Normal Probability Distributions

Continuous Distribution

For a discrete distribution, for example Binomial distribution with n=5, and p=0.4, the probability distribution is

A probability histogram

How to describe the distribution of a continuous random variable?

- For continuous random variable, we also represent probabilities by areas—not by areas of rectangles, but by areas under continuous curves.
- For continuous random variables, the place of histograms will be taken by continuous curves.
- Imagine a histogram with narrower and narrower classes. Then we can get a curve by joining the top of the rectangles. This continuous curve is called a probability density (or probability distribution).

Continuous distributions

- For any x, P(X=x)=0. (For a continuous distribution, the area under a point is 0.)
- Can't use P(X=x) to describe the probability distribution of X
- Instead, consider $P(a \le X \le b)$

Density function

A curve f(x): $f(x) \ge 0$

The area under the curve is 1

P(a≤X≤b) is the area between a and b

A continuous random variable has an infinite number of possible values that can be represented by an interval on the number line.

The probability distribution of a continuous random variable is called a **continuous probability distribution**.

The most important probability distribution in statistics is the **normal distribution**.

A normal distribution is a continuous probability distribution for a random variable, x. The graph of a normal distribution is called the **normal curve**.

Properties of a Normal Distribution

- 1. The mean, median, and mode are equal.
- 2. The normal curve is bell-shaped and symmetric about the mean.
- 3. The total area under the curve is equal to one.
- 4. The normal curve approaches, but never touches the *x*-axis as it extends farther and farther away from the mean.
- 5. Between $\mu \sigma$ and $\mu + \sigma$ (in the center of the curve), the graph curves downward. The graph curves upward to the left of $\mu \sigma$ and to the right of $\mu + \sigma$. The points at which the curve changes from curving upward to curving downward are called the *inflection points*.

If x is a continuous random variable having a normal distribution with mean μ and standard deviation σ , you can graph a normal curve with the equation

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$e = 2.178$$
 $\pi = 3.14$

Means and Standard Deviations

A normal distribution can have any mean and any positive standard deviation.

The standard deviation describes the spread of the data.

Means and Standard Deviations

Example:

- 1. Which curve has the greater mean?
- 2. Which curve has the greater standard deviation?

The line of symmetry of curve A occurs at x = 5. The line of symmetry of curve B occurs at x = 9. Curve B has the greater mean.

Curve B is more spread out than curve A, so curve B has the greater standard deviation.

Interpreting Graphs

Example:

The heights of fully grown magnolia bushes are normally distributed. The curve represents the distribution. What is the mean height of a fully grown magnolia bush? Estimate the standard deviation.

The heights of the magnolia bushes are normally distributed with a mean height of about 8 feet and a standard deviation of about 0.7 feet.

The Standard Normal Distribution

The **standard normal distribution** is a normal distribution with a mean of 0 and a standard deviation of 1.

Any value can be transformed into a z-score by using the

formula
$$z = \frac{\text{Value-Mean}}{\text{Standard deviation}} = \frac{x - \mu}{\sigma}$$
.

The Standard Normal Distribution

If each data value of a normally distributed random variable *x* is transformed into a *z*-score, the result will be the standard normal distribution.

After the formula is used to transform an *x*-value into a *z*-score, the Standard Normal Table is used to find the cumulative area under the curve.

The Standard Normal Table

Properties of the Standard Normal Distribution

- 1. The cumulative area is close to 0 for z-scores close to z = -3.49.
- 2. The cumulative area increases as the z-scores increase.
- 3. The cumulative area for z = 0 is 0.5000.
- 4. The cumulative area is close to 1 for z-scores close to z = 3.49

The Standard Normal Table

Example:

Find the cumulative area that corresponds to a *z*-score of 2.71.

	Standard Normal Table											
	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
_												
	2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
	2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	

Find the area by finding 2.7 in the left hand column, and then moving across the row to the column under 0.01.

The area to the left of z = 2.71 is 0.9966.

The Standard Normal Table

Example:

Find the cumulative area that corresponds to a z-score of -0.25.

