UART RECEIVER

INC PROJECT

KHODAREVSKYI DMYTRO, XKHODA01

VUT FIT

Obsah

Návrh	2
Návrh FSM	2
Návrh RTL	
Výstupy ve GTKWave	6

Návrh

Návrh FSM

BITY STAVU: (ENABLE REGISTER, COUNT ENABLE, DOUT VALID, OFFSET BIT)

Přijímač se spustí ve stavu WAIT_START_BIT, což je v podstatě stav IDLE, a čeká na reset (0) v bitu DIN, což je podmínka pro vstup do stavu MAKE_OFFSET.

Stav MAKE_OFFSET je určen pro počítání 7 tiků offsetu CLK, pro následné čtení přesně uprostřed, aby se předešlo chybám v případě posunu informace. Jakmile dorazí 7. tik, automat přejde do stavu RECEIVE_DATA a spustí se přesně uprostřed prvního bitu informace.

Ve stavu RECEIVE_DATA bude počítat každých 15 tiků CLK, aby skočil na další bit a podle toho navýšil COUNT_BYTE o 1 (na diagramu jsem to ukázal modře, protože to není přímou součástí stroje, je to potřeba pouze pro lepší pochopení toho, co se děje).

Když se COUNT_BYTE rovná 8, je to signál, že uplynul poslední bit a můžeme potvrdit svá data bitem DATA_VLD, respektive přechodem do stavu DATA_VALID.

Ze stavu DATA_VALID jdeme momentálně na STOP_BIT, to se děje výhradně v informaci, že naše informace jsou hotové a jdeme končit, takže jsem tomu stavu udělal takový dvojí název. Poté aplikujeme na DIN 1, čímž se vrátíme do předchozího stavu WAIT START BIT (IDLE)

Návrh RTL

Níže uvedené schéma je udělaná v dost abstraktní formě (nepsal jsem podrobně všechny počítadla, protože neměl jsem dostatek místa a mohl jsem udělat ještě více chyb) a bohužel se mi to nevešlo na stránku tak jsem to musel otočit, doufám, že to není moc velký problém. Některá jména na stroji jsem také zkrátil, protože jsem trochu nekalkuloval s jeho velikostí, ale doufám, že všechny názvy budou dostatečně jasné. Tlustými šipkami jsou označené vektory bitů.

Na vstupu máme DIN s našimi daty, jelikož čteni naše data začínají od bitu 0, který převádí automat do dalšího stavu, připojil jsem din přímo na vstup automatu, také jsem ho oddělil a poslal na vstup demultiplexoru, protože až tam budou data, budeme je muset přečíst.

Pak jsme ve druhém stavu OFFSET a náš automat zapne OFFSET_COUNTER a začne počítat 7 clk (je synchronní, což znamená jeho trojúhelník dole). U všech čítačů jsem připojil zpětnou vazbu z výstupu, aby si nějak pamatovaly svou poslední hodnotu, ale tady jsem se moc do podrobností včetně nulování hodnoty nezabýval, v tomto případě si představte, že k resetu dojde při ENABLE=0.

Když COUNT_OFFSET je 7, fsm to uvidí na vstupu a přejde do dalšího stavu RECEIVE_DATA, zapne 2 (BIT a BYTE) čítače, které začnou počítat clk pro příjem dat, každý bit trvá 15 clk, BYTE_COUNTER odešle výstup do demultiplexoru, který vybere, který z výstupů bude aktuálně posílat bit. Když je 8 bitů, naše čtení skončí, čehož si náš stroj všimne prostřednictvím vstupu COUNT_BYTE. Tyto čítače mají stejné schéma jako předchozí.

Když čtení se skončí a automat se přesune do dalšího stavu, vyšle signál DOUT_VALID, který indikuje, že data jsou připravena a din se vrátí na 1, čímž se náš automat vrátí do stavu WAIT_START_BIT (IDLE).

Také o stránku později je z kódu vygenerován diagram, který může opravit mé chyby a objasnit několik bodů.

Výstupy ve GTKWave

