Soft - Collinear Effective Theory

(SCET)

For this part we'll switch sign convention for g = is TA 8" to agree with literature

Outline

Class 1: Intro, Degrees of Freedom, Scales Expansion of Spinors, Propogators, lower Counting see 2,3

Classa: Construction of Currents, Lagrangian Multipole Expansion, Labels, Grid in detail

See ②,③,⑥ (not in notes)

SCETI
Class 3: Lagrangian, Gauge Symmety, ③, 0.0 Reparameterization Invorionce (RPI)

Class 4: More RPI, Ultrasoft - Collinear Fact. Hard-Collinson Factorization, IR dius, Matching, Running see (9,0,0)

Class 51 DIS see 8 Soft - Collinson Interactions (9)

Class 6: SCETI 9, 7, 10 Power Counting Formulae 5 ag, γ + -> π° (3) , eg β -> Oπ (9) eg. Baxsy. Define a Jet (9) (Jets in ete-, see (1)

- 1 hep-ph 10005275
- 2 hep-ph/0011336
- 3 hep-ph/0107001
- (9) hep-ph/0109045 Gouge Inv.
- D hep-ph/0205289
- @ hep-ph/0204229
- GameInv. at 23) hep-ph/0303156
- (8) hep-ph/0202088 Hard-Scattering
- 1 hep-ph/0107002 B->0TT
- 10 hep-ph/0605001 0-bin
- 11 her-ph/0212255 hep-ph/0603066

Intro, legrees of Freedom, Coordinates
Want an EFT for energetic hadrons, Exa Q >> Aaco
Why? · Many processes have large regions of phose space
where the hadrons are energetic, EH >> MH
B-decays β->πes, β->K*Y, β → ππ, β-> Xves
$B \rightarrow X s \gamma$, $B \rightarrow 0^* \pi$,
Mg = 5,279 GeV >> 100
eg. Hard Scottery
e-p → e-X (DIS), pF → X1+1- (Dell Yon),
y*y >π°, y*p > y(*)p' (Peeply Virtual
Compton Scuttury)
· Need to separate perturbative, ds(a) & non-perturbative
"ds (Naco)" effects - factorization
What are the low energy degreer of freedom?
$-491 \qquad B \Rightarrow D\pi \qquad \qquad \boxed{\pi} \longrightarrow \boxed{D}$
in B-rest frame P# = (2,3)0 GeV, 0,0, -2.306 GeV)
= Qnm to good aprox.
$Q >> \Lambda$, $n^{r} = (1,0,0,-1)$, $n^{2} = 0$ light-like
in 0,1,2,3 besis
in 0,1,2,3 besis

P+ -> a P+

P- → - - P-

Use Light-Cone coordinates: n2=0, n2=0, n-0=2 Yectors $P^{\mu} = \frac{\Omega^{\mu}}{2} \overline{n \cdot p} + \frac{\overline{\Lambda}^{\mu}}{2} n \cdot p + \frac{P_{\perp}^{\mu}}{2}$ metric $g^{\mu\nu} = \underline{n}^{\mu}\overline{n}^{\nu} + \underline{n}^{\mu\nu}$ $g^{\mu\nu}$ $g^{\mu\nu}$ epsilon EI = E Map Tanp P+ = 0. P የ⁻ ≘ ⊼ • የ - since n2 =0 we needed to define complementary vector T - choice $p^{m} = (1,0,0,-1)$, $\overline{n}^{m} = (1,0,0,1)$ is possible, but other choices also work as. n= (1,0,0,-1) $\pi = (3, 2, 2, 1)$ (more on this later) In B>DT the B,D are soft EH ~ MH \$ we can use HOET for their constituents ie quarks & gluons with pro 1 But pion is "collinear", EH >> MH has quark & gluon constituents In rest frame P"~ (1, 1, 1) has constituents $p^{\mu} \sim \left(\frac{\Lambda^2}{Q}, Q, \Lambda\right)$ boosting for B=DT = collinear fluctuations around (0, a, 0) = P# Note: Boost in direction orthogonal to I directions

changes P+, P- multiplicatively

Senerically

$$(P^+, P^-, P^+) \sim Q(\lambda^2, 1, \lambda)$$
 is collinear

where $\pi \ll 1$ is small parameter. (above eg. $\pi = \Delta$)

What makes this EFT different?

