Costruzioni paradossali in Teoria della Misura: il Teorema di Davies

Chiara Molinari

Relatore: Prof. Luigi Ambrosio

10 giugno 2022

Introduzione: paradossi in teoria della misura

Talvolta il comportamento della misura di Lebesgue può essere molto controintuitivo: un esempio famoso è il paradosso di Banach-Tarski.

Introduzione: paradossi in teoria della misura

Talvolta il comportamento della misura di Lebesgue può essere molto controintuitivo: un esempio famoso è il paradosso di Banach-Tarski. Si possono ottenere risultati paradossali anche restringendosi a considerare insiemi misurabili, ottenuti con metodi costruttivi che non richiedono l'uso dell'assioma della scelta.

Introduzione: paradossi in teoria della misura

Talvolta il comportamento della misura di Lebesgue può essere molto controintuitivo: un esempio famoso è il paradosso di Banach-Tarski. Si possono ottenere risultati paradossali anche restringendosi a considerare insiemi misurabili, ottenuti con metodi costruttivi che non richiedono l'uso dell'assioma della scelta.

Teorema (Davies, 1951)

Dato un insieme misurabile $A \subseteq \mathbb{R}^2$, esiste un insieme di rette L tale che:

- per ogni punto di A passa una retta di L;
- $\mu(A) = \mu(L^*)$, dove μ è misura di Lebesgue e L^* il sottoinsieme di \mathbb{R}^2 coperto dalle rette di L.

Chiara Molinari II Teorema di Davies 10 giugno 2022 2/18

Nel 2001, viene dimostrata una generalizzazione del teorema, nel caso in cui μ è una misura boreliana σ -finita.

Nella tesi è dimostrata tale generalizzazione, attraverso i seguenti passi intermedi:

Nel 2001, viene dimostrata una generalizzazione del teorema, nel caso in cui μ è una misura boreliana σ -finita.

Nella tesi è dimostrata tale generalizzazione, attraverso i seguenti passi intermedi:

 la dimostrazione nel caso della misura di Lebesgue, introducendo la formulazione duale del problema e alcune costruzioni geometriche nel piano;

Nel 2001, viene dimostrata una generalizzazione del teorema, nel caso in cui μ è una misura boreliana σ -finita.

Nella tesi è dimostrata tale generalizzazione, attraverso i seguenti passi intermedi:

- la dimostrazione nel caso della misura di Lebesgue, introducendo la formulazione duale del problema e alcune costruzioni geometriche nel piano;
- lo sviluppo della teoria di Suslin;

Nel 2001, viene dimostrata una generalizzazione del teorema, nel caso in cui μ è una misura boreliana σ -finita.

Nella tesi è dimostrata tale generalizzazione, attraverso i seguenti passi intermedi:

- la dimostrazione nel caso della misura di Lebesgue, introducendo la formulazione duale del problema e alcune costruzioni geometriche nel piano;
- lo sviluppo della teoria di Suslin;
- ullet la dimostrazione nel caso di μ generica boreliana σ -finita.

Esiste una corrispondenza tra le rette in $\mathbb{P}^2\mathbb{R}$ e i punti in $\mathbb{P}^2\mathbb{R}$: alla retta di equazione $ax_0 + bx_1 + cx_2 = 0$ associo il punto [a, b, c].

Esiste una corrispondenza tra le rette in $\mathbb{P}^2\mathbb{R}$ e i punti in $\mathbb{P}^2\mathbb{R}$: alla retta di equazione $ax_0+bx_1+cx_2=0$ associo il punto [a,b,c]. Si consideri il piano proiettivo reale $\mathbb{P}^2\mathbb{R}$, realizzato come quoziente di \mathbb{S}^2 . Una misura su \mathbb{S}^2 induce tramite la proiezione al quoziente una misura su $\mathbb{P}^2\mathbb{R}$.

Esiste una corrispondenza tra le rette in $\mathbb{P}^2\mathbb{R}$ e i punti in $\mathbb{P}^2\mathbb{R}$: alla retta di equazione $ax_0 + bx_1 + cx_2 = 0$ associo il punto [a, b, c].

