Notes on Algebraic Type Theory

Steve Awodey

December 9, 2023

1 Natural models of type theory

We write $\widehat{\mathbb{C}} = [\mathbb{C}^{op}, \mathsf{Set}]$ for the category of presheaves on a small category \mathbb{C} . In (??), a natural model of type theory is defined to be a representable natural transformation $t : \dot{T} \to T$ of presheaves on a small category \mathbb{C} . Theorem XX shows that such a map is equivalent to the notion of a category with families in the sense of [?].

A natural model $t : \dot{T} \to T$ will be said to *model* the type-constructors $1, \Sigma, \Pi$ if there are pullback squares in \mathbb{C} of the following form,

where

- 1. $P_t = T_! \circ t_* \circ \dot{T}^* : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is the polynomial endofunctor determined uniquely by $t : \dot{T} \to T$ (its *signature*, cf. [?]),
- 2. $t \cdot t : \dot{T}_2 \to T_2$ is defined by $P_{t \cdot t} = P_t \circ P_t$.

The terminology is justified by the following result, also from [?].

Theorem 1. Let $t: \dot{T} \to T$ be a natural model. The associated category with families satisfies the usual rules for the type-constructors $1, \Sigma, \Pi$ just if $t: \dot{T} \to T$ models them, in the sense of the diagrams (1).

1.1 Display maps and clans

[define \mathcal{D}_t and show that it is a display map category with ...]

[given a display map category \mathcal{D} with ... define d and show that it is ...] [the constructions are not mutually inverse but rather adjoint inverse ...]

In these terms, we have the following description of the type-constructors $\Pi, \Sigma, 1$: Given a natural model

Theorem 2 ([?], XX). Let $t : \dot{T} \to T$ be a natural model of type theory. Then

2. Martin-Löf algebras

Now let \mathcal{E} be a locally cartesian closed category and $t: \dot{T} \to T$ any map in \mathcal{E} . As in the representable case, t gives rise to a polynomial endofunctor $\mathsf{P}_t: \mathcal{E} \to \mathcal{E}$, in terms of which we define the following abstraction of the notion of a natural model.

Definition 3. A Martin-Löf algebra in \mathcal{E} is a map $t : \dot{T} \to T$ equipped with structure maps $(*, 1, \sigma, \Sigma, \lambda, \Pi)$ making pullback squares

where the maps \mathbf{t}^2 and \mathbf{t}' are defined in terms of the polynomial endofunctor

$$\mathsf{P}_t = T_! \circ t_* \circ \dot{T}^* : \mathcal{E} \longrightarrow \mathcal{E}$$

as in the foregoing section.

In place of representability, we may require that $t : \dot{T} \to T$ be tiny.

Definition 4. A map $f: A \to B$ in a locally cartesian closed category \mathcal{E} is tiny if it is so as an object in $\mathcal{E}/_B$, in the sense that exponentiation by f has a right adjoint $(-)^f \dashv (-)_f$.

Lemma 5. A map $f: A \to B$ is tiny just if the pushforward $f_*: \mathcal{E}/_A \to \mathcal{E}/_B$ has a right adjoint,

$$f_* \dashv f^! : \mathcal{E}/_B \longrightarrow \mathcal{E}/_A$$
.

Proposition 6. Any representable natural transformation $f: A \to B$ between presheaves on a small category \mathbb{C} is a tiny map in $\hat{\mathbb{C}}$.

Proof. See [?]. Briefly, ... \Box