Note Title 11-06-201
Λ +
Arvangements
To bice
Dualita
- Lifting handerms, minimigation diagrams - Levels of avangements - Inside ordside circle queies
- Levels of avargaments
- Tu and a circle ansied
Inside - Ordside - Ordside
_
- Zone theorem
Tipolari Carrier 1 Line
Titorials: Sum of squares of faces
- Largest/Smallest &
2951 75 Westes (C
- Collinearity
J 30.1 4.5.1

D: {t, t, ... tn } supports half-plane queixes How many / which enes te below a query line l How many distinct answers are How many partition can be induced by O(n2) possible

properties of dual transferm

Vertical distance between
$$\beta$$
 and β is preserved between β and β (β) and β

 \Rightarrow If p is incident on l—then D(l) is incident on P(p) (vertical distance = 0)

2. Abrue/Below If plies above l, - then D(l) lies above Ip)

Emploses

Dual transom in d dimensions

$$D\left(\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots \alpha_{d}\right) : \chi_{d} = 2\alpha_{1}\chi_{1} + 2\alpha_{2}\chi_{2} + \cdots$$

$$-\alpha_{d}$$

L: 31,12,...ln} A(L): arrangement of We can plug in the Euler's formula to What is - the structure get an exact bound on Haces In a simple averagement 3 lines one concurrent # Intersections: $\binom{n}{2} \sim \frac{n^2}{2}$ V: Intersection points E: part of the line joining I magne a point at a (embed on sphere) two consecutive interestan points such that all seminfinite edges converge I we will deal with the Seni infrite edges) in Q => All faces are bounded Faces · faces (bounded) + unbounded defined by a cycle

Theorem: Zone (l, A(L)) = O(n)Use of Zone theorem: How to construct the average month $O(n^2 \log n)$ is easy!

Zone can be constructed in commentably by adding the lines in any sequence and maintain the data structure $= O(i) = O(n^2)$

 $(\leq \bar{\iota} \leq n$

Size of level k of arrangement $A^{k}(L)$ $= O(n^{2})$ bounded by the total size of A(L) $= O(n^{2})$ bounded by the total size of A(L)A single level is not easy except O(n) bound for A°(L) and J. he size of k^n level can be bounded by $O(n k^{1/3})$ [Dey 98] $\left[A^{\leq k}(L)\right] \leq O(nk) \quad \text{using Probabilistic Method} \qquad * n \cdot \min\{k, n-k\}$ The above bounds also hold good for Von (P)

Nearest and Furthert neighbor Vormoi diagram bas O(n) size

Since intersection of n half-planes in R3 has O(n) size

The size of Vovonoi diagram in Rd to Convex hulls in Rd+1

Then $Z_{i}^{2} - Z_{k}^{2} = a_{i}^{2} + b_{i}^{2} - a_{k}^{2} - b_{k}^{2} + 2xa_{k} - 2xa_{i} + 2yb_{k} - 2yb_{i} \le 0$ $a_{i}b_{i} = a_{i}b_{k}$

Zone - Veoren Input L = (l, l2, ...ln) For a given set of n lines, the zone (l, A(L)) in the set of all edges contained in the faces that l in tersets not wzon Zone (1,A(L))

last dans last chain

LC n

Claus: No line contributes to more than I ldge in the left chains

3 Sum of left chains is n Includy top edge it is 2n

Proport chauns also bounded by 2n

=) Total Size 1 70m < (4n)x2= 8n = O(n)

 $\leq |f_i| = O(n)$ fi $\in Z_{me}$

