BLM1612 - Circuit Theory

The Instructors:

Dr. Öğretim Üyesi Erkan Uslu euslu@yildiz.edu.tr

Dr. Öğretim Üyesi Hamza Osman İlhan hoilhan@yildiz.edu.tr

Lab Assistants:

Arş. Gör. Hasan Burak Avcı

http://avesis.yildiz.edu.tr/hbavci/

Arş. Gör. Kübra Adalı

http://avesis.yildiz.edu.tr/adalik/

Arş. Gör. Alper Eğitmen

http://avesis.yildiz.edu.tr/aegitmen/

Energy Storage Devices

Capacitors and Inductors

Objective of Lecture

Describe

- the construction of a capacitor
- how charge is stored.
- Introduce several types of capacitors
- The electrical properties of a capacitor
 - Relationship between charge, voltage, and capacitance; power; and energy
 - Equivalent capacitance when a set of capacitors are in series and in parallel

Describe

- The construction of an inductor
- How energy is stored in an inductor
- The electrical properties of an inductor
 - Relationship between voltage, current, and inductance; power; and energy
- Equivalent inductance when a set of inductors are in series and in parallel

Capacitors

Energy Storage Devices

Capacitors

• Composed of two conductive plates separated by an insulator (or dielectric).

- Commonly illustrated as two parallel metal plates

separated by a distance, d.

$$C = \varepsilon \text{ A/d}$$
where $\varepsilon = \varepsilon_r \varepsilon_o$

$$\varepsilon_r \text{ is the relative dielectric constan}$$

$$\varepsilon_o \text{ is the vacuum permittivity}$$
Plate separation d

Effect of Dimensions

Capacitance increases with

- increasing surface area of the plates,
- decreasing spacing between plates, and
- increasing the relative
 dielectric constant of the
 insulator between the two
 plates.

Types of Capacitors

Fixed Capacitors

- Nonpolarized
 - May be connected into circuit with either terminal of capacitor connected to the high voltage side of the circuit.
 - Insulator: Paper, Mica, Ceramic, Polymer
- Electrolytic
 - The negative terminal must always be at a lower voltage than the positive terminal
 - Plates or Electrodes: Aluminum, Tantalum

Nonpolarized

- Difficult to make nonpolarized capacitors that store a large amount of charge or operate at high voltages.
 - Tolerance on capacitance values is very large
 - +50%/-25% is not unusual

PSpice Symbol

http://www.marvac.com/fun/ceramic capacitor codes.aspx

Electrolytic

Pspice Symbols

Fabrication

http://www.digitivity.com/articles/2008/11/choosing-the-right-capacitor.html

Variable Capacitors

• Cross-sectional area is changed as one set of plates are rotated with respect to the other.

http://www.tpub.com/neets/book2/3f.htm

PSpice Symbol

MEMS Capacitor

- MEMS (Microelectromechanical system)
 - Can be a variable capacitor by changing the distance between electrodes.
 - Use in sensing applications as well as in RF electronics.
 A-Si:H (P) Top electrode

http://www.silvaco.com/tech_lib_TCAD/simulationstandard/2005/aug/a3/a3.html

Electric Double Layer Capacitor

- Also known as a supercapacitor or ultracapacitor
 - Used in high voltage/high current applications.
 - Energy storage for alternate energy systems.

http://en.wikipedia.org/wiki/File:Supercapacitor_diagram.svg

Electrical Properties of a Capacitor

- Acts like an open circuit at steady state when connected to a d.c. voltage or current source.
- Voltage on a capacitor must be continuous
 - There are no abrupt changes to the voltage
- An ideal capacitor does not dissipate energy, it takes power when storing energy and returns it when discharging.

Properties of a Real Capacitor

• A real capacitor does dissipate energy due to leakage of charge through its insulator.

 This is modeled by putting a resistor in parallel with an ideal capacitor.

Energy Storage

• Charge is stored on the plates of the capacitor.

