Ans1) It sujeus to extracting knowledge from a given set of

The steps involved in data mining are:

1) Data Selection - It rellects the data which are relevant enough

11) Data Processing - Processes the data in some pattern.

111) Data. Transformation - Transforms. The data as per

14) Data Mining = extracting knowledge from data

v) Pattern Analysis - busing the relativeness in a given data set and analysing the sequence and pattern of it

V) Knowledge Extraction - & opetting the desired result of the givery send by the user.

Ans 2-) data set = 13, 15, 16, 17, 19, 20, 20, 21, 22, 22, 24, 24, 25, 25, 30, 33, 34, 35, 35, 35, 36, 36, 40, 45, 46, 52, 70.

1) Mean =
$$\frac{88810}{27} = \frac{29}{27}$$

Median = $\frac{25}{25} = (\frac{27+1}{2}) = \frac{29}{27}$ the element
1i) Mode = $\frac{25}{35}$

11) Mode = 35

111) Mideauge = max + min = 13+70 = 41.5

iv)
$$Q_1 = \frac{13+1}{2} = \frac{14}{2} + 1h = 20$$

 $Q_3 = 7 + h from last = 3b$

 V_{e}^{h} min = 13 $P_{1} = 20$ med = 25 $Q_{3} = 36$ max = 70

36,36,40,45,46,52,70.

1+

B1 = 13,15,16,17,19,20,20,21,22 B2 = 22,24,24,25,25,30,33,34,35B3 = 35,35,36,36,40,45,46,52,70

- ii) Sweathing by bin medians

 B1 = 19, 19, 19, 19, 19, 19, 19, 19, 19

 B2 = 25, 25, 25, 25, 25, 25, 25, 25, 25

 B3 = 40, 40, 40, 40, 40, 40, 40, 40
- (11) Smoothing by bin boundaries B1 = 13, 13, 13, 13, 22, 22, 22, 22, 22 B2 = 22, 22, 22, 22, 22, 35, 35, 35, 35 B3 = 35, 35, 35, 35, 35, 35, 35, 35, 35

No. of wickets No. of matches. 46 Player number 23 19 9 10 10 mean = 51 = 5.1 51 So of wickels = $\left(\frac{Xi - \overline{X}}{n}\right)^2$ >) (8-5:1)2+(2-5:1)2+(3-5:1)2+(9-5:1)2+(8-5:1)2+(3-5:1)2+ (1-5.1)2+(4-5.1)2+(6-5.1)2+(7-5.1)2

> 8.41+9.61+4.41+15.21+8.41+4.41+16.81+ 1.21 + 0.81 + 3.61

 $=\frac{72.9}{10} = \sqrt{7.29} = 2.7 \text{ Mns}'$

So of no of matches a.

$$\frac{(11-15\cdot 9)^{2}+(23-15\cdot 9)^{2}+(25-15\cdot 9)^{2}+\dots+(11-15\cdot 9)^{2}}{10}$$

= 7.23 dus.

mean = 159 = 15.9

5/2 Dimensional models in data marchouse is used to break data up into "facts" and "dimensions" to organize and describe entities within your data marchouse. The result is a staging layer in the data marchouse that cleans and organizes she data into the business and of the warehouse that is more accessible to data consumers.

Min Subbout 6/2 Support =60%. Confidence = 80%. Count= 4 x 60 frequency 1-texusef 2.4 1 DISCARD Hem freq \$27 \$ 37 544 XISCARI 23,4,63 3-itemset I DISCARD LZ4 \$1,2,37 \$3,5,69 \$1,2,4% 54,5,6 P 2 D ft12,5} \$112,69 \$1,3,49 \$ 1,3,59. OD \$ 1,3,64 1,4,54 The new table is. 0. D 114,69-0 0 1,5,63 {2,3,4} 2,3,43 52,3,5% \$2,3,69 2,4,63

