- 1. (1)设 M'是 M 的逐比特取反,证明:若 $Y = DES_K(X)$ 则 $Y' = DES_K(X')$
- 证:①以 P_D 记 DES 中的所有置换,包括循环移位、左右交换,则 P_D 满足如下性质:

若 $T=P_D(Z)$,则 $T'=P_D(Z')$

左半部分= $R'_{i-1}=L'_{i}$

在 DES 中,异或运算显然满足性质 $a' \oplus b' = a \oplus b$,及 $a' \oplus b = (a \oplus b)'$

因而 DES 中的函数 $F(R_{i-1}, K_i)$ 在 S 盒前是异或运算,所以 $F(R'_{i-1}, K'_i) = F(R_{i-1}, K_i)$

②由密钥编排方案中的运算部件知,

若 K 的子密钥为 $K_1, K_2, ..., K_{16}$,那么 K'的子密钥为 $K'_1, K'_2, ..., K'_{16}$

③若 X 经初始置换 IP 后记为 $L_0 || R_0$,则 X'经初始置换 IP 后记为 $L'_0 || R'_0$,

用 K 对 X 加密的第 i 轮输入为 $L_{i-1}||R_{i-1}$,输出为 $L_{i}||R_{i}$,

其中, $L_i = R_{i-1}$, $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$

设用 K'对 X'加密的第 i 轮输入为 $L'_{i-1} \parallel R'_{i-1}$,则其第 i 轮的输出满足

右半部分= $L'_{i-1} \oplus F(R'_{i-1}, K'_{i}) = L'_{i-1} \oplus F(R_{i-1}, K_{i}) = (L_{i-1} \oplus F(R_{i-1}, K_{i}))' = R'_{i}$

- ④由归纳法知,前 16 轮的输出均满足逐比特取反的关系,在经过左右交换盒 IP-1 两个置换运算,输出密文也满足取反关系 #
- (2)由(1)的结论,在对 DES 进行穷搜索攻击时,选择两个明密文对(M,C_1)和(M',C_2),然后选择 $K \in F_2$ 56,对 M 加密 $C = DES_K(M)$,判断 $C = C_1$ 或 $C' = C_2$ 则分别说明 K 或 K'为正确密钥,否则 K 和 K'都不是密钥,从而一次加密运算可同时验证一对互反密钥,使搜索量减少一半
- 2. 证明: DES 的解密变换是加密变换的逆

证: DES 的加密变换由 IP, 16 轮迭代,左右交换, IP-1 四部分构成,注意到解密时子密 钥逆续使用,16 轮迭代与左右交换一起刚好构成 Feistel 网络,若 Feistel 网络输入为 X,输 出为 Y,即 Y=Feistel(X,K),其中 K 为密钥,如果 K 的子密钥逆续使用则记为 Inv(K),那 么由 Feistel 网络的性质有 X=Feistel(Y,Inv(K))。

对任意的明文消息 M 加密可表示为 C=IP-1[Feistel(IP(M),K)]

即 IP(C)=Feistel(IP(M),K)

由 Feistel 网络的性质有 IP(M)=Feistel(IP(C),Inv(K))

而对密文 C 解密,即为明文= $IP^{-1}[Feistel(IP(C),Inv(K))]=IP^{-1}[IP(M)]=M$,所以解密变换是加密变换的逆 #

- 3. 在 DES 的 CBC 模式中 C_1 的一个错误明显地将影响 P_1 和 P_2 的结果
- (1) P_2 以后的分组不受影响,这是因为 C_1 以后的密文都是正确的,而恢复明文主要看对应密文分组和其前一个密文分组的正确性。
- (2) 加密前的明文分组 P_1 有 1 比特错误,则这一错误将在所有后续密文分组中传播,但接受者能够正确解密,除了 P_1 的一个错误比特之外。这是因为相当于发送者将明文改变了 1 比特得到一个新明文,而该明文的对应密文正确的传送给了接受方。
- 4. 在 8bitCFB 中密文字符中出现 1 比特错误,该错误将影响包括该密文的连续 9 组密文的解密。
- 5. 在实现 IDEA 时,最困难的部分是模 $2^{16}+1$ 乘法运算,设 a 和 b 是两个 n 比特的非 0 整数,记($ab \mod 2^n$)为 ab 的 n 个最低有效位,($ab \dim 2^n$)为 ab 右移 n 位
- (1) 证明存在惟一的非负整数 q 和 r, 使得 $ab=q(2^{n}+1)+r$
- 证: 令 q 为 ab/(2ⁿ+1)的商, r 为 ab/(2ⁿ+1)的余数, 均非负,则 $ab=q(2^n+1)+r$ 若存在另一对数 g_1 , r_1 满足 $ab=g_1(2^n+1)+r_1$

两式相减的 $(r_1-r)=(q-q_1)(2^{n+1})$

由于 $|(r_1-r)| \le 2^n$,所以当且仅当 $r_1=r$, $q_1=q$ 时上式才成立 #

(2) 求 q 和 r 的上下界

解:由(1)知,r为余数,所以有 $0 \le r \le 2^n$

又 a 和 b 的最大值为 2^n-1 ,所以 $0 \le q \le [ab/(2^n+1)] \le [(2^n-1)^2/(2^n-1)] = [2^n-3+4/(2^n+1)] = 2^n-3$ 对于 $n \ge 2$ 时都成立,当 n=1 时,q=0

所以, q 的上下界为 $0 \le q \le 2^n - 3$ ($n \ge 2$) n = 1 时, q = 0

(3) 证明 q+r<2ⁿ⁺¹

 $i \mathbb{E}$: $q+r \le 2^n-3+2^n=2^{n+1}-3 < 2^{n+1}$

(4), (5) 求(ab div 2ⁿ)关于 q 的表达式和(ab mod 2ⁿ)关于 q 和 r 的表达式

解: 设 $ab=q_12^{n}+r_1$, 则显然有 $q_1=(ab \text{ div } 2^n)$, $r_1=(ab \text{ mod } 2^n)$

又 $ab=q(2^{n}+1)+r$,记为(a)式

当 $q_1 \le r_1$ 时, $ab = q_1 2^{n} + r_1 = q_1 (2^{n} + 1) + (r_1 - q_1)$ 记为(b)式

此时 $0 \le (r_1 - q_1) \le r_1 \le 2^n - 1$

由(1)的唯一性结论,比较(a),(b)两式知, $q_1=q$, $r_1-q_1=r$

 $\mathbb{P} q_1 = (ab \text{ div } 2^n) = q, r_1 = (ab \text{ mod } 2^n) = r + q_1 = r + q_1$

当 $q_1 > r_1$ 时, $ab = q_1 2^n + r_1 = (q_1 - 1)(2^n + 1) + (r_1 - q_1) + (2^n + 1)$ 记为(c)式

此时,由假设 $q_1 > r_1$,知 $(r_1 - q_1) < 0$,及 $(q_1 - 1) \ge 0$ 所以

 $0 < (r_1 - q_1) + (2^n + 1) \le 2^n$

即 $(r_1-q_1)+(2^n+1)$ 为 $ab/(2^n+1)$ 的余数

所以比较两式(a),(c)两式知(q_1 -1)=q, (r_1 - q_1)+(2^n +1)=r

 $\mathbb{P} q_1 = (ab \text{ div } 2^n) = q+1, r_1 = (ab \text{ mod } 2^n) = r+q_1-(2^n+1) = r+(q+1)-(2^n+1)$

综上所述有

$$q_1 = (ab \operatorname{div} 2^n) = \begin{cases} q, & q_1 \le r_1 \\ q+1, & q_1 \le r_1 \end{cases} = \begin{cases} q, & (ab \operatorname{div} 2^n) \le (ab \operatorname{mod} 2^n) \\ q+1, & (ab \operatorname{div} 2^n) \ge (ab \operatorname{mod} 2^n) \end{cases}$$

$$r_{1} = (ab \bmod 2^{n}) = \begin{cases} q + r, & q_{1} \le r_{1} \\ q + r - 2^{n}, & q_{1} \le r_{1} \end{cases} = \begin{cases} q + r, & (ab \ div \ 2^{n}) \le (ab \bmod 2^{n}) \\ q + r - 2^{n}, & (ab \ div \ 2^{n}) \ge (ab \bmod 2^{n}) \end{cases}$$

(6) 用(4)和(5)的结果求r的表达式,说明r的含义

 $\stackrel{\text{def}}{=}$ $q_1 \le r_1$ $\forall f$, $r = (r+q)-q=(r_1-q_1)=(ab \mod 2^n)-(ab \dim 2^n)$

当
$$q_1 > r_1$$
 时, $r = (r + q - 2^n) - (q + 1) + (2^n + 1) = (r_1 - q_1) + (2^n + 1) = (ab \mod 2^n) - (ab \operatorname{div} 2^n) + (2^n + 1)$

所以
$$r=ab \mod (2^n+1)=$$

$$\begin{cases} ab \mod 2^n - ab \ div \ 2^n, & (ab \ div \ 2^n) \le (ab \mod 2^n) \\ ab \mod 2^n - ab \ div \ 2^n + 2^n + 1, & (ab \ div \ 2^n) \ge (ab \mod 2^n) \end{cases}$$

- 6. (1) 在 IDEA 模乘运算中,将模数取为 $2^{16}+1$,是因为它是素数,从而所有非 0 元都有逆元
- (2) 在 IDEA 的模加运算中,模数取为 2¹⁶ 使所有元素都有逆元,构成群运算,同时刚好在 16 位子段上运算,求模运算易于实现,而取为 2¹⁶+1 时则必须做额外处理