Exercise on Reinforcement Learning

Alberto Maria Metelli

October 21, 2021

Consider the following sequential decision making-problem. An agent in a 3×3 grid can move in the four directions or stay still, provided that it does not crush against a border. Whenever performing a valid action, the agent reaches **deterministically** to the corresponding cell. The interaction starts in the lower left cell (blue) and the upper right cell (green) is a terminal state. The immediate reward is represented in the following grid:

0	0	2
-1	-10	0
0	-1	0

- 1. Formalize the problem as a Markov decision process (MDP);
- 2. For which values of the discount factor $\gamma \in [0,1]$ the optimal policy consists in staying in the initial state forever?
- 3. Simulate the execution of Q-learning, starting with a Q-table initialized with the immediate reward, supposing to have observed the following trajectories:

$$(0,0) \xrightarrow{\rightarrow} (1,0) \xrightarrow{\uparrow} (1,1) \xrightarrow{\rightarrow} (2,1) \xrightarrow{\uparrow} (2,2)$$

$$(2,1) \xrightarrow{\downarrow} (2,0) \xrightarrow{\uparrow} (2,1)$$

$$(1,1) \xrightarrow{\downarrow} (1,0) \xrightarrow{\rightarrow} (2,0)$$

$$(0,0) \xrightarrow{\rightarrow} (1,0) \xrightarrow{\uparrow} (1,1)$$

Use discount factor $\gamma = 0.9$ and learning rate $\alpha = 1$.

4. Say which is the greedy policy once completed the updates of the Q-table.

Formalization We numerate rows and columns from 0 starting from the lower left cell.

$$S = \{(i, j) : i, j \in \{0, 1, 2\}\},\$$

$$\mathcal{A} = \{ (\Delta i, \Delta j) : \Delta i, \Delta j \in \{-1, 0, +1\} \land |\Delta i| + |\Delta j| \le 1 \}$$

= \{(-1, 0), (0, +1), (0, -1), (0, +1), (0, 0)\}.

An action $(\Delta i, \Delta j)$ is admissible in a state (i, j) if $i + \Delta i, j + \Delta j \in \{0, 1, 2\}$. In such a case, the next state is given by:

$$\mathcal{P}((i', j')|(i, j), (\Delta i, \Delta j)) = \mathbb{1}\{(i', j') = (i + \Delta i, j + \Delta j)\}.$$

The initial state distribution is deterministic on (0,0), i.e, $\mu_0((i,j)) = \mathbb{1}\{(i,j) = (0,0)\}$. The reward function is a function of the state only and is defined as represented in the grid.

Optimal Policy varying γ It is not hard to prove that this problem, depending on the value of γ can admit two possible optimal policies: either staying still in the initial state or moving to the terminal state, with the minimum number of steps, avoiding passing through the -10 cell (two possible paths, leading to the same reward are possible). Let us compute the value function of these two policies:

$$V^{\pi_{\text{still}}}((0,0)) = 0,$$
 $V^{\pi_{\text{go}}}((0,0)) = 0 + \gamma \cdot (-1) + \gamma^2 \cdot 0 + \gamma^3 \cdot 0 + \delta^4 \cdot 2 = -\delta + 2\delta^4$

Requiring that $V^{\pi_{\text{still}}}((0,0)) > V^{\pi_{\text{go}}}((0,0))$ leads to $\gamma < \frac{1}{\sqrt{2}}$.

Q-learning Simulation In gray, the Q-table cells of the actions that are not allowed.

	r(s)			Q(s, a)			V(s) =
	7(8)	(-1,0)	(+1,0)	(0, -1)	(0, +1)	(0,0)	$\max_{a \in \mathcal{A}} Q(s, a)$
(0,0)	0		$0, \\ -\mathbf{0.9^{[1]}}, \\ \mathbf{0.4122^{[9]}}$		0	0	0, 0 .4122 ^[9]
(0,1)	-1		-1	-1	-1	-1	-1
(0,2)	0		0	0		0	0
(1,0)	-1	-1	$-1, \\ 0.458^{[8]}$		$egin{array}{c} -1, \ -{f 10^{[2]}}, \ -{f 10^{[10]}} \end{array}$	-1	$-1, \mathbf{0.458^{[8]}}$
(1,1)	-10	-10	$-10, \ -10^{[3]}, \ -10.9^{[7]}$	-10	-10	-10	-10
(1,2)	0	0	0	0		0	0
(2,0)	0	0			$0, \mathbf{1.62^{[6]}}$	0	$0, \mathbf{1.62^{[6]}}$
(2,1)	0	0		$0, \mathbf{0^{[5]}}$	$0, \mathbf{1.8^{[4]}}$	0	$0, \mathbf{1.8^{[4]}}$
(2,2)	2						2

We apply the update rule for each transition in order:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r(s, a) + \gamma \max_{a' \in \mathcal{A}} Q(s', a')\right)$$

$$[1] \quad (0,0) \xrightarrow{\rightarrow} (1,0) \implies Q((0,0),(+1,0)) \leftarrow r((0,0)) + \gamma \max_{a \in \mathcal{A}} Q((1,0),a) = 0 + 0.9 \cdot (-1) = -0.9$$

$$[2] \quad (1,0) \xrightarrow{\uparrow} (1,1) \implies Q((1,0),(0,+1)) \leftarrow r((1,0)) + \gamma \max_{a \in \mathcal{A}} Q((1,1),a) = -1 + 0.9 \cdot (-10) = -10$$

$$[3] \quad (1,1) \xrightarrow{\longrightarrow} (2,1) \implies Q((1,1),(+1,0)) \leftarrow r((1,1)) + \gamma \max_{a \in \mathcal{A}} Q((2,1),a) = -10 + 0.9 \cdot 0 = -10 + 0.9$$

$$[4] \quad (2,1) \xrightarrow{\rightarrow} (2,2) \implies Q((2,1),(0,+1)) = r((2,1)) + \gamma \max_{a \in \mathcal{A}} Q((2,2),a) = 0 + 0.9 \cdot 2 = 1.8$$

$$[5] \quad (2,1) \xrightarrow{\downarrow} (2,0) \implies Q((2,1),(0,-1)) = r((2,1)) + \gamma \max_{a \in \mathcal{A}} Q((2,0),a) = 0 + 0.9 \cdot 0 = 0$$

$$[6] \quad (2,0) \xrightarrow{\uparrow} (2,1) \implies Q((2,0),(0,+1)) = r((2,0)) + \gamma \max_{a \in \mathcal{A}} Q((2,1),a) = 0 + 0.9 \cdot 1.8 = 1.62$$

$$[7] \quad (1,1) \xrightarrow{\downarrow} (1,0) \implies Q((1,1),(0,-1)) = r((1,1)) + \gamma \max_{a \in \mathcal{A}} Q((1,0),a) = -10 + 0.9 \cdot (-1) = -10.9 \cdot$$

$$[8] \quad (1,0) \xrightarrow{\rightarrow} (2,0) \implies Q((1,0),(+1,0)) = r((1,0)) + \gamma \max_{a \in \mathcal{A}} Q((2,0),a) = -1 + 0.9 \cdot 1.62 = 0.458$$

$$[9] \quad (0,0) \xrightarrow{\rightarrow} (1,0) \implies Q((0,0),(+1,0)) = r((0,0)) + \gamma \max_{a \in \mathcal{A}} Q((1,0),a) = 0 + 0.9 \cdot 0.458 = 0.4122$$

$$[10] \quad (1,0) \xrightarrow{\uparrow} (1,1) \implies Q((1,0),(0,+1)) = r((1,0)) + \gamma \max_{a \in \mathcal{A}} Q((1,1),a) = -1 + 0.9 \cdot (-10) = -10$$

Greedy Policy The greedy policy is represented in the following:

all	all	
all	all except $(+1,0)$	(0, +1)
(+1,0)	(+1,0)	(0, +1)