STA2603 Distribution Theory II

Always specify the domain of the function!

Always specify the parameters when identifying the distribution!

Study Unit 2

Frequency Function (discreet) = density function (continuous). Distribution functions is CDF.

Discreet Random Variables

Distribution	Mass function	$\mathbf{p}_{X}\left(\mathbf{k} ight)$	$\mathbf{M}_{\mathbf{X}}\left(\mathbf{t}\right)$ mgf	Mean & Variance
Bernoulli ber (p) one success	$\begin{cases} p^k \left(1-p\right)^{1-k} \\ 0 \end{cases}$	k=0;1 elsewhere	$\left(1-p+pe^t\right)$	$\mu_X = p$ $\sigma_X^2 = p(1-p)$
Binomial $b(n; p)$ x successes in n trials	$\begin{cases} \binom{n}{x} p^x \left(1 - p\right)^{n - x} \\ 0 \end{cases}$	x = 0; 1; .; n elsewhere	$(1-p+pe^t)^n$	$\mu_X = np$ $\sigma_X^2 = np (1-p)$
Geometric geo (p) 1st success in x trials	$\left\{ \begin{array}{l} (1-p)^{x-1} p, \\ 0 \end{array} \right.$	$x=1;2;3;\dots$ elsewhere	$\frac{pe^t}{1-(1-p)e^t}$	$egin{array}{lll} \mu_X & = & rac{1}{p} \ \sigma_X^2 & = & rac{1-p}{p^2} \end{array}$
Negative Binomial $nb\left(r;\;p\right)$ r'th success in k trials	$\begin{cases} \binom{k-1}{r-1} p^r \left(1-p\right)^{k-r}, \\ 0 \end{cases}$	k=1;2; elsewhere	$\left[\frac{pe^t}{(1-(1-p)e^t)}\right]^r$	$\mu_X = \frac{r}{p}$ $\sigma_X^2 = \frac{r(1-p)}{p^2}$
Poisson $Po\left(\lambda\right)$ K rare events	$\begin{cases} \frac{\lambda^k}{k!}e^{-\lambda}, \\ 0 \end{cases}$	$k=0;1;\dots$ elsewhere	$e^{\lambda(e^t-1)}$	$\mu_X = \lambda$ $\sigma_X^2 = \lambda$

$$\mbox{Hypergeometric:}\ \ p(x) = \begin{cases} \frac{\binom{r}{x}\binom{n-r}{m-x}}{\binom{n}{m}} & \mbox{if } x = 0, 1, 2, \dots.n \\ 0 & \mbox{otherwise} \end{cases}$$

Probability of x successes in a sample size m from sample space n and a subset r

$$\begin{array}{cccc}
1. & p_X(x_i) & \geq & 0 \\
2. & \sum_{x=0}^{\infty} p_X(x) & = & 1
\end{array}$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Bernoulli Random Variables

Indicator random variable $I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \text{otherwise} \end{cases}$

$$p_X\left(x\right) = \left\{ \begin{array}{ll} 1-p & \text{if } x=0 \\ p & \text{if } x=1 \\ 0 & \text{otherwise} \end{array} \right.$$

$$F_X\left(x\right) = \left\{ \begin{array}{ll} 0 & \text{if } x<0 \\ 1-p & \text{if } 0< x<1 \\ 1 & \text{if } x>1 \end{array} \right.$$

Binomial Distribution

The sum of independent Bernoulli variables is a binomial random variable. To prove binomial probabilities sums to 1. Use finite binomial series expansion:

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{n-1} a^{n-(n-1)}b^{n-1} + \binom{n}{n} a^{n-n}b^{n}$$

$$= (a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + b^{n}$$

$$= \sum_{x=0}^{n} \binom{n}{x} a^{n-x}b^{x}$$

and therefore it is a series expansion of $[(1-p)+p]^n$

Geometric Distribution

To prove that geometric distribution sums to 1, use Taylor series at x=0

$$(1-p)^{-1} = 1 + \frac{(-1)}{1!} (-p) + \frac{(-1)(-1-1)}{2!} (-p)^2 + \frac{(-1)(-1-1)(-1-2)}{3!} (-p)^3 + \dots$$

$$= 1 + p + p^2 + p^3 + p^4 + \dots$$

$$p \sum_{x=1}^{\infty} (1-p)^{x-1} = p \sum_{r=0}^{\infty} (1-p)^r$$

$$= p \left[1 + (1-p) + (1-p)^2 + (1-p)^3 + \dots \right]$$

$$= p (1 - (1-p))^{-1}$$

$$= \frac{p}{p}$$

$$= 1$$

Negative Binomial Distribution

A negative binomial random variable can be expressed as the sum of r independent geometric variables.

