An Embedding Approach to Anomaly Detection

Renjun Hu¹, Charu Aggarwal², Shuai Ma¹, and Jinpeng Huai¹

¹SKLSDE Lab, Beihang University, China

²IBM T. J. Watson Research Center, USA

IBM Research

- Anomaly detection
 - Identification of patterns in data that do not conform to expected behaviors [Chandola et al. 2009]
 - Useful in a wide variety of applications

- > In networks, anomaly detection has broader meanings
 - Application-specific significance
 - Possibility to improve the performance of network-centric mining tasks such as community detection and classification

- Structural hole theory [Burt 1992, 2004]
 - Theory of social capital
 - A structural hole is a gap between two nodes who have complementary sources to information

Prof. Ronald S. Burt

How to detect social brokers?

A formal quantitative definition is needed in the first place!

structural hole

• Node A (social broker) is more likely to get novel information than B, even though they have the same number of links.

- Structural inconsistencies
 - Nodes that connect to a number of diverse influential communities
 - Detect social brokers quantitatively

- > Anomalousness from homophily [McPherson et al. 2001]
 - Linked nodes have similar properties
 - Fundamental to a wide variety of algorithms in network science
 - ✓ E.g., community detection, collective classification, link prediction, influence analysis
 - Violated by structural inconsistencies

- Structural inconsistencies
 - Nodes that connect to a number of diverse influential communities
 - Detect social brokers quantitatively

- > The presence of structural inconsistencies may:
 - have a substantial impact on network structure
 - ✓ E.g., all nodes tend to form one large cluster
 - prevent effective applications of network mining algorithms
 - ✓ E.g., hard for community detection algorithms to achieve meaningful clusters

Outline

- Anomaly detection model
 - Graph embedding
 - A quantitative measure of anomaly
- > Algorithm optimization techniques

> Evaluation

Why graph embedding?

- Structural inconsistencies
 - connect to a number of diverse influential communities
- Evaluate the diversity or similarity of nodes. How?

 To node B, node A is more similar than C, even though they have the same (global) distance from B.

- Graph embedding
 - Associate each node with a multidimensional vector
 - Preserve local linkage structure (instead of global structure)
 - Each dimension corresponds to a community in the network

Why graph embedding?

- Structural inconsistencies
 - connect to a number of diverse influential communities

- An alternative option: doing community detection followed by anomaly detection
 - Do not distinguish anomalies from normal nodes
 - The presence of anomalies has certain impacts on the results of community detection
 - Community detection is a heavy task.
 - Fail to detect structural inconsistencies!

Graph embedding

➤ Given an undirected graph G=(V, E), associate each node i with a d-dimensional vector X_i

- $V = \{1, 2, ..., n\}$
- *d* : number of communities
- X_i: correlation between node i and the d communities

A reasonable selection of *d* suffices for anomaly detection. Not necessary to use the number of real-life communities.

Graph embedding

- Figure Given an undirected graph G=(V, E), associate each node i with a d-dimensional vector X_i
- Goal: preserve local linkage structure
 - Connected nodes should have similar values of X_i
 - Disconnected nodes should have diverse values of X_i
- Computation: minimizing objective function O

$$O = \sum_{(i,j)\in E} \|X_i - X_j\|^2 + \alpha \cdot \sum_{(i,j)\notin E} (1 - \|X_i - X_j\|)^2, \alpha = \frac{m}{\binom{n}{2} - m}$$

- n: number of nodes in G, m: number of edges in G
- α : balancing factor that regulates the importance of the two components in ${\it O}$
- The embedding ensures that $0 \le ||X_i X_j||^2 \le 1$

A quantitative measure

- Inspired by structural inconsistencies and structural holes (social brokers)
 - Connect to a number of diverse influential communities
 - Bridge across complementary sources
- > NB(i): how node i connects to communities

$$NB(i) = (y_i^1, ..., y_i^d) = \sum_{(i,j) \in E} (1 - ||X_i - X_j||) \cdot X_j$$

