b.	Can you explain all the 3D transformations through matrix? If yes explain all the matrix representations clearly.	10	3	2	2
28. a.	Explain about the illumination models with mathematical expressions.	10	2	3	2
	(OR)	10		2	2
Ъ.	Describe about any two color models in detail with illustrations.	10	2	3	2
29. a.	Write brief notes on the following:				
	(i) Importing assets	5	2	4	5
	(ii) Creating prefab	5	2	4	5
	(OR) Vyemilla leaneles Alam Manager again			uğ.	
b .	Write shot notes on				
	(i) Working with camera and lights	5	2	4	5
	(ii) Inspector window	5	2	4	5
30. a.	How collisions are identified? Explain the usage of different types of colliders.	10	3	5	5
	I SHOWN DOLLARS OF (OR) HARD STATE OF ANALYSIS STATES				
b .	Explain animation concept in unity. How can you add animation in unity?	10	3	5	5

Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

18CSE464T - COMPUTER GRAPHICS AND GAME PROGRAMMING

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note: (i) (ii)		Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 th minute. Part - B should be answered in answer booklet.									
Time:	21/	½ Hοι	ars			Max.	Ma	rks:	75		
			PART – A (25 > Answer AL)			Marks	BL	со	PO		
	1.	How (A) (C)	many methods are there for 5		g color display?	1		1	3		
	2.	lowe	ortion effects produced where er resolution is called Anti-aliasing Blurring	(B)	ating a high-resolution signal at a Aliasing Muddy	1	1	1	3		
	3.	(A) (C)	allows screen positions to Touch panels Light pen	(B)	ted with the touch of a finger. Image scanner Mouse	1	1	1	3		
	4.	X va (A)	ata line drawing, when the sleadue by $X_{K+1} = X_{K-1}$ $X_{K+1} = X_K + 1$		eater than 1, we calculate the next $X_{K+1} = X_K + \frac{1}{m}$ $X_{K+1} = X_K - \frac{1}{m}$	est de la company de la compan	I	1	3		
	5.		senham's line drawing algorithm is latest Uses only addition	the (B)		at 1 m		1	3		
	6.	and (A)	difference of given shapes? Wire frame model	(B)	composite transformation Destructive solid geometry			2	3,2		

methods

methods

7.	If a point (X Y Z) is to be tran	nslated by an amount DX, DY, D2	7 1 1 2 3,2	17	For scripting in unity the follow	wing language is not eveilable	1	1	4	3
		value of the newly translated points (X1		17.	(A) Java	(B) C#				
	Y1,Z1)?	(122	•		(C) Python	(D) C++				
	(A) $X1 = X$, $Y1 = Y$, $Z1 = Z$	*			(c) Tython	(b) C11				
	(B) $X1 = DX$, $Y1 = DY$, $Z1 = DZ$			18	Which function can be called r	more than once per frame?	1	1	4	3
	(C) $X1 = X + DX$, $Y1 = Y + DY$, $Z1 = X + DY$	= Z+DZ.		10.	(A) Update ()	(B) Fixed Update ()				
	(D) $X1 = X-DX$, $Y1 = Y-DY$, $Z1 = Y-DY$				(C) Late Update ()	1 7				
					(C) Late Opdate ()	(D) Late Bind ()				
8.	The Cohen Sutherland algorithm di	vides the region into number o	f 1 1 2 5,2	10	The properties of a game object	et aan ha got through	1	1	4	3
0.	spaces.	rides the region intonumber o		17.	(A) Project window					
	(A) 8	(B) 6			(C) Inspector	(B) Console				
	(C) 7	(D) 9			(C) Hispector	(D) Animator				
				20	How many version of unity rel	leased till now?	1	1	4	3
9.	The shape of the Bezier curve is con	atrolled by	1 1 2 3,2	20.	(A) 3					
	(A) Control points	(B) Knots			(C) 5	(B) 4 (D) 2				
	(C) End points	(D) Tangents			(C) 3	(D) 2				
	(c) End points	(b) rungonto		21	Following is not a type of colli	ider	1	1	5	3
10.	The Koch snowflake fractal starts w	ith this shape	1 1 2 3,2	21.	(A) Box					
20.	(A) Square	(B) Tear drop				(B) Mesh (D) Basket				
	(C) Triangle	(D) Circle			(C) Capsule	(D) Dasket				
	(c) mange	(B) Chele		22	To make the portiols gustom	n to flow from bottom to top, the gravity			5	3
11.	In which of the following projection	on, the object size differs when looke	d 1 1 3 3,2	22.	modifier value needs to be set					
	from different distances?	in object bize differ when fooks			(A) 1					
	(A) Parallel	(B) Cavalier			(C) -1	(B) 0 (D) None				
	(C) Perspective	(D) Cabinet			(C) -1	(D) None				
	(5) 1 515 p 5 5 1 5	(E) Cubinet		23	In sprite renderer which featur	e is used in major for 3D physics?	1	1	5	3
12.	Which of the following refer to a mo	odel that represents all the dimension o	f 1 1 3 3,2	25.	(A) Colour	(B) Material				
	an object, external as well as interna				(C) Sorting	(D) Layering				
	(A) Wire frame model	(B) Constructive solid geometry	V		(C) Gorang	(D) Layering				
		methods	,	24.	is used draw extra info	ormation for the game object.	1	1	5	3
	(C) Composite transformation	(D) Destructive solid geometry	v	21.	(A) Sprite	(B) Prefab				
	(1)	methods	VILLE DE		(C) Gizmo	(D) Collider				
					(C) Gizino	(D) Conider				
13.	Who developed the phong shading r	model?	1 1 3 3,2	25	If multiple colliders need to be	e used for a game object, they need to be of	1	1	5	3
	(A) Dui Tuang Phong	(B) Bui Toung Phong		-5.	(A) Same type	(B) Different type				
	(C) Cohen Sutherland	(D) Hodgeman Phong			(C) No condition	(D) Common type				
					(c) The condition	(D) Common type				
14.	If we assume a uniform intensity o	f ambient light Ia, then the intensity o	f 1 1 3 3,2			40 70 70 70				
	the diffuse reflection at any point on				•	$\times 10 = 50 \text{ Marks}$	Marks	BL	СО	PO
	[where K_a = the ambient diffuse coe	fficient of reflection]			Answer A	ALL Questions				
	(A) K_a/I_a	(B) K _a * I _a .		26 a i	Describe the working principle	e of color CRT monitor	5	2	1	3
	(C) $K_{\text{H}}-I_{\text{H}}$	(D) $K_a + I_a$		20. 4.1.	Describe the working principle	of color civi monitor.				
				ii.	Write the difference between r	aster scan and random scan.	5	2	1	3
15.	RGB colour model uses the prime	RGB (Red Blue Green) colurs because	e 1 1 3 3,2							
	they are					(OR)				
	(A) Safe colours	(B) Web colours		b.	Explain the 2D transformations	s with matrix representations.	10	2	1	3
	(C) Bright colours	(D) Web safe colours								
	#			27. a.		and line clipping algorithm for a line with	10	3	2	2
16.	When you import an object from oth		1 1 4 3			P2 (400,300) and with window boundaries				
	(A) Asset	(B) Jewel			(X MIN, Y MIN) = (100,100)	and $(X MAX, Y MAX) = (300,200)$.				
	(C) Tool	(D) Sprite				(OP)				
Page 2 of 4			23MF618CSE464T	Page 2 - 64		(OR)		0.00	10:-	
			25/1F 010C5E4041	Page 3 of 4			23MF61	SCSE4	404T	