题目:现有一类似 "Yy-z02"的模型机,请根据该模型机结构、给定指令系统和微指令格式,将汇编语言描述的程序翻译为机器码,并编制微程序,写出每一条微指令,画出微程序流程图。

一、模型计算机系统结构概述

(1) ALU: 两片 74LS181 串联而成,一片 74299 移位器,算逻运算功能由 S3 S2 S1 S0 M Cn 决定,同 74LS181;移位功能同下表:

SHF→IB#	S1	S0	M	74LS299 操作
0	0	0	任意	保持
0	1	0	0	右移
0	1	0	1	带进位右移
0	0	1	0	左移
0	0	1	1	带进位左移
任意	1	1	任意	装数

状态标志有两个: ZF、CF:

- ▶ SCD#=0: 运算结果影响标志位; 否则不影响;
- ➤ ACF#=0: 带进位运算,即 Cn=CF; 否则由微码提供。
- (2) 通用寄存器: 四个通用寄存器 R0~R3, 挂在内部总线上,可以从内部总线 IB 上装载数据 (LDRi),也可以将数据送至 IB (Ri→IB#)。
- (3) 地址部件:包括 PC 和 AR, PC 具有从 IB 装入(LDPC)、送数据到 IB (PC→IB#)、送数据到 AB (PC→AB#)、自增 1 (PC+1)的功能; AR 具有从 IB 装入(LDAR)、送数据到 AB (AR→AB#)的功能。
- (4) 指令寄存器 IR: 具有从 IB 装入数据(LDIR)的功能。
- (5) 主存储器:一片 6116 芯片组成,可以访问的最大主存空间为 256 字节。操作有存储器读 (MEMR#)、存储器写(MEMW#)。
- (6) 输入设备: 开关, I/O 地址 01H, IOR#=0 则将开关值读到 IB 上。
- (7) 输出设备:数码管,I/O地址02H,IOW#=0则将IB上数据写到LED。

微控器:由控存 CM、控存地址寄存器 CMAR、微指令寄存器 μ IR、微指令译码器 μ ID 组成;操作功能:取微指令、执行微指令。

二、系统支持的指令格式有三种:

1、格式1

OP (4位)	Rs (2位)	Rd (2位)
Addr/DAT	A/Disp (8位)	

2、格式2

OP1 (2位)	寻址方式 M(2位)	OP2 (2位)	Rd (2位)
	Addr/DATA/Disp	o/X (8位)	

3、格式3

OP1 (2位)	寻址方式 M(2位)	OP2 (2位)	条件 CD (2位)
	Addr/DATA/Disp	o/X (8位)	

其中:

- ▶ BMAP1:操作码映射 1,根据格式 1 的 OP1 映射产生指令的微程序入口地址,入口地址=μA5 μA4 OP1 (4 位),μAi 对应微指令的 BAF 字段。
- BMAP2: 操作码映射 2, 根据格式 2 的 OP2 映射产生后继微指令地址,后继地址=μA5 μA4 μA3 μA2 OP2 (2 位)。
- BCD: 条件转移,根据格式 3 的条件码 CD 产生后继微指令地址,后继地址=μA5 μA4 μA3 μA2 μA1 μA0', 其中,条件满足 μA0'=1:条件不满足 μA0'=0:

当 CD=00,备用。

当 CD=01,条件=CF(有进位/借位)。

当 CD=10,条件=ZF(结果为零)。

当CD=11,条件=CF \ZF(有进位/借位或者结果为零)。

三、指令系统:

约定: R0—累加器: R1—循环计数器: R2—变址寄存器: R3—通用寄存器

● 八条算逻运算类指令: (采用格式一)

OP (4位)	Rs (2位)	Rd (2位)
Addr/DATA	A/Disp (8位)	

1、MOV #DATA, Rd; DATA→Rd 格式: 0000 Rd DATA 2, ADD Rs, Rd; $(Rs)+(Rd)\rightarrow Rd$ 格式: 0001 Rs Rd 3、ADC Rs, Rd; $(Rs)+(Rd)+(CF)\rightarrow Rd$ 格式: 0010 Rs Rd 4, SUB Rs, Rd; (Rd) - (Rs) Rd 格式:

0011 Rs Rd 5. AND Rs, Rd; $(Rs) \land (Rd)$ Rd 格式: 0100 Rs Rd 6, RRC Rs, Rd; (Rs)带进位循环右移 Rd 格式: 0101 Rs Rd 7、INC Rd; $(Rd)+1 \rightarrow Rd$ 格式: ** 0110 Rd 8, DEC Rd; $(Rd) -1 \rightarrow Rd$

**

Rd

0111

● 二条存储器访问类指令和二条程序控制类指令: (采用格式二、三)

	OP1=10	寻址方式 M(2位)	OP2 (2位)	Rd/条件 CD(2
				位)
Ī		Addr/DATA/Disp	o/X (8位)	

M=	寻址方式	EA 的计算方式
00	直接寻址	EA=Addr
01	间接寻址	EA= (Addr)
10	变址寻址	EA=(Ri)+X; Ri 默认是 R2
11	相对寻址	EA= (PC) + DISP

OP2	指令	功能
00	LDA	(EA) Rd
01	STA	(Rd)→EA
10	JMP	EA→PC
11	BRANCH	若条件满足则 EA→PC,否则结束本条指令

● 二条 I/O 指令: (采用格式一)

13、 IN [Addr], Rd; I/O(Addr)→Rd 14、 OUT Rs, [Addr]; (Rs)→I/O(Addr) 格式:

1100 ** Rd
Addr

● 二条程序控制类指令: (采用格式一) 15、 CALL [Addr]; PC→0FFH , Addr→PC

Audi 7FC

格式: 1110 ** ** 1101 Rs **
Addr

Addr

16、RET; (0FFH) PC 格式: 1111 ** **

四、基于指令系统的程序如下:

程序	功能	汇编结果 (存储器地址:机器语言程 序)
IN [01H], R0	(INPUT DEVICE)→R0	,
STA R0, [40H]	(R0)→40H	
	直接寻址	
MOV #40H, R2	40H→R2	
MOV #05H, R1	05H → R1	
A: ADC R1, R0	(R1)+(R0)+(CF)→R0	
STA R0, [(Ri)+01H]	(R0)→(Ri)+01H	
	变址寻址	
INC R2	(R2)+1→R2	
DEC R1	(R1)-1→R1	
BRANCH [11H], 10	条件 (ZF=1) 成立:	
	11H → PC	
	条件不成立: PC+1	
	直接寻址	
JMP [PC-09H]	(PC)-09H → PC	
	相对寻址	
CALL [15H]	(PC)→0FFH, 15H→PC	
JMP [00H]	00H → PC	
	直接寻址	
Proc: MOV #06H, R1	06H → R1	
MOV #3FH, R2	3FH→R2	
B: LDA [(Ri)+01H], R0	((Ri)+01H)→R0	
L(/ J/	变址寻址	
OUT R0, [02H]	(R0)→OUTPUT DEVICE	
INC R2	(R2)+1→R2	
DEC R1	(R1)-1→R1	
BRANCH [23H], 10	条件 (ZF=1) 成立:	
	23H → PC	
	条件不成立: PC+1	
	直接寻址	
JMP [PC-0AH]	(PC)-0AH→PC	
	相对寻址	
RET	(0FFH)→PC	

五、模型机上的微指令格式

S3 S2 S1 S0 M Cn	MIOC(3 位)	REGC (3位)	BUSC (3位)	BCF(3位)	BAF (6位)
	000: 空	000: 空	000: 空	000: 空	
	001: SCD#	001: LDDR1	001: Rs → IB#	001: BMAP1#	
	010: 备用	010: LDDR2	010: Rd→IB#	010: BMAP2#	
	011: 备用	011: LDRd	011: Ri → IB#	011: BCD#	
	100: MEMR#	100: LDIR	100: SHF → IB#	100: ACF#	
	101: MEMW#	101: LDAR	101: ALU → IB#	101: AR→AB#	
	110: IOR#	110: LDPC	110: PC → IB#	110: 备用	
	111: IOW#	111: 备用	111: PCLI	111: 备用	

其中: PCLI = PC→AB#, PC+1

- ▶ BMAP1:操作码映射 1,根据格式 1 的 OP1 映射产生指令的微程序入口地址,入口地址=μA5 μA4 OP1 (4 位),μAi 对应微指令的 BAF 字段。
- BMAP2: 操作码映射 2, 根据格式 2 的 OP2 映射产生后继微指令地址,后继地址=μA5 μA4 μA3 μA2 OP2 (2位)。
- BCD:条件转移,根据格式3的条件码CD产生后继微指令地址,后继地址=μA5μA4μA3μA2μA1μA0°,其中,

条件满足 μ A0'=1; 条件不满足 μ A0'=0;

学生作品

学院: 计算机学院 学号: 06054223 姓名: 彭伟勇

解释执行指令系统的微程序如下:

指令	微地址	S3-S0MCn	MIOC	REGC	BUSC	BCF	BAF	反汇编	微指令
	(H)								(H)
取指	00H	000000	100	100	111	001	10000	PC→AB#, PC+1, MEMR#	024E60
							0	LDIR, BMAP1#	
MOV	20H	000000	100	011	111	000	00000	PC→AB#, PC+1, MEMR#,	023E00
							0	LDRd	
ADD	21H	000000	000	001	001	000	00000	Rs → IB#, LDDR1	001201
							1		
	01H	000000	000	010	010	000	00001	Rd→IB, LDDR2	002402
							0		
	02H	100101	001	011	101	000	00000	ALU → IB#, "+", SCD#,	94BA00
							0	LDRd	
ADC	22H	000000	000	001	001	000	000011	Rs→IB#, LDDR1	001203
	03H	000000	000	010	010	000	00010	Rd → IB, LDDR2	002404
							0		
	04H	100101	001	011	101	100	00000	ALU → IB#, "+", SCD#,	94BB00
							0	LDRd	
SUB	23H	000000	000	010	001	000	00010	Rs → IB#, LDDR2	002205
							1		

	05H	000000	000	001	010	000	000110	Rd→IB, LDDR1	001406
	06H	011000	001	011	101	000	00000	ALU → IB#, "-", SCD#,	60BA00
							0	LDRd	
AND	24H	000000	000	001	001	000	000111	Rs→IB#, LDDR1	001207
	07H	000000	000	010	010	000	00100	Rd→IB, LDDR2	002408
							0		
	08H	101110	001	011	101	000	00000	ALU → IB#, "∧", SCD#,	B8BA00
							0	LDRd	
RRC	25H	001100	000	000	100	000	00100	Rs→IB#, 移位器装数	300809
							1		
	09H	001010	000	011	100	000	00000	带进位循环右移,LDRd	283800
							0		
INC	26H	000000	000	001	010	000	00101	Rd → IB#, LDDR1	00140A
							0		
	0AH	000000	001	011	101	000	00000	"+1", ALU → IB#, SCD#,	00BA00
							0	LDRd	
DEC	27H	000000	000	001	010	000	001011	Rd → IB#, LDDR1	00140B
	0BH	111101	001	011	101	000	00000	"-1", ALU → IB#, SCD#,	F4BA00
							0	LDRd	
直接寻址	28H	000000	100	001	111	000	001110	PC→AB#, PC+1, MEMR#,	021E0E
								LDDR1	
	0EH	111100	000	101	101	010	01000	DR1→IB, LDAR, BMAP2#	F05A90
							0		
间接寻址	29H	000000	100	101	111	000	001111	PC→AB#, PC+1, MEMR#,	025E0F
								LDAR	
	0FH	000000	100	001	000	101	01010	AR→AB#, MEMR#,	021154
							0	LDDR1	
	14H	111100	000	101	101	010	01000	DR1→IB, LDAR, BMAP2#	F05A90
							0		
变址寻址	2AH	000000	100	001	111	000	01010	PC→AB#, PC+1, MEMR#,	021E15
							1	LDDR1	
	15H	000000	000	010	011	000	010110	Ri → IB#, LDDR2	002616
	16H	100101	000	001	101	000	010111	"+", ALU→IB#, LDDR1	941A17
	17H	111100	000	101	101	010	01000	DR1→IB, LDAR, BMAP2#	F05A90
							0		
相对寻址	2BH	000000	100	001	111	000	011000	PC→AB#, PC+1, MEMR#,	021E18
								LDDR1	
	18H	000000	000	010	110	000	011001	PC→IB#, LDDR2	002C19
	19H	100101	000	001	101	000	011010	"+", ALU→IB#, LDDR1	941A1A
	1AH	111100	000	101	101	010	01000	DR1→IB, LDAR, BMAP2#	F05A90
							0		
LDA	10H	000000	100	011	000	101	00000	AR→AB#, MEMR#, LDRd	023140
							0		

STA	11H	000000	101	000	010	101	00000	AR→AB#, Rd→IB#,	028540
							0	MEMW#	
JMP	12H	111110	000	110	101	000	00000	DR1→IB#, LDPC	F86A00
							0		
BRANCH	13H	000000	000	000	000	011	001100	BCD#	0000CC
	0CH	000000	000	000	000	000	00000	空操作	000000
							0		
	0DH	111110	000	110	101	000	00000	DR1 → IB#, LDPC	F86A00
							0		
IN	2CH	000000	100	101	111	000	011011	PC→AB#, PC+1, MEMR#,	025E1B
								LDAR	
	1BH	000000	110	011	000	101	00000	AR→AB#, IOR#, LDRd	033140
							0		
OUT	2DH	000000	100	101	111	000	011100	PC→AB#, PC+1, MEMR#,	025E1C
								LDAR	
	1CH	000000	111	000	001	101	00000	AR→AB#, Rs→IB#, IOW#	038340
							0		
CALL	2EH	000000	100	001	111	000	011101	PC→AB#, PC+1, MEMR#,	021E1D
								LDDR1	
	1DH	001101	000	101	000	000	011110	0FFH → IB#, LDAR	34501E
	1EH	000000	101	000	110	101	011111	PC → IB#, AR → AB#,	028D5F
								MEMW#	
	1FH	111110	000	110	101	000	00000	DR1 → IB#, LDPC	F86A00
							0		
RET	2FH	001101	000	101	000	000	110000	0FFH → IB#, LDAR	345030
	30H	000000	100	110	000	101	00000	AR→AB#, MEMR#, LDPC	026140
							0		

指令系统的微程序流程图

基于指令系统的程序如下:

至 1 指 マ 尔 织 的 柱	功能	汇编结果
(主/丁)	为肥	(存储器地址:机器语言程
		序)
IN [01H], R0	(INPUT DEVICE)→R0	00H: 11000000
11 ([0111], 10	(INTOT BEVICE) 7 NO	01H: 00000001
STA R0, [40H]	(R0)→40H	02H: 10000100
511110, [1011]	直接寻址	03H: 01000000
MOV #40H, R2	40H→R2	04H: 00000010
1110 1 11 1011, 112	1011 7 112	05H: 01000000
MOV #05H, R1	05H → R1	06H: 00000001
2.22 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	07H: 00000101
A: ADC R1, R0	(R1)+(R0)+(CF)→R0	08H: 00100100
STA R0, [(Ri)+01H]	(R0)→(Ri)+01H	09H: 10100100
~, [(/	变址寻址	0AH: 00000001
INC R2	(R2)+1→R2	0BH: 01100010
DEC R1	(R1)-1→R1	0CH: 01110001
BRANCH [11H], 10	条件 (ZF=1) 成立:	0DH: 10001110
	11H→PC	0EH: 00010001
	条件不成立: PC+1	
	直接寻址	
JMP [PC-09H]	(PC)-09H → PC	0FH: 10111000
	相对寻址	10H: 11110111
CALL [15H]	(PC)→0FFH, 15H→PC	11H: 11100000
		12H: 00010101
JMP [00H]	00H → PC	13H: 10001000
	直接寻址	14H: 00000000
Proc: MOV #06H, R1	06H → R1	15H: 00000001
		16H: 00000110
MOV #3FH, R2	3FH→R2	17H: 00000010
		18H: 00111111
B: LDA [(Ri)+01H], R0	((Ri)+01H)→R0	19H: 10100000
	变址寻址	1AH: 00000001
OUT R0, [02H]	(R0)→OUTPUT DEVICE	1BH: 11010000
		1CH:00000010
INC R2	(R2)+1→R2	1DH: 01100010
DEC R1	(R1)-1→R1	1EH: 01110001
BRANCH [23H], 10	条件(ZF=1)成立:	1FH: 10001110
	23H → PC	20H: 00100011
	条件不成立: PC+1	
	直接寻址	
JMP [PC-0AH]	(PC)-0AH→PC	21H: 10111000

	相对寻址	22H: 11110110
RET	(0FFH) → PC	23H: 11110000