RNN Overview - 2

Encoder-Decoder and Attention

2021. 4. 21 Dajin Han

Index

Encoder and Decoder

Attention Mechanism

References

Encoder and Decoder

Sequence to sequence

SMT

Statistical Machine Translation

Translator

For each phrase, the probability of corresponding sentences is calculated

Mathematical method

Encoder and Decoder

- Application of Simple RNN concepts
- Translator (SMT)
- Encoder: convert input sequence to vector
- Decoder: convert vector to output sequence
- Sequence to Sequence (seq2seq)

Standard Structure

Standard Structure

Teaching forcing

- 1. Prediction of cell at the current time is also likely to go wrong.
- 2. A chain reaction makes it difficult to predict the entire decoder.
- 3. This leads to longer training time.

Encoder and Decoder

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Two RNN Models: Encoder and Decoder -> Using GRU

Input: Variable length vector C: fixed length Output: Variable length

Decoder Encoder

$$p(y_1,\ldots,y_{T'}\mid x_1,\ldots,x_T)$$

Learning Probability Distribution

Decoder

$$\mathbf{h}_{< t>} = f(\mathbf{h}_{< t-1>}, y_{t-1}, \mathbf{c})$$

$$\mathbf{h}_{< t>} = f(\mathbf{h}_{< t-1>}, x_t)$$

Decoder

Encoder

$$p(y_t|y_{t-1},y_{t-2},\ldots,y_1,\mathbf{c}) = g(\mathbf{h}_{< t>},y_{t-1},\mathbf{c})$$

13

$$\max_{ heta} rac{1}{N} \sum_{n=1}^N \log p_{ heta}(\mathbf{y}_n | \mathbf{x}_n)$$

(**x**,**y**) is pair of input and output sequence of training data

Encoder and Decoder Results

Models	BLEU	
	dev	test
Baseline	30.64	33.30
RNN	31.20	33.87
CSLM + RNN	31.48	34.64
CSLM + RNN + WP	31.50	34.54

Seq2seq

Sequence to Sequence with Neural Network

Seq2seq Structure

Seq2seq Structure

- 1. With LSTM
- 2. Reversing the source sentence

Seq2seq Results

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Attention Mechanism

Improve accuracy of seq2seq model

Concept of Attention

Attention(Q, K, V) = Attention Value

Query: t 시점의 디코더 셀에서의 은닉 상태 Keys: 모든 시점의 인코더 셀의 은닉 상태들

Values : 모든 시점의 인코더 셀의 은닉 상태들

Assist seq2seq model

1. Get Attention Scores

similarity determination

$$score(s_t, h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

2. Get Attention Distribution via softmax function

$$\alpha^t = softmax(e^t)$$

3. Get Attention Value via weighted sum

$$a_t = \sum_{i=1}^N lpha_i^t h_i$$

Context Vector

4. Concatenate attention value and hidden state at the time t

Concatenated vector is used for input

Various Attentions

이름	스코어 함수
dot	$score(s_t,\ h_i) = s_t^T h_i$
$scaled\ dot$	$score(s_t,\ h_i) = rac{s_t^T h_i}{\sqrt{n}}$
general	$score(s_t,\ h_i) = s_t^T W_a h_i \ //\ ext{단},\ W_a$ 는 학습 가능한 가중치 행렬
concat	$score(s_t,\ h_i) = v_a^T\ tanh(W_a[s_t;h_i])$
location-base	$lpha_t = softmax(W_a s_t) \mathbin{//} lpha_t$ 산출 시에 s_t 만 사용하는 방법.

Next Presentation

- Transformer
- BERT

Next Presentation

- Transformer
- BERT

References

References

- Kyunghyun, C., Bart, V. M., Caglar, G., Dzmitry. B. Fethi, B., Holger S., Yoshua B. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
- Sequence to Sequence with Neural Network
- Encoder-decoder paper summary
 - https://reniew.github.io/31/
- seq2seq paper summary
 - https://reniew.github.io/35/
- seq2seq
 - https://wikidocs.net/24996
- Attention mechanism
 - https://wikidocs.net/22893