

Continuum Mechanics Chapter 2 Kinematics: Motion

C. Agelet de Saracibar

ETS Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Cataluña (UPC), Barcelona, Spain International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain

Contents

Contents

- Continuum Mechanics
- Deformation map
- Material and spatial descriptions
- Displacement vector field
- 5. Velocity vector field
- 6. Acceleration vector field 🧆

- 7. Stationary field
- 8. Uniform velocity vector field
- 9. Trajectories 🕔
- 10. Streamlines 🧆
- 11. Material and spatial domains

Continuum Mechanics

Continuum Body

Materials, such as solids, liquids, gases or intermediate states, are made of atoms, which may be grouped in molecules separated by empty space. Therefore, on a *microscopic scale*, materials are *not continuous*.

However, on a *macroscopic scale*, a length-scale much greater than that of inter-atomic distances, materials may be modeled as a *continuum body*, assuming that the matter is continuously distributed and fills the entire region of space it occupies, ignoring the discontinuities existing on a microscopic scale.

Continuum Mechanics

Continuum Mechanics

Continuum mechanics is a powerful and effective tool to successfully describe **macroscopic systems** using a **continuum approach**. Such an approach leads to the **continuum theory**.

A **continuum body**, denoted by \mathcal{B} , is viewed as a *continuous medium*, having a continuous (or at least a piecewise continuous) distribution of matter in space and time. It may be imagined as being a composition of a (continuous) set of **particles** (or **material points**), represented by $P \in \mathcal{B}$.

A **continuum body** is determined by **macroscopic quantities** which may be described by *continuous functions* with *continuous derivatives*.

Continuum Mechanics

Continuum Mechanics

Continuum mechanics includes the following key ingredients:

- Kinematics: Motion and deformations of a continuum body
- Stresses: Forces, stresses
- Balance laws: Fundamental laws of physics governing the motion of a continuum body
- Constitutive equations: Material characterization of a continuum body

Configurations

Let us consider a **continuum body** \mathcal{B} with **particle** $P \in \mathcal{B}$, which is embedded in the three-dimensional Euclidean space at a given instant of **time** t.

We introduce a **reference frame** of rectangular coordinate axes at a **fixed** origin O with **right-handed orthonormal basis vectors**

 \mathbf{e}_a , a = 1, 2, 3

6

Configurations

As the **continuum body** \mathcal{B} moves in space along the time it occupies a *continuous sequence of geometrical regions* denoted as **configurations** $\Omega_0, \ldots, \Omega_t$, which are determined uniquely at any instant of time t.

Any particle $P \in \mathcal{B}$, at any time t, corresponds to a so-called geometrical **point** having a **position** in the configuration Ω_t .

Reference Configuration

The geometrical region Ω_0 with the position of a typical point X corresponds to a fixed **reference time** and is denoted as **reference** (or **material** or **undeformed**) **configuration** of the body \mathcal{B} .

The point X corresponds to the position occupied by the particle $P \in \mathcal{B}$ at the reference time. The particle P may be identified by the **position vector** (or **material** or **referential position**) **X** of the point X relative to the fixed origin O.

It is often convenient to call X as the **material point X** associated with the particle $P \in \mathcal{B}$ at the fixed reference time.

Initial Configuration

A geometrical region at **initial time** *t*=0 is referred to as the **initial configuration**.

We agree subsequently that the *initial configuration* coincides with the *reference configuration*, hence, we will assume that the **reference time** is t=0.

Current Configuration

The geometrical region Ω_t with the position of a typical point x corresponds to the **current time** t>0 and is denoted as **current** (or **spatial** or **deformed**) **configuration** of the body \mathcal{B} .

The point x corresponds to the position occupied by the particle $P \in \mathcal{B}$ at the current time t>0. The **position vector** (or **spatial** or **current position**) \mathbf{x} serves as label for the associated point x relative to the fixed origin O.

It is often convenient to call x as the **spatial point** \mathbf{x} associated with the particle $P \in \mathcal{B}$ at the current time t>0.

 $\mathbf{X} = \boldsymbol{\kappa} \left(\boldsymbol{\kappa}_0^{-1} \left(\mathbf{X} \right), t \right) = \boldsymbol{\varphi} \left(\mathbf{X}, t \right)$

Material Map

A particle P may be identified by the **position vector** (or **material** or **referential position**) of the point X relative to the fixed origin X, through the *one-to-one* **material map**,

$$\mathbf{X} = \boldsymbol{\kappa}_0 (\mathsf{P}), \quad \mathsf{P} = \boldsymbol{\kappa}_0^{-1} (\mathbf{X})$$

Spatial Map

A particle P may be identified by the **position vector** (or **spatial** or **current position**) of the point x relative to the fixed origin O, denoted as x, through the *one-to-one* **spatial map**,

$$\mathbf{x} = \boldsymbol{\kappa}(\mathsf{P},t), \quad \mathsf{P} = \boldsymbol{\kappa}^{-1}(\mathbf{x},t)$$

Deformation Map

The composition of the spatial map and the inverse of the material map, yields the one-to-one **deformation map** defining the **equation of motion** given by,

$$\mathbf{X} = \boldsymbol{\kappa} \left(\boldsymbol{\kappa}_0^{-1} \left(\mathbf{X} \right), t \right) = \boldsymbol{\varphi} \left(\mathbf{X}, t \right)$$

Inverse Deformation Map

The composition of the material map and the inverse of the spatial map, yields the one-to-one **inverse deformation map** defining the **inverse of the equation of motion** given by,

$$\mathbf{X} = \boldsymbol{\kappa}_0 \left(\boldsymbol{\kappa}^{-1} \left(\mathbf{x}, t \right) \right) = \boldsymbol{\varphi}^{-1} \left(\mathbf{x}, t \right)$$

Material Coordinates

The vector position of a **material point**, denoted as **X**, may be written as a linear combination of the orthonormal basis vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, i.e., the *Cartesian basis*, such that,

$$\mathbf{X} = X_1 \mathbf{e}_1 + X_2 \mathbf{e}_2 + X_3 \mathbf{e}_3 = X_A \mathbf{e}_A$$

where the components X_1, X_2, X_3 are denoted as **material** coordinates.

