COMP 472 Artificial Intelligence Machine Learning Intro to Neural Networks & Perceptrons Video #7

Russell & Norvig: Sections 19.6, 21.1

Today

- Introduction to ML
- 2. Naive Bayes Classification
 - Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- Unsupervised Learning)
- Neural Networks YOU ARE HERE!

- Perceptrons
- Multi Layered Neural Networks

Neural Networks

- Learning approach inspired by biology
 - the neurons in the human brain
- Set of many simple processing units (called neurons) connected together
 - the behavior of each neuron is very simple
 - but a network of neurons can have sophisticated behavior and can be used for complex tasks
 - neurons are connected to each other to form a network
 - the strength of the connection between neurons are determined by weights
 - the network learns by <u>learning the weights</u> between neurons given training data
- Different types of network architectures exist
 - feed forward neural networks (FFNN)
 - recurrent neural networks (RNN) NLP
 - convolutional neural networks (CNN) image
 - ... GAN

Biological Neurons

- Human brain =
 - 100 billion neurons
 - each neuron may be connected to 10,000 other neurons
 - passing signals to each other via
 1,000 trillion synapses

- Dendrites: filaments that provide input to the neuron
- Axon: sends an output signal
- Synapses: connection with other neurons - releases neurotransmitters to other neurons

A Perceptron = 1 single newon

will be learned

f(net)

= n factores

- A <u>single</u> computational neuron (no network yet...)
- Input:
 - input signals x_i
 - weights wi for each feature xi
 - represents the strength of the connection with the neighboring neurons
- Output:
 - if sum of input weights >= some threshold, neuron fires (output=1)
 - otherwise output = 0
 - If $(w_1 x_1 + ... + w_n x_n) = 1$
 - Then output = 1
 - Else output = 0

- Learning:
 - use the training data to adjust the weights in the perceptron

The Idea y sealures

		Output			
Student	First last year?	Male?	Works hard?	Drinks ?	First this year?
Richard	Yes/1	Yes/	No/0.	Yes/)	No/6
Alan	Yes//	Yes//	Yes/1	No/0	Yes
12 on					

2-dess classification Target class = expected

+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	wo		
F	irst last year?	1 -	0.2	
	fale?		0.2	First this year
J	Vorks hard?		0.2	(Ev.) Cost
	VOIAS HAIU.		0.2	1

1. Step 1: Set weights to random values

- 2. Step 2: Feed perceptron with an input —
- 3. Step 3: Compute the network outputs
- 4. Step 4: Adjust the weights
 - if output correct → weights stay the same
 - if output = 0 but it should be $1 \rightarrow$
 - increase weights on <u>active</u> connections (i.e. input $x_i = 1$)
 - if output = 1 but should be $0 \rightarrow$
 - decrease weights on <u>active</u> connections (i.e. input $x_i = 1$)
- Step 5: Repeat steps 2 to 4 a large number of times until the network converges to the right results for the given training examples

source: Cawsey (1998)

A Simple Example

- Turn feature values into numerical values
 - \square yes \rightarrow 1 no \rightarrow 0
 - = e.g. if $x_1 = 1$, then student got an A last year
 - \Box e.g. if $x_1 = 0$, then student did not get an A last year
- Initially, set all weights to random values (all 0.2 here)

- Assume:
 - threshold = 0.55
 - \Box constant learning rate = 0.05 #2

A Simple Example (2)

		Output			
Student	'A' last year?	Male?	Works hard?	Drinks?	'A' this year?
Richard	yes/1	1	no/0	1	no o Toxos
Alan	yes/1	1	1	no/0	yer 1
Alison	0	0	1	0	0
Jeff	0	1	0	1	0
Gail	1	0/	1	1	1
Simon	0/	17	1	1	0

Richard:

So reduce weights of all <u>active</u> connections (with input 1) by 0.05. Do not change the weight of the inactive connections.

