- Data generated in distributed systems and computing clusters:
 - Memory and CPU usage
 - Network parameters (latency, distance, etc)
 - Affinities between jobs and nodes

- Scheduling involves deciding where to allocate arriving jobs in the cluster
- Use of telemetry data to optimize scheduling and other tasks, such as cluster workload estimation

- Use of Machine Learning to optimize scheduling
 - Deep Reinforcement Learning (DRL)

Research questions

• Is it beneficial to use telemetry data as an input to a Machine Learning model to perform scheduling decisions?

• Can telemetry data be used to predict the future workload in a node and to avoid system failures?

DRL scheduling - Methodology

Why Reinforcement Learning?

DRL scheduling - Methodology

Policy gradient algorithm

$$\theta = \theta + \alpha \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) * (v_t - b_t)$$

- Experiment in simulated cluster
 - Distance based scheduling

DRL scheduling - Distance based scheduling

- Goal
 - Minimize job duration, but how?
 - By learning from interaction and experience the distances between the nodes
- Implementation

Objective: Average job duration

$$\overline{d} = \frac{1}{N} \sum_{j=0}^{N} d_j$$

where \overline{d} is the average job duration, N is the total number of jobs in the episode and d_j is the duration of the job j.

Reward

$$R_t = \sum_{j \in J_s} -1$$

where R_t is the reward at the current time-step and J_s is the set is jobs that are currently in the system.

State

- Input to DRL scheduler
 - Memory available in nodes
 - Memory request of waiting jobs in buffer
 - Affinity preference of waiting jobs in buffer

	Node 1 Memory available	Node 2 Memory available	Job 1 Memory request	Job 1 Affinity preference	Job 2 Memory request	Job 2 Affinity preference
Categorical data	500	1000	750	1	250	2
One-hot encoded data	001000	000100	0001	010	0100	001

Scheduler actions

Action	Description
0	Do not schedule any job
1	job 1: schedule to node 1 job 2: remain in buffer
2	job 1: remain in buffer job 2: schedule to node 1
3	job 1: schedule to node 1 job 2: schedule to node 1
4	job 1: schedule to node 2 job 2: remain in buffer
5	job 1: remain in buffer job 2: schedule to node 2
6	job 1: schedule to node 2 job 2: schedule to node 2
7	job 1: schedule to node 1 job 2: schedule to node 2
8	job 1: schedule to node 2 job 2: schedule to node 1

Objective: Average job duration

$$\overline{d} = \frac{1}{N} \sum_{j=0}^{N} d_j$$

where \overline{d} is the average job duration, N is the total number of jobs in the episode and d_j is the duration of the job j.

DRL scheduling - Distance based scheduling

Average job duration evolution over training iterations

Average job duration of DRL and LB schedulers on test jobset

Average total reward evolution over training iterations

Difference of memory usage between nodes for DRL and LB schedulers

DRL scheduling - Affinity based scheduling

- Goal
 - Minimize job duration, but how?
 - Is DRL scheduling capable of learning the affinities of the nodes to reduce job duration?

Implementation

State

- Input to DRL scheduler
 - App of Jobs in Nodes
 - App of buffer jobs
 - o App of three next jobs

	Node 1 App		Node 6 App	Buffer App	$egin{array}{c} { m Job}+1 \ { m App} \end{array}$	$egin{array}{c} { m Job} + 2 \ { m App} \end{array}$	${ m Job} + 3 \ { m App}$
Categorical data	1		0	2	3	1	0
One-hot encoded data	0010	•••	0001	0100	1000	0010	0001

Scheduler actions

Action	Description
0	Do not schedule the job
1	Schedule the job to Node 1
2	Schedule the job to Node 2
3	Schedule the job to Node 3
4	Schedule the job to Node 4
5	Schedule the job to Node 5
6	Schedule the job to Node 6

DRL scheduling - Affinity based scheduling

Average job duration evolution over training iterations

Average job duration of DRL and LB schedulers on test jobset

Average total reward evolution over training iterations