Teoria de Matemáticas de Bachillerato

Pedro Ángel Fraile Manzano

8 de noviembre de 2022

Contenidos Generales

A]	partados del libro		Pág	ina
Ι	Prefacios, Repaso y otras consideraciones			5
1.	Operaciones sobre los números reales			7
	Introducción			8
	1.1. Estructura de los números reales			8
	1.2. Potencias y Logaritmos			9
	1.3. Resolución de ecuaciones exponenciales			11
	1.4. Resolución de ecuaciones logarítmicas			12
2.	Polinomios sobre el cuerpo de los reales y ecuacion	.es		13
	2.1. Conceptos básicos			14
	2.2. Operaciones con polinomios			14
	2.3. Divisibilidad de polinomios			14
3.	Ecuaciones polinómicas			15
	3.1. Ecuaciones lineales			16
	3.2. Ecuaciones de 2^{0} grado			16
	3.3. Ecuaciones de grado mayor que 2			16
4.	Inecuaciones			17
	4.1. Inecuaciones lineales			18
	4.2. Inecuaciones no lineales			

Parte I

Prefacios, Repaso y otras consideraciones

Operaciones sobre los números reales

,			
T1:	_1 _ 1	capítul	I _
indice	aei	canifil	m
HIGICO	acı	capita	. •

Introducción	8			
1.1. Estructura de los números reales	8			
1.2. Potencias y Logaritmos	9			
1.3. Resolución de ecuaciones exponenciales	11			
1.4. Resolución de ecuaciones logarítmicas	12			

Introducción

Los distintos conjuntos de números surgen de la necesidad de resolver distintas ecuaciones, es decir, a medida que necesitamos resolver ecuaciones más complejas, más se amplían el campo de números con los que podemos actuar:

1.1. Estructura de los números reales

Los números reales tiene estructura de cuerpo y te preguntarás ¿ Qué es un cuerpo?

Definición 1.1.1. Un cuerpo es una terna $(\mathbb{K}, +, \cdot)$ donde:

- 1. K es un conjunto de elementos
- 2. + es una operación sobre los elementos de \mathbb{K} que cumple:
 - Es una operación **conmutativa**, es decir, sean $a, b \in \mathbb{K}$ entonces tendremos que a + b = b + a
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que a + (b + c) = (a + b) + c
 - Existe un elemento neutro, es decir $\exists e/e+a=a+e=a \ \forall a \in \mathbb{K}$.
 - Cada elemento $a \in \mathbb{K}$ existe un elemento **inverso** que se denota por a^{-1} de tal manera que $a + a^{-1} = a^{-1} + a = e$ (Esto también se da cuando no se cumple la conmutativa)
- 3. · es una operación que cumple lo siguiente
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Existe un **elemento neutro** para esta operación $\exists e/e \cdot a = a \cdot e = a$ $\forall a \in \mathbb{K}$.
 - Para todo elemento $a \in \mathbb{K}$ entonces $\exists a^{-1}/a \cdot a^{-1} = a^{-1} \cdot a = e$ (Esto es lo que distingue un cuerpo a un anillo)
 - · es distributivo respecto de + es decir, $a \cdot (b+c) = a \cdot b + a \cdot b$

9

Aclaración 1: Aunque se denoten como $+, \cdot$ no tenemos por qué usar las definiciones habituales de la suma y la multiplicación. Por ejemplo, la suma y producto de números reales no son iguales que las mismas operaciones para las matrices (quedaros con ese nombre.)

Aclaración 2: De esta manera que tenemos que lo que llamamos en los números reales la resta es la suma por el inverso y la división es el producto por el inverso.

