

MONASH BUSINESS SCHOOL

# ETC3550/ETC5550 Applied forecasting

Ch8. Exponential smoothing OTexts.org/fpp3/



```
General notation ETS: ExponenTial Smoothing

→ ↑ 

Error Trend Season
```

**Error:** Additive ("A") or multiplicative ("M")

```
General notation ETS: ExponenTial Smoothing

→ ↑ 

Error Trend Season
```

**Error:** Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

2

```
General notation ETS: ExponenTial Smoothing

→ ↑ 

Error Trend Season
```

**Error:** Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

## ETS(A,N,N): SES with additive errors

#### ETS(A,N,N) model

Observation equation  $y_t = \ell_{t-1} + \varepsilon_t$ 

State equation  $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$ 

where  $\varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

- "innovations" or "single source of error" because equations have the same error process,  $\varepsilon_t$ .
- Measurement equation: relationship between observations and states.
  - State equation(s): evolution of the state(s) through time.

## ETS(A,A,N)

Holt's methods method with additive errors.

Forecast equation
Observation equation
State equations

$$\begin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ y_t &= \ell_{t-1} + b_{t-1} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t \end{aligned}$$

Forecast errors:  $\varepsilon_t = y_t - \hat{y}_{t|t-1}$ 

#### ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation
Observation equation
State equations

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

$$s_t = s_{t-m} + \gamma \varepsilon_t$$

- Forecast errors:  $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- $\blacksquare$  *k* is integer part of (h-1)/m.

## ETS(M,A,M)

Holt-Winters multiplicative method with multiplicative errors.

Forecast equation
Observation equation
State equations

$$\begin{split} \hat{y}_{t+h|t} &= (\ell_t + hb_t) s_{t+h-m(k+1)} \\ y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1}) (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{split}$$

- Forecast errors:  $\varepsilon_t = (y_t \hat{y}_{t|t-1})/\hat{y}_{t|t-1}$
- $\blacksquare$  *k* is integer part of (h-1)/m.

### **ETS model specification**

```
ETS(y ~ error("A") + trend("N") + season("N"))
```

By default, optimal values for  $\alpha$ ,  $\beta$ ,  $\gamma$ , and the states at time 0 are used.

The values for  $\alpha$ ,  $\beta$  and  $\gamma$  can be specified:

```
trend("A", alpha = 0.5, beta = 0.2)
trend("A", alpha_range = c(0.2, 0.8), beta_range = c(0.1, 0.4))
season("M", gamma = 0.04)
season("M", gamma_range = c(0, 0.3))
```

## **Exponential smoothing methods**

|         |                   | Seasonal Component  |            |                  |  |
|---------|-------------------|---------------------|------------|------------------|--|
|         | Trend             | N                   | Α          | M                |  |
|         | Component         | (None)              | (Additive) | (Multiplicative) |  |
| N       | (None)            | (N,N)               | (N,A)      | (N,M)            |  |
| Α       | (Additive)        | (A,N)               | (A,A)      | (A,M)            |  |
| $A_{d}$ | (Additive damped) | (A <sub>d</sub> ,N) | $(A_d,A)$  | $(A_d,M)$        |  |

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A<sub>d</sub>,N): Additive damped trend method (A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A<sub>d</sub>,M): Damped multiplicative Holt-Winters' method

## **Exponential smoothing methods**

|       |                   | Seasonal Component  |            |                  |  |
|-------|-------------------|---------------------|------------|------------------|--|
|       | Trend             | N                   | Α          | M                |  |
|       | Component         | (None)              | (Additive) | (Multiplicative) |  |
| N     | (None)            | (N,N)               | (N,A)      | (N,M)            |  |
| Α     | (Additive)        | (A,N)               | (A,A)      | (A,M)            |  |
| $A_d$ | (Additive damped) | (A <sub>d</sub> ,N) | $(A_d,A)$  | $(A_d,M)$        |  |

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A<sub>d</sub>,N): Additive damped trend method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A<sub>d</sub>,M): Damped multiplicative Holt-Winters'

There are also multiplicative trend methods (not recommended).

| Additive Error |                   | Seasonal Component  |            |                     |  |
|----------------|-------------------|---------------------|------------|---------------------|--|
| Trend          |                   | N                   | Α          | M                   |  |
|                | Component         | (None)              | (Additive) | (Multiplicative)    |  |
| N              | (None)            | A,N,N               | A,N,A      | A,N,M               |  |
| Α              | (Additive)        | A,A,N               | A,A,A      | A,A,M               |  |
| $A_d$          | (Additive damped) | A,A <sub>d</sub> ,N | $A,A_d,A$  | A,A <sub>d</sub> ,M |  |

| Multiplicative Error |                   | Seasonal Component  |                     |                  |  |
|----------------------|-------------------|---------------------|---------------------|------------------|--|
|                      | Trend             | N                   | Α                   | М                |  |
|                      | Component         | (None)              | (Additive)          | (Multiplicative) |  |
| N                    | (None)            | M,N,N               | M,N,A               | M,N,M            |  |
| Α                    | (Additive)        | M,A,N               | M,A,A               | M,A,M            |  |
| $A_d$                | (Additive damped) | M,A <sub>d</sub> ,N | M,A <sub>d</sub> ,A | $M,A_d,M$        |  |

| Additive Error |                   | Seasonal Component  |            |                       |  |
|----------------|-------------------|---------------------|------------|-----------------------|--|
| Trend          |                   | N                   | Α          | M                     |  |
|                | Component         | (None)              | (Additive) | (Multiplicative)      |  |
| N              | (None)            | A,N,N               | A,N,A      | <u> </u>              |  |
| Α              | (Additive)        | A,A,N               | A,A,A      | <u>^,^,M</u>          |  |
| $A_d$          | (Additive damped) | A,A <sub>d</sub> ,N | $A,A_d,A$  | <mark>^, ∆, </mark> ^ |  |

| Multiplicative Error |                   | Seasonal Component  |                     |                  |  |
|----------------------|-------------------|---------------------|---------------------|------------------|--|
|                      | Trend             | N                   | Α                   | М                |  |
|                      | Component         | (None)              | (Additive)          | (Multiplicative) |  |
| N                    | (None)            | M,N,N               | M,N,A               | M,N,M            |  |
| Α                    | (Additive)        | M,A,N               | M,A,A               | M,A,M            |  |
| $A_d$                | (Additive damped) | M,A <sub>d</sub> ,N | M,A <sub>d</sub> ,A | $M,A_d,M$        |  |

#### **AIC and cross-validation**

Minimizing the AIC assuming Gaussian residuals is asymptotically equivalent to minimizing one-step time series cross validation MSE.

### **Automatic forecasting**

#### From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

#### **Residuals**

#### Response residuals

$$\hat{e}_t = y_t - \hat{y}_{t|t-1}$$

#### **Innovation residuals**

Additive error model:

$$\hat{\varepsilon}_t$$
 =  $y_t - \hat{y}_{t|t-1}$ 

Multiplicative error model:

$$\hat{\varepsilon}_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$