Student Performance in Mathematics Classroom

Maheen Syed - MS Data Science - Brown University

Github: https://github.com/msyed96/DATA1030-Project

25 - October - 2019

- Introduction
- Dataset overview
- Preprocessing
- EDA
- Conclusion/Questions

INTRO:

- Problem: Can we predict academic performance based on the different features we know about the students in the Math class?
- Importance: Make education more accessible and inclusive by looking at factors that affect student performance
- Type of problem: Classification
- **Source:** UCI Machine Learning Repository

DATASET OVERVIEW:

- Student performance in Secondary School Math Class, in two schools based in Portugal. (Data collected in 2006)
- Grades 0 to 20 points scale
- Students Evaluated three times (G1, G2 and G3), with G3 being the final grade.

PREPROCESSING: STEPS

- Number of Data points before preprocessing: (395,33)
- Number of Missing Values: 0
- Number of Data points after preprocessing: (395, 50)
- Target Variable: G3 Final Grade in Class <10
 is Fail | >= 10 is Pass

	Features
PREPROCESSING: STEPS	Categorical Features - 17 ftrs
	Categorical - Ordinal Features - 11 ftrs
	Numerical Features - 4 ftrs
	• Target Variable - 0 - I

tegorical Features -17 ftrs ategorical - Ordinal Features - 11 ftrs

Already Preprocessed Min-Max Scaling

Target Variable - G3 - Label Encoding

0 - Fail | 1 - Pass

Preprocess

One Hot Encoding

- Classification Problem
- Calculated Balance of Data Set
- Balanced!

EDA: Correlation Matrix:

1.00

- 0.75

- 0.50

- 0.25

- 0.00 -

- -0.25

- -0.50

- -0.75

-1.00

Questions?

Thank you!