## Final Exam

## 2022 Fall

| Name: [   |  |
|-----------|--|
| E-mail: [ |  |

- Instructions
  - One page cheatsheet
  - Calculator allowed
  - 풀이과정을 적어주세요

|           | Score |
|-----------|-------|
| Problem 1 |       |
| Problem 2 |       |
| Problem 3 |       |
| Problem 4 |       |
| Problem 5 |       |
| Problem 6 |       |
| Total     |       |

## 1. 아래의 진술에 대해서 참과 거짓을 판별하라 (설명할 필요 없음) [Each 5pts]

- 회귀분석에서 일반적으로  $R^2$ 이 크면 클 수록 좋다. (True/False)
- 유의수준이  $\alpha=0.05$ 로 주어졌다면, 이는 가설검정에서 귀무가설을 잘못 기각할 가능성이 5%임을 인정하는 것이다. (True/False)
- 1종 오류를 범할 확률을 낮게 설정하면, 2종 오류를 범할 확률도 낮출 수 있다. (True/False)
- 암을 진단하려는 경우에, 실제로 암인데 암이 아니라고 판단하는 것은 1종 오류에 해당한다. (True/False)
- 2. 확률 변수 X와 Y에 대해서 3개의 쌍을 관찰하여 다음의 관찰값들을 얻었다. Sample correlation을 계산하라. [10pts]
  - (1, 1)
  - (2,3)
  - (3,8)

3. 두 확률변수  $X_1$ 와  $X_2$ 에 대해서 다음의 사실이 알려져 있다.  $X_1-X_2$ 의 분포는 무엇인가? [10pts]

- $\bullet \ X_1 \sim N(\mu_1, \sigma_1^2/n_1)$
- $\bullet \ X_2 \sim N(\mu_2, \sigma_2^2/n_2)$
- $X_1$ 과  $X_2$ 는 서로 독립이다.

4. 아래 논문에 노란색 박스에 포함된 1.77\*의 값은 검정통계량에 해당한다. 어떤 통계 검정에 대한 검정통계량인지 귀무가설과 대립가설을 정확하게 기술하라. [10pts]

6 M. K. SIM AND D. G. CHOI

Table 4. Test of path dependency on different surfaces.

|               |                         | G                                                  | rass           |               | Н                                                  | lard           |              | Clay                                               |                |              |  |
|---------------|-------------------------|----------------------------------------------------|----------------|---------------|----------------------------------------------------|----------------|--------------|----------------------------------------------------|----------------|--------------|--|
| Current state | Last<br>point<br>won by | Server's winning<br>prob. in the next<br>point (%) | Number of obs. | ***statistics | Server's winning<br>prob. in the next<br>point (%) | Number of obs. | ₹-statistics | Server's winning<br>prob. in the next<br>point (%) | Number of obs. | ₹-statistics |  |
| 15:15         | Server                  | 66.59                                              | 7,079          | -0.19         | 64.40                                              | 34,302         | 0.76         | 62.06                                              | 17,513         | -0.53        |  |
|               | Receiver                | 66.74                                              | 7,445          |               | 64.12                                              | 35,576         |              | 62.34                                              | 17,627         |              |  |
| 30:15         | Server                  | 66.45                                              | 9,683          | 1.16          | 63.67                                              | 44,903         | 1.44         | 62.13                                              | 21,857         | -1.67*       |  |
|               | Receiver                | 65.45                                              | 4,504          |               | 63.09                                              | 21,400         |              | 63.10                                              | 10,132         |              |  |
| 15:30         | Server                  | 63.85                                              | 2,606          | -0.41         | 61.83                                              | 13,130         | 1.11         | 60.77                                              | 6,829          | 0.44         |  |
|               | Receiver                | 64.33                                              | 4,841          |               | 61.25                                              | 24,975         |              | 60.45                                              | 13,283         |              |  |
| 40:15         | Server                  | 69.20                                              | 9,382          | 1.77*         | 67.12                                              | 42,091         | 2.93***      | 65.06                                              | 19,972         | 3.60***      |  |
|               | Receiver                | 67.48                                              | 3,023          |               | 65.77                                              | 13,933         |              | 62.58                                              | 6,390          |              |  |
| 30:30         | Server                  | 66.76                                              | 4,778          | 0.82          | 63.60                                              | 23,414         | -0.12        | 60.58                                              | 12,180         | -1.91**      |  |
|               | Receiver                | 65.97                                              | 4,805          |               | 63.65                                              | 24,212         |              | 61.78                                              | 12,017         |              |  |
| 15:40         | Server                  | 63.66                                              | 853            | 0.18          | 61.50                                              | 4,893          | 0.66         | 60.28                                              | 2,694          | 1.1          |  |
|               | Receiver                | 63.32                                              | 2,669          |               | 60.96                                              | 14,691         |              | 59.08                                              | 7,932          |              |  |
| 40:30         | Server                  | 65.74                                              | 6,360          | 0.06          | 63.52                                              | 30,304         | -1.16        | 61.98                                              | 14,803         | 1.25         |  |
|               | Receiver                | 65.69                                              | 3,873          |               | 64.04                                              | 18,608         |              | 61.18                                              | 9,369          |              |  |
| 30:40         | Server                  | 64.49                                              | 2,233          | 1.20          | 61.55                                              | 11,965         | -0.04        | 60.06                                              | 6,310          | 0.43         |  |
|               | Receiver                | 62.89                                              | 3,223          |               | 61.57                                              | 17,322         |              | 59.72                                              | 9,394          |              |  |
| Deuce         | Server                  | 64.37                                              | 6,289          | -0.42         | 62.79                                              | 32,997         | 1.09         | 60.82                                              | 17,458         | 0.08         |  |
|               | Receiver                | 64.72                                              | 6,327          |               | 62.38                                              | 33,012         |              | 60.78                                              | 17,220         |              |  |