Si consideri il piano proiettivo reale $\mathbb{P}^2\mathbb{R}$, realizzato come quoziente di \mathbb{S}^2 . Una misura su \mathbb{S}^2 induce tramite la proiezione al quoziente una misura su $\mathbb{P}^2\mathbb{R}$.

Possiamo così definire una misura sulle rette proiettive. Se una retta è affine, considero la sua equazione omogeneizzata.

L'usuale misura di area su \mathbb{S}^2 , induce una naturale misura $\tilde{\theta}$ sulle rette.

Esiste una corrispondenza tra le rette in $\mathbb{P}^2\mathbb{R}$ e i punti in $\mathbb{P}^2\mathbb{R}$: alla retta di equazione $ax_0 + bx_1 + cx_2 = 0$ associo il punto [a, b, c].

Si consideri il piano proiettivo reale $\mathbb{P}^2\mathbb{R}$, realizzato come quoziente di \mathbb{S}^2 . Una misura su \mathbb{S}^2 induce tramite la proiezione al quoziente una misura su $\mathbb{P}^2\mathbb{R}$.

Possiamo così definire una misura sulle rette proiettive. Se una retta è affine, considero la sua equazione omogeneizzata.

L'usuale misura di area su \mathbb{S}^2 , induce una naturale misura $\tilde{\theta}$ sulle rette. In modo simile, diciamo che un insieme di rette è aperto/compatto/boreliano/misurabile se l'insieme di punti corrispondente nel duale lo è.

Osservazione

Un insieme di rette passanti per un punto $P \in \mathbb{P}^2\mathbb{R}$, è rappresentato nel duale da punti appartenenti a una retta ℓ_P .

Osservazione

Un insieme di rette passanti per un punto $P \in \mathbb{P}^2\mathbb{R}$, è rappresentato nel duale da punti appartenenti a una retta ℓ_P .

Fissato un punto P nel piano, la misura $\tilde{\theta}$ delle rette passanti per esso è sempre nulla.

Osservazione

Un insieme di rette passanti per un punto $P \in \mathbb{P}^2\mathbb{R}$, è rappresentato nel duale da punti appartenenti a una retta ℓ_P .

Fissato un punto P nel piano, la misura $\tilde{\theta}$ delle rette passanti per esso è sempre nulla.

Usando l'osservazione, posso comunque definire una misura sulle rette passanti per P: è quella indotta dalla naturale misura su ℓ_P (omeomorfo a \mathbb{S}^1 quozientato).

Definizione

Un insieme è di **prima categoria** se unione numerabile di insiemi mai densi (cioè con chiusura a parte interna vuota).

10 giugno 2022

Definizione

Un insieme è di **prima categoria** se unione numerabile di insiemi mai densi (cioè con chiusura a parte interna vuota). Un insieme è **residuale** se il suo complementare è di prima categoria.

Definizione

Un insieme è di **prima categoria** se unione numerabile di insiemi mai densi (cioè con chiusura a parte interna vuota). Un insieme è **residuale** se il suo complementare è di prima categoria.

Definizione

Dato un insieme di rette nel piano L, indichiamo con L^* l'insieme di punti coperti da rette di L.

10 giugno 2022

Definizione

Un insieme è di prima categoria se unione numerabile di insiemi mai densi (cioè con chiusura a parte interna vuota).

Un insieme è residuale se il suo complementare è di prima categoria.

Definizione

Dato un insieme di rette nel piano L, indichiamo con L^* l'insieme di punti coperti da rette di L.

Similmente, dato un insieme di punti nel piano A, indichiamo con A^* l'insieme delle rette passanti per punti di A.

Sia A aperto del piano e sia x un punto che non appartiene ad A. Allora esiste un insieme boreliano di rette L tale che:

- per ogni punto $p \in A$, l'insieme delle rette di L passanti per p è residuale;
- $L^* \backslash A$ interseca ogni retta per x in un insieme di misura di Lebesgue nulla.

Sia A aperto del piano e sia x un punto che non appartiene ad A. Allora esiste un insieme boreliano di rette L tale che:

- per ogni punto $p \in A$, l'insieme delle rette di L passanti per p è residuale;
- $L^* \backslash A$ interseca ogni retta per x in un insieme di misura di Lebesgue nulla.

Questo è un rafforzamento del teorema di Davies per la misura di Lebesgue.

