Metodi matematici

Luca Mombelli

2024-25

Indice

1	Richiami 2				
	1.1	Trigonometria	2		
		1.1.1 Formule di Werner	2		
	1.2	Esponenziale complesso	2		
		1.2.1 Formule di Eulero	2		
		1.2.2 Derivazione	2		
		1.2.3 Integrazione	2		
2	Serie di Fourier 3				
	2.1	Polinomio di Fourier	3		
		2.1.1 Energia di un polinomio di Fourier	3		
	2.2		5		
			5		
		2.2.2 Traslazione verticale	5		
		2.2.3 Riscalamento	6		
3	Tras	Trasformata di Fourier			
	3.1	Proprietà della trasformata di Fourier	7		
4	Distribuzioni 11				
	4.1	Derivate	1		
	4.2	Limiti	1		
	4.3	Convoluzione	2		
	4.4	Trasformata di Fourier	2		
5	Fun	zione di una variabile complessa 1	4		
	5.1	Formula di Cauchy	5		
	5.2	Serie di potenze	6		
	5.3	Zeri e singolarità di funzioni complesse	7		
	5.4	Serie di Laurent	9		
	5.5	Residui	9		
		5.5.1 Calcolo dei residui	9		

1 Richiami

1.1 Trigonometria

1.1.1 Formule di Werner

$$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right]$$
$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$
$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

1.2 Esponenziale complesso

L'esponenziale complesso è definito come

$$e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

quindi l'esponenziale complesso è una funzione periodica con periodo pari a $T=\frac{2\pi}{\omega}$

1.2.1 Formule di Eulero

$$y \in \mathbb{C}$$

$$cosy = \frac{e^{iy} + e^{-iy}}{2} \qquad (Re(z) = \frac{z + \bar{z}}{2})$$

$$siny = \frac{e^{iy} - e^{-iy}}{2i} \qquad (Im(z) = \frac{z - \bar{z}}{2i})$$

1.2.2 Derivazione

Considero la funzione $f:\mathbb{R}\to\mathbb{C}\quad t\mapsto e^{i\omega t}=\cos(\omega t)+isen(\omega t)$ quindi

$$\frac{df(t)}{dt} = \frac{d \; Re(f(t))}{dt} + \frac{d \; Im(f(t))}{dt} = -\omega sin(\omega t) + i\omega cos(\omega t) = i\omega e^{i\omega t}$$

1.2.3 Integrazione

se $a, b \in \mathbb{R}$

$$\int_a^b f(t) = \int_a^b Re(f(t))dt + i \int_a^b Im(f(t))dt = \int_a^b e^{i\omega t} = \frac{1}{i\omega} [e^{i\omega t}]_a^b = \frac{e^{i\omega b} - e^{i\omega a}}{i\omega}$$

2

2 Serie di Fourier

Definizione. una funzione $x: \mathbb{R} \to \mathbb{R}$ si dice periodica di periodo T se

$$x(t+T) = x(t) \ vale \ \forall t \in R$$

Si dice periodo di x il più piccolo T positivo per cui x è periodica. Se x è periodica di periodo T allora è periodica di periodo kT con k > 0.

$$f=rac{1}{T}$$
 frequenza
$$\omega=rac{2\pi}{T}$$
 frequenza angolare

2.1 Polinomio di Fourier

Definizione. Polinomi di Fourier

Diremo polinomi di Fourier una funzione delle forma

$$P_{n}(t) = \alpha_{0} + \sum_{k=1}^{n} (\alpha_{k} cos(k\omega t) + \beta_{k} sin(k\omega t)) \quad \alpha_{k}, \beta_{k} \in \mathbb{R}$$

$$P_{n}(t) = \sum_{k=-n}^{n} \gamma_{k} e^{ik\omega t} \quad \gamma_{k} \in \mathbb{C}$$

$$= \gamma_{0} + \sum_{k=1}^{n} (\gamma_{k} e^{ik\omega t} + \gamma_{-k} e^{-ik\omega t}) \text{ Supponiamo che } (\gamma_{-k} = \overline{\gamma_{k}})$$

$$= \gamma_{0} + \sum_{k=1}^{n} (\gamma_{k} e^{ik\omega t} + \overline{\gamma_{k} e^{ik\omega t}})$$

$$= \gamma_{0} + \sum_{k=1}^{n} 2Re(\gamma_{k} e^{ik\omega t})$$

$$= \gamma_{0} + 2\sum_{k=1}^{n} (Re(\gamma_{k}) cos(k\omega t) + Im(\gamma_{k}) sin(k\omega t))$$

Quindi abbia che sussistono le seguenti relazione tra le due rappresentazione della formula di Fourier

$$\begin{cases} \gamma_0 = \alpha_0 \\ Re(\gamma_k) = \frac{1}{2}\alpha_k \\ Im(\gamma_k) = -\frac{1}{2}\beta_k \\ \gamma_{-k} = \overline{\gamma_k} \end{cases}$$

2.1.1 Energia di un polinomio di Fourier

Definizione. Energia di un segnale

Dato un segnale periodico x(t) di periodo T . si dice energia di x(t) in [0,T] l'espressione:

$$||x(t)||^2 = \int_0^T |x(t)|^2 dt$$

se invece voglia parlare della norma del segnale abbiamo che

$$||x(t)|| = \sqrt{\int_0^T |x(t)|^2 dt}$$

Calcoliamo l'energia di un polinomio di Fourier:

$$||Pn(t)||^{2} = \int_{0}^{T} |P_{n}(t)|^{2} dt$$

$$= \int_{0}^{T} \left(\sum_{k=-n}^{n} \gamma_{k} e^{ik\omega t}\right) \left(\sum_{h=-n}^{n} \gamma_{h} e^{ih\omega t}\right) dt$$

$$= \int_{0}^{T} \sum_{h,k=-n}^{n} \gamma_{k} \overline{\gamma_{h}} e^{ik\omega t} e^{ih\omega t} dt$$

$$= \sum_{h,k=-n}^{n} \gamma_{k} \overline{\gamma_{h}} \int_{0}^{T} e^{i(k-h)\omega t} = \begin{cases} T & k=h \\ 0 & k \neq h \end{cases}$$

$$= T \sum_{h,k=-n}^{n} |\gamma_{k}|^{2}$$

Ora fissato il segnale period
co x(t) e sia $P_n(t)$ un generico polinomio di Fourier periodico . Cerchiamo il polinomio di Fourier che meglio approssimo il segnale x nel senso dell'energia , cioè il polinomio di Fourier che minimizzi la seguente espressione

$$\begin{split} ||x(t) - P_n(t)||^2 &= \int_0^T |x(t) - P_n(t)|^2 dt \\ &= \int_0^T (x(t) - P_n(t)) (\overline{x(t)} - \overline{P_n(t)}) \ dt \\ &= \int_0^T |x(t)|^2 + |P_n(t)|^2 - x(t) \overline{P_n}(t) - \overline{x}(t) P_n(t) \ dt \\ &= |x(t)|^2 + T \sum_{h,k=-n}^n |\gamma_k|^2 - \int_0^T x(t) \sum_{k=-n}^n \overline{\gamma_k} e^{-ik\omega t} dt - \int_0^T \overline{x}(t) \sum_{k=-n}^n \gamma_k e^{ik\omega t} dt \\ &= |x(t)|^2 + T \sum_{h,k=-n}^n |\gamma_k|^2 - \sum_{k=-n}^n \overline{\gamma_k} \ T \ \underbrace{\frac{1}{T} \int_0^T x(t) e^{-ik\omega t} dt}_{c_k} - \sum_{k=-n}^n \gamma_k \ T \ \underbrace{\frac{1}{T} \int_0^T \overline{x}(t) e^{ik\omega t} dt}_{c_k} \\ &= |x(t)|^2 + T \left(\sum_{h,k=-n}^n |\gamma_k|^2 - \sum_{k=-n}^n \overline{\gamma_k} c_k - \sum_{k=-n}^n \gamma_k \overline{c_k} \right) \\ &= |x(t)|^2 + T \sum_{h,k=-n}^n \left(|\gamma_k|^2 \overline{\gamma_k} c_k - \gamma_k \overline{c_k} + |c_k|^2 \right) - T \sum_{h,k=-n}^n |c_k|^2 - 1 \\ &= |x(t)|^2 + T \sum_{h,k=-n}^n |\gamma_k - c_k|^2 - T \sum_{h,k=-n}^n |c_k|^2 \end{split}$$

Dopo tutti sti cazzo di conti viene fuori che il coefficiente gamma del polinomio di Fourier necessaria a minimizzare l'energia è il seguente

$$\gamma_k = c_k = \frac{1}{T} \int_0^T x(t)e^{-ik\omega t}dt \quad \forall k = -n\dots n$$

Questi sono chiamati Coefficienti di Fourier .

¹Ho completato il quadrato con i numeri complessi

Inoltre nelle seguente tabella sono presenti le equivalenze dei coeffcienti di Fourier nella forma complessa e nella forma "reale"

$$a_0 = c_0 = \frac{1}{T} \int_0^T x(t)dt$$

$$a_k = 2Re(c_k) = \frac{2}{T} \int_0^T x(t)cos(k\omega t)dt$$

$$b_k = -2Im(c_k) = \frac{2}{T} \int_0^T x(t)sin(k\omega t)d$$

Definizione. (Disuguaglianza di Bessel)

$$T \sum_{k=-n}^{n} |c_k|^2 \le ||x(t)||^2$$

Teorema 2.1

Sia x è un segnale periodico a energia finita , cio
é $\int_0^T x^2(t)dt<+\infty$ allora se P_n è il polinomio di Fourie
r $P_n(t)=\sum_{k=-n}^n c_k e^{ik\omega t}$ si ha che

$$\lim_{n \to +\infty} ||x - P_n||^2 = 0$$

Corollario. (Identità di Parseval)

$$T \sum_{k=-\infty}^{+\infty} |c_k|^2 = ||x(t)||^2$$

2.2 Traslazione e riscalamento

2.2.1 Traslazione orizzontale

Sia x un segnale di periodo T e di frequenza angolare ω . Fissiamo $a \in \mathbb{R}$ definisco

$$\tilde{x}(t) = x(t-a)$$

Calcolo i coefficienti di Fourier

$$\tilde{c}_{k} = \frac{1}{T} \int_{0}^{T} \tilde{x}(t)e^{-ik\omega t}dt$$

$$= \frac{1}{T}x(t-a)e^{-ik\omega t}dt \qquad \begin{cases} s = t-a\\ ds = dt \end{cases}$$

$$= \frac{1}{T} \int_{-a}^{T-a} x(s)e^{-ik\omega(s+a)}ds$$

$$= \frac{1}{T}e^{-ik\omega a} \int_{0}^{T} x(s)e^{-ik\omega s}ds$$

$$= e^{-ik\omega a}c_{k}$$

2.2.2 Traslazione verticale

$$\hat{x(t)} = \alpha + x(t)$$

$$\hat{c_0} = c_0 + \alpha \quad \hat{c_k} = c_k \quad \forall k \neq 0$$

2.2.3 Riscalamento

Se a > 0

$$y(t) = x(at)$$

Qual è il periodo T_y di y , $T_y=\frac{T}{a}$. Ora calcolo il coefficienti di Fourier del polinomio riscalato

$$c_k^y = \frac{a}{T} \int_0^{\frac{T}{a}} x(at)e^{-ika\omega t} \begin{cases} s = at \\ dt = \frac{1}{a}ds \end{cases}$$
$$= \frac{a}{T} \int_0^T \frac{1}{a} x(s)e^{-ik\omega s}ds$$
$$= c_k$$

Definizione. Diciamo che $P_n(t)$ converge a x(t) puntualmente se per ogni $t \in \mathbb{R}$ si ha che :

$$\sum_{+\infty}^{-\infty} c_k e^{ik\omega t} = x(t)$$

Definizione. Diciamo che $P_n(t)$ converge a x(t) uniformemente se per ogni $t \in \mathbb{R}$ si ha che :

$$\lim_{n\to\mathbb{R}} \sup_{t\in\mathbb{R}} |x(t) - P_n(t)|$$

Definizione. (Regolare a tratti)

Una funzione $x:[0,T]\to\mathbb{R}$ si dica regolare a tratti se valgono le seguenti condizioni: esistono un numero finito di punti $t_1,t_2,\ldots,t_n1in]0,T[$ tale che

- * se $t \in]0, T[\setminus \{t_1, t_2, \dots, t_n\}$ la funzione x è derivabile in T e la sua derivata è una funzione continua di T (in quei punti x deve appartenere alla classe C^1)
- * esistono i seguenti limiti e sono finiti

$\lim_{t \to t_i^-} x(t)$	$\lim_{t \to t_i^+} x(t)$
$\lim_{t \to 0^+} x(t)$	$\lim_{t \to T^-} x(t)$
$\lim_{t \to t_i^-} x'(t)$	$\lim_{t \to t_i^+} x'(t)$
$\lim_{t\to 0+} x'(t)$	$\lim_{t \to T^-} x'(t)$

Teorema 2.2

Sia x un segnale periodico di periodo T regolare a tratti in [0, T]. Allora

$$\lim_{n \to +\infty} P_n(t) = x(t) \quad \forall t \neq t_1, t_2, \dots, t_n, 0, T$$

Inoltre

$$\lim_{n \to +\infty} P_n(t_i) = \frac{\lim_{t \to t_i^-} x(t) + \lim_{t \to t_i^+} x(t)}{2}$$

Teorema 2.3

Sia x un segnale continuo e regolare a tratti (discontinuità della derivata). Allora P_n converge uniformemente a x

3 Trasformata di Fourier

Definizione. Sia $x: \mathbb{R} \to \mathbb{C}$ una funzione a valori complessi è **sommabile** cioè :

$$\int_{-\infty}^{+\infty} |x(t)| dt < +\infty$$

Definizione. (Trasformata di Fourier)

Definiamo la trasformata di fourier di x e denotiamo con $\mathscr{F}(x):\mathbb{R}\to\mathbb{C}$

$$\mathscr{F}(x(t)) = X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-i\omega t dt}$$

L'integrale $\int_{-\infty}^{+\infty} x(t) e^{-i\omega t dt}$ esiste finite in quanto

3.1 Proprietà della trasformata di Fourier

1. Siano λ e μ due costanti complessi allora

$$\mathscr{F}(\mu x(t) + \lambda y(t))(\omega) = \mu X(\omega) + \lambda Y(\omega)$$

Dimostrazione

$$\int_{-\infty}^{+\infty} \left[\mu x(t) + \lambda y(t) \right] dt = \mu \int_{-\infty}^{+\infty} x(t) dt + \lambda \int_{-\infty}^{+\infty} y(t) dt$$

0

- 2. Traslazione
 - \star Traslazione nel tempo :

Sia x una funzione sommabile , $t_0 \in \mathbb{R}$ e definiamo $y(t) = x(t-t_0)$ allora :

$$\mathscr{F}[y(t)](\omega)) = \mathscr{F}[x(t)](\omega) e^{-i\omega t_0}$$

Dimostrazione. Effettuo una cambio di variabili $\begin{cases} u=t-t_0\\ du=dt \end{cases}$

$$\mathscr{F}[y(t)](\omega)) = \int_{-\infty}^{+\infty} x(t - t_0)e^{-i\omega t}dt = \int_{-\infty}^{+\infty} x(u)e^{-i\omega(u + t_0)}du = e^{-i\omega t_0}X(\omega)$$

0

3. Riscalamento : Sia x una funzione sommabile e sia $a \in R \setminus \{0\}$

$$\mathscr{F}[x(at)](\omega) = \frac{1}{|a|}X(\frac{\omega}{a})$$

Dimostrazione.Basta effettuare un cambio di variabili at=u

$$\mathscr{F}[x(at)](\omega) = \int_{-\infty}^{+\infty} x(at)e^{-i\omega t}$$

$$\begin{cases} \frac{1}{a} \int_{-\infty}^{+\infty} x(u)e^{\frac{-i\omega u}{a}} du & a > 0\\ \frac{1}{a} \int_{+\infty}^{+\infty} x(u)e^{\frac{-i\omega u}{a}} du & a < 0 \end{cases}$$

$$= \frac{1}{|a|} \int_{-\infty}^{+\infty} x(u)e^{\frac{-i\omega u}{a}} du = \frac{1}{|a|} X(\frac{\omega}{a})$$

0

4. Derivata

★ Derivata nel tempo :

Sia x un segnale sommabile , derivabile e tale che x'(t) è sommabile

$$\mathscr{F}(x'(t))(\omega) = i\omega X(\omega)$$

Dimostrazione.

$$\hat{x}'(\omega) = \int_{-\infty}^{+\infty} x'(t)e^{-i\omega t} = x(t)e^{-i\omega t} + i\omega \int_{-\infty}^{+\infty} x(t)e^{-i\omega t} = i\omega \hat{x}(\omega)$$

0

★ Derivata nella frequenza :

Se x è un segnale sommabile e anche tx(t) è anche sommabile allora

$$\frac{d}{d\omega}\widehat{x}(\omega) = \mathscr{F}(-itx(t))(\omega)$$

Dimostrazione.

