Encodings into SAT

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

May 31, 2018

What is an encoding?

- Language of SAT solvers: CNF propositional formulas
- To solve combinatorial problems with SAT solvers, constraints have to be represented in this language
- An encoding of a constraint C into SAT is a CNF F that expresses C, so that there is a bijection

solutions to $C \iff \mathsf{models}$ of F

Examples: AMO constraints

- An AMO constraint is of the form $x_0 + \ldots + x_{n-1} \le 1$ where each x_i is 0-1 (At Most One of the variables can be true)
- Quadratic encoding.
 - lack Variables: the same x_0, \dots, x_{n-1}
 - lacktriangle Clauses: for $0 \le i < j < n$, $\overline{x_i} \lor \overline{x_j}$
 - lacktriangle Requires $\binom{n}{2} = O(n^2)$ clauses
- Other encodings try to use fewer clauses, at the cost of introducing new variables

Examples: AMO constraints

- Logarithmic encoding. Let $m = \lceil \log_2 n \rceil$. Then:
 - lacktriangle Variables: the x_i and new variables y_0, y_1, \dots, y_{m-1}
 - lacktriangle Clauses: for $0 \le i < n$, $0 \le j < m$
 - $\overline{x_i} \vee y_j$ if the j-th digit in binary of i is 1
 - \blacksquare $\overline{x_i} \vee \overline{y_j}$ otherwise
 - lacktriangle Requires $O(\log n)$ new variables, $O(n \log n)$ clauses
- Heule encoding.
 - If $n \leq 3$, the encoding is the quadratic encoding.
 - If $n \ge 4$, introduce an auxiliary variable y and encode (recursively) $x_0 + x_1 + y \le 1$ and $x_2 + \cdots + x_{n-1} + \overline{y} \le 1$.
 - lacktriangle Requires O(n) new variables, O(n) clauses
- Other encodings exist (see next)

Consistency and Arc-Consistency

- An encoding of a constraint C is consistent if whenever M is partial assignment inconsistent wrt C (i.e., can't be extended to a solution of C), unit propagation leads to conflict
- \blacksquare An encoding of a constraint C is arc-consistent if
 - it is consistent, and
 - lacktriangle whenever M is a partial assignment then unit propagation leads to an $M'\supseteq M$ that is arc-consistent (every value of every domain has support)
- These are good properties for encodings: SAT solvers are very good at unit propagation!

Consistency and Arc-Consistency

- In the case of an AMO constraint $x_0 + \ldots + x_{n-1} \leq 1$:
- Consistency \equiv if there are two true vars x_i in M or more, then unit propagation should give a conflict
- Arc-consistency \equiv Consistency + if there is one true var x_i in M, then unit propagation should set all others x_j to false
- The quadratic, logarithmic and Heule encodings are all arc-consistent

Cardinality Constraints

- A cardinality constraint is of the form $x_1 + \ldots + x_n \bowtie k$ where each x_i is 0-1 and $\bowtie \in \{\leq, <, \geq, >, =\}$
- lacktriangle AMO are a particular case of card. constraints where k=1 and lacktriangle is \leq
- Without loss of generality we may assume \bowtie is <, i.e.,

$$x_1 + \ldots + x_n < k$$

- Naive encoding.
 - ullet Variables: the same x_1,\ldots,x_n
 - lacktriangle Clauses: for all $1 \leq i_1 < i_2 < \ldots < i_k \leq n$,

$$\overline{x_{i_1}} \vee \overline{x_{i_1}} \vee \ldots \vee \overline{x_{i_k}}$$

lack This is $\binom{n}{k}$ clauses!

Adders

- Again, other encodings try to use fewer clauses, at the cost of introducing new variables
- Adder encoding.
 Build an adder circuit by using bit-adders as building blocks:

$$\begin{array}{ccc} s & \leftrightarrow & \mathrm{XOR}(x, y, z) \\ c & \leftrightarrow & (x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \end{array}$$

Adders

- Encodings of this kind are not arc-consistent.
- Consider $x + y + z \le 0$. Then unit propagation should propagate $\overline{x}, \overline{y}, \overline{z}$.
- Let us encode the constraint with a full adder
- The encoding is the Tseitin transformation of \overline{s} , \overline{c} and

```
\begin{array}{ccc} s & \leftrightarrow & \mathrm{XOR}(x, y, z) \\ c & \leftrightarrow & (x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \end{array}
```

■ But unit propagation cannot propagate anything!

