3. táblás gyakorlat – visszavezetés

Határozzuk meg az n természetes szám valódi páros osztóinak számát.

Tehetnénk azt is, hogy 1..n-ig számláljuk azokat az osztókat, amelyek párosak, és amúgy valódiak, de sokkal egyszerűbb, ha az összes páros osztót számláljuk viszont nem 1..n-ig, hanem 2..n-1-ig, így ezek garantáltan valódiak is lesznek¹. A program így valamivel hatékonyabb is lesz².

$$A = (n : \mathbb{N}, c : \mathbb{N}_0)$$

$$ef = (n = n')$$

$$uf = \left(ef \wedge c = \sum_{\substack{i=2\\2|i \wedge i|n}}^{n-1} 1\right)$$

Visszavezetés (számlálás):

$$[m..n]$$
 \sim $[2..n-1]$ $\beta(i)$ \sim $2|i \wedge i|n$

Struktogram:

c := 0			
i = 2n - 1			<i>i</i> : ℕ
	$2 i \wedge i n$		
	c := c + 1	SKIP	

¹ Elvileg az 1 is valódi osztónak számít (emellett "triviális" osztónak is), viszont mivel nem páros szám, most nyugodtan kihagyhatjuk.

² Ha már hatékonyság: az ideális megoldás az lenne, hogy induljunk 2-től, és minden kör után kettesével növeljük *i*-t. Ekkor arra sincs szükség, hogy a párosságot ellenőrizzük