

Triple sum ☆

Problem

Submissions

Leaderboard

Editorial

RATE THIS CHALLENGE

Given $\bf 3$ arrays $\bf a, \ b, \ c$ of different sizes, find the number of distinct triplets $(p, \ q, \ r)$ where $\bf p$ is an element of $\bf a$, written as $\bf p \in \bf a, \ q \in \bf b$, and $\bf r \in \bf c$, satisfying the criteria: $\bf p \leq \bf q$ and $\bf q \geq \bf r$.

For example, given a=[3,5,7], b=[3,6], and c=[4,6,9], we find four distinct triplets:

(3,6,4), (3,6,6), (5,6,4), (5,6,6).

Function Description

Complete the triplets function in the editor below. It must return the number of distinct triplets that can be formed from the given arrays.

triplets has the following parameter(s):

• a, b, c: three arrays of integers .

Input Format

The first line contains $\bf 3$ integers lena, lenb, and lenc, the sizes of the three arrays.

The next **3** lines contain space-separated integers numbering *lena*, *lenb*, *and lenc* respectively.

Constraints

 $1 \leq lena, lenb, lenc \leq 10^5$

 $1 \leq \text{ all elements in } a, b, c \leq 10^8$

Output Format

Print an integer representing the number of distinct triplets.

Sample Input 0

- 3 2 3
- 1 3 5
- 2 3
- 1 2 3

8

Explanation 0

The special triplets are (1,2,1), (1,2,2), (1,3,1), (1,3,2), (1,3,3), (3,3,1), (3,3,2), (3,3,3).

Sample Input 1

- 3 3 3
- 1 4 5
- 2 3 3
- 1 2 3

Sample Output 1

5

Explanation 1

The special triplets are (1,2,1), (1,2,2), (1,3,1), (1,3,2), (1,3,3)

Sample Input 2

- 4 3 4
- 1 3 5 7
- 5 7 9
- 7 9 11 13

Sample Output 2

12

Explanation 2

The special triplets are

(1,7,7), (1,9,7), (1,9,9), (3,7,7), (3,9,7), (3,9,9), (5,7,7), (5,9,7), (5,9,9), (7,7,7), (7,9,7), (7,9,9).

