

Tema 2:

Las placas de prototipado XESS XSA-3S y XST

modelo de diseño

Diseño automático de sistemas

José Manuel Mendías Cuadros

Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid

Contenidos

T E

- ✓ La placa XESS XSA-3S.
- ✓ La placa XESS XST.
- ✓ FPGA Spartan 3 XC3S1000
- ✓ Dispositivos en XSA-3S.
- ✓ Dispositivos en XST.
- ✓ La placa de dispositivos FdI-UCM.

La placa XESS XSA-3S

- FPGA Spartan 3 XC3S1000
- CPLD XC9572XL
- Flash ROM 2MB
- 4 switches
- 2 pulsadores
- Display 7 segmentos
- Oscilador de 100 MHz
- SDRAM 32MB
- Conector PS/2
- Conector VGA

- Circuitería de configuración a través de USB / conector paralelo
- Circuitería de alimentación

La placa XESS XST

- 8 switches
- 4 pulsadores
- 2 displays 7-segmentos
- Banco de 10 LEDs
- Interfaz RS-232 (conector tipo DB-9)
- IIS Audio CODEC stéreo (2 jack 3,5 mm)
- IIC Video Decoder NTCS/PAL (2 conectores RCA)
- Controlador Ethernet 10/100 (conector RJ-45)
- IIC Controlador USB 1.1 (conector tipo B)
- Conector IDE
- Pulsador de reset de la FPGA
- Pulsador de reset de la circuitería externa

FPGA Spartan 3 XC3S1000

- 1 Mpuertas
- 256 pines (256-BGA)
 - 173 disponibles para diseño
- 4 voltajes de alimentación:
 - 1.2 / 2.5 / 3.3 / 5.0 V
 - Derivados de una conexión USB
- 3 relojes:
 - CLKA: 100 MHz
 - CLKB: 50 MHz (derivado de CLKA)
 - **CLKC**: externo
- 2 pulsadores de reset
 - PROG: borra la configuración de la FPGA
 - **RESET**: conectado al reset de dispositivos
- Es configurada por un CPLD que toma la configuración:
 - Descargada por USB desde un host
 - Almacenada en una Flash (hasta 4)

FPGA Spartan 3 XC3S1000

arquitectura (i)

- 1920 Configurable Logic Blocks (CLB) formados por 4 slices cada uno.
- Cada slice dispone de:
 - 2 Look-Up Tables (LUT) basadas en RAM de 4 entradas y 1 salidas.
 - Capaces de implementar cualquier FC de 4 variables
 - Todas las LUTs pueden funcionar como una ROM 16x1b
 - Además, las LUTs de los slices izquierdos pueden configurarse como una RAM 16x1b (distributed RAM) o un registro de desplazamiento de 16 bits.
 - Capacidad total de "distributed RAM": 120 Kb (15 KB)
 - 2 elementos de almacenamiento configurables como latches o flip-flops.
 - o 2 multiplexores (combinados con las LUTs permiten implementar lógica más compleja).
 - Lógica de acarreo para soportar más eficientemente funciones aritméticas.
- 173 Input/Output Blocks (IOB)
 - Controlan el flujo de datos entre los pines de E/S y la lógica interna.
 - Configurables para soportar distintos estándares de señalización.

ototinadXFSS XSA-3S v XST

FPGA Spartan 3 XC3S1000

arquitectura (ii)

24 Block RAM

- Memorias SRAM síncronas de doble puerto con 18Kb de capacidad.
- Capacidad total de "Block RAM": 432 Kb (54 KB).

24 Multiplicadores

- o 18x18 bits (salida de 36 bits) en C2.
- Configurables con o sin registro a la salida.

4 Digital Clock Manager (DCM)

Distribuye, multiplica, divide o desfasa una señal de reloj.