Hypergeometric distribution

$$pX(x) = \begin{cases} \frac{\binom{r}{x}\binom{n-r}{m-x}}{\binom{n}{m}} & \text{if } x = 0, 1, 2, \dots . n \\ 0 & \text{otherwise} \end{cases}$$

Poisson Distribution

To show it is a frequency function:

$$\begin{array}{rcl} e^{\lambda} & = & 1+\lambda+\frac{\lambda^2}{2!}+\frac{\lambda^3}{3!}+\frac{\lambda^4}{4!}+\dots \\ & = & \sum_{x=0}^{\infty}\frac{\lambda^x}{x!} \end{array}$$

$$\sum_{x=0}^{\infty} \frac{\lambda^k}{x!} e^{-\lambda} = e^{\lambda} e^{-\lambda}$$
$$= 1.$$

Poisson distribution can be used to approximate binomial distribution, if n is large and p is small.

Continuous Random Variables

- $F_{X}\left(x\right)$ is a non-decreasing function
- $\lim_{x \to -\infty} F_X(x) = 0$
- $\lim_{x \to \infty} F_X\left(x\right) = 1$ $F_X\left(x\right)$ is everywhere continuous

$$P(a < X < b) = \int_{a}^{b} f_X(x) dx$$

1.
$$f_X(x) \geq 0$$
 and

1.
$$f_X(x) \ge 0$$

2.
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$P(a < X < b) = P(a \le X \le b) = P(a \le X < b) = P(a < X \le b)$$

The pth quantile: $F(x_p) = p$ or $P(X \le x_p) = p$ and $x_p = F^{-1}(p)$

Exponential Density

Gamma Density

$$\text{Gamma function } \Gamma(a) = \int_0^\infty x^{a-1} e^{-x} \quad \text{ Properties } \Gamma(\alpha+1) = \alpha \Gamma(\alpha) \quad \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$c^n \Gamma(n) = \int_0^\infty x^{n-1} e^{-\frac{x}{c}}$$

$$\Gamma(2) = 1$$

If $\alpha=1$ then it becomes exponential density If $\lambda=1$ then it is a one parameter gamma density

$$\begin{split} \int\limits_{-\infty}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\lambda t} dt &= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int\limits_{0}^{\infty} t^{\alpha-1} e^{-\lambda t} dt \\ &= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int\limits_{0}^{\infty} t^{\alpha-1} e^{-t/\frac{1}{\lambda}} dt \\ &= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \Gamma(\alpha) \left(\frac{1}{\lambda}\right)^{\alpha} \\ &= 1. \end{split}$$

Normal (Gaussian) distribution

Beta Density

$$\text{Beta function: } B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx \quad \text{ or } B(m,n) = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$$

To prove density function:

For 0 < x < 1 and m > 0, n > 0

$$\int_{0}^{1} \frac{1}{B(m,n)} x^{m-1} (1-x)^{n-1} dx = \frac{1}{B(m,n)} B(m,n)$$

$$\begin{split} B\left(m+1;n+1\right) &= \frac{m\Gamma\left(m\right)n\Gamma\left(n\right)}{\left(m+n+1\right)\Gamma\left(m+n+1\right)} \\ &= \frac{mn}{\left(m+n+1\right)\left(m+n\right)} \times \frac{\Gamma\left(m\right)\Gamma\left(n\right)}{\Gamma\left(m+n\right)} \\ &= \frac{mn}{\left(m+n+1\right)\left(m+n\right)} B\left(m;n\right). \end{split}$$

Different characteristics of the beta function

Characteristic	Comment	Proof / Examples	Ref no
Type 1 beta function $\int\limits_0^1 x^{m-1} (1-x)^{n-1} dx.$ $= B (m;n)$	Recognize and use beta integral in integration	$ \int_{0}^{1} x^{5} (1-x)^{6} = \int_{0}^{1} x^{6-1} (1-x)^{7-1} = B (6;7) $	B1
Symmetry with respect to the parameters $m > 0$; $n > 0$	$B\left(m;n ight) =B\left(n;m ight)$		B2
Relationship between beta and gamma functions	m > 0; n > 0 Numerical value for any beta function	$B(m;n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$	B4
Changing the limits of the integral from $\int_{0}^{1} \text{ to } \int_{0}^{\infty}$	$\int\limits_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$ = $B\left(m;n\right)$ which is a type 2 beta function	$\int_{0}^{\infty} \frac{x^{3}}{(1+x)^{5}} dx$ $= \int_{0}^{\infty} \frac{x^{4-1}}{(1+x)^{4+1}} dx$ $= B(4;1)$	

