Abstract Consistency Properties for Hybrid Logic

Smullyan's Unifying Principle in Isabelle/HOL

Logic: from Arthur Prior to Computation and Cognition

Workshop in Honour of Professor Torben Brauner - 2025-05-15

Agenda

Concrete Consistency	. 3
Abstract Consistency — Smullyan	. 7
Abstracter Consistency — Fitting	13
Abstract Abstract Consistency — From	15
Application: "Bounded" First-Order Logic	19
Application: Second-Order Logic	22
Application: Prior's Ideal Language	24
Conclusion	30

Concrete Consistency

Concrete Consistency

• We have a concrete language

$$\varphi \coloneqq p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \to \varphi \mid \forall x. \, \varphi(x) \mid \exists x. \, \varphi(x) \mid \dots$$

• We have a concrete calculus with concrete proof rules:

$$\begin{split} \frac{\varphi \in \Gamma}{\Gamma \vdash \varphi} \mathbf{Assm} & \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \land \mathbf{I} \\ \frac{\Gamma \vdash \varphi \rightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \rightarrow \mathbf{E} & \frac{\Gamma \vdash \forall x. \ \varphi(x)}{\Gamma \vdash \varphi(t)} \forall \mathbf{E} \end{split}$$

• A set Γ is consistent wrt. \vdash (concretely) when we cannot derive a contradiction from it (e.g. $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$).

Concrete Maximal Consistency

• A consistent set Γ is a maximally consistent set (MCS) when it contains every formula consistent with it:

if
$$\Gamma \subseteq \Delta$$
 and Δ consistent, then $\Gamma = \Delta$

• We can build an MCS by trying to add every formula and taking the union $\Delta = \bigcup_i \Delta_i$ (Lindenbaum-Tarski):

$$\begin{split} \Delta_0 &= \Gamma \\ \Delta_{i+1} &= \{\varphi_i, \psi(a)\} \cup \Delta_i \text{ if consistent and } \varphi_i = \exists x. \, \psi(x) \\ \Delta_{i+1} &= \{\varphi_i\} \cup \Delta_i \qquad \text{otherwise if consistent} \\ \Delta_{i+1} &= \Delta_i \qquad \text{otherwise} \end{split}$$

Concrete MCS Properties

• Our MCS Γ has properties corresponding to our calculus:

if
$$\varphi \in \Gamma$$
 and $\psi \in \Gamma$ then $\varphi \wedge \psi \in \Gamma$
if $\varphi \to \psi \in \Gamma$ and $\varphi \in \Gamma$ then $\psi \in \Gamma$
if $\forall x. \varphi(x) \in \Gamma$ then $\varphi(t) \in \Gamma$ for all t

- Think: if we can derive φ from formulas in Γ , then $\varphi \in \Gamma$
- We can prove completeness by building a model over Γ .
- Note: There are some nuances here with respect to the *cut* rule and *upwards* and *downwards saturation*.

Abstract Consistency — Smullyan

Abstract Consistency

- What if we start from the properties instead of the calculus?
- We still have a concrete language (of quantification theory)

$$\varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \mid \forall x. \, \varphi(x) \mid \exists x. \, \varphi(x) \mid \dots$$

- Characterize it with *Smullyan's uniform notation*:
 - Conjunctive, disjunctive, universal and existential kinds.

$$\begin{array}{lll} \boldsymbol{\alpha} & \varphi \wedge \psi : \alpha_1 = \varphi, \alpha_2 = \psi & \neg (\varphi \rightarrow \psi) : \alpha_1 = \varphi, \alpha_2 = \neg \psi \\ \boldsymbol{\beta} & \varphi \rightarrow \psi : \beta_1 = \neg \varphi, \beta_2 = \psi & \neg (\varphi \wedge \psi) : \beta_1 = \neg \varphi, \beta_2 \neg \psi \\ \boldsymbol{\gamma} & \forall x. \, \varphi(x) : \gamma(t) = \varphi(t) & \neg (\exists x. \, \varphi(x)) : \gamma(t) = \neg \varphi(t) \\ \boldsymbol{\delta} & \exists x. \, \varphi(x) : \delta(t) = \varphi(t) & \neg (\forall x. \, \varphi(x)) : \delta(t) = \neg \varphi(t) \end{array}$$

Consistency Property

• A family of sets C is a (first-order) consistency property when all sets $S \in C$ obey:

```
 \begin{array}{ll} \textbf{conflict} & \text{for all } p, \text{ not both } p \in S \text{ and } \neg p \in S \\ \textbf{banned} & \bot \notin S \quad (\text{and } \neg \top \notin S) \\ \textbf{double neg.} & \text{if } \neg \neg \varphi \in S \text{ then } \{\varphi\} \cup S \in C \\ \textbf{alpha} & \text{if } \alpha \in S \text{ then } \{\alpha_1, \alpha_2\} \cup S \in C \\ \textbf{beta} & \text{if } \beta \in S \text{ then } \{\beta_1\} \cup S \in C \text{ or } \{\beta_2\} \cup S \in C \\ \textbf{gamma} & \text{if } \gamma \in S \text{ then } \{\gamma(t)\} \cup S \in C \\ & \text{for every (closed term) } t \text{ (...)} \\ \textbf{delta}_{\text{E}} & \text{if } \delta \in S \text{ then } \{\delta(a)\} \cup S \in C \text{ for some } a \text{ (...)} \\ \end{array}
```

• Think: we have *evidence* for every member formula.

