Cole d'Ingénieur de Chimie Dékin

Année 2019-2020

Corrigé

Exercice 1 (Sous-espaces vectoriels de dimension finie).

Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension n>0. Soient U,V,W trois sous-espaces vectoriels de \mathbb{E} .

1- Montrer que si $\dim U + \dim V > n$, alors $U \cap V$ n'est pas réduit à $\{0_{\mathbb{E}}\}$ Corrigé : D'après la formule de Grassman, on a $\dim(U+V) = \dim U + \dim V - \dim(U\cap V)$. Comme U+V est un sous-espace vectoriel de \mathbb{E} , on a nécessairement $\dim(U+V) \leq n$. D'où :

$$\dim(U \cap V) = \dim U + \dim V - \dim(U + V) > n - n \geqslant 0$$

Donc $U \cap V$ n'est pas réduit à $\{0_{\mathbb{E}}\}$.

2- On suppose que $\dim U + \dim V + \dim W > 2n$, que dire de $U \cap V \cap W$?

Corrigé: D'après la formule de Grassman, et le fait que $\dim(U+V) \leq n$, on a $\dim(U\cap V) \geq \dim U + \dim V - n$. Donc

$$\dim(U \cap V) + \dim W \geqslant \dim U + \dim V + \dim W - n > n$$

On peut donc appliquer la question 1 avec $U \cap V$ d'une part et W d'autre part, ce qui donne :

$$\dim(U \cap V \cap W) > 0$$

Et donc $U \cap V \cap W$ n'est pas réduit à $\{0_{\mathbb{E}}\}$.

Exercice 2 (Supplémentaires).

Soit \mathbb{E} un \mathbb{C} -espace vectoriel de dimension n > 0. Soient \mathbb{F}_1 et \mathbb{F}_2 deux sous-espaces-vectoriels de \mathbb{E} .

1- On suppose que $\dim \mathbb{F}_1 = \dim \mathbb{F}_2$. On veut montrer qu'il existe un sous-espace vectoriel \mathbb{G} de \mathbb{E} tel que :

$$\mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

a) Que dire si $\mathbb{F}_1 = \mathbb{F}_2$?

Corrigé : D'après le cours, pour tout sous-espace vectoriel, il existe un supplémentaire. Donc, $\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{E}$. Comme $\mathbb{F}_1 = \mathbb{F}_2$, on a immédiatement

$$\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

b) Que dire si dim $\mathbb{F}_1 = n$?

Corrigé : Si dim $\mathbb{F}_1 = n$, alors $\mathbb{F}_1 = \mathbb{E}$. Comme on a dim $\mathbb{F}_1 = \dim \mathbb{F}_2$, on a alors aussi $\mathbb{F}_2 = \mathbb{G}$. En posant $\mathbb{G} = \{0_{\mathbb{E}}\}$, on a directement

$$\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

c) Si $\mathbb{F}_1 \neq \mathbb{F}_2$ et dim $\mathbb{F}_1 < n$, montrer qu'il existe un vecteur x de \mathbb{E} tel que \mathbb{F}_1 soit en somme directe avec $\mathrm{Vect}(x)$, et \mathbb{F}_2 également.

Corrigé : Puisque $\mathbb{F}_1 \neq \mathbb{F}_2$, et que ces espaces sont de même dimension, on peut dire que

 $\mathbb{F}_1 \nsubseteq \mathbb{F}_2$ et $\mathbb{F}_2 \nsubseteq \mathbb{F}_1$ (autrement, on aurait alors $\mathbb{F}_1 = \mathbb{F}_2$...). Donc:

$$\exists x_1 \in \mathbb{E} / x_1 \in \mathbb{F}_1 \text{ et } x_1 \notin \mathbb{F}_2$$

et
$$\exists x_2 \in \mathbb{E} / x_2 \notin \mathbb{F}_1 \text{ et } x_2 \in \mathbb{F}_2$$

Prenons alors le vecteur $x=x_1+x_2$. Si $x\in\mathbb{F}_1$, alors $x-x_1=x_2\in\mathbb{F}_1$ par stabilité des espaces vectoriels par combinaison linéaire, ce qui est absurde. Donc $x\notin\mathbb{F}_1$. De même, on montre $x\notin\mathbb{F}_2$.

On en déduit que \mathbb{F}_1 et $\mathrm{Vect}(x)$ sont en somme directe, et \mathbb{F}_2 est aussi en somme directe avec $\mathrm{Vect}(x)$. (Si vous en doutez, utilisez la proposition 6 du chapitre 2 d'algèbre linéaire et le fait que $x \notin \mathbb{F}_1 \ldots$).

d) Conclure avec une récurrence.

Corrigé : On va faire une récurrence (finie) sur $p = n - \dim \mathbb{F}_1$, la dimension d'un supplémentaire de \mathbb{F}_1 (qui est donc, la dimension d'un supplémentaire de \mathbb{F}_2).

Initialisation : Si p = 0, on a donc dim $\mathbb{F}_1 = n = \dim \mathbb{F}_2$. On a montré dans la question 1-b) qu'alors

$$\exists \mathbb{G} \; / \; \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

Hypothèse de récurrence : On pose (H_p) : si dim $\mathbb{F}_1 = \dim \mathbb{F}_2 = n - p$, alors $\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$.

Démonstration de récurrence : On suppose que (H_p) est vraie. Soient \mathbb{F}_1 et \mathbb{F}_2 deux sous-espaces vectoriels de \mathbb{E} de dimension n-(p+1)=n-p-1 (on prend, naturellement, p< n.

• Soit $\mathbb{F}_1 = \mathbb{F}_2$, et alors d'après la question 1-a, on a :

$$\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

• Soit $\mathbb{F}_1 \neq \mathbb{F}_2$, et alors d'après la question 1-c, on a :

$$\exists x \in \mathbb{E} / \mathbb{F}'_1 = \mathbb{F}_1 \oplus \operatorname{Vect}(x) \text{ et } \mathbb{F}'_2 = \mathbb{F}_2 \oplus \operatorname{Vect}(x)$$

Alors \mathbb{F}'_1 et \mathbb{F}'_2 sont des espaces vectoriels de dimension n-p-1+1=n-p, je peux donc appliquer l'hypothèse de récurrence (H_p) , donc :

$$\exists \mathbb{G}' \ / \ \mathbb{F}'_1 \oplus \mathbb{G}' = \mathbb{F}'_2 \oplus \mathbb{G}' = \mathbb{E}$$

En posant $\mathbb{G} = \mathbb{G}' \oplus \operatorname{Vect}(x)$, j'obtiens :

$$\exists \mathbb{G} \ / \ \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

C'est à dire (H_{p+1})

Conclusion : Comme (H_0) est vraie et $\forall p \in [0; n-1]$, $(H_p) \implies (H_{p+1})$, on a donc $\forall p \in [1; n]$, (H_n) est vraie, ce qu'on voulait démontrer.

2- On suppose que $\dim \mathbb{F}_1 < \dim \mathbb{F}_2$. Montrer qu'il existe deux sous-espace vectoriel \mathbb{G}_1 et \mathbb{G}_2 de \mathbb{E} tel que :

$$\mathbb{F}_1 \oplus \mathbb{G}_1 = \mathbb{F}_2 \oplus \mathbb{G}_2 = \mathbb{E} \text{ et } \mathbb{G}_2 \subset \mathbb{G}_1$$

Corrigé : D'après le théorème de la base incomplète, je peux compléter \mathbb{F}_1 en un sous-espace vectoriel \mathbb{F}'_1 de \mathbb{E} qui soit de même dimension que \mathbb{F}_2 . Définissons donc \mathbb{G}_0 tel que $\mathbb{F}'_1 = \mathbb{F}_1 \oplus \mathbb{G}_0$. On applique alors la question 1-d aux espaces \mathbb{F}'_1 et \mathbb{F}_2 , de même dimension :

$$\exists \mathbb{G} / \mathbb{F}'_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

C'est-à-dire:

$$\exists \mathbb{G} \; / \; \mathbb{F}_1 \oplus \mathbb{G}_0 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

On pose alors $\mathbb{G}_2 = \mathbb{G}$ et $\mathbb{G}_1 = \mathbb{G} \oplus \mathbb{G}_0$, ce qui répond à la question posée.

Problème

On cherche à résoudre, dans $\mathcal{M}_2(\mathbb{R})$, l'équation d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$:

$$M^2 = I_2$$

I - Préliminaires

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$.

1- Montrer que $\mathcal{A}_n(\mathbb{K}) \oplus \mathcal{S}_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})$.

Corrigé : La démonstration est dans le cours.

2- Décomposer la matrice A suivante comme somme d'une matrice symétrique et d'une matrice antisymétrique.

$$A = \begin{pmatrix} 1 & -1 & 3 & 8 \\ 5 & -2 & 0 & 4 \\ 4 & 1 & 2 & -2 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

Corrigé : On calcule $\frac{1}{2}(A+^{t}A)$ et $\frac{1}{2}(A-^{t}A)$:

$$\frac{1}{2}(A + {}^{t}A) = \begin{pmatrix} 1 & 2 & 7/2 & 9/2 \\ 2 & -2 & 1/2 & 3/2 \\ 7/2 & 1/2 & 2 & -1 \\ 9/2 & 3/2 & -1 & 1 \end{pmatrix}, \text{ et } \frac{1}{2}(A - {}^{t}A) = \begin{pmatrix} 0 & -3 & -1/2 & 7/2 \\ 2 & 0 & -1/2 & 5/2 \\ 1/2 & 1/2 & 0 & -1 \\ -7/2 & -5/2 & 1 & 1 \end{pmatrix}$$

II - Analyse

Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 = I_2$.

1- Soient $(A, S) \in \mathcal{A}_n(\mathbb{K}) \times \mathcal{S}_n(\mathbb{K})$ telles que M = S + A. Montrer qu'on a nécessairement :

$$\begin{cases} A^2 + S^2 &= I_2 \\ AS + SA &= \mathbf{0}_2 \end{cases}$$

Corrigé : On a M = A + S, donc $M^2 = (A + S)^2 = A^2 + AS + SA + S^2 = I_2 = I_2 + \mathbf{0}_2$ Comme ${}^{t}(A^2 + S^2) = ({}^{t}A^2 + {}^{t}S^2) = ((-A)^2 + S^2) = A^2 + S^2$, on en déduit que $(A^2 + S^2) \in \mathcal{S}_2(\mathbb{R})$. Comme ${}^{t}(AS + SA) = ({}^{t}S^{t}A + {}^{t}A^{t}S) = S \times (-A) + (-A) \times S = -SA - AS$, on en déduit que $AS + SA \in \mathcal{A}_2(\mathbb{R})$.

Puisque la décomposition en matrice symétrique et antisymétrique est unique, on en déduit :

$$\begin{cases} A^2 + S^2 &= I_2 \\ AS + SA &= \mathbf{0}_2 \end{cases}$$

2- En déduire que AS est une matrice symétrique Corrigé : On a ${}^{t}(AS) = {}^{t}S^{t}A = -SA = AS$ (par la deuxième équation de la question 1-), on en déduit que $AS \in \mathcal{S}_{2}(\mathbb{R})$.

3- On pose $S = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$ et $A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix}$, avec $(a,b,c,d) \in \mathbb{R}^4$. Montrer que d=0 ou a=-b. Corrigé : $AS = \begin{pmatrix} dc & db \\ -da & -dc \end{pmatrix}$ est un matrice symétrique. Donc db = -ab, d'où l'on déduit d=0 ou a=-b

3

4- En déduire que toutes les solutions de $M^2=I_2$ sont soit I_2 , soit $-I_2$, soit de la forme :

$$\begin{pmatrix} \operatorname{ch} \phi \cos \theta & \operatorname{ch} \phi \sin \theta + \operatorname{sh} \phi \\ \operatorname{ch} \phi \sin \theta - \operatorname{sh} \phi & -\operatorname{ch} \phi \cos \theta \end{pmatrix} \text{ avec } (\theta, \phi) \in [0; 2\pi[\times \mathbb{R}$$

Corrigé: 1^{er} cas: $b \neq -a$.

$$M^{2} = I_{2} \implies \begin{pmatrix} a^{2} + c^{2} & ac + bc \\ ac + bc & b^{2} + c^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies \begin{cases} a^{2} + c^{2} & = 1 \\ b^{2} + c^{2} & = 1 \\ c(a+b) & = 0 \end{cases} \implies \begin{cases} a = b \text{ car } a \neq -b \\ ac = 0 \\ a^{2} + c^{2} = 1 \end{cases}$$

Si c=0, alors on en déduit $a^2=1$, d'où $a=b=\pm 1$ et donc $M=\pm 1$. Si a=0, alors on en déduit $c^2=1$, d'où $c=\pm 1$ et donc $M=\pm I_2$.

2° cas:
$$a=-b$$
.
 $M^2=I_2 \implies \begin{pmatrix} a^2+c^2-d^2 & 0 \\ 0 & a^2+c^2-d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies a^2+c^2-d^2=1$
Comme sh(·) est une bijection de $\mathbb R$ dans $\mathbb R$, alors $\exists ! \phi \in \mathbb R \ / \ d = \operatorname{sh} \phi$. On a alors:

$$a^{2} + c^{2} - d^{2} = 1$$

$$\Rightarrow a^{2} + c^{2} - \sinh^{2} \phi = 1$$

$$\Rightarrow a^{2} + c^{2} = 1 + \sinh^{2} \phi$$

$$\Rightarrow a^{2} + c^{2} = \cosh^{2} \phi$$

$$\Rightarrow \left(\frac{a}{\cosh \phi}\right)^{2} + \left(\frac{c}{\cosh \phi}\right)^{2} = 1 \operatorname{car} \operatorname{ch} \phi \neq 0 \ \forall \phi \in \mathbb{R}$$

Comme on a une somme de deux carrés valant 1, alors on peut identifier les termes à un sinus et un cosinus:

$$\exists \theta \in [0; 2\pi[\ /\ \frac{a}{\operatorname{ch}\phi} = \cos\theta,\ \frac{c}{\operatorname{ch}\phi} = \sin\theta$$

Donc on a au final:

$$\begin{cases} a = \cos\theta \cosh\phi \\ b = -\cos\theta \cosh\phi \\ c = \sin\theta \cosh\phi \\ d = 0 \end{cases}$$

On obtient:

$$M = \begin{pmatrix} \operatorname{ch} \phi \cos \theta & \operatorname{ch} \phi \sin \theta + \operatorname{sh} \phi \\ \operatorname{ch} \phi \sin \theta - \operatorname{sh} \phi & -\operatorname{ch} \phi \cos \theta \end{pmatrix} \text{ avec } (\theta, \phi) \in [0; 2\pi[\times \mathbb{R}$$

III -Synthèse

Vérifier ques les matrices trouvées à la question précédentes sont bien solutions de l'équation de

Corrigé: Chaque matrice trouvée précedemment est solution de $M^2 = I_2$. En effet, pour $M = \pm I_2$, c'est évident. Pour le dernier cas, on calcule «à la main » :

$$M = \begin{pmatrix} \cosh \phi \cos \theta & \cosh \phi \sin \theta + \sinh \phi \\ \cosh \phi \sin \theta - \sinh \phi & -\cosh \phi \cos \theta \end{pmatrix}$$

$$\implies M^{2} = \begin{pmatrix} \cosh^{2} \phi \cos^{2} \theta + \cosh^{\phi} \sin^{2} \theta - \sinh^{2} \phi & 0 \\ 0 & (-\cosh \phi)^{2} \cos^{2} \theta + \cosh^{\phi} \sin^{2} \theta - \sinh^{2} \phi \end{pmatrix}$$

$$= \begin{pmatrix} \cosh^{2} \phi - \sinh^{2} \phi & 0 \\ 0 & \cosh^{2} \phi - \sinh^{2} \phi \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2}$$

L'ensembe des solutions de $M^2 = I_2$ est

$$\{-I_2;I_2\} \cup \left\{ M = \begin{pmatrix} \operatorname{ch} \phi \cos \theta & \operatorname{ch} \phi \sin \theta + \operatorname{sh} \phi \\ \operatorname{ch} \phi \sin \theta - \operatorname{sh} \phi & -\operatorname{ch} \phi \cos \theta \end{pmatrix}, \ (\phi,\theta) \in \mathbb{R} \times [0;2\pi[\right\}$$