

Attack is easy, let's talk defence

From threat modelling to intelligence driven defence

Teodor Cimpoesu

Technical Director

UTI-CERT, certSIGN

Cosmin Anghel

CERT Services Manager

UTI-CERT, certSIGN

About Me

@Teodor:

- 0x01 Worked at GeCAD / RAV
- 0x02 Moved to Kaspersky Lab for development
- 0x03 Investigations / forensics enthusiast
- 0x04 Linux / OSX main land
- 0x05 Speaker at various cyber conferences / LE training
- 0x06 Consultant and advisor on cyber security topics
- 0x0a Building first private SOC/CSIRT at UTI Grup

@Cosmin:

- 0x01 CERT Services Manager at certSIGN
- 0x02 Former Cyber Threats Expert at National CyberInt Center
- 0x04 Interests in: Incident response/ Digital forensics/ Malware analysis/ Cyber investigations

Agenda

- 1. Attack vs. Defence
- 2. Structured Defence Approach
- 3. Defence Best Practices
- 4. Live Incident Response
- 5. Demo GRR & Volatility

1. Attack vs. Defence

From 0-day to 1-year

- In a Symantec study*, 11 of 18 identified vulns were not known 0-days.
- Attacks with 0-days lasted b/w 19 days 30 months, with a MED of 8 and AVG of 10 month.
- After disclosure, the variants exploiting them explode 183-85k times, and attacks increase 2-100k times
- Exploits for 42% of vulns are detected within30 days after disclosure
- ■200+ days MED, 243 days AVG, the attackers reside within a victim network before detection

- 1 in 5 (~20%) of threat actors are internal
- 75%+ of all network intrusions are due to compromised user credentials
- 84% with no admin rights
- 60% of cases attackers compromise the org within minutes
- ■Discovery done within days or less is below 25%
- 94% of the breaches are reported by a 3rd party

Sources: Microsoft Advanced Threat Analytics, HP Security, Verizon DBIR2015, ObserveIT

^{*} Source: Before We Knew It - An Empirical Study of Zero-Day Attacks In The Real World, Tudor Dumitras et al., Symantec Research Labs

Attack vs. Defence - mindset deficit

(goto)Fail to Patch

99.9% of the exploited vulns were compromised more than a year after the CVE was published

Source: Verizon DBIR2015

Attack vs. Defence - detection deficit

Source: Verizon DBIR2015

- Cyberspace favors offense
- Shift from total security to assume compromise

A:"We only have to be lucky once.

You will have to be lucky always." (IRA,'84)

D:"There's no way that we are going to win the cybersecurity effort on defense. We have to go on offense."

(Steven Chabinsky, former head of FBI CyberIntelligence, CRO at CrowdStrike)

Cyber threats dynamics

"The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position **unassailable**."

- Sun Tzu, The Art of War, 513 BC

"Attack and defence are things differing in kind and of unequal force. Polarity is, therefore, not applicable to them"

"Everything in war is very simple but the simplest thing is difficult"

- Carl von Clausewitz, On War, 1823

"War in general is **not declared**. It simply begins with already developed military forces." — Georgy Isserson, New forms of combat, 1937

"Action taken to **disrupt**, **deny**, **degrade** or **destroy** information resident in a computer and/or computer network, or the computer and/or computer network itself."

- NATO AAP-06 Edition 2014

2. Structured Defence Approach

Intelligence-driven defense

Phase	Detect	Deny	Disrupt	Degrade	Deceive	Destroy
Reconnaissance	Web analytics	Firewall ACL				
Weaponization	NIDS	NIPS				
Delivery	Vigilant user	Proxy filter	In-line AV	Queuing		
Exploitation	HIDS	Patch	DEP			
Installation	HIDS	"chroot" jail	AV			
C2	NIDS	Firewall ACL	NIPS	Tarpit	DNS redirect	
Actions on Objectives	Audit log			Quality of Service	Honeypot	

Source: "Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains", Eric M. Hutchins et al.