Using matrix notation, the vector of material coordinates, denoted as $[\mathbf{X}]$, takes the form,

$$\begin{bmatrix} \mathbf{X} \end{bmatrix} = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}^T$$

Spatial Coordinates

The vector position of a **spatial point**, denoted as \mathbf{x} , may be written as a linear combination of the orthonormal basis vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, i.e., the *Cartesian basis*, such that,

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 = x_a \mathbf{e}_a$$

where the components x_1, x_2, x_3 are denoted as **spatial** coordinates.

Using matrix notation, the vector of spatial coordinates, denoted as [x], takes the form,

$$\begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$$

Material Differential Operators

Material Nabla, Laplacian and Hessian

The **material nabla** vector differential operator, denoted as $\overline{\nabla}$, is defined as,

$$\overline{\nabla} = \sum_{A=1,3} \frac{\partial}{\partial X_A} \mathbf{e}_A = \frac{\partial}{\partial X_A} \mathbf{e}_A$$

The **material laplacian** scalar differential operator, denoted as Δ , is defined as,

$$\overline{\Delta} = \overline{\nabla} \cdot \overline{\nabla} = \frac{\partial^2}{\partial X_A^2}$$

The **material hessian** symmetric second-order tensor differential operator is defined as,

$$\overline{\nabla} \otimes \overline{\nabla} = \frac{\partial^2}{\partial X_A \partial X_B} \mathbf{e}_A \otimes \mathbf{e}_B$$

Material Differential Operators

Material Divergence, Curl and Gradient

The **material divergence** differential operator DIV (\cdot) is defined as,

$$\mathrm{DIV}(\bullet) = \overline{\nabla} \cdot (\bullet) = \frac{\partial (\bullet)}{\partial X_A} \cdot \mathbf{e}_A$$

The **material curl** differential operator CURL (\cdot) is defined as,

$$CURL(\bullet) = \overline{\nabla} \times (\bullet) = \mathbf{e}_A \times \frac{\partial (\bullet)}{\partial X_A}$$

The **material gradient** differential operator GRAD (\cdot) is defined as,

$$\operatorname{GRAD}(\bullet) = \overline{\nabla} \otimes (\bullet) = \frac{\partial (\bullet)}{\partial X_A} \otimes \mathbf{e}_A = \overline{\nabla} (\bullet) = \frac{\partial (\bullet)}{\partial X_A} \mathbf{e}_A$$

Spatial Differential Operators

Spatial Nabla, Laplacian and Hessian

The **spatial nabla** vector differential operator, denoted as ∇ , is defined as,

$$\nabla = \sum_{a=1,3} \frac{\partial}{\partial x_a} \mathbf{e}_a = \frac{\partial}{\partial x_a} \mathbf{e}_a$$

The **spatial laplacian** scalar differential operator, denoted as Δ , is defined as,

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x_a^2}$$

The **spatial hessian** symmetric second-order tensor differential operator is defined as,

$$\nabla \otimes \nabla = \frac{\partial^2}{\partial x_a \partial x_b} \mathbf{e}_a \otimes \mathbf{e}_b$$

Spatial Differential Operators

Spatial Divergence, Curl and Gradient

The **spatial divergence** differential operator div (\cdot) is defined as,

$$\operatorname{div}(\bullet) = \nabla \cdot (\bullet) = \frac{\partial (\bullet)}{\partial x_a} \cdot \mathbf{e}_a$$

The **spatial curl** differential operator curl (\cdot) is defined as,

$$\operatorname{curl}(\bullet) = \nabla \times (\bullet) = \mathbf{e}_a \times \frac{\partial (\bullet)}{\partial x_a}$$

The **spatial gradient** differential operator grad (\cdot) is defined as,

$$\operatorname{grad}(\bullet) = \nabla \otimes (\bullet) = \frac{\partial (\bullet)}{\partial x_a} \otimes \mathbf{e}_a = \nabla (\bullet) = \frac{\partial (\bullet)}{\partial x_a} \mathbf{e}_a$$

Deformation Map

The **deformation map** $\mathbf{x} = \boldsymbol{\varphi}(\mathbf{X}, t)$ has to satisfy the following conditions,

- 1. Continuous with continuous derivatives up to the required continuity degree
- **2.** Consistency condition, i.e. taking *t*=0 as reference time,

$$\mathbf{X} = \boldsymbol{\varphi} \left(\mathbf{X}, 0 \right)$$

3. One-to-one map, i.e. there exists the inverse of the deformation map,

$$\mathbf{X} = \boldsymbol{\varphi}^{-1} \left(\mathbf{x}, t \right)$$

4. Positive Jacobian, i.e. positive differential of volume,

$$J := \det \left\lceil \operatorname{GRAD} \boldsymbol{\varphi} (\mathbf{X}, t) \right\rceil > 0$$

