Algorithmic Trading Bootcamp: Linear and Nonlinear Algorithms

By Deepak Kanungo CEO, Hedged Capital LLC February 9, 2023

Course Outline

- 1. Linear Regression
- 2. Logistic Regression
- 3. Decision Trees
- 4. Random Forests and Gradient Boosted Machines

Linear Regression

Section 1

- Ordinary least squares
- 2. Maximum likelihood estimates
- 3. Ridge regression
- 4. Lasso regression

Finance has been an early adopter of AI/ML

Linear Regression: The Market Model (MM)

$$(R - F) = a + b (M - F) + s$$

- Standard linear regression model where:
 - \circ Y = (R F) is the outcome variable or label, X = (M F) is the predictor variable of feature
 - R is the realized return of a stock
 - F is the return on a risk-free asset (US treasury bill)
 - M is the realized return of a market portfolio (S&P 500)
 - **a** (alpha) is the expected stock-specific return
 - **b** (beta) is the level of systematic risk exposure to the market
 - s (sigma) is the unexpected stock-specific return

Model assumptions: Gauss-Markov theorem

- Linear regression makes the following assumptions:
 - Residuals are independent and identically distributed
 - Expected mean of the residuals is zero
 - Variance of the residuals is finite and constant
 - Residuals are normally distributed

Hands-on Exercise

- Simple linear regression with Statsmodels
 - Click <u>here</u> for Colab notebook

Linear regression algorithm

- Predicted response of a linear regression algorithm is a weighted sum of its input features:
- Y = w[0] + w[1]*x[1] + + w[n]*x[n]
 - Y is predicted response
 - o X[1]...x[n] are the input features
 - o w[0]...w[n] are constant coefficients to be learned from training data
- Graphically it is a line in 2-dimensions, a plane in 3-dimensions and a hyperplane in n-dimension space

Performance measures for regression

- Error metrics are calculated based on the distance between predicted value and actual value
 - Mean squared error (MSE): sensitive to outliers
 - Mean absolute errors (MAE): Not sensitive to outliers
 - Median absolute errors (MedAE): Not sensitive to outliers
 - R-squared: A standardized version of MSE

How a linear model learns

- Linear models learn the coefficient/weights from the training data by minimizing an error/performance metric:
 - Minimizes the sum of the squared distance between prediction and actual values
 - Assumes residual errors are normally distributed with constant variance
 - o Ordinary least squares (OLS) regression algorithm is over 200 years old!
 - Same as maximum likelihood estimate (MLE) using Gauss-Markov theorem
- In higher dimensions, linear models are powerful baseline models
 - Easy to interpret and build
 - Fast to train and predict
 - Highly scalable on large datasets

Regularization reduces overfitting the data

- Financial data are abundant but have very low signal to noise ratio
 - Risk overfitting the data and learning from the noise instead of the signal
- Linear models that have highly correlated features tend to overfit data
 - Need methods to prevent overfitting of data
- Regularization uses two different types of shrinkage methods to:
 - Improve interpretation of predictions and inferences
 - Reduce generalization errors by reducing variance/overfitting

Lasso versus ridge regression models

- Two types of shrinkage methods that penalize complexity:
 - Lasso or L1 regularization: penalizes the sum of the absolute values of the coefficients
 - Ridge or L2 regularization: penalizes the sum of the coefficients squared
- In lasso regression, many of the coefficients are shrunk to zero
 - Used to eliminate features and increase interpretation of model
- In ridge regression, all coefficients are shrunk to near zero
 - Reduces the impact of any one feature
 - Coefficients with less variance are reduced more
- Features need to standardized prior to training

Hands-on Exercise

- Use linear regression models to forecast stock price returns
 - Click <u>here</u> for lasso and ridge regression models with Scikit-learn

Feature engineering is key to performance

- Features of a model enable good inference and prediction
 - Need systematic methods for selecting informative features
- Remove numerical features with low variances.
 - Drop features that do not meet a variance threshold
- Drop some of the highly correlated features
 - Quantify the correlation among features
- L1/Lasso regularization can be used remove unimportant features
- Human expertise, judgement and experience are still important!

