RK3588 NVR 用户使用指南

发布版本:V1.0

日期:2022-4-21

免责声明

您购买的产品、服务或特性等应受瑞芯微电子股份有限公司商业合同和条款的约束,本文档中描述的 全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,瑞芯微电子股份有 限公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标声明

Rockchip™ 图标、瑞芯微和其他瑞芯微商标均为瑞芯微电子股份有限公司的商标,并归瑞芯微电子股份有限公司所有。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

版权所有 © 瑞芯微电子股份有限公司 2022

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址:福建省福州市铜盘路软件园 A 区 18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590 客户服务传真: +86-591-83951833 客户服务邮箱: fae@rock-chips.com

前言

概述

本文档主要介绍 RK3588 NVR 基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法,旨在帮助调试人员更快、更准确地使用 RK3588 NVR,熟悉 RK3588 芯片开发应用方案。

产品版本

本文档对应的产品版本如下:

产品名称	产品版本
RK3588 NVR	RK_NVR_DEMO1_RK3588_LP4XD200P232SD8_V21_20211228.DSN

适用对象

本文档主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师
- 嵌入式软件开发工程师
- 测试工程师

修订记录

修订记录累积了每次文档更新的说明。

版本	修改人	修改日期	修改说明	备注
V1.0	廖智雄	2022-4-21	初始版本	

缩略语

缩略语包括文档中常用词组的简称。

缩略词	英文描述	中文描述
CPU	Central Processing Unit	中央处理器
NPU	Neural Network Processing Unit	神经网络处理器
VPU	Video Processing Unit	视频处理器
DDR	Double Data Rate	双倍速率同步动态随机存储器
eMMC	Embedded Multi Media Card	内嵌式多媒体存储卡
eDP	Embedded DisplayPort	嵌入式数码音视讯传输接口
HDMI	High Definition Multimedia Interface	高清晰度多媒体接口
I2C	Inter-Integrated Circuit	内部整合电路(两线式串行通讯总线)
I2S	Inter-IC Sound	集成电路内置音频总线
PMIC	Power Management IC	电源管理芯片
LDO	Low Drop Out Linear Regulator	低压差线性稳压器
DCDC	Direct Current to Direct Current	直流电转直流电
CAN	Controller Area Network	控制器局域网络
SARADC	Successive Approximation Register Analog to	逐次逼近寄存器型模数转换器
	Digital Converter	
UART	Universal Asynchronous Receiver/ Transmitter	通用异步收发传输器
JTAG	Joint Test Action Group	联合测试行为组织
PWM	Pulse Width Modulation	脉冲宽度调制
MIPI	Mobile Industry Processor Interface	移动产业处理器接口
LVDS	Low-Voltage Differential Signaling	低电压差分信号
PMIC	Power Management IC	电源管理芯片
PMU	Power Management Unit	电源管理单元
RK/Rockchip	Rockchip Electronics Co.,Ltd.	瑞芯微电子股份有限公司
USB	Universal Serial Bus	通用串行总线
SATA	Serial Advanced Technology Attachment	串行高级技术附件
PCIe	Peripheral Component Interconnect Express	外围组件快速互连
RGB	Red, Green, Blue; RGB color mode is a color	红绿蓝, RGB 色彩模式, 是工业界的一
	standard in industry	种颜色标准
VGA	Video Graphics Array	电脑显示视频图像标准接口
ADB	Android Debug Bridge	安卓调试桥
IR	Infrared Radiation	红外线
SPDIF	Sony/Philips Digital Interface	索尼/飞利浦数字音频接口
RTC	Real-time clock	实时时钟
RGMII	Reduced Gigabit Media Independent Interface	精简吉比特介质独立接口
WIFI	Wireless Fidelity	无线保真
CIF	Camera Interface	摄像头接口