Sia A aperto del piano e sia x un punto che non appartiene ad A. Allora esiste un insieme boreliano di rette L tale che:

- per ogni punto $p \in A$, l'insieme delle rette di L passanti per p è residuale;
- $L^* \backslash A$ interseca ogni retta per x in un insieme di misura di Lebesgue nulla.

Questo è un rafforzamento del teorema di Davies per la misura di Lebesgue.

ullet Si mostra che condizione A aperto non è restrittiva.

Chiara Molinari II Teorema di Davies 10 giugno 2022 7/18

Sia A aperto del piano e sia x un punto che non appartiene ad A. Allora esiste un insieme boreliano di rette L tale che:

- per ogni punto $p \in A$, l'insieme delle rette di L passanti per p è residuale;
- $L^* \backslash A$ interseca ogni retta per x in un insieme di misura di Lebesgue nulla.

Questo è un rafforzamento del teorema di Davies per la misura di Lebesgue.

- ullet Si mostra che condizione A aperto non è restrittiva.
- ullet Viene aggiunta una condizione topologica su L. Questa implica che L copre A per il teorema di Baire.

Sia A aperto del piano e sia x un punto che non appartiene ad A. Allora esiste un insieme boreliano di rette L tale che:

- per ogni punto $p \in A$, l'insieme delle rette di L passanti per p è residuale;
- $L^* \backslash A$ interseca ogni retta per x in un insieme di misura di Lebesgue nulla.

Questo è un rafforzamento del teorema di Davies per la misura di Lebesgue.

- ullet Si mostra che condizione A aperto non è restrittiva.
- ullet Viene aggiunta una condizione topologica su L. Questa implica che L copre A per il teorema di Baire.
- Per Fubini, il sottoinsieme del piano $L^* \setminus A$ ha misura di Lebesgue nulla se e solo se, dato un punto x, quasi ogni retta per x interseca $L^* \setminus A$ in un insieme di misura lineare nulla. Togliendo il quasi, la tesi è più forte.

Enunciamo così la versione duale del precedente lemma.

Lemma (2)

Sia L un insieme aperto di rette e sia X un retta non appartenente a L. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- per ogni punto di X passano trascurabili rette di $A^* \backslash L$.

Enunciamo così la versione duale del precedente lemma.

Lemma (2)

Sia L un insieme aperto di rette e sia X un retta non appartenente a L. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- per ogni punto di X passano trascurabili rette di $A^* \backslash L$.

Il primo passo della dimostrazione è assumere che X sia la retta all'infinito.

Enunciamo così la versione duale del precedente lemma.

Lemma (2)

Sia L un insieme aperto di rette e sia X un retta non appartenente a L. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- per ogni punto di X passano trascurabili rette di $A^* \backslash L$.

Il primo passo della dimostrazione è assumere che X sia la retta all'infinito. In seguito la dimostrazione è piuttosto tecnica e vengono usate costruzioni geometriche che induttivamente permettono di costruire collezioni di parallelogrammi nel piano, con certe caratteristiche.

Una di queste è la costruzione geometrica detta "venetian blind", che dato un parallelogramma P, gli associa una collezione finita di parallelogrammi contenuti in P, nel seguente modo.

Una di queste è la costruzione geometrica detta "venetian blind", che dato un parallelogramma P, gli associa una collezione finita di parallelogrammi contenuti in P, nel seguente modo.

Una di queste è la costruzione geometrica detta "venetian blind", che dato un parallelogramma P, gli associa una collezione finita di parallelogrammi contenuti in P, nel seguente modo.

Ogni retta in direzione appartenente a D_1 che interseca P interseca anche uno dei nuovi parallelogrammi.

Una di queste è la costruzione geometrica detta "venetian blind", che dato un parallelogramma P, gli associa una collezione finita di parallelogrammi contenuti in P, nel seguente modo.

Ogni retta in direzione appartenente a D_1 che interseca P interseca anche uno dei nuovi parallelogrammi.

La misura della proiezione dell'unione dei parallelogrammi sulla retta A_1A_4 è al più $2\cdot |A_1A_4|$ in ogni direzione in D_2 .

