Московский физико-технический институт

Лабораторная работа № 5.1.2

Исследование эффекта Комптона

выполнил студент группы Б03-905 Деревянкин Иван

1 Цель работы

- 1. Исследование энергетического спектра γ -квантов, рассеянных на графите, с помощью сцинтилляционного спектрометра
- 2. Определение энергии рассеянных γ -квантов в зависимости от угла рассеяния
- 3. Определение энергии покоя частиц, на которых происходит комптоновское рассеяние

2 В работе используются:

- источник излучения
- графитовая мишень
- сцинтилляционный счётчик
- ФЭУ
- 9BM

3 Теоретические положения

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим. Интерпретируется как результат упругого соударения *gamma*-квантов и свободных электронов. Запишем для этого процесса законы сохранения энергии и импульса:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1 \tag{1}$$

$$\frac{\hbar\omega_0}{c} = \gamma mv\cos\phi + \frac{\hbar\omega_1}{c} * \cos\theta \tag{2}$$

Решая совместно эти уравнения и переходя от частот к длинам волн, получаем изменение длины волны рассеянного излучения:

$$\lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos\theta) = \Lambda_K (1 - \cos\theta), \tag{3}$$

где λ_0, λ_1 - длины волн γ -кванта до и после рассеяния, а величина $\Lambda_K = \frac{h}{mc} = 2.42 \cdot 10^{10}$ см называется комптоновской длиной волны электрона.

При рассении на связанных электронах изменение импульса кванта воспри- нимается атомом в целом, поэтому набюдается несмещённая компонента в спектре рассеянного излучения (Томсоновское рассеяние). При увеличении энергии сечение томсоновского рассеяния уменьшается очень быстро, а сечение комптоновского рассеяния - незначительно. Поэтому эффект Комптона проявляеся наиболее отчётливо при использовании в качестве рассеивателя легких элементов и при энергии γ -лучей порядка сотен килоэлектрон-вольт.

Кроме того, γ -кванты испытывают в среде поглощение, называемое фотоэффектом и рождением электрон-позитронных пар. Процесс рождения пар пороговый и по порядку равен 1 МэВ, поэтому в рассматриваемом энергетическом диапазоне не происходит. При фотоэффекте из атома выбивается электрон, а квант поглощается. Импульс кванта делится между вылетевшим электроном и атомом. Энергия возбуждения атома обычно поглощается соседними атомами рассеивателя.

4 Экспериментальная установка

Источником излучения служит $^{137}\mathrm{Cs}(1)$, испускающий γ -кванты с энергией 662 кэВ. Узкий пучок после коллиматора попадает на графитовую мишень (2). Кванты, испытавшие комптоновское рассеяния в мишени, регистрируются сцинтилляционным счетчиком и проходят на ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Штанга с измерительным блоком может вращаться относительно мишени.

Рис. 1: Блок-схема установки по изучению рассеяния γ -квантов

Рис. 2: Блок-схема измерительного комплекса

5 Ход работы

Результаты последовательных измерений приведены в таблице:

θ	Канал	$1-\cos\theta$
0	857	0.000
10	925	0.015
20	904	0.060
30	706	0.134
40	690	0.234
50	614	0.357
60	569	0.500
70	503	0.657
80	452	0.826
90	393	0.000
100	360	1.173
110	339	1.341
120	309	1.500

С помощью графика и формулы (1) определим энергию покоя частицы, на которой происходит комптоновское рассеяние первичных $\gamma-$ квантов:

По формуле: $mc^2 = 518 \pm 10$ к Θ в

Для того чтобы найти энергию по графику нужно : найти пересечение линии с осью ординат это даст нам значение $N_{best}(0)$. А пересечение линии с прямой $cos\Theta=0$ даст значение $N_{best}(90)$. Результаты вычислений представим в виде таблицы:

Величина	Значение	Погрешность
E_{γ} , МэВ	0.518	-
$N_{best}(0)$	912	15
$N_{best}(90)$	399	5
$\mathrm{mc^2,M9B}$	0.515	0.008

6 Вывод

В ходе лабораторной работы исследовали энергетический спект γ — квантов, рассеяных на графите. Определили энергию рассеянных γ — квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние. Определили энергию рассеянных квантов двумя способами: по формули и при помощи графиков. Результаты совпадают с учетом погрешности.