PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-078326

(43) Date of publication of application: 22.03.1996

(51)Int.CI.

H01L 21/20

(21)Application number: 06-240685

(71)Applicant: MITSUBISHI MATERIALS SHILICON

CORP

MITSUBISHI MATERIALS CORP

(22)Date of filing:

07.09.1994

(72)Inventor: NISHIGAKI AKIRA

KONISHI HISAKAZU

TAKAISHI KAZUNARI SHIMIZU KOTARO

(54) MANUFACTURE OF EPITAXIAL WAFER

(57)Abstract:

PURPOSE: To provide a manufacture of an epitaxial wafer, which has a surface having high flatness and high cleanness and in which a particle level is also low.

CONSTITUTION: The surface of a wafer after etching treatment is washed by an SC-1 cleaning liquid. The silicon wafer is dipped into an HF solution. Epitaxial growth is conducted on the surface of the wafer for the time left as it is in atmospheric air within eight hours. Epitaxial growth may also be performed above 1000° C or between 400° C and 1000° C. The high-temperature epitaxial growth and the low-temperature epitaxial growth may also be repeated alternately. According to the low-temperature epitaxial growth, cost can be reduced by the lowering of a temperature. The epitaxial surface may also be polished.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開發号

特開平8-78326

(43)公開日 平成8年(1996)3月22日

(51) Int.CL*

徽別記号 广内整理番号

ΡI

技術表示箇所

HOIL 21/20

審査請求 未請求 菌求項の数4 FD (全 4 頁)

(21)出蝦番号	将赋平6 −2 10695	(71)出廢人 000228925
		三菱マテリアルシリコン株式会社
(22)出顧日	平成6年(1994)9月7日	京京都千代田区大手町一丁目5番1号
		(71)出廢人 000006264
		三菱マテリアル株式会社
		京京都千代田区大手町1丁目5番1号
		(72) 発明者 西垣 形
		東京都千代田区岩本町3丁目8番16号 三
		菱マテリアルシリコン株式会社内
		(72) 發明者 小西 央員
		京京都千代田区岩本町 3丁目 8 器16号 三
		菱マテリアルシリコン株式会社内
		(74)代理人 弁理士 安倍 逸郎
		最終頁に続く

(54) 【発明の名称】 エピタキシャルウェーハの製造方法

(57)【要約】

【目的】 表面が高平坦度で、高清浄度で、かつ、パーティクルレベルも低レベルのエピタキシャルウェーハの 製造方法を提供する。

【構成】 エッチング処理後のウェーハ表面をSC-1 洗浄液で洗浄する。次に、HF溶液中にこのシリコンウェーハを浸漬する。この後、大気中に放置する時間を8時間以内に、ウェーハ表面にエピタキシャル成長を行う。エピタキシャル成長は1000℃以上の高温、100℃未満で400℃以上の低温で行ってもよい。この高温エピタキシャル成長とを交互に繰り返してもよい。低温エピタキシャル成長とを交互に繰り返してもよい。低温エピタキシャル成長によれば、低温化によるコストダウンを達成できる。なお、このエピタキシャル表面を研磨してもよい。

特開平8-78326

(2)

【特許請求の範囲】

【請求項1】 エッチング後のシリコンウェーハの表面 にアルカリ/過酸化水素水の混合溶液による洗浄 フッ 酸洗浄を施した後、このシリコンウェーハの大気中での 保存時間を8時間以内に管理してこのシリコンウェーハ 表面にエピタキシャル成長するエピタキシャルウェーハ の製造方法。

1

【請求項2】 上記エピタキシャル成長の後にこのシリ コンウェーハのエピタキシャル面の一部を除去する請求 項1に記載のエピタキシャルウェーハの製造方法。

【請求項3】 上記エピタキシャル成長は1000℃以 上の高温で行う請求項1または請求項2のいずれかに記 載のエピタキシャルウェーハの製造方法。

【論求項4】 上記エピタキシャル成長は400°C以上 で1000℃未満の低温で行う請求項1または請求項2 に記載のエピタキシャルウェーハの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、表面品質を高めたエピ タキシャルウェーハの製造方法に関する。

[0002]

【従来の技術】これまでのエピタキシャルウェーハ(E W) の製造は、通常、ポリッシュドウェーハ (PW) 製 造工程の完了後、1000°C以上の高温下において、P **W表面にエピタキシャル成長を行うことが一般的であっ** た。すなわち 研磨後のウェーハ表面にエピタキシャル 成長させていた。

[0003]

【発明が解決しようとする課題】しかしながら、上記E 異常突起が生じ易く、そのパーティクルレベルが劣り、 また。汚染度が高いという表面品質上の問題が生じてい た。そこで、このようにしてエピタキシャル成長させた ウェーハ表面をさらに研磨することにより、上記課題を 解決することも考えられる。しかしながら、この方法に あっても、研磨工程が増えるという問題があった。

【0004】そこで、本願発明者らは、上記課題を解決 すべく、鋭意研究を重ねた結果、エピタキシャル成長前 の研磨工程をなくして、エッチング後所定のクリーン洗 ル成長を完了することにより、その問題を解決すること ができる製造工程を確立した。そのためには、エビタキ シャル成長前にアルカリノ過酸化水素水の混合液(例え はSC-1洗浄液)で洗浄した後、HF(フッ酸)によ る処理を施すことにより、ウェーハ表面の有機物および 金属不純物を同時に除去することが重要である。また、 これらの処理後大気中に長く放置すると、大気中の有機 物または酸素による酸化作用により、表面状態が変化 し、エピタキシャル成長が不可能となってしまう。そこ

時間程度とする必要がある。ただし、酸化雰囲気(大気 中を含む〉中の場合である。

[0005]

【課題を解決するための手段】請求項1に記載した発明 は、エッチング後のシリコンウェーハの表面にアルカリ /過酸化水素水の混合溶液による洗浄、フッ酸洗浄を施 した後、このシリコンウェーハの大気中での保存時間を 8時間以内に管理してこのシリコンウェーハ表面にエピ タキシャル成長するエピタキシャルウェーハの製造方法 10 である。

【0006】請求項2に記載した発明は、上記エピタキ シャル成長の後にこのシリコンウェーハのエピタキシャ ル面の一部を除去する請求項』に記載のエピタキシャル ウェーハの製造方法である。例えば研磨するものであ

【0007】請求項3に記載した発明は、上記エピタキ シャル成長は1000で以上の高温で行う請求項1また は請求項2のいずれかに記載のエピタキシャルウェーハ の製造方法である。

【①008】請求項4に記載した発明は、上記エピタキ シャル成長は400℃以上で1000℃未満の低温で行 う請求項1または請求項2に記載のエピタキシャルウェ ーハの製造方法である。

[00009]

【作用】本発明方法によれば、エッチング処理後のシリ コンウェーハについて、まず、アルカリ/過酸化水素水 の混合液(例えばSC-1洗浄液)で洗浄する。その 後、このウェーハ表面について目F(フッ酸)による処 理を施す。例えばHF密波中にウェーハを浸漬する。こ ♥の製造にあっては、エピタキシャル成長させた表面に 30 の後、大気中に放置するストレージタイムのリミットは 8時間程度としつつ、このウェーハ表面にエピタキシャ ル成長を行う。このエピタキシャル成長は1000℃以 上の高温で行ってもよく。1000℃未満で400℃以 上の低温で行ってもよい。さらに、この高温エピタキシ ャル成長と低温エピタキシャル成長とを交互に繰り返す。 いわゆる多段エピタキシャル成長を縮してもよい。低温 エピタキシャル成長によれば、低温化によるコストダウ ンを達成することが可能となる。

【0010】また、上記エピタキシャル成長の後、例え 浄を縮し、さらに、このウェーハ表面上にエピタキシャ 40 ば研磨処理を縮すこととする。これにより、ウェーハ表 面を一部を除去してウェーハ表面での突起の発生。ゴミ の付着等を抑制することができるとともに、従来のエピ タキシャル前の研磨処理を省略することができる。

[0011]

【実施例】以下、本発明の実施例を説明する。本発明の 一実施例に係る方法によれば、以下の結果を得ることが できた。真施例方法の具体例として、エッチング後の酸 化還元処理にあっては、無機アルカリと過酸化水素水と の混合液であって、シリコンに対するエッチングレート で、とのストレージタイム(放置時間)のリミットは8 50 が10オングストローム/分以下のものを使用する。例

えばKOH(lwt%), H,O2(lvo!%)を含 む、50℃の混合溶液である。次に行う員下洗浄は、 1. 5%の濃度のHF溶液への浸漬処理とする。この 後、シリコンウェーハに純水洗浄を施し、その表面にエ ピタキシャル成長を行った(膜厚は約5 μm)。この成 膜条件は、CVD炉での成長温度は660℃以下とし、 成職速度は200オングストローム/分以下に調整して 行った。さらに、例えば公知のデッドウエイト式の研磨 機で2 m 以下の研磨を施した。

よる表面平坦度(パーティクルカウンタ「サーフスキャ ン (商品名) 」のペイズレベルで示す)、パーティクル レベル(突起を含む)、表面清浄度を比較例とともに示 している。比較例においては、エピタキシャル炉でのエ ピタキシャル成長を行い、そのエピタキシャル膜の膜厚 は3 μmとしたものである。これらの図から解るように 本発明製造方法にあっては高品質の表面を形成したエピ タキシャルウェーハを得ることができる。

【①①13】図2はこの発明方法におけるX線回折強度 とストレージタイムとの関係を示している。すなわち、 **目F洗浄後のシリコンウェーハをクリーンルームの大気** 中に放置するストレージタイムと、その後のエピタキシ ャル成長によるエピタキシャル膜表面の結晶状態との関本 *係を示すものである。このグラフに示すように、ストレ ージタイムが8時間を超えると、表面での多結晶シリコ ンの割台が増加することとなる。このことから、ストレ ージタイムは8時間以内として次のエピタキシャル成長 を行うことが必要であることが解る。

[0014]

(3)

【発明の効果】本発明方法によれば、エピタキシャルウ ェーハの表面品質を高めることができる。詳しくは、そ の表面平坦度を高めることができる(ヘイズレベルを低 【() () 1 2 】図 1 (A)、(B),(C) はこの方法に 10 減させることができる)。また、表面での突起等を低減 し、パーティクルレベルを低減することもできる。さら に その表面汚染をも低減することができる。また、低 温化によるコストダウンを達成することもできる。な お、これは従来の研磨工程を省略することをも意味して いる。

【図面の簡単な説明】

【図1】本発明の一実施例に係る製造方法によって製造 したエピタキシャルウェーハのエピタキシャル層の表面 平坦度、パーティクルレベル、表面清浄度を比較例とと もに示すグラフである。

【図2】本発明の一実施例に係るエピタキシャルウェー ハの表面品質とストレージタイムとの関係を示すグラフ である。

[図1] [**2**2]

(B) 北森坝

(4)

特開平8-78326

フロントページの続き

(72)発明者 高石 和成

東京都千代田区岩本町3丁目8番16号 三 菱マテリアルシリコン株式会社内 (72)発明者 清水 光太郎

東京都千代田区岩本町3丁目8番16号 三 菱マテリアルシリコン株式会社内