5

Eigenvalues and Eigenvectors

5.5

COMPLEX EIGENVALUES

COMPLEX EIGENVALUES

- The matrix eigenvalue-eigenvector theory already developed for \mathbb{R}^n applies equally well to \mathbb{C}^n .
- So a complex scalar λ satisfied $\det(A-\lambda I) = 0$ if and only if there is a nonzero vector x in \mathbb{C}^n such that $Ax = \lambda x$.

• We call λ a (complex) eigenvalue and x a (complex) eigenvector corresponding to λ .

COMPLEX EIGENVALUES

- Example 1 If $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then the linear transformation $x \mapsto Ax$ on \mathbb{R}^2 rotates the plane counterclockwise through a quarter-turn.
- The action of A is periodic, since after four quarter-turns, a vector is back where it started.
- Obviously, no nonzero vector is mapped into a multiple of itself, so A has no eigenvectors in \mathbb{R}^2 and hence no real eigenvalues.
- In fact, the characteristic equation of A is

$$\lambda^2 + 1 = 0$$

COMPLEX EIGENVALUES

• The only roots are complex: $\lambda = i$ and $\lambda = -i$. However, if we permit A to act on \mathbb{C}^2 , then

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ 1 \end{bmatrix} = i \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Thus i and -i are eigenvalues, with $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$ as corresponding eigenvectors.

REAL AND IMAGINARY PARTS OF VECTORS

- The complex conjugate of a complex vector x in \mathbb{C}^n is the vector \bar{x} in \mathbb{C}^n whose entries are the complex conjugates of the entries in x.
- The **real** and **imaginary parts** of a complex vector x are the vectors Re x and Im x in \mathbb{R}^n formed from the real and imaginary parts of the entries of x.

REAL AND IMAGINARY PARTS OF VECTORS

• Example 4 If
$$x = \begin{bmatrix} 3-i\\i\\2+5i \end{bmatrix} = \begin{bmatrix} 3\\0\\2 \end{bmatrix} + i \begin{bmatrix} -1\\1\\5 \end{bmatrix}$$
, then

Re
$$x = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$$
, Im $x = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$, and $\bar{x} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} - i \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3+i \\ -i \\ 2-5i \end{bmatrix}$

EIGENVALUES AND EIGENVECTORS OF A REAL MATRIX THAT ACTS ON

■ Theorem 9: Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ ($b \neq 0$) and an associated eigenvector v in \mathbb{C}^2 . Then

$$A = PCP^{-1}$$
, where $P = [\text{Re } \lor \text{Im } \lor]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$