MARKSCHEME

1(a). [BOOKWORK]. The coefficient $B_2(T)$ is defined through the virial equation of state:

$$\frac{p}{k_{\rm B}T} = n + B_2(T)n^2 + \dots .$$

 B_2 is related to the pairwise interaction potential $V(|r_i - r_j|)$:

$$B_2(T) = \frac{1}{2} \int \left[1 - e^{-\beta V(r)} \right] d^3 r , \qquad \beta \equiv \frac{1}{k_{\rm B} T} .$$

For inert gases, something like a Lennard-Jones potential is applicable; long-range attraction, short-range repulsion.

At low T (large β), the main contribution to the integral comes from large r where V(r) is negative, and gives $B_2(T) < 0$. At high T (small β), the main contribution to the integral comes from small r where V(r) is large and positive, and gives $B_2(T) > 0$.

Data agrees well with Lennard-Jones expectation, except helium is a bit off due to quantum effects.

1(b). [BOOKWORK]. A single spin-half dipole of magnetic dipole μ in a magnetic field B has energies $\epsilon_{\pm} = \pm \mu B$. The single particle partition function is

$$Z_1 = e^x + e^{-x} = 2 \cosh x$$
; $x \equiv \mu B/(k_B T)$.

The mean energy is

$$\langle U \rangle = p_+ \epsilon_+ + p_- \epsilon_- = \frac{1}{Z_1} \left(e^{-x} \epsilon_+ + e^x \epsilon_- \right) = \mu B \frac{e^{-x} - e^x}{2 \cosh x} = -\mu B \tanh x.$$

For N dipoles, the magnetic entropy is

$$S = (U - F)/T = (U + Nk_BT \ln Z_1)/T = Nk_B [\ln(2\cosh x) - x \tanh x]$$
.

Alternative form:

$$S = Nk_{\rm B} \left[\ln(1 + e^{-2x}) + 2x/(1 + e^{2x}) \right]$$
.

[UNSEEN]. The entropy depends only on the ratio B/T. Leads to adiabatic cooling: slowly reduce the magnetic field strength from B_1 to B_2 giving a final temperature $T_2 = (B_2/B_1)T_1$.

1

1(c). [BOOKWORK]. Fermi-Dirac expression for average occupancy:

$$\langle n(\epsilon) \rangle = \frac{1}{e^{\beta(\epsilon-\mu)} + 1} ; \qquad \mu = \mu(T) ; \qquad \beta = 1/(k_{\rm B}T) .$$

The occupancy is approximately a step function, with a rounded edge centred on the Fermi energy $\epsilon_F = \mu(T)$. For $\epsilon = \mu$ we have $\langle n \rangle = 1/2$, and for $\epsilon = \mu \pm k_{\rm B}T$ or $\mu \pm 2k_{\rm B}T$ we have

$$\langle n(\mu \pm k_{\rm B}T)\rangle = \frac{1}{e^{\pm 1} + 1} = (0.27, 0.73) \; ; \qquad \langle n(\mu \pm 2k_{\rm B}T)\rangle = \frac{1}{e^{\pm 2} + 1} = (0.12, 0.88) \; .$$

Hence the spreading of the Fermi edge is of order $\pm k_{\rm B}T$.

Heat capacity of a Fermi gas: only particles within $\pm k_{\rm B}T$ contribute. Treating these classically, they contribute an internal energy

$$U \sim \frac{3}{2}Nk_{\rm B}T \sim \frac{3}{2} \times [g(\epsilon_{\rm F})k_{\rm B}T] \times k_{\rm B}T$$
.

Hence the heat capacity is

$$C \sim \frac{\partial U}{\partial T} \sim 3g(\epsilon_{\rm F})k_{\rm B}^2 T$$
,

which depends linearly on temperature T.

2(a). [BOOKWORK]. Thermodynamic ensembles

Microcanonical ensemble: system is isolated with fixed energy. A given macrostate corresponds to a multiplicity of microstates, each of which is assumed equally likely to occur (PEEP). The equilibrium state is the one with the biggest number of microstates. Gibbs entropy: $S = -k_{\rm B} \sum_i p_i \ln(p_i)$.

Canonical ensemble: consider a (small) system in contact with a reservoir. System can exchange energy with the reservoir, so its energy fluctuates, but its temperature is well defined. Find $p(E_i) \propto e^{-E_i/k_{\rm B}T}$, leading to partition function $Z = \sum_i e^{-E_i/k_{\rm B}T}$, from which can determine thermodynamic potentials, $F = -k_{\rm B}T \ln Z$ etc.