$$\frac{d}{d\omega}\widehat{x}(\omega) = \frac{d}{d\omega} \int_{-\infty}^{+\infty} x(t)e^{-i\omega t} = \int_{-\infty}^{+\infty} \frac{d}{d\omega}x(t)e^{-i\omega t} = \int_{-\infty}^{+\infty} -itx(t)e^{-i\omega t}$$

0

5. Simmetria:

Sia x un segnale sommabile :

- \star Se x è una segnale reale e pari allora anche la sua trasformata di Fourier è reale e pari
- \star Se x è una segnale reale e dispari allora la sua trasformata di Fourier è immaginaria puro e dispari
- 6. Coniugazione:

Sia x un segnale sommabile e denotiamo con $\overline{x(t)}$ il segnale complesso coniugato

$$\mathscr{F}(\overline{x(t)})(\omega) = \overline{X}(-\omega)$$

Dimostrazione.

$$\mathscr{F}(\overline{x(t)})(\omega) = \int_{-\infty}^{+\infty} \overline{x(t)} e^{-i\omega t} = \int_{-\infty}^{+\infty} \overline{x(t)} e^{i\omega t} = \overline{X(-\omega)}$$

0

7. Convoluzione:

Definizione. (Convoluzione)

Sia x e t due funzioni sommabili. La convoluzione di x e t è definita da

$$(x*y)(t) = \int_{-\infty}^{+\infty} x(t-s)y(s)ds$$
$$= \int_{-\infty}^{+\infty} x(s)y(t-s)ds$$

Se x e y sono segnali sommabili allora

$$\mathscr{F}(x * y(t)) = \mathscr{F}(x(t)) \mathscr{F}(y(t))$$

Dimostrazione.

$$\begin{split} \mathscr{F}((x*y)(t)) &= \int_{-\infty}^{+\infty} (x*y)(t)e^{-i\omega t}dt \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t-s)y(s)e^{-i\omega t}dsdt \\ &= \int_{-\infty}^{+\infty} y(s)\underbrace{\left[\int_{-\infty}^{+\infty} x(t-s)e^{-i\omega(t-s)}dt\right]}_{\widehat{x}(\omega)} e^{-i\omega s}ds \\ &= \widehat{x}(\omega)\int_{-\infty}^{+\infty} y(s)e^{-i\omega s}ds = \widehat{x}(\omega)\ \widehat{y}(\omega) \end{split}$$

(3)

Definizione. (Antitrasformata di Fourier)

Sia $x:\mathbb{R}\to\mathbb{C}$ una funzione sommabile. Definiamo l'antitrasformata di Fourier di X come :

$$\mathscr{F}^{-1}[x(t)](\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x(t)e^{i\omega t}dt$$

Osservazione:

$$\mathscr{F}^{-1}[x(t)](\omega) = \frac{1}{2\pi}\mathscr{F}[x(t)](-\omega)$$

Teorema 3.1.1. Se x è un segnale sommabile e la sua trasformata di Fourier $\widehat{X}(\omega)$ è sommabile allora :

$$x=\mathscr{F}^{-1}(\mathscr{F}(x))=\mathscr{F}(\mathscr{F}^{-1}(x))$$

in altre parole

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{X}(\omega) e^{i\omega t}$$

Denotiamo con L^1 l'insieme dei segnali sommabili

$$L^{1} = \{x : \mathbb{R} \to \mathbb{C} | \int_{-\infty}^{+\infty} |x(t)| < \infty \}$$

Teorema 3.1

Se $x \in L^1$ allora \widehat{x} è continuo , limitato e $\lim_{\omega \to \pm \infty} \widehat{x}(\omega) = 0$

Definiamo con L^2 le funzioni quadrato sommabili (i segnali ad energia finita)

$$L^{2} = \left\{ x : \mathbb{R} \to \mathbb{C} \middle| \int_{-\infty}^{+\infty} |x(t)|^{2} < \infty \right\}$$

Proposizione. Se x è una segnale limitato e $x \in L^2$ allora $x \in L^2$

Dimostrazione. Supponiamo che $x \in L^1$ e limitato

$$|x(t)|^2 = |x(t)| |x(t)| \le |x(t)| C$$

$$\int_{-\infty}^{+\infty} |x(t)|^2 = C \int_{-\infty}^{+\infty} |x(t)| < \infty$$

Teorema 3.2

Se $x \in L^2$, segnale ad energia finita allora

$$\lim_{n \to \infty} \int_{-n}^{n} x(t)e^{-i\omega t}dt$$

esiste finito tranne al più per un insieme di valori di ω di misura nulla (Secondo Lebesgue) Definiamo allora :

$$\mathscr{F}[x(t)](\omega) = \lim_{n \to \infty} \int_{-n}^{n} x(t)e^{-i\omega t}dt$$

inoltre definendo

$$\mathscr{F}^{-1}[x(t)(\omega)] = \frac{1}{2\pi} \mathscr{F}[x(t)](-\omega)$$

abbiamo che per ogni $x\in L^2$

$$x=\mathscr{F}^{-1}(\mathscr{F}[x]))=\mathscr{F}[\mathscr{F}^{-1}(x)]$$

Infine posto $\widehat{X}(\omega) = \mathscr{F}[x(t)](\omega)$ allora

$$\int_{-\infty}^{+\infty}|x(t)|^2=\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\widehat{X}(\omega)|^2$$

allora $\widehat{X} \in L^2$

4 Distribuzioni

Definizione. (spazio delle funzioni test)

Lo spazio delle funzioni test $\mathscr S$ è formata dalle funzioni di classe C^∞ a supporto compatto e tali che

$$\lim_{t \to +\infty} (1+t^2)^k D^{(m)} \varphi(t) = 0 \quad \forall k, m \ge 1$$

 $(\varphi$ e le sue derivate vanno più velocente a zero del reciproco del polinomio)

