Second SPICE Exercise

Fundamentals Of Electronics - a.a. 2018-2019 - University of Padua (Italy)

Pietro Prandini (mat. 1097752)

June 4, 2019

Contents

1	NMOS common source amplifier with bypass capacitance			5
	1.1	Analytic solutions		5
		1.1.1	DC analysis	5
			$R_D \dots \dots$	5
			R_S	6
			V_{GS}	6
			R_{G1}	6
			g_m	7
			r_0	7
		1.1.2	AC analysis	7
			Hybrid π model	
			$\stackrel{\circ}{R_{IN}}$ from G	
			R_{OUT} from D	
			Voltage Gain - without R_{sig} and R_L	
			Voltage Gain - with R_{siq} and R_L	
	1.2	SPICE	E simulations	
		1.2.1	DC simulation - Operating Point	
		1.2.2	AC simulation - Av , R_{IN} and R_{OUT}	
		1.2.3	AC simulation - Gv	
		1.2.0		
2	NMOS common source amplifier without bypass capacitance			15
	2.1		tic solution	15
		·	Hybrid π model	15
			$\overrightarrow{R_{IN}}$ from G	
			R_{OUT} from D	
			Voltage Gain - without R_{sig} and R_L	
			Voltage Gain - with R_{siq} and R_L	
	2.2	SPICE	E simulations	
		2.2.1	DC simulation - Operating Point	
		2.2.2	AC simulation without bypass capacitances - Av , R_{IN} and R_{OUT}	
		2.2.2	ΔC simulation without bypass capacitances - Gv	20

4 CONTENTS

Chapter 1

NMOS common source amplifier with bypass capacitance

Figure 1.1: NMOS common source amplifier

Designing the common source amplifier of the figure 1.1.

The MOSFET should have a $V_t = 1V$, a $K_n = 4mA/V$ and a $\lambda = 0$.

Other requested parameters are: $I_{DQ}=0.5mA,\ V_S=3.5V,\ V_D=11V,\ V_{DD}=15V$ and $R_{G2}=1097752\Omega$.

1.1 Analytic solutions

1.1.1 DC analysis

On a Direct Current analysis the capacitances can be considered as open circuits, the inductances can be considered as short circuits, the signal and the load are removed and the alternate current inputs are not

The figure 1.2 represents the circuit for the DC analysis.

 R_D

$$V_D = V_{DD} - R_D I_D \tag{1.1}$$

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}}$$

$$R_{D} = \frac{15V - 11V}{0.5mA} = 8k\Omega$$
(1.2)

$$R_D = \frac{15V - 11V}{0.5mA} = 8k\Omega \tag{1.3}$$

--- Z:\home\peter\GitPP\ElectronicSPICEExercises1819\Sec

Figure 1.2: NMOS common source amplifier - DC analysis

 R_S

$$V_S = R_S I_D \implies R_S = \frac{V_S}{I_D}$$
 (1.4)

$$R_S = \frac{3.5V}{0.5mA} = 7k\Omega \tag{1.5}$$

 V_{GS}

$$I_D = \frac{1}{2} K_n V_{ov}^2 \implies V_{ov} = \pm \sqrt{\frac{2I_D}{K_n}}$$

$$\tag{1.6}$$

$$V_{ov} = \pm \sqrt{\frac{2 \cdot 0.5mA}{4mA/V^2}} \tag{1.7}$$

$$V_{ov} = \pm \sqrt{\frac{2 \cdot 0.5mA}{4mA/V^2}}$$

$$V_{ov} = \begin{cases} +0.5V & \text{Real value of } V_{ov}. \\ -0.5V & \text{No physical sense.} \end{cases}$$

$$(1.7)$$

$$V_{ov} = V_{GS} - V_t \implies V_{GS} = V_{ov} + V_t \tag{1.9}$$

$$V_{GS} = 0.5V + 1V = 1.5V (1.10)$$

 R_{G1}

$$V_{GS} = V_G - V_S \implies V_G = V_{GS} + V_S \tag{1.11}$$

$$V_G = 1.5V + 3.5V = 5V (1.12)$$

$$I_G R_{G2} - V_{GS} - I_D R_S = 0 \implies I_G = \frac{V_{GS} + I_D R_S}{R_{G2}}$$
 (1.13)

$$I_G = \frac{1.5V + 0.5mA \cdot 7k\Omega}{1097.752k\Omega} = 4.5547628\mu A \simeq 4.55\mu A \tag{1.14}$$

$$R_{G1} = \frac{V_{DD} - V_G}{I_G}$$

$$= \frac{15V - 5V}{4.5547628\mu A}$$
(1.15)

$$=\frac{15V - 5V}{4.5547628\mu A}\tag{1.16}$$

$$=2.19550M\Omega \simeq 2.20M\Omega \tag{1.17}$$

 g_m

$$g_m = K_n V_{ov} = 4mA/V^2 \cdot 0.5V = 2mA/V$$
 (1.18)

 r_0

$$r_0 = \frac{1}{\lambda I_D} \xrightarrow{\lambda=0} r_0 = \infty$$
 r_0 is considered as an open circuit. (1.19)

1.1.2 AC analysis

On an Alternate Current analysis the capacitances can be considered as short circuits, the inductances can be considered as open circuits and the direct current inputs are not considered.

The figure 1.3 represents the circuit for the AC analysis.

Other requested parameters are: $R_{sig} = 200k\Omega$ and $R_L = 8k\Omega$.

Figure 1.3: NMOS common source amplifier - AC analysis

Hybrid π model

For a small signal analysis it can be used an equivalent model to represent the behaviour of the transistor. In this case it is used the hybrid π model (figure 1.4).

R_{IN} from G

Removing the signal, the load and applying a test voltage source as in figure 1.5 it is possible to calculate the input's resistance R_{IN} .

$$R_{IN} = \frac{V_x}{I_x} \tag{1.20}$$

(1.21)

$$I_x = \frac{V_x}{R_{G1} \parallel R_{G2}} \implies R_{G1} \parallel R_{G2} = \frac{V_x}{I_x} \implies R_{IN} = R_{G1} \parallel R_{G2}$$
 (1.22)

$$R_{IN} = \frac{R_{G1}R_{G2}}{R_{G1} + R_{G2}}$$

$$= \frac{2.19550M\Omega \cdot 1097752\Omega}{2.19550M\Omega + 1097752\Omega}$$
(1.23)

$$=\frac{2.19550M\Omega \cdot 1097752\Omega}{2.19550M\Omega + 1097752\Omega} \tag{1.24}$$

$$=733.16756k\Omega \simeq 733.2k\Omega \tag{1.25}$$

--- Z:\home\peter\GitPP\ElectronicSPICEExercises1819\SecondExercise\schematics\nmos_small_signal.asc ---

Figure 1.4: NMOS common source amplifier - Hybrid π model

R_{OUT} from **D**

Removing the signal, the load and applying a test voltage source as in figure 1.6 it is possible to calculate the output's resistance R_{OUT} .

$$R_{OUT} = \frac{V_x}{I_x} \tag{1.26}$$

$$I_x = \frac{V_x}{R_D} \implies R_D = \frac{V_x}{I_x} \implies R_{OUT} = R_D$$
 (1.28)

$$R_{OUT} = 8k\Omega \tag{1.29}$$

Voltage Gain - without R_{sig} and R_L

Calculating the gain of the amplifier represented in the figure 1.7.

$$v_{in} = v_{gs} (1.30)$$

$$v_o = -g_m v_{gs} R_D (1.31)$$

$$A_v = \frac{v_o}{v_{in}} = \frac{-g_m v_{gs} R_D}{v_{qs}} = -g_m R_D = 2mA/V \cdot 8k\Omega = -16 \quad V/V$$
 (1.32)

Voltage Gain - with R_{sig} and R_L

Calculating the gain of the amplifier represented in the figure 1.8.

$$I_{sig} = \frac{v_{sig}}{R_{sig} + (R_{G1} \parallel R_{G2})} \tag{1.33}$$

$$v_{in} = v_{gs} = v_{sig} - R_{sig}I_{sig} \tag{1.34}$$

$$= v_{sig} - R_{sig} I_{sig}$$

$$= v_{sig} - R_{sig} \frac{v_{sig}}{R_{sig} + (R_{G1} \parallel R_{G2})}$$
(1.35)

$$= v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right)$$
 (1.36)