景

前音	III
目录	VI
插图目录	VIII
表格目录	IX
1 系统概述	1
1.1 RK3588 芯片概述	1
1.2 RK3588 芯片框图	
1.3 系统框图	
1.3.1 系统框图	
1.3.2 功能概括	
1.3.3 功能接口	4
1.3.4 功能模块布局	5
1.4 组件	6
1.5 开关机和待机	6
1.6 固件升级	7
1.6.1 USB 驱动安装	7
1.6.2 固件升级方式	7
1.7 串口调试	9
1.7.1 串口工具	9
1.7.2 ADB 调试	12
2 硬件介绍	13
2.1 实物图	13
2.2 I2C 地址	14
2.3 扩展连接座信息	14
2.4 参考图	16
3 模块简述	17
3.1 电源输入	17
3.2 存储器	19
3.3 RTC 电路	22
3.4 按键输入	23
3.5 风扇电源接口	24
3.6 PCIe 座子	25
3.7 音频接口	26
3.8 IR 接口	27
3.9 SATA 接口	27
3.10 USB2.0 Host 接口	28
3.11 Debug 接口	
3.12 JTAG 接口	
3.13 MIPI DPHY 输入接口	31

RK3588 NVR 用户使用指南	目录
3.14 以太网口	33
3.15 TYPEC 接口	34
3.16 USB3.0 Host 接口	35
3.17 HDMI1.4b 接口	36
3.18 HDMI2.0 接口	37
3.19 HDMI2.1 接口	
3.20 RS485/RS232 接口	39
4 注意事项	40
4.1 注意事项	40

插图目录

图 1-1	RK3588 芯片框图	2
图 1-2	RK3588 NVR 系统框图	3
图 1-3	RK3588 NVR 功能接口分布图(正面)	5
图 1-4	RK3588 NVR 功能接口分布图(背面)	6
图 1-5	驱动安装成功示意图	7
图 1-6	进入 Loader 烧写模式示意图	8
图 1-7	进入 MASKROM 烧写模式示意图	9
图 1-8	获取当前端口 COM 号	10
图 1-9	串口工具配置界面	11
图 1-10	串口工具调试界面	12
图 1-11	ADB 连接正常	12
图 2-1	RK3588 NVR 实物图	13
图 2-2	间距 0.8mm 立式双排 80 PIN PCB 封装	15
图 3-1	DC12V 输入、前端 buck 变换器以及 RK806/RK860 芯片	19
图 3-2	LPDDR4x、eMMC 位置	20
图 3-3	预留 SPI Flash 位置	21
图 3-4	进 MASKROM 烧写的按键位置	22
图 3-5	RTC 电路	23
图 3-6	按键位置	24
图 3-7	风扇电源接口	25
图 3-8	PCIe3.0 座子	26
图 3-9	音频接口	26
图 3-10	IR 接口	27
图 3-11	SATA 接口	28
图 3-12	USB Host 接口	29
图 3-13	Debug 接口	30
图 3-14	ARM JTAG/MCU JTAG 座子	31
图 3-16	MIPI DPHY RX 输入接口	
图 3-17	MIPI DPHY RX 输入接口	34
图 3-18	TYPEC 接口	35
图 3-19	USB3.0 Host 接口	36
图 3-20	HDMI1.4b 接口	37
图 3-21	HDMI2.0 接口	38
图 3-22	HDMI2.1 接口	39
图 3-23	RS485/RS232 接口	40

表格目录

表 1-1 功	小能接口介绍表	4
表 2-1 I20	2C 通道挂载的外设地址和 IO 电平值对应表	14
	MPI DPHY RX 信号定义表	

1 系统概述

1.1 RK3588 芯片概述

RK3588 是一颗高性能、低功耗的应用处理器芯片,专为 ARM PC、边缘计算、个人移动互联网设备和其它多媒体应用而设计,是由 4 个 A76 和 4 个 A55 与独立的 NEON 协处理器集成的。

