Model selection in R

In this lesson, we will implement various model selection methods on real data in R.

Let's use the fabric data to illustrate the implementation of model selection techniques. This dataset contains the acoustic absorption coefficients of 24 woven fabrics with different air gap distances (d=0,1,2,3cm). There are four different possible response variables based on these air gap distances:

```
1. acoustic0 : air gap distance d=0cm
```

```
2. acoustic1 :air gap distance d=1cm
```

```
3. acoustic2 : air gap distance d=2cm
```

4. acoustic3 : air gap distance d=3cm

For simplicity, we'll focus on acoustic1. The following predictors are given:

```
1. thickness: the thickness of the woven fabric, in mm
```

- 2. diameter: the diameter of the woven fabric, in mm
- 3. perforation : perforation was measured as a percentage, and is relate to the pore width and yarn width of the woven fabric
- 4. weight: the weight of the woven fabric, measured in g/m^2
- 5. stiffness: the weight of the woven fabric, measured in mN x cm
- 6. airPerm: the air permeability of the woven fabric, measured in mm/s

According to Tang, Kong, and Yan, "It has been found that the acoustic absorption properties" of a woven fabric are "mainly determined by the perforation ratio and air permeability." The goal of this analysis is to see if other fabric properties can useful in predicting the absorption coefficient with d=1, i.e., <code>acoustic1</code>. We'll use several different model selection techniques to show how they are implemented and how they might differ from one another.

Source: X. Tang, D. Kong, X. Yan (2018). "Multiple Regression Analysis of a Woven Fabric Sound Absorber," Textile Research Journal, https://doi.org/10.1177/0040517518758001.

```
#names(hprice) = c("price", "area", "bath", "bed", "fireplace", "lot", "age", "fire
head(fabric)
summary(fabric)
```

Loading required package: bitops

Registered S3 methods overwritten by 'ggplot2':

method from [.quosures rlang c.quosures rlang print.quosures rlang

sampleID	thickness	diameter	perforation	weight	stiffness	airPerm	acoustic0	acoustic1	aco
1	0.547	0.269	6.14	247	181.90	805.4	0.076	0.330	
2	0.541	0.378	6.08	253	74.40	887.8	0.092	0.339	
3	0.875	0.584	4.97	366	71.41	598.4	0.129	0.455	
4	0.640	0.527	4.87	319	161.50	799.2	0.115	0.433	
5	0.750	0.534	4.51	292	156.20	753.2	0.095	0.362	
6	0.539	0.368	4.39	232	171.50	704.0	0.073	0.371	

sampleID	thickness	diameter	perforation
Min. : 1.00	Min. :0.5260	Min. :0.2200	Min. :1.210
1st Qu.: 6.75	1st Qu.:0.6438	1st Qu.:0.3395	1st Qu.:2.460
Median :12.50	Median :0.7685	Median :0.4705	Median :3.110
Mean :12.50	Mean :0.7302	Mean :0.4320	Mean :3.378
3rd Qu.:18.25	3rd Qu.:0.8097	3rd Qu.:0.5340	3rd Qu.:4.195
Max. :24.00	Max. :0.9310	Max. :0.5840	Max. :6.140
weight	stiffness	airPerm	acoustic0
Min. :228.0	Min. : 49.60	Min. :401.5	Min. :0.0730
1st Qu.:251.8	1st Qu.: 81.91	1st Qu.:510.4	1st Qu.:0.0905
Median :303.5	Median :139.41	Median :600.6	Median :0.1120
Mean :302.0	Mean :134.81	Mean :601.4	Mean :0.1163
3rd Qu.:347.8	3rd Qu.:171.40	3rd Qu.:685.7	3rd Qu.:0.1355
Max. :373.0	Max. :275.56	Max. :887.8	Max. :0.1890
acoustic1	acoustic2	acoustic3	
Min. :0.3300	Min. :0.3470	Min. :0.2610	
1st Qu.:0.4412	1st Qu.:0.4203	1st Qu.:0.3175	
Median :0.4775	Median :0.4800	Median :0.3625	
Mean :0.4793	Mean :0.4834	Mean :0.3699	
3rd Qu.:0.5420	3rd Qu.:0.5355	3rd Qu.:0.4148	
Max. :0.6170	Max. :0.6260	Max. :0.4830	

```
In [36]:
    library(corrplot)
    col4 = colorRampPalette(c("black", "darkgrey", "grey", "#CFB87C"))
    corrplot(cor(fabric[c(2:7,9)]), method = "ellipse", col = col4(100), addCoef.co
```


