### (19) 世界知的所有権機関 国際事務局



# 

(43) 国際公開日 2003年11月20日(20.11.2003)

PCT

(10) 国際公開番号 WO 03/095504 A1

(51) 国際特許分類?:

C08F 4/658

(21) 国際出願番号:

PCT/JP03/05615

(22) 国際出願日:

2003年5月2日(02.05.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2002-135469 JP

特願2002-135470

2002年5月10日(10.05.2002) 2002年5月10日(10.05.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 出光石油 化学株式会社 (IDEMITSU PETROCHEMICAL CO., LTD.) [JP/JP]; 〒130-0015 東京都 墨田区 横網一丁目 6番1号 Tokyo (JP).

(72) 発明者; および

- (75) 発明者/出願人 (米国についてのみ): 棚瀬 省二 朗 (TANASE,Shojiro) [JP/JP]; 〒 299-0107 千葉県 市原市 姉崎海岸 1 番地 1 Chiba (JP). 貞嶋 孝典 (SADASHIMA, Takanori) [JP/JP]; 〒299-0107 千葉県 市原市 姉崎海岸 1 番地 1 Chiba (JP). 藪ノ内 伸浩 (YABUNOUCHI, Nobuhiro) [JP/JP]; 〒299-0107 千葉 県 市原市 姉崎海岸 1 番地 1 Chiba (JP). 蔵本 正彦 (KURAMOTO, Masahiko) [JP/JP]; 〒 299-0107 千葉 県 市原市 姉崎海岸 1 番地 1 Chiba (JP). 船橋 英雄 (FUNABASHI, Hideo) [JP/JP]; 〒299-0107 千葉県 市原 市 姉崎海岸 1 番地 1 Chiba (JP).
- (74) 代理人: 渡辺喜平 (WATANABE, Kihei); 〒101-0041 東 京都 千代田区 神田須田町一丁目26番地 芝信神田 ビル3階 Tokyo (JP).
- (81) 指定国 (国内): CN, KR, US.

/続葉有/

(54) Title: SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, CATALYST FOR OLEFIN POLYMERIZA-TION AND METHOD FOR PRODUCING OLEFIN POLYMER

(54) 発明の名称: オレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法



(c)...HALOGEN-CONTAINING SI COMPOUND
(a)...HALOGEN-CONTAINING TI COMPOUND
(b)...MG COMPOUND CONTAINING ALKOXY
(DIETHER COMPOUND AND/OR MALONIC
GROUP
HALOGEN AND/OR HALOGEN-CONTAINING
COMPOUND/MG≥ 0.0001

(c)...HALOGEN-CONTAINING SI COMPOUND
(DIETHER COMPOUND AND/OR MALONIC
DIESTER)
(DIETER)
(DIETER)
(DIETHER COMPOUND
(DIETHER COMPOUND
(DIETHER)
(DIETHER)
(DIETHER COMPOUND
(DIETHER COMPOUND
(DIETHER)
(D containing an alkoxy group (c) a halgen-containing silicon compound (d) an electron donating compound (a diether compound and/or a malonic diester).

## WO 03/095504 A1



NL, PT, RO, SE, SI, SK, TR).

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, 2文字コード及び他の略語については、 定期発行される CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

#### 添付公開書類:

国際調査報告書

#### (57) 要約:

下記化合物(a)、(b)及び(d)、又は下記化合物(a)、

- (b)、(c)及び(d)を反応させて得られるオレフィン重合用固 体触媒成分。
  - (a) ハロゲン含有チタン化合物
  - (b) アルコキシ基含有マグネシウム化合物
  - (c) ハロゲン含有ケイ素化合物
  - (d) 電子供与性化合物

(ジエーテル化合物及び/又はマロン酸ジエステル)



### 明細書

# オレフィン重合用固体触媒成分、オレフィン重合用触媒 及びオレフィン重合体の製造方法

5

#### 技術分野

本発明は、 $\alpha$  - オレフィンの単独重合体又は共重合体を製造するためのオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法に関する。

10

15

### 背景技術

一般に、オレフィン重合体は、チタン化合物と有機アルミニウム化合物からなるチーグラー・ナッタ触媒により重合されている。例えば、オレフィン重合体の一つであるポリプロピレンの製造では、主に、チタン、マグネシウム、塩素及び電子供与性化合物からなる固体触媒成分、助触媒成分としての有機アルミニウム化合物、及び立体規則性向上剤としてのアルコキシ基を有する有機ケイ素化合物を含む触媒を用いることにより、アイソタクチックポリプロピレンを得ているが、現在、重合時の触媒活性の向上、オレフィン重合体の立体規則性の向上、及びオレフィン重合体を安定生産するためのパウダー形態の改良等が図られている。

20 例えば、オレフィン重合体の粒径及び形状等のモルフォロジーを改良することを目的として、特開昭63-280707号公報等では、シリカ等の無機酸化物上にマグネシウム化合物を担持させる方法、また、特開昭58-000811号公報等では、マグネシウム化合物を一旦アルコール等の溶媒に溶解させた後、再び析出させたものを用いる方法が開示されている。

25 しかし、これらの方法は、マグネシウム化合物の担持、溶解及び析出等の処理が必須となるため、工程的に極めて煩雑であった。また、これらの方法は、重合初期の触媒活性のみが高いため、触媒の性能安定性に欠けるという欠点や、重合時の触媒活性及びオレフィン重合体の立体規則性の面で十分な性能を発現できないという欠点があった。

30 そこで、これらの欠点を改良する手法として、特開平2-413883号公報

等では、金属マグネシウム、アルコール及び特定量のハロゲンの反応生成物を触 媒の担体として用いる方法、また、特公平7-025822号公報では、アルコ キシマグネシウム、ハロゲン化剤及びアルコキシチタンの反応生成物に有機酸エ ステルを加え、さらにハロゲン化チタンを反応させて得られる固体触媒成分を含 むチーグラー・ナッタ触媒を用いるオレフィン重合体の製造方法が開示されてい る。しかし、これらの方法は、重合時の触媒活性及びオレフィン重合体の立体規 則性が依然として十分ではなかった。

また、特開平11-269218号公報では、マグネシウム化合物及びチタン 化合物を、電子供与性化合物の存在下、120℃以上150℃以下の温度で接 10 触させた後、100℃以上150℃以下の温度で不活性溶媒により洗浄して得 られるオレフィン重合用固体触媒成分が開示されており、重合時の触媒活性の経 時的な低下の抑制及びオレフィン重合体の立体規則性の向上について効果を得て いる。

しかし、この触媒の重合活性は、必ずしも十分なものではなく、これをさらに 15 改良する必要があった。

一方、特開平4-96910号公報では、アルコキシマグネシウム化合物、ポリエーテル化合物及びチタン化合物を接触させて得られる固体触媒成分が開示されている。しかし、この固体触媒成分を含む触媒を用いて得られるオレフィン重合体は、ポリマーパウダーのモルフォロジー、重合活性、立体規則性が十分とは20 いえなかった。

また、特表2000-516987号公報や特表2000-516989号公報では、本発明で使用する電子供与性化合物と重複するマロン酸エステルが開示されている。しかし、これらの公報では、本発明で使用する特定のアルコキシ基合有マグネシウム化合物の開示はされておらず、触媒の重合活性についても、必25 ずしも十分なものとはいえなかった。

本発明は、重合活性が高く、立体規則性及びパウダー形態に優れたオレフィン 重合体が得られるオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオ レフィン重合体の製造方法を提供することを目的とする。

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ハロゲン含 30 有チタン化合物、特定のアルコキシ基含有マグネシウム化合物、及び特定の電子 供与性化合物を反応させて得られるオレフィン重合用固体触媒成分を用いること により、前記の課題が解決できることを見出し、本発明を完成させた。

#### 発明の開示

- 5 本発明によれば、以下のオレフィン重合用固体触媒成分等が提供される。
  - [1] 下記化合物(a)、(b)及び(d)、又は下記化合物(a)、(b)、
  - (c) 及び(d) を反応させて得られるオレフィン重合用固体触媒成分。
  - (a) ハロゲン含有チタン化合物
- (b)金属マグネシウム、アルコール、及び前記金属マグネシウム1モルに対し 10 て0.0001グラム原子以上のハロゲン原子を含むハロゲン及び/又はハロゲン含有化合物を反応させて得られるアルコキシ基含有マグネシウム化合物
  - (c) ハロゲン含有ケイ素化合物
  - (d) 下記一般式(I) 及び/又は一般式(II) で表される電子供与性化合物



15 [式中、nは、 $2\sim10$ の整数であり、 $R^1\sim R^8$ は、相互に独立であり、炭素、水素、酸素、ハロゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意の $R^1\sim R^8$ は、共同してベンゼン環以外の環を形成してもよく、主鎖中に炭素以外の原子が含まれてもよい。]



20

[式中、 $R^9 \sim R^{12}$ は、相互に独立であり、炭素数  $1 \sim 20$  (ただし、 $R^9$ 及び  $R^{10}$ の炭素数の和は  $3 \sim 40$  である)の直鎖状、分岐状、又は環状のアルキル基又はアリールアルキル基である。]

- [2] 前記ハロゲンが、ヨウ素である[1] に記載のオレフィン重合用固体触媒成分。
- 5 [3] 前記ハロゲン含有化合物が、塩化マグネシウムである[1] 又は[2] に 記載のオレフィン重合用固体触媒成分。
- [4] 前記金属マグネシウム、アルコール、及びハロゲン及び/又はハロゲン含有化合物の反応温度が、30~90℃である[1]~[3]のいずれかに記載10 のオレフィン重合用固体触媒成分。
  - [5] 前記金属マグネシウム、アルコール、及びハロゲン及び/又はハロゲン含有化合物の反応温度が、 $30\sim60$  である [4] に記載のオレフィン重合用固体触媒成分。

- [6] 前記ハロゲン含有ケイ素化合物(c)が、四塩化ケイ素である [1]  $\sim$  [5] のいずれかに記載のオレフィン重合用固体触媒成分。
- [7] 前記一般式 (I) で表される化合物が、1, 3-ジェーテル化合物であ 20 る [1] ~ [6] のいずれかに記載のオレフィン重合用固体触媒成分。
  - [8] 前記一般式(II)で表される化合物が、下記一般式(III)で表される化合物である [1]  $\sim$  [7] のいずれかに記載のオレフィン重合用固体触媒成分。



25 [式中、R<sup>11</sup>及びR<sup>12</sup>は、前記一般式(II)と同様であり、R<sup>13</sup>は、炭素数2
 ~20の直鎖状、分岐状又は環状のアルキル基である。]

- [9] 前記化合物(a)、(b)及び(d)を反応させる際、前記化合物(b)と前記化合物(d)とを接触させた後、前記化合物(a)を接触させる[1]~[8]のいずれかに記載のオレフィン重合用固体触媒成分。
- 5 [10] 前記化合物(a)、(b)、(c)及び(d)を反応させる際、前記化合物(b)と前記化合物(c)とを接触させた後、前記化合物(d)を接触させ、その後、前記化合物(a)を接触させる[1]~[8]のいずれかに記載のオレフィン重合用固体触媒成分。
- 10 [11] 下記成分[A]、[B]、又は下記成分[A]、[B]、 [C] を含むオレフィン 重合用触媒。
  - [A] [1] ~ [10] のいずれかに記載のオレフィン重合用固体触媒成分
  - [B] 有機アルミニウム化合物
  - [C] 電子供与性化合物

