Basis pursuit L1 minimization and its biomedical applications

[Code Documentation]

Script	Language	Source
Python Intro/projected_gradient.py	Python	/

Overview

Preliminary experiments with constrained optimization problems and procedures by implementing projected gradient descent.

$$\min f(x) \text{ s. t. } Ax \leq b$$

Parameters

- *objfun*: lambda function returning objective function value and gradient
- *A:* inequality constraint matrix
- *b:* inequality observations vector
- x_0 : starting feasible vector

Returns

• x_k: solution vector

Script	Language	Source
Python Intro/signal_theory.py	Python	

Overview

Simulation script comparing a relaxation of the problem using L_2 minimization and basis pursuit solved by Interior-Point-Method from scipy.

Script	Language	Source
Python Intro/sumofsinesfitting.py	Python	/

Overview

Simulation script solving the second application covering ECG signal reconstruction by Interior-Point-Method from *scipy*.

Script	Language	Source
Python Intro/wave_plotting.py	Python	

Testing script containing the simulation of different waves (square, sawtooth, triangle).

Script	Language	Source
Python Intro/waves.py	Python	/

Overview

Utility functions providing the implementation of different waves (square, sawtoot, triangle)

Parameters

- *f*: frequency parameter
- *t:* time input

Returns

• a: amplitude

Script	Language	Source
MatLab/buildSignal.py	Matlab	/

Utility function uniformly sampling from a signal over time in order to build the constraint matrix A and the vector of observations b, providing also the sampled points and its value over time.

Parameters

- *m*: number of observations
- *n:* number of variables
- *sign_function:* lambda function outputting amplitude based on time input
- *interval:* time interval for the sampled points

Returns

- *A:* constraint matrix
- b: observations vector
- x_m : sampled time coordinates
- y_m : amplitude coordinates

Script	Language	Source
MatLab/forrest_tomlin.m	Matlab	

Overview

Forrest-Tomlin update procedures producing a new version of the LU decomposition of a matrix undergoing a column update. The adaptation for row updates in dual simplex is based on the fact that $LU = A \Rightarrow U^T L^T = A^T$

Parameters

- A_q : updated column vector
- q: column index that has to be updated
- *L:* old lower triangular matrix from LU decomposition
- *U:* old upper triangular matrix from LU decomposition

Returns

- *L_up:* updated upper triangular matrix from LU decomposition
- *U_up:* updated upper triangular matrix from LU decomposition

Script	Language	Source
MatLab/projgrad.py	Python	

Preliminary experiments with constrained optimization problems and procedures by implementing projected gradient descent.

$$\min f(x) \text{ s. t. } Ax \leq b$$

Parameters

- objfun: lambda function returning objective function value and gradient
- *A:* inequality constraint matrix
- *b:* inequality observations vector
- x_0 : starting feasible vector

Returns

• x_k: solution vector

Script	Language	Source
MatLab/reconstruct.m	Matlab	

Overview

Procedure for uniformly random sampling n points over time based on a solution vector x.

Parameters

- *x*: solution vector
- *n_points:* number of points to sample
- *interval:* interval over time

Returns

- *x_{res}:* sampled time coordinates
- *y*_{res}: amplitude coordinates

Script	Language	Source
MatLab/dual_simplex.m	Pvthon	

Revised dual simplex implementation including FT update producing primal and dual solution vectors.

Parameters

- *A:* constraint matrix
- *b:* observations vector
- *B:* basis projection
- *tol_set:* tolerance for checking emptiness of primal set
- *tol_opt:* tolerance for optimal set condition
- MAX_ITER: maximum number of iterations allowed
- *state:* state of the problem
- *verbose:* verbosity flag

Returns

- x: primal solution vector
- y: dual solution vector

Script	Language	Source
MatLab/tools/metrics.m	Python	/

Utility script for easily calculating mean squared error and Pearson correlation coefficient based on the values of two vectors

Parameters

• *sol:* solution vector

• tar: target vector

Returns

• *mse*: mean squared error

• *corr*: pearson correlation coefficient

Script	Language	Source
MatLab/ECG/simulate_ecg.m	Python	[1]

Overview

Utility script for easily generating fake ECG signals providing beats per minute, frequency of sampling and the width of time interval.

Parameters

• *bpm:* beats per minute

• rate: frequency of sampling

• sec: seconds for the acquisition

Returns

- *x*: sampled time coordinates
- *y*: relative amplitude coordinates

Sources

[1] karthik raviprakash (2021). ECG simulation using MATLAB (https://www.mathworks.com/matlabcentral/fileexchange/10858-ecg-simulation-using-matlab), MATLAB Central File Exchange. Retrieved March 11, 2021.