

Programmierung 1 – Rekursion

Yvonne Jung

Wiederholung: Iteration

- Anweisungen im Schleifenrumpf werden wiederholt ausgeführt
 - Schleife wird mittels Abbruchbedingung beendet
 - Sonst Endlosschleife...
- Iterative Lösung der Fakultätsfunktion

```
• Entsprechend Formel: n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = \prod_{k=1}^{n} k 0! = 1
```

```
• C-Code (mit Schleife): unsigned fakultaet(unsigned n) {
          unsigned res = 1;
          for (unsigned i=2; i<=n; i++)
                res *= i;
          return res;
}</pre>
```

Fakultätsberechnung

- Statt iterativ alternativ rekursiv möglich
 - Rekursive Definition der Fakultät:

$$n! = \begin{cases} 1, & n = 0 \\ n \cdot (n-1)!, & n > 0 \end{cases}$$

- C-Code: unsigned fac(unsigned n) {
 if (n == 0)
 return 1;
 return n * fac(n 1);
 }
 - Kasten für jeden rekursiven Aufruf
 - Mit Pfeil vom Aufrufer zur aufgerufenen Funktion
 - Pfeil zurück zum Aufrufer zeigt je Rückgabewert

Gesucht: 4!

Rekursive Funktionen

- Eine Funktion wie fac(n), die sich wieder selbst aufruft, heißt rekursiv
 - Ein solcher Aufruf kann auch indirekt über eine weitere Funktion erfolgen
- Durch Rekursion wird ein Problem "auf sich selbst" zurückgeführt
 - Funktioniert nur, wenn Problem durch diese Rückführung einfacher wird
 - Zur Berechnung von fac(n) werden Ergebnisse für kleinere Eingaben verwendet, d.h. fac(n-1)
 - ...und wenn es Abbruchbedingung für Rekursion gibt
- Eine rekursive Funktion besteht aus...
 - einem oder mehreren Basisfällen
 - Dienen als *Abbruchbedingung* und sind meist einfach implementierbar, wie z.B. für fac(0)
 - dem rekursiven Fall

```
unsigned fac(unsigned n) {
   if (n == 0)
      return 1;
   return n * fac(n - 1);
}
```

Fibonacci-Folge

• Die Fibonacci-Zahlen sind rekursiv wie folgt definiert:

$$fib(n) = \begin{cases} 0 & (n = 0) \\ 1 & (n = 1) \\ fib(n-1) + fib(n-2) & (n \ge 2) \end{cases}$$

• L. Fibonacci beschrieb damit Wachstum einer Kaninchenpopulation

• Tabellarisch:

n	0	1	2	3	4	5	6	7	8	9	
fib(n)	0	1	1	2	3	5	8	13	21	34	•••

Implementierung

unsigned fibonacciRek(unsigned n) { Rekursiv if (n <= 1)return n; return fibonacciRek(n-1) + fibonacciRek(n-2); Iterativ unsigned fibonacciIter(unsigned n) { unsigned f0 = 0, f1 = 1, res = n; for (int i=2; i<=n; i++) { res = f0 + f1; f0 = f1;f1 = res;return res;

Rekursion

- Auf zwei Punkte achten
 - Rekursiver Fall / Rekursionsschritt:
 Argumente des rekursiven Aufrufs müssen Aufgabe darstellen, die einfacher zu lösen ist als die, die Aufrufer übergeben wurde → Argumente müssen "kleiner" werden
 - Basisfall / Terminierung: Bei jedem Aufruf prüfen, ob Aufgabe *ohne* erneute Rekursion gelöst werden kann
- Rekursion ist Programmiermethode
 - Dabei wird Problem gelöst, indem es auf einfachere Instanz zurückgeführt wird
 - Was einfacher bzw. kleiner bedeutet, hängt von den verwendeten Datentypen ab
 - Integer: kleinere Zahl, Basisfall oft 0 oder 1
 - Array: nur Teil des Arrays wird noch verwendet, Basisfall oft leeres Array
 - String: kürzerer String, Basisfall oft leerer String

Einschub: Call Stack (1)

