Równowagowe modele gospodarki statycznej Wybrane elementy pozytywnej teorii równowagi Równowagowe modele gospodarki dynamicznej Metody rekursywne Model DSGE

Dynamiczne Stochastyczne Modele Równowagi Ogólnej

dr Łukasz Woźny, Szkoła Główna Handlowa w Warszawie

NBP, Marzec 2011

Program Dzień 1

- 1 Równowagowe modele gospodarki statycznej
- Wybrane elementy pozytywnej teorii równowagi
- 3 Równowagowe modele gospodarki dynamicznej
- 4 Metody rekursywne
- Model DSGE

Wprowadzenie do teorii równowagi ogólnej

- Dynamiczne, stochastyczne modele równowagi ogólnej (DSGE)
- Dlaczego warto studiować modele DSGE?
- Uwagi metodologiczne

Outline

- 1 Równowagowe modele gospodarki statycznej
- Wybrane elementy pozytywnej teorii równowagi
- 3 Równowagowe modele gospodarki dynamicznej
- 4 Metody rekursywne
- 5 Model DSGE

Definicja gospodarki

- I konsumentów: $(X_i, u_i, w_i)_{i \in I}$, gdzie X_i to zbiór konsumpcyjny, $w_i \in X_i$ wyposażenie początkowe, a $u_i : X_i \to \mathbb{R}$ to funkcja użyteczności,
- J firm: $(Y_j)_{j\in J}$, gdzie Y_j to zbiory produkcyjne, $Y_j\ni y_j=(y_j^1,y_j^2,\ldots,y_j^L)$; jeżeli $y_j^I<0$ to I jest nakładem netto, a jeżeli $y_j^I>0$ to I jest wynikiem produkcji netto,
- prawa własności: $\theta_{i,j} \geq 0$, $\sum_{i \in I} \theta_{i,j} = 1 \forall i$.

Example

- $X_i = \mathbb{R}_+^L$, $X_i = \mathbb{R}_+ \times [0,1]$, $X_i = I_{\infty}(\mathbb{R}_+ \times [0,1])$, $X_i = L_{\infty}(S, S, \mu)$,
- $Y_j = \{(-k, -l, z) : k \ge 0, l \ge 0, F(k, l) \ge z\}.$

Definicja alokacji dostępnej i Pareto optymalnej

Definition

Alokacją dostępną nazywamy

$$(x,y)=(x_1,x_2,\ldots,x_I,y_1,y_2,\ldots,y_J)$$
, wtt: $\forall_i x_i \in X_i, \forall_j y_j \in Y_j$ oraz

$$\sum_{i\in I} x_i = \sum_{i\in I} w_i + \sum_{j\in J} y_j.$$

Definition

(x,y) nazywamy alokacją Pareto optymalną wtt: (x,y) jest dostępna oraz nie istnienie inna dostępna alokacja (x',y') taka, że:

$$\forall i, u_i(x_i') \geq u_i(x_i) \text{ oraz } \exists_i u_i(x_i') > u_i(x_i).$$

Równowaga Walrasowska (ADCE)

Definition

Równowagą ADCE nazywamy (x^*, y^*, p^*) takie, że:

- $\forall_i x_i^*$ rozwiązuje problem: $\max_{x_i \in X_i} u_i(x_i) \text{ pw.} p^* \cdot x_i \leq p^* \cdot w_i + \sum_{j \in J} \theta_{i,j} p^* \cdot y_j^*,$
- $\forall_j y_j^*$ rozwiązuje problem: $\max_{y_j \in Y_j} p^* \cdot y_j$,
- $\bullet \sum_{i \in I} x_i^* = \sum_{i \in I} w_i + \sum_{j \in J} y_j^*.$

Równowaga Walrasowska (ADCE)

Definition

 (x^*,y^*,p^*) nazywamy równowagą z transferami, jeżeli istnieje wektor $(\omega_i)_{i\in I}$ taki, że $\sum_i \omega_i = p^* \cdot \sum_i w_i + \sum_j p^* \cdot y_j^*$

- $\forall_i x_i^*$ rozwiązuje problem: $\max_{x_i \in X_i} u_i(x_i)$ pw. $p^* \cdot x_i \leq \omega_i$,
- $\forall_j y_j^*$ rozwiązuje problem: $\max_{y_j \in Y_j} p^* \cdot y_j$,
- $\bullet \sum_{i \in I} x_i^* = \sum_{i \in I} w_i + \sum_{j \in J} y_j^*.$

Dyskusja nad twierdzeniami teorii dobrobytu

Theorem

Niech (x^*, y^*, p^*) będzie równowagą z transferami. Jeżeli preferencje są lokalnie nienasycone, wtedy (x^*, y^*) jest Pareto optymalna.

Theorem

Niech Y_j, X_i są wypukłe oraz preferencje są wypukłe, ciągłe i lokalnie nienasycone. Niech (x^*, y^*) będzie Pareto optymalna oraz $x_i^* \gg 0$. Wtedy istnieje wektor $p^* \neq 0$ taki, że (x^*, y^*, p^*) jest równowagą z transferami.

Definicja gospodarki z niepewnością

L dóbr fizycznych. $S=\{1,\ldots,S\}$ stanów przyrody, każdy z subiektywnym prawdopodobieństwem $\pi_i(s),\;\sum_{s\in S}\pi_i(s)=1 \forall_i.$

- Konsumpcja warunkowana stanami przyrody $x_i: S \to \mathbb{R}^L_+$. Wyposażenie początkowe $w_i: S \to \mathbb{R}^L_+$ i użyteczność von Neumana-Morgersterna $U_i(x_i) = \sum_{s \in S} \pi_i(s) u_i(x_i(s), s)$,
- firmy: $Y_j: S \Rightarrow \mathbb{R}^L$. Przykład: $(y_j(1), y_j(2)) = (y_j^1(1), y_j^2(1), y_j^1(2), y_j^2(2)) = (-1, 0, -1, 1),$
- \bullet $\theta_{i,j}$.

