КВ№12 Основные понятия теории марковских процессов. Схема гибели и размножения

КВ№13 Метод имитационного моделирования.

КВ№14 Единичный жребий и формы его организации. Примеры задач

КВ№15 Количественные и качественные методы прогнозирования.

КВ№16 Предмет и задачи теории игр. Основные понятия теории игр.

КВ№17 Антагонистические матричные игры: чистые и смешанные стратегии

КВ№18 Методы решения конечных игр: сведение игры mxn к задаче линейного программирования, численный метод – метод итераций

КВ№19 Область применимости теории принятия решений.

КВ№20 Принятие решений в условиях определенности, в условиях риска, в условиях неопределенности

КВ№21 Критерии принятия решений в условиях неопределенности.

КВ№22 Дерево решений.

Практические задания:

1. Для изготовления различных изделий A, B и C предприятие использует три различных вида сырья. Нормы расхода сырья на производство одного изделия каждого вида, цена одного изделия A, B и C, а также общее количество сырья каждого вида, которое может быть использовано предприятием, приведены в таблице:

Вид сырья	Нормы затрат сырі	Общее количество сырья		
	A	В	C	
I	18	15	12	300
II	6	14	8	192
III	5	3	3	180
Цена одного изделия (у.е.)	9	10	16	

Изделия A, B и C могут производиться в любых соотношениях (сбыт обеспечен), но производство ограничено выделенным предприятию сырьем каждого вида. Составить план производства изделий, при котором общая стоимость всей произведенной предприятием продукции является максимальной. (Задачу решить симплекс - методом)

2. Найти решение задачи, состоящей в определении максимального значения функции

$$F=2x_1+x_2-x_3+x_4-x_5$$
 при условиях

$$\begin{cases} x1 + x2 + x3 = 5; \\ 2x1 + x2 + x4 = 9; \\ x1 + 2x2 + x5 = 7; \\ x1,x2,x3,x4,x5 \ge 0. \end{cases}$$

(Задачу решить симплекс - методом)

3. Решите задачу линейного программирования симплекс - методом $F=3x_1+2x_3-6$ x_6 \longrightarrow max

при условиях

$$\begin{cases} 2x1 + x2 - 3x3 + 6x6 = 18; \\ -3x1 + 2x3 + x4 - 2x6 = 24; \\ x1 + 3x3 + x5 - 4x6 = 36; \\ x1, x2, x3, x4, x5, x6 \ge 0. \end{cases}$$

4. Решите задачу линейного программирования симплекс - методом $F=2x_1+3x_3-x_4$ — max

при условиях

$$\begin{cases} 2x1-x2-2x4+x5=16; \\ 3x1+2x2+x3-3x4=18; \\ -x1+3x2+4x4+x6=24; \\ x1,x2,x3,x4,x5,x6 \ge 0. \end{cases}$$

5. Решите задачу линейного программирования симплекс - методом $F=8x_2+7x_4+x_6 \longrightarrow max$

при условиях

$$\begin{cases} x1-2x2-3x4-2x6 = 12; \\ 4x2+x3-4x4-3x6 = 12; \\ 5x2+5x4+x5+x6 = 25; \\ x1,x2,x3,x4,x5,x6 \ge 0. \end{cases}$$

6. Для транспортной задачи, исходные данные которой приведены в таблице найти оптимальный план.

Пункт отправления		Запасы			
отправления	B1				
A1	5	4	3	4	160
A2	3	2	5	5	140
A3	1	6	3	2	60
Потребности	80	80	60	80	

7. Для транспортной задачи, исходные данные которой приведены в таблице найти оптимальный план.

Пункт отправления		Запасы			
	B1	B2	В3	B4	
A1	4	2	3	1	80

A2	6	3	5	6	100
A3	3	2	6	3	70
Потребности	80	50	50	70	

8. Для транспортной задачи, исходные данные которой приведены в таблице найти оптимальный план.

Пункт отправления		Запасы			
•	B1	B2	В3	B4	
A1	6	7	3	2	180
A2	5	1	4	3	90
A3	3	2	6	2	170
Потребности	45	45	100	160	

9. Для строительства четырех объектов используется кирпич, изготовленный на трех заводах. Ежедневно каждый из заводов может изготовлять 100, 150 и 50 у.е. кирпича. Ежедневные потребности в кирпиче на каждом из строящихся объектов соответственно равны 75, 80, 60 и 85 у.е. Известны также тарифы перевозок 1 у.е. кирпича с каждого из заводов к каждому из строящихся объектов:

$$C = \begin{bmatrix} 6 & 7 & 3 & 5 \\ 1 & 2 & 5 & 6 \\ 8 & 10 & 20 & 1 \end{bmatrix}$$

Составить такой план перевозок кирпича к строящимся объектам, при котором общая стоимость перевозок являлась бы минимальной.

10. Техническое устройство может находиться в одном из трех состояний S_0 , S_1 , S_2 . Интенсивность потоков, переводящих устройство из состояния, заланы в таблице:

Задача	Интенсивности потоков								
	λ_{01}	λ_{01} λ_{02} λ_{10} λ_{12} λ_{20} λ_{21}							
	3	4	5	4	3	0			

Необходимо построить размеченный граф состояний, записать систему уравнений Колмогорова, найти финальные вероятности и сделать анализ полученных решений.

Размеченный граф состояний имеет вид:

11. Техническое устройство может находиться в одном из трех состояний S_0 , S_1 , S_2 . Интенсивность потоков, переводящих устройство из состояния, заданы в таблице:

Задача	Интенсивности потоков							
	λ_{01}	λ_{02}	λ_{10}	λ_{12}	λ_{20}	λ_{21}		
	2	3	4	3	3	0		

Необходимо построить размеченный граф состояний, записать систему уравнений Колмогорова, найти финальные вероятности и сделать анализ полученных решений.

Размеченный граф состояний имеет вид:

12. В заданной матрице L элемент λ_{ij} есть интенсивность случайного пуассоновского процесса переходов из состояния i в состояние j (размерность $\frac{\text{кол-во переходов}}{\text{единица времени}}$).

$$L = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 4 & 0 & 4 & 0 \\ 0 & 4 & 0 & 4 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

А) Построить граф переходов между состояниями, ребра которого помечены соответствующими интенсивностями переходов.

- Б) Написать систему уравнений для определения предельных вероятностей различных состояний.
- В) Решить эту систему уравнений, найти предельную вероятность каждого состояния.
- 13. В заданной матрице L элемент λ_{ij} есть интенсивность случайного пуассоновского процесса переходов из состояния i в состояние j (размерность $\frac{\text{кол-во переходов}}{\text{единица времени}}$).

$$L = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 4 & 0 & 3 & 0 \\ 0 & 3 & 0 & 4 \\ 0 & 2 & 2 & 0 \end{bmatrix}.$$

- А) Построить граф переходов между состояниями, ребра которого помечены соответствующими интенсивностями переходов.
- Б) Написать систему уравнений для определения предельных вероятностей различных состояний.
- В) Решить эту систему уравнений, найти предельную вероятность каждого состояния.
- **14.** В заданной матрице L элемент λ_{ij} есть интенсивность случайного пуассоновского процесса переходов из состояния i в состояние j (размерность $\frac{\text{кол-во переходов}}{\text{единица влемени}}$).

$$L = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 3 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

- А) Построить граф переходов между состояниями, ребра которого помечены соответствующими интенсивностями переходов.
- Б) Написать систему уравнений для определения предельных вероятностей различных состояний.
- В) Решить эту систему уравнений, найти предельную вероятность каждого состояния.