Let's start with the full model, which uses acoustic1 as the response and thickness, diameter, perforation, weight, stiffness, and airPerm as predictors.

```
In [37]:
          lm_fabric = lm(acoustic1 ~ thickness + diameter + perforation + weight + stiffne
          summary(lm fabric)
         Call:
         lm(formula = acoustic1 ~ thickness + diameter + perforation +
             weight + stiffness + airPerm, data = fabric)
         Residuals:
                          10
                                Median
                                                        Max
                                               30
         -0.062713 -0.021894 -0.002938 0.020573
                                                  0.065304
         Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
         (Intercept) 0.5858162
                                 0.0896400
                                              6.535 5.09e-06 ***
         thickness
                     -0.0288504
                                 0.1606300
                                            -0.180
                                                      0.8596
         diameter
                     -0.1340331 0.1192525 -1.124
                                                      0.2767
```

```
perforation -0.0215229 0.0128301 -1.678 0.1117
weight 0.0008418 0.0004612 1.825 0.0856 .
stiffness -0.0002042 0.0001622 -1.258 0.2253
airPerm -0.0003019 0.0001228 -2.458 0.0250 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03871 on 17 degrees of freedom
Multiple R-squared: 0.8393, Adjusted R-squared: 0.7826
F-statistic: 14.8 on 6 and 17 DF, p-value: 6.511e-06
```

Here, we see that several of the predictors have t-tests with high p-values (higher than the standard $\alpha=0.05$). Instead of just removing all of those, let's perform backward selection, removing the predictor with the largest p-value greater than $\alpha_0=0.15$, thickness in this case, and then refit the model. We can do this with the update() function. Remember that α_0 , sometimes called the "p-to-remove", is used as a cuttoff in backward selection, and if the goal is prediction, then 0.15 or 0.2 is thought to work well.

```
In [38]:
          lm_fabric = update(lm_fabric, . ~ . -thickness)
          summary(lm_fabric)
         Call:
         lm(formula = acoustic1 ~ diameter + perforation + weight + stiffness +
             airPerm, data = fabric)
         Residuals:
                        10
                               Median
                                            3Q
                                                      Max
         -0.061055 -0.024693 -0.003761 0.020839 0.064457
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
         (Intercept) 0.5766761 0.0717833 8.034 2.31e-07 ***
         diameter -0.1299283 0.1138523 -1.141 0.2687
         perforation -0.0211186 0.0122868 -1.719 0.1028
         weight 0.0007765 0.0002758 2.815 0.0115 *
         stiffness -0.0001961 0.0001516 -1.293 0.2122
         airPerm -0.0002959 0.0001150 -2.573 0.0192 *
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.03765 on 18 degrees of freedom
         Multiple R-squared: 0.839,
                                       Adjusted R-squared: 0.7943
         F-statistic: 18.76 on 5 and 18 DF, p-value: 1.416e-06
        Notice that our p-values have changed! For example, before, weight as not sigificant at the
        lpha=0.05 level and now it is. And, importantly, we still have p-values above lpha_0=0.15. So, let's
```

```
In [39]:
        lm_fabric = update(lm_fabric, . ~ . -diameter)
        summary(lm_fabric)

Call:
```

```
lm(formula = acoustic1 ~ perforation + weight + stiffness + airPerm,
    data = fabric)
```

remove the predictor with the largest p-value, namely, diameter.

