Abstract

We begin higher Waldhausen K-theory. The main sources for this talk are the following.

- \bullet nLab.
- Charles Weibel's The K-book: an introduction to algebraic K-theory. Chapter IV.8.
- John Rognes's Lecture Notes on Algebraic K-Theory, Ch. 8.

For the original development, see Friedhelm Waldhausen's Algebraic K-theory of spaces (1985), 318-419.

Let $\mathscr C$ be a Waldhausen category. Our goal is to construct the K-theory $K(\mathscr C)$ of $\mathscr C$ as a based loop space ΩY endowed with a loop completion map $\iota: |w\mathscr C| \to K(\mathscr C)$ where $w\mathscr C$ denotes the subcategory of weak equivalences. This will produce a function ob $\mathscr C \to |w\mathscr C| \to \Omega Y$. Further, we'll require of $K(\mathscr C)$ certain limit and coherence properties, eventually rendering $K(\mathscr C)$ the underlying infinite loop space of a spectrum $K(\mathscr C)$, called the algebraic K-theory spectrum of $\mathscr C$.

Definition 1. Let \mathscr{C} be a category equipped with a subcategory $co(\mathscr{C})$ of morphisms called *cofibrations*. The pair $(\mathscr{C}, co\mathscr{C})$ is a *category with cofibrations* if the following conditions hold.

- 1. (W0) Every isomorphism in \mathscr{C} is a cofibration.
- 2. (W1) There is a base point * in $\mathscr C$ such that the unique morphism $* \rightarrowtail A$ is a cofibration for any $A \in \operatorname{ob} \mathscr C$.
- 3. (W2) We have a cobase change

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & & \downarrow \\
C & \longrightarrow & B \cup_A C
\end{array}$$

We see that $B \coprod C$ always exists as the pushout $B \cup_* C$ and that the cokernel of any $i: A \rightarrowtail B$ exists as $B \cup_A *$ along $A \to *$. We call $A \rightarrowtail B \twoheadrightarrow B/A$ a cofiber sequence.

Definition 2. A Waldhausen category \mathscr{C} is a category with cofibrations together with a subcategory $w\mathscr{C}$ of morphisms called weak equivalences such that every isomorphism in \mathscr{C} is a w.e. and the following "Gluing axiom" holds.

1. (W3) For any diagram

$$\begin{array}{cccc} C \longleftarrow & A \longmapsto & B \\ \sim & & \sim & & \sim \\ C' \longleftarrow & A' \longmapsto & B' \end{array},$$

the induced map $B \cup_A C \to B' \cup_{A'} C'$ is a w.e.

Definition 3. A Waldhausen category (\mathscr{C}, w) is *saturated* if whenever fg makes sense and is a w.e., then f is a w.e. iff g is.

Definition 4. We now introduce the main concept to be generalized.

Let \mathscr{C} be a category with cofibrations. Let the extension category $S_2\mathscr{C}$ have as objects the cofiber sequences in $(\mathscr{C}, co\mathscr{C})$ and as morphisms the triples (f', f, f'') such that

commutes. This is pointed at $* \rightarrow * \rightarrow *$.

Definition 5. Suppose an arbitrary triple (f', f, f'') as above has the property that whenever f' and f'' are w.e., then so is f. Then we say \mathscr{C} is extensional or closed under extensions.

Say that the morphism (f', f, f'') is a cofibration if f', f'', and $Y' \cup_{X'} X \to Y$ are cofibrations in \mathscr{C} . Say that the same triple is a weak equivalence if f', f, and f'' are w.e. in \mathscr{C} . This makes $S_2\mathscr{C}$ into a Waldhausen category.

Definition 6. Let $q \ge 0$. Let the arrow category Ar[q] on [q] have as objects ordered pairs (i,j) with $i \le j \le q$ and as morphisms commutative diagrams of the form

$$\begin{array}{ccc} i & \stackrel{\leq}{\longrightarrow} j \\ \leq \downarrow & & \downarrow \leq \cdot \\ i' & \stackrel{<}{\longrightarrow} j' \end{array}$$

We view [q] a full subcategory of $\operatorname{Ar}[q]$ via the embedding $[q] \xrightarrow{k \mapsto (0,k)} \operatorname{Ar}[q]$.