Induttivamente, all'n-esimo passo, una retta in direzione in D_1 che interseca P, interseca uno dei parallelogrammi dell'n-esimo passo. Inoltre la misura della proiezione dell'unione dei parallelogrammi sulla retta A_1A_4 è al più $2\cdot |A_1A_4|$ in ogni direzione in $D_2,...,D_{n+1}$.

Chiara Molinari II Teorema di Davies 10 giugno 2022 10 / 18

Lemma (2)

Sia L un insieme aperto di rette. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- ullet in ogni direzione ci sono trascurabili rette che intersecano A e non appartengono a L.

Lemma (2)

Sia L un insieme aperto di rette. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- ullet in ogni direzione ci sono trascurabili rette che intersecano A e non appartengono a L.

Si costruisce A esplicitamente, tramite intersezioni e unioni applicate a una collezione numerabile di parallelogrammi ottenuti con la procedura di prima.

Lemma (2)

Sia L un insieme aperto di rette. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- ullet in ogni direzione ci sono trascurabili rette che intersecano A e non appartengono a L.

Si costruisce A esplicitamente, tramite intersezioni e unioni applicate a una collezione numerabile di parallelogrammi ottenuti con la procedura di prima.

Per quasi ogni direzione d, si costruisce un insieme $A_d \subseteq A$ con questa proprietà: ogni una retta non in L e in direzione d che interseca Ainterseca anche A_d .

Lemma (2)

Sia L un insieme aperto di rette. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- ullet in ogni direzione ci sono trascurabili rette che intersecano A e non appartengono a L.

Si costruisce A esplicitamente, tramite intersezioni e unioni applicate a una collezione numerabile di parallelogrammi ottenuti con la procedura di prima.

Per quasi ogni direzione d, si costruisce un insieme $A_d \subseteq A$ con questa proprietà: ogni una retta non in L e in direzione d che interseca A interseca anche A_d .

Si conclude mostrando che la misura della proiezione di A_d in direzione d è arbitrariamente piccola.

Costruzioni per parallelogrammi

Lemma (2)

Sia L un insieme aperto di rette. Allora esiste un insieme boreliano di punti A per cui:

- ogni retta di L interseca A in un insieme residuale;
- in ogni direzione ci sono trascurabili rette che intersecano A e non appartengono a L.

Si costruisce A esplicitamente, tramite intersezioni e unioni applicate a una collezione numerabile di parallelogrammi ottenuti con la procedura di prima.

Per quasi ogni direzione d, si costruisce un insieme $A_d\subseteq A$ con questa proprietà: ogni una retta non in L e in direzione d che interseca A interseca anche A_d .

Si conclude mostrando che la misura della proiezione di A_d in direzione d è arbitrariamente piccola.

La condizione di residualità è piuttosto diretta.

Teorema

Sia $A \subset \mathbb{R}^2$ misurabile e μ una misura boreliana σ -finita nel piano. Allora esiste un insieme boreliano di rette L tale che:

- L contiene un insieme residuale di rette per ogni punto di A;
- $-\mu(A) = \mu(L^*).$

Teorema

Sia $A \subset \mathbb{R}^2$ misurabile e μ una misura boreliana σ -finita nel piano. Allora esiste un insieme boreliano di rette L tale che:

- L contiene un insieme residuale di rette per ogni punto di A;
- $-\mu(A) = \mu(L^*).$

Similmente, data una misura boreliana $\tilde{\mu}$ σ -finita sull'insieme delle rette nel piano, per un insieme misurabile di rette L, esiste un insieme di punti A tale che ogni retta di L interseca A in un insieme residuale e $\tilde{\mu}(A^*) = \tilde{\mu}(L)$.

Teorema

Sia $A \subset \mathbb{R}^2$ misurabile e μ una misura boreliana σ -finita nel piano. Allora esiste un insieme boreliano di rette L tale che:

- L contiene un insieme residuale di rette per ogni punto di A;
- $-\mu(A) = \mu(L^*).$

Similmente, data una misura boreliana $\tilde{\mu}$ σ -finita sull'insieme delle rette nel piano, per un insieme misurabile di rette L, esiste un insieme di punti A tale che ogni retta di L interseca A in un insieme residuale e $\tilde{\mu}(A^*) = \tilde{\mu}(L)$.

