Exercices de maths niveau MPSI.

Jonathan VACHER.

25 juin 2013

1 Analyse.

Nombres réels et suites. 1.1

Exercice 1 Soit $f:[0,1] \to [0,1]$ croissante. En considérant $\{x \in [0,1] | \forall t \in [0,x] f(t) > t\}$ montrer que f admet un point fixe.

Exercice 2 Montrer que $\forall x \in \mathbb{R}_+^*, x - \frac{x^2}{2} \le \ln(1+x) \le x$. En déduire les limites des suites $u_n = \prod_{k=1}^n (1 - \frac{k}{n^2})$ et $v_n = \prod_{k=1}^n (1 + \frac{k}{n^2})$.

Exercice 3 Soit $(x,y) \in \mathbb{R}^2$, montrer que :

1.
$$|x| + |y| \le |x + y| + |x - y|$$

2.
$$1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|)$$

Exercice 4 Soient $a_n = \sum_{k=0}^n \frac{1}{k!}$ et $b_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \cdot n!} = a_n + \frac{1}{n \cdot n!}$

a) Montrer que (a_n) et (b_n) sont strictement monotones et adjacentes.

On admet que leur limite commune est e. On désire montrer que e $\notin \mathbb{Q}$ et pour cela on raisonne par l'absurde en supposant e = $\frac{p}{q}$ avec $p \in \mathbb{Z}, q \in \mathbb{N}^*$. b) Montrer que $a_q <$ e $< b_q$ puis obtenir une absurdité.

Exercice 5 Soit (H_n) la suite définie pour $n \in \mathbb{N}^*$ par

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

- a) Montrer que $H_n \to +\infty$.
- b) Soit (u_n) une suite telle que $n(u_{n+1}-u_n)\to 1$. Montrer que $u_n\to +\infty$.

Exercice 6 Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

Exercice 7 Soit (u_n) une suite décroissante de réels telle que $u_n + u_{n+1} \sim \frac{1}{n}$.

- a) Montrer que (u_n) converge vers 0^+ .
- b) Donner un équivalent simple de (u_n) .

Étudier la suite (u_n) définie par $u_0 \ge 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \ln u_n$.

Exercice 9 Étudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = e^{u_n} - 1$.

1

Exercice 10 Soit a > 0 et (u_n) la suite définie par $u_0 > 0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

Étudier la convergence de la suite (u_n) . On pose $v_n = \frac{u_n - \sqrt{a}}{u_n + \sqrt{a}}$, en calculant v_{n+1} majorer $|u_n - \sqrt{a}|$ lorsque $u_0 > \sqrt{a}$.

1.2 Limites et continuité.

Exercice 1 Soit $f:[0,1] \to [0,1]$, continue et telle que f(0)=f(1). Montrer que $\forall n \in \mathbb{N}^*, \exists x_n \in \left[0,1-\frac{1}{n}\right]$ tel que $f(x_n)=f(x_n+\frac{1}{n})$. Commencer par $n=2,3,\ldots$

Exercice 2 Montrer que $f: x \longmapsto \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ sinon} \end{cases}$ est discontinue en tout point de \mathbb{R} .

Exercice 3 Soit f définie sur \mathbb{R}_+^* telle que $\frac{f(x)}{x}$ tend vers $l \in \mathbb{R}$ en $+\infty$. Montrer que la suite $\frac{1}{n} \sum_{k=1}^{n} \frac{f(ka)}{k}$ converge et préciser sa limite.

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{R}$ continue. Pour $L \in \mathbb{R}_+$, on pose g(x) = f(x+L) - f(x) et on suppose que g tend vers l en $+\infty$. Montrer que $\frac{f(x)}{x} \underset{x \to +\infty}{\longrightarrow} \frac{l}{L}$.

1.3 Dérivation

Exercice 1 Soit $f \in \mathcal{C}^2([a,b],\mathbb{R})$ telle que f(a) = f(b) = 0, montrer que $|f(a) - f(b)| \le \frac{(b-a)^2}{4}||f''||_{\infty}$.

Exercice 2 Soit f continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* , nulle en 0 telle que f' est croissante sur \mathbb{R}_+^* . Montrer que la fonction $x \mapsto \frac{f(x)}{x}$ est croissante.

Exercice 3 Soit f dérivable sur [0,1] telle que f(0)=0 et f(1)=1 et soit $n \in \mathbb{N}^*$. Montrer qu'il existe $0 < x_1 < \cdots < x_n < 1$ telles que $\sum_{k=1}^n f'(x_k) = n$.

Exercice 4 Soit $f \in C^2([0,1], \mathbb{R})$ telle que f(0) = 0, on définit $u_n = \sum_{k=1}^n f(\frac{k}{n^2})$. Montrer que u converge et déterminer sa limite.

Exercice 5 Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que $\forall (x, y) \in \mathbb{R}^2$, $f(x + y)f(x - y) \leq f(x)^2$. Montrer que $\forall x \in \mathbb{R}$, $f(x)f''(x) \leq (f'(x))^2$.

1.4 Intégration

Exercice 1 Soit $f \in C^1([a,b])$, $\int_a^b \sin(\lambda t) f(t) dt \longrightarrow 0$ lorsque $\lambda \longrightarrow 0$.

