Activation functions

INTRODUCTION TO DEEP LEARNING IN PYTHON

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

L datacamp

Linear vs. non-linear Functions

Activation functions

• Applied to node inputs to produce node output

Improving our neural network

Activation functions

ReLU (Rectified Linear Activation)

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

Activation functions

```
print(output)
```

1.2382242525694254

Let's practice!

INTRODUCTION TO DEEP LEARNING IN PYTHON

Deeper networks

INTRODUCTION TO DEEP LEARNING IN PYTHON

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

L datacamp

Calculate with ReLU Activation Function

Calculate with ReLU Activation Function

Calculate with ReLU Activation Function

Calculate with ReLU Activation Function

Representation learning

- Deep networks internally build representations of patterns in the data
- Partially replace the need for feature engineering
- Subsequent layers build increasingly sophisticated representations of raw data

Representation learning

Deep learning

- Modeler doesn't need to specify the interactions
- When you train the model, the neural network gets weights that find the relevant patterns to make better predictions

Let's practice!

INTRODUCTION TO DEEP LEARNING IN PYTHON