## An introduction to unbalanced data classification

2018.08.02 张文涛

# **Concept**

The data contains many more examples of one class than the other.



## **Background**

- > There exist many domains that do not have a balanced data set.
- > There are a lot of problems where the most important knowledge usually resides in the minority class.
  - CTR estimation,
  - Anti fraud identification
- Most ML algorithms are designed to optimize overall accuracy without taking into account the relative distribution of each class.

## **Problem**





## Majority classes overlaps the minority class:

- Ambiguous boundary between classes
- Influence o of n noisy examples
- The optimization goal of standard learners is generally the accuracy rate



# More difficult one

## **Problem**

- > Standard learners are often biased towards the majority class
- Examples from the minority class tend to be misclassified
- > The classifiers tend to ignore small classes while concentrating on classifying the large ones accurately.



If we predict all the data as a positive class, the overall accuracy is as high as 99%, but the auc is 50%

## **Evaluation**



Fig. 1. Confusion matrix and common performance metrics calculated from it.

## **Evaluation**

| Inst# | Class | Score | Inst# | Class | Score |
|-------|-------|-------|-------|-------|-------|
| 1     | p     | .9    | 11    | p     | .4    |
| 2     | p     | .8    | 12    | n     | .39   |
| 3     | n     | .7    | 13    | p     | .38   |
| 4     | p     | .6    | 14    | n     | .37   |
| 5     | p     | .55   | 15    | n     | .36   |
| 6     | p     | .54   | 16    | n     | .35   |
| 7     | n     | .53   | 17    | p     | .34   |
| 8     | n     | .52   | 18    | n     | .33   |
| 9     | p     | .51   | 19    | p     | .30   |
| 10    | n     | .505  | 20    | n     | .1    |

The probability of each sample being predicted as a positive sample



The ROC curve

# Strategies to deal with imbalanced data sets

## Resample

Resampling is the process of manipulating the distribution of the training examples in an effort to improve the performance of classifiers.



# **Undersampling vs oversampling**



## **Tomek Links**

- ➤ Idea:
  - To remove both noise and borderline examples of the majority class
- > Definition:
  - $E_i$ ,  $E_j$  belong to different classes
  - $d(E_i, E_j)$  is the he distance between them
  - $A(E_i, E_j)$  pair is called a Tomek link if there is no example EI, such that  $d(E_i, EI) < d(E_i, E_j)$  or  $d(E_j, EI) < d(E_i, E_j)$



## **Usage of Tomek Links**

- Under sampling
  - Remove the samples of most classes that belong to Tomek Links
- Data cleaning
  - Remove the samples that belong to Tomek Links



#### 1NN

- > Idea
  - remove both noise and borderline examples
- > Definition:
  - Let A be the original training set
  - Let B contains all positive examples from A and one randomly selected negative example
  - Classify A with the 1-NN rule using
  - the examples in B
  - Move all misclassified example from A to B



### **NearMiss**

- > Idea
  - Remove majority class samples by distance
- > NearMiss-1
- Remove the majority sample which has the smallest average distance from the nearest 3 minority class samples
- ➤ NearMiss-2
- Remove the majority sample which has the smallest average distance from the largest 3 minority class samples
- ➤ NearMiss-3
- For each minority sample, select a fixed number of nearest majority class samples

## **NCL**

- > Idea
  - Emphasize more data cleaning than data reduction



# **Oversampling**

# **Random oversampling**

- > Idea
  - Randomly replicating examples
- > Advantage
- simple to implement
- Disadvantage
- Too many repeated samples may lead to overfitting

## **Oversampling**

### **Smote**



Consider a sample (6,4) and let (4,3) be its nearest neighbor.

(6,4) is the sample for which k-nearest neighbors are being identified

(4,3) is one of its k-nearest neighbors.

Let:

$$f1_2 = 4$$
  $f2_2 = 3$   $f2_2 - f1_2 = -1$ 

The new samples will be generated as

$$(f1',f2') = (6,4) + rand(0-1) * (-2,-1)$$

rand(0-1) generates a random number between 0 and 1.

# Oversampling Smote

Inbalanced Data set



#### Data set after SMOTE



# Oversampling Smote Shortcomings



# **Oversampling**



# Oversampling

## **Borderline SMOTE-1**



# Oversampling Borderline SMOTE-2



## **Oversampling**

## **SMOTE+Tomek links**



# Oversampling SMOTE+KNN



## **Cost-sensitive learning**

- Weighting the data space (data level):
  - Change the distribution of the training sets (translation theorem)
  - Modifying final decision thresholds
- > Making a specific classifier learning algorithm cost-sensitive (algorithm level)
  - Change the inner way the classifier works
  - Use a boosting approach



Fig. 3. Proposed taxonomy for ensembles to address the class imbalance problem.

