# ASSINGMENT 2 MICROELECTRONIC CIRCUITS DATE- 17/04/2022

Name:- Manpreet Singh Ahluwalia 2020A3PS0419P Name:- Sai Kartik 2020A3PS0435P Name:- Rajeev Rajgopal 2020A3PS1237P

### Question 1:-

### 1 Problem-1

Cascode MOSFET Amplifier Design with MOSFET cascode load: Design a Cascode amplifier using suitable topology to meet the specifications prescribed for you. VDD is 3.3V.

| Design Specifications | Specifications desired | Specifications achieved |
|-----------------------|------------------------|-------------------------|
| Voltage Gain          | 85± 5% (V/V)           | 81.1637 (V/V)           |
| Current Gain          | Not applicable         | Not applicable          |
| 3-dB frequency        | Not applicable         | Not applicable          |
| Pd                    | 2.0± 5% (mW)           | 2.0702 (mW)             |

ID used for calculation:- 2020A3PS1237P

Sum of last 2 digits = 3+7 = 10

10 % 4 = 2. Hence the required specifications were taken from Table 1.

The fabrication length of MOSFET was set at 0.6 micrometer.

Initially width of MOSFET was made to sweep in the range 3 nm to 30 nm but upon iteration it was found out that the width exceeded 30 nm and to get a gain of 38.18 dB or 81.1637 (V/V), the suitable value for the width of MOSFETs M1,M2,M3,M4 = 180 micrometer the suitable value for the width of MOSFETs M7,M8,M9,M10 = 24 micrometer the suitable value for the width of MOSFETs M5,M6 = 18 micrometer

DC offset value for Vin was found to be 0.7713 V.

| MOSFET Name | MOSFET w/I |
|-------------|------------|
| M1          | 300        |
| M2          | 300        |
| M3          | 300        |
| M4          | 300        |
| M5          | 30         |
| M6          | 30         |
| M7          | 40         |
| M8          | 40         |
| M9          | 40         |
| M10         | 40         |

Hand drawn circuit diagram-



```
Vollage Swing calculation:
      For NMOS, VTH = 0.6696061 (Thrushold voltage)
      For PMOS, VIH = -0.9214347 (Tweshold voltage)
Following values are taken by running of command =>
For MI NMOS , IVGs = Vin - Vground
                      = 0.7713 V
                 Vovm= 1Vas1-1V7H1 = 0.7713 -0.6696061
                      = 0.1016939V
for M2 NMOS, IVUSI = Vd - Vc
                      = 1.57744- 0.81617
                       = 0.76127 V
                  Vovm= 1Vas1-1V741
= 0.76127-0.6696061
                       = 0.0916639 V
 For M3 M4 PMOS , 1V45 = Vad - Vb1
                         = 3.3 - 2.16028
                    VOVMG = 1VGS1-1VTH1
                          = 1.13172 - 0.9214847
                          = 0.2182853V
 For M3 PMOS , IVers1 = Va-Vb2
                            = 8:18 2.34723-1.02055
                            = 1.32 66 PV
                      VOV M3 = 1 V451-1 VTH1
                             = 1.32668 - 0.4214347
                              = 0.4052453V
```

Voltage swing = Voo - Vorm, - Vorme - Vorme - Vorme - Vorme = [2.4831116 V]

which comes under the permissible range of voltage swing specified.

Power consumption calculation:
Current Shrough emplifiers M1, M2, M3, M4 = 0.00050981 A

Current through emplifiers M7, M8, M9, M10 = 6.7523×10-5A

Current Shrough emplifiers M5, M6 = 5×10-5A

(These values were take by running the openment)

Sum of currents which pass through Vad

= 6.7523×10-5+5×10-5+0.00050981

= 6.2733×10-4A

Power = 6.2733 ×10-4 × 3.3

(Power = Voltage × (werent)

= 2.6702 × 103 W)



Bode plot with Vdd  $3.3\ V$ 



Bode plot with Vdd 3.63 V Gain when Vdd is changed to Vdd+10%(3.63 V) is 38.320195dB.



