电子信息与光学工程学院本科生 20202021 学年第 1 学期《概率论与数理统计》课程期末考试试卷(B 卷)								
任课	老师:	专业:	年级:	学号:	姓名:	成绩:		
得分	一、填空 (共 24 分,每小题 4 分): 1、设两个相互独立的事件 A 和 B 都不发生的概率是 $\frac{1}{9}$, A 发生 B 不发生的概率等于 B 发生 A 不发生的概率,							
	2、随机 件{ <i>X</i>	P(A)=	P(Y=0)=			示对 X 的三次独立观察中	事	

5、设 X 服从 N(0,1), (X₁, X₂, ..., X₆)为来自总体 X 的简单随机样本, Y=(X₁+X₂+X₃)²+(X₄+X₅+X₆)²,则 C= _____ 时, CY 服从 χ² 分布

6、已知 {N(t), t≥0} 服从强度为 λ 的泊松过程,则P{N(12) = 9|N(5) = 4} = _____

4、设随机变量(X,Y)~N(1,4; 1,4; 0.5), Z=X-Y, 则 Cov(X, Z)=_____

二、单项选择题(共24分,每小题4分): 得 分

1、设 A, B 是两个互不相容的时间, P(B)>0, 则下列各式中一定成立的是 ()

- (A) P(A)=1-P(B);
- (B) P(A|B) = 0;
- (C) $P(A|\bar{B}) = 1$;
- (D) $P(\overline{AB}) = 0$.

2、设 X 的数学期望 $E(X)=\mu$, 方差 $D(X)=\sigma^2>0$, 则对任意常数 C 必有

- (A) $E[(X-C)^2] \ge E[(X-\mu)^2];$ (B) $E[(X-C)^2] < E[(X-\mu)^2];$
- (C) $E[(X-C)^2] = E[(X-\mu)^2];$ (D) $E[(X-C)^2] = E[X^2] C^2$

草 稿 区

目 X、Y相互独立,则

()

- (A) $\alpha = 2/9$, $\beta = 1/9$;
- (B) $\alpha = 1/9$, $\beta = 2/9$:
- (C) $\alpha = 1/6$, $\beta = 1/6$:
- (D) $\alpha = 8/15$, $\beta = 1/18$
- 4、设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$, 则随着 σ 的增大, 概率 $P(|X \mu|) < \sigma$
 - (A) 单调减小:
- (B) 单调增加: (C) 保持不变:
- (D) 不能确定。
- 5、设 X_1,X_2,\cdots , X_n $(n\geq 2)$ 为来自总体 N (0,1) 的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,则 (
 - (A) $n\overline{X} \sim N (0.1)$
- (B) $nS^2 \sim \chi^2(n)$
- (C) $\frac{(n-1)\overline{X}}{S} \sim t(n-1)$ (D) $\frac{(n-1)X_1^2}{\sum_{i=1}^{n} X_i^2} \sim F(1, n-1)$
- 6、设 $(X_1, X_2, ...X_n)$ 为总体 $N(\mu, \sigma^2)$ (μ 已知)的一个样本, \overline{X} 为样本均值,则在总体方差 σ^2 的下列估计量

中, 为无偏估计量的是

- (A) $\sigma_1^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2;$ (B) $\sigma_2^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (X_i \overline{X})^2;$
- (C) $\sigma_1^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$; (D) $\sigma_2^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (X_i \mu)^2$

得 分

三、计算题(本题满分8分):

设随机变量 Y 服从均匀分布 U(-5,5),求方程 $2x^2 - \sqrt{8}Yx + 3Y + 4 = 0$ 有实根的概率。

得 分

四、解答题(10分):

设 X_i (i=1,2,...,13)是相互独立且概率密度均为 f(x) ($X \in (-\infty, +\infty)$)的随机变量,求 $min\{X_{II}, X_{I2}, X_{I3}\} > max\{X_I, X_2, ..., X_{I0}\}$ 的 概率。

得 分

五、解答题(共8分):

设随机变量 X, Y 相互独立, 且都服从正态分布 N(0, 0.5), 求 D(|X - Y|)。

得 分

六 、解答题 (10分):

设总体 $X\sim N(\mu,\sigma^2)$,从此总体中取一个容量为 n=16 的样本 (X_1,X_2,\cdots,X_{16}) ,求概率

(1)
$$P\left\{\frac{\sigma^2}{2} \le \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \le 2\sigma^2\right\};$$

(2)
$$P\left\{\frac{\sigma^2}{2} \le \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \le 2\sigma^2\right\}$$

得 分

七、解答题 (6分):

设总体 X 在 [a,b] 上服从均匀分布,其中 a,b 未知, X_1,X_2,\cdots,X_n 是来自总体 X 的一个样本值,求 a,b 的最大似然估计量。

稿	

八、解答题(10分):

某大城市为了确定城市养猫灭鼠的效果,进行调查得:养猫户: $n_1=119$,有老鼠活动的有 15 户; 无猫户: $n_2=418$,

有老鼠活动的有 58 户,问养猫与不养猫对大城市家庭灭鼠有无显著差异 $(\alpha=0.05)$?

 $(Z_{0.025}=1.96)$; $P\{\chi^2(16)>32=0.01\}$; $P\{\chi^2(16)>8=0.90\}$; $\{\chi^2(15)>8=0.9\}$; $\{\chi^2(15)>32=0.005\}$