

DOELSTELLING VAN HET LABO FYSICA

- Inzicht in fysische concepten krijgen door:
 - ➤ Uitvoeren laboproeven
 - **≻**Oefeningenlessen
- Leren metingen uitvoeren met aandacht voor:
 - ➤ Nauwkeurigheid van metingen
 - >Kritische geest
- Rapportage + analyse meetresultaten

UNIVERSITEIT

12 WEKEN: 12 LESSEN VAN 3U

- L1: Inleidingsles
- L2: Oefeningenles
- L3: Test (foutentheorie + grafiekenanalyse) + Oefeningenles
- L4: Proef: Fysische slinger
- L5+L6: Oefeningenles
- L7: Proef: Golven en trillingen (keuze uit 3 proeven)
- L8+L9: Oefeningenles
- L10: Proef: Licht, diffractie, interferentie (keuze)
- L11+L12: Oefeningenles

Na L3, L6, L9, L12: Oplossen vraagstukken Mastering Physics

IIII UNIVERSITEIT GENT

1. Algemene afspraken

OEFENINGENLESSEN

- Voorbereiden:
 - > Opgaves op minerva
 - ➤ Oefeningen voorbereiden/oplossen
- Tijdens oefeningenles:
 - > Oefeningen oplossen in kleine groepjes
 - > Gerichte vragen stellen
- Mastering Physics
 - > Na iedere 2 oefeningensessies

UNIVERSITEIT GENT

1. Algemene afspraken

LABOPROEF:

- Voorbereiding proef: Thuis !!
 - > Grondig bestuderen van de labonota's
- Tijdens labo sessie
 - ➤ Uitvoeren van de proef: in kleine groepjes
- Verslag tegen de volgende laboles
 - ➤ 1 verslag per labogroep

UNIVERSITEIT GENT

1. Algemene afspraken

PERMANENTE EVALUATIE

- Vrijblijvende deelname oefeningenlessen
- Verplichte aanwezigheid test foutentheorie en 3 labo's
 - >Afwezigheid melden en wettigen binnen de week
 - ➤Gemiste labo('s) inhalen + apart verslag indienen
- Verplichte deelname Mastering Physics oefeningentesten

IIII UNIVERSITEIT

1. Algemene afspraken

PUNTENTOEKENNING

■ Theorie: 15/20; Labo: 5/20

Verdeling:

➤ Laboverslagen: 2/5
➤ Mastering Physics: 2/5
➤ Test foutentheorie: 1/5

IIII UNIVERSITEIT

1. Algemene afspraken

.. OP MINERVA!

- Cursus Fysica → documenten → Labo
 - ➤ Teksten inleidingslessen
 - **≻**Laboteksten
 - ➤ Groepsindeling
 - ➤ Opgaven oefeningen
 - ➤ Curios: vrijblijvende oefeningen foutentheorie
 - ➤ Aankondigingen

≽...

IIII UNIVERSITEIT GENT

1. Algemene afspraken

VRAGEN OF PROBLEMEN?

- Koen.Keunen@UGent.be
- Marc.Vanhaelst@UGent.be
- <u>Toon.VanAlboom@UGent.be</u>

UNIVERSITEIT GENT

1. Algemene afspraken

2. MASTERING PHYSICS

MASTERING PHYSICS

- 4 online oefeningentesten (verplicht)
- Deadline: de week na iedere 2 oefeningenlessen
- Automatische verbetering

Antwoord correct ingeven!

Juiste notatie + aantal BC ingeven

■ Per hoofdstuk: vrijblijvende oefeningen (met tips!)

UNIVERSITEIT GENT

2. Mastering Physics

MASTERING PHYSICS

- Amerikaans systeem: decimaal getal met punt ingeven in plaats van komma
 - > 7.25 i.p.v. 7,25!!
- Aantal BC is gegeven in opgave: houd u hieraan + rond correct af
- Machten van 10: formulematig ingeven zoals in excel
 - ➤ <u>Vb.</u> 3 BC gevraagd en uitkomst is 17498
 - → 17.5*10^3 intypen
 - \rightarrow Wordt getoond in antwoordvak als $17.5 \cdot 10^3$

UNIVERSITEIT

→ 175 10² en andere notaties worden ook goed gerekend

2. Mastering Physics

MASTERING PHYSICS

Registreren via

http://www.pearsoned.co.uk/ugent

Vervolgens juiste handboek aanklikken:

Wolfson: Essential University Physics: Volumes 1 & 2, Global Edition, 3/e

Nodia:

- E-mail adres (UGent account)
- · Access code uit het boek
- Course ID: MPFYSKEUNEN2017

INIVERSITEIT

2. Mastering Physics

MEETFOUTEN

- Zicht krijgen op de nauwkeurigheid van (meet)resultaten
 - >Hoe nauwkeurig is een meetmethode?
 - >Wat is de meetfout op een berekening?
 - ≽...
- Interpretatie van eindresultaten
 - >Hoe betrouwbaar is een eindresultaat?
 - ≻Zijn twee waarden gelijk?
 - ➤ Gaat een rechte door de oorsprong?
 - ▶...

INIVERSITEIT

3. Foutentheorie

HET FOUTENINTERVAL

- Het fouteninterval bakent het gebied af waarin de werkelijke waarde met grote waarschijnlijkheid moet liggen.
- De grootte van het fouteninterval wordt bepaald door de absolute fout (AF).

MEETRESULTATEN NOTEREN Je moet in één oogopslag kunnen zien hoe groot de foutmarge is in vergelijking met de waarde

⇒ netjes noteren

MEETRESULTATEN NOTEREN

Je moet in één oogopslag kunnen zien hoe groot de foutmarge is in vergelijking met de waarde: dus netjes noteren.

D. w. z. (in volgorde):

- 1. AF en waarde steeds in dezelfde eenheid en macht van 10.
- 2. Eenheid en macht van 10 slechts één keer noteren,
- 3. AF: 2 (tussenresultaat) of 1 (eindresultaat) beduidende cijfers (BC).
- 4. Waardegetal afronden tot op hetzelfde aantal decimalen (= cijfers na de komma) als de AF.

Zie oefeningen op curios (Minerva)

3. Foutentheorie

MEETRESULTATEN NOTEREN

Alternatieve weergave: Relatieve fout

$$RF \equiv \frac{AF}{\text{waarde}}$$

- Meestal procentueel uitgedrukt (2 BC)
- Dimensieloos

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO

- 1. Fout op een meting
- 2. Statistische Fout
- 3. Fout op een berekening

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 1. FOUT OP EEN METING

Meetfout: nauwkeurigheid van het meettoestel

Kleinste schaalverdeling

UNIVERSITEIT

Handleiding

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 2. STATISTISCHE FOUTEN

- Foutbepaling bij herhaalde metingen
 - → Gemiddelde
 - → AF: spreiding

$$\mathsf{AF}_{\mathsf{gem}} \equiv \frac{\mathsf{STDEV}}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i} (x_i - \overline{x})^2}{n - 1}}$$

- Verschillende metingen van dezelfde fysische grootheid
 - → Grafische analyse: Regressie.xls

UNIVERSITEIT GENT

3 Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 2. STATISTISCHE FOUTEN: GEMIDDELDE

Voorbeeld: Je meet 5 keer de tijd van 20 perioden T van een slingerbeweging met een chronometer nauwkeurig tot op 0.01 s:

UNIVERSITEIT GENT

 $20T_{gem} =$

Zie oefeningen op curios (Minerva) 3 Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 3. FOUT UIT BEREKENINGEN

Berekeningen: R = f(X, Y, Z, ...):

$$\Delta R^2 = \left(\frac{\partial f}{\partial X} \Delta X\right)^2 + \left(\frac{\partial f}{\partial Y} \Delta Y\right)^2 + \left(\frac{\partial f}{\partial Z} \Delta Z\right)^2 \cdots$$

Foutenvoortplantingsregel van Gauss

waarbij $\Delta X = AF(X)$ enz.

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 3. FOUT UIT BEREKENINGEN: BASISREGELS

■ Som/verschil: vb R=X+Y..-Z

$$\Delta R^2 = \Delta X^2 + \Delta Y^2 ... + \Delta Z^2$$

■ Product/deling: vb R=XY/Z

$$\left(\frac{\Delta R}{R}\right)^2 = \left(\frac{\Delta X}{X}\right)^2 + \left(\frac{\Delta Y}{Y}\right)^2 + \left(\frac{\Delta Z}{Z}\right)^2$$

■ Macht: vb R=Xn met

$$\left| \frac{\Delta R}{R} \right| = \left| n \frac{\Delta X}{X} \right| \quad n \in \mathbb{R}$$

Zie oefeningen op curios (Minerva)

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 3. FOUT UIT BEREKENINGEN: BASISREGELS

Functies: R=f(X)

$$|\Delta R| = |f'(X)\Delta X|$$

voorbeelden:

- $f(X) = cos(X) \Rightarrow |\Delta R| = |sin(X)\Delta X|$
- $f(X)=\sin(X) \Rightarrow |\Delta R| = |\cos(X)\Delta X|$
- f(X)=ln(X) ⇒
- f(X)=e^X ⇒

 ΔX in radialen!

 $|\Delta R| = \left|\frac{1}{X}\Delta X\right|$

 $|\Delta R| = |e^X \Delta X|$

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 3. FOUT UIT BEREKENINGEN: BASISREGELS

"Stap voor stap" methode:

Gegeven: $T = 3.54 \pm 0.04 \text{ s}$

 $t = 1.26 \pm 0.01 s$

 $\phi = 33.5 \pm 0.5$ °

$$y = f(T, t, \varphi) = \sin^2(\frac{2\pi}{T}t + \varphi)$$

UNIVERSITEIT GENT

3. Foutentheorie

SOORTEN MEETFOUTEN IN HET LABO 3. FOUT UIT BEREKENINGEN: BASISREGELS: OVERZICHT

- R=X+Y..-Z
- $\Delta R^2 = \Delta X^2 + \Delta Y^2 ... + \Delta Z^2$
- R=XY/Z
- $\left(\frac{\Delta R}{R}\right)^2 = \left(\frac{\Delta X}{X}\right)^2 + \left(\frac{\Delta Y}{Y}\right)^2 + \left(\frac{\Delta Z}{Z}\right)^2$
- R=Xⁿ
- R=f(X)
- $|\Delta R| = |f'(X)\Delta X|$
- R=f(X,Y,Z,...) $\Delta R^2 = \left(\frac{\partial f}{\partial X}\Delta X\right)^2 + \left(\frac{\partial f}{\partial Y}\Delta Y\right)^2 + \left(\frac{\partial f}{\partial Z}\Delta Z\right)^2 + \left(\frac{\partial f}{\partial Z}\Delta Z\right$

UNIVERSITEIT GENT

3 Foutentheorie

3. Foutentheorie $y = f(T, t, \varphi) = \sin^2(\frac{2\pi}{T}t + \varphi)$ grootheid waarde ΑF RF 3.54 1.26 0.04 T (s) 0.01 t(s) 33.5 φ (°) $\frac{2\pi t}{}$ (rad) φ (rad) $\frac{2\pi t}{T}$ + ϕ (rad) $\sin(\frac{2\pi t}{T} + \varphi)$ $\sin^2(\frac{2\pi t}{T} + \varphi)$

SCHRIJFSTIJL

- Passief schrijven
 - ≽Geen 'we' of 'men'
- Tegenwoordige tijd

≻Geen mix van tegenwoordige en verleden tijd

INIVERSITI

4. Laboverslagen

ONDERDELEN VAN EEN VERSLAG

- Titel
- Korte inleiding
- Verslag (corpus):
 - ➤ Gebruik tussentitels
 - >Logische en overzichtelijke structuur
- Conclusie
- Bijlage:
 - ➤ Foutenberekeningen