Definicja ADCE

Definition

 $x^*: S \to X_1 \times \ldots \times X_l$, $y^* \in Y_1 \times \ldots \times Y_j$ oraz $p^*: S \to \mathbb{R}_+^L$ nazywamy równowagą ADCE, wtt:

• $\forall_i x_i^*$ rozwiązuje problem: $\max_{x_i(\cdot) \in X_i} \sum_{s \in S} \pi_i(s) u_i(x_i(s), s)$ pw.

$$\sum_{s\in\mathcal{S}}p^*(s)\cdot x_i(s)\leq \sum_{s\in\mathcal{S}}p^*(s)\cdot w_i(s)+\sum_{j\in\mathcal{J}}\theta_{i,j}\Pi_j^*,$$

- $\forall_j y_j^*$ rozwiązuje problem: $\max_{y_j(\cdot) \in Y_j(\cdot)} \sum_{s \in S} p^*(s) \cdot y_j(s)$, oraz $\Pi_j^* = \sum_{s \in S} p^*(s) \cdot y_j^*(s)$,
- $\forall s \in S \ \sum_{i \in I} x_i^*(s) = \sum_{i \in I} w_i(s) + \sum_{i \in J} y_i^*(s)$.

Przykład

Example

•
$$I=2, L=1, S=2, u_i(x,s)=\log x, w_1(1)=1, w_1(2)=0,$$
 $w_2(1)=0, w_1(2)=1, \pi(1)=\pi, \pi(2)=1-\pi.$ Normalizujemy $p^*(1)=1.$

•
$$x_1(1) = \pi$$
, $x_1(2) = \frac{(1-\pi)}{p^*(2)}$, $x_2(1) = \pi p^*(2)$, $x_2(2) = (1-\pi)$,

•
$$p^*(2) = \frac{1}{\pi} - 1$$
,

•
$$x_1^*(1) = x_1^*(2) = \pi$$
, $x_2^*(1) = x_2^*(2) = 1 - \pi$.

Równowaga ADCE dla gospodarki z niepewnością

Uwagi:

- rynek na każde dobro fizyczne w każdym stanie przyrody jest w równowadze
- aktywa Arrowa (ang. Arrow-securities), tzw. rynki zupełne
- jedno ograniczenia budżetowe konsumenta
- ceny "inkorporują" niepewność
- zysk firmy niezależny od stanu (doskonałe ubezpieczenie)
- otwarcie rynków i handel przed realizacją niepewności
- wątpliwości związane z występowaniem aktywów Arrowa

Gospodarka z rynkami ubezpieczeń

Dwa okresy (przed i po zrealizowaniu niepewności).

- ① W pierwszym okresie handel aktywami ubezpieczeniowymi $i_i:\{2,\ldots,S\}\to\mathbb{R}^1$ o cenach $q:\{2,\ldots,S\}\to\mathbb{R}^1$ (pozwalającymi na transfer dochodu pomiędzy stanem 1 a s).
- ② W drugim okresie, po zrealizowaniu niepewności (np. s) otwierane są rynki na fizyczne dobra $x_i(s) \in \mathbb{R}_+^L$ po cenach $p(s) \in \mathbb{R}_+^L$

Gospodarka (wymiany) z rynkami ubezpieczeń

Definition

Alokacje $x^*: S \to X_1 \times \ldots \times X_I$, $i^*: \{2, \ldots, S\} \to \mathbb{R}^I$, oraz ceny $p^*: S \to R_+^L, q^*: \{2, \ldots, S\}$ jest równowagą IMCE (ang. insurance market competitive equilibrium):

- $\forall i \ x_i^*, i_i^* \ \text{rozwiązują problem:} \\ \max_{x_i(\cdot), i_i(\cdot)} \sum_{s \in S} \pi_i(s) u_i(x_i(s), s) \ \text{pw.} \\ p^*(1) \cdot x_i(1) + p^*(1) [\sum_{s=2}^S i_i(s) q^*(s)] \leq p^*(1) \cdot w_i(1) \ \text{oraz} \\ (\forall s \in \{2, \dots, S\}) \ p^*(s) \cdot x_i(s) \leq p^*(s) \cdot w_i(s) + p^{*,1}(s) i_i^*(s), \\$
- $(\forall s \in S) \sum_{i} x_{i}^{*}(s) = w_{i}^{*}(s) \text{ oraz}$ $(\forall s \in \{2, \dots, S\}) \sum_{i} i_{i}^{*}(s) = 0.$

Przykład

Założenie o racjonalnych oczekiwaniach dla IMCE.

Example

$$L = 1, S = 2$$

(AD)
$$x(1) + p(2)x(2) = w(1) + p(2)w(2)$$
 (normalizacja $p(1) = 1$),

(IM)
$$x(1) + i(2)q(2) = w(1)$$
 oraz $x(2) = w(2) + i(2)$ (normalizacja $p(1) = 1 = p(2)$),

Sumując:

$$x(1) + q(2)x(2) = w(1) + q(2)w(2)$$

i podstawiając q(2) = p(2) alokacja ADCE= alokacji IMCE.

Gospodarka z aktywami

Dwa okresy (przed i po zrealizowaniu niepewności).

