	FORM PTO-	1449	U.S. DEPARTMEN PATENT AND TR			APP	JCAT	ION NO.		
			DRMATION DISCLOSURE STATE BY APPLICANT SE SEVERAL SHEETS IF NECESS		NIH133.1CPC1	10/02	.8,051			
	OIP E VOISE			APPLICANT Luyten, et al.					_	
(FEB 117	OUS	2		FILING DATE December 19, 2001	GRO Unkr				
/	Ĉ.		*							_
	CA TRADE	Wi	7		U.S. PATENT DOCUMENTS					
	EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CU	ss	SUBCLASS	FILING DATE (IF APPROPRIATE)	
İ	G BE	1	6 133 232	10/17/00	De Robertis et al					

				FOREIGN PATENT DOCUMENTS		·		
EXAMINER INITIAL		DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	TRANS	LATION
X) R	3.	WO 96 14335	17.05.96	PCT			YES	NO
⊅R	4.	WO 97 48275 A	24.12.97	PCT		,		

11/26/1996 Tam

EXAMINER INITIAL		OTHER DOCUMENTS (INCLUDING AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.)				
#R	5.	dler, P. N., et al. (1990) Molecular Structure of frizzled, a Drosophila Tissue Polarity Gene. Genetics 126:401-416.				
	6.	Aebersold, R. H., et al. (1987) Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. <i>Proc. Natl. Acad. Sci. USA</i> 84:6970-6974.				
	7.	Bhanot, P., et al. (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225-230.				
1	8.	Bouwmeester T., et al. (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spernann's organizer. Nature 382:595-601.				
	9.	Bowle, J. U., et al. (1990) Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions. Science 247:1306-1310.				
·	10.	Carnac, G., et al. (1996) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122:3055-3065.				
	11.	Chan, S. D. H., et al. (1992) Two Homologs of the <i>Drosophila</i> Polarity Gene <i>frizzled (fz)</i> Are Widely Expressed in Mammalian Tissues. <i>J. Biol. Chem.</i> 267(35):25202-25207.				
	12.	Chang, J. T., et al. (1999) Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium. Human Mol. Genetics 8(4):575-583.				
	13.	Chang, S.C., et al. (1994) Cartilage-derived Morphogenetic Proteins. J. Biol. Chem. 269(45):28227-28234.				
	14.	Christian, J. L., et al. (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes & Development 7:13-28.				
		Cui, Y., et al. (1995) Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 121:2177-2186.				
	16.	De Robertis, E. M., et al. (1996) A common plan for dorsoventral patterning in Bilateria. <i>Nature</i> 380:37-40.				
	17.	Epifano, O., et al. (1995) Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 121:1947-1956.				
}	18.	Erlebacher, A., et al. (1995) Toward a Molecular Understanding of Skeletal Development. Cell 80:371-378.				
#R	19.	Finch, P. W., et al. (1997) Purification and molecular doning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl Acad Sci. USA 94:6770-6775.				

Pare Romo

5,578,569

3/4/5

FORM PTO-1449

U.S. DEPARTMENT OF COMMERCE | ATTY. DOCKET NO.

U.S. DEPARTM	ENT OF COM	MEKCE
PATENT AND 1	TRADEMARK	OFFICE

IT AND TRADEMARK OFFICE	
	NIH133.1CPC1

APPLICATION NO.

10/028,051

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(USE SEVERAL SHEETS IF NECESSARY)

APPLICANT Luyten, et al.

