Chapter 11

SEQUENTIAL CONSTRUCTION OF AN EXPERIMENTAL DESIGN FROM AN I.I.D. SEQUENCE OF EXPERIMENTS WITHOUT REPLACEMENT

Luc Pronzato

Laboratoire I3S, CNRS-UNSA, Sophia-Antipolis, France pronzato@unice.fr

Abstract

We consider a regression problem, with observations $y_k = \eta(\theta, \xi_k) + \epsilon_k$, where $\{\epsilon_k\}$ is an i.i.d. sequence of measurement errors and where the experimental conditions ξ_k form an i.i.d. sequence of random variables, independent of $\{\epsilon_k\}$, which are observed sequentially. The length of the sequence $\{\xi_k\}$ is N but only n < N experiments can be performed. As soon as a new experiment ξ_k is available, one must decide whether to perform it or not. The problem is to choose the n values $\xi_{k_1}, \ldots, \xi_{k_n}$ at which observations y_{k_1}, \ldots, y_{k_n} will be made in order to estimate the parameters θ . An optimal rule for the on–line selection of $\xi_{k_1}, \ldots, \xi_{k_n}$ is easily determined when $p = \dim \theta = 1$. A suboptimal open–loop feedback–optimal rule is suggested in Pronzato (1999b) for the case p > 1. We propose here a different suboptimal solution, based on a one–step–ahead optimal approach. A simple procedure, derived from an adaptive rule which is asymptotically optimal, Pronzato (1999a), when p = 1 ($N \rightarrow \infty$, n fixed), is presented. The performances of these different strategies are compared on a simple example.

Keywords: Sequential design, random experiments, expected determinant

Introduction

Consider a regression model, with observations

$$y_k = \eta(\bar{\boldsymbol{\theta}}, \xi_k) + \epsilon_k \,, \tag{11.1}$$

where $\{\epsilon_k\}$ is an i.i.d. sequence of measurement errors, assumed for simplicity to be distributed $\mathcal{N}(0, \sigma^2)$, and $\bar{\theta} \in \Theta$ is the unknown true value of the model parameters to be estimated, with Θ an open subset of \mathbb{R}^p . The function $\eta(\theta, \xi)$

is assumed continuously differentiable in θ , uniformly in ξ . The experimental conditions $\xi_k \in \mathcal{X}$ form an i.i.d. sequence, independent of $\{\epsilon_k\}$, of length N. Only n < N experiments can be made. As soon as a new experiment ξ_k becomes available, one must decide whether to perform it or not, and one wishes to select n values $\xi_{k_1}, \ldots, \xi_{k_n}$ at best.

Let ν denote the probability measure of the ξ_k 's, assumed to be known, and let $\{u_k\}$ denote the decision sequence: $u_k=1$ if y_k is observed, with experimental conditions ξ_k , and $u_k=0$ otherwise. We denote the random sequence ξ_1,\ldots,ξ_N by $\boldsymbol{\xi}_1^N$ and the decision sequence u_1,\ldots,u_N by \boldsymbol{u}_1^N , with, for any admissible policy,

$$u_j \in \mathcal{U}_j \subseteq \{0,1\}, \ j=1,\ldots,N, \ \sum_{j=1}^N u_j = n.$$
 (11.2)

We consider design criteria $\Phi(\cdot)$ for the estimation of $\boldsymbol{\theta}$ that are increasing functions of the Fisher information matrix, evaluated at a prior value $\hat{\boldsymbol{\theta}}^0$ for $\boldsymbol{\theta}$ if $\eta(\boldsymbol{\theta}, \xi)$ is nonlinear in $\boldsymbol{\theta}$ (local design). We define the rank—one matrix $\mathcal{M}(\xi)$ as

$$\mathcal{M}(\xi) = \frac{1}{\sigma^2} \frac{\partial \eta(\boldsymbol{\theta}, \xi)}{\partial \boldsymbol{\theta}} |_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}^0} \frac{\partial \eta(\boldsymbol{\theta}, \xi)}{\partial \boldsymbol{\theta}^\top} |_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}^0}$$

and we write $J(u_1^N, \boldsymbol{\xi}_1^N) = \Phi[\sum_{k=1}^N u_k \mathcal{M}(\boldsymbol{\xi}_k)]$. The measure ν for $\boldsymbol{\xi}$ induces a measure μ for $\mathcal{M}(\boldsymbol{\xi})$; we shall denote $\mathcal{M}_k = \mathcal{M}(\boldsymbol{\xi}_k)$, $\mathbf{M}_j = \sum_{k=1}^j u_k \mathcal{M}_k$ and we assume that $\mathbf{M} = E\{\mathcal{M}_k\}$ and $E\{\Phi(\mathbf{M}_N)\}$ exist. Note that $\boldsymbol{\xi}_k$, and thus \mathcal{M}_k , is known when u_k is chosen. The problem is then to maximise

$$EJ(\mathbf{u}_{1}^{N}) = E\{\Phi(\mathbf{M}_{N})\} = E\{\Phi(\sum_{k=1}^{N} u_{k}\mathcal{M}_{k})\}$$
 (11.3)

w.r.t. \boldsymbol{u}_1^N satisfying (11.2), where the expectation $E\{\cdot\}$ is w.r.t. the product measure $\mu^{\otimes N}$ of $\mathcal{M}_1,\ldots,\mathcal{M}_N$. For any sequence \boldsymbol{u}_1^N and any step $j,1\leq j\leq N,$ a_j will denote the number of observations already made; that is,

$$a_j = \sum_{k=1}^{j-1} u_k \,, \tag{11.4}$$

with $a_1 = 0$. The problem corresponds to a discrete–time stochastic control problem, where j represents time, $S_j = (a_j, \mathbf{M}_{j-1}, \mathcal{M}_j)$ and $u_j \in \mathcal{U}_j \subseteq \{0, 1\}$ respectively represent the state and control at time j. For each $j \in \{1, \ldots, N\}$ and each policy \boldsymbol{u}_j^N , the optimal decisions are obtained by solving the following

problem:

$$\max_{u_{j} \in \mathcal{U}_{j}} \left[E_{\mathcal{M}_{j+1}} \left\{ \max_{u_{j+1} \in \mathcal{U}_{j+1}} \left[E_{\mathcal{M}_{j+2}} \left\{ \max_{u_{j+2} \in \mathcal{U}_{j+1}} \left[\dots \right] E_{\mathcal{M}_{N-1}} \left[E_{\mathcal{M}_{N-1}} \left\{ \max_{u_{N-1} \in \mathcal{U}_{N-1}} \left[E_{\mathcal{M}_{N}} \left\{ \max_{u_{N} \in \mathcal{U}_{N}} \left[\Phi(\sum_{k=1}^{N} u_{k} \mathcal{M}_{k}) \right] \right\} \right] \right\} \right] \right\} \right] \right\} \right]$$
(11.5)

where $E_{\mathcal{M}_k}\{.\}$ denotes the expectation w.r.t. \mathcal{M}_k , distributed with the measure μ , and, for any $k=j,\ldots,N$,

$$\mathcal{U}_k = \mathcal{U}_k(a_k) = \begin{cases}
\{0\} & \text{if } a_k = n, \\
\{1\} & \text{if } a_k + N - k + 1 \le n, \\
\{0, 1\} & \text{otherwise.}
\end{cases} (11.6)$$

One can notice that the formulation of the problem would be much more complicated for a criterion function evaluated at the expected value of \mathbf{M}_N or \mathbf{M}_N^{-1} , that is, when the problem is to maximize $\Phi(E\{\mathbf{M}_N\})$, or to minimize $\Phi(E\{\mathbf{M}_N\})$, hence the choice (11.3).

The case $p=\dim \theta=1$ is considered in Section 1 The optimal (closed-loop) solution is given by a backward recurrence equation. A simple open-loop solution, asymptotically optimal for $N{\to}\infty$ with n fixed, is presented. Section 2 concerns the multidimensional case p>1, for which the optimal solution cannot be obtained in close form. Several suboptimal solutions (open-loop feedback-optimal, one-step-ahead optimal) are proposed. Finally, the different strategies are compared on an illustrative example in Section 3

1. ESTIMATION OF A SCALAR PARAMETER

When p=1, \mathcal{M} is scalar, and we simply take $J(\boldsymbol{u}_1^N,\boldsymbol{\xi}_1^N)=\sum_{k=1}^N u_k\mathcal{M}_k$, that is, we maximize the expected information (note that the expected variance is not additive, which makes its minimisation more difficult). The problem to be solved at step j then becomes

$$\max_{u_{j} \in \mathcal{U}_{j}} [u_{j} \mathcal{M}_{j} + E_{\mathcal{M}_{j+1}} \{ \max_{u_{j+1} \in \mathcal{U}_{j+1}} [u_{j+1} \mathcal{M}_{j+1} + \cdots \\ E_{\mathcal{M}_{N-1}} \{ \max_{u_{N-1} \in \mathcal{U}_{N-1}} [u_{N-1} \mathcal{M}_{N-1} + E_{\mathcal{M}_{N}} \{ \max_{u_{N} \in \mathcal{U}_{N}} u_{N} \mathcal{M}_{N} \}] \} \cdots] \} (11.7)$$

