$\label{lem:machine-learning-cheat-sheet} soulmachine@gmail.com$

Machine Learning Cheat Sheet

Classical equations, diagrams and tricks in machine learning

December 1, 2022

©2013 soulmachine

 $\label{thm:continuous} Except where otherwise noted, This document is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA3.0) license$

(http://creativecommons.org/licenses/by/3.0/).

Preface

This cheat sheet is a condensed version of machine learning manual, which contains many classical equations and diagrams on machine learning, and aims to help you quickly recall knowledge and ideas in machine learning.

This cheat sheet has two significant advantages:

- 1. Clearer symbols. Mathematical formulas use quite a lot of confusing symbols. For example, *X* can be a set, a random variable, or a matrix. This is very confusing and makes it very difficult for readers to understand the meaning of math formulas. This cheat sheet tries to standardize the usage of symbols, and all symbols are clearly pre-defined, see section §.
- 2. Less thinking jumps. In many machine learning books, authors omit some intermediary steps of a mathematical proof process, which may save some space but causes difficulty for readers to understand this formula and readers get lost in the middle way of the derivation process. This cheat sheet tries to keep important intermediary steps as where as possible.

Contents

Notation			V		2.7		Carlo approximation	12	
					2.8		ation theory	12	
			Хİ			2.8.1	Entropy	12	
							2.8.2	KL divergence	12
1				1			2.8.3	Mutual information	13
	1.1		of machine learning	1					
	1.2		elements of a machine learning		3			nodels for discrete data	15
			<u> </u>	1		3.1		ative classifier	15
		1.2.1	Representation	1		3.2		an concept learning	15
		1.2.2	Evaluation	1			3.2.1	Likelihood	15
		1.2.3	Optimization	2			3.2.2	Prior	15
	1.3		pasic concepts	2			3.2.3	Posterior	15
		1.3.1	Parametric vs non-parametric	_			3.2.4	Posterior predictive distribution.	15
		1.0.0	models	2		3.3		ta-binomial model	16
		1.3.2	A simple non-parametric	2			3.3.1	Likelihood	16
		1.0.0	classifier: K-nearest neighbours.	2			3.3.2	Prior	16
		1.3.3	Overfitting	2			3.3.3	Posterior	16
		1.3.4	Cross validation	2			3.3.4	Posterior predictive distribution.	16
		1.3.5	Model selection	2		3.4		richlet-multinomial model	17
•	D1.	-1.914		2			3.4.1	Likelihood	17
2			entries - Proportions	3			3.4.2	Prior	17
	2.1		ntists vs. Bayesians	3			3.4.3	Posterior	17
	2.2		review of probability theory	3			3.4.4	Posterior predictive distribution.	18
		2.2.1	Basic concepts	3		3.5		Bayes classifiers	18
		2.2.2	Mutivariate random variables	3			3.5.1	Optimization	18
		2.2.3	Bayes rule	4			3.5.2	Using the model for prediction .	19
		2.2.4	Independence and conditional				3.5.3	The log-sum-exp trick	19
			independence	4			3.5.4	Feature selection using mutual	
		2.2.5	Quantiles	4				information	19
		2.2.6	Mean and variance	4			3.5.5	Classifying documents using	
	2.3		common discrete distributions	4				bag of words	19
		2.3.1	The Bernoulli and binomial	_		_			
		2.2.2	distributions	5	4			dels	21
		2.3.2	The multinoulli and	_		4.1			21
		2.2.2	multinomial distributions	5			4.1.1	MLE for a MVN	21
		2.3.3	The Poisson distribution	5			4.1.2	Maximum entropy derivation	
	- 4	2.3.4	The empirical distribution	5				of the Gaussian *	21
	2.4		common continuous distributions	5		4.2		an discriminant analysis	22
		2.4.1	Gaussian (normal) distribution	5			4.2.1	Quadratic discriminant analysis	
		2.4.2	Student's t-distribution	6				(QDA)	22
		2.4.3	The Laplace distribution	6			4.2.2	Linear discriminant analysis	
		2.4.4	The gamma distribution	7				(LDA)	22
		2.4.5	The beta distribution	7			4.2.3	Two-class LDA	23
		2.4.6	Pareto distribution	7			4.2.4	MLE for discriminant analysis	24
	2.5		robability distributions	8			4.2.5	Strategies for preventing	
		2.5.1	Covariance and correlation	8				overfitting	24
		2.5.2	Multivariate Gaussian distribution	9			4.2.6	Regularized LDA *	24
		2.5.3	Multivariate Student's				4.2.7	Diagonal LDA	24
			t-distribution	9			4.2.8	Nearest shrunken centroids	
		2.5.4	Dirichlet distribution	9				classifier *	24
	2.6		ormations of random variables	10		4.3		ace in jointly Gaussian distributions	24
		2.6.1	Linear transformations	10			4.3.1	Statement of the result	25
		2.6.2	General transformations	10			4.3.2	Examples	25
		2.6.3	Central limit theorem	10		4.4	Linear	Gaussian systems	25

