Segmentation client appliquée à la clientèle de Olist

Présenté par Gabriel Chehade

Mise en contexte

Contexte:

Olist souhaite fournir à ses équipes d'e-commerce une segmentation des clients pour leurs campagnes de communication.

Objectifs:

- comprendre les différents types d'utilisateurs et les segmenter à partir de leurs données personnelles.
- proposer un contrat de maintenance basée sur une analyse de la stabilité des segments au cours du temps

SOMMAIRE

- Présentation des données / Preprocessing

- Segmentation

- Maintenance

Présentation du jeu de données

Source des données :

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce (vrai données)

Fichiers .csv:

- olist_customers_dataset : fichier clients (id client, id commande, ville, état)
- olist order items dataset: fichier articles (id commande, nb d'articles, prix)
- olist_order_reviews_dataset : fichier avis (id commande, note, commentaire, date)
- olist_orders_dataset: fichier commandes (id commande, date de la commande, date de livraison...)
- olist_products_dataset : fichier produits (id produit, catégorie, dimensions, poids)
- olist_sellers_dataset: fichier vendeurs (id vendeur, ville, état)

Preprocessing

- Regroupement des données en un seul fichier
- Suppression des variables non pertinentes
- Suppression des valeurs manquantes
- Suppression des doublons
- Combinaison de variables

→ Dimensions : 107 800 lignes x 10 colonnes (chaque ligne représente l'article d'une commande)

	order_id	customer_unique_id	order_item_id	order_purchase_timestamp	delivered_estimated_interval	price	freigh
0	00e7ee1b050b8499577073aeb2a297a1	861eff4711a542e4b93843c6dd7febb0	1.0	2017-05-16	-11 days	124.99	
1	29150127e6685892b6eab3eec79f59c7	290c77bc529b7ac935b93aa66c333dc3	1.0	2018-01-12	-8 days	289.00	
2	b2059ed67ce144a36e2aa97d2c9e9ad2	060e732b5b29e8181a18229c7b0b2b5e	1.0	2018-05-19	1 days	139.94	
3	951670f92359f4fe4a63112aa7306eba	259dac757896d24d7702b9acbbff3f3c	1.0	2018-03-13	-13 days	149.94	
4	6b7d50bd145f6fc7f33cebabd7e49d0f	345ecd01c38d18a9036ed96c73b8d066	1.0	2018-07-29	-6 days	230.00	

Preprocessing

Distribution des dates des commandes

Pas de commande entre octobre 2016 et janvier 2017

Suppression des commandes effectuées avant janvier 2017

Segmentation

Segmentation RFM

- **Récence** : Nombre de jours écoulés depuis la dernière commande
- **Fréquence** : Nombre de commandes effectuées
- **Montant** : Montant dépensé par commande en moyenne

	recency	frequency	mean_spending
customer_unique_id			
4b3207464f5f7a48a7f63fa0b1251d86	601	1	9.9
527cd2850ef91088969ffbef0103dec3	601	1	11.9
29a63a400c3ca9982907ce8de1f19527	601	1	10.9
b6b2c3c8fd76769b478618a3c2505009	601	1	10.9
f7be9bec658c62ab6240b44cd26c0b84	601	2	10.4

Segmentation RFM – Choix du modèle

	KMeans	Clustering agglomératif	DBSCAN	
Segmentation	✓	√	×	
Temps de calcul (sur 10k clients)	0.1 s <	2.4 s		

Segmentation RFM - Clustering

Représentation graphique

Identification des clusters

Boxplots pour la Récence

Cluster 0 : clients anciens

Cluster 1 : clients récents

Boxplots pour la Fréquence

Cluster 2 : clients fréquents

Boxplots pour le Montant

Cluster 3 : clients qui dépensent beaucoup

Segmentation RFMSA

- **Récence** : Nombre de jours écoulés depuis la dernière commande
- **Fréquence** : Nombre de commandes effectuées
- **Montant** : Montant dépensé par commande en moyenne
- Score : Note de satisfaction attribuée par le client en moyenne
- **Articles par commande** : Nombre d'articles par commande en moyenne

	recency	frequency	mean_spending	review_score	items_per_order
customer_unique_id					
4b3207464f5f7a48a7f63fa0b1251d86	601	1	9.9	5.0	1
527cd2850ef91088969ffbef0103dec3	601	1	11.9	5.0	1
29a63a400c3ca9982907ce8de1f19527	601	1	10.9	5.0	1
b6b2c3c8fd76769b478618a3c2505009	601	1	10.9	5.0	1
f7be9bec658c62ab6240b44cd26c0b84	601	2	10.4	5.0	1

Clustering

Cluster 0 : clients anciens

Cluster 1 : clients récents

Cluster 2 : clients fréquents

Boxplots pour le Score

Cluster 3 : clients qui dépensent beaucoup

Cluster 4: clients insatisfaits

Cluster 5 : clients commandant beaucoup
d'articles

Boxplots pour le nombre d'Articles

Fréquence de maintenance

Maintenance

Maintenance

Maintenance

Estimation du délai de maintenance

Fréquence de maintenance :

100 jours

Conclusion

- La segmentation RFM donne des résultats très intéressants permet d'identifier les clients les plus intéressants (fréquents et dépensiers)
- L'ajout de deux variables permet de identifier les clients mécontents et ceux qui achètent beaucoup d'articles
- La période de maintenance est estimée à 100 jours en prenant un seuil de 0.8 pour l'ARI (Adjusted Rand Index)

MERCI POUR VOTRE ATTENTION

Adjusted Rand Index (ARI)

Pour mesurer la similarité entre deux clusterings K_1 et K_2 on peut utiliser l'ARI qui se définit de la manière suivante :

$$ARI = \frac{RI - E[RI]}{\max(RI) - E[RI]}$$

avec

$$RI = \frac{a+b}{C_2^n}$$

RI: indice de Rand (Rand index)

E[RI]: espérance de la valeur de RI, c'est-à-dire la valeur de RI obtenue si on partitionne les données au hasard dans K_2

a: nombre de paires d'individus qui sont dans le même cluster à la fois dans K_1 et dans K_2 . b: nombre de paires d'individus qui sont dans des clusters différents à la fois dans K_1 et dans K_2 .

 \mathcal{C}_2^n : nombre total de paires possibles dans le jeu de données (n correspond au nombre d'individus).

Segmentation RFMSA

KMeans

Clustering hiérarchique

Dendogramme

DBSCAN

Comparaison des modèles

KMeans Clustering hiérarchique DBSCAN Efficace en temps de calcul Possibilité de choisir le nombre de - Peut former des clusters non Nombre de clusters fixe clusters en fonction du convexes (clustering par densité) dendogramme Efficace en temps de calcul Sensible aux outliers Pas besoin de prédéfinir le nombre Possibilité d'utiliser différents types de distance de clusters Pas efficace en temps de calcul Difficile à utiliser en grande dimension Choix des paramètres ε et n_{min}