with the constraints (11.6) on the sets \mathcal{U}_k . It presents some similarities with the well-known secretary problem, see Pronzato (1999a) for a discussion. The state \mathcal{S}_j at step j reduces to $\mathcal{S}_j = (a_j, \mathcal{M}_j)$, with a_j given by (11.4). Let $C(j, a_j, \mathcal{M}_j, \mathbf{u}_j^N)$ denote the optimal conditional expected gain—to—go at step j given \mathcal{S}_j , $C(j, a_j, \mathcal{M}_j, \mathbf{u}_j^N) = E\{\sum_{k=j}^N u_k \mathcal{M}_k | a_j, \mathcal{M}_j\}$, let $\tilde{C}(j, a_j, \mathcal{M}_j)$ denote its value when \mathbf{u}_j^N is chosen optimally, and $c(j, a_j, \mathbf{u}_j^N)$, $\tilde{c}(j, a_j)$ respectively denote the expected values of $C(j, a_j, \mathcal{M}_j, \mathbf{u}_j^N)$ and $\tilde{C}(j, a_j, \mathcal{M}_j)$ w.r.t.

 \mathcal{M}_j . One has, for $n-N+j-1 < a_j < n$, $\tilde{C}(j,a_j,\mathcal{M}_j) = \max_{u_j \in \{0,1\}} [u_j \mathcal{M}_j + \tilde{c}(j+1,a_j+u_j)]$. The optimal decision is thus

$$\tilde{u}_{j}(a_{j}, \mathcal{M}_{j}) = \begin{cases} 0 & \text{if } \mathcal{M}_{j} \leq \tilde{s}(j, a_{j}) = \tilde{c}(j+1, a_{j}) - \tilde{c}(j+1, a_{j}+1), \\ 1 & \text{otherwise,} \end{cases}$$
(11.8)

which gives $\tilde{C}(j, a_j, \mathcal{M}_j) = \max[\mathcal{M}_j + \tilde{c}(j+1, a_j+1), \tilde{c}(j+1, a_j)]$ and the following backward recurrence equation for $\tilde{c}(j, a_j)$:

$$\tilde{c}(j, a_j) = E\{\max[\mathcal{M} + \tilde{c}(j+1, a_j+1), \tilde{c}(j+1, a_j)]\}. \tag{11.9}$$

The constraints (11.2) give $\tilde{c}(j,j+n-N-1)=(N-j+1)E\{\mathcal{M}\}$ and $\tilde{C}(j,n,\mathcal{M}_j)=0$ for all \mathcal{M}_j , which initialises the recurrence (11.9) used to compute the optimal thresholds $\tilde{s}(j,a_j)$ in (11.8). The asymptotic properties $(N\to\infty,n$ fixed) of this optimal solution are considered in Pronzato (1999a). In particular, it is shown that when the support of μ is unbounded, for any $a_j < n$, $\tilde{s}(j,a_j)$ and $\tilde{c}(j,a_j)$ tend to infinity as $N\to\infty$, and, when the tail of the distribution function of $\mathcal M$ decreases fast enough, a simple open-loop rule is asymptotically optimal.

Assume that μ is absolutely continuous w.r.t. the Lebesgue measure, with $\varphi(\cdot)$ its density, let $F(\cdot)$ denote the distribution function of \mathcal{M} , and consider the following assumption on the tail of $F(\cdot)$.

H1: $\bar{F}(\cdot) = 1 - F(\cdot)$ is twice differentiable, the density $\varphi(\cdot)$ is such that $\varphi(s) > 0$ and its derivative $\varphi'(\cdot)$ satisfies $\varphi'(s) < 0$ for s larger than some s_1 . Moreover, $\bar{F}(\cdot)$ has the representation

$$\bar{F}(s) = \bar{F}(s_0) \exp\left[-\int_{s_0}^s \frac{1}{a(t)} dt\right], \ s \ge s_0,$$

where the auxiliary function a(t) > 0 is absolutely continuous w.r.t. Lebesgue measure, with derivative a'(t) having limit $\lim_{t\to\infty} a'(t) = \bar{a} \in [0,1)$.

Note that $a(s) = \bar{F}(s)/\varphi(s)$ for $s > s_0$. When $\bar{a} = 0$, $F(\cdot)$ is a von Mises function, see Embrechts *et al.* (1997), p. 138, a class which contains for instance the exponential, normal, lognormal, Weibull and Gamma distributions, all with a tail decreasing faster than any power law $s^{-\alpha}$. In that case, $\lim_{t\to\infty} \bar{F}(t)\varphi'(t)/[\varphi(t)]^2 = -1$ and $\lim_{t\to\infty} a(t)/t = 0$, see Embrechts *et al.* (1997), p. 140. When a(t) = t/b(t) with $b(t)\to\alpha\in(1,\infty)$ as $t\to\infty$, $\bar{a}=1/\alpha$ and $\bar{F}(\cdot)$ is regularly varying with index $-\alpha$; that is (see Embrechts *et al.* (1997), p. 566),

$$\bar{F}(\cdot) \in \mathcal{R}_{-\alpha} : \lim_{s \to \infty} \frac{\bar{F}(ts)}{\bar{F}(s)} = t^{-\alpha}, \ t > 0.$$

We define

$$A(s) = \frac{h(s)\varphi(s)}{[\bar{F}(s)]^2}, \quad \bar{A} = \lim_{s \to \infty} A(s),$$

where $h(s)=E\{\max(\mathcal{M}-s,0)\}$. When $F(\cdot)$ is a von Mises function, direct application of L'Hôpital's rule shows that $\bar{A}=1$. When $\bar{F}(\cdot)\in\mathcal{R}_{-\alpha},\,\alpha\in(1,\infty),\,\varphi(\cdot)\in\mathcal{R}_{-(\alpha+1)}$ and from Feller (1966), vol. 2, p. 281, $\bar{A}=\alpha/(\alpha-1)$. The following property is proved in Pronzato (1999a).

Theorem 1. Assume that $F(\cdot)$ satisfies **H1**. Any admissible open-loop decision rule \mathbf{u}_1^N , defined by $u_j(a_j, \mathcal{M}_j) = 0$ if $\mathcal{M}_j \leq s(j, a_j)$, $u_j(a_j, \mathcal{M}_j) = 1$ otherwise, with thresholds $s(j, a_j)$ such that $(N - j)\bar{A}\bar{F}[s(j, a_j)] \rightarrow n - a_j$ when $N \rightarrow \infty$, is asymptotically optimal in the following sense: when $n - a_j = 1$,

- (i) $c(j, n-1, \mathbf{u}_{j}^{N})/\tilde{c}(j, n-1) \rightarrow 1$ as $N \rightarrow \infty$ if $\liminf_{s \rightarrow \infty} a(s) > c > 0$;
- (ii) $\tilde{c}(j, n-1) c(j, n-1, u_j^N) \rightarrow 0$ as $N \rightarrow \infty$ if $\limsup_{s \rightarrow \infty} a(s) < C < \infty$; when $n a_j > 1$,
- (iii) $c(j,a_j,\boldsymbol{u}_j^N)/\tilde{c}(j,a_j)\to 1$ as $N\to\infty$ if $\bar{a}=0$ and $\liminf_{s\to\infty}a(s)>c>0$;

(iv)
$$\tilde{c}(j, a_j) - c(j, a_j, \boldsymbol{u}_j^N) \rightarrow 0$$
 as $N \rightarrow \infty$ if $\bar{a} = 0$ and $a(s) \rightarrow 0$ as $s \rightarrow \infty$.

In particular, the open-loop rule defined by

$$u_j(a_j, \mathcal{M}_j) = \begin{cases} 0 & \text{if } \bar{F}(\mathcal{M}_j) \ge \frac{n - a_j}{\bar{A}(N - j + 1) + (1 - \bar{A})(n - a_j) - \epsilon}, \\ 1 & \text{otherwise,} \end{cases}$$
(11.10)

with $0 < \epsilon \ll 1$, satisfies (11.6) and the conditions in Theorem 1, and is thus asymptotically optimal.

When the distribution of the \mathcal{M}_k 's is unknown, their empirical distribution can be plugged in to the construction of the optimal rule (11.8) or the open-loop rule (11.10). This (suboptimal) approach corresponds to Certainty Equivalence (CE) control. First, we delay the decision for a few steps in order to initialise the construction of the empirical distribution of the \mathcal{M}_k 's, see Pronzato (1999a) for a discussion; then, at each step j, we substitute $\hat{F}_j(\cdot)$ for $F(\cdot)$, with $\hat{F}_j(\cdot)$ the empirical distribution function of \mathcal{M} based on previous observed values, including \mathcal{M}_j . In the case of (11.10), this CE open-loop rule can be expressed directly in terms of the order statistics $\{\mathcal{M}_{i,j-1}^*\}$, $(\{\mathcal{M}_{i,j-1}^*\}$ denotes the sequence obtained by ordering the \mathcal{M}_k 's, $k \leq j-1$, by decreasing values, with for any j, $\mathcal{M}_{i,j-1}^* = -\infty$ for i > j-1 and $\mathcal{M}_{0,j-1}^* = \infty$). The rule (11.10) then becomes

