Package 'Pursuit'

June 21, 2024

Type Package

Title Projection Pursuit				
Version 1.0.5				
Date 2024-06-21				
Imports graphics, grDevices, MASS, stats				
Description Projection pursuit (PP) with 17 methods and grand tour with 3 methods. Being that projection pursuit searches for low-dimensional linear projections in high-dimensional data structures, while grand tour is a technique used to explore multivariate statistical data through animation.				
License GPL-3				
Encoding UTF-8				
NeedsCompilation yes				
Author Paulo Cesar Ossani [aut, cre] (https://orcid.org/0000-0002-6617-8085), Marcelo Angelo Cirillo [aut] (https://orcid.org/0000-0002-2647-439X)				
Maintainer Paulo Cesar Ossani <ossanipc@hotmail.com></ossanipc@hotmail.com>				
Repository CRAN				
Date/Publication 2024-06-21 16:00:02 UTC				
Contents				
GrandTour LocLab Plot.PP PP_Index PP_Optimizer 1 Pursuit 1				
Index 1				

2 GrandTour

GrandTour	Animation technique Grand Tour.	

Description

Performs the exploration of the data through the technique of animation Grand Tour.

Usage

```
GrandTour(data, method = "Interpolation", title = NA, xlabel = NA,
    ylabel = NA, size = 1.1, grid = TRUE, color = TRUE, linlab = NA,
    class = NA, classcolor = NA, posleg = 2, boxleg = TRUE,
    axesvar = TRUE, axes = TRUE, numrot = 200, choicerot = NA,
    savptc = FALSE, width = 3236, height = 2000, res = 300)
```

Arguments

data	Numerical data set.
method	Method used for rotations: "Interpolation" - Interpolation method (default), "Torus" - Torus method, "Pseudo" - Pseudo Grand Tour method.
title	Titles of the graphics, if not set, assumes the default text.
xlabel	Names the X axis, if not set, assumes the default text.
ylabel	Names the Y axis, if not set, assumes the default text.
size	Size of the points in the graphs.
grid	Put grid on graphs (default = TRUE).
color	Colored graphics (default = TRUE).
linlab	Vector with the labels for the observations.
class	Vector with names of data classes.
classcolor	Vector with the colors of the classes.
posleg	 0 with no caption, 1 for caption in the left upper corner, 2 for caption in the right upper corner (default), 3 for caption in the right lower corner, 4 for caption in the left lower corner.
boxleg	Puts the frame in the caption (default = TRUE).
axesvar	Puts axes of rotation of the variables (default = TRUE).
axes	Plots the X and Y axes (default = $TRUE$).
numrot	Number of rotations (default = 200). If method = "Interpolation", numrot represents the angle of rotation.

GrandTour 3

choicerot Choose specific rotation and display on the screen, or save the image if savptc =

TRUE.

savptc Saves graphics images to files (default = FALSE).

width Graphics images width when savptc = TRUE (defaul = 3236).

height Graphics images height when savptc = TRUE (default = 2000).

res Nominal resolution in ppi of the graphics images when savptc = TRUE (default

= 300).

Value

Graphs with rotations.

proj.data Projected data.

vector.opt Vector projection.

method method used on Grand Tour.

Author(s)

Paulo Cesar Ossani

Marcelo Angelo Cirillo

References

ASIMOV, D. The Grand Tour: A Tool for Viewing Multidimensional data. SIAM Journal of Scientific and Statistical Computing, 6(1), 128-143, 1985.

ASIMOV, D.; BUJA, A. The grand tour via geodesic interpolation of 2-frames. in Visual data Exploration and Analysis. *Symposium on Electronic Imaging Science and Technology*, IS&T/SPIE. 1994.

BUJA, A.; ASIMOV, D. Grand tour methods: An outline. *Computer Science and Statistics*, 17:63-67. 1986.

BUJA, A.; COOK, D.; ASIMOV, D.; HURLEY, C. Computational methods for High-Dimensional Rotations in data Visualization, in C. R. Rao, E. J. Wegman & J. L. Solka, eds, "Handbook of Statistics: data Mining and Visualization", Elsevier/North Holland, http://www.elsevier.com, pp. 391-413. 2005.

HURLEY, C.; BUJA, A. Analyzing high-dimensional data with motion graphics, *SIAM Journal of Scientific and Statistical Computing*, 11 (6), 1193-1211. 1990.

