I – Bioreactor Kinetics

Introduction

1.1 – Batch Reactor (BSTR)

- 1.1.1 Definitions
- 1.1.2 Cell growth phases
- 1.1.3- Elementary Composition of the Biomass
- 1.1.4- Structured Cell Growth Models
- 1.1.5- Mass Balances to the Reactor
- 1.1.6- Relationship between Growth and Substrate Consumption
- 1.1.7- Effect of temperature and pH
- 1.1.8- Endogenous Respiration and Maintenance
- 1.1.9- Product Formation
- 1.1.10- Inhibition Models

INTRODUCTION

Synthesis of biological macromolecules

INTRODUCTION

Primary metabolism

Metabolism:

set of all biochemical reactions that occur in organisms

reactions in which complex molecules are formed from simpler ones, with the expenditure of energy

Primary metabolism

1.1.1 – Definitions

- Bioreactor

system used for the development of cultures or biological processes

1.1.1 – Definitions

- Bioreactor

system used for the development of cultures or biological processes

1.1.1 – Definitions

- Bioreactor

system used for the development of cultures or biological processes

- Batch Reactor

all components are inserted into the bioreactor at the beginning of the process

- Inoculum

suspension of microorganisms of suitable concentration, used to start the fermentation process

1.1.2 – Cell growth phases

1.1.2 – Cell growth phases

• <u>lag phase or adaptation phase</u> – no increase in the cell number

Factors that influence the lag phase:

- <u>Culture medium</u> in the reactor should have a similar composition to the inoculum
- Quantity of inoculum— 5 10% of the reactor's liquid volume
- <u>Inoculum's activity</u> transfer during the exponential cell growth phase

1.1.2 – Cell growth phases

• *lag* phase or adaptation phase – no increase in the cell number

Multiple lag phases can occur: diauxic growth → results from the use of various substrates

X – cell concentration

1.1.2 – Cell growth phases

• **Exponential Phase** – the cell growth rate is proportional to the number of cells (or cell concentration when x is proportional to the number of cells)

$$\frac{dx}{dt} = \mu x \quad (1) \quad ou \quad \frac{dN}{dt} = \mu N \quad (2)$$

x – cell concentration (mg/L)

N – number of cells

 μ - specific cell growth rate (t⁻¹)

 r_x – volumetric cell growth rate

 $(mg_cel/(l.h))$

"Balanced growth" constant cell composition

$$\frac{1}{x}\frac{dx}{dt} = \frac{1}{N}\frac{dN}{dt}$$
 (3)

$$\frac{dx}{dt} = r_x \quad (4)$$

1.1.2 – Cell growth phases

• **Exponential Phase** – the cell growth rate is proportional to the number of cells (or cell concentration when x is proportional to the number of cells)

$$\frac{dx}{dt} = \mu x \quad (1) \quad ou \quad \frac{dN}{dt} = \mu N \quad (2)$$

x – cell concentration (mg/L)

N – number of cells

 μ - specific cell growth rate (t⁻¹)

 r_x – volumetric cell growth rate

 $(mg_cel/(l.h))$

"Unbalanced growth" changes in cellular composition (e.g. proteins, internal reserves, etc.)

$$\frac{1}{x}\frac{dx}{dt} \neq \frac{1}{N}\frac{dN}{dt}$$

Examples of "unbalanced growth" - accumulation of internal reserves

Polyhydroxyalkanoate granules

poli-P granules

Glycogen granules

1.1.2 – Cell growth phases

• Exponential Phase

Integrating eq. 1 between t and t_{lag} :

$$\frac{dx}{dt} = \mu x \quad (1)$$

$$\frac{dx}{x} = \mu \ dt$$

$$\int_{x_0}^{x} \frac{dx}{x} = \mu \int_{t_{lag}}^{t} dt$$

$$\ln\frac{x}{x_0} = \mu \left(t - t_{lag}\right)$$

$$\frac{x}{x_0} = e^{\mu (t - t_{lag})}$$

$$x = x_0 e^{\mu (t - t_{lag})} \quad (5)$$

Tempo

1.1.2 – Cell growth phases

• Exponential Phase

$$\mathbf{x} = \mathbf{x}_0 \mathbf{e}^{\mu(\mathsf{t} - \mathsf{t}_{\mathsf{lag}})} \quad (5)$$

$$\ln\left(\frac{x}{x_{0}}\right) = \mu \left(t - t_{lag}\right) \quad (6)$$

$$x = x_0$$
 $para$ $t = t_{lag}$

$$se \quad t_{lag} = 0 \Longrightarrow \ln x = \ln x_0 + \mu t \quad (7)$$

$$\downarrow \downarrow$$

$$\mu = \mu_{\rm max}$$

During the exponential growth phase

 μ_{max} – maximum specific cell growh rate (h⁻¹)