Jacobian

The **jacobian** of the deformation map is a positive real value and takes the form,

$$J := \det \left[\operatorname{GRAD} \boldsymbol{\varphi} (\mathbf{X}, t) \right] > 0$$

and the following relation holds,

$$dv = J dV$$

Note that at the reference time for t=0,

$$dv = J dV = dV \implies J = 1$$

Material and Spatial Descriptions

Material Description

Using a material description, any arbitrary property γ (of any tensorial order) involved in the description of a continuum body, is mathematically described as a function of the material points (or material vector positions) \mathbf{X} and the time t, i.e.,

$$\gamma = \Gamma(\mathbf{X}, t)$$

Spatial Description

Using a **spatial description**, any arbitrary property γ (of any tensorial order) involved in the description of a continuum body, is mathematically described as a function of the **spatial points** (or **spatial vector positions**) \mathbf{x} and the time t, i.e.,

$$\gamma = \gamma(\mathbf{x}, t)$$

Material and Spatial Descriptions

Material Description

The **material description** of an arbitrary property γ (of any tensorial order) provides the time-evolution of the property for a given **particle** or **material point** \mathbf{X} and is typically used in *solid mechanics*.

$$\gamma = \Gamma(\mathbf{X}, t)$$

Spatial Description

The **spatial description** of an arbitrary property γ (of any tensorial order) provides the time-evolution of the property at a fixed **spatial point** \mathbf{x} and is typically used in *fluid mechanics*.

$$\gamma = \gamma (\mathbf{x}, t)$$

Material and Spatial Descriptions

Material and Spatial Descriptions

Giving the **material description** of an arbitrary property $\gamma = \Gamma(\mathbf{X}, t)$ and the inverse of the motion equation $\mathbf{X} = \boldsymbol{\varphi}^{-1}(\mathbf{x}, t)$, the **spatial description** of the property reads,

$$\gamma = \Gamma(\mathbf{X}, t) = \Gamma(\boldsymbol{\varphi}^{-1}(\mathbf{x}, t), t) = \gamma(\mathbf{x}, t)$$

Giving the **spatial description** of an arbitrary property $\gamma = \gamma(\mathbf{x}, t)$ and the motion equation $\mathbf{x} = \varphi(\mathbf{X}, t)$, the **material description** of the property reads,

$$\gamma = \gamma(\mathbf{x}, t) = \gamma(\boldsymbol{\varphi}(\mathbf{X}, t), t) = \Gamma(\mathbf{X}, t)$$

Material and Spatial Time Derivatives

Material Time Derivative

Giving the material description of an arbitrary property, $\gamma = \Gamma(\mathbf{X}, t)$ the material time derivative of the property is given by,

$$\dot{\gamma} = \frac{d\gamma}{dt} = \frac{\partial \Gamma(\mathbf{X}, t)}{\partial t} \bigg|_{\mathbf{X}} = \frac{\partial \Gamma(\mathbf{X}, t)}{\partial t}$$

Spatial Time Derivative

Giving the *spatial description* of an arbitrary property, $\gamma = \gamma(\mathbf{x}, t)$ the **spatial** (or **local**) **time derivative** of the property is given by,

$$\left. \frac{\partial \gamma}{\partial t} = \frac{\partial \gamma(\mathbf{x}, t)}{\partial t} \right|_{\mathbf{x}} = \frac{\partial \gamma(\mathbf{x}, t)}{\partial t}$$

Displacement Vector Field

Displacement Vector Field

Displacement Vector Field

The **displacement** vector field, denoted as **u**, is defined as,

$$\mathbf{u} = \mathbf{x} - \mathbf{X}$$

The *material description* of the **displacement** vector field takes the form,

$$\mathbf{u} = \mathbf{U}(\mathbf{X}, t) = \boldsymbol{\varphi}(\mathbf{X}, t) - \mathbf{X}$$

The *spatial description* of the **displacement** vector field takes the form,

$$\mathbf{u} = \mathbf{u}(\mathbf{x}, t) = \mathbf{x} - \boldsymbol{\varphi}^{-1}(\mathbf{x}, t)$$

Velocity Vector Field

Velocity Vector Field

The **velocity** vector field, denoted as **v**, is defined as,

$$\mathbf{v} = \frac{d\mathbf{x}}{dt}$$

The *material description* of the **velocity** vector field takes the form,

$$\mathbf{v} = \mathbf{V}(\mathbf{X}, t) = \frac{\partial \varphi(\mathbf{X}, t)}{\partial t}$$

The *spatial description* of the **velocity** vector field takes the form,

$$\mathbf{v} = \mathbf{V}(\boldsymbol{\varphi}^{-1}(\mathbf{x},t),t) = \mathbf{v}(\mathbf{x},t)$$

Acceleration Vector Field

Acceleration Vector Field

The **acceleration** vector field, denoted as \mathbf{a} , is defined as,

$$\mathbf{a} = \frac{d}{dt} \left(\frac{d\mathbf{x}}{dt} \right) = \frac{d\mathbf{v}}{dt}$$

The *material description* of the **acceleration** vector field takes the form,

$$\mathbf{a} = \mathbf{A} (\mathbf{X}, t) = \frac{\partial^2 \varphi (\mathbf{X}, t)}{\partial t^2} = \frac{\partial \mathbf{V} (\mathbf{X}, t)}{\partial t}$$

The *spatial description* of the **acceleration** vector field takes the form,

$$\mathbf{a} = \mathbf{A}\left(\boldsymbol{\varphi}^{-1}\left(\mathbf{x},t\right),t\right) = \mathbf{a}\left(\mathbf{x},t\right)$$

