SMC 516 FINAL PROJECT

Presented by: Ritika Anand, Ayush Kaurav, Daniel Farr and Karteek Attaluri

HEART DISEASE DATASET

Use predictive modeling to understand which factors contribute most to instances of heart disease?

BALANCING THE DATA SET

 Converted instances of heart disease (previously on scale of 0 to 4 instances) to 0 and 1

- Balanced data set using SMOTE, since for this instance, it was the best for creating synthetic samples to make up the difference.
- 540 instances of 1 (heart disease), 135 instances for 0 (no heart disease)
 - Resampled data gave 540 instances for both

CONDITIONAL PROBABILITIES

- Looked into 3 key features out of the 9 features
 - Sex, resting blood pressure, fasting blood sugar
- Sex = male (marked by value of 1)
 - O P(heart disease = 1 | sex = 1) = 84.69%
- Sex = female (marked by value of 0)
 - O P(heart disease = 1 | sex = 0) = 43.11%
- Resting Blood Pressure
 - O P(heart disease = 1 | resting blood pressure > 130) = 43.12%
- Fasting Blood Sugar
 - O P(heart disease = 1 | fast blood sugar > 120 mg/dl) = 0.0

FEATURE IMPORTANCE: NB

- Decided to look at 2 features:
 - Blood Pressure, threshold of 130 mmHg
 - Cholesterol
- Blood Pressure:

```
P(heart disease = 1 \mid \text{trestbps} > 130) = 0.859
```

- O P(heart disease = $1 \mid \text{trestbps} \le 130$) = 0.713
- O 0.859-0.713 = 0.146 or 14.6%
- Cholesterol:

```
O P(heart disease = 1 \mid \text{chol} > 200) = 0.809
```

- O P(heart disease = 1 | chol \leq 200) = 0.744
- 0.809-0.744 = 0.065 or 6.5%
- Feature more important when comparing both?
 - Blood Pressure

FEATURE IMPORTANCE: RANDOM FOREST

• Features (top to bottom): major blood vessels colored by fluoroscopy, max heart rate, age, exercise induced angina, sex, resting blood pressure, cholesterol and fasting blood sugar

REMOVING OUTLIERS

REMOVING OUTLIERS: CONTINUED

For Naive Bayes

Model: Naive Bayes
Confusion Matrix:
Code cell output actions
[3 45]]

Accuracy: 0.90
Precision: 0.90
PRecall: 0.90
F1 Score: 0.90

For Decision Tree

For Random Forest

For KNN

ANALYSIS

FOR BEST PERFORMANCE BY THE MODELS PROVIDED IN PREVIOUS SLIDE

	precision	recall	f1-score	support
0 2	1.00 0.96	0.97 1.00	0.98 0.98	60 48
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	108 108 108

- The Random Forest model is performing very well, with a high overall accuracy of 98%.
- Both precision and recall are high for both classes, although Class 2 has a slightly lower precision, indicating more false positives.
- The F1-scores for both classes are above 0.9, suggesting a good balance between precision and recall.
- The dataset appears balanced, and the model isn't biased towards either class, as shown by the similar macro and weighted averages.

ERROR RATE IN K-VALUE

ROC CURVE

For Training Data

For Testing Data

BOX PLOTS

1.0

0.8

PIE CHART

HISTOGRAM

BAR PLOT

MATRIX PLOT

REGRESSION

Dataset Used: 'Auto MPG' from UC Irvine

This dataset contains various car features and corresponding data of 398 different cars from 1970 to 1982 that can be used to predict the city-cycle miles per gallon of a given vehicle.

Has 6 independent variables:

- Displacement
- Cylinders
- Horsepower
- Weight
- Acceleration
- Model Year
- Origin

And 1 dependent variable:

- Miles per gallon (mpg)

Goal: Use multivariate and linear regression to predict mpg

REMOVING OUTLIERS

BOX PLOT

Model Year

HORSE POWER

CYLINDER

DESCRIPTIVE STATISTICS

	displacement	cylinders	horsepower	weight	acceleration	model_year	origin		mpg
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	count	398.000000
mean	193.425879	5.454774	97.275126	2970.424623	15.453769	76.010050	1.572864	mean	23.455276
std	104.269838	1.701004	28.464797	846.841774	2.391552	3.697627	0.802055	std	7.729446
min	68.000000	3.000000	46.000000	1613.000000	9.500000	70.000000	1.000000	min	9.000000
25%	104.250000	4.000000	76.000000	2223.750000	14.000000	73.000000	1.000000	25%	17.500000
50%	148.500000	4.000000	93.500000	2803.500000	15.500000	76.000000	1.000000	50%	23.000000
75%	262.000000	8.000000	110.000000	3608.000000	17.000000	79.000000	2.000000	75%	29.000000
max	455.000000	8.000000	170.000000	5140.000000	21.500000	82.000000	3.000000	max	44.600000

INITIAL RESULTS

OLS Regression Results

Dep. Variable: R-squared: 0.831 mpg Model: OLS Adj. R-squared: 0.827 Method: Least Squares F-statistic: 273.0 Date: Thu, 03 Oct 2024 Prob (F-statistic): 4.98e-146 Time: 03:30:17 Log-Likelihood: -1024.9 No. Observations: 398 AIC: 2066.