Sorting Network encoding.

Pass x_1, \ldots, x_n as inputs to a circuit that sorts (say, decreasingly) n bits.

Let y_1, \ldots, y_n be the outputs of this circuit.

Then if the constraint to be encoded is

- $lack \sum_{i=1}^n x_i \geq k$, then add clause y_k
- $igspace \sum_{i=1}^n x_i \le k$, then add clause $\overline{y_{k+1}}$
- lacktriangle $\sum_{i=1}^n x_i = k$, then add clauses y_k , $\overline{y_{k+1}}$

- How to build such a sorting circuit?
- A possibility is to implement mergesort
- In what follows: so-called odd-even sorting networks
- The basic block of odd-even sorting networks are 2-comparators

2-comparators

- A 2-comparator is a sorting network of size 2:
 - lack it has 2 input variables $(x_1 \text{ and } x_2)$
 - lack it has 2 output variables $(y_1 \text{ and } y_2)$
 - y_1 is true if and only if at least one of the input variables is true (i.e., it is the maximum or disjunction)
 - y_2 is true if and only if both two input variables are true (i.e., it is the minimum or conjunction)

2-comparators

■ Clauses:

$$x_1 \leftarrow y_2, \quad x_2 \leftarrow y_2, \quad x_1 \lor x_2 \leftarrow y_1, x_1 \rightarrow y_1, \quad x_2 \rightarrow y_1, \quad x_1 \land x_2 \rightarrow y_2$$

- Some simplifications are possible:
 - ◆ For ≥ constraints: top three clauses suffice
 - ◆ For < constraints: bottom three clauses suffice
 - ◆ For = constraints: all clauses needed
- Graphical representation:

- From now on we assume that n is a power of two (if not, pad with variables set to false)
- A merge network takes as input two ordered sets of variables of size n and produces an ordered output of size 2n.
- Let (x_1, \ldots, x_n) and (x'_1, \ldots, x'_n) be the inputs. We recursively define a merge network as follows:
- If n = 1, a merge network is a 2-comparator:

$$Merge(x_1; x'_1) := 2-Comp(x_1, x'_1).$$

■ For n > 1: Let us define

$$(z_{1}, z_{3}, \dots, z_{2n-1}) = \operatorname{Merge}(x_{1}, x_{3}, \dots, x_{n-1}; x'_{1}, x'_{3}, \dots x'_{n-1}),$$

$$(z_{2}, z_{4}, \dots, z_{2n}) = \operatorname{Merge}(x_{2}, x_{4}, \dots, x_{n}; x'_{2}, x'_{4}, \dots, x'_{n}),$$

$$(y_{2}, y_{3}) = 2\operatorname{-Comp}(z_{2}, z_{3}),$$

$$(y_{4}, y_{5}) = 2\operatorname{-Comp}(z_{4}, z_{5}),$$

$$\dots$$

$$(y_{2n-2}, y_{2n-1}) = 2\operatorname{-Comp}(z_{2n-2}, z_{2n-1})$$

Then,

Merge
$$(x_1, x_2, \dots, x_n; x'_1, x'_2, \dots, x'_n) := (z_1, y_2, y_3, \dots, y_{2n-1}, z_{2n})$$

Sketch of the proof of correctness of Merge:

By IH:
$$\{x_1, x_3, \dots, x_{n-1}, x_1', x_3', \dots, x_{n-1}'\} = \{z_1, z_3, \dots, z_{2n-1}\}$$

By IH: $\{x_2, x_4, \dots, x_n \ , x_2', x_4', \dots, x_n'\} = \{z_2, z_4, \dots, z_{2n}\}$
Hence $\{x_1, x_2, \dots, x_n \ , x_1', x_2', \dots, x_n'\} = \{z_1, z_2, \dots, z_{2n}\}$

And

```
(y_2, y_3) = 2\text{-}\mathrm{Comp}(z_2, z_3) implies \{y_2, y_3\} = \{z_2, z_3\} (y_4, y_5) = 2\text{-}\mathrm{Comp}(z_4, z_5) implies \{y_4, y_5\} = \{z_4, z_5\}
```

