STS2006 (Analytic Geometry and Calculus II) Quiz 3 Solutions

Suhyun Park (20181634)

Department of Computer Science and Engineering, Sogang University

1. (5 pts) Find the directional derivative of the function $f(x,y) = x^2y + y^2z$ at the point (1,2,3) in the direction of the vector $\mathbf{v} = (2,-1,2)$.

Solution. Since f is differentiable,

$$D_{\mathbf{v}}(x, y, z) = \nabla f \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$$

$$= (2xy, x^2 + 2yz, y^2) \cdot \frac{(2, -1, 2)}{3}$$

$$= \frac{1}{3} (4xy - x^2 - 2yz + 2y^2)$$

thus $D_{\mathbf{v}}(1,2,3) = \frac{1}{3} (4 \cdot 1 \cdot 2 - 1^2 - 2 \cdot 2 \cdot 3 + 2 \cdot 2^2) = 1.$

2. (5 pts) Find the local maximum and minimum values, and saddle points of the function $f(x,y) = 2 - x^4 + 2x^2 - y^2$.

Solution. Since f is differentiable,

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx} f_{yy} - (f_{xy})^2$$
$$= (-12x^2 + 4)(-2) - 0^2$$
$$= 24x^2 - 8$$

When $f_x(x) = 0$,

$$-4x^3 + 4x = 0$$
$$x^3 = x$$
$$\therefore x = 0, \pm 1$$

2 Suhyun Park (20181634)

When $f_y(y) = 0$,

$$-2y = 0$$

$$\therefore y = 0$$

Therefore f has:

$$x$$
 y
 D
 f_{xx}
 -1
 0
 16
 -8
 local maximum at $(-1,0)$
 0
 0
 -8
 saddle point at $(0,0)$
 1
 0
 16
 -8
 local maximum at $(1,0)$