- 1. a) Simulate the path of a simple r.w. $X_n, 0 \le n \le N$, on \mathbf{Z}^2 starting at zero for N = 100; 1000; 10000; 100000 (simulate the trace left by the r.w. $X_n, 0 \le n \le N$, on the grid);
- b) Simulate the path of a r.w. $X_n, 0 \le n \le N$, on ${\bf Z}^2$ starting at zero for N=100;1000;10000, with

$$\mathbf{P}(X_1 = \pm e_2) = 0.25,$$

 $\mathbf{P}(X_1 = e_1) = 0.2, \mathbf{P}(X_1 = -e_1) = 0.3,$

where $e_1 = (1,0), e_2 = (0,1).$

2. Consider a simple r.w. X_n on **Z** starting at zero. Let $T = \inf \{n \ge 1 : X_n = 0\}$ and $T_L = \min \{T, L\}$. Plot T_L for m simulated trajectories of X_n : plot the val-

ues that you found (T_L^1,\dots,T_L^m) against $(1,2,\dots,m)$ for m=20,L=100;m=200,L=1000;m=2000,L=100000.