Zarządzanie ruchem i jakością usług w sieciach komputerowych

Część 1 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Standard IntServ (IETF)

- architektura dla zapewnienia gwarancji jakości usług w sieciach IP dla poszczególnych sesji aplikacji
- □ Rezerwacja zasobów: rutery utrzymują informacje o stanie (a la VC) przydzielonych zasobów, wymagania jakości usług
- dopuszczenie/odmowa żądanej nowej konfiguracji połączeń: kontrola dostępu

Pytanie: czy nowo przychodzący przepływ może zostać dopuszczony przy gwarancji wydajności, gdy nienaruszalne gwarancje jakości usług zapewniono już przyjętym przepływom?

<u>IntServ: scenariusz gwarancji jakości</u> <u>usłuq</u>

Dopuszczanie połączenia

Przychodząca sesja musi:

- posiadać niepowtarzalny identyfikator
- Zadeklarować swoje wymaganie w zakresie jakości usługi
 - O R-spec: definiuje żądaną jakość usługi
- charakteryzuje ruch, który prześle do sieci
 - T-spec: definiuje charakterystyki ruchu
- Protokół sygnalizacyjny: potrzebny do przeniesienia R-spec i T-spec do ruterów (tam, gdzie wymagana jest rezerwacja)
 - O RSVP
 - Uwaga: może być wykorzystywany do innych celów niż IntServ.
 Jest to generyczny i łatwy do rozszerzenia protokół sygnalizacyjny.

Parametry połączenia

- □ T-spec: parametry token bucket
- □ R-spec (QoS)
 - Przepustowość R
 - Dopuszczalne opóźnienie S o ile może być wolniej, niż przy przepustowości S
 - O R-spec jest określane tylko dla usługi GS (zobacz dalej)

<u>Jakość usług Intserv: modele usług</u> [rfc2211, rfc 2212]

Guaranteed Service (GS):

- Najbardziej pesymistyczny przypadek przybywania ruchu: źródło nadzorowane przez token bucket
- proste (dające się udowodnić matematycznie) ograniczenie opóźnienia [Parekh 1992, Cruz 1988]

Controlled Load (CL):

 "jakość usługi ściśle przybliżająca jakość usługi, jaką ten sam przepływ otrzymałby z elementu nieobciążonej sieci."

<u>Usługi IntServ a ATM</u>

- Best-effort = UBR
- □ CL (Controlled Load Service)
 - przypomina ABR: gwarancja na minimalną przepustowość
 - ale dodatkowo: jakość jak w nieobciążonej sieci
- ☐ GS (Guaranteed Load Service) ≈ rt-VBR
 - o gwarantowana przepustowość i opóźnienie
 - zmienność opóźnień nie jest gwarantowana

IS - Model Rutera

Resource ReSerVation Protocol RSVP

- Przepływów nie można łączyć
- Nie ma możliwości negocjacji
 - o jeśli żądane jest 5Mb/s, a jest dostępne tylko 3Mb/s, to nie dostanie się nic
- □ Rezerwacje używają miękkiego stanu
 - o niezawodność: nie utrzymuje się stanu w sieci
 - o stan wymaga okresowego odświeżania
 - o nie ma problemów z awarią rozłączania
 - łatwo dostosować się do zmian rutingu
- Dostosowany (skalowalny) dla komunikacji rozsiewczej
 - rezerwację rozpoczyna odbiorca
 - o rezerwacje łączą się przechodząc w górę drzewa

Działanie RSVP (1/2)

- Każda sesja jest traktowana oddzielnie
 - Każdy komunikat RSVP ma identyfikator sesji
- Sesja RSVP jest definiowana przez
 - O Adres IP celu, identyfikator protokołu, port celu
- Żródło sesji wysyła komunikat Path
 - komunikat ma te same adresy nadawcy i odbiorcy co pakiety danych
 - o rutery zachowują stan ścieżki
 - · adres poprzedniego rutera na ścieżce
 - charakterystyki ruchowe ścieżki
 - opcjonalnie, ruter może dodać do komunikatu ilość dostępnych zasobów

Działanie RSVP (2/2)

- Odbiorca sesji odpowiada komunikatem Resv
 - komunikat przechodzi od odbiorcy w kierunku nadawcy
 - może się zatrzymać na węźle pośredniczącym
 - adresowany jest na nowo na każdym kroku ścieżki, używając zapisanego w stanie adresu poprzednika
 - tworzy w ruterach stan rezerwacji
 - jeśli spełnione są warunki kontroli ruchu

Krytyka RSVP/IntServ

- Skalowalność:
 - stan jest utrzymywany dla każdego przepływu
 - ale to raczej cecha IntServ niż RSVP
 - komunikaty aktualizacji miękkiego stanu stanowią obciążenie
- Zwiększenie obciążenia ruterów
 - o kontrola ruchu, klasyfikacja, szeregowanie
 - złożone przetwarzanie
- □ Trudności z implementacją usług QoS przez niższe warstwy
 - we współdzielonej sieci Ethernet, trudno jest zagwarantować jakość usługi GS

