Übungsblatt 7

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Eine glatte Mannigfaltigkeit M^n heißt parallelisierbar, falls Vektorfelder $X_1, \ldots, X_n \in \Gamma(TM)$ existieren, sodass $X_1(p), \ldots, X_n(p)$ eine Basis für T_pM bilden für alle $p \in M$.

- a) Zeigen Sie, dass das Tangentialbündel TM einer parallelisierbaren Mannigfaltigkeit diffeomorph zu $M \times \mathbb{R}^n$ ist.
- b) Sei G eine Lie-Gruppe. Zeigen Sie, dass G parallelisierbar ist.

Aufgabe 2. Bestimmen Sie die Flussbereiche $D^X \subset \mathbb{R} \times M$ und die Flüsse der folgenden Vektorfelder und überprüfen Sie, ob die Vektorfelder vollständig sind:

- a) $M = \mathbb{R}$ und $X(t) = t^2 \frac{\partial}{\partial t}$.
- b) $M = \mathbb{R}^2$ und $X = X_h$ mit $h(q, p) = \frac{1}{2}(p^2 q^2)$ (Notation siehe Blatt 6, Aufgabe 2)
- c) $M = \mathbb{R} \times (-1, 1) \subset \mathbb{R}^2$ und $X = X_h$ mit h(q, p) = qp.

Aufgabe 3. Sei G eine Lie Gruppe und M eine glatte Mannigfaltigkeit. Eine Wirkung von G auf M ist eine glatte Abbildung

$$\rho: G \times M \to M, \qquad \rho(g, p) =: g \cdot p,$$

sodass $(gh) \cdot p = g \cdot (h \cdot p)$ gilt für alle $g, h \in G, p \in M$. Für festes $g \in G$ erhält man also einen Diffeomorphismus $\rho_g : M \to M$ gegeben durch $\rho_g(p) = g \cdot p$ und die Abbildung $G \to \text{Diff}(M), \quad g \mapsto \rho_g$ ist ein Gruppenhomomorphismus.

Jedes $v \in \mathfrak{g}$ definiert eine Ein-Parameter-Gruppe von Diffeomorphismen $\Phi^v : \mathbb{R} \times M \to M$ durch $\Phi^v(t,p) = \exp(tv) \cdot p$. Das fundamentale Vektorfeld $X^v \in \Gamma(TM)$ zu $v \in \mathfrak{g}$ ist das zu Φ^v assoziierte Vektorfeld, also für $p \in M$

$$X_p^v = \frac{d}{dt}|_{t=0}(\exp(tv) \cdot p).$$

a) Betrachten Sie die Lie-Gruppe $GL(n,\mathbb{R})$. Zeigen Sie, dass die Exponentialabbildung $\exp: \mathfrak{gl}(n,\mathbb{R}) \cong \operatorname{End}(\mathbb{R}^n) \to \operatorname{GL}(n,\mathbb{R})$ durch die übliche Matrixexponentialreihe gegeben ist:

$$\exp(a) = \sum_{k=0}^{\infty} \frac{a^k}{k!}, \quad a \in \mathfrak{gl}(n, \mathbb{R}).$$

(Diese Aussage gilt für alle Matrix-Lie-Gruppen, wie etwa O(n), $SL(n, \mathbb{R})$ etc.)

b) Betrachten Sie die *adjungierte Wirkung* Ad von $GL(n,\mathbb{R})$ auf $\mathfrak{gl}(n,\mathbb{R})$ gegeben durch $A.b = Ad(A)(b) = AbA^{-1}$. Zeigen Sie $[a,b] = \frac{d}{dt}|_{t=0}(Ad(\exp(ta))(b))$ für alle $a,b \in \mathfrak{gl}(n,\mathbb{R})$.

