YouTube Project: Utilizing the YouTube Data API

YouTube Project: Utilizing the YouTube Data API

- 1. API Key Creation: Generating an API Key through the Google Cloud Console using my Google account.
- 2. Data Access Documentation: Referring to the documentation available on developers.google.com to comprehend accessing data from YouTube through the YouTube Data API.
- 3. Scraping, Analysis, and Visualization of Channel Statistics: Extracting data from various YouTube channels, including channel names, total video counts, overall views, and total subscribers. Conducting a comparative analysis of these channels to track their growth trajectories.
- 4. Video Data Extraction and Analysis: Extracting data from individual videos within specific channels, including video views, total comments, likes, and other relevant metrics. Following data extraction, conducting in-depth analysis and visualization.

```
In [ ]: # Importing the libraries to use for working on the project.
        from googleapiclient.discovery import build
        import pandas as pd
        import json
        import seaborn as sns
        import matplotlib.pyplot as plt
In [3]: # API key retrieved from the Google Developers Console.
        api_key = 'xXxXxXxXxX' # (here you use your own YouTube api key)
        # Channels IDs obtained for analysis.
        channel_ids = ['UC3t4HjrbrLD4vM13bc5Kgqg', # Projekte leicht gemacht
                        'UCpNUYWW0kiqyh0j5Qy3aU7w', # Misra Turp
                        'UCq6XkhO5SZ66N04IcPbqNcw', # Keith Galli
                       'UCzAF54cHk1Z082af-8E3q0Q', # CareerFoundry
                       'UCZe ogqn3ZGC77M5gvk9dow', # KarriereFunk
                        'UCLLw7jmFsvfIVaUFsLs8mlQ', # Luke Barousse
                        'UC7cs8q-gJRlGwj4A80mCmXg', # Alex the Analyst
                       'UCDybamfye5An6p-j1t2YMsg'] # Mo Chen
        # Set up the YouTube service to send requests to the API and retrieve the data f
```

Channels Statistics

youtube = build('youtube', 'v3', developerKey=api_key)

```
response = request.execute()
            for i in range(len(response['items'])):
                 data = dict(Channel_name = response['items'][i]['snippet']['title'],
                             Subscribers = response['items'][i]['statistics']['subscriber
                             Views = response['items'][i]['statistics']['viewCount'],
                             Total_videos = response['items'][i]['statistics']['videoCoun
                             Country = response['items'][i]['snippet']['country'])
                 all_data.append(data)
            return all_data
In [5]: # Dictionary checked in JSON format for improved readability
        #stringpretty_json = json.dumps(channel_statistics, indent=4)
        #get_channel_stats_0(youtube, channel_ids)
In [1]: # jason formatter:
        # https://jsonformatter.curiousconcept.com/
In [6]: # Data imported into a DataFrame using Pandas.
         channel_statistics = get_channel_stats_0(youtube, channel_ids)
        channel_data = pd.DataFrame(channel_statistics)
        channel_data
Out[6]:
                  Channel_name Subscribers
                                                Views Total_videos Country
         0
                   Luke Barousse
                                     427000 21287039
                                                               156
                                                                        US
         1
                        Mo Chen
                                      90000
                                              3129943
                                                               108
                                                                        GB
         2
                     KarriereFunk
                                      33700
                                              6022805
                                                               762
                                                                        DE
         3
                      Mısra Turp
                                      31100
                                              1261436
                                                               143
                                                                        NL
         4
                 Alex The Analyst
                                     737000 32076827
                                                               294
                                                                        US
            Projekte leicht gemacht
                                      17000
                                              1845056
                                                                75
                                                                        DE
                   CareerFoundry
                                                                        DE
         6
                                     245000 12444171
                                                               371
                       Keith Galli
                                                                        US
         7
                                     214000 14784521
                                                                83
In [7]:
        channel_data.dtypes
Out[7]: Channel_name
                         object
         Subscribers
                         object
         Views
                         object
         Total videos
                         object
         Country
                         object
         dtype: object
        # New column added to classify the channels into their respective channel types.
In [8]:
        channel_data['Channel_Type'] = ['Education', 'Education', 'Education', 'Education']
                                          'Education','Education']
        channel data
```

