Simplification of Differential Algebraic Equations by the Projection Method¹

Elena Shmoylova, **Jürgen Gerhard**, Erik Postma, Austin Roche

1 supported by Toyota Motor Engine & Manufacturing North America Inc.

supported by Toyota Motor Engine & Mandiacturing North America inc.

Maplesoft, Waterloo ON, Canada, 19 April 2013

5th International Workshop on Equation-Based Object-Oriented Modeling, Languages and Tools

Outline

1 Motivation

2 Hessenberg Form

3 Generalized Projection Method

4 Benchmarks

- Goal: reduce higher index DAE to index 1 or ODE
- Method: project dynamic equations onto constraint manifold to systematically eliminate Lagrange multipliers

- Goal: reduce higher index DAE to index 1 or ODE
- Method: project dynamic equations onto constraint manifold to systematically eliminate Lagrange multipliers
- Scott (1988), Blajer (1992), Arczewski & Blajer (1996): mechanical systems with holonomic or non-holonomic constraints

- Goal: reduce higher index DAE to index 1 or ODE
- Method: project dynamic equations onto constraint manifold to systematically eliminate Lagrange multipliers
- Scott (1988), Blajer (1992), Arczewski & Blajer (1996): mechanical systems with holonomic or non-holonomic constraints
- Our contribution: generalization to arbitrary DAEs in Hessenberg form

- Goal: reduce higher index DAE to index 1 or ODE
- Method: project dynamic equations onto constraint manifold to systematically eliminate Lagrange multipliers
- Scott (1988), Blajer (1992), Arczewski & Blajer (1996): mechanical systems with holonomic or non-holonomic constraints
- Our contribution: generalization to arbitrary DAEs in Hessenberg form
- Such DAEs naturally arise from constrained dynamical optimization using calculus of variations

- Goal: reduce higher index DAE to index 1 or ODE
- Method: project dynamic equations onto constraint manifold to systematically eliminate Lagrange multipliers
- Scott (1988), Blajer (1992), Arczewski & Blajer (1996): mechanical systems with holonomic or non-holonomic constraints
- Our contribution: generalization to arbitrary DAEs in Hessenberg form
- Such DAEs naturally arise from constrained dynamical optimization using calculus of variations
- Other index reduction methods: Gear (1971), Pantelides (1988), Pryce (2001), ...

- Goal: reduce higher index DAE to index 1 or ODE
- Method: project dynamic equations onto constraint manifold to systematically eliminate Lagrange multipliers
- Scott (1988), Blajer (1992), Arczewski & Blajer (1996): mechanical systems with holonomic or non-holonomic constraints
- Our contribution: generalization to arbitrary DAEs in Hessenberg form
- Such DAEs naturally arise from constrained dynamical optimization using calculus of variations
- Other index reduction methods: Gear (1971), Pantelides (1988), Pryce (2001), ...

DAE in general form: $\mathbf{F}(\dot{\mathbf{x}}, \mathbf{x}) = 0$

■ implicit ODE (index 0): **F**

nonsingular

- \blacksquare implicit ODE (index 0): $\mathbf{F}_{\dot{\mathbf{x}}}$ nonsingular
- lacksquare explicit ODE (index 0): $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

- \blacksquare implicit ODE (index 0): $\mathbf{F}_{\dot{\mathbf{x}}}$ nonsingular
- explicit ODE (index 0): $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
- $flue{x}$ Hessenberg index 1: $\dot{x}=f(x,z)$ h_z nonsingular
 - $0 = \mathbf{h}(\mathbf{x}, \mathbf{z})$

- implicit ODE (index 0): F_x nonsingular
- explicit ODE (index 0): $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
- f Hessenberg index 1: $\dot{f x}={f f}({f x},{f z})$ ${f h}_{f z}$ nonsingular
 - $0 = \mathbf{h}(\mathbf{x}, \mathbf{z})$
- Hessenberg index 2: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z}) \mathbf{h}_{\mathbf{x}} \cdot \mathbf{f}_{\mathbf{z}}$ nonsingular $0 = \mathbf{h}(\mathbf{x})$

