Proposition 20.5. Let G = (V, W) be a weighted graph. The number c of connected components K_1, \ldots, K_c of the underlying graph of G is equal to the dimension of the nullspace of L, which is equal to the multiplicity of the eigenvalue 0. Furthermore, the nullspace of L has a basis consisting of indicator vectors of the connected components of G, that is, vectors (f_1, \ldots, f_m) such that $f_i = 1$ iff $v_i \in K_i$ and $f_i = 0$ otherwise.

Proof. Since $L = BB^{\top}$ for the incidence matrix B associated with any oriented graph obtained from G, and since L and B^{\top} have the same nullspace, by Proposition 20.1, the dimension of the nullspace of L is equal to the number c of connected components of G and the indicator vectors of the connected components of G form a basis of Ker (L).

Proposition 20.5 implies that if the underlying graph of G is connected, then the second eigenvalue λ_2 of L is strictly positive.

Remarkably, the eigenvalue λ_2 contains a lot of information about the graph G (assuming that G = (V, E) is an undirected graph). This was first discovered by Fiedler in 1973, and for this reason, λ_2 is often referred to as the *Fiedler number*. For more on the properties of the Fiedler number, see Godsil and Royle [77] (Chapter 13) and Chung [39]. More generally, the spectrum $(0, \lambda_2, \ldots, \lambda_m)$ of L contains a lot of information about the combinatorial structure of the graph G. Leverage of this information is the object of spectral graph theory.

20.3 Normalized Laplacian Matrices of Graphs

It turns out that normalized variants of the graph Laplacian are needed, especially in applications to graph clustering. These variants make sense only if G has no isolated vertices.

Definition 20.18. Given a weighted graph G = (V, W), a vertex $u \in V$ is *isolated* if it is not incident to any other vertex. This means that every row of W contains some strictly positive entry.

If G has no isolated vertices, then the degree matrix D contains positive entries, so it is invertible and $D^{-1/2}$ makes sense; namely

$$D^{-1/2} = \operatorname{diag}(d_1^{-1/2}, \dots, d_m^{-1/2}),$$

and similarly for any real exponent α .

Definition 20.19. Given any weighted directed graph G = (V, W) with no isolated vertex and with $V = \{v_1, \ldots, v_m\}$, the *(normalized) graph Laplacians* L_{sym} and L_{rw} of G are defined by

$$L_{\text{sym}} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$

$$L_{\text{rw}} = D^{-1}L = I - D^{-1}W.$$