ZMA - BI-SPOL-34

Limita a derivace funkce (definice a vlastnosti, geometrický význam), využití při vyšetřování průběhu funkce.

Obsah

1	Lim	ita funkce	2		
	1.1	Definice	2		
	1.2	ϵ - δ definice	2		
	1.3	Heineho věta	2		
	1.4	Jednostraná limita	3		
	1.5	Heineho věta pro jednostranné limity	3		
	1.6	Vlastnosti	3		
	1.7	Důsledek heineho věty	4		
	1.8	Nerovnost	4		
	1.9	Limita sevřené funkce	4		
2	Der	vace funkce	5		
	2.1	Definice	5		
	2.2	Tečna	5		
	2.3	Operace	6		
		2.3.1 Sčítání, násobení, dělení	6		
		2.3.2 Složená funkce	6		
		2.3.3 Inverzní funkce	6		
3	Průběh funkce				
	3.1	Spojitost	7		
	3.2	Extrémy funkce	7		
	3.3	Věty o přírustku funkce	8		
		3.3.1 Rolleova	8		
		3.3.2 Lagrangeova	8		
	3.4	Důsledky	8		
		3.4.1 Rostoucí, klesající, konstantní	9		
		3.4.2 Konvexní, konkávní	9		
		3.4.3 Lokální minimum a maximum	9		
		3.4.4 Inflexní bod	9		
		3.4.5 Asymptoty	9		
4	Tab	ulky	10		

1 Limita funkce

1.1 Definice

Buďte f reálná funkce reálné proměnné a $a \in \mathbb{R}$ ($\mathbb{R} = \mathbb{R} \cup \pm \infty$). Nechť f je definovaná na okolí bodu a, s možnou výjimkou bodu a samotného. Řekneme, že $c \in \mathbb{R}$ je limitou funkce f v bodě a, právě když pro každé okolí H_c bodu c existuje okolí H_a bodu a takové, že z podmínky $x \in H_a \setminus \{a\}$ plyne $f(x) \in H_c$.

V symbolech:

$$(\forall H_c)(\exists H_a)(\forall x \in D_f)(x \in H_a \setminus \{a\} \implies f(x) \in H_c).$$

Tuto skutečnost zapisujeme:

$$\lim_{x \to a} f(x) = c, \lim_{a} f = c.$$

1.2 ϵ - δ definice

$$(\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in D_f) (0 < |x - a| < \delta \implies |f(x) - c| < \epsilon).$$

1.3 Heineho věta

 $\lim_{x\to a} f(x) = c$, právě když je f definována na okolí bodu a (s možnou výjimkou bodu a) a pro každou posloupnost $(x_n)_{n=1}^{\infty}$ s limitou a a splňující

$$\{x_n \mid n \in \mathbb{N}\} \subset D_f \setminus \{a\}$$

platí $\lim_{x \to \infty} f(x_n) = c$.

1.4 Jednostraná limita

Buďte f reálná funkce reálné proměnné a $a \in \mathbb{R}$. Nechť f je definovaná na levém, resp. pravém, okolí bodu a. Řekneme, že $c \in \overline{\mathbb{R}}$ je limitou funkce f v bodě a zleva, resp. zprava, právě když pro každé okolí H_c bodu c existuje levé okolí H_a , resp. pravé okolí H_a^+ , bodu a takové, že z podmínky

$$x \in H_a^- \{a\}, \text{ resp. } x \in H_a^+ \{a\},$$

plyne

$$f(x) \in H_c$$
.

Zapisujeme

$$\lim_{x \to a^{-}} f(x) = c, \text{nebo} \lim_{a^{-}} f = c,$$

resp.

$$\lim_{x \to a+} f(x) = c, \text{nebo} \lim_{a+} f = c.$$

1.5 Heineho věta pro jednostranné limity

 $\lim_{x\to a_-} f(x) = c$, resp. $\lim_{x\to a_+} f(x) = c$, právě když je f definována na levém, resp. pravém, okolí bodu a a pro každou posloupnost $(x_n)_{n=1}^{\infty}$ s limitou a a splňující

$$\{x_n \mid n \in \mathbb{N}\} \subset D_f \cap (-\infty, a), \quad \text{resp.} \quad \{x_n \mid n \in \mathbb{N}\} \subset D_f \cap (a, +\infty),$$

platí $\lim_{x \to \infty} f(x_n) = c$.

