Math 170A HW3

Neo Lee

04/21/2023

Problem 4. $B = X^{\top}AX = X^{\top}R^{\top}RX = (RX)^{\top}(RX)$. Let M = RX, then $B = (RX)^{\top}(RX) \Leftrightarrow B = RX$ $M^{\top}M$. Since R, X are both invertible with determinant $\neq 0, M$ is also invertible with determinant $\neq 0$. Then let $\vec{x} \neq \vec{0}$. $\vec{x}^{\top} B \vec{x} = \vec{x}^{\top} M^{\top} M \vec{x} = (M \vec{x})^{\top} M \vec{x} = M \vec{x} \cdot M \vec{x}$. Let $y = M \vec{x}$. Since M is invertible and

 $\vec{x} \neq \vec{0}, \ \vec{y} \neq \vec{0}. \ \text{Hence}, \ M\vec{x} \cdot M\vec{x} = \vec{y} \cdot \vec{y} > 0.$

Therefore, B is positive definite.