Théorie des Graphes

5

RECHERCHE DES « PLUS COURTS » CHEMINS

Sommaire

5 RECHE	RCHE DES « PLUS COURTS » CHEMINS	1
	troduction	
	Objectif	
5.1.2	Définitions	2
5.1.3	Circuits	2
5.1.4	Résultats des algorithmes	2
5.2 DI	JKSTRA	3
5.2.1	Principe de fonctionnement	3
5.2.2	Exemple	3
5.3 BE	ELLMAN	5
	Principe	5

5.1 Introduction

G=(S,A) un graphe valué.

5.1.1 Objectif

Longueur d'un chemin = somme des valeurs associées aux arcs formant le chemin. Exemples :

- le moins de km à parcourir entre deux villes
- le trajet le plus rapide entre deux stations de métro
- le coût minimum (nombre ou coût d'actions à effectuer) pour transformer une situation d'un état initial à un état solution
- ...

5.1.2 Définitions

5.1.2.1 Coût / Poids d'un arc

Valeur associée à l'arc

5.1.2.2 Coût cumulé / Coût d'un chemin / Longueur d'un chemin

Somme cumulée des coûts des arcs constituant un chemin

5.1.3 Circuits

```
Soit un circuit cx = (x,y1,...,yn,x)
Soit un chemin c = (x1,x2,...,x,...,xn)
Soit ci un chemin de x1 à xn qui contienne i fois le circuit cx
```

Soit coût(cx) > 0 coût(c0) < coût(ci), quelle que soit la valeur de i > 0

donc c0 est le plus court chemin de x1 à xn

il y a donc une infinité de « plus court » chemin d

donc on ne peut pas trouver de plus court chemin

cx est alors dit « circuit absorbant » (coût négatif dans une recherche de plus court chemin).

La recherche du plus court chemin nécessite l'absence de circuit absorbant

5.1.4 Résultats des algorithmes

Selon la méthode utilisée, on calculera :

- 1. le plus court chemin entre deux sommets donnés
- 2. le plus court chemin d'un sommet donné à tous les autres
- 3. les plus courts chemins de tout sommet x à tout autre sommet y

© Hervé Barbot, 2009

5.2 DIJKSTRA

Recherche des plus courts chemins d'un sommet initial x à tout autre sommet du graphe.

Contraintes:

- Pas de circuit absorbant (contrainte générale au problème)
- Les coûts des arcs sont tous positifs ou nuls

5.2.1 Principe de fonctionnement

$$G = (S, A)$$

On partitionne l'ensemble des sommets en deux parties :

CC: ceux pour lesquels le « plus court chemin » est connu de façon définitive S-CC: ceux pour lesquels on peut avoir une longueur déjà calculée, mais celle-ci ne correspond pas nécessairement au plus court chemin

Initialisation:

- CC ← { init } ensemble des sommets pour lesquels le plus court chemin est déterminé
- coût chemin (init) ← 0
- pour tout successeur s de init : coût chemin (s) ← coût (init , s) (coût de l'arc)
- pour tout autre sommet x : coût chemin (x) ← infini

Itération jusqu'à ce que CC = S :

- sélectionner x dans S-CC tel que coût chemin (x) soit la valeur minimale de celles associées aux éléments de S-CC
- CC ← C + x (L'algorithme et ses conditions d'utilisation font que la valeur actuelle est celle du plus court chemin)
- pour tout successeur y de x encore dans S-CC : coût chemin (y) ← MIN (coût chemin (y) , coût chemin (x) + coût (x , y))

5.2.2 Exemple

Recherche des plus courts chemins en partant de A

© Hervé Barbot, 2009

Théorie des Graphes

Recherche des « plus courts » chemins

CC	Α	В	C	D	E
		Min(A+10)	Min(A+20 , B+5)	Min(A+30 , C+5)	Min(C+10, D+10)
Α	0				
	0	10	20	30	
В			A+20 / B+5	A+30 / C+5	C+10 / D+10
			0+20 / 10+5	0+30 / 20+5	20+10 / 30+10
	0	10	15	25	30
С				A+30 / C+5	C+10 / D+10
				0+30 / 15+5	15+10 / 25+10
	0	10	15	20	25
D					C+10 / D+10
					15+10 / 20+10
	0	10	15	20	25
Е	0	10	15	20	25

© Hervé Barbot, 2009

5.3 BELLMAN

Recherche du plus court chemin d'un sommet donné à tout autre sommet

Contraintes:

• Pas de circuit absorbant (contrainte générale au problème)

Note : Contrairement à l'algorithme de Dijkstra, celui-ci autorise les arcs à valeur négative.

5.3.1 Principe

Calcul de 'init' à tout y

```
Soit x1, x2, ... les prédécesseurs de y
Le plus court chemin de init à y a pour coût :
coût chemin ( y ) = MIN ( coût chemin ( xi ) + coût ( xi , y ) )
```

L'idée est d'initialiser les coûts des chemins à une valeur majorante, et de les diminuer progressivement en appliquant cette formule pour tout arc $x \rightarrow y$, en fonction de la valeur précédente associée à ses prédécesseurs.

Le mécanisme s'arrête lorsqu'aucune modification n'intervient.

```
Initialisation:
```

```
coût chemin ( init ) = 0
pour tout autre sommet x : coût chemin ( x ) = infini

Itération jusqu'à stabilité :
pour tout sommet y :
pour tout prédécesseur x de y :
```

coût chemin $(y) \leftarrow \min (coût chemin (y), coût chemin (x) + coût (x, y))$

© Hervé Barbot, 2009 5