So we get $w_1 = 0.15$, $w_2 = 0.15$, $w_3 = 0.2$, $w_4 = 0.15$

A Simple Example (3)

Student 'A' Richard Alan Alison Jeff Gail Simon w, w w w	last year? 1 0 0 1	Male? 1 0 1 0	Works hard? 0 1 0 1	Drinks? 1 0 0 1	'A' this year 0 1 0 0
Alan Alison Jeff Gail Simon w, w w	0 1	0	1	(0)	0
Alison Jeff Gail Simon w, w w w	0 1	1	1 0		0
Jeff Gail Simon w, w w	0 1	1	0	0 1	0
Simon w, w w w	1	1 0	0	1	0
Simon w,w www	1	0/	1 /		
Man:	$\overline{\alpha}$		1 - /	1	1
Man:	\mathcal{P}	1	1	1	0
• (1)× (0.15) + (1)		11	(0) 0.15) = 0.5 non-active		
So increase of So we get w_1	all weights = 0.2, w ₂ = 0	of active $0.2, w_3 = 0$	connections by 0.25 , $w_4 = 0.15$	y <u>0.05</u>	veis cerni

A Simple Example (4)

		Output			
Student	'A' last year?	Male?	Works hard?	Drinks?	'A' this year?
Richard	1	1	0	1	0
Alan	1	1	1	0	1
Alison	0	0	1	0	0
Jeff	0	1	0	1	0
Gail	1	θ	1	1	1
Simon	0	1	1	1	0

epoch 1: Richard, Alan, Alison, Jeff, Gail, Simon = 1 iteration epoch 2: Richard, Alan, Alison, Jeff, Gail, Simon over the graining

epoch n... until all training data points are correctly classified

 $\sqrt{w_1}$ = 0.25 w_2 = 0.1 w_3 = 0.2 w_4 = 0.1

A Simple Example (5)

		Output			
Student	'A' last year?	Male?	Works hard?	Drinks?	'A' this year?
Richard	1)	1	, O	/ 1	0
Alan	1 (100)	1	15	0	1
Alison	0	0	1 /	0	0
Jeff	/ 0 /	1	/ 0 /	1	0
Gail	1	0	1 /	1	1
Simon	9		1)/	1	0 —

- Let's check. $w_1 = 0.2 w_2 = 0.1 w_3 = 0.25 w_4 = 0.1$
 - Richard: (1,0.2) + (1,0.1) + (0,0.25) + (1,0.1) = 9.4 < 0.55 -> output is <math>0 < 0
 - Alan: $(1\times0.2) + (1\times0.1) + (1\times0.25) + (0\times0.1) = 0.55 \ge 0.55 \rightarrow \text{output is } 1 \checkmark$
 - Alison: $(0\times0.2) + (0\times0.1) + (1\times0.25) + (0\times0.1) = 0.25 < 0.55 \rightarrow \text{ output is } 0 \checkmark$
 - Jeff: $(0\times0.2) + (1\times0.1) + (0\times0.25) + (1\times0.1) = 0.2 < 0.55 \rightarrow \text{output is } 0 \checkmark$
 - Gail: $(1\times0.2) + (0\times0.1) + (1\times0.25) + (1\times0.1) = 0.55 \ge 0.55 \rightarrow \text{ output is } 1 \checkmark$
 - Simon: $(0\times0.2) + (1\times0.1) + (1\times0.25) + (1\times0.1) = 0.45 < 0.55 -> output is 0 <$

Decision Boundaries of Perceptrons

- So we have just learned the function:
 - If $(0.2x_1 + 0.1x_2 + 0.25x_3 + 0.1x_4 = 0.55)$ then 1 otherwise 0
 - If $(0.2x_1 + 0.1x_2 + 0.25x_3 + 0.1x_4 0.55 \ge 0)$ then 1 otherwise 0
- Assume we only had 2 features:
 - If $(w_1x_1 + w_2x_2 t > = 0)$ then 1 otherwise 0
 - The learned function describes a line in the input space
 - This line is used to separate the two classes C1 and C2
 - / t (the threshold, later called 'b') is used to shift the line on the axis

Decision Boundaries of Perceptrons

 More generally, with n features, the learned function describes a hyperplane in the input space.

Adding a Bias #1

We can avoid having to figure out the threshold by using a "bias"

$$b + \sum_{i} x_{i} w_{i}$$

 A bias is equivalent to a weight on an extra input feature that always has a value of 1.

