МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

СТРАТЕГИИ АТАКИ САМОДВИЖУЩИХСЯ МИН КУРСОВАЯ РАБОТА

студента 3 курса 321 группы направления 09.03.01 — Информатика и вычислительная техника факультета КНиИТ Голубкова Артема Анатольевича

Научный руководитель	
доцент	 В.В.Кирьяшкин
Заведующий кафедрой	
доцент, к.фм.н.	 Л.Б.Тяпаев

СОДЕРЖАНИЕ

BE	ЗЕДЕ	НИЕ	3
1	Опи	сание стратегий	5
	1.1	Greedy (жадный)	5
	1.2	Zigzag (зигзагообразная стратегия)	6
	1.3	Spiral (спираль)	7
	1.4	Стратегия Flank (фланговая атака)	7
	1.5	Стратегия Random (движение с шумом)	8
	1.6	AuthorStrategy (собственная)	9
2	Про	ведённые эксперименты	1
3	Paci	пиренные идеи	l 1
ЗА	КЛН	ОЧЕНИЕ 1	11

ВВЕДЕНИЕ

Современные вооружённые конфликты наглядно демонстрируют возросшую роль автономных роботизированных систем в обеспечении наступательных и оборонительных задач. Всё более широкое распространение получают беспилотные катера, дроны-камикадзе и самодвижущиеся мины, используемые как для разведки, так и для прицельного поражения объектов. Особенно перспективной представляется концепция мобильных мин, способных самостоятельно выбирать траекторию сближения с целью. Эти устройства позволяют создавать динамические минные поля и повышать тактическую гибкость на поле боя. Их применение уже активно обсуждается в военных кругах, а по масштабу влияния на тактику они сравниваются с введением авиации в XX веке.

Научное сообщество уделяет значительное внимание разработке моделей поведения автономных агентов в условиях неопределённости. В частности, в литературе представлены различные алгоритмы уклонения и преследования, патрулирования, а также построения эффективных маршрутов. Исследования Chung et al. (2011) систематизируют методы поиска и маневрирования мобильных агентов. Также широко изучаются зигзагообразные и спиральные стратегии сближения, применяемые как в сервисной, так и в военной робототехнике. Эти модели находят применение в задачах покрытия территории, уклонения от препятствий и построения траекторий максимальной живучести. Современные работы в области ройного взаимодействия дополнительно показывают эффективность распределённых систем при согласованных действиях.

Настоящая курсовая работа посвящена моделированию и анализу сценария атаки на охраняемую цель с применением группы самодвижущихся мин. Центральное место в модели занимает защищаемый объект, находящийся в центре условного поля боя, и стрелок-защитник, ведущий огонь по приближающимся минам. Каждая мина следует определённой стратегии движения, задача которой — обеспечить максимальную вероятность достижения цели в условиях противодействия.

В рамках работы моделируются:

- **целевая точка** объект, подлежащий атаке, расположенный в центре;
- стрелок-защитник моделируемый агент, осуществляющий пораже-

ние мин с заданной точностью и реакцией;

— **группа мин** — одна или несколько автономных мин, каждая из которых следует заданной стратегии движения.

Исследуются и сравниваются различные алгоритмы движения мин. Особое внимание уделяется стратегиям зигзагообразного маневрирования и спирального сближения. Эффективность каждой стратегии оценивается по ряду метрик:

- доля успешных атак (достижение цели);
- количество выживших мин;
- среднее время сближения;
- устойчивость к защитным действиям стрелка.

Цель исследования — выявление закономерностей между используемой стратегией, параметрами защитника и итоговой эффективностью атаки. Полученные результаты могут быть использованы при разработке более совершенных алгоритмов управления автономными боевыми системами.

1 Описание стратегий

В данной главе рассматриваются различные стратегии движения самодвижущихся мин, используемых для сближения с целью. Выбор эффективной траектории имеет решающее значение при преодолении активной обороны: от характера движения мины зависят её шансы на достижение цели и выживание в процессе атаки.

Каждая стратегия представляет собой определённый поведенческий шаблон, реализующий ту или иную тактику приближения: от простого прямолинейного курса до сложных манёвров с элементами уклонения и обхода. Стратегии отличаются как геометрией траектории, так и уровнем сложности реализации.

В рамках исследования предполагается, что:

- цель (стрелок) зафиксирована в центре условного поля боя, координаты $(x_0, y_0) = (0, 0);$
- мины инициализируются по равномерному распределению на окружности фиксированного радиуса R вокруг цели;
- каждая мина действует автономно, без взаимодействия с другими;
- защитник реагирует на приближение мин, пытаясь поразить их до достижения центра.

Таким образом, каждая мина стартует из точки $(x_i, y_i) = (R \cos \varphi_i, R \sin \varphi_i)$, где угол φ_i определяется равномерным делением окружности между n минами. Стартовое расположение соответствует классическим моделям обороны периметра, где противник окружён атакующими по кругу.

