Computational Analysis of Sound and Music

Introduction

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

About me

Dr.-Ing. Jakob Abeßer

Research Visits

	Week	Date 1	Date 2
I. Foundations	1	Audio	Audio
	2	Audio	ML/DL
	3	ML/DL	ML/DL
II. Applications	4	Music Information Retrieval	
	5		
	6		
	7	Environmental Sound Analysis	
	8		
III. Research Project	9	Intro / Topics	Literature research
	10	Datasets	ML/DL pipeline
	11	Evaluation/metrics	Visualization/Paper writing
	12	Wrap-Up, Paper Deadline	Project presentation, Q/A

- Final grade
 - Written exam (90 min): 75 %
 - Research project: paper (2-3 pages) + presentation (5 min): 25 %
- Hybrid lecture-seminar structure (45 min 45 min)
- Regular announcements on https://moodle.tu-ilmenau.de
- Requirements
 - Laptop + headphones
 - Access to https://colab.google/

- Teaching Approach
 - Task Introduction → Traditional Approaches → DL-based Approaches
- Course website (slides, notebooks, audio examples, demos)
 - https://machinelistening.github.io/casm
- Feedback → jakob.abesser@idmt.fraunhofer.de (Subject: "[CASM]: ...")
 - Typos, mistakes, questions ...
- Insights into projects & current research @ Fraunhofer IDMT
- Open student topics

Research Project

- Learn "life-cycle" of a research project (essential skill for academia / industry R&D)
 - Literature & dataset research
 - Data processing → feature extraction → machine learning pipeline
 - Model evaluation
 - Data visualization / scientific writing
- Topics → Teams (~2 students)
- Outcome: scientific paper (2-3 pages) + presentation (5 min)

Books

Fig. 2

Fig. 3

- Virtanen, T., Plumbley, Mark D., and Ellis, Dan: Computational Analysis of Sound Scenes and Events, Springer, 2018.
- Müller, M.: Fundamentals of Music Processing Using Python and Jupyter Notebooks, Springer, 2021.
- Goodfellow, I., Bengio, Y., and Courvill, A.: Deep Learning, The MIT Press, 2016.

- Python
 - https://audiolabs-erlangen.de/PCP (Preparation Course Python)
- Digital Signal Processing
 - https://brianmcfee.net/dstbook-site/content/intro.html (Digital Signals Theory online book)

- Machine Learning / Deep Learning
 - https://www.deeplearningbook.org/
 - https://machinelearningmastery.com
 - http://www.coursera.org (online courses)
 - http://www.udemy.com (online courses)

- Music Information Retrieval
 - https://www.audiolabs-erlangen.de/FMP (iPython notebooks)
 - https://musicinformationretrieval.com (iPython notebooks)
- Environmental Sound Recognition
 - http://dcase.community/ (DCASE challenges & workshop)

- Numerical computing / Statistics / Visualization
 - numpy, scipy, pandas, matplotlib, seaborn
- Machine Learning / Deep Learning
 - scikit-learn, tensorflow, pytorch
- Audio & Music Processing
 - librosa, soundfile, pysox
 - madmon
 - libfmp, synctoolbox, libtsm

References

Images

- Fig. 1: https://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-63450-0
- Fig. 2: https://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-69808-9
- Fig. 3: https://mitpress.mit.edu/books/deep-learning

