 核反应率密 答案: ΣΦ。 	度的计算公式是 R=_			= (1	分)
	范围内的中子核反应平	均截面时,计算	公式是: Σ=		=:9
	作为权重函数,				
	$\frac{E)\Phi(E)dE}{\Phi(E)dE}$; 中子通量密				
低能段可以用_ 有所偏离。(4)	堆内的中子能谱大致可 谱来近似; 「 分) 斯韦; 费米 (或1 / E);	中能段大致上是_			
 4. 当温度升高 答案: 多普勒。 	历时共振峰展宽、变矮	的现象称为	效应。	(1分)	
5. 有效共振和 答案: 宽共振(国 6.描述慢化剂 慢化比的定义是	R分采用的 2 种近似为 及IMNR),窄共振(原性能的两个常用参数; 性能的两个常用参数; ————————————————————————————————————	成NR)。 是慢化能力和慢 三种 <mark>慢化剂</mark> (轻	化比。慢化能力	的定义是	
答案: 5\(\Sigma_1\); 5\(\Sigma_1\)	/Σ _a ; 轻水; 重水。				
7. 反应堆的临	界条件是	热中子反应堆	的六因子公式	是	。(2分
答案: k _{eff} = 1;	$k_{\text{eff}} = \varepsilon p f \eta \Lambda_s \Lambda_d$.				
	E下列哪些情况下一定 女介质中 (2) 靠近自)这一条不要				
8. 菲克定律名	E下列哪些情况下一定	不适用?		(3分)	
答案: (1) (2	文介质中(2) 靠近自)这一条不要 99%以上是铀 238,那 (8分)		0.3500 (0.055257).350		(快堆)
答案: 纯铀 238 7	下可以做成熟堆,因为铀 238对快中子的非弹性				
10. 一公斤铂	由 238 在宇宙射线中子 建密度水平(宇宙射线中 b) (8 分)				
答案: 裂变率 R _f	$= \sum_{f} \Phi V = N \sigma_{f} \Phi V = 1$	$N_{\Xi}\sigma_{f}\Phi = \frac{m}{A_{B}}N_{A}\sigma_{f}$	$r_f \Phi$,则通量为		

$$\Phi = \frac{R_f A_{\rm l}}{m N_A \sigma_f} = \frac{6.3 \times 238}{1000 \times 6.022 \times 10^{23} \times 0.5 \times 10^{-28}} = 4.98 \times 10^4 \, m^{-2} \, s^{-1} \, .$$

11. 我国最近在新疆发现了储量为数万吨的特大铀矿(假设为5万吨)。根据国家规划,到2020年时,我国核发电能力将达到4千万 KWe,假设这些核电机组的热电转换效率都是33.3%,每年发电300天。试估计每年需要多少天然铀?上述大铀矿能为这些核电机组供应燃料多少年?(为简单起见,不考虑各种工艺过程中铀235的损失,也不考虑铀238转化成的钚239对发电的贡献)。已知铀235的俘获-裂变比为0.17,1.05克U235核完全裂变可释放1兆瓦日的能量。(8分)答案:每年需要U235为

$$\frac{4 \times 10^4 MW}{33.3\%} \times 300 d \times 1.05 g / MWd \times (1 + 0.17) = 4.427 \times 10^7 g = 44.27 t$$

故每年需天然铀为
$$\frac{44.27}{0.714\%} = 6200t$$
,

新发现的大铀矿可供应燃料时间为 $\frac{5 \times 10}{6200} = 8.06ear$ 。

- 1 2. A neutron of energy 50kev collides with an atom of C-12, which is at rest. Calculate:
 - (a) The minimum neutron energy after impact.
 - (b) The average neutron energy after impace 分)

答案: (a)
$$E_{\text{min}} = \alpha E = \left(\frac{A-1}{A+1}\right)^2 E = \frac{11^2}{13^2} \times 50 = 35.80 \text{keV};$$

(b)
$$\overline{E} = \frac{1+\alpha}{2}E = \frac{A^2+1}{(A+1)^2}E = \frac{12^2+1}{13^2} \times 50 = 42.90 keV$$
. (因为散射后中子能量在E到 αE

之间均匀分布。故平均值是最大值与最小值之和的一半)

13. 某平板介质的厚度 a=200cm (含外推距离), 平板内的中子通量分布为

$$\phi(x) = \phi_0 \cos(\frac{\pi x}{a})$$
, 坐标原点在平板中央。其中 $\phi_0 = 10^4 n/cm^2 \cdot s$, $D = 0.8cm$, 在 $x = -7.5$ c m ψ ,

$$\phi = ____J^+ = ____J^- = _____J = ____.$$
 (8 $\frac{1}{2}$)

答案: $\phi = 3.827 \times 10^3 n/(cm^2 \cdot s)$, $J^- = 898.66n/(cm^2 \cdot s)$, $J^- = 1014.76n/(cm^2 \cdot s)$,

$$J = -116.10n/(cm^2 \cdot s)$$
.