Out[8]:		Channel_name	Subscribers	Views	Total_videos	Country	Channel_Type
	0	Luke Barousse	427000	21287039	156	US	Education
	1	Mo Chen	90000	3129943	108	GB	Education
	2	KarriereFunk	33700	6022805	762	DE	Education
	3	Mısra Turp	31100	1261436	143	NL	Education
	4	Alex The Analyst	737000	32076827	294	US	Education
	5	Projekte leicht gemacht	17000	1845056	75	DE	Education
	6	CareerFoundry	245000	12444171	371	DE	Education
	7	Keith Galli	214000	14784521	83	US	Education

```
In [9]: # Data types for Subscribers, Views, and Total Videos converted to integers for
    channel_data['Subscribers'] = pd.to_numeric(channel_data['Subscribers'])
    channel_data['Views'] = pd.to_numeric(channel_data['Views'])
    channel_data['Total_videos'] = pd.to_numeric(channel_data['Total_videos'])
    channel_data.dtypes
```

```
Out[9]: Channel_name object
Subscribers int64
Views int64
Total_videos int64
Country object
Channel_Type object
dtype: object
```

```
In [10]: # Data visualized using Seaborn.
sns.set(rc={'figure.figsize': (15,6)})
ax = sns.barplot(data=channel_data, x='Channel_name', y='Subscribers', hue ='Channel_name')
```



```
In [11]: sns.set(rc={'figure.figsize': (15,6)})
    ax = sns.barplot(data=channel_data, x='Channel_name', y='Views', hue ='Channel_name')
```


In [12]: sns.set(rc={'figure.figsize': (15,6)})
 ax = sns.barplot(data=channel_data, x='Channel_name', y='Total_videos', hue= 'Ch
 #plt.xticks(rotation=45)Channel_name


```
In [13]: # Correlation matrix generated for Subscribers, Views, and Total Videos
    channel_data_int = channel_data.loc[:,['Subscribers','Views','Total_videos']]
    correlation_matrix = channel_data_int.corr()

# Correlation heatmap visualized
    plt.figure(figsize=(2,1))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Map')
    plt.show()
```



```
In [14]: correlation_matrix
```

Out[14]:

	Subscribers	Views	Total_videos
Subscribers	1.000000	0.978406	-0.033975
Views	0.978406	1.000000	0.040770
Total_videos	-0.033975	0.040770	1.000000

We observe no correlation between the number of videos and subscribers, as well as between views and the number of videos. However, a strong correlation is evident between Subscribers and Views on the correlation map.

```
Out[16]:
             Subscribers
                             Views Total videos
          0
                 427000 21287039
                                            156
          1
                  90000
                           3129943
                                            108
          2
                  33700
                           6022805
                                            762
          3
                  31100
                           1261436
                                            143
          4
                 737000 32076827
                                            294
          5
                  17000
                           1845056
                                             75
                                            371
          6
                 245000 12444171
          7
                 214000 14784521
                                             83
```

```
In [17]:
        channel_data.columns
Out[17]: Index(['Channel_name', 'Subscribers', 'Views', 'Total_videos', 'Country',
                 'Channel_Type'],
               dtype='object')
In [18]: # saving the dataset
         channel_data.to_csv('meine_yt_kanaele.csv')
In [19]: # Developing a new function to create a dataset, this time incorporating the pla
         def get_channel_stats_1(youtube, channel_ids):
             all_data = []
             request = youtube.channels().list(
                       part='snippet,contentDetails,statistics',
                       id= ','.join(channel_ids))
             response = request.execute()
             for i in range(len(response['items'])):
                 data = dict(Channel_name = response['items'][i]['snippet']['title'],
                             Subscribers = response['items'][i]['statistics']['subscriber
                             Views = response['items'][i]['statistics']['viewCount'],
                             Total_videos = response['items'][i]['statistics']['videoCoun
                             Country = response['items'][i]['snippet']['country'],
                             playlist_id = response['items'][i]['contentDetails']['relate
```

```
all_data.append(data)
              return all_data
In [20]:
         #get_channel_stats_1(youtube, channel_ids)
         #jason formatter and validator = https://jsonformatter.curiousconcept.com/
         # Utilizing Pandas to obtain a DataFrame with the new dataset
In [21]:
          channel_statistics1 = get_channel_stats_1(youtube, channel_ids)
         channel_data_1 = pd.DataFrame(channel_statistics1)
          channel_data_1
Out[21]:
             Channel name Subscribers
                                           Views Total_videos Country
                                                                                          pla
          0
                 Keith Galli
                                214000 14784521
                                                           83
                                                                    US
                                                                         UUq6XkhO5SZ66N04lcP
          1
              Luke Barousse
                                427000
                                       21287039
                                                          156
                                                                    US
                                                                           UULLw7jmFsvflVaUFsl
          2
               KarriereFunk
                                 33700
                                         6022805
                                                          762
                                                                        UUZe_ogqn3ZGC77M5g\
                                                                    DE
                   Alex The
                                737000 32076827
          3
                                                                         UU7cs8q-qJRIGwj4A8On
                                                          294
                                                                    US
                    Analyst
          4
                  Mo Chen
                                 90000
                                         3129943
                                                          108
                                                                    GB
                                                                          UUDybamfye5An6p-j1t
              Projekte leicht
          5
                                 17000
                                         1845056
                                                                    DE
                                                                          UU3t4HjrbrLD4vM13ba
                                                           75
                  gemacht
          6
                 Misra Turp
                                 31100
                                         1261436
                                                          143
                                                                    NL UUpNUYWW0kiqyh0j5Qy
             CareerFoundry
                                245000 12444171
                                                          371
                                                                    DE
                                                                         UUzAF54cHk1ZO82af-8
In [22]: # Selecting the playlist from the 'Projekte Leicht gemacht' channel.
         playlist_id = channel_data_1.loc[channel_data_1['Channel_name']=='Projekte leich
         playlist_id
```

Out[22]: 'UU3t4HjrbrLD4vM13bc5Kgqg'

Video ids

```
while more_pages:
                 if next_page_token is None:
                     more_pages = False
                 else:
                      request = youtube.playlistItems().list(
                                  part = 'contentDetails',
                                  playlistId = playlist_id,
                                  maxResults = 50,
                                  pageToken = next_page_token)
                     response = request.execute()
                     for i in range(len(response['items'])):
                          video_ids.append(response['items'][i]['contentDetails']['videoId
                     next_page_token = response.get('nextPageToken')
             return video_ids
In [24]: video_ids = get_video_ids(youtube, playlist_id)
In [ ]: # A list of video IDs for the channel 'Projekte leicht gemacht'.
         video_ids
```

Details von Video

```
# Function created to retrieve details from videos of the 'Projekte leicht gemac
In [96]:
         # and comments
         def details_von_video(youtube, video_ids):
             all_video_stats = []
             for i in range(0, len(video_ids), 50):
                 request = youtube.videos().list(
                        part='snippet,statistics',
                        id=','.join(video_ids[i:i+50]))
                 response = request.execute()
                 for video in response['items']:
                    video_stats = dict(Title = video['snippet']['title'],
                                         upload_date = video['snippet']['publishedAt'],
                                         Views = video['statistics']['viewCount'],
                                         Likes = video['statistics']['likeCount'],
                                         Comments = video['statistics']['commentCount']
                    all_video_stats.append(video_stats)
             return all video stats
```

```
In [97]: # Creating a DataFrame with the new data using Pandas.
    dt_video = details_von_video(youtube, video_ids)
    videos_df = pd.DataFrame(dt_video)
    videos_df
```

