A Rose by Any Other Name: LLM-Generated Explanations Are Good Proxies for Human Explanations to Collect Label Distributions on NLI

Beiduo Chen 🖴 🖶 Siyao Peng 🕰 🖶 Anna Korhonen 🖺 Barbara Plank 🕰 🖶

AmaiNLP, Center for Information and Language Processing, LMU Munich, Germany Munich Center for Machine Learning (MCML), Munich, Germany Language Technology Lab, University of Cambridge, United Kingdom

Introduction

A Few Human Judgment Human Labels Distribution (HJD) I chose E E N Model Judgment Distribution (MJD) E N C E N C

Generating Model Explanations for NLI

Can Model Explanations Help LLMs Approximate HJD as Humans Do?

Distributions	Dist. Comparison	BERT Fine-Tuning Comparison (dev/test)			RoBERTa Fine-Tuning Comparison (dev/test)			
Distributions	KL↓ JSD↓TVD↓	KL↓	CE Loss ↓	Weighted F1↑	KL ↓	CE Loss↓	Weighted F1↑	D.Corr ↑
ChaosNLI HJD	0.000 0.000 0.000	0.073 / 0.077	0.967 / 0.974	0.645 / 0.609	0.062 / 0.060	0.933 / 0.922	0.696 / 0.653	1.000
VariErr dist.	3.604 0.282 0.296	0.177 / 0.179	1.279 / 1.279	0.552 / 0.522	0.166 / 0.173	1.246 / 1.261	0.616 / 0.594	0.688
MNLI dist.	1.242 0.281 0.295	0.104 / 0.100	1.062 / 1.042	0.569 / 0.555	0.101 / 0.093	1.052 / 1.020	0.625 / 0.607	0.795
Llama3 MJD	0.259 0.262 0.284	0.099 / 0.101	1.045 / 1.044	0.516 / 0.487	0.094 / 0.096	1.030 / 1.031	0.545 / 0.522	0.689
+ human-ex	0.238 0.250 0.269	0.098 / 0.099	1.043 / 1.039	0.575 / 0.556	0.091 / 0.092	1.021 / 1.019	0.641 / 0.616	0.771
+ LF model-ex	0.295 0.278 0.310	0.106 / 0.107	' 1.066 / 1.06 <mark>3</mark>	0.539 / 0.533	0.103 / 0.105	1.059 / 1.058	0.581 / 0.571	0.744
+ VariErr LG model-ex	0.234 0.247 0.266	0.097 / 0.098	3 1.041 / 1.037	0.558 / 0.544	0.089 / 0.091	1.016 / 1.014	0.633 / 0.626	0.760
+ MNLI LG model-ex	0.242 0.251 0.275	0.096 / 0.097	7 1.037 / 1.034	0.589 / 0.580	0.090 / 0.092	1.019 / 1.018	0.657 / 0.645	0.849
GPT-40 MJD	0.265 0.263 0.289	0.103 / 0.096	1.059 / 1.029	0.526 / 0.517	0.093 / 0.092	1.027 / 1.018	0.525 / 0.521	0.703
+ human-ex	0.187 0.207 0.223	0.093 / 0.098	3 1.027 / 1.036	0.570 / 0.552	0.079 / 0.080	0.986 / 0.987	0.617 / 0.617	0.769
+ LF model-ex	0.252 0.242 0.275	0.101 / 0.102	2 1.052 / 1.047	0.537 / 0.545	0.157 / 0.167	1.220 / 1.244	0.587 / 0.561	0.752
+ VariErr LG model-ex	0.192 0.209 0.226	0.092 / 0.093	3 1.026 / 1.022	0.554 / 0.551	0.088 / 0.089	1.013 / 1.008	0.618 / 0.598	0.761
1000 1000 HJD	10 90 · L	lama3	human-ex	19 90	• LF	VariErr LG	10 90	• MNLI LG

Can Model-EX Enhance on OOD?