Bode plot with Vdd 2.97V Gain when Vdd is changed to Vdd-10%(2.97 V) is 38.03741dB

| Operating Point |               |                |  |
|-----------------|---------------|----------------|--|
| V(c):           | 0.810876      | voltage        |  |
| V(in):          | 0.7713        | voltage        |  |
| V(out1):        | 1.92198       | voltage        |  |
| V(d):           | 1.57685       | voltage        |  |
| V(a):           | 2.03032       | voltage        |  |
| V(vb2):         | 0.690554      | voltage        |  |
| V(n001):        | 2.97          | voltage        |  |
| V(vb1):         | 1.83028       | voltage        |  |
| V(e):           | 0.788424      | voltage        |  |
| V(f):           | 1.86826       | voltage        |  |
| Id(M9):         | 6.72423e-005  | device current |  |
| Ig(M9):         | -0            | device current |  |
| Ib (M9):        | 1.11174e-012  | device current |  |
| Is(M9):         | -6.72423e-005 | device current |  |
| Id(M8):         | 6.72423e-005  | device current |  |
| Ig(M8):         | -0            | device current |  |
| Ib (M8):        | 3.01415e-013  | device current |  |
| Is(M8):         | -6.72423e-005 | device current |  |
| Id(M6):         | 5e-005        | device current |  |
| Ig (M6):        | -0            | device current |  |
| Ib (M6):        | 1.14972e-012  | device current |  |
| Is(M6):         | -5e-005       | device current |  |
| Id(M5):         | 5e-005        | device current |  |
| Ig (M5):        | -0            | device current |  |
| Ib (M5):        | 1.14972e-012  | device current |  |
| Is(M5):         | -5e-005       | device current |  |
| Id(M4):         | 0.000485579   | device current |  |
| Ig (M4):        | -0            | device current |  |
| Ib (M4):        | 9.49681e-013  | device current |  |
| Is(M4):         | -0.000485579  | device current |  |
| Id(M3):         | 0.000485578   | device current |  |
| Ig(M3):         | -0            | device current |  |
| Ib(M3):         | 1.18186e-013  | device current |  |
| Is(M3):         | -0.000485578  | device current |  |
| Id(M10):        | 6.72423e-005  | device current |  |
| Ig(M10):        | 0             | device current |  |
| Ib (M10):       | -7.98424e-013 | device current |  |
| Is(M10):        | -6.72423e-005 | device current |  |
| Id(M7):         | 6.72423e-005  | device current |  |
| Ig(M7):         | 0             | device current |  |
| Ib(M7):         | -7.98424e-013 | device_current |  |
| Is(M7):         | -6.72423e-005 | device current |  |
| Id(M2):         | 0.000485579   | device_current |  |
| Ig (M2):        | 0             | device current |  |
| Ib (M2):        | -1.12111e-012 | device current |  |
| Is(M2):         | -0.000485579  | device_current |  |
| Id(M1):         | 0.000485579   | device current |  |
| Ig(M1):         | 0             | device_current |  |
| Ib(M1):         | -8.20876e-013 | device_current |  |
| Is(M1):         | -0.000485579  | device_current |  |
| I(I1):          | 5e-005        | device_current |  |
| I (Vin):        | 0             | device_current |  |
| I (Vdd):        | -0.000602821  | device_current |  |
|                 |               |                |  |

# .op command for q1

### Question 2-

# 2 Problem-2

Design a (Common Base + Common Emitter) amplifier using suitable topology to meet the specifications prescribed for you. VDD is 3.3V.

Note: Other instructions remains same as previously given

| Design Specifications | Specifications desired | Specifications achieved |
|-----------------------|------------------------|-------------------------|
| Voltage Gain          | 85± 5% (V/V)           | 87.5334                 |
| Current Gain          | 45± 5% (A/A)           | 24.64336                |
| 3-dB frequency        | 50K ± 5% (rad/s)       | 15.4506K (rad/s)        |
| Pd                    | 2.0± 5% (mW)           | 0.607 (mW)              |

ID used for calculation:- 2020A3PS1237P

Sum of last 2 digits = 3+7 = 10

10 % 4 = 2 . Hence the required specifications were taken from Table 1.

