Cuadratura Gaussiana Borrador

Primer semestre 2018

En C[-1, 1]

Producto interior

Regla de cuadratura

Extensiones

Recordamos que la aplicación lineal

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

es un producto interior sobre el espacio vectorial C[-1, 1].

Ejemplo

$$\langle x^2, 1 \rangle = \int_{-1}^1 x^2 \cdot 1 \, dx = \int_{-1}^1 x^2 \, dx = \left. \frac{x^3}{3} \right|_{-1}^1 = \frac{2}{3}$$

$$\langle x^2, x \rangle = \int_{-1}^1 x^2 \cdot x \, dx = \int_{-1}^1 x^3 \, dx = \frac{x^4}{4} \Big|_{-1}^1 = 0$$

Ortogonalidad

Gramm-Schmidt

Base ortogona

Regla de

cuadratura Sistema de ecuacione

Sistema de ecuacion Construcción

Extensiones

Definición (Ortogonalidad)

$$p \perp q \leftrightarrow \langle p, q \rangle = 0$$

así, podemos decir que $x^2 \perp x$.

Definición (Base canónica de $\mathbb{P}_n(\mathbb{R})$)

$$B_C = \{1, x, x^2, \cdots, x^n\}$$

Esta base no es ortogonal considerando este producto interior.

Ortogonalización de la base canónica

Producto interior

Proceso de Gramm-Schmidt

Regla de

cuadratura Sistema de ecuaciones

Extensiones

Proceso de Gramm-Schmidt en B_C

$$\begin{array}{ll} p_{0}(x) & = 1 \\ p_{1}(x) & = x - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} \, 1 = x \\ p_{2}(x) & = x^{2} - \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} \, 1 - \frac{\langle x^{2}, x \rangle}{\langle x, x \rangle} \, x = x^{2} - \frac{1}{3} \\ p_{3}(x) & = x^{3} - \frac{\langle x^{3}, 1 \rangle}{\langle 1, 1 \rangle} \, 1 - \frac{\langle x^{3}, x \rangle}{\langle x, x \rangle} - \frac{\langle x^{3}, x^{2} - \frac{1}{3} \rangle}{\langle x^{2} - \frac{1}{3}, x^{2} - \frac{1}{3} \rangle} = x^{3} - \frac{3}{5}x \\ \vdots \end{array}$$

Ortogonalidad Proceso de

Base ortogonal

Regla de

cuadratura
Sistema de ecuaciones

Construcción

Extensiones

Se puede demostrar por inducción

$$p_{i+1}(x) = \left(x - \frac{\langle xp_i, p_i \rangle}{\langle p_i, p_i \rangle}\right) p_i(x) - \frac{\langle p_i, p_i \rangle}{\langle p_{i-1}, p_{i-1} \rangle} p_{i-1}(x)$$

Recursivamente

$$\rho_{4}(x) = \left(x - \frac{\langle x \rho_{3}, \rho_{3} \rangle}{\langle \rho_{3}, \rho_{3} \rangle}\right) \rho_{3}(x) - \frac{\langle \rho_{3}, \rho_{3} \rangle}{\langle \rho_{2}, \rho_{2} \rangle} \rho_{2}(x)
= x \left(x^{3} - \frac{3}{5}x\right) - \frac{\langle x^{3} - \frac{3}{5}x, x^{3} - \frac{3}{5}x \rangle}{\langle x^{2} - \frac{1}{3}, x^{2} - \frac{1}{3} \rangle} \left(x^{2} - \frac{1}{3}\right)
= x \left(x^{3} - \frac{3}{5}x\right) - \frac{\frac{x^{7}}{7} - 6x^{5} + \frac{3}{5^{2}}x^{3}}{\frac{x^{5}}{5} - 2x^{3} + \frac{1}{9^{2}}x\Big|_{-1}^{1}} \left(x^{2} - \frac{1}{3}\right)
=$$

Ortogonalidad Proceso de

Gramm-Schmidt

Base ortogonal

Regla de

cuadratura
Sistema de ecuaciones

Extensiones

Tabla: Polinomios ortogonales

n	$p_n(x)$
0	1
1	X
2	$x^2 - 1/3$
3	$x^3 - (3x)/5$
4	$x^4 - (6x^2)/7 + 3/35$
5	$(5x)/21 - (10x^3)/9 + x^5$
6	$(5x^2)/11 - (15x^4)/11 + x^6 - 5/231$
7	$(105 x^3)/143 - (35 x)/429 - (21 x^5)/13 + x^7$
8	$(14x^4)/13 - (28x^2)/143 - (28x^6)/15 + x^8 + 7/1287$

Base ortogonal

Producto interior

Base ortogonal

Regla de cuadratura

Extensiones

$\{p_0, p_1, \cdots, p_n\}$

es una base ortogonal de $\mathbb{P}_n(\mathbb{R})$ con las siguientes

Propiedades

- 1 $p_i \in \mathbb{P}_i(\mathbb{R})$
- 2 $\forall p \in \mathbb{P}_{n-1}(\mathbb{R}): \langle p, p_n \rangle = 0$ $[p_n \perp \mathbb{P}_{n-1}(\mathbb{R})]$
- p_n tiene n raíces reales de multiplicidad 1 y están en el intervalo]-1,1[

