Woods Hole Oceanographic Institution

A Compilation of the Rare Earth Element Composition of Rivers, Estuaries and the Oceans

by

Edward R. Sholkovitz

November 1996

Technical Report

Funding was provided by the Woods Hole Oceanographic Institution.

Approved for public release; distribution unlimited.

DITC QUALITY INSPECTED 3

19961125 062

WHOI-96-13

A Compilation of the Rare Earth Element Composition of Rivers, Estuaries and the Oceans

by

Edward R. Sholkovitz

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

November 1996

Technical Report

Funding was provided by the Woods Hole Oceanographic Institution.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as Woods Hole Oceanog. Inst. Tech. Rept., WHOI-96-13.

Approved for public release; distribution unlimited.

Approved for Distribution:

Michael Bacon, Chair

Department of Marine Chemistry and Geochemistry

Table of Contents

	Page No.
Abstract	2
Introduction	4
References	8
Acknowledgements	13
Table A1	14
Table A2	18
Table A3	21
Table A5	28
Table A6	31
Table A7	36
Table A8	40
Table A9	47
Table A10	53
Table A11	56
Гable A12	60
Γable A13	65
Гable A14	68

Abstract

This technical report serves as an appendix to a recent article by Byrne and Sholkovitz (1996) in the <u>Handbook on the Physics and Chemistry of Rare Earths</u> (vol. 23, chapter 158, pg. 497-592) edited by K. A. Gschneidner Jr. and L. Eyring and published by Elsevier Science. This article, *Marine Chemistry and Geochemistry of the Lanthanides*, discusses the physical chemistry of the lanthanides in natural waters, describes the major features of the lanthanides in rivers, estuaries and oceans and discusses the chemical and biogeochemical processes controlling the speciation and distribution of the lanthanides in the ocean.

The article by Byrne and Sholkovitz (1996) refers to a large set of published and unpublished data on the rare earth (RE) composition of rivers, estuaries, seawater, marine pore waters and marine hydrothermal waters. In order to conserve space in the Handbook article, a compilation of concentration data for natural waters will be presented in this report. Publications through 1995 are cited.

Introduction

This technical report serves as an appendix to a recent article by Byrne and Sholkovitz (1996) in the <u>Handbook on the Physics and Chemistry of Rare Earths</u> (vol. 23, chapter 158, pg. 497-592) edited by K. A. Gschneidner Jr. and L. Eyring and published by Elsevier Science. This article, *Marine Chemistry and Geochemistry of the Lanthanides*, discusses the physical chemistry of the lanthanides in natural waters, describes the major features of the lanthanides in rivers, estuaries and oceans and discusses the chemical and biogeochemical processes controlling the speciation and distribution of the lanthanides in the ocean. The focus of this article is on rivers, estuaries and the oceans; this includes a discussion of pore waters and hydrothermal waters. The extensive literature on the lanthanide geochemistry of marine sediments is not discussed.

The article by Byrne and Sholkovitz (1996) refers to a large set of published and unpublished data on the rare earth (RE) composition of rivers, estuaries, seawater, pore waters and hydrothermal waters. In order to conserve space in the Handbook, this compilation of data will be presented in this report. Each section of this report corresponds to a section number in the Handbook article of Byrne and Sholkovitz (1996). The identification of tables in both the Handbook article and in this technical report will be the same, that is tables A1 through A14. These tables appear in the same order as they are referred to in the Handbook chapter. After going to press with Byrne and Sholkovitz (1996), it was decided to delete Table A4 from this technical report. Table A4 was meant to sort and to list the various studies of RE in the published literature by ocean basin (e.g., Atlantic, Pacific, Indian). The reference list in this technical report is formatted to cover this type of bibliography.

Most of the data in tables A1-A14 refer to either the dissolved concentrations of rare earths or to the RE concentration of unfiltered seawater. In a few specific cases, data has been reported for the suspended particulate matter. Each table will indicate the type of filtration used to yield the dissolved fraction for RE analyses; most samples refer to filtrates passing through either 0.45 or 0.2 µm membrane filters. All concentration data for water samples (filtered or unfiltered) are given in units of pmol/kg of water. Particulate RE data have units of either pmol/kg of water or ppm with respect to the weight of particles.

The geographical location of the oceanic data presented in this report can be found by referring to the map in figure 1. Each table in this technical report contains a map # which can be traced to the same map # in figure 1. This map appears as figure 13 in the Handbook article.

Microsoft EXCEL (PC, 6.0) files of tables A1-A14 are available on request to the author of this report. Table 1 lists the names of each EXCEL file in the different "A" tables. The EXCEL file name of each sub-table also can be found at the beginning of each section and on each of the printed sub-tables in this report.

Table 1 List of EXCEL File Names in the Tables A1-14.

Table A1: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_DIS.XLS. Compilation of dissolved RE concentrations of river water.

Table A2: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_PART.XLS. Compilation of RE concentrations of river suspended particles and sediments.

Table A3: Section 5.2 of Handbook - The estuarine chemistry of the lanthanides.

File name: GWHALE.XLS. Great Whale River estuary, Quebec

File name: GIRONDE.XLS. Gironde River estuary, France

File name: AMAZON.XLS. Amazon River Estuary, Brazil

File name: CBAYSE.XLS. Surface waters, subsurface waters and shelf waters of Chesapeake Bay

File name: CBAY92.XLS. Chesapeake Bay bottom water time-series

File name: FLY.XLS. Fly River estuary, Papua New Guinea.

File name: ELDERF.XLS. Data from a suite of estuaries presented in Elderfield et al. (1990)

Table A4: Not applicable, see text

Table A5: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: NdSm_A.XLS. Concentration of Nd and Sm only for the Atlantic Ocean.

Table 1 Cont'd

Table A6: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: ASW CONC.XLS. Concentration of RE in the Atlantic Ocean.

File name: SARG_DIS.XLS. Concentration of dissolved RE in the Sargasso Sea from Sholkovitz et al. (1994)

File name: SARG_PAR.XLS. Concentration of suspended particles in the Sargasso Sea from Sholkovitz et al. (1994). Data on the chemical leaching of particles [acetic acid, strong mineral acid and bomb/strong acid dissolution]. Data in per kg of seawater

Table A7: Handbook section 6.1. Pacific Ocean seawater

File name: PSW_CONC.XLS. Concentration of RE in Pacific Ocean seawater

Table A8: Handbook section 6.1. Indian Ocean seawater

File name: IND_CONC.XLS. Concentration of RE in Indian Ocean seawater

Table A9: Handbook section 6.1. Pacific Ocean seawater

File names: HE1.XLS, HE2.XLS and HE3.XLS

H. Elderfield's unpublished data on the concentration of RE in Pacific Ocean seawater

Table A10: Handbook section 6.1. Arctic Ocean seawater

File name: ARC_CONC.XLS. Concentration of RE in Arctic Ocean seawater (North Atlantic sector)

Table A11: Handbook section 6.1 and 7.1. Mediterranean Sea.

File name: MED_CONC.XLS. Concentration of RE in the Mediterranean Sea, including the anoxic brines of Bannock Basin

Table 1 Cont'd

Table A12: Handbook section 7.1. Anoxic Basins

File name: BLACKSEA.XLS. Concentration of RE in the Black Sea

File name: SAANICH.XLS. Dissolved and suspended concentrations of RE in Saanich Inlet, British Columbia, Canada

File name: CARIACO.XLS. Concentration of RE in the Cariaco Trench.

See also Chesapeake Bay data in Table A3 files

Table A13: Handbook section 7.2. Marine Pore Waters

File name: PW_REE.XLS. Concentration of RE in pore waters

Table A14: Handbook section 7.3. Marine hydrothermal vent waters

File name: VENTS.XLS. Concentration of RE in the hydrothermal waters of the Atlantic and Pacific Oceans.

References Associated with Tables A1-A14

Rivers: Table A1 and A2

Elderfield H., Upstill-Goddard R., and Sholkovitz E.R. (1990) The rare earth elements in rivers, estuaries and coastal sea waters: processes affecting crustal input of elements to the ocean and their significance to the composition of seawater. *Geochim. Cosmochim. Acta*, 54, 971-991.

Goldstein S.J. and Jacobsen S.B. (1988a) Rare earth elements in river waters. Earth Planet. Sci. Lett., 89, 35-47.

Gordeev, V. V., Miklishansky, A. Z., Migdisov, A. A., and Artemyev, V. E. (1985) Rare element distribution in the surface suspended matter of the Amazon River, some of its tributaries and estuary. SCOP/UNEP Sonderband Heft, 58, 225-243.

Martin, J. M., and Meybeck, M. (1979) Elemental mass balance of materials carried by major world rivers. *Marine Chem.*, 7, 173-206.

Martin J.M., Hogdahl O., and Phillippot J.C. (1976) Rare earth element supply to the oceans. J. Geophys. Res., 81, 3119-3124.

Sholkovitz E.R. (1992) Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. *Earth Planet. Sci. Lett.*, 114, 77-84.

Sholkovitz E.R. (1993) The geochemistry of rare earth elements in the Amazon River Estuary. Geochim. Cosmochim. Acta, 57, 2181-2190.

Sholkovitz E.R. (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. *Aquatic Geochem.* 1, 1-34.

Sholkovitz E.R. and Elderfield H. (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem. Cycles, 2, 157-176.

Somayajulu B.L. K., Martin J.M., Eisma D., Thomas A.J., Borole D.V. and Rao K.S. (1993) Geochemical studies in the Godavari estuary, India. *Mar. Chem.* 43, 83-93.

Estuaries: Table A3

Elderfield H., Upstill-Goddard R., and Sholkovitz E.R. (1990) The rare earth elements in rivers, estuaries and coastal sea waters: processes affecting crustal input of elements to the ocean and their significance to the composition of seawater. *Geochim. Cosmochim. Acta*, 54, 971-991.

Goldstein S. J. and S. B. Jacobsen (1988b). REE in the Great Whale River estuary, northwest Quebec. Earth and Planetary Science Letters, 88, 241-252.

Martin J.M., Hogdahl O., and Phillippot J.C. (1976) Rare earth element supply to the oceans. J. Geophys. Res., 81, 3119-3124.

Sholkovitz E.R. (1993) The geochemistry of rare earth elements in the Amazon River Estuary. Geochim. Cosmochim. Acta, 57, 2181-2190.

Sholkovitz E.R. and Elderfield H. (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem. Cycles, 2, 157-176.

Sholkovitz E.R., Shaw T.J., and Schneider D.L. (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. *Geochim. Cosmochim. Acta*, *56*, 3389-3402.

ATLANTIC OCEAN: Table A5

Jeandel C. (1993) Concentration and isotopic composition of Nd in the South Atlantic ocean. *Earth Planet. Sci. Lett.* 117, 581-591.

Piepgras D.J. and Wasserburg G.J. (1980). Neodymium isotopic variations in seawater. *Earth Planet. Sci. Lett.* **50**, 128–138.

Piepgras D.J. and Wasserburg G.J. (1983) Influence of the Mediterranean outflow on the isotopic composition of neodymium in waters of the North Atlantic. *J. Geophys. Res.* 88, 5997-6006.

Piepgras D.J. and Wasserburg G.J. (1987) Rare earth transport in the western North Atlantic inferred from Nd isotope observations. *Geochim. Cosmochim. Acta.*, **51**, 1257-1271.

Spivack A.J. and Wasserburg G.J. (1988) Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic. *Geochim. Cosmochim. Acta* 52, 2767-2773.

Stordal M.C. and Wasserburg G.J. (1986) Neodymium isotopic study of Baffin Bay water: sources of REE from very old terrances. *Earth Planet. Sci. Lett.*, 77, 259-272.

ATLANTIC OCEAN: Table A6

Elderfield H. and Greaves M. J.(1982). The rare earth elements in seawater. *Nature*, 296, 214–219.

de Baar, H. J. W., M. P. Bacon and P. G. Brewer (1983) Rare earth distributions with a positive cerium anomaly in the western North Atlantic Ocean. <u>Nature</u>, 301, 324-327.

German C.R., Masuzawa T., Greaves M.J., Elderfield H. and Edmond J.M. (1995) Dissolved rare earth elements in the Southern Ocean: cerium oxidation and the influence of hydrography. *Geochim. Cosmochim. Acta* 59, 1551-1558.

Sholkovitz E.R. and Schneider D.L. (1991) Cerium redox cycles and rare earth elements in the Sargasso Sea. *Geochim. Cosmochim. Acta.*, 55, 2737–2743.

Sholkovitz E.R., Landing W.M., and Lewis B.L. (1994) Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. *Geochim. Cosmochim. Acta* 58, 1567-1580.

PACIFIC OCEAN: Table A7

de Baar H.J. W., Bacon M. P., Brewer P. G. and Bruland K. W. (1985). Rare earth elements in the Atlantic and Pacific Oceans. 49, 1943–1959.

Esser B.K., Volpe A., Kenneally J.M., and Smith D.K. (1994) Preconcentration and Purification of Rare Earth Elements in Natural Waters Using Silica-Immobilized 8-Hydroxyquinoline and a Supported Organophosphorus Extractant. *Anal. Chem.*, 66, 1736-1742.

Klinkhammer, G., Elderfield H. and Hudson A (1983) Rare earth elements in seawater near hydrothermal vents, *Nature*, 305 185-188.

Moller P., Dulski P. and Bau M. (1994) Rare-earth element adsorption in a seawater profile above the East Pacific Rise. *Chem. Erde* 54, 129-154.

Piepgras D. J. and Jacobsen S. B. (1992) The behaviour of rare earth elements in seawater: Precise determinations of variations in the North Pacific water column. *Geochim. Cosmochim. Acta* **56**, 18512-1862.

Shimizu H., Tachikawa K., Masuda A. and Nozaki Y. (1994) Cerium and neodymium isotope ratios and REE patterns in seawater from the North Pacific Ocean. *Geochim. Cosmochim. Acta*, 58, 323-333.

Tanaka M., Shimizu H. and Masuda A. (1990) Features of the heavy rare-earth elements in seawater. *Geochem. J.* 24, 39-46.

Zhang, J., Amakawa H. and Nozaki Y. (1994), The comparative behaviors of Yttrium and Lanthanides in the seawater of the North Pacific, *Geophy. Res. Letts*, 21, 2677-2681.

INDIAN OCEAN: Table A8

Bertram C. J. and Elderfield H. (1993) The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. *Geochim. Cosmochim. Acta*, 57, 1957-1986.

German C. R. and H. Elderfield 1990. Rare earth elements in the NW Indian Ocean. *Geochim. Cosmochim. Acta*, 54, 1929-1940. [Data incorporated into Bertram and Elderfield, 1993].

Arctic Ocean: Table A10

Westerlund S. and Ohman P. (1992), Rare earth elements in the Arctic Ocean, *Deep-Sea Res.*, 39, 1613-1626.

Mediterranean Sea: Table A11

Greaves M.J., Rudnicki M and Elderfield H. (1991) Rare earth elements in the Mediterranean Sea and mixing in the Mediterranean outflow. *Earth Planet. Sci. Lett.* 103, 169-181.

Henry, F., Jeandel C., Dupre B. and Minster J.-F. (1994) Particulate and dissolved Nd in the western Mediterranean Sea: sources, fate and budget. *Mar. Chem.* 45, 283-305.

Spivack A.J. and Wasserburg G.J. (1988) Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic. *Geochim. Cosmochim. Acta* 52, 2767-2773.

Anoxic Basins: Table A12

- De Baar, H. J. W., C. R. German, H. Elderfield, and P. van Gaans (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench, *Geochim. Cosmochim. Acta*, 52, 1203–1219.
- German, C. R. and H. Elderfield (1989). Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. *Geochim. Cosmochim. Acta*, **53**, 2561-2571.
- German, C. R., B. P. Holliday and H. Elderfield (1991). Redox cycling of rare earth elements in the suboxic zone of the Black Sea. *Geochim. Cosmochim. Acta*, 55, 3553-3558
- Schijf, J. and H. J. W. De Baar (1995) Rare element exchange through the Bosporus: The Black Sea as a net source of REEs to the Mediterranean Sea. *Geochim. Cosmochim. Acta* 59, 3503-3509
- Schijf, J. H. J., W. De Baar, J. R. Wijbrans, and W. M. Landing (1991) Dissolved rare earth elements in the Black Sea, *Deep Sea Res.*, 38(Suppl. 2), S805-S824.
- Schijf, J. H. J., W. De Baar and Millero F. J. (1995) Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea. *Geochim. Cosmochim. Acta* 59, 3285-3299.
- Sholkovitz E.R. and Elderfield H. (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. *Global Biogeochem. Cycles*, 2, 157-176 [Data presented in section on Estuaries]
- Sholkovitz E.R., Shaw T.J., and Schneider D.L. (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. *Geochim. Cosmochim. Acta*, **56**, 3389-3402.

 [Data presented in section on Estuaries]

Pore Water: Table A13

- Elderfield, H. and E. R. Sholkovitz (1987). Rare earth elements in the pore waters of reducing nearshore sediments. *Earth Planet. Sci. Lett.*, 82, 280-290.
- German, C. R. and Elderfield H. (1989). Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. *Geochim. Cosmochim. Acta*, **53**, 2561-2571.
- Rideout P.S. and Pagett R.M. (1984) A large volume sediment squeezing system for the analysis of rare earth elements in deep ocean pore waters. *Mar. Chem.* 15, 193-201.

Sholkovitz, E. R., D. J. Piepgras and S. B. Jacobsen (1989). The pore water chemistry of rare earth elements in Buzzards Bay sediments. Geochim. Cosmochim. Acta, 53, 2847-2856.

Sholkovitz, E.R., T.J. Shaw and D.L. Schneider (1992). The geochemistry of rare earth elements in the seasonally anoxic water column and pore waters of Chesapeake Bay. Geochim. Cosmochim. Acta, **56**, 3,389-3,402.

Hydrothermal Water: Table A14

German, C. R., G. P. Klinkhammer, J. M. Edmond, A. Mitra and H. Elderfield, (1990) Hydrothermal scavenging of rare earth elements in the ocean. *Nature*, **345**, 516-518.

Klinkhammer, G., H., German C. R., Elderfield H., Greave M.J. and Mitra A. (1994b) Rare earth elements in hydrothermal fluids and plume particles by inductively coupled mass spectrometry. *Mar. Chem.* 45, 179-186.

Klinkhammer, G., H. Elderfield H., Edmond J.M. and Mitra A. (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. *Geochem. Cosmochim. Acta* 58, 5105-5113.

Michard A. (1989) Rare earth element systematics in hydrothermal fluids. *Geochem. Cosmochim. Acta* 53, 745-750

Michard A. and Albarede F. (1986) The REE content of some hydrothermal fluids. *Chem. Geol.* 55, 51-69.

Michard A., Albarede F., Michard G. Minster J.F. and Charlou J.L. (1983) Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 N). *Nature* 303, 795-797.

Mitra A., Elderfield H. and Greaves M. J. (1994) Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. *Mar. Chem.* 46, 217-235.

Piepgras D.J. and Wasserburg G.J. (1985) Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin. Earth Planet. Sci. Lett. 72, 341-356.

Acknowledgments

I would like to thank David Schneider (WHOI) for his help in producing the compilation of data in this report from the data in the literature. Harry Elderfield generously provided his unpublished data from the Pacific Ocean. I would to thank the Woods Hole Oceanographic Institution for financial support during the production of this report.

Table A1: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_DIS.XLS. Compilation of dissolved RE concentrations of river water.

riv_dis.xls									1		1	
	Co	ncer	tratio	ons of	Rive	r Wa	ter:				†	
Dissolve								S		 		
		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Er/Nd
					[]	pmol/k	g]					
	filter size	(um)	***	i								
Martin et al. (1976)												
Garrone & Dordogne	0.45	344	564	363	51.9	9.7	5.4		25.1	21	3.7	0.95
Carrone a Dordogne	0.10		001	500	01.0		0.17		20.1		0.7	0.00
Goldstein and Jacobs	en (1988a	1)										
Amazon	0.45	532	1514	880	229	52		193	99.3	88.4		0.113
Great Whale	0.43	1634			158	25.1	105	68.3	34.4	33.2	5.38	0.030
Indus	0.22	20.9	17.2	22.2	4.72	1.45	7.69	5.68	5.43	0.97	3.30	0.030
Isua-F	0.22	4384	8708		482	71.1	320	223	105	83.2	12.1	0.034
Mississippi.	0.22	142	69.1	138	29.9	7.3	520	46.5	39.1	35.0	12.1	0.034
Ohio	0.22	45.4	74.9	74.8	16.9	4.34		34.6	27.1	20.9	3.31	0.362
Pampanga	0.22	30.8	67.7	59.6	16.6	5.39		23.9	17.5	15.7	0.01	0.294
Shinano	0.22	269	596	344	73.1	17.2		74.5	44.1	41	9.14	0.128
Avg. River		222	460	283	71.9	17.5		70.8	50.5	35.2		0.178
Elderfield et al. (1990)		{date,	salinity	after nan	ne of eac	h river}						
Amazon	0.45	355	847	570	145	35.3	185	121	65	52.2	6.93	0.114
Connecticut, 27.04.83	1	4130		2710	507	98.4	454	328	170	197	21.7	0.063
Connecticut, 28.04.84	1	2600		2240	422	81.4	348	269	140	132	17.6	0.063
Mullica, 24.04.84	0.45	2410		3000	602	127		340	247	190	29.4	0.082
Mullica, 24.04.85	0.45	1790		2700	556	125	49.4	363	210	182	28.3	0.078
Delaware, 29.04.84	0.45	215	402	232	50.5	11	61.2	43.7	29.6	40.2	6.01	0.128
Delaware, 29.04.85, 0.05	0.45	135	168	124	28.6	6.69	37.1	33.3	22.3	28.7	4.65	0.180
Tamar, 17.04.85	0.45	310	745	722	176	41.9	182	124	68.5	62.2	10.1	0.095
Tamar, 12.08.85, 0.04	0.45	577	1010	914	238	59.5	255	174	98	95.2	15.6	0.107
Tamar, 12.08.85, 0.043	0.45	540	368	614	162	40.5	191	116	75.6	70.0	13.4	0.123
Tamar, 12.08.85, 0.044 Tamar, 12.08.85, 0.049	0.45 0.45	480	497 640	779 854	203 218	50.6 53.6	220	145 150	79.5	73.6	12.1	0.102
	0.45	400	040	004	319	74.4	333	204	82.8 93.6	84.5	12.7	0.097
Tamar, 12.08.85, 0.064 Tamar, 19.08.85, 0.02	0.45	400	239	260		15.4	70.6		30	30.6	14.1 5.63	0.115
Tamar, 19.08.85, 0.02	0.45	182	269	268	64	15.4	66.1	47	28.9	30.0	5.01	0.113
Tamar, 19.08.85, 0.02	0.45	173	258	241	57	13.7	62.4	39.9	24.7	27.3	4.31	0.102
Tamar, 19.08.85, 0.04	0.45	170	307	212	49.7	11.8	02.4	34.4	22	24.6	4.27	0.104
Swale 02.02.86		2400	4800	3320	810	208	1000	610	267	190	27	0.080
Dove, 02.02.86	0.45	654	1530		330	80	. 550	250	118	109	16	3.000
Warfe, 02.02.86	0.45	724	1130	755	163	31.7		101	50	41.1	6.1	0.066
Rye, 02.02.86	0.45		1350	725	195	48	206	151	72.3	64.5	11.1	0.100
Nidd, 02.02.86	0.45	664	1250	1650	261	65.6		190	94.4			0.057
Derwent, 02.02.86	0.45	557	1130	670	151	33.2	150	113	59.1	53.9	8.06	0.088
high flow												
Derwent, 08.02.86	0.45	127	297	190	45.6	11.3	54.6	39.2	22.8	18.4	3.2	0.120
low flow												

		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Er/Nd
Elderfield et al. (1990)	-cont'd		-	ITU	OIII	Lu	Cu	Dy	<u> </u>	10	Lu	Er/Nd
Ribble, 16.04.86	0.45	+	2000	2320	FOE	120	504	200	170	407	40.0	0.070
Hodder, 16.04.86	0.45			2150	526	139	501	362	176	107	19.3	0.076
Conwy, 02.05.86	0.45	100				122	401	340	150	125	18.7	0.070
		189	430	372	115	28.9	204	000	140	57.5	ļ	
Water of Luce, 19.02.87	5		1950	1330	269	53.5	301	200	110	175	ļ	0.083
Water of Luce, 19.02.87	2		1930	1340		53.2	293	195	115	175		0.086
Water of Luce, 19.02.87	0.45		1790	1340			300	199	107	156		0.080
Water of Luce, 19.02.87	0.2		1250	927	193	41.6	-	145	79.3	122	ļ	0.086
								ļ	ļ	ļ		
Sholkovitz (1995)												
Mississippi												
Vicksburg (#484)	0.22	59.9	52.5	80	19.9	4.26	27	27.1	25.4	25.3	3.51	0.318
Aug. 1993												
Sholkovitz (unpubl.)												
Mississippi, (#595)^	0.22	39	46	64.3	17.1	3.91	23.7	28.6	26.4	22.8	3.06	0.411
COMUS III, 6/4/1994^^												
Mississippi, (#611)	0.22			79.6	19.6			29.7	26.0	22.2	2.95	0.327
COMUS III , 3 June 1994												
Mississippi, (#612)	0.22	<u></u>		76.2	18.2	4.3	27.8	28.6	25.9	22.5	3.08	0.340
COMUS III, 6/4/1994												
Achafayla R. (#596)	0.22	71.6	75.8	96.8	24.2	5.53	29.7	28.5	19.7	11.9	1.35	0.204
COMUS III, '6 June 1994												
^, Sample # I.D.												
^^, cruise name, date												
Challessite (4002)												
Sholkovitz (1993)	0.00											
Amazon, Aug. 1989	0.22	373	930	579	146	35	150	130	70.4	56.8	7.25	0.122
Amazon, Aug. 1989	0.22	305	754	471	123	29.8	137	111	61.3	50.2	6.44	0.130
Sholkovitz (unpubl.)												
Fly River (PNG)												
	0.00	400	250	470	50.0	40.0						
Jan'94 Sta 605 (#562)	0.22	108	252	178	50.3	13.9	55.5	39.6	18.6	13.6	1.7	0.104
Jan'94 Sta 605, (#566)	0.22	108	260	178	51	8.4	57	38.8	16	13.8	1.69	0.090
Sholkovitz and Elderfie	ld /1089	\										
Susquehanna River	0.22	62.6	103	86.5	21.4	5 25	29.3	32.6	24.3	24.1	4.12	0.281
(Chesapeake Bay)		02.0	100	00.0	21.4	0.20	23.5	32.0	24.5	24.1	4.12	0.201
Aug. 1985												
Aug. 1000												
		-+										
	-											

		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Er/Nd
Sholkovitz (1992, 1995	(2	La		ecticut			Ou			1.0	Lu	Linu
17-Jun-91	') 		COIIII	ectioni	IXIVE							
	0.45	195	292	180	36.0	6.92	38.1	27.9	21.6	27.6	4.67	0.120
#80	0.43	78.8	85.8	82.9	17.0	3.26	22.0	15.9	14.8	22.6	4.08	0.120
#81	0.025 (1	38.8	45.6	49.2	10.9	2.00	16.7	11.8	13.1	21.3	3.87	0.176
#83	0.025 (2	42.6	43.8	48.6	11.1	2.08	16.9	12.1	13.4	21.6	3.94	0.200
#84	0.023 (2	42.0	43.0	40.0	11.1	2.00	10.9	12.1	13.4	21.0	3.54	0.213
22-Sep-91						·						
#105	0.45	168	222	178	36.4	7.05	40.3	28.9	22.9	30.7	5.36	0.129
#106	0.22	154	196	166	33.5	6.52	37.3	27.2	21.9	30.2	5.11	0.132
#107	0.025	101	122	112	24.4	4.72	29.2	21.4	19.0	27.5	4.83	0.169
#108	0.025	95.3	119	109	23.5	4.61	28.7	21.0	19.1	27.9	4.60	0.175
#100	0.020	00.0	110	100	20.0	7.01	20.1	21.0	10.1	27.0	4.00	0.170
20 JULY 1992												
#224	< 5 K*	12.8	13.5	16.1	3.95	0.90	8.57	7.02	9.70	18.7	3.59	0.604
#223	< 50 K	19.1	22.3	25.7	6.33	1.38	11.9	9.35	11.7	21.2	4.04	0.457
#222	0.22	148	184	143	27.6	5.72	29.8	23.0	18.3	27.0	4.44	0.128
17 DEC. 1992												
#339	< 5 K		74.4	87.3	17.1	3.58	27.2	19.1	18.5	29.7	5.00	0.212
#340	< 50 K		163	179	33.0	7.60	50.4	34.6	28.9	40.0	5.60	0.161
#394	0.22 um		680	576	89.4	19.6	114	87.7	59.8	68.0	8.83	0.104
Sholkovitz (1992, 1995 23 Oct. 1992	5) Ultrafiltra	too*										
	Ollianilia	162										
Hudson River #289	<5K(1)**		110	111	20.8	5.42	34.5	26.4	22.2	22.4	2.77	0.200
#308	<5K(1)		102	109	21.9	4.31	32.2	24.7	18.0	21.9	2.77	0.200
#303	<50K		213	209	41.4	8.22	60.1	46.5	30.3	34.7	4.00	0.105
#305	0.025		320	310	56.4	12.6	89.9	62.8	39.5	44.1	5.19	0.143
#304	0.023		443	423	78.8	17.0	121	81.6	49.5	52.4	3.91	0.120
#304	Colloids*	*	443	723	70.0	17.0	121	01.0	49.5	52.4	3.91	0.117
#302	>50K		2843	2547	492	88.1	593	401	227	221	27.9	0.089
#301	>5K(1)**		4142	3903	719	132	981	654	390	363	45.8	0.100
#309	>5K(2)		4071	3901	719	144	1028	642	391	370	47.9	0.100
#000	- 011(2)		1071	0001	710	177	1020	012	001	0,0	47.0	0.100
Colloids	<u> </u>											
Conn R. 20 July 1992												
#225	> 50 K**	2059	2523	1905	354	71.0	324					
#226	>5 K			3143		120	544	412	253	223	31.4	0.081
Conn R. 17 Dec. 1992												
#343	>50K		5677	4726	815	168	999	673	366	353	40.9	0.077
#344	>5K			4099		165	837	622	359	360	46.8	0.088
												2.200
#, I.D number for analy	ses in Sho	lkovitz	's labo	ratory								
ultrafiltrate												

Table A2: Section 5.1 of Handbook - Lanthanide composition and aquatic chemistry of river water

File name: RIV_PART.XLS. Compilation of RE concentrations of river suspended particles and sediments.

	F	River	s: Su	sper	ided	Parti	cles	and	Sedi	men	ts				
riv_part.xl	s														
							[ppm]								
	<u> </u>	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Goldste	in and Ja	cobs	en (1	988	a), [T	rims:									
Amazon		35	73		33	5.9	1.1	4.2		2.6		1.2		1	0.2
Gr. Whale		52	103		39	5.8	1.1			2.9		1.5		1.3	0.2
Indus		19	41		19	3.7	0.9	3		2.5		1.2		1.1	0.2
Isua-F		73	143		52	8	1.1	5.5		3.7		1.5		1.4	0.2
Miss.		44	93		40	7.5	1.5	5.9		5.1		2.4		2.1	0.3
Ohio		41	84		37	6.9	1.4	5.1		4		1.9		1.5	
Murray		38	71		35	7	1.6	5.7		4.6		2.1		1.8	0.3
Pampanga	9	7.7	18		13	3.6	1.1	4.9		4.7		2.9		2.7	0.4
Shinano		29	63		27	5.8	1.2	5.4		4.7		2.5		2.3	0.4
Avg. River	-	40	81		36	6.9	1.4	5.3		4.2		2		1.7	0.3
Martin e	t al. (197	6). [IN	IAAI												
Amazon	1	48	112			9.7	1.8							3.7	0.6
Congo		47	104				1.5		1.6					2.4	0.4
Ganges		42	98		48	9.7	1.2		0.7				0.4	3.2	0.5
Mekong		48	93	8.5	47	5.4	1.5	5.3	0.9		0.9	2.7	0.5	3.6	0.6
Garrone		44	93	8.2	36	6.2	1.1	6.1	0.9		0.9	2.4	0.4	2.8	0.4
Martin a	nd Mayb	eck (1979	, [IN	AA]										
Amazon		48	112			9.7	1.8							3.7	0.6
Congo		50	90				1.6	2.5	1.6					2.6	0.4
Danube		28	65			6.3	1.5		0.6					4.6	0.5
Ganges		42	98		48	9.7	1.2		0.7				0.4	3.2	0.5
Garonne		44	93	8.2	36	6.2	1.1	6.1	0.9		0.9	2.4	0.4	2.8	0.4
Magdelena)	37				6.7	1.4							3.7	
Mekong		48	93	8.5	47	5.4	1.5	5.3	0.9		0.9	2.7	0.5	3.2	0.6
Parana		50				9.1	2							3.5	0.6
Somava	julu et al	/199	3) [I	ΝΔΔ.	l Indi	an R	ivers								
Comaya	Jana et al.	. (100	Ο) , [.		,a										
Godavari	#14	40	78		32	6.2	1.6		0.9					2.7	
Godavari	#13	30	63		26	4.9	1.2		8.0					2	
Cardaa	1 /4	005)	F INI	\ A1	A		2:								
Goraeev	et al., (1	300),	Į IIVA	1	AITIA	ZON F	aver	3		-					
Rio Negro		46	112		49	7.6	1.6		2.7				1.3	8.6	1.5
Clear Wat		55	132		60	12	2.3	10	2				1	8	1.4
Maderia		44	92		37	5	0.9		1.1					3.2	
Amazon		44	114		42	8.7	1.7		1.2				0.5	2.8	0.5
TIMO - the	 ermal ioniza	tion ~	2000	nactro	mote	,									
	trumental r														

RIV_PART.XLS

		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Sholkov	itz (1995,	unp	ubl.)	TIMS	3										
Amazon	ICP,#420	49	99		48	8.7	1.7	7.3		6.4		3.6		3.5	0.5
S'd part.	fusion														
Aug-89															
Miss. R	TIMS, #494	35	74		34	6.2	1.3	6.5		5.1		3.5		2.8	0.4
S'd part.	fusion														
V'sBurg	Aug. 1993														
Fly R	TIMS, #583	35	74		35	7.7	1.5	6.7		4.4		2.6		2.5	0.3
Papua Nev	w Guinea														
S'd part.	fusion														
Jan-94															
Fly R	TIMS, #581		71		32	7.4	1.4	6.9		5		3		2.8	0.4
river bank	sediment														
Jan-94															
fusion															
Conn R	TIMS, #550	32	71		34	6.7	1.4	6.2		5.8		3.4		3.2	0.4
S'd part.	fusion														
Jun-91															
Sepik R.	ICP, #405	21	47	25	4.7	1.1	4.2	4.2	2.4	2.5	0.4				
Papua Nev	v Guinea														
25 km up r	iver from m	outh													
bottom sec	liment														-
fusion															
fusion = to	tal dissolution	on of	solid b	y met	abora	te fus	ion								
	ctively coup							v							

Table A3: Section 5.2 of Handbook - The estuarine chemistry of the lanthanides.

File name: GWHALE.XLS. Great Whale River estuary, Quebec

File name: GIRONDE.XLS. Gironde River estuary, France

File name: AMAZON.XLS. Amazon River Estuary, Brazil

File name: CBAYSE.XLS. Surface waters, subsurface waters and shelf waters of Chesapeake Bay

File name: CBAY92.XLS. Chesapeake Bay bottom water time-series

File name: FLY.XLS. Fly River estuary, Papua New Guinea.

File name: ELDERF.XLS. Data from a suite of estuaries presented in Elderfield et al. (1992)

GWHALE.XLS

gwhale.xls			Great V	Vhale Riv	er (Que	bec) Es	tuary			
				and Hud	Ison Ba	у				
Goldstein a	and Jac	obsen (1988b)							
* 0.22 um f	Itrate									
Salinity	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
				[pi	nol/k	1]				
0.004	1634	2405	1158	158	25.1	105	68.3	34.4	33.2	5.38
0.37	1375	2048	1040	144	22.5		59.7	29.4		
1.69	711	1056	540	76.5	12.2		33.4	19.4	18.8	3.00
3.93	542	928	449	69.8	11.0		29.8	17.4		
5.22	384	785	384	60.0	8.56		29.3	19.9		
14.9	366	449	239	31.1	5.33		16.9	11.1		-
21.9	246	226	139	20.0	4.01		17.3	12.7	14.8	2.12
Hudson 6	Зау									
31	170	123	100	15	2.82	13.9	13.2	10.2	10.1	

GIRONDE.XLS

			Gird	nde	Riv	er	(Fra	nce)	Es	tuar	V			
gironde.xls														
Martin et a	l. (1970	5)	-		1							-		
0.45 um fi														
Salinity	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
						[pmol/	ŋ						
0.1 [river]	344	564	52.0	263	51.9	9.7	54	7.8		8.7	25.1	3.6	21.0	3.7
0.42	142	228	25.6	96.4	20	3.9							18.5	3.5
7.0	39.6	80.6	10.6	68	8.0	2.4	11.5	1.6	-	2.2		-	8.7	1.7
28.3	56.1	78.4	6.4	35.4		0.86	6.2	0.80		0.97	4.2	0.72	3.1	0.49
35 [ocean]	24.5	8.6	4.5	19.4	3.0	0.85	4.4	0.88	5.6	1.3	5.2	1.0	4.7	0.86

AMAZON.XLS

	amazon.xis	-				Ama	zon E	stuary				
Challen	1- (4000)				[Am	asSeds I C					-	+
	itz (1993)											+
0.22 um filtr										 		+
Surface		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	1	
Sta. #	Sal					pmol/k		-		10	Lu	Ce
						•				 	-	Anon
I-1-18a	0.3	373	930	579	146	35	150	130	70.4	56.8	7.05	100
I-1-18b	0.3	305	754	471	123	29.8	137	111	61.3		7.25	1.00
I-1-19	0.84	211	504	346	84.2	20	94:5	72.3		50.2	6.44	0.99
I-1-20	5.5	22.8	36.6	33.5	9.3	2.49	13.3	12.5	39.4	32.0	3.8	0.93
I-1-53	5.8	20.6	34.6	29.4	8.7	2.4	13.3	12.7	0.7			0.66
l-1-29	6.6	17.9	29.0	26.3	7.6	2.08	11.1		8.7	7.8	1.07	0.70
I-1-30	9.5	20.1	31.2	27.7	8.0	2.21		11.2	7.7	6.9	0.96	0.66
I-1-30	11.8	22.6	34.5	28.2	7.5	2.21	11.9	12.3	8.9	7.8	1.07	0.65
I-1-21	17.8	27.5	38.2	30.7	7.7	2.03	12.2	12.1	8.8	7.7	1.1	0.67
I-1-22	21.9	29.7	41.5	34.1	8.7	2.45	12.1	-				0.64
I-1-50	24.3	29.4	32.1	33.6	8.8	2.49	14.3	100	11.8	9.7	1.34	0.64
l-1-35	27.6	35.7	33.3	41.2	10.6	2.49	14.5	16.0	12.3	9.8	1.32	0.50
l-1-23, r	33.4	30.0	35.4	35.3	8.8		17.2	18.9	14.4	12.0	1.64	0.42
l-1-23, r	33.4	29.8	35.1	36.5	9.9	2.42	14	15.1	11.4	9.4	1.26	0.53
-1-14, г	34.5	35.5	29.5	40.8	10.4	2.43	14.8	15.0	11.3	9.2	1.25	0.52
-1-14, г	34.5	35.4	30.2	42.4	11.8	2.96	17.4	19.8	14.5	12.6	1.77	0.38
-1-3	35.5	11.1	13.8	13.6	4.0		18.3	19.5	15.2	12.6	1.79	0.38
-1-24	36.4	19.0	22.3	24.8	4.3	0.69	5.0	4.4	3.7	3.2	0.44	0.55
-1-12	36.4	10.4	14.3	12.8	3.5	1.14	6.1	6.6	5.1	4	0.54	0.51
-1-9	36.6	15.6	15.6	16.6	4.2	0.63 0.77	4.6					0.61
			15.0	10.0	4.2	0.77	5.1	4.3	3.4	2.7	0.36	0.47
Deep Wat	ers											
0-16M*	33.9	36.2	33.8	42.2	44.0							
0-10M	35.0	45.6	38.5	42.3 52	11.2	2.84	17.2	17.3	12.8	10.6	1.42	0.42
2-10M	35.8	21.6	25.1		14.0	3.47	22.1	24.3	18.0	15.5	2.09	0.39
3-19M	36.2	55.0	35.1	27.1	7.6	1.69	10.0	9.2	6.2	5.1	0.69	0.51
0-21M	36.5	39.1	36.5	60.8	15.5	3.93	24.2	25.3	19.4	15.8	2.11	0.29
	50.5	33.1	30.5	46.7	12.7	3.26	20.0	20.9	15.8	12.8	1.73	0.42
= replica												
Sta # De												

CBAYSE.XLS

cbayse.xis					Ches	apeak	e Bay					
						ily-Aug 1						
Sholkovit	z and	Elderfi	eld (198	8)		T			1			1
0.22 um	Sal		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
filtrate							[pmol/kg	9]	1			
1. Near S	urface	(1 or 2	2 m) San	nples			Ī					
Sta. #												
CB-20,a	1.21		17.5			7.07	1.83		13.6	17.0	19.8	3.40
CB-20,b	1.21			21.6	23.1	7.04	1.79	13.5	14.0	16.5	22.5	3.70
CB-19,a	0.09		53.3	95.4	82.1	19.4	4.92	37.9	31.0	23.2	30.0	6.88
CB-19,b	0.06		62.6	103.2	86.5	21.4	5.25	29.3	32.6	24.3	24.1	4.12
CB-18	2.73		14.9	14.7	17.6	5.22	1.39		11.8	15.3	18.5	
CB-17	7.24		6.02	12.7	18.0	5.16	1.34	8.69	10.2	11.9	13.9	1.85
CB-16	8.97		19.5	12.9	16.4	4.43	1.16	6.92	11.5	10.6	19.1	2.45
CB-15	11.6		26.4	11.4	21.4	5.30	1.38		10.5	10.9	13.7	2.39
CB-14,a	14.2		33.4	30.3	23.5	5.39	1.40	8.28	9.03	8.62	10.8	1.98
CB-14,b	14.7			30.1	23.4	5.79	1.39		9.25	8.74	11.0	
CB-12	15.6		14.4	10.2	13.0	3.25	0.89	5.50	7.34	7.10	19.0	1.85
CR-1	15.8		22.2	12.6	20.5	5.85	1.45	13	10.4	9.25	11.5	1.96
CB-10	16.7		15.9	10.0	14.0	3.28	0.87	5.29	6.08	6.06	8.34	1.59
CB-7	20.1		16.0	15.1	15.7	3.81	0.97		7.90	7.38	9.83	1.71
CB-5	23.4			22.1	19	4.45	1.11	7.70	8.91	8.45	9.74	1.83
CB-2	27.0			30.0	23.6	5.34	0.95		10.9	9.75	17.0	
CB-1	30.6			34.7	27.2	6.05	1.46		11.0	9.75	1.47	
	Sal	Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
		(m)					pmol/kg		<u> </u>			
2. Subsurf	ace wa	iters										
	45.0											
CR-1	15.9	5.0	21.4	11.2	17.6	4.39	1.17		8.54	8.42	11.1	2.01
CR-1	16.5	8.7	32.1	25.5	26.1	6.75	1.64	9.69	9.29	8.25	10.3	1.93
CR-1	19	13.0	43.7	36.0	27.7	6.11	1.55	10.1	8.00	7.14	9.89	1.32
CR-1	19.4	16.0	45.8	39.6	29.7	6.49	1.63	9.89	8.53	7.30	8.95	1.59
CR-1	20.4	21.5	51.7	39.3	32.9	6.88	1.73	10.4	9.26	7.61	8.89	1.66
CB-10	21.5	10.0	29.8	29.2	17.7	3.60	0.92	5.13	5.89	5.70	7.42	1.5
CB-12	20.9	22.0	68.3	91.5	47.3	9.27	1.77		15.3	13.5	12.8	2.18
CB-14	19.1	37.0		56.2	34.8	7.34	1.86		10.3	8.63	10	
Ob alf let		.4-::										
. Shelf Wa	iters o	utside	of Ches	apeake	Вау							
20 4 (2)	22.0	_	25.4	40.0	-							
CS-1 (a)	32.9	2	35.1	18.3	27.9	5.79	1.4	8.08	10.5	8.91	9.18	1.54
	32.9	2	30.2	17	25.9	5.38	1.18		10.9	8.37		1.57
	35.4	90	23.5	10	17.7	3.62	0.9	5.16	5.93	4.97	4.7	0.76
CS-2	33.1	3	22.4	40.7	05	4.69	1.5			7.45		3.97
CS-4	32.8	2	32.1	16.7	25	5.17	1.25		9.04	7.93	8.11	1.37

CBAY92.XLS

			Chesa	peake B	av Bott	om Wate	er Time-	Series			
cbay92.xts	 							Curios	-	†	
Sholkovitz	et al. (1	992)			-						
0.22 um filtrate								-	-		
Sample	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb		
				Fr	mol/k		-		10	Lu	Ce
10-Feb-88	59.5	32.6	49.8	11.4	2.95	11.7	40.4	40.0			Anom
12-Арг-88	56.6	46.7	47.8	11.7			19.1	16.3	17.2	2.52	0.28
17-May-88	115	109	79.5	18.2	2.89	17.1	17.4	14.8	15.6	2.33	0.42
14-Jun-88	108	156	85.1		4.55	25.4					0.65
6-Jul-88	81.3	107	59.9	18.6	4.59	24.2	22.6	16.5	15.9	2.37	0.75
26-Jul-88	209	301		13.3	3.27	18.5	17.1	13.5	13.9	2.11	0.7
16-Aug-88	249	380	163	30.7	7.95	39.3	35.5	24.9	21.1	2.35	0.73
21-Sep-88	70.7		192	38.6	9.16	48.6	40.3	27.3	22.3	3.04	0.80
24-Oct-88	52	68.1	45.8	10.5	2.72	16.2	15.6	12.3	11.6	1.77	0.53
15-Nov-88	52	29.5	41.5	9.90	2.59	15.3	15.5	12.1	12.2	1.89	0.29
	50.5										0.2.5
20-Dec-88	52.5	24.6	46.8	11.4	2.95	17.6	19.0	17.9	17.1	2.50	0.23
15-Feb-89	51.7	25.4	46.0	10.6	2.78	16.5	18.3	15.6	16.3	2.46	0.25