83,4154

6/2 Support = 60%. Minimum Suppout Count = 4x60 = 2.4

step-1.		
Hem Set	freq biscar	1 (2)
819	1 Discar	0 229
627	4	
534	3	
544	4	
55 }	2 Discound	(2:4
567	2 Discaud	1.42.4

New_To	freq
R	4
£23	3
233	
847	4

Clabo		
Step-2	1	
2-item Set	fre	
\$1,23	1	Discard < 2.4
\$1,3 }	1	11
\$ 1,43	1	11
\$1,54	. 0	4
\$ 1,63	0	V
\$ 2,33	3	
\$ 2,4}	4	
\$ 2,5}	2	Discard C2.4
22,67	2	U
\$ 3,43	3	
\$ 3,54	- 1	Discand < 2.4
\$ 3,63	- 1	11
5457	2	11

11

11

freig		
3		
4		
3		

New-Table

3-1 tem_set	freg	Discard
\$1,2,34	1	
2(12/3)	1	D
\$ 1,2,49	0	b b
\$1,2,59	0	
\$ 1,2,64	1	D
\$1,3,49	0	b
\$1,3,53		
81,3,64	D	D
6112101	0	D
81,4,57	0	b
\$ 1,4,69	0	D
\$1,5,69		D
\$ 2,3,44	3	
	1	D
\$ 213,53	1)
\$ 2, 3, 63		b
82,4,53	2	D
2 4 11 33	2	D
\$ 2, 4, 63,	2	D
\$ 2, 5, 64		
{3,4,5}	1)
22 1 1 2	1	D
\$3,4,63 \$3,5,64	1	4
\$ 3,5,64		
54,5,64	2	D
(())	1	

The new table is.

{213,4}

det's check four confidence = 80%.

The final set is $\{2,3,4\}$ > non empty sets. $\{523, \{33, \{43, \{2,3\}, \{2,4\}, \{3,4\}\}\}\}$ Rule 1 $\{23 \rightarrow \{3,4\}\}$ Support = Sup(AuB) = $\{2,3,4\}$ Total mustomens

Confidence = $\frac{Sup(AVB)}{Sup(A)} = \frac{Sup(2,5,4)}{Sup(A)} = \frac{0.75}{Sup(A)}$ $\frac{Sup(A)}{4} = \frac{4}{4} = 1$ $\frac{1}{1} = \frac{3}{1} = 0.75$ $\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$

Rule 2. $\S3/4\% \rightarrow \S2\%$ Supp = $\frac{3}{4}$. Confidence = $\frac{3}{4} \times \frac{4}{3} = 100\%$. Valid

Rule 3. $\frac{33}{3}$ \Rightarrow $\frac{92}{4}$ $\frac{4}{3}$ = 100%. Valid.

Rule 4 $\{2,44 \longrightarrow \{3\}$ Supp = $\frac{3}{4}$ Confidence = $\frac{3}{4} \times \frac{4}{4} = 0.75$ Invalid.

Rule 5 $\{4\} \longrightarrow \{2,3\}$

Rule 5 $\{4\} \rightarrow \{2,3\}$ Supp = $\frac{3}{4}$ Confidence = $\frac{3}{4} \times \frac{4}{4} = 0.75 < 0.8$ invalid.

Ruleb $\{2,3\} \Rightarrow 4$ Supp = $\frac{3}{4}$ Confidence = $\frac{3}{4} \times \frac{4}{3} = 100\%$. Nalid.

