

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, DECANA DE AMÉRICA)

FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académica Profesional de Ingeniería de Software

"AÑO DE LA UNIDAD, LA PAZ Y EL DESARROLLO"

SÍLABO 2023-II

1. INFORMACIÓN GENERAL

1.1 Nombre de la asignatura : Matemáticas Discretas – Plan 2018

1.2 Código de la asignatura : 202W0404 1.3 Tipo de Asignatura : Obligatoria

1.4 Horas semanales : Teoría 02 horas, Prácticas 02 horas (04)

1.5 Semestre Académico : 2023-2 1.6 Ciclo : IV 1.7 Créditos : 3.0

1.8 Modalidad : Presencial

1.9 Pre-requisito : IN0204 – **Cálculo II**1.10 Docente : Ciro Rodriguez Rodriguez crodriguezro@unmsm.edu.pe

1. Sumilla

Esta asignatura corresponde al área de especialidad, es de naturaleza teórico teórico-práctico: tiene el propósito proporcionar una serie de habilidades que se adquieren a través de la práctica y aplicación de los principios del razonamiento valido y reglas de inferencias, resolviendo problemas de cercanía y similitud. Se desarrollan competencias para que el estudiante pueda describir y comprender diversas estructuras finitas y numerables, que son fundamentales en la ciencia de la computación. Enseña a identificar qué problemas pueden ser resueltos mediante computadoras y cuáles no tienen una solución algorítmica, considerando la información y los datos que se representan y manipulan de forma discreta. Para lograr estas habilidades, el desarrollo del curso está organizada en cuatro unidades. Unidad Didáctica I: Razonamiento lógico y digital. Deducciones con reglas de inferencia. Predicado. Resolventes. Unidad Didáctica II: Conjuntos, subconjuntos, funciones y relaciones. Fundamentos de conteo, inducción de segmentos de algoritmos y recursividad. Unidad Didáctica III: Grafos, productos de grafos. Caminos más cortos. Árboles, recorridos en profundidad y en amplitud. Evaluación con Pilas. Unidad Didáctica IV: Teoría de lenguajes, máquinas y diseño de máquinas. Estructuras algebraicas.

2. Competencias Generales

Al finalizar la asignatura el estudiante será capaz de elaborar nuevas técnicas y métodos para resolver y/o desarrollar problemas de cercanía y similitud con datos discretos de similaridad de forma colaborativa, aplicando casos concretos aplicados mediante el desarrollo de software con diversas metodologías y técnicas técnicas de desarrollo y de Plikers Classroom, y la metodología del flipped classroom, desde la fase de inicio utilizando comunicación eficaz, pensamiento crítico e innovador, fundamental para todo estudiante de ingeniería que les capacite para el aprendizaje de nuevos métodos y teorías, de los curso que le siguen.

Contribución al perfil del egresado

CG01: Comunicación escrita CG02: Comunicación Oral CG03: Pensamiento Crítico

CG04: Razonamiento Cuantitativo

CG05: Manejo de Información

CG06: Ciudadanía

3. Competencias Específicas:

CE01: Conocimiento en Áreas formativas: Explicar las fases del proceso razonamiento y aplicar en forma óptima, los alcances de cada una de las actividades involucradas en él.

CE02: Análisis de problemas complejos: Habilidades para diseñar y conducir experiencias, y procedimientos así como para analizar e interpretar datos, a nivel básico ósea en problemas de análisis combinatorios.

CE03: Diseño y Desarrollo de soluciones de problemas complejos y discretos: Habilidades para diseñar un sistema, un componente, procesos o procedimientos que satisfaga necesidades deseables, teniendo en cuenta restricciones a casaos discretos, a nivel básico ósea problemas de creación de algoritmos.

CE04: Trabajo Individual y/o trabajo grupal formando mesa de trabajo, ser líder: Impulsar la capacidad creadora del estudiante para poder ser un profesional emprendedor, y creativo de su propio desempeño e Innovador.

CE05: Capacidad de análisis y síntesis en la toma de decisiones con responsabilidad, y desarrollo ético.

CE06: Profesionalismo y Sociedad: Tener una base ética y con valores de sensibilidad y responsabilidad que le permita proyectarse hacia la sociedad con el compromiso social que se requiera.

CAPACIDADES:

- Entiende y aplica La Teoría de las reglas de inferencias y la importancia de la demostración como elemento fundamental del proceso de razonamiento lógico.
- Entiende varios conceptos importantes de la vida dentro de las teorías de conjuntos
- Analiza y identifica sus posibilidades de problemas de análisis combinatorios frente a soluciones reales de la sociedad. Entiende los segmentos de algoritmos sometidos a la prueba de inducción y sus aportes para el desarrollo de las investigaciones.
- Identifica y Entiende las variables básicas de recursividad de la torre de Hanoi y el Proceso del Plandel desarrollo de algoritmos de funciones recursivas.
- Entiende La Integración de la teoría de grafos y sus aportes para el desarrollo de los algoritmos de caminos mínimos.
- Identifica y Entiende las propiedades básicas de los algoritmos de equilibrio de los nodos de un árbol de montículos y su
- importancia del árbol en las investigaciones.
- Entiende el aporte de la gramática de Noam Chomsky a las teorías de lenguajes y a la definición de las máquinas de estado finito determinísticos y autómatas. También entiende en la creación y del proceso de diseñar una máquina de Moore.
- Identifica la importancia de la matemática discreta y de su contribución al óptimo desarrollo de los datos discretos y de cercanía, y cómo puede afectar al logro de los objetivos de la teoría de lenguajes y compiladores.

4. Programación

UNIDAD DIDÁCTICA I: razonamiento lógico y digital. deducciones con reglas de inferencia. predicado. resolventes. Aplicaciones en las ciencias de la computación.

CAPACIDADES: Entiende y aplica La Teoría de las reglas de inferencias y la importancia de la demostración como elemento fundamental del proceso de razonamiento lógico.

Semana	CONTENIDOS	Tipos de Aprendizaje	RECURSOS	Estrategias Didácticas	
1	Lógica Matemática. Desarrollo			Acuerdos de	
	axiomático del cálculo		Normas de convivencia	Convivencia.	
	proposicional. Deducciones y	Teórico-Práctico	en clases.	Expositiva y	
	demostraciones.		Lectura, artículos	Participativa	
	Principios y Reglas de Inferencias		Plataforma virtual.	Trabajo	

	casos de deducción lógica,		Repositorio Google Classroom. Pizarra acrílica	colaborativo
2	Deducción por Reglas de Inferencias, Predicados Deducción con predicados Deducción por cláusulas y Resolventes, demostraciones.	Teórico-Práctico	Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica Lenguaje de programación	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo

Tarea Académica: Aplicación de la Lógica Matemática y Deducción de Reglas de Inferencia (Mini Proyecto)

UNIDAD DIDÁCTICA II: Conjuntos, subconjuntos, funciones y relaciones. Fundamentos de conteo, Aplicaciones en las ciencias de la computación.

CAPACIDADES: •Entiende varios conceptos importantes de la vida dentro de las teorías de conjuntos

- •Analiza e identifica sus posibilidades de problemas de análisis combinatorios frente a soluciones reales de la sociedad.
- •Se ve el concepto de relación, sus propiedades y las aplicaciones concernientes a las ciencias de la computación.

Semana	CONTENIDOS	Tipo de Aprendizaje	RECURSOS	Estrategias Didácticas
3	Teoría de Conjuntos Cardinalidad y aplicaciones, Algebra de Boole y sus aplicaciones, demostraciones. Conjunto Bien Ordenados, relaciones, principio de Hasse, aplicaciones de las relaciones.	Teórico-Práctico	Control de seguimiento de aprendizaje.Foros de discusión.	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo
4	Análisis Combinatorio Técnicas de conteo (Combinatoria, permutaciones, variación, principio del palomar, Stirling, ejemplos, demostraciones.	Teórico-Práctico	Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica	Recuperación de saberes previos. Retroalimentació n expositiva y Participativa. Trabajo colaborativo

Tarea Académica: Aplicación de la Teoría de Conjuntos y Análisis Combinatorio (Mini Proyecto)

UNIDAD DIDÁCTICA III: Inducción. inducción de segmentos de algoritmos. Recursividad. Funciones recursivas. Torre de Hanoi. Aplicaciones en las ciencias de la computación.

CAPACIDADES:

Entiende los segmentos de algoritmos sometidos a la prueba de inducción y sus aportes para el desarrollo de las investigaciones.

Identifica y Entiende las variables básicas de recursividad de la torre de Hanoi y el Proceso del Plan del desarrollo de algoritmos de funciones recursivas.

Semana	CONTENIDOS	Tipo de Aprendizaje	RECURSOS	Estrategias Didácticas

5	Inducción matemática, propiedades de sumatorias, telescópica, demostraciones, ejemplos, conversión de algoritmos a fórmulas inductivas y viceversa), breve resumen de la complejidad algorítmica	Teórico-Práctico	Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo
6 y 7	Relaciones. Recurrencias, Funciones y Recursividad ejemplos, casos, demostraciones. Práctica calificada	Teórico-Práctico	Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo Grupo

Tarea Académica: Aplicación de la Inducción matemática y Relaciones y Recursividad (Mini Proyecto)

8 EXAMEN PARCIAL

UNIDAD DIDÁCTICA IV: Grafos, productos de grafos. Caminos más cortos. Árboles, recorridos en profundi amplitud. Evaluación con Pilas. Aplicaciones en las ciencias de la computación.

CAPACIDADES:

Entiende La Integración de la teoría de grafos y sus aportes para el desarrollo de los algoritmos de caminos mínimos.

Identifica y entiende las propiedades básicas de los algoritmos de equilibrio de los nodos de un árbol de montículos y su importancia del árbol en las investigaciones.

Semanas	CONTENIDOS	Tipo de Aprendizaje	RECURSOS	Estrategias Didácticas
9 y 10	Teoría de Grafos. Algoritmo de caminos mínimos, recorridos, coloración, Dijkstra, Euler, Hamilton, demostraciones	•Teórico-Práctico	 Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica 	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo

ext Re AE 10 y 11 pol	eoría de Árboles, Árbol stendido. Árbol de Montículo, ecorridos en árbol, árboles BT, Notación y conversiones blacas, Prim, Huffman, ruskal, demostraciones.	Teórico-Práctico	 Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica 	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo
--------------------------------	---	------------------	--	--

Tarea Académica: Aplicación de la Teoría de Grafos y Teoría de Arboles (Mini Proyecto)

UNIDAD DIDACTICA IV: Continuación. gramática de Nohan Chomsky. Diseño de maquinas

CAPACIDADES:

Entiende el aporte de la gramática de Noan Chomsky a la teoría de lenguajes y a la Definición de las máquinas de estado finito determinísticos y autómatas. También entiende en la creación y del proceso de diseñar una máquina de Moor. Identifica la importancia de la matemática discreta y de su contribución al óptimo desarrollo de los datos discretos y de cercanía, y cómo puede afectar al logro de los objetivos de la **teoría de lenguajes y compiladores.**

Semanas	CONTENIDOS	Tipo de Aprendizaje	RECURS OS	Estrategias Didácticas		
12 y 13	Gramáticas de Noam Chomsky. Lenguajes y Análisis Sintáctico, relación de autómatas y gramáticas, Máquinas de Estado, Finito Determinístico. Autómatas. Conversión de autómatas no determinísticos a determinísticos. Diseño de Máquinas, máquinas de Mealy , Turin, teoría de la codificación Demostraciones o aplicaciones	Teórico-Práctico	Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo		
Tarea A	cadémica: Aplicación d	e la Gramática de Noam Cho	omsky (Mini Proyecto)			
14	Sistemas Algebraicos Grupos, Semigrupos, Isomorfismos. Práctica calificada Exposición de proyecto de investigación	Teórico-Práctico	Lecturas. Control de seguimiento de aprendizaje. Foros de discusión. Plataforma virtual. Repositorio Google Classroom. Pizarra acrílica	Recuperación de saberes previos. Retroalimentación expositiva y Participativa. Trabajo colaborativo		
15	Proyecto Final integrac	lor				
16 EX	-					

5. Estrategia Didáctica

El curso se desarrollará en la modalidad de clases presenciales. Las actividades teóricas serán acompañadas con ejemplos y tareas. Las actividades están programadas de forma que el alumno gradualmente vaya desarrollando la clase invertida utilizando las herramientas del Plickers y la Metodología del Classroom.

