Случайный поиск в задаче о назначениях Выпускная квалификационная работа

Ставинова Елизавета Алексеевна

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: к.ф.-м.н. Кушербаева В.Т.

Санкт-Петербург 2018г.

Введение

Задача оптимизации: $\Phi(x[1:n]) \to \min_x$, где Φ — ограниченная снизу функция, заданная на $[0;1]^n$.

Существует множество методов для решения данной задачи.

Одним из этих методов является метод случайного поиска. Он обладает рядом преимуществ:

- случайный поиск не предъявляет особых требований к оптимизируемой функции;
- алгоритм случайного поиска легко реализуем на ЭВМ.

В работе будет исследована эффективность алгоритма случайного поиска, а также данный алгоритм будет применен к решению задачи синтеза системы.

Алгоритм случайного поиска

Требуется: $\Phi(x[1:n]) \to \min_x$, где Φ — ограниченная снизу функция, заданная на $[0;1]^n$. Обозначения:

- n_{step} число шагов алгоритма;
- ϵ точность, с которой ведется поиск;
- 2q_i ширина I_i[k];
- а параметр программы;
- $x_i^0[k]$ центр $I_i[k]$;
- $p_i = P(x_i[k] \in I_i[k]);$
- $\bullet \ x_i^*[1:n]$ текущий минимум за i шагов.

Распределение вероятностей, с которыми выбираются $x_i[k]$, принято равномерным как внутри, так и вне $I_i[k]$.

Алгоритм случайного поиска

Алгоритм:

- $x_1^0[1:n] = 0.5, q_1 = 0.5, p_1 = 1;$
- - $q_i = q_{i-1}/a;$
 - **2** если $2q_i > \epsilon$, то $p_i = b|0.25 q_i|^s b \cdot 0.25^s + 1$, иначе $p_i = 1$;

 - моделируем α из распределения $\mathrm{U}[0;1]$: если $\alpha \leq p_i$, то моделируем $x_i[1:n]$ из распределения $\mathrm{U}(I_i[1:n])$, иначе моделируем $x_i[1:n]$ из распределения $\mathrm{U}([0;1]\backslash I_i[1:n])$;

Логистическая кривая

Логистический закон изменения радиуса q_i перспективной области (Абакаров, Сушков, 2005):

$$q_i = 1 - \frac{1}{1 + (\frac{1}{V_0} - 1)e^{-\mu i/n_{step}}},$$

где μ — параметр крутизны логистической кривой (скорость изменения перспективной области), V_0 — первоначальный объем перспективной области.

Цель:

- нахождение оптимального параметра крутизны логистической кривой для функций из известного набора тестовых функций двумя способами;
- сравнение эффективности алгоритма при значениях параметров, полученных двумя способами.

Классы тестовых функций

Исследования проводились на некоторых тестовых функциях из трех следующих классов:

- Унимодальные функции (на множестве $X \subseteq \mathbb{R}^n$) ровно одна точка локального минимума на этом множестве.
- Многоэкстремальные функции (на множестве $X \subseteq \mathbb{R}^n$) более одного локального экстремума на этом множестве.
- Овражные функции (на множестве $X\subseteq \mathbb{R}^n)$ в исследуемой области собственные значения $\lambda_i(x)$ матрицы Гессе, упорядоченные в любой точке $x\in X$, удовлетворяют неравенствам: $0<|\min_i\{\lambda_i(x)\}|<<\lambda_1(x),x\in X$.

Исследование эффективности алгоритма

Обозначим за P вероятность попадания в 0.02-окрестность минимума. Оптимальное значение параметра крутизны логистической кривой μ будем искать перебором по решетке.

Полученные результаты: для унимодальных тестовых функций $\mu_{\text{опт}} = 4$, для многоэкстремальных $\mu_{\text{опт}} = 5$, для овражных $\mu_{\text{опт}} = 3$.

Нахождение параметра $\mu_{\text{опт}}$ случайным поиском

Необходимо найти максимум функции зависимости P от μ , где P — вероятность попадания в заданную окрестность минимума, μ — параметр крутизны логистической кривой.

В работе был разработан следующий алгоритм:

Запустить случайный поиск с аргументом μ , промоделированным из ${\rm U}[0;10]$, и функцией \overline{P} , полученной следующим образом:

- ullet выполнить (100 раз) случайный поиск для тестовой функции с μ , которое использовалось выше;
- ullet усреднить результаты пункта 1 (это и будет значение \overline{P} оценки функции P).

