1.5: 13 (b), and 1.6: 22

1.5 13 (b). Let V be a vector space over a field of characteristic not equal to two.

Let \vec{u} , \vec{v} , and \vec{w} be distinct vectors in V. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent if and only if $\{\vec{u}+\vec{v}, \vec{u}+\vec{w}, \vec{v}+\vec{w}\}$ is linearly independent.

Proof. Suppose $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent. Then by way of contradiction suppose that $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ is linearly dependent, so that there exist scalars $a, b, c \in \mathbb{F}$, not all zero, such that $a(\vec{u} + \vec{v}) + b(\vec{u} + \vec{w}) + c(\vec{v} + \vec{w}) = 0$. Then by some algebra $(a + b) \vec{u} + (a + c) \vec{v} + (b + c) \vec{w} = 0$. At least one of (a + b), (a + c), (b + c) is nonzero (since one of a, b, c is nonzero). This is in contradiction with the assumption that $\{\vec{u}, \vec{v}, \vec{w}\}$ was linearly independent. Hence $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ is linearly independent.

For the converse, use the contrapositive. Suppose $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent. Then there exist scalars $a, b, c \in \mathbb{F}$ not all zero such that $a\vec{u} + b\vec{v} + c\vec{w} = 2a\vec{u} + 2b\vec{v} + 2c\vec{w} = 0$. Notice that

$$2\vec{u} = (\vec{u} + \vec{v}) - (\vec{v} + \vec{w}) + (\vec{u} + \vec{w})$$

$$2\vec{v} = (\vec{u} + \vec{v}) + (\vec{v} + \vec{w}) - (\vec{u} + \vec{w})$$

$$2\vec{w} = -(\vec{u} + \vec{v}) + (\vec{v} + \vec{w}) + (\vec{u} + \vec{w})$$

so that we also have

$$2a\vec{u} + 2b\vec{v} + 2c\vec{w} = a\left((\vec{u} + \vec{v}) - (\vec{v} + \vec{w}) + (\vec{u} + \vec{w})\right) + b\left((\vec{u} + \vec{v}) + (\vec{v} + \vec{w}) - (\vec{u} + \vec{w})\right) + c\left(-(\vec{u} + \vec{v}) + (\vec{v} + \vec{w}) + (\vec{u} + \vec{w})\right)$$

$$= (a + b - c)\left(\vec{u} + \vec{v}\right) + (-a + b + c)\left(\vec{v} + \vec{w}\right) + (a - b + c)\left(\vec{u} + \vec{w}\right)$$

$$= 0$$

Revision: At least one of (a + b - c), (-a + b + c), (a - b + c) is not zero (since at least one of a, b, c is not zero). Suppose by way of contradiction that each quantity (a + b - c), (-a + b + c), (a - b + c) was equal to zero, which forms the following system of equations:

$$a + b - c = 0$$
 $a + 0b + 0c = 0$
 $-a + b + c = 0 \rightarrow 0a + b + 0c = 0$
 $a - b + c = 0$ $0a + 0b + c = 0$

This is a contradiction with the fact that at least one of a, b, c is not zero. Deduce then that $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ is linearly dependent.

Thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent if and only if $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ is linearly independent.

1.6 22. Let W_1 and W_2 be subspaces of a finite-dimensional vector space V. Determine necessary and sufficient conditions on W_1 and W_2 so that $\dim(W_1 \cap W_2) = \dim(W_1)$.

We have $\dim(W_1 \cap W_2) = \dim(W_1)$ if and only if W_1 is a subspace of W_2 .

Proof. Forwards direction. Suppose $\dim(W_1 \cap W_2) = \dim(W_1)$. Then assume by way of contradiction that W_1 is not a subspace of W_2 .

Then we can find some vector \vec{v} in W_1 that is not in W_2 . Let $\alpha = \{a_1, a_2, \dots, a_n\}$ be a basis for W_1 and $\beta = \{b_1, b_2, \dots, b_m\}$ be a basis for W_2 . Then we can also say that $\vec{v} \notin \text{span}(\beta)$.

Then let γ be a basis for $W_1 \cap W_2$. It is also true that $\vec{v} \notin \text{span}(\gamma)$, since $\vec{v} \notin \text{span}(\beta)$ - thus $\gamma \cup \{\vec{v}\}$ is linearly independent, furthermore, it is a linearly independent subset of W_1 .

We may deduce the following: $\dim(W_1) \ge |\gamma \cup \{\vec{v}\}|$, but $|\gamma \cup \{\vec{v}\}| = |\gamma| + 1 = \dim(W_1 \cap W_2) + 1$. So $\dim(W_1) \ge \dim(W_1 \cap W_2) + 1$ implies that $\dim(W_1) \ne \dim(W_1 \cap W_2)$, which is in contradiction to the assumption that $\dim(W_1 \cap W_2) = \dim(W_1)$. Thus we must have that W_1 is a subspace of W_2 .

To prove the converse we may do so directly. Suppose W_1 is a subspace (and therefore a subset) of W_2 . Then we may simplify $\dim(W_1 \cap W_2)$ into $\dim(W_1)$ because $W_1 \subseteq W_2$. Therefore we automatically have that $\dim(W_1 \cap W_2) = \dim(W_1)$.

Hence $\dim(W_1 \cap W_2) = \dim(W_1)$ if and only if W_1 is a subspace of W_2 .