Clustering and

Association Rule Learning

AI/ML Foundation Course with Python

Copyright © 2018 Ankita Sinha. All rights reserved

Association Rule Learning

- A data mining tool used extensively by data mining and database community.
- Assumes all data are categorical
- Does not work well with numeric data
- Popularly used in Market
 Basket Analysis by
 e-commerce giants to find how
 items purchased by customers
 are related.

Association Rule Learning

- Support: Support is the basic probability of an event to occur. If we have an event to buy product A, Support(A) is the number of transactions which includes A divided by total number of transactions.
- Confidence: The confidence of an event is the conditional probability of the occurrence; the chances of A happening given B has already happened.

Association Rule Learning

Transaction	Item 1	Item 2	Item 3
1	Milk	Sugar	Coffee Powder
2	Milk	Sugar	Coffee Powder
3	Milk	Sugar	Coffee Powder
4	Milk	Sugar	
5	Milk	Sugar	

- Rule 1: If Milk is purchased, then Sugar is also purchased.
- Rule 2: If Sugar is purchased, then Milk is also purchased.
- Rule 3: If Milk and Sugar are purchased, Then Coffee powder is also purchased

The model: data

- $I = \{i1, i2, ..., im\}$: a set of items.
- Transaction t :
- t a set of items, and t 1.
- Transaction Database T: a set of transactions
 T = {t1, t2, ..., tn}.

Transaction data: supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}
...
tn: {biscuit, eggs, milk}
```

- Concepts:
- An item: an item/article in a basket
- !: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have TID (transaction ID)
- A transactional dataset: A set of transactions

Goal and key features

 Goal: Find all rules that satisfy the userspecified minimum support (minsup) and minimum confidence (minconf).

Key Features

- Completeness: find all rules.
- No target item(s) on the right-hand-side
- Mining with data on hard disk (not in memory)

Step 1: Mining all frequent itemsets

- A frequent itemset is an itemset whose support is ≥ minsup.
- Key idea: The apriori property (downward closure property): any subsets of a frequent itemset are also frequent itemsets

Details: the algorithm

```
Algorithm Apriori(T)
  C1 init-pass(T);
 F1 {f | f C1, f.count/n minsup}; // n: no. of transactions in T
 for (k = 2; Fk-1; k++) do
    Ck candidate-gen(Fk-1);
    for each transaction t T do
      for each candidate c Ck do
      if c is contained in t then
        c.count++;
      end
    end
      Fk {c Ck | c.count/n minsup}
 end
return F k Fk;
```

Candidate-gen function

```
Function candidate-gen(Fk-1)
  Ck:
 forall f1, f2 Fk-1
    with f1 = \{i1, ..., ik-2, ik-1\}
    and f2 = \{i1, ..., ik-2, i'k-1\}
    and ik-1 < i'k-1 do
    c \{i1, ..., ik-1, i'k-1\}; // join f1 and f2
    Ck Ck {c};
    for each (k-1)-subset s of c do
    if (s Fk-1) then
       delete c from Ck;
                            // prune
    end
 end
 return Ck;
```

Step 2: Generating rules from frequent itemsets

- Frequent itemsets association rules
- One more step is needed to generate association rules
- For each frequent itemset X,
 For each proper nonempty subset A of X,
 - Let B = X A
- A B is an association rule if
- Confidence(A B) ≥ minconf,
 support(A B) = support(AB) = support(X)
 confidence(A B) = support(A B) / support(A)

Apriori Algorithm

 Algorithm for Mining frequent itemsets for Boolean association rules

- Apriori uses bottom up approach.
- Frequent subsets are extended one item at a time which is known as candidate generation and groups are tested against the data

Finding All Frequent Itemsets

- Apriori Algorithm
- Candidate Generation
- Horizontal Search
- Support and Confidence both needed

- FP Growth
- Candidate Generation
- Vertical Search/DFS
- Only Support needed

Minsup and minconf

Minimum Support =50 %

(50/100)*4 = 2

Minimum
Confidence = 50%

TRANSACTIONS	ITEMSET
T1	A,B,C
Т2	A,C
Т3	A,D
T4	B,E,F

Apriori Algorithm : Step 1- Candidate Generation

C1

Minimum Support =50 %

(50/100)*4 = 2

Minimum
Confidence = 50%

ITEMS	SUPPORT
{A}	3
{B}	2
{C}	2
{D}	1
{E}	1
{F}	1

Apriori Algorithm : C1 (Candidate 1)

Minimum Support =50 %

ITEMS	SUPPORT
{A}	3
{B}	2
{C}	2
{D}	1
{E}	1
{F}	1

Apriori Algorithm : L1 (Frequent Itemset)

Minimum Support =50 %

ITEMS	SUPPORT
{A}	3
{B}	2
{C}	2

Apriori Algorithm: C1

Minimum Support =50 %

ITEMS (sets of 2)	SUPPORT
{A,B}	1
{B,C}	1
{C,A}	2

Apriori Algorithm: C2

Minimum Support =50 %

ITEMS (sets of 2)	SUPPORT
{A,B}	1
{B,C}	1
{C,A}	2

Apriori Algorithm: L2

ITEMS (sets of 2)	SUPPORT
{C,A}	2

Minimum Support =50 %

Apriori Algorithm: Step 2 - Generating Association Rules

ITEMS (sets of 2)	SUPPORT
{C,A}	2

TRANSACTIONS	ITEMSET
T1	A,B,C
T2	A,C
ТЗ	A,D
T4	B,E,F

Association Rules	Support	Confidence	Confidence %
lacksquare A $ ightarrow$ C	2	2/3	66 %
$\mathbf{C} o \mathbf{A}$	2	2/2	100 %
0 611 //	0) 0	4.44	

Confidence (A \rightarrow C) = Support (A \rightarrow C) /Occurrence of A

Since both entries have min conf > 50%, So, Final Rule is : $A \rightarrow C$ and $C \rightarrow A$

Example: Design association rules using Apriori Algo

T_ID	ITEMSETS
T_1000	M,O,N,K,E,Y
T_1001	D,O,N,K,E,Y
T_1002	M,A,K,E
T_1003	M,U,C,K,Y
T_1004	C,O,K,E

Database has 5 transactions

Minsup =60%

Example: CANDIDATE C1

ITEMSET	SUPPORT	
{M}	3	
{O}	3	
{N}	2	
{K}	5	
{E}	4	
{Y}	3	
{D}	1	
{A}	1	
{U}	1	
{C}	2	

CALCULATING SUPPORT FOR EACH ITEMSET

Minsup =60% 60/100*5 = 3

ITEMSET	SUPPORT	
{M}	3	
{O}	3	
{N}	2	
{K}	5	
{E}	4	
{Y}	3	
{D}	1	
{A}	1	
{U}	1	
{C}	2	

REJECTING SUPPORT LESS THAN MIINSUP

Minsup =60% 60/100*5 = 3

Example: L1 (New transaction table)

ITEMSET	SUPPORT	
{M}	3	
{O}	3	
{K}	5	
{E}	4	
{Y}	3	

REJECTING SUPPORT LESS THAN MIINSUP

Minsup =60% 60/100*5 = 3

Example: CANDIDATE C2

ITEMSET	SUPPORT	
{M, O}	1	
{M,K}	3	
{M,E}	2	
{M,Y}	2	
{O,K}	3	
{O,E}	3	
{O,Y}	2	
{K,E}	4	
{K,Y}	3	
{E,Y}	2	

CALCULATING SUPPORT FOR EACH ITEMSET

Minsup =60% 60/100*5 = 3

REJECTING TABLE

Minsup =60% 60/100*5 = 3

ITEMSET	SUPPORT	
{M, O}	1	
{M,K}	3	
{M,E}	2	
{M.Y}	2	
{O,K}	3	
{O,E}	3	
{O,Y}	2	
{K,E}	4	
{K,Y}	3	
{E,Y}	2	

Example: L2 (New Transaction Table for C3)

ITEMSET	SUPPORT	
{M,K}	3	
{O,K}	3	
{O,E}	3	
{K,E}	4	
{K,Y}	3	

REJECTING TABLE

Minsup =60% 60/100*5 = 3

Example: CANDIDATE C3

ITEMSET	SUPPORT	
{M, O, K}	1	
{M,K, E}	2	
{M,K,Y}	2	
{O,K,E}	3	
{O,K,Y}	2	
{K,E,Y}	2	

CALCULATING SUPPORT FOR EACH ITEMSET

Minsup =60% 60/100*5 = 3

ITEMSET	SUPPORT	
{M, O, K}	1	
{M,K, E}	2	
{M,K,Y}	2	
{O,K,E}	3	
{O,K,Y}	2	
{K,E,Y}	2	

Rejecting...

Minsup =60% 60/100*5 = 3

ITEMSET	SUPPORT	
{O,K,E}	3	

Rejecting...

Minsup =60% 60/100*5 = 3

Minconf = 80%

Association rules

Association Rules	Support	Confidence	Confidence %
$O \rightarrow K^{\wedge}E$	3	3/3 = 1	100
$K \rightarrow O^{\wedge}E$	3	3/5 = 0.6	60
$E \rightarrow K^{\wedge}O$	3	3 / 4 = 0.75	75

ITEMSET	SUPPORT	
{O,K,E}	3	

Accepted Rule : $O \rightarrow K^*E$

Rejecting...

Minsup =60% 60/100*5 = 3

Minconf = 80%

Association rules

Association Rules	Support	Confidence	Confidence %
$O \rightarrow K^{\prime}E$	3	3/3 = 1	100
$K \rightarrow O^{\wedge}E$	3	3/5 = 0.6	60
$E \rightarrow K^{\wedge}O$	3	3 / 4 = 0.75	75

ECLAT ASSOCIATION RULE

Mining Association Rules

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset,

 Frequent itemset generation is computationally expensive

ECLAT Algorithm

- Equivalence Class Clustering and bottom up Lattice Traversal- ECLAT
- Method for Frequent Itemset Generation
- Searches in a DFS manner.
- Represent the data in vertical format.

To Improve the Efficiency of Apriori: (Scalable Algorithms)

✓ FPGrowth

✓ ECLAT

✓ Mining Close Frequent Patterns and Maxpatterns

Eclat: algorithm

- 1. Get tidlist for each item (DB scan)
- 2. Tidlist of {a} is exactly the list of transactions containing {a}
- 3. Intersect tidlist of {a} with the tidlists of all other items, resulting in tidlists of {a,b}, {a,c}, {a,d}, ...= {a}-conditional database (if {a} removed)

4. Repeat from 1 on {a}-conditional database

5. Repeat for all other items

- Both Apriori and FP-growth use horizontal data format
- Alternatively data can also be represented in vertical format

TID	Items		
1	Bread,Butter,Jam	Item Set	TID set
2	Butter,Coke	David	145790
3	Butter,Milk	Bread	1,4,5,7,8,9
4	Bread,Butter,Coke	Butter	1,2,3,4,6,8,9
5	Bread,Milk	Milk	3,5,6,7,8,9
6	Butter,Milk	Coke	2,4
7	Bread,Milk	Jam	1,8
8	Bread,Butter,Milk,Jam		
9	Bread Butter Milk		

Frequent 1-itemsets

min_sup=2

Item Set	TID Set
Bread	1,4,5,7,8,9
Butter	1,2,3,4,6,8,9
Milk	3,5,6,7,8,9
Coke	2,4
Jam	1,8

Frequent 2-itemsets

TID set
1,4,8,9
5,7,8,9
4
1,8
3,6,8,9
2,4
1,8
8

Frequent 3-itemsets

Item Set	TID Set
{Bread,Butter,Milk}	8,9
{Bread,Butter,Jam}	1,8

 This process repeats, with k incremented by 1 each time, until no frequent items or no candidate itemsets can be found.

ADVANTAGES

> Depth-first search reduces memory requirements

➤ Usually (considerably) faster than Apriori

➤ No need to scan the database to find the support of (k+1) itemsets, for k>=1

DISADVANTAGES

The TID-sets can be quite long, hence expensive to manipulate

