Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты <u>Ткачук С. А. и Чуб Д. О.</u>	Работа выполнена
Преподаватель Громова Н. Р.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 4.11

Определение основных характеристик дифракционной решетки

1. Цель работы

Изучение характеристик дифракционной решетки

2. Задачи, решаемые при выполнении работы

- 1. Экспериментальное определение угловой дисперсии решетки
- 2. Экспериментальное определение разрешающей способности решетки

3. Объект исследования

Дифракционная решетка

4. Метод экспериментального исследования

Лабораторный

5. Рабочие формулы

Угол дифракции (N_1 , N_2 - углы дифракции линий с разных сторон) $\varphi = \frac{N_2 - N_1}{2}$ (1)

Условие возникновения главных интерференционных максимумов (d - период дифракционной решетки, φ - угол дифракции, m - номер порядка, λ - длина волны) $d\sin\varphi=m\lambda$ (2)

Число штрихов, нанесенных на 1 мм ширины решетки (d - период дифракционной решетки) $n=\frac{1}{d}$ (3)

Угловая дисперсия по определению (φ - угол дифракции, λ - длина волны) $D=\frac{d\varphi}{d\lambda}=\frac{\Delta\varphi}{\Delta\lambda}$ (4)

Угловая дисперсия через параметры конкретной решетки (m - номер порядка, d - период дифракционной решетки, φ - угол дифракции)

$$D = \frac{m}{d\cos\varphi} \quad (5)$$

Разрешающая способность (m - номер порядка, N - полное число штрихов решетки) R=mN (6)

6. Измерительные приборы

	Наименование	Тип прибора	Используемый диапазон	
1	Лимб	механический	0° – 360°	
2	Нониус	механический	0' - 60'	

7. Схема установки

Рис. 1: схема установки: 1 - ртутная лампа, 2 - осветительный коллиматор, 3 - дифракционная решетка, 4 - зрительная труба, 5 - лимб гониометра, 6 - нониус

8. Результаты измерений и их обработки

Таблица 1: Ширина решетки (49 ± 0.1) мм

	$arphi_1$	$arphi_2$	$arphi_3$	$arphi_{ m cp}$	m
$N_1^{ m зел}$	-19° 20′	-19° 20′	-19° 20′	-19° 20′	1
N ₁ ^{син}	-15° 20′	-15° 20′	-15° 20′	-15° 20′	1
$N_2^{ m 3e}$	19° 20′	19° 20′	19° 20′	19° 20′	1
$N_2^{\text{син}}$	15° 20′	15° 20′	15° 20′	15° 20′	1

Рассчитаем угол дифракции по формуле (1):

$$arphi_{
m 3ел} = rac{N_2 - N_1}{2} = rac{19^\circ \, 20' - (-19^\circ \, 20')}{2} = 19^\circ \, 20'$$
 $arphi_{
m CИH} = rac{N_2 - N_1}{2} = rac{15^\circ \, 20' - (-15^\circ \, 20')}{2} = 15^\circ \, 20'$

Зная длину волны зеленой линии $\lambda = 546,1$ нм, рассчитаем период решетки d по формуле (2):

$$d\sin\varphi=m\lambda$$

$$d=\frac{m\lambda}{\sin\varphi}=\frac{1\cdot546,1\cdot10^{-9}}{\sin19^\circ\,20'}=1,65\cdot10^{-6}~\mathrm{M}=1,65\cdot10^{-3}~\mathrm{MM}=1,65\cdot10^3~\mathrm{HM}$$

Рассчитаем число штрихов на 1 мм ширины решетки по формуле (3):

$$n = \frac{1}{d} = \frac{1}{1,65 \cdot 10^{-3}} = 606$$

Рассчитаем угловую дисперсию решетки по формуле (4):

$$D = \frac{d\varphi}{d\lambda} = \frac{\Delta\varphi}{\Delta\lambda} = \frac{19^{\circ} \ 20' - 15^{\circ} \ 20'}{546.1 - 435.8} = \frac{4^{\circ}}{546.1 - 435.8} = \frac{0.07}{546.1 - 435.8} = 6.35 \cdot 10^{-4} \frac{\text{рад}}{\text{HM}}$$