## Easy ensemble

Algorithm 1 The EasyEnsemble algorithm.

1: {Input: A set of minority class examples  $\mathcal{P}$ , a set of majority class examples  $\mathcal{N}$ ,  $|\mathcal{P}| < |\mathcal{N}|$ , the number of subsets T to sample from  $\mathcal{N}$ , and  $s_i$ , the number of iterations to train an AdaBoost ensemble  $H_i$ }

- $2: i \Leftarrow 0$
- 3: repeat
  - $4: i \Leftarrow i + 1$
  - Randomly sample a subset N<sub>i</sub> from N, |N<sub>i</sub>| = |P|.

6: Learn H<sub>i</sub> using P and N<sub>i</sub>. H<sub>i</sub> is an AdaBoost ensemble with s<sub>i</sub> weak classifiers h<sub>i,j</sub> and corresponding weights α<sub>i,j</sub>. The ensemble's threshold is θ<sub>i</sub>, i.e.,

$$H_i(x) = \operatorname{sgn}\left(\sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \theta_i\right).$$

- 7: until i = T
- 8: Output: An ensemble

$$H(x) = \operatorname{sgn}\left(\sum_{i=1}^{T} \sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \sum_{i=1}^{T} \theta_i\right).$$

## > Easy ensemble



### balance cascade

Algorithm 2 The BalanceCascade algorithm.

1: {Input: A set of minority class examples  $\mathcal{P}$ , a set of majority class examples  $\mathcal{N}$ ,  $|\mathcal{P}| < |\mathcal{N}|$ , the number of subsets

T to sample from  $\mathcal{N}$ , and  $s_i$ , the number of iterations to train an AdaBoost ensemble  $H_i$ }

2:  $i \leftarrow 0$ ,  $f \leftarrow {}^{T-1}\sqrt{|\mathcal{P}|/|\mathcal{N}|}$ , f is the false positive rate (the error rate of misclassifying a majority class example to the minority class) that  $H_i$  should achieve.

3: repeat

 $4: i \Leftarrow i + 1$ 

5: Randomly sample a subset  $\mathcal{N}_i$  from  $\mathcal{N}$ ,  $|\mathcal{N}_i| = |\mathcal{P}|$ .

6: Learn  $H_i$  using  $\mathcal{P}$  and  $\mathcal{N}_i$ .  $H_i$  is an AdaBoost ensemble with  $s_i$  weak classifiers  $h_{i,j}$  and corresponding weights  $\alpha_{i,j}$ . The ensemble's threshold is  $\theta_i$  i.e.,

$$H_i(x) = \operatorname{sgn}\left(\sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \theta_i\right).$$

7: Adjust  $\theta_i$  such that  $H_i$ 's false positive rate is f.

8: Remove from  $\mathcal{N}$  all examples that are correctly classified by  $H_i$ .

9: until i = T

10: Output: A single ensemble

$$H(x) = \operatorname{sgn}\left(\sum_{i=1}^{T} \sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \sum_{i=1}^{T} \theta_i\right).$$

After T-1 epochs, the number of majority class samples is

$$|N| * f^{T-1} = |P|$$

#### CUSboost

#### Algorithm 1 CUSBoost Algorithm **Input:** Imbalanced data, D, number of iterations, k, and C4.5 decision tree induction algorithm. Output: An ensemble model. **Method:** 1: initialize weight, $x_i \in D$ to $\frac{1}{d}$ ; 2: **for** i = 1 to k **do** create balanced dataset $D_i$ with distribution D using cluster-based under-sampling; derive a tree, $M_i$ from $D_i$ employing C4.5 algorithm; compute the error rate of $M_i$ , $error(M_i)$ ; if $error(M_i) \geq 0.5$ then go back to step 3 and try again; end if for each $x_i \in D_i$ that correctly classified do multiply weight of $x_i$ by $(\frac{error(M_i)}{1-error(M_i)})$ ; // update 10: weights end for 11: normalise the weight of each instances, $x_i$ ; 13: end for To use the ensemble to classify instance, $x_{New}$ : 1: initialise weight of each class to 0; 2: **for** i = 1 to k **do** $w_i = log \frac{1 - error(M_i)}{error(M_i)};$ // weight of the classifier's vote $c = M_i(x_{New})$ ; // class prediction by $M_i$ add $w_i$ to weight for class c; 6: end for

7: return the class with largest weight;

## > CUSboost

