

ITA OBJETIVO 3

Turma IME-ITA 2023

QUÍMICA.

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

•
$$\sqrt{2} = 1.4$$

•
$$\sqrt{3} = 1.7$$

•
$$\sqrt{5} = 2.3$$

•
$$\log 2 = 0.3$$

•
$$\sqrt{3} = 1.7$$
 • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$ • $\ln 10 = 2.3$

•
$$\ln 10 = 2.3$$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol}^{-1}) \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol}^{-1}) \end{array}$
H	1	1,01	S	16	32,06
$^{\mathrm{C}}$	6	12,01	Cl	17	$35,\!45$
N	7	14,01	Cu	29	$63,\!55$
O	8	16,00	Br	35	79,90
Na	11	22,99	Ag	47	107,87
Mg	12	24,31	I	53	126,90
Al	13	26,98	Pb	82	207,20

Questão 49. Uma amostra de 10 cm³ de um hidrocarboneto desconhecido foi misturada com 70 cm³ de gás oxigênio. A reação de combustão foi iniciada por uma descarga elétrica. Ao final da reação, o vapor d'água foi liquefeito e o volume dos gases de exaustão diminuiu para 65 cm³. Os gases foram passados por um leito contendo hidróxido de sódio, que absorve o CO₂ conforme a reação:

$$CO_2(g) + NaOH(s) \longrightarrow NaHCO_3(s)$$

Após a passagem pelo leito, o volume de gás diminuiu para 45 cm³.

Assinale a alternativa com a fórmula molecular do hidrocarboneto.

$$\mathbf{A}$$
 () CH_4

$$\mathbf{B}$$
 () C_2H_2

$$\mathbf{C}$$
 () $\mathbf{C}_2\mathbf{H}_6$

$$\mathbf{D}$$
 () C_3H_6 \mathbf{E} () C_3H_8

$$\mathbf{E}$$
 () $\mathbf{C}_3\mathbf{H}_8$

Questão 50. A ação de uma solução alcalina de iodo sobre o raticida varfarina, C₁₉H₁₆O₄ resulta na formação de uma molécula de iodofórmio, CHI₃, para cada molécula do composto reagido. A análise da varfarina pode então ser baseada na reação entre o iodofórmio e cátions prata:

$$\mathrm{CHI_3(aq)} + 3\,\mathrm{AgNO_3(aq)} + \mathrm{H_2O(l)} \longrightarrow 3\,\mathrm{AgI(s)} + 3\,\mathrm{HNO_3(aq)} + \mathrm{CO(g)}$$

Uma amostra de 6,16 g de um raticida comercial contendo varfarina foi tratada com uma solução alcalina de iodo. O iodofórmio produzido foi coletado em $100\,\mathrm{mL}$ de uma solução contendo $0.01\,\mathrm{mol\,L^{-1}}$ de cátions ferro(III). A solução resultante foi tratada com $25\,\mathrm{mL}$ de nitrato de prata, $0.03\,\mathrm{mol}\,\mathrm{L}^{-1}$ e então foi titulada com $3\,\mathrm{mL}$ de tiocianato de potássio $0.05 \,\mathrm{mol}\,\mathrm{L}^{-1}$.

Considere as proposições.

- 1. O iodofórmio não pode ser titulado diretamente com a prata devido à dificuldade de identificação do ponto de equivalência. Nesse caso foi empregado o método de titulação indireta por retrotitulação, sendo os cátions ferro(III) adicionados para identificar o ponto de equivalência na titulação da prata com o tiocianato.
- 2. Os íons nitrato e os cátions ferro(III) são íons espectadores das reações de titulação.
- 3. A amostra continha cerca de 10% de varfarina em massa.
- 4. Se a solução de nitrato de prata fosse adicionada diretamente à solução resultante da primeira etapa do processo, haveria interferência dos íons hidróxido e a fração mássica de varfarina calculada incorretamente seria superior ao valor correto.

Assinale a alternativa que relaciona as proposições corretas.

A () **1**, **2** e **3**

 $f{B}\,(\)\ 1,\, 2\ {
m e}\ 4 \qquad \qquad f{C}\,(\)\ 1,\, 3\ {
m e}\ 4 \qquad \qquad f{D}\,(\)\ 2,\, 3\ {
m e}\ 4 \qquad \qquad f{E}\,(\)\ 1,\, 2,\, 4\ {
m e}\ 4$

Questão 51. Considere as proposições sobre reações de substituição nucleofilica com mecanismo via S_N1 e S_N2 .

