MOwNiT

Aproksymacja wielomianami algebraicznymi

Kacper Bieniasz

25 kwietnia 2024

1 Dane techniczne sprzętu

Obliczenia zostały wykonane na komputerze o następującej specyfikacji:

- Procesor: AMD Ryzen 7 5800U

- Pamięć RAM: 16 GB DDR4 3200 MHz (2×8GB)

- System operacyjny: Windows 11 Home x
64

2 Interpolowana funkcja

2.1 Wzór funkcji

$$f(x) = 10 \cdot m + \frac{x^2}{k} - 10 \cdot m \cdot \cos(kx)$$

$$\text{dla:}$$

$$x \in [-3\pi, 3\pi]$$

$$k = 2$$

$$m = 2$$
(1)

2.2 Wykres funkcji

Rysunek 1: Wykres interpolowanej funkcji

3 Metoda aproksymacji średniokwadratowej wielomianami algebraicznymi

Przyjęte oznaczenia:

n-liczba węzłów

m-stopień wielomianu

 $m \leq n$ -zależność dla krórej rzeprowadzam obliczenia często stosuje się $m \ll n$

 $(x_i, F(x_i)$ -para węzeł i wartość w węźle gdzie $i \in \{0, 1, \dots, n\}$

 $\varphi_j(x)$ -funkcja bazowa j-tego stopnia gdzie $j \in \{0, 1, \dots, m\}$

Wielomian interpolacyjny ma postać:

$$f(x) = \sum_{j=0}^{m} a_j \varphi_j(x) \tag{2}$$

Wyznaczenie współczynników a_j jest możliwe jeżeli spełniają one poniższy warunek:

$$\min||F(x) - f(x)|| = \min \sum_{i=0}^{n} w(x_i) \left[F(x_i) - \sum_{j=0}^{m} a_j \varphi_j(x_i) \right]^2$$
 (3)

gdzie:

 $w(x_i)$ –waga i–tego węzła, im wyższa wartość tym bardziej funkcja aproksymująca będzie minimalizować odległość od tego węzła (w obliczeniach dla wszystkisch węzłów przyjąłem wartość 1)

 $F(x_i) - \sum_{i=0}^{m} a_i \varphi_i(x_i)$ – odchylenie wartości funkcji aproksymującej od aproksymowanej

Przyjmując oznaczenie:

$$H(a_0, a_1, \dots, a_m) = \sum_{i=0}^{n} w(x_i) \left[F(x_i) - \sum_{j=0}^{m} a_j \varphi_j(x_i) \right]^2$$
 (4)

Różniczkując kolejno dla każdego współcznnika i przyrównując otrzymany wynik do zera (checmy znaleźć minimum) otrzymujemy układ m+1 równań o takiej samej liczbie niewiadomych.

$$\frac{\partial H}{\partial a_k} = -2\sum_{i=0}^n w(x_i) \left[F(x_i) - \sum_{j=0}^m a_j \varphi_j(x_i) \right] \varphi_k(x_i) = 0$$
 (5)

dla
$$k \in \{0, 1, ..., m\}$$

Za funckje bazowe przyjmujemy jednomiany postaci $\varphi_j(x) = x^j$ dla $j \in \{0, 1, ..., m\}$ po wstawieniu nowej postacji do wzoru (2) otrzymujemy poniższy wzór na funkcje aproksymująca.

$$f(x) = \sum_{j=0}^{m} a_j x^j \tag{6}$$

Uwzględniając wzór (5) oraz (6) więdze również, że funckja F(x) zadana jest na zbiorze dyskretnym w węzłach, otrzymujemy:

$$\sum_{i=0}^{n} w(x_i) \left[F(x_i) - \sum_{j=0}^{m} a_j x_i^j \right] x_i^k = 0$$

$$dla \ k \in \{0, 1, \dots, m\}$$
(7)

Przekształcając wzór dochodzimy do postaci:

$$\sum_{i=0}^{n} w(x_i) F(x_i) x_i^k = \sum_{i=0}^{n} w(x_i) x_i^k \sum_{j=0}^{m} a_j x_i^j$$
(8)

Wykonując kolejne uproszczenia otrzymujemy:

$$\sum_{i=0}^{n} w(x_i) F(x_i) x_i^k = \sum_{j=0}^{m} \left(\sum_{i=0}^{n} w(x_i) x_i^{j+k} \right) a_j$$
 (9)

Możemy zastosować pewne podstawienia ponieważ jedyną niewiadomą jest a_j , układ stanie się bardziej czytelny.

$$b_k = \sum_{i=0}^n w(x_i) F(x_i) x_i^k$$

$$g_{k,j} = \sum_{i=0}^{n} w(x_i) x_i^{j+k}$$
 (10)

