

*	Linear	Regression	with	9	Gradient	Descent
---	--------	------------	------	---	----------	---------

> Initially

n=0; c=0 L= Learning Rate = 0.0001

Calculating partial derivative of loss function wiret m & C

 $D_{m} = \frac{1}{n} > 2(y_{i} - (mx_{i} + c))(-2_{i}$

Partial derivative w.r. t m,

Dm = -2 > I (y: - yi)

Partial derivative w.r.t c,

 $Dc = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \overline{y_i})$

Updating current values of m & C

 $m = m - L \times D_m$ $C = C - L \times D_C$

Reapleat (2 & 3) until Loss = 0