ИДЗ 4 по Алгебре

Татаринов Никита, БПИ196 Вариант 20

> 2020 июнь, 20

Задача №1

1. Составим из векторов соответствующие матрицы:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ -1 & 10 & 9 & 6 \\ -7 & 4 & 5 & -10 \\ -9 & 1 & 7 & -9 \\ -2 & -7 & 4 & -9 \end{pmatrix}, B = \begin{pmatrix} b_1 & b_2 & b_3 & b_4 \\ -6 & -4 & 10 & 0 \\ -10 & -5 & 20 & -5 \\ -6 & 2 & 22 & -18 \\ 8 & -3 & -30 & 25 \end{pmatrix}.$$

Тогда, матрица линейного оператора M связана с A и B через выражение $B=M\cdot A$, то есть $M=B\cdot A^{-1}$.

$$A^{-1} = \frac{1}{\det(A)} \cdot \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{pmatrix}^T,$$
 где A_{ij} - алгебраическое дополнение, то есть
$$A^{-1} = \frac{1}{(-4496)} \cdot \begin{pmatrix} -278 & -94 & -398 & -42 \\ -696 & -672 & 168 & 752 \\ 1210 & 490 & 18 & -642 \\ -622 & 194 & -470 & 278 \end{pmatrix}^T.$$

Таким образом,
$$M = B \cdot A^{-1} = \frac{1}{(-4496)} \cdot \begin{pmatrix} -6 & -4 & 10 & 0 \\ -10 & -5 & 20 & -5 \\ -6 & 2 & 22 & -18 \\ 8 & -3 & -30 & 25 \end{pmatrix} \cdot \begin{pmatrix} -278 & -94 & -398 & -42 \\ -696 & -672 & 168 & 752 \\ 1210 & 490 & 18 & -642 \\ -622 & 194 & -470 & 278 \end{pmatrix}^T = \frac{1}{(-4496)} \cdot \begin{pmatrix} -1936 & 8544 & -9040 & -1744 \\ -4500 & 9920 & -10980 & -5540 \\ -6520 & -7008 & 5672 & -11224 \\ 8948 & 10208 & -8380 & 15492 \end{pmatrix} = \frac{1}{1124} \cdot \begin{pmatrix} 484 & -2136 & 2260 & 436 \\ 1125 & -2480 & 2745 & 1385 \\ 1630 & 1752 & -1418 & 2806 \\ -2237 & -2552 & 2095 & -3873 \end{pmatrix}.$$

2. $Ker M = \{ \text{Векторы } c \mid M \cdot c = 0 \}$, то есть необходимо найти все решения однородной СЛАУ $M \cdot c = 0$. Для этого приведём M к ступенчатому виду:

$$M = \frac{1}{1124} \cdot \begin{pmatrix} 484 & -2136 & 2260 & 436 \\ 1125 & -2480 & 2745 & 1385 \\ 1630 & 1752 & -1418 & 2806 \\ -2237 & -2552 & 2095 & -3873 \end{pmatrix} \rightarrow \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 121 & -534 & 565 & 109 \\ 0 & 107 & -108 & 16 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{cases} x_1 = \frac{(-1)}{107} \cdot (23k + 167l) \\ x_2 = \frac{4}{107} \cdot (27k - 4l) \\ x_3 = k \\ x_4 = l \end{cases}$$

Значит, размерность ядра, равная размерности Φ CP, равна dim(KerM) = 2.

3. $Im\,M=\{$ Векторы $b\mid b=M\cdot a\quad \forall a$ из пространства $\}$. Матрица линейного оператора M переводит любые векторы из пространства в векторы из подпространства, в том числе и базисные: $E_2=M\cdot E_1$. Так как в базисе все векторы линейно независимы, E_1 будет невырождена, то есть и ${E_1}^{-1}$ также будет невырождена $(det(X)\cdot det(X^{-1})=1)$. Тогда по следствию из теоремы о ранге произведения матриц ранг матрицы $M=E_2\cdot E_1^{-1}$ будет совпадать с рангом матрицы E_2 , то есть в конечном подпространстве Rg(M)=2 базисных вектора, то есть $dim(Im\,M)=2$.

Ответ: матрица линейного оператора равна $\frac{1}{1124}$. $\begin{pmatrix} 484 & -2136 & 2260 & 436 \\ 1125 & -2480 & 2745 & 1385 \\ 1630 & 1752 & -1418 & 2806 \\ -2237 & -2552 & 2095 & -3873 \end{pmatrix}$; раз-

мерность ядра линейного отображения равна 2; размерность образа линейного отображения равна 2.

Задача №2

Применим алгоритм нахождения жордановой нормальной формы для матрицы $A = \begin{bmatrix} 9 & 1 & 0 & 0 \\ -45 & -6 & 1 & 0 \\ -199 & -48 & 12 & 0 \\ 62 & 15 & -2 & 5 \end{bmatrix}$.