- implicit ODE (index 0): F_x nonsingular
- lacksquare explicit ODE (index 0): $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
- Hessenberg index 1: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z})$ $\mathbf{h_z}$ nonsingular $0 = \mathbf{h}(\mathbf{x}, \mathbf{z})$
- Hessenberg index 2: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z})$ $\mathbf{h_x} \cdot \mathbf{f_z}$ nonsingular $0 = \mathbf{h}(\mathbf{x})$
- Hessenberg index 3: $\dot{y} = f(x, y, z)$ $h_x \cdot g_y \cdot f_z$ nonsingular $\dot{x} = g(x, y)$ 0 = h(x)

- implicit ODE (index 0): F_x nonsingular
- lacksquare explicit ODE (index 0): $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
- Hessenberg index 1: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z})$ $\mathbf{h_z}$ nonsingular $0 = \mathbf{h}(\mathbf{x}, \mathbf{z})$
- Hessenberg index 2: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z})$ $\mathbf{h}_{\mathbf{x}} \cdot \mathbf{f}_{\mathbf{z}}$ nonsingular $0 = \mathbf{h}(\mathbf{x})$
- $\begin{tabular}{ll} \blacksquare & \mbox{Hessenberg index 3:} & \dot{\mathbf{y}} = \mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z}) & \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}} \mbox{ nonsingular} \\ & \dot{\mathbf{x}} = \mathbf{g}(\mathbf{x},\mathbf{y}) \\ & 0 = \mathbf{h}(\mathbf{x}) \\ \end{tabular}$
- Hessenberg index m: ...

- \blacksquare implicit ODE (index 0): $\mathbf{F}_{\dot{\mathbf{x}}}$ nonsingular
- lacksquare explicit ODE (index 0): $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
- Hessenberg index 1: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{z})$ $\mathbf{h_z}$ nonsingular $0 = \mathbf{h}(\mathbf{x}, \mathbf{z})$
- $\begin{tabular}{ll} \textbf{Hessenberg index 2:} & \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\mathbf{z}) & \mathbf{h_x} \cdot \mathbf{f_z} \mbox{ nonsingular} \\ & 0 = \mathbf{h}(\mathbf{x}) \\ \end{tabular}$
- $\begin{tabular}{ll} \blacksquare & \mbox{Hessenberg index 3:} & \dot{\mathbf{y}} = \mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z}) & \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}} \mbox{ nonsingular} \\ & \dot{\mathbf{x}} = \mathbf{g}(\mathbf{x},\mathbf{y}) \\ & 0 = \mathbf{h}(\mathbf{x}) \\ \end{tabular}$
- Hessenberg index m: ...

Mixed index Hessenberg form

Hessenberg index 3:

$$\begin{split} \dot{\mathbf{y}} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\ \dot{\mathbf{x}} &= \mathbf{g}(\mathbf{x}, \mathbf{y}) \\ 0 &= \mathbf{h}(\mathbf{x}) \end{split} \qquad \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}} \text{ nonsingular} \end{split}$$

Hessenberg mixed index 1,3:

$$\begin{split} \dot{\mathbf{y}} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}_1, \mathbf{z}_2) \\ \dot{\mathbf{x}} &= \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{z}_1) \\ 0 &= \mathbf{h}(\mathbf{x}, \mathbf{z}_1) \end{split} \quad \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}_2} \text{ and } \mathbf{h}_{\mathbf{z}_1} \text{ nonsingular} \end{split}$$

Mixed index Hessenberg form

Hessenberg index 3:

$$\begin{split} \dot{\mathbf{y}} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\ \dot{\mathbf{x}} &= \mathbf{g}(\mathbf{x}, \mathbf{y}) \\ 0 &= \mathbf{h}(\mathbf{x}) \end{split} \qquad \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}} \text{ nonsingular} \end{split}$$

Hessenberg mixed index 1,3:

$$\begin{split} \dot{\mathbf{y}} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z_1}, \mathbf{z_2}) \\ \dot{\mathbf{x}} &= \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{z_1}) \\ 0 &= \mathbf{h}(\mathbf{x}, \mathbf{z_1}) \end{split} \qquad \mathbf{h_x} \cdot \mathbf{g_y} \cdot \mathbf{f_{z_2}} \text{ and } \mathbf{h_{z_1}} \text{ nonsingular} \end{split}$$

x generalized positions
 y generalized velocities
 z algebraic variables (Lagrange multipliers)

