Stat 134: Section

Brett Kolesnik

April 5, 2020

Conceptual Review

Please discuss these short questions with those around you in section. These problems are intended to highlight concepts that will be relevant for today's problems.

- a. For a normal variable with mean μ and variance σ^2 , verify that its mean and variance are μ and σ^2 .
- b. What are the mean and variance of the sum of independent variables?
- c. What is the Chi-squared variable? What is its degree of freedom?

Problem 1

Let X, Y be independent normal variables, X with mean 0 and variance 1, Y with mean 1. Suppose P(X > Y) = 1/3. Find the standard deviation of Y.

Ex 5.3.5 in Pitman's Probability

Note that X - Y is also a normal distribution with mean -1 and variance $1 + \sigma^2$, where σ^2 is the variance of Y.

$$P(X > Y) = \frac{1}{3} \implies P(X - Y - (-1) > 1) = \frac{1}{3}$$
 (1)

Looking up the standard normal table, one finds that the corresponding *Z*-score is about 0.43. Hence, we conclude that $0.43*\sqrt{1+\sigma^2}=1$. Thus, $\sigma\approx 2.1$.

Problem 2

Let *X*, *Y* be independent standard normals. Find:

(a) $P(|\min(X,Y)| < 1)$; (b) $P(\min(X,Y) > \max(X,Y) - 1)$. Ex 5.3.6 in Pitman's Probability

For part (a), $|\min(X, Y)| < 1$ implies $\min(X, Y) \in (-1, 1)$. Hence, we can compute:

$$P(|\min(X,Y)| < 1) = P(\min(X,Y) > -1) - P(\min(X,Y) > 1).$$

We can compute both term using the normal table to be 0.84134² and 0.15866^2 , so the result is about 0.69.

For part (b), note that $P(\min(X, Y) > \max(X, Y) - 1) = P(|X - Y|)$ |Y| < 1), and X - Y is a normal variable with mean o and variance 2. Then, $P(|X - Y| < 1) = P(|X - Y| / \sqrt{2} < 1/\sqrt{2})$ is about 0.76.

Problem 3

If *X* has normal $(0, \sigma^2)$ distribution, then X^2 has gamma $(\frac{1}{2}, \frac{1}{2\sigma^2})$. Ex 5.3.15 in Pitman's Probability

First we consider the case of $\sigma^2 = 1$. Then, we may derive the PDF of X^2 by:

$$f_{X^2}(x) = \frac{dF_{X^2}(x)}{dx} = \frac{d(F_X(\sqrt{x}) - F_X(-\sqrt{x}))}{dx}$$

We can derive that $f_{X^2}(x)$ is proportional to $x^{-1/2}e^{-x/2}$, and since X^2 shares the same domain of the Gamma(1/2,1/2) distribution, whose pdf is also proportional to $x^{-1/2}e^{-x/2}$, we conclude that X^2 has a Gamma(1/2,1/2) distribution. Extending this by choosing $\sigma^2 X^2$ and showing a similar result yields the final answer.