Grand canonical ensemble: an infinite number of subsystems each coupled to an identical reservoir with which can exchange particles as well as energy. Probability of a given partition of U, N, between system and reservoir is proportional to the number of microstates of the reservoir. Grand partition function Ξ is evaluated by summing over all particle numbers and all energy levels, equals the product of the grand partition functions Ξ_i for each energy level. Treat the energy levels as thermodynamic systems; then easy to incorporate indistinguishability (Fermi and Bose statistics).

All thermodynamic information can be obtained from Ξ , which is usually simpler to evaluate than the partition function.

2(b). /BOOKWORK/. Brownian motion

Small grain moves irregularly in response to fluctuating force from a heat bath (liquid at temperature T). Described by Langevin equation $m\ddot{x} = -\gamma \dot{x} + \xi(t)$, which is dissipative friction γ plus random stochastic forces $\xi(t)$, normally taken to be Gaussian white noise. For random, uncorrelated case, $\langle \xi(t) \rangle = 0$ and $\langle \xi(t_1)\xi(t_2) \rangle = \Gamma \delta(t_1 - t_2)$, find average kinetic energy $(m/2)\langle u^2 \rangle = \Gamma/4\gamma$. Then, from equipartition, friction and stochastic are related: $\Gamma = 2\gamma k_B T$.

For Brownian motion of a free particle, taking the long time limit $t \gg m/\gamma$, $\langle \ddot{x} \rangle = 0$, obtain Einstein's diffusion law $\langle x^2 \rangle = 2Dt$ (or $\langle \mathbf{r}^2 \rangle = 6Dt$ in 3D), with $D = k_{\rm B}T/\gamma$. The rms displacement increases as \sqrt{t} .

For Brownian motion of a confined particle (harmonic potential $V(x) = (1/2)\alpha x^2$) (e.g. particle on a lattice site), Langevin equation becomes $m\ddot{x} = -\alpha x - \gamma \dot{x} + \xi(t)$. Find $\langle x^2 \rangle = k_{\rm B}T/\alpha$, as expected from equipartition: $(1/2)\alpha \langle x^2 \rangle = (1/2)k_{\rm B}T$. Relevant to diffuse thermal scattering of particles from a solid (Debye-Waller scattering).

2(c). [BOOKWORK]. The Landau theory of phase transitions

Applies to systems where phases are distinguished by an order parameter, e.g. magnetisation M, a position-independent macroscopic quantity which can change abruptly at a phase transition. The mean field approximation assumes that interactions with other constituents can be represented by their average effect. In Landau theory, expand the free energy F near the phase transition as a power series in the order parameter. For a symmetric system (e.g. a magnetic system with no applied field) only have even powers. At given temperature T, minimise F as a function of the order parameter to find the equilibrium state.

Aimed mainly at continuous transitions but can also be applied to first order transitions (with a latent heat).

e.g. magnetisation: at high T the free energy F has a minimum at the disordered state M=0. As T falls below *critical temperature* T_c the minimum moves to an ordered state $M \neq 0$. An applied field B breaks the symmetry, leads to hysteresis.

3. [BOOKWORK]. Chemical potential for identical bosons: always negative, negligibly small at low temperature $T < T_0$, then rapidly grows more negative at high T. Bose-Einstein condensate: ground state occupancy grows below T_0 . Occurs (for a gas) when thermal de Broglie wavelength comparable to interatomic spacing, $n\lambda^3 \sim 2.6$. Experimental observation in rubidium: peak around zero velocity at (very) low temperature.

[BOOKWORK]. Hard-wall boundary conditions: $\psi = 0$ for x, y, z = 0 and x, y, z = a:

$$k_x = \frac{n_x \pi}{a}$$
, $k_y = \frac{n_y \pi}{a}$, $k_z = \frac{n_z \pi}{a}$; $n_x, n_y, n_z \ge 1$.

Corresponds to one state in a volume

$$d^3 \mathbf{k} = dk_x dk_y dk_z = \left(\frac{\pi}{a}\right)^3 = \frac{\pi^3}{V} ; \qquad g(\mathbf{k}) d^3 \mathbf{k} = \frac{V}{\pi^3} d^3 \mathbf{k} .$$

Number of states in dk (positive octant only):

$$g(k) dk = \frac{V}{\pi^3} \frac{4\pi k^2 dk}{8} = \frac{Vk^2}{2\pi^2} dk .$$
 (1)

where $\epsilon = p^2/(2m) = \hbar^2 k^2/(2m)$

[UNSEEN]. In an isotropic confining potential U(r), for a particle with total energy ϵ , the momentum $p = \hbar k$ depends on radius:

$$\epsilon = \frac{p(r)^2}{2m} + U(r)$$
; $p(r) = \hbar k(r) = \sqrt{2m(\epsilon - U(r))}$.

