

THE WEIZMANN SCIENCE PRESS OF ISRAEL

National Council for Research and Development

ISRAEL Journal of BOTANY

Volume 23 1974

וסד ויצמן לפרסומים במדעי הטבע ובטכנולוגיה, ירושלים

THE WEIZMANN SCIENCE PRESS OF ISRAE

Publishers of the following journals

ISRAEL JOURNAL OF BOTANY; ISRAEL JOURNAL OF CHEMISTRY; ISRAEL JOURNAL OF EARTH-SCIENCES: ISRAEL JOURNAL OF MATHEMATICS: ISRAEL JOURNAL OF TECHNOLOGY: ISRAEL JOURNAL OF ZOOLOGY: JOURNAL D'ANALYSE MATHEMATIQUE

לרעת מדע לנוער המתבגר (Science for Youth)

(SCIENCE) בת עתון מדעי לכל

Supporting Institutions

THE NATIONAL COUNCIL FOR RESEARCH AND DEVELOPMENT; BAR-ILAN UNIVERSITY; BEN GURION UNIVERSITY OF THE NEGEV; TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY; TEL AVIV UNIVERSITY; THE HEBREW UNIVERSITY OF JERUSALEM; THE WEIZMANN INSTITUTE OF SCIENCE

GENERAL EDITORIAL BOARD

ISRAEL JOURNAL OF BOTANY

D. ABIR Formerly Bulletin of the Research I. ARNON Council of Israel, Section D

A. DVORETZKY

H. EYAL-GILADI

H. HANANI

M. JAMMER J. JORTNER

E. KATCHALSKI-KATZIR

N. SHARON

G. STEIN

Y. WEILER

Executive Editor

L. LESTER

Assistant Editor

ESME GORDON

Editorial Board

LEONORA REINHOLD Editor-in-chief

NAOMI FEINBRUN

D. ATSMON

J. GALIL

N. LANDAU

G. ORSHAN

A. E. RICHMOND

Y. VAADIA

I. WAHL

Coordinator U. PLITMANN

Subscriptions are to be addressed to the Weizmann Science Press of Israel, P.O.B. 801, Jerusalem 91000, Israel. In Europe, orders may be sent to Wm. Dawson & Sons Ltd., Cannon House, Macklin Street, London, W.C.2., or to booksellers. Subscription fees per volume, \$ 22.00, and beginning with Vol. 24, \$ 25,00.

Copyright © 1975 by THE WEIZMANN SCIENCE PRESS OF ISRAEL

Printed in Israel Mercaz Press, Jerusalem

ISRAEL JOURNAL OF BOTANY

VOLUME 23, 1974

TABLE OF CONTENTS

Numbers 1-2

NATOMY AND PHYSIOLOGY	
The problem of indehiscence of pistachio (Pistacia vera L.) fruit	
A. Nevo, E. Werker and R. Ben-Sasson	1
eaf water potential and stomatal activity in sorghum as influenced by soil moisture	
tress A. Blum and C. Y. Sullivan	14
TEODOTANY.	
GEOBOTANY	
Ecological studies on the vegetation of the Upper Galilee, Israel. I. A vegetation map of	1000
he Bar'am-Malkiyya area A. Rabinovich-Vin and G. Orshan	20
Cartographical methods and mapping with a computer G. Halevy	38
GENETICS	
Non-brittle types in a wild population of <i>Triticum dicoccoides</i> Körn in Israel A. Kamm	43
A. Kumm	43
MYCOLOGY	
The Amanitaceae fungi of Israel Z. Avizohar-Hershenzon and N. Binyamini	59
BIOLOGICAL FLORA OF ISRAEL	
The subterranean clovers of Trifolium subsect. calycomorphum Katzn. Trifolium sub-	
erraneum L. (sensu latu) J. Katznelson	69
BOOK REVIEWS	109
BOOK REVIEWS	109
Number 3	
ECOLOGY	
Ecological studies on the vegetation of the Upper Galilee, Israel. II. Factors determining	
he absence of batha and garigue components on Middle Eocenian strata A. Rabinovich-Vin and G. Orshan	111
	111
Effects of gazelles and seed beetles (Bruchidae) on germination and establishment of	120
Acacia species G. Halevy	120
NATOMY AND PHYSIOLOGY	
Water potentials of stressed pine seedlings under controlled climatic conditions D. Heth	127
Heterocarpy and its ontogeny in Aellenia autrani (Post) Zoh. Light- and electron-micro-	
cope study E. Werker and T. Many	132
Iltrastructure of plastids of parasitic higher plants. V. Influence of light on Cuscuta	102
	145
lastids G. Laudi, P. Medeghini Bonatti and G. Fricano	1.13
MYCOLOGY	
Pezizales of Israel. II. Pezizaceae Z. Avizohar-Hershenzon and H. Nemlich	151
LORISTICS	
I Mattatia	164

