Fiche du chapitre III Raisonnements, Ensembles, Dénombrements

En vue d'une utilisation lors de l'examen, ne pas annoter (surligneur et encadrement autorisés)

(Propositions, quantificateurs, règles de logique)

- ✓ Une **proposition** (ou **énoncé**, **assertion**) est une phrase mathématique dotée d'un sens.
- Une proposition peut être vraie (V) ou fausse (F).

A	$\operatorname{non} A$
V	F
F	V
F	V

Ī	A	B	A ou B	A et B
Ī	V	V	V	V
Ī	V	F	V	F
ĺ	F	V	V	F
	F	F	F	F

[non A]: **négation** de A $[A ext{ ou } B]$: **disjonction** de A, B (« ou » <u>inclusif</u>) $[A ext{ et } B]$: **conjonction** de A, B.

- \checkmark L'implication $A \Rightarrow B$ signifie : « Si A est vraie alors B est vraie ».
- Elle a même valeur de vérité que [(non A) ou B].
- Lorsque $[A \Rightarrow B]$ est vraie, A est une **condition suffisante** pour B et B est une **condition nécessaire** pour A.
- \checkmark L'équivalence $A \Leftrightarrow B$ est définie par la proposition : $[A \Rightarrow B \text{ et } B \Rightarrow A]$.
- $-A \Leftrightarrow B$ signifie que A et B ont mêmes valeurs de vérité, ou encore : « A est vraie \mathbf{si} et seulement \mathbf{si} B est vraie ».

La proposition:	est équivalente à :
$\operatorname{non}(\operatorname{non} A)$	A
non(A ou B)	(non A) et $(non B)$
non(A et B)	$(\operatorname{non} A)$ ou $(\operatorname{non} B)$
$A \Rightarrow B$	$(\operatorname{non} B) \Rightarrow (\operatorname{non} A)$
$non(A \Rightarrow B)$	$A \operatorname{et} (\operatorname{non} B)$

- \checkmark Le quantificateur « \exists » signifie « il existe » et le quantificateur « \forall » signifie « quel que soit ».
- « il existe » est toujours synonyme de « il existe au moins un », et « il existe un unique » se note ∃!

La proposition:	est équivalente à :
$\exists x \in E, \ \exists y \in F, \ A(x,y)$	$\exists y \in F, \ \exists x \in E, \ A(x,y)$
$\forall x \in E, \ \forall y \in F, \ A(x,y)$	$\forall y \in F, \ \forall x \in E, \ A(x,y)$
$non (\exists x \in E, \ A(x))$	$\forall x \in E, (\operatorname{non} A(x))$
$non (\forall x \in E, A(x))$	$\exists x \in E, (\operatorname{non} A(x))$

MAIS $[\exists x \in E, \ \forall y \in F, \ A(x,y)]$ et $[\forall y \in F, \ \exists x \in E, \ A(x,y)]$ NE SONT PAS ÉQUIVALENTES.

- Un objet affecté d'un ∃ dépend de tous les objets affectés de ∀ qui le précèdent dans l'énoncé.
- ✓ La notation $\{x \in E ; A(x)\}$ désigne l'ensemble des x appartenant à E et tels que A(x) vraie.

Méthodes de raisonnements

Pour Démontrer :	On peut utiliser un raisonnement :	
L'assertion A	 Direct : on cherche une assertion B qui est vraie et qui implique A Par l'absurde : on suppose que A est fausse et on cherche une contradiction. 	
L'implication $A \Rightarrow B$	 Direct : on suppose que A est vraie et on démontre qu'alors B est vraie. Par contraposition : on démontre l'implication [(non B) ⇒ (non A)]. 	
L'équivalence $A \Longleftrightarrow B$	• Par double implication : on démontre les implications $[A \Rightarrow B]$ et $[B \Rightarrow A]$.	
	• Par récurrence : on démontre l'initialisation et l'hérédité :	
L'assertion $[\forall n \in \mathbb{N}, A(n)]$	- Initialisation : $A(0)$ est vraie;	
	– Hérédité : pour tout entier $n \in \mathbb{N}$, <u>l'implication</u> $[A(n) \Rightarrow A(n+1)]$ est vraie.	
	Le principe de récurrence permet de conclure que $[\forall n \in \mathbb{N}, A(n)]$ est vraie.	

