

UNISOC Android 9.0 Camera CMC Tuning Guide

修改历史

版本号	日期	注释
V1.0	2020/3/10	初稿

Unisoc Confidential For hiar

文档信息

适用产品信息	适用版本信息	关键字
SC9863A/SC9832E/SC7731E/UMS312/ UDS710_UDX710	Android 9.0	CMC

Unisoc Confidential For hiar

1 原理介绍

2 调试流程

3 功能确认

4 调试案例

人眼对色彩的识别,是基于人眼对光谱存在三种不同的感应单元,不同的感应单元对不同波段的光有不同的响应曲线的原理,通过大脑的合成得到色彩的感知。 一般来说,我们可以通俗的用 RGB三基色的概念来理解颜色的分解和合成。理论上,如果人眼和 sensor 对光谱的色光的响应,在光谱上的体现如下的话,基本上对三色光的响应,相互之间不会发生影响,没有所谓的交叉效应。理想R/G/B光谱响应如下:

Unisoc Confidential For hiar

实际人眼对R/G/B的光谱响应

sensor光谱响应

从上图可以看出, sensor的R/G/B响应曲线和人眼的R/G/B响应曲线是不一致的。而且图像数据经过ISP的AWB处理之后肯定会存在色偏,因此需要RGB域进行色彩矩阵校正。

CMC矩阵会对每个像素的RGB进行校正,生成新的RGB值,其校正矩阵如下:

$$\begin{pmatrix} R' \\ G' \\ B' \end{pmatrix} = \begin{pmatrix} m_{RR} & m_{RG} & m_{RB} \\ m_{GR} & m_{GG} & m_{GB} \\ m_{BR} & m_{BG} & m_{BB} \end{pmatrix} \bullet \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$m_{RR} + m_{RG} + m_{RB} = 1$$
 $m_{GR} + m_{GG} + m_{GB} = 1$
 $m_{BR} + m_{BG} + m_{BB} = 1$

矩阵里的元素与效果参数中CMC对应关系如下:

	[0]	0x0841	2113	m_{RR}
	[1]	0x3B44	ar 15172	m_{RG}
1,	nisoc [2] onfid	ential 10. 0x7A	122	m_{RB}
וע	[3]	0x3E8B	16011	m_{GR}
	[4]	0x0583	1411	m_{GG}
	[5]	0x3FF3	16371	m_{GB}
	[6]	0x00	0	m_{BR}
	[7]	0x3CA5	15525	m_{BG}
	[8]	0x075C	1884	m_{BB}

拍摄标定图片:

- 1. 打开tuning参数中的BYPASS模块, BLC、AE、2D_LSC、AWB、AF模块不勾选,其余模块都勾选,如右上图所示
- 2. 在标准光源下拍摄A/TL84/CWF/D50/D65下的24 color chart raw/jpg图,参考图片如右下图所示

注意:

- 1. 背景不要有其他颜色干扰
- 2. 在AWB调试完成后再进行标定,标定图片不能有明显偏色

该模块是通过bv和ct来确认调用哪组CMC矩阵:

Smart ENVIRONMENT模块通过bv划分为4个scene:分别为lowlight、indoor、outdoor、highlight,如右图所

示,该模块参数建议使用默认值

Smart CMC每个scene通过划分为不同的ct去调用不同的index(保存CMC矩阵)

~	Smart	Enabl	e(Envi	ronment)	

Strength Range: [-1000, 3000]

Lowlight Max BV	360
Indoor Min BY	460
Specor Max BV	1060
Outdoor Min BV	1230
Outdoor Max BV	1360
Highlight Min BV	1460

配置smart CMC:

- smart CMC需要配置不同scene下的CMC矩阵: lowlight、indoor、 outdoor、highlight
- 每个scene下都需要配置色温阈值以及与色温对应的index矩阵, index 矩阵可以由之后的标定环节得到
- 每个scene可以通过Sample Num设置使用几组index矩阵, index矩阵 可以根据自己需要增加/删减
- · 当实际图片的色温在2个色温阈值之间时,CMC矩阵由2个矩阵插值得United Confidential For high

色温阈值推荐设置:

- lowlight至少要包含A、TL84色温
- indoor至少要包含A、TL84、D50色温
- outdoor/highlight至少要包含D50色温

- ①点击CMC
- ②导入标准光源下的定标图
- ③导入目标图片或者点击 Standard选择默认图片
- ④选择gamma曲线
- ⑤勾选饱和度,设置合适的饱和度,若不勾选,则使用默认饱和度100%
- ⑥根据smart CMC的设置, 选择一组index保存CMC 矩阵(例:A光的标定图校 正的CMC矩阵要保存在ct 为3000时对应的index)
- ⑦点击calculate

- ⑧ 框选定标图
- ⑨ 框选目标图片
- ⑩点击确定
- ⑪点击save,保存参数

调试流程:LAB色彩空间

该图显示了CIELAB色空间中的a *b *平面上的颜色误差(测量值和理想(参考)值之间的差异),其中方块代表理想值,圆圈代表测试值。单个颜色的色度(和对饱和度的感知相关)正比于它到原点(a* = b* = 0)的距离。

