NIERELACYJNE ROZWIĄZANIA BAZODANOWE

WYKŁAD 5

AGENDA

- Importowanie danych
- Zastosowanie baz nierelacyjnych w Big Data
- Wstęp do uczenia maszynowego nieustrukturyzowane zbiory danych

IMPORTOWANIE DANYCH

IMPORTOWANIE DANYCH DO MONGODB W PYTHON

- client = MongoClient("mongodb://localhost:27017/")
- db = client['baza']
- kolekcja = db['kolekcja']
- df = pd.read_csv('plik.csv')
- data = df.to_dict(orient='records')
- kolekcja.insert_many(data)

MONGOIMPORT (DOKUMENTACJA MONGODB)

- mongoimport --uri 'mongodb+srv://MYUSERNAME:SECRETPASSWORD@mycluster-ABCDE.azure.mongodb.net/test?retryWrites=true&w=majority'
- mongoimport --uri 'mongodb+srv://mycluster-ABCDE.azure.mongodb.net/test?retryWrites=true&w=majority' \
- --username='MYUSERNAME' \
- --password='SECRETPASSWORD'

WIELE PLIKÓW JSON (DOKUMENTACJA MONGODB)

- mongoimport --collection='mycollectionname' --file='file_per_document/ride_00001.json'
- cat *.json | mongoimport --collection='mycollectionname'

- **=** {
- "tripduration": 602, "starttime": "2019-12-01 00:00:05.5640", "stoptime": "2019-12-01 00:10:07.8180", "start station id": 3382,
- start station name": "Carroll St & Smith St", "start station latitude": 40.680611, "start station longitude": -73.99475825, "end station id": 3304,
- end station name": "6 Ave & 9 St", "end station latitude": 40.668127, "end station longitude": -73.98377641, "bikeid": 41932,
- usertype": "Subscriber", "birth year": 1970, "gender": "male"

KOLEKCJA DOKUMENTÓW (DOKUMENTACJA MONGODB)

```
    [
    { title: "Document I", data: "document I value"},
    { title: "Document 2", data: "document 2 value"}
    ]
```

mongoimport --collection='from_array_file' --file='one_big_list.json' --jsonArray

ŚRODOWISKO GRAFICZNE – MONGODB COMPASS (DOKUMENTACJA MONGODB)

8

ZASTOSOWANIE BAZ NIERELACYJNYCH – BIG DATA

BIG DATA

- Doug Laney, Gartner (2001)
- Volume (duży wolumen danych)
- Variety (duża różnorodność danych)
- Velocity (duża intensywność napływu danych)
- Duże zbiory danych, których przetwarzanie nie jest możliwe tradycyjnymi metodami.
- Zestaw metod i technik przetwarzania danych, m.in. algorytmy MapReduce w Apache Hadoop (2005)
- Big Data a Small Data

ZAINTERESOWANIE TERMINEM BIG DATA WEDŁUG GOOGLE TRENDS

RODZAJE DANYCH (ONZ)

Wyszcze-	Dane tworzone przez ludzi	Dane powstające	Dane generowane przez urządzenia
gólnienie		w procesach biznesowych	
Rodzaje źródeł	1100. Sieci społecznościowe:	21. Dane wytwarzane przez agencje	31. Dane z czujników
	Facebook, X, Tumblr itp.	publiczne	311. Naprawiono czujniki
	1200. Blogi i komentarze, strony	2110. Dokumentacja medyczna	3111.Automatyka domowa
	internetowe	22. Dane wytwarzane przez firmy	3112. Czujniki pogody / zanieczyszczenia
	1300. Dokumenty osobiste	2210.Transakcje handlowe	3113. Czujniki ruchu / kamera internetowa
	1400. Zdjęcia: Instagram, Flickr, Picasa	2220. Ewidencja bankowa / zapasowa	3114. Czujniki naukowe
	itp.	2230. Handel elektroniczny	3115. Filmy / obrazy z zakresu bezpieczeństwa /
	1500. Filmy: YouTube itp.	2240. Karty kredytowe	nadzoru
	1600. Wyszukiwanie w Internecie		312. Czujniki mobilne (śledzenie)
	1700.Treść danych mobilnych:		3121. Lokalizacja telefonu komórkowego
	wiadomości tekstowe		3122. Samochody
	1800. Mapy generowane przez		3123. Zdjęcia satelitarne
	użytkowników		32. Dane z systemów komputerowych
	1900. E-mail		3210. Dzienniki
			3220. Dzienniki sieciowe