- 1. O mecanismo de substituição nucleofilica S_N 1 ocorre com formação de um carbocátion intermediário. Fatores que contribuem para estabilizar cargas positivas em solução, como a escolha de um solvente polar, favorecem esse tipo de mecanismo.
- 2. Em ambos os processos ocorre a quebra da ligação do carbono com o grupo de saída. Assim, diferentes grupos de saída não favorecem um dos mecanismos em detrimento do outro.
- 3. Haletos de alquila terciários reagem preferencialmente via S_N1 , enquanto haletos de alquila primários reagem via $S_N 2$.
- 4. As reações via S_N 2 ocorrem com inversão da configuração carbono. As reações via S_N 1, por outro lado, produzem misturas racêmicas mesmo a partir de substratos quirais.

Assinale a alternativa que relaciona as proposições corretas.

A() 1 e 3

 $f{B}\,(\)\ 1\ e\ 4 \qquad \qquad f{C}\,(\)\ 3\ e\ 4 \qquad \qquad f{D}\,(\)\ 1,\ 3\ e\ 4 \qquad \qquad f{E}\,(\)\ 1,\ 2,\ 3\ e\ 4$

Questão 52. Assinale a alternativa com o número total de isômeros (constitucionais e estereoisômeros) com fórmula molecular C_3H_7N .

A () 10

B() 11

C () 12 **D** () 13

E() 14

Questão 53. Uma amostra de 1,2 g de um soluto apolar foi dissolvida em 60 g de fenol. O ponto de congelamento da solução abaixou em 1,4 °C e essa tinha densidade 1,2 g cm⁻³.

A constante do ponto de congelamento fenol é $k_{c,fenol} = 7 \,\mathrm{K \, kg^{-1} \, mol^{-1}}$.

Considere as proposições.

- 1. A massa molar do soluto é cerca de $100\,\mathrm{g\,mol}^{-1}$.
- 2. Caso o soluto sofra dimerização parcial quando dissolvido em fenol, a massa molar calculada considerando que não há dimerização será menor do que sua massa molar real.
- 3. A pressão osmótica dessa solução em 27 °C é cerca de 5,9 atm.
- 4. A pressão osmótica dessa solução pode ser medida calculando a pressão exercida pelas moléculas do soluto sob uma membrana semipermeável.

Assinale a alternativa que relaciona as proposições corretas.

A () 1

B() 3

 ${f C} (\) \ {f 1} \ {f e} \ {f 3} \hspace{1cm} {f D} (\) \ {f 1}, {f 2} \ {f e} \ {f 3} \hspace{1cm} {f E} (\) \ {f 1}, {f 3} \ {f e} \ {f 4}$

Questão 54. As primeiras oito energias de ionização para dois elementos do terceiro período da Tabela Periódica são apresentados a seguir.

Assinale a alternativa com a fórmula empírica do composto iônico binário formado pela reação entre A e B.

A() AB

 \mathbf{B} () $\mathbf{A}_2\mathbf{B}$

 \mathbf{C} () AB_2

 \mathbf{D} () A_2B_3

 \mathbf{E} () A_3B_2

Questão 55. Considere os compostos: NSF₃, BeF₂, ClF₃, XeO₂F₄.

Assinale a hibridização do átomo central de cada composto, respectivamente.

 $A () sp^3, sp, sp^3d, sp^3d^2$

 \mathbf{B} () sp³d, sp, sp², sp³d

C() sp³, sp³, sp³, sp³d

 \mathbf{D} () sp³d, sp, sp³, sp³d²

 \mathbf{E} () sp³d², sp³, sp², sp³d²

Questão 56. Aminoacetais simples são rapidamente hidrolisados em soluções de ácidos diluídos, conforme a reação:

A estabilidade do código genético depende da estabilidade do DNA. Se a hidrólise dos aminoacetais que compõe o DNA, apresentados a seguir, fosse tão simples a vida não poderia existir como é hoje.

Assinale a alternativa que apresenta a justificativa para a dificuldade de hidrólise dos grupos acetais no DNA.

- **A** () Os aminoacetais do DNA possuem átomos de nitrogênio com basicidade consideravelmente menor, já que seus pares eletrônicos não ligantes estão conjugados com o sistema aromático.
- **B** () Os aminoacetais do DNA possuem grupos hidroxila, que podem formar ligações de hidrogênio intramoleculares com o átomo de nitrogênio do grupo aminoacetal.
- ${f C}$ () Os aminoacetais do DNA possuem grupos hidroxila que, por efeito indutivo, reduzem a densidade eletrônica do oxigênio heteroátomo.
- **D** () Os aminoacetais do DNA possuem grupos com maior impedimento especial, dificultando a interação com o ácido.
- **E** () Os aminoacetais do DNA possuem menor barreira de rotação para a ligação C-N, devido à menor interação com o oxigênio heteroátomo.

Questão 57. Um cilindro provido de pistão contém água até a metade do seu volume. O espaço acima da água é ocupado por ar atmosférico e possui uma entrada lateral para adição de gases.

