CM 005 Álgebra Linear: Prova 3

1 de Dezembro de 2016

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa. Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

 $Em \mathbb{R}^4$, considere o subespaço vetorial

$$X = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4 : \begin{array}{cccc} a & -b & -c & +d & = & 0 \\ 2a & -b & -c & & = & 0 \\ \end{array} \right\}.$$

(a) (15 points) Encontre uma base para X;

Solution: Vamos escrever o subespaço X de um jeito mais fácil de trabalhar. Então, perceba que

$$X = Nuc(A)$$
 onde $A = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 2 & -1 & -1 & 0 \end{pmatrix}$

Agora, calculando o Nuc(A), usando o método de Gauss, obtemos que

$$Nuc(A) = \text{span}\{(1, 2, 0, 1)^T, (0, 1, -1, 0)^T\}.$$

Como $\{(1,0,2,1)^T,(0,1,-1,0)^T\}$ é linearmente independente e ele trivialmente gera o Nuc(A), concluímos que $\{(1,0,2,1)^T,(0,1,-1,0)^T\}$ é uma base para o Nuc(A)=X.

(b) (15 points) Ache uma base para X^{\perp} ;

Solution: Primeiro calculemos X^{\perp} . Como X = Nuc(A), temos que

$$X^{\perp} = col(A^T) = span\{(2, -1, -1, 0)^T, (1, -1, -1, 1)^T\}.$$

Observe que $\{(2,-1,-1,0)^T,(1,-1,-1,1)^T\}$ é linearmente independente e ele trivialmente gera o col(A), portanto concluímos que $\{(2,-1,-1,0)^T,(1,-1,-1,1)^T\}$ é uma base para o $col(A^T)=X^{\perp}$.

(c) (10 points) Seja $\bar{y} \in \mathbb{R}^4$ um vetor definido como $\bar{y} = (1, 0, 0, 0)^T$. Encontre a projeção ortogonal de \bar{y} sobre o subespaço X (isto é, $\operatorname{proj}_X(\bar{y})$) e a projeção ortogonal de \bar{y} sobre X^{\perp} (ou seja, $\operatorname{proj}_{X^{\perp}}(\bar{y})$).

Solution: Existem muitas formas de calcular $\operatorname{proj}_X(\bar{y})$:

1. Calcule uma base ortogonal de X, $\{v_1, \ldots, v_r\}$ e logo use a fórmula da projeção ortogonal para calcular $\operatorname{proj}_X(\bar{y})$

$$\operatorname{proj}_{X}(\bar{y}) = \frac{\langle v, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} + \frac{\langle v, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2} + \dots + \frac{\langle v, v_{r} \rangle}{\|v_{r}\|^{2}} v_{r}.$$

Essa fórmula só vale se $\{v_1, \ldots, v_r\}$ é um conjunto ortogonal.

- 2. Se $X = \text{span}\{v_1, \dots, v_r\}$ com $\{v_1, \dots, v_r\}$ não necessariamente ortogonal. Defina $\operatorname{proj}_X(\bar{y}) = \sum \alpha_i v_i$ onde os α_i são desconhecidos. Para encontrar os α_i , usamos que $\bar{y} - \operatorname{proj}_X(\bar{y}) \perp X$. Assim, $\langle \bar{y} - \operatorname{proj}_X(\bar{y}), v_i \rangle = \langle \bar{y} - \sum_{i=1}^{r} \alpha_j v_j, v_i \rangle = 0, \forall i$ forma um sistema linear onde as incognitas são os α_i . Uma vez achado os α_i obtemos a projeção ortogonal $\operatorname{proj}_X(\bar{y})$.
- 3. Se X = col(A). Use mínimos quadrados para achar o \bar{x} tal que $A\bar{x}$ seja igual à projeção ortogonal $\operatorname{proj}_X(\bar{y})$.

Nosotros usaremos o item (2), porque $X = \text{span}\{(1,0,2,1)^T, (0,1,-1,0)^T\}$. Assim, obtemos o sistema

$$\langle \bar{y}, v_1 \rangle = \alpha_1 \langle v_1, v_1 \rangle + \alpha_2 \langle v_2, v_1 \rangle$$

$$\langle \bar{y}, v_1 \rangle = \alpha_1 \langle v_1, v_2 \rangle + \alpha_2 \langle v_2, v_2 \rangle$$

onde $v_1 = (1,0,2,1)^T$, $v_2 = (0,1,-1,0)^T$. Como $\bar{y} = (1,0,0,0)^T$, o sistema se reduz a $1 = 6\alpha_1 - 2\alpha_2$, $0 = -2\alpha_1 + 2\alpha_2$. Assim, $\alpha_1 = \alpha_2 = 1/4$ e

$$\operatorname{proj}_{X}(\bar{y}) = \alpha_{1}v_{1} + \alpha_{2}v_{2} = (1/4, 1/4, 1/4, 1/4)^{T}.$$

Para calcular $\operatorname{proj}_{X^{\perp}}(\bar{y})$, perceba que $\operatorname{proj}_{X^{\perp}}(\bar{y}) = \bar{y} - \operatorname{proj}_{X}(\bar{y})$ sempre vale. Assim,

$$\operatorname{proj}_{X^{\perp}}(\bar{y}) = \bar{y} - \operatorname{proj}_{X}(\bar{y}) = (1, 0, 0, 0)^{T} - (1/4, 1/4, 1/4, 1/4, 1/4)^{T} = (3/4, -1/4, -1/4, -1/4)^{T}.$$

associados a $\lambda_1 = -1$ e $\lambda_2 = 2$ (isto é, $T(v_1) = \lambda_1 v_1$ e $T(v_2) = \lambda_2 v_2$). Com essa informação:

(a) (5 points) Verifique que $\{v_1, v_2\}$ formam uma base de \mathbb{R}^2

Solution: Um critério para verificar se $\{v_1, v_2\}$ são l.i, é calcular o determinante da matriz cujas columas são v_1 e v_2 . Como essa matriz tem determinante diferente de zero, temos que $\{v_1, v_2\}$ são l.i. em um espaço vetorial de dimensão 2. Logo, $\{v_1, v_2\}$ formam uma base de

(b) (5 points) Calcule T(v) onde $v = (5,6)^T$.

Solution: Como só sabemos como T age em v_1 e em v_2 , para calcular $T((5,6)^T)$ devemos escrever $(5,6)^T$ como combinação linear de $v_1=(1,1)^T$ e de $v_2=(3,4)^T$. É fácil, ver que $(5,6)^T = 2(1,1)^T + 1(3,4)^T$. Assim temos que

$$T\begin{pmatrix}5\\6\end{pmatrix}=T\left(2\begin{pmatrix}1\\1\end{pmatrix}+\begin{pmatrix}3\\4\end{pmatrix}\right)=2T\begin{pmatrix}1\\1\end{pmatrix}+T\begin{pmatrix}3\\4\end{pmatrix}=2\lambda_1\begin{pmatrix}1\\1\end{pmatrix}+\lambda_2\begin{pmatrix}3\\4\end{pmatrix}=\begin{pmatrix}4\\6\end{pmatrix}.$$

Dados $a, b \in c \in \mathbb{R}$ com c > 0, considere a matriz quadrada

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & c & b \end{pmatrix}$$

(a) (10 points) Mostre que os autovalores de A são $\lambda_1 = a, \lambda_2 = b + c$ e $\lambda_3 = b - c$

Solution: Procedemos a calcular o polinômio característico $p(\lambda)$.

$$p(\lambda) = \det(A - \lambda I) = (a - \lambda)[(b - \lambda)^2 - c^2] = (a - \lambda)(b - \lambda + c)(b - \lambda - c) = 0.$$

Assim, obtemos que $\lambda_1=a,\ \lambda_2=b+c$ e $\lambda_3=b-c$ são os autovalores de A.

(b) (20 points) Se $a=1,\ b=2$ e c=3, então mostre que A é diagonalizável, encontrando uma matriz D diagonal e uma matrix S invertível tal que $S^{-1}AS=D$. (Não é necessário verificar $S^{-1}AS=D$)

Solution: Se a=1, b=2 e c=3, temos que $\lambda_1=1$, $\lambda_2=5$ e $\lambda_3=-1$. Como os autovalores são todos diferentes, a matriz A é diagonalizável (vc tbm pode usar o teorema espectral para matrizes simétricas para concluir que A é diagonalizável). Procedemos a construir a matrix S tal que $S^{-1}AS$ é uma matriz diagonal.

Para $\lambda_1 = 1$, temos que

$$Nuc(A - \lambda_1 I) = Nuc \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 3 & 1 \end{pmatrix} = \text{span}\{(1, 0, 0)^T\}.$$

Para $\lambda_2 = 5$, temos que

$$Nuc(A - \lambda_2 I) = Nuc \begin{pmatrix} -4 & 0 & 0 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix} = \text{span}\{(0, 1, 1)^T\}.$$

Para $\lambda_3 = -1$, temos que

$$Nuc(A - \lambda_3 I) = Nuc \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix} = \text{span}\{(0, 1, -1)^T\}.$$

Portanto, uma matrix S tal que $S^{-1}AS = D$ é uma matriz diagonal é dado por

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \quad \text{e} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Solution: Usaremos o processo de Gram-Schmidt. Para simplificar as contas primeiro usamos o processo de Gram-Schmidt para ortogonalizar e logo dividimos cada uns dos vetores encontrados pelas suas respectivas normas.

Assim, se $v_1 = (1, 2, -2)^T$, $v_2 = (4, 3, 2)^T$ e $v_3 = (1, 2, 1)^T$. Então, por Gram-Schmidt temos que $u_1 = (1/3, 2/3, -2/3)^T$, $u_2 = (2/3, 1/3, 2/3)^T$ e $u_3 = (-2/3, 2/3, 1/3)^T$ formam uma base ortonormal de \mathbb{R}^3 .

matrix diagonal cujos elementos são não-negativos.

Mostre que os elementos na diagonal de Σ são as raízes quadradas dos autovalores de A^TA . Esse tipo de decomposição é chamada de decomposição SVD.

Solution: Devido a que Σ é uma matriz diagonal temos que $\Sigma^T = \Sigma$ e que Σ^2 é também uma matriz diagonal. Além disso, já que $U^TU = I$ e $V^TV = I$, concluímos que $U^{-1} = U^T$ e $V^{-1} = V^T$.

O problema pede para mostrar que os elementos na diagonal de Σ são as raízes quadradas dos autovalores de A^TA . Assim, primeiro calculamos A^TA .

$$A^TA = (U\Sigma V^T)^TU\Sigma V^T = V\Sigma^TU^TU\Sigma V^T = V\Sigma^2V^T \text{(temos usado que } U^TU = I, \Sigma^T = \Sigma).$$

Da expressão obtemos que $V^{-1}(A^TA)V = \Sigma^2$. Em otras palavras, A^TA é uma matriz diagonalizável, cuja matriz diagonalizante é V e com Σ^2 como matriz diagonal associada. Portanto os elementos da diagonal de Σ^2 são os autovalores de A^TA e como consequência os elementos da diagonal de Σ são as raízes quadradas dos autovalores da matriz A^TA (aqui temos usado que os elementos de Σ são não-negativos).