UNIVERSITY^{OF} BIRMINGHAM

School of Computer Science EVALUATION METHODS AND STATISTICS

Prof. Chris Baber
Chair of Pervasive and Ubiquitous Computing

Stroop Data (again): are the distributions different?

Testing for Differences in Means

☐ If the sample mean difference is greater than we expect then

 □ We have, by chance, collected samples that are not typical of the population

Or

The two samples are from different populations

t-distribution

- □ Assume that samples are drawn from a normal distribution
- A t-distribution is symmetrical but with more scores in the tails (leptokurtic)
- □ Developed by W.S. Gosset in 1908, working at the Guinness brewery in Dublin
- □ 'Hypothesis test statistic'
- □ Published under pseudonym 'student'
- A t-distribution is defined as a measure of central tendency divided by a measure of spread.

$$t = \frac{m - \mu}{\sqrt{\frac{S^2}{N}}}$$

$$\mu = 0, m = \text{mean of D}$$
tributions, so we define the form required for a distribution

- □ There are numerous t-distributions, so we define the form required for a specific analysis by the degrees of freedom of a distribution.
- □ The areas under the normal distribution curve are calculated in terms of t rather than z values, e.g., 95% confidence interval is z = 1.96 but t = 2.045

UNIVERSITY OF BIRMINGHAM

Types of t-test

- Dependent means / Paired Samples
 - Each participant completes all conditions
- Independent Samples
 - Different participants are allocated to each condition

What is the differences (between the reaction time for the congruent and incongruent conditions)?

Central Tendency and Distribution

- □ We can assume that the histogram shows that difference, D, follows a normal distribution
- □ So, we can calculate central tendency as the mean
- \square If the null hypothesis is true, the mean = 0
- □ We don't (as yet) know the spread, i.e., variance, of the population.
- □ But, we assume that the population variance is the same as the sample variance.

t-statistic (paired samples)

$$t = \frac{(\sum D)/N}{\sum D^2 - \left(\frac{(\sum D)^2}{N}\right)}$$

$$\sqrt{(N-1)(N)}$$

D = difference between trials;

N = number of samples

$Data\ Set\ \ (\text{adapted from the source data to be small enough to work by hand})$

IncW	ConW
1087	806
1099	709
1086	935
1548	1004
1616	1225
1855	1391
1667	1051
1231	917
1306	1216
896	1548
1472	840
1008	640
1023	752
1056	815
1040	800
1548	736

In this experiment, participants completed both conditions.

Each row represents one person's mean reaction time for Incongruent words (different colour ink and word) and Congruent words (same colour ink and word)

1. Calculate difference in time for each condition

	IncW	ConW	Diff
	1087	806	
	1099	709	
	1086	935	
	1548	1004	
	1616	1225	
	1855	1391	
	1667	1051	
	1231	917	
	1306	1216	
	896	1548	
	1472	840	
	1008	640	
	1023	752	
	1056	815	
	1040	800	
	1548	736	
$Sum(\Sigma)$			

1. Calculate difference in time for each condition

	IncW	ConW	Diff
			281
	1087	806	
	1099	709	390
	1086	935	151
	1548	1004	544
	1616	1225	391
	1855	1391	464
	1667	1051	616
	1231	917	314
	1306	1216	90
	896	1548	-652
	1472	840	632
	1008	640	368
	1023	752	271
	1056	815	241
	1040	800	240
	1548	736	812
$Sum(\Sigma)$			

2. Sum differences and Square the product

	IncW	ConW	Diff
	1087	806	281
	1099	709	390
	1086	935	151
	1548	1004	544
	1616	1225	391
	1855	1391	464
	1667	1051	616
	1231	917	314
	1306	1216	90
	896	1548	-652
	1472	840	632
	1008	640	368
	1023	752	271
	1056	815	241
	1040	800	240
	1548	736	812
$Sum(\Sigma)$			5153
$(\Sigma D)^2$			26553409

