III.

Trasarea primitivelor grafice

Primitive grafice

Sunt elementele de bază pe care programatorul le poate folosi pentru a realiza desenele necesare unei anumite aplicații. Ex.: puncte, segmente de dreaptă, caractere, dreptunghiuri, linii poligonale, poligoane, conice, curbe cubice, cuadrice, suprafețe bicubice, cub, paralelipiped, etc.

Primitive grafice 2D

Simple Graphics Primitives

• Lines:

void LineCoord(int xmin, int ymin, int xmax, int ymax);
void Line(point pt1, point pt2);

• Polygons:

void polyLine(int count, point* vertices);
void polygon(int count, point* vertices);

• Circles and ellipses:

Summary of Conic Sections

Name	E quation	Conditions	Туре	Sketch
Ellipse	$\alpha x^2 + \beta y^2 = k$	$\beta < 0 < k, \alpha$	C entral	
H yperbola	$\alpha x^2 + \beta y^2 = k$	$\beta < 0 < k, \alpha$	Central	DIC
Parabola	$\alpha y^2 + \beta x = 0$		N oncentral	
Empty set	$\beta x^{2} + \alpha y = 0$ $\alpha x^{2} + \beta y^{2} = k$	$\alpha, \beta < 0 < k$	(Central)	(No Sketch)
Point	$\alpha x^2 + \beta y^2 = 0$	α , β > 0	C entral	
Pair of lines	$\alpha x^2 + \beta y^2 = 0$	$\beta < 0 < \alpha$	Central	
Parallel lines	$\alpha x^2 = k$	α , k > 0	Central	
Empty set	$\alpha x^2 = k$	$\alpha < 0 < k$	(Central)	(No Sketch)
'Repeated' line	$\alpha x^2 = 0$		C entral	

Primitive grafice 3D

parentheses () have inward pointing normals.

Cuadrice

Nondegenerate quadrics

Ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 + 1 = 0$

Two-sheet hyperboloid $x^2/a^2 - y^2/b^2 + z^2/c^2 - 1 = 0$

Nondegenerate quadrics

Hyperbolic parabolid $x^2/a^2 - z^2/c^2 - 2y = 0$

Cone asymptotic both hyperboloids

Elliptic parabolid $x^2/a^2 + z^2/c^2 - 2y = 0$

Degenerate quadrics

- planes (no quadratic terms),
- \blacksquare pairs of parallel planes (e.g. $x^2 1 = 0$)
- pairs of intersecting planes (e.g. $x^2-1=0$)
- elliptic cylinders (e.g. x²+z²-1=0)
- hyperbolic cylinders (e.g. x²-z²-1=0)
- parabolic cylinders (e.g. $x^2 z = 0$)

http://amath.colorado.edu/appm/staff/fast/java/qg.html

Coordonate dispozitiv

Optimizarea alg.de trasare a primitivelor

- ? maxim viteza de generare a unei primitive. Prin:
- 2. min.nr.de * și /

Metoda de trasare incrementală

- bazată pe scheme cu diferențe între mărimi asociate unor pct. succesive ale primitivei (exprimate prin relații liniare de transformare iterativă a unor variabile, implementate prin op. + și - în nr. întregi)
- eficiență în trasarea curbelor de grad unui și doi

Metoda de trasare incrementală

(2)

- construiește cea mai bună reprezentare discretă a curbei
- (a) var. de adresare fizică (oper.simple de increm./decrem. deplasări pe -, |, \times între 2 pct. vecine de pe curbă)
- (b) var. de stare (starea curentă a procesului iterativ, ușor actualizabile pt. trecerea la următorul pas)

Metoda de trasare incrementală (3)

Reguli de conexiune discretă:

- (a) $\forall P_0$ pct. generat la capăt de curbă,
- $\exists ! P_1$ pct. vecin pe -, | sau \times generat pe curbă
- (b) $\forall P_0$ pct. în "Int" (curbă), $\exists ! P_1, P_2$ 2 pct. vecine pe -, | sau \times generate pe curbă a.î. $P_1\widehat{P_0}P_2 = 135^\circ \vee 180^\circ$.

