

Tarefa 5 - Módulos 11 e 12

Atenção: Apresente o desenvolvimento de todas as questões.

Questão 1 (2 pontos) Usando a derivação implícita, obtenha dy/dx nos casos seguintes:

a)
$$2x + x^2y + y^2 = 5x^4 + 1$$

b)
$$sen(y) cos(x) = 1$$

Questão 2 (1 ponto) Usando a derivação implícita, obtenha dy/dx se $y = \sqrt[3]{1 + \tan^2(x)}$

Questão 3 (1 ponto) Usando a derivação implícita, obtenha d^2y/dx^2 (derivada segunda em relação a x) no caso em que: $x^2y^2 - 4 = 0$.

Questão 4 (2 pontos)

Encontre a equação da reta tangente à curva $y^2 - 2x + 1 = 0$ no ponto (5, 3).

Questão 5 (1 ponto)

Encontre a expressão da aproximação linear da função x^{11} em $x_0 = 1$, e, usando esta aproximação, obtenha o valor aproximado de $(1,0003)^{11}$.

Questão 6 (1,5 pontos) Calcule os valores de $\Delta y = \Delta f(x,h)$ e dy = f'(x)dx no caso em que $y = \sqrt{9}x - 2$ passando de x = 2 para x = 2,01. (h = dx = 0,01). Após, calcule o erro (diferença entre o valor de dy e Δy) e conclua que dy pode ser usada para aproximar o valor de Δy .

Questão 7 (1,5 pontos) Use uma <u>aproximação linear local</u> para estimar o valor da quantidade dada:

a)
$$\sqrt{25,04}$$

Bom Trabalho!