AScore(i): the anomalousness of node i

$$AScore(i) = \sum_{k=1}^{d} \frac{y_i^k}{y_i^*}, y_i^* = \max\{y_i^1, ..., y_i^d\}$$

Detect anomalies by AScore(i) > thre

Example

- Optimality of embedding, i.e., minimum value of O
 - Small values within groups because of missing edges
 - No values across groups
 - Certain values for the red node [Embedding = (0, 0, 1/v2, 0)] (no better embedding)
- Anomalousness of nodes
 - AScore(red) = 4 (equal values in dimensions of NB(red))
 - AScore(i) ≈ 1 for others (NB(i) only has a dominating dimension)

$$O = \sum_{(i,j)\in E} \|X_i - X_j\|^2 + \alpha \cdot \sum_{(i,j)\notin E} (1 - \|X_i - X_j\|)^2$$

$$AScore(i) = \sum_{k=1}^{d} \frac{y_i^k}{y_i^*}, y_i^* = \max\{y_i^1, ..., y_i^d\}$$

The red node is detected as an anomaly!

Outline

Anomaly detection model

- > Algorithm optimization techniques
 - Sampling
 - Graph partitioning based initialization
 - Dimension reduction
- Evaluation

Issues in the model

- > Objective function O is a sum over $O(n^2)$ terms
 - Forbidden in large social networks
- Optimizing O uses a gradient descent method
 - Critically dependent on a good initialization
- > Dimensionality of embedding (i.e., d) could be large
 - E.g., 8,353 for YouTube and 6,288,363 for Orkut [Yang & Leskovec 2012]

J. Yang and J. Leskovec. Defining and evaluation network communities based on ground-truth. In *ICDM*, 2012.

14

Sampling

 \triangleright Objective function O is a sum over $O(n^2)$ terms

$$O = \sum_{(i,j)\in E} \|X_i - X_j\|^2 + \alpha \cdot \sum_{(i,j)\notin E} (1 - \|X_i - X_j\|)^2, \alpha = \frac{m}{\binom{n}{2} - m}$$

- \triangleright Observation: balancing factor α is close to 0
 - Very inefficient
 - Possible to approximately represent O by sampling
- Sampled objective function O

$$O \approx \sum_{(i,j)\in E} \|X_i - X_j\|^2 + \sum_{(i,j)\in E_s} (1 - \|X_i - X_j\|)^2, E_s \subset \{(i,j) \mid (i,j) \notin E\}$$

• $|E_s| = |E| = m$

Graph partitioning based initialization

- Optimizing O uses a gradient descent method
 - Critically dependent on a good initialization
- A good initialization means small value of O
 - Densely connected nodes have similar values of X_i
 - Nodes across groups have diverse values of X_i

- Incorporating graph partitioning (METIS) for initialization
 - P_i: partition number of node i

$$X_{i} = (x_{i}^{1}, ..., x_{i}^{d}), x_{i}^{j} = \begin{cases} 1/\sqrt{2} & j = P_{i} \\ 0 & j \neq P_{i} \end{cases}$$

Dimension reduction

- > Dimensionality of embedding (i.e., d) can be large
- The complete d-dimensions are unnecessary
 - Nodes typically connect to a limited number of communities
 - A limited number of communities suffice to ascertain anomalies

(Gordon) Hughes Effect

- \triangleright Data approximation ($k+\beta$ reduction)
 - only maintain $(k+\beta)$ -dimensions for embedding of each node
 - k: the maximum number of communities to connect
 - β : tolerate mistakes when determining the k communities
 - $k << d \& \beta << d, e.g., 10 \& 2$ for a network with $n = 10^6$

Impacts of optimization techniques

	Space	Efficiency	Effectiveness	
Sampling	/	Prev.: O(<i>n</i> ²· <i>d</i>)	Remain effective (from experiments)	
		After: O(<i>m⋅d</i>)		
Graph partitioning	/	Prev.: 0	Provide a good initialization	
		After: O(n+m+d·log(d))		
k+β	Prev.: O(<i>n∙d</i>)	Prev.: $O(t \cdot m \cdot d)$ t:# of iterations	Slightly improve	
reduction	After: O(<i>n</i> ·(<i>k</i> +β))	After: $O(t \cdot m \cdot (k+\beta))$	effectiveness	