Perceptron - More Generally

Common Activation Functions

Learning Rate #2

1. Learning rate can be a constant value (as in the previous example)

- □ So:
 - if T=zero and O=1 (i.e. a false positive) -> decrease w by n
 - if T=1 and O=zero (i.e. a false negative) -> increase w by n
 - if T=O (i.e. no error) -> don't change w

Or, a fraction of the input feature x

$$\Delta w_i = \eta (T - O) x_i$$

value of input feature x_i

- So the update is proportional to the value of x
 - if T=zero and O=1 (i.e. a false positive) \rightarrow decrease w_i by ηx_i
 - if T=1 and O=zero (i.e. a false negative) → increase w_i by nx_i
 - if T=O (i.e. no error) -> don't change w;
- This is called the delta rule or perceptron learning rule

Perceptron Convergence Theorem

- I a solution with zero error exists
 i.e. the training data are linearly separable
- The delta rule will find a solution in finite time

Example of the Delta Rule

assume random initialization

$$w1 = 0.75$$

$$w2 = 0.5$$

$$w3 = -0.6$$

$$w3 = -0.6$$

- Assume:
 - sign function (threshold = 0)
 - □ learning rate η = 0.2 using the delta rule

Example of the Delta Rule

= data #1:
$$f(0.75 \times 1 + 0.5 \times 1 - 0.6 \times 1) = f(0.65) -> 1$$

data #1:
$$f(0.75x1 + 0.5x1) = f(0.65) -> 1$$

data #2: $f(0.75x9.4 + 0.5x6.4 - 0.6x1) = f(9.65) -> 1 \times 1$

--> error =
$$(-1 - 1) = -2$$

--> $w_1 = w_1$ -2 (0.2×9.4)
(ex wing) = 0.75 - 3.76 = (-3.01) new w,
--> $w_2 = w_2$ -2 $\times 0.2 \times 6.4 = (-2.06)$ new w,
--> $w_3 = w_3$ -2 $\times 0.2 \times 1 = (-1.00)$ new w,

X ₁	X ₂	bioo	Output	1-1
1.0	1.0	7	1	3 weights
9.4	6.4		-1	do not
(2.5)	2.1		1) Telo	Λ
8.0	7.7	1	-1	
0.5	2.2	1	1	

= data #3:
$$f(-3.0) \times 2.5 - 2.06 \times 2.1 - 1 \times 1) = f(-12.84) -> -1 \times error = (1 - -1) = 2$$

Delta formula

Delta formula

$$--> w_1 = -3.01 + 2 \times 0.2 \times 2.5 = (-2.01)$$

$$--> w_2 = -2.06 + 2 \times 0.2 \times 2.1 = -1.22$$

$$--> w_3 = -1.00 + 2 \times 0.2 \times 1 = +0.60$$

$$w_1 = -1.3$$
 $w_2 = -1.1$ $w_3 = 10.9$

The Perceptron in 1958

An IBM 704 - a 5-ton computer the size of a room - was fed a series of punch cards.

After 50 trials, the computer taught itself to distinguish cards marked on the left from cards marked on the right.

Frank Rosenblatt

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Remember this slide?

History of AI

- Reality hits (late 60s early 70s)
 - 1966: the ALPAC report kills work in machine translation (and NLP in general)
 - People realized that scaling up from micro-worlds (toy-worlds) to reality is not just a manner of faster machines and larger memories...
 - Minsky & Papert's paper on the limits of perceptrons (cannot learn just any function...) kills work in neural networks
 - in 1971, the British government stops funding research in AI due to no significant results
 - □ it's the first major *AI Winter...*

https://www.vectorstock.com/royalty-free-vector/freezing-snowman-vector-689086

Limits of the Perceptron

- In 1969, Minsky and Papert showed formally what functions could and could not be represented by perceptrons
- Only linearly separable functions can be represented by a perceptron

Alan Newell

Herbert Simon

Arthur Samuel

AND and OR Perceptrons

The XOR Function - Visually

- In a 2-dimentional space (2 features for the X)
- No straight line in two-dimensions can separate
 - (0, 1) and (1, 0) from
 - \bigcirc (0, 0) and (1, 1).

Non-Linearly Separable Functions

 Real-world problems cannot always be represented by linearlyseparable functions...

Linear vs. nonlinear problems

This caused a decrease in interest in neural networks in the 1970's

Today

- Introduction to ML
- 2. Naïve Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks video #8.

Up Next

- Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks