Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 3

Wojciech Rokicki, Radosław Pietkun, Jakub Gruszecki

Spis treści

1.	Pop	rawność wartości sygnałów w punkcie pracy
	1.1. 1.2.	Poprawność sygnałów
	1.3.	Implementacja
2.	Odp	owiedzi skokowe i charakterystyka statyczna
	2.1.	Wyznaczenie dpowiedzi skokowych
	2.2.	Charakterystyka statyczna
	2.3.	Wnioski
	2.4.	Implementacja
3.	Odp	owiedź skokowa dla algorytmu DMC
	3.1.	Odpowiedź skokowa
	3.2.	Implementacja
4.	Reg	ulacja procesu
	4.1.	Regulator PID
	4.2.	Regulator DMC
	4.3.	Implementacja
5.	Dob	ór nastaw regulatorów
	5.1.	Dobór nastaw cyfrowego regulatora PID
	5.2.	Dobór nastaw predykcyjnego regulatora DMC
6.	Opt	ymalizacja wskaźnika jakości
	6.1.	Algorytm optymalizacji
	6.2.	Optymalne nastawy regulatora PID
	6.3.	Optymalne nastawy regulatora DMC

1. Poprawność wartości sygnałów w punkcie pracy

1.1. Poprawność sygnałów

W celu sprawdzenia poprawności sygnałów U_{pp} oraz Y_{pp} obiekt został pobudzony sygnałem o wartości U_{pp} . Wartości sygnałów w punkcie pracy są poprawne, jeśli sygnał wyjściowy przyjmie wartość Y_{pp} .

Rys. 1.1. Przebiegi sygnałów w punkcie pracy

1.2. Wnioski

Na podstawie rysunku widać, że dla stałej wartości sygnału sterującego U_{pp} wyjście obiektu przyjmuje stałą wartość, równą Y_{pp} . Jest to dowód na to, że wartości sygnałów wejsciowego i wyjściowego w punkcie pracy są poprawne.

1.3. Implementacja

Do przeprowadzenia eksperymentu wykorzystany został skrypt zad1.m.

2. Odpowiedzi skokowe i charakterystyka statyczna

2.1. Wyznaczenie dpowiedzi skokowych

W celu wyznaczenia odpowiedzi skokowych obiekt pobudzony został czterema skokami sygnału sterującego w chwili k=21. Sygnał sterujący zmieniał się o dU=0,1 od U_{min} =0,9 do U_{max} =1,3.

Rys. 2.1. Odpowiedzi skokowe

2.2. Charakterystyka statyczna

W celu wyznaczenia charakterystyki statycznej procesu zebrano odpowiedź układu dla pobudzeń różnymi wartościami sygnału sterującego.

2.3. Wnioski

Na podstawie charakterystyki statycznej można powiedzieć, że obiekt jest w przybliżeniu liniowy. Można zatem wyznaczyć wzmocnienie statyczne procesu na podstawie wzoru:

$$K_{stat} = \frac{\Delta y}{\Delta u} \tag{2.1}$$

Rys. 2.2. Charakterystyka statyczna

Dla danego procesu wzmocnienie statyczne wynosi K = 3,178.

2.4. Implementacja

 $Implementacja \ fukcji \ wykorzystanych \ do \ wykonania \ zadania \ zawarte \ są \ w \ skrypcie \ {\tt podpunkt_2_v1.m.}$

3. Odpowiedź skokowa dla algorytmu DMC

3.1. Odpowiedź skokowa

Do wyznaczania odpowiedzi skokowej dla algorytmu DMC wybrana została odpowiedź dla zmiany sygnału sterującego o 0,1 z punktu pracy U_{pp} =1,1. Otrzymana odpowiedź skokowa poddana została normalizacji, czyli przesunięciu o wartość sygnału wyjściowego w punkcie pracy, a następnie podzielona przez długość skoku. Następnie, w celu wyznaczenia współczyników odpowiedzi skokowej dla algorytmu DMC zastosowany został wzór:

$$S_i = \frac{S_i^0(k) - Y_{pp}}{\Delta U} \tag{3.1}$$

gdzie S_i^0 to seria pomiarów pozyskanych w celu wyznaczenia odpowiedzi skokowej, zaś wielkość ΔU jest to przyrost wartości sygnału sterującego. Poniżej przedstawiono gotową odpowiedź skokową dla algorytmu DMC.