Outline

Anomaly detection model

> Algorithm optimizations

> Evaluation

Experimental settings

Datasets

Dataset	# of nodes	# of edges	Descriptions
Amazon	334,863	925,872	Product co-purchasing
DBLP	1,150,852	5,098,175	Co-authorship
Synthetic	$10^5 - 4x10^6$	$m = n^{1.15}$	LFR-benchmark graph

- Anomaly injection on Synthetic data for ground-truth of anomalies
- Algorithms
 - Embed(d): embedding of d-dimensions
 - Embed($k+\beta$): embedding with $k+\beta$ reduction
 - Oddball: based on violation of power-laws of egonet-based features
 - MDS(d): similar to Embed(d), except using multi-dimensional scaling for embedding (preserve global structure)
- \triangleright Parameters: d = n/500, k = avgDeg, $\beta = k/4$
- Implementation: C++, Core i5 3.10GHz, 16GB of memory

Case study on DBLP

Different people with the same name

Wei Wang

- 84 people named Wei Wang [DBLP, May 10 2016]
- University of Waterloo (Canada), Fudan University (China), University of California, San Diego (USA), etc.

People with many collaborators in diverse institutes

Dr. Ajith Abraham

- Director of intelligence research labs which has members from more than 100 countries
- Work in a multi-disciplinary environment involving machine intelligence, cyber security, sensor networks and data mining
- Teach in 23 universities all over the world

Quality study: modularity

Modularity measures the strength of division of a network into communities

0.65

Using modularity to evaluate the improvement of the effectiveness of community detection

(a) AMAZON datas	set
------------------	-----

	oddball	Embed(<i>d</i>)	Embed(<i>k</i> +β)
Amazon	2.1%	2.8%	3.0%
DBLP	4.2%	4.1%	5.6%

Table 1: Improvement of modularity

Quality study: F_1 measure

- On Synthetic data with ground-truth of anomalies
- Mixing parameter μ : fraction of inter-group edges (i.e., $\mu \uparrow$, strength of community structure \downarrow)

(b) The mixing parameter μ

	oddball	Embed(<i>d</i>)	Embed(<i>k</i> +β)
Varying graph sizes	70%	88%	89%
Varying μ	68%	86%	88%

Table 2: F_1 score of anomalies

Impacts on quality: d& embedding

Synthetic data, n = 400K, n/500 = 800

	MDS(d)	Embed(d)
d = 200	11.3%	89.4%
d = 400	13.6%	90.6%
d = 600	12.7%	89.8%
d = 800	7.9%	85.5%
d = 1000	11.3%	88.8%
Average	11.3%	88.8%

Table 3: MDS(d) vs. Embed(d) using F_1 measure

- Multi-dimensional scaling fails to effectively detect anomalies
- Our approach works well as long as d falls into a reasonable range

Efficiency study

x : out of memory exception

	$E(k+\beta)/E(d)$	$E(k+\beta)/MDS(d)$
Amazon	35.3%	25.0%
DBLP	23.4%	13.1%
Synthetic	25.6%	13.2%

Table 4: running time comparison

graph sizes (x100K)

Summary

- Structural inconsistencies
 - Nodes that connect to a number of diverse influential communities
 - A formal quantitative definition of social brokers
- An embedding approach
 - Preserve local linkage structure of networks
 - A quantitative measure Ascore inspired by structural inconsistencies and structural holes
 - Three algorithm optimization techniques
- Quality and efficiency results
 - Modularity increases 2.9%, 4.9% and 6.9% on Amazon, DBLP and Synthetic data
 - F1 measure is 88% on Synthetic data
 - Running time increases reasonably w.r.t graph sizes

Thanks!

Q & A