

Shenzhen Tuofeng Semiconductor Technology Co., Ltd

Dual N-Channel MOSFET 9926B

Features

- ●6.5A, 20 V. rDS(on) = 0.022 Ω @ VGS = 4.5 V
- 5.5A, 20 V rDS(on) = 0.035 Ω @ VGS = 2.5 V.

■ Absolute Maximum Ratings Ta = 25°C

Parameter	Symbol	10 secs	Steady Sate	Unit	
Drain-Source Voltage	VDS	20		V	
Gate-Source Voltage	Vgs	±10		V	
Continuous Drain Current Ta=25 °C	lo	6.5		Α	
Pulsed Drain Current	Ідм	30		А	
Maximum Power Dissipation T _A = 25℃	Pp	2.0	1.25	W	
TA = 70°C	PD	1.3	0.8	VV	

■ Thermal Resistance Ratings

Parameter		Symbol	Тур	Max	Unit	
Maximum Junction-to-Ambient*	$t \leqslant$ 10 sec	RthJA	50	62.5	°C/W	
	Steady State	Kinja	80	100		
Maximum Junction-to-Foot (Drain)	Steady State	RthJF	30	40		

^{*} Surface Mounted on 1" X 1"FR4 Board.

Shenzhen Tuofeng Semiconductor Technology Co., Ltd

9926B

■ Electrical Characteristics Ta = 25°C

Parameter	Symbol	Testconditons	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VDSS	Vgs = 0 V, ID = 250 μA	20			V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =16V , V _{GS} = 0V			1	uA
Gate-Body Leakage	Igss	V_{DS} = 0V , V_{GS} = $\pm 10V$			±100	nA
Gate Threshold Voltage	VGS(th)	V _{DS} = V _{GS} , I _D = 250uA	0.5		1.0	V
Drain-Source On-State Resistance *	rDS(on)	Vgs = 4.5V , ID = 6.5A		0.020	0.022	0
		Vgs = 2.5V , ID = 5.5A		0.033	0.035	Ω
On-State Drain Current *	ID(on)	Vɒs ≥ 5V , Vgs = 4.5V	20			Α
Forward Transconductance *	gfs	VDS = 5V , I D =6.5A	9			٧
Total Gate Charge	Qg			13	20	nC
Gate-Source Charge	Qgs	Vps = 15V , Vgs = 4.5V , Ip = 6A		3		
Gate-Drain Charge	Qgd	1		3.3		
Turn-On Delay Time	td(on)			2	35	ns
Rise Time	tr	VDD = 15V		40	60	
Turn-Off Delay Time	td(off)	ID = 1A , VGs = 4.5V , RG = 6Ω ,RL = 15Ω		50	75	
Fall Time	tf	1		20	30	
Maximum Continuous Drain-Source Diode Forward Current	Is				1	Α
Diode Forward Voltage *	Vsp	Is = 1.7A, Vgs = 0 V		0.7	1.2	V

^{*} Pulse test; pulse width \leqslant 300 $\,\mu$ s, duty cycle \leqslant 2 %.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance