

	文档编号		版本	V1.0	密级	
Microld ONE THING, ONE TAG	编写人	冉孟奎	部门	产品1部	审核	
	文档名称	车号系统结合协议说明				
	项目名称					
	项目来源		部门			

车号系统结合协议说明

1.基本的报文格式

● 主机(Host)到读写器(Reader)报文格式(命令帧)

帧头	设备地址	功能码	控制参数	校验	帧尾
0xFA	DeviceAddr	Command	Parameter	CheckSum	0xF5

● 读写器(Reader)到主机(Host)的报文格式(应答帧)

帧头	设备地址	功能码	应答数据	校验	帧尾
0xFA	DeviceAddr	Command	Response	CheckSum	0xF5

- **♦ 帧头(SOF)**:报文的帧头 0xFA;1 个字节。
- ◆ **帧尾(EOF)**: 报文的帧尾 0xF5; 1 个字节。
- **→ 设备地址(DeviceAddr)**: 每个设备都有一个独立的编号; 1 个字节(低 7 位有效)。 地址范围是 1~127, 0 是广播地址。
- ◇ 功能码(Command): 主机控制读写器的功能码; 1 个字节(低 7 位有效)。
- ◆ **应答数据(Response)**: 读写器应答主机的数据; $0\sim48$ 个字节(低 7 位有效)。
- ◆ **校验(CheckSum)**: 校验是从长度到校验之前的所有字节之累加和,取和值的补码(取反加 1),再取低 7位; 1个字节(低 7位有效)。

效验举例:分析"读系统状态命令":

命令: FA 00 06 7A F5

则和值为: 00+06=06=0000 0110;

反码为: 1111 1001

补码为: 1111 1010

低7位有效,则:01111010=7A

一般计算公式为: (256-效验和) &0x7f=(256-6)&0x7f=7A

注意:除了帧头和帧尾之外,所有字节均为低7位有效,即取0~6位,第7位为0。除了帧头帧尾以外,主机到读写器的命令帧长度最大值是25;读写器返回主机的应答帧长度最大值是53。如果长度超出这个范围,则认为帧错误。

2.功能码

序号	功能描述	功能码	备注					
	系统控制响应							
1	关功放	0x05						
2	开功放	0x0A						
		传输标签数据						
1	24 位标签数据	0x09	主动上传标签数据,不需查询					

3.系统参数配置

3.1 关闭功放 (0x05)

关闭功放命令是控制读写器,关闭射频功率,停止输出射频功率信号。

◆ 主机到读写器命令帧:

帧头	设备地址	及备地址 功能码		帧尾
0xFA	DeviceAddr	0x05	CheckSum	0xF5

3.2 打开功放 (0x0A)

打开功放命令是控制读写器, 打开射频功率, 输出射频功率信号。

◆ 主机到读写器命令帧:

帧头	设备地址	设备地址 功能码		帧尾
0xFA	DeviceAddr	0x0A	CheckSum	0xF5

4.标签数据传输帧(0x09)

该命令将标签字段扩展为 25BYTE,标签标号扩展为 2BYTE,数据帧尾增加 5BYTE 保留字段。

♦ 读写器到主机的应答帧:

帧头	设备地址	功能码	应答数据	校验	帧尾
0xFA	DeviceAddr	0x09	Response	CheckSum	0xF5

格式举例:

读到标签时返回: 45 BYTE								
序号	占用字节 数(BYTE)	说明:	数据 类型	举例:				
0	1	帧头	HEX	FA				
1	1	设备地址 00 为广播地址	HEX	00				
2	1	功能号	HEX	09				

3-27	25	标签信息标准 7 位 ASCII 码表示 25 个字节的标签内容	ASCII	23 31 32 26 29 24 00 11 12 13 14 15 16 17 10 13 21 11 16 18 10 10 10 10 10
28-29	2	标签编号:从打开功放开始获取的标签个数编号,关功放复位(大端模式)	HEX	00 01
30	1	单个标签已读次数	HEX	02
31	1	天线号: 天线 0: 30 天线 1: 31、天 线 2: 32、天线 3: 33 天线 4: 34 天 线 5: 35 天线 6: 36 天线 7: 37 天 线 8: 38	ASCII	30
32	1	标签类型	HEX	10 — AAR 货车标签(6bit 格式) 11 — AAR 机车标签(6bit 车次) 12 — AAR 机车标签(4bit 车次) 20 — FMO 机车标签 30 — 客车标签 FO — 未知类型标签
33~37	5	保留	HEX	————
38~42	5	采集的时间信息	HEX	00 00 00 00 00
43	1	校验(1 BYTE)	HEX	10
44	1	帧尾(1 BYTE)	F5	F5