ЛЕКЦИЯ №3

3. Силы в механике

Типы фундаментальных взаимодействий.

№		Радиус		Характерное
п/п	Взаимодействие	действия,	Интенсивность	время
11/11		M		взаимодействия
1	Гравитационное	$0 \div \infty$	10^{-38}	_
2	Электромагнитное	$0 \div \infty$	10^{-2}	10^{-20}
3	Сильное	~ 10 ⁻¹⁵	1	10^{-23}
4	Слабое	~ 10 ⁻¹⁸	10^{-10}	10^{-13}

- единая теория поля!
- обменный характер взаимодействия (фотон, мезон, глюон, гравитон...)

Силы в механике:

- *Гравитационная сила* возникает между всеми телами, обладающими массой, всегда носит характер притяжения.

Для двух материальных точек (частиц) или однородных тел сферической формы гравитационную силу можно вычислить по закону всемирного тяготения:

$$F_{\text{грав}} = G \frac{m_1 m_2}{r^2} \tag{3-1}$$

где $G = 6,67 \cdot 10^{-11} \frac{\text{H} \cdot \text{M}^2}{\text{K}\Gamma^2}$ – гравитационная постоянная;

m — гравитационная масса, кг;

r — расстояние между частицами или центрами сферических тел.

Опыт Кавендиша

Если $m_1 = M_3$ — масса Земли, а $m_2 = m$ — масса любой частицы, находящейся на расстоянии $r = R_3 + h$ от центра Земли (R_3 — радиус Земли), то гравитационную силу, с которой Земля притягивает к себе любую частицу, называют силой тяжести и вычисляют по формуле:

$$\vec{F} = m\vec{g} \tag{3-2}$$

где $g = G \frac{M_3}{\left(R_3 + h\right)^2}$ — ускорение свободного падения на высоте h над поверхно-

стью Земли.

Вблизи поверхности Земли ($h << R_3$)

$$g = G \frac{M_3}{R_3^2} \approx 9.81 \text{ m/c}^2.$$

Сила тяжести в ИСО всегда направлена вниз, к центру Земли.

По третьему закону Ньютона

$$m\vec{g} = -M_3 G \frac{m}{\left(R_3 + h\right)^2} \frac{\vec{r}}{r}.$$

(сила тяжести, с которой Земля притягивает к себе любое тело, равна по величине и противоположна по направлению силе, с которой тело притягивает к себе Землю!).

<u>Сила упругостии</u> возникает в упругих телах при их деформации (сжатии или растяжении), всегда направлена в сторону, противоположную деформации (рис.), и вычисляется по закону Гука:

$$F_x = -kx, (3-3)$$

где k — коэффициент упругости (жесткости) тела, H/M.

Для металлического стержня:

$$F_{\rm ynp} = E \cdot S \cdot \frac{\Delta \ell}{\ell_0},\tag{3-4}$$

где E — модуль Юнга, $H/M^2 = \Pi a$;

S — площадь поперечного сечения стержня, M^2 ;

 ℓ_0 — первоначальная длина стержня, м;

 $\Delta \ell$ — деформация стержня, м.

Если на опору или подвес действует сила, то в них возникает сила упругости, которую называют силой реакции опоры \vec{N} или силой натяжения $\vec{F}_{_{\rm H}}$. Сила \vec{N} всегда перпендикулярна опоре и направлена от нее (см. рис. а, б), а сила $\vec{F}_{_{\rm H}}$ – вдоль подвеса (рис. в, г).

 $\underline{\textit{Bec meлa}}\ \vec{P}$ — сила, с которой тело действует на опору или растягивает подвес из-за *гравитационного притяжения*.

$$\vec{P} = -\vec{N}$$
 или $\vec{P} = -\vec{F}_{\mathrm{H}}$ (3-5)

поэтому для вычисления веса тела необходимо вычислить силу N или $F_{_{\rm H}}$ и приравнять их к весу.

