Algebra 1 Vorlesungsmitschrieb nach Vorlesung von Prof. Gebhard Böckle

Yousef Khell

December 30, 2023

Inhaltsverzeichnis

1	Grv	ppentheorie 3
	1.1	Gruppen und Monoide
		Monoid
		Gruppe
		Ring
		Ordnung
		Untermonoid/Untergruppe
		Erzeuger
		Zyklische Gruppe
		Satz von Lagrange
		Exponent einer Gruppe
	1.2	Gruppenhomomorphismen
		Homomorphismus
		Isomorphismus
	1.3	Normalteiler
		Kommutator/Kommutatoruntergruppe
		Faktor-/Quotientengruppe
	1.4	Homomorphiesatz für Gruppen
	1.5	Einschub: Faktorringe
	1.6	Die Isomorphiesätze
		Erster Isomorphiesatz
		Zweiter Isomorphiesatz
	1.7	(Semi-)direkte Produkte
		Direktes Produkt
		Semi-direktes Produkt
	~	
2		ppen Strukturtheorie 25 Strukturtheorie zu Gruppen ("Einige Aussagen")
	2.1	Strukturtheorie zu Gruppen ("Einige Aussagen")
	VV 11	- 8-
		8
		v v
		Bahngleichung
		Freie Operation
		Fixpunkte
		Konjugationsklasse
		Klassengleichung

		p-Gruppe
		Satz von Cauchy
	2.2	Permutationsgruppen
		Träger
		disjunkte Permutationen
		Zykel/Transposition
		Zykeldarstellung von Permutationen
		Young-Diagramm/Partition
		Signum-Funktion/Alternierende Gruppe
		Einfache Gruppe
	2.3	Sylow Theoreme
		Sylow I
		Satz von Cauchy
		<i>p</i> -Sylow Gruppe
		Normalisator
		Sylow II
	2.4	Auflösbare Gruppen
		Satz von Jordan-Hölder
		Abgeleitete Reihe
		Auflösbarkeitskriterium
		Perfekte Gruppe
3	Rin	-
		Ring/Einheitengruppe
		Ringhomomorphismus
		Unterring
		Produkt von Ringen
		Monoidring
		Ringhomomorphismus
	3.1	Polynomringe
		Polynomring
		Primitives Monom
		Grad, Lietkoeffizient, normiertes Polynom
	3.2	Symmetrische Polynome
	3.3	Elementar symmetrische Polynome
	3.4	Ringe von Brüchen/Lokalisierung 61
	3.5	Spezielle Ideale
	3.6	Teilbarkeit in Integritätsbereichen
4	Kör	per 72
-1	4.1	Grundlagen
	4.1	Algebraische und transzendente Elemente

Kapitel 1

Gruppentheorie

1.1 Gruppen und Monoide

Notation.

- $\mathbb{N} = \{1, 2, ...\}$
- $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$
- #X = die Kardinalität/Mächtigkeit einer Menge X

Definition 1.1 (Monoid). Ein Tripel (M, e, \circ) mit

- \bullet *M* einer Menge.
- e einem Element aus M,
- \bullet $\circ: M \times M \to M$ einer zweistelligen Verknüpfung

heißt Monoid falls gilt

(M1) Assoziativität:

$$\forall a,b,c \in M: (a \circ b) \circ c = a \circ (b \circ c)$$

(M2) Neutrales Element:

$$\forall a \in M : a \circ e = a = e \circ a$$

Wir nennen ein $a \in M$ invertierbar, falls

$$\exists b, b' \in M : b \circ a = e = a \circ b'$$

(b bzw. b' heißen dann Links- bzw. Rechtsinverse)

Bemerkung. b = b', denn

$$b' = e \circ b' = (b \circ a) \circ b' = b \circ (a \circ b') = b \circ e = b$$

Definition 1.2 (**Gruppe**). Eine **Gruppe** ist ein Monoid, in dem alle Elemente invertierbar sind.

Bemerkung 1.3 (zur Assoziativität). Seien $a_1,...,a_n \in M$, und setzt man in

$$a_1 \circ \cdots \circ a_n$$

Klammern, sodass o jeweils 2 Elemente verknüpft, so ist wegen (M1) das Ergebnis unabhängig von der Wahl der Klammerung, and also lässt man i.a. die Klammern weg. (Die Reihenfolge ist aber schon wichtig!)

Definition 1.4 (Abelsche Gruppe/Monoid). Ein Monoid bzw. eine Gruppe M heißt **abelsch** (oder kommutativ) : $\iff \forall a, b \in M$:

$$a \circ b = b \circ a$$

Proposition 1.5 (Eindeutigkeit des neutralen Elements bzw. der neutralen Elementen). $Sei\ M\ ein\ Monoid,\ dann$

- (a) Erfüllt $e' \in M$ die Bedingung $e' \circ a = a \forall a \in M$, so gilt e' = e.
- (b) Ist $a \in M$ invertierbar, so ist sein Inverses eindeutig.

Beweis.

- (a) Nach Konstruktion $e = e' \circ e = e'$.
- (b) Gelte $a \circ b' = e$ und b sei ein Inverses von a, dann:

$$b' = e \circ b' = (b \circ a) \circ b' = b \circ (a \circ b') = b \circ e = b.$$

Satz 1.6 (ohne Beweis). Sei (G, e, \circ) ein Tripel mit G eine Menge, $e \in G$, $\circ : G \times G \to G$ eine assoziative Verknüpfung sodass:

• e ist Linkseins, d.h.

$$\forall g \in G : e \circ g = g$$

• jedes g hat ein Linksinverses

$$\forall g \in G \exists h \in G : h \circ g = e$$

So ist (G, e, \circ) eine Gruppe.

Hinweis (Nutzen von Satz 6). Es müssen weniger Axiome geprüft werden.

Notation.

- (i) $ab := a \circ b$
- (ii) $a^0 = e, a^1 = a, a^{n+1} = a^n a, n \in \mathbb{N}$
- (iii) $a^n = (a^{-n})^{-1}, n < 0$
- (iv) Ist o kommutativ, so schreibt man oft +

Übung (Rechenregeln).

- (i) $a^n a^m = a^{n+m}, (a^n)^m = a^{nm}, \forall m, n \in \mathbb{N}_0$
- (ii) Ist a invertierbar, so gelten die Regeln $\forall n, m \in \mathbb{Z}$

Proposition 1.7 (Übung). Sei G eine Gruppe, seien $g, h \in G$, dann:

- (a) Die Glecihung xg = h besitzt genau eine Lösung (in G), nämlich $x = hg^{-1}$.
- (b) Es gilt $(gh)^{-1} = h^{-1}g^{-1}$
- (c) Die Rechtstranslation (um g) $r_g: G \to G, x \mapsto xg$ und die Linkstranslationen (um g) $\ell_g: G \to G, x \mapsto gx$ sind bijektiv.

Beispiel. 1) $(\mathbb{N}_0, 0, +), (\mathbb{N}_0, 1, \cdot)$ sind kommutative Monoide.

- 2) Jede Gruppe ist ein Monoid.
- 3) Ist X eine Menge, Abb(X, X) bzw. Bij(X, X) die Menge aller Abbildungen bzw. Bijektionen von X in sich, so gilt:
 - (a) $(Abb(X, X), id_X, \circ)$ ist ein Monoid.
 - (b) $(\text{Bij}(X,X),\text{id}_X,\circ)$ ist eine Gruppe.

Schreibe $S_n := \text{Bij}(\{1,...,n\},\{1,...,n\})$ für die Gruppe der Permutationen von $\{1,...,n\}$.

- 4) Ist $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Raum, so sind
 - (i) $O(V):=\{\varphi\in \mathrm{End}_{\mathbb{R}}(V)|\varphi \text{ orthogonal}\} \text{ und } SO(V):=\{\varphi\in O(V)|\det(\varphi)=1\}$ Gruppen.
 - (ii) Ist $V = \mathbb{R}^2$ und $P_n := \{\cos \frac{2\pi j}{n}, \sin \frac{2\pi j}{n} \mid j = 0, ..., n-1\}$, dann ist
 - (a) $C_n:=\{\varphi\in SO(V)\mid \varphi(P_n)=P\}$ die Gruppe der Drehungen um 0 von Winkel $\frac{2\pi j}{n},(j=0,...,n=1)$ und
 - (b) $D_n := \{ \varphi \in O(V) \mid \varphi(P_n) = P \}$ die Diedergruppe der Ordnung 2n (Übung) $\#C_n = n, \#D_n = 2n$.

Gruppen beschreiben oft Symmetrien eines geometrischen Objekts.

5) Ist M ein Monoid, so ist $M^{\times} := \{a \in M \mid a \text{ invertierbar}\}$ eine Gruppe, also (M^{\times}, e, \circ) .

Definition 1.8 (Ring). Ein Ring ist ein Tupel $(R, 0, 1, +, \cdot)$, sodass

- (R1) (R, 0, +) eine abelsche Gruppe,
- (R2) $(R, 1, \cdot)$ ein Monoid,
- (R3) Es gelten die Distributivgesetze

Definition 1.9 (Ordnung einer Gruppe). Ist M ein Monoid oder eine Gruppe, so heißt

$$\operatorname{ord}(M) := \#M$$

die Ordnung von M.

Definition 1.10 (Untermonoid/Untergruppe). Seien M ein Monoid, G eine Gruppe, dann

- (a) $N \subseteq M$ heißt Untermonoid (UM) wenn:
 - $e \in N$
 - $\forall n, n' \in N : n \circ n' \in N$
- (b) $H \subseteq G$ heißt Untergruppe (UG) wenn:
 - $e \in H$
 - $\forall h, h' \in H : h \circ h' \in H$

So schreiben wir $N \leq M, H \leq G$.

Übung 1.11. (i) $N \leq M \implies (N, e, \cdot |_{N \times N}: N \times N \to N)$ ist Monoid

(ii) $H \leq G \implies (H, e, \cdot |_{H \times H}: H \times H \to H)$ ist Monoid

Beispiel. Sei K ein Körper, dann ist

- (i) $SL_n(K) \leq GL_n(K)$
- (ii) $SO(V) \le O(V) \le \operatorname{Aut}_{\mathbb{R}}(V)$

Proposition 1.12 (Übung). Sind $(H_i)_{i\in I}$ Untergruppen von G, so ist

$$\bigcap_{i\in I} H_i \le G.$$

Beispiel. Sei G eine Gruppe, $g \in G, S \leq G$, dann:

(i) $C_G(g)$ **Zentralisator** von $g \in G$, also

$$C_G(g) = \{ h \in G \mid hg = gh \} \le G$$

(ii) $C_G(S)$ **Zentralisator** von S, also

$$C_G(S) = \{ h \in G \mid hs = sh \forall s \in S \} = \bigcap_{s \in S} C_G(s) \le G$$

(iii) Z(G) **Zentrum** von G, also

$$Z(G) = C_G(G) \leq_{\text{komm.}} G$$

(iv) (Übung) $Z(GL_n(K)) = K^{\times} \mathbf{1}_n$

Lemma 1.13. Sei G eine Gruppe und $S \subseteq G$ eine Teilmenge, dann \exists kleinste Untergruppe $\langle S \rangle \leq G$, die S umfasst.

Beweis. Definiere

$$\langle S \rangle := \bigcap \{ H \le G \mid S \subseteq H \}.$$

Übung 1.14. Sei Mein Monoid, $S\subseteq M$ eine Teilmenge, ein Wort aus Sist ein Ausdruck

$$s_1 \cdot \dots \cdot s_n, s_i \in S, n \in N$$

Dann gilt: {Worte in $S \cup \{e\}\} = \langle S \rangle \leq M$ ist das kleinste Untermodnoid von M, das S umfasst. Und ist G eine Gruppe, so gilt {Worte in $S \cup S^{-1} \cup \{e\}\} = \langle S \rangle \leq G$ ist die kleinste Untergruppe von G, die S umfasst.

Definition 1.15 (Erzeugendensystem). Sei G eine Gruppe und $S \subseteq G$ eine Teilmenge. S heißt Erzeugendensystem von $G \iff \langle S \rangle = G$.

Beispiel (Übung). Seien $E_{ij} \in M_{n \times n}(K)$ die Elementarmatrizen mit 1 an der Stelle (i, j) und 0 sonst. Dann ist

$$\{\mathbf{1}_n + aE_{ij} \mid a \in K, i, j \in \{1, ..., n\}, i \neq j\}$$

ein Erzeugendensystem von $SL_n(K)$ (Gauß-Algorithmus)

Lemma 1.16. Sei G eine Gruppe, $g \in G$, dann gilt

$$\langle g \rangle = \langle \{g\} \rangle = \{g^n \mid n \in \mathbb{Z}\}\$$

Beweis. (Nach Übung 14)

$$\langle \{g\} \rangle = \{ \text{Worte in } \{g, g^{-1}, e\} \}$$

$$= \{ g^{i_1}, ..., g^{i_n} \mid n \in \mathbb{N}i_1, ..., i_n \in \{0, \pm 1\} \}$$

$$= \{ g^{i_1 + \cdots + i_n} \mid n \in \mathbb{N}i_1, ..., i_n \in \{0, \pm 1\} \}$$

$$= \{ g^n \mid n \in \mathbb{Z} \}$$

Bemerkung. $\langle g \rangle$ ist abelsch.

Definition 1.17 (Ordnung eines Gruppenelements, Zyklische Gruppe). Sei G eine Gruppe, $g \in G$

(a) Die Ordnung von g ist

$$\operatorname{ord}(g) = \#\langle g \rangle = \#\{g^n \mid n \in \mathbb{Z}\} \in \mathbb{N} \cup \{\infty\}$$

- (b) g hat endliche Ordnung \iff ord $(g) \in \mathbb{N}$
- (c) G ist zyklisch $\iff \exists g \in G : G = \langle g \rangle$

Proposition 1.18. Zyklische Gruppen sind abelsch.

Beweis. G zyklisch $\implies \exists g \in G : G = \langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$. Dann:

$$g^ng^m=g^{n+m}\stackrel{+\text{komm. in }\mathbb{Z}}{=}g^{m+n}=g^mg^n.$$

Proposition 1.19. Sei G eine Gruppe, $g \in G$, $n := \operatorname{ord}(g)$ und

$$n' = \sup\{m \in \mathbb{N} \mid e, g, g^2, \dots, g^{m-1} \text{ paarw. versch.}\}$$

Dann gelten:

- (a) $n' = \infty = \sup \mathbb{N}$ oder $g^{n'} = e$ und $\langle g \rangle = \{e, g, g^2 ..., g^{n'-1}\}$. Insbesondere ist n' = n
- (b) Falls $n = \operatorname{ord}(g) < \infty$, so gilt für $m, m' \in \mathbb{Z}$:

$$g^m = g^{m'} \iff m \equiv m' \mod n$$

Insbesondere ist $g^m = e \iff n \mid m$

(c) $F\ddot{u}r\ s \in \mathbb{Z}$ gilt

$$\operatorname{ord}(g^s) = \frac{n}{\operatorname{ggT}(n,s)}$$

Beweis.

(a) Gelte $n' < \infty$:

Definition von $n' \Longrightarrow g^{n'} \in \{e,g,...,g^{n'-1}\}$ Annahme: $g^{n'} = g^i$ für ein $i \in \{1,...,n'-1\}$ Multipliziere mit $g^{-i} \Longrightarrow g^{n'-i} = g^0 = e$ und 0 < n'-i < n', d.h. $g^{n'-i} \in \{e,...,g^{n'-1}\} \Longrightarrow \{g^0,...,g^{n'-1}\}$ nicht paarweise verschieden (Widerspruch) Sei schließlich $m \in \mathbb{Z}$ beliebig, Division mit Rest:

$$m = qn' + r : q, r \in \mathbb{Z}, 0 < r < n' - 1$$

$$\implies a^m = a^{qn'+r} = (a^{n'})^q a^r = a^r \in \{a^0, ..., a^{n-1}\}$$

Also: $\langle g \rangle = \{e,...,g^{n'-1}\}$ sind paarweise verschieden. \implies ord(g) = $\#\langle g \rangle = n'$

(b) Seien $m, m' \in \mathbb{Z}$, schreibe $m' - m = qn' + r, (q, r \in \mathbb{Z}, 0 \le r \le n' - 1)$, dann:

$$g^{m'} = g^m \iff g^{m'-m} = g^0 = e \iff g^{qn'+r} = e$$

$$\iff g = e \mathop{\longleftrightarrow}\limits_{e,\dots,g^{n-1} \text{paarw. versch.}}^{1.\mathop{\longleftrightarrow}\limits_{n=n'}} r = 0$$

 $\iff m' - m \text{ ist Vielfaches von } n = n' \iff m \equiv m \mod n$

(c) Bestime die $m \in \mathbb{Z}$ mit $(g^s)^m = e$

$$(g^s)^m = e \iff g^{sm} = e \iff n \mid sm$$

$$\underset{ \operatorname{ggT}(n,s)\mid n,s}{\Longleftrightarrow} \frac{n}{\operatorname{ggT}(n,s)} \mid \frac{s}{\operatorname{ggT}(n,s)} m \iff \frac{n}{\operatorname{ggT}(n,s)} \mid m$$

Da $\frac{n}{ggT(n,s)}$, $\frac{s}{ggT(n,s)}$ teilerfremd sind

$$\stackrel{2.}{\iff} \operatorname{ord}(g^s) = \frac{n}{\operatorname{ggT}(n,s)} \square.$$

Beispiel.

$$\operatorname{ord}(g) = 6 \implies \operatorname{ord}(g^2) = 3 = 6/\operatorname{ggT}(6, 2) = 6/2$$

Korollar 1.20. Sei G eine Gruppe, dann

(a) Für $g \in G$ gilt:

$$\operatorname{ord}(g) = \infty \iff g^n, n \in \mathbb{Z} \text{ sind paarw. verschieden}$$

(b) Ist G zyklisch und $G \leq G$ eine Untergruppe, so ist H zyklisch.

Beweis.

- (a) \Leftarrow vgl. 19(a) \Longrightarrow wissen nach 19(a), dass $e,g,...,g^n,...$ paarw. versch. sind. Multipliziere mit $g^{-m}, (m \in \mathbb{N}) \Longrightarrow g^{-m}, g^{-m+1},...,g^0,g^1,...$ sind paarw. versch.
- (b) Sei $g \in G$ ein Erzeuger von $G, H \leq G$ eine UG von G und ohne Einschränkung $H \supseteq \{e\}$

$$\implies \exists m \in \mathbb{Z} \setminus \{0\} : g^m \in H \setminus \{e\}$$

H ist Gruppe $\implies g^m, (g^m)^{-1} = g^{-m} \in H$

Sei $t \in \min\{m \in \mathbb{N} \mid g^m \in H\}$. Behauptung: $\langle g^t \rangle = H$.

- " \subseteq ": Klar, da $g^t \in H$ also auch $\langle g^t \rangle \subseteq H$ (H ist UG die t enthält)
- "\(\to\$": Sei $g^m \in H$, Division mit Rest: $m = tq + r : q, r \in \mathbb{Z}, 0 \le r \le t 1$

$$\implies H\ni g^m=g^{tq+r}=\underbrace{(g^t)}_{\in H}^qg^r\implies g^r=(g^m)((g^t)^q)^{-1}\in H$$

Nach Def von t muss gelten: r=0, da r=1,...,t-1 verboten. Also ist $g^m=(g^t)^q\in\langle g^t\rangle.$

Korollar 1.21 (Übung). Untergruppen von \mathbb{Z} sind die Mengen $\mathbb{Z}n = \{an \mid a \in \mathbb{Z}\}, (n \in \mathbb{N}_0)$

Wiederholung (Vorbereitung).

- Äquivalenzrelationen
- Äquivalenzklassen
- Repräsentantensysteme

Bemerkung.

- $X = \bigsqcup_{r \in \mathcal{R}} [r]_{\sim}$
- Falls $\#X < \infty : \# = \sum_{r \in \mathcal{R}} \#[r]_{\sim}$

Satz 1.22 (Satz von Lagrange). Sei G eine endliche Gruppe und $H \leq G$ eine Untergruppe, dann gilt $\#H \mid \#G$.

Beweis.

- 1) Definiere \sim auf G durch $g\sim g':\iff\exists h\in H:g'=gh\sim$ ist eine Äquivalenzrelation:
 - reflexiv: $g \sim g$ denn $g = ge, e \in H$
 - symmetrisch: gelte g' = gh für ein $h \in H$

$$\underset{\neg \cdot h^{-1}}{\Longrightarrow} g'h^{-1} = g \underset{H \text{ Gruppe}}{\Longrightarrow} h^{-1} \in H \implies g' \sim g$$

• transitiv: gelte $g \sim g', g' \sim g'',$ d.h. $\exists h \in H: g' = gh, \exists h' \in H"g'' = g'h$

$$\implies g'' = g'h' = (gh)h' = g(hh') \implies g \sim g''$$

2) Äquivalenzklassen: Für $g \in G$ ist

$$[g]_{\sim} = \{g' \in G \mid \exists h \in H : g' = gh\} = \{gh \mid h \in H\} =: gH$$

3) Beachte G endlich $\Longrightarrow H \subseteq G$ endlich (und ebenso jede Teilmenge von G) Behauptung: $\#gH = \#H \forall g \in G$ Grund: Die Abbildungen

$$\ell_q: H \to gH, h \mapsto gh, \ell_{q^{-1}}: gH \to H, x \mapsto g^{-1}x$$

sind zueinander invers (Übung) und also bijjektiv. $\implies \#H = \#gH$.

4) Sei $\mathcal{R} \subseteq G$ ein Repräsentantensystem zu \sim

$$\implies \#G = \sum_{g \in \mathcal{R}} \#[g]_{\sim} = \sum_{g \in \mathcal{R}} \#gH = \sum_{g \in \mathcal{R}} \#H \stackrel{3)}{=} \#\mathcal{R}\#H$$
$$\implies \#H \text{ teilt } \#G.$$

Notation. Seien G eine Gruppe, $H \leq G$ eine Untergruppe und \sim wie im Beweis vom Satz 22.

- Schreibe $[G:H]:=\#^G\!\!/_H=\#\mathcal{R}$ (Index von H in G)

Lagrange sagt: $\#G = \#G/H \cdot \#H = [G:H] \cdot \#H$

Übung 1.23. Seien $H' \leq H \leq G$ Untergruppen, dann ist $H' \leq G$ und

$$[G:H'] = [G:H] \cdot [H:H']$$

Korollar 1.24. Sei G eine endliche Gruppe, dann gelten:

- (a) $\forall g \in G : \operatorname{ord}(g) \mid \operatorname{ord}(G) = \#G$
- (b) Ist ord(G) eine Primzahl, so ist G zyklisch

Beweis

(a) $\langle g \rangle \leq G$ ist eine Untergruppe $\Longrightarrow_{\text{Lagrange}} \operatorname{ord}(g) = \# \langle g \rangle \mid \#G = \operatorname{ord}(G)$

(b) Sei $p = \operatorname{ord}(G) \in \mathbb{P}$ eine Primzahl, sei $g \in G \setminus \{e\}$ (# $G \ge 2$) Nach 1. gilt $\operatorname{ord}(g) \mid \operatorname{ord}(G) = p$ $\neq 1$ da $g \neq e$

Folglich: $p = \operatorname{ord}(g) = \operatorname{ord}(G)$, d.h. $\langle g \rangle \leq G$ ist Inklusion gleichmächtiger endlicher Mengen, also $\langle g \rangle = G$.

Definition 1.25 (Gruppenexponent). Sei G eine Gruppe, der Exponent von G ist $\exp(G) = \min\{n \in \mathbb{N} \mid \forall g \in G : g^n = e\}$ (wobei $\min \emptyset = \infty$).

Beispiel (Übung).

- (i) $\exp(C_n) = n$
- (ii) $\exp D_n = \operatorname{kgV}(2, n)$
- (iii) $\exp(S_3) = 6$
- (iv) $\exp(S_4) = 12$
- (v) $\exp(G) = 2 \implies G$ abelsch
- (vi) \mathbb{F}_p Körper mit p Elementen und $0 \neq V$ ein \mathbb{F}_p -Vektorraum, so gilt $\exp(V,0,+)=$

Satz 1.26. Sei G eine endliche Gruppe, es gelten

- (a) $\exp(G) \mid \operatorname{card}(G)$
- (b) $\exp(G) = \ker(\{\operatorname{ord}(g) \mid g \in G\})$

Beweis.

- (a) Folgt aus (b) und $\operatorname{ord}(g) \mid \operatorname{ord}(G) \forall g \in G$ nach Korollar 24.
- (b) $\operatorname{ord}(g) \mid \exp(G), \forall g \in G$, denn nach Definition gilt:

$$g^{\exp(G)} = e \implies \operatorname{ord}(g) \mid \exp(G)$$

folglich: $N := \text{kgV}(\{\text{ord}(g) \mid g \in G\})$ teilt $\exp G$.

Behauptung: $\exp G \le N$, (dann fertig) Wir zeigen: $g^N = e \implies \exp G \le N$. Dies folgt aus $g^{\operatorname{ord}(g)} = e$ und $\operatorname{ord}(g) \mid N = \operatorname{kgV}(...).$ \Box

Übung 1.27. Sei G eine endliche Gruppe, dann gelten:

(a) Sind $g, h \in G : gh = hg$ und gilt ggT(ord(g), ord(h)) = 1, so gilt

$$\operatorname{ord}(qh) = \operatorname{ord}(q)\operatorname{ord}(h)$$

- (b) Gelte $p^f \mid \exp G$ für p eine Primzahl und $f \in \mathbb{N}$, dann $\exists g \in G : \operatorname{ord}(g) = p^f$
- (c) Ist G abelsch, so $\exists g \in G : \exp(G) = \operatorname{ord}(g)$

Satz 1.28. Sei G eine endliche abelsche Gruppe, dann ist G genau dann zyk $lisch, wenn \operatorname{ord}(G) = \exp(G)$

Beweis.

- " \Longrightarrow ": Sei $g \in G$ Erzeuger $\Longrightarrow \operatorname{ord}(G) = \operatorname{ord}(g)$ $\operatorname{ord}(g) \mid \exp G, \exp G \mid \operatorname{ord}(G) \implies \exp G = \operatorname{ord}(G)$
- " \Leftarrow ": Wähle nach 27.3 ein $g \in G$ mit $\operatorname{ord}(g) = \exp(G)$, nach Voraussetzung ist $\exp(G) = \operatorname{ord}(g) \Longrightarrow \operatorname{ord}(g) = \operatorname{ord}(G) \Longrightarrow \langle g \rangle \subseteq G$ ist Gleichheit, d.h. $\langle g \rangle = G$.

1.2 Gruppenhomomorphismen

Seien im Weiteren M, M' Monoide und G, G' Gruppen.

Definition 1.29 (Monoid-/Gruppenhomomorphismus).

- (a) Eine Abbildung $\varphi: M \to M'$ heißt **Monoidhomomorphismus**, falls
 - (i) $\varphi(e) = e'$ und
 - (ii) $\forall m, \widetilde{m} \in M : \varphi(m \circ \widetilde{m}) = \varphi(m) \circ' \varphi(\widetilde{m})$
- (b) Sind M, M' Gruppen, so heißt ein Gruppenhomomorphismus \iff (ii) gilt.

Bemerkung 1.30.

- (a) Ist $\varphi:M\to M'$ ein Gruppenhomomorphismus, so gilt $\varphi(e)=e'$ und $\varphi(m^{-1})=\varphi(m)^{-1}, \forall m\in M.$
- (b) (Übung) Die Verkettung von Monoid- bzw. Gruppenhomomorphismen ist wieder ein solcher.

Beweis. Zu (a):

$$e' \circ' \varphi(e) = \varphi(e) = \varphi(e \circ e) = \varphi(e) \circ' \varphi(e)$$

Kürzen $\implies e' = \varphi(e)$. Und

$$\varphi(m^{-1}) \circ' \varphi(m) = \varphi(m^{-1} \circ m) = \varphi(e) = e'$$

Eindeutigkeit des Inverses $\implies \varphi(m^{-1}) = \varphi(m)^{-1}$.

Beispiel 1.31. (a) Für $g \in G$ ist die Abbildung

$$\varphi: \mathbb{Z} \to G, n \mapsto g^n$$

ein Gruppenhomomorphismus mit $Bild(\varphi) = \langle g \rangle$.

(b) Sei Kein Körper, V,W $K\text{-Vektorräume},\,\varphi:V\to W$ ein Vektorraumhomomorphismus, dann ist

$$\varphi: (V, 0_V, +_V) \to (W, 0_W, +_W)$$

ein Gruppenhomomorphismus.

(c) Die Vorzeichenfunktion (Aus der linearen Algebra)

$$\operatorname{sgn}: S_n \to \{\pm 1\}, \sigma \mapsto \operatorname{sgn}(\sigma)$$

ist ein Gruppenhomomorphismus.

Definition 1.32 (Kern/Bild). Sei $\varphi: G \to G'$ ein Gruppenhomomorphismus.

- (a) Der Kern von φ ist $\operatorname{Kern}(\varphi) := \{ g \in G \mid \varphi(g) = e' \}$
- (b) Das Bild von φ ist Bild $(\varphi) := \{ \varphi(g) \in G' \mid g \in G \}$

Proposition 1.33 (Übung). Sei $\varphi: G \to G'$ ein Gruppenhomomorphismus, dann

- (a) Für $H \leq G$ eine Untergruppe ist $\varphi(G) \leq G'$ eine Untergruppe.
- (b) Für $H' \leq G'$ eine Untergruppe ist $\varphi^{-1}(H') \leq G$ eine Untergruppe. Insbesondere sind $Bild(\varphi) \leq G'$, $Kern(\varphi) \leq G$ Untergruppen.
- (c) φ ist injektiv (ein Gruppenmonomorphismus) \iff Kern $(\varphi) = \{e\}$.
- (d) φ ist surjektiv (ein Gruppenepimorphismus) \iff Bild $(\varphi) = G'$

Bemerkung. (a), (b) und (d) gelten auch für Monoide.

Definition 1.34 (Gruppenisomorphismus). Ein Gruppenhomomorphismus φ ist ein Gruppenisomorphismus, wenn φ bijektiv ist. (\iff Kern(φ) = $\{e\}$ und Bild(φ) = G').

Bemerkung (Übung). Definiere ein Monoidhomomorphismus analog zu Definition 24.

Notation. Wir schreiben $G \cong G'$ (G ist isomorph zu G') wenn \exists Gruppenisomorphismus $\varphi: G \to G'$.