\*p < 0.1; \*\*p < 0.05; \*\*\* p < .01.

- *H*<sub>0</sub>:
- *H*<sub>1</sub>:

- 5. 확률 변수 X와 Y에 대해서 3개의 쌍을 관찰하여 다음의 관찰값들을 얻었다.
  - (1,1)
  - (2,3)
  - (3,8)
- 1) 선형회귀식을 찿아라. [10pts]
- 2) 선형회귀의 퍼포먼스를 측정하기 위한 아래의 식을 이용하여 SST, SSE, SSR의 값을 각각 찾아라. [5pts]

$$\begin{array}{cccc} \sum (Y_i - \overline{Y})^2 & = & \sum (Y_i - \widehat{Y}_i)^2 + \sum (\widehat{Y}_i - \overline{Y})^2 \\ SST & = & SSE + SSR \end{array}$$

3)  $R^2$ 를 계산하고 값의 의미를 진술하라. [5pts]

6. 특정질환과 연관된 생체 수치를 낮춘다고 주장하는 신약의 효과를 알아보기 위하여 6명의 환자를 대상으로 복용전과 후의 수치를 비교하였다. 실험 전의 생체 수치를 A변수로, 실험 후의 생체 수치를 B변수로 정하였다.

| A <- c(250, 220, 204, 222, 206, 259) B <- c(242, 217, 200, 211, 189, 240) | c(sum(A), sum(B))<br>## [1] 1361 1299 |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| X <- A-B mean(X)                                                          | c(mean(A), mean(B))                   |  |  |  |  |  |
| ## [1] 10.33333                                                           | ## [1] 226.8333 216.5000              |  |  |  |  |  |
| sd(X)                                                                     | c(sd(A), sd(B))                       |  |  |  |  |  |
| ## [1] 6.623192                                                           | ## [1] 22.78962 21.26735              |  |  |  |  |  |
|                                                                           | c(sum(A^2), sum(B^2), sum(A*B))       |  |  |  |  |  |
|                                                                           | <br>  ## [1] 311317 283495 296976     |  |  |  |  |  |

- 1) 신약이 생체 수치를 낮추는지 95% 신뢰 수준에서 검정하라.[10pts]
- 2) A와 B 사이에 상관관계가 존재하는지 90% 신뢰 수준에서 검정하라.[10pts]

Table AIV.2 Standard Norms Table

Area between 0 and z

P(0<Z<1.55)



| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05                                 | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------------------------------------|--------|--------|--------|--------|
|     |        |        |        |        |        | Name and Address of the Owner, where |        | _      |        |        |
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199                               | 0.0239 | 0.0279 | 0.0319 | 0.0359 |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596                               | 0.0636 | 0.0675 | 0.0714 | 0.0753 |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987                               | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
| 0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368                               | 0.1406 | 0.1443 | 0.1480 | 0.1517 |
| 0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736                               | 0.1772 | 0.1808 | 0.1844 | 0.1879 |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088                               | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422                               | 0.2454 | 0.2486 | 0.2517 | 0.2549 |
| 0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 | 0.2704 | 0.2734                               | 0.2764 | 0.2794 | 0.2823 | 0.2852 |
| 0.8 | 0.2881 | 0.2910 | 0.2939 | 0.2967 | 0.2995 | 0.3023                               | 0.3051 | 0.3078 | 0.3106 | 0.3133 |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289                               | 0.3315 | 0.3340 | 0.3365 | 0.3389 |
| 1.0 | 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3531                               | 0.3554 | 0.3577 | 0.3599 | 0.3621 |
| 1.1 | 0.3643 | 0.3665 | 0.3686 | 0.3708 | 0.3729 | 0.3749                               | 0.3770 | 0.3790 | 0.3810 | 0.3830 |
| 1.2 | 0.3849 | 0.3869 | 0.3888 | 0.3907 | 0.3925 | 0.3944                               | 0.3962 | 0.3980 | 0.3997 | 0.4015 |
| 1.3 | 0.4032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 0.4115                               | 0.4131 | 0.4147 | 0.4162 | 0.4177 |
| 1.4 | 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265                               | 0.4279 | 0.4292 | 0.4306 | 0.4319 |
| 1.5 | 0.4332 | 0.4345 | 0.4357 | 0.4370 | 0.4382 | 0.4394                               | 0.4406 | 0.4418 | 0.4429 | 0.4441 |
| 1.6 | 0.4452 | 0.4463 | 0.4474 | 0.4484 | 0.4495 | 0.4505                               | 0.4515 | 0.4525 | 0.4535 | 0.4545 |
| 1.7 | 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599                               | 0.4608 | 0.4616 | 0.4625 | 0.4633 |
| 1.8 | 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678                               | 0.4686 | 0.4693 | 0.4699 | 0.4706 |
| 1.9 | 0.4713 | 0.4719 | 0.4726 | 0.4732 | 0.4738 | 0.4744                               | 0.4750 | 0.4756 | 0.4761 | 0.4767 |
| 2.0 | 0.4772 | 0.4778 | 0.4783 | 0.4788 | 0.4793 | 0.4798                               | 0.4803 | 0.4808 | 0.4812 | 0.4817 |
| 2.1 | 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842                               | 0.4846 | 0.4850 | 0.4854 | 0.4857 |
| 2.2 | 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878                               | 0.4881 | 0.4884 | 0.4887 | 0.4890 |
| 2.3 | 0.4893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 0.4906                               | 0.4909 | 0.4911 | 0.4913 | 0.4916 |
| 2.4 | 0.4918 | 0.4920 | 0.4922 | 0.4925 | 0.4927 | 0.4929                               | 0.4931 | 0.4932 | 0.4934 | 0.4936 |
| 2.5 | 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946                               | 0.4948 | 0.4949 | 0.4951 | 0.4952 |
| 2.6 | 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960                               | 0.4961 | 0.4962 | 0.4963 | 0.4964 |
| 2.7 | 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970                               | 0.4971 | 0.4972 | 0.4973 | 0.4974 |
| 2.8 | 0.4974 | 0.4975 | 0.4976 | 0.4977 | 0.4977 | 0.4978                               | 0.4979 | 0.4979 | 0.4980 | 0.4981 |
| 2.9 | 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984                               | 0.4985 | 0.4985 | 0.4986 | 0.4986 |
| 3.0 | 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989                               | 0.4989 | 0.4989 | 0.4990 | 0.4990 |
| 3.1 | 0.4990 | 0.4991 | 0.4991 | 0.4991 | 0.4992 | 0.4992                               | 0.4992 | 0.4992 | 0.4993 | 0.4993 |
| 3.2 | 0.4993 | 0.4993 | 0.4994 | 0.4994 | 0.4994 | 0.4994                               | 0.4994 | 0.4995 | 0.4995 | 0.4995 |
| 3.3 | 0.4995 | 0.4995 | 0.4995 | 0.4996 | 0.4996 | 0.4996                               | 0.4996 | 0.4996 | 0.4996 | 0.4997 |
| 3.4 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997                               | 0.4997 | 0.4997 | 0.4997 | 0.4998 |