Material Time Derivative

Material Time Derivative

Giving the **spatial description** of an arbitrary property, $\gamma = \gamma(\mathbf{x}, t)$, the **material time derivative** of the property can be written as,

$$\dot{\gamma} = \frac{d\gamma}{dt} = \frac{d\gamma(\mathbf{x}(t),t)}{\partial t} = \frac{\partial\gamma(\mathbf{x},t)}{\partial t} + \frac{\partial\gamma(\mathbf{x},t)}{\partial x_a} \cdot \frac{dx_a(t)}{dt}$$

$$\dot{\gamma} = \frac{d\gamma}{dt} = \frac{d\gamma(\mathbf{x}(t),t)}{\partial t} = \frac{\partial\gamma(\mathbf{x},t)}{\partial t} + \underbrace{\left(\operatorname{grad}\gamma(\mathbf{x},t)\right) \cdot \mathbf{v}(\mathbf{x},t)}_{\text{Convective time derivative}}$$

The **material time derivative** of an arbitrary propert given in spatial description may be written as the sum of its *spatial* (or *local*) *time derivative* and its *convective time derivative*.

Material Time Derivative

Convective Time Derivative

The **convective time derivative** of an arbitrary property given in spatial description, $\gamma = \gamma(\mathbf{x}, t)$, may be defined as the difference between its *material time derivative* and its *spatial* (or *local*) time derivative, yielding,

$$\left(\operatorname{grad}\gamma(\mathbf{x},t)\right)\cdot\mathbf{v}(\mathbf{x},t) = \dot{\gamma} - \frac{\partial\gamma(\mathbf{x},t)}{\partial t} = \frac{d\gamma}{dt} - \frac{\partial\gamma(\mathbf{x},t)}{\partial t}$$

Material Time Derivative

Acceleration

The **acceleration** vector field may be also written as the *material* time derivative of the spatial description of the velocity vector field, yielding,

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d\mathbf{v}(\mathbf{x},t)}{dt} = \frac{\partial \mathbf{v}(\mathbf{x},t)}{\partial t} + \left(\operatorname{grad}\mathbf{v}(\mathbf{x},t)\right)\mathbf{v}(\mathbf{x},t) = \mathbf{a}(\mathbf{x},t)$$

$$a_{a} = \frac{dv_{a}}{dt} = \frac{dv_{a}(\mathbf{x},t)}{dt} = \frac{\partial v_{a}(\mathbf{x},t)}{\partial t} + \left(\operatorname{grad}v_{a}(\mathbf{x},t)\right)\mathbf{v}(\mathbf{x},t)$$

$$= \frac{\partial v_{a}(\mathbf{x},t)}{\partial t} + v_{a,b}(\mathbf{x},t)v_{b}(\mathbf{x},t) = a_{a}(\mathbf{x},t)$$

Kinematics of Deformation

Displacement Vector Field

$$\mathbf{U}(\mathbf{X},t) = \boldsymbol{\varphi}(\mathbf{X},t) - \mathbf{X}, \quad \mathbf{u}(\mathbf{x},t) = \mathbf{x} - \boldsymbol{\varphi}^{-1}(\mathbf{x},t)$$

Velocity Vector Field

$$\mathbf{V}(\mathbf{X},t) = \frac{\partial \varphi(\mathbf{X},t)}{\partial t}, \quad \mathbf{v}(\mathbf{x},t) = \mathbf{V}(\varphi^{-1}(\mathbf{x},t),t)$$

Acceleration Vector Field

$$\mathbf{A}(\mathbf{X},t) = \frac{\partial \mathbf{V}(\mathbf{X},t)}{\partial t}, \quad \mathbf{a}(\mathbf{x},t) = \mathbf{A}(\boldsymbol{\varphi}^{-1}(\mathbf{x},t),t)$$
$$= \frac{\partial \mathbf{v}(\mathbf{x},t)}{\partial t} + (\operatorname{grad} \mathbf{v}(\mathbf{x},t))\mathbf{v}(\mathbf{x},t)$$

Assignment 2.1

Assignment 2.1

The Cartesian components of the *spatial description* of the *velocity* field is,

$$v_x(\mathbf{x},t) = x - z, \quad v_y(\mathbf{x},t) = z(e^t + e^{-t}), \quad v_z(\mathbf{x},t) = 0$$

Compute the *acceleration* at the fixed *spatial point* with Cartesian coordinates (1,1,1) at time t=2.

Assignment 2.1

Assignment 2.1

The Cartesian components of the *spatial description* of the *velocity* field is,

$$v_x(\mathbf{x},t) = x - z, \quad v_y(\mathbf{x},t) = z(e^t + e^{-t}), \quad v_z(\mathbf{x},t) = 0$$

Compute the *acceleration* at the fixed *spatial point* with Cartesian coordinates (1,1,1) at time t=2.

The *spatial description* of the **acceleration** vector field can be directly computed from the spatial description of the velocity vector field,

$$\mathbf{a}(\mathbf{x},t) = \frac{\partial \mathbf{v}(\mathbf{x},t)}{\partial t} + (\operatorname{grad} \mathbf{v}(\mathbf{x},t)) \mathbf{v}(\mathbf{x},t)$$

The Cartesian components of the acceleration vector field in spatial description are given by,

$$a_{x}(\mathbf{x},t) = \frac{\partial v_{x}(\mathbf{x},t)}{\partial t} + (\operatorname{grad} v_{x}(\mathbf{x},t)) \cdot \mathbf{v}(\mathbf{x},t)$$

$$a_{y}(\mathbf{x},t) = \frac{\partial v_{y}(\mathbf{x},t)}{\partial t} + (\operatorname{grad} v_{y}(\mathbf{x},t)) \cdot \mathbf{v}(\mathbf{x},t)$$

$$a_{z}(\mathbf{x},t) = \frac{\partial v_{z}(\mathbf{x},t)}{\partial t} + (\operatorname{grad} v_{z}(\mathbf{x},t)) \cdot \mathbf{v}(\mathbf{x},t)$$

The Cartesian components of the **spatial** (or **local**) **time derivative** of the **velocity** in *spatial description* are given by,

$$\frac{\partial v_x(\mathbf{x},t)}{\partial t} = 0$$

$$\frac{\partial v_y(\mathbf{x},t)}{\partial t} = z(e^t - e^{-t})$$

$$\frac{\partial v_z(\mathbf{x},t)}{\partial t} = 0$$

The Cartesian components of the *spatial gradient* of each one of the components of the *velocity* vector field in spatial *description* take the form,

$$\begin{bmatrix} \operatorname{grad} v_{x}(\mathbf{x}, t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^{T}$$

$$\begin{bmatrix} \operatorname{grad} v_{y}(\mathbf{x}, t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & e^{t} + e^{-t} \end{bmatrix}^{T}$$

$$\begin{bmatrix} \operatorname{grad} v_{z}(\mathbf{x}, t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$

yielding,

$$(\operatorname{grad} v_{x}(\mathbf{x}, t)) \cdot \mathbf{v}(\mathbf{x}, t) = x - z$$

$$(\operatorname{grad} v_{y}(\mathbf{x}, t)) \cdot \mathbf{v}(\mathbf{x}, t) = 0$$

$$(\operatorname{grad} v_{z}(\mathbf{x}, t)) \cdot \mathbf{v}(\mathbf{x}, t) = 0$$

The Cartesian components of the acceleration vector field in spatial description are given by,

$$a_{x}(\mathbf{x},t) = x - z$$

$$a_{y}(\mathbf{x},t) = z(e^{t} - e^{-t})$$

$$a_{z}(\mathbf{x},t) = 0$$

The Cartesian components of the **acceleration** vector field at the *spatial point* with Cartesian coordinates (1,1,1), at time t=2, are given by,

$$a_x(\mathbf{x},t) = 0$$

$$a_y(\mathbf{x},t) = e^2 - e^{-2}$$

$$a_z(\mathbf{x},t) = 0$$

Assignment 2.2 [Classwork]

The Cartesian components of the canonical form of a motion equation, i.e. deformation map, are given by,

$$x(\mathbf{X},t) = Xe^t, \quad y(\mathbf{X},t) = Ye^t, \quad z(\mathbf{X},t) = Z + Xt$$

- Compute the acceleration vector field at the fixed spatial point with Cartesian coordinates (1,1,1).
- 2) Compute the *acceleration* vector field at the fixed *material point* with Cartesian coordinates (1,1,1).
- 3) Compute the *rate of change* of the *velocity* vector field per unit of time at the fixed *spatial point* with Cartesian coordinates (1,1,1).

Assignment 2.2 [Classwork]

The Cartesian components of the canonical form of a motion equation, i.e. deformation map, are given by,

$$x(\mathbf{X},t) = Xe^{t}, \quad y(\mathbf{X},t) = Ye^{t}, \quad z(\mathbf{X},t) = Z + Xt$$

The Cartesian components of the **velocity vector field** in *mate-rial description* are given by,

$$V_x(\mathbf{X},t) = Xe^t, \quad V_y(\mathbf{X},t) = Ye^t, \quad V_z(\mathbf{X},t) = X$$

and, using the (inverse) motion equations, in *spatial description* are given by,

$$v_x(\mathbf{x},t) = x$$
, $v_y(\mathbf{x},t) = y$, $v_z(\mathbf{x},t) = xe^{-t}$

The Cartesian components of the acceleration vector field in material description are given by,

$$A_x(\mathbf{X},t) = Xe^t, \quad A_y(\mathbf{X},t) = Ye^t, \quad A_z(\mathbf{X},t) = 0$$

and, using the (inverse) motion equations, in *spatial description* are given by,

$$a_x(\mathbf{x},t) = x$$
, $a_y(\mathbf{x},t) = y$, $a_z(\mathbf{x},t) = 0$

The Cartesian components of the **spatial** (or **local**) **time derivative** of the **velocity** vector field in *spatial description* are given by,

$$\frac{\partial v_x(\mathbf{x},t)}{\partial t} = 0, \quad \frac{\partial v_y(\mathbf{x},t)}{\partial t} = 0, \quad \frac{\partial v_z(\mathbf{x},t)}{\partial t} = -xe^{-t}$$

The Cartesian components of the **acceleration** vector field at the fixed *spatial point* x^* with Cartesian coordinates (1,1,1) are,

$$a_x(\mathbf{x}^*,t) = 1$$
, $a_y(\mathbf{x}^*,t) = 1$, $a_z(\mathbf{x}^*,t) = 0$

The Cartesian components of the **acceleration** vector field at the fixed *material point* X* with Cartesian coordinates (1,1,1) are,

$$A_x(\mathbf{X}^*,t) = e^t, \quad A_y(\mathbf{X}^*,t) = e^t, \quad A_z(\mathbf{X}^*,t) = 0$$

The Cartesian components of the **rate of change** of the **velocity** vector field per unit of time at the fixed *spatial point* x^* with Cartesian coordinates (1,1,1) are,

$$\frac{\partial v_x(\mathbf{x}^*,t)}{\partial t} = 0, \quad \frac{\partial v_y(\mathbf{x}^*,t)}{\partial t} = 0, \quad \frac{\partial v_z(\mathbf{x}^*,t)}{\partial t} = -e^{-t}$$

