

Vision Based Underwater Docking Station Detection and Pose Estimation for Autonomous Underwater Vehicles (AUVs)

– PRESENTED BY –Bishal Hazarika (200101034)Dhruba Jyoti Sarma (200101003)

Under the Supervision of
Prof. Kandarpa Kumar Sarma and Dr. Anjan Kumar Talukdar
and
Under the Co-guidance of
Dr. Surajit Deka
Department of Electronics and Communication Engineering,
Gauhati University, Assam

OUTLINE

- INTRODUCTION
- MOTIVATION
- LITERATURE REVIEW
- PROBLEMS FORMULATED
- UNDERWATER DOCKING STATION DETECTION
- POSE ESTIMATION OF DOCKING STATION
- METHODOLOGY
- WORK DONE AND RESULTS
- CONCLUSION
- PERT CHART
- FUTURE DIRECTION
- REFERENCES

INTRODUCTION

- Autonomous Underwater Vehicles
- Underwater Docking
- Underwater Challenges
- Drawbacks of Traditional Method
- Advantages of Vision-Based Approach
- Pose Estimation For AUV Guidance

Figure 1: Docking of an AUV

MOTIVATION

In response to the challenges of operating in the deep ocean, our project is motivated by the urgent need for efficient underwater docking solutions.

- Improvement of efficiency and safety of underwater docking operations
- Increment of the operational range of AUVs
- Minimization of reliance on human intervention
- ☐ Enabling support for innovative underwater applications

LITERATURE REVIEW

SL	PAPER TITLE	AUTHORS	TECHNIQUES USED	RESULTS	DRAWBACKS (if any)
No	PAPER IIIEE	Authors	TECHNIQUES USED	RESOLIS	DIAWBACKS (II ally)
1	YOLO Object Detection Using OPENCV [1]	Akshara Gupta, Aditya Verma,Aditya Yadav,Arvidhan M	CNN , YOLO	This paper gives a efficient approach for image detection using YOLO in OpenCV	Yolo is a good detection algorithm but the accuracy in complex environment like underwater condition may get drastically hampered
2	Underwater Object Detection and Tracking [2]	Divya Priyadarshini, MaheshKumar H. Kolekar	Object Detection, Computer Vision	The proposed methodology in this paper achieves higher precision compared to traditional techniques, regardless of image or video frame resolution and clarity.	Algorithm cannot read RGB image. Image necessarily needs to be a gray image for detecting the object.
3	Underwater Object Classification and Detection [3]	Andre Jesus, Claudio Zito, Claudio Tortorici, Eloy Roura, Giulia De Masi	Yolo V3, Faster RCNN	This paper's key contribution is to analyze and quantify the shortcomings of conventional state-of-the-art algorithms for object detection in underwater environments.	Underwater prediction may deteriorate on harsh and muddy water.

contd...

SL	PAPER TITLE	AUTHORS	TECHNIQUES USED	RESULTS	DRAWBACKS (if any)
4	Estimation of Positions and Poses of Autonomous Underwater Vehicle Relative to Docking Station Based on Adaptive Extraction of Visual Guidance	Fengtian Lv, Huixi Xu, Kai shi, Xiaohui Wang	YOLO, Faster RCNN, Docking Neural Network (DoNN)	Experimental results demonstrated less than 10% absolute estimation error for each degree of freedom in the PPARD.The new extraction method achieved an 87.99% success rate, surpassing classical	For real time underwater scenarios, the output may get hampered.
5	Features Detection and Pose Estimation for Short-Range Vision-Based Underwater Docking	SHUANG LIU , METE OZAY , TAKAYUKI OKATANI, HONGLI XU, KAI SUN, YANG LIN	R-CNN	methods. For robust and credible detection of docking stations, a CNN called docking neural network (DoNN)is used. For accurate pose estimation, a perspective-n-point algorithm is integrated into the framework	The limitations of this research include the framework's sensitivity to strong artificial noise, untested performance in diverse real-world underwater conditions.
6	Pose estimation for the case of prolonged under ice based AUV	D Frolov , S Polovko	Computer vision, Control System.	Provides a system for determining the relative position based on cameras and active-light markers. A system equation and a complete mathematical modeling for the positioning system is performed.	The absence of empirical testing in authentic under-ice conditions hinders the assessment of the system's practical viability and robustness.

PROBLEMS FORMULATED

Phase 01

Efficient Underwater Docking Station Detection with limited dataset using Transformer based object detection.

Phase 02

Pose Estimation of the Docking Station for proper and accurate docking of the Autonomous Underwater Vehicle (AUV).

PHASE 1

UNDERWATER DOCKING STATION DETECTION

BLOCK DIAGRAM

Underwater Docking Station Detection

METHODOLOGY(contd...)

Underwater Docking Station Detection

YOLO v8:

- YOLO (You Only Look Once) stands out for its speed and accuracy.
- YOLO directly predicts bounding boxes and class probabilities from an image, bypassing the complex two-stage architecture of traditional object detection methods.

Figure 4: Structure of Yolo

METHODOLOGY(contd...)

