

1 INTR-A-OPERATIVE PROCEDURE FOR POST-OPERATIVE PAIN CONTROL

2

3 FIELD OF THE INVENTION

4 This invention relates to a procedure for essentially
5 eliminating post-operative pain concomitant with surgical
6 procedures; particularly to methods for essentially
7 eliminating pain associated with the implant of prosthetic
8 devices to repair and/or replace natural joints; and most
9 particularly to methods for essentially eliminating pain
10 associated with hip and knee replacements.

11

12 BACKGROUND OF THE INVENTION

13 Natural joints often become damaged either as a result
14 of traumatic injury, as a result of some disease process,
15 e.g. osteoarthritis, or as a side effect of various
16 pharmacological treatments, e.g. corticosteroid therapy.
17 This often leads to muscular atrophy, immobility, reduced
18 load capacity, chronic pain and a general reduction in the
19 patient's quality of life.

20 The use of prosthetic devices to replace damaged natural
21 joints, in whole or in part, has become widespread, as
22 medical and technological advances have joined to provide
23 improved materials and designs for prosthetic devices and
24 innovative techniques for their implantation. Modern

1 prosthetic devices are capable of providing a repaired joint
2 of maximum efficiency; furthermore current techniques for
3 implanting such prosthetic devices require only minimal
4 intrusion into the body of the recipient. However, patients
5 are frequently reluctant to undergo these types of surgery
6 due to the extreme post-operative pain, lengthy
7 rehabilitation periods, and possibility of post-operative
8 complications, such as blood clots, infection, and the like.

9 While post surgical pain relief is necessary to enable
10 patients to become ambulatory as quickly as possible and to
11 enable the initiation of physiotherapy, physicians must
12 nevertheless weigh the magnitude of pain relief achieved
13 against the possibility of adverse reactions, functional
14 outcomes and length of hospital stay .

15 Such pain modalities as epidural analgesia, while
16 providing good pain relief immediately after surgery, have
17 certain drawbacks, such as delaying the start of blood
18 thinners, which may be necessary to prevent life-threatening
19 blood clot formation, due to the risk of epidural hematoma.
20 Systemic analgesia, e.g. oral or intravenous use of various
21 analgesics and narcotic agents also have inherent drawbacks
22 such as nausea and vomiting, depression of breathing, urinary
23 retention, and the like.

1 Thus, there is a longfelt need for a method of
2 eliminating post-operative pain while avoiding the
3 complications of commonly used analgesic modalities.

4 In order to encourage patients to become more amenable
5 to joint replacement surgery, orthopaedic researchers have
6 worked diligently to improve post-operative pain management.

7 Meissner *et al.* (Anesthesiology Abstracts of Scientific
8 Papers Annual Meeting, abstract number 950, 2000) describe
9 prophylaxis of post-operative pain in hip replacement surgery
10 using multimodal intra-operative analgesics. The multi-modes
11 of Meissner *et al.* include the use of spinal anesthesia with
12 bupivacaine, local anesthetic skin infiltration,
13 intramuscular injection of 1mg/kg diclofenac and intrathecal
14 0.001mg/kg morphine administered together.

15 Verbeeck *et al.* (Anesthesiology Abstracts of Scientific
16 Papers Annual Meeting, abstract number A-965, 2001) describe
17 a protocol for peripheral nerve block after total hip
18 replacement using a continuous infusion of ropivacaine.

19 Viscusi *et al.* (Anesthesiology Abstracts of Scientific
20 Papers Annual Meeting, abstract number A-830, 2001) describe
21 a protocol for pain management after total joint replacement
22 in the lower extremities using injectable acetaminophen.

23 Singelyn *et al.* (Anesthesia and Analgesia 92(2):455-459
24 2001) disclose a study in which methods for extended femoral

1 nerve sheath block after total hip replacement were compared.
2 All patients in the study received 0.125% bupivacaine with
3 clonidine 1μg/ml and sufentanil 0.1 1μg/ml administered via
4 catheter continuously or patient-controlled.

5 Eggers et al. (British Journal of Anaesthesia 83(6):876-
6 881 1999) disclose a study wherein the effect of oral and
7 intravenous tenoxicam on postoperative pain after total knee
8 replacement was evaluated. Tenoxicam was administered to two
9 groups of patients, either before (40mg orally) or after (40
10 mg intravenous) surgery, then 24 hours after surgery (40 mg
11 intravenous) and at the end of each day for an 8 day period
12 (20 mg orally). A third group of patients received a placebo
13 at all times.

14 Martini et al. (Aktuelle Rheumatologie 22(2):69-74 1997)
15 discuss whether pre-operative physiotherapy prior to total
16 hip replacement in osteoarthritis of the hip joint improves
17 post-operative pain management.

18 Gehling et al. (Anaesthesist 52:204-209 2003) disclose a
19 study wherein the effect of clonidine on spinal morphine
20 analgesia after major orthopaedic surgery was evaluated.

21 Adams et al. (European Journal of Anaesthesiology
22 19:658-665 2002) disclose a study wherein the effect of
23 endocrine stress on post-operative pain management in
24 orthopaedic patients was evaluated.

1 Rasmussen et al. (American Journal of Orthopaedics
2 31:336-343 2002) disclose a study wherein the effects of
3 parecoxib sodium, morphine and ketorolac on post-operative
4 pain management in total knee replacement were compared.

5 Mallory et al. (Journal of Arthroplasty 17:4 (Supp 1):
6 129-133 2002) disclose a study wherein the effect of pre-
7 operative treatment (2 weeks prior) with cyclooxygenase-2-
8 inhibiting-anti-inflammatory medication on post-operative
9 pain management after joint replacement surgery was
10 evaluated.

11 Bogoch et al. (Journal of Arthroplasty 17:398-401 2002)
12 disclose a study wherein the effect of lumbar paravertebral
13 nerve block in addition to patient-controlled analgesia on
14 post-operative pain management after total hip and knee
15 arthroplasty was evaluated.

16 Camu et al. (American Journal Therapy pages 43-51,
17 2002) disclose a study wherein the effect of valdecoxib on
18 morphine consumption and post-operative pain after hip
19 arthroplasty was evaluated. Valdecoxib is highly selective
20 cyclooxygenase COX-2 specific inhibitor which was
21 administered to patients pre and post-operatively.

22 Horlocker et al. (Reg Anesthesia Pain Med 27:105-108
23 2002) disclose a study wherein the effect of continuous
24 lumber plexus block in addition to acetaminophen and

1 ketorolac on post-operative pain after knee replacement was
2 evaluated.

3 Kampe *et al.* (*Anaesthesia* 56(12):1189-1193 2001)
4 disclose a study wherein the effect of an epidural infusion
5 of ropivacaine and sufentanil on post-operative pain after
6 hip replacement was compared with the effect of patient-
7 controlled analgesia using piritramide on post-operative pain
8 after hip replacement.

9 Chelly *et al.* (*Journal of Arthroplasty* 16:436-445 2001)
10 disclose a study wherein the effect of continuous femoral
11 infusion (CFI) on post-operative pain after knee replacement
12 was evaluated. CFI was compared with patient-controlled
13 morphine and epidural analgesia.

14 Pico *et al.* (*Canadian Journal of Anesthesiology* 47:309-
15 314 2000) disclose a study wherein the effect of peroperative
16 morphine on post-operative pain after hip arthroplasty was
17 evaluated. In the experimental peroperative group, patients
18 received titrated morphine beginning at the end of surgery.

19 Kopacz *et al.* (*Anesth Analg* 89:1497-1503 1999) disclose
20 a study wherein the effects of levobupivacaine 0.125%,
21 fentanyl 4mg/ml and their combinations on post-operative pain
22 after major orthopedic surgery were compared. The analgesics
23 were administered to the patients by patient-controlled
24 epidural analgesia. All of the patients involved in this

1 study received 20ml of 0.75% levobupivacaine intra-
2 operatively.

3 Wulf et al. (Anesth Analg 89:11-116 1999) disclose a
4 study wherein the effect of epidural anesthesia and analgesia
5 (ropivacaine) on post-operative pain after hip replacement
6 was compared to the effect of general anesthesia
7 (isoflurane/N2O/fentanyl) and patient-controlled morphine
8 (intravenous) on post-operative pain after hip replacement.