Рассчитаем угловую дисперсию решетки по формуле (5):

$$D = \frac{m}{d\cos\varphi} = \frac{1}{1,65 \cdot 10^3 \cdot \cos 19^\circ 20'} = 6,42 \cdot 10^{-4} \frac{\text{рад}}{\text{нм}}$$

Результаты различаются незначительно

Найдем полное число штрихов решетки, зная число штрихов на 1 мм и ширину нарезанной части решетки $b=49~\mathrm{mm}$

$$N = b \cdot n = 49 \cdot 606 = 29694$$

Рассчитаем разрешающую способность решетки в спектре рассматриваемого порядка по формуле (6):

$$R = mN = 1 \cdot 29694 = 29694$$

Выведем формулу для расчета погрешности определения периода решетки

$$d = f(\varphi) = \frac{m\lambda}{\sin \varphi}$$

Абсолютная погрешность:

$$\begin{split} \Delta_{d} &= \sqrt{\left(\frac{\partial f}{\partial \varphi} \Delta_{\varphi}\right)^{2}} = \frac{\partial f}{\partial \varphi} \Delta_{\varphi} \\ \frac{\partial f}{\partial \varphi} &= \left(\frac{m\lambda}{\sin \varphi}\right)_{\varphi}' = -\frac{m\lambda \cos \varphi}{\sin^{2} \varphi} \\ \varphi &= f\left(N_{1}, N_{2}\right) = \frac{N_{2} - N_{1}}{2} \\ \Delta_{\varphi} &= \sqrt{\left(\frac{\partial f}{\partial N_{1}} \Delta_{N_{1}}\right)^{2} + \left(\frac{\partial f}{\partial N_{2}} \Delta_{N_{2}}\right)^{2}} \\ \frac{\partial f}{\partial N_{1}} &= \left(\frac{N_{2} - N_{1}}{2}\right)_{N_{1}}' = -\frac{1}{2} \\ \frac{\partial f}{\partial N_{2}} &= \left(\frac{N_{2} - N_{1}}{2}\right)_{N_{2}}' = \frac{1}{2} \\ \Delta_{N_{1}} &= t_{\alpha, N} \cdot \sqrt{\frac{\sum_{i=1}^{N} \left(N_{1i} - \langle N_{1} \rangle_{N}\right)^{2}}{N(N - 1)}} \end{split}$$

$$\begin{split} \varDelta_{N_2} &= t_{\alpha,N} \cdot \sqrt{\frac{\sum_{i=1}^{N} \left(N_{2_i} - \langle N_2 \rangle_N\right)^2}{N(N-1)}} \\ \varDelta_{\varphi} &= \sqrt{\left(\frac{\partial f}{\partial N_1} \varDelta_{N_1}\right)^2 + \left(\frac{\partial f}{\partial N_2} \varDelta_{N_2}\right)^2} = \sqrt{\frac{1}{4} t_{\alpha,N}^2 \frac{\sum_{i=1}^{N} \left(N_{1_i} - \langle N_1 \rangle_N\right)^2}{N(N-1)} + \frac{1}{4} t_{\alpha,N}^2 \frac{\sum_{i=1}^{N} \left(N_{2_i} - \langle N_2 \rangle_N\right)^2}{N(N-1)}} \\ &= \frac{1}{2} t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^{N} \left(N_{1_i} - \langle N_1 \rangle_N\right)^2 + \left(N_{2_i} - \langle N_2 \rangle_N\right)^2}{N(N-1)}} \\ \varDelta_{d} &= \frac{\partial f}{\partial \varphi} \varDelta_{\varphi} = -\frac{m\lambda \cos \varphi}{2\sin^2 \varphi} t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^{N} \left(N_{1_i} - \langle N_1 \rangle_N\right)^2 + \left(N_{2_i} - \langle N_2 \rangle_N\right)^2}{N(N-1)}} \end{split}$$

Относительная погрешность:

$$\varepsilon_d = \frac{\Delta_d}{d} \cdot 100\%$$

Т.к. значения при трех измерениях совпадают, то погрешность равна нулю

9. Вывод и анализ результатов работы

В ходе данной лабораторной работы мы изучили такие характеристики дифракционной решетки, как период, угловая дисперсия и разрешающая способность. Для этого экспериментально измерили углы, на которых наблюдаются линии разных цветов в пределах одного порядка и определили угол дифракции.