Mixed index Hessenberg form

Hessenberg index 3:

$$\begin{split} \dot{\mathbf{y}} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\ \dot{\mathbf{x}} &= \mathbf{g}(\mathbf{x}, \mathbf{y}) \\ 0 &= \mathbf{h}(\mathbf{x}) \end{split}$$
 $\mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}} \text{ nonsingular}$

Hessenberg mixed index 1,3:

$$\begin{split} \dot{\mathbf{y}} &= \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}_1, \mathbf{z}_2) \\ \dot{\mathbf{x}} &= \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{z}_1) \\ 0 &= \mathbf{h}(\mathbf{x}, \mathbf{z}_1) \end{split} \quad \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{z}_2} \text{ and } \mathbf{h}_{\mathbf{z}_1} \text{ nonsingular} \end{split}$$

x generalized positions
 y generalized velocities
 z algebraic variables (Lagrange multipliers)

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \qquad \qquad #\mathbf{f} = #\mathbf{y} = n$$

$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y}) \qquad \qquad #\mathbf{g} = #\mathbf{x} = n$$

$$0 = \mathbf{h}(\mathbf{x}) \qquad \qquad #\mathbf{h} = #\mathbf{z} = k \le n$$

 $\mathbf{h_x} \cdot \mathbf{g_v} \cdot \mathbf{f_z}$ nonsingular

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \qquad \qquad #\mathbf{f} = #\mathbf{y} = n$$

$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y}) \qquad \qquad #\mathbf{g} = #\mathbf{x} = n$$

$$0 = \mathbf{h}(\mathbf{x}) \qquad \qquad #\mathbf{h} = #\mathbf{z} = k \le n$$

$$0 = \mathbf{h}_{\mathbf{x}} \cdot \dot{\mathbf{x}} \qquad \qquad (\text{diff})$$

 $\mathbf{h_x} \cdot \mathbf{g_v} \cdot \mathbf{f_z}$ nonsingular

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \qquad \qquad #\mathbf{f} = \#\mathbf{y} = n$$

$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y}) \qquad \qquad #\mathbf{g} = \#\mathbf{x} = n$$

$$0 = \mathbf{h}(\mathbf{x}) \qquad \qquad #\mathbf{h} = \#\mathbf{z} = k \le n$$

$$0 = \mathbf{h}_{\mathbf{x}} \cdot \dot{\mathbf{x}} \qquad \qquad (\text{diff})$$

$$= \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g} \qquad (\text{subs})$$

 $\mathbf{h_x} \cdot \mathbf{g_v} \cdot \mathbf{f_z}$ nonsingular

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \qquad \qquad #\mathbf{f} = #\mathbf{y} = n$$

$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y}) \qquad \qquad #\mathbf{g} = #\mathbf{x} = n$$

$$0 = \mathbf{h}(\mathbf{x}) \qquad \qquad #\mathbf{h} = #\mathbf{z} = k \le n$$

$$0 = \mathbf{h}_{\mathbf{x}} \cdot \dot{\mathbf{x}} \qquad \qquad (\text{diff})$$

$$= \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g} \qquad (\text{subs})$$

$$0 = \dot{\mathbf{h}}_{\mathbf{x}} \cdot \mathbf{g} + \dot{\mathbf{h}}_{\mathbf{x}} \cdot (\mathbf{g}_{\mathbf{x}} \cdot \dot{\mathbf{x}} + \mathbf{g}_{\mathbf{y}} \cdot \dot{\mathbf{y}}) \qquad (\text{diff})$$

 $h_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{z}}$ nonsingular

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \qquad \qquad #\mathbf{f} = #\mathbf{y} = n$$

