



Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

#### **Problem**

Gegeben sind n Objekte O<sub>1</sub>,..., O<sub>n</sub> mit zugehörigen Schlüsseln s(O<sub>i</sub>)

## Operationen

- Suche(x); Ausgabe O mit Schlüssel s(O) =x;
   nil, falls kein Objekt mit Schlüssel x in Datenbank
- Einfügen(O); Einfügen von Objekt O in Datenbank
- Löschen(O); Löschen von Objekt O aus der Datenbank

#### AVL-Bäume

- Balanzierte Binärbäume
- Suchen, Einfügen, Löschen, Min, Max, Nachfolger in O(log n) Zeit

## Frage

Gibt es effizientere Datenstruktur für das Datenbank Problem als AVL-Bäume?

# Felder mit direkter Adressierung



# Operationen

DirectAddressSearch(k)

1. return T[k]

DirectAddressInsert(x)

1.  $T[key[x]] \leftarrow x$ 

DirectAddressDelete(k)

1.  $T[k] \leftarrow nil$ 



# Operationen

DirectAddressSearch(k)

1. return T[k]

DirectAddressInsert(x)

1.  $T[key[x]] \leftarrow x$ 

DirectAddressDelete(k)

1.  $T[k] \leftarrow nil$ 

Laufzeiten: O(1)



## Zusammenfassung (direkte Adressierung)

- Einfügen, Löschen, Suchen in O(1)
- Min, Max O(|U|)
- Speicherbedarf O(|U|)
- Schlecht, wenn Universum groß ist (normaler Fall)

## Hashing

- Ziel: Speicherbedarf soll unabhängig von Universumsgröße sein
- Wollen nur die Suchzeit optimieren
- (Insert und Delete werden auch unter bestimmten Annahmen effizient sein)

# Eingabe

n Schlüssel aus Universum U={0,..,m-1}

## Aufgabe

Finde Datenstruktur mit O(n) Speicherbedarf, die Suche in O(1) Zeit erlaubt

### Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab



#### Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

# **Beispiel**

Schlüsselmenge aus Universum {0,..,69}8, 13, 15, 30, 41, 56, 58



### Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

|                                                                                                               | F     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
|                                                                                                               | 0-9   |  |  |  |  |
| <ul> <li>Beispiel</li> <li>Schlüsselmenge aus Universum {0,,69}</li> <li>8, 13, 15, 30, 41, 56, 58</li> </ul> | 10-19 |  |  |  |  |
|                                                                                                               | 20-29 |  |  |  |  |
|                                                                                                               | 30-39 |  |  |  |  |
| Problem                                                                                                       | 40-49 |  |  |  |  |
| <ul> <li>13, 15 und 56, 58 liegen im selben Bereich</li> </ul>                                                | 50-59 |  |  |  |  |
|                                                                                                               | 60-69 |  |  |  |  |

### Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

|                                                                                                               | Feld T |                                   |  |  |
|---------------------------------------------------------------------------------------------------------------|--------|-----------------------------------|--|--|
|                                                                                                               | 0-9    | → 8                               |  |  |
| <ul> <li>Beispiel</li> <li>Schlüsselmenge aus Universum {0,,69}</li> <li>8, 13, 15, 30, 41, 56, 58</li> </ul> | 10-19  | $\rightarrow$ 13 $\rightarrow$ 15 |  |  |
|                                                                                                               | 20-29  | nil                               |  |  |
|                                                                                                               | 30-39  | → 30                              |  |  |
| Problem                                                                                                       | 40-49  | → 41                              |  |  |
| <ul> <li>13, 15 und 56, 58 liegen im selben Bereich</li> </ul>                                                | 50-59  | → 56 → 58                         |  |  |
| <ul> <li>Auflösen durch Listen</li> </ul>                                                                     | 60-69  | nil                               |  |  |

## Insert(x)

- 1.  $p \leftarrow \lfloor \text{key}[x]/r \rfloor$
- ListInsert(T[p],x)

### Laufzeit

• O(1)



y ist Referenz auf das zu löschende Listenelemente

Delete(y)

ListDelete(y)

#### Laufzeit

• O(1)



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. **return** ListItem



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

## **Beispiel**



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

## **Beispiel**



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- 2. ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