ALTERNATYWNE ŹRÓDŁA DANYCH DO POZYSKANIA DANYCH

Źródło danych	Obszar potencjalnego wykorzystania	
Dane ze skanerów kodów kreskowych	Statystyka cen, statystyki ekonomiczne	
Dane nt. lokalizacji telefonów komórkowych	Statystyka turystyki, statystyka ludności i migracji	
Dane z sensorów drogowych	Statystyka transportu	
Dane z mierników zużycia energii	Statystyka ludności, statystyka gospodarstw domowych	
Zdjęcia satelitarne, dane zdalnych sensorów	Statystyka rolnictwa, leśnictwa, rybołówstwa oraz statystyka środowiska naturalnego	
Dane z serwisów społecznościowych, dane z Internetu	Statystyka rynku pracy, statystyka ludności i migracji, statystyka dochodów i konsumpcji gospodarstw domowych, statystyka cen, statystyka zdrowia, statystyka społeczna	
Strony WWW z ofertami pracy	Statystyka rynku pracy	
Ruch samolotów	Statystyka transportu, statystyka ochrony środowiska	
Strony WWW: nieruchomości, działalność e-commerce	Statystyka cen	

KRYTYKA METOD I DANYCH BIG DATA

- "Nie tylko w podejmowaniu decyzji, ale także w empirycznych badaniach ekonomicznych Big Data ma do spełnienia funkcję raczej komplementarną, a nie substytucyjną (...) Big Data koncentruje się głównie na powiązaniach między zmiennymi, rejestrując duże liczby cech, które są w stanie opisywać najistotniejsze współzależności między nimi. Te współzależności mogą mieć charakter sztuczny (pozorny) lub przyczynowo-skutkowy." (Szreder, 2017).
- Analiza danych Big Data w dużej części zbiorów nie może zostać przeprowadzona z wykorzystaniem standardowych rozwiązań statystycznych (Domański, Jędrzejczak, 2015).
- Ostatnie lata pokazują jednak, że dane uzyskiwane metodą Big Data nie pomagają w osiąganiu lepszych i bardziej wiarygodnych wyników (Szreder, 2019; Gezgin, 2018).

Bibliografia

- Szreder, M., (2017). Nowe źródła informacji i ich wykorzystywanie w podejmowaniu decyzji. Wiadomości Statystyczne. The Polish Statistician, (7)4.
- Domański, Cz., Jędrzejczak, A. (2015). Statistical Computing in Information Society. Folia Oeconomica Stetinensia. 15. 10.1515/foli-2015-0041.
- Szreder, M. (2019). Istotność statystyczna w czasach big data. Wiadomości Statystyczne, 64(11), 42–57.
- Gezgin, U. B. (2018). An invitation to critical social science of big data: from critical theory and critical research to omniresistance.
 AI & Society, 35(I), 187–195. https://doi.org/10.1007/s00146-018-0868-y

JAKOŚĆ DANYCH BIG DATA

Trzy etapy:

- wejście (źródło danych pozyskiwanie, wstępna ocena danych)
- przetwarzanie (obszar przejściowy przekształcanie, modyfikowanie, analiza danych)
- wyjście (raporty wyniki analiz lub przetwarzania)

Trzy obiekty:

- źródło typ danych, charakterystyka obiektów oraz encji, uwarunkowania prawne oraz kwestie związane z dostępem
- metadane odnoszą się do aspektów związanych z opisem danych, przede wszystkim zastosowane standardy i klasyfikacje czy stopień pokrycia badanej populacji
- dane ocena jakości danych zawartych w źródłach

WSTĘP DO UCZENIA MASZYNOWEGO

PRZETWARZANIE NIEUSTRUKTURYZOWANYCH ZBIORÓW DANYCH

RODZAJE UCZENIA MASZYNOWEGO

- uczenie nadzorowane
- uczenie nienadzorowane
- uczenie przez wzmacnianie

SUPERVISED MACHINE LEARNING

Zadanie oszacowania wartości wyjściowej ze zbioru wartości wejściowych nazywane jest regresją w statystyce; dla modelu liniowego mamy regresję liniową. W uczeniu maszynowym regresja jest jednym z rodzajów uczenia nadzorowanego.

Ethem Alpaydin. (2016). Machine Learning: The New Al. The MIT Press.

