

Unidade II

ANÁLISE DE SISTEMAS ORIENTADA A OBJETOS

Prof. Fabio Versolatto

Falaremos sobre

- Engenharia de Requisitos.
- Modelagem de casos de uso.

 O problema: aproximadamente 53% dos projetos não são implantados e aproximadamente 31% são implantados com alterações do escopo inicial (*The Standish Group*).

Fonte: adaptado de The Standish Group (1995, p. 4).

Principais fatores de insucesso e de sucesso:

Fator	Percentual
Baixo envolvimento do cliente / usuário	13%
Requisitos e especificações incompletas	12%
Mudanças nos requisitos	12%
Falta de apoio executivo	7%
Uso de tecnologia inadequada	7%
Recursos e pessoal inadequado	6%
Cronograma fora da realidade	6%

Fator	Percentual
Envolvimento do cliente / usuário	16%
Apoio executivo e gerencial	14%
Enunciado claro dos requisitos	12%
Planejamento apropriado	9,6%
Expectativas realistas	8,2%

Fonte: adaptado de The Standish Group (1995, p. 8, 9).

Onde estamos:

- Engenharia de Software;
- modelo de processo;
- paradigma da orientação a objetos.

Fases "clássicas" de um projeto de software:

- análise de requisitos;
- projeto;
- implementação;
- testes;
- implantação.

- Requisitos são serviços que um sistema deve prestar e suas restrições de funcionamento. Devem, inevitavelmente, refletir as necessidades do cliente.
- Engenharia de Requisitos é um conjunto de métodos, procedimentos e ferramentas que têm por objetivo descobrir, analisar, documentar, verificar e validar esses requisitos.
- Sob o ângulo da Engenharia de Software: a Engenharia de Requisitos é um ramo da Engenharia de Software que envolve, dentro do ciclo de vida de um software, atividades relacionadas a requisitos.

Desafios da Engenharia de Requisitos

- A definição de requisitos inconsistentes leva a problemas que se estendem por todo ciclo de vida do software.
- A Engenharia de Requisitos proporciona estimar com maior precisão o tempo e o custo de um projeto. Requisitos mal definidos geram um projeto com maior custo e maior tempo de desenvolvimento.
- A Engenharia de Requisitos proporciona melhor gerência das mudanças, comuns em um projeto. Em contrapartida, falhas nesse processo geram sistemas de software com altos custos de manutenção.

Interatividade

Analise as afirmações abaixo e assinale a alternativa correta.

- I. Sob o ponto de vista da Engenharia de *Software*, podemos afirmar que a Engenharia de Requisitos não tem qualquer correlação com a Engenharia de *Software*.
- II. Sob o ângulo da Engenharia de *Software*, podemos dizer que a Engenharia de Requisitos é um ramo da Engenharia de *Software* que envolve, dentro do ciclo de vida de um *software*, atividades relacionadas a requisitos.
- III. Engenharia de Requisitos é uma etapa desnecessária no paradigma da orientação a objetos, uma vez que o mais importante é termos boas ferramentas de desenvolvimento e um modelo de processo de desenvolvimento implantado.
- a) As afirmativas I e III são corretas.
- b) As afirmativas I e II são corretas
- c) As afirmativas II e III são corretas
- d) Apenas a afirmativa I é correta.
- e) Apenas a afirmativa II é correta.

Resposta

Analise as afirmações abaixo e assinale a alternativa correta.

- I. Sob o ponto de vista da Engenharia de Software, podemos afirmar que a Engenharia de Requisitos não tem qualquer correlação com a Engenharia de Software.
- II. Sob o ângulo da Engenharia de *Software*, podemos dizer que a Engenharia de Requisitos é um ramo da Engenharia de *Software* que envolve, dentro do ciclo de vida de um *software*, atividades relacionadas a requisitos.
- III. Engenharia de Requisitos é uma etapa desnecessária no paradigma da orientação a objetos, uma vez que o mais importante é termos boas ferramentas de desenvolvimento e um modelo de processo de desenvolvimento implantado.
- a) As afirmativas I e III são corretas.
- b) As afirmativas I e II são corretas
- c) As afirmativas II e III são corretas
- d) Apenas a afirmativa I é correta.
- e) Apenas a afirmativa II é correta.

- Grande objetivo: mapear as necessidades do negócio, montar um modelo que represente esses requisitos e que possa servir como "guia" de comunicação para todos os interessados.
- Palavras-chave: modelo, comunicação, interessados.
- Stakeholder é o nome dado para os diversos interessados ou envolvidos no projeto.
- Cada stakeholder tem uma determinada necessidade para um determinado ponto de vista.
 Exemplo: cliente X desenvolvedor.

- Diante da necessidade de expressar requisitos para diversas pessoas, com diversos pontos de vista, Sommerville (2010) sugere a separação dos requisitos a partir do seu nível de descrição: requisitos de usuário e requisitos de sistema.
- Requisitos de usuário: declarações em linguagem natural, com diagramas de quais serviços o sistema deverá fornecer a seus usuários e as restrições com as quais ele deve operar.
 <u>Direcionados aos cliente, usuários, gerentes de projeto</u> <u>e arquitetos de sistemas</u>.

 Requisitos de sistema: descrições mais detalhadas das funções, serviços e restrições operacionais do sistema de software. Direcionados <u>a usuários</u>, arquitetos de sistema <u>e desenvolvedores</u>, pois podem definir uma sequência de implementação, o que influencia diretamente a solução dada.

Requisito de Usuário	Requisito de Sistema
I. O sistema de autoatendimento deve permitir ao cliente efetuar um saque de conta corrente em dinheiro.	 O acesso ao sistema de autoatendimento será feito mediante leitura do cartão com <i>chip</i> e digitação da senha de segurança.
	 O sistema deverá exibir a opção de saldo de conta corrente se o cliente possuir saldo e/ou limite para efetuar a operação.
	3. Se o cliente não possuir saldo e/ou limite para efetuar a operação, ele deverá ser informado sobre a situação.
	4. O cliente somente poderá efetuar saque de quantias que sejam múltiplas das cédulas existentes no equipamento.
	5. As cédulas deverão ser dispensadas e o cliente deverá ser orientado a retirá-las no local adequado.
	6. Caso o cliente não retire as cédulas em um tempo mínimo de 30 segundos, elas deverão se automaticamente recolocadas no terminal.

Fonte: elaboração própria.

- Além da classificação em níveis, os requisitos também são categorizados em <u>Requisitos Funcionais (RF)</u> e <u>Requisitos</u> <u>Não Funcionais (RNF)</u>.
- Requisitos Funcionais descrevem o comportamento esperado de um sistema de software, explicitam o que o sistema deve fazer e, idealmente, o que o sistema não deve fazer.
- Requisitos Não Funcionais descrevem restrições sobre os serviços oferecidos pelo sistema de software. São também chamados de atributos de qualidade.

Interatividade

Analise as afirmações abaixo e assinale a alternativa correta.

- I. Requisitos funcionais e não funcionais são utilizados como insumos para a validação da qualidade do *software*.
- II. Existem dois tipos de requisitos: requisitos funcionais, que descrevem o comportamento do sistema, suas restrições e resultados esperados e os requisitos não funcionais, que são requisitos que estão fora do escopo do projeto.
- III. Existem dois tipos de requisitos: requisitos funcionais, que descrevem o comportamento do sistema, suas restrições e resultados esperados e os requisitos não funcionais ou também chamados de atributos de qualidade, que descrevem as restrições nos serviços prestados pelo sistema.
- a) Apenas a afirmativa III está correta.
- b) As afirmativas I e III estão corretas.
- c) As afirmativas I e II estão corretas.
- d) Apenas a afirmativa I está correta.
- e) Apenas a afirmativa II está correta.

Resposta

Analise as afirmações abaixo e assinale a alternativa correta.

