PLSC 504: Introduction to Network Analysis

November 14, 2022

Network Theory

From our friends at https://en.wikipedia.org/wiki/Network_theory:

Network theory is the study of graphs as a representation of either symmetric relations or asymmetric relations between discrete objects. In computer science and network science, network theory is a part of graph theory: a network can be defined as a graph in which nodes and/or edges have attributes (e.g. names).

Networks: Terms

Network components:

- *Nodes*: The units that are (potentially) connected in the network (a.k.a. *actor*, *vertex*).
- Edges: The connections between the nodes that form the network (a.k.a. tie, link).

Network characteristics:

- · Undirected vs. Directed
- · Size: The number of nodes in the network.
- Diameter: The largest shortest path between any two nodes in the network.
- · Density: The proportion of edges to possible edges.
- · Geodesic Distance: The shortest path between two nodes
- · Average Path Length: The average (arithmetic mean) of the shortest path lengths between nodes.

Networks: Types

- Connected vs. disconnected
 - · Strongly vs. weakly connected
 - · Superconnectivity, hyperconnectivity, etc...
- Directed (digraph) vs. undirected
- Bipartite: Two types of nodes (→ multimodal)
- Others: Dynamic, multilayer, etc.

A Really Basic (Non-Directed) Network

> N5[1:	5,1:5
---------	-------

	${\tt Claire}$	Dawn	Andy	${\tt Savannah}$	${\tt Erin}$
Claire	0	0	0	1	1
Dawn	0	0	0	1	0
Andy	0	0	0	1	1
Savannah	1	1	1	0	0
Erin	1	0	1	0	0

Same Network, Different (Circle) Plot

A Really Basic Directed Network

> N5D[1:5,1:5]							
	${\tt Claire}$	Dawn	Andy	${\tt Savannah}$	Erin		
Claire	0	0	1	1	0		
Dawn	0	0	0	1	0		
Andy	0	1	0	0	0		
${\tt Savannah}$	0	0	0	0	0		
Erin	0	1	0	0	0		

Same Network, Circle Plot

Add Node Characteristics

More Node Characteristics (Name Length)

Adding Edge Characteristics (Differences in Name Length)

Basic Statistics On Networks

Summarizing network features:

- Node-level:
 - Centrality
 - · Local transitivity, etc.
- Edge-level (e.g., relatedness)
- Network-level
 - Reciprocity
 - Global transitivity

Centrality

What makes a node "central"?

- Importance / Influence?
- Connectedness?
- Vulnerability to contagion?
- "Anchor points"?

Aspects of Centrality:

- Node Positioning:
 - · Radial (paths originate / terminate at a node)
 - · Medial (paths pass through a node)
- Properties of Paths:
 - Volume (paths contribute according to their numbers/frequency)
 - · Length (paths contribute according to their length)

The (Potential) Importance of Visualization

Two views of the same network:

Node Centrality: Degree

Node Properties: Degree

- The number of edges adjacent to that node (total degree)
- In directed graphs: *indegree* and *outdegree* (+ total)
- A node with a degree of zero is an isolated node
- A node with a degree of one is a *leaf* (or *end*) node

Node Centrality: Betweenness

The **betweenness** of a node is (proportional to) the extent to which that node lies on paths between other vertices.

Node Centrality: Closeness

The **closeness** of a node i is (proportional to) the number of steps that are required to access every other node from that given node i.

```
> cbind(network.vertex.names(N5D),

+ sna::closeness(N5D),

+ igraph::closeness(asIgraph(N5D)))

[,1] [,2] [,3]

[1,] "Claire" "0" "0.11111111111111"

[2,] "Dawn" "0" "0.0625"

[3,] "Andy" "0" "0.0769230769230769"

[4,] "Savannah" "0" "0.05"

[5,1 "Frin" "0" "0.07692307692307699"
```


Eigenvector Centrality

- "How well-connected a given node is to well-connected nodes."
- A node's eigenvector centrality is the *i*th component of the first eigenvector of the network's adjacency matrix.
- Only defined for undirected networks...

```
> EC<-igraph::eigen_centrality(asIgraph(N5))
> cbind(network.vertex.names(N5),
+ ECSvector)
[,1] [,2]
[1,] "Claire" "0.83378300630386"
[2,] "Dawn" "0.468213192462135"
[3,] "Andy" "0.83378300630386"
[4,] "Savannah" "1"
[5,1 "Erin" "0.780776406404414"
```


Choosing Among Centralities

Intuition:

- Degree: basic "connectedness;" akin to "popularity"
- <u>Betweenness</u>: information flow / loss of information if node is removed
- Closeness: proximity; "influencers"
- Eigenvector: "embeddedness"

Centrality: Why We Care

- Measure of node "importance":
 - · Closeness = proximity
 - · Betweenness = information loss if the node is removed
 - · Eigenvector = "significance"
- Can serve as weights in other analyses
- Play an important role in regression-like models on networks...

Transitivity

Transitivity is the tendency of the last two nodes of a two-path to receive an edge from the first node.

- Undirected networks: "closure" (or "the friend of my friend is also my friend")
- Directed networks: directionality (transitivity vs. cyclicality)

Transitivity (continued)

What's the point of transitivity?

- It measures the extent of "clustering" in the network
- Practical / substantive interpretations:
 - · Cohesiveness / clustering of nodes
 - · Information redundancies
 - · Polarization (few edges between tight clusters of nodes)
- Node-level measure: clustering coefficient (the proportion of a node's neighbors that are tied)
- Network-level measure: transitivity coefficient T
 - Essentially $T = \frac{\text{Transitive triples}}{\text{Triples with 0 or 1 "missing" edges}}$
 - That is:

Why Model Networks?

- Account for network structure
- Predict edges (connections)
- Test hypotheses about network structures
- Deal with higher order dependencies
- Assess the (commonly-made) conditional independence assumption...

ERGMs / GERGMs

- "(Generalized) Exponential Random Graph Models"
- Regression-like models for nodes and edges in a network
- Originally for binary (present/absent) edges → "valued" networks → continuous edge values
- Common structure / form with GLMs / "exponential family" regression models

ERGM Details

Start with an *N*-node network defined by:

$$\mathbf{Y}_{N \times N} = \begin{cases} Y_{ij} = 1 \text{ if } i, j \text{ have a tie} \\ Y_{ij} = 0 \text{ otherwise} \end{cases}$$

and \mathbf{X} is a matrix of covariates (structural network traits + node/edge-level predictors).

An ERGM is:

$$\mathsf{Pr}(\mathbf{Y}|\mathbf{X}) = \frac{\exp[\theta' g(\mathbf{Y}, \mathbf{X})]}{\sum \exp[\theta, g(\mathcal{Y})]}$$

where:

- θ is a vector of parameters,
- g(Y, X) is a set of sufficient statistics, and
- ullet $g(\mathcal{Y})$ is the set of all possible networks with N nodes

ERGM: Computation

Note that $g(\mathcal{Y})$ is typically *very* large...

- For N nodes, there are $2^{\frac{N(N-1)}{2}}$ possible labeled, undirected networks
- E.g., for N = 10, that's 35,184,372,088,832 possible networks
- Calculating likelihoods for each of them is... unwise.

Alternatives:

• MPLE:

$$\mathsf{Pr}(\mathbf{Y}|\mathbf{X}) pprox \prod \mathsf{Pr}(Y_{ij}|\mathbf{Y}_{-ij},\mathbf{X}_{-ij})$$

...which has issues (see e.g. Schmid & Desmarais 2017)

• More common: Sampling from posterior via MCMC

(G)ERGMs: SCOTUS Example, again...

