The Poission Distribution

Discrete case

Suppose an event has a probability $p \in [0,1]$ of occuring at each timestep k, where timesteps are equally spaced with separation Δt . Over the duration $k\Delta t \leq t < (k+n)\Delta t$, the event can occur between zero and n times. (The event cannot occur more than once in a single timestep, and different occurances are uncorrelated.)

Let P(k,n) be the probability that the event occurs exactly k times in n timesteps. Let $e_1,...,e_n \in \{0,1\}$ be the individual outcomes at each timestep, with $e_i=1$ if the event occured at timestep i (probability p) and $e_i=0$ if the event did not occur (probability 1-p). Each scenario $(e_1,...,e_n)$ has totoal probability p^kp^{n-k} , where k is the number of occurances $e_i=1$ and k-n the number of non-occurances $e_i=0$. There are $\binom{n}{k}$ such scenarios of length n with exactly k occurances. Hence,

$$P(k,n) = \binom{n}{k} p^n (1-p)^{k-n}.$$

Note that, since P(n,k) > 0 for any $0 \le n \le k$, we expect all such outcomes to have total probability of unity. By the binomial theorem,

$$\sum_{n=0}^{k} P(k,n) = \sum_{n=0}^{k} \binom{n}{k} p^n (1-p)^{k-n} = (p+(1-p))^k = 1.$$

Continuous case

In the continuous case, the event has a constant probability per unit time ρ of occurring. P(k,t) is then the probability that the event occurs exactly k times within a duration $t \in \mathbb{R}$. The continuous case is obtained in the limit of the discrete case where the timestep size vanishes $\Delta t \to 0$ and the probability per unit time $\rho = p/\Delta t$ remains fixed. We have $t = k \Delta t$ and $p = \rho \Delta t$.

$$P(k,t) = \lim_{\Delta t \to 0} \binom{t/\Delta t}{n} (\rho \Delta t)^n (1 - \rho \Delta t)^{t/\Delta t - n}$$

Define $\eta = (\rho \Delta t)^{-1}$.

$$= \lim_{\eta \to \infty} \binom{t \rho \eta}{n} \bigg(\frac{1}{\eta}\bigg)^n \bigg(1 - \frac{1}{\eta}\bigg)^{t \rho \eta - n}$$

Since $\left(1 - \frac{1}{\eta}\right) \to \left(1 + \frac{1}{\eta}\right)^{-1}$ in the limit $\eta \to \infty$,

$$\begin{split} &= \lim_{\eta \to \infty} \binom{t\rho\eta}{n} \left(\frac{1}{\eta}\right)^n \left(1 + \frac{1}{\eta}\right)^{-t\rho\eta + n} \\ &= \lim_{\eta \to \infty} \binom{t\rho\eta}{n} \left(\frac{1}{\eta}\right)^n \left(1 + \frac{1}{\eta}\right)^n e^{-t\rho} \end{split}$$

The limit of the term $\left(1+\frac{1}{\eta}\right)^n$ is unity. Since $\binom{n}{k}=\frac{n!}{k!(n-k)!}$,

$$\begin{split} &=\lim_{\eta\to\infty}\frac{t\rho\eta!}{n!(t\rho\eta-n)!}\left(\frac{1}{\eta}\right)^ne^{-t\rho}\\ &=\frac{e^{-t\rho}}{n!}\lim_{\eta\to\infty}\prod_{k=0}^{n-1}(t\rho\eta-k)\left(\frac{1}{\eta}\right)^n\\ &=\frac{e^{-t\rho}}{n!}\lim_{\eta\to\infty}\prod_{k=0}^{n-1}\frac{t\rho\eta-k}{\eta}\\ &=\frac{e^{-t\rho}}{n!}\lim_{\eta\to\infty}\prod_{k=0}^{n-1}\left(t\rho-\frac{k}{\eta}\right)\\ &=\frac{e^{-t\rho}}{n!}(t\rho)^n\\ &=\frac{(t\rho)^n}{n!}e^{-t\rho}\\ &=\frac{\lambda^n}{n!}e^{-\lambda} \end{split}$$