Useful definitions and equivalences

LTL

Let $\mathcal{M}=(S,\to,L)$ be a model and $\pi=s_1\to s_2\to\ldots$ be a path in \mathcal{M} ($\pi^i=s_i\to\ldots$). Whether π satisfies an LTL formula is defined by the satisfaction relation as follows:

- $\pi \models X \phi \text{ iff } \pi^2 \models \phi$
- $\pi \models G \phi$ iff, for all $i \ge 1, \pi^i \models \phi$
- $\pi \models F \phi$ iff there is some $i \ge 1$ such that $\pi^i \models \phi$
- $\pi \models \phi \cup \psi$ iff there is some $i \geq 1$ such that $\pi^i \models \psi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \models \phi$
- $\pi \models \phi \le \psi$ iff either thre is some $i \ge 1$ such that $\pi^i \models \psi$ and for all $j = 1, \dots, i-1$ we have $\pi^j \models \phi$; or for all $k \ge 1$ we have $\pi^k \models \phi$
- $\pi \models \phi \ \mathbb{R} \ \psi$ iff either there is some $i \geq 1$ such that $\pi^i \models \phi$ and for all $j = 1, \ldots, i$ we have $\pi^j \models \psi$, or for all $k \geq 1$ we have $\pi^k \models \psi$ must remain true up to and including the moment when ϕ becomes true (if there is one); ϕ 'Releases' ψ .

CTL

Let $\mathcal{M}=(S,\to,L)$ be a model for CTL, s in S,ϕ a CTL formula. The relation $\mathcal{M},s\models\phi$ is defined by structural induction on ϕ :

- $s \models AX \phi$: in every next state
- $s \models \mathrm{EX} \ \phi$: in some next state
- $s \models AG \phi$: for All computation paths beginning in s the property ϕ holds Globally. (including the path's initial state s)
- $s \models \mathrm{EG} \ \phi$: there Exists a path beginning in s such that ϕ holds Globally along the path
- $s \models AF \phi$: for All computation paths beginning in s there will be some Future state where ϕ holds
- $s \models \text{EF } \phi$: there Exists a computation path beginning in s such that ϕ holds in some Future state
- $s \models A [\phi_1 \cup \phi_2]$: All computation paths, beginning in s satisfy that ϕ_1 Until ϕ_2 holds on it
- $s \models E [\phi_1 \cup \phi_2]$: There Exists a computation path beginning in s such that ϕ_1 Until ϕ_2 holds on it

LTL equivalences

$$\neg G \phi \equiv F \neg \phi
\neg F \phi \equiv G \neg \phi
\neg X \phi \equiv X \neg \phi$$

$$\neg (\phi U \psi) \equiv \neg \phi R \neg \psi
\neg (\phi R \psi) \equiv \neg \phi U \neg \psi$$

$$F (\phi \lor \psi) \equiv F \phi \lor F \psi
G (\phi \land \psi) \equiv G \phi \land G \psi$$

$$F \phi \equiv T U \phi
G \phi \equiv \bot R \phi$$

$$\phi U \psi \equiv \phi W \psi \land F \psi$$

$$\phi W \psi \equiv \phi U \psi \lor G \phi$$

$$\phi W \psi \equiv \psi R (\phi \lor \psi)$$

$$\phi R \psi \equiv \psi W (\phi \land \psi)$$

To probe further

http://www.cs.bham.ac.uk/research/projects/lics/tutor/chap3/questions.html