

S.I.G.P.D.

Administración de Sistemas Operativos

JurassiCode

Rol	Apellido	Nombre	C.I	Email
Coordinador	Fianza	Ignacio	5.690.153-1	businessignaciofianza@gmail.com
Sub-Coordin ador	Benítez	Sebastián	5.652.044-4	sebastianbenitez2505@gmail.com
Integrante 1	Fleitas	Joaquín	5.570.982-3	joacolambru7@gmail.com
Integrante 2	Paz	Tomás	5.700.344-1	tomaslautaropaz@gmail.com

Docente: Martínez, Santiago

Fecha de culminación

14/7/2025

PRIMERA ENTREGA

ÍNDICE

Script bash gestor de usuarios y grupos	2
Manual de instalación y justificación de Fedora Server	2
Instalación y Configuración de la Red en Fedora Server	5
Gestión y administración de paquetes para el despliegue eficiente del proyecto	10
Configuración del servicio SSH en el servidor	13
Instalación v justificación de Docker	18

Script bash gestor de usuarios y grupos

Para acceder a la descarga del script gestor de usuarios y grupos, usar el siguiente link

https://drive.google.com/file/d/1skHJHQomU0epEtXhYvtaTyiq4026oEtS/view?usp=s haring

Manual de instalación y justificación de Fedora Server

Sistema Operativo elegido: Fedora Server

¿Por qué elegimos este sistema operativo?

Para el desarrollo del proyecto se optó por utilizar Fedora Server como sistema operativo base, fundamentado en criterios técnicos y educativos:

- Actualización constante: Fedora es una distribución conocida por incorporar las versiones más recientes del software y tecnologías en el ámbito Linux, proporcionando un entorno moderno, seguro y alineado con estándares actuales de la industria.
- Enfoque en servidores: Fedora Server está específicamente orientado a entornos de servidor, adecuándose eficazmente a los objetivos del proyecto relacionados con administración de usuarios, grupos y permisos en sistemas multiusuario.
- Facilidad de gestión y administración: Incluye herramientas como Cockpit, una interfaz web intuitiva para la administración del sistema, manteniendo además el potencial de la administración mediante la línea de comandos, facilitando la progresión desde prácticas básicas a complejas.
- Documentación clara y comunidad activa: Cuenta con una comunidad robusta y organizada, así como con una documentación oficial completa, favoreciendo la resolución de problemas y el aprendizaje autónomo.

 Proyección profesional: Fedora constituye la base de Red Hat Enterprise Linux (RHEL), uno de los sistemas operativos más utilizados en ambientes empresariales, ofreciendo experiencia práctica aplicable en contextos profesionales.

Manual Completo de Instalación de Fedora Server

Aplicable a máquinas físicas y virtuales (VirtualBox, VMware)

Parte 1: Requisitos previos

Descargar Fedora Server
 Acceder al sitio oficial: https://fedoraproject.org/server/download/

Seleccionar:

• Arquitectura: x86 64

- Opción: Imagen ISO completa (no netinstall)
- Preparar el entorno
 Para instalación en equipo físico:
- Pendrive de mínimo 4 GB.
- Herramienta para crear USB booteable:

o Windows: Rufus

o Linux/macOS: balenaEtcher

Para instalación en máquina virtual:

- Programa de virtualización:
 - VirtualBox
 - VMware Workstation Player

Parte 2: Crear medio de instalación En equipo físico (USB booteable):

- Abrir Rufus.
- Seleccionar el dispositivo USB y la ISO descargada.
- Configurar sistema de archivos como FAT32.
- Seleccionar esquema de partición MBR (BIOS) o GPT (UEFI).

• Iniciar y esperar la finalización del proceso.

En máquina virtual (VirtualBox):

- Crear nueva máquina virtual.
- Nombre: Fedora Server
- Tipo: Linux
- Versión: Red Hat (64-bit)
- Asignar memoria (mínimo 2048 MB, recomendado 4096 MB).
- Crear disco virtual (VDI, tamaño dinámico, mínimo 20 GB, recomendado 30 GB)
- Agregar la ISO descargada en configuración de almacenamiento.

