Отчет о выполнении лабораторной работы 1.2.1 Определение скорости полета пули при помощи баллистического маятника

Шубин Владислав

Сентябрь 2023

1 Аннотация

В работе определяется скорость полета пули, путём применения законов сохранения и использования баллистического маятника. Используется следующий метод измерений скорости: 1) определение отклонения маятника с помощью оптической системы, изображенной на рис. 1а Геометрические размеры образца измеряются с помощью линейки, штангенциркуля и микрометра. Детально исследуется систематические и случайные погрешности проводимых измерений.

2 Теоретические сведения

2.1 Метод баллистического маятника, совершающего поступательное движение

В этой части работы (вторая часть не выполнялась) используется установка, изображенная на рис. 1а. Внешними силами для системы пуля-цилиндр являются сила тяжести, не имеющая горизонтальной компоненты, и силы натяжения нитей, горизонтальные компоненты которых появляются при отклонении маятника. Но так как отклонения маятника малы, то и эти компоненты малы и тем более мал и их импульс. Поэтому закон сохранения импульса при соударении пули с цилиндром имеет вид

$$mu = (M+m)V. (1)$$

Здесь m - масса пули, M - масса цилиндра, V - скорость цилиндра и пули после неупругого соударения.

Откуда (учитывая, что М » m) можно написать

$$u = \frac{M}{m}V. (2)$$

По закону сохранения энергии

$$V^2 = 2qh. (3)$$

Здесь g - ускорение свободного падения, h - высота подъёма маятника над его начальным положением.

Высота подъёма маятника выражается через угол ϕ отклонения маятника от вертикали:

$$h = L(1 - \cos \varphi) = 2L \sin^2 \frac{\varphi}{2},\tag{4}$$

где $\varphi \approx \frac{\Delta x}{L}$

Из (2), (3) и (4) получаем формулу для определения скорости пули:

$$v = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x. \tag{5}$$

(a) Рис. 1. Схема установки для измерения скорости (b) Рис 2. Поведение баллистического маятника при полета пули попадании в него пули

3 Оборудование и инструментальные погрешности

Оборудование: духовое ружье на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвешивания, а также баллистические маятники.

• Линейка: Δ лин = ± 0.5 мм (по цене деления).

• Весы: $\Delta m = 0.001 \; \Gamma$

4 Результаты измерений и обработка данных

4.1 Массы пулек:

	<i>N</i> изм.	1	2	3	4	5	6	7	8	9	10
ĺ	т, г	0.516	0.515	0.503	0.504	0.507	0.512	0.508	0.507	0.509	0.501

 $L = (2220 \pm 10)$ мм, $M = (2900 \pm 5)$ г.

4.2 Амплитуды и соответствующие скорости:

Δx , mm	<i>v</i> , м/c			
11.7 ± 0.2	135.24 ± 3			
10.2 ± 0.2	140.57 ± 3			
11.7 ± 0.2	146 ± 3			

Усредняя, получаем $v = (140 \pm 5)$, м/с.

5 Обсуждение результатов

6 Заключение

Я получил значение скорости пули методом баллистического маятника. Значения скорости совпали с точностью до погрешности, в том числе и с остальными студентами моей группы.