1. Составим характеристический многочлен $\chi_A(\lambda)=\det(A-\lambda E)=\det\begin{bmatrix} 9-\lambda & 1 & 0 & 0\\ -45 & -6-\lambda & 1 & 0\\ -199 & -48 & 12-\lambda & 0\\ 62 & 15 & -2 & 5-\lambda \end{bmatrix},$ разложив A по последнему столбцу:

 $det(A - \lambda E) = (-1)^{4+4} \cdot (5-\lambda) \cdot det \begin{bmatrix} 9 - \lambda & 1 & 0 \\ -45 & -6 - \lambda & 1 \\ -199 & -48 & 12 - \lambda \end{bmatrix} = (5-\lambda) \cdot \left((-1)^{1+1} \cdot (9 - \lambda) \cdot det \begin{bmatrix} -6 - \lambda & 1 \\ -48 & 12 - \lambda \end{bmatrix} + (-1)^{1+2} \cdot 1 \cdot det \begin{bmatrix} -45 & 1 \\ -199 & 12 - \lambda \end{bmatrix} \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right) = (5 - \lambda) \cdot \left((9 - \lambda) \cdot (3\lambda^2 - 6\lambda - 24) - (45\lambda - 341) \right)$

 $(5-\lambda)(-\lambda^3+15\lambda^2-75\lambda+125)=(5-\lambda)^4$, – то есть у данной матрицы единственное собственное значение: $\lambda_1 = 5, m_1 = 4, -$ то есть один жорданов блок.

2. Вычислим геометрическую кратность $\lambda_1:\begin{bmatrix}9-\lambda_1&1&0&0\\-45&-6-\lambda_1&1&0\\-199&-48&12-\lambda_1&0\\62&15&-2&5-\lambda_1\end{bmatrix}=\begin{bmatrix}4&1&0&0\\-45&-11&1&0\\-199&-48&7&0\\62&15&-2&0\end{bmatrix}\to$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ то есть } s_1 = 2.$$

Тогда количество жордановых клеток внутри блока равно 2, то есть их размерности могут быть либо 3 и 1, либо 2 и 2.

3. Вычислим количество клеток размерности 1: $t_1 = r_2 - 2r_1 + r_0$.

$$r_0 = Rg (A - \lambda_1 E)^0 = Rg E = 4.$$

$$r_{1} = Rg \left(A - \lambda_{1} E \right)^{1} = Rg \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = 2.$$

$$r_0=Rg\left(A-\lambda_1E
ight)^0=Rg\,E=4.$$

$$r_1=Rg\left(A-\lambda_1E
ight)^1=Rg\begin{bmatrix}1&0&-1&0\\0&1&4&0\\0&0&0&0\\0&0&0&0\end{bmatrix}=2.$$

$$r_2=Rg\left(A-\lambda_1E
ight)^2=Rg\begin{bmatrix}4&1&0&0\\-45&-11&1&0\\-199&-48&7&0\\62&15&-2&0\end{bmatrix}^2=Rg\begin{bmatrix}-29&-7&1&0\\16&28&-4&0\\-29&-7&1&0\\-29&-7&1&0\end{bmatrix}\to Rg\begin{bmatrix}29&7&-1&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}=1.$$

$$t_1=1-2\cdot 2+4=1, \text{ то есть размерности жордановых клеток 1 и 3, то есть жорданова}$$
 нормальная форма матрицы имеет вид
$$\begin{bmatrix}5&1&0&0\\0&5&1&0\\0&0&5&0\end{bmatrix}.$$

нормальная форма матрицы имеет вид $\begin{bmatrix} 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$

Ответ: жорданова форма матрицы
$$A = \begin{bmatrix} 9 & 1 & 0 & 0 \\ -45 & -6 & 1 & 0 \\ -199 & -48 & 12 & 0 \\ 62 & 15 & -2 & 5 \end{bmatrix}$$
 имеет вид
$$\begin{bmatrix} 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 0 \\ \hline 0 & 0 & 0 & 5 \end{bmatrix}.$$

Задача №3

1. Если произвольная функция g(p) является линейной формой, то для для неё выполняются условия:

1)
$$g(p+q) = g(p) + g(q)$$
 $\forall p, q \in \mathbb{R}_3[x];$

2)
$$g(\alpha p) = \alpha g(p)$$
 $\forall p \in \mathbb{R}_3[x] \quad \forall \alpha \in \mathbb{R}.$

Покажем, что данные условия выполняются и для f(p).

1)
$$p(x)=p_3x^3+p_2x^2+p_1x+p_0, \ q(x)=q_3x^3+q_2x^2+q_1x+q_0,$$
 to ecth: $p(0)=p_0;$ $q(0)=q_0;$

$$\begin{split} & \left(p+q\right)(0) = \left((p_3+q_3)x^3+(p_2+q_2)x^2+(p_1+q_1)x+(p_0+q_0)\right) = (p_0+q_0); \\ & p(1) = p_3+p_2+p_1+p_0; \\ & q(1) = q_3+q_2+q_1+q_0; \\ & \left(p+q\right)(1) = (p_3+q_3)+(p_2+q_2)+(p_1+q_1)+(p_0+q_0). \\ & \text{Тогда} \ f(p+q) = \left(p+q\right)(0)+\left(p+q\right)(1) = \left(p_0+q_0\right)+\left((p_3+q_3)+(p_2+q_2)+(p_1+q_1)+(p_0+q_0)\right) \\ & + \left(p_1+q_1\right)+\left(p_0+q_0\right)\right) = \left(p_3\cdot0^3+p_2\cdot0^2+p_1\cdot0+p_0+q_3\cdot0^3+q_2\cdot0^2+q_1\cdot0+q_0\right)+\left((p_3+p_2+p_1+p_0)+\left(q_3+q_2+q_1+q_0\right)\right) = \left(p(0)+q(0)\right)+\left(p(1)+q(1)\right) = f(p)+f(q). \end{split}$$
 2) $p(x) = p_3x^3+p_2x^2+p_1x+p_0, \ \left(\alpha p\right)(x) = \alpha p_3x^3+\alpha p_2x^2+\alpha p_1x+\alpha p_0, \ \text{то есть:} \\ & p(0) = p_0; \\ & p(1) = p_3+p_2+p_1+p_0; \\ & \left(\alpha p\right)(0) = \alpha p_0; \\ & \left(\alpha p\right)(1) = \alpha p_3+\alpha p_2+\alpha p_1+\alpha p_0. \\ & \text{Тогда} \ f(\alpha p) = \left(\alpha p\right)(0)+\left(\alpha p\right)(1) = \alpha p_0+\alpha p_3+\alpha p_2+\alpha p_1+\alpha p_0 = \alpha \left(p_0+p_3+p_2+p_1+p_0\right) = \alpha \left(p(0)+p(1)\right) = \alpha f(p). \end{split}$

Таким образом, f(p) действительно является линейной формой, чтд.

2. Необходимо найти строки координатной записи функции (координатами которой будут являться образы базисных векторов) в базисе:

а)
$$[1,x,x^2,x^3]$$
. $f(1)=1(0)+1(1)=2;$ $f(x)=x(0)+x(1)=1;$ $f(x^2)=(x^2)(0)+(x^2)(1)=1;$ $f(x^3)=(x^3)(0)+(x^3)(1)=1.$ Тогда, искомая строка имеет вид $(2,1,1,1)$.

б)
$$[4,x+10,x^2-x-4,x^3+10x^2+3x-1].$$
 $f(4)=4(0)+4(1)=8;$ $f(x+10)=(x+10)(0)+(x+10)(1)=21;$ $f(x^2-x-4)=(x^2-x-4)(0)+(x^2-x-4)(1)=-8;$ $f(x^3+10x^2+3x-1)=(x^3+10x^2+3x-1)(0)+(x^3+10x^2+3x-1)(1)=12.$ Тогда, искомая строка имеет вид $(8,21,-8,12).$

Ответ: строки координатной записи функции в базисе

- а) $[1, x, x^2, x^3]$ имеет вид (2, 1, 1, 1);
- б) $[4, x + 10, x^2 x 4, x^3 + 10x^2 + 3x 1]$ имеет вид (8, 21, -8, 12).

Задача №4

В пространстве \mathbb{R}^3 необходимо найти базис $\mathbf{f} = (f^1, f^2, f^3)$, взаимный с $\mathbf{e} = (e_1, e_2, e_3)$, где $e_1 = [-4; -9; 4]^T, e_2 = [3; -14; -9]^T, e_3 = [-8; -12; -11]^T$. Для этого необходимо построить матрицу $G^{-1} \cdot \begin{pmatrix} e_1^T \\ e_2^T \\ e_3^T \end{pmatrix}$, где $G = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & (e_1, e_3) \\ (e_2, e_1) & (e_2, e_2) & (e_2, e_3) \\ (e_3, e_1) & (e_3, e_2) & (e_3, e_3) \end{pmatrix}$ - матрица Грама для векторов e_1, e_2, e_3 . В

таком случае, строки получившейся матрицы и будут являться транспонированными векторами f^1 , f^2 , f^3 , взаимными с e_1 , e_2 , e_3 .