Exercice 2 Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} \sin(t)^n dt$. Trouver un relation de recurrence entre I_n et I_{n-2} . Calculer I_n .

Exercice 3 Soit $f \in C^1([0,1])$ telle que $\forall x \in [0,1], f(x)^2 + f'(x)^2 \le 1 + x^2$. Montrer que $f(1)^2 - f(0)^2 \le \frac{4}{3}$.

Exercice 4 Soit $f \in \mathcal{C}([a,b])$ telle que $\forall k \in \{0,\ldots,n\}, \int_a^b t^k f(t) dt = 0$. Montrer que f s'annule au moins n+1 fois.

Exercice 5 En utilisant $\int_0^1 \frac{1}{1+x} dx$, montrer que $\sum_{k=1}^n \frac{(-1)^{k-1}}{k}$ converge et calculer sa limite.

Exercice 6 Soit $f \in \mathcal{C}([a,b])$. On note $\underline{f} = \frac{1}{b-a} \int_a^b f(t) dt$. Montrer qu'il existe $c \in [a,b]$ tel que $f(c) = \underline{f}$. Montrer ensuite qu'il existe $C \in \mathbb{R}$ tel que pour tout $f \in \mathcal{C}([a,b])$, $||f - \underline{f}||_2 \le C||f'||_2$ avec $||f||_2 = \left(\int_a^b f(t)^2 dt\right)^{\frac{1}{2}}$.

Exercice 7 Étudier la suite

$$\frac{1}{n} \sum_{k=n}^{2n} k e^{\frac{i(k+1)\pi}{2n}}.$$

Exercice 8 Effectuer un changement de variable qui permute les bornes de

$$I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) dx$$

. En déduire I.

1.5 Nombres complexes.

Exercice 1 Soit $z \in U \setminus \{1\}$. Montrer que $\frac{z+1}{z-1} \in i\mathbb{R}$.

Exercice 2 Soit ω une racine n-ème de l'unité différente de 1. On pose

$$S = \sum_{k=0}^{n-1} (k+1) \,\omega^k.$$

En calculant $(1 - \omega)S$, déterminer la valeur de S.

Exercice 3 Calculer le produit des racines de l'unité.

Exercice 4 Soit $n \in \mathbb{N}^*$. On note U_n l'ensemble des racines n ème de l'unité. Calculer

$$\sum_{z \in U_n} |z - 1|.$$

Exercice 5 Soit $n \in \mathbb{N}^*$. Résoudre l'équation

$$(z+1)^n = (z-1)^n$$
.

Combien y a-t-il de solutions?

1.6 Fonctions usuelles et trigonométriques.

Exercice 1 Résoudre l'équation $tan(2 \arctan(x)) = a$ de paramètre $a \in \mathbb{R}$.

Exercice 2 Calculer $\lim_{x\to 0^+} \frac{\arccos(1-x)}{\sqrt(x)}$. On utilisera un changement de variable judicieux. Que dire du comportement en 0^+ de $\operatorname{argch}(1+x)$?

Exercice 3 On pose $S_n = \sum_{i=0}^n 2^i \operatorname{th}(2^i x)$. Montrer que $\forall x \in \mathbb{R}^*$, $\operatorname{th}(x) = \frac{2}{\operatorname{th}(2x)} - \frac{1}{\operatorname{th}(x)}$. En déduire les limites de $\frac{S_n}{2^n}$ et $S_n - 2^{n+1}$ lorsque $n \longrightarrow \infty$ selon les valeurs de x.

Exercice 4 Calculer $\lim_{x\to 0} \frac{\ln(1+x)}{x}$. En déduire $\lim_{n\to +\infty} (1+\frac{x}{n})^n$.

Exercice 5 Soit $f:[0,+\infty[\to [0,+\infty[$ continue vérifiant

$$f \circ f = \mathrm{Id}$$

Déterminer f.

Exercice 6 Montrer que

$$\forall x \in]0,1[,x^x(1-x)^{1-x} \geqslant \frac{1}{2}$$

Exercice 7 Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions continues telles que

$$\forall x \in I, |f(x)| = |g(x)| \neq 0$$

Montrer que f = g ou f = -g.

Exercice 8 Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \frac{x}{1 + |x|}$$

- a) Montrer que f réalise une bijection de \mathbb{R} vers]-1,1[.
- b) Déterminer, pour $y \in]-1,1[$ une expression de $f^{-1}(y)$ analogue à celle de f(x).

Exercice 9 Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, simplifier $P_n(x) = \prod_{k=1}^n \operatorname{ch}\left(\frac{x}{2^k}\right)$ en calculant $P_n(x)\operatorname{sh}\left(\frac{x}{2^n}\right)$.

Exercice 10 $\lim_{x\to+\infty} \left(\frac{x}{\ln x}\right)^{\frac{\ln x}{x}}$

Exercise 11 Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}^{+\star}$, observer $\operatorname{th}((n+1)x) - \operatorname{th}(nx) = \frac{\operatorname{sh}x}{\operatorname{ch}(nx)\operatorname{ch}((n+1)x)}$. Calculer $S_n(x) = \sum_{k=0}^n \frac{1}{\operatorname{ch}(kx)\operatorname{ch}((k+1)x)}$.

1.7 Fractions rationnelles.

Exercice 1 Montrer que $\frac{X+1}{X^3(X-1)^2} = \frac{5}{X} + \frac{3}{X^2} + \frac{1}{X^3} - \frac{5}{X-1} + \frac{2}{(X-1)^2}$.

Exercice 2 Montrer que $\frac{2X-5}{(X-2)(X^2+X+1)} = \frac{1}{7(X-2)} + \frac{\frac{1}{7}X + \frac{17}{7}}{X^2+X+1}$.

Exercice 3 Montrer que $\frac{X^8 - X^4 + 2}{(X^2 + X + 1)^3} = X^2 - 3X + 3 + \frac{2X - 8}{(X^2 + X + 1)} + \frac{4X + 6}{(X^2 + X + 1)^2} + \frac{-2X + 1}{(X^2 + X + 1)^3}$

1.8 Équations différentielles.

Exercice 1 Déterminer les fonctions $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ dérivables sur \mathbb{R}_+^* et telles que

$$\forall (x, y) \in \mathbb{R}^2 : f(xy) = f(x) + f(y).$$

Exercice 2 Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}^*$ dérivables sur \mathbb{R} et telles que

$$\forall (x,y) \in \mathbb{R}^2 : f(x+y) = f(x)f(y).$$

Que dire si f est seulement continue?

Exercice 3 Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}^*$ dérivables sur \mathbb{R} et telles que

$$\forall (x, y) \in \mathbb{R}^2 : f(xy) = f(x)f(y).$$

Exercice 4 Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables deux fois sur \mathbb{R} et telles que

$$\forall (x, y) \in \mathbb{R}^2 : f(x + y) + f(x - y) = 2f(x)f(y).$$

Exercice 5 Déterminer les fonctions $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ dérivables deux fois sur \mathbb{R}_+^* et telles que

$$\forall x \in \mathbb{R}_+^* : f'(x) = f(\frac{1}{x}).$$

Exercice 6 Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}^*$ dérivables deux fois sur \mathbb{R} et telles que

$$\forall x \in \mathbb{R} : f'(1-x) = f(x+1).$$

Exercice 7 Résoudre $ty' - y = t^2$.

Exercice 8 Résoudre $ty' - 2y = t^2$.

Exercice 9 Résoudre y' + sin(t)y = sin(2t).

Exercice 10 Résoudre $y'' - 2y' + 2y = \sin(t)e^t, y(\frac{\pi}{2}) = 0, y'(\frac{\pi}{2}) = 0.$

Exercice 11 Résoudre $y'' - 3y' + 2y = te^t, y(1) = 0, y'(1) = 0.$

Exercice 12 Résoudre $y'' - \mathbf{1}_{\mathbb{R}^+}(t)y = 0$.

Exercice 13 Soit $\mu \in \mathbb{R}$. Y a-t-il existence, unicité d'une solution au problème suivant :

$$\begin{cases} y'' + \mu y = 0 \\ y(0) = 0, y(1) = 0 \end{cases}$$

Exercice 14 Soit $\mu > 0$. On s'intéresse au problème de Cauchy suivant :

$$(\mathcal{C}) \left\{ \begin{array}{l} y'' + \mu y = h(t) \\ y(0) = y_0, y'(0) = y'_0 \end{array} \right.$$

Montrer que g est solution de (C) ssi $z = g + \frac{i}{\sqrt{\mu}}g'$ est solution de :

$$(\mathcal{C}') \left\{ \begin{array}{l} y' + i\sqrt{\mu}y = \frac{i}{\sqrt{\mu}}h(t) \\ y(0) = y_0 + \frac{i}{\sqrt{\mu}}y_0' \end{array} \right.$$

Exprimer z(t) puis g(t).

1.9 Courbes paramétrées.

Exercice 1 Étudier
$$\begin{cases} x(t) = \frac{t}{1+t^3} \\ y(t) = \frac{t^2}{1+t^3} \end{cases}.$$

Exercice 2 Étudier
$$\begin{cases} x(t) = \frac{\sin(t)}{1 + \cos(t)^2} \\ y(t) = \frac{\sin(t)\cos(t)}{1 + \cos(t)^2} \end{cases} .$$

Exercice 3 Étudier
$$\begin{cases} x(t) = t - \sin(t) \\ y(t) = 1 - \cos(t) \end{cases}.$$

Exercice 4 Étudier
$$\begin{cases} x(t) = \sin(t) \\ y(t) = \frac{\cos(t)^2}{2 - \cos(t)} \end{cases} .$$

Exercice 5 Étudier
$$\rho(\theta) = \frac{\ln(1+\theta)}{(1+\theta)^2}$$
.

Exercice 6 Étudier $\rho(\theta) = \frac{\sin(\theta)\cos(\theta)}{\sin(\theta)-\cos(\theta)}$.

1.10 Développements limités.

Exercice 1
$$DL_{10}(0)$$
 de $\int_x^{x^2} \frac{dt}{\sqrt{1+t^4}}$.

Exercice 2 Montrer que $x \mapsto x + \ln(1+x)$ admet une bijection réciproque au voisinage de 0 et calculer un $DL_3(0)$ de cette réciproque.

Exercice 3 Montrer que l'équation $e^x = n - x$ admet une unique solution positive pour tout $n \in \mathbb{N}$, noté x_n . Trouver une développement asymptotique de x_n .

