KHAN G.S. RESEARCH CENTER

Kisan Cold Storage, Sai Mandir, Musallahpur Hatt, Patna - 6 Mob.: 8877918018, 8757354880

Time: 08 to 09 am

PHYSICS

By: Khan Sir

WORK, POWER & ENERGY

कार्य, शक्ति और ऊर्जा

कार्य (Work)

 कार्य (Work): - बल तथा विस्थापन के अदिश गुणन को कार्य कहते हैं।
 बल लगाकर किसी वस्तु की दिशा में विस्थापन करने की क्रिया को कार्य कहते हैं।

 $W = FScos\theta$,

→ कार्य का SI मात्रक-

(i) N.m, (ii) $\frac{kgm^2}{S^2}$, (iii) Jule

- → कार्य का विमा [ML²T⁻²]
- \rightarrow कार्य का CGS मात्रक = अर्ग (Erg) 1 Jule = 10^7 अर्ग, 1 अर्ग = 10^{-7} Jule $\boxed{\text{W} = \text{FScos}\theta}$, $\cos\theta = -1 \rightarrow +1$
- → समान दिशा में किया गया कार्य धनात्मक होता है।
- → विपरीत दिशा (घर्षण के विरूद्ध) में किया गया कार्य ऋणात्मक होता है।
- निम्नलिखित परिस्थितियों में कार्य शून्य हो जाता है।
- (i) विस्थापन शून्य होने पर-Ex.: यदि वस्तु अपने स्थान पर रूकी है या वस्तु को धकेलने पर गति नहीं हो रही है तो कार्य शून्य होगा।
- (ii) यदि वस्तु अपने प्रारंभिक स्थान पर लौट आए तो उसका विस्थापन शून्य हो जाएगा जिस कारण कार्य भी शून्य हो जाएगा।

Ex.: वृत्तीय पथ पर, ऊपर से नीचे

(iii) जब किसी वस्तु को 90° के कोण पर विस्थापित किया जाए तो कार्य शून्य होगा।

Ex.: कुली

Q. एक वस्तु पर 10 N का बल लगाकर 30 m विस्थापन किया जाता है तो कार्य क्या होगा?

Sol. W = FS $\cos\theta$ = $10 \times 30 \times \cos 90^{\circ}$ = 300×1 = 300 Nm (Jule)

Q. एक कार पर 50N का बल लगाकर 20m का विस्थापन 60° के कोण पर होता है। कार्य ज्ञात करें।

Sol. W = $FS \cos\theta$

 $= 50 \times 20 \times \cos 60^{\circ}$ $= 1000 \times \frac{1}{2}$

 $=500 \, \text{Jule} \, (\text{N.m})$

Q. अगर किसी वस्तु पर 20N का बल क्षेतिज से 30° के कोण पर आरोपित होता है पर वह वस्तु क्षेतिज में 10m विस्थापित होती है। तो किया गया कार्य क्या होगा?

Sol. W = FS $\cos \theta$ = $20 \times 10 \cos 30^{\circ}$ = $200 \frac{\sqrt{3}}{2}$ = $100\sqrt{3}$

Q. अगर किसी वस्तु पर 5 N का बल आरोपित होता है और वह वस्तु बल की दिशा में 10m विस्थापित होती है तो किया गया कार्य क्या होगा?

Sol. W = FS $\cos \theta$ = $5 \times 10 \cos 0^{\circ}$ = $50 \times 1 = 50$ Jule

- ऊँचाई या सीढ़ी पर किया गया कार्य- W = mgh
- Q. 100 kg पानी को किसी पाइप के माध्यम से 20m ऊपर ले जाना है तो इसमें कितना बल लगेगा।

Sol. W = mgh = $100 \times 10 \times 20$ = 20,000 Jule

Q. 60 kg का सुरेश 2m की ऊँची 15 सिढ़ियां चढ़ता है तो किया गया कार्य बताएं-

Sol. W = mgh = $60 \times 10 \times (2 \times 15)$ = $600 \times 30 = 18,000$ Jule

