第一题

证明. G/K 交换, 于是

 $\forall a, b \in G, \quad Kab = Kba$

也就是说, $ab(ba)^{-1} \in K$. 因为 $K \leq H$, 那么 $ab(ba)^{-1} \in H$, 于是

 $\forall a, b \in G, \quad Hab = Hba$

于是 G/H 交换.

第二题

证明. 分三步走

- 1. 证明 $|\operatorname{Aut}(G)| = \varphi(n)$
- 2. 证明 $\forall f \in Aut(G)$, 都有

$$\forall g \in G, f(g) = g^i$$

3. 验证 Aut(*G*) 是循环的.

证明 (1): 设 g 是 G 的生成元. 设 f 是一个自同态, 且有 $f(g) = g^i$. 那么我们有: $f \in \operatorname{Aut}(G)$ 当且仅当 $\gcd(i,n) = 1$,于是说 $|\operatorname{Aut}(G)| = \varphi(n)$.

证明 (2): 设

$$\forall a \in G, \quad a = g^{\alpha}$$

那么

$$\forall a \in G, \quad f(a) = f(g^{\alpha}) = g^{\alpha i} = a^i$$

证明 (3): 设 f_i : $G \to G, g \mapsto g^i$

1 和 2. 当 |G|=1 或者 2 的时候, $\varphi(n)=1,$ 则 $\mathrm{Aut}(G)$ 是循环的

3. $|G|=3, \varphi(n)=2.$ Aut $(G)=\{f_1,f_2\},$ 因为 $f_2^2=f_1$ 则 Aut(G) 是循环的

4.
$$|G| = 4$$
, $\varphi(n) = 2$. 和 (3) 完全类似.

5.
$$|G| = 5$$
, $\varphi(n) = 4$.

$$Aut(G) = \{ f_1, f_2, f_3, f_4 \}$$

有

$$\begin{cases} f_2^2 = f_4 \\ f_2^3 = f_3 \\ f_2^4 = f_1 \end{cases}$$

则 Aut(G) 是循环的

6.
$$|G| = 6$$
, $\varphi(n) = 2$. 和 (3) 完全类似.

7.
$$|G| = 7$$
, $\varphi(n) = 6$, \square

$$Aut(G) = \{ f_1, f_2, f_3, f_4, f_5, f_6 \}$$

有

$$\begin{cases} f_3^2 = f_2 & 9 \mod 7 = 2\\ f_3^3 = f_6 & 27 \mod 7 = 6\\ f_3^4 = f_4 & 81 \mod 7 = 4\\ f_3^5 = f_5 & 243 \mod 7 = 5\\ f_3^6 = f_1 & 729 \mod 7 = 1 \end{cases}$$

则 Aut(G) 是循环的, 证毕.