Interpretación física de las integrales de superficie

El significado geométrico y físico de la integral de superficie se puede comprender expresándola como un límite de sumas de Riemann. Con el fin de simplificar, suponemos que D es un rectángulo. Fijamos una parametrización Φ de S que conserva la orientación y dividimos la región D en n^2 trozos D_{ij} , $0 \le i \le n-1$, $0 \le j \le n-1$. Denotamos por Δu a la longitud del lado horizontal de D_{ij} y por Δv a la longitud del lado vertical de D_{ij} . Sea (u,v) un punto de D_{ij} y sea $(x,y,z) = \Phi(u,v)$ el punto correspondiente sobre la superficie. Consideramos el paralelogramo de lados $\Delta u \mathbf{T}_u$ y $\Delta v \mathbf{T}_v$ que se encuentra en el plano tangente a S en (x,y,z) y el paralelepípedo formado por \mathbf{F} , $\Delta u \mathbf{T}_u$ y $\Delta v \mathbf{T}_v$. El volumen del paralelepípedo es el valor absoluto del producto

$$\mathbf{F} \cdot (\Delta u \, \mathbf{T}_u \times \Delta v \, \mathbf{T}_v) = \mathbf{F} \cdot (\mathbf{T}_u \times \mathbf{T}_v) \, \Delta u \, \Delta v.$$

El vector $\mathbf{T}_u \times \mathbf{T}_v$ es normal a la superficie en (x, y, z) y apunta hacia fuera desde el exterior de la superficie. Por tanto, el número $\mathbf{F} \cdot (\mathbf{T}_u \times \mathbf{T}_v)$ es positivo cuando el paralelepípedo está en el exterior de la superficie (Figura 7.6.7).

En general, el paralelepípedo está en la cara de la superficie de la que se aleja \mathbf{F} . Si pensamos en \mathbf{F} como en el campo de velocidades de un fluido, $\mathbf{F}(x,y,z)$ apunta en la dirección en la que el fluido se mueve a través de la superficie cerca de (x,y,z). Además, el número

$$|\mathbf{F} \cdot (\mathbf{T}_u \ \Delta u \times \mathbf{T}_v \ \Delta v)|$$

mide la cantidad de fluido que atraviesa el paralelogramo tangente por unidad de tiempo. Puesto que el signo de $\mathbf{F} \cdot (\Delta u \, \mathbf{T}_u \times \Delta v \, \mathbf{T}_v)$ es positivo si el vector \mathbf{F} apunta hacia fuera en (x,y,z) y negativo si \mathbf{F} apunta hacia dentro, $\sum_{i,j} \mathbf{F} \cdot (\mathbf{T}_u \times \mathbf{T}_v) \Delta u \, \Delta v$ es una medida aproximada de la cantidad neta de fluido que fluye a través de la superficie por unidad de tiempo. (Recordemos que hacia "fuera" o "dentro" depende de nuestra elección de la parametrización. La Figura 7.6.8 ilustra a \mathbf{F} dirigido hacia fuera o hacia dentro, dados $\mathbf{T}_u \ \mathbf{y} \ \mathbf{T}_v$). Por tanto, la integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ es la cantidad neta de fluido que fluye a través de la superficie por unidad

Figura 7.6.7 $\mathbf{F} \cdot (\mathbf{T}_u \times \mathbf{T}_v) > 0$ cuando el paralelepípedo formado por $\Delta v \, \mathbf{T}_v, \Delta u \, \mathbf{T}_u$ y \mathbf{F} está en la parte "exterior" de la superficie S.