

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China Tel: +86)-0755-23284990 Email: att@att-lab.com Http://www.att-lab.cn

FCC RADIO TEST REPORT FCC ID: 2AB6C-870

Product: wireless Baby Monitor

Trade Name: N/A

Model Name: 870

Serial Model: N/A

Prepared for

Shenzhen Seepower Electronics Co.,LTD

3 floor, 9 Building, Guoxia industrial area Sanlian village, Longhua Subdistrict, Baoan town, shenzhen, China

Prepared by

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Tel: +(86)-0755-23284990 Fax: +(86)-0755-23284990 Http: www.att-lab.cn

Report No. ATT-2017SZ0615810F - Page 2 of 87 -

TEST RESULT CERTIFICATION

Manufacture's Name	Snenznen Seep	ower Electronics Co.,LID			
	. 3 floor, 9 Building, Guoxia industrial area Sanlian village, Longhua Subdistrict, Baoan town, shenzhen, China				
Product description					
Product name	wireless Baby M	lonitor			
Model and/or type reference	870				
Additional Model	N/A				
Standards	FCC Part15.247				
Test procedure	ANSI C63.10-20	13			
	mpliance with the	sted by ATT, and the test results show that the FCC requirements. And it is applicable onli			
This report shall not be re	eproduced excep	ot in full, without the written approval of ATT	, this		
document may be altered	d or revised by A	TT, personal only, and shall be noted in the	revision of the		
document.					
Date of Test					
Date (s) of performance of	of tests Jun.	01 2017 ~Jun. 21 2017			
Date of Issue	Jun.	22 2017			
Test Result	Pass	3			
Testing	Engineer :	Jack Yn			
		(Jack Yu)			
Technic	cal Manager :	Jerry You			

This document cannot be reproduced except in full, without prior written approval of ATT. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Authorized Signatory:

(Jerry You)

(Can Liu)

Report No. ATT-2017SZ0615810F - Page 3 of 87 -

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS 1.1 TEST FACILITY 1.2 MEASUREMENT UNCERTAINTY	5 7 7
2 . GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT 2.2 DESCRIPTION OF TEST MODES 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	8 8 9
3. EMC EMISSION TEST 3.1 CONDUCTED EMISSION MEASUREMENT 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS 3.1.2 TEST PROCEDURE 3.1.3 DEVIATION FROM TEST STANDARD 3.1.4 TEST SETUP 3.1.5 EUT OPERATING CONDITIONS 3.1.6 TEST RESULTS	15 15 16 16 16 16
3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS 3.2.2 TEST PROCEDURE 3.2.3 DEVIATION FROM TEST STANDARD 3.2.4 TEST SETUP 3.2.5 EUT OPERATING CONDITIONS 3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ) 3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ) 3.2.8 TEST RESULTS (ABOVE 1000 MHZ)	19 19 23 24 25 26 27 29
4 . POWER SPECTRAL DENSITY TEST	59
4.1 APPLIED PROCEDURES / LIMIT 4.1.1 TEST PROCEDURE 4.1.2 DEVIATION FROM STANDARD 4.1.3 TEST SETUP	59 59 59 59

Report No. ATT-2017SZ0615810F - Page 4 of 87 -

Table of Contents	Page
4.1.4 EUT OPERATION CONDITIONS 4.1.5 TEST RESULTS	59 60
5 . BANDWIDTH TEST	68
5.1 APPLIED PROCEDURES / LIMIT 5.1.1 TEST PROCEDURE 5.1.2 EUT OPERATION CONDITIONS 5.1.3 TEST RESULTS	68 68 68 69
6 . PEAK OUTPUT POWER TEST	77
6.1 APPLIED PROCEDURES / LIMIT	77
6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP 6.1.4 EUT OPERATION CONDITIONS 6.1.5 TEST RESULTS	77 77 77 77 78
7 . 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE 7.1 DEVIATION FROM STANDARD 7.2 TEST SETUP 7.3 EUT OPERATION CONDITIONS 7.4 TEST RESULTS	79 79 79 79 80
8 . ANTENNA REQUIREMENT	85
8.1 STANDARD REQUIREMENT	85
8.2 EUT ANTENNA	85
9 . EUT TEST PHOTO	86

Report No. ATT-2017SZ0615810F - Page 5 of 87 -

. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Test Item	FCC Part No.	Requirements	Verdict
DTS (6 dB) Bandwidth	15.247(a)(2)	≥ 500 kHz.	PASS
Maximum Peak Conducted Output Power	15.247(b)(3)	For directional gain:< 30dBm – (G[dBi] –6 [dB]),peak; Otherwise :< 30dBm, peak.	PASS
Transmitter Power Spectral Density	15.247(e)	For directional gain :< 8dBm/3 kHz – (G[dBi] –6[dB]), peak. Otherwise :< 8dBm/3 kHz, peak.	PASS
Conducted Out of band emission measurement	15.247(d)	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Spurious Radiated Emissions	15.247(d) 15.209 15.35(b)	FCC Part 15.209&15.35(b) field strength limit;	PASS
AC Power Line Conducted Emissions	15.207	FCC Part 15.207 conducted limit;	PASS