Definizione. (Convergenza di funzioni test)

Sia $\varphi_n \in \mathscr{S}$ una successione , si dice che $\varphi_n \to \varphi$ se e solo se valgono le seguenti condizioni:

$$\lim_{n \to \infty} |(1+t^2)^k (D^{(m)}\varphi_n(t) - D^{(m)}\varphi(t))| = 0 \quad \forall k, m \ge 0$$

Definizione. (Distribuzione) Si dice **distribuzione** ogni funzionale lineare su \mathcal{D} che sia continuo rispetto alla convergenza di funzioni test

4.1 Derivate

Data $T \in \mathcal{S}'$, si dice derivata di T , la distribuzione definita ponendo

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle \quad \forall \varphi \in \mathcal{D}$$

Poniamo

$$\langle T_x, \varphi \rangle = \int_{-\infty}^{+\infty} x(t)\varphi(t)dt$$

allora

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle$$

$$\int_{-\infty}^{+\infty} x'(t)\varphi(t)dt = \underbrace{x(t)\varphi(t)}_{0} \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} x(t)\varphi'(t)dt$$

Teorema 4.1.1. Se T_x è una distribuzione regolare con x assolutamente continua sugli intervalli compatti $\mathbb R$, la derivata nel senso delle distribuzioni coincide con derivta ordinaria:

$$T_x' = T_{x'}$$

4.2 Limiti

Sia T_n una successione di distribuzione , sia T una distribuzione. Diciamo che $T_n \to T$ nel senso delle distribuzioni se

$$\lim_{n \to \infty} T_n(\varphi) = T(\varphi) \quad \forall \varphi \in \mathscr{D}$$

Se x_n è una successione di segnali scriviamo

$$x_n \to T$$
 in luogo di $T_{x_n} \to T$

Se $T=T_x$ per un segnale x allora scriveremo

$$x_n \to x$$
in luogo di $T_{x_n} \to T_x$

Teorema 4.1

- 1. Siano x_n, x due segnali limitati tali che $\lim_{n\to\infty} x_n(t) = x(t) \quad \forall t\in\mathbb{R}$ allora è vero anche che $x_n\to x$ nel senso delle distribuzioni
- 2. Sia x un segnale a valori maggiori uguale a zero e tale che $\int_{-\infty}^{+\infty} x(t) = 1$. Definiamo $x_n(t) = nx(nt)$

4.3 Convoluzione

Definizione. Sia T una distribuzione e $\varphi \in \mathcal{D}$ definiamo

$$T * \varphi(t) = T(\varphi_t)$$

Notiamo che $T*\varphi$ è una funzione infinitamente derivabile

$$= \lim_{h \to 0} \frac{t * \varphi(t+h) - T * \varphi(t)}{h}$$

$$= \lim_{h \to 0} \frac{T(\varphi_t(h)) - T(\varphi_t)}{h}$$

$$= \lim_{h \to 0} T\left(\frac{\varphi_{t+h}(s) - \varphi_t(s)}{h}\right)$$

$$= T\left(\lim_{h \to 0} \frac{\varphi(t+h-s) - \varphi(t-s)}{h}\right)$$

$$= \varphi'(t-s) = \varphi'_t(s)$$

$$= T(\varphi'_t(s))$$

Teorema 4.2

Sia φ_n una successione di funzioni test tali che $\varphi_n \to \delta_o$ nel senso delle distribuzioni Allora $T * \varphi_n \to T$ nel senso delle distribuzioni.

Ogni distribuzione è il limite di segnali infinitamente derivabile

4.4 Trasformata di Fourier

Sia x un segnale ad energia finita $\widehat{x}(\omega)=v.p\int_{-\infty}^{+\infty}x(t)e^{-i\omega t}dt$ definisco la distribuzione associata alla trasformata di Fourier

$$T_{\widehat{x}}(\varphi) = \int_{-\infty}^{+\infty} \widehat{x}(\omega)\varphi(\omega)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t)e^{-i\omega t}\varphi(\omega)dtd\omega$$

$$= \int_{-\infty}^{+\infty} x(t)\underbrace{\left(\int_{-\infty}^{+\infty} e^{-i\omega t}\varphi(\omega)d\omega\right)}_{\widehat{\varphi}(t)}dt$$

$$= \int_{-\infty}^{+\infty} x(t)\widehat{\varphi}(t)dt = T_x(\widehat{\varphi})$$

Questo ha senso in quanto se $\varphi \in \mathscr{S}$ all ora $\widehat{\varphi} \in \mathscr{S}$. Questo motiva la seguente definizione

Definizione. (Trasformata di Fourier per distribuzioni)

Sia T una distribuzione , la sua trasformata di Fourier \widehat{T} è la distribuzione definita da

$$\widehat{T}(\varphi) = T(\widehat{\varphi})$$

Esempio : Calcoliamo la trasformata di Fourier della Delta di Dirac

$$\widehat{\delta_0}(\varphi) = \delta_0(\widehat{\varphi}) = \int_{-\infty}^{+\infty} \varphi(t)dt = T_1(\varphi) = 1$$

Possiamo anche definire l'antitrasformata di Fourier

$$\mathcal{F}^{-1}[T(\varphi)] = T(\mathcal{F}^{-1}[\varphi])$$

Inoltre vale che

$$\begin{split} \mathscr{F}[T(\varphi)] &= 2\pi \mathcal{F}^{-1}[T(\varphi^r)] \quad \phi^r(s) = \varphi(-s) \\ \mathscr{F}[T] &= 2\pi \mathcal{F}^{-1}[T^r] \end{split}$$

