Gramáticas Libre del Contexto

Alan Reyes-Figueroa Teoría de la Computación

(Aula 15) 07.septiembre.2022

Eliminar ambigüedad

Consideremos la siguiente gramática:

$$S \rightarrow aSbS$$
, $S \rightarrow bSaS$, $S \rightarrow \epsilon$

- La gramática resultante es ambigua. Por ejemplo, para la cadena abab, tenemos
- □ S -> aSbS ->aSbaSbS ->* abab
- S -> aSbS ->abSaSbS ->* abab

- Si se utilizan diferentes operadores, consideraremos la precedencia de los operadores.
 - □ El nivel al que está presente la producción denota la prioridad del operador.
 - La producción a niveles más altos tendrá operadores con menor prioridad.
 - □ La producción en los niveles inferiores tendrá operadores con mayor prioridad.

Asociatividad:

- Si los mismos operadores de precedencia están en producción, entonces tendremos que considerar la asociatividad.
- □ Si la asociatividad es de izquierda a derecha, entonces tenemos que provocar una recursión a la izquierda en la producción. Si la asociatividad es de derecha a izquierda, entonces tenemos que provocar la recursión a la derecha en las producciones.

Para remover la ambigüedad, simplemente hacemos que la gramática sea recursiva a la izquierda.

Para ello:

Reemplazamos el símbolo no terminal más a la izquierda en el lado derecho de la producción con otra variable no terminal.

 $\Box E \rightarrow E - E$ $E \rightarrow 0|1|2|3|4|5|6|7|8|9$

Removemos la ambigüedad

 $\Box E \rightarrow E - X$

 $X \rightarrow 0|1|2|3|4|5|6|7|8|9$

 $E \rightarrow 0|1|2|3|4|5|6|7|8|9$


```
\Box E \rightarrow E + E

E \rightarrow E * E

E \rightarrow 0|1|2|3|4|5|6|7|8|9
```

Removemos la ambigüedad como:

 \square S \rightarrow aSbS, S \rightarrow bSaS, S \rightarrow ϵ

Removemos la ambigüedad como:

 \square S \rightarrow aSbT S \rightarrow bSaT

 $S \rightarrow T$

 $T \rightarrow \epsilon$

Consideremos la siguiente gramática:

$$S \rightarrow aSbS$$
, $S \rightarrow bSaS$, $S \rightarrow \epsilon$

- La gramática resultante es ambigua. Por ejemplo, para la cadena **abab**, tenemos
- □ S -> aSbS ->aSbaSbS ->* abab
- S -> aSbS ->abSaSbS ->* abab

Testando si una variable deriva alguna cadena terminal

- Base: Si existe una producción A → w, donde w no tiene variables, entonces A deriva una cadena terminal.
- □ Inducción: Si existe una producción $A \rightarrow \alpha$, donde α consiste sólo de terminales y variables que derivan una cadena terminal, entonces A deriva una cadena terminal.

Testando si una variable deriva alguna cadena terminal

- Eventualmente, llegamos a no encontrar más variables.
- □ Haciendo una inducción sobre el orden en que las variables "aparecen" muestra que cada una deriva una cadena terminal.
- Recíprocamente, cualquier variable que deriva una cadena terminal siempre se puede encontrar mediante este algoritmo.

Algoritmo para eliminar variables que no derivan nada

- 1. Descubrir todas las variables que derivan cadenas terminales.
- 2. Para todas las demás variables, remover todas las producciones en donde dichas variables aparecen (ya sea en la izquierda o en la derecha).

Ejemplo: eliminar variables

$$S \rightarrow AB \mid C$$
, $B \rightarrow bB$, $A \rightarrow aA \mid a$, $C \rightarrow c$

- Base: A y C se marcan, ya que A \rightarrow a y C \rightarrow c (ambas derivan terminales).
- Inducción: S se marca, ya que S → C (deriva símbolo que deriva terminales).
- Nada más se marca.
- \square Resultado: S \rightarrow AB | C, A \rightarrow aA | a, C \rightarrow c

Símbolos inalcanzables

- Otra forma en que un terminal o variable merece ser eliminada es si no puede aparecer en ninguna derivación desde el símbolo de inicio.
- □ Base: S es alcanzable (S símbolo inicial).
- □ Inducción: Si podemos alcanzar A desde S, y existe una producción A $\rightarrow \alpha$, entonces α es alcanzable desde S.

Símbolos inalcanzables

- □ Es simple mostrar (vía inducción) que cuando no podemos descubrir más símbolos alcanzables, tenemos todos y sólo los símbolos que aparecen en las derivaciones de S.
- Algoritmo: Remover de la gramática todos los símbolos no alcanzables desde S y todas las producciones que involucran a dichos símbolos.

Eliminar símbolos sin uso

- Un símbolo es útil (useful) si éste aparece en alguna derivación de alguna cadena terminal desde el símbolo inicial S. En otro caso, es sin uso (useless).
- Eliminamos todos los símbolos sin uso:
 - Eliminar símbolos que derivan cadenas no terminales.
 - 2. Eliminar símbolos no alcanzables.

Ejemplo: Símbolos sin uso

$$S \rightarrow AB|C, A \rightarrow C, C \rightarrow c, B \rightarrow bB$$

- □ El orden es importante!!
 - Si eliminamos símbolos no alcanzables primero, encontraríamos que todo es alcanzable.
- Luego,A, C, y c nunca serían eliminados.

¿Por qué funciona?

- Luego del paso (1), todo símbolo remanente deriva alguna cadena terminal.
- Luego del paso (2), los únicos símbolos remanentes son aquellos derivables de S.
- Adicionalmente, estos símbolos aún derivan una cadena terminal, ya que tal derivación sólo envuelve símbolos alcanzables desde S.

Produccciones Épsilon

- □ Casi podemos evitar usar producciones del tipo A $\rightarrow \varepsilon$ (llamadas producciones $-\epsilon$).
 - \square El problema es que ε no puede pertenecer al lenguaje generado por una gramática que no posee producciones- ε .
- □ Teorema: Si L es una gramática CFL, entonces L- $\{\epsilon\}$ posee una CFG sin producciones- ϵ .

Símbolos Anulables

- □ Para eliminar producciones-∈, primero debemos detectar las *variables anulables* = variables A tales que A =>* ∈.
- □ Base: Si hay alguna producción $A \rightarrow \epsilon$, entonces A es anulable.
- □ Inducción: Si existe una producción $A \rightarrow \alpha$, y todos los símbolos de α son anulables, entonces A es anulable.

Ejemplo: Símbolos Anulables

- $S \rightarrow AB$, $A \rightarrow aA \mid \epsilon$, $B \rightarrow bB \mid A$
- \square Base: A es anulable ya que A $\rightarrow \varepsilon$.
- \square Inducción: B es anulable ya que B \rightarrow A.

□ En nuestro ejemplo: Entonces, S es anulable, ya que S → AB.

Eliminar Producciones-e

- □ Idea Clave: Convertir cada producción de la forma $A \rightarrow X_1 ... X_n$ en una familia de producciones.
- Para cada subconjunto de anulables X's, existe una producción con aquellos eliminados del lado derecho "in advance."
 - □ Excepto, si todos los X's son anulables, no crear una producción con ∈ en el lado derecho.

Ejemplo: Eliminar producciones-ε

$$S \rightarrow ABC$$
, $B \rightarrow bB \mid \epsilon$, $A \rightarrow aA \mid \epsilon$, $C \rightarrow \epsilon$

- ☐ A, B, C, y S son todos anulables.
- New grammar:

Induction — Continued

- \square By the IH, if $w_i \neq \epsilon$, then $X_i = >*_{new} w_i$.
- □ Also, the new grammar has a production with A on the left, and just those X_i 's on the right such that $w_i \neq \epsilon$.
 - \square Note: they all can't be ϵ , because $w \neq \epsilon$.
- □ Follow a use of this production by the derivations $X_i = >*_{new} w_i$ to show that A derives w in the new grammar.

Proof of Converse

- □ We also need to show part (2) if w is derived from A in the new grammar, then it is also derived in the old.
- □ Induction on number of steps in the derivation.
- We'll leave the proof for reading in the text.

Unit Productions

- ☐ A *unit production* is one whose right side consists of exactly one variable.
- □ These productions can be eliminated.
- □ Key idea: If A = > * B by a series of unit productions, and $B > \alpha$ is a non-unit-production, then add production $A > \alpha$.
- Then, drop all unit productions.

Unit Productions – (2)

- □ Find all pairs (A, B) such that A =>* B by a sequence of unit productions only.
- ☐ Basis: Surely (A, A).
- ☐ Induction: If we have found (A, B), and B -> C is a unit production, then add (A, C).

Cleaning Up a Grammar

- Theorem: if L is a CFL, then there is a CFG for L $\{\epsilon\}$ that has:
 - 1. No useless symbols.
 - 2. No ϵ -productions.
 - 3. No unit productions.
- I.e., every right side is either a single terminal or has length ≥ 2.

Cleaning Up - (2)

- Proof: Start with a CFG for L.
- Perform the following steps in order:
 - 1. Eliminate ϵ -productions.
 - 2. Eliminate unit productions.
 - 3. Eliminate variables that derive no terminal string.
 - 4. Eliminate variables not reached from the start symbol.

 Must be first. Can create unit productions or useless

variables.

Chomsky Normal Form

- A CFG is said to be in *Chomsky Normal Form* if every production is of one of these two forms:
 - 1. A -> BC (right side is two variables).
 - 2. A -> a (right side is a single terminal).
- □ Theorem: If L is a CFL, then L $\{\epsilon\}$ has a CFG in CNF.

Example: Step 2

- □ Consider production A -> BcDe.
- □ We need variables A_c and A_e . with productions A_c -> c and A_e -> e.
 - Note: you create at most one variable for each terminal, and use it everywhere it is needed.
- \square Replace A -> BcDe by A -> BA_cDA_e.

CNF Proof – Continued

- Step 3: Break right sides longer than 2 into a chain of productions with right sides of two variables.
- Example: A -> BCDE is replaced by A -> BF, F -> CG, and G -> DE.
 - ☐ F and G must be used nowhere else.

Example of Step 3 – Continued

- □ Recall A -> BCDE is replaced by A-> BF, F -> CG, and G -> DE.
- □ In the new grammar, A => BF => BCG=> BCDE.
- More importantly: Once we choose to replace A by BF, we must continue to BCG and BCDE.
 - Because F and G have only one production.