#### **LEC009 Inventory Management IV**

#### VG441 SS2021

Cong Shi Industrial & Operations Engineering University of Michigan

### **Multi-Echelon Problem**

- N stages of a (serial) supply chain
- Demand rate is  $\lambda$  deterministically only at stage 1
- Stockouts are not allowed



 $k_j$  = fixed cost for orders of stage j  $h'_j$  = inventory holding-cost rate for stage j  $I'_j(t)$  = (local) inventory of stage j at time t  $L'_j$  = leadtime for stage-j orders = 0 W.L.O.G.

Question: what is the optimal ordering strategy?

#### **Echelons and Echelon Inventories**

 $k_j =$  fixed cost for orders of stage j

 $h'_{j}$  = inventory holding-cost rate for stage j

 $I'_{j}(t) = (local)$  inventory of stage j at time t



$$I_j(t) = \text{echelon inventory of stage } j \text{ at time } t = \sum_{i \leq j} I'_i(t)$$

 $h_j$  = echelon-inventory holding-cost rate for stage  $j = h'_j - h'_{j+1} \ge 0$ 

$$\sum_{j} h'_{j} I'_{j}(t) = \sum_{j} h_{j} I_{j}(t) \quad \text{for all } t$$

# Why Echelon Inventories?

Local inventories over time



Echelon inventories over time



# **Policy Structures**

• A policy is nested if for all j, whenever stage j orders, so does stages j-1.

• A policy is **ZIO** (zero-inventory-ordering) if order occurs only when its echelon inventory is zero.

Convince yourself that nested and ZIO are optimal.

### Stationary-Interval Policies

```
u_j = \text{order interval for stage } j

\mathbf{u} = \text{the vector } (u_j)_j

g_j = h_j \lambda

C(\mathbf{u}) = \text{average cost of the policy specified by } \mathbf{u}
```

$$C(\mathbf{u}) = \sum_{j} \left[ \frac{k_j}{u_j} + \frac{1}{2} g_j u_j \right]$$

Minimize 
$$C(\mathbf{u})$$
  
subject to  $u_j = \xi_j u_{j-1}$ , for all  $j = 2, \dots, J$   
 $\xi_j \in \mathbb{Z}^+$ , for all  $j = 2, \dots, J$ 

Caveat: This MILP may be difficult to solve.

#### Here is the Plan

- First, we solve a simpler "relaxed" problem.
- Solution of the relaxed problem is a lower bound.
- We round off this relaxed solution to obtain a feasible solution.
- We get an upper bound on this feasible solution.
- Show that the two bounds are close together.



### Stationary-Interval Policies

```
u_j = \text{order interval for item } j

\mathbf{u} = \text{the vector } (u_j)_j

g_j = h_j \lambda

C(\mathbf{u}) = \sum_j \left[ \frac{k_j}{u_j} + \frac{1}{2} g_j u_j \right]
```

Minimize 
$$C(\mathbf{u})$$
  
subject to  $u_j = \xi_j u_{j-1}$ , for all  $j = 2, \dots, J$   
 $\xi_j \in \mathbb{Z}^+$ , for all  $j = 2, \dots, J$ 

Relax the constraints ...

Minimize 
$$C(\mathbf{u})$$
  
subject to  $u_j \ge u_{j-1}$ , for all  $j = 2, ..., J$ 

### Relaxed and Feasible Solutions

Minimize 
$$C(\mathbf{u})$$
  
subject to  $u_j \ge u_{j-1}$ , for all  $j = 2, ..., J$ 

Clusters.



Feasible solution: round to the nearest power-of-2

Gap between this feasible solution and the relaxed solution:  $\sim 1.06$ 

## **Deterministic Demand (Nonstationary)**

Input: T period demands  $d_1, ..., d_T$ 

Decisions:  $q_j(t)$ ,  $I_j(t)$ 

min 
$$\sum_{j} \sum_{t} I_{j}(t)h_{j} + \sum_{j} \sum_{t} k_{j} \mathbb{1} (q_{j}(t) > 0)$$
s.t. 
$$I_{j}(t) = I_{j}(t-1) + q_{j}(t) - d_{t} \qquad \forall t, \ \forall j$$

$$I_{j}(t-1) + q_{j}(t) \ge I_{j-1}(t-1) + q_{j-1}(t) \qquad \forall t, \ \forall j$$

