1

EE5609: Matrix Theory Assignment-11

Major Saurabh Joshi MTech Artificial Intelligence AI20MTECH13002

Abstract

This document solves problem on Eigen values and properties.

Download all solutions from

https://github.com/saurabh13002/EE5609/tree/master/Assignment11

1 Problem

Let **A** be a real symmetric matrix and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$. Then choose the correct option.

- 1) **B** is invertible if and only if **A** is invertible.
- 2) All eigenvalues of **B** are necessarily real.
- 3) $\mathbf{B} \mathbf{I}$ is necessarily invertible.
- 4) **B** is necessarily invertible.

2 RESULTS USED

Result 1	Eigenvalues of real symmetric matrix are real
Result 2	If a square matrix A is lower or upper triangular then Eigen values of A are entries on the main diagonal.
Result 3	If the eigenvalue of a matrix \mathbf{A} is λ , corresponding to the Eigen vector X , then $\mathbf{A} + c\mathbf{I}$ has Eigen value $\lambda + c$, corresponding to the Eigen vector X . c can be scalar or complex.
Result 3	det A=product of Eigen values of det A

3 Solution

Given	Let A be a real symmetric matrix, and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$.
Checking Option 1	Lets assume, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ a real symmetric and non invertible matrix, as the rank of $\mathbf{A} < 2$. \Rightarrow Eigen values of \mathbf{A} are 1 and 0 $\Rightarrow \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + i \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1+i & 0 \\ 0 & 1 \end{pmatrix}$, is invertible even if \mathbf{A} is non invertible. Thus Option 1 is incorrect.
Checking Option 2	Eigen values of \mathbf{B} = Eigen values of \mathbf{I} + i (Eigen values of \mathbf{A}). Clearly, Eigen values of \mathbf{B} are, 1 and 1 + i, Hence Eigen values of \mathbf{B} are necessarily real is wrong. Thus, Option 2 is incorrect.
Checking Option 3	$\mathbf{B} - \mathbf{I} = i\mathbf{A}$ $\implies (\mathbf{B} - \mathbf{I}) = i\mathbf{A} = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}$ Hence, $\mathbf{B} - \mathbf{I}$ is not invertible Thus option 3 is also incorrect.
Checking Option 4	Let X be an Eigen vector of \mathbf{A} corresponding to Eigen value λ . $\lambda \in \mathbb{R}$ $\Rightarrow \mathbf{A}X = \lambda X$ $\therefore \mathbf{B}X = (\mathbf{I} + i\mathbf{A})X = \mathbf{I}X + i\mathbf{A}X = X + i\lambda X$ $\Rightarrow \mathbf{B}X = (1 + i\lambda)X$ Therefore, $1 + i\lambda$ is an Eigen value of \mathbf{B} corresponding to Eigen vector X , which are non zero. Therefore, all Eigen values of \mathbf{B} are non zero Hence, \mathbf{B} is necessarily invertible.
Correct option	The correct option is 4 .