Gráfica de la base ortogonal

Producto interior

Base ortogonal

Regla de

cuadratura

Sistema de ecuaciones

Extensiones

Figure: Algunos polinomios de la base ortogonal

Un sistema de ecuaciones

Producto interior

Regla de cuadratura

Sistema de ecuaciones

Extensiones

Siendo $x_1, x_2, \dots x_n$ las n raíces distintas de $p_n(x)$, el problema: Hallar $w_1, w_2, \cdots, w_n \in \mathbb{R}$:

$$\begin{array}{rcl} w_1 p_0(x_1) + w_2 p_0(x_2) + \cdots + w_n p_0(x_n) & = & \langle p_0, p_0 \rangle \\ w_1 p_1(x_1) + w_2 p_1(x_2) + \cdots + w_n p_1(x_n) & = & 0 \\ & \vdots & & \vdots \\ w_1 p_{n-1}(x_1) + w_2 p_{n-1}(x_2) + \cdots + w_n p_{n-1}(x_n) & = & 0 \end{array}$$

Un sistema de ecuaciones

Producto interior

Regla de cuadratura

Sistema de ecuaciones

Extensiones

Representación matricial

$$\begin{bmatrix} p_0(x_1) & \cdots & p_0(x_n) \\ p_1(x_1) & \cdots & p_1(x_n) \\ \vdots & & \vdots \\ p_{n-1}(x_1) & \cdots & p_{n-1}(x_n) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} \langle p_0, p_0 \rangle \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Se puede demostrar que siempre tiene única solución.

Producto interior

Regla de cuadratura

Sistema de ecuaciones Construcción

Extensiones

Con todas estas observaciones y propiedades, se tiene que para cualquier polinomio $p \in \mathbb{P}_{2n-1}(\mathbb{R})$,

$$\frac{p(x)}{p_n(x)} = q(x) + \frac{r(x)}{p_n(x)}$$

donde $q, r \in \mathbb{P}_{n-1}(\mathbb{R})$ son el cociente y resto de la división polinomial. Así

$$q(x) = \alpha_0 p_0(x) + \cdots + \alpha_{n-1} p_{n-1}(x)$$

 $r(x) = \beta_0 p_0(x) + \cdots + \beta_{n-1} p_{n-1}(x)$

puesto $\{p_0, \dots, p_{n-1}\}$ es base de $\mathbb{P}_{n-1}(\mathbb{R})$.

Producto interior

Regla de

cuadratura Sistema de ecuaciones

Construcción

Extensiones

De esta forma

$$\int_{-1}^{1} p(x) dx = \int_{-1}^{1} (p_n(x)q(x) + r(x)) dx
= \int_{-1}^{1} p_n(x)q(x) dx + \int_{-1}^{1} r(x) dx
= \langle p_n, q \rangle + \langle r, p_0 \rangle,$$

puesto $p_0(x) = 1$ y como $q \in \mathbb{P}_{n-1}$ y $p_n \perp \mathbb{P}_{n-1}$

$$\int_{-1}^{1} p(x) dx = \langle r, p_0 \rangle
= \langle \beta_0 p_0 + \cdots \beta_{n-1} p_{n-1}, p_0 \rangle
= \beta_0 \langle p_0, p_0 \rangle + \cdots \beta_{n-1} \langle p_{n-1}, p_0 \rangle
= \beta_0 \langle p_0, p_0 \rangle,$$

puesto la base $\{p_0, \dots p_{n-1}\}$ es ortogonal.

Regla de

cuadratura

Construcción

Extensiones

Por otro lado.

$$\sum_{i=1}^{n} w_{i} p(x_{i}) = \sum_{i=1}^{n} w_{i} (p_{n}(x_{i})q(x_{i}) + r(x_{i}))$$
$$= \sum_{i=1}^{n} w_{i} r(x_{i}),$$

puesto x_i son las ráices de p_n . Así

$$\sum_{i=1}^{n} w_{i} p(x_{i}) = \sum_{i=1}^{n} w_{i} \left(\sum_{j=0}^{n-1} \beta_{j} p_{j}(x_{i}) \right) = \sum_{j=0}^{n-1} \beta_{j} \sum_{i=1}^{n} w_{i} p_{j}(x_{i})$$
$$= \beta_{0} \langle p_{0}, p_{0} \rangle,$$

debido a que $\{w_i\}_{i=1}^n$ son las soluciones del problema anterior.

Cuadratura Gaussiana

Primer semestre 2018 13/19

Producto interior

Ortogonalidad Proceso de

Gramm-Schmid Base ortogonal

Regla de

cuadratura

Sistema de ecuaciones Construcción

Propiedades

Extensiones

Así se construye

Definición (Cuadratura de Gauss de *n* nodos)

$$\int_{-1}^{1} p(x) dx = w_1 p(x_1) + w_2 p(x_2) + \cdots + w_n p_n(x_n)$$

donde $\{x_i\}_{i=1}^n$ son las n raíces del polinomio de la base ortogonal p_n y $\{w_i\}_{i=1}^n$ es la única solución del sistema de ecuaciones descrito.

Cuadraturas Gaussianas

Producto interior

Base ortogonal Regla de cuadratura Sistema de ecuaciones Construcción Extensiones

oadaratarao Gadoorariao									
	n	Pesos	$\frac{\text{Nodos}}{x_1 = 0}$						
	1	$w_1 = 2$							
	2	$w_1 = 1$	$x_1 = -0.57735$						
		$w_2 = 1$	$x_2 = 0.57735$						
		$w_1 = 0.55556$	$x_1 = -0.7746$						
	3	$w_2 = 0.88889$	$x_2 = 0$						
		$w_3 = 0.55556$	$x_3 = 0.7746$						
		$w_1 = 0.34785$	$x_1 = -0.86114$						
	4	$w_2 = 0.65215$	$x_2 = -0.33998$						
		$w_3 = 0.65215$	$x_3 = 0.33998$						
		$w_4 = 0.34785$	$x_4 = 0.86114$						
		$w_1 = 0.23693$	$x_1 = -0.90618$						
	5	$w_2 = 0.47863$	$x_2 = -0.53847$						
		$w_3 = 0.56889$	$x_3 = 0$						
		$w_4 = 0.47863$	$x_4 = 0.53847$						
		$w_5 = 0.23693$	$x_5 = 0.90618$						

Estimación del error

Producto interior

Regla de

cuadratura

Construcción

Extensiones

Teorema

Si $f \in C^{2n}[-1, 1]$, entonces

$$\int_{-1}^{1} f(x) dx - \sum_{i=1}^{n} w_{i} f(x_{i}) = \frac{f^{(2n)}(\xi)}{(2n)!} \langle p_{n}, p_{n} \rangle$$

para algún valor $\xi \in]-1,1[$.

- Error inversamente proporcional a (2n)!.
- El máximo de $f^{(2n)}$ puede ser difícil de estimar.
- $\langle p_n, p_n \rangle \stackrel{n \to \infty}{\longrightarrow} 0$

Propiedades de las cuadraturas Gaussianas

Producto interior

Ortogonalidad Proceso de Gramm-Schmid

Base ortogonal

Regla de

cuadratura

Sistema de ecuaciones

Propiedades

Extensiones

- Una cuadratura de n nodos es exacta para polinomios de grado 2n – 1.
- 2 En la práctica, en comparación con otras reglas, las cuadraturas Gaussianas logran resultados mas precisos con el mismo costo computacional.
- 3 Los polinomios ortogonales se pueden construir derivando

$$p_k(x) = \frac{k!}{(2k)!} \frac{d^k}{dx^k} (x^2 - 1)^k, \quad k = 0, 1, \cdots$$

Los nodos y pesos de estas reglas de cuadratura se encuentran tabulados¹ e implementadas en funciones de Matlab.

¹ Handbook of mathematical functions. Abramowitz and Stegun (1964)

Tabla: Convergencias

Producto interior Ortogonalidad	$n \setminus f(x)$	cos(x)	$\frac{\cos(10x)x}{e^x}$	$\frac{\cos(x^2)x}{e^x}$	$cos(cos(x))e^{cos(x)}$
Proceso de Gramm-Schmidt	1	2	0	0	2.9374
Base ortogonal	2	1.6758	-0.61481	0.62997	3.0929
Regla de cuadratura Sistema de ecuaciones	3	1.683	-0.079276	0.55022	3.0205
Construcción	4	1.6829	0.54848	0.53019	3.0286
Propiedades Extensiones	5	1.6829	0.23429	0.5311	3.028
Extensiones	6	1.6829	0.059696	0.53121	3.0281
	7	1.6829	0.205	0.5312	3.0281
	8	1.6829	0.16121	0.5312	3.0281
	9	1.6829	0.16893	0.5312	3.0281
	10	1.6829	0.16801	0.5312	3.0281
	11	1.6829	0.16809	0.5312	3.0281
	12	1.6829	0.16809	0.5312	3.0281

Ortogonalidad Proceso de Gramm-Schmidt

Regla de

cuadratura Sistema de equa

Construcción
Propiedades

Extensiones

Las aplicaciones

1
$$\langle f,g\rangle = \int_{-1}^{1} (1-x^2)^{-1/2} f(x)g(x) dx$$
,

$$\langle f,g\rangle = \int_0^{+\infty} e^{-x} f(x)g(x) dx,$$

$$\langle f,g\rangle = \int_{-\infty}^{+\infty} e^{-x^2} f(x)g(x) dx,$$

son productos interiores en $\mathbb{P}^n(\mathbb{R})$, estas dan origenes a otros polinomios ortogonales ², creando así otras reglas de cuadratura.

²Llamados de Chebyshev, Laguerre y Hermite respectivamente