Architektura i organizacja komputerów

Sprawozdanie z laboratorium nr 4

Temat zajęć: Mikroprogramy rozkazów logicznych i skoków

Borkowski Kamil WCY22IY1S1

Data wykonania: 2023.11.21

Treść zadania:

Lab4_IY1

Dana jest zawartość początkowa rejestrów i pamięci operacyjnej PAO jak w poniższej tabeli:

tabell.	
Rejestry	
Α	32100+nr
LR	nr
RI	100
MQ	111
<mark>PAO</mark>	
Adres	Zawartość
0	ABABh
LR	ADD 010 0
LR+1	ARA 3
LR+2	BAN 000 LR+10
LR+3	EOR 110 1
LR+10	LNG 000 nr
LR+11	UNB 100 nr
100+nr	UNB 000 LR

Pozostałe komórki PAO są wyzerowane.

Stopień trudności zadania:

- Na dostatecznie poprawnie pobrać i wykonać 3 rozkazy, począwszy od PAO[LR].
- Na dobrze poprawnie pobrać i wykonać 4 rozkazy, począwszy od PAO[LR].
- Na bardzo dobrze poprawnie pobrać i wykonać 5 rozkazów, począwszy od PAO[LR].

Pozostałe komórki PAO są wyzerowane.

W Pamięci Mikroprogramów mają być wpisane do wytworzenia sprawozdania (najlepiej przed zajęciami, ale niekoniecznie) mikroprogramy, realizujące wszystkie rozkazy z grup, **objętych tematyką poprzednich i dzisiejszych** zajęć (bez mnożenia i dzielenia oraz pozostałych z zestawu: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS),

Brak kompletnej PM dla bieżących grup rozkazów w sprawozdaniu **oznacza pół oceny w dół** - nie dotyczy: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS.

Uwaga: w trakcie tego ćwiczenia **nie wolno edytować RAPS na zero** po zakończeniu pobierania każdego rozkazu.

Niepoprawne (niezgodne z definicją z listy rozkazów) działanie któregokolwiek rozkazu z grupy na dst oznacza po wykonaniu innych wymagań ocenę ndst.

Wydruk zawartości PM:

U	lest	IINI	Brak przerwania
	NA	48	
1		UNB	Zawsze pozytywny
2		UNB 54	Zawsze pozytywny
5		UNB 56	Zawsze pozytywny
6		UNB 58	Zawsze pozytywny
7		UNB 60	Zawsze pozytywny
8		UNB 62	Zawsze pozytywny
9		UNB 64	Zawsze pozytywny
10	Test	UNB	Zawsze pozytywny

11	UNB 68	Zawsze pozytywny
12	UNB 69	Zawsze pozytywny
13	UNB 70	Zawsze pozytywny
16	UNB 72	Zawsze pozytywny
17	UNB 74	Zawsze pozytywny
18	UNB 76	Zawsze pozytywny
19	UNB 78	Zawsze pozytywny
20	UNB 80	Zawsze pozytywny
21	UNB 82	Zawsze pozytywny

NA ___66

22	Test	UNB	Zawsze pozytywny
	NA	86	
23	Test	UNB	Zawsze pozytywny
	NA	88	
24			Zawsze pozytywny
	NA	90	
25	- .	LIND	
25			Zawsze pozytywny
	NA	94	
26	Test	IINR	Zawsze pozytywny
20		96	Zawsze pozytywny
27	Test	UNB	Zawsze pozytywny
		100	
28	Test	UNB	Zawsze pozytywny
	NA	102	
29	Test	UNB	Zawsze pozytywny
	NA	104	
32	Test	UNB	Zawsze pozytywny
	NA	130	
33	Test	UNB	Zawsze pozytywny
	NA	106	

34	Test	UNB	Zawsze pozytywny
	NA	108	
35	Test	UNB	Zawsze pozytywny
	NA	112	
36	Test	UNB	Zawsze pozytywny
	NA	114	
37	Test	UNB	Zawsze pozytywny
	NA	116	
38	Test	UNB	Zawsze pozytywny
	NA	118	
39	Test	UNB	Zawsze pozytywny
	NA	120	
40	Test	UNB	Zawsze pozytywny
	NA	122	
41	Test	UNB	Zawsze pozytywny
	NA	124	
42	Test	UNB	Zawsze pozytywny
	NA	125	
43	Test	UNB	Zawsze pozytywny