Equation:

$$Q = CV$$

Units:

Coulomb = Farad·Voltage

$$C = F V$$

Adding Charge to Capacitor

- The ability to add charge to a capacitor depends on:
 - the amount of charge already on the plates of the capacitor

and

 the force (voltage) driving the charge towards the plates (i.e., current)

Charging a Capacitor

- At first, it is easy to store charge in the capacitor.
- As more charge is stored on the plates of the capacitor, it becomes increasingly difficult to place additional charge on the plates.
 - Coulombic repulsion from the charge already on the plates creates an opposing force to limit the addition of more charge on the plates.
 - Voltage across a capacitor increases rapidly as charge is moved onto the plates when the initial amount of charge on the capacitor is small.
 - Voltage across the capacitor increases more slowly as it becomes difficult to add extra charge to the plates.

Discharging a Capacitor

- At first, it is easy to remove charge in the capacitor.
 - Coulombic repulsion from the charge already on the plates creates a force that pushes some of the charge out of the capacitor once the force (voltage) that placed the charge in the capacitor is removed (or decreased).
- As more charge is removed from the plates of the capacitor, it becomes increasingly difficult to get rid of the small amount of charge remaining on the plates.
 - Coulombic repulsion decreases as the charge spreads out on the plates. As the amount of charge decreases, the force needed to drive the charge off of the plates decreases.
 - Voltage across a capacitor decreases rapidly as charge is removed from the plates when the initial amount of charge on the capacitor is small.
 - Voltage across the capacitor decreases more slowly as it becomes difficult to force the remaining charge out of the capacitor.

Current-Voltage Relationships

$$i_{C} = \frac{dq}{dt}$$

$$q = Cv_{C}$$

$$i_{C} = C\frac{dv_{C}}{dt}$$

$$v_{C} = \frac{1}{C} \int_{t_{C}}^{t_{1}} i_{C} dt$$

Power and Energy

$$p_C = i_C v_C$$

$$p_C = C v_C \frac{dv_C}{dt}$$

$$w_C = \frac{1}{2} C v_C^2$$

$$w_C = \frac{q^2}{2C}$$

Capacitor Voltage vs. Time

d.c. voltage, Vc, is applied at t = 0s d.c. voltage, Vc, is removed at t = 0s

Time constant, τ

• The rate at which charge can be added to or removed from the plates of a capacitor as a function of time can be fit to an exponential function.

Charging

Discharging

$$V(t) = V_c \left(1 - e^{-t/\tau} \right)$$

$$V(t) = V_c e^{-t/\tau}$$

$$\tau = RC$$

Transition to steady state

• We approximate that the exponential function reaches its final value when the charging or discharging time is equal to 5τ .

Equivalent Capacitance

• Capacitors in parallel

C_{eq} for Capacitors in Parallel

$$i_{in} = i_{1} + i_{2} + i_{3} + i_{4}$$

$$i_{1} = C_{1} \frac{dv}{dt} \qquad i_{2} = C_{2} \frac{dv}{dt}$$

$$i_{3} = C_{3} \frac{dv}{dt} \qquad i_{4} = C_{4} \frac{dv}{dt}$$

$$i_{in} = C_{1} \frac{dv}{dt} + C_{2} \frac{dv}{dt} + C_{3} \frac{dv}{dt} + C_{4} \frac{dv}{dt}$$

$$i_{in} = C_{eq} \frac{dv}{dt}$$

$$C_{eq} = C_{1} + C_{2} + C_{3} + C_{4}$$

Equivalent Capacitance

• Capacitors in series

C_{eq} for Capacitors in Series

$$v_{in} = v_1 + v_2 + v_3 + v_4$$

$$v_1 = \frac{1}{C_1} \int_{t_0}^{t_1} idt \qquad v_2 = \frac{1}{C_2} \int_{t_0}^{t_1} idt$$