FILING DATE December 19, 2001 **GROUP** Unknown

\$	R	20.	Harland, R. M. (1991) In Situ Hybridization: An Improved Whole-Mount Method for Xenopus Embryos. Meth. Cell Biol. 36:685-695.
		21.	Hoang, B., et al. (1996) Primary Structure and Tissue Distribution of FRZB, a Novel Protein Related to <i>Drosophila</i> Frizzled, Suggest a Role in Skeletal Morphogenesis. <i>J. Biol. Chem.</i> 271(42):26131-26137.
		22.	Hoppler, S., et al. (1996) Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes & Development 10:2805-2817.
		23.	Kao, K. R., et al. (1988) The Entire Mesodermal Mantle Behaves as Spermann's Organizer in Dorsoanterior Enhanced Xenopus laevis Embryos. Develop. Biol. 127:64-77.
		24.	Kay, B. K. (1991) Injection of Oocytes and Embryos. Methods Cell Biol. 36:663-669.
		25.	Lemaire, P., et al. (1995) Expression Cloning of Siamois, a Xenopus Homeobox Gene Expressed in Dorsal-Vegetal Cells of Blastulae and Able to Induce a Complete Secondary Axis. Cell 81:85-94.
		26.	Leyns, L., et al. (1997) Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer. Cell 88:747-756.
		27.	Luyten, F. P., et al. (1988) Insulin-like Growth Factors Maintain Steady-State Metabolism of Proteoglycans in Bovine Articular Cartilage Explants. Archives of Biochem. and Biophys. 267(2):416-425.
		28.	Luyten, F. P., et al. (1989) Purification and Partial Amino Acid Sequence of Osteogenin, a Protein Initiating Bone Differentiation. J. Biol. Chem. 264(23):13377-13380.
		29.	Luyten, F. P., et al. (1994) Recombinant Bone Morphogenetic Protein-4, Transforming Growth Factor-8, and Activin A Enhance the Cartilage Phenotype of Articular Chondrocytes in Vitro. Exper. Cell Res. 210:224-229.
		30.	Marieb, E. N. (1992) In, Human Anatomy and Physiology. The Benjamin/Cummings Publ. Co., 2 rd Ed., 373-375.
		31.	Mayr, T., et al. (1997) Fritz: a secreted frizzled-related protein that inhibits Wnt activity. Mech. Develop. 63:09-125.
		32.	Melkonyan, H. S., et al. (1997) SARPs: a family of secreted apoptosis-realted proteins. Proc. Natl. Acad. Sci. USA 94:13636-13641.
		33.	Moon, R. T. (1993) In Pursuit of the Functions of the Wnt Family of Developmental Regulators: Insights from Xenopus laevis, BioEssays 15(2):91-97.
		34.	Moos, M., Jr., et al. (1995) Anti-Dorsalizing Morphogenetic Protein is a novel TGF-Is homolog expressed in the Spemann organizer. Development 121:4293-4301.
		35.	Moos, M., Jr., et al. (1988) Reproducible High Yield Sequencing of Proteins Electrophoretically Separated and Transferred to an Inert Support. J. Biol. Chem. 263(13):6005-6008.
		36.	Muthukumaran, N., et al. (1985) Comparison of Bone Inductive Proteins of Rat and Porcine Bone Matrix. Biochem. Biophys. Res. Comm. 131(1):37-41.
		37.	Nardi, J. B., et al. (1976) Polarity and gradients in lepidopteran wing epidermis. J. Embryol. exp. Morph. 36(3):489-512.
		38.	Nathan, C. and Sporn, M. (1991) Cytokines in Context. J. Cell Biol. 113(5):981-986.
		39.	Nusse, R. and Varmus, H. E. (1992) Wnt Genes. Cell 69:1073-1087.
		40.	Paralkar, V. M., et al. (1989) Affinity of Osteogenin, an Extracellular Bone Matrix Associated Protein Initiating Bone Differentiation, for Concanavalin A. Biochem. Biophys. Res. Comm. 160(2):419-424.
		41.	Parr, B. A. and McMahon, A. P. (1994) Wnt genes and vertebrate development. Cur. Opin. Genet. Develop. 4:523-528.
		42.	Pelton, R. W., et al. (1989) Expression of transforming growth factor &2 RNA during murine embryogenesis. Development 106:759-767.
		43.	Rattner, A., et al. (1997) A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Nat'l. Acad. Sci. USA 94:2859-2863.
ধ	PR	44.	Richter, K., et al. (1988) Gene expression in the embryonic nervous system of Xenopus laevis. Proc. Natl. Acad. Sci. USA 85:8086-8090.

FORM PTO-1449

U.S. DEPARTMENT OF COMMERCE | ATTY. DOCKET NO.

PATENT AND TRADEMARK

MINICITOR	7111.00
OFFICE	

10/028,051

INFORMATION DISCLOSURE STATEMENT BY APPLICANT JC14

APPLICANT Luyten, et al.