Df Residuals: 390 BIC: 2098.

Df Model: 7

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] const -12.2775 4.142 -2.964 0.003 -20.422 -4.133 displacement 0.0004 0.007 0.060 0.952 -0.013 0.014 cylinders 0.2430 0.329 0.738 0.461 -0.405 0.891 horsepower -0.0531 0.010 -5.407 0.000 -0.072 -0.034 -0.0054 0.001 -9.160 0.000 -0.007 -0.004 weight acceleration -0.1835 0.088 -2.079 0.038 -0.357 -0.010 model year 0.7462 0.047 15.750 0.000 0.653 origin 1.0481 0.258 4.057 0.000 0.540 1.556 Omnibus: 20.015 Durbin-Watson: 1.360

 Prob(Omnibus): 0.000
 Jarque-Bera (JB): 33.886

 Skew:
 0.334
 Prob(JB): 4.38e-08

 Kurtosis:
 4.264
 Cond. No.
 7.98e+04

MULTIVARIATE REGRESSION RESULTS **OLS Regression Results**

Dep. Variable: R-squared: 0.830 mpg Model: OLS Adj. R-squared: 0.828 Method: Least Squares F-statistic: 382.7

Thu, 03 Oct 2024 Prob (F-statistic): 2.37e-148 Date:

Time: 03:30:17 Log-Likelihood: -1025.6

No. Observations: 398 AIC: 2063. 2087. Df Residuals: 392 BIC:

Df Model:

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975]

const -11 2319 4 004 -2 805 0 005 -19 104 -3 359 horsepower -0.0510 0.009 -5.581 0.000 -0.069 -0.033

weight -0.0050 0.000 -15.721 0.000 -0.006 -0.004 acceleration -0.2035 0.080 -2.537 0.012 -0.361 -0.046 model year 0.7384 0.046 15.997 0.000 0.648 0.829

origin 1.0063 0.247 4.075 0.000 0.521 1.492

Omnibus: 22.023 Durbin-Watson: 1.352 Prob(Omnibus): 0.000 Jarque-Bera (JB): 37.965

Skew: 0.361 Prob(JB): 5.70e-09 Kurtosis: 4.330 Cond. No. 7.70e+04

MULTIVARIATE REGRESSION EQUATION

$$y = -0.051(x_1) - 0.005(x_2) - 0.204(x_3) + 0.738(x_4) + 1.006(x_5) - 11.232$$

REGRESSION PLOTS

R-squared = 0.694

LINEAR REGRESSION RESULTS

0.694

OLS Regression Results

Dep. Variable: mpg R-squared:

Model: OLS Adi. R-square

Model: OLS Adj. R-squared: 0.694
Method: Least Squares F-statistic: 899.3

Date: Thu, 03 Oct 2024 Prob (F-statistic): 5.94e-104

Time: 04:31:33 Log-Likelihood: -1142.3

No. Observations: 398 AIC: 2289.

Df Residuals: 396 BIC: 2297

Df Model: 1

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 46.0462 0.783 58.788 0.000 44.506 47.586 weight -0.0076 0.000 -29.989 0.000 -0.008 -0.007

Omnibus: 33.469 Durbin-Watson: 0.797
Prob(Omnibus): 0.000 Jarque-Bera (JB): 43.268

 Skew:
 0.650
 Prob(JB):
 4.02e-10

 Kurtosis:
 3.959
 Cond. No.
 1.13e+04

	Metrics	Value
0	Root Mean Square Error (RMSE)	200.4643
1	Mean Squared Error (MSE)	18.2187
2	Mean Absolute Error (MAE)	8.1914
3	Mean Absolute Percentage Error (MAPE)	0.3948

REGRESSION PLOTS

R-squared = 0.499

REGRESSION PLOTS

R-squared= 0.137

WE CAN SEE THESE INSIGHTS IN ACTI

Average MPG by Model Year

Average Horsepower by Model Year

Average Weight by Model Year

Average Acceleration by Model Year

THANK YOU!