Chapter 2

PRAM: Matrix

Thoai Nam

High Performance Computing Lab (HPC Lab)
Faculty of Computer Science and Engineering
HCMC University of Technology

Matrix addition

	A[n	xn]				B[n	xn]				C[n	xn]	
a ₁₁	a ₁₂		a _{ln}		b ₁₁	b ₁₂	•••	b _{1n}		C ₁₁	C ₁₂		C _{ln}
a ₂₁	a ₂₂		a _{2n}		b ₂₁	b ₂₂		b _{2n}	_	C ₂₁	C ₂₂	•••	C _{2n}
				+					_			•••	
a _{n1}	a _{n2}		a_{nn}		b _{n1}	b _{n2}		b _{nn}		C _{n1}	C _{n2}	•••	C _{nn}

C[nxn]

$c_{11} = a_{11} + b_{11}$	$c_{12} = a_{12} + b_{12}$	 $c_{1n} = a_{1n} + b_{1n}$
$c_{21} = a_{21} + b_{21}$	$c_{22} = a_{22} + b_{22}$	 $c_{2n} = a_{2n} + b_{2n}$
•••		
$c_{n1} = a_{n1} + b_{n1}$	$c_{n2} = a_{n2} + b_{n2}$	 $c_{nn} = a_{nn} + b_{nn}$

Matrix addition: PRAM with nxn processors

C[nxn]

$c_{11} = a_{11} + b_{11}$	$c_{12} = a_{12} + b_{12}$	•••	$c_{1n} = a_{1n} + b_{1n}$
P ₁₁	P ₁₂		P _{1n}
$c_{21} = a_{21} + b_{21}$	$c_{22} = a_{22} + b_{22}$	•••	$c_{2n} = a_{2n} + b_{2n}$
P ₂₁	P ₂₂		P _{2n}
•••	•••	•••	•••
$c_{n1} = a_{n1} + b_{n1}$	$c_{n2} = a_{n2} + b_{n2}$	•••	$c_{nn} = a_{nn} + b_{nn}$
P _{n1}	P _{n2}		$\mathbf{P}_{ ext{nn}}$

> All (nxn) processors run '+' in parallel: O(1) =>

P_{ij} processor:

o Read: a_{ij} & b_{ij}

Write: C_{ii}

No overlapping data

CRCW: O(1)

EREW: O(1)

Matrix addition: PRAM with n processors

➤ All n processors run '+' in parallel in n steps: O(n) ??? =>

C[nxn]

Step 1	Step 2	•••	Step n
$c_{11} = a_{11} + b_{11}$	$c_{12} = a_{12} + b_{12}$	•••	$c_{1n} = a_{1n} + b_{1n}$
\mathbf{P}_1	\mathbf{P}_1	•••	P ₁
$c_{21} = a_{21} + b_{21}$	$c_{22} = a_{22} + b_{22}$	•••	$c_{2n} = a_{2n} + b_{2n}$
\mathbf{P}_2	P_2		P ₂
•••	•••	•••	•••
			•••
$c_{n1} = a_{n1} + b_{n1}$	$c_{n2} = a_{n2} + b_{n2}$	•••	$c_{nn} = a_{nn} + b_{nn}$
P _n	P _n	•••	P _n

P_{ij} processor:

o Read: $a_{ij} \& b_{ij}$

o Write: Cii

No overlapping data

o CRCW: O(n)

o EREW: O(n)

Your algorithm with k processors (k << n)?

Matrix multiplication

$$C_{ij} = a_{i1} * b_{1j} + a_{i2} * b_{2j} + ... + a_{in} * b_{nj}$$

B[nx n] b_{11} $\mathbf{b_{1j}}$ b_{1n} b_{2j} ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• b_{nj} b_{n1} b_{nn} •••

- $\mathbf{C}_{ij} = \mathbf{a}_{i1} * \mathbf{b}_{1j} + \mathbf{a}_{i2} * \mathbf{b}_{2j} + ... + \mathbf{a}_{in} * \mathbf{b}_{nj}$
- Vector: A[ith row] x B[jth column]

Number of operations =
$$n * opt('*') + (n-1) * opt('+')$$

n processors ~ $O(1) + O(log(n))$

$$\sim O(\log(n))$$

C[nxn]

C ₁₁	•••		•••	C _{1n}
•••	•••		•••	•••
		C _{ij}		
•••		•••		•••
C _{n1}		c _{nj}		c _{nn}

PRAM Matrix multiplication

```
C<sub>ij</sub> using n processors: O(log(n))
C[nxn]: (n*n)C<sub>ij</sub>

n processors: O(n<sup>2</sup> * log(n))

n<sup>3</sup> processors: O(log(n))

n<sup>2</sup> processors???
```

$C[n \times n]$

C ₁₁	•••		•••	C _{1n}
•••	•••		•••	•••
		C _{ij}		
				•••
C _{n1}		C _{nj}		C _{nn}

PRAM

- C_{ij} using n processors: O(log(n))

 C[nxn]: (n*n)C_{ij}

 n processors: O(n² * log(n))

 n³ processors: O(log(n))

 n² processors???
- => Difference between CRCW & EREW???