Cauchy Density

$$f(x) = \frac{1}{\pi} \left(\frac{1}{1 + x^2} \right) \quad -\infty < x < \infty$$

Functions of random Variables

Standard normal CDF $=\Phi(X)$ — Standard normal density $=\phi(X)$ Proposition A:

if $X \sim N(\mu, \sigma^2)$ and Y = aX + b, then $Y \sim N(a\mu + b, a^2\sigma^2)$

PROPOSITION B

Let X be a continuous random variable with density f(x) and let Y = g(X) where g is a differentiable, strictly monotonic function on some interval I. Suppose that f(x) = 0 if x is not in I. Then Y has the density function

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

for y such that y = g(x) for some x, and $f_Y(y) = 0$ if $y \neq g(x)$ for any x in I. Here g^{-1} is the inverse function of g; that is, $g^{-1}(y) = x$ if y = g(x).

PROPOSITION C

Let Z = F(X); then Z has a uniform distribution on [0, 1].

Proof

$$P(Z \le z) = P(F(X) \le z) = P(X \le F^{-1}(z)) = F(F^{-1}(z)) = z$$

This is the uniform cdf.

PROPOSITION D

Let U be uniform on [0, 1], and let $X = F^{-1}(U)$. Then the cdf of X is F.

Proof

$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$

 $[N(0,1)]^2 \sim \chi_1^2$

Weibull density: $\frac{\beta}{\alpha^{\beta}}x^{\beta-1}e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$

Study Unit 3

Discreet Random Variables

$$p_{XY}\left(x,y\right) =P\left(X=x,Y=y\right)$$

$$1. \quad p_{X,Y}\left(x,y\right) \qquad \qquad \geq \quad 0 \qquad \text{ for all } \left(x,y\right) \in R^2$$

2.
$$\sum_{x=0}^{n_1} \sum_{y=0}^{n_2} p_{X,Y}(x,y) = 1$$

Continuous Random Variables

Marginal density.

$$1. \quad f_{X,Y}\left(x,y\right) \\ \geq 0 \quad \text{ for all } (x,y) \in R^2$$

$$2. \quad \int \int_{S} f_{X,Y}(x,y) \, dy dx = 1$$

$$f_{X,Y}(x;y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x;y).$$

$$f_{X}\left(x\right) \;\; = \;\; \int\limits_{-\infty}^{\infty} f_{X,Y}\left(x;v\right) dv \qquad \ \ \text{for all } x \in R$$

$$f_{Y}\left(y
ight) \;\; = \;\; \int\limits_{-\infty}^{\infty}f_{X,Y}\left(u;y
ight)du \qquad ext{ for all } y\in R$$

Marginals sum to 1

Joint cumulative distribution.

$$F_{X,Y}(x;y) = P(X < x; Y < y)$$

$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u;v) du dv$$

Independent Random variables

Independent if $F(x,y) = F_X(x)F_Y(y)$

Two discreet random variables will be independent if th their joint mass function factors.

Conditional Distributions

Discreet:

The law of total probability. $p_X(x) = \sum_y p_{X|Y}(x|y) p_Y(y)$

Continuous:

The law of total probability. $f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) \, dx$

Study Unit 4

Expected Value of Random Variables

$$E(X) = \sum x p_X\left(x\right) \qquad \text{Provided } \sum_{x} |x| \ p_X\left(x\right) < \infty$$

$$E(X) = \int\limits_{-\infty}^{\infty} x \ f_X\left(x\right) dx \qquad \text{Provided } \int\limits_{-\infty}^{x} |x| \ f_X\left(x\right) dx < \infty$$

Markov's Inequality

$$P(X \ge t) \le \frac{\mathrm{E}(X)}{t}$$

Expectations of functions of random variables

$$\rightarrow$$
 Corollary A: $E(XY) = E(X)E(Y)$

Expectations of linear combinations of random variables

THEOREM A

If X_1, \ldots, X_n are jointly distributed random variables with expectations $E(X_i)$ and Y is a linear function of the $X_i, Y = a + \sum_{i=1}^n b_i X_i$, then

$$E(Y) = a + \sum_{i=1}^{n} b_i E(X_i)$$

- \rightarrow Proof for n=2:
 - 1) Write out full expectation
 - 2) Multiply out and separate integrals
 - 3) First sums to 1
 - 4) Second/third sum to expected values
 - 5) State integral is convergent

Variance and standard deviation

$$Var(X) = \mathbf{E} ([X - \mathbf{E}(X)]^2)$$
$$Var(X) = \mathbf{E}(X^2) - [E(X)]^2$$

Discrete	$Var(X) = \sum_{x} (x - \mu)^2 p_X(x)$	
Continuous	$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	
Standard deviation	$SD = \sqrt{Var(X)}$	

Chebyshev's Inequality: There is a high probability that X will deviate little from its mean if the variance is small.