RK3588 内置了多种功能强大的嵌入式硬件引擎,为高端应用提供了优异的性能,支持 8K@60fps 的 H. 265 和 VP9 解码器、8k@30fps 的 H. 264 解码器和 4K@60fps 的 AV1 解码器;还支持 8K30fps 的 H. 264 和 H. 265 编码器,高质量的 JPEG 编码器/解码器,专门的图像预处理器和后处理器。

内置 3D GPU, 能够完全兼容 OpenGL ES1. 1/2. 0/3. 2、OpenCL 2. 2 和 Vulkan 1. 2。带有 MMU 的特殊 2D 硬件引擎将最大限度地提高显示性能,并提供流畅的操作体验。

引入了新一代完全基于硬件的 48M 像素 ISP (图像信号处理器),它实现了众多算法加速器,如 HDR、3A、LSC、3DNR、2DNR、锐化、去雾、鱼眼校正、伽马校正等。

内嵌的 NPU 支持 INT4/INT8/INT16/FP16 混合运算,算力高达 6TOP。此外,凭借其强大的兼容性,可以轻松转换基于 TensorFlow / MXNet/PyTorch/Caffe 等一系列框架的网络模型。

RK3588 具有高性能的 4 通道外部存储器接口(LPDDR4/LPDDR4X/LPDDR5),能够支持苛刻的存储器带宽,还提供了一套完整的外设接口,以支持非常灵活的应用。

1.2 RK3588 芯片框图

图 1-1 RK3588 芯片框图

1.3 系统框图

1.3.1 系统框图

RK3588 NVR 系统采用 RK3588 的芯片, RK806-1 单 PMIC 的供电方案; 存储采用 LPDDR4X、eMMC; 有 HDMI、TYPEC、SATA、千兆网口、MIPI RX、PCIe3.0、USB TYPEA、RGA 等外设接口,集成了一个稳定的可量产化方案。详细的系统框图如下:

图 1-2 RK3588 NVR 系统框图

1.3.2 功能概括

RK3588 NVR 包含的功能如下:

- DC Power: DC 12V 适配器供电接口
- USB3.0 HOST: 一路 USB3.0 standard-A 接口,可以接无线网卡、U 盘、USB HUB 等设备
- TYPEC: 一路完整 TYPEC 接口,兼容系统固件升级通道以及 DP1.4 输出接口
- USB2.0 HOST0/1: 两路 USB2.0 standard-A 接口,可以接鼠标、U 盘、USB HUB 等设备
- MIPI DPHY RX: 支持两路 4Lane 或者四路 2Lane MIPI 信号输入,通过 80pin 座子接入
- HDMI TX0/1/2: 支持三路 HDMI OUT 接口,两路可支持输出 HDMI2.1 视频数据
- HDMI1.4: 支持输出 HDMI1.4 视频数据,由 MIPI 信号转换而来
- HDMI2.0: 支持输出 HDMI2.0 视频数据,由 DP 信号转换而来
- PCIe3.0 Interface: 一路标准的 PCIe3.0x4 接口,用于扩展 PCIe 设备
- UART Debug: 用户调试查看 LOG 信息使用;支持 MINI USB 接口
- JTAG:系统 JTAG 调试接口,通过 2.54mm 排针接口引出
- System Key: 包含 Reset、Recover 按键
- SATA: 最大支持 10 路 SATA 接口,可挂载 SATA 硬盘
- Ethernet: 支持 2 路 RJ45 接口 10/100/1000M 以太网

● RS485/RS232: 支持 RS485/RS232 接口调试

● Audio: 支持 RCA 接口的音频单声道输入输出

● RTC: 采用 HYM8563TS 芯片,可由开发板或者纽扣电池(CR1220-3V)供电

1.3.3 功能接口

表 1-1 功能接口介绍表

功能	是否可用
LPDDR4x(总容量 4GB)	YES
eMMC(总容量 32GB)	YES
SPI Flash	默认未贴
DC 12V Input	YES
TYPEC(Download)	YES
USB3.0 Host(x1 Port)	YES
USB2.0 Host(x2 Port)	YES
MIPI DPHY RX	YES
HDMI1.4 OUT(1 Port)	YES
HDMI2.0 OUT(1 Port)	YES
HDMI2.1 OUT(2 Port)	YES
千兆网口 10M/100M/1000M (2 Port)	YES
Audio(RCA)	YES
SATA3.0 Interface(10 Port)	YES
PCIe3.0 Interface(4Lane)	YES
UART Debug(MINI USB)	YES
JTAG Interface	YES
System Key	YES