$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y}) \qquad \qquad #\mathbf{g} = #\mathbf{x} = n$$

$$0 = \mathbf{h}(\mathbf{x}) \qquad \qquad #\mathbf{h} = #\mathbf{z} = k \le n$$

$$0 = \mathbf{h}_{\mathbf{x}} \cdot \dot{\mathbf{x}} \qquad \qquad \text{(diff)}$$

$$= \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g} \qquad \qquad \text{(subs)}$$

$$0 = \dot{\mathbf{h}}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot (\mathbf{g}_{\mathbf{x}} \cdot \dot{\mathbf{x}} + \mathbf{g}_{\mathbf{y}} \cdot \dot{\mathbf{y}}) \qquad \qquad \text{(diff)}$$

$$= \dot{\mathbf{h}}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f} \qquad \text{(subs)}$$

 $h_x \cdot g_y \cdot f_z$ nonsingular

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$$
 $\#\mathbf{f} = \#\mathbf{y} = n$
 $\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y})$ $\#\mathbf{g} = \#\mathbf{x} = n$

$$0 = \dot{\mathbf{h}_{\mathbf{x}}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}$$

$$\mathbf{h_x} \cdot \mathbf{g_v} \cdot \mathbf{f_z}$$
 nonsingular \Longrightarrow index 1, $\# \mathsf{DE} = 2n$, $\# \mathsf{AE} = k$

Hessenberg index 3

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$$
 $\#\mathbf{f} = \#\mathbf{y} = n$
 $\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{y})$ $\#\mathbf{g} = \#\mathbf{x} = n$

$$0 = \dot{\mathbf{h}_{\mathbf{x}}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{h}_{\mathbf{x}} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}$$

$$\mathbf{h_x} \cdot \mathbf{g_v} \cdot \mathbf{f_z}$$
 nonsingular \Longrightarrow index 1, $\# \mathrm{DE} = 2n$, $\# \mathrm{AE} = k$

In the paper: also non-autonomous, $\#\mathbf{x} \neq \#\mathbf{y}$, mixed index

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- \mathbf{D} orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$
- Ansatz: $\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}, \qquad \# \mathbf{u} = n k$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

 $\dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_v} \cdot \mathbf{f}$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\quad \text{diff\&subs:} \qquad \quad \dot{D} \cdot u + D \cdot \dot{u} = g_x \cdot g + g_v \cdot f$$

■ Project onto normal space:

$$\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{C} \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{C} \cdot \mathbf{g}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g}_{\mathbf{v}} \cdot \mathbf{f}$$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\quad \text{diff\&subs:} \qquad \quad \dot{D} \cdot u + D \cdot \dot{u} = g_x \cdot g + g_v \cdot f$$

Project onto normal space:

$$\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{C} \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{C} \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g_v} \cdot \mathbf{f}$$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_v} \cdot \mathbf{f}$$

Project onto normal space: AE for \mathbf{z} $\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} = \mathbf{C} \cdot \mathbf{g}_{\mathbf{x}} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g}_{\mathbf{y}} \cdot \mathbf{f}$

Project onto tangent space:

$$\mathbf{D}^T \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D}^T \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{D}^T \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{D}^T \cdot \mathbf{g_y} \cdot \mathbf{f}$$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

■ Ansatz:
$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\quad \text{diff\&subs:} \qquad \quad \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_v} \cdot \mathbf{f}$$

Project onto normal space: AE for \mathbf{z} $\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} = \mathbf{C} \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g_y} \cdot \mathbf{f}$

Project onto tangent space:

$$\mathbf{D}^T \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D}^T \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{D}^T \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{D}^T \cdot \mathbf{g_y} \cdot \mathbf{f}$$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_y} \cdot \mathbf{f}$$

Project onto normal space: AE for
$$\mathbf{z}$$

$$\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} = \mathbf{C} \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g_v} \cdot \mathbf{f}$$

Project onto tangent space: DE for \mathbf{u} $\mathbf{D}^T \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D}^T \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{D}^T \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{D}^T \cdot \mathbf{g_y} \cdot \mathbf{f}$

■ DE for x:
$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{r}$$

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_v} \cdot \mathbf{f}$$

Project onto normal space: AE for
$$\mathbf{z}$$

$$\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} = \mathbf{C} \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g_v} \cdot \mathbf{f}$$

