---problem 1---

```
setwd("C:/Users/47494/GitHub/MF793/data")
monthly rets <- read.csv("stk-mon.csv",header=T)
daily_rets <- read.csv("stk-day.csv",header=T)
# (a)
log monthly rets <- cbind(monthly rets$date,log(1 + monthly rets[,2:13]))
log_monthly_rets[,14] <- rowMeans(log_monthly_rets[,2:12])
names(log_monthly_rets)[c(1,14)] <- c('date','ewret')</pre>
log_monthly_rets_a <- log_monthly_rets[log_monthly_rets$date<='20151231',]
log_monthly_rets_b <- log_monthly_rets[log_monthly_rets$date>'20151231',]
monthly_sd_a <- apply(log_monthly_rets_a[,2:14], 2, sd)
monthly_sd_b <- apply(log_monthly_rets_b[,2:14], 2, sd)
ann_monthly_sd_a <- monthly_sd_a * sqrt(12)
ann_monthly_sd_b <- monthly_sd_b * sqrt(12)
round(ann_monthly_sd_a, 3)
round(ann_monthly_sd_b, 3)
monthly_vr <- ann_monthly_sd_a^2 / ann_monthly_sd_b^2
round(monthly_vr, 3)
```

Table 1: Volatility for the 2010-15 and 2016-17 periods

	σ_{1M} (ann.)	σ _{2M} (ann.)	VR _M	σ_{1D} (ann.)	σ_{2D} (ann.)	VR _D
Apple	0.247	0.235	1.102	0.267	0.207	1.667
Amazon	0.281	0.224	1.571	0.327	0.255	1.643
Biogen	0.293	0.284	1.067	0.324	0.295	1.204
Citygroup	0.301	0.254	1.409	0.345	0.257	1.800
GE	0.222	0.189	1.376	0.224	0.188	1.433
Nike	0.213	0.186	1.319	0.235	0.221	1.135
Pepsi	0.117	0.111	1.126	0.142	0.118	1.450
State Street	0.242	0.265	0.831	0.274	0.248	1.225
Toyota	0.193	0.174	1.234	0.222	0.189	1.381
Valero	0.348	0.235	2.190	0.359	0.271	1.760
Verizon	0.165	0.177	0.868	0.163	0.165	0.975
US VW	0.133	0.080	2.759	0.161	0.108	2.241
EW 11	0.145	0.110	1.735	0.174	0.126	1.910

(b)

```
montly_cutoffs <- qf(c(0.05, 0.95), 71, 23)
round(montly_cutoffs, 3)
barplot(monthly_vr, main="barplot of VRs", ylim=c(0,3))
abline(h=1,lwd=3)
abline(h=montly_cutoffs[2],lwd=3)
round(sqrt(1/monthly_vr[12]) - 1, 3)
```

barplot of VRs

Figure 1

(c)

```
log_daily_rets <- cbind(daily_rets$date,log(1 + daily_rets[,2:13]))
log_daily_rets[,14] <- rowMeans(log_daily_rets[,2:12])
names(log_daily_rets)[c(1,14)] <- c('date','ewret')</pre>
log_daily_rets_a <- log_daily_rets[log_daily_rets$date<='20151231',]
log_daily_rets_b <- log_daily_rets[log_daily_rets$date>'20151231',]
daily_sd_a <- apply(log_daily_rets_a[,2:14], 2, sd)
daily_sd_b <- apply(log_daily_rets_b[,2:14], 2, sd)
ann_daily_sd_a <- daily_sd_a * sqrt(252)
ann_daily_sd_b <- daily_sd_b * sqrt(252)
round(ann_daily_sd_a, 3)
round(ann_daily_sd_b, 3)
daily_vr <- ann_daily_sd_a^2 / ann_daily_sd_b^2
round(daily_vr, 3)
daily_cutoffs <- qf(c(0.05, 0.95), 1509, 502)
round(daily_cutoffs, 3)
# (d)
vw_monthly_mean <- mean(log_monthly_rets[,13])
vw_monthly_sd <- sd(log_monthly_rets[,13])</pre>
sim_monthly_ret <- matrix(</pre>
  rnorm(96*20000, mean=vw monthly mean, sd=vw monthly sd),
  ncol=20000)
sim_monthly_ret_a <- sim_monthly_ret[1:72,]
sim_monthly_ret_b <- sim_monthly_ret[73:96,]</pre>
sim_monthly_sd_a <-apply(sim_monthly_ret_a, 2, sd)</pre>
sim_monthly_sd_b <-apply(sim_monthly_ret_b, 2, sd)</pre>
sim_monthly_vr <- sim_monthly_sd_a^2 / sim_monthly_sd_b^2
round(quantile(sim_monthly_vr,0.95), 3)
```

```
round(mean(sim_monthly_vr),3)
monthly_frac <- sum(sim_monthly_vr > qf(0.95, 71, 23))/length(sim_monthly_vr)

sim_daily_ret <- matrix(rt(2016*20000,6),ncol=20000)

sim_daily_ret_a <- sim_daily_ret[1:1512,]

sim_daily_ret_b <- sim_daily_ret[1513:2016,]

sim_daily_sd_a <-apply(sim_daily_ret_a, 2, sd)

sim_daily_sd_b <-apply(sim_daily_ret_b, 2, sd)

sim_daily_vr <- sim_daily_sd_a^2 / sim_daily_sd_b^2

round(quantile(sim_daily_vr,0.95), 3)

round(mean(sim_daily_vr),3)

daily_frac <- sum(sim_daily_vr > qf(0.95, 1511, 503))/length(sim_daily_vr)

qqplot(qf(ppoints(20000),71,23),sim_monthly_vr,
    main="F-probability plot of VRs against theoretical F\nmonthly case",
    xlab="theoretical quantiles", ylab="sample quantiles")

abline(0,1)
```


