Dokumentace pro výrobu CPM, popis I2C komunikace.

Programování CPM

CPM – bateriový multiplexer s postupným připojováním kanálů pomocí mosfet spínačů, které zajištují nekonečný odpor a nulový odběr po odpojení celé desky. Galvanické oddělení je řešeno přepínáním vždy po jednom článku. Energie pro spínače se zajišťují kapacitou 10uF např. C4, které se nabíjí pomocí přepinání Q42 až Q47. Perioda cca 4-6ms na kanál.

Zdrojový kód - adresář: Source/CPXxxxx Kompilátor MIKROC V7.2.0 SCH a BRD - EAGLE v9.3 Binární/HEX soubor – adresář Production./CPM/binary/version xxx/CPMxxx.hex Procesor P16F19196 Programátor PIcKit3

Programování CPM desky je odlišné z důvodu jejího napájení, které musí být přítomno v průběhu programování - je nutné přidržet tlačítko START po celou dobu jejího proramování a poté spustit programování. PIN 1 je blíž okraji desky. Pokud je deska osazená a pájená bez chyby, funguje na první zapojení.

Popis I2C rozhraní, konektor IQBUS.

I2C adresa zařízení CPM slave - 0x2A, byla zvolena na základě nejmenšího používání i2c HW jiných výrobců.

Rychlost sběrnice max. 50kHz.

Čtení a zápis znázorňují následující diagramy.

BYTE WRITE

RANDOM READ

CHK je kontrolní součet a jedná se XOR dvou předchozích bajtů. Tedy CHK= High Byte XOR Low Byte. Byl implementován z důvodu prevence rušení.

Popis registrů:

Registru:	CMD	flag	Popis
Registi	(dec)	nag	1 opis
U1CELL	1	READ	Napětí článku 1 v mV
U2CELL	2	READ	Napětí článku 2 v mV
U3CELL	3	READ	Napětí článku 3 v mV
U4CELL	4	READ	Napětí článku 4 v mV
U5CELL	5	READ	Napětí článku 5 v mV
U6CELL	6	READ	Napětí článku 6 v mV
U7CELL	7	READ	Napětí článku 7 v mV
U8CELL	8	READ	Napětí článku 8 v mV
U9CELL	9	READ	Napětí článku 9 v mV
U10CELL	10	READ	Napětí článku 10 v mV
U11CELL	11	READ	Napětí článku 11 v mV
U12CELL	12	READ	Napětí článku 12 v mV
U13CELL	13	READ	Napětí článku 13 v mV
U14CELL	14	READ	Napětí článku 14 v mV
U15CELL	15	READ	Napětí článku 15 v mV
U16CELL	16	READ	Napětí článku 16 v mV
UTOTAL	17	READ	Napětí celkové v mV
EVENTS	18	READ	Bit 15 – UhavFAIL událost
EVENIS	10	KEAD	Bit 13 – UnavrAIL udalost Bit14 – UminFAIL událost
			Bit13 - UmaxFAIL událost
			f.e. 0x8000 – UhavFAIL YES,
			UminFAIL NO,UmaxFAIL NO
UMINPOT	19	READ	Napětí na voliči UMIN v mV
UMAXPOT	20	READ	Napětí na voliči UMAX v mV
RUMINPOT	21	R/W	Napětí nastavené v mV
KOMINIOI	21	IX/ VV	akceptované místo voliče UMIN,
			platnost nastaveného napětí 1
			minuta, poté se automaticky
			resetuje na 0xFFFF
RUMAXPOT	22	R/W	Napětí nastavené v mV
		10 11	akceptované místo voliče UMAX,
			platnost nastaveného napětí 1
			minuta, poté se automaticky
			resetuje na 0xFFFF
			1000tajo na 0/11111

UMIN12	23	R/W	Nastavení výstupu UMIN12 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
UMIN3	24	R/W	Nastavení výstupu UMIN3 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
UMIN4	25	R/W	Nastavení výstupu UMIN4 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
UMAX12	26	R/W	Nastavení výstupu UMAX12 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
UMAX3	27	R/W	Nastavení výstupu UMAX3 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
UMAX4	28	R/W	Nastavení výstupu UMAX4 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
EMERG12	29	R/W	Nastavení výstupu EMERG12 WRITE

			RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
EMERG3	30	R/W	Nastavení výstupu EMERG3 WRITE RESWITCH 0xA5A5 ONSWITCH 0xA115 OFFSWITCH 0xA005 READ ON 0x0001 OFF 0x0000
RESET	31	R/W	Zapsání hodnoty 0x0001 do registru způsobí nastavení výstupu a události jako při zapnutí desky CPM
TURNOFF	32		Zapsání hodnoty 0x0001 do registru způsobí vypnutí desky CPM
IDEVCELL	33	READ	Číslo článku, na kterém vznikla událost
CELLV	34	READ	Jeho napětí
IDTYPE	35	READ	Typ události: 0x0000 Umin, 0x0001 Umax, 0x0002 UMINHAV, 0x0003 UMAXHAV
EVTOTALV	36	READ	Celkové napětí baterie v době události v mV