Ostatecznie otrzymujemy:

$$b_k = \sum_{j=0}^{m} g_{k,j} a_j \tag{11}$$

Zapisując w postacji macierzowej układ wygląda następująco:

$$\begin{bmatrix} g_{0,0} & g_{0,1} & g_{0,2} & \cdots & g_{0,m} \\ g_{1,0} & g_{1,1} & g_{1,2} & \cdots & g_{1,m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ g_{m,0} & g_{m,1} & g_{m,2} & \cdots & g_{m,m} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_m \end{bmatrix}$$

$$(12)$$

Wstawiając do powyższego równania wcześniejsze podstawienia (10) otrzymujemy:

$$\begin{bmatrix} \sum_{i=0}^{n} w(x_{i}) & \sum_{i=0}^{n} w(x_{i})x_{i} & \sum_{i=0}^{n} w(x_{i})x_{i} & \sum_{i=0}^{n} w(x_{i})x_{i}^{2} & \dots & \sum_{i=0}^{n} w(x_{i})x_{i}^{m} \\ \sum_{i=0}^{n} w(x_{i})x_{i} & \sum_{i=0}^{n} w(x_{i})x_{i}^{2} & \sum_{i=0}^{n} w(x_{i})x_{i}^{3} & \dots & \sum_{i=0}^{n} w(x_{i})x_{i}^{m+1} \\ \dots & \dots & \dots & \dots & \dots \\ \sum_{i=0}^{n} w(x_{i})x_{i}^{m} & \sum_{i=0}^{n} w(x_{i})x_{i}^{m+1} & \sum_{i=0}^{n} w(x_{i})x_{i}^{m+2} & \dots & \sum_{i=0}^{n} w(x_{i})x_{i}^{2m} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i}) \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i}) \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ \dots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w(x_{i})F(x_{i})x_{i} \\ \dots \\ \sum_$$

4 Sposoby wyznaczenia błędów aproksymacji wielomianowej

4.1 Największa róznica między wartością funkcji, a wielomianem interpolacyjnym

Taki błąd wyznaczamy korzystając, ze wzoru:

$$\max_{x \in G} |f(x) - F(x)| \tag{14}$$

gdzie:

G-zbiór 1000 punktów z przedziału $[-3\pi, 3\pi]$ rozmieszczonych równolegle użytych do narysowania wykresu

4.2 Zastosowanie podobnego wzoru do standardowego estymatora wariancji

$$\frac{1}{N} \sum_{x \in G} (f(x) - F(x))^2 \tag{15}$$

gdzie:

G – zbiór taki sam jak(4.1)

N-liczba elementów zbioru G (1000)

5 Otrzymane wyniki dla konretnej liczby węzłów i stopnia wielomianu

5.1 Wyniki dla 3,4,7 węzłów

W przypadku wyboru takiej liczby węzłów wykres funkcji aproksymującej nie zmienia sie w zależności od stopnia i liczby węzłów. Mamy do czynienia ze zjawiskiem interpolacji. Jest to spowodowane występowaniem węzłów w minimach lokalnych funkcji aproksymowanej.

(a) funkcja 2 stopania dla 3 węzłów

(b) funkcja 3 stopnia dla 4 węzłów

Rysunek 2: Funkcje dla 3 i 4 węzłów, (a) i (b)

Rysunek 3: Funkcja 5 stopnia dla 7 węzłów

	3 węzły, 2 stopień	4 węzły, 3 stopień	7 węzłów, 5 stopień
Błąd względny	39.999110	39.999110	39.999110
Drugi sposób	599.4	599.4	599.4

Tabela 1: Otrzymane błędy dla 3, 4 i 7 węzłów

5.2 Wyniki dla 6, 10 i 15 węzłów

Dla 6 węzłów analizę przeprowadzam dla 2, 3 i 4 stopnia. Dla funkcji stopnia 4 wielomian przechodzi przez węzły, więc mamy do czynienia z zagadnieniem interpolacji. Natomiast dla 2 i 3 węzłów funkcja jest taka sama.

Rysunek 4: Funkcja 2 stopnia dla 6 węzłów

 (a) Funkcja 3 stopnia dla 6 węzłów

(b) Funkcja 4 stopnia dla 6 węzłów

Rysunek 5: Funkcje dla 6 węzłów, (a) i (b)

	2 stopień	3 stopień	4 stopień
Błąd względny	33.177761	33.177761	39.696033
Drugi sposób	304.970703	304.970703	411.727338

Tabela 2: Otrzymane błędy dla 6 węzłów

W wersji dla 10 węzłów wykresy funkcji dla 5 i 7 węzłów wyglądają podobnie. Wielomian stopnia ≥ 8 dla 10 węzłów przechodzi przez węzły więc pomijam takie przypadki.

(a) Funkcja 5 stopnia dla 10 węzłów

(b) Funkcja 7 stopnia dla 10 węzłów

Rysunek 6: Funkcje dla 10 węzłów, (a) i (b)

	5 stopień	7 stopień
Błąd względny	27.630713	26.733317
Drugi sposób	214.066106	203.523687

Tabela 3: Otrzymane błędy dla 10 węzłów

Analizując otrzymane wyniki dla 15 węzłów, obserwujemy efekt Rungego dla wielomianu 13 stopnia. W przypadku stopni 5 i 8 wykresu funkcji przypominają wykresy funkcji 5 i 7 stopnia dla 10 węzłów.

(a)Funkcja ${\bf 5}$ stopnia dla 15 węzłów

(b) Funkcja 8 stopnia dla 15 węzłów

Rysunek 7: Funkcje dla 15 węzłów, (a) i (b)

Rysunek 8: Funkcja 13 stopnia dla 15 węzłów

	5 stopień	8 stopień	13 stopień
Błąd względny	23.622862	24.333435	127.773877
Drugi sposób	200.962197	188.516430	1289.458084

Tabela 4: Otrzymane błędy dla 15 węzłów

5.3 Wyniki dla 25, 35 i 50 węzłów

Dla 25 węzłów funkcje 6 i 10 stopnia wyglądają bardzo podobnie. W przypadku wielomianu 13 stopnia obserwujemy pojawienie się efektu Rungego, który dla dalszych stopni nasila się w znacznym stopniu.

Rysunek 9: Funkcja 6 stopnia dla 25 węzłów

(a)Funkcja 10 stopnia dla 25 węzłów

(b) Funkcja 13 stopnia dla 25 węzłów

Rysunek 10: Funkcje dla 25 węzłów, (a) i (b)

	6 stopień	10 stopień	13 stopień
Błąd względny	22.714275	21.914595	25.489558
Drugi sposób	184.381041	171.061086	138.454121

Tabela 5: Otrzymane błędy dla 25 węzłów

Ponownie jak poprzednio wielomiany 6 i 10 stopnia są do siebie zbliżone i wyglądają podobnie jak odpowiadające im funkcje dla 25 węzłów. Natomiast dla funkcji 12 stopnia możemy zauważyć pojawienie się efektu Rungego, podobnie miało to miejsce dla 25 węzłów, ale wtedy zaczynał on występować dla wielomianu 13 stopnia. Jednak obie te funkcje są do siebi wizualnie podobnie.

(a) Funkcja 6 stopnia dla 35 węzłów

(b) Funkcja 10 stopnia dla 35 węzłów

Rysunek 11: Funkcje dla 35 węzłów, (a) i (b)

Rysunek 12: Funkcja 12 stopnia dla 35 węzłów

	6 stopień	10 stopień	12 stopień
Błąd względny	22.639963	22.245258	24.992343
Drugi sposób	184.335684	169.439267	134.807533

Tabela 6: Otrzymane błędy dla 35 węzłów

Dla wielomianów stopnia 6 i 10 obserwujemy charakterystyczny wygląd funkcji aproksymującej pojawiający się już wcześniej. Wykres funckji 17 stopnia jest podoby do wcześniejszych, gdzie pojawiał się efekt Rungego.

Rysunek 13: Funkcja 6 stopnia dla 50 węzłów

(a) Funkcja 10 stopnia dla 50 węzłów

(b) Funkcja 17 stopnia dla 50 węzłów

Rysunek 14: Funkcje dla 50 węzłów, (a) i (b)

	6 stopień	10 stopień	17 stopień
Błąd względny	22.632730	22.263188	20.030249
Drugi sposób	184.324261	168.320462	60.263950

Tabela 7: Otrzymane błędy dla 50 węzłów

6 Wnioski

Poniższa tabela zawiera porównanie wyników w zależności od ilości węzłów i stopni wielomianu aproksymującego. Do porównanie użyłem (14) sposobu wyliczenia węzłów.

s. w.	2	3	4	5	6	10	12	13	17
3	39.999	X	X	X	X	X	X	X	Х
4	39.999	39.999	X	X	X	X	X	X	X
6	33.177	33.178	39.696	39.696	X	X	X	X	Х
7	39.99	39.999	39.999	39.999	39.999	X	X	X	X
10	25.998	25.998	27.631	27.631	26.733	X	X	X	X
15	24.155	24.156	23.623	23.623	23.579	55.581	127.774	127.774	X
25	22.873	22.873	22.842	22.842	22.714	21.915	25.490	25.490	183.006
35	22.261	22.262	22.618	22.618	22.640	22.245	24.992	24.992	43.403
50	21.765	21.765	22.447	22.447	22.633	22.263	24.777	24.777	20.030

Tabela 8: Porównanie błędów w zależności od ilości węzłów i stopnia wielomianu s.w. - stopień wielomianu, l.w. - liczba węzłów

Rysunek 15: Funkcja najlepiej aproksymująca, 50 węzłów 17 stopień

Dla rozważanych kombinacji liczby węzłów i stopni wielomianów, najlepsze wyniki otrzymujemy dla największego stopnia i największej liczby węzłów. Zwiększanie liczby węzłów wraz z zwiększaniem stopnia wielomianu przeważnie prowadzi do lepszych wyników, ale w pewnym momencie dokładność zaczyna się pogarszać. Efekt Rungego zaczyna pojawiać sie przeważnie w okolicach 13 węzła, ale ze wzrostem liczby węzłów jego występowanie również, się opóźnia. Dla funkcji o stopnich od 10 obserwujemy charakterystyczny kształt funkcji aproskymującej, który ze wzrostem liczby węzłów nie zmienia się znacznie.