Definition 1.35 (Gruppenautomorphismus). (a) Ein Gruppenisomorphismus $\varphi: G \to G$ heißt Gruppenautomorphismus.

(b) $\operatorname{Aut}(G) := \{ \varphi : G \to G \mid \varphi \text{ ist ein Gruppenautomorphismus} \}.$

Bemerkung 1.36 (Übung). (a) $id_G: G \to G \in Aut(G)$

- (b) Verkettung von Gruppenisomorphismen (oder Automorphismen) ist wieder ein solcher.
- (c) Ist $\varphi: G \to G'$ ein Gruppenisomorphismus, so gelten
 - (i) #G = #G'.
 - (ii) G abelsch $\iff G'$ abelsch.
 - (iii) $S\subseteq G$ ein Erzeugendensystem $\iff \varphi(S)\subseteq G'$ ein Erzeugendensystem.

Proposition 1.37. (Aut(G), id $_{G}$, \circ) und (Aut(M), id $_{M}$, \circ) sind Gruppen.

Beweis. (Übung) Zeige:

$$\operatorname{Aut}(G) \leq \operatorname{Bij}(G), \operatorname{Aut}(M) \leq \operatorname{Bij}(M)$$

sind Untergruppen.

Beispiel 1.38 (Übung).

- (a) $\operatorname{Aut}((\mathbb{Z}, 0, +)) = \{\operatorname{id}_{\mathbb{Z}}, -\operatorname{id}_{\mathbb{Z}}\} \cong C_2$
- (b) Für $\mathbb{Z}_n := \mathbb{Z}_{n}$ der Ring der Restklassen modulo n gilt

$$(\mathbb{Z}_n, \overline{0}, +) \cong C_n \text{ und } \operatorname{Aut}(\mathbb{Z}_n, \overline{0}, +) \cong \mathbb{Z}_n^{\times}$$

- z.B. Erzeuger von \mathbb{Z}_n sind Reste \overline{a} , sodass ggT(a,n)=1
- (c) Sei G beliebig, zu $g \in G$ definiere den Konjugationsautomorphismus (Konjugation mit g)

$$c_g: G \to G, h \mapsto g \circ h \circ g^{-1}$$

- (i) $c_q \circ c_{q'} = g_{q \circ q'}, \forall g, g' \in G$
- (ii) $c_e = \mathrm{id}_G$ und $c_g \in \mathrm{Aut}(G), \forall g \in G$
- (iii) $c: G \to \operatorname{Aut}(G), g \mapsto c_g$ ist ein Gruppenhomomorphismus.
- (iv) $\operatorname{Kern}(c) = Z(G)$ (Zentrum von G).

Bemerkung. $\operatorname{Bild}(c.) =: \operatorname{Inn}(G)$ die Gruppe der inneren Automorphismen von G

Lemma 1.39. Seien $\varphi, \varphi': G \to G'$ Gruppenhomomorphismen. Sei $S \subseteq G$ ein Erzeugendensystem. Dann gilt

$$\varphi(s) = \varphi'(s) \forall s \in S \iff \varphi = \varphi' \quad (*)$$

Analoge Aussage gilt für Monoide

Beweisskizze. (Übung)

- "← ": Klar.
- "⇒":
 - 1) Zeige $H := \{g \in G \mid \varphi(g) = \varphi'(g)\} i \leq G$ ist eine Untergruppe.
 - 2) Da $S\subseteq$ nach Definition von H und Voraussetzung von " \Longrightarrow ", folgt $G=\langle S\rangle\subset H< G.$

1.3 Normalteiler

Notation. Für $X \subseteq G$ und $g \in G$ setze

$$\ell_q(X) = \{gx \mid x \in X\} = gX \text{ und } r_q(X) = \{xg \mid x \in X\} = Xg$$

Gruppenverknüpfung assoziaativ ⇒

(i)
$$c_q(X) = \{gxg^{-1} \mid x \in X\} = (gX)g^{-1} = g(Xg^{-1}).$$

(ii)
$$g(hX) = (gh)X$$
 und $(Xg)h = X(gh)$.

Bemerkung. Ist $H \leq G$ eine Untergruppe, dann heißt gH Linksnebenklasse und Hg Rechtsnebenklasse.

Definition 1.40 (Normalteiler). Eine Untergruppe $N \leq G$ heißt Normalteiler (N.T.) $\iff \forall g \in G : Ng = gN$. (Diese Definition ist auch für Monoide sinnvoll)

Lemma 1.41. Für eine Untergruppe $N \leq G$ sind äquivalent:

(i)
$$\forall g \in G : gN = nG$$

(ii)
$$\forall g \in G : gNg^{-1} = N$$

(iii)
$$\forall g \in G : gNg^{-1} \subseteq N$$

Beweis. • " $(ii) \implies (iii)$ ": Klar.

• " $(iii) \implies (i)$ ": Rechtsmultiplikation mit g liefert aus (iii):

$$(gNg^{-1})g = gN(g^{-1}g) = gNe = gN \subseteq Ng$$

Für die andere Inklusion betrachte (iii) für g^{-1} :

$$g^{-1}Ng \subseteq N \underset{\text{Linksmult. mit } g}{\Longrightarrow} Ng \subseteq gN$$

• "(i) \Longrightarrow (ii)": Wende auf (i) Rechtsmultiplikation mit g^{-1} an. $(r_{g^{-1}}: G \to G)$ ist eine bijektive Abbildung.)

Notation.

 $H \leq G$ bedeuteg $H \subseteq G$ ist eine Untergruppe.

 $H \subseteq G$ bedeuteg $H \subseteq G$ ist ein Normailteiler.

Satz 1.42. Ist $\varphi: G \to G'$ ein Gruppenhomomorphismus, so ist $\operatorname{Kern}(\varphi) \subseteq G$ ein Normalteiler.

Beweis. Sei $g \in G$ beliebig, zu zeigen ist $g \circ \operatorname{Kern}(\varphi) \circ g^{-1} \subseteq \operatorname{Kern}(\varphi)$

Sei $h \in \text{Kern}(\varphi)$, zu zeigen ist $ghg^{-1} \in \text{Kern}(\varphi)$. Damit:

$$\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) \underset{h \in \mathrm{Kern}(\varphi)}{=} \varphi(g) \circ e' \circ \varphi(g^{-1}) = \varphi(g)\varphi(g^{-1})$$

$$= \varphi(gg^{-1}) = \varphi(e) = e'.$$

$$\implies \operatorname{Kern}(\varphi) \leq G.$$

Übung 1.43.

(a) Ist $N' \subseteq G'$ und $\varphi: G \to G'$ Gruppenhomomorphismus, so gilt $\varphi^{-1}(N') \subseteq G'$

- (b) Ist $h \leq G$ eine Untergruppe mit $[G:H] = \#G/_H = 2$, so folgt $H \leq G$.
- (c) Ist G abelsch, so ist jede Untergruppe $H \leq G$ ein Normalteiler.
- (d) Der Kommutator zu $g,h\in G$ ist $ghg^{-1}h^{-1},$ die Kommutatoruntergruppe von G ist

$$[G,G] := \langle ghg^{-1}h^{-1} \mid g,h \in G \rangle$$

Es gilt $[G,G] \subseteq G$.

Beispiel. Es gibt Beispiele für folgende Aussagen:

- (i) $\exists H \leq G : H \not \supseteq G$
- (ii) $\varphi: G \to G'$ ein Gruppenhomomorphismus und $N \subseteq G$ mit $\varphi(G) \not \supseteq G'$
- (iii) $\exists N \subseteq G \text{ und } H \subseteq N$, so dass $H \not\subseteq G$.

Beweis.

- (i) $G = S_3 = \text{Bij}(\{1, 2, 3\}) \supseteq H = \{\text{id}, \sigma\} \text{ mit } \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Dann $H \leq G$ Klar, aber $H \not \preceq G$, denn für $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ gilt $\tau \sigma \tau^{-1}$ (Übung) $\Longrightarrow \tau H \tau^{-1} \not\subset H$
- (ii) Betrachte $\varphi: H \to G$ Inklusion mit G, H aus (i), dann gilt $H \unlhd H$ aber $\varphi(H) = H$ kein Normalteiler von $G = S_3$.

(iii) Später.

Satz 1.44. Sei $N \subseteq G$ ein Normalteiler, dann gelten:

(a) Aus gN = g'N und hN = h'N für $g, g', h, h' \in G$ folgt ghN = g'h'N und insbesondere ist die Verknüpfung

$$\circ: \underbrace{G_{/N}}_{\{gN \mid g \in G\}} \times G_{/N} \longrightarrow G_{/N}, \ (gN, hN) \longmapsto gN \circ hN = ghN$$

wohl-definiert.

(b) $G_N, \underbrace{N}_{=eN}, \circ$) ist eine Gruppe.

(c) $gN = g'N \iff g^{-1}g' \in N$.

(d) $\pi: G \to G/N, g \mapsto gN$ ist ein Gruppenhomomorphismus mit $\operatorname{Kern}(\pi) = N$.

Beweis. (a) Es gelten (Formeln von Definition 40)

$$(gh)N = g(hN) \stackrel{N \triangleleft G}{=} g(Nh) = (gN)h$$
$$= (g'N)h = g'(Nh) = g'(hN) = g'(h'N) = (g'h')N \implies (a)$$

- (b) Überlege Gruppenaxiome.
 - Assoziativität (Übung)
 - Linkseins ist N = eN, denn

$$N \circ (gN) = eN \circ gN \stackrel{\text{wohl-def.}}{=} (e \circ g)N = gN$$

• Linksinverses zu gN ist $g^{-1}N$, denn

$$(g^{-1}N) \circ gN \underset{\text{nach Def.}}{=} (g^{-1}g)N \underset{\text{Gruppe}}{=} eN = N$$

(c)
$$gN = g'N \underset{g^{-1} \circ _}{=} N = g^{-1}g'N \underset{e \in N}{\Longrightarrow} N \ni g^{-1}g'e$$
, d.h. $g^{-1}g' \in G$.
$$g^{-1}g' \in N \underset{\text{ist blicktiv}}{\Longrightarrow} N = g^{-1}N \underset{g^{-1} \circ _}{\Longrightarrow} gN = g'N$$

(d) $\pi: G \to G/N, g \mapsto gN$ ist Gruppenhomomorphismus, denn $\pi(gg') = gg'N \mathop{=}_{\mathrm{Def.\ von\ }} gN \circ g'N = \pi(g) \circ \pi(g')$ $g \in \mathrm{Kern}(\pi) \iff gN = eN \mathop{\iff}_{(c)} e^{-1}g = g \in N$

Bemerkung (Bezeichnung). G_N (bzw. (G_N, eN, \circ)) heißt Faktorgruppe von G modulo N.

Bemerkung (Übung). G abelsch $\implies G/N$ abelsch.

1.4 Homomorphiesatz für Gruppen

Satz 1.45 (Homomorphiesatz für Gruppen). Sei $\varphi: G \to G'$ ein Gruppenhomomorphismus mit $N = \operatorname{Kern}(\varphi)$, dann existiert genau ein Gruppenhomomorphismus $\overline{\varphi}: G_{N} \longrightarrow G'$, sodass

kommutiert, d.h. $\overline{\varphi} \circ \pi = \varphi$. (wobei $\pi: G \longrightarrow {}^G\!\!/_N, g \mapsto gN$ aus Satz 44). Die Abbildung $\overline{\varphi}$ ist injektiv und $\overline{\varphi}$ bijektiv $\iff \varphi$ surjektiv.

Beweis. • Existenz von $\overline{\varphi}$: Definiere $\overline{\varphi}(gN) = \varphi(g), \forall g \in G$.

• $\overline{\varphi}$ wohl-definiert: Es gilt: $gN = g'N \iff N = g^{-1}g'N \iff g^{-1}g' \in N$. Damit

$$\implies \varphi(g') = \varphi(gg^{-1}g') = \varphi(g)\varphi(\underbrace{g^{-1} \circ g'}_{\in N=\mathrm{Kern}(\varphi)}) = \varphi(g)e = \varphi(g).$$

• $\overline{\varphi}$ Gruppenhomomorphismus:

$$\begin{split} \overline{\varphi}(gN \circ g'N) \underset{\text{Def. von } \overline{\varphi}}{=} \overline{\varphi}(gg'N) \underset{\text{Def. von } \overline{\varphi}}{=} \varphi(gg') \underset{\varphi \text{ Hom.}}{=} \varphi(g)\varphi(g') \\ \underset{\text{Def. von } \overline{\varphi}}{=} \overline{\varphi}(gN)\overline{\varphi}(g'N). \end{split}$$

• $\overline{\varphi} \circ \pi = \varphi$: (Aus der Definition von $\overline{\varphi}$):

$$\underbrace{\overline{\varphi}(gN)}_{\overline{\varphi}(\pi(g))} = \varphi(g)$$

- $\overline{\varphi}$ injektiv: $\overline{\varphi}(gN)=e\iff \varphi(g)=e\iff g\in N=\mathrm{Kern}(\varphi)\iff gN=eN=N.$
- \bullet $\overline{\varphi}$ eindeutig: Folgt aus der Surjektivität von $\pi.$
- Zusatz φ surjektiv $\iff \overline{\varphi}$ Isomorphismus (Übung): Verwende Bild (φ) = Bild $(\overline{\varphi})$ und $\overline{\varphi}$ injektiv.

Satz 45' (Homomorphiesatz'). (Übung) Ist $\varphi: G \to G'$ ein Gruppenhomomorphismus und $N \subseteq G$, so dass $N \subseteq \operatorname{Kern}(\varphi)$, dann existiert genau ein Gruppenhomomorphismus

$$\overline{\varphi}: G_{N} \longrightarrow G' \ mit \ \overline{\varphi} \circ \pi = \varphi.$$

 $wobei\ \pi: G \to {}^G\!\!/_{\!N}, g \mapsto gN$

Notation. Für $n \in \mathbb{N}$ sei $\mathbb{Z}_n = \mathbb{Z}/(n) = \mathbb{Z}/n\mathbb{Z}$ der Restklassenring. $(n\mathbb{Z} \subseteq \mathbb{Z}$ eine Untergruppe)

Korollar 1.46. Sei G eine zyklische Gruppe,

- (a) Falls $m := \operatorname{ord}(G) \in \mathbb{N} \implies G \cong \mathbb{Z}_m = \mathbb{Z}_m$
- (b) Falls $\operatorname{ord}(G) = \infty \implies G \cong \mathbb{Z}$.

Beweis. Sei $g \in G$ ein Erzeuger und betrachte

$$\varphi: \mathbb{Z} \to G, n \mapsto q^n$$

 φ ist surjektiv, da Bild $(\varphi) = \langle g^n \mid n \in \mathbb{Z} \rangle = G$.

$$\Longrightarrow_{\operatorname{Satz}} \overline{\varphi} : \mathbb{Z}/_{\mathbb{Z}m} \stackrel{\cong}{\longrightarrow} G$$

für $m \in \mathbb{N}_0$, so dass $\operatorname{Kern}(\varphi) = \mathbb{Z}m$.

- Fall (b): $\operatorname{ord}(G) = \infty \implies \operatorname{Kern}(\varphi) = \{0\} \implies \varphi : \mathbb{Z} \to G \text{ ist ein Isomorphismus.}$
- Fall (a): ord(G) = $m \in \mathbb{N}$ dann ist $\overline{\varphi}$ der gewünschte Isomorphismus.

Korollar 1.47. Für zyklische Gruppen G, H gilt $G = H \iff \#G = \#H$ Übung. (a) G/[G, G] ist eine abelsche Gruppe.

(b) Für $N \subseteq G$ gilt:

$$G_N$$
 abelsch \iff $[G,G] \leq N$

1.5 Einschub: Faktorringe

Definition 1.48 (Ideal). Sei R ein kommutativer Ring. $I \subseteq R$ heißt Ideal wenn

- (i) I ist Untergruppe von (R, 0, +)
- (ii) $RI := \{ri \mid r \in R, i \in I\} \subseteq I$

Beispiel. 1) $\mathbb{Z}n \subseteq \mathbb{Z}$ ist ein Ideal $\forall n \in \mathbb{Z}$.

2) $Ra \subseteq R$ für $a \in R$ ist ein Ideal von R.

Satz 1.49. Sei R ein kommutativer Ring, $I \subseteq R$ ein Ideal, und $R/I = \{r + I \mid r \in R\}$ die Nebenklassenmenge von R modulo I (für die Gruppe (R, 0, +)). Dann:

(a) Die Verknüpfungen

$$+: R_{/I} \times R_{/I} \longrightarrow R_{/I}, (r+I, s+I) \longmapsto (r+s) + I$$
$$: R_{/I} \times R_{/I} \longrightarrow R_{/I}, (r+I, s+I) \longmapsto rs + I$$

 $sind\ wohl\text{-}definiert\ auf\ R_{\diagup I}$

- (b) $(R_{I}, \overline{0}, \overline{1}, +, \cdot)$ ist ein kommutativer Ring $(\overline{r} := r + I \text{ Notation für die Klasse von } r)$ der Restklassenring von R modulo I.
- (c) $\pi: R \longrightarrow R/I, r \longmapsto r+I$ ist ein surjektiver Ringhomomorphismus.

Beweis. (a) "+" wohl-definiert folgt aus Satz 44. ($I \subseteq (R, 0, +)$ Ideal!)

"." wohl-definiert: Gelte a + I = a' + I und b + I = b' + I.

$$\implies a'b' + I = ab + aj + bi + ij + I = ab + I$$

(b) (Übung)

(c) Wie in 45 (d). \Box

1.6 Die Isomorphiesätze

Satz 1.50 (Erster Isomorphiesatz). Sei G eine Gruppe, $N \subseteq G$ ein Normalteiler und $H \subseteq G$ eine Untergruppe, dann gelten:

- (a) $HN = \{hn \mid h \in H, n \in N\} \subseteq G \text{ ist ein Untergruppe.}$
- (b) $H \cap N \subseteq H$ ist ein Normalteiler (und (Übung) $N \subseteq HN$)
- (c) Die folgende Abbildung ist wohl-definiert und ein Gruppenisomorphismus

$$H_{\diagup H\ \cap\ N}\longrightarrow HN_{\diagdown N}, h(H\cap N)\longmapsto hN$$

Beweis. (a) Seien $hn, h'n' \in HN$, dann:

$$(h'n')(hn)^{-1} = h'\underbrace{n'n^{-1}h^{-1}}_{\in Nh^{-1}} = h^{-1}N = h'h^{-1}\widetilde{n} = H^{-1}_{\mathrm{U.G.}} (h'h^{-1})\widetilde{n} \in HN$$

und e = ee = HN

(b) Zu zeigen: für $h \in H$ gilt $h(H \cap N)h^{-1} \subseteq H \cap N$ Dazu:

$$\begin{array}{l} h(H\cap N)h^{-1}\subseteq hHh^{-1}=H\\ h(H\cap N)h^{-1}\subseteq hNh^{-1}\underset{N\vartriangleleft G}{=}N \implies h(H\cap N)h^{-1}\subseteq H\cap N. \end{array}$$

(c) Betrachte die Verkettung von Gruppenhomomorphismen

$$\varphi: H \xrightarrow[h \longmapsto h]{\text{Inklusion}} HN \xrightarrow[x \longmapsto xN]{} HN/N$$

dann ist φ ein Gruppenautomorphismus.

 φ ist surjektiv: Jede Klasse in HN/N ist von der Form

$$hnN = \underbrace{hN}_{=\varphi(h)}$$

für ein $h \in H$. Nach Homomorphiesatz: nur noch zu zeigen $\operatorname{Kern}(\varphi) = H \cap N$: für $h \in H$:

$$h \in \text{Kern}(\varphi) \iff \varphi(h) = eN \iff hN = eN \implies_{44(e)} h \in N \implies_{h \in H} h \in N \cap H$$

Umgekehrt: $h \in N \cap H \implies h \in N \implies hN = eN = N$.

Satz 1.51 (Zweiter Isomorphiesatz). Sei G eine Gruppe und $N \leq G$ eine Normailteiler, und sei $\pi: G \longrightarrow G/N, g \longmapsto \overline{g} = gN$ die Faktorabbildung.

(a) Sei $X:=\{H\leq G\mid N\subseteq H\}$, und sei $\overline{X}:=\{\overline{H}\leq G/N\}$, dann ist die Abbildung

$$\psi: X \longrightarrow \overline{X}, H \longmapsto \pi(H) = H/_N =: \overline{H}$$

eine Bijektion mit inverser Abbildung

$$\nu: \overline{X} \longrightarrow X, \overline{H} \longmapsto \pi^{-1}(\overline{H}).$$

Dabei gilt:

$$X \ni H \unlhd G \iff \overline{X} \ni \pi(H) \unlhd G_N$$

(b) Ist $H \in X$ ein Normalteiler von G, so ist

$$G_{/H} \longrightarrow {G_{/N} \choose /}_{(H_{/N})}, g \longmapsto \underbrace{\overline{g}}_{gN} \underbrace{\overline{H}}_{\pi(H)}$$

 $wohl\text{-}definiert\ und\ ein\ Gruppen isomorphismus.$

Beweis. (a) Nach Proposition 33 sind ψ und ν wohl-definiert.

• $\nu \circ \psi = \mathrm{id}_X$: Sei $H \leq G$ mit $N \subseteq H$, zu zeigen ist $\pi^{-1}(\pi(H)) = H$. Es gilt:

$$g \in \pi^{-1}(\pi(H)) \iff \pi(g) \in \pi(H) \iff gN \in \bigcup_{h \in H} hN$$

$$\iff \exists h \in H: gNd = hN \implies_{44(c)} h^{-1}g \in N \subseteq H \implies g \in hH = H.$$

("
$$\Leftarrow =$$
" klar: $g \in H \implies g \in \pi^{-1}(\pi(H))$).

- $\psi \circ \nu = \operatorname{id}_{\overline{X}}$: Für $\overline{H} \in \overline{X}$ (d.h. $\overline{H} \leq G_{/N}$) ist zu zeigen $\pi(\pi^{-1}(\overline{H})) = \overline{H}$. Dies gilt, denn π ist surjektiv.
- Schließlich: Sei $H \in X,$ zu zeigen ist $H \unlhd G \iff \pi(H) \unlhd {}^G \!\!/_{\!\! N}$

$$H \trianglelefteq G \iff \forall g \in G : gHg^{-1} \subseteq H$$

$$\Longrightarrow_{\pi:G\to \overline{G} \text{ surj.}} \forall \overline{g} \in {}^G\!\!/_N: \overline{g}\pi(H)\overline{g} \subseteq \pi(H) \implies \pi(H) \trianglelefteq \overline{G}$$

Umgekehrt: Falls $\pi(H) \leq \overline{G}$ und $g \in G$:

$$\pi(gHg^{-1}) = \overline{g}\pi(H)\overline{g}^{-1} \le \pi(H)$$

$$\implies gHg^{-1} \subseteq \pi^{-1}(\pi(gHg^{-1})) \subseteq \pi^{-1}(\pi(H)) \underset{\nu \circ \psi = \mathrm{id}_X}{=} H$$

(b) Sei $H \subseteq G$ ein Normalteiler mit $N \subseteq H$, so dass nach (a)

$$\overline{H} = \underbrace{H_{/N}}_{\pi(H)} \leq \underbrace{G_{/N}}_{\pi(G)}$$

ein Normalteiler ist. Betrachte den verketteten Gruppenautomorphismus

$$\varphi: G \xrightarrow{\pi} G_{N} \xrightarrow{\pi'} G_{N} \xrightarrow{\pi'} \left(G_{N}\right)_{(H_{N})}$$

 π, π' sind surjektive Gruppenhomomorphismen nach Satz 44(d) \implies die Verkettung φ ist ein surjektiver Gruppenhomomorphismus.

Nach Homomorphiesatz für Gruppen bleibt zu zeigen: $\operatorname{Kern}(\varphi) = H$:

$$g \in \mathrm{Kern}(\varphi) \underset{\pi'(\pi(g)) = e}{\Longleftrightarrow} \pi(g) \in \mathrm{Kern}(\pi') \iff gN \in H_{\nearrow N}$$
$$\iff gN \subseteq H \underset{N < H}{\Longleftrightarrow} g \in H.$$

1.7 (Semi-)direkte Produkte

Lemma 1.52 (Übung). Seien (G_1, e_1, \circ_1) und (G_2, e_2, \circ_2) Gruppen, dann ist $G = (G_1 \times G_2, (e_1, e_2), \circ)$ eine Gruppe mit

$$(g_1, g_2) \circ (h_1, h_2) = (g_1 \circ h_1, g_2 \circ h_2)$$

Analog für $k \geq 2$ Faktoren. Dabei sind $G_1 \times \{e_2\} \subseteq G$ und $\{e_1\} \times G_2 \subseteq G$ Normalteiler von G.

Definition 1.53 (**Direktes Produkt**). Die Gruppe G aus Lemma 52 heißt das direkte Produkt von G_1 und G_2 , Notation $G_1 \times G_2$.

Beispiel.

$$(\mathbb{R}^n, \underline{0}, +) = (\mathbb{R}, 0, +) \times \cdots \times (\mathbb{R}, 0, +) = \sum_{i=1}^{n} (\mathbb{R}, 0, +)$$

Proposition 1.54. Sei G eine Gruppe, seien $N_1, N_2 \subseteq G$ Normalteiler mit $N_1 \cap N_2 = \{e\}$, dann gelten:

- (a) $\forall n_1 \in N_1, n_2 \in N_2 : n_1 n_2 = n_2 n_1$
- (b) $N_1N_2 \leq G$ ist ein Normalteiler in G
- (c) $\psi: N_1 \times N_2 \to N_1 N_2, (n_1, n_2) \mapsto n_1 n_2$ ist ein Gruppenisomorphismus. (Insbesondere gilt $\#N_1 N_2 = \#N_1 \#N_2$)

Zusatz: Gilt $G = N_1 N_2$, so folgt $G \cong N_1 \times N_2$ via ψ .

Beweis. (a) Seien $n_1 \in N_1, n_2 \in N_2$, setze $x = n_1 n_2 n_1^{-1} n_2^{-1}$. Nun:

$$x = (n_1 n_2 n_1^{-1}) n_2^{-1} \in (n_1 N_2 n_1^{-1}) N_2 \subseteq N_2 N_2 = N_2$$

analog

$$x = n_1(n_2n_1^{-1}n_2^{-1}) \in N_1(n_2N_1n_2^{-1}) \stackrel{N_2 \leq G}{\subseteq} N_1N_1 = N_1$$

damit ist $x \in N_1 \cap N_2 = \{e\} \implies x = e \implies n_1 n_2 = n_2 n_1$.

(b) Für $g \in G$:

$$gN_1N_2g^{-1} = gN_1g^{-1}gN_2g^{-1} \subseteq N_1N_2$$

(c) ψ ist wohl-definiert: klar. ψ ein Gruppenhomomorphismus folgt aus (a)

$$\psi((n_1, n_2) \circ (n'_1, n'_2)) = \psi((n_1 \circ n'_1, n_2 \circ n'_2)) = n_1 n'_1 n_2 n'_2$$

$$= n_1 n_2 n'_1 n'_2 = \psi(n_1, n_2) \circ \psi(n'_1, n'_2)$$

 $\{(e,e)\} = \operatorname{Kern}(\psi)$:

$$\psi(n_1, n_2) = e \iff n_1 n_2 = e \iff n_1 = n_2^{-1} \in N_1 \cap N_2 = \{e\}$$

$$\iff n_1 = n_2 = e$$

$$Bild(\psi) = N_1 N_2.$$

Korollar 1.55 (Übung). Sei G eine endliche Gruppe. Seien $N_1, ..., N_k \subseteq G$ Normalteiler von G und gelte:

(i)
$$\forall i \neq j : ggT(\#N_i, \#N_j) = 1$$

(ii)
$$\prod_{j=1}^{k} \# N_j = \# G$$

Dann ist

$$\psi: \underset{j=1}{\overset{k}{\times}} N_j \longrightarrow G, (n_1, ..., n_k) \longmapsto n_1 \cdot ... \cdot n_k = \prod_{j=1}^k n_j$$

ein Gruppenisomorphismus.

Übung. Spezialfall: $n = \prod_{i=1}^k p_i^{f_i}$ für $p_1, ..., p_k$ paarweise verschiedene Primzahlen, dann gilt:

$$\underset{i}{\overset{k}{\times}} \mathbb{Z}_{p_i^{f_i}} \cong \mathbb{Z}_{(n)}$$

ist Folge von Korollar 55.

Lemma 1.56. Seien $H = (H, e_H, \circ_H), N = (N, e_N, \circ_N)$ Gruppen und sei $\varphi : H \to \operatorname{Aut}(N)$ ein Gruppenhomomorphismus. Definiere

$$G:=N\rtimes H:=N\rtimes_{\varphi}H=(N\times H,\underbrace{(e_n,e_H)}_{-\cdot e},\circ)$$

 $mit \circ der \ Verkn\"{u}pfung \ auf \ G \ definiert \ durch$

$$(n_1, h_1) \circ (n_2, h_2) = (n_1 \circ_N \varphi(h_1)(n_2), h_1 \circ_H h_2)$$

Dann ist G eine Gruppe und es gelten:

- $N' := \{(n, e_H) \mid n \in N\} \cong N \text{ ist ein Normalteiler in } G$,
- $H' := \{(e_N, h) \mid h \in H\} \cong H \text{ ist eine Untergruppe von } G$,
- $N'H' = G \text{ und } N' \cap H' = \{e\},\$
- $G \to H, (n,h) \mapsto h$ ist ein Gruppenepimorphismus (surj.) mit Kern N'.

Definition 1.57 (Semi-direktes Produkt). Die Gruppe $G = N \rtimes H$ heißt das semi-direkte Produkt von N mit H (bezüglich φ).

Satz 1.58. Sei G eine Gruppe, $N \subseteq G$ ein Normalteiler, $H \subseteq G$ eine Untergruppe, dann gelten:

(a)
$$\varphi: H \to \operatorname{Aut}(N), h \mapsto (\underbrace{c_h|_N: N \to N, n \mapsto hnh^{-1}}_{Konjugation \ mit \ h})$$
 ist wohl-definiert und

 $ein\ Gruppenhomomorphismus.$

(b) Gelten zusätzlich (i) NH = G, (ii) $N \cap H = \{e\}$, so ist

$$\psi: N \rtimes_{\mathcal{O}} H \to G, (n,h) \mapsto n \circ_G h$$

ein Gruppenisomorphismus.

