2.2.37. toate subinelele lui (\mathbb{Z} , +, ·)

fie $S \subseteq \mathbb{Z}$ o submultime $S \subseteq \mathbb{Z} \iff (S, +)$ grup = · (S, +) subgrup al lui (\mathbb{Z} , +)

din 2.1.57 => $S = n\mathbb{Z}$, neIN

fie x, y $\in S =$ x = na

y = nb Y = n Y

2.2.40.
$$\mathbb{Z} + i\mathbb{Z} = \{a, b; | a, b \in \mathbb{Z} \}$$
 subinel al lui \mathbb{C}

I el neutru: $0+c$: $a \in \mathbb{Z}$: \mathbb{Z}

I p. stabilà în rap. $a \in \mathbb{Z}$: \mathbb{Z}
 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}

II elem. invess. \mathbb{Z} \mathbb

I p. stabila în rap. cu : fie R1, R2 ER => $R_1:R_2 = \begin{pmatrix} a_1 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 - b_1b_2 & a_1b_2 + b_1a_2 \end{pmatrix} = \begin{pmatrix} a_1b_2 - b_1b_2 & a_1a_2 - b_1b_2 \end{pmatrix}$ => R1.R2 ER => R & M2x2 (7) Domeniu de integritate: inel comutativ, unitar, fara divitori ai lui o # +i # e comutativ: . e com. pe C 1=1+0. i EZ+iZ elem neutru pt. . => #+i# e unitar divitori ai lui o: fie x,y \ Z+iZ, x,y to si x.y=0 dan @ nu ave divisori archina > #+ix nu ave div. ai lui 0 =) Z + iZ e domeniu de integritate x, y ∈ Z+iZ => xy ∈ Z+iZ (am demonstrat deja) 1 E Z + i Z Cie x ∈ X + i Z => ... X·X- = X-1 × = (QQ-bb) +(Qb+ba) i => [ab] + ba] = 0 => ab] =-ba] [aa] - bb] = 1 => aa] = 1+bb] fie a=b => a'=b' => aa'=1-aa'-contradictie (aa'EZ)

Re Comercial de integritate:

Ri Ra = (a1a2-bib2 a1b2+b1aa2) (am aratat)

Ra Ri = (a2 ba) (a1 bi) (a2a1-babi a2b1+b2a1)

Ra Ri = (-b2 a2) (-bi a1) (-b2a1-bia2 -b2b1+a2a2)

E> Ri Ra = Ra Ri => comutativ

Ja = (100) ER => R untar

Fie Ri Ra E Ra a3. Ri Ra = 02 , Ri,Ra
$$\neq$$
 02

=> (a1a2-bib2 = 0 => a1a2 = b1b2)

| a1b2+b1a2 = 0 a1b2 = -b1a2

Ri,Ra \neq 02 => cel putit una dintre a1, lai respo a2, b2 \neq 0

| a1b2+b1a2 = 0 a2 \neq 0 a \neq 0

| b1 a2 |

| a1 b2 = -a2 |
| b2 a3 |
| b2 = -a2 |
| b2 a3 |
| b2 = -a2 |
| b2 a3 |
| b2 = -a2 |
| c2 |
| c3 |
| c4 |
| c5 |
| c6 |
| c7 |
| c7 |
| c8 |
| c8 |
| c9 |
| c9

(R,+,.) e corp?

fie R, ER R, R,
$$|| = J_a||$$

Ri inv. => det R, $|| = 0|$

Ri = $|| (a_1 - b_1)||$

det Ri = $|| a_1 ||$

det Ri = $|| a_1 ||$

down R, $|| = 0|$
 $|| a_1 ||$
 $|| a_1 ||$
 $|| a_2 ||$
 $|| a_1 ||$
 $|| a_1 ||$
 $|| a_2 ||$
 $|| a_1 ||$
 $|| a_1 ||$
 $|| a_2 ||$
 $|| a_1 ||$
 $|| a_1 ||$
 $|| a_2 ||$
 $|| a_2 ||$
 $|| a_1 ||$
 $|| a_2 ||$
 $|| a_1 ||$
 $|| a_2 ||$
 $|| a_2 ||$
 $|| a_2 ||$
 $|| a_1 ||$
 $|| a_2 |$