$$v_3 = \frac{1}{C_3} \int_{t_0}^{t_1} idt \qquad v_4 = \frac{1}{C_4} \int_{t_0}^{t_1} idt$$

$$v_{in} = \frac{1}{C_1} \int_{t_0}^{t_1} idt + \frac{1}{C_2} \int_{t_0}^{t_1} idt + \frac{1}{C_3} \int_{t_0}^{t_1} idt + \frac{1}{C_4} \int_{t_0}^{t_1} idt$$

$$v_{in} = \frac{1}{C_{eq}} \int_{t_0}^{t_1} idt$$

$$C_{eq} = \left[(1/C_1) + (1/C_2) + (1/C_3) + (1/C_4) \right]^{-1}$$

General Equations for C_{eq}

Parallel Combination

• If P capacitors are in parallel, then

$$C_{eq} = \sum_{p=1}^{P} C_{p}$$

Series Combination

• If S capacitors are in series, then:

$$C_{eq} = \left[\sum_{s=1}^{S} \frac{1}{C_s}\right]^{-1}$$

Summary

- Capacitors are energy storage devices.
- An ideal capacitor act like an open circuits when a DC voltage or current has been applied for at least 5 τ .
- The voltage across a capacitor must be a continuous function; the current flowing across a capacitor can be discontinuous.
- The equation for equivalent capacitance for

capacitors in parallel

$$C_{eq} = \sum_{p=1}^{P} C_{P}$$

capacitors in series

$$C_{eq} = \left[\sum_{s=1}^{S} \frac{1}{C_s}\right]^{-1}$$

Inductors

Energy Storage Devices

Inductors

• Generally - coil of conducting wire

- Usually wrapped around a solid core.
- If no core is used, then the inductor is said to have an 'air core'.

http://bzupages.com/f231/energy-stored-inductor-uzma-noreen-group6-part2-1464/

Symbols

Inductor symbols

http://www.allaboutcircuits.com/vol 1/chpt 15/1.html

Alternative Names for Inductors

- Reactor
 - inductor in a power grid
- Choke
 - designed to block a particular frequency while allowing currents at lower frequencies or d.c. currents through
 - Commonly used in RF (radio frequency) circuitry
- Coil
 - often coated with varnish and/or wrapped with insulating tape to provide additional insulation and secure them in place
 - A winding is a coil with taps (terminals).
- Solenoid
 - a three dimensional coil.
 - Also used to denote an electromagnet where the magnetic field is generated by current flowing through a toroidal inductor.

Energy Storage

• The flow of current through an inductor creates a magnetic field (right hand rule).

http://en.wikibooks.org/wiki/Circuit Theory/Mutual Inductance

• If the current flowing through the inductor drops, the magnetic field will also decrease and energy is released through the generation of a current.

Sign Convention

• The sign convention used with an inductor is the same as for a power dissipating device.

- When current flows into the positive side of the voltage across the inductor, it is positive and the inductor is dissipating power.
- When the inductor releases energy back into the circuit, the sign of the current will be negative.

Current and Voltage Relationships

• L, inductance, has the units of Henries (H)

$$1 H = 1 V-s/A$$

$$v_{L} = L \frac{di}{dt}$$

$$i_{L} = \frac{1}{L} \int_{t}^{t_{1}} v_{L} dt$$

Power and Energy

$$p_{L} = v_{L}i_{L} = Li_{L}\int_{t_{o}}^{t_{1}} i_{L}dt$$

$$w = \int_{t_{o}}^{t_{1}} L\frac{di_{L}}{dt}i_{L}dt = L\int_{t_{o}}^{t_{1}} i_{L}di_{L}$$

Inductors

- Stores energy in an magnetic field created by the electric current flowing through it.
 - Inductor opposes change in current flowing through it.

