```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
from sklearn.linear_model import LinearRegression
%matplotlib inline

df=pd.read_csv("/content/kc_house_data.csv")
```

## df.head(5)

| $\Rightarrow$ |   | id         | date            | price    | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | <br>grade | sqft_above | S |
|---------------|---|------------|-----------------|----------|----------|-----------|-------------|----------|--------|------------|------|-----------|------------|---|
|               | 0 | 7129300520 | 20141013T000000 | 221900.0 | 3        | 1.00      | 1180        | 5650     | 1.0    | 0          | 0    | <br>7     | 1180       |   |
|               | 1 | 6414100192 | 20141209T000000 | 538000.0 | 3        | 2.25      | 2570        | 7242     | 2.0    | 0          | 0    | <br>7     | 2170       |   |
|               | 2 | 5631500400 | 20150225T000000 | 180000.0 | 2        | 1.00      | 770         | 10000    | 1.0    | 0          | 0    | <br>6     | 770        |   |
|               | 3 | 2487200875 | 20141209T000000 | 604000.0 | 4        | 3.00      | 1960        | 5000     | 1.0    | 0          | 0    | <br>7     | 1050       |   |
|               | 4 | 1954400510 | 20150218T000000 | 510000.0 | 3        | 2.00      | 1680        | 8080     | 1.0    | 0          | 0    | <br>8     | 1680       |   |

5 rows × 21 columns

## df.info()

df.describe()

```
<pr
    RangeIndex: 21613 entries, 0 to 21612
    Data columns (total 21 columns):
                    Non-Null Count Dtype
     # Column
     0 id
                       21613 non-null
                      21613 non-null object
        date
                      21613 non-null float64
21613 non-null int64
         price
         bedrooms
     4 bathrooms
                      21613 non-null float64
        sqft_living 21613 non-null int64
sqft_lot 21613 non-null int64
         floors
                       21613 non-null float64
         waterfront
                       21613 non-null
                       21613 non-null int64
         view
     10 condition
                       21613 non-null int64
     11 grade
                       21613 non-null
     12 sqft above
                       21613 non-null int64
     13 sqft_basement 21613 non-null int64
                        21613 non-null
                                       int64
     15 yr_renovated 21613 non-null int64
     16 zipcode
                       21613 non-null int64
     17 lat
                        21613 non-null float64
     18 long
                        21613 non-null float64
     19 sqft_living15 21613 non-null int64
20 sqft_lot15 21613 non-null int64
    dtypes: float64(5), int64(15), object(1)
    memory usage: 3.5+ MB
if 'id' in df.columns:
   df.drop(['id'], axis=1, inplace=True)
if 'Unnamed: 0' in df.columns:
   df.drop(['Unnamed: 0'], axis=1, inplace=True)
```

| ,     | price        | bedrooms     | bathrooms    | sqft_living  | sqft_lot     | floors       | waterfront   | view         | condition    |         |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|
| count | 2.161300e+04 | 21613.000000 | 21613.000000 | 21613.000000 | 2.161300e+04 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.0 |
| mean  | 5.400881e+05 | 3.370842     | 2.114757     | 2079.899736  | 1.510697e+04 | 1.494309     | 0.007542     | 0.234303     | 3.409430     | 7.6     |
| std   | 3.671272e+05 | 0.930062     | 0.770163     | 918.440897   | 4.142051e+04 | 0.539989     | 0.086517     | 0.766318     | 0.650743     | 1.1     |
| min   | 7.500000e+04 | 0.000000     | 0.000000     | 290.000000   | 5.200000e+02 | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 1.0     |
| 25%   | 3.219500e+05 | 3.000000     | 1.750000     | 1427.000000  | 5.040000e+03 | 1.000000     | 0.000000     | 0.000000     | 3.000000     | 7.0     |
| 50%   | 4.500000e+05 | 3.000000     | 2.250000     | 1910.000000  | 7.618000e+03 | 1.500000     | 0.000000     | 0.000000     | 3.000000     | 7.0     |
| 75%   | 6.450000e+05 | 4.000000     | 2.500000     | 2550.000000  | 1.068800e+04 | 2.000000     | 0.000000     | 0.000000     | 4.000000     | 8.0     |
| max   | 7.700000e+06 | 33.000000    | 8.000000     | 13540.000000 | 1.651359e+06 | 3.500000     | 1.000000     | 4.000000     | 5.000000     | 13.0    |

<sup>#</sup> prompt: Use the method value\_counts to count the number of houses with unique floor values, and use the method to\_frame() to convert it to

<sup>#</sup> Count the number of houses with unique floor values and convert to a DataFrame
floors\_counts = df['floors'].value\_counts().to\_frame()
floors\_counts

| ₹ |        | count |
|---|--------|-------|
|   | floors |       |
|   | 1.0    | 10680 |
|   | 2.0    | 8241  |
|   | 1.5    | 1910  |
|   | 3.0    | 613   |
|   | 2.5    | 161   |
|   | 3.5    | 8     |

# prompt: Use the function boxplot in the seaborn library to produce a plot that can help determine whether houses with a waterfront view or iss.boxplot(x="waterfront", y="price", data=df)





# prompt: Use the function regplot in the seaborn library to determine if the feature sqft\_above is negatively or positively correlated with sns.regplot(x="sqft\_above", y="price", data=df)

0

2000

```
Axes: xlabel='sqft_above', ylabel='price'>

8

7-
6-
5-
94-
3-
2-
1-
```

4000

sqft\_above

6000

8000

```
# prompt: Fit a linear regression model to predict the price using the feature 'sqft_living', then calculate the R^2.
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
# Define features (X) and target (y)
X = df[['sqft_living']]
y = df['price']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and fit the linear regression model
lm = LinearRegression()
lm.fit(X_train, y_train)
# Make predictions on the test set
y_pred = lm.predict(X_test)
# Calculate R^2
r2 = r2_score(y_test, y_pred)
print(f"R-squared: {r2}")
R-squared: 0.49406905389089006
# prompt: Fit a linear regression model to predict the 'price' using the list of features:
# "floors"
# "waterfront"
# "lat"
# "bedrooms"
# "sqft_basement"
# "view"
# "bathrooms"
# "sqft_living15"
# "sqft_above"
# "grade"
# "sqft_living"
\# Define features (X) and target (y)
features = ["floors", "waterfront", "lat", "bedrooms", "sqft_basement", "view", "bathrooms", "sqft_living15", "sqft_above", "grade", "sqft_l
X = df[features]
y = df['price']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

# Initialize and fit the linear regression model

```
lm = LinearRegression()
lm.fit(X_train, y_train)
# Make predictions on the test set
y_pred = lm.predict(X_test)
# Calculate R^2
r2 = r2_score(y_test, y_pred)
print(f"R-squared: {r2}")
R-squared: 0.6614781405487573
# prompt: Create a pipeline object that scales the data, performs a polynomial transform, and fits a linear regression model. Fit the object
Input =['floors', 'waterfront','lat' ,'bedrooms' ,'sqft_basement' ,'view' ,'bathrooms','sqft_living15','sqft_above','grade','sqft_living']
# Create a pipeline object
Input=[ 'floors', 'waterfront','lat' ,'bedrooms' ,'sqft_basement' ,'view' ,'bathrooms','sqft_living15','sqft_above','grade','sqft_living']
pipe=Pipeline(steps=[('scale',StandardScaler()),('polynomial', PolynomialFeatures(include_bias=False)),('model',LinearRegression())])
# Fit the pipeline object using the features in the question above
pipe.fit(X_train,y_train)
# Make predictions on the test set
y_pred = pipe.predict(X_test)
# Calculate R^2
r2 = r2_score(y_test, y_pred)
print('The R-square is',r2)
The R-square is 0.7114140982349176
# prompt: Create and fit a Ridge regression object using the training data, setting the regularization parameter to 0.1, and calculate the R
from sklearn.linear_model import Ridge
# Initialize and fit the Ridge regression model
ridge = Ridge(alpha=0.1) # alpha is the regularization parameter
ridge.fit(X_train, y_train)
# Make predictions on the test set
y_pred_ridge = ridge.predict(X_test)
# Calculate R^2
r2 ridge = r2 score(y test, y pred ridge)
print(f"R-squared (Ridge Regression): {r2_ridge}")
R-squared (Ridge Regression): 0.6614734596866666
# prompt: Perform a transformsecond-order polynomial on both the training data and testing data. Create and fit a Ridge regression object u
# Create polynomial features
pr = PolynomialFeatures(degree=2)
X_train_pr = pr.fit_transform(X_train)
X_test_pr = pr.fit_transform(X_test)
# Initialize and fit the Ridge regression model
ridge = Ridge(alpha=0.1) # alpha is the regularization parameter
ridge.fit(X_train_pr, y_train)
# Make predictions on the test set
y_pred_ridge = ridge.predict(X_test_pr)
# Calculate R^2
r2_ridge = r2_score(y_test, y_pred_ridge)
print(f"R-squared (Ridge Regression with Polynomial Features): {r2_ridge}")
R-squared (Ridge Regression with Polynomial Features): 0.7003486858533614
```

Start coding or generate with AI.