UT Austin CSE 386D

Homework 2

Jonathan Zhang EID: jdz357

Problem 6.9:

Suppose that $f \in L^p(\mathbb{R}^d)$ for $p \in (1,2)$. Show that there exist $f_1 \in L^1(\mathbb{R}^d)$ and $f_2 \in L^2(\mathbb{R}^d)$ such that $f = f_1 + f_2$. Define $\hat{f} = \hat{f}_1 + \hat{f}_2$. Show that this definition is well defined, that is, independent of the choices f_1 and f_2 .

Problem 6.11:

Suppose that f and g are in $L^2(\mathbb{R}^d)$. The convolution $f*g \in L^\infty(\mathbb{R}^d)$, so it may not have a Fourier Transform. Prove that $f*g=(2\pi)^{d/2}\mathcal{F}^{-1}\left(\hat{f}\hat{g}\right)$ is well defined, using the natural Fourier inverse integration formula.

Problem 6.15:

Is it psosible for there to be a continuous function f defined on \mathbb{R}^d with the following properties?

- 1. There is no polynomial P in d variables such that $|f(x)| \leq P(x)$ for all $x \in \mathbb{R}^d$.
- 2. The distribution $\phi \mapsto \int \phi f$ is tempered.

Problem 6.18:

The gamma function is $\Gamma(s)=\int\limits_0^\infty t^{s-1}e^{-t}dt.$ Let $\phi\in\mathcal{S}\left(\mathbb{R}^d\right)$ and $0<\alpha< d.$

- 1. Show that $|\xi|^{\alpha} \in L^1_{loc}(\mathbb{R}^d)$ and $|\xi|^{\alpha} \hat{\phi} \in L^1(\mathbb{R}^d)$.
- 2. Let $c_{\alpha}=2^{\alpha/2}\Gamma\left(\alpha/2\right)$. Show that

$$\mathcal{F}^{-1}\left(|\xi|^{-\alpha}\hat{\phi}\right)(x) = \frac{c_{d-\alpha}}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} |x-y|^{\alpha-d} \phi(y) dy$$

Hint: first show that $c_{\alpha}|\xi|^{-\alpha} = \int\limits_{0}^{\infty} t^{\alpha/2-1} e^{-|xi|^2t/2} dt$ and recall $e^{-|\xi|^2t/2} = t^{-d/2} \left(e^{-|\hat{x}|^2/2t}\right)$.

Problem 6.20:

Argue that $\mathcal{D}(\mathbb{R}^d)$ is dense in S. Show also that S' is dense in \mathcal{D}' and that distributions with compact support are dense in S'.

Oden Institute 1