Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	Claim 1 (original): A refurbisher for treating at least one intervertebral
2	disc, said refurbisher comprising:
3	(a) a ribbon-like energy application head having an energy application
4	region and a tissue protecting region; and
5	(b) a control member operationally connected to said ribbon-like
6	energy application head, said control member suitable for
7	controlling said ribbon-like energy application head during
8	treatment of said at least one intervertebral disc.
9	
1	Claim 2 (currently amended): The refurbisher of claim 1, said energy
2	application region having a surface that contacts a treatment area, [[wherein]] said
3	ribbon-like energy application head [[is]] has an expandable and contractible layer
4	opposite the treatment area surface of said energy application region.
5	
1	Claim 3 (currently amended): The refurbisher of claim 1 wherein said
2	ribbon-like energy application head has at least one internal energy transmission layer
3	
1	Claim 4 (currently amended): The refurbisher of claim 1 wherein said
2	ribbon-like energy application head has at least one heat generation layer energy
3	application layer containing heating elements.

I	Claim 5 (currently amended). The relabilister of claim 1 wherein said
2	ribbon-like energy application head has at least one internal insulation layer.
3	
1	Claim 6 (currently amended): The refurbisher of claim 1 wherein said
2	ribbon-like energy application head has at least one internal layer for deflecting the
3	overlying dural sac and nerve roots to protect them from the effects of the thermal
4	treatment.
5	
1	Claim 7 (currently amended): The refurbisher of claim 1 wherein said
2	ribbon-like energy application head has at least one expandable and contractable
3	internal layer.
4	
1	Claim 8 (currently amended): The refurbisher of claim 1, said ribbon-like
2	energy application head further comprising:
3	(a) a<u>n internal</u> bottom layer having a heat generator therein;
4	(b) an internal middle layer providing thermal insulation; and
5	(c) a <u>n internal</u> top layer for deflecting the overlying dural sac and nerve
6	roots to protect them from the effects of the thermal treatment.
7	
1	Claim 9 (original): An apparatus for treating at least one intervertebral
2	disc, said apparatus comprising:
3	(a) an expandable and contractible energy application head having an
4	energy application region and a tissue protecting region; and
5	(b) said energy application head having a distance between said
6	energy application region and said tissue protecting region wherein
7	said distance is variable to protect tissue associated with said at
8	least one intervertebral disc.
9	

1	Claim 10 (original): The apparatus of claim 9, said energy application
2	head further comprising:
3	(a) smooth, rounded edges;
4	(b) a domed center section; and
5	(c) said edges sloped to said domed center section;
6	(d) wherein said energy application head has a wedge-shaped head
7	geometry.
8	
1	Claim 11 (original): The apparatus of claim 9, wherein said energy
2	application head is a ribbon-like energy application head having an energy application
3	region and a tissue protecting region.
4	
1	Claim 12 (original): The apparatus of claim 9, said energy application
2	region is selected from the group consisting of:
3	(a) a flexible energy application region;
4	(b) a flat energy application region;
5	(c) an concave energy application region;
6	(d) a convex energy application region; and
7	(e) a malleable energy application region.
8	
1	Claim 13 (original): The apparatus of claim 9, said distance between said
2	energy application region and said tissue protecting region being variable in proportion
3	to the amount of energy being delivered to the intervertebral disc.
4	
1	Claim 14 (original): The apparatus of claim 9, said distance between said
2	energy application region and said tissue protecting region being automatically variable
3	
1	Claim 15 (original): The apparatus of claim 9, said distance between said
2	energy application region and said tissue protecting region being manually variable.

5

(c)

3		
1	Cla	m 16 (original): The apparatus of claim 9, said distance between said
2	energy applicatio	n region and said tissue protecting region being variable by
3	mechanically exp	anding and contracting said expandable and contractible energy
4	application head.	
5		
1	Cla	m 17 (original): The apparatus of claim 9 further including an
2	inflatable portion	for expanding and contracting said expandable and contractible
3	energy applicatio	n head.
4		
1	Cla	m 18 (original): An energy application device, said device comprising
2	(a)	an energy application head having an energy application region
3		and a tissue protecting region;
4	(b)	a distance between said energy application region and said tissue
5		protecting region;
6	(c)	said energy application head having a contracted state in which
7		said distance is a minimum distance;
8	(d)	said energy application head having an expanded state in which
9		said distance is a protecting distance greater than said minimum
10		distance; and
l 1	(e)	means for varying said distance between said minimum distance
12		and said protecting distance.
13		
1	Cla	im 19 (original): The device of claim 18, said energy application head
2	further comprising	g:
3	(a)	smooth, rounded edges;
4	(b)	a domed center section; and

said edges sloped to said domed center section;

6	(d)	wherein said energy application head has a wedge-shaped head
7		geometry.
8		
1	Cla	im 20 (original): The device of claim 18, wherein said energy
2	application head	is a ribbon-like energy application head having an energy application
3	region and a tiss	ue protecting region.
4		
1	Cla	im 21 (previously presented): A method for thermally treating an
2	intervertebral dis	c while thermally protecting vulnerable tissues, said method comprising
3	the steps of:	
4	(a)	gaining access to a vertebral column;
5	(b)	epidurally approaching the posterior aspect of said at least one
6		intervertebral disc with a ribbon-like energy application head having
7		an energy application region, a tissue protecting region, and a
8		distance defined between said energy application region and said
9		tissue protecting region;
10	(c)	varying said distance to protect tissue associated with said at least
11		one intervertebral disc to maintain a safe temperature in vulnerable
12		tissues near said at least one intervertebral disc; and
13	(d)	applying energy to a posterior aspect of said at least one
14		intervertebral disc while maintaining a safe temperature in said
15		vulnerable tissues near said at least one intervertebral disc.
16		
1	Cla	im 22 (original): The method of claim 21, further comprising at least
2	one step selecte	d from the group of steps consisting of:
3	(a)	evaluating an extent of disc injury;
4	(b)	calculating an amount of energy needed to refurbish thermally said
5		at least one intervertebral disc;

6	(c)	monitoring an amount of energy delivered and a temperature in
7		vulnerable tissues around said at least one intervertebral disc;
8	(d)	observing and evaluating an amount of shrinkage and
9		strengthening of said at least one intervertebral disc to determine
10		an intensity and duration of further energy delivery; and
11	(e)	verifying that said shrinkage and strengthening of said at least one
12		intervertebral disc is mechanically successful.
13		
1	Clain	n 23 (previously presented): The refurbisher of claim 1 wherein said
2	ribbon-like energy	application head is an expandable and contractible energy
3	application head, s	aid an expandable and contractible energy application head further
4	including an inflata	ble portion for expanding and contracting said expandable and
5	contractible energy	application head.
6		
1	Clain	n 24 (previously presented): The device of claim 18 further
2	comprising an infla	table portion for expanding and contracting said energy application
3	head between said	expanded state and said contracted state.
4		
1	Clain	n 25 (previously presented): The method of claim 21, said step of
2	varying said distan	ce further comprising the steps of expanding an inflatable portion to
3	increase said dista	nce and contracting said inflatable portion contract to decrease said
4	distance.	
5		
1	Clain	n 26 (new): The refurbisher of claim 1, wherein said ribbon-like
2	energy application	head is elongated and relatively flat, said ribbon-like energy
3	application head h	aving a length, a width, and a height, said length being at least three
4	times said width, s	aid height being less than half said width.
5		

I	Claim 27 (new): The apparatus of claim 9, wherein said energy
2	application head is elongated and relatively flat, said energy application head having a
3	length, a width, and a height, said length being at least three times said width, said
4	height being less than half said width.
5	
1	Claim 28 (new): The device of claim 18, wherein said energy application
2	head is elongated and relatively flat, said energy application head having a length, a
3	width, and a height, said length being at least three times said width, said height being
4	less than half said width.
5	
1	Claim 29 (new): The method of claim 21, further comprising the step of
2	providing an elongated and relatively flat ribbon-like energy application head, said
3	ribbon-like energy application head having a length, a width, and a height, said length
4	being at least three times said width, said height being less than half said width.
5	
1	Claim 30 (new): The apparatus of claim 9, said energy application head
2	further comprising:
3	(a) an internal top layer for deflecting the overlying dural sac and nerve
4	roots to protect them from the effects of the thermal treatment; and
5	(b) an internal bottom layer having a heat generator therein.
6	
1	Claim 31 (new): The device of claim 18, said energy application head
2	further comprising:
3	(a) an internal top layer for deflecting the overlying dural sac and nerve
4	roots to protect them from the effects of the thermal treatment; and
5	(b) an internal bottom layer having a heat generator therein.
6	

1	Claim 32 (new): The method of claim 21, further comprising the step of
2	providing an energy application head comprising:
3	(a) an internal top layer for deflecting the overlying dural sac and nerve
4	roots to protect them from the effects of the thermal treatment; and
5	(b) an internal bottom layer having a heat generator therein.
6	
1	Claim 33 (new): The apparatus of claim 9, wherein said energy
2	application region has a surface that contacts a treatment area, said energy application
3	head further comprising an expandable and contractible layer opposite the treatment
4	area surface of said energy application region.
5	
1	Claim 34 (new): The device of claim 18, wherein said energy application
2	region has a surface that contacts a treatment area, said energy application head
3	further comprising an expandable and contractible layer opposite the treatment area
4	surface of said energy application region.
5	
1	Claim 35 (new): The method of claim 21, further comprising the step of
2	providing a ribbon-like energy application head having a surface that contacts a
3	treatment area, and an expandable and contractible layer opposite the treatment area
4	surface of said energy application region.
5	