MARTINEZ, W. L., MARTINEZ, A. R., SOLKA, J.; *Exploratory data Analysis with MATLAB*, 2th. ed. New York: Chapman & Hall/CRC, 2010. 499 p.

YOUNG, F. W.; RHEINGANS P. Visualizing structure in high-dimensional multivariate data, *IBM Journal of Research and Development*, 35:97-107, 1991.

YOUNG, F. W.; FALDOWSKI R. A.; McFARLANE M. M. Multivariate statistical visualization, in Handbook of Statistics, Vol 9, C. R. Rao (ed.), The Netherlands: Elsevier Science Publishers, 959-998, 1993.

4 LocLab

Examples

```
data(iris) # database
res <- GrandTour(iris[,1:4], method = "Torus", title = NA, xlabel = NA, ylabel = NA,
                 color = TRUE, linlab = NA, class = NA, posleg = 2, boxleg = TRUE,
                 axesvar = TRUE, axes = FALSE, numrot = 10, choicerot = NA,
                 savptc = FALSE, width = 3236, height = 2000, res = 300)
print("Projected data:"); res$proj.data
print("Projection vectors:"); res$vector.opt
print("Grand Tour projection method:"); res$method
res <- GrandTour(iris[,1:4], method = "Interpolation", title = NA, xlabel = NA, ylabel = NA,
                 color = TRUE, linlab = NA, posleg = 2, boxleg = FALSE, axesvar = FALSE,
                 axes = FALSE, numrot = 10, choicerot = NA, class = iris[,5],
                 classcolor = c("goldenrod3", "gray53", "red"), savptc = FALSE,
                 width = 3236, height = 2000, res = 300)
print("Projected data:"); res$proj.data
print("Projection vectors:"); res$vector.opt
print("Grand Tour projection method:"); res$method
```

LocLab

Function for better position of the labels in the graphs.

Description

Function for better position of the labels in the graphs.

Usage

```
LocLab(x, y = NULL, labels = seq(along = x), cex = 1,
    method = c("SANN", "GA"), allowSmallOverlap = FALSE,
    trace = FALSE, shadotext = FALSE,
    doPlot = TRUE, ...)
```

Arguments

x Coordinate x
y Coordinate y
labels The labels
cex cex
method Not used
allowSmallOverlap
Boolean

Plot.PP 5

trace	Boolean
shadotext	Boolean
doPlot	Boolean

... Other arguments passed to or from other methods

Value

See the text of the function.

Plot.PP	Graphics of the Projection Pursuit (PP).	

Description

Graphics of the Projection Pursuit (PP).

Usage

```
Plot.PP(PP, titles = NA, xlabel = NA, ylabel = NA, posleg = 2, boxleg = TRUE, size = 1.1, grid = TRUE, color = TRUE, classcolor = NA, linlab = NA, axesvar = TRUE, axes = TRUE, savptc = FALSE, width = 3236, height = 2000, res = 300, casc = TRUE)
```

Arguments

PP	Data of the PP_Optimizer function.
titles	Titles of the graphics, if not set, assumes the default text.
xlabel	Names the X axis, if not set, assumes the default text.
ylabel	Names the Y axis, if not set, assumes the default text.
posleg	0 with no caption, 1 for caption in the left upper corner, 2 for caption in the right upper corner (default), 3 for caption in the right lower corner, 4 for caption in the left lower corner.
boxleg	Puts the frame in the caption (default = TRUE).
size	Size of the points in the graphs.
grid	Put grid on graphs (default = TRUE).
color	Colored graphics (default = TRUE).
classcolor	Vector with the colors of the classes.
linlab	Vector with the labels for the observations.
axesvar	Puts axes of rotation of the variables, only when dimproj > 1 (default = TRUE).
axes	Plots the X and Y axes (default = $TRUE$).

6 Plot.PP

savptc	Saves graphics images to files (default = FALSE).
width	Graphics images width when savptc = TRUE (defaul = 3236).
height	Graphics images height when savptc = TRUE (default = 2000).
res	Nominal resolution in ppi of the graphics images when savptc = TRUE (default = 300).
casc	Cascade effect in the presentation of the graphics (default = TRUE).

Value

Graph of the evolution of the indices, and graphs whose data were reduced in two dimensions.

