

ECSA ATTRIBTES PROJECT

QUALITY ASSURANCE - 344

Table Of Contents:

Contents

Introduction	4
Part I: Data Wrangling	4
Part 2: Descriptive Statistics	6
Part 3: Statistical Process Control	9
Gifts:	11
Household:	11
Luxury:	11
Part 4.1A: X Samples Outside Outer Control Limits	11
Part 4.IB: Most Consecutive Samples of Sample Standard Deviations Between -0.3 and +0.4 σ-Control Limits	12
Part 4.2: Likelihood of making a Type I (Manufacturer's) Error for A and B	13
Part 4.3: Optimisation of Delivery Cost	13
Part 4.4: Likelihood of making a type II (Consumer's) Error for A in Class=Technology	14
Part 5: DOE & MANOVA	14
Part 6.1: Reliability of the Service & Part	16
Problem 6&7 Calculations:	16
Part 6.2: Reliability of the Service & Part	17
Problem 6.2 Calculations:	17
Part 6.3: Reliability of the Service & Part	17
Appendix A S-Charts:	18
Bibliography:	19

List of figures:

fit

Figure A –	Data cleaning and separation
Figure B -	Data Quality Summary
Figure C -	Data types and cardinality
Figure D -	Categorical data and cardinality
Figure E -	Cumulative sales graph that is grouped by SKU groups (Total # of Purchases)
Figure F -	Cumulative sales graph that is grouped by SKU groups (Total sales price)
Figure G -	Cumulative sales graph that is grouped by customer motivation
Figure H -	Boxplot diagram of purchase price that is grouped by SKU groups
Figure I -	Histogram of relationship between customer age and class specific purchases
Figure J -	Process Capability values
Figure K -	Process capability calculations
Figure L -	Example of correlation between distribution and Cpk values
Figure M -	Average Delivery Hours SPC: Clothing
Figure N -	Average Delivery Hours SPC: Food
Figure O -	Average Delivery Hours SPC: Gifts
Figure P -	Average Delivery Hours SPC: Household
Figure Q -	Average Delivery Hours SPC: Luxury
Figure R -	Average Delivery Hours SPC: Sweets
Figure S -	Average Delivery Hours SPC: Technology
Figure T -	Sweets samples of s-bar within σ -Control Limits
Figure U -	Technology samples of s-bar within σ -Control Limits
Figure V -	Price vs independent variable (Buyer motivation)
Figure W -	Price vs independent variable (Buyer motivation)
Figure X -	MANOVA summary
Figure Y -	MANOVA initialisation
Figure Z -	Univariate summary of MANOVA model
Figure AA -	Figure AA: Linear Discriminant analysis scatterplot and polynomial regression

List of tables:

Table 1 – X-Chart

Table 2 - S-Chart

Table 3 - \overline{X} Samples Outside Outer Control Limits

Table 4 - Most Consecutive samples of s-bar between σ-Control Limits

Introduction

This report documents the transformation, exploration and statistical analysis of data provided in the file called "SalesTable2022.csv." The document comprises 180 000 entries consisting of ten features and an index column. This report aims to provide the business with meaningful insights and interpretations of identified trends and relationships within the dataset. The order of operations is as follows: the data is to be cleaned so that trends and relationships can be abstracted with the use of descriptive statistics. Statistical Process Control (SCP) methodology is then applied to the delivery times process and a more optimised average delivery time can be calculated. Finally, service and product delivery times are investigated and reported on.