Были получены результаты:

Унимодальные		Многоэкстремальные		Овражные	
Функция	μ_{ont}	Функция	μ_{ont}	Функция	μ_{ont}
F1	4.1685	F5-0	5.508	F7	2.8969
F4	4.3461	F5-1	4.8596	2-Exp	2.1979
DeJong1	3.9948	F5-2	6.0628	F-no4	0.3392
MyUniFunc	3.7675	F5-4	8.1858	Rosenbrock	3.7699

Сравнение результатов

- Обозначим за Δ разность между вероятностями попадания в заданную окрестность минимума для параметров, полученных перебором и случайным поиском соответственно.
- Для оценки бралось $\overline{\Delta}$ усредненное значение Δ (количество запусков 100), а также строился 95% доверительный интервал:

Унимодальные		Многоэкстремальные		Овражные	
Функция	$\overline{\Delta}$	Функция	$\overline{\Delta}$	Функция	$\overline{\Delta}$
F1	$0,01 \pm 0,013$	F5-0	$-0,007 \pm 0,014$	F7	$-0,006 \pm 0,004$
F4	$0,01 \pm 0,016$	F5-1	$0,005\pm0,01$	2-Exp	$0,03\pm0,012$
DeJong1	$0,005 \pm 0,012$	F5-2	$-0,002 \pm 0,004$	F-no4	$0,03 \pm 0,003$
MyUniFunc	$-0,003 \pm 0,01$	F5-4	$0,02 \pm 0,012$	Rosenbrock	$0,03\pm0,01$

Вывод:

 Оптимальные значения параметра крутизны логистической кривой, найденные случайным поиском, не дали значительных улучшений сходимости алгоритма.

Постановка задачи синтеза системы

Задано:

- $f_1(x[1:d]),\ldots,f_n(x[1:d])$ последовательность функций, где $f_i:D\in\mathbb{R}^d\to\mathbb{R}$ и $i\in I=\{1,\ldots,n\}$
- ullet $g[1],\ldots,g[m]$ последовательность чисел, $g[j]\in\mathbb{R}$ и $j\in J=\{1,\ldots,m\}$
- $n \ge m$
- ullet $\phi: J
 ightarrow I$ инъективное отображение
- $m{\circ}\ C(x[1:d],\phi) = \sum_{j\in J} (f_{\phi(j)}(x[1:d]) g[j])^2$ функция цели,

отвечающая за приближение $f_{\phi(j)}(x[1:d])$ к g[j]

Задача синтеза системы:

$$C(x[1:d],\phi) \to \min_{x,\phi}$$

Цель: Изучение оптимизации с помощью случайного поиска функций данного вида.

Детерминированный поиск оптимального отображения

Рассмотрим следующий подход из работы Ю. А. Сушкова (2000).

• Целевая функция записывается таким образом:

$$C(x[1:d]) = \min_{\phi}(C(x[1:d],\phi)).$$

- Ищется минимум данной функции случайным поиском по аргументу x[1:d].
- На каждом шаге случайного поиска находится отображение ϕ , которое минимизирует целевую функцию.
- Минимизирующее отображение достигается на множестве монотонных отображений $\phi: J \to I$.

Недостаток: время работы.

Случайный поиск оптимального отображения

Обратимся к другому подходу решения задачи:

- Введем отображение $\psi(y)$, которое переводит аргумент из единичного отрезка в одно из всевозможных отображений ϕ .
- Таким образом, функция цели принимает вид: $C(x[1:d],\psi(y)) = C(x[1:d],\phi).$
- Применяем к функции цели случайный поиск по аргументам x[1:d] и y.

В работе предложены и изучены 2 варианта задания отображения $\psi(y)$.

Способы задания отображения $\psi(y)$

Первый способ:

- **①** $i = \lceil y \cdot n! \rceil$ это номер перестановки среди всех перестановок порядка n, перечисленных в лексикографическом порядке;
- ullet для задания отображения ϕ берутся первые m элементов $(a_1,\ldots,a_m).$

Второй способ:

- находятся всевозможные монотонные отображения, действующие из *J* в *I*;
- ② для задания отображения ϕ берется отображение с номером $N = \lceil y \cdot C_n^m \rceil.$

Сравнение способов

Рис. 1: Зависимость вероятности нахождения минимума целевой функции от размерности n вектор-функции; $n_{step}=3000,$ m=3.

Рис. 2: Зависимость вероятности нахождения минимума целевой функции от размерности m вектора значений; $n_{step}=3000,$ n=10.

Заключение

Результаты:

- Разработаны программы (в среде MATLAB):
 - для вычисления минимума заданной функции случайным поиском;
 - для нахождения оптимального параметра крутизны логистической кривой случайным поиском;
 - для решения задачи синтеза системы путем детерминированного поиска оптимального отображения;
 - для решения задачи синтеза системы с помощью случайного поиска.
- Решена задача нахождения оптимального значения параметра крутизны логистической кривой.
- Предложены два усовершенствования алгоритма решения задачи синтеза системы с помощью случайного поиска.
- Выявлен один более эффективный способ из рассмотренных двух.