Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2 a \mid bS_2 b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\Longrightarrow}$ L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\} *$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\frac{\text{not necessarily}}{\text{context-free}}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are <u>not</u> closed under:

complement

L is context free \longrightarrow L

not necessarily
context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

Machine M_1

NPDA for L_1 context-free

Machine M_2

DFA for L_2 regular

Construct a new NPDA machine M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_{\,1}\,$ and $\,M_{\,2}\,$

NPDA M_1

DFA M_2

NPDAM

$$\underbrace{q_1, p_1}_{a,b} \xrightarrow{a,b \to c} \underbrace{q_2, p_2}_{transition}$$

NPDA M_1

DFA M_2

NPDAM

Example:

context-free

$$L_1 = \{ w_1 w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^* \}$$

NPDA M_1

$$a, \lambda \to 1 \qquad c, 1 \to \lambda$$

$$b, \lambda \to 1 \qquad d, 1 \to \lambda$$

$$q_0 \lambda, \lambda \to \lambda \qquad q_1 \lambda, \lambda \to \lambda \qquad q_2 \lambda, \lambda \to \lambda \qquad q_3$$

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for: $L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$

NPDAM

$$a, \lambda \to 1 \qquad c, 1 \to \lambda$$

$$q_0, p_0 \to \lambda, \lambda \to \lambda \qquad q_1, p_0 \to \lambda, \lambda \to \lambda \qquad q_2, p_0 \to \lambda, \lambda \to \lambda \qquad q_3, p_0$$

In General:

M simulates in parallel M_1 and M_2 M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

 L_1 context free $L_1 \cap L_2$ L_2 regular L_2 regular context-free

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$
 $\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$

context-free

regular

(regular closure) $\{a^nb^n\}\cap L_1$ context-free

 $\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
context-free regular context-free Impossible!!!

Therefore, L is not context free