

Probability & Statistics Formulas

Mean.	variance	and	standard	deviation
i dan,	Valiation C	GIIG	Stalladia	acriation

	Population	Sample
# of subjects	N	n
Mean	$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
Variance	$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$	$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$

Note: S^2 is the formula for unbiased sample variance, since we're dividing by n-1.

Standard deviation
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} \qquad S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Note: Finding S by taking $\sqrt{S^2}$ reintroduces bias.

Five-number summary

Min	(21	Median	Q3	Max

Outliers

Low outliers: anything less than $Q_1 - 1.5(IQR)$

High outliers: anything greater than $Q_3 + 1.5(IQR)$

Empirical rule

For normal distributions, there's a

- ullet 68 % chance a data point falls within 1 standard deviation of the mean
- ullet 95% chance a data point falls within 2 standard deviations of the mean
- \bullet $99.7\,\%$ chance a data point falls within 3 standard deviations of the mean

Z-score

$$z = \frac{x - \mu}{\sigma}$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Regression line

$$m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b = \frac{(\sum y) - m(\sum x)}{n}$$

Correlation coefficient

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

$$r = \frac{1}{n-1} \sum_{i} \left(z_{x_i} \right) \left(z_{y_i} \right)$$

Residual

residual = actual - predicted

Probability of an event

 $P(\text{event}) = \frac{\text{outcomes that meet our criteria}}{\text{all possible outcomes}}$

Addition rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Multiplication rule

For independent events: $P(A \text{ and } B) = P(A) \cdot P(B)$

For dependent events: $P(A \text{ and } B) = P(A) \cdot P(B|A)$

Bayes' theorem

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Combination of two random variables

Sum: S = A + B

Difference: D = A - B

Mean of the sum: $\mu_S = \mu_A + \mu_B$

Mean of the difference: $\mu_D = \mu_A - \mu_B$

Variance of the sum or difference: $\sigma^2 = \sigma_A^2 + \sigma_B^2$

Standard deviation of the sum or difference: $\sigma = \sqrt{\sigma_{\!\! A}^2 + \sigma_{\!\! B}^2}$

Permutations

$$_{n}P_{k} = \frac{n!}{(n-k)!}$$

Combinations

$$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial probability

$$P(k \text{ successes in } n \text{ attempts}) = \binom{n}{k} p^k (1-p)^{n-k}$$

At least one success or failure

P(at least 1 success) = 1 - P(all failures)

P(at least 1 failure) = 1 - P(all successes)

Binomial mean, variance and standard deviation

Mean: $\mu_X = E(X) = np$

Variance: $\sigma_X^2 = np(1-p)$

Standard deviation: $\sigma_X = \sqrt{np(1-p)}$

Bernoulli random variables

Mean: $\mu = (percentage of failures)(0) + (percentage of successes)(1)$

Variance: $\sigma^2 = p(1-p)$

Standard deviation: $\sigma = \sqrt{p(1-p)}$

Geometric random variables

Success on the *n*th attempt: $P(S = n) = p(1 - p)^{n-1}$

Mean: $\mu_X = E(X) = \frac{1}{p}$

Normal condition for samples

$$np \ge 10$$

$$n(1-p) \ge 10$$

Distributions for proportions

Mean: $\mu_{\hat{p}} = n\hat{p}$

Standard deviation:
$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Sampling distribution of the sample mean

Mean:
$$\mu_{\bar{x}} = \mu$$

Variance:
$$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$$

Standard deviation:
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Sampling distribution of the sample proportion

Mean:
$$\mu_{\hat{p}} = p$$

Standard deviation:
$$SE_{\hat{p}} = \sigma_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Finite population correction factor

Variance:
$$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$$

Standard deviation:
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

Confidence interval

$$\hat{p} \pm z^* SE_{\hat{p}}$$

$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Margin of error

$$z^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Poisson process

A **Poisson process** calculates the number of times an event occurs in an interval.

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- 1. The experiment counts the number of occurrences of an event over some other measurement,
- 2. The mean is the same for each interval,
- 3. The count of events in each interval is independent of the other intervals, and
- 4. The intervals don't overlap.

t-table

	Upper-tail probability p											
df	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005		
1	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62		
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599		
3	0.765	0.987	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924		
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610		
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869		
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959		
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408		
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041		
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781		
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587		
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437		
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318		
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221		
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140		
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073		
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015		
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965		
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922		
19	0.688	, 0.86,1	1.066	1.328	1.729	2.093	2.539	2.861	3.57,9	3.883		
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850		
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819		
22	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792		
23	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768		
24	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745		
25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725		
26	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707		
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690		
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674		
29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659		
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646		
	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%		
					Confiden	ce level C						

χ^2 -table

	Upper-tail probability p											
df	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	1.32	1.64	2.07	2.71	3.81	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.52	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.24	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16

