

SRM Institute of Science and Technology Ramapuram campus

Department of Mathematics 18MAB302T-DISCRETE MATHEMATICS

Year/Sem: III/V

Branch: CSE,ECE,EEE

Unit 3- LOGICS

1. The proposition $(P \lor Q) \leftrightarrow (Q \lor P)$ is

(a) Contradiction

(b) tautology

(c) contra positive

(d) Converse Ans: b

Solution:

P	Q	P∨Q	Q∨P	$(P \lor Q) \leftrightarrow (Q \lor P)$
T	Т	Т	Т	Т
T	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	F	F	Т

It is a Tautology.

2. The proposition $(P \wedge Q) \wedge \neg (P \vee Q)$ is

Ans :a

(a) Contradiction

(b) tautology

(c) contra positive

(d) Converse

Solution:

P	Q	P^Q	P∨Q	$\neg (P \lor Q)$	$(P \land Q) \land \neg (P \lor Q)$
T	Т	Т	Т	F	F

Т	F	F	Т	F	F
F	Т	F	Т	F	F
F	F	F	F	Т	F

3.	Symbolic form of "If either ram takes calculus or krish takes sociology ,then arun will take
	English".

 $(a)(a \lor b) \to c$ (b) $(a \land b) \to c$ (c) $(\neg a \lor b) \to c$ (d) $(a \lor \neg b) \to c$ Ans: a

Solution:

Let a: Ram takes calculus

b: Krish takes sociology

c: Arun will take English. Symbolically form is $(a \lor b) \to c$

4. Symbolic form of "If tigers have wings then the earth travels round the sun". Ans: a

(a) $P \rightarrow Q$ (b) $P \rightarrow \neg Q$ (c) $\neg P \rightarrow Q$ (d) $P \land Q$

Solution:

Let P: Tiger have wings, Q: Earth travels round the symbolic form is $P \rightarrow Q$

The given proposition is a contradiction

5. Give the converse of the implication "If it is raining, then I get wet". Ans:d

(a) If I do not get wet ,then it is raining

(b) If I do not get wet ,then it is not raining

(c) If I get wet ,then it is not raining (d) If I get wet ,then it is raining

Solution:

If $P \rightarrow Q$, then the converse of the implication is given by $Q \rightarrow P$.

Hence, If I get wet ,then it is raining.

6. Give the contra positive of the implication "If it is raining, then I get wet". Ans:b

(a) If I do not get wet ,then it is raining

(b) If I do not get wet ,then it is not raining

- (c) If I get wet ,then it is not raining
- (d) If I get wet ,then it is raining

Solution:

If $P \rightarrow Q$, then the contrapositive of the implication is given by $\neg Q \rightarrow \neg P$

Let P: It is raining , Q: I get wet, $\neg P$: It is not raining, \neg Q: I do not get wet If I do not get wet, then it is not raining.

- 7. Give the contra positive of the implication "Only if Raju studies well he pass the test". Ans :c
 - (a) If Raju does not study, then he will pass the test (b) If Raju study, then he will pass the test
 - (c)If Raju does not study, then he will not pass the test
 - (d) If Raju does not study, then he will pass the test

Solution:

Let P: Raju studies well Q: He will pass the test.

Contrapositive for $P \rightarrow Q$ is $\neg Q \rightarrow \neg P$

- 8. The proposition $p \land \sim p$ is a
- (a) Contradiction
- (b) tautology
- (c) contra positive
- (d) Converse Ans: a

Solution:

p	~ p	$p \land \sim p$
T	F	F
F	T	F

From the above truth table, The proposition $p \land \sim p$ is a Contradiction.

9. p, p $\rightarrow q$, q $\rightarrow r \Rightarrow$

Ans :c

- (a) p
- (b) q
- (c) r

(d) ¬p

Using modus ponens p, $p \rightarrow q$, we get q.

Again, Using modus ponens q, $q \rightarrow r$, we get r

10. Logical equivalence of $p \rightarrow (q \rightarrow r)$ is

(a)
$$(p \land q) \rightarrow r$$

(a)
$$(p \land q) \rightarrow r$$
 (b) $(p \land q) \rightarrow q \lor r$

(d) ¬r Ans: a

Solution:

$$p \to (q \to r) \equiv \neg p \lor (\neg q \lor r) \qquad \text{as } p \to p \equiv (\neg p) \lor q$$

$$\equiv (\neg p \lor \neg q) \lor r \qquad \text{Associativity}$$

$$\equiv \neg (p \land q) \lor r \qquad \text{De Morgan}$$

$$\equiv (p \land q) \to r \qquad \text{as } p \to p \equiv (\neg p) \lor q$$

11. Logical equivalence of $\neg(p \leftrightarrow q) \equiv$ -----

(a)
$$\neg p \leftrightarrow a$$

(a)
$$\neg p \leftrightarrow q$$
 (b) $(p \land q) \rightarrow q$ (c) q

(d) ¬r **Ans: a**

Solution:

$$\neg(p \leftrightarrow q) \equiv \neg(p \land q) \land \neg(\neg p \land \neg q)$$
 De Morgan
$$\equiv (\neg p \lor \neg q) \land (p \lor q)$$
 De Morgan, Double negation
$$\equiv (\neg p \land p) \lor (\neg p \land q) \lor (\neg q \land p) \lor (\neg q \land q)$$
 Distributivity
$$\equiv (\neg p \land q) \lor (\neg q \land p)$$
 Constants
$$\equiv (\neg p \land q) \lor (\neg \neg p \land \neg q)$$
 Double negation
$$\equiv \neg p \leftrightarrow q$$

12. The dual of $\neg(p \lor q) \land r$ and T is are

Ans :a

(a)
$$\neg (p \land q) \lor r . F$$

(b)
$$(p \land a)$$
. T

(a)
$$\neg (p \land q) \lor r$$
, F (b) $(p \land q)$, T (c) $\neg (p \land q)$, F (d) $(p \land q) \lor r$, T

Solution:

The dual P * of a formula P involving the connectives V, Λ , \neg is obtained by interchanging Vwith \wedge . Therefore, the dual of $\neg(p \lor q) \land r$, T are $\neg(p \land q) \lor r$ and F.