Esempio:

$$\mathcal{F}^{-1}[1] = \delta_0 \to f[1] = 2\pi \delta_0^r = 2\pi \delta_0$$

5 Funzione di una variabile complessa

Una funzione complessa di variabile complessa è una funzione del tipo

$$f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$$

Definiamo gli operatori

$$\partial_z = \frac{1}{2}(\partial_x - i\partial_y)$$
$$\partial_{\overline{z}} = \frac{1}{2}(\partial_x + i\partial_y)$$

Lemma. $f:\Omega\to\mathbb{C}$ è differenziabile in $z_0\in\Omega$ se e solo se esistano $c,d\in\mathbb{C}$ tali che

$$f(z_0 + w) = f(z_0) + cw + d\overline{w} + o(|w|)$$
$$c = \partial_z f(z_0) \quad d = \partial_{\overline{z}} f(z_0)$$

Dimostrazione. Sia f=u+iv, nell'identificazione $\mathbb{C}=\mathbb{R}^2$ è differenziabile in $z_0=(x_0,y_0)$ SSE lo sono le sue componenti u,v

$$u(x_0 + h, y_0 + k) = u(x_0, y_0) + \partial_x u(x_0, y_0) \cdot h + \partial_x u(x_0, y_0) \cdot k + o(|(h, k)|)$$
$$v(_0 + h, y_0 + k) = v(x_0, y_0) + \partial_x v(x_0, y_0) \cdot h + \partial_x v(x_0, y_0) \cdot k + o(|(h, k)|)$$
$$(h, k) \to 0$$

Ponendo w = (h, k) = h + ik sommando otteniamo la differenziabilità di f
 notando che

$$h = \frac{\omega + \overline{w}}{2} \quad h = \frac{\omega - \overline{w}}{2}$$

0

Definizione. Siano $f: \Omega \to \mathbb{C}$ e $z_0 \in \Omega$. Se esiste il limite di funzioni in due variabili

$$f'(z_0) = \lim_{w \to 0 \in \mathbb{C}} \frac{f(z_0 + w) - f(z_0)}{w}$$

questo si dice derivata in senso complesso di f
 in z_0

Proposizione. $f: \Omega \to \mathbb{C}$ è derivabile in senso complesso in $z_0 \in \Omega$ se e solo se esiste $c \in \mathbb{C}$ tale che :

$$f(z_0 + w) = f(z_0) + cw + o(|w|) \ per \ w \to 0$$

e in tal caso $c = f'(z_0)$

Proposizione. $f:\Omega\in\mathbb{C}$ si dice **olomorfa** nell'insieme Ω se è derivabile in senso complesso in ogni punto di Ω e se f' è continua .

Se $\Omega = \mathbb{C}$ la funzione si dice *intera*

Proposizione. La funzione $f:\Omega\in\mathbb{C}$ è olomorfa SSE è di classe C^1 e vale la condizione di Cauchy-Riemann

$$\frac{\partial f}{\partial_{\overline{z}}} = 0$$

Osservazione : scritta f = u + iv si ha :

$$\begin{split} \partial_{\overline{z}} f &= \frac{1}{2} [\partial_x (u+iv) + i \partial_y (u+iv)] \\ &= \frac{1}{2} \left[(\partial_x u - \partial_y v) + i (\partial_x v + \partial_y u) \right] \\ &= \begin{cases} \partial_x u = \partial_y v \\ \partial_x v = -\partial_y u \end{cases} \end{split}$$

Osservazione: Prendiamo F(z)=a(x,y)+iv(x,y) olomorfa con u,v due volte derivabili dalle condizione di Cauchy-Riemann in forma reali $\begin{cases} \partial_x u=\partial_y v\\ -\partial_x v=\partial_y u \end{cases}.$ Ora deriviamo queste condizioni rispetto a x e somma membro a membro

$$\partial_{x^2} u - \partial_{xy} v + \partial_{xy} u + \partial_{x^2} v = 0$$
 Derivata rispetto a y e diiferenza membro a membro
$$\partial_{xy} u - \partial_{y^2} v - \partial_{y^2} u - \partial_{xy} v = 0$$
 Ora facciamo (1) - (2)
$$\partial_{x^2} u + \partial_{y^2} u + \partial_{x^2} v + \partial_{y^2} v = 0$$

$$(\partial_{x^2} u + \partial_{y^2} u) = 0 \quad \partial_{x^2} v + \partial_{y^2} v = 0$$

$$\Delta u = 0 \quad \Delta v = 0$$

Le componenti di f sono funzioni armoniche , cioè funzione che risolvono l'equazioni di Laplace

$$\Delta g = \nabla^2 g = 0$$

5.1 Formula di Cauchy

Definizione. Sia $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ con Ω aperto con $\partial\Omega=\Gamma$ curva regolare è detto olomorfa su $\Omega\cup\Phi$ se esiste $\tilde{\Omega}\subseteq\mathbb{C}$ aperto contente $\Omega\cup\Phi$ su cui f è olomorfa

Teorema 5.1

Sia $\Omega \subseteq \mathbb{C}$ aperto e limitato con $\partial \Omega = \Gamma$ unione di curva regolari $\Gamma = \gamma_1 \cup \cdots \cup \gamma_n$ e sia f olomorfa su $\Omega \cup \Gamma$

$$\int_{\Gamma} f(z)dz = 0$$

Teorema 5.2: (Fomula di cauchy del cerchio)

Sia $\Omega \subseteq \mathbb{C}$ aperto e limitato con $\partial \Omega = \Gamma$ unione di curva regolari $\Gamma = \gamma_1 \cup \cdots \cup \gamma_n$, infine sia f olomorfa su in $\Omega \cup \Gamma$.

