

Otomata Teorisi Konya Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

Tanım

- Düzenli ifade ile tanımlanabilen bir dil düzenli dil "regular language" olarak adlandırılmaktadır.
 - Düzenli bir dile karşılık gelen bir sonlu otomata modeli vardır.
 - Düzenli ifade ile tanımlanamayan diller de bulunmaktadır. Bu diller ileri konularda incelenecektir.

 Eğer L1 ve L2 düzenli diller (regular languages) ise, L1 + L2 dili de düzenli bir dildir.

L1 + L2 :

"The language of all words in either L1 or L2" (Ya L1 kümesi ya da L2 kümesinde olan kelimelerin dili)

· T.G. Kullanarak ispat yapılabilir.

L1 + L2 için T.G.

- Eğer L1 ve L2 düzenli diller (regular languages) ise, L1 L2 dili de düzenli bir dildir.
 - L1 L2: "The language of all words formed by concatenating a word from L1 with a word from L2." (L1 den alınan bir kelime ile L2 den alınan bir kelimenin birleştirilmesi ile oluşan kelimelerin dili)

· T.G. Kullanarak ispat yapılabilir.

- Eğer L1 ve L2 düzenli diller (regular languages) ise, L1* dili de düzenli bir dildir.
 - L1*: "The language of all words that are the concatenation of arbitrarily many factors from L1". (L1 den alınan kelimelerin çeşitli defalar birleştirilmesi ile oluşan kelimelerin dili).

· T.G. Kullanarak ispat yapılabilir.

Tanım

- L dilinin Tümleyeni (Complement of L):
 - L' ile gösterilir. L' dili, L dilinde olmayan tüm kelimeleri içerir.
 - -(L')' = L

- Eğer L dili düzgün bir dil ise, L' dili de düzgün bir dildir.
 - İspatı bir sonraki slaytta yer almaktadır.

- L dilini kabul eden bir F.A. vardır. L' dilini kabul eden bir F.A. modeli ortaya konabilirse ispat yapılmış olacaktır.
- Yöntem: Bir F.A.' nın sonuç durumlarını normal durumlara, normal durumlarını da sonuç durumlarına çevirmek ile, L' dilini kabul eden bir F.A. Modeli çıkacaktır.

Jyarı: $- \leftrightarrow \pm$

· L ve L' için örnek F.A. modelleri:

- Eğer L1 ve L2 düzenli diller ise, L1 \(\cap \)
 L2 dili de düzenli bir dildir.
- $L1 \cap L2 = (L1' + L2')'$ DeMorgan kuralı.
 - Bu açılıma göre ve Kleene's teoremi ispatında anlatılan yöntemlerden birisini kullanarak kesişim kümesi nasıl bulunabilir ... ?

Örnek

- L1: All strings with double a. (Çift a sembolü içeren kelimeler)
- L2: All strings with an even number of a's.
 (Çift sayıda a sembolü içeren kelimeler)

Örnek - Tümleyenleri Almak

L1'

Örnek

- L1' + L2' için F.A. bulunmalıdır. Kleene teoreminde verilen yöntem kullanabilir ve aşağıdaki durumlar bulunur:
- ± Z1= X1 OR Y1
- · + Z2= X1 OR Y2
- · + Z3 = X2 OR Y1
- + Z4 = X2 OR Y2
- Z5 = X3 OR Y1
- + Z6 = X3 OR Y2

Örnek

- Bir önceki adımda bulunan, L1' + L2' dilidir. L1 ∩ L2 = (L1' + L2')' olduğu hatırlanırsa, bulunan F.A. modelinde + ve normal durumlar yer değiştirilmelidir. Böylece istenen kesişim kümesine karşılık gelen F.A. elde edilmiş olacaktır.
- · Sonraki slayda bakınız..

Dil Kesişimi için Kısa Yo

- · L1: a ile başlayan kelimelerin dili.
- · L2: a ile biten kelimelerin dili.

L1 \cap L2: a ile başlayan ve biten kelimelerin dilidir. ₁₉

Dil Kesişimi için Kısa Yol

- Buna göre elde edilen çözüm izleyen
 slaytta verilmektedir.

Dil Kesişimi için Kısa Yol

- Z1=X1 OR Y1
- Z1:a X2 OR Y2=+Z2
 - Z1:b X3 OR Y1 = Z3
- Z2:a X2 OR Y2 = +Z2
 - Z2:b X2 OR Y1= Z4
- Z3:a X3 OR Y2= Z5
 - Z3:b X3 OR Y1= Z3
- Z4:a X2 OR Y2= +Z2
 - Z4:b X2 OR Y1= Z4
- Z5:a X3 OR Y2= Z5
- Z5:b X3 OR Y1= Z3

Bu durumlara göre, çizilen durum geçiş diyagramı kesişim dili i						
		State	Read a	Read b		
	-Z1	X ₁ yada Y ₁	X ₂ yada Y ₂	X ₃ yada Y ₁		
	72	X. vada Y.	X. vada Y.	X. vada Y.		

 $\mathbb{Z}4$

21

Problemler

Aşağıdaki düzenli dil çiftleri için; L₁ ∩ L₂ tanımlayan R.E. Ve F.A. bulunuz			
	L ₁	L ₂	
1	(a+b)*a	b(a+b)*	
2	(a+b)*a	(a+b)*aa(a+b)*	
3	(a+b)*a	(a+b)*b	
4	(a+b)b(a+b)*	b(a+b)*	
5	(a+b)b(a+b)*	(a+b)*aa(a+b)*	
6	(a+b)b(a+b)*	(a+b)*b	
7	(b+ab)*(a+Λ)	(a+b)*aa(a+b)*	
8	(b+ab)*(a+Λ)	(b+ab*a)*ab*	
9	(b+ab)*(a+Λ)	(a+ba)*a	
10	(ab*)*	b(a+b)*	
11	(ab*)*	a(a+b)*	
12	(ab*)*	(a+b)*aa(a+b)*	
13	All strings of even length	a(a+b)*	
14	Even-Length strings	(a+b)*aa(a+b)*	
15	Even-Length strings	(b+ab)*(a+Λ)	
16	Odd-Length strings	a(a+b)*	
17	Even-Length strings	EVEN-EVEN	
18	i) Even-Length strings	Strings with an even number of a's	
	ii) Even-Length strings	Strings with an odd number of a's	
19	i) Even-Length strings	Strings with an odd number of a's an and an odd number of b's	
	ii) Even-Length strings	Strings with an odd number of a's an and an even number of b's	

