# Zaawansowane metody Uczenia maszynowego -Projekt nr 1

Jadwiga Słowik

#### Wykorzystane narzędzia

- Python
- Jupyter-notebook
- Scikit-learn
- Categorical\_encoders

#### Analiza danych

Obliczenie współczynnika korelacji dla wszystkich par kolumn

Narysowanie wykresów rozkładu/histogramów dla każdej zmiennej

### Przykładowy rozkład zmiennej (Var109)



#### Proces oczyszczania danych

- Usunięcie kolumn, które mają więcej niż 30% braków danych
- Obliczenie współczynnika korelacji dla wszystkich par kolumn, a następnie usunięcie zmiennych skorelowanych >= 0,8
- Zastąpienie braków danych:
  - o Dla zmiennych ilościowych: średnia
  - o Dla zmiennych jakościowych: moda
- Kodowanie zmiennych kategorycznych: factor/mean encoding

#### Testowane klasyfikatory

- Random forest
  - o max\_depth=30
- XGBoost
  - o learning\_rate=0.04
- Naive Bayes
- QDA

#### Random forest

|   | fit_time  | score_time | test_f1  | test_precision | test_recall | train_f1 | train_precision | train_recall |
|---|-----------|------------|----------|----------------|-------------|----------|-----------------|--------------|
| 0 | 16.881244 | 0.367998   | 0.704641 | 0.927778       | 0.568027    | 1.0      | 1.0             | 1.0          |
| 1 | 17.171040 | 0.370342   | 0.645435 | 0.853933       | 0.518771    | 1.0      | 1.0             | 1.0          |
| 2 | 16.915865 | 0.353736   | 0.716102 | 0.944134       | 0.576792    | 1.0      | 1.0             | 1.0          |
| 3 | 17.671090 | 0.357593   | 0.671053 | 0.938650       | 0.522184    | 1.0      | 1.0             | 1.0          |
| 4 | 17.412162 | 0.373471   | 0.646018 | 0.918239       | 0.498294    | 1.0      | 1.0             | 1.0          |
| 5 | 16.832811 | 0.360960   | 0.678038 | 0.903409       | 0.542662    | 1.0      | 1.0             | 1.0          |
| 6 | 16.952564 | 0.352811   | 0.686071 | 0.877660       | 0.563140    | 1.0      | 1.0             | 1.0          |
| 7 | 16.970798 | 0.445207   | 0.643478 | 0.886228       | 0.505119    | 1.0      | 1.0             | 1.0          |
| 8 | 16.941810 | 0.373797   | 0.675269 | 0.912791       | 0.535836    | 1.0      | 1.0             | 1.0          |
| 9 | 17.081994 | 0.355108   | 0.645161 | 0.872093       | 0.511945    | 1.0      | 1.0             | 1.0          |

#### **XGBoost**

|   | fit_time  | score_time | test_f1  | test_precision | test_recall | train_f1 | train_precision | train_recal |
|---|-----------|------------|----------|----------------|-------------|----------|-----------------|-------------|
| 0 | 27.246294 | 0.057673   | 0.744094 | 0.883178       | 0.642857    | 0.747777 | 0.873354        | 0.653773    |
| 1 | 27.341921 | 0.057446   | 0.690058 | 0.804545       | 0.604096    | 0.755411 | 0.880424        | 0.661486    |
| 2 | 27.002709 | 0.060656   | 0.752941 | 0.884793       | 0.655290    | 0.746482 | 0.870268        | 0.653525    |
| 3 | 26.821100 | 0.057945   | 0.718876 | 0.873171       | 0.610922    | 0.751027 | 0.874559        | 0.658074    |
| 4 | 26.835882 | 0.056246   | 0.701826 | 0.865000       | 0.590444    | 0.752921 | 0.877016        | 0.659591    |
| 5 | 26.679966 | 0.059034   | 0.741176 | 0.870968       | 0.645051    | 0.750000 | 0.875126        | 0.656179    |
| 6 | 27.010275 | 0.056951   | 0.698842 | 0.804444       | 0.617747    | 0.753028 | 0.876636        | 0.659970    |
| 7 | 26.865850 | 0.056101   | 0.705426 | 0.816143       | 0.621160    | 0.751782 | 0.873933        | 0.659591    |
| 8 | 26.394756 | 0.056070   | 0.724070 | 0.848624       | 0.631399    | 0.747728 | 0.870968        | 0.655042    |
| 9 | 26.762205 | 0.057797   | 0.678295 | 0.784753       | 0.597270    | 0.754439 | 0.879798        | 0.660349    |