IDD - From Threat Model to Controls

STRIDE- LM	Threat	Property	Definition	Controls
S	Spoofing	Authentication	Impersonating someone or something	Authentication Stores, Strong Authentication mechanisms
Т	Tampering	Integrity / Access Controls	Modifying data or code	Crypto Hash, Digital watermark/ isolation and access checks
R	Repudiation	Non-repudiation	Claiming to have not performed a specific action	Logging infrastructure, full- packet-capture
I	Information Disclosure	Confidentiality	Exposing information or data to unauthorized individuals or roles	Encryption or Isolation
D	Denial of Service	Availability	Deny or degrade service	Redundancy, failover, QoS, Bandwidth throttle
E	Elevation of Privilege	Authorization / Least Privilege	Gain capabilities without proper authorization	RBAC, DACL, MAC; Sudo, UAC, Privileged account protections
LM	Lateral Movement	Segmentation / Least Privilege	Expand influence post- compromise; often dependent on Elevation of Privilege	Credential Hardening; Segmentation and Boundary enforcement; Host-based firewalls

Source: "A Threat-Driven Approach to Cyber Security - Methodologies, Practices and Tools to Enable a Functionally Integrated Cyber Security Organization", Lockheed Martin Corp.

Threat Modeling

Source: "A Threat-Driven Approach to Cyber Security - Methodologies, Practices and Tools to Enable a Functionally Integrated Cyber Security Organization", Lockheed Martin Corp.

IDDIL/ATC Methodology

I. Discovery

- ✓ Identify ASSETS
- ✓ Define the ATTACK SURFACE
- ✓ Decompose the SYSTEM
- ✓ Identify ATTACK VECTORS
- ✓ List THREAT ACTORS (W&W)

II. Implementation

- ✓ Analysis & assessment
- ✓ Triage
- ✓ Controls

Covers critical security controls (SANS / ISO27001)

Attack Modeling

Recon Weaponize Deliver Exploit Install Command Action

Tree source: "Design and Implementation of a Support Tool for Attack Trees", Alexander Opel

Defense Cycle - CMMI Approach

- Plan what to protect, what are your assets, policies, what type of protective controls. What data sources.
- **Build** acquire competencies, build skills specialists, acquire tools (after teams). Implement the solutions in your company
- Monitor operate the technical solutions have operational NSM/SIEM systems, perform reviews and drills (incident response exercises)

- Detect check the output of monitoring systems, validate the alerts and do proactive search of IoA (indicators of attack)
- Respond exercise the incident response plans; investigate, contain and remediate
- Report gather information, analyze it, communicate to the right people
- Improve keep the tools, procedures and processes in a maturing loop

Plan Build Monitor Detect Respond Report Improve

3. Defence Best Practices

- ✓ Covers critical security controls (SANS / ISO27001)
- ✓ Features modern NGGW / NGIPS / NGTP
- ✓ Features ATA with sandboxing before ETD
- ✓ Has information security mechanisms implemented (DLP/DRM)
- ✓ Has central SIEM with solid TI & integrated with (automated) IR
- ✓ Has account activity monitoring (e.g. MS ATA, Rapid7 UserInsight)

Source: HP Security

Making TI Actionable

- Commercial Feeds
- Law Enforcement
- Hash Databases
- GEOIP Data
- Reports
- > Underground Forums
- Security Event Data
- Abuse Mailbox Info
- Vulnerability Data
- Sandboxes
- > Fraud Investigations
- Malware Analysis
- Honeynets
- P2P Monitoring
- DNS Monitoring
- Whatchlist Monitoring

External Feeds

Internal Feeds

Proactive Surveillance Cyber Threat
Intelligence
Collection
Research and
Analysis Process

Infrastructure and application logs

Risk Assessment Process

Risk Mitigation

Urgent Security Control
Updates

IP Reputation and Vulnerability Data for filtering

Threat
Intelligence
Reporting

Stakeholders

TI Frameworks / Formats

Indicators

- <u>STIX</u> Structured Threat Information eXpression (MITRE/OASIS)
- <u>TAXII</u> Trusted Automated eXchange of Indicator Information (MITRE/OASIS)
- CYBOX Cyber Observable eXpression (MITRE/OASIS)
- OpenIOC Open Indicators of Compromise (FireEYE/Mandiant)
- <u>IODEF</u> Incident Object Description Exchange Format (IETF – RFC5070).
- YARA Yet Another Regex Analyzer binary pattern scanning (OSS)
- **SNORT** real-time analysis of network traffic (CISCO).

