VE320 Intro to Semiconductor Devices

Summer 2024 — Problem Set 7

Due: 11:59 pm 28th July

- 1) Several conceptual questions
- a) Explain the difference in the I-V relationship between the Schottky barrier diode and the Ohmic contact diode.
- b) Explain the difference in the I-V relationship between the metal-semiconductor and the two-terminal MOS structure.
- c) Explain the reason why there's a maximum depletion layer width.
- 2) Energy band diagrams
- a) Draw the equilibrium energy band diagram of a Schottky barrier diode and an Ohmic contact diode (both with an n-type semiconductor).
- b) Draw the equilibrium energy band diagram of the two-terminal MOS structure if the work function of the metal is bigger than that of the semiconductor.
- 3) A Schottky diode at T = 300K is formed with Pt on n-type silicon with a doping concentration of $N_d = 5 \times 10^{15} cm^{-3}$. The barrier height is found to be $\phi_{Bn} = 0.89V$. The effective Richardson constant is $A^* = 120A/K^2 cm^2$. Determine (a) ϕ_n , (b) V_{bi} , (c) J_{ST} , and (d) V_a such that $J_n = 5A/cm^2$.
- 4) A Schottky diode with n-type GaAs at T = 300K yields the plot shown in the Figure below, where the unit of C' is fF/cm^2 . Determine (a) V_{bi} , (b) N_d , (c) ϕ_n , and (d) ϕ_{B0} . You can approximately read the graph below.

5) The high-frequency C–V characteristic curve of a MOS capacitor is shown in the figure below. The area of the device is $2 \times 10^{-3} cm^2$. The metal-semiconductor work function difference is $\phi_{ms} = -0.50V$, the oxide is SiO2, the semiconductor is silicon, and the semiconductor doping concentration is $2 \times 10^{16} cm^{-3}$. (a) Is the semiconductor n or p-type? (b) What is the oxide thickness? (c) What is the equivalent trapped oxide charge density?

6) The high-frequency C–V characteristic curve of a MOS capacitor is shown in the figure below. The oxide is SiO2 and the semiconductor is silicon. The area of the MOS capacitor is $3 \times 10^{-3} cm^2$. (a) Is the semiconductor component of the MOS capacitor doped n-type or p-type? (b) Draw the MOS capacitor energy band diagram corresponding to point (2) on the C – V characteristic. (c) Draw the block charge diagram corresponding to point (1) on the C – V characteristic. (d) What is the oxide thickness? (e) Determine x_{dT} and the associated semiconductor doping concentration for the given MOS capacitor.

7) Consider an n-channel depletion mode MOSFET with an n polysilicon gate. The n-channel doping is $N_d=10^{15}cm^{-3}$ and the oxide thickness is 500 Å. The equivalent fixed oxide charge is $Q_{ss}'=10^{10}cm^{-2}$. The metal-semiconductor work function difference is $\phi_{ms}=-0.272V$. The n-channel thickness is equal to the maximum induced space charge width. (Disregard the space charge region at the n-channel–p-substrate junction.) (a) Determine the channel thickness and (b) calculate the threshold voltage.