Se $z_0 \in \Omega$ allora

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz$$

Se fè oleomorfa e nota sul bordo Γ allora conosciamo f
 su tutto Ω

Dimostrazione. sia $\delta > 0$ tale che

$$B(z_0, \delta) \in \Omega$$

Per il teorema (5.1) abbiamo che

$$\frac{1}{2\pi i} \int_{\Gamma \cup \gamma_{-\delta}} \frac{f(z)}{z - z0} = 0$$

poichè la funzione è olomorfa in $\Omega \cup \Gamma \setminus z_0$

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} = \frac{1}{2\pi i} \int_{\gamma_{\delta}} \frac{f(z)}{z - z_0}$$

Il bordo $\gamma_{\delta} = \{z \in \mathbb{C} \mid |z - z_0| = \delta\}$ è parametrizzato da $\theta \mapsto z_0 + e^{i\theta}$, $\theta \in [0, 2\pi]$. Risulta allora

$$\frac{1}{2\pi i} \int_{\gamma_{\delta}} \frac{f(z)}{z - z0} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + e^{i\theta})}{\delta e^{i\theta}} \delta i e^{i\theta} d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \delta e^{i\theta}) d\theta$$

Osservando che il primo membro è indipendente dalla delta ed utilizzando la conntinuità di f , si ottiene infine :

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z0} = \lim_{\delta \to 0} \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \delta e^{i\theta}) d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0) d\theta$$
$$= f(z_0)$$
$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z0} = f(z_0)$$

Proposizione. Una funzione f olomorfa in Ω ammette derivate complesse di ogni ordine , anch'esse olomorfe. Se D è un dominio semplice con $z_o \in D$ e $\overline{D} \subset \Omega$ vale

 \odot

$$f^{(m)}(z_0) = \frac{m!}{2\pi i} \int_{\partial D} \frac{f(z)}{(z-z_0)^{m+1}} dz$$

5.2 Serie di potenze

Teorema 5.3

Sia $f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ olomorfa su $D=\{z\in\mathbb{C}\ |\ |z-z_0|< R\}$ allora

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n \quad \forall z \in D$$

Dimostrazione. Sia $f:D\to \mathbb{C}$ olomorfa su $D=\{z\in \mathbb{C}\ |\ |z-z_0|< R\}$ allora

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n \quad \forall z \in D$$

Sia 0 < r < R e poniamo $D_r = \{z: |z-z_0| < r\}$, dalla formula di Cauchy abbiamo che

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi \quad su \quad d_k$$

Per $\xi \in \Gamma$

$$\frac{f(\xi)}{\xi - z} = \frac{f(\xi)}{\xi - z_0 - z + z_0}$$

$$\vdots$$

$$= \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}}$$

$$= \frac{f(\xi)}{\xi - z_0} \sum_{n=0}^{+\infty} \left(\frac{z - z_0}{\xi - z_0}\right)^n$$

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z_0} \sum_{n=0}^{+\infty} \left(\frac{z - z_0}{\xi - z_0}\right)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}}\right) (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{f^n(z_0)}{n!}\right) (z - z_0)^n$$

Il fatto che una funzione con infinite derivate sia localmente rappresentabile in serie di potenze è **falso** se la funzione in questione non è derivabile in senso complesso Esempio :

0

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 00 & x = 0 \end{cases}$$

f(x) ammette infinite derivate e $f(0)=0 \quad \forall n \in \mathbb{N}$, la serie di Taylor centrata in zero converge alla funzione nulla , tuttavia $f(x) \neq 0 \quad \forall x \neq 0$

Definizione. (Funzione analitica)

Una funzione f $\Omega \to \mathbb{C}$ di dice **analitica in** Ω se è localmente rappresentabile come serie di potenze

Cioè se per ogni $z_0 \in \Omega$ esistono r > 0 e una serie di potenze $\sum_{n=0}^{+\infty} c_n (z-z_0)^n$ con raggio di convergenza r tale che $f(z) = \sum_{n=0}^{+\infty} c_n (z-z_0)^n$ per ogni $z \in \Omega : |z-z_0| < r$

5.3 Zeri e singolarità di funzioni complesse

Definizione. Se $f^{(n)}(z_0) = 0 \quad \forall n \in \mathbb{N}$, z_0 si dice zero di molteplicità/ordine infinito per f.

 z_0 si dice zero di molteplicità ordine m se $f^{(n)}(z_0) = 0$ se n< m e $f^{(m)}(z_0) \neq 0$

Proposizione. Sia f olomorfa in Ω , $z_0 \in \Omega$ è zero di ordine m se e solo se esiste un funzione g olomorfa in Ω con $g(z_0) \neq 0$ tale che

$$f(z) = (z - z_0)^m g(z)$$

In particolare uno zero di **molteplicità finita è isolato**, ossia esiste un introno U di $z_0 \in \Omega$ tale che $f(z) \neq 0$ $\forall z \in U \setminus \{z_0\}$

Dimostrazione. Sia $z_0\in\Omega$ uno zero di f
 di molteplicità e sia $R=dist(z_o,\partial\Omega)$, per gli
 $|z-z_0|< R$ si ha

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n = (z - z_0)^m \sum_{n=m}^{+\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^{n-m}$$

l'ultima uguaglianza segue da $f^n = 0$ n < m. Basta allora porre

$$g(z) = \begin{cases} (z - z_0)^{-m} f(z) & \forall z \in \Omega \setminus \{z_0\} \\ \sum_{n=m}^{+\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^{n-m} |z - z_0| < R \end{cases}$$

Per l'inverso supponiamo che g
 sia funzione olomorfa , che quindi ammette sviluppo di Taylor centro in
 $z_0, \sum_{n=0}^{+\infty} c_n (z-z_0)^n$ inoltre abbiamo che f
 si può scrivere come

$$f(z) = (z - z_0)^m g(z)$$

$$f(z) = (z - z_0)^m \sum_{n=0}^{+\infty} c_n (z - z_0)^n$$

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^{n+m} \quad k = n+m \quad n = k-m$$

$$f(z) = \sum_{k=m}^{+\infty} c_{k-m} (z - z_0)^k$$

$$\sum_{n=0}^{\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n = \sum_{k=m}^{+\infty} c_{k-m} (z - z_0)^k$$

allora dall'unicità dei coefficienti della serie di Fourier segue che $f^{(n)}(z_0) = 0$ n < m

