Kruskal (MST): Really Special Subtree

https://www.hackerrank.com/contests/practice-9-sda/challenges/kruskalmstrsub

Given an undirected weighted connected graph, find the Really Special SubTree in it. The Really Special SubTree is defined as a subgraph consisting of all the nodes in the graph and:

- There is only one exclusive path from a node to every other node.
- The subgraph is of minimum overall weight (sum of all edges) among all such subgraphs.
- No cycles are formed.

To create the Really Special SubTree, always pick the edge with smallest weight. Determine if including it will create a cycle. If so, ignore the edge. If there are edges of equal weight available:

- Choose the edge that minimizes the sum u + v + wt where u and v are vertices and wt is the edge weight.
- If there is still a collision, choose any of them.

Print the overall weight of the tree formed using the rules.

For example, given the following edges:

First choose $1 \to 2$ at weight 2. Next choose $2 \to 3$ at weight 3. All nodes are connected without cycles for a total weight of 3 + 2 = 5.

Function Description

Complete the kruskals function in the editor below. It should return an integer that represents the total weight of the subtree formed.

kruskals has the following parameters:

- g_nodes: an integer that represents the number of nodes in the tree
- g from: an array of integers that represent beginning edge node numbers
- g_to: an array of integers that represent ending edge node numbers
- g_weight: an array of integers that represent the weights of each edge

Input Format

The first line has two space-separated integers g_nodes and g_edges , the number of nodes and edges in the graph.

The next g_edges lines each consist of three space-separated integers g_from , g_to and g_weight , where g_from and g_to denote the two nodes between which the **undirected** edge exists and g_weight denotes the weight of that edge.

Constraints

- $2 \le g_nodes \le 3000$ $1 \le g_edges \le \frac{N \times (N-1)}{2}$
- $1 \le g_from, g_to \le N$ $0 \le g_weight \le 10^5$

Note: If there are edges between the same pair of nodes with different weights, they are to be considered as is, like multiple edges.

Output Format

Print a single integer denoting the total weight of the Really Special SubTree.

github.com/andy489