How to	Think	Like	a	Computer	Scientist
					C Version

Michael Penta

based on previous work by Allen B. Downey and Thomas Scheffler

Version 1.11

February 1, 2023

Copyright (C) 1999 Allen B. Downey Copyright (C) 2009 Thomas Scheffler Copyright (C) 2023 Michael Penta

Permission is granted to copy, distribute, transmit and adapt this work under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: https://creativecommons.org/licenses/by-nc/4.0/.

If you are interested in distributing a commercial version of this work, please contact the author(s).

The LaTeX source and code for this book is available from: $\verb|https://github.com/tscheffl/ThinkC| \\$

Contents

1	The	way of the program	1
	1.1	What is a programming language?	1
	1.2	What is a program?	3
	1.3	What is debugging?	3
		1.3.1 Compile-time errors	4
		1.3.2 Run-time errors	4
		1.3.3 Logic errors and semantics	4
		1.3.4 Experimental debugging	5
	1.4	Formal and natural languages	5
	1.5	The first program	7
	1.6	Glossary	8
	1.7	Exercises	10
2	Von	iables and types	13
4		• •	
	2.1	More output	13
	2.2	Values	14
	2.3	Variables	15
	2.4	Assignment	16
	2.5	Outputting variables	17
	2.6	Keywords	18
	2.7	Operators	18
	2.8	Order of operations	19
	2.9	Operators for characters	20

ii Contents

	2.10	Composition	21
	2.11	Scanning User Input	21
	2.12	Prompting for User Input	22
	2.13	Mixing Calls to Scan Integers and Character $\ \ldots \ \ldots \ \ldots$	23
	2.14	Glossary	24
	2.15	Exercises	24
3	Fun	ction	27
	3.1	Floating-point	27
	3.2	Constants	29
	3.3	Converting types	29
	3.4	Math functions	30
	3.5	Composition	31
	3.6	Adding new functions	32
	3.7	Definitions and uses	34
	3.8	Programs with multiple functions	35
	3.9	Parameters and arguments	36
	3.10	Parameters and variables are local	37
	3.11	Functions with multiple parameters	38
	3.12	Functions with results	38
	3.13	Glossary	39
	3.14	Exercises	39
4	Sele	ction structures and recursion	43
	4.1	Conditional expressions	43
	4.2	Selection structures: one-way	44
	4.3	The modulus operator	44
	4.4	Random numbers	45
	4.5	Random seeds	46
	4.6	Selection structures: two-way	48
	17	Chaining	40

C	•••
Contents	111

C	For	mat Specifiers	79
E	S ASC	CII-Table	77
	A.4	Layout	76
	A.3	Bracing style	75
	A.2	Naming conventions and capitalization rules	74
	A.1	A short guide on style \hdots	73
A	Cod	ling Style	73
	5.10	Exercises	69
	5.9	Glossary	68
	5.8	Returning from main()	68
	5.7	Bool functions	67
	5.6	Logical operators	66
	5.5	Boolean variables	66
	5.4	Boolean values	65
	5.3	Composition	64
	5.2	Program development	62
	5.1	Return values	59
5	Frui	itful functions	59
	4.16	Exercises	56
		Glossary	55
		Stack diagrams for recursive functions	55
		Tips on writing recursion solutions	54
		Infinite recursion	54
	4.11	Recursion	52
	4.10	The return statement and early termination	51
	4.9	Selection structures: switch	50
	4.8	Nested conditionals	49

iv Contents

Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer scientist. I like the way computer scientists think because they combine some of the best features of Mathematics, Engineering, and Natural Science. Like mathematicians, computer scientists use formal languages to denote ideas (specifically computations). Like engineers, they design things, assembling components into systems and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is **problem-solving**. By that I mean the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills. That's why this chapter is called "The way of the program."

On one level, you will be learning to program, which is a useful skill by itself. On another level you will use programming as a means to an end. As we go along, that end will become clearer.

1.1 What is a programming language?

The programming language you will be learning is C, which was developed in the early 1970s by Dennis M. Ritchie at the Bell Laboratories. C is an example of a **high-level language**; other high-level languages you might have heard of are Pascal, C++ and Java.

As you might infer from the name "high-level language," there are also **low-level languages**, sometimes referred to as machine language or assembly language. Loosely-speaking, computers can only execute programs written in low-level languages. Thus, programs written in a high-level language have to be translated before they can run. This translation takes some time, which is a small disadvantage of high-level languages.

But the advantages are enormous. First, it is *much* easier to program in a high-level language; by "easier" I mean that the program takes less time to write, it's shorter and easier to read, and it's more likely to be correct. Secondly, high-level languages are **portable**, meaning that they can run on different kinds of computers with few or no modifications. Low-level programs can only run on one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level languages are only used for a few special applications.

There are two ways to translate a program; **interpreting** or **compiling**. An interpreter is a program that reads a high-level program and does what it says. In effect, it translates the program line-by-line, alternately reading lines and carrying out commands.

A compiler is a program that reads a high-level program and translates it all at once, before executing any of the commands. Often you compile the program as a separate step, and then execute the compiled code later. In this case, the high-level program is called the **source code**, and the translated program is called the **object code** or the **executable**.

As an example, suppose you write a program in C. You might use a text editor to write the program (a text editor is a simple word processor). When the program is finished, you might save it in a file named program.c, where "program" is an arbitrary name you make up, and the suffix .c is a convention that indicates that the file contains C source code.

Then, depending on what your programming environment is like, you might leave the text editor and run the compiler. The compiler would read your source code, translate it, and create a new file named program.o to contain the object code, or program.exe to contain the executable.

The next step is to run the program, which requires some kind of executor. The role of the executor is to load the program (copy it from disk into memory) and make the computer start executing the program.

Although this process may seem complicated, in most programming environments (sometimes called development environments), these steps are automated for you. Usually you will only have to write a program and press a button or type a single command to compile and run it. On the other hand, it is useful to know what the steps are that are happening in the background, so that if something goes wrong you can figure out what it is.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The computation might be something mathematical, like solving a system of equations or finding the roots of a polynomial, but it can also be a symbolic computation, like searching and replacing text in a document or (strangely enough) compiling a program.

The instructions, which we will call **statements**, look different in different programming languages, but there are a few basic operations most languages can perform:

input: Get data from the keyboard, or a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of statements.

repetition: Perform some action repeatedly, usually with some variation.

That's pretty much all there is to it. Every program you've ever used, no matter how complicated, is made up of statements that perform these operations. Thus, one way to describe programming is the process of breaking a large, complex task up into smaller and smaller subtasks until eventually the subtasks are simple enough to be performed with one of these basic operations.

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often leads to errors. For whimsical reasons, programming errors are called **bugs** and the process of tracking them down and correcting them is called **debugging**.

There are a few different kinds of errors that can occur in a program, and it is useful to distinguish between them in order to track them down more quickly.

1.3.1 Compile-time errors

The compiler can only translate a program if the program is syntactically correct; otherwise, the compilation fails and you will not be able to run your program. **Syntax** refers to the structure of your program and the rules about that structure.

For example, in English, a sentence must begin with a capital letter and end with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we can read the poetry of E. E. Cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in your program, the compiler will print an error message and quit, and you will not be able to run your program.

To make matters worse, there are more syntax rules in C than there are in English, and the error messages you get from the compiler are often not very helpful. During the first few weeks of your programming career, you will probably spend a lot of time tracking down syntax errors. As you gain experience, though, you will make fewer errors and find them faster.

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does not appear until you run the program.

C is not a **safe** language, such as Java, where run-time errors are rare. Programming in C allows you to get very close to the actual computing hardware. Most run-time errors C occur because the language provides no protection against the accessing or overwriting of data in memory.

For the simple sorts of programs we will be writing for the next few weeks, run-time errors are rare, so it might be a little while before you encounter one.

1.3.3 Logic errors and semantics

The third type of error is the **logical** or **semantic** error. If there is a logical error in your program, it will compile and run successfully, in the sense that the computer will not generate any error messages, but it will not do the right thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of the program (its semantics) is wrong. Identifying logical errors can be tricky, since it requires you to work backwards by looking at the output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging. Although it can be frustrating, debugging is one of the most intellectually rich, challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues and you have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what is going wrong, you modify your program and try again. If your hypothesis was correct, then you can predict the result of the modification, and you take a step closer to a working program. If your hypothesis was wrong, you have to come up with a new one. As Sherlock Holmes pointed out, "When you have eliminated the impossible, whatever remains, however improbable, must be the truth." (from A. Conan Doyle's *The Sign of Four*).

For some people, programming and debugging are the same thing. That is, programming is the process of gradually debugging a program until it does what you want. The idea is that you should always start with a working program that does *something*, and make small modifications, debugging them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code, but it started out as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to Larry Greenfield, "One of Linus's earlier projects was a program that would switch between printing AAAA and BBBB. This later evolved to Linux" (from *The Linux Users' Guide* Beta Version 1).

In later chapters I will make more suggestions about debugging and other programming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish, and French. They were not designed by people (although people try to impose some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific applications. For example, the notation that mathematicians use is a formal language that is particularly good at denoting relationships among numbers and symbols. Chemists use a formal language to represent the chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express computations.

As I mentioned before, formal languages tend to have strict rules about syntax. For example, 3 + 3 = 6 is a syntactically correct mathematical statement, but

3 = +6\$ is not. Also, H_2O is a syntactically correct chemical name, but ${}_2Zz$ is not

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic elements of the language, like words and numbers and chemical elements. One of the problems with 3=+6\$ is that \$ is not a legal token in mathematics (at least as far as I know). Similarly, $_2Zz$ is not legal because there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement; that is, the way the tokens are arranged. The statement 3=+6\$ is structurally illegal, because you can't have a plus sign immediately after an equals sign. Similarly, molecular formulas have to have subscripts after the element name, not before.

When you read a sentence in English or a statement in a formal language, you have to figure out what the structure of the sentence is (although in a natural language you do this unconsciously). This process is called **parsing**.

For example, when you hear the sentence, "The other shoe fell," you understand that "the other shoe" is the subject and "fell" is the verb. Once you have parsed a sentence, you can figure out what it means, that is, the semantics of the sentence. Assuming that you know what a shoe is, and what it means to fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens, structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with by using contextual clues and other information. Formal languages are designed to be nearly or completely unambiguous, which means that any statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, natural languages employ lots of redundancy. As a result, they are often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, "The other shoe fell," there is probably no shoe and nothing falling. Formal languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a hard time adjusting to formal languages. In some ways the difference between formal and natural language is like the difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole poem together creates an effect or emotional response. Ambiguity is not only common but often deliberate.

Prose: The literal meaning of words is more important and the structure contributes more meaning. Prose is more amenable to analysis than poetry, but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First, remember that formal languages are much more dense than natural languages, so it takes longer to read them. Also, the structure is very important, so it is usually not a good idea to read from top to bottom, left to right. Instead, learn to parse the program in your head, identifying the tokens and interpreting the structure. Finally, remember that the details matter. Little things like spelling errors and bad punctuation, which you can get away with in natural languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called "Hello, World." because all it does is display the words "Hello, World." In C, this program looks like this:

```
#include <stdio.h>
#include <stdlib.h>

/* main: generate some simple output */
int main(void)
{
    printf("Hello, World.\n");
    return(EXIT_SUCCESS);
}
```

Some people judge the quality of a programming language by the simplicity of the "Hello, World." program. By this standard, C does reasonably well. Even so, this simple program contains several features that are hard to explain to beginning programmers. For now, we will ignore some of them, like the first two lines.

The third line begins with /* and ends with */, which indicates that it is a **comment**. A comment is a bit of English text that you can put in the middle of a program, usually to explain what the program does. When the compiler sees a /*, it ignores everything from there until it finds the corresponding */.

In the forth line, you notice the word main. main is a special name that indicates the place in the program where execution begins. When the program runs, it starts by executing the first **statement** in main() and it continues, in order, until it gets to the last statement, and then it quits.

There is no limit to the number of statements that can be in main(), but the example contains only two. The first is an **output** statement, meaning that

it displays or prints a message on the screen. The second statement tells the operating system that our program executed successfully.

The statement that prints things on the screen is printf(), and the characters between the quotation marks will get printed. Notice the \n after the last character. This is a special character called *newline* that is appended at the end of a line of text and causes the cursor to move to the next line of the display. The next time you output something, the new text appears on the next line. At the end of the statement there is a semicolon (;), which is required at the end of every statement.

There are a few other things you should notice about the syntax of this program. First, C uses curly-brackets ({ and }) to group things together. In this case, the output statement is enclosed in curly-brackets, indicating that it is *inside* the definition of main(). Also, notice that the statement is indented, which helps to show visually which lines are inside the definition.

At this point it would be a good idea to sit down in front of a computer and compile and run this program. The details of how to do that depend on your programming environment, this book assumes that you know how to do it.

As I mentioned, the C compiler is very pedantic with syntax. If you make any errors when you type in the program, chances are that it will not compile successfully. For example, if you misspell stdio.h, you might get an error message like the following:

hello_world.c:1:19: error: sdtio.h: No such file or directory There is a lot of information on this line, but it is presented in a dense format that is not easy to interpret. A more friendly compiler might say something like:

"On line 1 of the source code file named hello_world.c, you tried to include a header file named sdtio.h. I didn't find anything with that name, but I did find something named stdio.h. Is that what you meant, by any chance?"

