Searth for right-handed neutrino with solar neutrino experiment

Yutao Zhu, Shaomin Chen, and Zhicai Zhang*

Department of Engineering Physics, Tsinghua University, Beijing 100084, China

(Dated: November 30, 2024)

A searth for right-handed neutrino with solar neutrino experiment is presented.

I. INTRODUCTION

II. PRODUCTION AND DECAY OF RIGHT-HANDED NEUTRINO

FIG. 1. Energy spectra of right-handed neutrinos with different masses emitted from $^8{\rm B}$ decay in the Sun. The right-handed neutrino spectra are based on 8B left-handed solar neutrino spectrum (ν_e in the plot, taken from [1]) and are suppressed by the mixing parameter $|U_{eH}|^2$ by $\Phi(E_{\nu H})=|U_{eH}|^2\sqrt{1-(\frac{m_{\nu H}}{E_{\nu H}})^2}\Phi_{^8B}(E_{\nu}),$ where $|U_{eH}|^2$ is 1.0 in this plot.

FIG. 2. Proper lifetime $(\tau_{c.m}=1.0/\Gamma_{c.m.}^{tot})$ of right-handed neutrinos with different masses and different mixing parameter $|U_{eH}|^2$. The total width $\Gamma_{c.m.}^{tot}$ includes decays by both W and Z bosons, and is defined by $\Gamma_{c.m.}^{tot}=\frac{G_F^2}{192\pi^3}m_{\nu H}^5|U_{eH}|^2(1+h\left[\frac{m_e^2}{m_{\nu H}^2}\right])$, where $h\left[\frac{m_e^2}{m_{\nu H}^2}\right]$) is the phase-space taken from [2].

FIG. 3. Branching ratio of ν_H decay to $\nu_e e^+ e^-$ for different masses and different mixing parameter $|U_{eH}|^2$.

^{*} zhicaizhang@tsinghua.edu.cn

FIG. 4. Energy spectra of left-handed neutrinos (ν_e) in the lab frame from ν_H to $\nu_e e^+ e^-$ decay for different ν_H masses. The spectra shown in this plot include all ν_H decay (regardless of where they decay). The original solar neutrino energy spectrum from 8B in the Sun is also shown in the plot (black curve).

FIG. 5. Top: emission angle $\cos(\theta)$ distribution of left-handed neutrinos (ν_e) in the lab frame from ν_H to $\nu_e e^+ e^-$ decay for different ν_H masses. The plots shown in this plot include all ν_H decay (regardless of where they decay). Bottom: sketch of definition of emission angle θ .

III. SEARCH FOR ν_H WITH e^+e^- SPECTRUM

FIG. 6. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 10^{-6} in this plot.

FIG. 7. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 10^{-5} in this plot.

FIG. 8. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 10^{-4} in this plot.

FIG. 9. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 10^{-3} in this plot.

FIG. 10. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 10^{-2} in this plot.

FIG. 12. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 1.0 in this plot.

FIG. 11. The expected energy spectra of of e^+e^- pairs in the lab frame from ν_H to $\nu_e e^+e^-$ decay for different ν_H masses. The spectra only include ν_H 's that decay inside a 1000-ton detector placed on earth over 1000 days. The mixing parameter $|U_{eH}|^2$ is 10^{-1} in this plot.

IV. SEARCH FOR ν_H WITH ν_e SOLAR ANGLE

FIG. 13. Definition of angles ϕ_{decay} (emission angle) and θ_{Sun} (solar angle) for ν_H decay in flight and then the decay product ν_e reaches the detector on earth. Different scenarios of ν_H decays are shown: ν_H decay inside earth orbit (top plot), and ν_H decay outside earth orbit (bottom plots).

FIG. 14. Distribution solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=8~{\rm MeV}$ and $|U_{eH}|^2=10^{-8}$.

FIG. 15. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=8~{\rm MeV}$ and $|U_{eH}|^2=10^{-5}$.

FIG. 16. Distributions of solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-5}$.

FIG. 17. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-5}$.

FIG. 19. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=8~{\rm MeV}$ and $|U_{eH}|^2=10^{-4}$.

FIG. 18. Distribution solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=8~{\rm MeV}$ and $|U_{eH}|^2=10^{-4}$.

FIG. 20. Distributions of solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-4}$.

FIG. 21. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-4}$.

FIG. 23. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=6~{\rm MeV}$ and $|U_{eH}|^2=10^{-3}$.

