Decision Trees Arbres de décision

Diane Lingrand

2023 - 2024

Last week

- Iris dataset :
 - you built a perfect classifier for the 2 first classes
 - you built a good classifier for the 3 classes
 - both were Decision Trees!
 - binary trees
 - thresholding on one component

- digits dataset :
 - to much dimensions (64) to examine 2 by 2. Not enough time during the lab and not obvious to find such simple solution.
- Need to find something more automatic and perhaps more complex: this is what Decision Trees are about.

Outline

1 Impurity

2 Building the tree

3 Practice

Let's start with decision trees!

- tree of very simple decisions on the features :
 - threshold values for some of the features
- can be used both for classification and regression :

Classification (1)

Classification (2)

- Questions :
 - when should the tree stop growing?

- Questions :
 - when should the tree stop growing?
 - every samples are well classified?
 - regression value close the true value at the precision of ϵ ?
 - only one sample left in the node?

- Questions :
 - when should the tree stop growing?
 - every samples are well classified?
 - regression value close the true value at the precision of ϵ ?
 - only one sample left in the node?
 - don't build very deep trees in order to avoid overfitting!!

- Questions :
 - when should the tree stop growing?
 - every samples are well classified?
 - regression value close the true value at the precision of ϵ ?
 - only one sample left in the node?
 - don't build very deep trees in order to avoid overfitting!!
 - how to select a feature and a threshold?

- Questions :
 - when should the tree stop growing?
 - every samples are well classified?
 - regression value close the true value at the precision of ϵ ?
 - only one sample left in the node?
 - don't build very deep trees in order to avoid overfitting!!
 - how to select a feature and a threshold?
 - choose the decision that will split the data in the equally sized subsets
 - choose the decision that will lower the global error
 - need to choose a metric
 - how many tests?

Outline

1 Impurity

2 Building the tree

3 Practice

How deep?

- fixed depth
- measure the quality of a node :
 - classification tree : continue to split if the **impurity** is too high
 - measure of impurity : {1, 1, 0, 1, 1} is purer than {0, 1, 0, 1, 1}
 - different methods :
 - percentage of majority class : $\{1, 1, 0, 1, 1\}$ is pure class 1 at 80% while $\{0, 1, 0, 1, 1\}$ is pure class 1 at 60%
 - Entropy
 - Gini index
 - regression tree : continue to split if the cost is too high
 - mse is a metric of cost

$$extit{GINI(n)} = \sum_{ extit{class } c} p(c|n)(1-p(c|n)) = 1 - \sum_{ extit{class } c} p^2(c|n)$$

where p(c|n) is the probability of class c at node n.

- Example : a node contains samples from 3 classes $\{0,0,1,1,1,2,2,2,2,2\}$:
 - class 0 : p(0) = 2/10 = 0.2
 - class 1 : p(1) = 3/10 = 0.3
 - class 2 : p(2) = 5/10 = 0.5
 - \bullet GINI = 1 0.04 0.09 0.25 = 0.62
- max value : 1-1/nbCl
- min value: 0

Entropy or Log Loss as measure of impurity

$$E(n) = -\sum_{class\ c} p(c|n) \log(p(c|n))$$

- Example : a node contains samples from 3 classes $\{0,0,1,1,1,2,2,2,2,2\}$:
 - class 0 : p(0) = 2/10 = 0.2
 - class 1 : p(1) = 3/10 = 0.3
 - class 2 : p(2) = 5/10 = 0.5
 - Log Loss = 1.03
- max value : 3 log(nbCl)/nbCl
- min value : 0

Outline

1 Impurity

2 Building the tree

3 Practice

building a tree

- build all the possible trees and select the best one
 - best solution
 - not possible in practice
- greedy algorithm (algorithme glouton)
 - best decisions are taken locally, at each split (or node)
 - compare the split candidate by a metric :

$$\frac{n_{left}}{n_{left} + n_{right}} H(nodeLeft) + \frac{n_{right}}{n_{left} + n_{right}} H(nodeRight)$$

where H is one of the previous metrics.

not necessary the best solution

а	b	С	class
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

pruning

- during the learning process
 - in order to match the constraints (number of samples...)
- after the learning
 - in order to reduce overfitting

Conclusion

advantages

- easy to interpret the decision and to visualize
- no need for preprocessing (normalisation)
 - however, it could be a good idea to reduce the dimensions of the data
- easy to work with numerical and categorical data
- perfom well with large dataset
- is a way to select most important features
- very fast inference

drawbacks

- unstable: a small number of data can change the tree and thus the prediction
- easily biaised with unbalanced dataset
- no guaranty to end with the optimal tree
- not the more precise ml algorithm (only thresholding components)
- overfitting

Outline

1 Impurity

2 Building the tree

3 Practice

scikit-learn implementation

- Documentation available: https://scikit-learn.org/stable/modules/tree.html
 - implements CART algorithm
- Code sample :

```
from sklearn import tree
myTree = tree.DecisionTreeClassifier()
myTree.fit(X_train, y_train)
ypred = mTree.predict(X_test)
# and then compute the metrics ...
```

- Useful parameters :
 - max_depth
 - min_samples_leaf or min_samples_split
 - other parameters description at https://scikit-learn.org/stable/modules/generated/ sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

visualisation of a tree

- using plot_tree (graphical output):
 https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html#sklearn.tree.plot_tree
- using export_graphviz (more graphical options): https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html#sklearn.tree.export_graphviz
- using export_text (textual output) : https: //scikit-learn.org/stable/modules/generated/sklearn.tree.export_text.html#sklearn.tree.export_text

--- petal width (cm) <= 0.80 |--- class: 0 --- petal width (cm) > 0.80 |--- petal width (cm) <= 1.65 |--- petal length (cm) <= 5.00 |--- class: 1 |--- petal length (cm) > 5.00 |--- class: 2 |--- petal length (cm) <= 4.85 |--- class: 2 |--- class: 2 |--- class: 2

plot_tree

export_graphviz

export_text

Today's lab

- Iris dataset : which tree is computed? Can you perform better than last week?
- digits dataset : same questions
- Play with the hyperparameters of the decision tree algorithm.
 - for each value of hyperparameters :
 - learn the tree with the train set
 - compute metrics with the validation set
 - choose the hyperparameters according to the best metrics on the validation set
 - compute and publish metrics with the test set
- You can continue on the same notebook or write a new one.