1	1. A method of routing traffic in an integrated network, comprising:
2	coupling a first network to a second network to form at least a part of the
3	integrated network;
4	assigning a higher priority to routing paths associated with the first network
5	than routing paths associated with the second network; and
6	preempting existing routing paths associated with the second network to
7	establish routing paths requested by nodes associated with the first network.

- The method according to claim 1, further including assigning the higher priorities based upon a plurality of priority factors.
- The method according to claim 2, wherein the plurality of priority factors are selected from the group consisting of a value assigned to a node, a value corresponding to an elapsed time to establish a connection, a value corresponding to a condition associated with a requested server node, a value corresponding to a requested bandwidth, and a value corresponding to a condition of nodes that neighbor nodes of a requested node.
- 1 4. The method according to claim 2, further including summing the plurality of priority factors to determine a priority of a connection request.
- The method according to claim 2, wherein a first one of the plurality of priority factors includes a value assigned to a node.
- 1 6. The method according to claim 3, wherein a second one of the plurality of priority factors includes a value corresponding to elapsed time.
- The method according to claim 4, wherein a third one of the plurality of priority factors includes a value corresponding to a condition associated with the requested server.

- 1 9. The method according to claim 8, further including performing the protocol conversion based upon a data traffic type.
- 1 10. The method according to claim 1, further including migrating a request from a first node to a second node.
- The method according to claim 1, further including generating a request for data from the first node, selecting a neighboring node of the first node, and establishing a routing path from the neighboring node.
- 1 12. The method according to claim 11, wherein the neighboring node is selected
 2 based upon similarities of fields of view for cameras associated with the
 3 respective first node and neighboring node.
- 1 13. The method according to claim 1, further including decreasing a bandwidth of a request.
- 1 14. The method according to claim 1, wherein the first network comprises a traffic 2 surveillance network including a plurality of cameras and a plurality of clients 3 including a traffic center.
- 1 15. A method of routing traffic in a network, comprising:
- sending a request from a first node in a first network to establish a connection
- 3 between the first node and a second node adjacent to the first node, the request
- 4 containing a first priority for the connection;
- selecting a first output link from the second node output links;
- attempting to establish a path from the second node to the first node;
- determining whether the path to the first node was established;

8	determining whether there is a connection having a lower priority in the first
9	output link than the first priority if the connection was not established;
10	preempting a lower priority connection in the first output link if there is a
11	lower priority connection and attempting to establish the connection to the first node;
12	determining whether the second node has a second output link available if a
13	lower priority connection is not found; and
14	attempting to the establish the path to the first node through the second output
15	link.
1	16. A method of migrating a connection request from a first node to a second
2	node, comprising:
3	sending a connection request from a requestor to the first node;
4	determining a load of the first node;
5	in response to the connection request, selecting a first neighboring node of the
6	first node from a node neighbor table;
7	determining whether the first neighboring node is active;
8	sending a request migration message from the first node to the first neighbor
9	node;
10	sending a reject migration message from the first neighbor node to the first
11	node if the first neighboring node accepts the migration request; and
12	sending an acknowledge migration message from the first neighbor node to the
13	first node if the first neighbor node accepts the migration request.
1	17. The method according to claim 16, further including:
2	in response to the connection request, decreasing a bandwidth of a bandwidth
3	requested by the requestor.
1	18. The method according to claim 16, further including:
2	in response to the connection request, terminating an existing connection.
1	19. An integrated network, comprising:
2	a first network including a plurality of servers and a plurality of clients:

- a second network integrated with the first network, wherein message traffic
 associated with the first network has a higher priority than message traffic associated
 with the second network such that connections associated with the second network are
 preempted on an as needed basis to establish a connection for a request associated
 with the first network.
- The network according to claim 19, wherein first and second servers of the plurality of servers can migrate a request from the first server to the second server.