Learning objectives:

- 1. Rolle's theorem.
- 2. The Mean value theorem.
- 3. Applications.

Rolle's Theorem

Let f be a function that satisfies the following three conditions:

- 1. f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).
- 3. f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

Example 1. An object is moving in a straight line along the x-axis. Suppose the object was at position x = 3 at t = 0 and at t = 2. Show that at some instant between t = 0 and t = 2, the object was at rest.

Example 2. Prove that the equation $x^3 + x - 1$ has exactly one real root.

The Mean Value Theorem

Let f be a function that satisfies the following two conditions:

- 1. f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

or equivalently

$$f(b) - f(a) = f'(c)(b - a)$$
.

Example 3. Let $f(x) = x^3 - x$, a = 0, b = 2. Check/illustrate that the mean value theorem holds.

Example 4. Suppose f(0) = -3 and $f'(x) \le 5$ for all values of x. How large can f(2) possibly be?

Example 5. If f'(x) = 0 for all x in an interval (a, b), then show that f is constant on (a, b).

Example 6. If f'(x) = g'(x) for all x in an interval (a, b), then show that f(x) = g(x) + c for some constant c whenever a < x < b.

Example 7. Does there exist a function f such that f(0) = -1, f(2) = 4 and $f'(x) \le 2$ for all x?

Example 8. Two runners start a race at the same time and finish in a tie. Prove that at some time during the race they have the same speed.