第二部分: 计算分析证明题(40分)

(第1,2 题中任选一题, 第3 题必做。每题 20 分)

1. Neutron sources are distributed in a infinite slab of extrapolated thicknesscording to the relation $s(x) = S(x + \frac{a}{2})$, where S is a constant and x is measured from the center of

the slab. Show that the flux within the slab is given by

$$\phi(x) = \frac{S \ a}{\Sigma_a} \left[\frac{x}{a} + \frac{1}{2} - \frac{sh \left(\frac{x + \frac{a}{2}}{L}\right)}{sh \left(\frac{a}{L}\right)} \right]$$

证明: 平板中的中子扩散方程为 $\frac{d^2\phi(x)}{dx^2} - \frac{\phi(x)}{I^2} + \frac{s(x)}{D} = 0$,

边界条件为: (i) $\phi(a/2) = 0$; (ii) $\phi(-a/2) = 0$.

扩散方程的解可分为特解和齐次方程的解两部分,

由于源为线性分布,所产生的特解应是简单函数,其二阶导数为零,故可定出

特解为:
$$\phi(x) = \frac{s(x)L^2}{D} = \frac{s(x)}{\Sigma_a} = \frac{S}{\Sigma_a} (x + a/2).$$

齐次方程解为: $\phi(x) = Ae^{-x/L} + Ce^{x/L},$

齐次方程解为:
$$\phi(x) = Ae^{-x/L} + Ce^{x/L},$$

故原扩散方程的解为: $\phi(x) = Ae^{-x/L} + Ce^{x/L} + \frac{S}{\Sigma_a}(x+a/2)$,

根据边界条件得
$$\begin{cases} Ae^{-a/2L} + Ce^{a/2L} + \frac{Sa}{\Sigma_a} = 0 \\ Ae^{a/2L} + Ce^{-a/2L} = 0 \end{cases} , 解得 \begin{cases} A = \frac{Sa}{\Sigma_a} \frac{e^{-a/2L}}{e^{a/L} - e^{-a/L}} \\ C = -\frac{Sa}{\Sigma_a} \frac{e^{a/2L}}{e^{a/L} - e^{-a/L}} \end{cases} ,$$

$$\text{If } \phi(x) = \frac{Sa}{\Sigma_a} \left[\frac{x}{a} + \frac{1}{2} - \frac{e^{(a/2+x)/L} - e^{(-a/2-x)/L}}{e^{a/L} - e^{-a/L}} \right] = \frac{Sa}{\Sigma_a} \left[\frac{x}{a} + \frac{1}{2} - \frac{sh(\frac{x+a/2}{L})}{sh(\frac{a}{L})} \right].$$

在一个中子通量密度[∅] 为常数的通量场中,放入一块厚度为 2d 的无限大平板,该板由弱吸收材料组成。求板内的通量密度分布和通量分布不均匀系数(即最大通量与平均通量之比)。

解: 扩散方程为
$$\frac{d^2\phi(x)}{dx^2} - \frac{\phi(x)}{I^2} = 0$$
 $|x| \le d$),

边界条件为: (i) J(0) = 0; (ii) $\phi(\pm d) = \phi$,

扩散方程解为 $\phi(x) = Ach(x/L) + Csh(x/L)$,

由边界条件(i), C=0,

由边界条件(ii),
$$Ach(d/L) = \phi$$
, $A = \frac{\phi}{ch(d/L)}$,

则板内通量密度分布为 $\phi(x) = \frac{ch(x/L)}{ch(d/L)}\phi$,

板内平均通量为
$$\phi = \frac{1}{d} \int_0^d \phi(x) dx = \frac{\phi L}{dch(d/L)} sh(x/L) \Big|_0^d = \frac{\phi L}{d} th(d/L)$$
,最大通量 $\phi_{\max} = \phi$,

通量分布不均匀系数为
$$\frac{\phi_{\text{max}}}{\phi} = \frac{d}{Lth(d/L)}$$
。

3. 设中子在 A>1 的弱吸收介质内慢化时中子慢化能谱为费米谱, $\mathbb{P} \phi(E) = \frac{C}{E}$ (C 为常数)

试证明: 每秒每立方厘米从分界能 E, (分界能以上为费米谱)以上的能区散射到分界能

以下某能区
$$\Delta E$$
 内的中子数,为 $\frac{C \Sigma_z}{(1-\alpha)} \left(\frac{\Delta E}{E_c} - \alpha \ln \frac{E_1}{E_2} \right)$
($\Delta E = E_1 - E_2$, $E_c > E_1 > E_2 > \alpha E_c$)

证明:如图所示,每秒每立方厘米从分界能 E_c 以上的微能区dE散射到分界能以下 ΔE 中的微能区dE内的中子数为

$$\Sigma_z \phi(E') dE' f(E' \to E) dE = \Sigma_z \frac{C}{E'} dE' \frac{dE}{E'(1-\alpha)}$$

每秒每立方厘米从分界能E。以上的能区散射到 ΔE 内的中子数为

$$\int_{E_{2}}^{E_{1}} dE \int_{E_{c}}^{E/\alpha} \sum_{s} \frac{C}{E'} \frac{1}{(1-\alpha)E'} dE' = \frac{C\sum_{s}}{1-\alpha} \int_{E_{2}}^{E_{1}} dE \int_{E_{c}}^{E/\alpha} \frac{1}{E'^{2}} dE'$$

$$= \frac{C\sum_{s}}{1-\alpha} \int_{E_{2}}^{E_{1}} (\frac{1}{E_{c}} - \frac{\alpha}{E}) dE = \frac{C\sum_{s}}{1-\alpha} (\frac{\Delta E}{E_{c}} - \alpha \ln \frac{E_{1}}{E_{2}})$$

证毕