Part I: Data Wrangling

```
Figure A: Data Cleaning
d <- read.csv("C:/Users/user-pc/Documents/salesTable2022.csv")</pre>
dclean <- d[d$Price>=0,]
dclean <- dclean[complete.cases(dclean),]</pre>
ddirty <- d[rowSums(is.na(d)) > 0 | d$Price <=0,]</pre>
ddirty$Primary_Key <- 1:nrow(ddirty)
dclean$Primary_Key <- 1:nrow(dclean)</pre>
ddirty<- ddirty %>% select(Primary_Key, everything()) #Move key col to front
dclean <- dclean %>% select(Primary_Key, everything())
write.csv(ddirty,"C:/Users/user-pc/Documents/missing.csv",                  <mark>row.names = FALSE</mark>)
write.csv(dclean,"C:/Users/user-pc/Documents/valid.csv",                    row.names = FALSE)
    <- read.csv("C:/Users/user-pc/Documents/valid.csv
df<- df[base::order(df$Year, df$Month, df$Day, df$x),]
                                                                                 The valid data is ordered in
                                                                                terms of year, month, day
str(df)
                                                                                and key.
head(df)
summary(df)
```

The data wrangling section of this project involves the importation and cleaning of a csv file that contains the firm's sales data. It quickly becomes clear that the data contains missing values and some observations with negative p rice indexes. It Is important to ensure that all the data at hand is present and valid before heading into the next phase (Figure A.) The data is therefore cleaned* and the following information is gained:

```
# Valid records = 179978

# Invalid Records = 22

# NAs = 17

# Negative Price Values = 5
```

The next phase involving descriptive statistics involves various ways of representing the data as well as some process capability calculations to better help us get familiar with the data. R allows us to extract and display many relationships between the features that can be found within the sales datasheet. This phase of the report aims to identify and analyse the most useful of these relationships.

Figure B provides us with a data quality summary of the valid data. Figures C and D provide us with data types and feature cardinality.

Figure C: Da	ata Types and Cardinal	ity			
A tibble: 11 × 6					
variables <chr></chr>	types <chr></chr>	missing_count <int></int>	missing_percent <dbl></dbl>	unique_count <int></int>	unique_rate <dbl></dbl>
Primary_Key	integer			179978	1.000000e+00
X	integer			179978	1.000000e+00
ID	integer			15000	8.334352e-02
AGE	integer				5.056174e-04
Class	character				3.889364e-05
Price	numeric			78832	4.380091e-01
Year	integer				5.000611e-05
Month	integer			12	6.667482e-05
Day	integer			30	1.666870e-04
Delivery.time	numeric			148	8.223227e-04
Why.Bought	character	0	0	6	3.333741e-05

<u>Fi</u>	gure D: Categoric	al Data and Cardinality						
	skim_variable <chr></chr>	n_missing <int></int>	complete_rate <dbl></dbl>	min <int></int>	max <int></int>	empty <int></int>	n_unique <int></int>	whitespace <int></int>
1	Class				10			0
2	Why.Bought				11			0
2 rc	ows							

Part 2: Descriptive Statistics

The first relationship that is noteworthy to the firm is probably the most intuitive of the bunch and that is the cumulative relationship of class (SKU group) to purchases made (Figure E.) It is evident that gifts and technology have the highest demands and luxury items have the lowest demand. Additional demand related insights can be gained from Figures F and H. Figure F shows the total earnings per class. Even though luxury items have the least number of sales they are still responsible for a significant amount of total revenue – trumped only by the technology class. This "contradiction" can be explained by having a look at the average prices of items in these classes. The boxplot of sales price per category (Figure H) indicates that technology and luxury are the most valuable SKU groups. These classes are the firm's majority income.

Customer identification should be an iterative process as is integral to demand forecasting and production planning. Figure G displays the effectiveness of different communication channels that the firm are using to entice potential customers into action. It is noted that 'recommended' is cited as the most popular customer motivation. This translates to word of mouth and emphasises the importance of product quality and customer experience. It follows that browsing and website advertisement are next most effective at winning over customers. The avenues should be further explored by the advertising department. Spam is least effective at gaining user attention. It is the writer's opinion that the firm should consider phasing out this strategy as it could damage customer relationships.

More useful information pertaining to customer identification can be abstracted from the relationship between customer age and the amount and type of products that they buy – such a relationship is on display in Figure I. From this information the firm will be able to effectively target customers. For example, technology and luxury item advertisements that directly reach the intended buyer could significantly increase sales rates.