Unfortunately, few compilers are so accommodating. The compiler is not really very smart, and in most cases the error message you get will be only a hint about what is wrong. It will take some time for you to learn to interpret different compiler messages.

Nevertheless, the compiler can be a useful tool for learning the syntax rules of a language. Starting with a working program (like hello_world.c), modify it in various ways and see what happens. If you get an error message, try to remember what the message says and what caused it, so if you see it again in the future you will know what it means.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution, and expressing the solution.

1.6 Glossary 9

high-level language: A programming language like C that is designed to be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for a computer to execute. Also called "machine language" or "assembly language."

formal language: Any of the languages people have designed for specific purposes, like representing mathematical ideas or computer programs. All programming languages are formal languages.

natural language: Any of the languages people speak that have evolved naturally.

portability: A property of a program that can run on more than one kind of computer.

interpret: To execute a program in a high-level language by translating it one line at a time.

compile: To translate a program in a high-level language into a low-level language, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to be executed.

statement: A part of a program that specifies an action that will be performed when the program runs. A print statement causes output to be displayed on the screen.

comment: A part of a program that contains information about the program, but that has no effect when the program runs.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

syntax error: An error in a program that makes it impossible to parse (and therefore impossible to compile).

logical error: An error in a program that makes it do something other than what the programmer intended.

debugging: The process of finding and removing any of the three kinds of errors.

1.7 Exercises

Exercise 1.1

Computer scientists have the annoying habit of using common English words to mean something different from their common English meaning. For example, in English, a statement and a comment are pretty much the same thing, but when we are talking about a program, they are very different.

The glossary at the end of each chapter is intended to highlight words and phrases that have special meanings in computer science. When you see familiar words, don't assume that you know what they mean!

- a. In computer jargon, what's the difference between a statement and a comment?
- b. What does it mean to say that a program is portable?
- c. What is an executable?

Exercise 1.2

Before you do anything else, find out how to compile and run a C program in your environment. Some environments provide sample programs similar to the example in Section 1.5.

- a. Type in the "Hello World" program, then compile and run it.
- b. Add a second print statement that prints a second message after the "Hello World.". Something witty like, "How are you?" Compile and run the program again.
- c. Add a comment line to the program (anywhere) and recompile it. Run the program again. The new comment should not affect the execution of the program.

This exercise may seem trivial, but it is the starting place for many of the programs we will work with. In order to debug with confidence, you have to have confidence in your programming environment. In some environments, it is easy to lose track of which program is executing, and you might find yourself trying to debug one program while you are accidentally executing another. Adding (and changing) print statements is a simple way to establish the connection between the program you are looking at and the output when the program runs.

Exercise 1.3

It is a good idea to commit as many errors as you can think of, so that you see what error messages the compiler produces. Sometimes the compiler will tell you exactly what is wrong, and all you have to do is fix it. Sometimes, though, the compiler will produce wildly misleading messages. You will develop a sense for when you can trust the compiler and when you have to figure things out yourself.

- a. Remove the closing curly-bracket (}).
- b. Remove the opening curly-bracket ({).
- c. Remove the int before main.

1.7 Exercises 11

- d. Instead of main, write mian.
- e. Remove the closing */ from a comment.
- f. Replace printf with pintf.
- g. Delete one of the parentheses: (or). Add an extra one.
- h. Delete the semicolon after the return statement.

Chapter 2

Variables and types

2.1 More output

As I mentioned in the last chapter, you can put as many statements as you want in main(). For example, to output more than one line:

As you can see, it is legal to put comments at the end of a line, as well as on a line by themselves.

The phrases that appear in quotation marks are called **strings**, because they are made up of a sequence (string) of letters. Actually, strings can contain any combination of letters, numbers, punctuation marks, and other special characters.

Often it is useful to display the output from multiple output statements all on one line. You can do this by leaving out the \n from the first printf:

```
int main (void)
{
    printf ("Goodbye, ");
    printf ("cruel world!\n");
```

```
return (EXIT_SUCCESS);
}
```

In this case the output appears on a single line as Goodbye, cruel world!. Notice that there is a space between the word "Goodbye," and the second quotation mark. This space appears in the output, so it affects the behavior of the program.

Spaces that appear outside of quotation marks generally do not affect the behavior of the program. For example, I could have written:

```
int main(void)
{
printf("Goodbye, ");
printf("cruel world!\n");
return(EXIT_SUCCESS);
}
```

This program would compile and run just as well as the original. The breaks at the ends of lines (newlines) do not affect the program's behavior either, so I could have written:

```
int main(void){printf("Goodbye, ");printf("cruel world!\n");
return(EXIT SUCCESS);}
```

That would work, too, although you have probably noticed that the program is getting harder and harder to read. Newlines and spaces are useful for organizing your program visually, making it easier to read the program and locate syntax errors.

2.2 Values

Computer programs operate on values stored in computer memory. A value—like a letter or a number— is one of the fundamental things that a program manipulates. The only values we have manipulated so far are the strings we have been outputting, like "Hello, world.". You (and the compiler) can identify these string values because they are enclosed in quotation marks.

There are different kinds of values, including integers and characters. It is important for the program to know exactly what kind of value is manipulated because not all manipulations will make sense on all values. We therefore distinguish between different **types** of values.

An integer is a whole number like 1 or 17. You can output integer values in a similar way as you output strings:

```
printf("%i\n", 17);
```

When we look at the printf() statement more closely, we notice that the value we are outputting no longer appears inside the quotes, but behind them separated by comma. The string is still there, but now contains a %i instead of any text. The %i a placeholder that tells the printf() command to print

2.3 Variables 15

an integer value (you can also use %d for integers). Several such placeholders, called **format specifiers**, exist for different data types and formatting options of the output. We can look at more next.

A character value is a letter or digit or punctuation mark enclosed in single quotes, like 'a' or '5' - that is the character 5 not the integer 5. You can output character values in a similar way:

```
printf("%c\n", '}');
```

This example outputs a single closing curly-bracket on a line by itself. It uses the %c placeholder to signify the output of a character value.

It is easy to confuse different types of values, like "5", '5' and 5, but if you pay attention to the punctuation, it should be clear that the first is a string, the second is a character and the third is an integer. The reason this distinction is important should become clear soon.

2.3 Variables

One of the most powerful features of a programming language is the ability to manipulate values through the use of **variables**. So far the values that we have used in our statements where fixed to what was written in the statement. Now we will use a variable as a named location that stores a value.

Just as there are different types of values (integer, character, etc.), there are different types of variables. When you create a new variable, you have to declare what type it is. For example, the character type in C is called char. The following statement creates a new variable named fred that has type char.

```
char fred;
```

This kind of statement is called a **declaration**.

The type of a variable determines what kind of values it can store. A char variable can contain characters, and it should come as no surprise that int variables can store integers.

Contrary to other programming languages, C does not have a dedicated variable type for the storage of string values. We will see in a later chapter how string values are stored in C.

To create an integer variable, the syntax is

```
int bob:
```

where bob is the arbitrary name you choose to identify the variable. In general, you will want to make up variable names that indicate what you plan to do with the variable. For example, if you saw these variable declarations:

```
char first_letter;
char last_letter;
int hour, minute;
```

you could probably make a good guess at what values would be stored in them. This example also demonstrates the syntax for declaring multiple variables with the same type: hour and minute are both integers (int type).

ATTENTION: The older C89 standard allows variable declarations only at the beginning of a block of code. It is therefore necessary to put variable declarations before any other statements, even if the variable itself is only needed much later in your program.

2.4 Assignment

Now that we have created some variables, we would like to store values in them. We do that with an **assignment statement**.

```
first_letter = 'a';  /* give first_letter the value 'a' */
hour = 11;  /* assign the value 11 to hour */
minute = 59;  /* set minute to 59 */
```

This example shows three assignments, and the comments show three different ways people sometimes talk about assignment statements. The vocabulary can be confusing here, but the idea is straightforward:

- When you declare a variable, you create a named storage location.
- When you make an assignment to a variable, you give it a value.

A common way to represent variables on paper is to draw a box with the name of the variable on the outside and the value of the variable on the inside. This kind of figure is called a **state diagram** because is shows what state each variable is in (you can think of it as the variable's "state of mind"). This diagram shows the effect of the three assignment statements:

first_lette	er hour	minute
а	11	59

When we assign values to variables, we have to make sure that the assigned value correspondents to the type of the variable. In C a variable has to have the same type as the value you assign. For example, you cannot store a string in an int variable. The following statement generates a compiler warning:

```
int hour;
hour = "Hello."; /* WRONG !! */
```

This rule is sometimes a source of confusion, because there are many ways that you can convert values from one type to another, and C sometimes converts things automatically. But for now you should remember that as a general rule variables and values have the same type, and we'll talk about special cases later.

Another source of confusion is that some strings look like integers, but they are not. For example, the string "123", which is made up of the characters 1, 2 and 3, is not the same thing as the number 123. This assignment is illegal:

```
minute = "59"; /* WRONG!! */
```

2.5 Outputting variables

You can output the value of a variable using the same commands we used to output simple values.

```
int hour, minute;
char colon;
hour = 11;
minute = 59;
colon = ':';

printf ("The current time is ");
printf ("%i", hour);
printf ("%c", colon);
printf ("%i", minute);
printf ("\n");
```

This program creates two integer variables named hour and minute, and a character variable named colon. It assigns appropriate values to each of the variables and then uses a series of output statements to generate the following:

```
The current time is 11:59
```

When we talk about "outputting a variable," we mean outputting the *value* of the variable. The name of a variable only has significance for the programmer. The compiled program no longer contains a human readable reference to the variable name in your program.

The printf() command is capable of outputting several variables in a single statement. To do this, we need to put placeholders in the so called *format string*, that indicate the position where the variable value will be put. The variables will be inserted in the order of their appearance in the statement. It is important to observe the right order and type for the variables.

By using a single output statement, we can make the previous program more concise:

```
int hour, minute;
char colon;
hour = 11;
minute = 59;
colon = ':';
printf ("The current time is %i%c%i\n", hour, colon, minute);
```

On one line, this program outputs a string, two integers and a character. Very impressive!

2.6 Keywords

A few sections ago, I said that you can make up any name you want for your variables, but that's not quite true. There are certain words that are reserved in C because they are used by the compiler to parse the structure of your program, and if you use them as variable names, it will get confused. These words, called **keywords**, include int, char, void and many more.

Reserved keywords in the C language				
auto	double	inline	sizeof	volatile
break	else	int	static	while
case	enum	long	struct	_Bool
char	extern	register	switch	_Complex
const	float	restrict	typedef	$_{ t Imaginary}$
continue	for	return	union	
default	goto	short	unsigned	
do	if	signed	void	

The complete list of keywords is included in the C Standard, which is the official language definition adopted by the International Organization for Standardization (ISO) on September 1, 1998.

Rather than memorize the list, I would suggest that you take advantage of a feature provided in many development environments: code highlighting. As you type, different parts of your program should appear in different colors. For example, keywords might be blue, strings red, and other code black. If you type a variable name and it turns blue, watch out! You might get some strange behavior from the compiler.

2.7 Operators

Operators are special symbols that are used to represent simple computations like addition and multiplication. Most of the operators in C do exactly what you would expect them to do, because they are common mathematical symbols. For example, the operator for adding two integers is +.

The following are all legal C expressions whose meaning is more or less obvious:

1+1 hour-1 hour*60+minute minute/60

Expressions can contain both variables names and values. In each case the name of the variable is replaced with its value before the computation is performed.

Addition, subtraction and multiplication all do what you expect, but you might be surprised by division. For example, the following program:

```
int hour, minute;
hour = 11;
minute = 59;
printf ("Number of minutes since midnight: %i\n", hour*60 + minute);
printf ("Fraction of the hour that has passed: %i\n", minute/60);
```

would generate the following output:

```
Number of minutes since midnight: 719 Fraction of the hour that has passed: 0
```

The first line is what we expected, but the second line is odd. The value of the variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for the discrepancy is that C is performing **integer division**.

When both of the **operands** are integers (operands are the things operators operate on), the result must also be an integer, and by definition integer division always rounds *down*, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a fraction:

```
printf ("Percentage of the hour that has passed: ");
printf ("%i\n", minute*100/60);
```

The result is:

```
Percentage of the hour that has passed: 98
```

Again the result is rounded down, but at least now the answer is approximately correct. In order to get an even more accurate answer, we could use a different type of variable, called floating-point, that is capable of storing fractional values. We'll get to that in the next chapter.

2.8 Order of operations

When more than one operator appears in an expression the order of evaluation depends on the rules of **precedence**. A complete explanation of precedence can get complicated, but just to get you started:

• Multiplication and division happen before addition and subtraction. So 2*3-1 yields 5, not 4, and 2/3-1 yields -1, not 1.

- If the operators have the same precedence they are evaluated from left to right. So in the expression minute*100/60, the multiplication happens first, yielding 5900/60, which in turn yields 98. If the operations had gone from right to left, the result would be 59*1 which is 59, which is wrong.
- Any time you want to override the rules of precedence (or you are not sure
 what they are) you can use parentheses. Expressions in parentheses are
 evaluated first, so 2*(3-1) is 4. You can also use parentheses to make an
 expression easier to read, as in (minute*100)/60, even though it doesn't
 change the result.