9 Mauerhan et al. (Journal of Arthroplasty 12:546-552
10 1997) disclose a study wherein the effect of intra-articular
11 morphine on post-operative pain after knee replacement was
12 compared with the effect of intra-articular bupivacaine on
13 post-operative pain after knee replacement. Morphine and
14 bupivacaine in combination was also tested. All injections
15 were given to the patients immediately after surgery.
16 Additionally, patients involved in this study used patient-
17 controlled morphine (intravenous) post-operatively.

18 Cazeneuve et al. (Rev Chir Orthop Reparatrice Appar Mot
19 82:705-708 1996) disclose a study wherein the effect of
20 combined epidural and spinal anesthesia on post-operative
21 pain after prosthetic surgery of lower limbs was evaluated.
22 All patients involved in this study also received daily
23 morphine injections and intravenous paracetamol.

1 Wong et al. (Canadian Journal of Anesthesia 44:31-37
2 1997) disclose a study wherein the effect of pre-operative
3 analgesia with ketamine, morphine and epidural lidocaine on
4 post-operative pain after knee replacement was evaluated.

5 Colwell et al. (J Bone Joint Surg Am 77:726-733 1995)
6 disclose a study wherein the effect of patient-controlled
7 analgesia (narcotic) on post-operative pain after an
8 orthopaedic procedure was compared to the effect of
9 intramuscular injections of analgesics (narcotic) on post-
10 operative pain after an orthopaedic procedure.

11 Striebel et al. (Anasthesiol Intensivmed Notfallmed
12 Schmerzther 28:168-173 1993) disclose a study wherein the
13 effect of a continuous 3-in-1 blockade (using bupivacaine) on
14 post-operative pain after hip replacement was evaluated. All
15 patients involved in this study also used patient-controlled
16 meperidine (intravenous).

17 Moote, C. (Drugs 44 Suppl 5:14-30 1992) discloses that
18 nonsteroidal anti-inflammatory drugs (NSAIDS) can be used in
19 combination with conventional treatments to improve post-
20 operative pain control after hip arthroplasty.

21 White, P.F. (Clinical Journal of Pain, pages 297-300
22 1990) discloses a study wherein patient-controlled opioid
23 analgesics were delivered either intravenously or

1 subcutaneously after major orthopedic surgery and the effects
2 compared.

3 Walker et al. (Journal of Arthroplasty, pages 151-156
4 1991) disclose a study wherein the effects of post-operative
5 use of continuous passive motion, transcutaneous electrical
6 nerve stimulation, and continuous cooling pad on post-
7 operative pain after knee arthroplasty were evaluated.

8 Serpell et al. (British Journal of Anesthesiology
9 63:354-356 1989) disclose a study wherein the effect of
10 piroxicam on post-operative pain after hip replacement was
11 evaluated. All of the patients included in this study also
12 used patient-controlled morphine.

13 European Patent 00754064/EP B1, May 28, 2003, assigned to
14 Atrix Laboratories, Inc., discloses a surgically implantable
15 device (for use with human or animal tissue) in combination
16 with an adjunctive polymer system. Analgesics and anesthetics
17 may also be included within the adjunctive polymer system.

18 US Patent 6,559,119, May 6, 2003, discloses a surgically
19 implantable biomedical device having a supplemental tissue
20 sealant composition. Analgesics and anesthetics may also be
21 included within the tissue sealant composition.

22 It is noted that practically all of the methods of pain
23 control known and practiced in the art to date involve the
24 use of multiple agents and/or multiple protocols to achieve

1 some level of success in pain management. The vast majority
2 of these pain control methods are applied post-operatively,
3 with a small percent applied pre-operatively and an even
4 smaller percent applied intra-operatively. What is lacking in
5 the art is a single method that can significantly reduce or
6 eliminate post-operative pain and thus additionally reduce
7 the length of recovery and rehabilitation periods. The
8 availability of surgery with minimal or no pain and a rapid
9 recovery would likely encourage patients to seek the surgery
10 they are in need of.

11

12 SUMMARY OF THE INVENTION

13 The instant invention provides an intra-operative method
14 for essentially eliminating post-operative pain associated
15 with and resulting from surgical procedures. Incorporation of
16 this method into a standard surgical protocol results in an
17 essentially pain free recovery for the patient undergoing the
18 surgical protocol.

19 Practice of this method is illustrated herein in
20 conjunction with orthopedic surgeries (partial and total
21 joint replacements); however the method is contemplated for
22 use in conjunction with any musculo-skeletal operation in any
23 area of the body.

24 The method of the instant invention is carried out by
25 intra-operative administration of multiple injections of a

1 medicated solution within and around the area of a surgical
2 incision or wound. In its broadest context, the medicated
3 solution comprises a mixture of an injectable anesthetic,
4 epinephrine, sodium chloride and an injectable anti-
5 inflammatory agent. The type of anesthetic and anti-
6 inflammatory agent can be selected according to individual
7 patient need. Anesthetics and anti-inflammatory agents are
8 well-known in the art and one of ordinary skill in the art
9 would be familiar with their applications. Any injectable
10 anesthetic is contemplated for use in the instant invention,
11 illustrative of which are bupivacaine, ropivacaine,
12 dibucaine, procaine, chloropropone, prilocaine, mepivacaine,
13 etidocaine, tetracaine, lidocaine, xylocaine, levobupivacaine
14 and the like, as well as anesthetically active analogs,
15 derivatives and mixtures thereof. A particularly preferred
16 injectable anesthetic is CHIROCAINE® (levobupivacaine), the
17 use of which is exemplified in the examples described herein.
18 Any injectable steroidal or non-steroidal anti-inflammatory
19 is contemplated for use in the instant invention, such as
20 ketorolac tromethamine and propecatomol. A particularly
21 preferred anti-inflammatory agent is TORADOL® (ketorolac
22 tromethamine), the use of which is exemplified in the
23 examples described herein. Stock medicated solutions for use
24 in the method of the instant invention are prepared in doses
25 in accordance with patient body weight wherein 160 pounds is

1 the baseline patient body weight. Typically, a medicated
2 solution in a dose of about 60ml is prepared for patients
3 weighing less than 160 pounds and a dose of about 80 ml is
4 prepared for patients weighing 160 pounds or more. The dosage
5 of medicated solution can also be prepared from baseline by
6 increasing or decreasing the amounts of solution with every
7 25 pound change in patient body weight. The complete dosage
8 is administered to the patient by multiple injections wherein
9 a single injection comprises approximately 5cc of the
10 medicated solution. Although it is possible to utilize a
11 variety of syringe types in carrying out the instant method,
12 administration is preferably carried out via the use of a
13 specifically designed needle, which is exemplified as an 18
14 gauge spinal needle comprising a shaft having a blocked end
15 and a plurality of circumferentially positioned apertures in
16 the shaft just proximal to the blocked end of the shaft.

17 This method is exemplified herein through application in
18 three types of orthopedic surgery, total hip replacement
19 (THR), unicondylar knee replacement or "UNI-knee" surgery and
20 total knee replacement (TNR). In THR, Figure 7, UNI-knee,
21 Figure 8 and TKR, Figure 9 the method was highly efficacious.
22 These patients had minimal or no pain; they required little
23 or no additional agents and/or protocols for pain management
24 and they did not spend any time in rehabilitation hospitals.

25 Accordingly, it is an objective of the instant invention

1 to provide an intra-operative method for essentially
2 eliminating pain associated with and resulting from surgical
3 procedures, said method comprising multiple intra-operative
4 injections of a medicated solution.

5 It is a further objective of the instant invention to
6 provide a method for essentially pain free orthopedic
7 surgery.

8 It is yet another objective of the instant invention to
9 provide a combination of ingredients useful for forming a
10 medicated solution for use with the intra-operative method
11 for controlling pain comprising an injectable anesthetic,
12 epinephrine, sodium chloride and an injectable anti-
13 inflammatory agent administered in amounts according to
14 patient body weight.

15 It is a further objective of the instant invention to
16 provide a needle specifically designed for use with the
17 intra-operative method for controlling pain wherein the
18 needle is a spinal needle, illustrated, albeit not limited to
19 an 18 gauge spinal needle.

20 It is yet an additional objective of the instant
21 invention to provide a needle of specific design for
22 distribution of the medicated solution comprising a shaft
23 having a blocked end and a plurality of circumferentially
24 positioned apertures in the shaft just proximal to the
25 blocked end of the shaft.

1 It is a still further objective of the instant invention
2 to provide a kit comprising the components of the medicated
3 solution, one or more suitable needles, which may include the
4 specially designed needle herein disclosed, along with
5 instructions for their use in carrying out the intra-
6 operative pain elimination protocol.

7 Other objectives and advantages of the instant invention
8 will become apparent from the following description taken in
9 conjunction with the accompanying drawings wherein are forth,
10 by way of illustration and example, certain embodiments of
11 the instant invention. The drawings constitute a part of this
12 specification and include exemplary embodiments of the
13 present invention and illustrate various objects and features
14 thereof.

15

16 BRIEF DESCRIPTION OF THE FIGURES

17 FIGURE 1 illustrates a needle contemplated for use with
18 the method of the instant invention;

19 FIGURE 2 illustrates injection sites on posterior
20 exposure of the hip;

21 FIGURE 3 illustrates injection sites on exposure of the
22 knee;

23 FIGURE 4 illustrates injection sites used in knee
24 surgery;

25 FIGURE 5 illustrates injection sites on exposure of the

1 knee;

2 FIGURE 6 illustrates injection sites used in UNI knee
3 surgery;

4 FIGURE 7 shows a table of results obtained when using
5 the method of the instant invention in total hip replacement
6 surgery;

7 FIGURE 8 shows a table of results obtained when using
8 the method of the instant invention in partial knee
9 replacement surgery;

10 FIGURE 9 shows a table of results obtained when using
11 the method of the instant invention in total knee replacement
12 surgery.

13

14 DEFINITIONS AND ABBREVIATIONS

15 The following list defines terms, phrases and
16 abbreviations used throughout the instant specification.

17 Although the terms, phrases and abbreviations are listed in
18 the singular tense the definitions are intended to encompass
19 all grammatical forms.

20 As used herein, the abbreviation "THR" refers to a total
21 hip replacement; an orthopedic surgical procedure wherein the
22 joints of the hip which have been damaged by disease or
23 trauma are replaced with prosthetic joints.

24 As used herein, the abbreviation "TKR" refers to a total

1 knee replacement; an orthopedic surgical procedure wherein
2 the joints of the knee which have been damaged by disease or
3 trauma are replaced with prosthetic joints.

4 As used herein, the abbreviation "UNI-knee" refers to a
5 partial knee replacement; an orthopedic surgical procedure
6 wherein the joints of the knee which have been partially
7 damaged by disease or trauma are partially replaced with
8 prosthetic joints. A "UNI-knee" does not require replacement
9 of the entire knee joint and can also be referred to as a
10 "UNI-compartmental", "UNI-lateral" or "UNI-condylar" knee
11 replacement.

12 As used herein, the term "natural joint" refers to an
13 organic, biological joint which is not a prosthetic device
14 made by man.

15 As used herein with regard to the preparation of the
16 medicated solution, the phrases "another suitable injectable
17 anesthetic" and "another suitable anti-inflammatory agent"
18 indicate that many different anesthetics and anti-
19 inflammatory agents can be used with the medicated solution
20 and are chosen according to what best suits an individual
21 patient's needs.

22

23 DETAILED DESCRIPTION OF THE INVENTION

24 Surgery is frequently a necessary and life-saving

1 procedure useful in cases of both trauma and disease. Surgery
2 can also be "elective" for improvement of quality of life in
3 non-life threatening injuries and/or disease. Unfortunately,
4 surgeries are often associated with extreme pain, possible
5 complications, and prolonged rehabilitation. No individual
6 looks forward to a painful experience, and thus patients are
7 frequently reluctant to undergo elective surgical procedures.
8 This scenario is especially true for orthopedic joint
9 replacement surgery.

10 Natural joints often become damaged either as a result
11 of traumatic injury, as a result of some disease process,
12 e.g. osteoarthritis, or as a side effect of various
13 pharmacological treatments, e.g. corticosteroid therapy.
14 This often leads to muscular atrophy, immobility, reduced
15 load capacity, chronic pain and a general reduction in the
16 patient's quality of life. Prosthetic joints can ameliorate
17 these symptoms and thus improve the quality of life for these
18 patients. However, these patients often avoid these surgeries
19 because of the extreme post-operative pain attributed to
20 them. The instant invention provides a method that can
21 significantly reduce or eliminate post-operative pain and
22 thus additionally reduce the length of recovery and
23 rehabilitation periods.

24 Generally, the method of the instant invention comprises

1 two basic steps; preparation of a medicated solution and
2 intra-operative injection of this medicated solution, by an
3 appropriately trained and certified clinician, to selected
4 sites within the surgical field, e.g. at particular
5 areas within the boundaries of the surgical procedure being
6 performed.

7

8 PREPARATION OF THE MEDICATED SOLUTION

9 The total amount of medicated solution required per
10 procedure is dependent on a patient's body weight. A body
11 weight of 160 pounds (70 kilograms) is the baseline from
12 which dosages are calculated. Usually, the total amount of
13 medicated solution increases or decreases with each 25 pound
14 change in patient body weight.

15 The medicated solution comprises a mixture of a suitable
16 injectable anesthetic, illustrated by, but not limited to
17 CHIROCAINE®, epinephrine, sodium chloride and a suitable
18 anti-inflammatory agent illustrated by, but not limited to
19 TORADOL®, and is prepared according to the following
20 protocols:

21 PROTOCOL TO BE USED FOR PATIENTS WITH BODY WEIGHTS OF LESS
22 THAN 160 POUNDS

23 1. Add 50 ml 0.5% CHIROCAINE® (or another suitable
24 injectable anesthetic) to 0.5 ml epinephrine (1:1000) and

1 mix;

2 2. Dilute the mixture to 100 ml using preservative free

3 sodium chloride (NaCl); the concentration of CHIROCAINE®

4 should equal 0.25%;

5 3. Remove 20 ml of the mixture in syringe for

6 subcutaneous injection around the wound;

7 4. Discard 20 ml of the mixture;

8 5. Add 60 mg of TORADOL® (or another suitable injectable

9 anti-inflammatory agent) resulting with 60 ml of medicated

10 solution to be used in the injections.

11

12 PROTOCOL TO BE USED FOR PATIENTS WITH BODY WEIGHTS OF 160

13 POUNDS OR MORE

14 1. Add 50 ml 0.5% CHIROCAINE® (or another suitable

15 injectable anesthetic) to 0.5 ml epinephrine (1:1000) and

16 mix;

17 2. Dilute the mixture to 100 ml using preservative free

18 sodium chloride (NaCl); the concentration of CHIROCAINE®

19 should equal 0.25%;

20 3. Remove 20 ml of the mixture in syringe for

21 subcutaneous injection around the wound;

22 4. Add 60 mg of TORADOL® (or another suitable injectable

23 anti-inflammatory agent) resulting with 80 ml of medicated

24 solution to be used in the injections.

1 INTR-A-OPERATIVE INJECTION OF THE MEDICATED SOLUTION

2 In a contemplated embodiment of the invention,
3 injections would be deliverable using a syringe for
4 containing the medicated solution coupled to a hollow shaft
5 or needle specifically designed for use with the method
6 described herein.

7 With reference to Figure 1, the needle is illustrated as
8 having a shaft 1 characterized as a hollow shaft having a
9 proximal end and a distal end, wherein said medical solution
10 flows from the syringe (not shown) within said shaft from
11 said proximal end toward said distal end, which distal end is
12 defined by a solid end 2 having a plurality of
13 circumferentially positioned apertures 3 in said shaft for
14 providing radially directed flow of the medicated solution
15 about the entire circumference thereof. This design enables
16 radially directed flow of the medicated solution about the
17 entire circumference of the shaft, thus directing the flow
18 around the surface of the prosthesis. This radial and
19 circumferential flow path affords protection to the vascular
20 and nerve structures, which could otherwise be traumatized or
21 damaged by forceful pressure of the injected fluid. In a
22 preferred, albeit non-limiting embodiment, the needle would
23 be fabricated from an 18 gauge spinal needle.

24 The total volume of the dose of medicated solution is

1 delivered using multiple injections of approximately 5cc
2 each. The term "approximately" as used herein, is intended to
3 mean that the volume of a single injection is brought near or
4 close to 5ccs; in amounts of solution either slightly greater
5 or smaller than 5ccs.

6 With reference to Figures 2-6, illustrated therein are
7 suggested sites (X) for administration of the medicated
8 solution in accordance with the instant invention in both hip
9 and knee joint replacements. Fig. 2 illustrates injection
10 sites on posterior exposure of the hip; Fig. 3 illustrates
11 injection sites on exposure of the knee; Fig. 4 illustrates
12 injection sites used in UNI knee surgery; Fig. 5 illustrates
13 injection sites on exposure of the knee; Fig. 6 illustrates
14 injection sites used in UNI knee surgery.

15 Figure 7 is a table of data resulting from use of the
16 pain protocol as herein defined, utilizing a standard 18
17 gauge spinal needle for delivery, during 15 total hip
18 replacement surgeries. The 15 patients (both male and female,
19 ranging in age from 46-83 years) all suffered from arthritis
20 of the hip prior to surgery. These patients suffered little
21 post-operative pain and required only infrequent
22 administration of oral pain medications such as Darvocet -100
23 or Vicodin. Additionally, all 15 patients had a reduction in
24 length of stay in the hospital and spent no time at

1 rehabilitation facilities.

2 Figure 8 is a table of data resulting from use of the
3 pain protocol as herein defined, utilizing a standard 18
4 gauge spinal needle for delivery, during 15 partial knee
5 replacement surgeries. The 15 patients (both male and female,
6 ranging in age from 63-81 years) all suffered from arthritis
7 of the knee prior to surgery. These patients suffered little
8 post-operative pain and required only infrequent
9 administration of oral pain medications such as Darvocet -100
10 or Vicodin. Several patients did not require any pain
11 medication after partial knee replacement surgery.
12 Additionally, all 15 patients had a reduction in length of
13 stay in the hospital and spent no time at rehabilitation
14 facilities.

15 Figure 9 is a table of data resulting from use of the
16 pain protocol as herein defined, utilizing a standard 18
17 gauge spinal needle for delivery, resulting from 15 total
18 knee replacement surgeries. The 15 patients (both male and
19 female, ranging in age from 55-82 years) all suffered from
20 arthritis of the knee prior to surgery. These patients
21 suffered little post-operative pain and required only
22 infrequent administration of oral pain medications such as
23 Darvocet -100 or Vicodin. Additionally, all 15 patients had
24 a reduction in length of stay in the hospital and spent no

1 time at rehabilitation facilities.

2 As is demonstrated by the data presented herein, the
3 method of the instant invention can significantly reduce or
4 eliminate post-operative pain resulting from major
5 orthopaedic surgery and thus additionally reduce the length
6 of both recovery and rehabilitation periods for patients.

7 All patents and publications mentioned in this
8 specification are indicative of the levels of those skilled
9 in the art to which the invention pertains. All patents and
10 publications are herein incorporated by reference to the same
11 extent as if each individual publication was specifically and
12 individually indicated to be incorporated by reference.

13 It is to be understood that while a certain form of the
14 invention is illustrated, it is not to be limited to the
15 specific form or arrangement herein described and shown. It
16 will be apparent to those skilled in the art that various
17 changes may be made without departing from the scope of the
18 invention and the invention is not to be considered limited
19 to what is shown and described in the specification. One
20 skilled in the art will readily appreciate that the present
21 invention is well adapted to carry out the objectives and
22 obtain the ends and advantages mentioned, as well as those
23 inherent therein. The various anesthetics, anti-
24 inflammatories, biologically related compounds, methods,

1 procedures and techniques described herein are presently
2 representative of the preferred embodiments, are intended to
3 be exemplary and are not intended as limitations on the
4 scope. Changes therein and other uses will occur to those
5 skilled in the art which are encompassed within the spirit of
6 the invention and are defined by the scope of the appended
7 claims. Although the invention has been described in
8 connection with specific preferred embodiments, it should be
9 understood that the invention as claimed should not be unduly
10 limited to such specific embodiments. Indeed, various
11 modifications of the described modes for carrying out the
12 invention which are obvious to those skilled in the art are
13 intended to be within the scope of the following claims.