

Graph Convolutional Networks for AST-Based Representations of Code

PAUL G. ALLEN SCHOOL

W

Rich Chen and Andy Stanciu

Neural network architectures can be specialized for various kinds of data (spatial, sequence) exist:

Convolutional Neural Networks Recurrent Neural Network Output Fully Connected Recurrent Neural Network

What about code for programs?

- We could model it as a sequence like regular text and use methods for that such as RNNs, LSTMs, Transformers, etc.
- But code has logical connections between statements that can't be easily represented with sequences

class Solution { public int[] twoSum(int[] nums, int t) { int n = nums.length; // Loop through pairs of numbers for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { // If pair is found, return it if (nums[i] + nums[j] == t) { return new int[] { i, j }; } } // No solution found return new int[] {}; }</pre>

AST Representations for Neural Networks

Construct co-occurrence matrix from abstract syntax tree

Experimentation

- Data: 100 LeetCode problems and solution examples for each
- Vectorize code examples into co-occurrence matrix
- Construct train set from 90% of the data and test set from 10%
- Train various architectures on train set
- Evaluate on test set with top-1, top-5, and top-10 accuracy:

Model	Top-1 Accuracy	Top-5 Accuracy	Top-10 Accuracy
Linear	85.90%	97.68%	99.06%
3-Layer MLP	90.64%	98.68%	99.30%
3-Layer GCN	94.04%	99.44%	99.76%

Adversarial Examples

- Certain problems were chosen to be very similar:
- Post-order, in-order, and pre-order traversal of binary tree
- GCN performance is much better in these cases

Graph Neural Networks

 Allow us to take in input data in the format of a graph and perform various operations such as graph-convolutions to learn properties of graph-based data.

Abstract Syntax Trees

 In compilers, abstract syntax trees are ubiquitous as an intermediate representation of code. Programs are compiled into this tree structure, preserving the fundamental structure and meaning of the code.

Graph Convolutional Networks (GCNs)