3. Square the differences

	IncW	ConW	Diff	Diff^2
	1087	806	281	
	1099	709	390	
	1086	935	151	
	1548	1004	544	
	1616	1225	391	
	1855	1391	464	
	1667	1051	616	
	1231	917	314	
	1306	1216	90	
	896	1548	-652	
	1472	840	632	
	1008	640	368	
	1023	752	271	
	1056	815	241	
	1040	800	240	
	1548	736	812	
$Sum(\Sigma)$			5153	
$(\Sigma D)^2$			26553409	

3. Square the differences

	IncW	ConW	Diff	Diff^2
	1087	806	281	78961
	1099	709	390	152100
	1086	935	151	22801
	1548	1004	544	295936
	1616	1225	391	152881
	1855	1391	464	215296
	1667	1051	616	379456
	1231	917	314	98596
	1306	1216	90	8100
	896	1548	-652	425104
	1472	840	632	399424
	1008	640	368	135424
	1023	752	271	73441
	1056	815	241	58081
	1040	800	240	57600
	1548	736	812	659344
$Sum(\Sigma)$			5153	
$(\Sigma D)^2$			26553409	

4. Sum the Squares

	IncW	ConW	Diff	Diff^2
	IIICVV	COLLAN		
	1087	806	281	78961
	1099	709	390	152100
	1086	935	151	22801
	1548	1004	544	295936
	1616	1225	391	152881
	1855	1391	464	215296
	1667	1051	616	379456
	1231	917	314	98596
	1306	1216	90	8100
	896	1548	-652	425104
	1472	840	632	399424
	1008	640	368	135424
	1023	752	271	73441
	1056	815	241	58081
	1040	800	240	57600
	1548	736	812	659344
$Sum(\Sigma)$			5153	
$(\Sigma D)^2$			26553409	

4. Sum the Squares

	IncW	ConW	Diff	Diff^2
	1087	806	281	78961
	1099	709	390	152100
	1086	935	151	22801
	1548	1004	544	295936
	1616	1225	391	152881
	1855	1391	464	215296
	1667	1051	616	379456
	1231	917	314	98596
	1306	1216	90	8100
	896	1548	-652	425104
	1472	840	632	399424
	1008	640	368	135424
	1023	752	271	73441
	1056	815	241	58081
	1040	800	240	57600
	1548	736	812	659344
$Sum(\Sigma)$			5153	3212545
$(\Sigma D)^2$			26553409	

4. Calculate t-statistic (paired samples)

$$t = \frac{(\sum D)/N}{\sum D^2 - \left(\frac{(\sum D)^2}{N}\right)}$$

$$\sqrt{\frac{(N-1)(N)}{N}}$$

4. Calculate t-statistic

$$t = \frac{(\sum D)/N}{\sum D^2 - \left(\frac{(\sum D)^2}{N}\right)}$$

$$\sqrt{(N-1)(N)}$$

$$t = \frac{5153/16}{3212545 - (\frac{26553409}{16})} \sqrt{\frac{16 - 1)(16)}{16}}$$

$$t = 4.00741909$$

5. Use t-table to check significance

- For 95% confidence interval, $\alpha = 0.05$
- D.F. (degrees of freedom) = N-1 = 15
- From the t-table, t should be >2.131
- The calculated t = 4.007, is larger than the value in the table
- Therefore, we reject the null hypothesis and state that the difference between the mean reaction times in these data is less than 5% likely to occur by chance.
- We write the result as t(15) = 4.007,
 p<0.05

Tw	Two Tails T Distribution Table						
DF	A = 0.2	0.10	0.05	0.02	0.01	0.002	0.001
00	t _a = 1.282	1.645	1.960	2.326	2.576	3.091	3.291
1	3.078	6.314	12.706	31.821	63.656	318.289	636.578
2	1.886	2.920	4.303	6.965	9.925	22.328	31.600
3	1.638	2.353	3.182	4.541	5.841	10.214	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.894	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850

Is this is a 'good' result?

