01_System Modelling

1. Mathematical Models in Control System Design

Three Methods

State-Space Models

2. Solvability Differential Equations

Lipschitz Continuity

Picard-Lindelöf theorem

3. System Properties

Memoryless vs Dynamics

Casual

Linear

Time-Invariant

Summary

1. Mathematical Models in Control System Design

Three Methods

- physics-based model (conservation laws, physical geometry)
- models based on known interactions and properties (e.g.: energy-based models, stoichiometric models)
- Models from **experiments** (data driven)

State-Space Models

states:

 $x_1(t) = q(t)$ and $x_2(t) = \dot{q}(t)$

• State-Space Models are always ODE

2. Solvability Differential Equations

Mainly focus on Existence and uniqueness

Lipschitz Continuity

for some fixed $c \in \mathbb{R}$, $\|F(x) - F(y)\| < c\|x - y\|$ for all x, y

A sufficient Condition for Lipschitz Continuity

A sufficient condition for a function to be Lipschitz is that the Jacobian $\partial F/\partial x$ is **uniformly bounded** for all x

Picard-Lindelöf theorem

若已知 y(t) 有界, f 符合Lipschitcz Continuity, 则微分方程问题 $y'(t)=f(t,y(t)),\quad y(t_0)=y_0$ 刚好有一个解。

• 在应用上,t通常属于一有界闭区间,于是y(t)必有界,故y有唯一解

3. System Properties

Memoryless vs Dynamics

Definition: Memoryless

A system is said to be **memoryless** if its output at a given time is **dependent only on the input at that same time**

Casual

Definition: Casual

A system is <u>casual</u> if the output at any time depends only on values of the input at that the present time and in the past

- All **physical systems** in the real world are causal because they cannot anticipate on the future
- In **signal/image processing** we can sometimes use non-causal filters.

Linear

Definition: Linear

Let $y_1(t)$ be the output of the system to the input $u_1(t)$, and let $y_2(t)$ be the output to the input $u_2(t)$. A system is said to be **linear** if it satisfies the following properties:

- 1. the input $u_1(t) + u_2(t)$ will give an output $y_1(t) + y_2(t)$.
- 2. the input $\alpha u_1(t)$ will give an output $\alpha y_1(t)$ for any (complex) constant α .

Time-Invariant

Definition: Time-Invariant

01_System Modelling 2

A system is said to be **time-invariant** if the behavior and characteristics are fixed over time.

An input-output system is time-invariant if a time-shift au in the input leads to the same time-shift in the output

$$u(t)\Longrightarrow y(t), t\in \mathbf{R} \quad \Longrightarrow \quad u(t- au)\Longrightarrow y(t- au), t\in \mathbf{R}$$

Summary

- State-Space Model
- Solvability Differential Equations:
 - Lipschitz Continuity
 - sufficient condition of Lipschitz Continuity: The Jacobian uniformly bounded
 - Picard-Lindelof Theorem for solution existence
- System Properties
 - Memoryless: only dependent on current input
 - Casual: for all practical system
 - Linear
 - Time-invariant

01_System Modelling