Enumerations

- MMDEF Malware Metadata Exchange Format (IEEE)
- MAEC Malware Attribute Enumeration and Characterization (MITRE).
- <u>CAPEC</u> Common Attack Pattern Enumeration and Classification (MITRE).
- CVE Common Vulnerabilities and Exposures (MITRE)
- CVSS Common Vulnerability Scoring System (NIST)
- CPE Common Platform Enumeration (NIST)
- OVAL Open Vulnerability and Assessment Language (MITRE)
- OSVDB Open Sourced Vulnerability Database (OSF)

Threat Intel Frameworks - STIX

STIX - a language for the characterization and communication of cyber threat information

expressive, flexible, extensible, automatable, and human-readable

CybOX - convey specific instances of cyber observation (either static or dynamic) or patterns of what could potentially be observed.

Source: MITRE Org - https://stix.mitre.org

Threat Intel – IR Lifecycle with IOCs

Investigative Lifecycle:

- Initial Evidence
- Create IOCs for Host&Network
- Deploy IOCs in the Enterprise – e.g.
 IDS/SIEM
- Identify Additional Suspect Systems
- Collect Evidence
- Analyze Evidence
- Refine & Create new IOCs

Source: "An Introduction to OpenIOC", Mandiant

Defense Security Metaphor

Fluid, Responsive

Black moves first

Main strategic focus: the corners, key points
Objective: expand controlled territory
Asymmetric-game: extra steps
Key ability: understand the threat, react
timely

Centered, Deep

White moves first

Main strategic focus: the center, open fields

Objective: overwhelming attack (mate)

Asymmetric defense: obstruct

Key ability: master complexity / deep planning

4. Live Incident Response

IR Teams - Roles

- Duty officer / Tier 1 Analyst takes care of all incoming requests. Ensure that all incidents have owners.
- Triage officer / Tier 1 Analyst deal with the reported incidents, decides whether it is an incident and is to be be handled, and by whom
- Incident handler / Tier 2 Incident
 Responder works on the incident:
 analyze data, create solutions, resolve the
 technical details and communicates about
 the progress to the manager and the
 constituents.
- Incident handler / Tier 3 Subject
 Matter Expert advanced analyst that deals with complex cases that involve a cross-filed investigation.
- Incident manager responsible for the coordination of all incident handling activities. Represents the team in communicating to the outside 3rd parties.

Source: "Ten Strategies of a World-Class Cybersecurity Operations Center" (MITRE)

- ✓ Time pressure fast response
- Many compromised systems
- ✓ Large amounts & different kinds of data

Heterogeneous network with hundreds systems

IR Pressure

- What is the extent of the incident?
- Is it still active? Should we stop or follow?
- What information was exposed/exfil?
- How did the attacker(s) get in?
- How do we stop the attack and remediate?
- What is the financial/non-fin impact?

Memory Forensics Advantages

- Best place to identify malicious software activity
 - Study running system
 - ➤ Identify inconsistencies in system
 - Bypass packers, binary obfuscations, rootkits.
- Analyze recent activity on the system
 - Identify all recent activity in context
 - Profile user or attacker activities
- Collect evidence that cannot be found anywhere else
 - ➤ Memory-only malware
 - > Chat threads
 - Internet activities

- Identify rogue processes
- Analyze process DLLs and handles
- Review network artifacts
- Look for code injections
- Search for rootkits
- Dump suspicious processes and drivers

<u>Volatility plugins</u>						
<u>apihooks</u>	Find API hooks	procexedump	Dump a process to an executable file sample			
connections	Print list of open connections	<u>procmemdump</u>	Dump a process to an executable memory sample			
<u>dlllist</u>	Print list of loaded dlls for each process	pslist	print all running processes by following the EPROCESS lists			
<u>dlldump</u>	Dump a DLL from a process address space	<u>orphanthread</u>	Locate hidden threads			
<u>files</u>	Print list of open files for each process	mutantscan	Scan for mutant objects KMUTANT			
<u>getsids</u>	Print the SIDs owning each process	<u>pstree</u>	Print process list as a tree			
<u>malfind</u>	Find hidden and injected code	<u>sockets</u>	Print list of open sockets			

Complete list: https://code.google.com/p/volatility/wiki/Plugins

5. Demo

Getting a quick hint with GRR & Volatility

- 1. Starting point: infection alert from SIEM
- 2. Get access on the machine run GRR hunt
- 3. GRR fundamentals
- 4. Getting the basics memory dump
- 5. Preliminary analysis with Volatility
- 6. Get artifacts for IOCs
- 7. What next? Mandiant IOC Editor

Thank you.

Teodor.Cimpoesu@certsign.ro +40722.754.319, @cteodor

Cosmin.Anghel@certsign.ro +40766.514.112

Incidents: CERT@uti.ro