## [표 A-2] t-분포표

$$P\{T \ge t_{(q\,;\,\nu)}\} = q$$



| 자유도 | 꼬리확률 q |       |       |       |        |        |        |        |        |        |  |  |  |  |
|-----|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--|--|--|--|
| v   | 0.4    | 0.25  | 0.1   | 0.05  | 0.025  | 0.01   | 0.005  | 0.0025 | 0.001  | 0.0005 |  |  |  |  |
| 1   | 0.325  | 1.000 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 127.32 | 318.31 | 636.62 |  |  |  |  |
| 2   | 0.289  | 0.816 | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  | 14.089 | 23.326 | 31.598 |  |  |  |  |
| 3   | 0.277  | 0.765 | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  | 7.453  | 10.213 | 12.924 |  |  |  |  |
| 4   | 0.271  | 0.741 | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  | 5.598  | 7.173  | 8.610  |  |  |  |  |
| 5   | 0.267  | 0.727 | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 4.773  | 5.893  | 6.869  |  |  |  |  |
| 6   | 0.265  | 0.718 | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  | 4.317  | 5.208  | 5.959  |  |  |  |  |
| 7   | 0.263  | 0.711 | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  | 4.029  | 4.785  | 5.408  |  |  |  |  |
| 8   | 0.262  | 0.706 | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  | 3.833  | 4.501  | 5.041  |  |  |  |  |
| 9   | 0.261  | 0.703 | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  | 3.690  | 4.297  | 4.781  |  |  |  |  |
| 10  | 0.260  | 0.700 | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  | 3.581  | 4.144  | 4.587  |  |  |  |  |
| 11  | 0.260  | 0.697 | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  | 3.497  | 4.025  | 4.437  |  |  |  |  |
| 12  | 0.259  | 0.695 | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  | 3.428  | 3.930  | 4.318  |  |  |  |  |
| 13  | 0.259  | 0.694 | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  | 3.372  | 3.852  | 4.221  |  |  |  |  |
| 14  | 0.258  | 0.692 | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  | 3.326  | 3.787  | 4.14   |  |  |  |  |
| 15  | 0.258  | 0.691 | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  | 3.286  | 3.733  | 4.07   |  |  |  |  |
| 16  | 0.258  | 0.690 | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  | 3.252  | 3.686  | 4.01   |  |  |  |  |
| 17  | 0.257  | 0.689 | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  | 3.222  | 3.646  | 3.96   |  |  |  |  |
| 18  | 0.257  | 0.688 | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  | 3.197  | 3.610  | 3.92   |  |  |  |  |
| 19  | 0.257  | 0.688 | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  | 3.174  | 3.579  | 3.88   |  |  |  |  |
| 20  | 0.257  | 0.687 | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  | 3.153  | 3.552  | 3.85   |  |  |  |  |
| 21  | 0.257  | 0.686 | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  | 3.135  | 3.527  | 3.81   |  |  |  |  |
| 22  | 0.256  | 0.686 | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  | 3.119  | 3.505  | 3.79   |  |  |  |  |
| 23  | 0.256  | 0.685 | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  | 3.104  | 3.485  | 3.76   |  |  |  |  |
| 24  | 0.256  | 0.685 | 1.318 | 1.711 | 2.064  | 2.492  | 2.792  | 3.091  | 3.467  | 3.74   |  |  |  |  |
| 25  | 0.256  | 0.684 | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  | 3.078  | 3.450  | 3.72   |  |  |  |  |
| 26  | 0.256  | 0.684 | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  | 3.067  | 3.435  | 3.70   |  |  |  |  |
| 27  | 0.256  | 0.684 | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  | 3.057  | 3.421  | 3.69   |  |  |  |  |
| 28  | 0.256  | 0.683 | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  | 3.047  | 3.408  | 3.67   |  |  |  |  |
| 29  | 0.256  | 0.683 | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  | 3.038  | 3.396  | 3.65   |  |  |  |  |
| 30  | 0.256  | 0.683 | 1.310 | 1.697 | 2.042  | 2.457  | 2.750  | 3.030  | 3.385  | 3.64   |  |  |  |  |
| 40  | 0.255  | 0.681 | 1.303 | 1.684 | 2.021  | 2.423  | 2.704  | 2.971  | 3.307  | 3.55   |  |  |  |  |
| 60  | 0.254  | 0.679 | 1.296 | 1.671 | 2.000  | 2.390  | 2.660  | 2.915  | 3.232  | 3.46   |  |  |  |  |
| 120 | 0.254  | 0.677 | 1.289 | 1.658 | 1.980  | 2.358  | 2.617  | 2.860  | 3.160  | 3.37   |  |  |  |  |
| 00  | 0.253  | 0.674 | 1.282 | 1.645 | 1.960  | 2.326  | 2.576  | 2.807  | 3.090  | 3.29   |  |  |  |  |

| 연습종이 (떼어서 사용할 수 있습니다) |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |

| "Optimism | is | the | faith | that | leads | to | achie | evemen | t - | Helen | Kell | er" |  |  |  |
|-----------|----|-----|-------|------|-------|----|-------|--------|-----|-------|------|-----|--|--|--|
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |
|           |    |     |       |      |       |    |       |        |     |       |      |     |  |  |  |