Lecture 7

Advanced Digital IC Design

nMOSFET

Operation Regions	Voltages	Current
Cut Off	$V_{GS} \leq V_{Tn}$	$I_{DS} = 0$
Saturation	$\begin{aligned} V_{GS} > V_{Tn} \\ V_{DS} > V_{GS} - V_{Tn} \end{aligned}$	$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{Tn})^2 (1 + \lambda V_{DS})$
Resistive	$\begin{aligned} V_{GS} > V_{Tn} \\ V_{DS} < V_{GS} - V_{Tn} \end{aligned}$	$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{Tn}) V_{DS} - \frac{V_{DS}^2}{2} \right]$

Advanced Digital IC Design

pMOSFET

$$G$$
 V_{SG}
 I_{SD}
 D

Operation Regions	Voltages	Current
Cut Off	$V_{SG} \leq \left V_{Tp}\right $	$I_{SD} = 0$
Saturation	$egin{aligned} V_{SG} > & V_{Tp} \ V_{SD} > V_{SG} - & V_{Tp} \ \end{aligned}$	$I_{SD} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \left(V_{SG} - \left V_{Tp} \right \right)^2 \left(1 + \lambda V_{SD} \right)$
Resistive	$V_{SG} > V_{Tp} $ $V_{SD} < V_{SG} - V_{Tp} $	$I_{SD} = \mu_p C_{ox} \frac{W}{L} \left[\left(V_{SG} - \left V_{Tp} \right \right) V_{SD} - \frac{V_{SD}^2}{2} \right]$

Enhancement mode MOSFET transistor region of operation

	Cut-off	Resistive	Saturation
nMOS	$V_{GSn} < V_{Tn} \ V_{IN} < V_{Tn}$	$egin{aligned} V_{GSn} > V_{Tn} \ V_{IN} > V_{Tn} \ \end{aligned}$ $V_{DSn} < V_{GSn} - V_{Tn} \ \end{aligned}$ $V_{OUT} < V_{IN} - V_{Tn} \ \end{aligned}$	$egin{aligned} V_{GSn} > V_{Tn} \ V_{IN} > V_{Tn} \ V_{DSn} > V_{GSn} - V_{Tn} \ V_{OUT} > V_{IN} - V_{Tn} \end{aligned}$
pMOS	$egin{aligned} V_{GSp} > V_{Tp} \ V_{IN} > V_{Tp} + V_{DD} \end{aligned}$	$egin{aligned} V_{GSp} < V_{Tp} \ V_{IN} < V_{Tp} + V_{DD} \ V_{DSp} > V_{GSp} - V_{Tp} \ V_{OUT} > V_{IN} - V_{Tp} \end{aligned}$	$egin{aligned} V_{GSp} &= V_{Tp} \ V_{IN} &< V_{Tp} + V_{DD} \ V_{DSp} &< V_{GSp} - V_{Tp} \ V_{OUT} &< V_{IN} - V_{Tp} \end{aligned}$

Gate capacitance of Ideal MOSFET transistor

Approximated gate capacitance as channel connected to source

Gate capacitance of Ideal MOSFET transistor

$$C_{gs} = C_{OX}WL = \frac{\varepsilon_{OX}WL}{t_{OX}}$$

- Approximated gate capacitance as channel connected to source
- Capacitor across the reverse-biased Drain-Bulk $\,C_{db}\,$
- Capacitor across the reverse-biased Drain-Bulk $\,C_{\scriptscriptstyle sh}\,$

Parasitic capacitors in the cut-off

$$C_{j} = C_{j0} \left(1 + \frac{V_{SB}}{V_{0}} \right)^{n} \qquad V_{0} = \frac{kT}{q} \ln \frac{N_{A} N_{D}}{n_{i}^{2}}$$

• Intrinsic capacitors in the saturation $V_{GS} > V_{TN} \ \& \ V_{DS} > V_{GS} - V_{TN}$

$$C_{\mathit{gate}} = C_{\mathit{gate-body}} + C_{\mathit{gate-source}} + C_{\mathit{gate-drain}}$$

$$C_{gate} = 0 + \frac{2C_0}{3} + 0 = \frac{2C_0}{3}$$

Intrinsic MOS gate capacitor

Operation	Cut-off	Saturation	Resistive
C_{gs}	0	$\frac{2}{3}C_{OX}WL_{eff}$	$\frac{1}{2}C_{OX}WL_{eff}$
C_{gd}	0	0	$rac{1}{2} C_{OX} WL_{eff}$
C_{gb}	$C_{\scriptscriptstyle OX}WL_{\scriptscriptstyle e\!f\!f}$	0	0
C_g	$C_{\scriptscriptstyle OX}WL_{\scriptscriptstyle eff}$	$\frac{2}{3}C_{OX}WL_{eff}$	$C_{\scriptscriptstyle OX}WL_{\scriptscriptstyle eff}$

- Resistive (Linear): $C_{gb} \simeq 0$ channel is shielded from the bulk by inversion
- Saturation (Active): $C_{gd} = 0$ and $C_{gb} = 0$ channel pinch-off

Detailed gate capacitors

Operation	Cut-off	Saturation	Resistive
C_{gs}	$C_{OX}WL_{D}$	$\frac{2}{3}C_{OX}WL_{eff} + C_{OX}WL_{D}$	$\frac{1}{2}C_{OX}WL_{eff} + C_{OX}WL_{D}$
C_{gd}	$C_{OX}WL_{D}$	$C_{OX}WL_{D}$	$\frac{1}{2}C_{OX}WL_{eff} + C_{OX}WL_{D}$
C_{gb}	$C_{\mathit{OX}}WL_{\mathit{eff}}$	0	0

Junction capacitance

$$C_{sb} \left(\text{Cut-off} \right) = C_{j}WL_{S} + C_{js}x_{j} \left(2W + 2L_{S} \right)$$

$$C_{sb} \left(\text{Saturation} \right) = C_{j}WL_{S} + C_{js}x_{j} \left(W + 2L_{S} \right)$$

$$C_{sb}$$
 (Resistive) = $C_j W L_S + C_{js} x_j (W + 2L_S)$

- Both n^+ the drain and the source forms planar pn-junction
- 1 Capacitance of $n^+ p^-$ -junction between source and channel
- 2 Capacitance of $n^+ p^+$ -junction between source and p^+ channel stop implant
- 3 Capacitance of $n^+ p^+$ -junction between source and p^+ channel stop implant
- **6** : Capacitance of $n^+ p^-$ -junction between source and substrate

$$C_{j} = C_{j0} \left(1 + \frac{V_{SB}}{V_{0}} \right)^{n} C_{j0} = \sqrt{\frac{\varepsilon_{Si} q}{2} \left(\frac{N_{A} N_{D}}{N_{A} + N_{D}} \right) \left(\frac{1}{V_{0} - V} \right)} V_{0} = \frac{kT}{q} \ln \frac{N_{A} N_{D}}{n_{i}^{2}}$$

Parasitic capacitors

$$C_{sb}$$
 (Cut-off) = $C_jWL_S + C_{js}x_j(2W + 2L_S)$

$$C_{sb}$$
 (Saturation) = $C_jWL_S + C_{js}x_j(W + 2L_S)$

$$C_{sb}$$
 (Resistive) = $C_jWL_S + C_{js}x_j(W + 2L_S)$

Operation	Cut-off	Saturation	Resistive
C_{gd}	0	0	$\frac{1}{2}C_{OX}WL_{eff}$
C_{gd}	$C_{OX}WL_{over}$	$C_{OX}WL_{over}$	$C_{OX}WL_{over}$
C_{db}	$C_{j}WL_{S} + C_{js}x_{j}\left(2W + 2L_{D}\right)$	$C_{j}WL_{D} + C_{js}x_{j}\left(W + 2L_{D}\right)$	$C_{j}WL_{D} + C_{js}x_{j}\left(W + 2L_{D}\right)$
C_{gb}	$C_{OX}WL_{eff}$	0	0
C_{gs}	0	$\frac{2}{3}C_{OX}WL_{eff}$	$\frac{1}{2}C_{OX}WL_{eff}$
C_{gs}	$C_{OX}WL_{over}$	$C_{OX}WL_{over}$	$C_{O\!X}W\!L_{e\!f\!f}$
C_{sb}	0	$\frac{2}{3}C_{j}WL_{eff}$	$\frac{1}{2}C_{j}WL_{eff}$
C_{sb}	$C_{j}WL_{S} + C_{js}x_{j}\left(2W + 2L_{S}\right)$	$C_{j}WL_{S} + C_{js}x_{j}\left(W + 2L_{S}\right)$	$C_{j}WL_{S} + C_{js}x_{j}\left(W + 2L_{S}\right)$