Residuals:

```
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
         (Intercept) 0.6009065 0.0691148 8.694 4.76e-08 ***
         perforation -0.0241498 0.0120914 -1.997 0.06032 .
                     0.0005408 0.0001842 2.935 0.00849 **
         weight
         stiffness -0.0001887 0.0001526 -1.236 0.23144
                    -0.0002958 0.0001159 -2.551 0.01950 *
         airPerm
         ___
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.03795 on 19 degrees of freedom
         Multiple R-squared: 0.8274,
                                          Adjusted R-squared: 0.791
         F-statistic: 22.77 on 4 and 19 DF, p-value: 5.01e-07
         It looks like we have at least one more iteration, since stiffness has a p-value greater than
         \alpha_0.
In [40]:
          lm_fabric = update(lm_fabric, . ~ . -stiffness)
          summary(lm fabric)
         Call:
         lm(formula = acoustic1 ~ perforation + weight + airPerm, data = fabric)
         Residuals:
               Min
                           1Q
                                 Median
                                               3Q
                                                         Max
         -0.074211 -0.025324 0.003821 0.020601 0.076329
         Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
         (Intercept) 0.6159414 0.0689289 8.936 2.03e-08 ***
         perforation -0.0244787 0.0122470 -1.999
                                                       0.0594 .
                      0.0004294 0.0001628
                                             2.638
                                                       0.0158 *
         weight
         airPerm
                     -0.0003053 0.0001172 -2.605
                                                      0.0169 *
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.03845 on 20 degrees of freedom
         Multiple R-squared: 0.8135,
                                          Adjusted R-squared: 0.7855
         F-statistic: 29.08 on 3 and 20 DF, p-value: 1.717e-07
         Notice that each of our remaining predictors have a p-value less than lpha_0=0.15. This is the
         "best" model, according to backward selection. Of course, there's nothing about backward
         selection that is consistent with statistical inference, so we should use this procedure with
         caution! The same is true for forward selection and other stepwise selection methods.
In [ ]:
```

Median

-0.056134 -0.032975 -0.000806 0.025339 0.071500

Max

1Q

Min

AIC, BIC, and adjusted R^2

Recall that AIC is defined as

$$AIC\left(g\left(\mathbf{x};\widehat{oldsymbol{eta}}
ight)
ight)=2(p+1)+n\log(RSS/n).$$

We can use AIC (or BIC, or adjusted \mathbb{R}^2) to help us choose a "best" model. One way to do this would be:

- 1. Fit all simple linear regression models, and report the one with the lowest RSS. This is allowed because when the number of predictors is the same, RSS (and equivalently, R^2) can be used to compare models.
- 1. Fit all two-predictor models, and report the one with the lowest RSS.
- 1. Continue this process: fit all k-predictor models, and report the one with the lowest RSS.
- 1. At this point, we should have the "best" models (in terms of RSS) for all models of size k, where k ranges from 1 to p. We can no longer use RSS to compare across these models, since each is of a difference size. So, we use a criterion that takes into account the tradeoff between fit (RSS) and model size/complexity (p).

The regsubsets() function in the leaps library can help us streamline this process.

(Intercept)	thickness	diameter	perforation	weight	stiffness	airPerm
TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE
TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

The table above provides the best model (in terms of RSS) of size k, for $k=1,2,\ldots,6$. For example, the best simple linear regression model is the model <code>acoustic1 = $\widehat{\beta}_0 + \widehat{\beta}_1 \times$ airPerm</code> . Now, to compare these models with each other, we calculate AIC, and plot the AIC values as a function of model size.

```
In [42]:
    AIC = 2*(2:7) + n*log(rs$rss/n)
    plot(AIC ~ I(1:6), xlab = "number of predictors", ylab = "AIC")
```


In this plot, we see that the model of size k=3 has the lowest AIC. That means that our model selection procedure has chosen:

 $\text{acoustic1} = \widehat{\boldsymbol{\beta}}_0 + \widehat{\boldsymbol{\beta}}_1 \times \text{ perforation } + \widehat{\boldsymbol{\beta}}_2 \times \text{ weight } + \widehat{\boldsymbol{\beta}}_3 \times \text{ airPerm }.$

Interestingly, using

$$R_{a}^{2}=1-rac{RSSig/\left(n-\left(p+1
ight)
ight)}{TSSig/\left(n-1
ight)},$$

we get a different model, namely the model with five predictors (diameter, perforation, weight, stiffness, airPerm):

In [43]: plot(1:6, rs\$adjr2, xlab = "number of predictors", ylab = "adjusted R-squared")

And BIC, which is given as

$$BIC\left(g\left(\mathbf{x};\widehat{oldsymbol{eta}}
ight)
ight) = (p+1)\log(n) - 2\log L\left(\widehat{oldsymbol{eta}}
ight),$$

chooses the same model as AIC.

```
In [44]: BIC = log(n)*(2:7) + n*log(rs$rss/n) plot(BIC ~ I(1:6), xlab = "number of predictors", ylab = "BIC")
```


In []:	
In []:	