■ Pumping Lemma for CFL - a proof, a Language is not Context Free

If L is a Context Free Language, the, L has Pumping Length 'P' such that any string 'S', where $|S| \ge P$ may be divided into 5 pieces S = u v x y z such that the following conditions must be true:

- **1.** $u v^i x y^i z$ is in L for every $i \ge 0$
- **2.** |vy| > 0
- **3.** $|v x y| \le P$

Example:

$$L = \{a^n b^n c^n \mid n \ge 0 \}$$

- Assume L is context Free
- Pumping length P = 4

$S = a^4b^4c^4$									
= aaaabbbbcccc									
u	v	х	у	Z	i				
€	€	€	aaaa	bbbbcccc	2	aaaa aaaa bbbb cccc			
€	а	€	aaa	bbbbcccc	2	a a aaa aaa bbbb cccc			
€	aa	€	aa	bbbbcccc	2	aa aa aa aa bbbb cccc			
€	aaa	€	а	bbbbcccc	2	aaa aaa a a bbbb cccc			
€	aaaa	€	€	bbbbcccc	2	aaaa aaaa bbbb cccc			
а	€	€	aaaa	bbbbcccc	2	a aaaa aaaa bbbb cccc			
а	а	€	aa	bbbbcccc	2	a a a aa aa bbbb cccc			
а	aa	€	а	bbbbcccc	2	a aa aa a a bbbb cccc			
а	aaa	€	€	bbbbcccc	2	a aaa aaa bbbb cccc			
а	a	а	а	bbbbcccc	2	a a a a a a bbbb cccc			
:									
:									
aaa	ab	bb	bc	ссс	2	aaa ab ab bb bc bc ccc			

Example:

$$L = \{a^nb^n | n \ge 1 \}$$

- Assume L is context Free
- Pumping length P = 4
- $u v^i x y^i z$ is in L for every $i \ge 0$

$S = a^4b^4$									
= aaaabbbb									
u	V	х	У	Z	i				
€	€	€	aaaa	bbbb	2	aaaa aaaa bbbb			
€	а	€	aaa	bbbb	2	a a aaa aaa bbbb			
€	aa	€	aa	bbbb	2	aa aa aa aa bbbb			
€	aaa	€	a	bbbb	2	aaa aaa a a bbbb			
€	aaaa	€	€	bbbb	2	aaaa aaaa bbbb			
а	€	€	aaaa	bbbb	2	a aaaa aaaa bbbb			
а	а	€	aa	bbbb	2	a a a aa aa bbbb			
а	aa	€	а	bbbb	2	a aa aa a a bbbb			
а	aaa	€	€	bbbb	2	a aaa aaa bbbb			
а	а	а	а	bbbb	2	a a a a a a bbbb			
:									
•									
aa	aa	€	bb	bb	2	aa aa aa bb bb bb			
					3	aa aa aa aa bb bb bb bb			

Example:

- $L = \{0^i 10^i 10^i \mid i \ge 1\}$
- L = {ww | $w \in \{0,1\}^*$ } that is $w = 0^i 1^i$ the $ww = 0^i 1^i 0^i 1^i$

Properties of Context Free Language (CFL)

A. Decision Properties

Emptiness: Decidable

- Remove all "Useless" symbols
- If a CFG (G) holds the Starting symbol as "Useless" then the L(G) = Ø otherwise L(G) ≠ Ø

■ Finiteness: Decidable

- If in the normal from of CFG(G) holds loop (cycle) then the L(G) is infinite otherwise finite

Example:

 $S \rightarrow AB$

 $A \rightarrow XB$

 $B \rightarrow XA$

 $X \rightarrow \alpha$

Membership: Decidable

 If L(G), of the normal form of CFG(G), contains the "w" then w ∈ L(G) (CYK Algorithm)

Equivalence: Undecidable

 There is no such algorithm that prove the equivalency of 2 CFL's

B. Closure Properties

Union:

- $L_1 = CFL$ and $L_2 = CFL$
- Starting symbol is S₁ of G₁ for L₁(G₁)
- Starting symbol is S₂ of G₂ for L₂(G₂)
- $L_1 \cup L_2$
- $S \rightarrow S_1 \mid S_2$ is also in CFG
- ... So, CFL is closed under Union operation

Concatenation:

- L_1 = CFL and L_2 = CFL
- Starting symbol is S₁ of G₁ for L₁(G₁)
- Starting symbol is S₂ of G₂ for L₂(G₂)
- L₁ . L₂
- $S \rightarrow S_1 S_2$ is also in CFG
- ∴ So, CFL is closed under Concatenation operation

Transpose/ Reversal:

- $L = \{0^n1^n | n \ge 1\}$ is CFL
- $S \rightarrow 0S1|01$
- Reversal S \rightarrow 1S0 | 10
- $L^T = \{1^n0^n \mid n \ge 1\}$ is also CFL
- ∴ So, CFL is closed under Transpose operation

Kleene star:

- L = CFL
- Starting symbol is S of G for L(G)
- $S' \rightarrow SS' \in [consider a new Starting symbol S']$
- {∈, SS', SSS', SSSS', ...}
- {∈, S, SS, SSS, ...}
- $S^* \Rightarrow L^*$ is also CFL
- ∴ So, CFL is closed under Kleene star operation

Intersection:

- $L_1 = \{0^m 1^n | m, n \ge 1\}$ and $L_2 = \{0^n 1^n | n \ge 1\}$
- $L_1 \cap L_2 = \{0^n1^n | n \ge 1\}$ is also CFL
- $L_3 = \{0^m 1^n 2^n | m, n \ge 1\}$ and $L_4 = \{0^m 1^m 2^n | m, n \ge 1\}$
- $L_3 \cap L_4 = \{0^n 1^n 2^n | n \ge 1\}$ is not CFL
- .. CFL is not closed under Intersection operation

Complement:

- Assume Complement of CFL is also CFL
- L_1 = CFL and L_2 = CFL
- $\overline{L_1}$ = CFL and $\overline{L_2}$ = CFL
- $\overline{L_1} \cup \overline{L_2}$ = CFL
- $\quad \overline{\overline{L_1} \cup \overline{L_2}} = \mathsf{CFL}$
- $L_1 \cap L_2 \neq CFL$ [applying De Morgan's law]
- ... CFL is not closed under Complement operation