Rys. 3.1. Odpowiedź skokowa dla algorytmu DMC

3.2. Implementacja

 $Implementacja \ fukcji \ wykorzystanych \ do \ wykonania \ zadania \ zawarte \ są \ w \ skrypcie \ {\tt podpunkt_3_v1.m.}$

4. Regulacja procesu

4.1. Regulator PID

Regulator PID składa się trzech członów: proporcjonalnego, całkującego oraz różniczkującego. Działa on w pętli sprzężenia zwrotnego, mając na celu zredukowanie uchybu (różnicy między wartością zadaną a zmierzoną wartością sygnału wyjściowego procesu) poprzez odpowiednią zmianę sygnału sterującego. Dyskretny regulator PID ma postać:

$$u(k) = r_2 * e(k-2) + r_1 * e(k-1) + r_0 * e(k) + u(k-1)$$

$$(4.1)$$

gdzie:

$$r_2 = K * T_d/T_p \tag{4.2}$$

$$r_1 = K * (T_p/(2 * T_i) - 2 * T_d/T_p - 1)$$
(4.3)

$$r_0 = K * (1 + T_p/(2 * T_i) + T_d/T_p)$$
(4.4)

gdzie K - wzmocnienie członu proporcjonalnego, T_i - czas zdwojenia członu całkującego, T_d - czas wyprzedzenia członu różniczkującego, T_p - okres próbkowania

4.2. Regulator DMC

Regulator DMC jest to regulator predykcyjny - działa on z wyprzedzeniem, zanim nastąpią zmiany wartości sygnału wyjściowego. Wektor przyrostów sterowań dany jest wzorem:

$$\Delta U(k) = K(Y^{zad}(k) - Y^{0}(k)) = Y(k) + M^{P} \Delta U^{P}(k)$$
(4.5)

gdzie:

$$K = (M^{T}M + \lambda * I)^{-1}M^{T}$$
(4.6)

$$\Delta \boldsymbol{U}^{\boldsymbol{P}}(k) = \begin{bmatrix} \Delta u(k-1) \\ \vdots \\ \Delta u(k-(D-1)) \end{bmatrix}_{(D-1)\times 1}$$
(4.7)

$$\mathbf{M} = \begin{bmatrix} s_1 & 0 & \dots & 0 \\ s_2 & s_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_N & s_{N-1} & \dots & s_{N-N_{\mathrm{u}}+1} \end{bmatrix}_{\mathrm{NxN_{\mathrm{u}}}}$$
(4.8)

$$\mathbf{M}^{P} = \begin{bmatrix} s_{2} - s_{1} & s_{3} - s_{2} & \dots & s_{D} - s_{D-1} \\ s_{3} - s_{1} & s_{4} - s_{2} & \dots & s_{D+1} - s_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{N+1} - s_{1} & s_{N+2} - s_{2} & \dots & s_{N+D-1} - S_{D-1} \end{bmatrix}_{NxD-1}$$

$$(4.9)$$

gdzie N - horyzont predykcji, N_u - horyzont sterowania, D - horyzont dynamiki, λ - kara za zmianę sterowania

4. Regulacja procesu 8

W tym przypadku należy wyznaczyć tylko pierwszy element macierzy $\Delta U(k)$ czyli $\Delta u(k|k)$. Aktualne sterowanie uzyskuje się poprzez zsumowanie $\Delta u(k|k)$ z poprzednim sterowaniem.

4.3. Implementacja

Implementacja fukcji wykorzystanych do wykonania zadania zawarte są w skrypcie podpunkt_4_v1.m.

5. Dobór nastaw regulatorów

5.1. Dobór nastaw cyfrowego regulatora PID

Nastawy regulatora PID dobrane zostały metodą inżynierską. Po przeprowadzeniu strojenia metodą inżynierską nastawy regulatora zostały dodatkowo poprawione tak, aby zminimalizować wskaźnik jakości. Wskaźnik jakości regulacji, wyznaczany za pomocą metody najmniejszych kwadratów, dany jest wzorem:

$$E = \sum_{k=1}^{k_{konc}} (y^{zad}(k) - y(k))^2$$
 (5.1)

Na początku, przy włączonym członie proporcjonalnym P oraz wyłączonymi członami całkującym i różniczkującym układ doprowadzony został na granicę stabilności poprzez takie dobranie wzmocnienia K, że układ wpadł w niegasnące oscylacje.

Rys. 5.1. Regulator PID, K = 2.0

Na podstawie oscylacji określone zostało wzmocnienie krytyczne $K_{kryt}=2.0$ oraz okres oscylacji $T_{osc}=20$. Na podstawie tych parametrów wyznaczone zostały nastawy regulatora PID zgodnie ze wzorami:

$$K_p = 0, 6 * K_{kryt} \tag{5.2}$$

$$T_i = 0,5 * T_{osc}$$
 (5.3)

$$T_d = \frac{T_{osc}}{8} \tag{5.4}$$

Otrzymano następujące nastawy: $K=1,\ T_i=12,\ T_d=2,5.$ Wartość wskaźnika jakości wynosiła E=11,66.

Rys. 5.2. Regulator PID, $K = 1, T_i = 12, T_d = 2,5$

Na podstawie przebiegów widać jednak, że jakość regulacji nie jest do końca zadowalajaca - występują liczne przeregulowania i oscylacje. Z tego podowu eksperymentlanie dobrane zostały nowe nastawy, poprzez zmienianie kolejnych wpółczynników regulatora. Celem była minimalizacja wskaźnika jakości, danego jako błąd średnokwadratowy. Oprócz wskaźnika jakości pod uwagę wzięte zostały również przebiegi. Na ich podstawie dobrane zostały nowe nastawy: $K=0.6,\,T_i=11,\,T_d=3.5.$

Rys. 5.3. Regulator PID, $K = 0.6, T_i = 11, T_d = 3.5$

Regulator jest trochę wolniejszy, lecz sterowanie jest łagodniejsze i nie występują przeregulowania ani oscylacje. Wartość wskaźnika jakości wynosiła E=12.8.

5.2. Dobór nastaw predykcyjnego regulatora DMC

Na początkowe nastawy regulatora DMC przyjęto obliczony w punkcie 3 horyzont dynamiki $N=N_u=D=170$, zaś współczynnik kary $\lambda=1$. Następnie zmniejszane były horyzonty N i N_u oraz zwiększany współczynnik λ . Wskaźnik jakości regulacji, podobnie jak w przypadku regulatora PID, dany jest jako błąd średniokwadratowy.

Rys. 5.4. Regulator DMC, $N = N_u = D = 170$, $\lambda = 1$

Wartość wskaźnika jakości wynosiła E=8,612. na podstawie przebiegów można już stwierdzić, że jakość regulacji jest o wiele lepsza niż w przypadku nastrojonego regulatora PID. W celu zmniejszenia wartości wskaźnika jakości zmniejszane były horyzonty N i N_u oraz zwiększona kara λ . Ostatecznie dobrane nastawy: $N=18,\,N_u=2,\,D=170,\,\lambda=1$.

Rys. 5.5. Regulator DMC, $N=18,\,N_u=2,\,D=170,\,\lambda=1$

Wartość wskaźnika jakości wynosiła $E=8,\!609.$ Jak widać, jakość regulacji zmieniła się bardzo niewiele.

6. Optymalizacja wskaźnika jakości

- 6.1. Algorytm optymalizacji
- 6.2. Optymalne nastawy regulatora PID
- 6.3. Optymalne nastawy regulatora DMC