T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte IV)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Vimos que *a escolha do passo de aprendizagem influencia muito no processo aprendizagem* do gradiente descendente.
 - Valores pequenos fazem com que o algoritmo tenha convergência muito lenta.
 - Valores grandes fazem com que o algoritmo divirja.
- Gráfico do erro em função das iterações nos ajuda a depurar o algoritmo.
- Além do ajuste manual, quando usamos GDE ou GD em mini-batches, precisamos reduzir o valor do passo de aprendizagem ao longo das iterações para "forçar" a convergência do GD.
- Hoje, veremos
 - um tipo de *pré-processamento* bastante importante para algoritmos de ML que usam métricas de distância como função de erro.
 - como aproximar dados que não são lineares, ou seja, que não podem ser aproximados por uma simples reta.

- Agora veremos que *nem toda superfície de erro tem formato de tigela*, em alguns casos, elas têm o formato de *vale*.
- Porém, independente do formato todas continuam sendo convexas.
- Ou seja, continuam tendo apenas um ponto de mínimo.
- Para demonstrar isso vamos supor a seguinte função observável $y_{\rm noisy}(n) = y(n) + w(n),$

onde a *função objetivo* é dada por

$$y(n) = a_1 x_1(n) + a_2 x_2(n)$$
.

 Agora, suponhamos que nós quiséssemos aproximar a função objetivo com a seguinte função hipótese

$$h(\mathbf{x}(n), \hat{\mathbf{a}}) = \hat{y}(n) = \hat{a}_1 x_1(n) + \hat{a}_2 x_2(n).$$

• Substituindo a *função hipótese* na *função de erro*, nós temos

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y_{\text{noisy}}(n) - \left(\hat{a}_1 x_1(n) + \hat{a}_2 x_2(n) \right) \right]^2.$$

• Observando a função de erro, o que ocorreria caso o intervalo de variação de x_1 fosse muito maior do que o de x_2 ? (ou o de x_2 ser muito maior do que o de x_1 ?)

• Caso $x_1(n)\gg x_2(n)$, $\forall n$, então $x_1(n)$ terá uma influência maior no erro resultante, o que pode ser expresso de forma aproximada como N-1

$$J_e(\mathbf{a}) \approx \frac{1}{N} \sum_{n=0}^{N-1} [y_{\text{noisy}}(n) - \hat{a}_1 x_1(n)]^2$$
.

- Portanto, o erro entre y_{noisy} e h(x(n)) será dominado pelo atributo $x_1(n)$ e, portanto, pequenas variações de \hat{a}_1 farão com que o erro varie rapidamente.
- Algo similar ocorre se $x_2(n) \gg x_1(n)$, nesse caso, o erro será **dominado pelo atributo** $x_2(n)$ e, portanto, pequenas variações de \hat{a}_2 farão com que o erro varie rapidamente.
- Vamos ver como fica o formato da superfície para estes casos.

- *Primeiro caso*: x_1 tem intervalo de variação maior do que x_2 .
- Portanto, a *influência* da variação de \hat{a}_1 no *erro* é maior.
- Ou seja, o erro varia mais rapidamente com variações de \hat{a}_1 , resultando em uma superfície com formato de *vale*.
- O erro varia bem mais lentamente com variações de \hat{a}_2 .
- A abertura do vale está no sentido de \hat{a}_1 .

Atributos

 $x_1 = 2 * randn(N, 1)$ $x_2 = randn(N, 1)$

Exemplo: formatos diferentes da superfície de erro.ipynb

- **Segundo caso**: x_2 tem intervalo de variação maior do que x_1 .
- Então, a influência da variação de \hat{a}_2 no erro é maior, resultando em uma superfície com formato de **vale**.
- O erro varia bem mais lentamente com variações de \hat{a}_1 .
- A abertura do vale está no sentido de \hat{a}_2 .

 $x_1 = \text{randn}(N, 1)$ $x_2 = 2 * \text{randn}(N, 1)$

Exemplo: formatos diferentes da superfície de erro.ipynb

- *Terceiro caso*: x_1 e x_2 têm intervalos semelhantes.
- Portanto, a variação tanto de \hat{a}_1 quanto de \hat{a}_2 tem influência semelhante na variação do erro, resultando em uma superfície com formato de **tigela**.
- O erro varia de forma similar com variações de \hat{a}_1 ou \hat{a}_2 .

Exemplo: formatos diferentes da superfície de erro.ipynb

Escalonamento de Atributos

• Dada a seguinte equação hipótese, h(x)

$$\widehat{y}(n) = h(\mathbf{x}(n)) = \widehat{a_1}x_1(n) + \widehat{a_2}x_2(n).$$

• A função de erro é dada por

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y_{\text{noisy}}(n) - \left(\widehat{a_1} x_1(n) + \widehat{a_2} x_2(n) \right) \right]^2.$$

• Caso $x_1(n)\gg x_2(n)$, $\forall i$, então $x_1(n)$ tem uma influência maior no erro resultante, o que pode ser expresso de forma aproximada como

$$J_e(\mathbf{a}) \approx \frac{1}{N} \sum_{n=0}^{N-1} [y_{\text{noisy}}(n) - \widehat{a_1} x_1(n)]^2.$$

- Portanto, o erro entre y_{noisy} e h(x(n)) será dominado pelo atributo $x_1(n)$ e, portanto, pequenas variações de $\widehat{a_1}$ fazem com que o erro varie rapidamente.
- A diferença entre as magnitudes dos atributos afeta o desempenho de algoritmos de ML que usam métricas de distância como função de erro.
 - As diferenças entre as magnitudes dos atributos faz com que as superfícies de erro tenham formato de vale ('U' ou 'V'), dificultando a convergência de algoritmos iterativos, como o gradiente descendente (todas as versões).

Escalonamento de Atributos

- O que pode ser feito?
- Para evitar esse problema, o intervalo de variação de todos os atributos deve ser escalonado para que cada atributo contribua com o mesmo peso para o cálculo do erro.
- As duas formas mais comuns de escalonamento são:
 - Normalização Mín-Max

$$x'_{k}(i) = \frac{x_{k}(i) - \min(x_{k})}{\max(x_{k}) - \min(x_{k})}, 0 \le x'_{k}(i) \le 1$$

Padronização

$$x'_{k}(i) = \frac{x_{k}(i) - \mu_{x_{k}}}{\sigma_{x_{k}}}$$

- Normalização Mín-Max faz com que os atributos variem entre 0 e 1.
- **Padronização** faz com que os atributos tenham média zero e desvio padrão unitário. Observe que, neste caso, os valores não ficam restritos a um intervalo específico.
- Vantagens do escalonamento
 - Ajuda a acelerar a convergência do gradiente descendente pois deixa as curvas de nível da superfície de erro mais circulares.
 - Possibilita comparar mais facilmente o peso/influência de cada atributo no modelo.

Escalonamento de Atributos

Modelo gerador:

$$y(n) = a_1 x_1(n) + a_2 x_2(n)$$
, onde $a_1 = 1$, $a_2 = 1$.

Para plotar a superfície de erro usamos:

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y_{\text{noisy}}(n) - (\widehat{a_1} x_1(n) + \widehat{a_2} x_2(n)) \right]^2$$

- $x_1 \gg x_2$: erro varia mais rapidamente com variações de $\widehat{a_1}$, resultando num vale.
- $x_2 \gg x_1$: erro varia mais rapidamente com variações de $\widehat{a_2}$, resultando também em um vale.
- Quando x_1 e x_2 têm intervalos semelhantes, então, a variação tanto de $\widehat{a_1}$ quanto de $\widehat{a_2}$ tem peso semelhante na variação do erro (tigela).

Exemplo: escalonamento_de_atributos.ipynb

$$x_1 = 2 * randn(M, 1)$$

 $x_2 = randn(M, 1)$

Após padronização

Regressão Polinomial: Motivação

- Até agora, *usamos funções hipóteses com formato de hiperplanos*, e.g., retas e planos, mas e se os *dados tiverem um formato mais complexo* do que uma simples linha reta ou plano?
- Como encontraríamos um modelo que aproxime as funções abaixo?
- Uma reta claramente n\u00e3o seria uma boa escolha.
 - *Uma reta não capturaria o comportamento das funções abaixo*, pois ela não tem complexidade (i.e., graus de liberdade) o suficiente para isso.

Regressão Polinomial

- Através do teorema de *Weierstrass*, sabemos que funções deste tipo podem ser aproximadas através de *polinômios*:
 - "Qualquer função contínua no intervalo fechado [a, b] pode ser uniformemente aproximada tão bem quanto desejado por um polinômio", Teorema da aproximação de Weierstrass.
- Portanto, podemos aproximar funções de qualquer formato/complexidade com polinômios:

$$y(\mathbf{x}) = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_1 x_3 + a_4 x_1 x_2 x_3^2 + a_5 x_1^3$$

• Por simplicidade, para nossas análises, nós vamos considerar *funções hipóteses polinomiais em uma váriável*

$$h(x(i)) = \hat{y}(x(i)) = a_0 + a_1 x_1(i) + a_2 x_1^2(i) + \dots + a_M x_1^M(i) = a^T x(i).$$
 onde M é a ordem do polinômio.

- Todos resultados encontrados anteriormente (equação normal, vetor gradiente para o algoritmo do gradiente descendente, escalonamento) são diretamente estendidos para funções hipótese polinomiais.
- Porém, o desafio agora é que precisamos encontrar a ordem do polinômio que melhor aproxime os dados.

Regressão Polinomial: Exemplo

• Geramos 30 exemplos do seguinte *mapeamento verdadeiro* (i.e., função objetivo):

$$y(x_1(n)) = 2 + x_1(n) + 0.5x_1^2(n),$$

e adicionamos ruído Gaussiano branco, w(n)

$$y_{\text{noisy}}(x_1(n)) = y(x_1(n)) + w(n),$$

onde $x_1(n)$ são valores linearmente espaçados entre -3 e 3 e $w(n) \sim N(0, 1)$.

- Vamos usar uma *função hipótese polinomial* para aproximar a função objetivo.
- Porém, surge uma dúvida, e se não soubéssemos a ordem por trás do modelo gerador, qual ordem deveríamos utilizar?

Função objetivo: polinômio de ordem 2.

A partir do dados ruidosos, queremos encontrar um polinômio (pesos e ordem) que melhor se aproxime da função objetivo.

Regressão Polinomial: Qual ordem usar?

- Polinômio de ordem 1 não tem flexibilidade o suficiente para aproximar bem os dados.
- O modelo erra muito tanto para predição dos exemplos de treinamento quanto para exemplos de validação (ou seja, exemplos não vistos durante o treinamento).
- Efeito conhecido como *subajuste* ou *underfitting*: *flexibilidade* e *grau de generalização* muito baixos.
- Porém, como esperado, o polinômio de ordem 2 produz a melhor aproximação dos dados, errando pouco para exemplos de treinamento e validação.
 - Esse modelo encontra uma relação de compromisso entre *flexibilidade* e *grau de generalização*.
 - Essa aproximação será melhor quanto maior for o conjunto de treinamento e/ou menor o ruído.

Regressão Polinomial: Qual ordem usar?

- Polinômios com ordem > 2 tendem a produzir *aproximações perfeitas* dos exemplos disponíveis, ou seja, o modelo acaba *memorizando* os exemplos de treinamento.
- Porém, essa aproximação se distancia bastante do modelo gerador.
- Portanto, esses modelos apresentarão *erros significativamente maiores* quando forem apresentados a exemplos de validação (i.e., dados não vistos durante o treinamento).
- Efeito conhecido como *sobreajuste* ou *overfitting*: *flexibilidade* muito alta e *grau de generalização* muito baixo.

Subajuste e sobreajuste: Resumo

- Subajuste: situação em que o modelo falha em aproximar o mapeamento verdadeiro.
 - Ocorre devido ao baixo grau de flexibilidade do modelo.
 - O modelo produz erros significativos tanto quando apresentado ao próprio conjunto de treinamento quanto a dados inéditos.
 - Se o modelo está subajustando, mesmo que o número de exemplos aumente indefinidamente, esta situação não vai desaparecer, é necessário aumentar a flexibilidade do modelo, ou seja, no caso da regressão polinomial, sua ordem.
- Sobreajuste: situação em que o modelo se ajusta tão bem aos exemplos de treinamento que ele aprende até o ruído presente nos mesmos (baixo erro de treinamento). Porém, o modelo produz erros significativos quando apresentado a dados inéditos (alto erro de erro de validação).
 - Ocorre devido ao alto grau de flexibilidade do modelo.
 - Se o modelo está sobreajustando, então é necessário diminuir sua flexibilidade ou aumentar o conjunto de treinamento até que o erro de validação atinja o erro de treinamento.
- Nosso objetivo será encontrar uma relação de compromisso entre *flexibilidade* e *generalização* do modelo: **flexibilidade** e **grau de generalização** médios.

Tarefas

- Quiz: "T319 Quiz Regressão: Parte IV" que se encontra no MS Teams.
- Exercício Prático: Laboratório #5.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Vídeo explicando o laboratório: Arquivos -> Material de Aula -> Laboratório #5
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
- Avaliação Presencial: 10/11/2023 Sala I-16
 - Projeto final já se encontra no github.—
 - Pode ser feito em grupos de no máximo 3 alunos.
 - Presencialmente, faremos apenas o exercício 1.
 - Os outros devem ser entregues até 10/12/2023.

Obrigado!

MY HOBBY: EXTRAPOLATING

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

ONE DOES NOT SIMPLY