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Summary of measurement results

Test Specifi cation clause	Test case	Test Mode	Test Channel	Record In Rep		Pass	Fail	NA	NP	Remark
§15.24 7(b)(4)	Antenna gain	802.11b		802.11b		\boxtimes				complie s
§15.24 7(e)	Power spectral density	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	\boxtimes				complie s
§15.24 7(a)(2)	Spectru m bandwidt h - 6 dB bandwidt h	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20		X				complie s
§15.24 7(b)(3)	Maximu m output power	802.11b 802.11g 802.11n HT20		802.11b 802.11g 802.11n HT20						complie s
§15.24 7(d)	Band edge complian	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Highest	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Highest	\boxtimes				complie s

Report No. ATT-2017SZ0615810F - Page 6 of 87 -

	ce conducte d							
§15.20 5	Band edge complian ce radiated	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Highest	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Highest			complie s
§15.24 7(d)	TX spurious emission s conducte d	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	\boxtimes		complie s
§15.24 7(d)	TX spurious emission s radiated	802.11b 802.11g 802.11n HT20		802.11b		\boxtimes		complie s
§15.10 9	RX spurious emission s radiated	-/-	-/-	-/-	-/-	\boxtimes		complie s
§15.20 9(a)	TX spurious Emission s radiated < 30 MHz	802.11b	-/-	802.11b	-/-	\boxtimes		complie s
§15.10 7(a) §15.20 7	Conduct ed Emission s < 30 MHz	802.11b	-/-	802.11b	-/-	\boxtimes		complie s

Report No. ATT-2017SZ0615810F - Page 7 of 87 -

TEST FACILITY

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

FCC Registration No.: 348715

MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

Report No. ATT-2017SZ0615810F - Page 8 of 87 -

. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

Equipment	wireless Baby Monitor
Model Name	870
Serial number	N/A
Serial Model	N/A
Model Difference	N/A
WLAN FCC Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz
WLAN FCC Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
Antenna	0dbi, PCB antenna
Ratings	DC 5V, 1A
	M/N:SBJ-001
Adapter	Input:100-240V~, 50/60Hz, 0.18A
	Output:5Vdc, 1A
Battery	N/A
HW:	N/A
SW:	N/A

Report No. ATT-2017SZ0615810F - Page 9 of 87 -

DESCRIPTION OF TEST MODES

IEEE 802.11b/g/n: The product support thirteen channels but only use Eleventh channels in USA.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

TEST MODES

Test Case	Test Conditions			
lest Case	Configuration	Description		
DTS (6 dB) Bandwidth	Measurement Method	FCC KDB 558074 §8.2 Option 2		
	Test Environment	NTNV		
		11b_L,11b_M,11b_H		
	EUT Configuration	11g_L,11g_M,11g_H		
	Lor Comiguration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074§9.1.2		
	Test Environment	NTNV		
Maximum Peak Conducted Output	Test Setup	Test Setup 1		
Power		11b_L,11b_M,11b_H		
1 GWC1	EUT Configuration	11g_L,11g_M,11g_H		
	Lor Comiguration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074 §10.2 (peak PSD).		
	Test Environment	NTNV		
Maximum Power Spectral Density		11b_L,11b_M,11b_H		
Level	EUT Configuration	11g_L,11g_M,11g_H		
	201 comigaration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074§11.0.		
	Test Environment	NTNV		
Unwanted Emissions into	Test Setup	Test Setup 1		
Non-Restricted Frequency Bands		11b_L,11b_M,11b_H		
Tron recented requestey Bands	EUT Configuration	11g_L,11g_M,11g_H		
	201 comigaration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074§12.2, Conducted		
Unwanted Emissions into		(antenna-port).		
Restricted Frequency Bands	Test Environment	NTNV		
(Conducted)	EUT Configuration	11b_L,11b_M,11b_H		
		11g_L,11g_M,11g_H		

Report No. ATT-2017SZ0615810F - Page 10 of 87 -

		11n HT20_L, 11n HT20_M, 11n
		HT20_H
Unwanted Emissions into	Measurement Method	FCC KDB
Restricted		558074§12.1,Radiated(cabinet/case
		emissions with
		Impedance matching for antenna-port).
	Test Environment	NTNV
		11b_L,11b_M,11b_H
	ELIT Configuration	11g_L,11g_M,11g_H
	EUT Configuration	11n HT20_L, 11n HT20_M, 11n
		HT20_H

Test Case	Test Conditions		
Test Case	Configuration	Description	
AC Power Line Conducted	Measurement Method	AC mains conducted.	
Emissions	Test Environment	NTNV	
	EUT Configuration	11g M (Worst Conf.).	