Ejercicio Propuesto. Demostrar que \mathbb{R} y \mathbb{C} son cuerpos

1.2. Potencias y Logaritmos

Definición 1.2.1. Podemos definir las potencias como $a^n = \overbrace{a \cdot \ldots \cdot a}^n$. Una vez entendido esto tenemos las siguientes propiedades

Propiedades

1.
$$a^1 = a y a^0 = 1$$
 para cualquier $a \in \mathbb{R}$

2.
$$a^{-1} = \frac{1}{a}$$

3.
$$a^n \cdot a^m = a^{n+m}$$

$$4. \ \frac{a^n}{a^m} = a^{n-m}$$

$$5. (a^n)^m = a^{n \cdot m}$$

6.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

7.
$$(a \cdot b)^n = a^n \cdot b^n$$

8.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Demostración

- 1. Para la primera demostración no hace falta más que decir que estamos "poniendo" sólo una a y que $a^0=1$ es básicamente proveniente del álgebra $\mathbb Z$ modular.
- 2. En este caso, tenemos que al utilizar la propiedad 3 quedará más clara pero si nosotros tenemos $a^1\cdot a^{-1}=a^0=1\Rightarrow a^{-1}=\frac{1}{a}$

- 3. Ahora tenemos que $a^n \cdot a^m = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a^{n+m}}_{n \text{ veces}} = \underbrace{a^{m+n}}_{n \text{ veces}}$
- 4. Si combinamos la propiedad 2 y 3 queda probado $\frac{a^n}{a^m}=a^n\cdot\frac{1}{a^m}=a^n\cdot a^{-m}=a^{n-m}$
- 5. Este se debe a que estamos multiplicando paquetitos del producto de n a's, es decir, $(a^n)^m = \overbrace{a^n \cdot \ldots \cdot a^n}^{\text{m veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} \cdot \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a^{mn}}_{\text{n veces}}$
- 6. Haciendo un razonamiento análogo pero con el producto lo tenemos
- 7. Tenemos lo siguiente $(a \cdot b)^n = \overbrace{a \cdot b \cdot \ldots \cdot a \cdot b}^{\text{n veces}} = \overbrace{a \cdot \ldots \cdot a}^{\text{n veces}} \cdot \overbrace{b \cdot \ldots \cdot b}^{\text{n veces}} = a^n \cdot b^n$
- 8. Utilizando un razonamiento similar al anterior lo tenemos cambiando únicamente b por b^{-1}

Definición 1.2.2. Definimos el logaritmo de $b \in \mathbb{R}^+$ en base a > 0 de la siguiente manera

$$loq_a b = x \Leftrightarrow a^x = b \tag{1.1}$$

Esta definición nos permite "traducir" de logaritmos a potencias y es lo que se utiliza para demostrar las siguientes propiedades

Propiedades: Sean $P, Q, a \in \mathbb{R}^+$

- 1. $log_a 1 = 0$
- $2. \log_a a = 1$
- 3. $log_a(P \cdot Q) = log_aP + log_aQ$
- $4. \log_a \left(\frac{P}{Q}\right) = \log_a P \log_a Q$
- $5. \log_a P^n = n \cdot \log_a P$

Ejercicio Propuesto. Se propone al lector la demostración de estas propiedades utilizando la definición de logaritmos y las propiedades de las potencias.

1.3. Resolución de ecuaciones exponenciales

Definición 1.3.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita en el exponente

Resolución de ecuaciones logarítmicas 1.4.

Definición 1.4.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita dentro de un logaritmo.

Polinomios sobre el cuerpo de los reales y ecuaciones

Índice del capítulo			
2.1.	Conceptos básicos	14	
2.2.	Operaciones con polinomios	14	
2.3.	Divisibilidad de polinomios	14	

- 2.1. Conceptos básicos
- 2.2. Operaciones con polinomios
- 2.3. Divisibilidad de polinomios

14CAPÍTULO 2. POLINOMIOS SOBRE EL CUERPO DE LOS REALES Y ECUACIONES

Ecuaciones polinómicas

Índice del capítulo			
3.1.	Ecuaciones lineales	16	
3.2.	Ecuaciones de $2^{\underline{0}}$ grado	16	
3.3.	Ecuaciones de grado mayor que 2	16	

- 3.1. Ecuaciones lineales
- 3.2. Ecuaciones de 2^{0} grado
- 3.3. Ecuaciones de grado mayor que 2

Inecuaciones

Índice del capítulo				
4.1.	Inecuaciones lineales	18		
4.2.	Inecuaciones no lineales	18		

4.1. Inecuaciones lineales

4.2. Inecuaciones no lineales