15 where 16 $M_1 \equiv M \pmod{p_1}$, 17 $M_2 \equiv M \pmod{p_2}$, 18 19 $M_k \equiv M \pmod{p_k}$ 20 21 $e_1 \equiv e \pmod{(p_1 - 1)}$ 22 23 $e_2 \equiv e \pmod{(p_2 - 1)}$, and $e_k \equiv e \pmod{(p_k - 1)},$ 24 25 26 where e is a number relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) , 27 solving said subtasks to determine results C_1 , C_k , 28 combining said results of said subtasks in accordance with a fast recursive combining 29 process to produce said ciphertext word signal C whereby, 30 $Y_i \equiv Y_{i-1} + [(C_i - Y_{i-1}) (w_i^{-1} \mod p_i) \mod p_i] \cdot w_i \mod n$ 31 $2 \le i \le k$, and $C = Y_k, Y_1 = C_1$, and $W_i = \prod_{j < i} p_j$ 32 33 whereby said step of encoding is accelerated. 34 15. (Three Times Amended) A method for establishing cryptographic communications that are 1 2 backwards compatible with preexisting public key transformation schemes, comprising the steps 3 of: 4 decoding a ciphertext word C to a message word M, wherein M corresponds to a number 5 representative of a message and wherein, 6 $0 \le M \le n-1$ 7 wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot ... \cdot p_k$, k is an integer greater 8 than 2, and $p_1, p_2, ..., p_k$ are distinct random prime numbers, C is a number representative of an

- 9 encoded form of message word M that is encoded by transforming said message word M to said ciphertext word C whereby,
- 11 $C \equiv M^e \pmod{n}$,
- and wherein e is a number relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) ,
- said decoding step being performed using a decryption exponent d that is defined by
- 14 $d \equiv e^{-1} \mod ((p_1-1)(p_2-1) \ldots (p_k-1)),$
- said decoding step including the steps of,
- (i) defining a plurality of k sub-tasks in accordance with
- $M_1 \equiv C_1^{d_1} \pmod{p_1},$
- $M_2 = C_2^{d_2} \pmod{p_2},$
- 19
- $M_k \equiv C_k^{a_k} \pmod{p_k}$
- 21
- where
- 23 $C_{1} \equiv C \pmod{p_{1}},$ 24 $C_{2} \equiv C \pmod{p_{2}},$
- $25 \qquad \qquad = C \pmod{p_2}$
- $C_{k} \equiv C \pmod{p_{k}}$
- 27 $d_1 \equiv d \pmod{(p_1 1)},$
- 29 $d_2 \equiv d \pmod{(p_2 1)}$, and
- 30 $d_k \not\equiv d \pmod{(p_k 1)},$
- 32 (ii) solving said sub-tasks to determine results M_1 , $M_{2,...}$ M_k , and
- 33 (iii) combining said results of said subtasks in accordance with a fast recursive combining
- process to produce said message word M in accordance with,
- 35 $Y_i \equiv Y_{i-1} + [(M_i \mid Y_{i-1}) (w_i^{-1} \mod p_i) \mod p_i] \cdot w_i \mod n$
- 36 where $2 \le i \le k$, and

 $M = Y_k, Y_1 = M_1, \text{ and } W_i = \prod_{i > i} p_i$ 37 38 whereby said step of decoding is accelerated. 16. (Three Times Amended) A cyptographic communications system for establishing 1 communications that are backwards compatible with preexisting public key transformation 2 3 schemes, comprising: 4 a communication medium; encoding means coupled to said communication medium and adapted for transforming a 5 transmit message word M to a ciphertext word C and for transmitting said ciphertext word C on 6 7 said medium, where M corresponds to a number representative of a message, and $0 \le M \le n-1$ where n is a composite number of the form 8 9 $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k$ where k is an integer greater than 2 and $p_1, p_2, ..., p_k$ are distinct random prime numbers, and where C corresponds to a number representative of an enciphered form of said message, and 12 corresponds to 13 $C \equiv M^e \pmod{n}$, where e is a number relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) ; and 14 decoding means coupled to said communication medium and adapted for receiving C via 15 said medium and for transforming C to a receive message word M' where M' corresponds to a 16 17 number representative of a deciphered form of C, said decoding means being operative to perform a decryption process using a decryption exponent d that is defined by 18 $d \equiv e^{-1} \mod ((p_1-1)(p_2-1)...(p_k-1)),$ 19 said decryption process including the steps of 20 (i) defining a plurality of k sub-tasks in accordance with, 21 $C_1 \not\equiv C \pmod{p_1}$, 22 $C_2 \equiv C \pmod{p_2}$, 23