Maximal Element?

• Set theory: under the axiom of choice, *finite character* of a family of sets C guarantees a maximal member wrt. \subseteq :

- Problem: imposing finite character might break $delta_E$.
 - Exercise for the reader.
- Solution: interpret it universally rather than existentially.

delta_A if
$$\delta \in S$$
 then $\{\delta(a)\} \cup S \in C$ for every *new* a (...)

- How do we recover **delta**_E? Manually!
 - ► As earlier in the Lindenbaum-Tarski construction.

Maximal Element!

- 1. Take our consistency property C
- 2. Impose finite character to obtain $C^* \supseteq C$
- 3. Any consistent set $\Gamma \in C$, has an MCS $\Delta \supseteq \Gamma \in C^*$
- 4. (Add witnesses manually when constructing Δ)
- Our MCS has *Hintikka* properties by construction
 - Each condition on the family of sets gives the maximal element a corresponding property.
 - E.g. for alpha: if $\alpha \in \Delta$, then $\alpha_1 \in \Delta$ and $\alpha_2 \in \Delta$
- So we can prove *model existence* in the abstract:
 - For any consistency property C and set $S \in C$, we can build a model that satisfies all formulas $\varphi \in S$.

But Why?

- **Gödel's completeness theorem** concrete consistency constitutes a consistency property.
- **Gentzen's Hauptsatz** our consistency property has the sub-formula property, so we get cut-elimination for free
- **Compactness theorem** the sets where every finite subset is satisfiable constitute a consistency property
- **Downward Löwenheim-Skolem** the satisfiable sets constitute a consistency property, and the domain of our model is countable
- **Craig's interpolation theorem** the sets with an interpolant-free partition constitute a consistency pro...

Abstracter Consistency — Fitting

The Core of the Argument

- What if we take a different language?
- Fitting applied consistency properties to both term-modal logic and intuitionistic logic:

modal if
$$\langle t \rangle \varphi \in S$$
 then $\{\varphi\} \cup S^{[t]} \in C$

- What matters is that the conditions on our consistency property respect *Fitting's three-step recipe*:
 - 1. Subset close the family
 - 2. Satisfy **delta**_A via parameter substitutions
 - 3. Impose finite character
- Guarantees a maximal element for model existence.

Abstract Abstract Consistency — From

Abstract Abstract Consistency

- What if we take any consistency kind.
- There are two types:
 - \blacktriangleright Wits W:
 - W: witnesses a (δ -)formula using a given parameter.
 - ► Cond *P H*:
 - P: relates formulas (e.g. α) with their consistency conditions (e.g. $\lambda C S$. $\{\alpha_1, \alpha_2\} \cup S \in C$).
 - *H*: gives the corresponding Hintikka property.
- We carve out those that respect *Fitting's three-step recipe*.
- We get the ingredients for model existence without fixing a calculus, a consistency property *or even a language*.

In Isabelle/HOL

The Params locale defines parameter substitutions.

```
locale Consistency Kind = Params map fm params fm
 for map fm :: \langle ('x \Rightarrow 'x) \Rightarrow 'fm \Rightarrow 'fm \rangle
 and params fm :: <'fm ⇒ 'x set> +
 fixes K :: <('x, 'fm) kind>
 assumes respects close:
   \langle \Lambda C. \text{ sat}_F \text{ K C} \Rightarrow \text{sat}_F \text{ K (close C)} \rangle
 and respects alt:
   \langle \Lambda C. \text{ sat}_E \ K \ C \implies \text{subset closed } C \implies \text{sat}_A \ K
(mk alt consistency C)>
 and respects fin:
   \langle \Lambda C. subset closed C \implies \mathsf{sat}_A \ \mathsf{K} \ \mathsf{C} \implies \mathsf{sat}_A \ \mathsf{K}
(mk finite char C)>
 and hintikka:
   \langle AC S. sat_E K C \Rightarrow S \in C \Rightarrow maximal C S \Rightarrow sat_H K S \rangle
```

Pre-Defined Kinds

- For a user-given predicate ¬ we can define the following:
 - (Under some natural conditions on each ¬.)

```
Confl \langle ps \rangle \langle qs \rangle \Rightarrow cond ps
              (\lambda S. set qs n S = \{\})
Alpha \langle ps \rangle \sim_{\alpha} qs \Rightarrow cond ps
              (\lambda C S. set qs \cup S \in C)
Beta \langle ps \rangle \sim_{\mathbb{R}} qs \Longrightarrow cond ps
              (\lambdaC S. \existsq \in set qs. \{q\} \cup S \in C)>
Gamma \langle ps \sim_{\vee} (F, qs) \Rightarrow cond ps
              (\lambda C S. \forall t \in F S. set (qs t) \cup S \in C)
Modal \langle ps \rangle (F, qs) \Rightarrow cond ps
              (\lambda C S. set qs \cup F S \in C)>
```

