CLAIMS

What is claimed is:

1	1. An apparatus, comprising:			
2	a first interface;			
3	a second interface not directly coupled to said first interface; and			
4	a cache accessible from said first interface and said second			
5	interface, to contain a cache line with a first cache coherency state			
6	when accessed from said first interface and a second cache coherency			
7	state when accessed from said second interface.			
1	2. The apparatus of claim 1, wherein said first cache			
2	coherency state has higher privilege than said second cache coherency			
3	state when said second interface is coupled to a processor.			
1	3. The apparatus of claim 2, wherein said second cache			
2	coherency state is to reduce snoop transactions on said second			
3	interface.			
1	4. The apparatus of claim 2, wherein said first cache			
2	coherency state is exclusive and said second cache coherency state is			
3	shared.			
1	5. The apparatus of claim 2, wherein said first cache			
2	coherency state is modified and said second cache coherency state is			
3	shared.			
1.	6. The apparatus of claim 3, wherein said second cache			
2	coherency state supports speculative invalidation.			

42P17020 -20-

	9	•
1	7.	The apparatus of claim 6, wherein said first cache
2	coherency	state is modified and said second cache coherency state is
3	invalid.	•
1	8.	The apparatus of claim 6, wherein said first cache
2	coherency	state is exclusive and said second cache coherency state is
3	invalid.	
1	9.	The apparatus of claim 6, wherein said first cache
2	coherency	state is shared and said second cache coherency state is
3	invalid.	·

- 1 10. The apparatus of claim 6, wherein said second cache coherency state further supports explicit invalidation.
- 1 11. A method, comprising:
- 2 associating a first cache coherency state with a first cache line in 3 a first cache;
- associating a second cache coherency state with a second cache line in a second cache in an inner relationship to said first cache;
- transitioning said first cache coherency state to a joint cache
 coherency state including said first cache coherency state for outer
 interfaces and a third cache coherency state for inner interfaces; and
 transitioning said second cache coherency state to said third
- 9 transitioning said second cache coherency state to said to cache coherency state.
- 1 12. The method of claim 11, wherein said first cache coherency 2 state is exclusive, said second cache coherency state is invalid, and said 3 third cache coherency state is shared.

42P17020 -21-

1	13. The method of claim 11, wherein said first cache coherency		
2	state is modified, said second cache coherency state is modified, and		
3	said third cache coherency state is invalid.		
	•		
1	14. A method, comprising:		
2	associating a first cache coherency state with a first cache line in		
3	a first cache;		
4	associating a second cache coherency state with a second cache		
5	line in a second cache in an inner relationship to said first cache;		
6	transitioning said second cache coherency state to an invalid		
7	state; and		
8	transitioning said first cache coherency state to a joint cache		
9	coherency state including said first cache coherency state for outer		
10	interfaces and an invalid state for inner interfaces.		
1	15. The method of claim 14, wherein said first cache coherency		
2	state is modified.		
1	16. The method of claim 14, wherein said first cache coherency		
2	state is exclusive.		
1	17. The method of claim 14, wherein said first cache coherency		
2	state is shared.		
1	18. A method, comprising:		
2	associating a first cache coherency state with a first cache line in		
3	a first cache;		
4	associating an invalid state with a second cache line in a second		
5	cache in an inner relationship to said first cache;		
6	transitioning said invalid state to a shared state; and		
7	transitioning said first cache coherency state to a joint cache		
8	coherency state including a shared state for inner interfaces.		

42P17020 -22-

- 1 19. The method of claim 18, wherein said first cache coherency state is invalid and said joint cache coherency state is exclusive-shared.

 20. The method of claim 18, wherein said first cache coherency
- state is modified-invalid and said joint cache coherency state is
 modified-shared.
- 1 21. An apparatus, comprising:
- 2 means for associating a first cache coherency state with a first 3 cache line in a first cache;
- means for associating a second cache coherency state with a second cache line in a second cache in an inner relationship to said first cache:
- means for transitioning said first cache coherency state to a joint cache coherency state including said first cache coherency state for outer interfaces and a third cache coherency state for inner interfaces;
- 10 and
- means for transitioning said second cache coherency state to said third cache coherency state.
- 1 22. The apparatus of claim 21, wherein said first cache 2 coherency state is exclusive, said second cache coherency state is 3 invalid, and said third cache coherency state is shared.
- 1 23. The apparatus of claim 21, wherein said first cache 2 coherency state is modified, said second cache coherency state is 3 modified, and said third cache coherency state is invalid.

42P17020 -23-

1	24. An apparatus, comprising:		
2	means for associating a first cache coherency state with a first		
3	cache line in a first cache;		
4	means for associating a second cache coherency state with a		
5	second cache line in a second cache in an inner relationship to said		
6	first cache;		
7	means for transitioning said second cache coherency state to an		
8	invalid state; and		
9	means for transitioning said first cache coherency state to a joint		
10	cache coherency state including said first cache coherency state for		
11	outer interfaces and an invalid state for inner interfaces.		
1	25. The method of claim 24, wherein said first cache coherency		
2	state is modified.		
1	26. The method of claim 24, wherein said first cache coherency		
2	state is exclusive.		
	·		
1	27. The method of claim 24, wherein said first cache coherency		
2	state is shared.		
	·		
1	28. An apparatus, comprising:		
2	means for associating a first cache coherency state with a first		
3	cache line in a first cache;		
4	means for associating an invalid state with a second cache line in		
5	a second cache in an inner relationship to said first cache;		
6	means for transitioning said invalid state to a shared state; and		
7	means for transitioning said first cache coherency state to a joint		
8	cache coherency state including a shared state for inner interfaces.		

42P17020 -24-

- 1 29. The apparatus of claim 28, wherein said first cache coherency state is invalid and said joint cache coherency state is exclusive-shared.
- 30. The apparatus of claim 28, wherein said first cache coherency state is modified-invalid and said joint cache coherency state is modified-shared.
- 1 31. A system, comprising:
- a cache accessible from a first interface and a second interface, to contain a cache line with a first cache coherency state when accessed from said first interface and a second cache coherency state when accessed from said second interface;
- a bus bridge to a third interface; and
 an input-output device coupled to said third interface.
- 32. The system of claim 31, wherein said first cache coherency state has higher privilege than said second cache coherency state when said second interface is coupled to a processor.
- 1 33. The system of claim 31, wherein said second cache coherency state is to reduce snoop transactions on said second interface.

42P17020 -25-