Number 4

Sabir, D., 223

Shah, J. J., 216

Sullivan, C. Y., 14

Werker, E., 1, 132

SYSTEMATICS

Danin, A., 226

Evenari, M., 202

Fricano, G., 145

The annual Calendula species	s: taxonomy and relationships C. Heyn,	O. Dagan and B. Nachman	16
ANATOMY AND PHYSIO Some ecological aspects of di	PLOGY istribution and germination of Pa	ancratium maritimum L. A. Keren and M. Evenari	20
Structure and organization o	f shoot apex of Allium sativum L		
		I. L. Kothari and J. J. Shah	21
Intrusive growth in the phloe	em fibres of Erythrina indica and	Pongamia glabra	
	A.	K. M. Ghouse and D. Sabir	22
GEOBOTANY			
Notes on the vegetation near	Suez and Fayid (Egypt)	A. Danin	22
ANYCOLOGY			
MYCOLOGY Fleshy fungi of north and cer	ntral Israel I	N. Binyamini	23
riesily fungi of north and cer	ittai istaci. I	N. Binyamini	43
BOOK REVIEWS			25
	AUTHOR INDEX		
Avizohar-Hershenzon, Z.,	Ghouse, A. K. M., 223	Nachman, B., 169	
59, 151		Nemlich, H., 151	
	Halevy, G., 38, 120	Nevo, A., 1	
Ben-Sasson, R., 1	Heth, D., 127	Noy-Meir, I., 252	
Binyamini, N., 59, 237	Heyn, C., 169, 252		
Blum, A., 14		Orshan, G., 20, 111	
	Kamm, A., 43		
Cohen, D., 254	Katznelson, J., 69	Rabinovich-Vin, A., 20,	111
_	Keren, A., 202	Raven, P. H., 254	
Dagan O 169	Kothari I I 216		

Laudi, G., 145

Many, T., 132

Mattatia, J., 164

Mayer, A. M., 255 Medeghini Bonatti, P., 145

SUBJECT INDEX

Abies cephalonica, 92	anatomy, heterocarpy in Aellenia autrani, 132-
abscission tissue, pistachio fruit, 1-13	44
ascorbic acid, garlic shoot apex, 221	apical elongation, phloem fibers, 223-225
Acacia	Artemisia monosperma, 228, 230, 231, 232, 234
gerrardii ssp. negevensis, 122, 123	Artemisia monospermum-Panicum turgidum as
raddiana 121, 123, 230, 233	sociation, 228, 229
tortilis, 122, 123, 233, 234	Asparagus
Acacia ssp.,	aphyllus, 27, 29, 30, 32
distribution in Negev and Sinai, computer	stipularis, 228, 233
and mapping, 38–42	Aspidella section, 60–62
effect of gazelles and seed beetles, 120-126	Avena
adaptation, Acacia spp., 120-126	alba, 30, 32
Aellenia autrani, heterocarpy, 132-144	sterilis, 30, 32, 33
Aethionema spp., 142	
agronomy, subterranean clovers, 99–102	
Allium sativum, shoot apex, 216-222	Ballota
Amanita	saxatilis, 28
aspera, 64-65	undulata, 28, 31, 32, 33
boudieri, 60	barley, Mt. Tabor, 55-57
echinocephala, 60, 61	batha, absence on Middle Eocenian strata
eliae, 65, 66	Upper Galilee, 111–119
inaurata, 65, 67	batha communities, Upper Galilee, Bar'am-
ovoidea, 62	Malkiyya, 31–34
pantherina, 65, 66	biological flora, Israel, Trifolium spp., 69-
phalloides, 62	108
plumbea, 67	biotic factors, subterranean clovers, 91–96
rubens, 64	Bolbitiaceae, 248
rubescens, 64	breeding
vaginata f. vaginata, 66-67	Calendula species, 169-201
verna, 61, 63	subterranean clovers, 169-201
vittadini, 60–62	bruchid, pest of subterranean clover, 96
Amanitaceae, 245	Bruchidae, effect on germination and estab-
Amanitaria Section, 66	lishment of Acacia spp., 120-126
Amanitina Section, 62-64	Bruchidius
Amanitopsis Section, 66-67	albosparsus, 121
Amanitopsis strangulata, 65, 67	spadiceus, 124
Amidella Section, 62	Bryonia
Amplariella Section, 64-65	multiflora, 27
Amygdalus	syriaca, 27
communis, 27, 32	
korschinskii, 27, 29, 31, 32	
Anabasetum, 231, 232	calcium chloride, effect on Sarcopoterium spi-
Anabasis articulata, 228, 232, 233	nosum, 117
Anabasis articulata-Farsetia aegyptiaca asso-	Calendula, spp., taxonomy and relationships
ciation, 229, 231	169–201
Anagyris foetida, 27, 30, 32	Calendula
Anastatica hierochuntica, 233	aegyptiaca, 170, 171, 173, 175, 180, 185, 191

-1-4- 172 100 101	Cistus sppCalycotome villosa garigue, Upper
alata, 173, 188–191 algeriensis, 174, 176, 178	Galilee, Bar'am-Malkiyya, Israel, 34
arvensis, 169–175, 178, 180–191, 197–199	Clematis
aegyptiaca form, 185, 189, 197	cirrhosa, 27
alata form, 188–191, 197	flammula, 27
persica form, 185, 197	climate
sancta form, 185–188, 189	Fayid and Suez, 226–227
sinaica form, 185, 197	Upper Galilee
asterias, 176–178	water potential and pine seedlings, 127-
bicolor, 170, 171	131
ceratosperma, 193	climate and distribution, subterranean clover,
lanzae, 175	87–89
malacitana, 171	Clitocybe subalutacea, 238
micrantha, 171	clovers, subterranean, biological flora, Israel,
officinalis, 175	69–108
pachysperma, 171, 174, 175, 178, 193, 194-	comb. nov.
196, 198, 199	Peziza
palaestina, 171, 174, 175, 178, 191-196, 198,	nivalis, 162
199	succosella, 156–157
persica, 171, 173, 185	computer, cartographical methods and map-
platycarpa, 174, 180	ping, 38–42
repanda, 193	Conocybe ambigua, 248
sancta, 169, 170, 173, 185–188	Convolvulus lanatus, 228, 231, 232, 234
sinaica, 171, 185	Convolvulus lanatus-Heliotropium digynum as-
stellata, 174, 176–178, 197–198, 199	sociation, 229, 231
triptocarpa, 174, 175, 178–180, 197–198, 199	Coprinaceae, 245–248
Calligonum comosum, 232	Coprinus
Calycotome villosa, 28, 30–32, 35, 118, 152	atramentarius, 245–246
Capparis spinosa, 28, 30, 32	domesticus, 246
Carra ibex nubiana, 120–126	xanthothrix, 246
carbohydrates, garlic shoot apex, 221 Carlina	Cornulaca monacantha, 228, 232 Cortinariaceae, 248–250
corymbosa, 92	Crataegus aronia, 27, 29, 30, 32
involucrata, 33	Crepidotaceae, 250–251
cartographical methods, computer, 38–42	Crepidotus
Caryedon serratus, 122	luteolus, 250–251
Centaurea aegyptiaca, 229, 233	pubescens, 250–251
Ceratonia siliqua, 27, 28, 29	sphaerosporus, 250
Cercis siliguastrum, 27, 28, 29	Crotolaria
chemotaxonomy, subterranean clovers, 76	aegyptiaca, 233
Chenopodium spp., 142	Cupressus
chlorophyll content, Cuscuta australis, 145-	arizonica, 152
150	macrocarpa, 152
chloroplasts, Cuscuta australis, 145-150	Cuscuta australis plastids, ultrastructure, 145-
chromosome counts, Calendula species, 169-	150
201	Cynodon dactylon, 92
Cistus, 26, 152	cytogenetics
creticus, 30	Calendula species, 169-201
salviifolius, 28	Trifolium subsect. Calycomorphum, 72-76

