# Вероятности и статистика: Упражнения с R

 $\begin{tabular}{ll} Ahrел $\varGamma$. Ahrелов \\ agangelov@fmi.uni-sofia.bg \end{tabular}$ 

31. V. 2023 г.

# Съдържание

| 1.        | Въведение в R                               |
|-----------|---------------------------------------------|
|           | 1.1. Математически функции                  |
|           | 1.2. Вектори                                |
|           | 1.3. Генериране на редици                   |
|           | 1.4. Матрици                                |
|           | 1.5. Data frame                             |
|           | 1.6. Полезни функции                        |
| 2.        | Случайни експерименти 1                     |
| 3.        | Случайни величини 1                         |
|           | 3.1. Дискретни сл.в                         |
|           | 3.1.1. Бернулиево разпределение             |
|           | 3.1.2. Биномно разпределение                |
|           | 3.1.3. Геометрично разпределение            |
|           | 3.1.4. Отрицателно биномно разпределение    |
|           | 3.1.5. Хипергеометрично разпределение       |
|           | 3.1.6. Поасоново разпределение              |
|           | 3.2. Непрекъснати сл.в                      |
|           | 3.2.1. Равномерно разпределение             |
|           | 3.2.2. Експоненциално разпределение         |
|           | 3.2.3. Нормално разпределение               |
| 4.        | Данни. Таблици и графики 2                  |
|           | 4.1. Категорни данни                        |
|           | 4.2. Числови данни                          |
|           |                                             |
| 5.        | Числови характеристики на данните 3         |
| <b>6.</b> | Многомерни данни 3                          |
| 7.        | Централна гранична теорема 4                |
| 8.        | Проверка на хипотези при една извадка 4     |
|           | 8.1. Уводни бележки                         |
|           | 8.2. <i>z</i> -тест за средно               |
|           | 8.3. <i>t</i> -тест за средно               |
|           | 8.4. <i>z</i> -тест за пропорция            |
| 9.        | Проверка на хипотези при две извадки 5      |
|           | 9.1. <i>t</i> -тест за разлика на средни    |
|           | 9.2. <i>t</i> -тест при зависими извадки    |
|           | 9.3. <i>z</i> -тест за разлика на пропорции |
|           | 9.4. Два типа грешки                        |
|           | 9.5. Критична област                        |

| 10.Доверителни интервали                                      | 68 |
|---------------------------------------------------------------|----|
| 10.1. Уводни бележки                                          | 68 |
| 10.2. Доверителен интервал за средно при известна дисперсия   | 68 |
| 10.3. Доверителен интервал за средно при неизвестна дисперсия | 69 |
| 10.4. Доверителен интервал за пропорция (вероятност за успех) | 70 |
| 10.5. Доверителен интервал за медиана                         | 72 |
| 10.6. Доверителен интервал за разлика на медиани              | 73 |
| 10.7. Интерпретация на доверителни интервали                  | 74 |
| 10.8. Връзка между хипотези и доверителни интервали           | 75 |
| 11.Хи-квадрат тестове                                         | 76 |
| 11.1. Хи-квадрат тест за съгласуваност                        | 76 |
| 11.2. Хи-квадрат тест за независимост                         | 78 |
| 12.Линейни модели                                             | 81 |
| 12.1. Линеен модел с един предиктор                           | 81 |
| 12.2. Линеен модел с няколко предиктора                       | 87 |
| Литература                                                    | 93 |

#### Въведение в R 1.

Most good programmers do programming not because they expect to get paid or get adulation by the public, but because it is fun to program.

Linus Torvalds

R е език и среда за статистически изчисления и анализ. Разпростанява се свободно, съгласно условията на GNU General Public License. Създаден е първоначално през 1993 от Robert Gentleman и Ross Ihaka от Департамента по статистика на Университета Оукланд (University of Auckland) на основа на езика S. На сайта https://cran.r-project.org/ може да се намери последната версия.

#### 1.1. Математически функции

```
> (5+7)/(4-1)
[1] 4
> 9^2
[1] 81
> sqrt(25)
[1] 5
> log(exp(1))
[1] 1
> 28 %% 10
[1] 8
> 27/1000000
[1] 2.7e-05
> 5000*5000
[1] 2.5e+07
> options(scipen=999)
> 27/1000000
[1] 0.000027
> options(scipen=0)
> 27/1000000
[1] 2.7e-05
1.2.
       Вектори
```

```
> x <- c(5, 12, 11, 14, 2, 3, 14, 10, 3)
> x[3]
[1] 11
```

```
> x[1:5]
[1] 5 12 11 14 2
> x[c(2,5,9)]
[1] 12 2 3
> x[-4]
[1] 5 12 11 2 3 14 10 3
> x[-c(2,3)]
[1] 5 14 2 3 14 10 3
> x[x>10]
[1] 12 11 14 14
> length(x)
[1] 9
> \min(x)
[1] 2
> \max(x)
[1] 14
> head(x, 3)
[1] 5 12 11
> tail(x, 3)
[1] 14 10 3
> x>10
[1] FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
> sum(x>10)
[1] 4
> which(x>10)
[1] 2 3 4 7
> diff(x)
[1] 7 -1 3 -12 1 11 -4 -7
> cumsum(x)
[1] 5 17 28 42 44 47 61 71 74
> sum(x)
[1] 74
> x^2
[1] 25 144 121 196 4 9 196 100 9
> sort(x)
[1] 2 3 3 5 10 11 12 14 14
```

```
> x[ order(x) ]
[1] 2 3 3 5 10 11 12 14 14
> rank(x)
[1] 4.0 7.0 6.0 8.5 1.0 2.5 8.5 5.0 2.5
> rm(x)
Error: object 'x' not found
> x <- c(1,3,5,11,15)
> class(x)
[1] "numeric"
> x <- as.integer(c(1,3,5,11,15))
> class(x)
[1] "integer"
> y <- c("Y", "Y", "N")
> class(y)
[1] "character"
> z <- c(TRUE, TRUE, FALSE)
> class(z)
[1] "logical"
> x <- vector("logical", length=5)</pre>
[1] FALSE FALSE FALSE FALSE
> y <- vector("numeric", length=5)</pre>
> y
[1] 0 0 0 0 0
> x < -c(5,5,5,7,7,7)
> y <- c(2,2,1)
> x+y
[1] 7 7 6 9 9 8
> y <- c(2,2,1,1)
> x+y
[1] 7 7 6 8 9 9
Warning message:
In x + y: longer object length is not a multiple of shorter object length
```

### 1.3. Генериране на редици

```
> rep( 5, times=8 )
[1] 5 5 5 5 5 5 5 5
> rep( c(1,2), times=5 )
```

```
[1] 1 2 1 2 1 2 1 2 1 2 1 2
> rep(c(1,2), each=5)
[1] 1 1 1 1 1 2 2 2 2 2 2
> rep( c(1,2), length.out=7 )
[1] 1 2 1 2 1 2 1
> rep( c("a","b"), times=5 )
[1] "a" "b" "a" "b" "a" "b" "a" "b" "a" "b"
> rep( c("a","b"), each=3 )
[1] "a" "a" "a" "b" "b" "b"
> 5:12
[1] 5 6 7 8 9 10 11 12
> 10:1
[1] 10 9 8 7 6 5 4 3 2 1
> seq( from=1, to=10, by=2 )
[1] 1 3 5 7 9
> seq( from=10, to=1, by=-2 )
[1] 10 8 6 4 2
> seq( from=0, to=1, by=0.2 )
[1] 0.0 0.2 0.4 0.6 0.8 1.0
> seq( from=0, to=1, length.out=11 )
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
      Матрици
1.4.
> M \leftarrow rbind(c(5,3,5,6),c(8,3,7,4))
     [,1] [,2] [,3] [,4]
[1,]
     5
          3 5
[2,]
      8
            3
               7
> M[2, 3]
[1] 7
> M[ ,3]
[1] 5 7
> M[2, ]
[1] 8 3 7 4
> M \leftarrow cbind(c(5,3,5,6),c(8,3,7,4))
     [,1] [,2]
[1,]
      5
            8
[2,]
            3
       3
[3,]
       5
            7
[4,]
       6
> t(M)
     [,1] [,2] [,3] [,4]
```

```
[1,] 5 3 5 6
[2,] 8 3 7 4
> M[c(3,1),]
[,1] [,2]
[1,] 5 7
[2,] 5 8
> M[ order( M[,1] ), ]
[,1] [,2]
[1,] 3 3
[2,]
     5
          8
    5 7
[3,]
[4,] 6 4
> M[ order( M[,1], M[,2] ), ]
    [,1] [,2]
    3 3
[1,]
[2,]
     5
[3,]
    5 8
[4,]
    6 4
> M <- matrix( c(1:12), nrow=3, ncol=4 )</pre>
   [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,]
      2
          5
              8
                  11
[3,]
      3 6
              9
                 12
> M <- matrix( c(1:12), nrow=3, ncol=4, byrow=TRUE )
> M
   [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
              7
[2,]
      5
         6
                  8
[3,]
    9 10
            11
                12
> head(M, 2)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
> tail(M, 2)
 [,1] [,2] [,3] [,4]
[2,] 5 6 7 8
[3,] 9 10 11 12
> sqrt(M)
      [,1]
             [,2]
                     [,3] [,4]
[1,] 1.000000 1.414214 1.732051 2.000000
[2,] 2.236068 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625 3.464102
> rownames(M) <- c("a", "b", "c")</pre>
```

```
> colnames(M) <- c("X1", "X2", "X3", "X4")
> M
    X1 X2 X3 X4
a    1    2    3    4
b    5    6    7    8
c    9 10 11 12
```

#### 1.5. Data frame

```
> x < -c(5, 8, 11, 3, 2, 9, 4)
> y <- c("Y", "Y", "N", "Y", "N", "N", "Y")
> df <- data.frame(x,y)</pre>
> df
  х у
1 5 Y
2 8 Y
3 11 N
4 3 Y
5 2 N
6 9 N
7 4 Y
> str(df)
'data.frame': 7 obs. of 2 variables:
$ x: num 5 8 11 3 2 9 4
 $ y: chr "Y" "Y" "N" "Y" ...
> df$x
[1] 5 8 11 3 2 9 4
> df$y
[1] "Y" "Y" "N" "Y" "N" "Y"
> df$x[4]
[1] 3
> df[ ,1]
[1] 5 8 11 3 2 9 4
> df[5, ]
 х у
5 2 N
> df[ , "x"]
[1] 5 8 11 3 2 9 4
> df$z <- seq(from=1, to=14, by=2)</pre>
> str(df)
'data.frame': 7 obs. of 3 variables:
 $ x: num 5 8 11 3 2 9 4
 $ y: chr "Y" "Y" "N" "Y" ...
 $ z: num 1 3 5 7 9 11 13
```

```
> df[ 3, c("x","z") ]
    x z
3 11 5
> df[ c(5,7), c(2,3) ]
    y z
5 N 9
7 Y 13
> df$x[ df$z <= 5 ]
[1] 5 8 11
> df$x[ df$y == "N" ]
[1] 11 2 9
> df[ df$z <= 5, c("x","z") ]
    x z
1 5 1
2 8 3
3 11 5</pre>
```

## 1.6. Полезни функции

```
getwd()
setwd(dir)
save(...)
save.image(...)
read.table(file)
write.table(x, file)
replace(x, list, values)
ifelse(test, yes, no)
any(...)
all(...)
unique(...)
duplicated(...)
is.element(x, y)
x %in% y
tabulate(...)
substr(x, start, stop)
```

## 2. Случайни експерименти

The most important questions of life are indeed, for the most part, only problems of probability.

The theory of probability is only common sense reduced to calculation.

Pierre Simon Laplace

Случаен експеримент наричаме експеримент, при който не знаем предварително какъв ще бъде резултата (изхода), но знаем какви са възможните изходи. Пример – при хвърляне на зар знаем, че ще се падне някоя от страните на зара, но не знаем коя.

Нека A е някакво събитие, което може да се случи при извършване на експеримента (или да не се случи). Например, при хвърляне на зар- пада се нечетно число.

На всяко събитие съпоставяме число между 0 и 1, което наричаме вероятност на събитието. Вероятността на събитието A означаваме с  $\mathbf{P}(A)$ .

Повтаряме експеримента n пъти, при едни и същи условия. Да означим с  $c_n(A)$  броя случвания на събитието A при n повторения на експеримента, т.е. събитието A се е случило  $c_n(A)$  пъти. Тогава за достатъчно големи n е изпълнено

$$\frac{c_n(A)}{n} \approx \mathbf{P}(A).$$

Това твърдение следва от т.нар. закон за големите числа в теорията на вероятностите. Например, ако хвърляме зар 1000 пъти и  $A = \{$ пада се нечетно число $\}$  и нечетно число се падне  $c_n(A)$  пъти,  $c_n(A)/1000$  е приблизително равно на вероятността на A.

Числото  $\frac{c_n(A)}{n}$  наричаме *честота* на събитието A. Понякога се нарича относителна честота (relative frequency). Законът за големите числа твърди, че при достатъчно повторения на експеримента, честотата на случване на събитието A ще приближава вероятността на A. В известен смисъл вероятността  $\mathbf{P}(A)$  е дефинирана така, че  $\frac{c_n(A)}{n}$  да клони към  $\mathbf{P}(A)$ .

Нека B е друго събитие, което може да се случи при извършване на експеримента. Условна вероятност на A при условие B, т.е. вероятността да се случи A, ако имаме информация, че се е случило B, се дефинира така  $\mathbf{P}(A \mid B) = \mathbf{P}(AB)/\mathbf{P}(B)$ .

Означаваме с  $c_n(AB)$  броя случвания на събитията A и B едновременно. Тогава за достатъчно големи n е изпълнено

$$\frac{c_n(AB)}{c_n(B)} \approx \mathbf{P}(A \mid B).$$

Числото  $\frac{c_n(AB)}{c_n(B)}$  ни показва колко често се е случило събитието A, ако броим само експериментите, при които се е случило събитието B.

В следващите задачи ще намерим приближение за вероятността на дадено събитие като симулираме експеримента достатъчен брой пъти с помощта на R и използваме горните твърдения.

Функцията sample(x, size, replace) генерира определен брой (size) случайно избрани елементи от вектора x, c връщане (replace=T) или без връщане (replace=F).

Например, по следния начин генерираме 5 случайни числа от вектора  $(1, 2, 3, \dots, 10)$ , с връщане:

```
> sample( c(1:10), 5, replace=T )
[1] 7 1 6 2 5
> sample( c(1:10), 5, replace=T )
[1] 5 1 1 8 5
```

По следния начин генерираме случайна пермутация на елементите на вектора  $(1, 2, \dots, 7)$ :

```
> sample( c(1:7), 7, replace=F )
[1] 5 7 1 6 2 3 4
```

Задача 2.1. В отдел на фирма работят 20 човека. За Коледа те решават да си разменят подаръци. В кутия слагат 20 листчета, на всяко от които има едно име. Всеки тегли листче (без да го връща) и подарява на този, чието име е изтеглил. Каква е вероятността поне един да изтегли своето име?

```
sim.gifts <- function(k) {
  x <- sample( c(1:k), k, replace=F )
  d <- x - c(1:k)
  any(d==0)
}

prob.gifts <- function(Nrep, k) {
  rs <- replicate( Nrep, sim.gifts(k) )
  sum(rs)/length(rs)
}

prob.gifts(100000, 20)</pre>
```

Функцията sim.gifts(k) симулира един експеримент (за k човека) и връща TRUE ако се е случило събитието поне един да изтегли своето име.

Функцията prob.gifts(Nrep, k) повтаря експеримента Nrep пъти и връща честотата на случване на събитието (брой случвания разделен на брой повторения), която изполваме като приближение на вероятността.

**Задача 2.2.** Каква е вероятността в група от 25 човека поне двама да имат рожден ден на един и същи ден от годината?

```
sim.bday <- function(k) {
  x <- sample( c(1:365), k, replace=T )
  anyDuplicated(x) > 0
}

prob.bday <- function(Nrep, k) {
  rs <- replicate( Nrep, sim.bday(k) )
  sum(rs)/length(rs)
}

prob.bday(100000, 25)</pre>
```

**Задача 2.3.** Имаме 3 карти: първата е бяла от двете страни, втората е черна от двете страни, а третата е бяла от едната и черна от другата страна. Всяка карта е поставена в затворена кутия. Избираме произволна кутия, отваряме я и виждаме, че горната страна на картата в нея е бяла. Каква е вероятността другата страна на картата също да е бяла?

```
sim.bw <- function() {
   card <- sample( c("bb", "ww", "bw"), 1 )
   side <- sample( c(1,2), 1 )
   up <- substr( card, start=side, stop=side )
   c(up, card)
}

prob.bw <- function(Nrep) {
   rs <- replicate( Nrep, sim.bw() )
   sum(rs[2,]=="ww") / sum(rs[1,]=="w")
}

prob.bw(100000)</pre>
```

### 3. Случайни величини

The human mind treats a new idea the same way the body treats a strange protein; it rejects it.

P.B. Medawar

Често с изхода на даден случаен експеримент свързваме някаква числова величина, например сумата от точките при хвърляне на два зара, броя дефектни продукти в дадена партида, времето на живот на батерия. Такава числова величина наричаме случайна величина (сл.в.). Предварително не знаем каква ще е стойността на случайната величина, но знаем какви са възможните ѝ стойности. Конкретната стойност на случайната величина при извършване на експеримента се определя еднозначно от изхода му, например ако хвърляме два зара и се падне :: и стойността на сл.в. "сума от точките на двата зара" ще е 5.

#### 3.1. Дискретни сл.в.

Когато случайната величина може да приема краен брой стойности или стойности от изброимо множество (например целите числа  $\{0,\pm 1\pm 2,\ldots\}$  или естествените числа  $\{1,2,3,\ldots\}$ ), се нарича  $\partial uc\kappa pemha$  случайна величина.

Нека  $x_1, x_2, \ldots, x_k, \ldots$  са възможните стойности на дискретната сл.в. X. Вероятността да наблюдаваме стойност  $x_k$  при извършване на експеримента означаваме  $\mathbf{P}(X=x_k)$ . Сумата на вероятностите  $\mathbf{P}(X=x_k)$  е единица:  $\sum_k \mathbf{P}(X=x_k) = 1$ .

Възможните стойности на дискретната случайна величина и техните вероятности обикновено се записват в таблица от вида:

$$x_1$$
  $x_2$  ...  $x_k$  ...  $\mathbf{P}(X = x_1)$   $\mathbf{P}(X = x_2)$  ...  $\mathbf{P}(X = x_k)$  ...

Дискретната сл.в. е дефинирана, ако знаем възможните ѝ стойности и техните вероятности.

$$E(X) = \mu = \sum_{k} x_k \mathbf{P}(X = x_k).$$

 $\Delta ucnepcus$  на дискретната сл.в. X наричаме числото

$$\operatorname{Var}(X) = \sigma^2 = \operatorname{E}(X - \mu)^2 = \operatorname{E}(X^2) - \mu^2 = \sum_k (x_k)^2 \mathbf{P}(X = x_k) - \mu^2.$$

#### 3.1.1. Бернулиево разпределение

Разглеждаме експеримент (опит), при който може да се случи събитието A, което условно наричаме ycnex, или да не се случи събитието A, т.е. да се случи допълнението  $A^c = \overline{A}$ , което наричаме neycnex. Такъв опит наричаме neycnex при хвърляне на монета се интересуваме от събитието nextriangle пада се езиnextriangle и го наричаме "успех", падането на тура ще е "неуспех". Ако при хвърляне на зар се интересуваме от това дали се е паднала шестица, за нас "успех" ще бъде падането на шестица, а "неуспех" – падането на число различно от шестица.

Дефинираме случайна величина X по следния начин:

$$X = \begin{cases} 1, & \text{при } ycnex \\ 0, & \text{при } neycnex \end{cases}$$

$$P(X = 1) = p, P(X = 0) = 1 - p = q$$

Казваме, че случайната величина X има Бернулиево разпределение с параметър p.

#### 3.1.2. Биномно разпределение

Да разгледаме поредица от n независими Бернулиеви опити с една и съща вероятност за  $ycnex\ p$  и нека q=1-p. Нека X е броя успехи в тази поредица опити.

$$\mathbf{P}(X = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, 2, \dots, n.$$

Случайната величина X наричаме биномно разпределена с параметри n,p и означаваме  $X \in \mathrm{Bi}(n,p)$  или  $X \sim \mathrm{Bi}(n,p)$ .

Средно и дисперсия:

$$E(X) = np, \quad Var(X) = npq.$$

$$\begin{aligned} \text{dbinom}(k,\ n,\ p) \ &= \mathbf{P}(X=k) = \binom{n}{k} p^k q^{n-k}. \\ \text{pbinom}(k,\ n,\ p) \ &= \mathbf{P}(X \leq k). \end{aligned}$$

 ${\tt rbinom}(N, n, p)$  генерира N случайни числа от биномно разпределение с параметри n, p.

Ако  $X_1$  има Бернулиево разпределение с параметър p, то  $X_1 \sim \text{Bi}(1,p)$ . Ако  $X_1, X_2, \ldots, X_n$  са независими Бенулиеви сл.в. с параметър p, то сумата им има биномно разпределение:  $X_1 + X_2 + \ldots + X_n \sim \text{Bi}(n,p)$ .