1.3.4 功能模块布局

RK3588 NVR 功能接口分布图:

图 1-3 RK3588 NVR 功能接口分布图 (正面)

图 1-4 RK3588 NVR 功能接口分布图(背面)

1.4 组件

RK3588 NVR 套件包括以下物品:

- RK3588 NVR 开发板
- 电源适配器,默认规格:输入 100V AC~240V AC, 50Hz;输出 12V DC, 3A

1.5 开关机和待机

RK3588 NVR 开机、关机以及待机方法介绍如下:

● 开机方法:

使用 DC 12V 供电,可自动开机。

● 关机方法:

断开 DC 12V 供电,系统关机。

1.6 固件升级

1.6.1 USB 驱动安装

EVB 驱动升级前需要先安装驱动,以下介绍 Windows 系统驱动安装流程

在提供的工具文件夹里面找到 DriverAssitant_v5.1.1,点击 DriverInstall.exe 文件跳出如下界面。 点击"驱动安装",等待提示安装驱动成功即可。如果已安装旧驱动,请点击"驱动卸载",并重新安装 驱动。

图 1-5 驱动安装成功示意图

1.6.2 固件升级方式

RK3588 NVR 固件升级方式有两种:

● 进入 Loader 升级方式:

系统上电前需要保持 SARADC_IN1 为低,系统将进入 Loader 状态。

具体步骤如下:

- 1) 连接 USB3. 0 TYPEC 口到电脑 PC 端,按住主板的 RECOVERY 按键不放。
- 2) RK3588 NVR 供电 12V, 若已经上电, 按下复位按键。
- 3) 烧写工具显示发现一个 Loader 设备后,释放 RECOVERY 按键。在工具下图矩形区域,鼠标右击"导入配置",然后找到固件路径,选择 config 文件
- 4) 烧写工具对应选择 Loader、Parameter、Uboot 等文件。
- 5) 点击执行,即进入升级状态,工具的右侧为进度显示栏,显示下载进度与校验情况。

图 1-6 进入 Loader 烧写模式示意图

● 进入 MASKROM 升级方式:

系统上电前 SARADC INO 为低,进入 MASKROM 状态。

具体步骤如下:

- 1) 连接 USB3. 0 TYPEC 口到电脑 PC 端,按住板子的 MASKROM 按键不放。
- 2) RK3588 NVR 供电 12V, 若已经上电, 按下复位按键。
- 3) 烧写工具显示发现一个 MASKROM 设备后,释放 MASKROM 按键。在工具下图矩形区域,鼠标右击"导入配置",然后找到固件路径,选择 config.cfg 文件
- 4) 烧写工具对应选择 Loader、Parameter、Uboot 等文件。
- 5) 点击执行,即进入升级状态,工具的右侧为进度显示栏,显示下载进度与校验情况。

图 1-7 进入 MASKROM 烧写模式示意图

1.7 串口调试

1.7.1 串口工具

连接开发板的 MINI USB Debug 调试接口到电脑 PC 端,在 PC 端设备管理器中得到当前端口 COM 号。

图 1-8 获取当前端口 COM 号

打开串口工具,在"快速连接"界面下,先选择串口,再选择对应的串口号,将波特率改为 1.5M(RK3588 默认支持 1.5M 波特率),并且在 Serial 处关闭流控,最后点击"打开"按钮,即可进入串口调试界面。

图 1-9 串口工具配置界面

```
console:/ $
console:/ $
console:/ $ [ 546.670831][ T425] healthd: battery l=50 v=3 t=2.6 h=2 st=3 c=-1
600 fc=100 chg=au
```