Remark:

- 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.
- 2. Typical working modes for each IEEE 802.11mode are selected to perform tests. The manufacturer provide special test software(WLAN facility) to control TX duty cycle >98% for TX test. Set the output power to max(PK) as Prescribed by the manufacturer.

Test Mode	Test Modes Description
IEEE 802.11b	IEEE 802.11b with data rate of 1 Mbps using SISO mode.
IEEE 802.11g	IEEE 802.11g with data rate of 6 Mbps using SISO mode.
IEEE 802.11n HT20	IEEE 802.11n with data date of MCS0 and bandwidth of 20MHz using SISO
	mode.

Report No. ATT-2017SZ0615810F - Page 11 of 87 -

EUT operation mode

Test Mode	RF Ch.	TX Freq. [MHz]	RX Freq.	Ch. BW
rest Mode	KF GII.	TA Fleq. [Willi2]	[MHz]	[MHz]
	L	Ch No. 1 / 2412MHz		20
IEEE 802.11b	M	Ch No. 6 / 2437 MHz		20
	Н	Ch No. 11/ 2462MHz		20
	L	Ch No. 1 / 2412MHz		20
IEEE 802.11g	M	Ch No. 6 / 2437 MHz		20
	Н	Ch No. 11/ 2462MHz		20
IEEE 802.11n	L	Ch No. 1 / 2412MHz		20
HT20	M	Ch No. 6 / 2437 MHz		20
11120	H	Ch No. 11/ 2462MHz		20

EUT configuratio

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

Power Cable	Length (m):	1
	Shield :	1
	Detachable :	1
Multimeter	Manufacturer:	1
	Model No.:	1

BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

Report No. ATT-2017SZ0615810F - Page 12 of 87 -

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	wireless Baby Monitor	N/A	870	N/A	EUT
E-2	Adapter	N/A	SBJ-001	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.8m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength</code> column.

Report No. ATT-2017SZ0615810F - Page 13 of 87 -

EQUIPMENTS LIST FOR ALL TEST ITEMS

Equipment No.	Instrument	Manufacturer	Model Name	Serial Number	Specification	Cal. Data	due date
1	Semi-anechoic chamber	Changzhou Chengyu	EC3088	N/A	9*6*6m	10/25/2016	10/24/2017
2	Loop antenna	ZHINAN	ZN30900A	12037	9KHz-30MHz	10/25/2016	10/24/2017
3	Broadband antenna	R&S	VULB 9160	VULB91 60-516	30MHz-1500 MHz	10/25/2016	10/24/2017
4	Horn antenna	R&S	BBHA 9120D	10087	1GHz-18GH z	06/05/2016	10/24/2017
5	Test receiver	R&S	ESCI	101686	9KHz-3GHz	10/25/2016	10/24/2017
6	EMI Measuring Receiver	R&S	ESR	101660	9KHz-40GHz	10/25/2016	10/24/2017
7	Multi-device controller	MF	MF-7868	MF78680 8762	N/A	10/25/2016	10/24/2017
8	Amplifier	EM	EM-30180	060538	1GHz-18GH z	10/25/2016	10/24/2017
9	Amplifier	Schwarzbeck	BBV 9475	BBV 9475-663	1GHz-18GH z	06/05/2016	06/04/2017
10	Spectrum Analyzer	agilent	E4440B	US44300368	1GHz-26.5GH z	06/05/2016	06/04/2017
11	Test receiver	R&S	ESCI	101689	9KHz-3GHz	10/25/2016	10/24/2017
12	LISN	R&S	NSLK81 26	8126466	9k-30MHz	10/25/2016	10/24/2017
13	LISN	Narda	L2-16B	5589756	9k-30MHz	10/25/2016	10/24/2017
14	Power Meter	Anritsu	ML2495A	N/A	N/A 40MHz		10/24/2017
15	Power sensor	Anritsu	MA2411B	N/A	40MHz	10/25/2016	10/24/2017

Report No. ATT-2017SZ0615810F - Page 14 of 87 -

16	Radiated Cable 1#	FUJIKURA	5D-2W	01	9KHz-1GHz	10/25/2016	10/24/2017
17	Radiated Cable 2#	FUJIKURA	10D2W	02	1GHz -25GHz	10/25/2016	10/24/2017
18	Conducted Cable 1#	FUJIKURA	1D-2W	01	9KHz-30MHz	10/25/2016	10/24/2017
19	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	10/25/2016	10/24/2017

Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this SMA antenna connector is listed in the equipment list.

The Cal.Interval was one year

Report No. ATT-2017SZ0615810F - Page 15 of 87 -

. EMC EMISSION TEST

CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

			Standard
FREQUENCY (MHz)	Quasi-peak	Average	Stariuaru
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Report No. ATT-2017SZ0615810F - Page 16 of 87 -

TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

DEVIATION FROM TEST STANDARD

No deviation

TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Report No. ATT-2017SZ0615810F - Page 17 of 87 -

TEST RESULTS

Phase: L Test V

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment	
1	*	0.2740	37.81	10.81	48.62	60.99	-12.37	QP		
2		0.2980	23.17	10.23	33.40	50.30	-16.90	AVG		
3		2.5059	33.31	9.97	43.28	56.00	-12.72	QP		
4		2.5059	21.94	9.97	31.91	46.00	-14.09	AVG		
5		24.4900	18.77	11.26	30.03	60.00	-29.97	QP		
6		24.4900	12.86	11.26	24.12	50.00	-25.88	AVG		

- 1. All readings are Quasi-Peak and Average values.
- Factor = Insertion Loss + Cable Loss.
 N/A means All Data have pass Limit

Report No. ATT-2017SZ0615810F - Page 18 of 87 -

Phase: N Test Voltage: DC 5V from adapter AC 120V/60Hz

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1980	20.41	11.16	31.57	53.69	-22.12	AVG	
2	0.2060	35.37	11.09	46.46	63.36	-16.90	QP	
3	1.4340	25.73	9.93	35.66	46.00	-10.34	AVG	
4 *	1.4780	38.82	9.93	48.75	56.00	-7.25	QP	
5	2.8300	30.93	9.99	40.92	56.00	-15.08	QP	
6	2.8300	14.35	9.99	24.34	46.00	-21.66	AVG	

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. N/A means All Data have pass Limit

Report No. ATT-2017SZ0615810F - Page 19 of 87 -

RADIATED EMISSION MEASUREMENT RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted	1 MHz / 1 MHz for Dook, 1 MHz / 10Hz for Average			
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			
Receiver Parameter	Setting			
Attenuation	Auto			
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP			
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP			

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane for below 1GHz and 1.50m above ground plane for above 1GHz.

Report No. ATT-2017SZ0615810F - Page 20 of 87 -

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 24MHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto	
1CH= 40CH=	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto	
1GH2-40GH2	Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	

More procudre as follows;

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

Report No. ATT-2017SZ0615810F - Page 21 of 87 -

- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or

Report No. ATT-2017SZ0615810F - Page 22 of 87 -

described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The antenna is moved spherical over the EUT in different polarizations of the antenna. Final measurement:
- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Field Strength Calculation

Report No. ATT-2017SZ0615810F - Page 23 of 87 -

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)		
RA = Reading Amplitude	AG = Amplifier Gain		
AF = Antenna Factor			

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

DEVIATION FROM TEST STANDARD

No deviation

Report No. ATT-2017SZ0615810F - Page 24 of 87 -

TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Report No. ATT-2017SZ0615810F - Page 25 of 87 -

(C) Radiated Emission Test-Up Frequency Above 1GHz

EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. ATT-2017SZ0615810F - Page 26 of 87 -

TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

EUT:	wireless Baby Monitor	Model Name.:	870
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage:	DC 5V from adapter AC 120V/60Hz
Test Mode:	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Report No. ATT-2017SZ0615810F - Page 27 of 87 -

TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

Polarization:	Horizontal	Hadi Vallana .	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2412		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		61.7781	45.50	-18.23	27.27	40.00	-12.73	QP			
2		79.2426	47.10	-18.82	28.28	40.00	-11.72	QP			
3		89.9047	49.58	-16.82	32.76	43.50	-10.74	QP			
4		183.2005	43.38	-11.34	32.04	43.50	-11.46	QP			
5	*	360.4476	44.78	-7.59	37.19	46.00	-8.81	QP			
6		480.5276	38.25	-5.90	32.35	46.00	-13.65	QP			

Report No. ATT-2017SZ0615810F - Page 28 of 87 -

Polarization:	Vertical	Test Voltage :	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2412		

Note:test perform on 802.11b/g/n mode,"802.11b TX2412" mode is the worst mode and has been reported.

Report No. ATT-2017SZ0615810F - Page 29 of 87 -

TEST RESULTS (ABOVE 1000 MHZ)

Polarization:	Horizontal	HAGI WAHAAA .	DC 5V from adapter AC 120V/60Hz	
Test Mode:	802.11B TX 2412			

Note:test perform on 802.11b/g/n mode,"802.11b" mode is the worst mode and has been reported. spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

Report No. ATT-2017SZ0615810F - Page 30 of 87 -

DC 5V from adapter AC Vertical Polarization: Test Voltage: 120V/60Hz Test Mode: 802.11B TX 2412

3 4824.000 35.35 43.49 54.00 -10.51 **AVG** 8.14 7236.100 35.97 11.73 47.70 74.00 -26.30 peak 5 7236.100 27.83 11.73 39.56 54.00 -14.44 AVG

Note:test perform on 802.11b/g/n mode,"802.11b" mode is the worst mode and has been reported. spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

9202.500

25.86

16.54

Shenzhen Asia Test Technology Co., Ltd.