Beweis. Siehe Jantzen, Schwermer - Algebra.

Beispiele.

1. Seien $A_n = \text{Kern}(\text{sign}: S_n \to \{\pm 1\})$ die Untergruppe der geraden Permutationen und τ eine beliebige Transposition, dann gilt:

$$S_n \cong A_n \rtimes \{\mathrm{id}, \tau\}$$

2. V Sei ein endlich dimensionaler euklidischer Vektorraum und $\sigma \in \mathcal{O}(V)$ eine Spiegelung, dann gilt

$$O(V) \cong SO(V) \times \{id, \sigma\}$$

3. Sei K ein Körper, dann gilt

$$\operatorname{GL}_n(K) \cong \operatorname{SL}_n(K) \rtimes H \cong \operatorname{SL}_n(K) \rtimes K^{\times}$$

wobei

$$H = \left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \; \middle| \; a \in K^{\times} \right\} \cong K^{\times}$$

4. Sei $\sigma\in A_4$ ein 3-Zykel, z.B. $\sigma=\begin{pmatrix}1&2&3&4\\2&3&1&4\end{pmatrix}$, und V ist die kleinsche Vierergruppe

$$V = \{ id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \} \le A_4,$$

dann gilt

$$A_4 \cong V \rtimes \{ \mathrm{id}, \sigma, \sigma^2 \}$$

Beweis. (Übung) eventuell noch 12 Tage warten.

Kapitel 2

Gruppen Strukturtheorie

2.1 Strukturtheorie zu Gruppen ("Einige Aussagen")

Sei im Weiteren M ein Monoid, G eine Gruppe und X eine Menge.

Definition 2.1 (Wirkung). Eine Abbildung

$$\lambda: M \times X \to X, (m, x) \mapsto m \cdot x := \lambda(m, x)$$

heißt Linkswirkung (left action, Linksoperation) von M auf X, wenn es gelten $\forall x \in X, m, m' \in M$:

- (i) Neutrales Element: $e \cdot x = x$
- (ii) Assoziativität: $m \cdot (m' \cdot x) = (m \cdot m') \cdot x$

Bezeichnung. Ist M eine Gruppe, so heißt λ auch Gruppenwirkung und X heißt Links-M-Menge.

Bemerkung. Analog kann man auch Rechtswirkungen

$$\rho: X \times M \to X, (x, m) \mapsto x \cdot m$$

definieren. (Axiome: $x \cdot e = c$ und $(x \cdot m) \cdot m' = x \cdot (m \cdot m')$)

Bemerkung (Übung). Jede Links-G-Wirkung kann man in eine Rechts-G-Wirkung überführen: zu $\lambda: G \times X \to X$ definiere $\rho: X \times G \to X$ durch

$$\rho(x,q) := \lambda(q^{-1},x) \iff x \cdot q := q^{-1} \cdot x$$

Proposition 2.2 (Alternative Beschreibung von Wirkungen).

(a) Sei $\lambda: G \times X \to X$ eine Linkswirkung, dann ist

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto (\varphi_g: X \to X, x \mapsto gx)$$

ein wohl-definierter Gruppenhomomorphismus.

(b) $Sei \varphi: G \to Bij(X)$ ein Gruppenhomomorphismus, dann ist

$$\lambda: G \times X \to X, (g, x) \mapsto \varphi(g)(x)$$

eine Linkswirkung von G auf X.

Beweis. (a) Für $g \in G$ sei $\varphi_g : X \to X, x \mapsto gx$, dann gelten: $\varphi_e : X \to X, x \mapsto ex = x$ ist id_X (Axiom (i)), und

(*)
$$\varphi_q \circ \varphi_{q'} = \varphi_{qq'}$$

denn $\forall x \in X$:

$$(\varphi_g \circ \varphi_{g'})(x) = \varphi_g(\varphi_{g'}(x)) = g(g'x) \stackrel{(ii)}{=} (gg')x = \varphi_{gg'}(x)$$

Damit folgen:

1. $\varphi_g \circ \varphi_{g^{-1}} = \underbrace{\varphi_e}_{\operatorname{id}_X} = \varphi_{g^{-1}} \circ \varphi_g \implies \varphi_g$ ist eine bijektive Abbildung mit Inverse $\varphi_{g^{-1}}$, d.h.

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto \varphi_g$$

ist wohl-definiert.

2. φ ist ein Gruppenhomomorphismus: folgt aus (*) (Verknüpfung in Bij(X) ist die Verkettung von Abbildungen.)

(b) Übung.

Bemerkung. (a) Das Analogon von Proposition 2 gilt auch für Monoide. Die Linkewirkungen eines Monoids M auf X entsprechen Monoidhomomorphismen $M \to (\mathrm{Abb}(X,X),\mathrm{id}_X,\circ)$

(b) Eine Gruppe kann auch auf "Objekten" mit mehr Struktur als eine Menge wirken, z.B. auf eine Gruppe!

Beispiel. G wirkt auf eine Gruppe N heißt, man hat einen Gruppenhomomorphismus $G \to \operatorname{Aut}(N)$ (vgl. Lemma 1.56)

Definition 2.3 (Eigenschaften von Wirkungen). Sei $\lambda: G \times X \to X$ eine Linkswirkung von G auf X.

- (a) Die **Bahn** zu $x \in X$ ist $Gx = \{gx \mid g \in G\}$. Die Länge der Bahn zu x ist #Gx
- (b) λ ist transitiv $\iff \forall y, z \in X \exists g \in G : gy = z \stackrel{\text{Übung}}{\iff} \forall y \in X : Gy = X \stackrel{\text{Übung}}{\iff} \exists x \in X : Gx = X$
- (c) λ ist n-fach transitiv $(n \in \mathbb{N})$, wenn für alle Paare von n-Tupeln $(x_1, ..., x_n), (y_1, ..., y_n) \in X^n$ mit $\#\{x_1, ..., x_n\} = \#\{y_1, ..., y_n\}$ gilt $\exists g \in G : gx_i = y_i, \forall i$.

(d) Die Wirkung heißt **treu**, wenn der induzierte Gruppenhomomorphismus $\varphi: G \to \operatorname{Bij}(X)$ (aus Proposition 2) injektiv ist

$$\overset{\ddot{\mathbf{U}}\mathbf{bung}}{\Longleftrightarrow} \forall g \in G \setminus \{e\}: \exists x \in X: \underbrace{gX \neq X}_{\varphi_g(x) \neq \mathrm{id}_X(x)}$$

Beispiel 2.4.

- 1. Ist V ein K-Vektoraum, so wirkt das Monoid $(K,1,\cdot)$ auf V durch Skalarmultiplikation $(\lambda,v)\mapsto \lambda v$
- 2. Die folgenden 3 Beispiele sind Linkswirkungen von $\mathrm{GL}_{\mathrm{n}}(K)$:
 - (i) $\operatorname{GL}_n(K) \times K^n \to K^n, (g, v) \mapsto gv$. (Übung: Es gibt die Bahnen $\{0\}, K^n \setminus \{0\}$)
 - (ii) Sei $\mathcal{B} = \{\text{geordnete Basen von } K^n\}$ und

$$\operatorname{GL}_{\mathbf{n}}(K) \times \mathcal{B} \to \mathcal{B}, (g, (b_1, ..., b_n)) \mapsto (gb_1, ..., gb_n)$$

die Wirkung ist treu und transitiv.

- (iii) $\operatorname{GL}_n(K) \times \operatorname{End}_K(K^n) \to \operatorname{End}_K(K^n), (A, B) \mapsto ABA^{-1}$ die Wirkung ist nicht treu $Z(\operatorname{GL}_n(K))$ wirkt trivial. (Übung: Bahnen stehen in Bijektion zu den Frobeniusnormalformen von Matrizen.)
- 3. $S_n \times \{1,...,n\} \to \{1,...,n\}, (\sigma,i) \mapsto \sigma(i)$ Wirkung ist treu und n-fach transitiv.
- 4. Abstrakte Beispiele: Sei $H \leq G$ eine Untergruppe.
 - (i) $\lambda: H\times G\to G, (h,g)\mapsto hg$. Die Bahnen sind die Mengen Hg, also die Rechtsnebenklassen zu H (treu?) Menge der Rechtsnebenklassen

$$H^{\backslash G} := \{ Hg \mid g \in G \}$$

(ii) $\rho: G \times H \to G, (g,h) \mapsto gh$ Bahnen = Linksnebenklassen zu H und

$$G_{/\!\!\!/H}=\{gH\mid g\in G\}$$

- (iii) $c: G \times G \to G, (g,g') \mapsto gg'g^{-1}$ ist eine Linkswirkung, denn der nach Proposition 2 zugehörige Gruppenhomomorphismus ist $c: G \to \operatorname{Aut}(G), g \mapsto c_g$.
- (iv) $G \times {}^G/_H \to {}^G/_H, (g,g'H) \mapsto gg'H$ Die Klassen gH heißen Linksnebenklassen wegen der Links-G-Wirkung auf ihnen.

Proposition 2.5. Sei X eine Links-G-Menge (zu der Wirkung $\lambda: G \times X \to X, (g,x), \mapsto gx$) definiere Relation \sim auf X durch

$$x \sim y \iff \exists g \in G : gx = y$$

dann gelten:

(a) \sim ist eine Äquivalenzrelation.

(b) Die Äquivalenzklasse zu $x \in X$ bezüglich \sim ist die Bahn Gx. Insbesondere ist X die disjunkte Vereinigung seiner Bahnen. (Ist $(x_i)_{i \in I}$ ein Repräsentantensystem der G-Bahnen, so gilt also $\#X = \sum_{i \in I} \#Gx$)

Beweis. (a) \sim ist eine Äquivalenzrelation: Prüfe

- \sim reflexiv: $ex = x \implies x \sim x$.
- ~ symmetrisch: Gelte $x \sim y$, d.h. $\exists g \in G : gx = y$, dann gilt $x = ex = g^{-1}(gx) = g^{-1}y \implies y \sim x$.
- \sim transitiv: Gelte $x \sim y$ und $y \sim z$, d.h. $\exists g, h' \in G : gx = y, g'y = z$

$$\implies (g'g)x = g'(gx) = g'y = z \implies x \sim z$$

(b) Sei $x \in X$, dann ist

$$\{y\in X\mid x\sim y\}=\{y\in X\mid \exists g\in G: y=gx\}=\{gx\mid g\in G\}=Gx.$$

Satz 2.6 (Satz von Cayley). Jede Gruppe G (jedes Monoid M) ist isomorph zu einer Untergruppe (einem Untermonoid) von $(Bij(G), id_G, \circ)$ (bzw. $(Abb(G, G), id_G, \circ)$).

Beweis. (Für Gruppen, Rest ist eine Übung) Definiere die Wirkung $\lambda G \times G \to G, (g,h) \mapsto gh$, dann erhalten wir den induzierten Gruppenhomomorphismus $\varphi: G \to \text{Bij}(G)$, wir zeigen φ ist injektiv: Sei $g \in G \setminus \{e\}$, dann gilt $ge = g \neq e \Longrightarrow \text{Wirkung treu, also } \varphi$ ist ein Gruppenmonomorphismus. D.h. G "ist" Untergruppe von Bij(G).

Definition 2.7 (Stabilisator). Sei X eine Links-G-Menge und $x \in X$, dann heißt

$$G_x := \operatorname{Stab}_G(x) := \{ g \in G \mid gx = x \}$$

Stabilisator von x (unter G). Warnung: $G_x \neq G \cdot x$.

Beispiel. Stab_{S_n}($\{n\}$) = $\{\sigma \in S_n \mid \sigma(n) = n\} \cong S_{n-1}$ mit der üblichen S_n -Wirkung auf $\{1, ..., n\}$.

Übung. G-Wirkung auf einer Menge X ist treu

$$\iff \bigcap_{x \in X} \operatorname{Stab}_G(x) = \{e\}$$

Proposition 2.8. Sei X eine links-G-Menge, $x \in X, g \in G$, dann gilt

- (a) $\operatorname{Stab}_G(x) \leq G$ ist eine Untergruppe.
- (b) $\operatorname{Stab}_G(gx) = g \operatorname{Stab}_G(x)g^{-1}$

Beweis.

(a) $e \in \operatorname{Stab}_G(x)$, denn ex = x. Seien $\underbrace{g_1, g_2 \in \operatorname{Stab}_G(x)}_{\text{bedeutet } g_1x = x, g_2x = x}$, zu zeigen ist $g_1^{-1}g_2 \in \operatorname{Stab}_G(x)$

 $\operatorname{Stab}_G(x)$

$$\stackrel{g_1^{-1}}{\Longrightarrow} x = ex = g_1^{-1}g_1x = g^{-1}x$$

Damit gilt $(g_1^{-1} \cdot g_2^{-1})x = g_1^{-1}(g_2x) = g_1^{-1}x = x$

(b) Sei $h \in G$, dann:

$$h \in \operatorname{Stab}_{G}(gx) \iff hgx = gx \iff^{g^{-1}} g^{-1}hgx = x$$

$$\iff g^{-1}hg \in \operatorname{Stab}_{G}(x) \iff_{\operatorname{Konj. mit}} g h \in g \operatorname{Stab}_{G}(x)g^{-1}.$$

Proposition 2.9 (Bahngleichung). Sei X eine links-G-Menge, $x \in X$, dann gilt:

- $\psi: {}^{G}\!\!/_{G_{\tau}} \to Gx, hG_{x} \mapsto hx$ ist wohl-definiert und eine Bijektion.
- Ist G endlich, so folgt $\#G \cdot x = [G : G_x]$.

Beweis.

• ψ injektiv und wohl definiert: Seien $g, h \in G$, dann

$$hx = gx \iff g^{-1}hx = x \iff g^{-1}h \in G_x \le G$$

 $\iff g^{-1}hG_x = G_x \iff hG_x = gG_x$

- ψ surjektiv nach Definition von $G \cdot x$.
- Aussage über Mächtigkeiten: ψ bijektiv \Longrightarrow #\$^G/_{G_{\tau}} = #\$G \cdot x\$.

Bemerkung. Die Abbildung ψ ist ein Homomorphismus von links-G-Mengen (ein Isomorphismus!), $G/_{G_x}$ und $G \times x \subseteq X$ sind links-G-Mengen und ψ erfüllt:

$$\psi(g \cdot hG_x) = g \cdot \psi(hG_x)$$

(beides ist = $gx \cdot x$)

Definition 2.10. Sei X eine links-G-Menge,

- (a) Man sagt G operiert **frei** auf $X \iff \forall x \in X : G_x = \{e\}$
- (b) Die Menge der **Fixpunkte** der G-Wirkung ist

$$X^G := \{ x \in X \mid G_x = G \}$$

Beispiel. $GL_n(K)$ operiert frei auf der Menge der geordneten Basen von K^n .

Korollar 2.11. Sei X eine links-G-Menge. Sei $x_1, ..., x_n$ ein Repräsentantensystem der Bahnen der Länge ≥ 2 . Dann:

(a)
$$X = X^G \sqcup \bigsqcup_{i \in \{1,...,n\}} G \cdot x_i$$

(b)
$$\#X = \#X^G + \sum_{i \in \{1,...,n\}} \underbrace{[G:G_{x_i}]}_{=\#G \cdot x}$$

Beweis. Aus Proposition 5 folgt (a), Lemma 9 gibt (b).

Anwendung. Sei X := G. Sei die G-Wirkung durch Konjugation gegeben, d.h.

$$g \underbrace{\circ}_{\text{Wirk}} h = ghg^{-1}$$

Die Bahnen unter dieser G-Wirkung heißen Konjugationsklassen. Die Konjugationsklasse zu $h \in G = X$ ist

$$G_h := \{ghg^{-1} \mid g \in G\}$$

Bahnen der Länge 1 sind Fixpunkte unter Konjugation mit allen $g \in G$

$$=\{h\in G\mid \forall g\in G: \underbrace{ghg^{-1}=h}_{gh=hg}\}=:Z(G)\text{ das Zentrum von }G$$

Stabilisator zu $h \in G$ (unter Konjugationswirkung)

$$= \{g \in G \mid ghg^{-1} = h\} = C_G(h)$$
 Zentralisator von h

Aus Korollar 11 ergibt sich nun:

Satz 2.12 (Klassengleichung). Sei G endlich. Ist $g_1, ..., g_n$ ein Repräsentantensystem der Konjugationsklassen der Länge ≥ 2 , so gilt:

$$\# \underbrace{G}_{X} = \# \underbrace{Z(G)}_{X^{G}} + \sum_{i=1}^{n} [G : \underbrace{C_{G}(g_{i})}_{C_{g}}]$$

Definition 2.13 (p-Gruppe). Sei p eine Primzahl, eine Gruppe G heißt p-Gruppe $\iff \# = p^m$ füe ein $m \in \mathbb{N}$

Beispiel.

$$\mathbb{Z}_{p^m} \text{ oder } U_3(\mathbb{F}_p) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{F}_p \right\}$$

Korollar 2.14. Ist G eine p-Gruppe, so gilt p|#Z(G), $(d.h.\ Z(G)$ ist nicht-trivial und also eine p-Gruppe)

Beweis. Seien $g_1, ..., g_n$ wie im Satz 12. Dann gilt: $C_G(g_i) < G$ ist eine echte Untergruppe. (sonst $g_i = Z(G)$, ist ausgeschlossen)

$$\Longrightarrow_{\text{Lagrange}} [G: C_G(g_i)] \text{ teilt } \#G = p^m$$

ist ungleich 1!

$$\implies p[G: C_G(g_i)], \forall i \in \{1, ..., n\}$$

Klassengleichung modulo p:

$$\underbrace{0}_{\#G} \cong \#Z(G) + \sum_{i=1}^{n} \underbrace{0}_{[G:C_{G}(g_{i})]} \mod p \implies p|\#Z(G).$$

Übung 2.15 (Satz von Cauchy). (?) Sei p eine Primzahl und G endlich, dann gilt:

$$p|\#G \implies \exists g \in G : \operatorname{ord}(g) = p.$$

 $(\implies \#G \text{ und } \#\exp(G) \text{ haben dieselben Primteiler})$

Idee: Verwende Induktion über #G und die Klassengleichung. In Induktionsschritt 2 Fälle:

- 1. $\exists H < G$ echte Untergruppe mit p | # H
- 2. $\neg \exists H < G$ echte Untergruppe mit p | # H

Im 2. Fall wende Klassengleichung mod p an!

2.2 Permutationsgruppen

Sei $n \in \mathbb{N}$, $S_n = \text{Bij}(\{1,...,n\})$, Notation für $\sigma \in S_n$, d.h. $\sigma : \{1,...,n\} \rightarrow \{1,...,n\}$ bijektiv ist

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Dabei gilt: $(\sigma(1), ..., \sigma(n))$ ist eine Permutation von $\{1, ..., n\}$, d.h.

$$\#\{\sigma(1), ..., \sigma(n)\} = n$$

Korollar 2.16. $\#S_n = n!$

Beweis. (Übung) Betrachte die möglichen "Wertetabellen" für Permutationen.

Definition 2.17. Für $\sigma, \tau \in S_n$ definiere

- (a) $supp(\sigma) = \mathbf{Tr} \mathbf{\ddot{a}ger} \text{ von } \sigma, supp(\sigma) := \{i \in \{1, ..., n\} \mid \sigma(i) \neq i\}$
- (b) σ und τ sind **disjunkt** \iff supp $(\sigma) \cap \text{supp}(\tau) = \emptyset$

Bemerkung. $supp(\sigma) = \emptyset \iff \sigma = id$

Lemma 2.18 (Andere Interpretation des Trägers). Sei $\sigma \in S_n$, dann gilt für die Wirkung von $\langle \sigma \rangle$: supp $(\sigma) = Vereinigung der Bahnen von <math>\langle \sigma \rangle$ auf $\{1, ..., n\}$ der Länge ≥ 2 .

Beweis.

- " \subseteq ": Sei $i \in \text{supp}(\sigma) \implies \sigma(i) \neq i \implies \{i, \sigma(i), \sigma^2(i), ..., \sigma^m(i), ...\}$ ist Bahn von $\langle \sigma \rangle = \{\sigma^j \mid j \in \mathbb{N}_0\} = \{\text{id}, \sigma, ..., \sigma^{r-1}\}$ der Länge ≥ 2 . für $r = \text{ord}(\sigma)$.
- "\(\sup \)": Sei $i \notin \text{supp}(\sigma) \implies \sigma(i) = i \implies \sigma^j(i) = i, \forall j \in \mathbb{N} \implies \text{Bahn}$ von i unter $\langle \sigma \rangle$ ist 1-elementig.

Korollar 2.19. Für $\sigma \in S_n$ gelten:

(a) $i \in \text{supp}(\sigma) \iff \sigma(i) \in \text{supp}(\sigma)$

(b) Auf jeder $\langle \sigma \rangle$ -Bahn (durch $i \in \{1,...,n\}$) wirkt σ als "zyklische Permutation", d.h.

$$i_n := i \longmapsto i_2 = \sigma(i) \longmapsto i_3 = \sigma^2(i) \longmapsto \cdots \longmapsto i_r = \sigma^{r-1}(i)$$

$$(mit \#\{1 \cdots n\} = r)$$

Beweis. (a)

$$i \in \operatorname{supp}(\sigma) \implies \sigma(i) \neq i \underset{\sigma \text{ anwenden}}{\Longrightarrow} \sigma(\sigma(i)) \neq \sigma(i) \implies \sigma(i) \in \operatorname{supp}(\sigma)$$

Falls
$$\sigma(i) \in \text{supp}(\sigma)$$
, so gilt $\sigma(\sigma(i)) \neq \sigma(i) \underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} \sigma(i) \neq i$

(b) Sei r die Länge der Bahn durch i unter $\langle \sigma \rangle$. Dann sind $i_{j+1} := \sigma^j(i), j = 0, ..., r-1$ paarweise verschieden. Sonst $\exists 0 \leq j_1 < j_2 \leq r-1$ mit $\sigma^{j_1}(i) = \sigma^{j_2}(i)$

$$\underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} i = \sigma^{j_2 - j_1}(i) \quad (*)$$

 \implies Bahn durch ihat höchstens $j_2 - j_1 < r$ Elemente, die Bahn ist wegen (*)

$$= \{i, \sigma(i), ..., \sigma^{j_2 - j_1}(i)\}$$

Und nun: Wiederholtes Anwenden von σ gibt den Zykel

$$i_1 \longmapsto i_2 \longmapsto \cdots \longmapsto i_r$$

Lemma 2.20. Sind $\sigma, \tau \in S_n$ disjunkt, so gilt $\sigma \tau = \tau \sigma$.

Beweis. Zeige $\sigma \circ \tau = \tau \circ \sigma$ als Abbildungen $\{1,...,n\} \to \{1,...,n\}$, sei $i \in \{1,...,n\}$

- Fall 1: $i \in \text{supp}(\sigma) \implies \sigma(i) \in \text{supp}(\sigma) \implies i, \sigma(i) \notin \text{supp}(\tau)$. Also $\tau(i) = i, \tau(\sigma(i)) = \sigma(i)$
- Fall 2: $i \in \text{supp}(\tau)$ analog zu Fall 1.
- Fall 3: $i \notin \operatorname{supp}(\sigma) \cup \operatorname{supp}(\tau) \implies \sigma(i) = i = \tau(i)$.

Also
$$\sigma(\tau(i)) = \sigma(i) = i = \tau(i) = \tau(\sigma(i)).$$

(Folge: σ, τ disjunkt $\implies \operatorname{ord}(\sigma\tau) = \operatorname{kgV}(\operatorname{ord}(\sigma), \operatorname{ord}(\tau))$)

Definition 2.21. Seien $i_1,...,i_r \in \{1,...,n\}$ paarweise verschieden. Der r-**Zykel** ist

$$(i_1 \ i_2 \ \cdots \ i_r)(j) = \begin{cases} j & j \notin \{i_1, ..., i_r\} \\ i_{s+1} & j = i_s \ (s \in \{1, ..., n\}) \\ i_1 & j = i_r \end{cases}$$

2-Zykel heißen **Transposition**. Konvention: (·) := $\mathrm{id}_{\{1,\dots,n\}}$ (leerer Zykel). Beachte:

- (i) $(i) = (\cdot)$ für $i \in \{1, ..., n\}$
- (ii) supp $(i_1 \ i_2 \ \cdots \ i_r) = \begin{cases} \{i_1, ..., i_r\} & r \geq 2 \\ \emptyset & r = 1 \end{cases}$
- (iii) $(i_1 \ i_2 \ \cdots \ i_r) = (i_r \ i_1 \ i_2 \ \cdots i_{r-1})$ (Notation ist nicht eindeutig, können Einträge zyklisch weiterschieben.) z.B.

$$(1\ 4\ 7) = (7\ 1\ 4) = (4\ 7\ 1) = 7$$

- (iv) $ord(i_1 \cdots i_r) = r$, z.B. $ord(1\ 2) = 2$
- Satz 2.22 (Zykeldarstellung von Permutationen). Sei $\sigma \in S_n$, seien $I_1, ..., I_t \subseteq \{1, ..., n\}$ die paarweise verschiedenen Bahnen von $\langle \sigma \rangle$ auf $\{1, ..., n\}$ der Länge ≥ 2 , dann:
- (a) Für $j \in \{1, ..., t\}$ $\exists ! Zykel \sigma_j \in S_n \ mit \ \mathrm{supp}(\sigma_j) = I_j, \ und \ \sigma_j|_{I_i} = \sigma|_{I_i}$
- (b) $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ und die σ_i kommutieren paarweise.
- (c) Die Darstellung in (b) ist eindeutig bis auf Permutation der Faktoren.
- (d) Für σ gilt: ord(σ) = kgV($\#I_i \mid j \in \{1, ..., t\}$)
- Beweis. (a) Sei r_j die Länge von $I_j.$ Sei $i_j \in I_j,$ dann ist (vgl. Beweis von Korollar 19)

$$\sigma_i := (i_i, \sigma(i_i), \sigma^2(i_i), ..., \sigma^{r_j-1}(i_i) \in S_n$$

- ein r_j -Zykel und $\sigma|_{I_i} = \sigma_j$
- (b) Die (σ_j) kommutieren paarweise, denn deren Träger, die Mengen I_j , sind paarweise disjunkt.

Um $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ zu prüfen, wende beide Abbildungen an auf $i \in \{1, ..., n\}$.

• Fall $j \in \{1, ..., t\} : i \in J$ (*) Es gilt $\sigma_{i'}(i) = i$ für $j' \neq j$ (da $I_{i'} \cap I_i = \emptyset$)

$$\implies \sigma(i) = \sigma_j(i) \stackrel{(*)}{=} \left(\sigma_j \cdot \prod_{j' \neq j} \sigma_{j'} \right) (i)$$

$$\stackrel{\sigma_j \text{ kommutieren}}{=} (\sigma_1 \cdot \ldots \cdot \sigma_j \cdot \ldots \cdot \sigma_t)(i)$$

- Fall $0: i \in \{1,...,n\} \setminus \bigcup_{j \in \{1,...,t\}} I_j$. Dann: $\sigma(i) = i$ (1-elementige Bahn).
 - Da $i \notin I_i : \sigma_i(i) = i, \forall j \in \{1, \dots, t\}$. also $(\sigma_1 \cdot \dots \cdot \sigma_t)(i) = i = \sigma(i)$
- (c) Es gelte $\sigma = \sigma'_1 \cdot \ldots \sigma'_{t'}$ mit paarweise disjunkten Zykeln $\sigma = \sigma'_1 \cdot \ldots \sigma'_{t'}$ der Länge ≥ 2 . Sei $I'_{j'} := \operatorname{supp}(\sigma'_{j'})$ für $j' \in \{1, \ldots, t'\}$. Dann:

$$\sigma|_{I'_{j'}} = \sigma'_{j'}|_{I'_{j'}}$$

 $\implies I'_{j'}$ ist Bahn von $\langle \sigma \rangle$ der Länge ≥ 2 . $\implies t' = t$ und nach Umindizieren der $I'_{i'}$ gelte

$$I_i' = I_j \text{ für } j \in \{1, \dots, t\}$$

$$I'_j = I_j \text{ für } j \in \{1, \dots, t\}$$
 und $\sigma_j|_{I_j} = \sigma|_{I_j} = \sigma'_j|_{I_j} \xrightarrow[r_j = \#I_j-\text{Zykel}]{\sigma_j = \sigma'j} \sigma_j = \sigma'j$

(d) (Übung).

Beispiel 2.23.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 8 & 4 & 1 & 6 & 3 & 7 \end{pmatrix} \in S_8$$

 $\implies \langle \sigma \rangle$ -Bahnen: $\{1, 2, 5\}, \{3, 8, 7\}, \{4\}, \{6\} \text{ und } \sigma = (1\ 2\ 5)(3\ 8\ 7)$

Definition 2.24 (Young-Diagramm/Partition). Sei $\sigma \in S_n$, seien $I_1, ..., I_t$ die Bahnen von $\langle \sigma \rangle$ (auch Bahnen der Länge 1), und gelte o.E. $\#I_1 \geq \#I_2 \geq$ $\cdots \geq \#I_t$.

(a) Das Young-Diagramm zu σ ist das Diagramm der Form:

im obigen Beispiel 23

(b) Eine Partition von n ist ein Tupel $(n_1,...,n_t)$ aus \mathbb{N} mit $n_1 \geq \cdots \geq n_t$ unt $n = n_1, + \cdots + n_t$. (Young-Diagramm: Möglichkeit eine Partition zu veranschaulichen z.B. ist $(\#I_1, ..., \#I_t)$ eine Partition von n)

Satz 2.25 (Übung).

(a) Seien $i_1, ..., i_r$ aus $\{1, ..., n\}$ paarweise verschiedene Elemente. Dann gilt $\forall \sigma \in S_n$:

$$\sigma \circ (i_1 \ i_2 \cdots \ i_r) \circ \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \cdots \ \sigma(i_r))$$

(b) σ_1 und σ_2 aus S_n liegen in dieselben Konjugationsklasse \iff sie haben dasselbe Young-Diagramm.

Beispiel. S_5 hat 7 Youngdiagramme

also auch 7 Konjugationsklassen.

Definition (Signum-Funktion/Alternierende Gruppe). Sei sgn : $S_n \rightarrow \{\pm 1\}$ die Signum-Funktion aus der linearen Algebra. sgn ist eindeutig bestimmt durch:

- (i) sgn ist ein Gruppenhomomorphismus.
- (ii) $sgn(\tau) = -1$, für τ eine Transposition.

(jedes $\sigma \in S_n$ lässt sich schreiben als Produkt von Transpositionen) $A_n = \text{Kern}(\text{sgn}) = \text{die alternierende Gruppe auf } n$ Elementen

$$A_n = \{ \tau_1 \cdot \dots \cdot \tau_{2m} \mid \tau_i \in S_n, \operatorname{sgn}(\tau) = -1, m \in \mathbb{N} \}$$

Proposition 2.26 (Formeln für sgn). (Übung)

- (a) Jeder r-Zykel σ ist ein Produkt von r-1 Transpositionen, und also gilt $\operatorname{sgn}(\sigma) = (-1)^{r-1}$
- (b) Hat σ die Zykeldarstellung $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ mit Zykellängen r_i (von σ_i), $i \in \{1, ..., t\}$, so gilt $\operatorname{sgn}(\sigma) = (-1)^{r_1 + \cdots + r_t t}$

Bemerkung. Man kann s
gn durch (b) bestimmen und kann dann nachprüfen: σ ist ein Gruppenhomomorphismus.

Lemma 2.27. Sei $C_3 = \{ \sigma \in A_n \mid \sigma \text{ ist } 3\text{-}Zykel \}$ und sei $C_{2,2} = \{ \sigma \in A_n \mid \sigma = \tau_1 \cdot \tau_2 \text{ mit } \tau_1, \tau_2 \text{ disjunkt.} \}$, dann

- (a) Für $n \ge 3$ gilt $A_n = \langle C_3 \rangle =: H_3$
- (b) Für n > 5 qilt $A_n = \langle C_{2,2} \rangle =: H_{2,2}$
- (c) Für $n \geq 5$ sind C_3 und $C_{2,2}$ A_n -Konjugationsklassen.

Beweis.

$$A_n = \{\underbrace{\tau_1 \cdot \ldots \cdot \tau_{2m}}_{\text{gerade Anzahl}} \mid \tau_i \in S_n \text{ Transpositionen.} \}$$

- (a) Zeige: $\tau, \tau' \in H_3$ für τ, τ' beliebige Transpositionen in S_n
 - (i) $\tau = \tau'$: $\tau \cdot \tau' = \text{id} = \sigma^3 \text{ für jeden 3-Zykel } \sigma \in H_3$
 - (ii) $\tau \neq \tau'$ und τ, τ' nicht disjunkt: also $\tau = (a \ b), \tau' = (b \ c)$ mit $\#\{a, b, c\} = 3, a, b, c \in \{1, \dots, n\}$.

$$\tau\tau' = (a\ b\ c) = (a\ b)(b\ c)$$

$$a \leftarrow b \leftarrow c$$

$$c \leftarrow c \leftarrow b$$

$$b \leftarrow a \leftarrow a$$

(iii) $\tau\neq\tau'$ und τ,τ' disjunkt also $\tau=(a\ b),\tau'=(c\ d),\#\{a,b,c,d\}=4,\{a,b,c,d\}\subseteq\{1,\ldots,n\}.$

$$(a \ c \ b)(a \ c \ d) \stackrel{(\ddot{\mathbf{U}}\mathbf{bung})}{=} (a \ b)(c \ d)$$

(b) Zeige $\tau \cdot \tau \in H_{2,2}$ für $\tau, \tau' \in S_n$ Transpositionen.

- Fall (iii) trivial.
- Fall (i) trivial

$$(\tau_1 \cdot \tau_2)(\tau_1 \cdot \tau_2) \in \langle C_{2,2} \rangle = H_{2,2}$$

• Fall (ii) $\tau=(a\ b), \tau'=(b\ c)$ (wie oben). Wegen $n\geq 5$, finde $d\neq e\in\{1,\dots,n\}\setminus\{a,b,c\}$. Dann

$$\tau \cdot \tau' = ((a\ b)(d\ e))((b\ c)(d\ e))$$

(c) C_3 ist A_n -Konjugationsklasse.

Zu zeigen $(a\ b\ c)$ $(\{a,b,c\}\in\{1,\ldots,n\}\ 3$ elementig) ist konjugiert zu $(1\ 2\ 3)$. Wahle $\sigma\in S_n$ mit $\sigma(1)=a,\sigma(2)=b,\sigma(3)=c$.

$$\stackrel{\text{Satz.}25}{\Longrightarrow} \sigma(1\ 2\ 3)\sigma^{-1}(\underbrace{a}_{\sigma(1)}\underbrace{b}_{\sigma(2)}\underbrace{c}_{\sigma(3)})$$

Aber $sgn(\sigma)$ ist unklar +1, -1?

Beachte: (*) gilt auch für $\sigma(4\ 5)$ und: entweder gilt $\mathrm{sgn}(\sigma)=1$ oder $\mathrm{sgn}(\sigma(4\ 5))=1\implies (1\ 2\ 3)\in A_n$ konjugiert zu $(a\ b\ c)$

Für $C_{2,2}$: zu zeigen $(a\ b)(c\ d)\ A_n$ -konjugiert zu $(1\ 2)(3\ 4)$ für $\{a,b,c,d\}\subseteq\{1,\ldots,n\}$ 4-elementig.

Wähle $\sigma \in S_n$ mit $\sigma(1) = a, \sigma(2) = b, \sigma(3) = c, \sigma(4) = d$

$$\implies \sigma(1\ 2)(3\ 4)\sigma^{-1} \stackrel{(**)}{=} (a\ b)(c\ d)$$

und (*) gilt auch für $\sigma(1\ 2)$... etc. (Schließe wie für C_3 .)

Definition 2.28 (Einfache Gruppe). Eine Gruppe G heißt einfach $\iff \{e\}$ und G sind die einzigen Normalteiler von G. (d.h. G hat keine nicht-trivialen Normalteiler)

Satz 2.29. Für $n \geq 5$ ist A_n einfach.

Beweis. Sei $N \subseteq A_n$ ein Normalteiler und $\{e\} \subseteq N$ und sei $\sigma \in N \setminus \{e\}$.

• n = 5:

- (*) Doppeltranspositionen bilden A_5 -Konjugationsklasse und erzeugen A_5 (Lemma 27). Falls Doppeltranspositionen in N, so folgt $N=A_5$.
- (**) 3-Zykel bilden A_5 -Konjugationsklasse und erzeugen A_5 (Lemma 27). Falls σ ein $3-Zykel \implies N=A_5$.

Gelte
$$\sigma = 5$$
-Zykel = $(a\ b\ c\ d\ e)$. Nun: $N \ni \underbrace{(a\ b\ c)\sigma(a\ b\ c)^{-1}}_{\in N}\underbrace{\sigma}_{\in N} \overset{\text{Übung}}{=}$

 $(a \ b \ d)$ 3-Zykel

• n = 6: möglichen Youngdiagramme: (zu $\sigma \in A_6 \setminus \{e\}$)

(*) wurden schon im A_5 -Fall erklärt.

Sei also $\sigma^2 = (a\ b\ c)(d\ e\ f) \in N$, mit $\{a, \dots f\} = \{1, \dots, 6\}$. Sei $\tau = (a\ b\ c)$, berechne $\tau(\sigma)(\tau^{-1})$ (Satz 25)

$$\underbrace{\tau \sigma \tau^{-1}}_{\in N} \underbrace{\sigma}_{\in N} = (b \ d \ c)(a \ e \ f)(a \ c \ b)(e \ d \ f) \stackrel{\text{"Übung}}{=} (a \ b \ e \ c \ d) \in 5 - \text{Zykel}$$

wurde schon bei n = 5 geklärt.

- $n \geq 6$: o.E. (Permutation von 1,...,n) $\sigma(1) \neq 1$ Wähle $\{j,k\} \in \{1,...,n\} \setminus \{1,\sigma(1)\}$. Sei $\tau := (\sigma(1)\ j\ k) \implies \sigma^{-1}\tau\sigma\tau^{-1} \in N$ Dann:
 - (i) $\varphi := \tau \sigma \tau^{-1} \sigma^{-1} \in N$
 - (ii) $\varphi(\sigma(n)) = \tau \sigma \tau^{-1}(1) \stackrel{1 \notin \operatorname{supp}(\tau)}{\underset{1 \notin \operatorname{supp}(\tau^{-1})}{=}} \tau \sigma(1) = j \neq \sigma(1)$, also $\varphi \neq \operatorname{id}$.
 - (iii) $\#\operatorname{supp}(\varphi) \leq 6$, denn:

$$\varphi = \underbrace{\tau}_{3\text{-Zykel}} \cdot \underbrace{\sigma}_{3\text{-Zykel}} \underbrace{\tau^{-1}}_{3\text{-Zykel}} \underbrace{\sigma^{-1}}_{3\text{-Zykel}}$$

o.E: supp
$$(\varphi) \subseteq \{1, \ldots, 6\} \implies \varphi \in A_6 \setminus \{e\}$$

• Fälle $n \leq 6$: Nurmalteiler, der von φ erzeugt wird enthält 3-Zykel oder Doppeltransposition. Dann fertig wegen Lemma 27.

Bemerkung. Es gibt eine Klassifikation aller endlich einfachen Gruppen: Liste:

- $\mathbb{Z}_{(p)}, p \text{ prim}$
- $A_n, n \geq 5$
- endliche Gruppen vom Lie typ:
 - (i) $SL_n(K)/Z(SL_n(K))$ bis auf einige kleine #K sind einfach (endlich falls K endlich).
 - (ii) Weitere Untergruppen von $\mathrm{SL}_n,$ welche zu "linearen algebraischen Gruppen" korrespondieren.
- 26 weitere.

2.3 Sylow Theoreme

Satz 2.30 (Sylow I, nach Wieland). Sie G eine endliche Gruppe, p ein Primteiler von #G, $k \in \mathbb{N}$ sodass $p^k | \#G$, setze

$$n_k := \#\{H \le G \mid \#H = p^k\}$$

Dann gilt:

$$n_k \equiv 1 \mod p$$

Insbesondere ist $n_k \neq 0$, d.h. $\exists H \leq G \text{ mit } \#H = p^k$.

Übung (Vorbereitung). Sei p eine Primzahl, $k \in \mathbb{N}_0, m \in \mathbb{N}$, dann:

$$\binom{mp^k}{p^k} = m \cdot u$$

wobei $\mathbb{N} \ni u \equiv 1 \mod p$.

Beweis. (zu 30) Durch Analyse der Wirkung von G auf $X:=\{S\subseteq G\mid \#S=p^k\}$ gegeben durch

$$\lambda: G \times X \to X, (g, S) \mapsto g \cdot S = \{g \cdot s \mid s \in S\}$$

(beachte: $\ell_g:h\mapsto g\cdot h$ ist bijektiv $\Longrightarrow \#gS=\#S=p^k$ d.h. $g\cdot S\in X$) Setze $m:=\#G/_{n^k}$, für $S\in X$ definiere

$$G_S := \operatorname{Stab}_G(S) = \{ g \in G \mid gS = S \}$$

1. $\forall S \in X : \#G_S|p^k$:

Beachte: G_S wirkt auf S (da $gS = S \forall g \in G_S$) durch Linkstranslation:

$$G_S \times S \to S, (g,s) \mapsto g \cdot s$$

Schreibe S als disjunkte Vereinigung seiner G_S -Bahnen.

$$S = \bigsqcup_{i \in \{1, \dots, \ell\}} G_S h_i$$

wobei $h_1, ..., h_\ell$ ein Repräsentantensystem der Bahnen ist.

Beachte: $r_{h_i}: g \mapsto gh_i$ ist bijektiv. Also folgt $\#G_Sh_i = \#G_S$

$$\implies p^k = \#S = \sum_{i=1}^{\ell} \#G_S h_i = \sum_{i=1}^{\ell} \#G_S = \ell \#G_S$$

d.h. $\#G_S|p^k$.

2. Sei $X_0 := \{S \in X \mid \#G_S = p^k\}$ und $X_1 := X \setminus X_0$

Behauptung: $\#X_0 = m \cdot n_k$

(a) Sei $H \leq G$ eine Untergruppe mit $\#H = p^k$, dann:

$${S \in X_0 \mid G_S = H} = {Hg \mid g \in G}$$

Denn:

- " \subseteq ": Gelte $G_S = H$, d.h. $H \cdot S = S \implies H \cdot s \subseteq S, \forall s \in S$. Aber: $\#H \cdot s = \#H = p^k = \#S \implies H \cdot s = S \implies s$ (ist das gesuchte g)
- "\(\to\$": Zu zeigen: $\operatorname{Stab}_G(H \cdot s) = H$. Sei $g \in G$. $g \in \operatorname{Stab}_G(Hs) \iff gHs = Hs \iff_{T \text{-sist bii.}} gH = H \iff_{H < G} g \in H$

(b)
$$X_{0} = \bigsqcup_{H \leq G, \#H = p^{k}} \{ S \in X \mid G_{S} = H \} \stackrel{(a)}{=} \bigsqcup_{H \leq G, \#H = p^{k}} \{ Hg \mid g \in G \}$$
$$\#X_{0} = \sum_{H \leq G, \#H = p^{k}} \#\underbrace{\{ Hg \mid g \in G \}}_{=H \setminus G} \stackrel{\text{Lagrange}}{=} \frac{\#G}{\#H} = \frac{\#G}{p^{k}} = m$$
$$= m \left(\sum_{H \leq G, \#H = p^{k}} 1 \right) = m \cdot n_{k}$$

- 3. $pm|\#X_1$
 - (a) G wirkt auf X_1 (durch $(g,S)\mapsto gS$) d.h. gilt $S\in X_1$ und $g\in G$, so auch $gS\in X_1$. Es genügt also zu zeigen: $\#G_{gS}=\#G_S$ Dazu:

$$G_{gS} = \operatorname{Stab}_G(gS) = g \operatorname{Stab}_G(S)g^{-1} = gG_Sg^{-1} \overset{\text{Konj. mit } g}{\cong} G_S.$$

(b) Betrachte nun G-Bahndurch $S\in X_1,$ Behauptung: $\#G\cdot S$ ist Vielfaches von $p\cdot m$

Dazu: Bahngleichung:

$$\#G \cdot S = \#G/_{\#G_S} = mp^k/_{\#G_S}$$

da $\#G_S$ echter Teiler von p^k , also Teiler von $p^{k-1} \implies \#GS$ ist Vielfaches von $mp^k/_{p^{k-1}} = mp$

$$(m \cdot \frac{2^5}{2^4} = m \cdot 2, \quad m \cdot \frac{2^5}{2^2} = m \cdot 2^3,)$$

(c) Schreibe nun X_1 als disjunkte Vereinigung seiner Bahnen

$$X_1 = \bigsqcup_{j \in I} G \cdot \underbrace{S_j}_{\text{Bahnrepr.}}$$

und $\#G \cdot S_j = m \cdot p \cdot a_j, a_j \in \mathbb{N}$

$$\implies \#X_1 = \sum_{j \in J} \#G \cdot S_j = m \cdot p \cdot \sum_{j \in J} a_j$$

4. $\#X = \#X_0 + \#X_1 = m \cdot n_k + m \cdot p \cdot N = m(n_k + pN)$ gleichzeitig:

$$\#X = \#\{S \subseteq G \mid \#S = p^k\} = \binom{m \cdot p^k}{p^k} = m \cdot u$$

für ein $u \in \mathbb{N} : u \equiv 1 \mod p$.

$$\implies m(n_k + pN) = n \cdot u \implies n_k + pN = u \quad \underset{\text{mod } p_k}{n} \equiv u \equiv 1 \mod p.$$

Korollar 2.31 (Satz von Cauchy). Sei G eine endliche Gruppe mit p | #G für p eine Primzahl, dann $\exists g \in G : \operatorname{ord}(g) = p$

Beweis. Nach Sylow I
$$\exists H \leq G : \#H = p$$
, sei $g \in H \setminus \{e\}$. Dann gilt $\operatorname{ord}(g) = p$. $(\operatorname{ord}(g) \neq 1 \text{ und } \operatorname{ord}(g) | \#G = p)$.

Definition 2.32 (*p*-Sylow Gruppe). Sei G endlich, gelte $\#G = p^f \cdot m$ für $m, f \in \mathbb{N}$ sodass $p \not| m$. Eine Untergruppe $H \leq G$ mit $\#H = p^f$ heißt p-Sylow (Unter-)Gruppe von G, schreiben

$$\operatorname{Syl}_p(G) = \{ H \leq G \mid H \text{ ist } p - \operatorname{Sylow} \}$$
$$\operatorname{syl}_p(G) = \# \operatorname{Syl}_p(G)$$

Definition 2.33 (Normalisator). Der Normalisator einer Untergruppe $H \leq G$ ist

$$N_G(H) := \{ g \in G \mid gHg^{-1} = H \}$$

 $(c_q \text{ ist Automorphismus} \implies \#gHg^{-1} = \#H, \forall g \in G)$

Interpretation. Sei $X:=\{H\mid H\leq G\},\ X$ ist eine G-Menge durch Konjugation $c:G\times X\to X, (g,H)\mapsto gHg^{-1}$

Proposition 2.34 (Übung). (a) $N_G(H) = \underset{f \ddot{u}r}{=} \operatorname{Stab}_G(H)$

(Insbesondere ist $N_G(H) \leq G$ eine Untergruppe.)

(b) Es gelten: $H \subseteq N_G(H)$ und $N_G(H)$ ist die größte Untergruppe von G, sodass H ein Normalteiler in dieser ist.

Lemma 2.35. Sei $H \leq G$ eine p-Gruppe, $P \in \operatorname{Syl}_p(G)$ (p eine Primzahl), dann:

- (a) Gilt $P \leq H$, so folgt P = H.
- (b) Ist $H \leq N_G(P)$, so gilt $H \leq P$.
- (c) Gilt $H \nsubseteq P$, so folgt $Stab_H(P) < H$ (ist echte Untergruppe)

Beweis. (a) Schreibe $\#G = p^f \cdot m$, so dass $p / m (m, f \in \mathbb{N})$, P p-Sylow Untergruppe $\implies \#P = p^f$.

H eine p-Gruppe in $G \Longrightarrow_{\text{Lagrange}} \#H|p^f \cdot m$. also $\#H|p^f$

Nun:
$$P \subseteq H$$
 und $p^f = \#P \ge \#H \implies P = H$ (und $\#H = p^f$)

(b) Sei $G' = N_G(P)$. Aus Proposition

$$\implies P \unlhd G' \overset{\operatorname{Nach}}{\Longrightarrow} H \subseteq G' \overset{\operatorname{Erster}}{\Longrightarrow} P \unlhd P \cdot H$$
 Voraussetzung

und

$$(P \cdot H)_{P} \cong H_{P \cap H}$$

Ordnung ist p-Potenz, evtl p^f

$$\underset{\text{Lagrange}}{\Longrightarrow} \#P \cdot H = \underbrace{\#P}_{p\text{-Potenz}} \cdot \underbrace{\#P \cdot H}_{p\text{-Potenz}}$$

Also ist $P \cdot H$ eine p-Gruppe mit $P \subseteq PH$

$$\Longrightarrow_{(a)} PH = P \Longrightarrow_{eH \subseteq P} H \subseteq P$$

(c) Gelte $H \nsubseteq P$. zu zeigen: $Stab_H(P) < H$

Angenommen:
$$H = \operatorname{Stab}_{H}(P) = \underbrace{\{h \in H \mid hPh^{-1} = P\}}_{=H \cap \operatorname{Stab}_{G}(P)} = H \cap N_{G}(P)$$

Dann folgt

$$H \subseteq N_G(P) \Longrightarrow_{(b)} H \subseteq G.$$

Satz 2.36 (Sylow II). Sei G endlich, p ein Primteiler von #G. Dann:

- (a) Je 2 p-Sylow Gruppen von G sind konjugiert.
- (b) Jede p-Gruppe H mit $H \leq G$ liegt in einer p-Sylow Gruppe von G.
- (c) $\forall P \in \text{Syl}_p(G) : \text{syl}_p(G) = [G : N_G(P)]$ und insbesondere $(P \leq N_G(P))$ gilt $\text{syl}_p(G)|[G : P]$

Beweis. (a) $X:=\mathrm{Syl}_p(G)$ ist G-Menge via Konjugation $(P\in\mathrm{Syl}_p(G)$ und $g\in G\implies \#gPg^{-1}=\#P\implies gPg^{-1}\in\mathrm{Syl}_p(G))$

Zu zeigen: G wirkt transitiv auf X.

Annahme: X besteht aus $t \geq 2$ Bahnen, also

$$X = \bigsqcup_{i \in \{1, \dots, t\}} G \circ P_i$$

für geeignete Repräsentantensystem $P_1, ..., P_t \in \operatorname{Syl}_p(G)$ $(g \circ P = gPg^{-1})$

Behauptung: $p|\#G \circ P_i, \forall i \in \{1, \ldots, t\}.$

Dazu: Wähle $j \neq i$ betrachte die P_j -Wirkung auf $G \circ P_i$. Schreibe wieder $G \circ P_i$ als disjunkte Vereinigung von P_j -Bahnen:

$$G \circ P_i = P_j \circ Q_1 \sqcup \cdots \sqcup P_j \circ Q_s \quad (*)$$

 $(s \in \mathbb{N} \text{ geeignet}, Q_{\ell} \in \operatorname{Syl}_{n}(G) \text{ geeignet})$

Bahngleichung:

$$\#P_j \circ Q_\ell = \#P_j / \#\operatorname{Stab}_{P_j}(Q_\ell)$$

beachte: $P_j \notin G \circ P_i$, d.h. $P_j \neq Q_\ell$

$$\underset{35(c)}{\Longrightarrow} \; \mathrm{Stab}_{P_j}(Q_\ell) < P_j \; \Longrightarrow \; \#P_j \circ Q_\ell \neq 1 \text{ und teilt } \#P_j \; \Longrightarrow \; p | \#P_j \circ Q_\ell$$

 $\implies p$ alle Bahnlängen in (*) von $G \circ P$ als P_j -Menge $\implies p | \#G \circ P_i, \forall i \implies p | \#\operatorname{Syl}_n(G)$

$$\implies \operatorname{Syl}_p(G) = \bigsqcup_{i \in \{1, \dots, t\}} G \circ P_i$$

Widerspruch zu (0): $\operatorname{syl}_n(G) \equiv 1 \mod p$.

(b) Annahme: $H \leq G$ eine p-Gruppe liegt in keiner p-Sylow. Betrachte Konjugationswirkung von H auf $X = \mathrm{Syl}_p(G)$. Schreibe

$$X = H \circ R_1 \sqcup \cdots \sqcup H \circ R_w$$

 $(w \in \mathbb{N})$ die R_i sind Repräsentanten der Bahnen. Beachte $H \nsubseteq R_i$ $(i \in \{1,\ldots,w\})$. Wie in (a) gilt $\operatorname{Stab}_H(R_i) < H$ also, dass $p|\#H \circ R_i, \forall i \implies p|\#X$ Widerspruch zu (0).

(c) Bahngleichung für $P \in \mathrm{Syl}_p(G)$ (Verwenden (a), d.h. $G \circ P = \mathrm{Syl}_p(G)$)

$$\operatorname{syl}_p(G) = \#\operatorname{Syl}_p(G) = \#G/\#\operatorname{Stab}_G(P) : \#G/\#N_G(P) = [G:N_G(P)]$$

$$(\mathrm{syl}_p(G) \text{ teilt } [G:P] \text{ schon oben eingesehen, da } P \leq N_G(P))$$

Korollar 2.37. Sei G endlich und p ein Primteiler von #G, dann $\operatorname{syl}_p(G) = 1 \iff \text{jede } p\text{-Sylow ist ein Nullteiler in } G.$

Beweis. Für $P \in \text{Syl}_p(G)$ gilt:

$$P \leq G \iff N_G(P) = G \iff \mathrm{syl}_p(G) = [G:N_p(G)] = 1.$$

Korollar 2.38. Sei G endlich, seien $p_1, ..., p_t$ die paarweise verschiedenen Primteiler von #G. Sei $P_i \in \operatorname{Syl}_{p_i}(G)$. Dann gilt: sind $P_1, ..., P_t$ Normalteiler von G, so folgt: die Abbildung $P_1 \times \cdots \times P_t \to G, (g_1, ..., g_t) \mapsto g_1 \cdot ... \cdot g_t$ ist ein Gruppenisomorphismus.

Beweis. $P_i \leq G$ für $i \in \{1, ..., t\}$ und $\operatorname{ggT}(\#P_i, \#P_j) = 1$ $(p_i, p_j \text{ versch. Primzahlen})$ und $\prod_{i=1}^t \#P_i = \#G$ $\Longrightarrow_{\operatorname{Kor. } 1.55}$ die angegebene Abbildung ist ein Gruppenisomorphismus.

Beispiel. Ist G abelsch, so sind alle Untergruppen Normalteiler.

Korollar 2.39. G endlich abelsch und p_i und P_i wie in Korollar 38. So gilt: $\times_{i=1}^{t} P_i \xrightarrow{\text{wie in Kor. } 38} G$ ist Gruppenisomorphismus. (P_i sind abelsche p_i -Gruppen).

Satz 2.40. Sei G eine endliche abelsche p-Gruppe, dann $\exists! t \in \mathbb{N}, \exists! e_1 \geq e_2 \geq \cdots \geq e_t \in \mathbb{N}$, sodass

$$G \cong \underset{i=1}{\overset{t}{\times}} \mathbb{Z}_{p^{e_i}}$$

Beispiel. G abelsch mit $\operatorname{ord}(G) = 105 \implies G \cong \mathbb{Z}/_{3\mathbb{Z}} \times \mathbb{Z}/_{5\mathbb{Z}} \times \mathbb{Z}/_{7\mathbb{Z}}$

Wiederholung. G heißt einfach \iff einzige Nullteiler von G sind $\{e\}$ und G.

Lemma 2.41 (Übung). sei G endlich, $\#G = p^f \cdot m$ mit $f, m \in \mathbb{N}, p$ Primzahl und $p \not| m$. Dann: $p^f \not| (m-1)! \implies G$ ist nicht einfach.

Beweis. Idee: Sei $P \in Syl_p(G)$, betrachte G-Wirkung auf G/P durch Linkstranslation, d.h.

$$\rho: G \to \operatorname{Bij}(G/P), g \mapsto \ell g$$

Trick: $Kern(\rho)$ ist der gesuchte Normalteiler.

Satz 2.42. Ist G einfache Gruppe mit #G < 60, so gilt $G \cong \mathbb{Z}_p$ für p eine Primzahl.

Beweis. Sei G einfach mit #G < 60. o.E. #G keine Primzahl, sonst fertig. o.E. G ist keine p-Gruppe für Primzahl p. (sonst: $Z(G) \supseteq \{e\} \xrightarrow{G \text{ einfach} \atop Z(G) \supseteq G} G = Z(G)$,

d.h. Gabelsch. $\underset{G \text{ einfach}}{\Longrightarrow} G \cong \mathbb{Z}_{p})$

Fall
$$\# = p^f m$$
 mit $p^f \not\mid (n-1)! \implies G$ nicht einfach (Lemma 41) (Übung)Es bleiben $\#G \in \{\underbrace{30}_{2\cdot 3\cdot 5}, \underbrace{40}_{2^3\cdot 5}, \underbrace{56}_{2^3\cdot 7}\}$
Fall 1: $\#G = 2^3\cdot 5$, dann: $Syl_5(G) \cong 1(5)$ (Sylow I)

$$Syl_5(G)$$
 teilt $\#G/_5 = 8$ (Sylow II)

 $Syl_5(G)$ teilt $\#G/_5 = 8$ (Sylow II) Teiler von 8:1,2,4,8 Kongruenz erzwingt $Syl_5(G) = 1 \implies \text{die einzige}$

5-Sylow Untergruppe von G ist ein Normalteiler (Widerspruch zu G einfach)

Fall 2: $\#G = 2^3 \cdot 7$, dann (Shritte wie im Fall 1 für p = 7)

$$Syl_7(G) \in \{1, 8\}$$

(teilt $8 \cong 1 \mod 7$)

Fall: Es gibt 8 7-Sylow Untergruppen, isomorph zu \mathbb{Z}_{7}

Beachte: 2 7-Sylow's schneiden sich nur in $\{e\}$ (sonst sinid sie gleich, Elemente $\neq e \text{ sind Erzeuer}$

- \implies es gibt $8 \cdot 6$ Elemente in G der Ordnung 7
- \implies Es gibt 56 48 = 8 Elemente in G der Ordnung $\neq 7$

Aber: Es gibt (mindestens) eine 2-Sylow Untergruppe von G und die hat Ordnung $8 = 2^3$.

Es folgt: Die 8 obigen Elemente bilden die einzig mögliche 2-Sylow Untergruppe von G.

 $\implies Syl_2(G) = 1 \implies$ die 2-Sylow ist ein nicht triviale Normalteiler von

Bemerkung. Die Zahl 60 ist optimal, denn A_5 ist einfach, nicht zyklisch (von Primzahlordnung) und hat 60 Elemente.

2.4 Auflösbare Gruppen

Definition 2.43.

(a) Eine aufsteigende Folge von Untergruppen

$$\{e\} = G_0 < G_1 < G_2 < \dots < G_t = G$$

von G heißt Normalreihe (von G), wenn $\forall i \in \{1, ..., t\} : G_{i-1} \subseteq G_i$ ist Normalreihe.

Schreibe auch $(G_i)_{i=0}^t$ oder \mathscr{G} für die Folge.