Let X be a random variable with mean μ and variance σ^2 . Then, for any t > 0,

$$P(|X - \mu| > t) \le \frac{\sigma^2}{t^2}$$

Setting $t=k\sigma$ then $P(|X-\mu|\geq k\sigma)\leq \frac{1}{k^2}$ or what ever is asked.

Covariance

$$\begin{split} Cov(X,Y) &= \mathbf{E}(X-\mu_X)(Y-\mu_Y) \\ &= \mathbf{E}(X,Y) - \mathbf{E}(X)\mathbf{E}(Y) \end{split}$$

$$Cov\left(X,Y
ight) = \int\int\left(x-\mu_{X}
ight)\left(y-\mu_{Y}
ight)f_{X,Y}\left(x,y
ight)dxdy$$

If independent then: E(XY) = E(X)E(Y) and covariance is 0

THEOREM A

Suppose that
$$U = a + \sum_{i=1}^{n} b_i X_i$$
 and $V = c + \sum_{j=1}^{m} d_j Y_j$. Then

$$Cov(U, V) = \sum_{i=1}^{n} \sum_{j=1}^{m} b_i d_j Cov(X_i, Y_j)$$

COROLLARY A

$$\operatorname{Var}(a + \sum_{i=1}^{n} b_i X_i) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i b_j \operatorname{Cov}(X_i, X_j). \quad \operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i), \text{ if the } X_i \text{ are independent.}$$

$$\begin{split} \operatorname{Var}(X+Y) &= \operatorname{Cov}(X+Y,X+Y) \\ &= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2 \operatorname{Cov}(X,Y) \\ \operatorname{E}\left(\sum X_i\right) &= \sum \operatorname{E}(X_i) \\ \operatorname{Var}\left(\sum X_i\right) &= \sum \operatorname{Var}(X_i) \text{ if } X_i \text{ are independent.} \end{split}$$

Correlation coefficient

Revise Properly!!!!!!

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Conditional Expectation and Prediction

$$E(Y|X = x) = \sum_{y} y p_{Y|X}(y|x)$$

$$E(Y|X = x) = \int y f_{Y|X}(y|x) dy$$

$$E[h(Y)|X = x] = \int h(y) f_{Y|X}(y|x) dy$$

Law of total expectation

THEOREM A

$$E(Y) = E[E(Y|X)].$$

Proof

We will prove this for the discrete case. The continuous case is proved similarly. Using Theorem 4.1.1A we need to show that

$$E(Y) = \sum_{x} E(Y|X=x) p_X(x)$$

where

$$E(Y|X=x) = \sum_{y} y p_{Y|X}(y|x)$$

Interchanging the order of summation gives us

$$\sum_{x} E(Y|X = x) p_{X}(x) = \sum_{y} y \sum_{x} p_{Y|X}(y|x) p_{X}(x)$$

(It can be shown that this interchange can be made.) From the law of total probability, we have

$$p_Y(y) = \sum_x p_{Y|X}(y|x)p_X(x)$$

Therefore,

$$\sum_{y} y \sum_{x} p_{Y|X}(y|x)p_{X}(x) = \sum_{y} yp_{Y}(y) = E(Y)$$

Moment-generating functions

$$M_{X}\left(t\right) =E\left(e^{tX}\right)$$

discrete:
$$M_{X}\left(t\right) = \sum e^{tx}p_{X}\left(x\right)$$

discrete:
$$M_{X}\left(t
ight)=\sum_{x}^{x}e^{tx}p_{X}\left(x
ight)$$
 continuous: $M_{X}\left(t
ight)=\int_{-\infty}^{x}e^{tx}f_{X}\left(x
ight)dx$

- → Same mgf then same distribution.
- → If the mgf can be determined it can be uniquely determines then probability distribution.
- → The mgf provides an elegant way to compute the moments of a distribution.

Calculating moments

- → First principles
 - $\rightarrow \text{Discreet: } \mathrm{E}(X^r) = \sum x^r p_X(x)$
 - $\rightarrow \hbox{Continuous: } \mathrm{E}(X^r) = \int x^r f_X(x)$
- → Using moment-generating function

$$\rightarrow M^{(r)}(0) = E(X^r)$$

→ Using Taylor series expansion

$$e^{tx} = 1 + (tx) + \frac{(tx)^2}{2!} + \frac{(tx)^3}{3!} + \cdots$$
$$= 1 + (x) \cdot \frac{t}{1!} + (x)^2 \cdot \frac{t^2}{2!} + (x)^3 \cdot \frac{t^3}{13!} + \dots$$

Study Unit 5

Study Unit 6