Python

Introduction to Seaborn

In this lecture

- Introduction to Seaborn
- Comparing similar Matplotlib and Seaborn
 - plt.scatter() vs sns.scatter() & sns.regplot()
 - plt.boxplot() vs sns.boxplot()
 - plt.bar() & plt.hist() vs sns.barplot() & sns.countplot()
- Seaborn's unique plotting functions
 - joint_plot() & dist_plot() & pair_plot()
 - swarm_plot()
 - heat_map()
 - facet_grid()

Seaborn

Seaborn

- **Seaborn** is a Python visualisation library based on Matplotlib.
- Seaborn provides functions to create complex **statistical plots** with minimal code. Unlike Matplotlib, where all labels, colour, dimensions, size etc. need to be set.
- Seaborn has functions such as scatterplot(), barplot() and heatmap() which encapsulate common plotting patterns.
- More documentation available at: https://seaborn.pydata.org

Imports

Imports

```
In[]: 1 | import numpy as np
2 | import pandas as pd
3 | import matplotlib.pyplot as plt
4 | import seaborn as sns
```

Imports

```
In[]: 1 | import numpy as np
2 | import pandas as pd
3 | import matplotlib.pyplot as plt
4 | import seaborn as sns
```

Written in the first cell to reduce duplication across the following cells.

sns.set_style()

```
In[]: 1 | sns.set_style()
2 |
3 |
```

```
In[ ]: 1 | sns.set_style('whitegrid')
2 |
3 |
```



```
In[]: 1 | sns.set_style('darkgrid')
2 |
3 |
```


sns.load_dataset()

load_dataset()

load_dataset()

```
In[]: 1 | titanic = sns.load_dataset('titanic')
2 | titanic.head()
3 |
```

load_database()

Out[]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

load_dataset()

```
In[]: 1 | iris = sns.load_dataset('iris')
2 | iris.head()
3 |
```

load_database()

Out[]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

anagrams.csv	Rename messy anagrams dataset	4 years ago
anscombe.csv	Add anscombe dataset	10 years ago
attention.csv	Add attention dataset	10 years ago
brain_networks.csv	Add brain networks dataset	10 years ago
ar_crashes.csv	Add 538 car crash dataset	9 years ago
dataset_names.txt	Add a file containing all available dataset names	last year
diamonds.csv	Add diamonds dataset	6 years ago
dots.csv	Add dots dataset	7 years ago
dowjones.csv	Add dowjones dataset	2 years ago
exercise.csv	Add exercise dataset	10 years ago
[] flights.csv	Add flights dataset	10 years ago
fmri.csv	Change sorting of events in fmri data	7 years ago
geyser.csv	Add geyser dataset	4 years ago
🗋 glue.csv	Add several new datasets	2 years ago
healthexp.csv	Remove one-off 2021 datapoint from healthexp datas	2 years ago
iris.csv	Add iris dataset	10 years ago

https://github.com/mwaskom/seaborn-data

Local CSV

```
In[ ]: 1 | df = sns.load_dataset('.../Nick/data.csv')
2 | df.head()
3 |
```

plt.plot()

Basic plt plot

```
In[]: 1 | x = np.arange(1, 10, 1)
2 | y = x**2
3 | plt.plot(x, y)
4 | plt.show()
```

Basic plot

plt.scatter()

Basic Scatter plot

```
In[]: 1 | x = np.arange(1, 10, 1)
2 | y = x**2
3 | plt.scatter(x, y)
```

Scatter

Plot a dataset

```
In[]: 1 | x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
2 | y = [99,86,87,88,111,86,103,87,94,78,77]
3 | plt.scatter(x, y)
```

Scatter 110 -105 -Out[]: 100 95 90 -85 -80 -

4

6

8

10

12

14

16

Plot two datasets

```
In[]: 1 | x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
      y = [99,86,87,88,111,86,103,87,94,78,77]
      3 plt.scatter(x, y)
        x = [2,2,8,1,15,8,12,9,7,3,11,4,7]
      6 | y = [100, 105, 84, 105, 90, 99, 90, 95, 94, 100]
      7 | plt.scatter(x, y)
```


Line of Best Fit

```
In[]: 1 | a, b = np.polyfit(x, y, 1)
2 | plt.plot(x, a*x+b)
3 |
```

Line of Best Fit

```
In[]: 1 | x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
      y = [99,86,87,88,111,86,103,87,94,78,77]
      3 | plt.scatter(x, y)
      4 \mid x = [2,2,8,1,15,8,12,9,7,3,11,4,7]
      y = [100, 105, 84, 105, 90, 99, 90, 95, 94, 100]
      6 | plt.scatter(x, y)
      7 | a, b = np.polyfit(x, y, 1)
      8 plt.plot(x, a*x+b)
```


sns.scatterplot()

Basic Scatter plot

```
In[]: 1 | x = np.arange(1, 10, 1)
2 | y = x**2
3 | sns.scatterplot(x, y)
```

Basic Scatter plot

```
In[]: 1 | x = np.arange(1, 10, 1)
2 | y = x**2
3 | sns.scatterplot(x, y)
```

