CS & IT ENGINERING Theory of Computation

Lecture No.- 02

Topics to be Covered

Topic

Regular Expression

Topic

Finite Automata

Regular Expression & Finite Automata

Consider the following regular language L: Q15.

 $L = \{w \mid \text{number of a's (w) mod } 3 \neq 1 \text{ where } w \in (a, b)^*\}$

DEVA SIR PW

Which one of the following represents above language L?

$$(\in +b^*ab^*ab^*+ab^*)(a+b)^* = (a+b)^*$$

na(w) %3 =0 or 2

EaEaEab

$$[(b*a b*a b*ab*)* + (b* + \in + b*ab*ab*)]$$

$$[b*a b*ab * ab*)* + b*] (\in + b*ab*ab*)]$$

#as + 1, 4, 7, 10, ...

$$= \left(\frac{1}{6} + \frac{1}{6} +$$

Q16. Which of the following represents set of all strings starts and ends with different symbols over a's and b's?

$$az^*b$$
 + bz^*a

$$a(a + b)*b + b(a + b)*a$$

$$a(a + b)*a + b(a + b)*b$$

None of these

Q17. Which of the following is TRUE?

Q18. Consider the following regular expression given below:

$$R_1 = (01 + (1 + 01)0)^* (1 + 01)$$

$$R_2 = (01)^* (1 + 01) (0(01)^* (0 + 01))^*$$

Which of the following is correct about R₁ and R₂?

- A String "0110" generated by R₂ but not R₁.
- String "0110" generated by R₁ but not R₂.
- Both expression generates the same language.
- None of these

Q19. Suppose the $\frac{Sife}{\text{length}}$ of language $|L_1| = 5$ and $|L_2| = 4$ then, which of the following is correct?

$$|L_1 . L_2| \ge 5$$

$$|L_1.L_2| \ge 20$$

$$|L_1.L_2| \ge 9$$

$$|L_1.L_2| \leq 20$$

Q20. Choose correct statement.

A
$$R+\Phi=R.\Phi$$
 X
 $R+R=RR$ X
 $R+R=R+\Phi$ X
 $R+R=R+\Phi$ X
 $R+R=R+\Phi$ X

Q20. Charge correct statement. Which of the following is possible for some ??

0+0-00

Regular Exp & FA: NAT

Q21. Consider the following regular expressions R:

$$R = (ab*+ba*)*(ba*+ab*) = (a+b)* = 2 S+a+8$$

Number of states are needed to design a DFA for above expression R is ____.

Q22. Consider the following deterministic finite automata (DFA):

In above DFA $\{S\}$ is starting state and F_1 and F_2 are final states.

Which of the following language belong to above DFA?

 $L = \{wxw^R | w, x \in (a, b)^*\} = (a+b)^*$

None of these.

Q23. Consider the following finite automaton F:

In above finite automata S is starting state and A is final state. Which of the following is/are correct regular expression for above finite automata?

Regular Exp & FA: NAT

Q24. Consider the language L on $\Sigma = \{0, 1\}$:

 $L = \{0^m 1^n \mid m + n = \text{ even and } m, n \ge 1\} = \{01, 0011, 0111, 0001, \dots \}$

The minimum number of states needed for DFA of language L is _____.

Regular Exp & FA: NAT

Q25. Consider the following regular expression R:

$$R = (00 + 11 + (01 + 10) (00 + 11)* (01 + 10))*$$

Minimum number of states are needed in DFA for above regular expression R is

-
$$L = \{\omega \mid \omega \in \{0,1\}^*, N_0(\omega) = \text{even}, N_1(\omega) = \text{even}\}$$

$$= \frac{1}{2} \text{ div by 2}$$

Q26. Consider the Language L:

$$L = \{w \mid |w| \% 99 \le 27 \text{ where, } w \in \{a, b\}^*\}$$

$$(a+b)^3(\epsilon+a+b)$$

What is the regular expression for above language L?

((a+b)²⁷)* (a+b)⁹⁹ |
$$w$$
 = 27K+99, K>0

((a+b)99)* (a+b)27
$$|W| = 99K+27, K>0$$

$$((\xi + a + b)^{99})^* (\xi + a + b)^{27} = (a + b)^* |W| > 0$$

$$\frac{((a+b)^{99})^* (\in +a+b)^{27}}{9} |w| = 99K + m |K \ge 0, m \le 27$$

$$|M\%99 \le 27$$
 $|W|\%99 = 27$
 $|W|\%99 = 0$ $|W|\%99 = 0$
 $|W|\%99 = 1$ $|W|\%99 = 0$
 $|W|\%99 = 1$ $|W|\%99 = 1$
 $|W|\%99 = 2$ $|W|\%99 = 1$
 $|W|\%99 = 3$ $|W| = 99K + 1$
 $|W|\%99 = 37$

W %99 5

$$|\omega| = 0.1, 2, 3, 4, 5, 6, 7, 8,$$

$$8em = 0.1, 2$$

$$\frac{(\varepsilon + a + b)}{(\varepsilon + a + b)} = \frac{($$

Q27. Which of the following regular expression represents the no two consecutive zeros ending with 1?

*00 \$ x 5 * 11 5 *

Q28. Consider the following regular expression R.

$$R = \in +0 (10)^* (\in +1) + 1 (01)^* (\in +0)$$

which one of the following languages over the alphabet {0,1} is described by the above regular expression R?

Set of all binary strings having either 00 or 11 as a substring.

Set of all binary strings not having 00 as a substring. E, D, I, & OI, IO, ID

Set of all binary strings not having 11 as substring. — oo should be in R

Set of all binary strings neither having 00 nor 11 as a substring.

Q29. Suppose
$$L_1 = 0^*$$

$$L_2 = 10$$

$$L_3 = \{1^m \ 0^m \ | m \ge 0\}$$

$$L_4 = 1*$$

If $L_5 = ((L_2/L_1) - L_4) - \overline{L}_3$ Then, the language L_5 will be:

A

φ

1*

В

{10}

D

{∈}

Regular Exp & FA: NAT

Q30. The number of states in the minimum sized DFA that accepts the language defined by the regular expression (00 + 111)* is_____.

Q31. Which of the following regular expression is equivalent to the finite automaton?

$$\in +a^++b^+$$

$$\in$$
 + aa* + bb*

Regular Exp & FA: NAT

Q32. Consider grammar G:

G:

$$S \rightarrow aSa \mid a \mid b \mid \in$$

Let $L = \{w \mid w \in L(G) \text{ and } \mid w \mid = 14\}$

Then how many strings are possible in L? ____.

Q33. Consider two languages L_1 and L_2 on = $\Sigma\{a, b\}$.

 $L_1 = \{aa, ab\}$ and $L_2 = \{aa, ab, abab\}$ then which of the following is true?

$$L_1^* \subset L_2^*$$

$$L_1^* = L_2^*$$

$$L_2^* \subset L_1^*$$

$$(L_1 \cup L_2)^* = (a+b)^*$$

Q34. Which of the following is/are correct regular expression for L = {starting and ending whit a}?

- **A** a (a + b)* a
- a (a + b)* a + a
- a (a + bb*a)*
- a (a + bb*a + aa)*

THANK - YOU