	Lógica E 1.º Teste	
	31 de março d	
nome:		número
Este teste é consespondidas neste en	stituído por 7 questões, divididas en nunciado, dentro do espaço disponib	m 2 grupos. As questões do grupo I devem ser bilizado para o efeito. As questões do grupo II os vigilantes. Justifique todas as suas respostas.
	Grupo I	I
1. Quantas valora	ações satisfazem \mathcal{V}^{CP} ? E quantas sat	tisfazem \mathcal{F}^{CP} ?
	$\varphi \in \Gamma$: φ não tem ocorrências de \neg	condições: (i) Γ é inconsistente; (ii) $p_0 \wedge p_1 \in \Gamma$; e φ não é contradição.
3. Seja $\Gamma = \{ \neg p_0 \}$ semântica de Γ		das seguintes fórmulas, diga se é consequência
 ¬p₀ 		
• <i>p</i> ₃		
• $p_2 \rightarrow \neg p_0$		
\bullet $\neg p_2 \lor \neg p_0$		

	• Mostre que é impossível uma valoração atribuir valor 0 a φ .
	• φ é uma tautologia?
	• Determine uma FNC e uma FND logicamente equivalentes a φ .
5.	Mostre que $\{\bot\}$ não é um conjunto completo de conetivos.
	Grupo II
6.	(a) Justifique que $((\neg(p_1 \lor p_0)) \to p_0)$ é um elemento de \mathcal{F}^{CP} .
	(b) Defina por recursão estrutural a função $f: \mathcal{F}^{CP} \to \{0,1\}$ que a cada $\varphi \in \mathcal{F}^{CP}$ faz corresponder
	0 , se o conetivo \vee ocorre em φ ; e faz corresponder 1, caso contrário.
	(c) Indique $f(\neg p_1 \to p_2)$ e $f(\neg (p_1 \lor p_0) \to p_0)$. Obtenha um destes valores usando a definição recursiva de f que deu na resposta à questão anterior.
	(d) Diga se f é uma valoração.
	(e) Prove por indução estrutural que: para todo $\varphi \in \mathcal{F}^{CP}$, $f(\varphi) = f(\varphi[\perp/p_{2017}])$.
7	Sejam $\varphi, \psi \in \mathcal{F}^{CP}$. Apresente uma demonstração em DNP da fórmula $(\varphi \wedge \neg \psi) \rightarrow \neg(\varphi \rightarrow \psi)$.
1.	(N.B. Uma demonstração em DNP é uma derivação em DNP cujas hipóteses estão todas cance-
	(IV.B. Uma demonstração em $DIVF$ e uma derivação em $DIVF$ cujas impoteses estão todas canceladas.)

4. Seja $\varphi = \neg (p_1 \lor p_2) \to (\neg p_1 \land \neg p_2).$

Cotações	1.	2.	3.	4.	5.	6.	7.
	2	2	2	2	2	8	2