- Funktion braucht Platz, um lokale Variablen zu speichern
 - Zur Erinnerung: Bereich heißt *Stack*
 - Besteht aus Speicherplätzen mit numerischer Adresse
 - Variablen ordnen diesen Adressen Namen zu
 - Alle Daten und Variablen eines Funktionsaufrufs befinden sich in Stack Frame
- Bei Funktionsaufruf wird neuer Stack Frame angelegt
 - Es entsteht ein Aufrufstapel (Call Stack)
 - In Hochsprachen automatisch vom Compiler erledigt
 - Parameter (sowie danach Rückgabewerte) werden kopiert
 - Nach Beendigung wird Stack Frame an OS zurückgegeben
 - Achtung, Stack Size endlich, kann bei vielen Rekursionen zu Stack Overflow führen

Einschub: Call Stack (2)


```
int Add(int a, int b)
    int s = 0;
   s = a + b;
    return s;
int main()
    int x = 0;
    x = Add(23,42);
    return 0;
```

- Auf Call Stack
 werden noch nicht
 zurückgekehrte
 Funktionsaufrufe
 verwaltet
 - Im Beispiel wurde einfache Funktion *Add()* aufgerufen
- Achtung: bei nicht abbrechender Rekursion erfolgt Stack Overflow

Rekursive Summenfunktion

- Summenformel: $S(n) = \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- Rekursive Formulierung:

•
$$S(n) = \begin{cases} n + S(n-1) & n > 1 \\ 1 & n = 1 \end{cases}$$

• Berechnungsschritte für n = 3

```
unsigned sum(unsigned n) {
   if (n == 0)
        return 0;
   return n + sum(n-1); Rekursionsfall
}
```


Rekursion über Arrays

- Rekursiver Abstieg erfolgt über kleiner werdende Feldlänge
 - Basisfall: betrachtete Restlänge 0 oder 1
 - Implementierung über je angepasste Start-/End-Indizes
- Beispiel: Suche maximales Element in Feld (ab Position *maxAb*)
 - int maxArray(int arr[], int n, int maxAb);

Binäre Suche (1)

• Beispiel 1: Suche nach Zahl 16 in sortiertem Feld

Bei Rekursion über Arrays nutzt man i.d.R. Hilfsparameter, um Suchbereich anzugeben

Binäre Suche (2)

Beispiel 2: Suche nach Zahl 51 in sortiertem Feld

Binäre Suche (3)

Algorithmus

- 1. Wähle mittleren Eintrag des sortierten Feldes der Länge n
- Falls dies noch nicht gesuchtes Element ist, dann pr
 üfe, ob Element in erster oder zweiter H
 älfte liegt
- 3. Zurück zu Punkt 1 für die Hälfte, in der sich Element befinden müsste

Anmerkungen

- In jedem Schritt wird Suchbereich (Anzahl zu prüfender Elemente) halbiert
- Für ein Array der Länge n benötigt man höchstens $\log_2 n$ Tests
- Relativ einfach, iterativ zu implementieren, wenn man rekursive Lösung kennt
 - Iterativ und rekursiv haben hier gleiche Performance
 - Das gilt bekanntlich aber oft nicht (vgl. z.B. Fibonacci)

Implementierung


```
int binarySearch(int arr[], int left, int right, int elem) {
    if (left > right)
        return -1;
    int mid = (left + right) / 2;
    if (arr[mid] == elem)
        return mid;
    if (elem < arr[mid])</pre>
        return binarySearch(arr, left, mid - 1, elem);
    else
        return binarySearch(arr, mid + 1, right, elem);
}
```

Arbeitet nach Prinzip "Divide and Conquer" (Teile und Herrsche)

Probleme und Grenzen

- Iteration versus Rekursion
 - Prinzipiell immer beides möglich
 - Rekursion: einfach, aber meist ineffizient
 - Iteration: schwieriger, aber meist effizienter
- Vorsicht
 - Bei manchen rekursiven Funktion ist die Berechnungsdauer nicht abschätzbar
 - Beispiel: Ackermann-Funktion

$$a(0, m) = m + 1$$
 $\forall m \ge 0$
 $a(n, 0) = a(n - 1, 1)$ $\forall n \ge 1$
 $a(n, m) = a(n - 1, a(n, m - 1))$ $\forall n, m \ge 1$

• Übersteigt selbst bei sehr kleinen Eingabewerten schnell alle Berechnungsmöglichkeiten

Vielen Dank!

Noch Fragen?