- W pierwszy okresie handel K aktywami (futures) r_k o zwrotach $r_k = (r_k(1), \dots, r_k(S)) \in \mathbb{R}^S$,
- Przykład: aktywo "bezpieczne" $r=(1,\ldots,1)$; aktywo Arrowa $r=(0,\ldots,0,1,0,\ldots,0)$, europejska opcja kupna aktywa r po cenie c: $\tilde{r}=(\max\{0,r(1)-c\},\ldots,\max\{0,r(s)-c\})$
- W drugim okresie handel na rynkach dóbr fizycznych (spot).

Równowaga (wymiany) Radnera

Definition

Alokacja $x^*: S \to X_1 \times \ldots \times X_I$, $z^* \in \mathbb{R}^{KI}$, oraz ceny (spot) $p^*: S \to R_+^L$, i ceny aktywów (futures) $q^* \in \mathbb{R}^K$ stanowią równowagę Radnera wtt:

• $\forall i$ plany x_i^*, z_i^* rozwiązują problem $\max_{x_i(\cdot), z_i} \sum_{s \in S} \pi_i(s) u_i(x_i(s), s)$ pw. $\sum_k q_k^* z_{i,k} \leq 0$ oraz

$$(\forall s \in S) p^*(s) \cdot x_i(s) \leq p^*(s) \cdot w_i(s) + \sum_k p^{*,1}(s) z_{i,k}^* r_k(s),$$

• $(\forall s \in S) \sum_i x_i^*(s) = w_i^*(s) \text{ oraz } (\forall k) \sum_i z_{i,k}^* \leq 0.$

Własności równowagi Radnera

- Struktura aktywów z macierzą zwrotów $R = \{r_k(s)\}_{k,s}$ jest zupełna wtt. rząd R = S.
- Jeżeli struktura aktywów jest zupełna to alokacja dóbr fizycznych w równowadze Radera z dodatnimi cenami jest równa alokacji z równowagi ADCE z dodatnimi cenami.
- Twierdzenie odwrotne także zachodzi.

Zupełność rynków i niedoskonała informacja

- wielopunktowość równowag w drugim okresie i tzw. plamy na słońcu, nieefektywność Pareto alokacji w równowadze Radnera
- cel właścicieli firmy w warunkach zupełności i niezupełności rynków
- symetryczna niedoskonała informacja: wyciąganie sygnałów z cen, więcej (informacji) nie oznacza lepiej,
- asymetryczna niedoskonała informacja: możliwość nieistnienia równowagi
- asymetryczna niedoskonała informacja (Prescott, Townsend 1984): równowaga ogólna z negatywną selekcją (Rustichini, Siconolfi 2008), i pokusą nadużycia (Jerez 2005)

Outline

- 1) Równowagowe modele gospodarki statycznej
- 2 Wybrane elementy pozytywnej teorii równowagi
- 3 Równowagowe modele gospodarki dynamicznej
- 4 Metody rekursywne
- 5 Model DSGE

Warunki istnienia równowagi

Arrow/Debreu/McKenzie bazując na twierdzeniu Kakutaniego o punkcie stałym.

- ullet $(orall i) X_i \subset \mathbb{R}_+^L$ jest wypukły i domknięty
- $(\forall i)u_i$ jest ciągła, ściśle rosnąca, quasi-wklęsła
- $w_i \gg 0$
- $(\forall j) \ Y_j \subset \mathbb{R}^L$ jest domknięty, wypukły, $0 \in Y_j$, $\mathbb{R}_- \subset Y_j$.

Wtedy istnieje równowaga ADCE.

Warunki jednoznaczności równowagi

Warunki jednoznaczności (znormalizowanej) równowagi. Funkcja nadwyżkowego popytu:

$$f(p) = \sum_{i} x^*(p, p \cdot w_i) - \sum_{j} y_j^*(p) - \sum_{i} w_i$$

substytucyjność brutto funkcji nadwyżkowego popytu

$$\forall p, p', k \neq l, p_k = p'_k, p'_l > p_l \Rightarrow f_k(p') > f_k(p) (\forall k \neq l)$$

Y ma stałe korzyści skali oraz f spełnia WARP:

$$\forall p, p', f(p) \neq f(p'), p \cdot f(p') \leq 0 \Rightarrow p' \cdot f(p) > 0$$

Metody rozwiązywania modeli SGE

Metoda Newtona. Niech f będzie funkcją nadwyżkowego popytu. Szukamy miejsc zerowych $f(p^*)=0$ lub punktów stałych $g(p^*)=p^*$, gdzie $g(p)=\arg\min_{g\in\Delta}[g-p-f(p)]'[g-p-f(p)]$, gdzie $\Delta=\{p\in\mathbb{R}_+^L:\sum_lp^l=1\}$. Metoda Newtona znajdowania punktów stałych g:

$$p_{t+1} = p_t - [I - Dg(p_t)]^{-1}[p_t - g(p_t)]$$

z zadanego p_0 . Więcej Kehoe (1991).

Metoda homotopii

Rozmaitość równowag (Besanko)

$$H(p,\theta) = p - (1-\theta)p_0 - \theta g(p)$$

Zauważmy, że H(p,1)=p-g(p) oraz $H(p,0)=p-p_0$. Rozwiązujemy układ równań różniczkowych otrzymany za pomocą twierdzenia o pochodnej funkcji uwikłanej na rozmaitości $\{(p,\theta): H(p,\theta)=0\}$. Więcej Kehoe (1991).

