Apêndice A – Regras de Inferência e Equivalência (Proposicional)

Regras de Inferência

Adição (AD)	$p \vDash p \lor q$
Simplificação (SIMP)	$p \land q \vDash p$
Conjunção (CONJ)	$p, q \vDash p \land q$
Absorção (ABS)	$p \to q \vDash p \to (p \land q)$
Modus Ponens (MP)	$p \rightarrow q, p \models q$
Modus Tollens (MT)	$p \to q, \neg q \vDash \neg p$
Silogismo Disjuntivo (SD)	$p \lor q, \neg p \vDash q$
Silogismo Hipotético (SH)	$p \rightarrow q, q \rightarrow r \models p \rightarrow r$
Dilema Construtivo (DC)	$p \rightarrow q, r \rightarrow s, p \lor r \vDash q \lor s$
Dilema Destrutivo (DD)	$p \rightarrow q, r \rightarrow s, \neg q \lor \neg s \vDash \neg p \lor \neg r$

Regras de Equivalência

Regras de Equivalencia				
Idempotência (ID)	$p \Leftrightarrow p \land p \in p \Leftrightarrow p \lor p$			
Comutação (COM)	$p \land q \Leftrightarrow q \land p e p \lor q \Leftrightarrow q \lor p$			
Associação (ASSOC)	$(p \land q) \land r \Leftrightarrow p \land (q \land r) \mathbf{e} (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$			
Distribuição (DIST)	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) e p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$			
Dupla negação (DN)	$\neg \neg p \Leftrightarrow p$			
De Morgan (DM)	$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q e \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$			
Condicional (COND)	$p \to q \Leftrightarrow \neg p \lor q$			
Bicondicional (BICOND)	$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$			
Contraposição (CP)	$p o q \Leftrightarrow \neg q o \neg p$			
Exportação-Importação (EI)	$p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$			

Apêndice B – Regras de Inferência e Equivalência (Predicados)

Regras de Inferência (Quantificadores)

De	Podemos Deduzir	Nome/Abreviação	Restrições de Uso
$(\forall x)P(x)$	P(t) onde t é uma variável ou símbolo constante	Particularização Universal – PU	Se <i>t</i> for uma variável, não deve estar dentro do escopo de um quantificador para <i>t</i>
$(\exists x)P(x)$	P(a) onde a é um símbolo constante não utilizado anteriormente na sequência de demonstração	Particularização Existencial – PE	É necessário que seja a primeira regra a usar <i>a</i>
P(x)	$(\forall x)P(x)$	Generalização Universal – GU	P(x) não pode ter sido deduzida de nenhuma hipótese na qual x é uma variável livre nem pode ter sido deduzida, através de PE, de uma fórmula na qual x é uma variável livre
P(x) ou $P(a)$, onde a é um símbolo constante	$(\exists x)P(x)$	Generalização Existencial – GE	Para ir de $P(a)$ a $(\exists x)P(x)$, x não pode aparecer em $P(a)$

Regras de Equivalência (Quantificadores)

Segundas Regras de Negação de DE MORGAN (NEG)	$\neg(\forall x)P(x) \Leftrightarrow (\exists x)\neg P(x)$
	$\neg(\exists x)P(x) \Leftrightarrow (\forall x)\neg P(x)$