FLY.XLS

fly.xls			Fly R	iver (P	apua I	New G	uine	a) Es	tuar	V		T
					Jan.19			T	T -	-	+	-
Sholkovitz	(unp	ubl.)				1	· ·	+	+			
0.22 um filtrates						+		+-				1
SAMPLE	LAB	Sai	La	Ca	Nd	Sm	Eu	Gđ	Dy	Er	1-1	
	#					fi	pmol/k		Dy	EF	Yb	Lu
•	-	-	•			- M	Pillouk	1	-	-		
Sta 605 (R)	562	0	108	252	178	50.3	120	-	•	-	-	-
Sta 605 (R)	566	0.2	108	260	178		13.9	55.5	39.6	18.6	13.6	1.70
Sta 610	568	2.6	14.4	38.2		51.0	8.4	57.0	38.8	16.0	13.8	1.69
Sta 612	569	4.2	10.5		27.5	10.1	2.2	13.2	8.36	4.95	4.21	0.59
Sta 613	575	5.1	10.3	26.7	21.9	8.54	1.74	11.4	7.23	4.44	3.86	0.55
Sta 614	570	7.4	12.4	18.8	20.1	8.05	1.54	10.7	6.67	4.24	3.60	0.57
Sta 616	571	10.3		24.0	23.1	8.54	1.79	11.7	8.01	4.95	4.26	0.61
Sta 617	572	14.5	11.6	19.9	21.6	8.31	1.69	11.4	7.63	5.01	4.24	0.60
Sta 620	573	-	16.8	35.1	27.7	9.78	2.34	14.1	10.5	6.85	5.69	0.00
Sta 622		21.0	18.5	29.7	29.3	10.5	2.37	15.2	11.4	7.47	6.07	0.85
Sta 589 (R)	574	27.3	23.8	34.3	33.9	11.8	2.92	17.3	13.4	8.77	0.00	
	561	34.7	25.1	34.9	38.6	12.2	3.30	19.3	15.8	10.5		0.98
Sta 589 (R)	567	34.7	25.8	38.73	37.0	12.7	3.25	18.8	15.5	10.0	8.32	1.14
									.0.5	10.0	8.10	1.09
R= replicates												

ELDERF.XLS

		Dissolved Concentrations of Estuarine Waters											
elderf.xls													
			 						-	ļ	-		
mldonf.	- 7.4		44.00		 			ļ					
Elderf:	reta (et al	(199	0)									
	Sal		Co	Mal	-			<u> </u>	 		1		
	Jai	La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lı		
Connectio	rut Divo	r [4 .um	filtrato1			[pmol/kg	IJ .						
Commectic	0	4130	5450	2710	507	00.4	AFA	000	470	105	<u> </u>		
	0	2600	4340	2240	422	98.4	454	328	170	197	21.		
					422	81.4	348	269	140	132	17.		
	2.6	1280	2580	1370	259	49.9	166	172	94.2	35.8	13.		
	4.3		2600	1350	253	48.8	160	171	91.1	93.2	13.		
	4.7	923	1640	898	171	33.1	133	120	61.9	64	9.9		
	7.1	1190	2020	1060	200	37.4	145	135	74.1	71.7	10.		
	10.3	1030	1790	1660	196	37.7	160	125	68.3	65.5	9.7		
	12.2	1020	1740	885	165	31.8	140	117	65	61.6	8.9		
	16.5	551	876	547	97.1	19.3	72.7	67.7	38	36.3	5.8		
	20.9	475	1070	461	78.8	15.4	73.1	55.5	31.8	30.3	5.5		
	24.5	287	456	265		9.35	65.7	39.8	22	23.5	3.7		
elware R	iver [0.4	5 um fil	trate]										
	0	215	402	232	50.5	11	61.2	43.7	29.6	40.2	6.0		
	0.5	135	168	124	28.6	6.69	37.1	33.3	22.3	28.7	4.6		
	5.8		70.6	52.6	13.7	2.86	22.8	16.9	13.5	17.8	3.3		
	7.9	72.2		47.7	11.1	2.6	19.6		13.3	17.1	3.8		
	12.6	262	37.8	32.4	7.87	1.97	19.8	14.3	12.2	21.5	3.64		
	12.9	78.9	52.5	39.5	8.98	2.13	18	14.7	12.3	18	3.19		
	17.0	60.9	70.3	42.9	9.3	2.17	20	14.5	13.1	21.9	0.10		
	20.9	54.9	65.1	44.8	11.1	2.71	14.8	13.9	13.7	17.5	3.15		
	23.0		80.1	49.5	12.6	3.49	15.4	15.2	13.1	14.7	2.57		
									10.1	17.7	2.0		
Iullica Riv	er [0.45	um filtr	ate]										
	< 0.3	2410	4970	3000	602	127		340	247	190	29.4		
	< 0.3	1790	4100	2700	556	125	49.4	363	210	182	28.3		
	9.4	438	991	574	123	27.4	121	94.5	58.1	58.2	9.02		
	11.9	306	583	370	81.8	18.3	77.6	70.1	42.3	30.2	6.39		
	17.7	183	316	153	33.6	7.75	36	33.5	22.3	23.7	4.9		
	21.8	85.9	125	80.1	16.8	3.83	27.3	18.7	14.6	15	2.42		
	22.8	80.6	94.4	65.7	13.8	3.25	21.9	17.6	14.2	15.7	2.42		
	24.4	59.1	83.3	53.9	11.2	2.54	20.1	16.6	11.5	15.4	2.6		
				-		2.07	20.1	10.0	11.5	13.4	2.0		
							+						
								1	1				

ELDERF.XLS

											_
	Sal	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
Tamar	(Sring Tid	e) Piver	TO 45	n filana							
	(Oring Tid	c) Kivei	[0.45 UI	II IIItrate		 	 				
	0.02		239	260	62.8	15.4	70.0	47.0	-		ļ
	0.02	182	269	268	64		70.6	47.3	30	30.6	5.63
	0.02	173	258	241	57	15.4	66.1	47	28.9	30	5.01
	0.04	173	307	212		13.7	62.4	39.9	24.7	27.3	4.31
	4.2	73.9	83.1		49.7	11.8		34.4	22	24.6	4.27
	6.95	61		81.4	20.4	5.19	26.7	18.9	13.4		3.33
	9.25	56.4	70	67.3	17	4.36	22.4	14.4	11.9	23	3.28
			60.7	58.5	14.4	3.73	21.5	11.4	10.7	12.4	2.61
	12.6	60.8	51.4	52.6	12.6	3.24	22	11.8	9.65	12	2.03
	16.5	55	40.2	45.8	10.6	2.72	23.6	12.1	9.13	11.6	2.21
	19.6	39.4	25.2	33.5	7.78	2.04	11.2	9.94	6.45		1.48
	22.8	40.8		35.2	8.13	2.1	13.4	8.44	7.23	9.43	1.4
amar	(Neap Tide	s) [0.45	um filte	2401							
	0.04	577	1010	914	220	F0 F	055	4=4			
	0.043	540	368	614	238	59.5	255	174	98	95.2	15.6
	0.044	480	497		162	40.5	191	116	75.6		13.4
	0.049	400	640	779	203	50.6	220	145	79.5	73.6	12.1
·	0.049	400	040	854	218	53.6		150	82.8	84.5	12.7
	11.2		450	100	319	74.4	333	204	93.6		14.1
	18.7	130	158	132	30.3	7.33	34.3		19.4	17.4	2.9
		55	60.6	58.1	13.8	3.43	14.8	15.3	10.2	15.5	1.72
	21.6		36.5	41.9	9.86	2.52	12.8	9.97	8.27	9.45	1.58
	25.6	39.1	33.7	41.7	9.13	2.32	11.2	8.78	7.94	8.91	1.57
mazor	River [0.4	5 um fils	ratel								
	0	355	847	570	145	25.2	405	404			
	4.16	1690	3820	1690		35.3	185	121	65	52.2	6.93
	9.16	406	786		356	79.6	335	222	100	78.5	11.8
	0.10	700	700	383	82.8	18.9	107	58	29	24.9	3.29

Table A5: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: NdSm_A.XLS. Concentration of Nd and Sm only for the Atlantic Ocean.

		AT	LANTIC OCEA	N			
NdSm A.xls		[Nd a	nd Sm Data Only]				
			(pmol/kg)		 	1	
Jeandel (1993)	Map # 5			tordal &	Wasser	burg (1	986)
Cruise Name	Depth	Nd	Map	7 Depth	Nd	Sm	
SAVE 217	108	8.5	Sta 4		34.7	6.32	
	264	9.6		110	27.2	4.99	
	435	9.6		300	21.2	4.06	
	869	10.5		410	21.6	4.19	
	1087	11.7			20.9	3.92	
	1835	14.5		680	22.2	4.26	
	2443	18.4		760	30.8	5.52	
	3454	22.9			30.6		
	4675	25.9	Sta 4:	5 0	39.4		
SAVE 302	49	9.2		65	30.1	5.25	
	173	11.8		190	44.4		
	470	10.4	Sta 48		40.7		-
	795	9.9		150	40.0		
	893	10.1		600	25.1		
	1586	12.7	Sta 11		26.1		
	2763	18.9		1200	26.8		
	3156	19.7		1600	31.6	1	
	3937	28.8		2200	42.8		
	4564	38.2	Sta 53		32.0	1	
SAVE 271	48	8.7	Sta 8		34.8		
SAVE 2/1	147	10.5	- Dua 0	135	41.4		
	347	10.9	Sta 10		38.4	 	
	1027	14.4	Sta 10	180	33.6		
	1434	15.9		160	33.0	-	
			Piepgras	0 11/	<u></u>	1002)	
	1973	19.4	Piepgras				
	2562	27.0	1 77 100	Depth		Sm	
	3537	27.0	A-II,109-		12.5	2.50	
	4792	27.7	Map #		13.9	2.77	
	5060	27.0		500	15.7	3.14	
				800	17.2	3.51	
Spivak & Wasser				1000	16.2	3.45	***
	Depth	Nd		1150	18.1	3.54	
ITO-TAS 80	0	13.8		1300	17.3	3.54	
Map # 6	389	13.9		2000	17.1	3.31	
	1152	17.9		3000	19.7	3.70	
	1260	16.3		4000	23.1	4.28	
	1990	17.1					
	2984	20.2	Pi	epgras &		rburg (1	980)
	4724	26.3	Map#	11 Depth		Sm	
			OCE63-	1-1 300	13.9	3.07	
			OCE63-2	2-2 2200	17.8	3.43	
			OCE63-2	2-3 3400	22.1	4.14	
					T		

Piepgras a	and Was	serbur	g (1987)					T
Map # 6			,,	Depth	Nd			1
Hudson	83-036	abrad	Current	100m	32		 	
Hudson	83-036	Sta 9	Janon	5 m	25			
Haabon	00 000	Ota 0		1200	18.2		1	
				2550	20			<u> </u>
Hudson	83-036	ta. 11	l,	5	21.1			
11000011	00 000		<u>'</u>	125	21.7		<u> </u>	
				500	19.2			
				800	18.2		-	
				1000	18.1		-	
				1500	18.1			
				2000	17.7			
				2500	16.7	 	<u> </u>	1
		-		3000	17.3		ļ ———	
		-		3500	18.2			
				3850	19.4	 	-	
Diametra	and Mass		- (4007)	3030			ļ	
Piepgras a				750	Map # 6			
TTO/NAS		Sta. 14		750		 		
	- 3	Sta. 14	4	65	14.3			
		21 44		3750	16.3	 	-	
		Sta. 14		2800	16.8	 		ļ
		Sta. 16	/	840	16.5			-
		0: 00		2310	20.6			ļ
All-109-1		Sta. 30		5	14.4			
				200	13.6			<u> </u>
				400	14.6			
				600	14.6			
				800	15.2			
				1100	18	 		ļ.,
				1800	18.4	 		
				3000	18.9			
				4000	26.3			
		L		4850	62.5			
All 109-1		Sta. 39		5	7.9	 		
		Sta. 79		5	9.29	 		
		Sta. 95		0	12.5			
OCE63		Sta. 1		300	13.9	 		
		Sta. 2		2000	17.8			
				3400	22.1			
TTO/TAS		Sta. 63		0	18.2	 		
			Extraction	200	15.2			
			data	390	15.5			
				590	14.8			
				790	15.9			
				980	16.2			
				1990	17.3			
				2910	18.4			
				3890	25.7			
				4280	26.5			
				4810	30.1			

Table A6: Section 6.1 of Handbook. Atlantic Ocean seawater

File name: ASW_CONC.XLS. Concentration of RE in the Atlantic Ocean.

File name: SARG_DIS.XLS. Concentration of dissolved RE in the Sargasso Sea from Sholkovitz et al. (1994)

File name: SARG_PAR.XLS. Concentration of suspended particles in the Sargasso Sea from Sholkovitz et al. (1994). Data on the chemical leaching of particles [acetic acid, strong mineral acid and bomb/strong acid dissolution]. Data in per kg of seawater

			Atla	antic (Ocean	ı Seav	water					
asw_con	c.xls	-			T	7				-	+	
	1		+		-		-			 	-	-
		+	+	CC	ONC = pm	ol/kg	-					
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*
		+	- 114		-		-			-	-	
Shalka	witer R. C	Schneide	r (1001)Map #	•	 	+	-	•	 -	-	-
			•	map #	3		1					
		64 45'W		2.72	0.00	5.20	6.00	4.05	4.10	0.55		0.45
20 40	16.6	16.3	16.9	3.73	0.99	5.38 5.21	6.09	4.85	4.13	0.57	-	0.47
60	16.2	15.3	16.5	3.55	0.97	5.15	6.02	4.77	4.09	0.56		0.49
120	15.8	12.8	16.0	3.50	1	5.15	-		+			0.45
160	16.8	11.5	16.2	3.53	0.95				-	-	-	0.39
200	16.4	12.6	16.2	3.59	0.94	5.11	6.00	4.00	4 11	0.54	 	0.33
		64 12'W)	10.3	3.39	0.97	5.34	6.00	4.80	4.11	0.54	ļ	0.37
			15.0	2.51	0.00	5.22	5.04	4.54	4.04	0.55	ļ	
15	16.0	15.7	15.9	3.51	0.92	5.33	5.84	4.74	4.04	0.55		0.47
15	15.7	15.1	17.6	4.55	0.93	6.07			4.05	0.74		0.44
30	15.5	15.0	15.6	3.49	0.92	5.12	6.02	4.71	4.07	0.56	ļ	0.46
45	15.5	14.0	16.0	3.50	0.93	5.10					ļ	0.43
60	15.7	13.5	15.5	3.46	0.91	5.07	5.86	4.77	4.15	0.57	<u> </u>	0.41
105	14.9	12.1	15.5	3.46	0.94	5.27	5.89	4.77	4.12	0.56		0.38
200	15.4	10.8	15.9	3.48	0.88	5.27	5.86	4.75	4.08	0.56	ļ	0.33
255	15.5	11.1	16.8	4.18	0.90	5.83	5.83	4.77	4.09	0.56		0.33
340	15.3	9.6	16.2	3.95	0.87	5.57	5.59	4.58	3.98	0.53		0.29
440	15.4	8.2	15.2	3.29	0.88	4.80	5.47	4.56	3.97	0.55	ļ	0.25
550	16.9	6.3	160		ļ							0.28
750 1000	20.5	5.1 5.9	16.0	3.27	0.00	7.28	5.15	4.45	4.20	0.52		0.13
1500	26.0	6.8	21.2	5.25	0.88	6.73	5.59	4.94	4.59	0.69		0.12
2000	23.3	6.3	21.4 19.4	5.41 5.10	0.89	6.85	5.71	5.08	4.76	0.70		0.13
3000	24.8	5.8			0.82	6.48	5.40	4.93	4.56	0.66	ļ	0.14
4000	40.8	9.5	20.8 31.8	5.27	0.87	6.78	5.80	4.99	4.68	0.69		
		1		7.21	1.27	8.71	7.25	6.11	5.90	0.86	ļ	
	_	reaves (Map #10)						
		N & 25 59										
0	36.7	66.3	34.3	6.01	0.62	5.59	5.00	3.63	3.15			0.89
100	13.0	16.8	12.8	2.67	0.64	3.41	4.78	4.07	3.55			0.62
200	17.0	22.3	15.8	4.52	0.85		5.31	4.62	4.07			0.64
600	22.5	18.4	19.7	3.86	0.80	4.85	5.41	4.58	4.14			0.41
700	25.2	24.7	21.9	4.23	0.76	5.23	5.43	4.57	4.07			0.49
900	20.8	9.6	21.1	4.32	0.82	5.20	5.61	4.94	4.66			0.22
1000	22.0	20.8	22.8	4.51	1.01		6.00					1.22
1500	22.8	9.7	19.0	3.72	0.95	5.31	6.03	5.30	4.99			0.22
2500	29.4	26.1	25.0	4.75	0.90	7.19	6.10	5.09	4.79			0.45
3000	32.6	19.3	25.4	4.69	0.99	5.80	6.14	5.33	5.21			0.31
4500	54.4	55.1	45.8	8.25	1.22	8.27	6.830	5.34	5.16			0.51
		(1000)										
DeBarr				Map # 8			(33 58'N					
Depth	La	Се	Pr	Nd	Sm	Eu	Tb	Но	Tm	Yb	Lu	Ce/Ce*
-	-		-	-	-	-	•	-	-	-	-	-
10	15.0	86	4.5	18.5	3.7	0.78	0.75	1.8	0.74	4.3	0.68	2.53
49	12.0	80	3.0	15.4	3.4	0.75	0.73	1.5	1.00	5.1	0.78	2.90
98	12.3	42	3.0	14.2	3.0	0.60	0.69	1.6	0.68	3.8	0.61	1.55
147	12.9	30	3.4	17.0	3.7	0.75	0.68	1.8	0.93	4.6	0.72	1.00
491	16.7	23	3.4	16.1	3.4	0.70	0.69	1.7	0.76	4.1	0.66	0.67

Donth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*
Depth	La		110	Om			29					
638	17.8	18	4.1	16.2	3.2	0.65	0.68	1.5	0.62	3.9	0.64	0.50
783	21.3	16	4.0	16.1	3.2	0.64	0.79	1.5	0.73	4.1	0.68	0.39
981	22.2	15	4.0	17.2	3.5	0.73	0.77	1.9	0.95	5.1	0.85	0.35
1179	27.2	23	5.3	19.1	3.6	0.76	0.82	1.9	0.88	4.9	0.82	0.45
1379	26.2	15	4.1	14.9	2.8	0.60	0.67	1.8	0.66	3.7	0.83	0.32
1719	26.2	14	3.8	15.4	3.1	0.65	0.65	1.2	0.70	3.9	0.88	0.30
2486	20.2		7.2	20.4	3.3	0.72	0.78	1.6	0.89	5.0	1.10	
2874		20	5.3	18.8	3.5	0.80	0.80	1.6	0.90	5.2	1.17	1.42
3264	46.6	16	4.6	21.4	4.5	1.04	0.97	2.0	1.03	6.1	1.36	0.20
4328	83.8	44	10.7	40.8	7.9	1.67	1.57	2.7	1.27	7.3	1.59	0.31
4378	80.8	44	10.4	39.4	7.6	1.66	1.53	2.6	1.21	7.4	1.59	0.32
4427	82.2	55	10.3	39.8	7.8	1.65	1.40	2.5	1.14	7.0	1.54	0.39
112.									· .			
German	et. al.	(1995)		Map # 2								
		200 59.2'E	0									
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*
3	10.8	5.56	7.92	1.44	0.39	2.28	2.95	2.74	2.19	0.34		0.27
40	10.9	5.34	7.74	1.45	0.39	2.31	2.91	2.78	2.24	0.34		0.26
78	10.8	5.58	7.97	1.48	0.40	2.43	2.97	2.84	2.32	0.35		0.27
118	11.6	6.31	8.35	1.51	0.41	2.33	2.98	2.80	2.31	0.35		0.29
142	11.0	5.22	8.01	1.48	0.40	3.02	2.38	2.88	2.41	0.37		0.25
166	11.2	5.02	7.80	1.47	0.40	2.33	3.02	2.94	2.47	0.39		0.24
202	12.3	5.58	8.94	1.74	0.47	2.67	3.39	3.22	2.79	0.44		0.24
241	13.2	5.72	9.99	1.96	0.52	3.00	3.70	3.49	3.14	0.50		0.23
286	14.7	5.97	10.7	2.08	0.56	3.12	4.00	3.82	3.53	0.57		0.22
331	13.2	4.56	9.56	1.85	0.50	3.07	3.60	3.61	3.24	0.53		0.18
375		3.99	9.93	1.92	0.56	3.09	3.82	3.68		0.53		
418	13.3	3.64	9.21	1.76	0.47	2.75	3.53	3.53	3.49	0.58		0.15
495	15.3	3.38	10.2	1.94	0.53	3.38	3.93	3.98	4.00	0.67		0.12
565	14.8	3.17	9.43	1.78	0.48	3.02	3.82	3.92	3.93	0.68		0.12
643	16.0	2.98	10.4	1.94	0.53	3.17	4.03	4.31	4.29	0.72		0.10
741	15.7	3.81	10.0	1.94	0.53	3.24	3.99	4.08	4.04	0.66		0.13
839	17.0	3.56	10.5	1.96	0.54	3.23	4.12	4.24	4.43	0.75		0.12
936	18.3	3.38	10.9	2.04	0.56	3.45	4.39	4.56	4.78	0.84		0.10
1082	19.1	3.80	11.1	2.10	0.57	3.46	4.43	4.60	4.89	0.84		0.11
1273	20.3	4.08	12.0	2.23	0.61	3.77	4.69	4.84	5.14	0.89		0.11
1466	24.3	4.80	14.4	2.66	0.73	4.59	5.51	5.56	6.01	1.02		0.11
1657	23.4	5.03	13.9	2.59	0.71	4.61	5.26	5.27	5.60	0.96		0.12
1841	23.4	5.17	14.3	2.64	0.72	4.20	5.23	5.16	5.47			0.12
2088	25.8	5.21	15.8	2.96	0.80	4.75	5.74	5.58	5.87	0.98	-	0.11
2332		5.43	17.9	3.36	0.91	5.22	6.29	6.00	6.24	1.05	-	
2581	27.5	5.40	17.8	3.30	0.88	5.07	6.04	5.60	5.82	0.99	ļ	0.11
2832	26.0	5.42	16.9	3.11	0.82	4.68	5.43	5.09	5.25	0.87		0.11
3082	30.5	5.25	19.8	3.60	0.95	5.22	6.16	5.65	5.84	0.98		0.09
3330	32.1	6.86	21.1	3.79	0.98	5.44	6.30	5.78	5.97	1.00		0.12
3532	37.9	7.09	25.0	4.58	1.18	6.44	7.83	6.70	6.96			0.10
3737	39.5	7.78	26.6	4.75	1.22	6.76	7.44	6.61	6.91	1.16		0.11
3945	38.6	5.59	26.5	4.86	1.24		8.25	6.53	6.70	1.15	-	0.08
4202	46.3	7.76	32.0	5.89	1.48	7.83	8.50	7.33	7.59	1.27	-	0.09
4458	48.9	9.38	34.8	6.42	1.60	8.56	9.05	8.10	7.74	1.30		0.10
4700	44.8	10.47	32.9	6.12	1.51	7.70	8.39	7.17	7.30	1.21		0.12
4995	50.0	14.34	36.8	6.88	1.72	8.50	9.43	7.87	8.14	1.34		0.15

sarg-dis.	xis												
			S	argass	o Seav	vater -	Disso	lved	Conc	entra	tions		
Sholkov	vitz et al.	(1994)	Map	¥3									
					-	pmol / K	2]			ļ	-		
ID	DEPTH	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce-Anom	Salinity
ID	DEFIN	La	- Ce	ING	Sin	Eu	Gu	Бу	El	10	Lu	Ce-Anom	Samury
C-1	15	16.0	15.7	15.9	3.5	0.92	5.3	5.8	4.7	4.0	0.55	0.64	36.6
C-1R	15	15.7	15.1	17.6	4.6	0.93	6.1	3.0	1.,	1.0	0.55	0.74	36.6
C-2	30	15.5	15.0	15.6	3.5	0.92	5.1	6.0	4.7	4.1	0.56	0.51	36.59
C-3	45	15.5	14.0	16.0	3.5	0.93	5.1					0.51	36.61
C-4	60	15.7	13.5	15.5	3.5	0.91	5.1	5.9	4.8	4.2	0.57	0.41	36.62
C-7	105	14.9	12.1	15.5	3.5	0.94	5.3	5.9	4.8	4.1	0.56	0.38	36.61
C-11	200	15.4	10.8	15.9	3.5	0.88	5.3	5.9	4.7	4.1	0.56	0.33	36.56
C-12	255	15.5	11.1	16.8	4.2	0.90	5.8	5.8	4.8	4.1	0.56	0.33	36.54
C-13	340	15.3	9.6	16.2	4.0	0.87	5.6	5.6	4.6	4.0	0.53	0.29	36.45
C-14	440	15.4	8.2	15.2	3.3	0.88	4.8	5.5	4.6	4.0	0.55	0.25	36.53
C-15	550	16.9	6.3										35.98
C-17	750	20.5	5.1	16.0	3.3	0.00	7.3	5.1	4.4	4.2	0.52	0.13	35.31
C-19	1000	24.4	5.9	21.2	5.3	0.88	6.7	5.6	4.9	4.6	0.69	0.12	35.06
C-22	1500	26.0	6.8	21.4	5.4	0.89	6.8	5.7	5.1	4.8	0.70	0.13	34.98
C-20	2000	23.3	6.3	19.4	5.1	0.82	6.5	5.4	4.9	4.6	0.66	0.14	34.98
C-21	3000	24.8	5.8	20.8	5.3	0.87	6.8	5.8	5.0	4.7	0.69	0.12	35.08
C-23	4000	40.8	9.5	31.8	7.2	1.27	8.7	7.2	6.1	5.9	0.86	0.12	34.9