vi Preface

		4.4.1	Statement of the result	25			7.4.3	Connection with PCA *	39
	4.5	Digress	sion: The Wishart distribution *	25			7.4.4	Regularization effects of big data	39
	4.6		ng the parameters of an MVN	25		7.5		an linear regression	39
	1.0	4.6.1	Posterior distribution of μ	25		7.5	Dayesic	un inicai regression	3)
		4.6.2	Posterior distribution of Σ^*	25	8	Logic	tic Door	ession	41
		4.6.3		23	0	_	_		41
		4.0.3	Posterior distribution of μ and	25		8.1	-	entation	
		1.6.1	Σ^*	25		8.2	_	zation	41
		4.6.4	Sensor fusion with unknown				8.2.1	MLE	41
			precisions *	25			8.2.2	MAP	41
_	-			2=		8.3	Multino	omial logistic regression	41
5	•		istics	27			8.3.1	Representation	41
	5.1		iction	27			8.3.2	MLE	42
	5.2		arizing posterior distributions	27			8.3.3	MAP	42
		5.2.1	MAP estimation	27		8.4	Bayesia	an logistic regression	42
		5.2.2	Credible intervals	28			8.4.1	Laplace approximation	42
		5.2.3	Inference for a difference in				8.4.2	Derivation of the BIC	42
			proportions	28			8.4.3	Gaussian approximation for	
	5.3	Bayesia	an model selection	29			01.10	logistic regression	42
		5.3.1	Bayesian Occam's razor	29			8.4.4	Approximating the posterior	
		5.3.2	Computing the marginal				0.7.7	predictive	42
			likelihood (evidence)	30			8.4.5	Residual analysis (outlier	72
		5.3.3	Bayes factors	31			0.4.5		42
	5.4	Priors	• • • • • • • • • • • • • • • • • • • •	31		0.5	0.1	detection) *	
		5.4.1	Uninformative priors	31		8.5		learning and stochastic optimization	
		5.4.2	Robust priors	31		0.6	8.5.1	The perceptron algorithm	42
		5.4.3	Mixtures of conjugate priors	31		8.6		tive vs discriminative classifiers	44
	5.5		chical Bayes	32			8.6.1	Pros and cons of each approach.	44
	5.6		cal Bayes	32			8.6.2	Dealing with missing data	44
	5.7			32			8.6.3	Fisher's linear discriminant	
	3.7		an decision theory	32				analysis (FLDA) *	45
		5.7.1	Bayes estimators for common	22					
		570	loss functions	32	9	Gene	ralized l	inear models and the	
		5.7.2	The false positive vs false						47
				22		expo	nential fa	mily	4/
			negative tradeoff	33		expo 9.1		conential family	47
6	Frag	uantist s	negative tradeoff						
6			negative tradeoff	35			The exp	ponential family	47
6	Freq 6.1	Sampli	negative tradeoff tatistics ng distribution of an estimator	35 35			The exp 9.1.1	Definition	47 47
6		Sampli 6.1.1	negative tradeoff tatistics	35			The exp 9.1.1 9.1.2	Donential family Definition Examples Log partition function	47 47 47
6		Sampli	negative tradeoff	35 35 35			The exp 9.1.1 9.1.2 9.1.3 9.1.4	Definition	47 47 47 48 48
6	6.1	Sampli 6.1.1 6.1.2	negative tradeoff	35 35 35 35			The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Definition	47 47 47 48
6	6.1	Sampli 6.1.1 6.1.2 Freque	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory	35 35 35 35 35			The exp 9.1.1 9.1.2 9.1.3 9.1.4	Definition	47 47 47 48 48 49
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desirab	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory Dele properties of estimators	35 35 35 35 35 35		9.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Definition	47 47 48 48 49
6	6.1	Sampli 6.1.1 6.1.2 Freque Desiral Empiri	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ole properties of estimators cal risk minimization	35 35 35 35 35 35 35			The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Definition	47 47 48 48 49 49
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ple properties of estimators cal risk minimization Regularized risk minimization	35 35 35 35 35 35 35 35		9.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1	Definition	47 47 48 48 49 49 49
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ble properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization	35 35 35 35 35 35 35		9.19.29.3	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r	Definition	47 47 48 48 49 49 49 49
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ple properties of estimators cal risk minimization Regularized risk minimization	35 35 35 35 35 35 35 35 35		9.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r	Definition	47 47 48 48 49 49 49
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation	35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-ta	Definition	47 47 48 48 49 49 49 49 49
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross	35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4 Direct	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-teted grap	Definition	47 47 48 48 49 49 49 49 51
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation	35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-ta	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family *lized linear models (GLMs) Basics egression ask learning chical models (Bayes nets)	47 47 48 48 49 49 49 49 51 51
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ble properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory *	35 35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4 Direct	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-tated grap Introdu 10.1.1	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family *lized linear models (GLMs) Basics egression ask learning Chical models (Bayes nets) ction Chain rule	47 47 48 48 49 49 49 49 51 51
6	6.1 6.2 6.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ble properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions	35 35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4 Direct	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-tated grap Introdu 10.1.1 10.1.2	Definition	47 47 48 48 49 49 49 49 51 51 51
6	6.2 6.3 6.4	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ble properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory *	35 35 35 35 35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4 Direct	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-tated grap Introdu 10.1.1	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family *lized linear models (GLMs) Basics egression ask learning Chical models (Bayes nets) ction Chain rule	47 47 48 48 49 49 49 49 51 51
7	6.2 6.3 6.4	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ble properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions	35 35 35 35 35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4 Direct	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-tated grap Introdu 10.1.1 10.1.2	Definition	47 47 48 48 49 49 49 49 51 51 51
	6.2 6.3 6.4	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * Intist decision theory Die properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics *	35 35 35 35 35 35 35 35 35 35 35 35 35	10	9.1 9.2 9.3 9.4 Direct	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r Multi-tated grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4	Definition	47 47 48 48 49 49 49 49 51 51 51 51
	6.1 6.2 6.3 6.4 6.5 Line: 7.1	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE* ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics *	35 35 35 35 35 35 35 35 35 35 35 35 35 3	10	9.1 9.2 9.3 9.4 Direc 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r Multi-tated grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4	Definition	47 47 48 48 49 49 49 49 51 51 51 51 51
	6.2 6.3 6.4 6.5 Line 7.1 7.2	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Represe	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE* ntist decision theory ple properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics * ssion ection entation.	35 35 35 35 35 35 35 35 35 35 35 35 37 37 37	10	9.1 9.2 9.3 9.4 Direc 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r Multi-tal eted grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Example	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family * .lized linear models (GLMs) Basics egression ask learning chical models (Bayes nets) ction Chain rule Conditional independence Graphical models Directed graphical model	47 47 48 48 49 49 49 49 51 51 51 51 51
	6.1 6.2 6.3 6.4 6.5 Line: 7.1	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Repress MLE.	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ple properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions origies of frequentist statistics * ssion ection entation.	35 35 35 35 35 35 35 35 35 35 35 37 37 37 37	10	9.1 9.2 9.3 9.4 Direc 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-ta ted grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Example 10.2.1	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family *lized linear models (GLMs) Basics egression ask learning Chical models (Bayes nets) ction Chain rule Conditional independence Graphical models Directed graphical model les Naive Bayes classifiers	47 47 48 48 49 49 49 49 51 51 51 51 51 51
	6.2 6.3 6.4 6.5 Line 7.1 7.2	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Repress MLE. 7.3.1	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE* ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics * ssion oction entation OLS	35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37	10	9.1 9.2 9.3 9.4 Direct 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-ta ted grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Examp 10.2.1 10.2.2	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family * lized linear models (GLMs) Basics regression ask learning Chical models (Bayes nets) ction Chain rule Conditional independence Graphical models Directed graphical model les Naive Bayes classifiers Markov and hidden Markov models	47 47 48 48 49 49 49 49 51 51 51 51 51 51 51
	6.2 6.3 6.4 6.5 Line 7.1 7.2 7.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Repres MLE . 7.3.1 7.3.2	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * Intist decision theory Die properties of estimators Cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions Degies of frequentist statistics * ssion OLS SGD	35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 37 38	10	9.1 9.2 9.3 9.4 Direct 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r Multi-tated grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Example 10.2.1 Inference	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family *lized linear models (GLMs). Basics regression ask learning Chical models (Bayes nets) ction Chain rule Conditional independence Graphical models Directed graphical model les Naive Bayes classifiers Markov and hidden Markov models ce	47 47 48 48 49 49 49 49 51 51 51 51 51 51 52 52
	6.2 6.3 6.4 6.5 Line 7.1 7.2	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Repres MLE . 7.3.1 7.3.2 Ridge I	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics * ssion entation OLS SGD regression(MAP)	35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 38 38	10	9.1 9.2 9.3 9.4 Direct 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-ta ted grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Examp 10.2.1 10.2.2 Inference	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family * dized linear models (GLMs) Basics regression ask learning Chical models (Bayes nets) ction Chain rule Conditional independence Graphical models Directed graphical model les Naive Bayes classifiers Markov and hidden Markov models ce	47 47 48 48 49 49 49 49 49 51 51 51 51 51 51 52 52 52
	6.2 6.3 6.4 6.5 Line 7.1 7.2 7.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Repres MLE . 7.3.1 7.3.2 Ridge i 7.4.1	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE* ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics * ssion entation OLS SGD regression(MAP) Basic idea	35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 37 38	10	9.1 9.2 9.3 9.4 Direct 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 General 9.2.1 Probit r Multi-ta ted grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Example 10.2.1 10.2.2 Inference Learnin 10.4.1	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family * .lized linear models (GLMs) Basics egression ask learning Chain rule Conditional independence Graphical models Directed graphical model les Naive Bayes classifiers Markov and hidden Markov models Ce Learning from complete data	47 47 48 48 49 49 49 49 51 51 51 51 51 51 52 52
	6.2 6.3 6.4 6.5 Line 7.1 7.2 7.3	Sampli 6.1.1 6.1.2 Freque Desiral Empiri 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Patholo ar Regre Introdu Repres MLE . 7.3.1 7.3.2 Ridge I	negative tradeoff tatistics ng distribution of an estimator Bootstrap Large sample theory for the MLE * ntist decision theory ole properties of estimators cal risk minimization Regularized risk minimization Structural risk minimization Estimating the risk using cross validation Upper bounding the risk using statistical learning theory * Surrogate loss functions ogies of frequentist statistics * ssion entation OLS SGD regression(MAP)	35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 38 38	10	9.1 9.2 9.3 9.4 Direct 10.1	The exp 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 Genera 9.2.1 Probit r Multi-ta ted grap Introdu 10.1.1 10.1.2 10.1.3 10.1.4 Examp 10.2.1 10.2.2 Inference	Definition Examples Log partition function MLE for the exponential family Bayes for the exponential family Maximum entropy derivation of the exponential family * dized linear models (GLMs) Basics regression ask learning Chical models (Bayes nets) ction Chain rule Conditional independence Graphical models Directed graphical model les Naive Bayes classifiers Markov and hidden Markov models ce	47 47 48 48 49 49 49 49 49 51 51 51 51 51 51 52 52 52

