기술자(cryptographer)
- <mark>암호해독기술(crypt</mark>analysis): 암호기술을 분석하여 그것의 문제점을 발견하는 기술
 - 비고. 암호해독자(cryptanalyst)
- 암호학(cryptology): 암호기술 + 암호해독기술
 - 비고. 암호학자(cryptologist)

암호기술의 한계

- 한계 1. 모든 보안 문제의 해결책은 아님
 - 사회공학(social engineering) 공격은 암호기술로 해결할 수 없음
- 한계 2. 제대로 구현하고 올바르게 사용하지 않으면 효과가 없음
- 한계 3. 비전문가가 직접 설계하여 사용할 수 있는 기술은 아님
 - 표준 기술을 사용해야 하며, 전문가에 의해 설계된 것도 허점이 있는 경우가 많았음

'Blockchain Bandit': 약한 랜덤 함수를 이용하여 키를 생성하는 블록체인 지갑을 이용하는 700개 이상 사용자의 암호화폐(총액: 9천만 달러)가 도난된 적이 있음

