Training and Improving Neural Networks

How to train your neural network... so that it doesn't explode

Yordan Darakchiev Technical Trainer

Software University

https://softuni.bg

Have a Question?

sli.do

#DeepLearning

Table of Contents

- Regularization
- Bias and variance
 - Error analysis
- Optimization algorithms
- Hyperparameter tuning
- Normalization

Building Models

"Complexity is not supposed to be complex"

Building Models

- All base classes may be inherited
 - Just like estimators in sklearn (without the mixin complexity)

```
class MyLinear(Layer):
    def __init__(self, units = 32, input_dim = 32):
        super().__init__()
        self.w = self.add_weight(
            shape = (input_dim, units),
            initializer = "random_normal")
        self.b = self.add_weight(
            shape = (units,),
            initializer = "zeros")

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b
```

tensorflow's Functional API

- Models and layers are callable
 - We may specify multiple inputs and outputs

```
inputs = Input(shape = (784,))
layer = Dense(64, activation = "relu")
x = layer(inputs)
# Or, more concisely:
x = Dense(64, activation = "relu")(inputs)
```

Reusing a variable many times

```
x1 = Dense(64, activation = "relu")(inputs)
x2 = Dense(128, activation = "relu")(inputs)
```

Combining variables

```
result = keras.layers.Concatenate()([x1, x2])
```

Multiple Inputs and Outputs in pytorch

- The same approach applies
 - Since we already have all variables assigned, just use them as needed in forward()

```
class AdvancedModel(nn.Module):
    def __init__(self):
        super(AdvancedModel, self).__init__()
        self.layer1 = nn.Linear(3, 64)
        self.layer2 = nn.Linear(3, 128)

def forward(self, x):
    # Reusing a variable many times
    x1 = self.layer1(x)
    x2 = self.layer2(x)
    # Combining variables
    result = torch.cat((x1, x2), 1)
    return result
```

Some Notes on Data Pipelines

- In all real scenarios, data must be read sequentially
 - Doesn't fit in RAM
 - Some preprocessing needed
 - e.g., normalization, feature engineering, embedding
- Interplay between CPU (data and I/O) and GPU must be fast
- In tensorflow: data.Dataset
 - A <u>tutorial</u> on creating performant data pipelines
- In pytorch: <u>utils.data.Dataset</u> and <u>utils.data.DataLoader</u>
 - A <u>tutorial</u> on how to set up datasets and data loaders

Bias and Variance

Machine learning practices using big(ger) data

Regularization

Usual L1 and L2 rules apply

```
from tensorflow.layers import Dense
from tensorflow.keras import regularizers

Dense(
    kernel_regularizer = regularizers.L1L2(l1 = 0.5, l2 = 1),
    bias_regularizer = regularizers.L1L2(l1 = 0.5, l2 = 1),
    activity_regularizer = regularizers.L1L2(l1 = 0.3, l2 = 10))
```

- Regularization is applied to the loss function
 - It tries to "remove" or shrink the parameters
- We can regularize weights, biases and outputs
 - Usual steps: same regularization for weights and biases, none for outputs
- Note: using ReLU may result in activations = 0
 - This produces "dead neurons"
 - May be used as a form of regularization

Dropout Regularization

- Select a layer l
- At each training step, set a random fraction p of input weights of layer l to $0 \Rightarrow \text{keep } 1 p$ units
 - To keep the dimensions, scale the remaining weights by $\frac{1}{1-p}$

from tensorflow.layers import Dropout
Dropout(0.1)

- Don't apply dropout during inference!
 - tensorflow takes care of this
- If used just after the input layer
 - Performs a sort of "feature selection" / "data denoising"

Selecting and Splitting Data

- With many samples a 70 / 30 split is unnecessary
 - And time consuming
- Law of big numbers
 - We can get stable results with many samples
 - ⇒ we have less chance of variance due to a small sample size
- Usual splitting for big data (e.g.,1M samples)
 - 980 000 / 10 000 / 10 000 samples
 - Alternatively, a bigger validation set: 980 000 / 16 000 / 4 000