44	Test	UNB Zawsze pozytywny
	NA	128
48	S1	OLR LR -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IRR BUS -> RR
	C1	RRC Rozpoczęcie RRC
49	S1	ORR RR -> BUS
	D1	ILK BUS -> LK
	S2	IRAE SUMA -> RAE
	D2	NSI LR+1 -> LR
	C2	CEA Oblicz adres efektywny
	Test	TIND Adresowanie pośrednie
	NA	50
50	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
51	S2	OX X -> BUS

D2 ___IBI BUS -> RAE

C2 ___OPC OP albo AOP+32 -> RAPS

NA ___126

52	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
53	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU
54	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
55	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	SUB ALU = LALU - RALU
56	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S 3	OMQ MQ -> BUS

	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
57	C1	END Koniec mikroprogramu
58	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OA A -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
59	C1	END Koniec mikroprogramu
60	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORI RI -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
61	C1	END Koniec mikroprogramu
62	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IA BUS -> A
	C1	RRC Rozpoczęcie RRC
63	C1	END Koniec mikroprogramu

64	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IRI BUS -> RI
	C1	RRC Rozpoczęcie RRC
65	C1	END Koniec mikroprogramu
66	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OLR LR -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
67	C1	END Koniec mikroprogramu
68	S2	ORI RI -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
69	S2	OMQ MQ -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
70	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC

71	S1IXRE RI -> LALU
	D1OXE X -> RALU
	S2OBE ALU -> BUS
	D2IRI BUS -> RI
	C1END Koniec mikroprogramu
	ALUADD ALU = LALU + RALU
72	S3ORAE RAE -> BUS
	D3ILR BUS -> LR
	C1END Koniec mikroprogramu
74	TestTAO OFF = 0
	NA110
75	Total IIND 7
/5	TestUNB Zawsze pozytywny
	NA16
76	TestTXP RI <= 0
, 0	NA110
77	TestUNB Zawsze pozytywny
	NA16
78	TestTXZ BXZ i RI != 0 TLD i RI = 0
	NA110
79	TestUNB Zawsze pozytywny
	NA16

80	Test	TXS	RI >= 0
	NA	110	
81	Test	UNB	Zawsze pozytywny
	NA	16	
82	Test	TXP	RI <= 0
	NA	110	
83	C2	DRI	RI = RI-1
	Test	UNB	Zawsze pozytywny
	NA	16	
86	Test	TAP	A <= 0
	NA	110	
87	Test	UNB	Zawsze pozytywny
	NA	16	
88	Test	TAZ	A = 0
	NA	16	
89	C1	END	Koniec mikroprogramu
90	Test	TAS	A >= 0
	NA	110	

91 Test ___UNB Zawsze pozytywny

94 **S1** ORAE RAE -> BUS IRAP BUS -> RAP D1 S3 ORBP RBP -> BUS D3 ___IX BUS -> X C1 ____RRC Rozpoczęcie RRC 95 **S1** IALU A -> LALU ___OXE X -> RALU D1 OBE ALU -> BUS S2 ___IA BUS -> A D2 C1 ___END Koniec mikroprogramu ALU ___OR ALU = LALU OR RALU ORAE RAE -> BUS 96 **S1** ___IRAP BUS -> RAP D1 S3 ___ORBP RBP -> BUS ___IX BUS -> X D3 RRC Rozpoczęcie RRC C1 IALU A -> LALU 97 S1 D1 ___OXE X -> RALU

NA

___16

100 S1 ___IALU A -> LALU

___OBE ALU -> BUS

____END Koniec mikroprogramu

___AND ALU = LALU AND RALU

IA BUS -> A

S2

D2

C1

ALU

	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	NOTL ALU = NOT LALU
102	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
103	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	EOR ALU = LALU XOR RALU
104	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OLR LR -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
105	S2	ORAE RAE -> BUS
	D2	ILR BUS -> LR
	D3	NSI LR+1 -> LR
	C1	END Koniec mikroprogramu

106 S1IALU A -> LALU
S2OBE ALU -> BUS
D2IA BUS -> A
C1END Koniec mikroprogramu
ALUCMA ALU = (NOT LALU)+1
108 D2ALA arytmetyczne A w lewo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1
TestTLK SHT, LK=0 !SHT, LK!=0
NA110
109 TestUNB Zawsze pozytywny
NA108
110 C1END Koniec mikroprogramu
112 D2ARA arytmetyczne A w prawo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1
TestTLK SHT, LK=0 !SHT, LK!=0
NA110
113 TestUNB Zawsze pozytywny
NA112
114 D2LRQ logiczne A i MQ w prawo
C1SHT Operacja przesunięcia

