Exercise Lecture

Contents

Motivations

Linear Environment Implementation

Linear UCB Implementation

Motivations

When the arms space is huge we can exploit the information gained on observed arms to estimate the reward function of non-observed arms

Linear Environment

Each arm j is associated with a feature vector $x_j = (x_{j1}, x_{j2}, x_{j3}, ..., x_{jD})$ with $x_{ji} \in [0,1]$

Linear Environment

Each arm j is associated with a feature vector $x_j = (x_{j1}, x_{j2}, x_{j3}, ..., x_{jD})$ with $x_{ji} \in [0,1]$

The reward is a linear combination of the arm feature vector and a parameters vector θ :

$$r_t = x_t^T \theta$$

Example: Social Influence

Example: Social Influence

Let's implement it!

Input: arms set A, parameter c>0

Initialization: $B_0 = 0 \in \mathbb{R}^d$, $M_0 = I \in \mathbb{R}^{dxd}$

Input: arms set A, parameter c>0

Initialization: $B_0 = 0 \in \mathbb{R}^d$, $M_0 = I \in \mathbb{R}^{d \times d}$

For $t = 1, 2, \dots, n$ do

1)
$$\theta_{t-1} = M_{t-1}^{-1} B_{t-1}$$
 a

1)
$$\theta_{t-1} = M_{t-1}^{-1} B_{t-1}$$
 a
 UCBs = $x^T \theta_{t-1} + c \sqrt{x^T M_{t-1}^{-1} x}$

Input: arms set A, parameter c>0

Initialization: $B_0 = 0 \in \mathbb{R}^d$, $M_0 = I \in \mathbb{R}^{dxd}$

For $t = 1, 2, \dots, n$ do

1)
$$\theta_{t-1} = M_{t-1}^{-1} B_{t-1}$$
 a
 UCBs = $x^T \theta_{t-1} + c \sqrt{x^T M_{t-1}^{-1} x}$

2) Choose the arm with maximum ucb value

Input: arms set A, parameter c>0

Initialization: $B_0 = 0 \in \mathbb{R}^d$, $M_0 = I \in \mathbb{R}^{d \times d}$

For t = 1, 2, ..., n do

1)
$$\theta_{t-1} = M_{t-1}^{-1} B_{t-1}$$
 a UCBs = $x^T \theta_{t-1} + c \sqrt{x^T M_{t-1}^{-1} x}$

- 2) Choose the arm with maximum ucb value
- 3) Update matrices:

a)
$$M_t = M_{t-1}$$
 $B_t = B_{t-1}$

b)
$$M_t = M_t + x_t x_t^T$$

and $B_t = B_t + x_t r_t$

IMLinUCB

Wen, Zheng, et al. "Online influence maximization under independent cascade model with semi-bandit feedback." Advances in neural information processing systems. 2017.

Let's implement it!

