Additive Powers-of-Two Quantization: An Efficient Non-Uniform Discretization for Neural Networks

Yuhang Li*, Xin Dong*, Wei Wang National University of Singapore, Harvard University

Quantization: Clipping and Projection

Clipping

$$\dot{\mathcal{W}} = \text{Clip}(\mathcal{W}, -\alpha, +\alpha)$$

Projection

$$\hat{\mathcal{W}} = \Pi_{\mathcal{Q}} \dot{\mathcal{W}}$$

Uniform and Powers-of-Two Projection

Uniform Projection

Powers-of-Two Projection

Additive PoT Projection

Generalized Definition

$$q = 2^{x} + 2^{y} + 2^{z}$$
n additive terms, each of which has k-bit values

- Each quantization levels is viewed as n additive Power-of-Two terms
- Tuning k can change the distribution of quantization levels:
 - i. When k is 1, Q resembles to uniform quantization
 - ii. When k is 2, Q resembles to additive PoT quantization with 2 terms
 - iii. When k is b, Q resembles to vanilla PoT quantization

Reparameterized Clipping Function

Learning α in PACT

Learning α in RCF

Weights Normalization

(a) Evolution of clipping ratio with fixed weights

(b) Evolution of clipping ratio with fixed threshold

Forward and Backward Algorithm

FORWARD

- i. Normalize weights to zero mean and unit variance
- ii. Apply RCF to clip the weights and the activations
- iii. Apply APoT Projection to the weights and the activations
- iv. Quantized Convolution

BACKWARD

- i. Compute the gradients of weights before normalization
- ii. Compute the gradients of clipping threshold
- iii. Update the weights and the clipping threshold

Results: Compared with Existing Methods

Results: Ablation Study

Table 3: Comparison of quantizer, weight normalization and RCF of ResNet-18 on ImageNet.

Метнор	PRECISION	WN	RCF	Acc1	RCF	Acc1	MODEL SIZE	FIXOPS
FULL PREC.	32 / 32	-	_	70.2	_	70.2	46.8 MB	1.82G
APoT	5 / 5	✓	/	70.9	×	70.0	7.22 MB	616M
PoT	5 / 5	✓	✓	70.3	X	68.9	7.22 MB	582M
Uniform	5 / 5	✓	✓	70.7	X	69.4	7.22 MB	781 M
LLOYD	5 / 5	✓	✓	70.9	×	70.2	7.22 MB	1.81 G
APoT	3 / 3	1	/	69.9	×	68.5	4.56 MB	298M
Uniform	3/3	1	✓	69.4	X	67.8	4.56 MB	357M
LLOYD	3/3	✓	✓	70.0	×	69.0	4.56 MB	1.81 G
APoT	3 / 3	Х	/	2.0	X	68.5	4.56 MB	198M

Thank You