Übungsblatt 3

(Summenzeichen, Binomialkoeffizienten, vollständige Induktion)

Aufgabe 1

Schreiben Sie folgende Ausdrücke mit Hilfe des Summenzeichens:

(a)
$$1^2 + 2^3 + 3^4 + 4^5 + 5^6$$
,

(b)
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27}$$
,

(c)
$$4+7+10+13+16+19+22$$
.

Aufgabe 2

Zeigen Sie für $n \in \mathbb{N}^*$ folgende Identitäten mit Hilfe des Binomischen Satzes:

(a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n,$$

(b)
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Aufgabe 3

Zeigen Sie nachfolgende Behauptungen jeweils mit vollständiger Induktion.

(a) Für jedes $n \in \mathbb{N}^*$ gilt

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}.$$

(b) Für jedes $n \in \mathbb{N}$ gilt

$$2^n \ge n + 1.$$

(c) Für jedes $n \in \mathbb{N}^*$ ist die Zahl $3^n - 3$ ohne Rest durch 6 teilbar.

Aufgabe 4 (Zum Knobeln – wenn noch Zeit ist ...)

Zeigen Sie mit vollständiger Induktion, dass für jedes $n \in \mathbb{N}^*$ die Potenzmenge von $\{1, \ldots, n\}$ genau 2^n Elemente enthält.

Aufgabe 5 (Wenn noch Zeit ist ...)

Zeigen Sie folgende Identitäten für die Binomialkoeffizienten:

(a)
$$\binom{n}{1} = n = \binom{n}{n-1}$$
, falls $n \in \mathbb{N}^*$,

(b)
$$\binom{n}{k} = \binom{n}{n-k}$$
, falls $n, k \in \mathbb{N}$ und $k \le n$.

(c)
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$
, falls $n \in \mathbb{N}^*, k \in \mathbb{N}$ und $k+1 \le n$.