[12] [11] に記載のオレフィン重合用触媒を用いてオレフィンを重合する オレフィン重合体の製造方法。

## 図面の簡単な説明

20 図1は、本発明のオレフィン重合用触媒及びオレフィン重合体の製造方法を示す模式図である。

# 発明を実施するための最良の形態

次に、本発明の各触媒成分、製造方法、重合方法等について説明する。以下に 25 示すのは好適例であり、本発明はこれらに限定されるものではない。

- 1. 触媒成分
- 「A]オレフィン重合用固体触媒成分
- (a) ハロゲン含有チタン化合物

ハロゲン含有チタン化合物としては、下記一般式(IV)で表される化合物を30 好ましく用いることができる。

 $T i X_{p}^{1} (OR^{14})_{4-p} \cdots (IV)$ 

上記一般式(IV)において、X<sup>1</sup>はハロゲン原子を示し、その中でも塩素原子及び臭素原子が好ましく、塩素原子が特に好ましい。R<sup>14</sup>は炭化水素基であって、飽和基や不飽和基であってもよく、直鎖状のものや分岐鎖を有するもの、あるいは環状のものであってもよく、さらにはイオウ、窒素、酸素、ケイ素、リン等のヘテロ元素を含むものであってもよい。このうち、炭素数1~10の炭化水素基、特に、アルキル基、アルケニル基、シクロアルケニル基、アリール基及びアラルキル基等が好ましく、直鎖又は分岐鎖のアルキル基が特に好ましい。OR<sup>14</sup>が複数存在する場合には、それらは互いに同じでも異なってもよい。R<sup>14</sup>の10 具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-プチル基、sec-ブチル基、イソプチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、アリル基、ブテニル基、シクロペンチル基、シクロペキシル基、シクロペキセニル基、フェニル基、トリル基、ペンジル基、フェネチル基等が挙げられる。pは1~4の整数を示す。

上記一般式(IV)で示されるハロゲン含有チタン化合物の具体例としては、 15 四塩化チタン、四臭化チタン、四ヨウ化チタン等のテトラハロゲン化チタン:メ トキシチタントリクロリド、エトキシチタントリクロリド、プロポキシチタント リクロリド、n-プトキシチタントリクロリド、エトキシチタントリプロミド等 のトリハロゲン化アルコキシチタン:ジメトキシチタンジクロリド、ジエトキシ チタンジクロリド、ジイソプロポキシチタンジクロリド、ジーnープロポキシチ 20 タンジクロリド、ジエトキシチタンジプロミド等のジハロゲン化ジアルコキシチ タン:トリメトキシチタンクロリド、トリエトキシチタンクロリド、トリイソプ ロポキシチタンクロリド、トリーnープロポキシチタンクロリド、トリーnープ トキシチタンクロリド等のモノハロゲン化トリアルコキシチタン等が挙げられる。 これらの中で、重合活性の面から、高ハロゲン含有チタン化合物、特に四塩化チ 25 タンが好ましい。これらのハロゲン含有チタン化合物は、それぞれ単独で用いて もよく、また2種以上を組み合わせて用いてもよい。

#### (b) アルコキシ基含有マグネシウム化合物

30 本発明では、アルコキシ基含有マグネシウム化合物(b)として、オレフィン

10

15

30

重合体のパウダー形態、触媒の重合活性及び立体規則性の面から、金属マグネシウム、アルコール、及び金属マグネシウム1モルに対して0.0001グラム原子以上のハロゲン原子を含むハロゲン及び/又はハロゲン含有化合物を、通常、30~90℃、好ましくは30~60℃で反応させて得られる化合物を用いる。

尚、反応温度については特に限定されないが、上記の温度範囲で行うと、オレフィン重合体のパウダー形態や触媒の重合活性が改良される場合があるので好ま しい。

金属マグネシウムの形状等は特に限定されない。従って、任意の粒径の金属マグネシウム、例えば、顆粒状、リボン状、粉末状等の金属マグネシウムを用いることができる。また、金属マグネシウムの表面状態も特に限定されないが、表面に水酸化マグネシウム等の被膜が生成されていないものが好ましい。

アルコールは、炭素数1~6の低級アルコールを用いることが好ましい。特に、エタノールを用いると、触媒性能の発現を著しく向上させる固体生成物が得られるので好ましい。アルコールの純度及び含水量は特に限定されないが、含水量の多いアルコールを用いると、金属マグネシウムの表面に水酸化マグネシウムの被膜が生成するので、含水量が1%以下、特に、2,000ppm以下のアルコールを用いることが好ましい。さらに、より良好なモルフォロジーを得るためには、水分が少なければ少ないほど好ましく、一般的には200ppm以下が望ましい。ハロゲンは、塩素、臭素又はヨウ素、特にヨウ素が好適に使用される。

また、ハロゲン含有化合物のハロゲン原子は、塩素、臭素又はヨウ素が好ましい。また、ハロゲン含有化合物の中ではハロゲン含有金属化合物が特に好ましい。ハロゲン含有化合物として、具体的には、 $MgC1_2$ 、 $MgI_2$ 、Mg(OEt) C1、Mg(OEt) I、 $MgBr_2$ 、 $CaCl_2$ 、NaCl、KBr 等を好適に使用できる。これらの中では、特に $MgC1_2$ が好ましい。これらの状態、形 状 皮等は特に限定されず、任意のものでよく、例えば、アルコール系溶媒(例えば、エタノール)中の溶液で用いることができる。

アルコールの使用量は、金属マグネシウム1モルに対して、好ましくは2~100モル、特に好ましくは5~50モルである。アルコールの使用量が多すぎると、モルフォロジーの良好なアルコキシ基含有マグネシウム化合物(b)の収率が低下する場合があり、少なすぎる場合は、反応槽での攪拌がスムーズに行われ

20

なくなる場合がある。しかし、そのモル比には限定されない。

ハロゲン又はハロゲン含有化合物の使用量は、金属マグネシウム1モルに対してハロゲン又はハロゲン含有化合物中のハロゲン原子が0.0001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは0.001グラム原子以上となる量である。0.0001グラム原子未満の場合、得られたアルコキシ基含有マグネシウム化合物(b)を触媒の担体として用いた場合、触媒活性やオレフィン重合体のモルフォロジー等が不良となる。

本発明においては、ハロゲン及びハロゲン含有化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、ハロゲンとハロゲン含有化合物を組み合わせて用いてもよい。ハロゲンとハロゲン含有化合物を組み合わせて用いる場合、ハロゲン及びハロゲン含有化合物中の全ハロゲン原子の量を金属マグネシウム1モルに対して0.001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは0.001グラム原子以上とする。

尚、ハロゲン及び/又はハロゲン含有化合物の使用量の上限については特に定めないが、本発明で用いるアルコキシ基含有マグネシウム化合物(b)が得られる範囲で適宜選択すればよく、一般には、0.06グラム原子未満とすることが好ましい。

本発明では、ハロゲン及び/又はハロゲン含有化合物の使用量を適宜選択する ことにより、アルコキシ基含有マグネシウム化合物(b)の製造時において、そ の粒径を自由にコントロールすることが可能である。

アルコキシ基含有マグネシウム化合物(b)の製造は、水素ガスの発生が認められなくなるまで(通常、1~30時間)行う。具体的には、ハロゲンとしてヨウ素を用いる場合には、金属マグネシウムのアルコール溶液中に固体状のヨウ素を投入した後、加熱して反応させる方法、金属マグネシウムのアルコール溶液中に、ヨウ素のアルコール溶液を滴下した後、加熱して反応させる方法、及び金属マグネシウムのアルコール溶液を加熱しながらヨウ素のアルコール溶液を滴下して反応させる方法等により製造できる。

尚、いずれの方法も、不活性ガス(例えば、窒素ガス、アルゴンガス)雰囲気下で、場合により不活性有機溶媒(例えば、n-ヘキサン等の飽和炭化水素)を30 用いて行うことが好ましい。

また、金属マグネシウム、アルコール及びハロゲンの投入については、最初か ら各々全量投入しておく必要はなく、分割して投入してもよい。特に好ましい形 態は、アルコールを最初から全量投入しておき、金属マグネシウムを数回に分割 して投入する方法である。このようにした場合、水素ガスの一時的な大量発生を 5 防ぐことができ、安全性の面から非常に望ましい。また、反応槽も小型化するこ とが可能となる。さらには、水素ガスの一時的な大量発生により引き起こされる アルコールやハロゲンの飛沫同伴を防ぐことも可能となる。分割する回数は、反 応槽の規模を勘案して決めればよく、特に問わないが、操作の煩雑さを考えると 通常5~10回が好適である。

また、反応自体は、バッチ式、連続式のいずれでもよい。さらには、変法とし 10 て、最初から全量投入したアルコール中に金属マグネシウムを先ず少量投入し、 反応により生成した生成物を別の槽に分離して除去した後、再び金属マグネシウ ムを少量投入するという操作を繰り返すことも可能である。

アルコキシ基含有マグネシウム化合物(b)を、固体触媒成分[A]の調製に 用いる場合、乾燥させたものを用いてもよく、また、濾過後、ヘプタン等の不活 15 性溶媒で洗浄したものを用いてもよい。いずれの場合においても、アルコキシ基 含有マグネシウム化合物(b)は、粉砕あるいは粒径分布をそろえるための分級 操作をすることなく以下の工程に用いることができる。また、アルコキシ基含有 マグネシウム化合物(b)は、球状に近く、しかも粒径分布がシャープである。 さらには、粒子一つ一つをとってみても、球形度のばらつきは小さい。

また、これらのアルコキシ基含有マグネシウム化合物(b)は、単独でもよい し、2種以上組み合わせて用いてもよい。さらに、シリカ、アルミナ、ポリスチ レン等の支持体に担持して用いてもよく、ハロゲン等との混合物として用いても よい。

このようなアルコキシ基含有マグネシウム化合物(b)としては、下記一般式 25 (V) で表される化合物を好ましく用いることができる。

 $Mg (OR^{15})_{a}R^{16}_{2-a} \cdots (V)$ 

上記一般式 (V) において、R15は炭化水素基を示し、R16はハロゲン原子 を示す。ここで、 $R^{15}$ の炭化水素基としては、炭素数 $1\sim12$ のアルキル基、

30 シクロアルキル基、アリール基、アラルキル基等が挙げられ、R16のハロゲン

原子としては、塩素、臭素、ヨウ素、フッ素等が挙げられる。 $OR^{15}$ 又は $R^{16}$ が複数存在する場合には、それらは互いに同一でも異なってもよい。qは $1\sim2$ の整数を示す。

上記一般式 (V) で示されるアルコキシ基含有マグネシウム化合物の具体例と しては、ジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグ ネシウム、ジブトキシマグネシウム、ジへキシロキシマグネシウム、ジオクトキ シマグネシウム、ジフェノキシマグネシウム、ジシクロへキシロキシマグネシウ ム等のジアルコキシマグネシウム及びジアリーロキシマグネシウム;ブトキシマ グネシウムクロリド、シクロへキシロキシマグネシウムクロリド、フェノキシマ クネシウムクロリド、エトキシマグネシウムクロリド、エトキシマグネシウムブ ロミド、ブトキシマグネシウムプロミド、エトキシマグネシウムイオダイド等の アルコキシマグネシウムハライド及びアリーロキシマグネシウムハライド等が挙 げられる。これらの中では、重合活性及び立体規則性の面から、ジアルコキシマ グネシウムが好ましく、特にジエトキシマグネシウムが好ましい。

15

## (c) ハロゲン含有ケイ素化合物

本発明のオレフィン重合用固体触媒成分には、必要に応じてハロゲン含有ケイ素化合物(c)が用いられる。このようなハロゲン含有ケイ素化合物(c)としては、下記一般式(VI)で表される化合物を用いることができる。

