```
In [1]:
             #Importing necessary liberies needed to analyze the data
           2
             import pandas as pd
             import numpy as np
           3
             import matplotlib.pyplot as plt
             import seaborn as sns
In [2]:
             #At this point we are loading the already downloaded dataset to a dataframe
             data = pd.read csv(r"C:\Users\hp pc\Desktop\ik\new job\mrs temitope\breast cance
In [3]:
             data.shape
Out[3]:
         (699, 11)
In [4]:
             data.head()
Out[4]:
             Sample
                              Uniformity
                                        Uniformity
                                                               Single
                       Clump
                                                   Marginal
                                                                       Bare
                                                                                Bland
                                                                                       Normal
               code
                                  of Cell
                                            of Cell
                                                            Epithelial
                                                                                              Mitos€
                                                                     Nuclei Chromatin
                    Thickness
                                                   Adhesion
                                                                                      Nucleoli
                                                             Cell Size
             number
                                   Size
                                            Shape
            1000025
                                                                   2
                            5
                                      1
                                                1
                                                         1
                                                                         1
                                                                                    3
                                                                                            1
           1002945
                            5
                                      4
                                                4
                                                         5
                                                                   7
                                                                        10
                                                                                            2
            1015425
                            3
                                      1
                                                                   2
                                                                         2
                                                                                    3
            1016277
                            6
                                      8
                                                8
                                                          1
                                                                   3
                                                                         4
                                                                                    3
                                                                                            7
            1017023
                            4
                                      1
                                                1
                                                         3
                                                                   2
                                                                         1
                                                                                    3
                                                                                            1
In [5]:
             data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 699 entries, 0 to 698
         Data columns (total 11 columns):
              Column
                                              Non-Null Count
                                                               Dtype
              _____
         ---
                                              _____
                                                               _ _ _ _ _
          0
              Sample code number
                                              699 non-null
                                                               int64
          1
              Clump Thickness
                                              699 non-null
                                                               int64
          2
              Uniformity of Cell Size
                                              699 non-null
                                                               int64
          3
              Uniformity of Cell Shape
                                              699 non-null
                                                               int64
          4
              Marginal Adhesion
                                              699 non-null
                                                               int64
          5
              Single Epithelial Cell Size
                                                               int64
                                             699 non-null
          6
              Bare Nuclei
                                              699 non-null
                                                               object
          7
              Bland Chromatin
                                              699 non-null
                                                               int64
          8
              Normal Nucleoli
                                              699 non-null
                                                               int64
          9
              Mitoses
                                              699 non-null
                                                               int64
               Class
                                              699 non-null
                                                               int64
         dtypes: int64(10), object(1)
         memory usage: 60.2+ KB
             # change the dataset of the column "Bare Nuclei" to int64
In [6]:
             data['Bare Nuclei'] = pd.to numeric(data['Bare Nuclei'], errors='coerce')
```

```
1 data.isnull().sum()
In [7]:
Out[7]: Sample code number
                                         0
        Clump Thickness
                                         0
        Uniformity of Cell Size
                                         0
        Uniformity of Cell Shape
                                         0
        Marginal Adhesion
                                         0
        Single Epithelial Cell Size
                                         0
        Bare Nuclei
                                         16
        Bland Chromatin
                                         0
        Normal Nucleoli
                                         0
        Mitoses
                                         0
                                         0
         Class
        dtype: int64
             mean = data['Bare Nuclei'].mean()
In [8]:
            data['Bare Nuclei'].fillna(mean, inplace=True)
In [9]:
             data.isnull().sum()
Out[9]: Sample code number
                                        0
        Clump Thickness
                                        0
        Uniformity of Cell Size
                                        0
        Uniformity of Cell Shape
                                        0
        Marginal Adhesion
                                        0
        Single Epithelial Cell Size
                                        0
        Bare Nuclei
                                        0
        Bland Chromatin
                                        0
        Normal Nucleoli
                                        0
        Mitoses
                                        0
         Class
        dtype: int64
```

In [10]:

1 data.describe()

Out[10]:

		Sample code number	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Blar Chromat
СО	unt	6.990000e+02	699.000000	699.000000	699.000000	699.000000	699.000000	699.000000	699.00000
m	ean	1.071704e+06	4.417740	3.134478	3.207439	2.806867	3.216023	3.544656	3.43776
	std	6.170957e+05	2.815741	3.051459	2.971913	2.855379	2.214300	3.601852	2.43836
ı	min	6.163400e+04	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000
2	25%	8.706885e+05	2.000000	1.000000	1.000000	1.000000	2.000000	1.000000	2.00000
5	50%	1.171710e+06	4.000000	1.000000	1.000000	1.000000	2.000000	1.000000	3.00000
7	′5%	1.238298e+06	6.000000	5.000000	5.000000	4.000000	4.000000	5.000000	5.00000
r	nax	1.345435e+07	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.00000
4 4									

In [11]: 1 data.corr()

Out[11]:

	Sample code number	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	I N
Sample code number	1.000000	-0.055308	-0.041603	-0.041576	-0.064878	-0.045528	-0.098668	-0.060051	-0.
Clump Thickness	-0.055308	1.000000	0.644913	0.654589	0.486356	0.521816	0.587300	0.558428	0.
Uniformity of Cell Size	-0.041603	0.644913	1.000000	0.906882	0.705582	0.751799	0.686801	0.755721	0.
Uniformity of Cell Shape	-0.041576	0.654589	0.906882	1.000000	0.683079	0.719668	0.709606	0.735948	0.
Marginal Adhesion	-0.064878	0.486356	0.705582	0.683079	1.000000	0.599599	0.665049	0.666715	0.0
Single Epithelial Cell Size	-0.045528	0.521816	0.751799	0.719668	0.599599	1.000000	0.581261	0.616102	0.0
Bare Nuclei	-0.098668	0.587300	0.686801	0.709606	0.665049	0.581261	1.000000	0.675896	0.
Bland Chromatin	-0.060051	0.558428	0.755721	0.735948	0.666715	0.616102	0.675896	1.000000	0.0
Normal Nucleoli	-0.052072	0.535835	0.722865	0.719446	0.603352	0.628881	0.577362	0.665878	1.1
Mitoses	-0.034901	0.350034	0.458693	0.438911	0.417633	0.479101	0.338740	0.344169	0.4
Class	-0.080226	0.716001	0.817904	0.818934	0.696800	0.682785	0.816050	0.756616	0.

In [12]:

- plt.figure(figsize=(30,14))
- 2 sns.heatmap(data.corr(),annot=True,cmap='Reds')

Out[12]: <AxesSubplot:>


```
In [13]: 1 sns.countplot(data=data, x=' Class')
```

Out[13]: <AxesSubplot:xlabel=' Class', ylabel='count'>


```
In [14]: 1 data.groupby(' Class').count()['Sample code number']
```

Out[14]: Class 2 458 4 241

Name: Sample code number, dtype: int64


```
In [17]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Clump Thickness'], data['Uniformity of Cell Size'], c=data['
3 plt.xlabel('Clump Thickness')
4 plt.ylabel('Uniformity of Cell Size')
5 plt.show()
```



```
In [18]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Uniformity of Cell Size'], data['Uniformity of Cell Shape'],
3 plt.xlabel('Uniformity of Cell Size')
4 plt.ylabel('Uniformity of Cell Shape')
5 plt.show()
```



```
In [19]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Uniformity of Cell Shape'], data['Marginal Adhesion'], c=data
3 plt.xlabel('Uniformity of Cell Shape')
4 plt.ylabel('Marginal Adhesion')
5 plt.show()
```



```
In [21]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Single Epithelial Cell Size'], data['Bare Nuclei'], c=data['
3 plt.xlabel('Single Epithelial Cell Size')
4 plt.ylabel('Bare Nuclei')
5 plt.show()
```



```
In [22]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Bare Nuclei'], data['Bland Chromatin'], c=data[' Class'].map(data['Bare Nuclei'))
4 plt.ylabel('Bland Chromatin')
5 plt.show()
```



```
In [23]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Bland Chromatin'], data['Normal Nucleoli'], c=data[' Class'].
3 plt.xlabel('Bland Chromatin')
4 plt.ylabel('Normal Nucleoli')
5 plt.show()
```



```
In [24]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Normal Nucleoli'], data['Mitoses '], c=data[' Class'].map(color)
3 plt.xlabel('Normal Nucleoli')
4 plt.ylabel('Mitoses')
5 plt.show()
```



```
In [25]: 1 data.columns
```

```
In [26]: 1 colors = {2:'blue', 4:'red'}
2 plt.scatter(data['Clump Thickness'], data['Mitoses '], c=data[' Class'].map(colors)
3 plt.xlabel('Clump Thickness')
4 plt.ylabel('Mitoses')
5 plt.show()
```



```
In [27]: 1 data_copy= data.copy()
2 data_copy.drop('Sample code number',axis=1, inplace=True)
3 data_copy.columns
4
```

```
In [28]:
         import seaborn as sns
         my palette = {2: 'blue', 4: 'red'}
       2
       3
       4
         # Create the pairplot
       5
         sns.pairplot(data_copy, hue=' Class', palette=my_palette)
       6
       7
         # Show the plot
       8
         plt.show()
       9
                                                        6 -
                          •••
                          •••••
                                            :::::::::
                          1
                                            0 5 10
Single Epithelial Cell Size
                                            0 5 10
```

```
In [29]:
             from scipy.spatial.distance import pdist, squareform
           2
             # Split the data into benign and malignant classes
           3
             benign_data = data_copy[data_copy[' Class'] == 2]
           4
             malignant_data = data_copy[data_copy[' Class'] == 4]
           5
           6
           7
             # Create a heatmap for benign data
           8
             plt.figure(figsize=(12,8))
           9
             sns.heatmap(benign_data.corr(),annot=True,cmap='coolwarm')
             plt.title('Correlation for Benign Class')
             plt.show()
          11
          12
```


