5.10.1 a) 4kB page, 12-bit page offset, 15-12b pirtual page number $4669 = 0 \times 1 \times 23D$ Page fault, $disk \Rightarrow physical$ page 13(D), $\Rightarrow TLB$ slot 3 $2227 = 0 \times 08B3$ TLB Miss, $\Rightarrow TLB$ slot 0 $13916 = 0 \times 365C$ TLB Hit (slot 2) $34587 = 0 \times 87B$ Page fault, $disk \Rightarrow physical$ page 14(E), $\Rightarrow TLB$ slot 12 $12608 = 0 \times 3140$ 12B Hit (slot 2) $12608 = 0 \times 3140$ 12B Hit (slot 2) $12608 = 0 \times 2049$ Page fault, $disk \Rightarrow physical$ page $15(F) \Rightarrow TLB$ slot 0

TLB:

V	Tag	PPN
	C	15 (F)
	8	14(E)
	3	6
	В	12

PT: # V PPN 5

1 1 D

2 0 disk

3 1 6

4 1 9

5 1 disk

7 1 disk

7 1 disk

A 1 θ 3

B 1 θ 3

B 1 θ 3

C 1 F

. 20a) 16 KB page, 14-bit page offset, 15-146 virtual page number

virtual addr	virtual number.	
0x 123D	D	TLB miss, PP 5 => TLB slot 3
0x 08 B 3	0	7LB Hit Stot 3
0x365C	0	TUB Hit Slot 3
0x 871B		Page fant, disk ⇒ PP 13 (D) => TLB slot 0
OX BEEB	10 = 2	Page fault, disk => PP14(E) => TLB Slot 1
Dx 3140	O	TLB Hit slot 3
Ox C049	11=3	TLB Hit slot 2

PT: # V PPN

Large Page size decreases the page fault rate generally but if the program use addresses in very sparse fashion the cost of fothing larger page from disk is high.

1 0 -> 1 disk -> 13 (D)

2 0 → 1 disk → 14(E)

BOA) 2 way set associative 15-12 b page number, 15-136 victor pa, 126 set

tag set virtual addr VPN Page fault, disk ⇒ PPN 13 (D) ⇒ TLB set 1 slot 1 000=0 EX123D O TLB Miss, PPN 5 > TLB set 0 slot 0 0x 0 8 B 3 TLB Miss, PPN 6 => TLB set 1 slot 0 00=1 1 0x 765C Page fait, disk > PPN 14 (E) > TLB set 0 slot 1 100=4 0 0x 871 B TLB Miss, PPN 12(C) > TLB set 1 slot 1 10/=5 1 OXBEE6 TLB Hit set 1 slot C 00/=1 1 0x 3140 Plage failt, disk > PPN 15 (F) > TLB set 0 slot 0 Dx C049 0 110=6 0 PPN V tag PPN tag 1 4 14(E) Set 1

I continue.

```
Direct mapped: 15-14b tag, 13-12b set
      tag set (index)
                         Page Fault, disk > PPN 13(D) >> TLB index /
             -
        0 0
                      TLB miss, PPN5 >> TLB index o
                        TLB miss, PPNB => TLB Index 3
         0 11=3
                       Thage font, disk > PPN14(E) > TLB index 0
        0 = 1 0
                        TLB mas, PPN 12(c) => TLB index 3
        •10=2 11=3
      00=0 11=3 TLB MB3, PPN 6=> TLB index 3
                         Page fatt, disk => PPN 15 (F) => TLB inclex 0
      11=3 00=0
        1 V tag PPN
TLB:
                              TLB is important to descrease the time
       0 1 3 15(F)
                             to access memory to traplate.
       1 1 0 13(0)
               3 6
```

. 4 # Page offset = log_2(page size)

Page number (virtual) = # addr - # Page offset

Page table entries = 2 # page number

Page table size = # page table entries x entry size

a). \$\frac{432-\log_28k}{2} \times 4 = 2 \frac{21}{\text{bytes}} \text{ per App}

Total =
$$5 \times 2^{21}$$
 bytes

5.11.10) Similar to previous, # Page take entry = $2^{43-\log_2 4k}$ = 2^{31} Page table size = $2^{31} \times 4 = 2^{33}$ by te = 868

5.11.2 a) Each page can contain $\frac{4}{8}kB/4B = 4k = 2^{10}$ entries as a page table. $(2^{10})^{\frac{4}{10}} = 2^{\frac{49}{10}} = 2^{\frac{31}{10}}(4-|evel|PT)$ 2 address transitum is needed.

5.12.1 a) Zero hit..

Target	Hit/Miss	· Set O	Set D	set I	set 1
0	b /\	0			
2	M	D	2		
4	\wedge	4	2		
8	M	4	8	·	
<u>:</u> 0	M	10	8		
12	M	10	12		
14	M	14	12		
16	M	14	16		
0	M	0	16		
-12.2 (a)	One hi	t.			
Target	H/M	Set 0	Set 0	Set 1	Set 1
0	M	Ö			
<u></u>	$A \land$	0	<u> </u>		
4	M	0	4		
8	M	0	8		
10	M	0	10		
12	M	O	12		
14	Μ	0	14		
16	M	0	16		
0	WH	0	16		