20 S i  $(OR^{17})_{r}X_{4-r}^{2}$  · · · (VI)

ハロゲン含有ケイ素化合物 (c) を用いることにより、重合時の触媒活性、立体規則性の向上及びオレフィン重合体中に含まれる微粉量を低減することができる場合がある。

上記一般式 (VI) において、X<sup>2</sup>はハロゲン原子を示し、これらの中で塩素原 7及び臭素原子が好ましく、塩素原子が特に好ましい。R<sup>17</sup>は炭化水素基であって、飽和基や不飽和基であってもよく、直鎖状のものや分岐鎖を有するもの、あるいは環状のものであってもよく、さらにはイオウ、窒素、酸素、ケイ素、リン等のヘテロ元素を含むものであってもよい。このうち、炭素数 1~100 炭化水素基、特にアルキル基、アルケニル基、シクロアルケニル基、アリール基及びアラルキル基等が好ましい。OR<sup>17</sup>が複数存在する場合には、それらは互いに

同じでも異なってもよい。R<sup>17</sup>の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-デシル基、アリル基、ブテニル基、シクロペンチル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、シクロペキシル基、フェニル基、トリル基、ベンジル基、フェネチル基等が挙げられる。rは0~3の整数を示す。

上記一般式 (VI) で示されるハロゲン含有ケイ素化合物の具体例としては、四塩化ケイ素、メトキシトリクロロシラン、ジメトキシジクロロシラン、トリメトキシクロロシラン、エトキシトリクロロシラン、ジエトキシジクロロシラン、10 トリエトキシクロロシラン、プロポキシトリクロロシラン、ジプロポキシジクロロシラン、トリプロポキシクロロシラン等が挙げられる。これらの中では、特に四塩化ケイ素が好ましい。これらのハロゲン含有ケイ素化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

## 15 (d) 電子供与性化合物

本発明では、電子供与性化合物として、下記一般式(I)で表されるジエーテル化合物、及び/又は下記一般式(II)、好ましくは下記一般式(III)で表されるマロン酸ジエステルを用いる。

20 [式中、nは、2~10の整数であり、R<sup>1</sup>~R<sup>8</sup>は、相互に独立であり、炭素、水素、酸素、ハロゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意のR<sup>1</sup>~R<sup>8</sup>は、共同してベンゼン環以外の環を形成してもよく、主鎖中に炭素以外の原子が含まれてもよい。]

10

20



[式中、R<sup>9</sup>~R<sup>12</sup>は、相互に独立であり、炭素数1~20(ただし、R<sup>9</sup>及び R<sup>10</sup>の炭素数の和は3~40である)の直鎖状、分岐状、又は環状のアルキル 基又はアリールアルキル基である。]



[式中、 $R^{11}$ 及び $R^{12}$ は、一般式 (II) と同様であり、 $R^{13}$ は、炭素数  $2\sim 2$ 0の直鎖状、分岐状又は環状のアルキル基である。]

上記一般式(I)において、nは、好ましくは $2\sim5$ である。また、 $R^1\sim R$ 8は、好ましくは炭素、水素、ケイ素、ハロゲン、酸素から選択される少なくと も1種の元素を有する置換基である。

上記一般式(I)で表されるジエーテル化合物としては、具体的には、2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2-イソプロピル-1, 3-ジメトキシプロパン、2-ブチル-1,3-ジメトキシプロパン、2-s-プチルー1、3-ジメトキシプロパン、2-シクロヘキシル-1、3-ジメトキ 15 シプロパン、2-フェニル-1, 3-ジメトキシプロパン、2-クミル-1, 3 ージメトキシプロパン、2-(2-フェニルエチル)-1,3-ジメトキシプロ パン、2-(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-(p-クロロフェニル)-1, 3-ジメトキシプロパン、2-(ジフェニルメチ ル) -1, 3-ジメトキシプロパン、2-(1-ナフチル) -1, 3-ジメトキ シプロパン、2-(2-フルオロフェニル)-1,3-ジメトキシプロパン、2 - (1-デカヒドロナフチル)-1,3-ジメトキシプロパン、2-(p-t-プチルフェニル) -1, 3-ジメトキシプロパン、2, 2-ジシクロヘキシルー 1, 3-ジメトキシプロパン、2, 2-ジシクロペンチル-1, 3-ジメトキシ プロパン、2, 2-ジエチル-1, 3-ジメトキシプロパン、2, 2-ジプロピ

ルー1, 3-ジメトキシプロパン、2, 2-ジイソプロピルー1, 3-ジメトキ シプロパン、2,2-ジブチルー1,3-ジメトキシプロパン、2-メチルー2 -プロピル-1, 3-ジメトキシプロパン、2-メチル-2-ベンジル-1, 3 ージメトキシプロパン、2-メチル-2-エチル-1,3-ジメトキシプロパン、 2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、2-メチル-2 -フェニル-1, 3-ジメトキシプロパン、2-メチル-2-シクロヘキシル-1, 3-ジメトキシプロパン、2, 2-ビス(p-クロロフェニル)-1, 3-ジメトキシプロパン、2,2-ビス(2-シクロヘキシルエチル)-1,3-ジ メトキシプロパン、2-メチル-2-イソプチル-1,3-ジメトキシプロパン、 2-メチル- 2- (2-エチルヘキシル)-1,3-ジメトキシプロパン、2, 10 2-ジイソプチル-1, 3-ジメトキシプロパン、2, 2-ジフェニル-1, 3 ージメトキシプロパン、2,2ージベンジルー1,3ージメトキシプロパン、2, 2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2,2-ジ イソプチルー1, 3-ジエトキシプロパン、2, 2-ジイソプチルー1, 3-ジ プトキシプロパン、2-イソブチル-2-イソプロピル-1,3-ジメトキシプ 15 ロパン、2-(1-メチルブチル)-2-イソプロピル-1,3-ジメトキシプ ロパン、2-(1-メチルブチル)-2-s-ブチル-1,3-ジメトキシプロ パン、2, 2-ジ-s-ブチル-1, 3-ジメトキシプロパン、2, 2-ジ-t ープチルー1, 3ージメトキシプロパン、2, 2ージネオペンチルー1, 3ージ メトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシ 20 プロパン、2-フェニル-2-イソプロピル-1,3-ジメトキシプロパン、2 -フェニル-2-s-プチル-1, 3-ジメトキシプロパン、2-ペンジル-2 ーイソプロピルー1, 3-ジメトキシプロパン、2-ベンジルー2-s-ブチル -1,3-ジメトキシプロパン、2-フェニル-2-ベンジル-1,3-ジメト キシプロパン、2-シクロペンチル-2-イソプロピル-1,3-ジメトキシプ 25 ロパン、2-シクロペンチル-2-s-ブチル-1,3-ジメトキシプロパン、 2-シクロヘキシル-2-イソプロピル-1, 3-ジメトキシプロパン、2-シ クロヘキシル-2-s-ブチル-1,3-ジメトキシプロパン、2-イソプロピ ルー2-s-プチル-1, 3-ジメトキシプロパン、2-シクロヘキシル-2-30 シクロヘキシルメチルー1, 3ージメトキシプロパン、2, 3ージフェニルー1,

4-ジエトキシブタン、2,3-ジシクロヘキシル-1,4-ジエトキシブタン、 2. 2-ジペンジルー1, 4-ジエトキシブタン、2, 3-ジシクロヘキシルー 1、4-ジエトキシブタン、2、3-ジイソプロピルー1、4-ジエトキシブタ ン、2、2 - ビス (p-メチルフェニル)-1, 4-ジメトキシブタン、2, 3 5 ービス (pークロロフェニル) ー1, 4ージメトキシブタン、2, 3ービス (p ーフルオロフェニル) -1, 4-ジメトキシブタン、2, 4-ジフェニル-1, 5-ジメトキシペンタン、2,5-ジフェニル-1,5-ジメトキシヘキサン、 2. 4-ジイソプロピルー1,5-ジメトキシペンタン、2,4-ジイソブチル -1,5-ジメトキシペンタン、2,4-ジイソアミル-1,5-ジメトキシペ ンタン、3-メトキシメチルテトラヒドロフラン、3-メトキシメチルジオキサ 10 ン、1、3-ジイソブトキシプロパン、1、2-ジイソブトキシプロパン、1、 2-ジイソプトキシエタン、1,3-ジイソアミロキシプロパン、1,3-ジイ ソネオペンチロキシエタン、1、3-ジネオペンチロキシプロパン、2,2-テ トラメチレンー1、3-ジメトキシプロパン、2、2-ペンタメチレン-1、3 -ジメトキシプロパン、2,2-ヘキサメチレン-1,3-ジメトキシプロパン、 1. 2-ビス(メトキシメチル)シクロヘキサン、2,8-ジオキサスピロ[5, 5] ウンデカン、3, 7ージオキサビシクロ[3, 3, 1] ノナン、3, 7ージ オキサビシクロ[3, 3, 0]オクタン、3,3ージイソブチルー1,5ーオキ ソノナン、6、6 – ジイソブチルジオキシヘプタン、1, 1 – ジメトキシメチル シクロペンタン、1,1-ビス(ジメトキシメチル)シクロヘキサン、1,1-20 ピス (メトキシメチル) ビシクロ [2, 2, 1] ヘプタン、1, 1ージメトキシ メチルシクロペンタン、2-メチル-2-メトキシメチル-1,3-ジメトキシ プロパン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロ パン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシプロパン、 2, 2-ジイソブチル-1, 3-ジメトキシシクロヘキサン、2-イソプロピル 25 -2-イソアミル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシルー 2-メトキシメチル-1、3-ジメトキシシクロヘキサン、2-イソプロピルー 2-メトキシメチル-1, 3-ジメトキシシクロヘキサン、2-イソプチル-2 ーメトキシメチルー1、3ージメトキシシクロヘキサン、2ーシクロヘキシルー 2-エトキシメチル-1, 3-ジエトキシシクロヘキサン、2-シクロヘキシル 30

-2-エトキシメチル-1, 3-ジメトキシシクロヘキサン、2-イソプロピル -2-エトキシメチル-1, 3-ジエトキシシクロヘキサン、2-イソプロピル -2-エトキシメチル-1, 3-ジメトキシシクロヘキサン、2-イソプチル-2-エトキシメチル-1, 3-ジメトキシシクロヘキサン、2-イソプチル-2 5 -エトキシメチル-1, 3-ジメトキシシクロヘキサン、9, 9-ビス(メトキ シメチル)フルオレン、トリス(p-メトキシフェニル)ホスフィン、メチルフ ェニルビス(メトキシメチル)シラン、ジフェニルビス(メトキシメチル)シラ ン、メチルシクロヘキシルビス(メトキシメチル)シラン、ジーt-プチルビス (メトキシメチル)シラン、シクロヘキシル-t-プチルビス(メトキシメチ 10 ル)シラン、i-プロピル-t-ブチルビス(メトキシメチル)シラン等が挙げ られる。

これらのうち、1,3-ジエーテル化合物が好ましく用いられ、特に、2-イソプチル-2-イソプロピル-1,3-ジメトキシプロパン、9,9-ビス(メトキシメチル)フルオレン、2,2-ジシクロペンチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ジンクロヘキシル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-イソプロピル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジフェニル-1,3-ジメトキシプロパン、2-シクロペンチル-2-イソプロピル-1,3-ジメトキシプロパン、2-シクロペンチル-2-イソプロピル-1,3-ジメトキシプロパンが好ましく用いられる。

また、これらの化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

上記一般式 (II) 及び (III) のR<sup>9</sup>~R<sup>12</sup>としては、例えば、メチル基、エチ ル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イ ソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-ヘプチル基、n-オクチル基、n-デシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、フェネチル基等が挙げられる。このうち、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソプチ ル基、t-ブチル基である。

また、一般式 (III) のR<sup>13</sup>としては、エチル基、nープロピル基、イソプロピル基、nープチル基、secーブチル基、イソブチル基、tープチル基、nーペンチル基、nーペキシル基、nーペプチル基、nーオクチル基、nーデシル基、シクロペンチル基、シクロペキシル基等が挙げられる。このうち、好ましくはエチル基、nープロピル基、イソプロピル基、nープチル基、secーブチル基、イソブチル基、tープチル基である。

