1. In this experiment, you will determine the constant, α , of the beaker using two methods and the constant, β , of the spring provided. (40 marks)

METHOD I

(a) Measure and record the length, l_0 , of the spring as shown in Figure 1

- (b) Suspend a metre rule from the clamp of a retort stand using a piece of thread.
- (c) Adjust the position of the loop of the thread along the metre rule until the metre rule balances horizontally.
- (d) Read and record the balance point, G.
- (e) Tie a loop through one end of the spring.
- (f) Suspend the spring from the balanced metre rule at a distance, d = 17.5 cm from the zero end of the metre rule.
- (g) Suspend a mass labelled, Q, at the other end of the spring and balance the metre rule again as shown in Figure 2.

- (h) Measure and record the new length, l, of the spring.
- (i) Calculate the value of the extension, e, in metres from the expression, $e = l l_0$.
- (j) Adjust the position of the loop suspending the metre rule to G.
- (k) Record the length, l_1 , of the spring from point G.

(l) Attach a mass of 50 g to the bottom of the beaker provided using sellotape.

(m) Suspend the beaker from the metre rule as shown in Figure 3.

- (n) Place a mass, M = 0.100 kg into the beaker.
- (o) Adjust the position of the beaker until the metre rule balances horizontally.
- (p) Measure and record the balance length l_2 .
- (q) Repeat procedure (n) to (p) for values of M = 0.200, 0.300, 0.400, 0.500 and 0.600 kg.
- (r) Tabulate your results including values of $\frac{l_1}{l_2}$ and $y = e \frac{l_1}{l_2}$.
- (s) Plot a graph of y against M.
- (t) Determine the slope, S, of the graph.
- (u) Calculate the value of the constant, β , from the expression;

$$\beta = \frac{g}{S}$$
, where $g = 9.81$ ms⁻².

- (v) Read and record the intercept, C, on the y axis.
- (w) Calculate the constant, α_I , from the expression;

$$\alpha_I = \frac{C\beta}{g} - 0.050.$$

DISMANTLE THE SET-UP

METHOD II

- (a) Suspend the half metre rule from the clamp of a retort stand using a piece of thread.
- (b) Note the balance point G_1 .
- (c) Keeping the loop suspending the half metre rule at G_1 , suspend mass Q, from the left of G_1 and the beaker from the right of G_1 as shown in Figure 4.

- (d) Adjust the positions of Q and of the beaker until the half metre rule balances horizontally.
- (e) Read and record lengths y_1 and y_2 from the zero end of the half metre rule.
- (f) Calculate the value of x_1 from the expression $x_1 = G_1 y_1$ and x_2 from the expression $x_2 = y_2 G_1$.
- (g) Calculate the value of, α_2 , from the expression;

$$\alpha_2 = \frac{0.150 \, x_1 - 0.050 \, x_2}{x_2}.$$

(h) Calculate the value of, α , from the expression;

$$\alpha = \frac{1}{2} (\alpha_1 + \alpha_2).$$

DISMANTLE THE SET-UP

In this experiment, you will determine the constant, γ , of the glass block provided using two methods. (40 marks)

METHOD I

- (a) Fix a plain white sheet of paper on the soft board using drawing pins.
- (b) Place the glass block in the middle of the plain sheet of paper with the broadest face upwards and trace its outline ABCD.
- (c) Remove the glass block.
- (d) Mark a point O on AB, 4.0 cm from A and draw a normal at O.
- (e) Draw a line QO such that angle $\alpha = 40^{\circ}$ as shown in Figure 5.

Fig. 5

- (f) Draw a line EF = 15.0 cm long parallel to DC, a distance y = 5.0 cm.
- (g) Fix two optical pins P_1 and P_2 vertically on the line QO.
- (h) Replace the glass block on its outline.
- (i) While looking through the glass block from side DC, fix two optical pins P_3 and P_4 such that they appear to be in line with the images of P_1 and P_2 .
- (j) Remove the glass block and the pins.
- (k) Draw a line through P_3 and P_4 to meet DC at G and EF at K.
- (1) Join G to O.
- (m) Draw a normal NS to DC at G.
- (n) Measure and record angles ϕ and θ , and distance d.
- (o) Calculate the value of, γ_1 , from the expression; $\gamma_1 = \frac{y \sin \phi}{d \cos \theta}$.