Exercice 4 Soit

$$f: x \mapsto x(\ln(2x+1) - \ln(x))$$

définie sur $\mathbb{R}^{+\star}$.

Former un développement asymptotique de f à la précision 1/x en $+\infty$.

En déduire l'existence d'une droite asymptote en $+\infty$ à la courbe représentative de f.

Étudier la position relative de la courbe et de son asymptote en $+\infty$.

Exercice 5 Former le développement asymptotique quand $x \to +\infty$ de arctan x à la précision $1/x^3$.

Exercice 6 Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^{x^2}$ admet une application réciproque définie sur \mathbb{R} et former le $DL_5(0)$ de f^{-1} .

Exercice 7 Soient a un réel non nul et f la fonction définie au voisinage de 0 par

$$f(x) = \frac{\ln(1+ax)}{1+x}$$

Déterminer les éventuelles valeurs de a pour lesquelles f présente un point d'inflexion en 0.

Exercice 8 Soient a et b deux réels strictement supérieurs à 1. Déterminer $\lim_{n \to +\infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n$

Exercice 9 Déterminer
$$\lim_{n \to +\infty} \left(3 \sqrt[n]{2} - 2 \sqrt[n]{3} \right)^n$$

Exercice 10 $f \in \mathcal{C}^2$ avec f(0) = 1, f'(0) = 0 et f''(0) = -1. Mq $\forall a \in \mathbb{R}$, $\lim_{x \to +\infty} f(\frac{a}{\sqrt{x}})^x = \exp(-\frac{a^2}{2})$

Exercice 11 DL de $\ln(\sqrt{1+x})$ en $+\infty$

1.11 Coniques.

Exercice 1 Calculer une équation cartésienne de la tangente à une ellipse en un point fixé. Démontrer que, si l'on voit l'ellipse comme l'image d'un cercle par une affinité orthogonale, cette tangente à l'ellipse et l'image de la tangente au cercle au point antécédent de celui considéré.

Exercice 2 Démontrer qu'une hyperbole est équilatère si et seulement si son excentricité vaut $\sqrt{2}$.

Exercice 3 Donner un paramétrage rationnel d'une ellipse éventuellement privée d'un point à préciser.

Exercice 4 Réduire la conique d'équation $y^2 + 3x - 4y - 2 = 0$.

Exercice 5 Réduire la conique d'équation $x^2 + xy + y^2 = 1$

Exercice 6 Identifier l'ensemble d'équation $r(\theta) = \frac{6}{3\cos(\theta) - 4\sin(\theta) - 2}$.

1.12 Fonctions de plusieurs variables.

Exercice 1 Soit $f \in \mathcal{C}^2(\mathbb{R})$. Pour tout $(x,y) \in \mathbb{R}^2$ on pose $g(x,y) = \frac{f(x) - f(y)}{x - y}$ si $x \neq y$ et g(x,y) = f'(x) si x = y. Montrer que $g \in \mathcal{C}^1(\mathbb{R}^2)$.

Exercice 2 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 homogène de degré $n \in \mathbb{N}$ c'est-à-dire vérifiant

$$\forall t \in \mathbb{R}, \forall (x, y) \in \mathbb{R}^2, f(tx, ty) = t^n f(x, y)$$

a) Montrer que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$$

b) On suppose $n \ge 1$. Montrer que les dérivées partielles de f sont elles aussi homogènes, préciser leur degré.

Exercice 3 Soit $f(x,y) = \frac{xy(x^2-y^2)}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et f(x,y) = 0 si (x,y) = (0,0). Prouver l'existence de $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ et comparer leur valeur.

Exercice 4 Soit $f \in C^0(\mathbb{R})$, montrer que la fonction $g(x,y) = \int_{x-y}^{x^2-y^2} f(t)dt$ définie sur \mathbb{R}^2 est $C^1(\mathbb{R}^2)$. Calculer ses dérivées partielles.

Exercice 5 Soit $f(x,y) = x \ln(1-x^2+y^2)$. Préciser le domaine de définition de f. Calculer son gradient et le représenter le long de la ligne de niveau 0.

Exercice 6 Soit A une partie convexe non vide de \mathbb{R}^2 et $f: A \to \mathbb{R}$ une fonction continue. Soit a et b deux points de A et y un réel tels que $f(a) \leq y \leq f(b)$. Montrer qu'il existe $x \in A$ tel que f(x) = y.

2 Géométrie.

2.1 Géométrie du plan.

Exercice 1 Écrire les relations de passage en coordonnées cartésiennes entre le repère canonique $\{(0,0),\overrightarrow{i},\overrightarrow{j}\}$ et le repère $\{(1,2),\overrightarrow{u},\overrightarrow{v}\}$ où $\overrightarrow{u}=\frac{\overrightarrow{i}+3\overrightarrow{j}}{\sqrt{10}}$ et $\overrightarrow{v}=\frac{3\overrightarrow{i}-\overrightarrow{j}}{\sqrt{10}}$.

Exercice 2 Déterminer l'ensemble des points M(x,y) tels que $|x+2y|=a, a\in\mathbb{R}$.

Exercice 3 Donner une équation cartésienne de la droite \mathcal{D} passant par A(1,2) et parallèle à la droite d'équation x-y+3=0.