このようなマロン酸ジエステル化合物としては、具体的には、2, 2-ジエチルマロン酸、2-メチル-2-イソプロピルマロン酸、2-メチル-2-イソプロピルマロン酸、2-ハープチル-2-10 ーイソプチルマロン酸、2-ハープチル-2-イソプロピルマロン酸、2-イソプチルマロン酸、2-ハープチル-2-イソプロピルマロン酸、2-イソプチル-2-ベンジルマロン酸、2, 2-ジベンジルマロン酸等のジメチルエステル、ジエチルエステル、ジー1-プロピルエステル、ジイソプロピルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブチルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル、ジー1-ブキルエステル等が挙げられる。

これらの中では、上記一般式(III)に該当する2-メチル-2-イソプロピルマロン酸又は2-メチル-2-イソプチルマロン酸のジメチルエステル、ジエチルエステル、ジーn-プロピルエステル、ジイソプロピルエステル、ジーn-プチルエステル、ジーt-ブチルエステル、ジーn-ペジチルエステル、ジーn-ペジャルエステル、ジーn-オクチルエステル、ジネオペンチルエステルが、重合活性やオレフィン重合体の立体規則性の面で好ましい。これらの化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

# 25 [B] 有機アルミニウム化合物

30

本発明に用いられる有機アルミニウム化合物 [B] としては、特に制限はないが、アルキル基、ハロゲン原子、水素原子、アルコキシ基を有するもの、アルミノキサン及びそれらの混合物を好ましく用いることができる。具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソプチルアルミニウム、トリオクチルアルミニウム等のトリアルキルアル

ミニウム;ジエチルアルミニウムモノクロリド、ジイソプロピルアルミニウムモノクロリド、ジイソブチルアルミニウムモノクロリド、ジオクチルアルミニウムモノクロリド等のジアルキルアルミニウムモノクロリド;エチルアルミニウムセスキクロリド等のアルキルアルミニウムセスキハライド;メチルアルミノキサン等の鎖状アルミノキサン等が挙げられる。これらの有機アルミニウム化合物の中では、炭素数1~5の低級アルキル基を有するトリアルキルアルミニウム、特にトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム及びトリイソブチルアルミニウムが好ましい。これらの有機アルミニウム化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

10

## [C] 電子供与性化合物

本発明のオレフィン重合用触媒には、必要に応じて電子供与性化合物 [C] が 用いられる。このような電子供与性化合物 [C] としては、アルコキシ基を有す る有機ケイ素化合物、窒素含有化合物、リン含有化合物及び酸素含有化合物を用 いることができる。このうち、特にアルコキシ基を有する有機ケイ素化合物を用 いることが好ましい。

アルコキシ基を有する有機ケイ素化合物の具体例としては、トリメチルメトキ シシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチル エトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチ ルイソプロピルジメトキシシラン、プロピルイソプロピルジメトキシシラン、ジ 20 イソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、イソプロピル イソブチルジメトキシシラン、ジー t ープチルジメトキシシラン、 t ーブチルメ チルジメトキシシラン、 t ープチルエチルジメトキシシラン、 t ープチルプロピ ルジメトキシシラン、 t ープチルイソプロピルジメトキシシラン、 t ープチルブ 25 チルジメトキシシラン、 t ープチルイソブチルジメトキシシラン、 t ープチル (s-ブチル) ジメトキシシラン、t-ブチルアミルジメトキシシラン、t-ブ チルヘキシルジメトキシシラン、 t ーブチルヘプチルジメトキシシラン、 t ープ チルオクチルジメトキシシラン、 t ープチルノニルジメトキシシラン、 t ープチ ルデシルジメトキシシラン、 t ープチル (3, 3, 3-トリフルオロメチルプロ ピル) ジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキ 30

シルエチルジメトキシシラン、シクロヘキシルプロピルジメトキシシラン、シク ロヘキシルイソプチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、 シクロヘキシルー t ープチルジメトキシシラン、シクロペンチルメチルジメトキ シシラン、シクロペンチルエチルジメトキシシラン、シクロペンチルプロピルジ メトキシシラン、シクロペンチルー t ープチルジメトキシシラン、ジシクロペン チルジメトキシシラン、シクロペンチルシクロヘキシルジメトキシシラン、ビス (2-メチルシクロペンチル) ジメトキシシラン、ビス(2,3-ジメチルシク ロペンチル)ジメトキシシラン、 $\alpha$ -ナフチルー1, 1, 2-トリメチルプロ ピルジメトキシシラン、n-テトラデカニル-1, 1, 2-トリメチルプロピル ジメキシシラン、1, 1, 2-トリメチルプロピルメチルジメトキシシラン、1, 10 1, 2-トリメチルプロピルエチルジメトキシシラン、1, 1, 2-トリメチル プロピルイソプロピルジメトキシシラン、1, 1, 2-トリメチルプロピルシク ロペンチルジメトキシシラン、1, 1, 2-トリメチルプロピルシクロヘキシル ジメトキシシラン、1, 1, 2-トリメチルプロピルミリスチルジメトキシシラ ン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリ 15 エトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチ ルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラ ン、イソプロピルトリメトキシシラン、ブチルトリメトキシシラン、ブチルトリ エトキシシラン、イソプチルトリメトキシシラン、 t ープチルトリメトキシシラ ン、sープチルトリメトキシシラン、アミルトリメトキシシラン、イソアミルト 20 リメトキシシラン、シクロペンチルトリメトキシシラン、シクロヘキシルトリメ トキシシラン、ノルポルナントリメトキシシラン、インデニルトリメトキシシラ ン、2-メチルシクロペンチルトリメトキシシラン、エチルトリイソプロポキシ シラン、メチルシクロペンチル (t-ブトキシ) ジメトキシシラン、イソプロピ ル (t ープトキシ) ジメトキシシラン、t ープチル (t ープトキシ) ジメトキシ 25 シラン、(イソプトキシ)ジメトキシシラン、tープチル(tープトキシ)ジメ トキシシラン、ビニルトリエトキシシラン、ビニルトリプトキシシラン、クロロ トリエトキシシラン、ャークロロプロピルトリメトキシシラン、ャーアミノプ ロピルトリエトキシシラン、1, 1, 2-トリメチルプロピルトリメトキシシラ ン、1,1,2-トリメチルプロピルイソプロポキシジメトキシシラン、1,1, 30

2ートリメチルプロピル(tーブトキシ)ジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトライソブトキシシラン、ケイ酸エチル、ケイ酸ブチル、トリメチルフェノキシシラン、メチルトリアリロキシシラン、ビニルトリス(βーメトキシエトキシ)シラン、ビニルトリススアセトキシシラン、ジメチルテトラエトキシジシロキサン等が挙げられる。これらの有機ケイ素化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

また、このような有機ケイ素化合物としては、Si-O-C結合を有しないケイ素化合物とO-C結合を有する有機化合物を予め反応させるか、α-オレフ 10 ィンの重合の際に反応させて得られる化合物も挙げることができる。具体的には、四塩化ケイ素とアルコールとを反応させて得られる化合物等が挙げられる。

窒素含有化合物の具体例としては、2,6-ジイソプロピルピペリジン、2,6-ジイソプロピルー4-メチルピペリジン、N-メチルー2,2,6,6-デトラメチルピペリジン等の2,6-置換ピペリジン類;2,5-ジイソプロピルアゾリジン、N-メチルー2,2,5,5-テトラメチルアゾリジン等の2,5-置換アゾリジン類;N,N,N',N'-テトラメチルメチレンジアミン、N,N,N',N'-テトラエチルメチレンジアミン等の置換メチレンジアミン類;1,3-ジベンジルイミダゾリジン、1,3-ジベンジルー2-フェニルイミダゾリジン等の置換イミダゾリジン類等が挙げられる。

20 リン含有化合物の具体例としては、トリエチルホスファイト、トリnープロピルホスファイト、トリイソプロピルホスファイト、トリnーブチルホスファイト、トリイソブチルホスファイト、ジエチルnーブチルホスファイト、ジエチルフェニルホスファイト等の亜リン酸エステル類等が挙げられる。

酸素含有化合物の具体例としては、2,2,5,5-テトラメチルテトラヒドロフラン、2,2,5,5-テトラエチルテトラヒドロフラン等の2,5-置換テトラヒドロフラン類;1,1-ジメトキシ-2,3,4,5-テトラクロロシクロペンタジエン、9,9-ジメトキシフルオレン、ジフェニルジメトキシメタン等のジメトキシメタン誘導体等が挙げられる。

また、酸素含有化合物としては、上記の電子供与性化合物(d)のジエーテル30 化合物も使用できる。これらのうち、特に好ましいのは、2-イソプチルー2-



5

# 2. [A] 固体触媒成分の調製方法

固体触媒成分 [A] の調製方法としては、例えば、上記のハロゲン含有チタン化合物(a)、アルコキシ基含有マグネシウム化合物(b)、電子供与性化合物(d)、及び必要に応じてハロゲン含有ケイ素化合物(c)を接触・反応させた後、好ましくは再度(1回以上)、ハロゲン含有チタン化合物(a)を接触・反応させる方法が挙げられる。その他の接触順序については特に問わない。

これらの各成分は、炭化水素等の不活性溶媒の存在下で接触させてもよいし、予め炭化水素等の不活性溶媒で各成分を希釈して接触させてもよい。この不活性溶媒としては、例えば、オクタン、デカン、エチルシクロヘキサン等の脂肪族炭化水素又は脂環式炭化水素、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、及びクロロベンゼン、テトラクロロエタン、クロロフルオロ炭素類等のハロゲン化炭化水素又はこれらの混合物が挙げられる。これらの中では、脂肪族炭化水素、芳香族炭化水素が好ましく、脂肪族炭化水素が特に好ましく使用される。

20 ここで、ハロゲン含有チタン化合物(a)は、アルコキシ基含有マグネシウム 化合物(b)のマグネシウム1モルに対して、通常、0.5~100モル、好ま しくは、1~50モル使用する。このモル比が前記範囲を逸脱すると触媒活性が 不十分となることがある。

また、電子供与性化合物(d)は、アルコキシ基含有マグネシウム化合物 25 (b)のマグネシウム1モルに対して、通常、0.01~10モル、好ましくは、0.05~1.0モル使用する。0.01モル未満では、ポリマーの立体規則性 が低下する場合がある。一方、10モルを越えると、チタン当たりの重合活性が 低下する場合がある。

また、ハロゲン含有ケイ素化合物(c)を用いる場合には、アルコキシ基含有30 マグネシウム化合物(b)のマグネシウム1モルに対して、通常、0.005~

100モル使用する。0.005モル未満では、チタン当たりの重合活性やポリマーの立体規則性が低下する場合ある。一方、100モルを超えると、固体触媒成分当たりの重合活性が低下する場合がある。

さらに、上記の化合物(a)、(b)及び(d)、又は化合物(a)、(b)、(c)及び(d)の接触反応は、これらを全て加えた後、通常、90~150℃、好ましくは125~140℃の温度範囲で行う。この接触温度が前記範囲外では、触媒活性や立体規則性の向上効果が十分に発揮されない場合がある。また、接触は、通常、1分~24時間、好ましくは、10分~6時間行われる。このときの圧力は、溶媒を使用する場合は、その種類、接触温度等により変化するが、通常、0~5MPa、好ましくは0~1MPaの範囲で行う。また、接触操作中は、接触の均一性及び接触効率の面から攪拌を行うことが好ましい。尚、これらの接触条件は、2回目以降のハロゲン含有チタン化合物(a)の接触反応についても同様である。

尚、化合物(a)~(d)の接触順序については特に限定されないが、化合物
 (a)、(b)及び(d)を接触させる際には、まず、化合物(a)及び化合物(b)を接触させた後、化合物(d)を接触させると、重合活性が高くなる場合がある。また、化合物(a)、(b)、(c)及び(d)を接触させる際には、化合物(b)と化合物(c)を接触させ、次に、化合物(d)を接触させ、最後に化合物(a)を接触させると重合活性が高くなる場合がある。尚、化合物(d)と化合物(a)の接触順序は逆であってもよい。