#### 3.1.3. Геометрично разпределение

Разглеждаме поредица от независими Бернулиеви опити с вероятност за  $ycnex\ p$  и нека q=1-p. Нека X е броя опити до първия успех (включително), с други думи, първият успех е на X-тия опит.

$$P(X = k) = q^{k-1}p, \quad k = 1, 2, 3, \dots$$

Случайната величина X наричаме геометрично разпределена с параметър p и означаваме  $X \sim \mathrm{Ge}(p)$ .

Средно и дисперсия:

$$E(X) = \frac{1}{p}, \quad Var(X) = \frac{q}{p^2}.$$

$$dgeom(k-1, p) = P(X = k) = q^{k-1}p.$$

$$pgeom(k-1, p) = P(X < k).$$

rgeom(N, p) + 1 генерира N случайни числа от Ge(p).

 $\langle ! \rangle$  Понякога случайната величина Y = брой неуспехи преди първия успех в поредица от независими Бернулиеви опити, също се нарича геометрично разпределена. Очевидно X = Y + 1. Ще използваме означението  $Y \sim \text{Ge}^*(p)$ .

$$P(Y = k) = P(X = k + 1) = q^k p, \quad k = 0, 1, 2, ...$$

Средно и дисперсия:

$$E(Y) = E(X - 1) = \frac{1}{p} - 1 = \frac{q}{p},$$

$$Var(Y) = Var(X - 1) = Var(X) = \frac{q}{n^2}.$$

$$dgeom(k, p) = \mathbf{P}(Y = k) = q^k p.$$

 $pgeom(k, p) = P(Y \le k).$ 

rgeom(N, p) генерира N случайни числа от  $Ge^*(p)$ .

#### 3.1.4. Отрицателно биномно разпределение

Разглеждаме поредица от независими Бернулиеви опити с вероятност за  $ycnex\ p$  и нека q=1-p. Нека X е броя опити до r-тия успех (включително), с други думи, r-тият успех е на X-тия опит (r е фиксирано цяло число).

$$\mathbf{P}(X=k) = {\binom{k-1}{r-1}} p^r q^{k-r}, \quad k = r, r+1, r+2, \dots$$

Случайната величина X наричаме отрицателно биномно разпределена с параметри r, p и означаваме  $X \sim \mathrm{NB}(r, p)$ .

Средно и дисперсия:

$$E(X) = \frac{r}{p}, \quad Var(X) = \frac{rq}{p^2}.$$

$$\operatorname{dnbinom}(k-r, r, p) = \mathbf{P}(X=k) = \binom{k-1}{r-1} p^r q^{k-r}.$$
 
$$\operatorname{pnbinom}(k-r, r, p) = \mathbf{P}(X \le k).$$

 ${\tt rnbinom}(N, r, p) + r$  генерира N случайни числа от  ${\tt NB}(r,p)$ .

 $\langle ! \rangle$  Понякога случайната величина Y = брой неуспехи преди r-тия успех в поредица от независими Бернулиеви опити, също се нарича отрицателно биномно разпределена. Очевидно X = Y + r. Ще използваме означението  $Y \sim \mathrm{NB}^*(r,p)$ .

$$\mathbf{P}(Y = k) = {r+k-1 \choose r-1} p^r q^k, \quad k = 0, 1, 2, \dots$$

Средно и дисперсия:

$$E(Y) = \frac{rq}{p}, \quad Var(Y) = \frac{rq}{p^2}.$$

$$\mathtt{dnbinom}(k,\ r,\ p)\ = \mathbf{P}(Y=k) = \binom{r+k-1}{r-1} p^r q^k.$$

$$pnbinom(k, r, p) = P(Y \le k).$$

rnbinom(N, r, p) генерира N случайни числа от  $NB^*(r, p)$ .

#### 3.1.5. Хипергеометрично разпределение

В кутия има M бели и N-M черни топки. Вадим n топки без да ги връщаме. Нека X е броя на извадените бели топки.

$$\mathbf{P}(X=k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}, \quad k = 0, 1, 2, \dots, n.$$

Случайната величина X наричаме хипергеометрично разпределена с параметри N, M, n и означаваме  $X \sim \mathrm{HG}(N, M, n)$ . В горната формула приемаме, че  $\binom{n}{k} = 0$  ако k < 0 или n < k. Вероятностите  $\mathbf{P}(X = k)$  са положителни за  $\max(0, n - N + M) \le k \le \min(M, n)$ .

Средно и дисперсия:

$$E(X) = n \frac{M}{N}, \quad Var(X) = n \frac{M}{N} \frac{N-M}{N} \frac{N-n}{N-1}.$$

$$\mathrm{dhyper}(k\,,\,M\,,\,N-M\,,\,n)\,=\mathbf{P}(X=k)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}.$$

phyper(k, 
$$M$$
,  $N-M$ ,  $n$ ) =  $\mathbf{P}(X \le k)$ .

 ${\tt rhyper}(R, M, N-M, n)$  генерира R случайни числа от хипергеометрично разпределение с параметри N, M, n.

#### 3.1.6. Поасоново разпределение

Казваме, че случайната величина X има Поасоново разпределение с параметър  $\lambda>0$  и означаваме  $X\sim \mathrm{Po}(\lambda),$  ако

$$\mathbf{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Средно и дисперсия:

$$E(X) = \lambda, \quad Var(X) = \lambda.$$

dpois
$$(k, \lambda) = \mathbf{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

 $ppois(k, \lambda) = P(X < k).$ 

 $\mathtt{rpois}(N, \lambda)$  генерира N случайни числа от Поасоново разпределение с параметър  $\lambda$ .

Поасоновото разпределение може да се използва като апроксимация на биномното за големи стойности на n и малки стойности на  $p, np = \lambda$ , т.е.

$$\binom{n}{k} p^k q^{n-k} \approx e^{-\lambda} \frac{\lambda^k}{k!}.$$

| Разпределение                | Функция в R                        | $\mathbf{P}(X=k)$                                   | k                     |
|------------------------------|------------------------------------|-----------------------------------------------------|-----------------------|
| Bi(n,p)                      | dbinom(k, n, p)                    | $\binom{n}{k} p^k q^{n-k}$                          | $0,1,2,\ldots,n$      |
| $\operatorname{Ge}(p)$       | ${\tt dgeom}(k-1,\ p)$             | $q^{k-1}p$                                          | $1, 2, 3, \dots$      |
| $Ge^*(p)$                    | dgeom(k, p)                        | $q^k p$                                             | $0,1,2,\ldots$        |
| NB(r, p)                     | dnbinom(k-r, r, p)                 | $\binom{k-1}{r-1}p^rq^{k-r}$                        | $r, r+1, r+2, \ldots$ |
| $NB^*(r,p)$                  | dnbinom(k, r, p)                   | $\binom{r+k-1}{r-1}p^rq^k$                          | $0,1,2,\ldots$        |
| $\mathrm{HG}(N,M,n)$         | $\texttt{dhyper}(k,\ M,\ N-M,\ n)$ | $\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$ | $0,1,2,\ldots,n$      |
| $\operatorname{Po}(\lambda)$ | $	ext{dpois}(k,\ \lambda)$         | $e^{-\lambda} \frac{\lambda^k}{k!}$                 | $0,1,2,\ldots$        |

### 3.2. Непрекъснати сл.в.

Случайната величина X наричаме nenperschama, ако съществува неотрицателна функция f(x), такава че

$$\mathbf{P}(a \le X \le b) = \int_a^b f(x)dx.$$

Функцията f(x) наричаме nл $\sigma$ тност на случайната величина X. С други думи, вероятност да наблюдаваме стойност в интервала [a,b] е равна на интеграл от плътност в граници от a до b.

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx.$$

 $\Delta ucnepcus$  на непрекъснатата сл.в. X наричаме числото

$$Var(X) = \sigma^2 = E(X - \mu)^2 = E(X^2) - \mu^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2.$$

Cтандартно отклонение на сл.в. X наричаме числото  $\sigma = \sqrt{\mathrm{Var}(X)}$ .

Функцията  $F(q) = \mathbf{P}(X \le q)$  се нарича функция на разпределение на сл.в. X.

Обратната функция  $Q(p) = F^{-1}(p)$  се нарича *квантилна функция* на сл.в. X. Ако F(q) е строго растяща,  $Q(p) = q \iff \mathbf{P}(Y \leq q) = p$ . В общия случай квантилната функция се дефинира така:  $Q(p) = \inf\{q: F(q) \geq p\}, p \in (0,1)$ .

#### 3.2.1. Равномерно разпределение

Случайната величина X наричаме равномерно разпределена в интервала (a, b) и означаваме  $X \sim \mathrm{U}(a, b)$  ако нейната плътност има вида:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b), \\ 0, & x \notin (a,b). \end{cases}$$

Средно и дисперсия:

$$E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}.$$

 $\begin{aligned} & \text{dunif}(x,\ a,\ b) \ = f(x). \\ & \text{punif}(q,\ a,\ b) \ = \mathbf{P}(X \le q) = F(q). \\ & \text{qunif}(p,\ a,\ b) \ = Q(p) = F^{-1}(p). \end{aligned}$ 

 ${\tt runif}(N, a, b)$  генерира N случайни числа от равномерно разпределение в интервала (a, b).



Фигура 3.1. Равномерно разпределение: графики на плътността при различни стойности на параметрите.

**Задача 3.1.** Генерирайте 500 случайни числа от равномерно разпределение в интервала (2,3). Начертайте хистограма на генерираните числа и на същата картинка добавете графика на плътността f(x). Повторете същото с 5000 случайни числа.

```
> u <- runif(500, 2, 3)
> hist( u, probability=T )
> curve( dunif(x, 2, 3), from=2, to=3, add=T, lwd=2.5 )
```



Фигура 3.2.

#### 3.2.2. Експоненциално разпределение

Случайната величина X наричаме експоненциално разпределена с параметър  $\lambda>0$  и означаваме  $X\sim \operatorname{Exp}(\lambda)$  ако нейната плътност има вида:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Средно и дисперсия:

$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}.$$

 $dexp(x, \lambda) = f(x).$ 

 $pexp(q, \lambda) = P(X \le q) = F(q).$ 

 $qexp(p, \lambda) = Q(p) = F^{-1}(p).$ 

 $\mathtt{rexp}(N$ ,  $\lambda$ ) генерира N случайни числа от експоненциално разпределение с параметър  $\lambda$ .



Фигура 3.3. Експоненциално разпределение: графики на плътността при стойности на параметъра  $\lambda=6/5,\ 3/5,\ 1/5.$ 

**Задача 3.2.** Генерирайте 500 случайни числа от експоненциално разпределение с параметър  $\lambda = 1/7$ . Начертайте хистограма на генерираните числа и на същата картинка добавете графика на плътността f(x). Повторете същото с 5000 случайни числа.

```
> ex <- rexp(500, rate=1/7)
> hist( ex, probability=T )
> curve( dexp(x, rate=1/7), from=0, to=max(ex), add=T, lwd=2.5 )
```



#### 3.2.3. Нормално разпределение

Случайната величина X наричаме нормално разпределна с параметри  $\mu$ ,  $\sigma^2$  и означаваме  $X \sim \mathcal{N}(\mu, \sigma^2)$  ако нейната плътност има вида:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}.$$

Средно и дисперсия:

$$E(X) = \mu, \quad Var(X) = \sigma^2.$$

 $dnorm(x, \mu, \sigma) = f(x).$ 

 $pnorm(q, \mu, \sigma) = P(X \le q) = F(q).$ 

 $qnorm(p, \mu, \sigma) = Q(p) = F^{-1}(p).$ 

 ${\tt rnorm}(N, \mu, \sigma)$  генерира N случайни числа от нормално разпределение с параметри  $\mu, \sigma.$ 



 $\Phi$ игура 3.5. Нормално разпределение: графики на плътността при  $\mu=5$  и няколко стойности на  $\sigma$ .



*Фигура 3.6.* Нормално разпределение: графики на плътността при няколко стойности на  $\mu$  и  $\sigma=1$ .

**Задача 3.3.** Генерирайте 500 случайни числа от нормално разпределение с параметри  $\mu=0,\,\sigma=1.$  Начертайте хистограма на генерираните числа и на същата картинка добавете графика на плътността f(x). Повторете същото с 5000 случайни числа.

```
> nr <- rnorm(500, 0, 1)
> hist( nr, probability=T, xlim=c(-3.5,3.5) )
> curve( dnorm(x, 0, 1), add=T, lwd=2.5 )
```





Фигура 3.7.

| Разпределение                 | Функция в R             | f(x)                                                  | x                   |
|-------------------------------|-------------------------|-------------------------------------------------------|---------------------|
| $\mathrm{U}(a,b)$             | dunif(x, a, b)          | $\frac{1}{b-a}$                                       | (a,b)               |
| $\operatorname{Exp}(\lambda)$ | $dexp(x, \lambda)$      | $\lambda e^{-\lambda x}$                              | $[0, \infty)$       |
| $\mathcal{N}(\mu,\sigma^2)$   | $dnorm(x, \mu, \sigma)$ | $\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$ | $(-\infty, \infty)$ |

### 4. Данни. Таблици и графики

"Data! Data! Data!" he cried impatiently.

"I can't make bricks without clay."

Sherlock Holmes
(Adventures of the Copper Breeches by A.C. Doyle)

Нека X е някаква променлива, от която се интересуваме, например пулса на човек при определена ситуация, времето на безотказна работа на машина, броя пътници в метрото за един ден, съдържанието на калий в един портокал и т.н. Записването на стойността на променливата X наричаме наблюдение. Обикновено, за да "изучим" променливата X правим многократно наблюдения. Съвкупността от наблюдавани стойности на променливата X наричаме данни за X и ще означаваме:  $x_1, x_2, \ldots, x_n$ , като n е броя на наблюденията, които сме направили. Например, ако измерим съдържанието на калий в 30 портокала, ще имаме 30 наблюдения:  $x_1, \ldots, x_{30}$  над променливата X = съдържание на калий в един портокал.

Множеството от всички възможни наблюдения, които можем да направим над една променлива наричаме *популация* или генерална съвкупност. Понякога популацията се отъждествява с множеството от обекти, които можем да наблюдаваме, например населението на България, персонала на дадена фирма, потребителите на даден продукт; тези популации имат краен брой елементи. Но ако правим лабораторен експеримент, който може да бъде повторен многократно, популацията е съвкупността от всички възможни експерименти и е безкрайна.

Тази част от популацията, която реално наблюдаваме, се нарича *извадка*. Например, ако не можем да наблюдаваме всички потребители на даден продукт, избираме по някакъв (случаен) начин част от тях и правим наблюдения само върху тази част. Когато правим лабораторен експеримент, го повтаряме само краен брой пъти и направените експерименти са нашата извадка. Извадката винаги има краен брой елементи.

**Типове данни.** Има два основни типа данни – числови (количествени) и категорни (неколичествени).

*Числови данни* – стойностите на наблюдаваната променлива са числа. Например брой пътници в метрото, температура на въздуха, пулс, брой продадени билети.

Категории данни – стойностите на променливата (наричаме ги категории или нива) нямат никакви числови свойства. Например пол, цвят на очите, населено място, кръвна група, майчин език, марка телефон и т.н. Категориите на дадена променлива са взаимно изключващи се.

За удобство при обработка на данните, категориите обикновено се кодират с числа, например 0= здрав, 1= болен или 1= кафяв, 2= черен, 3= син, 4= зелен. Естествено, тези кодове са условни, нямат количествен смисъл.

След като са събрани, данните трябва да се представят в някакъв обобщен вид, за да се добие представа за основните им характеристики. Ще разгледаме често използваните таблични и графични техники за представяне на данни.

### 4.1. Категорни данни

Попитали сме 20 души кой интернет браузър използват най-често (допитването е направено през юли 2011). Записали сме отговорите във файла browsers.txt. Прочитаме данните в R по следния начин:

```
> dt <- read.table("browsers.txt")</pre>
```

Записваме ги във вектора brows:

```
> brows <- dt$V1</pre>
> brows
 [1] "IE"
                "Firefox" "Firefox" "IE"
                                                 "IE"
                                                            "Chrome"
                                                                        "Firefox"
 [8] "Firefox" "IE"
                           "Chrome"
                                      "Firefox" "IE"
                                                            "Chrome"
                                                                       "IE"
[15] "IE"
                "Chrome"
                           "Firefox" "IE"
                                                 "Safari"
                                                            "Opera"
> class(brows)
[1] "character"
```

В случая имаме 20 наблюдения над категорна променлива с 5 категории: *Chrome, Firefox, IE, Opera, Safari*. Може да представим данните в таблица, показваща колко пъти се среща всяка от категориите:

```
> table(brows)
brows
Chrome Firefox IE Opera Safari
     4     6     8     1     1
```

Виждаме, че Chrome ползват 4 човека, Firefox ползват 6 човека и т.н.

Ако разделим броя срещания на общия брой наблюдения (n=20) ще получим каква част (процент) от хората са използат съответния браузър:

```
> table(brows)/length(brows)
brows
Chrome Firefox IE Opera Safari
    0.20    0.30    0.40    0.05    0.05
```

От този таблица разбираме, че *Chrome* ползват 20% от запитаните, *Firefox* ползват 30% от запитаните и т.н.

Можем да сортираме таблицата в намаляващ ред:

```
> sort( table(brows)/length(brows), decreasing=T )
brows
    IE Firefox Chrome Opera Safari
    0.40    0.30    0.20    0.05    0.05
```

С помощта на функцията barplot представяме съответната таблица във вид на графика, в коята всяка категория е представена със стълб с височина равна на съответната стойност от таблицата.

С функцията **pie** получаваме кръгова диаграма – всяка от категориите е представена като сектор от един кръг (с ъгъл, пропорционален на броя срещания).

```
> barplot( table(brows) )
> barplot( table(brows)/length(brows) )
> barplot( sort(table(brows)/length(brows), decreasing=T) )
> pie( table(brows) )
```



Фигура 4.1. Графично представяне на категорни данни

#### 4.2. Числови данни

Иван си е отбелязвал времето (в минути) на чакане на автобуса всяка сутрин в продължение на 25 дни. Записваме данните във вектора wait:

```
> wait < c(2,3,3,5,5,2,7,10,4,3,1,7,11,10,5,6,3,8,5,12,5,3,8,5,7)
```

Отново може да представим данните в таблица:

```
> table(wait)
wait
  1  2  3  4  5  6  7  8 10 11 12
  1  2  5  1  6  1  3  2  2  1  1
```

Таблицата показва, че една минунта е чакал само веднъж, 2 минути – 2 пъти, 3 минути – 5 пъти и т.н.

Числовите данни обикновено могат да приемат много на брой стойности. Затова използването на подобна таблица не винаги е удачно. Вместо това, интервалът от възможни стойности се разбива на подинтервали (равни по дължина) и се прави таблица, показваща броя наблюдения във всеки подинтервал. В случая ще разделим интервала (0, 12] на 6 подинтервала.

```
> wait.grp <- cut( wait, breaks=seq(0,12,2) )
> table(wait.grp)
```

```
wait.grp
  (0,2]
           (2,4]
                    (4,6]
                             (6,8]
                                     (8,10] (10,12]
      3
               6
                        7
                                 5
                                          2
> table(wait.grp)/length(wait)
wait.grp
  (0,2]
           (2,4]
                    (4,6]
                             (6,8]
                                     (8,10] (10,12]
   0.12
            0.24
                     0.28
                              0.20
                                       0.08
                                                0.08
```

От първата таблица разбираме, че две или по-малко минути е чакал 3 пъти, от 2 до 4 минути е чакал 6 пъти и т.н. Втората таблица е с проценти: от 2 до 4 минути е чакал в 24% от дните, най-често е чакал между 4 и 6 минути – в 28% от дните.

Като използваме функцията barplot може да представим получената таблица във вид на графика, в коята всеки подинтервал е представен със стълб с височина равна на броя наблюдения в подинтервала (фиг. 4.2).

#### > barplot( table(wait.grp) )



Подобна графика получаваме и с фунцията hist — прилагаме я за вектора wait; тя разделя интервала на подинтервали и за всеки подинтервал рисува стълб с височина равна на броя наблюдения в подинтервала (фиг. 4.3). Такава графика се нарича *хистограма*.

#### > hist(wait)



Фунцията hist сама определя какви да са подинтервалите. Но ако искаме може да зададем какви да бъдат, например може да разделим интервала (0,12] на 4 подинтервала:

#### > hist(wait, breaks=seq(0,12,3))



 $\langle ! \rangle$  По подразбиране hist разделя интервала от стойности [a,b] по следния начин:  $[a,c_1]$   $(c_2,c_3]$   $(c_4,c_5]$  ...  $(c_n,b]$ , т.е. първият подинтервал е от вида  $[\ ,\ ]$ , а останалите  $(\ ,\ ]$ .

Командата hist(..., probability=T) чертае хистограма, така че сумата от лицата на всички стълбове (правоъгълници) е единица. Лицето на даден стълб е равно на честотата на данните в съответния интервал. Различава се от хистограмата hist(...) само по скалата на оста y.