0	- Г	0=	7 7	
UU I	L	7/	' I	

	Title	upload_date	Views	Likes	Comments
0	"Projekte leicht gemacht" stellt sich vor!	2024-01- 09T16:07:13Z	2283	37	1
1	← Der Design Thinking Prozess	2022-10- 06T03:30:05Z	8548	112	4
2	? Was ist Design Thinking? Die Methodik einfac	2022-09- 29T03:30:24Z	5136	102	5
3	ABC Analyse: Schrittweise am einfachen Beispie	2022-04- 07T03:30:16Z	26897	495	19
4	Ressourcenplanung und Kapazitätsplanung im Pro	2022-03- 10T04:30:02Z	20780	327	4
•••					
70	Das Pomodoro-Prinzip: Die wichtigsten Fragen u	2020-05- 14T06:15:00Z	3078	118	4
71	Morphologischer Kasten einfach erklärt [Kreati	2020-05- 14T06:15:00Z	34114	685	22
72	Was ist ein Projekt? (Teil 2) – Die Projektme	2020-05- 14T06:00:08Z	26514	747	16
73	Was ist ein Projekt? (Teil 1) – Eine anschaul	2020-05- 13T09:37:15Z	31835	648	9
74	Stakeholdermanagement - Eine kurze Zusammenfas	2014-03- 24T08:57:53Z	24408	176	8

75 rows × 5 columns

```
In [98]: # Data types for upload date, Views, Likes, and Comments successfully converted
  videos_df['upload_date'] = pd.to_datetime(videos_df['upload_date']).dt.date
  videos_df['Views'] = pd.to_numeric(videos_df['Views'])
  videos_df['Likes'] = pd.to_numeric(videos_df['Likes'])
  videos_df['Comments'] = pd.to_numeric(videos_df['Comments'])
  videos_df
```

		$\Gamma \cap$		
Oι				
\cup \cup	<i>1</i> L	レン	\circ	

	Title	upload_date	Views	Likes	Comments
0	"Projekte leicht gemacht" stellt sich vor!	2024-01-09	2283	37	1
1	← Der Design Thinking Prozess	2022-10-06	8548	112	4
2	? Was ist Design Thinking? Die Methodik einfac	2022-09-29	5136	102	5
3	ABC Analyse: Schrittweise am einfachen Beispie	2022-04-07	26897	495	19
4	Ressourcenplanung und Kapazitätsplanung im Pro	2022-03-10	20780	327	4
•••					
70	Das Pomodoro-Prinzip: Die wichtigsten Fragen u	2020-05-14	3078	118	4
71	Morphologischer Kasten einfach erklärt [Kreati	2020-05-14	34114	685	22
72	Was ist ein Projekt? (Teil 2) – Die Projektme	2020-05-14	26514	747	16
73	Was ist ein Projekt? (Teil 1) – Eine anschaul	2020-05-13	31835	648	9
74	Stakeholdermanagement - Eine kurze Zusammenfas	2014-03-24	24408	176	8

75 rows × 5 columns

```
In [99]: # Top videos ranked by number of likes.
top_25_Videos = videos_df.sort_values(by='Likes', ascending=False).head(25)
top_25_Videos
```

Out[99]:

	Title	upload_date	Views	Likes	Comments
10	Kritischer Pfad, Gesamtpuffer und freier Puffe	2021-12-02	118204	3220	83
12	Netzplan einfach erklärt: Ein Beispiel mit Vor	2021-11-18	169352	3159	90
41	Projektmanagement-Grundlagen: Hier wird Projek	2021-01-07	98190	1756	45
47	Konflikteskalation nach Glasl: Die 9 Eskalatio	2020-11-05	108651	1735	41
45	Das Eisbergmodell der Kommunikation einfach er	2020-11-19	77880	1289	39
5	Das Vier Ohren Modell: Praxisnahe Erklärung un	2022-02-24	62959	1235	23
13	Netzplan vs. Gantt: Was brauchst du wirklich?	2021-11-04	48171	1235	45
15	Projektstrukturplan erstellen: Alles was du wi	2021-10-07	62337	1202	36
39	Das Harvard-Konzept einfach erklärt: Das effek	2021-01-28	62852	1178	26
23	Die SWOT Analyse einfach erklärt Inklusive B	2021-06-16	48848	1165	45
9	Organisationsformen im Projektmanagement: Matr	2021-12-16	49284	1149	50
32	Das Johari-Fenster einfach erklärt - Praxisbei	2021-03-25	47913	1067	29
35	Das Ishikawa Diagramm einfach erklärt: So funk	2021-02-25	40002	861	13
7	Der PDCA Zyklus einfach erklärt – 2 anschaulic	2022-01-27	43050	845	18
44	Die Nutzwertanalyse einfach erklärt Einfache	2020-11-26	38141	775	30
72	Was ist ein Projekt? (Teil 2) – Die Projektme	2020-05-14	26514	747	16
19	Phasen der Teamentwicklung nach Tuckman: Alles	2021-07-15	35211	689	12
71	Morphologischer Kasten einfach erklärt [Kreati	2020-05-14	34114	685	22
73	Was ist ein Projekt? (Teil 1) – Eine anschaul	2020-05-13	31835	648	9
16	Magisches Dreieck im Projekt einfach erklärt –	2021-09-23	33674	628	22
37	Bedürfnispyramide Maslow einfach erklärt: Beis	2021-02-11	34366	578	18

	Title	upload_date	Views	Likes	Comments
55	Ziele SMART formulieren – Die SMART- Formel ein	2020-09-10	30208	567	17
64	Risikoanalyse einfach erklärt: Der Risikowert	2020-06-18	33050	536	21
28	Teamrollen Belbin: Wie du hochperformante Team	2021-05-06	29173	508	5
3	ABC Analyse: Schrittweise am einfachen Beispie	2022-04-07	26897	495	19

In [100...

top_12_Videos = videos_df.sort_values(by='Likes', ascending=False).head(12)
top_12_Videos

Out[100...

	Title	upload_date	Views	Likes	Comments
10	Kritischer Pfad, Gesamtpuffer und freier Puffe	2021-12-02	118204	3220	83
12	Netzplan einfach erklärt: Ein Beispiel mit Vor	2021-11-18	169352	3159	90
41	Projektmanagement-Grundlagen: Hier wird Projek	2021-01-07	98190	1756	45
47	Konflikteskalation nach Glasl: Die 9 Eskalatio	2020-11-05	108651	1735	41
45	Das Eisbergmodell der Kommunikation einfach er	2020-11-19	77880	1289	39
5	Das Vier Ohren Modell: Praxisnahe Erklärung un	2022-02-24	62959	1235	23
13	Netzplan vs. Gantt: Was brauchst du wirklich?	2021-11-04	48171	1235	45
15	Projektstrukturplan erstellen: Alles was du wi	2021-10-07	62337	1202	36
39	Das Harvard-Konzept einfach erklärt: Das effek	2021-01-28	62852	1178	26
23	Die SWOT Analyse einfach erklärt Inklusive B	2021-06-16	48848	1165	45
9	Organisationsformen im Projektmanagement: Matr	2021-12-16	49284	1149	50
32	Das Johari-Fenster einfach erklärt - Praxisbei	2021-03-25	47913	1067	29

ax1 = sns.barplot(x='Views', y='Title', hue= 'Title', data= top_12_Videos)

In [102...

videos_df

Out[102...

	Title	upload_date	Views	Likes	Comments
0	"Projekte leicht gemacht" stellt sich vor!	2024-01-09	2283	37	1
1	← Der Design Thinking Prozess	2022-10-06	8548	112	4
2	? Was ist Design Thinking? Die Methodik einfac	2022-09-29	5136	102	5
3	ABC Analyse: Schrittweise am einfachen Beispie	2022-04-07	26897	495	19
4	Ressourcenplanung und Kapazitätsplanung im Pro	2022-03-10	20780	327	4
•••			•••		
70	Das Pomodoro-Prinzip: Die wichtigsten Fragen u	2020-05-14	3078	118	4
71	Morphologischer Kasten einfach erklärt [Kreati	2020-05-14	34114	685	22
72	Was ist ein Projekt? (Teil 2) – Die Projektme	2020-05-14	26514	747	16
73	Was ist ein Projekt? (Teil 1) – Eine anschaul	2020-05-13	31835	648	9
74	Stakeholdermanagement - Eine kurze Zusammenfas	2014-03-24	24408	176	8

75 rows × 5 columns

In [104...

