

# Universidad Tecnológica de la Mixteca

Clave DGP: 200089

# Ingeniería Mecánica Automotriz

# **PROGRAMA DE ESTUDIOS**

# NOMBRE DE LA ASIGNATURA

#### Diseño Asistido por Computadora

| SEMESTRE | CLAVE DE LA ASIGNATURA | TOTAL DE HORAS |
|----------|------------------------|----------------|
| Séptimo  | 311072                 | 102            |

### OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Usar aplicaciones de software computacional para analizar interactivamente las variantes de forma y tamaño, a través de la simulación, validación y optimización, del diseño automotriz para su manufactura.

#### TEMAS Y SUBTEMAS

#### 1.Introducción al diseño de concepto del automóvil

- 1.1 Factores de necesidad de transporte
- 1.2 Necesidades del usuario
- 1.3 Estudios de preferencia y tendencias del mercado

#### 2. Técnicas de representación de prototipos automotrices

- 2.1 Exploración conceptual
- 2.2 Render y evaluación del concepto
- 2.3 Modelado

#### 3. Ergonomía del vehículo

- 3.1 Introducción a la ergonomía y antropometría
- 3.2 Ergonomía de la cabina
- 3.3 Ergonomía aplicada a los sistemas automotrices

# 4. Diseño de carrocerías y componentes automotrices por computadora

- 4.1 Modelado en 2D
- 4.2 Modelado en 3D
- 4.3 Prototipo final



#### ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y software especializado.

Promover una investigación relacionada con el diseño asistido por computadora de autopartes y su evolución tecnológica.

Organizar prácticas para simular, validar y optimizar, el diseño de partes y componentes de sistemas automotrices.

#### CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

# BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

#### Básica:

Gómez, González S. SolidWorks Simulation. Alfaomega. México. 2010 How to Design Cars Like a Pro. Lewin, Borroff. Motorbooks. 2010 El gran libro de Catia. Torrecilla, I. E., Marcombo. 2009

#### Consulta:

Ergonomía y diseño de productos. Sáenz, Z. M. Universidad Pontificia. 2011 Manual de ergonomía y seguridad. Rueda, O., Zambrano V.M., Alfaomega. 2013

## PERFIL PROFESIONAL DEL DOCENTE

El docente debe tener el perfil de licenciatura en Ingeniería Industrial, Ingeniería Mecánica, con el posgrado de maestría en manufactura o preferentemente doctorado, y con alguna especialidad en las áreas mencionadas anteriormente.

Matar M Cto

Vo. Bo

M.C. VÍCTOR MANUEL CRUZ MARTÍNEZ JEFE DE CARRERA AUTORIZO

DR. AGUSTIN SANTAGO ALVARADO VICE-RECTOR ACÁDEMICO

JEVATURA DE CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