25 さらに、1回目の化合物(a)、(b)及び(d)、又は化合物(a)、(b)、(c)及び(d)の接触・反応後は、通常、90~150℃、好ましくは120~140℃の温度の不活性溶媒で洗浄する。洗浄温度が上記範囲外では、触媒活性や立体規則性の向上効果が十分発揮されない場合がある。この不活性溶媒としては、例えば、オクタン、デカン等の脂肪族炭化水素、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、トルエン、キシレン、

エチルベンゼン等の芳香族炭化水素、クロルベンゼン、テトラクロロエタン、クロロフルオロ炭素類等のハロゲン化炭化水素又はこれらの混合物が挙げられる。 これらの中では、脂肪族炭化水素、芳香族炭化水素が好ましく使用される。

尚、2回目以降のハロゲン含有チタン化合物(a)の接触・反応後の洗浄温度 5 については特に限定されないが、立体規則性の面からは90~150℃、特に 好ましくは120~140℃の温度で不活性溶媒で洗浄した方がよい場合もあ る。

洗浄方法としては、デカンテーション、濾過等の方式が好ましい。不活性溶媒の使用量、洗浄時間、洗浄回数についても特に制限はないが、マグネシウム化合 物1モルに対して、通常、100~100,000ミリリットル、好ましくは、100~50,000ミリリットルの溶媒を使用し、通常、1分~24時間、好ましくは、10分~6時間行われる。この比が前記範囲を逸脱すると洗浄が不完全になることがある。

このときの圧力は、溶媒の種類、洗浄温度等により変化するが、通常、0~5 MPa、好ましくは、0~1MPaの範囲で行う。また、洗浄操作中は、洗浄の 均一性及び洗浄効率の面から攪拌を行うことが好ましい。尚、得られた固体触媒 成分 [A] は、乾燥状態又は炭化水素等の不活性溶媒中で保存することもできる。

# 3. オレフィン重合体の製造方法

30

20 本発明のオレフィン重合用触媒の各成分の使用量については、特に制限はないが、固体触媒成分[A]は、チタン原子に換算して、反応容積1リットル当たり、 通常、0.00005~1ミリモルの範囲になるような量が用いられる。

有機アルミニウム化合物 [B] は、アルミニウム/チタン原子比が、通常  $1\sim 1$ , 000、好ましくは  $10\sim 100$  の範囲になるような量が用いられる。この原子比が前記範囲を逸脱すると、触媒活性が不十分となることがある。

また、電子供与性化合物 [C] を用いるときは、 [C] / [B] (モル比)が、通常0.001~5.0、好ましくは0.01~2.0、より好ましくは0.0 5~1.0の範囲になるような量が用いられる。このモル比が前記範囲を逸脱すると、十分な触媒活性及び立体規則性が得られないことがある。ただし、予備重合を行う場合は、電子供与性化合物 [C] の使用量をさらに低減することができ

PCT/JP03/05615

る。

本発明に用いられるオレフィンとしては、一般式(VII)で表される  $\alpha$  - オレフィンが好ましい。

 $R^{18}-CH=CH_2 \cdot \cdot \cdot (VII)$ 

5 上記一般式 (VII) において、R<sup>18</sup>は水素原子又は炭化水素基であって、炭化水素基は、飽和基や不飽和基であってもよいし、直鎖状のものや分岐鎖を有するもの、あるいは環状のものであってもよい。具体的には、エチレン、プロピレン、1ープテン、1ーペンテン、1ーヘキセン、1ーヘプテン、1ーオクテン、1ーデセン、3ーメチルー1ーペンテン、4ーメチルー1ーペンテン、ビニルシクロヘキサン、ブタジエン、イソプレン、ピペリレン等が挙げられる。これらのオレフィンは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。前記オレフィンの中で、特にエチレン、プロピレンが好適である。

本発明におけるオレフィンの重合においては、重合時の触媒活性、オレフィン 重合体の立体規則性及びパウダー形態の面から、所望に応じ、先ずオレフィンの 予備重合を行った後、本重合を行ってもよい。この場合、固体触媒成分 [A]、 有機アルミニウム化合物 [B] 及び必要に応じて電子供与性化合物 [C]を、それぞれ所定の割合で混合してなる触媒の存在下に、オレフィンを、通常、1~1 00℃の範囲の温度において、常圧~5MPa程度の圧力で予備重合させ、次いで、触媒と予備重合生成物との存在下に、オレフィンを本重合させる。

20 この本重合における重合形式については特に制限はなく、溶液重合、スラリー 重合、気相重合、バルク重合等のいずれにも適用可能であり、さらに、回分式重 合や連続重合のどちらにも適用可能であり、異なる条件での2段階重合や多段階 重合にも適用可能である。

さらに、反応条件については、その重合圧は、特に制限はなく、重合活性の面 25 から、通常、大気圧~8MPa、好ましくは0.2~5MPa、重合温度は、通 常、0~200℃、好ましくは、30~100℃の範囲で適宜選ばれる。重合 時間は、原料のオレフィンの種類や重合温度によるが、通常、5分~20時間、 好ましくは、10分~10時間程度である。

オレフィン重合体の分子量は、連鎖移動剤の添加、好ましくは水素の添加を行 30 うことで調節することができる。また、窒素等の不活性ガスを存在させてもよい。 また、本発明における触媒成分については、固体触媒成分 [A]、有機アルミニウム化合物 [B] 及び電子供与性化合物 [C]を所定の割合で混合して接触させた後、ただちにオレフィンを導入して重合を行ってもよいし、接触後、0.2~3時間程度熟成させた後、オレフィンを導入して重合を行ってもよい。さらに、この触媒成分は、不活性溶媒やオレフィン等に懸濁して供給することができる。本発明においては、重合後の後処理は、常法により行うことができる。即ち、気相重合法においては、重合後、重合器から導出されるポリマー粉体に、その中に含まれるオレフィン等を除くために、窒素気流等を通過させてもよいし、また、所望に応じて押出機によりペレット化してもよく、その際、触媒を完全に失活させるために、少量の水、アルコール等を添加することもできる。また、バルク重合法においては、重合後、重合器から導出されるポリマーから完全にモノマーを分離した後、ペレット化することができる。

## 実施例

- 次に、実施例により本発明を具体的に示すが、本発明は下記の実施例に限定されるものではない。尚、固体触媒成分のΤi担持量、重合体の固有粘度[η]及び立体規則性[mmmm]、重合パウダーの平均粒径(D<sub>50</sub>)、微粉量、粗粉量及び嵩密度(AD)は、次のようにして求めた。
- (1) 重合体の固有粘度 [η]:重合体をデカリンに溶解し、135℃で測定20 した。
  - (2) 重合体の立体規則性 [mmmm]: 重合体を1, 2, 4-トリクロロベンゼンと重ベンゼンの90: 10(容量比)混合溶液に溶解し、 $^{13}$ C-NMR(日本電子(株)製、商品名: LA-500)を用いて、130 $^{\circ}$ でプロトン完全デカップリング法により測定したメチル基のシグナルを用いて定量した。
- 25 尚、アイソタクチックペンタッド分率 [mmmm] とは、エイ・ザンベリ(A. Zambelli)等が、マクロモレキュールズ(Macromolecules)誌 第6巻 925頁(1973)で提案した、<sup>13</sup>C-NMRスペクトルから求められるポリプロピレン分子鎖中のペンタッド単位におけるアイソタクチック分率を意味する。
- 30 また、13C-NMRスペクトルのピークの帰属決定法は、エイ・ザンベリ

(A. Zambelli)等が、マクロモレキュールズ (Macromolecules) 誌 第8巻 687頁 (1975) で提案した帰属に従った。

- (3) 重合パウダーの平均粒径( $D_{50}$ )、微粉量、粗粉量:篩を用いて測定した粒径分布を対数正規確率紙上にプロットし、50%粒子径を平均粒径として求めた。また、目開きサイズ  $250\mu$  m以下の重量分率を微粉量、目開きサイズ  $2,500\mu$  m以上の重量分率を粗粉量と定義し、これらを求めた。
  - (4) 重合パウダーの嵩密度 (AD): JIS K 6721に準拠して測定した。

## 実施例1

10 (1)アルコキシ基含有マグネシウム化合物の調製

窒素で置換した内容積 0. 5リットルの攪拌器付三つロフラスコに、脱水処理 したエタノール 1 2 2 g (2. 6 4 グラム原子)、ヨウ素 0. 9 g (7. 1 ミリ グラム原子)及び金属マグネシウム 8 g (0. 3 3 グラム原子)を投入し、系内 から水素が発生しなくなるまで 7 8 ℃で攪拌 (3 5 0 r pm) して反応させ、

15 アルコキシ基含有マグネシウム化合物(ジエトキシマグネシウム)を得た。

# (2) 固体触媒成分の調製

内容積 0.5リットルの攪拌機付きの三つロフラスコを窒素ガスで置換した後、脱水処理したオクタン80ミリリットル、及び、担体として、上記(1)で調製したジエトキシマグネシウム16g(0.140モル)を加えた。40℃に加20 熱し、四塩化ケイ素2.4ミリリットルを加えて20分間攪拌した後、内部ドナー(電子供与性化合物)として、2ーイソブチルー2ーイソプロピルー1,3ージメトキシプロパン(IPIBMP)2.9ミリリットルを添加した。この溶液を65℃まで昇温し、引き続き、四塩化チタンを77ミリリットル滴下し、内温125℃で、2時間攪拌して接触操作を行った。その後、脱水オクタンを用いて充分洗浄した。その後、四塩化チタンを122ミリリットル加え、内温125℃で、2時間攪拌して接触操作を行った後、脱水オクタンによる洗浄を十分に行い、固体触媒成分を得た。

## (3) プロピレン重合

内容積1リットルの攪拌機付きステンレス製オートクレープを十分乾燥し、窒 30 素置換の後、室温で脱水処理したヘプタン400ミリリットルを加えた。トリエ



チルアルミニウム 2. 0ミリモル、上記(2)で調製した固体触媒成分を、Ti 原子換算で 0. 00 25ミリモル加え、水素を 0. 02 MP a 張り込み、続いてプロピレンを導入しながら、80  $\mathbb{C}$ 、全圧 0. 8 MP a まで昇温昇圧してから、1時間重合を行った。

5 その後、降温、脱圧し、内容物を取り出し、2リットルのメタノールに投入し、 触媒失活を行った。それを濾別し、真空乾燥して、プロピレン重合体を得た。結 果を表1に示す。

## 実施例2

10 実施例1(2)において、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン(2.9ミリリットル)を、9,9-ビス(メトキシメチル)フルオレン(FLUMP)(3.5ミリリットル)に変更した以外は、実施例1(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

15

## 実施例3

実施例1(2)において、ヨウ素の使用量を0.27gとし、反応温度を40℃にして調製したジエトキシマグネシウムを使用した以外は、実施例1(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

## 実施例4

実施例3において、2-イソブチル-2-イソプロピル-1,3-ジメトキシ プロパン(2.9ミリリットル)を、9,9-ビス(メトキシメチル)フルオレ 25 ン(3.5ミリリットル)に変更した以外は、実施例3と同様にして固体触媒成 分を調製してプロピレンの重合を行った。結果を表1に示す。

## 比較例1

窒素で置換した内容積0.5リットルの攪拌器付三つロフラスコに、塩化マグ 30 ネシウム (無水物) 13.3g、デカン70ミリリットル及び2-エチルヘキシ ルアルコール 65.5 ミリリットル(0.42 モル)を投入し、130 ℃で 2 時間加熱反応を行い均一溶液とした。その後、この溶液に無水フタル酸 3.12 g を添加し、130 ℃でさらに 1 時間攪拌混合を行い、無水フタル酸を上記の均一溶液に溶解させた。