Stationary Field

Stationary Field

An arbitrary property given in spatial description as $\gamma = \gamma(\mathbf{x}, t)$ is said to be **stationary** if and only if the following condition is satisfied,

$$\frac{\partial \gamma}{\partial t} = \frac{\partial \gamma(\mathbf{x}, t)}{\partial t} = 0 \quad \Leftrightarrow \quad \gamma = \gamma(\mathbf{x})$$

If an arbitrary property is stationary, its material time derivative does not needs to be stationary and, in general, will be different than zero,

$$\dot{\gamma} = \frac{d\gamma}{dt} = \frac{\partial \gamma(\mathbf{x})}{\partial t} + \left(\operatorname{grad}\gamma(\mathbf{x})\right) \cdot \mathbf{v}(\mathbf{x}, t) \neq 0$$

Stationary Velocity Vector Field

Stationary Velocity Vector Field

The velocity vector field is said to be **stationary** *if* and only *if* the following condition is satisfied,

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial \mathbf{v}(\mathbf{x}, t)}{\partial t} = 0 \quad \Leftrightarrow \quad \mathbf{v} = \mathbf{v}(\mathbf{x})$$

If the velocity vector field is stationary, the *acceleration* vector field has to be also *stationary*, but, in general, different than zero. Note that the opposite is not true.

$$\mathbf{a}(\mathbf{x}) = \frac{\partial \mathbf{v}(\mathbf{x})}{\partial t} + (\operatorname{grad} \mathbf{v}(\mathbf{x})) \mathbf{v}(\mathbf{x}) = (\operatorname{grad} \mathbf{v}(\mathbf{x})) \mathbf{v}(\mathbf{x}) \neq \mathbf{0}$$

Uniform Velocity Vector Field

Uniform Velocity Vector Field

A velocity vector field is said to be **uniform** if and only if the following condition is satisfied,

$$\mathbf{v} = \mathbf{v}(\mathbf{x}, t) = \mathbf{v}(t) \quad \forall \mathbf{x} \in \Omega_t$$

If the velocity vector field is uniform, the *acceleration* vector field has to be also *uniform*, but, in general, different than zero. Note that the opposite is not true.

$$\mathbf{a}(t) = \frac{\partial \mathbf{v}(t)}{\partial t} + \underbrace{\left(\operatorname{grad} \mathbf{v}(t)\right)}\mathbf{v}(t) = \frac{\partial \mathbf{v}(t)}{\partial t} \neq \mathbf{0}$$

Trajectories

Trajectories

The **motion equation** provides the sequence of spatial positions occupied for any particle at any time, defining a *time-parame-trized family of curves* denoted as **trajectories** (or **path lines**).

Differential Equation of the Trajectories

Differential Equation of the Trajectories

A **trajectory** can be described in **differential form** by means of the *spatial velocity* vector field, through the following set of differential equations,

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{v}(\mathbf{x}(t), t)$$

Integrating the set of differential equations yields,

$$\mathbf{x} = \boldsymbol{\phi}(\mathbf{C}, t)$$

where \mathbb{C} is a *vector of integration constants* with Cartesian components given by,

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} = \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix}^T$$

Differential Equation of the Trajectories

Imposing the **consistency condition**, taking t=0 as reference time, yields,

$$\mathbf{X} = \phi(\mathbf{C}, 0)$$

Then, the vector of integration constants can be expressed in terms of the vector of material points, yielding,

$$\mathbf{C} = \boldsymbol{\phi}^{-1} \left(\mathbf{X}, 0 \right)$$

Then, the canonical form of the motion equation reads,

$$\mathbf{x} = \boldsymbol{\phi}(\mathbf{C}, t) = \boldsymbol{\phi}(\boldsymbol{\phi}^{-1}(\mathbf{X}, 0), t) = \boldsymbol{\phi}(\mathbf{X}, t)$$

Assignment 2.3

The Cartesian components of the *spatial description* of the *velocity* vector field are,

$$v_x(\mathbf{x},t) = y$$
, $v_y(\mathbf{x},t) = \frac{y}{1+t}$, $v_z(\mathbf{x},t) = z$

Compute the *canonical form* of the trajectories.

Assignment 2.3

The Cartesian components of the *spatial description* of the *velocity* vector field are,

$$v_x(\mathbf{x},t) = y, \quad v_y(\mathbf{x},t) = \frac{y}{1+t}, \quad v_z(\mathbf{x},t) = z$$

The Cartesian components of the differential equation of motion read,

$$\frac{dx}{dt} = v_x(\mathbf{x}, t) = y, \quad \frac{dy}{dt} = v_y(\mathbf{x}, t) = \frac{y}{1+t}, \quad \frac{dz}{dt} = v_z(\mathbf{x}, t) = z$$

Integrating the differential equations yields,

$$\frac{dy}{dt} = \frac{y}{1+t} \implies \frac{dy}{y} = \frac{dt}{1+t} \implies \log \frac{y}{C_2} = \log(1+t)$$

$$\implies y = C_2(1+t)$$

$$\frac{dx}{dt} = y = C_2(1+t) \implies x = C_1 + C_2t + \frac{1}{2}C_2t^2$$

$$\frac{dz}{dt} = z \implies \frac{dz}{z} = dt \implies \log \frac{z}{C_2} = t \implies z = C_3e^t$$

Integrating, the motion equations read,

$$x = C_1 + C_2 t + \frac{1}{2} C_2 t^2, \quad y = C_2 (1+t), \quad z = C_3 e^t$$

