Khrystian Clark

CS-225: Discrete Structures in CS

Homework 1, Part 1

Exercise Set 2.1 of the required textbook: Problem #5(b, c, d), #8(b, c, e), #26, #28, #29, #33, #35, #39, #43, #52

- 5. Indicate which of the following sentences are statements.
 - b. Statement
 - c. Statement
 - **d**. Not a statement because the validity of the equation is based on the value of x. It can be either true or false base on the value of x.
- 8. Let h = "John is healthy," w = "John is wealthy," and s = "John is wise."
 - b. John is not wealthy but he is healthy and wise. $\sim w \land (h \land s)$
 - c. John is neither healthy, wealthy, nor wise. $\sim h \land \sim w \land \sim s$
 - e. John is wealthy, but he is not both healthy and wise. $w \wedge \sim (h \wedge s)$
- -Use De Morgan's laws to write negations for the statements in 25–30.
- 26. Sam is an orange belt and Kate is a red belt.

Sam is not an orange belt or Kate is not a red belt.

28. The train is late or my watch is fast.

The train is not late, and my watch is not fast.

29. This computer program has a logical error in the first ten lines or it is being run with an incomplete data set.

This computer program does not have a logical error in the first ten lines, and it is not being run with an incomplete data set.

33. -10 < x < 2

 $-10 \ge x \text{ or } x \ge 2$

 $-1>x\geq 1\equiv -1>x \land 1\leq x$

-In 38 and 39, imagine that num_orders and num_instock are particular values, such as might occur during execution of a computer program. Write negations for the following statements.

39. (num_orders < 50 and num_instock > 300) or (50 </= num_orders < 75 and num_instock > 500) –

 $Statement = (p \land q) \lor (^{\sim}p \land r)$

Negation = \sim ($p \land q$) $\land \sim$ ($\sim p \land r$)

43. $(\sim p \lor q) \lor (p \land \sim q)$

$$\sim$$
 ((\sim p \vee q) \vee (p \wedge \sim q))

$$\sim$$
(\sim p \vee q) \wedge \sim (p \wedge \sim q)

 $(p \land \sim q) \land (\sim p \lor q)$

52. \sim (p V \sim q) V (\sim p \wedge \sim q) \equiv \sim p

De Morgan's: \sim (p V \sim q) V \sim (p V q) \equiv \sim p

De Morgan's: $\sim ((p \lor \sim q) \land (p \lor q)) \equiv \sim p$

Distributive: $p \lor (\sim q \land q) \equiv \sim p$

Negation: $p \lor c \equiv \sim p$

Identity: $p \equiv \sim p$