cytology

Calendula species, 169-201 garlic shoot apex, 216-222

Dactylis glomerata, 30, 32, 33

development

heterocarpy in Aellenia autrani, 132-144 shoot apex, garlic, 216, 222

subterranean clovers, 76-87

diaspores, Aellenia autrani, 132-144

Dimorphotheca, see Calendula

diseases, subterranean clover, 95-96

distribution

Acacia spp., Negev and Sinai, computer mapping, 38-42

Amanitaceae, Israel, 59-68

Calendula species, 169-201

Pezizaceae, Israel, 151-168

Trifolium subsect. Calycomorphum, 71-72,

DNA, shoot apex, garlic, 220, 221

domestication, emmer, 54-57

dwarf shrub communities, subterranean clover, 92

Echinops, 92

gaillardotii, 33

spinosus, 228, 230, 232, 234

Echinops spinosus-Ephedra alata association 232

ecological studies, Upper Galilee, 20-37 ecology

seed germination and dispersal, Pancratium maritimum, 202-215

wild emmer, 54-57

ecology and distribution, subterranean clovers,

edaphic factors and distribution, subterranean clovers, 89-90

Egypt, vegetation, near Suez and Fayid, 226-236

electron microscope, heterocarpy in Aellenia autrani, 132-144

embryo, Aellenia autroni, 137-139

emmer, cultivated and wild, Israel, 43-58

endocarp, pistachio fruit, indehiscence, 1-13 Ephedra

alata, 232

campylopoda, 27, 29, 32

Erodium hirtum, 228, 233

Erysiphe polygonii, 96

Erythrina indica, intrusive growth of phloem fibres, 223-225

establishment, Acacia spp. effect of gazelles and seed beetles, 120-126

estrogenic activity, subterranean clovers, 96-99 Euphorbia hierosolymitana, 28, 31, 33

Fagonia

arabica, 228

bruguieri, 233

FAGONIETUM ARABICAE, 229

Farsetia aegyptiaca, 228-232

Fayid, vegetation, 226-236

Fibigia clypeata, 33

Ficus

pseudo-sycomorus, 233

retusa, 152

flowering, subterranean clovers, 78-81

Foeniculum vulgare, 32

forest associations, subterranean clovers, 92

forest plant communities, Upper Galilee,

Bar'am-Malkiyya, 26-31

fruit indehiscence, pistachio, 1-13

Fumana arabica, 30

fungal diseases, subterranean clover, 69

Amanitaceae, Israel, 59-68

fleshy, North and Central Israel, 237-251

fusiform initials, phloem fibers, 223–225

Galactina, see Peziza

garigue, absence on middle Eocenian strata,

Upper Galilee, 111-119

garigue communities

subterranean clovers, 92

Upper Galilee, Bar'am-Malkiyya area, 13-14

garlic, shoot apex, 216-222

Gazella dorcas, 120-126

gazelles, effect on germination and establishment of Acacia spp., 120-126

genetics

Calendula species, 169-201

emmer and tetraploid wheat, 43-58

Isr. J. Bot.,

Trifolium subsect. Calycomorphum, 72-76 germination Acacia spp., effects of gazelles and seed beetles, 120-126 Pancratium maritimum, 202-215 Sarcopoterium spinosum, 115 subterranean clovers, 83-84 grazing and subterranean clovers, 91 growth intrusive, phloem fibers, Erythrina indica and Pongamia glabra, 223-225 shoot apex, garlic, 216-222 subterranean clovers, 76-87 Gymnarrhena micrantha, 142 Gymnocarpos decander, 229, 232, 233 Gymnocarpos decander-Stachys aegyptiaca as-

