

IIC1253 — Matemáticas Discretas — 1'2019

#### **INTERROGACION 1**

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

### Pregunta 1

Sea  $\varphi(p_1,\ldots,p_n)$  y  $v_1^i,\ldots,v_n^i$  la valuación correspondiente a la *i*-ésima fila de la tabla de verdad de  $\varphi$  con valor  $\alpha(v_1^i,\ldots,v_n^i)$ . Demuestre que:

$$\alpha(p_1, \dots, p_n) \models \bigvee_{i: \alpha(v_1^i, \dots, v_n^i) = 1} \left( \left( \bigwedge_{j: v_i^i = 1} p_j \right) \wedge \left( \bigwedge_{j: v_i^i = 0} \neg p_j \right) \right)$$

## Pregunta 2

Para las siguientes preguntas considere la siguiente interpretación  $\mathcal I$  con predicados binarios  $O(\cdot,\cdot)$  y  $E(\cdot,\cdot)$ :

$$\begin{array}{cccc} \mathcal{I}(\mathrm{Dom}) & := & \mathbb{N} \\ \mathcal{I}(O(x,y)) & := & x \leq y \\ \mathcal{I}(E(x,y)) & := & x = y \end{array}$$

Además, decimos que un elemento a en el dominio  $\mathcal{I}(Dom)$  es definible bajo la interpretación  $\mathcal{I}$  si existe una fórmula en lógica de predicados  $\varphi(x)$  tal que  $\mathcal{I} \models \varphi(b)$  si, y solo si, b = a.

- 1. Demuestre que el número 0 es definible con la interpretación  $\mathcal{I}$ .
- 2. Demuestre que el número 2 es definible con la interpretación  $\mathcal{I}$ .
- 3. Demuestre que cualquier número natural  $n \in \mathbb{N}$  es definible bajo la interpretación  $\mathcal{I}$ , esto es, para todo  $n \in \mathbb{N}$  existe una fórmula  $\varphi_n(x)$  tal que  $\mathcal{I} \models \varphi_n(a)$  si, y solo si, a = n.

Para las formulas anteriores usted solo puede utilizar lógica de predicados  $(\forall x, \exists y, \land, \lor, \neg, \ldots)$  y los predicados  $O(\cdot, \cdot)$  y  $E(\cdot, \cdot)$  asumiendo que esta en el dominio  $\mathbb{N}$ .

## Pregunta 3

Sea  $\Sigma = \{\varphi_1, \dots, \varphi_n\}$  un conjunto de formulas proposicionales y  $\varphi$  una formula proposicional. Decimos que  $\varphi$  es consecuencia lógica débil de  $\Sigma$ , que denotamos como  $\Sigma \vdash \varphi$ , si para toda valuación  $\bar{v}$ , si existe algún  $i \leq n$  tal que  $\varphi_i(\bar{v}) = 1$ , entonces  $\varphi(\bar{v}) = 1$ . En otras palabras, para toda valuación que hace verdadera alguna formula de  $\Sigma$ , entonces debe hacer verdadera  $\varphi$ .

Para las siguientes preguntas sobre consecuencia lógica débil, debe responder si es verdadero o falso. En caso de responder verdadero, demuestrelo, y en caso de responder falso, de un contra ejemplo.

- 1. ¿Es cierto que si  $\{\varphi_1, \ldots, \varphi_n, \psi\} \vdash \varphi$ , entonces  $\{\varphi_1, \ldots, \varphi_n\} \vdash \varphi$ ?
- 2. ¿Es cierto que  $\{\varphi_1, \ldots, \varphi_n\} \vdash \varphi$  si, y solo si,  $\{\varphi_1, \ldots, \varphi_n, \neg \varphi\}$  no es satisfacible?

# Pregunta 4

Sea  $p_1, \ldots, p_n$  variables proposicionales con  $n \geq 1$ . Considere las siguientes formulas proposicionales:

$$\alpha_n = p_1 \to (p_2 \to (p_3 \to \dots \to (p_{n-1} \to p_n) \cdots))$$

$$\beta_n = (\dots ((p_1 \to p_2) \to p_3) \to \dots \to p_{n-1}) \to p_n$$

$$\gamma_n = (p_1 \to p_2) \land (p_2 \to p_3) \land (p_3 \to p_4) \land \dots \land (p_{n-1} \to p_n)$$

- 1. ¿Para cuales n se cumple que  $\alpha_n \equiv \gamma_n$ ? Demuestre su afirmación.
- 2. ¿Para cuales n se cumple que  $\beta_n \equiv \gamma_n?$  Demuestre su afirmación.