Podejście Negishi

Rozpatrzmy problem maksymalizacji społecznej funkcja celu dla wag $\lambda = (\lambda_i)_{i \in I}$:

$$\max_{x,y} \sum_{i} \lambda_{i} u(x_{i}) \text{ pw. } \sum_{i} x_{i} = \sum_{i} w_{i} + \sum_{j} y_{j}$$

Oznaczmy rozwiązanie: $x_i^*(\lambda)$ i mnożniki Lagrangea $p^*(\lambda) \in \mathbb{R}^L$. Policzmy konieczne transfery: $t_i(\lambda) = p^*(\lambda) \cdot [x_i^*(\lambda) - w_i]$. Szukamy miejsca zerowego odwzorowania $0 \in (t_i(\lambda))_{i \in I}$ np. metodą Newtona. Więcej Kehoe (1991).

Outline

- 1) Równowagowe modele gospodarki statycznej
- Wybrane elementy pozytywnej teorii równowagi
- 3 Równowagowe modele gospodarki dynamicznej
- 4 Metody rekursywne
- 5 Model DSGE

Model dynamicznej gospodarki w warunkach pewności z reprezentatywnym gospodarstwem (DGE)

Model podstawowy (model wzrostu optymalnego)

- Dwa dobra fizyczne (dobro konsumpcyjne/kapitłowe i czas wolny) w dyskretnym czasie 0, 1, 2 . . . , . A więc konsumpcja jest zadana ciągami $\{c_t\}_{t=0}^{\infty}$, $\{1-I_t\}_{t=0}^{\infty}$
- Jedno (reprezentatywne) gospodarstwo domowe. Preferencje zadane użytecznością:

$$\sum_{t=0}^{\infty} \beta^t u(c_t, 1 - l_t)$$

- Technologia produkcji $y_t = F(k_t, l_t)$
- Wyposażenie: $k_0 > 0$ kapitału początkowego i jednostka czasu wolnego w każdym okresie. 4 □ > 4 □ > 4 □ > 4 □ >

Założenia

- $u : \mathbb{R}_+ \times [0,1] \to \mathbb{R}, \ 1 > \beta > 0$,
- u jest ściśle wklęsła z każdym argumentem osobno, i słabo wklęsła łącznie
- u jest ograniczona i ostro rosnąca
- u jest dwukrotnie ciągle różniczkowalna (tzn. klasy \mathcal{C}^2),
- $F: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, ma stałe korzyści skali (AF(k, l) = F(Ak, Al)),
- F(0, I) = 0,
- F jest ostro rosnąca z każdym argumentem dla dodatnich wartości drugiego argumentu,
- F jest ściśle wklęsła z każdym argumentem osobno dla dodatnich wartości drugiego argumentu,
- F jest słabo wklęsła (łącznie) i klasy C^2 ,
- warunki Inady: $\lim_{k\to 0} F_1'(k,l) = \infty$, $\lim_{k\to \infty} F_1'(k,l) = 0$

Alokacja dostępna

Definition

Alokacja dostępną są ciągi: $\{c_t, i_t, l_t, y_t, k_t\}_{t=0}^{\infty}$ takie, że $(\forall t)$:

$$c_t + i_t = y_t$$

•
$$y_t = F(k_t, l_t)$$

$$k_{t+1} = (1 - \delta)k_t + i_t,$$

•
$$1 \ge l_t \ge 0$$
,

•
$$c_t \ge 0, k_t \ge 0.$$

Rozwiązanie Pareto optymalne

Maksymalizacja użyteczności ≡ optimum Pareto (jedno gospodarstwo domowe). Upraszczające założenie (na chwilę): brak dyzużyteczności z pracy.

$$\max_{\{c_t,i_t\}_{t=0}^{\infty}}\sum_{t=0}^{\infty}\beta^t u(c_t), \text{pw}.$$

$$F(k_t, l_t) = c_t + i_t$$
 oraz $k_{t+1} = (1 - \delta)k_t + i_t$, $c_t \ge 0, l_t \in [0, 1]$.

- czy rozwiązanie istnieje?
- czy jest jedyne?
- czy rozwiązanie c_t może być brzegowe? Dodamy założenie Inady: $\lim_{c \to 0} u'(c) = \infty$

Rozwiązanie Pareto optymalne

Oznaczając $f(k_t) = F(k_t, 1)$ problem możemy uprościć do:

$$\max_{\{k_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(f(k_t) + (1-\delta)k_t - k_{t+1}), \text{pw. } k_t \geq 0, f(k_t) + (1-\delta)k_t - k_{t+1} \geq 0$$

Warunki konieczne na maksymalizację:

(FOC)
$$\frac{\beta u'(f(k_t) + (1 - \delta)k_t - k_{t+1})}{u'(f(k_{t-1}) + (1 - \delta)k_{t-1} - k_t)} = f'(k_t) + (1 - \delta)$$
(TVC) $\lim_{t \to \infty} \beta^t u'(f(k_t) + (1 - \delta)k_t - k_{t+1})k_{t+1} = 0$

Stan ustalony: zmodyfikowana złota reguła

Definition

Stanem ustalonym nazywamy liczbę k^* taką, że jeżeli $k_t=k^*$ to $k_{t+1}=k^*$.

Istnienie i charakterystyka dodatniego stanu ustalonego. Zmodyfikowana złota reguła:

$$\frac{1}{\beta} = f(k^*) + (1 - \delta)$$

A więc dodatni stan ustalony (dynamiki rozwiązania optymalnego) istnieje i jest jedyny. Diagram fazowy.

Stan ustalony: złota reguła

Załóżmy, że jesteśmy w stanie ustalony. Poszukajmy optymalnej ścieżki kapitału.

$$\max_{k} \sum_{t} \beta^{t} u(f(k) + (1-\delta)k - k) pw. \ k \ge 0, f(k) + (1-\delta)k - k \ge 0.$$

$$\frac{1}{1-\beta}u'(f(k)-\delta k)(f'(k)-\delta)=0$$
, a więc złota reguła: $f'(k^*)=\delta$.