SARG_PAR.XLS

sarg par.xls						T		1	T	T	
ourg_pur.xic			Sar	gasso	Sea	Partic	cles		†		
		<u> </u>						 	+	1	1
Sholkovit	7 At 2	91 - /1	9941						<u> </u>		
acetic acid dig				aest: Hi	F boml	digest			 		
SAMPLE	La	Ce	Nd	Sm	Bu	Gđ	Dy	Er	Yb	Lu	Ce
Depth/Diges		-			fmol		awater				Anon.
							I				
								1.			
60/Ac	194	160	138	21.7	4.4	21.4	13.8	12.6	4.4	0.12	0.44
105/Ac	393	337	264	42.8	9.1	37.4	21.5	10.0	5.2	0.35	0.47
150/Ac	368	909	231	46.4	9.4		26.5	10.6	6.3	0.50	1.6
200/Ac	319	968	218	44.7	8.7	38.3	27.0	13.2	7.4	0.74	1.64
255/Ac	375	1083	233	44.9	11.2	44.5	30.0	14.3	8.1	0.57	1.60
255/Strong	61	244	69	18.6	4.7	19.0	16.9	8.8	7.6	0.97	1.83
255/Bomb	147	242	99	15.2	3.9	11.5	9.3	5.6	5.2	0.51	0.90
								1			
340/Ac	343	1123	267	52.5	12.1	52.8	36.9	17.3	10.1	1.01	1.70
340/Strong	117	395	111	27.6	6.3	26.1	22.4	11.1	10.1	1.21	1.65
340/Bomb	203	396	139	22.1	4.7	15.8	13.4	7.6	7.3	0.96	1.05
750/Ac	352	1183	308	61.9	12.5	59.3	42.5	20.0	11.8	1.22	1.68
750/Strong	142	609	183	42.2	9.7	38.7	33.1	17.2	15.6	2.03	1.86
750/Bomb	294	578	203	32.3	6.5	22.7	18.5	10.8	10.5	1.27	1.06
1000/Ac	395	1216	339	64.5	15.3	61.0	45.3	22.9	11.6		1.55
1000/Strong	178	585	195	43.6	9.6	45.4	34.6	17.8	16.0	2.01	1.52
1000/Bomb	348	620	229	36.8	7.5	29.0	23.4	13.6	13.7		0.97
1500/Ac	437	1306	400	80.0	17.6	74.4	53.6	25.3	16.5	1.75	1.48
1500/Strong	166	500	181	36.0	7.8	31.7	25.6	13.1			1.40
1500/Bomb	315	564	219	33.7	6.9	23.8	20.8	12.1	11.8	1.63	0.96
2000/Ac	336	995	321	64.0	13.8	60.3	42.5	21.2	13.6	1.44	1.44
2000/Strong	164	462	158	32.4		48.3	22.4	11.4	9.6	1.18	1.36
2000/Bomb	380	755	280	46.1			26.8	15.9	16.0	1.98	1.05
Blank/Ac	32	35	23	bd	bd	bd	0.6	0.3	bd	bd	
Blank/Strong	bd	33	16	bd	bd	bd	0.4	0.4	bd	bd	
Blank/Bomb	33	26	16	2	bd	bd	0.7	0.7	bd	bd	

Table A7: Handbook section 6.1. Pacific Ocean seawater

File name: PSW_CONC.XLS. Concentration of RE in Pacific Ocean seawater

					Pac	ific (Ocea	n Se	awa	ter			
psw_conc.	ds					T							
-						= pmol/kg							
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu		Ce/Ce*	1
Piengra	55 & J	acobsen	(1992)		Map #	16					T		
TPS 47 39-1		acobscii	(1772)		tarah u	10	ļ					-	
3	22.6	8.0	15.9	2.88	0.75	4.01	4.65	4.22	3.52	0.61		0.19	
195	36.3	6.4	22.2	4.09	1.06	5.84	6.72	6.13	6.00	1.07		0.10	
364 600	40.2	6.1 7.7	22.9 24.4	4.12	1.12	5.94	7.05	6.86	6.80	1.22		0.09	
800	43.1	6.2	25.3	4.52	1.17	6.62	7.89 8.16	7.57 8.08	7.84 8.38	1.42	 	0.10	
1249	45.1	5.9	27.3	5.07	1.36	7.97	9.12	9.04	9.51	1.72	 	0.07	
1795	48.4	6.2	29.8	5.54	1.47	8.56	10.2	9.88	10.8	1.96		0.07	
2692	53.7	5.6	34.2	6.39	1.71	9.22	10.9	10.3	11.3	2.01		0.06	
3592 4481	57.8 60.1	5.6 6.0	38.7 42.9	7.31 8.14	1.92	10.5	11.8	10.6	11.3	2.03		0.05	
5408	61.6	8.4	44.4	8.60	2.20	11.7	12.1	10.5	11.1	1.98	-	0.05	
TPS 47 80-1					3.23	1	22.7	10.5	11.1	1.71		0.07	
5174	79.5	13.0	62.8	12.6	3.2	15.8	16.8	13.5	14.0	2.44		0.08	
TPS 24 76-1				10.5									
4621 TPS 24 271	68.4	5.5	51.7	10.2	2.5	13.7	13.9	11.7	12.3	2.13	-	0.04	
0	5.8	5.0	5.4	1.14	0.32	1.75	2.10	1.78	1.34	0.21		0.42	
184	7.8	4.9	6.8	1.43	0.40	2.21	2.70	2.32	1.92	0.21		0.42	
381	10.1	3.4	7.9	1.65	0.47	2.63	3.22	2.81	2.27			0.18	
640	24.1	3.3	15.1	2.85	0.77	4.47	5.16	4.76	4.46	0.81		0.08	
1046 1194	35.3 36.3	3.8	20.0	3.65	0.99	5.77 5.94	6.78 7.23	6.66 7.11	6.88 7.57	1 22		0.07	
2000	46.9	4.0	28.2	5.13	1.40	7.75	9.41	9.21	9.97	1.32		0.06	
2999	53.7	4.7	34.9	6.36	1.72	9.32	10.8	9.97	10.70	1.93		0.05	
4195	54.8	5.0	37.0	6.84	1.80	9.52	10.8	9.73	10.50	2.05		0.05	
5073 TPS 24 351-	52.7	5.7	35.0	6.54	1.71	9.21	10.1	9.19	9.80	1.81		0.06	
5926	52.9	5.0	34.5	6.39	1.69	9.04	10.20	9.32	9.96	1.78		0.05	
0,20		2.0		0.55	1.05	2.04	10.20	9.32	3.30	1.76		0.05	
Klinkha	ammer	, et. al. (1983)		Map#	19							
SE Pacific													
0	4.9	3.1	3.4	0.56	0.20	1.10	1.30	1.20	0.79			0.34	
2500 NW Pacific	30.0	3.5	16.0	2.70	0.80	5.00	6.30	7.00	7.50			0.07	
0	8.3	10.0	5.1	1.00	0.33	1.60	2.00	1.70	1.10			0.67	
2500	47.0	9.0	30.0	5.30	1.40	8.20	9.70	9.40	8.00			0.11	
		al. (198		Map #	18	Vertex	II (18	N & 10	8 W)				
Depth	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Но	Tm	Yb	Lu	
15	19	11.0	3.2	13	2.7	0.70	4.0	0.54	0.97	0.35	2.2	0.35	
45	22	10.0	3.5	16	2.8	0.69	3.7	0.56	0.71	0.40	1.9	0.30	
100	32	10.0	3.3	15	2.6	0.76	4.0	0.58	0.83	0.52	2.8	0.44	
200	47	25.0	4.3	24	4.0	1.23	6.3	0.91	1.50	0.86	5.8	0.96	
300	17 19	17.0	2.5 3.0	13 15	2.6	0.71 0.77	3.7 4.3	0.55	1.11	0.57	3.5	0.60	
400	22	13.0	2.3	14	2.6	0.77	4.3	0.54	1.02	0.57	3.7 4.0	0.63	
500	20	13.0	3.1	15	2.5	0.75	4.2	0.58	1.50	0.66	4.0	0.71	
750	34	8.4	4.2	17	3.1	0.82	4.1	0.70	1.40	0.78	5.5	0.98	
1000 1250	35	7.4 4.2	7.6 4.5	34 25	6.4	1.56	8.6	1.41	3.52	1.84	13.2	2.44	
1750	49	4.2	7.4	27	6.0	1.25	7.1 8.6	1.13	3.30	1.50	9.1	1.63 2.40	
2000	46	5.3	5.6	24	5.2	1.30	7.2	1.12	2.80	1.50	11.0	2.00	
2250	67	3.3	8.5	33	6.7	1.68	9.4	1.47	3.75	2.00	14.0	2.60	
2750	63	2.9	8.9	42	9.0	2.32	13.0	2.01	4.40	2.50	17.0	3.10	
3000 3250	67	2.9	9.2 7.0	49	7.7	2.43	13.0	2.11	4.80	2.40	15.0	2.70	
3230	37	2.9	7.0	41	1.1	2.13	12.0	1.81	4.00	1.95	13.0	2.30	

	T	T	T	T	1	T	Г	ī						T
7h:	na. et	al. (19	94)		Map #	12					-	-		
Depth	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
0			1.25	4.99	1.16	0.32	1.76	0.33	2.45	0.64	2.03	0.27	1.59	0.23
25	3.28		0.78	3.70	1.11	0.30	1.58	0.32	2.33	0.62	1.99	0.26	1.45	0.22
199	4.65		0.90	3.57	1.43	0.30	1.66	0.38	2.26	0.62	2.05	0.28	1.61	0.25
397	5.95		1.46	5.81	1.35	0.37	2.05	0.32	2.45	0.79	2.63	0.29	2.13	0.24
695	15.98		3.75	16.1	2.72	0.70	4.13	0.73	5.42	1.49	4.92	0.71	4.58	0.75
993	21.94		3.71	15.7	3.39	0.93	5.10	0.96	7.04	1.98	6.70	1.00	6.58	1.15
1486	26.28		4.03	18.7	3.91	1.08	6.01	1.07	8.17	2.32	8.00	1.18	7.98	1.40
1980					4.52	1.18	7.74	1.24	9.26	2.60	9.07	1.38	9.47	1.64
2472	30.19		5.01	22.1	5.09	1.39	7.35	1.31	9.88	2.74	9.30	1.41	9.42	1.63
2963			6.13	25.7	5.41 6.49	1.43 1.67	7.81	1.42	10.6	2.94	10.0	1.52	10.3	1.79
3453	35.06		7.43	32.5	6.49	1.0/	9.13	1.58	11.5	3.07	10.1	1.49	10.1	1.72
Fse	er et	al. (199	14)	Map #	15						 			
Depth	La	Ce		Nd	Sm	Eu	Gd				Er		Yb	
0	9.6	13.6	-	11.4	4	0.92	4.5				2.8		2.4	

Tan	aka, et	. al. (19	90)		Мар#	17								
	Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu			
						-		,						
FK	110	69.0	115	53.1	8.60	2.38	12.7	12.5	8.43	7.29	1.16			
KT	bottom	5.4	20.9	6.0	1.23	0.36	3.64	2.37	2.47	2.27	0.40			
KG 1 SW	0	65.0	67.1	50.5	9.08	2.41	13.4	12.5	9.97	8.06	1.34			
KG 1 BW	40	68.0	159	55.6	10.0	2.58	16.5	12.2	8.64	7.51	1.25			
SM 1 SW	0	112.3	134	75.7	9.37	2.70	18.1	15.3	11.07	8.86	1.49			
SM 1 BW SG 1 SW	60 0	87.6 86.4	138 99.7	65.3 55.8	10.1 7.27	2.49 1.95	19.8 12.9	12.4	8.47	7.71	1.24			
SG 1 BW	40	62.5	140	52.0	9.78	2.56	16.0	11.1 11.0	8.26 7.46	7.20 6.46	1.17			
SG 2 SW	0	49.7	74.3	39.8	7.66	1.86	19.0	11.0	8.34	7.53	1.24			
SG 2 BW	40	69.6	138	57.3	10.0	2.43	12.1	11.4	7.64	6.94	1.08			
SG 3 SW	0	57.7	94.2	50.4	9.48	2.35	16.6	13.3	9.97	8.62	1.37			
SG 3 BW	75	37.8	91.9	42.8	7.97	2.09	17.4	9.81	6.97	6.64	1.06			
SG 4 SW	0	57.5	84.5	45.7	7.87	1.93	14.8	11.8	9.39	8.53	1.43			
SG 4 BW	70	59.8	126	50.0	9.08	2.30	13.0	11.00	7.64	6.66	1.12			
HW-1	1675	27.43	. 7.93	19.6	3.85	1.10	5.25	4.70	3.43	3.04	0.47			
S-2	4233	47.7	47.9	34.8	6.74	1.79	8.41	8.57	6.51	6.20	1.01			
KS-3	5022	49.8	33.3	46.9	9.55	2.52	11.6	10.9	7.24	6.53	0.99			
	Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu			
								-,						
KS4(u)-1	3395	36.1	15.1	30.2	6.19	1.59	8.31	7.16	4.65	4.07	0.60			
KS4(L)-1	3495	37.6	18.6	31.9	6.54	1.80	7.77	7.00	4.29	3.69	0.54			
KS5(u)-1	4945	49.1	26.9	39.4	8.05	2.05	9.32	8.74	5.57	4.93	0.72			
KS5(I)-1	5045	58.2	29.0	47.9	9.99	2.63	12.85	12.67	9.30	8.58	1.20			
Chim	izu oʻ	. al. (19	941		Map#	14								
DE-4 (4					wap#	14					-			
(4	. 75 16	_ '''	-3 .4)											
	0	9.9	32.8	11.5			2.94	3.56	2.74	2.35	0.28			
	50	12.4	31.3	12.6	2.29	0.64	3.21	3.44	3.00	3.01	0.46			
	100	13.2	19.7	15.3	2.99	0.83	3.94	4.93	3.37	3.05	0.52			
	200	20.7	26.1	23.5	4.89	1.51	5.69	7.50	6.08	6.04	1.05			
	300	15.8	26.1	18.6	3.98	0.67	5.04	5.29	4.36	3.97	0.75			
	498 997	13.4 25.3	9.3	11.6 21.6	2.39 4.42	0.67 1.26	3.69 6.34	4.14 8.72	3.52 6.12	3.56 6.48	0.66 1.11			
	1494	28.4	24.3	28.8	5.91	1.71	8.20	9.37	8.62	9.13	1.11			
	1991	23.4		22.5	4.61	1.21	6.31	7.10	6.43	6.91	1.2			
	2588	23.5	15.7	21.2	4.75	1.40	6.45		7.75	8.25	1.47			
	3750	24.6	19.9	29.4	5.99	1.74	8.45	9.33	8.33	8.62	1.51			
	4436	23.3	14.1	30.0	6.36	1.83	9.49	9.10	7.25	7.99	1.41			
	5188	22.7	14.8	30.1	6.86	1.87	8.76	8.59	6.78	7.05	1.27			
	5809	25.1	12.4	29.8	6.40	1.86			6.48	7.03	1.17			

				T	1	T	T	T	T	T	1	Т	T	T
Mol	ler et.	al. (19	94)	Мар	# 13								1	
filtered	1		1				+	1	1-			-		
11110100	Depth	La	Ce	Pr	Nd	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb
													1	1.5
mean (6)	10m f.b	20.1	1.89	2.64	12.2	2.33	0.77	4.02	0.65	5.14	1.62	5.82	0.93	7.23
mean (9)	1m f.	29.6	2.41	3.20	14.3	2.71	1.35	5.72	0.82	6.10	1.83	6.37	1.05	8.32
	100	5.60	2.15	0.86	3.14	0.91	0.23	1.14	0.23	1.52	0.44	1.43	0.21	1.18
	200	0.00	2.58	0.83	4.67	1.36	0.36	1.82	0.29	2.03	0.50	1.63	0.26	1.31
	400	21.4	2.72	1.34	5.94	1.05	0.26	1.60	0.29	2.24	0.69	2.30	0.35	2.27
	500	23.7	3.18	2.08	9.27	1.67	0.40	2.53	0.44	3.45	1.07	3.49	0.61	3.79
	600 700	14.7	4.07	2.60	9.30	1.90	0.44	3.10	0.51	3.64	1.11	3.86	0.63	4.29
 	800	18.8 17.8	2.18 3.65	1.89 2.63	8.19 11	1.56 2.17	0.41	2.59 3.46	0.43 0.53	3.70 4.14	1.10	3.93 4.46	0.61	4.40 5.11
·	800	10.1	2.54	1.71	7.92	1.57	0.72	2.79	0.54	3.78	1.11	3.92	0.68	5.25
	800	13.6	6.98	3.34	10.4	2.09	0.52	2.48	0.45	3.99	1.19	4.08	0.60	4.43
	1000	43.8	3.66	2.68	11.8	2.10	0.57	3.35	0.51	4.18	1.30	4.58	0.74	5.42
	1200	24.0	3.30	2.08	9.30	1.86	0.44	2.82	0.51	4.26	1.32	4.83	0.82	5.90
ļ	1500 1500	20.9 58.7	4.86 3.60	2.85 3.13	12.6 12.9	2.71	0.81	3.99 4.12	0.74	5.14	1.58	5.57	0.95	6.58
	1600	45.6	3.48	2.80	12.8	2.37	0.63	3.89	0.65	5.19 5.53	1.59 1.78	5.68 5.94	0.93	6.70 7.14
	1800	40.6	2.64	2.84	12.1	2.11	0.58	3.80	0.60	5.14	1.60	5.79	0.92	6.72
	2000	27.6	2.49	2.41	11.1	2.26	0.60	3.61	0.64	5.02	1.58	5.62	0.91	6.85
	2100	29.2	3.69	3.53	15.0	2.58	0.68	4.28	0.70	5.75	1.73	5.94	0.96	7.09
	2100	35.4	5.59	3.91	17.4	3.46	0.94	6.07	0.83	6.77	1.83	6.43	1.05	7.91
	2250 2400	30.2 32.1	2.90 3.66	3.50 3.35	15.7 14.1	2.67	1.00 0.86	4.76	0.73	5.92	1.72	6.05	1.01	7.58
	2500	14.9	2.16	2.20	8.86	2.49 1.50	0.50	5.28 2.64	0.82 0.46	6.29 4.07	1.85	6.45 4.96	1.04 0.79	7.70 6.28
	2500	22.3	4.75	2.86	12.9	1.95	0.67	3.34	0.59	5.03	1.69	5.83	0.79	6.88
	2600	13.6	1.17	2.11	9.53	1.61	0.57	3.05	0.52	4.60	1.51	5.62	0.92	6.84
	2800	17.2	2.94	2.13	9.58	1.63	0.57	2.99	0.49	4.10	1.43	5.15	0.86	6.46
	2800	49.0	3.43	2.76	12.2	2.03	0.60	3.35	0.59	5.01	1.50	5.71	0.92	7.20
Mol	er et. a	al. (199	94)	Map a	# 13									
filtana														
unfiltere				D	27.2	0	-							
	Depth 100	La 21.8	Ce 21.5	Pr 3.20	Nd 9.10	Sm 1.55	Eu 0.31	Gd 1.77	Tb 0.25	1.80	Ho	Er	Tm	Yb
	200	20.8	15.7	2.08	6.90	1.33	0.34	1.64	0.23	1.71	0.49	1.57 1.47	0.24	1.50
	200	45.3	24.50	3.11	8.80	0.78	0.20	1.02	0.19	1.45	0.39	1.22	0.13	1.11
	300	2.6	3.20	0.74	3.20	0.81	0.25	1.04	0.20	1.41	0.49	1.62	0.24	1.29
	400	8.2	4.60	1.59	6.20	1.13	0.26	1.45	0.29	2.34	0.67	2.26	0.37	2.32
	500	12.7	3.40	1.87	9.40	1.94	0.43	2.86	0.46	3.83	1.15	4.05	0.64	4.29
	500	17.7	7.20 10.3	2.52 2.83	10.5 9.60	1.84	0.43	3.00 2.55	0.46	3.64	1.13	4.00	0.60	4.07
	700	27.6	29.6	5.53	19.9	2.64	0.53	3.17	0.60	4.23	1.12	3.74 4.27	0.62	4.14 5.04
	800	16.3	4.40	2.29	10.8	2.15	0.51	3.02	0.50	3.84	1.23	4.19	0.65	4.69
	800	38.6	29.4	4.85	17.7	2.27	0.60	3.12	0.57	4.54	1.33	4.72	0.72	5.29
	800	28.6	13.3	3.34	11.8	1.89	0.49	3.01	0.49	3.93	1.11	4.01	0.65	4.37
	900	17.0	7.80	3.20	11.8	2.13	0.59	3.33	0.55	4.45	1.28	4.46	0.68	5.30
	1000	73.8 36.4	38.1	6.39 4.86	22.4 19.2	2.57 3.70	0.68	3.51	0.55	4.97	1.43	4.85	0.81	6.01
	1600	82.2	34.4	7.22	26.1	3.70	1.02	4.59 4.58	0.83	6.01 7.16	1.83 2.10	6.19 7.02	1.05	7.45
	1800	37.1	17.1	9.29	18.9	3.35	0.87	4.86	0.81	6.61	1.96	6.91	1.09	8.18 8.48
	2100	44.6	24.0	5.15	21.8	3.76	0.91	5.36	0.85	6.69	2.07	6.15	1.02	7.35
	2100	57.5	36.4	8.28	28.7	3.69	0.97	5.94	0.89	7.16	2.14	6.85	1.07	8.02
	2500	38.4	5.90	4.45	19.9	3.71	1.20	5.90	0.94	7.30	2.05	7.47	1.20	8.44
	2600 2800	52.9 31.1	27.8	6.85	26.0	3.36	1.08	5.27	0.86	6.61	1.95	6.43	1.05	8.38
	2800	78.6	7.80	4.75 6.18	18.3 19.9	3.44	1.13	4.63 5.89	0.92	6.81	2.04	7.20	1.18	8.18
	2000	70.0	24.2	0.10	13.5	J.24	1.07	5.09	0.88	6.83	2.02	7.02	1.05	8.40