Ci soffermiamo solo sul primo enunciato. La prima verifica è che dato L insieme di rette boreliano, allora L^* è misurabile rispetto a qualsiasi misura μ boreliana finita.

Introduciamo alcune definizioni generali.

Definizione

Sia X un insieme non vuoto e sia \mathcal{E} una collezione di suoi sottoinsiemi.

Introduciamo alcune definizioni generali.

Definizione

Sia X un insieme non vuoto e sia $\mathcal E$ una collezione di suoi sottoinsiemi. Diciamo che un insieme A è analitico o di Suslin se è nella forma

$$A = \bigcup_{(n_i) \in \mathbb{N}^{\infty}} \bigcap_{k=1}^{\infty} A_{n_1, \dots, n_k}.$$

per opportuni $A_{n_1,...,n_k} \in \mathcal{E}$.

Introduciamo alcune definizioni generali.

Definizione

Sia X un insieme non vuoto e sia $\mathcal E$ una collezione di suoi sottoinsiemi. Diciamo che un insieme A è analitico o di Suslin se è nella forma

$$A = \bigcup_{(n_i) \in \mathbb{N}^{\infty}} \bigcap_{k=1}^{\infty} A_{n_1, \dots, n_k}.$$

per opportuni $A_{n_1,...,n_k} \in \mathcal{E}$.

Questa è detta operazione di Suslin.

La collezione degli insiemi di questo tipo e l'insieme vuoto è indicata con $S(\mathcal{E}).$

Valgono i seguenti teoremi generali.

Valgono i seguenti teoremi generali.

Teorema

Valgono i seguenti teoremi generali.

Teorema

- Se il complementare di ogni insieme in $\mathcal E$ appartiene a $S(\mathcal E)$ e $\varnothing \in \mathcal E$, la σ -algebra generata da $\mathcal E$ è contenuta in $S(\mathcal E)$.

Valgono i seguenti teoremi generali.

Teorema

- Se il complementare di ogni insieme in $\mathcal E$ appartiene a $S(\mathcal E)$ e $\varnothing \in \mathcal E$, la σ -algebra generata da $\mathcal E$ è contenuta in $S(\mathcal E)$.

Siccome L insieme boreliano, applicando il teorema con $\mathcal E$ la classe dei compatti di $\mathbb P^2\mathbb R$, si ha

$$L = \bigcup_{(n_i) \in \mathbb{N}^{\infty}} \bigcap_{k=1}^{\infty} K_{n_1, \dots, n_k}$$

con $K_{n_1,\dots,n_k}\in\mathcal{E}$. Posso anche supporre che l'intersezione sia decrescente.

Si mostra che vale anche

$$L^* = \bigcup_{(n_i) \in \mathbb{N}^\infty} \bigcap_{k=1}^\infty K_{n_1,\dots,n_k}^*.$$

Chiara Molinari II Teorema di Davies 10 giugno 2022 15 / 18

Si mostra che vale anche

$$L^* = \bigcup_{(n_i) \in \mathbb{N}^\infty} \bigcap_{k=1}^\infty K_{n_1,\dots,n_k}^*.$$

Si mostra che dato K compatto di rette, allora K^* analitico.

Si mostra che vale anche

$$L^* = \bigcup_{(n_i) \in \mathbb{N}^\infty} \bigcap_{k=1}^\infty K_{n_1,\dots,n_k}^*.$$

Si mostra che dato K compatto di rette, allora K^* analitico. Ricordando che $S(S(\mathcal{E}))=S(\mathcal{E})$, abbiamo quindi che L^* analitico.

Si mostra che vale anche

$$L^* = \bigcup_{(n_i) \in \mathbb{N}^\infty} \bigcap_{k=1}^\infty K_{n_1,\dots,n_k}^*.$$

Si mostra che dato K compatto di rette, allora K^* analitico. Ricordando che $S(S(\mathcal{E}))=S(\mathcal{E})$, abbiamo quindi che L^* analitico. Concludiamo applicando il seguente teorema.

Si mostra che vale anche

$$L^* = \bigcup_{(n_i) \in \mathbb{N}^{\infty}} \bigcap_{k=1}^{\infty} K_{n_1,\dots,n_k}^*.$$

Si mostra che dato K compatto di rette, allora K^* analitico. Ricordando che $S(S(\mathcal{E})) = S(\mathcal{E})$, abbiamo quindi che L^* analitico. Concludiamo applicando il seguente teorema.

