Конспект к билетам по мат. анализу

Выполнил великий и могучий Файтельсон Антон

1. Аксиоматическое определение множества действительных чисел. Свойство полноты.

Определение 1. Множество \mathbb{R} называется множеством действительных (вещественных) чисел, а его элементы — действительными (вещественными) числами, если выполнен следующий комплекс условий, называемый аксиоматикой вещественных чисел:

Краткая сводка. Закон (правило) f, посредством которого каждому а $\in A$ сопоставляется единственный $b \in B$, называют отображением. Обычно это записывают так: b = f(a) или $f: A \to B$ (отображение из $A \in B$).

(І) Аксиомы сложения

Определено отображение (Операция сложения)

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
.

сопоставляющее каждой упорядоченной паре (x, y) элементов x, y из \mathbb{R} некоторый элемент $x y \in \mathbb{R}$, называемый суммой x и y. При этом выполнены следующие условия:

• Нейтральный элемент(называемый в случае сложения нулем)

$$\forall x \in \mathbb{R} : \exists 0 : x + 0 = 0 + x = x$$

• Противоположный элемент

$$\forall x \in \mathbb{R} : \exists (-x) \in \mathbb{R} : x + (-x) = (-x) + x = 0$$

• Ассоциативность

$$\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z$$

• Коммунитативность

$$\forall x, y \in \mathbb{R} : x + y = y + x$$

(II) Аксиомы умножения

Определено отображение (Операция умножения)

$$\bullet: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
,

сопоставляющее каждой упорядоченной паре (x, y) элементов x, y из \mathbb{R} некоторый элемент $x \bullet y \in \mathbb{R}$, называемый произведением x и y. При этом выполнены следующие условия:

• Нейтральный элемент(называемый в случае умножения единицей)

$$\forall x \in \mathbb{R} : \exists 1 \in \mathbb{R} \backslash 0 : x \cdot 1 = 1 \cdot x = x$$

• Обратный элемент

$$\forall x \in \mathbb{R} \backslash 0 : \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = x^{-1} \cdot x = 1$$

• Ассоциативность

$$\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

• Коммунитативность

$$\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$$

(I, II) Связь сложения и умножения (Дистрибутивность умножения к сложению)

$$\forall x, y, z \in \mathbb{R} : (x+y)z = xz + yz$$

(III) Аксиомы порядка

Между элементами \mathbb{R} имеется отношение \leq , т.е. для элементов x, y из \mathbb{R} установлено, выполняется ли $x \leq y$ или нет. При этом должны удолетворяться следующие условия:

- $\forall x \in \mathbb{R}(x \le x)$
- $(x \le y) \land (y \le x) \Rightarrow (x = y)$

- $(x \le y) \land (y \le z) \Rightarrow (x \le z)$
- $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (x \le y) \lor (y \le x)$

Отношение \leq в $\mathbb R$ называется отношением неравенства.

(I, III) Связь сложения и порядка в $\mathbb R$

$$\forall x, y, z \in \mathbb{R} : (x \le y) \Rightarrow (x + z \le y + z)$$

(II, III) Связь умножения и порядка в \mathbb{R}

$$\forall x, y \in \mathbb{R} : (0 \le x) \land (0 \le y) \Rightarrow (0 \le x \cdot y)$$

(IV) Аксиома полноты(непрерывности)

Если X и Y — непустые подмножества \mathbb{R} , обладающие тем свойством, что для любых элементов $x \in X$ и $y \in Y$ выполнено $x \leq y$, то $\exists c \in \mathbb{R}$, что $x \leq c \leq y$ для любых элементов $x \in X$ и $y \in Y$.

Определение через кванторы(мне было весело это писать):

$$\forall x \in X, y \in Y : x \le y \Rightarrow \exists c \in \mathbb{R} : x \le c \le y$$

2. Следствия из аксиом множества действительных чисел.

Замечание. Следствий много, и поэтому часть из них не будет представлено, я хз какие будут на экзамене.

- (а) Следствия аксиом сложения
 - В множестве действительных чисел имеется только один нуль. \mathcal{L} оказательство. Если 0_1 и 0_2 — нули в \mathbb{R} , то по определению нуля

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2$$

• В множестве действительных чисел у каждого элемента имеется единственный противоположный элемент.

3

 \mathcal{A} оказательство. Если x_1 и x_2 — элементы, противоположные $x \in \mathbb{R}$, то

$$x_1 = x_1 + 0 = x_1 + (x + x_2) = (x_1 + x) + x_2 = 0 + x_2 = x_2$$

• Уравнение a+x=b в $\mathbb R$ имеет единственное решение:

$$x = b + (-a)$$

Доказательство. Это вытекает из существования и единственности у каждого элемента а $\in \mathbb{R}$ противоположного ему элемента:

$$(a+x=b) \Leftrightarrow ((x+a)+(-a)=b+(-a)) \Leftrightarrow$$
$$\Leftrightarrow (x+(a+(-a))=b+(-a)) \Leftrightarrow$$
$$\Leftrightarrow (x+0=b+(-a)) \Leftrightarrow (x=b+(-a))$$

(b) Следствия аксиом умножения

- В множестве действительных чисел имеется только одна единица.
- Для каждого числа $\mathbf{x} \neq \mathbf{0}$ имеется только один обратный элемент x^{-1} .
- Уравнение $\mathbf{a} \cdot \mathbf{x} = \mathbf{b}$ при $\mathbf{a} \in \mathbb{R} \backslash 0$ имеет притом единственное решение $\mathbf{x} = \mathbf{b} \cdot a^{-1}$

Замечание. Доказательства? Нахуй они нужны? Скопируй с верхних следствий епта, если так нужны

- (с) Следствия аксиомы связи сложения и умножения
 - $\forall x \in \mathbb{R} : x \cdot 0 = 0 \cdot x = 0$ Доказательство. $(x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0) \Rightarrow$ $\Rightarrow (x \cdot 0 = x \cdot 0 + 0 = x \cdot 0 + x \cdot 0 + (-x) \cdot 0 = x \cdot 0 + (-x) \cdot 0 = 0)$

• $x \cdot y = 0 \Rightarrow (x = 0) \lor (y = 0)$

тивоположного элемента.

Доказательство. Если, например, у $\neq 0$, то из единственности решения уравнения х \cdot у = 0 относительно х находим х = 0 \cdot у $^{-1}$ = 0

- $\forall x \in \mathbb{R}: -x = (-1) \cdot x$ Доказательство. $x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = x \cdot 0 = 0 = x + (-x)$, и утверждение следует из единственности про-
- $\forall x \in \mathbb{R} : (-1)(-x) = x$ Доказательство. Следует из предыдущего док-ва и единственности противоположного элемента.
- $\forall x \in \mathbb{R} : (-x)(-x) = x \cdot x$ Доказательство. $(-x)(-x) = ((-1) \cdot x)(-x) =$ $= (x \cdot (-1))(-x) = x((-1)(-x)) = x \cdot x$
- (d) Следствия аксиом порядка.