рами
$$f^1, f^2, f^3$$
, взаимными с e_1, e_2, e_3 .
$$G = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & (e_1, e_3) \\ (e_2, e_1) & (e_2, e_2) & (e_2, e_3) \\ (e_3, e_1) & (e_3, e_2) & (e_3, e_3) \end{pmatrix} = \begin{pmatrix} 16 + 81 + 16 & -12 + 126 - 36 & 32 + 108 - 44 \\ -12 + 126 - 36 & 9 + 196 + 81 & -24 + 168 + 99 \\ 32 + 108 - 44 & -24 + 168 + 99 & 64 + 144 + 121 \end{pmatrix} = \begin{pmatrix} 113 & 78 & 96 \\ 78 & 286 & 243 \\ 96 & 243 & 329 \end{pmatrix}, \text{ то есть } G^{-1} = \frac{1}{2961841} \begin{pmatrix} 35045 & -2334 & -8502 \\ -2334 & 27961 & -19971 \\ -8502 & -19971 & 26234 \end{pmatrix}.$$

$$\text{Тогда } G^{-1} \cdot \begin{pmatrix} e_1^T \\ e_2^T \\ e_3^T \end{pmatrix} = \frac{1}{2961841} \begin{pmatrix} 35045 & -2334 & -8502 \\ -2334 & 27961 & -19971 \\ -8502 & -19971 & 26234 \end{pmatrix} \cdot \begin{pmatrix} -4 & -9 & 4 \\ 3 & -14 & -9 \\ -8 & -12 & -11 \end{pmatrix} = \frac{1}{1721} \begin{pmatrix} -46 & -105 & 148 \\ 147 & -76 & -24 \\ -137 & 24 & -83 \end{pmatrix},$$

$$\text{то есть } f^1 = \begin{bmatrix} -\frac{46}{1721}, \frac{-105}{1721}, \frac{148}{1721} \end{bmatrix}^T, f^2 = \begin{bmatrix} \frac{147}{1721}, \frac{-76}{1721}, \frac{-24}{1721} \end{bmatrix}^T, f^3 = \begin{bmatrix} -\frac{137}{1721}, \frac{24}{1721}, \frac{-83}{1721} \end{bmatrix}^T.$$

$$\textbf{Ответ:} \text{ базис } \mathbf{f} = (f^1, f^2, f^3), \text{ взаимный с } \mathbf{e} = (e_1, e_2, e_3), \text{ состоит из векторов } f^1 = \begin{bmatrix} -\frac{46}{1721}, \frac{-105}{1721}, \frac{148}{1721} \end{bmatrix}^T, f^2 = \begin{bmatrix} \frac{147}{1721}, \frac{-76}{1721}, \frac{-24}{1721} \end{bmatrix}^T.$$

Задача №5

Применим алгоритм ортогонализации Грама-Шмидта для столбцов матрицы A.

$$A = \begin{bmatrix} -4 & -2 & 2 \\ -4 & 2 & 1 \\ 3 & -4 & 2 \end{bmatrix}$$
, то есть $a_1 = (-4, -4, 3)^T$, $a_2 = (-2, 2, -4)^T$, $a_3 = (2, 1, 2)^T$. Тогда:

1)
$$b_1 = a_1 = (-4, -4, 3)^T$$
;

2)
$$b_2 = a_2 - \frac{(a_2, b_1)}{(b_1, b_1)} b_1 = (-2, 2, -4)^T - \frac{(8 - 8 - 12)}{(16 + 16 + 9)} (-4, -4, 3)^T = (-2, 2, -4)^T + \frac{12}{41} (-4, -4, 3)^T = (-2, 2, -4)^T + (\frac{-48}{41}, \frac{-48}{41}, \frac{36}{41})^T = (\frac{-130}{41}, \frac{34}{41}, \frac{-128}{41})^T;$$

3)
$$b_3 = a_3 - \frac{(a_3,b_2)}{(b_2,b_2)}b_2 - \frac{(a_3,b_1)}{(b_1,b_1)}b_1 = a_3 = (2,1,2)^T - \frac{(\frac{-260}{41} + \frac{34}{41} + \frac{-256}{41})}{(\frac{16900}{1681} + \frac{1156}{1681} + \frac{16384}{1681})}(\frac{-130}{41}, \frac{34}{41}, \frac{-128}{41})^T - \frac{(-8-4+6)}{(16+16+9)}(-4, -4, 3)^T = (2, 1, 2)^T + \frac{41\cdot482}{34440}(\frac{-130}{41}, \frac{34}{41}, \frac{-128}{41})^T + \frac{6}{41}(-4, -4, 3)^T = (2, 1, 2)^T + (\frac{-62660}{34440}, \frac{16388}{34440}, \frac{-61696}{34440})^T + (\frac{-24}{41}, \frac{-24}{41}, \frac{18}{41})^T = (\frac{58}{41}, \frac{17}{41}, \frac{100}{41})^T + (\frac{-3133}{42\cdot41}, \frac{4097}{210\cdot41}, \frac{-7712}{105\cdot41})^T = (-\frac{697}{42\cdot41}, \frac{7667}{210\cdot41}, \frac{2788}{105\cdot41})^T.$$

