

Name:	PUID

STAT 350 Worksheet #2

In set theory, we often use symbols and notation to describe collections of objects, called sets. Here are some key symbols and their meanings:

- \in : Means "is an element of." For example, $x \in E$ means x belongs to the set E.
- \mathbb{Z} : Is a special symbol to denote a very specific set, the set of integers $\{..., -2, -1, 0, 1, 2, ...\}$.
- N: Is a special symbol to denote a very specific set, the set of natural numbers {1, 2, 3, ...}.
- O: This is referred to as a binary operator that represents the **intersection** of two sets. In English, we often associate the concept of **intersection** with the word **'and,'** as it includes only those elements that satisfy the conditions of being in both sets simultaneously.
- U: This is referred to as a binary operator that represents the **union** of two sets. In English, we often associate the concept of **union** with the word 'or,' as it includes all elements that satisfy the condition of being in either one of the sets or in both.

Set-builder notation is a concise way to define a set by specifying the properties that its elements must satisfy. For example, consider the set $E = \{x \in \mathbb{Z}^+ | x \text{ is even and } x \leq 10\}$. This define E as the set of all positive integers x that are both **even** and **at most 10**.

- 1. Let A and B be sets defined as follows: $A = \{x \in \mathbb{Z} | -5 \le x \le 5\}$ and $B = \{x \in \mathbb{N} | x \text{ is even and } x \le 10\}$. Further consider the sets $C = A \cap B$ and $D = A \cup B$.
 - a. Write out the expanded set of elements of *A*, then separately write out the expanded set of elements for *B*.
 - b. Determine the elements contained in C, and separately determine the elements contained in D.

c. Using **set-builder notation**, express the set *C*.

d. Formally describe the set D in terms of the sets A and B, combining English and the 'element of' (\in) symbol.

Probability is a function P((\cdot)	that takes a set	(or event) E	as in	put and	out	puts a	real	number	p in	the	interval	[0), 1	1.

Axioms

- 1. For an event E, $0 \le P(E) \le 1$. (I should never see a probability answer given that is negative or greater than 1.)
- 2. $P(\Omega) = 1$, where Ω is a special symbol denoting the entire sample space.
- 3. For any event E, we have that $P(E) = \sum_{\omega \in E} P(\omega)$. In other words, we add up the probabilities of all the simple events in E to obtain the probability of the event.
- 4. It follows that $P(\emptyset) = 0$, where \emptyset is a special symbol denoting the **empty set** which is the set of no outcomes.
- 2. Using these axioms, answer the following questions:
 - a. What does it mean for P to be a function that operates on sets rather than directly on elements of the sample space or numerical values? Why must the input to $P(\cdot)$ always be a set?
 - b. Explain why the following statement is not a valid probability expression: $P(A) \cap P(B) \cap P(C)$.
 - c. If $A \subset B$, use axiom 3 to justify why P(A) < P(B).
 - d. The complement of a set E, denoted E', is defined as $E' = \{\omega \in \Omega | \omega \notin E\}$. Using **axiom 2** and **axiom 3** to derive the complement rule P(E') = 1 P(E).
- 3. Let E_1 and E_2 be two events of a sample space Ω , with known probabilities:

$$P(E_1) = 0.3$$
 $P(E_2) = 0.6$ $P(E_1 \cup E_2) = 0.75$

Calculate the following probabilities. Make sure to write out the probability statements explicitly before performing any calculations and include all intermediate steps.

Why Formality and Intermediate Steps Matter:

Writing probability statements explicitly and showing intermediate steps ensures:

- 1. Clarity: Identifies the correct rules and logic to apply.
- 2. **Accuracy:** Reduces errors, especially in multi-step calculations or when overlapping probabilities are involved.
- 3. **Preparation for Complexity:** Builds habits needed for tackling more advanced probability and mathematics problems.
- 4. **Communication Skills:** Clear steps and reasoning improve the ability to explain and justify your work.
- a) Calculate the probability that both E_1 and E_2 occur simultaneously.
- b) Calculate the probability that both E_1 and E_2 occur simultaneously.

c) Calculate the probability that both ${\it E_1}^\prime$ and ${\it E_2}$ occur simultaneously.

- 4. A festival raffle has a total of **N** tickets, divided into the following categories of winners:
 - |A| = 40: Tickets that win electronics.
 - $|\mathbf{B}| = 30$: Tickets that win gift cards.
 - |C| = 20 : Tickets that win home appliances.
 - $|A \cap B| = 10$: Tickets that win both electronics and gift cards.
 - $|A \cap C| = 5$: Tickets that win both electronics and home appliances.
 - $|B \cap C| = 3$: Tickets that win both gift cards and home appliances.
 - $|A \cap B \cap C| = 2$: Tickets that win in all three categories.
 - The remaining 432 tickets do not win any prizes.

Fill in the Venn Diagram Below to help you solve the problems.

a. Determine *N*: Utilizing the **inclusion-exclusion principle** and **additional knowledge**, calculate the total number of tickets *N*. One form of the inclusion-exclusion principle for three sets states:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

b. Probabilities:

After determining N, calculate the following probabilities:

- I. The probability of randomly selecting a ticket that wins in **exactly one category**.
- II. The probability of randomly selecting a ticket that wins in at least two categories.
- III. The probability of randomly selecting a ticket that wins in **exactly two categories**.
- IV. The probability of randomly selecting a ticket that does **not win electronics** and **does not win any gift cards**.