Оранжевата линия на Фиг. 4.5 се нарича честотен полигон.



Друг начин за графично представяне на числови данни е показан на Фиг. 4.6. На графиката всяко наблюдение е представено с кръгче.

```
stripchart(wait, method="stack", pch=20, cex=1.5)
```



Фигура 4.6.

Числови данни могат да бъдат преставени и чрез диаграмата "клон с листа" (stemand-leaf plot). Подходяща е при малък обем на извадката (малко наблюдения). В известен смисъл е вариант на хистограмата от времената, когато графичните възможности на компютрите са били по-ограничени.

Да се върнем на данните wait. При разделяне на интервала на [0,4] (4,9] (9,12] се получава:

#### > stem(wait)

The decimal point is 1 digit(s) to the right of the |

- 0 | 122333334
- 0 | 555555677788
- 1 | 0012

С параметъра scale може да увеличим броя на подинтервалите (например, ако зададем scale=2 интервалите ще са повече, но не е ясно колко ще са). На следващата диаграма са [0,1] (1,3] (3,5] ... (9,11] (11,13], всяко наблюдение в съответния интервал е представено с 0:

#### > stem(wait, scale=2)

The decimal point is at the |

- 0 | 0
- 2 | 0000000
- 4 | 0000000
- 6 | 0000
- 8 I 00
- 10 | 000
- 12 | 0

На следващата картинка, интервалите са (0,1] (1,2] (2,3] . . . (11,12], отново всяко наблюдение в съответния интервал е представено с 0, т.е. показва ни, че 1 се среща един път, 2 - два пъти, 3 - пет пъти, 4 - един път и т.н.

#### > stem(wait, scale=3)

#### The decimal point is at the |

```
1 | 0
2 | 00
3 | 00000
4 | 0
5 | 000000
6 | 0
7 | 000
8 | 00
9 |
10 | 00
11 | 0
```

От трите получени картинки, при първата и третата данните могат да бъдат възстановени еднозначно, докато при втората (scale=2) не могат – например в интервала [2, 3] всички наблюдения са означени по един начин и не знаем колко от тях са '2' и колко '3'.

### 5. Числови характеристики на данните

Nothing in life is to be feared, it is only to be understood. Marie Curie

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над някаква числова променлива X. Ще означаваме най-малкото по големина наблюдение с  $x_{(1)}$ , следващото по големина с  $x_{(2)}$ , и т.н., най-голямото с  $x_{(n)}$ , т.е.  $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$ .

 $Cpedha\ cmoйносm\ (cpeдho)$  на данните  $x_1, x_2, \ldots, x_n$  наричаме числото

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \ldots + x_n}{n}.$$

Нарича се още извадъчно средно.

 $Me\partial uaнa$  на данните  $x_1, x_2, \ldots, x_n$  наричаме числото

$$\widehat{Me} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{при нечетно } n \\ \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \text{при четно } n \end{cases}$$

Нарича се още извадъчна медиана. По-малки или равни на медианата са поне половината от данните и по-големи или равни са също поне половината от данните. Грубо казано, медианата разделя данните на две равни части.

p-квантил на данните  $x_1, x_2, \ldots, x_n$  наричаме числото, от което са по-малки или равни поне 100p% от данните и са по-големи или равни поне 100(1-p)%. Грубо казано, p-квантилът разделя данните на две части, съответно от 100p% и останалите 100(1-p)%. Нарича се още извадъчен p-квантил.

0.5-квантилът е всъщност медианата, 0.25-квантилът се нарича  $n \bar{\nu} p \bar{\nu} u$  квартил  $(Q_1)$ , а 0.75-квантилът се нарича  $m p \bar{\nu} u u$  квартил  $(Q_3)$ . Разликата между третия и първия квартил  $(Q_3 - Q_1)$  се нарича  $u \mu \bar{\nu} u \bar$ 

C тандартно отклонение на данните  $x_1, x_2, \ldots, x_n$  наричаме числото

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1}}.$$

Нарича се още извадъчно стандартно отклонение.

*Неравенство на Чебишев*. Нека данните  $x_1, x_2, \ldots, x_n$  имат средна стойност  $\overline{x}$  и стандартно отклонение s. За всяко k>0 е вярно, че поне  $100(1-1/k^2)$  процента от данните лежат в интервала  $[\overline{x}-ks, \overline{x}+ks]$ . При k=3 получаваме, че поне 88.9% от данните са в интервала  $[\overline{x}-3s, \overline{x}+3s]$ .

Средната стойност и медианата показват центъра на данните в някакъв смисъл. Медианата е център на данните в смисъл, че е по средата на сортираните данни, т.е. приблизително половината от данните са по-малки и приблизително половината са по-големи от нея.

За да изясним в какъв смисъл средната стойност е център на данните, ще покажем, че  $\sum_{i=1}^{n}(x_i-\overline{x})=0$ . Наистина

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x}$$
$$= n \frac{1}{n} \sum_{i=1}^{n} x_i - n \overline{x}$$
$$= n \overline{x} - n \overline{x} = 0.$$

Това тъждество означава, че ако сумираме на разликите на всяко наблюдение от средната стойност ще получим нула. С други думи, сумата на положителните разлики е равна на сумата на отрицателните разлики. В този смисъл средната стойност е център на данните – балансира сумата на положителните и сумата на отрицателните разлики.

Стандартното отклонение характеризира разпръскването на данните около средната стойност. То всъщност е корен от усреднения квадрат на разликата на всяко наблюдение от средната стойност (засега няма да изясняваме, защо усреднява се като се дели на (n-1) на вместо на n). Друга мярка за разпръскването (разсейването) на данните е разликата между най-голямото и най-малкото наблюдение,  $x_{(n)} - x_{(1)}$ , нарича се pазмаx.

Интервалът от неравенството на Чебишев ни дава представа доколко далече от средното може да се простират данните, ако са ни известни  $\overline{x}$  и s.

Нека данните  $x_1, x_2, \ldots, x_n$  са записани във вектора  $\mathbf{x}$ . Горните числови характеристики се пресмятат в  $\mathbf{R}$  със следните функции:

```
\overline{x} = \text{mean(x)}
\widehat{Me} = \text{median(x)}
p-квантил = quantile(x, p)
Q_1 = \text{quantile(x, 0.25)}
Q_3 = \text{quantile(x, 0.75)}
IQR = IQR(x)
s = \text{sd(x)}
```

**Пример 1.** Разглеждаме данните airquality. В променливата airquality\$Темр има наблюдения за температурата (градуси по Фаренхайт) в Ню Йорк от май до септември 1973.

Пресмятаме медианата, средната стойност и стандартното отклонение:

```
> temp <- airquality$Temp
> median(temp)
[1] 79
> mean(temp)
[1] 77.88235
> sd(temp)
[1] 9.46527
```

Функцията summary ни дава някои от разгледаните числови характеристики:

```
> summary(temp)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
56.00 72.00 79.00 77.88 85.00 97.00
```

Интервалът от неравенството на Чебишев е  $[\overline{x} - 3s, \overline{x} + 3s] = [49.5, 106.3]$ . Може да забележим, че всички данни са в този интервал.

```
> mean(temp) - 3*sd(temp)
[1] 49.48654
> mean(temp) + 3*sd(temp)
[1] 106.2782
```

На следващата графика е показана хистограма на температурата и са нанесени средното  $\overline{x}$  и интервалът от неравенството на Чебишев:



Първият квартил, медианата, третият квартил, както и най-малкото и най-голямото наблюдение се изобразяват на графика, наречена  $кутия \ c \ mycmauu$ , с помощта на фунцията boxplot :

#### > boxplot(temp, horizontal=T)



Фигура 5.2. Кутия с мустаци на temp

В данните airquality има и измервания на съдържанието на озон във въздуха (променливата airquality\$0zone).

```
> ozone <- airquality$0zone</pre>
> median(ozone, na.rm=T)
[1] 31.5
> mean(ozone, na.rm=T)
[1] 42.12931
> sd(ozone, na.rm=T)
[1] 32.98788
> summary(ozone)
  Min. 1st Qu.
                                                     NA's
                 Median
                            Mean 3rd Qu.
                                             Max.
                   31.50
                           42.13
                                           168.00
                                                        37
          18.00
                                    63.25
> mean(ozone, na.rm=T) - 3*sd(ozone, na.rm=T)
[1] -56.83434
> mean(ozone, na.rm=T) + 3*sd(ozone, na.rm=T)
[1] 141.093
```

На следващата графика е дадена хистограма на **ozone** и са нанесени средното  $\overline{x}$  и интервалът от неравенството на Чебишев:



Кутия с мустаци на ozone:



Наблюденията, които не попадат в интервала  $[Q_1 - 1.5 * IQR, Q_3 + 1.5 * IQR]$  се изобразяват с кръгче. В случая има две наблюдения извън този интервал. Такива наблюдения се считат за необичайни (outliers).

```
> quantile(ozone, 0.25, names=F, na.rm=T) - 1.5*IQR(ozone, na.rm=T)
[1] -49.875
> quantile(ozone, 0.75, names=F, na.rm=T) + 1.5*IQR(ozone, na.rm=T)
[1] 131.125
```

### 6. Многомерни данни

The advanced reader who skips parts that appear to him too elementary may miss more than the less advanced reader who skips parts that appear to him too complex.

G. Polya

Когато наблюдаваме (измерваме) повече от една променлива, наричаме данните многомерни. Те обикновено се записват в таблица от вида:

|   | X     | Y           | Z     | <br>W     |
|---|-------|-------------|-------|-----------|
| 1 | $x_1$ | $y_1$ $y_2$ | $z_1$ | <br>$w_1$ |
| 2 | $x_2$ | $y_2$       | $z_2$ | <br>$w_2$ |
| 3 | $x_3$ | $y_3$       | $z_3$ | <br>$w_3$ |
| : | :     | ÷           | ÷     | ÷         |
| n | $x_n$ | $y_n$       | $z_n$ | <br>$w_n$ |

където всеки ред отговаря на едно наблюдение (опит, измерване, участник в изследване и т.н.), а всяка колона отговаря на една променлива. Тук ще се запознаем с някои основни техники за боравене с многомерни данни.

Многомерните данни се представят в R чрез обект наречен data frame. Той е подобен на матрица, с тази разлика, че колоните могат да бъдат от различен тип.

Ще разгледаме данните survey от пакета MASS. Тези данни съдържат отговорите на няколко въпроса, зададени на 237 студенти от курса Cтатистика I в Университета на Аделаида (не е ясно кога е направена анкетата).

За да използваме обекти от даден пакет го зареждаме с командата library (packageName).

```
> library(MASS)
> ?survey
> str(survey)
'data.frame':
                237 obs. of 12 variables:
        : Factor w/ 2 levels "Female", "Male": 1 2 2 2 2 1 2 1 2 2 ...
$ Wr.Hnd: num 18.5 19.5 18 18.8 20 18 17.7 17 20 18.5 ...
$ NW.Hnd: num 18 20.5 13.3 18.9 20 17.7 17.7 17.3 19.5 18.5 ...
$ W.Hnd : Factor w/ 2 levels "Left", "Right": 2 1 2 2 2 2 2 2 2 2 ...
$ Fold : Factor w/ 3 levels "L on R", "Neither", ...: 3 3 1 3 2 1 1 3 3 3 ...
$ Pulse : int 92 104 87 NA 35 64 83 74 72 90 ...
$ Clap : Factor w/ 3 levels "Left", "Neither", ...: 1 1 2 2 3 3 3 3 3 ...
\ Exer \ : Factor w/ 3 levels "Freq", "None", ...: 3 2 2 2 3 3 1 1 3 3 ....
 $ Smoke : Factor w/ 4 levels "Heavy", "Never", ...: 2 4 3 2 2 2 2 2 2 ...
$ Height: num 173 178 NA 160 165 ...
$ M.I
         : Factor w/ 2 levels "Imperial", "Metric": 2 1 NA 2 2 1 1 2 2 2 ...
$ Age
         : num 18.2 17.6 16.9 20.3 23.7 ...
```

(!) По-нататък в тази глава, когато говорим за променлива, ще разбираме наблюденията над тази променлива (стойностите от съответната колона в таблицата по-горе).

```
fix(survey) - извежда данните като таблица;
summary(survey) - числови характеристики за всяка променлива;
survey[ ,'Age'] - променливата Age;
```

```
survey$Age - променливата Age (друг начин);
survey[ ,12] - дванадесетата променлива;
survey[5, ] - петото наблюдение;
```

Може да се обръщаме към промелнивите от даден data frame директно (например Age вместо survey\$Age), ако напишем attach(dataFrameName).

```
> summary(Age)
Error in summary(Age) : object 'Age' not found
> summary(survey$Age)
   Min. 1st Qu.
                  Median
                            Mean 3rd Qu.
                                             Max.
  16.75
          17.67
                   18.58
                           20.37
                                    20.17
                                            73.00
> attach(survey)
> summary(Age)
  Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                             Max.
  16.75
          17.67
                   18.58
                           20.37
                                    20.17
                                            73.00
```

Понякога има липсващи наблюдения за дадена променлива. Във R те се означават с NA. За да се пресметнат някои числови характеристики (например средно, медиана, стандартно отклонение) на променлива, в която има липсващи наблюдения, тези наблюдения трябва да се игнорират при пресмятането (например, при пресмятане на средно се пресмята средното на останалите). Това се задава с параметъра na.rm=T.

```
> mean(Age)
[1] 20.37451
> mean(Pulse)
[1] NA
> mean(Pulse, na.rm=T)
[1] 74.15104
> summary(Pulse)
  Min. 1st Qu.
                                                     NA's
                 Median
                            Mean 3rd Qu.
                                             Max.
          66.00
                   72.50
                           74.15
                                   80.00 104.00
                                                    45.00
  35.00
```

По подразбиране R показва 7 значещи цифри след десетичната точка. За следващите примери ще ги намалим на 3:

```
> options(digits=3)
```

Когато наблюдаваме няколко променливи, често се интересуваме от някакви връзки между тях. Да разгледаме променливите Smoke и W. Hnd. И двете са категорни. Във Smoke е записана честотата на пушене, има следните категории: Heavy, Regul, Occas, Never. Във W. Hnd е записано с коя ръка пише студентът (Left, Right). Може да представим двете променливи в двумерна таблица (крос-таблица):

```
> table(Smoke, W.Hnd)
       W.Hnd
Smoke
        Left Right
  Heavy
            1
                 10
  Never
           13
                175
  Occas
            3
                  16
            1
  Regul
                  16
```

От подобна таблица може да разберем, например, колко от студентите пишат с лявата ръка (Left) и не пушат (Never). В тази таблица са изключени липсващите наблюдения; те могат да бъдат показани с добавяне на useNA="always".

```
> table(Smoke, W.Hnd, useNA="always")
       W.Hnd
Smoke
        Left Right <NA>
  Heavy
                 10
            1
                175
  Never
           13
                        1
  Occas
            3
                 16
                        0
  Regul
            1
                 16
                        0
  <NA>
                        0
            0
                   1
```

Вместо броя срещания, двумерната таблица може да показва относителния дял (процент). Ще разгледаме три вида такива таблици. Ако разделим първата таблица на общия брой наблюдения, които са 235 (поради изключването на липсващите), ще получим таблицата:

От нея може да разберем, например, че 74.5% от студентите пишат с дясната ръка и не пушат.

Ако разделим всеки ред от първата таблица на сумата на реда, получаваме таблица с редови процент; за целта използваме командата prop.table(tab.smoke.hand, 1). От тази таблица може да разберем, например, че 84.2% от пушещите "понякога" (Occas) пишат с дясната ръка.

```
> prop.table(tab.smoke.hand, 1)
          W.Hnd
Smoke     Left Right
    Heavy 0.0909 0.9091
    Never 0.0691 0.9309
    Occas 0.1579 0.8421
    Regul 0.0588 0.9412
```

Ако разделим всяка колона от първата таблица на сумата на колоната, получаваме таблица с колонен процент; за целта пишем prop.table(tab.smoke.hand, 2). От тази таблица може да видим, например, че 7.37% от пишещите с дясната ръка пушат "понякога" (Occas).

Като използваме функцията barplot може да представим горните таблици графично по различни начини:



Фигура 6.1.

```
barplot( prop.table( tab.smoke.hand, 2 ) )
barplot( t( prop.table( tab.smoke.hand, 1 ) ) )
```



Фигура 6.2.

Може да се интересуваме доколко стойностите на дадена числова променлива се различават при различните нива (категории) на някаква категорна променлива. Да разгледаме числовата променливата Pulse, в която е записан пулсът на студента и категорната променлива Smoke. Със следната команда получаваме кутия с мустаци на Pulse за всяка от категориите на Smoke (променливата Pulse се разбива по категориите на Smoke и за всяка категория се рисува кутия с мустаци).

### > boxplot(Pulse ~ Smoke)



Следната команда представя променливата Pulse разбита по категориите на Smoke, като всяко наблюдение е изобразено с квадратче:

## > stripchart(Pulse ~ Smoke, vertical=T)



Нека във вектора  $\mathbf{x}$  са записани наблюденията  $x_1, \ldots, x_n$  над някаква числова променлива, а във вектора  $\mathbf{y}$  – наблюденията  $y_1, \ldots, y_n$  над друга числова променлива. Командата  $\mathbf{plot}(\mathbf{x},\mathbf{y})$  изобразява точките  $(x_1,y_1),\ldots,(x_n,y_n)$  в координатната система Oxy. Изобразяването на две променливи на такава графика, може да ни подскаже за някаква зависимост между тях. Ще изобразим по двойки някои от следните променливи:

```
Неight — височина на студента (в сантиметри);

Pulse — пулс на студента;

Wr. Hnd — дължина на педята на ръката, с която студентът пише (в сантиметри);

NW. Hnd — дължина на педята на ръката, с която студентът не пише (в сантиметри);

> plot (Height. Pulse)
```





Фигура 6.5.



Фигура 6.6.



Фигура 6.7.

Нека  $x_1, \ldots, x_n$  са наблюдения над някаква числова променлива X, а  $y_1, \ldots, y_n$  са наблюдения над друга числова променлива Y. Числото

$$r = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2 \sum_{i} (y_i - \overline{y})^2}}$$

се нарича useadочна kopenauus на променливите X и Y. То е мярка за линейната зависимост между тях. Пресмята се с cor(x,y).

Ако точките  $(x_1, y_1), \ldots, (x_n, y_n)$  са близо да права линия, то r е близо до 1 или -1 и казваме, че променливите са положително или отрицателно корелирани, съответно. Ако r е близо до 0, казваме, че променливите са некорелирани.

 $\langle ! \rangle$  Ако точките  $(x_1, y_1), \ldots, (x_n, y_n)$  са близо до прави от вида x = const или y = const, извадъчната корелация r ще е близка до 0. (Защо?)

Ще намерим корелациите на двойките променливи, които изобразихме на графики погоре. Тъй като има липсващи наблюдения, за да се игнорират при пресмятането, добавяме use="complete.obs".

```
> cor(Height, Pulse, use="complete.obs")
[1] -0.0839
> cor(Wr.Hnd, Height, use="complete.obs")
[1] 0.601
> cor(Wr.Hnd, NW.Hnd, use="complete.obs")
[1] 0.948
```

Корелацията между Height и Pulse е близка до 0. Тази между Wr.Hnd и Height е по-близо до 1, а между Wr.Hnd и NW.Hnd е почти 1.

# 7. Централна гранична теорема

When you're tired of walking up a long hill you think about how easy it's going to be walking down.

T. Hillerman

Централната гранична теорема има ключово значение в теорията на вероятностите и статистиката. Наречена е така от унгарския математик George Polya именно заради централната ѝ роля. Най-общо, централната гранична теорема твърди, че средното аритметично на достатъчно голям брой случайни величини има нормално разпределение. Същото важи и за сумата на достатъчно голям брой случайни величини. Има различни варианти на централната гранична теорема, които се различават по това какви условия поставяме за случайните величини.

Нека  $X_1, X_2, \ldots, X_n$  са независими и еднакво разпределени случайни величини със средно  $\mathrm{E}(X_i) = \mu$  и крайна дисперсия  $\mathrm{Var}(X_i) = \sigma^2$ . Означаваме  $\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n)$ . Централната гранична теорема гласи, че за големи стойности на n, разпределението на случайната величина  $\overline{X} - \mu \over \sigma/\sqrt{n}$  се приближава до стандартно нормално разпределение  $\mathcal{N}(0, 1)$ . Това означава, че за големи стойности на n,

$$\mathbf{P}\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \le a\right) \approx \mathbf{P}(Y \le a),$$
 където  $Y \sim \mathcal{N}(0, 1).$ 

Еквивалентна формулировка:

$$\mathbf{P}\left(\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \le a\right) \approx \mathbf{P}(Y \le a), \qquad Y \sim \mathcal{N}(0, 1).$$

Съответните вероятности може да пресметнем в R с функцията pnorm:

$$\mathbf{P}\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \leq a\right) \approx \mathtt{pnorm}(a)$$
.

**Задача 7.1.** (За упраженение на любознателния читател.) Нека  $X_1, X_2, \ldots, X_n$  са независими и еднакво разпределени случайни величини със средно  $E(X_i) = \mu$  и крайна дисперсия  $Var(X_i) = \sigma^2$ . Намерете:

- а)  $E(X_1 + ... + X_n)$  и  $Var(X_1 + ... + X_n)$ .
- б)  $E(\overline{X})$  и  $Var(\overline{X})$ .

Задача 7.2. (За упраженение на любознателния читател.) Нека X е случайна величина със средно  $\mathrm{E}(X)=\mu$  и крайна дисперсия  $\mathrm{Var}(X)=\sigma^2$ . Покажете, че за случайната величина  $Y=\frac{X-\mu}{\sigma}$  е изпълнено:  $\mathrm{E}(Y)=0$  и  $\mathrm{Var}(Y)=1$ .

**Задача 7.3.** Времето на живот на електрическа крушка от даден тип има експоненциално разпределение със средно 900 часа. Измерено е времето на живот на 100 случайно избрани крушки. Каква е вероятността полученото средно време да е над 980 часа?

**Решение.** Времената на живот на 100 крушки означаваме  $X_1, \ldots, X_{100} \sim \text{Exp}(1/900)$ .

$$\mu = \mathrm{E}(X_i) = 1/\lambda = 900$$
 $\sigma = \sqrt{\mathrm{Var}(X_i)} = \sqrt{1/\lambda^2} = 1/\lambda = 900$ 
 $\overline{X} = \frac{1}{100}(X_1 + \ldots + X_{100})$ 

$$\mathbf{P}(\overline{X} > 980) = 1 - \mathbf{P}(\overline{X} \le 980) = 1 - \mathbf{P}\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le \frac{980 - \mu}{\sigma/\sqrt{n}}\right)$$

$$= 1 - \mathbf{P}\left(\frac{\overline{X} - 900}{900/\sqrt{100}} \le \frac{980 - 900}{900/\sqrt{100}}\right)$$
 $\approx 1 - \mathrm{pnorm}(a)$ , където  $a = \frac{980 - 900}{900/\sqrt{100}}$ 

> a <- (980-900)/(900/sqrt(100))
> 1 - pnorm(a)
[1] 0.1870314

**Задача 7.4.** Времето на чакане (в секунди) на асансьор в сграда е равномерно разпределено в интервала (0, 60). Ако засечем времето на чакане на 50 човека, каква е вероятността полученото средно време да е между 25 и 35 секунди?

**Решение.** Времената на чакане на 50 човека означаваме  $X_1, \ldots, X_{50} \sim \mathrm{U}(0, 60)$ .

$$\begin{split} &\mu = \mathrm{E}(X_i) = 30 \\ &\sigma = \sqrt{\mathrm{Var}(X_i)} = \sqrt{60^2/12} = 60/\sqrt{12} \\ &\overline{X} = \frac{1}{50}(X_1 + \ldots + X_{50}) \\ &\mathbf{P}(25 < \overline{X} < 35) = \mathbf{P}(\overline{X} < 35) - \mathbf{P}(\overline{X} < 25) \\ &= \mathbf{P}\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{35 - \mu}{\sigma/\sqrt{n}}\right) - \mathbf{P}\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{25 - \mu}{\sigma/\sqrt{n}}\right) \\ &= \mathbf{P}\left(\frac{\overline{X} - 30}{60/\sqrt{12}\sqrt{50}} < \frac{35 - 30}{60/\sqrt{12}\sqrt{50}}\right) - \mathbf{P}\left(\frac{\overline{X} - 30}{60/\sqrt{12}\sqrt{50}} < \frac{25 - 30}{60/\sqrt{12}\sqrt{50}}\right) \\ &\approx \mathrm{pnorm}(a) - \mathrm{pnorm}(-a) \;, \; \text{където} \; a = \frac{35 - 30}{60/\sqrt{12}\sqrt{50}} \end{split}$$

> a <- (35-30)/(60/(sqrt(12)\*sqrt(50)))
> pnorm(a) - pnorm(-a)
[1] 0.9587732

Задача 7.5. Регистрираният багаж на пътниците в даден самолет не трябва да надвишава общо 4000 кг. Количеството регистриран багаж на произволно избран пътник е случайна величина със средно 24 кг и стандартно отклонение 7 кг. Каква е вероятността общото количество регистриран багаж в самолет със 160 пътници да надвиши 4000 кг?

**Решение.** Количествата багаж на 160 пътници означаваме  $X_1, \dots, X_{160}$ .

$$\begin{split} &\mu = \mathrm{E}(X_i) = 24, \qquad \sigma = \sqrt{\mathrm{Var}(X_i)} = 7 \\ &\mathbf{P}\left(X_1 + \ldots + X_{160} > 4000\right) = 1 - \mathbf{P}\left(X_1 + \ldots + X_{160} \leq 4000\right) \\ &1 - \mathbf{P}\left(\frac{X_1 + \ldots + X_{160} - 160 * 24}{7\sqrt{160}} \leq \frac{4000 - 160 * 24}{7\sqrt{160}}\right) \\ &\approx 1 - \mathrm{pnorm}(a) \;, \; \mathrm{където} \; a = \frac{4000 - 160 * 24}{7\sqrt{160}} \end{split}$$

```
> a <- (4000 - 160*24)/(7*sqrt(160))
> 1 - pnorm(a)
[1] 0.03537991
```

# 8. Проверка на хипотези при една извадка

If the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery. E. Fermi

## 8.1. Уводни бележки

Наблюденията  $x_1, x_2, \ldots, x_n$  над променливата X може да разглеждаме като n независими наблюдения над случайна величина X с някакво разпределение. Оказва се удобно да разглеждаме  $x_1, x_2, \ldots, x_n$  като наблюдения над случайни величини  $X_1, X_2, \ldots, X_n$ , които са независими и имат същото разпределение като X, т.е.  $x_1$  е наблюдение над сл.в.  $X_1, x_2$  е наблюдение над сл.в.  $X_2$  и т.н. Случайните величини  $X_1, X_2, \ldots, X_n$  ще наричаме u звадка (понякога самите наблюдения  $x_1, x_2, \ldots, x_n$  се наричат извадка).

Така, средното на данните (извадъчно средно)  $\overline{x} = (x_1 + \ldots + x_n)/n$  е всъщност наблюдавана стойност над съответната случайна величина  $\overline{X} = (X_1 + \ldots + X_n)/n$ , а стандартното

отклонение на данните (извадъчно стандартно отклонение)  $s=\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n-1}}$  е наблю-

давана стойност над случайната величина  $S = \sqrt{\frac{\sum_{i=1}^{n}(X_i - \overline{X})^2}{n-1}}.$ 

Нека случайната величина X има средно  $\mathrm{E}(X)=\mu$  и дисперсия  $\mathrm{Var}(X)=\sigma^2$  (понякога се наричат популационно средно и популационна дисперсия). Съгласно централната гранична теорема за големи стойности на n (обикновено се приема  $n\geq 30$ ) разпределението на случайната величина  $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$  се приближава до стандартно нормално разпределение  $\mathcal{N}(0,1)$ . За практически цели може да използваме, че при големи стойности на n случайната величина  $\overline{X}$  е приблизително нормално разпределена със средно  $\mu$  и дисперсия  $\sigma^2/n$ , т.е.  $\overline{X}\sim \mathcal{N}(\mu,\sigma^2/n)$ .

 $\langle ! \rangle$  Изразът независими и еднакоо разпределени случайни величини се среща много често. Ако случайните величини  $X_1, \ldots, X_n$  са независими, стойността на дадена случайна величина не носи информация за стойностите на останалите. Еднакво разпределени случайни величини означава, че всички имат една и съща функция на разпределение, т.е. вероятността  $\mathbf{P}(X_i \leq t)$  е една и съща за всяко  $i=1,\ldots,n$ .

**Пример 1.** Хвръляме зар 20 пъти. Нека случайната величина  $X_i$  е броя на точките, които се падат при i-тото хвърляне. Случайните величини  $X_1, \ldots, X_{20}$  са независими, тъй като резултатът от дадено хвърляне не носи информация за резултата от останалите хвърляния. Случайните величини  $X_1, \ldots, X_{20}$  са еднакво разпределени, тъй като вероятността да се падне дадена страна на зара не се променя.

**Пример 2.** Измерено е времето на живот на 50 електрически крушки от дадена марка. Нека  $X_i$  е времето на живот на i-тата крушка. Това, че знаем колко е времето на живот на дадена крушка не носи информация за останалите крушки, следователно  $X_1, \ldots, X_{50}$  са независими. Въпреки, че времето на живот варира от крушка на крушка, можем да предположим вероятностна еднородност, т.е., че времената на живот  $X_1, \ldots, X_{50}$  имат едно и също вероятностно разпределение.

## 8.2. z-тест за средно

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Средното  $E(X_i) = \mu$  е неизвестно, но знаем дисперсията  $Var(X_i) = \sigma^2$ .

Означаваме  $\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n)$ . Нека  $\overline{x}$  е наблюдаваната стойност на  $\overline{X}$ .

Искаме въз основа на данните да отговорим дали имаме основание да твърдим, че  $\mu$  е равно на някаква предварително зададена стойност  $\mu_0$ .

Формално записваме това по следния начин:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

Казваме, че проверяваме хипотезата  $H_0$  срещу алтернативата  $H_1$ . Хипотезата  $H_0$  наричаме *нулева хипотеза*, а  $H_1$  наричаме *алтернативна хипотеза*. Най-общо, отхвърляме  $H_0$ , ако това, което сме наблюдавали е малко вероятно да се случи, когато  $H_0$  е вярна. За да намерим съответната вероятност, разглеждаме случайната величина

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}.$$

Когато  $X_1, X_2, \ldots, X_n$  са нормално разпределени, случайната величина Z има стандартно нормално разпределение. Ако  $X_1, X_2, \ldots, X_n$  имат произволно разпределение, за големи стойности на n случайната величина Z има приблизително стандартно нормално разпределение.

Нека  $z_{\rm obs}$  е наблюдаваната стойност на Z, като сме заместили  $\mu=\mu_0$ :

$$z_{\rm obs} = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Отхвърляме нулевата хипотеза, ако  $\mathbf{P}_0(Z \ge |z_{\rm obs}| \cup Z \le -|z_{\rm obs}|) \le \alpha$ . Означаваме с  $\mathbf{P}_0$  вероятността при условие нулевата хипотеза, т.е. при  $\mu = \mu_0$ .

Вероятността  $\mathbf{P}_0(Z \ge |z_{\text{obs}}| \cup Z \le -|z_{\text{obs}}|)$  наричаме P-стойност (P-value).

Числото  $\alpha$  се нарича *ниво на значимост* или *ниво на съгласие*. Нивото на значимост обикновено се определя предварително, като най-често се взема 0.05 или 0.1 или 0.01.

Описаната процедура наричаме z-тест за средно.

Най-общо,  $z_{\rm obs}$  измерва отклонението на данните от нулевата хипотеза. Ако това отклонение е твърде голямо, нулевата хипотеза се отхвърля. По-точно, нулевата хипотеза се отхвърля ако е малко вероятно да има такова отклонение при вярна нулева хипотеза. Р-стойността е именно вероятността да се наблюдава такова отклонение (или по-голямо по модул) при вярна нулева хипотеза.

Алтернативната хипотеза може да е от вида  $H_1: \mu > \mu_0$  или  $H_1: \mu < \mu_0$ , тогава наричаме теста едностранен, а когато  $H_1: \mu \neq \mu_0$  – двустранен. Как се пресмята Р-стойността при различните алтернативни хипотези е дадено в таблицата по-долу.

Р-стойност при различни алтернативни хипотези

| $H_1: \mu \neq \mu_0$                                               | $H_1: \mu > \mu_0$                                      | $H_1: \mu < \mu_0$                                      |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $\mathbf{P}_0(Z \ge  z_{\text{obs}}  \cup Z \le - z_{\text{obs}} )$ | $\mathbf{P}_0(Z \ge z_{\mathrm{obs}}) = \text{P-value}$ | $\mathbf{P}_0(Z \le z_{\mathrm{obs}}) = \text{P-value}$ |
| $= 2 \mathbf{P}_0(Z \ge  z_{\text{obs}} ) = \text{P-value}$         |                                                         |                                                         |
| P-value - Z <sub>obs</sub>   0  Z <sub>obs</sub>                    | P-value<br>0 z <sub>obs</sub>                           | P-value Z <sub>obs</sub> 0                              |

## z-тест за средно

#### Статистика:

Пресмятаме наблюдаваната стойност  $z_{\rm obs} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$ .

#### Р-стойност:

| $H_0$         | $H_1$            | P-value                                                                                         |
|---------------|------------------|-------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$ | $\mu \neq \mu_0$ | $2 \mathbf{P}_0(Z \ge  z_{\mathrm{obs}} ) = 2*(1-\mathtt{pnorm}(\mathtt{abs}(\mathtt{z.obs})))$ |
| $\mu = \mu_0$ | $\mu > \mu_0$    | $\mathbf{P}_0(Z \geq z_{\mathrm{obs}}) = 	exttt{1-pnorm(z.obs)}$                                |
| $\mu = \mu_0$ | $\mu < \mu_0$    | $\mathbf{P}_0(Z \leq z_{\mathrm{obs}}) = \mathtt{pnorm}(\mathtt{z.obs})$                        |

#### Извод:

Aко P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Aко P-value  $> \alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

Задача 8.1. Фирма произвежда електрически крушки. Средното време на живот на една крушка е 2000 часа със стандартно отклонение 300 часа. Предложен е нов тип крушки. Изпробвани са 100 крушки от новия тип. Резултатите показват средно време на живот на новите крушки 2100 часа и същото стандартно отклонение. Може ли да се твърди, че средното време на живот на новия тип крушки е повече от 2000 часа?

**Решение.** Нека  $X_1, \dots, X_{100}$  са времената на живот на 100 крушки от новия тип и нека  $\mu = \mathrm{E}(X_i)$ .

Проверяваме хипотезата

$$H_0: \ \mu = 2000$$

срещу алтернативата

$$H_1: \mu > 2000$$

По условие имаме:

 $\overline{x} = 2100$ 

n = 100

 $\sigma = 300$ 

```
> x.bar <- 2100
> n <- 100
> sigma <- 300
> mu <- 2000
> z.obs <- (x.bar - mu) / (sigma/sqrt(n))
> z.obs
[1] 3.333333
> p.value <- 1-pnorm(z.obs)
> p.value
[1] 0.0004290603
```

Р-стойността е по-малка от 0.05, следователно отхвърляме нулевата хипотеза в полза на алтернативната. Имаме основание да твърдим, че средното време на живот на новия тип крушки е повече от 2000 часа.

## 8.3. t-тест за средно

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Средното  $\mathrm{E}(X_i) = \mu$  и дисперсията  $\mathrm{Var}(X_i) = \sigma^2$  са неизвестни.

Означаваме

$$\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n), \qquad S = \sqrt{\frac{\sum_{i=1}^{n}(X_i - \overline{X})^2}{n-1}}.$$

Нека  $\overline{x}$  е наблюдаваната стойност на  $\overline{X}$ , а s е наблюдаваната стойност на S. Искаме въз основа на данните да проверим хипотезата

$$H_0: \mu = \mu_0$$

срещу алтернативата

$$H_1: \mu \neq \mu_0$$

Когато  $X_1, X_2, \ldots, X_n$  са нормално разпределени, случайната величина

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

има t-разпределение с n-1 степени на свобода (разпределение на Стюдънт). Ако  $X_1, X_2, \ldots, X_n$  имат произволно разпределение, за големи стойности на n случайната величина T има приблизително t-разпределение с n-1 степени на свобода.

Нека  $t_{\rm obs}$  е наблюдаваната стойност на T, като сме заместили  $\mu = \mu_0$ :

$$t_{\rm obs} = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}.$$

Отхвърляме нулевата хипотеза, ако P-value =  $\mathbf{P}_0(T \ge |t_{\rm obs}| \cup T \le -|t_{\rm obs}|) \le \alpha$ .

Как се пресмята Р-стойността при различните алтернативни хипотези е дадено в таблицата по-долу.

Р-стойност при различни алтернативни хипотези

| $H_1: \mu \neq \mu_0$                                         | $H_1: \mu > \mu_0$                                      | $H_1: \mu < \mu_0$                                      |
|---------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $\mathbf{P}_0(T \ge  t_{\rm obs}  \cup T \le - t_{\rm obs} )$ | $\mathbf{P}_0(T \ge t_{\mathrm{obs}}) = \text{P-value}$ | $\mathbf{P}_0(T \le t_{\mathrm{obs}}) = \text{P-value}$ |
| $= 2 \mathbf{P}_0(T \ge  t_{\rm obs} ) = \text{P-value}$      |                                                         |                                                         |
| P-value - t <sub>obs</sub>   0  t <sub>obs</sub>              | P-value<br>0 t <sub>obs</sub>                           | P-value t <sub>obs</sub> 0                              |

### *t-тест за средно*

#### Статистика:

Пресмятаме наблюдаваната стойност  $t_{\rm obs} = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ .

### Р-стойност:

| $H_0$         | $H_1$            | P-value                                                                 |
|---------------|------------------|-------------------------------------------------------------------------|
| $\mu = \mu_0$ | $\mu \neq \mu_0$ | $2  \mathbf{P}_0(T \geq  t_{ m obs} ) = 2*(1-{ m pt(abs(t.obs), n-1)})$ |
| $\mu = \mu_0$ | $\mu > \mu_0$    | $\mathbf{P}_0(T \geq t_{ m obs})$ = 1-pt(t.obs, n-1)                    |
| $\mu = \mu_0$ | $\mu < \mu_0$    | $\mathbf{P}_0(T \leq t_{ m obs})$ = pt(t.obs, n-1)                      |

### Извод:

Ако P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Aко P-value  $> \alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

Съответната фунция в R е t.test. Използва се по следния начин (във вектора x са записани наблюденията  $x_1, x_2, \ldots, x_n$ ):

 $\begin{array}{ll} H_1: & \mu \neq \mu_0 & \text{t.test(x, mu} = \mu_0) \\ H_1: & \mu > \mu_0 & \text{t.test(x, mu} = \mu_0, \text{alternative='greater')} \\ H_1: & \mu < \mu_0 & \text{t.test(x, mu} = \mu_0, \text{alternative='less')} \end{array}$ 

Задача 8.2. Според исторически данни, средната киселинност на дъждовете в определен индустриален район е 5.2. За да се провери има ли изменение в тази стойност е измерена киселинността на 12 валежа през изминалата година. Получени са следните резултати:

$$6.1 \quad 5.4 \quad 4.8 \quad 5.8 \quad 6.6 \quad 5.3 \quad 6.1 \quad 4.4 \quad 3.9 \quad 6.8 \quad 6.5 \quad 6.3$$

От предишни изследвания е известно, че киселинността на валежите има нормално разпределение. Имаме ли основания да твърдим, че киселинността в района се е променила в сравнение с историческите данни.

**Решение.** Нека  $X_1,\dots,X_{12}$  са киселинностите на 12 валежа през изминалата година и нека  $\mu=\mathrm{E}(X_i).$ 

Проверяваме хипотезата

$$H_0: \mu = 5.2$$

срещу алтернативата

$$H_1: \mu \neq 5.2$$

```
> x <- c(6.1, 5.4, 4.8, 5.8, 6.6, 5.3, 6.1, 4.4, 3.9, 6.8, 6.5, 6.3)
> n <- length(x)
> mu <- 5.2
> t.obs <- (mean(x) - mu) / (sd(x)/sqrt(n))
> t.obs
[1] 1.75562
> p.value <- 2*(1-pt(abs(t.obs), n-1))</pre>
```

```
> p.value
[1] 0.1069226
> t.test(x, mu=5.2)
One Sample t-test

data: x
t = 1.7556, df = 11, p-value = 0.1069
alternative hypothesis: true mean is not equal to 5.2
95 percent confidence interval:
   5.081616 6.251717
sample estimates:
mean of x
   5.666667
> t.test(x, mu=5.2)$p.value
[1] 0.1069226
```

Р-стойността е по-голяма от 0.05, следователно нямаме достатъчно основания да отхвърлим нулевата хипотеза. *Нямаме достатъчно основания да твърдим, че средната киселинност на дъждовете в района се е променила в сравнение с историческите данни.* 

## 8.4. z-тест за пропорция

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени, като  $X_i$  приема стойност 1 с вероятност p или 0 с вероятност 1-p (Бернулиево разпределение). Такива данни могат да се получат, например, при въпрос с два възможни отговора в анкетно проучване. По-общо, такива данни може да разгледаме като резултат от n повторения на опит с два изхода: "успех" и "неуспех". Основния параметър, който ни интересува е вероятността p (нарича се още пропорция), например, вероятността студент да е пушач, вероятността да се появят странични ефекти при употреба на дадено лекарство, вероятността да се появи дефект в батериите произведени от даден завод.

Нека  $X = X_1 + \ldots + X_n$  и  $x = x_1 + \ldots + x_n$  (x е наблюдавания брой успехи). Случайната величина X е биномно разпределена,  $X \sim \text{Bi}(n, p)$ .

Искаме въз основа на данните да проверим хипотезата

$$H_0: p = p_0$$

срещу алтернативата

$$H_1: p \neq p_0$$

Разглеждаме случайната величина

$$Z = \frac{X/n - p}{\sqrt{p(1-p)/n}}.$$

Като вземем предвид, че  $\mathrm{E}(X/n)=p$  и  $\mathrm{Var}(X/n)=p(1-p)/n$ , от централната гранична теорема, за големи стойности на n случайната величина Z има приблизително стнадартно нормално разпределение.

Нека  $z_{\rm obs}$  е наблюдаваната стойност на Z, като сме заместили  $p=p_0$ , т.е.

$$z_{\text{obs}} = \frac{x/n - p_0}{\sqrt{p_0(1 - p_0)/n}}.$$

Отхвърляме нулевата хипотеза, ако P-value =  $\mathbf{P}_0(Z \ge |z_{\text{obs}}| \cup Z \le -|z_{\text{obs}}|) \le \alpha$ .

Как се пресмята Р-стойността при различните алтернативни хипотези е дадено в таблицата по-долу.

Р-стойност при различни алтернативни хипотези

| $H_1: p \neq p_0$                                                   | $H_1: p>p_0$                                            | $H_1: p < p_0$                                          |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $\mathbf{P}_0(Z \ge  z_{\text{obs}}  \cup Z \le - z_{\text{obs}} )$ | $\mathbf{P}_0(Z \ge z_{\mathrm{obs}}) = \text{P-value}$ | $\mathbf{P}_0(Z \le z_{\mathrm{obs}}) = \text{P-value}$ |
| $= 2 \mathbf{P}_0(Z \ge  z_{\text{obs}} ) = \text{P-value}$         |                                                         |                                                         |
| P-value - Z <sub>obs</sub>   0  Z <sub>obs</sub>                    | P-value<br>0 z <sub>obs</sub>                           | P-value Z <sub>obs</sub> 0                              |

#### *z-тест за пропорция*

#### Статистика:

Пресмятаме наблюдаваната стойност  $z_{\rm obs} = \frac{x/n - p_0}{\sqrt{p_0(1-p_0)/n}}$ .

#### Р-стойност:

| $H_0$   | $H_1$        | P-value                                                                                         |
|---------|--------------|-------------------------------------------------------------------------------------------------|
| $p=p_0$ | $p \neq p_0$ | $2 \mathbf{P}_0(Z \ge  z_{\mathrm{obs}} ) = 2*(1-\mathtt{pnorm}(\mathtt{abs}(\mathtt{z.obs})))$ |
| $p=p_0$ | $p > p_0$    | $\mathbf{P}_0(Z \geq z_{\mathrm{obs}}) = 	exttt{1-pnorm(z.obs)}$                                |
| $p=p_0$ | $p < p_0$    | $\mathbf{P}_0(Z \leq z_{\mathrm{obs}}) = \mathtt{pnorm}(\mathtt{z.obs})$                        |

#### Извод:

Aко P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Aко P-value  $> \alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

За проверка на хипотези за пропорция може да се използва фунцията prop.test, която прави подобен тест:

```
H_1: p \neq p_0 prop.test(x=x, n=n, p=p_0, correct=F)

H_1: p > p_0 prop.test(x=x, n=n, p=p_0, alternative='greater', correct=F)

H_1: p < p_0 prop.test(x=x, n=n, p=p_0, alternative='less', correct=F)
```

**Задача 8.3.** Известно е, че при 10% от колите от дадена марка се появява сериозен дефект по време на гаранционния срок. От първите 25000 продадени коли от нов модел, 2700 се оказали с дефект. Може ли да се твърди, че вероятността в кола от новия модел да се появи дефект не е 10%?

Решение. Означаваме с р вероятността кола от новия модел да е дефектна.

Проверяваме хипотезата

$$H_0: p = 0.1$$

срещу алтернативата

$$H_1: p \neq 0.1$$

По условие имаме извадка от 25000 коли, от които дефектни са 2700, т.е.

x = 2700

n=25000

```
> x <- 2700
> n <- 25000
> p <- 0.1
> z.obs <- ((x/n) - p) / sqrt(p*(1-p)*(1/n))
> z.obs
[1] 4.21637
> p.value <- 2*(1-pnorm(abs(z.obs)))
> p.value
[1] 2.482661e-05
```

### За Р-стойността имаме

```
P-value = 2.482661 * 10^{-5} < 0.05,
```

следователно отхвърляме нулевата хипотеза. Имаме основание да твърдим, че вероятността в кола от новия модел да се появи дефект не е 10%.

Същата хипотеза може да проверим с помощта на функцията prop.test:

```
> prop.test(x=2700, n=25000, p=0.1, correct=F)

1-sample proportions test without continuity correction

data: 2700 out of 25000, null probability 0.1

X-squared = 17.778, df = 1, p-value = 2.483e-05
alternative hypothesis: true p is not equal to 0.1

95 percent confidence interval:
    0.1042126 0.1119078
sample estimates:
    p
0.108

> prop.test(x=2700, n=25000, p=0.1, correct=F)$p.value
[1] 2.482661e-05
```

# 9. Проверка на хипотези при две извадки

We all learn by experience, and the lesson this time is that you should never lose sight of the alternative. Sherlock Holmes

(The Adventures of Black Peter by A.C. Doyle)

## 9.1. *t*-тест за разлика на средни

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Нека X е сл.в. със същото разпределение като  $X_i$  и  $\mathrm{E}(X) = \mu_X$ .

Нека  $y_1, y_2, \ldots, y_m$  са наблюдения над случайните величини  $Y_1, Y_2, \ldots, Y_m$ , които са независими и еднакво разпределени. Нека Y е сл.в. със същото разпределение като  $Y_i$  и  $\mathrm{E}(Y) = \mu_Y$ .

Предполагаме, че  $X_1, X_2, \dots, X_n$  и  $Y_1, Y_2, \dots, Y_m$  са независими.

Означаваме

$$\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n), \qquad \overline{Y} = \frac{1}{m}(Y_1 + \ldots + Y_m),$$

$$S_X = \sqrt{\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}}, \qquad S_Y = \sqrt{\frac{\sum_{i=1}^m (Y_i - \overline{Y})^2}{m-1}}.$$

Нека  $\overline{x}$ ,  $\overline{y}$ ,  $s_X$  и  $s_Y$  са наблюдаваните стойности съответно на  $\overline{X}$ ,  $\overline{Y}$ ,  $S_X$  и  $S_Y$ . Искаме да проверим хипотезата

$$H_0: \mu_X = \mu_Y$$

срещу алтернативата

$$H_1: \mu_X \neq \mu_Y$$

Разглеждаме случайната величина

$$T = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}.$$

Ако X и Y са нормално разпределени, случайната величина T има приблизително t-разпределение с  $\nu$  степени на свобода, където

$$\nu = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{(s_X^2/n)^2}{n-1} + \frac{(s_Y^2/m)^2}{m-1}}.$$

В случай, че  $\nu$  не е цяло число, се закръглява надолу. Ако X и Y имат произволно разпределение, за големи стойности на n и m случайната величина T отново има приблизително t-разпределение с  $\nu$  степени на свобода. В този случай може да се използва и приближение със стандартно нормално разпределение.

Нека  $t_{\text{obs}}$  е наблюдаваната стойност на T, като сме заместили  $\mu_X - \mu_Y = 0$ ,

$$t_{\text{obs}} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}.$$

Отхвърляме нулевата хипотеза, ако P-value =  $\mathbf{P}_0(T \ge |t_{\mathrm{obs}}| \cup T \le -|t_{\mathrm{obs}}|) \le \alpha$ .

Как се пресмята Р-стойността при различните алтернативни хипотези е дадено в таблицата по-долу.

Р-стойност при различни алтернативни хипотези

| $H_1: \ \mu_X \neq \mu_Y$                                     | $H_1: \ \mu_X > \mu_Y$                                  | $H_1: \ \mu_X < \mu_Y$                                  |
|---------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $\mathbf{P}_0(T \ge  t_{\rm obs}  \cup T \le - t_{\rm obs} )$ | $\mathbf{P}_0(T \ge t_{\mathrm{obs}}) = \text{P-value}$ | $\mathbf{P}_0(T \le t_{\mathrm{obs}}) = \text{P-value}$ |
| $= 2 \mathbf{P}_0(T \ge  t_{\rm obs} ) = \text{P-value}$      |                                                         |                                                         |
| P-value - t <sub>obs</sub>   0  t <sub>obs</sub>              | P-value<br>0 t <sub>obs</sub>                           | P-value t <sub>obs</sub> 0                              |

### t-тест за разлика на средни: независими извадки

#### Статистика:

Пресмятаме наблюдаваната стойност 
$$t_{\text{obs}} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}.$$

### Р-стойност:

| $H_0$           | $H_1$              | P-value                                                                    |
|-----------------|--------------------|----------------------------------------------------------------------------|
| $\mu_X = \mu_Y$ | $\mu_X \neq \mu_Y$ | $2 \mathbf{P}_0(T \geq  t_{ m obs} ) = 2*(1-{ m pt(abs(t.obs), df} =  u))$ |
| $\mu_X = \mu_Y$ | $\mu_X > \mu_Y$    | $\mathbf{P}_0(T \geq t_{ m obs})$ = 1-pt(t.obs, df= $ u$ )                 |
| $\mu_X = \mu_Y$ | $\mu_X < \mu_Y$    | $\mathbf{P}_0(T \leq t_{ m obs}) = 	ext{pt(t.obs, df=$\nu$)}$              |

#### Извод:

Aко P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Aко P-value >  $\alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

Ако във вектора x запишем наблюденията  $x_1, x_2, \ldots, x_n$ , а във вектора y – наблюденията  $y_1, y_2, \ldots, y_m$ , може да използваме функцията t.test:

 $H_1: \ \mu_X 
eq \mu_Y \quad \text{t.test(x, y)}$ 

 $H_1: \ \mu_X > \mu_Y$  t.test(x, y, alternative='greater')  $H_1: \ \mu_X < \mu_Y$  t.test(x, y, alternative='less')

Задача 9.1. Мениджър обмисля въвеждане на допълнителна 15-минутна почивка за работниците си. За да разбере дали такава почивка ще намали броя на грешките, които правят работниците, избрал случайно 2 групи по 10 души. Първата група имала допълнителна почивка, а втората работила по обичайното работно време. Данните за броя на допуснатите грешки от двете групи са следните:

```
Група 1: 8, 7, 5, 8, 10, 9, 7, 8, 4, 5
Група 2: 7, 6, 14, 12, 13, 8, 9, 6, 10, 9
```

Приемаме, че данните са приблизително нормално разпределени. Може ли да се заключи, че работниците с допълнителна почивка правят средно по-малко грешки?

**Решение.** Нека  $X_1, \ldots, X_{10}$  са грешките на 10 работници с допълнителна почивка, а  $Y_1, \ldots, Y_{10}$  са грешките на 10 работници без допълнителна почивка. Нека  $\mu_X = \mathrm{E}(X_i)$  и  $\mu_Y = \mathrm{E}(Y_i)$ .

Проверяваме хипотезата

```
H_0: \ \mu_X = \mu_Y
```

срещу алтернативата

```
H_1: \mu_X < \mu_Y
```

```
> x < -c(8, 7, 5, 8, 10, 9, 7, 8, 4, 5)
> y < -c(7, 6, 14, 12, 13, 8, 9, 6, 10, 9)
> n <- length(x)
> m <- length(y)
> t.obs <- (mean(x) - mean(y)) / sqrt(var(x)/n + var(y)/m)
> t.obs
[1] -2.126351
> df <- (var(x)/n + var(y)/m)^2 / (((var(x)/n)^2)/(n-1) + ((var(y)/m)^2)/(m-1))
> df
[1] 15.77959
> p.value <- pt(t.obs, df)</pre>
> p.value
[1] 0.02480789
> t.test(x, y, alt="less")
Welch Two Sample t-test
data: x and y
t = -2.1264, df = 15.78, p-value = 0.02481
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
       -Inf -0.4099189
sample estimates:
mean of x mean of y
      7.1
                9.4
```

Р-стойността е по-малка от 0.05, следователно отхвърляме нулевата хипотеза в полза на алтернативната. Имаме основание да твърдим, че средният брой грешки на работниците с допълнителна почивка е по-малък от средния брой на тези без почивка.

## 9.2. t-тест при зависими извадки

Често се налага да сравняваме извадки, които не са независими. Например, измерено е кръвното налягане на 25 души преди и след приема на дадено лекарство. Първата извадка са измерванията  $npe\partial u$ , а втората –  $cne\partial$ . Нека означим данните съответно  $x_1, x_2, \ldots, x_{25}$  и  $y_1, y_2, \ldots, y_{25}$ . Двете извадки не са независими, тъй като  $x_i$  и  $y_i$  са измервания върху един и същи обект (участник в изследването), но при различни условия (преди и след приема на лекарството). Данните в случая са двойки наблюдения (paired data, paired samples), които записваме така:  $(x_1, y_1), \ldots, (x_{25}, y_{25})$ .

Нека  $X_1, X_2, \ldots, X_n$  са независими и еднакво разпределени случайни величини. Нека X е сл.в. със същото разпределение като  $X_i$  и  $\mathrm{E}(X) = \mu_X$ . Нека  $Y_1, Y_2, \ldots, Y_n$  са независими и еднакво разпределени случайни величини. Нека Y е сл.в. със същото разпределение като  $Y_i$  и  $\mathrm{E}(Y) = \mu_Y$ . Предполагаме, че за всяко i случайните величини  $X_i$  и  $Y_i$  са свързани по някакъв начин (не са независими). Нека  $(x_1, y_1), \ldots, (x_n, y_n)$  са наблюдения над  $(X_1, Y_1), \ldots, (X_n, Y_n)$ .

Искаме да проверим хипотезата

$$H_0: \ \mu_X = \mu_Y$$

срещу алтернативата

$$H_1: \mu_X \neq \mu_Y$$

Означаваме

$$D_i = X_i - Y_i, \qquad i = 1, \dots, n,$$

$$\mu_D = \mu_X - \mu_Y,$$

$$\overline{D} = \frac{1}{n}(D_1 + \ldots + D_n), \qquad S_D = \sqrt{\frac{\sum_{i=1}^n (D_i - \overline{D})^2}{n-1}}.$$

Нека  $\overline{d}$  е наблюдаваната стойност на  $\overline{D}$ , а  $s_D$  е наблюдаваната стойност на  $S_D$ . Задачата е еквивалентна на проверка на хипотезата

$$H_0: \ \mu_D = 0$$

срещу алтернативата

$$H_1: \ \mu_D \neq 0$$

Когато X и Y са нормално разпределени, случайната величина

$$T = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}}$$

има t-разпределение с n-1 степени на свобода. Ако X и Y имат произволно разпределение, за големи стойности на n случайната величина T има приблизително t-разпределение с n-1 степени на свобода.

Нека  $t_{\rm obs}$  е наблюдаваната стойност на T, като сме заместили  $\mu_D = \mu_X - \mu_Y = 0$ ,

$$t_{\rm obs} = \frac{\overline{d}}{s_D/\sqrt{n}}.$$

Отхвърляме нулевата хипотеза, ако P-value =  $\mathbf{P}_0(T \ge |t_{\rm obs}| \cup T \le -|t_{\rm obs}|) \le \alpha$ .

Описаната процедура е по същество t-тест приложен за данните  $d_1, d_2, \ldots, d_n$ , където  $d_i = x_i - y_i$ .

### t-тест за разлика на средни: зависими извадки

#### Статистика:

Пресмятаме наблюдаваната стойност  $t_{\rm obs} = \frac{\overline{d}}{s_D/\sqrt{n}}$ .

#### Р-стойност:

| $H_0$           | $H_1$              | P-value                                                                 |
|-----------------|--------------------|-------------------------------------------------------------------------|
| $\mu_X = \mu_Y$ | $\mu_X \neq \mu_Y$ | $2  \mathbf{P}_0(T \geq  t_{ m obs} ) = 2*(1-{ m pt(abs(t.obs), n-1)})$ |
| $\mu_X = \mu_Y$ | $\mu_X > \mu_Y$    | $\mathbf{P}_0(T \geq t_{ m obs})$ = 1-pt(t.obs, n-1)                    |
| $\mu_X = \mu_Y$ | $\mu_X < \mu_Y$    | $\mathbf{P}_0(T \leq t_{ m obs})$ = pt(t.obs, n-1)                      |

#### Извод:

Ако P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Ако P-value  $> \alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

За зависими извадки отново се използва функцията t.test, като трябва да се добави paired=T (във вектора x са наблюденията  $x_1, x_2, \ldots, x_n$ , а във вектора y са  $y_1, y_2, \ldots, y_n$ ):

 $H_1: \mu_X \neq \mu_Y$  t.test(x, y, paired=T)

 $H_1: \mu_X > \mu_Y$  t.test(x, y, alternative='greater', paired=T)

 $H_1: \ \mu_X < \mu_Y \ \ \ {
m t.test(x, y, alternative='less', paired=T)}$ 

Komanдata t.test(x, y, paired=T) дава същия резултат като t.test(x-y).

Задача 9.2. За да се изследва ефекта на диета върху нивото на холестерол в кръвта са избрани 15 мъже на възраст между 35 и 50 години. Нивото на холестерола на всеки участник е измерено преди започване на диетата и три месеца след прилагане на диетата. Данните са следните:

| Участник | Преди | След |
|----------|-------|------|
| 1        | 265   | 229  |
| 2        | 240   | 231  |
| 3        | 258   | 227  |
| 4        | 295   | 240  |
| 5        | 251   | 238  |
| 6        | 245   | 241  |
| 7        | 287   | 234  |
| 8        | 314   | 256  |
| 9        | 260   | 247  |
| 10       | 279   | 239  |
| 11       | 283   | 246  |
| 12       | 240   | 218  |
| 13       | 238   | 219  |
| 14       | 225   | 226  |
| 15       | 247   | 233  |

Приемаме, че нивото на холестерол е нормално разпределено. Дали тези данни дават основание да се твърди, че диетата намалява нивото на холестерол в средно?

**Решение.** Нека  $X_1, \ldots, X_{15}$  са нивата на холестерол на 15 души преди прилагане на диетата, а  $Y_1, \ldots, Y_{15}$  са нивата на холестерол на същите 15 души три месеца след прилагане на диетата. Нека  $\mu_X = \mathrm{E}(X_i)$  и  $\mu_Y = \mathrm{E}(Y_i)$ .

Проверяваме хипотезата

```
H_0: \ \mu_X = \mu_Y
  срещу алтернативата
       H_1: \ \mu_X > \mu_Y
> x < c(265,240,258,295,251,245,287,314,260,279,283,240,238,225,247)
> y <- c(229,231,227,240,238,241,234,256,247,239,246,218,219,226,233)
> d <- x - y
> n <- length(x)
> t.obs <- mean(d) / (sd(d)/sqrt(n))
> t.obs
[1] 5.465874
> p.value <- 1-pt(t.obs, n-1)</pre>
> p.value
[1] 4.157964e-05
> t.test(x, y, alt="greater", paired=T)
Paired t-test
data: x and y
t = 5.4659, df = 14, p-value = 4.158e-05
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 18.20922
               Inf
sample estimates:
mean of the differences
               26.86667
```

Р-стойността е по-малка от 0.05, следователно отхвърляме нулевата хипотеза в полза на алтернативната. Имаме основание да твърдим, че средното ниво на холестерол три месеца след прилагане на диетата е по-ниско от това преди диетата.

63

## 9.3. z-тест за разлика на пропорции

Нека  $x_1$  е наблюдавана стойност на  $X_1 \sim \mathrm{Bi}(n_1,p_1)$ , а  $x_2$  наблюдавана стойност на  $X_2 \sim \mathrm{Bi}(n_2,p_2)$ . Искаме да сравним вероятностите  $p_1$  и  $p_2$ , т.е. да проверим хипотезата  $H_0$ :  $p_1=p_2$ . Такава задача може да възникне, например, ако искаме да сравним вероятността мъж да е пушач и вероятността жена да е пушач. Други примери: вероятността да се появи дефект в батериите произведени от завод 1 и завод 2, вероятността да се появят странични ефекти при употреба на лекарство 1 и лекарство 2. Данните, които имаме са: от  $n_1$  опита при дадено условие сме наблюдавали  $x_1$  пъти успех и от  $n_2$  опита при друго условие сме наблюдавали  $x_2$  пъти успех.

Означаваме

$$\widehat{P} = \frac{X_1 + X_2}{n_1 + n_2}.$$

Нека  $\widehat{p}$  е наблюдаваната стойност на  $\widehat{P}$ . Случайната величина

$$Z = \frac{X_1/n_1 - X_2/n_2 - (p_1 - p_2)}{\sqrt{\widehat{P}(1-\widehat{P})(1/n_1 + 1/n_2)}}$$

има приблизително стнадартно нормално разпределение за големи стойности на  $n_1$  и  $n_2$ . Искаме да проверим хипотезата

$$H_0: p_1 = p_2$$

срещу алтернативата

$$H_1: p_1 \neq p_2$$

Нека  $z_{\rm obs}$  е наблюдаваната стойност на Z, като сме заместили  $p_1-p_2=0,$ 

$$z_{\text{obs}} = \frac{x_1/n_1 - x_2/n_2}{\sqrt{\widehat{p}(1-\widehat{p})(1/n_1 + 1/n_2)}}.$$

Отхвърляме нулевата хипотеза, ако P-value =  $\mathbf{P}_0(Z \ge |z_{\mathrm{obs}}| \cup Z \le -|z_{\mathrm{obs}}|) \le \alpha$ .

Как се пресмята Р-стойността при различните алтернативни хипотези е дадено в таблицата по-долу.

Р-стойност при различни алтернативни хипотези

| $H_1: p_1 \neq p_2$                                                 | $H_1: p_1 > p_2$                                        | $H_1: p_1 < p_2$                                        |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $\mathbf{P}_0(Z \ge  z_{\text{obs}}  \cup Z \le - z_{\text{obs}} )$ | $\mathbf{P}_0(Z \ge z_{\mathrm{obs}}) = \text{P-value}$ | $\mathbf{P}_0(Z \le z_{\mathrm{obs}}) = \text{P-value}$ |
| $= 2 \mathbf{P}_0(Z \ge  z_{\text{obs}} ) = \text{P-value}$         |                                                         |                                                         |
| P-value $- z_{obs}  \qquad 0 \qquad  z_{obs} $                      | P-value<br>0 z <sub>obs</sub>                           | P-value Z <sub>obs</sub> 0                              |

#### *z-тест за разлика на пропорции*

#### Статистика:

Статистика: Пресмятаме наблюдаваната стойност 
$$z_{\rm obs} = \frac{x_1/n_1 - x_2/n_2}{\sqrt{\widehat{p}(1-\widehat{p})(1/n_1 + 1/n_2)}}.$$

#### Р-стойност:

| $H_0$       | $H_1$          | P-value                                                                     |
|-------------|----------------|-----------------------------------------------------------------------------|
| $p_1 = p_2$ | $p_1 \neq p_2$ | $2 \mathbf{P}_0(Z \ge  z_{\mathrm{obs}} ) = 2*(1-\text{pnorm(abs(z.obs))})$ |
| $p_1 = p_2$ | $p_1 > p_2$    | $\mathbf{P}_0(Z \geq z_{\mathrm{obs}}) = 	exttt{1-pnorm(z.obs)}$            |
| $p_1 = p_2$ | $p_1 < p_2$    | $\mathbf{P}_0(Z \leq z_{\mathrm{obs}}) = \mathtt{pnorm}(\mathtt{z.obs})$    |

#### Извод:

Aко P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Aко P-value  $> \alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

Ако във вектора  $\mathbf x$  запишем  $x_1, x_2,$  а във вектора  $\mathbf n$  запишем  $n_1, n_2,$  може да използваме функцията prop.test:

 $H_1: p_1 \neq p_2$ prop.test(x, n, correct=F)  $H_1: p_1 > p_2$  prop.test(x, n, alternative='greater', correct=F)  $H_1: p_1 < p_2$  prop.test(x, n, alternative='less', correct=F)

Задача 9.3. В проучване участвали 220 жени и 210 мъже. Според резултатите, 71 жени и 58 мъже отговорили, че предпочитат безкофеиново кафе. Може ли да твърдим, че процентът на жените, предпочитащи безкофеиново кафе, е различен от процентът на мъжете, предпочитащи безкофеиново кафе?

**Решение.** Нека  $p_1$  е вероятността произволно избрана жена да предпочита безкофеиново кафе, а  $p_2$  е вероятността произволно избран мъж да предпочита безкофеиново кафе. Проверяваме хипотезата

$$H_0: p_1 = p_2$$

срещу алтернативата

$$H_1: p_1 \neq p_2$$

По условие имаме:

$$x_1 = 71, \quad x_2 = 58$$
  
 $n_1 = 220, \quad n_2 = 210$ 

```
> x < -c(71,58)
> n < -c(220,210)
> p.hat <- (x[1] + x[2]) / (n[1] + n[2])
> z.obs <- (x[1]/n[1] - x[2]/n[2]) / sqrt(p.hat*(1-p.hat)*(1/n[1] + 1/n[2]))
> z.obs
[1] 1.052625
> p.value <- 2*(1-pnorm(abs(z.obs)))</pre>
> p.value
[1] 0.292513
```

```
2-sample test for equality of proportions without continuity correction

data: x out of n

X-squared = 1.108, df = 1, p-value = 0.2925

alternative hypothesis: two.sided

95 percent confidence interval:
   -0.03991226   0.13298585

sample estimates:
   prop 1    prop 2

0.3227273   0.2761905
```

Р-стойността е по-голяма от 0.05, следователно нямаме достатъчно основания да отхвърлим нулевата хипотеза. Нямаме основания да твърдим, че процентът на жените, предпочитащи безкофеиново кафе, е различен от процентът на мъжете, предпочитащи безкофеиново кафе.

## 9.4. Два типа грешки

> prop.test(x, n, correct=F)

 $\Gamma peшка \ om \ n \sigma peu \ mun$  наричаме събитието да отхвърлим  $H_0$  при условие, че  $H_0$  е вярна.

 $\Gamma$  решка от втори тип наричаме събитието да не отхвърлим  $H_0$  при условие, че  $H_1$  е вярна.

Mощност на mеста наричаме вероятността да отхвърлим  $H_0$  при условие, че  $H_1$  е вярна.

Казваме, че даден тест е състоятелен, ако вероятността за грешка от втори тип клони към нула при  $n \longrightarrow \infty$ . С други думи, даден тест е състоятелен, ако мощността клони към единица при  $n \longrightarrow \infty$ .

|                        | Заключение на теста |                                      |
|------------------------|---------------------|--------------------------------------|
|                        | не отхвърляме $H_0$ | $omx$ върляме $H_0$ в полза на $H_1$ |
| Н <sub>0</sub> е вярна | вярно заключение    | грешка от тип 1                      |
| $H_1$ е вярна          | грешка от тип 2     | вярно заключение                     |

## 9.5. Критична област

Да разгледаме задачата за проверка на хипотези при известна дисперсия:

 $H_0: \mu = \mu_0$ 

 $H_1: \mu > \mu_0$ 

Според правилото, отхвърляме нулевата хипотеза ако P-value =  $\mathbf{P}(Z \ge z_{\text{obs}}) \le \alpha$ .



За кои стойности на  $z_{\rm obs}$  ще отхвърлим нулевата хипотеза? В най-лошия случай ще отхвърлим  $H_0$ , когато лицето надясно от  $z_{\rm obs}$  е равно на  $\alpha$ . Нека означим  $z_{\alpha}$  да е такова, че  $\mathbf{P}(Z \geq z_{\alpha}) = \alpha$ . Ще отхвърлим  $H_0$  и за всички  $z_{\rm obs}$  по-големи от  $z_{\alpha}$ :

$$P(Z \ge z_{\rm obs}) \le \alpha \iff z_{\rm obs} \ge z_{\alpha}$$



Да разгледаме случая на двустранна алтернатива:

 $H_0: \ \mu = \mu_0$ 

 $H_1: \mu \neq \mu_0$ 

Отхвърляме нулевата хипотеза ако P-value =  $\mathbf{P}(Z \ge |z_{\rm obs}| \cup Z \le -|z_{\rm obs}|) \le \alpha$ .



Тук в най лошия случай ще отхвърлим  $H_0$  когато  $z_{\rm obs} = -z_{\alpha/2}$  или  $z_{\rm obs} = z_{\alpha/2}$ . Ще отхвърлим  $H_0$  и за всички стойности на  $z_{\rm obs}$  по-малки от  $-z_{\alpha/2}$ , както и за стойности по-големи от  $z_{\alpha/2}$ . Така множеството от стойности на  $z_{\rm obs}$ , за които отхвърляме нулевата хипотеза, е  $(-\infty, -z_{\alpha/2}] \cup [z_{\alpha/2}, \infty)$ .



Множеството от стойности на  $z_{\rm obs}$ , за които отхвърляме нулевата хипотеза, се нарича критична област (critical region, rejection region).

| $H_0$         | $H_1$            | Критична област                                        |
|---------------|------------------|--------------------------------------------------------|
| $\mu = \mu_0$ | $\mu \neq \mu_0$ | $(-\infty, -z_{\alpha/2}] \cup [z_{\alpha/2}, \infty)$ |
| $\mu = \mu_0$ | $\mu > \mu_0$    | $[z_{\alpha}, \infty)$                                 |
| $\mu = \mu_0$ | $\mu < \mu_0$    | $(-\infty, -z_{\alpha}]$                               |

При z-тест за пропорция и z-тест за разлика на пропорции, критичните области изглеждат аналогично.

При t-тест за средно и t-тест за разлика на средни, критичните области също са аналогични, но вместо  $z_{\rm obs}$  има  $t_{\rm obs}$  и вместо  $z_{\alpha}$  има  $t_{\alpha}$ , което се дефинира за t-разпределение с съответните степени на свобода.

# 10. Доверителни интервали

An approximate answer to the right question is far better than an exact answer to the wrong question. John Tukey

## 10.1. Уводни бележки

# 10.2. Доверителен интервал за средно при известна дисперсия

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Средното  $E(X_i) = \mu$  е неизвестно, но знаем дисперсията  $Var(X_i) = \sigma^2$ .

Означаваме  $\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n)$ . Нека  $\overline{x}$  е наблюдаваната стойност на  $\overline{X}$ . Когато  $X_1, X_2, \ldots, X_n$  са нормално разпределени, случайната величина

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

има стандартно нормално разпределение. Ако  $X_1, X_2, \ldots, X_n$  имат произволно разпределение, за големи стойности на n случайната величина Z има приблизително стандартно нормално разпределение.

Следните са в сила за големи стойности на n, а при нормално разпределени  $X_1, \ldots, X_n$  са валидни за всяко n и след замяна на " $\approx$ " с равенство:

$$\mathbf{P}\left(-1.96 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1.96\right) \approx 0.95$$

$$\mathbf{P}\left(-1.96 \, \sigma/\sqrt{n} \le \overline{X} - \mu \le 1.96 \, \sigma/\sqrt{n}\right) \approx 0.95$$

$$\mathbf{P}\left(\overline{X} - 1.96 \, \sigma/\sqrt{n} \le \mu \le \overline{X} + 1.96 \, \sigma/\sqrt{n}\right) \approx 0.95$$

Средното  $\mu$  е в интервала  $\left[\overline{X}-1.96\,\sigma/\sqrt{n},\ \overline{X}+1.96\,\sigma/\sqrt{n}\right]$  с вероятност  $\approx 0.95$ . Границите на интервала са случайни величини, тъй като  $\overline{X}$  е случайна величина, а  $\mu$  е константа (неслучайна величина). Това ни дава основание да наречем интервалът

$$\left[ \overline{x} - 1.96 \, \sigma / \sqrt{n}, \quad \overline{x} + 1.96 \, \sigma / \sqrt{n} \right]$$

95-процентен доверителен интервал за средното  $\mu$ .

Нека  $z_{\alpha}$  е такова, че  $\mathbf{P}(Z \geq z_{\alpha}) = \alpha$ .

Интервалът

$$\left[ \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

е  $100(1-\alpha)$ -процентен доверителен интервал за средното  $\mu$ .

 $\langle ! \rangle$  Интервалът  $\left( \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right)$  също може да се нарече  $100(1-\alpha)$ -процентен доверителен интервал за средното  $\mu$ . Тъй като в обосновката по-горе се използва нормално разпределение, което е непрекъснато разпределение, може да заменим " $\leq$ " с "<", т.е.

$$\mathbf{P}\left(\overline{X} - 1.96\,\sigma/\sqrt{n} < \mu < \overline{X} + 1.96\,\sigma/\sqrt{n}\right) \approx 0.95.$$

- Задача 10.1. Фирма произвежда електрически крушки. Средното време на живот на една крушка е 2000 часа със стандартно отклонение 300 часа. Предложен е нов тип крушки. Изпробвани са 100 крушки от новия тип. Резултатите показват средно време на живот на новите крушки 2100 часа и същото стандартно отклонение.
- а) Намерете 95-процентен доверителен интервал за средното време на живот на новия тип крушки.
- б) Ако са изпробвани 200 крушки и останалите данни са същите, намерете 95-процентен доверителен интервал за средното време на живот на новия тип крушки.

```
z1.ci <- function(x.bar, sigma, n, alpha) {
  b1 <- x.bar - qnorm(1-alpha/2)*(sigma/sqrt(n))
  b2 <- x.bar + qnorm(1-alpha/2)*(sigma/sqrt(n))
  c(b1, b2)
}

> z1.ci(x.bar=2100, sigma=300, n=100, alpha=0.05)
[1] 2041.201 2158.799
> z1.ci(x.bar=2100, sigma=300, n=200, alpha=0.05)
[1] 2058.423 2141.577
```

# 10.3. Доверителен интервал за средно при неизвестна дисперсия

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Средното  $\mathrm{E}(X_i) = \mu$  и дисперсията  $\mathrm{Var}(X_i) = \sigma^2$  са неизвестни.

Да означим

$$\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n), \qquad S = \sqrt{\frac{\sum_{i=1}^{n}(X_i - \overline{X})^2}{n-1}}.$$

Нека  $\overline{x}$  е наблюдаваната стойност на  $\overline{X}$ , а s е наблюдаваната стойност на S. Когато  $X_1, X_2, \ldots, X_n$  са нормално разпределени, случайната величина

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

има t-разпределение с n-1 степени на свобода (разпределение на Стюдънт). Ако  $X_1, X_2, \ldots, X_n$  имат произволно разпределение, за големи стойности на n случайната величина T има приблизително t-разпределение с n-1 степени на свобода.

Нека  $t_{n-1,\alpha}$  е такова, че

$$\mathbf{P}(T \ge t_{n-1,\alpha}) = \alpha.$$

Интервалът

$$\left[ \overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \quad \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \right]$$

е  $100(1-\alpha)$ -процентен доверителен интервал за средното  $\mu$ .

**Задача 10.2.** В индустриален район е измерена киселинността на 12 валежа през изминалата година. Получени са следните резултати:

От предишни изследвания е известно, че киселинността на валежите има нормално разпределение.

- а) Намерете 95-процентен доверителен интервал за средната киселинност.
- б) Намерете 99-процентен доверителен интервал за средната киселинност.

```
t1.ci <- function(x.bar, s, n, alpha) {
  b1 <- x.bar - qt(1-alpha/2, df=n-1)*(s/sqrt(n))
  b2 <- x.bar + qt(1-alpha/2, df=n-1)*(s/sqrt(n))
  c(b1, b2)
}

> x <- c(6.1, 5.4, 4.8, 5.8, 6.6, 5.3, 6.1, 4.4, 3.9, 6.8, 6.5, 6.3)

> t1.ci(x.bar=mean(x), s=sd(x), n=length(x), alpha=0.05)
[1] 5.081616 6.251717

> t1.ci(x.bar=mean(x), s=sd(x), n=length(x), alpha=0.01)
[1] 4.841103 6.492230

> t.test(x, conf.level=0.95)$conf.int[1:2]
[1] 5.081616 6.251717

> t.test(x, conf.level=0.99)$conf.int[1:2]
[1] 4.841103 6.492230
```

# 10.4. Доверителен интервал за пропорция (вероятност за успех)

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени, като  $X_i$  приема стойност 1 с вероятност p или 0 с вероятност 1-p (Бернулиево разпределение). Такива данни могат да се получат, например, при въпрос с два възможни отговора в анкетно проучване. По-общо, такива данни може да разгледаме като резултат от n повторения на опит с два изхода: "успех" и "неуспех". Основния параметър, който ни интересува е вероятността p (нарича се още пропорция),

например, вероятността студент да е пушач, вероятността да се появят странични ефекти при употреба на дадено лекарство, вероятността да се появи дефект в батериите произведени от даден завод.

Нека  $X = X_1 + \ldots + X_n$  и  $x = x_1 + \ldots + x_n$ . За оценка на вероятността p използваме  $\widehat{p} = x/n$ , т.е. наблюдавания брой успехи разделен на броя опити (всъщност  $\widehat{p}$  е средното на данните  $x_1, x_2, \ldots, x_n$ ). Случайната величина X е биномно разпределена,  $X \sim \mathrm{Bi}(n, p)$ .

Разглеждаме случайната величина

$$Z = \frac{X/n - p}{\sqrt{p(1-p)/n}}.$$

Като вземем предвид, че E(X/n) = p и Var(X/n) = p(1-p)/n, от централната гранична теорема, за големи стойности на n случайната величина Z има приблизително стнадартно нормално разпределение.

Следните са в сила за големи стойности на n:

$$\mathbf{P}\left(-1.96 \le \frac{X/n - p}{\sqrt{p(1 - p)/n}} \le 1.96\right) \approx 0.95$$

$$\mathbf{P}\left(X/n - 1.96\sqrt{p(1 - p)/n} \le p \le X/n + 1.96\sqrt{p(1 - p)/n}\right) \approx 0.95$$

$$\mathbf{P}\left(X/n - 1.96\sqrt{\widehat{p}(1 - \widehat{p})/n} \le p \le X/n + 1.96\sqrt{\widehat{p}(1 - \widehat{p})/n}\right) \approx 0.95$$

Интервалът

$$\left[\widehat{p} - 1.96\sqrt{\widehat{p}(1-\widehat{p})/n}, \quad \widehat{p} + 1.96\sqrt{\widehat{p}(1-\widehat{p})/n}\right]$$

е 95-процентен доверителен интервал за пропорцията p.

Нека  $z_{\alpha}$  е такова, че  $\mathbf{P}(Z \geq z_{\alpha}) = \alpha$ .

Интервалът

$$\left[\widehat{p} - z_{\alpha/2}\sqrt{\widehat{p}(1-\widehat{p})/n}, \quad \widehat{p} + z_{\alpha/2}\sqrt{\widehat{p}(1-\widehat{p})/n}\right]$$

е  $100(1-\alpha)$ -процентен доверителен интервал за пропорцията p.

**Задача 10.3.** От първите 25000 продадени коли от нов модел, 2700 се оказали с дефект. Намерете 95-процентен доверителен интервал за вероятността кола от новия модел да е дефектна.

```
prop1.ci <- function(x, n, alpha) {
   p.hat <- x/n
   b1 <- p.hat - qnorm(1-alpha/2)*sqrt(p.hat*(1-p.hat)/n)
   b2 <- p.hat + qnorm(1-alpha/2)*sqrt(p.hat*(1-p.hat)/n)
   c(b1, b2)
}

> prop1.ci(x=2700, n=25000, alpha=0.05)
[1] 0.1041526 0.1118474

> prop.test(x=2700, n=25000, conf.level=0.95, correct=F)$conf.int[1:2]
[1] 0.1042126 0.1119078
```

## 10.5. Доверителен интервал за медиана

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Нека X е сл.в. със същото разпределение като  $X_i$  и M е медианата на X, т.е. M = Q(0.5), където Q(p) е квантилната функция на X.

За  $b=1,\ldots,B$ , нека  $x_{1,b}^*,x_{2,b}^*,\ldots,x_{n,b}^*$  е извадка с връщане от  $\{x_1,x_2,\ldots,x_n\}$  и  $\widehat{M}_b^*$  е медианата на  $x_{1,b}^*,x_{2,b}^*,\ldots,x_{n,b}^*$ .

$$x_{1,1}^*$$
  $x_{2,1}^*$  ...  $x_{n,1}^*$   $\widehat{M}_1^*$   $x_{1,2}^*$   $x_{2,2}^*$  ...  $x_{n,2}^*$   $\widehat{M}_2^*$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $x_{1,B}^*$   $x_{2,B}^*$  ...  $x_{n,B}^*$   $\widehat{M}_B^*$ 

Нека  $Q_M^{\rm boot}(\alpha/2)$  е  $\alpha/2$ -квантил на  $\widehat{M}_1^*,\dots,\widehat{M}_B^*$ , а  $Q_M^{\rm boot}(1-\alpha/2)$  е  $(1-\alpha/2)$ -квантил на  $\widehat{M}_1^*,\dots,\widehat{M}_B^*$ .

Интервалът

$$\left[Q_M^{\text{boot}}(\alpha/2), \quad Q_M^{\text{boot}}(1-\alpha/2)\right]$$

е  $100(1-\alpha)$ -процентен доверителен интервал за медианата M. Доверителен интервал, получен по този начин, се нарича бутстрап-процентилен доверителен интервал (bootstrap percentile confidence interval).

Идеята на метода е да се генерират голям брой извадки с връщане от наблюденията  $x_1, x_2, \ldots, x_n$  и да се пресметне медианата на всяка извадка. Желателно е броят B на генерираните извадки да е поне 1000.

Ако във вектора  $\mathbf{x}$  са записани наблюденията  $x_1, x_2, \ldots, x_n$ , извадка с връщане генерираме с командата sample(  $\mathbf{x}$ , size= $\mathbf{n}$ , replace=TRUE ).

Със следната команда генерираме B извадки с връщане от  $\{x_1, x_2, \dots, x_n\}$ , за всяка извадка пресмятаме медианата и получаваме вектор с медианите  $\widehat{M}_1^*, \dots, \widehat{M}_B^*$ :

```
replicate( B, median( sample( x, size=n, replace=TRUE ) ) )
```

Задача 10.4. Направено е проучване с цел да се изследва ефектът на звука от сърдечния ритъм на майката върху новороденото. Бебетата в родилно отделение са разделени на две групи. Първата група е непрекъснато изложена на звука от сърдечния ритъм на възрастен, а втората група не е изложена на такъв звук. Измерена е промяната в теглото на бебетата от раждането до четвъртия ден. Данните са във файла salk.txt. Намерете 95-процентен доверителен интервал за медианата на промяната в теглото на бебетата (за първата и за втората група).

```
med1.ci <- function(x, alpha=0.05, nboot=1000) {
    x <- x[is.finite(x)]
    nx <- length(x)
    est1 <- median(x)
    med1.bt <- replicate( nboot, median( sample( x, size=nx, replace=TRUE ) ) )
    ci <- quantile( med1.bt, probs=c(alpha/2, 1-alpha/2), names=FALSE )
    list( est.med1=est1, ci=ci )
}</pre>
```

```
> salk <- read.table("salk.txt")
> summary(salk)

> med1.ci( salk[,1], alpha=0.05, nboot=10000 )
$est.med1
[1] 10
$ci
[1] -5 35

> med1.ci( salk[,2], alpha=0.05, nboot=10000 )
$est.med1
[1] -45
$ci
[1] -75 -25
```

## 10.6. Доверителен интервал за разлика на медиани

Нека  $x_1, x_2, \ldots, x_n$  са наблюдения над случайните величини  $X_1, X_2, \ldots, X_n$ , които са независими и еднакво разпределени. Нека X е сл.в. със същото разпределение като  $X_i$  и  $M_X$  е медианата на X.

Нека  $y_1, y_2, \ldots, y_m$  наблюдения над случайните величини  $Y_1, Y_2, \ldots, Y_m$ , които са независими и еднакво разпределени. Нека Y е сл.в. със същото разпределение като  $Y_i$  и  $M_Y$  е медианата на Y.

За  $b=1,\ldots,B$ , нека  $x_{1,b}^*,x_{2,b}^*,\ldots,x_{n,b}^*$  е извадка с връщане от  $\{x_1,x_2,\ldots,x_n\}$  и  $\widehat{M}_{X,b}^*$  е медианата на  $x_{1,b}^*,x_{2,b}^*,\ldots,x_{n,b}^*$ . За  $b=1,\ldots,B$ , нека  $y_{1,b}^*,y_{2,b}^*,\ldots,y_{m,b}^*$  е извадка с връщане от  $\{y_1,y_2,\ldots,y_m\}$  и  $\widehat{M}_{Y,b}^*$  е медианата на  $y_{1,b}^*,y_{2,b}^*,\ldots,y_{m,b}^*$ .

За  $b=1,\ldots,B$  дефинираме  $\widehat{D}_b^*=\widehat{M}_{X,b}^*-\widehat{M}_{Y,b}^*$ .

Нека  $Q_D^{\mathrm{boot}}(\alpha/2)$  е  $\alpha/2$ -квантил на  $\widehat{D}_1^*,\ldots,\widehat{D}_B^*$ , а  $Q_D^{\mathrm{boot}}(1-\alpha/2)$  е  $(1-\alpha/2)$ -квантил на  $\widehat{D}_1^*,\ldots,\widehat{D}_B^*$ .

Интервалът

$$\left[ Q_D^{\text{boot}}(\alpha/2), \quad Q_D^{\text{boot}}(1-\alpha/2) \right]$$

е  $100(1-\alpha)$ -процентен доверителен интервал за разликата на медианите  $M_X - M_Y$ . Нарича се бутстрап-процентилен доверителен интервал (bootstrap percentile confidence interval).

**Задача 10.5.** С данните от задача 10.4 намерете 95-процентен доверителен интервал за разликата на медианите на първата и втората група.

```
med2.ci <- function(x, y, alpha=0.05, nboot=1000) {</pre>
  x \leftarrow x[is.finite(x)]
  y <- y[is.finite(y)]
  nx <- length(x)</pre>
  ny <- length(y)
  est1 <- median(x)</pre>
  est2 <- median(y)</pre>
  est.dif <- est1 - est2
  med1.bt <- replicate( nboot, median( sample( x, size=nx, replace=TRUE ) ) )</pre>
  med2.bt <- replicate( nboot, median( sample( y, size=ny, replace=TRUE ) ) )</pre>
  dif.bt <- med1.bt - med2.bt</pre>
  ci <- quantile( dif.bt, probs=c(alpha/2, 1-alpha/2), names=FALSE )</pre>
  list( est.med1=est1, est.med2=est2, est.dif=est.dif, ci=ci )
}
> med2.ci( salk[,1], salk[,2], alpha=0.05, nboot=10000 )
$est.med1
[1] 10
$est.med2
[1] -45
$est.dif
[1] 55
$ci
[1] 30 90
```

## 10.7. Интерпретация на доверителни интервали

Нека сме намерили 95-процентен доверителен интервал  $[b_1, b_2]$  за средното  $\mu$  на сл.в. X. Твърдението

$$\mathbf{P}(b_1 \le \mu \le b_2) = 0.95$$

е погрешно, тъй като в израза няма случайно събитие.

Вярната интерпретация е следната: ако имаме голям брой извадки от дадено разпределение и за всяка от тях намерим доверителен интервал за параметъра  $\mu$ , около 95% от тези интервали ще съдържат  $\mu$ . Аналогична е интерпретацията на доверителен интервал за произволен параметър (в частност, за пропорция p и медиана M).

## 10.8. Връзка между хипотези и доверителни интервали

Да разгледаме задачата за проверка на хипотези при известна дисперсия:

 $H_0: \ \mu = \mu_0$ 

 $H_1: \mu \neq \mu_0$ 

Нулевата хипотеза се отхвърля за стойности на  $z_{\rm obs}$  в множеството  $(-\infty,\,-z_{\alpha/2}]\cup[z_{\alpha/2},\,\infty)$ . След като заместим с израза за  $z_{\rm obs}$ 

$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_{\alpha/2}$$
 или  $\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha/2}$ 

и направим елементарни преобразования получаваме, че  $H_0$  се отхвърля, ако

$$\mu_0 \geq \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 или  $\mu_0 \leq \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ .

Т.е. отхвърляме нулевата хипотеза, ако  $\mu_0$  е извън интервала  $\left(\overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \quad \overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$ , който е  $100(1-\alpha)$ -процентен доверителен интервал за средното  $\mu$ .

Аналогична е връзката между доверителен интервал за средното  $\mu$  при неизвестна дисперсия и t-тест за проверка на хипотезата  $\mu = \mu_0$  срещу  $\mu \neq \mu_0$ .

# 11. Хи-квадрат тестове

The 'laws of Nature' are only constructs of our minds; none of them can be asserted to be true or to be false, they are good in so far as they give good fits to our observations of Nature, and are liable to be replaced by a better 'fit'. . .

Karl Pearson

## 11.1. Хи-квадрат тест за съгласуваност

Тестовете за съгласуваност (goodness-of-fit tests) се използват за да се провери доколко данните са съгласувани с даден вероятностен модел (дали този модел описва добре данните).

Разглеждаме експеримент (опит) с k възможни изхода  $A_1, A_2, \ldots, A_k$  (пълна група събития). Означаваме вероятностите  $\mathbf{P}(A_1) = p_1, \ldots, \mathbf{P}(A_k) = p_k$ . В поредица от n независими опити нека  $X_i$  е броя случвания на събитието  $A_i$ . Случайният вектор  $(X_1, X_2, \ldots, X_k)$  има полиномно разпределение (multinomial distribution) с параметри  $n, p_1, \ldots, p_k$ .

Нека  $x_i$  е наблюдаваната стойност на  $X_i$ , т.е. от n опита, събитието  $A_i$  се е случило  $x_i$  пъти,  $\sum_i x_i = n$ . За големи стойности на n, случайната величина

$$\chi^{2} = \sum_{i=1}^{k} \frac{(X_{i} - np_{i})^{2}}{np_{i}}$$

има хи-квадрат разпределение с k-1 степени на свобода ( $\chi^2$ -разпределение, *chi-square distribution*).

Искаме да проверим хипотезата

$$H_0: (p_1, p_2, \dots, p_k) = (p_1^o, p_2^o, \dots, p_k^o)$$

срещу алтернативата

$$H_1: (p_1, p_2, \dots, p_k) \neq (p_1^o, p_2^o, \dots, p_k^o),$$

където  $p_1^o, \dots, p_k^o$  са предварително зададени стойности.

Пресмятаме

$$\chi_{\text{obs}}^2 = \sum_{i=1}^k \frac{(x_i - np_i^o)^2}{np_i^o},$$

P-value = 
$$\mathbf{P}_0(\chi^2 > \chi_{\rm obs}^2)$$
.

Ако P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Ako P-value >  $\alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

 $\langle ! \rangle$  При вярна нулева хипотеза  $np_i^o$  е очаквания брой случвания на събитието  $A_i$ .

P-стойността се пресмята в R по следния начин:

$$\chi^2_{\rm obs}=$$
 chi2.obs P-value  $={\bf P}_0(\chi^2>\chi^2_{\rm obs})=$  1-pchisq(chi2.obs, df=k-1).



Ако във вектора х запишем  $x_1, \ldots, x_k$ , а във вектора probs запишем  $p_1^o, \ldots, p_k^o$ , може да използваме функцията chisq.test(x, p=probs).

Задача 11.1. Честотите на срещане на буквите в английския език са следните (в %):

В текст, състоящ се от 2004 букви, броят срещания на съответните букви е:

Може ли да се твърди, че текстът е на английски?

**Решение.** Нека  $p_E$  е вероятността да се срещне буква E в текст на същия език,  $p_T$  е вероятността да се срещне буква T, и т.н.,  $p_{\rm oth}$  е вероятността да се срещне някоя от останалите 16 букви в английската азбука.

Проверяваме хипотезата

$$H_0: (p_E, p_T, \dots, p_{\text{oth}}) = (0.1202, 0.0910, \dots, 0.2628)$$

срещу алтернативата

$$H_1: (p_E, p_T, \dots, p_{\text{oth}}) \neq (0.1202, 0.0910, \dots, 0.2628).$$

- > load("letterFreq.RData")
- > probs\*100

Chi-squared test for given probabilities

Р-стойността е по-малка от 0.05, следователно отхвърляме нулевата хипотеза в полза на алтернативната. Нямаме основания да твърдим, че вероятностите за срещане на съответните букви са както в английския език.

78

## 11.2. Хи-квадрат тест за независимост

Разглеждаме експеримент, чиито изходи могат да бъдат класифицирани по два критерия на  $A_1, A_2, \ldots, A_r$  или  $B_1, B_2, \ldots, B_c$ , т.е. изходите могат да бъдат представени като двойки  $(A_i, B_j)$ . С други думи, имаме две категорни променливи A и B с възможни стойности, съответно  $A_1, A_2, \ldots, A_r$  и  $B_1, B_2, \ldots, B_c$ ; например, цвят на очите и цвят на косата. Нека  $p_{ij}$  е вероятността да се случи  $(A_i, B_j)$ , т.е. изходът да е класифициран като  $A_i$  и същевременно като  $B_j$ ; например, вероятността човек да е с руса коса и кафяви очи. Вероятността да се случи  $A_i$  е  $p_{i\bullet} = \sum_j p_{ij}$ , а вероятността да се случи  $B_j$  е  $p_{\bullet j} = \sum_i p_{ij}$ . Вероятностите могат да се представят в следната таблица:

|       | $B_1$           | $B_2$           | <br>$B_c$         |                |
|-------|-----------------|-----------------|-------------------|----------------|
| $A_1$ | $p_{11}$        | $p_{12}$        | <br>$p_{1c}$      | $p_{1\bullet}$ |
| $A_2$ | $p_{21}$        | $p_{22}$        | <br>$p_{2c}$      | $p_{2\bullet}$ |
| :     | :               | :               | :                 | ÷              |
| $A_r$ | $p_{r1}$        | $p_{r2}$        | <br>$p_{rc}$      | $p_{r\bullet}$ |
|       | $p_{\bullet 1}$ | $p_{\bullet 2}$ | <br>$p_{ullet c}$ |                |

В поредица от n независими опити нека  $X_{ij}$  е броя случвания на  $(A_i, B_j)$ . Случайният вектор  $(X_{ij}), i = 1, \ldots, r, j = 1, \ldots, c$ , има полиномно разпределение с параметри  $n, p_{ij}, i = 1, \ldots, r, j = 1, \ldots, c$ . Нека  $X_{i\bullet} = \sum_j X_{ij}$  и  $X_{\bullet j} = \sum_i X_{ij}$ .

Нека  $x_{ij}$  е наблюдаваната стойност на  $X_{ij}$ . В сила е  $\sum_{i,j} x_{ij} = n$ . Данните могат да се представят в таблица от вида:

|       | $B_1$           | $B_2$           | <br>$B_c$           |                |
|-------|-----------------|-----------------|---------------------|----------------|
|       |                 |                 | $x_{1c}$            | $x_{1\bullet}$ |
| $A_2$ | $x_{21}$        | $x_{22}$        | <br>$x_{2c}$        | $x_{2\bullet}$ |
| :     | :               | :               | ÷                   | :              |
| $A_r$ | $x_{r1}$        | $x_{r2}$        | <br>$x_{rc}$        | $x_{r\bullet}$ |
|       | $x_{\bullet 1}$ | $x_{\bullet 2}$ | <br>$x_{\bullet c}$ |                |

Искаме да проверим хипотезата

$$H_0: p_{ij} = p_{i\bullet}p_{\bullet j}$$
 за всяка двойка  $(i,j)$ 

срещу алтернативата

$$H_1: p_{ij} \neq p_{i \bullet} p_{\bullet j}$$
 за поне една двойка  $(i,j)$ 

Нулевата хипотеза означава, че променливите A и B са независими, т.е. за всяка двойка (i,j) е вярно  $\mathbf{P}(A_i,B_j)=\mathbf{P}(A_i)\mathbf{P}(B_j)$ . Алтернативната хипотеза означава, че има някаква връзка (зависимост) между променливите A и B.

Ако нулевата хипотеза е вярна, за големи стойности на n, случайната величина

$$\chi^2 = \sum_{i,j} \frac{(X_{ij} - X_{i\bullet} X_{\bullet j}/n)^2}{X_{i\bullet} X_{\bullet j}/n}$$

има хи-квадрат разпределение с (r-1)(c-1) степени на свобода.

Пресмятаме

$$\chi_{\text{obs}}^2 = \sum_{i,j} \frac{(x_{ij} - x_{i\bullet} x_{\bullet j}/n)^2}{x_{i\bullet} x_{\bullet j}/n},$$

P-value = 
$$\mathbf{P}_0(\chi^2 > \chi_{\rm obs}^2)$$
.

Ако P-value  $\leq \alpha$ , отхвърляме  $H_0$  в полза на  $H_1$ .

Ако P-value  $> \alpha$ , нямаме достатъчно основания да отхвърлим  $H_0$ .

 $\langle ! \rangle$  При вярна нулева хипотеза очакваният брой случвания на  $(A_i, B_j)$  е  $np_{ij} = np_{i\bullet}p_{\bullet j}$ . Тъй като  $p_{i\bullet}$  и  $p_{\bullet j}$  са неизвестни, в  $\chi^2_{\rm obs}$  ги заместваме с техните оценки, съответно  $x_{i\bullet}/n$  и  $x_{\bullet j}/n$ . Така получаваме  $n(x_{i\bullet}/n)(x_{\bullet j}/n) = x_{i\bullet}x_{\bullet j}/n$  за оценка на очаквания брой случвания на събитието  $(A_i, B_j)$ . Може да запишем  $\chi^2_{\rm obs}$  така

$$\chi_{\text{obs}}^2 = \sum_{i,j} \frac{(observed_{ij} - expected_{ij})^2}{expected_{ij}},$$

където  $observed_{ij}$  е наблюдавания брой случвания на  $(A_i, B_j)$ , а  $expected_{ij}$  е очаквания брой.

Р-стойността се пресмята в R по следния начин:

$$(r-1)(c-1)=$$
 df  $\chi^2_{\rm obs}=$  chi2.obs  $ext{P-value}=\mathbf{P}_0(\chi^2>\chi^2_{\rm obs})=$  1-pchisq(chi2.obs, df).



Ако запишем данните  $\{x_{ij}\}$  в матрица или таблица x, може да използваме функцията chisq.test(x).

Задача 11.2. Разгледайте данните HairEyeColor. Има ли връзка между цвета на косата и цвета на очите?

Решение. Проверяваме хипотезата

 $H_0$ : цвета на косата и цвета на очите са независими

срещу алтернативата

 $H_1$ : има връзка между цвета на косата и цвета на очите.

```
> data(HairEyeColor)
> tb <- HairEyeColor[,,1] + HairEyeColor[,,2]</pre>
> tb
        Brown Blue Hazel Green
Hair
  Black
            68
                 20
                        15
                               5
                        54
  Brown
           119
                 84
                              29
  Red
            26
                 17
                        14
                              14
                 94
                        10
  Blond
             7
                              16
> n <- sum(tb)
> df <- (nrow(tb)-1)*(ncol(tb)-1)
> hair <- apply(tb, 1, sum)</pre>
> eyes <- apply(tb, 2, sum)</pre>
> expected <- (hair %o% eyes)/n</pre>
> observed <- tb
> chi2.obs <- sum( (observed - expected)^2 / expected )</pre>
> chi2.obs
[1] 138.2898
> p.value <- 1-pchisq(chi2.obs, df)</pre>
> p.value
[1] 0
> chisq.test(tb)
Pearson's Chi-squared test
data: tb
X-squared = 138.29, df = 9, p-value < 2.2e-16
> chisq.test(tb)$p.value
[1] 2.325287e-25
```

Р-стойността е по-малка от 0.05, следователно отхвърляме нулевата хипотеза в полза на алтернативната. Можем да твърдим, че има връзка между цвета на косата и цвета на очите. ■

# 12. Линейни модели

All models are approximations.
Essentially, all models are wrong,
but some are useful.
George E. P. Box

## 12.1. Линеен модел с един предиктор

Предполагаме, че случайните величини Y, X и  $\varepsilon$  са свързани по следния начин:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
,

където  $\beta_0$  и  $\beta_1$  са константи,  $\mathrm{E}(\varepsilon)=0,\ \mathrm{Var}(\varepsilon)=\sigma^2,$  като  $\mathrm{E}(\varepsilon\,|\,X)=\mathrm{E}(\varepsilon)$  и  $\mathrm{Var}(\varepsilon\,|\,X)=\mathrm{Var}(\varepsilon).$  Тогава за средното на Y при условие, че X=x, е вярно

$$E(Y | X = x) = \mu_{y|x} = \beta_0 + \beta_1 x.$$

Ще наричаме X предиктор, а Y – отклик.

Нека  $(x_i, y_i)$ ,  $i = 1, \ldots, n$ , са независими наблюдения генерирани от горния модел. Тогава за  $i = 1, \ldots, n$ ,

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

Параметрите  $\beta_0, \beta_1$  са неизвестни. Въз основа на наблюденията  $(x_1, y_1), \dots, (x_n, y_n)$  намираме оценки  $\widehat{\beta}_0, \widehat{\beta}_1$  по метода на най-малките квадрати, т.е.  $\widehat{\beta}_0$  и  $\widehat{\beta}_1$  минимизират сумата

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Така получаваме оценка за средното на Y при условие, че X=x:

$$\widehat{\mu}_{u|x} = \widehat{\beta}_0 + \widehat{\beta}_1 x.$$

Горното уравнение често се записва във вида

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

и се използва за прогнозиране на стойността на Y при X=x, прогнозираната стойност се означава  $\hat{y}$ . Това уравнение се нарича *оценено регресионно уравнение* или *оценен модел*.

Разликата между наблюдаваната стойност  $y_i$  и прогнозираната стойност  $\widehat{y}_i$  се нарича  $ocmam \sigma \kappa, e_i = y_i - \widehat{y}_i$ .

Коефициент на детерминация  $(R^2)$ 

$$R^{2} = \frac{\sum_{i} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Доверителен интервал за  $\beta_1$ 

$$\left[\widehat{\beta}_1 - t_{n-2,\alpha/2} \operatorname{SE}(\widehat{\beta}_1), \quad \widehat{\beta}_1 + t_{n-2,\alpha/2} \operatorname{SE}(\widehat{\beta}_1)\right]$$

Проверка на хипотези за  $\beta_1$ 

$$H_0: \ eta_1=0$$
 
$$H_1: \ eta_1 
eq 0$$
 
$$t_{\mathrm{obs}} = \frac{\widehat{eta}_1}{\mathrm{SE}(\widehat{eta}_1)}$$
 
$$\mathrm{P-value} = 2*(1-\mathrm{pt}(\mathrm{abs}(\mathtt{t.obs}),\ \mathrm{n-2}))$$

Ако във вектора  $\mathbf{x}$  са наблюденията  $x_1, x_2, \ldots, x_n$ , а във вектора  $\mathbf{y}$  са  $y_1, y_2, \ldots, y_n$ , намираме оценения модел с  $\mathtt{lm}(\mathbf{y} \sim \mathbf{x})$ .