Applying Equation (1) to a shell of thickness dr gives

$$g(r,k) dr dk = \frac{k^2}{2\pi^2} (4\pi r^2 dr) dk = \frac{2k^2 r^2}{\pi} dr dk$$
.

Convert to energy ϵ :

$$g(r,\epsilon) = g(r,k) \frac{\mathrm{d}k}{\mathrm{d}\epsilon} = \frac{2k^2r^2}{\pi} \frac{m}{\hbar^2 k} = \frac{2mr^2}{\pi\hbar^2} k(r)$$
.

A particle of energy ϵ is confined to the region $0 < r < r_{\epsilon}$ where $\epsilon = U(r_{\epsilon})$:

$$g(\epsilon) = \frac{2m}{\pi\hbar^3} \int_0^{r_\epsilon} r^2 p(r) dr = \frac{(2m)^{3/2}}{\pi\hbar^3} \int_0^{r_\epsilon} r^2 \sqrt{\epsilon - U(r)} dr.$$

[UNSEEN]. For a harmonic potential $U(r) = (1/2)m\omega^2 r^2$:

$$g(\epsilon) = \frac{(2m)^{3/2}}{\pi \hbar^3} \int_0^{r_{\epsilon}} r^2 \sqrt{\epsilon - (m\omega^2/2)r^2} \, dr \; ; \qquad \epsilon = \frac{1}{2} m\omega^2 r_{\epsilon}^2 \; .$$

Using the trigonometric substitution

$$\frac{m\omega^2}{2\epsilon}r^2 = \sin^2\theta \; ; \qquad \frac{\mathrm{d}r}{\mathrm{d}\theta} = \sqrt{\frac{2\epsilon}{m\omega^2}}\cos\theta$$

gives

$$g(\epsilon) = \frac{8\epsilon^2}{\pi(\hbar\omega)^3} \int_0^{\pi/2} \sin^2\theta \cos^2\theta \, d\theta.$$

Using standard trig identities, this is

$$g(\epsilon) = \frac{2\epsilon^2}{\pi(\hbar\omega)^3} \int_0^{\pi/2} \sin^2 2\theta \, d\theta = \frac{\epsilon^2}{\pi(\hbar\omega)^3} \int_0^{\pi/2} (1 - \cos 4\theta) \, d\theta = \boxed{\frac{\epsilon^2}{2(\hbar\omega)^3}}.$$

[UNSEEN, but paralleling the treatment of unconfined bosons in lectures]. Total number of particles for identical bosons:

$$N = \int_0^\infty n(\epsilon)g(\epsilon) d\epsilon = \int_0^\infty \frac{g(\epsilon)}{e^{\beta(\epsilon-\mu)} - 1} d\epsilon.$$

The ground state $\epsilon = 0$ needs to be treated separately, because g(0) = 0:

$$N = N_0 + \frac{1}{2(\hbar\omega)^3} \int_0^\infty \frac{\epsilon^2}{e^{\beta(\epsilon-\mu)} - 1} \,\mathrm{d}\epsilon \ .$$

At low temperature can effectively set $\mu = 0$. Changing also to $x = \beta \epsilon$ then gives

$$N = N_0 + \frac{1}{2(\hbar\omega)^3} \frac{1}{\beta^3} \int_0^\infty \frac{x^2}{e^x - 1} dx \approx N_0 + \frac{(2.404)(k_B T)^3}{2(\hbar\omega)^3}.$$

This can be written as

$$N = N_0 + N(T/T_0)^3$$
,

where the Bose condensation temperature T_0 is

$$T_0 = \left(\frac{2}{2.404}\right)^{1/3} \frac{\hbar\omega}{k_{\rm B}} N^{1/3} \ .$$

Sketch of ground state occupancy N_0 versus T: Starts with $N_0 = N$ at T = 0, falls monotonically and increasingly steeply until hits $N_0 = 0$ at $T = T_0$, then stays at $N_0 = 0$ for all $T > T_0$.