UCZENIE NADZOROWANE (1/2)

■ Etykiety → Dane uczące się → Algorytmy uczenia maszynowego

■ Dane → Model predykcyjny → Prognozy

UCZENIE NADZOROWANE (2/2)

- Klasyfikacja etykiety klas
 - Klasyfikacja binarna, np. SPAM (pozytywny, negatywny)
 - Klasyfikacja wieloklasowa (np. rozpoznawanie obrazów, liczb)
- Wyniki ciągłe regresja
 - Dane zmienne objaśniające prognozujące
 - Ciągła zmienna objaśniana prognozowana

REINFORCEMENT LEARNING

W uczeniu ze wzmacnianiem należy podejmować decyzje sekwencyjne, a nie podejmować decyzje jednorazowo, co w niektórych przypadkach utrudnia trenowanie modeli.

Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing.

UCZENIE PRZEZ WZMACNIANIE

- Podobnie jak uczenie nadzorowane, jednak przewiduje się nagrody za poprawne wyniki (wzmacnianie)
- System regulator lub agent
- Poprawianie skuteczności poprzez interakcję
- Uczenie przez wzmacnianie to przykład problemów interaktywnych

UNSUPERVISED MACHINE LEARNING

Celem uczenia nienadzorowanego jest odkrycie ukrytych wzorców lub struktur danych, w których nie ma zmiennej docelowej, do wykonania metod klasyfikacji lub regresji.

Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing.

UCZENIE NIENADZOROWANE

- Dane o nieznanej strukturze tzw. ukryte struktury
- Grupowanie klasteryzacja, analiza skupień, analiza głównych składowych (PCA)

- Oddzielna dziedzina redukowanie nadmiarowości
 - szumu z danych

ALGORYTMY UCZENIA MASZYNOWEGO

UNIWERSYTET GDAŃSKI

SUPERVISED MACHINE LEARNING

UNIWERSYTET GDANSKI 20

SUPERVISED LEARNING – ZBIÓR TRENINGOWY

Pre-labeled Training Dataset

Testing Dataset (Usage)

$$y = f(x)$$

Gollapudi, S., & Laxmikanth, V. (2016). Practical Machine Learning. Packt Publishing.

- I feel so bad today -> smutny
- Tomorrow I start the vacation and feel so exhilirated -> szczęśliwy
- I am so busy and tired -> smutny

PRZYKŁAD: RYZYKO KREDYTOWE

Supervised learning

Ethem Alpaydin. (2016). Machine Learning: The New Al. The MIT Press.

CZEGO MOŻNA NAUCZYĆ?

- ■Tekst, np. analiza nastrojów
- Zdjęcia, np. rodzaje upraw, ludzie (rozpoznawanie twarzy), płeć
- Liczby, np. rodzaj kwiatu na podstawie wymiarów, koloru itp.

PRZYKŁAD ANALIZY SENTYMENTU

Sad

Faith in Humanity @TheWorldImages · 7 u
A polar bear is being kept inside a mall for selfies. This makes me so sad..

Scared

Pat Kane @thoughtland · 1 u
Haven't been that scared at unlikely prospect of Trump victory. Am now. FFS.

(3)

PRZYKŁAD: UCZENIE NADZOROWANE

MonkeyLearn

Text Analysis with Machine Learning

Turn tweets, emails, documents, webpages and more into actionable data. Automate business processes and save hours of manual data processing.

- Positive
- Negative
- Neutral

UNIWERSYTET GDAŃSKI 31

PODSTAWOWE EMOCJE W MEDIACH SPOŁECZNOŚCIOWYCH

UNIWERSYTET GDAŃSKI

PRZYKŁAD: RODZAJE AKTYWNOŚCI PRZEDSIĘBIORSTW W SOCIAL MEDIA

(1) Web scraping

- HTML File
- Extracting all links to find social media links
- Next iteration if the link is not present

(2) Twitter API

- Scrap the tweet
- Process the post/tweet by Machine Learning algorithm

(3) Machine Learning

- Classify the tweet:
- based on C11 (ICT 2015)

```
rith open ('wp2_social.csv','a') as plikcsv:
    kolumny=['URL','Facebook','Twitter','Youtube','LinkedIn','Instagram','GooglePlus']
    zapis=csv.DictWriter(plikcsv,delimiter=';',dialect=csv.excel,fieldnames=kolumny)
```

C10. Does your enterprise use any of the following social media:

Use of Social Media

	(not solely used for paid adverts) (add national examples; replace existing examples if necessary)
	a) Social networks (e.g. Facebook, LinkedIn, Xing, Viadeo, Yammer, etc.)
	b) Enterprise's blog or microblogs (e.g. Twitter, Present.ly, etc.)
	c) Multimedia content sharing websites (e.g. YouTube, Flickr, Picasa, SlideShare, etc.)
	d) Wiki based knowledge sharing tools
	The following question (C11) should only be answered if any of the
	used (i.e. C10 has at least one "Yes").
C11.	Does your enterprise use any of the above mentioned social media to:

C11.	Does your enterprise use any of the above mentioned social media to:	Yes	No
	a) Develop the enterprise's image or market products (e.g. advertising or launching products, etc)	_	<u> </u>
	b) Obtain or respond to <u>customer</u> opinions, reviews, questions		
	c) Involve <u>customers</u> in development or innovation of goods or services		
	d) Collaborate with <u>business partners</u> (e.g. suppliers, etc.) or <u>other</u> <u>organisations</u> (e.g. public authorities, non governmental organisations, etc.)		
	e) Recruit employees		
	f) Exchange views, opinions or knowledge within the enterprise		

Enterprises <u>usinq</u> social media are considered those that have a user profile, an account or a user

Does the Website have any of the following?	Yes	No
a) Description of goods or services, price lists		
* ⁸ b) Online ordering or reservation or booking, e.g. shopping cart		
c) Possibility for visitors to customise or design online goods or services		
d) Tracking or status of orders placed		
e) Personalised content in the website for regular/recurrent visitors		
f) Links or references to the enterprise's social media profiles		
a) Advertisement of open job positions or online job application optional		

	D: (n (f	your enterprise use any of the following social media? tolely used for paid adverts) national examples; replace existing examples if necessary)	Yes	No
1	, Sc	ocial networks (e.g. Facebook, LinkedIn, Xing, Viadeo, Yammer, etc.)		
	b) Er	nterprise's blog or microblogs (e.g. Twitter, Present.ly, etc.)		
		ultimedia content sharing websites (e.g. YouTube, Flickr, Picasa, lideShare, etc.)		
	d) W	iki based knowledge sharing tools		

https://circabc.europa.eu/sd/a/a39ae859-8a16-4306-8020-ae06d3df3c91/Questionnaire%20ENT%202016.pd

UNIWERSYTET GDAŃSKI

above social dia is

PRZYKŁAD: SATYSFAKCJA Z ŻYCIA NA PODSTAWIE ANALIZY MEDIÓW SPOŁECZNOŚCIOWYCH

EMOCJE

- happy,
- neutral,
- calm,
- upset,
- depressed,
- discouraged,
- indeterminate.

UNIWERSYTET GDAŃSKI

PRZYKŁAD: ROZPOZNAWANIE UPRAW

Data sources: Satellite images, administrative data, in situ surveys.

Methodology:

combining data – data fusion on radar and optical remote sensing data; data comparison with traditional surveys e.g. FSS;

combining data - administrative data sources with satellite data.

The goal of the case study: Crop type: look at the types of crops being grown and see if we can tell this accurately from the imagery; analysis of possibilities of using satellite images.

Plan of Combining Datasets: Data fusion – combining data sources by spatial reference.

CO NALEŻY ROZWAŻYĆ PODCZAS ANALIZY TEKSTU?

- Identyfikacja języka
- Dzielenie zdań
- Tokenizacja
- Lematyzacja
- Stemming
- Analiza anaforyzmów

- Wyrażenia regularne
- POS (Part-Of-Speech)
- Rozpoznawanie encji
- Parsowanie
- Stop words

ANALIZA TEKSTU I TEXT MINING

- Liczba słów:
 - Good morning, the weather is awful today and I don't feel good.
 - I feel not bad today, really happy.

PRZYKŁAD:WYKRYWANIE RODZAJÓW KWIATÓW NA PODSTAWIE ICH ROZMIARÓW

- Logistic Regression (LR)
- Linear Discriminant Analysis (LDA)
- K-Nearest Neighbors (KNN)
- Classification and Regression Trees (CART)
- Gaussian Naive Bayes (NB)
- Support Vector Machines (SVM)

Source: towardsdatascience.com

UNIWERSYTET GDAŃSKI 38

UNSUPERVISED MACHINE LEARNING

UNIWERSYTET GDANSKI 31

UNSUPERVISED LEARNING – ANALIZA SKUPIEŃ, KLASTRY

Unsupervised learning

Gollapudi, S., & Laxmikanth, V. (2016). Practical Machine Learning. Packt Publishing.