Lastly Figure J provides a glimpse into the different delivery times of the various SKU groups. It follows that household items have the longest delivery time – this is probably because of item size and transportation method. It is noted that household, technology and gift item deliveries have larger distributions than their counterparts. Household deliveries range from 32 to 75 hours. This should be investigated by the firm. Correlation between delivery time and distance should be taken into account.

The lower specification limit, LSL, represents the lowest limit that a measurement can reach and still be considered acceptable by a customer. For the feature, delivery time, an LSL of zero makes sense since delivery time will not get minimized beyond the USL and thus a window is provided in which the product is to be delivered. See figures J and K for process capability calculations (JR Evans and WM Lindsay, 2013)

It is calculated that Cpk is equal to 0.38. This is alarming because a Cpk value of less than one is usually indicative of an incapable process. The business should aim for a Cpk of at least 1.3. Such a case would imply that the process is cantered and in bounds. Figure L provides an example visualisation of the relationship between Cp/Cpk values and the distribution of a process.

```
Figure K: Process capability calculations

USL<-24
LSL<-0
dftech <- df[df$Class=="Technology",]
sdtech<- sd(dftech$Delivery.time)
sdmean<- mean(dftech$Delivery.time)

cp<-(USL-LSL)/(6*sdtech)
cpu<-(USL-sdmean)/(3*sdtech)
cpl<-(sdmean-LSL)/(3*sdtech)
cpk<-min(cpl,cpu)
```

Figure L: Example of correlation between distribution and Cpk values.

Part 3: Statistical Process Control

SPC is defined as the use of statistical techniques to control process or production method (Ipek and Ankara, 1999.) Here we will apply the SPC methodology to the Delivery Times of the dataset. This will aid in the discovery of previously unseen behaviours or problems within the process.

Firstly, the X- and S-Charts for the delivery process times are initialised with 30 samples of 15 sales each. These initial 30 samples are used to calculate the centrelines, outer control limits and the 1- and 2-sigma-control limits for the respective classes (SKU Groups.) These values are entered into the respective X- and S-Chart tables. See Table 1 and 2.

X- and S- charts are visualised with samples comprising the entire dataset and control limits calculated from the first 30 samples. This implies that the green line visible on the plots is representative of the mean of the first 30 samples of each respective class.

It can be deducted that three classes have averages that do not conform to the limits that were calculated with the first 30 samples.

Gifts:

The shape of the graph indicated that the delivery time is increasing in a step-like manner. This could be the result of increasing pressure on logistics. Increased demand could have resulted in a situation where there are too many orders to have them all delivered within the initial limits. This requires the business's immediate attention.

Household:

As more samples are taken into account, the number of outliers starts to increase and then once the \pm 700 threshold is reached, a positive linear trend becomes evident in the data. This could also be attributed to, too much stress on the current delivery process to be able to deliver items on time.

Luxury:

There is a negative linear trend evident in the data after the initial 30 samples were taken. This could be indicative of the business prioritising luxury item deliveries. This could ensure that buyers of luxury items remain satisfied but it is recommended that the business investigates the correlation between the decrease in delivery times for luxury items and the increase in delivery times for gifts and household items. A more optimal strategy could be possible.

Figure F, indicates that technology sales also contribute heavily to total earnings and therefore the business could experiment with prioritising technology delivery times in a similar manner.

Part 4.1A: X Samples Outside Outer Control Limits

Table 3: X Samples Outside Outer Control Limits

[=:]	(Clothing	Food	Gifts	Household	Luxury	Sweets	Technology
First	1	455	75	213	252	142	942	37
Second	2	702	633	216	387	171	1104	398
Third	3	1152	1203	218	629	184	1243	483
Third Last	4	1677	1203	2607	1335	789	1243	1872
Second Last	5	1723	1467	2608	1336	790	1294	2009
Last	6	1724	1515	2609	1337	791	1403	2071
Total Identified	Num Outside LCL/UCL	17	5	2290	400	434	5	17

This section documents the identification of sample means outside of the outer control limits. The first three, last three and total number of out of bounds sample means are listed, per item category, in Table 3. From previous visualisations of the X-chart it is noted that the Class specific graphs do correlate with the numbers in the above table (Gifts, Household and Luxury have a higher number of outliers.)