Figure 2a

F-probability plot of VRs against theoretical F daily case

Figure 2b

Table 2: Theoretical and simulated Mean and 95th quantiles of the Chow Test

	ν ₁	ν2	F _{0.95}	Frac	$VR_{0.95}$	E(F)	\overline{VR}
Monthly, Normal	71	23	1.849	4.85%	1.840	1.095	1.094
Daily, t(6)	1511	503	1.130	13.71%	1.197	1.004	1.009
Normal $\rho = 0.3$	95	95	1.404	4.11%	1.379	1.022	1.019
Normal $\rho_{C,STT} = 0.73$	95	95	1.404	0.86%	1.263	1.022	1.011

---problem 2---

(a)

```
C_mothly_ret <- log_monthly_rets[,5]
STT_mothly_ret <- log_monthly_rets[,9]
C_mothly_sd <- sd(C_mothly_ret)
STT_mothly_sd <- sd(STT_mothly_ret)
monthly_vr_CS <- C_mothly_sd^2 / STT_mothly_sd^2
round(monthly_vr_CS,3)
round(qf(c(0.05,0.95),95,95),3)
```

(b)

```
sim_monthly_ret2_a <- matrix(
    rnorm(96*20000),ncol=20000)

sim_monthly_ret2_b <- 0.3*sim_monthly_ret2_a +
    sqrt(1-0.3^2)*matrix(rnorm(96*20000),ncol=20000)

sim_monthly_sd2_a <- apply(sim_monthly_ret2_a, 2, sd)

sim_monthly_sd2_b <- apply(sim_monthly_ret2_b, 2, sd)

sim_monthly_vr2 <- sim_monthly_sd2_a^2 / sim_monthly_sd2_b^2
```

```
round(quantile(sim_monthly_vr2, 0.95), 3)
round(mean(sim_monthly_vr2),3)
monthly_frac2 <- sum(sim_monthly_vr2 > qf(0.95, 95, 95))/length(sim_monthly_vr2)
rho <- cor(C mothly ret, STT mothly ret)
sim_monthly_ret3_a <- matrix(
  rnorm(96*20000),ncol=20000)
sim_monthly_ret3_b <- rho*sim_monthly_ret3_a +
  sqrt(1-rho^2)*matrix(rnorm(96*20000),ncol=20000)
sim_monthly_sd3_a <- apply(sim_monthly_ret3_a, 2, sd)
sim monthly sd3 b <- apply(sim monthly ret3 b, 2, sd)
sim_monthly_vr3 <- sim_monthly_sd3_a^2 / sim_monthly_sd3_b^2
round(quantile(sim_monthly_vr3, 0.95), 3)
round(mean(sim monthly vr3),3)
monthly_frac3 <- sum(sim_monthly_vr3 > qf(0.95, 95, 95))/length(sim_monthly_vr3)
qqplot(qf(ppoints(20000),95,95),sim monthly vr3,
  main="F-probability plot of VRs against theoretical F\nC / STT monthly case",
  xlab="theoretical quantiles", ylab="sample quantiles")
abline(0,1)
qqplot(qt(ppoints(20000),95,95),sim_monthly_vr3,
  main="t-probability plot of VRs with\ndegree of freedom=95\nnon-centrality parameter=95",
  xlab="theoretical quantiles", ylab="sample quantiles")
```


Figure 3

