Comparing Temporal Smoothers for Use in Demographic Estimation

Monica Alexander University of California, Berkeley

IUSSP 2017 Session 143: Advances in mortality modeling November 1, 2017

- Need accurate estimates and projections of demographic and health indicators over time
- Important to monitor progress in health outcomes, informing policy
- In some cases trends may be unclear, because of missing or messy data
- Need to use statistical models to estimate and smooth data over time

Figure: Proportion of women of reproductive age with adequate antenatal care, Paraguay

Figure: Death rates for Gloucester, New South Wales, Australia $\frac{1}{2} \frac{1}{2} \frac{1}{$

How to model a demographic time series? Many models in the literature have the same general format. Define θ_t to be the quantity of interest at time t. Modeled as:

$$\theta_t = f(X_t) + Z_t + \varepsilon_t$$

- ▶ Regression framework $f(X_t)$, a function of covariates X_t
- ▶ distortions Z_t capture data-driven non-linear trends over time, not otherwise captured in $f(X_t)$

Models for Z_t smooth data temporally.

Examples

- Neonatal mortality rates (Alexander et al. 2016): $f(X_t) = f(\text{U5MR}); Z_t$ is modeled through P-splines regression
- Maternal mortality rates (Alkema et al. 2014): $f(X_t)$ includes GDP, skilled attendants at birth; Z_t is modeled using an ARMA(1,1) process
- Adult mortality (IHME): $f(X_t)$ includes income, education; Z_t is modeled using Gaussian process regression

While $f(X_t)$ is often justified, the choice for Z_t seems more arbitrary. But Z_t is important:

- ► Flexibly model data-driven trends
- Incorporate uncertainty
- Define a temporal process that can be projected forward in time

Aims

Focus on modeling the distortions, Z_t . Compare three main families that commonly occur in demographic literature:

- 1. ARMA models (MMR, contraceptive prevalence)
- 2. Gaussian Process regression (cause-specific mortality)
- 3. Penalized splines regression (child and adult mortality)

Aims:

- Compare theoretical differences
- Evaluate model performance and sensitivities on both simulated and real data

ARMA models

Autoregressive moving average (ARMA) models

- ▶ The autoregressive (AR) part assumes that Z_t is dependent on its past values.
- ▶ The moving average (MA) part assumes the error in the regression can be expressed as a linear combination of past errors.

A first-order Autoregressive process, or AR(1):

$$Z_t = \rho Z_{t-1} + \varepsilon_t,$$

 $\varepsilon_t \sim N(0, \sigma^2).$

First-order Autoregressive Moving Average models, i.e. ARMA(1,1):

$$Z_t = \rho Z_{t-1} + \theta \varepsilon_{t-1} + \varepsilon_t,$$

$$\varepsilon_t \sim N(0, \sigma^2).$$

Gaussian Process regression

- ► Gaussian processes (GPs) extend multivariate Gaussian (Normal) distributions to infinite dimensionality.
- GPs can form the basis of a regression to estimate and predict new data points.

For any sequence of times, $t = t_1, t_2, \dots, t_n$ a GP is

$$Z_{\boldsymbol{t}} \sim GP\left(m(\boldsymbol{t}), k(\boldsymbol{t}, \boldsymbol{t}')\right).$$

with mean function m(t) and covariance function k(t, t) (focus on squared exponential and Matern covariance functions)

Penalized splines regression

Basis-splines, or B-splines, are used in a regression framework:

$$Z_t = \sum_{k=1}^K b_k(t) \alpha_k$$

b_k(t) is equal to the value of the kth B-spline function evaluated at time point t.

Control the smoothness of Z_t by penalizing differences in adjacent spline coefficients, α_k . First-order:

$$\alpha_k \sim N(\alpha_{k-1}, \sigma_\alpha^2).$$

Second-order penalization is

$$\alpha_k \sim N(2\alpha_{k-1} - \alpha_{k-1}, \sigma_\alpha^2).$$

Comparison of methods

- Compare theoretically
- ► Compare fits, focusing on two data scenarios:
 - 1. High variability
 - 2. Limited data

Comparison of methods

- Simulation setup:
 - Simulate time series based on process (ARMA, GP). Mimic real-world data scenarios:
 - High variability: simulate with large stochastic variance
 - Limited data: remove observations
 - 2. Fit different models (ARMA, GP, P-splines) to each simulation, repeat
 - Evaluate fit (root mean square error) and width of uncertainty intervals
- Real data scenarios
 - High variability: regional mortality in Australia
 - Limited data: antenatal care in countries worldwide

Theoretical differences

Highlighting two theoretical differences and show when these matter the most. Two important differences in:

- 1. Stationarity
- 2. Covariance function

These differences affect both the **point estimates** and **uncertainty around estimates**.

Stationarity

A stationary time series has constant mean, variance and autocorrelation over time.

- ARMA and GP models are fitted as stationary processes
- P-splines models as defined above are not stationary In practice stationarity has the most noticeable effect on projections of time series.
 - For ARMA and GP, mean and width of uncertainty eventual converge to stable levels
 - P-splines projections do not converge to a constant mean and uncertainty intervals increase

Stationarity

Figure: Two different smoothing functions fit on the same data. The fits have been projected forward twenty periods. The red line represents the mean estimate, and corresponding shaded area the 95% Bayesian credible intervals.

Covariance function

A covariance function describes how values at two different times are related to each other.

- ► Each method has a different implied covariance function
- Higher covariance between points leads to a smoother fit and smaller uncertainty intervals.

Covariance function

Figure: Correlation between points with increasing distance. Based on the estimated fit on an ARMA(1,1) time series simulation with $\rho=0.7$ and $\theta=0.1$.

► ARMA and GP have relatively less smooth fits and wider uncertainty intervals compared to P-splines

Covariance function

Figure: AR(1) and Second-order P-Splines

Comparison

When do these differences matter? Differences in point estimates and uncertainty are largest in limited data situations.

Table: Average RMSE (standard deviation) across fits using AR(1), ARMA(1,1), GP sq exp, GP Matern, 1st and 2nd-order P-Splines

Process	Highly variable data	Limited data
AR(1)	0.47 (0.12)	0.79 (0.33)
ARMA(1,1)	0.60 (0.15)	1.02 (0.45)
GP sq exp	0.63 (0.14)	0.65 (0.19)
GP Matern	0.05 (0.01)	0.01 (0.01)

Example: limited data

Figure: Estimates of proportion of women of reproductive age with adequate antenatal care, Bolivia

Some thoughts on modeling decisions

Summary

- Investigated three methods for temporal smoothing that are common in demographic literature
- This is initial work part of a broader project to help demographers and policymakers make informed decisions about demographic modeling
- Showed underlying theoretical differences lead to differences in both estimates and uncertainty
- Important to consider different sources of uncertainty and how estimates are generated

Acknowledgements

This work is part of a project supported by the Department of Health Statistics and Information Systems at the World Health Organization.

R package to simulate and fit models available here: https://github.com/MJAlexander/distortr

Thanks!