Exercice 4 Soit ABC un triangle non aplati. On note a=BC, b=AC et c=AB les longueurs de ses côtés et \widehat{a}, \widehat{b} et \widehat{c} les angles non-orientés respectivement opposés aux côtés BC, AC et AB.

- 1. Vérifier que $c^2 = a^2 + b^2 2ab\cos(\hat{c})$, retrouver le théorème de Pythagore.
- 2. En calculant l'aire de ABC de 3 manières, montrer que $\frac{a}{\sin \hat{a}} = \frac{b}{\sin \hat{b}} = \frac{c}{\sin \hat{c}}$.

Exercice 5 Calculer l'aire d'un triangle à l'aide du déterminant. Appliquer cette formule au triangle A(1,2), B(2,3), C(3,0).

Exercice 6 Soit Γ_m l'ensemble des points M(x,y) tels que (2m+1)x+(m-1)y+m+1=0.

- 1. Montrer que les ensembles Γ_m ont un unique point commun.
- 2. Trouver une CNS pour que Γ_{m_1} et Γ_{m_2} soient orthogonales.

Exercice 7 Soit ABC un triangle et G son barycentre. Montrer que $\mathcal{A}(AGB) = \mathcal{A}(AGC) = \mathcal{A}(BGC)$.

Exercice 8 Soient $a, b \in \mathbb{C}$ distincts, $\lambda > 0$ et $n \in \mathbb{N}^*$. Montrer que les racines de l'équation

$$(z-a)^n = \lambda (z-b)^n$$

sont alignés ou cocycliques

Exercice 9 Calculer la distance du point M(-3, -3) à l'ensemble \mathcal{C} d'équation $x^2 + y^2 - 4x - 2y - 20 = 0$. Trouver l'équation de la tangente à \mathcal{C} au point H projeté orthogonal de M sur \mathcal{C} .

2.2 Géométrie de l'espace.

Exercice 1 Former une équation cartésienne de la partie de l'espace paramétrée par

$$\begin{cases} x = 2 + s + 2t \\ y = 2 + 2s + t \text{ pour}(s, t) \in \mathbb{R}^2. \\ z = 1 - s - t \end{cases}$$

Exercice 2 1. Trouver une équation de la perpendiculaire commune à \mathcal{D}_1 et \mathcal{D}_2 :

$$\mathcal{D}_1: \left\{ \begin{array}{l} x - y + z + 1 = 0 \\ 2x + y - z = 0 \end{array} \right. \mathcal{D}_2: \left\{ \begin{array}{l} x + 2y + z = 0 \\ 2x - 2y - 2z - 1 = 0 \end{array} \right.$$

2. Calculer la distance entre \mathcal{D}_1 et \mathcal{D}_2 .

Exercice 3 Déterminer une équation cartésienne de la sphère contenant les cercles \mathcal{C}_1 et \mathcal{C}_2 :

$$C_1: \left\{ \begin{array}{l} x^2 + y^2 - 9 = 0 \\ z = 0 = 0 \end{array} \right. C_2: \left\{ \begin{array}{l} x^2 + y^2 - 25 = 0 \\ z - 2 = 0 \end{array} \right.$$

Exercice 4 Calculer la plus petite distance entre la sphère $S: x^2 + y^2 + z^2 = 1$ et le plan P: 3x + 2y - z = 9. Trouver des équations des deux plans tangents à S et parallèles à P.

Exercice 5 Étudier l'intersection d'un cylindre et d'une sphère centrée sur l'axe du cylindre.

Exercice 6 Soit \overrightarrow{a} et \overrightarrow{b} deux vecteurs de l'espace avec $\overrightarrow{a} \neq \overrightarrow{0}$, résoudre l'équation $\overrightarrow{a} \wedge \overrightarrow{x} = \overrightarrow{b}$ d'inconnue \overrightarrow{x} .

Exercice 7 On suppose $\overrightarrow{d} \wedge \overrightarrow{b} \neq \overrightarrow{0}$ et $\overrightarrow{d} \cdot \overrightarrow{c} = \overrightarrow{b} \cdot \overrightarrow{d} = 0$. Montrer que le système $\begin{cases} \overrightarrow{d} \wedge \overrightarrow{x'} = \overrightarrow{c} \\ \overrightarrow{b} \wedge \overrightarrow{x'} = \overrightarrow{d} \end{cases}$ admet une solution si et seulement si $\overrightarrow{d} \cdot \overrightarrow{d} + \overrightarrow{c} = 0$.

Exercice 8: Soient A,B,C et D quatre points de l'espace tels que les droites (AB) et (CD) soient sécantes en I. Déterminer le lieu des points M tels que $\overrightarrow{MA} \wedge \overrightarrow{MB} = \overrightarrow{MC} \wedge \overrightarrow{MD}$.

3 Algèbre.

3.1 Algèbre générale, ensembles et applications.

Exercice 1 Soit une application $f: E \longrightarrow F$ surjective et $B \subset F$. Montrer que $f(f^{-1}(B)) = B$.

Exercice 2 Pour $(a,b) \in]-1,1[^2$ on définit $a*b=\frac{a+b}{1+ab}$. Montrer que '*' est une LCI qui fait de (]-1,1[,*) une groupe abélien.

