NCERT-10.4.1.2.2

Arnav Mahishi Dept. of Electrical Engg. IIT Hyderabad.

January 23, 2025

Problem Statement

The product of two consecutive integers is 306. We need to find the integers.

Input Parameters

Variable	Description
X	The bigger integer out of the two we need to find
g(x)	The function we take to update x_n in the point iteration method
$x_{\alpha,n}$	The value of x after n iterations for the first root
$x_{\beta,n}$	The value of x after n iterations for the second root

Theoritical Soln

Lets start by assuming the bigger integer as x and the smaller integer as $\frac{306}{x}$

$$\implies x - \frac{306}{x} = 1 \tag{3.1}$$

$$\implies x^2 - 306 = x \tag{3.2}$$

$$\implies x^2 - x - 306 = 0 \tag{3.3}$$

Using the quadratic formula:

$$x = \frac{1 \pm \sqrt{1^2 - (4 \cdot -306)}}{2} \tag{3.4}$$

$$x_1 = \frac{1 + \sqrt{1225}}{2} = 18 \tag{3.5}$$

$$x_2 = \frac{1 - \sqrt{1225}}{2} = -17 \tag{3.6}$$

If x=18 the other integer will be 17 if x=-17 the other integer will be -18

$$p(2) = 41 - 72(-2) - 18(-2)^2 = 113$$
 (3.7)

 \therefore The integers can be 18,17 or -18,-17

Qr Algorithm

The QR algorithm is as follows: QR decomposition

$$A = QR \tag{3.8}$$

Q is an $m \times n$ orthogonal matrix R is an $n \times n$ upper triangular matrix. Given a matrix $A = [a_1, a_2, \dots, a_n]$, where each a_i is a column vector of size $m \times 1$.

Normalize the first column of A:

$$q_1 = \frac{a_1}{\|a_1\|} \tag{3.9}$$

For each subsequent column a_i , subtract the projections of the previously obtained orthonormal vectors from a_i :

$$a_i' = a_i - \sum_{k=1}^{i-1} \langle a_i, q_k \rangle q_k$$
 (3.10)

Normalize the result to obtain the next column of Q:

$$q_i = \frac{a_i'}{\|a_i'\|} \tag{3.11}$$

Repeat this process for all columns of A. Finding R:-

After constructing the ortho-normal columns q_1, q_2, \ldots, q_n of Q, we can compute the elements of R by taking the dot product of the original columns of A with the columns of Q:

$$r_{ij} = \langle a_j, q_i \rangle$$
, for $i \le j$ (3.12)

Companion Matrix

For the given polynomial equation the companion matrix will be

$$\Lambda = \begin{pmatrix} 0 & 1 \\ 306 & 1 \end{pmatrix} \tag{3.13}$$

Initialization

Let $A_0 = A$, where A is the given matrix. QR Decomposition For each iteration k = 0, 1, 2, ...:

Compute the QR decomposition of A_k , such that:

$$A_k = Q_k R_k \tag{3.14}$$

where:

 Q_k is an orthogonal matrix $(Q_k^\top Q_k = I)$. R_k is an upper triangular matrix. The decomposition ensures $A_k = Q_k R_k$.

Form the next matrix A_{k+1} as:

$$A_{k+1} = R_k Q_k \tag{3.15}$$

Convergence

Repeat Step 2 until A_k converges to an upper triangular matrix T. The diagonal entries of T are the eigenvalues of A.

The eigenvalues of matrix will be the roots of the equation. We can intorduce a shift to make the convergence faster

$$\sigma = 1 \tag{3.16}$$

$$\Lambda_{\text{shifted}} = \begin{pmatrix} 0 & 1\\ 306 & 1 \end{pmatrix} - \sigma I \tag{3.17}$$

$$\Lambda_{\text{shifted}} = \begin{pmatrix} -1 & 1\\ 306 & 0 \end{pmatrix} \tag{3.18}$$

Where σ is the last diagonal element.

In our case:

$$\Rightarrow B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 306 & 1 \end{pmatrix}$$

$$\Rightarrow d = \frac{a_{11} - a_{22}}{2} = -0.5$$

$$\Rightarrow shift = a_{22} - sgn(d)\sqrt{d^2 + a_{12}a_{21}} = 18.5$$

$$\hat{A}_0 = A_0 - shift \cdot I = \begin{pmatrix} -18.5 & 1 \\ 306 & -17.5 \end{pmatrix}$$

$$\Rightarrow Q_0 = \begin{pmatrix} -0.0603 & 0.9982 \\ 0.9982 & 0.0603 \end{pmatrix}$$

$$R_0 = \begin{pmatrix} 306.5586 & -17.5285 \\ 0 & -0.0579 \end{pmatrix}$$

$$\Rightarrow A_1 = R_0Q_0 + shift \cdot I = \begin{pmatrix} -17.4965 & -304.9422 \\ -0.0578 & 18.4965 \end{pmatrix}$$

$$(3.26)$$

 $\Lambda = \begin{pmatrix} 0 & 1 \\ 306 & 1 \end{pmatrix}$

(3.19)

After 19 iterations the matrix converges to

$$A_{19} = \begin{pmatrix} -17 & -305 \\ 4.97 \times 10^{-11} & 18 \end{pmatrix} \tag{3.27}$$

The sub-diagonal elements are nearly zero confirming convergence and the diagonal elements are the eigenvalues. The eigen values given by the code are

$$x_1 = 18.000000000433293, x_2 = -17.000000000043303$$
 (3.28)

Plot