Project onto tangent space: DE for u

$$\mathbf{D}^T \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D}^T \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{D}^T \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{D}^T \cdot \mathbf{g_y} \cdot \mathbf{f}$$

 $\qquad \qquad \mathsf{DE} \ \mathsf{for} \ \mathbf{x} \colon \qquad \qquad \dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u}$

AE for y: $D \cdot u = g$

- diff: $0 = \mathbf{h}_{\mathbf{x}} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

• Ansatz:
$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$
, $\# \mathbf{u} = n - k$

$$\dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_v} \cdot \mathbf{f}$$

Project onto normal space: AE for
$$\mathbf{z}$$

$$\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} = \mathbf{C} \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g_v} \cdot \mathbf{f}$$

Project onto tangent space: DE for \mathbf{u} $\mathbf{D}^T \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D}^T \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{D}^T \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{D}^T \cdot \mathbf{g_y} \cdot \mathbf{f}$

■ DE for x:
$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u}$$

$$f AE$$
 for $f y$: $f D\cdot f u=f g$

$$\Longrightarrow$$
 index 1, $\# DE = 2n - k$, $\# AE = n + k$

Projection

- diff: $0 = \mathbf{h_x} \cdot \dot{\mathbf{x}} = \mathbf{C} \cdot \dot{\mathbf{x}} \implies \dot{\mathbf{x}}$ tangential to $\mathbf{h} = 0$
- Idea: introduce new velocities u in the tangent space
- **D** orthogonal complement: $\mathbf{C} \cdot \mathbf{D} = 0$

$$\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u} = \mathbf{g}, \qquad \qquad \# \mathbf{u} = n - k$$

$$\dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{g_x} \cdot \mathbf{g} + \mathbf{g_v} \cdot \mathbf{f}$$

Project onto normal space: AE for
$$\mathbf{z}$$

$$\mathbf{C} \cdot \dot{\mathbf{D}} \cdot \mathbf{u} = \mathbf{C} \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{C} \cdot \mathbf{g_v} \cdot \mathbf{f}$$

■ Project onto tangent space: DE for u

$$\mathbf{D}^T \cdot \dot{\mathbf{D}} \cdot \mathbf{u} + \mathbf{D}^T \cdot \mathbf{D} \cdot \dot{\mathbf{u}} = \mathbf{D}^T \cdot \mathbf{g_x} \cdot \mathbf{g} + \mathbf{D}^T \cdot \mathbf{g_y} \cdot \mathbf{f}$$

■ DE for
$$\mathbf{x}$$
: $\dot{\mathbf{x}} = \mathbf{D} \cdot \mathbf{u}$

$$lackbox{ AE for } \mathbf{y} : \mathbf{D} \cdot \mathbf{u} = \mathbf{g}$$

$$\Longrightarrow$$
 index 1, $\# DE = 2n - k$, $\# AE = n + k$

In the paper: also for higher index

$$\begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix}$$

$$0 = x + 2y - 4$$

$$\mathbf{y} = \begin{pmatrix} v \\ w \end{pmatrix} \qquad \begin{pmatrix} \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \qquad = \mathbf{f}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} v \\ w \end{pmatrix} \qquad = \mathbf{g}$$

$$\mathbf{z} = \lambda \qquad 0 = x + 2y - 4 \qquad = \mathbf{h}$$

$$\mathbf{C} = \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) = (1, 2),$$

$$\mathbf{D} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} v \\ w \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\mathbf{z} = \lambda$$

$$\begin{pmatrix} \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} = \mathbf{f}$$
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \mathbf{u} = \begin{pmatrix} v \\ w \end{pmatrix} = \mathbf{g}$$
$$0 = x + 2y - 4 = \mathbf{h}$$

$$\mathbf{C} = \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) = (1, 2),$$

$$\mathbf{D} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} v \\ w \end{pmatrix} \qquad \begin{pmatrix} \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \qquad = \mathbf{f}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} u = \begin{pmatrix} v \\ w \end{pmatrix} \qquad = \mathbf{g}$$

$$\mathbf{z} = \lambda \qquad 0 = x + 2y - 4 \qquad = \mathbf{h}$$

$$\begin{pmatrix} -2 \\ 1 \end{pmatrix} \dot{u} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \quad \text{(diff\&subs)}$$

