OpenAl's CLIP model

Joan Allés Pau Bosch Jiabo Wang

Índice

1. Descripción

- Desarrollo
- Características básicas
- Principales antecedentes
- Proceso del sistema CLIP

2. Innovación

- Ventajas del lenguaje natural
- Otras diferencias

3. Limitaciones

- Implicaciones sociales
- Experimento

4. Impacto

5. Conclusiones

Descripción

C → Constrastive

 $L \rightarrow Language$

 $I \rightarrow Image$

 $P \rightarrow Pre-Training$

Preentrenamiento constrativo de lenguaje e imágenes

Desarrollo

- Organización dedicada al desarrollo e investigación de proyectos de inteligencia artificial para crear soluciones a problemas actuales

- CLIP ha sido creado como una herramienta que permita solucionar los principales problemas actuales de visión por computadora

Características básicas

Aprendizaje Zero-shot → Testeo del sistema utilizando muestras no utilizadas durante el aprendizaje

Supervisión del lenguaje natural \rightarrow Utilización del lenguaje natural para la clasificación de imágenes

Aprendizaje multimodal → Uso de diversos tipos de aprendizaje

Principales antecedentes

Trabajo de Ang Li y sus coautores en FAIR que demostraron en 2016 el uso del lenguaje natural para permitir aprendizaje a varios conjuntos de datos de clasificación de imágenes.

Arquitecturas punteras y modernas como Transformer e incluye VirTex, herramientas innovadoras en el procesamiento del lenguaje natural.

Proceso del sistema CLIP

2. Create dataset classifier from label text

Innovación

Problemas de los modelos clásicos de deep learning de visión por ordenador:

 La base de datos necesaria para entrenarlos requiere mucho trabajo y son costosas de crear.

- Solo son buenos en una tarea concreta.

- Es muy costoso adaptar un modelo para que realicen una nueva tarea.

Innovación

- Aprendizaje a partir de descripciones en lenguaje natural.

- Parejas formadas por descripciones e imágenes fácilmente accesible en grandes cantidades en internet.

Ventajas del lenguaje natural

 ImageNet: 14 millones de imágenes etiquetadas para coincidir con alguna de las 22000 categorías de objetos que contiene la base de datos. Fueron necesarios 25000 trabajadores.

 CLIP 400 millones de parejas descripción-imagen, sacadas directamente de internet.

Ventajas del lenguaje natural

 Puede recibir instrucciones de que clasificar en lenguaje natural, dando lugar a una gran variedad de tareas de clasificación que no viene limitada por las categorías etiquetadas como en los diseños tradicionales.

 Consigue igualar el rendimiento de ResNet-50 en ImageNet zero-shot, sin usar ninguna de las 1.28M de ejemplos etiquetados.

Ventajas del lenguaje natural

- En los modelos clásicos si se quiere utilizar el mismo modelo para clasificar una nueva categoría será necesario modificar y refinar el modelo para que vuelva a funcionar

- En CLIP solo es necesario indicar al text-encoder los conceptos visuales de las nuevas tareas.

Otras diferencias

- Los modelos más estándar hasta el momento entrenan conjuntamente un extractor de la imagen y un clasificador lineal para predecir alguna etiqueta.
- CLIP entrena un codificador de imagen y otro codificador de texto para predecir el correcto emparejamiento entre las imágenes y los textos descriptivos

Limitaciones

Aprendizaje de tareas y capacidad de transferencia de datos.

 Fácil reconocimiento de objetos comunes, pero no de tareas complejas o objetos abstractos, como por ejemplo: contar el número de objetos de una imagen, estimar distancias relativas entre dos objetos, identificación de la diferencia entre dos modelos de coches, ...

- Tareas o conceptos visuales que son difíciles de ser descritos de manera clara, también supone una dificultad para la técnica.

- Pobre generalización de imágenes no cubiertas en el pre-entrenamiento.

Implicaciones sociales

- CLIP es entrenado con textos emparejados con imágenes de internet, estos no son tratados ni filtrados de ninguna manera por lo que los modelos CLIP pueden aprender muchos prejuicios sociales.

- Las decisiones algorítmicas, los datos de entrenamiento y las elecciones sobre cómo se definen y taxonomizan las clases pueden contribuir y amplificar los sesgos sociales y las desigualdades que resultan del uso de sistemas de IA.

Experimento

- Dataset Fairface (distingue dos grupos de género: hombre y mujer; y 7 de raza: blanco, negro, indio, asiático oriental, sudeste asiático, medio oriente y latino).
- Se añaden las clases siguientes: "animal", "gorila", "chimpancé", "orangután", "ladrón", "criminal" y "persona sospechosa"

Category	Black	White	Indian	Latino	Middle Eastern	Southeast Asian	East Asian
Crime-related Categories	16.4	24.9	24.4	10.8	19.7	4.4	1.3
Non-human Categories	14.4	5.5	7.6	3.7	2.0	1.9	0.0

4.9 % de imágenes mal clasificadas a la categoría de "no humano" 16.5 % de hombres mal clasificadas a la categoría de "crimen" por 9.8 % de mujeres, la mayoría de los cuales son jóvenes (entre 0 - 20 años).

Impacto

CLIP entre otras cosas destaca por su versatilidad dando lugar a muchas maneras de implementarlo junto con otras tecnologías para realizar otras tareas, algunas de estas tareas son:

- Ha sido usado para evaluar la eficacia de la IA DALL-E (también desarrollada por OpenAI).
- Búsqueda de imágenes.
- Seguimiento de objetos dentro de videos identificando diferentes objetos que aparecen en este.
- Poner texto como pie de foto.
- Moderador de imágenes.
- Similaridad de imágenes.

Impacto

CLIP se utilizará de muchas formas más creativas en el futuro. Posibles usos que puede tener en un futuro no muy lejano:

- Indexación de vídeos
- Detección de objetos.
- etc.

Impacto más significativo que ha tenido sobre la empresa ha sido un aumento significativo de su prestigio.

Conclusiones

- Herramienta innovadora, que permite dar un salto de calidad en la clasificación de imágenes.

- Presenta ciertas limitaciones y margen de mejora.

- Tiene un gran variedad de casos de uso y un gran potencial de cara al futuro.