Remark~1.

- 1. Any triple $i \leq j \leq k$ determines the morphisms $(i,j) \to (i,k)$ and $(i,k) \to (j,k)$. Conversely, any morphism in the arrow category is a composition of such triples.
- 2. $Ar[q] \cong Fun([1], [q])$ by identifying each pair (i, j) with the functor satisfying $0 \mapsto i$ and $1 \mapsto j$.

Example 7. The category Ar[2] is generated by the commutative diagram

$$(0,0) \longrightarrow (0,1) \longrightarrow (0,2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(1,1) \longrightarrow (1,2) \cdot$$

$$\downarrow \qquad \qquad \downarrow$$

$$(2,2)$$

Definition 8. Let $\mathscr C$ be a category with cofibrations and $q \geq 0$. Define $S_q\mathscr C$ as the full subcategory of $\operatorname{Fun}(\operatorname{Ar}[q],\mathscr C)$ generated by $X:\operatorname{Ar}[q]\to\mathscr C$ such that

- 1. $X_{i,j} = *$ for each $j \in [q]$.
- 2. $X_{i,j} \rightarrow X_{i,k} \twoheadrightarrow X_{j,k}$ is a cofiber sequence for any i < j < k in [q]. Equivalently, if $i \le j \le k$ in [q], then the square

$$\begin{array}{ccc} X_{i,j} & \longrightarrow & X_{i,k} \\ \downarrow & & \downarrow \\ X_{j,j} = * & \longrightarrow & X_{j,k} \end{array}$$

is a pushout.

This is pointed at the constant diagram at *.

Note 9. A generic object in $S_q\mathscr{C}$ looks like

where X_q corresponds to $X_{0,q}$ and X_j/X_i to $X_{i,j}$ for any $1 \le i \le j \le q$.

Definition 10. Let $(\mathscr{C}, co\mathscr{C})$ be a category with cofibrations. Let $coS_q\mathscr{C} \subset S_q\mathscr{C}$ consist of the morphisms $f: X \rightarrowtail Y$ of Ar[q]-shaped diagrams such that for each $1 \le j \le q$ we have

Proposition 1. If $f: X \to Y$ is a cofibration of $S_q \mathscr{C}$, then

$$X_{i,j} \longmapsto X_{i,k}$$

$$f_{i,j} \downarrow \qquad \qquad \downarrow f_{i,k}$$

$$Y_{i,j} \longmapsto Y_{i,k}$$

for any $i \leq j \leq k$ in [q].

Proof. See Rognes, Lemma 8.3.12.

Lemma 2. $(S_q \mathscr{C}, coS_1 \mathscr{C})$ is a category with cofibrations.

Proof. First notice that the composite of two cofibrations $g \circ f: X \to Y \to Z$ is a cofibration because we have

$$\begin{array}{c} X_{0,j-1} \rightarrowtail X_{0,j} \\ \downarrow \\ Y_{0,j-1} \rightarrowtail X_{0,j} \cup_{X_{0},j-1} Y_{0,j-1} \rightarrowtail Y_{0,j} \\ \downarrow \\ Z_{0,j-1} \downarrow \qquad \qquad \downarrow \\ Z_{0,j-1} \rightarrowtail X_{0,j} \cup_{X_{0,j-1}} Z_{0,j-1} \rightarrowtail Y_{0,j} \cup_{Y_{0,j-1}} Z_{0,j-1} \rightarrowtail Z_{0,j} \end{array}.$$

It's clear that any isomorphism or initial morphism in $S_q\mathscr{C}$ is a cofibration.

To see that (W2) is satisfied, let $f: X \to Y$ and $g: X \to Z$ be morphisms in $S_q\mathscr{C}$. It's easy to verify that each component $f_{i,j}: X_{i,j} \to Y_{i,j}$ is a cofibration. Thus, each pushout $W_{i,j} := Y_{i,j} \cup_{X_{i,j}} Z_{i,j}$ exists. These form a functor $W: \operatorname{Ar}[q] \to \mathscr{C}$. If i < j < k, then we have $W_{i,j} \to W_{i,k} \twoheadrightarrow W_{j,k}$ because the left morphism factors as the composite of two cofibrations