2.9 Operators for characters

Interestingly, the same mathematical operations that work on integers also work on characters. For example,

```
char letter;
letter = 'a' + 1;
printf ("%c\n", letter);
```

outputs the letter **b**. Although it is syntactically legal to multiply characters, it is almost never useful to do it.

Earlier I said that you can only assign integer values to integer variables and character values to character variables, but that is not completely true. In some cases, C converts automatically between types. For example, the following is legal.

```
int number;
number = 'a';
printf ("%i\n", number);
```

The result is 97, which is the number that is used internally by C to represent the letter 'a'. However, it is generally a good idea to treat characters as characters, and integers as integers, and only convert from one to the other if there is a good reason.

Automatic type conversion is an example of a common problem in designing a programming language, which is that there is a conflict between **formalism**, which is the requirement that formal languages should have simple rules with few exceptions, and **convenience**, which is the requirement that programming languages be easy to use in practice.

More often than not, convenience wins, which is usually good for expert programmers, who are spared from rigorous but unwieldy formalism, but bad for beginning programmers, who are often baffled by the complexity of the rules and the number of exceptions. In this book I have tried to simplify things by emphasizing the rules and omitting many of the exceptions.

2.10 Composition

So far we have looked at the elements of a programming language—variables, expressions, and statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small building blocks and **compose** them. For example, we know how to multiply integers and we know how to output values; it turns out we can do both at the same time:

```
printf ("%i\n", 17 * 3);
```

Actually, I shouldn't say "at the same time," since in reality the multiplication has to happen before the output, but the point is that any expression, involving numbers, characters, and variables, can be used inside an output statement. We've already seen one example:

```
printf ("%i\n", hour * 60 + minute);
```

You can also put arbitrary expressions on the right-hand side of an assignment statement:

```
int percentage;
percentage = (minute * 100) / 60;
```

This ability may not seem so impressive now, but we will see other examples where composition makes it possible to express complex computations neatly and concisely.

WARNING: There are limits on where you can use certain expressions; most notably, the left-hand side of an assignment statement has to be a variable name, not an expression. That's because the left side indicates the storage location where the result will go. Expressions do not represent storage locations, only values. So the following is illegal: minute + 1 = hour;

2.11 Scanning User Input

In all of the examples so far we have assigned variable values before we run our program. We can also ask the user to input values when the program is running. scanf() is a function in the C programming language that is used to read input from the user. It can be used to read various types of data, such as integers, characters, and strings (we will get back to strings in a later chapter)

To read a single character from the user, you can use the %c format specifier. The %c format specifier tells scanf() to read a character and store it in the variable. For example:

```
char c;
scanf("%c", &c);
```

In this example, <code>scanf()</code> will read a character from the user's input and store it in the variable c. Note that the & operator is used when we refer to the variable name. This will be explained in a later chapter, but it is important not to forget it here.

To read an integer, you can use the %d or %i format specifier. These specifiers tells scanf() to read an integer and store it in the variable. For example:

```
int x;
scanf("%d", &x);
```

In this example, scanf() will read an integer from the user's input and store it in the variable x.

scanf() can also be used to scan strings, but we will get back to strings in a later chapter.

2.12 Prompting for User Input

Prompting for input is a way to gather information from the user and store it in variables for use in the program. When using scanf(), you first need to print a prompt to let the user know what to enter. This can be done using printf.

For example, to prompt the user for an integer, you can use:

```
int x;
printf("%s", "Enter an integer: \n");
scanf("%d", &x);
```

In this example, the printf() function is used to print the message "Enter an integer: " with a new line at the end. The user can enter an integer and the scanf() function is used to read the integer from the user and store it in the variable x.

Caution It is considered insecure to useprintf() to print a string without the string format specifier.

```
printf("Enter an integer: \n"); //works but is considered insecure
printf("%s", "Enter an integer: \n"); // this is considered a secure use
```

As an alternative to printing strings with printf(), you can use the puts() function to print a string. Unlike printf(), puts() automatically appends a newline character after the string, which can be useful if you want to print multiple strings on separate lines.

For example:

```
puts("Welcome to the program");
puts("Enter an integer:");
```

2.13 Mixing Calls to Scan Integers and Character

It is important to note that when mixing calls to scanf() to read different types, newline characters can cause problems. For example, if the user enters an integer followed by a newline character, the newline character will be left in the input buffer and can cause issues when trying to read the next input using scanf().

One way to manage this is to include a space in the quotes before the format specifier - like this " %d". The space indicates to ignore whitespace characters.

```
#include <stdio.h>
#include <stdlib.h>

int main (void)
{
  int age;
  char initial;
  puts("enter your age");
  scanf("%d", &age);
  puts("enter your first intial");
  scanf(" %c", &initial); //note the space after " and before %
}
```

Another way to manage this is to insert a second call to scan the newline.

```
#include <stdio.h>
#include <stdlib.h>

int main (void)
{
  int age;
  char initial;
  char newline;
     puts("enter your age");
  scanf("%d", &age);
  scanf("%c", &newline); //this will scan the extra new line
  puts("enter your first intial");
  scanf("%c", &initial);
}
```

2.14 Glossary

variable: A named storage location for values. All variables have a type, which determines which values it can store.

value: A letter, or number, or other thing that can be stored in a variable.

type: The meaning of values. The types we have seen so far are integers (int in C) and characters (char in C).

keyword: A reserved word that is used by the compiler to parse programs. Examples we have seen include int, void and char.

statement: A line of code that represents a command or action. So far, the statements we have seen are declarations, assignments, and output statements.

declaration: A statement that creates a new variable and determines its type.

assignment: A statement that assigns a value to a variable.

expression: A combination of variables, operators and values that represents a single result value. Expressions also have types, as determined by their operators and operands.

format specifier: A special character or sequence of characters that tells the printing and scanning functions how to format and interpret data.

operator: A special symbol that represents a simple computation like addition or multiplication.

operand: One of the values on which an operator operates.

precedence: The order in which operations are evaluated.

composition: The ability to combine simple expressions and statements into compound statements and expressions in order to represent complex computations concisely.

2.15 Exercises

Exercise 2.1

- a. Create a new program named MyDate.c. Copy or type in something like the "Hello, World" program and make sure you can compile and run it.
- b. Following the example in Section 2.5, write a program that creates variables named day, month and year What type is each variable?
 Assign values to those variables that represent today's date.
- c. Print the value of each variable on a line by itself. This is an intermediate step that is useful for checking that everything is working so far.

2.15 Exercises 25

d. Modify the program so that it prints the date in standard American form: mm/dd/yyyy.

e. Modify the program again so that the total output is:

American format: 3/18/2009
European format: 18.3.2009

The point of this exercise is to use the output function printf to display values with different types, and to practice developing programs gradually by adding a few statements at a time.

Exercise 2.2

- a. Create a new program called MyTime.c. From now on, I won't remind you to start with a small, working program, but you should.
- b. Following the example in Section 2.7, create variables named hour, minute and second, and assign them values that are roughly the current time. Use a 24-hour clock, so that at 2pm the value of hour is 14.
- c. Make the program calculate and print the number of seconds since midnight.
- d. Make the program calculate and print the number of seconds remaining in the day.
- e. Make the program calculate and print the percentage of the day that has passed.
- f. Change the values of hour, minute and second to reflect the current time (I assume that some time has elapsed), and check to make sure that the program works correctly with different values.

The point of this exercise is to use some of the arithmetic operations, and to start thinking about compound entities like the time of day that are represented with multiple values. Also, you might run into problems computing percentages with <code>ints</code>, which is the motivation for floating point numbers in the next chapter.

HINT: you may want to use additional variables to hold values temporarily during the computation. Variables like this, that are used in a computation but never printed, are sometimes called intermediate or temporary variables.

Exercise 2.3

Rewrite the date program so that it asks the user to input numbers for the day, month, and year. Print both date formats as before, but use the user's input

The point of this exercise is to scan user input and print what was entered.

Chapter 3

Function

3.1 Floating-point

In the last chapter we had some problems dealing with numbers that were not integers. We worked around the problem by measuring percentages instead of fractions, but a more general solution is to use floating-point numbers, which can represent fractions as well as integers. In C, there are two floating-point types, called float and double. These two different data types are used to store decimal numbers. A "float" is a single-precision number, which means it has less precision (or fewer digits) than a "double", which is a double-precision number. Because of this, a double is more accurate when dealing with decimal numbers than a float. The trade-off is precision for memory usage - the more precise data type uses more bits to store the value. In this text we accept this trade-off and exclusively use the double data type for floating point numbers.

You can create floating-point variables and assign values to them using the same syntax we used for the other types. For example:

```
double pi;
pi = 3.14159;
```

To print a single precision float, we can use the format specifier %f, but for a double we need to use %lf – that is L F, as in Long Float. In C, the type modifier long doubles the amount of memory (if possible) for a data type. If we have a 4 byte int, then a long int would be 8 bytes. We can also reduce the amount of memory allocated with the type modifier short. Our 4 byte int, is reduced to 2 bytes when we use a a short int. In essence our double data type is a long float, hence the %lf.

```
double pi;
pi = 3.14159;
printf("%lf\n", pi);
```

It is also legal to declare a variable and assign a value to it at the same time:

28 Function

```
int x = 1;
char first_char = "a";
double pi = 3.14159;
```

In fact, this syntax is quite common. A combined declaration and assignment is sometimes called an **initialization**.

Although floating-point numbers are useful, they are often a source of confusion because there seems to be an overlap between integers and floating-point numbers. For example, if you have the value 1, is that an integer, a floating-point number, or both?

Strictly speaking, C distinguishes the integer value 1 from the floating-point value 1.0, even though they seem to be the same number. They belong to different types, and strictly speaking, you are not allowed to make assignments between types. For example, the following is illegal:

```
int x = 1.1;
```

Because the variable on the left is an int and the value on the right is a double. But it is easy to forget this rule, especially because there are places where C automatically converts from one type to another (this is called implicit casting, more on that in a bit). For example,

```
double y = 1;
```

should technically not be legal, but C allows it by converting the int to a double automatically. This is convenient for the programmer, but it can cause problems; for example:

```
double y = 1 / 3;
```

You might expect the variable y to be given the value 0.333333, which is a legal floating-point value, but in fact it will get the value 0.0. The reason is that the expression on the right is evaluated as integer division. In C, an an integer divided by an integer will be evaluated with integer division. The result of integer division will always be the whole number of the standard division result. This means 5/2 = 2 and 1/3 = 0. In the examples above, after the integer division results in 0, it is converted to floating-point value with the assignment, and it finally results in the value 0.0.

One way to solve this problem is to make the right-hand side a floating-point expression:

```
double y = 1.0 / 3.0;
```

This sets y to 0.333333, because if either value in the division is a float or double, the compiler will use floating-point division.

All the operations we have seen—addition, subtraction, multiplication, and division—work on floating-point values, although you might be interested to know that the underlying mechanism is completely different. In fact, most processors have special hardware just for performing floating-point operations.

3.2 Constants 29

3.2 Constants

In the previous section we have assigned the value 3.14159 to a floating point variable. An important thing to remember about variables is, that they can hold – as their name implies – different values at different points in your program. For example, we could assign the value 3.14159 to the variable pi now and assign some other value to it later on:

```
double pi = 3.14159;
...
pi = 10.999; /* probably a logical error in your program */
```

The second value is probably not what you intended when you first created the named storage location pi. The value for π is constant and does not change over time. Using the storage location pi to hold arbitrary other values can cause some very hard to find bugs in your program.

C allows you to specify the static nature of storage locations through the use of the keyword const. It must be used in conjunction with the required type of the constant. A value will be assigned at initialization but can never be changed again during the runtime of the program.

```
const double PI = 3.14159;
printf ("Pi: %lf\n", PI);
...
PI = 10.999; /* wrong, error caught by the compiler */
```

It is no longer possible to change the value for PI once it has been initialized, but other than this we can use it just like a variable.

In order to visually separate constants from variables we will use all uppercase letters in their names.

3.3 Converting types

As I mentioned, C converts ints to doubles automatically if necessary, because no information is lost in the translation. On the other hand, going from a double to an int requires rounding off. C doesn't perform this operation automatically, in order to make sure that you, as the programmer, are aware of the loss of the fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a **typecast**. Typecasting is so called because it allows you to take a value that belongs to one type and "cast" it into another type (in the sense of molding or reforming, not throwing).

The syntax for typecasting requires the explicit specification of the target type, set in parenthesis before the expression (Type). For example:

```
const double PI = 3.14159;
int x = (int) PI;
```

30 Function

The (int) operator casts the value of PI into an integer, so x gets the value 3. Converting to an integer always truncates the double – it cuts off the fractional part of the value. This is essentially rounding down, even if the fraction part is 0.99999999.

Of course we can cast an int to a double without any worry about loss of information because we are only add .0 and not changing the value.

```
int x = 3;
double y = (double) x; /* y = 3.0 */
```

We can also directly convert from char to int because each ASCII character is stored as an integer value. If an integer is between 0 and 255 (inclusively) we can also cast to the ASCII character.

```
char lettter = 'A'
int x = 65;
char letterX = (char)x;
int y = (int) letter;
```

Type can change how C treats values and operations. We saw that dividing two ints results in integer division. However, when mixing int and double in arithmetic operations the result will always be a double. C will implicitly cast values depending on the operation being performed. Some operations/conversion don't really "make sense." Can you cast a double like 3.12 to a char? We can add an int to a char (because they are really both integers), but can you add a double and a char?

```
int x = 3;
double y = (double) x;  /* explicit cast */
double z = x;  /*implicit cast*/
double m = x + 3;  /* implcit cast*/
/*m = 6.0 even though x + 3 = 6*/
```

3.4 Math functions

In mathematics, you have probably seen functions like sin and log, and you have learned to evaluate expressions like $\sin(\pi/2)$ and $\log(1/x)$. First, you evaluate the expression in parentheses, which is called the **argument** of the function. For example, $\pi/2$ is approximately 1.571, and 1/x is 0.1 (if x happens to be 10).