Preface vii

	10.5	Conditional independence properties of				12.2.1	Classical PCA	65
		DGMs	52			12.2.2	Singular value decomposition	
		10.5.1 d-separation and the Bayes					(SVD)	66
		Ball algorithm (global Markov				12.2.3	Probabilistic PCA	67
		properties)	52			12.2.4	EM algorithm for PCA	67
		10.5.2 Other Markov properties of	52		12.3		g the number of latent dimensions	68
		DGMs	53			12.3.1 12.3.2	Model selection for FA/PPCA Model selection for PCA	68 68
		conditionals	53		12.4		categorical data	68
		10.5.4 Multinoulli Learning	53		12.5		paired and multi-view data	68
	10.6	Influence (decision) diagrams *	53		12.5	12.5.1	Supervised PCA (latent factor	00
							regression)	68
11	Mixtu	re models and the EM algorithm	55			12.5.2	Discriminative supervised PCA.	68
	11.1	Latent variable models	55			12.5.3	Canonical correlation analysis	68
	11.2	Mixture models	55		12.6	Indepen	dent Component Analysis (ICA).	68
		11.2.1 Mixtures of Gaussians	55			12.6.1	Maximum likelihood estimation	69
		11.2.2 Mixtures of multinoullis	55			12.6.2	The FastICA algorithm	69
		11.2.3 Using mixture models for	56			12.6.3	Using EM	69
		clustering	56			12.6.4	Other estimation principles *	69
	11.3	Parameter estimation for mixture models.	57	13	Spare	sa linaar 1	models	71
	11.5	11.3.1 Unidentifiability	57	13	Spars	se iiiicai i	models	/ 1
		11.3.2 Computing a MAP estimate is	Ο,	14	Kern	els		73
		non-convex	57		14.1	Introduc	etion	73
	11.4	The EM algorithm	57		14.2	Kernel f	unctions	73
		11.4.1 Introduction	57			14.2.1	RBF kernels	73
		11.4.2 Basic idea	57			14.2.2	TF-IDF kernels	73
		11.4.3 EM for GMMs	58			14.2.3	Mercer (positive definite) kernels	73
		11.4.4 EM for K-means	59			14.2.4	Linear kernels	74
		11.4.5 EM for mixture of experts	60			14.2.5	Matern kernels	74
		11.4.6 EM for DGMs with hidden	(0			14.2.6	String kernels	74
		variables	60			14.2.7 14.2.8	Pyramid match kernels Kernels derived from	74
		11.4.7 EM for the Student distribution * 11.4.8 EM for probit regression *	60 60			14.2.0	probabilistic generative models .	74
		11.4.9 Derivation of the <i>Q</i> function	60		14.3	Using ke	ernels inside GLMs	75
		11.4.10 Convergence of the EM	00		1 1	14.3.1	Kernel machines	75
		Algorithm *	60			14.3.2	L1VMs, RVMs, and other	
		11.4.11 Generalization of EM					sparse vector machines	76
		Algorithm *	61		14.4	The kerr	nel trick	76
		11.4.12 Online EM	62			14.4.1	Kernelized KNN	76
		11.4.13 Other EM variants *	62			14.4.2	Kernelized K-medoids clustering	76
	11.5	Model selection for latent variable models	62			14.4.3	Kernelized ridge regression	76
		11.5.1 Model selection for				14.4.4	Kernel PCA	76
		probabilistic models	62		14.5		vector machines (SVMs)	77
		11.5.2 Model selection for	(2)			14.5.1	SVMs for classification	77
	11.6	non-probabilistic methods	62 62			14.5.2 14.5.3	SVMs for regression	78 78
	11.0	Fitting models with missing data 11.6.1 EM for the MLE of an MVN	02			14.5.4	A probabilistic interpretation	70
		with missing data	62			14.5.4	of SVMs	78
		with inissing data	02			14.5.5	Summary of key points	79
12	Laten	at linear models	63		14.6		ison of discriminative kernel	
	12.1	Factor analysis	63				·	79
		12.1.1 FA is a low rank			14.7		for building generative models	79
		parameterization of an MVN	63					
		12.1.2 Inference of the latent factors	63	15		_	esses	81
		12.1.3 Unidentifiability	63		15.1		etion	81
		12.1.4 Mixtures of factor analysers	64		15.2		regression	81
		12.1.5 EM for factor analysis models	64		15.3		et GLMs	81
		12.1.6 Fitting FA models with missing	65		15.4		ion with other methods	81
	12.2	data	65 65		15.5		nt variable model	81 81
	12.2	Principal components analysis (PCA)	UJ		15.6	Approxi	mation methods for large datasets	01

viii Preface

16	Adaptive basis function models	83		24.5	Auxiliary variable MCMC *	99
	16.1 AdaBoost	83				
	16.1.1 Representation	83	25	Cluste	ring	101
	16.1.2 Evaluation	83				
	16.1.3 Optimization	83	26	Graph	ical model structure learning 1	103
	16.1.4 The upper bound of the training			.		
	error of AdaBoost	83	27		t variable models for discrete data	
					Introduction	
17	Hidden markov Model	85		27.2	Distributed state LVMs for discrete data . 1	105
	17.1 Introduction	85	•••			
	17.2 Markov models	85	28	Deep I	earning 1	107
18	State space models	87	A	Optim	ization methods 1	109
10	State space models	07		_	Convexity	
19	Undirected graphical models (Markov			A.2	Gradient descent	
	random fields)	89			A.2.1 Stochastic gradient descent 1	
					A.2.2 Batch gradient descent	
20	Exact inference for graphical models	91			A.2.3 Line search	
					A.2.4 Momentum term	
21	Variational inference	93			Lagrange duality	
22	More variational inference	95			A.3.1 Primal form	
44	Wiore variational inference	93			A.3.2 Dual form	110
23	Monte Carlo inference	97		A.4	Newton's method	110
				A.5	Quasi-Newton method	110
24	Markov chain Monte Carlo (MCMC)inference	99			A.5.1 DFP	110
	24.1 Introduction	99			A.5.2 BFGS	110
	24.2 Metropolis Hastings algorithm	99			A.5.3 Broyden	
	24.3 Gibbs sampling	99			•	
	24.4 Speed and accuracy of MCMC	99	Glo	ssary .		111

List of Contributors

Wei Zhang

PhD candidate at the Institute of Software, Chinese Academy of Sciences (ISCAS), Beijing, P.R.CHINA, e-mail: zh3feng@gmail.com, has written chapters of Naive Bayes and SVM.

Fei Pan

Master at Beijing University of Technology, Beijing, P.R.CHINA, e-mail: example@gmail.com, has written chapters of KMeans, AdaBoost.

Yong Li

PhD candidate at the Institute of Automation of the Chinese Academy of Sciences (CASIA), Beijing, P.R.CHINA, e-mail: liyong3forever@gmail.com, has written chapters of Logistic Regression.

Jiankou Li

PhD candidate at the Institute of Software, Chinese Academy of Sciences (ISCAS), Beijing, P.R.CHINA, e-mail: lijiankoucoco@163.com, has written chapters of BayesNet.