FIG. 22. Distribution solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H} = 6 \text{ MeV}$ and $|U_{eH}|^2 = 10^{-3}$.

FIG. 24. Distributions of solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-3}$.

FIG. 25. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-3}$.

FIG. 27. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H} = 4$ MeV and $|U_{eH}|^2 = 10^{-2}$.

FIG. 26. Distribution solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=4~{\rm MeV}$ and $|U_{eH}|^2=10^{-2}$.

FIG. 28. Distributions of solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-2}$.

FIG. 29. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-2}$.

FIG. 31. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=4~{\rm MeV}$ and $|U_{eH}|^2=10^{-1}$.

FIG. 30. Distribution solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H} = 4 \text{ MeV}$ and $|U_{eH}|^2 = 10^{-1}$.

FIG. 32. Distributions of solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-1}$.

FIG. 33. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-1}$.

FIG. 35. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=2$ MeV and $|U_{eH}|^2=1.0$.

FIG. 34. Distribution solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The distributions for ν_H decay inside and outside earth orbit are shown separately. The signal model shown in this plot is $m_{\nu H}=2~{\rm MeV}$ and $|U_{eH}|^2=1.0$.

FIG. 36. Distributions of solar angle $\cos(\theta_{Sun})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 1$.

FIG. 37. Distributions of emission angle $\cos(\phi_{decay})$ of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2=1$.

V. SEARCH FOR ν_H WITH ν_e SPECTRUM

FIG. 38. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H}=6$ MeV and $|U_{eH}|^2=1.0$.

FIG. 39. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H}=8$ MeV and $|U_{eH}|^2=1.0$.

FIG. 40. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H}=10$ MeV and $|U_{eH}|^2=1.0$.

FIG. 41. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2=1.0$. The background (original solar neutrino spectrum that come from 8B decay in the Sun) spectrum is also shown in the plot.

FIG. 42. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H} = 4$ MeV and $|U_{eH}|^2 = 10^{-1}$.

FIG. 43. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2=10^{-1}$. The background (original solar neutrino spectrum that come from 8B decay in the Sun) spectrum is also shown in the plot.

FIG. 44. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H} = 4$ MeV and $|U_{eH}|^2 = 10^{-2}$.

FIG. 45. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-2}$. The background (original solar neutrino spectrum that come from 8B decay in the Sun) spectrum is also shown in the plot.

 $\frac{U^2 = 0.0001, m_{vH} = 8 \text{ MeV}}{\text{Total (decay inside+outside)}}$ 10¹⁰ Neutrino Flux (MeV⁻¹ cm⁻² s⁻¹) 10⁹ v., decay inside earth orbit → v. fly through detector v_H decay outside earth orbit v_e from ⁸B (original) → v_a fly through detector 10⁸ v_e from ⁸B (survived) 10⁷ 10⁶ 10⁵ 10⁴ 10³ 10² 10 10⁻ 10⁻² 10⁻³ 10 10 Neutrino ν_e Energy (MeV)

FIG. 46. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H}=6$ MeV and $|U_{eH}|^2=10^{-3}$.

FIG. 48. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H}=8$ MeV and $|U_{eH}|^2=10^{-4}$.

FIG. 47. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-3}$. The background (original solar neutrino spectrum that come from 8B decay in the Sun) spectrum is also shown in the plot.

FIG. 49. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-4}$. The background (original solar neutrino spectrum that come from 8B decay in the Sun) spectrum is also shown in the plot.

FIG. 50. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. The spectra for ν_H decay inside and outside earth orbit are shown separately. The original solar neutrino spectrum that come from 8B decay in the Sun, and spectrum of solar neutrino that survived the mix to ν_H during 8B decay, are also shown in the plot. The signal model shown in this plot is $m_{\nu H}=8$ MeV and $|U_{eH}|^2=10^{-5}$.

FIG. 51. Energy spectra of ν_e 's that come from ν_H decay in flight and then reach the detector on earth. Different curves are for different ν_H masses $m_{\nu H}$, and the mixing angle $|U_{eH}|^2 = 10^{-5}$. The background (original solar neutrino spectrum that come from 8B decay in the Sun) spectrum is also shown in the plot.

- J. N. Bahcall, E. Lisi, D. Alburger, L. De Braeckeleer, S. Freedman, and J. Napolitano, Physical Review C 54, 411 (1996).
- [2] D. Gorbunov and M. Shaposhnikov, Journal of High Energy Physics **2007**, 015 (2007).