4. [BOOKWORK]. In a classical gas, the particles are regarded as independent thermodynamic entities, and the single particle partition functions can be multiplied together. Must also divide by N! since the particles are indistinguishable:

$$Z_N = \frac{1}{N!} (Z_1)^N .$$

Using Stirling's approximation, the Helmholtz free energy is

$$F = -k_{\rm B}T \ln Z = -k_{\rm B}T [N \ln Z_1 - N \ln N + N]$$
.

Using $dF = -S dT - p dV + \mu dN$, the chemical potential is

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V} = -k_{\rm B}T \left[\ln Z_1 - \ln N\right]$$
 (2)

[BOOKWORK]. Consider a closed system consisting of the open system of interest plus a reservoir:

$$dS_{\text{tot}} = dS + dS_R \ge 0 .$$

The First and Second Laws applied to the reservoir give

$$dU_R = T_R dS_R - p_R dV_R + \mu_R dN_R.$$

Hence

$$dS_{\text{tot}} = dS + \frac{dU_R + p_R dV_R - \mu_R dN_R}{T_R} \ge 0.$$

Using $dU_R = -dU$, $dV_R = -dV$, $dN_R = -dN$ then gives

$$T_R dS_{\text{tot}} = T_R dS - dU - p_R dV + \mu_R dN > 0$$
.

At constant temperature, pressure and particle number, we have $p_R = p$, $T_R = T$, dN = 0:

$$T dS_{\text{tot}} = T dS - dU - p dV > 0$$
.

Using dp = 0, dT = 0 gives d(pV) = p dV and d(TS) = T dS, and hence

$$T dS_{\text{tot}} = d(TS) - dU - d(pV) = -d(U - TS + pV) = -dG \ge 0$$
.

Hence $dG \leq 0$, and in equilibrium the Gibbs free energy is a minimum:

$$dG = 0$$
.

[BOOKWORK]. Differentiating G = U - TS + pV gives

$$dG = dU - T dS - S dT + p dV + V dp$$

Using $dU = T dS - p dV + \mu dN$ then gives

$$dG = -S dT + V dp + \mu dN.$$

Combining G = U - TS + pV with $U = TS - pV + \mu N$ also gives $\boxed{G = \mu N} \ .$

[UNSEEN, though chemical reactions are discussed in lectures]. For the two-component system, $G = \mu_A N_A + \mu_B N_B$, which differentiates to give

$$dG = \sum_{i} \mu_i dN_i + \sum_{i} N_i d\mu_i.$$

Differentiating $U = TS - pV + \sum_{i} \mu_{i} N_{i}$ gives

$$dU = T dS + S dT - p dV - V dp + \sum_{i} \mu_{i} dN_{i} + \sum_{i} N_{i} d\mu_{i}.$$

Hence (Gibbs-Duhem):

$$S dT - V dp + \sum_{i} N_i d\mu_i = 0.$$

At constant temperature and pressure, this becomes

$$\sum_{i} N_i \, \mathrm{d}\mu_i = 0 \ .$$

Hence, in equilibrium,

$$dG = \sum_{i} \mu_i \, dN_i = 0 \ . \tag{3}$$

For components A and B interacting through $A \rightleftharpoons 2B$, and if there is no particle exchange with the surroundings, changes in particle numbers are related via

$$-2\,\mathrm{d}N_A=\mathrm{d}N_B\ .$$

Hence Equation (3) becomes

$$\boxed{\mu_A = 2\mu_B} \ . \tag{4}$$

Combining Equation (4) with Equation (2) gives

$$-k_{\rm B}T \left[\ln Z_1^{(A)} - \ln N_A \right] = -2k_{\rm B}T \left[\ln Z_1^{(B)} - \ln N_B \right] .$$

Given $Z_1^{(A)} = C_A V T^{3/2}$ and $Z_1^{(B)} = C_B V T^{3/2}$, this rearranges as

$$K_N \equiv \frac{N_B^2}{N_A} = \frac{(Z_1^{(B)})^2}{Z_1^{(A)}} = \frac{C_B^2}{C_A} V T^{3/2} ,$$

which is a function of V and T only.

If the density is increased at fixed V and T, then both N_A and N_B increase. To keep N_B^2/N_A constant, N_A must increase by a bigger factor than N_B . Hence there is less dissociation at higher pressure.

[BOOKWORK]. The probability of dissociation depends only on temperature, while the probability of recombination depends also on the probability of two products running into each other; recombination becomes much less likely at low pressure.