高等代数 (II) 第四次作业情况

李卓远 数学科学学院

zy.li@stu.pku.edu.cn

1 3月31日作业

课程暂停.

2 4月4日作业

题目 2.1. 设 $\alpha_1, \dots, \alpha_s$ 线性无关, $(\beta_1, \dots, \beta_s) = (\alpha_1, \dots, \alpha_s)C$. 证明: β_1, \dots, β_s 线性无关的充要条件 是 C 可逆.

证明. 由线性无关的定义可知

$$eta_1, \cdots, eta_s$$
 线性无关 $\Leftrightarrow ((eta_1, \cdots, eta_s)X = 0 \Leftrightarrow X = 0)$ $\Leftrightarrow ((lpha_1, \cdots, lpha_s)CX = 0 \Leftrightarrow X = 0)$ $\Leftrightarrow (CX = 0 \Leftrightarrow X = 0)$ $\Leftrightarrow C$ 可逆.

 $P81:\ 6,\ 7,\ 9,\ 10,\ 11$

3 4月7日作业

P81: 2(2)(5)

P90: 2, 3, 4, 7, 10, 12

P90: 7. 只需说明 $\beta_{j_1},\cdots,\beta_{j_r}$ 线性无关等价于 x_{j_1},\cdots,x_{j_r} , 其中 $\{x_k\}_{k=1}^s$ 为 A 的列向量组. 结论成立是因为

$$\sum_{k=1}^{r} u_k \beta_{j_k} = 0 \Leftrightarrow \sum_{k=1}^{r} u_k (\alpha_1, \cdots, \alpha_n) x_{j_k} = 0 \Leftrightarrow (\alpha_1, \cdots, \alpha_n) \sum_{k=1}^{r} u_k x_{j_k} = 0 \Leftrightarrow \sum_{k=1}^{r} u_k x_{j_k} = 0,$$

故而 A 的列向量的极大线性无关组中元素与 β_1, \dots, β_s 中极大线性无关组元素相等.

P90: 10. 证明详见第四次讲义中 Corollary 3.9..

P90: 12. 对 $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$ 作初等行变换得到

$$\begin{pmatrix}
1 & 0 & -2 & 0 & 1 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

故而可选择 $\alpha_1, \alpha_2, \beta_1$ 作为 $V_1 + V_2$ 的一组基. 考虑其核空间的一组基 $(-1, -2, 0, 1, 1)^\mathsf{T}, (2, -1, 1, 0, 0)^\mathsf{T},$ 那 么 $V_1 \cap V_2$ 的一组基为 $\beta_1 + \beta_2 = (5, -1, 5, 2)^\mathsf{T}$.

4 4月11日作业

题目 4.1. 设 $\alpha_1, \dots, \alpha_m$ 为 V_1 的一组基, β_1, \dots, β_n 为 V_2 的一组基, 证明 $\{\alpha_i \otimes_{\mathbb{F}} \beta_j\}_{i,j=1}^{m,n}$ 为 $V_1 \otimes_{\mathbb{F}} V_2$ 的一组基.

证明. 显然 $V \otimes_{\mathbb{F}} W$ 的元素均可由 $\{\alpha_i \otimes_{\mathbb{F}} \beta_j\}_{i,j=1}^{m,n}$ 线性表出, 下证线性无关性.

法一: 只要证 $V \otimes_{\mathbb{F}} W$ 的维数为 mn. 构造双射

$$(V \otimes_{\mathbb{F}} W)^* \to \operatorname{Hom}(V, W^*)$$
$$\phi \mapsto (\alpha \mapsto (\beta \mapsto \phi(\alpha \otimes_{\mathbb{F}} \beta)))$$
$$((\alpha \otimes_{\mathbb{F}} \beta) \mapsto \psi(\alpha)(\beta)) \longleftrightarrow \psi$$

故

 $\dim(V \otimes W) = \dim(V \otimes W)^* = \dim \operatorname{Hom}(V, W^*) = \dim V \dim W^* = \dim V \dim W = mn.$

法二: 利用 $V \otimes_{\mathbb{F}} W$ 作为商空间的定义方式, 设 $V \times W$ 为自由生成模, 令 R 为形如

$$(v_1 + v_2, w) - (v_1, w) - (v_2, w), \quad (v, w_1 + w_2) - (v, w_1) - (v, w_2),$$

 $(\lambda v, w) - \lambda(v, w), \quad (v, \lambda w) - \lambda(v, w)$

的元素构成的子空间. 构造线性映射

$$\sigma: V \times W \to \mathbb{F}^{m \times n}$$

$$\sum_{l=1}^{N} c_{l} \left(\sum_{p=1}^{m} a_{p}^{(l)} \alpha_{p}, \sum_{q=1}^{n} b_{q}^{(l)} \beta_{q} \right) \mapsto \left(\sum_{l=1}^{N} c_{l} a_{p}^{(l)} b_{q}^{(l)} \right)_{p,q},$$

其中 $V \times W$ 指代以 $V \times W$ 中全体元素生成的自由模. 显然 σ 为满射, 且 $R \subseteq \ker \sigma$. 反之

$$\sum_{l=1}^{N} c_{l} \left(\sum_{p=1}^{m} a_{p}^{(l)} \alpha_{p}, \sum_{q=1}^{n} b_{q}^{(l)} \beta_{q} \right) \in \ker \sigma \Rightarrow \sum_{l=1}^{N} c_{l} a_{p}^{(l)} b_{q}^{(l)} = 0, \, \forall p, q.$$

那么有

$$\sum_{l=1}^{N} c_{l} \left(\sum_{p=1}^{m} a_{p}^{(l)} \alpha_{p}, \sum_{q=1}^{n} b_{q}^{(l)} \beta_{q} \right) + R = \sum_{p,q} \sum_{l=1}^{N} c_{l} a_{p}^{(l)} b_{q}^{(l)} (\alpha_{p}, \beta_{q}) + R = R,$$

由任意性可知 $\ker \sigma \subset R$, 故而 $\ker \sigma = R$. 由同构基本定理可知

$$V \otimes_{\mathbb{F}} W = (V \times W)/R \cong \mathbb{F}^{m \times n}, \dim(V \otimes W) = \dim \mathbb{F}^{m \times n} = mn.$$

P91: 14, 16

P95: 3, 5, 6

P101: 2