Roll No.

34114 Printed Pages: 3 BT-4/M-19 **MATHEMATICS-III** Paper-AS-201N Time allowed: 3 hours] [Maximum marks: 75 Note: Attempt all questions. Unit-I (a) Expand $f(x) = x \sin x$ as a Fourier Series in the interval 1. $0 < x < 2\pi$. 8 7 (b) Obtain Fourier series for the function $f(x) = \pi x$ for $0 \le x \le 1$ $=\pi (2-x)$ for $1 \le x \le 2$ (a) Find the Fourier Sine transform of 7 2. (b) State and prove the Convolution theorem for Fourier Transforms. Unit-II (a) Solve the partial differential equation pxy + pq + qy = yz by 3. using Charpit's method. 7 (b) Solve the partial differential equation $(D^2 + DD^1 - 6D^{1^2})z = y \cos x$ Turn over 34114

4. Using Simplex method, solve the following Linear Programming Problem: 15

Maximize $Z = 5x_1 + 3x_2$

Subject to Constraints

$$x_1 + x_2 \le 2$$
 $5x_1 + 2x_2 \le 10$
 $3x_1 + 8x_2 \le 12$
 $x_1, x_2 \ge 0$

Unit-III

- 5. (a) If $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$, then prove that:
- 8

7

- (i) $\tanh \frac{u}{2} = \tan \frac{\theta}{2}$
- (ii) $\cosh u = \sec \theta$.
- (b) Separate $\tan^{-1}(x + iy)$ in to real and imaginary parts. 7
- 6. (a) Show that the function $f(z) = \sqrt{|xy|}$, is not analytic at the origin, even though Cauchy-Riemann equations are satisfied thereof.
 - (b) Evaluate, using Cauchy's integral formula.
 - (i) $\int_{c} \frac{\sin^{2} z}{\left(z \frac{\pi}{6}\right)^{3}} dz$, where c is the circle |z| = 1

34114

(ii) $\int_{c} \frac{e^{2z}}{(z+1)^4} dz$, where c is the circle |z| = 3

Unit-IV

- 7. (a) Three machines M₁, M₂ and M₃ produce identical items of their respective output 5%, 4% and 3% of items are faulty. On a certain day M₁, M₂ and M₃ produced 25%, 30 % and 45% of the total output. An item selected at random is found to be faulty; what are the chances that it was produced by the machine M₃.
 - (b) Find the moment generating function of the exponential distribution 7

$$f(x) = \frac{1}{c} e^{-x/c}, 0 \le x \le \infty, c > 0$$

Hence find its mean and standard deviation.

- 8. (a) The mean of a binomial distribution is 6 and variance 4, Calculate n, p and q.
 - (b) Fit a Poisson distribution to the following: 8

x :	0	1	2 -	3	4
y:	46	38	22	.9	1.