Parte 3: Iniciar instalación

En equipo físico:

• Insertar USB, encender PC y seleccionar dispositivo de arranque.

En máquina virtual:

Iniciar máquina virtual.

En ambos casos seleccionar: Install Fedora Server.

Parte 4: Proceso de instalación

- 1. Elegir idioma:
- Seleccionar Español (Uruguay / Argentina / España).
- Continuar.
- 2. Configuración del sistema:
- Destino de instalación: seleccionar disco, particionado automático recomendado.
- Configuración de red y nombre de host: activar red, asignar nombre (ejemplo: fedora.local).
- Fecha y hora: América/Montevideo.
- Contraseña usuario root: establecer contraseña segura.
- Usuario adicional: crear y asignar privilegios administrativos (opcional pero recomendable).
- 3. Comenzar instalación:

Iniciar instalación y esperar a que finalice.

Parte 5: Finalizar e iniciar el sistema:

• Reiniciar el sistema retirando previamente el medio de instalación.

Parte 6: Primer arranque y configuración post-instalación:

- Iniciar sesión con usuario creado o root.
- Actualizar sistema ejecutando en terminal: sudo dnf update -y
- Instalar utilidades básicas:
 sudo dnf install -y vim nano htop bash-completion

Parte 7: Instalación y uso de Cockpit (opcional):

- Instalar Cockpit: sudo dnf install -y cockpit sudo systemctl enable --now cockpit.socket
- Acceder vía navegador web: https://<IP_del_servidor>:9090

Consejos finales:

Fedora Server no incluye entorno gráfico por defecto, administrándose vía terminal o interfaz web Cockpit. Para mejorar la compatibilidad en VirtualBox, se recomienda instalar Guest Additions.

Instalación y Configuración de la Red en Fedora Server

PASO 1: Instalación de herramientas de configuración de red (nmtui)

Fedora Server incluye por defecto NetworkManager, que permite gestionar interfaces de red de manera eficiente. Una de las formas más simples y seguras de configurar la red en modo texto es a través de la utilidad nmtui.

En caso de que no esté instalada, puede instalarse ejecutando:

sudo dnf install -y NetworkManager-tui

Una vez instalada, se puede lanzar el asistente con el comando:

nmtui

Este menú interactivo permite:

- Editar conexiones
- Activar/desactivar interfaces
- Establecer una IP estática
- Configurar DNS

PASO 2: Configurar la IP estática en el servidor

Para que el servidor sea visible fácilmente desde la red y no cambie su IP entre reinicios, es necesario asignarle una dirección IP estática.

1. Ejecutar:

sudo nmtui

- 2. Seleccionar: Editar una conexión
- 3. Elegir la interfaz de red (por ejemplo ens33, enp0s3, etc.)
- 4. Cambiar el método de dirección IPv4 a: Manual
- 5. Ingresar los siguientes valores:
 - Dirección IP: por ejemplo 192.168.1.100/24
 - Puerta de enlace (gateway): por ejemplo 192.168.1.1
 - DNS: por ejemplo 1.1.1.1, 8.8.8.8
- Aceptar los cambios y luego seleccionar Activar una conexión para reiniciar la interfaz.

PASO 3: Verificar conectividad

Luego de configurar la red, se puede verificar la conectividad con:

```
#Ver estado de las interfaces
ip a
#Probar acceso a internet
ping -c 4 8.8.8.8
#Probar resolución DNS
ping -c 4 google.com
```

También es útil hacer un ping desde otra máquina para confirmar que el servidor es visible en la red.

PASO 4: Configurar los puertos del servidor

Para que el servidor pueda enviar y recibir información a través de la red, es necesario asegurarse de que los puertos de los servicios estén abiertos en el firewall.