Logistic Regression Models

Section 3

- Classification
- 2. Logistic algorithm
- 3. Hands-on exercise

Classification problems in finance

- For many problems in finance, you are interested in classifying an uncertain outcome as opposed to measuring its value:
 - Recession or growth
 - Bankruptcy or solvency
- Binary classes are easily extended to multiclass classifications
 - One versus rest method
- Also need to quantify the probability of belonging to a particular class
 - Probabilities need to add up to 1

Logistic/Sigmoid function

Logistic regression algorithm

- A linear model is extracted from a logistic/sigmoid function via a logarithmic transformation
 - Coefficients are linear in the feature vector X
- The logistic function constrains the value of the function's output to between 0 and 1
 - Can be interpreted as the probability of belonging to a particular class
- A logistic regressor is the simplest neural network

How a logistic regression model learns

- Logistic regression models learn the coefficient/weights from the training data by using maximum likelihood estimation methods
 - You can also use non-linear least squares method
- Lasso/L1 regularization reduces features and overfitting
- Ridge/L2 regularization reduces overfitting
- Features need to be rescaled or standardized

The Confusion Matrix

Performance metrics for classifiers

- Accuracy = (TP + TN)/(TP + TN + FP + FN)
 - Misleading metric in imbalanced datasets
- Precision = TP/(TP + FP)
 - Focuses on the number of false positives
- Sensitivity or recall = TP/(TP + FN)
 - Focuses on the number of false negatives
- F-measure = 2 * (precision * sensitivity)/(precision + sensitivity)
 - Harmonic mean balances precision and sensitivity

Hands-on exercise

 Click <u>here</u> to use logistic regression models to forecast an economic recession

Decision Tree Based Models

Section 3

- Decision Trees
- 2. Hands-on Exercise
- 3. Regularizing Trees

Decision Tree (DT) based models use powerful nonlinear algorithms

A Decision Tree algorithm is a feature based series of true/false questions

Why use Decision Tree models

- One of the most powerful nonlinear base learners
 - Robust and scalable
- They are intuitive, white box models
 - Easy to interpret and visualize
- Not much data preprocessing is required
 - No need to standardize, normalize or scale data
- Quantifies uncertainty in predictions using probabilities
 - Only available in the classification algorithm

Scikit-Learn uses the CART algorithm

- Classification and Regression Tree (CART) algorithm
 - Recursively splits training set into two subsets based on a threshold value of a feature
 - Stops when it reaches its maximum depth or cannot split the data anymore
 - Produces a sequence of true/false questions leading to a most likely answer
 - Because questions have binary outcomes, non-leaf nodes will always have two children
- Solution produced by CART algorithm is not guaranteed to be optimal
 - Optimal tree is not solvable even for small datasets
- Uncertainty of classifications is quantified probabilistically
 - Simple ratio of each class divided by total sample size in the terminal node
 - Classification error rate is a similar ratio

How a DT classification model learns

- DT classification models learn feature threshold values recursively by minimizing a performance metric:
 - Gini Impurity = 1 (R1² + ...+ Rn²)
 - where R is the ratio of the number of instances of a class to the training sample size of a node
 - \circ Entropy = {R1 * log(R1) + + Rn * log(Rn)}
 - where R is the ratio as defined above and log is the binary logarithm (base 2)
- Recursion stops automatically when the chosen metric equals zero
 - Gini impurity is the default metric and is faster to compute
 - Entropy produces slightly more balanced trees

Regression trees predict target values instead of classes at each node

How a DT regression model learns

- DT regression models learn feature threshold values recursively by minimizing a performance metric:
 - \circ Mean squared error: $\{(A Y1)^2 + ... + (A Yn)^2\}/n$
 - where A is the target value averaged over the entire sample size and Ys are target values of each training instance of the node
 - Mean absolute error: (|A -Y1| ++ |A Yn|)/n,
 - where A and Ys are the same as above
- Recursion stops automatically when the chosen metric equals zero
 - Mean squared error is sensitive to outlier values
 - Mean absolute error is not as sensitive to outlier values

Hands-on exercise

- Use built-in Colab document to use DT models to predict an economic recession and percentage loss in GDP
 - Click <u>here</u> for DT classification and regression models with Scikit-learn

Analyzing the importance of features in DT

- DT models can get overwhelming complex
 - Feature importance function helps summarize the decision-making process of a tree
- Quantifies how much a feature contributed in predicting the target value
 - Values are between 0 and 1 and the total sum of feature importances equals 1
- Nonlinear relationship between feature and target value
 - High importance value does not indicate a linear correlation with target value
 - Low importance value means that information in the feature is likely redundant

Regularization reduces overfitting the data

- Financial data are abundant but have very low signal to noise ratio
 - Risk is overfitting the data and learning its noisy structure
- Decision Trees can easily overfit training data with training scores of 100%
 - Need methods to prevent overfitting of data
- Regularization uses shrinkage methods to:
 - Improve interpretation of predictions and inferences
 - Reduce generalization errors by reducing variance/overfitting

Regularizing DTs with hyperparameters

- The following pre-pruning hyperparameters reduce overfitting of data
 - max_depth: reduces the complexity level of a tree
 - o max_features: maximum number of features to be evaluated per node before a split
 - o max_leaf_nodes: maximum number of leafs in a tree
 - min_samples_split: minimum sample size a node must have before a split
 - o min_samples_leaf: minimum sample size required in a leaf node

Weaknesses of DT models

- DT models can get complex very fast even with a small set of features
 - Regression trees can get very deep
- Overfitting of data even with regularization
 - Poor out of sample performance, especially in regression models
- Highly sensitive to small variations in training data
 - Predictions of a single tree are unstable

Advanced Decision Trees

Section 4

- 1. Random Forest Algorithm
- 2. Hands-on Exercise
- 3. Gradient Boosted Machines
- 4. Hands-on Excercise

Why use Random Forest (RF) models

- One of the most powerful ensemble learning methods
 - Highly robust and scalable to very large datasets
- RF average has similar bias but lower variance than any single DT
 - Better generalization of predictions than DT models
- Like DT models, not much data preprocessing is required
 - No need to standardize, normalize or scale data
- Like DT models, quantifies uncertainty in predictions using probabilities
 - Only available in the classification algorithm

RF algorithm reduces variance of DTs

- Each DT is built uniquely using randomness:
 - Random sampling of training data with replacement (Bootstrapping)
 - Random subset of features
- DT algorithm is modified so it doesn't look for the best test for each node
 - It selects a random subset of features for each node
 - Selects the best possible test for one of the features in the subset above
- RF takes the prediction of each DT and averages them (Aggregating)
 - Each trained DT is still a weak learner but the ensemble is a much stronger learner
- Two different ways of aggregating classifier predictions
 - Soft voting averages predictions and hard voting takes the majority vote of classifiers

RF algorithm is trained using bagging (bootstrapping and aggregating)

Using out-of-bag (OOB) data for validation

- RF trained using random sampling with replacement leaves out approximately 37% of the training data of size N:
 - Probability of not picking a training instance = (N-1)/N
 - Probability of not picking a training instance in N random draws = {(N-1)/N}^N
 - \circ As N gets larger, $\{(N-1)/N\}^N$ converges to $\exp(-1) = 0.368$
- An OOB sample can be used as a validation dataset for a classification or regression tree not built using that dataset
 - The prediction average produces an unbiased estimate of the test error
- Cross validating large datasets can be costly
 - Validating using OOB is much faster and cheaper

Hands-on exercise

 Use built-in <u>Colab</u> to use Random Forest models to forecast stock price direction and returns

Analyzing the importance of features in RF

- RF models are black boxes and cannot be visualized
 - Feature importance function helps summarize factors driving decisions
 - Many more possible combinations are evaluated, so it's more reliable than DT
- Feature importance in RF models is a weighted average
 - The weight of each node that uses the feature to reduce impurity is equal to training sample size associated with the node
 - Feature importances of each tree in the forest are aggregated and normalized
- Nonlinear relationship between feature and target value still holds
 - High importance value does not indicate a linear correlation with target value
 - Low importance value means that information in the feature is likely redundant

Regularizing RFs with hyperparameters

- The following hyperparameters are key to reducing variance:
 - o n_estimators: increase number of trees that populate the forest
 - o max_features: reduce number of features included in the random subset
 - n_samples: increase bootstrap training sample size
- Use pre-pruning DT hyperparameters that reduce overfitting of data

Weaknesses of RF models

- RF models are complex, black box models
 - Forests can be dense and trees can be deep
- More memory and time required to train RF models
 - Physical constraints on the complexity of RF models
- Poor performance in sparse, high dimensional datasets
 - For example, text data

Why use Gradient Boosting?

- Gradient boosted regression trees (GBRT), also known as Gradient boosting machines (GBM), are the most powerful nonlinear algorithms
 - Winning entries in most public contests use this algorithm
 - Used for regression and classification problems
- Gradient boosting enhances performance of RF models
 - Uses shallow trees that require less memory
 - Enables faster predictions of learning ensembles

How an adaptive boosting algorithm learns

How gradient boosting algorithm learns

- Sequentially adds DTs to the ensemble, with each tree trying to correct the errors of the preceding ensemble
 - Unlike the RF algorithm, randomness is generally not used in building the ensemble
- At every iteration, algorithm tries to fit a new DT to the residual error of the previous ensemble
 - Unlike the adaptive boosting algorithm which modifies the weights of the training data
- Learning rate of the model controls the severity of the corrections
 - Higher learning rate leads to more complex GBM models and overfitting

Regularizing GBMs with hyperparameters

- The following hyperparameters are key to reducing variance:
 - o n_estimators: reduce the number of trees that populate the ensemble
 - learning_rate: reduce the learning rate
- Use pre-pruning DT hyperparameters that reduce overfitting of data

Hands-on exercise

 Use built-in <u>Colab</u> to use GBM models to forecast stock price returns and probability of recession

Weaknesses of GBM models

- GBM models are complex, black box models
 - GBM ensembles can be dense
- Poor performance in data with a lot of statistical noise
 - For example, financial data
- Sensitive to outliers in the data set
 - Each new DT is required to fix the errors of its preceding ensemble