CSE 404: Perceptron Pop-Quiz Solution

1. Why does PLA Work?

We can show that the weight update rule above has the nice interpretation that it moves in the direction of classifying x_* correctly.

- Show that $y_* \mathbf{w}(t)^T \mathbf{x}_* < 0$;
 - **Solution:** Since data point (y_*, \mathbf{x}_*) is misclassified by $\mathbf{w}(t)$, then the prediction $\operatorname{sign}(\mathbf{w}(t)^T\mathbf{x}_*)$ is different sign from y_* , i.e., when $y_* = 1$, $\operatorname{sign}(\mathbf{w}(t)^T\mathbf{x}_*) = -1$, and $\mathbf{w}(t)^T\mathbf{x}_* < 0$, and therefore $y_*\mathbf{w}(t)^T\mathbf{x}_* < 0$. We can draw the same concolusion when $y_* = -1$.
- Show that $y_*\mathbf{w}(t+1)^T\mathbf{x}_* > y_*\mathbf{w}(t)^T\mathbf{x}_*$;
 - Solution: Note that $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$, therefore

$$y_* \mathbf{w}(t+1)^T \mathbf{x}_* = y_* (\mathbf{w}(t) + y_* \mathbf{x}_*)^T \mathbf{x}_*$$
$$= y_* (\mathbf{w}(t))^T \mathbf{x}_* + y_* (y_* \mathbf{x}_*)^T \mathbf{x}_*$$
$$= y_* (\mathbf{w}(t))^T \mathbf{x}_* + y_*^2 \mathbf{x}_*^T \mathbf{x}_* > y_* (\mathbf{w}(t))^T \mathbf{x}_*$$

where the last inequality is because $y_*^2 \mathbf{x}_*^T \mathbf{x}_* > 0$ (given that $\|\mathbf{x}_*\| \neq 0$, i.e., \mathbf{x}_* is not an empty data point).

- Move from $\mathbf{w}(t)$ to $\mathbf{w}(t+1)$ is a move 'in the right direction' in terms of classifying \mathbf{x}_*
 - Solution: Given $y_*\mathbf{w}(t+1)^T\mathbf{x}_* > y_*\mathbf{w}(t)^T\mathbf{x}_*$, we are pushing forward the classifier $\mathbf{w}(t+1)$ in a way that has a higher chance to make $y_*\mathbf{w}(t+1)^T\mathbf{x}_*$ positive, and thus a higher chance to classify (\mathbf{x}_*, y_*) correctly.