图 1-10 串口工具调试界面

1.7.2 ADB 调试

- 1) 确保驱动安装成功,PC 连接与开发板 TYPEC 接口;
- 2) 开发板上电,开机进入系统;
- 3) 电脑 PC 端, 打开 adb 工具;
- 4) 输入"adb shell", 进入adb调试。

图 1-11 ADB 连接正常

2 硬件介绍

2.1 实物图

图 2-1 RK3588 NVR 实物图

2.2 I2C 地址

开发板预留丰富的外围接口,用户调试 I2C 外设会涉及到 I2C 通道复用情况,表 2-1 为现有的开发板器件对应的 I2C 地址和电平值,避免地址冲突和电平不匹配。

I2C 通道	设备	I2C 地址	电源域
I2C0	RK860-2/RK860-3	0x42/0x43	3.3V
I2C1	NA	NA	NA
I2C2	RK860-2	0x42	3.3V
I2C3	ES8311	0x18	1.8V
I2C4	MIPI-CSI1_RX CON	TBD	1.8V
I2C5	MIPI-CSI0_RX CON	TBD	1.8V
I2C6	IT6161	0x98	3.3V
I2C6	FUSB302BMPX	0x22	3.3V
I2C6	HYM8563TS	0x51	3.3V
I2C7	NA	NA	NA
I2C8	NA	NA	NA
HDMITX0_I2C	HDMI TX0	TBD	3.3V
HDMITX1_I2C	HDMI TX1	TBD	3.3V
HDMIRX_I2C	NA	NA	NA

表 2-1 I2C 通道挂载的外设地址和 IO 电平值对应表

注意:使用扩展板时,要保证板上 I2C 地址与开发板上 I2C 地址不冲突。

2.3 扩展连接座信息

在实际使用过程中,用户可能会制作扩展板,开发板连接座型号如下: U4700 为引脚 0.3mm,间距 0.8mm 的立式双排 80PIN 卡座,尺寸如下:

图 2-2 间距 0.8mm 立式双排 80 PIN PCB 封装

2.4 参考图

EVB 对应的参考图、PCB 版本信息如下:

- 参考图: RK_NVR_DEMO1_RK3588_LP4XD200P232SD8_V21_20211228.DSN
- PCB 设计: RK_NVR_DEMO1_RK3588_LP4XD200P232SD8_V21_20211228_final_lint.brd

3 模块简述

3.1 电源输入

电源适配器输入 12V/3A 电源,通过前端降压变换器(buck)电源后,得到系统电源 VCC4V0_SYS,然后系统电压提供给 PMIC/RK806-1 电源管理芯片以及 BUCK/RK860,输出不同电压供系统使用。

电源适配器输入口、前端 Buck 变换器以及 PMIC 芯片位置如下:

图 3-1 DC12V 输入、前端 buck 变换器以及 RK806/RK860 芯片

3.2 存储器

- eMMC: 开发板上存储类型为 eMMC FLASH, 默认使用的容量 32GB
- SPI Flash: 开发板预留 SPI 器件位置
- DDR: 开发板 DDR 采用两片 2GB LPDDR4x, 总容量 4GB

图 3-2 LPDDR4x、eMMC 位置

图 3-3 预留 SPI Flash 位置

RK3588 NVR 进 MASKROM 烧写的按键位置:

图 3-4 进 MASKROM 烧写的按键位置

3.3 RTC 电路

RTC 电路采用 HYM8563TS 芯片,可由开发板或者自带纽扣电池(默认不带,需要自行购买 CR1220-3V 纽扣电池)供电,保证在板子断电情况下也能继续提供准确的时间,通过 I2C 信号与主控通信。

图 3-5 RTC 电路

3.4 按键输入

开发板使用 SARADC_IN1 作为进 RECOVER 检测口,支持 12 位分辨率,可以通过 RECOVER 按键(上按键),进入 LOADER 烧写模式;另外板子还留了 RESET 按键(下按键),方便通过硬件复位,重启机器。按键位置如下:

图 3-6 按键位置

3.5 风扇电源接口

开发板预留一个风扇接口,支持 12V/5V 风扇、支持转速可调;开发板默认标配 12V 风扇。接口线序从上往下依次是 GND、12V、SENSOR、CONTROL。

图 3-7 风扇电源接口

3.6 PCIe 座子

开发板上使用标准 PCIe3.0 连接座,可外接 PCIe 板卡进行通信。

- 工作模式: End Point(EP) & Root Complex(RC)。
- 链路支持 4 lane 数据接口。
- 100MHz 时钟是由外挂时钟芯片 PI6C557-05BLE 提供。

图 3-8 PCIe3.0 座子

3.7 音频接口

开发板支持两个 RCA 接口,可支持音频录制以及播放功能。

图 3-9 音频接口

3.8 IR接口

● 开发板支持 IR 功能。

图 3-10 IR 接口

3.9 SATA 接口

开发板支持多路 SATA 扩展;通过 2 颗 JMB575 芯片,最大可扩展到 10 路 SATA 硬盘接入。SATA 供电由左边板载电源接口提供。

图 3-11 SATA 接口

3.10 USB2.0 Host 接口

开发板支持两路 USB2.0,可支持连接如鼠标、U盘、蓝牙等 USB 设备。

图 3-12 USB Host 接口

3.11 Debug 接口

开发板支持 MINI USB 调试接口。

图 3-13 Debug 接口

3.12 JTAG 接口

开发板预留了 2 个 JTAG 接口,分别为 ARM JTAG(上)和 MCU JTAG(下),通过 4pin 2.54mm 排针接口形式引出。

图 3-14 ARM JTAG/MCU JTAG 座子

3.13 MIPI DPHY 输入接口

MIPI DPHY 输入接口采用间距 0.8mm 的立式 80pin 插座(型号为 61082-081402LF,规格见章节 2.3)。可以支持两路 4Lane MIPI DPHY 模组输入或者四路 2Lane MIPI DPHY 信号输入。MIPI DPHY 最大分别支持 2.5Gbps/Lane。与该 80pin 插座配套座子型号为 61083-081402LF,封装尺寸规格可参考章节 2.3;客户可根据需求制作扩展板卡。

图 3-15 MIPI DPHY RX 输入接口

MIPI DPHY RX 接口信号顺序如下:

表 3-1 MIPI DPHY RX 信号定义表

Pin	DPHY(单)	DPHY (双)	Pin
1	GND	GND	2
3	MIPI_CSI0_RX_D0N	MIPI_CSI1_RX_D0N	4
5	MIPI_CSI0_RX_D0P	MIPI_CSI1_RX_D0P	6
7	GND	GND	8
9	MIPI_CSI0_RX_D1N	MIPI_CSI1_RX_D1N	10
11	MIPI_CSI0_RX_D1P	MIPI_CSI1_RX_D1P	12
13	GND	GND	14
15	MIPI_CSI0_RX_CLK0N	MIPI_CSI1_RX_CLK0N	16
17	MIPI_CSI0_RX_CLK0P	MIPI_CSI1_RX_CLK0P	18
19	GND	GND	20
21	MIPI_CSI0_RX_D2N	MIPI_CSI1_RX_D2N	22
23	MIPI_CSI0_RX_D2P	MIPI_CSI1_RX_D2P	24
25	GND	GND	26
27	MIPI_CSI0_RX_D3N	MIPI_CSI1_RX_D3N	28
29	MIPI_CSI0_RX_D3P	MIPI_CSI1_RX_D3P	30
31	GND	GND	32