1.1.2 – Cell growth phases

• Exponential Phase

$$\ln\left(\frac{x}{x_0}\right) = \mu \left(t - t_{lag}\right) \quad (6)$$

Cell duplication time (t_d) :

$$t_d = \frac{\ln 2}{\mu} \quad (8)$$

$$\left(\ln\frac{2x_{\scriptscriptstyle 0}}{x_{\scriptscriptstyle 0}} = \mu\,t_{\scriptscriptstyle d}\right)$$

1.1.2 – Cell growth phases

• <u>Stationary phase</u> – constant cell concentration

$$\frac{dx}{dt} = 0$$

When:

- Essential substrate exhausted (O_2 , carbon, nitrogen) (<u>Limitation</u>)
 - Acumulation of a metabolite (<u>Inibition</u>)

1.1.2 – Cell growth phases

• **<u>Death phase</u>** – the cell concentration decreases

Exponential death rate

$$\frac{dx}{dt} = -k_d x \quad (9)$$

(Note: the number of cells that die in a given time is a constant fraction of those that are alive)

$$x = x_s e^{-k_d t} \quad (10)$$

k_d – specific cell death rate (h⁻¹)

t – time since onset of death phase

1.1.2 – Cell growth phases

1.1.3 – Elemental composition of the biomass

• Biomass = cells (bacteria, fungi, yeasts, microalgae, etc.) → X

1.1.3 – Elemental composition of the biomass

• Biomass = cells (bacteria, fungi, yeasts, microalgae, etc.) \rightarrow X

The composition of a bacterial cell

www.nature.com

1.1.3 – Elemental composition of the biomass

- Biomass = cells (bacteria, fungi, yeasts, microalgae, etc.) \rightarrow X
- Composition:

C H O N S P other elements

1.1.3 – Elemental composition of the biomass

- Biomass = cells (bacteria, fungi, yeasts, microalgae, etc.) \rightarrow X
- Composition:
 - C H O N S P other elements
- Content in S, P and elements such as Ca, Mg, Na, Fe, etc. are very low comparing to the content in N
- Represented by chemical formulas:

$$C_i H_i O_k N_l$$
 i, j, k, l – stoichiometric cefficients

• Dependent on the microorganism and the cultivation conditions

1.1.3 – Elemental composition of the biomass

 $C_5 H_7 O_2 N$

Most commonly used formula

Simplified formula, does not represente an accurate stoichiometry

Microorganism	Elemental composition	Ash content (%)	Condition
Candida utilis	CH _{1.83} O _{0.46} N _{0.19}	7.0	Glucose limited, D=0.05 h ⁻¹
	$CH_{1.87}O_{0.56}N_{0.20}$	7.0	Glucose limited, D=0.45 h ⁻¹
	CH _{1.83} O _{0.54} N _{0.10}	7.0	Ammonia limited, D=0.05 h ⁻¹
	$CH_{1.87}O_{0.56}N_{0.20}$	7.0	Ammonia limited, D=0.45 h ⁻¹
	CH _{1.75} O _{0.43} N _{0.22}	3.6	Glycerol limited, D=0.10 h ⁻¹

1.1.3 – Elemental composition of the biomass

 $C_5 H_7 O_2 N$

Most commonly used formula

Simplified formula, does not represente an accurate stoichiometry

Microorganism	Elemental composition	Ash content (%)	Condition
Klebsiella aerogenes	$CH_{1.73}O_{0.43}N_{0.24}$	3.6	Glycerol limited, D=0.85 h ⁻¹
	$CH_{1.75}O_{0.47}N_{0.17}$	3.6	Ammonia limited, D=0.10 h ⁻¹
	$CH_{1.73}O_{0.43}N_{0.24}$	3.6	Ammonia limited, D=0.85 h ⁻¹
	CH _{1.82} O _{0.58} N _{0.16}	7.3	Glucose limited, D=0.080 h ⁻¹
	$CH_{1.94}O_{0.52}N_{0.25}$	5.5	Unlimited growth

1.1.3 – Elemental composition of the biomass

 $C_5 H_7 O_2 N$

Most commonly used formula

Simplified formula, does not represente an accurate stoichiometry

Microorganism	Elemental composition	Ash content (%)	Condition
Escherichia coli	CH _{1.77} O _{0.49} N _{0.24}	5.5	
Pseudomonas	$CH_{1.83O_{0.50}N_{0.22}}$	5.5	
fluorescens	$CH_{1.96}O_{0.55}N_{0.25}$	5.5	
Aerobacter aerogenes	$CH_{1.93}O_{0.55}N_{0.25}$	5.5	Unlimited arouth
Penicillium	$CH_{1.83}O_{0.55}N_{0.26}$	5.5	Unlimited growth
chrysogenum	$CH_{1.64}O_{0.52}N_{0.16}$	7.9	
Aspergillus niger	$CH_{1.72}O_{0.55}N_{0.17}$	7.5	
Average	CH _{1.81} O _{0.52} N _{0.21}	6.0	

1.1.3 – Elemental composition of the biomass

Important for estimating the microorganims' nutrient requirements

For cell growth:

- C source (ex.: glucose, pyruvate, etc.)
- N source (ex.: NH₃)
- O₂ under aerobic conditions

Chemical reaction for cell growth

C source + N source (+
$$O_2$$
) \rightarrow Biomass + CO_2 + H_2O (+ Products)

aerobiose

respiração celular

1.1.4 – Non strutured Models

• Malthus Model:

$$\frac{dx}{dt} = \mu x \quad ou \quad r_x = \mu x$$

Does not predict the appearance of the stationary phase

1.1.4 – Non strutured Models

• Verhulst Model: Logistic model

$$\frac{\mathrm{dX}}{\mathrm{dt}} = k \, \mathrm{X} \, (1 - \beta \, \mathrm{X}) \tag{11}$$

It proposes the addition of an inhibition term that is cell concentration dependent.

Note: it does not predict the appearance of the death phase.

1.1.4 – Non strutured Models

• Verhulst Model: Logistic model

$$\frac{\mathrm{dX}}{\mathrm{dt}} = k \, \mathrm{X} \, (1 - \beta \, \mathrm{X}) \tag{11}$$

Integrando, obtém-se:

$$X = \frac{X_0 e^{kt}}{1 - \beta X_0 (1 - e^{kt})}$$
 (12)

$$k = \mu$$
 $\beta = \frac{1}{X_{\text{max}}}$

1.1.4 – Non strutured Models

• Verhulst Model: Equation 12 can take a simpler form:

$$X = \frac{X_0 e^{kt}}{1 - \beta X_0 (1 - e^{kt})}$$

$$= \frac{X_{max} X_0 e^{kt}}{X_{max} - X_{max} \beta X_0 (1 - e^{kt})}$$

$$= \frac{X_{max} X_0 e^{kt}}{X_{max} - X_0 (1 - e^{kt})}$$

$$= \frac{X_{max} X_0 e^{kt}}{X_{max} - X_0 (1 - e^{kt})}$$

$$= \frac{X_{max} X_0 e^{\mu_{max} t}}{X_{max} - X_0 (1 - e^{\mu_{max} t})}$$

$$k = \mu_{max}$$

1.1.4 – Non strutured Models

• **Verhulst Model:** Equation 12 can take a simpler form:

$$X = \frac{X_0 e^{kt}}{1 - \beta X_0 (1 - e^{kt})}$$

$$= \frac{X_{max}X_0e^{kt}}{X_{max} - X_{max}\beta X_0(1 - e^{kt})}$$

$$= \frac{X_{max}X_0e^{kt}}{X_{max} - X_0(1 - e^{kt})}$$

$$= \frac{X_{max} X_0 e^{\mu_{max} t}}{X_{max} - X_0 (1 - e^{\mu_{max} t})}$$
(12a)

$$t = \frac{\ln\left(\frac{-(x.x_{\text{max}} - x.x_0)}{x.x_0 - x_0.x_{\text{max}}}\right)}{\mu_{\text{max}}}$$
(12b)