$$Z_{i,j} \rightarrowtail Z_{i,k}$$

$$f_{i,j} \cup \operatorname{Id} \downarrow \qquad \qquad \downarrow f_{i,j} \cup \operatorname{Id}$$

$$Y_{i,j} \cup_{X_{i,j}} Z_{i,j} \rightarrowtail Y_{i,j} \cup_{X_{i,j}} Z_{i,k} \rightarrowtail Y_{i,k} \cup_{X_{i,k}} Z_{i,k} .$$

$$\operatorname{Id} \cup g_{i,k} \uparrow \qquad \qquad \uparrow \operatorname{Id} \cup g_{i,k}$$

$$Y_{i,j} \cup_{X_{i,j}} X_{i,k} \rightarrowtail Y_{i,k}$$

The fact that colimits commute confirms that $W_{j,k} \cong W_{i,k}/W_{i,j}$ Hence W is the pushout of f and g. To verify that this is a cofibration, we must check that the pushout map $W_{0,j-1} \cup_{Z_{0,j-1}} Z_{0,j} \to W_{0,j}$ is a cofibration. But this follows from the pushout square

$$Y_{0,j-1} \cup_{X_{0,j-1}} X_{0,j} \longrightarrow Y_{0,j}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y_{0,j-1} \cup_{X_{0,j-1}} Z_{0,j} \longrightarrow Y_{0,j} \cup_{X_{0,j}} Z_{0,j}$$

Definition 11. Let $(\mathscr{C}, w\mathscr{C})$ be a Waldhausen category. Let $wS_q\mathscr{C} \subset S_q\mathscr{C}$ consist of the morphisms $f: X \xrightarrow{\sim} Y$ of Ar[q]-shaped diagrams such that the component $f_{0,j}: X_{0,j} \to Y_{0,j}$ is a w.e. in \mathscr{C} for each $1 \leq j \leq q$.

Proposition 3. Let f be a w.e. in $S_q\mathscr{C}$. Each component $f_{i,j}: X_{i,j} \to Y_{i,j}$ is a w.e. in \mathscr{C} .

Proof. Apply the Gluing axiom to the diagram

$$\begin{array}{cccc} X_{0,j} & \longleftarrow & X_{0,i} & \longrightarrow * \\ \cong & & \cong & & = \\ Y_{0,j} & \longleftarrow & Y_{0,i} & \longrightarrow * \end{array}$$

Then $X_{i,j} \cong X_{0,j} \cup_{X_{0,i}} * \xrightarrow{\sim} Y_{0,j} \cup_{Y_{0,i}} * \cong Y_{i,j}$, as desired.

Lemma 4. $(S_q\mathscr{C}, wS_q\mathscr{C})$ is a Waldhausen category.

Definition 12. Let \mathscr{C} be a category with cofibrations. If $\alpha:[p]\to[q]$, then define $\alpha^*:S_q\mathscr{C}\to S_p\mathscr{C}$ by

$$\alpha^*(X : \operatorname{Ar}[q] \to \mathscr{C}) = X \circ \operatorname{Ar}(\alpha) : \operatorname{Ar}[p] \to \operatorname{Ar}[q] \to \mathscr{C}.$$

It's easy to check that this satisfies the two conditions of a diagram in $S_p\mathscr{C}$. Moreover, the face maps d_i are given by deleting the row $X_{i,-}$ and the column containing X_i in (*) of Note 9 and then reindexing as necessary. The degeneracy maps s_i are given by duplicating X_i and then reindexing such that $X_{i+1,i} = 0$. [[Not sure the s_i work.]]

Proposition 5. Let $(\mathscr{C}, w\mathscr{C})$ be a Waldhausen category. Each functor $\alpha^* : S_q\mathscr{C} \to S_p\mathscr{C}$ is exact, so that $(S_{\bullet}\mathscr{C}, wS_{\bullet}\mathscr{C})$ is a simplicial Waldhausen category.

The nerve $N_{\bullet}wS_{\bullet}\mathscr{C}$ is a bisimplicial set with (p,q)-bisimplices the diagrams of the form

such that $X_{i,j}^k \cong X_j^k/X_i^k$ for every $i \leq j \leq q$ and $k \in [p]$.

Lemma 6. There is a natural map $N_{\bullet}w\mathscr{C} \wedge \Delta^1_{\bullet} \to N_{\bullet}wS_{\bullet}\mathscr{C}$, which automatically induces a based map $\sigma: \Sigma |w\mathscr{C}| \to |wS_{\bullet}\mathscr{C}|$ of classifying spaces.

Proof. We can treat $N_{\bullet}wS_{\bullet}\mathscr{C}$ as the simplicial set $[q] \mapsto N_{\bullet}wS_{q}\mathscr{C}$. This defines a right skeletal structure on $N_{\bullet}wS_{\bullet}\mathscr{C}$.

If q = 0, then $wS_0\mathscr{C} = S_0\mathscr{C} = *$, so that $N_{\bullet}wS_0\mathscr{C} = *$ as well. If q = 1, then $wS_1\mathscr{C} \cong w\mathscr{C}$. Thus, the right 1-skeleton is equal to $N_{\bullet}w\mathscr{C} \wedge \Delta^1_{\bullet}$, which in turn must be equal to the image I of the canonical map

$$\coprod_{q < 1} N_{\bullet} w S_q \mathscr{C} \times \Delta_{\bullet}^q \to N_{\bullet} w S_{\bullet} \mathscr{C}.$$

Now, the degeneracy map s_0 collapses $\{*\} \times \Delta^1_{\bullet}$, and the face maps d_0 and d_1 collapse $N_{\bullet} w \mathscr{C} \times \partial \Delta^1_{\bullet}$. Therefore, I must equal

$$N_{\bullet}w\mathscr{C} \wedge \Delta^{1}_{\bullet} = \frac{N_{\bullet}w\mathscr{C} \times \Delta^{1}_{\bullet}}{\{*\} \times \Delta^{1}_{\bullet} \cup N_{\bullet}w\mathscr{C} \times \partial \Delta^{1}_{\bullet}}.$$

We have defined a natural inclusion map $\lambda: N_{\bullet}w\mathscr{C} \wedge \Delta^{1}_{\bullet} \to N_{\bullet}wS_{\bullet}\mathscr{C}$.

Since Δ^1_{\bullet} is isomorphic to the unit interval and the map λ agrees on the endpoints, we can pass to S^1 during the suspension. Hence λ immediately induces the desired map σ . [[This is a tentative explanation offered by Thomas Brazelton.]]

Remark 2. The axiom (W3) implies that $w\mathscr{C}$ is closed under coproducts, making $|wS_{\bullet}\mathscr{C}|$ into an H-space via the map

$$\coprod: |wS_{\bullet}\mathscr{C}| \times |wS_{\bullet}\mathscr{C}| \cong |wS_{\bullet}\mathscr{C} \times wS_{\bullet}\mathscr{C}| \to |wS_{\bullet}\mathscr{C}|.$$

Definition 13. Let $(\mathscr{C}, w\mathscr{C})$ be a Waldhausen category. Define the algebraic K-theory space

$$K(\mathscr{C}, w) = \Omega |N_{\bullet} w S_{\bullet} \mathscr{C}|.$$

Then we have a right adjoint $\iota: |w\mathscr{C}| \to K(\mathscr{C}, w)$ to the based map σ .

Moreover, let $F: (\mathscr{C}, w\mathscr{C}) \to (\mathscr{D}, w\mathscr{D})$ be an exact functor. Then set $K(F) = \Omega |wS_{\bullet}F| : K(\mathscr{C}, w) \to K(\mathscr{D}, w)$. We have thus defined the algebraic K-theory functor $K: \mathbf{Wald} \to \mathbf{Top}_*$.

Recall that any exact category $\mathscr A$ is a Waldhausen category with cofibrations the admissible exact sequences and w.e. the isomorphisms. Waldhausen showed that $|iS_{\bullet}\mathscr A|$ (where i denotes the iso category) and $BQ\mathscr A$ are homotopy equivalent. Hence our current definition of higher algebraic K-theory agrees with Quillen's.

Example 14. Let R be a ring. Define the algebraic K-theory space of R as

$$K(R) = K(\mathbf{P}(R), i)$$

where the w.e. i are precisely the injective R-linear maps with projective cokernel and the cofibrations are precisely the R-linear maps.

