SUITES - BAC S MÉTROPOLE 2013

Soit la suite (u_n) définie sur N par $u_0 = 2$ et pour tout n > 0 par :

$$u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1.$$

1)

1.a)

n	0	1	2	3	4
u_n	2	2,33	2,89	3,59	4,40

1.b) On conjecture d'après le tableau précédent que (u_n) est croissante.

2) 2.a) On v

2.a) On va démontrer par récurrence que pour tout entier naturel n: $u_n < n + 3$.

On voit que cela est vrai pour u_0 et u_1 . Démontrons que si la proposition est vraie pour u_n alors elle est vraie pour u_{n+1} , c'est à dire que l'on doit avoir $u_{n+1} < (n+1) + 3$

$$u_n < n+3 \Rightarrow \frac{2}{3}u_n < \frac{2}{3}n+2 \Rightarrow$$

$$\frac{2}{3}u_n + \frac{1}{3}n + 1 < \frac{2}{3}n + 2 + \frac{1}{3}n + 1.$$

En remarquant que le premier membre de cette dernière inégalité est égal à u_{n+1} , on a : $u_{n+1} < n+3 < (n+1)+3$.

2.b)
$$u_{n+1} - u_n = \frac{2}{3}u_n + \frac{1}{3}n + 1 - u_n = \frac{1}{3}n + 1 - \frac{1}{3}u_n = \frac{1}{3}(n+3-u_n).$$

2.c) Puisque $u_n < n + 3$ pour tout $n \in \mathbb{N}$, on en déduit que :

 $u_{n+1} - u_n > 0$ pour tout $n \in \mathbb{N}$, et donc que (u_n) est croissante, ce qui valide la conjecture précédente.

3) On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n - n$.

3.a) On calcule v_{n+1} :

$$v_{n+1} = u_{n+1} - (n+1) = \frac{2}{3}u_n + \frac{1}{3}n + 1 - n - 1 = \frac{2}{3}u_n - \frac{2}{3}n = \frac{2}{3}(u_n - n).$$

C'est à dire :
$$v_{n+1} = \frac{2}{3}v_n$$
, d'où $\frac{v_{n+1}}{v_n} = \frac{2}{3}$.

Ceci démontre que (v_n) est une suite géométrique de raison $\frac{2}{3}$.

Son premier terme est $v_0 = u_0 - 0 = 2$, et son terme général est $v_n = 2\left(\frac{2}{3}\right)^n$.

3.b) On déduit de ce qui précède que :

$$u_n = v_n + n = 2\left(\frac{2}{3}\right)^n + n$$
.

3.c) En remarquant que
$$\lim_{n\to+\infty} \left(\frac{2}{3}\right)^n = 0$$
, on détermine que $\lim_{n\to+\infty} (u_n) = \lim_{n\to+\infty} n = +\infty$.

4) Pour tout entier naturel *n* non nul on pose :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$$

 $T_n = \frac{S_n}{2}.$

4.a) $S_n = \sum_{k=0}^n (v_k + k) = \sum_{k=0}^n 2\left(\frac{2}{3}\right)^k + \sum_{k=0}^n k$, c'est à dire la somme de la somme des termes de

la suite géométrique de raison $\frac{2}{3}$ et de premier terme 2 d'une part, et des termes de la suite arithmétique de raison 1 et de premier terme 0 d'autre part. Ce qui donne :

$$S_n = 2 \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \left(\frac{2}{3}\right)} + \frac{1}{2}n(n+1).$$

4.b) L'expression précédente peut s'écrire :

$$S_n = 6 - 6\left(\frac{2}{3}\right)^{n+1} + \frac{n^2}{2} + \frac{n}{2}$$
. Alors:

$$T_n = \frac{S_n}{n^2} = \frac{6}{n^2} - \frac{6}{n^2} \left(\frac{2}{3}\right)^{n+1} + \frac{1}{2} + \frac{1}{2n}$$
. D'où l'on déduit que :
$$\lim_{n \to \infty} (T_n) = \frac{1}{3}.$$