Página 1/2

UNIVERSIDADE FEDERAL DO MARANHÃO Centro de Ciências Exatas e Tecnologia Disciplina: Teoria da Computação		Departamento de Informática - DEINF Internet: www.deinf.ufma.br Curso: CIÊNCIA DA COMPUTAÇÃO		2a AVALIAÇÃO
				P T

Segunda Avaliação:	Prova Escrita	Data: 31 de março de 2021.
Aluno :		Código:

INSTRUÇÕES

- A prova deve ser realizada INDIVIDUALMENTE. Respostas iguais ocorrendo em provas de alunos diferentes são passíveis de anulação.
- A interpretação das questões faz parte da avaliação. Caso ache um enunciado ambíguo ou impreciso escreva na
 folha de resposta sua interpretação e a correspondente resposta. Todas as questões devem ser interpretadas
 tendo em vista que foi discutido nas aulas de Teoria da Computação.
- Todas as questões devem ser respondidas em arquivo .DOC ou PDF. Ao final, tanto o arquivo de questões quanto o arquivo de respostas devem ser enviados via SIGAA.
- O tempo total de prova é de 100 min. Início: 14:00; término: 15:40.

QUESTÕES

 (2,0 pontos) Considerando a codificação de programas monolíticos como números naturais que foi discutida durante as aulas (a codificação de Gödel), MOSTRE PASSO a PASSO como o programa iterativo abaixo --- após traduzido para a forma monolítica --- pode ser representado por meio de um único número natural.

enquanto TO faça (se T1 então G senão F)

- 2. (2,0 pontos) Escreva uma macro R := DIV(A, B) para a máquina NORMA que armazena em R a divisão inteira do conteúdo do registrador A pelo conteúdo de B. Lembre-se que em NORMA, apenas as operações de incremento e decremento, e o teste de zero, são definidos. Assim, quaisquer outras operações e testes necessários DEVEM também ser escritos explicitamente na resposta da questão como macros auxiliares. Para facilitar, assuma como já escritas as macros que realizam atribuições.
- 3. **(2,0 pontos)** Escreva uma MÁQUINA DE TURING = $\langle \Sigma, Q, \Pi, qo, F, V, \beta, \blacksquare \rangle$ que realize a função div3 : $N \rightarrow \{não, sim\}, definida por:$

$$div3(x) = \begin{cases} sim , se & x \equiv 0 \pmod{3} \\ não , caso contrário \end{cases}$$

Página 2/2

- 4. (1,0 ponto) Sobre a máquina de Turing (MT), analise as seguintes afirmações:
 - I. Uma linguagem aceita por uma MT pode ser dita linguagem recursiva;
 - II. A classe das linguagens enumeráveis recursivamente está contida propriamente na classe das linguagens recursivas;
 - III. O complemento de uma linguagem recursiva é uma linguagem recursiva.

Marque a alternativa VERDADEIRA:

- (a) apenas I e II estão corretas;
- (b) apenas II está correta;
- (c) apenas I e III estão corretas;
- (d) apenas II e III estão corretas;
- (e) I, II e III estão corretas.
- 5. (2,0 pontos) Considere a máquina de Turing M abaixo:

 $M = < \{a,b\}, \{q0,q1,q2,q3,q4,qf\}, \Pi, q0, \{qf\}, \emptyset, \beta, * >$

П	0	a	b	β
q ₀	(q ₀ , O, D)	(q ₀ , a, D)	(q ₁ , b, D)	(q ₄ , β, E)
q ₁		(q ₀ , a, E)	(q ₂ , b, D)	
q ₂		(q ₃ , b, D)		
q ₃	District of			(q _f , β, E)
q_4		(q ₂ , a, D)	(q ₃ , a, E)	(q ₄ , β, E)
qf		Residence of the second		

Relacione a primeira coluna de acordo com a segunda, considerando o reconhecimento das palavras por M:

- $(1) \in ACEITA(M)$ () aababa $(2) \in REJEITA(M)$ () abba $(3) \in LOOP(M)$ () bbab() aabbba
- 6. (1,0 ponto) A hipótese de Church/Turing afirma que (marque a alternativa correta):
- (a) Qualquer programa pode ser representado na forma de fluxogramas;
- (b) Qualquer máguina abstrata é uma máguina universal;
- (c) A codificação de conjuntos estruturados é o modo mais eficiente de representar uma máquina universal;
- (d) Qualquer função computada pode ser processada por uma máquina de Turing;
- (e) Todo programa monolítico pode ser representado por meio de um programa iterativo.