MATHEMATICS

Pure mathematics is, in its way, the poetry of logical ideas.

ΜΟΝΟΤΟΝΊΑΣ ΚΑΙ ΑΚΡΌΤΑΤΑ ΣΥΝΆΡΤΗΣΗΣ

Μονοτονία

Ορισμός (Γνησίως Αύξουσας Συνάρτηση)

Μια συνάρτηση f λέγεται **γνησίως αύξουσα** σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) < f(x_2)$.

Στην παρακάτω εφαρμογή παρουσιάζεται μία γνησίως αύξουσα συνάρτηση, δύο σημεία x_1 και x_2 του άξονα x'x με $x_1 < x_2$ και οι αντίστοιχες εικόνες $f(x_1)$ και $f(x_2)$. Μπορείτε να μετακινήσετε τα σημεία x_1 και x_2 και να δείτε πώς μεταβάλλονται οι αντίστοιχες εικόνες. Παρατηρούμε ότι για οποιαδήποτε x_1 και x_2 με $x_1 < x_2$ ισχύει $f(x_1) < f(x_2)$.

1. Η παράγωγος συνάρτηση της f είναι:

$$f'(x) = (x^3 + 2x)' = (x^3)' + 2(x)' \Rightarrow f'(x) = 3x^2 + 2$$

Παρατηρούμε ότι η εξίσωση f'(x)=0 είναι αδύνατη, πράγματι:

$$f'(x) = 0 \Rightarrow 3x^2 + 2 = 0 \Rightarrow x^2 = -\frac{2}{3}$$

επομένως η f'(x) διατηρεί πρόσημο σε όλο το $\mathbb R$. Για να βρούμε το πρόσημο της f' αρκεί να υπολογίσμουμε την τιμή της f για ένα τυχαίο σημείο x. Για x=0 έχουμε f'(0)=2>0 άρα ισχύει f'(x)>0 για κάθε $x\in\mathbb R$.

$$\begin{array}{c|cc} x & -\infty & +\infty \\ \hline f'(x) & + \\ \hline f(x) & \nearrow \end{array}$$

Άρα η f είναι γνησίως αύξουσα σε όλο το \mathbb{R} .

2. Σύμφωνα με τον ορισμό της γνησίως αύξουσας συνάρτησης για $x_1 < x_2$ ισχύει $f\left(x_1\right) < f\left(x_2\right)$. Επομένως, για $x_1 = 2019$ και $x_2 = 2020$ προκύπτει $f\left(2019\right) < f\left(2020\right)$.

-Τέλος Λύσης-

Ορισμός (Γνησίως Φθίνουσα Συνάρτηση)

Μια συνάρτηση f λέγεται **γνησίως φθίνουσα** σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) > f(x_2)$.

Στην παρακάτω εφαρμογή παρουσιάζεται μία γνησίως φθίνουσα συνάρτηση, δύο σημεία x_1 και x_2 του άξονα x'x με $x_1 < x_2$ και οι αντίστοιχες εικόνες $f(x_1)$ και $f(x_2)$. Μπορείτε να μετακινήσετε τα σημεία x_1 και x_2 και να δείτε πώς μεταβάλλονται οι αντίστοιχες εικόνες. Παρατηρούμε ότι για οποιαδήποτε x_1 και x_2 με $x_1 < x_2$ ισχύει $f(x_1) > f(x_2)$.

1. Η παράγωγος συνάρτηση της f είναι:

$$f'(x) = (-x^3 - 2x)' = -(x^3)' - 2(x)' \Rightarrow \boxed{f'(x) = -3x^2 - 2}$$

Παρατηρούμε ότι η εξίσωση f'(x)=0 είναι αδύνατη, πράγματι:

$$f'(x) = 0 \Rightarrow -3x^2 - 2 = 0 \Rightarrow x^2 = -\frac{2}{3}$$

επομένως η f'(x) διατηρεί πρόσημο σε όλο το $\mathbb R$. Για να βρούμε το πρόσημο της f' αρκεί να υπολογίσμουμε την τιμή της f για ένα τυχαίο σημείο x. Για x=0 έχουμε f'(0)=-2<0 άρα ισχύει f'(x)<0 για κάθε $x\in\mathbb R$.

$$\begin{array}{c|ccc} x & -\infty & +\infty \\ \hline f'(x) & - & \\ \hline f(x) & \searrow & \end{array}$$

Άρα η f είναι γνησίως φθίνουσα σε όλο το \mathbb{R} .

2. Σύμφωνα με τον ορισμό της γνησίως φθίνουσας συνάρτησης για $x_1 < x_2$ ισχύει $f\left(x_1\right) > f\left(x_2\right)$. Επομένως, για $x_1 = 2019$ και $x_2 = 2020$ προκύπτει $f\left(2019\right) > f\left(2020\right)$.

-Τέλος Λύσης-

Μια συνάρτηση που είναι γνησίως αύξουσα ή γνησίως φθίνουσα λέγεται γνησίως μονότονη.

Ακρότατα

Ορισμός (Τοπικό Μέγιστο)

Μια συνάρτηση f με πεδίο ορισμού το A λέμε ότι παρουσιάζει **τοπικό μέγιστο** στο $x_0 \in A$, όταν υπάρχει περιοχή Δ γύρω από το x_0 για την οποία για κάθε $x \in \Delta$ ισχύει $f(x) \leqslant f(x_0)$.

Ορισμός (Ολικό Μέγιστο)

Μια συνάρτηση f με πεδίο ορισμού το A λέμε ότι παρουσιάζει **ολικό μέγιστο** στο $x_0 \in$ όταν για κάθε $x \in A$ ισχύει $f(x) \leqslant f(x_0)$.

Μια συνάρτηση f με πεδίο ορισμού το A λέμε ότι παρουσιάζει **τοπικό ελάχιστο** στο $x_0 \in A$, όταν υπάρχει περιοχή Δ γύρω από το x_0 για την οποία για κάθε $x \in \Delta$ ισχύει $f(x) \geqslant f(x_0)$.

Ορισμός (Ολικό Ελάχιστο)

Μια συνάρτηση f με πεδίο ορισμού το A λέμε ότι παρουσιάζει **ολικό ελάχιστο** στο $x_0 \in A$, όταν για κάθε $x \in A$ ισχύει $f(x) \geqslant f(x_0)$.

Το παραπάνω θεώρημα συνδέει την έννοια του τοπικού ελαχίστου με την έννοια της παραγώγου.

Θεώρημα (Κριτήριο Πρώτης Παραγώγου – Τοπικό Ελάχιστο)

Αν για μια συνάρτηση f ισχύουν $f'(x_0)=0$ για $x_0\in(\alpha,\beta)$, f'(x)<0 στο (α,x_0) και f'(x)>0 στο (x_0,β) , τότε η f παρουσιάζει στο διάστημα (α,β) για $x=x_0$ ελάχιστο.

Αν επιπλέον το x_0 είναι μοναδική ρίζα της εξίσωσης $f'(x_0)=0$, τότε το $f(x_0)$ είναι ολικό ελάχιστο.

Στην παρακάτω εφαρμογή μετακινήστε το κόκκινο σημείο x του άξονα x'x και παρατηρήστε πώς μεταβάλλεται η αντίστοιχη τιμή $y=f\left(x\right)$. Τα $f\left(x_{0}\right)$ και $f\left(x_{1}\right)$ είναι ολικό και τοπικό ελάχιστο αντίστοιχα.

Για x=0<1/2 έχουμε f'(0)=-1<0. Επίσης για x=1>1/2 έχουμε f'(1)=1>0 οπότε έχουμε τον ακόλουθο πίνακα προσήμων:

$$\begin{array}{c|cccc} x & -\infty & \frac{1}{2} & +\infty \\ \hline f'(x) & - & + \\ \hline f(x) & \searrow & \nearrow \end{array}$$

Επομένως η f είναι γνησίως φθίνουσα στο $(-\infty,1/2]$, γνησίως αύξουσα στο $[1/2,+\infty)$ και παρουσιάζει ολικό ελάχιστο στο $x_0=1/2$ το οποίο είναι:

$$y = f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} - 1 = -\frac{5}{4}$$

-Τέλος Λύσης-

Προσπαθήστε μόνοι σας

Άσκηση 4

Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις συναρτήσεις:

1.
$$f(x) = x^3 - 3x^2 + 3x + 1$$

$$2. f(x) = x^3 - 3x + 2$$

$$3. f(x) = 2x^3 - 3x^2 - 1$$

Άσκηση 5

Να βρείτε τις τιμές των $\alpha,\ \beta\in\mathbb{R}$ για τις οποίες η συνάρτηση $f\left(x\right)=\alpha x^3+\beta x^2-3x+1$ παρουσιάζει τοπικά ακρότατα στα σημεία $x_1=-1$ και $x_2=1$. Να καθορίσετε το είδος των ακρότατων.

Άσκηση 6

Δίνεται η συνάρτηση

$$f(x) = \sigma v \nu x - \frac{3}{2}x.$$

Να αποδείξετε ότι για κάθε x πραγματικό ισχύει $f\left(x\right)-f\left(x+1\right)>0$

Άσκηση 7

Δίνεται η συνάρτηση

$$f\left(x\right) = \frac{x^2 + \lambda x}{x^2 + 1}.$$

Αν η f έχει μόνο ένα ακρότατο να βρεθεί η τιμή του λ και να αποδείξετε ότι $f\left(x\right)\geqslant0$ για κάθε $x\in\mathbb{R}$

Άσκηση 8

1. Να μελετηθεί η συνάρτηση

$$f\left(x\right) = \sqrt{\alpha x} - \frac{x}{2}$$

ως προς τη μονοτονία και τα ακρότατα.

2. Να αποδείξετε ότι για κάθε $\alpha,\ \beta>0$ ισχύει:

$$\sqrt{\alpha \cdot \beta} \leqslant \frac{\alpha + \beta}{2}$$

Άσκηση 9

Δίνεται η συνάρτηση

$$f(x) = (1+x)^n - nx$$

με $n\in\mathbb{N}$, $n\geqslant 2$ και $x\geqslant -1$

- 1. Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα.
- 2. Να δείξετε ότι για κάθε $n\in\mathbb{N}$ με $n\geqslant 2$ ισχύει:

$$\left(1 + \frac{1}{n}\right)^n > 2$$

Το παραπάνω θεώρημα συνδέει την έννοια της γνησίως αύξουσας συνάρτησης με την έννοια της παραγώγου.

Θεώρημα

Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει f'(x)>0 για κάθε εσωτερικό σημείο του Δ , τότε η f είναι **γνησίως αύξουσα** στο Δ .

Άσκηση 1

Δίνεται η συνάρτηση $f(x) = x^3 + 2x$

- 1. Να αποδείξετε ότι η f είναι γνησίως αύξουσα στο \mathbb{R} .
- 2. Να συγκρίνεται τις τιμές f(2019) και f(2020).

Λύση

Το παραπάνω θεώρημα συνδέει την έννοια της γνησίως φθίνουσας συνάρτησης με την έννοια της παραγώγου.

Θεώρημα

Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει f'(x)<0 για κάθε εσωτερικό σημείο του Δ , τότε η f είναι **γνησίως Φθίνουσα** στο Δ .

Άσκηση 2

Δίνεται η συνάρτηση $f\left(x\right)=-x^{3}-2x$

- 1. Να αποδείξετε ότι η f είναι γνησίως φθίνουσα στο $\mathbb R$.
- 2. Να συγκρίνεται τις τιμές f(2019) και f(2020).

Λύση

Το παραπάνω θεώρημα συνδέει την έννοια του τοπικού μεγίστου με την έννοια της παραγώγου.

Θεώρημα (Κριτήριο Πρώτης Παραγώγου - Τοπικό Μέγιστο)

Αν για μια συνάρτηση f ισχύουν $f'(x_0)=0$ για $x_0\in(\alpha,\beta)$, f'(x)>0 στο (α,x_0) και f'(x)<0 στο (x_0,β) , τότε η f παρουσιάζει στο διάστημα (α,β) για $x=x_0$ μέγιστο.

Αν επιπλέον το x_0 είναι μοναδική ρίζα της εξίσωσης $f'(x_0)=0$, τότε το $f(x_0)$ είναι ολικό μέγιστο.

Στην παρακάτω εφαρμογή μετακινήστε το κόκκινο σημείο x του άξονα x'x και παρατηρήστε πώς μεταβάλλεται η αντίστοιχη τιμή $y=f\left(x\right)$. Τα $f\left(x_{0}\right)$ και $f\left(x_{1}\right)$ είναι ολικό και τοπικό μέγιστο αντίστοιχα.

Ορισμός (Τοπικό Ελάχιστο)

Τα μέγιστα και τα ελάχιστα μίας συνάρτησης ονομάζονται ακρότατα.

Άσκηση 3

Να μελετηθεί η $f\left(x\right)=x^{2}-x-1$ ως προς τη μονοτονία και τα ακρότατα.

Λύση

Αρχικά υπολογίζουμε την παράγωγο συνάρτηση της f.

$$f'(x) = (x^2 - x - 1)' = 2x - 1$$

στη συνέχεια αναζητούμε τα σημεία που μηδενίζουν την παράγωγο:

$$f'(x) = 0 \Rightarrow 2x - 1 = 0 \Rightarrow x = \frac{1}{2}$$