Table A8: Handbook section 6.1. Indian Ocean seawater

File name: IND_CONC.XLS. Concentration of RE in Indian Ocean seawater

				Ind	ian O	cean				
ind_conc.xls										
				CC	NC = pm	ol/kg				
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
. Filtered	Water S	amples	[0.4	um fil	trates]				
Bertram & Elo	lerfield	(1993)	Germ	an & l	 Elderfi	 eld (19	90)	м	ap#	22
D-1501 (05 14.9'S			<u> </u>		T		<u> </u>			
202	15.2	8.0	10.9	2.14	0.60	3.47	4.09	3.73	3.55	0.60
936	24.0	4.8	14.9	2.93	0.83	4.77	5.61	5.26	5.42	0.96
1500	27.3	5.5	17.1	3.29	0.90	1.,,	6.48	6.05	6.25	1.57
1953	29.0	7.0	20.9	3.95	1.07	6.70	7.12	6.85	7.37	1.27
2499		4.9	23.3	4.25	1.17		7.74	7.19	7.67	1.27
2878	39.7	6.0	24.7	4.43	1.18	7.59	7.25	7.12	8.54	1.51
2950			27.5	5.05	1.35	7.50	8.56	7.89	8.46	1.31
CD-1502 (12 17.8'S	& 53 41.4'F	(2)			+	1	0.50	7.07	0.40	1.51
10	8.14	7.35	6.93	1.43	0.43	2.34	2.34	2.47	1.93	0.29
25	8.38	4	6.97	1.47	0.43	2.41	3.02	2.64	1.92	0.291
49	8.4	5.43	6.91	1.45	0.44	2.32	2.9	2.64	1.94	0.29
70		8.43	8.16	0	2.52	3.22	2.75	2.17	2.17	0.35
72	9.6	5.01	7.42	1.54	0.46	2.54	3.29	3	2.54	0.419
83	9.57	4.6	7.67	1.5	0.41	2.7	3.27	3.11	2.7	0.457
94	10.41	4.74	7.82	1.61	0.49	2.6	3.42	3.15	2.85	0.475
108	10.11	4.63	8	1.66	0.495	2.81	3.54	3.26	2.98	0.49
120	11.31	4.2	8.46	1.75	0.512	2.9	3.67	3.4	3.08	0.49
125	11.51	5.04	0.10	1.67	0.512	24.7	3.07	3.21	3.00	0.52
160	10.34	3.82	8.02	1.66	0.49	2.75	3.47	3.21	2.78	0.38
231	9.9	3.02	8.12	1.64	0.472	2.7	3.38	3.22	2.98	0.45
300	11.33	2.84	8.26	1.69	0.472	2.7	3.46	3.44	3.13	0.43
500	11.55	2.71	9.69	1.93	0.55	3.25	3.92	3.9	3.13	
600	16.24	2.32	10.84	2.14	0.61	3.51	4.31	4.2	4.26	0.74
600	10.24	3.33	11.07	2.13	0.606	3.31	4.89	4.2	4.25	0.77
700	18.38	2.92	11.77	2.35	0.000	4.34	4.47	4.7	4.61	0.77
730	10.50	2.75	12.15	2.41	0.66	7.54	7.77	4.79	4.4	1.08
900	24	2.75	14.02	2.68	0.77	4.23	5.17	4.97	5.14	0.9
901	21.7	3.3	13.8	2.67	0.766	7.23	5.17	5.03	5.14	0.93
1151	24.26	4.1	15.21	2.93	0.826	4.67	5.54	5.64	5.76	1.03
1195	21.20		18.7	3.19	0.320	1.07	6.4	3.04	3.70	1.03
1502	28.5	4.33	16.84	3.19	0.903	5.21	6.12	6.03	6.5	1.18
1750	30.63	4.38	18.93	3.42	0.912	5.44	6.72	6.38	6.81	1.18
2001	33.11	4.44	19.91	3.72	1.01	5.7	6.86	6.61	7.01	1.33
2500	38.05	5.2	23.34	4.22	1.01	6.4	7.59	7.19	7.71	-
2701	40.78	3.2	23.95	4.22	1.17	6.51	7.59	7.19	7.71	1.38
3000	41.64	5.99	25.88	4.73	1.13	6.79	8.1	7.18		1.36
3250	38.64	5.81	26.32	4.73	1.32	7.35			8.1	1.49
3500	38.04	5.94	27.16	4.8			8.25	7.78	8.31	1.61
3750	43.45	6.19			1.27	6.97	8.14	7.49	7.9	1.45
4002			27.95	5.1	1.35	7.32	8.37	7.7	8.02	1.45
4002	43.1	5.18	28.13 30.55	5.11 5.79	1.35	7.11	8.31	7.63 7.88	8.14	1.43

				CC	NC = pm	ol/kg				
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
4105			29.04						3.57	
4250	39.35	5.14	27.39	5	1.31	6.98	7.89	7.17	7.61	1.33
4499	43.35	5.21	28.3	5.17		7.03	8.03	7.33		1.32
4730				5.99	1.05					1.00
CD-1503 (18 36.7'S	& 55 36.2'E	5)								
6	9	4.87	8.43	1.87		1.95		2.57	2.35	0.31
50		5.31	7.48	1.58	0.48	2.64	3.54	2.59	1.86	0.28
90	9.27	5.58	8.32	1.63	0.492	2.69	3.34	2.34	2.24	0.35
115	9.39	5.24	7.75	1.64	0.51	2.7	3.48	3.08	2.58	0.42
225		4.57	7.41	1.47	0.466	2.47	3.06	2.89	2.34	0.36
250	8.68	5.17	7.23	1.5	0.44	2.87	3.15	2.83	2.3	0.34
323	10.94	4.29	8.13	 		2.5	3.34	3.38	2.85	0.47
393	10.7.	4.28	7.96	1.6	0.463	2.61	3.33	3.17	2.86	0.48
520	11.18	3.46	8.08	1.53	0.433	2.6	3.37	3.28	3.03	0.51
650	12.22	2.64	8.48	1.62	0.433	2.75	3.58	3.33	3.41	0.59
799	18.08	2.04	11.49	2.13	0.59	3.51	4.3	4.28	4.4	0.77
825	17.71	2.69	10.72	2.13	0.585	3.42	4.31	4.39	4.5	0.77
1000	17.71	3.25	12.53	2.07	0.363	4.53	5.29	4.39	5.67	0.83
	25.7	1	15.17	2.82	0.803	4.53	5.67	5.63	6.02	1.08
1392	25.7	3.47						6.15	6.59	
1700		5.7	17.91	3.26	0.911	5.11	6.25	1		1.18
2200	20.52	5.11	21.67	3.99	1.09	6.1	7.3	6.97	7.44	1.32
2620	38.53	4.29	23.32	4.25	1.17	6.39	7.55	7.12	7.64	1.36
2700	39.94	4.28	23.93	4.32	1.19	6.6	7.76	7.25	7.82	1.35
4002	0	4.89	28.26	5.13	1.38	6.64	8.32	7.56	8.05	1.44
4380	45.99	8.9	29.2	5.36	1.4	7.52	8.46	7.54	8	1.33
4499			28.86	5.28	1.37	7.38	8.33	7.39	7.91	1.38
4577	43.1	6.91	29.48	5.4	1.39	7.1	8.73	7.87	8.04	1.44
4630	38.33	6.54	29.34	5.25	1.36	7.38	8.16	7.35	7.7	1.36
CD-1504 (27 00.5'S					0.400					
11	10.48	8.71	8.23	1.67	0.483	2.57	3.2	2.82	2.15	0.33
25	9.52	7.83	7.91	1.62	0.471	2.51	3.17	2.79	2.11	0.33
60	9.91	7.47								
77										
101	9.93	8.13	7.9	1.59	0.46	2.52	3.17	2.82	2.16	0.33
152	8.68	7.17	7.05	1.42	0.418	2.43	3.03	2.71	2.13	0.33
298	10.16	6.03	8.12	1.61	0.468	2.57	3.31	2.97	2.47	0.4
305		9.98	7.96	1.62			3.13	3.09		0.4
401	12	8.25	9.5	1.88	0.517	2.84	3.6	3.28	2.76	0.45
500		4.85	8.36	1.66	0.464	2.95	3.44	3.22	2.8	0.45
606	11.09	4.09	8.23	1.6	0.455	2.57	3.41	3.28	2.9	0.48
699	11.38	2.99	8.4	1.61	0.435			3.72	3.08	
799	12.33	2.85	8.61	1.67	0.478	2.69	3.51	3.47	3.27	0.55
900	13.37	2.25	9.1	1.74	0.485	2.85	3.69	3.72	3.56	0.64
1000	14.87	2.05	9.82	1.84	0.515	3.5	3.85	3.98	3.92	0.7
1250	17.27	2.92	10.37	1.93	0.543	3.26	4.15	4.25	4.42	0.81
1500		3.28	12.84	2.39	0.668	4.71	4.99	5.15	5.48	0.98
1750	26.31	3.88	15.34	2.78	0.757		6.03	5.69	5.95	1.11
1795	25.41		14.75	2.63	0.733		5.5	5.58	5.96	1.1
2000	30	4.36	16.48	3.01	0.834	4.89	5.98	6.05	6.16	1.14

				CC	NC = pm	ol/kg	T	T		
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	 -	-	-	-	-	-	-	-	-
2005	29.12	4.5	17.64	3.15	0.877	5	6.14	6.01	6.41	1.15
2250	30.83	5.65	19.32	3.45	0.94	5.38	6.4	6.27	6.62	1.19
2451	33.56	4.33	20.52	3.71	0.977	6.32	6.9	6.51	7.01	1.25
2515		6.53	18.99	3.43	0.891	5.26	6.52	6.12	6.21	1.46
2625	39.3	6.67	22.13	4.05	1.1	5.9	7.26	6.82	7.36	1.31
3002			23.17	4.28	1.14	6.6	7.67	7.1	7.53	1.41
3100			24.91	4.62	0.978	6.44	0	7.16	6.55	1.43
3249	38.95	4.21	24.34	4.42	1.2	6.7	7.89	7.17	7.7	1.44
3499	40.81	4.34	25.28	4.59	1.24	6.79	7.97	7.23	7.69	1.37
3691		7.31	27.22	4.83		7	7.89	8.5	7.6	
4250	41.08	7.15	26.59	4.89	1.29	7.02	7.87	7.16	7.65	1.35
4505	42	5.49	27.34	5.02	1.25		9.83	7.07	7.18	1.44
4849	42.05	4.69	27.58	5.1	1.32	6.61	8.07	7.21	7.64	1.36
4876	42.68	6.13	28.13	5.16	1.33	7.2	8.04	7.2	7.68	1.34
5220		6.46	26.46	4.83	1.22	7.19	8.4	8.38	7.27	1.89
CD-1505 (24 36.5'S &	57 03.9'1									
10	9.18	6.13	7.67	1.59	0.457	2.5	3.13	2.65	1.99	0.31
60	10.99	10.47	9.07	1.82	0.509	2.7	3.21	2.77	2.1	0.32
90	9.53	7.78	7.75	1.58	0.466	2.5	3.12	2.81	2.09	0.32
125	10.8	11.65	9.3	1.85	0.513	2.67	3.25	2.79	2.13	0.32
245	9.22	6.77	7.65	1.52	0.424	2.32	2.94	2.64	2.06	0.33
450	9.71	5.39	7.51	1.47	0.408	2.29	2.95	2.77	2.36	0.38
652	10.65	3.21	7.75	1.51	0.425	2.47	3.26	3.22	2.92	0.48
875	13.56		9.44	1.81	0.497	2.89	3.79	3.78	3.65	0.63
1150	16.87	2.43	10.28	1.95	0.545	3.23	4.07	4.25	4.31	0.8
CD-1506 (08 27.4'S &					1	1			1.01	0.0
93	12.7	3.23	9.74	2	0.588	3.24	4.08	3.73	3.6	0.7
100	14.4	2.63	10.41	2.14	0.656	3.34		3.88	3.84	0.67
395		2.06	10.1	2.06		3.23	4.12	3.95	3.91	0.69
695	 	3.08	11.93	2.35	0.681	3.84	5	4.44	4.52	0.89
957	20.9	4.57	13.43	2.6	0.745	4.06	4.88	4.68	4.87	0.86
1500	28.3	4.46	17.22	3.25	0.905	5.1	6.23	6.01	6.58	1.1
2300	32.4	4.56	19.94	3.66	1.01	5.86	6.71	6.38	6.88	1.23
3000	1	4.75	24.97	4.54	1.19	8.15	7.85	7.48	8.03	1.5
3398									9.92	1.5
3500	46.85		29.67	5.4	1.41	7.5	8.35	7.73	8.31	1.48
4000	1 1 1 1 1	6.19	27.76		1.27	7.75	8.885	7.7	8.02	1.71
4251	47.47	5.06	28.32	5.22	1.38	7.42	8.46	7.61	8.1	1.45
5128	41.23	5.5	27.18	4.98	1.3	6.87	7.74	6.95	7.38	1.29
CD-1507 (06 09.2'S &		I	27.10	1.20	1.0	0.07	7.71	0.55	7.50	1.27
10	8.21	4.96	6.9	1.4	0.412	2.28	3	2.49	1.81	0.34
25	8.85	5.71	7.32	1.47	0.41	2.24	3.64	3.68	2.05	0.28
50	8.78		7.25	1.43	0.424	2.01	2.96	2.61	2.03	0.32
75	9.29	5.35	7.44	1.51	0.442	2.63	3.02	2.74	2.12	U.JE
80	10.79	4.69	7.68	1.57	0.47	2.66	3.38	3.22	2.85	0.49
85	10.77		7.91	1.61	0.47	2.7	3.4	3.15	2.83	0.49
125	12	3.64	8.6	1.74	0.5	2.1	3.58	3.15	3.28	0.56
151	12.1	3.68	9.26	2.17	0.531		3.6	3.61	3.39	0.50
210	13.63	3.87	9.77	1.96	0.557	2.98	3.65	3.64	3.5	0.61
210	13.03	5.07	7.11	1.70	0.551	2.70	5.05	5.04	ر.ر	0.01

278 9.85 1.96 0.559 3.22 3.92 3.8 3. 345 4.11 10.13 2 0.456 3.83 4 370 14.45 2.89 10.05 1.99 3.17 3.69 3.88 3. 370 14.61 3.22 9.74 1.89 0.54 3.87 3.8 3. 448 15.48 2.67 10.6 2.09 0.602 4.29 4.04 4. 550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5.	09 0.92
278 9.85 1.96 0.559 3.22 3.92 3.8 3. 345 4.11 10.13 2 0.456 3.83 4 370 14.45 2.89 10.05 1.99 3.17 3.69 3.88 3. 370 14.61 3.22 9.74 1.89 0.54 3.87 3.8 3. 448 15.48 2.67 10.6 2.09 0.602 4.29 4.04 4. 550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5.	.5 0.6. 78 0.6' 76 0.7 05 65 0.8 37 0.7' 71 0.8 09 0.92
345 4.11 10.13 2 0.456 3.83 4 370 14.45 2.89 10.05 1.99 3.17 3.69 3.88 3. 370 14.61 3.22 9.74 1.89 0.54 3.87 3.8 3. 448 15.48 2.67 10.6 2.09 0.602 4.29 4.04 4. 550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5. <td>.5 0.6. 78 0.6' 76 0.7 05 65 0.8 37 0.7' 71 0.8 09 0.92</td>	.5 0.6. 78 0.6' 76 0.7 05 65 0.8 37 0.7' 71 0.8 09 0.92
370 14.45 2.89 10.05 1.99 3.17 3.69 3.88 3. 370 14.61 3.22 9.74 1.89 0.54 3.87 3.8 3. 448 15.48 2.67 10.6 2.09 0.602 4.29 4.04 4. 550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5.	78 0.6 76 0.7 05 05 0.8 37 0.7 71 0.8 09 0.9
370 14.61 3.22 9.74 1.89 0.54 3.87 3.8 3. 448 15.48 2.67 10.6 2.09 0.602 4.29 4.04 4. 550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5.	76 0.7 05 65 0.8 37 0.7 71 0.8 09 0.9
448 15.48 2.67 10.6 2.09 0.602 4.29 4.04 4. 550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5.	05 65 0.8 37 0.7 71 0.8 09 0.9
550 19.47 4.15 12.56 2.45 0.702 3.85 4.72 4.58 4. 601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5. 5.	65 0.8 37 0.7 71 0.8 09 0.9
601 3.12 11.54 2.24 0.64 4.42 4.31 4. 650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5.	71 0.8 09 0.9
650 2.81 11.39 2.22 0.61 4.52 785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5. 5.	71 0.8 09 0.9
785 18.06 3.91 12.95 2.5 0.71 4.4 4.77 4.63 4. 880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5. 5.	09 0.92
880 22.84 4.33 14.84 3 0.81 4.41 5.24 5.02 5. 965 23.85 3.8 2.93 0.839 5. 5.	09 0.92
965 23.85 3.8 2.93 0.839 5.	
	20
1127 2501 52 1502 200 007 522 574 540 5	38
1137 25.01 5.3 15.82 3.06 0.87 5.23 5.74 5.48 5.	65 1.03
1301 25.6 4.91 16.32 3.09 0.88 4.86 5.83 5.65 5.	95 1.0
1506 25.62 5.25 18 3.46 6.13	
1805 4.79 18.03 3.37 0.94 6.41 6.29 6.	56 1.2
2003 32.06 4.62 19.5 3.62 1.01 6.23 6.86 6.57 6.	95 1.23
	41 1.3
	13
	95 1.6
	38 1.5
	26 1.8
	99 1.4
	04 1.42
4813 7.06 29.47 5.39 7.5 8.93 7.47 8	
	89 2.0
CD-1605 (14 25.6'N & 66 55.4'E)	
	49 0.65
	35
40 11.2 11.1 11 2.34 0.642 3.41 2.97 2.	
60 12.1 10.9 2.26 0.631 3.65 3.01	0.44
1 1	48 0.38
100 12.3 9.8 11.3 2.4 0.644 3.41 2.	
	05
	26 0.52
130 7.6 12.6 2.64 0.748 3.78 4.39 3.7 3.	
	39 0.55
150 20.2 16.3 13 2.69 0.755 4.96 4.48 3.79 3.	
176 18.8 12.8 2.58 0.728 3.72 3.	
201 19 15.6 12.6 2.5 0.699 4.53 4.28 3.68	0.64
300 12.7 12.3 2.47 0.67 4.09	0.64
399 15.6 10.2 2.41 0.578	0.04
506 15.5 5.2 11.4 2.21	0.66
700 18.4 12.2 2.41 0.612 3.72 4.02 4.0	
1000 5.3 14.4 3.77 0.742 4.22 4.54 4.54 4.54	
1490 24.4 4.1 16 3.09 0.862 4.85 5.61 5.42	1.14
1999 4.9 17.5 3.37 0.942 5.03 6.6 6.14 6.6	
2500 31.2 5.4 19.2 3.58 1.006 5.62 6.89 6.66 7.	
2999 5.7 22.6 4.16 1.136 6.3 7.28 7.2 7.	
4001 6.7 24.6 4.44 1.247 6.71 7.52 8.6	

				CC	NC = pm	ol/kg				
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
CD-1608 (22 29.5'N	& 60 40.6'									
3	12	10.7	10.5	2.18	0.594		3.9	3.31		
15	11.1	9.3	10.5	2.21		2.98				0.388
30	10.4	6.9		1.88		2.9	3.76	3.2		
50		5.7	8.2	1.74	0.488	2.55	3.13	2.88	2.7	0.466
75	13.8	6.1	9	1.84	0.52	3.02	3.24	2.98	2.8	0.477
100	13.8	6.7	9.8	1.96	0.541	3.23	3.59	3.12	2.96	
125	16	7.4	10.8	2.12	0.593	3.28	3.56	3.26	3.11	0.527
176	15.3	6.5	10.5	2.12	0.597	3.19	3.66	3.36	3.26	0.549
200	15.7	6.5	10.6	2.15	0.605	3.19	3.66	3.55	3.27	0.553
203	14.5	7.3	10.7	2.14	0.605	3.28	3.46	3.58	3.4	0.569
240	15.6	7	10.8	2.19	0.618	3.44	3.59	3.27	3.21	0.557
400	15.4	7.2	10.4	2.09	0.598	3.15	3.75	3.46	3.45	0.594
600	14.8	6.8	9.9	2.03	0.58	3.49	3.6	3.5	3.59	0.676
799	15.7	6.8	10.9	2.19	0.623	3.49	4.02	3.87	4.06	0.827
1000	20	4.1	12.3	2.42	0.659	3.74	4.39	4.35	4.44	0.795
1200		3.6	13.5	2.95	0.743	3.99	4.67	4.52	4.74	0.862
1599	23.1	3.1	14.2	2.8	0.791	4.31	5.03	5.13		
2000	23.4	2.2	14.4	2.84			6.18	6.44	7.64	
CD-1609 (23 35.4'N										
4	13	11.8	12.9	2.89	0.793	3.66	4	2.5	1.77	0.623
15	12.7	9.7	11.3	2.37	0.645	3.19	2.99	2.16	1.49	0.224
20	11.4	9.2	11.3	2.3	0.61		3.09	2.02	1.47	
24		7.7	10.9	2.3	0.629	3.37	3.49	2.5	1.95	0.328
30	13.6	7.4	11.1	2.44	0.694	3.52	3.91	3.18	2.82	0.464
35	13	7.1	10.7	2.4	0.677	3.62	3.76	3.09	2.73	0.462
40		6.3	10.7	2.43	0.69	4.13	3.95	3.28	3.01	0.498
60		4.4	11	2.44	0.686	4.13	4.01	3.37	3.03	0.509
90	13.9	4.4	10.5	2.31	0.65	3.53	3.88	3.28	3.01	0.514
120		6.3	10.7	2.29	0.648	3.68	3.9	3.32	3.11	0.546
141	13.6	5.4	9.7	2.08	0.582	2.97	4.35	3.67	3	0.51
170	13.6	6.6	9.7	2.08	0.593	3.23	3.48	3.1	2.95	0.538
200		7.1	10.4	2.11	0.593	3.41			3.04	0.535
300		4	8.9	1.9	0.499	2.9	3.46	3.13	2.89	0.481
400	14.6	4.7	10	2.05	0.579	3.65	3.5	3.3	3.25	0.567
600	14.9	7.2	9.8	2.03	0.585	3.12			3.63	
800	17.1	6	11.1	2.24	0.631	3.43	4.03	3.83	3.93	0.699
1000	19.7	3.8	12.4	2.45	0.691	4.03	4.42	4.18	4.32	0.761
2000		2.4	14.8	2.89	0.818	4.53	5.25		6.36	1.13
2750		3.2	16	2.97		4.72	5.85	6.58	6.96	1.16
4										

ind_conc.xls

				CC	NC = pm	ol/kg				
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
-	-	-	-	-	-	-	-	-	-	-
Bertram & El	derfield	(1993)		2. Pa	rticle RI	EE Data				
				[pm	ol/kg of	water]				
Madagascar Basin	(Sta 1504)									
300		0.436	0.135	0.024	0.006	0.032	0.032	0.015	0.014	0.002
500		0.613	0.166	0.033	0.008	0.038	0.029	0.018	0.012	0.002
1180	0.199	0.727	0.146		0.008	0.036		0.019	0.015	0.003
2000		0.850	0.299		0.010	0.048	0.038	0.023	0.019	0.003
2515	0.315	1.140	0.362	0.059	0.012	0.053	0.045	0.026	0.021	0.003
3100	0.280	1.310	0.496		0.012	0.054			0.021	0.003
3691										0.002
4505	0.435	1.400	0.497	0.102	0.017			0.043		
5220	0.515	1.430	0.551	0.107	0.025	0.097	0.081	0.043	0.035	
Somali Basin (Sta 1:	597)									
75	0.285	0.123	0.154	0.025	0.001	0.031	0.037	0.026	0.025	0.005
125	0.309	0.504	0.220	0.046	0.010	0.056	0.066	0.041	0.037	0.006
365	0.438	0.969	0.352	0.070	0.010	0.056	0.066	0.041	0.037	0.006
785		1.005	0.473	0.081	0.010	0.080	0.075	0.042	0.037	0.006
1300	0.527	1.031	0.440	0.082	0.019	0.079	0.069	0.041	0.037	0.006
1805	0.384	1.058	0.399	0.068	0.017		0.070	0.036	0.033	0.006
2300		0.981	0.331	0.068	0.011	0.064	0.057	0.032	0.030	0.005
3175	0.383	0.881	0.336	0.066	0.016			0.029	0.027	
3999	0.531	1.211	0.692	0.091	0.021	0.117	0.084	0.043	0.032	0.005

Table A9: Handbook section 6.1. Pacific Ocean seawater

File names: HE1.XLS, HE2.XLS and HE3.XLS.