Q. 80 kg का एक व्यक्ति 20 cm की 40 सिढ़ियां चढ़ता है तो किया गया कार्य बताएं-

Sol. W = mgh

 $=80\times10\left(\frac{20}{100}\times40\right)$

 $=80\times10\times8$

 $= 6400 \, J$

Q. एक मजदूर 10N बल लगाकर एक वस्तु को 60m लम्बवत् विस्थापित करता है तो कार्य क्या होगा।

Sol. W = FS $\cos\theta$

 $=100\times60\times\cos90^{\circ}$

 $=100\times60\times0$

Remark: - यदि बल के दिशा में विस्थापन होगा तो धनात्मक विपरित दिशा में विस्थापन होगा तो कार्य ऋणात्मक यदि विस्थापन ही नहीं होगा तो कार्य शुन्य होगा।

Remark: - किया गया कार्य धनात्मक, ऋणात्मक तथा शून्य हो सकता है।

ऊर्जा (ENERGY)

- ऊर्जा (Energy): कार्य करने की क्षमता को ऊर्जा कहते हैं।
- सभी प्रकार की ऊर्जा अदिश राशि होती है।
- ऊर्जा का SI मात्रक जूल होता है।
- CGS मात्रक अर्ग होता है।
- $1Jule = 10^7 अर्ग$
- $137\sqrt{1} = 10^{-7} Jule$

आइंस्टीन के ऊर्जा संरक्षण के आधार सिद्धांत के आधार पर ऊर्जा नहीं उत्पन्न किया जा सकता है और नहीं उत्पन्न किया जा सकता है। इसे एक रूप से दूसरे रूप में बदला जा सकता है।

 $E = MC^2$

Q. 2 kg द्रव्यमान से कितनी उर्जा निकलेगी-

 $E = MC^2$

 $=2\times(3\times10^8)^2$

 $=2\times9\times10^{16}$

= 18 × 10¹⁶ Jule (द्रव्यमान ऊर्जा)

ऊर्जा परिवर्तन के स्वरूप -

 मोटर = विद्युत → यांत्रिक

(2) डायनेमो 🗕 यांत्रिक → विद्युत

(3) Microphon = ध्वनि → विद्युत

(4) Speaker = विद्युत → ध्वनि

(5) इंजन = उष्मा → यांत्रिक

(6) घर्षण = यांत्रिक → उष्मीय ऊर्जा

मोमबत्ती = रासायनिक → प्रकाश + ऊष्मा

(8) Bulb = विद्यत → प्रकाश

= विद्युत → यांत्रिक (9) Fan

(10) प्रकाश संश्लेषण = प्रकाश \to रासायनिक

पेशीय ऊर्जा →यांत्रिक (11) वेना

= विद्युत (12) हिटर → उष्मा

(13) प्रेस = विद्युत → ऊष्मा

ऊर्जा के कई स्वरूप होते हैं-

(1) पेशीय ऊर्जा

(2) चुम्बकीय ऊर्जा

(3) रासायनिक ऊर्जा

(4) प्रकाश ऊर्जा

(5) ध्वनि ऊर्जा

(6) विद्युत ऊर्जा

(7) स्थितिज ऊर्जा

(8) गतिज ऊर्जा

स्थितिज ऊर्जा (Potential Energy): - ऊँचाई या खिंचाव के कारण अर्थात् अपने स्थिति के कारण कार्य करने की क्षमता को स्थितिज ऊर्जा कहते हैं।

Ex. बांध, खिंचा हुआ धनुष, Stage पर खान सर, रूका हुआ पंखा, छत के ऊपर टंकी, पेड़ पर बैठा बंदर, उठा हुआ हथीड़ा, घड़ी की चाभी, स्प्रींग, रबर, रूकी गाड़ी में बैठा व्यक्ति।

p = mgh

स्थितिज ऊर्जा ऊँचाई पर निर्भर करती है इसी कारण-

- (i) पानी टंकी को छत के ऊपर रखा जाता है।
- (ii) अधिक ऊँचाई से गिरने पर चोट अधिक लगता है। स्थितिज ऊर्जा द्रव्यमान पर भी निर्भर करता है इसी कारण Heavy duty वाले हथौडा को बहुत भारी बनाया जाता है।
- Q. 100 m ऊँचे एक मिनार से गिरे किसी पत्थर के पास कितनी स्थितिज ऊर्जा होगी? यदि वह पत्थर 40 kg का हो।

Sol. m=40

g = 20

h = 100

= mgh

 $=40 \times 100 \times 100$

=40,000 Jule.

Q. 75 kg का एक व्यक्ति 71 m ऊँचे कृतुबमीनार पर चढ़ा हुआ है। उसकी स्थितिज ऊर्जा कितनी होगी?

Sol. p = mgh

 $= 75 \times 10 \times 71$

=53250

गतिज ऊर्जा (Kinetic Energy):-

किसी वस्त में गति के कारण कार्य करने की क्षमता गतिज ऊर्जा कहलाता है।

किसी भी गतिशील व्यक्ति में गतिज ऊर्जा होती है।

$$K.E = \frac{1}{2}mv^2$$

Ex. बहता हुआ जल, चलती हुई गाड़ी, तैरता हुआ नाव, चलते हुए पंखा, चलता हुआ तीर।

www.techssra.in - Pdf Downtoad website

Q. एक वस्तु के द्रव्यमान को 16 गुना करने पर गतिज ऊर्जा क्या होगी?

Sol. k =
$$\frac{1}{2}mv^2$$
 (i)
k' = $\frac{1}{2} \times m \times 16 \times v^2$
k' = $\frac{1}{2}mv^2 \times 16$

$$k' = k \times 16$$

 $k' = k \times 16$ Q. एक वस्तु के वेग को नौ गुना करने पर उसकी गतिज ऊर्जा क्या होगी?

Sol.
$$k = \frac{1}{2}mv^2$$
(i)

$$k' = \frac{1}{2} \times m \times (9v)^2$$

$$k' = \frac{1}{2}mv^2 \times 81$$

$$k' = k \times 81$$

Q. एक वस्तु के वेग को तीन गुणा कर दिया जाता है जबिक उसके द्रव्यमान को पांच गुणा किया जाता है तो गतिज ऊर्जा क्या होगी-

Sol. k
$$= \frac{1}{2}mv^{2}$$

$$k' = \frac{1}{2} \times m \times 5 \times (3v)^{2}$$

$$k' = k \times 45$$

Q. 800kg के कार की चाल 60m/sec है। तो कार की गतिज ऊर्जा क्या होगी?

Sol. KE
$$=\frac{1}{2}mv^2$$

 $=\frac{1}{2} \times 800 \times 60 \times 60$
 $=400 \times 60 \times 60$
 $=144.0000$

यांत्रिक ऊर्जा (Machenical Energy) → जब स्थितिज ऊर्जा तथा गतिज ऊर्जा को जोड देते है तो उसे यांत्रिक ऊर्जा कहते हैं यांत्रिक ऊर्जा में यह दोनों ऊर्जा होती है।

Ex.- उड़ते हवाई जहाज, पतंग, तीर, चलती गाड़ी में बैठा यात्री, चलता हुआ पंखा।

Remark:- किसी वस्तु को जब निचे गिराया जाता है तो ऊँचाई घटने के कारण उसकी स्थितिज ऊर्जा घटने लगती है किन्तु जैसे-जैसे वह नीचे आएगा वेग बढ़ने के कारण उसकी गतिज ऊर्जा बढ़ जाएगी अर्थात् कुल ऊर्जा (यांत्रिक ऊर्जा) नियत रहेगी।

POWER

शक्ति

शक्ति (Power):- एक सेकेण्ड में किया गया कार्य शक्ति कहलाता है।

$$t = W$$

$$1 = \frac{W}{t}$$

$$P = \frac{W}{t} \frac{\sqrt{m}}{m^{2}} = \text{aic (W)}$$

Note: कार्य करने की क्षमता ऊर्जा कहलाती है तथा कार्य करने की दर शक्ति कहलाती है।

Q. एक मोटर 10 sec के अंदर 800 Jule कार्य कर देता है तो शक्ति ज्ञात करें।

Sol.
$$P = \frac{W}{t} = \frac{800}{10} = 80$$
 watt.

Q. किसी कार पर 20 N का बल लगाकर उसे 30 मीटर दुर खिसकाने में 5 sec का समय लगता है तो शक्ति ज्ञात करें?

Sol.
$$P = \frac{W}{t}$$

$$\frac{f \cdot s}{t} = \frac{20 \times 30}{5} = 120 \text{ watt}$$

एक मोटर 1200 kg जल को 10m ऊँचाई तक खिंचने में 10 मिनट लगता है तो मशीन की शक्ति ज्ञात करें-

Sol.
$$P = \frac{W}{t}$$

$$P = \frac{mgh}{t}$$

$$= \frac{1200 \times 10 \times 10}{10 \times 60} = \frac{1200}{6} = 200 \text{ watt}$$

Q. 90 kg का एक विद्यार्थी 0.5 m ऊँचाई वाली 60 सिढ़ियों को 5 मिनट में चढ जाता है विद्यार्थियों की शक्ति ज्ञात करें।

Sol.
$$P = \frac{W}{t}$$

$$P = \frac{mgh}{t}$$

$$= \frac{90 \times 10 \times 0.5 \times 60}{5 \times 60 \times 10} = 90 \text{ watt}$$

• सिद्ध करें कि – $P = F \times v$

$$P = \frac{W}{t}$$

$$P = \frac{FS}{t}$$

$$P = F \times \frac{S}{t}$$

$$P = F \times V$$

Q. एक कार पर $60 \, N$ का बल लगाने पर उसका वेग $20 \, m/s$ हो जाता है तो शक्ति ज्ञात करे-

Sol. P =
$$F \times v$$

= 60×10
= 600 Watt

Q. एक वस्तु पर 40 N बल लगाने पर उसमें 15 m/s का वेग उत्पन्न हो जाता है तो शक्ति ज्ञात करें-

Sol. P =
$$F \times v$$

= $40 \times 15 = 600$

Q. एक मोटर की क्षमता 60% है वह 50 गहरे तालाब से 600 kg जल को 5m में खिंच सकता है तो मोटर की मूल क्षमता कितनी थी।

Sol. $t = 5 \times 60$ sec, h = 50, g = 10, m = 600 kg., P = ?

$$P = \frac{W}{t} = \frac{mgh}{t}$$

$$P = \frac{600 \times 10 \times 50}{5 \times 60}$$

P = 1000 wtt.

मोटर की क्षमता = 60%

माना मोटर की क्षमता =x

$$x \times 60\% = 1000$$

$$x \times \frac{60}{100} = 1000$$

$$x = \frac{1000 \times 100}{60} = 166.66$$
 wtt.

Q. 373m गहरे तालाब से 360 kg पानी 30 मिनट में निकाला जाता है। मोटर पम्प के द्वारा तो इस मोटर पम्प की शक्ति क्या होगी?

Sol.
$$P = \frac{W}{t}$$

$$P = \frac{mgh}{t}$$

$$= \frac{360 \times 10 \times 373}{1800}$$
$$= 746 \text{ Watt}$$
$$P = 1 \text{ H.P}$$

• संवेग (Momentun): - द्रव्यमान तथा वेग के गुणनफल को संवेग कहते हैं। इसके मात्रक kg m/s कोई वस्तु हवा में संवेग के कारण ही उडती है।

$$P = m \times v$$

Q. 40 kg का एक वस्तु 3 m/s के वेग से गतिशिल है इसका संवेग क्या है-

$$p = m \times v$$

$$= 40 \times 3 = 120$$

Q. एक वस्तु के वेग को नौ गुणा कर देने पर उसका संवेग क्या होगा?

Sol. P =
$$mv$$
 (i
 $P' = m \times 9 \times v$

$$P' = \underline{m} \times \underline{v} \times 9$$

Q. एक वस्तु का द्रव्यमान चार गुना तथा वेग नौ गुणा करने पर संवेग क्या होगा?

Sol. P = mv(i)
P' =
$$4 \times m \times 9 \times v$$

P' = $m \times v \times 36$
P' = $P \times 36$

Q. m द्रव्यमान की एक वस्तु v वेग से एक दिवार से टकराने के बाद v वेग से ही लौट आती है संवेग परिवर्तन ज्ञात कीजिए?

संवेग परिवर्तन
$$=P_2-P_1$$

 $=-mv-mv$
 $=-2 mv$

- संवेग संरक्षण: किसी वस्तु का संवेग संरक्षित रहता है अर्थात्
 किसी गतिशील वस्तु को किसी टक्कर द्वारा रोकेंगे तो टक्कर से
 पहले का संवेग टक्कर के बाद का संवेग बराबर होगा।
- Q. 1200 kg का एक बार 60 m/s की वेग से 200 kg के स्कूटी पर टक्कर मारता है तो स्कूटी का चाल बताए-
- Sol. टक्कर के पहले संवेग = टक्कर के बाद संवेग

$$P_1 = P_2$$
 $m_1 v_1 = m_2 v_2$
 $1200 \times 60 = 200 \times v_2$
 $360 = v_2$
 m/s

Q. 600 kg का एक तोप 40 kg के एक गोला को 400 m/s के वेग से फेंकता है तोप कितने गित से पिछे आएगा।

Sol.
$$600 \times v_1 = 40 \times 400$$

$$v_1 = \frac{160}{6} = \frac{80}{3} = 27 \text{ m/s}$$

Q. 5 kg तथा 12 kg के दो गोले क्रमशः 30 m/s तथा 20 m/s के वेग से गितिशिल है टक्कर के बाद ये दोनों आपस में सट जाते हैं उनके संयुक्त वेग ज्ञात करें।

Sol.
$$P_1 + P_2 = P_2$$

 $m_1v_1 + m_2v_2 = (m_1m_2)v$
 $5 \times 30 + 12 \times 20 = 17 \times v$
 $150 + 240 = 17 \times v$
 $17v = 390$
 $v = \frac{390}{7} = 22.9 \text{ m/s}$
 $v = 23 \text{ m/s}$

- Q. 20 kg तोप के गोला को तो 60 N के बल से धकेलता है गोला 80 m/s के वेग से आगे कि ओर गतिशील हो जाता है तोप की लम्बाई ज्ञात करें।
- Sol. तोप द्वारा किया गया कार्य = गोला का संवेग

W = P
f.s. = mv

$$60 \times S = 20 \times 80$$

S = $\frac{20 \times 8}{6} = \frac{160}{6}$
= $\frac{80}{3}$ = 26.60 = 27m

- Q. 15 gm की गोली को 3 N के बल से एक बन्दुक धकेलता है जिससे की गोली की चाल 1000 m/s हो जाती है बन्दुक की लम्बाई क्या होगी।
- Sol. बन्दुक द्वारा किया गया कार्य = गोली का संवेग

$$3S = \frac{15}{1000} \times 1000$$

$$S = 5 m$$

गतिज ऊर्जा तथा संवेग में संबंध -

$$k = \frac{1}{2}mv^2$$

$$k = \frac{1}{2} \frac{m^2 v^2}{m}$$

$$k = \frac{1}{2} \frac{\left(mv\right)^2}{m}$$

$$k = \frac{p^2}{2m}$$

Q. 4 kg के एक वस्तु का संवेग 8 kg m/s है गतिज ऊर्जा ज्ञात करें।

Sol.
$$k = \frac{p^2}{2m}$$
 $= \frac{(8)^2}{2 \times 4}$ $= \frac{64}{8} = 8 \text{ m/sec}$

