Sprawozdanie z realizacji projektu

Link GitHub: https://github.com/Tymoszukg/PPAGIS Projekt

Projekt został wykonany w ramach przedmiotu "Podstawy Programowania Aplikacji GIS" i dotyczył analizy przestrzennej mającej na celu klasyfikację obszarów pod kątem ich przydatności do zabudowy. Wykorzystano narzędzia dostępne w bibliotece ArcPy oraz Spatial Analyst w środowisku ArcGIS Pro.

Celem projektu było przygotowanie analizy uwzględniającej różne kryteria środowiskowe, takie jak nachylenie terenu, poziom wodonośny, rodzaj gleby, obecność terenów leśnych oraz istniejąca zabudowa. W wyniku analizy powstała warstwa rastrowa "Final_Classification", która zawiera skategoryzowane obszary z przypisanymi wartościami opisującymi ich przeznaczenie.

Opis działania kodu

Przygotowanie danych wejściowych

Kod zaczyna się od ustawienia parametrów środowiska pracy w ArcPy

- Określenie geobazy jako miejsca przechowywania danych
- Włączenie opcji nadpisywania istniejących wyników
- Ustawienie układu współrzędnych na PUWG 1992 (EPSG:2180), powszechnie stosowanego w Polsce

Wczytano również warstwy wejściowe:

- Raster nachylenie terenu
- Wektorowe warstwy pierwszego poziomu wodonośnego, gleb, terenów leśnych oraz zabudowy

Przygotowanie pojedynczych kryteriów

Każde kryterium zostało osobno przetworzone w celu utworzenia warstw rastrowych z wartościami numerycznymi ułatwiającymi klasyfikację końcową:

Reklasyfikacja nachylenia terenu

- 0 5° (niskie nachylenie, wartość 1)
- 5 15° (umiarkowane nachylenie, wartość 2)
- 15 61° (wysokie nachylenie, wartość 3)

Analiza poziomu wodonośnego

Wektorowa warstwa wodonośna została przekonwertowana na raster. Następnie obszar z wysokim poziomem wód (wartości "1" i "2") oznaczono jako nieodpowiednie pod zabudowę (wartość 0), natomiast pozostałe obszary oznaczono jako potencjalnie nadające się do zabudowy (wartość 1).

Analiza gleb

Dodano pole "klasa_num" do warstwy glebowej, gdzie gleby wysokiej jakości otrzymały wartość 1, a pozostałe wartość 2. Następnie warstwa wektorowa została przekonwertowana na raster, a brakujące wartości (NoData) zostały uzupełnione wartością 2. Gleby wysokiej jakości zostały oznaczone jako obszary chronione (wartość 1), co wskazuje ich ochronę przed zabudową.

Analiza terenów leśnych

Warstwa lasów została przekonwertowana na raster, a obszary leśne oznaczono jako obszary chronione (wartość 1). Dodatkowo do obszarów leśnych zaliczono również tereny o wysokim nachyleniu (wartość 3 w rastrze nachylenia).

Analiza terenów zabudowanych

Warstwa zabudowy została przekonwertowana na raster, a istniejąca zabudowa oznaczona jako teren zabudowany (wartość 1).

Łączenie wyników klasyfikacji

Aby określić końcową klasyfikację obszarów, zastosowano następującą hierarchię priorytetów:

- 1. **Obszary zabudowane** (wartość 4) mają najwyższy priorytet
- 2. **Obszary leśne** (wartość 1) nie przeznaczone pod zabudowę.
- 3. **Obszary rolne** (wartość 2) gleby wysokiej jakości, chronione przed zabudową
- 4. **Obszary pod zabudowę** (wartość 3) tereny o niskim poziomie wód gruntowych

Wynik został zapisany jako raster "Final Classification".

Dodanie atrybutów opisowych

Na zakończenie do tabeli atrybutów rastra "Final_Classification" dodano pole "Opis", w którym przypisano opisy dla poszczególnych kategorii terenu.

Podsumowanie

Projekt polegał na klasyfikacji obszarów według określonych kryteriów środowiskowych. Zrealizowany proces umożliwia określenie terenów nadających się pod zabudowę oraz obszarów, które powinny być chronione.

Projekt wykonali: Wiktor Tymoszuk Maciej Poliszuk