T3.2 / N2 e Presença em aulas: 25, 26 e 27

import pandas as pd In [2]: import numpy as np

1 - Determine, para variável (Y):

Vamos mostrar os primeiros 5 dados:

```
dados.head()
```

In [4]: Semana Casos Obitos

0 1 359593 6906

Out[4]:

2 379061 1 6665

3 361195 2 7149

Recuperamos os dados dados = pd.read_csv('./Dados semana 1 a 20 - Covid 2021 - Página1.csv')

1.1 - A distribuição de frequência por classes;

In [3]:

In [5]: n = len(dados.Obitos)k = sqrt(n) if $n \ge 25$ else 5 print(f'Teremos {k} Classes.') Teremos 5 Classes. value = dados.Obitos.min() In [6]:

toAdd = (dados.Obitos.max() - dados.Obitos.min()) / k

Y_freq.append((min, max, item_classe.values))

freq_data_2['Classe_min'].append(int(min)) freq_data_2['Classe_max'].append(int(max))

freq_data['Classe'].append(f'[{int(min)}-{int(max)}[')

freq_data['Frequencia_Absoluta'].append(len(items))

freq_data_2['Frequencia_Absoluta'].append(len(items))

classes.append((value, value + toAdd))

while value <= dados.Obitos.max():</pre>

print('Classes retiradas', classes)

 $Y_freq = [] # (min, max, classes)$

for min, max, items in Y_freq:

freq_data['Itens'].append(items)

freq_data_2['Itens'].append(items)

freq_dataframe_2 = pd.DataFrame(freq_data_2)

classes = []

value += toAdd

for min, max in classes:

Item de classes

In [7]:

In [91]:

Out[91]:

In [12]:

Histograma:

6

5

6

5

In [135...

7500 7067 # Dividimos as classes => Raiz de Quantidade Total (N) para N >= 25

4 360721 5 320820

50.600000000002, 18245.800000000003), (18245.800000000003, 21141.00000000004)]

item_classe = dados.Obitos.loc[(dados.Obitos >= min) & (dados.Obitos < max)]</pre>

freq_data = {'Classe':[], 'Itens': [], 'Frequencia_Absoluta': [], 'Frequencia_Relativa': []}

freq_data['Frequencia_Relativa'].append((len(items) / len(dados.Obitos)) * 100)

freq_data_2['Frequencia_Relativa'].append((len(items) / len(dados.Obitos)) * 100)

Classes retiradas [(6665, 9560.2), (9560.2, 12455.40000000001), (12455.400000000001, 15350.600000000002), (153

freq_data_2 = {'Classe_min':[], 'Classe_max':[], 'Itens': [], 'Frequencia_Absoluta': [], 'Frequencia_Relativa'

40.0

5.0

20.0

20.0

15.0

- print('A FrequÊncia da variável Y (óbitos) se dá por:') freq_dataframe = pd.DataFrame(freq_data) freq_dataframe A FrequÊncia da variável Y (óbitos) se dá por: Classe Frequencia_Absoluta Frequencia_Relativa [6665-9560] [6906, 6665, 7149, 7500, 7067, 7520, 7445, 8244] [9560-12455[[10104] 1 2 [12455-15350[[12766, 14879, 13399, 13493] 4 [15350-18245[[15661, 17798, 17814, 16945] 4 [18245-21141[[19643, 21141, 20344] 3 1.2 - Os gráficos: Histograma e Polígono de Frequências simples;
- import seaborn as srn import matplotlib.pyplot as plt srn.set(style="darkgrid") srn_plot = srn.histplot(dados.Obitos, bins =5) # plt.plot(freq_dataframe.Classe, freq_dataframe.Frequencia_Absoluta) 8 7

Importar a biblioteca para desenho dos gráficos

- 3 2 1 0 8000 10000 12000 14000 16000 18000 20000 Obitos Polígono de de Frequências Simples In [23]: import matplotlib.pyplot as plt fig = plt.figure(figsize=(8, 6)) plt.plot(freq_dataframe.Classe, freq_dataframe.Frequencia_Absoluta) Out[23]: [<matplotlib.lines.Line2D at 0x7fae28b72bb0>] 8 7
 - 3 2 1 [6665-9560[[12455-15350[[9560-12455[[15350-18245[[18245-21141[variação:
 - 1.3 Os parâmetros: média, mediana, moda, variância, desvio padrão e Coeficiente de 1.3.1 - Considerando os dados não agrupados em distribuição de frequência por classes; # Criação das funções para fazer o cálculo posterior: import functools import math def funcao_mediana(arr = []): $new_arr = [*arr]$ new_arr.sort() return new_arr[len(new_arr) // 2] def funcao_moda(arr = []): $new_Arr = [*arr]$ new_Arr.sort() $mapper = \{\}$ for item in new_Arr: if mapper.get(item) == None: mapper[item] = 0