- 5 このようにして得られた均一溶液を室温まで冷却した後、-20℃に保持された四塩化チタン373ミリリットル中に1時間にわたって全量滴下した。滴下後、得られた均一溶液の温度を4時間かけて110℃に昇温し、110℃に達したところで2-イソプチル-2-イソプロピル-1,3-ジメトキシプロパン3.7ミリリットルを添加し、その後、110℃に保ちながら2時間攪拌した。
- 10 2時間の反応終了後、熱時濾過で固体部を採取し、この固体部を275ミリリットルの四塩化チタンで再懸濁させた後、再び110℃で2時間加熱反応を行った。反応終了後、再び熱時濾過で固体部を採取し、110℃のデカン及びヘキサンを用いて洗浄した。この洗浄を、洗浄液中にチタン化合物が検出されなくなるまで行い、固体触媒成分を得た。
- 15 次に、この固体触媒成分を用い、実施例1(3)と同様にしてプロピレンの重合を行った。結果を表1に示す。

#### 比較例2

比較例1において、2-イソプチル-2-イソプロピル-1,3-ジメトキシ20 プロパン(3.7ミリリットル)を、9,9-ピス(メトキシメチル)フルオレン(4.4ミリリットル)に変更した以外は、比較例1と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

## 比較例3

25 (1)アルコキシ基含有マグネシウム化合物の調製

実施例1 (1) において、ヨウ素を使用しなかった以外は、実施例1 (1) と同じ操作を繰り返して得られた固体生成物を、ボールミルで粉砕処理してジエトキシマグネシウムを調製した。

- (2) 固体触媒成分の調製

ジエトキシマグネシウムを3g投入し、これに2-イソプチルー2-イソプロピルー1、3-ジメトキシプロパン5.6ミリリットル及び四塩化ケイ素37.5ミリリットルを加えて40  $\mathbb C$ に加熱し、1 時間保持した。これを濾過した後に四塩化チタン120ミリリットルを加え、100  $\mathbb C$ に加熱し、2 時間保持した。これを100  $\mathbb C$  で濾過し、熱デカンで2 回洗浄した後、四塩化チタン120  $\mathbb C$  リリットルを加え、110  $\mathbb C$  に加熱し、2 時間保持した。この後110  $\mathbb C$  で濾過し、熱デカンで2 回洗浄し、さらに10  $\mathbb C$  で濾過し、熱デカンで10  $\mathbb C$  可洗浄し、首体触媒成分を得た。

## (3) プロピレン重合

10 実施例1 (3) において、上記 (2) で調製した固体触媒成分を用いた以外は、 実施例1 (3) と同様にしてプロピレンの重合を行った。結果を表1に示す。

#### 比較例4

5

比較例3(2)において、2-イソブチル-2-イソプロピル-1,3-ジメ 15 トキシプロパン(5.6ミリリットル)を、2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン(IPMP)(6.0ミリリットル)に変更した以外は、比較例3(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

### 20 比較例 5

比較例3(2)において、2-イソプチル-2-イソプロピル-1,3-ジメトキシプロパン(5.6ミリリットル)を、9-ビス(メトキシメチル)フルオレン(6.7ミリリットル)に変更した以外は、比較例3(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

| _ | 4  |
|---|----|
| ĸ | \$ |
|   |    |

|                                                |                      | 重合体             | 本性状          |                                                                       | 重合パウ              | 重合パウダー形態             |              | 固体触媒成分の構成                                               |         |
|------------------------------------------------|----------------------|-----------------|--------------|-----------------------------------------------------------------------|-------------------|----------------------|--------------|---------------------------------------------------------|---------|
|                                                | 触媒活性<br>(kg-pp/g-Ti) | [ n ]<br>(d1/g) | [mmm]<br>(%) | D <sub>50</sub> (μm)                                                  | <250 µ ₪<br>(wt%) | >2, 500 µ m<br>(wt%) | AD<br>(g/ml) | 担体                                                      | 内部ドナー   |
| 4-4t M 1                                       | 19.3                 | 1 38            | 6 66         | 1, 320                                                                | 5. 4              | 0.5                  | 0.36         | Mg(0Et) <sub>2</sub> , I <sub>2</sub> /Mg=0.022,78°C    | IPIBMP  |
| 光泥砂红                                           |                      | 67 -            | 0.0          | 1 400                                                                 | 6 7               | 0.4                  | 0.35         | Mg (0Et) <sub>2</sub> , I <sub>2</sub> /Mg=0.022, 78°C  | FLUMP   |
| 米施例2                                           | 14. 5                | 1. 44           | 30. ±        | 1, 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 3 6               |                      | 0 7 0        | Mg(OBt), I "/Mg=0. 0065, 40°C                           | IPIBMP  |
| 実施例3                                           | 14. 2                | 1. 42           | 92.9         | 930                                                                   | 7.7               | 7.0                  | V. ±4        | C607 1000 0 37 17 (200) 6m                              | $\perp$ |
| 中塔區人                                           | 16.4                 | 1, 41           | 93. 3        | 089                                                                   | 1.4               | 0.3                  | 0.42         | Mg(0Et) <sub>2</sub> , 1 <sub>2</sub> /Mg=0. 0065, 40 C | FLUME   |
| 大地方                                            |                      | -               | 9 %          | 510                                                                   | 3.0               | 9. 4                 | 0.42         | MgC1 <sub>2</sub>                                       | IPIBMP  |
| 兄妻を記                                           |                      | 1 S             |              | 3                                                                     | 9 6               | 5                    | 0.43         | MgC1,                                                   | FLUMP   |
| 一 比較例2                                         | 11. 2                | 1. 38           | 93. 2        | 040 ·                                                                 | 7.0               | 3                    |              | が 105 mm 1 (150) - M                                    | TDTRMD  |
| 上較何3                                           | 4.5                  | 1.34            | 92. 7        | 840                                                                   | 12.5              | 3.8                  | 0. 28        | Mg(UEI) 2, I 2/Mg-U, 10 C, 431-T                        |         |
| 子枝屋人                                           |                      | 1.36            | 92.8         | 870                                                                   | 11.8              | 4.0                  | 0.30         | Mg(0Et)2, I2/Mg=0,78°C,粉碎                               | IPMP    |
| ストマンドル・コード・コード・コード・コード・コード・コード・コード・コード・コード・コード |                      | 1 27            | 93 1         | 890                                                                   | 12.0              | 4. 2                 | 0.31         | Mg(0Et)2, I2/Mg=0,78℃,粉碎                                | FLUMP   |
| 一                                              | 5.4                  | T. 0.1          | 7 .00        |                                                                       |                   |                      |              |                                                         |         |

Mg (OEt) 2:ジエトキシマグネシウム

IPIBMP:2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン

FLUMP: 9, 9ーピス (メトキシメチル) フルオレン

IPMP:2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン

#### 実施例5

## (1) アルコキシ基含有マグネシウム化合物の調製

窒素で置換した内容積 0.5リットルの攪拌器付三つ口フラスコに、脱水処理 したエタノール122g(2.64グラム原子)、ヨウ素 0.9g(7.1ミリ グラム原子)及び金属マグネシウム8g(0.33グラム原子)を投入した。こ れらを、系内から水素が発生しなくなるまで 78℃で攪拌(350rpm)し て反応させ、アルコキシ基含有マグネシウム化合物(ジエトキシマグネシウム) を得た。

## (2) 固体触媒成分の調製

- 10 内容積 0. 5 リットルの攪拌機付きの三つロフラスコを窒素ガスで置換した後、脱水処理したオクタン 8 0 ミリリットル、及び、担体として、上記(1)で調製したジエトキシマグネシウム 1 6 gを加えた。40℃に加熱し、四塩化ケイ素2. 4ミリリットルを加えて20分間攪拌した後、内部ドナー(電子供与性化合物)として、2-メチル-2-イソプロピルマロン酸ジエチル(DEMIPM)
- 3. 1ミリリットルを添加した。この溶液を65℃まで昇温し、引き続き、四塩化チタンを77ミリリットル滴下し、内温125℃で、2時間攪拌して接触操作を行った。その後、脱水オクタンを用いて十分洗浄した。その後、四塩化チタンを122ミリリットル加え、内温125℃で、2時間攪拌して接触操作を行った後、脱水オクタンによる洗浄を十分に行い、固体触媒成分を得た。

#### 20 (3) プロピレン重合

25

内容積1リットルの攪拌機付きステンレス製オートクレープを十分乾燥し、窒素置換の後、室温で、脱水処理したヘプタン400ミリリットルを加えた。トリエチルアルミニウム2.0ミリモル、外部ドナー(電子供与性化合物)として、シクロヘキシルメチルジメトキシシラン(CHMDMS)0.25ミリモル、上記(2)で調製した固体触媒成分を、Ti原子換算で0.0025ミリモル加え、水素を0.1MPa張り込み、続いてプロピレンを導入しながら、<math>80%、全圧0.8MPaまで昇温昇圧してから、1時間重合を行った。

その後、降温、脱圧し、内容物を取り出し、2リットルのメタノールに投入し、 触媒失活を行った。それを濾別し、真空乾燥して、プロピレン重合体を得た。結 30 果を表2に示す。



## 実施例6

実施例 5 (2) において、2-メチル-2-イソプロピルマロン酸ジエチル3. 1ミリリットルの代わりに、2-メチル-2-イソプロピルマロン酸ジ-n-プチル (DBMIPM) 3. 9ミリリットルを用いた以外は、実施例 5 (2) 及び(3) と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表2に示す。

## 実施例7

 実施例5(2)において、2-メチル-2-イソプロピルマロン酸ジエチル3. 1ミリリットルの代わりに、2,2-ジエチルマロン酸ジエチル(DEDEM)
 3.1ミリリットルを用いた以外は、実施例5(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表2に示す。

#### 15 実施例8

実施例 5 (2) において、ヨウ素の使用量を0.27g (2. 1 ミリグラム原子) とし、反応温度を40 ℃にして調製したジエトキシマグネシウムを使用した以外は、実施例 5 (2) 及び (3) と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表 2 に示す。

20

#### 実施例9

実施例8において、2-メチル-2-イソプロピルマロン酸ジエチル3. 1ミリリットルの代わりに、2-メチル-2-イソプロピルマロン酸ジ-n-プチル3. 9ミリリットルを用いた以外は、実施例8と同様にして固体触媒成分を調製25 し、プロピレンの重合を行った。結果を表2に示す。

## 実施例10

実施例8において、2-メチル-2-イソプロピルマロン酸ジエチル3. 1ミリリットルの代わりに、2, 2-ジエチルマロン酸ジエチル3. 1ミリリットル30 を用いた以外は、実施例8と同様にして固体触媒成分を調製し、プロピレンの重

合を行った。結果を表2に示す。

#### 比較例6

窒素で置換した内容積0.5リットルの攪拌器付三つ口フラスコに、塩化マグ ネシウム(無水物)13.3g、デカン70ミリリットル及び2-エチルヘキシ ルアルコール65.5ミリリットル(0.42モル)を投入し、130℃で2 時間加熱反応を行い均一溶液とした。その後、この溶液に無水フタル酸3.12 gを添加し、130℃でさらに1時間攪拌混合を行い、無水フタル酸を上記の 均一溶液に溶解させた。このようにして得られた均一溶液を、室温まで冷却した 後、-20℃に保持された四塩化チタン373ミリリットル中に1時間にわた 10 って全量滴下した。滴下後、得られた均一溶液の温度を、4時間かけて11 0℃に昇温し、110℃に達したところで、2-メチル-2-イソプロピルマ ロン酸ジエチル4. 0ミリリットルを添加し、その後、110℃に保ちながら 2時間攪拌した。2時間の反応終了後、熱時濾過で固体部を採取し、この固体部 を、275ミリリットルの四塩化チタンで再懸濁させた後、再び110℃で2 時間加熱反応を行った。反応終了後、再び熱時濾過で固体部を採取し、11 0℃のデカン及びヘキサンを用いて洗浄した。この洗浄を、洗浄液中にチタン 化合物が検出されなくなるまで行い、固体触媒成分を得た。