- I feel so bad today -> Klaster I
- Tomorrow I start the vacation and feel so exhilirated -> Klaster 2
- I am so busy and tired -> Klaster I

We are going for holidays and I feel so lovely -> Klaster 2

PRZYKŁAD. UNSUPERVISED MACHINE LEARNING

■ KLASTRY NA PODSTAWIE TEKSTU.

PRZYKŁAD: NIENADZOROWANE UCZENIE DO SEGMENTACJI KLIENTÓW (NA PODSTAWIE TOWARDSDATASCIENCE.COM)

- I. Pobierz dane
- 2. Normalizuj zbiór danych
- 3. Znajdź oczekiwaną wartość klastrów (sylwetka, łokieć)
- 4. Określ segment klientów

1 df_customers.head()

	TotalSales	OrderCount	AvgOrderValue
CustomerID			
12346.0	0.00	2	0.000000
12347.0	4310.00	7	615.714286
12348.0	1797.24	4	449.310000
12349.0	1757.55	1	1757.550000
12350.0	334.40	1	334.400000

SILHOUETTE – OCZEKIWANA LICZBA KLASTRÓW

• Współczynnik Silhouette jest miernikiem używanym do szacowania jakości techniki grupowania.

$$S = \frac{b - a}{\max{(a, b)}}$$

gdzie b jest średnią odległości między punktem a jego najbliższym klastrem, a jest średnią odległością między punktami danych w tym samym klastrze. Współczynnik sylwetki waha się od -1 do 1, gdzie im bliżej wartości są 1, tym lepsze.

ELBOW – WALIDACJA LICZBY KLASTRÓW

- Metoda łokcia służy do walidacji liczby skupień w klastrach k-średnich. Istotą metody łokcia jest uruchomienie grupowania k-średnich na zbiorze danych dla zakresu wartości k (np., k od 1 do 10) i dla każdej wartości k obliczane są:
 - Zniekształcenie (distortion), które jest średnią kwadratów odległości od centrów klastrów odpowiednich klastrów (używana jest metryka odległości euklidesowej)
 - Inertia (bezwładność), która jest sumą kwadratów odległości próbek do ich najbliższego środka klastru.

REINFORCEMENT MACHINE LEARNING

UNIWERSYTET GDANSKI 45

REINFORCEMENT LEARNING – ETYKIETY Z NAGRODAMI

Reinforcement learning

y = f(x) z podanym z.

Gollapudi, S., & Laxmikanth, V. (2016). Practical Machine Learning. Packt Publishing.

- I feel so bad today -> smutny
- Tomorrow I start the vacation and feel so exhilirated -> szczęśliwy
- I am so busy and tired -> smutny
- We are going for holidays and I feel so lovely -> szczęśliwy

PRZYKŁADY: UCZENIE ZE WZMACNIANIEM

- Zachowanie robotów mobilnych
- Robot mobilny musi zdecydować, czy dotrze do punktu ładowania, czy do następnego punktu ładowania, w zależności od tego, jak szybko był w stanie znaleźć punkt ładowania w przeszłości.
- Harmonogram wind
- Kluczowym wymogiem optymalizacji jest tutaj wybór, która winda ma być wysłana na które piętro i jest ona sklasyfikowana jako problem ze sterowaniem. Dane wejściowe to zestaw przycisków wciśniętych (wewnątrz i na zewnątrz windy) na piętrach, lokalizacjach wind i zestawie pięter. Nagrodą w tym przypadku jest najmniejszy czas oczekiwania osób, które chcą skorzystać z windy.
- Gra w szachy
- Routing pakietów sieciowych

Gollapudi, S., & Laxmikanth, V. (2016). Practical Machine Learning. Packt Publishing.

CZYM JEST NLP?

- Przetwarzanie języka naturalnego (NLP) jest istotną dziedziną uczenia maszynowego, która zajmuje się interakcjami między językami maszynowymi (komputerowymi) i ludzkimi (naturalnymi).
- Języki naturalne nie ograniczają się do mowy i konwersacji.
- Mogą występować również w języku pisemnym i migowym.
- Dane do zadań NLP mogą mieć różne formy, na przykład tekst z postów w mediach społecznościowych, stron internetowych, a nawet recept lekarskich, dźwięk z poczty głosowej, polecenia do systemów sterowania, a nawet ulubiona muzyka lub film.

Liu, Y. (Hayden). (2017). Python Machine Learning By Example. Packt Publishing.