Imposing the *consistency condition*, taking t=0 as reference time, yields,

$$C_1 = X$$
, $C_2 = Y$, $C_3 = Z$

The Cartesian components of the **canonical form** of the **equation of motion** reads,

$$x = X + Yt + \frac{1}{2}Yt^2$$
, $y = Y(1+t)$, $z = Ze^t$

Streamlines

Streamlines

The **streamlines** are a time-dependent family of spatial curves which at any time *t* are the *envelope of the spatial velocity vector field*, i.e. the velocity vector field is tangent to the streamlines at any spatial point, at any time *t*.

time t

Differential Equation of the Streamlines

Differential Equation of the Streamlines

The **differential equation** of the **streamlines** may be obtained imposing the condition that the spatial vector velocity field $\mathbf{v}(\mathbf{x}(\lambda),t)$ is *tangent* to the streamlines $\mathbf{x}(\lambda)$. The parameter of the stramlines, denoted as λ , is chosen such that the velocity is *equal* to the tangent to the streamlines, yielding,

$$\frac{d\mathbf{x}(\lambda)}{d\lambda} = \mathbf{v}(\mathbf{x}(\lambda), t)$$

Integrating the differential equations, collecting the integration constants in vector form, yields the equation of the **streamlines**,

$$\mathbf{x} = \boldsymbol{\psi}(\mathbf{C}, \lambda, t)$$

Streamlines for a Stationary Motion

Streamlines for a Stationary Motion

If the velocity vector field is *stationary* the **streamlines** are stationary and coincide with the **trajectories**.

If the velocity vector field is *stationary*, the **trajectories** and **streamlines** have the same differential equations, yielding,

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{v}(\mathbf{x}(t)) \iff \frac{d\mathbf{x}(\lambda)}{d\lambda} = \mathbf{v}(\mathbf{x}(\lambda))$$
$$\mathbf{x} = \phi(\mathbf{C}, t) \iff \mathbf{x} = \phi(\mathbf{C}, \lambda)$$

Assignment 2.4

The Cartesian components of the *spatial description* of the *velocity* vector field are,

$$v_x(\mathbf{x},t) = y$$
, $v_y(\mathbf{x},t) = \frac{y}{1+t}$, $v_z(\mathbf{x},t) = z$

Compute the equation of the *streamlines*.

Assignment 2.4

The Cartesian components of the *spatial description* of the *velocity* vector field are,

$$v_x(\mathbf{x},t) = y, \quad v_y(\mathbf{x},t) = \frac{y}{1+t}, \quad v_z(\mathbf{x},t) = z$$

The Cartesian components of the differential equation of the streamlines take the form,

$$\frac{dx}{d\lambda} = v_x(\mathbf{x}, t) = y, \quad \frac{dy}{d\lambda} = v_y(\mathbf{x}, t) = \frac{y}{1+t}, \quad \frac{dz}{d\lambda} = v_z(\mathbf{x}, t) = z$$

Integrating the differential equations yields,

$$\frac{dy}{d\lambda} = \frac{y}{1+t} \implies \frac{dy}{y} = \frac{d\lambda}{1+t} \implies \log \frac{y}{C_2} = \frac{\lambda}{1+t} \implies y = C_2 e^{\frac{\lambda}{1+t}}$$

$$\frac{dx}{d\lambda} = y = C_2 e^{\frac{\lambda}{1+t}} \quad \Rightarrow \quad x = C_1 + C_2 (1+t) e^{\frac{\lambda}{1+t}}$$

$$\frac{dz}{d\lambda} = z \implies \frac{dz}{z} = d\lambda \implies \log \frac{z}{C_3} = \lambda \implies z = C_3 e^{\lambda}$$

The Cartesian components of the streamlines read,

$$x = C_1 + C_2 (1+t)e^{\frac{\lambda}{1+t}}, \quad y = C_2 e^{\frac{\lambda}{1+t}}, \quad z = C_3 e^{\lambda}$$

Assignment 2.5 [Classwork]

The Cartesian components of the streamlines are given by,

$$x = C_1 e^{\lambda t}$$
, $y = C_2 e^{\lambda t}$, $z = C_3 e^{2\lambda t}$

where the parameter λ is such that the velocity is *equal* to the tangent to the streamlines. Compute the *canonical form* of the trajectories, taking t=0 as reference time.

Assignment 2.5 [Classwork]

The Cartesian components of the streamlines are given by,

$$x = C_1 e^{\lambda t}$$
, $y = C_2 e^{\lambda t}$, $z = C_3 e^{2\lambda t}$

As a first step we will compute the *spatial description* of the **velocity**. Using the differential equation of the *streamlines* yields,

$$\frac{dx}{d\lambda} = C_1 t e^{\lambda t} = v_x, \quad \frac{dy}{d\lambda} = C_2 t e^{\lambda t} = v_y, \quad \frac{dz}{d\lambda} = 2C_3 t e^{2\lambda t} = v_z$$

Using the equations of the streamlines, the components of the *spatial description* of the **velocity** read,

$$v_x = xt$$
, $v_y = yt$, $v_z = 2zt$

The Cartesian components of the differential motion equation read,

$$\frac{dx}{dt} = v_x(\mathbf{x}, t) = xt, \quad \frac{dy}{dt} = v_y(\mathbf{x}, t) = yt, \quad \frac{dz}{dt} = v_z(\mathbf{x}, t) = 2zt$$

Integrating the differential equations yields,

$$\frac{dx}{dt} = xt \quad \Rightarrow \quad \frac{dx}{x} = tdt \quad \Rightarrow \quad \log\frac{x}{C_1} = \frac{1}{2}t^2 \quad \Rightarrow \quad x = C_1e^{t^2/2}$$

$$\frac{dy}{dt} = yt \quad \Rightarrow \quad \frac{dy}{y} = tdt \quad \Rightarrow \quad \log \frac{y}{C_2} = \frac{1}{2}t^2 \quad \Rightarrow \quad y = C_2 e^{t^2/2}$$

$$\frac{dz}{dt} = 2zt \implies \frac{dz}{z} = 2tdt \implies \log \frac{z}{C_3} = t^2 \implies z = C_3 e^{t^2}$$

The Cartesian components of the motion equation read,

$$x = C_1 e^{t^2/2}, \quad y = C_2 e^{t^2/2}, \quad z = C_3 e^{t^2}$$

Imposing the *consistency condition* at reference time *t*=0 yields,

$$C_1 = X$$
, $C_2 = Y$, $C_3 = Z$

The Cartesian components of the *canonical form* of the **motion** equation reads,

$$x = Xe^{t^2/2}, \quad y = Ye^{t^2/2}, \quad z = Ze^{t^2}$$

Assignment 2.6 [Classwork]

The Cartesian components of the *spatial description* of a *stationary velocity* vector field are,

$$v_x(\mathbf{x},t) = y, \quad v_y(\mathbf{x},t) = y, \quad v_z(\mathbf{x},t) = z$$

Compute the *canonical form* of the *trajectories* and the equation of the *streamlines*.

Assignment 2.6 [Classwork]

The Cartesian components of the *spatial description* of a *stationary velocity* vector field are,

$$v_x(\mathbf{x},t) = y, \quad v_y(\mathbf{x},t) = y, \quad v_z(\mathbf{x},t) = z$$

As the velocity vector field is *stationary* the trajectories and streamlines are the same curves.

The Cartesian components of the *differential equations* of the *trajectories* take the form,

$$\frac{dx}{dt} = v_x(\mathbf{x}, t) = y, \quad \frac{dy}{dt} = v_y(\mathbf{x}, t) = y, \quad \frac{dz}{dt} = v_z(\mathbf{x}, t) = z$$

Integrating the differential equations yields,

$$\frac{dy}{dt} = y \implies \frac{dy}{y} = dt \implies \log \frac{y}{C_2} = t \implies y = C_2 e^t$$

$$\frac{dx}{dt} = y = C_2 e^t \quad \Rightarrow \quad x = C_1 + C_2 e^t$$

$$\frac{dz}{dt} = z \implies \frac{dz}{z} = dt \implies \log \frac{z}{C_3} = t \implies z = C_3 e^t$$

and the Cartesian components of the trajectories take the form,

$$x = C_1 + C_2 e^t$$
, $y = C_2 e^t$, $z = C_3 e^t$

Imposing the *consistency condition*, taking *t*=0 as reference time, yields,

$$C_1 + C_2 = X$$
, $C_2 = Y$, $C_3 = Z$

$$C_1 = X - Y$$
, $C_2 = Y$, $C_3 = Z$

and the Cartesian components of the *canonical form* of the **trajectories** take the form,

$$x = X + Y(e^t - 1), \quad y = Ye^t, \quad z = Ze^t$$

As the velocity vector field is *stationary*, the **streamlines** do not need to be integrated and can be obtained directly substituting the time t by λ in the expression of the trajectories (written in terms of the integration constants, i.e. before having used the consistency condition), yielding,

$$x = C_1 + C_2 e^{\lambda}, \quad y = C_2 e^{\lambda}, \quad z = C_3 e^{\lambda}$$

Material Surface

Material Surface

A material surface is defined by the different positions occupied in the space by the particles that at the reference time were on a given surface.

The **material description** of a **material surface** may be written as,

$$S = \left\{ \mathbf{X} \mid F\left(\mathbf{X}\right) = 0 \right\}$$

where the time-independency of the material function guarantees that the particles satisfying this equation are always the same ones, for any time t.

Note that,

$$F(\mathbf{X},t) = F(\mathbf{X}) \Leftrightarrow \frac{\partial F(\mathbf{X},t)}{\partial t} = 0$$

Material Surface

Material Surface

The spatial description of the function may be obtained using the inverse motion equation yielding,

$$F(\mathbf{X}) = F(\boldsymbol{\varphi}^{-1}(\mathbf{x},t)) = f(\mathbf{x},t)$$

Additionally,

$$\frac{\partial F\left(\mathbf{X}\right)}{\partial t} = \frac{df\left(\mathbf{x},t\right)}{dt} = 0$$

The spatial description of a material surface may be written as,

$$S = \left\{ \mathbf{x} \mid f(\mathbf{x}, t) = 0 \quad \text{and} \quad \frac{df(\mathbf{x}, t)}{dt} = 0 \right\}$$

Spatial Surface

Spatial Surface

A **spatial surface** is defined by the same fixed spatial points at any time t. Then, at different times t, different particles will be on a spatial surface.

The **spatial description** of a **spatial surface** may be written as,

$$S = \{ \mathbf{x} \mid f(\mathbf{x}) = 0 \}$$

where the time-independency of the spatial function guarantees that the spatial points satisfying this equation are always the same ones, for any time t.

Material Volume

Material Volume

A **material volume** is a volume defined by a closed material surface.

A material volume, written in material description, takes the form,

$$V = \left\{ \mathbf{X} \mid F\left(\mathbf{X}\right) \le 0 \right\}$$

and, in spatial description, takes the form,

$$V = \left\{ \mathbf{x} \mid f(\mathbf{x}, t) \le 0 \quad \text{and} \quad \frac{df(\mathbf{x}, t)}{dt} = 0 \right\}$$

Spatial Volume

Spatial Volume

A **spatial volume** is a volume defined by a closed spatial surface.

The **spatial description** of a **spatial volume** may be written as,

$$V = \{ \mathbf{x} \mid f(\mathbf{x}) \le 0 \}$$