Toxic Comment Classification

AAI501 - Applied Artificial Intelligence

San Diego University

Instructor: Azka Azka

Team 7 Members:

- Anugrah Rastogi
- Dhrub Satyam
- Mallesham D

Team Members & Their Contributions

Anugrah Rastogi

- Data Preparation
- EDA
- Plot and Analysis

Dhrub Satyam

Modeling & Deployment

Mallesham D

- Overall analysis
- Conclusions and Report

Abstract

· Aim:

• Detect and classify harmful online comments into multiple categories.

• Data:

• Jigsaw Toxic Comment Classification dataset from Wikipedia talk pages.

• Methods:

• Data cleaning, preprocessing, TF-IDF vectorization, and classification using machine learning and deep learning models.

• Models:

• Multinomial Naive Bayes, Logistic Regression, and Deep Learning.

Outcome:

• Achieved strong performance on frequent classes; rare classes need further work.

Suggestion:

• Address class imbalance, explore transformer-based models.

Introduction

Problem

Toxic language online can harm communities and individuals.

Objective

Build a classifier to detect multiple categories of toxic comments.

Dataset

Jigsaw Challenge – publicly available, labeled multi-label data.

Goal

Accurate, interpretable, and scalable detection system.

Real-World Motivation

Why This Matters:

- Toxic comments in online spaces harm mental well-being and disrupt constructive dialogue.
- Platforms like Wikipedia, Reddit, and YouTube face constant moderation challenges.
- Manual review of large volumes of user-generated content is slow, costly, and inconsistent.

Real Impact Examples:

- Social Media Moderation: Preventing harassment, cyberbullying, and hate speech.
- Online Communities: Maintaining respectful collaboration in forums and knowledge bases.
- Legal & Compliance: Helping organizations meet content moderation policies and regulatory standards.

Need for Automation:

- Rapid detection ensures harmful content is flagged before it causes damage.
- Scalable Al-driven moderation supports global platforms with millions of daily interactions.

Dataset Overview

- Total Comments: 159,571
- Labels: toxic, severe_toxic, obscene, threat, insult, identity_hate
- Additional: 'clean' label for non-toxic comments
- Nature: Multi-label classification (one comment can have multiple labels)

Data Preparation

- Missing Values: Removed empty comments
- Lowercasing: Standardized text to lowercase
- Special Character Removal: Removed punctuation, numbers, symbols
- Tokenization: Split into words
- Stopword Removal: Filtered common, low-value words
- Lemmatization: Reduced words to base form

Exploratory Data Analysis

- Class distribution: Majority clean comments (~90%)
- Rare labels: threat, identity_hate (<0.5%)
- Co-occurrence: toxic often with obscene/insult
- Visuals: Label frequency plots, word clouds

Model Selection

TF-IDF + Logistic Regression: Baseline, interpretable

Multinomial Naive Bayes: Efficient, strong on frequent classes

Deep Learning: Captures complex patterns, needs more for rare labels

Metric Focus: F1-score, Precision, Recall, AUC-ROC

Classification Metrics

Precision

• Of predicted defaulters, how many were correct?

Recall

• How many actual defaulters were identified?

♦ F1 Score

• Balance between Precision & Recall.

Results

Label	Precision	Recall	F1-score
Toxic	0.90	0.62	0.73
Severe_Toxic	0.55	0.21	0.31
Obscene	0.91	0.64	0.75
Threat	0.50	0.09	0.16
Insult	081	0.51	0.63
Identity_Hate	0.80	0.16	0.27

Multinomial Naive Bayes

Goal: Classify text into multiple toxicity categories.

Data Representation: TF-IDF vectors (min df=3, n-gram range: 1–3).

Training Setup: 80% train, 20% test; separate binary classifiers for each label.

Strengths:

- Fast and computationally efficient.
- Performs well with word frequency-based features.

MNB: Results & Observations

- Frequent classes (toxic, obscene): Good F1-scores.
- Rare classes (threat, identity_hate, severe_toxic): Lower recall despite good AUC.
- **Tuning:** Best smoothing parameter α =0.01.
- Macro F1-score: ~0.448
- Average AUC: ~0.944
- Takeaway: Effective for high-level filtering but limited in rare class detection.

Deep Learning Approach

- Goal: Capture complex patterns in toxic language.
- Architecture: Sequential deep learning model with embedding & dense layers.
- Training: Used same preprocessed TF-IDF/embedding data split as MNB.
- Metrics: Evaluated per-label precision, recall, F1-score.

Deep Learning: Results & Insights

Strengths: Better adaptability to feature complexity than MNB.

Challenges:

- Minority classes still underperform due to imbalance.
- Precision high for common classes, recall low for rare ones.

Training Behavior: Quick convergence; risk of overfitting.

Future Improvements: Use class imbalance strategies (focal loss, re-weighting).

Deep Learning: Results & Insights

Deep Learning: Results & Insights

Insights

- Frequent labels achieve higher recall & precision
- Rare labels suffer from low recall despite good AUC
- Logistic Regression + TF-IDF works well for baseline
- Naive Bayes provides quick, interpretable results
- Deep Learning has potential but needs imbalance handling

Conclusion

• Multi-model approach effective for frequent classes

• Rare class prediction remains challenging

Future Work

• Apply class weights, SMOTE, or data augmentation

• Explore BERT/transformer architectures

• Extend to multilingual datasets

• Develop explainable AI tools for moderator trust