

Logical modelling of cell fate specification

Denis Thieffry

Contents

- Logical modelling of regulatory networks
- Application to T-helper cell differentiation
- Conclusions and prospects

Logical variations: Model definition

Boolean equations	Use of Boolean operators NOT, AND, and OR	Kauffman		
Regulatory graph	Boolean rules derived directly from the graph (e.g. sums of positive/negative inputs compared to thresholds)	Borhnoldt Li		
Bipartite graph	Introduction of AND nodes (regulations converging onto a components are combined with OR)	Klamt, Saez- Rodriguez		
Regulatory graph	The regulatory graph constraints the definition of the logical function	Demongeot		
+ Boolean functions	definition of the logical function	Goles		
		Irons		
Regulatory graph	The regulatory graph constraints the	Thomas		
+ multilevel functions	definition of the logical function	Snoussi		

A third symbolic value enables logical

computation with unknown levels

Lauffenburger

Sorger

Fuzzy logic

Logical variations: updating schemes

Synchronous	All components are updated simultaneously (deterministic paths)	Kauffman			
Semi-synchronous	Use of dummy nodes to delay defined components (deterministic paths)	Albert, Chaves, Irons			
Bloc synchronous	Components from a same bloc are updated synchronously following rank (deterministic paths)	Goles, Demongeot			
Fully asynchronous	All enabled single transitions are considered (non deterministic transition graph)	Thomas			
Time delays	Association of continuous clocks with components	Thomas, Bockmayr			
Complete	Consider all enabled a/synchronous transitions	???			
Mixed	Synchronous or asynchronous priority classes (non deterministic transition graph)	Fauré et al (2006, 2009)			

Assets of logical modelling

- Exploitation of heterogenous, incomplete and/or qualitative data
- Versatility (e.g. consideration of different levels of abstraction)
- Bottom up approach (easy composition)
- Rigorous formal framework
- Scaling up potential, e.g. taking advantage of reduction methods
- Straightforward simulation of perturbations (KO, KI, etc.) => predictive power
- Powerful simulation and analysis tools
- SBML Qual exchange format http://arxiv.org/abs/1309.1910

Logical modelling of regulatory networks

- ✓ A graph describes the interactions between genes or regulatory products
- ✓ Discrete levels of expression associated to each regulatory component and interaction

Logical rules/parameters

$$K_{\Delta} = 2 \text{ IFF (C=0)}$$

 $K_A = 0$ otherwise

$$K_B = 1 IFF (A=1)$$

 $K_B = 0$ otherwise

$$K_C = 1$$
 IFF (B=1) AND (C=0)

 $K_C = 0$ otherwise

Decision trees

Logical modelling of regulatory networks

- ✓ A graph describes the interactions between genes or regulatory products
- ✓ Discrete levels of expression associated to each regulatory component and interaction

Logical rules/parameters

$$K_{\Delta} = 2 \text{ IFF (C=0)}$$

 $K_A = 0$ otherwise

$$K_B = 1 IFF (A=1)$$

 $K_B = 0$ otherwise

$$K_C = 1$$
 IFF (B=1) AND (C=0)

 $K_C = 0$ otherwise

Decision diagrams

Logical state transition graphs

Stable state

Development of dynamical analysis tools

Decision diagrams

- Identification of attractors
- Analysis of regulatory circuits
- Model reduction
- State transition graph compression

Priority classes

Mixed a/synchronous simulations

Petri nets

- Standard Petri nets
- Coloured Petri nets

Model checking

Verification of dynamical properties (temporal logic)

Logical programming

Attractor identification and reachability analysis

GINsim (Gene Interaction Networks simulation)

Available at http://ginsim.org

Chaouiya et al (2012)

Meth Mol Biol 804: 463-79

CD4+ T-helper cell differentiation

Towards a comprehensive, modular logical model of the Th differentiation network

Yamoka et al (2004)

ILR = 1 IFF IL AND ILR1 AND ILR2

Logical modelling of the Th network

//LR = 1 IFF (/L OR /L_e) AND /LR1 AND /LR2

Logical modelling of the Th network

Logical modelling of the Th network

Logical model for the Th network

13 input components, 52 internal components, 339 circuits => too large to perform simulations

Naldi *et al* (2010)

PLoS Comput Biol 6: e1000912

Model reductions

- Keep the detailed model
- Reduction before analysis
 - => New rules for targets of hidden nodes
- Choice of reduction
- Dynamical consistency
 - No circuit deletion
 - Same stable states
 - Reachability may change

Naldi *et al* (2011) *Theor Comput Sci* **412**: 2207-18

Reduced logical model

13 input components, 21 internal components

Selected environments for simulations

	APC	IL2	IL4	IL6	IL10	IL12	IFNG	TGFB
No input								
APC								
Pro-Th1								
Pro-Th1'								
Pro-Th2								
Pro-Th17								
Pro-Treg								
Pro-Treg'								

Stable signatures

											J											
	IL2R	IL2RA	IFNG	IL2	IL4	IL10	IL21	IL23	TGFB	TBET	GATA3	FOXP3	NFAT	STAT1	STAT3	STAT4	STAT5	STAT6	proliferation	RORGT	IL17	Support
Th0																						[7]
Activated Th0																						[7]
Th1																						[7]
Activated Th1																						[7]
Anergic Th1																						[78]
Anergic Th1 ROR γ t+																						predicted
Th1 RORγt+																						[44, 45, 70]
Th1 Foxp3+																						[12]
Anergic Th17																						
Th2																						[7]
Activated Th2																						[7]
Anergic Th2																						[78]
Th2 ROR $\gamma \mathrm{t}+$																						[49]
Activated Treg																						[79]
Treg ROR γ t+																						[46-48]
Th1 Foxp3+ ROR γ t+																						predicted
Th2 Foxp3+ ROR γ t+																						predicted

Simulations (Hierarchical Transition Graphs)

Node order: APC, IFNB_e, IFNG_e, IL2_e, IL4_e, IL6_e, IL10_e, IL12_e, IL15_e, IL21_e, IL23_e, IL27_e, TGFB_e, IL2R, IL2RA, IFNG, IL2, IL4, IL10, IL21, IL23, TGFB, TBET, GATA3, FOXP3, NFAT, STAT1, STAT3, STAT4, STAT5, STAT6, Proliferation RORGT and IL17.

Bérenguier et al (2013) Chaos 23: 025114

Simulations (HTG)

Node order: APC, IFNB_e, IFNG_e, IL2_e, IL4_e, IL6_e, IL10_e, IL12_e, IL15_e, IL21_e, IL23_e, IL27_e, TGFB_e, IL2R, IL2RA, IFNG, IL2, IL4, IL10, IL21, IL23, TGFB, TBET, GATA3, FOXP3, NFAT, STAT1, STAT3, STAT4, STAT5, STAT6, Proliferation RORGT and IL17.

Simulations (HTG)

APC + IL4 + IL6 + TGFB

(pro Th2 + Th17 cytokines, in the absence of IL2)

Node order: APC, IFNB_e, IFNG_e, IL2_e, IL4_e, IL6_e, IL10_e, IL12_e, IL15_e, IL21_e, IL23_e, IL27_e, TGFB_e, IL2R, IL2RA, IFNG, IL2, IL4, IL10, IL21, IL23, TGFB, TBET, GATA3, FOXP3, NFAT, STAT1, STAT3, STAT4, STAT5, STAT6, Proliferation RORGT and IL17.

Bérenguier et al (2013) Chaos 23: 025114

Simulations in the absence of stimulation

Overview of the simulation results for # micro-environments

Absence of stimulation

APC only

Pro-Th1 IL2 & IFNg or IL12

Pro-Th2 IL4 & IL6

Pro-Treg IL2 & TGFb or IL10

GATA3 Tbet Foxp3 RORγt

Pro-Th17 IL6 & TGFb

Naldi et al (2010)

PLoS Comput Biol 6: e1000912

Use of model checking to explore cell plasticity

- Export of the model from GINsim into NuSMV format
- Checking of the stability of Th signatures + conversions for changing inputs
- Graph displaying cellular conversion for specific input configurations (arc labels)

Bérenguier et al (2013) Chaos 23: 025114

Conclusions

- Model reproducing the main reported Th subtypes
 (Th0, Th1, Th2, Treg, Th17) in terms of stable states
- Many more stable states depending on signalling environment, including hybrid subtypes
- Differentiation network rather than lineage tree
- Plasticity of Th subtypes depending on signalling environment

Mechanisms Underlying Lineage Commitment and Plasticity of Helper CD4⁺ T Cells

John J. O'Shea* and William E. Paul

CD4⁺ T cells are critical for host defense but are also major drivers of immune-mediated disease. These T cells specialize to become distinct subsets and produce restricted patterns of cytokines, which are tailored to combat various microbial pathogens. Although classically viewed as distinct lineages, recent work calls into question whether helper CD4⁺ T cell subsets are more appropriately viewed as terminally differentiated cells or works in progress. Herein, we review recent advances that pertain to this topic and the mechanisms that contribute to helper CD4⁺ T cell commitment and plasticity. The therapeutic implications of these new findings are also considered.