Then you can evaluate the function itself, either by looking it up in a table or by performing various computations. The sin of 1.571 is 1, and the log of 0.1 is -1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expressions like $\log(1/\sin(\pi/2))$. First we evaluate the argument of the innermost function, then evaluate the function, and so on.

C provides a set of built-in functions that includes most of the mathematical operations you can think of. The math functions are invoked using a syntax that is similar to mathematical notation:

```
double log = log (17.0);
double angle = 1.5;
double height = sin (angle);
```

The first example sets \log to the logarithm of 17, base e. There is also a function called $\log 10$ that takes logarithms base 10.

The second example finds the sine of the value of the variable angle. C assumes that the values you use with \sin and the other trigonometric functions (\cos , \tan) are in *radians*. To convert from degrees to radians, you can divide by 360 and multiply by 2π .

If you don't happen to know π to 15 digits, you can calculate it using the acos function. The arccosine (or inverse cosine) of -1 is π , because the cosine of π is -1.

```
const double PI = acos(-1.0);
double degrees = 90;
double angle = degrees * 2 * PI / 360.0;
```

Before you can use any of the math functions, you have to include the math **header file**. You may also need to use the -ml option at compile. Header files contain information the compiler needs about functions that are defined outside your program. For example, in the "Hello, world!" program we included a header file named stdio.h using an **include** statement:

```
#include <stdio.h>
```

 ${\tt stdio.h}$ contains information about input and output (I/O) functions available in C.

Similarly, the math header file contains information about the math functions. You can include it at the beginning of your program along with stdio.h:

```
#include <math.h>
```

3.5 Composition

Just as with mathematical functions, C functions can be **composed**, meaning that you use one expression as part of another. For example, you can use any expression as an argument to a function:

```
double x = cos (angle + PI/2);
```

This statement takes the value of PI, divides it by two and adds the result to the value of angle. The sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to another:

```
double x = \exp(\log(10.0));
```

This statement finds the log base e of 10 and then raises e to that power. The result gets assigned to x; I hope you know what it is.

32 Function

3.6 Adding new functions

So far we have only been using the functions that are built into C, but it is also possible to add new functions. Actually, we have already seen one function definition: main(). The function named main() is special because it indicates where the execution of the program begins, but the syntax for main() is the same as for any other function definition:

```
void NAME ( LIST OF PARAMETERS )
{
    STATEMENTS
}
```

You can make up any name you want for your function, except that you can't call it main or any other C keyword. The list of parameters specifies what information, if any, you have to provide in order to use (or call) the new function.

main() doesn't take any parameters, as indicated by the parentheses containing the keyword (void) in it's definition. The first couple of functions we are going to write also have no parameters, so the definition looks like this:

```
void printNewLine(void)
{
         printf ("%c", '\n');
}
```

This function is named printNewLine(). It contains only a single statement, which outputs a newline character. Notice that we start the function name with an lowercase letter. The following words of the function name are also capitalized. We will use this convention, often called camel case because of the humps the capital letters create, for the naming of functions consistently throughout the book.

A function definition should always have a corresponding **function prototype**. These tell the compiler the name of the function, the number and types of arguments it takes, and the type of value it returns (if any). Prototypes are written above the main program (or in a header file). Function definitions should be written below main. The prototype for the **printNewLine()** function would be:

```
void printNewLine (void);
```

Function prototypes aid in error checking by allowing the compiler to check the function calls in your code against the function prototypes ensuring that the correct number and types of arguments are being passed. This can also help keep code more readable and organized by keeping the main function near the top of your code while also providing a sort of quick view list of all the function at the top of the program.

Once we have a prototype and definition, we can call this few function in main() using syntax that is similar to the way we call the built-in C commands:

```
void printNewLine (void); /*function prototype*/
   int main (void) {
      printf ("First Line.\n");
      printNewLine ();
                                          /*function call*/
      printf ("Second Line.\n");
      return EXIT_SUCCESS;
   void printNewLine (void)
                               /*function definition*/
       printf ("\n");
The output of this program is:
   First line.
   Second line.
Notice the extra space between the two lines. What if we wanted more space
between the lines? We could call the same function repeatedly:
  int main (void)
  {
      printf ("First Line.\n");
      printNewLine ();
      printNewLine ();
      printNewLine ();
      printf ("Second Line.\n");
  }
Or we could write a new function, named printThreeLines(), that prints three
new lines:
   void printNewLine (void);
   void printThreeLines (void);
   int main (void)
     printf ("First Line.\n");
     printThreeLines ();
     printf ("Second Line.\n");
     return EXIT_SUCCESS;
   void printThreeLines (void)
     printNewLine (); printNewLine (); printNewLine ();
      /*this is legal but maybe better with each on it's own line*/
   }
   void printNewLine (void)
       printf ("\n");
```

34 Function

You should notice a few things about this program:

 You can call the same procedure repeatedly. In fact, it is quite common and useful to do so.

- You can have one function call another function. In this case, main() calls printThreeLines() and printThreeLines() calls printNewLine(). Again, this is common and useful.
- In printThreeLines() I wrote three statements all on the same line, which is syntactically legal (remember that spaces and new lines usually don't change the meaning of a program). On the other hand, it is usually a better idea to put each statement on a line by itself, to make your program easy to read. I sometimes break that rule in this book to save space.

So far, it may not be clear why it is worth the trouble to create all these new functions. Actually, there are a lot of reasons, but this example only demonstrates two:

- 1. Functions are a form of abstraction and abstraction reduces cognitive load (makes it easier to think)
- 2. Creating a new function gives you an opportunity to give a name to a group of statements. Functions can simplify a program by hiding a complex computation behind a single command, and by using English words in place of arcane code. Which is clearer, printNewLine() or printf("\n")?
- 3. Creating a new function can make a program smaller by eliminating repetitive code. For example, a short way to print nine consecutive new lines is to call printThreeLines() three times. How would you print 27 new lines?
- 4. Functions isolate code into contained areas. This can make it easier to fix issues, make changes, and find bugs

3.7 Definitions and uses

Pulling together all the code fragments from the previous section, the whole program looks like this:

```
#include <stdio.h>
#include <stdlib.h>

void printNewLine (void);
void printThreeLines (void);
int main (void)
{
    printf ("First Line.\n");
    printThreeLines ();
```

```
printf ("Second Line.\n");
  return EXIT_SUCCESS;
}

void printNewLine (void)
{
   printf ("\n");
}

void printThreeLines (void)
{
   printNewLine ();
   printNewLine ();
   printNewLine ();
}
```

This program contains three function definitions: PrintNewLine(), printThreeLine(), and main().

Inside the definition of main(), there is a statement that uses or calls printThreeLine(). Similarly, printThreeLine() calls printNewLine() three times.

Without function prototypes, the definition of each function would need to appear above the place it is used – filling the top of our program with definitions and putting main down at the bottom appears above the place where it is used. With prototypes, the order of function definitions doesn't matter (so long as the prototypes are at the top of the program)

3.8 Programs with multiple functions

When you look at the C source code remember execution always begins at the first statement of main(), regardless of where it is in the program. Statements are executed one at a time, in order, until you reach a function call. Function calls are like a detour in the flow of execution. Instead of going to the next statement, you go to the first line of the called function, execute all the statements there, and then come back and pick up again where you left off.

That sounds simple enough, except that you have to remember that one function can call another. Thus, while we are in the middle of main(), we might have to go off and execute the statements in printThreeLines(). But while we are executing printThreeLines(), we get interrupted three times to go off and execute printNewLine().

Fortunately, C is adept at keeping track of where it is, so each time printNewLine() completes, the program picks up where it left off in printThreeLine(), and eventually gets back to main() so the program can terminate.

36 Function

What's the moral of this sordid tale? When you read a program, don't read from top to bottom. Instead, follow the flow of execution.

3.9 Parameters and arguments

Some of the built-in functions we have used have **parameters**, which are values that you provide to let the function do its job. For example, if you want to find the sine of a number, you have to indicate what the number is. Thus, **sin()** takes a **double** value as a parameter.

Some functions take more than one parameter, like pow(), which takes two doubles, the base and the exponent.

Notice that in each of these cases we have to specify not only how many parameters there are, but also what type they are. So it shouldn't surprise you that when you write a function definition, the parameter list indicates the type of each parameter. For example:

```
void printTwice (char phil)
{
    printf("%c%c\n", phil, phil);
}
```

This function takes a single parameter, named phil, that has type char. Whatever that parameter is (and at this point we have no idea what it is), it gets printed twice, followed by a newline. I chose the name phil to suggest that the name you give a parameter is up to you, but in general you want to choose something more illustrative than phil. A better name parameter may be something like charToPrint or symbol

In the function definition the parameter (also called the "formal parameter") has no value, you can think of it like a placeholder. When we call this function, we have to provide a **char**. This is the argument (or the "actual parameter") and it provides the value that replaces the formal parameter in the definition.

For example, we might have a main() function like this:

```
int main (void)
{
    printTwice ('a');
    return EXIT_SUCCESS;
}
```

The char value you provide is called an **argument**, and we say that the argument is **passed** to the function. In this case the value 'a' is passed as an argument to printTwice() where it will get printed twice.

Alternatively, if we had a **char** variable, we could use it as an argument instead:

```
int main ()
{
    char argument = 'b';
```

```
PrintTwice (argument);
return EXIT_SUCCESS;
}
```

Notice something very important here: the name of the variable we pass as an argument (argument) has nothing to do with the name of the parameter (phil). Let me say that again:

The name of the variable we pass as an argument has nothing to do with the name of the parameter.

They can be the same or they can be different, but it is important to realize that they are not the same thing, except that they happen to have the same value (in this case the character 'b').

The value you provide as an argument must have the same type as the parameter of the function you call. This rule is important, but it is sometimes confusing because C sometimes converts arguments from one type to another automatically. For now you should learn the general rule, and we will deal with exceptions later.

3.10 Parameters and variables are local

Parameters and variables only exist inside their own functions. Within the confines of main(), there is no such thing as phil. If you try to use it, the compiler will complain. Similarly, inside printTwice() there is no such thing as argument.

Variables like this are said to be **local**. In order to keep track of parameters and local variables, it is useful to draw a **stack diagram**. Like state diagrams, stack diagrams show the value of each variable, but the variables are contained in larger boxes that indicate which function they belong to.

For example, the stack diagram for printTwice() looks like this:

Whenever a function is called, it creates a new **instance** of that function. Each instance of a function contains the parameters and local variables for that function. In the diagram an instance of a function is represented by a box with the name of the function on the outside and the variables and parameters inside.

In the example, main() has one local variable, argument, and no parameters. printTwice() has no local variables and one parameter, named phil.

38 Function

3.11 Functions with multiple parameters

The syntax for declaring and invoking functions with multiple parameters is a common source of errors. First, remember that you have to declare the type of every parameter. For example

```
void printTime (int hour, int minute)
{
  printf ("%i", hour);
  printf (":");
  printf ("%i", minute);
}
```

It might be tempting to write (int hour, minute), but that format is only legal for variable declarations, not for parameters.

Another common source of confusion is that you do not have to declare the types of arguments. The following is wrong!

```
int hour = 11;
int minute = 59;
printTime (int hour, int minute);  /* WRONG! */
```

In this case, the compiler can tell the type of hour and minute by looking at their declarations. It is unnecessary and illegal to include the type when you pass them as arguments. The correct syntax is printTime (hour, minute);.

3.12 Functions with results

You might have noticed by now that some of the functions we are using, like the math functions, yield results. Other functions, like printNewLine, perform an action but don't report a result. We say a function returns a value of a specif type or if nothing is returned then we say it has void return. That raises some questions:

- What happens if you call a function and you don't do anything with the result (i.e. you don't assign it to a variable or use it as part of a larger expression)?
- What happens if you use a function without a result as part of an expression, like printNewLine() + 7?
- Can we write functions that yield results, or are we stuck with things like printNewLine() and printTwice()?

The answer to the third question is "yes, you can write functions that return values," and we'll do it in a couple of chapters. I will leave it up to you to answer the other two questions by trying them out. Any time you have a question about what is legal or illegal in C, a good way to find out is to ask the compiler.

3.13 Glossary 39

3.13 Glossary

casting: Converting from one type to another. This can be explicit or implicit.

constant: A named storage location similar to a variable, that can not be changed once it has been initialized.

floating-point: A type of variable (or value) that can contain fractions as well as integers. There are a few floating-point types in C; the one we use in this book is double.

initialization: A statement that declares a new variable and assigns a value to it at the same time.

function: A named sequence of statements that performs some useful function. Functions may or may not take parameters, and may or may not produce a result.

parameter: A piece of information you provide in order to call a function. Parameters are like variables in the sense that they contain values and have types.

argument: A value that you provide when you call a function. This value must have the same type as the corresponding parameter.

call: Cause a function to be executed.

void: A type that represents no type. It is used to signify a function takes no parameters and/or reports no value

3.14 Exercises

Exercise 3.1

Evaluate each of the following expressions to determine the resulting value. Use the following variables and values when you evaluate the expressions:

```
int x= 2;
double y = 1.2;
char z = 'A'

a. x + 1

b. x + y

c. x/3

d. x/3.0

e. (int)y

f. (int)z
```

40 Function

Exercise 3.2

The point of this exercise is to practice reading code and to make sure that you understand the flow of execution through a program with multiple functions.

a. What is the output of the following program? Be precise about where there are spaces and where there are newlines.

