Family: Beam-Column flange (BCF)
Type: Single plate

General information

Connector

Top View

Members

Beam

<u>General</u>

Beam section : W8X40

Beam material : A992

sb: Beam setback : 0.5

Horizontal angle (deg) : 0.0°

Vertical angle (deg) : 0.0°

Horizontal eccentricity : 0.0 in

Coped

dct: Top cope depth : 4.0 in
ct: Top cope length : 1.0 in
dcb: Bottom Cope depth : 5.0 in
cb: Bottom cope length : 8.0 in

Column

General

Support section : W40X362 Support material : A992 Is column end : Yes

Single plate

Connector

: PL 3/8x8 3/16x8.0 Section b: Width : 8.210 in L: Length : 8.000 in to: Plate thickness : 0.375 in Material : A36 Plate position on beam : Top : 4.000 in dtop: Distance to beam top Bolts : 3/4" A325N nr: Rows of Bolts nc: Bolt columns s: Pitch - longitudinal center-to-center spacing : 3.000 Lev: Vertical edge distance : 1.000 : 3.210 Leh: Horizontal edge distance a: Distance between weld and bolts : 2.000 Hole type on plate : Short-Slot : Horizontal Slot direction on plate Hole type on beam : Standard : E70XX Welding electrode to support D: Weld size to support : 4.0 Wo: Obtuse side weld size (AWS) (1/16 in) : 4.0 : 4.0 Wa: Acute side weld size (AWS) (1/16 in) : 4.0 Wo: Obtuse side weld size (AISC) (1/16 in) Wa: Acute side weld size (AISC) (1/16 in)

Demands

	Beam Column					
Description	Ru Pu Pu		Mu22	Mu33	Load Type	
	[kip]	[kip]	[kip]	[kip*ft]	[kip*ft]	
DL	50.0	0.00	0.00	0.0	0.0	Design

Geometric Considerations

Dimensions	Unit	Value	Min.	Max.	Sta.	References
Shear Plate Number of bolts Min. nrow=2, Max. nrow=12		6	2	12	√	p 10-88
Distance from the bolt line to the weld line Max. a = 3.5 [in]	[in]	2.0	-	3.5	√	p 10-88
<pre>Length Lmin = T/2 = 6.342000000000005[in]/2 = 3.17[in]</pre>	[in]	8.0	3.17	5.5	✓	p 10-89
<pre>Vertical edge distance Lemin = edmin+C2 = 1.0[in]+0[in] = 1.0[in]</pre>	[in]	1.0	1.0	-	√	Tables J3.4 , J3.5
<pre>Horizontal edge distance Lemin = 2*d = 2*0.75 = 1.5 [in]</pre>	[in]	3.21	1.5	-	√	Sec. J3.3
Vertical center-to-center spacing (pitch) $S_{min} = 2 \ 2/3*d$ $= 2 \ 2/3*0.75$ $= 2.0$	[in]	3.0	2.0	8.64	✓	Sec. J3.3
is Corrosion Considered → False						
S _{max} = min(24*tp, 12[in]) = min(24*0.36, 12) = 8.64[in]						Sec. J3.5

Dimensions	Unit	Value	Min.	Max.	Sta.	References
<pre>Beam Vertical edge distance Lemin = edmin+C2 = 1.0+0[in] = 1.0[in]</pre>	[in]	3.21	1.0	-	✓	Tables J3
<pre>Horizontal edge distance Lemin = 2*d = 2*0.75[in] = 1.5</pre>	[in]	3.21	1.5	-	✓	p. 10-88
<pre>Support Weld size Wmin = (5/8)*tp = (5/8)*0.375[in] = 0.234[in]</pre>	[in]	4.0	4.0	-	√	p. 10-87
Weld length L _{min} = 4.0*w = 4.0*0.25 = 1.0[in]	[in]	8.0	1.0	-	√	Sec J2.2b

