

WEEK 6

EER DIAGRAMS - MAPPING THE EER DIAGRAM TO RELATIONAL TABLES

CS3319

1

STUDENT OBJECTIVES

- Upon completion of this video, you should be able to:
 - Given an EER diagram, convert it to relational tables using one of the four rules.

CS3319

MAPPING EER DIAGRAMS TO RELATIONS:

In Lecture 2, we introduced 7 steps to convert an ER diagram to a relational database, now we add Step 8:

Step 8: Convert each specialization with m subclasses $\{S_1, S_2, ..., S_m\}$ and (generalized) superclass C, where the attributes of C are $\{k, a_1, ..., a_n\}$ and k is the (primary) key, into relations schemes using one of the four following options:

CS319

Option 8A Multiple relations – superclass and subclasses: Create a relation L for C (superclass) with attributes = $\{k, a_1, \ldots, a_n\}$ and primary key = k. Create a relation L_i for each subclass S_i , $1 \le i \le m$, with the attributes of $L_i = \{k\}$ U {attributes of S_i }, and primary key of $L_i = k$.

<u>Employee</u>								
<u>SSN</u>	Name	Bdate	Add	ress	JobType			
22	Homer Smith	2/2/19	70 Spri	ngfield	Tec			
33	Lisa Jones	1/1/90	Lonc	lon	Eng			
34	Bob Lee	4/4/91	Lonc	lon	Eng			
56	Laura Cook	2/19/6	4 Lonc	lon	Sec			
Sec	<u>Secretary</u> <u>Technician</u>							
SS	N TypingSp	eed	SSN	Tarade				

occiding			recilificiali		
SSN	TypingSpeed		SSN	Tgrade	
56	60	ij	22	Tgrade7	

Engineer					
SSN	EngType				
33	Civil				
34	Chemical				

10/15/2023

•Option 8C Single relation with one type attribute: Create a single relation L with attributes $\{k, a_1, ..., a_n\}$ U $\{attributes of S_1\}$ U ... U $\{attributes of S_m\}$ and primary key = k.

This option is for *disjoint* subclasses, with a discriminating attribute or category, and

has the potential for generating a large number of null values.

SSN BDate
Name Address
Employee JobType
d
TypingSpeed Tgrade EngType
Secretary Technician Engineer

Em	p	O	V	e	
			4		-

	<u>SSN</u>	Name	Bdate	Address	JobType	TypingSpeed	Tgrade	EngType
١	22	Homer Smith	2/2/1970	Springfield	Tec	Null	Tgrade7	Null
	33	Lisa Jones	1/1/90	London	Eng	Null	Null	Civil
	34	Bob Lee	4/4/91	London	Eng	Null	Null	Chemical
	56	Laura Cook	2/19/64	London	Sec	60	Null	Null

• Option 8D Single relation with multiple type attributes: Create a single relation L with attributes $\{k, a_1, ..., a_n\}$ U $\{attributes of S_n\}$ U $\{t_1, t_2, ..., t_m\}$ with primary key k.

This option is for *overlapping* subclasses, and each t_i , $1 \le i \le m$, is a Boolean attribute indication whether this tuple belongs to subclass S_i .

_		TI:
	U	

<u>PartNo</u>	Descrip	Mflag	DrawingNo	BatchNo	ManufDate	Pflag	Supplier_Name	ListPrice
111	Screw	True	6758	A3	2/2/2018	False	Null	Null
222	Hammer	False	Null	Null	Null	Null	Rona	45.00
333	Drill	True	8765	A7	1/1/2018	True	Home Hardware	129.00

7

ANOTHER EXAMPLE:

- City Hall is trying to classify it's buildings for taxing purposes.
 - Every building has an address and a unique building code and the owners name.
 - A building must be either a private residence or business, but it cannot be both.
 - For a private residences, city hall wants to also keep track of the number of bedrooms and number of bathrooms.
 - For a business, they want to keep track of the number of exits, size of the property, and the number of parking spots.

10/15/2023

QUESTION: Draw an EER diagram to reflect this example:

CS319

Map your EER diagram to relational table(s):

BusinessBuilding

PrivateResidence

BuildingCode OwnerName Address NumOfBedrooms NumOfBathrooms

CS319 10/15/2023 10