# Hand drawn circuit for question2-





### Bode plot for current gain for Vdd 3.3 V



Bode plot for voltage gain with Vdd 3.63 V Voltage gain when Vdd is changed to Vdd+10%(3.63 V) is 29.797925dB.



Bode plot for voltage gain with Vdd 2.97 V Voltage gain when Vdd is changed to Vdd-10%(2.97 V) is -937.83636mdB.



Bode plot for current gain with Vdd 3.63 V. Current gain when Vdd is changed to Vdd+10%(3.3 V) is -30.084271dB.



Bode plot for current gain with Vdd 2.97 V. Current gain when Vdd is changed to Vdd-10%(2.97 V) is 19.125155dB.



Voltage swing achieved from SPICE = 2.0312 V



# 3 dB frequency for Vdd 3.3 V = 3.013006 KHz = 18.921 K rad/s



### Power dissipation = 0.607 mW



\* C:\Users\manah\Downloads\sai.asc

| <u></u>   | Operating Point              | -              |
|-----------|------------------------------|----------------|
| V(out1):  | 1.52583                      | voltage        |
| V(n006):  | 0.569155                     | voltage        |
| V(n009):  | -0.00574505                  | voltage        |
| V(n003):  | 2.82576                      | voltage        |
| V(n001):  | 3.3                          | voltage        |
| V(n002):  | 2.81371                      | voltage        |
| V(n005):  | 0.586298                     | voltage        |
| V(n004):  | 1.40044                      | voltage        |
| V(n008):  | 0.587096                     | voltage        |
| V(n007):  | 0.587096                     | voltage        |
| Ic(Q8):   | -5.15048e-005                | device_current |
| Ib(Q8):   | -2.28588e-007                | device_current |
| Ie (Q8) : | 5.17333e-005                 | device_current |
| Ic(Q3):   | -3.2218e-005                 | device_current |
| Ib(Q3):   | -1.50573e-007                | device_current |
| Ie (Q3):  | 3.23685e-005                 | device_current |
| Ic(Q5):   | -4.92399e-005                | device_current |
| Ib(Q5):   | -2.30346e-007                | device_current |
| Ie (Q5):  | 4.94703e-005                 | device_current |
| Ic(Q2):   | -3.2218e-005                 | device_current |
| Ib(Q2):   | -1.50573e-007                | device_current |
| Ie (Q2):  | 3.23685e-005                 | device_current |
| Ic(Q6):   | 5.15048e-005                 | device_current |
| Ib(Q6):   | 3.1205 <b>4</b> e-007        | device_current |
| Ie (Q6) : | -5.18168e-005                | device_current |
| Ic(Q4):   | 3.2218e-005                  | device_current |
| Ib (Q4):  | 2.14286e-007                 | device_current |
| Ie (Q4):  | -3.24322e-005                | device_current |
| Ic(Q7):   | 4.92668e-005                 | device_current |
| Ib(Q7):   | 3.04607e-007                 | device_current |
| Ie(Q7):   | -4.95714e-005                | device_current |
| Ic(Q1):   | 3.2218e-005                  | device_current |
| Ib(Q1):   | 2.14286e-007                 | device_current |
| Ie (Q1):  | -3.24322e-005                | device_current |
| I(C1):    | 9.38731e-018                 | device_current |
| I(I1):    | 5e-005                       | device_current |
| I(R5):    |                              | device_current |
| I(R4):    | 1.7774e-005                  | device_current |
| I(R3):    | 1.8086e-005                  | device_current |
| I(R2):    | -4.28571e-007                | device_current |
| I(R1):    | 3.01147e-007                 | device_current |
| I(V2):    | -0.000184027<br>6.48645e-005 | device_current |
| I(V1):    | 0.40045e-UU5                 | device_current |
|           |                              |                |

