

Objetivo de la presentación: Explorar el estado actual de los sistemas digitales, su evolución histórica, componentes clave, aplicaciones actuales y futuras tendencias.

Introducción

Los sistemas digitales son sistemas que procesan datos en forma de dígitos binarios (0s y 1s). Estos sistemas están compuestos por hardware y software que trabajan juntos para realizar diversas tareas, desde cálculos simples hasta operaciones complejas en tiempo real.

Historia y Evolución

Orígenes de los sistemas digitales:

Los primeros sistemas digitales se remontan a la invención del ábaco y las primeras calculadoras mecánicas. Con el tiempo, la tecnología avanzó a las computadoras electrónicas en la década de 1940, como la ENIAC.

Evolución tecnológica:

Desde las primeras computadoras de tubos de vacío hasta los transistores, y finalmente los circuitos integrados y los microprocesadores. La Ley de Moore ha desempeñado un papel crucial en el incremento exponencial de la capacidad de procesamiento y la miniaturización de los componentes.

MAGAZINE

ENIAC: El primer computador que Marcó un Antes y un Después en la Historia de la Tecnología

El proyecto ENIAC (Computador e Integrador Numérico Electrónico), originalmente conocido como "Proyecto PX", se diseñó y construyó entre 1943 y 1945 en la escuela Moore, de la Universidad de Pensilvania.

• Hardware:

CPU: Unidad central de procesamiento, el "cerebro" del sistema que ejecuta las instrucciones.

Memoria: RAM y almacenamiento de datos permanentes (discos duros, SSDs).

Dispositivos de entrada/salida: Teclados, pantallas, impresoras, etc.

Software:

Sistemas operativos: Administran los recursos del hardware y proporcionan servicios a las aplicaciones.

Aplicaciones: Software diseñado para realizar tareas específicas, como procesadores de texto, navegadores web, etc.

• Redes:

LAN y WAN: Redes de área local y redes de área amplia.

Internet: Red global que conecta millones de redes privadas, públicas, académicas y gubernamentales.

Aplicaciones Actuales

Industria:

- •Automatización industrial: Uso de sistemas digitales para controlar y monitorear procesos de manufactura.
- •Robótica: Implementación de robots en fábricas y procesos logísticos.

Telecomunicaciones:

- •Telefonía móvil: Redes 4G y 5G para comunicación inalámbrica.
- •Internet: Proveedores de servicios de Internet y aplicaciones web.

Salud:

- •Telemedicina: Consultas médicas a distancia mediante videoconferencias.
- •Gestión de datos médicos: Sistemas de registros electrónicos de salud (EHR) para almacenar y gestionar información médica.

Tendencias futuras.

Inteligencia Artificial y Machine Learning:

Procesamiento de datos: Algoritmos que analizan grandes volúmenes de datos para obtener información útil.

Automatización: Sistemas autónomos que pueden aprender y adaptarse a nuevas situaciones.

Internet de las Cosas (IoT):

Dispositivos conectados: Electrodomésticos, automóviles y otros dispositivos que se comunican entre sí y con usuarios a través de Internet.

Aplicaciones: Hogares inteligentes, ciudades inteligentes, etc.

Ciberseguridad:

Protección de datos: Medidas para proteger la información de accesos no autorizados.

Normativas y regulaciones: Políticas y leyes para asegurar la privacidad y seguridad de los datos.

Diferencia entre electrónica analógica y electrónica digital

Manejo y procesamiento de la información.

Electrónica Analógica

Señales: Trabaja con señales continuas que pueden tener cualquier valor dentro de un rango. Las señales analógicas varían de forma continua en el tiempo.

Componentes: Utiliza componentes como resistencias, capacitores, inductores, transistores y amplificadores operacionales. Ejemplos: amplificadores de audio, radios AM/FM, etc.

Precisión: La precisión depende de la calidad de los componentes y del ruido en el circuito. Puede ser afectada por interferencias y distorsiones.

Aplicaciones: Se utiliza en sistemas de audio, procesamiento de señales, sensores analógicos, comunicaciones de radiofrecuencia, etc.

Electrónica Digital

Señales: Trabaja con señales discretas que representan valores binarios (0 y 1). Las señales digitales tienen dos niveles distintos: alto (1) y bajo (0).

Componentes: Utiliza componentes como puertas lógicas (AND, OR, NOT), flip-flops, contadores, registros, microprocesadores y circuitos integrados digitales. Ejemplos: computadoras, teléfonos móviles, microcontroladores, etc.

Precisión: La precisión es generalmente alta y menos susceptible al ruido y las interferencias. La exactitud está determinada por la resolución y la frecuencia de muestreo.

Aplicaciones: Se utiliza en computación, procesamiento de datos, comunicaciones digitales, controladores industriales, dispositivos embebidos, etc.

Analógico

1 ¿Cuál es la diferencia principal entre una señal analógica y una señal digital?	
2Menciona tres componentes típicos utilizados en la electrónica analógica.	
3 Menciona tres componentes típicos utilizados en la electrónica digital.	
4 ¿Por qué los sistemas digitales son menos susceptibles al ruido comparados con los sistemas a	analógicos?
5 Explica cómo se representa la información en un sistema digital.	
6 Proporciona un ejemplo de una aplicación común de la electrónica analógica.	
7 Proporciona un ejemplo de una aplicación común de la electrónica digital.	
8 ¿Qué es la Ley de Moore y cómo ha influido en la evolución de los sistemas digitales?	
9 Describe brevemente la importancia del Internet de las Cosas (IoT) en los sistemas digitales m	odernos.
10 ¿Cómo están transformando la inteligencia artificial y el aprendizaje automático los sistemas	digitales?
L1 Menciona dos aplicaciones de los sistemas digitales en el sector salud.	
12 ¿Cuáles son algunos de los desafíos actuales en ciberseguridad para los sistemas digitales?	

Imprime y, luego, pinta o colorea. 8 3 (3) 2