Report No. ATT-2017SZ0615810F - Page 31 of 87 -

Polarization: Horizontal Test Voltage : DC 5V from adapter AC 120V/60Hz

Test Mode : 802.11B TX 2437

Note:test perform on 802.11b/g/n mode,"802.11b" mode is the worst mode and has been reported. spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

74.00

-31.60

peak

42.40

Report No. ATT-2017SZ0615810F - Page 32 of 87 -

Polarization: Vertical Test Voltage : DC 5V from adapter AC 120V/60Hz

Test Mode : 802.11B TX 2437

Note:test perform on 802.11b/g/n mode,"802.11b" mode is the worst mode and has been reported. spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

42.40

74.00

-31.60

peak

21.34

21.06

5

10477.50

Report No. ATT-2017SZ0615810F - Page 33 of 87 -

Polarization: Horizontal Test Voltage : DC 5V from adapter AC 120V/60Hz

Test Mode : 802.11B TX 2462

Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1892.500	48.26	-7.06	41.20	74.00	-32.80	peak			
	4924.200	42.69	8.20	50.89	74.00	-23.11	peak			
*	4924.200	33.34	8.20	41.54	54.00	-12.46	AVG			
	7386.000	32.98	12.41	45.39	74.00	-28.61	peak			
	7386.000	26.77	12.41	39.18	54.00	-14.82	AVG			
	8225.000	25.80	16.10	41.90	74.00	-32.10	peak			
	*	<u> </u>	Mk. Freq. Level MHz dBuV 1892.500 48.26 4924.200 42.69 * 4924.200 33.34 7386.000 32.98 7386.000 26.77	Mk. Freq. Level Factor MHz dBuV dB 1892.500 48.26 -7.06 4924.200 42.69 8.20 * 4924.200 33.34 8.20 7386.000 32.98 12.41 7386.000 26.77 12.41	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1892.500 48.26 -7.06 41.20 4924.200 42.69 8.20 50.89 * 4924.200 33.34 8.20 41.54 7386.000 32.98 12.41 45.39 7386.000 26.77 12.41 39.18	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 1892.500 48.26 -7.06 41.20 74.00 4924.200 42.69 8.20 50.89 74.00 * 4924.200 33.34 8.20 41.54 54.00 7386.000 32.98 12.41 45.39 74.00 7386.000 26.77 12.41 39.18 54.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 1892.500 48.26 -7.06 41.20 74.00 -32.80 4924.200 42.69 8.20 50.89 74.00 -23.11 * 4924.200 33.34 8.20 41.54 54.00 -12.46 7386.000 32.98 12.41 45.39 74.00 -28.61 7386.000 26.77 12.41 39.18 54.00 -14.82	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 1892.500 48.26 -7.06 41.20 74.00 -32.80 peak 4924.200 42.69 8.20 50.89 74.00 -23.11 peak * 4924.200 33.34 8.20 41.54 54.00 -12.46 AVG 7386.000 32.98 12.41 45.39 74.00 -28.61 peak 7386.000 26.77 12.41 39.18 54.00 -14.82 AVG	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 1892.500 48.26 -7.06 41.20 74.00 -32.80 peak 4924.200 42.69 8.20 50.89 74.00 -23.11 peak * 4924.200 33.34 8.20 41.54 54.00 -12.46 AVG 7386.000 32.98 12.41 45.39 74.00 -28.61 peak 7386.000 26.77 12.41 39.18 54.00 -14.82 AVG	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 1892.500 48.26 -7.06 41.20 74.00 -32.80 peak 4924.200 42.69 8.20 50.89 74.00 -23.11 peak * 4924.200 33.34 8.20 41.54 54.00 -12.46 AVG 7386.000 32.98 12.41 45.39 74.00 -28.61 peak 7386.000 26.77 12.41 39.18 54.00 -14.82 AVG

Note:test perform on 802.11b/g/n mode,"802.11b" mode is the worst mode and has been reported. spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

9755.000

6

Shenzhen Asia Test Technology Co., Ltd.

Report No. ATT-2017SZ0615810F - Page 34 of 87 -

Polarization: Vertical Test Voltage : DC 5V from adapter AC 120V/60Hz

Test Mode : 802.11B TX 2462

Note:test perform on 802.11b/g/n mode,"802.11b" mode is the worst mode and has been reported. spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported above 18G.

