Distance & Similarity

d is a distance function if and only if:

- d(i, j) = 0 if and only if i = j
- d(i, j) = d(j, i)
- $d(i, j) \le d(i, k) + d(k, j)$

We don't need a distance function to compare data points

- In order to uncover interesting structure from our data, we need a way to compare data points.
- A dissimilarity function is a function that takes two objects (data points) and returns a large value if these objects are dissimilar.
- A special type of dissimilarity function is a distance function

Minkowski Difference

For x, y points in d-dimensional real space

I.e.
$$x = [x1, ..., xd]$$
 and $y = [y1, ..., yd]$

$$L_p(x,y) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{\frac{1}{p}}$$

p ≥ 1

When p = 2 -> Euclidean Distance

When p = 1 -> Manhattan Distance

Cosine Similarity

A similarity function is a function that takes two objects (data points) and returns a large value if these objects are similar.

$$s(x, y) = cos(\theta)$$

where θ is the angle between x and y

To get a corresponding dissimilarity function, we can usually try

$$d(x, y) = 1 / s(x, y)$$
or
$$d(x, y) = k - s(x, y) \text{ for some } k$$

 use cosine (dis)similarity over euclidean distance when direction matters more than magnitude

Clustering

A clustering is a grouping / assignment of objects (data points) such that objects in the same group / cluster are:

- similar to one another
- dissimilar to objects in other groups

- can be ambiguous

Types:

- Partitional
 - Goal: partition dataset into k partitions
 - Each object belongs to exactly one cluster
 - Eg K-means

- Hierarchical

- A set of nested clusters organized in a tree
- At every step, we record which clusters were merged in order to produce a Dendrogram:

- 2 types:
 - Agglomerative
 - Divisive
- Density-Based
 - Defined based on the local density of points
 - ε and min_pts given:
 - 1. Find the ε-neighborhood of each point
 - 2. Label the point as core if it contains at least min pts
 - 3. For each core point, assign to the same cluster all core points in its
 - neighborhood (crux of the algorithm)
 - 4. Label points in its neighborhood that are not core as border
 - 5. Label points as noise if they are neither core nor border
 - 6. Assign border points to nearby clusters
- Soft Clustering
 - Each point is assigned to every cluster with a certain probability

Clustering Aggregation

- Clustering: A group of clusters output by a clustering algorithm
- Cluster: A group of points

Goals:

- 1. Compare clusterings
- 2. Combine the information from multiple clusterings to create a new clustering

Same clustering, different assignments/labels

we cannot know this conversion upfront unless there is a known set of conventions

 A good question to determine the conventions: "Do P and C agree or disagree oN whether x and y should be clustered together?"

Disagreement Distance

Given 2 clusterings P and C:

$$D(P,C) = \sum_{x,y} \mathbb{I}_{P,C}(x,y)$$

Where

$$\mathbb{I}_{P,C}(x,y) = \begin{cases} 1 & \text{if P \& C disagree on which clusters x \& y belong to} \\ 0 & \end{cases}$$

	Р	С
x ₁	1	1
x ₂	1	2
X ₃	2	1
X ₄	3	3
X ₅	3	4

What's the disagreement distance between P and C?

X ₁	1
X ₁	1
X ₁	0
x ₁	0
X ₂	0
X ₂	0
X ₂	0
X ₃	0
X ₃	0
x ₅	1
	x ₁ x ₁ x ₁ x ₂ x ₂ x ₂ x ₃ x ₃

Benefits:

- 1. Can identify the best number of clusters (optimization function does not make any assumptions on the number of clusters)
- 2. Can handle / detect outliers (points where there is no consensus)
- 3. Improve robustness of the clustering algorithms combining clusterings can produce a better result
- 4. Privacy preserving clustering (can compute aggregate clustering without sharing the data, need only share the assignments)

Classification

- Given a training set where data is labeled with a special attribute called a class (a discrete value)
- We want to find a model describing the class attribute as a function of the values of the other attributes
- Goal: use this model on unlabeled data to assign a class as accurately as Possible

Tasks:

- Predicting tumor cells as benign or malignant
- Classifying images
- Classifying credit card transactions as being legitimate or fraudulent

Techniques:

- Instance-Based Classifiers
- Decision Trees
- Naive Bayes
- Support Vector Machines
- Neural Networks

K Nearest Neighbor Classifier

Requires:

- Training set
- Distance function
- Value for k

How to classify an unseen record:

- 1. Compute distance of unseen record to all training records
- 2. Identify the k nearest neighbors
- 3. Aggregate the labels of these k neighbors to predict the unseen record class (ex: majority rule)

Pros:

- Simple to understand why a given unseen record was given a particularclass
- Adapts to new attributes

Cons:

- Expensive to classify new points
- KNN can be problematic in high dimensions (curse of dimensionality)