Ако запазим резултата m1 <- lm(y  $\sim$  x), следните функции са полезни:

| Функция                                            | Резултат                                                 |  |
|----------------------------------------------------|----------------------------------------------------------|--|
| <pre>summary(m1)</pre>                             | основна информация за оценения модел                     |  |
| <pre>summary(m1)\$coefficients</pre>               | таблица за оценените коефициенти                         |  |
| <pre>summary(m1)\$r.squared</pre>                  | $R^2$                                                    |  |
| coef(m1) или coefficients(m1)                      | оценените коефициенти $\widehat{eta}_0, \widehat{eta}_1$ |  |
| <pre>confint(m1)</pre>                             | доверителни интервали за $\beta_0, \beta_1$              |  |
| resid(m1) или residuals(m1)                        | остатъците $e_i = y_i - \widehat{y}_i$                   |  |
| fitted(m1) или fitted.values(m1)                   | $\widehat{y}_i$                                          |  |
| <pre>predict(m1, new, interval="confidence")</pre> | доверителен интервал за $\mu_{y x}$ при $x=x^\star$      |  |
| <pre>predict(m1, new, interval="prediction")</pre> | интервал за прогноза на $y$ при $x=x^\star$              |  |
| <pre>predict(m1, new, interval="none")</pre>       | $\widehat{y}$ за дадено $x=x^\star$                      |  |

 $\langle ! \rangle$  Доверителните интервали и тестовете за  $\beta_1$  са валидни ако  $\varepsilon$  има нормално разпределение **или** броят на наблюденията n е достатъчно голям. Интервалите за прогноза на y при  $x = x^*$  са валидни ако  $\varepsilon$  има нормално разпределение.

**Задача 12.1.** (За упраженение на любознателния читател.) Нека  $(x_i, y_i), i = 1, \ldots, n,$  са независими наблюдения и

$$G(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Нека  $\widehat{\beta}_0, \widehat{\beta}_1$  са оценки по метода на най-малките квадрати, т.е.  $G(\widehat{\beta}_0, \widehat{\beta}_1) = \min_{\beta_0, \beta_1} G(\beta_0, \beta_1)$ .

Покажете, че 
$$\sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0.$$

Задача 12.2. Във файла bac.txt има данни за съдържанието на алкохол в кръвта (грамове алкохол на 100 мл кръв) в зависимост от броя на изпитите бутилки бира.

**a)** Постройте линеен модел. Напишете оцененото регресионно уравнение. Представете графично данните и построения линеен модел.

```
> alco <- read.table("bac.txt", header=T)
> m1 <- lm( bac ~ beers, data=alco )
> m1

Call:
lm(formula = bac ~ beers, data = alco)

Coefficients:
(Intercept) beers
-0.01270 0.01796

y = \text{съдържание на алкохол в кръвта (bac)}
x = \text{брой изпити бири (beers)}
Модел: y = \beta_0 + \beta_1 x + \varepsilon.
Оценено регресионно уравнение: \hat{y} = -0.01270 + 0.01796x.
```

На следващата графика всяко наблюдение  $(x_i, y_i)$  е изобразено с кръгче и е добавена правата съответстваща на оцененото регресионно уравнение.

```
plot( bac ~ beers, data=alco )
abline( coef(m1), lwd=2 )
```



На следващата графика са изобразени остатъците  $e_i = y_i - \hat{y}_i$  за всяка прогнозирана стойност  $\hat{y}_i$ , т.е. едно кръгче съответства на двойка  $(\hat{y}_i, e_i)$ .

### plot( fitted(m1), resid(m1) )



б) Интерпретирайте оценените коефициенти.

Според оцененото регресионно уравнение:

- При изпиване на още една бутилка бира съдържанието на алкохол в кръвта се увеличава средно с 0.01796.
- При нула изпити бутилки бира средното съдържание на алкохол в кръвта е -0.01270.
- **в)** Имаме ли основание да твърдим, че има линейна връзка между броя на изпитите бутилки бира и съдържанието на алкохол в кръвта?

Въпросът се свежда до проверка на хипотезата

$$H_0: \beta_1 = 0$$

срещу алтернативата

$$H_1: \beta_1 \neq 0.$$

На втория ред на таблицата summary (m1) \$coefficients намираме съответно  $\widehat{\beta}_1$ ,  $SE(\widehat{\beta}_1)$ ,  $t_{obs} = \widehat{\beta}_1/SE(\widehat{\beta}_1)$  и P-стойността за проверка на хипотезата  $\beta_1 = 0$ .

#### > summary(m1)\$coefficients

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01270060 0.012637502 -1.004993 3.319551e-01
beers 0.01796376 0.002401703 7.479592 2.969480e-06
> p.value <- summary(m1)$coefficients[2,4]
> p.value < 0.05
[1] TRUE
```

Р-стойността е по-малка от 0.05, следователно отхвърляме нулевата хипотеза. Можем да твърдим, че има линейна връзка между броя на изпитите бутилки бира и съдържанието на алкохол в кръвта.

г) Може ли да се твърди, че при изпиването на още една бира съдържанието на алкохол в кръвта се увеличава средно с 0.02?

Въпросът се свежда до проверка на хипотезата

```
H_0: \beta_1 = 0.02
```

срещу алтернативата

```
H_1: \beta_1 \neq 0.02.
```

Ще охвърлим  $H_0$ :  $\beta_1 = 0.02$ , ако доверителният интервал за  $\beta_1$  не съдържа 0.02.

Доверителният интервал за  $\beta_1$  е [0.0128, 0.0231] и съдържа 0.02, следователно нямаме основания да отхвърлим хипотезата, че при изпиването на още една бира съдържанието на алкохол в кръвта се увеличава средно с 0.02.

**д)** Намерете доверителен интервал за средното съдържание на алкохол в кръвта при 5 изпити бутилки бира.

Доверителният интервал е [0.066, 0.088].

**e)** За стойности на предиктора между 1 и 9, намерете доверителен интервал за средното съдържание на алкохол в кръвта и интервал за прогноза и ги илюстрирайте на графиката от а).

```
plot( bac ~ beers, data=alco, ylim=c(-0.04, 0.19) )
abline( coef(m1), lwd=2 )
xx <- data.frame( beers=seq(1, 9, 0.5) )
# доверителни интервали
cint <- predict( m1, xx, interval="confidence" )
lines( xx$beers, cint[,2], type="1", lty="dashed", col="blue", lwd=2 )
lines( xx$beers, cint[,3], type="1", lty="dashed", col="blue", lwd=2 )
# интервали за прогноза
pint <- predict( m1, xx, interval="prediction" )
lines( xx$beers, pint[,2], type="1", lty="dashed", col="gray", lwd=2 )
lines( xx$beers, pint[,3], type="1", lty="dashed", col="gray", lwd=2 )
```

На графиката доверителните интервали са изобразени със синя прекъсната линия, а интервалите за прогноза – със сива прекъсната линия.



## 12.2. Линеен модел с няколко предиктора

Предполагаме, че случайните величини  $Y, X_1, \dots, X_k$  и  $\varepsilon$  са свързани по следния начин:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \varepsilon,$$

където  $\beta_0, \beta_1, \ldots, \beta_k$  са константи,  $\mathrm{E}(\varepsilon) = 0$ ,  $\mathrm{Var}(\varepsilon) = \sigma^2$ , като  $\mathrm{E}(\varepsilon \,|\, X_1, \ldots, X_k) = \mathrm{E}(\varepsilon)$  и  $\mathrm{Var}(\varepsilon \,|\, X_1, \ldots, X_k) = \mathrm{Var}(\varepsilon)$ . Тогава за средното на Y при условие, че  $X_1 = x_1, \ldots, X_k = x_k$ , е вярно

$$E(Y | X_1 = x_1, ..., X_k = x_k) = \mu_{y|x_1...x_k} = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k.$$

Ще наричаме  $X_1, \ldots, X_k$  предиктори, а Y – отклик.

Нека  $(x_{1i},\ldots,x_{ki},y_i),\ i=1,\ldots,n,$  са независими наблюдения генерирани от горния модел. Тогава за  $i=1,\ldots,n,$ 

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i.$$

Параметрите  $\beta_0, \beta_1, \ldots, \beta_k$  са неизвестни. Въз основа на наблюденията  $(x_{1i}, \ldots, x_{ki}, y_i)$ ,  $i = 1, \ldots, n$ , намираме оценки  $\widehat{\beta}_0, \widehat{\beta}_1, \ldots, \widehat{\beta}_k$  по метода на най-малките квадрати, т.е.  $\widehat{\beta}_0, \widehat{\beta}_1, \ldots, \widehat{\beta}_k$  минимизират сумата

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \ldots - \beta_k x_{ki})^2.$$

Така получаваме оценка за средното на Y при условие, че  $X_1 = x_1, \dots, X_k = x_k$ :

$$\widehat{\mu}_{y|x_1...x_k} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \ldots + \widehat{\beta}_k x_k.$$

Горното уравнение често се записва във вида

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \ldots + \widehat{\beta}_k x_k$$

и се използва за прогнозиране на стойността на Y при  $X_1 = x_1, \ldots, X_k = x_k$ , прогнозираната стойност се означава  $\widehat{y}$ . Това уравнение се нарича *оценено регресионно уравнение* или *оценен модел*.

Разликата между наблюдаваната стойност  $y_i$  и прогнозираната стойност  $\widehat{y}_i$  се нарича остатък,  $e_i = y_i - \widehat{y}_i$ .

Коефициент на детерминация  $(R^2)$ 

$$R^{2} = \frac{\sum_{i} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Коригиран  $R^2$  (adjusted  $R^2$ )

$$R_{\text{adj}}^2 = 1 - \frac{\frac{1}{n-k-1} \sum_{i} (y_i - \widehat{y}_i)^2}{\frac{1}{n-1} \sum_{i} (y_i - \overline{y})^2}$$

Доверителен интервал за  $\beta_j$ 

$$\left[\widehat{\beta}_j - t_{n-k-1,\alpha/2} \operatorname{SE}(\widehat{\beta}_j), \quad \widehat{\beta}_j + t_{n-k-1,\alpha/2} \operatorname{SE}(\widehat{\beta}_j)\right]$$

Проверка на хипотези за  $\beta_i$ 

$$H_0: \beta_j = 0$$

$$H_1: \beta_j \neq 0$$

$$t_{\rm obs} = \frac{\widehat{\beta}_j}{{\rm SE}(\widehat{\beta}_j)}$$

P-value = 2\*(1-pt(abs(t.obs), n-k-1))

Ако във вектора x1 са наблюденията  $x_{11}, x_{12}, \ldots, x_{1n}$ , във вектора x2 са  $x_{21}, x_{22}, \ldots, x_{2n}$  и във вектора y са  $y_1, y_2, \ldots, y_n$ , намираме оценения модел с lm(y  $\sim$  x1 + x2).

Ако запазим резултата  $m1 < -lm(y \sim x1 + x2)$ , следните функции са полезни:

| Функция                                            | Резултат                                                                |  |
|----------------------------------------------------|-------------------------------------------------------------------------|--|
| summary(m1)                                        | основна информация за оценения модел                                    |  |
| <pre>summary(m1)\$coefficients</pre>               | таблица за оценените коефициенти                                        |  |
| summary(m1)\$r.squared                             | $R^2$                                                                   |  |
| <pre>summary(m1)\$adj.r.squared</pre>              | коригиран $R^2$                                                         |  |
| coef(m1) или coefficients(m1)                      | оценените коефициенти $\widehat{eta}_0,\ldots,\widehat{eta}_k$          |  |
| confint(m1)                                        | доверителни интервали за $\beta_0, \dots, \beta_k$                      |  |
| resid(m1) или residuals(m1)                        | остатъците $e_i = y_i - \widehat{y}_i$                                  |  |
| fitted(m1) или fitted.values(m1)                   | $\widehat{y}_i$                                                         |  |
| <pre>predict(m1, new, interval="confidence")</pre> | доверителен интервал за $\mu_{y x_1\dots x_k}$                          |  |
|                                                    | при $(x_1,\ldots,x_k)=(x_1^\star,\ldots,x_k^\star)$                     |  |
| <pre>predict(m1, new, interval="prediction")</pre> | интервал за прогноза на $y$                                             |  |
|                                                    | при $(x_1,\ldots,x_k)=(x_1^\star,\ldots,x_k^\star)$                     |  |
| <pre>predict(m1, new, interval="none")</pre>       | $\widehat{y}$ за дадено $(x_1,\ldots,x_k)=(x_1^\star,\ldots,x_k^\star)$ |  |

 $\langle ! \rangle$  Доверителните интервали и тестовете за  $\beta_j$  са валидни ако  $\varepsilon$  има нормално разпределение **или** броят на наблюденията n е достатъчно голям. Интервалите за прогноза на y при  $(x_1, \ldots, x_k) = (x_1^\star, \ldots, x_k^\star)$  са валидни ако  $\varepsilon$  има нормално разпределение.

Задача 12.3. Измерени са диаметъра (в инчове), височината (във футове) и обема (в кубични футове) на 31 черешови дървета. Диаметърът е измерен на височина 54 инча от земята. Данните са във файла cherry.txt.

а) Постройте модел, който може да се използва за прогнозиране на обема според диаметъра на дървото. Напишете оцененото регресионно уравнение. Интерпретирайте коефициента пред диаметъра. Направете подходящи графики.

```
cher <- read.table("cherry.txt", header=T)
pairs( cher, gap=0, cex.labels=1.3 )</pre>
```



Горната картинка (scatter plot matrix) е матрица от графики на променливите по двойки. Например, на трети ред първа колона е диаметър по абсцисата и обем по ординатата, а на първи ред трета колона е диаметър по ординатата и обем по абсцисата.

Според оцененото регресионно уравнение, ако диаметърът е по-голям с 1 инч, обемът ще е по-голям средно с 5.066 кубични фута.

```
> plot( volume ~ diam, data=cher )
> abline( coef(m1), lwd=2 )
```



**б)** Постройте модел, който включва и височината. Напишете оцененото регресионно уравнение. Интерпретирайте коефициента пред височината и коефициента пред диаметъра.

```
> m2 <- lm( volume ~ diam + height, data=cher )</pre>
> m2
Call:
lm(formula = volume ~ diam + height, data = cher)
Coefficients:
(Intercept)
                        diam
                                      height
   -57.9877
                      4.7082
                                      0.3393
   y = \text{обем (volume)}
   x_1 = \text{диаметър (diam)}
   x_2 = височина (height)
   Модел: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon.
   Оценено регресионно уравнение: \hat{y} = -57.9877 + 4.7082x_1 + 0.3393x_2.
   Според оцененото регресионно уравнение:
```

- Ако диаметърът е по-голям с 1 инч при фиксирана височина, обемът ще е по-голям средно с 4.7082 кубични фута.
- Ако височината е по-голяма с 1 фут при фиксиран диаметър, обемът ще е по-голям средно с 0.3393 кубични фута.
- **в)** Постройте модел, в който участва диаметърът на квадрат. Напишете оцененото регресионно уравнение.

За да включим диаметъра на квадрат може, например, да създадем променлива diam2, която е равна на диаметъра на втора степен.

```
> cher$diam2 <- cher$diam^2</pre>
> m3 <- lm( volume ~ diam2 + height, data=cher )</pre>
> m3
Call:
lm(formula = volume ~ diam2 + height, data = cher)
Coefficients:
(Intercept)
                     diam2
                                  height
   -27.5116
                                   0.3488
                    0.1685
   y = \text{обем (volume)}
   x_1 = \text{диаметър (diam)}
   x_2 = височина (height)
   Модел: y = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2 + \varepsilon.
   Оценено регресионно уравнение: \hat{y} = -27.5116 + 0.1685x_1^2 + 0.3488x_2.
   Друг начин да включим диаметъра на квадрат:
> m31 <- lm( volume ~ I(diam^2) + height, data=cher )</pre>
> m31
Call:
lm(formula = volume ~ I(diam^2) + height, data = cher)
Coefficients:
(Intercept)
                I(diam^2)
                                  height
   -27.5116
                    0.1685
                                   0.3488
   г) Намерете доверителен интервал за средния обем на дърво с диаметър 14 инча и висо-
чина 70 фута като използвате модела от б) и модела от в). Сравнете получените интервали.
> ci.b <- predict( m2, data.frame( diam=14, height=70 ), interval="confidence" )</pre>
> ci.b
        fit
                  lwr
                            upr
1 31.67417 29.34183 34.00652
> ci.v <- predict( m3, data.frame( diam2=14^2, height=70 ), interval="confidence" )</pre>
> ci.v
       fit
                  lwr
1 29.92273 28.32011 31.52534
> ci.b[3] - ci.b[2]
[1] 4.664688
> ci.v[3] - ci.v[2]
[1] 3.20523
```

92

Доверителният интервал е по-къс при модела от в).

### д) Сравнете трите модела.

```
> summary(m1)$coefficients
              Estimate Std. Error
                                     t value
(Intercept) -36.943459
                         3.365145 -10.97827 7.621449e-12
diam
              5.065856
                         0.247377
                                    20.47829 8.644334e-19
> summary(m2)$coefficients
                                                  Pr(>|t|)
               Estimate Std. Error
                                      t value
(Intercept) -57.9876589
                         8.6382259 -6.712913 2.749507e-07
                         0.2642646 17.816084 8.223304e-17
diam
              4.7081605
height
              0.3392512
                         0.1301512
                                    2.606594 1.449097e-02
> summary(m3)$coefficients
               Estimate Std. Error
                                       t value
                                                   Pr(>|t|)
(Intercept) -27.5116027 6.557697068 -4.195315 2.483817e-04
              0.1684577 0.006679014 25.221948 8.545141e-21
diam2
              0.3488088 0.093152410
                                     3.744495 8.300124e-04
height
> summary(m1)$adj.r.squared
[1] 0.9330895
> summary(m2)$adj.r.squared
[1] 0.9442322
> summary(m3)$adj.r.squared
[1] 0.970996
```

От таблиците с оценените коефициенти виждаме, че за трите модела хипотезите  $\beta_j=0$  се отхвърлят.

Моделът **m3** има най-висока стойност на коригирания  $R^2$  (0.97), следователно е най-добър от трите (ако считаме за най-добър моделът с най-висок коригиран  $R^2$ ).

```
par(mfrow=c(1,3))
plot( fitted(m1), resid(m1) )
plot( fitted(m2), resid(m2) )
plot( fitted(m3), resid(m3) )
```



Графиката на остатъците за модел **m1** дава някакви индикации, че зависимостта между обема и диаметъра на дървото не е линейна, а по-скоро квадратична. Графиката на остатъците за модел **m3** изглежда най-добре, не се забелязва някаква изразена тенденция.

# Литература

- [1] Devore J.L.: Probability and Statistics for Engineering and the Sciences, 7th ed, Brooks/Cole, 2009.
- [2] Hogg R.V., Craig A.T.: *Introduction to Mathematical Statistics*, 5th ed, Pearson Education, 1995.
- [3] Montgomery D.C., Runger G.C.: Applied Statistics and Probability for Engineers, 5th ed, John Wiley & Sons, 2011.
- [4] Ott R.L., Longnecker M.: An Introduction to Statistical Methods and Data Analysis, 5th ed, Duxbury/Thomson Learning, 2001.
- [5] Panik M.J.: Advanced Statistics from an Elementary Point of View, Elsevier/Academic Press, 2005.
- [6] Peck R., Olsen C., Devore J.L.: *Introduction to Statistics and Data Analysis*, 4th ed, Brooks/Cole, 2012.
- [7] Ramachandran K.M., Tsokos C.P.: *Mathematical Statistics with Applications*, Elsevier/Academic Press, 2009.
- [8] Ross S.M.: Introduction to Probability and Statistics for Engineers and Scientists, 3rd ed, Elsevier/Academic Press, 2004.
- [9] Ross S.M.: Introductory Statistics, 3rd ed, Elsevier/Academic Press, 2010.
- [10] Tijms H.: Understanding Probability, 2nd ed, Cambridge University Press, 2007.
- [11] Trosset M.W.: An Introduction to Statistical Inference and Its Applications with R, Chapman & Hall/CRC Press, 2009.
- [12] Venables W.N., Ripley B.D.: Modern Applied Statistics with S, 4th ed, Springer, 2002.
- [13] Verzani J.: Using R for Introductory Statistics, 2nd ed, Chapman & Hall/CRC Press, 2014.
- [14] Wackerly D.D., Mendenhall W., Scheaffer R.L.: *Mathematical Statistics with Applications*, 7th ed, Brooks/Cole, 2008.
- [15] Walpole R.E., Myers R.H., Myers S.L., Ye K.: Probability & Statistics for Engineers & Scientists, 9th ed, Prentice Hall, 2012.
- [16] Wilcox R.R.: Introduction to Robust Estimation and Hypothesis Testing, 4th ed, Elsevier/Academic Press, 2017.
- [17] Wilcox R.R.: Understanding and Applying Basic Statistical Methods Using R, John Wiley & Sons, 2017.