Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №3 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Бочкарев Илья Алексеевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Пос	становка задачи	2
2	Teo	рия	2
3	Pea	лизация	2
4	Рез	ультаты	3
5	Обо	зуждение	9
C	Спис	сок иллюстраций	
	1	Исходная интервальная выборка $X, (Y_1)$	3
	2	Точечная линейная регрессия выборки $X,(Y_1)$	4
	3	Информационное множество выборки $X,(Y_1)$	4
	4	Коридор совместных зависимостей выборки $X,(Y_1)$	5
	5	Диаграмма статусов выборки $X, (Y_1)$	5
	6	Исходная интервальная выборка $X, (Y_2)$	6
	7	Точечная линейная регрессия выборки $X, (Y_2)$	6
	8	Информационное множество выборки $X,(Y_2)$	7
	9	Коридор совместных зависимостей выборки $X, (Y_2)$	7
	10	Диаграмма статусов выборки $X, (Y_2)$	8
	11	Лиаграмма статусов выборки $X(Y_2)$ приближение	8

1 Постановка задачи

Имеется выборка (X, (Y)). X — множество вещественных чисел, Y — множество интервалов. Необходимо по построенному коридору совместных зависимостей провести анализ остатков.

2 Теория

Для выборки $(X,(Y)), X = \{x_i\}_{i=1}^n, Y = \{y_i\}_{i=1}^n (x_i$ - точеный, y_i - интервальный) и $\Upsilon(x)$ – коридора совместных зависимостей определены следующие отношения.

Размах:

$$l(x,y) = \frac{\Upsilon(x)}{rad(y)} \tag{1}$$

Относительный остаток:

$$r(x,y) = \frac{mid(y) - mid(\Upsilon(x))}{rad(y)}$$
 (2)

Границы статусов наблюдений задаются выражениями:

$$|r(x,y)| \le 1 - l(x,y) \tag{3}$$

3 выполнено для внутренних наблюдений. Если достигается равенство, то наблюдение граничное.

$$|r(x,y)| > 1 + l(x,y) \tag{4}$$

4 выполнено для выбросов.

$$l(x,y) > 1 \tag{5}$$

При совместном невыполнении 3 и 4 наблюдение считается внешним. Если, кроме этого, выполнено еще и 5, то наблюдение – абсолютно внешнее.

3 Реализация

Весь код написан на языке Python (версии 3.9.5). Ссылка на GitHub с исходным кодом.

4 Результаты

Данные были взяты из файлов $rawData/0.05V_sp321.dat$, $rawData/-0.05V_sp547.dat$, $rawData/0.15V_sp9.dat$, $rawData/-0.15V_sp831.dat$, $rawData/0.25V_sp320.$ $rawData/-0.25V_sp484.dat$, $rawData/0.35V_sp300.dat$, $rawData/-0.35V_sp670.dat$, $rawData/-0.45V_sp31.dat$ и $rawData/0.45V_sp176.dat$. С коррекцией при помощи вспомогательных данных из файла $rawData/0.0V_sp812.dat$. Набор значений $X = \begin{bmatrix} -0.45, -0.35, -0.25, -0.15, -0.05, 0.05, 0.15, 0.25, 0.35, 0.45 \end{bmatrix}$. Набор значений Y_1 определяется как интервальная мода данных из соответсвующих файлов (изначальные данные обыинтерваливаются с eps = 600). Набор значений Y_2 определяется как обынтерваленное среднее из соответсвующих файлов (eps = 125).

Начнем с Y_1 . Итоговая выборка:

Рис. 1: Исходная интервальная выборка $X, (Y_1)$

Следует отметить, что 1 и 7 интервалы малы настолько, что отсутствуют на графике. Однако учитываются в дальнейших вычислениях. Точечная линейная регрессия имеет вид:

Рис. 2: Точечная линейная регрессия выборки $X,(Y_1)$

Построим информационное множество:

Рис. 3: Информационное множество выборки $X,(Y_1)$

Коридор совместных зависимостей:

Рис. 4: Коридор совместных зависимостей выборки $X, (Y_1)$

4 и 6 наблюдения лежат вне коридора совместных зависимостей. Строим диаграмму статусов:

Рис. 5: Диаграмма статусов выборки $X, (Y_1)$

Наблюдения 4, 6 являются выбросами. 1, 3, 5, 7 наблюдения граничные, остальные внутренние.

Теперь Y_2 . Итоговая выборка:

Рис. 6: Исходная интервальная выборка $X,(Y_2)$

Точечная линейная регрессия имеет вид:

Рис. 7: Точечная линейная регрессия выборки $X,(Y_2)$

Построим информационное множество:

Рис. 8: Информационное множество выборки $X,(Y_2)$

Коридор совместных зависимостей:

Рис. 9: Коридор совместных зависимостей выборки $X,(Y_2)$

Строим диаграмму статусов:

Рис. 10: Диаграмма статусов выборки $X, (Y_2)$

Рис. 11: Диаграмма статусов выборки $X, (Y_2)$ приближение

Наблюдения $1,\,4,\,5,\,7,\,10$ являются граничными, остальные внутренние.

5 Обсуждение

Из полученых результатов можно заметить, что диаграммы статусов соотносятся с построенными информационными множествами: количество наблюдений, задающих информационное множество, совпадает с количеством наблюдений со статусом "граничное". Также статусы совпадают с положением наблюдений в коридоре совместных зависимостей.