habitats

sociation, 229-233

Calendula species, 169-201

Pezizaceae, Israel, 151-168 Helianthemum kahiricum, 228, 232, 233 Heliotropium digynum, 228, 231, 234 hemicryptophytic batha, subterranean clover, 92 heterocarpy, Aellenia autrani, 132-144 histochemistry, shoot apex, garlic, 220-221 histology, shoot apex, garlic, 216-222 Hohenbuehelia geogenius, 242 longipes, 241-242 Hordeum bulbosum, 32, 33 ithaburense, 33 spontaneum, 33 Hordeum bulbosum-Euphorbia hierosolymitana association, 33, 34 Majorana syriaca variant, 34 Smyranium connatum variant, 34 hybridization, effect on pistachio fruit indehiscence, 2-13 Hyoscyamus muticus, 228 Hyparrhenia hirta, 234

ibex, 120–126 indehiscence, pistachio fruit, 1–13 Inocybe fastigiata, 249 furfurea, 249
gramata, 249–250
jurana, 248–249
Iphiona mucronata, 229, 233
Iphiona mucronata-Gymnocarpos decander association, 229
isoflavones, occurrence and genetics, subterranean clover, 96–99

karyotypes, *Calendula* spp., 169–201 key annual *Calendula* spp., 174, 175 *Trifolium* subsect. *calycomorphum*, 69–70 *Kickxia aegyptiaca*, 229, 232

Lathyrus inconspicuus, 164, 166 sphaericus, new to Israel, 164-166 Laurus nobilis, 27 leaf diffusion resistance, Sorghum, 14-19 leaf water potential, sorghum, 14-19 light effect on plastids, Cuscuta australis, 145-150 seed germination, Pancratium maritimum, 206, 210, 213 Limonium pruinosum, 229, 234 Lonicera etrusca, 27 Lycium shawii, 229, 234 Lyophyllum aggregatum, 241 crassifolium, 241

Lasiurus hirsutus, 229, 232, 233

Majorana syriaca, 28, 30–34
Malabala sekakul, 33
man and distribution of subterranean clovers, 91
mapping, computer, 38–42
maquis communities
subterranean clovers, 92
Upper Galilee, Israel, 26–31
Marasmiellus albus-corticus, 243–244
Marasmius
candidus, 243–244
cohaerens, 244
Medicago polymorpha, 32

Paliurus, 92

vii

Melanoleuca excissa, 241 humilis, 238 schumacheri, 240 stridula, 240 microfibrils, pistachio fruit endocarp, 7, 9 Middle Eocenian strata, absence of batha and garigue components, Upper Galilee, 111-119 moisture stress, sorghum, 14-19 morphology, emmer, 47-58 mutation, wild and cultivated emmer, 56-57 Mycena hiemalis, 244 Naucoria pellucida, 250 needle water potential, pine seedlings, 127-131 Negev, Acacia spp., 120-126 new records in Israel Amanitaceae, 59-68 fleshy fungi, 237-251 Pezizaceae, 151-163 new to Israel Lathyrus sphaericus, 164-166 Noaea mucronata, 233 nom. nov., Peziza moseri, 157-158 nucleic acids, shoot apex, garlic, 220-221 nutritive value, subterranean clover, 96 oak trees, fleshy fungi, 237-251 obituary, Gideon Halevy, 167-168 Ochrademus baccatus, 234 Oidium spp., 96 Olea europaea, 27 Ononis antiquorum, 29, 30, 33 natrix, 28, 30-33 Ononis natrix-Sideritis perfoliata association, 31 - 34ontogeny, shoot apex, garlic, 216-222 Orchidaceae, 31 origin, cultivated wheat, 57 Oryzopsis holiciformis, 30, 32, 33 miliacea, 30, 234 Osteospermum, 196 Osyris alba, 28, 30, 32, 33