Variantes du raisonnement par récurrence :

- \triangleright Récurrence à partir d'un certain rang $n_0 \in \mathbb{N}$. Initialisation : $A(n_0)$ est vraie. Hérédité : pour tout $n \ge n_0$, l'implication $[A(0) \text{ et } A(1) \text{ et } \dots \text{ et } A(n)] \Rightarrow A(n+1) \text{ est vraie. Conclusion } : [\forall n \geq n_0, A(n)] \text{ est vraie.}$
- > Récurrence forte :
 - Initialisation : A(0) est vraie;
 - Hérédité: pour tout $n \in \mathbb{N}$, l'implication $[A(0) \text{ et } A(1) \text{ et } \dots \text{ et } A(n)] \Rightarrow A(n+1)$ est vraie.
- Récurrence à deux pas :
 - Initialisation : A(0) et A(1) vraies;
 - Hérédité : pour tout $n \in \mathbb{N}$, l'implication $[A(n) \text{ et } A(n+1)] \Rightarrow A(n+2)$ est vraie.
- ✓ Pour déterminer $S = \{x \in E ; A(x)\}$, on peut utiliser un raisonnement par **analyse-synthèse** :
 - 1. Analyse: On cherche une proposition plus simple B(x) qui est vraie lorsque A(x) est vraie.
 - 2. Synthèse : Parmi les x satisfaisant la proposition B(x), on sélectionne ceux qui vérifient A(x).

(Ensembles)

- \checkmark Une **partie** d'un ensemble E est un ensemble A dont tous les éléments appartiennent à E.
- On écrit $x \in A$ pour « x appartient à A » et $x \notin A$ signifie « x n'appartient pas à A ».
- On écrit $A \subset B$ pour « A est inclus dans B ».
- \emptyset désigne la partie vide de E et $\mathcal{P}(E)$ l'ensemble de toutes les parties de E.
- \checkmark Opérations sur les parties. Soit A, B des parties d'un ensemble E.
- \triangleright Pour obtenir l'égalité A=B, on procède souvent en démontrant les inclusions $A\subset B$ et $B\subset A$.

	Complémentaire :	$\mathbf{C}_E A = \{x \in B\}$	$E ; x \notin A$	
Définitions :	Réunion :	$A \cup B = \{x \in$	$E : x \in A \text{ ou } x \in B$	
	Intersection:	$A \cap B = \{x \in$	$E E ; x \in A \text{ et } x \in B$	
	Différence :	$A \setminus B = \{x \in$	$E ; x \in A \text{ et } x \notin B$	
Propriétés · {	$A \cap (B \cup C) = (A \cap B)$	$(A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap A \cup B \cap C$	$\cap (A$

- Propriétés : $\left\{ \begin{array}{c|c} C_E(A \cup B) = (\mathbb{C}_E A) \cap (\mathbb{C}_E B) & C_E(A \cap B) = (\mathbb{C}_E A) \cup (\mathbb{C}_E B) \end{array} \right.$
- ✓ Une famille $(A_i)_{i \in I}$ de parties non vides de E est une **partition** de E si :
 - 1. $\forall i, j \in I, i \neq j \Rightarrow A_i \cap A_j = \emptyset$;
 - 2. la réunion de toutes ces parties, notée $\bigcup_{i \in I} A_i$, est égale à E.
- \checkmark Le **produit cartésien** $E \times F$ désigne l'ensemble de tous les couples (x, y) où $x \in E$ et $y \in F$.

Applications |

✓ Pour E et F deux ensembles non vide, une application $f: E \longrightarrow F$ est un procédé qui à tout $x \in E$ associe un unique élément $f(x) \in F$.

- On note $\mathcal{F}(E,F)$ l'ensemble des applications de E dans F.
- Lorsque f(x) = y on dit que y est <u>l'image</u> de x et que x est <u>un</u> antécédent de y pour la fonction f.
- L'application $\mathrm{Id}_E \in \mathcal{F}(E,E)$ (« identité de E ») est définie par $\mathrm{Id}_E(x) = x$ pour tout $x \in E$.
- Si $f \in \mathcal{F}(E, F)$ et $g \in \mathcal{F}(F, G)$, la **composée** $g \circ f \in \mathcal{F}(E, G)$ est définie par $(g \circ f)(x) = g(f(x))$ pour tout $x \in E$.
- Si $A \subset E$ et $f \in \mathcal{F}(E, F)$, <u>la</u> restriction $f|_A$ de f à A est définie par $f|_A(x) = f(x)$ pour tout $x \in A$.
- Si $A \subset E$, $f \in \mathcal{F}(E, F)$ et $g = f|_A \in \mathcal{F}(A, F)$, on dit que f est <u>un</u> **prolongement** de g.
- La fonction indicatrice $\mathbb{1}_A \in \mathcal{F}(E,\mathbb{R})$ de la partie A de E, est définie par $\mathbb{1}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A. \end{cases}$.

 $\mathbb{1}_{A\cap B} = \mathbb{1}_A \mathbb{1}_B, \quad \mathbb{1}_{A\cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \mathbb{1}_B, \quad \mathbb{1}_{\mathbf{C}_E A} = 1 - \mathbb{1}_A.$

- \triangleright Pour obtenir l'égalité f = g, on démontre : $[\forall x \in E, f(x) = g(x)]$.

✓ Image directe et Image réciproque par une application $f \in \mathcal{F}(E,F)$.

Définitions : $\begin{cases}
 \text{Image directe d'une partie } X \subset E : & f(X) = \{y \in F \; ; \; \exists x \in X, \; y = f(x)\} \\
 \text{Image réciproque d'une partie } Y \subset F : & f^{-1}(Y) = \{x \in E \; ; \; f(x) \in Y\}
\end{cases}$ Propriétés : $\begin{cases}
 f(A \cup B) = f(A) \cup f(B) & f(A \cap B) \subset f(A) \cap f(B) & \land \\
 f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D) & f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)
\end{cases}$

✓ L'application $f \in \mathcal{F}(E, F)$ est $\begin{cases} \textbf{injective si}: & \forall x, x' \in E, [f(x) = f(x')] \Rightarrow [x = x'] \\ \textbf{surjective si}: & f(E) = F \\ \textbf{bijective si}: & \text{elle est injective et surjective.} \end{cases}$

- [f injective] \iff [$\forall y \in F, f^{-1}(\{y\})$ contient au plus un élément]
- [f surjective] \iff [$\forall y \in F, f^{-1}(\{y\})$ contient au moins un élément] \iff [$\forall y \in F, \exists x \in E, f(x) = y$]
- $-\ [f\ \text{bijective}\] \Longleftrightarrow [\ \forall y \in F,\ f^{-1}(\{y\})\ \text{contient exactement un \'el\'ement}\] \Longleftrightarrow [\forall y \in F,\ \exists!\ x \in E,\ f(x) = y]$
- \triangleright Lorsque f est bijective, l'application $g \in \mathcal{F}(F, E)$ qui associe à $y \in F$ l'unique $x \in E$ tel que f(x) = ys'appelle la bijection réciproque de f et elle est notée f^{-1} .
- ightharpoonup f est bijective équivaut à : $[\exists g \in \mathcal{F}(F,E), \ g \circ f = \mathrm{Id}_E \ \mathrm{et} \ f \circ g = \mathrm{Id}_F]$. On a alors $g = f^{-1}$.

 \checkmark Une **permutation** de E une application bijective de E dans E.

- L'ensemble des permutations de E est noté $\mathcal{S}(E)$.
- Si $\sigma, \tau \in \mathcal{S}(E)$ alors $\sigma \circ \tau \in \mathcal{S}(E)$ et $\sigma^{-1} \in \mathcal{S}(E)$. Si $E = \{1, 2, \dots, n\}$, on note \mathcal{S}_n pour $\mathcal{S}(E)$ et on présente $\sigma \in \mathcal{S}_n$ sous la forme $\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$.

Notations pour somme et produit

✓ La somme et le produit d'une famille finie $\{a_1, a_2, \dots, a_n\} \subset \mathbb{R}$ de nombres réels sont notés :

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n \qquad \text{et} \qquad \prod_{k=1}^{n} a_k = a_1 \times a_2 \times \dots \times a_n.$$

 $\frac{\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k}{\sum_{k=1}^{n} \lambda a_k} = \lambda \sum_{k=1}^{n} a_k} \qquad \text{Factorielle d'un entier naturel :} \\
\prod_{k=1}^{n} (a_k b_k) = (\prod_{k=1}^{n} a_k) (\prod_{k=1}^{n} b_k) \qquad \prod_{k=1}^{n} (\lambda a_k) = \lambda^n \prod_{k=1}^{n} a_k} \qquad 0! = 1 \text{ et } n! = \prod_{k=1}^{n} k \text{ si } n > 0.$

Cardinal d'un ensemble fini, Dénombrement

- ✓ Le Cardinal d'un ensemble fini E est le nombre d'éléments qu'il contient : $Card(E) \in \mathbb{N}$.
- ightharpoonup Toute partie A d'un ensemble fini E est finie et $\operatorname{Card}(A) \leq \operatorname{Card}(E)$.
- ightharpoonup Si $A \subset B$ et B fini, alors : $[\operatorname{Card}(A) = \operatorname{Card}(B) \iff A = B]$.

Soit E, F des ensembles finis et A, B des parties de E.