Вес тела может быть больше силы тяжести (P > mg) (перегрузка), меньше силы тяжести (P < mg) и равен нулю (невесомость).

$$m\vec{a}=m\vec{g}+\vec{N}$$
 $\vec{P}=-\vec{N}=m\left(\vec{g}-\vec{a}\right)$
1) $\vec{a}=-\vec{g}$ $\vec{P}=2m\vec{g}$ – перегрузка
2) $\vec{a}=\vec{g}$ $\vec{P}=0$ – невесомость

- Силы трения

Трение: внешнее (сухое) и внутреннее (жидкостное, вязкое).

Внешнее трение: покоя, скольжения и качения.

$$\vec{F}_{\text{Tp.}} \quad \vec{v} = 0 \qquad |\vec{F}_{\text{Tp}}| = |\vec{F}|$$

Для автомобилей, локомотивов и других тел роль силы тяги выполняет сила трения покоя.

<u>Сила мрения скольжения</u> возникает при скольжении одного тела по поверхности другого, всегда направлена в сторону, противоположную относительному движению.

$$F_{\rm Tp} = \mu N \tag{3-6}$$

где μ – коэффициент трения скольжения.

$$F_{ ext{тр.качения}} << F_{ ext{тр.скольж.}}$$
 $F_{ ext{тр.качения}} = \mu' rac{N}{R}$ (3-6a)

где R — радиус катящегося колеса;

 μ' – коэффициент трения качения.

Внутреннее (вязкое) трение возникает при движении тела в жидкости или газе.

Ламинарный режим

$$\vec{F}_{\mathrm{Tp}} = -\mu \vec{\upsilon}$$

Турбулентный режим $F_{\rm TP} \sim \upsilon^n, \, n=2,3,\ldots$

— <u>Выталкивающая сила Архимеда</u> возникает при погружении тела в жидкость или газ, всегда направлена вверх против силы тяжести и вычисляется по <u>закону Архимеда</u>: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной жидкости или газа.

$$F_{\rm Apx} = \rho_{\rm x} g V_{\rm погр.части} \tag{3-7}$$

 $ho_{\mathrm{ж}}$ —плотность жидкости $V_{\mathrm{погр.части}}$ —объем погруженной части тела

Условие плавания тела: $\left| \vec{F}_{\mathrm{Apx}} \right| = \left| m \vec{g} \right|$

Если на частицу действует несколько сил, то руководствуются **принципом независимости сил** (каждая сила действует независимо от других) и **принципом суперпозиции сил** (результирующая сила (равнодействующая) определяется векторной суммой отдельных сил, действующих на частицу:

$$\vec{F} = \vec{F_1} + \vec{F_2} + \dots + \vec{F_n}. \tag{3-8}$$

Тогда основное уравнение динамики материальной точки (частицы):

– в ИСО произведение массы частицы на ее ускорение равно векторной сумме всех сил, действующих на эту частицу:

$$m\vec{a} = \vec{F_1} + \vec{F_2} + \dots + \vec{F_n}.$$
 (3-9)

Для записи этого векторного уравнения в скалярной форме выбирают удобную ИСО (ось ОХ направляют по направлению движения, вдоль скорости) и находят проекции всех векторов на координатные оси:

$$OX : ma_x = F_{1x} + F_{2x} + ... + F_{nx};$$

 $OY : ma_y = F_{1y} + F_{2y} + ... + F_{ny}.$

Проекции вектора на координатные оси вычисляются по формулам:

$$F_x = F \cos \alpha;$$

 $F_y = F\cos\beta = F\cos(90^\circ - \alpha) = F\sin\alpha,$

где α , β — углы между направлением вектора \vec{F} и направлением соответствующей координатной оси.

Пример. К бруску массой 2 кг, лежащему на столе, привязана невесомая нерастяжимая нить, перекинутая через невесомый неподвижный блок, закрепленный на краю стола. Ко второму концу нити прикреплена гиря массой 1 кг. Найти модуль ускорения бруска, если коэффициент трения бруска о поверхность стола равен 0,02.

Найти: a – ?

$$a = \frac{g(m_2 - \mu m_1)}{m_1 + m_2} = \frac{10(1 - 2 \cdot 0.02)}{2 + 1} = 3.2 \text{ m/c}^2.$$