Trained Classifiers	BER	TANLI	Test	RoBERTa ANLI Test			
	R1 ↑	R2 ↑	R3 ↑	R1 ↑	R2 ↑	R3 ↑	
Zero-shot-LM	0.170	0.176	0.197	0.167	0.167	0.168	
MNLI-FT-LM	0.220	0.269	0.293	0.292	0.262	0.257	
ChaosNLI HJD	0.268	0.289	0.332	0.357	0.331	0.338	
VariErr dist	0.302	0.259	0.319	0.402	0.311	0.321	
MNLI dist	0.229	0.260	0.279	0.317	0.275	0.281	
Llama3 MJD	0.246	0.276	0.306	0.304	0.297	0.304	
+ human-ex	0.296	0.289	0.349	0.400	0.330	0.344	
+ LF model-ex	0.292	0.295	0.328	0.314	0.262	0.323	
+ VariErr LG model-ex	0.305	0.285	0.349	0.411	0.324	0.319	
+ MNLI LG model-ex	0.284	0.283	0.321	0.339	0.287	0.307	
GPT-40 MJD	0.258	0.263	0.295	0.309	0.282	0.302	
+ human-ex	0.351	0.294	0.332	0.393	0.324	0.325	
+ LF model-ex	0.285	0.283	0.315	0.350	0.282	0.310	
+ VariErr LG model-ex	0.341	0.293	0.330	0.393	0.324	0.323	

- Model explanations are comparable to humans in approximating HJD on NLI, and can be scaled up from a few annotations of datasets without explanations.
- Modeling HLV information can improve NLI classifiers' performance, and MJDs generated by our method are robust on OOD datasets w/o labels or explanations.

Human versus Model: Are They Different and Does It Matter?

Can Human Preference Lead to Better Selection?

Distributions		Dist. Comparison			RoBERTa Fine	Global		
	Distributions	KL↓	JSD↓	TVD ↓	KL↓	CE Loss↓	Weighted F1↑	D.Corr ↑
	Llama3 MJD	0.258	0.261	0.286	0.092 / 0.095	1.025 / 1.026	0.531 / 0.512	0.684
	+ human ex	0.240	0.249	0.275	0.089 / 0.091	1.014 / 1.015	0.618 / 0.597	0.750
	+ replace preferred mode	el ex			•		,	
	greedy 75.75%	0.241	0.248	0.274	0.088 / 0.090	1.013 / 1.013	0.619 / 0.594	0.733
	representative 55.25%	0.240	0.248	0.274	0.088 / 0.091	1.013 / 1.014	0.619 / 0.597	0.739
	+ replace unpreferred mo	odel ex			•		,	
	greedy 68.5%	0.239	0.247	0.273	0.087 / 0.090	1.011 / 1.012	0.623 / 0.599	0.752
	representative 63.25%	0.237	0.246	0.271	0.088 / 0.090	1.011 / 1.012	0.621 / 0.607	0.761

Datasets		Lexical		Syntactic			Semantic		AVG
Datasets	$n = 1 \downarrow$	n = 2 \	n = 3↓	n = 1↓	n = 2↓	n = 3↓	Cos.↓	Euc.↓	AVG ↓
human-ex	0.335	0.098	0.042	0.767	0.341	0.140	0.528	0.520	0.428
replaced preferred model ex									
greedy	0.416	0.157	0.082	0.874	0.488	0.233	0.540	0.532	0.474
represent.	0.392	0.149	0.089	0.835	0.426	0.205	0.542	0.541	0.466
replaced unpreferred model ex									
greedy	0.387	0.130	0.069	0.841	0.432	0.196	0.527	0.528	0.457
represent.	0.378	0.130	0.073	0.837	0.426	0.195	0.534	0.532	0.455

- Model and human explanations result in similar performance, while noise replacement clearly hurts, indicating that the relevant contents of explanations are crucial
- The potential of variability as a metric for measuring the model explanations.

Conclusion

• Experiments show that MJDs from LLMs and model explanations result in comparable scores with MJDs from LLM and human explanations — A rose by any other name would smell as sweet. (A quote from Romeo and Juliet used to metaphorically argue the intrinsic qualities or nature of something remain the same, regardless of its name or origin.)

Resource

Paper