Proposizione. Sia f olomorfa in Ω . Un punto $z_0 \in \Omega$ è uno zero di molteplicità infinita se e solo se è identicamente nulla nella componente connessa di $z_0 \in \Omega$

Teorema 5.4: (Unicità del prolungamento)

Siano f e g funzioni olomorfe in Ω con $\Omega \subseteq_{ap} \mathbb{C}$ connesso. Allora se una delle seguenti ipotesi è verificata f=g

- 1. f e g hanno lo stesso sviluppo in serie di Taylor in un punto di Ω
- 2. l'insieme $\{z: f(z) = g(z)\}$ ha un punto non isolato

Dimostrazione. 1. Entrambe le funzioni sono olomorfe quindi possono essere espresse come serie di funzioni, imponiamo che esse siano uguali in $z_0 \in \Omega$

$$\sum_{n=0}^{+\infty} f^{(n)}(z_0) = \sum_{n=0}^{+\infty} g^{(n)}(z_0)$$

$$\sum_{n=0}^{+\infty} f^{(n)}(z_0) - \sum_{n=0}^{+\infty} g^{(n)}(z_0) = 0$$

quindi la funzione f-g ha in z_0 una zero di molteplicità infinita quindi per la proposizione precedente f-g è identicamente nulla in tutto Ω quindi f=g

2. L'insieme $\{z: f(z)=g(z)\} \to \{z: f(z)-g(z)=0\}$ ha un punto non isolato questo vuol dire che la f-g presenta uno zero di molteplicità infinita in quel punto e quindi f-g è identicamente su tutto il connesso di z_0 quindi in tutto Ω

5.4 Serie di Laurent

Definizione. La Serie di Laurent di una funzione complessa in un punto z_0 è da ta da :

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n$$

Teorema 5.5: (dello sviluppo di Laurent)

Sia f una funzione olomorfa in $B(z_0, R) \setminus \{z_0\}$ allora

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n$$

Inoltre dato $|z-z_0| < r < R \ r \in \mathbb{R}$ e posto $D = \{z: |z-z_0| \leq r\}$ risutla

$$c_n = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

e tali coefficienti sono unici

Definizione. Sia $f(z) = \sum_{n=0}^{+\infty} c_n(z-z_0^n)$ cioè sviluppabile in serie di Laurent

- $\star~{\bf f}({\bf z})$ ha in z_0 una singolarità **eliminabile** se $c_n=0~\forall n<0$
- \star f(z) ha in z_0 una singolarità **essenziale** se $c_n \neq 0$ per infiniti n
- \star f(z) ha in z_0 una singolarità **polare di ordine** $m\geq 1$ se $c_n=0$ per ognin<-m e z_0 è detto polo di ordine/molteplicità m

5.5 Residui

Definizione. (Residuo)

Sia f olomorfa in intorno (disco) di z_0 tranne che in z_0 stesso . Si dice **residuo** di f in z_0 il coefficiente di $(z-z_0)^{-1}$ nello sviluppo in serie di Laurent di f centrato in z_0

$$Res(f, z_0) = c_{-1} = \frac{1}{2\pi i} \oint_{\partial D} f(z) dz$$

5.5.1 Calcolo dei residui

Proposizione. Sia f olomorfa in un intorno di z_0 , tranne che in z_0 stesso. Allora z_0 è un polo di f di ordine m se esiste una funzione olomorfa g, con $g(z_0) \neq 0$ tale che

$$f(z) = \frac{g(z_0)}{(z - z_0)^m}$$

Proposizione.

se z_0 è un polo di ordine m di f (olomorfa in $B(z_0,R)\setminus\{z_0\}$) allora :

$$Res(f, z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)]$$

Corollario. Siano g e h funzioni olomorfe in z_0 e sia $f = \frac{h}{g}$. Se z_0 è uno zero di ordine m di h e di ordine m+1 di g allora

$$Res(f, z_0) = (m+1) \frac{h^{(m)}(z_0)}{g^{(m+1)(z_0)}}$$

In particolare se z_0 è un zero di ordine 1 per g , allora

$$Res(f,z_0) = \frac{h(z_0)}{g'(z_0)}$$

Teorema 5.6: (dei Residui)

Sia f olomorfa sulla chiusura di Ω tranne che in un insieme di finito di punti $\{z_1,\ldots,z_k\}$ tutti contenuti in Ω . Allora :

$$\int_{\partial\Omega} f(z)dz = 2\pi i \sum_{j=1}^{k} Res(f, z_j)$$

Dimostrazione. Dato che ci sono un numero finito di singolarità dentro la chiusura di Omega , esiste un r>0 tale che i le palle di $B(z_j,r)\subseteq\Omega$ $B(z_j,r)\cap B(z_h,r)=\emptyset$ \forall $j,h=,\ldots,k$.

Inoltre definiamo $\gamma_j=\partial B(z_j,r)$ allora f
 è olomorfa su $\Omega\setminus\bigcup_j B(z_j,r)$, quindi per la formula integrale di Cauchy

$$\oint_{\Gamma} f(z)dz - \oint_{\gamma_1, \cup \dots \cup \gamma_k} f(z)dz = 0$$

$$\oint_{\Gamma} f(z)dz = \oint_{\gamma_1, \cup \dots \cup \gamma_k} f(z)dz$$

$$= \oint_{\gamma_1} f(z)dz + \dots + \oint_{\gamma_k} f(z)dz$$

$$Ora Res(f, z_0) = \frac{1}{2\pi i} \oint_{\partial D} f(z)dz$$

$$= 2\pi i \sum_{j=1}^k Res(f, z_j)$$

 \odot