ТФКП, М3238-39

8 апреля 2019 г.

Kак находить $\frac{1}{z}$?

В случае прямых (или отрезков): подставить уравнение прямой в 1/z, выделить вещественную и мнимую часть. Для окружностей использовать параметризацию $Az\overline{z}+Bz+C\overline{z}+D=0$. Из чисто дробной части функции w(z) выразим z и \overline{z} - подставим их в уравнение окружности.

Как устранить разрез по отрезку в верхней полуплоскости?

Отобразить верхнюю полуплоскость с разрезом по отрезку [a,a+ih] можно так: $w=\sqrt{(z-a)^2+h^2}$.

Как использовать обратное преобразования для нахождения функций при устранении разреза?

Область Imz>0, |z|>R на верхнюю полуплоскость переводится функцией $w=\frac{1}{2}(\frac{z}{R}+\frac{R}{z}).$

Как устранять разрез внутри окружности? Обратите внимание на такие разрезы при подготовке к переписыванию!

Круг |z| < r с разрезом по отрезку [0,r] на круг |w| < 1 можно перевести функцией: $w = \frac{z + r + i2\sqrt{rz}}{z + r - i2\sqrt{rz}}.$

Что о тригонометрических функциях?

Полуполосу Imz>0.0< Rez< h на верхнюю полуплоскость переводит функция $w=-\cos\frac{\pi z}{h}$ (тригонометрические функции – суперпозии экспо-

нент и линейных функций, конечно, можно использовать несколько преобразований, это лишь пример как действуют тригонометрические функции).

Что обычно идёт не так?

Часто в устранении разрезов хочется использовать не конформные функции. Следует помнить, что у некоторых функций $(z^n,\ e^z...)$ есть области конформности.