Значит,
$$Q = \begin{pmatrix} b_1 & b_2 & b_3 \\ -4 & \frac{-130}{41} & -\frac{697}{42:41} \\ -4 & \frac{34}{41} & \frac{7667}{210\cdot41} \\ 3 & \frac{-128}{4105\cdot41} \end{pmatrix}$$
. Тогда $R = Q^{-1}A = \begin{pmatrix} 42 & -12 & -6 \\ 0 & \frac{840}{41} & \frac{-482}{41} \\ 0 & 0 & \frac{289}{210} \end{pmatrix}$.

Ответ: $A = \begin{bmatrix} -4 & -2 & 2 \\ -4 & 2 & 1 \\ 3 & -4 & 2 \end{bmatrix} = QR = \begin{pmatrix} -4 & \frac{-130}{41} & -\frac{697}{42:41} \\ -4 & \frac{34}{41} & \frac{7667}{210\cdot41} \\ 3 & \frac{-128}{41} & \frac{2788}{105\cdot41} \end{pmatrix} \cdot \begin{pmatrix} 42 & -12 & -6 \\ 0 & \frac{840}{41} & \frac{-482}{41} \\ 0 & 0 & \frac{289}{210} \end{pmatrix}$.

Задача №6

Подпространство задано системой:

$$\begin{cases} 9x_1 - 7x_2 + 2x_3 + 8x_4 = 0 \\ 3x_1 - 3x_2 + 9x_3 + x_4 = 0 \\ 4x_1 + 5x_2 - x_3 + 2x_4 = 0 \end{cases}$$

1. Найдём базисные векторы подпространства: $\begin{pmatrix} 9 & -7 & 2 & 8 \\ 3 & -3 & 9 & 1 \\ 4 & 5 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 9 & -7 & 2 & 8 \\ 0 & 2 & -25 & 5 \\ 0 & 0 & 597 & -131 \end{pmatrix}.$

$$\begin{cases} x_1 = -\frac{149}{199}k \\ x_2 = \frac{145}{597}k \\ x_3 = \frac{131}{597}k \\ x_4 = k \end{cases}$$

Тогда $(-447; 145; 131; 597)^T$ - базисный вектор.

- 2. Базисными векторами ортогонального дополнения будут являться строки матрицы СЛАУ: $(9; -7; 2; 8)^T$, $(3; -3; 9; 1)^T$ и $(4; 5; -1; 2)^T$
- 3. Разложим lpha на перпендикулярную и параллельную составляющие: $lpha=lpha_{||}+lpha_{\perp}=$

$$w_1 \begin{pmatrix} -447 \\ 145 \\ 131 \\ 597 \end{pmatrix} + v_1 \begin{pmatrix} 9 \\ -7 \\ 2 \\ 8 \end{pmatrix} + v_2 \begin{pmatrix} 3 \\ -3 \\ 9 \\ 1 \end{pmatrix} + v_3 \begin{pmatrix} 4 \\ 5 \\ -1 \\ 2 \end{pmatrix}.$$

$$\begin{pmatrix} -447 & 9 & 3 & 4 \\ 145 & -7 & -3 & 5 \\ 131 & 2 & 9 & -1 \\ 597 & 8 & 1 & 2 \end{pmatrix} \begin{pmatrix} w_1 \\ v_1 \\ v_2 \\ v_3 \end{pmatrix} = \alpha$$

$$\begin{pmatrix} -447 & 9 & 3 & 4 & | & 3 \\ 145 & -7 & -3 & 5 & | & -1 \\ 131 & 2 & 9 & -1 & | & -5 \\ 597 & 8 & 1 & 2 & | & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -447 & 9 & 3 & 4 & | & 3 \\ 0 & -1824 & -906 & 2815 & | & -12 \\ 0 & 0 & 13818 & 13369 & | & -7572 \\ 0 & 0 & 0 & 148601 & | & 21312 \end{pmatrix}, \text{ то есть } \begin{pmatrix} w_1 \\ v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} \frac{211}{148601} \\ \frac{84558}{148601} \\ \frac{102050}{102050} \end{pmatrix}.$$

$$\begin{pmatrix}
\frac{211}{148601} \\
84558 \\
148601 \\
-102050 \\
-148601 \\
21312 \\
148601
\end{pmatrix}$$