1.6 Vlastnosti

Hodnota limity závisí na okolí bodu, nikoli na samotném bodě. Funkce f v bodě a ani nemusí být definovaná, přesto limita může existovat. Příkladem je funkce $f(x) := \operatorname{sgn} \frac{1}{x^2}$, $D_f = \mathbb{R} \setminus \{0\}$. Ačkoliv 0 nepatří do D_f platí $\lim_{x \to 0} f(x) = 1$.

Nechť $a \in \mathbb{R}$. Limita $\lim_{x \to a} f(x)$ existuje a je rovna c R, právě když existují obě jednostranné limity $\lim_{x \to a_+} f(x)$ a $\lim_{x \to a_-} f(x)$ a obě jsou rovny c.

Nechť f a g jsou funkce, $a, b, c \in \overline{\mathbb{R}}$ a platí tři podmínky

- $\lim_{x \to a} g(x) = b$,
- $\lim_{x \to b} f(x) = c$,
- buď $(\exists H_a)(\forall x \in D_g \cap H_a \setminus \{a\})(g(x) \neq b)$ nebo $(b \in D_f \text{ a } f(b) = c)$.

Potom platí $\lim_{x\to a} f(g(x)) = c$.

Necht f a g jsou funkce a $a \in \overline{\mathbb{R}}$. Potom

$$\begin{split} \lim_a (f+g) &= \lim_a f + \lim_a g, \\ \lim_a f \cdot g &= \lim_a f \cdot \lim_a g, \\ \lim_a \frac{f}{g} &= \frac{\lim_a f}{\lim_a g}, \end{split}$$

platí v případě, že výrazy na pravé straně jsou definovány a v posledním případě za předpokladu, že $\frac{f}{g}$ je definována na okolí bodu a s možnou výjimkou bodu a samotného.

1.7 Důsledek heineho věty

Nechť f je funkce definovaná na okolí bodu a $a \in \overline{\mathbb{R}}$ a $(x_n)_{n=1}^\infty$, $(z_n)_{n=1}^\infty$ jsou dvě reálné posloupnosti patřící do D_f , konvergující k a a splňující podmínky $x_n \neq a$ a $z_n \neq a$ pro všechna $n \in \mathbb{N}$. Pokud limity $\lim_{n \to \infty} f(x_n)$ a $\lim_{n \to \infty} f(z_n)$ existují a jsou různé, nebo alespoň jedna z nich neexistuje, potom limita $\lim_{x \to a} f(x)$ neexistuje.

1.8 Nerovnost

Mějme funkce f a g a nechť existují limity $\lim_{x\to a} f(x)$ a $\lim_{x\to a} g(x)$. Pak platí následující dvě tvrzení:

- Pokud $\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$, potom existuje okolí H_a bodu a takové, že pro všechna $x \in H_a \setminus \{a\}$ platí f(x) < g(x).
- Pokud existuje okolí H_a bodu a takové, že pro všechna $x \in H_a \setminus \{a\}$ je $f(x) \leq g(x)$, potom $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

1.9 Limita sevřené funkce

Nechť pro funkce f, g, h a body $a, c \in \overline{\mathbb{R}}$ platí:

- existuje okolí H_a bodu a takové, že pro každé $x \in H_a \backslash \{a\}$ platí $f(x) \leq g(x) \leq h(x)$
- existují $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = c$

Potom existuje i $\lim_{x\to a} g(x)$ a je rovna c.

2 Derivace funkce

2.1 Definice

Nechť f je funkce definovaná na okolí bodu $a \in \mathbb{R}$. Pokud existuje limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

nazveme její hodnotu **derivací funkce** f v bodě a a označíme f'(a). Pokud je tato limita konečná (tj. $f'(a) \in \mathbb{R}$) řekneme, že funkce f je diferencovatelná v bodě a.

Buď f funkce s definičním oborem D_f . Nechť M označuje množinu všech $a \in D_f$ takových, že existuje konečná derivace f'(a). Derivací funkce f nazýváme funkci s definičním oborem M, která každému $x \in M$ přiřadí f'(x). Tuto funkci značíme symbolem f'.

Další možná značení:

$$f'(a)$$
, $\dot{f}(a)$, $\frac{\mathrm{d}f}{\mathrm{d}x}(a)$.

2.2 Tečna

Nechť existuje f'(a). Tečnou funkce f v bodě a nazýváme

- přímku s rovnicí x = a je-li funkce f spojitá v bodě a a $f'(a) = +\infty$ nebo $f'(a) = -\infty$.
- přímku s rovnicí y = f(a) + f'(a)(x a) je-li $f'(a) \in \mathbb{R}$ (tj. je-li f diferencovatelná v bodě a).