Part 4.1B: Most Consecutive Samples of Sample Standard Deviations Between -0.3 and +0.4 σ -Control Limits

<u>Table 4:</u> Most Consecutive samples of s-bar between σ-Control Limits

	Clothing	Food	Gifts	Household	Luxury	Sweets	Technology
Max.	4	7	5	3	4	4	7
Consecutives							
Ending	1013	952	1651	908	63	1292	2419
Sample #							

The number and index of any consecutive samples of 's-bar' are obtainable through the implementation of for loops after the calculating the -0.3 and +0.4 σ -control limits. Table 4 lists the highest number of consecutive samples of 's-bar' for each class as well as the ending sample number/last sample number within that range. Although we obtained these values through the implementation of loops, a quick command into the console allows for confirmation that the applied methodology is sound. See Figures T and U.

						sam	ple	s of	s-b	ar w	ithi	nσ	-Co	ntro	ol L	imi	its													
> ke	keptsamplings\$5ample [1] 10 12 13 17 24 25 29 32 36 38 43 44 48 53 54 65 66 71 81 91 92																													
[1	נו	10	12	13	17	24	25	29	32	36	38	43	44	48		54	65	66	71	81	91	92	93	94	96	100	105	106	111	114
[30] 1	15	118	121	122	123	126	129	131	135	139	144	146	148	154	157	160	162	164	165	169	172	176	177	179	183	184	186	187	188
Ī59	9Ī 1	89	194	201	207	209	214	224	230	232	235	238	239	244	248	250	255	256	259	260	262	269	284	293	295	296	298	300	304	308
Ī88	3Ī 3	809	312	313	315	316	321	330	332	335	340	342	343	346	350	355	358	370	371	372	374	375	387	394	397	401	413	417	419	422
[117	7ī 4	28	448	451	456	459	465	472	474	475	477	485	492	496	497	503	515	517	520	522	528	529	530	534	535	539	541	543	546	547
Ī146	5 5	49	552	559	561	567	568	569	571	576	584	585	587	590	595	604	607	611	614	616	630	633	638	640	644	646	648	650	656	661
[175	5] 6	663	668	678	679	681	683	685	686	688	691	692	693	697	707	711	715	716	718	719	724	726	731	735	741	743	748	757	759	760
[204	ij 7	61	763	765	767	768	774	780	783	784	793	805	809	810	812	813	816	818	822	826	827	829	830	833	844	854	858	862	867	868
[233	8 [≀	377	881	884	891	896	902	906	908	918	933	936	939	945	946	947	950	951	953	957	959	961	963	965	968	969	970	971	977	986
[262	?] 9	91	995	998	1004	1005	1006	1014	1017	1019	1030	1044	1048	1058	1065	1075	1077	1079	1082	1083	1084	1088	1101	1103	1107	1108	1119	1121	1124	1125
[291	ı] 11	L 28 :	1140	1146	1149	1150	1254	TTJO	1171	1174	1178	1180	1181	1188	1190	1196	1202	1204	1205	1208	1209	1212	1216	1217	1218	1230	1240	1241	1242	1255
[320)] 12	265	1267	1273	1276	1289	1290	1291	1292	1295	1296	1301	1302	1313	1315	1317	1319	1321	1328	1331	1356	1357	1358	1366	1370	1371	1378	1379	1382	1386
[349] 13	94 :	1395	1396	1403	1409	1411	1413	1413	1419	1420	1424	1434	1437																

The figure below the last section of a vector called *keptSamplingT\$Sample* which contains all the samples of 's-bar' for technology delivery times that fall within the specified control limits.

