Data Wrangling

Data Wrangling: Two Goals

- Make data suitable to use with a particular piece of software
- Reveal information

Wrangling
Munging
Janitor Work
Manipulation
Transformation

50-80%

of your time?

Two packages to help you work with the structure of data

Also in Chinese...

Data sets come in many formats

...but R (often) prefers just one

EDAWR

An R package with all of the data sets that shown in this lecture.

```
# install.packages("devtools")

# devtools::install_github("rstudio/EDAWR")
library(EDAWR)
?storms
?cases
?pollution
?tb
```

devtools::install_github("rstudio/EDAWR") library(EDAWR)

- Storm name
- Wind Speed (mph)
- Air pressure
- Date

- Country
- Year
- Count

- City
- Amount of Large Particles
- Amount of Small particles

devtools::install_github("rstudio/EDAWR") library(EDAWR)

storms

city	particle size	amount (µg/m³)
Nev	large	23
New	small	14
Lonc	large	22
Lonc	small	16
Beij	large	121
Beijing	small	56

storms\$storm
storms\$wind
storms\$pressure
storms\$date

cases\$country
names(cases)[-1]
unlist(cases[1:3, 2:4])

pollution\$city[1,3,5]
pollution\$amount[1,3,5]
pollution\$amount[2,4,6]

Adding/modifying columns

$$ratio = \frac{pressure}{wind}$$

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms\$pressure / storms\$wind

950	/	110	8.6
1003	/	45	22.3
987	/	65	15.2
1004	/	40	25.1
1006	/	50	20.1
1000		45	22.2

Tidy data

- Each variable is saved in its own column
- Each **observation** is saved in its own row.
- Each "type" of observation stored in a single table (here, storms).

Recap: Tidy data

- Variables in columns, observations in rows, each type in a table
- Pasy to access variables
- Automatically preserves observations

tidyr

Tidyr: A package that reshapes the layout of tables.

tidyr

Two main functions: gather() and spread()

```
# install.packages("tidyr")
library(tidyr)
?gather
?spread
```

Your Turn

Imagine how this data would look if it were tidy with three variables: country, year, n

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather()

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Count	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

key (former column names)

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

key value (former cells)

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

gather()

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

gather(cases, "year", "n", 2:4)

```
##
                                          country year
                                                            n
    country 2011 2012 2013
##
                                     ## 1
                                               FR 2011 7000
         FR
            7000
                   6900
                        7000
                                     ## 2
                                               DE 2011
                                                         5800
                       6200
         DE
            5800
                 6000
## 3
         US 15000 14000 13000
                                     ## 3
                                               US 2011 15000
                                               FR 2012
                                                         6900
                                     ## 4
                                     ## 5
                                               DE 2012
                                                       6000
                                     ## 6
                                               US 2012 14000
                                     ## 7
                                               FR 2013
                                                        7000
                                     ## 8
                                               DE 2013 6200
                                               US 2013 13000
                                     ## 9
```

Your Turn

Imagine how the pollution data set would look tidy with three variables: city, large, small

pollution

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city large small

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small	
New York	23	14	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount	
New York	large	23	
New York	small	14	
London	large	22	
London	small	16	
Beijing	large	121	
Beijing	small	56	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key (new column names)

city	size	amount	
New York	large	23	
New York	small	14	
London	large	22	
London	small	16	
Beijing	large	121	
Beijing	small	56	

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key value (new cells)

city	size	amount	
New York	large	23	
New York	small	14	
London	large	22	
London	small	16	
Beijing	large	121	
Beijing	small	56	

city	large	small	
New York	23	14	
London	22	16	
Beijing	121	56	

spread()

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

spread(pollution, size, amount)

city	size	amount	
New York	large	23	
New York	small	14	
London	large	22	
London	small	16	
Beijing	large	121	
Beijing	small	56	

city	large	small
New York	23	14
London	22	16
Beijing	121	56

Separate all variables implied by law, formula or goal

unite() and separate()

There are three more variables hidden in storms:

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

- Year
- Month
- Day

separate()

Separate splits a column by a character string separator.

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

unite()

Unite unites columns into a single column.

unite(storms2, "date", year, month, day, sep = "-")

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

Recap: tidyr

A package that reshapes the layout of data sets.