Ver puertos abiertos actualmente:

```
sudo firewall-cmd --list-all
```


Abrir puertos comunes:

• SSH (puerto 22):

```
#SSH sudo firewall-cmd --add-service=ssh --permanent
```

• HTTP (puerto 80) y HTTPS (puerto 443):

```
#HTTP
sudo firewall-cmd --add-service=http --permanent
#HTTPS
sudo firewall-cmd --add-service=https --permanent
```

• Otro puerto personalizado: (por ejemplo, para un servidor de desarrollo)

```
#Puerto 3000
sudo firewall-cmd --add-port=3000/tcp --permanent
```

Aplicar cambios del firewall:

```
sudo firewall-cmd --reload
```

PASO 5: Confirmar que los servicios escuchan en los puertos esperados

Usar ss:

```
sudo ss -tuln
```

- -t: solo conexiones TCP
- -u: también incluye UDP
- -l: solo servicios que están escuchando (no conexiones activas)
- -n: no resuelve nombres (muestra IPs y puertos en número, no en nombre como ssh o http)

Gestión y administración de paquetes del S.O

Introducción

Para llevar adelante el deploy inicial de la aplicación web de JurassiDraft, se optó por instalar y configurar manualmente los paquetes necesarios a través del gestor de paquetes dnf de Fedora Server. Esta decisión se basa en la necesidad de contar con un entorno de ejecución controlado, seguro y ajustado a buenas prácticas de administración de servidores Linux.

Aunque XAMPP podría ser una solución rápida para entornos de desarrollo, presenta importantes limitaciones en servidores como Fedora Server:

- Está diseñado para uso local y entornos gráficos, lo cual no aplica en servidores sin GUI.
- Corre servicios fuera del control de systemd, dificultando la administración de procesos.
- Ejecuta Apache y MySQL como root, una mala práctica en entornos de producción.
- No se integra con el firewall ni las políticas de red de Fedora.
- Por estas razones, se descartó XAMPP en favor de una instalación modular y nativa con dnf, que permite mejor integración, seguridad y control.

Instalación de Apache, PHP y MySQL

A continuación se detalla el procedimiento para instalar LAMP en Fedora Server, junto con las extensiones PHP que podría requerir la aplicación para funcionar a futuro.

PASO 1: Actualizar el sistema

Antes de instalar cualquier componente, es recomendable asegurarse de que el sistema esté completamente actualizado. Esto previene conflictos de dependencias y asegura compatibilidad con las versiones más recientes.

sudo dnf update -y

PASO 2: Instalar Apache (servidor web)

Apache es el servidor encargado de procesar las peticiones HTTP, servir los archivos HTML, CSS y JS, y ejecutar scripts PHP.

```
sudo dnf install -y httpd
```

Una vez instalado, se activa y configura para que inicie automáticamente con el sistema con:

sudo systemctl enable --now httpd

PASO 3: Instalar PHP y extensiones necesarias

PHP es el lenguaje backend que se eligió para ser utilizado en el proyecto. Para que funcione correctamente con MySQL y otras funcionalidades del sistema, se instalan también varias extensiones específicas:

sudo dnf install -y php php-cli php-mysqli php-pdo php-mbstring
php-xml

Explicación de cada módulo:

- php: núcleo de PHP.
- php-cli: permite ejecutar scripts desde consola, útil para pruebas o mantenimiento.
- php-mysqli: permite a PHP conectarse a la base de datos MySQL, esencial para las funciones del sistema.
- php-pdo: proporciona una interfaz moderna y segura para trabajar con bases de datos desde PHP.
- php-mbstring: permite trabajar correctamente con textos en UTF-8 y caracteres especiales.
- php-xml: proporciona soporte para trabajar con XML. Aunque todavía no sabemos si el proyecto va a utilizarlo directamente, se instala como medida preventiva para futuras integraciones.

PASO 4: Instalar MySQL Server

Para gestionar y brindar los servicios de base de datos en nuestro proyecto, se procede a la instalación del motor MySQL Server, utilizando el repositorio oficial de Oracle para Fedora.