A new column has been added to display the abbreviated month when each video w
videos_df['Month'] = pd.to_datetime(videos_df['upload_date']).dt.strftime('%b')
videos_df

	Title	upload_date	Views	Likes	Comments	Month
0	"Projekte leicht gemacht" stellt sich vor!	2024-01-09	2283	37	1	Jan
1	👉 Der Design Thinking Prozess	2022-10-06	8548	112	4	Oct
2	? Was ist Design Thinking? Die Methodik einfac	2022-09-29	5136	102	5	Sep
3	ABC Analyse: Schrittweise am einfachen Beispie	2022-04-07	26897	495	19	Apr
4	Ressourcenplanung und Kapazitätsplanung im Pro	2022-03-10	20780	327	4	Mar
•••						
70	Das Pomodoro-Prinzip: Die wichtigsten Fragen u	2020-05-14	3078	118	4	May
71	Morphologischer Kasten einfach erklärt [Kreati	2020-05-14	34114	685	22	May
72	Was ist ein Projekt? (Teil 2) – Die Projektme	2020-05-14	26514	747	16	May
73	Was ist ein Projekt? (Teil 1) – Eine anschaul	2020-05-13	31835	648	9	May
74	Stakeholdermanagement - Eine kurze Zusammenfas	2014-03-24	24408	176	8	Mar

75 rows × 6 columns

```
# Correlation matrix generated for subscribers, views, and total videos.
videos_data_int = videos_df.loc[:,['Views','Likes','Comments']]
correlation_matrix1 = videos_data_int.corr()

# Visualization of the correlation heatmap
plt.figure(figsize=(2,1))
sns.heatmap(correlation_matrix1, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Map')
plt.show()
```


Out[106...

	Views	Likes	Comments
Views	1.000000	0.972084	0.920492
Likes	0.972084	1.000000	0.952776
Comments	0.920492	0.952776	1.000000

We observe a correlation between the number of likes and comments, as well as between views and the number of likes and comments. However, a strong correlation is evident between Subscribers and Views on the correlation map

```
In [115...
```

```
# A new column has been added to display the engagement rate for each video, ind
# giving a like or writing a comment
videos_df['Engagement_rate'] = ((videos_df['Likes'] + videos_df['Comments']) / v
videos_df.head(25)
```

	Title	upload_date	Views	Likes	Comments	Month	Engageme
0	"Projekte leicht gemacht" stellt sich vor!	2024-01-09	2283	37	1	Jan	1.
1	Der Design Thinking Prozess	2022-10-06	8548	112	4	Oct	1.
2	? Was ist Design Thinking? Die Methodik einfac	2022-09-29	5136	102	5	Sep	2.
3	ABC Analyse: Schrittweise am einfachen Beispie	2022-04-07	26897	495	19	Apr	1.
4	Ressourcenplanung und Kapazitätsplanung im Pro	2022-03-10	20780	327	4	Mar	1.
5	Das Vier Ohren Modell: Praxisnahe Erklärung un	2022-02-24	62959	1235	23	Feb	1.
6	Weiterbildung als Erfolgsfaktor im Projekt [ak	2022-02-10	1262	35	2	Feb	2.
7	Der PDCA Zyklus einfach erklärt – 2 anschaulic	2022-01-27	43050	845	18	Jan	2.
8	Spannendes zum Stand des Projektmanagements [a	2022-01-12	1914	38	4	Jan	2.
9	Organisationsformen im Projektmanagement: Matr	2021-12-16	49284	1149	50	Dec	2.
10	Kritischer Pfad, Gesamtpuffer und freier Puffe	2021-12-02	118204	3220	83	Dec	2.
11	Anordnungsbeziehungen im Netzplan: Die Feinhei	2021-11-18	14747	295	8	Nov	2.
12	Netzplan einfach erklärt: Ein Beispiel mit Vor	2021-11-18	169352	3159	90	Nov	1.
13	Netzplan vs. Gantt: Was brauchst du wirklich?	2021-11-04	48171	1235	45	Nov	2.
14	Das Cynefin Framework einfach erklärt: Wann br	2021-10-21	14171	223	6	Oct	1.
15	Projektstrukturplan erstellen: Alles was du wi	2021-10-07	62337	1202	36	Oct	1.
16	Magisches Dreieck im Projekt einfach erklärt –	2021-09-23	33674	628	22	Sep	1.