Pancratium matitinum, seed germination and dispersal, 202-215 Panicum turgidum-Convolvulus lanatus association, 229 Panicum turgidum-Farsetia aegyptiaca association, 229 Panus conchatus, 238 parasitic higher plants, ultrastructure of plastids, 145-150 Paronychia desertorum, 229 perianth, Aellenia autrani, 133-135 pericarp, Aellenia autrani, 135-136 pests, subterranean clovers, 95-96 Peziza brunneoatra, 153, 159, 161-162 cerea, 156 cervina, 153, 159, 161 fuliginea, 153-155 micropus, 153, 159, 160 moseri, 153, 155, 157-158 nivalis, 153, 162 proteana forma sparassoides, 153, 155, 158 repanda, 153, 159, 160 saniosa, 153, 155, 156 sepiatra, 153, 159, 161 succosella, 153, 155, 156-157 succosa, 153, 155, 165 tectoria, 156 varia, 153, 158-160 forma typica, 159, 160 vesiculosa, 151, 153, 159, 161 violacea, 153, 155, 157 Pezizaceae, Israel, 151-163 Pezizales, Israel, 151-163 Phagnalon barbeyanus, 234 rupestre, 28, 30, 32, 34 rupestris, 229, 233, 234 Phillyrea media, 27 phloem fibers, intrusive growth, 223-225 Phlomis viscosa, 28, 30 phytosociology, subterranean clovers, 91-93 pine seedling, water stress, 127-131 pine trees, fleshy fungi, 237-251 Pinus brutia, water stress, 127-131 halepensis, 152 nigra, 92 radiata, water stress, 127-131

tion, Upper Galilee, 20-37

Bar'am variant, 26-27 taeda, water stress, 127-131 Pistacia atlantica variant, 28-29 Pistacia Pyrus syriaca variant, 26 atlantica, 27-28, 29, 31 Quercus boissieri variant, 26-28, 35 palaestina, 27-32, 34 Styrax officinalis variant, 20-29 vera, fruit indehiscence, 1-13 Pistacia atlantica-Amygdalus korschinskii association, 29, 31, 36 Reaumuria hirtella, 229 pistachio fruit, indehiscence, 1-13 Retama raetam, 234 Pituranthos tortuosus, 229, 232 Pituranthos tortuosus-Panicum turgidum asso-Rhamnus, 34 alaternus, 27, 28, 32 ciation, 229, 232 palaestinus, 27, 28, 30, 32 plastids, ultrastructure, Cuscuta australis, 145punctatus, 29, 30, 32 150 Rhizobium and subterranean clovers, 93-95 Pleurotus Rhodophyllaceae, 244, 245 cornucopiae, 237-238 Rhodophyllus longipes, 241-242 asprellus, 244 Pluteus cancrinus, 245 godeyi, 245 sericeus, 244 nanus, 245 POETO-TRIFOLIETUM SUBTERRANEI, 93 RNA, garlic shoot apex, 220-221 Polyporaceae, 237 Rubia tenuifolia, 27, 29, 30 Pongamia glabra, phloem fibers, 223-225 Rubus sanctus, 28 population structure, Trifolium subsect. Caly-Ruscus aculeatus, 28 Ruta chalapensis, 32 comorphum, 72-74 Potentilla spp., 92 Prangos ferulacea, 34 Prasium majus, 27 salinity, seed germination, Pancratium mariti-Prunus ursina, 26-31 num, 211-214 Psathyrella Salsola candolleana, 246 inermis, 142 conopilea var. subatratra, 246 tetrandra, 229, 233-235 fatua, 248 SALSOLETUM TETRANDAE, 229, 223 pannucioides, 246-248 Salvia spadiceo-grisea, 248 dominica, 30, 32 Psoralea betuminosa, 33 triloba, 20, 26 Pyrus syriaca, 26-31 sap pressure, pine seedlings, 127-131 Sarcopoterium spinosi, 30-31, 34, 35 Sarcopoterium spinosum, 26, 28, 30, 31, 36, 92, QUERCETALIA ILICIS, 92 111-119 QUERCETUM CALLIPRINI, 37 Sarcosphaera crassa, 152-153, 155 Quercus Scrophularia xanthoglossa, 32, 234 boissieri, 26-29 Sedum spp., 34 calliprinos, 26-31, 34, 152 seed beetles, effect on germination and estabilex, 92 lishment of Acacia spp., 120-126 ithaburensis, 92 seed dispersal, Pancratium maritimum, 202-215 pubescens, 92 seed dormancy, subterranean clovers, 85-87 suber, 92 seed germination Quercus calliprinos-Pistacia palaestina associa-Acacia spp., effect of gazelles and seed

