# ENGR 305 Lab 5

#### Sean Balbale

October 4, 2025

# Part 1: NMOS in Saturation Mode

This part requires designing the circuit to meet specific operating conditions. The goal is to find the values of the drain resistor  $(R_D)$  and the source resistor  $(R_S)$ .

### **Given Parameters**

• Drain Current:  $I_D = 1.0 \text{ mA}$ 

- Drain Voltage:  $V_D = 5.0 \text{ V}$ 

• Supply Voltages:  $V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$ 

• Threshold Voltage:  $V_T = 2.0 \text{ V}$ 

• Process Parameter:  $\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$ 

• Transistor Dimensions:  $W=32~\mu\mathrm{m},\,L=1~\mu\mathrm{m}$ 

### 1. Circuit Sketch

The circuit is a common-source NMOS amplifier with source degeneration. The gate is connected to ground ( $V_G = 0 \text{ V}$ ), the drain is connected to  $V_{DD}$  through  $R_D$ , and the source is connected to  $V_{SS}$  through  $R_S$ .

Part 1: NMOS in Saturation Mode



### 2. Calculation of $R_D$

The value of the drain resistor,  $R_D$ , can be found using Ohm's law. The voltage drop across  $R_D$  is the difference between the positive supply rail  $(V_{DD})$  and the desired drain voltage  $(V_D)$ . The current flowing through it is the drain current,  $I_D$ .

$$V_{RD} = V_{DD} - V_{D}$$

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}}$$

Plugging in the given values:

$$R_D = \frac{15 \text{ V} - 5.0 \text{ V}}{1.0 \text{ mA}} = \frac{10 \text{ V}}{1.0 \times 10^{-3} \text{ A}} = 10,000 \text{ }\Omega$$

So, the required drain resistor is  $R_D = 10 \text{ k}\Omega$ .

# 3. Calculation of Overdrive Voltage $(V_{OV})$

Since the transistor is operating in saturation, we use the saturation current equation to find the overdrive voltage  $(V_{OV} = V_{GS} - V_T)$ .

$$I_D = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) (V_{GS} - V_T)^2 = \frac{1}{2} k'_n \left( \frac{W}{L} \right) V_{OV}^2$$

First, let's calculate the aspect ratio, W/L:

$$\frac{W}{L} = \frac{32 \ \mu\text{m}}{1 \ \mu\text{m}} = 32$$

Now, rearrange the equation to solve for  $V_{OV}$ :

$$V_{OV} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \left(\frac{W}{L}\right)}}$$

Plugging in the values:

$$V_{OV} = \sqrt{\frac{2 \times (1.0 \times 10^{-3} \text{ A})}{(100 \times 10^{-6} \text{ A/V}^2) \times 32}} = \sqrt{\frac{2 \times 10^{-3}}{3.2 \times 10^{-3}}} = \sqrt{0.625} \approx 0.791 \text{ V}$$

The required overdrive voltage is  $V_{OV} \approx 0.791$  V.

### 4. Calculation of $V_{GS}$ and $V_{S}$

With  $V_{OV}$  and  $V_T$  known, we can find the gate-source voltage,  $V_{GS}$ .

$$V_{GS} = V_{OV} + V_T = 0.791 \text{ V} + 2.0 \text{ V} = 2.791 \text{ V}$$

The gate of the transistor is connected to ground, so  $V_G = 0$  V. We can use this to find the source voltage,  $V_S$ .

$$V_{GS} = V_G - V_S \implies V_S = V_G - V_{GS}$$
  
 $V_S = 0 \text{ V} - 2.791 \text{ V} = -2.791 \text{ V}$ 

The calculated voltages are  $V_{GS} \approx 2.791 \text{ V}$  and  $V_S \approx -2.791 \text{ V}$ .

### 5. Calculation of $R_S$

Finally, we can find the source resistor,  $R_S$ , using Ohm's law. The voltage drop across  $R_S$  is the difference between the source voltage  $(V_S)$  and the negative supply rail  $(V_{SS})$ . The current is the source current,  $I_S$ , which equals  $I_D$ .

$$V_{RS} = V_S - V_{SS}$$
$$R_S = \frac{V_S - V_{SS}}{I_D}$$

Plugging in the values:

$$R_S = \frac{-2.791 \text{ V} - (-15 \text{ V})}{1.0 \text{ mA}} = \frac{12.209 \text{ V}}{1.0 \times 10^{-3} \text{ A}} \approx 12,209 \Omega$$

The required source resistor is  $R_S \approx 12.2 \text{ k}\Omega$ .

