SBML Model Report

Model name: "Nag2011_ChloroplasticStarchDegradation"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Ambarish Nag² at November first 2010 at no o' clock in the morning. and last time modified at April first 2014 at 1:29 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	7
species types	0	species	28
events	0	constraints	0
reactions	9	function definitions	0
global parameters	62	unit definitions	10
rules	3	initial assignments	4

Model Notes

This model is from the article:

Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation.

Nag A, Lunacek M, Graf PA, Chang CH. BMC Syst Biol.2011 Jun 18;5:94. 21682905,

¹EMBL-EBI, viji@ebi.ac.uk

 $^{^2} National\ Renewable\ Energy\ Laboratory, \verb|ambarish.nag@nrel.gov|$

Abstract:

BACKGROUND: Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date.RESULTS:Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing -amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and -amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to lower coupling between metabolic subsystems in different compartments.CONCLUSIONS: We find that in the reference steady state, starch cleavage is the most significant determinant of carbon flux, with turnover of oligosaccharides playing a secondary role. Independence of stationary point with respect to initial dynamic variable values confirms a unique stationary point in the phase space of dynamically varying concentrations of the model network. Stromal maltooligosaccharide metabolism was highly coupled to the available starch concentration. From the most highly converged trajectories, distances between unique fixed points of phase spaces show that cytosolic maltose levels depend on the total concentrations of arabinogalactan and glucose present in the cytosol. In addition, cellular compartmentalization serves to dampen much, but not all, of the effects of one subnetwork on another, such that kinetic modeling of single compartments would likely capture most dynamics that are fast on the timescale of the transport reactions.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of 13 unit definitions of which three are predefined by SBML and not mentioned in the model.

```
2.1 Unit per_s
Definition s^{-1}
2.2 Unit volume
Definition 1
2.3 Unit area
Definition \mu m^2
2.4 Unit umole
Definition \mu mol
2.5 Unit uM
Definition \mu mol \cdot l^{-1}
2.6 Unit uM_per_s
Definition \mu mol \cdot l^{-1} \cdot s^{-1}
2.7 Unit per_uM_per_s
Definition \mu mol^{-1} \cdot l \cdot s^{-1}
2.8 Unit gm_per_L
Definition g \cdot l^{-1}
2.9 Unit gm_per_L_2
Definition g^2 \cdot l^{-2}
2.10 Unit gm_per_umole
```

Definition $g \cdot \mu mol^{-1}$

2.11 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.12 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.13 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains seven compartments.

Table 2: Properties of all compartments.

		_	_	
Id	Name	SBO	Spatial	Size
			Dimensions	
Cell	Cell	0000290	3	3.534 · 10
Cytosol	Cytosol	0000290	3	1
Chloroplast	Chloroplast	0000290	3	1
ChloroplastOuterMembrane	Chloroplast Outer Membrane	0000290	2	1000
${\tt ChloroplastIntermembraneSpace}$	Chloroplast Intermembrane Space	0000290	3	1
ChloroplastInnerMembrane	Chloroplast Inner Membrane	0000290	2	1000
ChloroplastStroma	Chloroplast Stroma	0000290	3	1

3.1 Compartment Cell

This is a three dimensional compartment with a constant size of $3.534 \cdot 10^{-12}$ litre.

Name Cell

SBO:0000290 physical compartment

3.2 Compartment Cytosol

This is a three dimensional compartment with a not constant size of one litre, which is surrounded by Cell (Cell).

Name Cytosol

SBO:0000290 physical compartment

3.3 Compartment Chloroplast

This is a three dimensional compartment with a not constant size of one litre, which is surrounded by Cytosol (Cytosol).

Name Chloroplast

SBO:0000290 physical compartment

3.4 Compartment ChloroplastOuterMembrane

This is a two dimensional compartment with a constant size of $1000 \, \mu m^2$, which is surrounded by Cytosol (Cytosol).

Name Chloroplast Outer Membrane

SBO:0000290 physical compartment

3.5 Compartment ChloroplastIntermembraneSpace

This is a three dimensional compartment with a constant size of one litre, which is surrounded by ChloroplastOuterMembrane (Chloroplast Outer Membrane).

Name Chloroplast Intermembrane Space

SBO:0000290 physical compartment

3.6 Compartment ChloroplastInnerMembrane

This is a two dimensional compartment with a constant size of $1000 \,\mu\text{m}^2$, which is surrounded by ChloroplastIntermembraneSpace (ChloroplastIntermembrane Space).

Name Chloroplast Inner Membrane

SBO:0000290 physical compartment

3.7 Compartment ChloroplastStroma

This is a three dimensional compartment with a constant size of one litre, which is surrounded by ChloroplastInnerMembrane (ChloroplastInner Membrane).