- Votes liberal (=1) or conservative (=0) on \approx 1400 cases, 1994-2005
- Network structure: degree of agreement among justices' votes...
 - · Always vote "opposite" = 0% agreement
 - · Always vote the same way = 100% agreement
- Network is:
 - Undirected
 - · "Full mesh topology" (all nodes have non-zero edges with all others)
 - · Defined by strength of edges
- Node characteristics: Justices' Segal-Cover (liberalism) scores + appointment by same-party president

> SCAgree

	Rehnquist	Stevens	OConnor	Scalia	Kennedy	Souter	Thomas	Ginsburg	Breyer
Rehnquist		0.3400	0.5738	0.6094	0.6698	0.4132	0.5996	0.4076	0.4062
Stevens	0.3400		0.5000	0.2905	0.4431	0.7646	0.2803	0.7731	0.7400
OConnor	0.5738	0.5000		0.4592	0.5964	0.5952	0.4484	0.5648	0.6017
Scalia	0.6094	0.2905	0.4592		0.5596	0.3657	0.7425	0.3514	0.3322
Kennedy	0.6698	0.4431	0.5964	0.5596		0.5188	0.5302	0.5090	0.5029
Souter	0.4132	0.7646	0.5952	0.3657	0.5188		0.3410	0.8587	0.8002
Thomas	0.5996	0.2803	0.4484	0.7425	0.5302	0.3410		0.3180	0.2934
Ginsburg	0.4076	0.7731	0.5648	0.3514	0.5090	0.8587	0.3180		0.8199
Breyer	0.4062	0.7400	0.6017	0.3322	0.5029	0.8002	0.2934	0.8199	

SCOTUS Agreement Network

SCOTUS Agreement Network (alternative plot)

GERGM Results

Software (/R) Things...

Packages:

- sna (does not play well with igraph)
- igraph (does not play well with sna)
- GGally (ggplot2-compatible graphics)
- The statnet suite: network, ergm, tergm, btergmetc.
- GERGM
- ggnet2 (ggplot-compatible graphics for network data...)
- Many others (keyplayer, RSiena,...)

Note: sna and igraph have many of the same command names (e.g., closeness()) but implement them differently. Be careful when both packages are loaded.

Extensions \leftrightarrow Extensions

- Different node / edge types (bipartite, tripartite, etc.)
- Hierarchical / multilevel / "nested" networks
- Spatial / spatially-referenced networks
- Dynamic / temporal networks
- Latent / unobserved networks
- Others...

References!

- Menczer, F., S. Fortunato, and C.A. Davis. 2020. A First Course in Network Science. New York: Cambridge University Press.
- Robins, G., P. Pattison, Y. Kalish, and D. Lusher. 2007. "An Introduction to Exponential Random Graph Models for Social Networks." Social Networks 29:173-191.
- Lusher, Dean, Johan Koskinen, and Garry Robins. 2012. Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications. New York: Cambridge University Press.
- Hunter, David, M. Handcock, C. Butts, S. Goodreau, and M. Morris.
 2008. "ergm: A Package to Fit, Simulate and Diagnose
 Exponential-Family Models for Networks." *Journal of Statistical Software* 24(3):1-29.
- Cranmer, Skyler J., Philip Leifeld, Scott D. McClurg, and Meredith Rolfe.
 2017. "Navigating the Range of Statistical Tools for Inferential Network Analysis." American Journal of Political Science 61:237-251.
- Wilson, James D., Matthew J. Denny, Shankar Bhamidi, Skyler J.
 Cranmer, and Bruce A. Desmarais. 2017. "Stochastic Weighted Graphs: Flexible Model Specification and Simulation." Social Networks 49:37-47.

Other Things To Look At

- The <u>StatNet Project</u> (ERGMs and their variants / extensions).
- The <u>CRAN Task View for Social Sciences</u> has the best collection of network-related R things.
- Matt Denny's webpage (among others), for tutorials, etc.
- APSA's Organized Section on Political Networks.