Ī	₹igι	ıre	U:	Tec	hnc	olog	y sa	mpl	es o	of s-	bar	wit	hin	σ-C	ont	rol	Lin	nits												
Г37	8] 1°	160	1161	1165	1166	1168	1177	1181	1182	1189	1190	1193	1199	1201	1203	1204	1207	1209	1212	1214	1215	1219	1221	1223	1225	1226	1236	1238	1242	1245
[40				1264			1274										1313										1345	1351	1360	1361
Γ 4 3						1376		1378									1398				1423	1425	1441	1442	1443	1444	1448	1449	1453	1458
Γ46						1478															1544	1550	1568	1570	1575	1577	1578	1583	1588	1589
Γ49																										1690		1698	1702	1705
																										1788		1796	1797	1800
Ī55	21 1	809	1811														1872										1902	1903	1906	1907
																										1975	1978	1981	1985	1992
[61	0] 1!	994	1995	1998	2001	2002	2005	2007	2008	2009	2011	2012	2013	2014	2018	2020	2022	2026	2028	2029	2031	2034	2041	2045	2046	2051	2053	2055	2058	2060
[63	9] 2(064	2065	2068	2072	2073	2074	2076	2078	2079	2080	2081	2082	2084	2087	2089	2091	2094	2101	2103	2115	2119	2120	2121	2124	2128	2129	2133	2138	2141
[66	8 <u>]</u> 2:	142	2158	2159	2161	2162	2166	2169	2171	2173	2175	2176	2177	2179	2185	2187	2193	2195	2198	2201	2209	2210	2211	2212	2216	2221	2226	2227	2228	2230
[69	7] 2:	231	2232	2234	2237	2241											2267												2309	2311
[72	6] 2:	315	2317	2324	2323	2321	233U	4331	2502	2220	2340	2341	2343	2345	2346	2350	2351	2355	2361	2362	2363	2369	2372	2376	2378	2379	2394	2401	2402	2405
[75 >	5] 24	107	24 19	2413	2414	2415	2416	2417	2418	2419	2021	2422																		

Part 4.2: Likelihood of making a Type I (Manufacturer's) Error for A and B

A type 1 error is a false positive conclusion or the probability of rejecting a true null hypothesis (Bhandari, 2022.)

The probability of making a type 1 error for 1 standard deviation is estimated: $P(typel_Al) = pnorm(-l)*2 = 0.3173105$

The probability of making a type 1 error for 3 standard deviations is estimated: $P(typel_A3) = pnorm(-3)*2 = 0.002699796$

The probability of making a type 1 error for B is estimated: $P(typel_B) = pnorm(0.4) - pnorm(-0.3) = 0.2733332$

Part 4.3: Optimisation of Delivery Cost

The **X** Variable is indicative of the decision to decrease average delivery time. To find a brute forced solution to the below listed problem, it is necessary to keep track of the effect of various **X** values on the costs accumulated by the delivery process. Figure S provides a visual representation of the scenario. This problem is similar to obtaining Taguchi loss

as this is also an example of finding an optimal x value. It is dissimilar in the sense that there is only and LCL in the form 26 hours.

Find optimal mean hours for delivery process given:

- ➤ Lose R329/item-late-hour in lost sales if technology items delivered slower than 26 hours.
- **Costs** R2.5/item/hour to reduce the average time by one hour.
- **Costs** less (-R2.5/item/hour) if the delivery time is increased.
- \triangleright Assume the **current cost** for comparison purposes = 329* (item-late-hours).
- ➤ LOGIC: **New Delivery Time** <- Current Delivery Time **X**
- > Brute force solution with lowest cost **X**.

It is concluded that a value of X = 3 would result in the lowest cost for the process. This implies that the mean delivery time for the process should be centred at 16.01095 hours.

