Assembly Line Project Report

Jason Boltin¹, Aryan Manojbhai Patelia², Meshari Ali³, and Mohammad Alouda⁴ School of Computing and Augmented Intelligence, Arizona State University

FSE 100: Introduction to Engineering

Wanpeng Xu

September 15, 2025

Table of Contents

Table of Contents	2
Executive Summary	3
Problem Requirements	4
Car Design	5
Hierarchy Graph and Partitions	
Cycle Time, Throughput Time, and Efficiency	7
Cost, Revenue, and Profit Tables	8
Instruction Sets	9
Summary and Assembly Line Justification	10

Executive Summary

This project introduces an advanced **car manufacturing system** powered by robotic automation to maximize efficiency, reduce costs, and significantly increase profitability.

By replacing manual labor with 5 automated stations, upfront investment in robots and infrastructure enables faster production cycles and superior product quality. Each car is produced at low cost, sold at a competitive price, and generates a strong profit margin.

Robotic efficiency reduces build time to under a minute per car, ensuring high throughput and scalability. Financial projections indicate exceptionally high monthly profits and substantial long-term returns.

Through automation, optimized processes, and quality assurance, this project delivers a **highly profitable, scalable, and sustainable manufacturing model** that positions the company for long-term growth and industry leadership.