

Отчет по лабораторной работе №1

Тема: Машина Тьюринга

Вариант 10

Выполнил студент гр. 3530901/90002		П.В.Рубинова
	(подпись)	
Руководитель		Д. С. Степанов
	(подпись)	
		2021 г.

Санкт-Петербург

Постановка задачи:

Построить машину Тьюринга-Поста, решающую поставленную задачу. Выполнить моделирование ее работы в одном из свободно доступных симуляторов. Подготовить отчет, отвечающий предъявленным требованиям.

Формулировка задачи:

Перевод десятичного числа в двоичное.

Метод решения:

Перевод десятичного числа в двоичное выполнен последовательным вычитанием 1 из десятичного числа и прибавлением 1 к двоичному числу.

Алфавит:

_0123456789

Х – зачеркнутые нули;

S – знак начала числа, которое нужно перевести в 2с.с.

Положение головки:

Перед запуском – на S (после S записано число).

В конце – на следующем пробеле после ответа.

Решение:

	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇
0	x → Q ₁	0 → Q ₂	9 ← Q ₃		0 ← Q ₅	1 → Q ₂	0 → 👄
1	1 → Q ₂	1 → Q ₂	0 → Q ₄		1 ← Q ₅	0 ← Q ₆	1 → 😄
2	2 → Q ₂	2 → Q ₂	1 → Q ₄		2 ← Q ₅		
3	3 → Q ₂	3 → Q ₂	2 → Q ₄		3 ← Q ₅		
4	4 → Q ₂	4 → Q ₂	3 → Q ₄		4 ← Q ₅		
5	5 → Q ₂	5 → Q ₂	4 → Q ₄		5 ← Q ₅		
6	6 → Q ₂	6 → Q ₂	5 → Q ₄		6 ← Q ₅		
7	7 → Q ₂	7 → Q ₂	6 → Q ₄		7 ← Q ₅		
8	8 → Q ₂	8 → Q ₂	7 → Q ₄		8 ← Q ₅		
9	9 → Q ₂	9 → Q2	8 → Q ₄	9 → Q4	9 ← Q ₅		
Х	$x \rightarrow Q_1$	x → Q ₂		_ ← Q ₄	x ← Q ₅		
S	s →Q1	s → Q ₁		_ ← Q ₇	s ← Q ₆		
]	_ ← Q ₄	_ ← Q ₃		_ ← Q ₅		1 → Q ₂	0 → 👄

Рис. 1. Таблица состояний.

Описание функциональных состояний:

- Q1 Убираем нули из начала делимого числа 10 С.С. (заменяем на X). Если число состояло из нулей, переходим в состояние Q4 чтобы убрать X знак начала числа S и вывести 0.
- Q2 Идем до конца числа. Если нашли знак начала числа S, переходим в состояние Q1, так как это значило, что мы шли по двоичному числу и сейчас будем идти по десятичному. Когда нашли пробел идем в состояние Q3.
- Q3 Производим вычитание единицы из десятичного числа. Если вычитание произведено успешно идем в состояние Q4.

- Q4 Пропускаем все 9 (если во время вычитания мы работали с круглыми числами) и идем до пробела. Когда его нашли, переходим в состояние Q5. Если мы нашли X значит десятичное число кончилось и нужно заканчивать: мы стираем все X и когда мы находим знак начала числа S удаляем его и идем заканчивать в состояние Q7.
- Q5 Возвращаемся до знака начала числа S.
- Q6 Увеличиваем двоичное число на 1. После этого переходим в состояние Q2, с помощью которого доходим до знака начала числа S, чтобы начать цикл заново.
- Q7 Переходим в конечное состояние ленты следующий пробел от ответа.

Пример:

Рассмотрим следующий пример: перевод десятичного числа 100 в двоичную систему счисления.

Рис. 2. Начальное состояние ленты.

Рис. 3. Зачеркнуты нули вместо десятков у делимого.

Произвели первое вычитание записали единицу к двоичному числу.

Рис. 4. Произвели второе вычитание.

Разрядность двоичного числа увеличилась.

Рис. 5. Конечное состояние ленты.

Диаграмма состояний:

На диаграмме пробел обозначен символом «В».

Также отдельные состояния отмечены цветами:

- Зеленый Начальное состояние;
- Красный Конечное (нулевое) состояние.

Вывод:

В данной работе я познакомилась с принципом работы машины Тьюринга и общими правилами реализации алгоритмов на ней на примере перевода десятичного числа в двоичное.