Captation de données web

Camille Maussang

camille.maus sang@linkfluence.net

IC05 - P10

► Camille Maussang

- ► Camille Maussang
- ► Responsable de l'équipe ingénierie chez linkfluence...

Captation de données web

- ► Camille Maussang
- Responsable de l'équipe ingénierie chez linkfluence...
- ... qui développe des outils d'analyse du web social

- ► Camille Maussang
- Responsable de l'équipe ingénierie chez linkfluence...
- ... qui développe des outils d'analyse du web social
- ... en captant des données sur le web;)

Le web est un corpus de documents

Le web est un corpus de documents

ouvert (n'importe qui, n'importe où),

Le web est un corpus de documents

- ouvert (n'importe qui, n'importe où),
- hétérogène (n'importe quoi),

Captation de données web

Le web est un corpus de documents

- ouvert (n'importe qui, n'importe où),
- hétérogène (n'importe quoi),
- et dynamique (n'importe quand).

Au départ, le web est un corpus de documents

Au départ, le web est un corpus de documents

▶ Un langage de description de documents : HTML

Au départ, le web est un corpus de documents

- ▶ Un langage de description de documents : HTML
- ► Un protocole d'adressage : URL

Au départ, le web est un corpus de documents

- ▶ Un langage de description de documents : HTML
- ▶ Un protocole d'adressage : URL
- ► Un protocole de transport : HTTP

Au départ, le web est un corpus de documents

- ▶ Un langage de description de documents : HTML
- ▶ Un protocole d'adressage : URL
- ▶ Un protocole de transport : HTTP

Peu structuré

Au départ, le web est un corpus de documents

- ▶ Un langage de description de documents : HTML
- ► Un protocole d'adressage : URL
- ▶ Un protocole de transport : HTTP

Peu structuré

▶ Pas de normes mais des recommandations

linkfluence

Au départ, le web est un corpus de documents

- ▶ Un langage de description de documents : HTML
- ► Un protocole d'adressage : URL
- ▶ Un protocole de transport : HTTP

Peu structuré

- Pas de normes mais des recommandations
- Des standards de facto

linkfluence

Au départ, le web est un corpus de documents

- ▶ Un langage de description de documents : HTML
- ▶ Un protocole d'adressage : URL
- ▶ Un protocole de transport : HTTP

Peu structuré

- ▶ Pas de normes mais des recommandations
- Des standards de facto
- Liberté au publieur de faire ce qu'il veut

Aujourd'hui, le web devient un corpus de ressources

Aujourd'hui, le web devient un corpus de ressources

► Document (article, commentaire, photo, vidéo, statut)

Aujourd'hui, le web devient un corpus de ressources

- Document (article, commentaire, photo, vidéo, statut)
- Utilisateur (profil, ami, follower)

Aujourd'hui, le web devient un corpus de ressources

- Document (article, commentaire, photo, vidéo, statut)
- Utilisateur (profil, ami, follower)
- Application

Le web peut être représenté par des graphes

Captation de données web

Le web peut être représenté par des graphes

▶ où les noeuds sont :

!linkfluence

Le web peut être représenté par des graphes

- ▶ où les noeuds sont :
 - des pages,

!linkfluence

Le web peut être représenté par des graphes

- ▶ où les noeuds sont :
 - des pages,
 - des sites,

Captation de données web

Le web peut être représenté par des graphes

- ▶ où les noeuds sont :
 - des pages,
 - des sites,
 - des mots,

Le web peut être représenté par des graphes

- ▶ où les noeuds sont :
 - des pages,
 - des sites,
 - des mots,
 - des profils,

Captation de données web

Le web peut être représenté par des graphes

- ▶ où les noeuds sont :
 - des pages,
 - des sites,
 - des mots,
 - des profils,
 - des *ressources*,

Captation de données web

Le web peut être représenté par des graphes

- ▶ où les noeuds sont :
 - des pages,
 - des sites,
 - des mots,
 - des profils,
 - ► des ressources,
- et les arcs des liens.

Capter des données sur le web requiert un certain nombre de ressources (bande passante, stockage, temps machine, etc.):

Capter des données sur le web requiert un certain nombre de ressources (bande passante, stockage, temps machine, etc.) :

▶ Que cherchons-nous?

Capter des données sur le web requiert un certain nombre de ressources (bande passante, stockage, temps machine, etc.):

- Que cherchons-nous?
- Que faire pour récupérer ce qui nous est important?

linkfluence

Capter des données sur le web requiert un certain nombre de ressources (bande passante, stockage, temps machine, etc.) :

- ► Que cherchons-nous?
- Que faire pour récupérer ce qui nous est important?
- ► Toujours penser « heuristiques »...

Capter des données sur le web requiert un certain nombre de ressources (bande passante, stockage, temps machine, etc.) :

- ► Que cherchons-nous?
- Que faire pour récupérer ce qui nous est important?
- ► Toujours penser « heuristiques »...
- ► ... et « effets de bord »!

U.S. POLITICOSPHERE

₽linkfluence

Defense Education Heath Policy

Principe

► Télécharger 1 page

- ► Télécharger 1 page
- ► Extraire les liens

- ▶ Télécharger 1 page
- ► Extraire les liens
- ► Télécharger les pages pointées par les liens

- ► Télécharger 1 page
- Extraire les liens
- ► Télécharger les pages pointées par les liens
- ► etc. etc.

Crawler - Exemple

```
use strict; use warnings;
     use LWP::Simple;
    my ( $max_depth, @seed ) = @ARGV or die( 'need depth and url(s)' );
    my @already_visited = ();
     my $depth = 0;
     my @to_visit = @seed;
9
     while ( $depth <= $max_depth && @to_visit ) {
10
         print "crawling depth $depth\n";
11
         my @links = ();
12
         for my $url ( @to_visit ) {
13
             if ( my $content = get( $url ) ) {
14
                 while ( $content = m/<a href="([^"]+)"/gi) { push @links, $1 }
15
16
             push @already visited, $url:
             print "$url visited.\n";
18
19
         @to visit = ():
         for my $url to check ( @links ) {
20
21
             my $to push = 0:
22
             for my $url_visited ( @already_visited ) {
23
                 if ( $url to check eg $url visited ) { $to push = 0: last: }
24
                 to_push = 1;
25
26
             push @to visit. $url to check
27
                 if ( $to push && !grep { $ ea $url to check } @to visit ):
28
29
         $depth++:
30
31
     print "end.\n":
```


Crawler - Architecture

Principe du scraping

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Problèmes

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Problèmes

► Validité du code HTML

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Problèmes

- Validité du code HTML
- ► Encodage

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Problèmes

- ▶ Validité du code HTML
- Encodage
- ▶ DOM ou Regexp ou les deux

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Problèmes

- Validité du code HTML
- Encodage
- ▶ DOM ou Regexp ou les deux
- ► Template et dynamisme des pages scrapées

Principe du scraping

Analyser une page web pour en extraire une information spécifique

Problèmes

- Validité du code HTML
- Encodage
- DOM ou Regexp ou les deux
- ► Template et dynamisme des pages scrapées
- ► Flash et Javascript

linkfluence

Adressage

- Adressage
 - ► Normalisation d'URL (doublons)

- Adressage
 - ► Normalisation d'URL (doublons)
 - ► Site ou page?

web Approche classique Approche moderne

Crawler - Difficultés

- ▶ Adressage
 - Normalisation d'URL (doublons)
 - ► Site ou page?
- ► Politesse

e web Approche classique Approche moderne

Crawler - Difficultés

- Adressage
 - Normalisation d'URL (doublons)
 - Site ou page?
- ► Politesse
 - ▶ DoS (Denial of Service) : DNS, Serveurs HTTP

- Adressage
 - Normalisation d'URL (doublons)
 - Site ou page?
- Politesse
 - DoS (Denial of Service) : DNS, Serveurs HTTP
 - ► Blacklistage officiel (robots.txt, sitemap.xml, etc.)

- Adressage
 - ► Normalisation d'URL (doublons)
 - Site ou page?
- Politesse
 - DoS (Denial of Service): DNS, Serveurs HTTP
 - Blacklistage officiel (robots.txt, sitemap.xml, etc.)
 - Blacklistage officieux (cloaking, pièges à robot)

- Adressage
 - Normalisation d'URL (doublons)
 - Site ou page?
- ▶ Politesse
 - DoS (Denial of Service) : DNS, Serveurs HTTP
 - Blacklistage officiel (robots.txt, sitemap.xml, etc.)
 - ► Blacklistage officieux (*cloaking*, pièges à robot)
- ► Autres...

- Adressage
 - ► Normalisation d'URL (doublons)
 - Site ou page?
- Politesse
 - DoS (Denial of Service): DNS, Serveurs HTTP
 - Blacklistage officiel (robots.txt, sitemap.xml, etc.)
 - Blacklistage officieux (cloaking, pièges à robot)
- Autres...
 - Deep web

- Adressage
 - Normalisation d'URL (doublons)
 - Site ou page?
- Politesse
 - DoS (Denial of Service): DNS, Serveurs HTTP
 - Blacklistage officiel (robots.txt, sitemap.xml, etc.)
 - Blacklistage officieux (cloaking, pièges à robot)
- Autres...
 - Deep web
 - Web privé et contextualisé

linkfluence

Astuces

Astuces

► Heuristiques, tolérance

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP
- User-agent

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP
- User-agent
- ▶ random et sleep

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP
- User-agent
- random et sleep

Principes du Focused crawler

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP
- User-agent
- random et sleep

Principes du Focused crawler

► Ne télécharger que les pages pertinentes

!linkfluence

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP
- User-agent
- ▶ random et sleep

Principes du Focused crawler

- Ne télécharger que les pages pertinentes
- Indicateurs topologiques

linkfluence

Le web Approche classique Approche moderno

Crawler

Astuces

- ► Heuristiques, tolérance
- ▶ Utiliser les headers HTTP
- User-agent
- ▶ random et sleep

Principes du Focused crawler

- Ne télécharger que les pages pertinentes
- ► Indicateurs topologiques
- ► Indicateurs sémantiques

linkfluence

Le web évolue

Le web évolue

► Le web statique devient marginal

Le web évolue

- ► Le web statique devient marginal
- ▶ Web dynamique : du flux de syndication à publish/subscribe

!linkfluence

Le web évolue

- ► Le web statique devient marginal
- ▶ Web dynamique : du flux de syndication à publish/subscribe
- ▶ Web applicatif (réseaux sociaux, sites de contenus, micropublications, etc.)

linkfluence

Aggrégation Principe

Principe

Syndication ou comment renverser l'accès aux données

Principe

Syndication ou comment renverser l'accès aux données

Avantages

Principe

Syndication ou comment renverser l'accès aux données

Avantages

► L'information est structurée

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- ► Ne capter que les nouveaux contenus

!linkfluence

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- Ne capter que les nouveaux contenus

Problèmes

Captation de données web

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- ▶ Ne capter que les nouveaux contenus

Problèmes

► Atom, RSS, encore mille versions

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- Ne capter que les nouveaux contenus

Problèmes

- Atom, RSS, encore mille versions
- ► Flux complet / partiel / vide avec ou sans date, permaliens, HTML

linkfluence

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- Ne capter que les nouveaux contenus

Problèmes

- Atom, RSS, encore mille versions
- ► Flux complet / partiel / vide avec ou sans date, permaliens, HTML
- Limitations par le propriétaire

linkfluence

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- Ne capter que les nouveaux contenus

Problèmes

- Atom, RSS, encore mille versions
- Flux complet / partiel / vide avec ou sans date, permaliens, HTML
- Limitations par le propriétaire

Solution?

Principe

Syndication ou comment renverser l'accès aux données

Avantages

- L'information est structurée
- Ne capter que les nouveaux contenus

Problèmes

- Atom, RSS, encore mille versions
- ▶ Flux complet / partiel / vide avec ou sans date, permaliens, HTML
- ► Limitations par le propriétaire

Solution?

Le paradigme publish/subscribe et l'homogénéisation

Principe

Principe

Utiliser les API de certains sites pour collecter la donnée

Principe

Utiliser les API de certains sites pour collecter la donnée

Avantages

Captation de données web

Principe

Utiliser les API de certains sites pour collecter la donnée

Avantages

L'information est *vraiment* structurée

Principe

Utiliser les API de certains sites pour collecter la donnée

Avantages

- L'information est vraiment structurée
- Mode de captation recommandé

Principe

Utiliser les API de certains sites pour collecter la donnée

Avantages

- L'information est vraiment structurée
- Mode de captation recommandé

Problèmes

Principe

Utiliser les API de certains sites pour collecter la donnée

Avantages

- L'information est *vraiment* structurée
- Mode de captation recommandé

Problèmes

▶ Limitations

!linkfluence

Principe

Utiliser les API de certains sites pour collecter la donnée

Avantages

- L'information est vraiment structurée
- Mode de captation recommandé

Problèmes

- Limitations
- Autant de clients que d'API

Camille Maussang

linkfluence

Le web Approche classique Approche moderne

GITHUB COMMUNITY

U.S. Users
Japaneses Use
U.K. Users

MOST REPRESENTED COUNTRIES:

MOST REPRESENTED LANGUAGES:

Inkfluence

uence

Conclusion

► Savoir ce que l'on veut récupérer

Conclusion

- ► Savoir ce que l'on veut récupérer
- Choisir la façon la plus structurée

Conclusion

- ► Savoir ce que l'on veut récupérer
- Choisir la façon la plus structurée
- Multiplier les approches

!linkfluence

Wikipédia est ton ami :)

- ▶ http://en.wikipedia.org/wiki/HTML
- http://en.wikipedia.org/wiki/Web_crawler
- http://en.wikipedia.org/wiki/Focused_crawler
- http://en.wikipedia.org/wiki/Web_scraping
- ▶ http://en.wikipedia.org/wiki/URL_normalization
- http://en.wikipedia.org/wiki/Cloaking
- http://en.wikipedia.org/wiki/User_agent
- http://en.wikipedia.org/wiki/Spider_trap
- http://en.wikipedia.org/wiki/Denial-of-service_attack
- http://en.wikipedia.org/wiki/Atom_(standard)
- ▶ http://en.wikipedia.org/wiki/PubSubHubbub
- etc.

Merci!

- ▶ http://labs.linkfluence.net/
- ▶ http://github.com/cmaussan/captation-ic05-p10-tex
- ▶ http://github.com/cmaussan/Picrowler

Merci!

- ▶ http://labs.linkfluence.net/
- ▶ http://github.com/cmaussan/captation-ic05-p10-tex
- ▶ http://github.com/cmaussan/Picrowler

