

República de Colombia

SENA - Centro De Servicios Financieros - Distrito Capital Tecnología en Análisis y Desarrollo de Software

Ficha: 2879688

Creación de la estructura de la BD y aplicación de restricciones

GA6-220501096-AA2-EV02.

Brayan Josue Yanez Gonzalez

PPT: 1246628

Introducción

Este informe presenta la creación de la estructura de una base de datos basada en las características del software en desarrollo. Se detallan las tablas, atributos, tipos de datos y restricciones establecidas, incluyendo llaves primarias y foráneas. Además, se han diseñado los esquemas utilizando MySQL Workbench, garantizando una adecuada normalización y funcionalidad.

Objetivo

El objetivo de este documento es describir la estructura de la base de datos creada para el proyecto formativo, especificando los atributos de cada tabla y las restricciones aplicadas para garantizar la integridad de los datos.

Estructura de la Base de Datos

La base de datos está compuesta por las siguientes tablas:

1. Tabla usuarios

CREATE TABLE `tbl_usuarios` (

- **`PKUSU NCODIGO` int NOT NULL AUTO INCREMENT,**
- **`USU_CNOMBRE`** varchar(45) DEFAULT NULL,
- **`USU CDOCUMENTO` varchar(45) DEFAULT NULL,**
- **`USU_CUSUARIO`** varchar(45) DEFAULT NULL,
- `USU_CUSUARIO_AD` varchar(250) DEFAULT NULL,
- `USU_CROL` varchar(45) DEFAULT NULL,
- `USU_CPASSWORD` varchar(45) DEFAULT NULL,
- `USU_TOKEN` varchar(45) DEFAULT NULL,
- `USU_AUTH_TOKEN` varchar(250) DEFAULT NULL,
- **`USU CESTADO` varchar(45) DEFAULT NULL,**
- **`USU TIPO LOGUEO` varchar(45) DEFAULT NULL,**
- **`USU_CAUXILIAR`** varchar(45) DEFAULT NULL,
- **`USU_LAST_ACTIVITY`** timestamp NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP,
 - `USU_CIDIOMA` varchar(3) DEFAULT 'es',
- `USU_CORREO` varchar(45) DEFAULT NULL,
- **`USU NCHATS` int DEFAULT '60',**

```
`USU_DETALLE` varchar(45) DEFAULT NULL,
PRIMARY KEY (`PKUSU_NCODIGO`),
UNIQUE KEY `USU_CUSUARIO_UNIQUE` (`USU_CUSUARIO`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;
```

Atributos:

- id_usuario: Identificador único del usuario.
- nombre: Nombre del usuario.
- correo: Dirección de correo electrónico única.
- telefono: Número de teléfono.
- fecha_registro: Fecha de registro del usuario.

Restricciones:

- id_usuario es la llave primaria.
- correo debe ser único.

2. Tabla grupos

```
CREATE TABLE `tbl_grupo` (
    `grp_id` int NOT NULL AUTO_INCREMENT,
    `grp_fecha` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
    `grp_numero` varchar(255) NOT NULL DEFAULT '-',
    `grp_nombre` varchar(255) NOT NULL DEFAULT '-',
    `grp_detalle` varchar(255) NOT NULL DEFAULT '-',
    `grp_tipo_estado` varchar(45) NOT NULL DEFAULT 'Activo',
    `grp_actualizacion` timestamp NOT NULL DEFAULT
CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
    `grp_fk_usuarios` varchar(45) NOT NULL DEFAULT '-',
    PRIMARY KEY (`grp_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;
```

Atributos:

- id_grupo: Identificador único del grupo.
- nombre_grupo: Nombre del grupo.

• descripcion: Descripción del grupo.

Restricciones:

id_grupo es la llave primaria.

3. Tabla mensajes

```
CREATE TABLE mensajes (
    id_mensaje INT AUTO_INCREMENT PRIMARY KEY,
    id_usuario INT,
    id_grupo INT,
    contenido TEXT NOT NULL,
    fecha_envio TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (id_usuario) REFERENCES usuarios(id_usuario) ON
DELETE CASCADE,
    FOREIGN KEY (id_grupo) REFERENCES grupos(id_grupo) ON DELETE
CASCADE
);
```

Atributos:

- id_mensaje: Identificador único del mensaje.
- id_usuario: Usuario que envía el mensaje.
- id_grupo: Grupo al que se envía el mensaje.
- contenido: Contenido del mensaje.
- fecha_envio: Fecha y hora de envío.

Restricciones:

- id_mensaje es la llave primaria.
- id_usuario y id_grupo son llaves foráneas que aseguran la integridad referencial.

4. Tabla chats_management

```
CREATE TABLE chats_management (
    id_chat INT AUTO_INCREMENT PRIMARY KEY,
    id_usuario INT,
    estado ENUM('activo', 'inactivo') DEFAULT 'activo',
    FOREIGN KEY (id_usuario) REFERENCES usuarios(id_usuario) ON DELETE CASCADE
);
```

Atributos:

- id chat: Identificador único del chat.
- id_usuario: Usuario que gestiona el chat.
- estado: Estado del chat (activo o inactivo).

Restricciones:

- id_chat es la llave primaria.
- id_usuario es llave foránea.

5. Tabla line_profiling

```
CREATE TABLE line_profiling (
    id_linea INT AUTO_INCREMENT PRIMARY KEY,
    id_usuario INT,
    actividad VARCHAR(255) NOT NULL,
    FOREIGN KEY (id_usuario) REFERENCES usuarios(id_usuario) ON
DELETE CASCADE
);
```

Atributos:

- id_linea: Identificador único de la línea de perfil.
- id usuario: Usuario relacionado con la actividad.
- actividad: Descripción de la actividad realizada.

Restricciones:

- id_linea es la llave primaria.
- id_usuario es llave foránea.

6. Tabla bot tree

```
CREATE TABLE bot_tree (
    id_nodo INT AUTO_INCREMENT PRIMARY KEY,
    id_padre INT NULL,
    contenido TEXT NOT NULL,
    FOREIGN KEY (id_padre) REFERENCES bot_tree(id_nodo) ON DELETE
SET NULL
);
```

Atributos:

- id_nodo: Identificador único del nodo del bot.
- id_padre: Identificador del nodo padre en la jerarquía.
- contenido: Contenido del nodo.

Restricciones:

- id_nodo es la llave primaria.
- id_padre es una llave foránea autorreferencial.

2. Creación de la Base de Datos en MySQL Workbench

Se diseñó la estructura de la base de datos en MySQL Workbench, definiendo las relaciones entre tablas y aplicando las restricciones necesarias para garantizar la integridad de los datos.

3. Aplicación de Restricciones

Se implementaron las siguientes restricciones en la base de datos:

- Llaves primarias en todas las tablas para garantizar la unicidad de los registros.
- Llaves foráneas con opciones ON DELETE CASCADE y ON DELETE SET NULL para mantener la integridad referencial.
- Restricción UNIQUE en correo de la tabla usuarios.
- Restricción ENUM en el campo estado de la tabla chats_management.

Conclusión

La creación de esta base de datos garantiza una estructura organizada y eficiente para el manejo de información en el sistema en desarrollo. Se han aplicado buenas prácticas de normalización y restricción de datos, asegurando su integridad y coherencia en el almacenamiento. La implementación en MySQL Workbench facilita la visualización y modificación de los esquemas según sea necesario.