Author(s)

Paulo Cesar Ossani Marcelo Angelo Cirillo

See Also

```
PP_Optimizer and PP_Index
```

Examples

```
data(iris) # dataset
# Example 1 - Without the classes in the data
data <- iris[,1:4]
findex <- "kurtosismax" # index function</pre>
dim <- 1 # dimension of data projection</pre>
sphere <- TRUE # spherical data</pre>
res <- PP_Optimizer(data = data, class = NA, findex = findex,</pre>
                     optmethod = "GTSA", dimproj = dim, sphere = sphere,
                     weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
                     eps = 1e-3, maxiter = 500, half = 30)
Plot.PP(res, titles = NA, posleg = 1, boxleg = FALSE, color = TRUE,
        linlab = NA, axesvar = TRUE, axes = TRUE, savptc = FALSE,
        width = 3236, height = 2000, res = 300, casc = FALSE)
# Example 2 - With the classes in the data
class <- iris[,5] # data class</pre>
res <- PP_Optimizer(data = data, class = class, findex = findex,</pre>
                     optmethod = "GTSA", dimproj = dim, sphere = sphere,
                    weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
                     eps = 1e-3, maxiter = 500, half = 30)
```

PP_Index 7

```
tit <- c(NA, "Graph example") # titles for the graphics
Plot.PP(res, titles = tit, posleg = 1, boxleg = FALSE, color = TRUE,
        classcolor = c("blue3","red","goldenrod3"), linlab = NA,
        axesvar = TRUE, axes = TRUE, savptc = FALSE, width = 3236,
        height = 2000, res = 300, casc = FALSE)
# Example 3 - Without the classes in the data, but informing
              the classes in the plot function
res <- PP_Optimizer(data = data, class = NA, findex = "Moment",
                    optmethod = "GTSA", dimproj = 2, sphere = sphere,
                    weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
                    eps = 1e-3, maxiter = 500, half = 30)
lin <- c(rep("a",50),rep("b",50),rep("c",50)) # data class</pre>
Plot.PP(res, titles = NA, posleg = 1, boxleg = FALSE, color = TRUE,
        linlab = lin, axesvar = TRUE, axes = TRUE, savptc = FALSE,
        width = 3236, height = 2000, res = 300, casc = FALSE)
# Example 4 - With the classes in the data, but not informed in plot function
class <- iris[,5] # data class</pre>
dim <- 2 # dimension of data projection
findex <- "lda" # index function</pre>
res <- PP_Optimizer(data = data, class = class, findex = findex,
                    optmethod = "GTSA", dimproj = dim, sphere = sphere,
                    weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
                    eps = 1e-3, maxiter = 500, half = 30)
tit <- c("",NA) # titles for the graphics
Plot.PP(res, titles = tit, posleg = 1, boxleg = FALSE, color = TRUE,
        linlab = NA, axesvar = TRUE, axes = TRUE, savptc = FALSE,
        width = 3236, height = 2000, res = 300, casc = FALSE)
```

PP_Index

Function to find the Projection Pursuit indexes (PP).

Description

Function used to find Projection Pursuit indexes (PP).

PP_Index

Usage

Arguments

data Numeric dataset without class information.

class Vector with names of data classes.

vector.proj Vector projection.

findex Projection index function to be used:

"Ida" - LDA index, "pda" - PDA index, "lr" - Lr index,

"holes" - Holes index (default), "cm" - Central Mass index,

"pca" - PCA index,

"friedmantukey" - Friedman Tukey index,

"entropy" - Entropy index, "legendre" - Legendre index,

"laguerrefourier" - Laguerre Fourier index,

"hermite" - Hermite index,

"naturalhermite" - Natural Hermite index, "kurtosismax" - Maximum kurtosis index, "kurtosismin" - Minimum kurtosis index,

"moment" - Moment index,

"mf" - MF index,

"chi" - Chi-square index.

dimproj Dimension of data projection (default = 2).

weight Used in index LDA, PDA and Lr to weight the calculations for the number of

elements in each class (default = TRUE).

lambda Used in the PDA index (default = 0.1).

r Used in the Lr index (default = 1).

ck Internal use of the CHI index function.

Value

num.class Number of classes.

class.names Class names.

findex Projection index function used.

vector.proj Projection vectors found.

index Projection index found in the process.

