1. convex function (strict)

$$\forall x, y \in D, D \text{ convex}, \alpha \in (0, 1) f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

eg:

$$f(x) = c^T x + b$$

$$f(x) = x^T A x + b^T x + c$$

definition 1: A is SPD $\iff x^T A x > 0$, for all $x \neq 0$, A is symmetric

A is SPSD $\iff x^T A x \ge 0$, for all $x \ne 0$, A is symmetric

 $A \text{ is SPSD} \implies f \text{ is convex}$

 $A ext{ is SPD} \implies f ext{ is strictly convex}$

definition 2: A is SPD \iff A is symmetric and $(\exists a > 0)(\forall x \in \mathbb{R})x^TAx \geq ax^Tx$

show def 2
$$\Longrightarrow$$
 def 1:
so $\exists a > 0$ s.t. $x^T A x \ge a x^T x > 0$
 $x \ne 0 \Longrightarrow x^T x > 0$

show def $1 \implies 2$:

from def 1: $x^T A x > 0, \forall x \neq 0$

let $B = \{x : ||x|| = 1\}$

consider $\min_{\|x\|_2=1} x^T A x = \min_{x \in B} x^T A x = \bar{x}^T A \bar{x}, \|\bar{x}\|=1$

 $x^T A x$ is continuous for any x

definition for continuous: $(\forall \epsilon > 0)(\exists \delta > 0)||x - y|| < \delta \implies |\delta(x) - \delta(y)| < \epsilon$

use compactness to bound sequence limit

show B is compact:

(a) B is closed:

B is closed
$$\iff \forall \{x_n\} \subset B \land x_n \to x^* \implies x^* \in B$$
 suppose $\{x_n\}, x_n \in B(\|x_n\|_{x}=1) \land x_n \to x^*$ want to show $x^* \in B(ie: \|x_n\|_{x}=1)$ since $x_n \to x^*$, for any $\epsilon > 0, \exists N \text{ s.t. for } n \in N, \|x_n - x^*\| < \epsilon$ now consider $\|x^*\|_2 - 1 = \|x^*\|_2 - \|x_n\|_2 \le \|x^* - x_n\|$ $\|x^*\|_2 - 1 = 0 \implies \|x^*\|_2 = 1 \implies x^* \in B$

(b) B is bounded:

B is bounded \iff $(\exists M)(\forall x \in B)||x|| \le M$ choose any $x \in \mathbb{R}^n, x \ne 0$

let
$$y = \frac{x}{\|x\|_2}$$

 $\|y\|_2 = \|\frac{x}{\|x\|_2}\| = \frac{1}{\|x\|_2}x$

$$y^{T}Ay \ge \alpha y^{T}Ay = \frac{x^{T}}{\|x\|_{2}} A \frac{x}{\|x\|_{2}} = \frac{1}{\|x\|_{2}^{2}} = \alpha x^{T}x$$

N skew symmetric
$$\iff N^T = -N$$

 $x^T N x$, N skew symmetric $\implies x^T N x = 0$
 $(x^T N x)^T = x^T N^T x = -x^T N x$
 $x^T N x = -x^T N x \implies N = 0$
 $A = N + S$, A SPD
 $x^T (N + S) x^T = x^T S x$