## Naive Bayes

|   | fit_tlme | score_time | test_f1  | test_precision | test_recall | train_f1 | train_precision | train_recall |
|---|----------|------------|----------|----------------|-------------|----------|-----------------|--------------|
| 0 | 0.034720 | 0.014985   | 0.178771 | 0.109339       | 0.489796    | 0.177292 | 0.107705        | 0.500948     |
| 1 | 0.032970 | 0.014978   | 0.176295 | 0.106782       | 0.505119    | 0.177799 | 0.108860        | 0.484837     |
| 2 | 0.034006 | 0.014729   | 0.214433 | 0.134251       | 0.532423    | 0.182451 | 0.113991        | 0.456785     |
| 3 | 0.033607 | 0.014551   | 0.171100 | 0.108379       | 0.406143    | 0.186104 | 0.116982        | 0.454890     |
| 4 | 0.034936 | 0.014762   | 0.181971 | 0.120805       | 0.368601    | 0.177501 | 0.118740        | 0.351403     |
| 5 | 0.033266 | 0.014964   | 0.168781 | 0.100658       | 0.522184    | 0.178147 | 0.106471        | 0.545110     |
| 6 | 0.031932 | 0.014374   | 0.182637 | 0.112520       | 0.484642    | 0.179972 | 0.110032        | 0.493935     |
| 7 | 0.031862 | 0.014946   | 0.173967 | 0.106175       | 0.481229    | 0.180583 | 0.110489        | 0.493935     |
| 8 | 0.032212 | 0.014344   | 0.172539 | 0.104952       | 0.484642    | 0.180374 | 0.110276        | 0.495072     |
| 9 | 0.032542 | 0.015239   | 0.189533 | 0.119536       | 0.457338    | 0.184208 | 0.116064        | 0.446171     |

# QDA

|   | fit_time | score_time | test_f1  | test_precision | test_recall | train_f1 | train_precision | train_recall |
|---|----------|------------|----------|----------------|-------------|----------|-----------------|--------------|
| 0 | 0.036416 | 0.014106   | 0.178771 | 0.109339       | 0.489796    | 0.177292 | 0.107705        | 0.500948     |
| 1 | 0.032897 | 0.014850   | 0.176295 | 0.106782       | 0.505119    | 0.177799 | 0.108860        | 0.484837     |
| 2 | 0.032907 | 0.014835   | 0.214433 | 0.134251       | 0.532423    | 0.182451 | 0.113991        | 0.456785     |
| 3 | 0.032007 | 0.014848   | 0.171100 | 0.108379       | 0.406143    | 0.186104 | 0.116982        | 0.454890     |
| 4 | 0.032856 | 0.015543   | 0.181971 | 0.120805       | 0.368601    | 0.177501 | 0.118740        | 0.351403     |
| 5 | 0.034144 | 0.014816   | 0.168781 | 0.100658       | 0.522184    | 0.178147 | 0.106471        | 0.545110     |
| 6 | 0.033852 | 0.015308   | 0.182637 | 0.112520       | 0.484642    | 0.179972 | 0.110032        | 0.493935     |
| 7 | 0.033523 | 0.014828   | 0.173967 | 0.106175       | 0.481229    | 0.180583 | 0.110489        | 0.493935     |
| 8 | 0.031921 | 0.015304   | 0.172539 | 0.104952       | 0.484642    | 0.180374 | 0.110276        | 0.495072     |
| 9 | 0.033754 | 0.015100   | 0.189533 | 0.119536       | 0.457338    | 0.184208 | 0.116064        | 0.446171     |

## Dziękuję za uwagę