PP_Index 9

Author(s)

Paulo Cesar Ossani

Marcelo Angelo Cirillo

References

OSSANI, P. C.; FIGUEIRA, M. R.; CIRILLO, M. A. Proposition of a new index for projection pursuit in the multiple factor analysis. *Computational and Mathematical Methods*, v. 1, p. 1-18, 2020.

COOK, D., BUJA, A., CABRERA, J.. Projection pursuit indexes based on orthonormal function expansions. *Journal of Computational and Graphical Statistics*, 2(3):225-250, 1993.

COOK, D., BUJA, A., CABRERA, J., HURLEY, C.. Grand tour and projection pursuit, *Journal of Computational and Graphical Statistics*, 4(3), 155-172, 1995.

COOK, D., SWAYNE, D. F.. Interactive and Dynamic Graphics for data Analysis: With R and GGobi. Springer. 2007.

ESPEZUA, S., VILLANUEVA, E., MACIEL, C.D., CARVALHO, A.. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. *Neurocomputing*, 149, 767-776, 2015.

FRIEDMAN, J. H., TUKEY, J. W. A projection pursuit algorithm for exploratory data analysis. *IEEE Transaction on Computers*, 23(9):881-890, 1974.

HASTIE, T., BUJA, A., TIBSHIRANI, R.: Penalized discriminant analysis. *The Annals of Statistics*. 23(1), 73-102. 1995.

HUBER, P. J.. Projection pursuit. Annals of Statistics, 13(2):435-475, 1985.

JONES, M. C., SIBSON, R.. What is projection pursuit, (with discussion), *Journal of the Royal Statistical Society*, Series A 150, 1-36, 1987.

LEE, E. K., COOK, D.. A projection pursuit index for large p small n data. *Statistics and Computing*, 20(3):381-392, 2010.

LEE, E., COOK, D., KLINKE, S., LUMLEY, T.. Projection pursuit for exploratory supervised classification. *Journal of Computational and Graphical Statistics*, 14(4):831-846, 2005.

MARTINEZ, W. L., MARTINEZ, A. R.; *Computational Statistics Handbook with MATLAB*, 2th. ed. New York: Chapman & Hall/CRC, 2007. 794 p.

MARTINEZ, W. L., MARTINEZ, A. R., SOLKA, J.; *Exploratory data Analysis with MATLAB*, 2th. ed. New York: Chapman & Hall/CRC, 2010. 499 p.

PENA, D., PRIETO, F.. Cluster identification using projections. *Journal of the American Statistical Association*, 96(456):1433-1445, 2001.

POSSE, C.. Projection pursuit exploratory data analysis, *Computational Statistics and data Analysis*, 29:669-687, 1995a.

POSSE, C.. Tools for two-dimensional exploratory projection pursuit, *Journal of Computational and Graphical Statistics*, 4:83-100, 1995b.

See Also

PP_Optimizer and Plot.PP

10 PP_Optimizer

Examples

```
data(iris) # data set
data <- iris[,1:4]
# Example 1 - Without the classes in the data
ind <- PP_Index(data = data, class = NA, vector.proj = NA,</pre>
                findex = "moment", dimproj = 2, weight = TRUE,
                lambda = 0.1, r = 1)
print("Number of classes:"); ind$num.class
print("class Names:"); ind$class.names
print("Projection index function:"); ind$findex
print("Projection vectors:"); ind$vector.proj
print("Projection index:"); ind$index
# Example 2 - With the classes in the data
class <- iris[,5] # data class</pre>
findex <- "pda" # index function</pre>
sphere <- TRUE # spherical data
res <- PP_Optimizer(data = data, class = class, findex = findex,</pre>
                    optmethod = "SA", dimproj = 2, sphere = sphere,
                    weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
                    eps = 1e-3, maxiter = 1000, half = 30)
# Comparing the result obtained
if (match(toupper(findex),c("LDA", "PDA", "LR"), nomatch = 0) > 0) {
 if (sphere) {
     data <- apply(predict(prcomp(data)), 2, scale) # spherical data</pre>
} else data <- as.matrix(res$proj.data[,1:Dim])</pre>
ind <- PP_Index(data = data, class = class, vector.proj = res$vector.opt,</pre>
                findex = findex, dimproj = 2, weight = TRUE, lambda = 0.1,
                r = 1
print("Number of classes:"); ind$num.class
print("class Names:"); ind$class.names
print("Projection index function:"); ind$findex
print("Projection vectors:"); ind$vector.proj
print("Projection index:"); ind$index
print("Optimized Projection index:"); res$index[length(res$index)]
```

PP_Optimizer 11

Description

Optimization function of the Projection Pursuit index (PP).