Saturation饱和度:数值越大颜色越鲜艳。

 ΔC^* ab, ΔE^* ab: 表示色彩还原度误差,一般而言值越小表示越接

近真实颜色

调试流程:调试单个色块

表示18个色块和色块对应的HSV数值(从左到右依次为Hue、Saturation、Value), 到去依次为Hue、Saturation、Value), 其数字与色块的对应关系如下图所示

1	-2 -	-3-	4-	- 5-	-6
7	8	9	10	11	12
13	14	15	16	17	18

要调试某个色块颜色,先点击该色块的序号。

再调试以下参数

Hue:表示该色块的色调 Sat:表示该色块的饱和度

Image Sat:表示整幅图像的饱和度

调试流程:weight(选调)

在定标完成后,如果比较关注某个颜色的准确度,可以点击右上角的weight,将该色块的weight提高,点击caculate,则校正出来的CMC矩阵对该颜色的还原效果较好

修改色块的weight值后,点击caculate, 每个色块的ΔC和ΔE以及在LAB色彩空间 的变化都会实时显示出来

ΔC:该色块颜色与标准色块的差异

ΔE:该色块颜色和亮度与标准色块的差异

weight:该色块的权重,建议调试时weight不要超过10,图中示例色块的weight为1.00

调试流程:add color(选调)

在调试各个色块的weight过程中,如果想校正除色卡18个颜色外的其他颜色,可以重新拍摄标定图片,并在拍摄标定图片的过程中加入该颜色,如下图所示

- ① 点击Add Color
- ②分别加载source image和target image
- ③ 按住ctrl , 用鼠标左键分别source image和target image上选取感兴趣区域
- ④ 点击add,就可以在weight界面看到 新增了一个色块
- ⑤点击caculate

如果想将增加的色块删除,需要先用 鼠标左键选中该色块,点击delete

调试流程:debug信息

查看CMC debug信息时需要先查看该图片的bv和ct,再结合smart environment和smart cmc模块确认该图片用的是哪组cmc index

表示该图片所应用的CMC矩阵

Ė € AWB		
─ ■ version	0x033452	210002
- ≝ date	0x00	0
−≣ time	0x00	0
+ algo_version		
−∭ cwfPgAbs100	0x0C82	3202
−∭ r_gain	0x0737	1847
– ≝ g_gain	0x0400	1024
–≝ b_gain	0x0619	1561
−≣ ct	0x1438	5176
–∭ bv	0x051F	1311
E 54	0,0021	1011
matrix	0X0011	1011
	0x0862	2146
□ (a) matrix		
matrix	0x0862	2146
— ■ matrix — ■ [0] — ■ [1]	0x0862 0xFFFFFB96	2146 -1130
— (■ matrix — (□ [0] — (□ [1] — (□ [2]	0x0862 0xFFFFFB96 0x07	2146 -1130 7
— ■ [0] — ■ [1] — ■ [2] — ■ [3]	0x0862 0xFFFFFB96 0x07 0xFFFFFED2	2146 -1130 7 -302
— ■ [0] — ■ [1] — ■ [2] — ■ [3] — ■ [4]	0x0862 0xFFFFFB96 0x07 0xFFFFFED2 0x06ED	2146 -1130 7 -302 1773
— ■ [0] — ■ [1] — ■ [2] — ■ [3] — ■ [4] — ■ [5]	0x0862 0xFFFFFB96 0x07 0xFFFFFED2 0x06ED 0xFFFFFE41	2146 -1130 7 -302 1773 -447

AWB3.0

AWB2.0

先将smart CMC中每个scene下index都写为0,手动将index0 CMC矩阵修改异常,push进手机验证

- ≌ [0]	0x0A	10
— ≡ [1]	0x00	0
− ≡ [2]	0x78	120
− ≡ [3]	0x3C	60
− ≝ [4]	0x2710	10000
− ≝ [5]	0x56	86
− ≝ [6]	0x06	6
− Ⅲ [7]	0x3CBD	15549
- ∭ [8]	0x07B9	1977

异常CMC矩阵示例

CMC正常

CMC异常

室内人脸偏红

问题分析:

1、框选图像中的灰色区域,发现R/G、B/G的值基本相等,说明AWB是正确的。如果发现AWB偏色,先将AWB调试正确后再确认人脸效果

2、查看exif信息,该图片bv为560,ct_final为6282,结合smart ENVIRONMENT和smart CMC的设置,该图片主要使用的是indoor下的index5这组CMC矩阵

bv	ct_mean	ct_final	pg_mean	pg_final
560	6117	6282	-17	-13

	Scene: indoor	▼ Sample Num	: 5
		СТ	Index
	Confidential For hiar	3350	1
Jnisou	1	3600	2
	2	4000	3
	3	4500	4
	4	6300	5

3、在灯箱里拍摄D65下24色卡,用imatest解析色块在LAB色彩空间的分布情况,发现图片的第2个色块(肤色色块)相对于标准色块往红色方向偏,造成该色温下人脸偏红

Unisoc Confidential For hiar

小 紫光展锐[®]

问题修改:

重复indoor D65光源CMC矩阵的标定操作,通过color calibrate修改第2个色块的色调light skin

小 紫光展锐[™]

下图为LAB色彩空间第2个色块的变化情况,从图像可以看出第2个色块的色调从偏红变为与标准色块色调基本一致

改前人脸偏红

改后人脸正常

Unisoc Confident

THANKS

本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技