- maksymalizacja użyteczności w stanie ustalonym ≠ maksymalizacji użyteczności i potem znalezieniu stanu ustalonego.
- istnieje konsumpcja w stanie ustalonym, która jest Pareto lepsza od konsumpcji w rozwiązaniu optymalnym. Paradoks? Nie, bo ścieżka dojścia do kapitału w złotej regule jest "bolesna".

Definicja równowagi ADCE

Definition

Równowagą ADCE są ciągi $\{c_t^*, l_t^*, i_t^*, k_t^*, y_t^*, l_t^{*,f}, k_t^{*,f}\}_{t=0}^{\infty}$ oraz ceny $\{p_t^*, r_t^*, w_t^*\}_{t=0}^{\infty}$ takie, że

• $\{c_t^*, l_t^*, i_t^*, k_t^*\}_{t=0}^{\infty}$ rozwiązuje problem

$$\max_{\{c_t, l_t, i_t, k_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \text{ pw. } c_t \geq 0, k_{t+1} = (1-\delta)k_t + i_t, l_t \in [0, 1]$$

i zadanym
$$k_0>0$$
 oraz $\sum_{t=0}^{\infty} p_t^*(c_t+i_t)=\sum_{t=0}^{\infty}(w_t^*I_t+r_t^*k_t)$.

• $\{y_t^*, l_t^{*,f}, k_t^{*,f}\}_{t=0}^{\infty}$ rozwiązuje problem:

$$(\forall t) \max_{y_t, l_t^f, k_t^f} p_t^* y_t - w_t^* l_t^f - r_t^* k_t^f$$

pw.
$$y_t = F(k_t^f, l_t^f), k_t^f \ge 0, l_t^f \ge 0.$$

$$(\forall t)I_t^* = I_t^{*,f}, k_t^* = k_t^{*,f}, y_t^* = c_t^* + i_t^*.$$

ADCE: uwagi

- normalizujemy $p_0^* = 1$.
- konsument ma jedno ograniczenie budżetowe (rynku sa otwarte przed startem gospodarki)
- ponieważ F ma CRS zysku wynoszą zero. Inaczej dla DRS
- problem można uprościć...
- statyczny problem firmy odpowiada dynamicznemu

$$\max_{\{y_t, l_t^f, k_t^f\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} (p_t^* y_t - w_t^* l_t^f + r_t^* k_t^f)$$

- inaczej jest w przypadku, gdy firma jest właścicielem kapitału lub występują koszty dostosowania kapitału po stronie firmy
- ceny są w wartości bieżącej, nie trzeba dyskontować zysków firm

Charakterystyka ADCE

•
$$I_t^* = 1$$
,
• $\beta^t u'(c_t^*) = \lambda p_t^* \Rightarrow \frac{u'(c_t^*)}{\beta u'(c_{t+1}^*)} = \frac{p_t^*}{p_{t+1}^*}$
• $\lambda p_{t-1}^* - \lambda p_t^* (1 - \delta) = \lambda r_t^*$

- TVC
- $p_t^* F_1'(k_t^*, l_t^*) = r_t^*$
- $p_t^* F_2'(k_t^*, I_t^*) = w_t^*$
- ograniczenie budżetowe i czyszczenie się rynków

Przekształcając:

$$\frac{u'(c_t^*)}{\beta u'(c_{t+1}^*)} = \frac{p_t^*}{p_{t+1}^*} = (1 - \delta) + \frac{r_{t+1}^*}{p_{t+1}^*} = (1 - \delta) + F_1'(k_{t+1}^*, l_{t+1}^*).$$

Czyli: Pierwsze Twierdzenie Ekonomii Dobrobytu.

Przykład: podatek zaburzający efektywną alokację

Rząd wprowadza liniowy podatek od zysków kapitałowych a zebrane podatki przeznacza na transfery. Równowagą ADCE dla podatku τ są ciągi $\{c_t^*, l_t^*, k_t^*, T_t^*\}_{t=0}^\infty$ oraz ceny $\{p_t^*, r_t^*, w_t^*\}_{t=0}^\infty$ takie, że

 $lacksquare \{c_t^*, l_t^*, k_t^*\}_{t=0}^{\infty}$ rozwiązuje problem

$$\max_{\{c_t, l_t, k_t\}} \sum_{t=0}^{\infty} \beta^t \textit{u}(c_t) \text{ pw. } c_t \geq 0, l_t \in [0, 1]$$

i zadanym $k_0 > 0$ oraz $\sum_{t=0}^{\infty} p_t^*(c_t + k_{t+1} - k_t(1-\delta)) = \sum_{t=0}^{\infty} (w_t^* l_t + (1-\tau)r_t^* k_t + T_t).$

• $\{I_t^*, k_t^*\}_{t=0}^{\infty}$ rozwiązuje problem:

$$(\forall t) \max_{l_t, k_t} p_t^* F(k_t, l_t) - w_t^* l_t + r_t^* k_t$$

pw.
$$k_t \ge 0, I_t \ge 0$$
.

$$(\forall t) F(k_t^*, l_t^*) = c_t^* + k_{t+1}^* - (1 - \delta) k_t.$$

Przykład: kontynuacja

Nieefektywność Pareto alokacji ADCE, a więc i w stanie ustalonym:

$$\frac{1}{\beta} = (1-\delta) + (1-\tau)f(k^*)$$

Ogólniej:

- jak porównywać konsekwencje polityki na dobrobyt?
- Dwie polityki P1 oraz P2. Rozwiązujemy ADCE i znajdujemy $\{c_t^{*,P1}\}_{t=0}^{\infty}$ oraz $\{c_t^{*,P2}\}_{t=0}^{\infty}$. Liczymy strata użyteczności wynikającą ze zmiany ścieżki konsumpcji jako % konsumpcji:

$$\sum_{t} \beta^{t} u(c_{t}^{*,P1}) = \sum_{t} \beta^{t} u((1+\alpha)c_{t}^{*,P2})$$

w stanie ustalonym lub na całej ścieżce

Definicja równowagi sekwencyjnej

Definition

Równowagą sekwencyjną gospodarki dynamicznej są ciągi $\{c_t^*, l_t^*, k_t^*, b_t^*\}_{t=0}^{\infty}$ oraz ceny $\{r_t^*, w_t^*, q_t^*\}_{t=0}^{\infty}$ takie, że:

 $lacksquare \{c_t^*, l_t^*, k_t^*, b_t^*\}_{t=0}^{\infty}$ rozwiązuje problem

$$\max_{\{c_t,l_t,k_t,b_t\}_{t=0}^\infty} \sum_{t=0} \beta^t \textit{u}(c_t) \text{ pw. } c_t \geq 0, l_t \in [0,1]$$

i zadanym $k_0 > 0, b_{-1} = 0$, oraz **ciągu** ograniczeń:

$$\begin{array}{l} (\forall t \geq 0) \ c_t + k_{t+1} - (1-\delta)k_t + q_t^* b_t = r_t^* k_t + w_t^* l_t + b_{t-1} \ \text{oraz warunku} \\ \text{no-Ponzi game:} \ b_t + w_t^* l_t + r_t^* k_t + \sum_{s=1}^{\infty} \prod_{j=0}^{s-1} q_{t+j}^* (w_{t+s}^* l_{t+s} + r_{t+s}^* k_{t+s}) \geq 0, \end{array}$$

- $\{l_t^*, k_t^*\}_{t=0}^{\infty}$ rozwiązuje problem: $(\forall t) \max_{l_t, k_t} p_t^* F(k_t, l_t) w_t^* l_t r_t^* k_t$ pw. $k_t \geq 0, l_t \geq 0$.
- $(\forall t) F(k_t^*, l_t^*) = c_t^* + k_{t+1}^* (1 \delta)k_t, \ b_t^* = 0.$

Warunki charakteryzujące alokacje i ceny

•
$$\beta^t u(c_t^*) = \lambda_t$$

• $\lambda_{t-1} = \lambda_t (r_t^* + 1 - \delta)$

•
$$\lambda_t q_t^* = \lambda_{t+1}$$

•
$$I_t^* = 1$$
 oraz TVC

•
$$F'_1(k_t^*, I_t^*) = r_t^*, F'_2(k_t^*, I_t^*) = w_t^*,$$

Przekształcając:

$$\frac{u'(c_t^*)}{\beta u'(c_{t+1}^*)} = \frac{1}{q_t^*} = r_{t+1}^* + (1 - \delta) = F_1'(k_{t+1}^*, l_{t+1}^*) + (1 - \delta)$$

Cena q_t^* służy też do dyskontowania zysków firmy w modelach gdzie problem firmy jest dynamiczny. Cena q_t^* jest szczególnie istotna w modelach z heterogenicznymi podmiotami.

Model z elastyczną podażą pracy

Dodatkowe założenia Inady: $\lim_{l\to 0} u_2'(c, 1-l) = 0$ oraz $\lim_{l\to 1} u_2'(c,1-l) = \infty$. Warunki charakteryzujące alokację Pareto optymalną: $\frac{u'(c_t^*)}{\beta u'(c_{t+1}^*)} = (1 - \delta) + F_1'(k_{t+1}^*, l_{t+1}^*)$, TVC oraz dodatkowy

$$\frac{u_2'(c_t^*, 1 - l_t^*)}{u_1'(c_t^*, 1 - l_t^*)} = F_2'(k_t^*, l_t^*).$$

Warunki charakteryzujące stan ustalony:

$$\frac{1}{\beta} = (1 - \delta) + F_1'(k^*, l^*) \text{ oraz } \frac{u_2'(c^*, 1 - l^*)}{u_1'(c^*, 1 - l^*)} = F_2'(k^*, l^*) \text{ oraz }$$

$$c^* = F(k^*, l^*) - \delta k^*.$$

Dla $u_{12}''(\cdot) \geq 0$ jest jeden dodatni stan ustalony (algorytm liczenia).

Model z elastyczną podażą pracy: ADCE

W równowadze ADCE warunki FOC:

$$\frac{u'(c_t^*)}{\beta u'(c_{t+1}^*)} = (1 - \delta) + r_{t+1}^*$$

oraz

$$\frac{u_2'(c_t^*, 1 - l_t^*)}{u_1'(c_t^*, 1 - l_t^*)} = w_t^*$$

Analogicznie w równowadze sekwencyjnej (SMCE).