Bias-Variance Error Analysis

- Bayes optimal error: the "real" error in data
 - No way to calculate, we need to try to come up with a measure
 - Naïve: this is 0%, the dataset is perfect
- Example: two-class classification (cats vs. dogs)
 - Metric: misclassification error (E = 1 A)
 - Humans can achieve 0,5% error

Algorithm	Train set error	Validation set error	Bias, %	Variance, %	Verdict
A1	1%	11%	0,5%	10%	High variance
A2	15%	16%	14,5%	1%	High bias
A3	15%	30%	14,5%	15%	Both
A4	0,5%	1%	0,5%	0,5%	"Neither"
A5	0,3%	0,4%	?	?	?

Taking the Next Step

- There are no set rules, only things we can try
- High bias
 - Train a bigger network
 - Possibly, try out different architectures
 - Try to find one which is best suited for the task
 - Train longer (e.g., more epochs)
- High variance
 - Apply regularization
 - Try a smaller network architecture
 - Get more data
 - Or try to augment the current dataset
 - E.g. bootstrap sampling, image rotation, adding noise, etc.

Training / Validation Curves

- The same as what we already know
 - Plot a metric (e.g., loss, accuracy...)
 w.r.t. the dataset size or epoch
- The shape and relative position of both curves help diagnose under- / overfitting
- We use model monitoring tools such as tensorboard or mlflow

Optimization

Learn smarter, not harder

- Vanishing / Exploding gradients problem
 - Deeper networks can learn very complex functions
 - ⇒ more layers = better
 - But let's look at what a computation looks like
 - Take, for example the activation at the 15th layer
 - Ignoring the activation functions for simplicity
 - $a^{[15]} \approx w^{[14]} a^{[14]} \approx w^{[14]} w^{[13]} a^{[13]} \approx \cdots \approx w^{[0]} w^{[1]} \cdots w^{[14]} x^{[14]}$

- If the weights are similarly scaled, the product becomes $\approx w^{15}$
 - If some elements of w are $\gtrsim 1$, the product will become **really big**
 - Alternatively, if some elements are ≤ 1,
 the product will become really small
- This leads to problems when updating weights: $w = w \nabla w$
 - The gradients either become $\approx \infty$, or ≈ 0
- Solution: initialize the weights properly

- First, we know that we need random initialization
 - Gaussian, $\mu = 0$, $\sigma = 1$
 - $\mu = 0$ is needed because any bias has already been accounted for
- Also, initialize the weights with small numbers
 - The exploding / vanishing gradient problem affects only the first stages of training
 - After that, the NN should learn proper weights
- Glorot (Xavier) initialization
 - init ~ $N(0, \sigma)$ where $\sigma = \sqrt{\frac{2}{n_{in} + n_{out}}}$
 - where n_{in} and n_{out} are the numbers of input and output units of the layer

tensorflow

```
layer = Dense(
    kernel_initializer = tf.glorot_normal_initializer(), # or None
    bias_initializer = tf.zeros_initializer())
```

In pytorch, we need to set the weights manually

```
layer = torch.nn.Linear(20, 30)
torch.nn.init.uniform_(layer.weight)
```

We could also use a custom function for a class (Module)

```
@torch.no_grad()
def init_weights(m):
    print(m)
    if type(m) == nn.Linear:
        m.weight.fill_(1.0)
        print(m.weight)

net = ...
net.apply(init_weights)
```

Mini-batch Gradient Descent

- It takes a lot of time to pass through the entire dataset to perform only 1 step of GD (batch gradient descent)
 - Solution: take a random sample (mini-batch) each time: mini-batch gradient descent
 - If the mini-batch contains one sample ⇒ stochastic GD (SGD)
- The cost function will not decrease smoothly
 - But will tend to decrease, also the training will be faster
- Choosing a mini-batch size (n_b)
 - Powers of 2 lead to better speed (<u>sometimes</u>)
 - E.g., 16, **32**, **64**, 128
 - Implementation
 - Shuffle the training set at the start of the epoch
 - At each training step, pass n_h examples