 Q. यदि संवेग में 10% की वृद्धि की जाए तो गतिज ऊर्जा में क्या प्रभाव पड़ेगा।

Sol.
$$k = \frac{P^2}{2m}$$

k में % परिवर्तन
$$=$$
 A + A + $\frac{A \times A}{100}$
 $=$ 10 + 10 + $\frac{10 \times 10}{100}$
 $=$ 21 % वृद्धि

स्प्रिंग की गतिज ऊर्जा -

गतिज ऊर्जा =
$$\frac{1}{2}kx^2$$

x =लम्बाई से परिवर्तन k =स्प्रंग नियतांक

Q. m. द्रव्यमान की वस्तु को लटकाने पर स्प्रिंग की लम्बाई में
 3m का परिवर्तन होता है स्प्रिंग की गतिज ऊर्जा ज्ञात करें।

Sol. गतिज ক্তর্জা
$$= \frac{1}{2}kx^2$$

 $= \frac{1}{2} \times k \times (3)^2 = \frac{1}{2} \times 9 = 4.5 \text{ k}$

• आवेग (Impulse): - बहुत बड़ा बल जब छोटे समय के लिए लगता है उसे आवेग कहते हैं।

Ex. झापड़, बॉल से लगा चोट, फिसल के गिरने पर टुटी पसली, सरकस में एक साथ कई ईंटों को तोड़ना, अन्य प्रकार का झटका

आवेग = बल × समय

मात्रक = NS

Q. 40 N का बल 3 सेकेण्ड के लिए काम करता है आवेग ज्ञात करें।

Sol. आवेग = $40 \times 3 = 120 \text{ NS}$

आवेग तथा संवेग में संबंध :-

आवेग = बल
$$\times$$
 समय
$$= \max \times \text{समय}$$
$$= m \times \frac{\Delta v}{t} \times t$$
$$= m(v_2 - v_1)$$

आवेग =
$$P_2 - P_1$$

आवेग = संवेग में परिवर्तन

 $=(mv_2-mv_1)$

Remark: क्रिकेट की बॉल रोकने पर आवेग के कारण चोट लगता है अत: आवेग को कम करने के लिए संवेग को घटाना चाहिए इसी कारण खिलाड़ी अपना हाथ पिछे खिंचता है ताकि वेग घटने से संवेग घट जाए और आवेग कम हो जाए Q. एक वस्तु का संवेग 60 kg m/s से घटकर 48 kgml रह जाता है आवेग ज्ञात करें।

Sol. आवेग =
$$P_2 - P_1$$

= $60 - 48$

संवेग तथा बल में संबंध :-

संवेग परिवर्तन का दर =
$$\frac{P_2 - P_1}{t}$$

$$= \frac{mv_2 - mv_1}{t}$$

$$= \frac{m(v_2 - v_1)}{t}$$

संवेग परिवर्तन का दर = बल

Q. एक ट्रक का संवेग 600 kg m/s से बढ़कर 900 kg m/s होने में 2.5 min लगते है तो ट्रक पर कितने बल लगेगा।

Sol. =
$$\frac{900 - 60}{2.5 \times 60} = \frac{300}{150} = 2N$$

♦ Collision (टक्कर) :-

यह मुख्यत: 3 प्रकार के होते हैं।

1. प्रत्यास्थ टक्कर - यह जिस वेग से टकराता है उसी वेग से लौटेगा। इसमें गतिज ऊर्जा संरक्षित रहती है। इसमें संवेग संरक्षित रहता है।

प्रत्यास्थ गुणांक (e) = 1 होता है।

2. अप्रत्यास्थ टक्कर - यह जिस वेग से टकराता है उससे कम वेग से लौटता है। इसमें गतिज ऊर्जा संरक्षित नहीं रहती है लेकिन संवेग संरक्षित रहती है।

e < 1

3. पूर्णतः अप्रत्यास्थ टक्कर- इसमें कोई वस्तु दूसरी वस्तु से टकराकर उस वस्तु पर चिपक जाएगा तथा उसको अपने साथ जोड़कर एकही वेग से चलने लगेगा। इसमें गतिज ऊर्जा संरक्षित नहीं रहती है।