GRADIENT METHOD

"To iterate is human." Anon.

Consider a linear system Ax = b. The solution minimises the objective function $\frac{1}{2}x^{T}Ax - x^{T}b$

Recell multivariete Toylor expansion:

$$f(\alpha+k) \simeq \sum_{j=0}^{\infty} (k^{T}\nabla)^{j}f(z)$$

At a critical point $\nabla f(x) = 0$ leads to

$$f(x+y)-f(x) = \frac{5}{7}(y_{\perp}\Delta)_{5}(x)$$

EXAMPLE f = f(a,b): R -> R; L = (h, k)

We get: $\frac{1}{2} \left(l^2 f_{11}(a,b) + lk f_{12}(a,b) + k^2 f_{22}(a,b) \right)$

$$=\frac{1}{2}\begin{pmatrix} k \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \begin{pmatrix} k \\ k \end{pmatrix}$$

Hessian: H_f(x)

PROPERTIES OF HESSIAUS

It is symmetric and real => all eigenvalues

one real

Definition ACR"; A = AT

(i) positive definite: $\lambda_i > 0$

(ii) regative definite: $\lambda_i < 0$

(iii) indefinite: $\lambda_i > 0$, $\lambda_j < 0$, $i \neq j$

If A is pas. def, then xTAX>0 for all

 $A = Q \Lambda Q^T$; Q orthogonal, $Q = (v, v_2...v_n)$

Any $y = \sum_{i=1}^{n} x_i v_i$ \Rightarrow $y^T A y = x_1^2 \lambda_1 + x_2^2 \lambda_2 + ...$ $+ x_n^2 \lambda_n$ > 0 only if $\lambda_i > 0$.

SYLVESTER CRITERION

$$A = \begin{vmatrix} |\alpha_{11}| & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{2n} \\ |\alpha_{21}| & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2n} \\ |\alpha_{31}| & \alpha_{32} & \alpha_{33} & \cdots & \alpha_{nn} \end{vmatrix}$$

$$\Delta_{1} = |\alpha_{11}|$$

$$\Delta_{2} = |\alpha_{11}| |\alpha_{12}|$$

$$\Delta_{3} = ...$$

If for all k = 1,...,n $\Delta_k > 0$, then A is pos. def. If the signs alterente, then A is reg. def. Why: $\det(-A) = (-1)^n |A|$

GRADIENT METHOD

First we must choose our norm: || VII = VVTAV $\phi(x) = \frac{1}{2}x^{T}Ax - x^{T}b$; Let $Ax_{*} = b$. $= \frac{1}{2} (x - x_*)^T A (x - x_*) - \frac{1}{2} b^T A^{-1} b$ $=\frac{1}{2}\|x-x_{*}\|_{A}^{2}+\varphi(x_{*})$ If we can find x -> x, then the squared norm -> 0

Idea: Take steps in the negative gradient direction!

ITERATIONS

$$x_{k+1} = x_k - \mu_k g_k$$
 $g_k = A x_k - b$ (gradient)

 $\mu_k = \frac{g_k g_k}{g_k g_k} \in \mathbb{R}$, step length that

 $g_k f_k g_k$ minimises $\phi(x_{k+1})$.

Direct computation: $\phi(x_{k+1}) = \phi(x_k) - \frac{1}{2} \frac{(g_k^T g_k)^2}{g_k^T A g_k}$