Name: Isaac Sloon

GSI: (alm. Metal Syder

DISC #: 109

Math 55, Lecture 20.

GENERATING FUNCTIONS.

The (ordinary) generating function G(x) for the sequence $\{a_n\}$, $n \in \mathbb{Z}_+$ is the infinite series $G(x) = \alpha_0 + \alpha_1 \times + \alpha_2 \times \cdots = \sum_{n=0}^{\infty} \alpha_n \times n$

$$G(x) = a_0 + a_1 x + a_2 x^2 + \cdots = \sum_{n=0}^{\infty} a_n x$$

The coefficient of x^n in $\mathcal{G}(x)$ is the n^{++} object in the sequence {and

[Theorem.] Let
$$\mathcal{G}(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $\mathcal{H}(x) = \sum_{n=0}^{\infty} b_n x^n$. Then
$$\mathcal{G}(x) + \mathcal{H}(x) = \sum_{n=0}^{\infty} (a_n + b_n) \chi^n \qquad \mathcal{G}(x) \cdot \mathcal{H}(x) = \sum_{n=0}^{\infty} \left(\sum_{j=0}^{\infty} a_j b_{j-n} \right) \chi^n$$

Q1. If $\mathcal{G}(x)$ is the generating function for the sequence $\{a_n\}$, what is the generating function for each of

the following sequences? (a)
$$0, a_0, a_1, a_2, \ldots : \mathbf{x} G(\mathbf{x}) = \sum_{n=0}^{\infty} a_n \mathbf{x}^{n+1}$$

(b)
$$a_1, 2a_2, 3a_3, \ldots$$
: $G(x) = \sum_{n=0}^{\infty} a_{n+1}(n+1) \times^n$

(c)
$$a_0, a_0 + a_1, a_0 + a_1 + a_2, \dots$$
:
$$\frac{G(x)}{1-x} = \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_j\right) x^{n}$$

(d)
$$a_0^2$$
, $2a_0a_1$, $2a_0a_2 + a_1^2$, $2a_0a_3 + 2a_1a_2$, $2a_0a_4 + 2a_1a_3 + 2a_2^2$, ...: $(G(\alpha))^2 = \sum_{n=0}^{\infty} (\sum_{j=0}^{\infty} \alpha_j \alpha_{j-n}) x^n$

THE EXTENDED BINOMIAL THEOREM.

Let
$$u \in \mathbb{R}$$
 and let $k \in \mathbb{Z}_+$. The extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k} = \binom{u}{k} = \binom{u}{k} + \binom{u}{k} + \binom{u}{k} + \binom{u}{k} = \binom{u}{k}$

In particular, for $n \in \mathbb{N}$, $r \in \mathbb{Z}_+$, the following equality holds:

$$\binom{-n}{r} = \left\{ -1\right\}^r \quad \left(\left(n + r - 1 \right) \right)$$

[Extended Binomial Theorem.] Let $u \in \mathbb{R}$ and let $x \in \mathbb{C}$ with |x| < 1. Then

$$(1+x)^u = \sum_{n=0}^{\infty} \left(\bigcup_{n} \chi^n \right)$$

Q2. Find a closed form of the generating function for the sequence $\{a_n\}$ where

$$\sum_{n=0}^{\infty} \binom{7}{n} \binom{2}{n} \binom{2}{2}, \dots, \binom{2^{7}}{7}, 0, 0, 0, \dots :$$

$$\frac{1}{X} \sum_{n=0}^{(b)} \binom{n}{n} \chi^n - 1 = \frac{1}{X} ((1+\chi)^{10} - 1)$$

(c)
$$a_n = \binom{n+4}{n}, n \in \mathbb{Z}_+ :$$

$$\sum_{n=0}^{\infty} \binom{s_{n-1}}{n} \chi^n = \frac{1}{(1-\chi)} s$$

COUNTING VIA GENERATING FUNCTIONS.

- Q3. What generating functions can be used to find the number of ways in which postage of r cents can be pasted on an envelope using 1-cent, 3-cent, and 20-cent stamps?
 - (a) Assume that the order the stamps are pasted on does not matter.

(b) Assume that the stamps are pasted in a row and their order matters.

RECURRENCES VIA GENERATING FUNCTIONS

Q4. Use generating functions to solve the recurrence relation $a_k = 4a_{k-1} - 4a_{k-2} + k^2$ with initial conditions

$$A(x) = \sum_{k=0}^{\infty} A(x) - 2 - 5x = \sum_{k=0}^{\infty} \frac{1}{4a_{k-1}} \frac{1}{x^{k}} - \sum_{k=0}^{\infty} \frac{1}{4a_{k-1}} \frac{1}{x^{k}} + \sum_{k=0}^{\infty} \frac{1}{x^{k}} \frac{1}{x^$$

IDENTITIES VIA GENERATING FUNCTIONS.

Q5. (a) Show that
$$(x^2+x)/(1-x)^4$$
 is the generating function for the sequence $\{1^2+2^2+\cdots+n^2\}_{n\in\mathbb{Z}_+}$.

Ux $a_1=a_{n-1}+n^2$ to expect sum of fixth a squared $a_0=0$

$$A(x)=\sum_{k=0}^n a_k Y^k = a_0 + \sum_{k=1}^n a_k Y^k = x \sum_{k=1}^n a_{k-1} Y^{k-1} + \sum_{k=0}^n \sum_{k=1}^n x^k Y^k = y A(x) + \frac{y(x+1)}{(1-x)^2}$$

$$(1-x)A(x)=\frac{y^2+y}{(1-x)^2}=3A(x)=\frac{y^2+y}{(1-x)^2}$$

$$A(x)=\frac{y^2+y}{(1-x)^2}=3A(x)=\frac{y^2+y}{(1-x)^2}$$

$$A(x)=\frac{y^2+y}{(1-x)^2}=3A(x)=\frac{y^2+y}{(1-x)^2}$$

$$A(x)=\frac{y^2+y}{(1-x)^2}=3A(x)=\frac{y^2+y}{(1-x)^2}$$

$$A(x)=\frac{y^2+y}{(1-x)^2}=3A(x)=\frac{y^2+y}{(1-x)^2}$$

(b) Use (a) to find an explicit formula for
$$1^2 + 2^2 + \dots + n^2$$
.

$$|y^2 + y| (1 + (-y))|^{\frac{1}{2}} = (x^2 + y) \cdot \sum_{k=0}^{\infty} (-y) \cdot y^{k} = y^{2k} \sum_{k=0}^{\infty} (-y) \cdot y^{2k} = y^{2k} \sum_{k=0}^{\infty} (-y)$$