CZĘŚCI MOWY – PRZYKŁADY

- Noun David, machine
- **Pronoun** Them, her
- Adjective Awesome, amazing
- Verb Read, write

Liu, Y. (Hayden). (2017). Python Machine Learning By Example. Packt Publishing.

- Adverb Very, quite
- **Preposition** Out, at
- Conjunction And, but
- Interjection Unfortunately, luckily
- Article A, the

PRZYKŁAD: CZĘŚCI MOWY

- import nltk
- nltk.download()

- from nltk.corpus import names
- names.words()[:10]
- len(names.words())

TOKENIZACJA

Input: Machine learning is awesome, right?

Unigram: Machine learning is awesome right

Bigram: Machine learning learning is is awesome awesome right

... n-gram

Liu, Y. (Hayden). (2017). Python Machine Learning By Example. Packt Publishing.

UNIWERSYTET GDAŃSKI

PRZYKŁAD: STEMMING

Stemming to proces przywracania odmienionego lub pochodnego słowa do jego pierwotnej formy.

Liu, Y. (Hayden). (2017). Python Machine Learning By Example. Packt Publishing.

- from nltk.stem.porter import PorterStemmer
- porter_stemmer = PorterStemmer()
- porter_stemmer.stem('lectures')

PRZYKŁAD: LEMATYZACJA

Lemmatyzacja to ostrożna wersja stemmingu. Uwzględnia części mowy dla danego słowa.

- from nltk.stem import WordNetLemmatizer
- lemmatizer = WordNetLemmatizer()
- lemmatizer.lemmatize('classes')
- Liu, Y. (Hayden). (2017). Python Machine Learning By Example. Packt Publishing.

MACHINE LEARNING ORAZ NLP

Chopra, D., Mathur, I., & Joshi, N. (2016). Mastering Natural Language Processing with Python. Packt Publishing.

UNIWERSYTET GDAŃSKI

PRZYKŁADY W BIZNESIE

- Klasyfikacja
 - charakterystyka przedsiębiorstwa na podstawie strony internetowej (np. e-commerce, rodzaj działalności)
 - opinie o produktach na podstawie komentarzy w sieci
 - produkty na podstawie ich opisu
 - potencjalnych klientów na podstawie ich aktywności w Internecie

BIZNESOWE ZASTOSOWANIA UCZENIA MASZYNOWEGO

- I. Modelowanie klienta
- 2. Modelowanie churnu
- 3. Dynamiczne ceny
- 4. Segmentacja klientów
- 5. Klasyfikacja obrazów
- 6. Systemy rekomendacyjne

ISTOTA PROFILOWANIA DANYCH

- Istotnym zagadnieniem jest przygotowanie liczby słów tzw. "stop words", które nie mają znaczenia w identyfikacji treści wiadomości.
- Są to słowa takie to np. "lub, oraz, jak, i, więc, a itd.".
- Więcej: http://www.ranks.nl/stopwords/polish

PRZYKŁAD BRAKU STOP WORDS

```
In [3]: from collections import Counter
    word_freq = Counter(text_project_words).most_common()
    print(word_freq[:10])

[('w', 99), ('sie', 62), ('na', 56), ('z', 47), ('i', 45), ('nie', 38), ('do', 35), ('REKLAMA', 31), ('to', 25), ('-', 24)]
```


UNIWERSYTET GDAŃSKI 58

ANALIZA SENTYMENTU

- Analiza sentymentu to określenie na podstawie zawartych słów, czy treść wiadomości jest pozytywna, negatywna lub neutralna.
- Może być wykorzystywana do badania nastrojów społecznych.
- Mogą być zbierane opinie dotyczące danego wydarzenia.
- Należy uważać na analizę komentarzy na typowych portalach.
- Przykładem dobrego wykorzystania jest badanie popularności danych tematów, jak np. w statystyce niderlandzkiej.

ANALIZA SENTYMENTU

- Można określić podstawowe emocje smutny, szczęśliwy, zły itp.
- Polaryzacja może być przypisana do słów pozytywnych i negatywnych, np. pozytywny: szczęśliwy, niezły, cieszę się, pozytywnie; negatywny: smutny, depresja, zdołowany, negatywnie.
- W takich przypadkach sarkazm jest niemal niemożliwy do wykrycia.

PYTANIE

- W uczeniu maszynowym nadzorowanym wyróżnia się zbiory:
 - wzmocniony
 - treningowy
 - testowy
 - klastrowy