Improving Gradient Descent

Momentum

• When updating weights, a fraction β_1 of the previous vector is added to the current:

$$v_{t} = \beta_{1}v_{t-1} + (1 - \beta_{1})\nabla J$$

$$w_{t} = w_{t-1} - \alpha v_{t}$$

- This tends to average out the steps in the "wrong" direction and speed up convergence
- RMSprop
 - Similar to momentum, but second-order

$$S_t = \beta_2 S_{t-1} + (1 - \beta_2)(\nabla J)^2$$

$$w_t = w_{t-1} - \alpha \nabla J / (\sqrt{S_t} + \varepsilon)$$

Adam Optimizer

- Adam (Adaptive Moment Estimation; Kingma & Ba; 2014)
 - Combines momentum and RMSprop
 - Usually: α (tuning); $\beta_1 = 0.9$; $\beta_2 = 0.999$; $\varepsilon \in [10^{-6}; 10^{-8}]$
- Usage
 - In place of GradientDescentOptimizer
 - It's best to tune all hyperparameters but we may skip β_1 , β_2
 - Tuning α is non-negotiable!

```
tf.train.AdamOptimizer(
   learning_rate = 0.001,
   beta1 = 0.9,
   beta2 = 0.999,
   epsilon = 1e-8)
```

```
torch.optim.Adam(
    model.parameters(),
    lr = 0.001,
    betas = (0.9, 0.999),
    eps = 1e-8)
```

A Note on Local Minima

When training a model, GD and similar algorithms may get stuck in a

local minimum

ML solution: different starting points

 In higher-dimensional spaces, most points with zero gradient are not local minima

- "Min" at one direction, "max" at the other
- Example: 100 dimensions
 - Local min: all dimensions must be min
 - E.g., $p(\text{local min}) \approx 2^{-100} \approx 7,89.10^{-31}$
- When an optimizer gets to a saddle point, it's able to "roll off"

Hyperparameter Tuning

Similar to "standard" machine learning

Prioritizing Hyperparameters

• Most important: learning rate α

• Momentum term β_1 , mini-hatch size n_1

- Number of hidden units
- Number of hidden layers
- Search methodology

- Grid search doesn't work (too large search space)
- Use random search or Bayesian search instead
 - Optuna examples: <u>tensorflow</u> / <u>pytorch</u>

Hyperparameter Scales

- Uniform scale
 - E.g., hidden layers = $\{2, 3, 4\}$, hidden units $\in [50; 100]$
- Logarithmic scale
 - E.g., $\alpha \in [0,00001;10]$
 - If we pick uniformly, most values will be close to 1
 - Solution: use a log scale for better search space exploration
 - $\alpha = 10^k, k \in [-5; 1]$
- Exponentially weighted averages (β_1, β_2)
 - E.g., $\beta \in [0,9;0,9999]$
 - $\Rightarrow 1 \beta \in [0,1;0,0001]$
 - $\Rightarrow 1 \beta = 10^k, k \in [-4; -1]$
 - $\beta = 1 10^k, k \in [-4; -1]$

Batch Normalization

- Normalizing inputs: Z-score
- $x = \frac{x-\mu}{\sigma}$, $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} x_i^2$
- Batch normalization
 - At a given layer l, $z_n = \frac{z-\mu}{\sqrt{\sigma^2 + \varepsilon}}$
 - Use a linear transformation $\tilde{z} = \gamma z_n + \beta$ instead of the z
 - γ and β are parameters
 - γ and β are updated along with the weights w
 - Application: compute before activation function
 - Why does it work?
 - Doesn't allow the values to vary too much
 - Implementation from tensorflow.keras.layers import BatchNormalization BatchNormalization(input)

Summary

- 1. Regularization
- 2. Bias and variance
 - Error analysis
- 3. Optimization algorithms
- 4. Hyperparameter tuning
- 5. Normalization

Questions?

SoftUni Diamond Partners

THE CROWN IS YOURS

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