	Title	upload_date	Views	Likes	Comments	Month	Engageme
17	Personal Kanban: Mehr schaffen und weniger ver	2021-09-08	16650	410	11	Sep	2.
18	Programm oder Portfolio? – ultrakurz erklärt #	2021-07-22	1746	34	6	Jul	2.
19	Phasen der Teamentwicklung nach Tuckman: Alles	2021-07-15	35211	689	12	Jul	1.
20	Was sind Stakeholder? – ultrakurz erklärt #shorts	2021-07-08	2809	65	2	Jul	2.
21	Eat That Frog: Der einfache Zeitmanagement-Tri	2021-07-01	7655	218	13	Jul	3.
22	SMARTe Ziele – ultrakurz erklärt #shorts	2021-06-24	1899	53	3	Jun	2.
23	Die SWOT Analyse einfach erklärt Inklusive B	2021-06-16	48848	1165	45	Jun	2.
24	Präventive und korrektive Maßnahmen – ultrakur	2021-06-10	2069	63	0	Jun	3.

Out[109... 2.25

We observe that the channel 'Projekte leicht gemacht' has an average engagement rate of 2.25%. This indicates that 2.25% of the viewers who watch the channel's content interact by leaving a comment or giving a like to the videos.

```
In [111... # Grouping the data by month to obtain a table showing the number of videos publ
    videos_per_mont = videos_df.groupby('Month', as_index=False).size()
    videos_per_mont.sort_values('size',ascending=False)
```

$\cap \cdot \cdot +$	[111
Uu L	

	Month	size
8	May	11
5	Jul	8
10	Oct	8
6	Jun	7
9	Nov	7
11	Sep	7
3	Feb	6
4	Jan	6
7	Mar	5
0	Apr	4
2	Dec	4
1	Aug	2

In [112... ax2 = sns.barplot(data=videos_per_mont,x='Month', y='size', hue='Month')

May, July, and October are the months when the channel uploads the most videos.

In [113... # Grouping the data by month to obtain a table showing the total views per month
 views_per_month = videos_df.groupby('Month')['Views'].sum().reset_index()
 views_per_month.sort_values('Views',ascending=False)

\cap		+	г	1	1	\supset	
U	u	L	П	т	_	D	

	Month	Views
9	Nov	476873
4	Jan	209637
2	Dec	183114
8	May	176139
10	Oct	150460
3	Feb	141937
11	Sep	128017
6	Jun	109477
7	Mar	103448
5	Jul	88309
0	Apr	49345
1	Aug	28722

While posting more videos in a specific month does not necessarily translate to more views. Also, there isn't a consistent correlation between the date when a video is uploaded and the number of views over time.

November, January, and December are the months with the most views.

In the case of November, the explanation for why it is significantly larger than the other months of the year is that a video was published specifically in November that seems to have caught the attention of the audience (Netzplan einfach erklärt: Ein Beispiel mit Vorwärts und Rückwärtsterminierung [Netzplantechnik] with 169,000 views)

```
In [ ]: # saving the dataset
In [47]: videos_df.to_csv('Video_Details(Projekte leicht gemacht).csv')
```