Example 15. Assume that \mathscr{C} is a small Waldhausen category where $w\mathscr{C}$ consists of the isomorphisms in \mathscr{C} . If $s_n\mathscr{C}$ denotes the set of objects of $S_n\mathscr{C}$, then we get a simplicial set $s_{\bullet}\mathscr{C}$. Waldhausen showed that the inclusion $|s_{\bullet}\mathscr{C}| \hookrightarrow |iS_{\bullet}\mathscr{C}|$ is a homotopy equivalence. This makes $\Omega|s_{\bullet}\mathscr{C}|$ into a so-called simplicial model for $K(\mathscr{C}, w)$.

Since $wS_0\mathscr{C} = *$ and every simplex of degree n > 0 is attached to *, it follows that the classifying space $|wS_{\bullet}\mathscr{C}|$ is connected. Therefore, we preserve any homotopical information when passing to the loop space.

Definition 16. Define the *i-th algebraic K-group* as $K_i(\mathscr{C}, w) = \pi_i K(\mathscr{C}, w)$ for each $i \geq 0$.

Proposition 7. $\pi_1|wS_{\bullet}\mathscr{C}| \cong K_0(\mathscr{C}, w)$.

Lemma 8. The group $K_0(\mathscr{C}, w)$ is generated by [X] for every $X \in \text{ob}\,\mathscr{C}$ such that [X'] + [X''] = [X] for every cofiber sequence $X' \rightarrowtail X \twoheadrightarrow X''$ and [X] = [Y] for every $w.e.\ X \xrightarrow{\sim} Y$.

Proof. We compute $\pi_1|N_{\bullet}wS_{\bullet}\mathscr{C}|$ based at the (0,0)-bisimplex *. Notice that $|N_{\bullet}wS_{\bullet}\mathscr{C}|$ has a CW structure [[this is reasonable visually]] with 1-cells the (0,1)-bisimplices and 2-cells the (0,2)-bisimplices $X' \to X \twoheadrightarrow X''$ and the (1,1)-bisimplices $X \xrightarrow{\sim} Y$, which are attached to the 1-cells X and Y. Any cell of dimension n > 2 is irrelevant to computing π_1 .

Corollary 9. We obtain the functors $K_i : \mathbf{Wald} \to \mathbf{Top}_* \to \mathbf{Ab}$, called the algebraic K-group functors.

Proof. By Proposition 7, we know that $K_i(\mathscr{C}, w) = \pi_{i+1}|wS_{\bullet}\mathscr{C}|$, which is abelian for $i \geq 1$. Moreover, note that if $X' \rightarrowtail X' \vee X'' \twoheadrightarrow X''$ and $X'' \rightarrowtail X' \vee X'' \twoheadrightarrow X'$ are cofiber sequences, then the previous lemma implies that $[X'] + [X''] = [X' \vee X''] = [X'' + X']$. Hence $K_0(\mathscr{C}, w)$ is also abelian.

Example 17. Let X be a CW complex and $\mathcal{R}(X)$ denote the category of CW complexes Y obtained from X by attaching at least one cell such that X is a retract of Y. Equip this with cofibrations in the form of cellular inclusions fixing X and w.e. in the form of homotopy equivalences. This makes $\mathcal{R}(X)$ into a Waldhausen category. If $\mathcal{R}_f(X)$ denotes the subcategory of those Y obtained by attaching finitely many cells, then we write $A(X) := K(\mathcal{R}_f(X))$.

Lemma 10. $A_0(X) \cong \mathbb{Z}$.

Proof. Weibel leaves this proof an an exercise.

Definition 18. If \mathscr{B} is a Waldhausen subcategory of \mathscr{C} , then it is *cofinal in* \mathscr{C} is for any $X \in \text{ob}\,\mathscr{C}$, there is some $X' \in \text{ob}\,\mathscr{C}$ such that $X \coprod X' \in \text{ob}\,\mathscr{B}$.

Theorem 11. Let (\mathcal{B}, w) be cofinal in (\mathcal{C}, w) and closed under extensions. Assume that $K_0(\mathcal{B}) = K_0(\mathcal{C})$. Then $wS_{\bullet}\mathcal{B} \to wS_{\bullet}\mathcal{C}$ is a homotopy equivalence. Therefore, $K_i(\mathcal{B}) \cong K_i(\mathcal{C})$ for every $i \geq 0$.