 $C_k \equiv C \pmod{p_k}$,

 $d_1 \equiv d \pmod{(p_1 - 1)},$

09/328,726

where,

24

25

26

20206-25 (PT-TA 410 (Cont 1)) SV/211650.01 06082001/13:26/20206.25

 $d_2 \equiv d \pmod{(p_2 - 1)},$ 28 29 30 31 32 33 34 (ii) solving said sub-tasks to determine results $M_1 / M_2 / M_k$, and 36 (iii) combining said results of said subtasks by a fast recursive combining process to 37 produce said receive message word M' in accordance with 38 $Y_i \equiv Y_{i-1} + [(M_i' - Y_{i-1})] (w_i^{-1} \mod p_i) \mod p_i] \cdot w_i \mod n$ 39 where $2 \le i \le k$ and 40 $M' = Y_k, Y_i = M$, and $W_i = \prod_{j < i} p_j$, 41 wherein M'=M 42 (Twice Amended) A method for establishing cryptographic communications that are 17. 1 backwards compatible with preexisting publiq key transformation schemes, comprising the steps 2 of: 3 4 encoding a plaintext message word M to a ciphertext word C, wherein M corresponds to a number representative of a message and/wherein $0 \le M \le n-1$, wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot ... \cdot p_k$, k is an integer greater than 2 and $p_1, p_2, ..., p_k$ are distinct random prime numbers, C is a number representative of an encoded form of message word M, and wherein said encoding step 9 10 comprises transforming said/message word M to said ciphertext word C, whereby 11 $C \equiv M^e \pmod{n}$, 12 and wherein e is a number/relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) ; and -5-09/328,726 20206-25 (PT-TA 410 (Cont 1))

SV/211650.01

06082001/13:26/20206.25

13	decoding said ciphertext word C to a receive message word M', said decoding step being
14	performed using a decryption exponent d that is defined by
15	$d \equiv e^{-1} \mod ((p_1-1) (p_2-1) \dots (p_k-1)),$
16	said decoding step including the further steps of,
17	defining a plurality of k sub-tasks in accordance with
18	$M_1' \equiv C_1^{d_1} \pmod{p_1},$
19	$M_2' \equiv C_2^{d_2} \pmod{p_2},$
20	
2^{21}	$M_k' \equiv C_k^{d_k} \pmod{p_k},$
22	wherein
23	$C_1 \equiv C \pmod{p_1},$ $C_2 \equiv C \pmod{p_2},$
24	$C_2 \equiv C \pmod{p_2},$
25	:
26	$C_k \equiv C \pmod{p_k}$
27	
28	$d_1 \equiv d \pmod{(p_1 - 1)},$
29	$d_2 \equiv d \pmod{(p_2 - 1)}$, and
30	
31	$d_k \equiv d \pmod{(p_k - 1)},$
32	solving said sub-tasks to determine results M ₁ ', M ₂ ', M _k ', and
33	combining said results of said sub-tasks to produce said receive message word
34	M', wherein M'=M.

 $\begin{array}{c} 1\\2\\3\\4 \end{array}$

22. (Twice Amended) A cyptographic communications system for establishing communications that are backwards compatible with preexisting public key transformation schemes, comprising:

a communication medium;

5	encoding means coupled to said communication medium and adapted for transforming a
6	transmit message word M to a ciphertext word C and for transmitting said ciphertext word C on
7	said medium, wherein M corresponds to a number representative of a message, and
8	$0 \le M \le n-1$, wherein n is a composite number of the form,
9	$n = p_1 \cdot p_2 \cdot \dots \cdot p_k \qquad \qquad \Big\backslash$
10	wherein k is an integer greater than 2 and $p_1, p_2,, p_k$ are distinct random prime
11	numbers, and wherein said ciphertext word C corresponds to a number representative of an
12	enciphered form of said message and corresponds to
13	$C \equiv M^e \pmod{n},$
14	wherein e is a number relatively prime to (p_1-1) , (p_2-1) ,, and (p_k-1) ; and
15	decoding means communicatively coupled with said communication medium for
16	receiving said ciphertext word C via said medium, said decoding means being operative to
17	perform a decryption process for transforming said ciphertext word C to a receive message word
18	M', wherein M' corresponds to a number representative of a deciphered form of C, said
19	decryption process using a decryption exponent d that is defined by
20	$d \equiv e^{-1} \mod ((p_1-1)(p_2-1) \dots (p_k-1)),$
21	said decryption process including the steps of
22	defining a plurality of k sub-tasks in accordance with
23	$M_1' \equiv C_1^{d_1} \pmod{p_1},$ $M_2' \equiv C_2^{d_2} \pmod{p_2},$
24	$M_2' \not\equiv C_2^{d_2} \pmod{p_2},$
25	
26	$M_k' \stackrel{ }{=} C_k^{d_k} \pmod{p_k},$
27	wherein
28	$C_1 \equiv C \pmod{p_1},$
29	$C_2 \equiv \mathbb{C} \pmod{p_2},$
30	
31	$C_k \equiv C \pmod{p_k},$
32	
33	$d_1 \equiv d \pmod{(p_1 - 1)},$
34	$d_2 \equiv d \pmod{(p_2 - 1)},$