$$u_j^{CE}(a_j, \mathcal{M}_j) = \begin{cases} 0 & \text{if } \mathcal{M}_j < \mathcal{M}_{l_j, j-1}^*, \\ 1 & \text{otherwise,} \end{cases}$$
(11.11)

with

$$l_{j} = \left[\frac{j(n - a_{j})}{\bar{A}(N - j + 1) + (1 - \bar{A})(n - a_{j}) - \epsilon} \right], \quad (11.12)$$

where $\lceil x \rceil$ rounds x to the nearest larger integer

2. ESTIMATION OF A PARAMETER VECTOR

When $p = \dim(\theta) > 1$, the problem (11.5) cannot be solved analytically, and we restrict our attention to suboptimal solutions.

2.1. OPEN-LOOP FEEDBACK-OPTIMAL DECISIONS

A suboptimal approach, called Open–Loop Feedback–Optimal (OLFO) in control theory, assumes that at each step j, all the decisions \boldsymbol{u}_{j}^{N} may only depend on the current state \mathcal{S}_{j} . The OLFO solution is then obtained by solving the optimisation problem:

$$\max_{\boldsymbol{u}_{j}^{N}}[E_{\mathcal{M}_{j+1},...,\mathcal{M}_{N}}\{\Phi(\sum_{k=j}^{N}u_{k}\mathcal{M}_{k})|\mathcal{S}_{j}\}],$$

with u_j^N satisfying the constraints (11.2) and being a function of $S_j = (a_j, \mathbf{M}_{j-1}, \mathcal{M}_j)$ only. It appears as a deterministic quantity in the conditional expectation above, with $\sum_{k=j}^N u_k = \max(0, n-a_j)$. For $n-N+j-1 < a_j < n$, the decision rule is thus:

$$\hat{u}_{j}(\mathcal{S}_{j}) = \begin{cases} 0 & \text{if } E_{\mathcal{M}_{j+1}, \dots, \mathcal{M}_{n+j-a_{j}}} \{ \Phi(\mathbf{M}_{j-1} + \mathcal{M}_{j} + \sum_{k=j+1}^{n+j-a_{j}} \mathcal{M}_{k}) \} \leq \\ E_{\mathcal{M}_{j+1}, \dots, \mathcal{M}_{n+j-a_{j}+1}} \{ \Phi(\mathbf{M}_{j-1} + \sum_{k=j+1}^{n+j-a_{j}+1} \mathcal{M}_{k}) \}, \\ 1 & \text{otherwise}. \end{cases}$$
(11.13)

Note that \hat{u}_j is independent of N. It can be easily determined when the criterion takes the form $\Phi(\mathbf{M}) = \det(\mathbf{\Omega}^{-1} + \mathbf{M})$, with $\mathbf{\Omega}$ a positive-definite matrix. Indeed, expectations of determinants are obtained analytically as follows, see Pronzato (1999b).

Theorem 2. Assume that the vectors $\mathbf{z}_i \in \mathbb{R}^p$ are i.i.d., with a probability measure μ_z such that $\bar{\mathbf{M}} = E\{\mathbf{z}\mathbf{z}^\top\}$ exists, then for any regular matrix \mathbf{Q} ,

$$E_{\mathbf{z}_1,\dots,\mathbf{z}_k}\{\det[\mathbf{Q}+\sum_{l=1}^k\mathbf{z}_l\mathbf{z}_l^T]\} = \det[\mathbf{Q}] \times \left[1+\sum_{l=1}^{\min(k,p)} \mathtt{C}_k^l P_l(\mathbf{t}_1^l)\right] \;,$$

where $C_k^l = k!/[l!(k-l)!]$, $\mathbf{t}_1^l = (t_1, \dots, t_l)$, with $t_l = tr[(\mathbf{Q}^{-1}\bar{\mathbf{M}})^l]$, and

$$P_l(\mathbf{t}_1^l) = l! \sum_{\substack{1^{n_1} \dots l^{n_l} \\ (1^{n_1} \dots l^{n_l})}} \frac{(-1)^{l+\sum_{i=1}^l n_i}}{(1^{n_1} \dots l^{n_l})(n_1! \dots n_l!)} t_1^{n_1} \dots t_l^{n_l},$$

where the summation $\sum_{1^{n_1}...l^{n_l}}$ is over all non-negative integers $n_1,...,n_l$ such that $\sum_{i=1}^{l} i n_i = l$, that is, over all partitions of l which have n_i parts of size i.

