Top-Down Decarbonization

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #26: Wednesday, March 24 2021

Considerations on Projections of Future Emissions

Grain of Salt

- Implied decarbonization rates depend on predictions of *P*, *G*, etc.
- Predicting population and economic growth are very tricky and imprecise.
- So take any of these calculations with a grain of salt.
- But are they still useful, despite the uncertainties?

Implied Decarbonization for Green New Deal

Kaya Identity

$$F = P \times g \times e \times f$$

- *F* = emissions (million metric tons (MMT) CO₂ per year)
- P = population (billions)
- g = per-capita GDP (\$1000 per person)
- e = energy intensity of economy (quads / \$ trillion)
 - Reducing *e* means increasing **energy efficiency**
- f = carbon intensity of energy supply (MMT CO₂ / quad)
 - Reducing f means replacing fossil fuels with cleaner energy

US Green New Deal

US Green New Deal

- The Green New Deal has many definitions:
 - Resolution in Congress does not give specific emissions targets.
 - Bernie Sanders campaigned on a promise to completely eliminate CO₂
 emissions by 2050 and reduce them 71% by 2030
 - \circ F(2030) = 1484 MMT
 - \circ F(2019) = 4965 MMT
 - Could we do this in 11 years?
 - We would have to cut *ef* by 13.4% per year.
 - Historically, since 1990, *ef* has dropped 2.5% per year.

How Can We Decarbonize?

Detailed Abatement Options

Economic Carbon Intensity in 2019

CO₂ Emissions 1965–2019

Relative improvement in carbon intensity 1990–2019

Top-Down Analysis for Green New Deal

Projected Energy Use in 2030

- Energy Information Administration top-down projection for energy demand in United States in 2030:
 - Total 2030 Primary Energy Use = 88.8 Quads
 - Assume *P*, *g*, and *e* are fixed.
 - Manage emissions by reducing f
 - Switch from fossil fuels to clean energy

Energy Mix in 2019

Fuel	Quads	%
Coal	10.7	12
Oil	35.1	39
Natural Gas	28.9	32
Nuclear	7.2	8
Hydro	2.3	3
Renewables	5.5	6
Total	89.7	100

Emissions Factors

Fuel	MMT CO ₂ per Quad
Coal	94
Oil	70
Natural Gas	53
Nuclear	0
Hydro	0
Renewables	0

Projected Business as Usual Emissions in 2030

Fuel	%	Quads	MMT/Quad	MMT CO ₂
Coal	12	10.6	94	1004
Oil	39	34.7	70	2428
Natural Gas	32	28.6	53	1518
Nuclear	8	7.1	0	0
Hydro	3	2.3	0	0
Renewables	6	5.5	0	0
Total	100	88.8	NA	4951

Top-down emissions-reduction

Fuel	%	Quads	MMT/Quad	MMT CO ₂
Coal	12	10.6	94	1004
Oil	39	34.7	70	2428
Natural Gas	32	28.6	53	1518
Nuclear	8	7.1	0	0
Hydro	3	2.3	0	0
Renewables	6	5.5	0	0
Total	100	88.8	NA	4951

- Projected emissions for 2030 = 4951 MMT
 - If *f* doesn't change.
- Emissions goal for 2030 = 1484 MMT
- Must cut by (4951 1484) = 3467 MMT
- Start with coal:
 - Cut 1004 MMT (10.64 quads)
 - 2463 MMT left
- Next, cut gas:
 - Cut 1518 MMT (28.59 quads)
 - 945 MMT left
- Finally, cut oil:
 - Cut 945 MMT (13.49 quads)
- Total energy cuts = 10.64 + 28.59 + 13.49 =
 52.72 quads.

Clean Energy Sources

- 11,000 megawatts (MW) for one year = 1 quad
 - (See Climate Fix, p. 97)
- Nuclear Power Plant:
 - 1000 MW × 75% capacity factor = **750 MW average**
 - 1 quad per year = 11,000 MW / (750 MW per nuclear plant)
 - = 14.7 nuclear plants
- Solar Photovoltaic:
 - 30 MW × 30% capacity factor = **9 MW average**
 - 1 quad = 1,200 photovoltaic solar farms
- Wind Turbine:
 - 6 MW × 42% capacity factor = **3 MW average**
 - 1 quad = 4,400 wind turbines

Meeting Green New Deal Goal

- Cut CO₂ by 3467 MMT
 - 1004 MMT from coal (10.6 quad)
 - 1518 MMT from gas (28.6 quad)
 - 945 MMT from oil (13.5 quad)
- Total clean energy needed: quads per year
- 53 quads × 15 nuclear plants/quad =
 770 nuclear power plants in 11 years (70 per year)
- 53 quads × 1,200 photovoltaic solar farms/quad = **63,000 photovoltaic solar farms** in 11 years (6,000 per year, or 100 per week)
- 53 quads × 4,400 wind plants/quad = 232,000 wind turbines in 11 years (21,000 per year, or 60 per day)

Pielke's Bottom Line

- Unfeasible to build so much clean energy so quickly
- Expense of building so much clean energy would defeat economic goals
- This is why we don't have the technology to decarbonize as quickly as politicians and activists have been promising.

But ...

- Renewable energy is getting cheaper very quickly
- It may soon be profitable to shut down existing fossil-fuel power plants and replace them with renewables.

Review

Bottom-Up Analysis

- Start with individual Kaya-identity variables:
 - P, g, e, f
 - Figure out historical rates of change for each
- Gross Domestic Product: $G = P \times g$
 - Rate of change of G: $r_G = r_P + r_g$
 - Rate of change of a product is the sum of the rates of change of the factors.
 - Use rate of change of *G* to extrapolate *G* in the future

Bottom-Up Analysis

- Start with individual Kaya-identity variables
- Start with the policy goal: change in *F*.
 - Figure out implied rate of change of emissions r_F .
- Compare to the expected rate of change of GDP r_G .
- Calculate the implied rate of decarbonizing the economy, r_{ef} :

$$r_{ef} = r_F - r_G$$

• Compare implied r_{ef} to the historical trend in ef to assess the difficulty of meeting the policy goals.

Top-Down Analysis

- Start with macroeconomic estimate of future energy demand *E*
- Use mix of energy sources and emissions factors to calculate future emissions (*F*) if the mix of energy sources does not change.
- Your policy has a a goal for F
- Calculate difference between projected future *F* and policy goal for *F*.
- Calculate how many quads of fossil-fuel energy you would have to replace with clean energy to meet the policy goal.
 - Start with cutting coal, then cut natural gas, and finally cut oil
 - Why?
- Figure out how many power plants of different kinds you would have to build to supply the necessary clean energy.