Teorema

Detta μ una misura finita. Se $\mathcal E$ famiglia di insiemi misurabili chiusa per unioni finite e intersezioni numerabili, ogni insieme in $S(\mathcal E)$ è μ -misurabile.

Dato A misurabile, cerchiamo quindi un insieme boreliano L che copra A con le caratteristiche richieste.

Dato A misurabile, cerchiamo quindi un insieme boreliano L che copra A con le caratteristiche richieste.

Dimostrazione

• Passo 1: possiamo assumere che μ abbia supporto compatto K disgiunto da A.

Dato A misurabile, cerchiamo quindi un insieme boreliano L che copra Acon le caratteristiche richieste.

Dimostrazione

- Passo 1: possiamo assumere che μ abbia supporto compatto Kdisgiunto da A.
- Passo 2: possiamo assumere che $A = B(x,r) \setminus \{x\}$ e B(x,2r) sia disgiunta da K. Per brevità, assumiamo $A = B(0,1) \setminus \{0\}$ e $B(0,2) \cap K = \emptyset$.

Dato A misurabile, cerchiamo quindi un insieme boreliano L che copra A con le caratteristiche richieste.

Dimostrazione

- Passo 1: possiamo assumere che μ abbia supporto compatto K disgiunto da A.
- Passo 2: possiamo assumere che $A=B(x,r)\backslash\{x\}$ e B(x,2r) sia disgiunta da K. Per brevità, assumiamo $A=B(0,1)\backslash\{0\}$ e $B(0,2)\cap K=\varnothing$.
- Passo 3: possiamo assumere che μ sia finita.

Dato A misurabile, cerchiamo quindi un insieme boreliano L che copra A con le caratteristiche richieste.

Dimostrazione

- Passo 1: possiamo assumere che μ abbia supporto compatto K disgiunto da A.
- Passo 2: possiamo assumere che $A=B(x,r)\backslash\{x\}$ e B(x,2r) sia disgiunta da K. Per brevità, assumiamo $A=B(0,1)\backslash\{0\}$ e $B(0,2)\cap K=\varnothing$.
- Passo 3: possiamo assumere che μ sia finita.
- Passo 4: per concludere, applichiamo il lemma 1 (teorema di Davies per la misura di Lebesgue).

Applicando il lemma 1 ad A e x=0, otteniamo l'insieme boreliano di rette M.

17 / 18

Chiara Molinari II Teorema di Davies 10 giugno 2022

Applicando il lemma 1 ad A e x=0, otteniamo l'insieme boreliano di rette M.

- M contiene un insieme residuale di rette per ogni punto di A;
- $M^* \setminus A$ interseca ogni retta per 0 in un insieme di misura di Lebesgue nulla.

Applicando il lemma 1 ad A e x=0, otteniamo l'insieme boreliano di rette M.

- M contiene un insieme residuale di rette per ogni punto di A;
- $M^* \setminus A$ interseca ogni retta per 0 in un insieme di misura di Lebesgue nulla.

L'insieme L di rette cercato è L=tM, per un certo $1\leq t\leq 2$ (che si dimostra esistere).

17 / 18

Chiara Molinari II Teorema di Davies 10 giugno 2022

Applicando il lemma 1 ad A e x=0, otteniamo l'insieme boreliano di rette M.

- M contiene un insieme residuale di rette per ogni punto di A;
- $M^* \setminus A$ interseca ogni retta per 0 in un insieme di misura di Lebesgue nulla.

L'insieme L di rette cercato è L=tM, per un certo $1\leq t\leq 2$ (che si dimostra esistere).

L così definito è ancora boreliano, da cui L^* misurabile. Si mostra che soddisfa la condizione di residualità e che $\mu(L^*)=0=\mu(A)$.

17 / 18

Chiara Molinari II Teorema di Davies 10 giugno 2022

Bibliografia

Bibliografia

- On accessibility of plane sets and differentiation of functions of two real variables, R. O. Davies
- How to make Davies' Theorem visible, M. Csörnyei
- On the visibility of invisible sets, M. Csörnyei
- Measure Theory, V.I. Bogachev

Grazie per l'attenzione