C2 ___DLK LK = [LK]-1

Test ____TLK SHT, LK=0 || !SHT, LK!=0 NA ___110 115 Test ___UNB Zawsze pozytywny NA ___114 116 D2 ___LLQ logiczne A i MQ w lewo C1 ___SHT Operacja przesunięcia C2 ___DLK LK = [LK]-1 Test ____TLK SHT, LK=0 || !SHT, LK!=0 NA ___110 117 Test ___UNB Zawsze pozytywny NA ___116 118 D2 ___LLA logiczne A w lewo C1 SHT Operacja przesunięcia C2 ___DLK LK = [LK]-1 Test ____TLK SHT, LK=0 || !SHT, LK!=0 NA 110 119 Test ___UNB Zawsze pozytywny NA ___118 120 D2 ___LRA logiczne A w prawo C1 ___SHT Operacja przesunięcia C2 ___DLK LK = [LK]-1 Test ____TLK SHT, LK=0 || !SHT, LK!=0 NA 110

121 TestUNB Zawsze pozytywny
NA120
122 D2LCA cykliczne A w lewo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1
TestTLK SHT, LK=0 !SHT, LK!=0
NA110
123 TestUNB Zawsze pozytywny
NA122
124 S2IRAE SUMA -> RAE
S3ORAE RAE -> BUS
D3IA BUS -> A
C1END Koniec mikroprogramu
125 S2IRAE SUMA -> RAE
S3ORAE RAE -> BUS
D3IRI BUS -> RI
C1END Koniec mikroprogramu
126 S2IRAE SUMA -> RAE
S3ORAE RAE -> BUS
D3IX BUS -> X
127 S1IXRE RI -> LALU
D1OXE X -> RALU

```
S2 ___OBE ALU -> BUS

D2 ___IRI BUS -> RI

C1 ___END Koniec mikroprogramu
```

ALU ADD ALU = LALU + RALU

Wydruk zawartości PAO:

```
0 1010101110101011b ABABh -21589
```

8	0000000110000011b	0183h	AOP=3	N=3	
9	110000000010001b	C011h	OP=24	XSI=000	DA=17
10	1110011000000001b	E601h	OP=28	XSI=110	DA=1
17	1101100000000111b	D807h	OP=27	XSI=000	DA=7
18	1000010000000111b	8407h	OP=16	XSI=100	DA=7
107	100000000000111b	8007h	OP=16	XSI=000	DA=7

Wydruk logu z wykonania ćwiczenia:

Start symulatora 2023-11-21 12:28:30

Stacja "WAT-KOMPUTER"

Zalogowano jako: "Student"

Wersja aplikacji: 1.2.3.0

Dostępne interfejsy sieciowe: 169.254.8.55

10.6.9.2

192.168.56.1

```
=====Start symulacji======
12:34.47
=====Zawartość rejestrów=====
```

LK = 0h 0

A = 7D6Bh 32107

MQ = 6Fh 111

X = 0h 0

RAP = 0h 0

LALU = 0h 0

RALU = 0h 0

RBP = 0h 0

ALU = 0h 0

BUS = 0h 0

$$RR = 0h$$

$$LR = 7h$$
 7

$$RI = 64h$$
 100

$$RAPS = 0h 0$$

$$RAE = 0h 0$$

$$L = 0h 0$$

$$R = 0h 0$$

SUMA =
$$0h$$
 0

$$MAV = 1$$
, $IA = 0$, $INT = 0$

$$ZNAK = 0$$
, $XRO = 0$, $OFF = 0$

MAKRO

Takt0: RBPS=000000020030h

Takt7:

INT = 0

TEST | TINT : Brak przerwania(INT ?= 0)

$$RAPS = 48 / 30h$$

MAKRO

Takt0: RBPS=5006C4000000h

Takt1:

