Vv156 Lecture 3

Jing Liu

UM-SJTU Joint Institute

September 20, 2018

Unlike for sequences, there are several types of limits for a function

$$y = f(x)$$

• We want to know the behaviour of f near a point x=a or near infinity, e.g. We may be interested in knowing the behaviour of average speed near t=3

$$\mbox{Average Speed} = \frac{\mbox{Distance travelled}}{\mbox{Time interval}} = \frac{s(t+\delta t) - s(t)}{\delta t}$$

 For an object that is dropped and falls straight down towards earth when the resistance of air is neglected, we have

$$s = \frac{1}{2}gt^2$$
, where $g \approx 10 \text{m/s}^2$

δt	1.0000	0.5000	0.0100	0.0050	0.0001	0.00005
$s(3+\delta t)-s(3)$	35.0000	16.2500	0.3005	0.1501	0.0030	0.0015
Average Speed	35.0000	32.5000	30.0500	30.0250	30.0005	30.0002

Definition

The value L is the limit of f(x) as x approaches a,

$$\lim_{x \to a} f(x) = L$$

if the values of f(x) can be made as close as we like to L by taking values of x sufficiently close to a, but not equal to a.

ullet There are two ways that x can approach a, from the left or from the right

$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

0.5000	0.0100	0.0050	0.0001	0.00005	0.00005	0.0001	0.0050	0.0100	0.5000
13.7500	0.2995	0.1499	0.0030	0.0015	0.0015	0.0030	0.1501	0.3005	16.2500
27.5000	29.9500	29.9750	29.9995	29.9997	30.0002	30.0005	30.0250	30.0500	32.5000

• The limit exists if and only if both of the one-sided limits exist and are equal

• For example, consider $\lim_{x\to 0} \frac{|x|}{x}$

Matlab

```
>> syms x; ezplot('abs(x)/x',[-1,1]);
```

>> hold on; plot(0,1,'ro'); plot(0,-1,'ro'); hold off;

>> xlabel('x'); ylabel('y');

ullet The limit concerns the value of dependent variable $y,\,y=f(x),$ as the value of the independent variable x gets

closer and closer to a rather than the value of y at x = a.

It is clear that

$$f(x=2) = -2$$

$$\lim_{x \to 2} f(x) = 4$$

Matlab

```
>> syms x;
>> ezplot('x+2');
>> hold on;
>> plot(2,4, 'ro');
>> plot(2,-2,'b.', 'MarkerSize', 15);
>> hold off;
>> xlabel('x'); ylabel('y');
```


- The notion of infinity plays an important role. For example,
- Approaches ∞ or $-\infty$

$$\lim_{x \to \infty} \frac{x^2}{x^2 - 1} = 1$$

$$\lim_{x \to -\infty} \frac{x^2}{x^2 - 1} = 1$$

• Approahces to ∞ or $-\infty$

$$\lim_{x \to 1^{-}} \frac{x^{2}}{x^{2} - 1} = -\infty$$

$$\lim_{x \to 1^{+}} \frac{x^{2}}{x^{2} - 1} = \infty$$

$$\lim_{x \to -1^{-}} \frac{x^{2}}{x^{2} - 1} = \infty$$

$$\lim_{x \to -1^{+}} \frac{x^{2}}{x^{2} - 1} = -\infty$$

Matlab

```
\lim_{x \to -1^{-}} \frac{x^2}{x^2 - 1} = \infty
\Rightarrow \sup_{x \to -1^{-}} x^2 = \infty
\Rightarrow \sup_{x \to -1^{-}} x^2 = \min_{x \to -1^{-}} (x, 2); \text{ denom = power(x, 2) -1;}
\Rightarrow \sup_{x \to -1^{-}} x^2 = \infty
                                                                                       >> ezplot(f,[-3 3])
```

- >> xlabel('x'); ylabel('y');

Limit Laws

Assume that $\lim_{x\to a} f(x) = K$ and $\lim_{x\to a} g(x) = L$, and that c is constant,

1 The limit of a constant is the constant itself.

$$\lim_{x \to a} c = c$$

2 The limit of a sum/difference is the sum/difference of the limits.

$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = K \pm L$$

3 The limit of a product is the product of the limits.

$$\lim_{x \to a} [f(x)g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right] = KL$$

4 The limit of a quotient is the quotient of the limits.

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{K}{L}, \qquad \text{provided } \lim_{x \to a} g(x) \neq 0$$

Limit Laws

Assume that $\lim_{x\to a} f(x) = K$ and $\lim_{x\to a} g(x) = L$, and that c is constant,

5 If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

6 If f(x) = g(x) for all x near a, possibly except at x = a, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x), \qquad \text{provid}$$

provided the limits exist

The Squeeze Theorem

If $g(x) \le f(x) \le h(x)$ when x is near a, except possibly at a, and if

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L, \quad \text{then } \lim_{x \to a} f(x) = L$$

Exercise

(a) Evaluate the following limits

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} \frac{2x^2 + 6x}{x^2 - 9}$$

- (b) Use the squeeze theorem to show $\lim_{x\to 0} x \sin \frac{1}{x} = 0$
 - The following precise definition removes any vagueness in the definition.