The proof is by induction on k. One has for $l = 1, \ldots, 4$:

$$P_1(t_1) = t_1,$$
 $P_2(\mathbf{t}_1^2) = t_1^2 - t_2,$ $P_3(\mathbf{t}_1^3) = t_1^3 - 3t_1t_2 + 2t_3,$ $P_4(\mathbf{t}_1^4) = t_1^4 - 6t_1^2t_2 + 8t_1t_3 + 3t_2^2 - 6t_4.$

The OLFO thresholds in (11.13) are obtained by applying Theorem 2 two times, with $\mathbf{Q} = \mathbf{\Omega}^{-1} + \mathbf{M}_{j-1} + \mathcal{M}_j$ and $\mathbf{Q} = \mathbf{\Omega}^{-1} + \mathbf{M}_{j-1}$ respectively. Note that this approach is not restricted to parameter estimation in regression models (11.1); the only requirement for Theorem 2 to apply is that the information matrix can be written as a sum of i.i.d. rank—one matrices.

2.2. ONE-STEP-AHEAD DECISIONS

If the experimental conditions could be chosen freely in a given set \mathcal{X} , at step j a steepest ascent algorithm, see Fedorov (1972); Wynn (1970), would select $\xi_j^* = \arg\max_{\xi_j \in \mathcal{X}} d(\mathbf{M}_{j-1}, \mathcal{M}_j)$, with

$$d(\mathbf{M}_{j-1}, \mathcal{M}_j) = \frac{\partial \Phi[(1-\alpha)\mathbf{M}_{j-1} + \alpha \mathcal{M}_j]}{\partial \alpha}\Big|_{\alpha=0}.$$

When $\Phi(\mathbf{M}) = \det(\mathbf{\Omega}^{-1} + \mathbf{M})$, choosing ξ_j^* produces the maximal increase in Φ , since

$$\Phi(\mathbf{M}_{i-1} + \mathcal{M}_i) = \Phi(\mathbf{M}_{i-1})\{1 + \operatorname{trace}[\mathcal{M}_i(\mathbf{\Omega}^{-1} + \mathbf{M}_{i-1})^{-1}]\}$$

and

$$d(\mathbf{M}_{j-1}, \mathcal{M}_j) = \Phi(\mathbf{M}_{j-1}) \{ \operatorname{trace}[\mathcal{M}_j(\mathbf{\Omega}^{-1} + \mathbf{M}_{j-1})^{-1}] - \operatorname{trace}[\mathbf{M}_{j-1}(\mathbf{\Omega}^{-1} + \mathbf{M}_{j-1})^{-1}] \}.$$

Assume that at step j there is only one additional observation to make, that is, $a_j = n-1$. The state \mathcal{S}_j is known, and the optimal solution of (11.5) is obtained as in Section 1, by solving a problem similar to (11.7) with the i.i.d. scalar variables \mathcal{M}_k , $k \geq j$, replaced by $\mathcal{M}'_k = d(\mathbf{M}_{j-1}, \mathcal{M}_k)$. In particular, Theorem 1 applies, and, under the conditions of the theorem, the open-loop rule (11.10) is asymptotically optimal.

When more observations are to be made, we still define $\mathcal{M}_k' = d(\mathbf{M}_{j-1}, \mathcal{M}_k)$ and maximise at step j:

$$EJ'(\mathbf{u}_{j}^{N}) = E_{\mathcal{M}'_{j+1},\dots,\mathcal{M}'_{N}} \{ \sum_{k=j}^{N} u_{k} \mathcal{M}'_{k} | \mathcal{S}_{j} \}.$$
 (11.14)

The optimal solution is given by (11.8), which provides a suboptimal solution for (11.5). The strategy can be further simplified by using (11.10). The OLFO rule can also be used to get a suboptimal solution for the maximisation of (11.14): ξ_j is accepted if $\mathcal{M}'_j > E\{\mathcal{M}'_k | \mathcal{S}_j\}$ and rejected otherwise.

Note that the distribution of \mathcal{M}'_k may be difficult to derive from that of ξ_k , whereas using CE and empirical distributions is straightforward, see in particular (11.11,11.12).

3. EXAMPLE

Consider the following linear regression model, quadratic in the design variable ξ_k : $\eta(\boldsymbol{\theta}, \xi_k) = \theta_0 + \theta_1 \xi_k + \theta_2 \xi_k^2$, with $\Theta = \mathbb{R}^3$, $\mathcal{X} = \mathbb{R}$, $\bar{\boldsymbol{\theta}} = (-4, 4, -1)^{\mathsf{T}}$, so that the response $\eta(\bar{\boldsymbol{\theta}}, \xi)$ reaches its maximum at $\xi^* = 2$. The observation errors ϵ_k are i.i.d. $\mathcal{N}(0, \sigma^2)$, with $\sigma = 0.1$, and the ξ_k 's are i.i.d. $\mathcal{N}(1, 1)$. N = 100 values of ξ_k are proposed, and n = 10 observations can be made.

