

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO				
Disciplina:					a Disciplina:	
Laboratório de Engenharia de Alimentos I					EAL302	
Course:				ļ		
Laboratory of Food Engineering	1					
Materia:						
Laboratorio de Ingeniería de Alii	mentos I					
Periodicidade: Anual	Carga horária total:	160	Carga horária seman	al: 00 - 00	- 04	
Curso/Habilitação/Ênfase:			Série:	Período:		
Engenharia de Alimentos			3	Diurno		
Professor Responsável:		Titulação - Graduação		Pós	s-Graduação	
Tatiana Guinoza Matuda Masaoka		Engenheiro de Alimentos		Do	outor	
Professores:		Titulação - Graduação		Pós	s-Graduação	
Cynthia Jurkiewicz Kunigk		Engenheiro Químico		Do	utor	
Efraim Cekinski		Engenheiro Químico		Do	utor	
Tatiana Guinoza Matuda Masaoka		Engenheiro de Alimentos		Do	utor	
OBJET	TVOS - Conhec	imentos, Habili	dades, e Atitudes	3		

Capacitar o aluno de engenharia de alimentos a aplicar conceitos teóricos de fenômenos de transporte e termodinâmica em uma seleção de operações unitárias da indústria de alimentos, e de engenharia bioquímica por meio de atividades práticas. Incentivar o uso de ferramentas computacionais que possibilitam o

Os conhecimentos, as habilidades e as atitudes adquiridas nessa disciplinas são:

Conhecimentos:

C1 - Fundamentos de fenômenos de transporte;

maior entendimento dos fenômenos de transporte.

- C2 Formulação de equações de conservação de quantidade de movimento, massa e energia em unidades operadas em regime permanente e transiente;
- C3 Cinética de processos fermentativos.

Habilidades:

- H1 Aplicar os conceitos de fenômenos de transporte.
- H2 Compreender a síntese das equações de conservação de quantidade de movimento, massa e energia, reconhecendo cada termo que as compõe e aplicá-las aos processos;
- H3 Determinar parâmetros cinéticos de processos fermentativos.

Atitudes:

- Al Planejar, executar e analisar experimentos relacionados às etapas de processos da indústria de alimentos;
- A2 Interpretar os aspectos fenomenológicos que originam o equacionamento matemático de equipamentos e sua posterior resolução numérica, relacionando a

2020-EAL302 página 1 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

causa e efeito entre o dimensionamento do equipamento e as variáveis de processo;

A3 - Avaliar o desempenho de processos fermentativos com base em parâmetros cinéticos.

EMENTA

Programação, execução e análise de experimentos relacionados aos temas Fenômenos de Transporte, Termodinâmica para Engenharia de Alimentos e Operações Unitárias da Indústria de Alimentos. Uso de ferramentas computacionais que possibilitem o tratamento de resultados experimentais, além de um maior entendimento e a otimização dos processos.

SYLLABUS

Programming, implementation and analysis of experiments related to the topics: Transport Phenomena, Thermodynamics for Food Engineering and Unit Operations in the Food Industry. Use of computational tools that enable the treatment of experimental results, as well as a greater understanding and optimization of the processes.

TEMARIO

Programación, ejecución y análisis de experimentos relacionados a los temas: Fenómenos de Transporte, Termodinámica para Ingeniería de Alimentos y Operaciones Unitarias de la Industria de Alimentos. El uso de herramientas computacionales que permiten el tratamiento de los resultados experimentales, así como una mayor comprensión y optimización de procesos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Problem Based Learning
- Gamificação
- avaliação de pares

METODOLOGIA DIDÁTICA

- A disciplina Laboratório de Engenharia de Alimentos I será composta por quatro módulos bimestrais. Cada módulo contemplará as seguintes atividades:
- (a) Definição do "problema" a ser objeto de estudo e do grupo de alunos responsável pela execução da atividade;
- (b) Discussão dos fundamentos teóricos e tecnológicos relacionados ao tema abordado, sua aplicação e definição dos objetivos do estudo;
- (c) Realização de ensaios "preliminares" para a conhecimento dos equipamentos e das técnicas envolvidas;
- (d) Realização de ensaios e discussão dos resultados;

2020-EAL302 página 2 de 10

- (e) Apresentação oral e/ou escrita do estudo realizado com o detalhamento das etapas executadas;
- (f) Avaliação individual.

Uso de ferramentas de aprendizagem ativa determinadas pelo professor responsável por cada módulo.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- (1) Matemática e física: conceitos de cálculo diferencial e integral de funções, de algarismos significativos e de medidas físicas experimentais;
- (2) Estatística: conceitos de erros, de ajuste de equações (regressões), de sensibilidade de variáveis de processo e de critérios estatísticos de validação de modelos matemáticos;
- (3) Computação: utilização de planilhas para resolução de equações algébricas e diferenciais, com a posterior síntese de gráficos, tabelas e análise estatística;
- (4) Fundamentos de engenharia de processos: fluxogramas, balanço material e de energia, conceitos de transferência de quantidade de movimento, calor e massa, conceitos dos principais equipamentos envolvidos com aspectos de transferência de quantidade de movimento, de energia e de massa;
- (5) Português: leitura e interpretação de textos (livros, listas de exercícios e provas), além da escrita de relatórios resultantes das atividades de laboratório e de projeto;
- (6) Inglês: leitura básica e vocabulário técnico.

