

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Solution by G. W. GREENWOOD, M. A., Dunbar, Pa.

Let the circle be tangent at the point $P \equiv (a \cos \theta, b \sin \theta)$ to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

and let the chord of contact of the other two points touch at Q the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \lambda^2.$$

Since the tangents at P and Q are equally inclined to the axes, the coördinates of Q are $(\lambda a \cos \theta, -\lambda b \sin \theta)$, or $(-\lambda a \cos \theta, \lambda b \sin \theta)$. Since a chord of a conic, tangent to a similar coaxial conic, is bisected at the point of contact, the center of the circle lies on the normal at Q; and also lies on the normal at P; i. e., on

$$\frac{ax}{\cos\theta} + \frac{by}{\sin\theta} = \pm \lambda(a^2 - b^2)$$
, and $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$.

Hence the required locus is

$$\frac{4a^2x^2}{(1\pm\lambda)^2} + \frac{4b^2y^2}{(1\mp\lambda)^2} = a^2 - b^2.$$

PROBLEMS FOR SOLUTION.

ALGEBRA.

270. Proposed by GEORGE H. HALLETT, Ph. D., Assistant Professor of Mathematics in The University of Pennsylvania, Philadelphia, Pa.

Find the simplest integral form of the sum y(y-1)...(y-x)+2y(2y-1)...(2y-x)+...+zy(zy-1)...(zy-x).*

271. Proposed by L. E. NEWCOMB, Los Gatos, California.

Sum the series
$$\frac{a}{b} + \frac{a^3}{3b^3} + \frac{a^5}{5b^5} + \dots$$
 to $\infty, b > a$.

272. Proposed by PROF. R. D. CARMICHAEL, Anniston, Ala.

Prove that the relations $x = \frac{ar + bs}{\lambda} = \frac{as - br}{\mu} = \frac{a\gamma - b\mu}{r} = \frac{a\mu + b\lambda}{s}$ between the finite real quantities x, a, b, r, s, λ , μ requires that $x^2 = a^2 + b^2$.

^{*}This series is of frequent occurrence in certain investigations in Group Theory. Ed.