A Bayesian Tutorial for Data Assimilation: Christopher K. Wikle & L. Mark Berliner

Damon McDougall

University of Warwick Mathematics Institute

March 16, 2011

- Introduction
- Bayesian Inference

- Introduction
- Bayesian Inference
- Sequential Approaches

- Introduction
- Bayesian Inference
- Sequential Approaches
- Monte Carlo Sampling and Data Assimilation

- Introduction
- Bayesian Inference
- Sequential Approaches
- Monte Carlo Sampling and Data Assimilation
- Summary

• What is DA?

- What is DA?
 - Various definitions

- What is DA?
 - Various definitions
 - Their definition: "DA is an approach for fusing data (observations)
 with prior knowledge to obtain an estimate of the distribution of the
 true state of the process"

- What is DA?
 - Various definitions
 - Their definition: "DA is an approach for fusing data (observations)
 with prior knowledge to obtain an estimate of the distribution of the
 true state of the process"
- What do we need?

- What is DA?
 - Various definitions
 - Their definition: "DA is an approach for fusing data (observations)
 with prior knowledge to obtain an estimate of the distribution of the
 true state of the process"
- What do we need?
 - Data model (measurement model)

- What is DA?
 - Various definitions
 - Their definition: "DA is an approach for fusing data (observations)
 with prior knowledge to obtain an estimate of the distribution of the
 true state of the process"
- What do we need?
 - Data model (measurement model)
 - Process model

- What is DA?
 - Various definitions
 - Their definition: "DA is an approach for fusing data (observations)
 with prior knowledge to obtain an estimate of the distribution of the
 true state of the process"
- What do we need?
 - Data model (measurement model)
 - Process model
- Why do we need these models?

- What is DA?
 - Various definitions
 - Their definition: "DA is an approach for fusing data (observations)
 with prior knowledge to obtain an estimate of the distribution of the
 true state of the process"
- What do we need?
 - Data model (measurement model)
 - Process model
- Why do we need these models?
 - We need them for Bayesian Inference

• What is Bayesian Inference and how do we do it?

- What is Bayesian Inference and how do we do it?
- There are 3 steps

- What is Bayesian Inference and how do we do it?
- There are 3 steps
 - Formulate 'full' probability model p(x, y)

- What is Bayesian Inference and how do we do it?
- There are 3 steps
 - Formulate 'full' probability model p(x, y)
 - 2 Find p(x|y)

- What is Bayesian Inference and how do we do it?
- There are 3 steps
 - 1 Formulate 'full' probability model p(x, y)
 - 2 Find p(x|y)
 - Evaluate fit and validity of model

- What is Bayesian Inference and how do we do it?
- There are 3 steps
 - Formulate 'full' probability model p(x, y)
 - 2 Find p(x|y)
 - Evaluate fit and validity of model
- Conditional probability gives:

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

- What is Bayesian Inference and how do we do it?
- There are 3 steps
 - Formulate 'full' probability model p(x, y)
 - 2 Find p(x|y)
 - Evaluate fit and validity of model
- Conditional probability gives:

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

Using this we obtain Bayes' Rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$
 for $0 < p(y) < \infty$

• p(x) is our prior belief or *prior distribution*

- p(x) is our prior belief or prior distribution
- p(y|x) is the data (or measurement) model. These are our observations

- p(x) is our prior belief or prior distribution
- p(y|x) is the data (or measurement) model. These are our observations
- Using these and Bayes' Rule (on the previous slide) we can find p(x|y), the state of the system *given* the observations

• Let's say our prior knowledge is: $X \sim \mathcal{N}(\mu, \tau^2)$

- Let's say our prior knowledge is: $X \sim \mathcal{N}(\mu, \tau^2)$
- And we have *n* independent observations, $Y = (Y_1, ..., Y_n)^T$, where

$$Y_i|X \sim \mathcal{N}(x,\sigma^2)$$

- ullet Let's say our prior knowledge is: $X \sim \mathcal{N}(\mu, au^2)$
- And we have *n* independent observations, $Y = (Y_1, \dots, Y_n)^T$, where

$$Y_i|X \sim \mathcal{N}(x,\sigma^2)$$

Equation for the prior is:

$$p(x) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(-\frac{1}{2\tau^2}(x-\mu)^2\right)$$

As a result of independent observations, we have

• As a result of independent observations, we have

$$p(y|x) = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) \exp\left(-\frac{1}{2\sigma^2}(y_i - x)^2\right)$$
$$\propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - x)^2\right)$$

We can work out the posterior distribution:

As a result of independent observations, we have

$$p(y|x) = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) \exp\left(-\frac{1}{2\sigma^2}(y_i - x)^2\right)$$
$$\propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - x)^2\right)$$

We can work out the posterior distribution:

$$p(x|y) \propto \exp\left(-rac{1}{2}\left[\sum_{i=1}^{n}rac{(y_i-x)^2}{\sigma^2}+rac{(x-\mu)^2}{ au^2}
ight]
ight) \ \propto \exp\left(-rac{1}{2}\left[\sum_{i=1}^{n}rac{-2xy_i+x^2}{\sigma^2}+rac{x^2-2x\mu}{ au^2}
ight]
ight)$$

$$= \exp\left(-\frac{1}{2}\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)x^2 - 2\left(\sum_{i=1}^n \frac{y_i}{\sigma^2} + \frac{\mu}{\tau^2}\right)x\right)$$
$$= \exp\left(-\frac{1}{2}(ax^2 - 2bx)\right)$$
$$\propto \exp\left(-\frac{a}{2}\left(x - \frac{b}{a}\right)^2\right)$$

$$= \exp\left(-\frac{1}{2}\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)x^2 - 2\left(\sum_{i=1}^n \frac{y_i}{\sigma^2} + \frac{\mu}{\tau^2}\right)x\right)$$
$$= \exp\left(-\frac{1}{2}(ax^2 - 2bx)\right)$$
$$\propto \exp\left(-\frac{a}{2}\left(x - \frac{b}{a}\right)^2\right)$$

So we have:

$$p(x|y) = \mathcal{N}\left(\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}\left(\sum_{i=1}^n \frac{y_i}{\sigma^2} + \frac{\mu}{\tau^2}\right), \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}\right)$$

Write

Write

$$\bar{y} = \sum_{i=1}^{n} y_i / n$$

$$\omega_y = \frac{n\tau^2}{n\tau^2 + \sigma^2}$$

$$\omega_\mu = \frac{\sigma^2}{n\tau^2 + \sigma^2}$$

Write

$$\bar{y} = \sum_{i=1}^{n} y_i / n$$

$$\omega_y = \frac{n\tau^2}{n\tau^2 + \sigma^2}$$

$$\omega_\mu = \frac{\sigma^2}{n\tau^2 + \sigma^2}$$

Then we have

$$\mathbb{E}(X|y) = \omega_y \bar{y} + \omega_\mu \mu$$

ullet au^2 or $n o\infty\Rightarrow\omega_y o 1$ and $\omega_\mu o 0$ (so data dominates prior)

Example: Univariate Normal-Normal Case

- \circ au^2 or $n o\infty\Rightarrow\omega_y o 1$ and $\omega_\mu o 0$ (so data dominates prior)
- For small au^2 , the prior is critical for small $n \; (\omega_y o 0)$

Example: Univariate Normal-Normal Case

- ullet au^2 or $n o\infty\Rightarrow\omega_y o 1$ and $\omega_\mu o 0$ (so data dominates prior)
- For small τ^2 , the prior is critical for small n ($\omega_v \to 0$)
- Also, can write

$$\mathbb{E}(X|y) = \mu + \omega_y(\bar{y} - \mu)$$
$$= \mu + K(\bar{y} - \mu)$$

Gain K adjusts prior mean towards sample mean.

Example: Univariate Normal-Normal Case

- au^2 or $n o \infty \Rightarrow \omega_{\scriptscriptstyle V} o 1$ and $\omega_{\scriptscriptstyle \mu} o 0$ (so data dominates prior)
- For small τ^2 , the prior is critical for small n ($\omega_v \to 0$)
- Also, can write

$$\mathbb{E}(X|y) = \mu + \omega_y(\bar{y} - \mu)$$
$$= \mu + K(\bar{y} - \mu)$$

Gain K adjusts prior mean towards sample mean.

Similar for variance

$$\mathsf{Var}(X|y) = (1 - K)\tau^2$$

Idea: update posterior sequentially

- Idea: update posterior sequentially
- Notation

$$Y_{1:t} = \{Y_1, \dots, Y_t\}, \quad X_{0:t} = \{X_0, \dots, X_t\}$$

- Idea: update posterior sequentially
- Notation

$$Y_{1:t} = \{Y_1, \dots, Y_t\}, \quad X_{0:t} = \{X_0, \dots, X_t\}$$

Assumptions:

$$p(x_{0:T}) = p(x_0) \prod_{t=1}^{T} p(x_t|x_{t-1})$$
 $p(y_{1:T}|x_{0:T}) = \prod_{t=1}^{T} p(y_t|x_t)$

- Idea: update posterior sequentially
- Notation

$$Y_{1:t} = \{Y_1, \dots, Y_t\}, \quad X_{0:t} = \{X_0, \dots, X_t\}$$

Assumptions:

$$p(x_{0:T}) = p(x_0) \prod_{t=1}^{T} p(x_t|x_{t-1})$$
 $p(y_{1:T}|x_{0:T}) = \prod_{t=1}^{T} p(y_t|x_t)$

Using the above we have:

$$p(x_{0:T}|y_{1:T}) \propto p(x_0) \prod_{t=1}^{T} p(y_t|x_t) p(x_t|x_{t-1})$$

• Filtering: use only past data to update posterior

- Filtering: use only past data to update posterior
- Given $p(x_{t-1}|y_{1:t-1})$, find forecast $p(x_t|y_{1:t-1})$ and analysis $p(x_t|y_{1:t})$

- Filtering: use only past data to update posterior
- Given $p(x_{t-1}|y_{1:t-1})$, find forecast $p(x_t|y_{1:t-1})$ and analysis $p(x_t|y_{1:t})$
- Markovian assumption gives:

$$p(x_t|y_{1:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

- Filtering: use only past data to update posterior
- Given $p(x_{t-1}|y_{1:t-1})$, find forecast $p(x_t|y_{1:t-1})$ and analysis $p(x_t|y_{1:t})$
- Markovian assumption gives:

$$p(x_t|y_{1:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

Bayes' Rule gives:

$$p(x_t|y_{1:t}) = p(x_t|y_t, y_{1:t-1})$$

$$\propto p(y_t|x_t, y_{1:t-1})p(x_t|y_{1:t-1})$$

$$= p(y_t|x_t)p(x_t|y_{1:t-1})$$

- Filtering: use only past data to update posterior
- Given $p(x_{t-1}|y_{1:t-1})$, find forecast $p(x_t|y_{1:t-1})$ and analysis $p(x_t|y_{1:t})$
- Markovian assumption gives:

$$p(x_t|y_{1:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

Bayes' Rule gives:

$$p(x_t|y_{1:t}) = p(x_t|y_t, y_{1:t-1})$$

$$\propto p(y_t|x_t, y_{1:t-1})p(x_t|y_{1:t-1})$$

$$= p(y_t|x_t)p(x_t|y_{1:t-1})$$

 So we can iterate between forecast and analysis distributions to update the posterior distribution

• Smoothing: use all the data to update posterior

- Smoothing: use all the data to update posterior
- Want $p(x_{0:T}|y_{1:T})$ in sequential fashion

- Smoothing: use all the data to update posterior
- Want $p(x_{0:T}|y_{1:T})$ in sequential fashion
- Smoothing distribution is given by:

$$p(x_t|y_{1:T}) = \int p(x_t|x_{t+1}, y_{1:T}) p(x_{t+1}|y_{1:T}) dx_{t+1}$$

- Smoothing: use all the data to update posterior
- Want $p(x_{0:T}|y_{1:T})$ in sequential fashion
- Smoothing distribution is given by:

$$p(x_t|y_{1:T}) = \int p(x_t|x_{t+1}, y_{1:T}) p(x_{t+1}|y_{1:T}) dx_{t+1}$$

• Assume: $p(x_t|x_{t+1}, y_{1:T}) = p(x_t|x_{t+1}, y_{1:t})$

- Smoothing: use all the data to update posterior
- Want $p(x_{0:T}|y_{1:T})$ in sequential fashion
- Smoothing distribution is given by:

$$p(x_t|y_{1:T}) = \int p(x_t|x_{t+1}, y_{1:T}) p(x_{t+1}|y_{1:T}) dx_{t+1}$$

- Assume: $p(x_t|x_{t+1}, y_{1:T}) = p(x_t|x_{t+1}, y_{1:t})$
- Bayes' Rule gives:

$$p(x_t|x_{t+1}, y_{1:t}) \propto p(x_{t+1}|x_t, y_{1:t})p(x_t|y_{1:t})$$

= $p(x_{t+1}|x_t)p(x_t|y_{1:t})$

- Forward Filtering-Backward Smoothing Algorithm
- For t = T 1 to 1

- Forward Filtering-Backward Smoothing Algorithm
- For t = T 1 to 1
 - multiply filtered analysis distribution $p(x_t|y_{1:t})$ with $p(x_{t+1}|x_t)$ to obtain $p(x_t|x_{t+1},y_{1:t})$

- Forward Filtering-Backward Smoothing Algorithm
- For t = T 1 to 1
 - multiply filtered analysis distribution $p(x_t|y_{1:t})$ with $p(x_{t+1}|x_t)$ to obtain $p(x_t|x_{t+1},y_{1:t})$
 - use smoothing distribution definition to obtain the smoothing distribution $p(x_t|y_{1:T})$ making use of smoothing distribution at time t+1, $p(x_{t+1}|y_{1:T})$, obtained at previous iteration

- Forward Filtering-Backward Smoothing Algorithm
- For t = T 1 to 1
 - multiply filtered analysis distribution $p(x_t|y_{1:t})$ with $p(x_{t+1}|x_t)$ to obtain $p(x_t|x_{t+1},y_{1:t})$
 - use smoothing distribution definition to obtain the smoothing distribution $p(x_t|y_{1:T})$ making use of smoothing distribution at time t+1, $p(x_{t+1}|y_{1:T})$, obtained at previous iteration
- Aside: For a linear model, linear observation operator and Gaussian prior, the posterior is Gaussian. Its mean and covariance can be updated iteratively in a similar manner. This is known as the Kalman Filter and Kalman Smoother.

• What if the model (or observation operator) is nonlinear?

- What if the model (or observation operator) is nonlinear?
 - Linearise locally (Extended Kalman Filter)

- What if the model (or observation operator) is nonlinear?
 - Linearise locally (Extended Kalman Filter)
 - Use Monte Carlo sampling

- What if the model (or observation operator) is nonlinear?
 - Linearise locally (Extended Kalman Filter)
 - Use Monte Carlo sampling
- Basic MC is to estimate integrals. Say we want to calculate:

$$\mathbb{E}(f(X_{0:t})|y_{1:t}) = \int f(x_{0:t})p(x_{0:t}|y_{1:t}) dx_{0:t}$$

$$= \frac{\int f(x_{0:t})p(y_{1:t}|x_{0:t})p(x_{0:t}) dx_{0:t}}{\int p(y_{1:t}|x_{0:t})p(x_{0:t}) dx_{0:t}}$$

- What if the model (or observation operator) is nonlinear?
 - Linearise locally (Extended Kalman Filter)
 - Use Monte Carlo sampling
- Basic MC is to estimate integrals. Say we want to calculate:

$$\mathbb{E}(f(X_{0:t})|y_{1:t}) = \int f(x_{0:t})p(x_{0:t}|y_{1:t}) dx_{0:t}$$

$$= \frac{\int f(x_{0:t})p(y_{1:t}|x_{0:t})p(x_{0:t}) dx_{0:t}}{\int p(y_{1:t}|x_{0:t})p(x_{0:t}) dx_{0:t}}$$

We can use m pseudo-random realisations, $x_{0:t}^i$, from $p(x_{0:t}|y_{1:t})$ and compute:

$$\widehat{\mathbb{E}}(f(X_{0:t})|y_{1:t}) = \frac{1}{M} \sum_{i=1}^{M} f(x_{0:t}^{i})$$

- What if the model (or observation operator) is nonlinear?
 - Linearise locally (Extended Kalman Filter)
 - Use Monte Carlo sampling
- Basic MC is to estimate integrals. Say we want to calculate:

$$\mathbb{E}(f(X_{0:t})|y_{1:t}) = \int f(x_{0:t})p(x_{0:t}|y_{1:t}) dx_{0:t}$$

$$= \frac{\int f(x_{0:t})p(y_{1:t}|x_{0:t})p(x_{0:t}) dx_{0:t}}{\int p(y_{1:t}|x_{0:t})p(x_{0:t}) dx_{0:t}}$$

We can use m pseudo-random realisations, $x_{0:t}^i$, from $p(x_{0:t}|y_{1:t})$ and compute:

$$\widehat{\mathbb{E}}(f(X_{0:t})|y_{1:t}) = \frac{1}{M} \sum_{i=1}^{M} f(x_{0:t}^{i})$$

ullet Can approximate $p(x_{0:t}|y_{1:t})$ by $p^m(x_{0:t}|y_{1:t}) = \sum_{i=1}^M \delta_{x_{0:t}^i}$

• Use ISMC when drawing from $p(x_{0:t}|y_{1:t})$ is hard

- Use ISMC when drawing from $p(x_{0:t}|y_{1:t})$ is hard
- Sample from $g(x_{0:t}|y_{1:t}) \gg p(x_{0:t}|y_{1:t})$, but weight each sample and calculate:

$$\hat{\mathbb{E}}(f(X_{0:t})|y_{1:t}) = \sum_{i=1}^{M} w^{i} f(x_{0:t}^{i})$$

- Use ISMC when drawing from $p(x_{0:t}|y_{1:t})$ is hard
- Sample from $g(x_{0:t}|y_{1:t}) \gg p(x_{0:t}|y_{1:t})$, but weight each sample and calculate:

$$\hat{\mathbb{E}}(f(X_{0:t})|y_{1:t}) = \sum_{i=1}^{M} w^{i} f(x_{0:t}^{i})$$

where

$$w^{i} = \frac{p(x_{0:t}^{i}|y_{1:t})/g(x_{0:t}^{i}|y_{1:t})}{\sum_{j=1}^{M} p(x_{0:t}^{j}|y_{1:t})/g(x_{0:t}^{j}|y_{1:t})}$$

- Use ISMC when drawing from $p(x_{0:t}|y_{1:t})$ is hard
- Sample from $g(x_{0:t}|y_{1:t}) \gg p(x_{0:t}|y_{1:t})$, but weight each sample and calculate:

$$\hat{\mathbb{E}}(f(X_{0:t})|y_{1:t}) = \sum_{i=1}^{M} w^{i} f(x_{0:t}^{i})$$

where

$$w^{i} = \frac{p(x_{0:t}^{i}|y_{1:t})/g(x_{0:t}^{i}|y_{1:t})}{\sum_{j=1}^{M} p(x_{0:t}^{j}|y_{1:t})/g(x_{0:t}^{j}|y_{1:t})}$$

ullet Can approximate $p(x_{0:t}|y_{1:t})$ by $p^m(x_{0:t}|y_{1:t}) = \sum_{i=1}^M w^i \delta_{x_{0:t}^i}$

• Usually choose $g(x_{0:t}|y_{1:t}) = p(x_{0:t})$

- Usually choose $g(x_{0:t}|y_{1:t}) = p(x_{0:t})$
- Given a sample from $p(x_{0:t})$, simulate the forward model to obtain Monte Carlo trajectories

- Usually choose $g(x_{0:t}|y_{1:t}) = p(x_{0:t})$
- Given a sample from $p(x_{0:t})$, simulate the forward model to obtain Monte Carlo trajectories
- With this g, we get:

$$w^{i} \propto rac{p(x_{0:t}^{i}|y_{1:t})}{p(x_{0:t}^{i})} \ \propto p(y_{1:t}|x_{0:t}^{i})$$

- Usually choose $g(x_{0:t}|y_{1:t}) = p(x_{0:t})$
- Given a sample from $p(x_{0:t})$, simulate the forward model to obtain Monte Carlo trajectories
- With this g, we get:

$$w^{i} \propto \frac{p(x_{0:t}^{i}|y_{1:t})}{p(x_{0:t}^{i})} \\ \propto p(y_{1:t}|x_{0:t}^{i})$$

This is called an ensemble smoother

Sequential MC algorithm follows from Filtering algorithm

- Sequential MC algorithm follows from Filtering algorithm
- Have seen: $g = prior \Rightarrow w^i \propto likelihood$

- Sequential MC algorithm follows from Filtering algorithm
- Have seen: $g = prior \Rightarrow w^i \propto likelihood$
- Let w_t^i be weight on ensemble member i at time t

- Sequential MC algorithm follows from Filtering algorithm
- Have seen: $g = prior \Rightarrow w^i \propto likelihood$
- Let w_t^i be weight on ensemble member i at time t
- Independent data gives:

$$w_t^i \propto p(y_{1:t}|x_{0:t}^i) \propto p(y_t|x_t^i)w_{t-1}^i$$

- Sequential MC algorithm follows from Filtering algorithm
- Have seen: $g = prior \Rightarrow w^i \propto likelihood$
- Let w_t^i be weight on ensemble member i at time t
- Independent data gives:

$$w_t^i \propto p(y_{1:t}|x_{0:t}^i) \propto p(y_t|x_t^i)w_{t-1}^i$$

* Approximate analysis distribution at time t-1 by

$$p^{m}(x_{t-1}|y_{1:t-1}) = \sum_{i=1}^{M} w_{t-1}^{i} \delta_{x_{t-1|t-1}^{i}}$$

- Sequential MC algorithm follows from Filtering algorithm
- Have seen: $g = prior \Rightarrow w^i \propto likelihood$
- Let w_t^i be weight on ensemble member i at time t
- Independent data gives:

$$w_t^i \propto p(y_{1:t}|x_{0:t}^i) \propto p(y_t|x_t^i)w_{t-1}^i$$

ullet Approximate analysis distribution at time t-1 by

$$p^{m}(x_{t-1}|y_{1:t-1}) = \sum_{i=1}^{M} w_{t-1}^{i} \delta_{x_{t-1|t-1}^{i}}$$

where $x_{t-1|t-1}^i$ are random draws from $p(x_{t-1}|y_{1:t-1})$

 In practice one considers a kernel-density approximation of this and so we can estimate the forecast:

 In practice one considers a kernel-density approximation of this and so we can estimate the forecast:

$$p^{m}(x_{t}|y_{1:t-1}) \propto \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i})w_{t-1}^{i}$$

• In practice one considers a kernel-density approximation of this and so we can estimate the forecast:

$$p^{m}(x_{t}|y_{1:t-1}) \propto \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i})w_{t-1}^{i}$$

Using the weight-update above we have:

$$p^{m}(x_{t}|y_{1:1}) \propto p(y_{t}|x_{t}) \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i}) w_{t-1}^{i}$$
$$= \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i}) w_{t}^{i}$$

• In practice one considers a kernel-density approximation of this and so we can estimate the forecast:

$$p^{m}(x_{t}|y_{1:t-1}) \propto \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i})w_{t-1}^{i}$$

Using the weight-update above we have:

$$p^{m}(x_{t}|y_{1:1}) \propto p(y_{t}|x_{t}) \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i}) w_{t-1}^{i}$$

$$= \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i}) w_{t}^{i}$$

Various methods to resolve problems from dimensionality...

• Throw away samples with small weight

- Throw away samples with small weight
- Multiply particles with high weight

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - Importance sampling step

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - Importance sampling step
 - for $i=0,\ldots,m$ sample $ilde{x}_t^i \sim p(x_t|x_{t-1}^i)$ and set $ilde{x}_t^i = \{x_{t-1}^i, ilde{x}_t^i\}$

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - Importance sampling step
 - for $i=0,\ldots,m$ sample $ilde{x}_t^i \sim p(x_t|x_{t-1}^i)$ and set $ilde{x}_t^i = \{x_{t-1}^i, ilde{x}_t^i\}$
 - for $i=0,\ldots,m$ evaluate importance weights $\tilde{w}_t^i=p(y_t|\tilde{x}_t^i)$

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0
 - \circ for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - Importance sampling step
 - for $i=0,\ldots,m$ sample $ilde{x}_t^i \sim p(x_t|x_{t-1}^i)$ and set $ilde{x}_t^i = \{x_{t-1}^i, ilde{x}_t^i\}$
 - for $i=0,\ldots,m$ evaluate importance weights $ilde{w}_t^i=p(y_t| ilde{x}_t^i)$
 - normalise weights

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - Importance sampling step
 - for $i=0,\ldots,m$ sample $ilde{x}_t^i \sim p(x_t|x_{t-1}^i)$ and set $ilde{x}_t^i = \{x_{t-1}^i, ilde{x}_t^i\}$
 - for $i=0,\ldots,m$ evaluate importance weights $\tilde{w}_t^i=p(y_t|\tilde{x}_t^i)$
 - normalise weights
 - Selection step

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - 2 Importance sampling step
 - for $i=0,\ldots,m$ sample $ilde{x}_t^i \sim p(x_t|x_{t-1}^i)$ and set $ilde{x}_t^i = \{x_{t-1}^i, ilde{x}_t^i\}$
 - for $i=0,\ldots,m$ evaluate importance weights $ilde{w}_t^i=p(y_t| ilde{x}_t^i)$
 - normalise weights
 - Selection step
 - resample with replacement m particles $\{x_i^i:i=1,\ldots,m\}$ from the set $\{\tilde{x}_i^i:i=1,\ldots,m\}$ according to importance weights

- Throw away samples with small weight
- Multiply particles with high weight
- Use Bootstrap Algorithm:
 - 1 Initialisation, t = 0
 - \bullet for $i=0,\ldots,m$ sample $x_{0|0}^i\sim p(x_0)$ and set t=1
 - Importance sampling step
 - for $i=0,\ldots,m$ sample $ilde{x}_t^i \sim p(x_t|x_{t-1}^i)$ and set $ilde{x}_t^i = \{x_{t-1}^i, ilde{x}_t^i\}$
 - for i = 0, ..., m evaluate importance weights $\tilde{w}_t^i = p(y_t | \tilde{x}_t^i)$
 - normalise weights
 - Selection step
 - resample with replacement m particles $\{x_i^i:i=1,\ldots,m\}$ from the set $\{\tilde{x}_i^i:i=1,\ldots,m\}$ according to importance weights
 - set t = t + 1 and go to step 2

• Can use the Ensmeble Kalman Filter in high dimensional problems

- Can use the Ensmeble Kalman Filter in high dimensional problems
- Approach:

- Can use the Ensmeble Kalman Filter in high dimensional problems
- Approach:
 - Use MC samples to approximate forecast mean and covariance while still using nonlinear forward model

- Can use the Ensmeble Kalman Filter in high dimensional problems
- Approach:
 - Use MC samples to approximate forecast mean and covariance while still using nonlinear forward model
 - Use the these in linear Kalman Filter update formulas to obtain analysis distribution

- Can use the Ensmeble Kalman Filter in high dimensional problems
- Approach:
 - Use MC samples to approximate forecast mean and covariance while still using nonlinear forward model
 - Use the these in linear Kalman Filter update formulas to obtain analysis distribution
- * Assume we have m independent samples from analysis distribution at time t-1, $x_{t-1|t-1}^{j}$.

- Can use the Ensmeble Kalman Filter in high dimensional problems
- Approach:
 - Use MC samples to approximate forecast mean and covariance while still using nonlinear forward model
 - Use the these in linear Kalman Filter update formulas to obtain analysis distribution
- Assume we have m independent samples from analysis distribution at time t-1, $x_{t-1|t-1}^{j}$.
- Also assume $w_{t-1}^i = 1/m$

- Can use the Ensmeble Kalman Filter in high dimensional problems
- Approach:
 - Use MC samples to approximate forecast mean and covariance while still using nonlinear forward model
 - Use the these in linear Kalman Filter update formulas to obtain analysis distribution
- Assume we have m independent samples from analysis distribution at time t-1, $x_{t-1|t-1}^{i}$.
- Also assume $w_{t-1}^i = 1/m$
- Use these samples and basic MC to approximate forecast:

$$p^{m}(x_{t}|y_{1:t-1}) = (1/m) \sum_{i=1}^{M} p(x_{t}|x_{t-1:t-1}^{i})$$

Now assume forecast distribution can be characterised by first two moments (or Guassian) with mean $x_{t|t-1}^i$ and estimated covariance matrix $\hat{P}_{t|t-1}$. Then analysis (update) distribution is given by:

Now assume forecast distribution can be characterised by first two moments (or Guassian) with mean $x_{t|t-1}^i$ and estimated covariance matrix $\hat{P}_{t|t-1}$. Then analysis (update) distribution is given by:

$$p^{m}(x_{t}|y_{1:t}) \propto (1/m)p(y_{t}|x_{t}) \sum_{i=1}^{M} \mathcal{N}(x_{t|t-1}^{i}, \hat{P}_{t|t-1})$$

Now assume forecast distribution can be characterised by first two moments (or Guassian) with mean $x_{t|t-1}^i$ and estimated covariance matrix $\hat{P}_{t|t-1}$. Then analysis (update) distribution is given by:

$$p^{m}(x_{t}|y_{1:t}) \propto (1/m)p(y_{t}|x_{t}) \sum_{i=1}^{M} \mathcal{N}(x_{t|t-1}^{i}, \hat{P}_{t|t-1})$$

Assume a linear (or linearised) observation model:

$$y_t = H_t x_t + e_t$$

Now assume forecast distribution can be characterised by first two moments (or Guassian) with mean $x_{t|t-1}^i$ and estimated covariance matrix $\hat{P}_{t|t-1}$. Then analysis (update) distribution is given by:

$$p^m(x_t|y_{1:t}) \propto (1/m)p(y_t|x_t) \sum_{i=1}^M \mathcal{N}(x_{t|t-1}^i, \hat{P}_{t|t-1})$$

Assume a linear (or linearised) observation model:

$$y_t = H_t x_t + e_t$$

where $Cov(e_t) = R_t$

Now assume forecast distribution can be characterised by first two moments (or Guassian) with mean $x_{t|t-1}^i$ and estimated covariance matrix $\hat{P}_{t|t-1}$. Then analysis (update) distribution is given by:

$$p^{m}(x_{t}|y_{1:t}) \propto (1/m)p(y_{t}|x_{t}) \sum_{i=1}^{M} \mathcal{N}(x_{t|t-1}^{i}, \hat{P}_{t|t-1})$$

Assume a linear (or linearised) observation model:

$$y_t = H_t x_t + e_t$$

where $Cov(e_t) = R_t$

• Let $x_{t|t-1}$ and $P_{t|t-1}$ be mean and covariance of $p(x_t|y_{1:t-1})$

Now assume forecast distribution can be characterised by first two moments (or Guassian) with mean $x_{t|t-1}^i$ and estimated covariance matrix $\hat{P}_{t|t-1}$. Then analysis (update) distribution is given by:

$$p^m(x_t|y_{1:t}) \propto (1/m) p(y_t|x_t) \sum_{i=1}^M \mathcal{N}(x_{t|t-1}^i, \hat{P}_{t|t-1})$$

Assume a linear (or linearised) observation model:

$$y_t = H_t x_t + e_t$$

where $Cov(e_t) = R_t$

- Let $x_{t|t-1}$ and $P_{t|t-1}$ be mean and covariance of $p(x_t|y_{1:t-1})$
- Want a viable ensemble from $p(x_t|y_{1:t})$, or of $x_{t|t}$ and $P_{t|t}$

Algorithm:

Algorithm:

• Evolve $x_{t-1|t-1}^i$ forward using:

$$x_{t|t-1}^i = \mathcal{M}(x_{t-1|t-1}^i) + \eta_t^i, \quad \eta_t^i \sim \mathcal{N}(0, Q)$$

Algorithm:

• Evolve $x_{t-1|t-1}^i$ forward using:

$$x_{t|t-1}^i = \mathcal{M}(x_{t-1|t-1}^i) + \eta_t^i, \quad \eta_t^i \sim \mathcal{N}(0, Q)$$

Use evolved samples to calculate a sample forecast covariance matrix, $\hat{P}_{t|t-1}$:

$$\hat{P}_{t|t-1} = \frac{1}{m-1} \sum_{i=1}^{m} (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i}) (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i})^{T}$$

Algorithm:

• Evolve $x_{t-1|t-1}^i$ forward using:

$$x_{t|t-1}^i = \mathcal{M}(x_{t-1|t-1}^i) + \eta_t^i, \quad \eta_t^i \sim \mathcal{N}(0, Q)$$

Use evolved samples to calculate a sample forecast covariance matrix, $\hat{P}_{t|t-1}$:

$$\hat{P}_{t|t-1} = \frac{1}{m-1} \sum_{i=1}^{m} (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i}) (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i})^{T}$$

where
$$\hat{x}_{t|t-1}^{i} = (1/m) \sum_{i=1}^{m} x_{t|t-1}^{i}$$

Algorithm:

• Evolve $x_{t-1|t-1}^i$ forward using:

$$x_{t|t-1}^i = \mathcal{M}(x_{t-1|t-1}^i) + \eta_t^i, \quad \eta_t^i \sim \mathcal{N}(0, Q)$$

Use evolved samples to calculate a sample forecast covariance matrix, $\hat{P}_{t|t-1}$:

$$\hat{P}_{t|t-1} = \frac{1}{m-1} \sum_{i=1}^{m} (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i}) (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i})^{T}$$

where
$$\hat{x}_{t|t-1}^i = (1/m) \sum_{i=1}^m x_{t|t-1}^i$$

 Use Kalman update equations to update each forecast sample given the sampled observations:

$$x_{t|t}^{i} = x_{t|t-1}^{i} + K_{t}(y_{t} + e_{t} - H_{t}x_{t|t-1}^{i})$$

Algorithm:

• Evolve $x_{t-1|t-1}^i$ forward using:

$$x_{t|t-1}^i = \mathcal{M}(x_{t-1|t-1}^i) + \eta_t^i, \quad \eta_t^i \sim \mathcal{N}(0, Q)$$

Use evolved samples to calculate a sample forecast covariance matrix, $\hat{P}_{t|t-1}$:

$$\hat{P}_{t|t-1} = \frac{1}{m-1} \sum_{i=1}^{m} (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i}) (x_{t|t-1}^{i} - \hat{x}_{t|t-1}^{i})^{T}$$

where
$$\hat{x}_{t|t-1}^i = (1/m) \sum_{i=1}^m x_{t|t-1}^i$$

 Use Kalman update equations to update each forecast sample given the sampled observations:

$$x_{t|t}^{i} = x_{t|t-1}^{i} + K_{t}(y_{t} + e_{t} - H_{t}x_{t|t-1}^{i})$$

where $K_t = \hat{P}_{t|t-1}H_t^T(H_t\hat{P}_{t|t-1}H_t^T + R)^{-1}$ and $e_t^i \sim \mathcal{N}(0,R)$

We have seen:

How to use Bayes' Rule to infer on posterior

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing
- Forward-Filtering Backward-Smoothing

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing
- Forward-Filtering Backward-Smoothing
- Basic and Importance Monte Carlo sampling:

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing
- Forward-Filtering Backward-Smoothing
- Basic and Importance Monte Carlo sampling:
 - Sequential Monte Carlo

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing
- Forward-Filtering Backward-Smoothing
- Basic and Importance Monte Carlo sampling:
 - Sequential Monte Carlo
 - Bootstrap Algorithm

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing
- Forward-Filtering Backward-Smoothing
- Basic and Importance Monte Carlo sampling:
 - Sequential Monte Carlo
 - Bootstrap Algorithm
 - EnKF

- How to use Bayes' Rule to infer on posterior
- How to update posterior sequentially (and analytically):
 - Filtering
 - Smoothing
- Forward-Filtering Backward-Smoothing
- Basic and Importance Monte Carlo sampling:
 - Sequential Monte Carlo
 - Bootstrap Algorithm
 - EnKF
- Problems with these methods

