Mechanical Engineering @ University of Waterloo

L+1(647)-297-9687

☑ckimwans@uwaterloo.ca

5-Axis Controllable Robot Arm

Developed a **5-axis robot arm** with the ability to support multiple interchangeable tools, including a **claw grip**, a **solenoid magnet**, and a **suction cup**.

To ensure optimal movement involving the multiple motors a **PID control system** was implemented.

Components were designed in **SolidWorks** and **3D printed**.

An **Arduino** was used with **C++** to program the motors.

Clip Prototypes:

Mechanical Engineering @ University of Waterloo

Computer Fan

Modeled a computer fan to be **3D printed** and assembled with brushless motors. The speed of these motors is controlled by **PWM**.

The frame was designed in **SolidWorks** with **Catia 3DX** used to design the blades for added precision.

To optimize the shape and size of the blades **CFD** was used through a **SolidWorks Flow Simulation**.

The inclusion of this fan in my computer reduced temperatures by 9% while maintaining consistent frame rates.

Final Print:

Mechanical Engineering @ University of Waterloo

Paper Airplane Launcher

Working in a team of 5 we developed a **fly-wheel** based paper airplane launcher capable of launching planes **60+ feet**.

Prototyped with **3D prints** however for the final version fly-wheels would be machined out of stainless steel using a **lathe**.

To remove risk of injury a **conveyor belt** system was implemented to feed planes into the fly-wheels.

Multiple materials were experimented with until TPU was decided on due to its flexibility.

A stand was also designed allowing for multiple different launch angles.

The stand utilizes a series of grooves to allow for locking.

Mechanical Engineering @ University of Waterloo

Robot Card Shuffler and Dealer

Using Lego Mindstorm and Technic kits I designed and assembled a robot capable of shuffling cards and dealing them to any specified number of people through an **automated process.**

This robot utilizes **high friction tires** to move each card and **light sensors** to count the number of cards dispensed.

The robot is portable for easy use and can rotate to deal to each individual player.

Mitre Box

3D printed a mitre box for the use of cutting wood and other soft materials

The material used for the print is **carbon fiber PETG**

Mechanical Engineering @ University of Waterloo

Door Lock

Designed and 3D printed a universal lock for doors out of PLA.

This lock is designed to attach to any wall or door as long as they are flush with each other.

Mechanical Keychain

Using blueprints designed a mechanical keychain in **SolidWorks**.

Machined and assembled the individual parts using a manual lathe, mill, and a drill press.