Usage

Arguments

data Numeric dataset without class information.

class Vector with names of data classes.
findex Projection index function to be used:

"lda" - LDA index, "pda" - PDA index, "lr" - Lr index,

"holes" - Holes index (default), "cm" - Central Mass index,

"pca" - PCA index,

"friedmantukey" - Friedman Tukey index,

"entropy" - Entropy index,
"legendre" - Legendre index,

"laguerrefourier" - Laguerre Fourier index,

"hermite" - Hermite index,

"naturalhermite" - Natural Hermite index, "kurtosismax" - Maximum kurtosis index, "kurtosismin" - Minimum kurtosis index,

"moment" - Moment index,

"mf" - MF index,

"chi" - Chi-square index.

dimproj Dimension of the data projection (default = 2).

sphere Spherical data (default = TRUE).

optmethod Optimization method GTSA - Grand Tour Simulated Annealing or SA - Simu-

lated Annealing (default = "GTSA").

weight Used in index LDA, PDA and Lr to weight the calculations for the number of

elements in each class (default = TRUE).

lambda Used in the PDA index (default = 0.1).

r Used in the Lr index (default = 1).

cooling Cooling rate (default = 0.9).

eps Approximation accuracy for cooling (default = 1e-3).

maxiter Maximum number of iterations of the algorithm (default = 3000).

half Number of steps without incrementing the index, then decreasing the cooling

value (default = 30).

PP_Optimizer

Value

num.class Number of classes.
class.names Class names.
proj.data Projected data.

vector.opt Projection vectors found.

index Vector with the projection indices found in the process, converging to the maxi-

mum, or the minimum.

findex Projection index function used.

Author(s)

Paulo Cesar Ossani Marcelo Angelo Cirillo

References

COOK, D., LEE, E. K., BUJA, A., WICKHAM, H.. Grand tours, projection pursuit guided tours and manual controls. In Chen, Chunhouh, Hardle, Wolfgang, Unwin, e Antony (Eds.), *Handbook of data Visualization*, Springer Handbooks of Computational Statistics, chapter III.2, p. 295-314. Springer, 2008.

LEE, E., COOK, D., KLINKE, S., LUMLEY, T.. Projection pursuit for exploratory supervised classification. *Journal of Computational and Graphical Statistics*, 14(4):831-846, 2005.

See Also

```
Plot.PP and PP_Index
```

Examples

Pursuit 13

```
print("class Names:"); res$class.names
print("Projection index function:"); res$findex
print("Projected data:"); res$proj.data
print("Projection vectors:"); res$vector.opt
print("Projection index:"); res$index
# Example 2 - With the classes in the data
class <- iris[,5] # classe dos dados</pre>
res <- PP_Optimizer(data = data, class = class, findex = findex,</pre>
                    optmethod = "GTSA", dimproj = dim, sphere = sphere,
                    weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
                    eps = 1e-3, maxiter = 1000, half = 30)
print("Number of classes:"); res$num.class
print("class Names:"); res$class.names
print("Projection index function:"); res$findex
print("Projected data:"); res$proj.data
print("Projection vectors:"); res$vector.opt
print("Projection index:"); res$index
```

Pursuit

Projection Pursuit

Description

Projection pursuit (PP) with 17 methods and grand tour with 3 methods. Being that projection pursuit searches for low-dimensional linear projections in high-dimensional data structures, while grand tour is a technique used to explore multivariate statistical data through animation.

Details

Package: Pursuit
Type: Package
Version: 1.0.4
Date: 2023-08-19
License: GPL(>= 2)
LazyLoad: yes

Author(s)

Paulo Cesar Ossani and Marcelo Angelo Cirillo.

Maintainer: Paulo Cesar Ossani <ossanipc@hotmail.com>

Pursuit Pursuit

References

ASIMOV, D. The Grand Tour: A Tool for Viewing Multidimensional Data. *SIAM Journal of Scientific and Statistical Computing*, 6(1), 128-143, 1985.

ASIMOV, D.; BUJA, A. The grand tour via geodesic interpolation of 2-frames. in Visual Data Exploration and Analysis. *Symposium on Electronic Imaging Science and Technology*, IS&T/SPIE. 1994.