$$I_{j}(t) \ge 0, q_{j}(t) \ge 0 \qquad \forall t, \ \forall j$$

$$I_{j}(0) = 0 \qquad \forall j$$

# **Dynamic Programming**

- Define F(i, s, t) as the optimal cost of subproblem defined for stages i, ..., 1 and periods [s, t)
- ZIO:  $I_i(s-1) = I_i(t-1) = 0$
- Nested:  $I_j(s-1) = I_j(t-1) = 0$ , for all j < i
- Goal: F(N, 1, T + 1)
- Boundary Conditions:

$$F(0,\cdot,\cdot) = 0$$

$$F(\cdot,T+1,\cdot) = 0$$

$$F(i,s,s+1) = \sum_{j=1}^{i} k_j \text{ for all } i$$

# DP (Graphical Model)

• For each time s < t and stage i, the cost of covering  $d_s$ , ...,  $d_{t-1}$ 

$$Z_{s,t}^{i} = k_i + \sum_{a=s}^{t-2} h_a \sum_{b=a-1}^{t-1} d_b$$

Dynamic Programming (on graphical models)



$$F(i, s, t) = \min_{s \le l \le t - 1} \left\{ Z_{s, l}^{i} + F(i - 1, s, l) + F(i, l, t) \right\}$$

### Stochastic Model

- Stage 1 faces stochastic demand D per period and penalty p
- Lead times  $L_1, ..., L_N$  and lead time demand  $D_1, ..., D_N$
- Echelon base-stock policy is optimal.

Theorem: Let 
$$\underline{g}_0(x) = (p + h'_1) x^-$$
. For  $j = 1, ..., N$ , let 
$$\hat{g}_j(x) = h_j x + \underline{g}_{j-1}(x)$$
$$g_j(y) = \mathbb{E} \left[ \hat{g}_j \left( y - D_j \right) \right]$$
$$S_j^* = \operatorname{argmin} \left\{ g_j(y) \right\}$$
$$\underline{g}_j(x) = g_j \left( \min \left\{ S_j^*, x \right\} \right)$$

Then  $\mathbf{S}^* = \left(S_j^*\right)_{j=1}^N$  is the optimal base-stock vector and  $g_N\left(S_N^*\right)$  is the corresponding optimal cost

### Stochastic Model

Use the following heuristics:

**Theorem 6.4 (Shang and Song (2003):** For any j and y

(a) 
$$g_j^l(y) \le g_j(y) \le g_j^u(y)$$

(b) 
$$S_j^l \le S_j^* \le S_j^u$$

$$S_{j}^{l} = \tilde{F}_{j}^{-1} \left( \frac{p + \sum_{i=j+1}^{N} h_{i}}{p + \sum_{i=1}^{N} h_{i}} \right) \leq S_{j}^{*} \leq S_{j}^{u} = \tilde{F}_{j}^{-1} \left( \frac{p + \sum_{i=j+1}^{N} h_{i}}{p + \sum_{i=j}^{N} h_{i}} \right)$$

$$\tilde{D}_j = \sum_{i=1}^j D_i$$

Lead-time demand with lead time  $\sum_{i=1}^{j} L_i$ 

Computational optimality gap  $\leq 1\%$ 

### A Simple Example



We have  $(h_1, h_2, h_3) = (3, 2, 2)$ . Therefore:

$$S_1^u = \tilde{F}_1^{-1} \left( \frac{37.12+4}{37.12+7} \right) = 6.49 \qquad S_1^l = \tilde{F}_1^{-1} \left( \frac{37.12+4}{37.12+7} \right) = 6.49$$

$$S_2^u = \tilde{F}_2^{-1} \left( \frac{37.12+2}{37.12+4} \right) = 12.35 \qquad S_2^l = \tilde{F}_2^{-1} \left( \frac{37.12+2}{37.12+7} \right) = 11.71$$

$$S_3^u = \tilde{F}_3^{-1} \left( \frac{37.12+0}{37.12+2} \right) = 23.27 \qquad S_3^l = \tilde{F}_3^{-1} \left( \frac{37.12+0}{37.12+7} \right) = 22.00$$

Taking the mean, we have

$$\tilde{S}_1 = \frac{1}{2}(6.49 + 6.49) = 6.49$$
  
 $\tilde{S}_2 = \frac{1}{2}(12.35 + 11.71) = 12.03$   
 $\tilde{S}_3 = \frac{1}{2}(23.27 + 22.00) = 22.63$ 

These values are very close to  $S^* = (6.49, 12.02, 22.71)$  and indeed their costs are very similar:  $g(\tilde{\mathbf{S}}) = 47.66$ , compared to  $g(\mathbf{S}^*) = 47.65$