Regulators

Definition: A regulator is a device or circuit that maintains a stable output voltage or current, even when the input voltage or load current changes

Linear Voltage Regulator:

Series Voltage Regulator:

It keeps the output Voltage constant by adjusting the resistance of a series pass element placed in series with the load

Pass element (BJT or MOSFET)

Vout = Vz - Vbe

Shunt Voltage Regulator

A shunt voltage regulator is a simple type of voltage regulator that maintains a constant output voltage by diverting (shunting) excess current away from the load through a regulating element connected in parallel with the load

If **voltage increases**, the regulator shunts more current to ground to drop the voltage back to normal.

If voltage decreases, the regulator shunts less current, allowing more to go to the load.

Switching Voltage Regulator

Switching regulators are voltage regulators that maintain a constant output voltage by rapidly switching an energy storage element (inductor, capacitor, or transformer) on and off, and then smoothing the output.

Buck Converter:

A buck converter works by rapidly switching a transistor on and off, using an inductor and capacitor to smooth the output.

Boost Converter:

The boost converter works by storing energy in an inductor when the switch is on, and then releasing it to the load at a higher voltage when the switch is off.

why switching regulators are generally more efficient than linear regulators.

Switching regulators are generally more efficient than linear regulators because of how they handle excess energy.

- A linear regulator works like a variable resistor in series with the load.
- It drops the excess voltage as heat.
- A switching regulator rapidly turns a transistor fully ON (low resistance) or fully OFF (no current).
- When fully ON, voltage drop across the transistor is very small → low power loss.
- When fully OFF, no current flows \rightarrow almost no power loss.
- Energy is stored in an inductor or capacitor and then transferred to the load, instead of being burned as heat.

lets
$$V_{in} = 12V, V_{out} = 5.0V, F_{load} = 1A$$

$$\underline{Linear} \quad \underline{regulator}(\underline{sevies})$$
output power = $f_{out} = V_{out} \times T_{load}$

$$= 5V \times 1A = 5W$$
input power = $f_{in} = V_{in} \times T_{load}$

$$= 12V \times IA = 12W$$

$$f_{ower} \quad \underline{loss} \quad \underline{(dissipated as heat)}$$

$$f_{loss} = f_{in} - f_{out}$$

$$= 12W - 5W = 7W$$

$$efficiency (M) = \frac{f_{out}}{f_{in}^2} \times \underline{loo} \%$$

$$M = \frac{5!}{12} \times \underline{loo} \% = 41.66\% \approx 41.7\%$$

$$V_{in} \qquad \underline{linear}$$

$$vegulator \qquad V_{out}$$

$$V_{in} \qquad \underline{linear}$$

$$vegulator \qquad V_{out}$$

$$V_{in} \qquad \underline{linear}$$

$$vegulator \qquad V_{out}$$

Switching regulator (buck)

Vin = 12V, Vout = 5V, I Load > 1A

Duty cycle = Vout = 5 = 0.416

Ros-off (low side Mosfet) = 20.ml = 0.02 ll Ros-off (low side Mosfet) = 10ml = 0.01 ll

(a typical small power mosfet in To-220/TO-252 package might have Ros (on) in the 10-50ms range, and Ros (off) I taken 10. ms is a lower value)

Inductor DRCR = some = 0.050

Switching frequency (fsw) = 200 KHZ

Mosfet turn bransition time $t_r + t_f = sons$ I = IA

Conduction loss in high side Mosfet

Proof, hs = $\mathbb{Z}^2 \times R_{ds-on} \times D$ = $\mathbb{Z}^2 \times 0.02 \times 0.416$ = 0.0083W

conduction loss in Low side mosfet

 P_{cond} , LS = $I^2 \times R_{dS-off} \times (1-0)$ = $I^2 \times 0.01 \times (1-0.416)$ = 0.0058W

Switching Loss:

Diode and other losses:

switching regulator

$$T_{in}, s\omega = \frac{\rho_{in}, s\omega}{V_{in}} = \frac{5.1441}{12} = 0.42A$$