සියලු ම හිමිකම් ඇවරුම් / முழுப் பதிப்புநிமையுடையது / All Rights Reserved]

((නව නිඊදේශය/பුණිய பாடத்திட்டம்/New Syllabus)

திත්තුව ල් ලංකා විතාශ දෙපාර්තමේන්තුව දි ලංකා විතාශ පෙත්තවල් ලංකා විතාශ දෙපාර්තමේන්තුව ල් ලංකා විතාශ දෙපාර්තමේන්තුව නැතින්තුට ප්රදේශකයට පුරු පෙල ඉන්නේන්ත්ත් ප්රදේශකයට ප්රදේශකයට ප්රදේශකයේ සහ ඉන්නෙන්ට පුරු ගින්නේ ජනාග්තමේන්තුව , Sri Lanka Department of **இலர்க்கைப** Gri**பர்க் ගෙන නැතින් පාර්තමේන්ත්තව ල්** ලංකා විතාශ දෙපාර්තමේන්තුව ල් ලංකා විතාශ දෙපාර්තමේන්තුව නිතාන්යන්ගේ ඉන්නෙන්ට ප්රදේශකයට ප

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்றி General Certificate of Education (Adv. Level) Examination, August 2019

භෞතික විදනව MM பௌதிகவியல் II **Physics** II

2019.08.13 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time

මිනිත්තු 10 යි

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

ව්භාග අංකය	:					. ,																

වැදගත් :

- 🔻 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය ${f A}$ සහ ${f B}$ යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැග** තනකි.
- 🛪 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - වනුහගත රචනා (82 2 - 8)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- 🛪 සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු ${f A}$ සහ ${f B}$ කොටස් එක් පිළිතුරු පතුයක් වන සේ, \mathbf{A} කොටස \mathbf{B} කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- 💥 පුශ්න පතුයේ **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

	පරික්ෂකවරුන්ගේ සඳහා පම						
දෙවැනි පතුය සදහා							
කොටස	පුශ්න අංක	ලැබූ ලකුණු					
	. 1						
	2						
A	3	:					
	4						
	5						
	6						
	7						
ъ	8						
В	9(A)						
	9(B)						
	10(A)						
	10(B)						
	ඉලක්කමෙන්						
එකතුව	අකුරෙන්						

සංකේත අංක උත්තර පතු පරීක්ෂක l උත්තර පතු පරීක්ෂක 2 ලකුණු පරීක්ෂා කළේ අධීක්ෂණය කළේ

A කොටස- වපුහගත රචනා

පුශ්න **හහරට ම** පිළිතුරු **මෙම පතුයේ ම** සපයන්න.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{m \ s^{-2}}$ ලෙස සලකන්න.)

අවෙත නීරයේ කිසිවක් නො ලියන්න

1. දවයක පෘෂ්ඨික ආතතිය නිර්ණය කිරීම සඳහා පාසල් විදාහගාරයක භාවිත කරන පරීක්ෂණ ඇටවුමක් (1) රූපයේ දැක්වේ.

(a) (i) කේශික නළයේ අක්ෂය දිගේ සිරස් හරස්කඩක විශාලනය කළ දසුන (2) රූපයෙන් දක්වා ඇත. මෙම රූපයේ, දවයේ මාවකය කේශික නළය තුළ ඇඳ, පෘෂ්ඨික ආතතිය T ද දුවය සහ කේශික නළයේ වීදුරු පෘෂ්ඨය අතර ස්පර්ශ කෝණය θ ද සලකුණු කරන්න.

(2) රූපය

(ii) කේශික නළය තුළ දුව කඳේ උස, කේශික නළයේ අභාන්තර අරය, සහ දුවයේ ඝනත්වය පිළිවෙළින් $h,\,r,$ සහ ho නම්, h
ho g සඳහා පුකාශනයක් $T,\,r,$ සහ heta ඇසුරෙන් ලබා ගන්න.

(iii) කරනු ලබන උපකල්පනය පැහැදිලිව ලියා දක්වමින්, ඉහත (ii) හි දී ලබා ගත් සමීකරණය $h=\frac{2T}{r \rho g}$ බවට ඌනනය කළ හැකි බව පෙන්වන්න.

.....

(iv) දී ඇති දුවයක් සඳහා ඉහත (iii) හි සඳහන් කළ උපකල්පනය තෘප්ත කිරීමට අනුගමනය කළ යුතු පරීක්ෂණාත්මක කි්යා පිළිවෙළ නිවැරදී අනුපිළිවෙළින් ලියන්න.

.....

/2019/01-S-II(NEW)	- 3 -		විභාග අංකය:			• •
(v) උස h නිර්ණය කිරීම සඳහා අවශා පාය ඇටවුමේ සිදු කළ යුතු සීරුමාරුව කුම		හැනීමට පෙර	ර, (1) රූපයේ	දක්වා ඇති	පරීක්ෂණ	ණ කිර කිර කා
		•••••	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	***********	***********				
(b) වෙනස් අරයයන් සහිත කේශික නළ 6ක් හ ලබා ගත් පරීක්ෂණාත්මක දත්ත (SI ඒකක						
(× 10 ⁻³)						
30 1	(2-450	26:5)				
25 —					4	
20 –					***************************************	
15 –						
10 –						
5(I-025, 6:5)						
0.75 1.00 1.25 1.50	1·75	₩₩₩₩₩ 2·00 2·25	2:50 2:7:	\Rightarrow (× 10 ³)		
(i) ඉහත (a)(iii) හි සමීකරණය සලකමින්,(y) හඳුනාගෙන ලියා දක්වන්න.	, පුස්තාරයෙ	් ස්වායත්ත	විචලාසය (x) ස	හ පරායක්ත	ා වීචලාසය	
x:		••				
y:			•			
(ii) පුස්තාරය භාවිතයෙන් ජලයේ පෘෂ්ඨ්‍ය කරන්න. (ජලයේ ඝනත්වය 1000 kg r		නිර්ණය ස	ාර පිළිතුර Si	l් ඒකක සම	ග පුකාශ	
		. ,				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******	********	
(iii) ජලය වෙනුවට සබන් වතුර භාවිත කළ කෙටියෙන් පැහැදිලි කරන්න.)හොත් කේ	ශික උද්ගමප	ායට කුමක් සි	දු විය හැකි :	ද? පිළිතුර	
	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******		

AL/2019/01-S-II(NEW) ${f 2}$. සර්ල්ගේ කුමයෙන් ලෝහයක තාප සන්නායකතාව නිර්ණය කිරීම සඳහා භාවිත කරන පරීක්ෂණාත්මක ඇටවුමක අසම්පූර්ණ රූපයක් පහත දැක්වේ. (a) හුමාල ජනකය තුළට P සහ Q නළ ඇතුළු කිරීමේ අරමුණු මොනවා ද?*P*:..... *Q*:...... (b) නිවැරදි පුතිඵලය ලබා ගැනීමට සර්ල්ගේ ඇටවුමට හුමාල සහ ජල සැපයුම් නිසි ලෙස සම්බන්ධ කිරීම අතාාවශා චේ. ඒ අනුව, එක් එක් සම්බන්ධය තෝරාගෙන හේතු දක්වන්න. (i) හුමාල සැපයුම (A හෝ B):..... හේතුව : (ii) ජල සැපයුම (*L* හෝ *M*):..... (c) මෙම පරීක්ෂණයේ දී අවශා තවත් මිනුම් උපකරණ **තුනක්** සඳහන් කර, ඒ එකිනෙක මගින් මෙහි දී ලබා ගත්තා තිශ්චිත මිනුම කෙටියෙන් සඳහන් කරන්න. උපකරණය මිනුම (ii) 244444444444444444 (iii)

(d) T_1 සහ T_2 උෂ්ණත්වමාන අතර පරතරය $8\cdot 0$ cm වේ. T_1 සහ T_2 හි නියත උෂ්ණත්ව පාඨාංක පිළිවෙළින් $73\cdot 8$ °C සහ $59\cdot 2$ °C නම්, උෂ්ණත්ව අනුකුමණය ගණනය කරන්න.