H. Elderfield's unpublished data on the concentration of RE in Pacific Ocean seawater

HE1.XLS

7.77	17.6	-	1 aci	ne	Ocea	ın Se	awat	er Da	ta of	Dr. H	. Elde	rfield	[in p	rep.l	
HE1.	7											T			+-
	Map #	21								[pmol/	køl			+	+-
ID	LAT		LON		Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	W.	+-,
VER'	TEX Pr						1		3111	Lu	Gu	Бу	Er	Yb	
Sta.	33.00	N	139.00	W	8	5.78	7.95	4.16	0.76	0.21		1.51	1.43	0.88	0.
ГА					20		5.67	3.89	0.73	0.20	1.40	1.54	1.41	0.89	0.
					60	4.94	3.47	3.75	0.70	0.19	1.20	1.52	1.40	0.87	0
					80	4.72	3.56	3.55	0.67	0.18	1.24	1.53	1.41	0.89	0
					100	4.39	2.89	3.53	0.67	0.19	1.15	1.59	1.50	0.97	0
					150	6.87	3.53	4.93	0.97	0.28	1.81	2.24	2.07	1.61	0
					290	12.1	4.85	8.04	1.60	0.44	2.80	3.46	3.24	2.77	0.
		-			490	23.6	4.24	14.16	2.62		4.20	5.24	4.82	4.47	0.
TE	20.70		146 =											7.77	1
T5	39.60	N	140.77	W	8	7.53		5.08	0.87	0.20	1.37	1.55	1.41	0.82	0.
					40	6.21	4.33	3.90	0.65	0.18	1.17	1.45	1.34	0.74	0.
					80	9.11		5.98	1.06	0.22	1.62	1.82	1.65	1.08	0.
					100	10.4	3.27	6.82	1.25	0.35	1.78	2.67	2.44	1.84	0.
		-			150	14.3		9.40	1.85	0.46	2.50	3.44	3.21	2.63	0.
-		-+			200	14.8	2.24	9.56	1.85	0.51	2.67	3.97	3.61	3.19	0.
+				\rightarrow	290	17.0	4.18	10.9	2.10	0.59	3.45	4.37	3.99	3.44	0.
-		-			390	22.5	2.28	13.4	2.50	0.27	4.13	5.06	4.76	4.42	0.
-		-+		-	490	27.5	4.90	15.8	2.90		4.72	5.63	5.19	4.98	0.
+					580	32.1	3.07	18.3	3.28	0.58	5.24	6.18	5.73	5.53	0.
-		-+		-+	685 700	33.1	6.27	19.2	3.47	0.72	8.36	6.46	6.07	5.93	1.0
\neg		_		-+	890	37.6	3.42	20.3	3.64	1.00	9.34		6.55	6.52	1.2
				\dashv	990	37.7	3.94	21.2	3.81	1.03	6.16	7.21	6.81	6.89	1.2
			-	\dashv	1230	41.6	5.27 5.35	21.0	3.80	0.97	6.32	7.03	7.54	7.72	1.3
					1480	42.4	5.03	22.8 23.7	4.14	1.13		8.37	7.94	7.98	1.5
				_	1400	72.7	3.03	23.7	4.30	1.00	7.38	8.63	8.88	9.24	1.7
6	45.00	N	142.87	w	8	12.1	3.32	7.46	1.34	0.26	2.10	0.5	-		
					40	13.6	4.85	8.3	1.47	0.36	2.10	2.67	2.41	1.70	0.3
					100	16.8	2.94	11.1	2.14	0.42	2.53	2.83	2.64	1.95	0.3
						18.5	2.21	12.2	2.35	0.58	3.36 3.79	4.33	3.82	3.19	
						21.3	5.00	13.4	2.54	0.65	4.12	4.62	4.15	3.75	0,6
						23.6	2.27	14.3	2.69	0.74	5.21	5.60	4.52	4.16	0.7
						28.3	3.09	16.7	3.09	1.14	4.96	5.80	4.59 5.27	4.55 5.08	0.7
					400	32.0	2.70	18.5	3.40	0.93	5.40	6.31	5.71	5.55	0.9
-		4				34.3	4.33	19.7	3.62	0.98	6.59	6.62	6.13	6.01	0.9
				_		37.7	4.10	20.5	3.71	1.00	6.06	6.90	6.52	6.41	1.16
-						37.6	4.64		3.81	0.73	6.22	7.20	6.82	6.91	1.10
-				_		37.3	3.38	20.9	3.80	1.04	6.29	7.24	6.93	6.96	1.27
+		-		_		39.9	5.65	21.9	3.96	1.09	6.51	7.64	7.43	7.68	1.35
-					230		3.84	23.3	4.24		6.96		8.16	8.65	1.58
		+		1	480 4	13.5	5.12	24.1	4.38	1.21	7.32		8.66	9.34	1.70
+		-													2.70
+		+		+											
+															

HE1.XLS

			Paci	IIC	<u>Ocea</u>	n Se	awate	r Dat	ta of I)r. H.	Elde	rfield	lin n	ren.l	
Œ1	XLS								T	T	T	1	1 P	- cp.j	+-
	Map #	21								[pmol/k	al a		-		-
ID	LAT		LON		Depth	La	Ce	Nd	Sm			 -	<u> </u>		-
VER	TEX Pr	oject			- J-		CE	140	Sill	Eu	Gd	Dy	Er	Yb	L
T7	50.00		145.00	W	40	12.2	3.90	7.0	1.17	0.22	2.05	+	L		
					80	16.8	3.52	9.9	1.74	0.33	2.07	2.59	2.54	1.93	0.
					100	22.8	2.59	14.6	2.70	0.51	2.99	3.49	3.23	2.66	0.
				_	150	27.7	2.97	16.7	3.07	0.73	4.00	5.08	4.58	4.26	0.
					200		2.37	17.7			4.81	5.75	5.09	4.83	0.
					250	32.9	2.79	18.2	3.12	0.86	4.88	5.92	5.41	5.22	0.
				1	300	33.2	3.72	19.2	3.32	0.90	5.30	6.10	5.56	5.35	0.
					480	35.0	3.11	20.0		0.94	5.62	6.54	6.00	5.85	1.
				-	500	37.8	8.10		3.64	1.00	5.93	6.64	6.36	6.26	1.
					700	38.4	5.04	22.4	4.09	1.09			6.69	6.44	
					800	38.9	3.60	21.6	3.95	1.06	6.49	7.45	7.20	7.32	1.3
					900	40.2		21.5	3.92	1.07	5.63	8.39	7.33	6.48	
					1000	42.3	4.07	22.2	4.05	1.12	6.72	8.35	7.65	6.33	1.5
					1250	43.5	4.12	23.5	4.28	1.18	7.06	8.67	8.20	8.74	2.7
					1250	43.3	4.89	24.7	4.50		7.49	8.99	8.77	9.47	1.7
T8	55.50	N	147.50	w	8	11.4	4.34								
		-			40	13.3	2.87	6.8	1.14	0.35	1.97	2.50	2,33	1.71	0.2
					80	25.3	3.26	7.7	1.35	0.38	2.31	2.87	2.72	2.15	0.3
				-	100	28.9		14.4	2.55	0.76	4.14	4.25		4.04	0.7
					150	31.6	4.09	16.1	2.86	0.79	4.43	5.26	4.98	4.68	0.8
				_	200	33.2	3.52	17.7	3.12	0.86	4.88	5.92	5.41	5.22	0.9
		_		-	250	31.0	3.45	18.8	3.31	0.91	5.41	6.37	5.59	5.54	0.9
				-	300	34.6	3.45	19.1	3.42	0.82	5.03	6.38	5.97	5.73	1.0
		-		-+	485	36.0	100	19.9	3.62	0.86	5.85	6.86	6.22	6.25	1.10
		-			500		4.00	20.5	3.72		5.98	6.95	6.57	6.58	1.13
+		-		-	690	37.6	5.26	21.8	3.93	1.13	6.35	7.33	6.87	7.00	1.29
\dashv		_		-+		38.6	7.63	21.9	4.01	1.10	6.51	7.48	7.16	7.31	1.33
+		_		+		39.4	7.15	22.8	4.18	1.06	7.46	7.92	7.76	7.29	1.43
+		_		+		40.8	4.42	23.3	4.21	1.19	6.89	8.10	7.76	7.99	1.48
+				-	1240	41.4	5.23	23.4	4.35	1.19	7.38	8.06	7.93	8.38	1.74
+		_				45.2	1.40		4.67	1.30	8.21	8.99	8.68	9.18	1.66
				-	1700	45.3	4.49	26.9	4.92	1.37	8.06	9.59	9.28	9.90	1.81

HE2.XLS

he2.xls		\perp												
Map #	21								[pmol/k	g]				
ID	LAT		LON		Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yì
MARL	ANAS (I				[m]							1		
	13	8 N	14	5 E	15			6.39	1.13			2.09	1.80	
					28	8.32	9.91	5.12	1.01	0.33			1.66	1.6
					490	<u> </u>	8.76		1.67					
	<u> </u>	_			769			16.2			5.41	5.88	5.50	4.7
		_			775	26.0	9.10	13.3	2.44	0.70	4.37	4.96	5.07	5.0
	ļ	\perp			1236		8.63	19.0	3.19	0.88		7.40	7.46	
	 	-			1676	38.0		22.3	4.04	0.94			9.10	
		-		+-	2077	43.7		25.8	4.67	1.28			9.14	
		1	-	-	2121		8.81	26.5	4.94	1.32	7.98		9.03	
		-	 	-	2350	45.4	5.17	28.1	4.88					
	-	-		\perp	2506	45.5		29.8	5.39					
	-				2554	47.8	0.15	30.6	5.34			ļ		
	-	-			2739	10.0	9.18	29.7	5.54	1.53	8.55	9.93	9.94	
	-	-		-	2749	49.0	10.00	28.3	5.42	1.28	8.39	9.88	9.50	
	-	-		-	3109	71.0	8.39	30.6	5.76		9.04	10.10		
	-	-		-	3168	51.0	3.64	31.1						<u> </u>
	-	-	-	-	3303		9.53	29.6	5.49	1.43		9.95	9.78	
		_	 	+	3604 3699		8.62	30.0	5.77	100	0.40	10.40	9.75	
	-			-	3828	40.50	8.70	29.9	5.58	1.36	8.60	10.30	9.71	8.99
	 	-	-		3864	49.50	2.41	31.7	5.88			10.60	9.87	
	 	-	 	+	3604		3.41	32.0						
CAST P	ACIFIC	RIS	E (VIII.	CAN					 					
ta. 1	22 24.1	S	108 31.	W	1552		6.31	12.4	2.05	0.53		4.05	5 57	4.04
1		-	100 31.	- ''	2898		7.48	18.3	3.15	0.33		4.85	5.57	4.94
			<u> </u>		2070	***********	7.40	10.5	3.13	0.69		6.73	7.28	7.37
2	22 15.0	S	114 29.	w	1099				1.46	-				
2		_	1	<u> </u>	1259			9.41	1.52	0.42		4.29	4.99	4.51
2					1909			14.3	2.28	0.66		5.85	6.31	4.51
2					2199			12.0	1.90	0.00	3.48	5.42	6.06	
2					2641			14.3	1.93		3,40	3.42	0.00	
2					2853			15.4	2.37			6.68	7.18	
												0.00	7.10	
	21 22.0	S	114 15.	W	1986	28.60								
3					2118	28.10	7.82	13.9	2.16	-		5.78	6.34	
3					2789	28.00	3.88	15.7				2.70	0.54	
	20 29.4	S	113 51.	W	1985		7.70	15.0	2.51			6.10	6.60	
4					2632		4.30	15.8	2.59		4.73	6.11	6.87	-
4					2737		1.38		2.75		5.41	6.29	7.02	7.54
4					2785		3.10	15.4	2.69			6.44	7.18	
4					3074		12.7	19.8	2.82		6.18	6.40	7.26	8.08
5	20 09.0	S	113 44.	W	1975			15.2						

HE2.XLS

he2.xls														
Map #	21				0				[pmol/k	gì				1
ID	LAT		LON		Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yi
		_		_										
5		_		_	2228		7.58	14.9	2.47		5.47	6.05	6.67	
5					2518		3.61	15.0	2.42		4.25	6.35		
5					2521	24.8								
5					2643			15.0						
5					2727			14.7	2.60		4.79	6.44	6.76	7.8
5					2802		6.27	15.9	2.82		5.60	6.84		1.0
5					2804	28.3								
6	19 24.5	S	113 32.	W	2175		5.25	15.6	2.65	0.74	3.48	6.16	6.25	7.00
6		<u> </u>	1 2 2 2 .	 ``	2350		3.21	16.3	2.77	0.75	4.21		6.35	7.01
6			 	_	2465		2.75	15.7	2.70	0.73	4.67	6.33	6.97	7.84
6					2656		5.80	16.7	2.82	0.91	4.07	6.21	6.96	7.37
6					2756		5.99	17.4	2.85			6.70	7.33	
7	19 30.0	S	116 34.	W	1514	21.8	8.10	12.3	1.96			4.77	5.69	
9	19 29.1	S	123 31.	W	2351			12.0	2.05			5.60	6.53	
	14.00.4												0.55	
	14 29.1	S	123 29.	w	1597	21.5	4.98	11.0	1.87	0.58	3.64	4.85	5.75	6.51
11					2502	29.7	2.56	13.3						
11					2749	24.7	1.26	12.7						
	12 08.0	S	123 29.	W	2181			13.2	2.16	0.63		5.45	6.45	6.97
12					2484		3.64	13.0	2.12	0.63	-	5.54	6.60	0.71
12					2536		2.67	13.4	2.07			5.41	6.31	7.31
12					2587		2.23	12.6	2.11			5.55	5.51	-,.51
12					2683		1.25	12.2	2.07		4.25	5.49	6.36	7.48
?					2685							5.83	6.97	7.70

HE3.XLS

			Ī	T	1	T	T	T	1	T	T	Ī
			Paci	fic Se	awate	r Dat	a of I	r. H.	Elde	rfield	lin n	ren.l
HE3.XL	Š									T	[P	- cptj
				Map # 2	21	<u> </u>	<u> </u>	1			 	
SUR	FACE V	VATER					[pmol/kg	zl	<u> </u>		<u> </u>	
STA	LAT	LON	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu
349	24.25	128.40	7.68		6.61	1.11	0.32	1.54		1.72	1.19	0.19
333	24.28	132.80	5.12	4.15	4.84	1.04	0.34	1.65	1.93	1.67	1.20	1.90
275	24.28	150.47			5.41	1.14						
227	24.27	167.97	5.36	3.96	4.56	0.97	0.28	1.43	2.03		1.12	0.18
189	24.24	183.25	4.85	3.80	4.42	0.91	0.27	1.42	1.71	1.48	1.01	0.15
181	24.24	186.37		4.45	4.64	0.92	0.26	1.51	1.70	1.52	1.03	0.16
173	23.40	189.26	5.26	3.76	4.61	0.89	0.26	1.32	1.69	1.47	0.97	0.14
157	24.10	192.83	4.59	2.88	4.15	0.85	0.29	1.38	1.65	1.46	0.94	0.15
150	24.50	193.27	4.55	2.70	3.94	0.80	0.27	1.37	1.63	1.46	0.97	0.16
140	25.48	194.27	4.92	3.03	4.29	0.86	0.25	1.39	1.66	1.46	0.95	0.14
128	24.89	198.75	5.38	4.02	5.02	0.98	0.28	1.54	1.71	1.52	1.00	0.18
116	24.24	203.27	5.14	3.73	4.71	0.96	0.29	1.50	1.74	1.49	0.98	0.16
100	24.25	208.69	5.81	3.52	4.87	0.97	0.24	1.27	1.78	1.54	1.00	0.15
88	24.23	213.07	5.86	3.39	4.71	0.96	0.27	1.53	1.75	1.52	1.00	0.16
81	24.23	215.97	7.10	5.07	5.82	1.13	0.32	1.75	2.00	1.69	1.08	0.17
62	24.25	224.38	7.05	4.00	5.24	1.00	0.29	1.20	1.85	1.62	1.06	0.17
56	24.25	226.76	8.43	4.76	6.41	1.26	0.33	1.88	2.07	1.74	1.12	0.18
46	25.20	231.20	11.5	5.94	7.63	1.36	0.36	2.11	2.16	1.84	1.20	0.18
31	29.05	236.13	12.6	6.18	8.69	1.60	0.43	2.20	2.48	2.04	1.28	0.19
28	30.04	237.41	14.1	7.24	10.3	1.88	0.52	2.55	2.72	2.17	1.40	0.21
26	30.49	237.98	12.4	5.89	8.34	1.47	0.40	2.25	3.06		1.21	0.21
24	30.89	238.76	12.3	5.85	8.16	1.51	0.41	2.28	2.44	1.98	1.24	0.19
22	31.24	239.45	15.7	8.54	10.3	1.83	0.50	2.53	2.90	2.52	1.65	0.29
18	31.67	240.29	14.3	6.69	9.75	1.76	0.47	2.58	2.76	2.22	1.47	0.22
16	31.77	240.47	21.9		13.8	2.11	0.52	2.69	2.74	2.21	1.42	0.22
T8	55.50	147.5	11.4	4.34	6.76	1.14	0.35	1.97	2.50	2.33	1.71	0.29
T7	50.00	145.0	12.2	3.90	7.00	1.17	0.33	2.07	2.59	2.52	1.93	0.32
T6	45.00	142.9	12.3	3.32	7.46	1.34	0.36	2.10	2.67	2.41	1.70	0.33
T5	39.60	140.8	7.53		5.08	0.87	0.20	1.37	1.55	1.41	0.82	0.13
T4	33.00	139.0	5.78		4.16	0.76	0.21		1.51	1.43	0.88	0.12

Table A10: Handbook section 6.1. Arctic Ocean seawater

File name: ARC_CONC.XLS. Concentration of RE in Arctic Ocean seawater (North Atlantic sector)