• Current through an inductor is continuous; voltage can be

discontinuous.

http://www.rfcafe.com/references/electrical/Electricity%20-%20Basic%20Navy%20Training%20Courses/electricity%20-%20basic%20navy%20training%20courses%20-%20chapter%2012.htm

Calculations of L

• For a solenoid (toroidal inductor)

$$L = \frac{N^2 \mu A}{\ell} = \frac{N^2 \mu_r \mu_o A}{\ell}$$

N is the number of turns of wire A is the cross-sectional area of the toroid in m^2 . μ_r is the relative permeability of the core material μ_o is the vacuum permeability $(4\pi \times 10^{-7} \text{ H/m})$ ℓ is the length of the wire used to wrap the toroid in meters

Wire

 Unfortunately, even bare wire has inductance.

$$L = \ell \left[\ln \left(4 \frac{\ell}{d} \right) - 1 \right] \left(2x10^{-7} \right) H$$

d is the diameter of the wire in meters.

Properties of an Inductor

- Acts like an short circuit at steady state when connected to a d.c. voltage or current source.
- Current through an inductor must be continuous
 - There are no abrupt changes to the current, but there can be abrupt changes in the voltage across an inductor.
- An ideal inductor does not dissipate energy, it takes power from the circuit when storing energy and returns it when discharging.

Properties of a Real Inductor

• Real inductors do dissipate energy due to resistive losses in the length of wire and capacitive coupling between turns of the wire.

Inductors in Series

L_{eq} for Inductors in Series

$$v_{in} = v_1 + v_2 + v_3 + v_4$$

$$v_1 = L_1 \frac{di}{dt} \qquad v_2 = L_2 \frac{di}{dt}$$

$$v_3 = L_3 \frac{di}{dt} \qquad v_4 = L_4 \frac{di}{dt}$$

$$v_{in} = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + L_4 \frac{di}{dt}$$

$$v_{in} = L_{eq} \frac{di}{dt}$$

$$L_{eq} = L_1 + L_2 + L_3 + L_4$$

Inductors in Parallel

L_{eq} for Inductors in Parallel

$$i_{in} = i_{1} + i_{2} + i_{3} + i_{4}$$

$$i_{1} = \frac{1}{L_{1}} \int_{t_{0}}^{t_{1}} vdt \qquad i_{2} = \frac{1}{L_{2}} \int_{t_{0}}^{t_{1}} vdt$$

$$i_{3} = \frac{1}{L_{3}} \int_{t_{0}}^{t_{1}} vdt \qquad i_{4} = \frac{1}{L_{4}} \int_{t_{0}}^{t_{1}} vdt$$

$$i_{in} = \frac{1}{L_{1}} \int_{t_{0}}^{t_{1}} vdt + \frac{1}{L_{2}} \int_{t_{0}}^{t_{1}} vdt + \frac{1}{L_{3}} \int_{t_{0}}^{t_{1}} vdt + \frac{1}{L_{4}} \int_{t_{0}}^{t_{1}} vdt$$

$$i_{in} = \frac{1}{L_{eq}} \int_{t_{0}}^{t_{1}} vdt$$

$$L_{eq} = \left[\left(\frac{1}{L_{1}} \right) + \left(\frac{1}{L_{2}} \right) + \left(\frac{1}{L_{3}} \right) + \left(\frac{1}{L_{4}} \right) \right]^{-1}$$

General Equations for L_{eq}

Series Combination

• If S inductors are in series, then

$$L_{eq} = \sum_{s=1}^{S} L_s$$

Parallel Combination

• If P inductors are in parallel, then:

$$L_{eq} = \left[\sum_{p=1}^{P} \frac{1}{L_p}\right]^{-1}$$

Summary

- Inductors are energy storage devices.
- An ideal inductor act like a short circuit at steady state when a DC voltage or current has been applied.
- The current through an inductor must be a continuous function; the voltage across an inductor can be discontinuous.
- The equation for equivalent inductance for

inductors in series

$$L_{eq} = \sum_{s=1}^{S} L_s$$

inductors in parallel

$$L_{eq} = \left[\sum_{p=1}^P rac{1}{L_p}
ight]^{-1}$$