pre-processing steps

```
In [33]:
           1 # Split the data into features (X) and target (y)
           2 X = data copy.drop(' Class', axis=1)
           3 y = data_copy[' Class']
           5 # Split the data into training and test sets
           6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random
In [34]:
           1 # Initialize SVM and Random Forest algorithms
             svm = SVC(kernel='linear')
           3 rf = RandomForestClassifier(n_estimators=50, random_state=0)
             # Perform RFE feature selection with SVM
           6 | svm_rfe = RFE(estimator=svm, n_features_to_select=9, step=1)
           7
             svm_rfe.fit(X_train, y_train)
           9 # Perform RFE feature selection with Random Forest
          10 rf_rfe = RFE(estimator=rf, n_features_to_select=9, step=1)
          11 rf_rfe.fit(X_train, y_train)
          12
          13 # Print the selected feature rankings
          14 print('Feature Rankings:', svm_rfe.ranking_)
          15 print('Feature Rankings:', rf_rfe.ranking_)
          16 | print(" ")
          17
          18 # Print the selected features
          19 | selected_features = X_train.columns[svm_rfe.support_]
          20 print('Selected Features for SVM:', selected features)
          21 | print(" ")
          22 | selected_features = X_train.columns[rf_rfe.support_]
          23 print('Selected Features for Random Forest:', selected_features)
         Feature Rankings: [1 1 1 1 1 1 1 1]
         Feature Rankings: [1 1 1 1 1 1 1 1 1]
         Selected Features for SVM: Index(['Clump Thickness', 'Uniformity of Cell Size',
                'Uniformity of Cell Shape', 'Marginal Adhesion',
                'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                 'Normal Nucleoli', 'Mitoses '],
               dtype='object')
         Selected Features for Random Forest: Index(['Clump Thickness', 'Uniformity of Cell
         Size',
                'Uniformity of Cell Shape', 'Marginal Adhesion',
                'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                'Normal Nucleoli', 'Mitoses '],
               dtype='object')
           1 # Transform training and test sets to include only selected features
In [35]:
           2 X_train_svm = svm_rfe.transform(X_train)
           3 X_test_svm = svm_rfe.transform(X_test)
           5 X_train_rf = rf_rfe.transform(X_train)
           6 X_test_rf = rf_rfe.transform(X_test)
```

Out[36]: RandomForestClassifier(n estimators=50, random state=0)

Model Evaluation

print(sns.heatmap(confusion matrix(svm pred, y test),cmap='Accent', annot=True)

Support Vector Machine(SVM)
accuracy is 0.9523809523809523
precision is 0.9305555555556
recall is 0.9305555555556
f1 is 0.9305555555556
AxesSubplot(0.125,0.125;0.62x0.755)

Random Forest

In []: 1