Portable Multitasking Real- Time Kernel Design and Implementation on DSP Systems

by Yin, Yen-tau

Advisor: Dr. J.S. Hu

Outline

- Introduction
- Taunix System Architecture
- Task Management
- Device Drivers
- Inter Process Communication
- Communication Network SECS-I protocol
- Future Works
- Live Demo

Introduction

- Motivation
- The problems this thesis tries to solve

Taunix System Architecture

Real-time Tasks

Unified Device Driver
Interface

Device Drivers

Task: Management Inter Process Communication

Hardware: TI 320F243 DSP

Task Management

- Portable context switch facility setjmp/longjmp
- Priority- based scheduling
 16/32- level fixed priority scheduling
- Periodical task
 - 1. one- shot or periodic
 - 2. with simple priority policy

Portable Context Switch

Use jumping buffer to form Task Control Block (TCB)

```
Jumping Buffer:
                           TCB:
   TOS
                               void (*ret_addr)();
                               void * stack_pointer;
   AR1
                               void * stack frame;
   AR0
   AR6
                                     AR6
                               int
   AR7
                               int
                                     AR7
                               char
                                      state:
                               char *
                                     caption;
```

Portable Context Switch (cont.)

Use POSIX standard function calls to implement task switch

```
Task switching:
```

```
void task_switch(TCB * from, TCB * to)
{
   if(setjmp(from) == 0)
     tlongjmp(to, 1);
}
```

Priority-based Scheduling

Use index mapping table to fast locate highest priority task.

Task State Transition

Periodic Task Scheduling

Device Drivers

- Device Switch
 Unified device driver interface
- •Blocking/Non- Blocking I/O

 Efficiency and CPU utilization
- Supported Devices

Device Switch

☐ Unified Device Driver Interface Device Switch:

```
open() close()
read() write() ioctl()
```


Blocking/Non-Blocking I/O

□ Block/non-block mode

Supported Devices

- Supported devices
 - 1. Analog- to- digital convertor
 - 2. Capture unit
 - 3. General purpose timers
 - 4. PWM
 - 5. Serial communication with SECS-I
 - 6. Watch-dog

Inter Process Communication

- Counting Semaphore
- ☐ Message Pipe/Queue

IPC - Semaphore

- Counting semaphore plus:
 - 1. Limited priority- based pending list
 - 2. Non-blocking pending

IPC - Message Pipe/Queue

SECS

□ Point- to- Point Communication

□ Master/Slave Protocol

SECS (cont.)

MATCHINETTO DECR

SECS (cont.)

Relation between Tasks, SECS virtual device and SECSd:

SECS (cont.)

SECSd Event Flow Chart:

Future Works

- □ Taunix Virtual File System
- System Call Library
- Installable Scheduling System
- □ Architecture Porting
- □ Going to GPL

Live Demo

THANK YOU VERY MUSH