Computer Graphics 12: Spline Representations

Contents

Today we are going to look at Bézier spline curves

- Introduction to splines
- Bézier curves
- Bézier cubic splines

Spline Representations

A spline is a smooth curve defined mathematically using a set of constraints

Splines have many uses:

- 2D illustration
- Fonts
- -3D Modelling
- Animation

Physical Splines

Physical splines are used in car/boat design

Pierre Bézier

Big Idea

User specifies control points Defines a smooth curve

Interpolation Vs Approximation

A spline curve is specified using a set of **control points**

There are two ways to fit a curve to these points:

- Interpolation the curve passes through all of the control points
- Approximation the curve does not pass through all of the control points

Convex Hulls

The boundary formed by the set of control points for a spline is known as a **convex hull** Think of an elastic band stretched around the control points

Control Graphs

A polyline connecting the control points in order is known as a **control graph**Usually displayed to help designers keep track of their splines

Bézier Spline Curves

A spline approximation method developed by the French engineer Pierre Bézier for use in the design of Renault car bodies

A Bézier curve can be fitted to any number of control points – although usually 4 are used

Consider the case of n+1 control points denoted as $p_k=(x_k, y_k, z_k)$ where k varies from 0 to n

The coordinate positions are blended to produce the position vector P(u) which describes the path of the Bézier polynomial function between p_0 and p_n

$$P(u) = \sum_{k=0}^{n} p_k BEZ_{k,n}(u), \qquad 0 \le u \le 1$$

The Bézier blending functions $BEZ_{k,n}(u)$ are the Bernstein polynomials

$$BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$$

where parameters C(n,k) are the binomial coefficients

$$C(n,k) = \frac{n!}{k!(n-k)!}$$

So, the individual curve coordinates can be given as follows

$$x(u) = \sum_{k=0}^{n} x_k BEZ_{k,n}(u)$$

$$y(u) = \sum_{k=0}^{n} y_k BEZ_{k,n}(u)$$

$$z(u) = \sum_{k=0}^{n} z_k BEZ_{k,n}(u)$$

Important Properties Of Bézier Curves

The first and last control points are the first and last point on the curve

$$-P(0) = p_0$$
$$-P(1) = p_n$$

The curve lies within the convex hull as the Bézier blending functions are all positive and sum to 1

$$\sum_{k=0}^{n} BEZ_{k,n}(u) = 1$$

The slope at the beginning and end of the curve are along the along the first two and the last two points respectively

Cubic Bézier Curve

Many graphics packages restrict Bézier curves to have only 4 control points (i.e. n = 3)

The blending functions when n = 3 are simplified as follows:

$$BEZ_{0,3} = (1-u)^3$$
 $BEZ_{1,3} = 3u(1-u)^2$
 $BEZ_{2,3} = 3u^2(1-u)$
 $BEZ_{3,3} = u^3$

Cubic Bézier Blending Functions

Bézier Spline Curve Exercise

Summary

Today we had a look at spline curves and in particular Bézier curves

The whole point is that the spline functions give us an approximation to a smooth curve