Design Check

Verification	Unit	Capacity	Demand	Ctrl EQ	Ratio	References
<pre>Shear plate Bolts shear e=1.0; Max. tp=None</pre>	[Kip]	80.192	50.0	DL	0.62	Table (7-114) Table 10-9
$\phi R_n = \phi * F_{nv} * A_b$ = 0.75*54[ksi]*0.442[in ²]						Eq. J3-1
$= 0.75^{\circ}54[kst]^{\circ}0.442[iff]$ $= 17.9[kip]$ $\phi R_n = C^{\circ}\phi R_n^{\circ}Bolt Factor$						Table *
$\phi R_n - C^* \phi R_n^* BOIL FACTOR= 4.48*17.9[kip]*1= 80.192[in]$						Table "
Bolts bearing under shear load e = 1.0[in], Max. tp = None		105.06	50.0	DL	0.48	Table 10-9
$L_{c-end} = Max(0.0, L_e-d_h/2)$						Sec. J3-10*
= Max(0.0, 1.000[in]-0.812 = 0.594	[in]/2)					
$L_{c-spa} = Max(0.0, s-d_h)$ = Max(0.0, 3.0[in]-0.812[in] = 2.188[in]	n])					Sec. J3-10
$\phi R_n = \phi^* (C/(n_c^*n)) * min(k_1^*1)$ $= 0.75 * (4.48/(2*3)) * (min(1*3) * (3-1)) * 0.375 * 58 * 2$ $= 105.06[kip]$						
<pre>Shear yielding Ag = Lp*tp = 8.0[in]*0.375[in] = 3.0</pre>	[Kip]	64.8	50.0	DL	0.77	Eq. J4-3
$\phi R_n = \phi * 0.60 * F_y * A_g$ = 1.0[in] * 0.60 * 36[ksi] * 3.0 = 64.8	[in ²]					Eq. J4-3
Shear rupture $L_h = d_h+1/16[in]$ = 0.812[in]+1/16[in] = 0.875[in]	[Kip]	52.62	50.0	DL	0.95	Eq. J4-4
$L_e = L-n*L_h$ = 8.0[in]-3*0.875[in] = 5.375[in]						
$A_{nv} = L_e * t_p$ = 5.375[in] *0.375[in] = 2.016[in ²]						

```
Verification
                                    Unit
                                            Capacity
                                                          Demand
                                                                    Ctrl EQ
                                                                                Ratio
                                                                                          References
Shear plate
 \phi R_n = \phi * 0.60 * F_u * A_{nv}
                                                                                          Eq J4-4
 = 0.75*0.60*[ksi]58*2.016
 = 52.62[kip]
 Block shear
                                   [Kip] 117.824 50.0
                                                                      DL
                                                                                 0.42
                                                                                          . . .
 dh_h = d_{h h} + 1/16[in]
 = 1.0[in]+1/16[in]
 = 1.063[in]
 dh_v = d_{h_v} + 1/16[in]
                                                                                          . . .
 = 0.812[in]+1/16[in]
 = 0.875[in]
 A_{nt} = (L_{eh} + (nc-1) * spa - (n_c - 0.5) * dh_h) * t_p
                                                                                          . . .
 = (3.21[in]+(2-1)*3.0[in]-(2-0.5)*1.063[in])*0.375[in]
 = 1.731[in^2]
 A_{qv} = (L_{ev} + (n-1)*s)*t_p
                                                                                          . . .
 = (1.0+(3-1)*3.0)*0.375
 = 2.625[in^2]
 A_{nv} = (L_{ev} + (n-1) * (s-dh_v) - dh_v/2) * t_p
 = (1.0+(3-1)*(3.0-0.875)-0.875/2)*0.375
 = 1.805[in^2]
 is Stress Uniform → True
 U_{bs} = 1
 \phi R_n = \phi * min(0.6 * F_u * A_{nv} + U_{bs} * F_u * A_{nt}, 0.6 * F_v * A_{qv} + U_{bs} * F_u * A_{nt})
 = 0.75 \times \min(0.60 \times 58 \times 1.805 + 1 \times 58 \times 1.731, 0.60 \times 36 \times 2.625 + 1 \times 58 \times 1.731)
 = 117.824[kip]
Plate (support side)
                                   [Kip] 107.52
                                                         50.0
                                                                                 0.47
                                                                                          Table 8-
 Weld capacity
                                                                      DL
                                                                                          4...8-11
 \phi R_n = \phi * C * C_1 * D * L
 = 0.75*4.48[kip/in]*4.0*1.0*8.0[in]
 = 107.52[in]
Beam
                                  [Kip] 141.523
                                                           50.0
                                                                      DL
                                                                                 0.35
 Bolt bearing under shear
                                                                                          Table
 load
 e=3.21[in], Max. tp=None
 L_{c-end} = Max(0.0, L_e-d_h/2)
 = Max(0.0, 5.0-0.812/2)
 = 4.594[in]
 L_{c-spa} = Max(0.0, s - d_h)
 = Max(0.0, 3.0 - 0.812)
 = 2.188[in]
 \phi R_n = \phi^* (C/(n_c^*n))^* (\min(k_1^*l_c, k_2^*d) + \min(k_1^*l_{c-spa}, K_2^*d)^* (n-1))^*t_p^* F_u^*n_c
 = 0.75*(4.48/(2*3))*(min(1.2*4.594, 2.4*0.75)+min(1.2*2.188, 2.4*0.75)
   *(3-1))*0.36*65*2
 = 141.523[kip]
```

Verification	Unit	Capacity	Demand	Ctrl EQ	Ratio	References
Shear yielding $A_g = L_p * t_p$ = 8.25[in] *0.36[in] = 2.97[in ²]	[Kip]	89.1	50.0	DL	0.56	***
$\phi R_n = \phi * 0.60 * F_y * A_g$ = 1.0*0.60*50[lb/in ²]*2.97 = 89.1[kip]	[in ²]					
Support Welds rupture $R_n = 0.60*F_u*t_p$ $= 0.60*65[lib/in^2]*2.01[in]$ $= 1[in]$	[Kip]			DL		
$D_{min} = P/(\phi*C*C_1*L)$ = 50.0/(0.75*4.48 *1.0*8.0) = 1.86)					
Has Welds on both sides \rightarrow 1	False					
$R_{u} = 0.6*F_{exx}*(2)^{1/2}/2*D_{min}/$ $= 0.6*70*(2)^{1/2}/2*1.86/16[i$ $= 3.452[in]$						p. 9-5