Induction

Last week

We talked about small-step operational semantics

- compared it to its big-step counterpart
- discussed program equivalence
- talked about derivation sequences vs derivation trees

This week

Induction

- Structural induction
- Induction on derivation trees
- Induction on the length of derivation sequences
- Common pitfalls
- Tips and tricks of the trade

Questions before we start?

The most common type of induction is induction on natural numbers

- Prove that a property holds for 0
- Assuming that a property holds for m, prove that it holds for m + 1

- Prove that a property holds for 0
- Assuming that a property holds for m, prove that it holds for m + 1

More formally this is written as

- Prove that a property holds for 0
- Assuming that a property holds for m, prove that it holds for m + 1

More formally this is written as

This is referred to as structural induction

Structural induction

We can do induction on anything that is inductively defined

Inductive definition of natural numbers

$$N \triangleq 0$$

 $S N$

Induction principle

Induction on lists

Inductive definition of lists

```
a list ≜ []
a :: a list
```

Induction principle

```
P []
∀x xs. P xs → P (x::xs)

P lst
```

Induction on trees

Inductive definition of binary trees

```
a tree ≜ Leaf
Node (a tree) a (a tree)
```

Induction principle

```
P Leaf
∀I v r. P I → P r → P (Node I v r)
P t
```

Exercise

Write an induction principle for the While language

```
S ≜ skip
a := v
S; S
if b then S else S
while b do S
```

The While-language is deterministic

if
$$(S, s) \rightarrow s'$$
 and $(S, s) \rightarrow s''$
then $s' = s''$

Proof by induction on S

We get stuck in the case for composition

if
$$(S1; S2, s) \rightarrow s'$$
 and $(S1; S2, s) \rightarrow s''$
then $s' = s''$

Induction hypothesis

if
$$(S1, s) \rightarrow s'$$
 and $(S1, s) \rightarrow s''$
then $s' = s''$

if
$$(S2, s) \rightarrow s'$$
 and $(S2, s) \rightarrow s''$
then $s' = s''$

These are the original states, not the states acquired when doing case analysis on the derivation of S1; S2

Induction hypothesis

if
$$\langle S1, s \rangle \rightarrow s'$$
 and $\langle S1, s \rangle \rightarrow s''$
then $s' = s''$
if $\langle S2, s \rangle \rightarrow s'$ and $\langle S2, s \rangle \rightarrow s''$

then s' = s''

Strengthening induction

We need to strengthen the induction hypothesis

We say that a formula is stronger than another one if it proves strictly more things.

A strong induction principle is applicable to relevant intermediate steps, not just the first one

The While-language is deterministic

if **for all possible states** s, s' and s" we have that $(S, s) \rightarrow s'$ and $(S, s) \rightarrow s''$ then s' = s''

Proof by induction on S

Composition now works

if
$$(S1; S2, s) \rightarrow s'$$
 and $(S1; S2, s) \rightarrow s''$
then $s' = s''$

Induction hypothesis

if
$$\forall s \ s' \ s''$$
, $\langle S1, \ s \rangle \rightarrow s'$ and $\langle S1, \ s \rangle \rightarrow s''$
then $s' = s''$
if $\forall s \ s' \ s''$, $\langle S2, \ s \rangle \rightarrow s'$ and $\langle S2, \ s \rangle \rightarrow s''$
then $s' = s''$

... but the while command breaks

if (while b do S, s)
$$\rightarrow$$
 s' and (while b do S, s) \rightarrow s" then s' = s"

Induction hypothesis

if
$$\forall s \ s'', \langle S, s \rangle \rightarrow s' \ and \langle S, s \rangle \rightarrow s''$$

then $s' = s''$

but the while rule requires that we have what we are trying to prove

The while loop

[while
$$f(S, S_1) \rightarrow S_2$$
 (while $f(S, S_2) \rightarrow S_3$ (while $f(S, S_1) \rightarrow S_3$ (while $f(S, S_1) \rightarrow S_3$

The command **while** b **do** S appears both above and bellow the line and structural induction requires that we apply the induction hypothesis on something that is structurally smaller

Determinisn

The While-language is

if $(S, s) \rightarrow s'$ and (S, s) then s'

Induction on trees

Our inference rules are inductively defined. We can do induction on that

Induction on trees

Our inference rules are inductively defined. We can do induction on that

If we want to prove something about the derivation $(S, s) \rightarrow s'$, we do induction on that derivation in stead of S.

The book calls this induction on the shape of derivation trees, but it is just the same as structural induction

Intuition

When doing induction on a derivation tree $(S, s) \rightarrow s'$, the predicate for our induction principle is a ternary one that takes S, s and s' as arguments.

Induction principle

We have the following skeleton for an induction principle

Induction principle

We have the following skeleton for an induction principle

 $(S, s) \rightarrow s'$

We do induction over this transition

Inductive cases

PSss'

Induction principle

We have the following skeleton for an induction principle

$$(S, s) \rightarrow s'$$

We want to prove this

Inductive cases

PSss'

The While-language is deterministic

if
$$(S, s) \rightarrow s'$$
 and $(S, s) \rightarrow s''$
then $s' = s''$

We do induction on: $(S, s) \rightarrow s'$

Induction predicate: fun S s s' \Rightarrow if $(S, s) \rightarrow s''$ then s' = s''

Skip

The skip command does nothing

$$[skip_{ns}]_{skip, s} \rightarrow s$$

Skip

The skip command does nothing

$$[skip_{ns}]_{skip, s} \rightarrow s$$

Inductive case: ∀s. P **skip** s s

Assignment

The assignment command updates the state

[ass_{ns}]
$$\langle x := a, s \rangle \rightarrow s[x \mapsto \mathcal{A}[a]_s]$$

Assignment

The assignment command updates the state

[ass_{ns}]
$$\langle x := a, s \rangle \rightarrow s[x \mapsto \mathcal{A}[a]_s]$$

Inductive case:

$$\forall$$
 x a s. P (x := a) s (s[x $\mapsto \mathcal{A}[a]_s$])

Sequential composition

Sequential composition runs a command from a state provided by the previous command

$$[comp_{ns}] \xrightarrow{\langle S_1, s \rangle \to s'} \langle S_2, s' \rangle \to s'$$

Sequential composition

Sequential composition runs a command from a state provided by the previous command

$$[comp_{ns}] \xrightarrow{\langle S_1, s \rangle \to s'} \langle S_2, s' \rangle \to s'$$

Inductive case:

$$\forall s \ s' \ s'' \ S_1 \ S_2. \ \langle S_1, \ s \rangle \rightarrow s'' \Longrightarrow$$

$$\langle S_2, \ s'' \rangle \rightarrow s' \Longrightarrow P \ S_1 \ s \ s'' \Longrightarrow$$

$$P \ S_2 \ s'' \ s' \Longrightarrow P \ (S_1; S_2) \ s \ s'$$

Conditional statements

A conditional statement executes the first branch if the guard is true

$$(S_1, s) \to s'$$

$$(if b then S_1 else S_2, s) \to s'$$

Conditional statements

A conditional statement executes the first branch if the guard is true

$$[if_{ns}^{tt}] \frac{\langle S_1, s \rangle \rightarrow s'}{\langle if b then S_1 else S_2, s \rangle \rightarrow s'} \mathscr{B}[b]_s = tt$$

Inductive case:

$$\forall s \ s' \ b \ S_1 \ S_2. \ \mathscr{D}[b]_s = \mathbf{tt} \Longrightarrow \langle S_1, \ s \rangle \to s' \Longrightarrow$$

$$P \ S_1 \ s \ s' \Longrightarrow$$

$$P \ (\mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2) \ s \ s'$$

A conditional statement executes the second branch if the guard is false

$$[if_{ns}^{ff}] \frac{\langle S_2, s \rangle \to s'}{\langle if \ b \ then \ S_1 \ else \ S_2, \ s \rangle \to s'} \mathscr{D}[b]_s = ff$$

A conditional statement executes the second branch if the guard is false

$$[if_{ns}^{ff}] \frac{\langle S_2, s \rangle \rightarrow s'}{\langle if b then S_1 else S_2, s \rangle \rightarrow s'} \mathscr{B}[b]_s = ff$$

Inductive case:

$$\forall s \ s' \ b \ S_1 \ S_2. \ \mathscr{D}[b]_s = \mathbf{ff} \Longrightarrow \langle S_2, \ s \rangle \to s' \Longrightarrow$$

$$P \ S_2 \ s \ s' \Longrightarrow$$

$$P \ (\mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2) \ s \ s'$$

A loop will keep executing as long as its guard is true

[while
$$\frac{tt}{ds}$$
] $\frac{\langle S, s \rangle \rightarrow s''}{\langle while b do S, s'' \rangle \rightarrow s'} \mathscr{B}[b]_s = tt$

A loop will keep executing as long as its guard is true

[while
$$_{ns}^{tt}$$
] $\frac{\langle S, s \rangle \rightarrow s''}{\langle while b do S, s \rangle \rightarrow s'} \mathscr{B}[b]_s = tt$

Inductive case:

$$\forall s \ s'' \ b \ S. \ (S, s) \rightarrow s'' \Rightarrow (while \ b \ do \ S, s'') \rightarrow s'$$

$$P \ S \ s \ s'' \Rightarrow P \ (while \ b \ do \ S) \ s'' \ s' \Rightarrow$$

$$\mathscr{D}[b]_s = \mathbf{tt} \Rightarrow P \ (while \ b \ do \ S) \ s \ s'$$

A loop with a false guard behaves exactly like skip

[while $_{ns}^{ff}$] (while b do S, s) \rightarrow s $\mathscr{D}[b]_s = \mathbf{ff}$

A loop with a false guard behaves exactly like skip

[while $_{ns}^{ff}$] (while b do S, s) \rightarrow s $\mathscr{B}[b]_s = \mathbf{ff}$

Inductive case:

 $\forall s b S, \mathscr{B}[b]_s = \mathbf{ff} \Longrightarrow P \text{ (while b do S) } s s$

Induction rule for While

```
(S, s) \rightarrow s'
                                                                  ∀s. P skip s s
\forall x \ a \ s. \ P(x := a) \ s(s[x \mapsto \mathcal{A}[a]_s])
\forall s \ s' \ s'' \ S_1 \ S_2 \ (S_1, \ s) \rightarrow s'' \Longrightarrow (S_2, \ s'') \rightarrow s' \Longrightarrow
              P S_1 s s'' \Rightarrow P S_2 s'' s' \Rightarrow P (S_1; S_2) s s'
\forall s \ s' \ b \ S_1 \ S_2. \ \mathscr{B}[b]_s = \mathbf{tt} \Longrightarrow \langle S_1, \ s \rangle \to s' \Longrightarrow
              P S_1 s s' \Rightarrow P (if b then S_1 else S_2) s s'
\forall s \ s' \ b \ S_1 \ S_2 \ \mathscr{B}[b]_s = \mathbf{ff} \Longrightarrow \langle S_2, \ s \rangle \to s' \Longrightarrow
              P S_2 s s' \Rightarrow P (if b then S_1 else S_2) s s'
\forall s \ s' \ s'' \ b \ S. \ (S, \ s) \rightarrow \ s'' \implies (while \ b \ do \ S, \ s'') \rightarrow \ s'
              P S s s'' \Rightarrow P  (while b do S) s'' s' \Rightarrow
               \mathcal{B}[b]_s = tt \Rightarrow P \text{ (while b do S) s s'}
\forall s b S. \mathscr{B}[b]_s = \mathbf{ff} \Rightarrow P \text{ (while } b \text{ do } S) s s
PSss'
```

Questions?

Determinism of While

The While-language is deterministic

if for all possible states s, s' and s'' we have that $(S, s) \rightarrow s'$ and $(S, s) \rightarrow s''$ then s' = s''

Proof by induction on $(S, s) \rightarrow s'$

Small-step induction

Structural induction on the derivation does not work for small-step semantics.

Small-step induction

Structural induction on the derivation does not work for small-step semantics.

$$(S, s) \rightarrow^k \gamma$$

Here we need to do induction on the length of the derivation sequence k. In effect this is just standard induction on the natural numbers

Example proof

Prove that if $(S_1; S_2, s) \rightarrow^k s''$ then there exists a state s' and natural numbers k₁ and k₂ such that $(S_1, s) \rightarrow^{k1} s'$ and $(S_2, s') \rightarrow^{k2} s''$ and $k = k_1 + k_2$

Next week

- We extend the While-language with more constructs and prove properties about them
- We introduce the concept of Program Logic