Mathematics for Informatics

Carlos Areces and Patrick Blackburn

areces@loria.fr

http://www.loria.fr/~areces

blackbur@loria.fr

http://www.loria.fr/~blacbur

INRIA Lorraine Nancy, France

2007/2008

Data types in ${\mathscr S}$

We saw that the only data type i ${\mathscr S}$ are the natural numbers

But we can simulate other types. For example, we represented the type Bool using 1 (for true) and 0 (for false).

Today we will codify,

- pairs of natural numbers
- finite sequences of natural numbers

Codifying pairs

We define the following primitive recursive function:

$$\langle x, y \rangle = 2^{x} (2 \cdot y + 1) \dot{-} 1$$

Note that $2^x(2 \cdot y + 1) \neq 0$.

Proposition

there is a unique solution (x, y) to the equation $\langle x, y \rangle = z$.

Proof.

- x is the maximum number such that $2^{x}|(z+1)$
- $y = ((z+1)/2^x 1) \text{ div } 2$

Proyection functions for pairs

The projections for the pair $z = \langle x, y \rangle$ are

- I(z) = x
- ightharpoonup r(z) = y

Proposition

Proyections are primitive recursive functions.

Proof.

As x, y < z + 1 we have that

- $I(z) = \min_{x \le z} ((\exists y)_{\le z} \ z = \langle x, y \rangle)$
- $r(z) = \min_{y \le z} ((\exists x)_{\le z} \ z = \langle x, y \rangle)$

Proyection functions for pairs

The projections for the pair $z = \langle x, y \rangle$ are

- I(z) = x
- ightharpoonup r(z) = y

Proposition

Proyections are primitive recursive functions.

Proof.

As x, y < z + 1 we have that

- $I(z) = \min_{x \le z} ((\exists y)_{\le z} \ z = \langle x, y \rangle)$
- $r(z) = \min_{y \le z} ((\exists x)_{\le z} \ z = \langle x, y \rangle)$

For example,

- $\langle 2,5 \rangle = 2^2(2 \cdot 5 + 1) \dot{-} 1 = 43$
- I(43) = 2
- r(43) = 5

Codifying sequences

The Gödel number for the sequence

$$a_1, \ldots, a_n$$

is the number

$$[a_1,\ldots,a_n]=\prod_{i=1}^n p_i^{a_i}.$$

For example, the Gödel number of the sequence

is

$$[1,3,3,2,2] = 2^1 \cdot 3^3 \cdot 5^3 \cdot 7^2 \cdot 11^2 = 40020750$$

Properties of the codification of sequences

Theorem

If
$$[a_1,\ldots,a_n]=[b_1,\ldots,b_n]$$
 then $a_i=b_i$ for each $i\in\{1,\ldots,n\}$.

Proof.

Because of the unique factorization into primes.

Properties of the codification of sequences

Theorem

If
$$[a_1,\ldots,a_n]=[b_1,\ldots,b_n]$$
 then $a_i=b_i$ for each $i\in\{1,\ldots,n\}$.

Proof.

Because of the unique factorization into primes.

Observe that

$$[a_1,\ldots,a_n]=[a_1,\ldots,a_n,0]=[a_1,\ldots,a_n,0,0]=\ldots$$

but

$$[a_1,\ldots,a_n]\neq [0,a_1,\ldots,a_n]$$

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $|x| = \min_{i \le x} (x[i] \ne 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $|x| = \min_{i \le x} (x[i] \neq 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

For example,

ightharpoonup [1, 3, 3, 2, 2][2] = 4

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $|x| = \min_{i \le x} (x[i] \neq 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

For example,

- \triangleright [1, 3, 3, 2, 2][2] = 4
- [1,3,3,2,2][6]=0

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $|x| = \min_{i \le x} (x[i] \neq 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

For example,

- \triangleright [1, 3, 3, 2, 2][2] = 4
- [1,3,3,2,2][6] = 0
- |[1,3,3,2,2]|=5

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $|x| = \min_{i \le x} (x[i] \neq 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

For example,

- \triangleright [1, 3, 3, 2, 2][2] = 4
- [1,3,3,2,2][6] = 0
- |[1,3,3,2,2]|=5
- ightharpoonup |[1,3,3,2,2,0]| = |[1,3,3,2,2,0,0]| = 5

