







### **Bisection Method**



# **Computational Steps**

The method calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating the half containing c.

To begin, set  $a_1=a$  and  $b_1=b$ , and let  $c_1=\frac{a_1+b_1}{2}$ 

- If  $f(c_1) = 0$ , then  $c = c_1$ , and we are done.
- If  $f(c_1) \neq 0$ , then  $f(c_1)$  has the same sign as either  $f(a_1)$  or  $f(b_1)$ .
  - If  $f(c_1)$  and  $f(a_1)$  have the same signs,  $c \in (c_1, b_1)$ . Set  $a_2 = c_1$ ,  $f(a_2) = f(c_1)$  and  $b_2 = b_1$ ,  $f(b_2) = f(b_1)$ .
  - If  $f(c_1)$  and  $f(a_1)$  have opposite signs,  $c \in (a_1, c_1)$ . Set  $a_2 = a_1, f(a_2) = f(a_1)$  and  $b_2 = c_1, f(b_2) = f(c_1)$ .

Then re-apply the process to the interval  $[a_2, b_2]$ , etc. until the termination criteria is satisfied.

7

# **Overview and Assumptions**

Bisection Method is based on the Intermediate Value Theorem.

Intermediate Value Theorem (IVT): Suppose a continuous function f, defined on [a,b] is given with f(a) and f(b) of opposite sign then by the IVT, there exists a point  $c \in (a,b)$  for which f(c) = 0.

**Main Assumptions** Bisection method may be applied to find the approximate root of a function f(x) satisfying following

- f(x) is a continuous function defined on the interval [a, b], with f(a) and f(b) of opposite sign.
- Although the procedure will work when there is more than one root in the interval (a, b), we assume for simplicity that the root in this interval is unique.

## Bisection Method Pseudo Code

```
Require: a_1, b_1, f(a_1) * f(b_1) < 0, \epsilon > 0
 1: k = 1, MaxIter = ceil\left(1 + \frac{\log((b_1 - a_1)/\epsilon)}{\log 2}\right);
 2: while (k < MaxIter) do {
 3: 	 c_k = \frac{a_k + b_k}{2};
         if (f(a_k) * f(c_k) < 0) then {
           a_{k+1} = a_k, b_{k+1} = c_k:
           f(a_{k+1}) = f(a_k), f(b_{k+1}) = f(c_k);
 7:
         if (f(b_k) * f(c_k) < 0) then {
       a_{k+1} = c_k, b_{k+1} = b_k;
           f(a_{k+1}) = f(c_k), f(b_{k+1}) = f(b_k);
10:
11:
         k = k + 1:
12:
13: }
14: c_{k+1} = \frac{a_{k+1} + b_{k+1}}{2} is the root.
```

5

# **Stopping Criteria**

There are several ways to set a termination criteria for the bisection iterations. One can select a tolerance  $\epsilon > 0$  and generate  $c_1, c_2, \ldots, c_n$  until one of the following conditions is met:

$$|c_n - c_{n-1}| < \epsilon$$

or,

$$\frac{|c_n-c_{n-1}|}{|c_n|}<\epsilon$$

or,

$$|f(c_n)| < \epsilon$$

9

## **Example**

**Question:** Show that  $f(x) = x^3 + 4x^2 - 10 = 0$  has a root in [1,2] and use the Bisection method to determine an approximation to the root that is accurate to at least within  $10^{-2}$ .

**Solution:** Since f(x) is continuous (why?) and f(1) = -5 and f(2) = 14, by IVT f(x) a root in [1, 2].

Set  $a_1 = 1$  and  $b_1 = 2$ 

$$\Rightarrow c_1 = \frac{a_1 + b_1}{2} = \frac{1+2}{2} = 1.5 \text{ and } f(1.5) = 2.375 > 0.$$

Set  $a_2 = a_1 = 1$  and  $b_2 = c_1 = 1.5$ .

$$\Rightarrow c_2 = \frac{a_2 + b_2}{2} = \frac{1 + 1.5}{2} = 1.25 \text{ with } f(c_2) = -1.7969 < 0.$$

Set  $a_3 = c_2 = 1.25$  and  $b_3 = 1.5$ .

$$\Rightarrow c_3 = \frac{a_3 + b_3}{2} = \frac{1.25 + 1.5}{2} = 1.375 \text{ with } f(c_3) = 0.1621 > 0.$$

Minimum iterations required for given tolerance

Given initial interval  $[a_1, b_1]$ , It is easier find minimum number of iterations required for a given tolerance level  $\epsilon$  allowed in the final interval of uncertainty  $[a_n, b_n]$ . Since,

$$b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1}) = \frac{1}{2}\left(\frac{1}{2}(b_{n-2} - a_{n-2})\right)$$
$$= \frac{1}{2^2}(b_{n-2} - a_{n-2}) = \frac{1}{2}\left(\frac{1}{2}(b_{n-3} - a_{n-3})\right)$$
$$= \frac{1}{2^3}(b_{n-3} - a_{n-3}) = \frac{1}{2^{(n-1)}}(b_1 - a_1)$$

Therefore, 
$$b_n - a_n < \epsilon \Rightarrow \frac{1}{2^{(n-1)}}(b_1 - a_1) < \epsilon$$

$$\Rightarrow n > 1 + \frac{\log(b_1 - a_1) - \log \epsilon}{\log 2}$$

### **Example**

Here  $a_1 = 1$ ,  $b_1 = 5$  and  $\epsilon = 10^{-2}$ .

$$\Rightarrow n > 1 + \frac{\log((b_1 - a_1)/\epsilon)}{\log 2} \Rightarrow n > 1 + \frac{\log((5-1)/10^{-2})}{\log 2} = 1 + \frac{\log 400}{\log 2}$$

 $\Rightarrow$   $n > 1 + 8.64 \Rightarrow n > 9.64$ . Hence n = 10 iterations would be sufficient to achieve the required accuracy.

| iter | a;     | $b_i$  | $c_i$  | $f(a_i)$ | $f(b_i)$ | $f(c_i)$ |
|------|--------|--------|--------|----------|----------|----------|
| 1    | 1.0000 | 1.5000 | 1.2500 | -5.0000  | 2.3750   | -1.7969  |
| 2    | 1.2500 | 1.5000 | 1.3750 | -1.7969  | 2.3750   | 0.1621   |
| 3    | 1.2500 | 1.3750 | 1.3125 | -1.7969  | 0.1621   | -0.8484  |
| 4    | 1.3125 | 1.3750 | 1.3438 | -0.8484  | 0.1621   | -0.3510  |
| 5    | 1.3438 | 1.3750 | 1.3594 | -0.3510  | 0.1621   | -0.0964  |
| 6    | 1.3594 | 1.3750 | 1.3672 | -0.0964  | 0.1621   | 0.0324   |
| 7    | 1.3594 | 1.3672 | 1.3633 | -0.0964  | 0.0324   | -0.0321  |
| 8    | 1.3633 | 1.3672 | 1.3652 | -0.0321  | 0.0324   | 0.0001   |
| 9    | 1.3633 | 1.3652 | 1.3643 | -0.0321  | 0.0001   | -0.0160  |
| 10   | 1.3643 | 1.3652 | 1.3647 | -0.0160  | 0.0001   | -0.0080  |