域论练习

- 1. 证明: $\mathbb{Q}(\sqrt{2})$ 和 $\mathbb{Q}(i)$ 作为 \mathbb{Q} 上的向量空间是同构的,但作为域则不同构.
- 2. 确定域 ℚ 的自同构群.
- 3. 证明: $\mathbb{Z}[x]/(x^2+1) \cong \mathbb{C}$.
- 4. 求实数 $\alpha = \sqrt{3} \sqrt{2}$ 在下述域上的极小多项式:
 - (i) \mathbb{Q} ; (ii) $\mathbb{Q}(\sqrt{2})$; (iii) $\mathbb{Q}(\sqrt{6})$.
- 5. 设 E 是域 F 的扩张, $\alpha \in E$ 在 F 上的极小多项式是 $x^n a$,对于正整数 $m \mid n$,求 α^m 在 F 上的极小多项式.
- 6. 设 E 是域 F 的扩张, $\alpha \in E$, 且 $\alpha \in F(\alpha^m)$, m > 1. 证明: α 是 F 上的代数元.
- 7. 设 α 是多项式 $f(x) = x^3 6x^2 + 9x + 3 \in \mathbb{Q}[x]$ 的一个根. 证明: $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$, 并且将 $\alpha^4, \alpha^{-1}, (1+\alpha)^{-1}$ 表示成 $1, \alpha, \alpha^2$ 的线性组合.
- 8. 设 E 是域 F 的扩张, $\alpha \in E$, 证明下述三个条件等价:
 - (1) α 是 F 上的代数元;
 - (2) $F[\alpha]$ 是 E 的子域;
 - (3) $F[\alpha]$ 是 F 上的有限维向量空间.
- 9. 设 $F(\alpha)$ 和 $F(\beta)$ 是 F 上的两个单代数扩张.
 - (i) 如果 α 和 β 在 F 上有相同的极小多项式,那么 $F(\alpha) \cong F(\beta)$;
 - (ii) 当 $F(\alpha) \cong F(\beta)$ 时, α 和 β 在 F 上有相同的极小多项式是否相同?
- 10. 证明:
 - $(1) \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3});$
 - (2) 若 p 为一个素数,则 $\mathbb{Q}(\sqrt{p}+i) = \mathbb{Q}(\sqrt{p},i)$.
- 11. 设 $E = \mathbb{Q}(\sqrt[4]{2}, i)$, 求 $[E : \mathbb{Q}]$, 并写出 E 在 \mathbb{Q} 上的一组基.
- 12. 求 $\mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{4} : \mathbb{Q}]$.
- 13. 设域扩张链 $F \subset L \subset E$, [L:F] = m, $\alpha \in E$, $[F(\alpha):F] = n$. 证明: 如果 m,n 互素, 那么 α 也是 L 上的 n 次代数元.
- 14. 设 E 是域 F 的扩张, $\alpha \in E$ 是 F 上的奇数次代数元. 证明: α^2 也是 F 上的奇数次代数元,且 $F(\alpha) = F(\alpha^2)$.

- 15. 设 E 是域 F 的代数扩张, $F \subset D \subset E$,其中 D 是环. 证明: D 是域.
- 16. 设 p 是一个素数,证明: $\mathbb{Q}(\sqrt{p}, \sqrt[3]{p}, \sqrt[4]{p}, \cdots)/\mathbb{Q}$ 是无限次代数扩张.
- 17. 设 α, β 分别是 F 上的 m, n 次代数元. 证明:
 - (1) $[F(\alpha, \beta) : F] \leq mn;$
 - (2) 如果 m, n 互素, 那么 $[F(\alpha, \beta) : F] = mn$.
- 18. 设 E 是域 F 的 m 次扩张,设 f(x) 是 F[x] 中的 n 次不可约多项式,且 m, n 互素. 试问 f(x) 是 E[x] 中的不可约多项式吗?
- 19. 设 $f(x) = x^3 b$ 是 \mathbb{Q} 上的不可约多项式, α 是其一个根,证明: $\mathbb{Q}(\alpha)$ 不是 f(x) 在 \mathbb{Q} 上的分裂域.
- 20. 求多项式 $f(x) = x^4 2$ 在 Q 上的分裂域 E 并求 $[E:\mathbb{Q}]$.
- 21. 求下述多项式分别在 ℚ 和 ℝ 上的分裂域:
 - (1) $f(x) = x^3 3x^2 + x + 2$, (2) $g(x) = x^3 5x^2 + 10x 12$.
- 22. 求 $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ 的所有子域.
- 23. 设 $f(x) \in F[x]$, $a \in F$. 证明: f(x) 和 f(x-a) 在 F 上有相同的分裂域.
- 24. 求 $\sqrt{1+\sqrt{5}}$ 在 $\mathbb Q$ 上的极小多项式 m(x),以及 m(x) 在 $\mathbb Q$ 上的分裂域 E,并求 $[E:\mathbb Q]$.
- 25. 找出域 ℤ₂ 上全部三次不可约多项式.
- 26. 称有限域 F_q 上不可约多项式 f(x) 为 $F_q[x]$ 中的本原多项式,如果 f(x) 的一个根 α 是域 $F_q(\alpha)$ 的乘法循环群的生成元.
 - (1) 证明: $x^2 + 1$ 为 $\mathbb{Z}_3[x]$ 中不可约多项式但不是本原多项式;
 - (2) 设 α 为 $x^2 + 1 \in \mathbb{Z}_3[x]$ 的一个根, 试问 $F_9 = \mathbb{Z}_3(\alpha)$ 中哪些元是 F_9 的本原元.
- 27. 证明: 对正整数 $k, a \in F_q \setminus \{0\}$ 是 F_q 中某个元素的 k 次方幂当且仅当 $a^{(q-1)/d}-1$, 其中 d = (q-1,k).
- 28. 证明:有限域不是代数闭域.
- 29. 设 p 是素数, $E = \mathbb{Z}_p(\alpha)$ 是 \mathbb{Z}_p 上的超越扩张,证明:多项式 $f(x) = x^p \alpha$ 在 E[x] 中不可约,且 f(x) 只有一个 p 重根.
- 30. 设 p 是素数, 证明: $\bigcup_{n=1}^{\infty} F_{p^n}$ 是代数闭域.
- 31. 证明: 尺规可以三等分 45° 角.