Segmente de linii

Trasare=conversie prin baleiaj=conversie scan=? pixeli cei mai apropiați se imag-inea ideală a segmentului

Segmente de linii

Algoritmul incremental de bază: algoritmul DDA (Digital Differential Analyzer)

? AB discret, $A(x_A, y_A)$, $B(x_B, y_B)$, $x_A, y_A, x_B, y_B \in \mathbb{N} \cap \text{spaţiul vizibil}$ Ec.dr. AB: $y = y_A + m(x - x_A), m = \frac{y_B - y_A}{x_B - x_A}$ Stategie simplă: Pp. $x_B > x_A$. Calculez m. Fie $x_0 = x_A < x_1 = x_0 + 1 < \cdots < x_i < \cdots$ $\cdots < x_n = x_R$ Calculez $x_i \rightarrow y_i = mx_i + y_A - mx_A$.

Algoritmul DDA

(2)

Trasez $(x_i, Round(y_i))$. Eficiență: la fiecare pas – 1 * în virg.mob., 1 +, 1 fcţ. Round ? putem elimina *. Da! Cum: $y_i + +!$ Pp. aprins (x_i, y_i) . Următorul: (x_{i+1}, y_{i+1}) cu $x_{i+1} = x_i + 1$ și $y_{i+1} = \text{Round}(y_A + 1)$ $m(x_{i+1} - x_A)) = \text{Round}(y_A + m(x_i + 1 - x_i))$ (x_A) = Round $(y_i + m)$.

Algoritmul DDA

(4)

```
Caz x_B < x_A? increment pt x, s = \mathrm{sgn}(x_B - x_A)
Caz |m| > 1? calcul x = f(y), incrementare după y cu s = \mathrm{sgn}(y_B - y_A).
```

```
Proc Line ( \{ \text{Presupune că} -1 \leq m \leq 1, x0 < x1 \}  x0,y0, \{ \text{Punct stânga} \}  x1,y1, \{ \text{Punct dreapta} \}  value:int) \{ \text{Valoarea dată pixelilor liniei} \}  var
```

```
\{x \text{ variază între } x0 \text{ si } x1\}
   x: int;
   dy, dx, x, m : real;
begin
   dy := y1 - y0;
   dx := x1 - x0:
   y := y0; m := dy/dx;
   for x := x0 to x1 do
        begin
             {Setează val.pixel}
             WritePixel(x, Round(y), value);
             y := y + m
        end
end; {Line}
```

Algoritmul DDA

DDA(Digital Differential Analyzer) algorithm

for positive slope,

if
$$m \le 1$$
, $\Delta x = 1$, $y_{k+1} = y_k + m$

if
$$m \ge 1$$
, $\Delta y = 1$, $x_{k+1} = x_k + \frac{1}{m}$

• floating-point operation

 $M \ above \ e \Longrightarrow \text{Choose} \ E = (x_P + 1, y_P).$

 $M \ below \ e \Longrightarrow \text{Choose} \ NE = (x_P + 1, y_P + 1)$

Alg.Bresenham (=alg.pct.de mijloc) (1)

DDA: Round calcule în virg.mob.!

Bresenham: operații numai în nr. întregi

Caz: $m \in (0,1)$. Pp. pas i aprins $P(x_i, y_i)$.


```
Pas i+1: reg.conexiune discretă
    E(x_i + 1, y_i + 1) sau F(x_i + 1, y_i).
Criteriul de decizie: apropierea de seg. ideal, adică \begin{cases} F, & \text{dacā } f < e \\ E & \text{altfel} \end{cases}
Pas 0: x_A?x_B [interschimbare] x_A < x_B
T(-x_A,-y_A) a.î. ec. dreptei y=rac{dy}{dx}x,
dx := x_B - x_A, dy := y_B - y_A; x_0 = y_0 = 0.
```

