Примеры задач

1. Доказать, что любое решение системы

$$\begin{cases} \dot{x}_1 = x_2 - 2x_1, \\ \dot{x}_2 = x_1 - 2x_2 \end{cases}$$

ограничено при $t \geq 0$ (указать явно оценку сверху) и стремится к нулю при $t \to +\infty$.

2. Построить общее решение системы $\dot{\vec{x}} = A\vec{x}$, где

$$A = \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}.$$

Выделить все решения, для которых справедливо условие: $\lim_{t\to +\infty} \vec{x} = \vec{0}$.

3. Найти общее решение линейной системы

$$\begin{cases} \dot{x} = y + t^{-2}, \\ \dot{y} = x + t^{-1}. \end{cases}$$

4. Матрица A системы линейных однородных уравнений третьего порядка с постоянными коэффициентами

$$\dot{x} = Ax$$

имеет собственные векторы (2;5;7) и (3;-2;4) соответствующие собственному значению $\lambda=2$ и собственный вектор (1;2;-4) соответствующий собственному значению $\lambda=5$. Написать общее решение этой системы.

5. Написать частное решение с неопределенными коэффициентами системы

$$\begin{cases} \dot{x} = 2x + 3y + 5t \cos t, \\ \dot{y} = 3x + 2y \end{cases}$$

(числовых значений коэффициентов не находить).

6. Найти положения равновесия автономной системы

$$\begin{cases} (x+3)\dot{x} + (\dot{x}+y)\dot{y} + 3x + y - 5 = 0, \\ y\dot{x} + \dot{y} + x^2 + 3y - 7 = 0. \end{cases}$$

7. Известно, что точка (2; 1) является положением равновесия системы

$$\begin{cases} \dot{x} = x^2 + \alpha y - 5, \\ \dot{y} = 3x + 2y + \beta. \end{cases}$$

Найти значения параметров α и β .

8. Система уравнений

$$\begin{cases} \dot{x} = x^2 + \alpha y - 7, \\ \dot{y} = 3x - 2y + \beta \end{cases}$$

имеет решение $x \equiv 2, y \equiv 1$, которое не зависит от t. Найти значения параметров α и β . Как называются такие решения автономных систем?

- 9. Вычислить производную в силу системы $\dot{x} = x^2 y$, $\dot{y} = xy^3$ от функции xy.
- 10. Проверив, что $v(x,y) = x^2 + y^2$ является функцией Ляпунова для системы

$$\begin{cases} \dot{x} = -2y - x^3, \\ \dot{y} = 2x - y^3, \end{cases}$$

доказать, что нулевое положение равновесия этой системы устойчиво по Ляпунову.

- 11. Система $\dot{x} = Ax$, где $x \in \mathbb{R}^3$, A постоянная матрица, имеет частное решение, у которого известна только первая координата: $x_1 = e^{-t} + \cos t$. Устойчиво ли нулевое решение?
- 12. Исследовать на устойчивость нулевое положение равновесия линейной системы

$$\begin{cases} \dot{x} = 3x + 4y, \\ \dot{y} = 2x + y. \end{cases}$$

13. Исследовать на устойчивость нулевое положение равновесия системы

$$\begin{cases} \dot{x} = x^2 + 3x + 2y, \\ \dot{y} = 2xy + 4x + y. \end{cases}$$

14. Найти все значения параметра k, при которых нулевое положение равновесия системы

$$\begin{cases} \dot{x} = -6x + 2ky, \\ \dot{y} = 3kx - 9y \end{cases}$$

будет устойчивым по Ляпунову.