Name Chloroplast Stroma

SBO:0000290 physical compartment

4 Species

This model contains 28 species. The boundary condition of seven of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
cpd_C00080_CY	H+	Cytosol	μ mol·l ⁻¹		
cpd_C00369_CS	Starch	ChloroplastStroma	$g \cdot l^{-1}$		
cpd_C00369Glc_CS	Starch Glucosyl unit	${\tt ChloroplastStroma}$	$\mu mol \cdot l^{-1}$		\square
cpd_C00369db_CS	Starch exposed to Beta Amylase due to action of Isoamylase (Starch DB)	ChloroplastStroma	$g \cdot l^{-1}$		
cpd_C00208_CY	Maltose	Cytosol	$\mu mol \cdot l^{-1}$		\Box
cpd_C00208_CS	Maltose	${\tt ChloroplastStroma}$	$\mu mol \cdot l^{-1}$		
cpd_C01835_CS	Maltotriose	${\tt ChloroplastStroma}$	$\mu mol \cdot l^{-1}$		\Box
$\mathtt{cpd_G00343_CS}$	Maltopentaose	${\tt ChloroplastStroma}$	$\mu mol \cdot l^{-1}$		\Box
$\mathtt{cpd_C00031_CS}$	(D)-Glucose	${\tt ChloroplastStroma}$	$\mu mol \cdot l^{-1}$		\Box
cpd_C00031_CY	(D)-Glucose	Cytosol	$\mu mol \cdot l^{-1}$		\Box
cpd_C00569_CY	Arabinogalactan (AG)	Cytosol	$\mu mol \cdot l^{-1}$		
cpd_C00569Glc_CY	Glucosyl Arabinogalactan (GlcAG)	Cytosol	$\mu mol \cdot l^{-1}$		
cpd_C00002tot_CY	ATP pool	Cytosol	$\mu mol \cdot l^{-1}$		
cpd_C00008tot_CY	ADP pool	Cytosol	$\mu mol \cdot l^{-1}$		
$cpd_C00009tot_CY$	Orthophosphate(HPi) pool	Cytosol	$\mu mol \cdot l^{-1}$		
cpd_C00051_CY	Glutathione (reduced)	Cytosol	$\mu mol \cdot l^{-1}$		
cpd_C00660tot_CY	(D)-Glucose-1,6-bisphosphate pool	Cytosol	$\mu mol \cdot l^{-1}$		
cpd_C03339tot_CY	2,3-Bisphosphoglycerate pool	Cytosol	$\mu mol \cdot l^{-1}$		
$cpd_C00103tot_CY$	G1P pool	Cytosol	$\mu mol \cdot l^{-1}$		
${\tt cpd_C00092tot_CY}$	G6P pool	Cytosol	$\mu mol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
ec_3_2_1_2_CS	Beta amylase	ChloroplastStroma	$g \cdot l^{-1}$		\Box
ec_3_2_1_68_CS	Isoamylase	ChloroplastStroma	$g \cdot l^{-1}$	\Box	\Box
ec_2_4_1_25_CS	Disproportionating enzyme 1(DPE1)	ChloroplastStroma	$\mu \text{mol} \cdot l^{-1}$	\Box	
ec_2_4_1_25_CY	Disproportionating enzyme 2(DPE2)	Cytosol	$\mu mol \cdot l^{-1}$	\Box	
ec_2_4_1_1_CY	Cytosolic Glucan phosphorylase	Cytosol	$\mu \text{mol} \cdot l^{-1}$	\Box	
$ec_2_7_1_1_CY$	Hexokinase	Cytosol	μ mol·l ⁻¹	\Box	\Box
$tc_2_A_84_1_2_CIMS$	Maltose exporter (MEX)	ChloroplastIntermembra	aneSpa μ mol·l $^{-1}$	\Box	
tc_2_A_1_1_17_CIMS	Glucose transporter (pGlcT)	${\tt ChloroplastIntermembra}$	neSpaµmol·l ^{−1}	\Box	

5 Parameters

This model contains 62 global parameters.

Table 4: Properties of each parameter.

Table 4. Properties of each parameter.						
Id	Name	SBO	Value	Unit	Constant	
C00369_MW	Starch Mol. Wt.	0000504	0.270	$g \cdot \mu mol^{-1}$		
N_Glc_Starch	Number of Gluco-	0000503	1667.000	dimensionless	$\overline{\mathbf{Z}}$	
	syl units in a Starch					
	molecule					
$f_bamylase$	Fraction of Starch	0000540	0.582	dimensionless	\square	
	amenable to degra-					
	dation by Beta					
4 40	Amylase only	0000540	0.070	1 1		
f_G2	Fraction of starch	0000540	0.870	dimensionless		
	degraded to Mal-					
f_G3	tose Fraction of starch	0000540	0.130	dimensionless	\rightarrow	
1_63	degraded to Mal-	0000340	0.130	unnensioniess	$ \overline{\mathbf{Z}} $	
	totriose					
conv_gm-	Unit conversion	0000565	1.000	$g \cdot \mu mol^{-1}$	Ø	
_umole	factor to meet	000000	1,000	g pillor		
	SBML standards					
ec_3_2_1_2_MW	Beta amylase	0000504	0.206	$g \cdot \mu mol^{-1}$		
	molecular weight				_	
G00343_MW	Maltopentaose	0000504	$8.28 \cdot 10^{-4}$	$g \cdot \mu mol^{-1}$		
	Mol. Wt.			4		
C01835_MW	Maltotriose Mol.	0000504	$5.04 \cdot 10^{-4}$	$g \cdot \mu mol^{-1}$	\square	
	Wt.			. 1	_	
C00208_MW	Maltose Mol. Wt.	0000504	$3.42 \cdot 10^{-4}$	$g \cdot \mu \text{mol}^{-1}$	\mathbf{Z}	
R05196CS-	DPE1 kcat	0000025	50.000	s^{-1}		
_kcat	DDE1 Vac	0000281	1.000	dimensionless	-	
R05196CS_Keq R05196CS_G3-	DPE1 Keq DPE1 G3 KM	0000281	3300.000	μ mol·l ⁻¹	2	
_KM	DI EI OJ KWI	0000027	3300.000	μποι・ι		
R05196CS-	DPE1 Glc KM	0000027	11700.000	$\mu mol \cdot l^{-1}$	Ø	
_Glc_KM	BIEI GIO III	0000027	11700.000	pillor 1	MZ_I	
R05196CS_G5-	DPE1 G5 KM	0000027	210.000	$\mu mol \cdot l^{-1}$		
_KM				•		
R05196CS_G3-	DPE1 G3 Ki	0000009	746.420	$\mu mol \cdot l^{-1}$		
_Ki						
R05196CS-	DPE1 Glc Ki	0000009	5571.429	μ mol·l ⁻¹		
_Glc_Ki						

Id	Name	SBO	Value	Unit	Constant
R05196CS_G5- _Ki	DPE1 G5 Ki	0000009	100.000	μmol·l ⁻¹	Ø
AT2G40840CY- _kcat	DPE2 kcat	0000025	50.000	s^{-1}	\square
AT2G40840CY- _Keq	DPE2 Keq	0000281	1.000	dimensionless	\square
AT2G40840CY- _Glc_KM	DPE2 Glc KM	0000027	11700.000	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _G2_KM	DPE2 Maltose KM	0000027	4600.000	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _AG_KM	DPE2 AG KM	0000027	1100.000	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _GlcAG_KM	DPE2 GlcAG KM	0000027	1100.000	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _Glc_Ki	DPE2 Glc Ki	0000009	5571.429	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _G2_Ki	DPE2 Maltose Ki	0000009	2190.476	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _AG_Ki	DPE2 AG Ki	0000009	1000.000	$\mu mol \cdot l^{-1}$	\square
AT2G40840CY- _GlcAG_Ki	DPE2 GlcAG Ki	0000009	1000.000	$\mu mol \cdot l^{-1}$	\square
R06050CY- _kcat	Cytosolic glucan phosphorylase kcat	0000025	50.000	s^{-1}	\square
R06050CY- _GlcAG_KM	Cytosolic glucan phosphorylase Glucosyl Arabino- galactan KM	0000027	2100.000	$\mu mol \cdot l^{-1}$	\mathbf{Z}
R06050CY- _GlcAG_Ki	Cytosolic glucan phosphorylase Glucosyl Arabino- galactan Ki	0000009	3800.000	µmol·l ^{−1}	
R06050CY_AG- _KM	Cytosolic glucan phosphorylase Arabinogalactan KM	0000027	3800.000	µmol·l ^{−1}	
R06050CY_Pi- _KM	Cytosolic glucan phosphorylase Pi KM	0000027	5900.000	$\mu mol \cdot l^{-1}$	
R06050CY- _G1P_KM	Cytosolic glucan phosphorylase G1P KM	0000027	2000.000	$\mu mol \cdot l^{-1}$	Ø

Id	Name	SBO	Value	Unit	Constant
R06050CY-	Cytosolic glucan	0000009	3100.000	$\mu mol \cdot l^{-1}$	
_G1P_Ki	phosphorylase G1P				
	Ki		4		_
R06050CY_Keq	Cytosolic glucan	0000281	$6.15 \cdot 10^{-4}$	dimensionless	
	phosphorylase Keq	0000005	5.0.63	_1	
TC_2_A_84_1-	Maltose exporter	0000025	5.963	s^{-1}	
_2_kcat TC_2_A_84_1-	(MEX) kcat Maltose exporter	0000027	4000.000	μ mol·l ⁻¹	\rightarrow
_2_KM	(MEX) KM	0000027	4000.000	μποι・ι	
TC_2_A_1_1-	Glucose trans-	0000025	240.278	s^{-1}	Ø
_17_kcat	porter (pGlcT)	0000025	210.270	5	₩
	kcat				
TC_2_A_1_1-	Glucose trans-	0000027	19300.000	$\mu mol \cdot l^{-1}$	\square
_17_KM	porter (pGlcT)				_
	KM				
R02112CS_Gn-	Beta Amylase KM	0000027	0.500	$g \cdot 1^{-1}$	
_KM	for Starch			. 1	_
R02112CS_G5-	Beta Amylase KM	0000027	1.460	$g \cdot l^{-1}$	$ \overline{\mathbf{Z}} $
_KM	for Maltopentaose	0000027	4 100	-2 1-2	_
R02112CS- _G2C_KM	Beta Amylase KM for Maltose con-	0000027	4.190	$g^2 \cdot l^{-2}$	\square
_G2C_RM	densation				
R02112CS_Keq	Keq for Maltote-	0000281	18800.000	$g \cdot l^{-1}$	
	traose degradation			8 -	
R02112CS_Gn-	kcat_betaamylase-	0000025	0.073	s^{-1}	
_kcat	_Starch				_
R02112CS_G5-	kcat_betaamylase-	0000025	0.091	s^{-1}	
_kcat	_Maltopentaose				
ec_3_2_1_68-	Isoamylase kcat	0000025	0.020	s^{-1}	
_CS_kcat	** 1.	0000220	100.000	_1	
R00299CY-	Hexokinase	0000320	180.000	s^{-1}	
_kfor R00299CY-	kcat,forward Hexokinase	0000321	0.000	s^{-1}	
_krev	kcat,reverse	0000321	0.000	5	
R00299CY_Keq	Hexokinase Keq	0000281	155.000	dimensionless	
R00299CY-	Hexokinase	0000237	1000.000	μ mol·l ⁻¹	Z
_MgATP_KM	KM(MgATP)			•	
R00299CY-	Hexokinase	0000009	1000.000	$\mu mol \cdot l^{-1}$	
_MgATP_Ki	Ki(MgATP)				
R00299CY-	Hexokinase	0000027	47.000	$\mu mol \cdot l^{-1}$	
$_{\tt Glc_KM}$	KM(glucose)				

