

Lecture 13 Midterm Review

Mahdi Roozbahani Georgia Tech

Linear Algebra Basics

- Norms
 - 。 Vector nom, matrix norm
- Multiplications
 - Vector dot product, matrix-vector multiplication, matrix-matrix multiplication
- Matrix Inversion
 - Linear dependence, rank, matrix inverse, invertibility
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

```
1 0 2
2 1 0
3 2 1
```

Basic Probability Theory and Statistics

$$P(x) = \sum_{y} P(x,y) = \sum_{y} P(x|y) P(y)$$

- Probability Distributions
 - Random variable, sample space, probability density, discrete vs continuous $P(A|B) = \frac{P(A|B)}{P(A|B)} =$
- Joint and Conditional Probability Distributions
 - Joint dist., marginal dist., conditional dist., i
- Bayes' Rule

$$M = \frac{\sum x_i}{n}$$

- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation
 - Inferring parameters with MLE, optimization

Basic Information Theory

- Expected Hexive Days 22 This I(x) = log_ Tax)
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

Entropy

Clustering Analysis

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on the chosen similarity/dissimilarity function
 - Points within a cluster is similar
 - Points across clusters are not so similar
- Issues for clustering
 - How to represent objects? (Vector space? Normalization?)
 - What is a similarity/dissimilarity function for your data?
 - What are the algorithm steps?

K-Means Algorithm

- Initialize k cluster centers, $\{c^1, c^2, ..., c^k\}$, randomly
- Do
 - Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment)

$$\pi(i) = \operatorname{argmin}_{j=1,\dots,k} \|x^i - c^j\|^2$$

Adjust the cluster centers (center adjustment)

$$c^{j} = \frac{1}{|\{i: \pi(i) = j\}|} \sum_{i: \pi(i) = j} x^{i}$$

While any cluster center has been changed

Convergence of K-Means

Will kmeans objective oscillate?

$$\frac{1}{m} \sum_{i=1}^{m} \left\| x^i - c^{\pi(i)} \right\|^2$$

- The minimum value of the objective is finite
- Each iteration of kmeans algorithm decrease the objective
 - Cluster assignment step decreases objective

•
$$\pi(i) = argmin_{j=1,...,k} ||x^i - c^j||^2$$
 for each data point i

Center adjustment step decreases objective

•
$$c^{j} = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x^{i} = argmin_{c} \sum_{i:\pi(i)=j} ||x^{i} - c||^{2}$$

Hierarchical Clustering

Organize objects into a tree-based hierarchical taxonomy

(dendrogram)

- Many applications in the real world
 - . Web pages
 - News articles
 - Scientific papers

Two Paradigms for Hierarchical Clustering

- Bottom-up Agglomerative Clustering
 - Start by considering each object as a separate cluster
 - Repeatedly join the closest pair of clusters
 - Stop when there is only one cluster left

- Top-Down Divisive Clustering
 - Start by considering all objects as one large cluster
 - Recursively divide each cluster into two sub-clusters
 - Stop when each cluster contains only one object

Distance Between Two Clusters

Single-Link

Nearest Neighbor: their closest members.

Complete-Link

Furthest Neighbor: their furthest members.

Centroid:

Clusters whose centroids (centers of gravity) are the most cosine-similar

Average:

average of all cross-cluster pairs.

Density-Based Clustering

MinPts

Basic Idea

- 3
- Clusters are dense regions in the data space, separated by regions of lower density
- A cluster is defined as a maximal set of density-connected points
- Detect arbitrarily shaped clusters

Method

DBSCAN (<u>Density-Based Spatial</u>
 <u>Clustering of Applications with Noise</u>)

Core Points, Border Points, and Outliers

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and MinPts, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Density Reachability

Density reachability

A point p is density reachable from a point q if there is a chain of points p_1 , ..., p_n , $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

$$p_1 = q \rightarrow p_2 \rightarrow \dots \rightarrow p_p = q$$

Directly Density-Reachable

Density-Reachable

Density-Connected

Gaussian Mixture Model for Soft Clustering

K-means

$$P(\chi) = \{\theta_1, \dots, \theta_K\}$$

Mixture modeling

-soft assignment: probability that an object belongs to a cluster

Mixture Models

• Formally a Mixture Model is the weighted sum of a number of pdfs where the weights are determined by a distribution, π