C[nxn]

c ₁₁	•••		•••	C _{1n}
•••	•••		•••	•••
		C _{ij}		
				•••
C _{n1}		C _{nj}		c _{nn}

Row

$$C_{i1} = \begin{bmatrix} a_{i1} * b_{11} + a_{i2} * b_{21} + ... + a_{in} * b_{n1} \\ C_{i2} = a_{i1} * b_{12} + a_{i2} * b_{22} + ... + a_{in} * b_{n2} \\ ... \\ C_{in} = \begin{bmatrix} a_{i1} * b_{1n} + a_{i2} * b_{2n} + ... + a_{in} * b_{nn} \end{bmatrix}$$

A[nxn]

B[nxn]

b ₁₁	•••	b _{1j}	•••	b _{1n}
•••	•••	b _{2j}	•••	•••
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••
b _{n1}	•••	b _{nj}	•••	b _{nn}

Concurrent Read: in row

CW: working

EW: working

Column

$$C_{1j} = a_{11} * b_{1j} + a_{12} * b_{2j} + ... + a_{1n} * b_{nj}$$
 $C_{2j} = a_{21} * b_{1j} + a_{22} * b_{2j} + ... + a_{2n} * b_{nj}$
...
 $C_{nj} = a_{n1} * b_{1j} + a_{n2} * b_{2j} + ... + a_{nn} * b_{nj}$

A[nxn]

B[nxn]

b ₁₁	•••	b _{1j}	•••	b _{1n}
•••	•••	b _{2j}	•••	•••
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••
b _{n1}	•••	b _{nj}	•••	b _{nn}

Column

$$C_{1j} = \begin{bmatrix} a_{11} * b_{1j} + a_{12} * b_{2j} + ... + a_{1n} * b_{nj} \\ C_{2j} = a_{21} * b_{1j} + a_{22} * b_{2j} + ... + a_{2n} * b_{nj} \\ ... \\ C_{nj} = \begin{bmatrix} a_{n1} * b_{1j} + a_{n2} * b_{2j} + ... + a_{nn} * b_{nj} \\ \end{bmatrix}$$

$$P_{1} ... P_{n}$$
In parallel

$$CR: working$$
ER: problem

CW: working

EW: working

Why not use $n^3 > n^2$ processors with EREW?

b _{n1}		^	
b _{(n-1)1}		ı	
	•••	$b_{n(n-1)}$	
b ₁₁			b _{nn}
b _{n1}		b _{2(n-1)}	•••
		b _{1(n-1)}	b _{2n}
b ₂₁	•••	$b_{n(n-1)}$	b _{1n}

a ₁₁	a ₁₂		a _{1n}				
a _{2n}	a ₂₁	a ₂₂		a _{2n}	•		
	•••						
a _{n2}	•••	a _{nn}	a_{n1}	a _{n2}	•••	a _{nn}	

P ₁₁	P ₁₂		P _{1n}
P ₂₁	P ₂₂		P _{2n}
		•••	•••
P _{n1}	P _{n2}	•••	P _{nn}

- Each P_{ij}
 - > Run "*" in n steps sequentially
 - \triangleright Run "+" in n steps
- O(n)

- nl	− n2	•••	- nn
b _{n1}		1	
b _{(n-1)1}	•••		_
	•••	$b_{n(n-1)}$	
b ₁₁		•••	b _{nn}
b _{n1}		b _{2(n-1)}	
		b _{1(n-1)}	b _{2n}
b ₂₁		$b_{n(n-1)}$	b _{1n}

PRAM with n processors

PRAM CRCW with n processors

Each P_i:

- $C_{ij} = a_{i1} * b_{1j} + a_{i2} * b_{2j} + ... + a_{in} * b_{nj} => O(n)$
- Row C[i]: $O(n^2)$

PRAM EREW with n processors

PRAM EREW with n processors

Each P_i:

• $C_{ij} = a_{i1} * b_{1j} + a_{i2} * b_{2j} + ... + a_{in} * b_{nj} => O(n)$

• Row C[i]: $O(n^2)$

/							-	
Ÿ >	B[1]	B[2]	•••	B[k]	•••	B[n]	>	
A[1]	C ₁₁	C ₁₂	•••	C _{1k}		C _{1n}	P_1	
A[2]	C ₂₁	C ₂₂		C _{2k}		C _{2n}	P_2	
							•••	
A[k]	C _{i1}	C _{i2}		C_{kk}		C _{in}	P_k	
							•••	
A[n]	C _{n1}	C _{n2}		C _{nk}		C _{nn}	P _n	

PRAM EREW with k processors (k << n)

Each P_i:

- 1 step: O(k*n) =>
- 1 phase (n/k steps): $O(k*n*n/k) \sim O(n^2)$
- n/k phases: $O(n^2*n/k) \sim O(n^3/k)$

Step 1		Step n/k							
	_	B[1]	•••	B[k]		B[n-k]		B[n]	
Phase_1	A[1]	C ₁₁		$\mathtt{C_{1k}}$		C _{1(n-k)}		C _{1n}	P ₁
			k x k						
	A[k]	C_{k1}		C_{kk}		C _{k(n-k)}		$C_{k(n-k)}$	P_{k}
Phase n/k									
	A[n-k]	C _{(n-k)1}		$C_{(n-k)k}$		$C_{(n-k)(n-k)}$		$C_{(n-k)n}$	P ₁
	A[n]	C _{n1}		C _{nk}		$C_{n(n-k)}$		C _{nn}	P_k