First Hit

Previous Doc

Next Doc

Go to Doc#

End of Result Set

Generate Collection

Print

L8: Entry 1 of 1

File: DWPI

DERWENT-ACC-NO: 1972-36119T

DERWENT-WEEK: 197223

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Lead zirconate titanate piezoelectric ceramic - with high dielectric

constant and coupling factor for transducers

PATENT-ASSIGNEE: MATSUSHITA ELEC IND CO LTD (MATU)

PRIORITY-DATA: 1965JP-0050264 (August 16, 1965)

Search Selected Search ALL Clear

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

DE 1646699 B

000

NL 149329 B

April 15, 1976

000

INT-CL (IPC): CO4B 35/00; HO1L 41/18; HO4R 17/00

ABSTRACTED-PUB-NO: DE 1646699B

BASIC-ABSTRACT:

Ceramic comprises a solid soln. of Pb(Mg1/3 Nb2/3)x Tiy Zr2O3 where x = 0.01 - 0.875, y = 0 - 0.813, z = 0 - 0.95 and approx. 1-20 atom. % of Pb is replaced by Sr, Ba and /or Ca. Pref. x = 0.0625 - 0.5, y = 0.25-0.5, z = 0.125 - 0.625. Low resonance resistance.

ABSTRACTED-PUB-NO: DE 1646699B

EQUIVALENT-ABSTRACTS:

DERWENT-CLASS: L03 U12 V06

CPI-CODES: L03-D01B;

Previous Doc Next Doc Go to Doc#

BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

80 b, 8/131 21 a4, 10

1

1 646 699 Auslegeschrift

Aktenzeichen:

P 16 46 699.2-45 (M 69140)

Anmeldetag:

14. April 1966

Offenlegungstag:

Auslegetag:

31. Mai 1972

Ausstellungspriorität:

Unionspriorität 39

Datum: 32

16. August 1965

Land: (33)

Japan

Aktenzeichen: 3

40-50264

<u>64</u>) Bezeichnung: Piezoelektrische Keramik

6

Zusatz zu:

Anmelder:

62) **(11)** Ausscheidung aus:

Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

Vertreter gem. § 16 PatG:

Ruschke, H., Dr.-Ing.; Agular, H., Dipl.-Ing.; Patentanwälte,

1000 Berlin und 8000 München

@

Als Erfinder benannt:

Ouchi, Hiromu, Toyonaka; Nishida, Masamitsu, Osaka (Japan)

閾

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DT-PS 1 099 431 DT-AS 1116742

GB-PS 1010508

Isvest. Akad. Nauk, USSR, 1960,

S. 1276

9 5.72 209 523/378

Patentansprüche:

1. Piezoelektrische Keramik, dadurch gekennzeichnet, daß sie aus einer festen Lösung gemäß der Formel

$Pb(Mg_{1/3}Nb_{2/3})_xTi_yZr_zO_3$

besteht, und zwar mit Werten für x zwischen 0,01 und 0,875, für y zwischen 0 und 0,813 und für z zwischen 0 und 0,95, wobei etwa 1 bis 20 Atom- 10 prozent Blei durch Strontium, Barium und/oder Calcium ersetzt sind.

Piezoelektrische Keramik, dadurch gekennzeichnet, daß sie aus einer festen Lösung gemäß der Formel

$Pb(Mg_{1/3}Nb_{2/3})_xTi_yZr_zO_3$

besteht, und zwar mit Werten für x zwischen 0,01 und 0,625, für y zwischen 0,125 und 0,625 und für z zwischen 0 und 0,75, wobei etwa 1 bis 20 20 Atomprozent Blei durch Strontium, Barium und/ oder Calcium ersetzt sind.

3. Piezoelektrische Keramik, dadurch gekennzeichnet, daß sie aus einer festen Lösung gemäß der Formel

$Pb(Mg_{1/3}Nb_{2/3})_xTi_yZr_zO_8$

besteht, und zwar mit Werten für x zwischen 0,0625 und 0,5, für y zwischen 0,25 und 0,5 und für z zwischen 0,125 und 0,625, wobei etwa 1 bis 30 20 Atomprozent Blei durch Strontium, Barium und/oder Calcium ersetzt sind.

Die Erfindung betrifft eine neue piezoelektrische Keramik. Bei dem Keramikgrundmaterial dieser piezoelektrischen Keramik handelt es sich um polykristalline Aggregate bestimmter, im nachfolgenden beschriebener Konstitution. Die piezoelektrische Kera- 40 mik gemäß der Erfindung kann für elektromechanische Wandler verwendet werden.

Wegen der im Vergleich zu kristallinen Substanzen, wie z. B. dem Rochellesalz, geringeren Kosten und der leichten Herstellbarkeit von Keramikerzeugnissen 45 sehr hohe Dielektrizitätskonstante, einen hohen plaverschiedenster Gestalt und Größe und der größeren Beständigkeit dieser Erzeugnisse bei hohen Temperaturen und/oder Feuchtigkeit hat die piezoelektrische Keramik in letzter Zeit für verschiedene Energieumwandlungszwecke Bedeutung erlangt. Sowohl bei 50 der Entwicklung neuer Anwendungen für eine schon bekannte Keramik als auch bei der Entwicklung einer neuen oder verbesserten piezoelektrischen Keramik für elektromechanische Wandler sind beträchtliche Anstrengungen unternommen worden. Die piezo- 55 elektrischen Eigenschaften der Keramik variieren natürlich mit dem jeweiligen Anwendungszweck. Zum Beispiel erfordern elektromechanische Wandler, wie (1) Schallplattenaufnahmegeräte und Mikrophone, eine hohe Ausstoßspannung und ein unscharfes 60 einer festen Lösung gemäß der Formel Ansprechen auf Frequenzänderungen. Die piezoelektrische Keramik muß daher einen sehr hohen elektromechanischen Kopplungskoeffizienten und eine sehr hohe Dielektrizitätskonstante aufweisen. Bei Hochleistungsresonatoren für Ultraschallwaschgeräte 65 oder ähnlichen Anwendungszwecken ist es erwünscht, einen niedrigen Resonanzwiderstand zu haben, um die inneren Betriebsverluste zu vermindern. Auf der

anderen Seite soll (2) die piezoelektrische Keramik für elektrische Wellenfilter einen ganz speziellen Kopplungskoeffizienten, einen niedrigen Resonanzwiderstand und einen hohen mechanischen Qualitäts-5 faktor aufweisen. Weiterhin muß die Keramik in bezug auf die Resonanzfrequenz und andere elektrische Eigenschaften eine hohe Temperatur- und Zeitbeständigkeit haben.

Aus der USA.-Patentschrift 3 268 453, J. Am. Ceram. Soc., 48 [12], S. 630 bis 635 (1965), und J. Am. Ceram. Soc., 49 [11], S. 577 bis 582 (1966), ist eine piezoelektrische Keramik bekannt, die aus dem System

$Pb(Mg_{1/3}Nb_{2/3})O_3 - PbTiO_3 - PbZrO_3$

15 besteht und mit bestimmten Zusätzen modifiziert ist. Eine Bleititanat-Bleizirkonat-Keramik, die mit bestimmten Zusätzen, wie z. B. Ta₂O₅, Nb₂O₅, Fe₂O₃, NiO, CoO, Bi₂O₃ und WO₃, modifiziert ist, wird in der deutschen Patentschrift 1 009 431, der deutschen Auslegeschrift 1 116 742 und der britischen Patentschrift 1 010 508 beschrieben. Die dort beschriebene Keramik besitzt jedoch eine relativ niedrige Dielektrizitätskonstante und einen niedrigen elektromechanischen Kopplungskoeffizienten. So hat z. B. 25 die nach dieser Literatur bekannte Keramik eine Dielektrizitätskonstante von 1609 zusammen mit einem radialen Kopplungskoeffizienten von 0,564 gezeigt. Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine piezoelektrische Keramik mit sehr verbesserten piezoelektrischen und dielektrischen Eigenschaften zur Verfügung zu stellen. Derart verbesserte Eigenschaft wird nicht bei der herkömmlichen Keramik aus Bleititanat-Bleizirkonat oder Bleimagnesiumniobat, das in Ivs. Akad., Nauk, USSR., 1960, 35 S. 1276, beschrieben ist, erzielt. Die Curie-Temperatur von Bleimagnesiumniobat der Formel

Pb(Mg_{1/8}Nb_{2/8})O₃

liegt bei -12°C, also sehr unter der Raumtemperatur, was als Grund dafür anzunehmen ist, daß der genannten Literatur über die Piezoelektrizität dieser Verbindung nichts zu entnehmen ist. Der Stand der Technik gibt daher keine Lehre, wie eine piezoelektrische Keramik zusammengesetzt sein muß, damit sie eine naren Kopplungskoeffizienten und einen geringen Resonanzwiderstand aufweist.

Ziel der Erfindung ist die Schaffung einer verbesserten piezoelektrischen Keramik, die durch eine hohe relative Dielektrizitätskonstante, einen hohen elektromechanischen Kopplungskoeffizienten und einen niedrigen Resonanzwiderstand ausgezeichnet ist.

Ein weiteres Ziel der Erfindung ist die Schaffung einer neuen piezoelektrischen Keramik, bei der bestimmte Eigenschaften in der gewünschten Weise eingestellt werden können, um sie bestimmten elektromechanischen Energieumwandlungszwecken anzupassen.

Es wurde nun eine piezoelektrische Keramik gefunden, die dadurch gekennzeichnet ist, daß sie aus

$Pb(Mg_{1/2}Nb_{2/3})_xTi_yZr_zO_3$

besteht, und zwar mit den Werten für x zwischen 0,01 und 0,875, für y zwischen 0 und 0,813 und für z zwischen 0 und 0,95, wobei etwa 1 bis 20 Atomprozent Blei durch Strontium, Barium und/oder Calcium ersetzt sind. Eine solche piezoelektrische Keramik zeigt hohe elektromechanische Wandlereigenschaften.

Nach einer weiteren Ausführungsform der Erfindung besteht die piezoelektrische Keramik gemäß der Erfindung aus einer festen Lösung gemäß der Formel

$Pb(Mg_{1/3}Nb_{2/3})_xTi_yZr_zO_8$

und zwar mit Werten für x zwischen 0,01 und 0,625, für y zwischen 0,125 und 0,625 und für z zwischen 0 und 0,75, wobei etwa 1 bis 20 Atomprozent Blei durch Strontium, Barium und/oder Calcium ersetzt

Nach noch einer weiteren besonderen Ausführungsform der Erfindung besteht die piezoelektrische Keramik gemäß der Erfindung aus der festen Lösung der vorstehend angegebenen Formel, wobei die Werte und 0,5 und für z zwischen 0,125 und 0,625 liegen und ebenfalls etwa 1 bis 20 Atomprozent Blei durch Strontium, Barium und/oder Calcium ersetzt sind.

Das Verfahren zur Herstellung der piezoelektrischen Keramik gemäß der Erfindung wird in der folgenden 20 Beschreibung und den Zeichnungen erläutert, in denen

Fig. 1 ein Querschnitt durch einen elektromechanischen Wandler ist, der unter Verwendung der neuen piezoelektrischen Keramik hergestellt worden ist,

Fig. 2 ein Dreieckdiagramm ist, das die Zusammensetzung der neuen piezoelektrischen Keramik erläutert,

Fig. 3 bis 5 graphische Darstellungen sind, die den die relative Dielektrizitätskonstante (s), den planaren Kopplungskoeffizienten (k_p) und den Resonanzwiderstand (R) haben, für die Keramik gemäß der Erfindung im Vergleich zu einer Keramik gleicher Zusam-Calcium enthält, bei 20°C und 1 kHz erläutern,

Fig. 6 bis 8 graphische Darstellungen sind, die an Hand von Beispielen erläutern, welchen Einfluß der teilweise Austausch des Bleianteils durch Strontium, Barium bzw. Calcium auf die relative Dielektrizitäts- 40 konstante (8), den planaren Kopplungskoeffizienten (kp) und den Resonanzwiderstand (R) der piezoelektrischen Keramik hat;

Fig. 9 ist ferner eine graphische Darstellung des Einflusses einer Änderung in der Zusammensetzung 45 der Keramik auf die Dielektrizitätskonstante (e) und den planaren Kopplungskoeffizienten (k_p) bei 20°C und 1 kc für eine Keramik mit einer Zusammensetzung nahe der morphotropen Phasengrenze;

Fig. 10 veranschaulicht in Form einer graphischen 50 Darstellung die Änderung der Resonanzfrequenz, des planaren Kopplungskoeffizienten und der Kapazität von einer polarisierten Keramik nach der Erfindung mit der Zeit, d. h. mit der Alterung.

Ehe eine ausführliche Beschreibung der erfindungs- 55 gemäß vorgeschlagenen piezoelektrischen Keramik erfolgt, soll ihre Anwendung in elektromechanischen Wandlern unter Bezugnahme auf Fig. 1 der Zeichnungen erläutert werden, in der die Bezugszahl 7 einen elektromechanischen Wandler als Ganzes be- 60 zeichnet, der als aktives Element einen vorzugsweise scheibenförmigen Körper 1 aus einer piezoelektrischen Keramik gemäß der Erfindung aufweist. Der Körper 1 ist in einer im folgenden beschriebenen Weise elektrostatisch polarisiert und ist mit einem Paar von Elek- 65 troden 2 und 3 versehen, die in einer geeigneten und an sich bekannten Weise mit zwei gegenüberliegenden Flächen des Körpers 1 verbunden sind. Leitend mit

den Elektroden 2 und 3 verbunden, wie z. B. durch Lötungen 4, befinden sich Drahtleitungen 5 und 6, die den Wandler mit dem zu verwendenden, nicht gezeigten elektrischen bzw. elektronischen Schaltungs-5 kreis verbinden. Ein elektromechanischer Wandler dient bekanntlich zur Umwandlung von elektrischer Energie in mechanische Energie, und umgekehrt. Wenn der Keramikkörper daher mechanischen Spannungen unterworfen wird, führt die erhaltene Dehnung bzw. Kompression zur Erzeugung eines elektrischen Ausstoßes in Form eines Spannungspotentials zwischen den Leitungen 5 und 6. Umgekehrt für ein zwischen den Leitungen angelegtes Potential zu einer Dehnung bzw. Kompression oder - allgemein ausgedrückt für x zwischen 0,0625 und 0,5, für y zwischen 0,25 15 einer mechanischen Verformung des Keramikkörpers 1.

Gemäß der Erfindung wurde festgestellt, daß Ge-

mische aus Pb(Mg_{1/8}Nb_{8/8})O₃ und PbTiO₃ in allen Mengenverhältnissen feste Lösungen in einer Struktur vom Perowskit-Typ bilden. Die feste Lösung hat eine morphotrope Phasengrenze bei einer Zusammensetzung von 59,0 Molprozent Pb(Mg1/3Nb2/3)O3 und 41,0 Molprozent PbTiO3. Der planare Kopplungskoeffizient ist am höchsten in der Nähe der morpho-25 tropen Zusammensetzung und wird geringer, wenn sich die Zusammensetzung von der morphotropen Zusammensetzung entfernt. Weiterhin wurde festgestellt, daß das aus Pb(Mg1/sNb2/a)O3, PbTiO3 und PbZrO_a bestehende ternäre System ebenfalls in allen Effekt, die Änderungen in der Zusammensetzung auf 30 Mengenverhältnissen als feste Lösung vorliegt. Die feste Lösung des in einer Perovskitstruktur vorliegenden ternären Systems wird modifiziert, wenn man den Anteil (Mg1/3Nb2/3) teilweise durch Ti und/oder Zr ersetzt. Die piezoelektrischen Eigenschaften werden mensetzung, die aber kein Strontium, Barium oder 35 bei dem ternären System viel stärker als bei dem obengenannten binären System verbessert und sind in der Nähe der morphotropen Zusammensetzung ausgezeichnet. Die Änderung der Eigenschaften mit der Zusammensetzung wird in den Fig. 3 bis 4 für eine beispielhafte ternäre Zusammensetzung einer Keramik erläutert, die kein Erdalkalimetall als Austauschbestandteil enthält. Weiterhin wurde eine Verbesserung der dielektrischen und piezoelektrischen Eigenschaften erreicht, wenn ein Teil des Bleis in dem ternären System ersetzt wurde.

In Zirkonium ist bekanntlich Hafnium als Verunreinigung in verschiedener Menge enthalten. Für die Zwecke der Erfindung ist das Hafnium dem Zirkonium praktisch gleichwertig, so daß das Hafnium entweder als Verunreinigung oder als Ersatz für das Zirkonium vorliegen kann. Wegen der relativ hohen Kosten von Hafnium im Vergleich zu Zirkonium ist jedoch seine Verwendung bei der technischen Herstellung der erfindungsgemäßen Keramik unwirtschaftlich, so daß in der folgenden Beschreibung das mögliche Vorhandensein von Hafnium außer acht gelassen wird. Das gleiche gilt in bezug auf geringe Mengen Tantal, die als Verunreinigung im Niob vorkommen können. Der Tantalgehalt kann jedoch auf weniger als 2% verringert werden, und derartige Mengen beeinträchtigen die piezoelektrischen Eigenschaften nicht. Erfindungsgemäß ist daher Tantal dem Niob als praktisch äquivalent anzusehen. Alle möglichen Zusammensetzungen, die das ternäre System haben kann, werden durch das Dreieckdiagramm von Fig. 2 erläutert. Einige der durch das Diagramm wiedergegebenen Zusammensetzungen führen jedoch zu keiner Keramik mit hohem piezoelektrischem Effekt. Die vorliegende Erfindung befaßt sich nur mit einer solchen Keramik, die einen piezoelektrischen Effekt von merklicher Größe zeigt. Der planare Kopplungskoeffizient k_p von Prüfscheiben wird als Maßstab der piezoelektrischen Aktivität genommen.

Innerhalb der Fläche ABCDEF von Fig. 2, die 87,5 bis 1 Molprozent Pb(Mg_{1/8}Nb_{2/3})O₃, 81,3 bis 0 Molprozent PbTiO₃ und 95 bis 0 Molprozent PbZrO₃ erfaßt, führen sämtliche Zusammensetzungen zu einer Keramik, die polarisiert und geprüft worden ist, mit 10 einem planaren Kopplungskoeffizienten von etwa 5% oder höher. Innerhalb der Fläche GHIJKLNO, die 62,5 bis 1 Molprozent Pb(Mg_{1/3}Nb_{2/3})O₃, 62,5 bis 12,5 Molprozent PbTiO₃ und 75 bis 0 Molprozent PbZrO₈ erfaßt, zeigt eine polarisierte Keramik einen 15 planaren Kopplungskoeffizienten von etwa 20% oder höher. Innerhalb der Fläche PQRSTU, die Zusammensetzungen mit 50,0 bis 6,25 Molprozent Pb(Mg_{1/3}Nb_{2/3})O₃, 50,0 bis 25,0 Molprozent PbTiO_a und 62,5 bis 12,5 Molprozent PbZrO₈ umfaßt, zeigt 20 eine polarisierte Keramik einen planaren Kopplungskoeffizienten von etwa 30% oder höher. Weiterhin führen die Zusammensetzungen nahe der morphotropen Phasengrenze, die 37,5 bis 12,5 Molprozent Pb(Mg_{1/3}Nb_{2/3})O₃ und 37,5 Molprozent PbTiO₃ ent- 25 halten und zum Rest aus PbZrO3 bestehen, zu einer Keramik mit einem planaren Kopplungskoeffizienten von 40% oder höher.

Im folgenden werden die Molenbrüche der drei Bestandteile für die Punkte A bis U von F i g. 2 angegeben:

	Pb(Mg _{1/3} Nb _{2/3})O ₃	PbTiO _s	PbZrO ₈
A	0,875	0,125	0,000
В	0,875	0,000	0,125
\boldsymbol{C}	0,050	0,000	0,950
\boldsymbol{D}	0,010	0,040	0,950
\boldsymbol{E}	0,010	0,813	0,177
\boldsymbol{F}	0,187	0,813	0,000
G	0,625	0,375	0,000
H	0,625	0,125	0,250
I	0,500	0,125	0,375
J	0,1875	0,1875	0,625
K	0,010	0,240	0,750
\boldsymbol{L}	0,010	0,615	0,375
M	0,125	0,625	0,250
N	0,250	0,625	0,125
0	0,500	0,500	0,000
P	0,500	0,375	0,125
Q R	0,500	0,250	0,250
\tilde{R}	0,125	0,250	0,625
S	0,0625	0,3125	0,625
T	0,0625	0,500	0,4375
U	0,375	0,500	0,125

In den ternären Zusammensetzungen innerhalb der Fläche ABCDEF, die 87,5 bis 1 Molprozent Pb(Mg_{1/3}Nb_{2/3})O₃, 81,3 bis 0 Molprozent PbTiO₃ und 95 bis 0 Molprozent PbZrO₃ umfaßt, hat die Einverfeibung von Pb(Mg_{1/3}Nb_{2/3})O₃ als Ersatz für einen Teil des PbZrO₃ den Effekt einer fortschreitenden Verringerung der Curietemperatur der Keramik, doch behält die Keramik einen verhältnismäßig hohen planaren Kopplungskoeffizienten, insbesondere in der 65 Fläche PQRSTU von Fig. 2, die 50,0 bis 6,25 Molprozent Pb(Mg_{1/3}Nb_{2/3})O₃, 50,0 bis 25,0 Molprozent PbTiO₃ und 62,5 bis 12,5 Molprozent PbZrO₃ um-

faßt. Wie oben angegeben ist, ist bei der Keramik gemäß der Erfindung ein Teil des Bleis in den festen Lösungen, die durch die Fläche ABCDEF oder vorzugsweise durch die Fläche PQRSTU von Fig. 2 definiert werden, durch Strontium, Barium und/oder Calcium ersetzt, und zwar etwa 1 bis 20 Atomprozent, vorzugsweise aber 3 bis 10 Atomprozent. Der Effekt von Strontium, Barium und Calcium ist qualitativ der gleiche, doch ist bei gleicher Menge Strontium wirksamer.

Zur leichteren und eindeutigeren Definition kann die erfindungsgemäße Keramik durch die folgende allgemeine empirische Formel wiedergegeben werden:

$Pb_aSr_bBa_cCa_d[(Mg_{1/3}Nb_{2/3})_xTi_yZr_z]O_3.$

Dabei bedeuten die Indizes a, b, c, d, x, y und z die Molenbrüche bzw. die Atomprozentwerte der jeweiligen Bestandteile und haben die folgenden numerischen Werte:

$$a = 0.99 \text{ bis } 0.80$$

 $b = 0.01 \text{ bis } 0.20$
 $c = 0.01 \text{ bis } 0.20$
 $d = 0.01 \text{ bis } 0.20$
 $b + c + d = 0.01 \text{ bis } 0.20$
 $x = 0.01 \text{ bis } 0.875$
 $y = 0 \text{ bis } 0.813$
 $z = 0 \text{ bis } 0.950 \text{ und}$
 $a + b + c + d = x + y + z = 1.00$

Die piezoelektrische Keramik nach der Erfindung besitzt eine hohe Dielektrizitätskonstante und einen hohen planaren Kopplungskoeffizienten zusammen mit einem geringen Resonanzwiderstand. So zeigt die piezoelektrische Keramik nach der Erfindung z. B. 35 eine Dielektrizitätskonstante von 3510, einen piezoelektrischen planaren Kopplungskoeffizienten von 0,64 zusammen mit einem geringen Resonanzwiderstand von 8 Ohm, was gegenüber einer Dielektrizitätskonstante von 1609 und einem radialen Kopplungskoeffizienten von 0,564 von der oben erörterten bekannten piezoelektrischen Keramik technisch sehr vorteilhaft ist. Diese vorteilhaften Eigenschaften können nur mit einer Keramik erzielt werden, die ein ternäres System

$Pb(Mg_{1/8}Nb_{2/3})O_3 - PbTiO_3 - PbZrO_3$

und eine teilweise Substitution von Pb durch Ba, Sr oder Ca aufweist. Der Effekt einer solchen Substitution in einem solchen ternären System in bezug auf die 50 piezoelektrischen und dielektrischen Eigenschaften der polarisierten Keramik war nach dem Stand der Technik nicht vorauszusehen gewesen.

Beispiele

Zur Herstellung der Keramik gemäß der Erfindung werden die Ausgangsmaterialien, wie z. B. reines PbO oder Pb₃O₄, MgO oder MgCO₃, Nb₂O₅ oder Nb(OH)₆, TiO₂ und ZrO₂ sowie reaktionsfähige Verbindungen von Strontium, Barium und Calcium (wie z. B. die Oxyde, Hydroxyde oder Carbonate) in einer mit Kautschuk ausgekleideten Kugelmühle innig mit destilliertem Wasser vermischt. Jeder Ansatz wird so abgewogen, daß etwa 100 g Gemisch vorliegen. Die Gemische werden nach dem Trocknen unter einem Druck von 400 kg/cm³ zu der gewünschten Form gepreßt. Die Blöcke werden 2 Stunden bei 850°C kalziniert, in der Kugelmühle naßpulverisiert und die Pulver getrocknet. Die trockenen Produkte, die eine

45

kleine Menge destilliertes Wasser enthalten (organische Bindemittel und Gleitmittel werden vermieden), werden unter einem Druck von 700 kg/cm² zu Scheiben von 20 mm Durchmesser und 2 mm Dicke verformt. Die Scheiben werden bei einer gewünschten Temperatur, die sich nach der jeweiligen Zusammensetzung richtet, 45 Minuten gebrannt. Erfindungsgemäß besteht keine Notwendigkeit, die Massen in einer PbO-Atmosphäre zu brennen, und auch im Hinblick auf den Temperaturgradienten im Ofen ist keine beson- 10 dere Sorgfalt erforderlich. So kann die erfindungsgemäße piezoelektrische Keramik in gleichmäßiger und ausgezeichneter Weise leicht durch einfaches Bedecken der Proben mit einem Tonerdetiegel erhalten werden. Die gesinterte Keramik wird auf beiden Ober- 15 flächen auf eine Dicke von 1 mm poliert. Die polierte Scheibe wird auf beiden Seiten mit Silberfarbe überzogen und bei 800°C gebrannt, um Elektroden herzustellen. Der Prüfkörper mit dem auf ihm erzeugten Elektrodenpaar wird auf seine Dielektrizitätskonstante 20 und auf seinen dielektrischen Verlustfaktor bei 20°C, einer relativen Feuchte von 50% und einer Frequenz von 1 kHz geprüft. Zur Polarisation werden die Prüfkörper in ein Siliconölbad bei 100°C eingetaucht, 1 Stunde mit einer Gleichstromspannung von 4 kV/mm 25 beladen und unter Aufrechterhaltung des Feldes in 30 Minuten auf Raumtemperatur (etwa 20 bis 30°C) abgekühlt. Die dielektrischen und piezoelektrischen Eigenschaften der polarisierten Prüfkörper sind gemessen worden, und bevorzugte Zusammensetzungen 30 der piezoelektrischen Keramik gemäß der Erfindung bei 20°C sind in Tabelle I zusammengestellt. Die Messung der piezoelektrischen Eigenschaften erfolgte unter Verwendung der IRE-Standard-Übertragungsschaltung, und der planare Kopplungskoeffizient 35 wurde nach dem Resonanz-Antiresonanz-Frequenzverfahren bestimmt. Innerhalb der obengenannten allgemeinen Mengenverhältnisse haben die vom Standpunkt eines hohen piezoelektrischen Effektes, verbunden mit hoher relativer Dielektrizitätskonstante, 40 aus gesehen bevorzugten Zusammensetzungen der piezoelektrischen Keramik gemäß der Erfindung die folgenden Formeln:

- (1) $Pb_{0,97}Sr_{0,03}[(Mg_{1/3}Nb_{2/3})_{0,125}Ti_{0,405}Zr_{0,47}]O_{3}$
- (2) $Pb_{0,95}Ba_{0,05}[(Mg_{1/8}Nb_{2/3})_{0,125}Ti_{0,405}Zr_{0,47}]O_3$
- (3) $Pb_{0,95}Ca_{0,05}[(Mg_{1/8}Nb_{2/8})_{0,125}Ti_{0,405}Zr_{0,47}]O_8$
- (4) $Pb_{0.90}Sr_{0.10}[(Mg_{1/3}Nb_{2/3})_{0.125}Ti_{0.405}Zr_{0.47}]O_3$
- (5) $Pb_{0,95}Ba_{0,05}[(Mg_{1/8}Nb_{2/3})_{0,375}Ti_{0,375}Zr_{0,25}]O_3$
- (6) $Pb_{0,90}Sr_{0,10}[(Mg_{1/3}Nb_{2/3})_{0,375}Ti_{0,375}Zr_{0,25})O_3$

Wie aus der weiter unten folgenden Tabelle I ersichtlich ist, hat eine piezoelektrische Keramik mit den obengenannten Formeln (1) und (4) [Beispiele 62 und 64] relative Dielektrizitätskonstanten (s) von 55 1150 bzw. 2328 im Vergleich zu 1090 für eine Keramik aus einer Grundzusammensetzung mit dem gleichen Molverhältnis

$$\begin{split} &Mg_{1/3}Nb_{2/3}:Ti:Zr\\ &[d.\ h.\ Pb(Mg_{1/3}Nb_{2/3})_{0,125}Ti_{0,405}Zr_{0,47})O_3]. \end{split}$$

Diese bemerkenswerte Vergrößerung der Dielektrizitätskonstante ist von einer Zunahme in bezug auf die elektromechanische Ansprechbarkeit begleitet, was sich an einer Vergrößerung des planaren Kopplungskoeffizienten (k_p) von 0,458 auf 0,502 bzw. 0,581 zeigt, und ist weiterhin von einer Abnahme in der Resonanzimpedanz begleitet, was sich an einer Ab-

nahme des Äquivalentresonanzwiderstandes (R) von 28,1 auf 23,7 bzw. 12,7 Ohm zeigt.

Die gleichen Ergebnisse sind mit einer Keramik der Formeln (2) und (3) erhältlich [Beispiele 66 und 69 von Tabelle I], bei der ein Teil des Bleis durch Barium und Calcium ersetzt ist und die relative Dielektrizitätskonstanten von 1215 bzw. 1198 aufweist. Gleichzeitig wird eine Zunahme bei dem planaren Kopplungskoeffizienten (von 0,458 auf 0,496 bzw. 0,494) und eine Abnahme des Resonanzwiderstandes (von 28,1 auf 23,2 bzw. 21,7 Ohm) gefunden. Eine Keramik mit den Formeln (5) und (6) [Beispiele 33 und 30 von Tabelle I] hat viel höhere relative Dielektrizitätskonstanten ($\varepsilon = 2320$ bzw. 3693) und geringere Resonanzwiderstände (R = 16,7 bzw. 16,1 Ohm) als eine Keramik mit den Grundzusammensetzungen. Diese hohen Dielektrizitätskonstanten werden auf Kosten einer schwachen Verringerung der planaren Kopplung erreicht, doch kann diese Verringerung in Anbetracht der hohen Dielektrizitätskonstanten in Kauf genommen werden.

Die Fig. 3 bis 5 erläutern die Veränderung der relativen Dielektrizitätskonstante (ε), des planaren Kopplungskoeffizienten (k_p) und des Resonanzwiderstandes (R) einer beispielhaften Keramik als Funktion des Molverhältnisses von PbTiO_s zu PbZrO_s bei (25 Molprozent) konstantem Mol-Anteil Pb(Mg_{1/3}Nb_{2/3})O₃, das 5 Molprozent Strontium enthält, im Vergleich zu der entsprechenden nichtmodifizierten Keramik. Aus diesen graphischen Darstellungen ist eindeutig ersichtlich, daß sowohl bei der erfindungsgemäßen Keramik als auch bei der nichtmodifizierten Keramik in der Nähe der morphotropen Übergangsgrenze die höchsten relativen Dielektrizitätskonstanten, die höchsten planaren Kopplungskoeffizienten und die niedrigsten Resonanzwiderstände vorliegen. Weiterhin ist eindeutig ersichtlich, daß der Ersatz eines Teils des Bleis durch die genannten Erdalkalimetalle eine Zunahme der Dielektrizitätskonstanten und der planaren Kopplungskoeffizienten und eine Abnahme der Resonanzwiderstände bewirkt.

Die Fig. 6 bis 9 sind graphische Darstellungen, die den Effekt der zum Modifizieren verwendeten Menge an Erdalkalimetall auf die relative Dielektrizitäts45 konstante (ε), den planaren Kopplungskoeffizienten (kp) und den Resonanzwiderstand (R) bei einer Keramik zeigen, bei der ein Teil des Bleianteils durch Strontium, Barium bzw. Calcium ersetzt ist.

Fig. 10 ist eine graphische Darstellung des Ein50 flusses einer Substitution auf die Alterungseigenschaften der Keramik gemäß der Erfindung, bei der die
Stellung, in der sich das Blei befindet, teilweise durch
Strontium bzw. Barium besetzt ist, in bezug auf die
Resonanzfrequenz, den planaren Kopplungskoeffizienten und die Kapazität.

Aus diesen graphischen Darstellungen ist ersichtlich, daß die Keramik, die Erdalkalielemente enthält, im Vergleich zu einer nichtmodifizierten Keramik mit der Grundzusammensetzung eine merkliche Verbesserung 60 der relativen Dielektrizitätskonstante, des planaren Kopplungskoeffizienten und des Resonanzwiderstandes zeigt. Bei einer weiteren Zunahme des prozentualen Anteils an Erdalkalielement werden diese Verbesserungen jedoch nur auf Kosten einer Verschlechterung anderer Eigenschaften, wie z. B. eines etwas geringeren planaren Kopplungskoeffizienten und einer Zunahme des Resonanzwiderstandes, erzielt. Aus der folgenden Tabelle und den Figuren ist ersichtlich, daß die bevor-

209 523/378

Bei-

spiel

43

44

45

46

47

48

49

10

 $Pb(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,375}Zr_{0,375}O_3$

Zusammensetzung

 $Pb_{0,97}Sr_{0,03}(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,375}Zr_{0,275}O_{3} \\$

 $Pb_{0,95}Sr_{0,05}(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,875}Zr_{0,275}O_{3} \\$

 $Pb_{0,90}Sr_{0,10}(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,875}Zr_{0,875}O_{3} \\$

 $Pb_{0.80}Sr_{0.20}(Mg_{1/3}Nb_{2/3})_{0.25}Ti_{0.375}Zr_{0.375}O_{3}$

 $Pb_{0,97}Ba_{0,03}(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,375}Zr_{0,375}O_{3} \\$

 $Pb_{0,95}Ba_{0,05}(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,375}Zr_{0,375}O_{3}$

zugte Menge an Erdalkalimetall etwa 3 bis 10 Atomprozent beträgt.

Zusätzlich zu den obengenannten verbesserten Eigenschaften besitzt die erfindungsgemäße Keramik gute physikalische Eigenschaften und läßt sich gut 5 polarisieren. Aus der vorstehenden Beschreibung ist ersichtlich, daß die ternäre feste Lösung

$\label{eq:pbTiO3} Pb(\mathrm{Mg_{1/3}Nb_{2/3}})\mathrm{O_3} - Pb\mathrm{TiO_3} - Pb\mathrm{ZrO_3},$

bei der ein Teil des Bleis durch Strontium, Barium oder Calcium ersetzt ist, zu einer ausgezeichneten piezoelektrischen Keramik führt.

Pb _{0,80} Ra _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,87} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,87} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,80} Ca _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,80} Ca _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,80} Ca _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,80} Ca _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,80} Ca _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr ₀ Pb _{0,80} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃ 20 56 Pb(Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr _{0,44} O ₃ Pb _{0,97} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃ 57 Pb _{0,97} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sr _{0,15} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sr _{0,15} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sr _{0,15} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃ 25 60 Pb _{0,85} Sr _{0,15} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃ 25 60 Pb _{0,85} Sr _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,455} Zr ₀ Pb _{0,85} Sa _{0,05} (Mg _{1/3} Nb		Calcium ersetzt ist, zu einer ausgezeichnete. lektrischen Keramik führt.	п	50	$Pb_{0,90}Ba_{0,10}(Mg_{1/3}Nb_{8/3})_{0,85}Ti_{0,375}Zr_{0,375}O_{3}$
Rei.	Prozec	totalisonon restaining radius		51	$Pb_{0,80}Ba_{0,20}(Mg_{1/8}Nb_{2/8})_{0,25}Ti_{0,375}Zr_{0,375}O_8$
Po., spCa, a, a(Mg1, shVar), a, sTi, a, spCa, spCa, spCa, a, a(Mg1, shVar), asTi, a, spCa, spCa, spCa, a, a(Mg1, shVar), asTi, a, spCa,	Boi.	1	15	52	$Pb_{0,97}Ca_{0,03}(Mg_{1/3}Nb_{2/3})_{0,25}Ti_{0,375}Zr_{0,375}O_3$
Po_b(Mg_ttsNbts)_0,soTi_0,soOs		Zusammensetzung		53	Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,375} O ₃
1		1	-	54	Pb _{0,80} Ca _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,275} Zr _{0,275} O ₃
2	1	Pb(Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃		55	Pb _{0,80} Ca _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,375} O ₉
Po _{0.88} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S8 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.67} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.69} C ₃ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.06} (Mg _{1/3} Nb _{2/3}) _{0.69} Ti _{0.89} C ₄ S9 Po _{0.89} Sr _{0.}	2	Pb _{0,97} Sr _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃	20	56	$Pb(Mg_{1/3}Nb_{2/3})_{0,125}Ti_{0,435}Zr_{0,44}O_3$
Po., spSro, sp(Mg1/sNb2/s), spTio, spOs Po., spSro, sp(Mg1/sNb2/s), spTio, spCTo, spOs	3	Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃		57	$Pb_{0,97}Sr_{0,03}(Mg_{1/8}Nb_{2/3})_{0,125}Ti_{0,435}Zr_{0,44}O_{3}$
Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.65} Co ₈ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.65} Co ₈ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.65} Co ₈ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.66} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.66} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.67} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.68} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.68} Ti _{0.88} To _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.88} Tc _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.88} Tc _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.88} Tc _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.88} Tc _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.88} Tc _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.88} Tc _{0.86} Co ₃ Po _{0.88} Sc _{0.86} (Mg _{1/3} ND _{2/3}) _{0.88} Ti _{0.}	4			58	Pb _{0,85} Sr _{0,05} (Mg _{1/9} Nb _{2/8}) _{0,125} Ti _{0,435} Zr _{0,44} O ₈
Po, v, Ba, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ba, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ba, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ba, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Oa Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Ca Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Ca Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Tio, so Ca Po, v, So Ca, o, s(Mg, 1s) Noy 3, 0, so Ca, o, so (Mg, 1s	5	Pb _{0,80} Sr _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,50} O ₃		59	Pb _{0,85} Sr _{0,15} (Mg _{1/3} Nb _{2/8}) _{0,125} Ti _{0,435} Zr _{0,44} O ₃
Pob.,scBa_0,sc(Mg,IsNb2i2)_0,scTi_0,scO_3	6	Pb _{0,97} Ba _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,05} O ₈	25	60	Pb _{0,80} Sr _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,125} Ti _{0,435} Zr _{0,44} O ₃
Pho. soBao.sc(Mg1/sNb2/s)o.soTio.scO3 Pho. soCa.osc(Mg1/sNb2/s)o.soTio.soC3 Pho. soCa.osc(Mg1/sNb2/s)o.soCa.osc(Mg1	7		-0	61	
Pho, spBao, sc(Mg1/s)Nb(y3)o, scTio, soO3 Pho, spCao, os(Mg1/s)Nb(y3)o, scTio, soCTao, scO Pho, spCao, os(Mg1/s)Nb(y3)o, scCTao, scO Ph	8	Pb _{0.90} Ba _{0.10} (Mg _{1/3} Nb _{2/3}) _{0.50} Ti _{0.50} O ₃		62	$Pb_{0,97}Sr_{0,03}(Mg_{1/2}Nb_{2/3})_{0,125}Ti_{0,405}Zr_{0,47}O_{2}$
Po, σγ Ca, σ, σ(Mg1/s Nb/s/)σ, σ Ti, σ, σ Os	9	Pb _{0.80} Ba _{0.20} (Mg _{1/3} Nb _{2/3}) _{0.50} Ti _{0.50} O ₃		63	$Pb_{0,95}Sr_{0,05}(Mg_{1/3}Nb_{2/3})_{0,125}Ti_{0,405}Zr_{0,47}O_8$
Pb_0,scCa_0,cs(Mg_1sNb_2s)_0,csCT_0,csOs Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csOs Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csOs Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csOs Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCT_10,csCa Pb_0,seCa_0,cs(Mg_1sNb_2s)_0,csCa Pb_0,seCa_0,c	10		-	64	
Pbo, spCao, 10(Mg1/sNb2/s)o, 50Tio, 50Os Pbo, 80Cao, 20(Mg1/sNb2/s)o, 50Tio, 50Tio, 50Os Pbo, 80Cao, 20(M	11		30	65	
Pbo,soCao,so(Mg1/sNbs/s)o,soTio,soZs Pb(Mg1/sNbs/s)o,soTio,syZro,13O3 S68 Pbo,sySro,sa(Mg1/sNbs/s)o,soTio,syZro,13O3 S69 Pbo,soSao,so(Mg1/sNbs/s)o,soTio,syZro,13O3 S69 Pbo,soSao,so(Mg1/sNbs/s)o,soTio,syZro,13O3 S69 Pbo,soSao,so(Mg1/sNbs/s)o,soTio,syZro,13O3 S69 Pbo,soSao,so(Mg1/sNbs/s)o,soZio,soO3 T1 Pbo,soSao,so(Mg1/sNbs/s)o,soZio,soO3 T2 Pb	12			66	
Pb(Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,37} Zr _{0,13} O ₃ Pb _{0,97} Sr _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,37} Zr _{0,13} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,37} Zr _{0,13} O ₃ 70 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 71 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 71 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 72 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 72 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 73 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 74 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 75 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 75 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 75 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 75 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 77 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 77 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,57} Ti _{0,57} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,57} Ti _{0,57} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,57} Ti _{0,57} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,57} Ti _{0,57} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,57} Ti _{0,57} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,57} Ti _{0,57} Zr _{0,50} O ₃ 79 Pb _{0,95} Sr _{0,05} (Mg _{1/3}	13			67	
15	14			68	
Pb _{0,00} Sr _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,50} Ti _{0,27} Zr _{0,18} O ₃ Pb ₀ (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 71 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 72 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 73 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 74 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 75 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 75 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 76 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 77 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 78 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 79 Pb _{0,00} Sr _{0,00} (Mg ₁	15		35		
Pb(Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ 71		Pb. 00Sr0 10(Mg1/2Nb0/0) 50 Tio 27Zr0 1002			Pb. acCa ac(Mg./aNba/a) are Tia are ZTa ar Oa
Pbo, 97570,03(MEJI3Nbg/3)0,50Zr0,50Q3		Pb(Mg _{1/2} Nb _{0/2}) _{0.50} Zr _{0.50} O ₀			Pho or Can or (Mg. /o Nbo/o) or ar Tip cor ZTo co Op
Pb _{0,65} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃					
20			40		
21					Pha ar Sa ar (Mg./a Nha/a) a ar Tia ar Oa
Pb0,96 Pa0,06 (Mg1/3Nb2/3)0,60 Zr0,60 O 3 Pb0,96 Pa0,10 (Mg1/3Nb2/3)0,60 Zr0,60 O 3 Pb0,96 Pa0,10 (Mg1/3Nb2/3)0,60 Zr0,60 O 3 Pb0,97 Ca0,03 (Mg1/3Nb2/3)0,27 Ca0,50 O 3 Pb0,96 Ca0,10 (Mg1/3Nb2/3)0,375 Ti0,375 Zr0,25 O 3 Pb0,96 Sr0,06 (Mg1/3Nb2/3)0,375 Ti0,375 Zr					
Pbo, 90 Bao, 10 (Mg _{1/3} Nb _{2/3})o, 50 Zro, 50 O ₃ Pbo, 97 Cao, 03 (Mg _{1/3} Nb _{2/3})o, 50 Zro, 50 O ₃ Pbo, 95 Cao, 05 (Mg _{1/3} Nb _{2/3})o, 50 Zro, 50 O ₃ Pbo, 95 Cao, 05 (Mg _{1/3} Nb _{2/3})o, 50 Zro, 50 O ₃ Pbo, 95 Cao, 10 (Mg _{1/3} Nb _{2/3})o, 50 Zro, 50 O ₃ Pbo, 95 Cao, 10 (Mg _{1/3} Nb _{2/3})o, 27 Zro, 25 O ₃ Pbo, 95 Sro, 10 (Mg _{1/3} Nb _{2/3})o, 27 Zro, 25 O ₃ Pbo, 95 Sro, 10 (Mg _{1/3} Nb _{2/3})o, 27 Zro, 25 O ₃ Pbo, 95 Sro, 10 (Mg _{1/3} Nb _{2/3})o, 27 Zro, 25 O ₃ Pbo, 95 Sro, 20 (Mg _{1/3} Nb _{2/3})o, 27 Zro, 25 O ₃ Pbo, 95 Rao, 20 (Mg _{1/3} Nb _{2/3})o, 27 Zro, 25 O ₃ Pbo, 9					
24			45		
Pb _{0,35} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ Pb _{0,90} Ca _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ Pb _{0,90} Ca _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,50} Zr _{0,50} O ₃ Pb(Mg _{1/3} Nb _{2/3}) _{0,27} Ti _{0,375} Zr _{0,25} O ₃ Pb(Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,42} Zr _{0,35} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,40} Zr _{0,35} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,40} Zr _{0,35} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,31} Zr _{0,44} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,31} Zr _{0,44} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,31} Zr _{0,44} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,35} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,35} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,35} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg					
26					
Pb(Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,97} Sr _{0,08} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,90} Sr _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,90} Sr _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,96} Ba _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,96} Ba _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,97} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,65} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,55} O ₃ Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,2}					
28			5n		
Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,875} Ti _{0,975} Zr _{0,25} O ₃ 84 Pb _{0,90} Sr _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,875} Ti _{0,375} Zr _{0,25} O ₃ 84 Pb _{0,80} Sr _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 85 Pb _{0,97} Ba _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 86 Pb _{0,95} Ba _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 87 Pb _{0,96} Ba _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 87 Pb _{0,80} Ba _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 88 Pb _{0,95} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,375} Zr _{0,47} O ₃ Pb _{0,97} Ca _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 88 Pb _{0,97} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 88 Pb _{0,97} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 89 Pb _{0,97} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 90 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 91 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,80} Ca _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,80} Ca _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,50} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,56} O ₃ 93 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,25} O ₃ 94 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,345} Zr _{0,28} O ₃ 95 Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ 95			50		
Pb _{0,90} Sr _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,575} Ti _{0,375} Zr _{0,25} O ₃ 84 Pb _{0,90} Sr _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,575} Ti _{0,375} Zr _{0,25} O ₃ 55 Pb _{0,97} Ba _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,575} Ti _{0,375} Zr _{0,25} O ₃ 86 Pb _{0,95} Ba _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 87 Pb _{0,96} Ba _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 87 Pb _{0,96} Ba _{0,10} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 88 Pb _{0,96} Ba _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 88 Pb _{0,96} Ba _{0,20} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 89 Pb _{0,97} Ca _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 90 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 91 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,50} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,50} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,50} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,50} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,50} O ₃ 92 Pb _{0,95} Ca _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,325} Zr _{0,50} O ₃ 9					
31					
22					
33 Pb _{0,95} Ba _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃			55		
34 Pb _{0,80} Ba _{0,10} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₈ 88 Pb _{0,80} Ba _{0,20} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₈ 89 Pb _{0,87} Ca _{0,03} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 90 Pb _{0,87} Ca _{0,03} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 91 Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 91 Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,80} Ca _{0,10} (Mg _{1/8} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,80} Ca _{0,20} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 93 Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,85} O ₃ Pb _{0,85} Ca _{0,}		Ph. Ba. (Mg. Nh.) Ti. 7r O			
35 Pb _{0,80} Ba _{0,20} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 60 89 Pb(Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,21} Zr _{0,47} O ₃ 90 Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 91 Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,375} Zr _{0,25} O ₃ 91 Pb _{0,85} Ca _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,275} Ti _{0,25} Zr _{0,50} O ₃ 92 Pb _{0,80} Ca _{0,20} (Mg _{1/8} Nb _{2/3}) _{0,375} Ti _{0,375} Zr _{0,25} O ₃ 92 Pb _{0,85} Ca _{0,20} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,50} O ₃ 93 Pb _{0,85} Ca _{0,20} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,25} Zr _{0,60} O ₃ 94 Pb(Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ 95 Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,65} O ₃ Pb _{0,85} Sr _{0,05} (Mg _{1/8} Nb _{2/8} N		Ph Ra. (Mg, Nh,) Ti 7r O			
36		Ph Ba (Mg., Nb.,)			
37		Ph C2 (Mg Nh) Ti 7+ O	бо		
38		PhCo(Mg., Nh.,) Ti 7- O			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Db Ca (Ma. Nb.) Ti 7- 0			
40 Pb(Mg _{1/3} Nb _{2/3}) _{0,875} Ti _{0,845} Zr _{0,88} O ₃ 94 Pb _{0,87} Sr _{0,05} (Mg _{1/3} Nb _{2/3}) _{0,25} Ti _{0,125} Zr _{0,6} 41 Pb _{0,87} Sr _{0,03} (Mg _{1/3} Nb _{2/3}) _{0,875} Ti _{0,945} Zr _{0,28} O ₃ 95 Pb(Mg _{1/3} Nb _{2/3}) _{0,25} Zr _{0,75} O ₃		Db C2 (Mg. Nb.) T: 7- 0			
41 $Pb_{0,87}Sr_{0.03}(Mg_{1/3}Nb_{2/3})_{0,875}Ti_{0,345}Zr_{0,28}O_3$ 95 $Pb(Mg_{1/3}Nb_{2/3})_{0,25}Zr_{0,75}O_3$			65		TU(14181/81102/3)0,25 110,125 210,625 Us
0,01 0,001 02:0 2:0 0,020 0,20 0,20 0					
70 FD _{0,95} Dr _{0,05} (Mg _{1/3} ND _{2/3}) _{0,25} Zr _{0,75} U ₃		Db Sr (Mg. Nb.) T: 7- 0			FU(IVIg _{1/3} IN D _{2/3} J _{0,25} ∠I _{0,75} U ₃
	72			90	F00,95Sr0,05(MIg1/3MO2/3)0,25Zr0,75U3