Epsilon-Delta definition of limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. The value of L is the limit of f(x) as x approaches a,

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon>0$ there is a number $\delta>0$ such that

$$|f(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta$

- This precise definition of limit removes any vagueness, and thus can be used to prove or establish results or theorems regarding limits.
- For example, consider

$$\lim_{x \to -1} (x^2 + 3) = 4$$

• For every $\epsilon > 0$, we need to find $\delta > 0$ (which depends on ϵ) such that

$$|f(x) - 4| < \epsilon$$
 if $0 < |x - (-1)| = |x + 1| < \delta$

- Since δ is an upper bound of |x+1|, we need to know how |x+1| behaves.
- ullet Specifically, we need to find an upper bound in terms of ϵ .
- \bullet This can be done by investigating what leads to $|f(x)-4|<\epsilon$

$$|f(x)-4|<\epsilon \qquad \text{if and only if} \qquad |x^2+3-4|<\epsilon$$
 if and only if
$$|x^2-1|<\epsilon$$
 if and only if
$$|(x-1)(x+1)|<\epsilon$$
 if and only if
$$|x-1||x+1|<\epsilon$$

So we have

$$|f(x)-4|<\epsilon \quad \text{ if and only if } \quad |x-1||x+1|<\epsilon$$

ullet We now "replace" the term |x-1| with an appropriate constant and keep |x+1|

since it is involved in the inequality of δ .

• Let us make the following assumption.

$$\delta \leq 1$$

- Q: Why can we make such assumptions?
 - Based on this assumption, then

$$\begin{aligned} |x+1| < \delta & \leq 1 \implies |x+1| < 1 \\ & \implies -1 < x+1 < 1 \\ & \implies -2 < x < 0 \\ & \implies 1 < |x-1| < 3 \end{aligned}$$

• Now if we combine |x-1| < 3 with the result

$$|f(x)-4|<\epsilon \quad \text{ if and only if } \quad |x-1||x+1|<\epsilon,$$

then we know

$$|f(x) - 4| < \epsilon$$
 if $(3)|x + 1| < \epsilon$

 \bullet This means an upper bound of $\frac{\epsilon}{3}$ for |x+1| will guarantee

$$|f(x)-4|<\epsilon,$$
 provided that $\delta\leq 1.$

• Hence choosing $\delta=\min\{1,\frac{\epsilon}{3}\}$ will guarantee both assumptions made about δ in the course of this proof are simultaneously taken into account, thus

$$|f(x) - 4| < \epsilon$$
 if $0 < |x + 1| < \delta$

for all $\epsilon > 0$.

13 / 22

- More importantly, the Epsilon-Delta definition is used to establish limit laws.
- For example, for the following limit laws:
- 1. $\lim_{r \to a} c = c$
- 2. $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x) = cK$, where $K = \lim_{x\to a} f(x)$.

Proof

• For the first part, let f(x) be the constant function, that is f(x) = c. We need to show that, for every number $\epsilon > 0$ there is a number $\delta > 0$ such that

$$|f(x) - c| < \epsilon$$
 if $0 < |x - a| < \delta$

• The left inequality is always satisfied for any x since f(x) = c.

Thus for any $\epsilon > 0$, not only there is a number $\delta > 0$ such that

$$|f(x) - c| < \epsilon$$
 if $0 < |x - a| < \delta$

actually every $\delta > 0$ is fine.

Proof

- For the second part, if c=0 then cf(x)=0, and $\lim_{x\to a} [0f(x)]=\lim_{x\to a} 0$. It reduces to a special case of limit law 1., with c=0. Hence we know 2. is true for c=0 and we can assume that $c\neq 0$ for the remainder of this proof.
- Suppose $\epsilon>0$, then $\frac{\epsilon}{|c|}>0$. Since $\lim_{x\to a}f(x)=K$, there exists $\delta_1>0$ s.t.

$$|f(x) - K| < \frac{\epsilon}{|c|}$$
 if $0 < |x - a| < \delta_1$

Consider the choice $\delta = \delta_1$, to finish we need to show that

$$|cf(x) - cK| < \epsilon$$
 if $0 < |x - a| < \delta$

Assume that $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$, which means

$$|f(x) - K| < \frac{\epsilon}{|c|} \implies |c||f(x) - K| < \epsilon \implies |cf(x) - cK| < \epsilon$$

The Squeeze Theorem

If $g(x) \le f(x) \le h(x)$ when x is near a, except possibly at a, and if

$$\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L,\quad \text{then}\quad \lim_{x\to a}f(x)=L$$

Proof

• Suppose that $g(x) \le f(x) \le h(x)$ for all $x \ne a$ near a and also that

$$\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x) = L$$

Since

$$\lim_{x \to a} g(x) = L$$

• For any $\epsilon > 0$, there exists a $\delta_q > 0$ such that

$$|g(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta_a$

Proof

 \bullet Notice this implies that the following inequality for all $x \in (a-\delta_g, a+\delta_g)$

$$-\epsilon < g(x) - L < \epsilon \implies g(x) > L - \epsilon$$

 \bullet Similarly, $\lim_{x\to a}h(x)=L$ means there exists a $\delta_h>0$ such that

$$|h(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta_h$

which implies that $h(x) < L + \epsilon$ for all $x \in (a - \delta_h, a + \delta_h)$.

