© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°11

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Centrale MP Maths 1 2014 – Polynômes de Tchebychev et de Dickson, applications

I Définitions et propriétés usuelles

Les polynômes de Tchebychev de première espèce $(T_n)_{n\in\mathbb{N}}$ sont définis par la relation

$$\forall n \in \mathbb{N}, \ \forall \theta \in \mathbb{R}, \ T_n(\cos \theta) = \cos(n\theta)$$

On ne demande pas de justifier l'existence et l'unicité de la famille de polynômes définie par cette relation.

1 Polynômes de première espèce

1.a Déterminer T_0 , T_1 , T_2 et T_3 .

1.b En remarquant que pour tout réel θ , on a $e^{in\theta} = (e^{i\theta})^n$, montrer que

$$\forall n \in \mathbb{N}, \ T_n = \sum_{0 \le k \le n/2} \binom{n}{2k} (X^2 - 1)^k X^{n-2k}$$

1.c Montrer que la suite $(T_n)_{n\in\mathbb{N}}$ vérifie la relation de récurrence

$$\forall n \in \mathbb{N}, \ T_{n+2} = 2XT_{n+1} - T_n \tag{*}$$

En déduire, pour tout entier naturel n, le degré et le coefficient dominant de T_n . Retrouver ce résultat à l'aide de l'expression de la question 1.b.

- **1.d** Ecrire une fonction tchebychev en Python prenant en argument un entier naturel n et renvoyant la liste des coefficients de T_n par ordre de degré croissant.
- **1.e** Montrer que, pour tout entier naturel n, le polynôme T_n est scindé sur \mathbb{R} à racines simples appartenant à]-1,1[. Déterminer les racines de T_n .

2 Polynômes de deuxième espèce

On définit les polynômes $(U_n)_{n\in\mathbb{N}}$ de Tchebychev de deuxième espèce par

$$\forall n \in \mathbb{N}, \ \mathbf{U}_n = \frac{1}{n+1} \mathbf{T}'_{n+1}$$

2.a Montrer que

$$\forall n \in \mathbb{N}, \ \forall \theta \in \mathbb{R} \setminus \pi \mathbb{Z}, \ U_n(\cos \theta) = \frac{\sin((n+1)\theta)}{\sin \theta}$$

2.b En déduire les propriétés suivantes.

2.b.i La suite $(U_n)_{n\in\mathbb{N}}$ vérifie la même relation de récurrence (\star) que la suite $(T_n)_{n\in\mathbb{N}}$.

2.b.ii Pour tout entier naturel n, le polynôme U_n est scindé sur \mathbb{R} à racines simples appartenant à]-1,1[. Déterminer les racines de U_n .

© Laurent Garcin MP Dumont d'Urville

II Arithmétique des polynômes de Tchebychev

3 Division euclidienne

3.a Montrer que

$$\begin{cases} T_m T_n = \frac{1}{2} (T_{n+m} + T_{n-m}) & \text{pour tous entiers } 0 \le m \le n \\ T_m U_{n-1} = \frac{1}{2} (U_{n+m-1} + U_{n-m-1}) & \text{pour tous entiers } 0 \le m < n \end{cases}$$

- **3.b** Pour m et n entiers naturels tels que $m \ge n$, on se propose de déterminer le quotient $Q_{n,m}$ et le reste $R_{n,m}$ de la division euclidienne de T_n par T_m .
 - **3.b.i** On suppose m < n < 3m. Montrer que

$$Q_{n,m} = 2T_{n-m}$$
 et $R_{n,m} = -T_{|n-2m|}$

- **3.b.ii** Déterminer $Q_{n,m}$ et $R_{n,m}$ lorsque n est de la forme (2p+1)m avec $p \in \mathbb{N}^*$.
- **3.b.iii** On suppose que m > 0 et que n n'est pas le produit de m par un entier impair. Montrer qu'il existe un unique entier $p \ge 1$ tel que |n 2pm| < m et que

$$Q_{n,m} = 2(T_{n-m} - T_{n-3m} + \dots + (-1)^{p-1}T_{n-(2p-1)m}) \qquad \text{et} \qquad R_{n,m} = (-1)^p T_{|n-2pm|}$$

4 Plus grand commun diviseur

Dans cette question, on fixe deux entiers naturels m et n.

- **4.a** Soit h le pgcd dans \mathbb{N} de m+1 et n+1. En examinant les racines communes à \mathbb{U}_n et \mathbb{U}_m , montrer que \mathbb{U}_{h-1} est un pgcd dans $\mathbb{R}[X]$ de \mathbb{U}_m et \mathbb{U}_m .
- **4.b** Soit g > 0 le pgcd de m et n. On pose $m_1 = m/g$ et $n_1 = n/g$.
 - **4.b.i** Montrer que si m_1 et n_1 sont impairs, alors T_g est un pgcd de T_n et T_m .
 - **4.b.ii** Montrer que si l'un des deux entiers m_1 ou n_1 est pair, alors T_n et T_m sont premiers entre eux.
 - **4.b.iii** Que peut-on dire des pgcd de T_n et T_m lorsque m et n sont impairs? Lorsque n et m sont des puissances de 2 distinctes?

III Un théorème

Dans cette partie, on munit l'ensemble $\mathbb{C}[X]$ des polynômes complexes de la loi de composition interne associative donnée par la composition, notée \circ . Plus précisément, étant donné $(P,Q) \in \mathbb{C}[X]^2$, si $P = \sum_{k=0}^{+\infty} p_k X^k$, la suite $(p_k)_{k \in \mathbb{N}}$ étant nulle à partir d'un certain rang, on a :

$$P \circ Q = \sum_{k=0}^{+\infty} p_k Q^k$$

On dit que les polynômes P et Q commutent si $P \circ Q = Q \circ P$. On note $\mathcal{C}(P)$ l'ensemble des polynômes complexes qui commutent avec le polynôme P:

$$\mathcal{C}(P) = \{ Q \in \mathbb{C}[X], P \circ Q = Q \circ P \}$$

On cherche dans cette partie les familles $(F_n)_{n\in\mathbb{N}}$ de polynômes complexes vérifiant

$$\forall n \in \mathbb{N}, \deg(F_n) = n \quad \text{et} \quad \forall (m, n) \in \mathbb{N}^2, F_n \circ F_m = F_m \circ F_n$$
 (\blacktriangle)

Il est clair que la famille $(X^n)_{n \in \mathbb{N}}$ convient.

On note G l'ensemble des polynômes complexes de degré 1, et pour $\alpha \in \mathbb{C}$, on pose $P_{\alpha} = X^2 + \alpha$.

5 Préliminaires

© Laurent Garcin MP Dumont d'Urville

- **5.a** Montrer que la famille $(T_n)_{n\in\mathbb{N}}$ vérifie la propriété (\blacktriangle). On pourra comparer $T_n \circ T_m$ et T_{nm} .
- 5.b Vérifier que G est un groupe pour la loi ∘. L'inverse pour la loi ∘ d'un élément U de G sera noté U⁻¹.

6 Commutant de X² et T₂

- **6.a** Soit $\alpha \in \mathbb{C}$ et soit Q un polynôme complexe non constant qui commute avec P_{α} . Montrer que Q est unitaire
- **6.b** En déduire que, pour tout entier $n \ge 1$, il existe au plus un polynôme de degré n qui commute avec P_{α} . Déterminer $\mathcal{C}(X^2)$.
- **6.c** Soit P un polynôme complexe de degré 2. Justifier l'existence et l'unicité de $U \in G$ et $\alpha \in \mathbb{C}$ tels que $U \circ P \circ U^{-1} = P_{\alpha}$. Déterminer ces deux éléments lorsque $P = T_2$.
- **6.d** Justifier que $\mathcal{C}(T_2) = \{-1/2\} \cup \{T_n, n \in \mathbb{N}\}.$
- 7 **7.a** Montrer que les seuls complexes α tels que $\mathcal{C}(P_{\alpha})$ contienne un polynôme de degré 3 sont 0 et -2.
 - **7.b** En déduire le théorème de Block et Thielmann : si $(F_n)_{n\in\mathbb{N}}$ vérifie (\blacktriangle) , alors il existe $U\in G$ tel que

$$\forall n \in \mathbb{N}^*, \ F_n = U^{-1} \circ X^n \circ U$$
 ou $\forall n \in \mathbb{N}^*, \ F_n = U^{-1} \circ T_n \circ U$

IV Puissances dans $GL_2(\mathbb{Z})$

Dans toute cette partie, on note $\mathrm{GL}_2(\mathbb{Z})$ l'ensemble des inversibles de l'anneau $\mathcal{M}_2(\mathbb{Z})$, muni de son addition et de sa multiplication usuelles.

- 8 | Justifier qu'un élément M de $\mathcal{M}_2(\mathbb{Z})$ appartient à $GL_2(\mathbb{Z})$ si et seulement si $|\det M| = 1$.
- 9 On introduit les polynômes de Dickson de première et deuxième espèce, $(D_n)_{n\in\mathbb{N}}$ et $(E_n)_{n\in\mathbb{N}}$, définis sous la forme de fonctions polynomiales de deux variables par :

$$D_0(x, a) = 2$$
 $D_1(x, a) = x$ $E_0(x, a) = 1$ $E_1(x, a) = x$

puis, pour tout entier $n \in \mathbb{N}$,

$$D_{n+2}(x, a) = xD_{n+1}(x, a) - aD_n(x, a)$$
 et $E_{n+2}(x, a) = xE_{n+1}(x, a) - aE_n(x, a)$

Justifier la relation suivante avec les polynômes de Tchebychev :

$$\forall (x, a) \in \mathbb{C}^2$$
, $D_n(2xa, a^2) = 2a^n T_n(x)$ et $E_n(2xa, a^2) = a^n U_n(x)$

ainsi que les deux relations suivantes, valables pour tout entier naturel n et tout $(x, a) \in \mathbb{C}^* \times \mathbb{C}$:

$$D_n\left(x + \frac{a}{x}, a\right) = x^n + \frac{a^n}{x^n} \qquad \text{et} \qquad \left(x - \frac{a}{x}\right) E_n\left(x + \frac{a}{x}, a\right) = x^{n+1} - \frac{a^{n+1}}{x^{n+1}} \tag{\blacksquare}$$

Dans cette question, on cherche une condition nécessaire et suffisante pour qu'un élément A de $GL_2(\mathbb{Z})$ soit une puissance n-ième dans $GL_2(\mathbb{Z})$, c'est-à-dire qu'il existe une matrice $B \in GL_2(\mathbb{Z})$ telle que $A = B^n$. Dans toute la suite, on notera :

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \qquad \tau = \operatorname{tr} A \qquad \qquad \delta = \det A$$

10.a Soit $B \in GL_2(\mathbb{Z})$. On note, *dans cette question uniquement*, $\sigma = \operatorname{tr} B$ et $\nu = \det B$. Montrer, pour tout $n \geq 2$, l'égalité

$$B^{n} = E_{n-1}(\sigma, \nu)B - \nu E_{n-2}(\sigma, \nu)I_{2}$$

où I₂ est la matrice identité d'ordre 2.

Etablir que $tr(B^n) = D_n(\sigma, \nu)$.

- **10.b** En déduire que si A est une puissance n-ième $(n \ge 2)$ dans $\operatorname{GL}_2(\mathbb{Z})$, alors il existe $\sigma \in \mathbb{Z}$ et $v \in \{-1, 1\}$ tels que :
 - $E_{n-1}(\sigma, \nu)$ divise b, c et a-d. On justifiera brièvement que $E_{n-1}(\sigma, \nu)$ est bien un entier.
 - $\tau = D_n(\sigma, \nu)$ et $\delta = \nu^n$.
- 10.c On va maintenant établir la réciproque.

Soit A un élément de $GL_2(\mathbb{Z})$ pour lequel il existe $\sigma \in \mathbb{Z}$ et $\nu \in \{-1, 1\}$ vérifiant les deux conditions de la question précédente. Pour simplifier, on note $p = E_{n-1}(\sigma, \nu)$. On définit alors une matrice $B = E_{n-1}(\sigma, \nu)$

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix}$$
 avec

$$r = \frac{1}{2} \left(\sigma + \frac{a-d}{p} \right)$$
 $s = \frac{b}{p}$ $t = \frac{c}{p}$ $u = \frac{1}{2} \left(\sigma - \frac{a-d}{p} \right)$

10.c.i En introduisant une racine complexe du polynôme $X^2 - \sigma X + \nu$ et à l'aide de (\blacksquare), montrer que

$$\tau^2 - 4\delta = p^2(\sigma^2 - 4\nu) \quad \text{puis} \quad ru - st = \nu$$

En déduire que B appartient à $GL_2(\mathbb{Z})$.

10.c.ii Montrer que $A = B^n$.

 $\textbf{10.d} \quad \text{Montrer que la matrice } A = \begin{pmatrix} 7 & 10 \\ 5 & 7 \end{pmatrix} \text{ est un cube dans } \operatorname{GL}_2(\mathbb{Z}) \text{ et déterminer une matrice } B \in \operatorname{GL}_2(\mathbb{Z})$ telle que $B^3 = A$.