Id	Name	SBO	Value	Unit	Constant
R00299CY-	Hexokinase	0000009	47.000	μ mol·l ⁻¹	
_Glc_Ki	Ki(glucose)				
R00299CY-	Hexokinase	0000027	47.000	$\mu mol \cdot l^{-1}$	
_G6P_KM	KM(G6P)				
R00299CY-	Hexokinase	0000009	47.000	μ mol·l ⁻¹	
_G6P_Ki	Ki(G6P)				
R00299CY-	Hexokinase	0000027	1000.000	μ mol·l ⁻¹	
_MgADP_KM	KM(MgADP)				
R00299CY-	Hexokinase	0000009	1000.000	μ mol·l ⁻¹	\square
_MgADP_Ki	Ki(MgADP)				
R00299CY-	Hexokinase	0000009	10.000	μ mol·l ⁻¹	
$_G6P_Kip$	Ki(G6P),2				
R00299CY-	Hexokinase	0000009	4000.000	μ mol·l ⁻¹	\square
$_\mathtt{BPG_Kip}$	Ki(2,3-				
	bisphosphoglycerat				
R00299CY-	Hexokinase	0000009	30.000	μ mol·l ⁻¹	
$_{\tt G16P_Kip}$	Ki(glucose 1,6-				
	bisphosphate				
R00299CY-	Hexokinase	0000009	3000.000	μ mol·l ⁻¹	
$_{ t GSH_Kip}$	Ki(glutathione)				

6 Initialassignments

This is an overview of four initial assignments.

6.1 Initialassignment Cytosol

Derived unit contains undeclared units

Math $0.447 \cdot \text{vol} (\text{Cell})$

6.2 Initialassignment ChloroplastIntermembraneSpace

Derived unit contains undeclared units

Math $0.01 \cdot vol(Chloroplast)$

6.3 Initialassignment Chloroplast

Derived unit contains undeclared units

Math $0.2 \cdot \text{vol}(\text{Cell})$

6.4 Initialassignment ChloroplastStroma

Derived unit contains undeclared units

Math $0.5 \cdot \text{vol}(\text{Chloroplast})$

7 Rules

This is an overview of three rules.

7.1 Rule R00299CY_krev

Rule R00299CY_krev is an assignment rule for parameter R00299CY_krev:

$$R00299CY_krev = \frac{R00299CY_kfor \cdot R00299CY_MgADP_Ki \cdot R00299CY_G6P_KM}{R00299CY_Keq \cdot R00299CY_Glc_Ki \cdot R00299CY_MgATP_KM} \quad (1)$$

Derived unit s^{-1}

7.2 Rule cpd_C00369_CS

Rule cpd_C00369_CS is an assignment rule for species cpd_C00369_CS:

$$cpd_C00369_CS = \frac{[cpd_C00369Glc_CS] \cdot C00369_MW}{N_Glc_Starch}$$
 (2)

Derived unit $1^{-1} \cdot g$

7.3 Rule cpd_C00369db_CS

Rule cpd_C00369db_CS is a rate rule for species cpd_C00369db_CS:

$$\frac{d}{dt} cpd_{-}C00369db_{-}CS = [ec_{-}3_{-}2_{-}1_{-}68_{-}CS] \cdot ec_{-}3_{-}2_{-}1_{-}68_{-}CS_{-}kcat$$

$$\cdot \left(1 - \frac{1}{1 + exp\left(-100 \cdot \left(\frac{[cpd_{-}C00369db_{-}CS]}{[cpd_{-}C00369_{-}CS] \cdot (1 - f_{-}bamylase)} - 0.3\right)\right)} + \frac{1}{1 + exp\left(-100 \cdot \left(\frac{[cpd_{-}C00369db_{-}CS]}{[cpd_{-}C00369_{-}CS] \cdot (1 - f_{-}bamylase)} - 0.3\right)\right)} \cdot \left(1 - 1.429 \cdot \left(\frac{[cpd_{-}C00369db_{-}CS]}{[cpd_{-}C00369_{-}CS] \cdot (1 - f_{-}bamylase)} - 0.3\right)\right)\right)$$
(3)

8 Reactions

This model contains nine reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	rn_R02112CS_G2	Maltose formation from Starch	12345 · 7 cpd_C00369Glc_CS ec_3_2_1_2_CS, cp	d_C00369_CS, cpd_C00369db_CS 0000393 29
2	rn_R02112CS_G3	Maltotriose formation from Starch	18518 · 5 cpd_C00369Glc_CS ec_3_2_1_2_CS, cpd	$ \frac{\text{d_C00369_CS, cpd_C00369db_CS}}{0000393} \xrightarrow{199} $
3	rn_R02112CS_G5	Maltopentaose degradation	1207 · 73 cpd_G00343_CS $\xrightarrow{\text{ec}_3_2_1_2_CS}$ 2923 · 1984 · 13 cpd_C01835_CS	98 cpd1000012798_CS+
4	tr_TC_2_A_84_1_2	Maltose exporter	$cpd_C00208_CS \xrightarrow{tc_2_A_84_1_2_CIMS} cpd_C002$	08_C W 000185
5	tr_TC_2_A_1_1_17 rn_R00299CY	Plastidic Glucose transporter Hexokinase	$cpd_C00031_CS \xrightarrow{tc_2_A_1_1_17_CIMS} cpd_C000$ $cpd_C00002tot_CY$	
U	111_R00299C1	HEXOKIIIase	cpd_C00002tot_C1 cpd_C00031_CY	Y, cpd_C00660tot_CY, cpd_C03339to
7	rn_R06050CY	Cytosolic glucan phosphorylase	cpd_C00569Glc_CY cpd_C00009tot_CY	+ 0000559 tot_CY+
8	rn_AT2G40840CY	DPE2	cpd_C00569_CY	+ 0000559 CY+
9	rn_R05196CS	DPE1	2 cpd_C01835_CS \(\frac{\text{ec_2_4_1_25_CS}}{\text{cpd_C00031_cpd_G00343_CS}} \) cpd_C00031_	CS+0000559

