

Professor: Zahra Sedighi Maman

Group Members:
Hemanth Meka
Mamatha Jala
Riya Shah
Sharanya Dulam

Project Overview: Bank Marketing Strategy with Data Analytics

- Objective: Used data analytics to improve Portuguese bank's phone marketing campaign
- Goal: Predict which customers will accept a term deposit.
- Traditional marketing is less effective; Banks need datadriven strategies for better customer targeting.
- Use the CRISP-DM framework and predictive modeling to find the best targeting strategies.

CRISP-DM Framework Process:

Key Stages of Our Project

- 1 Business Understanding
 - 2 Data Understanding
 - 3 Data Preparation
 - 4 Model Building
- 5 Evaluation & Deployment

Business Understanding: Research Insights & Problem Definition

Research Insights:

- Random Forest models effectively predict term deposit subscriptions.
- Studies report up to 92% accuracy and a 20% increase in sales.
- Predictive analytics improves targeting and campaign effectiveness.

Problem Type: Binary classification — Predict if a customer subscribes (yes/no).

Technical Goal: Build different models to make accurate predictions.

Computing & Data Needs: Can run on a standard PC or laptop.

Success Measures: Accuracy, precision, sensitivity, recall, and AUC score.

Business Understanding: Research Questions

- Can we predict the response variable using data analytics?
- What are the most important features for prediction?
- How important is each feature?
- Can we predict the probability of each class (yes/no)?
- How do different sampling techniques affect prediction?
- How do feature selection methods impact results?
- How does model complexity affect performance?
- How can we apply this analysis to support better marketing strategy?

Data Understanding & Exploration

Dataset Source: Kaggle Bank Marketing Dataset.

Dataset Dimensions: 41,188 observations and 21 variables.

Descriptive Statistics & Univariate Findings:

- Most clients were married, aged 25-50, with admin, blue-collar, or technical jobs.
- Contact was most frequent via cellular phones and peaked in May.
- The campaign focused on clients with little prior contact.
- The target variable (**Y**) is imbalanced, with more "no" than "yes" responses.

Data Understanding & Exploration

Key Insights from Bivariate Analysis:

- Call Duration: Longer calls (over 10 minutes) lead to higher subscription success.
- **Education Level:** Customers with higher education are more likely to subscribe.
- Marital Status: Married and single clients contribute most to subscriptions.
- Past Campaign Outcome: Previous campaign success increases likelihood of subscribing again.

Data Preparation

Purpose: Transform raw data into a clean, analysis-ready format.

Source: Kaggle, Bank Marketing dataset — 41,188 records, 21 variables.

No missing values — no imputation required.

Dropped irrelevant macroeconomic variables:

emp.var.rate, cons.price.idx, cons.conf.idx, euribor3m,
 nr.employed.

Outlier handling:

- Used IQR method to detect extremes in age & call duration.
- We applied binning to keep the data reliable.

Data Preparation

Binning

- •Age groups: <18, 18–24, 25–34, 35–50, 50–60, 60+
- •Call duration (mins): 0,1–2, 3–5, 6–10, 11–20, 21+

Encoding

- One-hot encoding for categorical features
- Target variable: Yes → 1, No → 0

Low-variance features removed

- •job_unknown
- •marital_unknown
- education_illiterate
- default_yes
- •month_dec

Modeling

Data Splitting & Class Balancing:

- Split Data: Separated data into features (X) and target (Y).
- **Split Ratio:** Used a 70/30 training/testing split to keep class ratios the same.
- Addressed Imbalance: Two oversampling methods
 - SMOTE: Increased "Yes" responses from 3,251 to 25,580.
 - ADASYN: Increased "Yes" responses from 3,251 to 25,447.


```
Before SMOTE:

y
0 25580
1 3251
Name: count, dtype: int64

After SMOTE:

y
0 25580
After ADASYN:

y
0 25580
1 25580
1 25580
1 25447
Name: count, dtype: int64
```

Feature Selection with Ensemble Models and Balanced Data

Modeling

Modeling scenarios & Metrics:

Eight scenarios– combining:

- Models: Random Forest, Logistic Regression.
- Balancing methods: SMOTE, ADASYN.
- Feature selection: Lasso, Random Forest importance.

Evaluation metrics:

- Sensitivity (Recall) detect actual subscribers.
- Specificity detect non-subscribers.
- Precision correct positive predictions.
- G-Mean balance between sensitivity & specificity.
- Accuracy overall correctness.
- AUC discrimination ability between classes.

Model Performance Comparison

Scenario	Model	Balancing	Feature Selection	Sensitivity	Specificity	Precision	G-Mean	Accuracy	AUC
1	RF	SMOTE	LASSO	0.676	0.877	0.411	0.770	0.854	0.875
2	RF	ADASYN	LASSO	0.714	0.857	0.386	0.782	0.840	0.875
3	RF	SMOTE	RF	0.827	0.757	0.301	0.791	0.764	0.870
4	RF	ADAYSN	RF	0.728	0.820	0.338	0.772	0.809	0.860

Scenario	Model	Balancing	Feature Selection	Sensitivity	Specificity	Precision	G- Mean	Accuracy	AUC
5	Logistic Regression	SMOTE	Lasso- selected	0.6782	0.8665	0.3915	0.7666	0.8454	0.8665
6	Logistic Regression	ADASYN	Lasso- selected	0.6429	0.8808	0.4059	0.7525	0.8541	0.8666
7	Logistic Regression	SMOTE	RF- selected	0.8373	0.7589	0.3055	0.7972	0.7677	0.8744
8	Logistic Regression	ADASYN	RF- selected	0.7055	0.8300	0.3445	0.7652	0.8160	0.8598

Evaluation

Best-performing model was (Scenario-7) **Logistic Regression** with **SMOTE balancing** and **Random Forest feature selection**.

Scenario achieved:

- **Recall:** 0.837 capturing most subscribers
- **G-Mean:** 0.797 balanced performance on both classes
- **AUC:** 0.874 strong ability to distinguish subscribers from non-subscribers

Evaluation

Feature Impact on Subscriptions:

Call Duration:

- 0 min calls almost never succeed.
- Short calls (1–5 min) have low success rates.
- Long calls (11–20 min) have the highest conversion rates.

Contact Type:

Mobile contact performs better than landline.

Timing (Months):

 May, July, and August show lower performance; July is the weakest due to holiday season.

Campaign Attempts:

 Best results come within the first 4–6 calls; too many calls reduce effectiveness.

Follow-up Gap (pdays):

 Contacting within 1–15 days of last interaction significantly improves conversions.

Actionable Recommendations

- ☐ Longer calls: Focus on 11–20 minutes conversations for best results.
- ☐ Short calls: Improve scripts for 1–5 min calls to make them more convincing
- ☐ **Zero-duration calls:** Avoid missed or failed calls by fixing contacts and calling at the right time.
- **Mobile contacts:** Prioritize mobiles over landlines for better reach.
- ☐ Timely follow-ups: Call back within 1–15 days for higher success.
- ☐ Call limits: Keep follow-ups to 4–6 calls to avoid annoying customers.
- ☐ May outreach: Fewer calls, more personalized messages.
- ☐ July & August: Reduce calls, add online or seasonal offers.
- ☐ Lead scoring: Use data to focus on high-potential customers first.
- ☐ Ongoing improvement: Track results and adjust strategies regularly.

References:

- Zaki, A. M., Khodadadi, N., Hong Lim, W., & Towfek, S. K. (2024). Predictive Analytics and Machine Learning in Direct Marketing for Anticipating Bank Term Deposit Subscriptions. *American Journal of Business & Operations Research*, 11(1).https://www.researchgate.net/profile/Ahmed-Mohamed-Zaki/publication/376585755_Predictive_Analytics_and_Machine_Learning_in_Direct_Marketing_for_Anticipating_Bank_Term_Deposit_Subscriptions/links/658a883d0bb2c7472b105cae/Predictive-Analytics-and-Machine-Learning-in-Direct-Marketing-for-Anticipating-Bank-Term-Deposit-Subscriptions.pdf
- Ruangthong, P., & Jaiyen, S. (2015, July). Bank direct marketing analysis of asymmetric information based on machine learning. In 2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 93-96). IEEE.https://ieeexplore.ieee.org/abstract/document/7219777/
- Tang, X., & Zhu, Y. (2024). Enhancing bank marketing strategies with ensemble learning: Empirical analysis. *Plos one*, *19*(1), e0294759. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294759
- Torrens, M., & Tabakovic, A. (2022). A banking platform to leverage data driven marketing with machine learning. *Entropy*, *24*(3), 347. https://www.mdpi.com/1099-4300/24/3/347
- A data-driven approach to predict the success of bank telemarketing

 By Sérgio Moro, P. Cortez, P. Rita. 2014 Published in Decision Support Systems
- https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png