Alg.Bresenham — pasul i

(3)

$$\begin{split} M &= \mathrm{Dr}(x = x_i + 1) \cap AB; \\ x_M &= x_i + 1, y_M = \frac{dy}{dx} x_M. \\ ? \ f &= y_M - y_i, \ e = y_i + 1 - y_M. \\ dx(f - e) &= dx(2y_M - 2y_i - 1) = \\ &= dx \left[2\frac{dy}{dx}(x_i + 1) - 2y_i - 1 \right] = \\ &= 2dy(x_i + 1) - 2y_i dx - dx. \\ dx &> 0 \ (\mathrm{pas}\ 0) \to \mathrm{sgn}(f - e) = \mathrm{sgn}(dx(f - e)). \end{split}$$
 Factor de decizie d_{i+1} : $\overset{\mathrm{not}}{=} dx(f - e)$.

Alg.Bresenham – pasul i

(4)

? Incremental $\begin{cases} d_{i+1} = 2(x_i dy - y_i dx) + 2dy - dx, \\ d_i = 2(x_{i-1} dy - y_{i-1} dx) + 2dy - dx \\ d_{i+1} - d_i = 2[dy(x_i - x_{i-1}) - dx(y_i - y_{i-1})] \\ x_i - x_{i-1} = 1 \\ \Rightarrow d_{i+1} = d_i + 2dy - 2dx(y_i - y_{i-1}) \end{cases}$ $d_1 = 2(x_0dy - y_0dx) + 2dy - dx = 2dy - dx$. Variabilele de stare sunt (x_i, y_i, d_i) .

```
Alg.Bresenham - pasul i
```

(5)

```
Criteriul decizional este:
- dacă d_{i+1} \geq 0 se alege E(x_i+1,y_i+1)
şi d_{i+2} = d_{i+1} + 2(dy - dx)
\overline{-} dacă \overline{d_{i+1}} < 0, atunci se alege F(x_i +
(1, y_i) și d_{i+2} = d_{i+1} + 2dy
    Procedure MidpointLine (x0, y0, x1, y1, value: integer)
    var
       dx, dy, incrE, incrF, d, x, y: integer;
    begin
       dx := x1 - x0; dy := y1 - y0;
       d := 2 * dy - dx; {Val.iniţială variabilă decizie}
       incrE := 2 * (dy - dx) \{ Increment pentru mutarea la E \}
       incrF := 2 * dy; {Increment pentru mutarea la F}
       x := x0;
```

```
y := y0;
   WritePixel(x, y, value){Pixel de start}
   while x < x1 do
         begin
         if d < 0 then
            begin {Alege F}
                 d := d + incrF;
                 x := x + 1
            end
         else
            begin {Alege E}
                 d := d + incrE;
                 x := x + 1;
                 y := y + 1;
            end;
         WritePixel (x, y, value) {Cel mai apropiat pixel}
         end {while}
end; {MidpointLine}
```

Alg.Bresenham – de ce alg.pct.mijloc

Alg. pct de mijloc pt. seg. dreaptā pe D(x,y)= ax + by + c, a > 0 are $d_{i+1} = 2D(x_i + 1, y_i + \frac{1}{2})$. $-d_{i+1} < 0 \implies \text{alege } E \text{ si } d_{i+2} = 2D(x_i + 2, y_i + 2$ 1/2) = $2[a(x_i+2)+b(y_i+1/2)+c] = d_{i+1}+2dy$ $-d_{i+1} \geq 0 \Rightarrow \text{alege } F \text{ si } d_{i+2} = 2D(x_i + 2, y_i + 2)$ 3/2) = $d_{i+1} + 2(a+b) = d_{i+1} + 2(dy - dx)$. $d_1 = 2D(x_A + 1, y_A + 1/2) = 2D(x_A, y_A) + 2a + 1/2$ b = 2a + b = 2dy - dx

