Here are all the 1-parameter families of (super) semi-simple Lie algebras, in ascending order of interest.

Global conventions: there are three homogeneous parameters, α , β , and γ . For convenience, we set $\alpha + \beta + \gamma = 3$, except for points on the line at infinity ($\alpha + \beta + \gamma = 0$).

Triv. Equation: $\alpha = 6^{(\times 3)}$. Parameter: β . Symmetry: $\beta \mapsto -3 - \beta$. These usually correspond to 0-dimensional Lie groups.

β	(α, β, γ)	Other names
0	(6,0,-3)	\mathfrak{sl}_2 $[l=3]$, \mathfrak{osp}_n $[n=4]$, Subexcept $[n=8]$
2	(6, 2, -5)	Excpt $[\mu = 5]$
3	(6, 3, -6)	$\mathfrak{sl}_n \ [n=1], \ \mathfrak{osp}_n \ [n=0]$
$\frac{9}{2}$	$(6, \frac{9}{2}, -\frac{15}{2})$	Subexcpt $[n = -1]$
9	(6, 9, -12)	$\mathfrak{osp}_n [n=1]$, Subexcpt $[n=0]$
∞	(0,1,-1)	$D(2,1,\alpha) \ [\alpha = -1]$

 \mathfrak{sl}_2 . Equation: $\alpha = -3^{(\times 3)}$. Parameter: $l = \beta - 3$. Symmetry: $l \mapsto -l$.

l	(α, β, γ)	Other names
l	(-3, 3+l, 3-l)	
0	(-3, 3, 3)	\mathfrak{sl}_n $[n=2]$, Subexcpt $[n=-4]$
1	(-3, 4, 2)	Excpt $[\mu = 2]$
$\frac{3}{2}$	$(-3, \frac{9}{2}, \frac{3}{2})$	$\mathfrak{osp}_n [n=-2]$
3	$(-3, \bar{6}, \bar{0})$	\mathfrak{osp}_n $[n=4]$, Triv $[\beta=0]$
9	(-3, 12, -6)	$\mathfrak{osp}_n [n=3]$
12	(-3, 15, -9)	Subexcpt $[n=4]$
∞	(0, 1, -1)	$D(2,1,\alpha) \ [\alpha = -1]$

 \mathfrak{sl}_n . Equation: $\alpha=3^{(\times 3)}$. Parameter: $n=\frac{6}{\beta}$. Symmetry: $n\mapsto -n$.

n	(α, β, γ)	Other names
\overline{n}	$\left(3, \frac{6}{n}, \frac{-6}{n}\right)$	
		$D(2,1,\alpha) \ [\alpha = -1]$
1	(3, 6, -6)	Triv $[\beta = 3]$, \mathfrak{osp}_n $[n = 0]$
2	(3, 3, -3)	\mathfrak{sl}_2 $[l=0]$, Subexcpt $[n=-4]$
3	(3, 2, -2)	Excpt $[\mu = 2]$
4	$(3, \frac{3}{2}, \frac{-3}{2})$	$\mathfrak{osp}_n [n=6]$
6	(3, 1, -1)	
∞	(3, 0, 0)	$\mathfrak{osp}_n \ [n=\infty]$

 \mathfrak{osp}_n . Equation: $\beta - \gamma = 3^{(\times 6)}$. Parameter: $n = 2 - \frac{6}{\gamma}$. Another unusual parameter is a = n - 4 (so n = a + 4).

\overline{n}	$(lpha,eta,\gamma)$	Other names
\overline{n}	(12,3n-12,-6)/(n-2)	
-6	(-6, 15, 3)/4	Subexcpt $[n = 14]$
-4	(-2, 4, 1)	$\mathfrak{osp}_n [n=5]$
-2	(-6, 9, 3)/2	$\mathfrak{sl}_2 \ [l = \frac{3}{2}]$
-1	(-4, 5, 2)	Excpt $[\mu = 4]$
0	(-6, 6, 3)	Triv $[\beta = 3]$, \mathfrak{sl}_n $[n = 1]$
1	(-12, 9, 6)	Triv $[\beta = 9]$, Subexcpt $[n = 0]$
2	(2, 0, 1)	$D(2,1,\alpha) \ [\alpha=2]$
3	(12, -3, -6)	$\mathfrak{sl}_2 [l=9]$
4	(6, 0, -3)	\mathfrak{sl}_2 $[l=3]$, Triv $[\beta=0]$
5	(4, 1, -2)	$\mathfrak{osp}_n \ [n=-4]$
6	(6,3,-3)/2	$\mathfrak{sl}_n [n=4]$
7	(12, 9, -6)/5	Subexcpt $[n = -8]$
8	(2, 2, -1)	Excpt $[\mu = 1]$
10	(6,9,-3)/4	Subexcpt $[n = -10]$
12	(6, 12, -3)/5	Subexcpt $[n = 32]$
∞	(0, 3, 0)	$\mathfrak{sl}_n [n=\infty]$

Excpt. Equation: $\alpha=2^{(\times 3)}$. Parameter: $\mu=-\beta$. Symmetry: $\mu\mapsto -1-\mu$. Alternate parameters include Deligne and Gross' $\nu=1/\mu,\ \eta=(\mu+1)/\mu\ (\mu=1/(\eta-1)),$ and $a=2\eta-4=2(1-\mu)/\mu$. Note: μ is called λ by Deligne.