#### 6. Post-Measurement Exercise

This section addresses the post-measurement questions for the NMOS circuit biased in the saturation region.

### Measured Voltages: $V_{GS}$ and $V_{DS}$

Based on the measurement data, the measured gate-to-source voltage is  $V_{GS} = 1.3994 \text{ V}$ .

The drain-to-source voltage,  $V_{DS}$ , is calculated from the measured drain and source voltages:

- $V_D = 3.909 \text{ V}$
- $V_S = -1.3994 \text{ V}$

$$V_{DS} = V_D - V_S = 3.909 \text{ V} - (-1.3994 \text{ V}) = 5.3084 \text{ V}$$

#### Comparison and Discrepancies

Here's a comparison of the measured and calculated values:

- $V_{GS}$ : Measured was 1.3994 V, while the calculated value was 2.791 V.
- $V_{DS}$ : Measured was 5.3084 V, while the calculated value was  $V_D V_S = 5.0 \text{ V} (-2.791 \text{ V}) =$  7.791 V.

The significant discrepancies are primarily due to the difference between the **assumed threshold voltage** ( $V_T = 2.0 \text{ V}$ ) used in the calculations and the actual  $V_T$  of the 2N7000 transistor used in the experiment. The actual  $V_T$  is much lower, meaning the transistor requires a smaller  $V_{GS}$  to turn on and conduct the target current. This lower required  $V_{GS}$  directly leads to a less negative  $V_S$  and a lower overall  $V_{DS}$ . Minor differences in resistor values and power supply voltages also contribute to the deviation.

### Measured Drain Current $(I_D)$

The measured drain current,  $I_D$ , can be calculated using the measured voltages and resistor values.

- 1. Using the drain resistor  $(R_D)$
- $V_{+} = 15.027 \text{ V}$
- $V_D = 3.909 \text{ V}$
- $R_D = 9776.7 \,\Omega$

$$I_D = \frac{V_+ - V_D}{R_D} = \frac{15.027 \text{ V} - 3.909 \text{ V}}{9776.7 \,\Omega} \approx 1.137 \text{ mA}$$

- 2. Using the source resistor  $(R_S)$
- $V_S = -1.3994 \text{ V}$
- $V_{-} = -15.03 \text{ V}$
- $R_S = 12022.325 \,\Omega$

$$I_D = \frac{V_S - V_-}{R_S} = \frac{-1.3994 \text{ V} - (-15.03 \text{ V})}{12022.325 \,\Omega} \approx 1.134 \text{ mA}$$

Both calculations yield a consistent result. The measured drain current is approximately 1.14 **mA**, which is reasonably close to the design target of 1.0 mA.

# Part 2: Diode-Connected NMOS

In this configuration, the gate is connected directly to the drain  $(V_G = V_D)$ . The goal is to find the values of  $V_S$ ,  $V_D$ , and  $R_D$ .

#### **Given Parameters**

• Drain Current:  $I_D = 1.0 \text{ mA}$ 

• Source Resistor:  $R_S=15~\mathrm{k}\Omega$ 

• Supply Voltages:  $V_+ = +15 \text{ V}, V_- = -15 \text{ V}$ 

• Transistor parameters are the same as in Part 1.

Part 2: Diode-Connected NMOS



## 1. Operating Region of the Transistor

For a diode-connected NMOS, the drain and gate are at the same potential, meaning  $V_{DS} = V_{GS}$ . The condition for an NMOS to be in the saturation region is  $V_{DS} \ge V_{GS} - V_T$ . Substituting  $V_{GS}$  for  $V_{DS}$ , the condition becomes:

$$V_{GS} \ge V_{GS} - V_T \implies 0 \ge -V_T \implies V_T \ge 0$$

Since this is an enhancement-type NMOS,  $V_T$  is positive (+2.0 V), so this condition is always met when the transistor is on. Therefore, the diode-connected transistor operates in the **saturation region**.

# 2. Calculation of Overdrive Voltage $(V_{OV})$

The calculation for  $V_{OV}$  is identical to Part 1 because the drain current ( $I_D = 1.0 \text{ mA}$ ) and the transistor parameters are the same.

$$V_{OV} = \sqrt{\frac{2I_D}{\mu_n C_{ox}\left(\frac{W}{L}\right)}} \approx 0.791 \text{ V}$$

The overdrive voltage is  $V_{OV} \approx 0.791$  V.

### 3. Calculation of $V_S$ and $V_D$

First, let's find the source voltage,  $V_S$ .

$$V_S = V_- + (I_D \times R_S)$$

$$V_S = -15 \text{ V} + (1.0 \text{ mA} \times 15 \text{ k}\Omega) = -15 \text{ V} + 15 \text{ V} = 0 \text{ V}$$

Next, we find the drain voltage,  $V_D$ . We first need  $V_{GS}$ :

$$V_{GS} = V_{OV} + V_T = 0.791 \text{ V} + 2.0 \text{ V} = 2.791 \text{ V}$$

Since the gate is connected to the drain,  $V_G = V_D$ . Therefore:

$$V_{GS} = V_G - V_S = V_D - V_S$$

$$V_D = V_{GS} + V_S = 2.791 \text{ V} + 0 \text{ V} = 2.791 \text{ V}$$

The calculated voltages are  $V_S = 0$  V and  $V_D \approx 2.791$  V.

### 4. Calculation of $R_D$

Finally, we calculate the drain resistor,  $R_D$ , using Ohm's law.

$$R_D = \frac{V_+ - V_D}{I_D}$$

$$R_D = \frac{15 \text{ V} - 2.791 \text{ V}}{1.0 \text{ mA}} = \frac{12.209 \text{ V}}{1.0 \times 10^{-3} \text{ A}} \approx 12,209 \Omega$$

The required drain resistor is  $R_D \approx 12.2 \text{ k}\Omega$ .

#### 5. Post-Measurement Exercise

This section addresses the post-measurement questions for the diode-connected NMOS circuit.

#### Comparison and Discrepancies

Here's a comparison of the key measured and calculated values for the circuit:

- $V_D$ : Measured was 2.098 V, while the calculated value was 2.791 V.
- $V_S$ : Measured was 0.7488 V, while the calculated value was 0 V.

The discrepancies can be explained as follows:

- The difference in  $V_D$  is, again, primarily caused by the **assumed**  $V_T$  of 2.0 **V** being much higher than the actual  $V_T$  of the physical transistor. A lower actual  $V_T$  results in a smaller required  $V_{GS}$  (and therefore  $V_D$ ) to achieve the target current.
- The difference in  $V_S$  is not an error but a result of using a real resistor. The pre-lab calculation of  $V_S=0$  V was based on the negative supply ( $V_-=-15$  V) being perfectly balanced by the voltage drop across an ideal  $R_S=15$  k $\Omega$  with exactly  $I_D=1.0$  mA flowing through it. The actual measured resistance was  $R_S=14.791$  k $\Omega$  and the actual current was slightly over 1.0 mA, resulting in a measured  $V_S$  of 0.7488 V instead of exactly 0 V.

#### Measured Drain Current $(I_D)$

The measured drain current,  $I_D$ , is calculated using the measured component values.

- 1. Using the drain resistor  $(R_D)$
- $V_+ = 15.027 \text{ V}$
- $V_D = 2.098 \text{ V}$
- $R_D = 12022.325 \,\Omega$

$$I_D = \frac{V_+ - V_D}{R_D} = \frac{15.027 \text{ V} - 2.098 \text{ V}}{12022.325 \Omega} \approx 1.075 \text{ mA}$$

- 2. Using the source resistor  $(R_S)$
- $V_S = 0.7488 \text{ V}$

- $V_{-} = -15.03 \text{ V}$
- $R_S = 14791 \,\Omega$

$$I_D = \frac{V_S - V_-}{R_S} = \frac{0.7488 \text{ V} - (-15.03 \text{ V})}{14791 \,\Omega} \approx 1.067 \text{ mA}$$

The results from both methods are consistent. The measured drain current is approximately 1.07 mA, very close to the design specification of 1.0 mA.