Lab10 Solution

YAO ZHAO

Lab10.A Shopping

Lanran likes shopping! There are n items in the shop, where each one has beauty w_i and costs c_i coins. Lanran has m coins, and he wants to get the largest sum of beauty on items he can buy. Note that, Lanran can buy at most one per item.

Sample input:

items	W_i	C_i
1	5	3
2	3	2
3	3	4

items	$sum(C_i)$	$sum(W_i)$
1	3	5
2	2	3
3	4	3
1+2	3+2≤6	5+3 = 8
2+3	3+3≤6	2+4 = 6
1+3	3+4>6	
1+2+3	3+2+4>6	

Sample Output:

Review:

$$W = 11$$

#	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

 W + 1	

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

Pseudo-code

```
Input: n, W, w_1, \dots, w_N, v_1, \dots, v_N
for w = 0 to W
  M[0, w] = 0
for i = 1 to n
   for w = 1 to W
      if (w_i > w)
          M[i, w] = M[i-1, w]
      else
          M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
return M[n, W]
```

Space complexity optimization of 0-1 knapsack

To calculate the new values of row i, only rows i -1 needed. The data from rows 0 to i -2 do not need storage space.

```
For W to w_i

M[w] = \max \{M[w], v_i + M[w - w_i]\}
```

```
For W to w_i
Input: n, W, w_1, \dots, w_N, v_1, \dots, v_N
                                                    M[i, w] = \max \{M[i, w], v_i + M[i, w - w_i]\}
for w = 0 to W
   M[0, w] = 0
for i = 1 to n
   for w = 1 to W
       if (w_i > w)
           M[i, w] = M[i-1, w]
       else
           M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
return M[n, W]
```

Lab10.B Game

- ▶ Bob is very angry because Alice broke his wonderful TV, so he will battle with Alice in a game to avenge.
- ▶ The game is a very simple game. Initially, they are given a non-empty string s, consisting of lowercase letters. The length of the string is even. Each player also has its own empty string. In one move, a player takes either the first or the last letter of the string s, removes it from s and appends it to their own string (put it at the end of the string).
- The game ends when s is empty. And then Alice and Bob will compare their strings, the one that owns a lexicographically smaller string will be the winner.
- ▶ Bob is very confident with the game, so he will let **Alice move first**. Also, Alice and Bob will take their moves optimally.
- Your task is to tell who is the winner or they draw.

ilikealgorithm Alice move first, if Alice get character i first, Bob must lose the game

ggggggggggg All characters are the same, will be draw.

oooooooooohhhhhhhhhhhhhh

Alice move first, if Alice get i first, Bob must lose the game

Sample Output:
Alice
Draw
Alice

only 2 characters:

ij $S_1 < S_2$ Alice is clever \longrightarrow Alice get $S_1 \longrightarrow$ Alice win

ji $S_1 > S_2$ Alice is clever \longrightarrow Alice get $S_2 \longrightarrow$ Alice win

ii $S_1 = S_2$ Draw

4 characters:

ijkl
$$S_1 < S_4$$
 $S_1 < S_2$ Alice get S_1 Bob get S_2 or S_4 \longrightarrow Alice win

jikl
$$S_1 < S_4$$
 $S_1 > S_2$ Alice get S_1 —Bob get S_2 —Bob win

Alice get
$$S_4$$
 \longrightarrow Bob get S_1 \longrightarrow Bob win

jlki
$$S_1 > S_4$$
 $S_3 > S_4$ Alice get S_4 — Bob get S_1 or S_3 — Alice win

jikl
$$S_1 > S_4$$
 $S_3 < S_4$ Alice get S_4 Bob get S_3 Bob win

Alice get
$$S_1$$
 \longrightarrow Bob get S_4 \longrightarrow Bob win

ijki
$$S_1=S_4 < S_2, S_3$$
 Alice get S_1 —Bob get S_2 or S_4 —Alice win Alice get S_4 —Bob get S_1 or S_3 —Alice win

jikj
$$S_2 < S_1 = S_4 < S_3$$
 Alice get $S_4 \longrightarrow$ Bob get $S_1 \longrightarrow$ only 2 characters \longrightarrow Alice win

jkij
$$S_3 < S_1 = S_4 < S_2$$
 Alice get $S_1 \longrightarrow$ Bob get $S_4 \longrightarrow$ only 2 characters

kijk $S_2 <= S_3 < S_1 = S_4$ Alice get S_4 Bob get S_3 Bob win

Alice get S_1 \longrightarrow Bob get S_2 \longrightarrow Bob win

jjij $S_3 < S_1 = S_4 = S_2$ $\sqrt{\text{Alice get } S_1 \longrightarrow \text{Bob get } S_4 \text{ or } S_2 \longrightarrow \text{only 2 characters} \longrightarrow \text{Alice win}}$

Alice get $S_4 \longrightarrow$ Bob get $S_3 \longrightarrow$ Bob win

jjkj $S_1 = S_4 = S_2 < S_3$ Alice get $S_1 \longrightarrow$ Bob get S_4 or $S_2 \longrightarrow$ only 2 characters \longrightarrow Alice win

Alice get $S_4 \longrightarrow$ Bob get $S_2 \longrightarrow$ only 2 characters \longrightarrow Alice win

jjjj $S_1 = S_2 = S_3 = S_4$ Alice get $S_1 \longrightarrow Bob$ get S_4 or $S_2 \longrightarrow Bob$ and $S_2 \longrightarrow S_3 \longrightarrow S_4$ Draw

More characters?