Application:

"Bounded" First-Order Logic

Restricted Instantiation

• Consider first-order logic with the following sort of rule:

$$\frac{\Gamma \vdash \forall x. \ \varphi(x) \quad t \text{ is a sub-term of } \Gamma, \varphi}{\Gamma \vdash \varphi(t)} \forall \mathbf{E}$$

- Can we give an easy semantic proof?
- Make use of the ability to bound our **gamma** kind:

Completeness

- The framework says we can extend a consistent set to an MCS with Hintikka properties corresponding to our consistency property.
- Build a Herbrand model with a domain of sub-terms.
- Prove a truth lemma by induction on the size of the member formula
 - The Hintikka properties discharge each case.
- Result: A proof of completeness in Isabelle/HOL for a natural deduction system with the restricted proof rule.
 - (and also a mechanized proof of compactness.)

Application: Second-Order Logic

Scaling Up

- Joint work with Anders Schlichtkrull, Aalborg University Copenhagen.
- Quantify over functions and predicates besides terms.
- gammas for different quantifiers at different types:

```
► \langle [ \forall p ] \sim_{\gamma} (\lambda t. [ \langle t/0 \rangle p ]) \rangle

► \langle [ \forall_P p ] \sim_{\gamma P} (\lambda s. [ \langle s/0 \rangle_P p ]) \rangle

► \langle [ \forall_F p ] \sim_{\gamma F} (\lambda s. [ \langle s/0 \rangle_F p ]) \rangle
```

- Each **gamma** can only instantiate with one type of term
 - compose our consistency property of multiple **gammas**.
- Mechanized completeness as before.

Application:

Prior's Ideal Language

Very Strong Hybrid Logic

Based on work by Blackburn, Braüner and Kofod.

$$b := \bullet i \mid \cdot b \mid \neg b \mid b \lor b \mid \Box b$$
$$\mid @i \mid b \mid A \mid b \mid b \mid A \mid b \mid \Box \mid b$$

• Easy to express semantics in Isabelle/HOL:

```
 \begin{array}{c} {} \hspace{0.1cm} \hspace{0.1cm} {} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} {} \hspace{0.1cm} \hspace{0.1cm} {} \hspace{0.1cm} \hspace{0.1cm} {} \hspace{0.1cm} \hspace{0.1cm
```

• Propositional quantification over *admissible* propositions:

• This quantification gives some second-order expressivity.

Conflicts and Disjunctives

- Can we fit this very strong hybrid logic into our setup?
- What properties do we need in order to build a model?
- We label formulas by pairing them with a nominal: (i, φ)
 - φ holds at the world denoted by i.
 - (I need to see what happens if I just write $@_i \varphi$ instead.)
- Conflicts are natural:

• We only have one disjunctive condition:

```
\rightarrow \langle [(i, \neg (p \land q))] \sim_{\beta} [(i, \neg p), (i, \neg q)] \rangle
```

Conjunctives

• We have many conjunctive conditions.

• We can express nominal symmetry and transitivity.

• Satisfaction operators and downarrow binders fit right in:

Conjunctives and Universals

- The box modality is truly *local*:
 - $\rightarrow \langle [(i, \Box p), (i, \diamond(\bullet k))] \sim_{\alpha} [(k, p)] \rangle$
- The global modality is truly *universal*:

```
► <[ (i, A p) ] ~<sub>vi</sub> (λk. [ (k, p) ])>
```

• We want nominal reflexivity *unconditionally*:

```
√[] ¬√(i) (λi. [ (i, •i) ]) >
```

• Limit propositional quantification to *soft-qdf* formulas:

- ► These correspond to *admissible* propositions.
- ► The Isabelle/HOL mechanization helped clarify this.

Existentials and Completeness

• Finally, we have witnesses for existential formulas:

```
    ⟨δ (i, ¬□p) k =
        [(ok, ¬p), (i, ⋄ (• (o k)))]⟩
    ⟨δ (i, ¬Ap) k = [(ok, ¬p)]⟩
    ⟨δ (i, ¬∀p) P = [(i, ¬⟨·(oP))pp)]⟩
```

- From this consistency property, we get MCSs with corresponding Hintikka properties.
- Completeness a la Blackburn, Braüner and Kofod
 - ▶ But for a natural deduction system.
 - With equivalence classes of nominals as worlds.
 - Without tweaking the Lindenbaum-Tarski construction.

Conclusion

So What?

- Consistency properties are expressive.
- They provide a declarative interface for building MCSs.
 - ► No need to tweak the Lindenbaum-Tarski enumeration of consistent sets for each and every new logic.
 - Simply write down a consistency property.
- How lucky did we get?
 - ► Can we handle higher-order logic?
 - Can we handle more exotic non-classical logics?
 - ► We derived the pre-defined kinds.
 - We did not bake them in from the beginning.
- (How much could we do in a constructive meta-logic?)