User-based collaborative filt ering

Wang Jianfang

王建芳(in Chinese)

Agenda

- Algorithms (user-based)
- Code
- Installing environment
- MovieLens

Algorithms

Algorithms

Algorithms: User-Based

User-Based Nearest Neighbor

- Neighbor = similar users
- Generate a prediction for an item i by analyzing ratings for i from users in u's neighborhood

$$pred(u,i) = \overline{r}_u + \frac{\sum_{n \subset neighbors(u)} sim(u,n) \cdot (r_{ni} - \overline{r}_n)}{\sum_{n \subset neighbors(u)} sim(u,n)}$$

Algorithms: Item-Based

Item-Based Nearest Neighbor

- Generate predictions based on similarities between items.
- ullet Prediction for a user u and item i is composed of a weight ed sum of the user u's ratings for items most similar to i.

$$pred (u,i) = \frac{\sum_{j \in ratedItems (u)} sim(i,j) \cdot r_{ui}}{\sum_{j \in ratedItems (u)} sim(i,j)}$$

User-based nearest-neighbor coll aborative filtering (1)

The basic technique

- Given an "active user" (Alice) and an item i not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated

Basic assumption and idea

- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time

User-based nearest-neighbor coll aborative filtering (2)

Example

A database of ratings of the current user, Alice, and some other users is given:

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Determine whether Alice will like or dislike *Item5*, which Alice has not yet rated or seen

User-based nearest-neighbor coll aborative filtering (3)

- Some first questions
 - How do we measure similarity?
 - □ How many neighbors should we consider?
 - How do we generate a prediction from the neighbors' ratings?

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity (1)

A popular similarity measure in user-based CF: Pearson correlation

a, b: users

 $r_{a,p}$: rating of user a for item p

P: set of items, rated both by a and b

- Possible similarity values between -1 and 1

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

Measuring user similarity (2)

A popular similarity measure in user-based CF: Pearson correlation

a, b: users

 $r_{a,p}$: rating of user a for item p

P: set of items, rated both by a and b

- Possible similarity values between -1 and 1

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

sim = 0.85 sim = 0.00 sim = 0.70sim = -0.79

Pearson correlation

Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
 - such as cosine similarity

Making predictions

A common prediction function:

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

similarity function

Pearson

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

Cosine Similarity

$$w_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

Jaccard

$$w_{uv} = \frac{|N(u) \cap N(v)|}{\sqrt{|N(u)||N(v)|}}$$

similarity function

Pearson

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

Pearson(simpler)

$$r = \frac{\sum XY - \frac{\sum X\sum Y}{N}}{\sqrt{(\sum X^2 - \frac{(\sum X)^2}{N})(\sum Y^2 - \frac{(\sum Y)^2}{N})}}$$

Pratise

How to get the similarity?

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

sim = 0.85 sim = 0.00 sim = 0.70sim = -0.79

similarity function

Pearson

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

 Pearson correlation coefficient formula is used to calculate the correlation coefficient of XY to verif y the correctness of the code

$$\rho_{X,Y} = \frac{COV(X,Y)}{\sigma_X \sigma_Y} = \frac{E\left[(X - \mu_X)(X - \mu_Y)\right]}{\sigma_X \sigma_Y} = \frac{E\left(XY\right) - E(X)E(Y)}{\sqrt{E\left[X^2\right] - E\left[X\right]^2} \sqrt{E\left[Y^2\right] - E\left[Y\right]^2}}$$

Homework

Verifing the code in your computer.

RS-1-2-User-based collaborative filtering.py

Using Pearson similarity formulas to calculate the results in code 2.

Questions and Comments?

Thank you!!