Families of SNARK-friendly 2-chains of elliptic curves

Youssef El Housni¹ Aurore Guillevic²

¹ConsenSys / Ecole Polytechnique / Inria Saclay

²Université de Lorraine / Inria Nancy / Aarhus University

JC2, April 2022

Ínría_

Overview

- Preliminaries
 - Zero-knowledge proof
 - ZK-SNARK
 - Recursive ZK-SNARKs

- Contributions: Families of 2-chains
 - Constructions
 - Implementations

Y. El Housni, A. Guillevic

Overview

- Preliminaries
 - Zero-knowledge proof
 - ZK-SNARK
 - Recursive ZK-SNARKs

- Contributions: Families of 2-chains
 - Constructions
 - Implementations

Zero-knowledge proof

What is a zero-knowledge proof?

"I have a *complete*, *sound* and *zero-knowledge* proof that a statement is true".

Complete

True statement ⇒ honest prover convinces honest verifier

Sound

False statement \implies cheating prover cannot convince honest verifier (except with small proba)

Zero-knowledge

True statement \implies verifier learns nothing more than statement is true

Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a complete, computationally sound, zero-knowledge, succinct, non-interactive proof that a statement is true and that I know a related secret".

Succinct

Honestly-generated proof is very "short" and "easy" to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge

Honest verifier is convinced that a comptutationally bounded prover knows a secret information.

Y. El Housni, A. Guillevic JC2, April 2022

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:
$$(pk, vk) \leftarrow S(F, 1^{\lambda})$$

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:
$$(pk, vk)$$
 \leftarrow $S(F, 1^{\lambda})$
Prove: π \leftarrow $P(x, z, w, pk)$

Y. El Housni, A. Guillevic JC2, April 2022

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: $(pk, vk) \leftarrow S(F, 1^{\lambda})$

Prove: $\pi \leftarrow P(x, z, \mathbf{w}, pk)$

Verify: false/true $\leftarrow V(x, z, \pi, vk)$

Y. El Housni, A. Guillevic JC2, April 2022

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:
$$(pk, vk)$$
 \leftarrow $S(F, 1^{\lambda})$
Prove: π \leftarrow $P(x, z, w, pk)$
Verify: false/true \leftarrow $V(x, z, \pi, vk)$

Pairing-based preprocessing ZK-SNARK of NP language

- $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.
- r prime divisor of $\#E(\mathbb{F}_q) = q+1-t$, t Frobenius trace.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- a bilinear pairing

$$e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_{\mathcal{T}}$$

- ullet $\mathbb{G}_1\subset E(\mathbb{F}_q)$ a group of order r
- $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})$ a group of order r.
- ullet $\mathbb{G}_{\mathcal{T}}\subset \mathbb{F}_{q^k}^*$ group of r-th roots of unity.

Example: Groth16

Example: Groth16 [Gro16]

Given $z \coloneqq F(x, \mathbf{w})$ where $(x, z, \mathbf{w}) = (x_0, \dots, x_i, z_{i+1}, \dots, z_\ell, \mathbf{w}_{\ell+1}, \dots, \mathbf{w}_n)$

Y. El Housni, A. Guillevic JC2, April 2022

Example: Groth16

Example: Groth16 [Gro16]

Given
$$z := F(x, w)$$
 where $(x, z, w) = (x_0, \dots, x_i, z_{i+1}, \dots, z_\ell, w_{\ell+1}, \dots, w_n)$

•
$$(pk, vk) \leftarrow S(F, 1^{\lambda})$$
 where
$$pk \in \mathbb{G}_1^{2n+\ell+3} \times \mathbb{G}_2^{\ell+2}, \quad vk \in \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2^2 \times \mathbb{G}_T$$

Y. El Housni, A. Guillevic JC2, April 2022

Example: Groth16

Example: Groth16 [Gro16]

Given
$$z := F(x, w)$$
 where $(x, z, w) = (x_0, \dots, x_i, z_{i+1}, \dots, z_\ell, w_{\ell+1}, \dots, w_n)$

•
$$(pk, vk) \leftarrow S(F, 1^{\lambda})$$
 where
$$pk \in \mathbb{G}_1^{2n+\ell+3} \times \mathbb{G}_2^{\ell+2}, \quad vk \in \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2^2 \times \mathbb{G}_T$$

• $\pi \leftarrow P(x, z, w, pk)$ where

$$\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \qquad (O_{\lambda}(1))$$

Y. El Housni, A. Guillevic JC2, April 2022

Example: Groth16

Example: Groth16 [Gro16]

Given
$$z := F(x, w)$$
 where $(x, z, w) = (x_0, \dots, x_i, z_{i+1}, \dots, z_\ell, w_{\ell+1}, \dots, w_n)$

• $(pk, vk) \leftarrow S(F, 1^{\lambda})$ where $pk \in \mathbb{G}_1^{2n+\ell+3} \times \mathbb{G}_2^{\ell+2}, \quad \textit{vk} \in \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2^2 \times \mathbb{G}_T$

• $\pi \leftarrow P(x, z, w, pk)$ where

$$\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \qquad (O_{\lambda}(1))$$

• false/true $\leftarrow V(x, z, \pi, vk)$ where V is

$$e(A,B) \stackrel{?}{=} vk_1 \cdot e(vk'_2, vk_3) \cdot e(C, vk_4) \qquad (O_{\lambda}(\ell))$$
 (*)

and $vk_2' = \sum_{i=0}^{\ell} [x_i] vk_2$.

Recursive ZK-SNARKs

An arithmetic mismatch

- **F** any program is expressed in \mathbb{F}_r
- P proving is performed over \mathbb{G}_1 (and \mathbb{G}_2) (of order r)
- V verification (eq. *) is done in $\mathbb{F}_{q^k}^*$
- \digamma_V program of V is natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r

Y. El Housni, A. Guillevic JC2, April 2022

Recursive ZK-SNARKs

An arithmetic mismatch

- **F** any program is expressed in \mathbb{F}_r
- P proving is performed over \mathbb{G}_1 (and \mathbb{G}_2) (of order r)
- V verification (eq. *) is done in $\mathbb{F}_{q^k}^*$
- F_V program of V is natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r
- 1st attempt: choose a curve for which q = r (impossible)
- ullet 2nd attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations ($imes \log q$ blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [CFH⁺15, BCTV14, BCG⁺20]

Y. El Housni, A. Guillevic JC2, April 2022

Recursive ZK-SNARKs

A proof of a proof

Given q, search for a pairing-friendly curve E_1 of order $h \cdot q$ over a field \mathbb{F}_s

10 / 17

Overview

- Preliminaries
 - Zero-knowledge proof
 - ZK-SNARK
 - Recursive ZK-SNARKs

- Contributions: Families of 2-chains
 - Constructions
 - Implementations

Y. El Housni, A. Guillevic

Inner curves

SNARK-0

Groth16 SNARK

- 128-bit security
- pairing-friendly
- ullet efficient \mathbb{G}_1 , \mathbb{G}_2 , $\mathbb{G}_{\mathcal{T}}$ and pairing
- $p-1 \equiv r-1 \equiv 0 \mod 2^L$ for large input $L \in \mathbb{N}^*$ (FFTs)
- \rightarrow BLS (k=12) family of roughly 384 bits with seed $x \equiv 1 \mod 3 \cdot 2^L$

Universal SNARK

- 128-bit security
- pairing-friendly
- $p-1 \equiv r-1 \equiv 0 \mod 2^L$ for large $L \in \mathbb{N}^*$ (FFTs)

 \rightarrow BLS (k = 24) family of roughly 320 bits with seed $x \equiv 1 \mod 3 \cdot 2^L$

Outer curves SNARK-1

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T and pairing
- $r' = p (r' 1 \equiv 0 \mod 2^L)$

 \rightarrow BW (k = 6) family of roughly 768 \rightarrow BW (k = 6) family of roughly 704

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T and pairing
- \bullet $r' = p (r' 1 \equiv 0 \mod 2^L)$

bits with $(t \mod x) \mod r \equiv 0$ or 3 bits with $(t \mod x) \mod r \equiv 0$ or 3 \rightarrow CP (k = 8) family of roughly 640 bits \rightarrow CP (k = 12) family of roughly

13 / 17

All \mathbb{G}_i formulae and pairings are given in terms of x and some $h_t, h_v \in \mathbb{N}$.

640 bits

Implementation and benchmark

Short-list of curves

We short list few 2-chains of the proposed families that have some additional nice engineering properties

Groth16: BLS12-377 and BW6-761

Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Cost of S, P and V algorithms for Groth16 and Universal. n=number of multiplication gates, a=number of addition gates and $\ell=$ number of public inputs. $M_{\mathbb{G}}=$ multiplication in \mathbb{G} and P=pairing.

	S	Р	V
Groth16	$3n\ \mathrm{M}_{\mathbb{G}_1}$, $n\ \mathrm{M}_{\mathbb{G}_2}$	$(4n-\ell)$ $M_{\mathbb{G}_1}$, n $M_{\mathbb{G}_2}$	3 P, ℓ M _{G1}
Universal	$d_{\geq n+a}$ $\mathtt{M}_{\mathbb{G}_1}$, 1 $\mathtt{M}_{\mathbb{G}_2}$	$9(n+a)$ $M_{\mathbb{G}_1}$	2 P, 18 M $_{\mathbb{G}_1}$

Y. El Housni, A. Guillevic JC2, April 2022

Implementation and benchmark

https://github.com/ConsenSys/gnark (Go)

$$F_V$$
: program that checks V (eq. *) ($\ell=1$, $\hbar/\#/8000$ $n=19378$)

Table: Groth16 (ms)

	S	Р	V
BLS12-377	387	34	1
BLS24-315	501	54	4
BW6-761	1226	114	9
BW6-633	710	69	6
BW6-672	840	74	7

Table: Universal (ms)

	S	P	V
BLS12-377	87	215	4
BLS24-315	76	173	1
BW6-761	294	634	9
BW6-633	170	428	6
BW6-672	190	459	7

15 / 17

Play with gnark!

Write SNARK programs at https://play.gnark.io/ Example: Proof of Groth16 V program (eq. *)

Conclusion

THANK YOU!
Take away your train

Y. El Housni, A. Guillevic JC2, April 2022

References I

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves.

In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014*, *Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

References II

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015.

ePrint 2014/976.

Jens Groth.

On the size of pairing-based non-interactive arguments.

In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016, Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Heidelberg, May 2016.