You need to implement K-mean Clustering from Scratch , on IRIS Data set.

About Data-Set

The **Iris Dataset** is multivariate flowers datset contains four features (length and width of sepals and petals) of 50 samples of three species of **Iris** (**Iris** setosa, **Iris** virginica and **Iris** versicolor) with the total of 150 samples.

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##		5.1	3.5	1.4		setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	007970000	setosa
##	5	5.0	3.6	1.4	0.2	setosa
	,se	c(1113, Speci	es == Vers.	icolor")[1:5,	l.	
#				Petal.Lengt		
	51 52	7.0 6.4		- Di		versicolor versicolor
	53	6.9				versicolor
	54	5.5				versicolor
	55	6.5	0			versicolor
ul	ose	t(iris, Speci	es == "virg	inica")[1:5,]		
##		Sepal.Lengt	h Sepal.Wid	th Petal.Leng	h Petal.Widt	h Species
	10		(E)			5 virginica
	10					9 virginica
##	10					1 virginica
		4 6.	3 3	.9 5	6 1.	8 virginica
##	10		77	\$500 N70		2 virginica

You need to Implement 2 most important steps of Clustering.

- 1- **Cluster Assignment**: Assign each data value to its closest possible cluster.
- 2- **Computing Centroid:** Update Clusters by taking mean of each clusters.

Cluster assignment algorithm

```
# Assign every training example x^(i) to its closest centroid, given the current centroid positions
def find_closest_centroids(X, centroids):
    ""returns the array of assigned clusters to each example ""
    m = X.shape[0] # no of datappints
    k = centroids.shape[0] #division size
    idx = np.zeros(m) # array to assign the centroid

# Your Code Here
return idx
```

Computing centoroid means

```
# Update Centroids by taking mean of each centroid values
def compute_centroids(X, idx, k):
    m, n = X.shape
    centroids = np.zeros((k, n)) #3*4
    '''Return Updated Values of all K centroids'''
# Your Code Here
return centroids
```