CONTRIBUIÇÃO DA DISCIPLINA

Incentivar e capacitar o desenvolvimento de habilidades e atitudes esperadas no Engenheiro de Alimentos por meio da aplicação dos fundamentos teóricos e tecnológicos nos planejamentos dos experimentos, da vivência com equipamentos em escala de laboratório e piloto e da análise de projetos.

BIBLIOGRAFIA

Bibliografia Básica:

BIRD, R. Byron; STEWART, Warren E; LIGHTFOOT, Edwin N. Transport phenomena. 2. ed. New York: John Wiley, 2002. 895 p.

BORZANI, Walter et al. Biotecnologia industrial. São Paulo, SP: Edgard Blücher, 2001. v. 4.

FELDER, Richard M; ROUSSEAU, Ronald W. Princípios elementares dos processos químicos. Trad. de Martín Aznar. 3. ed. Rio de Janeiro, RJ: LTC, 2005. 579 p.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Eduardo Mach Queiroz e Fernando Luiz Pellegrino Pessoa. 6. ed. Rio de Janeiro, RJ: LTC, 2008. 643 p.

2020-EAL302 página 3 de 10

MEIRELLES, Antônio José de Almeida (Org.) et al. Operações unitárias na indústria de alimentos. Rio de Janeiro: GEN/LTC, c2016. v. 1. 562 p.

ROTAVA, Oscar. Aplicações práticas em escoamento de fluidos: cálculo de tubulações, válvulas de controle e bombas centrífugas. Rio de Janeiro, RJ: LTC, 2012. 409 p.

Bibliografia Complementar:

BRIGGS, Dennis E et al. Brewing science and practice. Boca Raton: CRC, 2004. 881 p.

EARLE, R. L.; EARLE, M. D. Unit Operations in Food Processing, Web Edition, 2004. The New Zealand Institute of Food Science & Technology (Inc.), disponível em http://www.nzifst.org.nz/unitoperations/

HELDMAN, Dennis R., Ed; LUND, Daryl B., Ed. Handbook of food engineering. 2 ed. Boca Raton: CRC, 2007. 1023 p. (Food Science and Technology, 161).

STANBURY, Peter F; WHITAKER, Allan; HALL, Stephen J. Principles of fermentation technology. 2. ed. Oxford: Butterworth Heinemann, 2000. 357 p.

TERRON, Luiz Roberto. Operações unitárias para químicos, farmacêuticos e engenheiros: fundamentos e operações unitárias do escoamento de fluidos. Rio de Janeiro, RJ: LTC, 2012. 589 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 k_1 : 2,5 k_2 : 2,5 k_3 : 2,5 k_4 : 2,5

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

O aluno será avaliado por meio de 4 (quatro) notas trabalho que correspondem aos 4 (quatro) módulos que compõem a disciplina:

- T1 Transporte de fluidos;
- T2 Reologia;
- T3 Fluidodinâmica computacional(CFD);
- T4 Processos Fermentativos.

A ordem dos módulos poderá sofrer modificações sem comprometer o aprendizado dos alunos.

2020-EAL302 página 4 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

O(s) relatório(s) de cada módulo serão feitos em grupos designados pelos professores e entregues na página da disciplina no ambiente virtual de aprendizagem, MRooms.

Estima-se 20 horas de dedicação extra-classe por aluno para o cumprimento de cada módulo.

A nota trabalho (T1, T2, T3 e T4) de cada módulo será composta por:

- 50% nota(s) do(s) relatório(s) do módulo;
- 50% nota da avaliação individual.

A avaliação individual tem duração de uma hora e a permissão para consulta ao material didático será definida pelo professor de cada módulo.

As notas trabalho (T1, T2, T3 e T4) serão divulgadas antes do início do próximo módulo.

É importante que todos os componentes se envolvam na realização dos experimentos e preparação dos relatórios, adquirindo conhecimentos que serão cobrados na avaliação individual.

Não será permitido aproveitamento de notas de trabalhos do ano anterior de alunos reprovados.

Não haverá trabalho substitutivo.

2020-EAL302 página 5 de 10

OUTRAS INFORMAÇÕES

A ordem de oferta dos módulos será informada aos alunos no início do ano letivo.

Necessidades de recursos materiais e humanos:

- (a) Parte teórica: lousa e giz e computador/internet/projetor;
- (b) Parte prática: reagentes e vidrarias, equipamentos de laboratório de engenharia de alimentos ("operações unitárias" e "mecânica dos fluidos") e laboratório de informática (microcomputadores e software).