Figure 1.5: NMOS common source amplifier - Calculating R_{IN}

$$v_o = -g_m v_{gs}(R_D \parallel R_L) \tag{1.37}$$

$$= -g_m v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) (R_D \parallel R_L)$$
(1.38)

$$G_{v} = \frac{v_{o}}{v_{sig}} = \frac{-g_{m}v_{sig}\left(1 - R_{sig}\frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})}\right)(R_{D} \parallel R_{L})}{v_{sig}}$$

$$= -g_{m}\left(1 - R_{sig}\frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})}\right)(R_{D} \parallel R_{L})$$
(1.39)

$$= -g_m \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) (R_D \parallel R_L)$$
(1.40)

$$= -g_m \left(1 - R_{sig} \frac{1}{R_{sig} + \left(\frac{R_{G1}R_{G2}}{R_{G1} + R_{G2}} \right)} \right) \left(\frac{R_D R_L}{R_D + R_L} \right)$$
 (1.41)

$$= -2mA/V \left(1 - 200k\Omega \frac{1}{200k\Omega + \left(\frac{2.19550M\Omega \cdot 1097752\Omega}{2.19550M\Omega + 1097752\Omega} \right)} \right) \left(\frac{8k\Omega \cdot 8k\Omega}{8k\Omega + 8k\Omega} \right)$$
(1.42)

$$= -6.28296 \quad V/V \simeq -6.3 \quad V/V$$
 (1.43)

--- 7:homelneterlGitPPlFlectronicSPICFExercises1819lSecondExerciselschematicsInmos small signal ROUT.asc --

Figure 1.6: NMOS common source amplifier - Calculating R_{OUT}

--- Z:\home\peter\GitPP\ElectronicSPICEExercises1819\SecondExercise\schematics\nmos_small_signal_Gain_without_resistances.asc ---

Figure 1.7: NMOS common source amplifier - Calculating the voltage gain without R_{sig} and R_L

--- Z:lhome\peter\GitPP\ElectronicSPICEExercises1819\SecondExercise\schematics\nmos_small_signal_Gain_with_resistances.asc ---

Figure 1.8: NMOS common source amplifier - Calculating the voltage gain with R_{sig} and R_L

1.2 SPICE simulations

1.2.1 DC simulation - Operating Point

```
* NMOS amplifier - DC analysis
    *******
                          *************
* 2st Exercise - Fundamentals Of Electronics - a.a. 2018-2019 - UniPD - Italy
                       Pietro Prandini – mat. 1097752
 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
 International License. To view a copy of this license, visit
* http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative
* Commons, PO Box 1866, Mountain View, CA 94042, USA.
*************************
* Parameters
.param Vt = 1V
. param Kn = 4m
. param lambda = 0
* NMOS model
\cdot model NMOS NMOS VT0 = Vt KP = Kn LAMBDA = lambda
* Resistances
RG1 VDD G 2.19550MEG
RG2 G 0 1097752
RD VDD D 8K
RS S 0 7K
* Transistors
M1 D G S S NMOS
* Initial conditions
.ic V(VDD) = 15V
* Analysis
.op
.END
```

The results confirm the DC analysis (results calculated in the section 1.1.1).

```
- Operating Point -
V(vdd):
          15
                    voltage
V(g):
          5.00001
                              voltage
V(d):
                    voltage
          11
V(s):
          3.50001
                              voltage
Id (M1):
          0.000500001
                             device_current
Ig (M1):
                    device_current
Ib (M1):
          -7.50999e-012
                             device_current
          -0.000500001
Is (M1):
                              device_current
I (Rs):
          0.000500001
                              device_current
I (Rd):
          0.000500001
                              device_current
I (Rg2):
          4.55477\,\mathrm{e}\!-\!006
                              device_current
          4.55477\,\mathrm{e}\!-\!006
I (Rg1):
                              device_current
```

1.2.2 AC simulation - Av, R_{IN} and R_{OUT}

```
* NMOS amplifier - Av, RIN and ROUT
```

```
*******************************
 2st Exercise - Fundamentals Of Electronics - a.a. 2018-2019 - UniPD - Italy
                      Pietro Prandini – mat. 1097752
 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
* International License. To view a copy of this license, visit
* http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative
* Commons, PO Box 1866, Mountain View, CA 94042, USA.
************************
* Voltage dependent Current Source
gm*vgs D 0 G 0 2m
* Independent Voltage Source
Vx G 0 DC 0 AC 1097752u sin (0 0.1V 10kHz 0 0 0)
* Resistances
RG1 G 0 2.19550MEG
RG2 G 0 1097752
RD D 0 8k
* Analysis
.tf V(D) Vx
.END
```

The result confirm the analysis (result calculated in the section 1.1.2, expression 1.32).

```
--- Transfer Function ---

Transfer_function: -16 transfer

vx#Input_impedance: 731834 impedance
output_impedance_at_V(d): 8000 impedance
```

1.2.3 AC simulation - Gv

```
* NMOS amplifier - Gv
* 2st Exercise - Fundamentals Of Electronics - a.a. 2018-2019 - UniPD - Italy
                        Pietro Prandini – mat. 1097752
* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
* International License. To view a copy of this license, visit
*\ http://\ creative commons.org/licenses/by-sa/4.0/ or send a letter to Creative
* Commons, PO Box 1866, Mountain View, CA 94042, USA.
************************
* Voltage dependent Current Source
gm*vgs D 0 G 0 2m
* Independent Voltage Source
Vsig SIG 0 DC 0 AC 1097752u sin (0 0.1V 10kHz 0 0 0)
* Resistances
Rsig SIG G 200k
RG1 G 0 2.19550MEG
RG2 G 0 1097752
RD D 0 8k
RL D 0 8k
```

```
* Analysis
.tf V(D) Vsig
.END
```

The result confirm the analysis (result calculated in the section 1.1.2, expression 1.43).

```
Transfer Function —

Transfer_function: -6.28296 transfer
vsig#Input_impedance: 931834 impedance
output_impedance_at_V(d): 4000 impedance
```

Chapter 2

NMOS common source amplifier without bypass capacitance

Figure 2.1: NMOS common source amplifier

Designing the common source amplifier of the figure 2.1.

The MOSFET should have a $V_t = 1V$, a $K_n = 4mA/V$ and a $\lambda = 0$.

Other requested parameters are: $I_{DQ}=0.5mA,\ V_S=3.5V,\ V_D=11V,\ V_{DD}=15V$ and $R_{G2}=1097752\Omega.$

2.1 Analytic solution

The figure 2.2 represents the circuit for the DC analysis.

It is the same circuit analysed on the section 1.1.1 and so the results of that section are considered also for this section.

Hybrid π model

In this case it is used the hybrid π model (figure 2.3).

R_{IN} from G

Removing the signal, the load and applying a test voltage source as in figure 2.4 it is possible to calculate the input's resistance R_{IN} .

The result is obviously equal to the section 1.1.2's result.

Figure 2.2: NMOS common source amplifier - DC analysis

R_{OUT} from D

Removing the signal, the load and applying a test voltage source as in figure 2.5 it is possible to calculate the output's resistance R_{OUT} .

The result is equal to the section 1.1.2's result.

Voltage Gain - without R_{sig} and R_L

Calculating the gain of the amplifier represented in the figure 2.6.

$$v_{in} = v_q = v_{qs} + v_s \tag{2.1}$$

$$= v_{gs} + v_{gs}g_mR_S (2.2)$$

$$=v_{qs}(1+g_mR_S) (2.3)$$

$$v_o = -g_m v_{as} R_D \tag{2.4}$$

$$A_v = \frac{v_o}{v_{in}} = \frac{-g_m v_{gs} R_D}{v_{gs} (1 + g_m R_S)} = \frac{-g_m R_D}{(1 + g_m R_S)} = \frac{-2mA/V \cdot 8k\Omega}{1 + 2mA/V \cdot 7k\Omega} = -1.06667 \quad V/V \simeq -1.1 \quad V/V$$
 (2.5)

Voltage Gain - with R_{sig} and R_L

Calculating the gain of the amplifier represented in the figure 2.7.

$$I_{sig} = \frac{v_{sig}}{R_{sig} + (R_{G1} \parallel R_{G2})}$$
 (2.6)

$$v_{in} = v_g = v_{sig} - R_{sig}I_{sig} (2.7)$$

$$= v_{sig} - R_{sig} \frac{v_{sig}}{R_{sig} + (R_{G1} \parallel R_{G2})}$$
 (2.8)

$$= v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right)$$
 (2.9)

Figure 2.3: NMOS common source amplifier - Hybrid π model

$$v_{gs} = v_g - v_s \tag{2.10}$$

$$v_{gs} = v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) - g_m v_g s R_S$$
 (2.11)

$$v_{gs} + g_m v_{gs} R_S = v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right)$$
 (2.12)

$$v_{gs}(1 + g_m R_S) = v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right)$$
(2.13)

$$V_{gs} = v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) \frac{1}{1 + g_m R_S}$$
 (2.14)

$$v_o = -g_m v_{gs}(R_D \parallel R_L) \tag{2.15}$$

$$= -g_m v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) \frac{1}{1 + g_m R_S} (R_D \parallel R_L)$$
 (2.16)