IIII UNIVERSITEIT

Zie voorbeeldverslag op Minerva

4. Laboverslagen: Paper

KORTE INLEIDING

- Hoofdlijnen van de proef
- Probleemstelling

UNIVERSITEIT GENT

4. Laboverslagen: Paper

CORPUS

- Wat heb je gemeten/berekend?
- Wat was het resultaat?
- Op welk fysisch principe steun je?
- Welke formules heb je gebruikt?
 - ➤ Eén volledig uitgeschreven berekening per formule (getallen invullen + eenheden)
- Is je resultaat in overeenstemming met de theorie?

UNIVERSITEIT GENT

4. Laboverslagen: Paper

FIGUREN

- Verwijzing naar figuur in de tekst
- Ondubbelzinnige nummering
- Benaming eronder

UNIVERSITEIT GENT

4. Laboverslagen: Paper

FIGUREN: GRAFIEKEN

- Experiment → punten; Theorie → Lijn
- Assen benoemen: grootheid (eenheid)
- Logische assenverdeling
- Trendlijn: vergelijking tonen in grafiek

IIII UNIVERSITEIT

4. Laboverslagen: Paper

TABELLEN

- Verwijzing naar tabel in de tekst
- Ondubbelzinnige nummering
- Benaming erboven

III UNIVERSITEI

4. Laboverslagen: Paper

TABELLEN

m (± 0.1 g)	l ₁ (± 0.1 cm)	ΔI ₁ (± 0.14 cm)	l ₂ (± 0.1 cm)	ΔI ₂ (± 0.14 cm)
28.9	8.6	3.40	5.7	2.50
57.9	12.6	6.40	8.5	5.30
86.9	14.8	9.60	10.4	7.20
116.0	18.3	13.10	13.1	9.90
144.9	21.7	16.50	15.8	12.60

- Logische eenheid, eenmaal bovenaan Tabel
- Meetfout: Indien mogelijk eenmaal bovenaan
 - Correcte notatie (zie meetresultaten noteren)
- Overzicht: Denk na over je tabelstructuur
 - (→ Geen 7 tabellen als alles overzichtelijk in 1 Tabel kan)

UNIVERSITEIT GENT

4. Laboverslagen: Paper

CONCLUSIE

- Overzicht van
 - ➤ Behandelde hoofdlijnen
 - ≽Bevindingen
 - ≻Resultaten
- Kort en duidelijk
- Geen nieuwe elementen
- Inleiding en conclusie = één!

IIII UNIVERSITEIT GENT

4. Laboverslagen: Paper

BIJLAGE

- Foutenberekeningen
 - ➤Toon de bewerking
 - ➤Bij voorkeur in tabelvorm

IIII UNIVERSIT

4. Laboverslagen: Paper

$$y = f(T, t, \varphi) = \sin^2(\frac{2\pi}{T}t + \varphi) = 0.10 \pm 0.02$$

grootheid	waarde	AF	RF
T (s)	3.54	0.04	1.1%
t(s)	1.26	0.01	0.79%
φ (°)	33.5	0.5	1.5%
$\frac{2\pi t}{T}$ (rad)	2.236	0.031	$ \sqrt{0.011^2 + 0.0079^2} \\ = 1.4\% $
φ (rad)	0.5847	0.0087	1.5%
$\frac{2\pi t}{T}$ + φ (rad)	2.821	$ \sqrt{0.031^2 + 0.0087^2} \\ = 0.032 $	1.1%
$\sin(\frac{2\pi t}{T} + \varphi)$	0.315	cos(2.821) * 0.032 = 0.030	9.6%
$\sin^2(\frac{2\pi t}{T} + \varphi)$	0.099	0.019	2 * 9.6% = 19%
			 Laboverslagen