• Decision variable is:

$$p_{i} = \Delta x (d_{1} - d_{2}) = 2\Delta y (x_{i} + 1) - 2\Delta x y_{i} + \Delta x (2c - 1)$$

$$y_{i} + 1$$

$$d_{2}$$

Line drawn so far

Bresenham s Line Algorithm (continue)

$$p_0 = 2\Delta y - \Delta x$$

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x (y_{k+1} - y_k)$$
if $p_k < 0$, then $y_{k+1} = y_k$

from DDA,
$$y_{k+1} = y_k + m = y_k + \frac{\Delta y}{\Delta x}$$

$$\frac{\Delta y}{\Delta x}?0.5 \xrightarrow{<} 2\Delta y - \Delta x < 0 \quad (y_{k+1} = y_k) \Rightarrow 2\frac{\Delta y}{\Delta x}?0.5$$

$$\xrightarrow{\geq} 2\Delta y - \Delta x \geq 0 \quad (y_{k+1} = y_k + 1) \quad \Rightarrow \quad 2\frac{\Delta y}{\Delta x} - 1?0.5$$

...or that one

Either I lit this pixel...

Bresenham s Line Algorithm in 1965

 $y_{k} = mx_{k} + b$

$$y = m(x_k + 1) + b$$

$$d_1 = y - y_k = m(x_k + 1) + b - y_k$$

$$d_2 = (y_k + 1) - y = y_k + 1 - m(x_k + 1) - b$$

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

$$p_k = \Delta x (d_1 - d_2)$$

$$= 2\Delta y x_k - 2\Delta x y_k + C$$

$$p_{k+1} = 2\Delta y x_{k+1} - 2\Delta x y_{k+1} + C$$

$$= p_k + 2\Delta y - 2\Delta x (y_{k+1} - y_k)$$

$$p_0 = 2\Delta y - \Delta x$$

\mathbf{v}	E same E
-)	p
2	3
3	1
4	-1
4	7
5 5	5
6	3
֡	3 4 4 5 5

Trasare cercuri

(1)

Fie $x^2 + y^2 = R^2$, $R \in \mathbb{N}$; general: $T(x_0, y_0)$ Metoda I: $y = \pm \sqrt{R^2 - x^2}$, trasare sfert cerc (+ simetrii), $x_0 = 0 < x_1 = 1 < \cdots < x_R = R$, $y_i = \sqrt{R^2 - x_i^2}$.

Eficiență ?: per pas: $1*, 1\sqrt{}, 1$ Round.

Corectitudine ? Găuri!

Trasare cercuri-probleme

Trasare cercuri- simetrii

Symmetry of a circle. Calculation of a circle point (*x*, *y*) in one octant yields the circle points shown for the other seven octants.

Metoda II: $\{(R\cos\theta_i, R\sin\theta_i)\}_i$, $\theta_0 = 0^\circ < \cdots < \theta_i < \cdots < \theta_n = 45^\circ + \text{simetrii}$ Problemă: ? $\theta_{i+1} - \theta_i$ a.î. generare Pct. vecine și Nu suprapunere

Eficiență: per pas 2*, $1\cos_{C(x,y)} = 0$, 1Round

Trasare cercuri

(3)

Metoda III: studiu pe octanți, metodă incrementală, calcule în numere întregi! Pp. sens trigonometric de parcurs al cercului.

Octant 1:

deplasări între pct. vecine † sau 🤨

Octant 2:

deplasări între pct. vecine ← sau

Algoritmul Bresenham pentru cercuri (1)

Fie
$$C(x,y) = x^2 + y^2 - R^2$$
 și octant 1. Obs.: $C(x,y) \begin{cases} < 0 & (x,y) \in \text{Int(cerc)} \\ > 0 & (x,y) \in \text{Ext(cerc)} \\ = 0 & \text{cerc} \end{cases}$ Pas i : $P_i(x_i,y_i)$; $i+1$: $E(x_i-1,y_i+1) \vee F(x_i,y_i+1)$ fcţ. de $\min\{|C(E)|,|C(F)|\}$. Factor de decizie:
$$\Delta_i \stackrel{\text{not}}{:=} C(x_i,y_i+1) + C(x_i-1,y_i+1) = x_i^2 + (x_i-1)^2 + 2(y_i+1)^2 - 2R^2.$$

Algoritmul Bresenham pentru cercuri (2)

$$P_{i+1} = egin{cases} F & \Delta_i < 0 \ (|C(F)| < |C(E)|) \ E & ext{altfel} \ \Delta_{i+1} = egin{cases} \Delta_i + 4y_{i+1} + 2, & \Delta_i < 0 \ \Delta_{i+1} = egin{cases} \Delta_i - 4x_{i+1} + 4y_{i+1} + 2 & ext{altfel} \ ext{Variabile de stare:} \end{cases}$$

$$(x_i, y_i, \Delta_i).$$

Valori inițiale: $x_0 = R$, $y_0 = 0$, $\Delta_0 = 3 - 2R$.

Alg.Bresenham pt. Cercuri

- Bresenham s Circle Algorithm(Midpoint Algorithm) in 1977

$$f_{circle}(x, y) = x^{2} + y^{2} - r^{2}$$

$$\begin{cases}
< 0 & inside \\
= 0 & on \\
> 0 & outside
\end{cases}$$

$$p_k = f_{circle}(x_k + 1, y_k - \frac{1}{2}) = (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

$$p_{k+1} = f_{circle}(x_{k+1} + 1, y_k - \frac{1}{2}) = \{(x_k + 1) + 1\}^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$$

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

$$p_{k+1} = \begin{cases} p_k + 2x_{k+1} + 1 & \text{if } p_k < 0 \\ p_k + 2x_{k+1} + 1 - 2y_{k+1} & \text{if } p_k \ge 0 \end{cases}$$

$$2x_{k+1} = 2x_k + 2$$

$$2y_{k+1} = 2y_k - 2$$
 or $2y_{k+1} = 2y_k$

Circle drawn so far

Either I lit this pixel...

Algoritmi incrementali pt. octantul 2

Ag.Bresenham, octant 2: ? (x_i-1,y_i+1) sau (x_i-1,y_i) , $\Delta_i=y_i^2+(y_i+1)^2+2(x_i-1)^2-2R^2$.

Algoritmul punctului de mijloc. Pp. sens de parcurs în sens orar și octant 2.

Alg.punctului de mijloc pt. cercuri (1)

Factor de decizie:
$$\Delta_{i+1} = C(x_i+1,y_i-\frac{1}{2})$$
 $\begin{cases} E \Leftrightarrow \Delta_{i+2} = C(x_i+2,y_i-\frac{1}{2}) = \Delta_{i+1}+\Delta_{i+1}^E, \\ \Delta_{i+1}^E = 2x_i+3, \text{ dacā } \Delta_{i+1} < 0 \end{cases}$ $\begin{cases} F \Leftrightarrow \Delta_{i+1} = C(x_i+2,y_i-\frac{3}{2}) = \Delta_{i+1}+\Delta_{i+1}^F, \\ \Delta_{i+1}^F = 2x_i-2y_i+5 \text{ altfel} \end{cases}$ $(x_0,y_0) = (0,R), C(1,R-\frac{1}{2}) = \frac{5}{4}-R.$ Operații în nr. raționale $?!$ Var. decizională: $d_i = \Delta_i - \frac{1}{4} \Rightarrow d_1 = 1-R$ $\Leftrightarrow \Delta < 0 \Rightarrow d < -1/4 \stackrel{d \in Z}{\Rightarrow} d < 0.$

Alg.pct.de mijloc pt. cercuri

Alg.punctului de mijloc pt. cercuri (2)

Îmbunătățire performanțe: incrementarea și a diferenței aplicate la variabila decizională:

```
\begin{cases} \Delta_{i+2}^E = 2(x_i+1) + 3 = \Delta_{i+1}^E + 2, \\ \Delta_{i+2}^F = 2(x_i+1) - 2y_i + 5 = \Delta_{i+1}^F + 2, \text{ dacā } E \\ \Delta_{i+2}^E = 2(x_i+1) + 3 = \Delta_{i+1}^E + 2, \\ \Delta_{i+2}^F = 2(x_i+1) - 2(y_i-1) + 5 = \Delta_{i+1}^F + 4, \text{ alfter} \end{cases}
```

```
Procedure MidpointCircle(radius, value: integer); {Trasează semicercul de la (0,R) la (R\sqrt{2},R\sqrt{2})} {Se presupune că cercul este centrat în origine} var x,y,d,deltaE,deltaF: integer; begin
```

```
x := 0; y := radius; d := 1 - radius;
   deltaE := 3; deltaF := -2 * radius + 5;
   WritePixel(x, y, value);
   while y > x do
         begin
         if d < 0 then {Selectează E}
             begin
                  d := d + deltaE; deltaE := deltaE + 2;
                  deltaF := deltaF + 2; x := x + 1 end
         else
             begin
                  d := d + deltaF:
                  deltaE := deltaE + 2; deltaF := deltaF + 4;
                  x := x + 1; y := y - 1 \text{ end};
         WritePixel(x, y, value);
         end {while}
end; {MidpointCircle}
```

