CS/B.Tech/Even/2nd Sem/ES-201/2014

2014

Basic Electrical and Electronics Engineering

Time Alloted: 3 Hours

Full Marks: 70

The figure in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternative for any five of the following: 1x5=5
 - i) The dielectric strength of an insulating material is expressed in
 - a) µF/m
- b) KV/m
- c) KV/µF
- d) none of them
- ii) When the plate area of a parallel plate capacitor is increased keeping the capacitor voltage constant, the force between the plate
 - a) increases
 - b) decreases
 - c) remains constant
 - d) may increases or decreases depending on the metal
- iii) A series motor drawing armature current la is operated under

[Turn over]

1

[Turn over]

CS/B.Tech/Even/2nd Sem/ES-201/2014.

	satt		. The torque	will be proportion	ai to	
		a) 1/l c) l __ ²		b) 1/l _a ² d) l _a		
	iv) The D.C motor used for traction purpose is					
		a) Shunt c) Compour	nd	b) Seriesd) None of these	•	
	v)	v) In a transformer zero voltage regulation at full load is				
		 a) not possible b) possible at unity power factor load c) possible at leading power factor load d) possible at lagging power factor load 				
	vi) Can a 50Hz transformer be used for 25Hz with input voltage rated for 50 Hz					
		excessive s c) No, the c	lux is dout aturation urrent will	constant bled which will driv become double Itage insulation wil		
	vii)	vii) Three 50Ω resistances are connected in star across a 400 $^{\circ}$				
	$3-\Phi$ supply. If one of the resistances is disconnected, the line current will be					
	.*	a) 8A		b) 4A		
		c) 8√3		d) 8/√3		
,			GROU	P - B		
		(Short	Answer Ty	pe Questions)		
		Ans	wer any tw	o questions:	2x5=10	
2.		w a general sing	gle line dia	gram from power (

3. Proof that for a balanced start connected supply system connected

1005

CS/B.Tech/Even/2nd Sem/ES-201/2014

to a balanced star connected load, the current through the neutral wire is zero.

- 4. Show that for a single phase transformer, $E_p = 4.44 t \Phi_m N_p$ where the symbols have their usual meanings.
- 5. Explain how the speed of a D.C shunt motor can be controlled by flux control method.

GROUP - C

(Long Answer Type Questions)

Answer any three questions:

2x10=20

(4)

- 6.a) Derive the emf equation of DC generator.
 - b) A 120V D.C Shunt Motor having an armature resistance of 0.2Ω and field resistance of 60 Ω , draws a line current of 40A at full load. The brush voltage drop is 3V and the rated full load speed is 1800rpm. Calculate the speed εt half load and 125% of full load. (6)
- 7.a) Draw the phasor diagram of a single phase transformer under no load condition. (4)
 - b) The efficiency at unity power factor of a 6600/384v, 200KVA single phase transformer is 98% both at full load and at half load. Calculate the full load Cu Loss and Core Loss. (6)
- 8. Explain the 2-Wattmeter method of power measurement for a $3-\Phi$ balanced load. Draw the necessary phasor diagrams. Also show how the power factor can be measured from this method. (6+4)
- 9.a)Obtain the condition for maximum torque for a $3-\Phi$ induction motor
- b) The power input to a 400V, 6 poles, 50Hz,3-⊕induction motor running at 975 rpm is 40 KW. The Stator losses are 1KW and Friction and windage losses are 2KW. Find the efficiency of the motor. (4+6)

1005

2014

Basic Electrical and Electronics Engg(Part - II)

Time Alloted: 3 Hours

Full Marks: 35

The figure in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct answer for the following: (any five) 1x5
 - i) The decimal equivalent of binary 11.1 is
 - a) 3.5 b) 3.1 c) 5.1 d) 2.2
 - ii) Open loop voltage gain of an op-amp is
 - a) Small b) Large c) can be anything
 - iii) Which of the following devices has highest input impedance
 - a) MOSFET b) BJT c) JFET
 - iv) CMRR of an op-amp
 - a) much larger than unity b) much smaller than unity

1005

1

[Turn over]

- c) Unity
- d) None of these
- v) Which of the following feedback topologies offers high input impendance?
- a) Voltage Series b) Voltage Shunt c) Current Series d) Current Shunt
- vi) Oscillators use following feedback:
- a) Negative b) Positive c) Both Negative and Positive d) None

GROUP - B (Short Answer Type Questions) Answer any two questions 2X 5=10

2. Draw and explain the working pronciple of CMOS inverter circuit.

(5)

3. What is positive feedback? Name the different feedback topologies.

(2 + 3)

4. Identify the circuit and find out the output voltage $\mathbf{V}_{\scriptscriptstyle 0}$ of the circuit if

$$\textbf{v}_{in}$$
 = 5 sin 2000 πt m V, R = 100k Ω and C = 1 μ F. $\,$ 1+4 $\,$

1005

2

[Turn over]

- 5.a) Perform the following number conversions
- i) $(ABC)_{16} = (?)_2$
- ii) $(195)_8 = (?)_2$
 - b) Realize the Boolean expression using minimum number of NAND gates

$$Y = (A + B)(A + B)$$

3+2

GROUP - C (Long Answer Type Questions) Answer any two questions 2X10=20

- 6. a) In a J-FET for an applied $V_{\rm os}$ = 0V and $V_{\rm DS}$ = 2.5 V the drain current appears to be 13.5 mA/ What is the value of $I_{\rm DSS}$ here?If $V_{\rm DS}$ is increased to 3V and the pinch off voltage is stated -2V .What is the value of $I_{\rm DS}$
 - b) What is know as Gain-bandwidth product of an amplifier? State the Barkhausen Criteria. 5
- 7. a) What are integrator and differentiator? Describe it with suitable block diagram.
 - b) The midrange open-loop gain of a certain op-amp is 120dB. Negative feedback reduces this gain by 50dB. What is the closed loop gain?

5+5

- 8. a) Define the truth table of XOR gate.Implement the XOR operation using the minimum number 2- input NAND gate. 4+1
 - b) If in an adder 3 input resistances are $2K\Omega$, 4 $K\Omega$, and 8 $K\Omega$ and the feedback resistance is 10 $K\Omega$. What is the output voltage of the OP-Amp 5

1005

3

[Turn over]

- 9. Write short notes of any two of the following: 2X5 = 10
- a) MOSFET
- b) Feedback Amplifier
- c) Universal gates
- d) Operational Amplifier

1005

.