Considere os procedimentos:

- 1. A posição do pistão é fixada e o cilindro é carregado com argônio pela entrada lateral.
- 2. O pistão é movimentado no sentido da compressão do sistema.
- 3. O pistão é liberado para se mover livremente e o sistema é carregado com mais CO₂ pela entrada lateral.
- 4. O pistão é liberado para se mover livremente e o sistema é resfriado.

Assinale a alternativa que relaciona os procedimentos que resultam no aumento da quantidade de CO_2 dissolvido.

 $A \ (\) \ \ 2 \ \mathrm{e} \ 3 \qquad \qquad B \ (\) \ \ 2 \ \mathrm{e} \ 4 \qquad \qquad C \ (\) \ \ 3 \ \mathrm{e} \ 4 \qquad \qquad E \ (\) \ \ 1, \ 2, \ 3 \ \mathrm{e} \ 4$

Questão 58. O diagrama de fases para a mistura de água e 1,4-dioxano é apresentado a seguir.

Considere as proposições.

- 1. Água e dioxano formam um azeótropo de ponto de ebulição mínimo quando a fração molar de água é 20%.
- 2. A mistura de água e dioxano ocorre com liberação de energia.
- 3. Em 20 °C, a pressão de vapor da água é 20 Torr e a do dioxano é 30 Torr. A pressão de vapor de uma mistura equimolar de água e dioxano em 20 °C é menor que 25 Torr.
- 4. Uma mistura contendo 80% de água e 20% de dioxano em base molar em $70\,^{\circ}\mathrm{C}$ é aquecida até o início da ebulição. O vapor coletado é resfriado de volta a 70 °C resultando em um líquido contendo 40% de água em base molar.

Assinale a alternativa que relaciona as proposições corretas.

A () 1

B()4

C() 1 e 4

 ${f D} \ (\) \ {f 1}, {f 2} \ {f e} \ {f 4} \ {f E} \ (\) \ {f 1}, {f 3} \ {f e} \ {f 4}$

Questão 59. As três primeiras energias de ionização do átomo de alumínio são 6,0 eV, 19 eV e 28 eV e a afinidade eletrônica do átomo de bromo é 3,4 eV.

Dados em 298 K	Al(g)	Br(g)	$AlBr_3(s)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	+326	+112	-530

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de alumínio em 298 K.

 $\mathbf{A} (\) \ 1.2 \, \mathrm{MJ} \, \mathrm{mol}^{-1} \quad \mathbf{B} (\) \ 2.7 \, \mathrm{MJ} \, \mathrm{mol}^{-1} \quad \mathbf{C} (\) \ 4.1 \, \mathrm{MJ} \, \mathrm{mol}^{-1} \quad \mathbf{D} (\) \ 5.3 \, \mathrm{MJ} \, \mathrm{mol}^{-1} \quad \mathbf{E} (\) \ 8.4 \, \mathrm{MJ} \, \mathrm{mol}^{-1}$

Questão 60. Um engenheiro projetou uma planta para separação de um efluente industrial aquoso contendo massas iguais de nitrato de cobre(II), nitrato de chumbo(II) e nitrato de prata, na concentração total de 51 g/L.

O Misturador 1 recebe a entrada de efluente na vazão de $100\,\mathrm{L\,s^{-1}}$ que é misturada com $100\,\mathrm{L\,s^{-1}}$ de uma solução de sulfato de amônio $26\,\mathrm{g\,L^{-1}}$. O Misturador 1 é equipado com uma jaqueta que mantém a mistura em $80\,\mathrm{^{\circ}C}$.

O Misturador 2 recebe o material passante do Filtro 1 e $100\,\mathrm{L\,s^{-1}}$ de uma solução aquosa de carbonato de sódio de concentração $53\,\mathrm{g\,L^{-1}}$ com pequena quantidade de uma solução de hidróxido de sódio objetivando o ajuste do pH de precipitação. A temperatura da solução é mantida em $10\,\mathrm{^{\circ}C}$ no misturador para, em seguida, proceder a filtração no Filtro 2.

A curva de solubilidade do sulfato de prata em água é apresentada a seguir.

Considere as proposições.

- 1. A saída sólida do Filtro 1 é constituída apenas de sulfato de chumbo(II).
- 2. A saída de sólida do Filtro 2 é uma mistura heterogênea.
- 3. Todos os cátions metálicos do efluente são removidos nas saídas sólidas dos Filtros 1 e 2.
- 4. A prata metálica pode ser obtida pela calcinação da mistura na saída sólida do Filtro 2.

Assinale a alternativa que relaciona as proposições corretas.

 $A \ (\) \ 1, \ 2 \ e \ 3 \\ B \ (\) \ 1, \ 2 \ e \ 4 \\ C \ (\) \ 1, \ 3 \ e \ 4 \\ D \ (\) \ 2, \ 3 \ e \ 4 \\ E \ (\) \ 1, \ 2, \ 3 \ e \ 4$