Exercice 3 Soit (E, \leq) un ensemble totalement ordonné.

 $\text{Montrer que l'application } \max: \left\{ \begin{array}{l} E \times E \to E \\ (x,y) \mapsto \max(x,y) \end{array} \right. \text{ définit une LCI associative et commutative. Déterminer une CNS pour que cette LCI admettent un élément neutre. Donner des exemples.}$

Exercice 4 Soit (G,*) un groupe. On note $\mathcal{Z}(G) = \{g \in G \mid \forall h \in G : g*h = h*g\}$. Montrer que l'on définit ainsi un sous-groupe abélien de G.

Exercice 5 Soit A et B deux parties non vides et bornées d'un ensemble totalement ordonnée (E, \leq) .

- 1. Montrer que $A \subset B$ implique $sup(A) \leq sub(B)$. Égalité?
- 2. Montrer que $A \cap B \neq \emptyset$ implique $max(inf(A), inf(B)) \leq inf(A \cap B)$. Égalité?
- 3. Montrer que $A \cap B \neq \emptyset$ implique $sup(A \cap B) \leq min(sup(A), sup(B))$. Égalité?

Exercice 6 Soit (G, *) un groupe et H et K deux sous-groupes de G. Trouver une CNS pour que $H \cup K$ soit un sous groupe de G.

Exercice 7 Soit $(A, +, \times)$ un anneau dans lequel, $\forall (x, y) \in A^2, (x \times y)^2 = x^2 \times y^2$ et $\forall x \in A, x^2 = 0 \Rightarrow x = 0$.

- 1. Montrer que $\forall (x,y) \in A^2, x \times y \times x = x^2 \times y = y \times x^2$.
- 2. En déduire que A est un anneau commutatif.

Exercice 8 Montrer que $\mathbb{Z}[i] = \{a + ib \in \mathbb{C} | (a,b) \in \mathbb{Z}^2\}$ est un sous-anneau de $(\mathbb{C}, +, \times)$. Pour $x = a + ib \in \mathbb{Z}[i]$, on pose $N(x) = a^2 + b^2$. Montrer que $\forall (x,y) \in \mathbb{Z}[i]^2 : N(xy) = N(x)N(y)$. En déduire les inversibles de $\mathbb{Z}[i]$.

Exercice 9 Soit $(A, +, \times)$ un anneau. Un élément $a \in A$ est nilpotent si $\exists n \in \mathbb{N}^*$ tel que $a^n = 0$.

- 1. Montrer que si $a \in A$ est nilpotent alors 1 a est inversible.
- 2. Soit $(a, b) \in A^2$ qui commutent. Montrer que si a ou b est nilpotent, alors ab est nilpotent. Montrer que si a et b sont nilpotents alors a + b est nilpotent.

Exercice 10 Soient $A, B, C \in \mathcal{P}(E)$. Établir $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Exercice 11 Soit $f: E \to F$ une application. Montrer que :

- a) f est injective $\Leftrightarrow \forall A \in \mathcal{P}(E), A = f^{-1}(f(A)).$
- b) f est surjective $\Leftrightarrow \forall B \in \mathcal{P}(F), f(f^{-1}(B)) = B$.

Exercice 12 Soient E, F, G trois ensembles, $f: E \to F, g: F \to G$ et $h: G \to E$ Établir que si $h \circ g \circ f$ est injective et que $g \circ f \circ h$ et $f \circ h \circ g$ sont surjectives alors f, g et h sont bijectives.

Exercice 13 Soient E un ensemble et $f: E \to E$ telle que $f \circ f \circ f = f$. Montrer que f est injective si, et seulement si, f est surjective.

Exercice 14 Soient $(p,q) \in \mathbb{N}^2$ et $n \in \{0,\ldots,p+q\}$. Proposer une démonstration par dénombrement de l'égalité

$$\binom{p+q}{n} = \sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k}$$

.

Exercice 15 On définit une relation binaire $\leq \sup\{z \in \mathbb{C}/\operatorname{Im}(z) \geq 0\}$ par : $z \leq z' \Leftrightarrow |z| < |z'|$ ou (|z| = |z'|) et $\operatorname{Re}(z) \leq \operatorname{Re}(z')$. Montrer qu'il s'agit d'une relation d'ordre total.

3.2 Arithmétique.

Exercice 1 Résoudre dans $\mathbb{Z}^2 : 7x + 17y = 1$.

Exercice 2 Soit p un nombre premier. Montrer que $p|\binom{p}{k}$ où k < p.

Exercice 3 Montrer qu'il existe une infinité de nombre premier de la forme 4k + 3.

Exercice 4 Soit $n \in \mathbb{N}$, on note D(n) le nombre de ses diviseurs. Montrer que $\prod_{d|n} d = n^{\frac{D(n)}{2}}$.

Exercice 5 Soit $p \in \mathbb{N}$ premier et $x \in \mathbb{Z} - \{0, 1\}$. On suppose que $p|(x^2 - x)$. Montrer que $\forall n > 2, p|(x^n - x)$.

Exercice 6 Pour $n \in \mathbb{N}$, calculer $n \vee (n+2)$.

