UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica INICAMP INICAMP

BNICAMP INTEGERATION MAZIT SCALE ICHA (NOTI E), 10/01/2019						
					Q3	
ALUNO			RA	Turma		
					Q4	
					0.5	
EXAME - MA211 - Sexta-feira (NOITE), 16/01/2015					Q5	
					$ \Sigma $	

Q1

Q2

INSTRUCÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

Questão 1.

(a) Seja $u=(x^2+y^2)\phi(x/y)$, em que $\phi:\mathbb{R}\to\mathbb{R}$ é uma função diferenciável de uma variável real. Verifique que

 $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u.$

(b) Determine a derivada direcional da função $g(x, y, z) = xe^y + ye^z + ze^x$ no ponto (0, 0, 0) na direção do vetor $\mathbf{v} = 5\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

Questão 2. Determine e classifique o(s) ponto(s) críticos da função

$$f(x,y) = xy + 2x - \ln(x^2y).$$

Questão 3. Calcule a integral tripla $\iiint_T x^2 dV$, em que T é o tetraedro sólido com vértices $(0,0,0),\,(1,0,0),\,(0,1,0)$ e (0,0,1).

Questão 4. Calcule a integral de linha $\oint_C (y+e^{\sqrt{x}})dx + (2x+\cos y^2)dy$, em que C é a curva fronteira da região englobada pelas parábolas $y=x^2$ e $x=y^2$ com orientação positiva.

Questão 5. Use o teorema de Stokes para calcular a integral de linha $\oint_C \mathbf{F} \cdot d\mathbf{r}$, em que

$$\mathbf{F}(x, y, z) = (x^2 - y)\mathbf{i} + 4z\mathbf{j} + x^2\mathbf{k},$$

e C é a curva da intersecção do plano z=2 com o cone $z=\sqrt{x^2+y^2},$ orientada no sentido anti-horário quando visto por cima.