· usually we separate scales M1 >> M2 and have ε Ci (μ, m,) Oi (μ, m₂)

short distance long distance
Wilson Coeffs operators

eg in HOET the B-meson

ml >> V

Pa ~ Mb P5 ~ 1

picture momenta

well separated in all components

now we have overlap between perturbative & non-perturbative momenta in p- component

for collinear pion ET ~ Mb Pc ~ (12, Mb, A)

	in clusive		B → Xs			
in go	eneral.		ng² - m² 2 mg			
	for	Mx e	[MB, M	K#]		2 m B]
Foc	Mx ~ MB		tions.		_stondard just_like	
X has	hadrons in	all direc	tions			B→XceJ
For	$M_X^2 \sim \Lambda^2$	(K) <	- @ ~ ~ v		lusiue de	,
For	Mx ~ Me	, ^		<u></u>	~> ~	
			jet of	s in X		
jet Constituer		ـــ (ــ	(A, Q,	JAQ')	$\sim Q(\lambda^2)$, ı, <u>ż</u>)
			collin	eor aga	in	
				-	$\lambda = \int_{\alpha}$	

Infraced Degrees of Freedom have $P^2 \lesssim Q^2 \lambda^2$ modes $P^{m}=(+,-,\perp)$ collinear $Q(\lambda^2, 1, \lambda)$ a'z' soft $Q(\lambda,\lambda,\lambda)$ a²a² $ultrasoft Q(\lambda^2, \lambda^1, \lambda^2)$ Q Z (usoft) Off shell modes have p2 >> Q2 72 and are integrated out into Wilson coefficients C(M) es pr ~ a (1,1,1) Tyin usoful cases examples SCET $\lambda = \int_{\alpha}^{\infty} \int_{\alpha}$ B → Xs Y) *DIS $SCET_{II} \qquad 7 = \Lambda$ $Q \qquad \left[\begin{array}{c} collinear \\ soft \\ \end{array} \right] P_{s}^{2} \sim \Lambda^{2}$ β⇒Dπ, శ*४ → π°, derived from SCETI The theory SCETI con be

so we'll study I first

E Ci Oi becomes continuous Factorization:

(1) C(1) O(1)

since P were some

Un - labelled by direction 1 (reall HOET spinors Uv)

massless QCD spinors $U(p) = \frac{1}{\sqrt{p \cdot \bar{p}}} \left(\frac{\bar{p} \cdot \bar{p}}{\sqrt{p} \cdot \bar{p}} \right) = \frac{1}{\sqrt{p \cdot \bar{p}}} \sqrt{\frac{\bar{p} \cdot \bar{p}}{\sqrt{p}}} \sqrt{\frac{\bar{p} \cdot \bar{p}}{\sqrt{p}}}$ (Dirac Rep)

Let $\Omega^r = (1,0,0,1)$ and expend, $\overline{\Omega} \cdot P = P^0 + P^3 = Q + Q$ $\overline{\Omega}^r = (1,0,0,-1)$ $\overline{\Omega} \cdot \overline{P} = \overline{\Omega}^3$ $\overline{P}^0 = \overline{\Omega}^3$

 $\frac{U_n}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{u}{\sigma^3 u} \right)$ $= \left\{ \begin{array}{c} \downarrow \\ J_{2} \end{array} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \right\} \begin{array}{c} \downarrow \\ J_{2} \end{array} \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right\}$ particles

 $\mathcal{T}_{\lambda} = \frac{1}{\lambda} \left(\frac{\partial^{3} \lambda}{\partial x^{3}} \right)$ $= \left\{ \begin{array}{c} 1 \\ \overline{J_2} \end{array} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \right\} \quad \text{an tiportic}$

 $\alpha u_0 = \alpha v_0 = 0$

 $\frac{\sqrt{3}}{4} = \frac{1}{2} \left(\frac{1}{\sigma^3} \frac{\sigma^3}{4} \right) \qquad \frac{\sqrt{3}}{4} u_0 = u_0 \quad , \quad \frac{\sqrt{3}}{4} v_0 = v_0$

Projection Operator, $1 = \frac{\cancel{7}}{\cancel{7}} + \frac{\cancel{7}}{\cancel{7}}$

field Y aco = Yn + Yn

we'll integrate out "small" component 17

Collinear Propagators P2 tie = Tip nip + P1 +iE ~ 2°+22 + 2+7 Same size $\frac{i \mathcal{P}}{p^2 + i \mathcal{E}} = \frac{i \alpha}{2} \frac{\overline{n} \cdot p}{p^2 + i \mathcal{E}} + \dots$ $= \frac{i \alpha}{2} \frac{1}{n \cdot p} + \frac{p_1^2}{1 \cdot p} + i \mathcal{E} sign(\overline{n} \cdot p)$ $\overline{n} \cdot p$ from T { Yn(x), Tn(0)} -igm stays some on QCD gmundo

P2+iE (true in any gauge)

T

(en Feyn.
Cauge) Gluons lower counting for collinson fields $Z = \left\{ J^{4} \times \overline{J}_{n} \ \overline{Z}_{n} \ \overline{Z}_$ $\lambda^{-4} \quad \lambda^{\alpha} \qquad \lambda^{2} \qquad \lambda^{2} \qquad = \quad \lambda^{2\alpha-2}$ set $\chi_{2} \chi_{3}^{\circ}$ is normalize Kinetic term so no χ_{3}° than $\chi_{3}^{\circ} \chi_{3}^{\circ} \chi_{3}^{\circ}$ For gluons find $A_n^m = (A_n^+, A_n^-, A_n^+) \sim (3^2, 1, 3)$ just like collinear momenta ie have P"+ A" = i0" homogeneous covariant derivative