Problem List 3

Algebra 2r

Weronika Jakimowicz

Exercise 3. Let $v_1, ..., v_n$ be vertices of a regular n-gon inscribed in a circle on the plane \mathbb{R}^2 with equation $x^2 + y^2 = 1$. What is the linear dimension over \mathbb{Q} of the system of vectors $v_1, ..., v_n$.

Without the loss of generality, I will consider polygons with one vertex in (1, 0). Then, the remaining vertices are in $(\cos \frac{2\pi k}{n}, \sin \frac{2\pi k}{n})$, for k = 1, ..., n - 1. Now, let me switch where I live and let us consider roots of

We have n roots $z_1, ..., z_n$ in $\mathbb C$. Notice, that $z_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$ and adding complex numbers works almost like adding vectors in 2D. The minimal polynomial over $\mathbb Q$ of each of z_k is $F_n(x)$. Therefore, $\dim(v_1, ..., v_n) = \dim(z_1, ..., z_n) = \phi(n)$, where ϕ is Euler's function.

Exercise 4. Assume that $K \supseteq F(p)$ is a finite field extension of F(p). Assume that $a \in K$ is a primitive root of 1 of degree m. Let n be the smallest natural number > 0 such that $m \mid p^n - 1$.

- (a) Prove that n equals the degree of a over F(p)
- (b) Prove that $n \mid \phi(m)$. Give an example where $n < \phi(m)$.

Well, I think I kinda showed it before XD

Exercise 6. Find the minimal polynomials over $\mathbb Q$ fot the following numbers:

(a)
$$\sqrt{2} + \sqrt{3}$$

$$x - (\sqrt{2} + \sqrt{3}) = 0$$

$$x - \sqrt{2} = \sqrt{3}$$

$$(x - \sqrt{2})^{2} = 3$$

$$x^{2} - x2\sqrt{2} + 2 = 3$$

$$x^{2} - 1 = x2\sqrt{2}$$

$$(x^{2} - 1)^{2} = 8x^{2}$$

$$x^{4} - 2x^{2} + 1 = 8x^{2}$$

$$x^{4} - 10x^{2} + 1 = 0$$