

119458 - Prática de Circuitos Eletrônicos 2 Turma C – Semestre 2018/02

Pré-Projeto Final

Indicador de Polaridade

Docente: Prof. Roberto de Souza Baptista

Nome	Matrícula	Assinatura			
Rafael Feijó Leonardo	15/0145497				
Bismark Cotrim Teixeira	14/0132121				
Datas					
Realização do experimento	01/10/2018				
Entrega do Projeto	08/12/2018				

Sumário

1.	Justificativa	3
2.	Esquemático	3
3.	Simulação	4
4.	Componentes e Preços	5
5	Referências Bibliográfica	5

1. Justificativa

Com o avanço tecnológico, produtos como as televisões e os computadores tendem a diminuir de tamanho, como por exemplo as televisões LCD para as novas televisões LED Ultra Slim. Com isso, surge a necessidade de uma fonte de alimentação externa a televisão, já que muita das vezes os circuitos incluem capacitores e transformadores maiores, em espessura, do que a própria televisão.

Entretanto, ocasionalmente estas fontes queimam e, para repor, os consumidores optam por comprar fontes de terceiros, de mesma especificação recomendada pelo fabricante. O problema é que, por mais que existam normas, ligar uma fonte num produto sem confirmar suas especificações pode danificar o produto de vez.

Uma solução para evitar esta queima seria garantir que a polaridade, bem como tensão e corrente, estão de acordo com o necessário para o produto. Assim, um circuito testador de polaridade torna-se muito útil para garantir a correta alimentação ao circuito.

2. Esquemático

Figura 1 – Esquemático do circuito indicador de polaridade, com utilização de um LM741 e 2 LED indicadores.

Entrada > 0V (tensões positivas): LED Verde liga;

Entrada < 0V (tensões negativas): LED Vermelho liga;

3. Simulação

Figura 2 – Simulação do circuito indicador de polaridade para uma tensão de entrada positiva de 5V (Vin > 0V).

Figura 3 – Simulação do circuito indicador de polaridade para uma tensão de entrada negativa de -5V (Vin < 0V).

4. Componentes e Preços

Componente/Código	Quantidade	Preço (R\$)
LM741	1	1,24
Transformador 220V/9V+9V 1A (com TAP Central)	1	27,90
Ponte Retificador W10 (1000V / 1,4A)	1	0,73
Capacitor Eletrolitico 100uF 25V	2	0,11
Resistor de Filme de Carbono $10 \mathrm{K}\Omega$ (1/4W)	3	0,04
Resistor de Filme de Carbono 100KΩ (1/4W)	1	0,04
Resistor de Filme de Carbono $680\Omega(1/4W)$	2	0,04
Potenciômetro Linear 10K Ω	1	1,15
LED Difuso Verde 5mm	1	0,09
LED Difuso Vermelho 5mm	1	0,15
TOTAL	-	31,72

5. Referências Bibliográfica

- 1. DORF, R.C.; SVOBODA, J.A. (2012) *Introdução aos Circuitos Elétricos, 8ª edição*, ISBN 9788521621164. Editora LTC.
- 2. Instituto Newton C Braga, "NCB". "Indicador de Polaridade (CIR006)". Disponível em: http://www.newtoncbraga.com.br/index.php/banco-circuitos/2380-cir006.html Acesso em 01/10/2018.