20.01095 (Process Avg.) -3 (**X**) = 16.01095 Hours

Part 4.4: Likelihood of making a type II (Consumer's) Error for A in Class=Technology

A type 2 error for the delivery time process of the technology class implies that the business is under the impression that a delivery is being made on time but in reality, it is delivered late (False negative conclusion.) This could negatively impact customer relationships and at the same time provide the business with false confidence in the process capability. Type 2 errors are usually caused by the statistical power of a test being low. Thus, it follows that the probability of making a type 2 error can be reduced but not removed from hypothesis testing. This probability can be minimised by increasing the sampling size or increasing the significance level.

The probability of making a type 2 error for delivery times of class Technology is estimated:

```
sd = (XCCL[7,1] - XCCL[7,7])/6 ((UCL TECH - LCL TECH)/6)
```

P(type2) = pnorm(XCCL[7,1], mean = 23, sd=p)-pnorm(XCCL[7,7], mean = 23, sd=p) = 0.4883177

Part 5: DOE & MANOVA

MANOVA or multivariate analysis of variance is an extension of regular ANOVA in the sense that the MANOVA test includes a minimum of two dependant variables to analyse differences between factors of the independent variable. To follow is a multivariate analysis of variance of the provided dataset. The target feature for this analysis year of purchase and the dependant variables are price and delivery time.

Take: H0: Group mean vectors for all groups do not differ significantly.

H1: At least one group mean vectors is different from the others.

alpha: 0.05

Assume: Dependant variables are normally distributed within groups.

Homogeneity of variances across the range of predictors.

Linearity between all pairs of dependent variables, covariates, and dependent

variable-covariate pairs in each cell.

It is necessary for the sample size to be sufficiently large that there are more observations per group in the independent variable (Year) than a number of dependant variables. This implies that more than 2 observations per year of purchase (Radečić, 2022.)

Figures V and W provide a visualisation of the 250 samples that have been taken for this analysis.

From the above figures an estimate can be made that years 2025 and 2026 are more separated than the rest but we will have to confirm these suspicions by performing one-way MANOVA using the manova() function in r. Figure X provides its summary and figure Y provides its initialisation.

```
Figure X: MANOVA summary
               Pillai
          Df
                     approx F
                              num
indVar2
           1 0.028361
                        .
3.6048
                                           0.02863
Residuals 248
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
 Figure Y: MANOVA initialisation
mandSamp <- sample_n(df,250)
depVars2 <- cbind(mandSamp$Delivery.time,mandSamp$Price)</pre>
indvar2 <- mandSamp$Year
manModel2 <- manova(depVars2 ~ indVar2, data = mandSamp)</pre>
```

Pr > F in this case is the p-value associated with the default test statistic for this function which is the Pillai's Trace statistic. Therefore, with for alpha level of 0.05, the data is deemed statistically significant and the null hypothesis is rejected.

MANOVA does not tell us which groups differ from others and therefore we can better

```
interpret its results by
  summary.aov(manModel2)
 Response
                                                                      performing a post-hoc
                 Sum Sq Mean Sq F value Pr(>F)
                                  0.0149 0.9028
                                                                      test. First, we can look
indVar2
                          2.733
              1
                  45332 182.790
Residuals
             248
                                                                      at univariate tests.
 Response 2
             Df
                     Sum Sq
                               Mean Sq F value
                                                   Pr(>F)
                                                                       Figure Z: Univariate summary
                3.4024e+09 3402367231
                                         7.1135 0.008154
indVar2
Residuals
            248 1.1862e+11 478294777
                                                                       of MANOVA model
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Figure Z informs us that one variable, response 2 or price, is highly significant among years of purchase.

Linear Discriminant analysis finds the linear combination of features that best separates the groups..

The predict() function allows us to obtain the linear discriminants and integrate them with the independent variable for visualisation purposes.

Figure AA provides a scatterplot of the LD analysis data-frame that has been created.

Part 6.1: Reliability of the Service & Part

Problem 6&7 Calculations:

```
#6.1
#Let L(X) = $45 (Ass. loss func. of Taguchi) // L(X)=k(X-T)^2
LX<-45
xminT<-0.04
q6.1_6 <- Lx/((xminT)^2) #L(X)=28125(X-T)^2
LX2<-35
q6.1_7A<-Lx2/((xminT)^2) #L(X)=21875(X-T)^2
xminT2<-0.027
q6.1_7B<-q6.1_7A*xminT2^2
```

Q6 => L(X) = 28125 (x-T)^2; TAGUCHI LOSS FUNCTION FOR L(X)=45 & x-T=0.04 Q7A => L(X)=21875(x-T)^2; TAGUCHI LOSS FUNCTION FOR L(X)=35 & x-T=0.04 Q7B => 15.94687; TAGUCHI LOSS FOR x-T=0.027cm & L(X)=35

Part 6.2: Reliability of the Service & Part

Problem 6.2 Calculations:

```
RA<-0.85
RB<-0.92
RC<-0.90
q6.2_7A<-RA*RB*RC
RA2<-1-(1-RA)^2 #1- Probability of failure of both
RB2<-1-(1-RC)^2
newRel<-RA2*RB2*RC2
q6.2_7B<-newRel-q6.2_7A #Reliability improvement
```

Management should reconsider flow of operations if breakdowns or stoppages are evident within the system. Parallel machining will allow for a more constant flow and a whopping 26% improvement in overall reliability. The less dependent the operations are on one-another, the better.

Part 6.3: Reliability of the Service & Part

The probabilities for this problem obtained by using the binomial distribution formula (dbinom in r):

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

P(no vehicles avail.)= 0.007064264

P(no drivers avail.)= 0.00306887

Therefore, we can estimate the number of reliable delivery days per year by multiplying the probability of having available vehicles with the probability of having available drivers.

$$P(reliable) = (1 - P(no vehicles avail.))*(1 - P(no drivers avail.))$$

= 0.9898885

Expected Reliable Days = $0.9898885 \times 365 = 361.3093 = 361$ Days

Appendix A S-Charts:

Conclusion:

After getting to know the data there are a few things that can be concluded. The company receives the majority of its revenue from sales of Luxury and Technology items. It seems the company has been prioritising improving the delivery times of these items. It is suggested that the firm investigates the effect of a similar initiative for technology items while also keeping track on any potential effects on the performance of the delivery team elsewhere. It can also be concluded that the least effective communications channel is 'spam' – this form of communication is somewhat outdated and should be replaced with the implementation of a mailing list for dedicated customers. Finally, it should be reiterated that the optimal mean delivery time given the costs associated with improving infrastructure is 16 hours.

Bibliography:

Bai, D.S. and Choi, I.S. (1995) X and R control charts for skewed populations. Journal of Quality Technology, 27(2), pp.120-131.

Bhandari, P. (2022) Type I & Type II Errors | Differences, Examples, Visualizations. Scribbr. Retrieved October 23, 2022, from https://www.scribbr.com/statistics/type-i-and-type-ii-errors/

Dario Radečić (2022) MANOVA in R – How To Implement and Interpret One-Way MANOVA Available at: https://www.scribbr.co.uk/referencing/harvard-website-reference/#:~:text=To%20reference%20a%20website%20in,which%20you%20accessed%20t he%20website.&text=Author%20surname%2C%20initial.,Accessed%3A%20Day%20Month%20Year). (Accessed: 20 10 2022).

Evans, J.R. and Lindsay, W.M. (2013) Managing for quality and performance excellence. Cengage Learning.

French, A., Macedo, M., Poulsen, J., Waterson, T. and Yu, A.(2008) Multivariate analysis of variance (MANOVA).

Ipek, H.A.L.İ.L., Ankara, H.Ü.S.E.Y.İ.N. and Ozdag, H. (1999) The application of statistical process control. Minerals Engineering, 12(7), pp.827-835.