Graduate Algorithms. Georgia Institute of Technology. Lecture 0

Logistic and organization.

- **Instructor**: Gerandy Brito (you can call me Gerandy, or Brito, or Prof. Brito.)
- TAs: TBA on canvas.
- Webpage for the class: CANVAS. Everything will be posted there (including these slides!)

Logistic and organization.

- Lectures time and location: T TH: 9:30am-10:45am on Bluejeans and sometimes pre-recorded.
- Syllabus: on canvas. You are responsible for reading it.
- **Schedule**: A file with a schedule is on canvas and will be frequently updated.

Communications.

- Piazza: is great for discussion with your peers. TAs will be following the threads.
- Due to the large size of my classes, I encourage you to use piazza to contact me (email takes me longer to respond!).

Evaluations.

HOMEWORKS.

- Weekly-ish homeworks. 40% of final grade.
- Each homework will be posted on gradescope. You wil type your answers in.
- Due date: HW will be posted on a Thursday, due the following Thursday before lecture.
- Late submission the Sunday after due day (10% penalty). Only under very special circumstances a submission will be accepted after that.

Evaluations.

Participation.

- 40% of your final grade.
- During lectures, a multiple choice question. Answers must be submitted on canvas.
- You need to attend/watch the lectures to answer it.

Evaluations.

Midterm.

- 20% of your final grade.
- During lecture, see the schedule for date and content to be covered.
- Exam will be proctored online, using Honorlock (on canvas).

Before the final exam.

Weighting your assingments.

Homeworks: 40%. Participation: 40%.

Midterm: 20%.

Letter grades: A [90, 100], B [80, 89.9], C [70, 79.9], D [60, 69.9], F

[0, 59.9].

The Final redemption

- Final Exam will be cumulative.
- See the official calendar for date and time.
- Final Exam will substitute your midterm (if higher).

Topics we will cover

- (Advanced) Divide and conquer: median of medians, Fast Fourier Transform.
- Arithmetic and algorithms, RSA cryptosystems.
- Graphs algorithms: spanning trees, matchings, Markov Chains, flow networks.

Divide and Conquer.

Big-O notation.

Definition

A function f(n) is said to be $big\ O$ of the function g(n) (denoted as f(n) = O(g(n)) or $f(n) \leq g(n)$) if there exists constants C and N such that:

$$|f(n)| \le C|g(n)|$$
 for all $n \ge N$.

Big-O notation: examples

•
$$f(n) = n, g(n) = n^2$$
.

•
$$f(n) = n + 3$$
, $g(n) = n^2 - 1$.

•
$$f(n) = n + 1$$
, $g(n) = 2n + 5$.

•
$$f(n) = \log(n), g(n) = n^{0.5}.$$

•
$$f(n) = n^4$$
, $g(n) = 2^n$.

Hierarchy of fundamental functions

For
$$\alpha \leq 1 \leq \beta < \gamma$$
 and $a > 1$

$$\log(n) \leq n^{\alpha} \leq n \leq n \log(n) \leq n^{\beta} \log(n) \leq n^{\gamma} \leq a^{n} \leq n!.$$

We want to be optimal, in the worth case possible.

Example

```
Simpler (naive) approach:
```

```
Power(a,n)
```

```
c=a
For i = 1 to n - 1:
c = c * a:
return c
```

$$T(n) = O(n)$$
.

We want to be optimal, in the worth case possible.

Example

```
Observation: for n even: a^n = a^{n/2} * a^{n/2}.

Power(a, n)

If n = 1 return a.

If n is even: x = Power(a, n/2)

return x * x

else: x = Power(a, (n-1)/2)

return a * x * x
```

$$T(n) = ?$$

We want to be optimal, in the worth case possible.

Example

```
Power(a, n)

If n = 1 return a.

If n is even:

x = Power(a, n/2)

return x * x

else:

x = Power(a, (n-1)/2)

return a * x * x

T(n) = ?

Hint: To compute a^8 we call the algorithm on n = 4, n = 2, n = 1.
```

Recurrence relation.

Example

```
Power(a, n)

If n = 1 return a.

If n is even:

x = Power(a, n/2)

return x * x

else:

x = Power(a, (n-1)/2)

return a * x * x
```

$$T(n) = T(n/2) + O(1) \rightarrow T(n) = O(\log(n)).$$

Master Theorem

Theorem

Let a, b, d be constants, not necessarily integers, with $a>0,\ b>1$ and $d\geq 0$. If $T(n)=aT(n/b)+O(n^d)$ then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b(a); \\ O(n^d \log(n)), & \text{if } d = \log_b(a); \\ O(n^{\log_b(a)}), & \text{if } d < \log_b(a). \end{cases}$$

Before:
$$T(n) = T(n/2) + O(1)$$
.
 $a = 1, b = 2, d = 0 (0 = d = \log_b(a) = \log_2(1))$
 $T(n) = O(n^0 \log(n))$ by the Master Theorem.

Poll 1

Question

The solution to the recurrence T(n) = 3T(n/2) + O(n) is

- A O(n).
- B $O(n^{\log_2(3)})$.
- $C O(n \log(n)).$
- $D O(n^2)$.

$$a^{\log_b(n)-1}O\left(\frac{n}{b^{\log_b(n)}}\right)^d + a^{\log_b(n)-2}O\left(\frac{n}{b^{\log_b(n)-1}}\right)^d + \dots + O\left(\frac{n}{b}\right)^d.$$

$$\sum_{k=1}^{\log_b(n)} a^{k-1} O\left(\frac{n}{b^k}\right)^d = C \sum_{k=1}^{\log_b(n)} n^d \left(\frac{a}{b^d}\right)^k = C n^d \frac{r^{\log_b(n)+1} - 1}{r-1}$$

Master Theorem

Theorem

Let a, b, d be constants, not necessarily integers, with a > 0, b > 1 and $d \ge 0$. If $T(n) = aT(n/b) + O(n^d)$ then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b(a); \\ O(n^d \log(n)), & \text{if } d = \log_b(a); \\ O(n^{\log_b(a)}), & \text{if } d < \log_b(a). \end{cases}$$

$$T(n) = O(n^d r^{\log_b(n)})$$
 for $r = \frac{a}{b^d}$

Note:

r < 1 if and only if $a < b^d$ if and only if $\log_b(a) < d$. r = 1 if and only if $a = b^d$ if and only if $\log_b(a) = d$.

r > 1 if and only if $a > b^d$ if and only if $\log_b(a) > d$.