μ	η	(α, β, γ)	Other names
μ		$(2, -\mu, 1+\mu)$	
5		(2, -5, 6)	Triv $[\beta = 2]$
4		(2, -4, 5)	$\mathfrak{osp}_n [n=-1]$
3	$\frac{4}{3}$	(2, -3, 4)	\mathfrak{sl}_2 $[l=1]$
2	$\frac{3}{2}$	(2, -2, 3)	$\mathfrak{sl}_n [n=3]$
$\frac{3}{2}$ 1	4 3 3 2 5 3	$(2, -\frac{3}{2}, \frac{5}{2})$	G_2 , Subexcpt $[n=-7]$
$\bar{1}$	$\tilde{2}$	$(2, -1, \bar{2})$	$\mathfrak{osp}_n [n=8]$
$\frac{2}{3}$	$\frac{5}{2}$	$(2,-\frac{2}{3},\frac{5}{3})$	F_4
$\frac{1}{2}$	$\bar{3}$	$(2,-\frac{1}{2},\frac{3}{2})$	E_6
$\frac{2}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{5}$	4	$(2,-\frac{1}{3},\frac{4}{3})$	E_7 , Subexcpt $[n = 56]$
$\frac{\check{1}}{5}$	6	$(2, -\frac{1}{5}, \frac{6}{5})$	E_8
Ŏ	∞	(2, 0, 1)	Subexcpt $[n = -16]$
∞		(0, -1, 1)	$D(2,1,\alpha) [\alpha = -1]$

Subexcpt. Equation: $\alpha - \beta - 2\gamma = 0^{(\times 6)}$. Parameter: n. Another parameter is a = (n-8)/6 (so n = 6a + 8).

\overline{n}	a	(α, β, γ)	t	Other names
\overline{n}		(n-8, n+16, -12)	2n - 4	
-16	-4	(2, 0, 1)	3	Excpt $[\mu = 0]$
		(3, -1, 2)	4	$\mathfrak{osp}_n \ [n=10]$
-8	$-\frac{8}{3}$	(4, -2, 3) (5, -3, 4)	5	$\mathfrak{osp}_n [n=7]$
-7	$-\frac{5}{2}$	(5, -3, 4)	6	G_2 , Excpt $\left[\mu = \frac{3}{2}\right]$
-4	-2	(1, -1, 1)	1	$\mathfrak{sl}_n [n=2], \mathfrak{sl}_2 [l=0]$
-1	$-\frac{3}{2} \\ -\frac{4}{3}$	(3, -5, 4)	2	Triv $[\beta = 9/2]$
0	$-\frac{4}{3}$	(2, -4, 3)	1	Triv $[\beta = 9]$, \mathfrak{osp}_n $[n = 1]$
2	-1	(-1, 3, -2)	0	$D(2,1,\alpha) [\alpha=?]$
4	$-\frac{2}{3}$	(-1, 5, -3)	1	\mathfrak{sl}_2 $[l=12]$
	0	(0, 2, -1)	1	$\mathfrak{sl}_2^{\oplus 3}$, \mathfrak{sl}_2 $[l=3]$, Triv $[\beta=0]$, \mathfrak{osp}_n $[n=4]$
14	1	(1, 5, -2)	4	$\mathfrak{osp}_n \ [n=-6]$
20	2	(1, 3, -1)	3	$\mathfrak{sl}_n [n=6]$
32	4	(2, 4, -1)	5	$\mathfrak{osp}_n \ [n=12]$
56	8	(4, 6, -1)	9	E_7 , Excpt $\left[\mu = \frac{1}{3}\right]$

<u>F34.</u> Equation: $2\alpha - \beta - 2\gamma = 0^{(\times 6)}$. Parameter: n.

\overline{a}	n	(α, β, γ)	t	Other names
\overline{a}		(a, 2a+4, -2)	3a + 2	
$-\frac{5}{3}$		(5, -2, 6)	9	F_4 , Excpt $\left[\mu = \frac{2}{3}\right]$
$ \begin{array}{r} -5 \overline{3} & 8 \overline{5} & 3 \overline{2} \\ -5 \overline{3} & 8 \overline{5} & 3 \overline{2} & 2 \overline{4} \\ -6 \overline{5} & 7 & -7 \\ -7 & -7 & -7 \\ -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -7 & -7 &$	-16	(4, -2, 5)	7	$\mathfrak{osp}_n [n=9]$
$-\frac{3}{2}$		(3, -2, 4)	5	$\mathfrak{osp}_n \ [n=7]$
$-\frac{4}{3}$		(2, -2, 3)	3	$\mathfrak{sl}_n [n=3], \text{ Excpt } [\mu=2]$
$-\frac{6}{5}$		(3, -4, 5)	4	$\mathfrak{sl}_2 \ [l = \frac{3}{4}]$
		(1, -2, 2)	1	Triv $[\beta=3]$, \mathfrak{osp}_n $[n=0]$, \mathfrak{sl}_n $[n=1]$
$-\frac{4}{5}$		(2, -6, 5)	1	Triv $[\beta = 15]$
$-\frac{4}{5}$ $-\frac{2}{3}$ $-\frac{1}{2}$		(1, -4, 3)	0	$D(2,1,\alpha) [\alpha=?]$
$-\frac{1}{2}$		(-1, 6, -4)		\mathfrak{sl}_2 $[l=15]$
0	16	(0, 2, -1)	1	$\mathfrak{sl}_2^{\oplus 4}$, \mathfrak{sl}_2 $[l=3]$, Triv $[\beta=0]$, \mathfrak{osp}_n $[n=4]$
1	42	(1, 6, -2)	5	$\mathfrak{osp}_n [n = -8]$
2	70	(1, 4, -1)	4	$\mathfrak{sl}_n [n=8]$
4	128	(2, 6, -1)	7	$\mathfrak{osp}_n \ [n=16]$
∞		(1, 2, 0)	3	Excpt $[\mu = 0]$