How much data is sufficient to learn high-performing algorithms?

Ellen Vitercik

UC Berkeley

Purdue University, Theory Seminar

Nina Balcan

Dan DeBlasio

Travis Dick

Carl Kingsford

Tuomas Sandholm

Appeared in STOC'21

Data-driven algorithm design

Algorithms often have many tunable parameters Significant impact on runtime, solution quality, ...

Hand-tuning is time-consuming, tedious, and error prone

Data-driven algorithm design

Goal: Automate algorithm configuration via machine learning Algorithmically find good parameter settings using a set of "typical" inputs from application at hand

Training set

Parameter setting should - ideally - be good on future inputs

Example: Sequence alignment

Goal: Line up pairs of strings

Applications: Biology, natural language processing, etc.

Input: Two sequences S and S'

Output: Alignment of S and S'

$$S = A C T G$$

 $S' = G T C A$

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing:

(# matches) – ρ_1 · (# mismatches) – ρ_2 · (# indels) – ρ_3 · (# gaps)

$$S = A C T G$$

 $S' = G T C A$

Can sometimes access ground-truth, reference alignment

E.g., in computational biology: Bahr et al., Nucleic Acids Res.'01; Raghava et al., BMC Bioinformatics '03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04

Requires extensive manual alignments ...rather just run parameterized algorithm

How to tune algorithm's parameters? "There is considerable disagreement among molecular biologists about the correct choice" [Gusfield et al. '94]

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

-GRTCPKPDDLPFSTVVP-LKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKCTPE-VKCPFPSRPDNGFVNYPAKPTLYYK<mark>DKATFGCHDGY</mark>SLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

G<mark>RTCP</mark>---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKC<mark>TP</mark>EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with **poorly-tuned** parameters

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKCTPEVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with **poorly-tuned** parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTPEVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2^\prime Reference alignment A_2

3. Find parameters with good performance on average over T

Runtime, solution quality, etc.

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2^\prime Reference alignment A_2

3. Find parameters with good performance on average over T

Output alignment is close to reference alignment

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

Sequence S_1 Sequence S_1' Reference alignment A_1 Sequence S_2 Sequence S_2^\prime Reference alignment A_2

3. Find parameters with good performance on average over T Key question (focus of talk):

Will those parameters have good future performance?

Key question (focus of talk):

Will those parameters have good future performance?

Existing research

2000 2021

Existing research

Automated algorithm configuration and selection

[Gupta, Roughgarden, ITCS'16; Balcan, Nagarajan, Vitercik, White, COLT'17; Balcan, Cambridge University Press '20; ...]

Learning-augmented algorithms

[Lykouris, Vassilvitskii, ICML'18; Mitzenmacher, NeurIPS'18; ...]

Applied research

Theory research

2021

2000

-1 ... 1 ... 1 ... 1 ...

Theoretical guarantees are needed to build firm foundations

This talk: Main result

Key question (focus of talk):

Good performance on average over training set implies good future performance?

Answer this question for any parameterized algorithm where:

Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, ...

This talk: Main result

Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, ...

Algorithmic performance on fixed input ρ_2

Piecewise constant

Piecewise linear

Piecewise ...

Example: Sequence alignment

Distance between algorithm's output given S, S' and ground-truth alignment is p-wise constant

Piecewise structure

Piecewise structure unifies **seemingly disparate** problems:

Integer programming

Balcan, Dick, Sandholm, V, ICML'18 Balcan, Nagarajan, V, White, COLT'17

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, V, STOC'21

Clustering

Balcan, Nagarajan, V, White, COLT'17 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, V, EC'18

Online configuration [Gupta, Roughgarden, ITCS'16, Cohen-Addad and Kanade, AISTATS'17] Exploited piecewise-Lipschitz structure to provide regret bounds [Balcan, Dick, V, FOCS'18; Balcan, Dick, Pegden, UAI'20; Balcan, Dick, Sharma, AISTATS'20]

Piecewise structure

Piecewise structure unifies **seemingly disparate** problems:

Integer programming

Balcan, Dick, Sandholm, V, ICML'18 Balcan, Nagarajan, V, White, COLT'17

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, V, STOC'21

Clustering

Balcan, Nagarajan, V, White, COLT'17 Balcan, Dick, White, NeurIPS'18 Balcan, Dick, Lang, ICLR'20

Greedy algorithms

Gupta, Roughgarden, ITCS'16

Mechanism configuration

Balcan, Sandholm, V, EC'18

Ties to a long line of research on machine learning for revenue maximization

Likhodedov, Sandholm, AAAI'04, '05; Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Devanur, Huang, Psomas, STOC'16; ...

Primary challenge:

Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance

For well-understood functions in machine learning theory:

Simple connection between function parameters and value

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
- 4. Conclusion and future directions

Model

 \mathbb{R}^d : Set of all parameters

 \mathcal{X} : Set of all inputs

Example: Sequence alignment

 \mathbb{R}^3 : Set of alignment algorithm parameters

 \mathcal{X} : Set of sequence pairs

$$S = A C T G$$

 $S' = G T C A$

One sequence pair $x = (S, S') \in \mathcal{X}$

Algorithmic performance

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x$ E.g., runtime, solution quality, distance to ground truth, ...

Assume $u_{\rho}(x) \in [-1,1]$

Can be generalized to $u_{\rho}(x) \in [-H, H]$

Algorithmic performance

 $u_{\rho}(x)$ = distance between algorithm's output and ground-truth

$$S = A C T G$$

 $S' = G T C A$
 $A - C T G$
 $- G T C A -$

One sequence pair $x = (S, S') \in \mathcal{X}$

Model

Standard assumption: Unknown distribution \mathcal{D} over inputs Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Key question: For any parameter setting ρ , is **average** utility on training set close to **expected** utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any ρ ,

Key question: For any parameter setting ρ , is **average** utility on training set close to **expected** utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any ρ ,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \leq ?$$

Empirical average utility

Key question: For any parameter setting ρ , is **average** utility on training set close to **expected** utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any ρ ,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \leq ?$$

Expected utility

Key question: For any parameter setting ρ , is **average** utility on training set close to **expected** utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any ρ ,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \leq ?$$

Good average empirical utility - Good expected utility

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusion and future directions

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing:

(# matches) $-\rho_1 \cdot$ (# mismatches) $-\rho_2 \cdot$ (# indels) $-\rho_3 \cdot$ (# gaps)

$$S = A C T G$$

 $S' = G T C A$

Lemma:

For any pair S, S', there's a small partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Lemma:

For any pair S, S', there's a small partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters

Distance between algorithm's output and ground-truth alignment

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusion and future directions

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^d\} \quad \text{"Primal" function class}$

Typically, prove guarantees by bounding $\emph{complexity}$ of \emph{U}

VC dimension, pseudo-dimension, Rademacher complexity, ...

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^d\} \quad \text{"Primal" function class}$

Typically, prove guarantees by bounding $\emph{complexity}$ of $\mathcal U$

Challenge: U is gnarly

E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot or visualize functions $u_{
 ho}$
- No obvious notions of Lipschitz continuity or smoothness to rely on

Primal & dual classes

```
u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^d \text{ on input } x
\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^d\} \quad \text{"Primal" function class}
```

```
u_{x}^{*}(\boldsymbol{\rho}) = \text{utility as function of parameters}
u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)
u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)
u_{x}^{*}(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)
"Dual" function class
```

- Dual functions have simple, Euclidean domain
- ullet Often have ample structure can use to bound complexity of ${\mathcal U}$

Piecewise-structured functions

Dual functions $u_x^*: \mathbb{R}^d \to \mathbb{R}$ are piecewise-structured

Clusteringalgorithm
configuration

Integer programming algorithm configuration

Selling mechanism configuration

Greedyalgorithm
configuration

Computational biology algorithm configuration

Voting mechanism configuration

Piecewise-structured functions

Online algorithm configuration

Gupta, Roughgarden, ITCS'16, Cohen-Addad and Kanade, AISTATS'17

Problem instances arrive online, not necessarily i.i.d.

Exploited piecewise-Lipschitz structure to give regret bounds

Balcan, Dick, V, FOCS'18; Balcan, Dick, Pegden, UAI'20; Balcan, Dick, Sharma, AISTATS'20

Regret bounds require additional structure:

Boundaries between pieces don't concentrate

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusion and future directions

Intrinsic complexity

"Intrinsic complexity" of function class $\mathcal G$

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
 - VC dimension
 - Pseudo-dimension

VC dimension

Complexity measure for binary-valued function classes \mathcal{F} (Classes of functions $f: \mathcal{Y} \to \{-1,1\}$)

E.g., linear separators

VC dimension of \mathcal{F}

Size of the largest set $S \subseteq Y$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$ $VCdim(\mathcal{F}) \geq 3$

VC dimension of \mathcal{F}

Size of the largest set $S \subseteq Y$ that can be labeled in all $2^{|S|}$ ways by functions in $\mathcal F$

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$

 $VCdim(\mathcal{F}) \geq 3$

 $VCdim(\{Linear separators in \mathbb{R}^d\}) = d + 1$

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, '71]: For any dist. \mathcal{D} over \mathcal{Y} , given $N = \tilde{O}\left(\frac{\operatorname{VCdim}(\mathcal{F})}{\epsilon^2}\right)$ samples $y_1, \dots, y_N \sim \mathcal{D}$, WHP $\forall f \in \mathcal{F}$, $\left| \frac{1}{N} \sum_{i=1}^{N} f(y_i) - \mathbb{E}_{y \sim \mathcal{D}}[f(y)] \right| \le \epsilon$

Pseudo-dimension

Complexity measure for real-valued function classes \mathcal{G} (Classes of functions $g: \mathcal{Y} \to [0,1]$)

E.g., affine functions

Pseudo-dimension of \mathcal{G}

Size of the largest set $\{y_1, ..., y_N\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_1, ..., z_N \in \mathbb{R}$, all 2^N above/below patterns achieved by functions in \mathcal{G}

Example: $G = Affine functions in \mathbb{R}$

 $Pdim(G) \ge 2$

Sample complexity using pseudo-dim

Theorem [Pollard, '84]: For any dist. \mathcal{D} over \mathcal{Y} ,

given
$$N = \tilde{O}\left(\frac{\operatorname{Pdim}(\mathcal{G})}{\epsilon^2}\right)$$
 samples $y_1, \dots, y_N \sim \mathcal{D}$, WHP $\forall g \in \mathcal{G}$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} g(y_i) - \mathbb{E}_{y \sim \mathcal{D}}[g(y)] \right| \le \epsilon$$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Training set of size $\tilde{O}\left(\frac{1}{\epsilon^2}\left(\operatorname{VCdim}(\mathcal{F}^*) + \operatorname{Pdim}(\mathcal{G}^*)\right)\log k\right)$ implies WHP $\forall \boldsymbol{\rho}$, |avg utility over training set - exp utility| $\leq \epsilon$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Training set of size $\tilde{O}\left(\frac{1}{\epsilon^2}\left(\operatorname{VCdim}(\mathcal{F}^*) + \operatorname{Pdim}(\mathcal{G}^*)\right)\log k\right)$ implies WHP $\forall \boldsymbol{\rho}$, $|\operatorname{avg}$ utility over training set - \exp utility $|\leq \epsilon|$

 \mathcal{F} , \mathcal{G} are typically very well structured

- \mathcal{G} = set of all **constant** functions
- $\mathcal{G} = \text{set of all linear}$ functions in \mathbb{R}^d

- $\Rightarrow Pdim(G^*) = O(1)$
- $\Rightarrow Pdim(G^*) = O(d)$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\boldsymbol{\rho}) = g(\boldsymbol{\rho})$ for some $g \in \mathcal{G}$.

Theorem:

```
\operatorname{Pdim}(\mathcal{U}) = \tilde{O}\big((\operatorname{VCdim}(\mathcal{F}^*) + \operatorname{Pdim}(\mathcal{G}^*))\log k\big)
Primal function class \mathcal{U} = \{u_{\rho} | \rho \in \mathbb{R}^d\}
```

Each boundary function $f: \mathbb{R}^d \to \{-1,1\}$ splits \mathbb{R}^d into 2 regions

Given D boundaries, how many sign patterns do they make?

$$\left| \left\{ \begin{pmatrix} f_1(\boldsymbol{\rho}) \\ \vdots \\ f_D(\boldsymbol{\rho}) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq ?$$

Given D boundaries, how many sign patterns do they make?

$$\left| \left\{ \begin{pmatrix} f_1(\boldsymbol{\rho}) \\ \vdots \\ f_D(\boldsymbol{\rho}) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq \mathbf{?}$$

Note: Sauer's lemma tells us that for any D points $\rho_1, ..., \rho_D \in \mathbb{R}^d$

$$\left| \left\{ \begin{pmatrix} f(\boldsymbol{\rho}_1) \\ \vdots \\ f(\boldsymbol{\rho}_D) \end{pmatrix} : f \in \mathcal{F} \right\} \right| \le (eD)^{\text{VCdim}(\mathcal{F})}$$

This is where transitioning to the dual comes in handy!

Given D boundaries, how many sign patterns do they make?

$$\left| \left\{ \begin{pmatrix} f_1(\boldsymbol{\rho}) \\ \vdots \\ f_D(\boldsymbol{\rho}) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq (eD)^{\text{VCdim}(\mathcal{F}^*)}$$

For any problem instances $x_1, ..., x_N$ and targets $z_1, ..., z_N \in \mathbb{R}$,

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{\rho}(x_1) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{\rho}(x_N) - z_N) \end{pmatrix} : \rho \in \mathbb{R}^d \right\} \right| \leq ?$$

Switching to the dual functions,

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq ?$$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq \mathbf{?}$$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq ?$$

The duals $u_{x_1}^*, ..., u_{x_N}^*$ correspond to Nk boundary functions in \mathcal{F} How many regions $R_1, ..., R_M$ in \mathbb{R}^d ? $M \leq (eNk)^{\text{VCdim}(\mathcal{F}^*)}$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq 2$$

 $\forall \boldsymbol{\rho} \in R_j$, duals are simultaneously structured: $u_{x_i}^*(\boldsymbol{\rho}) = g_i(\boldsymbol{\rho}), \forall i$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{\chi_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{\chi_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

 $\forall \boldsymbol{\rho} \in R_j$, duals are simultaneously structured: $u_{x_i}^*(\boldsymbol{\rho}) = g_i(\boldsymbol{\rho}), \forall i$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(g_1(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(g_N(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{\chi_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{\chi_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq ?$$

 $\forall \boldsymbol{\rho} \in R_j$, duals are simultaneously structured: $u_{x_i}^*(\boldsymbol{\rho}) = g_i(\boldsymbol{\rho})$, $\forall i$

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(g_1(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(g_N(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in R_j \right\} \right| \leq (eN)^{\operatorname{Pdim}(\mathcal{G}^*)}$$
Follows from key lemma

$$\left| \left\{ \begin{pmatrix} \operatorname{sgn}(u_{x_1}^*(\boldsymbol{\rho}) - z_1) \\ \vdots \\ \operatorname{sgn}(u_{x_N}^*(\boldsymbol{\rho}) - z_N) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right|$$

$$\leq (eNk)^{\operatorname{VCdim}(\mathcal{F}^*)} (eN)^{\operatorname{Pdim}(\mathcal{G}^*)}$$
Number of regions
Number of sign patterns within each region

Pdim(
$$\mathcal{U}$$
) equals largest N s.t. $2^{N} \leq (eNk)^{\text{VCdim}(\mathcal{F}^{*})}(eN)^{\text{Pdim}(\mathcal{G}^{*})}$, so $\text{Pdim}(\mathcal{U}) = \tilde{O}\big((\text{VCdim}(\mathcal{F}^{*}) + \text{Pdim}(\mathcal{G}^{*}))\log k\big)$

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusion and future directions

Piecewise constant dual functions

Lemma:

Utility is piecewise constant function of parameters

Sequence alignment guarantees

Theorem: Training set of size $\tilde{O}\left(\frac{\log(\text{seq. length})}{\epsilon^2}\right)$ implies WHP $\forall \boldsymbol{\rho}$, | avg utility over training set - exp utility| $\leq \epsilon$

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
- 4. Conclusion and future directions

Conclusion

Guarantees for learning high-performing algorithm parameters

- Apply if performance is piecewise-structured function of parameters
- Proved by exploiting connections between primal and dual classes

Algorithm families from diverse domains exhibit this structure

- Clustering
- Economics (mechanism design)
- Integer programming
- Computational biology

Future research: Algorithms

This talk: Generalization guarantees

Apply to any configuration procedure (approximate, heuristic, optimal)

How to quickly find **provably** good parameters?

Growing body of work, but still many open questions

Kleinberg, Leyton-Brown, Lucier IJCAI'17

Weisz, György, Szepesvári ICML '18, '19

Kleinberg, Leyton-Brown, Lucier, Graham NeurlPS'19

Weisz, György, Lin, Graham, Leyton-Brown, Szepesvári, Lucier NeurIPS'20

Future research: Mapping to parameters

This talk: Learn 1 parameter setting that's good in expectation

Future research: More flexible approach

Learn mapping from inputs to parameter settings

Future research: Data-dependent bound

Strength of our results: Input-distribution agnostic
Apply to any distribution over instances

Can be loose for non-worst-case distributions

Guarantees that improve based on "niceness" of distribution?

- Covering-style analysis
- Rademacher complexity