Exercice 7 Soit $P(X) = \sum_{k=0}^{n} a_k X^k$ un polynôme à coefficients entiers et $\frac{p}{q}$ un rationnel sous forme irréductible. Montrer que si $\frac{p}{q}$ est racine de P alors $p|a_0$ et $q|a_n$. Trouver les racines rationnelles de $6X^4 - 11X^3 - X^2 - 4$.

3.3 Polynôme

Exercice 1 Montrer que pour tout $a, b \in \mathbb{N}$ $a \mid b \leftrightarrow X^a - 1 \mid X^b - 1$.

Exercice 2 Soit $P \in \mathbb{K}[X]$. Montrer que P(X) - X divise P(P(X)) - X. Résoudre dans \mathbb{C} , $(z^2 - 3z + 1)^2 = 3z^2 - 8z + 2$.

Exercice 3 Justifier que $\exists (P,Q) \in \mathbb{R}_{n-1}[X]$ tq $(X-1)^n P(X) + X^n Q(X) = 1$. Montrer que P(X) = Q(1-X), montrer qu'il existe k tq $(1-X)P'(X) - nP(X) = kX^{n-1}$. Donner les coefficients de P.

Exercice 4 $P \wedge Q = 1 \Leftrightarrow (P+Q) \wedge PQ = 1$.

Exercice 5 Si $(A, B) \in \mathbb{Z}[X]$ et si B est unitaire alors R et Q sont à coefficients entiers.

Exercice 6 Décomposer $X^4 + X^2 + 1$ et $3X^8 + 3X^4 + 3$ dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$.

3.4 Algèbre linéaire.

Exercice 1 Montrer que la famille $(x \mapsto e^{\alpha x})_{\alpha \in \mathbb{R}}$ est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 2 Soit
$$D: \left\{ \begin{array}{ccc} \mathcal{C}^1(\mathbb{R},\mathbb{C}) & \to & \mathcal{C}^0(\mathbb{R},\mathbb{C}) \\ f & \mapsto & f' \end{array} \right.$$
.

- 1. Montrer que D est une application linéaire surjective.
- 2. Montrer que $H = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{C}) | f(0) = 0 \}$ est un sev de $\mathcal{C}^1(\mathbb{R}, \mathbb{C})$
- 3. Montrer que $\forall \lambda \in \mathbb{C}$, $(D \lambda.id)_{|H}$ est un isomorphisme d'espace vectoriel.

Exercice 3 Soit $f \in \mathcal{L}_{\mathbb{K}}(E)$. Montrer que $Kerf = Kerf^2 \iff Imf \cap Kerf = \{0\}$.

Exercice 4 Montrer que la famille $(x \mapsto |x-a|)_{a \in \mathbb{R}}$ est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 5 Soient E un \mathbb{K} -espace vectoriel de dimension finie, et F, G deux sous-espaces vectoriels de E de même dimension. Montrer que F et G ont un supplémentaire commun, c'est-à-dire qu'il existe un sous-espace H de E tel que $F \bigoplus H = G \bigoplus H = E$.

Exercice 6 Dans \mathbb{R}^4 , soient $u = (1, 0, 1, 0), v = (0, 1, -1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0), y = (1, 1, 0, -1). F = <math>Vect\{u, v, w\}$ et $G = Vect\{x, y\}$. Déterminer des équations paramétriques et des bases de $F, G, F + G, F \cap G$.

Exercice 7 Soit E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Montrer que l'ensemble

$$\{f \in \mathcal{L}_{\mathbb{K}}(E,F) | L \subset Kerf, Imf \subset H\}$$

est un sous-espace vectoriel de $\mathcal{L}_{\mathbb{K}}(E,F)$ de dimension $dim_{\mathbb{K}}H \times (dim_{\mathbb{K}}E - dim_{\mathbb{K}}L)$.

Exercice 8 La famille

$$x \mapsto \cos(x-1), x \mapsto \cos(x), x \mapsto \cos(x+1)$$

est-elle libre?

Exercice 9 Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit $u \in \mathcal{L}_{\mathbb{K}}(E)$ tel qu'il existe $x_0 \in E$ pour lequel $\{x_0, u(x_0), \dots, u^{n-1}(x_0)\}$ est une base de E. On note

$$C = \{ v \in \mathcal{L}_{\mathbb{K}}(E) | u \circ v = v \circ u \}.$$

- 1. Montrer que c'est un sev de $\mathcal{L}_{\mathbb{K}}(E)$.
- 2. Montrer que $C = \{P(u) \in \mathcal{L}_{\mathbb{K}}(E) | P \in \mathbb{R}_n[X] \}$. En déduire une base est sa dimension.

Exercice 10 Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}$ et $f \in \mathcal{L}_{\mathbb{K}}(E)$ telle que rg(f) = 1. Montrer qu'il existe $\mu \in \mathbb{K}$ tel que $f^2 = \mu f$.

Exercice 11 Soit E un \mathbb{C} -espace vectoriel et $f \in \mathcal{L}_{\mathbb{C}}(E)$ telle que $f^3 - id_E = 0$. Montrer que

$$E = Ker(f - id_E) \oplus Ker(f - j.id_E) \oplus Ker(f - j^2.id_E).$$

En déduire la résolution de l'équation différentielle $y^{(3)} - y = 0$.

Exercice 12 Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}$ et $f \in \mathcal{L}_{\mathbb{K}}(E)$. Montrer que $Kerf = Imf \iff f^2 = 0$ et 2rg(f) = n. Donner un exemple dans $\mathbb{R}^2, \mathbb{R}^3$.

Exercice 13 Soient $H = \{(x_1, x_2, \dots, x_n) \in \mathbb{K}^n \mid x_1 + x_2 + \dots + x_n = 0\}$ et $\vec{u} = (1, \dots, 1) \in \mathbb{K}^n$. Montrer que H et $\text{Vect}(\vec{u})$ sont des sous-espaces vectoriels supplémentaires de \mathbb{K}^n .

Exercice 14 Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si, et seulement si, $F \subset G$ ou $G \subset F$.

Exercice 15 Montrer que deux formes linéaires non triviales sont proportionnelles ssi elles ont même noyau.

3.5 Matrices.

Exercice 1 Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 4 \end{pmatrix}$. Trouver les droites stabilisées par A. Déduire une base diagonalisant A.

Exercice 2 Soit $J \in \mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont égaux à 1. Calculer le rang et le noyaux de J, calculer J^k et $(J + \lambda I_n)^k$.

Exercice 3 Soit $A = (a_{i,j})_{(i,j) \in \{1,\dots,n\}^2} \in \mathcal{M}_n(\mathbb{K})$ telle que

$$\forall i \in \{1, \dots, n\}, |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$$

Montrer que A est inversible.

Exercice 4 Soit $\phi \in \mathcal{L}(\mathbb{R}_3[X])$, $\phi : P(X) \mapsto P(X) + P'(X)$. Donner la matrice de ϕ dans la base canonique de $\mathbb{R}_3[X]$. Rang de ϕ ? Inverse de ϕ ? Calculer $\phi^{-1}(X^3 + X + 2)$. Trouver un polynôme annulant ϕ . Donner la matrice de ϕ dans la base $\{1, X - 1, (X - 1)^2, (X - 1)^3\}$.

Exercice 5 Soit $A \in \mathcal{M}_n(\mathbb{K})$ de rang 1. Montrer que $A = XY^T$ avec $(X,Y) \in (\mathbb{R}^n)^2$. Montrer que $A^{p+1} = (Y^TX)^pA$. Trouver une CNS pour qu'une matrice de rang soit canoniquement associée à une projection vectorielle dont on déterminera l'image et le noyau. Montrer que $A + I_n$ est inversible ssi $a \neq -1$ et préciser son inverse de la forme $I_n + \lambda A$.

Exercice 6 Soit $A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 4 & 6 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$. Calculer N^k , en déduire A^k pour k > 1.

Exercice 7 Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$, Calculer $A^3 - A$, trouver un polynôme annulant A et déterminer si A est inversible.

Exercice 8 Soient $n \in \mathbb{N}^*$, $\alpha_1, \ldots, \alpha_n$ des complexes distincts, $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_n)$ et $C(A) = \{M \in \mathcal{M}_n(\mathbb{C}), AM = MA\}$. Montrer que si $\exists (\lambda, X) \in \mathbb{C} \times \mathbb{R}^n, AX = \lambda X$ alors $\forall P \in \mathbb{R}[X], P(A)X = P(\lambda)X$. En déduire que $(A^k)_{0 \leq k \leq n-1}$ est une base de C(A).

Exercice 9 Soit $A = \begin{pmatrix} 0 & 0 & 0 \\ -2 & 1 & -1 \\ 2 & 0 & 2 \end{pmatrix}$, Calculer le reste de la division Euclidienne de X^n par $X^3 - 3X^2 + 2X$ et en déduire A^n .

Exercice 10 Soient $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ telles que $I + AB \in \mathcal{GL}(\mathbb{R})$. Montrer que $I + BA \in \mathcal{GL}(\mathbb{R})$.

3.6 Déterminants

Exercice 1 1) Relier $\det(A)$ et $\det(com(A))$. Si $A \in \mathcal{GL}_n(\mathbb{K})$, préciser $com(A^{-1})$ et $com(A)^{-1}$.

- 2) Montrer que si A est idempotente alors com(A) l'est aussi.
- 3) Étudier le rang de com(A) en fonction du rang de A (on admettra que $com(A) \neq 0$). On montrera les implications suivantes :

$$\begin{cases} \operatorname{rg}(A) = n & \Rightarrow \operatorname{rg}(\operatorname{com}(A)) = n \\ \operatorname{rg}(A) = n - 1 & \Rightarrow \operatorname{rg}(\operatorname{com}(A)) = 1 \end{cases}$$

Exercice 2 On considère le déterminant de taille n suivant

$$D_n = \begin{vmatrix} c & b & b & \dots & b \\ a & c & b & \dots & b \\ a & a & c & \dots & b \\ \vdots & & & \ddots & \vdots \\ a & a & a & \dots & c \end{vmatrix}.$$

En établissant une relation de récurrence d'ordre 2 calculer D_n en fonction de n, a, b et c. (+ une autre méthode si le temps le permet)

3.7 Espaces Euclidiens

Exercice 1 Montrer que l'application $(A, B) \mapsto Tr(A^TB)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Montrer que la norme associée verifie $||AB|| \leq ||A|| ||B||$ pour toutes matrices A et B.