2.3 Operace

2.3.1 Sčítání, násobení, dělení

Nechť funkce f a g jsou diferencovatelné v bodě a. Potom platí:

- (f+g)'(a) = f'(a) + g'(a)
- $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$
- $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g(a)^2}$, pokud $g(a) \neq 0$

2.3.2 Složená funkce

Nechť g je funkce diferencovatelná v bodě a, f je diferencovatelná v bodě g(a). Potom funkce $f \circ g$ je diferencovatelná v bodě a a platí

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

2.3.3 Inverzní funkce

Buďte f spojitá a ryze monotónní na intervalu I=(a,b) a bod $c\in I$. Má-li inverzní funkce f^1 konečnou nenulovou derivaci v bodě f(c), potom má f derivaci v bodě c a platí

$$f'(c) = \frac{1}{(f^{-1})'(f(c))}.$$

3 Průběh funkce

3.1 Spojitost

Necht f je reálná funkce reálné proměnné a necht bod $a \in D_f$. Řekneme, že funkce f **je spojitá v bodě** a jestliže nastává alespoň jedna z následujících možností:

- $\lim_{x \to a} f(x) = f(a)$,
- funkce f je definována jen na pravém okolí bodu a, přesněji $(\exists H_a)(H_a \cap D_f = H_a^+)$, a $\lim_{x \to a+} f(x) = f(a)$,
- funkce f je definována jen na levém okolí bodu a, přesněji $(\exists H_a)(H_a \cap D_f = H_a^-)$, a $\lim_{x \to a^-} f(x) = f(a)$.

Funkce f je spojitá v bodě a zprava, pokud $\lim_{x \to a+} f(x) = f(a)$. Funkce f je spojitá v bodě a zleva, pokud $\lim_{x \to a-} f(x) = f(a)$.

Funkde f je spojitá na intervalu J, právě kdyz je spojitá v každém bodě intervalu J.

3.2 Extrémy funkce

Řekneme, že funkce f má v bodě $a \in D_f$

- 1. lokální maximum
- 2. lokální minimum
- 3. ostré lokální maximum
- 4. ostré lokální minimum

právě když existuje okolí (v krajním bodě jednostranné) $H_a \subset D_f$ bodu a tak, že

- 1. pro všechna $x \in H_a$ platí $f(x) \leq f(a)$,
- 2. pro všechna $x \in H_a$ platí $f(x) \ge f(a)$,
- 3. pro všechna $x \in H_a \setminus \{a\}$ platí f(x) < f(a),
- 4. pro všechna $x \in H_a \setminus \{a\}$ platí f(x) > f(a),

Necht funkce f má v bodě a lokální extrém. Potom f'(a) = 0, nebo derivace v bodě a neexistuje.

Funkce f spojitá a definovaná právě na uzavřeném intervalu $\langle a,b\rangle$ nabývá maxima a minima (tzv. globální extrém). Extrém může být pouze v krajních bodech a,b a v bodech kde je derivace rovna 0 nebo neexistuje.

3.3 Věty o přírustku funkce

3.3.1 Rolleova

Nechť funkce f splňuje podmínky

- 1. f je spojitá na intervalu $\langle a, b \rangle$,
- 2. f má derivaci v každém bodě intervalu (a, b),
- 3. f(a) = f(b).

Potom existuje $c \in (a, b)$ tak, že f'(c) = 0.

3.3.2 Lagrangeova

Nechť funkce f splňuje podmínky

- 1. f je spojitá na intervalu $\langle a, b \rangle$,
- 2. f má derivaci v každém bodě intervalu (a, b),

Potom existuje bod $c \in (a,b)$ tak, že $f'(c) = \frac{f(b) - f(a)}{b-a}$, nebo ekvivalentně f(b) - f(a) = f'(c)(b-a).

3.4 Důsledky

Nechť J je interval s krajními body a a b. Potom vnitřkem intervalu J nazveme otevřený interval (a,b). Značíme ho $J^{\circ}=(a,b)$.

3.4.1 Rostoucí, klesající, konstantní

Nechť f je spojitá na intervalu J a nechť pro každé $x \in J^{\circ}$ existuje f'(x). Potom platí následujících pět tvrzení:

- 1. $(\forall x \in J^{\circ})(f'(x) \ge 0) \implies f$ je rostoucí na J,
- 2. $(\forall x \in J^{\circ})(f'(x) \leq 0) \implies f$ je klesající na J,
- 3. $(\forall x \in J^{\circ})(f'(x) > 0) \implies f$ je ostře rostoucí na J,
- 4. $(\forall x \in J^{\circ})(f'(x) < 0) \implies f$ je ste klesající na J,
- 5. $(\forall x \in J^{\circ})(f'(x) = 0) \implies f$ je konstantní na J.

