人工智能基础作业 2

傅申 PB20000051

4.1.

如下,结点表示为"Name (f_b^g) ",蓝色的结点为拓展的结点.

- 1. Lugoj (244_{244}^0)
- 2. Mehadia (311_{241}^{70}) , Timisoara (440_{329}^{111})
- 3. Lugoj (384_{244}^{140}) , Drobeta (387_{242}^{145}) , Timisoara (440_{329}^{111})
- 4. $\operatorname{Drobeta}(387_{242}^{145})$, $\operatorname{Timisoara}(440_{329}^{111})$, $\operatorname{Mehadia}(451_{241}^{210})$, $\operatorname{Timisoara}(580_{329}^{251})$
- 5. Craiova (425_{160}^{265}) , Timisoara (440_{329}^{111}) , Mehadia (451_{241}^{210}) , Mehadia (461_{241}^{220}) , Timisoara (580_{329}^{251})
- 6. $\overline{\text{Timisoara}}(440_{329}^{111})$, $\overline{\text{Mehadia}}(451_{241}^{210})$, $\overline{\text{Mehadia}}(461_{241}^{220})$, $\overline{\text{Pitesti}}(503_{100}^{403})$, $\overline{\text{Timisoara}}(580_{329}^{251})$, Rimnicu Vilcea (604_{193}^{411}) , Drobeta (627_{242}^{385})
- 7. $Mehadia(451^{210}_{241})$, $Mehadia(461^{220}_{241})$, $Lugoj(466^{222}_{244})$, $Pitesti(503^{403}_{100})$, $Timisoara(580^{251}_{329})$, Arad $\left(595_{366}^{229}\right)$, Rimnicu Vilcea $\left(604_{193}^{411}\right)$, Drobeta $\left(627_{242}^{385}\right)$
- 8. $Mehadia(461_{241}^{220})$, $Lugoj(466_{244}^{222})$, $Pitesti(503_{100}^{403})$, $Lugoj(524_{244}^{280})$, $Drobeta(527_{242}^{285})$, Timisoara $\begin{array}{c} (580_{329}^{251}), \operatorname{Arad}(595_{366}^{229}), \operatorname{Rimnicu\,Vilcea}(604_{193}^{411}), \operatorname{Drobeta}(627_{242}^{385}) \\ 9. \quad \operatorname{Lugoj}(466_{244}^{222}), \quad \operatorname{Pitesti}(503_{100}^{403}), \quad \operatorname{Lugoj}(524_{244}^{280}), \quad \operatorname{Drobeta}(527_{242}^{285}), \quad \operatorname{Lugoj}(534_{244}^{290}), \quad \operatorname{Drobeta}(527_{242}^{285}), \quad \operatorname{Drobeta}(527_{242}^{2$
- (537_{242}^{295}) , Timisoara (580_{329}^{251}) , Arad (595_{366}^{229}) , Rimnicu Vilcea (604_{193}^{411}) , Drobeta (627_{242}^{385})
- 10. $Pitesti(503_{100}^{403})$, $Lugoj(524_{244}^{280})$, $Drobeta(527_{242}^{285})$, $Mehadia(533_{241}^{292})$, $Lugoj(534_{244}^{290})$, Drobeta (537_{242}^{295}) , Timisoara (580_{329}^{251}) , Arad (595_{366}^{229}) , Rimnicu Vilcea (604_{193}^{411}) , Drobeta (627_{242}^{385}) , Timisoara (662^{333}_{329})
- 11. $\text{Bucharest}(504_0^{504})$, $\text{Lugoj}(524_{244}^{280})$, $\text{Drobeta}(527_{242}^{285})$, $\text{Mehadia}(533_{241}^{292})$, $\text{Lugoj}(534_{244}^{290})$, $\text{Drobeta}(527_{242}^{280})$ (537_{242}^{295}) , Timisoara (580_{329}^{251}) , Arad (595_{366}^{229}) , Rimnicu Vilcea (604_{193}^{411}) , Drobeta (627_{242}^{385}) , Timisoara (662_{329}^{333}) , Rimnicu Vilcea (693_{193}^{500}) , Craiova (701_{160}^{541})

最后得到的解为: Lugoj → Mehadia → Drobeta → Craiova → Pitesti → Bucharest, 总代价 504.

4.2.

算法中w取 $0 \le w \le 1$ 时能保证其最优: 当w = 0时, 算法对应一致代价搜索, 它是最优的; 当 $0 < w \le 1$ 时, $f(n) = (2-w) [g(n) + \frac{w}{2-w} h(n)]$, 相当于 $h'(n) = \frac{w}{2-w} h(n) \le h(n)$ 的 A* 搜索, 因 为 h 是可采纳的, 所以 $h' \le h$ 也是可采纳的, 算法最优.

- w = 0 f(n) = 2g(n), 这个算法是一致代价搜索;
- w = 1 f(n) = g(n) + h(n), 这个算法是 A* 搜索;
- w = 2 f(n) = 2h(n), 这个算法是贪婪最佳优先搜索.

4.6.

使用 h_1 (不在位的棋子数) 与 h_2 (所有棋子到其目标位置的曼哈顿距离和) 的和 $h_3 = h_1 + h_2$ 作为启发函数. 它在八数码游戏中有时会估计过高, 比如对右边上图的 状态, 其值为 $h_3 = 29$, 大于它的最优解路径为 25 步. 并且对于右边下图, 其最优解路 径为 25 步, 但是使用 h_3 作为启发函数的 A^* 算法给出的解为 27 步, 非最优解.

4	7	3
5	8	6
2.		1

下面证明题中命题: 设 A* 算法使用的启发函数 h 满足 $h(n) \le h^*(n) + c$, 其中 $h^*(n)$ 是 n 的最优解路径的代价. 设存在一个非最优解 G 满足 $g(G) > C^* + c$. 考虑路径上 的任何一个结点n,都有

2	7	8
6	5	4
1		3
		_

$$f(n) = g(n) + h(n)$$

$$\leq g(n) + h^*(n) + c$$

$$\leq C^* + c$$

$$< g(G)$$

因此 G 不会在找到解之前被扩展到, 即不会成为算法的解.

4.7.

使用数学归纳法, 设 k 是当前结点 n 到最优解结点 n_g 的所需的步数.

- 1. 当 k = 1 时, 显然有 $h(n) \le c(n, a, n_q) = h^*(n), h(n)$ 是可采纳的.
- 2. 设当 k=i 时有 $h(n') \leq h^*(n')$, 则当 k=i+1 时, $h(n) \leq c(n,a,n') + h(n') = c(n,a,n') + h^*(n') \leq h^*(n)$ h(n) 是可采纳的.

因此一致的启发式都是可采纳的.

对于右图中的问题, 可以给出一个启发函数如下:

$$h(A) = 4$$
$$h(B) = 2$$
$$h(G) = 0$$

这个启发函数是可采纳的, 但是它不是一致的, 因为

$$h(A)=4>c(A,a,B)+h(B)=3$$