Uwagi o rozwiązywaniu modeli DGE

2 klasyczne metody:

- "schooting" (dostarczony program),
- dyskretyzacja (dostarczony program)

Aby istniała ścieżka wzrostu zrównoważonego (BGP), a więc ciąg $\{k_t^{BG}\}_{t=0}^{\infty}$ taki, że $k_{t+1}^{BG}=(1+\gamma)k_t^{BG}$:

- postęp technologiczny $A_{t+1} = \gamma^A A_t$ musi mieć formę wzbogacającego pracę w funkcji produkcji, tzn. $F(k_t, A_t l_t)$, np Cobb-Douglas
- preferencje muszą mieć postać CIES (o stałej elastyczności międzyokresowej): $\frac{cu''(c)}{u'(c)} = const.$ np. $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$
- ullet w modelu z elastyczną podażą pracy dodatkowe warunki: spełnione np. przez separowalność użyteczności względem c i 1-I

Outline

- 1) Równowagowe modele gospodarki statycznej
- Wybrane elementy pozytywnej teorii równowagi
- 3 Równowagowe modele gospodarki dynamicznej
- 4 Metody rekursywne
- 5 Model DSGE

Wprowadzenie do metod rekursywnych

- Rozważmy problem: $\max_{\{s_t, a_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(s_t, a_t)$ pw. $s_{t+1} = h(s_t, a_t)$ oraz $g(s_t, a_t) \ge 0$ i zadanym s_0 . **Jeden problem** T+1 **zmiennych**.
- ullet Zamienimy go w rozwiązanie T+1 razy jednego prostego problemu.
- Rozpatrzmy ostatni okres i zadane s_T : $\max_{a_T} u(s_T, a_T)$ pw. $g(s_T, a_T) \ge 0$.
- Zapiszmy $V_0(s_T) = \max_{a_T} u(s_T, a_T)$ pw. $g(s_T, a_T) \ge 0$.
- Rozpatrzmy przedostatni okres i zadane S_{T-1} : $\max_{a_{T-1},a_T} u(s_{T-1},a_{T-1}) + \beta u(h(s_{T-1},a_{T-1}),a_T)$ pw. $g(s_{T-1},a_{T-1}) \geq 0$, $g(s_T,a_T) \geq 0$
- ullet Zauważmy, że wystarczy wybrać a_{T-1} a potem użyć funkcji V_0 , tzn:

$$V_1(s_{T-1}) = \max_{a_{T-1}} u(s_{T-1}, a_{T-1}) + \beta V_0(h(s_{T-1}, a_{T-1})).$$

• Kontynuując: $\max_{a_0} u(s_0, a_0) + \beta V_{T-1}(h(s_0, a_0))$ pw. $g(s_0, a_0) \ge 0$.

Funkcja wartości

Ogólnie dla problemu z horyzontem T mamy równanie:

$$V_t(s_{T-t}) = \max_{a_{T-t}} u(s_{T-t}, a_{T-t}) + \beta V_{t-1}(h(s_{T-t}, a_{T-t})), \text{ pw. } g(s_{T-t}, a_{T-t}) \ge 0.$$

- Interesuje na problem z $T \to \infty$.
- pytanie czy istnieje granica ciągu ograniczonych funkcji $\{V_t\}_{t=0}^{\infty}$ w metryce sup?
- Kolejne elementy tego ciągu są generowane przez operator T $TV(s) = \max_a u(s,a) + \beta V(h(s,a))$, pw. $g(s,a) \ge 0$ tzn: $V_{t+1} = TV_t$.

Definition (Odwzorowanie zbliżające)

Operator $T:M\to M$ na przestrzeni metrycznej (M,d) jest odwzorowniem zbliżającym z modułem $1>\beta>0$, jeżeli $(\forall x,y\in M)\,d(Tx,Ty)\leq \beta d(x,y)$.

4) d (

Twierdzenie Banacha

Theorem (Twierdzenie Banacha)

Niech (M,d) będzie zupełną przestrzenią metryczną a $T:M\to M$ odwzorowaniem zbliżającycm z modułem β wtedy istnieje jeden punkt stały $V^*=TV^*\in M$ oraz dla każdego $x_0\in M$ ciąg $\{V_t\}_{t=0}^\infty$ generowany na $V_{t+1}=TV_t$ jest zbieżny w do V^* w metryce d.

Naturalnym kandydatem na (M, d) jest $(C(X), ||\cdot||)$.

Theorem (Stokey, Lucas, Prescott 1989)

Niech $1 > \beta > 0$,a u będzie ograniczone, wtedy rozwiązania problemu:

$$V(s_0) = \max_{\{a_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(s_t, a_t)$$

odpowiadają rozwiązaniu

$$V(s) = \max_{a} \{u(s, a) + \beta V(h(s, a))\}$$

2 (0

Przykłady

Identyfikacja zmiennej stanu

- $\sum_{t}^{\infty} \beta^{t} u(c_{t})$ pw. $k_{t+1} = f(k_{t}) + (1+\delta)k_{t} c_{t}$ oraz $V(k) = \max_{c} \{u(c) + \beta V(f(k) + (1+\delta)k c)\}$
- $\sum_{t}^{\infty} \beta^{t} u(c_{t})$ pw. $k_{t+1} = f(k_{t}) + (1 + \delta)k_{t} c_{t}$ oraz $V(k) = \max_{k'} \{ u(f(k) + (1 + \delta)k k') + \beta V(k') \}$
- $\sum_{t}^{\infty} \beta^{t} u(c_{t}, 1 l_{t})$ pw. $k_{t+1} = f(k_{t}, l_{t}) + (1 + \delta)k_{t} c_{t}$ oraz $V(k) = \max_{c,l} \{u(c, 1 l) + \beta V(f(k, l) + (1 + \delta)k c)\}$
- $\sum_{t}^{\infty} \beta^{t} u(c_{t-1}, c_{t})$ pw. $k_{t+1} = f(k_{t}) + (1+\delta)k_{t} c_{t}$ oraz $V(k, c_{-}) = \max_{c} \{u(c_{-}, c) + \beta V(f(k) + (1+\delta)k c, c)\}$
- $\sum_{t}^{\infty} \beta^{t} u(c_{t-1}, c_{t})$ pw. $k_{t+1} = f(k_{t}, k_{t-1}) + (1+\delta)k_{t} c_{t}$ oraz $V(k, k_{-}) = \max_{c} \{u(c) + \beta V(f(k, k_{-}) + (1+\delta)k c, k)\}$

Ważne pytania i rozszerzenia

- kiedy V jest monotoniczna i ostro wklesła (SLP)?
- kiedy rozwiązanie $a^*(k)$ jest funkcją?, funkcja rosnącą (SLP)?
- kiedy V jest różniczkowalna (Benveniste, Scheinkman 1979 lub Rincon-Zapatero, Santos 2009)?
- co w przypadku nieograniczonej *u* (Rincon-Zapatero, Palmero 2003, 2009 lub Matkowski,Nowak 2009)?

Rozszerzenie o stochastykę:

$$V(s,z) = \max_{a} \{ u(s,z,a) + \beta \int_{Z} V(h(s,a,z'),z') dQ(z'|z) \}$$

Definicja równowagi rekursywnej z pracą

Definition

Równowagą rekursywną są funkcje: V, k', I, K', L, w, r takie, że:

- $(\forall k, K)$ $V(k, K) = \max_{k', l} \{u(w(K)l + r(K)k + (1 \delta)k k', 1 l) + \beta V(k', K'(K))\}$ oraz k'(k, K), l(k, K) rozwiązują prawą stronę,
- $(\forall K) \ k = K \ l = L(K) \ rozwiązują$ $<math>\max_{k,l} F(k,l) - w(K)l - r(K)k,$
- $(\forall K) \ k'(K, K) = K'(K) \text{ oraz } I(K, K) = L(K),$
- $(\forall K) \ w(K)I(K,K) + r(K)K = F(K,L(K)).$

Definicja równowagi rekursywnej z obligacjami

Definition

Równowagą rekursywną są funkcje: V, k', b', K', B, w, r, q takie, że:

- $(\forall k, K, b, B)$ $V(k, K, b, B) = \max_{k', b} \{ u(w(K, B) + r(K, B)k + (1 - \delta)k + b - k' - q(K, B)b', 1 - l) + \beta V(k', b', K'(K, B), B'(K, B)) \}$ + no Ponzi, oraz k'(k, b, K, B), b'(k, b, K, B) rozwiązują prawą stronę,
- $(\forall K, B) \ k = K \ l = 1 \text{ rozwiązują}$ $\max_{k,l} F(k,l) - w(K,B)l - r(K,B)k,$
- $(\forall K) \ k'(K, 0, K, 0) = K'(K, 0) \text{ oraz } b'(K, 0, K, 0) = B'(K, 0),$
- $(\forall K) \ w(K,0) + r(K,0)K = F(K,1), \ B'(K,0) = 0.$

Metody rozwiązywania modelu DGE

Dyskretyzacja i iteracja funkcji wartości na operatorze Bellmana.

Outline

- 1 Równowagowe modele gospodarki statycznej
- Wybrane elementy pozytywnej teorii równowagi
- 3 Równowagowe modele gospodarki dynamicznej
- 4 Metody rekursywne
- Model DSGE

Model DSGE

Prekursorzy: Brock, Mirman 1972, Mirman, Zilcha 1975

Równowaga rekursywna: Prescott, Mehra 1980

Definition

Równowagą rekursywną modelu DSGE są funkcje: V, k', l, K', L, w, r takie, że:

- $(\forall k,K,z)$ $V(k,K,z) = \max_{k',l} \{u(w(K,z)l + r(K,z)k + (1-\delta)k k',1-l) + \beta \int_Z V(k',K'(K,z),z')G(dz'|z)\}$ oraz k'(k,K,z),l(k,K,z) rozwiązują prawą stronę,
- $(\forall K) \ k = K \ l = L(K, z) \text{ rozwiązują}$ $\max_{k,l} zF(k, l) - w(K, z)l - r(K, z)k,$
- $(\forall K)$ k'(K, K, z) = K'(K, z) oraz I(K, K, z) = L(K, z),
- $(\forall K) \ w(K,z)I(K,K,z) + r(K,z)K = zF(K,L(K,z)).$

Warunki określające rekursywną równowagę modelu DSGE

Założenia i warunki konieczne na wewnętrzne rozwiązanie:

$$\begin{aligned} u_1'(c(k,K,z),1-l(k,K,z)) &= \\ \beta \int_{\mathcal{Z}} (1-\delta + F_1'(K'(K,z),L'(K,z))) \times \\ \times & u_1'(c(k'(k,K,z),K'(K,z),z'),1-l'(k'(k,K,z),K'(K,z),z))G(z'|z), \\ \text{gdzie } c(k,K,z) &= zF(K,L(K,z)) + (1-\delta)k - k'(k,K,z) \text{ oraz} \\ & F_2'(K,L'(K,z))u_1'(c(k,K,z),1-l(k,K,z)) = \\ &= u_2'(c(k,K,z),1-l(k,K,z)) \end{aligned}$$

i nie potrzebujemy TVC.

Dane empiryczne, a intuicja wyniku

- dyskontowanie, stopa procentowa i zmiany dochodu
- oszczędności to bufor do wygładzania konsumpcji
- zmiany stopy procentowej
- konsumpcja reaguje na zmiany zwrotu z oszczędności
- szoki i rola oczekiwań
- plan konsumpcyjny jest rewidowany po otrzymaniu nowych informacji

Hipoteza dochodu permanentnego (Friedman (1957)) Hipoteza błądzenia losowego (Hall (1978))

Szoki i zmiany podaży pracy

Trzy komponenty:

- efekt substytucjny (wewnątrzokresowy)
- efekt dochodowy
- efekt substytucjny (międzyokresowy)

Dla "gładkich" preferencji dwa pierwsze efekty się znoszą. Hipoteza międzyokresowej substytucji pracy (Lucas, Rapping (1969))