El profesor debe desarrollar la asignatura siguiendo los criterios: deductivo, inductivo, reflexivo y flexible con la participación del estudiante. Además, asumirá el rol protagónico de mentor-tutor del curso, respetando los **estándares de la metodología**. La tutoría del profesor se efectuará en forma individual grupal mediante la explicación por escrito, ejemplificación, solución de casos y procedimientos de consulta, discusión, a veces programada.

El Profesor entregará el material del curso en la primera semana, la cual será subida al aula virtual.

El alumno participará activamente a través de intervenciones en las sesiones de clase, y asumirá el rol protagónico de responsable de su trabajo y evaluación, y deberá desarrollar con calidad eficiencia y puntualidad las tareas o trabajos encomendados en el curso.

Estrategias centradas en la enseñanza y aprendizaje basado en una clase invertida, se basa en el Análisis de los problemas de casos de cada unidad temática.

6. Materiales Recursos:

- Google Classroom Repositorio Google
- Meet, Drive Repositorio
- Google Collaboratory

Materiales:

• Diapositivas, videos, artículos científicos

7. Dedicación requerida

- Estudio del texto del curso de las Unidades Didácticas
- Material complementario del curso. Lectura de artículos-Visionado de vídeos en la web Presentación de casos prácticos y talleres mesa de trabajo
- Realización de los informes de los trabajos presentados
- Acción tutorial
- Evaluación y participación del grupo

Nota:

El factor asistencia para la orientación presencial es importante: Sólo serán evaluados los alumnos con mayor del 70% de asistencia.

8. EVALUACIÓN DEL APRENDIZAJE

NOTAS	EVALUACION	%	CONDICION	PROMEDIO FINAL
N1	Examen Parcial	30%	Semana 8	
	Proyecto de Investigación (PI) +	400/	Evaluación de proyecto (PI)	
N2	Trabajos Aplicativos (TA) + Práctica Calificadas (PC)	40%	promedio de trabajos (PT) y/o Práctica Calificada/s	PF = 0.3*N1 + 0.4*N2 + 0.3*N3
N3	Examen Final	30%	Semana 16	

LEYENDA:

N1: Nota del examen parcial. (primer parte)

N3: Nota del examen final. (segunda parte)

N2 = (PC1 + PC2 + PRT + PI)/4

PC1: Practica calificada 1 (primera parte)

PC2: Practica calificada 2 (segunda parte)

PRT: Portafolio de trabajos prácticos de cada semana

PI: Proyecto de investigación PF: 0.3*N1 + 0.4*N2 + 0.3*N3

**NOTA IMPORTANTE: NO SE APLICARÁ SUSTITUTORIO

La participación y asistencia serán evaluados. Las exposiciones del proyecto son con PPT (Exposición), WORD(Informe descriptivo) y Producto(aplicativo). Se califica acorde a una rúbrica, para ser evaluados el día de la exposición deben estar todos los miembros del grupo(máximo 2 alumnos por grupo).

7.- Referencias Bibliográficas

Texto Básico

- 1. David Gries. The Science of Programming (Texts and Monographs in Computer Science)
- 2. Rosen, K. Matemática Discreta y sus Aplicaciones. (2004). España:Mc Graw Hill
- **3.** Joe L. Mott Abraham Kandel Theodore P. (2008). *Discrete Mathematics for Computer Scientists and Mathematicians*. EEUU: Baker The Florida State University Department of Mathematics and Computer Science
- 4. T. Veerarajan.(2008). Matemáticas Discretas. México: Mc-Graw-Hill Interamericana.
- **5.** Gutierrez, J & Lanchares, V.(2016). *Elementos de la matemática discreta*. España: Universidad de La Rioja.
- **6.** Kolman, B., Busby, R., Ross, Ch.(1997). *Estructuras de matemáticas discretas para la computación*. México: Prentice Hall Hispanoamérica S.A

Texto Consulta

- 1. García Merayo, F. (2015). *Matemática Discreta*. España: Paraninfo
- 2. Gries, D.(1981). The Science of Programing. EE.UU: Springer-Verlag
- 3. Grassmann W.K. Trenblay. (2004). *Matemáticas Discretas y lógica*. España: Mc. Graw Hill. Ed. Prentice Hall Hispanoamericana.
- 4. Johnsonbaugh, R. (1999). *Matemáticas Discretas. EE. UU: PEARSON 4ta. Ed.*. Pág. 1 a 72 Semana 1 y 2
- 5. Grimaldi, R. *Matemática Discreta y Combinatoria*. (1997). EE.UU:3ra. Ed. ADDISON WESLEY IBEROAMERICA. Pág. 51 a 213. Semana 2.
- 6. Lipschutz, S. (1990). *Matemática Discreta*. Teoría y 600 problemas resueltos. México: Serie Schaum. Ed. Mc-Graw-Hill.
- 7. Rosen, K., Grossman, J. & Jordan, D. (2019). *Student's Solutions Guide for Discrete Mathematics and Its Applications*. EE.UU: Mc. Graw Hill. eight edition.
- 8. Scheinerman, E. (2001). Matemática Discreta. México: Editorial Thomsom.
- 9. Thomas H. Cormen, Charles E Leiserson, Ronald L. Rivest, Clifford Stein. Introducción a los algoritmos , segunda edición.Mc Graw Hill, 1990

RED DE APRENDIZAJE POR UNIDADES

UNIDAD DIDACTICA I: razonamiento lógico y digital. deducciones con reglas de inferencia. predicado. resolventes. Aplicaciones en las ciencias de la computación.

UNIDAD DIDACTICA II: Conjuntos, subconjuntos, funciones y relaciones. Fundamentos de conteo, Aplicaciones en las ciencias de la computación.

UNIDAD DIDACTICA III:

Inducción. Inducción de segmentos de algoritmos. Recursividad. Funciones recursivas. Torre de Hanoi. Aplicaciones en las ciencias de la computación.

UNIDAD DIDÁCTICA IV: Grafos, productos de grafos. Caminos más cortos. Árboles, recorridos en profundidad y en amplitud. Evaluación con Pilas. Aplicaciones en las ciencias

de la computación.

Rubrica de evaluación de Matemática Discreta

RESULTADO DE APRENDIZAJE Al finalizar la asignatura, el estudiante será capaz de aplicar estructuras discretas elementales para el planteamiento y solución de problemas de ingeniería. ACEPTABLE REGULAR RATO EXCELENTE CRITERIO (4 ó 3) (2) (0)(1) proposiciones, Identifica Resolver Identifica las Identifica No Identifica as las las enunciado en proposiciones, dentifica las formalizar el enunciado proposiciones tampoco formaliza el enunciado de formalizar ejercicios el proposiciones. proposiciones. premisas, identifica proposiciones atómicas y en premisas. en premisas moleculares. Demostrar Convierte las proposiciones a Convierte las Convierte No convierte las su forma lógica, formaliza el proposiciones Proposiciones su proposiciones a su forma а proposiciones a SU enunciado en premisas, Utiliza forma lógica, formaliza lógica. forma lógica, mediante tablas de verdad tablas de verdad para validar la lel enunciado en formaliza el enunciado proposición. premisas. en premisas. Identifica las proposiciones, Identifica las de formaliza el enunciado en proposiciones, formaliza premisas, aplicar leyes de el enunciado en las Identifica identifica Resuelve No las las eiercicios proposiciones mediante proposiciones, inferencias formaliza el enunciado símbolos. inferencia para demostrar la premisas. en premisas. conclusión Identifica las proposiciones, Identifica las Identifica identifica Demostrar proposiciones formaliza el enunciado en proposiciones, formaliza proposiciones, por Leyes de premisas, aplica leyes de el enunciado en proposiciones proposiciones. ni formaliza el enunciado Morgan para simplificar la Morgan premisas. en premisas. expresión. Describe los conjuntos por Describe los conjuntos Describe los Demostrar conjuntos describe los por extensión, aplica las leyes por extensión, aplica las por extensión. Conjuntos conjuntos por extensión, Leyes de lógicas en conjuntos para leyes de conjuntos. ni aplica las leyes de conjuntos Morgan simplificar. para simplificar.

Describe los circuitos

lógicos parcialmente.

Escribe la simplificación.

Describe los circuitos

lógicos.

Determina

circuitos lógicos | correctamente.

Describe los circuitos lógicos