### **Netlist for question 1**

```
M1 c in 0 0 NMOS I=0.6u w=172u
M2 out1 d c c NMOS I=0.6u w=172u
M3 a Vb2 out1 a PMOS I=0.6u w=172u
M4 N001 Vb1 a N001 PMOS I=0.6u w=172u
Vdd N001 0 3.3
Vin in 0 SINE(0.7713 1u 1k) AC 1u
M5 N001 Vb1 Vb1 N001 PMOS I=0.6u w=18u
M6 Vb1 Vb2 Vb2 Vb1 PMOS I=0.6u w=18u
M7 d d e e NMOS I=0.6u w=24u
11 Vb2 0 50µ
M8 f Vb2 d f PMOS I=0.6u w=24u
M9 N001 Vb1 f N001 PMOS I=0.6u w=24u
M10 e e 0 0 NMOS I=0.6u w=24u
.model NMOS NMOS
.model PMOS PMOS
.lib C:\Users\Sai Kartik\OneDrive - BIRLA INSTITUTE OF TECHNOLOGY and
SCIENCE\Documents\LTspiceXVII\lib\cmp\standard.mos
.MODEL NMOS NMOS (
                                    LEVEL = 8
+VERSION = 3.1
                   TNOM = 27
                                     TOX = 1.39E-8
+XJ
                 NCH = 1.7E17
                                   VTH0 = 0.6696061
     = 1.5E-7
+K1
      = 0.8351612
                   K2
                        = -0.0839158
                                     K3
                                           = 23.1023856
+K3B = -7.6841108 W0 = 1E-8
                                    NLX = 1E-9
+DVT0W = 0
                  DVT1W = 0
                                    DVT2W = 0
                    DVT1 = 0.4302695
+DVT0 = 2.9047241
                                        DVT2 = -0.134857
                                          = 1.485499E-18
+U0
     = 458.439679 UA
                         = 1E-13
                                    UB
      = 1.629939E-11 VSAT = 1.643993E5 A0
+UC
                                              = 0.6103537
+AGS = 0.1194608
                    B0
                         = 2.674756E-6 B1
                                            = 5E-6
+KETA = -2.640681E-3 A1
                          = 8.219585E-5 A2
                                             = 0.3564792
+RDSW = 1.387108E3 PRWG = 0.0299916
                                           PRWB = 0.0363981
+WR
                WINT = 2.472348E-7 LINT = 3.597605E-8
      = 1
+XL
               XW
                               DWG
                                      = -1.287163E-8
      = 0
                     = 0
+DWB = 5.306586E-8 VOFF = 0
                                      NFACTOR = 0.8365585
                CDSC = 2.4E-4
                                  CDSCD = 0
+CIT = 0
+CDSCB = 0
                  ETA0 = 0.0246738
                                      ETAB = -1.406123E-3
+DSUB = 0.2543458
                     PCLM = 2.5945188
                                         PDIBLC1 = -0.4282336
+PDIBLC2 = 2.311743E-3 PDIBLCB = -0.0272914
                                            DROUT = 0.7283566
+PSCBE1 = 5.598623E8
                      PSCBE2 = 5.461645E-5 PVAG = 0
                                   MOBMOD = 1
+DELTA = 0.01
                  RSH = 81.8
+PRT = 8.621
                  UTE
                       = -1
                                  KT1
                                       = -0.2501
+KT1L = -2.58E-9
                   KT2 = 0
                                  UA1
