Equivalência de condições para a validação de um subespaço vetorial.

Um conjunto W é subespaço de V se e somente se W é não vazio, é fechado com relação à soma, e é fechado com relação à multiplicação por escalar. (I)

Mostrar que, para que W seja subespaço de V, basta mostrar que $O \in W$ e $kw + k'w' \in W$, k e k' escalares. (II)

Sejam $w, w', w'', w''' \in W$ e k e k' escalares.

Mostremos que $(I) \Rightarrow (II)$.

Se W é não vazio e é fechado com relação à soma e à multiplicação por escalar:

 $-w \in W, w - w = O \in W$

 $w + w' \in W \implies kw'' + kw''' \in W$

Mostremos agora que (II) \Rightarrow (I).

 $O \in W \Rightarrow W \neq \emptyset$

 $kw + k'w' \in W$.

Tomemos k = k' = 1: $w + w' \in W$.

Tomemos k' = 0: $kw \in W$.

Quod Erat Demonstrandum.

Documento compilado em Thursday 13th March, 2025, 20:24, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: $\bigoplus_{\text{\tiny BY}}$ $\bigoplus_{\text{\tiny NC}}$ $\bigoplus_{\text{\tiny SA}}$ Atribuição-NãoComercial-Compartilha
Igual (CC BY-NC-SA).