NEWTON INTERPOLATION METHOD:

• BACKWARD DIFFERENCE:

Formula:

$$P = \frac{x - x_n}{h}$$

$$\mathbf{y(x)} = y_n + p \nabla y_n + \frac{p(p+1)}{2!}. \ \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!}. \ \nabla^3 y_n + \frac{p(p+1)(p+2)(p+3)}{4!}. \ \nabla^4 y_n \ \dots$$

EXAMPLE:

Find solution using Newton's Forward Difference Formula

X	F(x)
1891	46
1901	66
1911	81
1921	93
1931	101

X=1925

SOLUTION:

The value of table for x and y

х	1891	1901	1911	1921	1931
У	46	66	81	93	101

Newton's forward difference table is

Х	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
1891	46				
		20			
1901	66		-5		
		15		2	
1911	81		-3		-3
		12		-1	
1921	93		-4		
		8			

	101		
1921	TOT		

The value of x at you want to find the f(x):x=1895

$$h=x_1-x_0$$

$$P = \frac{x - x_n}{h} = \frac{1925 - 1931}{10} = 0.4$$

Newton's forward difference interpolation formula is

$$\mathbf{y(x)} = y_n + p \nabla y_n + \frac{p(p+1)}{2!}. \ \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!}. \ \nabla^3 y_n + \frac{p(p+1)(p+2)(p+3)}{4!}. \ \nabla^4 y_n$$

$$\frac{\text{y (1925)} = 101 + (-0.6) \times 8 + \frac{-0.4(-0.6+1)}{2} \times -4 + \frac{-0.6(-0.6+1)(-0.6+2)}{6} \times -1 + \frac{-0.6(-0.6+1)(-0.6+2)(-0.6+3) \times -3}{24}}{24}$$

Solution for newton's forward interpolation method y (1925) =96.8368