$$G_v = \frac{v_o}{v_{sig}} = \frac{-g_m v_{sig} \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})}\right) \frac{1}{1 + g_m R_S} (R_D \parallel R_L)}{v_{sig}}$$
(2.17)

$$= -g_m \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) \frac{1}{1 + g_m R_S} (R_D \parallel R_L)$$
 (2.18)

$$= -g_m \left(1 - R_{sig} \frac{1}{R_{sig} + (R_{G1} \parallel R_{G2})} \right) \frac{1}{1 + g_m R_S} (R_D \parallel R_L)$$

$$= \frac{-g_m}{1 + g_m R_S} \left(1 - \frac{R_{sig}}{R_{sig} + \left(\frac{R_{G1} R_{G2}}{R_{G1} + R_{G2}}\right)} \right) \left(\frac{R_D R_L}{R_D + R_L}\right)$$
(2.18)

$$= \frac{-2mA/V}{1 + 2mA/V \cdot 7k\Omega} \left(1 - \frac{200k\Omega}{200k\Omega + \left(\frac{2.19550M\Omega \cdot 1097752\Omega}{2.19550M\Omega + 1097752\Omega}\right)} \right) \left(\frac{8k\Omega \cdot 8k\Omega}{8k\Omega + 8k\Omega}\right)$$
(2.20)

$$= -0.41886 \quad V/V \simeq -0.42 \quad V/V \tag{2.21}$$

--- Z:\home\peter\GitPP\ElectronicSPICEExercises1819\SecondExercise\schematics\nmos_small_signal_RIN_no_Cs.asc ---

Figure 2.4: NMOS common source amplifier - Calculating \mathcal{R}_{IN}

 $\hbox{$\scriptstyle ---$ Z:$home\peter\GitPP\ElectronicSPICEExercises 1819\Second Exercise\schematics\nmos_small_signal_ROUT_no_Cs. ascorbing to the property of the prope$

Figure 2.5: NMOS common source amplifier - Calculating R_{OUT}

--- Z:\home\peter\GitPP\ElectronicSPICEExercises1819\SecondExercise\schematics\nmos_small_signal_Gain_without_resistances_no_Cs.asc ---

Figure 2.6: NMOS common source amplifier - Calculating the voltage gain without R_{sig} and R_L

--- Z:\home\peter\GitPP\ElectronicSPICEExercises1819\SecondExercise\schematics\nmos_small_signal_Gain_with_resistances_no_Cs.asc --

Figure 2.7: NMOS common source amplifier - Calculating the voltage gain with R_{sig} and R_L

2.2 SPICE simulations

2.2.1 DC simulation - Operating Point

Same as the section 1.2.1.

2.2.2 AC simulation without bypass capacitances - Av, R_{IN} and R_{OUT}

```
* NMOS amplifier without bypass capacitances - Av, RIN and ROUT
*********************************
* 2st Exercise - Fundamentals Of Electronics - a.a. 2018-2019 - UniPD - Italy
                      Pietro Prandini – mat. 1097752
 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
 International License. To view a copy of this license, visit
* http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative
* Commons, PO Box 1866, Mountain View, CA 94042, USA.
*************************
* Voltage dependent Current Source
gm*vgs D S G S 2m
* Independent Voltage Source
Vx G 0 DC 0 AC 1097752u sin(0 0.1V 10kHz 0 0 0)
* Resistances
RG1 G 0 2.19550MEG
RG2 G 0 1097752
RD D 0 8k
RS S 0 7k
* Analysis
. tf V(D) Vx
.END
```

The result confirm the analysis (result calculated in the section 2.1, expression 2.5).

```
--- Transfer Function ---

Transfer_function: -1.06667 transfer

vx#Input_impedance: 731834 impedance

output_impedance_at_V(d): 8000 impedance
```

2.2.3 AC simulation without bypass capacitances - Gv

```
* Independent Voltage Source
Vsig SIG 0 DC 0 AC 1097752u sin (0 0.1V 10kHz 0 0 0)

* Resistances
Rsig SIG G 200k
RG1 G 0 2.19550MEG
RG2 G 0 1097752
RD D 0 8k
RL D 0 8k
RS S 0 7k

* Analysis
.tf V(D) Vsig
.END
```

The result confirm the analysis (result calculated in the section 2.1, expression 2.21).

```
--- Transfer Function ---

Transfer_function: -0.418864 transfer
vsig#Input_impedance: 931834 impedance
output_impedance_at_V(d): 4000 impedance
```