< 2022/04/18 >

Robust fine-tuning of zero-shot models

Mitchell, Wortsman, et al. CVPR '22

Hoyoon Byun

Contents

- Overview
- Problem
- Experimental setup
- Methods (Weight-space ensembles for fine-tuning)
- Results
- Discussion & Conclusion

 $(+\alpha)$ Individual opinion

Overview

- A foundation goal of machine learning is to develop models that work reliably across a broad range of data distributions
- Recently, large pre-trained models such as CLIP, ALIGN and BASIC have demonstrated novel to these challenging distribution shifts.
- However, these robustness improvements are largest in the zero-shot setting.
- When a pre-trained zero-shot model is fine-tuned on target distribution, which often yields large performance gains on the target distribution.
- This paper propose a simple and effective methods for improving robustness while fine-tuning
 - Ensembling between the weights of the zero-shot and fine-tuned models

Problem

- The main question what this paper try to answer is
 - Can zero-shot models be fine-tuned without reducing accuracy under distribution shift?

- Distribution shifts
 - Taori et al. categorized distribution shifts into two broad categories
 - Synthetic : artificial change (contrast, brightness)
 - Natural: Naturally occurring variations in lighting, geographic location, crowdsourcing process, image styles etc.
- Effective robustness and scatter plots
 - The effective robustness framework introduced by Taori et al.
 - Effective robustness: Quantifies robustness as accuracy beyond a baseline trained on reference distribution.
 - Scatter plots display accuracy on the reference distribution on the x-axis and accuracy under distribution shift on the y-axis
 - Empirically, when applying logit axis scaling, models trained on the reference distribution approximately lie on linear trend.
- Zero-shot models and CLIP
 - Zero-shot models exhibit effective robustness and lie on a qualitatively different linear trend

- Distribution shifts
 - Taori et al. categorized distribution shifts into two broad categories
 - Synthetic : artificial change (contrast, brightness)
 - Natural: Naturally occurring variations in lighting, geographic location, crowdsourcing process, image styles etc.

- Effective robustness and scatter plots
 - The effective robustness framework introduced by Taori et al.
 - Effective robustness

$$\rho(f) = Acc_{shift}(f) - \beta(Acc_{ref}(f)).$$

*When we say that a model is robust to distribution shift, we mean that effective robustness is positive.

Scatter plots

Source: Figure 1 p2

Zero-shot models and CLIP

- CLIP-like models perform zero-shot k-way classification given an image x and class names $C = \{c_1, ..., c_k\}$ by matching x with potential captions.
- Using caption s_i = "a photo of a $\{c_i\}$ " for each class I, the zero shot model predicts the class via $argmax_j < g(x), h(s_j) > 1$

$$f(x) = g(x)^T \mathbf{W}_{zero-shot}$$
$$\mathbf{W}_{zero-shot} \in \mathbb{R}^{d \times k}$$

Source: Learning Transferable Visual Models From Natural Language Supervision

Methods (Weight-space ensembles for fine-tuning)

- WiSE-FT consists of two simple steps
 - First, fine-tune the zero-shot model on application-specific data.
 - Second, combine the original zero-shot and fine-tuned models by "linearly interpolating between their weights"

Source:

Methods (Weight-space ensembles for fine-tuning)

- Step 1 : Standard fine-tuning
 - $f(x, \theta) = g(x, V_{enc})W_{classifier}$ where $W_{classifier} \in \mathbb{R}^{d \times k}$
 - ullet The parameters of f : $heta = [\mathbf{V}_{enc}, \mathbf{W}_{classifier}]$

$$\mathrm{argmin}_{\theta} \{ \sum_{(x_i, y_i) \in S_{ref}^{tr}} l(f(x_i, \theta), y_i) + \lambda R(\theta) \} \text{ , } l \text{ : cross-entropy loss}$$

- Two most common variants of fine-tuning
 - end-to-end
 - ightharpoonup fine-tuning only a linear classifier. => V_{enc} is fixed
- Step 2: Weight-space ensembling

$$wse(x, \alpha) = f(x, (1 - \alpha) \cdot \theta_0 + \alpha \cdot \theta_1)$$

 α : mixing coefficient $\in [0,1]$

 $heta_0$: parameters of zero-shot model

 θ_1 : parameters of fine-tuned model

Source:

Methods (Weight-space ensembles for fine-tuning)

Weight-space ensembling

$$wse(x, \alpha) = f(x, (1 - \alpha) \cdot \theta_0 + \alpha \cdot \theta_1)$$

 α : mixing coefficient $\in [0,1]$

 θ_0 : parameters of zero-shot model

 θ_1 : parameters of fine-tuned model

 When fine-tuning only the linear classifier, weight-space ensembling is equivalent to the traditional output-space ensemble

$$(1 - \alpha) \cdot f(x, \theta_0) + \alpha \cdot f(x, \theta_1)$$
$$(1 - \alpha) \cdot g(x, \mathbf{V}_{enc})^T \mathbf{W}_{zero-shot} + \alpha \cdot g(x, \mathbf{V}_{enc})^T \mathbf{W}_{classifier}$$

Main results: ImageNet and associated distribution shifts

Source: Figure 1 p2

Main results: ImageNet and associated distribution shifts

Source:

Main results: ImageNet and associated distribution shifts

- Appendix B
 - You should find optimal α manually. Recommend using 0.5 when no domain knowledge is available.
 - There is no additional cost(train) when you find α .

			Avg	Avg				
	IN (ref.)	IN-V2	IN-R	IN-Sketch	${\bf ObjectNet}$	IN-A	shifts	ref., shifts
ViT-B/16, end-to-end	0.9	0.4	1.4	0.2	0.4	2.4	0.5	0.0
ViT-B/16, linear classifier	1.8	0.6	1.2	0.1	0.2	0.6	0.1	0.2
ViT-L/14@336, end-to-end	0.3	0.0	0.9	0.3	1.0	1.1	0.5	0.1
ViT-L/14@336, linear classifier	1.6	0.6	0.2	0.0	0.0	0.0	0.0	0.4

Table 3: Difference in performance (percentage points) between WiSE-FT using the optimal mixing coefficient and a fixed value of α =0.5 for CLIP ViT-B/16 and ViT-L/140336. For each cell in the table, the optimal mixing coefficient α is chosen individually such that the corresponding metric is maximized. Results for all mixing coefficients are available in Tables 4 and 5. Avg shifts displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the average of ImageNet (reference) and Avg shifts.

Robustness on additional distribution shifts

Hyperparameter variation and alternatives

- While there is a huge improvement of accuracy on distribution shift, it is not seen that much on reference distribution.
- Tuning the hyper-parameters on ImageNet dataset could deteriorate robustness.

Source: Figure 3 p8

Hyperparameter variation and alternatives

C.4 Changes in data augmentation

Accuracy gains on reference distributions

 WiSE-FT has higher accuracy than fine-tuned model at the target distributions

	ImageNet	CIFAR10	CIFAR100	Cars	DTD	SUN397	Food101
Standard fine-tuning WiSE-FT (α =0.5) WiSE-FT (opt. α)	86.2 86.8 (+0.6) 87.1 (+0.9)		92.2 93.3 (+1.1) 93.4 (+1.2)				

Table 2: Beyond robustness, WiSE-FT can improve accuracy after fine-tuning on several datasets.

Figure 15: The accuracy of WiSE-FT (end-to-end) with mixing coefficient α on ImageNet and a number of datasets considered by Kornblith et al. [50]: CIFAR-10, CIFAR-100 [52], Describable Textures [14], Food-101 [10], SUN397 [101], and Stanford Cars [51].

Beyond CLIP

Figure 4: WiSE-FT applied to BASIC-L [75], a ViT-H/14 [21] model pre-trained on JFT-300M [91] and ALIGN [44].

- Zero-shot and fine-tuned models are complementary
 - Zero-shot and fine-tuned models are diverse
 - Models are more confident where they excel
- An error landscape perspective
 - Observation 1
 - Observation 2

Zero-shot and fine-tuned models are complementary

- Zero-shot and fine-tuned models are diverse
 - Two measures of diversity
 - Prediction diversity

$$PD(f, g, \mathcal{S}) = \frac{1}{N} \sum_{1 \le i \le N} \mathbb{1} \left[d_f \lor d_g \right],$$
$$d_f = \left(\hat{y}_f^{(i)} = y^{(i)} \land \hat{y}_g^{(i)} \ne y^{(i)} \right).$$

 $d_g = (\hat{y}_f^{(i)} \neq y^{(i)} \land \hat{y}_g^{(i)} = y^{(i)}).$

Centered Kernel Alignment Complement (CKA)

$$\mathrm{CKA}(f, g, \mathcal{S}) = \frac{||S_g^\top S_f||_F^2}{||S_f^\top S_f||_F ||S_g^\top S_g||_F},$$

Zero-shot and fine-tuned models are complementary

Zero-shot and fine-tuned models are diverse

Source: Figure 5 p10

Zero-shot and fine-tuned models are complementary

- Zero-shot and fine-tuned models are diverse
- Models are more confident where they excel
 - If zero-shot and fine-tuned model's prediction disagree and the zero-shot prediction matches with weight-space ensemble, we say the zero-shot model overrides.
 - When we say the zero-shot is overridden which means the opposite case to the above situation.
 - Measuring model confidence: the margin between the largest and second largest output of each classifier

Source: Figure 5 p10

An error landscape perspective

- Observation 1
 - Where the accuracy of both endpoints are similar, this equation is equivalent to the definition of Linear Mode Connectivity of Frankle et al.

$$\mathsf{Acc}_{\mathcal{D},f}((1-\alpha)\cdot\theta_0+\alpha\cdot\theta_1) \geq (1-\alpha)\cdot\mathsf{Acc}_{\mathcal{D},f}(\theta_0)+\alpha\cdot\mathsf{Acc}_{\mathcal{D},f}(\theta_1)$$

- Linear mode connectivity has been observed, when
 - Part of the training trajectory is shared
 - Two models are fine-tuned with a shared initialization [Neyshabur et el.]
 - => It may give us a clue about the reason why weight-space ensemble attain high accuracy.
- Observation 2
 - $Acc_{\mathcal{D},f} ((1-\alpha) \cdot \theta_0 + \alpha \cdot \theta_1) \geq \max \{Acc_{\mathcal{D},f} (\theta_0), Acc_{\mathcal{D},f} (\theta_1)\}.$

Source: https://arxiv.org/pdf/1912.05671.pdf Figure 6 p11

An error landscape perspective

- Observation 1
 - Where the accuracy of both endpoints are similar, this equation is equivalent to the definition of Linear Mode Connectivity of Frankle et al.

$$\mathsf{Acc}_{\mathcal{D},f}((1-\alpha)\cdot\theta_0+\alpha\cdot\theta_1) \geq (1-\alpha)\cdot\mathsf{Acc}_{\mathcal{D},f}(\theta_0)+\alpha\cdot\mathsf{Acc}_{\mathcal{D},f}(\theta_1)$$

- Linear mode connectivity has been observed, when
 - ➤ Part of the training trajectory is shared
 - Two models are fine-tuned with a shared initialization [Neyshabur et el.]
 - => It may give us a clue about the reason why weight-space ensemble attain high accuracy.
- Observation 2

Source: https://arxiv.org/pdf/1912.05671.pdf

$(+\alpha)$ Individual opinion

- What if our downstream task has a different number of class(or objective function/task) than the pre-training dataset?
- How much similar $\mathbf{W}_{zero-shot}$ (CLIP) and $\mathbf{W}_{classifier}$ (fine-tuned only linear classifier)