Complexity of Fibonacci number

Fibonacci numbers are generated by:

$$F(n) = F(n-1) + F(n-2)$$
.

The characteristic equation to generate this sequence is $x^n = x^{n-1} + x^{n-2}$.

Or dividing
$$x^{n-2}$$
 , it is $x^2 = x + 1$.

So
$$x^2 - x - 1 = 0$$
.

It has 2 solution:
$$\frac{1\pm\sqrt{1+4}}{2}$$
 i. e. $\frac{1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$.

So nth fibonacci number can be written as
$$F_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$
.

So complexity of fibonacci number generating is
$$O(F_n) = O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right) + O\left(\left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$

So
$$O(F_n) = O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$
, which is simplified as $(1.6180)^n \approx 2^n$.

So time complexity of fibonacci i.e. time required to calculate nth order fibonacci number is $O(2^n)$.