	System	Logic	(One	CLB Arr CLB = Fo	-	Distributed	Block RAM	Dedicated		Maximum	Maximum Differential
Device	Gates	Cells	Rows	Columns	Total CLBs	RAM (bits ¹)	(bits ¹)	Multipliers	DCMs	User I/O	I/O Pairs
XC3S50	50K	1,728	16	12	192	12K	72K	4	2	124	56
XC3S200	200K	4,320	24	20	480	30K	216K	12	4	173	76
XC3S400	400K	8,064	32	28	896	56K	288K	16	4	264	116
XC3S1000	1M	17,280	48	40	1,920	120K	432K	24	4	391	175
XC3S1500	1.5M	29,952	64	52	3,328	208K	576K	32	4	487	221
XC3S2000	2M	46,080	80	64	5,120	320K	720K	40	4	565	270
XC3S4000	4M	62,208	96	72	6,912	432K	1,728K	96	4	712	312
XC3S5000	5M	74,880	104	80	8,320	520K	1,872K	104	4	784	344

PSyD

FPGA Spartan 3 XC3S1000

arquitectura (iii)

⊙ ≴

PSyD

FPGA Spartan 3 XC3S1000

pineado

10

FPGA Spartan 3 XC3S1000

configuración

- El interfaz JTAG: usando un programador JTAG y la herramienta Xilinx iMPACT.
- Un puerto paralelo: usando la herramienta XESS GXSLOAD.
- Un puerto USB: usando el adaptador a puerto paralelo XESS XSUSB y la herramienta XFSS GXSLOAD.
- La Flash ROM: requiere el volcado previo de la configuración en la Flash.
- El CPLD actúa como intermediario entre el correspondiente dispositivo y los pines de programación de la FPGA
 - Por ello, en función del medio de configuración deseado, es necesario volcar previamente sobre la CPLD un diseño (configuración .SDF) distinta.
 - La CPLD también se puede configurar para que actúe como interfaz entre el puerto USB / paralelo y pines generales de la FPGA.
- La CPLD también actúa como intermediario entre el oscilador y los pines de reloj de la FPGA
 - Cambiando el diseño del CPLD, pueden generarse otras frecuencias de reloj.

Dispositivos en XSA-3S

El esquema de interconexión de dispositivos en la placa XSA-3S es:

tema 2:

PSyD

Dispositivos en XSA-3S

conectados a pines exclusivos: SDRAM

 40 pines de la FPGA están conectados a una SDRAM 16Mx16b (K4S561632E)

Capacidad: 32 MB

Bus de datos: 16b

Bus de direcciones: 13b

Row address = 13b (A12-A0)

Column address = 9b (A8-A0)

Selección de banco: 2b

Frecuencia de reloj máx. 166 MHz

Señalización: LVTTL

Dispositivos en XSA-3S

conectados a pines exclusivos: VGA y PS2

o Las señales analógicas RGB son generadas por un DAC a partir de 9b de color.

Dispositivos en XSA-3S

conectados a pines compartidos: display 7-segs

- 8 pines de la FPGA están conectados a un display 7 segmentos:
 - Usan lógica directa (se encienden enviando 1).
 - o Están también conectados a pines del CPLD y al bus de datos de la Flash ROM.
 - Típicamente no interferirán por estar el CPLD/Flash activos solo durante configuración

Dispositivos en XSA-3S

conectados a pines compartidos: pulsadores e interruptores

- 2 pines de la FPGA están conectados a 2 pulsadores:
 - o Usan lógica inversa (envían 0 al ser pulsados).
- 4 pines de la FPGA están conectados a 4 interruptores:
 - o Usan lógica inversa (envían 0 en posición ON).
 - o 2 de ellos están conectados al bus de direcciones de la Flash ROM
 - El usuario puede seleccionar cual de las 4 posibles configuraciones almacenadas en la Flash ROM debe cargarse en la FPGA.
 - Típicamente no interferirán por estar la Flash activa solo durante configuración.