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $|x| = \min_{i \le x} (x[i] \neq 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

For example,

- \blacktriangleright [1, 3, 3, 2, 2][2] = 4 = 40020750[2]
- [1, 3, 3, 2, 2][6] = 0 = 40020750[6]
- |[1,3,3,2,2]| = 5 = |40020750|
- |[1,3,3,2,2,0]| = |[1,3,3,2,2,0,0]| = 5 = |40020750|

The projector functions for the sequence $x = [a_1, \dots, a_n]$ are

- $\triangleright x[i] = a_i$
- |x| = lenght of x

Proposition

The proyector functions for sequences are primitive recursive.

Proof.

- $\triangleright x[i] = \min_{t \leq x} (\neg p_i^{t+1} | x)$
- $|x| = \min_{i \le x} (x[i] \neq 0 \land (\forall j)_{\le x} (j \le i \lor x[i] = 0))$

For example,

- \blacktriangleright [1, 3, 3, 2, 2][2] = 4 = 40020750[2]
 - [1, 3, 3, 2, 2][6] = 0 = 40020750[6]
 - |[1,3,3,2,2]| = 5 = |40020750|
 - |[1,3,3,2,2,0]| = |[1,3,3,2,2,0,0]| = 5 = |40020750|
 - ► x[0] = 0 for any x► 0[i] = 0 for any i

Summing up

Theorem (Codifying pairs)

- $I(\langle x, y \rangle) = x, r(\langle x, y \rangle) = y$
- $ightharpoonup z = \langle I(z), r(z) \rangle$
- $I(z), r(z) \leq z$
- the codification and proyectors for pairs are p.r.

Summing up

Theorem (Codifying pairs)

- $I(\langle x, y \rangle) = x, r(\langle x, y \rangle) = y$
- $I(z), r(z) \leq z$
- the codification and proyectors for pairs are p.r.

Theorem (Codifying sequences)

- $[a_1, \dots, a_n][i] = \begin{cases} a_i & \text{if } 1 \leq i \leq n \\ 0 & \text{otherwise} \end{cases}$
- ▶ If $n \ge |x|$ then [x[1], ..., x[n]] = x
- the codification and proyectors for sequences are p.r.

Codifying programs of ${\mathscr S}$

Remember that the instructions of $\mathscr S$ are:

- 1. $V \leftarrow V + 1$
- 2. $V \leftarrow V 1$
- 3. IF $V \neq 0$ GOTO L'

g

Codifying programs of ${\mathscr S}$

Remember that the instructions of ${\mathscr S}$ are:

- 1. $V \leftarrow V + 1$
- 2. $V \leftarrow V 1$
- 3. IF $V \neq 0$ GOTO L'

For convenience we are going to add a fourth instruction

4. $V \leftarrow V$: it does nothing

Observe that for any instruction

- ▶ it can be labeled or not by L
- ▶ it mentions exactly one variable V
- ▶ the IF construction always mentions a label L'

Codifying variables and labes in ${\mathscr S}$

Let's order the variables:

$$Y, X_1, Z_1, X_2, Z_2, X_3, Z_3, \dots$$

Let's order the labels:

$$A, B, C, D, \ldots, Z, AA, AB, AC, \ldots, AZ, BA, BB, \ldots, BZ, \ldots$$

We write #(V) for the position that a variable V occupies in the list. Idem for #(L) with the label L.

For example,

- $\blacktriangleright \#(Y) = 1$
- $+ \#(X_2) = 4$
- \blacktriangleright #(A) = 1
- + #(C) = 3

Codifying the instructions of ${\mathscr S}$

We codifyin the instruction *I* as

$$\#(I) = \langle a, \langle b, c \rangle \rangle$$

where

- 1. if I has a label L, then a = #(L); otherwise a = 0
- 2. if the variable mentioned in I is V then c = #(V) 1
- 3. if the instruction I is
 - 3.1 $V \leftarrow V$ then b = 0
 - 3.2 $V \leftarrow V + 1$ then b = 1
 - 3.3 $V \leftarrow V 1$ then b = 2
 - 3.4 IF $V \neq 0$ GOTO L' then b = #(L') + 2

Codifying the instructions of ${\mathscr S}$

$$\#(I) = \langle a, \langle b, c \rangle \rangle$$

where

- 1. if I has a label L, then a = #(L); otherwise a = 0
- 2. if the variable mentioned in I is V then c = #(V) 1
- 3. if the instruction *I* is
 - 3.1 $V \leftarrow V$ then b = 0
 - 3.2 $V \leftarrow V + 1$ then b = 1
 - 3.3 $V \leftarrow V 1$ then b = 2
 - 3.4 IF $V \neq 0$ GOTO L' then b = #(L') + 2

For example,

- $\#(X \leftarrow X + 1) = \langle 0, \langle 1, 1 \rangle \rangle = \langle 0, 5 \rangle = 10$
- $\#([A] \quad X \leftarrow X + 1) = \langle 1, \langle 1, 1 \rangle \rangle = \langle 1, 5 \rangle = 21$
- \blacktriangleright #(IF $X \neq 0$ GOTO A) = $\langle 0, \langle 3, 1 \rangle \rangle = \langle 0, 23 \rangle = 46$
- $\#(Y \leftarrow Y) = \langle 0, \langle 0, 0 \rangle \rangle = \langle 0, 0 \rangle = 0$

Any number x represent a unique instruction I.

Codifying the programs of ${\mathscr S}$

A program P is a (finite) list of instructions I_1, \ldots, I_k

We codify the program P as

$$\#(P) = [\#(I_1), \ldots, \#(I_k)] - 1$$

For exampel, for the program P

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

we have

$$\#(P) = [\#(I_1), \#(I_2)] = [21, 46] = 2^{21} \cdot 3^{46} - 1$$

We say that P

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

has number [21, 46].

We say that P

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

has number [21, 46]. But

$$[21,46] = [21,46,0]$$

The same number could represent more than a program!

We say that P

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

has number [21, 46]. But

$$[21, 46] = [21, 46, 0]$$

The same number could represent more than a program! Luckily, the program [21, 46, 0] is

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A
 $Y \leftarrow Y$

and it is equivalent to P.

We say that P

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

has number [21, 46]. But

$$[21, 46] = [21, 46, 0]$$

The same number could represent more than a program! Luckily, the program [21, 46, 0] is

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A
 $Y \leftarrow Y$

and it is equivalent to P.

In any case, we eliminate this ambiguity stipulating that

the last instruction in a program cannot be $Y \leftarrow Y$

Under this condition, each number represent a unique program.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

$$r_1 = 0, \quad r_{11} \quad r_{12} \quad r_{13} \quad r_{14} \quad \dots$$

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

$$r_1 = 0, \quad r_{11} \quad r_{12} \quad r_{13} \quad r_{14} \quad \dots \\ r_2 = 0, \quad r_{21} \quad r_{22} \quad r_{23} \quad r_{24} \quad \dots$$

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ...
 $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ...
 $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ...

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

Suppose that it is. Then I can enumerate it:

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ...
 $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ...
 $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ...
 $r_3 = 0$, r_{41} r_{42} r_{43} r_{44} ...
 \vdots
 $r_k = 0$, r_{k1} r_{k2} r_{k3} r_{k4} ...

Define the following number x

$$x = 0, x_1 x_2 x_3 x_4 \dots$$

with $x_i = (r_{ii} + 2) \mod 10$.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

Suppose that it is. Then I can enumerate it:

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ... $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ... $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ... $r_3 = 0$, r_{41} r_{42} r_{43} r_{44} ... \vdots ...

Define the following number x

$$x = 0, x_1 x_2 x_3 x_4 \dots$$

with $x_i = (r_{ii} + 2) \mod 10$.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

Suppose that it is. Then I can enumerate it:

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ...
 $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ...
 $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ...
 $r_3 = 0$, r_{41} r_{42} r_{43} r_{44} ...
 \vdots
 $r_k = 0$, r_{k1} r_{k2} r_{k3} r_{k4} ...

Define the following number x

$$x = 0, x_1, x_2, x_3, x_4, \dots$$

with $x_i = (r_{ii} + 2) \mod 10$.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

Suppose that it is. Then I can enumerate it:

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ...
 $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ...
 $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ...
 $r_3 = 0$, r_{41} r_{42} r_{43} r_{44} ...
 \vdots
 $r_k = 0$, r_{k1} r_{k2} r_{k3} r_{k4} ...

Define the following number x

$$x = 0, x_1, x_2, x_3, x_4, \dots$$

with $x_i = (r_{ii} + 2) \mod 10$.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

Suppose that it is. Then I can enumerate it:

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ...
 $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ...
 $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ...
 $r_3 = 0$, r_{41} r_{42} r_{43} r_{44} ...
 \vdots
 $r_k = 0$, r_{k1} r_{k2} r_{k3} r_{k4} ...

Define the following number x

$$x = 0, x_1, x_2, x_3, x_4, \dots$$

with $x_i = (r_{ii} + 2) \mod 10$.

The natural numbers are enumerable.

Theorem (Cantor)

The set of real numbers in [0,1] is not enumerable.

Proof.

Suppose that it is. Then I can enumerate it:

$$r_1 = 0$$
, r_{11} r_{12} r_{13} r_{14} ... $r_2 = 0$, r_{21} r_{22} r_{23} r_{24} ... $r_3 = 0$, r_{31} r_{32} r_{33} r_{34} ... $r_3 = 0$, r_{41} r_{42} r_{43} r_{44} ... \vdots ... \vdots ... \vdots ... \vdots ... \vdots ... \vdots ...

Define the following number x

$$x = 0, x_1, x_2, x_3, x_4, \dots$$

with $x_i = (r_{ii} + 2) \mod 10$. Then x is not a real.

There are as many total functions $f: \mathbb{N} \to \{0, \dots, 9\}$ as there are real numbers in [0, 1].

We can codify the function f as

$$0, f(0) f(1) f(2) f(3) \dots$$

- every function can be represented as a real in [0,1]
- \blacktriangleright every real in [0,1] represents a unique function

There are as many total functions $f: \mathbb{N} \to \{0, \dots, 9\}$ as there are real numbers in [0, 1].

We can codify the function f as

$$0, f(0) f(1) f(2) f(3) \dots$$

- every function can be represented as a real in [0,1]
- every real in [0,1] represents a unique function

In general (talking informally),

lacktriangle there are as many functions $\mathbb{N} o \mathbb{N}$ as there are reals

There are as many total functions $f: \mathbb{N} \to \{0, \dots, 9\}$ as there are real numbers in [0,1].

We can codify the function f as

$$0, f(0) f(1) f(2) f(3) \dots$$

- every function can be represented as a real in [0,1]
- every real in [0,1] represents a unique function

- lacktriangle there are as many functions $\mathbb{N} o \mathbb{N}$ as there are reals
- lacktriangle there are more functions $\mathbb{N} o \mathbb{N}$ than natural numbers

There are as many total functions $f: \mathbb{N} \to \{0, \dots, 9\}$ as there are real numbers in [0, 1].

We can codify the function f as

$$0, f(0) f(1) f(2) f(3) \dots$$

- every function can be represented as a real in [0,1]
- every real in [0,1] represents a unique function

- lacktriangle there are as many functions $\mathbb{N} o \mathbb{N}$ as there are reals
- lacktriangle there are more functions $\mathbb{N} o \mathbb{N}$ than natural numbers
- there are as many programs as natural numbers

There are as many total functions $f: \mathbb{N} \to \{0, \dots, 9\}$ as there are real numbers in [0, 1].

We can codify the function f as

$$0, f(0) f(1) f(2) f(3) \dots$$

- every function can be represented as a real in [0,1]
- every real in [0,1] represents a unique function

- lacktriangle there are as many functions $\mathbb{N} o \mathbb{N}$ as there are reals
- lacktriangle there are more functions $\mathbb{N} o \mathbb{N}$ than natural numbers
- there are as many programs as natural numbers
- there are as many partially computable functions as natural numbers

There are as many total functions $f: \mathbb{N} \to \{0, \dots, 9\}$ as there are real numbers in [0, 1].

We can codify the function f as

$$0, f(0) f(1) f(2) f(3) \dots$$

- every function can be represented as a real in [0,1]
- every real in [0,1] represents a unique function

- lacktriangle there are as many functions $\mathbb{N} o \mathbb{N}$ as there are reals
- lacktriangle there are more functions $\mathbb{N} \to \mathbb{N}$ than natural numbers
- there are as many programs as natural numbers
- there are as many partially computable functions as natural numbers
- lacktriangle there should be functions $\mathbb{N} \to \mathbb{N}$ which are not computable