# Optimization of the Western Canada Power Grid: Incorporation of Renewable Energy

#### Jun Duan

Supervised by: Dr. G.C. Van Kooten

University of Victoria

April 14, 2017



1 / 4

### Outline

Introduction

■ Observed values are discrete but underlying structures are continuous functions.

- Observed values are discrete but underlying structures are continuous functions.
- Observed values may be noisy but underlying functions are smooth.

- Observed values are discrete but underlying structures are continuous functions.
- Observed values may be noisy but underlying functions are smooth.
- **Problem:** To forecast the **whole function** for future time periods.

#### Some notation

Let  $y_t(x_i)$  be the observed data in period t at location  $x_i$ ,  $i=1,\ldots,p$ ,  $t=1,\ldots,n$ .

#### Some notation

Let  $y_t(x_i)$  be the observed data in period t at location  $x_i$ , i = 1, ..., p, t = 1, ..., n.

$$y_t(x_i) = f_t(x_i) + \sigma_t(x_i)\varepsilon_{t,i}$$

where  $\varepsilon_{t,i}$  is iid N(0,1) and  $\sigma_t(x_i)$  allows the amount of noise to vary with x.

#### Some notation

Let  $y_t(x_i)$  be the observed data in period t at location  $x_i$ , i = 1, ..., p, t = 1, ..., n.

$$y_t(x_i) = f_t(x_i) + \sigma_t(x_i)\varepsilon_{t,i}$$

where  $\varepsilon_{t,i}$  is iid N(0,1) and  $\sigma_t(x_i)$  allows the amount of noise to vary with x.

■ We assume  $f_t(x)$  is a smooth function of x.

4 / 4

#### Some notation

Let  $y_t(x_i)$  be the observed data in period t at location  $x_i$ ,  $i = 1, \ldots, p$ ,  $t = 1, \ldots, n$ .

$$y_t(x_i) = f_t(x_i) + \sigma_t(x_i)\varepsilon_{t,i}$$

where  $\varepsilon_{t,i}$  is iid N(0,1) and  $\sigma_t(x_i)$  allows the amount of noise to vary with x.

- We assume  $f_t(x)$  is a smooth function of x.
- We need to estimate  $f_t(x)$  from the data for  $x_1 < x < x_n$ .

April 14, 2017