8.1 Reaction rn_R02112CS_G2

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name Maltose formation from Starch

SBO:0000393 production

Reaction equation

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
cpd_C00369Glc_CS	Starch Glucosyl unit	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
ec_3_2_1_2_CS cpd_C00369_CS cpd_C00369db_CS	beta amylase Starch Starch DB	

Product

Table 8: Properties of each product.

Id	Name	SBO
cpd_C00208_CS	Maltose	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \frac{\text{vol}\left(\text{ChloroplastStroma}\right) \cdot \text{R02112CS_Gn_kcat} \cdot \left[\text{ec_3_2_1_2_CS}\right] \cdot \left(\text{f_G2} \cdot \left(\text{f_bamylase} \cdot \left[\text{cpd_C00369_CS}\right] + \left[\text{cpd_C00369db_CS}\right]\right) + \text{R02112CS_Gn_KN}}{\text{conv_gm_umole} \cdot \left(\text{f_G2} \cdot \left(\text{f_bamylase} \cdot \left[\text{cpd_C00369_CS}\right] + \left[\text{cpd_C00369db_CS}\right]\right) + \text{R02112CS_Gn_KN}}$$

8.2 Reaction rn_R02112CS_G3

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name Maltotriose formation from Starch

SBO:0000393 production

Reaction equation

$$18518 \cdot 5 \operatorname{cpd_C00369Glc_CS} \xrightarrow{\operatorname{ec_3_2_1_2_CS}, \operatorname{cpd_C00369_CS}, \operatorname{cpd_C00369db_CS}} 1984 \cdot 13 \operatorname{cpd_C01835_CS} \tag{6}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
cpd_C00369Glc_CS	Starch Glucosyl unit	

Modifiers

Table 10: Properties of each modifier.

r		
Id	Name	SBO
ec_3_2_1_2_CS cpd_C00369_CS cpd_C00369db_CS	beta amylase Starch Starch DB	

Product

Table 11: Properties of each product.

Id	Name	SBO
cpd_C01835_CS	Maltotriose	

Derived unit $s^{-1} \cdot \mu mol$

$$\frac{v_2}{\text{conv_gm_umole} \cdot (\text{f_G3} \cdot (\text{f_bamylase} \cdot [\text{cpd_C00369_CS}] + [\text{cpd_C00369_CS}] + [\text{cpd_C00369_CS}] + [\text{cpd_C00369_CS}] + [\text{cpd_C00369db_CS}]) + \text{R02112CS_Gn_K}}$$

8.3 Reaction rn_R02112CS_G5

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Maltopentaose degradation

SBO:0000179 degradation

Reaction equation

$$1207.73 \text{ cpd_G00343_CS} \xrightarrow{\text{ec_3_2_1_2_CS}} 2923.98 \text{ cpd_C00208_CS} + 1984.13 \text{ cpd_C01835_CS}$$
(8)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
cpd_G00343_CS	Maltopentaose	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
ec_3_2_1_2_CS	beta amylase	

Products

Table 14: Properties of each product.

Id	Name	SBO
cpd_C00208_CS	Maltose	
cpd_C01835_CS	Maltotriose	

Derived unit $s^{-1} \cdot \mu mol$

$$\frac{v_3}{v_3} = \frac{\text{vol}\left(\text{ChloroplastStroma}\right) \cdot \text{R02112CS_G5_kcat} \cdot \left[\text{ec_3_2_1_2_CS}\right] \cdot \left[\text{cpd_G00343_CS}\right] \cdot \text{G00343_MW}}{\text{conv_gm_umole} \cdot \left(\left[\text{cpd_G00343_CS}\right] \cdot \text{G00343_MW} + \text{R02112CS_G5_KM}\right)}$$

8.4 Reaction tr_TC_2_A_84_1_2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Maltose exporter

SBO:0000185 transport reaction

Reaction equation

$$cpd_C00208_CS \xrightarrow{tc_2_A_84_1_2_CIMS} cpd_C00208_CY$$
 (10)

Reactant

Table 15: Properties of each reactant.

Id Name SBO

cpd_C00208_CS Maltose

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
tc_2_A_84_1_2_CIMS	Maltose exporter(MEX)	

Product

Table 17: Properties of each product.

Id	Name	SBO
cpd_C00208_CY	Maltose	

Derived unit $s^{-1} \cdot 10^{-6} \text{ mol}$

$$\nu_{4} = \frac{vol\left(ChloroplastStroma\right) \cdot TC_2_A_84_1_2_kcat \cdot [tc_2_A_84_1_2_CIMS] \cdot [cpd_C00208_CS]}{TC_2_A_84_1_2_KM + [cpd_C00208_CS]}$$

8.5 Reaction tr_TC_2_A_1_1_17

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Plastidic Glucose transporter

SBO:0000185 transport reaction

Reaction equation

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
cpd_C00031_CS	Glucose	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
tc_2_A_1_1_17_CIMS	Glucose transporter(pGlcT)	

Product

Table 20: Properties of each product.