AL/2	019/0	1-S-)	II(N	EW

200	
20	_

(e)	ලම	ම උෂ්ණත්ව අනුකුමණය දණ්ඩ දිගේ විචලනය වේ ද? පිළිතුර කෙටියෙන් පැහැදිලි කරන්න.	මෙම නීරයේ කිසිවක් නො ලියන්
	• • • •	•••••••••••••••••••••••••••••••••••••••	
(<i>f</i>)		මෙය අනවරත අවස්ථාවේ දී T_3 සහ T_4 උෂ්ණත්වමානවල පාඨාංක අතර අන්තරය $9.5~^\circ\mathrm{C}$ සහ	
		යේ පුවාහ ශීඝුතාව මිතිත්තුවට 120 g වේ. ජලය මගින් තාපය අවශෝෂණය කරන ශීඝුතාව ගණනය න්න. (ජලයේ විශිෂ්ට තාප ධාරිතාව 4200 J kg ⁻¹ K ⁻¹ වේ.)	
	••••		
		•••••••••••••••••••••••••••••••••••••••	
(g)		ඩේ හරස්කඩ වර්ගඵලය $12\cdot 0~\mathrm{cm}^2$ නම්, ලෝහයේ තාප සන්නායකතාව ගණනය කර, පිළිතුර SI ක සමග පුකාශ කරන්න.	
	••••	•••••••••••••••••••••••••••••••••••••••	
(h)	දර්ව	ල සන්නායකයක තාප සන්නායකතාව සෙවීම සඳහා සර්ල්ගේ කුමය භාවිත කළ හැකි ද? පිළිතුර	
(17)		වියෙන් පැහැදිලි කරන්න.	
	••••		(
			\setminus $/$
		වර්තන අංකය නිර්ණය කිරීම සඳහා සම්මත වර්ණාවලීමානයක්, වීදුරු පුිස්මයක්, සහ ඒකවර්ණ පුභවයක් භාවිත කරයි.	_
		ී ලබා ගැනීම ආරම්භ කිරීමට පෙර වර්ණාවලීමානයේ අතාවශා සීරුමාරු කිරීම් කිහිපයක් සිදු යුතුව ඇත.	
	(i)	උපනෙතෙහි සිදු කළ යුතු සීරුමාරුව කුමක් ද?	
		,	
	(ii)	දුරේක්ෂය ඈතින් ඇති වස්තුවකට එල්ල කර එම වස්තුවේ පැහැදිලි පුතිබිම්බයක් හරස් කම්බි මත සෑදෙන තුරු දුරේක්ෂය සීරුමාරු කරයි. මෙම සීරුමාරුවේ අරමුණ කුමක් ද?	
	(iii)	සමාන්තරකයේ දික් සිදුරෙහි සිදු කළ යුතු සීරුමාරුව කුමක් ද?	
	(iv)	දුරේක්ෂය සමාන්තරකය සමග ඒකරේබීය වන පරිදි ගෙන එනු ලැබේ. ඉන් පසු දික් සිදුරේ තියුණු පුතිබිම්බයක් හරස් කම්බි මත සෑදෙන තුරු සමාන්තරකය සීරුමාරු කරයි. මෙම සීරුමාරුවේ අරමුණ කුමක් ද?	

[භයවැති පිටුව බලන්න.

(d)	<i>K</i> . ස්වීචය	ා විවෘතව ඇති විට විභවමාන කම්බියේ සංතුලන දිග l_0 වේ. $K_{m{\gamma}}$ සංවෘත විට සංතුලන දිග l වේ.	තීරයේ නිසිවක් නො ලිය
(4)	2	ක්ෂයේ අභාවන්තර පුතිරෝධය r සඳහා පුකාශනයක් l,l_0 , සහ R ඇසුරෙන් ලබා ගන්න.	
		, , , , , , , , , , , , , , , , , , , ,	

		,	
(e)	දී ඇති විභ	වමානය භාවිතයෙන්, $1~\mathrm{mm}$ ක උපරිම දෝෂයක් සහිතව සංකුලන දිග මැන ගත හැකි ය. $R=8~\Omega,$	
	$l_0 = 72.4$ ග කරන්න.	cm, සහ $l=50\cdot 1$ cm නම්, අභාාන්තර පුතිරෝධය r සඳහා ලැබිය හැකි උපරිම අගය ගණනය	TETETET STEERING CONTRACTOR CONTR
(f)	පුස්තාරය	කුමයක් මගින් අභාත්තර පුතිරෝධය r වඩාත් නිවැරදිව නිර්ණය කළ හැක. ඒ සඳහා සුදුසුක් ඇදීමට R විචලා පුතිරෝධයක් සේ සලකා (d) හි දී ලබා ගත් සමීකරණය නැවත සකසන්න. ස් ස්වායත්ත (x) සහ පරායත්ත (y) විචලාසයන් ලියා දක්වන්න.	

	<i>x</i> :		
	y:		
(g)	(2) රූපයේ (1) රූපයේ ගත හැක. S' සහ T'	් X මගින් සලකුණු කර ඇති පරිපථ කොටස, ් දැක්වෙන පරිපථය මගින් පුතිස්ථාපනය කර, ් දැක්වෙන විභවමාන පරිපථය වෙනස් කර මේ සඳහා (2) රූපයේ දැක්වෙන පරිපථයේ ් අගු, (1) රූපයෙහි දැක්වෙන විභවමාන S සහ T ලක්ෂාවලට පිළිවෙළින් සම්බන්ධ බේ.	
	(i)	වෙනස් කරන ලද පරිපථයේ සංකුලන ලක්ෂාය A සහ B අතර පිහිටන බව උපකල්පනය කරන්න. සර්පණ යතුර A සහ B හි තැබූ විට දැල්වෙන ආලෝක වීමෝචක ඩයෝඩයේ (LED) වර්ණය කුමක් ද?	
		A & දී :	
		B ⊗ ද :	
	(ii)	මෙම වෙනස් කරන ලද පරිපථය භාවිතයෙන් සංතුලන ලක්ෂාය සොයා ගත හැක්කේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න.	
			-
	(iii)	සංතුලන ලක්ෂාය සොයා ගැනීමේ දී (1) රූපයේ දැක්වෙන පරිපථය හා සන්සන්දනය කළ වීට, මෙම වෙනස් කරන ලද පරිපථයේ ඇති වාසි දෙකක් සඳහන් කරන්න.	