Pin	DPHY (单)	DPHY (双)	Pin
33	MIPI_CSI0_RX_CLK1N	MIPI_CSI1_RX_CLK1N	34
35	MIPI_CSI0_RX_CLK1P	MIPI_CSI1_RX_CLK1P	36
37	GND	GND	38
39	MIPI_CAM3_CLKOUT	MIPI_CAM4_CLKOUT	40
41	NC	NC	42
43	GND	GND	44
45	I2C5_SDA_M3_MIPI	I2C4_SDA_M3_MIPI	46
47	I2C5_SCL_M3_MIPI	I2C4_SCL_M3_MIPI	48
49	MIPI_CSI0_RST_GPIO1_A4	MIPI_CSI1_RST_GPIO1_B5	50
51	MIPI_CSI0_PDN0_H_GPIO1_B3	MIPI_CSI1_PDN0_H_GPIO1_B4	52
53	NC	NC	54
55	MIPI_CSI0_PDN1_H_GPIO1_A7	MIPI_CSI1_PDN1_H_GPIO1_B0	56
57	I2S0_SCLK_RX/PWM11_M2	I2S0_LRCK_RX/PWM15_M2	58
59	I2S0_SDI1/PWM1_M1	NC	60
61	VCC_1V8	VCC_3V3	62
63	NC	NC	64
65	MIPICSIO_PWREN_H_GPIO1_B1	MIPICSI1_PWREN_H_GPIO1_B2	66
67	NC	NC	68
69	NC	NC	70
71	NC	NC	72
73	NC	NC	74
75	GND	GND	76
77	VCC5V0_SYS	GND	78
79	VCC5V0_SYS	VCC12V_DCIN	80

3.14 以太网口

开发板支持两个 RJ45 接口,可提供双千兆以太网连接功能。采用 RK3588 内部集成的千兆以太网 MAC 与外部 PHY 芯片相连接,PHY 型号为 RTL8211F-CG,特性如下:

- 兼容 IEEE802.3 标准,支持全双工和半双工操作,支持交叉检测和自适应。
- 支持 10/100/1000M 数据速率。
- 接口采用带隔离变压器和指示灯的 RJ45 接口组合。

图 3-16 MIPI DPHY RX 输入接口

3.15 TYPEC 接口

开发板支持一个完整的 TYPEC 接口,支持以下功能:

- 该接口中的 TYPEC0_USB20_OTG 可用来下载固件
- 支持 TYPEC 功能
- 支持 DP1.4 输出

图 3-17 TYPEC 接口

3.16 USB3.0 Host 接口

开发板支持一路 USB3.0 Host 接口;接口为标准的 A 口,方便开发者接入 USB3.0 U 盘以及其他 USB3.0 设备。

图 3-18 USB3.0 Host 接口

3.17 HDMI1.4b 接口

开发板支持 1 路 HDMI1.4b TX 接口,由 MIPI TX 通过转接芯片 IT6161 转换而来。

图 3-19 HDMI1.4b 接口

3.18 HDMI2.0 接口

开发板支持 1 路 HDMI2.0 TX 接口,由 DP 接口通过转接芯片 IT6563FN 转换而来。

图 3-20 HDMI2.0 接口

3.19 HDMI2.1 接口

开发板支持两路 HDMI 标准 A 输出接口,最大支持 HDMI2.1,最大可支持 8K60 视频输出。

图 3-21 HDMI2.1 接口

3.20 RS485/RS232 接口

开发板分别预留一个 RS485 和 RS232 接口, 2.54mm 接口方便用户扩展使用。

图 3-22 RS485/RS232 接口

4 注意事项

4.1 注意事项

RK3588S EVB 适用于实验室或者工程环境,开始操作前,请先阅读以下注意事项:

- 任何情况下不可对屏幕接口及扩展板进行热插拔操作。
- 拆封开发板包装和安装前,为避免静电释放(ESD)对开发板硬件造成损伤,请采取必要防静电措施。
- 手持开发板时请拿开发板边沿,不要触碰到开发板上的外露金属部分,以免静电对开发板元器件造成损坏。
- 请将开发板放置于干燥的平面上,以保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备 (如:医疗设备)等。