Id	Name	SBO
cpd_C00031_CY	Glucose	

Derived unit $s^{-1} \cdot 10^{-6} \text{ mol}$

$$\nu_{5} = \frac{vol\left(ChloroplastStroma\right) \cdot TC_2_A_1_1_17_kcat \cdot [tc_2_A_1_1_17_CIMS] \cdot [cpd_C00031_CS]}{TC_2_A_1_1_17_KM + [cpd_C00031_CS]}$$

8.6 Reaction rn_R00299CY

This is a reversible reaction of two reactants forming three products influenced by four modifiers.

Name Hexokinase

SBO:0000559 enzyme activity

Notes Kinetics reversible random sequential bi-bi.

Reaction equation

$$cpd_C00002tot_CY + cpd_C00031_CY \xleftarrow{ec_2_7_1_1_CY, cpd_C00051_CY, cpd_C00660tot_CY, cpd_C03339tot_CY} \underbrace{(14)}$$

Reactants

Table 21: Properties of each reactant.

Id	Name	SBO
cpd_C00002tot_CY cpd_C00031_CY	ATP pool Glucose	

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
ec_2_7_1_1_CY	Hexokinase (cytosolic)	
cpd_C00051_CY	Reduced glutathione	
${\tt cpd_C00660tot_CY}$	(D)-Glucose-1,6-bisphosphate pool	
${\tt cpd_C03339tot_CY}$	2,3-Bisphosphoglycerate pool	

Products

Table 23: Properties of each product.

Id	Name	SBO
<pre>cpd_C00092tot_CY cpd_C00008tot_CY cpd_C00080_CY</pre>	•	

Derived unit contains undeclared units

$$=\frac{(15)}{1+\frac{[\text{cpd_C00002tot_CY}]}{R00299\text{CY_MgATP_Ki}}+\frac{[\text{cpd_C00031_CY}]}{R00299\text{CY_Glc_Ki}}\cdot\left(1+\frac{[\text{cpd_C00092tot_CY}]}{R00299\text{CY_Glc_Kip}}+\frac{[\text{cpd_C00660tot_CY}]}{R00299\text{CY_Glc_Kip}}+\frac{[\text{cpd_C03339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C033339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C03339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C03339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C03339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C03339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C033339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{cpd_C033339tot_CY}]}{R00299\text{CY_BPG_Kip}}+\frac{[\text{$$

8.7 Reaction rn_R06050CY

This is a reversible reaction of two reactants forming two products influenced by one modifier.

Name Cytosolic glucan phosphorylase

SBO:0000559 enzyme activity

Reaction equation

$$cpd_C00569Glc_CY + cpd_C00009tot_CY \xrightarrow{ec_2_4_1_1_CY} cpd_C00103tot_CY + cpd_C00569_CY \tag{16}$$

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
cpd_C00569Glc_CY cpd_C00009tot_CY	Glucosyl Arabinogalactan HPi	

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
ec_2_4_1_1_CY	Cytosolic glucan phosphorylase	

Id	Name	SBO

Products

Table 26: Properties of each product.

Id	Name	SBO
cpd_C00103tot_CY cpd_C00569_CY	G1P pool Arabinogalactan	

Kinetic Law

Derived unit $s^{-1} \cdot 1.000000000000024 \cdot 10^{-6} \text{ mol}$

 v_7 (17)

 $= \frac{}{R06050CY_GlcAG_Ki \cdot R06050CY_Pi_KM + R06050CY_Pi_KM \cdot [cpd_C00569Glc_CY] + R06050CY_GlcAG_RicA$

8.8 Reaction rn_AT2G40840CY

This is a reversible reaction of two reactants forming two products influenced by one modifier.

Name DPE2

SBO:0000559 enzyme activity

Reaction equation

$$cpd_C00208_CY + cpd_C00569_CY \xleftarrow{ec_2_4_1_25_CY} cpd_C00031_CY + cpd_C00569Glc_CY \tag{18}$$

Reactants

Table 27: Properties of each reactant.

Id	Name	SBO
cpd_C00208_CY cpd_C00569_CY	Maltose AG	

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
ec_2_4_1_25_CY	DPE2	

Products

Table 29: Properties of each product.

	I .	
Id	Name	SBO
cpd_C00031_CY cpd_C00569Glc_CY	Glucose GlcAG	

Kinetic Law

Derived unit contains undeclared units

 v_8 (19)

 $AT2G40840CY_AG_KM \cdot [cpd_C00208_CY] + AT2G40840CY_G2_KM \cdot [cpd_C00569_CY] + [cpd_C00208_CY] + [cpd_C$

8.9 Reaction rn_R05196CS

This is a reversible reaction of one reactant forming two products influenced by one modifier.

Name DPE1

SBO:0000559 enzyme activity

Reaction equation

$$2 \operatorname{cpd_C01835_CS} \stackrel{\text{ec_2_4_1_25_CS}}{\rightleftharpoons} \operatorname{cpd_C00031_CS} + \operatorname{cpd_G00343_CS}$$
 (20)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
cpd_C01835_CS	Maltotriose	

Modifier

Table 31: Properties of each modifier.

