

Course code	Course Name	L-T-P - Credits	Year of Introduction
CS407	DISTRIBUTED COMPUTING	3-0-0-3	2016

Course Objectives:

- To introduce fundamental principles of distributed systems, technical challenges and key design issues.
- To impart knowledge of the distributed computing models, algorithms and the design of distributed system.

Syllabus:

Introduction to distributed computing, Design issues, Distributed Computing Models, System models, Inter-process communication, Distributed file system, Name Service, Distributed mutual exclusion, Distributed system design.

Expected Outcome

The Students will be able to:

- i. distinguish distributed computing paradigm from other computing paradigms
- ii. identify the core concepts of distributed systems
- iii. illustrate the mechanisms of inter process communication in distributed system
- iv. apply appropriate distributed system principles in ensuring transparency, consistency and fault-tolerance in distributed file system
- v. compare the concurrency control mechanisms in distributed transactional environment
- vi. outline the need for mutual exclusion and election algorithms in distributed systems

Text Books:

- 1. George Coulouris, Jean Dollimore and Tim Kindberg, Distributed Systems: Concepts and Design, Fifth Edition, Pearson Education, 2011
- 2. Pradeep K Sinha, Distributed Operating Systems : Concepts and Design, Prentice Hall of India

References:

- 1. A S Tanenbaum and M V Steen , Distributed Systems: Principles and paradigms, Pearson Education, 2007
- 2. M Solomon and J Krammer, Distributed Systems and Computer Networks, PHI

Course Plan

Module	Contents	Hours	End Sem. Exam Marks
I	Evolution of Distributed Computing -Issues in designing a distributed system- Challenges- Minicomputer model - Workstation model - Workstation-Server model- Processor - pool model - Trends in distributed systems	7	15%
II	System models: Physical models - Architectural models - Fundamental models	6	15%

FIRST INTERNAL EXAM					
III	Interprocess communication: characteristics – group communication - Multicast Communication -Remote Procedure call - Network virtualization. Case study: Skype	7	15%		
IV	Distributed file system: File service architecture - Network file system- Andrew file system- Name Service	7	15%		
	SECOND INTERNAL EXAM				
V	Transactional concurrency control:- Transactions, Nested transactions-Locks-Optimistic concurrency control	7	20%		
VI	Distributed mutual exclusion – central server algorithm – ring based algorithm- Maekawa's voting algorithm – Election: Ring -based election algorithm – Bully algorithm	7	20%		
END SEMESTER EXAM					

Question Paper Pattern

1. There will be *FOUR* parts in the question paper - A, B, C, D

2. Part A

- a. Total marks: 40
- b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules IV; FOUR questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. *THREE* questions, each having **9** marks. One question is from module **I**; one question is from module **II**; one question *uniformly* covers modules **I** & **II**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have maximum THREE subparts.

4. Part C

- a. Total marks: 18
- b. THREE questions, each having 9 marks. One question is from module III; one question is from module IV; one question uniformly covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.

5. Part D

- a. Total marks: 24
- b. *THREE* questions, each having **12 marks**. One question is from **module V**; one question is from **module VI**; one question *uniformly* covers **modules V** & **VI**.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.