В следующих подразделах приведены математические модели движения для каждой стратегии, а также обсуждаются их преимущества и ограничения в условиях моделируемого конфликта.

1.1 Greedy (жадный)

Жадная стратегия представляет собой прямолинейное движение мины в направлении на цель. Предполагается, что цель находится в начале координат (0,0), а мина — в точке $\mathbf{r}(0)$. Тогда на каждом такте направление движения мины совпадает с вектором $\mathbf{r}(t)$, и её скорость определяется уравнением:

$$\dot{\mathbf{r}}(t) = -v \cdot \frac{\mathbf{r}(t)}{\|\mathbf{r}(t)\|},$$

где v — постоянная скорость мины.

Траектория движения:

$$\mathbf{r}(t) = (R_0 - vt) \cdot \frac{\mathbf{r}(0)}{R_0}, \quad R_0 = ||\mathbf{r}(0)||.$$

Таким образом, мина движется по кратчайшей траектории — прямой к цели. Данный метод соответствует стратегии чистого преследования (Pure Pursuit), известной в задачах наведения и автономной навигации [?].

Преимущества:

- минимальное время сближения;
- простота реализации;
- эффективность при отсутствии сопротивления.

Недостатки:

- высокая предсказуемость;
- уязвимость для защитника;
- неэффективность против маневрирующей цели.

1.2 Zigzag (зигзагообразная стратегия)

Зигзагообразная стратегия включает периодические боковые отклонения от прямолинейного курса. Пусть \vec{u} — единичный вектор на цель, а \vec{w} — перпендикулярный ему вектор в плоскости. Тогда траектория мины задаётся приближённо следующим выражением:

$$\mathbf{r}(t) = (R_0 - vt)\,\vec{u} + A\sin(\omega t)\vec{w},$$

где:

- А амплитуда колебаний;
- $-\omega$ угловая частота;
- -t текущий шаг моделирования.

При этом угол курса $\theta(t)$ колеблется вокруг базового направления:

$$\theta(t) = \alpha(t) + A \cdot \sin\left(\frac{t}{T}\right),$$

где T — период колебаний, $\alpha(t)$ — базовый угол на цель.

Такая стратегия имитирует поведение маневрирующих боеприпасов и

используется для повышения живучести за счёт усложнения прицеливания [?].

Преимущества:

- меньшая предсказуемость движения;
- усложнение наведения стрелка;
- повышенная выживаемость при приближении.

Недостатки:

- увеличенная длина траектории;
- снижение скорости сближения;
- более сложная реализация.

1.3 Spiral (спираль)

Мины появляются на окружности радиуса 350 вокруг центра цели. В каждый момент вектор скорости \vec{v} задается сочетанием радиальной и тангенциальной составляющих:

$$\vec{v} = v_r \vec{u}_r + v_\theta \vec{u}_\theta,$$

где $v_r=1.5,\ v_\theta=3.0.$ Итоговая скорость масштабируется до $2v_0$ (где $v_0=$ MINE_SPEED). **Преимущества:**

- Высокая скорость сближения с целью за счет значительной радиальной составляющей.
- Сложная траектория, затрудняющая предсказание (благодаря сочетанию радиальной и тангенциальной скоростей).

Недостатки:

— Траектория полностью детерминирована (не содержит рандомизации) и становится предсказуемой при многократном использовании.

1.4 Стратегия Flank (фланговая атака)

В стратегии Flank каждая мина не движется по прямой к центру, а корректирует направление на цель на угол $\pm \pi/3$ (60°). Если мина в полярных координатах стартует под углом φ (точка $x = R\cos\varphi$, $y = R\sin\varphi$), то её базовый угол на центр равен $\varphi + \pi$. Применяя фланговый манёвр, итоговый угол движения задаётся как:

$$\alpha = \varphi + \pi \pm \frac{\pi}{3}.$$

Скорость мины принимается равной $0.9v_0$, где $v_0 = \text{MINE_SPEED}$ — базовая скорость. Тогда координаты мины в момент времени t описываются уравнениями прямолинейного движения:

$$x(t) = R\cos\varphi + 0.9v_0t\cos\alpha, \qquad y(t) = R\sin\varphi + 0.9v_0t\sin\alpha.$$

Траектория такой мины — прямая линия, направленная со смещением 60° от радиуса, что соответствует фланговому обходу цели (при $\alpha = \varphi + \pi \pm \frac{\pi}{3}$ — влево или вправо). Фланговые подходы часто рассматриваются в ройных системах как продвинутые манёвры для поиска слабых мест в обороне: мина будто «пробует» обойти защитника сбоку, а не атакует по самому короткому пути.

Преимущества:

- фланговая траектория позволяет атаковать центр под другим углом, минуя наиболее защищённую ось;
- центр обороны остаётся сравнительно слабозащищённым, что даёт шанс на прорыв;
- затрудняется точное прицеливание по мине, если защитник ориентирован на прямой путь.

Недостатки:

- траектория детерминирована и со смещением на фиксированный угол, предсказуема при известной стратегии;
- скорость $0.9v_0$ ниже максимальной;
- фланговый манёвр увеличивает расстояние до цели, давая больше времени на обнаружение и перехват.

Таким образом, стратегия Flank делает атаку менее прямолинейной и может обмануть защитника, сфокусированного на центре, но одновременно снижает скорость и увеличивает путь, что делает её более предсказуемой и медленной.

1.5 Стратегия Random (движение с шумом)

В стратегии Random мины двигаются приблизительно по направлению к центру, однако на каждом шаге их угол движения подбрасывается случайным шумом. Формально это задаётся следующим образом: пусть мина в момент k имеет угол α_k (например, начальный угол $\alpha_0 = \varphi + \pi$), тогда на

следующем шаге:

$$\alpha_{k+1} = \alpha_k + \delta_k, \qquad \delta_k \sim U(-1.5, 1.5),$$

то есть к базовому углу добавляется случайное отклонение δ_k из равномерного распределения на отрезке [-1.5, +1.5] радиан.

Скорость мины равна $0.8v_0$. Положение мины обновляется по правилам:

$$x_{k+1} = x_k + 0.8v_0\cos(\alpha_k)\Delta t,$$
 $y_{k+1} = y_k + 0.8v_0\sin(\alpha_k)\Delta t,$

где Δt — длительность одного временного шага. Траектория такой мины напоминает случайное блуждание, направленное в сторону цели. Стратегия Random близка к классическому «случайному поиску», применяемому как животными, так и автономными роботами в условиях неопределённости.

Преимущества:

- угловой шум делает траекторию крайне непредсказуемой;
- затрудняется прицеливание и предсказание пути мины защитником;
- повышается вероятность «сюрпризного» приближения к цели.

Недостатки:

- скорость $0.8v_0$ ниже максимальной;
- отклонения от кратчайшего пути увеличивают время подхода;
- несмотря на хаотичность, статистическая структура шума может быть учтена защитником.

1.6 AuthorStrategy (собственная)

Мины стартуют на окружности радиуса 350 в начальной точке ϕ_0 с исходным радиусом R_0 . Радиус r(t) экспоненциально убывает по формуле:

$$r(t) = R_0 e^{-kt}, \quad k = 0.15.$$

Угол $\phi(t)$ меняется линейно: $\phi(t) = \phi_0 + \omega t$ с $\omega = 0.02$. Дополнительно вводится поперечное зигзагообразное смещение с амплитудой A = 40 и фазой $\psi(t) = \psi_0 + \delta t$ с $\delta = 0.1$. Поперечное смещение добавляется вдоль направления, перпендикулярного вектору $\vec{r}(t)$. Итоговые координаты мины:

$$x(t) = x_0 + r(t)\cos\phi(t) + A\sin(\psi(t))\cos(\phi(t) + \pi/2),$$

$$y(t) = y_0 + r(t)\sin\phi(t) + A\sin(\psi(t))\sin(\phi(t) + \pi/2).$$

Параметры стратегии Spiral Zigzag:

- speed_multiplier =1.2 общий множитель скорости (увеличивает скорость движения мин в 1.2 раза).
- spiral_factor = 0.15 коэффициент экспоненциального сближения $(k=0.15 \text{ в формуле } r(t)=R_0e^{-kt}).$
- zigzag_amplitude =40 амплитуда бокового синусоидального смещения A=40.
- zigzag_frequency = 0.2 частота флуктуаций зигзага (задает темп колебаний, но непосредственно не используется в формулах).
- phase_change =0.1 шаг изменения фазы зигзага ($\delta=0.1$).

В стратегии Spiral Zigzag комбинируются спиральное приближение и боковые синусоидальные колебания. Радиальная часть траектории следует экспоненциальной спирали, что обеспечивает устойчивое уменьшение расстояния до цели. Синусоидальное боковое смещение добавляет эффект обхода фланга: мина совершает колебания относительно радиального направления, что расширяет зону покрытия и усложняет предсказание траектории. Изменение фазы $\psi(t) = \psi_0 + \delta t$ вводит фазовый шум: разные мины получают различные начальные фазы ψ_0 , поэтому их колебания оказываются несинхронизированными. Фазовый шум необходим, чтобы сделать траектории мин уникальными и повысить непредсказуемость их поведения.

- 2 Проведённые эксперименты
- 3 Расширенные идеи

ЗАКЛЮЧЕНИЕ

dsadasdas

	одпись, дата	инициалы	
Этчет о практике выполнен мною самосто ощиеся в отчете, даны соответствующие с		a boo hero iii	