

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

Лабораторная работа № 1 по дисциплине «Технологии машинного обучения»

«Разведочный анализ данных. Исследование и визуализация данных»

Студент: Коростелев Андрей Михайлович

Группа: ИУ5-64Б

Описание задания:

- Выбрать набор данных (датасет).
- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Текст программы и экранные формы с примерами выполнения программы:

ЛР №1

Разведочный анализ данных. Исследование и визуализация данных.

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных, содержащий информацию о средних ценах на дома в Калифорнии.

Этот набор данных служит отличным введением в реализацию алгоритмов машинного обучения, поскольку требует элементарной очистки данных, имеет легко понятный список переменных и имеет оптимальный размер.

Датасет состоит из одного файла:

'housing.csv'

Набор данных содержит следующие колонки:

- longitude долгота места расположения дома;
- latitude широта места расположения дома;
- housing_median_age средний возраст дома в квартале;
- total_rooms общее количество комнат в квартале;
- total_bedrooms общее количество спален в квартале;
- population общее количество людей, проживающих в квартале;
- households общее количество домохозяйств, групп людей, проживающих в пределах одного дома, в квартале
- median_income средний доход домохозяйств в пределах квартала (измеряется в десятках тысяч долларов США);
- median_house_value средняя стоимость дома для домохозяйств в пределах квартала (измеряется в долларах США) целевой признак;
- ocean_proximity Расположение дома у моря / океана.

Импорт библиотек

Импортируем библиотеки с помощью команды import

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка данных

```
data = pd.read_csv('data/housing.csv', sep=",")
```

2) Основные характеристики датасета

```
# Первые 5 строк датасета
data.head()
    longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity
 0
     -122.23
               37.88
                                     41.0
                                                880.0
                                                               129.0
                                                                          322.0
                                                                                      126.0
                                                                                                     8.3252
                                                                                                                       452600.0
                                                                                                                                      NEAR BAY
     -122.22
               37.86
                                     21.0
                                               7099.0
                                                               1106.0
                                                                         2401.0
                                                                                      1138.0
                                                                                                     8.3014
                                                                                                                       358500.0
                                                                                                                                      NEAR BAY
 1
 2
     -122.24
               37.85
                                     52.0
                                               1467.0
                                                               190.0
                                                                          496.0
                                                                                      177.0
                                                                                                     7.2574
                                                                                                                       352100.0
                                                                                                                                     NEAR BAY
     -122.25
                                               1274.0
                                                                           558.0
                                                                                                     5.6431
                                                                                                                       341300.0
               37.85
                                     52.0
                                                               235.0
                                                                                      219.0
                                                                                                                                      NEAR BAY
     -122.25
               37.85
                                     52.0
                                               1627.0
                                                               280.0
                                                                           565.0
                                                                                      259.0
                                                                                                     3.8462
                                                                                                                       342200.0
                                                                                                                                      NEAR BAY
# Размер датасета (строки, столбцы)
data.shape
(20640, 10)
# Количество строк
total_count = data.shape[0]
print('Bcero строк: {}'.format(total_count))
Всего строк: 20640
# Список колонок
data.columns
Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
    'total_bedrooms', 'population', 'households', 'median_income',
        'median_house_value', 'ocean_proximity'],
       dtype='object')
# Список колонок с типами данных
data.dtypes
longitude
                         float64
latitude
                         float64
housing_median_age
                         float64
                         float64
total rooms
total bedrooms
                         float64
population
                         float64
households
                         float64
median_income
                         float64
median_house_value
                         float64
ocean_proximity
                          object
dtype: object
# Основные статистические характеристки набора данных
data.describe()
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
may	114 210000	44.050000	52,000000	20220 000000	6445 000000	25692 000000	6002 000000	15 000100	500004 000000

3) Визуальное исследование датасета

Диаграмма рассеяния

Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости. Не предполагается, что значения упорядочены (например, по времени). Рассмотрим распределение median_house_value и median_income с признаком ocean_proximity.

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='median_house_value', y='median_income', data=data, hue='ocean_proximity')
```


Гистограмма

Позволяет оценить плотность вероятности распределения данных. Рассмотрим плотность pacпределения median_house_value:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['median_house_value'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function an
d will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar fle
xibility) or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)
```

<AxesSubplot:xlabel='median_house_value', ylabel='Density'>

Jointplot

Комбинация гистограмм и диаграммы рассеивания.