- I. Requisitos funcionais e não funcionais são utilizados como insumos para a validação da qualidade do *software*.
- II. Existem dois tipos de requisitos: requisitos funcionais, que descrevem o comportamento do sistema, suas restrições e resultados esperados e os requisitos não funcionais, que são requisitos que estão fora do escopo do projeto.
- III. Existem dois tipos de requisitos: requisitos funcionais, que descrevem o comportamento do sistema, suas restrições e resultados esperados e os requisitos não funcionais ou também chamados de atributos de qualidade, que descrevem as restrições nos serviços prestados pelo sistema.
- a) Apenas a afirmativa III está correta.
- b) As afirmativas I e III estão corretas.
- c) As afirmativas I e II estão corretas.
- d) Apenas a afirmativa I está correta.
- e) Apenas a afirmativa II está correta.

 Como vimos anteriormente, Engenharia de Requisitos é um conjunto de métodos, procedimentos e ferramentas que têm por objetivo descobrir, analisar, documentar, verificar e validar esses requisitos.

O processo de Engenharia de Requisitos tem como objetivo obter requisitos definidos e especificados e modelos de sistema a partir de fontes de requisitos:

- sistemas de informações existentes;
- necessidade dos interessados (stakeholders);
- padrões da organização;
- informações do domínio;
- regulamentos (ou legislações).

 O processo de Engenharia de Requisitos possui cinco atividades principais: elicitação, análise e negociação, documentação, validação, gerenciamento.

Fonte: adaptado de Sommerville (2010, p. 101).

Elicitação é a descoberta dos requisitos a partir das fontes de requisitos, utilizando técnicas de elicitação:

- entrevistas;
- cenários;
- protótipos;
- reuniões facilitadas;
- observação;
- análise de documentos.
- Análise e negociação: os requisitos são analisados e os conflitos resolvidos. É produzido o Modelo de Sistema com os requisitos do usuário.

- Documentação: os requisitos são detalhados de tal modo que permitam a realização das próximas atividades do desenvolvimento. É produzida a especificação dos requisitos contendo os requisitos de usuário e de sistema.
- Documento de definição de sistema.
- Especificação de requisitos de sistema e especificação de requisitos de software.

Validação: os requisitos são validados de acordo com os critérios definidos na documentação dos requisitos.

- Requisitos consistentes e completos?
- Requisitos implementáveis?
- Requisitos verificáveis?

Gerenciamento de Requisitos (*)

- Uma das verdades ditas na Engenharia de Requisitos é que: "requisitos sempre mudam". Inevitavelmente, requisitos podem ser incompletos e inconsistentes, bem como novos requisitos podem surgir.
- Gerenciar o relacionamento entre requisitos e gerenciar o relacionamento entre requisitos e os documentos produzidos durante todo o projeto.
- Controle de versão e rastreabilidade.

Interatividade

Analise as afirmações abaixo e assinale a alternativa correta.

- I. O único objetivo do processo de Engenharia de Requisitos é descrever os requisitos para o usuário.
- II. Os artefatos produzidos no processo de Engenharia de Requisitos servem como base para todo o ciclo de vida do projeto.
- III. Requisitos devem ser mapeados, documentados e devem ser obrigatoriamente: completos, concisos, implementáveis e verificáveis.
- a) As afirmativas II e III estão corretas.
- b) As afirmativas I e III estão corretas.
- c) Apenas a afirmativa I está correta.
- d) Apenas a afirmativa II está correta
- e) Apenas a afirmativa III está correta.

Resposta

Analise as afirmações abaixo e assinale a alternativa correta.

- I. O único objetivo do processo de Engenharia de Requisitos é descrever os requisitos para o usuário.
- II. Os artefatos produzidos no processo de Engenharia de Requisitos servem como base para todo o ciclo de vida do projeto.
- III. Requisitos devem ser mapeados, documentados e devem ser obrigatoriamente: completos, concisos, implementáveis e verificáveis.
- a) As afirmativas II e III estão corretas.
- b) As afirmativas I e III estão corretas.
- c) Apenas a afirmativa I está correta.
- d) Apenas a afirmativa II está correta
- e) Apenas a afirmativa III está correta.