beetles, 120-126

Pancratium maritinum, 202-215 testa, Aellenia autrani, 137 subterranean clovers, 83-84 Teucrium polium, 30, 32-33, 34 seed impermeability, subterranean clovers, 84transpiration, sorghum leaf, 14-19 Tricholoma seed size, pistachio fruit, 1-13 crassifolium, 241 seedset, subterranean clovers, 81-83 saponaceum, 238 shoot apex, Allium sativum, 216-222 strictipes, 240 Sideritis perfoliata, 28, 30-33 Tricholomataceae, 238-244 Sinai, Acacia spp., 120-126 Trifolium Smilax aspera, 27-30 brachycalycinum, 69-108 Smyrnium connatum, 35 var. brachycalycinum, 70 soil moisture and distribution, subterranean var. flagelliforma, 70 clover, 88-89 var. graecum, 70 soil moisture relationships, Middle Eocenian var. oxaloides, 70 terra rossa, Upper Galilee, 112-113 campestre, 30, 32 soil moisture stress, 14-19 clusii, 32 soil water potential fragiferum, 92 pine seedlings, 127-131 israeliticum, 69-108 sorghum leaf, 14-19 purpureum, 30, 32 Sorghum bicolor, soil moisture stress, 14-19 resupinatum, 30, 32 Spartium junceum, 26, 27, 30, 31, 34 subterraneum, biological flora, Israel, 69-108 Stachys aegyptiaca, 229, 233 yanninicum, 69-108 Stipa parviflora, 229, 233 Trifolium subsect. calycomorphum, biogical Stipagrostis flora, Israel, 69-108 plumosa, 229, 231 Trigonella lilacina raddiana, 233 Triticum stomatal activity, sorghum, 14-19 dicoccoides, Mt. Gilboa, Israel, 43-58 stomatal pore width, sorghum leaf, 14-19 dicoccum, 55 stress, soil moisture, sorghum, 14-19 durum, 54, 56 structure, shoot apex, garlic, 216-222 tricoccum, 56 Styrax officinalis, 27, 29, 30, 32 Tubaria subterranean clovers, biological flora, Israel, autochthona, 250 69-108 furfuracea, 250 Suez (Egypt), vegetation, 226-236 pallidospora, 250 survival, Sarcopoterium seedlings, 114-115 ultrastructure Cuscuta australis plastids, 145-150 Tamus heterocarpy in Aellenia autrani, 132-144 communis, 27, 30 Upper Galilee, vegetation, 20-37, 111-119 orientalis, 27 Uromyces sp., 96 Taverniera aegyptiaca, 233, 234 taxonomy Calendula species, 169-201 variation, calendula species, 169-201 Varthemia, 34 Pezizaceae, Israel, 151-168 iphionoides, 28, 30 Trifolium subsect. calcycomorphum, 69-70 temperature, seed germination, Pancratium montana, 233 Varthemietum iphionoides community, 34 maritimum, 205-206, 212-213 terra rossa, Middle Eocenian strata, Upper vegetation Galilee, 111-119 Suez and Fayid, Egypt, 226-236

Upper Galilee, 20–37, 111–119
vegetation map, Upper Galilee, 20–37
Viability, *Pancratium maritimum* seeds, 202–215
Vicia peregrina, 30–32
viral diseases, subterranean clover, 96

water potential
pine seedlings, 127–131
sorghum leaf, 14–19
water relations, sorghum plants, 14–19
water stress, pine seedlings, 127–131

wheat, tetraploid, 43-58

xylem pressure potential, pine seedlings, 127–128

Zilla spinosa, 229 Zygophyllum coccineum, 232, 233 decumbens, 234 dumosum, 234