සියලු ම හිමිකම් ඇවිටකි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

ponded and programment of the state of the

අධායන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

<mark>භෞතික විදනව II</mark> பௌதிகவியல் II Physics II

B කොටස – රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. (ගුරුත්වජ ත්වරණය, $g=10\,\mathrm{m}~\mathrm{s}^{-2}$ ලෙස සලකන්න.)

5. (a) විදුලි ජනක යන්තුවල පුතිදාන චෝල්ටීයතාවයේ සංඛාහතය, චුම්බක ධුැව ගණන P සහ ජනකයේ මිනිත්තුවට සිදු වන පරිභුමණ ගණන N මත රඳා පවතී.

 $f = \frac{P \times N}{120}$ මගින් සංඛාාතය f, Hz වලින් දෙනු ලැබේ.

චුම්බක ධුැව දෙකකින් සමන්විත සුවහ විදුලි ජනකයක් (portable generator) සාමානායෙන් මිනිත්තුවට පරිභුමණ (rpm) 3000 කින් කිුිිියා කරයි. පහත දැ සොයන්න.

- (i) ජනකයේ පුතිදාන වෝල්ටීයතාවයේ සංඛ්‍යාතය
- (ii) ජනකයේ භූමණ වේගය කත්පරයට රේඩියන (${
 m rad \ s}^{-1}$) වලින් ($\pi=3$ ලෙස ගන්න)
- (b) ශිෂායෙක් ඉහත (a) හි සඳහන් කළ සුවහ විදුලි ජනකයේ එන්ජිම ජල පුවාහයක් මගින් භුමණය කළ හැකි තලබමරයකින් (turbine) පුතිස්ථාපනය කර ජලවිදුලි බලාගාරයක ආකෘතියක් නිර්මාණය කර ඇත. නියත ජල පුවාහයක දී පවා පුතිදාන චෝල්ටීයතාවයේ සංඛ්‍යාතය විදුලි පරිභෝජනය සමග විචලනය වන බව, ඔහු විසින් නිරීක්ෂණය කරන ලදී. පුතිදාන සංඛ්‍යාතයේ විචලනය පාලනය කිරීමට, තලබමරයට ලබා දෙන ජල පුවාහය සීරුමාරු කිරීම සඳහා, ඔහු විසින් පාලන උපකුමයක් (device) නිර්මාණය කරන ලදී. අවකර කපාටයකට සම්බන්ධිත පාලන උපකුමයේ කුමානුරූප සටහනක් (1) රූපයේ දැක්වේ.

මෙම උපකුමයේ සියලු ම සන්ධි ඝර්ෂණය රහිතව නිදහස්ව චලනය වන බව උපකල්පනය කරන්න. භුමණයේ දී ජව බෝල ති්රස්ව චලිත වන අතර එමගින් විල්ල ඉහළට සහ පහළට භුමණ ඇක්සලය දිගේ චලිත වීමට සලස්වයි. මෙම උපකුමය භුමණ ඇක්සලය වටා සමමිතික වේ. තලබමරයේ භුමණ වේගය මගින් අවකර කපාටය (throttle valve) විවෘත කිරීම සහ සංවෘත කිරීම ස්වයංකීයව පාලනය කරනු ලැබේ. ජව බෝල හැර උපකුමයේ අනෙක් සියලු ම කොටස් ස්කන්ධ රහිත යැයි උපකල්පනය කළ හැක.

- (i) ජව බෝලයකට සම්බන්ධිත එක් එක් බාහුව ආතතියකට යටත් යැයි උපකල්පනය කරමින් ජව බෝලයක් සඳහා නිදහස් බල සටහන අඳින්න. ජව බෝලයක ස්කන්ධය m ලෙස සලකන්න.
- (ii) හුමණ ඇක්සලය වටා එක් එක් ජව බෝලයේ කෝණික පුවේගය ω rad s $^{-1}$ නම්, ඉහළ සහ පහළ බාහුවල ආකතීන් පිළිවෙළින් $\frac{ml}{2}\left(\omega^2+\frac{g}{h}\right)$ සහ $\frac{ml}{2}\left(\omega^2-\frac{g}{h}\right)$ මගින් දෙනු ලබන බව පෙන්වන්න. මෙහි l යනු එක් එක් බාහුවේ දිග වන අතර h යනු පහළ කලම්පයේ සිට එක් එක් ජව බෝලයට ඇති උස වේ.
- (iii) පුතිදාන චෝල්ටීයතාවයේ සංඛානකය $50~{
 m Hz}$ වන විට h හි අගය $30~{
 m cm}$ ක් වේ. ආතතිය සඳහා $\frac{g}{h}$ පදයෙහි දායකත්වය නොසලකා හැරිය හැකි බව පෙන්වන්න.
- (iv) $m=1~{
 m kg}$ සහ $l=50~{
 m cm}$ නම්, ඉහළ බාහුවක ආතතිය ගණනය කරන්න.
- (v) පුතිදාන චෝල්ටීයතාවයේ සංඛාහතය 50 Hz වන විට දුන්නෙහි සංකෝචනය 20 cm කි. දුන්නෙහි දුනු නියතය නිර්ණය කරන්න.
- (c) පුතිදාන වෝල්ටීයතාවයේ සංඛාහතය 50 Hz වන විට පුවාහය 50% කින් අවහිර කරන පරිදි අවකර කපාටය සකසා ඇත. එනම්, කපාටය (2) රූපයේ දක්වා ඇති පරිදි පුවාහ නළයේ අක්ෂය සමග 45°ක කෝණයක් සාදයි. අවකර කපාටයේ සංවෘත වීම එය නළයේ අක්ෂය සමග සාදන කෝණයට සමානුපාතික වන බව උපකල්පනය කරන්න.

පුතිදාන චෝල්ටීයතාවයේ සංඛාහතය විදුලි පරිභෝජනය මත රඳා පවතී. පරිභෝජනය වැඩි වන විට පුතිදාන සංඛාහතය අඩු වන අතර එහි පුතිලෝමය ද සිදු වේ.

