## 2.1 Graphs

- On a number line, each point corresponds to a number
- -4-3-2-10 | 234
- On a plane, each point corresponds to an ordered pair
- We use two perpendicular number lines, called axes to identify points on a plane
- The variable x usually represented by on the horizontal axis and the variable y on the vertical axis, so we often call such a plane an **x,y coordinate system**.
- to label a point on the x, y coordinate system, we use a pair of numbers in the form (x,y). the number in the pair are called **coordinates**



**Example 1:** Plot the points (-4,3), (-5,-3), (0,4), (4,-5) and (2.5,0)



**Example 2:** Plots the points (-2,5), (3,-1), (0,-1), (-2,-4), and (4,0)



## **Quadrants and Scales**

• The horizontal axis and the vertical axis divide the plane into four regions or quadrants.



**Example 3:** Plots (10,44), (14,120), (20,130), and (8,150)



## **Solution of Equations**

**Example 4:** Determine whether (4,2), (-1,-4), and (2,5) are solutions of y=3x-1

$$(4,2): \quad 4=3\chi-1 \Rightarrow 2=3(4)-1 \Rightarrow 2=11 \Rightarrow (4,2) \text{ is not a soln.}$$

$$(-1,-4): \quad -4=3(-1)-1 \Rightarrow -4=-3-1 \Rightarrow -4=-4 \Rightarrow (-1,-4) \text{ is a soln.}$$

$$(2,5): 5 = 3(2)-1 \Rightarrow 5=6-1 \Rightarrow 5=5 \Rightarrow (2,5)$$
 îs a soln.

**Example 5**: Determine whether (7, -1) is a solution of x - y = 6

$$7-(-i)=6 \implies 8=6 \implies (7,-i) \text{ is }$$

$$\text{not a}$$

$$\text{soln.}$$

**Example 6**: Graph y = x, using a table of values





**Example 7**: Graph y = x + 1, using a table of values





**Example 8**: Graph y = 2x - 1, using a table of values.



## Example 9: Graph





Example 10: Graph

$$y = -13x$$



Linear equations: 
$$ax + by + c = 0$$
 or  $y = mx + c$ 

Nonlinear Equations

**Nonlinear Equations** 

For many equations, the graph is not a straight line. Graphing these nonlinear equations require plotting many points in order to see the general shape of the graph.

**Example 11**: Graph using a table of values y = |x|

| X      | y |
|--------|---|
| D      | O |
| -1     | 1 |
| -2     | 2 |
| -3     | 3 |
| ١      | 1 |
| 2      | 2 |
| 3<br>3 | 3 |



**Example 12:** Graph using a table of values.

$$y = x^2 + 5$$