3.4.2 Konvexní, konkávní

Funkci f definovanou na intervalu J nazveme **konvexní na intervalu** (resp. **konkávní na intervalu**) J, právě když pro každé $x_1, x_2, x_3 \in J$ splňující $x_1 < x_2 < x_3$, leží bod $(x_2, f(x_2))$ buďto pod (resp. nad) přímkou spojující body $(x_1, f(x_1))$ a $(x_3, f(x_3))$, nebo na ní.

Funkci f definovanou na intervalu J nazveme **ryze konvexní na intervalu** (resp. **ryze konkávní na intervalu**) J, právě když pro každé $x_1, x_2, x_3 \in J$ splňující $x_1 < x_2 < x_3$, leží bod $(x_2, f(x_2))$ buďto pod (resp. nad) přímkou spojující body $(x_1, f(x_1))$ a $(x_3, f(x_3))$.

Buď f funkce spojitá na intervalu J, která má druhou derivaci v každém bodě intervalu J° .

- Funkce f je konvexní na intervalu J, právě když $f''(x) \ge 0$ pro každé $x \in J^{\circ}$.
- Je-li f''(x) > 0 v každém bodě $x \in J^{\circ}$, pak je f ryze konvexní na J.

Nechť funkce f má konečnou derivaci v bodě $a \in D_f$. Pokud existuje okolí H_a bodu a takové, že pro všechna $x \in H_a \setminus a$ leží všechny body (x, f(x)) nad (resp. pod) tečnou funkce f v bodě a,

$$y = f(a) + f'(a)(x - a),$$

nebo na ní, pak f nazveme konvexní v bodě a (resp. konkávní v bodě a).

3.4.3 Lokální minimum a maximum

Buď f funkce diferencovatelná v každém bodě intervalu J a necht f'(c) = 0 pro jisté $c \in J^{\circ}$.

- Pokud je f konvexní na intervalu J, pak má funkce f v bodě c lokální minimum.
- Pokud je f konkávní na intervalu J, pak má funkce f v bodě c lokální maximum.

3.4.4 Inflexní bod

Nechť f je spojitá v bodě c. Bod c nazýváme inflexním bodem funkce f, právě když existuje $\delta > 0$ takové, že f je ryze konvexní na intervalu $(c - \delta, c)$ a ryze konkávní na intervalu $(c, c + \delta)$, nebo naopak.

3.4.5 Asymptoty

Řekneme, že funkce f má v bodě $a \in \mathbb{R}$ asymptotu x = a, právě když $\lim_{x \to a+} f(x)$ nebo $\lim_{x \to a-} f(x)$ je rovna $+\infty$ nebo $-\infty$. Řekneme, že přímka y = kx + q je asymptotou funkce f v $+\infty$, resp. v $-\infty$, když

$$\lim_{x \to \infty} (f(x) - kx - q) = 0 \text{ resp. } \lim_{x \to -\infty} (f(x) - kx - q) = 0.$$

4 Tabulky

f(x)	f'(x)	podmínky
x^n	nx^{n-1}	$x\in\mathbb{R},n\in\mathbb{N}_0$
x^n	nx^{n-1}	$x\in \mathbb{R}\smallsetminus \{0\}, n=-1,-2,\dots$
x^{lpha}	$lpha x^{lpha-1}$	$x>0$ a $lpha\in\mathbb{R}$
e^x	e^x	$x\in \mathbb{R}$
a^x	$a^x \ln a$	$x\in\mathbb{R}, a>0$
$\ln(x)$	$\frac{1}{x}$	x > 0
$\sin(x)$	$\cos(x)$	$x\in \mathbb{R}$
$\cos(x)$	$-\sin(x)$	$x\in\mathbb{R}$
$\operatorname{tg}(x)$	$\frac{1}{\cos^2(x)}$	$x eq rac{\pi}{2} + k\pi, \; k \in \mathbb{Z}$
$\cot g(x)$	$-\frac{1}{\sin^2(x)}$	$x eq k\pi, \ k \in \mathbb{Z}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$x\in (-1,1)$
$\arccos(x)$	$-rac{1}{\sqrt{1-x^2}}$	$x\in (-1,1)$
arctg(x)	$\frac{1}{1+x^2}$	$x\in \mathbb{R}$
$\operatorname{arccotg}(x)$	$-rac{1}{1+x^2}$	$x\in\mathbb{R}$