Mapa wykładu

- Wprowadzenie
 - 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM (150 slajdów 3 wykłady)
 - IEEE 802.1D
 - Integrated Services
 - Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Zróżnicowane usługi IETF

Obawy związane z Intserv:

- Skalowalność: sygnalizacja, utrzymanie stanu w ruterze dla każdego przepływu trudne przy dużej liczbie przepływów
- □ Elastyczne modele usług: Intserv ma tylko dwie klasy. Chcemy również "jakościowe" klasy usług
 - "zachowuje się jak drut"
 - O Relatywne rozróżnienie usług: Platinum, Gold, Silver

Podejście Diffserv:

- Proste funkcje w rdzeniu sieci (przekazywanie)
- Stosunkowo złożone funkcje na brzegowych ruterach (lub hostach) (znakowanie)
- Brak definiowania klas usług, dostarcza funkcjonalnych komponentów do budowy klas usług
- Usługi są tworzone przez kombinacje przekazywania i znakowania

Architektura Diffserv

Ruter brzegowy:

- zarządzanie ruchem dla każdego przepływu
- znakuje pakiety jako zgodne z profilem i niezgodne z profilem

Ruter podstawowy:

- zarządzanie ruchem według klasy
- buforowanie i szeregowanie oparte na znakowaniu na krawędzi
- preferowane są pakiety zgodne z profilem

Znakowanie pakietu rutera brzegowego

- 🗇 profil: z góry ustalona prędkość A, rozmiar kubełka B
- Znakowanie pakietu na brzegu oparte na profilu dla każdego przepływu

Potencjalne wykorzystanie znakowania:

- Znakowanie oparte na klasie: pakiety o różnych klasach różnie znakowane
- Znakowania w obrębie klasy: zgodna porcja przepływu znakowana odmiennie niż niezgodna

Klasyfikacja i dopasowanie

- Pakiet jest znakowany w Typie Usługi (TOS) w IPv4 oraz Klasie Ruchu w IPv6
- 6 bitów używane do Differentiated Service Code Point (DSCP) i ustalenia PHB, jakie otrzyma pakiet
- □ 2 bity obecnie nieużywane

Klasyfikacja i dopasowanie

Pożądane może być ograniczenie tempa wysyłania ruchu którejś klasy:

- Użytkownik deklaruje profil ruchu
- Ruch mierzony, kształtowany, jeżeli jest niezgodny

<u>Przekazywanie (PHB)</u>

- Ang. Per Hop Behavior
- Wynik działania PHB to różna, dająca się zaobserwować (mierzalna) jakość i wydajność przekazywania pakietów przez sieć
- □ PHB nie określa, jakich mechanizmów używać, żeby zapewnić wymaganą jakość i wydajność PHB
- □ Przykłady:
 - Klasa A otrzymuje x% wychodzącego pasma łącza w interwałach czasowych o określonej długości
 - Pakiety klasy A wychodzą pierwsze, przed pakietami z klasy B

<u>Przekazywanie (PHB) - 1</u>

Zdefiniowane PHB:

- □ Best effort
- Class selector
- Expedited forwarding: prędkość przekazywania pakietów danej klasy nie jest mniejsza określonej (zadanej) prędkości
 - Logiczne łącze o minimalnej gwarantowanej prędkości
- Assured forwarding: 4 klasy ruchu
 - Każdej gwarantowana jest minimalna szerokość pasma
 - Każda z trzema podziałami według preferencji usuwania

sieć pod spójną administracją (Intranet, ISP)

- udostępnia sygnalizację

zapewnia dostępność zasobów

Zwykły ruter best-effort

Węzeł wewnętrzny (Interior Node)

Pełny ruter DiffServ

Mechanizm kształtowania ruchu

Assured Forwarding PHB (AF)

- 4 grupy lub klasy PHB
 - bufory i przepustowość są przydzielane klasom
 - o nie ma łączenia zasobów pomiędzy klasami
- □ W obrębie klasy:
 - 3 stopnie kolejności usuwania
 - pakiet o wyższym stopniu kolejności jest usuwany pierwszy

Assured Forwarding PHB (AF)

- Typowe zastosowanie: ruch pomiędzy intranetami
 - z dużym prawdopodobieństwem zapewnia jakość ruchowi zgodnemu z profilem
 - pozwala na dodatkowy ruch z mniejszym prawdopodobieństwem
- □ Poziom zapewnianej jakości zależy od:
 - o ilości zasobów przydzielonej klasie ruchu
 - obciążenia w klasie ruchu
 - w wypadku przeciążenia, od stopnia kolejności usuwania

Expedited Forwarding PHB (EF)

- Typowe zastosowanie:
 Wirtualne Wynajmowane Łącze (ang. Virtual Leased Line)
- □ Zapewnia gwarancje przepustowości (punkt-punkt)
- Straty, opóźnienie, zmienność opóźnień są małe
 - o nie określone ilościowo
 - zależne od implementacji PHB (mechanizmu szeregowania)

Porównianie AF z EF

- □ AF:
- Zaprojektowany do obsługi różnych klas ruchu
- Zapewnia uporządkowanie pakietów
- PHB jest sterowane stopniem kolejności usuwania
- Kształtowanie ruchu: dopuszcza dodatkowy ruch, ale zmienia jego PHB

- J EF:
- Przypomina CBR: zapewnia gwarancje przepustowości
- PHB: małe opóźnienie (ruch priorytetowy)
- Kształtowanie ruchu:
 nie dopuszcza dodatkowego ruchu

☐ AF:

- o przeciążenie i straty są możliwe
- dodatkowy ruch jest dopuszczany, zarządzanie buforem i szeregowanie obsługują przeciążenie w każdej klasie AF.

☐ EF:

- o polega na kształtowaniu ruchu na brzegu sieci,
- dodatkowy ruch i przeciążenie nie są dopuszczane
- □ Różne PHB wymagają różnych mechanizmów szeregowania.

Kształtowanie ruchu Three Color Marker

- Dwa kubełki token bucket
 - dwa parametry: CB (Committed Burst)i EB/PB (Excess/Peak Burst)
- Pakiety są znakowane "kolorem" zielonym, żółtym, lub czerwonym
 - trzy stopnie kolejności usuwania dla AF
 - o zielony < CB < żółty < EB/PB < czerwony
 - o można zmieniać kolor na gorszy, ale nie na lepszy

Rozszerzenia DiffServ

Adaptive Resource Control for QoS Using an IP-based Layered Architecture

- Projekt europejski w ramach5 programu ramowego
- □ Konsorcjum
 - m.in. Siemens, Politechnika w Dreźnie, TP S.A., Telekom Austria, Politechnika Warszawska, ...

Cele projektu AQUILA

- Dynamiczne tworzenie połączeń z gwarancją jakości w sieciach IP
- Prototyp architektury QoS dla dużej sieci szkieletowej DiffServ
 - DiffServ udostępnia mechanizmy dla tworzenia usług:
 AQUILA próbuje zastosować te mechanizmy i utworzyć usługi, które operator może sprzedawać klientom
- Utworzenie narzędzi QoS (API)
 - QoS działająca dla połączeń koniec-koniec, tworzonych dynamicznie
- □ Publikacje, nowe standardy (IETF)

Główne innowacje

Klasy ruchu i usługi

Usługi AQUILA a aplikacje

Usługi AQUILA a ruch

Klasy ruchu

Usługa	Premium	Premium	Premium	Premium Mission	Standard
	CBR	VBR	Multimedia	Critical	
Klasa	TCL1	TCL2	TCL3	TCL4	TCL STD

<u>Usługi</u>

Usługa	Rodzaj ruchu	Gwarantowana jakość	Przykład zastosowania
Premium CBR	stały małe pakiety	stałe opóźnienie stała przepustowość małe straty	SIP VoIP
Premium VBR	zmienny duże pakiety	małe straty ograniczone opóźnienie	SIP Wideo
Premium MM	elastyczny	średnie opóźnienie	Streaming wideo
Premium MC	gwałtownie zmienny	bardzo małe opóźnienie i straty	gra on-line
Standard	nieznany	best-effort	reszta

Architektura

Warstwa sterowania zasobami

- □ Podstawowe mechanizmy DiffServ
 - o udostępniają ustalone klasy ruchu w sieci
 - gwarantują QoS przez ograniczanie ilości ruchu w danej klasie przez kształtowanie ruchu na brzegu sieci
- Zadanie warstwy sterowania zasobami
 - określać, ile można dopuścić ruchu danej klasy z danego rutera brzegowego
 - umożliwiać przesuwanie zasobów pomiędzy ruterami brzegowymi

Warstwa sterowania zasobami

- Agent kontroli przyjmowania połączeń
 - o uwierzytelnia użytkownika
 - o kontroluje uprawnienia
 - znajduje wejściowy i/lub wyjściowy ruter brzegowy
 - o żąda zasobów od agenta sterowania zasobami
 - przyjmuje/odrzuca nowe połączenia
 - konfiguruje wejściowy ruter brzegowy
- Agent sterowania zasobami
 - zarządza zasobami
 - sprawdza dostępność żądanych zasobów
 - Współdzieli zasoby z innymi agentami

Zasoby grupowe

- Ograniczenia zasobów
 - ograniczanie ruchu QoS od każdego rutera brzegowego
- □ Grupy sąsiednich ruterów
 - ograniczanie ruchu QoS od każdej grupy
- Dynamiczne współdzielenie...
 - w obrębie i między grupami, dzielenie dostępnych zasobó
- Hierarchia
 - Grupy grup

QoS API

- Umożliwienie dostępu do QoS aplikacjom odziedziczonym
- Obsługa aplikacji wymagających QoS, stosujących różne metody sygnalizacji (RSVP, DiffServ)
- Udostępnianie API do tworzenia nowych aplikacji QoS

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii