Machine Learning for Sensory Signals

Dimensionality Reduction

02-02-2017

Recap

- Decision rule and inference rule in machine learning
- * Minimizing the classification error
 - * Maximum aposteriori rule
- * Loss function and expected loss in classification
- * Regression with mean square error loss
 - Conditional Expectation

Recap

- * Three Approaches to ML
- Generative modeling
 - * Estimating the likelihood and the prior density separately.
- Discriminative modeling
 - * Directly modeling the class posterior probability.
- Discriminant function
 - * No probabilistic interpretation.

Pros and Cons

- Generative Modeling
 - Useful for synthetic data generation
 - * Outlier Detection
- * Discriminative modeling
 - * Typically better for classification
- * Discriminant function
 - * No posterior estimation (loss function cannot be incorporated directly)
 - Combining multiple models is harder.

Principal Component Analysis

- * Reducing the data \mathbf{x}_n of dimension D to lower dimension M < D
- Projecting the data into subspace which preserves maximum data variance
 - Maximize variance in projected space
- * Equivalent formulated as minimizing the error between the original and projected data points.

Principal Component Analysis

* First *M* eigenvectors of data covariance matrix

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}})(\mathbf{x}_n - \bar{\mathbf{x}})^T$$

* Residual error from PCA

$$J = \sum_{i=M+1}^{D} \lambda_i$$

PRML - C. Bishop (Sec. 12.1)

PCA

Handwritten digits used for PCA training...

PCA

PCA - Reconstruction

Eigenvectors

PCA - Reconstruction

PRML - C. Bishop (Sec. 12.1)