Make observations from variables with gather ()

Make variables from observations with spread()

Split and merge columns with unite() and separate()

Also reshape2 package

Data sets contain more information than they display

dplyr: A package that helps transform tabular data.

dplyr

Ways to access information

Extract existing variables.
 Extract existing observations.
 Derive new variables (from existing variables)
 Change the unit of analysis
 select()
 mutate()
 summarise()

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

select(storms, storm, pressure)

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, -storm)
see ?select for more

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, wind:date)
see ?select for more

Useful select functions

-	Select everything but
:	Select range
contains()	Select columns whose name contains a character string
ends_with()	Select columns whose name ends with a string
everything()	Select every column
matches()	Select columns whose name matches a regular expression
num_range()	Select columns named x1, x2, x3, x4, x5
one_of()	Select columns whose names are in a group of names
starts_with()	Select columns whose name starts with a character string

^{*} Blue functions come in dplyr

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

filter(storms, wind >= 50)

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04

filter(storms, wind >= 50,
 storm %in% c("Alberto", "Alex", "Allison"))

logical tests in R

?Comparison

<	Less than
>	Greater than
==	Equal to
<=	Less than or equal to
>=	Greater than or equal to
!=	Not equal to
%in%	Group membership
is.na	Is NA
!is.na	Is not NA

?base::Logic

&	boolean and
	boolean or
xor	exactly or
!	not
any	any true
all	all true

mutate()

storm	wind	pressure	date	storm	wind
Alberto	110	1007	2000-08-12	Alberto	110
Alex	45	1009	1998-07-30	Alex	45
Allison	65	1005	1995-06-04	Allison	65
Ana	40	1013	1997-07-01	Ana	40
Arlene	50	1010	1999-06-13	Arlene	50
Arthur	45	1010	1996-06-21	Arthur	45

storm	wind	pressure	date	ratio
Alberto	110	1007	2000-08-12	9.15
Alex	45	1009	1998-07-30	22.42
Allison	65	1005	1995-06-04	15.46
Ana	40	1013	1997-07-01	25.32
Arlene	50	1010	1999-06-13	20.20
Arthur	45	1010	1996-06-21	22.44

mutate(storms, ratio = pressure / wind)

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

mutate(storms, ratio = pressure / wind, inverse = ratio^-1)

Useful mutate functions

pmin(), pmax()	Element-wise min and max
cummin(), cummax()	Cumulative min and max
cumsum(), cumprod()	Cumulative sum and product
between()	Are values between a and b?
cume_dist()	Cumulative distribution of values
cumall(), cumany()	Cumulative all and any
cummean()	Cumulative mean
lead(), lag()	Copy with values one position
ntile()	Bin vector into n buckets
<pre>dense_rank(), min_rank(), percent_rank(), row_number()</pre>	Various ranking methods

^{*} All take a vector of values and return a vector of values

^{**} Blue functions come in dplyr

"Window" functions

* All take a vector of values and return a vector of values

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

median	variance
22.5	1731.6

pollution %>% summarise(median = median(amount), variance = var(amount))

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean	sum	n
42	252	6

pollution %>% summarise(mean = mean(amount), sum = sum(amount), n = n()

Useful summary functions

* All take a vector of values and return a single value

** Blue functions come in dplyr

min(), max()	Minimum and maximum values
mean()	Mean value
median()	Median value
sum()	Sum of values
var, sd()	Variance and standard deviation of a vector
first()	First value in a vector
last()	Last value in a vector
nth()	Nth value in a vector
n()	The number of values in a vector
n_distinct()	The number of distinct values in a vector

"Summary" functions

* All take a vector of values and return a single value

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21
Alex	45	1009	1998-07-30
Ana	40	1013	1997-07-01

arrange(storms, desc(wind))

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Arthur	45	1010	1996-06-21
Alex	45	1009	1998-07-30
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind, date)

The pipe operator %>%

library(dplyr)

select(tb, child:elderly)
tb %>% select(child:elderly)

Little bunny Foo Foo
Went hopping through the forest
Scooping up the field mice
And bopping them on the head

Little bunny Foo Foo
Went hopping through the forest
Scooping up the field mice
And bopping them on the head

Using temporary objects:

```
T1=hop_through(foo_foo, forest)
T2=scoop_up(T1,field_mice)
T3=bop on(T2,head)
```

Little bunny Foo Foo
Went hopping through the forest
Scooping up the field mice
And bopping them on the head

Using nested function calls:

```
bop_on(
    scoop_up(
        hop_through(
        foo_foo,
        forest
    ),
    field_mice),
```

Little bunny Foo Foo
Went hopping through the forest
Scooping up the field mice
And bopping them on the head

Using dplyr pipes:

```
foo_foo %>%
  hop_through(forest) %>%
  scoop_up(field_mice) %>%
  bop on(head)
```

Using pipes usually leads to more transparent code...

- No temporary objects to remember / mess up
- Reads chronologically

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

select(storms, storm, pressure)

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

storms %>% select(storm, pressure)

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

filter(storms, wind >= 50)

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

storms %>% filter(wind >= 50)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21


```
storms %>%
  mutate(ratio = pressure / wind) %>%
  select(storm, ratio)
```

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	ratio
Alberto	9.15
Alex	22.42
Allison	15.46
Ana	25.32
Arlene	20.20
Arthur	22.44

```
storms %>%
```

```
mutate(ratio = pressure / wind) %>%
select(storm, ratio)
```

Shortcut to type %>%

Unit of analysis

summarize()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean	sum	n
42	252	6

city	particle size	amount (µg/m³)		mean	sum	n
New York New York	large small	23		18.5	37	2
London London	large small	22 16	→	19.0	38	2
Beijing Beijing	large small	121 56	→	88.5	177	2

group_by() + summarise()

group_by()

city	particle size	amount (µg/m³)	city	particle size	amount (µg/m³)
New York	large	23	New York	large	23
New York	small	14	New York	small	14
London	large	22	London	large	22
London	small	16	London	small	16
Beijing	large	121	Beijing	large	121
Beijing	small	56	Beijing	small	56

pollution %>% group_by(city)

```
pollution %>% group_by(city)
## Source: local data frame [6 x 3]
## Groups: city
##
       city size amount
## 1 New York large
                     23
## 2 New York small 14
## 3 London large 22
## 4 London small 16
## 5 Beijing large 121
## 6 Beijing small 56
```

group_by() + summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

```
pollution %>% group_by(city) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution %>% group_by(city) %>%
 summarise(mean = mean(amount), sum = sum(amount), n = n())

New York large 23 New York small 14 London large 22 London small 16 Beijing large 121 Beijing small 56	city	particle size	amount (µg/m³)						
City mean sum n	New York	large	23						
London large 22 London small 16 Beijing large 121 Néw York 18.5 31 2 London 19.0 38 2 Beijing 88.5 177 2	New York	small	14						
London large 22 London small 16 Beijing large 121 Beijing large 121						city	mean	sum	n
London 19.0 38 2 Beijing 88.5 177 2	London	large	22			New York	18.5	37	2
Beijing 88.5 177 2 Beijing large 121						London	19.0	38	2
		orrian				Beijing	88.5	177	2
Beijing small 56	Beijing	large	121						
	Beijing	small	56						
	on %>% (aroup b	vicity	%>%	•	Ļ			
on %>% group_by city %>%						= sum(a	moun	t). I	n =

city	size	amount	city	size	amount		
New York	large	23	New York	large	23		
New York	small	14	New York	small	14	city	
London	large	22	London	large	22	New Yorl	<
London	small	16	London	small	16	London	
Beijing	large	121	Beijing	large	121	Beijing	
Beijing	small	56	Beijing	small	56		

pollution %>% group_by(city) %>% summarise(mean = mean(amount))

city	size	amount	city	size	amount		
New York	large	23	New York	large	23		
New York	small	14	New York	small	14	size	mean
London	large	22	London	large	22	large	55.3
London	small	16	London	small	16	small	28.6
Beijing	large	121	Beijing	large	121		
Beijing	small	56	Beijing	small	56		

pollution %>% group_by(size) %>% summarise(mean = mean(amount))

ungroup()

city	particle size	amount (µg/m³)	city	particle size	amount (μg/m³)
New York	large	23	New York	large	23
New York	small	14	New York	small	14
London	large	22	London	large	22
London	small	16	London	small	16
Beijing	large	121	Beijing	large	121
Beijing	small	56	Beijing	small	56

pollution %>% ungroup()

Hierarchy of information

Larger units of analysis

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3