Para instalar el mismo, se debe primero descargar el repositorio usando:

```
wget
```

https://dev.mysql.com/get/mysql84-community-release-fc42-3.noarch.rpm

luego, se instala el repositorio con el comnando:

```
sudo dnf install mysql84-community-release-fc42-3.noarch.rpm
```

Una vez instalado el repositorio, se debe proceder a instalar MySQL Server, teniendo el repositorio instalado en nuestro servidor, ejecutamos

sudo dnf install -y mysql-server

Gestión y administración de paquetes para el despliegue eficiente del proyecto

Configuración del servidor web Apache en Fedora Server

Apache (httpd) ya fue instalado previamente con dnf, pero solo la instalación podría no ser suficiente, se podría necesitar realizar alguna configuración o ajuste para permitir que el servicio funcione correctamente, sea accesible desde otros equipos, y pueda estar listo para producción.

 Verificar estado del servicio
 Se tiene que confirmar que Apache esté corriendo y configurado para iniciarse automáticamente al encender el servidor:

sudo systemctl status httpd

Se debería ver algo como active (running). Si no está activo:

sudo systemctl start httpd

Y para que arranque solo en cada reinicio:

sudo systemctl enable httpd

Confirmar ruta del directorio raíz (DocumentRoot)
 Apache, por defecto en Fedora, sirve los archivos desde:

/var/www/html/

Eso significa que si se accede a http://IP_DEL_SERVIDOR, el navegador va a mostrar el contenido de esa carpeta, entonces los archivos del proyecto tienen que estar copiados en la misma, en caso de que no estén, se deben mover con:

sudo cp -r /var/www/html/

Ajustar permisos
 Asegurarse de que Apache pueda leer los archivos del proyecto:

```
sudo chown -R apache:apache /var/www/html/jurassidraft
sudo chmod -R 755 /var/www/html/jurassidraft
```

Configuración y gestión de MySQL Server

Una vez instalado MySQL utilizando el repositorio oficial provisto por Oracle (ver sección de instalación), es fundamental realizar su configuración inicial para garantizar el correcto funcionamiento del sistema, su seguridad y su disponibilidad.

Verificar el estado del servicio
 Luego de la instalación, es necesario asegurarse de que el servicio de
 MySQL esté activo y habilitado para iniciarse automáticamente con el sistema:

```
sudo systemctl start mysqld
sudo systemctl enable mysqld
```

Para verificar el estado actual del servicio:

```
sudo systemctl status mysqld
```

Se espera que el estado sea active (running). En caso contrario, se deben revisar los registros del sistema.

 Recuperar la contraseña temporal del usuario root
 MySQL genera una contraseña aleatoria temporal para el usuario root
 durante la instalación. Esta contraseña puede consultarse en el archivo de registro correspondiente:

```
sudo grep 'temporary password' /var/log/mysqld.log
```

El resultado mostrará una línea similar a:

[Note] A temporary password is generated for root@localhost: Abcdefg123!

 Configurar la instalación inicial de MySQL
 Se recomienda ejecutar el script interactivo de configuración segura de MySQL, el cual permite modificar parámetros críticos de seguridad, como la contraseña del administrador, y deshabilitar configuraciones inseguras.

sudo mysql_secure_installation

Durante la ejecución, se solicitará:

- Cambiar la contraseña del usuario root.
- Definir el nivel de seguridad de contraseñas.
- Eliminar usuarios anónimos.
- Deshabilitar el acceso remoto del usuario root.
- Eliminar la base de datos de prueba.
- Recargar las tablas de privilegios.
- Ingresar a MySQL
 Una vez finalizada la configuración segura, se puede acceder al cliente
 MySQL con el siguiente comando:

```
sudo mysql -u root -p
```

Tras ingresar la contraseña correspondiente, se accede al entorno de gestión SQL de MySQL, donde se pueden escribir comandos sql, se recomienda crear una base de datos y un nuevo usuario (no root) para la misma, siguiendo:

```
CREATE DATABASE jurassidraft

CREATE USER 'jurassi_user'@'localhost' IDENTIFIED BY
'una_contraseña_segura';

GRANT ALL PRIVILEGES ON jurassidraft.* TO
'jurassi_user'@'localhost';

FLUSH PRIVILEGES;
```


Se puede salir del cliente con exit y si se quiere probar la conexión con el nuevo usuario, luego de haber salido, se ejecuta desde la terminal:

```
mysql -u jurassi_user -p
```

Si la conexión es exitosa, significa que la base de datos está correctamente configurada para ser utilizada por la aplicación web.

Gestión del firewall y apertura de puertos

Una vez instalados y configurados los servicios del servidor, es necesario garantizar que puedan ser accedidos desde la red. Para ello, se debe permitir explícitamente el tráfico a través de los puertos utilizados, mediante la herramienta de configuración del firewall incorporada en Fedora: firewalld.

- Verificar servicios permitidos por el firewall
 Para consultar los servicios actualmente habilitados:
 sudo firewall-cmd --list-services
- Habilitar servicios necesarios para el funcionamiento del servidor
 Se deben permitir los siguientes servicios de forma permanente:

```
sudo firewall-cmd --add-service=http --permanent
#Puerto 80 - Servidor web Apache
sudo firewall-cmd --add-service=https --permanent
#Puerto 443 - HTTPS (si aplica)
sudo firewall-cmd --add-service=ssh --permanent
#Puerto 22 - Acceso SSH al servidor
```

Finalmente, se aplica la configuración:

```
sudo firewall-cmd --reload
```

Configuración del servicio SSH en el servidor

PASO 1: Instalar servicio

Para instalar el servicio de ssh en Fedora se usa el comando:

```
sudo dnf install openssh-server
```

En muchos casos ya viene preinstalado, pero si no es así, este comando lo instalará.

PASO 2: Iniciar servicio

El servicio de ssh en fedora se habilita y se inicia con los siguientes comandos:

```
sudo systemctl enable sshd
sudo systemctl start sshd

#Comprobar estado del ssh
systemctl status sshd
```

Luego de realizados estos dos comandos, se puede comprobar el estado del mismo con el comando indicado abajo del comentario. (Si el sistema ya tenía SSH preinstalado, probablemente ya esté corriendo, y se puede omitir este paso).

PASO 3: Configuración del firewall para habilitar SSH en Fedora

Para verificar y, en caso necesario, permitir las comunicaciones a través del servicio SSH en Fedora, se emplean los siguientes comandos:

```
sudo firewall-cmd --list-services
#Para ver los servicios
sudo firewall-cmd --add-service=ssh --permanent
#Para agregar ssh a la lista de servicios que el firewall permite, de
manera permanente
sudo firewall-cmd --reload
#Para aplicar los cambios inmediatamente
```

Si el servicio SSH fue instalado junto con el sistema operativo, es muy probable que ya se encuentre habilitado en el firewall por defecto, por lo que este procedimiento puede no ser necesario.

PASO 4: Revisión de la configuración de SSH

En caso de ser necesario, la configuración del servicio SSH puede revisarse y modificarse accediendo al archivo ubicado en:

```
/etc/ssh/sshd_config
```

Para un uso básico del servicio, no es imprescindible realizar cambios en este archivo. No obstante, en situaciones que requieran ajustes específicos —como cambiar el puerto por defecto, deshabilitar el acceso mediante el usuario root, o aplicar políticas de seguridad más estrictas—, estas modificaciones deben efectuarse en dicho archivo.

PASO 5: Conexión a un servidor remoto mediante SSH

Para establecer una conexión SSH desde otro equipo, se debe ejecutar el siguiente comando en la terminal del cliente:

```
ssh usuario@ip_del_equipo
```

Al realizar la conexión por primera vez, es posible que el sistema muestre un mensaje similar al siguiente:

```
The authenticity of host 'ip_del_equipo' can't be established. ED25519 key fingerprint is SHA256:huella_digital. This key is not known by any other names. Are you sure you want to continue connecting (yes/no/[fingerprint])?
```

Ante este mensaje, se debe confirmar la conexión escribiendo "yes". A continuación, el sistema solicitará la contraseña del usuario remoto. Una vez ingresada correctamente, se establecerá la conexión con el servidor.

PASO 6: Conexión SSH sin contraseña (mediante autenticación con clave pública)

PASO 6.1: Generación del par de claves en Windows

Para establecer una conexión SSH sin necesidad de ingresar contraseña, se puede utilizar un par de claves criptográficas (clave pública y clave privada). Este mecanismo mejora la seguridad y facilita el acceso automatizado a servidores remotos.

En sistemas Windows, se puede generar el par de claves utilizando PowerShell. Para ello, ejecutar el siguiente comando:

```
ssh-keygen -t ed25519
```

Durante el proceso, se solicitará una ubicación para guardar las claves. Se recomienda aceptar la ruta por defecto:

C:\Users\TU USUARIO\.ssh

Opcionalmente, se puede establecer una passphrase (contraseña adicional) para proteger la clave privada. Aunque no es obligatorio, se recomienda su uso en entornos donde se requiere un nivel de seguridad elevado.

PASO 6.2: Copiar la clave pública al servidor Linux

Una vez generado el par de claves en el cliente Windows, se debe transferir la clave pública al servidor Linux. Este procedimiento se realiza de forma manual, siguiendo los pasos detallados a continuación:

- Acceder al servidor Linux mediante SSH

Inicialmente, se debe establecer una conexión SSH al servidor utilizando usuario y contraseña.

Crear el directorio de claves SSH

Ejecutar el siguiente comando para crear el directorio .ssh en el home del usuario (si aún no existe).

mkdir -p ~/.ssh

Obtener la clave pública en Windows

Desde PowerShell en el equipo cliente, visualizar la clave pública generada previamente con el siguiente comando:

cat \$env:USERPROFILE\.ssh\id ed25519.pub

Copiar la clave pública al servidor

Volver al servidor Linux y abrir el archivo authorized_keys con el editor nano:

nano ~/.ssh/authorized keys

- Asignar los permisos adecuados

Finalmente, asegurarse de que tanto la carpeta como el archivo tengan los permisos correctos, ejecutando:

```
chmod 700 ~/.ssh
chmod 600 ~/.ssh/authorized_keys
```

Estos pasos permiten que futuras conexiones SSH desde el equipo cliente se realicen sin necesidad de ingresar la contraseña, siempre que se utilice la clave privada correspondiente.

PASO 6.3: Conectarse sin contraseña (o utilizando *passphrase* y clave privada)

Una vez que la clave pública ha sido correctamente copiada al servidor y configurados los permisos, se puede establecer la conexión SSH desde el cliente sin necesidad de ingresar la contraseña del usuario remoto.

Para ello, desde PowerShell (o cualquier terminal) en el equipo cliente, ejecutar:

ssh usuario@ip_del_equipo

Si el proceso se completó correctamente y no se configuró una *passphrase*, el sistema establecerá la conexión directamente, sin solicitar credenciales. En caso de haberse definido una *passphrase* durante la generación de la clave privada, se pedirá ingresarla para completar la autenticación.

PASO 6.4: Deshabilitar el inicio de sesión por contraseña (opcional pero altamente recomendable)

Para reforzar la seguridad del servidor, se recomienda desactivar el inicio de sesión SSH mediante contraseña y permitir únicamente la autenticación a través de clave pública.

Pasos a seguir en el servidor Linux:

1. Editar el archivo de configuración de SSH:

sudo nano /etc/ssh/sshd_config

2. Modificar o agregar las siguientes directivas:

PasswordAuthentication no PermitRootLogin no

- PasswordAuthentication no, desactiva el uso de contraseñas para la autenticación SSH.
- PermitRootLogin no, impide el inicio de sesión directo como usuario root, lo que añade una capa adicional de seguridad.
- 3. Reiniciar el servicio SSH para aplicar los cambios.

sudo systemctl restart sshd

A partir de este momento, el servidor solo aceptará conexiones desde clientes que presenten una clave privada autorizada. Esta práctica reduce significativamente el riesgo de ataques de fuerza bruta y accesos no autorizados.

Instalación y justificación de Docker

Justificación

Dentro del desarrollo del sistema JurassiDraft, que busca gestionar digitalmente partidas del juego de mesa Draftosaurus mediante una plataforma web, se requiere un entorno de desarrollo estable, reproducible y seguro. Aquí es donde entra Docker.

Docker es una plataforma de virtualización ligera que permite armar paquetes de aplicaciones y sus dependencias en contenedores, garantizando que funcionen de forma idéntica sin importar el entorno en el que se ejecuten.

Ahora, nos preguntamos por qué usar docker, estas son las respuestas que encontramos:

- Entornos consistentes: Todos los integrantes del equipo podemos trabajar con la misma configuración sin conflictos entre versiones de PHP, MySQL o Apache.
- Facilidad para pruebas y despliegue: Se pueden levantar entornos aislados para probar nuevas funcionalidades sin afectar el proyecto principal.
- Aislamiento: Permite tener separados los servicios del backend (PHP, MySQL) del frontend, simplificando la depuración y el mantenimiento.
- Escalabilidad futura: Si se busca o se desea desplegar el sistema en otro servidor, en una pc para testing o directamente en la nube, Docker facilita la transición a diversas plataformas, sin importar el cómo y el cuando.
- Integración continua: Se puede automatizar el testing o el despliegue con herramientas como GitHub Actions, integradas a los contenedores.

Instalación de Docker en Fedora

Docker no se incluye por defecto en los repositorios principales de Fedora, por lo que es necesario configurar el repositorio oficial de Docker e instalar los componentes necesarios manualmente. A continuación, se detalla el procedimiento completo y actualizado.

PASO 1: Actualizar el sistema

Antes de comenzar, se recomienda actualizar todos los paquetes del sistema para evitar conflictos de dependencias:

sudo dnf update -y

PASO 2: Instalar dnf-plugins-core y configurar el repositorio oficial

Primero se debe instalar el paquete dnf-plugins-core, que permite gestionar repositorios externos con dnf.:

```
sudo dnf install -y dnf-plugins-core
```

Luego, se añade el repositorio oficial de Docker para Fedora:

```
sudo dnf config-manager --add-repo
https://download.docker.com/linux/fedora/docker-ce.repo
```

Nota: En algunos sistemas puede aparecer como dnf-3, pero dnf funciona correctamente en versiones modernas de Fedora.

PASO 3: Instalar Docker Engine

Para instalar la última versión estable de Docker y sus componentes asociados, ejecutar:

```
sudo dnf install docker-ce docker-ce-cli containerd.io
docker-buildx-plugin docker-compose-plugin
```

PASO 4: Iniciar y habilitar Docker

Una vez instalado, el servicio de Docker no se inicia automáticamente. Para arrancarlo y hacer que se ejecute al iniciar el sistema, ejecutar:

```
sudo systemctl enable docker
sudo systemctl start docker
```


PASO 5: Verificar instalación

Para comprobar que Docker funciona correctamente, ejecutar el siguiente comando:

sudo docker run hello-world

Este comando descarga una imagen de prueba desde Docker Hub, la ejecuta en un contenedor y muestra un mensaje de confirmación. Si aparece dicho mensaje, la instalación fue exitosa.

PASO 6: (Opcional) Usar Docker sin sudo

Docker crea un grupo llamado docker, pero no agrega automáticamente al usuario actual. Si se quiere ejecutar Docker sin anteponer sudo, se debe ejecutar:

sudo usermod -aG docker \$USER

Luego, es necesario cerrar sesión y volver a iniciar sesión para que el cambio tenga efecto. (Agregar un usuario al grupo docker le otorga privilegios equivalentes a root, por lo tanto, debe hacerse únicamente en entornos controlados o de desarrollo.)

PASO 7: Confirmar versiones instaladas

docker --version
docker compose version