次に、この固体触媒成分を用い、実施例 5 (3) と同様にしてプロピレンの重 20 合を行った。結果を表 2 に示す。

#### 比較例7

比較例6において、2-メチル-2-イソプロピルマロン酸ジエチル4.0ミリリットルの代わりに、2,2-ジエチルマロン酸ジエチル4.0ミリリットル を用いた以外は、比較例6と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表2に示す。

### 比較例8

- (1) アルコキシ基含有マグネシウム化合物の調製
- 30 実施例5(1)において、ヨウ素を使用しなかった以外は、実施例5(1)と

同じ操作を繰り返して得られた固体生成物を、ボールミルで粉砕処理してジエト キシマグネシウムを調製した。

#### (2) 固体触媒成分の調製

攪拌機付きの三つロフラスコを窒素ガスで置換した後、上記(1)で調製した 5 ジエトキシマグネシウムを3g投入し、これに2-メチル-2-イソプロピルマ ロン酸ジエチル6.0ミリリットル及び四塩化ケイ素37.5ミリリットルを加 えて40℃に加熱し、1時間保持した。これを濾過した後、四塩化チタン12  $0 \ge 11$ リットルを加え、100  $\mathbb{C}$ に加熱し、2 時間保持した。これを100  $\mathbb{C}$ で濾過し、熱デカンで2回洗浄した後、四塩化チタン120ミリリットルを加え、 1 1 0 ℃に加熱し、2時間保持した。この後1 1 0 ℃で濾過し、熱デカンで2 回洗浄し、さらにn-ヘキサンで5回洗浄し、固体触媒成分を得た。

#### (3) プロピレン重合

実施例5 (3) において、上記(2) で調製した固体触媒成分を用いた以外は、 実施例5(3)と同様にしてプロピレンの重合を行った。結果を表2に示す。

15

20

10

#### 比較例9

比較例8(2)において、2-メチル-2-イソプロピルマロン酸ジエチル6. 0ミリリットルの代わりに、2-メチル-2-イソプロピルマロン酸ジ-n-ブ チル7. 5ミリリットルを用いた以外は、比較例8(2)及び(3)と同様にし て固体触媒成分を調製し、プロピレンの重合を行った。結果を表2に示す。

#### 比較例10

比較例8(2)において、2-メチル-2-イソプロピルマロン酸ジエチル6. 0ミリリットルの代わりに、2,2-ジエチルマロン酸ジエチル6.0ミリリッ トルを用いた以外は、比較例8(2)及び(3)と同様にして固体触媒成分を調 25 製し、プロピレンの重合を行った。結果を表2に示す。

| •  | -  | • |
|----|----|---|
| •• | k. | , |
| н  | К  | ١ |
| "  | 17 | , |
|    |    |   |
|    |    |   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                   | 41. 12.     |                 | 角みパイ                 | 年々パウダー形能    |       | 関係の徳及                               |         |          |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------|-----------------|----------------------|-------------|-------|-------------------------------------|---------|----------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 重合体性状                             | S<br>在<br>子 |                 | といって                 | 17 J        |       | V4 #77477 E                         |         |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 智每形字         |                                   | ,           | ٤               | / OEO m              | 100 cm      | AD.   | 固体触喙吹灯                              |         | 外部ドナー    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (kg-pp/g-Ti) | $\begin{bmatrix} n \end{bmatrix}$ |             | U <sub>50</sub> | / 450 7 III<br>(wt%) | (wt%) (wt%) | ٩     | 担体                                  | 内部ドナー   |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | /8/1p)                            | e)          | ロガン             | )                    |             |       | 382 660 0 VILLE 1 1860 1860         | DEMIPM  | CEINDINS | _               |
| 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 70 0                              | 93.2        | 1080            | 2.3                  | 0. 2        | 0.35  | Mg (UE1) 2, 1 2/ Mg - 0. 044, 10 0  |         | 0,100    | _               |
| <b>実施</b> 例5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9. 1         | F. 0.1                            |             | 9               | 6 2                  | 0.4         | 0.36  | Mg (OEt) 2, I 2/Mg=0. 022, 78°C     | DBMIPM  | CHMDMS   |                 |
| 実施例6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.9          | 0.98                              | 94. b       | 1100            | -<br>5               | 5           | 2     | MG (OB+) 1 , Mg=0 022 78°C          | DEDEM   | CHWDWS   |                 |
| 中拉图7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 9          | 0.93                              | 92.8        | 1020            | 3. 2                 | 0.1         | 0. 33 | M.S. (3 1.2) 1.2 1.2 (1.2)          | MULTING | CHMDMS   |                 |
| 光层型光                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 200                               | 0.00        | 502             | 1 %                  | 0. 2        | 0.42  | Mg (OEt) 2, I 2/Mg=U. UU63, 40 C    | DEMILIM | Chimping | <del>-,</del> - |
| 実施例8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4         | 0. 95                             | 93. U       | 050             | ; ;                  | 5 0         | 67    | Mg(OR+), I ,/Mg=0, 0065, 40°C       | DBMIPM  | CHIMDMS  |                 |
| Clay the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.2         | 0 08                              | 94, 5       | 670             | 1:1                  | 1 .0        | 0. 42 | MB (VLV) 2 1 1 2 C                  |         | ormanic  | _               |
| 米施例3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16. 0        |                                   |             | 0               | 0                    | -           | 0.42  | Mg (OEt) 2, I 2/Mg=0. 0065, 40°C    | DEDEM   | CHMUMS   | —т              |
| 実施例10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.6          | 0.91                              | 9.7.8       | 000             | 0                    | 3 3         | 3     | MoC1.                               | DEMIPM  | CHINDINS |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6            | 70                                | 00 8        | 410             | 2.8                  |             | 0.41  | 7109m                               |         |          | Т               |
| 兄<br>内<br>財<br>別<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>に<br>に<br>に<br>に<br>る<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に | 3. 6         | U. 31                             | 9 9         |                 | -                    | 70          | 0 42  | MgC1 <sub>2</sub>                   | DEDEM   | CHIMDIMS | <del></del>     |
| 比較例7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9          | 0.98                              | 93. 8       | 400             | 7.7                  | ۲<br>خ      |       | 型株 プ87 0=m/ 1 (+a0)-M               | DEMIPM  | CHIMDMS  |                 |
| 0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | 1                                 | 92.5        | 810             | 13.1                 | 3.2         | 07.70 | Mg (UEL) 2, I 2/ mg 0, 10 0, 1/3 ". |         |          | _               |
| <b>兄</b> 數 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I. 4         | 7                                 |             |                 | ;                    | 2           | 0 98  | Mg(OEt), I 3/Mg=0, 78℃, 粉碎          | DBMIPM  | CHMDMS   |                 |
| 上校屋[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4          | 1.04                              | 94.3        | 840             | 11.4                 | 4. O        | 07    | 7/2//7 2000 0 1/2 2 17 1 17 1 17 1  | Manan   | CHANNAC  | <del>-</del>    |
| 2 X X Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | ,                                 |             | 6,6             | 19.8                 | 4. 1        | 0.27  | Mg (OEt) 2, 1 2/Mg=U, (8 C, 17741+  | DEDEM   | CHIMITIA | _               |
| <b>一</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 1. 6       | 1. 02                             | 37.0        | 070             | 2                    |             |       |                                     |         |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                   |             |                 |                      |             |       |                                     |         |          |                 |

Mg (OEt) 2:ジエトキシマグネシウム

DEMIPM:2-メチル-2-イソプロピルマロン酸ジエチル

DBMIPM:2-メチル-2-イソプロピルマロン酸ジ-n-ブチル

DEDEM: 2, 2ージエチルマロン酸ジエチル

CHMDMS:シクロヘキシルメチルジメトキシラン



# 産業上の利用可能性

本発明によれば、重合活性が高く、立体規則性及びパウダー形態に優れたオレフィン重合体が得られるオレフィン重合用固体触媒成分、オレフィン重合用触媒及 びオレフィン重合体の製造方法を提供できる。

5

## 請求の範囲

- 1. 下記化合物 (a)、(b)及び(d)、又は下記化合物(a)、(b)、
- (c) 及び(d) を反応させて得られるオレフィン重合用固体触媒成分。
- 5 (a)ハロゲン含有チタン化合物
  - (b) 金属マグネシウム、アルコール、及び前記金属マグネシウム1モルに対して0.0001グラム原子以上のハロゲン原子を含むハロゲン及び/又はハロゲン含有化合物を反応させて得られるアルコキシ基含有マグネシウム化合物
    - (c) ハロゲン含有ケイ素化合物
- 10 (d) 下記一般式 (I) 及び/又は一般式 (II) で表される電子供与性化合物

[式中、nは、 $2\sim10$ の整数であり、 $R^1\sim R^8$ は、相互に独立であり、炭素、水素、酸素、ハロゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意の $R^1\sim R^8$ は、共同してベンゼン環以外の環を形成してもよく、主鎖中に炭素以外の原子が含まれてもよい。]



[式中、 $R^9 \sim R^{12}$ は、相互に独立であり、炭素数  $1 \sim 20$  (ただし、 $R^9$ 及び  $R^{10}$ の炭素数の和は  $3 \sim 40$  である)の直鎖状、分岐状、又は環状のアルキル 
20 基又はアリールアルキル基である。]

2. 前記ハロゲンが、ヨウ素である請求の範囲第1項に記載のオレフィン重合用 固体触媒成分。

- 3. 前記ハロゲン含有化合物が、塩化マグネシウムである請求の範囲第1項に記載のオレフィン重合用固体触媒成分。
- 5 4. 前記金属マグネシウム、アルコール、及びハロゲン及び/又はハロゲン含有 化合物の反応温度が、30~90℃である請求の範囲第1項に記載のオレフィ ン軍合用固体触媒成分。
- 5. 前記金属マグネシウム、アルコール、及びハロゲン及び/又はハロゲン含有 10 化合物の反応温度が、30~60℃である請求の範囲第4項に記載のオレフィ ン重合用固体触媒成分。
  - 6. 前記ハロゲン含有ケイ素化合物(c)が、四塩化ケイ素である請求の範囲第1項に記載のオレフィン重合用固体触媒成分。
  - 7. 前記一般式(I)で表される化合物が、1,3-ジエーテル化合物である 請求の範囲第1項に記載のオレフィン重合用固体触媒成分。
- 8. 前記一般式 (II) で表される化合物が、下記一般式 (III) で表される化合 20 物である請求の範囲第1項に記載のオレフィン重合用固体触媒成分。



[式中、 $R^{11}$ 及び $R^{12}$ は、前記一般式(II)と同様であり、 $R^{13}$ は、炭素数 2  $\sim 20$  の直鎖状、分岐状又は環状のアルキル基である。]

25 9. 前記化合物 (a)、(b)及び(d)を反応させる際、前記化合物(b)と前記化合物(d)とを接触させた後、前記化合物(a)を接触させる請求の範囲第1項に記載のオレフィン重合用固体触媒成分。

- 10. 前記化合物(a)、(b)、(c)及び(d)を反応させる際、前記化合物(b)と前記化合物(c)とを接触させた後、前記化合物(d)を接触させ、その後、前記化合物(a)を接触させる請求の範囲第1項に記載のオレフィン重6日間体触媒成分。
  - 11. 下記成分[A]、[B]、又は下記成分[A]、[B]、 [C] を含むオレフィン重合用触媒。
- [A] 請求の範囲第1項に記載のオレフィン重合用固体触媒成分
- 10 [B] 有機アルミニウム化合物
  - [C] 電子供与性化合物
  - 12. 請求の範囲第11項に記載のオレフィン重合用触媒を用いてオレフィンを重合するオレフィン重合体の製造方法。

