Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1 (currently amended). A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein, said central blind openings having a top region and a bottom region with greater dimensions than said top region; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals.

2 (canceled).

3 (currently amended). The device according to claim $\frac{1}{2}$, wherein said central blind openings are slot shaped.

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

4 (currently amended). The device according to claim 1, wherein A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein, said central blind openings in said contact terminals are being pillar shaped; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals.

5. (currently amended). The device according to claim 1, wherein: A device, comprising:

with central blind openings formed therein, said contact terminals have having a base area and a top surface, ; and said central blind openings have having a truncated cone shape with a base area disposed in a region of said base area of said contact terminals and a tip positioned level to said top surface of said contact terminals; and

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals.

6 (currently amended). The device according to claim 1, wherein: A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals, said semiconductor component having has a contact area, and said external contacts of said semiconductor component have a rivet form in cross section, said rivet form having a rivet head connected to said contact area of said semiconductor component and a rivet tip protruding out from said semiconductor component.

Appl. No. 10/057,127 Amdt. Dated January 30, 2004 Reply to Office Action of December 19, 2003

7 (original). The device according to claim 6, wherein said rivet tip of said rivet form has smaller dimensions than said central blind openings of said contact terminals of said printed circuit board, said rivet form having a foot region with greater dimensions than said central blind openings.

8 (currently amended). The device-according to claim 1, wherein A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals, said external contacts of said semiconductor component have a frustoconical shape in cross section, said frustoconical shape having a tip with smaller dimensions than said central blind openings and a foot region with greater dimensions than said central blind openings.

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

9 (original). The device according to claim 1, wherein said printed circuit board is a multi-layered ceramic printed circuit board.

10 (original). The device according to claim 1, wherein said printed circuit board is a multi-layered plastic printed circuit board.

11 (currently amended). The device according to claim 1, wherein A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein, said printed circuit board has having conductor tracks and under each of said central blind openings a via in contact with said conductor tracks; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals.

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

12 (currently amended). The device according to claim 1, wherein A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals, said external contacts of said conductor component are being formed from a plastically deformable metal alloy.

13 (currently amended). The device according to claim 1, wherein A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein; and

at least one semiconductor component having external contacts

connected to said contact terminals on said printed circuit

board, said external contacts of said semiconductor component

protrude into said central blind openings and being in one of

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

a force-locking engagement and a form-locking engagement with said contact terminals, said external contacts of said semiconductor component being are formed from a silver solder alloy.

14 (currently amended). The device according to claim 1, wherein A device, comprising:

at least one printed circuit board having contact terminals with central blind openings formed therein; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals, said external contacts of said semiconductor component being are formed of a material that is softer than a material of said contact terminals of said printed circuit board.

15 (currently amended). The device according to claim 1; wherein A device, comprising:

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

at least one printed circuit board having contact terminals
with central blind openings formed therein, said contact
terminals are being formed from a copper alloy; and

at least one semiconductor component having external contacts connected to said contact terminals on said printed circuit board, said external contacts of said semiconductor component protrude into said central blind openings and being in one of a force-locking engagement and a form-locking engagement with said contact terminals.

16 (withdrawn). A method of establishing an electromechanical connection between at least one semiconductor component and at least one printed circuit board, which comprises the steps of:

providing the semiconductor component with external contacts having a form selected from the group consisting of a rivet form and a frustoconical form;

providing the printed circuit board with contact terminals having central blind openings formed therein; and

aligning and bringing together the semiconductor component and the printed circuit board, so that the external contacts

Amdt. Dated January 30, 2004

Reply to Office Action of December 19, 2003

of the semiconductor component engage at least one of forcelockingly in the central blind openings of the contact terminals of the printed circuit board with a pressing force being applied and form-lockingly in the central blind openings with plastic deformation of the external contacts occurring.

17 (withdrawn). The method according to claim 16, which comprises filling an intermediate space disposed between the semiconductor component and the printed circuit board with a filler.

18 (withdrawn). The method according to claim 17, which comprises using a two-component adhesive as the filler.

19 (withdrawn). The method according to claim 18, wherein the external contacts of the semiconductor component are held by a micromechanical clamping effect in the central blind openings of the contact terminals of the printed circuit board during the filling step resulting in an adhesive bonding of the semiconductor component to the printed circuit board for forming the electromechanically connection.