A Project Proposal – Summer 2025

Project Title: IoT-Based Home Automation System And Auto Water Pump Control Using ESP-32 NodeMCU

This proposal is submitted to fulfilment of the requirements for the course CSE 0613-3299 (Project Development).

Submitted To:

Md. Hasibur Rahman Lecturer, Dept. of CSE <u>hasibur.cse@kyau.edu.bd</u> Khwaja Yunus Ali University

Submitted by:

Name: Md. Nasir Uddin

Name: Mst. Sharmin khatun Sultana

ID: 0622310105101001

Dept. of CSE (15th Batch)

Mail: alreadily alreadily

Mail: sknasirbd420@gmail.com Mail: sharminsultanaap12@gmail.com

Name: Md. Zannat UI Islam Eon

ID: 0622310105101016 Dept. of CSE (15th Batch) Mail: <u>smeon1655@gmail.com</u> Date of Submission: 30 July, 2025

Title: IoT-Based Home Automation System and Auto Water Pump Control Using ESP-32 NodeMCU

1. Objectives:

The objectives of this project are to:

To design and implement a low-cost IoT-based home automation system using ESP-32 NodeMCU that can remotely control home appliances, including a water pump, through a smartphone or web interface, enhancing convenience, safety, and water usage efficiency.

2. Proposed Work/ Project Architecture:

System Overview:

This project aims to automate and remotely control basic household appliances like lights, fans, and especially a **water pump**, using Wi-Fi-based communication via the **ESP-32 microcontroller**.

Components:

- ESP32 NodeMCU (main controller)
- Sonar/Ultrasonic Sensor (HC-SR04) → water tank level measurement
- Rain Sensor Module → detect rain conditions
- **DHT11 Sensor** → temperature & humidity monitoring
- 4-Channel Relay Module → control 2 bulbs, 1 fan, and 1 water pump
- 4 Manual Switches → physical override for each device
- **Mobail Application** → voice command override for each device
- Bulbs (x2), Fan (x1), Water Pump (x1)
- Breadboard & Jumper Wires → prototyping connections
- **Resistors** → protection for LEDs/sensors
- **Power Supply** → 5V regulated supply
- Cork Sheet → prototype home

Total Estimated Cost: BDT 2000 - BDT 2500.

Fig 1.0: System Architecture of the proposed system.

3. Applications/Social Impact:

Smart Home Appliance Control: Control lights, fan, and water pump from a smartphone or web interface, and enable scheduled or real-time control of appliances.

Water Pump Automation: Automatically turns on the pump when water level is low and turns it off when the tank is full.

Elderly and Physically Challenged Support: Makes it easier for people with limited mobility to control appliances. Adds convenience and safety.

Water and Energy Conservation: Prevents water overflow and unnecessary power usage by turning devices off automatically.

Affordable Smart Solutions: Low-cost alternative to expensive foreign smart home systems. Suitable for low-income and rural households.

Empowering Elderly and Disabled: Allows independent living by enabling remote control of home appliances.

Opportunities for Innovation and Employment: Promotes learning in IoT, electronics, and embedded systems. Can lead to local manufacturing, startups, and job creation.

Approval/Supervisor's Feedback:

This project proposal is approved for development, subject to periodic review and guidance by the supervisor during implementation.