

planetmath.org

Math for the people, by the people.

quotient space

Canonical name QuotientSpace

Date of creation 2013-03-22 12:39:40 Last modified on 2013-03-22 12:39:40

Owner djao (24) Last modified by djao (24)

Numerical id 5

Author djao (24) Entry type Definition Classification msc 54B15

Related topic AdjunctionSpace
Defines quotient topology
Defines quotient map

Let X be a topological space, and let \sim be an equivalence relation on X. Write X^* for the set of equivalence classes of X under \sim . The quotient topology on X^* is the topology whose open sets are the subsets $U \subset X^*$ such that

$$\bigcup U \subset X$$

is an open subset of X. The space X^* is called the *quotient space* of the space X with respect to \sim . It is often written X/\sim .

The projection map $\pi: X \longrightarrow X^*$ which sends each element of X to its equivalence class is always a continuous map. In fact, the map π satisfies the stronger property that a subset U of X^* is open if and only if the subset $\pi^{-1}(U)$ of X is open. In general, any surjective map $p: X \longrightarrow Y$ that satisfies this stronger property is called a *quotient map*, and given such a quotient map, the space Y is always homeomorphic to the quotient space of X under the equivalence relation

$$x \sim x' \iff p(x) = p(x').$$

As a set, the construction of a quotient space collapses each of the equivalence classes of \sim to a single point. The topology on the quotient space is then chosen to be the strongest topology such that the projection map π is continuous.

For $A \subset X$, one often writes X/A for the quotient space obtained by identifying all the points of A with each other.