NIH133.1CPC1

FILING DATE December 19, 2001 **GROUP** Unknown

A)	R	45.	Sambrook, J., et al. (November 1989) Molecular Cloning: A Laboratory Manual Second Edition Vols. 1, 2 and 3. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York USA Pgs. 16.2, 17.2
1		46.	Sato, S. M. and Sargent, T. D. (1991) Localized and inducible expression of Xenopus-posterior (Xpo), a novel gene active in early frog embryos, encoding a protein with a 'CCHC' finger domain. Development 112:747-753.
		47.	Scales, J. B., et al. (1990) Two Distinct Xenopus Genes with Homology to MyoD1 Are Expressed before Somite Formation in Early Embryogenesis. Mol. Cell. Biol. 10(4):1516-1524.
		48.	Shirozu, M., et al. (1996) Characterization of Novel Secreted and Membrane Proteins Isolated by the Signal Sequence Trap Method. Genomics 37:273-280.
		49.	Slack, J. M. W. (1994) Inducing factors in Xenopus early embryos. Cur. Biol. 4(2):116-126.
		50.	Smith, W. C. and Harland, R. M. (1991) Injected Xwnt-8 RNA Acts Early in Xenopus Embryos to Promote Formation of a Vegetal Dorsalizing Center. Cell 67:753-765.
		51.	Smith, W. C., et al. (1995) A nodal-Related Gene Defines a Physical and Functional Domain within the Spemann Organizer. Cell 82:37-46.
		52.	Sokol, S., et al. (1991) Injected Wnt RNA Induces a Complete Body Axis in Xenopus Embryos. Cell 67:741-752.
		53.	Tempst, P., et al. (1990) Internal sequence analysis of proteins separated on polyacrylamide gels at the submicrogram level: Improved methods, applications and gene cloning strategies. <i>Electrophoresis</i> 11:537-553.
		54.	Tsukamoto, A. S., et al. (1988) Expression of the int-1 Gene in Transgenic Mice Is Associated with Mammary Gland Hyperplasia and Adenocarcinomas in Male and Female Mice. Call 55:619-625.
		55.	van Leeuwen, F. and Nusse, R. (1995) Oncogene activation and oncogene cooperation in MMTV-induced mouse mammary cancer. Cancer Biol. 6:127-133.
		56.	Vinson, C. R. and Adler, P. N. (1987) Directional non-cell autonomy and the transmission of polarity information by the <i>frizzled</i> gene of <i>Drosophila. Nature</i> 329:549-551.
		57.	Vinson, C. R., et al. (1989) A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338:263-264.
		58.	Vukicevic, S., et al. (1994) Developing Human Lung and Kidney are Major Sites for Synthesis of Bone Morphogenetic Protein-3 (Osteogenin). J. Histochem. Cytochem. 42(7):869-875.
		59.	Wadsworth, W. G. and Hedgecock, E. M. (1996) Hierarchical guidance cues in the developing nervous system of C. elegans. BioEssays 18(5):355-362.
		60.	Wang, S., et al. (1995) DNA Sequencing from Single Phage Plaques Using Solid-Phase Magnetic Capture. BioTechniques 18(1):130-135.
		61.	Wang, S., et al. (1997) Frzb, a Secreted Protein Expressed in the Spemann Organizer, Binds and Inhibits Wnt-8. Cell 88:757-766.
		62.	Wang, Y., et al. (1996) A Large Family of Putative Transmembrane Receptors Homologous to the Product of the <i>Drosophila</i> Tissue Polarity Gene <i>frizzled. J. Biol. Chem.</i> 271(8):4468-4476.
		63.	Wolf, V., et al. (1997) DDC-4, an apoptosis-associated gene, is a secreted frizzled relative. FEBS Letters 417:385-389.
		64.	Yang-Snyder, J., et al. (1996) A frizzled homolog functions in a vertebrate Wnt signaling pathway. Current Biology 6(10):1302-1306.
\int		65.	Zhao, Z., et al. (1995) A Human Homologue of the Drosophila Polarity Gene frizzled Has Been Identified and Mapped to 17q21.1. Genomics 27:370-373.
\$	RT	66.	Zheng, L., et al. (1995) frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 121:3045-3055.

XAMINER DOWNER Former	DATE CONSIDERED 3/4/5

*EXAMINER: INITIAL IF CITATION CONSIDERED, WHETHER OR NOT CITATION IS IN CONFORMANCE WITH MPEP 609; DRAW LINE THROUGH CITATION IF NOT IN CONFORMANCE AND NOT CONSIDERED, INCLUDE COPY OF THIS FORM WITH NEXT COMMUNICATION TO APPLICANT.