```
tb %>%
  group_by(country, year) %>%
  summarise(cases = sum(cases)) %>%
  summarise(cases = sum(cases))
```

Recap: Information

Arrange observations, with arrange().

Make new variables, with mutate().

- Group observations with group_by() and
- summarise().

Joining data

dplyr::bind_cols()

	У			Z					
x 1	x2		x 1	x2		x 1	x2	x1	x2
Α	1		В	2		Α	1	В	2
В	2	+	С	3	=	В	2	С	3
С	3		D	4		С	3	D	4

bind_cols(y, z)

dplyr::bind_rows()

	У			Z		x 1	x2
x 1	x2		x 1	x2		Α	1
Α	1		В	2		В	2
В	2	+	С	3	=	С	3
С	3		D	4		В	2
						С	3
						D	4
			rind_	rows(y,	Z)		

dplyr::union()

	У			Z			
x 1	x2		x 1	x2		x1	x2
Α	1		В	2		А	1
В	2	+	С	3	=	В	2
С	3		D	4		С	3
		_				D	4

union(y, z)

dplyr::intersect()

	У			Z			
x1	x2		x1	x2		x 1	x2
Α	1		В	2		В	2
В	2	+	С	3	=	С	3
С	3		D	4			

intersect(y, z)

dplyr::setdiff()

	У			Z			
x 1	x2		x 1	x2		x 1	x2
Α	1	١.	В	2		A	1
В	2	+	С	3	_	D	4
С	3		D	4			

setdiff(y, z)

left_join(x, y): Return all rows from x, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned. This is a mutating join.

dplyr::left_join()

SO	n	gs
50		ש

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

dplyr::left_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

ar
itar
SS
ums

plays name song Across the John guitar Universe Come Together John guitar Hello, Goodbye Paul bass Peggy Sue Buddy <NA>

dplyr::left_join()

songs2

song	first	last
Across the Universe	John	Lennon
Come Together	John	Lennon
Hello, Goodbye	Paul	McCartney
Peggy Sue	Buddy	Holly

artists2

first	last	plays
George	Harrison	sitar
John	Lennon	guitar
Paul	McCartney	bass
Ringo	Starr	drums
Paul	Simon	guitar
John	Coltranee	sax

song	first	last	plays
Across the Universe	John	Lennon	guitar
Come Together	John	Lennon	guitar
Hello, Goodbye	Paul	McCartney	bass
Peggy Sue	Buddy	Holly	<na></na>

left_join(songs2, artists2, by = c("first", "last"))

dplyr::left_join()

songs2

song	first	last	
Across the Universe	John	Lennon	
Come Together	John	Lennon	
Hello, Goodbye	Paul	McCartney	
Peggy Sue	Buddy	Holly	

artists2

first	last	plays
George	Harrison	sitar
John	Lennon	guitar
Paul	McCartney	bass
Ringo	Starr	drums
Paul	Simon	guitar
John	Coltrane	sax

song	first	last	plays
Across the Universe	John	Lennon	guitar
Come Together	John	Lennon	guitar
Hello, Goodbye	Paul	McCartney	bass
Peggy Sue	Buddy	Holly	<na></na>

left_join(songs2, artists2, by = c("first", "last"))

left_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

plays
sitar
guitar
bass
drums

plays song name Across the John guitar Universe Come Together John guitar Hello, Goodbye Paul bass Peggy Sue Buddy <NA>

inner_join(x, y): Return all rows from x where there are matching values in y, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned. This is a mutating join.

inner_join()

songs			ar	tists
song	name		name	plays
Across the	John		George	sitar
Universe		+	John	guitar
Come Together	John	_	Paul	bass
Hello, Goodbye	Paul		Ringo	drums
Poggy Sug	Buddy		riirigo	urums

inner_join(songs, artists, by = "name")

semi_join(x, y): Return all rows from x where there are matching values in y, keeping just columns from x. A semi join differs from an inner join because an inner join will return one row of x for each matching row of y, where a semi join will never duplicate rows of x. This is a filtering join.

semi_join()

songs	artists			
song	name		name	plays
Across the	John	+	George	sitar
Universe			John	guitar
Come Together	John	_	Paul	bass
Hello, Goodbye	Paul		Ringo	drums
Peggy Sue	Buddy		ningo	urums

semi_join(songs, artists, by = "name")

anti_join(x, y): Return all rows from x where there are not matching values in y, keeping just columns from x. This is a filtering join.

anti_join()

songs		ar	tists				
song	name		name	plays		song	name
Across the	John	+	George	sitar		Peggy Sue	Buddy
Universe			John	guitar	=		
Come Together	John		Paul	bass			
Hello, Goodbye	Paul		Ringo	drums			
Peggy Sue	Buddy		111190	ararrio			

anti_join(songs, artists, by = "name")

Great Join Cheatsheet: http://stat545.com/bit001_dplyr-cheatsheet.html

Recap: Best format for analysis

Variables in columns

Observations in rows

Separate all variables implied by law, formula or goal

Unit of analysis matches the unit of analysis *implied* by law, formula or goal

Single table

Interactive Exercises