METHOD II

- (a) Fix a fresh plain white sheet of paper on the soft board using drawing pins.
- (b) Place the glass block in the middle of the plain sheet of paper with the broadest face upwards and trace its outline XYZW as shown in Figure 6.

- (c) Remove the glass block.
- (d) Mark points E, F, G, H, I and J such that they are 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 cm respectively from X.
- (e) Construct normals to line XY at each of the points E, F, G, H, I and J
- (f) Draw lines OE, PF, QG, RH, SI and TJ making angles $i = 45^{\circ}$, 40° , 35° , 30° , 25° and 20° with the normals at E, F, G, H, I and J respectively.
- (g) Put back the glass block onto its outline.
- (h) Fix two optical pins P_1 and P_2 vertically on the line OE.
- (i) While looking through the glass block from side ZW, fix two optical pins P_3 and P_4 such that they appear to be in line with the images of P_1 and P_2 .
- (j) Remove the glass block and the pins.
- (k) Draw a line through P_3 and P_4 to meet ZW at D.
- (1) Join D to E.
- (m) Measure and record the lengths l and x.
- (n) Repeat procedure (h) to (m) for each of the line *PF*, *QG*, *RH*, *SI* and *TJ*. (*Ensure that you measure the displacement x* from the *respective* normals.)

- (o) Tabulate your results including values of $\frac{1}{\sin^2 i}$ and $\left(\frac{l}{x}\right)^2$.
- (p) Plot a graph of $\frac{1}{\sin^2 i}$ against $\left(\frac{l}{x}\right)^2$.
- (q) Determine the slope, S, of the graph.
- (r) Calculate the value of, γ_2 , from the expression $\gamma_2 = \sqrt{S}$.
- (s) If the expected value of γ is 0.667, assess the accuracy of the two methods.

HAND IN YOUR TRACINGS TOGETHER WITH YOUR SCRIPT.

3. In this experiment, you will determine the constant, ρ of the bare wire labelled, W, using two methods. (40 marks)

METHOD I

(a) Connect the circuit shown in Figure 7

- (b) With switch K_1 open, adjust the length, x on the wire, W, such that $x_1 = 0.250$ m.
- (c) Close switch, K_1 .
- (d) Move the sliding contact, J, until the ammeter reading, $I_1 = 0.26$ A.
- (e) Read and record the voltmeter reading, V_1 .
- (f) Open switch, K_1 .
- (g) Repeat procedure (b) to (f) for values of $x_2 = 0.500$ m and $I_2 = 0.20$ A.
- (h) Read and record the voltmeter reading, V_2 .
- (i) Calculate the constant, ρ_1 , of the wire, W from the expression;

$$\rho_1 = \frac{1}{I_1 I_2 (x_2 - x_1)} [(V_1 I_2 - V_2 I_1) - 1.4(I_2 - I_1)].$$

METHOD II

(a) Connect the circuit shown in Figure 8.

Fig. 8

- (b) Close switch K_2 while keeping K_1 open.
- (c) Adjust the position of the crocodile clip along the wire, W, until the length, x = 0.200 m.
- (d) Close switch, K_1 , while keeping switch, K_2 closed, adjust the position of the sliding contact, J, along the potentiometer wire ST until the galvanometer, G, shows no deflection.
- (e) Read and record the balance length, y in metres.
- (f) Read and record the readings, V and I of the voltmeter and ammeter respectively.
- (g) Open switches, K_1 and K_2 .
- (h) Repeat procedure (b) to (g) for values of x = 0.300, 0.400, 0.500, 0.600 and 0.700 m.
- (i) Tabulate your results including values of $\frac{V}{y}$ and $\frac{Ix}{y}$.
- (j) Plot a graph of $\frac{V}{y}$ against $\frac{Ix}{y}$.
- (k) Find the slope, ρ_2 , of the graph.
- (1) If the expected magnitude of the constant, ρ is 4.41, assess the suitability of the two methods in determining the constant.
- (m) Find the constant, ρ , of the wire from the expression;

$$2\rho = (\rho_1 + \rho_2).$$

(n) State why step (m) is important.