Id	Name	SBO
ec_2_4_1_25_CS	DPE1	

Products

Table 32: Properties of each product.

Id	Name	SBO
cpd_C00031_CS cpd_G00343_CS		

Kinetic Law

Derived unit contains undeclared units

 $v_{9} = \frac{\text{vol}\left(\text{ChloroplastStroma}\right) \cdot \text{R05196CS}}{\text{R05196CS_G3_KM} \cdot \left[\text{cpd_C01835_CS}\right] + \left[\text{cpd_C01835_CS}\right]^{2} + \frac{\text{R05196CS_G3_KM} \cdot \text{R05196CS_G3_Ki}}{\text{R05196CS_G1_KM} \cdot \text{R05196CS_G5_Ki}} \cdot \left(\text{R05196CS_G5_Ki}\right)}$

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

9.1 Species cpd_C00080_CY

Name H+

SBO:0000327 non-macromolecular ion

Initial concentration $0.1 \, \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in rn_R00299CY), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00080}_{-}\mathrm{CY} = 0 \tag{22}$$

9.2 Species cpd_C00369_CS

Name Starch

SBO:0000247 simple chemical

Involved in rule cpd_C00369_CS

This species takes part in two reactions (as a modifier in rn_R02112CS_G2, rn_R02112CS_G3) and is also involved in one rule which determines this species' quantity.

9.3 Species cpd_C00369Glc_CS

Name Starch Glucosyl unit

SBO:0000247 simple chemical

Initial concentration $1000 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in rn_R02112CS_G2, rn_R02112CS_G3), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd} \cdot \mathrm{C00369Glc} \cdot \mathrm{CS} = 0 \tag{23}$$

9.4 Species cpd_C00369db_CS

Name Starch exposed to Beta Amylase due to action of Isoamylase (Starch DB)

SBO:0000247 simple chemical

Initial concentration $0 \text{ g} \cdot 1^{-1}$

Involved in rule cpd_C00369db_CS

This species takes part in two reactions (as a modifier in rn_R02112CS_G2, rn_R02112CS_G3) and is also involved in one rule which determines this species' quantity.

9.5 Species cpd_C00208_CY

Name Maltose

SBO:0000247 simple chemical

Initial concentration $10 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in rn_AT2G40840CY and as a product in tr_TC_2_A_84_1_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00208}_{-}\mathrm{CY} = v_4 - v_8 \tag{24}$$

9.6 Species cpd_C00208_CS

Name Maltose

SBO:0000247 simple chemical

Initial concentration $10 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in tr_TC_2_A_84_1_2 and as a product in rn_R02112CS_G2, rn_R02112CS_G5).

$$\frac{d}{dt} \text{cpd_C00208_CS} = 2923.98v_1 + 2923.98v_3 - v_4$$
 (25)

9.7 Species cpd_C01835_CS

Name Maltotriose

SBO:0000247 simple chemical

Initial concentration $100 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in rn_R05196CS and as a product in rn_R02112CS_G3, rn_R02112CS_G5).

$$\frac{d}{dt} cpd_{-}C01835_{-}CS = 1984.13v_2 + 1984.13v_3 - 2v_9$$
 (26)

9.8 Species cpd_G00343_CS

Name Maltopentaose

SBO:0000247 simple chemical

Initial concentration 1000 µmol·l⁻¹

This species takes part in two reactions (as a reactant in rn_R02112CS_G5 and as a product in rn_R05196CS).

$$\frac{d}{dt} cpd_G00343_CS = v_9 - 1207.73v_3$$
 (27)

9.9 Species cpd_C00031_CS

Name (D)-Glucose

SBO:0000247 simple chemical

Initial concentration $10 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in tr_TC_2_A_1_1_17 and as a product in rn_R05196CS).

$$\frac{d}{dt} cpd_{-}C00031_{-}CS = v_9 - v_5$$
 (28)

9.10 Species cpd_C00031_CY

Name (D)-Glucose

SBO:0000247 simple chemical

Initial concentration $10 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in rn_R00299CY and as a product in tr_TC_2_A_1_1_17, rn_AT2G40840CY).

$$\frac{d}{dt} cpd_{C}O0031_{C}Y = v_5 + v_8 - v_6$$
 (29)

9.11 Species cpd_C00569_CY

Name Arabinogalactan (AG)

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in rn_AT2G40840CY and as a product in rn_R06050CY).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00569}_{-}\mathrm{CY} = v_7 - v_8 \tag{30}$$

9.12 Species cpd_C00569Glc_CY

Name Glucosyl Arabinogalactan (GlcAG)

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in rn_R06050CY and as a product in rn_AT2G40840CY).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd_C00569Glc_CY} = v_8 - v_7 \tag{31}$$

9.13 Species cpd_C00002tot_CY

Name ATP pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in rn_R00299CY), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00002tot}_{-}\mathrm{CY} = 0 \tag{32}$$

9.14 Species cpd_C00008tot_CY

Name ADP pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in rn_R00299CY), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00008tot}_{-}\mathrm{CY} = 0 \tag{33}$$

9.15 Species cpd_C00009tot_CY

Name Orthophosphate(HPi) pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in rn_R06050CY), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{d}{dt} cpd_{-}C00009tot_{-}CY = 0$$
(34)

9.16 Species cpd_C00051_CY

Name Glutathione (reduced)

SBO:0000247 simple chemical

Initial concentration $1000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_R00299CY).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00051}_{-}\mathrm{CY} = 0 \tag{35}$$