• • •

$$(y_{2n-2}, y_{2n-1}) = 2\text{-}\text{Comp}(z_{2n-2}, z_{2n-1}) \text{ implies } \{y_{2n-2}, y_{2n-1}\} = \{z_{2n-2}, z_{2n-1}\}$$

So
$$\{x_1, x_2, \dots, x_n, x'_1, x'_2, \dots, x'_n\} = \{z_1, y_2, y_3, \dots, y_{2n-2}, y_{2n-1}, z_{2n}\}$$

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

Let us see $z_{2(i+1)+1}$:
Let us see $z_{2(i+1)+1}=1$ implies $z_{2i}=1$ If $z_{2(i+1)+1}=z_{2(i+2)-1}=1$ there are i+2 1's in odd x,x'There are p 1's in odd x, q 1's in odd x' s.t. p+q=i+2As x,x' is ordered decreasingly,
there are p-1 1's in even x, q-1 1's in even x'So altogether there are (p-1)+(q-1)=p+q-2=i 1's in even x,x'Hence $z_{2i}=1$

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

 $z_{2i} \ge z_{2(i+1)+1}$: proved

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

- $z_{2i} \ge z_{2(i+1)+1}$: proved
- $z_{2i} \ge z_{2(i+1)}$: by IH

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

- $z_{2i} \ge z_{2(i+1)+1}$: proved
- $z_{2i} \ge z_{2(i+1)}$: by IH
- $z_{2i+1} \ge z_{2(i+1)+1}$: by IH

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

- $lacksquare z_{2i} \geq z_{2(i+1)+1}$: proved
- $lacksquare z_{2i} \geq z_{2(i+1)}$: by IH
- $z_{2i+1} \ge z_{2(i+1)+1}$: by IH
- lacksquare $z_{2i+1} \geq z_{2(i+1)}$: similar to above

So
$$\min(z_{2i}, z_{2i+1}) \ge \max(z_{2(i+1)}, z_{2(i+1)+1})$$

But
$$y_{2i+1} = \min(z_{2i}, z_{2i+1})$$
 and $y_{2(i+1)} = \max(z_{2(i+1)}, z_{2(i+1)+1})$

So
$$y_{2i+1} \ge y_{2(i+1)}$$

And $y_{2i} \ge y_{2i+1}$ for being outputs of 2-Comp

Altogether $z_1, y_2, y_3, \ldots, y_{2n-2}, y_{2n-1}, z_{2n}$ is sorted decreasingly

- A sorting network of size n takes an input of size n and sorts it (decreasingly).
- We can build a sorting network by successively applying merge networks (as in mergesort).
- Let x_1, \ldots, x_n be the inputs. We recursively define a sorting network as follows:
- If n = 2, a sorting network is a 2-comparator:

$$Sorting(x_1, x_2) := 2-Comp(x_1, x_2)$$

■ For n > 2: Let us define

$$(z_1, z_2, \dots, z_{n/2}) = \text{Sorting}(x_1, x_2, \dots, x_{n/2}),$$

 $(z_{n/2+1}, z_{n/2+2}, \dots, z_n) = \text{Sorting}(x_{n/2+1}, x_{n/2+2}, \dots, x_n),$
 $(y_1, y_2, \dots, y_n) = \text{Merge}(z_1, z_2, \dots, z_{n/2}; z_{n/2+1}, \dots, z_n)$

Then,

Sorting
$$(x_1, x_2, \dots, x_n) := (y_1, y_2, \dots, y_n)$$

- This encoding of cardinality constraints is arc-consistent
- It uses $O(n \log^2 n)$ new variables and $O(n \log^2 n)$ clauses
- Several improvements are possible:
 - Only the first k outputs suffice: cardinality networks use $O(n \log^2 k)$ vars and clauses
 - lacktriangle No need to assume that n is a power of two: merges can be defined for inputs of different sizes

Bibliography

- N. Eén, N. Sörensson: Translating Pseudo-Boolean Constraints into SAT. JSAT 2(1-4): 1-26 (2006)
- R. Asín, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell: Cardinality Networks: a theoretical and empirical study. Constraints 16(2): 195-221 (2011)
- I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell: A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints. Principles and Practice of Constraint Programming, 2013
- I. Abío: Solving hard industrial combinatorial problems with SAT. PhD Thesis (2013)