- □ We consider the generalisability of the result by its Effect Size
- Effect size indicates the size of the difference between samples independent of sample size
 - This could relate to proportion of explained variance, e.g., using R² or (partial) eta squared
 - Or could relate to difference in averages, e.g., using Cohen's d

	Small	Medium	Large	Very large
R^2	1%	9%	25%	
Partial eta ²	0.02	0.13	0.26	
d	0.2	0.5	0.8	>1

Here is a nice paper about Effect Size:

https://www.leeds.ac.uk/educol/documents/00002182.htm

Here is an online calculator for Effect size:

https://www.ai-therapy.com/psychology-statistics/effect-size-calculator

Power and Effect Size

- Power is the probability that the study produces significant difference between groups when a difference actually exits. Power is 1-β, and relates to Type II error.
- □ Power relies on sample size and effect size.
- □ Effect size is the magnitude of difference between groups.

Paired t-test effect size

- □ There are several formulae, I prefer Cohen's *d*...
 - For a paired t-test...

$$d = \frac{|m_1 - m_2|}{\sqrt{{s_1}^2 + {s_2}^2 - (2rs_1s_2)}}$$
 where r is the correlation coefficient between groups

For this dataset, r = 0.3277 (we'll calculate this in a later lecture)

So, the Effect size for this result is 1.001

(meaning that the difference is larger than 1 standard deviation)

Explore the data set in R

- □ Copy the data on slide 8 into a spreadsheet, such as Excel and save as .txt or .tsv
- ☐ In R user interface: File Import dataset From text...

```
>Attach (stroop)
```

- >stroop <-data.frame(IncW, ConW)
- >hist(IncW)
- >hist(ConW)
- > t.test(Incw, ConW, paired=TRUE, conf.level=0.95)

Paired t-test data: IncW and ConW (assuming null hypothesis, $\mu = 0$)

t = 4.0037, df = 15, p-value = 0.001151

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

150.6079

493.5171

sample estimates:

mean of the differences 322.0625

Calculating Power in R

□ Note...Different tests calculate Power in different ways...t-tests use Pwr.t.test (n = , d = , sig.level = , power = , type = c("two.sample", "one.sample", "paired"))

☐ For Paired t-test, we take the mean for each group...

```
> mean(IncW)
[1] 1293.625
> mean(ConW)
[1] 961.562
```

□ ...and we need to hypothesise a difference to detect (let's say 200) and the power that we wish to use (let's say, .8)

```
> library(pwr)
> pwr.t.test(d=(1283.625-961.5625)/200, power=0.8,sig.level=0.05, type
="paired",alternative="two.sided")
```

Paired t test power calculation

```
n = 5.242336
d = 1.610313
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number of *pairs*
```

We can explore this further...

- □ When we set the difference to 500, Cohen's d = 0.64, n = 20.9 (or 21)
- □ If we see beta to .95 (and keep difference at 200), d = 1.61, n = 7.2 (7)
- □ And beta .95, d = 500, d= 0.64, n = 33.3 (33)
- □ Where n = participants in paired (repeated measures) design

Independent t-test

- □ Participants are assigned to only one trial
- If you have the same number of participants per trial (equal sample sizes):

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\left(\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}\right)}}$$

Cohen's d for independent samples

$$d = \frac{|m_1 - m_2|}{pooled\ variance}$$

$$pooled \ variance = \sqrt{\left(\frac{(s_1^2 + s_2^2)}{2}\right)}$$

- □ Why you don't use this for paired samples
 - The effect size assumes a differences between sets of independent scores
 - The paired t-test corrects for correlation, r, into account to correct for pooled variance

Calculating an Odds Ratio

- An odds ratio indicates the strength of effect for one condition relative to another
- We are calculating the probability of a result given condition and contrasting this with a the probability of a contrasting result
- □ The 'odds' are the likelihood an event, or p(e) / 1-p(e)
- □ So, we need to describe our experiment in a 2 x 2 matrix
- \Box Odd Ratio = (a*d) / (b*c)

DV	IV1	IV2
i	Α	В
ii	С	D

A Cautionary tale – or completely made-up example

- In a class of 60 students, 37 regularly attended lectures and 23 did not
- □ Of the regular attenders: 32 passed the exam and 5 failed
- Of the non-attenders, 6 passed the exam and 17 failed
- \square Odds ratio = (17*32) / (5*6) = 18.13
- □ So, 18.13 more likely to pass exams if you attend lectures

	No lectures	Lectures	
fail	17	5	22
pass	6	32	38
	23	37	

UNIVERSITY OF BIRMINGHAM