$$\mathbf{C} = (\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}) = (1, 2),$$
 $\mathbf{D} = {-2 \choose 1}$

$$\mathbf{y} = \begin{pmatrix} v \\ w \end{pmatrix} \qquad \begin{pmatrix} \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \qquad = \mathbf{f}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} u = \begin{pmatrix} v \\ w \end{pmatrix} \qquad = \mathbf{g}$$

$$\mathbf{z} = \lambda \qquad 0 = x + 2y - 4 \qquad = \mathbf{h}$$

$$(-2, 1) \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} \dot{u} = (-2, 1) \cdot \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \quad \text{(project)}$$

$$\mathbf{C} = (\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}) = (1, 2),$$

$$\mathbf{D} = {-2 \choose 1}$$

$$\mathbf{y} = \begin{pmatrix} v \\ w \end{pmatrix} \qquad \begin{pmatrix} \dot{v} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \qquad = \mathbf{f}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} u = \begin{pmatrix} v \\ w \end{pmatrix} \qquad = \mathbf{g}$$

$$\mathbf{z} = \lambda \qquad 0 = x + 2y - 4 \qquad = \mathbf{h}$$

$$(-2, 1) \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} \dot{u} = (-2, 1) \cdot \begin{pmatrix} \lambda \\ 2\lambda - g \end{pmatrix} \quad \text{(project)}$$

$$5\dot{u} = 2q \qquad \text{(simplify)}$$

$$\#\mathbf{x} = \#\mathbf{y} = n$$
, $\#\mathbf{h} = k$

Method	#DE	#AE
Classical	2n	k

$$\#\mathbf{x} = \#\mathbf{y} = n$$
, $\#\mathbf{h} = k$

Method	#DE	#AE
Classical	2n	k
Generalized Projection Method	2n-k	k+n

$$\#\mathbf{x} = \#\mathbf{y} = n$$
, $\#\mathbf{h} = k$

Method	#DE	#AE
Classical	2n	k
Generalized Projection Method	2n-k	k+n
(1) $l \leq k$ linear constraints in ${f h}$	2n-k-l	k+n

$$\# \mathbf{x} = \# \mathbf{y} = n$$
, $\# \mathbf{h} = k$

Method	#DE	#AE
Classical	2n	k
Generalized Projection Method	2n-k	k+n
(1) $l \leq k$ linear constraints in ${f h}$	2n-k-l	k+n
(2) g linear	2n-k	k

$$\# \mathbf{x} = \# \mathbf{y} = n$$
, $\# \mathbf{h} = k$

Method	#DE	#AE
Classical	2n	k
Generalized Projection Method	2n-k	k+n
(1) $l \leq k$ linear constraints in ${f h}$	2n-k-l	k+n
(2) g linear	2n-k	k
(3) f linear	2n-k	n

$$\# \mathbf{x} = \# \mathbf{y} = n$$
, $\# \mathbf{h} = k$

Method	#DE	#AE
Classical	2n	k
Generalized Projection Method	2n-k	k+n
(1) $l \leq k$ linear constraints in ${f h}$	2n-k-l	k+n
(2) g linear	2n-k	k
(3) f linear	2n-k	n
(2+3) \mathbf{f}, \mathbf{g} linear	2n-k	0

Original Projection Method has (2+3); in fact, $\mathbf{f} = \mathbf{a}(\mathbf{x}, \mathbf{y}) + \mathbf{C}^T \cdot \mathbf{z}$

Benchmarks for some index 3 models

Model	Version	#DE	#AE	#SE	PM Time
DoublePendulum1	HF	22	7	112	
	PM	14	0	129	0.91s
FourBar	HF	30	11	166	
	PM	16	0	194	13.03s
Pendulum1	HF	12	3	58	
	PM	8	0	67	0.29s
SliderCrank	HF	29	10	215	
	PM	18	0	231	2.15s
TriplePendulum1	HF	32	11	165	
	PM	20	0	199	1.86s

Maple implementation
HLMT models converted to (mixed-index) Hessenberg form first (HF)
SE: "solved equations"