Dispositivos en XSA-3S

mapa de pines (i)

Reloj				
50 MHz	Р8	in		
100 MHz	Т9	in		

PS/2					
CLK	B16	out			
DATA	E13	in			

Pulsadores				
izq.	E11	in		
der.	A13	in		

VGA					
HSYNC	В7	out			
VSYNC	D8	out			
RED0	C8	out			
RED1	D6	out			
RED2	B1	out			
GREEN0	A8	out			
GREEN1	A 5	out			
GREEN2	С3	out			
BLUE0	С9	out			
BLUE1	E7	out			
BLUE2	D5	out			

7-segs						
А	A R10					
В	P10	out				
С	M11	out				
D	M6	out				
E	N6	out				
F	Т7	out				
G	R7	out				
DP	N11	out				

Interruptores				
1	К4	in		
2	К3	in		
3	К2	in		
4	J4	in		

Flash ROM					
CE	R4	out			

Dispositivos en XSA-3S

mapa de pines (ii)

SDRAM													
CLK	E10	out		A0	B5	out		A11	C 5	out	D9	B12	in-out
CLKFB	N8	in		A1	A4	out		A12	C6	out	D10	C12	in-out
CKE	D7	out		A2	В4	out		D0	C15	in-out	D11	B14	in-out
CS	B8	out		A3	E6	out		D1	D12	in-out	D12	D14	in-out
RAS	A9	out		A4	E3	out		D2	A14	in-out	D13	C16	in-out
CAS	A10	out		A5	C1	out		D3	B13	in-out	D14	F12	in-out
WE	B10	out		A6	E4	out		D4	D11	in-out	D15	F13	in-out
UDQM	D9	out		A7	D3	out		D5	A12	in-out			
LDQM	C10	out		A8	C2	out		D6	C11	in-out			
BA0	A7	out		A9	А3	out		D7	D10	in-out			
BA1	C7	out		A10	В6	out		D8	B11	in-out			

- 72 pines libres de la FPGA se conectan a dispositivos de la placa XST a través de 2 zócalos dobles de 42 pines cada uno.
 - Accesibles desde el mismo zócalo o a través de los conectores IDE / SLOT1 / SLOT2

Dispositivos en XST

conectados a pines exclusivos: RS-232

- 2 a líneas de datos serie: TD (salida) y RD (entrada).
- 2 a líneas para control de flujo por handshake: RTS (salida) y CTS (entrada).

cable serie directo (terminales de distinto género: conecta RD-TD y TD-RD)

cable serie cruzado / modem nulo (terminales del mismo género: conecta RD-RD y TD-TD)

conectados a pines exclusivos: audio codec IIS (i)

 5 pines de la FPGA están conectados al bus IIS de un Audio Codec estéreo (AK4551)

- 4 jumpers permiten conectar la FPGA a una fuente de audio que:
 - no necesita amplificación (por ejemplo, un reproductor de CD)

 que necesita amplificación (por ejemplo, un micrófono pasivo)

Dispositivos en XST

conectados a pines exclusivos: audio codec IIS (ii)

- IIS (Integrated Interchip Sound) es un bus serie síncrono para la transmisión de audio stéreo entre dispositivos digitales.
 - Tiene 2 líneas unidireccionales de datos serie: SDTI (entrada) y SDTO (salida).
 - Permite el envío/recepción simultánea de muestras de sonido.
 - Tiene 3 líneas de reloj: SCLK (transmisión de datos serie), LRCK (selección de canal izquierdo/derecho), MCLK (reloj principal).
 - o Las frecuencias de los relojes se definen relativas a la frecuencia de muestreo (fs)
 - LRCK: fs
 - SCLK: (bits/muestra) × (número de canales) × fs
 - MCLK: 256 fs / 384 fs / 512fs
 - Todos los datos transmitidos están codificados en C2 (MSB first) con un número de bits no definido (depende del emisor/receptor).
 - Los datos serán truncados o extendidos con 0 según convenga en el emisor/receptor.
 - La transmisión de datos es continua
 - El maestro genera las señales de reloj
 - Emisor y receptor generan las señales de datos de audio alternando muestras del canal izquierdo y derecho.

