Homework set 12

Due by 15:00 on Monday, November 13, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Problem 1. Let $V = \text{Hom}(\mathbf{R}^2, \mathbf{R}^2)$ be the Banach space of endomorphisms of \mathbf{R}^2 . Consider

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

in V. Show that $\sigma(A) = \emptyset$.

Recall that an *eigenspace* E_{λ} is the subspace generated by the eigenvectors corresponding to the eigenvalue λ of an operator.

Problem 2. A subspace $Y \subset X$ is *invariant* under an operator $T: X \to X$ if $T(Y) \subset Y$. Show that an eigenspace of T is invariant under T. Give an example.

Problem 3. Consider the right-shift operator $R:\ell^2\to\ell^2$. Find its point, continuous, and residual spectra.

Problem 4. Consider $C^0([0,1])$ with the sup norm.

- 1. Fix $g \in C^0([0,1])$ and let T(f) = fg be multiplication by g. Find $\sigma(T)$.
- 2. Fix real numbers a,b such that $[a,b]\subset [0,1]$. Find a linear operator $T:C^0([0,1])\to C^0([0,1])$ such that $\sigma(T)=[a,b]$.

Problem 5. Let $T: X \to X$ be an operator on a normed space. Let $\lambda_1, \ldots, \lambda_n$ be pairwise different eigenvalues of T and x_1, \ldots, x_n eigenvectors such that $T(x_j) = \lambda_j x_j$. Show that $\{x_1, \ldots, x_n\}$ is linearly independent.