$$E(x,y) = b^2x^2 + a^2y^2 - a^2b^2 = 0$$

Elipse drepte

(2)

Regiunea 1. Var.de decizie: $d_{i+1} =$ $4E(x_i+1,y_i-\frac{1}{2}).$ $d_{i+2} = \begin{cases} 4E(x_i + 2, y_i - \frac{1}{2}) = d_{i+1} + 4b^2(2x_i + 3), \\ 4E(x_i + 2, y_i - \frac{3}{2}) = d_{i+1} + 4a^2(-2x_i + 2), \end{cases}$ EFTrecerea în reg.2 când vector gradient grad $E(x,y)=rac{\partial E}{\partial x}$ i $+rac{\partial E}{\partial y}$ j $=2b^2x$ i $+2a^2y$ j are panta 1: dacă $a^2(y_i - \frac{1}{2}) \le b^2(x_i + 1)$.

Elipse drepte

4. Ellipse-Generating Algorithms

$$d_1 + d_2 = constant$$

$$\sqrt{(x-x_1)^2 + (y-y_1)^2} + \sqrt{(x-x_2)^2 + (y-y_2)^2} = \text{constant}$$

$$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$

$$\left(\frac{x - x_c}{r_x}\right)^2 + \left(\frac{y - x_c}{r_y}\right)^2 = 1$$

$$\Rightarrow \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 = 1$$

$$f_{ellipse}(x, y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2$$

Midpoint Ellipse Algorithm

$$f_{ellipse}(x, y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2$$

$$\begin{cases} < 0, & \text{if } (x, y) \text{ is inside} \\ = 0, & \text{if } (x, y) \text{ is on} \\ > 0, & \text{if } (x, y) \text{ is outside} \end{cases}$$

$$\frac{dy}{dx} = -\frac{2r_y^2 x}{2r_x^2 y} = -\frac{r_y^2 x}{2r_y^2 x}$$

$$2r_y^2 x \ge 2r_x^2 y$$

$$2r_y^2 x < 2r_x^2 y$$

 $increment = \begin{cases} 2r_y^2 x_{k+1} + r_y^2, & \text{if } p_k < 0 \\ 2r_y^2 x_{k+1} + r_y^2 - 2r_x^2 y_{k+1}, & \text{if } p_k \ge 0 \end{cases}$

Elipse oarecare

(1)

Octant	1	2	3	4	5	6	7	8
Δx	1	0,1	0,-1	-1	-1	0,-1	0,1	1
Δy	0,1	1	1	0,1	0,-1	-1	-1	0,-1

```
Octantul 1: Var. de decizie d_i = G(x_i + 1, y_i + \frac{1}{2})
 d_{i+1} = \begin{cases} G(x_i + 2, y_i + \frac{1}{2}) = d_i + u_{i+1}, & \text{miscare } \rightarrow \\ G(x_i + 2, y_i + \frac{3}{2}) = d_i + v_{i+1}, & \text{miscare } \nearrow \end{cases}
\begin{cases} u_i = a(2x_i+1) + b(y_i+1/2) + d + 2a, & \text{miscare } \rightarrow \\ v_i = (2a+b)x_i + (b+2c)y_i + a + b/2 + \\ +d + e + 2(a+b+c), & \text{miscare } \nearrow \\ u_{i+1} = \begin{cases} u_i + k_1 & \text{miscare } \rightarrow \\ u_i + k_2 & \text{miscare } \nearrow \end{cases} \\ v_{i+1} = \begin{cases} v_i + k_2, & \text{miscare } \nearrow \\ v_i + k_3 & \text{miscare } \nearrow \end{cases} \end{cases}
```

Elipse oarecare

(3)

 $k_1=2a,\ k_2=2a+b,\ k_3=2a+2b+2c$ Trecere din octantul 1 în octantul 2 la schimbare semn pt. $\left(\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y}\right)(x_i,y_i)=(2ax_i+by_i+d)+(bx_i+3cy_i+e)=v_i-\frac{k_2}{2}$

Curbe de grad doi

(1)

$$f(x,y)=a_1x^2+a_2xy+a_3y^2+a_4x+a_5y+a_6=0,\ a_1>0,\ a_i\in Z\\ \text{Fie }\delta=a_2^2-4a_1a_3;\ \delta \begin{cases} <0: & \text{elips}\bar{a} \text{ (sau cerc),}\\ =0: & \text{parabol}\bar{a},\\ >0: & \text{hiperbol}\bar{a}. \end{cases}$$
 Metoda I — matematica: rezolvarea ecuației de grad 2 într-o variabilă Metoda II — incrementală: operații numai în nr.întregi

Aplic. regula de conexiune discretă: pas k deplasare în direcția $i\Rightarrow$ pas k+1 deplasare în 1 din direcțiile $i-1,\ i$ sau

Curbe de grad doi

Curbe de grad doi

(3)

Pp. sens parcurs a.î f(x,y) < 0, i.e. Int, (> 0, i.e. Ext) la stânga (respectiv dreapta) direcției de înaintare $\Rightarrow P_{i+1} \in Int$ $(f(P_{i+1}) < 0)$, $P_{i-1} \in Ext$ $(f(P_{i-1}) > 0)$? $P_i \in Int$ sau $P_i \in Ext$

Criteriu decizional:

$$\begin{cases} f(P_{i-1}) + f(P_i) < 0: & \text{aleg } P_{i-1} \\ f(P_{i-1}) + f(P_i) \geq 0 \land f(P_i) + f(P_{i+1}) \leq 0: & \text{aleg } P_i \\ f(P_i) + f(P_{i+1}) > 0: & \text{aleg } P_{i+1} \end{cases}$$

Descrierea curbelor plane

- 1. ecuații explicite: y = f(x);
- 2. ecuații polare: (r,t), $t \in [a,b]$ și r = f(t),
- Polare \rightarrow cartez. $x = r \cos t$, $y = r \sin t$;
- 3. ecuații parametrice: x = f(t), y = g(t), $t \in [a, b]$;
- 4. ecuații implicite: F(x,y) = 0; anumite condiții F T.fcţ.implicite ec.explicite.

Trasarea curbelor plane

- caz 1: necesar determinarea scării, în urma analizei valorilor extreme
- caz 2: transformare în coordonate carteziene
- caz 3: trasez curba parametrică $x = x(t), y = y(t), t \in [0, 1], x, y \in C^0...$

Trasarea curbelor parametrice

Metoda I: aleg (?!) rată constantă Δ pt. creștere t și calculez $\{(x(k\Delta), y(k\Delta)) \mid$ $k=0,1,\ldots,[1/\Delta]$ a.î: (a) un punct să nu fie selectat de 2 ori; (b) să fie generate pct.consecutive adiacente în mediu de afișare Metoda II (înjumătățirea intervalului): pp. că fcț e continuă, probl. la trasarea cu șablon

Înjumătățirea intervalului

```
Pas 0: (x(0), y(0)), (x(1), y(1))
Ciclu:
dacă (x(t_1), y(t_1)), (x(t_2), y(t_2)) adiacente,
atunci trasează;
altfel t_3 = (t_1 + t_2)/2
      (x(t_1),y(t_1)), (x(t_3),y(t_3)) în stivă,
      tratează (x(t_3), y(t_3)), (x(t_2), y(t_2))
      apoi tratează (x(t_1), y(t_1)), (x(t_3), y(t_3))
```