Dealing with confounder imbalance using CIMBAL v0.6 in R when meta-analyzing cohorts

Debashree Ray, PhD, MStat

ECHO DAC

Assistant Professor
Department of Epidemiology
Department of Biostatistics
Johns Hopkins University

Contact: dray@jhu.edu

Challenges in meta-analyzing cohorts in ECHO

 Consider outcome Y, exposure X, two possible confounders C1 and C2

- Some cohorts may not have measured any confounder $Y = \alpha + \beta_{unadj} X$
- Some cohorts may have measured both C1 and C2 $Y = \alpha + \beta_{adj}X + \gamma_1C_1 + \gamma_2C_2$
- How to handle when one or more cohorts do not measure a set of confounders?
 - meta-analyze only unadjusted estimates?
 - meta-analyze only complete adjusted estimates?
 - meta-analyze a mix of unadjusted and adjusted estimates?

CIMBAL: Our approach for dealing with <u>Confounder <u>Imbal</u>ance</u>

1. Obtain adjusted estimates for incomplete cohorts using CIMBAL

- Assume Cohort 1 has no confounder information
 - reports only unadjusted estimates $(\hat{\beta}_{1,unadj}, \hat{se}_{1,unadj})$
- Independent Cohort 2 has all confounder information
 - reports adjusted estimates $(\hat{\beta}_{2,adj}, \hat{se}_{2,adj})$
 - can also report unadjusted estimates $(\hat{eta}_{2,unadj},\hat{se}_{2,unadj})$
- Obtain Cohort 1 adjusted ("corrected") estimates as:

$$\widetilde{\beta}_{1,adj} = \widehat{\beta}_{2,adj} - \widehat{\beta}_{2,unadj} + \widehat{\beta}_{1,unadj}$$

$$\widetilde{se}_{1,adj} = \frac{\widehat{se}_{2,adj}}{\widehat{se}_{2,unadj}} \times \widehat{se}_{1,unadj}$$

2. Collective meta-analysis using CIMBAL

 Meta-analyze cohorts 1 and 2 (accounting for dependence between estimates):

$$\hat{\beta}_{adj} = \frac{\widetilde{w}_1 \widetilde{\beta}_{1,adj} + \hat{w}_2 \hat{\beta}_{2,adj}}{\widetilde{w}_1 + \hat{w}_2}$$

$$\hat{se}_{adj} = \frac{\sqrt{3\widetilde{w}_1 + \hat{w}_2 - 2\widetilde{w}_1 \hat{w}_2 Cov(\hat{\beta}_{unadj}, \hat{\beta}_{adj})}}{\widetilde{w}_1 + \hat{w}_2}$$

$$\text{where } \widetilde{w}_1 = \frac{Cov(\hat{\beta}_{\textit{unadj}}, \hat{\beta}_{\textit{adj}})}{2Cov(\hat{\beta}_{\textit{unadj}}, \hat{\beta}_{\textit{adj}}) + \widetilde{se}_1^2 - \hat{se}_2^2} \text{ and } \hat{w}_2 = 1 - \tilde{w}_1$$

• Estimate $Cov(\hat{\beta}_{unadj}, \hat{\beta}_{adj})$ from cohorts with adjusted estimates

Implementing CIMBAL v0.6

- Created an R program that
 - obtains adjusted estimates for all incomplete cohorts combined
 - meta-analyzes all cohorts
 - current version v0.6 is for ECHO internal use only
- Users need to
 - know how to use R
 - input the collection of estimates as a data frame →

```
cohort samplesize
                      b.unadj
                               se.unadj
                                              b.adj
              102 -0.54637661 0.5069429 -0.4693723 0.6008678
              102 -0.67372909 0.6180420
              102 -1.05209227 0.5539443 -0.2925080 0.6789556
              102 -0.95885035 0.6165002 -0.4562840 0.7384806
              102 -0.41629945 0.5322192
                                         0.1851238 0.6648366
              102 -0.95551136 0.6920797 -0.8136245 0.8445270
              102 -0.26706279 0.5156975 -0.5095491 0.6073732
     8
              102 -1.30833282 0.5495699
                                         0.4249399 0.6092826
              102 -0.11332869 0.4931676
    10
              102 -1.28865582 0.6011629 -0.6328755 0.7482955
    11
              102 0.57981850 0.4715728
                                                 NA
    12
              102 -0.09097178 0.5103033 -0.1489653 0.6472801
    13
                   0.03636764 0.5137012
                                         0.9364682 0.7646166
    14
              102 -0.94504015 0.4806770
                                         0.5541546 0.6847592
    15
              102 -0.80760243 0.4931024
                                                 NA
    16
              102 -0.71562004 0.4965247 -0.9293616 0.6147366
    17
                   0.48492928 0.5487416
                                         0.8487228 0.7455959
    18
              102 -0.03352269 0.4777256
                                         0.1885899 0.5968010
    19
              102 -0.39641527 0.4366502 -0.4949824 0.5503682
    20
                   0.09976453 0.4645534 -0.1327242 0.6467754
```

