Customer Churn Prediction Project

Predicting churn and enabling proactive retention strategies

Overview

 This project predicts customer churn in a telecommunications dataset using machine learning models. The primary objective is to enable proactive retention strategies by accurately identifying customers likely to churn and uncovering key drivers influencing churn.

Business Understanding

- In subscription-based businesses, customer retention is critical to profitability. This project:
- Identifies reasons behind churn.
- Predicts churn to enable targeted retention strategies.
- Builds long-term customer relationships through data-driven insights.

Data Understanding

- Dataset: Sourced from Kaggle, containing telecom customer data.
- Features: Tenure, MonthlyCharges,
 TotalCharges, Contract Type, Payment Method,
 etc.
- Target Variable: Churn (Yes/No).
- Relevance: Provides a comprehensive view of customer behavior and service usage.

Data Preparation

- Handled missing values.
- Converted TotalCharges from object to numeric type.
- Scaled numerical variables for consistency.
- One-hot encoded categorical variables.
- Split the data into train and test sets.

Exploratory Data Analysis (EDA)

- 1. Demographics: Certain groups show higher churn rates.
- 2. Services: Churn is higher among customers with fewer additional services.
- 3. Monthly Charges: Higher charges correlate with increased churn.
- 4. Tenure: Lower tenure customers are more likely to churn.

Density Plot of tenure by Churn

Density Plot of MonthlyCharges by Churn

Modeling

- Models Built: Logistic Regression, Decision Tree, and Random Forest.
- Baseline Model: Logistic Regression for interpretability.
- Advanced Models: Hyperparameter-tuned Logistic Regression for improved accuracy.
- Metrics: Evaluated using accuracy, precision, recall, F1-score, and ROC-AUC.

Evaluation

- Best Model: Logistic Regression achieved 81% accuracy and 0.86 ROC-AUC.
- Key Metrics: Balanced precision and recall to address business needs.
- Real-World Implications: Identified high-risk customers for proactive retention.

Model Selection

- Selected Model: Logistic Regression
- Performance: 81%
- Accuracy: 0.81
- ROC-AUC: 0.86
- Reason: Balanced precision and recall, effectively identifying churners.

Limitations

- 1. Class Imbalance: Fewer churn cases affect model performance.
- 2. Limited Features: Missing customer feedback or competitor data.
- 3. Recall vs. Precision: High recall but moderate precision leads to false positives.

Recommendations and Areas of Improvement

- 1. Use Model Predictions: Implement targeted retention campaigns for high-risk customers.
- 2. Enhance Data Quality: Incorporate customer support interactions and market data.
- 3. Regular Monitoring: Retrain the model periodically to adapt to evolving patterns.

Conclusion

 The project successfully predicts churn and provides actionable insights for retention strategies. Future work will address class imbalance and expand feature diversity for better accuracy and impact.