44.90

74.00

-29.10

peak

18.24

26.66

Report No. ATT-2017SZ0615810F - Page 35 of 87 -

Conducted Spurious Emissions at Antenna Port:

802.11b Low Channel

Date: 16 JUN .2017 17:06:45

Report No. ATT-2017SZ0615810F - Page 36 of 87 -

Date: 16 JUN .2017 17:07:25

Report No. ATT-2017SZ0615810F - Page 37 of 87 -

802.11b Middle Channel Spectrum Ref Level 20.00 dBm RBW 100 kHz SWT 1.1 ms • VBW 300 kHz 30 dB Mode Auto FFT ●1Pk Max -57.78 dBm 950.3940 MHz M1[1] 0 dBm -20 dBm--40 dBm Start 30.0 MHz 32000 pts Stop 1.0 GHz Type | Ref | Trc **Function Result** Date: 16 JUN 2017 17:08:00 Spectrum Ref Level 20.00 dBm RBW 100 kHz SWT 32 ms - VBW 300 kHz ● 1Pk Max 10 dBm 0 dBm -20 dBm--30 dBm -40 dBm -50 dBm Start 1.0 GHz Y-value 1.90 dBi Type | Ref | Trc Function **Function Result**

This document cannot be reproduced except in full, without prior written approval of ATT. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Date: 16 JUN 2017 17:07:48

Report No. ATT-2017SZ0615810F - Page 38 of 87 -

Date: 16 JUN .2017 17:08:24

Report No. ATT-2017SZ0615810F - Page 39 of 87 -

Report No. ATT-2017SZ0615810F - Page 40 of 87 -

Date: 16 JUN .2017 17:09:40

Report No. ATT-2017SZ0615810F - Page 41 of 87 -

Date: 16 JUN 2017 17:10:10

Report No. ATT-2017SZ0615810F - Page 42 of 87 -

Date: 16 JUN .2017 17:10:46

Report No. ATT-2017SZ0615810F - Page 43 of 87 -

Report No. ATT-2017SZ0615810F - Page 44 of 87 -

Date: 16 JUN .2017 17:11:47

Report No. ATT-2017SZ0615810F - Page 45 of 87 -

Report No. ATT-2017SZ0615810F - Page 46 of 87 -

Date: 16 JUN .2017 17:12:50

Report No. ATT-2017SZ0615810F - Page 47 of 87 -

Report No. ATT-2017SZ0615810F - Page 48 of 87 -

Date: 16 JUN .2017 17:10:46

Report No. ATT-2017SZ0615810F - Page 49 of 87 -

802.11n(HT20) Middle Channel Spectrum Ref Level 20.00 dBm RBW 100 kHz 30 dB SWT 1.1 ms - VBW 300 kHz Mode Auto FFT ●1Pk Max -57.92 dBm 949.0600 MHz M1[1] 0 dBm -10 dBm -30 dBm -40 dBm Start 30.0 MHz 32000 pts Stop 1.0 GHz Type | Ref | Trc X-value 949.06 MHz **Function Result** Date: 16 JUN 2017 17:11:23 Spectrum Ref Level 20.00 dBm RBW 100 kHz SWT 32 ms - VBW 300 kHz ● 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm Start 1.0 GHz X-value 2.438656 GHz Y-value -6.56 dBi Type | Ref | Trc Function **Function Result**

Date: 16 JUN .2017 17:11:12

Report No. ATT-2017SZ0615810F - Page 50 of 87 -

Date: 16 JUN .2017 17:11:47

Report No. ATT-2017SZ0615810F - Page 51 of 87 -

Report No. ATT-2017SZ0615810F - Page 52 of 87 -

Date: 16 JUN 2017 17:12:50

Report No. ATT-2017SZ0615810F - Page 53 of 87 -

Report No. ATT-2017SZ0615810F - Page 54 of 87 -

Date: 16 JUN 2017 17:17:59

Report No. ATT-2017SZ0615810F - Page 55 of 87 -

Report No. ATT-2017SZ0615810F - Page 56 of 87 -

Date: 16 JUN .2017 17:19:08

Report No. ATT-2017SZ0615810F - Page 57 of 87 -

Date:16 JUN 2017 17:19:38

Report No. ATT-2017SZ0615810F - Page 58 of 87 -

Date: 16 JUN 2017 17:20:19

Report No. ATT-2017SZ0615810F - Page 59 of 87 -

. POWER SPECTRAL DENSITY TEST

APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times DTS bandwith.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

DEVIATION FROM STANDARD

No deviation.

TEST SETUP

EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. ATT-2017SZ0615810F - Page 60 of 87 -

TEST RESULTS

EUT:	wireless Baby Monitor	Model Name :	870
Temperature :	25 ℃	Relative Humidity:	56%
Pressure :	1015 hPa	HESE VOHAGE .	DC 5V from adapter AC 120V/60Hz
Test Mode : TX b Mode /CH01, CH06, CH11			

Note: The relevant measured result has the offset with cable loss already.

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-18.97	8	PASS
2437 MHz	-18.77	8	PASS
2462 MHz	-18.78	8	PASS

TX CH01

Date: 16 JUN 2017 17:45:31

Report No. ATT-2017SZ0615810F - Page 61 of 87 -

TX CH06

Date: 16 JUN 2017 17:45:59

TX CH11

Date: 16 JUN 2017 17:46:32

Report No. ATT-2017SZ0615810F - Page 62 of 87 -

EUT:	wireless Baby Monitor	Model Name :	870
Temperature :	25 ℃	Relative Humidity:	56%
Pressure :	1015 hPa	Hest vollage .	DC 5V from adapter AC 120V/60Hz
Test Mode :	TX g Mode /CH01, CH06, CH1	1	

Note: The relevant measured result has the offset with cable loss already.

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-21.48	8	PASS
2437 MHz	-20.99	8	PASS
2462 MHz	-20.98	8	PASS

TX CH01

Date: 16 JUN 2017 17:47:01

Report No. ATT-2017SZ0615810F - Page 63 of 87 -

TX CH06

Date: 16 JUN .2017 17:47:29

TX CH11

Date:16.JUN.2017 17:48:06

Report No. ATT-2017SZ0615810F - Page 64 of 87 -

EUT:	wireless Baby Monitor	Model Name :	870
Temperature :	25 ℃	Relative Humidity:	56%
Pressure :	1015 hPa	Hest vollage .	DC 5V from adapter AC 120V/60Hz
Test Mode : TX n(HT20) Mode /CH01, CH06, CH11			

Note: The relevant measured result has the offset with cable loss already.

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-20.68	8	PASS
2437 MHz	-20.54	8	PASS
2462 MHz	-20.04	8	PASS

TX CH01

Date: 16 JUN 2017 17:49:46

Report No. ATT-2017SZ0615810F - Page 65 of 87 -

TX CH06

Date: 16 JUN .2017 17:49:09

TX CH11

Date: 16 JUN .2017 17:48:30

Report No. ATT-2017SZ0615810F - Page 66 of 87 -

EUT:	wireless Baby Monitor	Model Name :	870
Temperature:	25 ℃	Relative Humidity:	56%
Pressure :	1015 hPa	Hest vollage .	DC 5V from adapter AC 120V/60Hz
Test Mode : TX n(HT40) Mode /CH03, CH09, CH09			

Note: The relevant measured result has the offset with cable loss already.

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2422 MHz	-21.89	8	PASS
2437 MHz	-21.90	8	PASS
2452 MHz	-21.37	8	PASS

TX CH03

Date:16 JUN 2017 17:50:16

Report No. ATT-2017SZ0615810F - Page 67 of 87 -

TX CH06

Date: 16 JUN .2017 17:51:20

TX CH09

Date: 16 JUN .2017 17:51:48

Report No. ATT-2017SZ0615810F - Page 68 of 87 -

. BANDWIDTH TEST

APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

TEST PROCEDURE

According to KDB 558074 D01 DTS Meas Guidance v03r03

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. ATT-2017SZ0615810F - Page 69 of 87 -

TEST RESULTS

EUT:	wireless Baby Monitor	Model Name :	870
Temperature :	25 ℃	Relative Humidity:	56%
Pressure :	1012 hPa	HESE VOHAGE .	DC 5V from adapter AC 120V/60Hz
Test Mode :	TX b Mode /CH01, CH06, CH1	1	

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2412	10.0625	500	Pass
Middle	2437	10.0625	500	Pass
High	2462	10.0613	500	Pass

Report No. ATT-2017SZ0615810F - Page 70 of 87 -

Report No. ATT-2017SZ0615810F - Page 71 of 87 -

EUT:	wireless Baby Monitor	Model Name :	870	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Hest vollage .	DC 5V from adapter AC 120V/60Hz	
Test Mode :	TX g Mode /CH01, CH06, CH11			

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.5763	500	Pass
Middle	2437	16.5675	500	Pass
High	2462	16.5738	500	Pass

Report No. ATT-2017SZ0615810F - Page 72 of 87 -

Report No. ATT-2017SZ0615810F - Page 73 of 87 -

EUT:	wireless Baby Monitor	Model Name :	870	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	HASI VAHAAA .	DC 5V from adapter AC 120V/60Hz	
Test Mode :	TX n(HT20) Mode /CH01, CH06, CH11			

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2412	17.8113	500	Pass
Middle	2437	17.8088	500	Pass
High	2462	17.8113	500	Pass

Report No. ATT-2017SZ0615810F - Page 74 of 87 -

Report No. ATT-2017SZ0615810F - Page 75 of 87 -

EUT:	wireless Baby Monitor	Model Name :	870	
Temperature :	25 ℃	Relative Humidity:	60%	
Pressure :	1012 hPa	Test Voltage :	DC 5V from adapter AC 120V/60Hz	
Test Mode :	TX n(HT40) Mode /CH03, CH06, CH09			

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	2422	36.3581	500	Pass
Middle	2437	36.3656	500	Pass
High	2452	36.3731	500	Pass

Report No. ATT-2017SZ0615810F - Page 76 of 87 -

Report No. ATT-2017SZ0615810F - Page 77 of 87 -

. PEAK OUTPUT POWER TEST

APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit			Frequency Range (MHz)	Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

TEST PROCEDURE

a. The EUT was directly connected to the Power meter

DEVIATION FROM STANDARD

No deviation.