## **Beispiel**



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

# **Beispiel**



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

# **Beispiel**



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

# **Beispiel**



### Blocksuche(k)

- 1.  $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. **return** ListItem

## **Beispiel**



## Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

#### Worst-Case

| <ul> <li>Alle Schlüssel aus demselben Block sind</li> </ul>                  | 0-9   | → 8                               |
|------------------------------------------------------------------------------|-------|-----------------------------------|
| in Schlüsselmenge                                                            | 10-19 | $\rightarrow$ 13 $\rightarrow$ 15 |
| <ul><li>Suchzeit: O(min{r,n})</li><li>Ist r&gt;n, so ist dies O(n)</li></ul> | 20-29 | nil                               |
| 13t 1211, 30 13t die3 O(11)                                                  | 30-39 | → 30                              |
| Diskussion                                                                   | 40-49 | → 41                              |
| Ist das wirklich, was wir erwarten?                                          | 50-59 | $\rightarrow$ 56 $\rightarrow$ 58 |
| <ul> <li>Nein! Das ist eine sehr spezielle Eingabe</li> </ul>                | 60-69 | nil                               |

Normalerweise sollte das besser funktionieren

## Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

## Average-Case

 Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen

0-9
 
$$\rightarrow$$
 8

 10-19
  $\rightarrow$  13
  $\rightarrow$  15

 20-29
 nil

 30-39
  $\rightarrow$  30

 40-49
  $\rightarrow$  41

 50-59
  $\rightarrow$  56
  $\rightarrow$  58

 60-69
 nil

## Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge  $\beta$  jeder Liste ist  $\beta = r \cdot n/m$



### Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge  $\beta$  jeder Liste ist  $\beta = r \cdot n/m$
- Durchschnittliche Suchzeit O(1+β)



## Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge β jeder Liste ist
   β = r·n/m
- Durchschnittliche Suchzeit O(1+β)
- Speicherplatz O(m/r+n)

| 0-9   | _   | $\rightarrow$ | 8  |                   |    |  |
|-------|-----|---------------|----|-------------------|----|--|
| 10-19 | _   | $\rightarrow$ | 13 | $\longrightarrow$ | 15 |  |
| 20-29 | nil |               |    |                   |    |  |
| 30-39 | _   | $\rightarrow$ | 30 |                   |    |  |
| 40-49 | _   | $\rightarrow$ | 41 |                   |    |  |
| 50-59 | _   | $\rightarrow$ | 56 | $\longrightarrow$ | 58 |  |
| 60-69 | nil |               |    |                   |    |  |
|       |     |               |    |                   |    |  |

### **Analyse**

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge β jeder Liste ist
   β = r·n/m
- Durchschnittliche Suchzeit O(1+β)
- Speicherplatz O(m/r+n)
- Setze Blockgröße r=m/n

| _   | $\rightarrow$ | 8                                                                                                    |                   |                                                          |
|-----|---------------|------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------|
| _   | $\rightarrow$ | 13                                                                                                   | $\longrightarrow$ | 15                                                       |
| nil |               |                                                                                                      |                   |                                                          |
| _   | $\rightarrow$ | 30                                                                                                   |                   |                                                          |
| _   | $\rightarrow$ | 41                                                                                                   |                   |                                                          |
| _   | $\rightarrow$ | 56                                                                                                   | $\longrightarrow$ | 58                                                       |
| nil |               |                                                                                                      |                   |                                                          |
|     | -             | $\begin{array}{c} \textbf{nil} \\ \longrightarrow \\ \longrightarrow \\ \longrightarrow \end{array}$ |                   | $ \begin{array}{c}                                     $ |

# Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

| • | Durchschnittliche Laufzeit über alle                                  | 0-9   | _   | → 8         |             |
|---|-----------------------------------------------------------------------|-------|-----|-------------|-------------|
|   | möglichen Schlüsselmengen                                             | 10-19 | _   | <b>→</b> 13 | <b>→</b> 15 |
| • | Durchschnittliche Länge $\beta$ jeder Liste ist $\beta = r \cdot n/m$ | 20-29 | nil |             |             |
| • | Durchschnittliche Suchzeit O(1+β)                                     | 30-39 | _   | → 30        |             |
| • | Speicherplatz O(m/r+n)                                                | 40-49 | _   | <b>→</b> 41 |             |
| • | Setze Blockgröße r=m/n                                                | 50-59 | _   | → 56        | → 58        |
| • | ⇒ O(1) durch. Suchzeit und O(n) Speicher                              | 60-69 | nil |             |             |

# Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

| • | Durchschnittliche Laufzeit über alle                                  | 0-9   | $\longrightarrow$ | 8  |                   |    |   |
|---|-----------------------------------------------------------------------|-------|-------------------|----|-------------------|----|---|
|   | möglichen Schlüsselmengen                                             | 10-19 | $\longrightarrow$ | 13 | $\longrightarrow$ | 15 |   |
| • | Durchschnittliche Länge $\beta$ jeder Liste ist $\beta = r \cdot n/m$ | 20-29 | nil               |    |                   |    |   |
|   | Durchschnittliche Suchzeit O(1+β)                                     | 30-39 | $\longrightarrow$ | 30 |                   |    |   |
| ٠ | Speicherplatz O(m/r+n)                                                | 40-49 | $\longrightarrow$ | 41 |                   |    |   |
|   | Setze Blockgröße r=m/n                                                | 50-59 | $\longrightarrow$ | 56 | $\longrightarrow$ | 58 |   |
|   | $\Rightarrow$ O(1) durch. Suchzeit und O(n) Speicher                  | 60-69 | nil               |    |                   |    | Ī |



#### Satz

Sei U={0,...,m-1} eine Grundmenge von Schlüsseln (Universum). Sei T ein Feld mit m/r Einträgen und jeder Eintrag von T entspreche einem Block von r Werten aus U. Dann gilt, dass die durchschnittliche Suchzeit nach einem beliebigen, aber festen Schlüssel k durch O(1+β) beschränkt ist, wobei β= r·n/m und der Durchschnitt über alle n-elementigen Teilmengen von U gebildet wird.

#### Diskussion

- Ist Durchschnitt das richtige Maß für eine Laufzeitanalyse?
- Durchschnitt ≠ Durchschnitt
   (unsere Durchschnittsbildung nimmt an, dass jede Teilmenge
   gleichwahrscheinlich auftritt; dies ist vermutlich nicht realistisch)

## Beispiel

- Universum ist die Menge der long ints
- Schlüssel sind Kundennummern
- Häufig starten Kundennummern bei einem bestimmten Wert und steigen von dort an (z.B. 1 bis 5323)
- "Durchschnittsannahme" nicht richtig

### **Problem**

- Wir kennen die "typische" Datenverteilung nicht
- Diese kann insbesondere von der Anwendung abhängen
- Um eine gute Vorhersage der Laufzeit zu machen, müssten wir bei der Durchschnittsbildung aber die typische Datenverteilung berücksichtigen

#### **Abhilfe**

Wir werden die Aufteilung zufällig machen

34

### Datenstrukturen

## Hashing

Schlüsselmenge

- Universum U={0,..,m-1}
- Hash Tabelle T[0,..,t-1]



35

## Datenstrukturen

## Hashing

Schlüsselmenge

- Universum U={0,..,m-1}
- Hash Tabelle T[0,..,t-1]



## Hashing mit Verkettung

- Universum U={0,..,m-1}
- Hash Tabelle T[0,..,t-1]
- Hash Funktion h: U → {0,..,t-1}
   Speichere Element mit Schlüssel k in h(k)
   Feld T
   nil



## **Beispiel**

- Wenn wir h:  $U \rightarrow \{0,..,t-1\}$  durch  $h(x) = \lfloor x \cdot t/m \rfloor$  definieren, so haben wir die auf Blockbildung basierende Datenstruktur (mit Blockgröße r=m/t)
- Dieses ist also ein Spezialfall des Hashing-Szenarios
- Die Hauptschwierigkeit beim Hashing ist die Frage, wie man h geschickt wählt



## Operationen

## Einfügen(x)

Füge neuen Schlüssel k am Ende der Liste T[h(key[x])] ein

# Löschen(x)

Lösche Element x aus Liste T[h(key[x])]

# Suche(k)

Suche nach k in Liste T[h(k)]

## Wie sieht eine gute Hashfunktion aus?

- Benutzte Schlüssel sollten möglichst gleichmäßig auf Tabelle verteilt werden
- Guter Kandidat wäre eine zufällige Funktion
   (die natürlich nur einmal zu Beginn zufällig gewählt wird und dann fest ist)
- Sobald h festliegt, gibt es immer eine schlechte Eingabe für h mit Worst-Case Suchzeit O(n) bei n Elementen in der Datenstruktur
- Wir suchen aber f
  ür gegebene Schl
  üsselmenge eine gute Funktion h

#### Last Faktor α

• Durchschnittliche Länge einer Kollisionsliste, d.h.  $\alpha=n/t$ 

#### Idee

Wähle h zufällig (aus einer Menge von geeigneten Kandidaten H)

# Annahme (einfaches gleichverteiltes Hashing)

- Jedes k aus U wird mit Wahrscheinlichkeit 1/t auf i∈{0,..,t-1} abgebildet
- Diese Wahrscheinlichkeit ist komplett unabhängig vom Bild aller anderen Elemente

# Auswahlprozess für h

- Für jede k∈U würfele einen Wert w zwischen 0 und t-1 und setze h[k]=w
- H: Menge aller Funktionen von U nach {0,...,t-1}

#### Idee

Wähle h zufällig (aus einer Menge von geeigneten Kandidaten H)

# Annahme (einfaches gleichverteiltes Hashing)

- Jedes k aus U wird mit Wahrscheinlichkeit 1/t auf i∈{0,..,t-1} abgebildet
- Diese Wahrscheinlichkeit ist komplett unabhängig vom Bild aller anderen Elemente

#### Weitere Annahme

h(k) kann in O(1) Zeit berechnet werden



#### Satz

Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel k∉M eine durchschnittliche Laufzeit von O(1+α).



#### Satz

Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel k∉M eine durchschnittliche Laufzeit von O(1+α).

- Jeder Schlüssel k wird unter der Annahme des einfachen gleichverteilten
   Hashings auf jede Position in T mit derselben Wahrscheinlichkeit abgebildet.
- Also ist die durchschnittliche Suchzeit nach k gerade die durchschnittliche Suchzeit bis zum Ende der t Listen. Diese ist  $O(1+\alpha)$ , denn  $\alpha$  ist durchschn. Listenlänge.
- Damit ergibt sich inklusive Berechnung von h(k) eine Suchzeit von O(1+α).



#### Satz

 Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen Feld T

die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel k∈M eine durchschnittliche Laufzeit von O(1+α). Dabei wird der Durchschnitt über die Auswahl von h *und* den Schlüssel k∈M gebildet. Feld T

0 nil

1 nil

2  $\longrightarrow$   $k_6$ nil

nil  $\longrightarrow$   $k_3$   $\longrightarrow$   $k_4$   $\longrightarrow$   $k_8$ 7 nil

#### Satz

 Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen Feld T

die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel k∈M eine durchschnittliche Laufzeit von O(1+α). Dabei wird der Durchschnitt über die Auswahl von h *und* den Schlüssel k∈M gebildet.

# Schwierigkeit

- Die Suchzeit hängt von Position des gesuchten Elements in Kollisionsliste ab
- Suchzeit hängt von Einfügereihenfolge und Implementierung ab





## Beweis

Annahme: Einfügen am Ende der Listen





- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge





- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element



- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt



- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t



- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}





- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}
- Damit durchschn. Länge der Liste, in der i ist:
- 1+(i-1)/t



- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}
- Damit durchschn. Länge der Liste, in der i ist:
- 1+(i-1)/t
- Durchschn. Suchzeit für i-tes Element:
- O(1+(i-1)/t)





- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}
- Damit durchschn. Länge der Liste, in der i ist:
- 1+(i-1)/t
- Durchschn. Suchzeit für i-tes Element:
- O(1+(i-1)/t)



### Beweis

Durchschnitt über alle n Elemente aus M:

$$\frac{1}{n}\sum_{i=1}^{n} \left(1 + \frac{i-1}{t}\right) = 1 + \frac{1}{nt}\sum_{i=1}^{n} \left(i - 1\right)$$



### **Beweis**

Durchschnitt über alle n Elemente aus M:

$$\frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i-1}{t}) = 1 + \frac{1}{nt} \sum_{i=1}^{n} (i-1)$$
$$= 1 + (\frac{1}{nt})(\frac{(n-1)n}{2}) = 1 + \frac{\alpha}{2} - \frac{1}{2t}$$

