1 Optimization and linear algebra

1.1 Optimization Prerequisites for Lasso

1. Given $a \in \mathbb{R}$ we define a^+, a^- as follows:

$$a^+ = \begin{cases} a & \text{if } a \ge 0, \\ 0 & \text{otherwise}, \end{cases}$$
 and $a^- = \begin{cases} -a & \text{if } a < 0, \\ 0 & \text{otherwise}. \end{cases}$

We call a^+ the positive part of a and a^- the negative part of a. Note that $a^+, a^- \ge 0$.

- (a) Give an expression for a in terms of a^+, a^- .
- (b) Give an expression for |a| in terms of a^+, a^- . For $x \in \mathbb{R}^d$ define $x^+ = (x_1^+, \dots, x_d^+)$ and $x^- = (x_1^-, \dots, x_d^-)$.
- (c) Give an expression for x in terms of x^+, x^- .
- (d) Give an expression for $||x||_1$ without using any summations or absolute values. [Hint: Use x^+, x^- and the vector $\mathbf{1} = (1, 1, \dots, 1) \in \mathbb{R}^d$.]
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ and $S \subseteq \mathbb{R}$. Consider the two optimization problems

$$\begin{array}{lll} \text{minimize}_{x \in \mathbb{R}} & |x| & \text{minimize}_{a,b \in \mathbb{R}} & a+b \\ \text{subject to} & f(x) \in S & \text{and} & \text{subject to} & f(a-b) \in S \\ & a,b > 0. & \end{array}$$

Solve the following questions.

- (a) If x in the first problem satisfies $f(x) \in S$ show how to quickly compute (a, b) for the second problem with a + b = |x| and $f(a b) \in S$.
- (b) If a, b in the second problem satisfy $f(a b) \in S$, show how to quickly compute an x for the first problem with $|x| \le a + b$ and $f(x) \in S$.
- (c) Assume x is a minimizer for the first problem with minimum value p_1^* and (a, b) is a minimizer for the second problem with minimum p_2^* . Using the previous two parts, conclude that $p_1^* = p_2^*$.
- 3. Let $f: \mathbb{R}^d \to \mathbb{R}$, $S \subseteq \mathbb{R}$ and consider the following optimization problem:

where $||x||_1 = \sum_{i=1}^d |x_i|$. Give a new optimization problem with a linear objective function and the same minimum value. Show how to convert a solution to your new problem into a solution to the given problem. [Hint: Use the previous two problems.]

1.2 Ellipsoids

1. (\star) Describe the following set geometrically:

$$\left\{ v \in \mathbb{R}^2 \mid v^T \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} v = 4 \right\}.$$

1.3 (*) Linear Algebra Prerequisites for Linear Regressions

1. When performing linear regression we obtain the normal equations $A^TAx = A^Ty$ where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, and $y \in \mathbb{R}^m$.

1

- (a) If rank(A) = n then solve the normal equations for x.
- (b) (\star) What if $\operatorname{rank}(A) \neq n$?
- 2. Prove that $A^T A + \lambda \mathbf{I}_{n \times n}$ is invertible if $\lambda > 0$ and $A \in \mathbb{R}^{n \times n}$.