$Card(A \cup B) + Card(A \cap B) = Card(A) + Card(B)$	$\operatorname{Card}(A) + \operatorname{Card}(\mathcal{C}_E A) = \operatorname{Card}(E)$
$Card(E \times F) = Card(E).Card(F)$	$\operatorname{Card}(\mathcal{P}(E)) = 2^{\operatorname{Card}(E)}$
$\operatorname{Card}(\mathcal{F}(E,F)) = \operatorname{Card}(F)^{\operatorname{Card}(E)}$	$\operatorname{Card}(\mathcal{S}(E)) = (\operatorname{Card}(E))!$

- ✓ Soit E, F deux ensembles finis et $f \in \mathcal{F}(E, F)$. On a toujours : Card $(f(E)) \leq$ Card(E) et de plus :
- $ightharpoonup [\operatorname{Card}(f(E)) = \operatorname{Card}(E)] \iff [f \text{ injective }].$
- $ightharpoonup [\operatorname{Card}(f(E)) = \operatorname{Card}(F)] \iff [f \text{ surjective }].$
- ightharpoonup Si $\operatorname{Card}(E) = \operatorname{Card}(F)$ alors : $[f \text{ injective }] \Longleftrightarrow [f \text{ surjective }] \Longleftrightarrow [f \text{ bijective }].$
- \checkmark Une p-combinaison dans un ensemble E est une partie de E de cardinal p.
- ightharpoonup Si Card(E) = n, alors le nombre de p-combinaisons est :

(Coefficient binomial)
$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$
 si $p \in [0,n]$ et $\binom{n}{p} = 0$ si $p > n$.

ightharpoonup Pour tout $n \ge 1$ et tout $p \in [1, n]$: $\binom{n}{n} = \binom{n-1}{n-1}$

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p} \quad \text{et} \quad \binom{n}{p} = \binom{n}{n-p}.$$

 \triangleright Les valeurs de $\binom{n}{n}$ s'obtiennent aussi à l'aide du triangle de Pascal :

➤ Les coefficients binomiaux interviennent dans la formule du binôme de Newton :

$$\forall a, b \in \mathbb{C}, \forall n \in \mathbb{N}^*, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

4

- ✓ Un *p*-arrangement dans E est la donnée d'une *p*-combinaison d'éléments énumérés dans un ordre donné. On le note comme un *p*-uplet (x_1, \ldots, x_p) dont les composantes sont deux à deux distinctes.
- \triangleright Il y a p! p-arrangements différents pour une p-combinaison donnée.
- Au p-arrangement (x_1, \ldots, x_p) correspond l'application injective $[\![1, p]\!] \to E, \ k \mapsto x_k$. Il y a donc autant de p-arrangements dans E que d'injections de $[\![1, p]\!]$ dans E et si $\operatorname{Card}(E) = n$ alors ce nombre est

$$A_n^p = \frac{n!}{(n-p)!} = p! \binom{n}{p}.$$

Relations d'équivalence sur un ensemble

Une relation binaire sur un ensemble E est une partie \mathcal{R} de $E \times E$. On note $x\mathcal{R}y$ lorsque $(x,y) \in \mathcal{R}$.

 \checkmark Une relation binaire \mathcal{R} est une **relation d'équivalence** si elle satisfait les trois propriétés suivantes :

- 1. $x\mathcal{R}x$ pour tout $x \in E$ (\mathcal{R} est réflexive);
- 2. $\forall x, y \in E, [x\mathcal{R}y \Rightarrow y\mathcal{R}x] \ (\mathcal{R} \text{ est symétrique});$
- 3. $\forall x, y, z \in E$, $[(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z]$ (\mathcal{R} est transitive);

Si \mathcal{R} est une relation d'équivalence sur E, la classe d'équivalence de x est :

$$\operatorname{cl}(x) = \{ y \in E \; ; \; x \mathcal{R} y \} \subset E \qquad \text{(parfois notée } \overline{x} \text{ ou } x).$$

$$cl(x) = cl(y) \iff x\mathcal{R}y$$

$$cl(x) \neq cl(y) \iff cl(x) \cap cl(y) = \emptyset$$

- \triangleright Les classes d'équivalence distinctes de E forment une partition de E.
- \triangleright L'ensemble des classes d'équivalences de E pour \mathcal{R} est noté E/\mathcal{R} et appelé ensemble quotient. L'application $q: E \longrightarrow E/\mathcal{R}$ définie par $q(x) = \operatorname{cl}(x)$ est l'application quotient canonique.

 \checkmark Une relation binaire \mathcal{R} est une **relation d'ordre** si elle satisfait les trois propriétés suivantes :

- 1. $x\mathcal{R}x$ pour tout $x \in E$ (\mathcal{R} est réflexive);
- 2. $\forall x, y \in E$, $[x\mathcal{R}y \text{ et } y\mathcal{R}x \Rightarrow x = y]$ (\mathcal{R} est antisymétrique);
- 3. $\forall x, y, z \in E$, $[(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z]$ (\mathcal{R} est transitive).