                                        = 5.4E-10
+UB1
      = -4.8E-19
                   UC1
                         = -7.5E-11
                                     AΤ
                                          = 1E5
+WL
      = 0
                WLN = 1
                               WW
                                      = 0
```

```
+WWN = 1
           WWL = 0
                        LL = 0
           LW = 0 LWN = 1
+LLN = 1
+LWL = 0
           CAPMOD = 2 XPART = 0.5
+CGDO = 2E-10
               CGSO = 2E-10
                              CGBO = 1E-9
+CJ = 4.197772E-4 PB = 0.99
                            MJ = 0.4515044
                              MJSW = 0.1153991
+CJSW = 3.242724E-10 PBSW = 0.1
+CJSWG = 1.64E-10 PBSWG = 0.1
                               MJSWG = 0.1153991
+CF = 0 PVTH0 = 0.0585501 PRDSW = 133.285505
+PK2 = -0.0299638 WKETA = -0.0248758 LKETA = 1.173187E-3
+AF = 1
            KF = 0
* .ac dec 100 1 1G
* .step param x 0.5u 13.5u 0.5u
* .step param v 0.7 0.8 0.0001
.MODEL PMOS PMOS (
                            LEVEL = 8
              TNOM = 27
                            TOX = 1.39E-8
+VERSION = 3.1
+XJ = 1.5E-7 NCH = 1.7E17
                           VTH0 = -0.9214347
+K1 = 0.5553722 \quad K2 = 8.763328E-3 \quad K3 = 6.3063558
+K3B = -0.6487362 W0 = 1.280703E-8 NLX = 2.593997E-8
+DVT0W = 0
          DVT1W = 0 DVT2W = 0
+DVT0 = 2.5131165 DVT1 = 0.5480536 DVT2 = -0.1186489
+U0 = 212.0166131 UA = 2.807115E-9 UB = 1E-21
+UC = -5.82128E-11 VSAT = 1.713601E5 A0 = 0.8430019
+AGS = 0.1328608 B0 = 7.117912E-7 B1 = 5E-6
+KETA = -3.674859E-3 A1 = 4.77502E-5 A2 = 0.3
+RDSW = 2.837206E3 PRWG = -0.0363908 PRWB = -1.016722E-5
+WR = 1 WINT = 2.838038E-7 LINT = 5.528807E-8
            XW = 0 DWG = -1.606385E-8
+XL = 0
+DWB = 2.266386E-8 VOFF = -0.0558512 NFACTOR = 0.9342488
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
                              ETAB = -0.0580325
+CDSCB = 0
              ETA0 = 0.3251882
+DSUB = 1
              PCLM = 2.2409567
                              PDIBLC1 = 0.0411445
+PDIBLC2 = 3.355575E-3 PDIBLCB = -0.0551797 DROUT = 0.2036901
+DELTA = 0.01
            RSH = 101.6
                           MOBMOD = 1
+PRT = 59.494
              UTE = -1
                           KT1 = -0.2942
+KT1L = 1.68E-9 KT2 = 0
                           UA1 = 4.5E-9
+UB1 = -6.3E-18 UC1 = -1E-10 AT = 1E3
           WLN = 1
                        WW = 0
+WL = 0
+WWN = 1
             WWL = 0
                           LL = 0
            LW = 0
+LLN = 1
                        LWN = 1
+LWL = 0
           CAPMOD = 2 XPART = 0.5
+CJ = 7.235528E-4 PB = 0.9527355
                              MJ = 0.4955293
+CJSW = 2.692786E-10 PBSW = 0.99 MJSW = 0.2958392
```

```
+CJSWG = 6.4E-11 PBSWG = 0.99 MJSWG = 0.2958392

+CF = 0 PVTH0 = 5.98016E-3 PRDSW = 14.8598424

+PK2 = 3.73981E-3 WKETA = 5.292165E-3 LKETA = -4.205905E-3

+AF = 1 KF = 0)

* power consumed = 1.93mW

* Voltage gain of the circuit= 38.18dB

* required swing = 2.66V

.backanno
```

### **Netlist for question 2**

.end

Q1 out1 N005 N008 0 BC108B Q2 out1 N003 N001 0 BC178B V1 N008 0 -5.7450549m AC 1 R1 N003 N002 40k Q5 N002 N002 N001 0 BC178B I1 N002 N004 50μ Q7 N004 N004 0 0 BC108B R2 N005 N004 40k V2 N001 0 3.3 Q3 out1 N003 N001 0 BC178B Q4 out1 N005 N008 0 BC108B Q6 out N007 0 0 BC108B Q8 out N002 N001 0 BC178B R3 N001 N007 150k R4 N007 0 33.031214K R5 N007 N006 40k C1 out1 N006 10µ C2 out 0 100f .model NPN NPN .model PNP PNP .lib C:\Users\Sai Kartik\OneDrive - BIRLA INSTITUTE OF TECHNOLOGY and SCIENCE\Documents\LTspiceXVII\lib\cmp\standard.bit .model BC107A NPN(Is=7.049f Xti=3 Eg=1.11 Vaf=116.3 Bf=375.5 Ise=7.049f Ne=1.281 lkf=4.589 Nk=.5 Xtb=1.5 Br=2.611 lsc=121.7p Nc=1.865 + Ikr=5.313 Rc=1.464 Cjc=5.38p Mjc=.329 Vjc=.6218 Fc=.5 Cje=11.5p Mje=.2717 Vje=.5 Tr=10n Tf=451p Itf=6.194 Xtf=17.43 Vtf=10) .model BC107B NPN(Is=7.049f Xti=3 Eq=1.11 Vaf=59.59 Bf=381.7 Ise=59.74f + Ne=1.522 lkf=3.289 Nk=.5 Xtb=1.5 Br=2.359 lsc=192.9p Nc=1.954 Ikr=7.807 Rc=1.427 Cjc=5.38p Mjc=.329 Vjc=.6218 Fc=.5 Cje=11.5p + Mje=.2718 Vje=.5 Tr=10n Tf=438p Itf=5.716 Xtf=14.51 Vtf=10) .model BC108A NPN(Is=7.049f Xti=3 Eg=1.11 Vaf=116.3 Bf=375.5 Ise=7.049f Ne=1.281 lkf=4.589 Nk=.5 Xtb=1.5 Br=2.611 lsc=121.7p Nc=1.865

```
Ikr=5.313 Rc=1.464 Cjc=5.38p Mjc=.329 Vjc=.6218 Fc=.5 Cje=11.5p
         Mje=.2717 Vje=.5 Tr=10n Tf=451p Itf=6.194 Xtf=17.43 Vtf=10)
.model BC108B NPN(Is=7.049f Xti=3 Eq=1.11 Vaf=59.59 Bf=381.7 Ise=59.74f
         Ne=1.522 lkf=3.289 Nk=.5 Xtb=1.5 Br=2.359 lsc=192.9p Nc=1.954
+
+
         Ikr=7.807 Rc=1.427 Cjc=5.38p Mjc=.329 Vjc=.6218 Fc=.5 Cje=11.5p
         Mje=.2718 Vje=.5 Tr=10n Tf=438p ltf=5.716 Xtf=14.51 Vtf=10)
+
.model BC178B PNP(Is=336.7f Xti=3 Eq=1.11 Vaf=30.75 Bf=271.9 Ise=2.821p
         Ne=1.925 lkf=.2462 Nk=.5416 Xtb=1.5 Br=3.009 lsc=1.753n
         Nc=2.075 lkr=8.143 Rc=1.803 Cjc=11p Mjc=.2223 Vjc=.5 Fc=.5
+
+
         Cje=33p Mje=.3333 Vje=.5 Tr=10n Tf=846p Itf=1.546 Xtf=18.27
+
         Vtf=10)
.model BC179A PNP(Is=336.7f Xti=3 Eg=1.11 Vaf=44.61 Bf=187 Ise=336.8f
         Ne=1.459 lkf=.2059 Nk=.5081 Xtb=1.5 Br=4.068 lsc=1.121n
+
         Nc=1.953 lkr=10.05 Rc=1.86 Cjc=11p Mjc=.2223 Vjc=.5 Fc=.5
         Cje=33p Mje=.3333 Vje=.5 Tr=10n Tf=845.5p Itf=1.701 Xtf=19.04
+
         Vtf=10)
+
;dc v3 -5 5 0.001
.ac dec 1000 1 10G
.op
;.step param r 30k 1000k 1k
.backanno
.end
```