		Arctic	Ocea	n (Nortl	Atlan	tic side	e)			
arc conc.	xls	1	T	Ť		1		-	-	+
unfiltered				CO	ONC = pm	nol/kg				
Depth	La	Ce	Pr	Nd	Sm	Gd	Dy	Er	Yb	Ce/Ce*
- Depth	- LA	-	-	-	-	- Gu	-	-	-	Carce
Wester	lund & O	hman (1	992)		-					
		& 31 35.6'		<u></u>		 			-	
10	34.8	38.6	7.8	28.5	4.7	10.2	6.8	6.0	5.2	0.57
20	20.3	12.1	4.3	17.4	4.0	5.7	6.2	4.8	4.0	0.30
100	18.8	10.0	4.3	16.0	4.7	5.1	8.0	4.8	5.2	0.27
200	20.3	12.1	4.3	16.7	3.3	5.7	5.6	3.6	5.2	0.30
300	24.6	21.4	5.0	16.7	4.7	6.4	7.4	3.6	4.0	0.47
400	23.2	12.1	4.3	19.4	2.7	3.8	6.2	4.2	2.9	0.27
500	24.6	20.0	5.0	25.0	3.3	5.1	6.2	4.8	4.6	0.39
600	25.4	20.7	5.7	24.3	4.0	6.4	9.3	4.2	5.2	0.40
		& 31 58.0']			1.0		7.5	1.2	3.2	0.40
600	22.5	12.9	4.3	22.9	4.7	7.0	5.6	4.8	5.2	0.27
1000	21.0	14.3	3.5	19.4	3.3	6.4	4.9	4.8	4.0	0.27
1500	21.0	12.1	5.0	20.1	3.3	5.7	6.8	4.2	5.8	0.28
2000	18.8	11.4	3.5	19.4	3.3	4.5	5.6	5.4	4.0	0.29
2500	22.5	8.6	5.0	20.1	4.0	4.5	6.2	4.8	4.0	0.19
2800	23.9	12.1	4.3	23.6	4.7	4.5	7.4	4.8	4.6	0.24
		& 30 34.0'I			1	1	- · · · -	10	 	0.21
10	37.0	16.4	6.4	30.6	5.3	8.9	8.0	6.6	5.2	0.23
20	40.6	15.7	7.8	29.2	4.7	11.5	9.3	6.0	4.6	0.21
300	21.0	10.0	4.3	18.1	2.7	5.1	6.2	4.8	4.0	0.24
800	21.0	10.0	3.5	19.4	2.7	4.5	3.7	4.8	3.5	0.23
1300	21.7	9.3	3.5	14.6	2.7	5.1	5.6	4.8	4.0	0.23
1800	23.2	8.6	3.5	16.0	4.0	5.7	4.9	4.8	4.6	0.20
2300	27.5	14.3	5.0	20.1	4.0	6.4	4.9	4.8	4.0	0.28
3000	23.9	5.7	4.3	17.4	3.3	5.1	5.6	5.4	4.0	0.13
3500	31.2	15.0	5.0	23.6	4.0	5.7	6.2	4.8	4.0	0.25
Sta 362 (8	35 04.0'N &	& 29 21.3'H	() 4037	m						
10	30.4	15.0	5.7	27.1	4.7	8.3	8.6	7.2	6.4	0.25
20	34.1	16.4	5.7	26.4	5.3	7.6	8.6	7.2	6.4	0.25
50	26.1	14.3	5.0	27.8	4.7	5.7	7.4	6.0	5.2	0.26
100	31.2	12.1	5.0	26.4	4.0	7.0	8.6	7.2	6.4	0.20
200	21.0	9.3	3.5	16.7	3.3	5.1	6.2	5.4	4.0	0.23
400	23.9	10.0	4.3	18.8	3.3	7.0	6.8	5.4	4.6	0.22
700	18.8	9.3	3.5	16.0	3.3	4.5	5.6	3.6	3.5	0.25
· .		22 46.4'E								
10	31.9	15.0	5.7	27.1	6.7	7.6	10.5	7.2	7.5	0.24
20	30.4	14.3	6.4	22.9	5.3	9.6	11.1	9.0	7.5	0.25
30	33.3	15.7	5.7	27.1	6.0	7.0	8.6	7.2	8.1	0.24
40	34.1	16.4	6.4	28.5	6.0	8.9	9.3	7.2	8.1	0.24
50	34.1	12.9	5.7	29.2	5.3	7.6	9.3	6.0	7.5	0.19
60	30.4	12.9	6.4	28.5	5.3	7.0	8.6	7.2	6.4	0.21
70	33.3	14.3	5.7	25.0	5.3	8.9	9.3	6.6	6.4	0.23
80	36.2	16.4	6.4	28.5	5.3	8.9	7.4	6.6	6.4	0.23
90	37.7	17.9	6.4	29.9	5.3	9.6	9.3	6.6	6.4	0.25
100	29.7	13.6	5.7	30.6	4.7	8.9	8.6	6.0	6.4	0.22
110	29.0	12.1	4.3	23.6	5.3	7.0	8.0	6.0	6.4	0.21

unfiltered	samples			CC	NC = pm	ol/kg				
Depth	La	Ce	Pr	Nd	Sm	Gd	Dy	Er	Yb	Ce/Ce*
-	-	-	-	-	-	-	-	-	-	-
120	28.3	13.6	5.0	21.5	4.7	6.4	6.8	5.4	5.2	0.25
130	26.1	11.4	5.0	23.6	4.7	8.3	7.4	5.4	5.8	0.22
140	28.3	13.6	5.0	20.8	4.7	7.0	9.3	6.0	5.8	0.25
150	42.0	61.4	9.9	39.6	4.7	13.4	9.9	5.4	6.9	0.71
160	24.6	10.7	4.3	25.0	4.7	8.3	8.0	6.0	5.8	0.21
180	27.5	12.1	5.0	22.9	4.0	6.4	8.6	6.0	5.2	0.22
190	30.4	12.9	5.7	22.2	4.7	5.1	8.6	4.8	4.6	0.23
250	23.9	11.4	4.3	18.8	3.3	7.6	7.4	5.4	4.6	0.25
300	22.5	10.0	4.3	18.8	3.3	5.1	5.6	4.8	4.6	0.23
400	25.4	12.1	5.0	21.5	4.7	6.4	8.0	6.0	5.8	0.24
500	23.2	10.0	4.3	16.7	4.0	6.4	6.2	6.0	4.6	0.23
800	23.9	14.3	4.3	21.5	4.0	5.7	6.2	4.2	4.6	0.30
1000	21.0	10.0	4.3	16.7	3.3	5.1	6.2	4.8	4.6	0.25
		&21 59.2'E								
10	37.7	15.7	7.1	36.1	6.0	9.6	8.6	6.6	8.1	0.20
20	34.8	15.0	6.4	34.0	7.3	8.9	8.6	7.8	6.9	0.21
500	18.8	8.6	3.5	22.2	4.0	7.0	4.9	4.2	2.9	0.21
800	21.0	8.6	3.5	22.2	2.7	6.4	5.6	5.4	4.6	0.19
1000	24.6	9.3	4.3	19.4	3.3	7.0	6.2	4.2	4.0	0.20
1500	23.2	7.1	3.5	18.8	3.3	5.7	6.8	4.8	4.6	0.16
2100	26.1	8.6	4.3	18.8	3.3	5.1	4.3	4.2	4.6	0.18
2800	23.9	8.6	4.3	18.1	3.3	5.1	3.7	3.6	3.5	0.19
		& 21 58.2'E								
10	37.0	14.3	7.1	40.3	6.7	9.6	12.3	8.4	6.4	0.18
20	34.1	13.6	5.7	27.8	5.3	7.6	10.5	9.6	6.4	0.20
50	31.2	13.6	5.7	28.5	4.0	8.3	9.3	4.8	5.8	0.22
100	31.2	13.6	5.7	27.1	4.7	9.6	8.6	6.6	5.8	0.22
200	23.2	18.6	5.0	21.5	2.7	6.4	7.4	6.0	3.5	0.39
300	23.9	10.7	3.5	18.1	4.7	5.1	7.4	4.8	4.6	0.23
400	23.9	10.0	4.3	21.5	4.7	7.6	7.4	5.4	4.0	0.21
600	19.6	7.9	1.4	15.3	3.3	3.8	4.3	4.8	2.9	0.21
700	19.6	9.3	2.1	19.4	3.3	4.5	5.6	4.8	4.0	0.23
		2 17 14.5'E	·		4.0	7.0	4.2			
20	23.2	12.1 10.7	2.1	16.7	4.0	7.0	4.3	4.2	3.5	0.28
500	19.6		2.1	20.1	4.7	7.6	6.2	6.0	4.6	0.24
1000	22.5	10.0	1.4	22.2	4.0	7.0	4.3	3.6	4.0	0.23
1400	19.6	8.6	1.4	19.4	2.7	5.7	4.9	6.0	3.5	0.19
1800	21.7	8.6 7.9	1.4	16.7	4.0	6.4	5.6	4.2	4.6	0.22
2200	22.5	7.9	3.5	20.8 18.8	3.3 4.0	3.8	4.9	4.8	5.2	0.18
2200	44.5	7.1	3.3	10.8	4.0	6.4	4.9	4.2	4.6	0.16
Sta 364 (8	5 22.0'N &	26 09.8'E)	3668 m	n						
10	41.3	22.9	7.8	36.8	7.3	9.6	9.9	9.0	6.4	0.28
20	40.6	25.0	7.1	38.9	7.3	9.6	8.6	7.8	8.1	0.28
		25 14.8'E)				7.0	0.0	7.0	0.1	0.50
10	32.6	15.7	5.7	25.0	4.0	7.0	8.6	7.8	5.8	0.25
20	34.8	15.7	6.4	29.9	5.3	8.3	8.6	7.8	6.4	0.23
	55	2017	0.1	27.7	5.5	0.5	0.0	7.0	0.4	0.23

Table A11: Handbook section 6.1 and 7.1. Mediterranean Sea.

File name: MED_CONC.XLS. Concentration of RE in the Mediterranean Sea, including the anoxic brines of Bannock Basin

					Med	literran	ean Sea				
med-cor	nc.xls					T		 	-		
			(CONC = pn	ol/kg			 			
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	0.0
-	-	-	-	-			- Dy			Lu	Ce/Ce
Gr	eaves et	al. (19	91)	Man #s		<u> </u>		-	-		-
		D'N & 12 2		map #2	4 0.4 ur	n illtered	samples		1		
13	14.4	12.30	12.4	+							
33	17.7	12.50	12.4	2.54	0.673	3.74	4.49	3.83	3.32	0.522	0.43
58	14.2	12.10	12.6	0.60	-		4.51	3.78	3.20	0.500	
108	14.1	12.10		2.60	0.692	3.63	4.67	3.98	3.39	0.535	0.43
208	16.3	9.39	12.8	2.66	0.698		4.68	3.93	3.47	0.538	0.43
505	21.4	9.39	14.0	2.88	0.720	3.72	4.98	4.22	3.67	0.603	0.29
708	20.3		17.2	3.32	0.823	4.17	5.13	4.35	4.03	0.642	0.24
807	24.0	7.33	16.1	3.28	0.830	3.76	5.37	4.59	4.21	0.706	0.17
27	19.8	4.29	17.2	3.40	0.875	4.70	5.52	4.66	4.46	0.701	0.16
69	20.4	5.49	15.3	3.14	0.837	4.62	5.58	4.75	4.45	0.719	0.11
13	20.3	5.54	15.9	3.27	0.866	4.46	5.66	4.84	4.48	0.737	0.14
013	20.8	3.34	16.3	3.38	0.901	4.90	5.76	4.91	4.57	0.765	0.14
013	21.3	6.59	16.4	3.39	0.905	4.94	5.71	5.00		0.769	
111	20.2	5.53	16.6	3.40	0.914		6.21	5.04	4.70	0.763	0.16
212	20.2	4.22	16.4	3.45	0.916	5.26	5.95	5.07	4.65	0.785	0.14
212	21.0	5.47	16.3	3.48	0.937	5.11	6.13	5.16	4.76	0.809	
307	20.5	4.76	16.7	3.55			6.10	5.12	4.78	0.810	0.13
307	20.3	4.70	16.6	3.52	0.944	5.10	6.16	5.17	4.69	0.813	0.12
510	21.3	3.84	17.1	3.62		4.93	6.10	5.07	4.96	0.798	
312	21.8	4.58	16.2	3.34	0.885		5.77	4.96	4.74	0.789	0.09
019	21.0	4.26	16.2	3.25	0.860	4.82	5.78	4.85	4.70	0.786	0.11
	(40 15 0	N & 05 22	18.2	3.37	0.834	4.74	6.00	4.88	4.83	0.810	
10700	26.1	20.90									
00	28.1	15.90	24.4	5.53	1.470	7.99	8.76	6.78	6.11	1.010	
15	29.0	13.60	25.8	5.86	1.570	8.33	9.50	7.50	6.86	1.090	
15	27.0	14.90	26.2	5.98	1.600	8.30		7.63	7.00	1.140	
0	27.9		26.3	6.03	1.610	8.50	9.77	7.59	7.03	1.160	
0	25.2	15.90	25.4	5.82	1.560	8.13	9.72	7.64	7.05	1.150	
00	23.2	8.14	23.5	5.46	1.480	7.92	8.96	7.40	6.98	1.070	
50		7.27	22.8	5.26	1.440	7.71	8.86	7.00	6.58	1.070	
50	22.6	6.17	21.9	5.14	1.420	7.42	8.68	6.83	6.45	1.050	
50	22.9	6.44	20.7	4.95	1.360	7.08	8.43	6.74	6.36	1.050	
50	22.9	6.60	22.0	5.05	1.390	7.38	8.26	6.87	6.57	1.050	
-	22.0	8.78	20.9	4.91	1.330	7.03	8.37	6.80	6.47	1.050	

Spiv	ak & Wa	esserburg	(1988)	Map # 24	0.4 ur	n filtered	samples		Ţ	T	
Med-15	(36 04.8°N	& 05 59.8'	Nd					1			
75			14.1			-		 		-	
150			27.9			1		1		+	
250			28.0							1	1
400			32.4							1	†
450			30.3								
500			26.6								
Med-4 (36 04.81'N	& 05 59.83'	W)			1			1		
20			30.8								
Med-9 (35 37.2'N &	& 06 03.8'W									
2			32.2								
ALB-I (35 55'N &	04 27'W)									
0			16.4								
EMED-	I										
0			31.5								
TTO-TA	AS 80 (27 5	0.0'N & 30 3	32.0'W)								
0			13.8	Station Out	side of M	ed. Sea in l	North Atlant	ic Map # 9			
389			13.9								
1152			17.9								
1260			16.3								
1990			17.1								
2984			20.2								
4724			26.3								
	-	-				-				-	
						1					
		et al.	(1994) wester				a,			
Sta. Vill	efranche			unfilt	ered :	samples					
M 40m			27.5								
80			30.2			1				1	
200			26.2								
500			29.5			 		 			
		-									
2000			37.7								
O40			54.1								
80		†	35.7		_					†	
1000		1	32.0			+				-	
	DD 4	-				-				 	
sta. BAC	OR, deep		26.4			1					

	Schijf e	t al. (199			s of Branı	nock Bas	in M	ap #25			
			0.4 un	n filtered	samples						
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	T	
2998	24.3	10.1	21.2	4.79	1.31		+	Ei		Lu	
3300	26.9	12.0	23.4	5.43	1.48		 		6.78		
3306	24.9	10.2	21.9	4.92	1.40			7.20	7.25	1.02	
3310		10.8	23.0	5.19	1.44		-	7.32	7.07	1.06	
3315	25.5	10.1	23.0	5.10	1.43		-	-	7.14		
3323	1038	3750	970	179	42.9	197	144	010	7.09		
3329	416	1523	360	75.0	19.2	197	144	94.3	75.9	9.27	
3359	292	860	212	43.3	11.4			48.0	45.5	7.09	
3377	394	905	221	46.2	11.8	56.6	40.0	29.7		3.64	
3420	224	564	145	32.0	8.35	30.0	48.2	27.4		3.4	
3470	178	431	114	25.3	0.55			10.4	24.8	2.86	
470	141	425	111	24.3	6.44			19.4	17.4	2.63	
491	193	476	128	27.4	7.47			22.0	20.6		
529	322	616	219	45.3	12.0			22.0	20.6	2.75	
580	310	638	234	48.6	12.6			41.8	32.3		
628	364	599	216	44.8	12.0			42.8	34.5	3.58	
730	326	671	240	48.4	12.5			39.8	31.5	3.31	
730	318	603	220	45.2	11.4	55.1		35.6			
784	330	582	210	43.5	11.7	33.1		34.0	32.3	3.73	

Table A12: Handbook section 7.1. Anoxic Basins

File name: BLACKSEA.XLS. Concentration of RE in the Black Sea

File name: SAANICH.XLS. Dissolved and suspended concentrations of

RE in Saanich Inlet, British Columbia, Canada

File name: CARIACO.XLS. Concentration of RE in the Cariaco Trench.

See also Chesapeake Bay data in Table A3 files

				A	noxic I	Basins					
blackse	a.xls				Black	Sea	Map #	25			
				ONC = p	mol/kg						
Deptl	ı La	Ce	Nd	Sm	Eu	Gd	Dw	Er	371	- T	0 (0
			110	Jan	Lu	Gu	Dy	EI	Yb	Lu	Ce/Ce
Schi	if et a	l. (1991)		-	- - -	0.2	- 6714	-	<u> </u>		-
		3 N & 34	1	_		U.2 UI	m filtere	a sample	es		
0		30.8	23.2	5.52	1.45			+			
30		16.5	21.8	4.76	1.43	7.40	10.00	13.2	9.70	1.48	-
40		18.1	23.3	5.04	1.38	7.40	10.00			1.28	0.27
40		18.7	23.6	5.03	1.36			9.0		1.37	
50		12.7	22.8	4.42	1.24				7.50	1.00	-
60		5.36	16.9	3.56	1.04		+	8.5	7.50	1.30	+
70	28.4	6.03	16.9	3.69	1.04			+	7.10		0.10
85		3.54	12.2	2.58	0.76	4.20	6.40	6.6	7.10	111	0.12
100		3.30	7.35	1.55	0.48	4.20	0.40	5.5	5.00	1.11	0.10
107	16.8	3.95	7.23	1.44	0.45	 	4.20	5.3	5.80	0.85	0.14
110	17.3	8.66	10.7	2.31	0.71		5.80	6.2		0.95	0.14
115		19.2	15.7	3.29	0.96		3.60	8.1	6.40 8.30	1.06	0.28
130		28.9	17.3	3.50	0.50	5.70	7.40	0.1	8.30	1.21	
160	56.4	109	45.0	9.16	2.56	3.70	7.40	12.7	12.2	1.45	1.00
175		136	54.6	11.1	3.10	-	+	12.7	12.2	1.67	1.00
200	64.5	154	63.1	12.7	3.51		+	+		1.70	1
225		180	70.9	14.7	4.15	-	 		14.8	1.70	1.15
250	90.3	197	77.5		4.16	-	-	-	16.1	2.06	1.10
300		205	80.5		1.20		 	-	-	2.06	1.10
400	89.7	198	80.7	16.0	4.50		+	16.8	17.6	1.99	1.10
500	93.4	185	75.0	15.1	4.00		 	15.6	14.9	1.90	1.10
700		159	67.5	13.7	3.75			15.0	14.5	1.90	1.02
1050		122	54.5	11.4	3.01	-		 	11.8	-	
1350	68.8	114	51.7	10.2	2.84	 		12.0	11.6	1.46	0.87
1600		110	51.4	10.2	2.77		 	11.8	11.2	1.44	0.67
1800	69.0	100	48.4	9.86	2.69		+	11.1	10.9	1.41	0.78
2172	68.1	102	47.0	9.85	2.69			11.0	11.0	1.36	0.78
										1.50	0.01
Germ	an et. a	l. (1991)		0.4 un	n filter	ed sam	nles				
		1' N & 34					Pics	 			
6	18.9	22.2	18.6	4.25	1.27	7.29	10.1	9.23	0.15	1.66	
15	19.0	18.4	18.6	4.23	1.26	7.15	10.1		9.15	1.56	0.57
31	19.4	16.8	19.1	4.30	1.27	7.90	9.62	9.19 8.86	9.01	1.55	0.47
50	21.5	5.8	18.6	4.09	1.19	7.05	8.60	8.22	8.59 8.48	1.47	0.42
65		2.6	14.4	3.10	0.94	5.60	6.98	7.03	7.23	1.45	0.14
70	19.0	2.8	14.7	3.09	0.0	6.40	6.77	6.85	7.02	1.29	0.00
76	16.0	1.6	12.2	2.56	0.77	4.83	6.27	6.37	6.77	1.26	0.08
81	15.5	2.1	11.5	2.41		4.53	5.71	6.30	6.81	1.23	0.05
86	15.6	3.1	11.9	2.46	0.74	4.72	6.05	6.29	6.66	1.23	0.07
91	17.2	9.7	12.9	2.68		4.84	6.00	6.45	6.86	1.23	0.10
96	18.9	13.7	14.3	2.97	0.88	5.16	6.76	6.88	7.21	1.28	0.30
100	20.1	16.5	15.2	3.13	0.77	5.46	6.71	7.39	7.40	1.30	0.38
105	20.5	18.8	15.5	3.23	0.97		7.02	7.09	7.35	1.40	0.43
110	24.1	27.5	18.4	3.83	0.93		7.86	7.86	7.46	1.41	0.48
115	25.2	31.1	19.3	3.98	1.15	6.39	8.23	7.93	8.16	1.41	0.65

blacksea.xls

			CC	NC = pm	ol/kg						1
Depth	La	Се	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce/Ce
	-	-	-	-	-	-	-	-	-		-
120	35.0	55.1	27.1	5.56	1.60	8.39	10.7	9.57	9.51	1.62	0.82
125	39.3	63.1	29.9	6.13	1.43	9.08	11.2	10.3	10.0	1.74	0.84
130	37.0	57.4	29.2	6.02	1.72	8.85	11.0	10.0	10.0	1.69	0.80
150	59.6	106	47.8	9.75	2.26	13.0	15.2	12.9	11.7	2.03	0.92
180	76.0	145	59.3	11.9	3.32	16.1	19.3	14.8	13.9	2.26	0.99
500	96.1	181	76.6	15.4		20.3	21.1	16.1	14.3	2.33	0.97
800	83.0	142	64.1	13.0	3.54	17.6	16.0		12.7	2.03	0.89
1500	64.7	105	50.5	10.4		13.4	15.4	11.5	10.5	1.73	0.84
2153	62.1	96.3	48.1	9.88	2.74	12.2	14.6	11:3	10.1	1.66	0.81
2174	58.3	89.6	45.3	9.01	2.42	12.8	14.1	10.8	9.65	1.59	0.80
2185	62.8	52.9	47.6	9.67	2.74	11.8	14.5	11.2	9.30	1.72	0.44
	Schijf ar	id De Ba	ar (1995)) Data	from Bo	sporus		0.22 um	filtration	1	
Sta. HKS											
8		31.7	24.4	5.61	1.66				10.2	1.57	
30		16.9	23.5	5.47	1.56			10.6	9.37	1.0,	
65		13.8	20.2	4.40	1.31				8.13	1.2	

					A	noxic B	Basins			_	
saanicl	h.xls					1					
Saan	ich In	let	C	ONC = pr	nol/kg						
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce/Ce
	-	-		-	-	- Gu	- Dy	Li	10	Lu	Ce/Ce
Ge	rman &	& Elderf	ield (198	89)	 	-	+	-	-	_	-
		36.6' N	,		Map #	26	 -		-	-	
									-	_	+
A. I	Dissolv	ved Sar	nples [0.4 um	filtere	d]					
								<u> </u>		-	
0	44.5	73.3	28.4	5.59	1.60	7.38	8.06	6.52	6.01	0.97	0.91
10		20.8	29.1	5.61			7.60	6.61		1.05	
20		19.7	24.8	4.94							
50		-	20.6	4.04	1.18		6.10	5.37		1.11	1
75		8.1	17.0								
100	31.4	6.8	16.1	2.95	0.86		4.33	3.87	3.90		0.12
125	39.4	6.4	13.2	2.25							0.10
140			14.3	2.48	0.69	4.55	3.71	3.34	3.48	0.73	-
150		7.4	13.1	2.36	0.71		3.58	3.41	3.73		†
155	33.1	8.0	13.4	2.43	0.70		4.21	3.38		0.57	0.15
160			19.2	3.53	0.87	5.62	4.66	3.87		0.67	
165	58.2	38.4	23.3	4.29	1.18	6.08	5.24	3.98	4.71	0.65	0.40
170			26.2	4.94	1.36		5.75	4.27		0.82	0.10
175			26.9	4.95	1.38	6.69	5.78	4.31		0.75	
180			27.8	5.22	1.37	6.81	6.77	4.65	1	0.72	
190			29.2	5.38	1.49	7.55	6.12	4.51	5.57	1	
200			29.9	5.53	1.50		5.94	4.54			<u> </u>
205	53.3	58.2	31.7	5.87	1.58		6.81	4.79	4.31	0.70	0.61
210		60.2	31.8	5.90		7.48	7.41	5.63		0.91	0.01
215	54.9	60.9	33.0	6.16	1.70	7.47	6.82	4.80	4.32	0.71	0.62
B. Sus	pendec	Particl	es [pmo	l/kg of v	vater]						
0	6.8	10.9	6.3								
20	0.0	19.8	5.2	1.1	0.3	1.1	0.9	0.4	0.3	0.07	
50	24.4	18.7	9.3	2.0	0.4	1.9	1.5	0.7	0.5	0.07	
75	27.4	61.8	31.5	2.2	0.6	2.0	1.8	0.9	0.7	0.10	
100	39.0	86.0	45.6	6.9	1.7	6.6	5.3	2.7	2.1	0.29	
125	37.0	60.2	32.2	9.9	2.5	9.3	7.6	3.8	3.0	0.41	
140	30.2	51.0	27.4	6.8	1.7	5.8	5.7	2.9	2.3	0.33	
150	31.0	62.9	31.6	5.9	1.5	6.0	5.1	2.7	2.1		
160	23.9	44.9	22.9	6.7	1.7	6.4	5.3	2.7	2.1	0.29	
165	23.7	21.7	12.7	4.6	0.7	20	4.3	2.0	1.8		
180		7.9	4.3	2.8	0.7	2.8	2.2	1.1	0.9		
205	4.9	9.2	4.3	0.9	0.2	0.0	0.9	0.5	0.7	0.05	
200	7.0	7.4	7.7	0.9	0.2	0.9	0.7	0.3	0.3	0.04	