09/328,726

20206-25 (PT-TA 410 (Cont 1)) SV/211650.01 06082001/13:26/20206.25

```
35
                                         d_k \equiv d \pmod{(p_k - 1)},
36
                       solving said sub-tasks to determine results M<sub>1</sub>', M<sub>2</sub>', ... M<sub>k</sub>', and
37
                        combining said results of said sub-tasks to produce said receive message word M'
38
               whereby M'=M.
39
               (Twice Amended) A method for establishing cryptographic communications that are
 1
       27.
 2
       backwards compatible with preexisting public key transformation schemes, comprising the step
 3
       of:
 4
               encoding a plaintext message word M to a ciphertext word C, wherein M corresponds to
 5
       a number representative of a message, and
 6
               0 \le M \le n-1,
       n being a composite number formed from the product of p_1 \cdot p_2 \cdot ... \cdot p_k, wherein k is an integer
 7
       greater than 2 and p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub> are distinct random prime numbers, and wherein the ciphertext
       word C is a number representative of an encoded form of message word M, wherein said step of
10
       encoding includes the steps of
11
               defining a plurality of k|sub-tasks in accordance with
                                C_1 \equiv M^{e_1} \pmod{p_1},
12
                                C_2 \equiv M_2^{e_2} \pmod{p_2},
13
14
                                C_k \equiv M_k^{e_k} \pmod{p_k},
15
16
                        where
                                M_1 \equiv M \pmod{p_1},
17
                                M_2 \equiv M \pmod{p_2},
18
19
                                M_k \equiv M \pmod{p_k},
20
21
22
                                e_1 \equiv e \pmod{(p_1 - 1)}.
23
                                e_2 \equiv e \pmod{(p_2 - 1)}, and
```

-8-

20206-25 (PT-TA 410 (Cont 1))

SV/211650.01

06082001/13:26/20206.25

09/328,726

```
24
25
                               e_k \equiv e \pmod{(b_k - 1)}
26
                       wherein e is a number relatively prime to (p_1-1), (p_2-1), ..., and (p_k-1),
27
               solving said sub-tasks to determine results C<sub>1</sub>, C<sub>2,...</sub> C<sub>k</sub>, and
28
               combining said results of said sub-tasks to produce said ciphertext word C.
               (Twice Amended) A cyptographic communications system for establishing
 1
      32.
 2
      communications that are backwards compatible with preexisting public key transformation
 3
      schemes, comprising:
               a communication medium
 4
 5
               encoding means coupled to said communication medium and operative to transform a
 6
      transmit message word M to a ciphertext word C, and to transmit said ciphertext word C on said
 7
      medium, wherein M corresponds to a number representative of a message, and
 8
              0 \le M \le n-1,
      n being a composite number formed from the product of p_1 \cdot p_2 \cdot ... \cdot p_k wherein k is an integer
      greater than 2 and p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub>, ar¢ distinct random prime numbers, and wherein the ciphertext
10
11
      word C is a number representative of an encoded form of message word M, said encoding means
      being operative to transform said transmit message word M to said ciphertext word C by
12
      performing an encoding process comprising the steps of
13
               defining a plurality of k sub-tasks in accordance with
14
                               C_1 \equiv M_1^{e_1} \pmod{p_1},
15
                               C_2 \equiv M_2^{e_2} \pmod{p_2},
16
17
                               C_k \equiv M_k^{e_k} \pmod{p_k},
18
19
                       where
20
                               M_1 \equiv M \pmod{p_1},
                               M_2 \equiv M \pmod{p_2},
21
                               \vdots
M_k \equiv M \text{ (mod } p_k),
22
23
```

-9-

20206-25 (PT-TA 410 (Cont 1))

SV/211650.01

06082001/13:26/20206.25

09/328,726

```
24
                                e_1 \equiv e \pmod{(p_1 - 1)}
25
                                e_2 \equiv e \pmod{(p_2 - 1)}, and
26
27
                                e_k \equiv e \pmod{(p_k - 1)}
28
                        wherein e is a number relatively prime to (p_1-1), (p_2-1), ..., and (p_k-1),
29
               solving said sub-tasks to determine results C<sub>1</sub>, C<sub>2</sub>, ... C<sub>k</sub>, and
30
               combining said results of said sub-tasks to produce said ciphertext word C.
31
       37. (Twice Amended) A method for establishing cryptographic communications that are
 1
 2
       backwards compatible with preexisting public key transformation schemes, comprising the steps
 3
       of:
 4
               decoding a ciphertext word C to a message word M, wherein M corresponds to a number
       representative of a message and wherein
 5
               0 \le M \le n-1
 6
       wherein n is a composite number formed by the product of p_1 \cdot p_2 \cdot ... \cdot p_k, k is an integer greater
 7
       than 2 and p_1, p_2, ..., p_k are distinct random prime numbers, C is a number representative of an
       encoded form of message word M that is encoded by transforming said message word M to said
10
       ciphertext word C whereby
               C \equiv M^e \pmod{n},
11
               and wherein e is a number relatively prime to (p_1-1), (p_2-1), ..., and (p_k-1);
12
               said decoding step being performed using a decryption exponent d that is defined by
13
                       d \equiv e^{-1} \mod ((p_1 \mid 1) (p_2 - 1) \dots (p_k - 1)),
14
15
               wherein said step of decoding includes the steps of
                        defining a plurality of k sub-tasks in accordance with
16
                                \mathbf{M}_1 \equiv C_1^{\mathbf{g}_1} \pmod{\mathbf{p}_1},
17
                                M_2 \equiv C_2^{\frac{1}{2}} \pmod{p_2},
18
19
                                M_k \equiv C_k^{d_k} \pmod{p_k},
20
```

```
wherein
21
22
                              C_1 \equiv C \pmod{p_1},
                              C_2 \equiv C \pmod{p_2},
23
24
                              C_k \equiv C \pmod{p_k}
                              d_1 \equiv d \pmod{(p_1 - 1)},
                              d_2 \equiv d \pmod{(p_2 - 1)}, and
28
29
                              d_k \equiv d \pmod{(p_k - 1)}
30
                      solving said sub-tasks to determine results M<sub>1</sub>, M<sub>2</sub>,... M<sub>k</sub>, and
31
                      combining said results of said sub-tasks to produce said message word M.
32
      42. (Twice Amended) A cyptographic communications system for establishing communications
 1
      that are backwards compatible with preexisting public key transformation schemes, comprising:
 2
 3
              a communication medium;
 4
              communicatively coupled with said communication medium for receiving a ciphertext
 5
      word C via said medium, and being operative to transform said ciphertext word C to a receive
 6
      message word M', wherein a message M corresponds to a number representative of a message
      and wherein,
              0 \le M \le n-1
 9
      wherein n is a composite number formed by the product of p_1 \cdot p_2 \cdot ... \cdot p_k, k is an integer greater
      than 2 and p_1, p_2, ..., p_k are distinct random prime numbers, and wherein said ciphertext word C
10
11
      is a number representative of an encoded form of said message word M that is encoded by
12
      transforming M to said ciphertext word C whereby,
              C \equiv M^e \pmod{n},
13
14
              and wherein e is a number relatively prime to (p_1-1), (p_2-1), ..., and (p_k-1);
15
              said decoding means being operative to perform a decryption process using a decryption
16
      exponent d that is defined by
                      d \equiv e^{-1} \mod ((p_1-1)(p_2-1)...(p_k-1)),
17
      09/328,726
                                                                                  20206-25 (PT-TA 410 (Cont 1))
```

