Простые структуры данных. Stack, Queue, Deque

М.К. Горденко mgordenko@hse.ru

Stack

• Стек — это структура данных, которая работает по принципу FILO (first in — last out; первый пришел — последний ушел) или (Last-In-First-Out или LIFO).

Операции в стеке

- создание стека;
- печать (просмотр) стека;
- добавление элемента в вершину стека (push);
- извлечение элемента из *вершины стека (рор)*;
- проверка пустоты стека;
- очистка стека.

В C++ уже есть готовый шаблон — stack

```
Stack: empty
Push 1
Stack: 1
Push 2
Stack: 1 2
Push 3
Stack: 1 2 3
Push 4
Stack: 1 2 3 4
Pop
Stack: 1 2 3
Pop
Stack: 1 2
Pop
Stack: 1
```

Queue

• Очередью (англ. — queue) называется структура данных, из которой удаляется первым тот элемент, который был первым в очередь добавлен. То есть очередь в программировании соответствует «бытовому» понятию очереди. Очередь также называют структурой типа FIFO (first in, first out — первым пришел, первым ушел).

<queue>

- Создание queue <тип данных> <имя>;
- Добавить элемент push(); O(1)
- Удалить первый элемент рор(); О(1)
- Обратиться к первому элементу очереди front(); O(1)
- Обратиться к последнему элементу в очереди back(); O(1)
- Пуста ли очередь empty(); O(1)

Deque

• **Двусвязная очередь** — абстрактный тип данных, в котором элементы можно добавлять и удалять как в начало, так и в конец.

<deque>

- push_front Добавить (положить) в начало дека новый элемент
- push_back Добавить (положить) в конец дека новый элемент
- pop_front Извлечь из дека первый элемент
- pop_back Извлечь из дека последний элемент
- front Узнать значение первого элемента (не удаляя его)
- back Узнать значение последнего элемента (не удаляя его)
- size Узнать количество элементов в деке
- clear Очистить дек (удалить из него все элементы)

set

set — это контейнер, который автоматически сортирует добавляемые элементы в порядке возрастания. Но при добавлении одинаковых значений, set будет хранить только один его экземпляр. По-другому его еще называют множеством.

```
      112323
      =>
      123

      122223
      =>
      123

      332313
      =>
      123

      123557
      =>
      12357

      Добавление элементов в SET
```

03.06.2023

multiset

multiset — это контейнер, который также будет содержать элементы в отсортированном порядке при добавлении, но он хранит повторяющееся элементы, по сравнению с множеством set. Часто его называют мультимножество.

```
112323=> 112233122223=> 122223332313=> 123333123557=> 123557Добавление элементов в MULTISET
```

03.06.2023

Теория графов

Алгоритм Дейкстры для нахождения кратчайших путей.

Алгоритм Дейкстры

• Находит кратчайший путь от одной из вершин графа до всех остальных. Алгоритм работает только для графов без ребер отрицательного веса.

Алгоритм Дейкстры

- Шаг 1. Всем вершинам, за исключением первой, присваивается *вес* равный бесконечности, а первой вершине 0.
- Шаг 2. Все вершины не выделены.
- Шаг 3. Первая вершина объявляется текущей.
- Шаг 4. *Вес* всех невыделенных вершин пересчитывается по формуле: *вес* невыделенной вершины есть минимальное число из старого веса данной вершины, суммы веса текущей вершины и веса *ребра*, соединяющего текущую вершину с невыделенной.
- Шаг 5. Среди невыделенных вершин ищется вершина с минимальным весом. Если таковая не найдена, то есть вес всех вершин равен бесконечности, то маршрут не существует.
 Следовательно, выход. Иначе, текущей становится найденная вершина. Она же выделяется.
- Шаг 6. Если текущей вершиной оказывается конечная, то *путь* найден, и его вес есть вес конечной вершины.
- Шаг 7. Переход на шаг 4.

Алгоритм Флойда-Уоршелла

Алгоритм Флойда-Уоршелла

Алгоритм Флойда — Уоршелла — динамический алгоритм вычисления значений кратчайших путей для каждой из вершин графа. Метод работает на взвешенных графах, с положительными и отрицательными весами ребер, но без отрицательных циклов, являясь, таким образом, более общим в сравнении с алгоритмом Дейкстры, т. к. последний не работает с отрицательными весами ребер.

Алгоритм Флойда-Уоршелла

Пусть вершины графа $G=(V,\ E),\ |V|=n$ пронумерованы от 1 до n и введено обозначение d^k_{ij} для длины кратчайшего пути от i до j, который кроме самих вершин $i,\ j$ проходит только через вершины $1\dots k$. Очевидно, что d^0_{ij} — длина (вес) ребра $(i,\ j)$, если таковое существует (в противном случае его длина может быть обозначена как ∞).

Существует два варианта значения $d_{ij}^k,\;k\in(1,\;\ldots,\;n)$:

- 1. Кратчайший путь между $i,\ j$ не проходит через вершину k, тогда $d^k_{ij}=d^{k-1}_{ij}$
- 2. Существует более короткий путь между $i,\ j$, проходящий через k, тогда он сначала идёт от i до k, а потом от k до j. В этом случае, очевидно, $d_{ij}^k=d_{ik}^{k-1}+d_{kj}^{k-1}$

Таким образом, для нахождения значения функции достаточно выбрать минимум из двух обозначенных значений.

Тогда рекуррентная формула для d_{ij}^k имеет вид:

$$d_{ij}^0$$
 — длина ребра $(i,\ j);$ $d_{ij}^k = \min(d_{ij}^{k-1},\ d_{ik}^{k-1} + d_{kj}^{k-1}).$

На вход программе подаётся граф, заданный в виде матрицы смежности — двумерного массива $d[\hspace{.05cm}][\hspace{.05cm}]$ размера $n\times n$, в котором каждый элемент задаёт длину ребра между соответствующими вершинами.

Требуется, чтобы выполнялось d[i][i] = 0 для любых i.

Предполагается, что если между двумя какими-то вершинами **нет ребра**, то в матрице смежности было записано какое-то большое число (достаточно большое, чтобы оно было больше длины любого пути в этом графе); тогда это ребро всегда будет невыгодно брать, и алгоритм сработает правильно.

Необходимо найти кратчайшие пути между каждой парой вершин в графе, представленном на рисунке

	1	2	3	4	5
1					
2					
3					
4					
5					

Необходимо найти кратчайшие пути между каждой парой вершин в графе, представленном на рисунке

	1	2	3	4	5
1	0	10	∞	30	100
2	10	0	50	∞	∞
3	∞	50	0	20	10
4	30	∞	20	0	60
5	100	∞	10	60	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j])Например, k = 1

```
d[1][1] = min(d[1][1], d[1][1] + d[1][1])
d[1][5] = min(d[1][5], d[1][1] + d[5][1])
d[2][2] = min(d[2][2], d[2][1] + d[1][2])
d[2][3] = min(d[2][3], d[2][1] + d[1][3])
d[2][4] = min(d[2][4], d[2][1] + d[1][4])
d[2][5] = min(d[2][5], d[2][1] + d[1][5])
d[3][3] = min(d[3][3], d[3][1] + d[1][3])
d[3][4] = min(d[3][4], d[3][1] + d[1][4])
d[3][5] = min(d[3][5], d[3][1] + d[1][5])
d[4][4] = min(d[4][4], d[4][1] + d[1][4])
d[4][5] = min(d[4][5], d[4][1] + d[1][5])
```

	1	2	3	4	5
1	0	10	∞	30	100
2	10	0	50	∞	∞
3	∞	50	0	20	10
4	30	∞	20	0	60
5	100	∞	10	60	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j])Например, k = 1

```
d[1][1] = min(d[1][1], d[1][1] + d[1][1])
d[1][5] = min(d[1][5], d[1][1] + d[5][1])
d[2][2] = min(d[2][2], d[2][1] + d[1][2])
d[2][3] = min(d[2][3], d[2][1] + d[1][3])
d[2][4] = min(d[2][4], d[2][1] + d[1][4])
d[2][5] = min(d[2][5], d[2][1] + d[1][5])
d[3][3] = min(d[3][3], d[3][1] + d[1][3])
d[3][4] = min(d[3][4], d[3][1] + d[1][4])
d[3][5] = min(d[3][5], d[3][1] + d[1][5])
d[4][4] = min(d[4][4], d[4][1] + d[1][4])
d[4][5] = min(d[4][5], d[4][1] + d[1][5])
```

	1	2	3	4	5
1	0	10	∞	30	100
2	10	0	50	40	110
3	∞	50	0	20	10
4	30	40	20	0	60
5	100	110	10	60	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j]) 1][2] + d[2][1]) А теперь, k = 2

d[1][1] = min(d[1][1], d[1][2] + d[2][1])
d[1][2] = min(d[1][2], d[1][2] + d[2][2])
d[1][3] = min(d[1][3], d[1][2] + d[2][3])
d[1][4] = min(d[1][4], d[1][2] + d[2][4])
d[1][5] = min(d[1][5], d[1][2] + d[2][5])
d[2][2] = min(d[2][2], d[2][2] + d[2][2])
•••
d[2][5] = min(d[2][5], d[2][2] + d[2][5])
d[3][3] = min(d[3][3], d[3][2] + d[2][3])
d[3][4] = min(d[3][4], d[3][2] + d[2][4])
d[3][5] = min(d[3][5], d[3][2] + d[2][5])
d[4][4] = min(d[4][4], d[4][2] + d[2][4])
d[4][5] = min(d[4][5], d[4][2] + d[2][5])
15-15-1

d[5][5] = min(d[5][5], d[5][2] + d[2][5])

	1	2	3	4	5
1	0	10	∞	30	100
2	10	0	50	40	110
3	∞	50	0	20	10
4	30	40	20	0	60
5	100	110	10	60	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j])A теперь, k = 2

d[1][1] = min(d[1][1], d[1][2] + d[2][1]) $d[1][2] = min(d[1][2], d[1][2] + d[2][2])$ $d[1][3] = min(d[1][3], d[1][2] + d[2][3])$ $d[1][4] = min(d[1][4], d[1][2] + d[2][4])$ $d[1][5] = min(d[1][5], d[1][2] + d[2][5])$
d[2][2] = min(d[2][2], d[2][2] + d[2][2]) $d[2][5] = min(d[2][5], d[2][2] + d[2][5])$
d[3][3] = min(d[3][3], d[3][2] + d[2][3]) d[3][4] = min(d[3][4], d[3][2] + d[2][4]) d[3][5] = min(d[3][5], d[3][2] + d[2][5])
d[4][4] = min(d[4][4], d[4][2] + d[2][4]) d[4][5] = min(d[4][5], d[4][2] + d[2][5])

d[1][3] = min(d[1][3], d[1][2] + d[2][3]) d[1][4] = min(d[1][4], d[1][2] + d[2][4]) d[1][5] = min(d[1][5], d[1][2] + d[2][5])	
d[2][2] = min(d[2][2], d[2][2] + d[2][2])	
 d[2][5] = min(d[2][5], d[2][2] + d[2][5])	
d[3][3] = min(d[3][3], d[3][2] + d[2][3]) d[3][4] = min(d[3][4], d[3][2] + d[2][4]) d[3][5] = min(d[3][5], d[3][2] + d[2][5])	
d[4][4] = min(d[4][4], d[4][2] + d[2][4]) d[4][5] = min(d[4][5], d[4][2] + d[2][5])	
d[5][5] = min(d[5][5], d[5][2] + d[2][5])	

	1	2	3	4	5
1	0	10	60	30	100
2	10	0	50	40	110
3	60	50	0	20	10
4	30	40	20	0	60
5	100	110	10	60	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j]) A если k = 3?

```
d[1][2] = min(d[1][2], d[1][3] + d[3][2])
d[1][3] = min(d[1][3], d[1][3] + d[3][3])
d[1][4] = min(d[1][4], d[1][3] + d[3][4])
d[1][5] = min(d[1][5], d[1][3] + d[3][5])
d[2][3] = min(d[2][3], d[2][3] + d[3][3])
d[2][4] = min(d[2][4], d[2][3] + d[3][4])
d[2][5] = min(d[2][5], d[2][3] + d[3][5])
d[3][4] = min(d[3][4], d[3][3] + d[3][4])
d[3][5] = min(d[3][5], d[3][3] + d[3][5])
d[4][5] = min(d[4][5], d[4][3] + d[3][5])
```

	1	2	3	4	5
1	0	10	60	30	100
2	10	0	50	40	110
3	60	50	0	20	10
4	30	40	20	0	60
5	100	110	10	60	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j]) A если k = 3?

```
d[1][2] = min(d[1][2], d[1][3] + d[3][2])
d[1][3] = min(d[1][3], d[1][3] + d[3][3])
d[1][4] = min(d[1][4], d[1][3] + d[3][4])
d[1][5] = min(d[1][5], d[1][3] + d[3][5])
d[2][3] = min(d[2][3], d[2][3] + d[3][3])
d[2][4] = min(d[2][4], d[2][3] + d[3][4])
d[2][5] = min(d[2][5], d[2][3] + d[3][5])
d[3][4] = min(d[3][4], d[3][3] + d[3][4])
d[3][5] = min(d[3][5], d[3][3] + d[3][5])
d[4][5] = min(d[4][5], d[4][3] + d[3][5])
```

	1	2	3	4	5
1	0	10	60	30	70
2	10	0	50	40	60
3	60	50	0	20	10
4	30	40	20	0	30
5	70	60	10	30	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j])Что насчет k = 4?

```
d[1][2] = min(d[1][2], d[1][4] + d[4][2])
d[1][3] = min(d[1][3], d[1][4] + d[4][3])
d[1][4] = min(d[1][4], d[1][4] + d[4][4])
d[1][5] = min(d[1][5], d[1][4] + d[4][5])
d[2][3] = min(d[2][3], d[2][4] + d[4][3])
d[2][4] = min(d[2][4], d[2][4] + d[4][4])
d[2][5] = min(d[2][5], d[2][4] + d[4][5])
d[3][4] = min(d[3][4], d[3][4] + d[4][4])
d[3][5] = min(d[3][5], d[3][4] + d[4][5])
d[4][5] = min(d[4][5], d[4][4] + d[4][5])
```

	1	2	3	4	5
1	0	10	60	30	70
2	10	0	50	40	60
3	60	50	0	20	10
4	30	40	20	0	30
5	70	60	10	30	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j])Что насчет k = 4?

```
d[1][2] = min(d[1][2], d[1][4] + d[4][2])
d[1][3] = min(d[1][3], d[1][4] + d[4][3])
d[1][4] = min(d[1][4], d[1][4] + d[4][4])
d[1][5] = min(d[1][5], d[1][4] + d[4][5])
d[2][3] = min(d[2][3], d[2][4] + d[4][3])
d[2][4] = min(d[2][4], d[2][4] + d[4][4])
d[2][5] = min(d[2][5], d[2][4] + d[4][5])
d[3][4] = min(d[3][4], d[3][4] + d[4][4])
d[3][5] = min(d[3][5], d[3][4] + d[4][5])
d[4][5] = min(d[4][5], d[4][4] + d[4][5])
```

	1	2	3	4	5
1	0	10	50	30	60
2	10	0	50	40	60
3	50	50	0	20	10
4	30	40	20	0	30
5	60	60	10	30	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j]) И напоследок, k = 5?

```
d[1][2] = min(d[1][2], d[1][5] + d[5][2])
d[1][3] = min(d[1][3], d[1][5] + d[5][3])
d[1][4] = min(d[1][4], d[1][5] + d[5][4])
d[1][5] = min(d[1][5], d[1][5] + d[5][5])
d[2][3] = min(d[2][3], d[2][5] + d[5][3])
d[2][4] = min(d[2][4], d[2][5] + d[5][4])
d[2][5] = min(d[2][5], d[2][5] + d[5][5])
d[3][4] = min(d[3][4], d[3][5] + d[5][4])
d[3][5] = min(d[3][5], d[3][5] + d[5][5])
d[4][5] = min(d[4][5], d[4][5] + d[5][5])
```

	1	2	3	4	5
1	0	10	50	30	60
2	10	0	50	40	60
3	50	50	0	20	10
4	30	40	20	0	30
5	60	60	10	30	0

d[i][j] = min(d[i][j], d[i][k] + d[k][j]) И напоследок, k = 5?

Менять нечего!

	1	2	3	4	5
1	0	10	50	30	60
2	10	0	50	40	60
3	50	50	0	20	10
4	30	40	20	0	30
5	60	60	10	30	0