数字电子技术基础

清华大学自动化系 张 涛

绪论

- 〇、学习要求和目标
- 一、研究对象及应用领域
- 二、器件发展概况
- 三、模拟、数字电子电路的异同
- 四、课程要求
- 五、本学期教学进度
- 六、参考书籍

学习要求

❖课堂纪律:

保障课堂秩序、认真听讲

❖学习方法:

预习 知识准备

课堂听讲知识理解

复习 知识掌握

完成作业 知识转化

学习目标

- ❖建立清晰概念:器件+电路+系统
- ❖ 掌握基本方法:分析+设计
- ❖培养动手能力:硬件+软件
- ❖拥有创新意识:实践+思考

研究对象及应用领域

❖研究对象:

器件、电路及系统

❖应用领域:

通讯 Communication

控制 Control

计算机 Computer

文化生活 Cultural life

数字电子技术基础

电子器件发展历程

电子器件是电子技术的基础。电子技术的每一次突破性进展,都是与电子器件的更新换代 密切相关的。电子器件的发展经历了从电子管、晶体管、集成电路等几个阶段。

电子管的发明:

1904 年,英国科学家弗莱明(J. A. Fleming)利用爱迪生效应,发明了第一只真空二极管,并在第一条跨越大西洋的通信线路中得到了应用。1906 年,美国发明家德福雷斯特(L. D. Forest),在真空二极管的灯丝和板极之间加了一个栅板,发明了第一只真空三极管。电子管可实现整流、稳压、检波、放大、振荡、变频、调制等多种功能电路。电子管的发明是开创了电子技术的新领域,把人类从十九世纪的电气时代推入二十世纪的电子时代。

晶体管的发明:

1947年,美国物理学家肖克利(W. Shockley)、巴丁(J. Bardeen)和布拉顿(W. H. Bratain)三人合作发明了晶体管。晶体管的发明,大大促进了电子技术的应用与发展,是电子技术史中具有划时代意义的伟大事件,它开创了一个新的时代一固体电子技术时代。

集成电路的出现和发展:

1958年,基尔比(J. S. Kilby)等提出将晶体管、元件和连线集成封装在一起的设想,三年后,集成电路实现了商品化。集成电路是在一块数平方毫米的半导体晶片上,将成千上万的晶体管、电阻、电容、连接线做在一起。它是材料、元件、晶体管三位一体的有机结合。

世界上第一块集成电路在1959年美国的德州仪器公司和西屋电气公司诞生,电路上仅集成了4只晶体管。

第一块集成电路

Moore's Law

Projected

器件及发展概况

Diode 1904 (1911)

Transistor 1948 (1951)

SSI (Small Scale Integration) 1960

MSI (Medium Scale Integration) 1966

LSI (Large Scale Integration) 1969

VLSI (Very Large Scale Integration) 1975

1976年 Single Chip Computer问世

MCS-48系列(1976年)

MCS-51系列(1980年)

96系列(1983年) 12万元器件/片

模拟及数字电子电路的异同点

	模拟电路	数字电路
研究内容	信号怎样放大及倍数	各变量之间的逻 辑关系
信号表示	连续变化量	离散量
基本单元	单管放大电路	逻辑门
三极管状态	放大状态	饱和及截止状态
使用工具	电路定理及三极管模型	逻辑代数

数字电子技术基础

• 课程性质:入门级的技术基础课

 课程目标:学习和掌握基本概念、基本设计/分析方法以及基本实验技能, 以具备继续深入学习和接受电子技术 新发展的能力,以及把所学知识用于 本专业的能力。

课程的要求

●理论课与实践课并重

●课内与课外的结合,学时比 1:2

本课程教学进度(秋季)

绪论	1
数制和码制	1
逻辑代数及逻辑函数	8
组合逻辑电路	12
半导体存储电路	10
时序逻辑电路	10
EDA讲座	4
实验	2

课内学时: 48学时

参考书籍

- 《数字电子技术基础》
 - 清华大学 阎 石 高教出版社
- 《数字电子电路》
 - 清华大学 唐竞新 清华出版社
- 《电子技术基础》
 - 华中科大 康华光 高教出版社
- 《Computation Structures》

MIT Stephen A. Ward, Robert H. Halstead Jr.

MIT Press