SV/211650.01

06082001/13:26/20206.25

```
said decryption process including the steps of
18
                          defining a plurality of k sub-tasks in accordance with,
19
                                   M_1' \equiv C_1^{d_1} \pmod{p_1},
20
                                  M_2' \equiv C_2^{d_2} \pmod{p_2},
21
                                  M_{k}' \equiv C_{k}^{d_{k}} \pmod{p_{k}},
22
23
24
                          wherein,
                                   C_1 \equiv C \pmod{p_1}
25
                                   C_2 \equiv C \pmod{p_2},
                                   C_k \equiv C \pmod{p_k},
28
29
30
                                   d_2 \equiv d \pmod{(p_2 - 1)}, and
31
32
33
                          solving said/sub-tasks to determine results M<sub>1</sub>', M<sub>2</sub>',... M<sub>k</sub>', and
34
35
                          combining said results of said sub-tasks to produce said receive message word
```

- 47. (Twice Amended) A method for generating a digital signature that is backwards
- 2 compatible with preexisting public key transformation schemes, comprising the step of:
 - signing a plaintext message word M to create a signed ciphertext word C, wherein M corresponds to a number representative of a message, and

$$0 \le M \le n-1,$$

36

1

3

- n being a composite number formed from the product of p₁•p₂•...•p_k, wherein k is an integer
- 7 greater than 2 and $p_1, p_2, ..., p_k$ are distinct random prime numbers, and wherein the signed
- 8 ciphertext word C is a number representative of a signed form of message word M, wherein

9
$$C \equiv M^d \pmod{n}$$
, and

M', whereby M'=M.

```
wherein said step of signing includes the steps of
10
                  defining a plurality of k sub-tasks in accordance with
11
                                    C_1 \equiv M_1^{r_1} \pmod{p_1},
C_2 \equiv M_2^{r_2} \pmod{p_2},
\vdots
12
13
14
                                     C_k \equiv M_k^{d_k} \pmod{p_k},
15
16
                           where
                                     M_1 \equiv M \pmod{p_1},
17
                                     M_2 \equiv M \pmod{p_2},
18
19
                                     M_k \equiv M \pmod{p_k}
20
21
22
                                     d_1 \equiv d \pmod{(p_1 - 1)},
23
                                     d_2 \equiv d \pmod{(p_2 - 1)}, and
24
                                     d_k \equiv d \pmod{(p_k - 1)},
25
                           wherein d is defined by
26
                                     d = e^{-1} \mod ((p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)), and
27
                                     e is a number relatively prime to (p_1-1), (p_2-1), ..., and (p_k-1),
28
                  solving said sub-tasks to determine results C<sub>1</sub>, C<sub>2,...</sub> C<sub>k</sub>, and
29
                  combining said results of said sub-tasks to produce said ciphertext word C.
```

- (Twice Amended) A digital signature generation system that is backwards compatible 52. with preexisting public key transformation schemes, comprising:
 - a communication medium;
- digital signature generating means coupled to said communication medium and operative to transform a transmit message word M to a signed ciphertext word C, and to transmit said
- signed ciphertext word C on said medium, wherein M corresponds to a number representative of
- 7 a message, and

30

1

2

```
8
       n being a composite number formed from the product of p_1 \cdot p_2 \cdot ... \cdot p_k wherein k is an integer
 9
       greater than 2 and p_1, p_2, ..., p_k, are distinct random prime numbers, and wherein the signed
10
       ciphertext word C is a number representative of a signed form of said message word M, wherein
11
                C \equiv M^d \pmod{n},
12
                said digital signature generating means being operative to transform said transmit
13
14
       message word M to said signed ciphertext word C by performing a digital signature generating
15
       process comprising the steps of,
16
                defining a plurality of k sub-tasks in accordance with,
                                 C_1 \equiv M_1^{d_1} \pmod{p_1},
17
                                 C_2 \equiv M_2^{d_2} \pmod{p_2},
18
                                C_k \equiv M_k^{d_k} \pmod{p_k},
19
                        where,
                                 M_1 \equiv M \pmod{p_1},
22
                                 M_2 \equiv M \pmod{p_2},
23
24
                                 M_k \equiv M \pmod{p_k}
25
26
                                 d_1 \equiv d \pmod{(p_1 - 1)}
27
                                 d_2 \equiv d \pmod{(p_2 - 1)}, and
28
29
                                 d_k \equiv d \pmod{(p_k - 1)}
30
                        wherein d is defined by,
31
                                 d = e^{-1} \mod ((p_1 - 1) \cdot (p_2 - 1) \cdot ... \cdot (p_k - 1)), and
32
                                 e is a number relatively prime to (p_1-1), (p_2-1), ..., and (p_k-1),
33
                solving said sub-tasks to determine results C<sub>1</sub>, C<sub>2</sub>, ... C<sub>k</sub>, and
34
```

combining said results of said sub-tasks to produce said signed ciphertext word C.

