Alignment problem

Alignment problem

- Let's assume we have two sequences of strings composed by any sequence of the following four characters: 'A', 'T', 'G', and 'C'.
 - Adenine (A) Thymine (T)
 - Guanine (G) Cytosine (C)
- You would like to align those two sequences by inserting gaps or admitting differences.
 - Any time you have a gap, an '_' is inserted in one of the sequences. Any '_' adds a cost of 2 units to the final solution.
 - Any time you allow a difference, replace the two characters with a '*'. Any '*' adds a cost of 5 units to the final solution (10 on both strings).
- Given two strings, $X = x_1 x_2 ... x_m$, and $Y = y_1 y_2 ... y_n$, write the algorithm that outputs the minimum cost-aligned strings.
- The two aligned strings generated have to have the same length.

Examples

Gap Cost = 2, replace Cost = 5+5

- Input : X = CG, Y = CA,
- Output : X = CG_, Y = C_A, final cost = 4
- Input: X = AGGGCT, Y = AGGCA,
- Output: X = AGGGC*, Y = A GGC*, final cost = 12
- Input : X = CG, Y = CA,
- Output : X = C*, Y = C*, final cost = 10

Challenge duties

- Provide a link to a Google Colab where you show your findings.
- Provide a short video where you present your findings.

- One additional point for:
 - Given two numbers n and m:
 - generate two strings composed of 'A', 'T', 'G', and 'C' characters that produce the maximum cost
 - The gap and the replacement costs have to be parametric