Tabelle Ia

			1abelle 1a		
Beispiel	Brenntemperatur	Relative Dielektrizitäts- konstante e bei 1 kHz	Planarer Kopplungs- koeffizient k_p (${}^0/_0$)	Resonanzwiderstand $R(\Omega)$	Dielektrischer Verlustfaktor D (in %) bei 1 kHz
				<u> </u>	
1	1270	915	19,1	80,4	1,22
2	1250	990	24,5	54,0	1,15
3	1250	1093	25,6	47,9	1,29
4	1250	1880	20,3	50,7	1,74
5	1250	4135	7,0	75,2	1,12
6	1250	985	27,3	47,9	1,05
7	1250	1020	26,6	44,3	1,24
8	1250	1066	22,7	40,2	1,34
9	1250	2330	14,0	50,7	2,13
10	1250	697	20,9	78,0	0,87 0,86
11	1250	699	20,6 20,3	78,3 76,3	0,95
12	1250	750 1178	20,3 14,4	80,2	2,41
13	1250	1433	30,1	38,4	1,85
14 15	1270 1260	2330	28,7	26,0	1,68
16	1250	4823	15,4	92,5	3,93
17	1300	332	7,5	814,0 -	1,90
18	1290	1024	8,3	474,7	2,55
19	1290	3976	12,0	106,3	3,95
20	1290	4287	9,0	86,8	0,22
21	1290	1186	8,6	366,7	3,00
22	1290	3915	8,5	98,1	2,53
23	1290	6054	7,0	65,4	0,92
24	1290	509	11,0	420,8	1,89
25	1290	1326	9,5	253,0	3,81
26	1290	1403	7,1	136,7	2,24
27	1280	. 1671	48,0	18,9	2,28
28	1250 .	1988	49,1	17,2	2,11
29	1250	2533	50,0	15,4	2,39
30	1250	3693	42,5	16,1	3,10 0,70
31	1250 -	6750	14,6 48,3	18,0 18,1	2,08
32 33	1250 1250	1866 2320	47,0	16,7	2,41
34	1250	3267	38,2	17,9	3,20
35	1250	5012	12,3	18,6	5,15
36	1250	1781	47,4	18,3	1,95
37	1250	1850	43,7	17,4	1,64
38	1250	2108	32,8	16,2	1,91
39	1250	2887	11,8	18,1	5,62
40	1280	1247	30,2	55,4	2,07
41	1260 ⁻	2209	39,7	22,2	2,72
42	1260	5329	26,5	46,1	4,90
43 .	1300	976	49,8	27,0	2,52
44	1290	1242	50,2	24,5	2,15
45	1290	1671	49,0	23,7	2,09
46	1290	2647	35,2	24,2	2,66 2.68
47	1290	4975	12,3	26,5	2,68 2,09
48	1290	1224	48,7	26,1	2,09 2,26
49	1290 1290	1472 1975	46,2 37,4	23,8 25,4	2,59
50	1290	4108	15,7	26,8	5,40
51 52	1290	1212	51,1	25,4	2,11
53	1290	1590	48,3	24,7	2,01
54	1290	2872	36,6	26,8	2,50
55	1290	3721	14,1	27,5	7,39
56	1310	1246	49,2	20,6	1,65
57	1290	1355	41,1	27,6	1,72
58	1290	1432	38,8	27,9	1,73
59	1310	2347	39,8	17,1	1,60
60	1310	3700	21,8	47,7	3,70
61	1310	1090	45,8	28,1	1,50
62	1290	1150	50,2	23,7	2,51

Tabelle Ia (Fortsetzung)

Beispiel	Brenntemperatur (°C)	Relative Dielektrizitäts- konstante e bei 1 kHz	Planarer Kopplungs-koeffizient k_p (%)	Resonanzwiderstand $R(\Omega)$	Dielektrischer Verlustfaktor D (in %) bei 1 kHz
63	1310	1347	53,0	19,0	2,21
64	1290	2328	58,1	12,7	2,00
65	1290	5245	30,5	41,2	5,15
66	1290	1215	49,6	23,2	2,13
67	1290	1668	34,5	36,4	2,45
68	1310	1723	20,2	84,2	3,11
69	1310	1198	49,4	21,7	1,65
70	1290	1351	42,2	51,6	1,77
71	1290	1589	25,1	114,0	4,00
72	1290	1684	13,1	262,0	4,35
73	1230	263	5,9	1394,0	1,60
74	1210	473	8,4	517,0	1,63
75	1250	487	24,6	72,0	1,64
76	1270	591	25,5	60,6	1,80
77	1300	920	29,0	66,7	1,43
78	1280	1186	37,6	26,3	1,10
79	1300	1254	30,3	33,0	1,67
80	1280	1992	39,6	20,5	1,50
81	1300	1274	46,3	25,5	2,05
82	1280	2098	47,0	19,5	1,93
83	1300	1061	47,5	26,2	2,49
84	1300	1622	48,0	23,0	2,39
85	1300	1049	39,9	36,0	2,26
86	1280	1522	43,3	22,5	2,83
87	1300	675	30,1	70,2	3,19
88	1280	1447	35,4	26,1	2,91
89	1300	630	29,7	62,8	3,55
90	1280	1360	34,8	30,7	3,02
91	1300	. 566	29,5	64,1	3,32
92	1280	1321	33,7	42,9	3,29
93	1300	493	20,7	80,0	2,97
94	1280	1228	22,1	71,6	3,64
95	1300	533	7,3	384,0	3,27
96	1280	1606	10,1	318,0	4,20

Hierzu 2 Blatt Zeichnungen

Fig.3

2000

1000

O PbTiO3

Fig.4

PbTi03

0 PbTiO3

Dielektrizitätskonstante (E)

Planarer Kopplungskoeffizient (Kp)

Resonanzwiderstand (R) <u>4</u> 89 ÉD: 75

• Unmodifi zierte

• Massen mit 5 Atom - %

Strontium

0,25

0,25

Massen

Nummer: 1 646 699 Int. Cl.: C 04 b, 35/00 Deutsche KL: 80 b, 8/131 31. Mai 1972 Auslegetag: 0,25 Mol Pb (Mg 1/3 Nb2/3)03 0,50 0,75 PbZr0₃ Zusammensetzung (Molverhältnis) 0,50 0,75 PbZr03 Zusammensetzung (Molverhältnis)

0,50

Nummer: Int. Cl.: Deutsche Kl.: Auslegetag: 1 646 699 C 04 b, 35/00 80 b, 8/131 31. Mai 1972

Nummer: Int. Ci.: Deutsche Ki.: 1 646 699 C 04 b, 35/00 80 b, 8/131 31. Mai 1972

COPY

209 523/378

Nummer:

Int. Cl.: Deutsche Kl.: 1 646 699 C 04 b, 35/00 80 b, 8/131 31. Mai 1972