35

(Twice Amended) A digital signature process that is backwards compatible with 57. 1 preexisting public key transformation schemes, comprising the steps of: 2 signing a plaintext message word M to create a signed ciphertext word C, wherein M 3 corresponds to a number representative of a message and wherein 4 $0 \le M \le n-1$ 5 wherein n is a composite number formed by the product of p₁•p₂•...•p_k, k is an integer 6 greater than 2 and $p_1, p_2, ..., p_k$ are distinct random prime numbers, C is a number 7 representative of a signed form of message word M, and wherein said encoding step comprises transforming said message word M to said ciphertext word C whereby, 9 $C \equiv M^d \pmod{n}$, 10 wherein d is defined by 11 $d = e^{-1} \mod ((p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)), \text{ and}$ 12 e is a number relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) ; and verifying said ciphertext word C to a receive message word M' by performing the steps 15 of, defining a plurality of k sub-tasks in accordance with 16 $M_1' \equiv C_1^{e_1} \pmod{p_1},$ 17 $M_2' \equiv C_2^{e_2} \pmod{p_2},$ 18 19 20 21 wherein $C_1 \equiv C \pmod{p_1}$, 22 $C_2 \equiv C \pmod{p_2}$, 23 24 $C_k \equiv C \pmod{p_k}$ 25 26 $e_1 \equiv e \pmod{(p_1 - 1)}$ 27

28

29

 $e_2 \equiv e \pmod{(p_2 - 1)}$, and

30	$e_k \equiv e \pmod{(p_k - 1)},$
31	solving said sub-tasks to determine results M_1 , M_2 , M_k , and
32	combining said results of said sub-tasks to produce said receive message word
33	M', whereby M'=M.
1	62. (Twice Amended) A digital signature system that is backwards compatible with
2	preexisting public key transformation schemes, comprising:
3	a communication medium;
4	digital signature generating means coupled to said communication medium and adapted
5	for transforming a message word M to a signed ciphertext word C and for transmitting said
6	signed ciphertext word Con said medium, wherein M corresponds to a number representative of
7	a message, and
8	$0 \le M \le n-1$, wherein n is a composite number of the form
9	$n = p_1 \bullet p_2 \bullet \dots \bullet p_k,$
10	wherein k is an integer greater than 2 and $p_1, p_2,, p_k$ are distinct random prime
11	numbers, and wherein said signed ciphertext word C corresponds to a number representative of a
12	signed form of said message word M and corresponds to
13	$C \equiv M^d \pmod{n}$,
14	wherein d is defined by
15	$d \equiv e^{-1} \mod ((p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)), \text{ and}$
16	e is a number relatively prime to (p_1-1) , (p_2-1) ,, and (p_k-1) ; and
17	digital signature verification means communicatively coupled with said communication
18	medium for receiving said signed ciphertext word C via said medium, and being operative to
19	verify said signed ciphertext word C by performing the steps of,
20	defining a plurality of k sub-tasks in accordance with
21	$M_1' \equiv C_1^{e_1} \pmod{p_1},$ $M_2' \equiv C_2^{e_2} \pmod{p_2},$ \vdots $M_k' \equiv C_k^{e_k} \pmod{p_k},$
22	$M_2' \equiv C_2^{e_2} \pmod{p_2},$
23	i i
24	$\mathbf{M}_{\mathbf{k}}^{\mathbf{k}'} \equiv C_{\mathbf{k}}^{e_{\mathbf{k}}} \pmod{\mathbf{p_{\mathbf{k}}}},$
25	wherein

-16-

09/328,726

20206-25 (PT-TA 410 (Cont 1)) SV/211650.01 06082001/13:26/20206.25

	26	$C_1 \equiv C \pmod{p_1},$
	27	$C_2 \equiv C \pmod{p_2},$
	28	:/
	29	$C_k \equiv C \pmod{p_k},$
	30	
A	31	$e_1 \equiv e \pmod{(p_1 - 1)},$ $e_2 \equiv e \pmod{(p_2 - 1)},$
	32	$e_2 \equiv e \pmod{(p_2 - 1)},$
	33	
	34	$e_k \equiv e \pmod{(p_k - 1)},$
	35	solving/said sub-tasks to determine results M ₁ ', M ₂ ', M _k ', and
	36	combining said results of said sub-tasks to produce said receive message word M'
	37	wherein M'/=M.