- (i) සැලසුමට අනුව, පුතිදාන චෝල්ටීයතාවයේ සංඛාහතය 25~Hz වන විට, අවකර කපාටය සම්පූර්ණයෙන්ම විවෘත වේ. 25~Hz ට වඩා අඩු සංඛාහත සඳහා පවා කපාටය සම්පූර්ණයෙන්ම විවෘතව පවතී. අවකර කපාටය සම්පූර්ණයෙන්ම විවෘතව පවතී. අවකර කපාටය සම්පූර්ණයෙන්ම විවෘතව වන අවස්ථාවේ දී පහත දැ නිර්ණය කරන්න. ($\frac{g}{h}$ පදයේ දායකත්වය නොසලකා හරින්න.)
 - (1) ඉහළ බාහුවක ආතතිය
 - (2) දුන්නේ සංකෝචනය
- (ii) පුතිදාන වෝල්ටීයතාවයේ සංඛාහතය වැඩි වන විට පුවාහ ශීඝුතාව අඩු කිරීමට අවකර කපාටය අනුකුමයෙන් සංවෘත වේ. පුවාහය 75% කින් අවහිර වීමට නම්, පුතිදාන වෝල්ටීයතාවයේ සංඛාහතය කුමක් විය යුතු ද?
- 6. (a) (i) කම්පනය වන ඇදි තන්තුවක් මගින් නිපදවන මූලික විධිය සහ පළමු උපරිතාන දෙකෙහි ස්ථාවර තරංග අාකාර රූපසටහන් තුනක වෙන වෙනම ඇඳ දක්වන්න. රූපසටහන් වල නිෂ්පන්ද 'N' ලෙස ද ප්‍රස්පන්ද 'A' ලෙස ද සලකුණු කරන්න. (ආන්ත ශෝධන නොසලකා හරින්න.)
 - (ii) තන්තුවේ ආතතිය T ද දිග l ද ඒකක දිගක ස්කන්ධය m ද වේ නම්, n වන පුසංවාදයේ සංඛාහතය f_n සඳහා පුකාශනයක් n, T, l, සහ m ඇසුරෙන් ලබා ගන්න.
 - (iii) දී ඇති තන්තුවක් සඳහා, පුසංවාදී සංඛ්යාත වෙනස් කළ හැකි ආකාර **දෙකක්** සඳහන් කරන්න.
 - (b) (1) රූපයේ දැක්වෙන බුහුතතක් (Harp) වැනි සංගීත භාණ්ඩයක් විවිධ දිග වලින් යුතු සර්වසම ඇදි කම්බි 7කින් සමන්විත වේ. දිග l_1 වන දිගම කම්බිය මූලික සංඛාාතය $260~{
 m Hz}$ වන 'ස' (C) සංගීත ස්වරය උපදවයි. සියලු ම සංගීත ස්වර උපදවීමට අනුරූප කම්බිවල දිග, l_1 හි භාගයන් ලෙස වගුවේ දැක්වේ.

	සංගීත ස්වර	ස C സ	ខ D fា	ø E க	ஓ F ம	ප G ⊔	വ A ഉ	නි B
?	$\frac{l}{l_1}$	1.00	0.89	0.79	0.70	0.67	0.59	0.53

(ii) නිවැරදි සංගීත ස්වරයක් ලබා ගැනීම සඳහා කම්බියේ ආතතිය සීරුමාරු කිරීම මගින් සංඛානතය සියුම් ව සුසර කළ හැක. සංඛානතය 1% කින් වෙනස් කිරීමට, අදාළ කම්බියෙහි ආතතිය කුමන පුතිශතයකින් සීරුමාරු කළ යුතු ද?

(c) ශිෂායෙක් විවිධ දිග වලින් යුත් සිහින් PVC පයිප්ප භාවිත කර ඉහත වගුවේ සඳහන් සංගීත ස්වර උපදවීමට පැන්පයිප්ප (panpipe) කට්ටලයක් (2) රූපයේ දැක්වෙන පරිදි සැලසුම් කර නිපදවයි. සියලු ම පයිප්පවල පහළ කෙළවර කි්රල ඇබ මගින් වසා ඇත.

- (iii) දිගම පයිප්පය 260 Hz වෙනුවට 255 Hz සංඛාෘතයක් උපදවන බව සොයා ගන්නා ලදී. 260 Hz සංඛාෘතය ලබා ගැනීම සඳහා කි්රල ඇබය කුමන දුරකින් චලනය කළ යුතු ද?
- (iv) කිරල ඇබය පයිප්පයකින් සම්පූර්ණයෙන්ම ගැලවී ගියේ නම්, එම පයිප්පයෙන් උපදවන මූලික සංඛාාතයට කුමක් සිදු වේ ද? සුදුසු රූපසටහනක් සමග පිළිතුර තහවුරු කරන්න.
- 7. වස්තුවක් දුස්සුාව් මාධ්‍යයක් තුළින් වැටෙන විට එය උත්ප්ලාවක බලයකට සහ රෝධක බලයකට යටත් වේ. උත්ප්ලාවක බලය වස්තුව ඉහළට තල්ලු කරන අතර රෝධක බලය මාධ්‍යයට සාපේක්ෂව වස්තුවේ චලිතයට එරෙහිව කි්යා කරයි.
 - (a) දුව මාධා‍යයක් තුළින් වැටෙන ඝන ගෝලාකාර වස්තුවක් සඳහා රෝධක බලය ස්ටෝක්ස්ගේ නියමය මගින් පුකාශ කළ හැකි ය.
 - (i) ඝන ගෝලාකාර වස්තුවක් සඳහා ස්ටෝක්ස්ගේ සූතුය ලියා දක්වා එහි පරාමිතීන් නම් කරන්න.
 - (ii) ස්ටෝක්ස්ගේ සුනුය වුනුත්පන්න කිරීමේ දී භාවිත කරන උපකල්පන **දෙකක්** ලියා දක්වන්න.
 - (b) දුස්සාවී දවයක කුමයෙන් ඉහළ නගින වායු බුබුළක් සලකන්න. වායු බුබුළ දව පෘෂ්ඨය කරා පැමිණීමට ගත වන කාලය නිර්ණය කිරීමට ස්ටෝක්ස්ගේ නියමය යොදා ගත හැක. උස සමග සිදු වන පීඩනයේ විචලනය නිසා ඇති වන බලපෑම නොසලකා හරිමින්, දෙන ලද කාලය t හි දී දුස්සාවි මාධායක දී වායු බුබුළක ක්ෂණික පුවේගය V(t) යන්න, $V(t) = V_T \left(1-e^{-\frac{t}{T}}\right)$ මගින් ලබා දිය හැක. මෙහි V_T සහ au පිළිවෙළින් වායු බුබුළෙහි චලිනයේ ආන්ත පුවේගය සහ විශාන්ති කාලය (relaxation time) වේ.
 - (i) දුස්සුාවි මාධාායක දී වායු බුබුළක චලිතය සඳහා විශුාන්ති කාලය $4~\mu s$ නම්, එය නිශ්චලතාවයේ සිට ක්ෂණික පුවේගය, V_T වලින් 50%ක් වීමට ගන්නා කාලය ගණනය කරන්න. $(\ln 0.5 = -0.7~\rm com mass)$
 - (ii) වායු බුබුළෙහි ක්ෂණික පුඓගය, V_T වලින් 50% සිට 90% දක්වා වැඩි වීමට ගන්නා කාලය ගණනය කරන්න. $(\ln 0.1 = -2.3$ ලෙස ගන්න).
 - (iii) ඉහත (b) (i) සහ (b) (ii) හි ලබා ගත් පිළිතුරු සලකමින් වායු බුබුළෙහි ක්ෂණික පුවේගයේ වීචලනය, කාලයේ ශිතයක් ලෙස ඇඳ දක්වන්න. පුස්තාරයේ V_T පැහැදිලිව දක්වන්න.
 - (c) $10\,\mathrm{m}$ උසට තෙල් පුරවා ඇති ටැංකියක පතුලේ සිට ඉහළ නගින වායු බුබුළක් සලකන්න.
 - (i) වායු බුබුළ මත කියා කරන සම්පුයුක්ත බලය සඳහා පුකාශනයක් η, ρ_o, ρ_a, a , සහ v ඇසුරෙන් ලබා ගන්න. මෙහි තෙල්වල දුස්සුාවිතා සංගුණකය η , තෙල්වල ඝනත්වය ρ_o , වාතයේ ඝනත්වය ρ_a , වායු බුබුළෙහි අරය a, සහ වායු බුබුළෙහි පුවේගය v වේ.
 - (ii) $\eta = 7.5 \times 10^{-2} \; \mathrm{Pa} \; \mathrm{s}, \; \rho_o = 900 \, \mathrm{kg} \, \mathrm{m}^{-3} \; , \; \rho_a = 1.225 \; \mathrm{kg} \; \mathrm{m}^{-3} \; ,$ සහ වායු බුබුළක සාමානා අරය $a = 0.1 \; \mathrm{mm}$ ලෙස දී ඇත. වායු බුබුළෙහි බර, සහ උස සමග පීඩනයේ වීචලනය නිසා ඇති වන බලපෑම නොසලකා හරිමින් වායු බුබුළෙහි ආන්ත පුවේගය ගණනය කරන්න.
 - (iii) වායු බුබුළෙහි අභාත්තර පීඩනය $100\cdot 33~\mathrm{kPa}$ ද වායුගෝලීය පීඩනය $100~\mathrm{kPa}$ ද කෙල්වල පෘෂ්ඨික ආතතිය $2\cdot 0\times 10^{-2}~\mathrm{N~m}^{-1}$ ද නම්, කෙල් පෘෂ්ඨයට මඳක් පහළ දී වායු බුබුළෙහි අරය ගණනය කරන්න.
 - (iv) වායු බුබුළෙහි අරය උස සමග වෙනස් වීම සලකමින් එහි ක්ෂණික පුවේගයේ, කාලය සමග විචලනය දළ සටහනක ඇඳ දක්වන්න.

- 8. (a) (i) ඉතා කුඩා Δl දිගක් සහිත තුනී වයරයක් තුළින් I ධාරාවක් ගලා යයි. මෙම වයරයේ සිට d ලම්බක දුරක පිහිටි ලක්ෂායක දී චුම්බක සුාව ඝනත්වය ΔB , $\dfrac{\mu_0 I \Delta l}{4\pi d^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.
 - (ii) (1) රූපයේ දක්වා ඇති පරිදි අරය R සහ පොටවල් N ගණනක් සහිත පැතලි වෘත්තාකාර දඟරයක් තුළින් I ධාරාවක් ගලා යයි. දඟරයේ කේන්දුයේ දී චූම්බක සුාව ඝනත්වයේ විශාලත්වය B සඳහා පුකාශනයක් ලබා ගන්න.

- 2(b) රූපය පිළිතුරු පතුයට පිටපත් කර ගෙන දඟර දෙක නිසා ඇති වන චුම්බක ක්ෂේතුය නිරූපණය කිරීමට චුම්බක බල රේඛා ඇඳ දක්වන්න.
- (b) ඉලෙක්ටෝනයක ආරෝපණය එහි ස්කන්ධයට දරන අනුපාතය $\left(\frac{e}{m_e}\right)$ නිර්ණය කිරීම සඳහා (3) රූපයේ දැක්වෙන උපකරණය භාවිත කළ හැක. රික්ත නළය තුළ සූතිකා කැතෝඩය C, ඉලෙක්ටෝඩ A_1 සහ A_2 , සහ ජාල රේඛා සහිත සිරස් පුතිදීප්ත තිරය S ඇත. ඉලෙක්ටෝන කදම්බයේ පථය පුතිදීප්ත තිරය මත දැක

- (i) ඉලෙක්ටෝන කදම්බයේ තීවුතාව පාලනය කිරීම A_1 ඉලෙක්ටෝඩයේ කාර්යය වේ. A_2 ඉලෙක්ටෝඩයේ කාර්යය කුමක් ද?
- (ii) A_1 ඉලෙක්ටෝඩයට සෘණ වෝල්ටීයතාවක් (-V) යෙදුවහොත්, A_2 ඉලෙක්ටෝඩය හරහා ගමන් කරන ඉලෙක්ටෝනයක වේගය සඳහා පුකාශනයක් ලබා ගන්න. (ඉලෙක්ටෝනයක ආරෝපණය -e සහ ඉලෙක්ටෝනයක ස්කන්ධය $m_{_{_{\! 2}}}$ වේ,)
- (iii) නළයේ ගෝලාකාර කොටස (4) රූපයේ පෙන්වා ඇති පරිදි එකම ධාරාව ගෙන යන පැතලි වෘත්තාකාර දඟර දෙකක් අතර තබනු ලැබේ. එමගින් B ඒකාකාර චුම්බක ක්ෂේතුයක් S ති්රයට ලම්බකව යොදනු ලැබේ. මෙමගින් ඉලෙක්ටෝන වෘත්තාකාර පථයක ගමන් කිරීමට සලස්වයි.

ඉලෙක්ටුෝන කදම්බයේ පථයේ අරය r නම්, ඉලෙක්ටුෝනයේ $\left(rac{e}{m_e}
ight)$ අනුපාතය සඳහා පුකාශනයක් ලබා ගන්න.

- (c) (3) රූපයේ දැක්වෙන පරිදි P සහ Q සමාන්තර ලෝහ තහඩු දෙක අතරට dc වෝල්ටීයතාවක් යෙදිය හැක. P සහ Q තහඩු (4) රූපයේ දැක්වෙන පරිදි d දුරකින් වෙන් වී ඇත. චුම්බක ක්ෂේතුය B යොදා ඇති අතරතුර ඉලෙක්ටුෝන කදම්බයේ උත්කුමණයක් නැති වන තුරු තහඩු අතර විභව අන්තරය V_{PQ} සීරුමාරු කළ හැක. මෙම කිුියාවලිය ඉලෙක්ටුෝනවල වේගය නිර්ණය කිරීමට විකල්ප කුමයක් ලෙස යොදා ගත හැක.
 - (i) ඉහත සීරුමාරුව සිදු කිරීමෙන් පසු, P සහ Q තහඩු අතර ඇති ඉලෙක්ටුෝනයක් මත යෙදෙන විදයුත් සහ චුම්බක බල ඇඳ දක්වන්න.
 - (ii) ඉලෙක්ටුෝනවල වේගය සඳහා පුකාශනයක් $d,\,B$ සහ V_{PO} ඇසුරෙන් ලබා ගන්න.
 - (iii) $B=1~\mathrm{mT}$ සහ $V_{PQ}=0$ වන විට ඉලෙක්ටුෝනවල පථයේ අරය $6~\mathrm{cm}$ වේ. $V_{PQ}=840~\mathrm{V}$ වන විට ඉලෙක්ටුෝන කදම්බයේ උත්කුමණයක් නැත. P හා Q තහඩු අතර පරතරය $8~\mathrm{cm}$ වේ.
 - (1) ඉලෙක්ටුෝනයක වේගය, සහ
 - (2) ඉලෙක්ටුෝනයක ආරෝපණයට එහි ස්කන්ධයේ අනුපාතය $\left(rac{e}{m_e}
 ight)$ ගණනය කරන්න.
- 9. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

(a) විදයුත් පුභවයක් මගින් ඒකක ආරෝපණයක් මත සිදු කරන කාර්ය පුමාණය පුභවයේ විදයුත් ගාමක බලය (emf) ලෙස අර්ථ දක්වනු ලැබේ.

මෙම අර්ථ දැක්වීම භාවිත කරමින්;

- (i) විදායුත් ගාමක බලයෙහි ඒකක නිර්ණය කරන්න.
- (ii) පුභවයක් මගින් ජනනය කරන ක්ෂමතාව සඳහා පුකාශනයක් එහි විදාුත් ගාමක බලය E සහ එය හරහා ගලන ධාරාව I ඇසුරෙන් ලබා ගන්න.
- (b) විදාුත් ගාමක බලය E සහ අභාන්තර පුතිරෝධය r වන පුභවයක්, පුතිරෝධය R වූ බාහිර පුතිරෝධකයකට සම්බන්ධ කරනු ලැබේ. t කාලයක දී පරිපථයේ උත්සර්ජනය වන මුළු ශක්තිය සඳහා පුකාශනයක් E, r, R සහ t ඇසුරෙන් ලබා ගන්න.
- (c) (1) රූපයේ පරිපථයෙන් දැක්වෙන පරිදි, මෝටර් රථයක, කි්‍රයාරම්භක මෝටරයට (starter motor) සහ ප්‍රධාන ලාම්පුවලට ජවය ලබා දෙන විද\u03e4\u03

මෝටර් රථය පණගන්වා නොමැතිව (S_2 විවෘතව) පුධාන ලාම්පු පමණක් දැල්වූයේ (S_1 සංවෘත) නම්, වෝල්ට්මීටරය $12\!\cdot\!0~{
m V}$ අගයක් පෙන්වයි.

- (i) ඇමීටරයේ පාඨාංකය කුමක් ද?
- (ii) පුධාන ලාම්පුවක පුතිරෝධය කුමක් ද?
- (iii) බැටරියේ විදාපූත් ගාමක බලය ගණනය කරන්න.
- (d) පුධාන ලාම්පු දල්වා ඇති විටෙක දී කිුයාරම්භක මෝටරය සකිුය කළ සැණින් (S_2 සංවෘත කළ සැණින්) ඇමීටරය $8\cdot 0\,\mathrm{A}$ අගයක් පෙන්වයි. එවිට,
 - (i) කිුයාරම්භක මෝටරය හරහා ධාරාව, සහ
 - (ii) කිුයාරම්භක මෝටරයේ පුතිරෝධය
- (e) පුධාන ලාම්පු දල්වා ඇති විට දී කිුයාරම්භක මෝටරයේ ආමේචරය භුමණය වන විට කිුයාරම්භක මෝටරය හරහා ධාරාව $34\cdot 2$ A සහ වෝල්ට්මීටරයේ පාඨාංකය $11\cdot 0$ V වේ.

මෙවිට, කිුියාරම්භක මෝටරයේ

- (i) පුතිවිදයුත් ගාමක බලය, සහ
- (ii) කාර්යක්ෂමතාව ගණනය කරන්න.
- (f) මෝටරයේ පුතිවීදාපුත් ගාමක බලය E_{h} , එය හරහා ගලන ධාරාව සමග වීචලනයේ දළ සටහනක් අඳින්න.

- (g) එක්තරා රාතියක රියදුරු පුධාන ලාම්පු නිවා නොදමා මෝටර් රථය නවතා තැබූ නිසා බැටරිය සැලකිය යුතු ලෙස විසර්ජනය විය. එහි පුතිඵලයක් ලෙස බැටරියේ විදාුත් ගාමක බලය $10\cdot 8\ V$ දක්වා අඩු වී එහි අභාන්තර පුතිරෝධය $0\cdot 24\ \Omega$ දක්වා වැඩි විය. බැටරියේ සිදු වූ විසර්ජනය නිසා කියාරම්භක මෝටරය හරහා ගලන ලද ධාරාව එය කරකැවීමට පුමාණවත් නොවී ය. මෙම අවස්ථාවේ දී කිුියාරම්භක මෝටරය හරහා ධාරාව සොයන්න.
- (h) ඉහත (g) හි සඳහන් කළ අවස්ථාවේ දී රියදුරු විසින් විදයුත් ගාමක බලය $12\cdot3$ V සහ අභාගන්තර පුතිරෝධය $0\cdot02\,\Omega$ වූ බාහිර බැටරියක් මෝටර් රථය පැන්නුම් කිුියාරම්භ (jump start) කිරීමට භාවිත කරන ලදී. මේ සඳහා බාහිර බැටරිය විසර්ජනය වූ බැටරිය සමග එකිනෙකෙහි පුතිරෝධය $0\cdot015\,\Omega$ වූ ජම්පර් කේබල් (jumper cables) දෙකක් මගින් සම්බන්ධ කර අනතුරුව මෝටර් රථය පණගැන්වූයේ ය.
 - (i) මෝටර් රථය පැන්නුම් කි්යාරම්භ කිරීමේ දී බාහිර බැටරිය විසර්ජනය වූ බැටරිය සමග සම්බන්ධ කරන ආකාරය පරිපථ රූපසටහනක ඇඳ දක්වන්න.
 - (ii) එන්ජිම පණගන්වන විට දී කිුියාරම්භක මෝටරය හරහා ගලන **උපරිම** ධාරාව ගණනය කරන්න.

(B) කොටස

- (a) (i) ක්ෂේතු ආචරණ ටුාන්සිස්ටර (FET) ඒක ධැවීය උපකුම (unipolar devices) ලෙස හඳුන්වන්නේ ඇයි? FET කිුයාත්මක වීමට උපයෝගී වන ආරෝපණ වාහක මොනවා ද?
 - (ii) FET, චෝල්ටීයතා පාලිත (voltage-controlled) උපකුම ලෙස ද හඳුන්වන්නේ ඇයි දැයි පුකාශ කරන්න.
 - (iii) (1) රූපයෙන් දැක්වෙන පරිපථය සඳහා $V_D=5~{
 m V}$ බව උපකල්පනය කරමින් සොරොව් ධාරාව (drain current) $I_D~{
 m than}~{
 m than$

(b) (2) රූපයේ දැක්වෙන කාරකාත්මක වර්ධක පරිපථයේ එක් එක් S_i (i=0,1,2,3) විදුහුත් යාන්තික ස්වීචය D_i (i=0,1,2,3) විදුහුත් සංඥාවක් යෙදීම මගින් කිුිියාත්මක කරවයි. D_i හි අගය 'High' $(5\,\mathrm{V})$ හෝ 'Low' $(0\,\mathrm{V})$ විය හැක. D_i හි අගය 'High' වන විට අදාළ S_i ස්වීචය සංවෘත වන අතර නැතහොත් එය විවෘත වේ.

- (i) D_2 'High' වන විට 10R පුතිරෝධය හරහා ධාරාව R ඇසුරෙන් සොයන්න.
- (ii) $(5\,{
 m V},0\,{
 m V},5\,{
 m V})$ වෝල්ටීයතා කාණ්ඩයක් පිළිවෙළින් S_3,S_2,S_1,S_0 ස්විචයන් කුියාත්මක කිරීමට එක විට යොදයි නම්, (2) රූපයේ දක්වා ඇති I ධාරාව R ඇසුරෙන් ගණනය කරන්න.
- (iii) (5V,5V,5V,5V) වෝල්ටීයතා කාණ්ඩයක් පිළිවෙළින් S_3,S_2,S_1,S_0 ස්වීචයන් කිුියාත්මක කිරීම සඳහා එක විට යෙදූ විට පුතිදාන වෝල්ටීයතාව V_0 ගණනය කරන්න.

- (c) මුදල් මගින් කිුියා කරන 'සුළු කෑම' ලබා දෙන යන්තුයක් (snack dispenser) පහත තත්ත්ව යටතේ දී ' $ext{@0}$ රි ' හෝ ' $ext{ellip}$ නේලට් කිුිම්' විස්කෝතු පැකට්ටුවක් ලබා දෙයි.
 - o නිවැරදි මුදල් පුමාණය ඇතුළත් කිරීම (I)
 - '*මාරි* ' (M) හෝ '*චොක්ලට් කුීම්* ' (C) තේරීම
 - ullet '*මාරි* ' තේරුවේ නම් යන්තුය තුළ '*මාරි තිබීම* ' (X)
 - ullet 'e $^{\prime}$ e $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ ත්රුවේ නම් යන්තුය තුළ 'e $^{\prime}$ $^{\prime$
 - (i) විස්කෝතු පැකට්ටුවක් ලබා ගත හැකි තත්ත්ව සඳහා තාර්කික පුකාශනය ලබා ගන්න.
 - (ii) මෙය තාර්කික ද්වාර භාවිතයෙන් කිුයාවට නැංවිය හැකි ආකාරය පෙන්වන්න.

${f 10.}\,\,({ m A})$ කොටසට හෝ $({ m B})$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොවස

- (a) (i) බොයිල් නියමය සහ චාර්ල්ස් නියමය පුකාශ කරන්න.
 - (ii) ඉහත නියමයන් භාවිතයෙන් පරිපූර්ණ වායු සමීකරණය වසුත්පන්න කරන්න.
- (b) කාමර උෂ්ණත්වය T_R හි දී ආරම්භක පීඩනය P_0 සහ පරිමාව Vවූ, හුළං අඩු වී ඇති ටයරයක් කපාටයක් හරහා සම්පීඩිත නයිටුජන් $({
 m N}_2)$ වායු ටැංකියකට සම්බන්ධ කර ඇත. ආරම්භයේ දී ටයරයේ ${
 m N}_2$ වායුව පමණක් ඇත. එම ටයරයට ${
 m N}_2$ වායුව පිරවූ පසු එහි අවසාන පීඩනය P වන අතර එහි අඩංගු මුළු ${
 m N}_2$ වායු මවුල සංඛාාව n වේ. ටයරයේ පරිමාවේ වෙනසක් සිදු නොවේ යැයි උපකල්පනය කරන්න.
 - (i) ටයරය තුළ ඇති N_2 වායුව පරිපූර්ණ වායුවක් ලෙස හැසිරේ යැයි උපකල්පනය කරමින්, ටයරයට පොම්ප කරන ලද N_2 වායු මවුල සංඛාාව $n \left(1 \frac{P_0}{P}\right)$ බව පෙන්වන්න.
 - (ii) ටයරයට N, වායුව පිරවීමට කරන ලද කාර්යය සඳහා පුකාශනයක් ලබා ගන්න.
 - (iii) N_2 වායුව පොම්ප කරන කිුයාවලිය ස්ථිරතාපී යැයි උපකල්පනය කර, ටයරය තුළ ඇති N_2 වායුවේ උෂ්ණත්වයේ වෙනස් වීම $\frac{2}{5} \left(1 \frac{P_0}{P}\right) T_R$ බව පෙන්වන්න. පරිපූර්ණ වායුවක අභාාන්තර ශක්තියේ වෙනස් වීම $\Delta U = n C_V \Delta T$ මගින් දෙනු ලැබේ. මෙහි C_V යනු නියත පරිමාවේ දී මවුලික තාප ධාරිතාව ද ΔT යනු උෂ්ණත්වයේ වෙනස් වීම ද වේ. නියත පරිමාවේ දී ද්විපරමාණුක පරිපූර්ණ වායුවක මවුලික තාප ධාරිතාව $\frac{5R}{2}$ වේ. මෙහි R යනු සාර්වතු වායු නියතය වේ.
 - (iv) උෂ්ණත්වයේ සිදු වන මෙම වෙනස් වීම, පීඩනය තාවකාලිකව ඉහළ අගයකට වැඩි කරයි. මෙම පීඩනයෙහි වෙනස් වීම $\frac{2}{5} \Big(P P_0 \Big)$ බව පෙන්වන්න.
- (c) ආමාත පීඩනය (gauge pressure) යනු වායුගෝලීය පීඩනයට සාපේක්ෂව මනිනු ලබන පීඩනය වේ. ටයරයක ආමාත පීඩනය සාමානායෙන් psi (pound per square inch) ඒකක වලින් පුකාශ කරනු ලැබේ. $(1\,\mathrm{atm} \approx 100\,\mathrm{kPa}\ \mathrm{em}\ 1\,\mathrm{psi} \approx 7\,\mathrm{kPa})$

කාමර උෂ්ණත්වයේ දී (27 °C) හුළං අඩු වූ $20~{
m psi}$ පීඩනයේ ඇති ටයරයක් $30~{
m psi}$ පීඩනයකට පත්වන තුරු තවදුරටත් N_2 වායුව පුරවන ලදී.

- (i) ටයරයේ ඇති \mathbf{N}_2 වායුවේ උෂ්ණත්වයේ වෙනස් වීම ගණනය කරන්න.
- (ii) මෙම උෂ්ණක්වයේ වෙනස් වීම නිසා ටයරයේ ඇති වන උපරිම පීඩනය ගණනය කරන්න.
- (iii) නුළං අඩු වී ඇති ටයරයකට තවදුරටත් N_2 වායුව පුරවන විට සාමානාගයන් මෙම තාවකාලික පීඩනයේ වැඩි වීම නිරීක්ෂණය කළ නොහැක. මෙම පීඩනය වැඩි වීම නිරීක්ෂණය නොවීමට හේතු **දෙකක්** දෙන්න.

(B) කොටස

පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

විකිරණ විමෝචනය කිරීමෙන් අස්ථායී නාෂ්ටියක් ස්ථායී නාාෂ්ටියක් බවට පත්වන ස්වයං ක්ෂය වීමේ කිුයාවලිය විකිණශීලීතාව චේ. ක්ෂය වීමේ ශීඝුතාව එම මොහොතේ ඇති විකිරණශීලී පරමාණු සංඛපාවට අනුලෝමව සමානුපාතික වන නමුත් බාහිර භෞතික තත්ත්වයන්ගෙන් ස්වායත්ත වේ.

තයිරොයිඩ් (Thyroid) පිළිකා රෝගීන්ට පුතිකාර කිරීම සඳහා විකිරණශීලී අයඩින් 131 I, නාෂ්ටික වෛදා විදාාවේ දී භාවිත කරයි. 131 I හි අර්ධ ආයු කාලය දින 8කි. එය මුලදී β^- අංශුවක් විමෝචනයෙන් ද පසුව γ ෆෝටෝනයක් විමෝචනයෙන් ද ස්ථායී 131 Xe බවට ක්ෂය වේ. මෙම β^- හි උපරිම පටක විනිවිද යාමේ දිග 2 mm වේ. සාමානායෙන් 131 I, සෝඩියම් අයඩයිඩ් (Na^{131} I) ලෙස, කරලක් (capsule) ස්වරූපයෙන් රෝගීන්ට ලබා දෙනු ලැබේ. එය ලබා දීමෙන් අනතුරුව රුධිර පුවාහයට අවශෝෂණය වී තයිරොයිඩ් ගුන්ටීයෙහි සාන්දුණය වේ. 131 I වලින් නිකුත් වන විකිරණ, තයිරොයිඩ් ගුන්ටීයේ බොහෝ පිළිකා සෛල විනාශ කරයි.

රෝගියා භවා විකිරණ පුභවයක් බවට පත්වන හෙයින් අවට සිටින අනෙක් අය විකිරණවලට නිරාවරණය වීම අවම කිරීම සඳහා පූර්වාරක්ෂක කිුිියාවලි අනුගමනය කළ යුතු ය. රෝගියා විසින් විමෝචනය කරන විකිරණ පුමාණය ලබා දුන් මාතුාවේ සකිිියතාවට සමානුපාතික වේ. වෛදා විදහාත්මක භාවිතයේ දී සකිිියතාව සඳහා භාවිත කරන, SI නොවන පොදු ඒකකය කියුරි (Ci) වේ. කියුරි එකක් තත්පරයට සිදු වන පෘතක්කරණ 37×10^9 කට සමාන වේ.

ශරීරය තුළ ඇති විකිරණශීලී දුවායක්, විකිරණශීලී ක්ෂය වීමෙන් පමණක් නොව ජෛව විදාහත්මක නිශ්කාෂණයෙන් ද හීන වේ. මෙම නිශ්කාෂණය හුදෙක් ජෛව විදාහත්මක කියාවලියක් වන අතර එය ක්ෂය නියතය λ_p වලින් විදහා දක්වන සාතීය (exponential) විචලනයක් අනුගමනය කරයි. එබැවින් විකිරණශීලී ක්ෂය වීම සහ ජෛව විදාහත්මක නිශ්කාෂණය යන දෙකම නිසා ඇති වන ක්ෂය වීමට අදාළ සඵල ක්ෂය නියතය λ_e යන්න, $\lambda_e = \lambda_p + \lambda_b$ ලෙස සඳහන් කළ හැක. මෙහි λ_p යනු භෞතීය විකිරණශීලී ක්ෂය වීමට අනුරූප ක්ෂය නියතය වේ. විකිරණ ආරක්ෂණ පියවර සඳහා භාවිත කරන සඵල අර්ධ ආයු කාලය, සඵල ක්ෂය නියතය මගින් ගණනය කරනු ලැබේ.

- (a) (i) eta^- සහ γ විමෝචන අතර වෙනස්කම් **දෙකක්** සඳහන් කරන්න.
- (b) $100~{
 m mCi}$ සකීයතාවක් සහිත නැවුම් ${
 m Na}^{131}{
 m I}$ නියැදියක් රෝහලක් මගින් ලබා ගනී. එම නියැදිය කාමර උෂ්ණත්වයේ ඇති ඊයම් භාජනයක ගබඩා කරනු ලැබේ.
 - (i) සකීයතාව සඳහා භාවිත කරන SI ඒකකය කුමක් ද?
 - (ii) ක්ෂය නියතය λ සඳහා පුකාශනයක් අර්ධ ආයු කාලය T ඇසුරෙන් ලියන්න.
 - (iii) දින 4 කට පසු ඉහත නියැදියේ සකීයතාව ගණනය කර පිළිතුර SI ඒකක වලින් පුකාශ කරන්න. ($\ln 2 = 0.7$ සහ $e^{-0.35} = 0.7$ ලෙස ගන්න.)
 - (iv) එනයින්, සකීයතාවයේ වෙනස් වීම පුතිශතයක් ලෙස පුකාශ කරන්න.
 - (v) $Na^{131}I$ නියැදිය කාමර උෂ්ණත්වයේ ගබඩා කිරීම චෙනුවට, $0\,^{\circ}C$ දී ගබඩා කළහොත් එහි සකීයතාව අඩු කිරීමට හැකි වේ ද? පිළිතුර පැහැදිලි කරන්න.
- (c) $100~{
 m mCi}$ සකීයතාවක් සහිත ${
 m Na}^{131}$ I නියැදියකින් කුඩා පුමාණයක් තයිරොයිඩ් රෝගියකුට ලබා දෙනු ලැබේ.
 - (i) මෙවැනි රෝගියකු සමග කටයුතු කිරීමේ දී විකිරණ ආරක්ෂණ පියවර ගත යුත්තේ කුමන විමෝචන ආකාරය සඳහා ද? පිළිතුර පැහැදිලි කරන්න.
 - (ii) තයිරොයිඩ් ගුන්ටීයේ දී 131 I හි සඵල අර්ධ ආයු කාලය $^{T}_{e}$, $\frac{1}{T_{e}} = \frac{1}{T_{p}} + \frac{1}{T_{b}}$ මගින් ලබා දිය හැකි බව පෙන්වන්න. මෙහි $^{T}_{p}$ සහ $^{T}_{b}$ පිළිවෙළින් විකිරණශීලී ක්ෂය වීමට සහ ජෛව විදහාත්මක නිශ්කාෂණයට අදාළ අර්ධ ආයු කාලයන් වේ.
 - (iii) තයිරොයිඩ් ගුන්ටීයේ දී 131 I හි ජෛව විදාහත්මක අර්ධ ආයු කාලය දින 24ක් නම්, 131 I වල සඵල අර්ධ ආයු කාලය (දින වලින්) ගණනය කරන්න.
 - (iv) 131 I ලබා දීමෙන් දින 4කට පසුව සකීයතාවයේ පුතිශත වෙනස ගණනය කරන්න. ($e^{-0.46}=0.63$ ලෙස ගන්න.)
 - (v) විකිරණ ආරක්ෂණ නියාමනයන්ට අනුව ¹³¹I පුතිකාර කළ රෝගීන් රෝහලෙන් පිට කළ හැක්කේ සකීයතාව 50 mCi ට වඩා අඩු හෝ සමාන වන විට පමණි. මෙම නියාමනය අනුගමනය කරන්නේ නම්, ඉහත ¹³¹I ලබා දුන් රෝගියා රෝහලෙන් පිට කිරීමට පෙර කොපමණ කාලයක් හුදකලාව තැබිය යුතු ද?