Validity.
3-let 1+em

§ 2, 3, 4 4

§ 3, 4 4 → \$2 4

§ 34 → \$2, 4 4

\$2,33 → \$47

2/2 Assume A(2,2) and c(1,1) are centers of the tens clusters. distance A(2,2) & C1(2,2) P(A,CI) $= \sqrt{(\chi_2 - \chi_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(2-2)^2 + (2-2)^2} = 0.$ P(A, C2) ~ \((1-2)^2 + (1-2)^2 = 12 = 1.14 P(B,C1)= $\sqrt{(2-3)^2+(2-2)^2}$ P(B,C2) $= \sqrt{20(1-3)^2 + (1-2)^2} = 2.24$ $=\sqrt{2-19^{2}+(2-1)^{2}}=1.40$ $P(c,c_2)$ $= (1-1)^2 + (1-1)^2 = 0$ P(b,C1) $=\sqrt{(2-3)^2+(2-1)^2}$ = 11+1=1.41

Tab	le.		
2.0	Ci .	C2	Point
A(2,2)	0	1.14	C ₁
B(3,2)	1	2.24	C ₁
C(1,1)	1.41	2	Ci
D(3,1)		0.71	C2
E(1.5,0.5)	1.58	1	1

P(5,(2)) $\sqrt{(1-3)^2+(1-1)^2}=2$ P(E,C1)=12-1.5)2 = 1.58 P(E, C2) = 0.71

$$= \underbrace{2+3+3}_{3}, \underbrace{2+2+1}_{3} = \underbrace{(2.67, 1.67)}_{3}$$

$$\frac{C_2}{1+1.5}, \frac{0.5+1}{2} = (1.25, 0.75)$$

2nd time.

K.

A.		C2 (1.25, 0.75)	Belongs to.
1	C1(2.67, 1.67)	1.46	CI
A (2,2)	0.35	2.15	CI
B(3,2)	0.47	0.35	C2
c(1,1)	0.75	1,77	Cı
D(3,1) E(1.5,0.5)	11014	0.35	C2

As the clusters are same so me stop here.

The final clusters are:
$$C_1 = A(.2,2), B(3,2), D(3,1)$$

$$C_2 = \{ C(1,1), E(1.5,0.5) \}$$

Entropy= $-\frac{i=1}{1=0}$ $p(i|t)\log_2 p(i|t)=-\left[\frac{4}{9}\log_2\left(\frac{4}{9}\right)+\right]$ 9) at P(1/t) = 43 No. of the classes (3) log2 (5)

Total classes = - [5] =-[-0.52+(-0.47) for Tone among the tre classes.

by Entropy (a1) = - \(\sum_{i=0}^{(-1)} p(i|t) \log_2 p(i|t) \) = - 4 logo 4 $= \sqrt{3} \log_2\left(\frac{3}{4}\right) + \left(\frac{1}{4}\right) \log_2\left(\frac{1}{4}\right)$ Entropy (a2) = $\left[\left(\frac{2}{5} \right) \log_2 \left(\frac{2}{5} \right) + \left(\frac{3}{5} \right) \log_2 \left(\frac{3}{5} \right) \right]$ = 0.971 Entropy (a1) = $-\left[\left(\frac{1}{5}\right)\log_2\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)\log_2\left(\frac{4}{5}\right)\right]$ = - [(-0.46)+(-0.26)] Entropy (a2)=[(2/bg22/4)+(2/bg2(2/4))

P.200

$$a_1: \Delta = l(parent) = \sum_{j=1}^{k} \frac{N(v_j)}{N} l(v_j)$$

$$= 0.991 - \left[\left(\frac{4}{9} \right) \times 0.811 + \frac{5}{9} \times 0.721 \right] = 0.229$$
 $a_2: \Delta = l(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} l(v_j)$

$$= 0.991 - \left[\left(\frac{5}{9} \right) \times 0.971 + \left(\frac{4}{9} \right) \times 1 \right] = 0.0027$$

ii) bevou rate = 1-accuracy or
$$\frac{FP+FN}{Total}$$

$$= 1-0.86 \text{ or } \frac{15+10}{185}$$

u) Precision =
$$\frac{TP}{TP+FP} = \frac{105}{120} = 0.876$$

iv) Recall =
$$\frac{TP}{TP+FN} = \frac{105}{115} = 0.913$$
.

IN CHARLETTERS

111/12 10 100 maso -1 = 1 km one (1)

Caryan Grin 1 294 tout &

18.0 - 23 + 200 . LATTE = YOUNGS A (5