Feld T

0 nil

1 nil

2 
$$\longrightarrow$$
  $k_6$ 

nil

nil

 $\longrightarrow$   $k_3$ 
 $\longrightarrow$   $k_4$   $\longrightarrow$   $k_8$ 

7 nil

#### Beweis

Durchschnitt über alle n Elemente aus M:

$$\frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i-1}{t}) = 1 + \frac{1}{nt} \sum_{i=1}^{n} (i-1)$$

$$= 1 + (\frac{1}{nt})(\frac{(n-1)n}{2}) = 1 + \frac{\alpha}{2} + \frac{1}{2t}$$

$$= O(1 + \alpha)$$

Feld T

0 nil

1 nil

2 
$$\longrightarrow$$
  $k_6$ 

nil

nil

 $\longrightarrow$   $k_3$ 
 $\longrightarrow$   $k_4$   $\longrightarrow$   $k_8$ 

7 nil

## Interpretation

 Ist die Größe der Hash-Tabelle proportional zur Anzahl gespeicherter Elemente, dann ist die durchschn. Suchzeit O(1)

## Frage

Wie realistisch ist Annahme des einfachen gleichverteilten Hashing?

## Interpretation

 Ist die Größe der Hash-Tabelle proportional zur Anzahl gespeicherter Elemente, dann ist die durchschn. Suchzeit O(1)

# Frage

- Wie realistisch ist Annahme des einfachen gleichverteilten Hashing?
- Die Menge H aller Funktionen von U nach {0,..,t-1} erfüllt Anforderung

## Interpretation

 Ist die Größe der Hash-Tabelle proportional zur Anzahl gespeicherter Elemente, dann ist die durchschn. Suchzeit O(1)

## Frage

- Wie realistisch ist Annahme des einfachen gleichverteilten Hashing?
- Die Menge H aller Funktionen von U nach {0,..,t-1} erfüllt Anforderung
- Kann man eine Funktion aus H effizient abspeichern?



## Kann man eine Funktion aus H effizient abspeichern?

Wenn es |H| unterschiedliche Funktionen gibt, dann benötigen wir mindestens
 log |H| viele Bits, um jede Funktion aus H beschreiben zu können

- Wenn es |H| unterschiedliche Funktionen gibt, dann benötigen wir mindestens log |H| viele Bits, um jede Funktion aus H beschreiben zu können
- Argument:
  - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
  - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2<sup>k</sup>



- Argument:
  - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
  - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2<sup>k</sup>
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden

- Argument:
  - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
  - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2<sup>k</sup>
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden
- Es gibt als t<sup>|U|</sup> unterschiedliche Funktionen in H



- Argument:
  - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
  - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2<sup>k</sup>
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden
- Es gibt als t<sup>|U|</sup> unterschiedliche Funktionen in H
- Wir benötigen also mindestens |U| log t Bits, um Funktionen aus H abspeichern zu können



- Argument:
  - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
  - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2<sup>k</sup>
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden
- Es gibt als t<sup>|U|</sup> unterschiedliche Funktionen in H
- Wir benötigen also mindestens |U| log t Bits, um Funktionen aus H abspeichern zu können



## Kurzes Fazit: Was ist eine gute Hashfunktion?

- Eine Funktion die eine gute Verteilung der Daten auf die Tabelle gewährleistet
- Problem: Wir kennen die Daten a priori nicht
- Oft kennen wir auch die Verteilung der Daten nicht
- Eine zufällige Funktion wäre gut, aber die können wir nicht speichern

#### Die Divisionsmethode

- k wird abgebildet auf den Rest von k durch t
- Es gilt also h(k) = k mod t

# **Beispiel**

- t=12 und k=100
- Dann gilt 8t+4 = 100 und somit h(100) = 4

## Die Divisionsmethode

- k wird abgebildet auf den Rest von k durch t
- Es gilt also h(k) = k mod t

## Was sind gute Werte für m (ohne Beweis bzw. empirisch)?

- Ist t Zweierpotenz, dann "zählen" nur die niedrigwertigen Bits (meistens schlecht)
- Gute Werte sind normalerweise Primzahlen, die nicht zu nah an Zweierpotenzen liegen



# Zusammenfassung und Ausblick

- Hashing mit Verkettung
- Divisionsmethode als Hashfunktion
- Viele weitere Methoden des Hashing