- (b) die Faktorgruppe $\left(G_{i}/G_{i-1}\right)_{i=1}^{t}$ heißen Faktoren der Normalreihe.
- (c) Eine Normalreihe \mathscr{G} heißt Zerlegungsreihe \iff alle Faktoren sind einfach.
- (d) \mathscr{G} heißt abelsch \iff alle Faktoren sind abelsch.
- (e) G heißt auflösbar $\iff G$ besitzt eine abelsche Normalreihe.
- (f) Ist $\mathscr{G}': \{e\} = G_0' < G_1' < \dots < G_{t'}' = G$ eine weitere Normalreihe, so heißt \mathscr{G}' (echt) feiner als $\mathscr{G} \iff$

$$\underbrace{\{G_i \mid i \in \{0, ..., t\}\}}_{\text{von } \mathscr{G}} \subsetneq \underbrace{\{G'_j \mid j \in \{0, ..., t'\}\}}_{\text{von } \mathscr{G}'}$$

Beispiel.

$$\overbrace{S_4}^{G_4} \triangleright \overbrace{A_4}^{G_3} \triangleright \underbrace{V}_{\{e,(1\ 2)(3\ 4),(1\ 3)(2\ 4),(1\ 4)(2\ 3)\}}^{G_2} \triangleright \underbrace{\{e,(1\ 2)(3\ 4)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0} \triangleright \underbrace{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}_{\{e,(1\ 2)(3\ 4),(1\ 4)(2\ 3)\}}^{G_0}$$

ist eine Zerlegungsreihe mit den Faktoren:

Insbesondere ist \mathcal{G} abelsch (und S_4 ist auflösbar). Beachte: $G_1 \triangleleft G_2$ ist Normalteiler $G_1 \triangleleft G_3$ (Übung)

Proposition 2.44. Sei \mathscr{G} : $\{e\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_t = G$ eine Normalereihe, dann:

- (a) \mathscr{G} ist eine Zerlegungsreihe $\iff \mathscr{G}$ besitzt keine echte Verfeinerung.
- (b) Es gilt $2^t < \#G$
- (c) Ist G endlich, so besitzt G eine Verfeinerung, die eine Zerlegungsreihe ist.
- (d) Ist \mathscr{G} abelsch, so ist auch die Verfeinerung abelsch.

Beweis. (a) G ist keine Zerlegungsreihe

$$\iff \exists i \in \{1,\dots,t\}: G_{i \not \sim G_{i-1}}$$
nicht einfach

$$\iff \exists i \in \{1, \dots, t\} : \overline{H} \leq G_{i/G_{i-1}} \text{ mit } \overline{H} \neq \{e\}, \overline{H} \subsetneq G_{i/G_{i-1}}$$

2. Isometriesatz $\exists i \in \{1, \dots, t\} : \exists H \triangleleft G_i \text{ mit } G_{i-1} \triangleleft H$

 $\iff \exists i \in \{1, \dots, t\} : \mathcal{G} \text{ kann zwischen } G_{i-1} \text{ und } G_i \text{ echt verfeinert werden}$

 $\iff \mathscr{G}$ besitzt eine echte Verfeinerung.

(b) Lagrange: (Für $H \leq G : \#G = \#H \cdot \#G/H$)

$$\#G = \#G_{t} = \#G_{t-1} \cdot \#^{G_{t}}/_{G_{t-1}}$$

$$= \#G_{t-2} \cdot \#^{G_{t-1}}/_{G_{t-2}} \cdot \#^{G_{t}}/_{G_{t-1}} = \dots = \prod_{i=1}^{t} \# \underbrace{G_{i}/_{G_{i-1}}}_{\substack{\text{nichttriviale} \\ \text{endliche Gruppe}}} \ge 2^{t}$$

$$\implies t \le \log_2 \#G$$

- (c) Sei \mathscr{G}' eine Verfeinerung von \mathscr{G} , maximaler Länge t'. Das gibt es, da $t' \leq \log_2 \#G$. Dieses \mathscr{G}' kann nicht echt verweinert werden (t' maximal!) $\Longrightarrow \mathscr{G}'$ ist Zerlegungsreihe, die \mathscr{G} verfeinert.
- (d) Sei \mathscr{G} abelsch und \mathscr{G}' eine Verfeinerung von \mathscr{G} , z.z. \mathscr{G}' ist abelsch.

$$(\mathscr{G}': G'_0 = \{e\} \triangleleft G'_1 \triangleleft G'_2 \triangleleft \cdots \triangleleft G'_{t'} = G)$$

Sei $j \in \{1, ..., t'\}$, z.z. $G'_{j/G'_{j-1}}$ ist abelsch. Finde zu j, j-1 ein $i \in \{1, ..., t\}$, sodass

$$G \cdots G_{i-1} \triangleleft G_i \cdots$$

$$\parallel \qquad \parallel$$

$$G'_{\ell} \leq G'_{i-1} \triangleleft G_{i'} \leq G'_{m}$$

Wir wissen: $G_{i/G_{i-1}} = G'_{m/G'_{\ell}}$ ist eine abelsche Gruppe, wir wissen auch:

$$G'_{\ell/G'_{\ell}} \le G'_{j-1/G_{\ell}} \le G'_{j/G_{\ell}} \le G'_{m/G'_{\ell}}$$

(2. Isomorphiesatz für $G'_m \to G'_{m/G_\ell}$) Beachte: G'_{m/G'_ℓ} ist abelsch $\Longrightarrow G'_{j-1/G'_\ell}, G'_{j/G'_\ell}$ sind abelsch, und (2. Isomorphiesatz)

$$G'_{j/G'_{j-1}} \cong \underbrace{\begin{pmatrix} G'_{j/G'_{\ell}} \end{pmatrix}}_{\text{abelieb}} \begin{pmatrix} G'_{j-1/G'_{\ell}} \end{pmatrix} \implies G'_{j/G'_{j-1}} \text{ abelieb.}$$

Satz 2.45 (Satz von Jordan-Hölder). Ist G endlich, so ist die Folge der Faktoren einer Zerlegungsreihe $\mathcal G$ von G bis auf Reihenfolge der Faktoren unabhängig von der Wahl der Zerlegungsreihe von G.

Beweis. Siehe Jantzen Schwermer Satz II. 2.4 oder Jacobson §4.6

Korollar 2.46. Sei G endlich, dann ist G auflösbar \iff die Faktoren jeder Zerlegungsreihe sind abelsch und von Primzahlordnung.

Beweis.

" \Longrightarrow ": Sei $\mathscr G$ eine abelsche Normalreihe $\Longrightarrow_{\operatorname{Prop. }44} \exists$ Zerlegungsreihe $\mathscr G'$ die $\mathscr G$ verfeinert, diese ist dann (stets) wieder abelsch. Ihre Faktoren sind einfach und ablesch (und endliche Gruppen), also zyklisch von Primzahlordnung. Wende nun Jordan-Hölder an.

" <== ": Hat man ${\mathscr G}$ wie angegeben (zu G), so ist ${\mathscr G}$ abelsch, also G auflösbar.

Beispiel 2.47. Sei G eine p-Gruppe $\implies G$ ist auflösbar

Beweis. Sei \mathscr{G} eine Zerlegungsreihe von G, dann sind die Faktoren H_i einfache p-Gruppen. Wir wissen, dass $Z(H_i) \supseteq \{e\}$ nicht-trivial ist.

$$\stackrel{H_i \text{ einfach}}{\Longrightarrow} H_i = Z(H_i)$$

$$Z(H_i) \leq H_i$$

Da $Z(H_i)$ eine einfache abelsche p-Gruppe ist folgt \mathscr{G} ist eine abelsche Normalreihe. Nach dem Satz von Cauchy finde \mathbb{Z}_{p} als Untergruppe von $H_i \Longrightarrow H_i$ einfach abelsch $(\mathbb{Z}_{p} \leq H_i)$.

Beispiel 2.48. Gilt #G < 60, so ist G auflösbar.

Beweis. Sei \mathscr{G} eine Zerlegungsreihe mit einfachen Faktoren H_i mit $\#H_i < 60$. Nach Satz 42 sind H_i sind zyklisch von Primzahlordnung $\implies G$ auflösbar. \square

Proposition 2.49 (übung). Sei G endlich, $N \subseteq G$ ein Normalteiler, $H \subseteq G$ eine Untergruppe, dann:

- (a) G auflösbar \iff N und G_{N} sind auflösbar.
- (b) G auflösbar \Longrightarrow H auflösbar.

Wiederholung. Die Kommutatoruntergruppe von G ist

$$[G, G] = \langle [g, h] := ghg^{-1}h^{-1} \mid g, h \in G \rangle$$

Eigenschaften:

- (a) $[G,H] \subseteq G$
- (b) $G_{/[G,G]}$ ist abelsch
- (c) Ist $N \subseteq G$ ein Normalteiler mit G_{N} abelsch, so gilt $[G,G] \subseteq N$ ist Untergruppe.
- (d) $H \leq G$ Untergruppe $\implies [H, H] \leq [G, G]$ nach Definition.

(e) $\pi: G \to G'$ ein surjektiver Gruppenhomomorphismus, dann:

$$\pi([G,G]) = [G',G']$$

Denn:

Beweisskizze.

$$\pi(\{[g,h] \mid g,h \in G\}) = \{[\pi(g),\pi(h)] \mid g,h \in G\} = \underset{\pi \text{surj.}}{=} \{[g',h'] \mid g',h' \in G'\} \cdots$$

Definition 2.50 (Abgeleitete Reihe). Die abgeleitete Reihe von G ist definiert als die Folge

$$D^0(G) \ge D^1(G) \ge D^2(G) \ge \cdots$$

mit
$$D^0(G) := G$$
 und $D^{i+1}(G) := [D^i(G), D^i(G)]$ für $i > 0$

Bemerkung 2.51.

- (a) Gilt $D^{i+1}(G) = D^i(G)$, so folgt $D^n(G) = D^i(G), \forall n \geq i$
- (b) Nach Wiederholung (a) folgt: $D^i(G) \subseteq D^{i-1}(G), \forall i \geq 1$. Es gilt sogar: (Übung 3) $D^i(G) \subseteq G, \forall i \geq 0$
- (c) $H \leq G \underset{\text{von Whg.}}{\overset{\text{vgl (d)}}{\Longrightarrow}} D^i(H) \leq D^i(G) \cap H \text{ (induktiv)}$

(d)
$$\pi: G \to G'$$
 surjektiv $\overset{\text{Übung, Induktion}}{\underset{\text{zu (e) Whg.}}{\Longrightarrow}} \pi(D^i(G)) = D^i(G')$

Satz 2.52 (Auflösbarkeitskriterium). Sei G endlich, dann ist G auflösbar $\iff \exists i: D^i(G) = \{e\}.$

Beweis.

" \Longrightarrow ": Sei $G = G_t \triangleright G_{t-1} \triangleright G_{t-2} \triangleright \cdots \triangleright G_1 \triangleright G_0 = \{e\}$ eine abelsche Normalreihe. Dann folgt aus Wiederholung (c)

$$\forall i : [G_i, G_i] \leq G_{i-1} \pmod{G_{i/G_{i-1}}}$$
 abelsch)

$$\implies D^1(G) \le G_{t-1} \implies D^2(G) \le D^1(G_{t-1}) \le G_{t-2} \text{ etc.}$$

$$\underset{\text{Ind.}}{\Longrightarrow} D^t(G) = \{e\} \quad (D^i(G) \le G_{t-i}, \forall i \in \{0, \dots, t\})$$

" \Leftarrow ": Trivial. Sei $t \geq 0$ minimal mit $D^t(G) = \{e\}$, dann gilt

$$G = D^0(G) \triangleright D^1(G) \triangleright D^2(G) \triangleright \cdots \triangleright D^{t-1}(G) \triangleright D^t(G) = \{e\}$$

(echte Normalteiler wegen Sylow I (a) und t minimal.) ist eine Normalreihe, Faktoren sind abelsch nach Definition der abgeleiteten Reihe (da $H_{[H,H]}$ abelsch).

Beispiel 2.53.

(a)
$$G$$
 abelsch $\Longrightarrow D^1(G) = \{e\}$

- (b) (Übung) $D^1(D_n) \leq C_n$, wobei D_n die Diedergruppe bezeichnet.
- (c) (Übung) Für $n \geq 5$ gezeigt $D^1(A_n) = A_n \implies A_n$ nicht auflösbar. (Wissen auch A_n ist einfach und nicht abelsch $\implies A_n$ ist nicht auflösbar.)

Definition 2.54 (Perfekte Gruppe). Eine Gruppe G heißt perfekt $\iff G = [G, G] = D^1(G)$. Damit (Übung) ist A_n perfekt für $n \ge 5$.

Bemerkung (ohne Beweis). $\mathrm{SL}_{\mathrm{n}}(K)$ ist perfekt, falls $\#K \notin \{2,3\}$

Kapitel 3

Ringe

Wiederholung. $(R, 0, 1, +, \cdot)$ ist ein **Ring** \iff (R, 0, +) ist eine Gruppe, $(R, 1, \cdot)$ ist ein Monoid und es gelten die Distributivgesetze.

$$R^{\times} = \{ r \in R \mid \exists s \in R : rs = sr = 1 \}$$

ist die Einheitengruppe von R

Beispiel. (Übung)
$$\mathbb{Z}_n^{\times} = \{ \overline{a} \mid \operatorname{ggT}(a, n) = 1 \}$$
, wobei $\mathbb{Z}_n = \mathbb{Z}_{n\mathbb{Z}} = \mathbb{Z}_{n\mathbb{Z}} = \mathbb{Z}_{n\mathbb{Z}}$

Definition 3.1 (Ringhomomorphismus). Seien R, R' Ringe, eine Abbildung $\varphi: R \to R'$ heißt Ringhomomorphismus wenn:

- $\varphi: (R,0,+) \to (R',0',+')$ ist ein Gruppenhomomorphismus.
- $\varphi:(R,1,\cdot)\to(R',1',\cdot')$ ist ein Monoidhomomorphismus.

 φ ist ein Ringisomorphismus $\iff \varphi$ ist bijektiver Ringhomomorphismus $\iff_{\ddot{\mathbf{U}}\mathbf{bung}}$

 $\exists \varphi': R' \xrightarrow{\text{Ringhom.}} R$, sodass $\varphi \circ \varphi' = \mathrm{id}_{R'}$ und $\varphi' \circ \varphi = \mathrm{id}_R$. In diesem Fall schreibe $R \cong R'$ (R isomorph zu R').

Beispiel. R heißt Nullring \iff $0_R=1_R \underset{\ddot{\text{U}}\text{bung}}{\iff} R=\{0_R\}$ (alle Nullringe sind isomorph.)

Beispiel. (Übung) Sei R beliebig $\implies \exists !$ Ringhomomorphismus $\varphi : \mathbb{Z} \to R$ nämlich

$$\varphi: \mathbb{Z} \to R, n \mapsto \varphi(n) = n \cdot 1_R$$

(wegen $\varphi(1) = 1_R$)

Definition 3.2 (Unterring). $S \subseteq R$ heißt Unterring, falls

- $1 \in S$
- $S S = \{s_1 s_2 \mid s_1, s_2 \in S\} \subseteq S$
- $S + S = \{s_1 + s_2 \mid s_1, s_2 \in S\} \subseteq S$

Definition (**Produkt von Ringen**). Seien R_1, R_2 Ringe, dann ist $(R_1 \times R_2, (0,0), (1,1), +, \cdot)$ ein Ring mit komponentenweiser Addition und Multiplikation.

$$+: (R_1 \times R_2)^2 \to R_1 \times R_2, (r_1, r_2) + (s_1, s_2) = (r_1 + s_1, r_2 + s_2)$$
$$: (R_1 \times R_2)^2 \to R_1 \times R_2, (r_1, r_2) \cdot (s_1, s_2) = (r_1 \cdot s_1, r_2 \cdot s_2)$$

Bemerkung (Übung).

- (a) Sei R ein kommutativer Ring, $S \subseteq R$ ein Unterring, dann ist S kommutativ.
- (b) Seien R_1, R_2 kommutative Ringe, so ist auch $R_1 \times R_2$ kommutativ.

Wiederholung. Seien I, X Mengen. Eine Folge/Familie in X über (Indexmenge) I, geschrieben $(x_i)_{i \in I}$ ist eine Abbildung $x : I \to X, i \mapsto x - I$. Schreibe X^I für die Menge aller Folgen in X über I (= Abb(I, X))

Beispiel 3.3 (Monoidring). Sei $R = (R, 0, 1, +, \cdot)$ ein kommutativer Ring und $M = (M, e, \circ)$ ein Monoid. Definiere

- (i) $R[M] := \{(a_m)_{m \in M} \in \mathbb{R}^M \mid (E) : \#\{m \in M : a_m \neq 0\} < \infty\}$
- (ii) $0 = \text{die Abbildung } M \to \{0\} \subseteq R$
- (iii) $\underline{1} = \text{die Folge } (\delta_{em})_{m \in M} \text{ mit } \delta_{em} = \begin{cases} 1, & m = e, \\ 0, & m \neq e. \end{cases}$
- (iv) Verknüpfungen $+,\cdot:R[M]\times R[M]\to R[M]$ durch:

$$(a_m)_{m \in M} + (b_m)_{m \in M} := (a_m + b_m)_{m \in M}$$

und

$$(a_m)_{m \in M} \cdot (b_m)_{m \in M} := (c_m)_{m \in M}$$

mit (Übung)

$$c_m := \sum_{\substack{(m',m'') \in M \times M \\ m' \cdot m'' = m}} a_{m'} \cdot b_{m''}$$

die Summe ist endlich wegen (E) und wegen (E) gilt: $\#\{m \mid c_{m\neq 0}\} < \infty$

Notation.

$$\sum_{m \in M} a_m \cdot m \text{ für } (a_m)_{m \in M} \in R[M]$$

Übung 3.4.

- a) $(R[M], \underline{0}, \underline{1}, +, \cdot)$ ist ein Ring, (R[M] heißt **Monoidring** zu M über R)
- b) Ist M abelsch, so ist R[M] kommutativ.
- c) Ist $\varphi: R \to S$ ein Ringhomomorphismus und $\sigma: M \to (S, 1, \cdot)$ ein Monoidhomomorphismus, so $\exists !$ Ringhomomorphismus $\psi: R[M] \to S$ mit $\psi|_R = \varphi$ und $\psi_M = \sigma$. (dabei wir identifizieren R mit $R \cdot e = R \cdot 1$ (1-Folge) und M mit $1_R \cdot M$), nämlich:

$$\psi \underbrace{\left(\sum a_m \cdot m\right)}_{\text{in } R[M]} = \underbrace{\sum \varphi(a_m) \cdot \sigma(m)}_{\text{in } S}$$

Konveniton. Ab nun seien alle Ringe R, R', S, R_i kommutativ, (und es Seien in §3 stets Ringe)

3.1 Polynomringe

Beispiel 3.5. Die folgenden Strukturen sind abelsche Monoide:

- (i) $(\mathbb{N}_0, 0, +) = \mathbb{N}_0$
- (ii) $(\mathbb{N}^n_0,(0,...,0),+)=\times_{i\in\{1,...,n\}}\mathbb{N}_0$ (Komponentenweise Addition)
- (iii) Für I eine beliebige Menge: $(\mathbb{N}_0^{(I)}, \underline{0}, \underline{+})$ mit

$$\mathbb{N}_0^{(I)} = \{(a_i)_{i \in I} \in \mathbb{N}_0 \text{ Folgen "uber } I \mid \#\{i \in I : a_i \neq 0\} < \infty\}$$

 $\underline{0} = 0$ -Folge und $\underline{+}$ komponentenweise Addition in $\mathbb{N}_0^{(I)}$.

Facts 3.6 (Übung).

(i)
$$\mathbb{N}_0^n \cong \mathbb{N}_0^{(\{1,\dots,n\})}, (a_i)_{i \in \{1,\dots,n\}} \mapsto (a_i)_{i \in \{1,\dots,n\}}$$

(ii) Für
$$i \in I$$
 sei $e_i \in \mathbb{N}_0^{(I)}$ die Folge mit $e_i(j) = \begin{cases} 1, & j = i, \\ 0 & j \neq i. \end{cases}$

(betrachte $e_i: I \to \mathbb{N}_0$ als Abbildung) Damit ist jede Folge $\underline{a} = (a_i)_{i \in I} \in \mathbb{N}_0^{(I)}$ eindeutige Linearkombination mit Koeffizienten in \mathbb{N}_0 , nämlich:

$$\underline{a} = \sum_{i \in I} a_i \cdot e_i = \sum_{i \in I, a_i \neq 0} a_i \cdot e_i$$

Beachte: $\mathbb{N}_0^{(I)} \subseteq \mathbb{Q}^{(I)}$ (analog definiert, Folgen in \mathbb{Q} über I) mit Endlichkeitsbedingung (E). Und $(e_i)_{i\in I}$ ist eine Basis von $\mathbb{Q}^{(I)}$ als \mathbb{Q} -Vektorraum. Man sagt auch $\mathbb{N}_0^{(I)}$ ist freies abelsches Monoid über der Basis $(e_i)_{i\in I}$.

(iii) Ist M ein abelsches Monoid und $(m_i)_{i\in I}$ eine Folge in M, so $\exists !$ Monoid-homomorphismus

$$\varphi: \mathbb{N}_0^{(I)} \to M, \varphi(e_i) = m_i$$

Wiederholung. R[X] ist der Polynomring über R in Variablen X. Elemente sind $\sum_{n\geq 0} a_n X^n$, $(a_n \in R)$ nur endlich viele $a_n \neq 0$. $+, \cdot$ auf R[X] sind definiert durch

$$\sum a_i X^i + \sum b_i x^i = \sum (a_i + b_i) X^i$$
$$\left(\sum a_i X^i\right) \left(\sum b_i X^i\right) = \sum_i \left(\sum_{j=0}^i a_j b_{i-j}\right) X^i$$

Proposition 3.7. Die folgende Abbildung ist ein Ringisomorphismus.

$$\psi: R[\mathbb{N}_0] \to R[X], \sum_{i \in \mathbb{N}_0} r_i i \mapsto \sum_{i \in \mathbb{N}_0} r_i X^i$$

Beweis.

• ψ wohldefiniert und bijektiv:

$$R[\mathbb{N}_0] = \text{ Folgen } (r_i)_{i \in \mathbb{N}_0} \text{ mit } \#\{i \mid r_i \neq 0\} < \infty$$

$$R[X] = \text{ analog}$$

- Ringstruktur:
 - Addition (Übung)
 - Multiplikation

$$\underbrace{\left(\sum_{i \in \mathbb{N}_0} r_i \cdot i\right)}_{f \in R[\mathbb{N}_0]} \underbrace{\left(\sum_{j \in \mathbb{N}_0} s_j \cdot j\right)}_{g} \underset{\text{Nach Def.}}{=} \sum_{k \in \mathbb{N}_0} s_k \cdot k, \quad s_k$$

$$= \sum_{0 \le i, j, i+j=k} r_i s_j = \sum_{j=0}^k r_j s_{k-j}$$

$$\implies \psi(f \cdot g) = \psi\left(\sum_k s_k \cdot k\right) = \sum_k g_k X^k$$

$$= \sum_i a_i \cdot \sum_j b_j X^j = \psi(f) \psi(g).$$

Formal: $\{0,1,\cdots\} \to \{X^i \mid i \in \mathbb{N}_0\}.$

Proposition 3.8 (Universelle Eigenschaft von $K[X] \cong R[\mathbb{N}_0]$). $\forall \psi : R \to S$ Ringhomomorphismen und $\forall s \in S \exists !$ Ringhomomorphismus $\widehat{\psi} : R[X] \to S$ mit $\widehat{\psi}|_R = \psi$ und $\widehat{\psi}(X) = s$

1. Beweis. Definiere $\widehat{\psi}(\sum_{i\geq 0}r_iX^i):=\sum_{i\geq 0}\underbrace{\psi(r_i)}_{\in S}s^i$. Dann die Behauptung nachprüfen. \Box

2. Beweis. Facts 6(iii) \exists ! Monoidhomomorphismus $\sigma: \mathbb{N}_0 \to (S,1,\cdot)$ mit $\sigma(1) = s$ und Übung 4(c) (universelle Eigenschaft des Monoidrings) \exists ! Ringhomomorphismus $\widehat{\psi}: R[\mathbb{N}_0] \to S$ mit $\widehat{\psi}|_R = \psi$ und $\widehat{\psi}|_{\mathbb{N}_0} = 0$. Dieser erfüllt die Aussagen in Prop 8, denn $\widehat{\psi}(X) = \widehat{\psi}(1) = s$, X entspricht $1 \in \mathbb{N}_0$ (Unter Isomorphismus von Proposition 7). Für $n \geq 1$ Variable: $(n \in \mathbb{N})$

$$R[X_1, \dots, X_n] := (R[X_1, \dots, X_{n-1}])[X_n] = \dots = (\dots ((R[X_1])[X_2]) \dots)[X_n]$$

Satz 3.9. Sei $\varphi: \mathbb{N}_0^n \to (R[X_1, \dots X_n], 1, \cdot)$ der eindeutige Monoidhomomorphismus mit $\varphi(e_i) = X_i$, wobei $e_i = (\delta_{i,j})_j = (0, \dots, 1, \dots 0)$ für $i \in \{1, \dots, n\}$. Dann ist (nach 4(c) eindeutige) Ringhomomorphismus $\widehat{\psi}: R[\mathbb{N}_0^n] \to R[X_1, \dots, X_n]$ mit $\widehat{\psi}|_R = \mathrm{id}_R$ und $\widehat{\psi}|_{\mathbb{N}_0^n} = \varphi$ ein Ringisomorphismus.

Beweis. (Übung) Hierbei wird $m=(m_1,...,m_n)\in\mathbb{N}_0^n$ identifiziert (unter $\widehat{\psi}$) mit $X_1^{m_1}\cdot\ldots\cdot X_n^{m_n}$

Definition 3.10 (Polynomring). Der **Polynomring** in den Variablen $(X_i)_{i \in I}$ (*I* beliebige Menge) ist definiert als

$$R[X_i \mid i \in I] := R[\mathbb{N}_0^{(I)}]$$

Elemente in diesem Ring sind

$$\sum_{a \in \mathbb{N}_0^{(I)}} r_a \cdot a$$

 $\text{mit } r_a \in R \text{ und es gilt } \{a \in \mathbb{N}_0^{(I)} \mid r_a \neq 0\} \leq \infty.$

Notation. Andere Notation: Für $a \in \mathbb{N}_0^{(I)}$ schreibe für a

$$X^a$$
 oder $\prod_{i \in I, a_i \neq 0} X_i^{a_i}$

Insbesondere ist $X^{e_i} = X_i$, wobei e_i die Folge in $\mathbb{N}_0^{(I)}$ mit $e_i(j) = \delta_{i,j}$ ist. Monoidaddition a + b entspricht

$$X^a \cdot X^b = X^{a+b}$$

(bilden a+b in $(\mathbb{N}_0^{(I)},\underline{0},+)$ und $(a_i)_{i\in I}+(b_i)_{i\in I}=(a_i+_{\mathbb{N}_0}b_i)_{i\in I})$ Also + ist nicht die Addition im Ring.

Definition (Primitives Monom). Die Elemete in $R[\mathbb{N}_0^{(I)}]$ sind Summen

$$\sum_{a \in \mathbb{N}_{0}^{(I)}} r_{a} \cdot X^{a}$$

(Polynome wie gewohnt.) Die Elemente $X^a, a \in \mathbb{N}_0^{(I)}$ heißen **primitive Monome**. Jedes Element in $R[X_i \mid i \in I]$ ist eine eindeutige Linearkombination in den Monomen $X^a, a \in \mathbb{N}_0^{(I)}$, mit Koeffizienten r_a aus R, sodass $\#a \in \mathbb{N}_0^{(I)} \mid r_a \neq 0 \leq \infty$, d.h. als R-Modul ist $R[X_i \mid i \in I]$ frei über R mit Basis $X^a, a \in \mathbb{N}_0^{(I)}$

Beispiel. $(2,5,3) \in \mathbb{N}_0^3$ entspricht $X_1^2 X_2^5 X_3^3$

Satz 3.11 (Universelle Eigenschaft von $R[X_i \mid i \in I]$). Zu Ringhomomorphismus $\psi: R \to S$ und einer Folge $(s_i)_{i \in I}$ aus S über $I \exists !$ Ringhomomorphismus $\widehat{\psi}: T[X_i \mid i \in I] \to S$ mit $\widehat{\psi}|_R = \psi$ und $\widehat{\psi}(X_i) = s_i$

Facts.

(a) Für $J \subseteq I$ existiert eindeutiger Monoidhomomorphismus $\mathbb{N}_0^{(J)} \to \mathbb{N}_0^{(I)}$ mit $e_j \mapsto e_j$ und ein induzierter Ringhomomorphismus (für $j \in J$)

$$\widehat{\psi}: R[\mathbb{N}_0^{(J)}] = R[X_j \mid j \in J] \rightarrow R[\mathbb{N}_0^{(I)}] = R[X_i \mid i \in I]$$

mit $\widehat{\psi}|_R=\operatorname{id}_R$ und $\widehat{\psi}(X_j)=X_j$ $(j\in J).$ Die Abbildung $\widehat{\psi}$ ist injektiv deswegen betrachten wir $R[X_j\mid j\in J]$ als Unterring von $R[X_i\mid i\in I]$

(b) Es gilt:

$$R[X_i \mid i \in I] = \bigcup_{J \subseteq I \text{ endl.}} R[X_j \mid j \in J]$$

d.h. jedes Polynom im Ring ist Polynom in nur endlich vielen Variablen.

Definition 3.12.

(a) Grad: $R[X] \to \mathbb{N}_0 \cup \{-\infty\}$ ist die eindeutige Abbildung mit

$$\operatorname{Grad}(f) = \operatorname{Grad}\left(\sum_{i \ge 0} r_i X^i\right) = \begin{cases} -\infty, & f = 0, \\ \max\{i \in \mathbb{N}_0 \mid r_i \ne 0\}, & f \ne 0 \end{cases}$$

- (b) Der **Leitkoeffizient** von $f \neq 0$ ist $a_{\text{Grad}(f)}$.
- (c) $f \neq 0$ heißt **normiert** $\iff a_{Grad(f)} = 1$.
- (d) Ist R = K ein Körper, so gelten außerdem

$$Grad(fg) = Grad(f) + Grad(g)$$

wobei $-\infty + n = n + -\infty = -\infty + (-\infty) = -\infty$ für $n \in \mathbb{N}_0$. Genügt: R ist Integritätsbereich.

(e) Falls R ein Körper (oder Integritätsbereich), so gilt

$$(R[X])^{\times} = \{ f \in R[X] \mid \exists g \in R[X] : fg = 1 \}$$

$$= \{ f \in R[X] \mid \operatorname{Grad}(f) = 0, \exists g \in R[X] : \operatorname{Grad}g = 0 : fg = 1 \}$$

$$= \{ f \in R \mid \exists g \in R : fg = 1 \} = R^{\times}$$

3.2 Symmetrische Polynome

Sei R ein kommutativer Ring, $n \in \mathbb{N}$ fest.

Bezeichnung. (a) Ein Monom in $R[X_1,...,X_n]$ ist ein Polynom der Form $aX^m = aX_1^{m_1} \cdot ... \cdot X_n^{m_n}$ für $a \in R \setminus \{0\}$ und $m = (m_i)_{i \in \{1,...,n\}} \in \mathbb{N}_0^n$ und X^m (falls a = 1) heißt primitives Monom.

- (b) Der (Total-)Grad des Monoms aX^m für $a \in R \setminus \{0\}$ und $m = (m_i)$ ist $|m| := \sum_i m_i$. Der (Total-)Grad von $f = \sum a_m X^m$ ist $\operatorname{Grad}(f) = \max\{|m| : a_m \neq 0\}$. $(\max(\emptyset) := -\infty)$
- (c) $f \in R[X_1, ... X_n]$ heißt homogen vom Grad $t \iff f$ ist Summe von Monomen aX^m , die alle vom Grad |m| = t sind.

Beispiel. (a) $f = X_1^3 X_2^2 X_3$ ist primitiver Monom mit Grad(f) = 11

(b) $g = X_1^3 X_2^2 + X_1 X_2^4$ ist homogen vom Grad 5

Lemma 3.13. (a) $\forall \sigma \in S_n \exists !$ Ringhomomorphismus $\widetilde{\sigma} : R[X_1, \ldots, X_n] \rightarrow R[X_1, \ldots, X_n]$ mit $\widetilde{s}|_R = \operatorname{id}_R$ und $\widetilde{\sigma}(X_i) = X_{\sigma(i)}$ für $i \in \{1, \ldots, n\}$

- (b) $\widetilde{id} = id_{R[X_1,...,X_n]}$ (für $id \in S_n$ die Eins).
- (c) $\forall \sigma, \tau \in S_n : \widetilde{\sigma \circ \tau} = \widetilde{\sigma} \circ \tau \ Ringhomomorphismen.$

Beweis. (a) $\widetilde{\sigma}$ existiert und ist eindeutig nach universeller Eigenschaft (Satz 10) für $R[X_1, \dots X_n]$.

- (b) $\alpha := \mathrm{id}_{R[X_1, \dots, X_n]}$ ist ein Ringhomomorphismus $R[X_1, \dots, X_n] \to R[X_1, \dots, X_n]$ mit $\alpha|_R = \mathrm{id}_R$ und $\alpha(X_i) = X_i \stackrel{(a)}{\Longrightarrow} \alpha = \mathrm{id}_R$.
- (c) Wende universelle Eigenschaft von $R[X_1, \dots, X_n]$ an. Wir haben:

$$\widetilde{\sigma \circ \tau}|_R \underset{\text{Def. in (a)}}{=} \mathrm{id}_R = \mathrm{id}_R \circ \mathrm{id}_R = \widetilde{\sigma}|_R \circ \widetilde{\tau}|_R = \widetilde{\sigma} \circ \widetilde{\tau}|_R$$

und

$$\widetilde{\sigma \circ \tau}(X_i) = X_{\sigma \circ \tau(i)} = X_{\sigma(\tau(i))} = \widetilde{\sigma}(X_{\tau(i)}) = \widetilde{\sigma}(\widetilde{\tau}(X_i)) = (\widetilde{\sigma} \circ \widetilde{\tau})(X_i)$$

$$\stackrel{\text{Eindeutigkeit}}{\underset{\text{in (a)}}{\Longrightarrow}} \widetilde{\sigma \circ \tau} = \widetilde{\sigma} \circ \widetilde{\tau}.$$

Bemerkung (Übung). Ist $\alpha : R \to R$ ein Ringhomomorphismus, so ist $R^{\alpha} := \{r \in R \mid \alpha(r) = r\}$ ein Unterring von R.

Korollar 3.14.
$$R[X_1,\ldots,X_n]^{S_n}:=\{f\in R[X_1,\ldots,X_n]\mid \widetilde{\sigma}(f)=f, \forall \sigma\in S_n\}=\bigcap_{\sigma\in S_n}R[X_1,\ldots,X_n]^{\widetilde{\sigma}} \text{ ist ein Unterring von }R[X_1,\ldots,X_n].$$

Definition 3.15 (Symmetrische Polynom). Die Elemente in $R[X_1, \ldots, X_n]^{S_n}$ heißen symmetrische Polynome.

Korollar 3.16. Die Abbildung

$$\widetilde{\cdot}: S_n \to \operatorname{Aut}(R[X_1, \dots, X_n]), \sigma \mapsto \widetilde{\sigma}$$

ist wohl-definiert und ein injektiver Gruppenhomomorphismus.

Beweis.

1) $\widetilde{\cdot}$ wohl-definiert: Zu zeigen $\widetilde{\sigma}$ ist Automorphismus (bijektiver Ringhomomorphismus). Dazu beachte

$$\widetilde{\sigma} \circ \widetilde{\sigma^{-1}} = \widetilde{\sigma} \circ \overline{\sigma^{-1}} = \widetilde{\mathrm{id}} = \mathrm{id}_{R[X_1, \dots, X_n]} = \dots = \widetilde{\sigma^{-1}} \circ \widetilde{\sigma}$$

folglich: $\tilde{\sigma}$ ist Ringautomorphismus.

- 2) Gruppenhomomorphismus: folgt aus 12(c)
- 3) $\sigma \mapsto \widetilde{\sigma}$ injektiv: Denn verschiedene σ, τ wirken unterschiedlich auf $\{X_1, \dots, X_n\}$

Bemerkung (Ziel von diesem Abschnitt). Explizite Beschreibung von $R[X_1, \ldots, X_n]^{S_n}$

3.3 Elementar symmetrische Polynome

Proposition. $Zu \sigma \in S_n$ erweitern $\widetilde{\sigma}$ $zu \sigma'$ Ringautomorphismus von $R[X_1, \ldots, X_n][X]$ durch

$$\sigma'|_R = \mathrm{id}_R, \sigma'(X_i) = X_{\sigma(i)} \ und \ \sigma'(X) := X$$

Behauptung:
$$g := \prod_{i=1}^{n} (X - X_i) \stackrel{!}{\in} R[X_1, \dots, X_n]^{S_n} = \underset{\ddot{U}bung}{=} R[X_1, \dots, X_n]^{S_n}[X].$$

Beweis.
$$\sigma'(g) = \prod_{i=1}^n (\sigma'(X) - \sigma'(X_i)) = \prod_{i=1}^n (X - X_{\sigma(i)}) = \prod_{i=1}^n (X - X_i) = g$$
 da $\widetilde{\sigma}$ eine Bijektion auf $\{X_1, ..., X_n\}$ definiert.

Bemerkung. Schreibe g als Polynom in X mit Koeffizienten s_i in

$$R[X_1,...,X_n] \implies g = \sum_{i=0}^n (-1)^{n-i} X^i s_{n-i}(X_1,...,X_n)$$

$$= X^{n} - s_{1}(X_{1},...,X_{n})X^{n-1}i + s_{2}(X_{1},...,X_{n})X^{n-2} \mp \cdots + (-1)^{n}s_{n}(X_{1},...,X_{n})$$

Das definiert $s_1, ..., s_n \in R[X_1, ..., X_n]^{S_n}$

Insbesondere:

- (i) $s_1, ..., s_n \in R[X_1, ..., X_n]^{S_n}$
- (ii) s_i ist homogen vom Grad i, denn g ist homogen vom Grad $n \implies \text{Koeffizient von } X^{n-i}$ in g ist homogen vom Grad i.

Übung 3.17. Es gelten:

$$s_1 = \sum_{i=1}^n X_i, \quad s_n \prod_{i=1}^n X_i$$

$$s_i(X_1, ..., X_n) = \sum_{1 \le j_1 \le j_2 \le \dots \le j_i \le n} X_{j_1} X_{j_2} \cdots X_{j_i}$$

$$(n=3, i=2 \leadsto s_2 = X_1X_2 + X_1X_3 + X_2X_3)$$

Definition 3.18. Die Polynome $s_1, ..., s_n \in R[X_1, ..., X_n]^{S_n}$ sind die elementar symmetrischen Polynome in $X_1, ..., X_n$ (homogen vom Grad 1, 2, ..., n) ($s_i = i$ -tes elementar symmetrisches Polynom)

Satz 3.19. Sei $\psi: R[Y_1, \dots, Y_n] \to R[X_1, \dots, X_n]$ der Ringhomomorphismus

$$h(Y_1, ..., Y_n) \mapsto h(s_1, ..., s_n)$$

Dann gilt

- (a) ψ ist Ringhomomorphismus mit $\psi|_R = \mathrm{id}_R$ und $\psi(Y_i) = s_i$ und $\mathrm{Bild}(\psi) \subseteq R[X_1, ..., X_n]^{S_n}$
- (b) ψ definiert einen Ringisomorphismus

$$R[Y_1,\ldots,Y_n]\to R[X_1,\ldots,X_n]^{S_n}$$

Beispiel.
$$n = 4, f = X_1^2 + X_2^2 + X_3^2 + X_4^2$$

$$(\underbrace{X_1 + \dots + X_4}_{s_1})^2 - 2(\underbrace{X_1 X_2 + X_1 X_3 + X_2 X_3 + X_1 X_4 + X_2 X_4 + X_3 X_4}_{s_2})$$

$$= s_1^2 - 2s^2 = h(s_1, s_2), h = Y_1^2 - 2Y_2$$

Wiederholung.

- (a) $R[X_1, \ldots, X_n] \subseteq R[X_1, \ldots, X_n]^{S_n}$ symmetrische Polynome.
- (b) Elementar symmetrische Polynome $s_1, \ldots, s_n \in K[X_1, \ldots, X_n]^{S_n}$ mit

$$s_i(X_1, \dots, X_n) = \sum_{1 \le j_1 < \dots < j_i \le n} \prod_{1 \le k \le i} X_{j_k} = \sum_{1 \le j_1 < \dots < j_i \le n} X_{j_1} \cdot \dots \cdot X_{j_i}$$

Beweis. (zu Satz 3.19)

Teil (a) Klar

$$\operatorname{Bild}(\psi) = \left\{ \sum_{m \in \mathbb{N}_0} \underbrace{a_m}_{\in R} \cdot \underbrace{s_1^{m_1} \cdot \ldots \cdot s_n^{m_n}}_{\text{symm. Pol.}} \right\}$$

Teil (b) benötigt Vorbereitungen.

Bemerkung. Sei R=K ein Körper, α_1,\ldots,α_n die Nullstellen von $f=X^n-\alpha_1X^{n-1}+a_2X^{n-2}\mp\cdots+(-1)^na_n\in K[X]$, dann gilt $\alpha_i=s_i(\alpha_1,\ldots,\alpha_n)$, denn: $f=(X-\alpha_1)\cdot\ldots\cdot(X-\alpha_n)$. (hatten s_i erhalten als die Koeffizienten von $(-1)^iX^{n-i}$ in $(X-X_1)\cdot\ldots\cdot(X-X_n)$)

Definition 3.20 (Lex-Ordnung).

(a) Definiere auf \mathbb{N}_0^n die Relation \leq durch $\ell = (\ell_1, \dots, \ell_n) \leq m = (m_1, \dots, m_n)$: $\iff \ell = m \text{ oder } \exists i \in \{1, \dots, n\} \text{ mit } \ell_1 = m_1, \dots \ell_{i-1} = m_{i-1}, \ell_i < m_i.$ Dies definiert eine Totalordnung auf \mathbb{N}_0^n , die lexikographische Ordnung. Schreibe $\ell < m$ für $\ell \leq m$ und $\ell \neq m$. Für primitive Monome schreibe

$$X^{\ell} \le X^m \iff \ell \le m$$

(b) Der leitgrad von $f = \sum_{m \in \mathbb{N}_0^n} a_m X^m$ ist $\operatorname{in}(f) := \max\{m \in \mathbb{N}_0^n \mid a_m \neq 0\} \in \mathbb{N}_0^n \cup \{-\infty\}$ (mit der Konvention $\operatorname{in}(0) = -\infty$) der Leitkoeffizient von $f \neq 0$ ist $a_{\operatorname{in}(f)}$.

Beispiel. in
$$\underbrace{(X_1^3 X_2^2 + X_1^4 X_3)}_{\in R[X_1, X_2, X_3]} = (4, 0, 1) \in \mathbb{N}_0^3$$

Proposition 3.21. Seien $f = \sum_{\ell \in \mathbb{N}_0^n} a_{\ell} X^{\ell}, g = \sum_{m \in \mathbb{N}_0^n} b_m X^m, \ell_0 = \text{in}(f), m_0 = \text{in}(g).$ Dann:

(a) Für $m, \ell, m', \ell' \in \mathbb{N}_0^n$ gilt

$$m > \ell, m' > \ell' \implies m + m' > \ell + \ell'$$

(gilt dabei $m \neq \ell$ oder $m' \neq \ell'$, so folgt $m + m' > \ell + \ell'$)

- (b) $\inf(f \cdot g) \leq \ell_0 + m_0$ und es gilt $\inf(f \cdot g) = \ell_0 + m_0$ falls die Leitkoeffizierten $a_{\ell_0} \cdot b_{m_0} \neq 0$.
- (c) $\operatorname{in}(f \cdot g) \leq \operatorname{max} \operatorname{in}(f), \operatorname{in}(g)$ und es gilt Gleichheit falls $\operatorname{in}(f) \neq \operatorname{in}(g)$.
- (d) $\operatorname{in}(s_i) = \underbrace{(1,\ldots,1)}_{i \ Terme} \underbrace{0,\ldots,0}_{n-i \ Terme}) =: \xi_i \in \mathbb{N}_0^n \ f \ddot{u} r \ i \in \{1,\ldots,n\}.$
- (e) ξ_1, \ldots, ξ_n sind linear unabhängig als Elemente von \mathbb{Q}^n , und also ist φ_i : $\mathbb{N}^n_0 \to \mathbb{N}^n_0, (a_i) \mapsto \sum a_i \xi_i$ injektiv und φ^{-1} ist durch die Formel (für Elemente im Bild)

$$(b_i) \mapsto (b_1 - b_2, b_2 - b_3, \dots, b_{n-1} - b_n, b_n)$$

- Beweis. (a) (Übung) Es genügt zu zeigen $m \geq \ell \implies m + m' \geq \ell + m'$ (mit $> \implies >$) genügt mit Induktion zu zeigen: $m \geq \ell \implies m + e_j \geq \ell + e_j$, $(e_j = (0, \ldots, 0, 1, 0, \ldots 0))$
- (b) $f \cdot g = (\sum a_{\ell} X^{\ell})(\sum b_m X^m) = \sum_{\ell,m} a_{\ell} b_m X^{\ell+m}$ falls $a_{\ell} b_m \neq 0$ (nur solche Terme tragen zu $f \cdot g$ bei), so folgt $\ell \leq \ell_0$ und $m \leq m_0, \, \ell_0, m_0$ die Leitkoeffizienten. $\Longrightarrow \ell + m \geq \ell_0 + m_0 \Longrightarrow \operatorname{in}(f \cdot g) \leq \ell_0 + m_0$.

Außerdem: (Koeffizient von $X^{\ell_0+m_0}=?$) gilt $\ell+m=\ell_0=m_0$, so muss wegen (a) $\ell=\ell_0$ und $m=m_0$ gelten, falls $a_\ell\neq 0$ und $b_m\neq 0\Longrightarrow$ Koeffizient von $X^{\ell_0+m_0}$ ist $a_{\ell_0}\cdot b_{m_0}$. Also in $(fg)=m_0+\ell_0$, falls $a_{\ell_0}b_{m_0}\neq 0$.

- (c) $f+g=\sum_m(a_m+b_m)X^m$: Im Fall $a_m+b_m\neq 0$, so folgt $a_m\neq 0$ oder $b_m\neq 0 \implies m\leq \ell_0$ oder $m\leq m_0 \implies m\leq \max\{\ell_0,m_0\}$. Für Zusatz: Gelte o.E. $\ell_0< m_0$, dann ist der Koeffizient von X^{m_0} gleich $a_{m_0}+b_{m_0}\neq 0$, wobei $a_{m_0}=0$ wegen $m_0\geq \inf(f)$, und $b_{m_0}\neq 0$, dann $m_0=\inf(f)$. Also folgt $\inf(f+g)=\max\{\ell_0,m_0\}$.
- (d) $s_i = \sum_{1 \leq j_1 < j_2 < \dots < j_i \leq n} X_{j_1} \cdot \dots \cdot X_{j_i}$ größtes Monom (mit Koeffizient $\neq 0$) in der Summe ist $X_1 \cdot \dots \cdot X_i \implies \operatorname{in}(s_i) = (1, \dots, 1, 0, \dots 0) = (\delta_{j \leq i})_{1 \leq j \leq n}$.
- (e) (Übung) zur linearen Algebra, φ hat Darstellungsmatrix

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \end{pmatrix}$$

und φ^{-1}

$$\begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \\ & & & & 1 \end{pmatrix} : \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_{n-1} \\ t_n \end{pmatrix} \mapsto \begin{pmatrix} t_1 - t_2 \\ t_2 - t_3 \\ \vdots \\ t_{n-1} - t_n \\ t_n \end{pmatrix}. \qquad \Box$$

Beweis von Satz 3.19.

Definition 3.22. Die Diskriminante von $f(X) = X^n - a_1 X^{n-1} + a_2 X^{n-2} \mp \cdots + (-1)^n a_n \in R[T]$ ist $D(f) := d_n(a_1, \ldots, a_n)$ Polynom in n-Variablen über R.

Bedeutung. Sei R ein Körper und seien $\alpha_1, \ldots \alpha_n$ die Nullstellen von f, so dass $\alpha_i = s_i(\alpha_1, \ldots, \alpha_n)$, dann folgt:

$$D(f) = d_n(s_1(\alpha_1, \dots, \alpha_n), \dots, s_n(\alpha_1, \dots, \alpha_n))$$
$$= D_n(\alpha_1, \dots, \alpha_n) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

d.h. D(f) erkennt ob merhfache Nullstelle vorliegt. Jedes symmetrische Polynom in den Nullstellen von f lässt sich schreiben als ein Polynom in den Koeffizienten von f.

Wiederholung 3.23. Sei R ein kommutativer Ring (im Weiteren), $I \subseteq R$ ist ein Ideal von R, falls $RI \subseteq I$, $I + I \subseteq I$.

Notation. Für $a \in R$ sei (a) = Ra das Hauptideal in R, Erzeuger a. Für $a_1, \ldots, a_n \in R$ sei $(a_1, \ldots, a_n) = Ra_1 + Ra_2 + \ldots + Ra_n \subseteq R$ Ideal.

Bemerkung (Übung). Für $I \subseteq R$ ein Ideal: $1 \in I \iff I = R$, für $S \subseteq R$ Unterring: $S = R \iff RS \subseteq S$.

Proposition 3.24. Sei $\varphi: R \to R'$ ein Ringhomomorphismus, dann gelten:

- (i) Ist $I' \subseteq R'$ ein Ideal, so ist $\varphi^{-1}(I') \subseteq R$ ein Ideal.
- (ii) Kern $\varphi = \varphi^{-1}(\{0\}) \subseteq R$ ist ein Ideal.
- (iii) $\operatorname{Bild}(\varphi) = \{ \varphi(r) \mid r \in R \} \subseteq R' \text{ ist ein Unterring.}$
- (iv) Ist φ surjektiv und $I \subseteq R$ ein Ideal, so ist $\varphi(I) \subseteq R'$ ein Ideal.

Beweis. nur (iv)

(iv)
$$\varphi(I) + \varphi(I) = \{ \underbrace{\varphi(a) + \varphi(b)}_{\varphi(a+b)} \mid a, b \in I \} = \varphi(I+I) \subseteq_{I+I \subseteq I} \varphi(I)$$

(benötigt nicht, dass φ surjektiv)

$$R' \cdot \varphi(I) \mathop{=}_{\varphi \text{ surj.}} \varphi(R) \varphi(I) = \{ \varphi(r) \varphi(a) \mid r \in R, a \in I \} = \varphi(RI) \mathop{\subseteq}_{RI \subset I} \varphi(I)$$

Also
$$\varphi(I) \subseteq R'$$
 ist ein Ideal.

Definition 3.25 (Charakteristik). Die Charakteristik von R ist

$$\operatorname{char}(R) := \begin{cases} 0, & n \cdot 1_R \neq 0_R, \forall n \in N \\ \min\{n \in \mathbb{N} \mid n \cdot 1_R = 0_R\}, & \exists n \in \mathbb{N} : n \cdot 1_R = 0_R \end{cases}$$

Beispiel.

$$\operatorname{char}(\mathbb{Z}) = 0, \operatorname{char}(\mathbb{Z}/_{nZ}) = n, n \in \mathbb{N}$$

Bemerkung (Übung). (a) Sei ord (1_R) die Ordnung von 1_R in $(R, 0_R, +)$, dann

$$\operatorname{char}(R) = \begin{cases} \operatorname{ord}(1_R), & \operatorname{ord}(1_R) \neq \infty \\ 0, & \operatorname{ord}(1_R) = \infty \end{cases}$$

(b) Sei $\varphi: \mathbb{Z} \to R$ der eindeutige Ringhomomorphismus

$$\varphi(1_{\mathbb{Z}}) := 1_R \implies \varphi(n_{\mathbb{Z}}) = n \cdot 1_R, \forall n \in \mathbb{Z}$$

Dann gilt: $\operatorname{char}(R)$ ist der (eindeutige) Erzeuger in \mathbb{N} von $\operatorname{Kern}(\varphi) \subseteq \mathbb{Z}$ (ein Ideal) ("Grund für die Definition von $\operatorname{char}(R)$ ")

Proposition 3.26. Ist K ein Körper, so ist char K Null oder eine Primzahl.

Beweis. Annahme: char $K \in \mathbb{N}$ und ist keine Primzahl $\implies \exists n, m \in \mathbb{N}$ mit n > 1, m > 1, sodass char $K = n \cdot m > \max\{n, m\}$

Definition der Charakteristik gibt:

$$n \cdot m \cdot 1_K = 0_K \implies \underbrace{n \cdot 1_K}_{\neq 0 \ (*)} \cdot \underbrace{m \cdot 1_K}_{\neq 0 \ (*)} = 0$$

(*) da $n,m < n \cdot m = \operatorname{char} K$. Da K ein Körper $\implies K$ ist nullteilerfrei $\implies n \cdot 1_K = 0$ oder $m \cdot 1_K = 0$. Widerspruch zu (*).

Beispiel (Übung). Sei R ein Ring mit char(R) = p eine Primzahl, dann gelten:

- (a) $\varphi_R = R \to R, a \mapsto a^p$ ist ein Ringhomomorphismus.
- (b) Es gilt $\varphi_{\mathbb{F}_p} = \mathrm{id}_{\mathbb{F}_p}$, wobei $\mathbb{F}_p = \mathbb{Z}_{p\mathbb{Z}}$, d.h. $\forall a \in \mathbb{F}_p$ gilt $a^p = a$.

Wiederholung. Für $I \subseteq R$ ein Ideal, hatten Faktorring $R_{/I}$ und Faktorabbildung $\pi: R \to R_{/I}, r \mapsto r + I$ (vgl. Satz 1.49)

Satz 3.27 (Homomorphiesatz für Ringe). Sei $\varphi : R \to R'$ ein Ringhomomorphismus und $I \subseteq \operatorname{Kern}(\varphi)$ ein Ideal von R, dann:

(a) $\exists !$ Ringhomomorphismus $\overline{\varphi}: R_{/I} \to R'$ mit $\overline{\varphi}(r+I) = \varphi(r)$, d.h. folgendes Diagramm kommutiert:

(b) Ist $I = \text{Kern}(\varphi)$, so definiert $\overline{\varphi}$ aus (a) einen Ringisomorphismus

$$R_{\operatorname{Kern}(\varphi)} \to \operatorname{Bild}(\varphi) \subseteq R', r + \operatorname{Kern}(\varphi) \mapsto \varphi(r)$$

Beweis. (Übung) analog zum Beweis vom Homomorphiesatz für Gruppen (Satz 1.45). $\hfill\Box$

Satz 3.28 (Isomorphiesatz für Ringe). Sei $\varphi: R \to R'$ ein surjektiver Ringhomomorphismus $\left(R' \cong R/_{\operatorname{Kern}(\varphi)}\right)$, seien $X = \{I \subseteq R \ Ideal \mid \operatorname{Kern}(\varphi) \subseteq I\}, X' = \{I' \subseteq R' \mid I' \ Ideal \}$. Dann gelten:

- (a) Die Abbildung $X' \to X, I' \to \varphi^{-1}(I')$ ist eine Bijektion mit Umkehrabbildung $X \to X', I \mapsto \varphi(I)$.
- (b) Für $I \subseteq R'$ einIdeal und $I = \varphi^{-1}(I')$ ist die Abbildung

$$R_{I} \rightarrow R_{I'}, r + I \mapsto \varphi(r) + I'$$

ein Ringisomorphismus.

Beweis. (Übung) analog zum Beweis vom 2. Isomorphiesatz für Gruppen (Satz 1.51). $\hfill\Box$

Notation. Für $I, J \subseteq R$ sei $I \cdot J = \{ \sum_i a_i b_i \mid a_i \in I, b_i \in J \}$, d.h. (Übung) $I \cdot J$ ist das kleinste Ideal in R, das $\{ a \cdot b \mid a \in I, b \in J \}$ enthält.

Satz 3.29 (Chinesischer Restsatz). Seien $I_1, \ldots, I_t \subseteq R$ Ideale, die "paarweise Koprim" sind, d.h. $I_i + I_j = R$ für $i \neq j \in \{1, \ldots, t\}$. Dann gelten:

- (a) I_i und $\prod_{i \neq i \in \{1,...,t\}} I_j$ sind Koprim.
- (b) $I_1 \cdot \ldots \cdot I_t = \bigcap_{i \in \{1,\ldots,t\}} I_i$.
- (c) Die Abbildung

$$R_{\prod_{i \in \{1, \dots, t\}} I_i} = R_{I_1 \cdot \dots \cdot I_t} \xrightarrow{\cong} \underset{i \in \{1, \dots, t\}}{\times} R_{I_i} = R_{I_1} \times \dots \times R_{I_t}$$

$$r + I_1 \cdot \dots I_t \mapsto (r + I_1, \dots r + I_t)$$

ist wohl-definiert und ein Ringisomorphismus. Also gilt

$$R_{/\prod_{i\in\{1,\ldots,t\}}I_i}\cong \underset{i\in\{1,\ldots,t\}}{\textstyle \times}R_{/I_i}$$

 $Beweis.\,$ In der LA2 für R ein Hauptidealring, allgemein: siehe Jantzen-Schwermer, Satz III.3.10 $\,\,\Box\,\,$

3.4 Ringe von Brüchen/Lokalisierung

Definition 3.30. Eine Teilmenge $S \subseteq R$ heißt multiplikativ abgeschlossen \iff S ist ein Untermonoid von $(R, 1, \cdot)$.

Beispiel. (i) $S = \mathbb{Z} \setminus \{0\} \subseteq \mathbb{Z}$ ist multiplikativ abgeschlossen.

- (ii) $S^p = \mathbb{Z} \setminus p\mathbb{Z} \subseteq \mathbb{Z}$ ist multiplikativ abgeschlossen.
- (iii) $S_p = \{p^n \mid n \in \mathbb{N}_0\} \subseteq \mathbb{Z}$ ist multiplikativ abgeschlossen. Es gilt $S = S^P \cdot S_p$

Definition 3.31. Definiere eine Äquivalenzrelation auf $R \times S$ ($S \subseteq R$ multiplikativ abgeschlossen) durch

$$(r,s) \sim (r',s') : \iff \exists t \in S : t(rs'-r's)$$

Denn:

 \sim reflexiv: $(r,s) \sim r, s, da \ 1 \cdot (rs - rs) = 0.$

 \sim symmetrisch: Gelte $(r,s) \sim (r',s')$, d.h. $\exists t \in S : t(rs'-r's) = 0 \implies$ $t(r's - rs') = 0 \implies (r', s') \sim (r, s).$

 \sim transitiv: Gelte $(r,s)\sim(r',s')$ und $(r',s')\sim(r'',s''),$ d.h. $\exists t,t'\in S:t(rs'-r's)=0$ und t'(r's''-r''s')=0. Gemeinsamer Nenner tt'ss's''

$$\implies tt's''(rs' - r's) = 0, tt's(r's'' - r''s) = 0$$

$$\implies tt's''rs' - tt'sr''s' = 0 = tt's'(rs'' - r''s) \implies (r,s) \sim (r'',s'')$$

Schreibe: $\frac{r}{s}$ für die Äquivalenzklasse von (r,s) und $S^{-1}R$ für $R \times S/_{\sim}$.

Beachte: $\frac{r}{s} = \frac{r'}{s'} \iff \exists t \in S : \frac{ts'r}{tss'} = \frac{tsr'}{tss'}$ gilt ts'r = tsr', beachte zudem $\frac{r}{s} = \frac{tr}{ts}$, für $t \in S$.

Satz 3.32. Sei $S \subseteq R$ multiplikativ abgeschlossen, dann:

(a) Die Verknüpfungen $+, \cdot$ auf $S^{-1}R$ definiert durch

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}, \quad \frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$$

sind wohl-definiert

- (b) $S^{-1}R = (S^{-1}R, \frac{0}{1}, \frac{1}{1}, +, \cdot)$ ist ein kommutativer Ring.
- (c) Die Lokalisierung von R an S

$$\varphi: R \to S^{-1}R, r \mapsto \frac{r}{1}$$

ist ein Ringhomomorphismus. (Klar aus dem Definition von + und ·)

(d) (Universelle Eigenschaft) Ist $\psi: R \to R'$ ein Ringhomomorphismus, sodass $\psi(S) \leq (R')^{\times}$, so existiert ein eindeutiger Ringhomomorphismus ψ : $S^{-1}R \to R' \text{ mit } \widehat{\psi}|_{R} = \psi, \text{ n\"{a}mlich } \widehat{\psi}(\frac{r}{s}) = \psi(r) \cdot \psi(s)^{-1}.$

Beispiel. $(\mathbb{Z} \setminus \{0\})^{-1}\mathbb{Z} = \mathbb{Q}, \mathbb{Z}^{-1}\mathbb{Z} = 0$ -Ring

(a) + und · sind wohldefiniert: Gelte $\frac{r}{s} = \frac{a}{b}$ und $\frac{r'}{s'} = \frac{a'}{b'}$ mit $r, r', a, a' \in \mathbb{R}$ $R, s, s', b, b' \in S$, zu zeigen ist:

$$\frac{rs' + r's}{ss'} = \frac{ab' + a'b}{bb'}$$

Voraussetzung: $\exists t, t' \in S : t(rb - as) = 0, t'(r'b' - a's') = 0$. Gemeinsamer Nenner: ss'bb'tt', also

$$tt'b's'(rb-as) = 0, \quad tt'sb(r's'-a's) = 0$$

$$\implies tt'b's'rb - tt'b's'as + tt'sbr'b' - tt'sba's' = 0$$

$$= tt'b'b(rs' + r's) - tt'ss'(ab' - a'b) \implies \frac{rs' + r's}{ss'} = \frac{ab' + a'b}{bb'}$$

(b) - (d) Siehe Jantzen Schwermer III.4.2 oder Übung.

Definition 3.33 (Nullteiler). (a) $x \in R$ heißt Nullteiler $\iff \exists y \in R \setminus \{0\}$ mit xy = 0

(b) R heißt Integritätsbereich (IB) \iff $0_R \neq 1_R$ und 0_R ist der einzige Nullteiler.

Bemerkung 3.34. R ist Itdentitätsbereich \iff man darf in R kürzen und $0_R \neq 1_R$

$$\iff \forall a,b,c \in R: a \neq 0: a \cdot b = a \cdot c \implies b = c$$
Übung

Denn $ab = ac \iff a(b-c) = 0$

Beispiel. (i) Jeder Körper ist ein Integritätsbereich.

- (ii) $\mathbb{Z}, K[X]$ sind Integritätsbereich.
- (iii) Jeder Unterring eines Körpers ist ein Integritätsbereich.
- (iv) Jeder Unterring eines Integritätsbereichs ist ein Integritätsbereich.

Lemma 3.35. Sei $S \subseteq R$ multiplikativ abgeschlossen, dann gilt: enthält S keine Nullteiler, so ist

$$\varphi: R \hookrightarrow S^{-1}R, r \mapsto \frac{r}{1}$$

injektiv.

Beweis. Für $r \in R: \varphi(r) = 0 \iff \frac{r}{1} = \frac{0}{1} \iff \exists t \in S: t(r \cdot 1 - 0 \cdot 1) = 0 = tr,$ da S nullteilerfrei $\iff r = 0$.

Korollar 3.36. Sei R ein Integritätsbereich, dann:

- (a) $S = R \setminus \{0\}$ multiplikativ abgeschlossen.
- (b) $S^{-1}R$ ist ein Körper.
- (c) $R \to S^{-1}R$ ist injektiv (also ist R Unterring des Körpers $S^{-1}R$)

Beweis. (a) Klar, $a, b \neq 0 \implies a \cdot b \neq 0$ (a, b keine Nullteiler)

- (b) Sei $\frac{r}{s} \in S^{-1}R \setminus \{\frac{0}{1}\}$, Behauptung: $r \neq 0$ (also $r \in S$) $\Longrightarrow \frac{s}{r}$ ist Inverses von $\frac{r}{s}$ Beweis der Behauptung: Angenommen $r = 0 \Longrightarrow \frac{0}{s} \neq \frac{0}{1}$, Widerspruch, da $\frac{0}{1} = \frac{0}{1}$ (1 · (0 · 1 0 · s) = 0)
- (c) Folgt aus Lemma 3.35.

Definition 3.37 (Quotientenkörper). $S^{-1}R = \text{Quot}(R)$ heißt Quotientenkörper von R.

Bemerkung 3.38. Jeder Integritätsbereich ist Unterring eines Körpers (seinem Quotientenkörpers).

3.5 Spezielle Ideale

Definition 3.39. Sei $I \subseteq R$ ein echtes Ideal (d.h. $I \subseteq R$), dann

(a) I ist **Primideal** $\iff \forall a, b \in R$ gilt:

$$a \cdot b \in I \implies a \in I \lor b \in I$$

(b) I heißt maximales Ideal $\iff \forall J \subsetneq R$ Ideale mit $I \subseteq J$ gilt I = J

Proposition 3.40. *Seien* $P, M \subseteq R$ *Ideale, dann:*

- (a) P ist ein Primideal $\iff R_P$ ist ein Integritätsbereich.
- (b) R ist ein Körper \iff $\{0\}$ und R sind die einzigen Ideale von R und $0_R \neq 1_R$.
- (c) M ist ein maximales $Ideal \iff R_{/M}$ ist ein Körper.
- (d) Jedes maximale Ideal ist ein Primideal.

Remeis

(a) P Primideal $\implies P \subsetneq R$ und $\forall a,b \in R: a \cdot b \in P \implies a \in P \lor b \in P \implies R/P \neq 0$ -Ring und $\forall a,b \in R:$

$$(a+P)(b+P) \subseteq P \implies a+P = P \lor b+P = P$$

$$\overline{a} \cdot \overline{b} = 0 \implies \overline{a} = 0 \lor \overline{b} = 0$$

- $\implies R_P$ ist ein Integritätsbereich. Man kann auch "rückwarts laufen" \implies die Äquivalenz in (a).
- (b) Übung.
- (c) Folgt aus (b) und dem Isomorphiesatz für Ringe. (der postuliert Bijektion : {Ideale $J \subseteq R \mid M \subseteq J \subseteq R$ } und {Ideale $\overline{J} \subseteq R/M \mid \{\overline{0}\} \subseteq \overline{J} \subseteq R/M\}$).
- (d) Folgt aus (c) und (a), da Körper Integritätsbereiche sind.

Beispiel 3.41. (a) Ist R ein Integritätsbereich und kein Körper, so ist $\{0\}$ ein Primideal, aber nicht maximal.

(b) In R = K[X, Y] sind $\{0\} \subseteq X \subseteq (X, Y) \subseteq K$ Primideal.

Wiederholung (Grundlagen). Eine Relation \leq auf einer Menge M heißt [Halbordnung] $\iff \leq$ ist reflexiv, transitiv und antisymmetrisch. (\leq antisymmetrisch bedeutet: $x \leq y \land y \leq x \implies x = y$). Eine Halbordnung heißt **Totalordnung** $\iff \forall x,y \in M: x \leq y \lor y \leq x$.

Definition 3.42. Sei $(M \leq)$ eine halbgeordnete Menge.

(a) Eine Teilmenge $N\subseteq M$ heißt **Kette** \iff $(N,\leq|_{N\times N})$ ist eine Totalordnung.

- (b) Eine Teilmenge $P \subseteq M$ besitzt eine obere Schranke (in M) $\iff \exists m \in M$, sodass $\forall p \in P : p \leq m$.
- (c) $m \in M$ heißt maximales Element $\iff \nexists m' \in M : m' > m$
- **Beispiel.** (a) Ist M eine beliebige Menge und $\mathcal{P}(M)$ eine Potenzmenge, so ist $(\mathcal{P}(M), \subseteq)$ eine Halbordnung. M ist obere Schranke für jede Teilmenge von $\mathcal{P}(M)$.
- (b) \mathbb{N}_0 besitzt keine obere Schranke.

Wir betrachten nun die folgenden beiden Axiome der axiomatischen Mengenlehre:

Axiom (Zorn's Lemma). Sei (M, \leq) eine Halbordnung $(M \neq \emptyset)$. Besitzt jede Kette in M eine obere Schranke, so besitzt M ein maximales Element. Dies nehmen wir als Axiom an.

Axiom (Auswahlaxiom). Ist I eine Menge und $(A_i)_{i\in I}$ eine Familie von nichtleeren Mengen (indiziert mit I), so \exists Funktion $f: I \to \bigcup_{i\in I} A_i$, mit $f(i) \in A_i$.

Satz (Halmos, Naive Set Theory, 62-65). Zorn's Lemma $(\forall (M, \leq))$ und das Auswahlaxiom $(\forall I, \forall (A_i)_{i \in I})$ sind äquivalent.

Satz 3.43. Sei $I \subseteq R$ ein echtes Ideal, dann \exists maximales Ideal $M \subsetneq R$ mit $I \subseteq M$. Insbesondere hat R maximale Ideale (Satz für I = (0))

Beweis. Sei X die Menge aller Ideale $J \subsetneq R$ mit $I \subseteq J$. Wegen $I \in X$ gilt $X \neq \emptyset$. (X, \subseteq) ist halbgeordnete Menge.

Behauptung: Zorn's Lemma ist anwendbar.

Denn: Sei $X_0 \subseteq X$ eine Kette (o.E. $X_0 \neq 0$). Definiere $J_{\infty} := \bigcup_{J \in X_0} J$.

Zu zeigen: $J_{\infty} \in X \implies J_{\infty}$ ist obere Schranke von X_0 . Klar ist $I \subseteq J_{\infty}$ und $1 \notin J_{\infty}$ ($\implies J_{\infty} \subseteq R$)

Zu zeigen: J_{∞} ist ein Ideal. Seien $a, b \in J_{\infty}$ und $r \in R$. Nach Definition von $J_{\infty} \exists J, J' \in X_0$ mit $a \in J, b \in J'$. Nun ist aber X_0 totalgeordnet unter \subseteq . D.h. $J \subseteq J'$ oder $J' \subseteq J$. o.E. $J' \subseteq J \implies a, b \in J \implies a + b, r \cdot a \in J \implies a + b, ra \in J_{\infty}$, da $J \subseteq J_{\infty}$, damit ist die Behauptung gezeigt.

Sei M ein maximales Element von X. Dann ist M ein maximales Ideal von R (mit $I \subseteq M$) sonst $\exists J'' \subsetneq R$ ideal mit $M \subsetneq J''$, Widerspruch zu M maximales Element in X.

Übung. (Plenarübung 3) Zorn's Lemma ⇒ jeder Vektorraum hat eine Basis.

3.6 Teilbarkeit in Integritätsbereichen

Definition 3.44. Sei bis auf Weiteres R ein Integritätsbereich, $a, b \in R$.

- (a) a ist Teiler von b (a teilt b, $a \mid b$): $\iff \exists c \in R : a \cdot c = b$.
- (b) $a, b \text{ sind assoziiert } (a \simeq b) : \iff \exists c \in R^{\times} : a \cdot c = b.$
- (c) a heißt irreduzibel (bzw. unzerlegbar) : $\iff a \in R \setminus (R^{\times} \cup \{0\})$ und $\forall c \in R : c \mid a \implies c \simeq a \lor c \simeq 1$.

(d) a heißt Primelement : $\iff a \in R \setminus (R^{\times} \cup \{0\}) \text{ und } \forall b, c \in R : a \mid bc \implies a \mid b \vee a \mid c.$

Bemerkung 3.45 (Übung).

- (a) $a \mid b \iff (b) \subseteq (a)$.
- (b) $a \simeq b \iff a \mid b \land b \mid a \iff (a) = (b)$ und \simeq ist eine Äquivalenzrelation. ("denn:" $(R^{\times}, 1, \cdot)$ ist eine Gruppe).
- (c) $Ra = (a) = (0) \iff a = 0$. $Ra = (1) \iff a \in R^{\times} \iff a \simeq 1$
- (d) a Primelement \iff (a) ist ein Primideal.
- (e) a ist irreduzibel \iff $(0) \subsetneq (a) \subsetneq R$ und $\nexists b \in R : (a) \subsetneq (b) \subsetneq R$. (d.h. (a) ist maximal unter den Hauptidealen) und $a \in R \setminus (R^{\times} \cup \{0\})$ ist reduzibel $\iff \exists b, c \in R \setminus (R^{\times} \cup \{0\}) : a = b \cdot c \iff \exists b, c \in R : a = b \cdot c$ und $(a) \subsetneq (b), (c) \subsetneq R$.
- (f) a Primelement \implies a ist irreduzibel.

Beweis zu (f). Annahme: a ist reduzibel. Nach letzte Formulierung von (c) $\exists b, c \in R : a = b \cdot c \land (a) \subsetneq (b), (c) \subsetneq R \implies \text{in } R/(a) \text{ gilt } \overline{0} = \overline{a} = \overline{b} \cdot \overline{c}$ und $\overline{0} \neq \overline{b}, \overline{c} \implies R/(a)$ kein Integritätsbereich \implies (a) kein Primideal, Widerspruch zu (d), da a Primelement.

Definition 3.46 (Hauptidealring). Ein Integritätsbereich heißt Hauptidealring (HI-Ring), wenn jedes Ideal ein Hauptideal ist.

Definition 3.47. Ein Integritätsbereich R heißt **euklidischer Ring**, wenn $\exists \lambda : R \setminus \{0\} \to \mathbb{N}_0$, sodass gilt:

$$\forall a, b \in R \exists q, r \in R : a = qb + r, (r = 0 \lor \lambda(r) < \lambda(b))$$
 (*)

Bezeichnung.

- (a) (*) heißt Division mit Rest.
- (b) λ heißt euklidische Funktion.

Beispiel 3.48. (a) \mathbb{Z} ist ein euklidischer Ring mit

$$\lambda: |\cdot|: \mathbb{Z} \setminus \{0\} \to \mathbb{N}_0, n \mapsto |n|$$

(b) K[X] ist ein euklidischer Ring mit

$$\lambda = \operatorname{Grad}: K[X] \setminus \{0\} \to \mathbb{N}_0, f \mapsto \operatorname{Grad} f$$

Proposition 3.49. Ist R ein euklidischer $Ringe \implies R$ ist ein Hauptidealring.

Beweis. Sei $I \neq \{0\}$ ein Ideal. Sei $a \in I \setminus \{0\}$ ein Element, sodass

$$\lambda(a) = \min\{\lambda(b) \mid b \in I \setminus \{0\}\} \subseteq \mathbb{N}_0$$

Behauptung: I = (a) $(I \supseteq klar, da \ a \in I)$.

Dazu: Sei $b \in I$ beliebig. Wende Division mit Rest an

$$b = qa + r, \quad r = 0 \lor \lambda(r) < \lambda(a)$$

$$\implies r = b - qa \in I - I \subseteq I \implies b = qa \in (a).$$

Proposition 3.50. Sei R ein Hauptidealring und $a \in R \setminus (R^{\times} \cup \{0\})$, dann sind äquivalent:

- (i) a irreduzibel.
- (ii) a Primelement.
- (iii) (a) ist Primideal.
- (iv) (a) ist maximales Ideal.
- (v) $R_{(a)}$ ist ein Körper.

Beweis. • (iv) \iff (v) folgt aus Bemerkung 40(c)

- (i) \implies (iv) folgt aus Bemerkung 45(e) (a irreduzibel \implies (a) ist maximal unter Hauptidealen)
- (iv) \implies (iii) folgt aus Bemerkung 40(d)
- (iii) \implies (ii) folgt aus Bemerkung 45(d)
- (ii) \implies (i) folgt aus Bemerkung 45(f)

Definition 3.51. Seien $a, b \in R$

(a) $d \in R$ heißt ggT (**größter gemeinsamer Teiler**) von a, b, wenn $d \mid a, d \mid b$ und $\forall c \in R : c \mid a, c \mid b \implies c \mid d$.

- (b) $d \in R$ heißt kgV (**kleinstes gemeinsames Vielfaches**) von a, b, wenn $a \mid d, b \mid d$ und $\forall c \in R : a \mid c, b \mid c \implies d \mid c$.
- (c) a, b heißen **teilerfremd**, wenn $ggT(a, b) \simeq 1$.

Bemerkung (Übung). ggT und kgV sind (sofern sie existieren) eindeutig bis auf Assoziiertheit.

Notation. $d \simeq ggT(a, b)$ bedeutet d ist ggT von a, b. $d \simeq kgV(a, b)$ bedeutet d ist kgV von a, b.

Konveniton 3.52. Sei $K[X]_+ = \{f \in K[X] \setminus \{0\} \mid f \text{ normiert}\} \cup \{0\}$. In $\left\{ \begin{matrix} \mathbb{Z} \\ K[X] \end{matrix} \right\}$ ist jedes Element zu einem eindeutigen Element in $\left\{ \begin{matrix} \mathbb{N}_0 \\ K[X]_+ \end{matrix} \right\}$ assoziiert. Für $f,g \in \left\{ \begin{matrix} \mathbb{Z} \\ K[X] \end{matrix} \right\}$ schreibe $d = \operatorname{ggT}(f,g)$ bzw. $d = \operatorname{kgV}(f,g)$ $\iff d \simeq \operatorname{ggT}(f,g)$ bzw. $d \simeq \operatorname{kgV}(f,g)$ und $d \in \left\{ \begin{matrix} \mathbb{N}_0 \\ K[X]_+ \end{matrix} \right\}$.

Satz 3.53. Sei R ein Hauptidealring, dann gelten für $a, b, c \in R$:

- (a) (i) $c \simeq ggT(a, b) \iff (ii)$ (c) = (a) + (b)
- (b) (i) $c = \text{kgV}(a, b) \iff (ii)$ $(c) = (a) \cap (b)$
- (c) ggT(a, b) und kgV(a, b) existieren $\forall a, b \in R$
- (d) Es sind Äquivalent: (i) $ggT(a,b) \simeq 1$ (a, b teilerfremd) \iff (ii) (a) + (b) = R \iff (iii) $\exists \alpha, \beta \in R : \alpha a + \beta b = 1$

Beweis. (Übung)
$$\Box$$

Bemerkung. (a) Hauptidealringe haben die Bezout-Eigenschaft, d.h. zu $a, b \in R \exists \alpha, \beta \in R : \alpha\alpha + \beta b \simeq ggT(a, b)$.

(b) In euklidischen Ringen kann man den ggT mit dem euklidischen Algorithmus berechnen und α, β wie in (a) mit dem erweiterten euklidischen Algorithmus.

Satz/Definition 3.54. Für einen Integritätsbereich R sind äquivalent:

- (i) $\forall a \in R \setminus (R^{\times} \cup \{0\}) \exists t \in \mathbb{N} \exists Primelemente p_1, \dots, p_t \in R mit a \simeq p_1 \cdot \dots \cdot p_t$
- (ii) $\forall a \in R \setminus (R^{\times} \cup \{0\}) \exists t \in \mathbb{N} \exists irreduzible Elemente \ p_1, \ldots, p_t \in R \ mit \ a \simeq p_1 \cdot \ldots \cdot p_t \ und \ diese \ Darstellung \ ist \ eindeutig \ bis \ auf \ Indexpermutation \ und \ Assoziiertheit, \ d.h. \ gilt \ a \simeq q_1 \cdot \ldots \cdot q_s \ mit \ q_1, \ldots, q_s \ irred., \ so \ gilt \ s = t \ und \ nach \ Indexpermutation \ q_i \simeq p_i \ für \ i = 1, \ldots, t.$

Ein Integritätsbereich, der (i) und (ii) erfüllt heißt faktorieller Ring (oder EPZ-Ring: Ring mit eindeutiger Primfaktorzerlgung)

Bemerkung.

- (a) (i) \Longrightarrow irred. Elemente in R sind Primelemente. Denn: Sei q irred. in R, schreibe Faktorisierung wie in (i) für q, d.h. $q \simeq p_1 \cdot \ldots \cdot p_t \underset{q \text{ irred.}}{\Longrightarrow} t = 1$ also $q \simeq p_1$. Primelement.
- (b) In (b) ist R beliebiger Integritätsbereich (so zwigt man mit Induktion) Ist p ein Primelement in R und ein Teiler von $a_1 \cdot \ldots \cdot a_t$ (mit $a_i \in R$), so $\exists i \in \{1, \ldots, t\}$ mit $p|a_i$.
- (c) Für R wie in 54 ist R faktoriell, so ist die Länge r einer Primfaktorzerlgung $r \simeq p_1 \cdot \ldots \cdot p_t$ (p_i prim) von $r \in R \setminus \{0\}$ unabhängig von der Faktorisierung (vgl (ii)). Schreibe $r(r) \in \mathbb{N}_0$ für diese Länge.

Beweis. (von Satz 54)

(i) \implies (ii): Existenz der Faktorisierung in (ii) ist klar nach (i), da Primelemente irreduzibel sind.

Eindeutigkeit: Gelte $p_1 \cdot \ldots \cdot p_t \stackrel{(*)}{\simeq} q_1 \cdot \ldots \cdot q_t, s \in \mathbb{N}, p_i$ prim, q_i irred. Zeige mit Induktion über t: s = t und nach Indexpermutation $q_i \simeq p_i$

• t = 1: $p_1 \simeq q_1 \cdot \ldots \cdot q_s \implies s = 1$ (p_1 prim, also irred.)

• $t-1 \rightarrow t$: (*) und Bemerkung (b) $\Longrightarrow \exists j \in \{1, \ldots, s\}$ mit $p_t \mid q_j$, o.E. j=s (Umindizieren) und also $p_t \simeq q_s$ (q_s irreduzibel). teile beide Seiten durch p_t

$$p_1 \cdot \ldots \cdot p_{t-1} \simeq q_1 \cdot \ldots \cdot q_{s-1} \underbrace{u}_{\in R^{\times}} \simeq q_1 \cdot \ldots \cdot q_{s-1}$$

Nun: wende Induktionsvoraussetzung an. $\implies s-1=t-1$ (also s=t) und nach Indexpermutation: $q_i \simeq p_i$ für $i=\{1,\ldots,t-1\}$

(ii) \implies (i): Zeige irred. Elemente in R sind Primelemente. Sei also $q \in R$ irreduzibel. Seien weiter $a,b \in R$, sodass $q \mid ab$.

Zu zeigen: $q \mid a$ oder $q \mid b$: o.E. $a, b \neq 0$ (sonst $q \mid a \lor q \mid b$), o.E. $a, b \notin R^{\times}$, ist z.B. $a \in R^{\times}$, so folgt aus $q \mid ab$ direkt $q \mid b$. Sei $c \in R$ mit qc = ab. Schreibe c, a, b einer Faktorisierung wie in (ii) geg.

$$a \simeq p_1 \cdot \ldots \cdot p_t, \quad b \simeq q_1 \cdot \ldots \cdot q_s, \quad c \simeq r_1 \cdot \ldots \cdot r_u$$

 $(p_i, q_j, r_k \text{ irred. } t, s \in \mathbb{N}, u \in \mathbb{N}_0)$

$$qr_1 \cdot \ldots \cdot r_u \simeq p_1 \cdot \ldots \cdot p_t \cdot q_1 \cdot \ldots \cdot q_s$$

Wende Eindeutigkeitsaussage von (ii), um zu folgen:

$$q \simeq p_i, i \in \{1, \ldots, t\} \text{ oder } q \simeq q_i, j \in \{1, \ldots, s\} \implies q \mid a \text{ oder } q \mid b. \quad \Box$$

Korollar 3.55 (Übung). Sei R ein faktorieller Ring und sei \mathbb{P} ein Repräsentantensystem der Primelemente von R modulo Assoziiertheit, dann gelten:

- (a) $\forall p \in \mathbb{P}$ ist die Abbildung $v_p : R \setminus \{0\} \to \mathbb{N}_0, r \mapsto \max\{n \in \mathbb{N}_0 : p^n \mid r\}$ wohldefiniert (genauer $v_p(r) \leq t(r)$) und v_p ist ein Monoidhomomorphismus (für $(R, 1, \cdot)$)
- (b) $\forall r \in R \setminus \{0\}$ gilt $\#\{p \in \mathbb{P} : p \mid r\} \leq t(r) < \infty$
- (c) $\forall r \in R \setminus \{0\} \exists ! u \in R^{\times} :$

$$r = u \prod_{p \in \mathbb{P}} p^{v_p(r)} = u \prod_{p \in P, v_p > 0} p^{v_p(r)}$$

 $(Primfaktorzerlgung\ von\ r)$

(d) $F\ddot{u}r \ r, s \in R \setminus \{0\}$ gilt:

$$r \mid s \iff \bigvee_{p \in \mathbb{P}} r_p(r) \le v_p(s)$$

(e) Für $r, s \in R \setminus \{0\}$ gelten:

$$\operatorname{ggT}(r,s) \simeq \prod_{p \in \mathbb{P}} p^{\min(v_p(r),v_p(s))}, \quad \operatorname{kgV}(r,s) \simeq \prod_{p \in \mathbb{P}} p^{\max(v_p(r),v_p(s))}$$

(ggT und kgV existieren also in faktoriellen Ringen)

(f) Sei $K = \operatorname{Quot}(R)$, dann $\exists !$ Fortsetzung $v_p : K^{\times} \to \mathbb{Z}$ (ein Gruppenhomomorphismus, der den Monoidhomomorphismus $v_p : R \setminus \{0\} \to \mathbb{N}_0$ fortsetzt) und $\forall r \in K^{\times} \exists ! u \in R^{\times} :$

$$r = u \prod_{p \in \mathbb{P}} p^{v_p(r)}$$

 $(dabei \#\{p : v_p(r) \neq 0\} \ endlich.)$

Übung 3.56 (vgl. LA2). Für einen (beliebigen kommutativen) Ring R sind äquivalent:

(a) Jede aufsteigende Kette von Idealen

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots \subseteq R$$

(\mathbb{N}_0 indiziert) wird stationär, d.h. $\exists n_0 : \forall n \in n_0 : I_n = I_{n_0}$

- (b) Jede nichtleere Teilmenge $\mathcal M$ von Idealen enthält ein bzgl. der Inklusion maximales Element.
- (c) Jedes Ideal $I \subseteq R$ ist endlich erzeugt, d.h. $\exists n \in \mathbb{N} \exists a_1, \dots, a_n \in R$ mit $I = (a_1, \dots, a_n)$

Definition (Noetherscher Ring). Gelten (a)-(c) für R, so heißt R noethersch

Bemerkung. R noethersch $\Longrightarrow_{\text{ohne Zorn's Lemma}} \forall$ echte Ideal $I \subsetneq R \exists$ maximales Ideal mit $I \subseteq \mathscr{M}$ denn ein solches findet sich in $\mathscr{M} = \{J \subsetneq R \mid I \subseteq J\}$

Korollar 3.57. *Ist* R *ein* HI-Ring, so gelten:

- (a) R ist noethersch.
- (b) $\forall r \in R \setminus (R^{\times} \cup \{0\}) \exists t \in \mathbb{N} \exists Primelemente p_1, \dots, p_t \in R, sodass r \simeq p_1 \cdot \dots \cdot p_t$
- (c) R ist faktoriell.

Beweis. (a) folgt aus 56, da jedes Ideal von R ein Hauptideal ist.

- (b) folgt aus (b).
- (c) Bei HI-Ringen, wissen schon Primelemente sind irred. und umgekehrt. (Prop. 50). Zu zeigen: Sei $r \in R \setminus (R^{\times} \cup \{0\})$, dann existiert eine Faktorisierung wie in (b). Definiere:

$$\mathcal{M}_a := \{(b) \subseteq R \mid \exists t \in \mathbb{N}_0 \exists \underbrace{q_1, \dots, q_t}_{\text{irred.}} \in R : bq_1 \cdot \dots \cdot q_t \simeq a \}$$

 $\mathcal{M}_a \neq \emptyset$: denn $(a) \in \mathcal{M}_a$ für t = 0. Sei nun $(b) \in \mathcal{M}_a$ ein maximales Element (bzgl. \subseteq). Behauptung: (b) = R (Dann $b \simeq 1 \Longrightarrow q_1 \cdot \ldots \cdot q_t \simeq a$ für Faktorisierung in Definition von \mathcal{M}_a zu b). Dazu: Nehme an: $(b) \subseteq R$, dann ist wegen R noethersch \exists maximales Ideal $M \subseteq R$ mit $(b) \subseteq M$, da R HI-Ring ist M = (p) für p ein Primelement (Proposition 50) und aus $(b) \subseteq (p)$ folgt $p \mid b$ und $(b/p) \supsetneq (b)$ (p keine Einheit) und $(b/p) \in \mathcal{M}_a$, da $b/p \cdot p \cdot q_1 \cdot \ldots \cdot q_t \simeq a$. Widerspruch zur Maximalität von (b).

Bemerkung. Nächstes Ziel R faktoriell $\implies R[X]$ faktoriell.

Proposition 3.58 (Übung).

- (a) Für einen kommutativen Ring R sind äguivalent:
 - (i) R ist ein Integritätsbereich.
 - (ii) R[X] ist ein Integritätsbereich
 - (iii) $\forall f, g \in R[X]$ gilt: Grad(fg) = Grad f + Grad g
- (b) Ist R ein Integritätsbereich, so gilt $(R[X])^{\times} = R^{\times}$

Beweis. (a) Zeige (i)
$$\Longrightarrow$$
 (iii) \Longrightarrow (ii) \Longrightarrow (i)

(b) $u \in R[X]^{\times} \implies \exists r : vu = 1$, dann Grad Identität anwenden...

Beispiel. $\mathbb{Z}[X]^{\times} = \mathbb{Z}^{\times} = \{\pm 1\}, K[X_1, X_2]^{\times} = K^{\times}.$

Definition 3.59. Sei bis auf Widerruf R ein faktorieller Ring mit Quotientenkörper $K = \text{Quot}(R) \supseteq R$, $f = \sum_{i=0}^{n} a_i X^i \in KX \setminus \{0\}$ heißt primitiv wenn:

- (a) $f \in R[X]$ (alle $a_i \in R$)
- (b) $ggT(a_0,\ldots,a_n) \simeq 1$

Lemma 3.60. Sei $f = \sum_{i=0}^{n} a_i X^i \in K[X] \setminus \{0\}$, dann:

- (a) $\exists c \in K^{\times} \exists g \in K[X] \setminus \{0\}$ primitiv, so dass f = cg
- (b) Gelte cg = c'g' mit $c, c' \in \mathbb{R}^{\times}, g, g' \in K[X] \setminus \{0\}$ primitive Polynome, so folgt $\frac{c}{c} \in \mathbb{R}^{\times}$, d.h. c in (a) ist eindeutig bis auf Faktor in \mathbb{R}^{\times}

Proof. Beweis

(a) Schreibe $a_i = \frac{b_i}{d_i}$ it $b_i \in R, d_i \in R \setminus \{0\}$ als gekürzten Bruch (d.h. $ggT(b_i, d_i) \simeq$ 1 geht R faktoriell.)

Sei
$$d = \text{kgV}(d_0, \dots, d_n)$$
 (Hauptnenner), $b = \text{ggT}(b_0, \dots, b_n)$. Es folgt $g := f \cdot \frac{a}{b} = \sum_{i=0}^{n} \left(\frac{b_i}{b} \cdot \frac{d}{d_i}\right) X^i \in R[X](\setminus\{0\})$.

Behauptung:
$$g$$
 ist primitiv. $\left(\Longrightarrow c = \frac{b}{d} = \frac{\operatorname{ggT}(b_0, \dots, b_n)}{\operatorname{kgV}(d_0, \dots, d_n)}\right)$

Behauptung: g ist primitiv. $\left(\Longrightarrow c=\frac{b}{d}=\frac{\operatorname{ggT}(b_0,\ldots,b_n)}{\operatorname{kgV}(d_0,\ldots,d_n)}\right)$.

Annahme: g ist nicht primitiv. Dann \exists Primelement $p\in R$, sodass $p\mid \frac{b_i}{b}\cdot\frac{d}{d_i}, \forall i$. Nach der Wahl von b gilt $\frac{b_0}{b},\ldots,\frac{b_n}{b}$ sind insgesamt teilerfremd $\Longrightarrow \exists i:p\mid \frac{b_i}{b}\Longrightarrow \exists i:p\mid \frac{d}{d_i}\Longrightarrow p\mid d$. Sei $k=v_p(d)$, d.h. p^k teilt $d,p^{k+1}\mid d\Longrightarrow d=\operatorname{kgV}(\ldots)$.

Inchescondary: Insbesondere ist $p \mid d_{i_0}$.

Beachte: $\frac{b_{i_0}}{d_{i_0}}$ gekürzter Bruch $\implies p \mid b_{i_0}$, aber nach Voraussetsung (gnicht primitiv) p teilt $\frac{b_{i_0}}{b} \cdot \frac{d}{d_{i_0}}$. Widerspruch, da p kein Teiler von b oder d_{i_0} ist.

(b) Haben $c \cdot g = c' \cdot g'$ für $c, c' \in K^{\times}, g, g'$ primitiv. Schreibe $u = \frac{c'}{c}$ als gekürzter Bruch $u = \frac{d'}{d} \implies d \cdot h = d' \cdot g' = d \cdot \sum b_i X^i = d' \cdot \sum b'_i X^i$. g, g' primitiv heißt $\Longrightarrow d = \operatorname{ggT}(b_0 d, \dots, b_n d) = \operatorname{ggT}(b_0' d', \dots, b_n' d') = d' \Longrightarrow \frac{d'}{d} \in R^{\times}$ und $\frac{c'}{c} = \frac{d'}{d}$.

Kapitel 4

Körper

4.1 Grundlagen

Definition (Körper). $K = (K, 0_K, 1_K, +, \cdot)$ ist Körper $\iff K$ ist ein kommutativer Ring und $(K \setminus \{0\}, 1_K, \cdot)$ ist eine Gruppe $(0_K \neq 1_K)$.

Bemerkung. Im weiteren seien K, K' stets Körper.

Definition 4.1 (Unterkörper/Oberkörper). (i) $L \subseteq K$ heißt Unterkörper : $\iff L$ ist ein Unterring und L ist ein Körper.

(ii) $E\supseteq K$ heißt Oberkörper : $\iff E$ ist ein Körper und $K\subseteq R$ ist ein Unterkörper.

Bemerkung 4.2 (Übung). Sind $(K_i)_{i\in I}$ Unterkörper von K, so ist $\bigcap_{i\in I} K_i$ ein Unterkörper von K.

Definition 4.3 (Körperhomomorphismus). Eine Abbildung $\varphi: K \to K'$ heißt Körperhomomorphismus: $\iff \varphi$ ist ein Ringhomomorphismus (der Ringe $K \to K'$)

Bemerkung 4.4. Sei R ein Ring mit $0_R \neq 1_R$ und $\varphi: K \to R$ ein Ringhomomorphismus, dann:

- (a) $\operatorname{Kern}(\varphi) = \{0\} \ (\Longrightarrow \varphi \text{ ist injektiv})$
- (b) R ist ein K-Vektorraum (vermöge φ) durch

$$\cdot: K \times R \to R, (\alpha, r) \mapsto \varphi(\alpha) \cdot r, \quad +: R \times R \to R := +_R$$

Beweis. (a) Nur zu zeigen: Kern $(\varphi) \subseteq K$. Dies ist klar wegen $\varphi(1_K) = 1_R \neq 0_R$. (einzige Ideale von K sind $\{0\}, K$)

Proposition 4.5 (Primkörper). Jeder Körper K enthält einen kleinsten Unterkörper $K_0 \subseteq K$, der sogenannte **Primkörper** von K: es gilt:

$$K_0 \cong \begin{cases} \mathbb{Q}, & \operatorname{char}(K) = 0, \\ \mathbb{F}_p, & \operatorname{char}(K) = p > 0. \end{cases}$$

Beweis.

- Existenz: Nach Bemerkung 2 ist $K_0 := \bigcap_{L \subseteq K \text{ Unterk\"orper}} L$ ein K\"orper, sicher auch der kleinste.
- Isomorphietyp: betrachte $\varphi : \mathbb{Z} \to K, n \mapsto n \cdot 1_K$
 - Fall 1: Kern $(\varphi) \supseteq \{0\}$: Hatten schon gesehen Kern $(\varphi) = p\mathbb{Z}$ für p = char(K). Homomorphiesatz gibt Isomorphismus

$$\underbrace{\mathbb{Z}_{p\mathbb{Z}}}_{\text{K\"{o}rper}} \xrightarrow{\cong} \text{Bild}(\varphi) \underbrace{\subseteq}_{\text{Unterring}} K \implies \text{Unterk\"{o}rper}.$$

 $\operatorname{Bild}(\varphi) \subseteq K_0$, denn $1_K \in K_0$ und also $\mathbb{Z} \cdot 1_K \subseteq K_0 \Longrightarrow \operatorname{Bild}(\varphi) = K_0$ ist der kleinste $\Longrightarrow K_0 \cong \mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$.

– Fall 2: Kern $(\varphi) = \{0\}$, d.h. φ ist injektiv, und es gilt char(K) = 0. Beachte:

$$\varphi(\underbrace{\mathbb{Z}\setminus\{0\}}_{S}) \underset{\varphi \text{ inj. Hom.}}{\subseteq} K_0\setminus\{0\} \subseteq K\setminus\{0\}$$

universelle Eigenschaft der Lokalisierung (S multiplikativ abgeschlossen, $\varphi(S) \subseteq K^{\times}$) \Longrightarrow $\exists !$ Ringhomomorphismus $\widehat{\varphi} : S^{-1}\mathbb{Z} = \mathbb{Q} \to K_0$, der φ fortsetzt; und $\widehat{\varphi}\left(\frac{a}{b}\right) = \varphi(a)\varphi(b)^{-1}, z, b \in \mathbb{Z}, b \neq 0$. Erhalten: $\widehat{\varphi}$ gibt Isomorphismus $\mathbb{Q} \xrightarrow{\cong} \widehat{\varphi}(\mathbb{Q}) \subseteq K_0, K_0$ minimal $\Longrightarrow \widehat{\varphi}$ ist Isomorphismus $\mathbb{Q} \cong K_0$.

Definition 4.6. Sei $E \supseteq K$ ein Oberkörper. Der **Grad** von E über K ist die Vektorraumdimension.

$$[E:K] := \dim_K E \in \mathbb{N} \cup \{\infty\}$$

Satz 4.7. Sei $E \supseteq K$ ein Oberkörper und V ein E-Vektorraum, dann gilt; $\dim_K V = [E:K] \dim_E V$.

Beweis. Sei $B=(b_i)_{i\in I}$ eine Basis von E als K-Vektorraum, $C=(c_j)_{j\in J}$ eine Basis von V als E-Vektorraum.

- Behauptung: $D = (b_i c_j)_{(i,j) \in I \times J}$ ist eine Basis von V als K-Vektorraum ($\implies \dim_K V = \#(I \times J) = \#I \#J = [E:K] \dim_E V$).
- Dazu: D ist Erzeugendensystem (von V als K-Vektorraum) Sei $v \in V$, schreibe $v = \sum_{j \in J} \lambda_j c_j$, $(\lambda_j \in E)$. Für jedes j schreibe

$$\lambda_j = \sum_{i \in I} \mu_{ij} b_i \implies v = \sum_{j \in J} (\sum_{i \in I} \mu_{ij} b_i) c_j = \sum_{(i,j) \in I \times J} \mu_{ij} (b_i c_j).$$

• D ist linear unabhängig (über K): Seien $\beta_{ij} \in K$ für alle $(i, j) \in I \times J$ (nur endlich viele $\neq 0$), sodass

$$0 = \sum_{(i,j)\in I\times J} \beta_{ij} b_i c_j = \sum_{j\in J} \underbrace{\left(\sum_{i\in I} \beta_{ij} b_i\right)}_{\in E} \cdot \underbrace{c_j}_{\text{bilden } E\text{-Basis von } V}$$

$$\implies \forall j \in J : \sum_{i \in I} \underbrace{\beta_{ij}}_{\in K} \cdot \underbrace{b_i}_{\text{bilden } K\text{-Basis von } E} = 0.$$

$$\implies \forall j \in J \forall i \in I : \beta_{ij} = 0.$$

Korollar 4.8 (Gradformel für Körpertürme). Seien $L\supseteq E$ und $E\supseteq K$ Oberkörper. Dann ist $L\supseteq K$ ein Oberkörper und

$$[L:K] = [L:E] \cdot [E:K]$$

Beweis. (der Formel)

$$[L:K] = \dim_K L \underset{\text{Satz 7}}{=} [E:K] \cdot \dim_E L = [E:K] \cdot [L:E].$$

Proposition 4.9 (Übung). Sei K ein Körper mit $\#K < \infty$ und seien p die Charakteristik, K_0 der Primkörper von K, dann gilt

$$\#K = p^n$$
, für $n = \dim_{K_0} K$

Bemerkung. Zu jeder Primpotenz $p^n \exists K$ Körper mit $\#K = p^n$

Definition 4.10. Sei $E \supseteq K$ ein Oberkörper und $S \subseteq E$ eine Teilmenge, dann:

(a) K(S) := der kleinste Oberkörper von K, der S enthält, d.h.

$$K(S) := \bigcap \{L \subseteq E \text{ Unterk\"orper} \mid K \cup S \subseteq L\}$$

(b) K[S] := der kleinste Oberring von K, der S enthält, d.h. (Übung)

$$K[S] := \bigcap \{ L \subseteq E \text{ Unterring } | K \cup S \subseteq L \}$$

Falls $S = \{\alpha_1, \ldots, \alpha_n\}$, schreibe auch $K(\alpha_1, \ldots, \alpha_n)$ für $K(\{\alpha_1, \ldots, \alpha_n\})$ und $K[\alpha_1, \ldots, \alpha_n]$ für $K[\{\alpha_1, \ldots, \alpha_n\}]$.

Bemerkung.

- (a) $K[\alpha_1, ..., \alpha_n] = \{ f(\alpha_1, ..., \alpha_n) \mid f \in K[X_1, ..., X_n] \}$
- (b) $K(S) = \text{Quot}(K[S]) = \{\frac{f}{g} \mid f, g \in K[S], g \neq 0\}$
- (c) $K(S_1)(S_2) = K(S_1 \cup S_2)$ und $K[S_1][S_2] = K[S_1 \cup S_2]$

Beispiel.

- (a) $E = \operatorname{Quot}(K[X]) = K(X)$ rationaler Funktionenkörper über K in Variablen X. Hier gilt $K[X] \subsetneq K(X)$ und $[K[X] : K] = \infty$ ($\dim_K K[X] = \infty$)
- (b) $\sqrt{3} \subseteq \mathbb{R} \subseteq \mathbb{C}$, dann

$$\mathbb{Q}[\sqrt{3}] = \{\alpha + \beta\sqrt{3} \mid \alpha, \beta \in \mathbb{Q}\} \subseteq \mathbb{R}$$

und

$$\mathbb{Q}(\sqrt{3}) = \mathbb{Q}[\sqrt{3}], ([\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2)$$

4.2 Algebraische und transzendente Elemente

Definition 4.11. Sei $E\supseteq K$ ein Oberkörper und seien $\alpha,\alpha_1,\ldots,\alpha_n\in E.$ Dann

- (i) α heißt algebraisch über $K:\iff [K(\alpha):K]<\infty$
- (ii) α heißt transzendent über $K:\iff [K(\alpha):K]=\infty$

Beispiele (ohne Beweis).

- (a) $X \in K(X)$ ist transzendent über K.
- (b) $\sqrt{3} \in \mathbb{R}$ ist algebraisch über \mathbb{Q} .
- (c) $e = \sum_{n>0} \frac{1}{n!} \in \mathbb{R}$ ist transzendent über \mathbb{Q}
- (d) $\pi \in \mathbb{R}$ ist transzendent über \mathbb{Q}

Wiederholung 4.12. (Propositionen 3.49 und 3.50)

- (a) K[X] ist Hauptidealring.
- (b) $f \in K[X]$ irreduzibel \iff $(f) \subseteq K[X]$ ist maximales Ideal.
- (c) Ist $0 \neq P \subseteq K[X]$ Primideal, so $\exists f \in K[X]$ irred. P = (f).
- (d) (Übung, s. LA) für $f \in K[X] \setminus K$ von Grad n > 0, dann hat K[X]/(f) als K-Vektorraum die Basis $\{1, X, \dots, X^{n-1}\}$.

Definition. Die Auswertungsabbildung an $\alpha \in E$ ist der Ringhomomorphismus

$$\operatorname{ev}_\alpha:K[X]\to E, f=\sum a_iX^i\mapsto f(\alpha)=\sum a_i\alpha^i$$

Satz 4.13. Für $\alpha \in E$ sind äquivalen:

- (a) α ist algebraisch über K.
- (b) $\exists n \in \mathbb{N} : 1, \alpha, \dots, \alpha^n$ sind linear unabhängig über K.
- (c) $\exists g \in K[X] \setminus \{0\} \ mit \ g(\alpha) = 0.$
- (d) $\operatorname{Kern}(\operatorname{ev}_{\alpha}) \subseteq K[X]$ ist maximales Ideal.
- (e) $K(\alpha) = K[\alpha]$.

Beweis.

- (a) \Longrightarrow (b): Sei $n:=[K(\alpha):K]=\dim_K K(\alpha)<\infty\implies 1,\alpha,\ldots,\alpha^n$ sind l.u. über K.
- (b) \Longrightarrow (c): Voraussetzung in (b) \Longrightarrow $\exists (c_0, \ldots, c_n) \in K^{n+1} \setminus \{0\}$ mit $\sum_{0 \le i \le n} c_i \alpha^i = 0$, dann ist

$$\implies g(X) = \sum_{0 \le i \le n} c_i X^i \in K[X] \setminus \{0\}. \text{ und } g(\alpha) = 0$$

(c) \implies (d): Homomorphiesatz gibt und den Isomorphismus

$$K[X]_{\mathrm{Kern}(\mathrm{ev}_\alpha)} \xrightarrow{\cong} \mathrm{Bild}(\mathrm{ev}_\alpha) \underset{\mathrm{Unterring}}{\subseteq} E$$

 $\operatorname{Bild}(\operatorname{ev}_{\alpha})$ ist Integritätsbereich \Longrightarrow $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ ist Primideal. Da $0 \neq g \in \operatorname{Kern}(\operatorname{ev}_{\alpha})$ (g aus (c)) folgt: $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ ist Primideal $\neq 0$ also ein maximales Ideal.

(d) \Longrightarrow (a): Voraussetzung: $\mathfrak{m}_{\alpha} := \text{Kern}(\text{ev}_{\alpha}) \subseteq K[X]$ ist maximales Ideal.

$$\overset{\text{Homomorphiesatz}}{\Longrightarrow} \underbrace{\underbrace{K[X]}_{\mathfrak{m}_{\alpha}}}_{\text{K\"{o}rper, da }\mathfrak{m}_{\alpha} \text{ max.}} \overset{\cong}{\longrightarrow} \operatorname{Bild}(\operatorname{ev}_{\alpha}) \subseteq E$$

 \Longrightarrow Bild(ev_{\alpha}) ist ein Körper. Aber: Bild(ev_{\alpha}) = $K[\alpha]$, also $K[\alpha] = K(\alpha)$ (*), und sei $f \in K[X]$ irreduzibler Erzeuger von \mathfrak{m}_{α} , dann:

$$\dim_K K[X]/_{(f)} = \operatorname{Grad} f < \infty \implies \dim_K K(\alpha) = \operatorname{Grad} f < \infty.$$

- (d) \implies (e): gezeigt wegen (*).
- (e) \Longrightarrow (a): Zu zeigen: $K[\alpha] = K(\alpha) \Longrightarrow [K(\alpha) : K] < \infty$, wir zeigen (b). o.E. $\alpha \neq 0$, wesentliche Beobachtung: $\alpha^{-1} \in K[\alpha]$. d.h. $\exists c_0, \ldots, c_n \in K$ mit $\alpha^{-1} = c_0 + c_1\alpha + \cdots + c_n\alpha^n$

$$\implies 0 = -1 + c_0\alpha + c_1\alpha^2 + \dots + c_n\alpha^{n+1}$$

d.h. $1, \alpha, \ldots, \alpha^{n+1}$ sind linear abhängig über K.

Definition 4.14. Sei $\alpha \in E$ algebraisch über K. Das Minimalpolynom μ_{α} (oder $\mu_{\alpha,K}$) von α über K ist das normierte Polynom in $K[X] \setminus \{0\}$ kleinsten Grades mit $\mu_{\alpha}(\alpha) = 0$.

Proposition 4.15. Sei $\alpha \in E$ algebraisch über K, dann:

- (a) $(\mu_{\alpha}) = K[X] \cdot \mu_{\alpha} = \text{Kern}(\text{ev}_{\alpha}).$
- (b) μ_{α} ist irred. und $K[X]_{(\mu_a)}$ ist ein Körper.
- (c) $[K(\alpha):K] = \operatorname{Grad} \mu_{\alpha}$

Beweis.

- (a) " \subseteq ": Klar, da $\mu_{\alpha} = 0$ also $\operatorname{ev}_{\alpha}(\mu_{\alpha}) = 0$
 - " \supseteq ": K[X] ist Hauptidealring $\Longrightarrow \exists g \in K[X] : (g) = \text{Kern}(\text{ev}_{\alpha})$ mit $g \neq 0, g \mid \mu_{\alpha}$ und $\text{Kern}(\text{ev}_{\alpha})$ ist ein maximales Ideal $(\neq 0)$ folgt aus 13. μ_{α} hat den kleinsten Grad unter allen solchen $f \neq 0$ mit $f(\alpha) = 0 \Longrightarrow g \simeq \mu_{\alpha} \Longrightarrow (g) = (\mu_{\alpha})$.
- (b) $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ maximal $\neq 0 \Longrightarrow \operatorname{Erzeuger} \mu_{\alpha}$ von $\operatorname{Kern}(\operatorname{ev}_{\alpha})$ ist irred. und $K[X]/(\mu_{\alpha})$ ist ein Körper, da (μ_{α}) maximal.
- (c) Im Beweis von Satz 13: $K(\alpha) \cong K[X]/(\mu_{\alpha})$

$$\Longrightarrow [K[\alpha]:K] = \dim_K K[X]_{(\mu_\alpha)} = \operatorname{Grad} \mu_\alpha.$$

Korollar 4.16. Sei $f \in K[X]$ irred. normiert und $\alpha \in E$ eine Nullstelle von f, dann ist α algebraisch über K und $\mu_{\alpha} = f$ und $[K(\alpha) : K] = \operatorname{Grad} f$

Beispiel. $X^2 - 3 \in \mathbb{Q}[X]$ ist irreduzibel (Eisenstein mit p = 3)

$$\implies \mu_{\sqrt{3}.\mathbb{O}} = X^2 - 3$$

analog: $\alpha = \sqrt[3]{2}$ algebraisch über $\mathbb Q$ mit $\mu_\alpha = X^3 - 2$ und

$$\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha) = \{a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbb{Q}\}\$$

Korollar 4.17. Für $\alpha \in E$ sind äquivalent:

- (a) α ist transzendent über K
- (b) $K[\alpha] \subsetneq K(\alpha)$
- (c) $\operatorname{ev}_{\alpha}: K[X] \to K[\alpha]$ ist ein Isomorphismus.

Beweis.

 $\neg(a) \iff \neg(b)$, folgt aus Satz 13 $(a) \iff (e)$.

Beachte weiter: $(c) \iff \operatorname{Kern}(\operatorname{ev}_{\alpha}) = \{0\}$, also: $\neg(c) \iff \exists g \in K[X] \setminus \{0\} : g(\alpha) = a \iff \alpha \text{ ist algebraisch} \iff \neg(a).$

Bemerkung. Ist $\alpha \in E$ transzendent über K, so setzt sich $\operatorname{ev}_{\alpha} : K[X] \xrightarrow{\cong} K[\alpha]$ fort zu einem Körperisomorphismus $K(X) = \operatorname{Quot}(K[X]) \to K(\alpha)$.

Definition 4.18 (Algebraischer Oberkörper). Ein Oberkörper $E \supseteq K$ heißt algebraisch über $K : \iff \text{jedes } \alpha \in E$ ist algebraisch über K.

Lemma 4.19. Seien $F \supseteq E \supseteq K$ Oberkörper, dann:

- (a) $[E:K] < \infty \implies E$ ist algebraisch über K.
- (b) $\alpha_1, \ldots, \alpha_n \in E$ mit α_i algebraisch über $K, \forall i \implies K(\alpha_1, \ldots, \alpha_n) \supseteq K$ algebraisch.
- (c) $F \supseteq K$ ist algebraisch $\iff F \supseteq E$ und $E \supseteq K$ sind algebraisch.
- (d) Ist $K = K_0 \subseteq K_1 \subseteq \cdots$ eine Kette (indiziert über \mathbb{N}) von Oberkörpern, so ist $K_{\infty} = \bigcup_n K_n$ ein Oberkörper von K, und sind alle $K_{i+1} \supseteq K_i$ algebraisch, so ist $K_{\infty} \supseteq K$ algebraisch.
- (e) Ist $S \subseteq E$ eine beliebige Teilmenge, so dass alle $\alpha \in S$ algebraisch über K sind, so gilt K(S) = K[S] und K(S) ist algebraisch über K.
- Beweis. (a) Für $\alpha \in E$ gilt: $K \subseteq K(\alpha) \subseteq E$ und wegen Gradformel folgt $[K(\alpha):K] \leq [E:K] < \infty \implies \alpha$ algebraisch über K.
- (b) Definiere $K_i = K(\alpha_1, ..., \alpha_i), i \in \{1, ..., n\}$, wir wissen α_i algebraisch über K, d.h. $\exists g \in K[X] \setminus \{0\} = g(\alpha_i) = 0 \implies g \in K_{i-1}[X] \setminus \{0\} \ (K_{i-1} \supseteq K), \exists g \in K_{i-1} \setminus \{0\} : g(\alpha_i) = 0 \implies \alpha_i$ algebraisch über K_{i-1}

$$\implies [K_i:K_{i-1}] = [K_{i-1}(\alpha):K_{i-1}] < \infty \underset{\text{Ind.} + \text{Gradformel}}{\Longrightarrow} [K_n:K] < \infty$$

$$\underset{(a)}{\implies} K_n = K(\alpha_1,\ldots,\alpha_n) \supseteq K \text{ algebraisch.}$$

- (c) " \Longrightarrow ": Sei $F \supseteq K$ algebraisch, sei $\alpha \in E \Longrightarrow \alpha \in F \Longrightarrow \alpha$ algebraisch über K. Und sei $\alpha \in F$. Dann argumentiere wie in (b) um α algebraisch über E zu folgen $\Longrightarrow F \supseteq E$ algebraisch.
 - " \iff ": (Problem: [E:K] könnte unendlich sein.) Es gelte: $F\supseteq E$ und $E\supseteq K$ sind algebraisch. $\alpha\in F$ (zz: $[K(\alpha):K]<\infty$). Wir wissen α algebraisch über $E\implies$ haben $\mu_{\alpha,E}\in E[X]\setminus E$ schreibe $\mu_{\alpha,E}=a_0+a_1X+\cdots+a_{n-1}X^{n-1}+X^n$ mit $a_i\in E$ algebraisch über $K\implies E'=K[a_0,\ldots,a_{n-1}]$ hat endlichen Grad über K (nach (b)) und α ist algebraisch über E', da $\mu_{\alpha,E}\in E'[X]\implies [E'[\alpha]:E']<\infty$. Nach Definition von algebraisch und Gradformel $[E'[\alpha]:K]<\infty\implies \alpha$ algebraisch über K.
 - Gegeben eine Körperkette $K = K_0 \subseteq K_1 \subseteq \cdots K_n \subseteq \cdots, K_{\infty} = \bigcup K_n$ ist Oberkörper von K (Übung). Gilt zusätzlich $K_{i+1} \supseteq K_i$ algebraisch $\forall i$, so folgt mit Induktion und (c): $K_i \supseteq K$ algebraisch $\forall i$. Sei $\alpha \in K_{\infty} \implies \exists n : \alpha \in K_n \implies \alpha$ ist algebraisch über K.

• Übung.

Korollar 4.20. Sei $E \supseteq K$ ein Oberkörper und

 $F := \{ \alpha \in E \mid \alpha \text{ algebraisch ""uber } K \}$

Dann gilt:

- (a) $F \subseteq E$ Unterkörper.
- (b) $F \supseteq K$ algebraisch.
- (c) K[F] = F.

Beweis. 19(e) $\Longrightarrow K[F] \supseteq K$ ist algebraischer Oberkörper und $K[F] \subseteq E \Longrightarrow K[F] = F$, d.h. (c) gilt. Und (a), (b) folgen. ((a),(b) gelten für K[F] nach 19(e)).

Beispiel 4.21 (Übung). Sei $\alpha_n := \sqrt[2^n]{2} \in R$ für $n \ge 0$, dann: $[\mathbb{Q}(\alpha_n) : \mathbb{Q}] = 2^n$. $\Longrightarrow \mathbb{Q}_{\infty} = \bigcup_n \mathbb{Q}(\alpha_n)$ ist algebraisch über \mathbb{Q} , aber $[\mathbb{Q}_{\infty} : \mathbb{Q}] = \infty$.

Beispiel. $\widetilde{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ ist algebraisch ""über } \mathbb{Q} \} \implies [\widetilde{\mathbb{Q}} : \mathbb{Q}] = \infty \text{ und } \widetilde{\mathbb{Q}} \supseteq \mathbb{Q} \text{ ist algebraisch.}$

Leitfragen. (a) Gegeben $f \in K[X]$ irred. Finde Oberkörper E und $\alpha \in E$ mit $f(\alpha) = 0$.

(b) Finde Oberkörper $E \supseteq K$ in dem alle irred. $f \in K[X]$ eine Nullstelle (alle Nullstellen) haben.

Sei $f = \sum_{0 \le i \le n} a_i X^i \in K[X] \setminus K$, sei $E \supseteq K$ Oberkörper, hatten schon gesehen $f(\alpha) = 0 \iff \operatorname{ev}_{\alpha}(f) = 0 \iff \mu_{\alpha,K} \mid f$.

Proposition 4.22. $\#\{\alpha \in E \mid f(\alpha) = 0\} \leq \operatorname{Grad} f$.

Beweis. TODO \Box

Definition 4.23. (a) $f \in K[X] \setminus K$ zerfällt in Linearfaktoren über $K : \iff$ jeder irred. normierte Faktor von f ist der Form $X - \alpha$ für ein $\alpha \in K$.

(b) K heißt algebraisch abgeschlossen \iff jedes $f \in K[X] \setminus K$ zerfällt in Linearfaktoren über K.

Bemerkung 4.24. K ist algebraisch abgeschlossen \iff jedes $f \in K[X] \setminus K$ hat eine Nullstelle $\alpha \in K$.

Beweis.

- " \Longrightarrow ": Klar
- " \Longleftarrow ": Sei $f \in K[X] \setminus K$ irred. normiert, nach Voraussetzung hat f eine Nullstelle $\alpha \in K \implies f = X \alpha$ (alle irred. Polynome sind linear).

Beispiel.

 $\mathbb C$ ist algebraisch abgeschlossen.

TODO

Definition 4.25. Sei $f \in K[X]$ irred. Ein Oberkörper $E \supseteq K$ heißt Stammkörper zu $f \iff \exists \alpha \in E \text{ mit } f(\alpha) = 0 \text{ und } E = K(\alpha).$

Satz 4.26. Sei $f \in K[X]$ irred. von Grad n, dann:

- (a) E := K[X]/(f) ist ein Körper (schreibe \overline{g} für die Klasse zu $g \in K[X]$).
- (b) $K \to E, \alpha \to \overline{\alpha}$ ist ein Ringhomomorphismus, also Körperhomomorphismus. (Betrachte K als Unterkörper von E, schreibe α für $\overline{\alpha}$)
- (c) Es gilt $f(\overline{X}) = 0$, d.h. f hat keine Nullstelle in E.
- (d) Es gilt $E = K[\overline{X}]$ und [E : K] = n
- (e) Ist F ein Oberkörper von K mit Nullstelle $\beta \in F$ von f, so gilt $n \mid [F : K]$, falls $[F : K] < \infty$.

Beweis. TODO

Korollar 4.27. Seien $f_1, \ldots, f_t \in K[X]$ irred. Dann \exists Oberkörper $E \supseteq K$ mit $\beta_1, \ldots, \beta_t \in E$, so dass $f_i(\beta_i) = 0, \forall i \in \{1, \ldots, t\}$ und $E = K(\beta_1, \ldots, \beta_t)$.

Bemerkung. Es gilt nur $[E:K] \leq \prod_{1 \leq i \leq t} \operatorname{Grad} f_i$.

Beispiel. Seien $f_1, f_2 \in \mathbb{R}[X]$ irred. quadr. Polynome $\implies E = \mathbb{C}$ und $[E : \mathbb{R}] = 2 < 2 \cdot 2$. z.B. $f_1 = X^2 + 1$ und $f_2 = X^2 + \pi$.

Satz 4.28. Jeder Körper K hat einen (inj.) Körperhomomorphismus in einen algebraisch abgeschlossen Körper \widetilde{K} .

Definition 4.29 (Algebraischer Abschluss). Ein Oberkörper $E \supseteq K$ heißt algebraischer Abschluss, wenn

- (a) E ist algebraisch abgeschlossen.
- (b) $E \supseteq K$ ist algebraisch.

Bezeichnung. \overline{K} sei immer ein algebraischer Abschluss von K.

Bemerkung (zu Satz 28). \widetilde{K} ist ein algebraischer Abschluss.

Beweis. (von Satz 28) TODO.