(Standa	rd Nor	mal Tal	ole							
	z	.09	.08	.07	.06	.05	.04	.03	.02	.01	.00
	-3.4	.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003
	-3.3	.0003	.0004	.0004	.0004	.0004	.0004	.0004	.0005	.0005	.0005
			/						-//	,	
	-0.3	.3483	.3520	.3557	.3594	.3632	.3669	.3707	.3745	.3783	.3821
▶ [-0.2	.3859	.3897	.3936	.3974	.4013	.4052	.4090	.4129	.4168	.4207
	-0.1	.4247	.4286	.4325	.4364	.4404	.4443	.4483	.4522	.4562	.4602
	-0.0	.4641	.4681	.4724	.4761	.4801	.4840	.4880	.4920	.4960	.5000

Find the area by finding -0.2 in the left hand column, and then moving across the row to the column under 0.05.

The area to the left of z = -0.25 is 0.4013

Finding Areas Under the Standard Normal Curve

- 1. Sketch the standard normal curve and shade the appropriate area under the curve.
- 2. Find the area by following the directions for each case shown.
 - a. To find the area to the *left* of *z*, find the area that corresponds to *z* in the Standard Normal Table.

Finding Areas Under the Standard Normal Curve

b. To find the area to the *right* of *z*, use the Standard Normal Table to find the area that corresponds to *z*. Then subtract the area from 1.

Finding Areas Under the Standard Normal Curve

c. To find the area *between* two *z*-scores, find the area corresponding to each *z*-score in the Standard Normal Table. Then subtract the smaller area from the larger area.

4. Subtract to find the area of

Example:

Find the area under the standard normal curve to the left of z = -2.33.

From the Standard Normal Table, the area is equal to 0.0099.

Example:

Find the area under the standard normal curve to the right of z = 0.94.

From the Standard Normal Table, the area is equal to 0.1736.

Example:

Find the area under the standard normal curve between z = -1.98 and z = 1.07.

From the Standard Normal Table, the area is equal to 0.8338.

If a random variable, *x*, is normally distributed, you can find the probability that *x* will fall in a given interval by calculating the area under the normal curve for that interval.

Normal Distribution

Standard Normal Distribution

$$P(x < 15) = P(z < 1)$$
 = Shaded area under the curve
= 0.8413

Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that a student receives a test score less than 90.

=1.5

$$P(x < 90) = P(z < 1.5) = 0.9332$$

Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that a student receives a test score greater than than 85.

$$z = \frac{x - \mu}{\sigma} = \frac{85 - 78}{8} = 0.875 \approx 0.88$$

The probability that a student receives a test score greater than 85 is 0.1894.

$$P(x>85) = P(z>0.88) = 1 - P(z<0.88) = 1 - 0.8106 = 0.1894$$

Example:

The average on a statistics test was 78 with a standard deviation of 8. If the test scores are normally distributed, find the probability that a student receives a test score between 60 and 80.

The probability that a student receives a test score between 60 and 80 is 0.5865.

$$P(60 < x < 80) = P(-2.25 < z < 0.25) = P(z < 0.25) - P(z < -2.25)$$
$$= 0.5987 - 0.0122 = 0.5865$$

Finding z-Scores

Example:

Find the z-score that corresponds to a cumulative area of 0.9973

of 0.9973.				Standard Normal Table							
	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
	2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
	2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981

Find the z-score by locating 0.9973 in the body of the Standard Normal Table. The values at the beginning of the corresponding row and at the top of the column give the z-score.

The z-score is 2.78.

Finding z-Scores

Example:

Find the *z*-score that corresponds to a cumulative area of 0.4170.

Find the z-score by locating 0.4170 in the body of the Standard Normal Table. Use the value closest to 0.4170.

The z-score is -0.21.

Finding a z-Score Given a Percentile

Example:

Find the z-score that corresponds to P_{75} .

The z-score that corresponds to P_{75} is the same z-score that corresponds to an area of 0.75.

The z-score is 0.67.

Transforming a z-Score to an x-Score

To transform a standard z-score to a data value, x, in a given population, use the formula

$$x = \mu + z\sigma$$
.

Example:

The monthly electric bills in a city are normally distributed with a mean of \$120 and a standard deviation of \$16. Find the *x*-value corresponding to a *z*-score of 1.60.

$$X = \mu + Z\sigma$$

= 120 + 1.60(16)
= 145.6

We can conclude that an electric bill of \$145.60 is 1.6 standard deviations above the mean.

Finding a Specific Data Value

Example:

The weights of bags of chips for a vending machine are normally distributed with a mean of 1.25 ounces and a standard deviation of 0.1 ounce. Bags that have weights in the lower 8% are too light and will not work in the machine. What is the least a bag of chips can weigh and still work in the machine?

The least a bag can weigh and still work in the machine is 1.11 ounces.