Out[]:

```
TypeError: scatterplot() takes from 0 to 1 positional arguments
but 2 were given
```

Basic Scatter plot

```
In[]: 1 | x = np.arange(1, 10, 1)
2 | y = x**2
3 | sns.scatterplot(data = (x, y))
```


Basic Scatter plot

```
In[]: 1 | x = np.arange(1, 10, 1)
2 | y = x**2
3 | sns.scatterplot(x=x, y=y)
```

Scatter


```
In[]: 1 | x1 = [5,7,8,7,2,17,2,9,4,11,12,9,6]
       [2 | y1 = [99,86,87,88,111,86,103,87,94,78]
        3
           \mathbf{x2} = [2,2,8,1,15,8,12,9,7,3,11,4,7]
          y2 = [100, 105, 84, 105, 90, 99, 90, 95, 94, 100]
           sns.scatterplot(x=x1, y=y1)
         sns.scatterplot(x=x2, y=y2)
```


sns.regplot()

```
In[]: 1 | x1 = [5,7,8,7,2,17,2,9,4,11,12,9,6]
       [2 | y1 = [99,86,87,88,111,86,103,87,94,78]
        3
           \mathbf{x2} = [2,2,8,1,15,8,12,9,7,3,11,4,7]
          y2 = [100, 105, 84, 105, 90, 99, 90, 95, 94, 100]
           sns.scatterplot(x=x1, y=y1)
         sns.scatterplot(x=x2, y=y2)
```

```
In[]:6 | ...
      7 sns.scatterplot(x=x1, y=y1)
        sns.scatterplot(x=x2, y=y2)
          sns.regplot(x=x1, y=y1, scatter=False)
      11 sns.regplot(x=x2, y=y2, scatter=False)
```



```
In[ ]:
        sns.scatterplot(x=x1, y=y1)
         sns.scatterplot(x=x2, y=y2)
          sns.regplot(x=x1, y=y1, scatter=False)
      11 sns.regplot(x=x2, y=y2, scatter=False)
      13 plt.legend()
```


scatter = false

```
In[]: 1 | x1 = [5,7,8,7,2,17,2,9,4,11,12,9,6]
       y1 = [99,86,87,88,111,86,103,87,94,78]
       3
         \times 2 = [2,2,8,1,15,8,12,9,7,3,11,4,7]
       5 \mid y2 = [100, 105, 84, 105, 90, 99, 90, 95, 94, 100]
           sns.regplot(..., scatter=False, label...)
       8 sns.regplot(..., scatter=False, label...)
       9 | plt.legend()
```


scatter = true

```
In \begin{bmatrix} 1 & 1 & x1 = [5,7,8,7,2,17,2,9,4,11,12,9,6] \end{bmatrix}
         | y1 = [99,86,87,88,111,86,103,87,94,78]
         3
            | x2 = [2,2,8,1,15,8,12,9,7,3,11,4,7]
            y2 = [100, 105, 84, 105, 90, 99, 90, 95, 94, 100]
             sns.regplot(x=x1,y=y1,scatter=True, label...)
            sns.regplot(x=x2,y=y2,scatter=True, label...)
            plt.legend()
```


plt.boxplot()

```
In[]: 1 | std = 1
2 | data = [np.random.normal(0, std, 100)]
3 | plt.boxplot(data, vert = True)
```



```
In[]: 1 | std = 1
2 | data = [np.random.normal(0, std, 100)]
3 | plt.boxplot(data, vert=True, patch_artist=True)
```



```
In[]: 1 | std = 1
2 | data = [np.random.normal(0, std, 100)
3 | for std in range(1,4)]
4 | plt.boxplot(data,vert=True,patch_artist=True)
```


sns.boxplot()

boxplot()

boxplot() hue

plt.bar()

Simple Bar

```
In[]: 1 | data = [35, 25, 25, 15]
2 | labels = ["UK", "USA", "EU", "Asia"]
3 |
4 | plt.bar(labels, data)
```

Bar graph

plt.hist()

Bins - intervals

```
In[]: 1 | from random import sample
2 | data = sample(range(1, 1000), 100)
3 | plt.hist(data, bins = 10, rwidth = 0.8)
```

10 bins

20 bins

```
In[]: 1 | from random import sample
2 | data = sample(range(1, 1000), 100)
3 | plt.hist(data, bins = 20, rwidth = 0.8)
```

20 bins

sns.countplot()

countplot()

countplot() hue

sns.barplot()

barplot()

barplot()

sns.catplot()

sns.jointplot()

jointplot()

jointplo

jointplot()

sns.displot()

displot()

displot()

sns.pairplot()

pairplot()

```
In[]: 1 | sns.pairplot(iris, dropna=False)
2 |
3 |
4 |
```

pairple sepal_width o.c. c.c Out[]: petal_length ω γ ς 2.5 -2.0 petal_width 1 petal_width 8 2 ò sepal_length sepal_width petal_length

pairplot()

sns.swarmplot()

swarmplot()

swarmplot() hue

sns.heatmap()

heatmap()

heatmap()

heatmap() title

<seaborn.axisgrid.FacetGrid at 0x7ceb05191f90>

Out[]:

