A function dependency A → B means for all instances of a particular value of A, there is the same value of B.

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b2	c3	d2	e3
a3	b3	c4	d2	e4
a4	b4	c5	d4	e5

 A function dependency A → B means for all instances of a particular value of A, there is the same value of B.

Α	В	С	D	E
a1	<u>b1</u>	c1	d1	e1
a2	b2	c2	d2	e2
a1	<u>b1</u>	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

Function dependency

1.What about B→A ???????

Α	В	С	D	E
<u>a1</u>	b1	c1	d1	e1
a2	b2	c2	d2	e2
<u>a1</u>	b1	c3	d2	e3
<u>a3</u>	b1	c4	d2	e4
a4	b4	c5	d4	e5

1.What about

C→A ????????

1.What about

C→D ????????

1.What about

D→A ???????

A	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c 5	d4	e5

Function dependency 1.What about C→A holds 1.What about $C \rightarrow D$ holds 1.What about $D \rightarrow A$ does not hold

Α	В	C	D	E
a1	b1	c1	d1	e1
a2	b2	<u>c2</u>	d2	e2
a1	b1	c3	d2	e3
a3	b1	<u>c4</u>	d2	e4
a4	b4	c5	d4	e5

Candidate Key

- Any attribute(attributes) that can uniquely identify a tuple in a relation
- According to functional dependency, any attribute (set of attributes) can functionally determine all other attributes in a relation, that attribute(attributes) is called candidate key

Function dependency
1.What about A??

A→B holds A→C does not hold

A can't be the candidate key

A	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

Function dependency 1.What about B??

B→A does not hold

B can't be the candidate key

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

Function dependency 1.What about B??

B→A does not hold

B can't be the candidate key

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d3	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

1.What about C??

C→A???

C→B ???

 $C \rightarrow C ???$

C→**D**???

C→E ???

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d3	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

1.What about C??

C→A ??? yes

 $C \rightarrow B ??? yes$

 $C \rightarrow C$??? yes

 $C \rightarrow D???$ yes

 $C \rightarrow E$???yes

C is a candidate key

A	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d3	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

1.What about D??

D→A ??? **NO**

D→**B** ??? **NO**

 $D \rightarrow C$??? NO

 $D \rightarrow D$??? yes

 $D \rightarrow E$??? No

D is a not a candidate key

A	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d3	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

Any other candidate key possible?????

We can take all two attribute combinations after excluding C& E

Ie:AB??

AD??

BD?

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d3	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

AB?????

AB-→C does not exist

So AB is not a key

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d3	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

AD?????

 $AD \rightarrow A$?

 $AD \rightarrow B$?

 $AD \rightarrow C$?

 $AD \rightarrow D$?

 $AD \rightarrow E$?

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

AD?????

 $AD \rightarrow A? YES$

AD-→B?YES

AD-→C?YES

AD-→D? YES

AD-→E?YES

AD is a key

A	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

BD?????

BD-→A? NO

BD-→B?YES

BD-→C?NO

BD-→D? YES

BD-→E?NO

BD IS NOT A KEY

Α	В	С	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b1	c3	d2	e3
a3	b1	c4	d2	e4
a4	b4	c5	d4	e5

Prime attributes

- Prime attribute-The constituent attributes of a relation are called prime attributes.
- Conversely, an attribute that does not occur in ANY candidate key is called a non-prime attribute.
- In the previous relation ,R(A,B,C,D,E)
 ,Candidate keys are {C,E,AD}
- So prime apptributes are {A,C,D,E}
- Non prime attribtes are {B}

Armstrong's Axioms

Armstrong's Axioms: Let X, Y be sets of attributes from a relation T.

```
[1] Inclusion rule: If \underline{Y} \subseteq \underline{X}, then \underline{X} \to \underline{Y}.
```

- [2] Transitivity rule: If $\underline{X} \to \underline{Y}$, and $\underline{Y} \to \underline{Z}$, then $\underline{X} \to \underline{Z}$.
- [3] Augmentation rule: If $\underline{X} \rightarrow \underline{Y}$, then $\underline{XZ} \rightarrow \underline{YZ}$.
- Other derived rules:
 - [1] Union rule: If $\underline{X} \to \underline{Y}$ and $\underline{X} \to \underline{Z}$, then $\underline{X} \to \underline{YZ}$
 - [2] Decomposition rule: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - [3] Pseudotransitivity: If $\underline{X} \to \underline{Y}$ and $\underline{WY} \to \underline{Z}$, then $\underline{XW} \to \underline{Z}$