As aulas de laboratório necessitarão do técnico de laboratório, para a preparação e acompanhamento de experimentos, e auxiliar de laboratório, para lavagem do material utilizado.

O uso de EPI é obrigatório (avental, sapatos fechados).

2020-EAL302 página 6 de 10

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA Pacote Microsoft Office Computational Fluid Dynamics software (CFD)

2020-EAL302 página 7 de 10

2020-EAL302 página 8 de 10

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	Aula Introdutória.	0
2 L	Início do Módulo 1: Transporte de fluidos.Conceitos	41% a 60%
	teóricos.Apresentação e reconhecimento do laboratório de Mecânica	
	dos fluidos (F10). Elaboração do roteiro do Experimento 1.	
3 L	Dia não letivo - Carnaval	0
4 L	Experimento 1 - Perda de carga e Construção do Ábaco de	41% a 60%
	Moody.Apresentação e discussão dos resultados do Experimento 1.	
5 L	Elaboração do roteiro do Experimento 2. Experimento 2 - Curva	41% a 60%
	Característica da Bomba.	
6 L	Apresentação e discussão dos resultados do Experimento	41% a 60%
	2. Elaboração do roteiro do Experimento 3.	
7 L	Experimento 3 - Medidores de vazão. Apresentação e discussão dos	41% a 60%
	resultados do Experimento 3.	
8 L	Avaliação individual.	41% a 60%
9 L	Semana de Provas P1.Prazo para divulgação da nota T1.	0
10 L	Início do Módulo 2: Reologia - Conceitos teóricos.Reconhecimento	0
	dos equipamentos e laboratórios. Elaboração do roteiro do	
F	Experimento 1.	
10 L	Início do Módulo 2: Reologia - Conceitos teóricos.Reconhecimento	0
	dos equipamentos e laboratórios. Elaboração do roteiro do	
	Experimento 1.	
11 L	Experimento 1 - Caracterização de um fluido	41% a 60%
	alimentício.Apresentação e discussão dos resultados do	
	Experimento 1.	
12 L	Elaboração do roteiro do Experimento 2.	41% a 60%
13 L	Experimento 2 - Caracterização de um fluido alimentício com	41% a 60%
	ajuste de modelos teóricos.	
14 L	Apresentação e discussão dos resultados do Experimento 2.	0
15 L	Semana Mauá de Inovação	0
16 L	Textura - Conceitos teóricos.	0
17 L	Experimento 3 - Prática de determinação dos parâmetros de textura	41% a 60%
	de um alimento.	
18 L	Apresentação e discussão dos resultados do Experimento	0
	3.Avaliação individual.	
19 L	Semana de Provas P2.	0
20 L	Semana de Provas P2.Prazo para divulgação da nota T2.	0
21 L	Exercícios Extras.	0
22 L	Exercícios Extras.	0
23 L	Início Módulo 3: Fluidodinâmica computacional (CFD).Conceitos de	11% a 40%
	fluidodinâmica computacional. Abordagens de problemas com CFD.	
	Comandos básicos.	
24 L	Mecânica de fluidos - Perda de carga.Perfis de velocidades.	11% a 40%
	Cálculo de vazões.Relatório 1.	

2020-EAL302 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

25 L Transferência de calor - Aletas. 11% a 26 L Transferência de calor - Aletas.Relatório 2. 11% a 27 L Transferência de calor - Regime transiente. 11% a	
	102
27 I. Transferência de calor - Regime transjente	10.0
27 I Hambleteneta de cator Regime chambrenee.	40%
28 L Transferência de calor - Regime transiente.Relatório 3. 11% a	40%
29 L Apresentações e avaliação individual. 11% a	40%
30 L Semana de Provas P3.Prazo para divulgação da nota T3.	
31 L Início Módulo 4: Fatores que influenciam a eficiência de um 61% a	90%
processo fermentativo. Produção de etanol.	
32 L Análise dos dados. Cálculo de rendimento, produtividade e fatores 61% a	90%
de conversão.	
33 L Trabalho em grupo e Discussão de resultados. 61% a	90%
34 L Influência do substrato na produção de amiloglicosidase. 61% a	90%
35 L Cálculo de parâmetros cinéticos: velocidades e velocidades 61% a	90%
específicas de crescimento, de consumo de substrato e produção de	
produto.	
36 L Trabalho em grupo - Discussão e apresentação de resultados. 61% a	90%
37 L Avaliação individual. 0	
38 L Semana de Provas P4. 0	
39 L Semana de Provas P4.Prazo para divulgação da nota T4.	
39 L Semana de Provas P4.Prazo para divulgação da nota T4. 0	
40 L Exercícios Extras. 0	
41 L Exercícios Extras. 0	

2020-EAL302 página 10 de 10