9.17 Species cpd_C00660tot_CY

Name (D)-Glucose-1,6-bisphosphate pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_R00299CY).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00660tot}_{-}\mathrm{CY} = 0 \tag{36}$$

9.18 Species cpd_C03339tot_CY

Name 2,3-Bisphosphoglycerate pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_R00299CY).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd_C03339tot_CY} = 0 \tag{37}$$

9.19 Species cpd_C00103tot_CY

Name G1P pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in rn_R06050CY), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00103tot}_{-}\mathrm{CY} = 0 \tag{38}$$

9.20 Species cpd_C00092tot_CY

Name G6P pool

SBO:0000247 simple chemical

Initial concentration $10000 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in rn_R00299CY), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cpd}_{-}\mathrm{C00092tot}_{-}\mathrm{CY} = 0 \tag{39}$$

9.21 Species ec_3_2_1_2_CS

Name Beta amylase

SBO:0000014 enzyme

Initial concentration $0.00783~g\cdot l^{-1}$

This species takes part in three reactions (as a modifier in rn_R02112CS_G2, rn_R02112CS_G3, rn_R02112CS_G5).

$$\frac{d}{dt}ec_3_2_1_2_CS = 0 (40)$$

9.22 Species ec_3_2_1_68_CS

Name Isoamylase

SBO:0000014 enzyme

Initial concentration $0.0118 \text{ g} \cdot l^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{d}{dt}ec_3_2_1_68_CS = 0 (41)$$

9.23 Species ec_2_4_1_25_CS

Name Disproportionating enzyme 1(DPE1)

SBO:0000014 enzyme

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_R05196CS).

$$\frac{d}{dt}ec_2_4_1_25_CS = 0 (42)$$

9.24 Species ec_2_4_1_25_CY

Name Disproportionating enzyme 2(DPE2)

SBO:0000014 enzyme

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_AT2G40840CY).

$$\frac{d}{dt}ec_2_4_1_25_CY = 0 (43)$$

9.25 Species ec_2_4_1_1_CY

Name Cytosolic Glucan phosphorylase

SBO:0000014 enzyme

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_R06050CY).

$$\frac{d}{dt}ec_2_4_1_CY = 0 (44)$$

9.26 Species ec_2_7_1_1_CY

Name Hexokinase

SBO:0000014 enzyme

Initial concentration $10 \, \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in rn_R00299CY).

$$\frac{d}{dt}ec_2-7_1-1_1CY = 0 (45)$$

9.27 Species tc_2_A_84_1_2_CIMS

Name Maltose exporter (MEX)

SBO:0000284 transporter

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in tr_TC_2_A_84_1_2).

$$\frac{d}{dt}tc_2A_84_12CIMS = 0 (46)$$

9.28 Species tc_2_A_1_1_17_CIMS

Name Glucose transporter (pGlcT)

SBO:0000284 transporter

Initial concentration $20 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in tr_TC_2_A_1_1_17).

$$\frac{d}{dt}tc_2A_1_1T_CIMS = 0 (47)$$

A Glossary of Systems Biology Ontology Terms

SBO:000009 kinetic constant: Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000014 enzyme: A protein that catalyzes a chemical reaction. The word comes from en "a" or "i") and simo "leave" or "yeas")

SBO:0000025 catalytic rate constant: Numerical parameter that quantifies the velocity of an enzymatic reaction

- **SBO:0000027 Michaelis constant:** Substrate concentration at which the velocity of reaction is half its maximum. Michaelis constant is an experimental parameter. According to the underlying molecular mechanism it can be interpreted differently in terms of microscopic constants
- SBO:0000179 degradation: Complete disappearance of a physical entity
- **SBO:0000185 transport reaction:** Movement of a physical entity without modification of the structure of the entity
- SBO:0000247 simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000281 equilibrium constant:** Quantity characterizing a chemical equilibrium in a chemical reaction, which is a useful tool to determine the concentration of various reactants or products in a system where chemical equilibrium occurs
- **SBO:0000284 transporter:** Participating entity that facilitates the movement of another physical entity from a defined subset of the physical environment (for instance a cellular compartment) to another.
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000320 product catalytic rate constant:** Numerical parameter that quantifies the velocity of product creation by a reversible enzymatic reaction.
- **SBO:0000321 substrate catalytic rate constant:** Numerical parameter that quantifies the velocity of substrate creation by a reversible enzymatic reaction.
- SBO:0000327 non-macromolecular ion: Chemical entity having a net electric charge
- **SBO:0000393** production: Generation of a material or conceptual entity.
- **SBO:0000503 number of entity pool constituents:** The numerical quantification of an entity pool. This may be expressed as, for example, the number of molecules or the number of moles of identical entities of which an specific entity pool is comprised
- SBO:0000504 mass of an entity pool: The mass that comprises an entity pool
- **SBO:0000540 fraction of an entity pool:** A ratio that represents the quantity of a defined constituent entity over the total number of all constituent entities present.
- **SBO:0000559 enzyme activity:** A measure of the amount of active enzyme present, expressed under specified conditions. This is often expressed as micromol per min (also known as enzyme unit, U), rather than the less practical official SI unit, Katal (1 mol per second). Enzyme activity normally refers to the natural substrate for the enzyme, but can also be given for standardised substrates such as gelatin, where it is then referred to as GDU (Gelatin Digesting Units)

SBO:0000565 systems description constant: A physical constant that is required in the calculation of a system parameter.

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

 $[^]b$ California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany