Least Squares Problem & Optimization

魏家博 (Chia-Po Wei)

Department of Electrical Engineering National Sun Yat-sen University

Least Squares Problem

- If a linear system Ax = b is inconsistent, we can look for a vector $\hat{\mathbf{x}}$ for which is closest to \mathbf{b} . Such solution $\hat{\mathbf{x}}$ is called a least squares solution to the linear system.
- Least squares problems refer to the following optimization problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

Notice that the general form of an unconstrained optimization problem is

$$\begin{array}{c}
 & \lambda \\
 & \lambda \\$$

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

where the function $f: \mathbb{R}^n \to \mathbb{R}$ is called an objective function or a loss function.

Global and Local Minima

- We say f has a global minimum at \mathbf{x}^* if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.
- We say f has a local minimum at \mathbf{x}^* if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} belonging to a neighborhood of \mathbf{x}^* .

Global and Local Minimizer

• We say that \mathbf{x}^* is a global minimizer of the optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$. The following notation is used to denote \mathbf{x}^* .

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

• We say that \mathbf{x}^* is a local minimizer if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} belonging to a neighborhood of \mathbf{x}^* .

Convex Objective Functions

- **Theorem**. Any local minimum of a convex objective function is also a global minimum.
- Because the objective function of the least square problem is convex, any local minimum is also a global minimum.
- The objection function of a neural network (deep learning) is non-convex.
 - There often exist many local minima that are not global minima.

Single-Variable Calculus

Least Squares Problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

• If \mathbf{x} is a scalar, and let $\mathbf{A} = 2$ and $\mathbf{b} = 3$, then the above becomes

$$\min_{x} (2x - 3)^{T} (2x - 3) = \min_{x} (2x - 3)^{2} = \min_{x} f(x)$$

• The global/local minimum occurs at x satisfying f'(x) = 0.

$$f'(x) = 2(2x - 3) \cdot 2 = 0 \implies 2x - 3 = 0 \implies x = 3/2.$$

Multivariable Calculus

Least Squares Problem

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \min_{\mathbf{x}} f(\mathbf{x})$$

We have

$$f(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{x}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{b}$$

- The global/local minimum occurs at \mathbf{x} satisfying $\nabla f(\mathbf{x}) = 0$.
- $\nabla f(\mathbf{x})$ is called the gradient of the function f.
- How can we calculate $\nabla f(\mathbf{x})$?

Matrix Derivatives

• There are six common types

	Scalar	Vector	Matrix
Scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
Vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	
Matrix	$\frac{\partial y}{\partial \mathbf{X}}$		

Derivatives by Vector

$$\mathbf{x} = [x_1 \quad \cdots \quad x_n]^T$$

$$\mathbf{y} = [y_1 \quad \cdots \quad y_m]^T$$

Numerator Layout Notation

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix}^T \in \mathbb{R}^n$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times m}$$

• $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is called the Jacobian matrix of \mathbf{y} .

Derivatives of Scalars by Vector

$$\mathbf{x} = [x_1 \quad \cdots \quad x_n]^T, \qquad \mathbf{u} = [u_1 \quad \cdots \quad u_n]^T, \qquad \mathbf{u}^T \mathbf{x} = u_1 x_1 + \cdots + u_n x_n$$

(C1) If **u** is not a function of **x**:

$$\frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial x_1} & \dots & \frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial x_n} \end{bmatrix}^T = [u_1 \quad \dots \quad u_n]^T = \mathbf{u}$$

(C2) If **u** is a function of **x**:

$$\frac{\partial (\mathbf{u}^T \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{x} + \frac{\partial \mathbf{x}}{\partial \mathbf{x}} \mathbf{u}$$

Computing $\nabla f(\mathbf{x})$

- $f(\mathbf{x}) = (\mathbf{A}\mathbf{x} \mathbf{b})^T (\mathbf{A}\mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} \mathbf{x}^T \mathbf{A}^T \mathbf{b} \mathbf{b}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{b}$
- The gradient of $f(\mathbf{x})$ is

$$\nabla f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} - \frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{b})}{\partial \mathbf{x}} - \frac{\partial (\mathbf{b}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$
$$= \frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} - 2\frac{\partial (\mathbf{b}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$

- From (C1), $\frac{\partial (\mathbf{b}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}^T \mathbf{b})^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^T \mathbf{b}$
- From (C2), $\frac{\partial (\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}^T \mathbf{A} \mathbf{x})^T \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} \mathbf{x} + \frac{\partial \mathbf{x}}{\partial \mathbf{x}} (\mathbf{A}^T \mathbf{A} \mathbf{x}) = (\mathbf{A}^T \mathbf{A})^T \mathbf{x} + \mathbf{A}^T \mathbf{A} \mathbf{x} = 2\mathbf{A}^T \mathbf{A} \mathbf{x}$
- Hence, $\nabla f(x) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} 2\mathbf{A}^T \mathbf{b}$

Analytical Solution to Least Squares Problems

The objective function can be written as

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{b} = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{x}^T \mathbf{A}^T \mathbf{b} + \mathbf{b}^T \mathbf{b}$$

Setting the gradient of f to zero, we obtain

$$\nabla f(x) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = 0 \implies \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$
 (Normal Equation)

• If A has full column rank, then A^TA is nonsingular, and we have

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

- Notice that
 - The normal equation has at least one solution, because the range space of $\mathbf{A}^T \mathbf{A}$ and the range space of \mathbf{A}^T are the same, i.e., $R(\mathbf{A}^T \mathbf{A}) = R(\mathbf{A}^T)$.
 - If the column vectors of A are linearly independent, then the normal equation has exact one solution.

Multivariable Example

• If
$$\mathbf{x} = [x_1, x_2]^T$$
, and let $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then

•
$$\mathbf{A}\mathbf{x} - \mathbf{b} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 - 1 \\ -2x_1 - x_2 + 1 \end{bmatrix}$$

•
$$\min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \min_{\mathbf{x}} (x_1 - 2x_2 - 1)^2 + (-2x_1 - x_2 + 1)^2$$

• Method 1 (manually derived, only works for very simple problems):

$$\bullet \begin{cases} x_1 - 2x_2 - 1 = 0 \\ -2x_1 - x_2 + 1 = 0 \end{cases} \implies \begin{cases} x_1 = 0.6 \\ x_2 = -0.2 \end{cases}$$

Method 2 (normal equation, only works for least squares problems)

•
$$\nabla f(x) = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = 0 \implies \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

•
$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}^T \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$
, $\mathbf{A}^T \mathbf{b} = \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}^T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$

•
$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0.6 \\ -0.2 \end{bmatrix}$$

- Method 3 (gradient descent, works for general optimization problems)
- Consider the following sequence

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \, \nabla f(\mathbf{x}_n), n \ge 0$$

• Since $-\nabla f(\mathbf{x}_n)$ is the negative gradient at \mathbf{x}_n , we have

$$f(\mathbf{x}_0) \ge f(\mathbf{x}_1) \ge f(\mathbf{x}_2) \ge \cdots$$

In particular,

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \, \nabla f(\mathbf{x})$$

$$= \mathbf{x}_n - \alpha (2\mathbf{A}^T \mathbf{A} \mathbf{x}_n - 2\mathbf{A}^T \mathbf{b})$$

$$= (\mathbf{I} - 2\alpha \mathbf{A}^T \mathbf{A}) \mathbf{x}_n + 2\alpha \mathbf{A}^T \mathbf{b}$$

• The scalar α is called the learning rate.

Gradient Descent

Pseudo code

```
for k in range (max_iteration): x^{k+1} = x^k - \alpha \nabla f(x^k) if \left\|x^{k+1} - x^k\right\|_2 < 10^{-8}: #stopping criterion break
```


$$\alpha = 0.02$$

k	(x_1, x_2)	$f(\mathbf{x})$
0	(-2.00, 2.00)	58.00
1	(-1.48, 1.56)	37.12
2	(-1.06, 1.21)	23.76
3	(-0.73, 0.93)	15.20
4	(-0.46, 0.70)	9.73
5	(-0.25, 0.52)	6.23
:	:	:
29	(0.60,-0.20)	0

$$\alpha = 0.01$$

k	(x_1, x_2)	$f(\mathbf{x})$
0	(-2.00, 2.00)	58.00
1	(-1.74, 1.78)	46.98
2	(-1.51, 1.58)	38.05
3	(-1.30, 1.40)	30.82
4	(-1.11, 1.24)	24.97
5	(-0.94, 1.10)	20.22
:	:	:
60	(0.60,-0.20)	0

- If the learning rate is too small, then the convergence speed might be slow.
- If the learning rate is too large, then the update sequence cannot converge.

References

- [1] Steven J. Leon, Linear Algebra with Applications, Pearson, 2015.
- [2] Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*,
 Cambridge University Press (http://web.stanford.edu/~boyd/cvxbook/)
- [3] Kaare B. Petersen and Michael S. Pedersen, *The Matrix Cookbook* (https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)