Four strategies are compared, all based on $\Phi(\mathbf{M}) = \det(\mathbf{\Omega}^{-1} + \mathbf{M})$, with $\mathbf{\Omega} = 10^6 \mathbf{I}$:

- S_1 corresponds to the OLFO rule (11.13);
- S_2 corresponds to the OLFO rule for the solution of the one-step-ahead problem (11.14);
- S_3 corresponds to the optimal rule (11.8) for the maximisation of (11.14);
- S_4 corresponds to the open-loop rule (11.11,11.12) for the maximisation of (11.14), with $\epsilon = 0.01$ and $\bar{A} = 1$.

All the strategies use CE: in S_1 , $\bar{\mathbf{M}}$ is replaced by the empirical mean of \mathcal{M}_k , see Theorem 2; S_2 (resp. S_3) uses the empirical mean (resp. empirical distribution) of \mathcal{M}'_k . Ten random samples ξ_{-9}, \ldots, ξ_0 are used to initialise the construction of the empirical quantities. Two criteria are used for the comparison: the determinant \mathcal{D} of the information matrix per sample: $\mathcal{D}(u_1^N) = \det[\mathbf{M}_N/n]$, and the squared error \mathcal{E} for the estimation of ξ^* ,

$$\mathcal{E}(\boldsymbol{u}_1^N) = [\bar{\theta}_1/(2\bar{\theta}_2) - \hat{\theta}_1^N/(2\hat{\theta}_2^N)]^2,$$

where $\hat{\boldsymbol{\theta}}^N$ is the maximum *a posteriori* estimator, with a normal prior $\mathcal{N}(\hat{\boldsymbol{\theta}}^0, \boldsymbol{\Omega})$, $\hat{\boldsymbol{\theta}}^0 = (0, 3, -0.5)^{\top}$.

The results obtained for q=1000 independent repetitions of the experiment are given in Table 11.1. From a result in Pronzato (1998a), taking n experiments at random gives on the average

$$E\{\det[\sum_{k=1}^{N} \mathcal{M}_k/n]\} = \frac{n!}{n^p(n-p)!} \det[\bar{\mathbf{M}}] \simeq 1.44 \ 10^6 \,,$$

and the four strategies above thus yield an important improvement in terms of \mathcal{D} . Note that the formula above shows that the approximate design problem defined by the maximisation of $E\{\det[\mathbf{M}_N/n]\}$ with $n\to\infty$ (for instance, $n=\gamma N,\ 0<\gamma<1,\ N\to\infty$) corresponds to the determination of an optimal constrained measure, a problem for which one can refer to Wynn (1982), Fedorov(1989) and in this volume, to Sahm and Schwabe (2000).

	\mathcal{D}	\mathcal{E}
$\overline{S_1}$	$8.92\ 10^6\ (9.5\ 10^6)$	$5.09 \ 10^{-5} \ (1.0 \ 10^{-4})$
S_2	$8.71\ 10^6\ (9.3\ 10^6)$	$5.03 \ 10^{-5} \ (1.3 \ 10^{-4})$
S_3	$1.82\ 10^7\ (1.3\ 10^7)$	$2.84 \ 10^{-5} \ (4.3 \ 10^{-5})$
S_4	$1.73\ 10^7\ (1.3\ 10^7)$	$2.87 \ 10^{-5} \ (4.7 \ 10^{-5})$

Table 11.1 Average performances of strategies S_1 to S_4 (N=100, n=10, 1000 repetitions, standard deviations are in brackets)

Since the standard deviations in Table 1 are rather large, we perform a statistical analysis of the results, based on the method of paired comparisons. First, we compute the differences between the performances of each pair of strategies, the same ξ_k 's and ϵ_k 's being used for all strategies in each experiment. For comparing S_j with S_k , we compute $\Delta_{\mathcal{D},i}^{j,k} = [\mathcal{D}(S_j)]_i - [\mathcal{D}(S_k)]_i$, with $[\mathcal{D}(S)]_i$ the value of \mathcal{D} obtained for strategy S in the i-th experiment. This gives q = 1000independent realisations of $\Delta_{\mathcal{D},i}^{j,k}$, with empirical mean $E(\Delta_{\mathcal{D}}^{j,k})$ and standard deviation $\sigma(\Delta_{\mathcal{D}}^{j,k})$. The same is done with the criterion \mathcal{E} , which yields $E(\Delta_{\mathcal{E}}^{j,k})$ and $\sigma(\Delta_{\mathcal{E}}^{j,k})$. Then, we test if S_j performs significantly better or worse than S_k in terms of \mathcal{D} and \mathcal{E} by computing the ratios $\rho_{\mathcal{D}}^{j,k} = \sqrt{q}E(\Delta_{\mathcal{D}}^{j,k})/\sigma(\Delta_{\mathcal{D}}^{j,k})$ and $\rho_{\mathcal{E}}^{j,k} = \sqrt{q}E(\Delta_{\mathcal{E}}^{j,k})/\sigma(\Delta_{\mathcal{E}}^{j,k})$. If the two decision rules have similar average performances, which corresponds to the null hypothesis, then $\rho_{\mathcal{D}}^{j,k}$ and $\rho_{\mathcal{E}}^{j,k}$ approximately follow Student's t-distribution with q-1 degrees of freedom. For large values of q, which is the case here, the distribution is approximately $\mathcal{N}(0,1)$, and the critical value, for a level of significance 0.5% (one sided–test), is 2.576. Values $\rho_{\mathcal{D}}^{j,k}$ larger than 2.576 (resp. $\rho_{\mathcal{E}}^{j,k}$ smaller than -2.576) thus indicate that S_j performs significantly better than S_k in terms of \mathcal{D} (resp. \mathcal{E}). The values of $\rho_{\mathcal{D}}^{j,k}$ and $\rho_{\mathcal{E}}^{j,k}$ are given in Table 11.2, with indices j,k corresponding respectively to lines and columns.

Table 11.2 indicates that the performances of S_1 and S_2 are not significantly different, and that S_3 and S_4 perform significantly better than S_1 and S_2 , both in terms of \mathcal{D} and \mathcal{E} . We conclude this example by indicating the average computing time for the four strategies. They are respectively 2.3, 0.14, 27.9

$\overline{ ho_{\mathcal{D}}^{j,k}}$	S_1	S_2	S_3	S_4	$ ho^{j,k}_{\mathcal{E}}$	S_1	S_2	S_3	S_4
$\overline{S_1}$	•	1.45	-23.12	-23.70	S_1	•	0.12	6.89	6.53
S_2	-1.45		-24.14	-24.64	S_2	-0.12	•	5.32	5.15
S_3	23.12	24.14	•	4.05	S_3	-6.89	-5.32		-0.16
S_4	23.70	24.64	-4.05	•	S_4	-6.53	-5.15	0.16	•

Table 11.2 Values of $\rho_{\mathcal{D}}^{j,k}$ and $\rho_{\mathcal{E}}^{j,k}$ (method of paired comparisons) for strategies S_1 to S_4 ($N=100,\,n=10,\,1000$ repetitions)

and 0.35 seconds. The evaluation of expected values of determinants in S_1 , see Theorem 2, explains the larger computing time than for S_2 . Taking the small computing time of S_4 into account, together with the fact that the performances of S_3 and S_4 are very close, we conclude that S_4 is the most attractive strategy.

References

Embrechts, P., Klüppelberg, C. and Mikosch T. (1997). *Modelling Extremal Events*. Berlin: Springer-Verlag.

Fedorov, V.V. (1972). Theory of Optimal Experiments. N.Y.: Academic Press.

Fedorov, V.V. (1989). Optimal design with bounded density: optimization algorithms of the exchange type. *JSPI* **22**, 1–13.

Feller, W. (1966). An Introduction to Probability Theory and Its Applications. N.Y.: Wiley.

Pronzato, L. (1998a). On a property of the expected value of a determinant. *Statistics & Probability Letters* **39**, 161–165.

Pronzato, L. (1998b). Optimal selection of information with restricted storage capacity. In *Proc. ICASSP'98* **4**, pp. 2285–2288. Seattle.

Pronzato, L. (1999a). Optimal and asymptotically optimal decision rules for sequential screening and resource allocation. Technical Report 99–19, Laboratoire I3S, CNRS–UPRES-A 6070, Sophia Antipolis, France,

http://www.i3s.unice.fr/~pronzato/.

Pronzato, L. (1999b). Sequential selection of observations in randomly generated experiments. *Tatra Mountains Math. Pub.* **17**, 167–175.

Wynn, H.P. (1970). The sequential generation of D-optimum experimental designs. *Ann. Math. Stat.* **41**, 1655–1664.

Wynn, H.P. (1982). Optimum submeasures with applications to finite population sampling. In *Statistical Decision Theory and Related Topics III. Proc. 3rd Purdue Symp* **2** (Eds S.S. Gupta and J.O. Berger), 485-495. N.Y.: Academic Press.