TITLE: "Cross-Modal Knowledge Distillation for Ultra-Lightweight Edge AI: A Resource-Aware Approach"

Abstract

While edge AI continues to offer promising solutions for real-time applications, the deployment of multi-modal deep learning models remains particularly challenging considering their substantial computational and memory requirements on resource-constrained devices. This paper approaches this problem through the integration of a Resource-Aware Cross-Modal Knowledge Distillation (CMKD). Our approach introduces three key checkmarks: (1) a dynamic resource allocation mechanism that adaptively manages computational resources across different modalities based on real-time device constraints, (2) modality-specific compression techniques that optimize knowledge transfer while minimizing memory footprint, and (3) a lightweight feature alignment strategy that maintains cross-modal performance under varying resource conditions.

Literature Review

Cross-Modal Knowledge Distillation:

Cross-Modal	CMKD allows networks that have been trained on a modality like
Knowledge	RGB videos to be adapted to recognize actions for another
Distillation	modality like sequences of 3D human poses.
For Action	
Recognition	Process steps include:
	 Extract the knowledge of the trained teacher network (Source Modality)
	 Transfer it to a small ensemble of student networks (Target Modality)
	Loss usually used: KL-loss
	Loss preferred to be used: Cross entropy loss + Mutual learning
Knowledge As	In case of inadequate data, one can generalize the distilled cross-modal
Priors: Cross-	knowledge learned from a Source dataset, which contains paired
Modal	examples from both modalities to the Target dataset by modelling
Knowledge	knowledge as priors on parameters of the Student.
Generalizatio	
n for Datasets	
Without	
Superior	
Knowledge	
EmotionKD: A	Approached emotion detection via EEG and GSR data signals.
Cross-Modal	GSR is easy to access but EEG takes time to acquire.
Knowledge	
Distillation	

Framework	Through CMKD, fused multi-modal features can be transferred to an
for Emotion	unimodal GSR model to improve performance.
Recognition	
Based on	https://github.com/YuchengLiu-Alex/EmotionKD
Physiological	
Signals	
Cross Modal	Deals with CMKD in image data.
Distillation for	Studied CMKD's performance with various supervision transfer methods.
Supervision	Could provide a framework to be followed in our paper
Transfer	
Links:	https://sci-
	hub.ru/https://ieeexplore.ieee.org/abstract/document/8802909
	https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhao_Know
	ledge_As_Priors_Cross-
	Modal_Knowledge_Generalization_for_Datasets_Without_Superior_CVP
	R_2020_paper.pdf
	https://openaccess.thecvf.com/content_cvpr_2016/html/Gupta_Cross_
	Modal_Distillation_CVPR_2016_paper.html
	https://dl.acm.org/doi/abs/10.1145/3581783.3612277

Figure 1. Cross-modal knowledge generalization. (a) Existing approaches distill cross-modal knowledge from the teacher to student in a source dataset. (b) We propose knowledge generalization which transfers learned knowledge in the source to a target dataset where the superior knowledge, *i.e.*, the teacher, is unavailable.

Project Objectives:

- Journal idea 1: Written generally and in principle
- Journal idea 2: Take a specific edge example such as atrial fibrillation detection, anything with 3D comp vision, emotion detection etc.

https://arxiv.org/pdf/2408.04258

Propose architecture

Datasets found:

- Rendered Hand Pose Dataset: Christian Zimmermann and Thomas Brox.
 Learning to estimate 3D hand pose from single RGB images. In ICCV, pages 4903–4911, 2017.
- Stereo Hand Pose Tracking Benchmark: Jiawei Zhang, Jianbo Jiao, Mingliang Chen, Liangqiong Qu, Xiaobin Xu, and Qingxiong Yang. A hand pose tracking benchmark from stereo matching. In ICIP, pages 982–986, 2017
- NYUD2 dataset: N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from RGBD images. In ECCV, 2012.
- ImageNet dataset: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009.
- JHMDB dataset (action detection): H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards understanding action recognition. In ICCV, 2013.

Paper Structure:

- Intro
- lit review
- Current challenges with edge Ai,
- Benefits of CMKD
- Implementing CMKD
- Drawbacks of CKMD=Future Scope
- Conclusion

This work should bridge the gap between theoretical CMKD approaches and edge Al deployment, thus, offering a scalable solution for resource-constrained multi-modal systems.