- O objetivo agora é apresentar a modelagem de caso de uso como uma abordagem que combina método e ferramenta e cumpre os objetivos a serem atingidos na fase de análise de requisitos.
- Modelo de casos de uso e uma representação das funcionalidades externamente observáveis do sistema e dos elementos externos ao sistema que interagem com ele.
- Um caso de uso é a descrição de uma determinada ação ou comportamento de um sistema, que produz um resultado para um determinado agente externo a esse sistema, denominado ator.

Se bem descritos e definidos, casos de uso definem um denominador comum, de conhecimento do domínio do problema e das funcionalidades do sistema, que podem ser interpretados facilmente por usuários, analistas e desenvolvedores.

Principais elementos de um modelo de caso de uso:

- caso de uso;
- ator.

- Atores são os agentes <u>externos</u> ao sistema, que executam uma determinada ação e que esperam algum resultado, ou seja, interagem diretamente com o sistema a partir dos casos de uso. (Entidade externa que interage com o sistema: usuários, outros sistemas de software ou até mesmo dispositivos de hardware).
- Caso de uso é a descrição de uma sequência de atividades executadas por um agente externo ao sistema sem que sejam revelados detalhes do funcionamento interno ao sistema, por isso dizemos que o caso de uso mostra a visão comportamental externa ao sistema.

Importante: descrição de caso de uso = um requisito deve ser completo!

Linguagem natural, por exemplo, mas com elementos fundamentais:

- identificação do caso de uso;
- escopo;
- descrição do propósito;
- ator primário;
- pré-condições e pós-condições;
- fluxo normal e fluxo alternativo;
- requisitos relacionados.

Diagrama de casos de uso

 Diagrama de casos de uso e um diagrama da UML, que tem por objetivo mostrar, a partir de um ponto de vista estático, o conjunto de casos de uso, atores e seus relacionamentos.

Diagrama de casos de uso

Fonte: elaboração própria.

Interatividade

Considere as afirmações a seguir e assinale a correta.

O modelo conceitual ou de entendimento do domínio é uma representação do escopo do projeto, utilizado por todo o ciclo de vida do *software* e é utilizado por todos os envolvidos no projeto: usuários, analistas, arquitetos e gerentes.

- a) Dado o cenário, é importante definir um modelo mais completo possível e uma linguagem padrão para representação do modelo conceitual, no caso, apenas o diagrama de caso de uso da UML fecha com essas necessidades.
- b) Dado o cenário, é importante definir um modelo mais completo possível e uma linguagem padrão para representação do modelo conceitual, no caso, um modelo de descrição de caso de uso e o diagrama de caso de uso da UML fecham com essas necessidades.
- c) Dado o cenário, o único ponto importante é utilizar um modelo de descrição de caso de uso, não sendo necessária a utilização de uma linguagem padrão como a UML, por exemplo.
- d) Dado o cenário, o único ponto importante é ter dentro da equipe um analista que conheça muito bem o domínio do problema, pois a partir do conhecimento dele será construído o projeto.
- e) NDA.

Resposta

Considere as afirmações a seguir e assinale a correta.

O modelo conceitual ou de entendimento do domínio é uma representação do escopo do projeto, utilizado por todo o ciclo de vida do *software* e é utilizado por todos os envolvidos no projeto: usuários, analistas, arquitetos e gerentes.

- a) Dado o cenário, é importante definir um modelo mais completo possível e uma linguagem padrão para representação do modelo conceitual, no caso, apenas o diagrama de caso de uso da UML fecha com essas necessidades.
- b) Dado o cenário, é importante definir um modelo mais completo possível e uma linguagem padrão para representação do modelo conceitual, no caso, um modelo de descrição de caso de uso e o diagrama de caso de uso da UML fecham com essas necessidades.
- c) Dado o cenário, o único ponto importante é utilizar um modelo de descrição de caso de uso, não sendo necessária a utilização de uma linguagem padrão como a UML, por exemplo.
- d) Dado o cenário, o único ponto importante é ter dentro da equipe um analista que conheça muito bem o domínio do problema, pois a partir do conhecimento dele será construído o projeto.
- e) NDA.

ATÉ A PRÓXIMA! Interativa