TEST SETUP

EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. ATT-2017SZ0615810F - Page 78 of 87 -

TEST RESULTS

EUT:	wireless Baby Monitor	Model Name :	870
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	riesi vollage 🕠	DC 5V from adapter AC 120V/60Hz
Test Mode :	TX b/g/n Mode		

Test Channe	Frequency	Maximum Conducted Output Power(PK)	Max. Tune up Power	LIMIT		
	(MHz)	(dBm)	(dBm)	(dBm)		
		802	.11b			
CH01	2412	15.35	16.00	30		
CH06	2437	15.32	16.00	30		
CH11	2462	15.24	16.00	30		
		802	.11g			
CH01	2412	15.92	16.00	30		
CH06	2437	15.71	16.00	30		
CH11	2462	15.56	16.00	30		
		802.11r	n(HT20)			
CH01	2412	15.65	16.00	30		
CH06	2437	15.37	16.00	30		
CH11	2462	15.41	16.00	30		
	802.11n(HT40)					
CH03	2422	14.30	16.00	30		
CH06	2437	14.22	16.00	30		
CH09	2452	14.23	16.00	30		

Note: the highest powers for:

802.11b: 1Mbps 802.11g: 6Mbps

802.11n(HT20):11Mbps 802.11n(HT40):13.5Mbps

Report No. ATT-2017SZ0615810F - Page 79 of 87 -

. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

DEVIATION FROM STANDARD

No deviation.

TEST SETUP

EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. ATT-2017SZ0615810F - Page 80 of 87 -

TEST RESULTS

EUT:	wireless Baby Monitor	Model Name :	870
Temperature:	25 ℃	Relative Humidity:	56%
Pressure :	1012 hPa	nesi vollade .	DC 5V from adapter AC 120V/60Hz

	Meter		Emission				
Frequency	Reading	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
(IVII IZ)	(ивру)	(ub)	, , ,	, , ,	(ub)	i ype	Comment
			802	.11b			,
2390	46.23	9.86	56.09	74	-17.91	Pk	Vertical
2390	35.74	9.86	45.6	54	-8.4	Av	Vertical
2483.5	43.25	10.14	53.39	74	-20.61	Pk	Vertical
2483.5	34.05	10.14	44.19	54	-9.81	Av	Vertical
			802	.11g			
2390	45.51	9.86	55.37	74	-18.63	Pk	Vertical
2390	33.64	9.86	43.5	54	-10.5	Av	Vertical
2483.5	42.58	10.14	52.72	74	-21.28	Pk	Vertical
2483.5	33.61	10.14	43.75	54	-10.25	Av	Vertical
			802.11r	n(HT20)			
2390	43.67	9.86	53.53	74	-20.47	Pk	Vertical
2390	33.06	9.86	42.92	54	-11.08	Av	Vertical
2483.5	43.61	10.14	53.75	74	-20.25	Pk	Vertical
2483.5	35.11	10.14	45.25	54	-8.75	Av	Vertical
			802.11r	n(HT40)			
2390	44.46	9.86	54.32	74	-19.68	Pk	Vertical
2390	34.96	9.86	44.82	54	-9.18	Av	Vertical
2483.5	45.10	10.14	55.24	74	-18.76	Pk	Vertical
2483.5	34.26	10.14	44.40	54	-9.60	Av	Vertical

Report No. ATT-2017SZ0615810F - Page 81 of 87 -

802.11b: Band Edge, Left Side

Date: 16 JUN 2017 16:58:51

802.11b: Band Edge, Right Side

Date: 16 JUN .2017 17:06:14

Report No. ATT-2017SZ0615810F - Page 82 of 87 -

Date: 16 JUN 2017 16:59:21

802.11g: Band Edge, Right Side

Date: 16 JUN .2017 17:05:47

Report No. ATT-2017SZ0615810F - Page 83 of 87 -

802.11n(HT20): Band Edge, Left Side

Date: 16.JUN .2017 16:59:46

802.11g(HT20): Band Edge, Right Side

Date: 16 JUN 2017 17:05:23

Report No. ATT-2017SZ0615810F - Page 84 of 87 -

802.11n(HT40): Band Edge, Left Side

Date: 16 JUN 2017 17:00:20

802.11g(HT40): Band Edge, Right Side

Date: 16 JUN .2017 17:04:51

Report No. ATT-2017SZ0615810F - Page 85 of 87 -

. ANTENNA REQUIREMENT

STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

EUT ANTENNA

The EUT antenna is PCB antenna. It comply with the standard requirement.

Report No. ATT-2017SZ0615810F - Page 86 of 87 -

. EUT TEST PHOTO

Radiated Emission (30MHz-1GHz)

Radiated Emission (above 1GHz)

Report No. ATT-2017SZ0615810F - Page 87 of 87 -

Conducted Emission (AC Mains)