Тогда
$$\alpha_{\perp} = \frac{84558}{148601} \begin{pmatrix} 9 \\ -7 \\ 2 \\ 8 \end{pmatrix} - \frac{102050}{148601} \begin{pmatrix} 3 \\ -3 \\ 9 \\ 1 \end{pmatrix} + \frac{21312}{148601} \begin{pmatrix} 4 \\ 5 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{540120}{148601} \\ -\frac{179196}{148601} \\ -\frac{178646}{176861} \\ -\frac{1786801}{148601} \end{pmatrix}$$
, то есть $|\alpha_{\perp}| = \sqrt{1298471971576}$

4. Так как угол между вектором α и подпространством равен углу между этим вектором и его параллельной составляющей на подпространстве, $cos(\widehat{\alpha}, L) = \frac{(\alpha, \alpha_{||})}{|\alpha| \cdot |\alpha_{||}}$.

$$\alpha_{||} = \begin{pmatrix} \frac{-94317}{148601} \\ \frac{30595}{148601} \\ \frac{27641}{148601} \\ \frac{125967}{148691} \end{pmatrix}, \text{ To ectb } cos(\widehat{\alpha}, \widehat{L}) = \frac{\frac{178084}{148601}}{\frac{\sqrt{26463460484}}{148601} \cdot \sqrt{60}} = \frac{178084}{\sqrt{60}\sqrt{26463460484}}.$$

Ответ: расстояние от вектора до подпространства равно $\frac{26\sqrt{1920816526}}{147601}$; косинус угла между ними равен $\frac{178084}{\sqrt{60}\sqrt{26463460484}}$.

Задача №7

Поскольку $x_1 \in \{t_1v_1 + t_2v_2 + x_1\}$ и $x_2 \in \{t_1w_1 + t_2w_2 + x_2\}$, вектор $x_2 - x_1$ будет соединять точки двух данных многообразий, то есть длина его проекции, перпендикулярной обоим многообразиям, и будет расстоянием между многообразиями.

Рассмотрим все векторы a, перпендикулярные обоим многообразиям.

$$\begin{cases} (a, v_1) = 0 \\ (a, v_2) = 0 \\ (a, w_1) = 0 \\ (a, w_2) = 0 \end{cases}$$

$$\begin{pmatrix} -1 & -1 & 0 & 1 & 1 \\ 2 & -2 & 0 & -2 & 2 \\ 5 & 5 & 0 & 5 & 5 \\ 1 & -1 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} a_1 = 0 \\ a_2 = 0 \\ a_3 = k \\ a_4 = 0 \\ a_5 = 0 \end{cases}$$

Тогда, $a_0 = (0,0,1,0,0)^T$ и $(x_2-x_1)_\perp = \mu a_0$. При этом $((x_2-x_1),a_0) = ((x_2-x_1)_\perp + (x_2-x_1)_{||},a_0) = ((x_2-x_1)_\perp,a_0) + ((x_2-x_1)_{||},a_0)$, а так как $((x_2-x_1)_{||},a_0) = 0$ ($((x_2-x_1)_{||},a_0)$ параллельно многообразиям, а a_0 перпендикулярно им), то $((x_2-x_1),a_0) = ((x_2-x_1)_\perp,a_0) = (\mu a_0,a_0) = \mu(a_0,a_0)$, откуда $\mu = \frac{((x_2-x_1),a_0)}{(a_0,a_0)} = 39$, значит, $|(x_2-x_1)_\perp| = |\mu a_0| = 39$.

Ответ: расстояние между многообразиями равно 39.

Задача №8

Составим характеристический многочлен: $\chi_A(\lambda) = det(A - \lambda E) = det\begin{pmatrix} \frac{2}{3} - \lambda & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} - \lambda & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} - \lambda \end{pmatrix} = -\lambda^3 + 2\lambda^2 - 2\lambda + 1 = (1 - \lambda)(\lambda^2 - \lambda + 1) = (1 - \lambda)(\frac{1 + i\sqrt{3}}{2} - \lambda)(\frac{1 - i\sqrt{3}}{2} - \lambda) = (1 - \lambda)(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}) - \lambda)(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3}) - \lambda).$ Тогда, в каноническом виде матрица равна $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$, а угол поворота равен $\frac{\pi}{3}$.

Для нахождения оси поворота приведём матрицу $A-\lambda_1 E$ к ступенчатому виду: $\begin{pmatrix} \frac{2}{3}-\lambda_1 & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3}-\lambda_1 & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3}-\lambda_1 \end{pmatrix} =$

$$\begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{cases} x_1 = 3k \\ x_2 = k \\ x_3 = k \end{cases}$$

Значит, любые 2 ненулевых вектора отличаются друг от друга на коэффициент, то есть любой из них может задавать ось поворота: пусть $(3;1;1)^T$.

Ответ: канонический вид ортогонального оператора: $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$; угол поворота ра-

вен $\frac{\pi}{3}$; ось поворота равна $(3;1;1)^T$

Задача №9

Матрицу оператора можно привести ортогональными преобразованиями к диагональному виду, если равны алгебраическая и геометрическая кратность всех её собственных значений.

ду, если равны алгеораическая и геометри теская кратност A данной матрицы $A=\begin{pmatrix} 4 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{11}{3} & 0 \\ \frac{2}{3} & 0 & \frac{13}{3} \end{pmatrix}$ составим характеристический многочлен: $\chi_A(\lambda)=det(A-\lambda E)=det\begin{pmatrix} 4-\lambda & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{11}{3}-\lambda & 0 \\ \frac{2}{3} & 0 & \frac{13}{3}-\lambda \end{pmatrix}=-(\lambda-3)(\lambda-4)(\lambda-5).$

Таким образом, в данной матрице 3 собственных значения, алгебраическая кратность каждого из которых равна 1, а так как $0 < s_i \le m_i$ для любого собственного значения, то и геометрическая кратность каждого из данных собственных значений равна 1, то есть данная матрица приводима к диагональному виду.

Для этого необходимо привести матрицу $A - \lambda E$ для каждого из собственных значений к ступенчатому виду, составляя векторы $e_1, e_2, e_3(|e_1| = |e_2| = |e_3| = 1)$ для матрицы преобразования.

1.
$$\begin{pmatrix} 4 - \lambda_1 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{11}{3} - \lambda_1 & 0 \\ \frac{2}{3} & 0 & \frac{13}{3} - \lambda_1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & 0 \\ \frac{2}{3} & 0 & \frac{4}{3} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, (s_1 = 1).$$

$$\begin{cases} x_1 = (-2)k \\ x_2 = (-2)k \\ x_3 = k \\ 1 = x_1^2 + x_2^2 + x_3^2 \end{cases}$$

 $k = -\frac{1}{3}$, то есть $e_1 = \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right)^T$.

$$2. \begin{pmatrix} 4 - \lambda_2 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{11}{3} - \lambda_2 & 0 \\ \frac{2}{3} & 0 & \frac{13}{3} - \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}, (s_2 = 1).$$

$$\begin{cases} x_1 = (-\frac{1}{2})k \\ x_2 = k \\ x_3 = k \\ 1 = x_1^2 + x_2^2 + x_3^2 \end{cases}$$

 $k = \frac{2}{3}$, то есть $e_2 = \left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)^T$.

3.
$$\begin{pmatrix} 4 - \lambda_3 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{11}{3} - \lambda_3 & 0 \\ \frac{2}{3} & 0 & \frac{13}{3} - \lambda_3 \end{pmatrix} = \begin{pmatrix} -1 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{4}{3} & 0 \\ \frac{2}{3} & 0 & -\frac{2}{3} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}, (s_3 = 1).$$

$$\begin{cases} x_1 = k \\ x_2 = (-\frac{1}{2})k \\ x_3 = k \\ 1 = x_1^2 + x_2^2 + x_3^2 \end{cases}$$

 $k=\frac{2}{3}$, то есть $e_3=\left(\frac{2}{3},-\frac{1}{3},\frac{2}{3}\right)^T$.

Таким образом, матрица в диагональном виде равна $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$, а матрица преобразования

имеет вид $\begin{pmatrix} e_1 & e_2 & e_3 \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}.$

 $m{Omsem:}$ да, возможно; матрица преобразования: $egin{pmatrix} e_1 & e_2 & e_3 \\ rac{2}{3} & -rac{1}{3} & rac{2}{3} \\ rac{2}{3} & rac{2}{3} & -rac{1}{3} \end{pmatrix}$; диагональный вид:

$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Задача №10

Найдём сингулярное разложение матрицы $A = \begin{pmatrix} -1 & 3 & -3 \\ -3 & 1 & 3 \end{pmatrix} = V \cdot \Sigma \cdot U^T.$

Для этого составим характеристический многочлен: $\chi_{A^T\cdot A}(\lambda)=\det(A^T\cdot A-\lambda E)=\det\begin{pmatrix}10-\lambda&-6&-6\\-6&10-\lambda&-6\\-6&-6&18-\lambda\end{pmatrix}=$

$$-\lambda(16-\lambda)(22-\lambda), \text{ то есть } \Sigma = \begin{pmatrix} \sigma_2 & 0 & 0 \\ 0 & \sigma_3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & \sqrt{22} & 0 \end{pmatrix}.$$

Приведём матрицу $A^T \cdot A - \lambda E$ для каждого из собственных значений к ступенчатому виду, составляя векторы $e_1, e_2, e_3(|e_1| = |e_2| = |e_3| = 1)$ для матрицы U.

1.
$$\begin{pmatrix} 10 - \lambda_1 & -6 & -6 \\ -6 & 10 - \lambda_1 & -6 \\ -6 & -6 & 18 - \lambda_1 \end{pmatrix} = \begin{pmatrix} 10 & -6 & -6 \\ -6 & 10 & -6 \\ -6 & -6 & 18 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & -3 \\ 0 & 2 & -3 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{cases} x_1 = \frac{3}{2}k \\ x_2 = \frac{3}{2}k \\ x_3 = k \\ 1 = x_1^2 + x_2^2 + x_3^2 \end{cases}$$

$$k = \frac{2}{\sqrt{22}}$$
, то есть $e_1 = \left(\frac{3}{\sqrt{22}}, \frac{3}{\sqrt{22}}, \frac{2}{\sqrt{22}}\right)^T$.

$$\begin{cases} x_1 = -k \\ x_2 = k \\ x_3 = 0 \\ 1 = x_1^2 + x_2^2 + x_3^2 \end{cases}$$

$$k = -\frac{1}{\sqrt{2}}$$
, то есть $e_1 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)^T$.

3.
$$\begin{pmatrix} 10 - \lambda_3 & -6 & -6 \\ -6 & 10 - \lambda_3 & -6 \\ -6 & -6 & 18 - \lambda_3 \end{pmatrix} = \begin{pmatrix} -12 & -6 & -6 \\ -6 & -12 & -6 \\ -6 & -6 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
$$\begin{cases} x_1 = -\frac{1}{3}k \\ x_2 = -\frac{1}{3}k \\ x_3 = k \\ 1 = x_1^2 + x_2^2 + x_3^2 \end{cases}$$

$$k=-rac{3}{\sqrt{11}},$$
 то есть $e_1=ig(rac{1}{\sqrt{11}},rac{1}{\sqrt{11}},-rac{3}{\sqrt{11}}ig)^T.$

В такое случае,
$$U=\begin{pmatrix} e_2 & e_3 & e_1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{22}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{22}} \\ 0 & -\frac{3}{\sqrt{11}} & \frac{2}{\sqrt{22}} \end{pmatrix}$$
.

Матрица V будет состоять из ортогонализованных векторов $\frac{Ae_2}{\sigma_2} = \frac{1}{4} \cdot \begin{pmatrix} -1 & 3 & -3 \\ -3 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} =$

$$\begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix} \text{ и } \frac{Ae_3}{\sigma_3} = \frac{1}{\sqrt{22}} \cdot \begin{pmatrix} -1 & 3 & -3 \\ -3 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \\ -\frac{3}{\sqrt{11}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}. \text{ Так как } \begin{pmatrix} \frac{Ae_2}{\sigma_2}, \frac{Ae_3}{\sigma_3} \end{pmatrix} = -\frac{1}{2} + \frac{1}{2} = 0,$$

векторы уже ортогонализованы, то есть $V = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Проверим:
$$V \cdot \Sigma \cdot U^T = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 & 0 \\ 0 & \sqrt{22} & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{22}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{22}} \\ 0 & -\frac{3}{\sqrt{11}} & \frac{2}{\sqrt{22}} \end{pmatrix}^T = \begin{pmatrix} -2\sqrt{2} & \sqrt{11} & 0 \\ -2\sqrt{2} & -\sqrt{11} & 0 \end{pmatrix} \cdot \begin{pmatrix} -2\sqrt{2} & \sqrt{11} & 0 \\ -2\sqrt{2} & -\sqrt{11} & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{11}} & -\frac{3}{\sqrt{11}}\\ \frac{3}{\sqrt{22}} & \frac{3}{\sqrt{22}} & \frac{2}{\sqrt{22}} \end{pmatrix} = \begin{pmatrix} -1 & 3 & -3\\ -3 & 1 & 3 \end{pmatrix} = A.$$

Если в разложении оставить только первое сингулярное число, а остальные сингулярные числа

заменить нулями, то получится матрица $\begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{22}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{22}} \\ 0 & -\frac{3}{\sqrt{11}} & \frac{2}{\sqrt{22}} \end{pmatrix}^{I} =$

$$\begin{pmatrix} -2\sqrt{2} & 0 & 0 \\ -2\sqrt{2} & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{3}{\sqrt{11}} \\ \frac{3}{\sqrt{11}} & \frac{3}{\sqrt{11}} & \frac{2}{\sqrt{11}} \end{pmatrix} = \begin{pmatrix} -2 & 2 & 0 \\ -2 & 2 & 0 \end{pmatrix}.$$

если в разложении оставить только первое сингулярное число, а остальные сингулярные числа заменить нулями, то получится матрица $\begin{pmatrix} -2 & 2 & 0 \\ -2 & 2 & 0 \end{pmatrix}$.