Étude de couvertures de réseaux de métro, application de l'homologie persistante et optimisation.

Elowan ; 10381

June 2, 2025

Trouver les zones les moins biens desservies par un réseau de métro

Les principales étapes :

- Convertir les données géographiques en espace métrique ;
- Créer une suite de formes géométriques à partir de cet espace ;
- Trouver les trous de ces formes.

Figure 1: Lignes de métros (Marseille et Toulouse)

Plus en détail, reconnaitre un trou : l'idée du lasso

Chercher à enrouler au lasso, puis reduire ces lassos sans jamais le rompre ou déchirer la forme.

Figure 2: Un tore contenant deux trous et une sphère contenant 0 trou.

Définitions

Simplexe

Un simplexe σ de dimension k (ou k-simplexe) correspond à l'enveloppe convexe de k+1 vecteurs non inclus dans un sous-espace affine de dimension k-1.

Face

On dit que σ_i est une face de σ_j si et seulement si $\sigma_i \subset \sigma_j$ et la dimension de σ_i dim (σ_i) est égale à dim $(\sigma_i) - 1$.

Complexe simplicial

Un ensemble de simplexes.

Figure 3: Exemple de complexe simplicial

Définitions

Filtration

Suite croissante pour l'inclusion de complexes simpliciaux.

Figure 4: Exemple de filtration.

Définitions

Classe d'homologie

Elle représente un trou en dimension n.

Figure 5: Le tore avec ces deux classes d'homologies et la filtration d'exemple avec en pointillé les classes d'homologies de dimension 0 et en hachuré celles de dimension 1.

La méthode de l'homologie persistante

- Construire une filtration à partir d'un ensemble de points ;
- Application de l'algorithme standard ;
- Récupération des classes d'homologies.

Figure 6: Lignes de métros (Marseille et Toulouse)

Définition de la distance

Distance

On définit la distance d entre deux stations de metro x et y:

$$d(x,y) = \frac{1}{2}(\min(t_{pied}(x,y),t_{voit}(x,y)) + \min(t_{pied}(y,x),t_{voit}(y,x)))$$

Poids d'une station

La moyenne sur une semaine du temps d'attente en station.

Définition des complexes pondérés de Vietoris-Rips

Complexe Simplicial pondéré de Vietoris-Rips On le définit au rang r, comme l'ensemble des simplexes $(\sigma_{i_0},...,\sigma_{i_k})$ sur les points tels que $\forall q \in [|0,k|], \sigma_q = [p_{i_0},...,p_{i_l}],$

$$\begin{cases} \forall j \in [|0, I|], poids_{i_j} < r \\ \forall (j, k) \in [|0, I|]^2, d(p_{i_j}, p_{i_k}) + poids_{i_j} + poids_{i_k} < 2r \end{cases}$$

Figure 7: Image repr les vietoris rips, tiré de *Persitent homology for resource coverage: A case study of access to polling sites*

Préparatif de l'algorithme (1/2): Ordre total sur les simplexes

Soient une filtration $K_0 \subset K_1 \subset ... \subset K_p$ et l'ensemble S de tous les simplexes apparaissant dans la filtration. On indice S de sorte que pour tout σ_i et σ_j de S:

$$\left. \begin{array}{c} \text{Si } \sigma_i \in \mathcal{K}_{k_i} \text{ et } \sigma_j \in \mathcal{K}_{k_j} \text{ avec } k_i < k_j \\ \text{Sinon si } \sigma_i \text{ est une face de } \sigma_j \end{array} \right\} \Rightarrow i < j$$
 L'ordre total est déduit de cet indiçage.

Figure 8: Indiçage de la filtration

Préparatif de l'algorithme (2/2): Matrice de bordure

	4	5	6	7	8	9
0	1			1	1	
1	1	1				
2		1	1		1	
3			1	1		
4						1
5						1
6						
7						
8						1
low	1	2	3	3	2	8

Figure 9: Exemple de matrice de bordure *B* associé à un ordre total

Application de l'algorithme

 $C_i \leftarrow (C_i + C_i) \mod 2$

Fin

5 Fin

```
Entrée: B \in M_n(\{0,1\}) la matrice à reduire ((C_i)_{i=1}^n ses colonnes)

Sortie: \overline{B} matrice réduite

1 Pour j=0 à n-1 Faire
2 | Tant que \exists i < j tel que low[j] = low[i] Faire
```

11 / 17

Compréhension du résultat en sortie

	4	5	6	7	8	9		4	5	6	7	8	9
0	1			1	1		0	1					
1	1	1					1	1	1				
2		1	1		1		2		1	1			
3			1	1			3			1			
4						1	4						1
5						1	5						1
6							6						
7							7						
8						1	8						1
low	1	2	3	3	2	8	low	1	2	3	-1	-1	8

Figure 10: Matrice B et réduite \overline{B}

Figure 11: Filtration et utilisée

Optimisation

Remarques à l'initiative de la recherche d'optimisation :

- La matrice est creuse :
- L'opération de somme de colonnes laisse invariante tous les simplexes de dimension différente.

Modifications apportées :

- Représentation de la matrice en liste d'adjacence (double liste chaînée ordonnée);
- Application de l'algorithme sur des matrices extraites et non la totale.

Algorithme optimisé

Entrée: $B \in M_n(\{0,1\})$ la matrice à reduire $((C_i)_{i=1}^n$ ses colonnes)

Sortie : \overline{B} matrice réduite

- 1 dims \leftarrow Tableau des simplexes où dims[i] contient la liste des simplexes de dimension i
- 2 Pour tout dimension d à considérer Faire

```
3 | Pour tout j \in dims[d] Faire

4 | Tant que \exists i < j \ dans \ dims[d] \ tel \ que \ low[j] = low[i]

Faire

5 | C_j \leftarrow (C_i + C_j) \ mod \ 2

6 | Fin
```

8 Fin

Résultats

Figure 12: Ordonnée linéaire

Résultats

Figure 13: Ordonnée logarithmique

Résultats

Figure 14: Marseille

Figure 15: Toulouse

Annexe: Définition

Complexe de chaînes

On définit un complexe de chaînes comme la donnée d'une suite

$$\dots \xrightarrow{\delta_{k+2}} C_{k+1} \xrightarrow{\delta_{k+1}} C_k \xrightarrow{\delta_k} C_{k-1} \xrightarrow{\delta_{k-1}} \dots$$

Où chaque C_k est un groupe abélien libre qui a pour base les k-simplexes de X et δ_k est une morphisme de groupes tel que $\delta_k \circ \delta_{k+1} = 0$

On appelle δ_k un opérateur de bords.

Classes d'homologies H_k

On définit alors les classes d'homologie de dimension k comme le groupe de $Ker(\delta_k)$ quotienté par $Im(\delta_{k+1})$:

$$H_k = Ker(\delta_k)/Im(\delta_{k+1})$$

Annexe : Théorème des facteurs invariants

Il existe un unique ensemble $d_1,...,d_p$ d'éléments de H_k définis à des inversibles près, tel que :

$$H_k \simeq \mathbb{Z}^{\beta} \bigoplus_{i=1}^p \mathbb{Z}/d_i\mathbb{Z}$$

Cet ensemble est appelé code barre de H_k .

Annexe : Diagrammes de persistance

Figure 16: Diagramme de persistance de Marseille

Figure 17: Diagramme de persistance de Toulouse

Annexe : Récupération des données

Pour le calcul des temps de trajet : apidocs.geoapify.com

Pour la récupération des stations et des temps d'attentes moyens : transport.data.gouv.fr