HINT: Start by describing in words what ping() and baffle() do when they are invoked.

```
#include <stdio.h>
#include <stdlib.h>
void ping(void);
void baffle(void);
void zoop(void);
int main (void)
printf ("No, I ");
zoop ();
printf ("I ");
baffle ();
return EXIT_SUCCESS;
 }
void ping(void)
printf (".\n");
}
void baffle(void)
printf("wug");
ping ();
void zoop(void)
baffle ();
printf ("You wugga ");
baffle ();
```

b. Draw a stack diagram that shows the state of the program the first time ping() is invoked.

Exercise 3.3 The point of this exercise is to make sure you understand how to write and invoke functions that take parameters.

- a. Write a function prototype for a function named zool() that takes three parameters: an int and two char.
- b. Write a line of code that invokes zool(), passing as arguments the value 11, the letter a, and the letter z.

3.14 Exercises 41

Exercise 3.4

The purpose of this exercise is to take code from a previous exercise and encapsulate it in a function that takes parameters. You should start with a working solution to exercise

- a. Write a function definition and prototype for a function called printDateAmerican() that takes the day, month and year as parameters and that prints them in American format.
- b. Test your function by invoking it from main() and passing appropriate arguments. The output should look something like this (except that the date might be different):

3/29/2022

- c. Once you have successfully run theprintDateAmerican(), write another function called printDateEuropean() that prints the date in European format.
- d. Once you have the two functions working, write a main program that asks the user for the day, month, and year and scan the values into variables. Call each of your functions with the given input. Do this three times - each time prompt and scan the data from the user and call both functions with the data.

Exercise 3.5

Many computations can be expressed concisely using the "multadd" operation, which takes three operands and computes a*b+c. Some processors even provide a hardware implementation of this operation for floating-point numbers.

- a. Write a function definition and prototype for a function called multadd() that takes three doubles as parameters and that prints their multadditionization.
- b. Write a main() function that tests multadd() by invoking it with a few simple parameters, like 1.0, 2.0, 3.0, and then prints the result, which should be 5.0.
- c. Also in main(), use multadd() to compute the following value:

NOTE: Do not let the math scare you – you don't have to understand the math to write the code. Break down each piece. Leverage variables and functions. Look for patterns.

$$\sin \frac{\pi}{4} + \frac{\cos \frac{\pi}{4}}{2}$$

d. Write a function called yikes() that takes a double as a parameter and that uses multadd() to calculate and print

$$xe^{-x} + \sqrt{1 - e^{-x}}$$

HINT: the Math function for raising e to a power is double exp(double x);.

42 Function

In the last part, you get a chance to write a function that invokes a function you wrote. Whenever you do that, it is a good idea to test the first function carefully before you start working on the second. Otherwise, you might find yourself debugging two functions at the same time, which can be very difficult.

One of the purposes of this exercise is to practice pattern-matching: the ability to recognize a specific problem as an instance of a general category of problems (think about how these meet the pattern of the multadd function)

Chapter 4

Selection structures and recursion

4.1 Conditional expressions

In order to write useful programs, we almost always need the ability to check certain conditions and change the behavior of the program accordingly. In C we can use **control structures** to change the flow of our program. Control structures utilize **conditional expressions** to execute statements conditionally.

Conditional expressions are expressions that yield a true or false value. In C, any non-zero expression is true. Zero is false. The following are some example expressions and how they would evaluate in C

Most conditional expressions use comparison operators

Although these operations are probably familiar to you, the syntax C uses is a little different from mathematical symbols like =, \neq and \leq . A common error

is to use a single = instead of a double ==. Remember that = is the assignment operator, and == is a comparison operator. Also, there is no such thing as =< or =>.

It is generally a good idea to make the two sides of a condition operator be the same type so its best to compare ints to ints and doubles to doubles. With some implicit or explicit casting you can also compare ints with chars and ints with doubles of course you can always type cast if need. Unfortunately, at this point you can't compare strings at all! There is a way to compare strings, but we won't get to it for a couple of chapters.

It is also important to note that you should only test floating point values using > and <.

Due to the limitations of the floating point representation, these numbers cannot be compared for equality. If we need to test these for equality we have to determine if the numbers are close enough to each other. To calculate this, we first must decided on a tolerance (like .00001) and then compare this to the difference of the two numbers.

4.2 Selection structures: one-way

One category of control structures are the selection structures. The simplest selection structure is the if statement:

```
if (x > 0)
{
    printf ("x is positive\n");
}
```

The expression in parentheses must be a conditional expression. If the expression is true, then the statements in brackets get executed. If the condition is not true, the statements are not executed.

This is considered one - way selection - either you perform the task or you skip over it. There is only one choice and you select it or you do not.

4.3 The modulus operator

The modulus operator works on integers (and integer expressions) and yields the remainder when the first operand is divided by the second. In C, the modulus operator is a percent sign, %. The syntax is exactly the same as for other operators:

```
int quotient = 7 / 3;
int remainder = 7 % 3;
```

The first operator, integer division, yields 2. The second operator yields 1. Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check whether one number is divisible by another: if x % y is zero, then x is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or digits from a number. For example, x % 10 yields the rightmost digit of x (in base 10). Similarly x % 100 yields the last two digits.

4.4 Random numbers

Most computer programs do the same thing every time they are executed, so they are said to be **deterministic**. Usually, determinism is a good thing, since we expect the same calculation to yield the same result. For some applications, though, we would like the computer to be unpredictable. Games are an obvious example.

Making a program truly **nondeterministic** turns out to be not so easy, but there are ways to make it at least seem nondeterministic. One of them is to generate pseudorandom numbers and use them to determine the outcome of the program. Pseudorandom numbers are not truly random in the mathematical sense, but for our purposes, they will do.

C provides a function called rand() that generates pseudorandom numbers. It is declared in the header file stdlib.h, which contains a variety of "standard library" functions, hence the name.

The return value from rand() is an integer between 0 and RAND_MAX, where RAND MAX is a large number (about 2 billion on my computer) also defined in the header file. Each time you call rand() you get a different randomly-generated number. To see a sample, run this:

```
int x = rand();
printf("%i\n", x);
```

On my machine I got the following output:

1804289383 846930886 1681692777 1714636915

You will probably get something similar, but different, on yours.

Of course, we don't always want to work with gigantic integers. More often we want to generate integers between 0 and some upper bound. A simple way to do that is with the modulus operator. For example:

```
int x = rand ();
int y = x % range + start
```

Range here is the number of possible consecutive random values we would like. Start is the lowest random value we want. Since y is the remainder when x is divided by range, the only possible values for y are between 0 and range - 1, including both end points. Keep in mind, though, that y will never be equal to range. The lower bound here is always 0 so if we add a start value we can shift the range to start at a new lower bound.

For example if we want a random number between 1 and 6, inclusively, our range is 6 [1, 2, 3, 4, 5, 6].

```
int range = 6;
int x = rand ();
int y = x % range;
```

However, this code will generate a number between 0 and 5, inclusively. To start this sequence at 1, we have to add a start value.

```
int range = 6;
int start = 1;
int x = rand ();
int y = x % range + start;
```

It is also frequently useful to generate random floating-point values. A common way to do that is by dividing by RAND_MAX. For example:

```
int x = rand ();
double y = (double) x / RAND_MAX;
```

This code sets y to a random value between 0.0 and 1.0, including both end points. As an exercise, you might want to think about how to generate a random floating-point value in a given range; for example, between 100.0 and 200.0.

4.5 Random seeds

If you have run the code in this chapter a few times, you might have noticed that you are getting the same "random" values every time. That's not very random!

One of the properties of pseudorandom number generators is that if they start from the same place they will generate the same sequence of values. The starting place is called a **seed**; by default, C uses the same seed every time you run the program.

While you are debugging, it is often helpful to see the same sequence over and over. That way, when you make a change to the program you can compare the output before and after the change.

If you want to choose a different seed for the random number generator, you can use the **srand()** function. It takes a single argument, which is an integer between 0 and RAND MAX.

For many applications, like games, you want to see a different random sequence every time the program runs. A common way to do that is to use a library function like time() to generate something reasonably unpredictable and unrepeatable, like the number of seconds since January 1970, and use that number as a seed. The details of how to do that depend on your development environment but one example is shown here.

Let's look at program that combines selection, modulus, and randomness. The following program generates a random number, either 1 for heads or 2 for tails. The result is printed.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main (void)
{
   // use the number of milliseconds from 1970 to seed rand srand(time(0));

   //random number 1 2r 2
   int flip = rand() % 2 + 1;

if(flip == 1 )
{
```

```
puts("heads")
}
if(flip == 2 )
{
     puts("tails")
}
return EXIT_SUCCESS;
}
```

4.6 Selection structures: two-way

A second form of the selection structures is two-way selection, in which there are two possibilities, and the condition determines which one gets executed. We do one thing or we do another thing, unlike one-way selection where we did the thing or we didn't do the thing The syntax looks like:

```
if (x%2 == 0)
{
    printf ("x is even\n");
}
else
{
    printf ("x is odd\n");
}
```

If the remainder when x is divided by 2 is zero, then we know that x is even, and this code displays a message to that effect. If the condition is false, the second set of statements is executed. Since the condition must be true or false, exactly one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or oddness) of numbers often, you might want to "wrap" this code up in a function, as follows:

```
void printParity (int x)
{
    if (x%2 == 0)
    {
        printf ("x is even\n");
    }
    else
    {
        printf ("x is odd\n");
    }
}
```

4.7 Chaining 49

Now you have a function named printParity() that will display an appropriate message for any integer you care to provide. In main() you would call this function as follows:

```
printParity (17);
```

Always remember that when you *call* a function, you do not have to declare the types of the arguments you provide. C can figure out what type they are based on the definition and the prototype. You should resist the temptation to write things like:

4.7 Chaining

Sometimes you want to check for a number of related conditions and choose one of several actions. One way to do this is by **chaining** a series of **ifs** and **elses**:

```
if (x > 0)
{
    printf ("x is positive\n");
}
else if (x < 0)
{
    printf ("x is negative\n");
}
else
{
    printf ("x is zero\n");
}</pre>
```

These chains can be as long as you want, although they can be difficult to read if they get out of hand. One way to make them easier to read is to use standard indentation, as demonstrated in these examples. If you keep all the statements and squiggly-braces lined up, you are less likely to make syntax errors and you can find them more quickly if you do.

4.8 Nested conditionals

In addition to chaining, you can also nest one control structures within another. We could have written the previous example as:

```
if (x == 0)
{
    printf ("x is zero\n");
}
else
{
```

```
if (x > 0)
{
     printf ("x is positive\n");
}
else
{
     printf ("x is negative\n");
}
```

There is now an outer conditional that contains two branches. The first branch contains a simple output statement, but the second branch contains another if statement, which has two branches of its own. Fortunately, those two branches are both output statements, although they could have been conditional statements as well.

Notice again that indentation helps make the structure apparent, but nevertheless, nested conditionals get difficult to read very quickly. In general, it is a good idea to avoid them when you can.

On the other hand, this kind of **nested structure** is common, and we will see it again, so you better get used to it.

4.9 Selection structures: switch

A switch is sort of short hand to replace some long chained structures. You can use a switch when you are testing a single int or char, you are testing for equality, and you would otherwise have a long chain. For example we can take this chained structure that is testing the int value and printing a message based on the value.

```
//x is an int

if (x == 1)
{
  puts("message1");
}
  else if (x == 2)
{
  puts("message2");
}
  else if (x == 3)
{
  puts("message3");
}
  else
{
```

```
puts("default message");
}
```

We can rewrite this as a switch because we are testing an int value for equality in a chained structure. Each block of code in the chained structure becomes a case in the switch. Each case in the switch must have a label and a break. Most labels start with case | and then have the value we are testing for equality - like case 2: or case 'c':. One case has a unique label - default. The default case has no value to test because it is the catchall - it only runs if all other cases fail. All cases end with the word break. A break forces control to leave the switch structure. Breaks are an important part of the switch structure. Write a program that prompts the user for an integer. Use the switch to print various messages. Try removing some of the breaks and check out how the changes behave. Omitting breaks between cases can cause fall through - this can be a bug or a feature depending on how you use it (look into stacking cases in switches).

```
//x is an int
switch(x):
{
  case 1:
  puts("message1");
  break;

case 2:
  puts("message1");
  break;

case 3:
  puts("message1");
  break;

default:
  puts("message1");
  break;
```

4.10 The return statement and early termination

The return statement allows you to terminate the execution of a function. You can place a return statement in any part of the function. Once the program hits the return it will leave the function and go back to the caller. If you put a return statement before you before you reach the end of a function this is called an early return or early termination. This can be useful to guard the function

from doing unnecessary action. For example, if the parameter of the function must greater than zero, then we can put an if statement to act as a gaurd and stop the execution of the function right off the top.

This defines a function named printLogarithm() that takes a double named x as a parameter. The first thing it does is check whether x is greater than zero, in which case it displays an error message and then uses return to exit the function. The flow of execution immediately returns to the caller and the remaining lines of the function are not executed.

Remember that any time you want to use one a function from the math library, you have to include the header file $\mathtt{math.h}$ and you may be required to link the math library at compile time with -lm (dash L M)

4.11 Recursion

I mentioned in the last chapter that it is legal for one function to call another, and we have seen several examples of that. I neglected to mention that it is also legal for a function to call itself. It may not be obvious why that is a good thing, but it turns out to be one of the most magical and interesting things a program can do.

For example, look at the following function:

```
void countdown (int n)
{
    if (n == 0)
    {
        printf ("Blastoff!");
    }
    else
    {
        printf ("%i", n);
        countdown (n-1);
    }
}
```

4.11 Recursion 53

The name of the function is <code>countdown()</code> and it takes a single integer as a parameter. If the parameter is zero, it outputs the word "Blastoff." Otherwise, it outputs the parameter and then calls a function named <code>countdown()</code>—itself—passing <code>n-1</code> as an argument.

What happens if we call this function like this:

```
int main (void)
{
    countdown (3);
    return EXIT_SUCCESS;
}
```

The execution of countdown() begins with n=3, and since n is not zero, it outputs the value 3, and then calls itself...

The execution of countdown() begins with n=2, and since n is not zero, it outputs the value 2, and then calls itself...

The execution of countdown() begins with n=1, and since n is not zero, it outputs the value 1, and then calls itself...

The execution of countdown() begins with n=0, and since n is zero, it outputs the word "Blastoff!" and then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you're back in main() (what a trip). So the total output looks like:

```
3
2
1
Blastoff!
```

As a second example, let's look again at the functions printNewLine() and printThreeLines().

```
void printNewLine ()
    {
        printf ("\n");
    }

void printThreeLines ()
    {
        printNewLine (); printNewLine ();
}
```

Although these work, they would not be much help if I wanted to output 2 newlines, or 106. A better alternative would be

```
void printLines (int n)
{
    if (n > 0)
    {
        printf ("\n");
        printLines (n-1);
    }
}
```

This program is similar to countdown; as long as n is greater than zero, it outputs one newline, and then calls itself to output n-1 additional newlines. Thus, the total number of newlines is 1 + (n-1), which usually comes out to roughly n.

The process of a function calling itself is called **recursion**, and such functions are said to be **recursive**.

4.12 Infinite recursion

In the examples in the previous section, notice that each time the functions get called recursively, the argument gets smaller by one, so eventually it gets to zero. When the argument is zero, the function returns immediately, without making any recursive calls. This case—when the function completes without making a recursive call—is called the base case.

If a recursion never reaches a base case, it will go on making recursive calls forever and the program will never terminate. This is known as **infinite recursion**, and it is generally not considered a good idea.

In most programming environments, a program with an infinite recursion will not really run forever. Eventually, something will break and the program will report an error. This is the first example we have seen of a run-time error (an error that does not appear until you run the program).

You should write a small program that recurses forever and run it to see what happens.

4.13 Tips on writing recursion solutions

It is helpful to have a strategy to tackle recursive solutions.

- 1. Identify a base case. This is what stops the recursion. This block will not have a recursive call
- 2. Identify the general case (the recursive step). This is the repeating part. It will contain a recursive call
- 3. The recursive call will use an argument that gets the next step closer to the base case.

4. An if statement will test the parameter and determine if the base case is run or the general case.

4.14 Stack diagrams for recursive functions

In the previous chapter we used a stack diagram to represent the state of a program during a function call. The same kind of diagram can make it easier to interpret a recursive function.

Remember that every time a function gets called it creates a new instance that contains the function's local variables and parameters.

This figure shows a stack diagram for Countdown, called with n = 3:

Countdown()		n	0	
Countdown()	Ē	n	1	Ī
Countdown()	Ē	n	2	j
Countdown()	Ē	n	3	Ī
main()	Ē			

There is one instance of main() and four instances of Countdown(), each with a different value for the parameter n. The bottom of the stack, Countdown() with n=0 is the base case. It does not make a recursive call, so there are no more instances of Countdown().

The instance of main() is empty because main() does not have any parameters or local variables. As an exercise, draw a stack diagram for PrintLines(), invoked with the parameter n=4.

4.15 Glossary

modulus: An operator that works on integers and yields the remainder when one number is divided by another. In C it is denoted with a percent sign (%).

deterministic: A program that does the same thing every time it is run.

pseudorandom: A sequence of numbers that appear to be random, but which are actually the product of a deterministic computation.

seed: A value used to initialize a random number sequence. Using the same seed should yield the same sequence of values.

condition: An expression that results in true or false

control structure: A structure that uses a condition to allow for conditionally executing a block of code.

selection structure: A type of control structure. Selection structures include if, if...else, and switch

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of another conditional statement.

recursion: The process of calling the same function you are currently executing.

infinite recursion: A function that calls itself recursively without every reaching the base case. Eventually an infinite recursion will cause a run-time error.

4.16 Exercises

Exercise 4.1 Use the variables initialized below to evaluate each expression. State if C would consider the resulting value as true or false.

```
int m = 0;
int n = 1;
char p = 'k';
char s = 'F'
double t = 1.2
    a. m n
    b. m + n
    c. m
    d. p <= k
    e. t < n</pre>
```

Exercise 4.2 This exercise reviews the flow of execution through a program with multiple methods. Read the following code and answer the questions below.

```
#include <stdio.h>
#include <stdlib.h>

void zippo (int, int);
void baffle (int);
```

4.16 Exercises 57

```
int main (void)
zippo (5, 13);
return EXIT_SUCCESS;
void baffle (int output)
printf ("%i\n",output);
zippo (12, -5);
void zippo (int quince, int flag)
  if (flag < 0)
    printf ("%i zoop\n", quince);
  }
  else
  {
     printf ("rattle ");
     baffle (quince);
     printf ("boo-wa-ha-ha\n");
 }
```

- a. Write the number 1 next to the first *statement* of this program that will be executed. Be careful to distinguish things that are statements from things that are not.
- b. Write the number 2 next to the second statement, and so on until the end of the program. If a statement is executed more than once, it might end up with more than one number next to it.
- c. What is the value of the parameter quince when baffle() gets invoked for the first time?
- d. What is the exact output of this program? Pay close attention to the printed white space like spaces and

Exercise 4.3 In this exercise you will practice using random with functions

- a. Define a function and a prototype called rollDie that has no parameters. In the function call rand to generate a random number 1, 2, 3, 4, 5, or 6. Print the resulting value.
- b. Define a main function that seeds the random with time calls your function 3 times $\,$

Exercise 4.4 In this exercise you will practice using selection statements with functions

- a. Define a function and a prototype called validate that has one parameter, an int. If the int is 0 the function should print an error message and terminate. If the parameter is non-zero, multiply the value by 2 and print the result.
- b. Define a main function that calls your function 3 times with the following arguments: $0,\,3,\,-2$

Exercise 4.5 There is an old song about beer bottles that can be expressed recursively.

The first verse of the song "99 Bottles of Beer" is:

99 bottles of beer on the wall, 99 bottles of beer, ya' take one down, ya' pass it around, 98 bottles of beer on the wall.

Subsequent verses are identical except that the number of bottles gets smaller by one in each verse, until the last verse:

No bottles of beer on the wall, no bottles of beer, ya' can't take one down, ya' can't pass it around, 'cause there are no more bottles of beer on the wall'

And then the song (finally) ends.

Write a program that prints the entire lyrics of "99 Bottles of Beer." Your program should include a recursive method that does the hard part, but you also might want to write additional methods to separate the major functions of the program.

The last verse, when the number of bottles left is 0, is the base case. The other verses are the recursive step.

As you are developing your code, you will probably want to test it with a small number of verses, like "3 Bottles of Beer."

The purpose of this exercise is to take a problem and break it into smaller problems, and to solve the smaller problems by writing simple, easily-debugged methods.

Exercise 4.6 You can use the getchar() function in C to get character input from the user through the keyboard. This function stops the execution of the program and waits for the input from the user.

The getchar() function has the type int and does not require an argument. It returns the ASCII-Code (cf. Appendix B) of the key that has been pressed on the keyboard.

- a. Write a program, that asks the user to input a digit between 0 and 9.
- b. Test the input from the user and display an error message if the returned value is not a digit. The program should then be terminated. If the test is successful, the program should print the input value on the computer screen.

Chapter 5

Fruitful functions

5.1 Return values

Some of the built-in functions we have used, like the math functions, have produced results. That is, the effect of calling the function is to generate a new value, which we usually assign to a variable or use as part of an expression. For example:

```
double e = exp (1.0);
double height = radius * sin (angle);
```

But so far all the functions we have written have been **void** functions; that is, functions that return no value. When you call a void function, it is typically on a line by itself, with no assignment – there is nothing to store as no result was produced:

```
printLines (3);
countdown (n-1);
```

In this chapter, we will create functions that produce results, or "fruit," as opposed to our previous void functions, which produced nothing. I will refer to as **fruitful** functions because they yield results.

The first example is area, which takes a double as a parameter, and returns the area of a circle with the given radius:

```
double area (double radius)
{
    double pi = acos (-1.0);
    double area = pi * radius * radius;
    return area;
}
```

The first thing you should notice is that the beginning of the function definition is different. Instead of void, which indicates a void function (that will not produce a fruit), we see double, which indicates that the return value (the fruit) from this function will have type double.

Fruitful functions

Also, notice that the last line is an alternate form of the return statement that includes a return value. This statement means, "return immediately from this function and use the following expression as a return value." The type of the expression in the return statement must match the return type of the function. In other words, when you declare that the return type is double, you are making a promise that this function will eventually produce a double. If you try to return with no expression, or an expression with the wrong type, the compiler will take you to task. The purpose of our function prototypes is to let the compiler know the type of the parameters and return value of our function.

The prototype for this function would be:

```
double area (double );
```

When we define a fruitful function we can only return one value. The return expression you provide can be arbitrarily complicated, but it must yield only one value. We could have written this function more concisely, but ultimately we only return one value:

```
double area (double radius)
{
return acos(-1.0) * radius * radius;
}
```

On the other hand, **temporary**, or **local**, variables like **area** and **pi** often make debugging easier and help to break up concepts into smaller more manageable parts.

There are two main schools of thought when it comes to returning from functions.

One idea is that functions should have only one return statement, a single exit point. Others favor multiple returns. This book takes no stance on this issue – other than we strive to write readable and maintainable code. Sometimes this means we have single exit point, while other times using multiple return statements to return early from a function. We will note that single exit functions can be easier to debug because they uses local variables to store return results. We use multiple return statements in this absolute value example:

```
double absoluteValue (double x)
{
    if (x < 0)
    {
        return -x;
    }
    else
    {
        return x;
    }
}</pre>
```

Since these returns statements are in an alternative conditional, only one will be executed. Having more than one return statement in a function, means 5.1 Return values 61

as soon as a return is executed, the function terminates without executing any subsequent statements. This can be used to exit a function when we know there is no point in executing the remaining code:

Code that appears after a return statement, or any place else where it can never be executed, is called **dead code**. Some compilers warn you if part of your code is dead.

If you put return statements inside a conditional, then you have to guarantee that *every possible path* through the program hits a return statement. For example:

```
double AbsoluteValue (double x)
{
    if (x < 0)
    {
        return -x;
    }
    else if (x > 0)
    {
        return x;
    }
    /* WRONG!! */
}
```

This program is not correct because if x happens to be 0, then neither condition will be true and the function will end without hitting a return statement. Unfortunately, many C compilers do not catch this error. As a result, the program may compile and run, but the return value when x==0 could be anything, and will probably be different in different environments.

By now you are probably sick of seeing compiler errors, but as you gain more

62 Fruitful functions

experience, you will realize that the only thing worse than getting a compiler error is *not* getting a compiler error when your program is wrong.

Here's the kind of thing that's likely to happen: you test absoluteValue() with several values of x and it seems to work correctly. Then you give your program to someone else and they run it in another environment. It fails in some mysterious way, and it takes days of debugging to discover that the problem is an incorrect implementation of absoluteValue(). If only the compiler had warned you!

From now on, if the compiler points out an error in your program, you should not blame the compiler. Rather, you should thank the compiler for finding your error and sparing you days of debugging. Some compilers have an option that tells them to be extra strict and report all the errors they can find. You should turn this option on all the time.

As an aside, you should know that there is a function in the math library called fabs() that calculates the absolute value of a double – correctly.

5.2 Program development

At this point you should be able to look at complete C functions and tell what they do. But it may not be clear yet how to go about writing them. I am going to suggest one technique that I call **incremental development**.

As an example, imagine you want to find the distance between two points, given by the coordinates (x_1, y_1) and (x_2, y_2) . By the usual definition,

$$distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
(5.1)

The first step is to consider what a Distance function should look like in C. In other words, what are the inputs (parameters) and what is the output (return value).

In this case, the two points are the parameters, and it is natural to represent them using four doubles. The return value is the distance, which will have type double.

Already we can write an outline of the function:

```
double distance (double x1, double y1, double x2, double y2)
{
    return 0.0;
}
```

The return statement is a placekeeper so that the function will compile and return something, even though it is not the right answer. At this stage the function doesn't do anything useful, but it is worthwhile to try compiling it so we can identify any syntax errors before we make it more complicated.

In order to test the new function, we have to call it with sample values. Somewhere in main() I would add:

```
double dist = distance (1.0, 2.0, 4.0, 6.0); printf ("\%f\n" dist);
```

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle). When you are testing a function, it is useful to know the right answer. Before you test any code you should state what you expect the output to be.

Once we have checked the syntax of the function definition, we can start adding lines of code one at a time. After each incremental change, we recompile and run the program. That way, at any point we know exactly where the error must be—in the last line we added.

The next step in the computation is to find the differences $x_2 - x_1$ and $y_2 - y_1$. I will store those values in temporary variables named dx and dy.

```
double distance (double x1, double y1, double x2, double y2)
{
    double dx = x2 - x1;
    double dy = y2 - y1;
    printf ("dx is %f\n", dx);
    printf ("dy is %f\n", dy;
    return 0.0;
}
```

I added output statements that will let me check the intermediate values before proceeding. As I mentioned, I already know that they should be 3.0 and 4.0.

When the function is finished I will remove the output statements. Code like that is called **scaffolding**, because it is helpful for building the program, but it is not part of the final product. Sometimes it is a good idea to keep the scaffolding around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy. We could use the pow() function, but it is simpler and faster to just multiply each term by itself.

```
double Distance (double x1, double y1, double x2, double y2)
{
    double dx = x2 - x1;
    double dy = y2 - y1;
    double dsquared = dx*dx + dy*dy;
    printf ("d_squared is %f\n", dsquared);
    return 0.0;
}
```

Again, I would compile and run the program at this stage and check the intermediate value (which should be 25.0).

Finally, we can use the sqrt() function to compute and return the result.

```
double distance (double x1, double y1, double x2, double y2)
{
    double dx = x2 - x1;
    double dy = y2 - y1;
```

Fruitful functions

```
double dsquared = dx*dx + dy*dy;
double result = sqrt (dsquared);
return result;
}
```

Then in main(), we should output and check the value of the result.

As you gain more experience programming, you might find yourself writing and debugging more than one line at a time. Nevertheless, this incremental development process can save you a lot of debugging time.

The key aspects of the process are:

- Start with a working program and make small, incremental changes. At any point, if there is an error, you will know exactly where it is.
- Use temporary variables to hold intermediate values so you can output and check them.
- Once the program is working, you might want to remove some of the scaffolding or consolidate multiple statements into compound expressions, but only if it does not make the program difficult to read. We call this refactoring the code.

5.3 Composition

As you should expect by now, once you define a new function, you can use it as part of an expression, and you can build new functions using existing functions. For example, what if someone gave you two points, the center of the circle and a point on the perimeter, and asked for the area of the circle?

Let's say the center point is stored in the variables xc and yc, and the perimeter point is in xp and yp. The first step is to find the radius of the circle, which is the distance between the two points. Fortunately, we have a function, Distance(), that does that.

```
double radius = distance (xc, yc, xp, yp);
The second step is to find the area of a circle with that radius, and return it.
double result = area (radius);
return result;
Wrapping that all up in a function, we get:
double areaFromPoints (double xc, double yc, double xp, double yp)
{
    double radius = distance (xc, yc, xp, yp);
    double result = area (radius);
    return result;
}
```

5.4 Boolean values

The temporary variables radius and area are useful for development and debugging, but once the program is working we can make it more concise by composing the function calls, but we should always favor readability over conciseness:

```
double areaFromPoints (double xc, double yc, double xp, double yp)
{
   return area (dstance (xc, yc, xp, yp));
}
```

5.4 Boolean values

The types we have seen so far can hold very large values. There are a lot of integers in the world, and even more floating-point numbers. By comparison, the set of characters is pretty small. Well, many computing languages implement an even more fundamental type that is even smaller. It is called **_Bool**, and the only values in it are true and false.

Unfortunately, earlier versions of the C standard did not implement boolean as a separate type, but instead used the integer values 0 and 1 to represent truth values. By convention 0 represents false and 1 represents true. Strictly speaking C interprets any integer value different from 0 as true. This can be a source of error if you are testing a value to be true by comparing it with 1.

Without thinking about it, we have been using boolean values in the last of chapter. The condition inside an if statement is a boolean expression. Also, the result of a comparison operator is a boolean value. For example:

```
if (x == 5)
{
   /* do something*/
}
```

The operator == compares two integers and produces a boolean value.

Pre C99 has no keywords for the expression of true or false. A lot of programs instead are using C preprocessor definitions anywhere a boolean expression is called for. For example,

```
#define FALSE 0
#define TRUE 1
...
if (TRUE)
{
    /* will be always executed */
}
```

is a standard idiom for a loop that should run forever (or until it reaches a return or break statement).

Fruitful functions

5.5 Boolean variables

Since boolean values are not supported directly in C, we can not declare variables of the type boolean. Instead, programmers typically use the **short** datatype in combination with preprocessor definitions to store truth values.

```
#define FALSE 0
#define TRUE 1
...
short fred;
fred = TRUE;
short testResult = FALSE;
```

The first line is a simple variable declaration; the second line is an assignment, and the third line is a combination of a declaration and as assignment, called an initialization.

As I mentioned, the result of a comparison operator is a boolean, so you can store it in a variable

```
short evenFlag = (n%2 == 0);    /* true if n is even */
short positiveFlag = (x > 0);    /* true if x is positive */
and then use it as part of a conditional statement later
  if (evenFlag)
  {
    printf("n was even when I checked it");
}
```

A variable used in this way is called a **flag**, since it flags the presence or absence of some condition.

5.6 Logical operators

There are three **logical operators** in C: AND, OR and NOT, which are denoted by the symbols &&, || and !. The semantics (meaning) of these operators is similar to their meaning in English. For example x > 0 && x < 10 is true only if x is greater than zero AND less than 10.

evenFlag | | n%3 == 0 is true if either of the conditions is true, that is, if evenFlag is true OR the number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a bool expression, so !evenFlag is true if evenFlag is false; that is, if the number is odd.

Logical operators often provide a way to simplify nested conditional statements. For example, how would you write the following code using a single conditional?

```
if (x > 0) {
   if (x < 10)
```

5.7 Bool functions 67

```
{
    printf ("x is a positive single digit.\n");
}
```

5.7 Bool functions

It is sometimes appropriate for functions to return boolean values just like any other return type. This is especially convenient for hiding complicated tests inside functions. For example:

```
int IsSingleDigit (int x)
{
    if (x >= 0 && x < 10)
    {
        return TRUE;
    }
    else
    {
        return FALSE;
    }
}</pre>
```

The name of this function is <code>isSingleDigit()</code>. It is common to give such test functions names that sound like <code>yes/no</code> questions. The return type is <code>int</code>, which means that again we need to follow the agreement that 0 represents <code>false</code> and 1 represents <code>true</code>. Every return statement has to follow this convention, again, we are using preprocessor definitions.

The code itself is straightforward, although it is a bit longer than it needs to be. Remember that the expression $x \ge 0$ && x < 10 is evaluated to a boolean value, so there is nothing wrong with returning it directly, and avoiding the if statement altogether:

```
int iSingleDigit (int x)
{
    return (x >= 0 && x < 10);
}</pre>
```

In main() you can call this function in the usual ways:

```
printf("%i\n", isSingleDigit (2));
short bigFlag = !isSingleDigit (17);
```

The first line outputs the value true because 2 is a single-digit number. Unfortunately, when C outputs boolean values, it does not display the words TRUE and FALSE, but rather the integers 1 and 0.

The second line assigns the value true to bigFlag only if 17 is not a positive single-digit number.

The most common use of boolean functions is inside conditional statements

Fruitful functions

```
//very readable with the bool funciton - if is single digit
   if (isSingleDigit (x))
   {
      printf("x is little\n");
   }
   else
   {
      printf("x is big\n");
   }
```

5.8 Returning from main()

Now that we know functions that return values, we can look more closely at the return value of the main() function. It's supposed to return an integer:

```
int main (void)
```

The usual return value from main() is 0, which indicates that the program succeeded at whatever it was supposed to to. If something goes wrong, it is common to return -1, or some other value that indicates what kind of error occurred.

The C standard library <stdlib.h> provides two predefined constants EXIT_SUCCESS and EXIT_FAILURE. We can use these to return a descriptive result from our return statement.

```
#include <stdlib.h>
int main (void)
{
    return EXIT_SUCCESS; /*program terminated successfully*/
}
```

Of course, you might wonder who this value gets returned to, since we never call main() ourselves. It turns out that when the operating system executes a program, it starts by calling main() in pretty much the same way it calls all the other functions. When the program terminates it passes a value back that tells if the execution was successful or not. The operating system can use this value to create error reports or even pass this value on to other programs.

There are even some parameters that can be passed to main() by the system, but we are not going to deal with them for a little while, so we define main() as having no parameters: int main (void).

5.9 Glossary

return type: The type of value a function returns.

return value: The value provided as the result of a function call.

5.10 Exercises 69

local variable: Also called a temporary variable, is a variable declared in a function and is only accessible from within the function in which it is declared

dead code: Part of a program that can never be executed, often because it appears after a **return** statement.

scaffolding: Code that is used during program development but is not part of the final version.

void: A special return type that indicates a void function; that is, one that does not return a value.

boolean: A value or variable that can take on one of two states, often called *true* and *false*. In C, boolean values are mainly stored in variables of type **short** and preprocessor statements are used to define the states.

flag: A variable that records a condition or status information.

comparison operator: An operator that compares two values and produces a boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values in order to test compound conditions.

5.10 Exercises

Exercise 5.1 If you are given three sticks, you may or may not be able to arrange them in a triangle. For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear that you will not be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to see if it is possible to form a triangle:

"If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can."

Write a function named <code>isTriangle()</code> that it takes three integers as arguments, and that returns either <code>TRUE</code> or <code>FALSE</code>, depending on whether you can or cannot form a triangle from sticks with the given lengths.

The point of this exercise is to use conditional statements to write a function that returns a value.

Exercise 5.2 What is the output of the following program? Is there any dead code in this program?

The purpose of this exercise is to make sure you understand logical operators and the flow of execution through fruitful methods.

```
#define TRUE 1
#define FALSE 0
short isHoopy (int);
```

```
short isFrabjuous (int);
  int main (void)
  {
      short flag1 = IsHoopy (202);
      short flag2 = IsFrabjuous (202);
      printf ("%i\n", flag1);
      printf ("%i\n", flag2);
      if (flag1 && flag2)
          puts ("ping!");
      }
      if (flag1 || flag2)
          puts("pong!");
      }
      return EXIT_SUCCESS;
  }
short isHoopy (int x)
short hoopyFlag;
if (x\%2 == 0)
hoopyFlag = TRUE;
else
hoopyFlag = FALSE;
return hoopyFlag;
short isFrabjuous (int x)
short frabjuousFlag;
if (x > 0)
frabjuousFlag = TRUE;
else
frabjuousFlag = FALSE;
return frabjuousFlag;
```

5.10 Exercises 71

a. Create a new program called Sum.c, and type in the following two functions, their prototypes a main function.

```
int functionOne (int m, int n)
    if (m == n)
    {
        return n;
    }
    else
    {
        return m + functionOne (m+1, n);
    }
}
int functionTwo (int m, int n)
    if (m == n)
    {
        return n;
    }
    else
    {
        return n * functionTwo (m, n-1);
    }
}
```

- b. Write a few lines in main() to test these functions. Invoke them a couple of times, with a few different values, and see what you get. By some combination of testing and examination of the code, figure out what these functions do, and give them more meaningful names. Add comments that describe their function abstractly.
- c. Add a **prinf** statement to the beginning of both functions so that they print their arguments each time they are invoked. This is a useful technique for debugging recursive programs, since it demonstrates the flow of execution.

Exercise 5.4 Write a recursive function called power() that takes a double x and an integer n and that returns x^n .

Hint: a recursive definition of this operation is power (x, n) = x * power (x, n-1). Also, remember that anything raised to the zeroeth power is 1.

Exercise 5.5 The distance between two points (x_1, y_1) and (x_2, y_2) is

$$Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Please write a function named distance() that takes four doubles as parameters—x1, y1, x2 and y2—and that prints the distance between the points.

You should first write a function called **sumSquares()** that calculates and returns the sum of the squares of its arguments. For example:

```
double x = sumSquares (3.0, 4.0); would assign the value 25.0 to x.
```

The point of this exercise is to write a new function that uses an existing one. You should first write the sumSquares function then use that function in your distance function. Write a main function that tests each function

Exercise 5.6 The point of this exercise is to practice the syntax of fruitful functions.

- a. Use your existing solution to Exercise 3.5 and make sure you can still compile and run it
- b. Transform Multadd() into a fruitful function, so that instead of printing a result, it returns it.
- c. Everywhere in the program that Multadd() gets invoked, change the invocation so that it stores the result in a variable and/or prints the result.

Appendix A

Coding Style

A.1 A short guide on style

In the last few sections, I used the phrase "by convention" several times to indicate design decisions that are arbitrary in the sense that there are no significant reasons to do things one way or another, but dictated by convention.

In these cases, it is to your advantage to be familiar with convention and use it, since it will make your programs easier for others to understand. At the same time, it is important to distinguish between (at least) three kinds of rules:

Divine law: This is my phrase to indicate a rule that is true because of some underlying principle of logic or mathematics, and that is true in any programming language (or other formal system). For example, there is no way to specify the location and size of a bounding box using fewer than four pieces of information. Another example is that adding integers is commutative. That's part of the definition of addition and has nothing to do with C.

Rules of C: These are the syntactic and semantic rules of C that you cannot violate, because the resulting program will not compile or run. Some are arbitrary; for example, the fact that the = symbol represents assignment and *not* equality. Others reflect underlying limitations of the compilation or execution process. For example, you have to specify the types of parameters, but not arguments.

Style and convention: There are a lot of rules that are not enforced by the compiler, but that are essential for writing programs that are correct, that you can debug and modify, and that others can read. Examples include indentation and the placement of squiggly braces, as well as conventions for naming variables, functions and types.

74 Coding Style

In this section I will briefly summarize the coding style used within this book. It follows loosely the "Nasa C Style Guide" ¹ and its main intent is on readability rather than saving space or typing effort.

Since C has such a long history of usage, many different coding styles have been developed and used. It is important that you can read them and follow one particular scheme in all your code. This makes it much more accessible should you find yourself in a position where you have to share your work with other people or have to access code written by your younger self - many years ago...

A.2 Naming conventions and capitalization rules

As a general rule, you should always choose meaningful names for your identifiers. Ideally the name of a variable or function already explains its behaviour or use.

It may be more typing effort to use a function named FindSubString() rather than FndSStr(). However, the former is almost self describing and might save you a lot in debugging-time.

Don't use single letter variable names!

Similarly to functions, you should give your variables names that speak for themselves and make clear what values will be stored by this variable. There are few noticeable exceptions to this rule: People use i, j and k as counter variables in loops and for spacial coordinates people use x, y and z. Use these conventions if they suit you. Don't try to invent new conventions all by yourself.

The following capitalization style shold be used for the different elements in your program. The consistent use of one style gives the programmer and the reader of the source code a quick way to determine the meaning of different items in your program:

variableNames: variable names always start with lower-case, multiple words are separated by capitalizing the first letter.

CONSTANTS: use all upper case letters. In order to avoid name space collisions it might be necessary to use a prefix such as MY_CONSTANT.

FunctionNames: start always with upper case and should possibly contain a verb describing the function. Names for functions that test values should start with 'Is' or 'Are'.

UserDefinedTypes_t: always end in '_t'. Type names names must be capitalised in order to avoid conflict with POSIX names.

pointerNames_p: in order to visually separate pointer variables from ordinary variables you should consider ending pointers with '_p'.

¹www.scribd.com/doc/6878959/NASA-C-programming-guide

A.3 Bracing style

There exist different bracing or indent styles that serve the goal to make your code more readable through the use of a consistent indentation for control block structures. The styles differ in the way the braces are indented with the rest of the control block. This book uses the BSD/Allman Style because its is the most readable of the four. It needs more horizontal space than the K&R Style but it makes it very easy to track opening and closing braces.

When you are writing programs, make sure that you are using one style consistently. In larger projects all contributors should agree on the style they are using. Modern programming environments like Eclipse support you through the automatic enforcement of a single style.

```
/*Whitesmiths Style*/
  if (condition)
    {
      statement1;
      statement2;
    }
```

Is named after Whitesmiths C, an early commercial C compiler that used this style in its examples. Some people refer to it as the One True Brace Style.

```
/*GNU Style*/
   if (condition)
   {
      statement1;
      statement2;
   }
```

Indents are always four spaces per level, with the braces halfway between the outer and inner indent levels.

```
/*K&R/Kernel Style*/
   if (condition) {
       statement1;
       statement2;
}
```

This style is named after the programming examples in the book *The C Programming Language* by Brian W. Kernighan and Dennis Ritchie (the C inventors).

The K&R style is the style that is hardest to read. The opening brace happens to be at the far right side of the control statement and can be hard to find. The braces therefore have different indentation levels. Nevertheless, many C programs use this style. So you should be able to read it.

```
/*BSD/Allman Style*/
  if (condition)
```

76 Coding Style

```
{
    statement1;
    statement2;
}
```

This style is used for all the examples in this book.

A.4 Layout

Block comments should be used at the top of your file, before all function declarations, to explain the purpose of the program and give additional information.

You should also use a similar documentation style before every relevant function in your program.

```
/*
 * File: test.c
 * Author: Peter Programmer
 * Date: May, 29th, 2009
 *
 * Purpose: to demonstrate good programming
 * practise
 * /

#include <stdlib.h>

/*
 * main function, does not use arguments
 */

int main (void)
{
    return EXIT_SUCCESS;
}
```

Appendix B

ASCII-Table

Dec	Hex	Oct	Character	Dec	Hex	Oct	Character
0	0x00	000	NUL	32	0x20	040	SP
1	0x01	001	SOH	33	0x21	041	!
2	0x02	002	STX	34	0x22	042	" ,
3	0x03	003	ETX	35	0x23	043	#
4	0x04	004	EOT	36	0x24	044	\$
5	0x05	005	ENQ	37	0x25	045	%
6	0x06	006	ACK	38	0x26	046	&
7	0x07	007	BEL	39	0x27	047	,
8	0x08	010	BS	40	0x28	050	(
9	0x09	011	TAB	41	0x29	051)
10	0x0A	012	$_{ m LF}$	42	0x2A	052	*
11	0x0B	013	VT	43	0x2B	053	+
12	0x0C	014	FF	44	0x2C	054	,
13	0x0D	015	CR	45	0x2D	055	-
14	0x0E	016	SO	46	0x2E	056	•
15	0x0F	017	SI	47	0x2F	057	/
16	0x10	020	DLE	48	0x30	060	0
17	0x11	021	DC1	49	0x31	061	1
18	0x12	022	DC2	50	0x32	062	2
19	0x13	023	DC3	51	0x33	063	3
20	0x14	024	DC4	52	0x34	064	4
21	0x15	025	NAK	53	0x35	065	5
22	0x16	026	SYN	54	0x36	066	6
23	0x17	027	ETB	55	0x37	067	7
24	0x18	030	CAN	56	0x38	070	8
25	0x19	031	EM	57	0x39	071	9
26	0x1A	032	SUB	58	0x3A	072	:
27	0x1B	033	ESC	59	0x3B	073	;
28	0x1C	034	FS	60	0x3C	074	"<
29	0x1D	035	GS	61	0x3D	075	=
30	0x1E	036	RS	62	0x3E	076	">
31	0x1F	037	US	63	0x3F	077	?

78 ASCII-Table

Dec	Hex	Oct	Character	Dec	Hex	Oct	Character
64	0x40	100	@	96	0x60	140	(
65	0x41	101	A	97	0x61	141	a
66	0x42	102	В	98	0x62	142	b
67	0x43	103	$^{\circ}$ C	99	0x63	143	c
68	0x44	104	D	100	0x64	144	d
69	0x45	105	E	101	0x65	145	e
70	0x46	106	F	102	0x66	146	f
71	0x47	107	G	103	0x67	147	g
72	0x48	110	Н	104	0x68	150	h
73	0x49	111	I	105	0x69	151	i
74	0x4A	112	J	106	0x6A	152	j
75	0x4B	113	K	107	0x6B	153	k
76	0x4C	114	L	108	0x6C	154	1
77	0x4D	115	M	109	0x6D	155	m
78	0x4E	116	N	110	0x6E	156	n
79	0x4F	117	О	111	0x6F	157	О
80	0x50	120	Р	112	0x70	160	р
81	0x51	121	Q	113	0x71	161	q
82	0x52	122	R	114	0x72	162	r
83	0x53	123	S	115	0x73	163	s
84	0x54	124	T	116	0x74	164	t
85	0x55	125	U	117	0x75	165	u
86	0x56	126	V	118	0x76	166	v
87	0x57	127	W	119	0x77	167	w
88	0x58	130	X	120	0x78	170	x
89	0x59	131	Y	121	0x79	171	У
90	0x5A	132	Z	122	0x7A	172	z
91	0x5B	133	[]	123	0x7B	173	{
92	0x5C	134	\	124	0x7C	174	
93	0x5D	135]]	125	0x7D	175	}
94	0x5E	136	^	126	0x7E	176	"
95	0x5F	137	_	127	0x7F	177	DEL

Appendix C

Format Specifiers

Format Specifier	Type	Example Type
%i	decimal integer	int
$\widehat{\%}$ d	signed integer	int
$\widehat{\%}$ c	signed character	char
%lf	double	double
%f	float	float
$\widehat{\%}\mathbf{s}$	string	char*
%Lf	long double	long double
%ld	long decimal integer	long int
$\widehat{\%}$ u	unsigned integer	signed int
$\widehat{\%}\mathbf{p}$	hexadecimal memory address	int*

Index

<math.h>, 31 <stdio.h>, 31 <stdlib.h>, 45, 68 absolute value, 61 ambiguity, 6</stdlib.h></stdio.h></math.h>	constants, 29 control structure switch, 50 control structures, 43 selection, 44, 48
argument, 30, 36, 39	dead code, 61, 69
arithmetic	debugging, $3, 9, 62$
floating-point, 28	declaration, 15
integer, 19	deterministic, 45
assignment, 16, 24	diagram
	stack, 55
bool, 67, 69	state, 55
boolean, 65	division
bug, 3	integer, 19
	double (floating-point), 27
call, 39	Doyle, Arthur Conan, 5
casting, 28, 39	
chain, 49	error, 9
character operator, 20	compile-time, $4, 61, 62$
coding style, 73	logic, 4
comment, 7, 9	run-time, 4
comparison	EXIT_FAILURE, 68
operator, 43	EXIT_SUCCESS, 68
comparison operator, 65	expression, 19, 21, 24, 30, 31
compile, 2, 9	
compile-time error, 4, 61, 62	flag, 66
composition, 21, 24, 31, 64	floating-point, 39
condition, 43	floating-point number, 27
conditional, 56	formal language, 5, 9
alternative, 48	format, 24
chained, 56	fruitful function, 38, 59
nested, 49, 56	function, 39
conditional expression, 43	bool, 67
constant values, 29	definition, 32

82 Index

C + C 1 00 F0	
fruitful, 38, 59	nondeterministic, 45
main, 32	
math, 30	one-way selection, 44
multiple parameter, 38	operand, 19, 24
prototype, 32	operator, 18, 24
void, 59	character, 20
void, 59	comparison, 43, 65
l l fl- 21	
header file, 31	conditional, 69
math.h, 31	logical, 66, 69
stdio.h, 31	modulus, 44
stdlib.h, 45, 68	order of operations, 19
hello world, 7	output, 13
high-level language, 1, 9	
Holmes, Sherlock, 5	parameter, 36, 39
,	multiple, 38
incremental development, 62	parse, 6, 9
infinite recursion, 54, 56	pi, 59
initialization, 28, 39, 66	poetry, 6
input, 21–23	portable, 1
	precedence, 19
integer division, 19	printf(), 7
interpret, 2, 9	- 0,
1 10 04	problem-solving, 9
keyword, 18, 24	program development, 62
1	programming language, 1
language	prose, 6
formal, 5	prototype
high-level, 1	with return, 60
low-level, 1	puts, 22
natural, 5	
programming, 1	random, 46, 56
safe, 4	seed, 56
safe, 4 Linux, 5	seed, 56
Linux, 5	seed, 56 random number, 45
Linux, 5 literalness, 6	seed, 56 random number, 45 recursion, 52, 56
Linux, 5 literalness, 6 logic error, 4	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56
Linux, 5 literalness, 6 logic error, 4 logical operator, 66	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54
Linux, 5 literalness, 6 logic error, 4	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29 run-time error, 4, 54
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59 fabs(), 62 sin(), 59	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29 run-time error, 4, 54
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59 fabs(), 62	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29 run-time error, 4, 54 safe language, 4
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59 fabs(), 62 sin(), 59 modulus, 44, 56	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29 run-time error, 4, 54 safe language, 4 scaffolding, 63, 69 scanning, 21–24
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59 fabs(), 62 sin(), 59 modulus, 44, 56 natural language, 5, 9	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29 run-time error, 4, 54 safe language, 4 scaffolding, 63, 69 scanning, 21–24 seed, 46
Linux, 5 literalness, 6 logic error, 4 logical operator, 66 low-level language, 1, 9 main, 32 math function, 30 acos(), 59 exp(), 59 fabs(), 62 sin(), 59 modulus, 44, 56	seed, 56 random number, 45 recursion, 52, 56 infinite, 54, 56 recursive, 54 redundancy, 6 return, 51, 59 return type, 69 return value, 59, 69 rounding, 29 run-time error, 4, 54 safe language, 4 scaffolding, 63, 69 scanning, 21–24

Index 83

one-way, 44 switch, 50	style, 73 switch, 50	
two-way, 48	syntax, 4, 9	
semantics, 4, 9, 66 stack, 55 stack diagram, 55 statement, 3, 9, 24 assignment, 16 comment, 7 conditional, 44 declaration, 15 initialization, 66	temporary variable, 60 two-way selection, 48 type, 14, 24 bool, 66 double, 27 int, 19 String, 13 typecasting, 29, 39	
output, 13 printf, 7 return, 51, 59 String, 13 structures selection, 44, 48	value, 14, 15, 24 boolean, 65 variable, 15, 24 local, 60 temporary, 60 void, 39, 59, 69	