Implementing CIMBAL v0.6

0.4249399 0.6092826

0.9364682 0.7646166

0.5541546 0.6847592

0.8487228 0.7455959

0.1885899 0.5968010

NA

NA

```
> source("cimbal_v0.6.R")
> cimbal
                mute.msgs=FALSE, ncohort.thresh=25){
function(dat,
cohort samplesize
                     b.unadj
                              se.unadj
                                            b.adj
                                                     se.adi
             102 -0.54637661 0.5069429 -0.4693723 0.6008678
             102 -0.67372909 0.6180420
                                               NA
                                                         NA
             102 -1.05209227 0.5539443 -0.2925080 0.6789556
             102 -0.95885035 0.6165002 -0.4562840 0.7384806
     5
             102 -0.41629945 0.5322192
                                        0.1851238 0.6648366
             102 -0.95551136 0.6920797 -0.8136245 0.8445270
             102 -0.26706279 0.5156975 -0.5095491 0.6073732
             102 -1.30833282 0.5495699
                                               NΑ
```

102 -0.11332869 0.4931676

102 -0.94504015 0.4806770

102 -0.80760243 0.4931024

102 -0.03352269 0.4777256

0.57981850 0.4715728

0.03636764 0.5137012

0.48492928 0.5487416

102 -1.28865582 0.6011629 -0.6328755 0.7482955

102 -0.09097178 0.5103033 -0.1489653 0.6472801

102 -0.71562004 0.4965247 -0.9293616 0.6147366

102 -0.39641527 0.4366502 -0.4949824 0.5503682

0.09976453 0.4645534 -0.1327242 0.6467754

9

10

11

12

13

14

15

16

17

18

19

20

No. of complete cohorts to be used to determine covariance $Cov(\hat{\beta}_{unadi}, \hat{\beta}_{adi})$

Implementing CIMBAL v0.6

> cimbal(dat=mydat.inc, mute.msgs=FALSE, ncohort.thresh=25) \$dat.corrected

Jude. Com ecceu	cohort	samplesize	b.unadj	se.unadj	b.adj	se.adj
2 8	1	102	-0.54637661	0.5069429	-0.46937230	0.6008678
8	3	102	-1.05209227	0.5539443	-0.29250797	0.6789556
11	4	102	-0.95885035	0.6165002	-0.45628396	0.7384806
14	5	102	-0.41629945	0.5322192	0.18512376	0.6648366
17	6	102	-0.95551136	0.6920797	-0.81362453	0.8445270
20	7	102	-0.26706279	0.5156975	-0.50954914	0.6073732
26	9	102	-0.11332869	0.4931676	0.42493991	0.6092826
29	10	102	-1.28865582	0.6011629	-0.63287549	0.7482955
35	12	102	-0.09097178	0.5103033	-0.14896527	0.6472801
38	13	102	0.03636764	0.5137012	0.93646824	0.7646166
41	14	102	-0.94504015	0.4806770	0.55415464	0.6847592
47	16	102	-0.71562004	0.4965247	-0.92936159	0.6147366
50	17	102	0.48492928	0.5487416	0.84872284	0.7455959
53	18	102	-0.03352269	0.4777256	0.18858986	0.5968010
56	19	102	-0.39641527	0.4366502	-0.49498237	0.5503682
59	20	102	0.09976453	0.4645534	-0.13272425	0.6467754
65	22	102	-1.20019208	0.6628141	-1.39772706	0.8204493
71	24	102	-0.71562004	0.4965247	0.87936186	0.7316906
74	25	102	0.51879379	0.5472877	0.42532527	0.8156624
77	26	102	-0.03593201	0.4514444	0.09526628	0.5989131
80	27	102	1.38629436	0.5254511	2.06333909	0.9284734
83	28	102	-2.69011250	1.0519918	-2.03622927	1.1901544
86	29	102	-0.99039870	0.4946601	-0.51483850	0.6606504
89	30	102	-1.23125676	0.5920043	-1.08949318	0.7532382
92	31	102	-1.05220898	0.4810754	-0.83001470	0.6090956
95	32	102	-0.08768500	0.5151978	0.80016224	0.6941748
107	36	102	-0.69314718	0.4886533	-0.09816650	0.6614800
110	37	102	-0.62371867	0.4857896	-0.81444836	0.6389800
113	38	102	0.02643326	0.4737275	0.11912143	0.5457148
119	40	102	-0.43891304	0.5888327	-0.06447643	0.7677157
31 2+8+11+15+21+23+33+3	34+35+39	1020	NA	NA	-0.18116804	0.2116642

cohorts with complete information

\$beta.meta.cimbal [1] -0.1466263

\$SE.meta.cimbal [1] 0.1161116

meta-analyzed estimate and its SE from all cohorts

"corrected" adjusted estimates for the combined incomplete cohorts 7

Final Notes

- CIMBAL: a new approach
 - to borrow information from complete cohorts
 - to get adjusted estimates for cohorts reporting only unadjusted estimates
- Crucial assumption: All cohorts come from the same underlying population
- Advantage: better than commonly used meta-analysis approaches in terms of MSE and/or type I error
- Limitation: requires at least 20 cohorts to appropriately estimate
 CIMBAL meta-analyzed SE
- Contact <u>dray@jhu.edu</u> to report any issue or question on CIMBAL.