Ongoing work

- Simulations of mutants and other perturbations (e.g. different timing for combinations of external signals)
- Extension of cellular model (additional pathways, transcription factors, interactions)
- Incorporation of high-throughput datasets
 (transcriptomics, proteomics) in collaboration with Vassili Soumelis, Institut Curie
- Towards a multi-cellular model starting with DC Th interactions

Experimental setup

Measurements (D0 ... D5)

- Surface molecules (FACS)
- Gene expression (Affy chips, RT-PCR)
- Cytokines (ELISA, Luminex, CBA)

Experimental setup

Measure of cytokine levels:

IFN-g, TNF-a, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL21, IL-22, granzyme A, granzyme B, IFN-alpha, IFN-beta, IL-17F, IL-31, IL-33, sCD40L (22 cytokines)

Measure of surface molecules:

Co-stimulatory molecules: CD86 / CD83 / CD80 / CD40 / ICOSL / OX40L

Co-inhibitory molecules: PDL1 / PDL2

Integrins: ICAM-1 / ICAM-2 / ICAM-3 / LFA1 / VLA-4

Chemokine receptors: CCR4, CXCR3, CCR6, CCR5, CCR7

Measure of RNA expression:

Tbet, GATA-3, RORgt, FOXP3

Extension of the model (in progress)

Incorporation of novel cytokines and intracellular components

- Secreted cytokines: IL-5 and IL-13 (Th2 signature), IL-22 (Th22 signature), IL-6, IL-9 (Th9 signature), IL-35 (Treg signature), IL-25, IL-31 and IL-24
- Transcriptional factors:
 Bcl6 (Tfh master regulator), c-Maf (expressed in Th2 and Th17), PU.1 (Th9 signature)
- Input cytokines: IL-1β (Th17 polarisation in humans), IL-33, IL-25, IL-18, IL-29 and IL-36

Wiring of the novel components based on literature mining

Preliminary dynamical analysis

	RORyt	TBET	GATA3	FOXP3	11.17	971	1122	IFNy	11.4	ILS	113	119	тсғв	1135
Th1														
Th2														
Th17														
Treg														
Treg Tbet+														

Context-dependent stable states. Grey cells denote the activation of components (columns) for the corresponding stable states (rows). Simulations reproduce the canonical cell subsets Th1, Th2, Th17 and Treg (characterised by their master regulator Tbet, Gata3, RORγt and Foxp3 respectively) in response to specific cytokine environments, as well as experimentally observed hybrid subsets (Treg Tbet+) expressing several master regulators.

Outlook

- From the understanding of immune cell plasticity to cell reprogramming
- Ongoing project on haematopoietic cell specification and reprogramming (collaboration with T Graf, CRG, Barcelona)
- Collaborative project on the characterisation and modelling of mast cell signalosome (with B Malissen, M Daeron, J Garin, D Marguet, France)
- Challenge: incorporation of relevant information from high-throughput experiments (transcriptomics, epigenomics, proteomics, etc.) in comprehensive and predictive dynamical models

Selected references

- Bérenguier D, Chaouiya C, Monteiro PT, Naldi A, Remy E, Thieffry D, Tichit L (2013). Dynamical modeling and analysis of large cellular regulatory networks.
 Chaos 23: 025114.
- Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perlès B, Thieffry D (2013). Integrative modelling of the influence of MAPK network on cancer cell fate decision. *PLoS Computational Biology*, in press.
- Naldi A, Thieffry D, Chaouiya C (2007). Decision diagrams for the representation and analysis of logical models of genetic networks. Lecture Notes in Computer Sciences 4695: 233-47.
- Naldi A, Remy E, Thieffry D, Chaouiya C (2011). Dynamically consistent reduction of logical regulatory graphs. *Theoretical Computer Science* 412: 2207-18.
- Naldi A, Carneiro J, Chaouiya C, Thieffry D (2010). Diversity and plasticity of Th cell types predicted from regulatory network modelling. *PLoS Computational Biology* 6: e1000912.

Collaborations & supports

★ ENS (Paris)

- Wassim Abou-Jaoudé
- Samuel Collombet
- Jérome Feret
- Anna Niarakis
- Morgane Thomas-Chollier

★ Institut Curie (Paris)

- Emmanuel Barillot
- Isabelle Bernard-Pierrot
- Eric Bonnet
- Laurence Calzone
- Philippe Hupé
- Francois Radvanyi
- Vassili Soumelis
- Maxime Touzot
- Elisabetta Volpe
- Andrei Zinovyev

★ TAGC (Marseille)

- Luca Grieco (=> Institut Curie)
- Brigitte Kahn-Perlès
- Aurélien Naldi (=> UNIL)
- Jacques van Helden

★ IML (Marseille)

- · Duncan Berenguier
- Elisabeth Rémy
- ★ IGC (Lisboa)
 - · Claudine Chaouiya
 - Jorge Carneiro
 - Pedro Monteiro

Belgian Inter-university
Attraction Pole

Bioinformatics and Modelling : from Genomes to Networks