```
sns.jointplot(x='median_house_value', y='median_income', data=data)
```

<seaborn.axisgrid.JointGrid at 0x1e125a616a0>

Парные диаграммы

Выводится матрица графиков. На пересечении строки и столбца, которые соответстуют двум показателям, строится диаграмма рассеивания. В главной диагонали матрицы строятся гистограммы распределения соответствующих показателей.

sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x1e12572d2b0>

Ящик с усами

Представляет собой одномерное распределение вероятности.

sns.boxplot(x='ocean_proximity', y='median_house_value', data=data)

<AxesSubplot:xlabel='ocean_proximity', ylabel='median_house_value'>

Скрипичная" диаграмма

От ящика с усами отличается добавлением распределения плотности.

 $\verb|sns.violinplot(x='ocean_proximity', y='median_house_value', data=data)|\\$

<AxesSubplot:xlabel='ocean_proximity', ylabel='median_house_value'>

4) Информация о корреляции признаков

data.corr()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
longitude	1.000000	-0.924664	-0.108197	0.044568	0.069608	0.099773	0.055310	-0.015176	-0.045967
latitude	-0.924664	1.000000	0.011173	-0.036100	-0.066983	-0.108785	-0.071035	-0.079809	-0.144160
housing_median_age	-0.108197	0.011173	1.000000	-0.361262	-0.320451	-0.296244	-0.302916	-0.119034	0.105623
total_rooms	0.044568	-0.036100	-0.361262	1.000000	0.930380	0.857126	0.918484	0.198050	0.134153
total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.000000	0.877747	0.979728	-0.007723	0.049686
population	0.099773	-0.108785	-0.296244	0.857126	0.877747	1.000000	0.907222	0.004834	-0.024650
households	0.055310	-0.071035	-0.302916	0.918484	0.979728	0.907222	1.000000	0.013033	0.065843
median_income	-0.015176	-0.079809	-0.119034	0.198050	-0.007723	0.004834	0.013033	1.000000	0.688075
median_house_value	-0.045967	-0.144160	0.105623	0.134153	0.049686	-0.024650	0.065843	0.688075	1.000000

Корреляционная матрица содержит коэффициенты корреляции между всеми парами признаков.

Корреляционная матрица симметрична относительно главной диагонали. На главной диагонали расположены единицы (корреляция признака самого с собой).

На основе корреляционной матрицы можно сделать следующие выводы:

Целевой признак (средняя стоимость дома в квартале) наиболее сильно коррелирует со средним доходом домохозяйств в квартале (0.68). Этот признак обязательно следует оставить в модели. Целевой признак отчасти коррелирует с количеством комнат (0.13) и средним возрастом домов в квартале (0.10). Эти признаки стоит также оставить в модели. Целевой признак слабо коррелирует с остальными. Скорее всего эти признаки стоит исключить из модели, возможно они только ухудшат качество модели. По умолчанию при построении матрицы используется коэффициент корреляции Пирсона. Возможно также построить корреляционную матрицу на основе коэффициентов корреляции Кендалла и Спирмена. На практике три метода редко дают значимые различия.

Heatmap

Показывает степень корреляции различными цветами.

```
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

<AxesSubplot:>


```
# Изменение цветовой гаммы sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

<AxesSubplot:>


```
# Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

<AxesSubplot:>


```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
fig.suptitle('Корреляционные матрицы, построенные различными методами')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```