• Let $\delta = \min\{\delta_q, \delta_h\}$ and $0 < |x - a| < \delta$. Then

$$L - \epsilon < g(x) \le f(x) \le h(x) < L + \epsilon$$

 $L - \epsilon < f(x) < L + \epsilon$

• Hence, $|f(x) - L| < \epsilon$. Since $\epsilon > 0$ is arbitrary, $\lim_{x \to a} f(x) = L$.

• We can definite limit at infinity and infinite limit precisely. For example,

Definition

Let f be function defined on some open interval that contains the number a, except possibly at a itself. Then the limit of f(x) approaches infinity, written as,

$$\lim_{x\to a} f(x) = \infty \qquad \text{or} \qquad f(x)\to \infty \quad \text{as} \quad x\to a$$

if for every number M>0 there exists a number $\delta>0$ such that

$$f(x) > M$$
 if $0 < |x - a| < \delta$

Definition

Let f be function defined on some open interval (a, ∞) . Then the limit of f(x)

$$\lim_{x\to\infty}f(x)=L \qquad \text{or} \qquad f(x)\to L \quad \text{as} \quad x\to\infty$$

if for every number $\epsilon > 0$ there exists a number $M \in (a, \infty)$ such that

$$|f(x) - L| < \epsilon$$
 if $x > M$

Many of our limits laws need to be modified to accommodate infinity.

Theorem

Suppose f and g are functions such that $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = L$.

1. The limit of the sum/difference is infinity

$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \infty$$

2. The limit of the product is infinity if L>0 and negative infinity if L<0

$$\lim_{x \to a} [f(x)g(x)] = \pm \infty$$

3. The limit of the quotient is infinity if L>0 and negative infinity if L<0

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \pm \infty \qquad \text{and} \qquad \lim_{x \to a} \frac{g(x)}{f(x)} = 0$$

Proof

ullet For the product law, when L>0, there exists δ_f for every M>0 such that

$$f(x) > \frac{2M}{L} \qquad \text{whenever} \qquad 0 < |x-a| < \delta_f$$

 \bullet There exists δ_g such that if $0<|x-a|<\delta_g$,

$$0 < |g(x) - L| < \frac{L}{2} \implies \frac{L}{2} < g(x) < \frac{3L}{2}$$

• Now let $\delta = \min\{\delta_f, \delta_g\}$, so if $0 < |x - a| < \delta$ we know from the above,

$$f(x) > \frac{2M}{L}$$
 and $g(x) > \frac{L}{2}$

This gives us

$$f(x)g(x) > \left(\frac{2M}{L}\right)\left(\frac{L}{2}\right) = M \quad \Box$$

• All the limit laws hold when the limits are taken as $x \to \infty$ instead of $x \to a$.

Theorem

If r is a positive rational number, then $\lim_{x\to\infty}\frac{1}{x^r}=0$

Proof

ullet For every $\epsilon>0$, we need to show that there exists a number M such that

$$\left| \frac{1}{x^r} - 0 \right| < \epsilon \qquad \text{when} \quad x > M$$

 $\bullet \ \ \text{We know the root} \ \sqrt[r]{\tfrac{1}{\epsilon}} \ \text{will exist since} \ \epsilon \ \text{is positive,} \ \ \text{if we let} \ x>M=\sqrt[r]{\tfrac{1}{\epsilon}},$

$$x > \sqrt[r]{\frac{1}{\epsilon}} \implies x^r > \frac{1}{\epsilon} \implies \frac{1}{x^r} < \epsilon \implies \left|\frac{1}{x^r} - 0\right| < \epsilon \quad \Box$$

Theorem

If
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$
 is a polynomial of degree n , then

$$\lim_{x \to \infty} p(x) = \lim_{x \to \infty} a_n x^n$$

Exercise

(a) Find
$$\lim_{x \to \infty} \frac{x^2 + 5x + 1}{2x^2 - 10}$$

Theorem

The limit of a rational function as $x\to\infty$ is the limit of the quotient of the terms of highest degree in the numerator and the denominator as $x\to\infty$.

Exercise

(b) Find
$$\lim_{x \to \infty} \frac{3x^2 + 1}{4x^3 + 2x + 1}$$