Computazione in Programmazione Logica e Prolog

Alberto Martelli

Intelligenza Artificiale e Laboratorio

Programmazione logica

Una *computazione* in programmazione logica corrisponde alla dimostrazione di una formula (goal) a partire dal programma logico applicando il principio di risoluzione con una particolare strategia detta **SLD** (risoluzione **L**ineare per clausole **D**efinite con funzione di **S**elezione)

La Risoluzione è un metodo di prova di teoremi che si applica a formule in forma di clausole e si basa su un'unica regola di inferenza.

Richiami su Risoluzione

Consideriamo per il momento clausole prive di variabili. Siano C_1 e C_2 due clausole del tipo:

$$C_1 = A_1 \lor \ldots \lor A_n$$

 $C_2 = B_1 \lor \ldots \lor B_m$

Se ci sono in C_1 e C_2 due letterali A_i e B_j tali che $A_i = \neg B_j$, allora si può derivare da C_1 e C_2 la clausola

$$A_1 \lor \ldots \lor A_{i-1} \lor A_{i+1} \ldots \lor A_n \lor B_1 \lor \ldots \lor B_{j-1} \lor B_{j+1} \ldots \lor B_m$$
 detta risolvente.

Il risolvente di C_1 e C_2 è conseguenza logica di $C_1 \cup C_2$.

Richiami su Risoluzione

Dato un insieme di formule H e una formula F la dimostrazione che F segue logicamente da H viene fatta per refutazione, ossia dimostrando che $H \cup \neg F$ è inconsistente.

L'algoritmo generale di Risoluzione parte dall'insieme delle clausole ottenuta da H e $\neg F$ risolvendo ad ogni passo due clausole e aggiungendo il risolvente all'insieme delle clausole, finché non ottiene la clausola vuota (\square).

Per ridurre il numero dei risolventi generati, sono state proposte diverse strategie.

Risoluzione nella logica del prim'ordine

In questo caso le clausole possono contenere delle variabili. Consideriamo le clausole C_1 e C_2 che non hanno variabili in comune.

$$C_1 = A_1 \lor \dots A_i \lor \dots \lor A_n$$

 $C_2 = B_1 \lor \dots B_j \lor \dots \lor B_m$

Supponiamo che $A_i = p(t_1, \ldots, t_k)$, $B_j = \neg p(t'_1, \ldots, t'_k)$ e $p(t_1, \ldots, t_k)$ e $p(t'_1, \ldots, t'_k)$ unificatione con MGU (unificatore più generale) θ (vedi slide su unificazione).

Allora il risolvente di C_1 e C_2 sarà:

$$[A_1 \vee \ldots \vee A_{i-1} \vee A_{i+1} \ldots \vee A_n \vee B_1 \vee \ldots \vee B_{j-1} \vee B_{j+1} \ldots \vee B_m]\theta$$

Programmazione logica e Risoluzione

Nel caso delle clausole di Horn, un passo di risoluzione può essere riformulato come segue.

Sia C una clausola di Horn

$$A \leftarrow A_1, \ldots, A_n$$

e G un goal

$$\leftarrow B_1, \ldots, B_m$$

dove G e C non hanno variabili in comune.

Sia θ un MGU di A e B_i , per $1 \le i \le m$.

Allora il goal

$$\leftarrow [B_1,\ldots,B_{i-1},A_1,\ldots,A_n,B_{i+1},\ldots,B_m]\theta$$

è il risolvente di G e C.

Derivazione SLD

Una derivazione SLD per un goal G_0 da un insieme di clausole definite P è

- una sequenza di clausole goal G_0, \ldots, G_n ,
- una sequenza di **varianti*** di clausole di P C_1, \ldots, C_n ,
- una sequenza di MGU $\theta_1, \ldots, \theta_n$ tali che G_{i+1} è derivato da G_i e da C_{i+1} attraverso la sostituzione θ_{i+1} .

Ci sono tre possibili tipi di derivazioni:

- successo, se $G_n = \square$ (ovvero $G_n = \leftarrow$)
- fallimento finito, se non è possibile derivare da G_n alcun risolvente e $G_n \neq \square$
- fallimento infinito, se è sempre possibile derivare nuovi risolventi.

^{*}clausole con variabili rinominate

Strategia SLD

La strategia di risoluzione SLD è **corretta** e **completa** per le clausole di Horn.

La strategia SLD ha due forme di non determinismo

- regola di calcolo per selezionare ad ogni passo l'atomo B_i del goal da unificare con la testa di una clausola,
- scelta di quale clausola utilizzare ad ogni passo

Regola di calcolo

Una regola di calcolo è una funzione che ha come dominio l'insieme dei goal e che per ogni goal seleziona un suo atomo.

Una regola di calcolo non influenza correttezza e completezza del dimostratore.

Alberi SLD

Data una regola di calcolo, è possibile rappresentare tutte le derivazioni con un albero SLD:

- ciascun nodo è un goal
- la radice è il goal G_0
- ogni nodo $\leftarrow A_1, \ldots, A_m, \ldots, A_k$, dove A_m è l'atomo selezionato dalla regola di calcolo, ha un figlio per ogni clausola $A \leftarrow B_1, \ldots, B_q$ tale che A e A_m sono unificabili con MGU θ . Il nodo figlio è etichettato con il goal $\leftarrow [A_1, \ldots, A_{m-1}, B_1, \ldots, B_q, A_{m+1}, \ldots, A_k]\theta$. Il ramo dal padre al figlio è etichettato con θ e e la clausola selezionata.

Esempio

Si consideri il programma:

$$sum(0,X,X)$$
. CL1
 $sum(s(W),Y,s(K)):=sum(W,Y,K)$. CL2

e il goal:

```
?- sum(W,0,0), sum(W,0,K).
```

Le prossime due slide mostrano l'albero SLD per le regole di calcolo leftmost e rightmost.

Regola di calcolo leftmost

Figura 3.2: Albero SLD con regola di calcolo left-most

Regola di calcolo rightmost

Figura 3.3: Albero SLD con regola di calcolo right-most

Esecuzione di un programma Prolog

Una computazione in Prolog corrisponde a una dimostrazione mediante risoluzione SLD.

Le scelte fatte dal Prolog sono:

- La regola di computazione è la regola leftmost,
- le clausole sono considerate nell'ordine in cui sono scritte nel programma,
- la strategia di ricerca usata è la ricerca in profondità con backtracking.

La strategia di ricerca non è completa. Infatti, se un ramo di derivazione di successo si trova a destra di un ramo infinito, quando l'interprete del Prolog entra nel ramo infinito non ne esce più e quindi non trova la derivazione di successo.

Prolog e unificazione

Il Prolog fornisce un predicato infisso built-in "=" che esegue l'unificazione dei suoi due operandi.

Ad esempio il goal

$$?- f(X,Y) = f(a,h(Z)), Z = b.$$

dà come risultato

$$X = a,$$

 $Y = h(b),$
 $Z = b.$

Tuttavia, per ragioni di efficienza, l'algoritmo di unificazione del Prolog non fa l'occur check per cui, ad esempio, considera come corretta l'unificazione di X con f(X).