S1 | OLR: LR-> BUS

BUS = 7 / 7h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7h

C1 | RRC : Rozpoczęcie RRC

RBP = 2560 / A00h

Takt7:

```
S3 | ORBP : RBP -> BUS
      BUS = 2560 / A00h
  D3 | IRR : BUS -> RR
      RR = 2560 / A00h
     RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
      BUS = 2560 / A00h
  D1 | ILK: BUS -> LK
      LK = 0 / 0h
  C2 | CEA : Oblicz adres efektywny
      L = 0 / 0h
      R = 7 / 7h
     SUMA = 7 / 7h
     XRO = 0
Takt6:
  S2 | IRAE : SUMA -> RAE
      RAE = 7 / 7h
  D2 | NSI: LR+1 -> LR
      LR = 8 / 8h
Takt7:
  TEST | TIND : Adresowanie pośrednie
     RAPS = 1 / 1h
MAKRO
```

Takt0: RBPS=00000010034h

```
Takt7:
 TEST | UNB : Zawsze pozytywny
     RAPS = 52/34h
MAKRO
========52========
Takt0: RBPS=900624000000h
Takt1:
  S1 | ORAE : RAE -> BUS
     BUS = 7 / 7h
  D1 | IRAP: BUS-> RAP
     RAP = 7 / 7h
  C1 | RRC : Rozpoczęcie RRC
     RBP = 2560 / A00h
Takt7:
  S3 | ORBP : RBP -> BUS
     BUS = 2560 / A00h
  D3 | IX : BUS -> X
      X = 2560 / A00h
     RAPS = 53 / 35h
MAKRO
Takt0: RBPS=BC300E000100h
Takt1:
  S1 | IALU : A -> LALU
     LALU = 32107 / 7D6Bh
  D1 | OXE: X -> RALU
```

Takt2:

ALU | ADD : ALU = LALU + RALU

RALU = 2560 / A00h

```
Błąd(1): ALU = 3466 / D8Ah (Poprawna ALU = -30869 / 876Bh)
```

$$ZNAK = 1$$
, $OFF = 1$

Takt6:

S2 | OBE : ALU -> BUS

BUS = -30869 / 876Bh

D2 | IA: BUS -> A

A = -30869 / 876Bh

Takt7:

C1 | END: (Cykl 6) Koniec mikroprogramu (12:41.29)

RAPS = 0 / 0h

MAKRO

Takt0: RBPS=000000020030h

Takt7:

INT = 0

TEST | TINT : Brak przerwania(INT ?= 0)

RAPS = 48 / 30h

MAKRO

Takt0: RBPS=5006C4000000h

Takt1:

S1 | OLR: LR -> BUS

BUS = 8 / 8h

D1 | IRAP : BUS -> RAP

RAP = 8 / 8h

C1 | RRC : Rozpoczęcie RRC

RBP = 387 / 183h

Takt7:

```
S3 | ORBP : RBP -> BUS
     BUS = 387 / 183h
  D3 | IRR : BUS -> RR
      RR = 387 / 183h
     RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
     BUS = 387 / 183h
  D1 | ILK: BUS -> LK
      LK = 3/3h
  C2 | CEA: Oblicz adres efektywny
      L = 3 / 3h
      R = 0 / 0h
     SUMA = 3/3h
Takt6:
  S2 | IRAE : SUMA -> RAE
     RAE = 3 / 3h
  D2 | NSI: LR+1 -> LR
      LR = 9 / 9h
Takt7:
 TEST | TIND : Adresowanie pośrednie
     RAPS = 50 / 32h
MAKRO
```

Takt0: RBPS=900624000000h

Takt1:

```
S1 | ORAE : RAE -> BUS
```

$$BUS = 3/3h$$

D1 | IRAP : BUS -> RAP

RAP = 3 / 3h

C1 | RRC : Rozpoczęcie RRC

RBP = 0 / 0h

Takt7:

S3 | ORBP: RBP -> BUS

BUS = 0 / 0h

D3 | IX : BUS -> X

X = 0 / 0h

RAPS = 51/33h

MAKRO

Takt0: RBPS=03A801600000h

Takt6:

S2 | OX : X -> BUS

BUS = 0 / 0h

D2 | IBI: BUS -> RAE

RAE = 0 / 0h

Takt7:

C2 | OPC: OP albo AOP+32 -> RAPS

RAPS = 35 / 23h

MAKRO

Takt0: RBPS=00000010070h

Takt7:

TEST | UNB : Zawsze pozytywny

Takt1:

D2 | ARA : arytmetyczne A w prawo

C1 | SHT : Operacja przesunięcia

A = -7718 / E1DAh

Takt6:

C2 | DLK : LK = [LK]-1

```
LK = 1/1h
Takt7:
 TEST | TLK : SHT, LK=0 || !SHT, LK!=0
     RAPS = 113 / 71h
MAKRO
========113========
Takt0: RBPS=00000010070h
Takt7:
 TEST | UNB : Zawsze pozytywny
     RAPS = 112 / 70h
MAKRO
Takt0: RBPS=00680A27006Eh
Takt1:
  D2 | ARA : arytmetyczne A w prawo
  C1 | SHT : Operacja przesunięcia
      A = -3859 / F0EDh
Takt6:
  C2 | DLK : LK = [LK]-1
     LK = 0 / 0h
Takt7:
 TEST | TLK: SHT, LK=0 | | !SHT, LK!=0
```

RAPS = 110 / 6Eh

MAKRO

=========110=========

Takt0: RBPS=00000E000000h

Takt7:

C1 | END: (Cykl 18) Koniec mikroprogramu (12:54.02)


```
S1 | ORR: RR-> BUS
```

BUS = -16367 / C011h

D1 | ILK : BUS -> LK

LK = 17 / 11h

C2 | CEA: Oblicz adres efektywny

L = 17 / 11h

R = 0 / 0h

SUMA = 17 / 11h

XRO = 0

Takt6:

S2 | IRAE : SUMA -> RAE

RAE = 17 / 11h

D2 | NSI: LR+1 -> LR

LR = 10 / Ah

Takt7:

TEST | TIND : Adresowanie pośrednie

RAPS = 24 / 18h

MAKRO

Takt0: RBPS=0000001005Ah

Takt7:

TEST | UNB : Zawsze pozytywny

RAPS = 90 / 5Ah

MAKRO

Takt0: RBPS=00000004006Eh

Takt7:

TEST | TAS : $A \ge 0$

```
RAPS = 91 / 5Bh
MAKRO
Takt0: RBPS=00000010010h
Takt7:
 TEST | UNB : Zawsze pozytywny
    RAPS = 16 / 10h
MAKRO
Takt0: RBPS=00000010048h
Takt7:
 TEST | UNB : Zawsze pozytywny
    RAPS = 72 / 48h
MAKRO
======72========
Takt0: RBPS=00041E000000h
Takt7:
  S3 | ORAE : RAE -> BUS
    BUS = 17 / 11h
  D3 | ILR: BUS -> LR
    LR = 17 / 11h
  C1 | END: (Cykl 26) Koniec mikroprogramu (12:57.06)
    RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
```

INT = 0

TEST | TINT : Brak przerwania(INT ?= 0)

$$RAPS = 48 / 30h$$

MAKRO

Takt0: RBPS=5006C4000000h

Takt1:

S1 | OLR: LR-> BUS

BUS = 17 / 11h

D1 | IRAP : BUS -> RAP

RAP = 17 / 11h

C1 | RRC : Rozpoczęcie RRC

RBP = -10233 / D807h

Takt7:

S3 | ORBP : RBP -> BUS

BUS = -10233 / D807h

D3 | IRR : BUS -> RR

RR = -10233 / D807h

RAPS = 49 / 31h

MAKRO

Takt0: RBPS=68C801830032h

Takt1:

S1 | ORR: RR -> BUS

BUS = -10233 / D807h

D1 | ILK: BUS -> LK

LK = 7 / 7h

C2 | CEA : Oblicz adres efektywny

L = 7 / 7h

R = 0 / 0h

XRO = 0

Takt6:

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h

D2 | NSI: LR+1 -> LR

LR = 18 / 12h

Takt7:

TEST | TIND : Adresowanie pośrednie

$$RAPS = 27 / 1Bh$$

MAKRO

Takt0: RBPS=00000010064h

Takt7:

TEST | UNB : Zawsze pozytywny

$$RAPS = 100 / 64h$$

MAKRO

Takt0: RBPS=A4300E000800h

Takt1:

S1 | IALU : A -> LALU

LALU = -3859 / F0EDh

Takt2:

ALU | NOTL : ALU = NOT LALU

ALU = 3858 / F12h

ZNAK = 0, OFF = 0

Takt6:

S2 | OBE : ALU -> BUS

BUS = 3858 / F12h

```
D2 | IA: BUS -> A
      A = 3858 / F12h
Takt7:
  C1 | END: (Cykl 31) Koniec mikroprogramu (13:00.47)
    RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
     INT = 0
 TEST | TINT : Brak przerwania(INT ?= 0)
    RAPS = 48/30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
  S1 | OLR: LR-> BUS
     BUS = 18 / 12h
  D1 | IRAP: BUS -> RAP
     RAP = 18 / 12h
  C1 | RRC : Rozpoczęcie RRC
     RBP = -31737 / 8407h
Takt7:
  S3 | ORBP : RBP -> BUS
     BUS = -31737 / 8407h
  D3 | IRR: BUS-> RR
     RR = -31737 / 8407h
```

RAPS = 49 / 31h

MAKRO

Takt0: RBPS=68C801830032h Takt1: S1 | ORR: RR-> BUS BUS = -31737 / 8407h D1 | ILK: BUS -> LK LK = 7 / 7hC2 | CEA: Oblicz adres efektywny L = 7 / 7hR = 100 / 64hSUMA = 107 / 6Bh XRO = 0Takt6: S2 | IRAE : SUMA -> RAE RAE = 107 / 6Bh D2 | NSI: LR+1 -> LR LR = 19 / 13h Takt7: TEST | TIND : Adresowanie pośrednie RAPS = 16 / 10h **MAKRO** Takt0: RBPS=00000010048h Takt7: TEST | UNB : Zawsze pozytywny RAPS = 72 / 48hMAKRO

=======72========

Zrzut ekranu z obrazem ze stanem końcowym LabZSK:

Krótkie uzasadnienie końcowej zawartości: LR, RAPS, RAE na koniec mikroprogramu pobrania rozkazu dla każdego wykonanego rozkazu:

```
D2 | NSI: LR+1 -> LR
LR = 8 / 8h
```

Wartość komórki LR wzrasta o jeden na wskutek mikrorozkazu NSI i na koniec pobierania rozkazu wynosi 8.

RAPS:

```
TEST | TIND : Adresowanie pośrednie
RAPS = 1 / 1h
```

RAPS został ustawiony na wartość 1 z pola OP aktualnego rozkazu, ponieważ rozkaz nie jest rozkazem rozszerzonym ani nie wykorzystuje adresowania pośredniego (I=0).

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 0 / 0h

R = 7 / 7h

SUMA = 7 / 7h

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz wartość 7 komórki LR, co wynika z adresowania rozkazu.

Wartość 7 z RAE przysyłana jest przez magistrale do RAP, następnie mikrorozkaz RRC uzupełnia komórkę RBP wartością 2560 PAO[RAP]. Potem wartość 2560 z RBP przesyłana jest magistralą do X. Wartość 32107 z komórki A przechodzi do komórki LALU, a wartość 2560 z komórki X do komórki RALU. Mikrorozkaz ADD uzupełnia komórkę ALU sumą wartości z LALU i RALU, czyli ALU = 32107 + 2560 = -30869. Wynik nie jest zgodny z logicznym myśleniem przez nadmiar. ZNAK = 1 ponieważ wartość ALU jest ujemna i OFF = 1 ponieważ wystąpił nadmiar. Na koniec rozkazu przesyłamy magistralą wartość -30869 z ALU do A i ustawiamy RAPS na 0.

Rozkaz 2 – ARA 3

LR:

D2 | NSI : LR+1 -> LR

LR = 9 / 9h

Wartość komórki LR wzrasta o jeden na wskutek mikrorozkazu NSI i na koniec pobierania rozkazu wynosi 9.

RAPS:

```
C2 | OPC : OP albo AOP+32 -> RAPS
RAPS = 35 / 23h
```

Mikrorozkaz OPC przekazuje sterowanie do odpowiedniej komórki Pamięci Stałej. Ponieważ obecny rozkaz jest rozszerzony, to nowa wartość RAPS będzie równa wartości 3 pola AOP aktualnie wykonywanego rozkazu plus 32, co daje 35.

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 3 / 3h

R = 0 / 0h

SUMA = 3 / 3h

S2 | IRAE : SUMA -> RAE

RAE = 3 / 3h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania wartości 3 N aktualnego rozkazu oraz 0, ponieważ rozkaz jest typu rozszerzonego.

```
S1 | ORAE : RAE -> BUS

BUS = 3 / 3h

D1 | IRAP : BUS -> RAP

RAP = 3 / 3h

C1 | RRC : Rozpoczęcie RRC

RBP = 0 / Oh
```

Przesłano magistralą wartość RAE do RAP i wykonano mikrorozkaz RRC, który uzupełnił RBP wartością PAO[RAP] równą 0.

```
S3 | ORBP : RBP -> BUS

BUS = 0 / 0h

D3 | IX : BUS -> X

X = 0 / 0h

S2 | OX : X -> BUS

BUS = 0 / 0h
```

D2 | IBI: BUS -> RAE

RAE = 0 / 0h

Przesłano wartość 0 z RBP magistralą do komórki X, następnie z X przez magistralę do RAE.

Rozkaz ARA przesuwa arytmetycznie A w prawo, więc komórka zmienia wartość A z 876Bh na C3B5h, następnie mikrorozkaz DLK dekrementuje wartość LK, potem mikrorozkaz TLK sprawdza czy wartość LK jest różna od zera, tak długo jak wartość LK nie równa się zero rozkaz się powtórzy, na początku rozpoczęcia rozkazu LK ma wartość 3, po pierwszym przesunięciu wartość 2. Wartość A zostanie jeszcze przesunięta arytmetycznie dwa razy, najpierw na wartość E1DAh, następnie na wartość F0EDh, gdy to się stanie wartość LK będzie równa 0 i rozkaz się zakończy.

Rozkaz 3 – BAN 000 17

LR:

Wartość komórki LR wzrasta o jeden na wskutek mikrooperacji NSI i na koniec pobierania rozkazu wynosi 10.

RAPS:

```
TEST | TIND : Adresowanie pośrednie
RAPS = 24 / 18h
```

RAPS został ustawiony na wartość 24 z pola OP aktualnego rozkazu, ponieważ rozkaz nie jest rozkazem rozszerzonym ani nie wykorzystuje adresowania pośredniego (I=0).

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 17 / 11h

R = 0 / 0h

SUMA = 17 / 11h

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 17 / 11h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz wartość 0, co wynika z adresowania rozkazu.

Mikrorozkaz TAS sprawdza czy wartość -3859 A jest większa od zera, jeżeli nie to przesyła wartość 17 RAE przez magistralę do LR i kończy rozkaz i ustawia RAPS na 0. Jeżeli wartość A jest nie większa od 0 to rozkaz nic nie robi poza ustawieniem RAPS na 0;

Rozkaz 4 – LNG 000 7

LR:

D2 | NSI : LR+1 -> LR

LR = 18 / 12h

Wartość komórki LR wzrasta o jeden na wskutek mikrorozkazu NSI i na koniec pobierania rozkazu wynosi 18 (Między pobraniami rozkazów wartość LR została zmieniona z 9 na 17 przez poprzedni rozkaz).

RAPS:

```
TEST | TIND : Adresowanie pośrednie
RAPS = 27 / 1Bh
```

RAPS został ustawiony na wartość 27 z pola OP aktualnego rozkazu, ponieważ rozkaz nie jest rozkazem rozszerzonym ani nie wykorzystuje adresowania pośredniego (I=0).

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 7 / 7h

R = 0 / 0h

SUMA = 7 / 7h

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz wartości 0, co wynika z metody adresacji rozkazu.

Rozkaz LNG rozpoczyna się od przesłania wartości -3859 spod A do LALU. Mikrorozkaz NOTL uzupełnia komórkę ALU wartością 3858 (NOT LALU). Wartość z ALU przesyłana jest magistralą do A.

Rozkaz 5 – UNB 000 7

LR:

D2 | NSI: LR+1 -> LR

LR = 19 / 13h

Wartość komórki LR wzrasta o jeden na wskutek mikrorozkazu NSI i na koniec pobierania rozkazu wynosi 19.

RAPS:

```
TEST | TIND : Adresowanie pośrednie
RAPS = 16 / 10h
```

RAPS został ustawiony na wartość 27 z pola OP aktualnego rozkazu, ponieważ rozkaz nie jest rozkazem rozszerzonym ani nie wykorzystuje adresowania pośredniego (I=0).

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 7 / 7h

R = 100 / 64h

SUMA = 107 / 6Bh

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 107 / 6Bh
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz R, co wynika z metody adresacji rozkazu.

Wartość 107 RAE przesyłana jest magistralą do LR. RAPS zostaje ustawiony na 0.