Matematičko modeliranje u biologiji

MODELI RASTA TUMORA

Tumorski sferoidi

- Biološki model tumora
- Nakupina stanica koje rastu u laboratorijskim uvjetima (In vitro)

Podaci za rast tumora (tumorskih sferoida)

Vrijeme (dani)	Volumen (mm³)	Vrijeme (dani)	Volumen (mm³)	Vrijeme (dani)	Volumen (mm³)
4.6	0.002	23.2	2.130	45.4	10.749
5.7	0.003	24.0	2.030	46.3	13.342
6.7	0.006	25.2	2.448	47.4	15.646
7.9	0.012	27.5	2.756	48.7	17.126
8.8	0.020	28.3	2.714	51.1	13.247
9.8	0.028	29.3	2.906	52.2	14.938
11.0	0.035	30.3	3.405	53.1	17.660
12.0	0.066	31.4	3.900	55.1	19.030
12.9	0.079	32.4	4.914	56.4	20.272
15.2	0.155	33.4	5.669	57.5	17.346
16.2	0.231	34.3	5.827	59.6	17.510
17.4	0.334	36.2	6.149	61.8	18.790
18.3	0.565	38.2	7.119	63.8	18.518
19.4	0.721	40.0	9.025	67.0	19.186
20.4	0.709	42.1	10.854	68.0	21.640
22.2	1.085	44.4	12.050	70.2	18.446

Podaci za rast tumora (tumorskih sferoida)

Podaci za rast tumora (tumorskih sferoida)

Prikaz u logaritamskoj skali:

Logaritamska skala

Logaritamska skala

Podaci i logistički model

$$y'(t) = \alpha \left(1 - \frac{y(t)}{C}\right) y(t), \quad y(0) = y_0$$

$$y' = \alpha \left(1 - \frac{y}{C}\right) y, \quad y(0) = y_0$$

$$y(t) = \frac{C e^{\alpha t} y_0}{C - y_0 + y_0 e^{\alpha t}}$$

Podaci i logistički model

$$\alpha = 0.2, C = 20, y_0 = 0.005$$

$$\alpha = 0.4, \ C = 20, \ y_0 = 0.0005$$

Logistički model - Metoda najmanjih kvadrata

```
FindFit[data, y[x, a, c, y0], {{a, 0.2}, {c, 20}, {y0, 0.1}}, x]
```

$$\alpha = 0.140315, C = 20.044, y_0 = 0.0607316$$

- Loše opisan početni dio rasta
- Rješenje: koristiti logaritmirane podatke -

Model: $\ln y(x; \alpha, C, y_0)$ Podaci: $(t_i, \ln y_i), i = 1, ..., n$

$$\alpha = 0.303882, C = 13.4899, y_0 = 0.00117449$$

Reziduali

Rezidual (r_i) :

$$r_i = y(t_i; \alpha*, C^*, y_0^*) - y_i.$$

Srednje kvadratno odstupanje = 0.168612

Može li bolje?

Gompertzov model

$$y' = \alpha \left(1 - \frac{\ln y}{\ln C}\right) y, \quad y(0) = y_0$$

$$y' = ay - by \ln y, \quad y(0) = y_0$$

$$y(t) = Ce^{\ln \frac{y_0}{C}e^{-\frac{\alpha}{\ln C}t}}$$

Metoda najmanjih kvadrata

$$\alpha = 0.206226, C = 24.1316, y_0 = 0.0000619827$$

Srednje kvadratno odstupanje = 0.0198408

Reziduali

Srednje kvadratno odstupanje = 0.0198408

- Benjamin Gompertz (1779–1865)
- matematičar i aktuar
- demografski model
- Gompertz, Benjamin (1825). "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies". Philosophical Transactions of the Royal Society of London 115: 513–585

$$y(t) = Ce^{\ln \frac{y_0}{C}}e^{-\frac{\alpha}{\ln C}t}$$

$$\ln y(t) = \ln C + \ln \frac{y_0}{C}e^{-\frac{\alpha}{\ln C}t}$$

$$\ln \frac{y(t)}{C} = \ln \frac{y_0}{C}e^{-\frac{\alpha}{\ln C}t}$$

$$\ln \left(-\ln \frac{y(t)}{C}\right) = \ln \left(-\ln \frac{y_0}{C}\right) - \frac{\alpha}{\ln C}t$$

Linearna funkcija

Transformirana Gompertzova krivulja

Transformirani podaci

von Bertalanffy-jev model

- Karl Ludwig von Bertalanffy (1901–1972)
- biolog (opća teorija sustava)
- biološki model
- originalni model je opisivao duljinu riba (L)

$$L'(t) = \alpha(L_{\infty} - L(t)), \quad L(0) = L_0.$$

$$L(t) = L_{\infty} - (L_{\infty} - L_0)e^{-\alpha t}$$

Jednadžba rasta za volumen

$$L' = \alpha(L_{\infty} - L), \quad L(0) = L_0.$$

Volumen - y: $L = ky^{1/3}$

$$L' = \frac{k}{3}y^{-2/3}y'$$

$$\frac{k}{3}y^{-2/3}y' = \alpha(L_{\infty} - ky^{1/3})$$

$$y' = 3\alpha\left(\frac{L_{\infty}}{k}y^{2/3} - y\right)$$

$$y' = ay^{2/3} - by$$
, $y(0) = y_0$

Rast je vezan uz površinu $(y^{2/3})$

Metoda najmanjih kvadrata

Srednje kvadratno odstupanje = 0.136447

Reziduali

Srednje kvadratno odstupanje = 0.136447

Gornja slika: Lijevo - distribucija (gustoća) hranjivih sastojaka Desno - proliferacija (aktivnost rasta)

Jednostavni model rasta tumora

- d debljina sloja stanica koje se dijele
- S stanice koje se dijele (volumen)
- d je konstantan (eksperimentalni rezultat)

$$r = R - d$$

$$S = \frac{4}{3}\pi \left[R^3 - r^3 \right] =$$

$$= \frac{4}{3}\pi \left[R^3 - (R - d)^3 \right] =$$

$$= \frac{4}{3}\pi \left[3R^2d - 3Rd^2 + d^3 \right]$$

Model

- von Bertalanffy: $V' = aV^{2/3} bV$
- Modifikacija: $S \rightarrow V^{2/3}$
- Model: V' = aS bV

•
$$V' = a \frac{4}{3} \pi \left[3R^2 d - 3Rd^2 + d^3 \right] - bV$$

 $V(0) = V_0, \quad R = \left(\frac{3}{4\pi} V \right)^{1/3}$

Domaća zadaća

Iz podataka rasta tumorskih sferoida odredite vrijeme udvostručenja.

Vrijeme	Volumen		
(dani)	(mm³)		
4.6	0.0016308		
5.7	0.0032148		
6.7	0.0056140		
7.9	0.0118598		
8.8	0.0201500		
9.8	0.0275380		
11.0	0.0345460		
12.0	0.0660800		
12.9	0.0789320		
15.2	0.1550000		