Underwater Docking Station Detection

RT - DETR:

- Real-Time Detection Transformer (RT-DETR) is a state-of-the-art object detection algorithm that leverages the power of transformers in the field of Object Detection.
- Future Proof Technology
- Beats most of the state of the art technologies like YOLO in terms of accuracy.

Figure 5: Structure of Detection Transformer

	YOLO v8	RT-DETR
	The model is trained for 50 epochs	The model is trained for 50 epochs
۵	Class Loss: 0.4425	Class Loss : 0.3566
۵	Recall: 0.959	Recall: 1
۵	mAP50 (Mean Average Precision at IoU	mAP50 (Mean Average Precision at IoU
	threshold 0.5): 0.971	threshold 0.5): 0.978
۵	mAP50-95 (Mean Average Precision over	mAP50-95 (Mean Average Precision over
	IoU thresholds 0.5 to 0.95): 0.661	IoU thresholds 0.5 to 0.95): 0.653

PHASE 2 POSE ESTIMATION OF THE DOCKING STATION

BLOCK DIAGRAM

Pose Estimation

Pose Estimation

- Pose Estimation
- ☐ Importance of Pose Estimation
- Common Pose Estimation Techniques
- Benefits of accurate Pose Estimation
- Challenges in underwater Pose Estimation

Figure 7: AUV calculating the center of the docking station

METHODOLOGY (contd...)

STEP 1: Camera Calibration

- Used to find intrinsic and extrinsic properties (focal length, optical centre, etc) of the camera.
- Using these properties for distance measurement, distortion removal and other purposes.
- Checkerboard pattern used for Camera Calibration.
- Thus focal length and Optical Centre of the camera is determined.

Figure 8: Checkerboard pattern

METHODOLOGY(contd...)

STEP 1: Camera Calibration

Figure 9: Flowchart of camera calibration

METHODOLOGY(contd...)

STEP 2 : Implementation of pose estimation algorithm

- Thresholding and Contour Detection
- Circle Fitting over the contours
- Calculating Z distance (in meters):

Z_distance = (focal length * actual_diameter) / perceived_diameter

Calculating X and Y distance (in meters):

X_distance = (X_distance in pixel * actual diameter) / perceived_diameter

Y_distance = (Y_distance in pixel * actual diameter) / perceived_diameter

- Visualization and Guidance
- Recommendation about docking status

Calculated Focal Length = 657 pixels

Thresholding /Contour Detection

Figure 10: Contour detection

Circle Fitting

Figure 11: Circle fitting over the contour

X, Y, Z distances

Figure 12: Displaying X,Y and Z distances

When Optical Centre is Perpendicular to the Centre of the Docking station

Figure 13: Perfectly aligned

Ready to Dock at a distance equal to 0.25 m

Figure 14: Ready to dock

Axis	Actual Distance (cm)	Calculated Distance (cm)	Percentage Error (cm)
	2.5	3	20
×	3.5	4	14
	4.5	5	11
	2.7	3	11
Y	3.7	4	8
	4.7	5	6
	24	25	4
o Z	25	26	4
	26	27	3.8

WORK DONE AND RESULTS

VIDEO DEMONSTRATION

PERT CHART

CONCLUSION

- RT-DETR Model exceeds over YOLO v8 in terms of Recall and Precision.
- Real Time Detection of the Docking Station with good accuracy.
- Implementation of pose estimation algorithm.
- → Achieved guidance about movement of AUV for perfect docking.
- Achieved recommendation about docking status.
- An average error of 2% can be observed in distance measurement.

FUTURE DIRECTION

- ☐ Integration of Hardware Setup.
- Optimization of the models used for better performance.
- Expansion of training dataset in varied environments.
- The Pose Estimation Algorithm is currently tested above water. Next work will be focused on underwater conditions.
- Optimisation of the pose estimation algorithm for error reduction.

REFERENCES

- [1] Gupta, Akshara, Aditya Verma, and A. Yadav. "YOLO OBJECT DETECTION USING OPENCV." International Journal of Engineering Applied Sciences and Technology 5.10, 2021.
- [2] D. Priyadarshni, M. Kolekar. "Underwater Object Detection and Tracking,", pp. 837-846, 2020.
- [3] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," CoRR, vol. abs/1506.02640, 2015.
- [4] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, "End-to-end object detection with transformers," 2020.
- [5] W. Lv, S. Xu, Y. Zhao, G. Wang, J. Wei, C. Cui, Y. Du, Q. Dang, and Y. Liu, "Detrs beat yolos on real-time object detection," arXiv preprint arXiv:2304.08069, 2023.
- [6] S. Liu, M. Ozay, T. Okatani, H. Xu, K. Sun and Y. Lin, "Detection and Pose Estimation for Short-Range Vision-Based Underwater Docking," in *IEEE Access*, vol. 7, pp. 2720-2749, 2019
- [7] v, Fengtian, Huixi Xu, Kai Shi, and Xiaohui Wang. 2022. "Estimation of Positions and Poses of Autonomous Underwater Vehicle Relative to Docking Station Based on Adaptive Extraction of Visual Guidance Features" *Machines* 10, no. 7: 571
- [8] K. Yamashita et al., "Improvement of 3D Pose Estimation Abilities by Light-Emitting-3D Marker for AUV Docking,"

THANK YOU

