Ausgabe: 09.01.2024

Abgabe: 15.01.2024

Aufgabe 1

384 zufällig ausgewählte Personen wurden nach ihrem Unfall in einer bestimmten Angelegenheit befragt. Zur statistischen Auswertung wurden die Urteile jeweils in eine von 6 Kategorien eingeordnet und in folgender Tabelle dargestellt:

Testen Sie mit einem geeigneten Testverfahren zum Niveau $\alpha = 0.05$, ob in der Grundgesamtheit alle sechs Kategorien gleich wahrscheinlich sind.

Lösung 1 Chi-Quadrat-Anpassungstest

Der Chi-Quadrat-Anpassungstest vergleicht die beobachteten Häufigkeiten O_i in den Klassen mit den erwarteten Häufigkeiten E_i unter der Annahme, dass die Zahlen gleichverteilt sind.

Bei einer Gleichverteilung der Urteile über die d=6 Kategorien, erwarten wir, dass jede Klasse etwa $E_i=\frac{n}{d}=\frac{384}{6}=64$ Urteile enthält.

Die Chi-Quadrat-Teststatistik *D* wird wie folgt berechnet:

$$D = \sum_{i=1}^{d} \frac{(O_i - E_i)^2}{E_i}$$

$$= \sum_{i=1}^{6} \frac{(O_i - 64)^2}{64}$$

$$= \frac{1}{64} \left(6^2 + 3^2 + 8^2 + 3^2 + 7^2 + 5^2\right)$$

$$= 3$$

Diesen Wert vergleichen wir mit dem 0,95-Quantil der Chi-Quadrat-Verteilung für d-1=5 Freiheitsgrade.

Da $D=3<11,07=\chi_{5;\ 0,95}$ können wir die Nullhypothese nicht ablehnen.

Aufgabe 2

Von einer Zufallsvariablen X wird vermutet, dass sie die nebenstehende Dichte f besitzt mit f(x) = 0 für $x \neq [0;3]$.

- a) Bestimmen Sie die Konstante *a* so, dass *f* eine Dichte ist.
- b) Testen Sie die Vermutung mit folgender Stichprobe zum Niveau $\alpha = 0.05$:

Klasse	abs. Häufigkeit					
[0;1]	15					
(1; 2]	29					
(2;3]	6					

Lösung 2

Damit die Funktion f eine Dichtefunktion sein kann, muss $\int_{-\infty}^{\infty} f(x) dx = 1$ sein. Dies ist der Fall für a = 0.5.

Bei einer Stichprobe vom Umfang n=50 würde man unter Annahme der Dichte erwarten, dass Klasse A_1 im Intervall [0;1] und Klasse A_3 im Intervall (2;3] jeweils $E_{1,3}=12,5$ Elemente, sowie Klasse A_2 im Intervall (1;2] $E_2=25$ Elemente enthält. Wir berechnen die Chi-Quadrat-Teststatistik D:

$$D = \sum_{i=1}^{d} \frac{(O_i - E_i)^2}{E_i}$$

$$= \frac{(15 - 12,5)^2}{12,5} + \frac{(29 - 25)^2}{25} + \frac{(6 - 12,5)^2}{12,5}$$

$$= 4.52$$

Diesen Wert vergleichen wir mit dem 0,95-Quantil der Chi-Quadrat-Verteilung für d-1=2 Freiheitsgrade $\chi_{2:0.95}=5,991$.

Da $D=4,52<5,991=\chi_{2;\ 0.95}$ können wir die Nullhypothese nicht ablehnen.

Ausgabe: 09.01.2024

Abgabe: 15.01.2024

Ausgabe: 09.01.2024 Abgabe: 15.01.2024

Aufgabe 3

Bei der Bestimmung des Geburtsgewichts von 100 Mädchen ergaben sich folgende gerundeten Werte:

	1	l			1		l	3,4		
Anzahl der Mädchen	6	8	11	13	14	11	13	8	9	7

Testen Sie zum Niveau $\alpha = 0.05$ die Hypothese das Geburtsgewicht folgt einer

a) Gleichverteilung in [2,65;3,65] mit der Klasseneinteilung

b) Normalverteilung mit der Klasseneinteilung

$$(-\infty; 2,8]$$
, $(2,8; 3,0]$, $(3,0; 3,2]$, $(3,2; 3,4]$ und $(3,4; \infty)$.

Lösung 3