図1





Internation Discation No.
PCT/JP03/05615

| A. CLASSI                                                                                                                                                                                                                              | A. CLASSIFICATION OF SUBJECT MATTER                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Int.                                                                                                                                                                                                                                   | Int.Cl <sup>7</sup> C08F4/658                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                              |  |  |
| According to                                                                                                                                                                                                                           | International Patent Classification (IPC) or to both nation                                                                                                                                                                                                                                                                                                                 | nal classification and IPC                                                                                      |                              |  |  |
| B. FIELDS                                                                                                                                                                                                                              | SEARCHED                                                                                                                                                                                                                                                                                                                                                                    | 1 (2 )                                                                                                          |                              |  |  |
| Minimum do                                                                                                                                                                                                                             | cumentation searched (classification system followed by C1 <sup>7</sup> C08F4/64-4/658                                                                                                                                                                                                                                                                                      | classification symbols)                                                                                         |                              |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
| D                                                                                                                                                                                                                                      | ion searched other than minimum documentation to the ex                                                                                                                                                                                                                                                                                                                     | ctent that such documents are included i                                                                        | n the fields searched        |  |  |
| Titor                                                                                                                                                                                                                                  | $u_{co}$ Shinan Koho 1926–1996 u                                                                                                                                                                                                                                                                                                                                            | Jitsuyo Shinan Toroku Koho<br>Toroku Jitsuyo Shinan Koho                                                        | 1990-2005                    |  |  |
|                                                                                                                                                                                                                                        | 01000,0                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                              |  |  |
| Electronic d                                                                                                                                                                                                                           | ata base consulted during the international search (name of                                                                                                                                                                                                                                                                                                                 | or data base and, where practicable, sea                                                                        |                              |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
| C DOCI                                                                                                                                                                                                                                 | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
| Category*                                                                                                                                                                                                                              | Citation of document, with indication, where appr                                                                                                                                                                                                                                                                                                                           | opriate, of the relevant passages                                                                               | Relevant to claim No.        |  |  |
| X                                                                                                                                                                                                                                      | EP 1108730 A (IDEMITSU PETROC                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 1-12                         |  |  |
| -                                                                                                                                                                                                                                      | 20 June, 2001 (20.06.01),<br>Claims; Par. Nos. [0010] to [0                                                                                                                                                                                                                                                                                                                 | 1                                                                                                               |                              |  |  |
| •                                                                                                                                                                                                                                      | [0034]                                                                                                                                                                                                                                                                                                                                                                      | ,010], [0011]                                                                                                   |                              |  |  |
|                                                                                                                                                                                                                                        | & JP 2001-233878 A<br>Claims; Par. No. [0012]                                                                                                                                                                                                                                                                                                                               | }                                                                                                               |                              |  |  |
|                                                                                                                                                                                                                                        | JP 11-269218 A (Idemitsu Petr                                                                                                                                                                                                                                                                                                                                               | cochemical Co                                                                                                   | 1-3,6-12                     |  |  |
| Y<br>A                                                                                                                                                                                                                                 | Ltd.),                                                                                                                                                                                                                                                                                                                                                                      | .oonomical cov,                                                                                                 | 4-5                          |  |  |
|                                                                                                                                                                                                                                        | 05 October, 1999 (05.10.99),<br>Claims; Par. Nos. [0021], [003                                                                                                                                                                                                                                                                                                              | 23] to [0025]                                                                                                   |                              |  |  |
|                                                                                                                                                                                                                                        | (Family: none)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                              |  |  |
| Ì                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
| × Furt                                                                                                                                                                                                                                 | ther documents are listed in the continuation of Box C.                                                                                                                                                                                                                                                                                                                     | See patent family annex.                                                                                        |                              |  |  |
| * Spec                                                                                                                                                                                                                                 | ial categories of cited documents: ment defining the general state of the art which is not                                                                                                                                                                                                                                                                                  | "T" later document published after the in<br>priority date and not in conflict with                             | the application but cited to |  |  |
| consi                                                                                                                                                                                                                                  | considered to be of particular relevance  "E" earlier document but published on or after the international filing  "X" understand the principle or theory underlying the invention cannot be earlier document but published on or after the international filing  "X" accounted of particular relevance; the claimed invention cannot be considered to involve an inventive |                                                                                                                 |                              |  |  |
| date  "L" document which may throw doubts on priority claim(s) or which is  document which may throw doubts on priority claim(s) or which is  "V" document of particular relevance; the claimed invention cannot be                    |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
| cited to establish the publication date of another citation or other special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                              |  |  |
| mean                                                                                                                                                                                                                                   | iment referring to an oral disclosure, use, exhibition or other                                                                                                                                                                                                                                                                                                             | combined with one or more other su-<br>combination being obvious to a pers<br>document member of the same pater | on skilled in the art        |  |  |
| than                                                                                                                                                                                                                                   | ment published prior to the international filing date but later<br>the priority date claimed                                                                                                                                                                                                                                                                                | Date of mailing of the international se                                                                         |                              |  |  |
| Date of th<br>28                                                                                                                                                                                                                       | e actual completion of the international search July, 2003 (28.07.03)                                                                                                                                                                                                                                                                                                       | 12 August, 2003 (1                                                                                              | 12.08.03)                    |  |  |
| Name and                                                                                                                                                                                                                               | I mailing address of the ISA/                                                                                                                                                                                                                                                                                                                                               | Authorized officer                                                                                              |                              |  |  |
| Jar                                                                                                                                                                                                                                    | panese Patent Office                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                              |  |  |
| Facsimile                                                                                                                                                                                                                              | : No                                                                                                                                                                                                                                                                                                                                                                        | Telephone No.                                                                                                   |                              |  |  |



| C (Continua | tion). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                            |                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category*   | Citation of document, with indication, where appropriate, of the relevant passages                                                                    | Relevant to claim No. |
| Y<br>A      | JP 11-246616 A (Idemitsu Petrochemical Co.,<br>Ltd.),<br>14 September, 1999 (14.09.99),<br>Claims Par. Nos. [0020], [023] to [0029]<br>(Family: none) | 1-3,6-12<br>4-5       |
| Y<br>A      | JP 05-001112 A (Idemitsu Petrochemical Co., Ltd.), 08 January, 1993 (08.01.93), Claims (Family: none)                                                 | 1-3,6-12,<br>4-5      |
| Y<br>A      | EP 544919 A (IDEMITSU PETROCHEMICAL CO., LTD.), 09 June, 1993 (09.06.93), Claims & JP 05-001113 A Claims                                              | 1-3,6-12<br>4-5       |
| Y<br>A .    | WO 98/056830 A2 (MONTELL TECHNOLOGY CO., B.V.),<br>17 December, 1998 (17.12.98),<br>Claims<br>& JP 2000-516987 A<br>Claims                            | 1-3,6-12<br>4-5       |
| Y<br>A      | WO 98/056834 A1 (MONTELL TECHNOLOGY CO., B.V.), 17 December, 1998 (17.12.98), Claims & JP 2000-516989 A Claims                                        | 1-3,6-12              |
|             |                                                                                                                                                       |                       |



|                                                                                                                                                                                                                                                        | 当院嗣 <u>红</u> 独古                                                                                                | 国际国际国际 10 二 31 00                             |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|
| A. 発明の属<br>Int.Cl                                                                                                                                                                                                                                      | する分野の分類(国際特許分類(IPC))<br>7 CO8F 4/658                                                                           | •                                             |                |
| B. 調査を行<br>調査を行った最<br>Int. Cl                                                                                                                                                                                                                          | った分野<br>小限資料(国際特許分類(IPC))<br><sup>7</sup> CO8F 4/64-4/658                                                      |                                               |                |
| 日本国 日本国 日本国 日本国 日本国                                                                                                                                                                                                                                    | Aの資料で調査を行った分野に含まれるもの<br>実用新案公報 1926-19964<br>公開実用新案公報 1971-20034<br>実用新案登録公報 1996-20034<br>登録実用新案公報 1994-20034 | 年<br>年<br>年<br>                               |                |
| 国際調査で使用                                                                                                                                                                                                                                                | <b>目した電子データベース(データベースの名称、駅</b>                                                                                 | 間査に使用した用語)<br>                                |                |
|                                                                                                                                                                                                                                                        | ると認められる文献                                                                                                      |                                               | <br>関連する       |
| 引用文献の<br>カテゴリー*                                                                                                                                                                                                                                        | 引用文献名 及び一部の箇所が関連すると                                                                                            | きは、その関連する箇所の表示                                | 請求の範囲の番号       |
| X                                                                                                                                                                                                                                                      | EP 1108730 A (IDEM MICAL CO. Ltd.) 200 s. [0010] ~ [0015]. [ & JP 2001-233878 012]                             | 1.06.20 claim<br>0021】~【0034】<br>A 特許請求の範囲、【0 | 1-12           |
| Y<br>A                                                                                                                                                                                                                                                 | JP 11-269218 A (出光<br>9.10.05 特許請求の範囲、<br>~【0025】 (ファミリーなし)                                                    | 【0021】、【0023】                                 | 6-12<br>4-5    |
| 区欄の続                                                                                                                                                                                                                                                   | きにも文献が列挙されている。                                                                                                 | □ パテントファミリーに関する別                              | 川紙を参照。         |
| * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献 |                                                                                                                |                                               |                |
| 国際調査を完                                                                                                                                                                                                                                                 | 28.07.03                                                                                                       | 国際調査報告の発送日 12.                                | 08.03          |
|                                                                                                                                                                                                                                                        | 週の名称及びあて先<br>  本国特許庁 (ISA/JP)<br>  郵便番号100-8915                                                                | 特許庁審査官(権限のある職員)<br>中川 淳子                      | 4 J 2 9 4 0    |
| <b>#</b> 1                                                                                                                                                                                                                                             | 対                                                                                                              | 電話番号 03-3581-1101                             | <b>内線 3455</b> |



| C(続き).      | 関連すると認められる文献                                                       |                                                                         |
|-------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| 引用文献の       | 1000年100日 1000年10日 1000年17年17年17日                                  | 関連する 請求の範囲の番号                                                           |
| カテゴリー*<br>Y | JP 11-246616 A (出光石油化学株式会社) 199<br>9.09.14 特許請求の範囲、【0020】、【0023】   | 1-3, 6-12                                                               |
| A           | ~【0029】 (ファミリーなし)                                                  | 4-5                                                                     |
| Y           | JP 05-001112 A (出光石油化学株式会社) 199<br>3.01.08 特許請求の範囲 (ファミリーなし)       | $   \begin{array}{c c}     1-3, \\     6-12, \\     4-5   \end{array} $ |
| A<br>Y      | EP 544919 A (IDEMITSU PETROCHEM ICAL CO. Ltd.) 1993. 06. 09 claims | $ \begin{vmatrix} 1-3, \\ 6-12 \end{vmatrix} $                          |
| A           | & JP 05-001113 A 特許請求の範囲                                           | 4-5                                                                     |
| Y           | WO 98/056830 A2 (MONTELL TECHNO LOGY COMPANY B. V.) 1998. 12. 17 c | $   \begin{vmatrix}     1-3, \\     6-12, \\     4-5   \end{vmatrix} $  |
| A           | laims & JP 2000-516987 A 特許請求の<br>範囲                               |                                                                         |
| Y           | WO 98/056834 A1 (MONTELL TECHNO LOGY COMPANY B. V.) 1998. 12. 17 c | 6-12                                                                    |
| A           | laims & JP 2000-516989 A 特許請求の<br>範囲                               | 4-5                                                                     |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             | ·                                                                  |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |
|             |                                                                    |                                                                         |