BUJA, A.; ASIMOV, D. Grand tour methods: An outline. *Computer Science and Statistics*, 17:63-67. 1986.

BUJA, A.; COOK, D.; ASIMOV, D.; HURLEY, C. Computational Methods for High-Dimensional Rotations in Data Visualization, in C. R. Rao, E. J. Wegman & J. L. Solka, eds, "Handbook of Statistics: Data Mining and Visualization", Elsevier/North Holland, http://www.elsevier.com, pp. 391-413. 2005.

COOK, D., LEE, E. K., BUJA, A., WICKHAM, H.. Grand tours, projection pursuit guided tours and manual controls. In Chen, Chunhouh, Hardle, Wolfgang, Unwin, e Antony (Eds.), *Handbook of Data Visualization*, Springer Handbooks of Computational Statistics, chapter III.2, p. 295-314. Springer, 2008.

COOK, D., BUJA, A., CABRERA, J.. Projection pursuit indexes based on orthonormal function expansions. *Journal of Computational and Graphical Statistics*, 2(3):225-250, 1993.

COOK, D., BUJA, A., CABRERA, J., HURLEY, C.. Grand tour and projection pursuit, *Journal of Computational and Graphical Statistics*, 4(3), 155-172, 1995.

COOK, D., SWAYNE, D. F.. Interactive and Dynamic Graphics for Data Analysis: With R and GGobi. Springer. 2007.

ESPEZUA, S., VILLANUEVA, E., MACIEL, C.D., CARVALHO, A.. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. *Neurocomputing*, 149, 767-776, 2015.

FRIEDMAN, J. H., TUKEY, J. W. A projection pursuit algorithm for exploratory data analysis. *IEEE Transaction on Computers*, 23(9):881-890, 1974.

HASTIE, T., BUJA, A., TIBSHIRANI, R.: Penalized discriminant analysis. *The Annals of Statistics*. 23(1), 73-102. 1995.

HUBER, P. J.. Projection pursuit. Annals of Statistics, 13(2):435-475, 1985.

HURLEY, C.; BUJA, A. Analyzing high-dimensional data with motion graphics, *SIAM Journal of Scientific and Statistical Computing*, 11 (6), 1193-1211. 1990.

JONES, M. C., SIBSON, R.. What is projection pursuit, (with discussion), *Journal of the Royal Statistical Society*, Series A 150, 1-36, 1987.

LEE, E., COOK, D., KLINKE, S., LUMLEY, T.. Projection pursuit for exploratory supervised classification. *Journal of Computational and Graphical Statistics*, 14(4):831-846, 2005.

LEE, E. K., COOK, D.. A projection pursuit index for large p small n data. *Statistics and Computing*, 20(3):381-392, 2010.

MARTINEZ, W. L., MARTINEZ, A. R.; *Computational Statistics Handbook with MATLAB*, 2th. ed. New York: Chapman & Hall/CRC, 2007. 794 p.

MARTINEZ, W. L., MARTINEZ, A. R., SOLKA, J.; *Exploratory Data Analysis with MATLAB*, 2th. ed. New York: Chapman & Hall/CRC, 2010. 499 p.

Pursuit 15

PENA, D., PRIETO, F.. Cluster identification using projections. *Journal of the American Statistical Association*, 96(456):1433-1445, 2001.

POSSE, C.. Projection pursuit exploratory data analysis, *Computational Statistics and Data Analysis*, 29:669-687, 1995a.

POSSE, C.. Tools for two-dimensional exploratory projection pursuit, *Journal of Computational and Graphical Statistics*, 4:83-100, 1995b

YOUNG, F. W.; RHEINGANS P. Visualizing structure in high-dimensional multivariate data, *IBM Journal of Research and Development*, 35:97-107, 1991.

YOUNG, F. W.; FALDOWSKI R. A.; McFARLANE M. M. Multivariate statistical visualization, in Handbook of Statistics, Vol 9, C. R. Rao (ed.), The Netherlands: Elsevier Science Publishers, 959-998, 1993.

Index

```
* Grand Tour
GrandTour, 2
* PP
PP_Optimizer, 10
* Projection Pursuit
Pursuit, 13
* Projection pursuit
PP_Optimizer, 10

GrandTour, 2

LocLab, 4

Plot.PP, 5, 9, 12

PP_Index, 6, 7, 12

PP_Optimizer, 6, 9, 10

Pursuit, 13
```