13. Logical equivalence of $p \rightarrow q$, $p \rightarrow r$, $p \rightarrow q \land r$ is

Ans:b

a) F (b) (T (c)
$$\neg$$
(p \land q) (d) (p \land q) \lor r Solution:

Suppose p is T . Since $p\to q$ is T , q is T . Since $p\to r$ is T , r is T . Then $q\wedge r$ is T . Hence $p\to q\wedge r$ is T .

14.
$$\neg (p \lor (\neg p \land q)) \equiv$$

Ans:d

(a)
$$\neg p \rightarrow (p \rightarrow q)$$
 (b) $p \rightarrow (p \rightarrow q)$ (c) $\neg p \rightarrow (\neg p \rightarrow q)$ (d) $\neg p \land \neg q$.

Solution:

Using equivalence laws properties

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q)$$
 DeMorgan
$$\equiv \neg p \land (p \lor \neg q)$$
 DeMorgan
$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$
 Distributivity
$$\equiv F \lor (\neg p \land \neg q)$$
 Because $\neg p \land p \equiv F$
$$\equiv \neg p \land \neg q$$
 Because $F \lor r \equiv r$ for

any r

15. What is the valid inference from the premises $P \to Q, Q \to R$ and P. Ans:b

(a) P (b) R (c) Q (d)
$$P \rightarrow R$$

Solution:

(1)
$$P \rightarrow Q$$
 Rule P

(2)
$$Q \rightarrow R$$
 Rule P

- (3) P Rule P
- (4) $P \rightarrow R$ Rule T, Hypothetical Syllogism(1), (2)
- (5) R Rule T, Modus ponens, (3), (4)

16.
$$(p \land q) \rightarrow (p \lor q) \equiv$$
 Ans :a

(b) F (c) p v q

(d) p-q

Solution:

17. $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$

Ans :a

- (a) $p \rightarrow (q \land r)$ (b) $p p \rightarrow (q \land r)$
- (c) $p \rightarrow (q \land r) vp$ (d) $p \rightarrow p v (q \land r)$

Solution:

18. The proposition $p \rightarrow q \equiv$ ------

- (a) $p \rightarrow (q \land p)$ (b) $\neg q \rightarrow p$ (c) $p \rightarrow q \lor p$ (d) $p \rightarrow p \lor q$ **Ans:b**

Solution:

 $p \rightarrow q$ is false if and only if p is true and q is false if and only if $\neg p$ is false and $\neg q$ is true if and only if $\neg q \rightarrow \neg p$ is false. Hence $p \to q \equiv \neg q \to p$.

19. $p, p \rightarrow q \Rightarrow$

- (a) p (b) q (c) $p \rightarrow q v p$ (d) $p \rightarrow p v q$

Ans:b

Solution:

Suppose p and $p \to q$ are T (under an assignment). Suppose q is F (under the same assignment). As $p \rightarrow q$ is T, p must be F. This is a contradiction

20. $\neg q, p \rightarrow q \Rightarrow$

- (a) $\neg p$ (b) q (c) $p \rightarrow q v p$ (d) $p \rightarrow p v q$

Ans :a

Solution:

Suppose $\neg q$ and $p \to q$ are T. If $\neg p$ is F, then p is T. Now that $p \to q$ is T, we see that q is T. This is a contradiction.

21. The proposition $p \land \neg p$ is a

(a) Tautology (b) Contradiction (c) Implication (d) Quantifier

Ans :a

Solution:

P	$\neg p$	p ∧¬ <i>p</i>
T	F	F
F	T	F

It is a contradiction.

22. The proposition $p \lor \neg p$ is a

(a) Tautology (b) Contradiction (c) Implication (d) Quantifier

Ans :a

Solution:

P	$\neg p$	$p \vee \neg p$
T	F	T
F	Т	t

It is a Tautology

23. The proposition $p \to q$, $q \to r \Rightarrow p \to r$ is

$$(d) p \lor q$$

Ans: b

Solution:

Suppose $p \to r$ is F. Then p is T and r is F. As r is F and $q \to r$ is T, q must be F. As q is F and $p \rightarrow q$ is T, p is F, a contradiction.

24. The proposition is $p \to q$, $p \to r \Rightarrow p \to q \land r$

(a) p
$$\wedge$$
 c

(a)
$$p \land q$$
 (b) $p \rightarrow r$. (c) T

Ans: c

Solution:

Suppose p is T. Since $p \to q$ is T, q is T. Since $p \to r$ is T, r is T. Then $q \land r$ is T. Hence

 $p \rightarrow q \wedge r \text{ is } T$.

25. The proposition is $p \to r$, $q \to r \Rightarrow p \lor q \to r$

(b)
$$p \to r$$
. (c) q

Ans: d

Solution:

Suppose $p \lor q \to r$ is F. Then $p \lor q$ is T and r is F. Since r is F and the premise $p \to r$ is T, we have p is F. Similarly, the premise $q \to r$ gives q is F. Now, the three statements p is F, q is F and $p \lor q$ is T lead to a contradiction.