Start with parameters describing each cluster:

Mean μ_k Variance σ_k

Size π_k

Marginal probability distribution

$$p(\mathbf{x}|\theta) = \sum_{k} p(\mathbf{x}, \mathbf{z}_{nk}|\theta) = \sum_{k} p(\mathbf{x}|\mathbf{z}_{nk}, \theta) p(\mathbf{z}_{nk}|\theta) = \sum_{k} N(\mathbf{x}|\mu_{k}, \sigma_{k}) \pi_{k}$$

$$p(z_{nk}|\theta) = \pi_k$$

Select a mixture component with probability π

$$p(z_{nk}|\theta) = \pi_k$$

$$p(x|z_{nk},\theta) = N(x|\mu_k,\sigma_k)$$

Sample from that component's Gaussian

Inferring Cluster Membership

- We have representations of the joint $p(x, z_{nk} | \theta)$ and the marginal, $p(x|\theta)$
- The conditional of $p(z_{nk}|x,\theta)$ can be derived using Bayes rule.
 - The **responsibility** that a mixture component takes for explaining an observation x. $p(x) = f_1 \pi_1 + f_2 \pi_2$

$$\tau(z_{nk}) = p(z_{nk} \mid x) = \frac{p(z_{nk})p(x \mid z_{nk}, \Theta)}{\sum_{j=1}^{K} p(z_{nj})p(x \mid z_{nj})}$$

$$= \frac{\pi_k N(x \mid \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x \mid \mu_j, \Sigma_j)}$$

$$P(x) = \sum_{j=1}^{K} N(x \mid \mu_j, \Sigma_j)$$

$$P(x \mid z_{ni}) P(z_{ni})$$

Well, we don't know π_k , μ_k , Σ_k What should we do?

We use a method called "Maximum Likelihood Estimation" (MLE) to solve the problem.

$$p(\mathbf{x}|\theta) = \sum_{k} p(\mathbf{x}, \mathbf{z}_{nk}|\theta) = \sum_{k} p(\mathbf{z}_{nk}|\theta)p(\mathbf{x}|\mathbf{z}_{nk}, \theta) = \sum_{k=0}^{K} \pi_k N(\mathbf{x}|\mu_k, \Sigma_k)$$

Let's identify a likelihood function:

$$P(x) = P(x_0 - - - x_n) = \bigcap_{i=1}^{n} P(x_i)$$

Now, let's find the missing parameters that maximizes the likelihood:

$$\arg \max p(x|\theta) = p(x|\pi, \mu, \Sigma) = \prod_{n=1}^{N} p(x_n|\theta) = \prod_{n=1}^{N} \sum_{k=0}^{K} \pi_k N(x_n|\mu_k, \Sigma_k)$$

$$\arg \max p(x) = p(x|\pi, \mu, \Sigma) = \prod_{n=1}^{N} p(x_n|\theta) = \prod_{n=1}^{N} \sum_{k=0}^{K} \pi_k N(x_n|\mu_k, \Sigma_k)$$

$$\ln[p(x)] = \ln[p(x|\pi,\mu,\Sigma)]$$

As usual: Identify a likelihood function

$$\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) \right\}$$

And set partials to zero...

MLE of a GMM

$$\mu_k = \frac{\sum_{n=1}^{N} \tau(z_{nk}) x_n}{N_k}$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \tau(z_{nk}) (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}$$

$$\pi_k = \frac{N_k}{N}$$

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood

Clustering Evaluation

- External measures for clustering evaluation
 - Matching-based measures: Purity, Max Matching, Precision, Recall, F-
 - Entropy-based measures: Conditional Entropy, Mutual Information
 - 。Pairwise measures: TP, TN, FP, FN, Jaccard
- Internal measures for clustering evaluation
 - 。Graph-based measures: Beta-ÇV, normalized cut
 - Davies-Bouldin Index
 - Silhouette Coefficient

Parametric v.s. Nonparametric Density Estimation

Parametric Density Estimation

- Models which can be described by a fixed number of parameters
- Discrete case: eg. Bernoulli distribution

$$P(x|\theta) = \theta^x (1-\theta)^{1-x}$$

one parameter, $\theta \in [0,1]$, which generate a family of models, $\mathcal{F} = \{P(x|\theta) \mid \theta \in [0,1]\}$,

Continuous case: eg. Gaussian distribution in \mathbb{R}^n

$$p(x|\mu,\Sigma) = \frac{1}{|\Sigma|^{\frac{1}{2}} (2\pi)^{\frac{n}{2}}} exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Two sets of parameters $\{\mu, \Sigma\}$, which again generate a family of models, $\mathcal{F} = \{p(x|\mu, \Sigma) \mid \mu \in R^n, \Sigma \in R^{n \times n} \text{ and } PSD\}$,

Estimating Gaussian Distributions

Gaussian distribution in R

$$p(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- Need to estimate two sets of parameters μ , σ
- Given m iid samples

$$\mathcal{D} = \{x^1, x^2, \dots x^m\}, x^i \in R$$

Likelihood of one data point:

$$p(x^i|\mu,\sigma) \propto exp\left(-\frac{1}{2\sigma^2}(x^i-\mu)^2\right)$$

Nonparametric Density Estimation

- What are nonparametric models?
 - "nonparametric" does not mean there are no parameters
 - can not be described by a fixed number of parameters
 - one can think of there are many parameters

Eg. Histogram

Eg. Kernel density estimator

Histograms

- One the simplest nonparametric density estimator
- Given m iid samples $\mathcal{D} = \{x^1, x^2, \dots x^m\}, x^i \in [0,1)$

• Split [0,1) into n bins

$$B_1 = \left[0, \frac{1}{n}\right), B_2 = \left[\frac{1}{n}, \frac{2}{n}\right), \dots B_n = \left[\frac{n-1}{n}, 1\right)$$

- Count the number of points, c_1 within B_1 , c_2 within B_2 ...
- For a new test point x

$$p(x) = \sum_{j=1}^{n} \frac{nc_j}{m} I(x \in B_j)$$

Kernel Density Estimation

Kernel density estimator

$$p(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{h} K\left(\frac{x^{i} - x}{h}\right)$$

- Smoothing kernel function
 - $K(u) \geq 0$,
 - $\int K(u)du = 1$,
 - $\int uK(u) = 0$,
 - $\int u^2 K(u) du \le \infty$
- An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$

Dimension Reduction

- The process of reducing the number of random variables under consideration
 - One can combine, transform or select variables
 - One can use linear or nonlinear operations

Principal Component Analysis

Formulating the Problem

- Given m data points, $\{x^1, x^2, ... x^m\} \in \mathbb{R}^n$, with their mean $\mu = \frac{1}{m} \sum_{i=1}^m x^i$
- Find a direction $w \in \mathbb{R}^n$ where $||w|| \le 1$
- Such that the variance (or variation) of the data along direction
 w is maximized

$$\max_{w:||w|| \le 1} \frac{1}{m} \sum_{i=1}^{m} (w^{\top} x^i - w^{\top} \mu)^2$$
variance

The PCA Algorithm

- Given m data points, $\{x^1, x^2, ... x^m\} \in \mathbb{R}^d$, with mean
- Step 1: Estimate the mean and covariance matrix from data

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{i} \quad and \quad C = \frac{1}{m} \sum_{i=1}^{m} (x^{i} - \mu)(x^{i} - \mu)^{\mathsf{T}}$$
Principal directions

- Step 2: Take the eigenvectors $w^1, w^2, ...$ of C corresponding to the largest eigenvalue λ_1 , the second largest eigenvalue λ_2 ...
- Step 3: Compute reduced representation

$$z^i = \begin{pmatrix} w^{1^\top}(x^i - \mu)/\sqrt{\lambda_1} \\ w^{2^\top}(x^i - \mu)/\sqrt{\lambda_2} \end{pmatrix} \text{ Normalize by standard deviation }$$

PCA and SVD

- Singular value decomposition is related to eigenvalue decomposition
 - Suppose $X = [x_1 u \quad x_2 u \dots \quad x_m u] \in \mathbb{R}^{m \times n}$
 - Then covariance matrix is $C = \frac{1}{m}XX^{T}$
 - Starting from singular vector pair

•
$$M^{\mathsf{T}}\mathbf{u} = \sigma \mathbf{v}$$

$$\Rightarrow MM^{\mathsf{T}}\mathbf{u} = \sigma M \mathbf{v}$$

$$\Rightarrow MM^{\mathsf{T}}u = \sigma^2u$$

$$\Rightarrow Cu = \lambda u$$