Dispositivos en XST

conectados a pines exclusivos: audio codec IIS (iii)

- Las muestras de sonido en el Audio Codec AK4551
 - Son de 20 bits
 - Se transmiten según un cronograma fijo:

- La relación entre las frecuencias de los relojes es fija:
 - o $f_{LRCLK} = fs$
 - o $f_{SCLK} = 64 \, fs$
 - o $f_{MCLK} = 256 \, fs$

conectados a pines compartidos: interruptores

- 8 pines de la FPGA están conectados a 8 interruptores.
 - Usan lógica inversa (envían 0 en posición ON).
 - Comparten conexión con el bus de datos del Controlador de Ethernet.

conectados a pines compartidos: pulsadores

- Usan lógica inversa (envían 0 al ser pulsados).
- O Comparten conexión con LEDs, 7-seg derecho y controlador Ethernet

Conexiones compartidas:

- o Pulsador 2 LED 1 Bus dir. Ethernet
- o Pulsador 3 LED 2 Bus dir. Ethernet
- o Pulsador 4 LED 3 Bus dir. Ethernet
- Pulsador 1 Punto del 7-seg derecho

Si el pin de la FPGA:

- o no se usa o se configura como entrada, prevalece el valor del pulsador.
- o se configura como salida, prevalece el valor que envíe la FPGA.

Dispositivos en XST

conectados a pines compartidos: LEDs

- 10 pines de la FPGA están conectados a 10 LEDs.
 - Usan lógica directa (se encienden enviando 1).
 - Comparten conexión con pulsadores y controladores de Ethernet y USB.

Conexiones compartidas:

- LED 1 Pulsador 2 Bus dir. Ethernet
- LED 2 Pulsador 3 Bus dir. Ethernet
- LED 3 Pulsador 4 Bus dir. Ethernet
- LED 4 Bus dir. Controlador Ethernet
- LED 5 Bus dir. Controlador Ethernet
- LED 6 IRQ controlador Ethernet
- LED 7 IRQ controlador USB
- LED 8 Bus dir. controlador Ethernet
- LED 9 Bus dir. controlador Ethernet
- LED 10 Bus dir. controlador Ethernet

conectados a pines compartidos: displays 7-segs

- 16 pines de la FPGA están conectados a 2 displays 7-segs.
 - Usan lógica directa (se encienden enviando 1).
 - Comparten conexión con pulsadores, controlador de Ethernet y Video Decoder

- Conexiones compartidas:
 - 7-segs izquierdo Bus datos Video Decoder
 - 7-segs derecho Bus de datos Ethernet
 - Punto del 7-seg derecho Pulsador 1

Dispositivos en XST

conectados a pines compartidos: controlador USB (i)

- 5 pines de la FPGA están conectados a un Controlador USB (PDIUSBD11):
 - o 2 al bus IIC
 - 3 a salidas del dispositivo: reloj, petición interrupción, testigo de modo suspendido.

- La configuración del controlador y la comunicación USB se hace mediante el envío de comandos y datos a través de un bus IIC
 - o Dirección del registro de comandos: 0x1B
 - Dirección del registro de datos: 0x1A
- Permiten prototipar periféricos USB usando la FPGA.
- Conexiones compartidas:
 - o IRQ controlador USB LED 7

Dispositivos en XST

conectados de manera dedicada: controlador USB (ii

- IIC (Inter Integrated Circuits) es un bus serie síncrono multi-master
 - o Tiene 2 líneas bidireccionales: SDA (datos serie) y SCL (reloj).
 - Si el bus está libre ambas están en alta.
 - Comunicación master-slave
 - El maestro gobierna el inicio/fin de las transferencia y genera el reloj.
 - Puede haber varios maestros/esclavos conectados en un mismo bus
 - Existe un mecanismo de arbitraje.
 - Todos los datos transmitidos son de 8 bits (MSB first) y deben ser reconocidos individualmente (ACK).
 - Soporta altas tasas de transferencia (hasta 400 Kb/s)

Protocolo básico:

- El maestro inicia la transmisión generando la start condition (transición 1-0 en SDA).
 - todos los esclavos se ponen en alerta
- o El maestro envía la dirección del esclavo (7b) y el tipo de operación R/W (1b)
 - todos esclavos comparan la dirección con la suya y el esclavo aludido envía ACK
 - si la dirección es de 10b se envía en 2 trozos
- Se transmiten un numero indefinido de datos (8b) reconocidos individualmente (1b).
- o El maestro finaliza la transmisión generando la stop condition (transición 0-1 en SDA)

Dispositivos en XST

conectados a pines compartidos: video decoder

- 11 pines de la FPGA están conectados a un Video Decoder (TVP5150A):
 - o 2 al bus IIC
 - 9 a un bus paralelo síncrono: 8 datos de vídeo + 1 reloj

- La configuración del controlador se hace mediante el envío de datos a través de un bus IIC
 - o Dirección del dispositivo: 0x5C
- La recepción de datos de vídeo (pixels y sincronización) se realiza en paralelo a flancos de subida de la señal de reloj.
- Conexiones compartidas:
 - o Bus datos 7-segs izq.

conectados a pines compartidos: controlador Ethernet

- 28 pines de la FPGA están conectados a un Controlador de Ethernet (AX88796)
 - Usa un bus tipo bus local de microprocesador

- 2 jumpers permiten definir el protocolo de bus que usará el controlador para comunicarse:
 - o MCS-51 / MC68K / 80186 / ISA
- Conexiones compartidas:
 - Bus datos (15:8) 7-segs der. Pulsador 1
 - o Bus datos (7:0) interruptores
 - o IRQ LED 6
 - o Bus direcciones Pulsadores LEDs

Dispositivos en XST

mapa de pines (i)

UART				
TD	J2	out		
RD	G5	in		
CTS	D1	in		
RTS	F4	out		

Audio Codec					
MCLK	P11	out			
SCLK	T12	out			
LRCK	R12	out			
STDI	M10	out			
STDO	К5	in			

LEDs				
1	L5	out		
2	N2	out		
3	M3	out		
4	N1	out		
5	T13	out		
6	L15	out		
7	J13	out		
8	H15	out		
9	J16	out		
10	J14	out		

7-segs izq.		
А	H14	out
В	M4	out
С	P1	out
D	N3	out
Е	M15	out
F	H13	out
G	G16	out
DP	N15	out

7-segs der.		
А	E2	out
В	E1	out
С	F3	out
D	F2	out
E	G4	out
F	G3	out
G	G 1	out
DP	Н4	out

mapa de pines (ii)

Interruptores		
1	P12	out
2	J1	out
3	H1	out
4	Н3	out
5	G2	out
6	K15	out
7	K16	out
8	F15	out

Pulsadores		
1	Н4	in
2	L5	in
3	N2	in
4	M3	in

Ethernet		
CS	G13	out

Bus IIC		
SCL	F5	out
SDA	D2	in-out

La placa de dispositivos FdI-UCM

- Teclado matricial 4×4
- 3 LFDs tricolor
- Matriz 40x7 LEDs
- LCD 2x16 caracteres
- Emisor/receptor de infrarrojos
- Conector a zumbador / ventilador
- Conector a altavoz
- Conector a motor paso a paso
- Conector IIC
- Conversor A/D de 8 canales

- A través del conector IIC y del conversor A/D es posible acceder a un gran número de dispositivos tanto digitales como analógicos:
 - Sensores, EPROM, RTC, etc.

Poniéndolo todo junto

35

Acerca de Creative Commons

- Ofrece algunos derechos a terceras personas bajo ciertas condiciones. Este documento tiene establecidas las siguientes:
 - Reconocimiento (Attribution):
 En cualquier explotación de la obra autorizada por la licencia hará falta reconocer la autoría.
 - No comercial (Non commercial):

 La explotación de la obra queda limitada a usos no comerciales.
 - Compartir igual (Share alike):

 La explotación autorizada incluye la creación de obras derivadas siempre que mantengan la misma licencia al ser divulgadas.

Más información: https://creativecommons.org/licenses/by-nc-sa/4.0/