Lecture # 9 CHE331A

- Basics of reactions and ideal reactors
- Design/Analysis of CSTRs, PFRs and PBRs in terms of conversions
- Manufacture of Ethylene Glycol
- Analysis of Batch and Semi-Batch reactors

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Process Flowsheet for Ethylene Glycol Manufacture

From "Elements of Chemical Reaction Engineering", 4th Editions, H.S. Fogler, For teaching purposes only.

Batch and Semi-Batch reactor analysis

- ▶ Batch reactors are used:
 - For small production amounts and
 - Mostly for liquid phase reactions
 - However, they are not suitable for scale up

- Semi-batch reactors are also used for:
 - Small production amounts
 - Improving selectivity
 - Better control of heat being released in an exothermic reaction
 - Product removal as a purge stream

The design equation need to account for time variations

$$F_{j0} - F_j + \int r_j \, dV = \frac{dN_j}{dt}$$

- ► For Batch reactor: $F_{j0} = 0 = F_j$ and $\int r_j dV = r_j V$ (well mixed)
- Thus, $r_j.V = \frac{dN_j}{dt} \rightarrow r_j = \frac{1}{V} \frac{dN_j}{dt} \rightarrow \text{for constant volume } r_j = \frac{d\binom{N_j}{V_j}}{dt}$
- $ightharpoonup C_j = rac{N_j}{V}$ and

$$r_j = \frac{dC_j}{dt}$$

This is valid for constant volume systems only and can be used to calculate rates and develop rate laws

For variable volume systems the time variation of volume needs to be accounted for

- $ightharpoonup V
 eq V_0$ and in terms of limiting reactant $N_A = -N_{A0}dX$
- ► Thus,

$$r_A = \frac{1}{V} \frac{dN_A}{dt} = -\frac{1}{V} \frac{N_{A0} dX}{dt}$$

- ightharpoonup We need V = V(t) or V(X)
- ▶ For an ideal gas with $T \neq T_0$ and $P \neq P_0$ then $V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{N_T}{N_{T_0}}\right)$
- ► From the stoichiometric table: $\frac{N_T}{N_{T0}} = 1 + \varepsilon X$

$$V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} (1 + \varepsilon . X)$$

For ideal gas and isobaric-isothermal conditions the calculations are simplified

Substituting for V(X) in $-r_A = \frac{1}{V} \frac{N_{A0} dX}{dt}$ $-r_A = \frac{1}{(1 + \varepsilon \cdot X)} \frac{C_{A0} dX}{dt} \left(\frac{P}{P_0}\right) \frac{T_0}{T}$

- ▶ For isobaric-isothermal conditions, $\varepsilon \neq 0$, and $-r_A = k \cdot C_A^2$
- ► Thus, $-r_A = k \cdot \left[C_{A0} \frac{1-X}{1+\varepsilon \cdot X} \right]^2 = \frac{1}{(1+\varepsilon \cdot X)} \frac{C_{A0} dX}{dt}$ $\rightarrow t = \frac{1}{k \cdot C_{A0}} \int_0^X \frac{(1+\varepsilon \cdot X)}{(1-X)^2} dX$
- \blacktriangleright Thus, the reaction time, t_R , can be found out by integration

$$t_R = \frac{1}{k \cdot C_{A0}} \frac{(1+\varepsilon)X}{(1-X)} - \varepsilon \ln \frac{1}{1-X}$$

Total time for batch reactor operation is longer than reaction time

- ▶ Time is required for different operations
 - \circ Filling of the reactor, t_f
 - $_{\circ}$ Heating of the reactor, t_{e}
 - $_{\circ}$ Cleaning between different batches, t_{C}
 - \circ Total cycle time: $t_t = t_f + t_e + t_R + t_C$
- ▶ Total reaction time, t_t , may be much larger than t_R in some cases
- Multiple reactors may be used in the batch mode
 - Necessary to optimize the scheduling of different operations to produce the maximum product

Design equations based on conversion are not always useful

- ▶ Working in terms of N_A , N_B or F_A , F_B , etc. is sometimes better
 - For example, membrane reactors and multiple reactions taking place in the gas phase → Multiple ODEs formed
- Mole balance → Rate law → Stoichiometry for single species is modified
 - Mole balance all species → Rate law → relate mole balances
 - o If required concentration → terms of molar flowrates (flow reactors)
 - \circ For isothermal gas-phase reactions use: $C_A = C_{T0} \frac{F_A}{F_T} \frac{P}{P_0}$, etc
 - \circ For liquid-phase use C_A , C_B , C_C etc.

Analysis of Semi-batch reactors

▶ Two types

- \blacktriangleright Analysis of the first type of reactor with reaction $A+B\to C$
- Constant molar feed of only B and only A initially present in the reactor

$$C_{A0} = \frac{N_{A0}}{V_0}$$
 no B or C $F_{B0} \neq 0$ and $F_{A0} = 0 = F_{C0}$ $V = V(t)$

Mass balance to find out V(t): $\frac{dm}{dt} = \dot{m} \rightarrow \dot{m} = \rho_0 \dot{v}_0$ and $m = \rho_0 . V$ $\frac{d(\rho_0 . V)}{dt} = \rho_0 \dot{v}_0 \Longrightarrow \frac{dV}{dt} = \dot{v}_0$

$$\frac{d(\rho_0, V)}{dt} = \rho_0 \dot{v}_0 \Longrightarrow \frac{dV}{dt} = \dot{v}_0$$

Mole balance equations need to be modified due to unsteady state conditions

$$\blacktriangleright \frac{dV}{dt} = \dot{v}_0 \Longrightarrow V(t) = V_0 + \dot{v}_0.t$$
 since at $t = 0 \Longrightarrow V = V_0$

► Mole balance for A: $0 - 0 + r_A$. $V(t) = \frac{dN_A}{dt} = \frac{d(C_AV)}{dt}$

$$r_A.V(t) = V(t)\frac{dC_A}{dt} + C_A\frac{dV}{dt}$$

Since $\frac{dV}{dt} = \dot{v}_0$ \implies $r_A \cdot V(t) = V(t) \frac{dC_A}{dt} + C_A \cdot \dot{v}_0$ and

$$\frac{dC_A}{dt} = r_A - \frac{C_A \cdot \dot{v}_0}{V(t)}$$

▶ Not always possible to separate variable, e.g., $-r_A = k \cdot C_A C_B$

Mole balance of B and C is also an unsteady state case

- Mole balance for B: $F_{B0} 0 + r_B \cdot V(t) = \frac{dN_B}{dt} = \frac{d(c_B V)}{dt}$
- $ightharpoonup F_{B0} + r_B \cdot V(t) = V(t) \frac{dC_B}{dt} + C_B \frac{dV}{dt}$ with $F_{B0} = \dot{v}_0 C_{B0}^{in}$ and $\frac{dV}{dt} = \dot{v}_0$
- $ightharpoonup C_{B0}^{in}.\dot{v}_0 + r_B.V(t) = V(t)\frac{dC_B}{dt} + C_B.\dot{v}_0$

$$\frac{dC_B}{dt} = r_B + \frac{(C_{B0}^{in} - C_B)\dot{v}_0}{V(t)}$$

Similarly, mole balance for C:

$$\frac{dC_C}{dt} = r_C - \frac{C_C \dot{v}_0}{V(t)}$$

with $V(t) = V_0 + \dot{v}_0$. t

ODEs need to be solved to find the conve<mark>rsion of A and the concentrations vs. time</mark>

- ► ODEs: $\frac{dC_A}{dt} = r_A \frac{C_A.\dot{v}_0}{V(t)} \qquad \frac{dC_B}{dt} = r_B + \frac{(C_{B0}^{in} C_B)\dot{v}_0}{V(t)} \qquad \frac{dC_C}{dt} = r_C \frac{C_C\dot{v}_0}{V(t)}$
- with $V(t) = V_0 + \dot{v}_0$. t, $C_A = C_{A0}$, and $\overline{(C_{BO})_{CV}} = 0 = C_{C0}$
- ▶ Rate law: $-r_A = k. C_A. C_B$
- Stoichiometry: $\frac{r_A}{-1} = \frac{r_B}{-1} = \frac{r_C}{1}$ $\Rightarrow r_A = r_B = -r_C$
- ► Conversion of A: $X = \frac{N_{A0} N_A}{N_{A0}}$
- $ightharpoonup N_{A0} = C_{A0}.V_0$ and $N_A = C_A.V$
- Nown parameters: C_{A0} , C_{B0}^{in} , V_0 , \dot{v}_0 , k