mapper[item] = mapper[item] + 1

media_arr_2 = funcao_media(arr_2)

var = media_arr_2 - media_arr**2

 $arr_2 = arr**2$

return var

toReturn = ('Nenhum Valor Se repete mais de uma vez', 1)

- for value, repetions in mapper.items(): if repetions > toReturn[1]: toReturn = (value, repetions) return toReturn[0] def funcao_media(arr = []): tam = len(arr)return (sum(arr) / tam) if tam > 0 else 0 def funcao_variancia(arr= []): if len(arr) == 0: return 0 media_arr = funcao_media(arr)
- def funcao_desvio_padrao(arr = []): return math.sqrt(funcao_variancia(arr)) def funcao_coeficiente_variacao(arr = []): return (funcao_desvio_padrao(arr) / funcao_media(arr))*100 In [136... valores_obitos = dados.Obitos.values print('A Média dos Óbitos é:', funcao_media(valores_obitos))

print('A Mediana dos Óbitos é:', funcao_mediana(valores_obitos))

print('A Moda dos Óbitos é:', funcao_moda(valores_obitos))

A Moda dos Óbitos é: Nenhum Valor Se repete mais de uma vez

A Variância dos Óbitos é: 25159496.127499998

freq_params_dataframe = pd.DataFrame(freq_params)

10104

17798

20344

Media Mediana

7312.00

freq_params_dataframe

[9560-12455[10104.00

2 [12455-15350[13634.25

[15350-18245[17054.50

[18245-21141[20376.00

Classe

[6665-9560[

Out[137...

- print('A Variância dos Óbitos é:', funcao_variancia(valores_obitos)) print('O Desvio Padrão dos Óbitos é:', funcao_desvio_padrao(valores_obitos)) print('O Coeficiente de Variação dos Óbitos é:', funcao_coeficiente_variacao(valores_obitos)) A Média dos Óbitos é: 12624.15 A Mediana dos Óbitos é: 13399
- O Desvio Padrão dos Óbitos é: 5015.924254561665 O Coeficiente de Variação dos Óbitos é: 39.73276818290075 1.3.2 - Considerando os dados agrupados em distribuição de frequência por classes;
- # Recupearamos os dados da Frequência de Classificações In [93]: freq_dataframe Itens Frequencia_Absoluta Frequencia_Relativa Out[93]: Classe [6665-9560] [6906, 6665, 7149, 7500, 7067, 7520, 7445, 8244] 8 40.0 [9560-12455[[10104] 1 5.0
- 2 [12455-15350[[12766, 14879, 13399, 13493] 20.0 4 [15350-18245[[15661, 17798, 17814, 16945] 20.0 [18245-21141[[19643, 21141, 20344] 3 15.0 Vamos Observar esses dados para cada Classe: freq_params = {'Classe':[], 'Media': [], 'Mediana': [], 'Moda':[], 'Variancia': [], 'Desvio_Padrao':[], 'Coefic In [137...
 - for index, classe in enumerate(freq_dataframe.Classe): items = freq_dataframe.Itens[index] freq_params['Classe'].append(classe) freq_params['Media'].append(funcao_media(items)) freq_params['Mediana'].append(funcao_mediana(items)) freq_params['Moda'].append(funcao_moda(items)) freq_params['Variancia'].append(funcao_variancia(items)) freq_params['Desvio_Padrao'].append(funcao_desvio_padrao(items)) freq_params['Coeficiente_de_Variação'].append(funcao_coeficiente_variacao(items))

7445 Nenhum Valor Se repete mais de uma vez 204370.000000

13493 Nenhum Valor Se repete mais de uma vez 594638.687500

Nenhum Valor Se repete mais de uma vez 770866.250000

Nenhum Valor Se repete mais de uma vez 374512.666667

Nenhum Valor Se repete mais de uma vez

Moda

Variancia Desvio_Padrao Coeficiente_de_Variação

6.182618

0.000000

5.655817

5.148142

3.003408

452.073003

771.128191

877.989892

611.974400

0.000000

0.000000