c) Sei nun G eine beliebige Lie-Gruppe und sei $C: G \times G \to G, C(g,h) := C_g(h) := ghg^{-1} = L_g \circ R_{g^{-1}}(h)$. Die adjungierte Wirkung von G auf \mathfrak{g} ist gegeben durch $Ad: G \times \mathfrak{g} \to \mathfrak{g}$,

$$Ad(g, v) = (dC_q)_1(v).$$

Zeigen Sie für $v, w \in \mathfrak{g}$

$$[v, w] = \frac{d}{dt}|_{t=0}(\operatorname{Ad}(\exp(tv))(w)).$$

(Hinweis : Schreiben Sie $ghg^{-1}=L_g\circ R_{g^{-1}}(h)$ und benutzen Sie die Kettenregel, sowie $L_g\circ R_{g^{-1}}=R_{g^{-1}}\circ L_g$ und $\mathcal{L}_XY=[X,Y].$)

Aufgabe 4. Sei G = O(3) die Gruppe der orthogonalen (3×3) Matrizen. Wir wissen, dass die Lie-Algebra

$$\mathfrak{o}(3) = \{ a \in \mathfrak{gl}(3, \mathbb{R}) \mid a^T = -a \}$$

durch den Raum der schiefsymmetrischen (3×3) Matrizen gegeben ist.

a) O(3) operiert in natürlicher Weise auf \mathbb{R}^3 durch $A \cdot p = Ap$, für $p \in \mathbb{R}^3, A \in O(3)$. Berechnen Sie die fundamentalen Vektorfelder zu $a_1, a_2, a_3 \in \mathfrak{o}(3)$, wobei

$$a_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad a_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \qquad a_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

b) Die Wirkung aus Teil a) induziert eine Wirkung von O(3) auf der Sphäre $S^2 \subset \mathbb{R}^3$. Berechnen Sie die lokale Darstellung des fundamentalen Vektorfeldes zu a_1 in der stereographischen Karte $(S^2 \setminus \{N\}, \phi_N)$, wobei $N = (0, 0, 1)^T$ den Nordpol bezeichnet.

(Hinweis: Benutzen Sie die Formel für die Exponentialabbildung aus Aufgabe 3a).)

Aufgabe 5. (Bonusaufgabe) Sei M eine glatte Mannigfaltigkeit und sei $X \in \Gamma(TM)$ ein Vektorfeld mit Fluss $\Phi^X : D^X \to M$, wobei $D^X = \{(t,p) \in \mathbb{R} \times M \mid t \in J_p\} \subset \mathbb{R} \times M$ der Flussbereich von X ist. Zeigen Sie, dass D^X offen ist. Betrachten Sie dazu die Menge

 $W = \{(t,p) \in \mathbb{R} \times M \mid \exists 0, t \in J \subset \mathbb{R}, p \in U \subset M \text{ offen mit } \Phi^X : J \times U \to M \text{ glatt}\} \subset \mathbb{R} \times M.$

- a) Zeigen Sie, dass $W\subset \mathbb{R}\times M$ offen ist, $W\subset D^X$ und $\{0\}\times M\subset W$ erfüllt.
- b) Angenommen, es existiert $(t_0, p_0) \in D^X \setminus W$ (o.B.d.A. $t_0 > 0$). Zeigen Sie, dass $\tau := \sup\{t \in \mathbb{R} \mid (t, p_0) \in W\}$ positiv ist und $\tau \in J_{p_0}$ erfüllt.
- c) Sei $q_0 = \Phi^X(\tau, p_0)$. Folgern Sie, dass ein $\epsilon > 0$ und eine Umgebung U_0 von q_0 existieren sodass Φ^X auf $(-\epsilon, \epsilon) \times U_0$ definiert und glatt ist.
- d) Sei t_1 so gewählt, dass $\tau \epsilon < t_1 < \tau$ und $\Phi^X(t_1, p_0) \in U_0$ gilt. Folgern Sie, dass ein $\delta > 0$ und eine Umgebung von p_0 existiern, sodass Φ^X auf $(-\delta, t_1 + \epsilon) \times U_1$ definiert und glatt ist. Folgern Sie, dass dies im Widerspruch zur Wahl von τ steht und somit $W = D^X$ offen ist.

Abgabe Donnerstag, 02.06.2016 in der Vorlesung.