Exercice 1: ★★

Calculer sous forme factorisée les déterminants suivants.

Exercice 2: ★★

Soit $A \in M_n(\mathbb{R})$ vérifiant

$$\forall i, j, \ a_{i,j} = \pm 1.$$

Montrer que $2^{n-1}|\det A$.

Exercice 3: ★★★ CCP MP

Soient $a \neq b$ et $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$. On pose

$$\forall x \in \mathbb{R}, \ \Delta_n(x) = \left| \begin{array}{cccc} \lambda_1 + x & a + x & \cdots & a + x \\ b + x & \lambda_2 + x & \ddots & \vdots \\ \vdots & \ddots & \ddots & a + x \\ b + x & \cdots & b + x & \lambda_n + x \end{array} \right|.$$

- (1) Montrer que $\Delta_n(x)$ est une fonction affine de x.
- (2) Calculer $\Delta_n(x)$ et en déduire $\Delta_n(0)$.

Exercice 4: ★★★

Soient a,b,c des réels et Δ_n l déterminant tridiagonal suivant :

$$\Delta_n = \begin{vmatrix} a & b & 0 & \cdots & 0 \\ c & a & b & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b \\ 0 & \cdots & 0 & c & a \end{vmatrix}.$$

- (1) Démontrer que pour tout $n \ge 1$, $\Delta_{n+2} = a\Delta_{n+1} bc\Delta_n$
- (2) On suppose que $a^2 = 4bc$. Démontrer que pour tout $n \ge 1$, $\Delta_n = \frac{(n+1)a^n}{2^n}$.

Exercice 5: $\star\star\star$

Soient $s_1, \ldots, s_n \in \mathbb{R}$. Calculer le déterminant suivant :

$$\begin{vmatrix} s_1 & \cdots & \cdots & s_1 \\ \vdots & s_2 & \cdots & s_2 \\ \vdots & \vdots & \ddots & \vdots \\ s_1 & s_2 & \cdots & s_n \end{vmatrix}.$$

Exercice 6: ★★★

Soient a_0, \ldots, a_{n-1} des nombres complexes et $A = \begin{pmatrix} 0 & \cdots & \cdots & \vdots & a_1 \\ 0 & \cdots & \ddots & \vdots & \vdots \\ \vdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$. Calculer $\det(A - xI_n)$.

Exercice 7: ★★★

Soient $P = a_0 + a_1 X + \dots + a_p X^p$ et $Q = b_0 + b_1 X + \dots + b_q X^q$ deux polynômes de $\mathbb{C}[X]$, $a_p \neq 0$, $b_q \neq 0$. On considère l'application

$$\varphi: \quad \mathbb{C}_{q-1}[X] \times \mathbb{C}_{p-1}[X] \quad \to \quad \mathbb{C}_{p+q-1}[X] \\ (U,V) \quad \mapsto \quad UP + VQ.$$

- (1) Montrer que φ est une application \mathbb{C} -linéaire et écrire sa matrice M dans les bases \mathscr{B}_1 et \mathscr{B}_2 où \mathscr{B}_2 est la base canonique de $\mathbb{C}_{p+q-1}[X]$ et $\mathscr{B}_1 = \Big((1,0),(X,0),\dots,(X^{q-1},0),(0,1),(0,X),\dots,(0,X^{p-1})\Big)$. Le déterminant de M est appelé résultant de P et Q.
- (2) On suppose dans cette question seulement, que P et Q admettent une racine commune $a \in C$. Montrer que φ n'est pas surjective. En déduire que le résultat de P et Q est nul.
- (3) Réciproquement, montrer que si le résultant de P et Q est nul, alors P et Q ont une racine commune.
- (4) Dans cette question, $P = X^3 + aX + b$ avec $a, b \in \mathbb{K}$. Montrer que P admet une racine multiple si et seulement si $4a^3 + 27b^2 = 0$.

Exercice 8: ★

Calculer le déterminant des endomorphismes u de $\mathbb{R}_n[X]$ suivants.

- (1) u(P) = P + P'
- (2) u(P) = P(X+1) P(X)
- (3) u(P) = XP' + P(1).

Exercice 9: ★

Soient E un espace vectoriel réel et f un endomorphisme de E satisfaisant $f \circ f = -\operatorname{id}_E$. Montrer que E est de dimension paire.

Exercice 10: $\star\star\star$

Soit $u: A \in M_n(\mathbb{K}) \mapsto^t A$. Calculer det u.