CARIACO.XLS

				And	oxic Ba	asins					
ariaco.x						T				-	
Caria	co Tren	ch (10 4	0'N & 6	5 35'W)	1	Map #	27				
	r et. al.			0 um f				-			1
Depth	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	УЪ	Lu	C-10.
	-	-	-	-	-	Ou	Бу				Ce/Ce ¹
5	19.4	17.8	19.6	4.78	1.41	5.60	6.85		100	-	-
50	15.5	12.1	14.8	3.27	0.88	4.15		5.44	4.31	0.62	0.44
119		10.3	13.6	3.06	0.79	4.13	5.36	4.05	3.51		0.38
150	15.7	9.5	14.0	3.02	0.79	2.00	4.96	4.01	4.13		
256	11.7	4.0	9.5	1.78		3.80	4.59				0.30
278	11.6	4.4	8.4	1.78	0.49	2.77	3.44	2.80	2.53	0.43	0.18
288	12.8	20.7	10.2		0.46	2.45	3.15	2.63	2.48	0.40	0.20
292	15.3	30.4	11.6	2.05	0.56	3.05	3.18		2.54	0.41	0.84
302	15.1	29.9	11.6	2.41	0.63	3.14	3.64	2.93		0.44	1.04
322	16.3	36.5		2.39	0.63	3.09	3.50	2.94	2.65	0.40	1.03
327	16.3	33.3	12.8	2.62	0.70		3.83	3.09	2.72		1.16
337	16.9		11.7	2.48	0.66	3.18	3.84	2.97			1.09
357	19.5	35.5	13.5	2.86	0.64	3.34					1.08
377	21.4	41.3	14.4	2.91	0.77			3.28	2.82		1.12
496	21.4	45.8	16.0	3.11	0.82		4.34	3.32	3.09		1.13
594	41.3	53.7	20.4	3.98	0.97	5.22	4.83	3.74	3.67	0.66	1.23
697	22.7	55.1	20.1	4.19		5.42	5.40	3.74			
	23.7	57.7	21.2	4.44	1.17	5.79	6.12	4.61			1.21
994	23.2	48.8	18.9	3.98	1.04		5.24	3.49	2.94	0.45	1.08
1097		55.4	21.1	4.67	1.17	6.71	6.75	3.92	3.17	0.50	
1319	23.3	51.0	19.7	4.16	1.07	5.66	5.17	3.63	3.19		1.11

Table A13: Handbook section 7.2. Marine Pore Waters

File name: PW_REE.XLS. Concentration of RE in pore waters

	T										
pw_REE.xis		Pore	Water	Con	centr	ation	S				
61 11 11 14	200) 5		- 0		0.0						
Sholkovitz et al. (1	989), B	uzzard	s Bay,	MA, U	SA	-					
	-				mol/k	a					
Comple	La	Ce	Nd	Sm	Eu	g Gd	Des	Er	Yb	Lu	Ce
Sample	La	CE	Nu	SEL	Eu	Gu	Dy	EL	10	- Lu	Anom.
1 m Water Column	49.3	95.3	75.3	7.35	1.72	8 02					0.78
5 m Water Column	48.6	81.5	45.2	7.73	1.71	10	11.2	8.85	8.69	1 42	0.82
14 m Water Column	74	106	76.9	11.7	2.58		14.8	11		1.71	0.68
Overlying Water	61.8	145	38.3	6.5	1.4		10.5		10.3	1.43	1.3
Overlying water	01.0	140	30.3	0.5	1.4	0.70	10.5	0.72		1.43	1.5
Pore Water* Depth	(cm)										
0-3	117	428	93.1	19	3.87	20			 		1.89
3-6 .	269	693	266	51.9	9.6	49.1	46.4	27.3	25.1		1.24
6-9	379	1248	306	55.8	14.5		47.4		27.3		1.7
9-12	631	1531	595	115	21	104					1.19
12-15	842	2070	788	152	27.7	140					1.21
18-21	950	2359	892	175	32.8	150	132	73.4	67.9	10.5	1.22
24-27	1095	2673	1041	204	37.7	190	155	85.4			1.19
30-33	1059	2448	1031	201	31.2	192	159	87	80	12.6	1.12
33-36	927	2263	895	176	32.9	159		80		12	1.18
36-39	1764	4104	1733	344	63.1	311					1.12
39-42	1216	2915	1214	245	45.5	229	194	109	104	16.2	1.14
42-45	1300	3308	1245	251	47.3	229	201	116	113	18	1.24
45-48	913	2271	888	178	33.7	169	151	91.4	91	14.9	1.21
51-54	1057	2508	1040	210	39.2	198	172	102	103	16.7	1.14
60-66	896	2361	830	167	32.4	160	152	97.1	103	17.5	1.29
66-72	551	1768	512	102	19.8	102	104	75.4	85.3		1.58
0.45 um filtered											
Elderfield and Sho	lkovitz	(1987)	, Buzz	ards B	ay, M	A, US	Α				
	La	Ce	Nd	Sm	Eu	Gđ	Dy	Er	Yb	Lu	
Overlying seawater 1		91.9	27.2	4.7	1.04		6.83	5.71	6.26	1.07	
Overlying seawater 2	42.5	106	27.2	4.13	0.92		7.39	5.56	6.04		
Pore water* depth (cm)											
0-1**	51.8	130	65.2	15	3.38	19.5	26.9	19.7	22.7	3.7	
0-1**		320	62.9	14.8	3.2	20.3	25.1	21.2	23.7	4.0	
1-3		757	245	40	8.46		41.9	29.3	32.3	5.17	
3-5	106	227	107	23.4	4.97	26.5					
5-7	44.6	98.6	49	11	2.02			13.7			
7-9	151	264	121	24.7			26.3			3.07	
9-11	137	268	114	23.4			25.3	17.8	-	-	
11-13		608	274	52.5					28.6		
13-15		912	356	69.8				35.9	-		
17-19	444	898	358		+			36.1			
23-25		1162	486	98.1				48.8			
27-29	-	1910	815	164	30.8		127	73	68.6	10.8	
** replicates, * 0.45 um filtered	<u> </u>										

PW_REE.XLS

German and	Elderfi	eld (19	89) S	aanich	Inlet							
		La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Ce-
Overlying seawater		55	61	33	6.2	1.7		6.8	4.8			Anom.
Pore water*	depth	(cm)			<u> </u>							
0-3		1217	649	344	84.9					-		
3-6		479	193	127	40.3	12.3		96 9	82.3			
6-9			244	171	46.2	12.5		135	163			
9-12		533	168	113	35.7			119	103	l		<u> </u>
12-15		49	48	31	8.6	3.25			68.1			
15-18		28	18	13	3.4	1.25			11.7		-	
* 0.4 um filtered					3.4	1.23			11.7			
Ob - 11 14 4												
Sholkovitz et							_					
Chesapeake B	ay 0-1	cm Po	re Wat	er*								
Time-Series												
Date												
10-Feb-88												
12-Apr-88		122	256	214	56.2	14.7	152	72.7	55.9	56	8.28	0.79
17-May-88		226	490	328	83.6	-			33.3	30	0.20	0.89
14-Jun-88		458	1032	599	148	34.5						0.97
6-Jul-88		815	1727	1154	293	69.2		288	173	145	18.5	
26-Jul-88		962	3728	1221	294	68.9		299	177	148	19.4	1.69
16-Aug-88		1040	2382	1188	262	59.8				2.0	23.7	1.04
21-Sep-88		230	395	295	88	18.7		121	78.5	69.4		0.75
24-Oct-88		227	447	274	68		89.5	89.2			9.17	0.88
15-Nov-88										0.1.0	3027	0.00
20-Dec-88		152	333	223	55.2	13.9	76.5	73.1	56.2	53.9	7.73	0.90
15-Feb-89		147	284	164	39	10.0	54	47	37	36	5.10	
*0.22 um filtered											3110	0.03
Ridout and P	agett (1984)										
Great Meteor			Atlan	tic Oc	ean					<u> </u>		
Pore water*,	dept	16.4	28.1	22.3	4.35	1.53		5.66	3.63	6.25		
*0.45 um filtered												Ce-
		La	Ce	Nd	Sm	Eu	Gđ	Dy	Er	Yb	Lu	Anom.

Table A14: Handbook section 7.3. Marine hydrothermal vent waters

File name: VENTS.XLS. Concentration of RE in the hydrothermal waters of the Atlantic and Pacific Oceans.

VENTS.X	LS				Hydro	therm	al Wa	ters				
Klinkt	ammer	et. a	1. (1	994a)								
	ID	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
982	ICPMS			320	1440	280	3400	220	31	120	21	46
982	TIMS	1353			1459	280	3352	244		122	21	47
										122		
1636-3	ICPMS	1200	2400	360	1720	330	2400	260	34	140	22	61
1636-3	TIMS	1218	2439		1632	329	1915	251		142		52
1637-3	ICPMS	800	1250	150	550	92	1070	105	15	68	16	30
1637-3	TIMS	754	1187		506	92	1047	96		67		29
1150-11	ICPMS	730	590	54	164	16	280	16	3	14	2	5
1150-11	TIMS	663	551		165	18	259	17		12		8
1683-14	ICPMS	2700	6800	980	2800	390	2600	450	70	240	35	60
1683-14	TIMS	2549	6606		2635	413	2391	418		239		64
4400.0	100110	****										
1160-6	ICPMS	2100	3800	480	2100	470	1970	444	65	300	54	110
1160-6	TIMS	2196	3718		2108	439	1878	425		300		94
1635-3	ICDMC	1500	1000									
1635-3	TIMS	1500	1000	98	340	40	380	42	6	32	5	13
1033-3	1 IIVIS	1472	904		322	41	353	44		33		16
1158-16	ICPMS	1080	1600	167	500	100	1000	100	10			
1158-16	TIMS	964	1483	107	588 592	100 85	1220	120	18	88	18	45
1100 10	11110	704	1463	-	392	63	1163	125		76		34
1160-16	ICPMS	2170	4330	550	1690	360	1870	370	50	270	10	
1160-16	TIMS	2191	4188	330	2066	400	1802	397	30	270	40	90 87
			- 1100	-	2000	400	1002	331		203		8/
1683-5	ICPMS	1610	3660	510	2300	480	2050	360	57	240	32	65
1683-5	TIMS	1689	3560		1888	405	2026	348		221	- 32	63
										221		- 03
1152-7	ICPMS	1500	1610	190	680	132	1240	100	9	40	6	15
1152-7	TIMS	1163	1683		637	96	1128	155		85		41
1155-18	ICPMS	6900	14200	1420	4900	430	4500	450	61	220	32	88
1155-18	TIMS	6528	13640		4715	416	4404	459		213		74
1620-1	ICPMS	1440	1560	140	387	52	1500	30	5	17	4	11
1620-1	TIMS	1415	1468		345	49	1451	33		11		5
`~~~~~	-54	1										
	of two ana											
TIME -	inductively thermal ion	y coupled	piasma n	iass speci	rometry							
1 IIV12 = [nicimal ion	zauon m	ass spectr	ometry								

Klinkham					Conc =	pmol /	Kg				
ID	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er
HG 1981	2100	3980	510		450	1980	440	56	310	49	10
HG 1985	1656	2500	332		340	1390	320	46	250	38	8
NGS 1981	2300	4490	650	2500	440	4600	360	45	200	34	7
OBS 1981	1080	1540	166	610	113	1250	126	18	94	18	4
OBS 1985	1310	1760	210	730	170	1190	140	20	94	16	4
SW 1981	750	600	56	169	16	270	17	3	14	2	
SW 1985	1620	1270	123	414	46	416	48	8	33	7	I
13 N #1	3870	7800	1290	6120	1450	5650	1280	168	780	117	25
13 N #2	4510	11700	1760	7660	1700	4000	1120	168		121	34
13 N #3	10800	15800	1590	5730	1040	1990	920	120	700	116	29
11 N #4	6600	13100	1920	8550	1680	7300	1270	150	770	88	20
11 N #5	2600	4880	610	2500	500	3950	280	48	300	58	12
11 N #6	2870	3630	500	2240	580	1471	470	65	350	57	14
MARK I	2822	7110	1030	2930	410	2720	470	73	250	36	6
MARK II	1680	3820	530	2400	500	2140	375	59	250	33	6
E. HILL 1982	880	745	82	225	29	266	17	3	15	3	
E. HILL 1985	670	620	63	216	31	228	24	4	15	3	
S. FIELD 1985	1470	1590	143	390	53	1530	30	5	17	4	1
Marianas	1950	2140	200	770	155	2900	125	16	77	14	3
Escanaba	870	1020	122	490	112	165	93	13	80	26	30
Endeavor	3105	4221	397	1296	216	678	199	29	158	27	60
AVE. FLUID	2643	4491	585	2350	478	2194	387	53	262	41	96
			303	2,550	470	2174	307	23	202	41	90
	1										
German et. al. (1990)· T	AG Fie	ld in N	Atlant	ic			(1	177-1		
D D	La	Ce	Pr	Nd	Sm	TP	~	(pmol		- T	
ΓAG:14	1.90	1.83	0.465	1.87		Eu	Gd	Tb	Ho	Er	
ΓAG:18	2.68	2.02	0.463		0.474	0.111	0.383	0.065	0.072	0.194	
TAG:19	2.13	1.69		2.81	0.668	0.168	0.559	0.101	0.113	0.301	
TAG:22	3.96		0.528	2.16	0.509	0.130	0.446	0.077	0.087	0.226	
rAG:32T	4.14	2.26	1.009	4.09	0.893	0.265	0.753	0.150	0.179	0.469	
AG:32B	1.99	2.48	1.039	4.20	1.001	0.265	0.813	0.149	0.165	0.434	
AG:35T		1.97	0.522	2.02	0.456	0.119	0.387	0.069	0.074	0.184	
	3.73	2.14	0.942	3.78	0.872	0.237	0.775	0.138	0.155	0.413	
AG:35B	1.69	1.78	0.437	1.71	0.377	0.090	0.315	0.060	0.067	0.174	
AG:39T	3.70	2.06	0.944	3.85	0.847	0.229	0.756	0.143	0.165	0.441	
AG:39B	1.49	1.68	0.390	1.62	0.364	0.092	0.308	0.055	0.062	0.160	
AG:43T	3.24	2.15	0.823	3.35	0.754	0.213	0.613	0.121	0.138	0.365	
AG:43B	0.98	1.61	0.253	1.02	0.224	0.057	0.194	0.035	0.035	0.093	
AG:48T	0.70	1.59	0.157	0.62	0.127	0.032	0.112	0.017	0.018	0.044	
AG:48B	0.65	1.46	0.148	0.59	0.122	0.026	0.111	0.017	0.017	0.046	
AG:53T	0.72	1.45	0.160	0.63	0.144	0.032	0.133	0.019	0.020	0.056	
'AG:53B	3.55	2.34	0.932	3.98	0.884	0.263	0.733	0.145	0.170	0.445	
ent fluid	2700	5800	750	2700	470	2600	390	69	34	70	
ea water	29.35	7.26	4.87	20.66	4.13	1.047	5.12	0.795	1.554	4.97	
						1	1		J		

	1	T	T	T		T	T	Т			
Michard (1989)	: Mid-	Atlantic	Ridge		 			-	-		
	Ce	Nd	Sm	Eu	Gd	Dec	E-	371	-		_
HS 88 5 1	2926			1540		Dy 202	Er	Yb	_		
HS 88 10 1	2320										
110 00 10 1	2320	1213	239	1040	203	135	48	3.	5		
Michard & Alba	arede (1	986): E	ast Pac	ific Ris	e				+		
	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb			-
13 N 14Ti2	13703	7765	2381	5265		972	413	-	-		
13 N 20Ti4	13989		4084	5331		997					
13 N 20Ti4-D	13774		3964	5166		331	393	20:	-		-
13 N 15Ti2	2212		213	737		111	50	-	-		
13 N 20Ti1	6959		1264	2521		111	59				
13 N Seawater	10		7		630	308	120	116			
21 N SW 1149-2	3104.6		200	303		11	10	11			
21 N SW 1157-2	1627.2					185	114	127			
21 N HG 1160-2	11476	3397	53	125		51	26	27			
21 N OBS 1158-2	10135		891	1777	572	418	209	191	_		
LI IV ODS 1138-2	10135	1872	492	1270	509	332	179	191			
D' C-											
Piepgras & V	Vasserbi				21 N Ea	st Pacifi	c Rise				
158-6a		Nd	Sm								
158-6b		528	100								
		540									
156-11		420	81								
155-14a		2328	381								
155-14b		2328									
155-18a		4567									†
155-18b		4567	396								
151-14a		1635	313								
151-14b								**********			_
154-6		970	170								+
160-11		1809	404								+
149-11		139	17								+
159-9		38	5								-
										 	+-
Aichard et. al. (1			ific Rise	:	(pmol /	Kg)					
100	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb			
4G2	15630	7765	1191	3475	954	542		156			
2G2	22125	7696	1177	2553	865	443	161	150			+
4G0	1142	569	126	118	32	18	15	10		-	+
5G2	14131	7037	1363	2599	1030	720	293	283			+
3G0	6380	3959	791	2488	725	431	167	110			
3G0-L	7144	3993	785	2442	655	449	167	116			-
							==-	- 110			-
										1.	
											-
											\vdash
										+	
										+	-
										-	
				f f	1						1

Mitra et. al						ıge					
	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	
Snakepit (23 N)											
1683-14 (1986)	2670	6900	2760	432	2500	437	250	67.0	33.5		
1683-5 (1986)	1760	3710	1970	422	2110	362	230	65.6	37.5	3.96	
1683-7 (1986)	2230	3740	1980	425	2120	397	241	73.0	43.0		
2194-1 (1990)	1410	3140	2080	556	2960	440	286	70.6	39.4	3.90	
2192-6 (1990)	1380	2970	1880	480	2850	402	240	63.3	31.7	3.12	
TAG (26 N)								-30.0			
Black Smokers											
2186-3 (1990)	4240	10200	6740	1400	3690	1240	878	336	249	30.6	
2179-5 (1990)	4610	9960	6990	1450	3470	1330	907	325	229	25.8	
2179-9 (1990)	4130	9070	5250	1040	3390	895	635	253	169	21.4	
2191-5 (1990)	3710	8820	5570	1160	3610	938	685	281	196	22.4	
2191-7 (1990)	3760	9020	5550	1170	3680	988	691	282	196	26.0	
White Smokers								202	130	20.0	
2187-1 (1990)	2570	3460	1370	235	9540	159	96.4	43.7	35.5	3.59	
2187-3 (1990)	2650	3410	1370	214	9850	142	98.1	41.5	38.1	3.81	
2187-6 (1990)	2750	4170	2080	305	8740	229	176.0	75.3	58.6	7.52	-
2191-1 (1990)	1820	2640	1120	198	6640	123	71.3	29.8	22.7	3.56	
Seawater						.20		20.0	22.1	3.30	
S-pit (3400m)	31.8	2.70	21.9	4.20	1.08	5.74	6.34	5.50	5.34	0.87	
TAG (3300m)	29.0	5.44	21.4	4.13	1.06	6.25	6.36	5.47	5.42	0.88	
TAG (3500m)	36.0	6.62	25.5	5.12	1.32	7.13	8.04	7.15	7.17	1.18	

DOCUMENT LIBRARY

Distribution List for Technical Report Exchange - May 1995

University of California, San Diego SIO Library 0175C 9500 Gilman Drive La Jolla, CA 92093-0175

Hancock Library of Biology & Oceanography Alan Hancock Laboratory University of Southern California University Park Los Angeles, CA 90089-0371

Gifts & Exchanges Library Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, B2Y 4A2, CANADA

Commander International Ice Patrol 1082 Shennecossett Road Groton, CT 06340-6095

NOAA/EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Research Library U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822

Marine Resources Information Center Building E38-320 MIT Cambridge, MA 02139

Library Lamont-Doherty Geological Observatory Columbia University Palisades, NY z10964

Library Serials Department Oregon State University Corvallis, OR 97331

Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882 Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library Naval Oceanographic Office Building 1003 South 1002 Balch Blvd. Stennis Space Center, MS, 39522-5001

Library Institute of Ocean Sciences P.O. Box 6000 Sidney, B.C. V8L 4B2 CANADA

National Oceanographic Library Southampton Oceanography Centre European Way Southampton SO14 3ZH UK

The Librarian CSIRO Marine Laboratories G.P.O. Box 1538 Hobart, Tasmania AUSTRALIA 7001

Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNITED KINGDOM

IFREMER Centre de Brest Service Documentation - Publications BP 70 29280 PLOUZANE FRANCE

REPORT DOCUMENTATION PAGE	WHO1-06-13						
4. Title and Subtitle A Compilation of the F the Oceans	5. Report Date Nover	mber 1996					
7. Author(s) Edward R. Sholko	vitz		8. Performing Organization Rept. No. WHOI-96-13				
9. Performing Organization Name and	Address		10. Project/Tasi				
Woods Hole Oceanographic Woods Hole, Massachusetts	11. Contract(C) (C) (G)	or Grant(G) No.					
12. Sponsoring Organization Name ar	d Address			oort & Period Covered			
Woods Hole Oceanographic	Institution		Techn	ical Report			
			14.				
15. Supplementary Notes This report should be cited	as: Woods Hole Oceanog. Inst. Tech. Re	ept., WHOI-96-13.					
and Chemistry of Rare Eart Elsevier Science. This artic lanthanides in natural water chemical and biogeochemic The article by Byrne and composition of rivers, estua	ves as an appendix to a recent article by the (vol. 23, chapter 158, pg. 497-592) ed le, Marine Chemistry and Geochemistry s, describes the major features of the lant al processes controlling the speciation and Sholkovitz (1996) refers to a large set or ries, seawater, marine pore waters and mation of concentration data for natural was	ited by K.A. Gschneidner of the Lanthanides, discus- hanides in rivers, estuaries and distribution of the lanth of published and unplublish tarine hydrothermal waters	Tr. and L. Eyr sses the physical and oceans an anides in the of the data on the anides in order to co	al chemistry of the ad discusses the ocean. e rare earth (RE) onserve space in the			
17. Document Analysis a. Descriptor rare earth elements natural waters oceanic composition	rs						
b. Identifiers/Open-Ended Terms							
c. COSATI Field/Group							
18. Availability Statement		19. Security Class (This R UNCLASSIFIE)		21. No. of Pages 76			
Approved for public re	elease; distribution unlimited.	20. Security Class (This Page 1)		22. Price			