Optimización PARCIAL 1

24 de Septiembre de 2024

- 1. En cada uno de los siguientes problemas justifique su respuesta usando condiciones de optimalidad:
 - a) Mostrar que la función $f(x,y) = (x^2 4)^2 + y^2$ tiene dos mínimos globales y un punto estacionario, que no es ni máximo local ni mínimo local.
 - b) Encontrar todos los mínimos locales de la función $f(x,y) = \frac{1}{2}x^2 + x \cos(y)$.
 - c) Encontrar todos los mínimos y máximos locales de la función $f(x,y) = \sin(x) + \sin(y) + \sin(x+y)$ en el cojunto $\{(x,y) \mid 0 < x < 2\pi, \ 0 < y < 2\pi\}$
 - d) Mostrar que la función $f(x,y) = (y-x^2)^2 x^2$ tiene sólo un punto estacionario que no es ni máxmo ni mínimo local.
 - e) Considere la función $f(x,y) = (y-x^2)^2 x^2$ en el conjunto $\{(x,y) \mid -1 \le y \le 1\}$. Mostrar que existe al menos un mínimo global y encontrarlos todos los mínimos globales.
- 2. Considere el problema irrestricto

minimizar
$$f(x_1, x_2) = x_1^2 - x_1 x_2 + 2x_2^2 - 2x_1 + e^{(x_1 + x_2)}$$

- a) Escriba las condiciones necesarias de optimalidad de primer orden. ¿Para esta función también son condiciones suficientes? Justificar.
- b) ¿Es el punto $\bar{x} = (0,0)$ un mínimo?
- c) Halle una dirección $d \in \mathbb{R}^2$ tal que $\nabla f(\bar{x})^T d < 0$.
- d) Minimice la función f a partir de \bar{x} con la dirección obtenida en (c).
- 3. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Sea $F: \mathbb{R}^n \to \mathbb{R}^n$ con derivadas continuas. Sea $f: \mathbb{R}^n \to \mathbb{R}$ dada por $f(x) = ||F(x)||^2$. Sea \tilde{x} minimizador local de f tal que $J_F(\tilde{x})$ es no singular. Entonces \tilde{x} es solución del sistema F(x) = 0.
 - b) Sea $f: \mathbb{R} \to \mathbb{R}$, $f \in C^2$, f'(0) < 0 y f''(x) < 0 para todo $x \in \mathbb{R}$. Sea $\alpha \in (0,1)$. Entonces para todo x > 0 vale que $f(x) \le f(0) + \alpha x f'(0)$.
 - c) Sea $f: \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$. Suponga que para $k = 0, 1, 2, \ldots$, sea $x^{k+1} = x^k \lambda_k \nabla f(x^k)$, donde $\lambda^k \geq \bar{\lambda} > 0$ para todo $k \geq 0$. Entonces, si $x^k \to x^*$ vale que $\nabla f(x^*) = 0$.
- 4. Dado un triángulo en el plano, considerar el problema de encontrar un punto tal que la suma de sus distancias a los vértices del triángulo es mínima. Mostrar que ese punto o es un vértice o es tal que el ángulo que forma con cualquier par de vértices es de 120° .
- 5. Un mínimo local x^* de una función f se dice que es localmente estable si existe $\delta > 0$ tal que toda sucesión $\{x^k\}$ con $f(x^k) \to f(x^*)$ y $||x^k x^*|| < \delta$, para todo k, converge a x^* . Suponga que f es una función continua y sea x^* un mínimo local de f Mostrar que x^* es localmente estable si y sólo si x^* es un mínimo local estricto.

1

6. Considere el método de Newton truncado con el tamaño del paso elegido por la regla de Armijo con longitud inicial s=1 y $\sigma<1/2$, y asuma que $\{x^k\}$ converge a un mínimo local no singular x^* . Asuma que las matrices H^k y las direcciones d^k satisfacen

$$\lim_{k\to\infty}\|H^k-\nabla^2 f(x^k)\|=0,\quad, \lim_{k\to\infty}\frac{\|H^k d^k+\nabla f(x^k)\|}{\|\nabla f(x^k)\|}=0.$$

Probar que $\{\|x^k - x^*\|\}$ converge superlinealmente.

7. Resolver computacionalmente con el método que considere apropiado el problema $F(x) = (f_1(x), \dots, f_n(x))^T = 0$, con $f_i(x) : \mathbb{R}^n \to \mathbb{R}$ dadas por:

$$f_i(x) = \exp(-t_i x_1) - \exp(-t_i x_2) - x_3(\exp(-t_i) - \exp(-10t_i))t_i = i/10$$
 para $i = 1, \dots, 3$ con $x^0 = (0, 10, 20)$.