IP Next Generation (IPng)

Robert E. Gilligan

(Gilligan@eng.sun.com)

Sun Microsystems, Inc.

TALK OVERVIEW

- $\ Background$
- IPng Protocol
- Addressing
- Transition

WHY IS A NEW IP NECESSARY

The Internet is Growing Exponentially

- Currently Doubling Every 12 Months
- Now about ~ 45,000+ Networks, ~ Millions Hosts

Problem is in Two Areas

- Routing Table Size and Computation
- IP Address Exhaustion

IPng Provides for Expanded Addressing and Scalable Routing

INTERNET GROWTH

INTERNET GROWTH (LOG SCALE)

5

IP NEXT GENERATION

New Version of the Internet Protocol

Assigned Version 6 (IPv6)

Expands Scope of Routing and Addressing to Meet Internet Growth

Solves Next Set of Pressing Problems

May Facilitate Migration of IPX and OSI Internetworking to IPng

Good Example of Internet Technology Evolution

CHANGES FROM IP

Larger 128-bit Hierarchical Addresses

- Supports Much Larger Internet
- Allows Embedded IEEE 802 MAC Address for Auto Configuration

Simplified Header w/ 64bit Alignment

Flow Label for Real Time Support

Flexible Extension Header Mechanism

- Security
- Route Selection

NEW FEATURES

Flow Label Used to Identify Real Time Traffic for Special Handling

Authentication and Privacy Extensions

Plug and Play Auto Configuration

Multicast Improved and Made Standard

Routing Supports Generalized Route Selection

Allows Selection of Specific Network Providers

8

IPng HEADER FORMAT

EXTENSION HEADERS

IPv6 Header	TCP Header + Da	ata		
Next Header = TCP				
IPv6 Header	Routing Header	TCP Header + Data	a	
Next Header = Routing	Next Header = TCP			
IPv6 Header	Routing Header	Fragment Header	Fragment of TCP	
Next Header = Routing	Next Header = Fragment	Next Header = TCP	Header + Data	

IPng ADDRESSING

128 Bit Addresses can Identify Large Number of End Points

340,282,366,920,938,463,463,374,607,431,768,211,456

Address Space Initially Allocated

- Provider Based Unicast
- ISO NSAP
- IPX
- Multicast
- Space Reserved for Geographic Addresses

15% Initially Assigned, 85% Reserved for Future Growth

ADDRESS FORMATS

Provider Address

010 Provider Subscriber Subnet Node ID ID ID	
--	--

Local Use Address

1111110 0000000000000	Subnet ID	Node ID
-----------------------	--------------	------------

Cluster Address

Cluster Prefix	0000000000000
----------------	---------------

IPv4 Compatibility Address

0000000000000	FFFF 0000	IPv4 Address
---------------	--------------	--------------

IPng TRANSITION

Philosophy

- Make IPv6 Implementations Compatible with IPv4
- Make it Easy to Deploy
- Get Experience Early in Transition

Goals

- Allow Incremental Upgrade of Hosts and Routers to IPv6
- Few or No Upgrade Dependencies
- Complete Transition before IPv4 Addresses Run Out

GENERAL TRANSITION MODEL

TRANSITION TECHNIQUES

Dual IP Layer

Nodes Support IPv4 and IPv6

IPv4 Compatibility Addresses

- IPv4 Addresses Embedded within IPv6 Address

IPv6 in **IPv4** Encapsulation

- Tunnel IPv6 Datagrams across IPv4 Infrastructure

IPv4 <-> IPv6 Header Translation (Optional)

Support Interoperation between IPv4-Only and IPv6-Only Hosts

IPv4 OPERATION

INTEROPERATION WITH IPv4

TUNNELING OVER IPv4

TRANSLATION BETWEEN IPv6 and IPv4

FOR MORE INFORMATION

Web Pages

http://playground.sun.com/pub/ipng/html/ipng-main.html

Document Archives

```
parcftp.xerox.com in pub/ipng
```

To Join Working Group Mailing List Send Message to:

```
majordomo@sunroof.eng.sun.com
with
subscribe ipng
in the body of the message.
```

SUMMARY

IPng is a New Version of IP

Solves Critical Current Problems

Compatible with IPv4

Improves IP in Many Areas

Builds a Strong Base for the Future