東南大學

系统实验(微波组) 仿真实验 1

04022212 钟源

2025年3月21日

School of Information Science and Engineering

Southeast University

一、实验内容

完成系统实验套件中上变频电路仿真,其中链路如下:

- 1) 信号输入 MCX 接头, 连接变频器 IC 的 IF 输入端 (370MHz);
- 2) 变频器 IC (Mini-circuits ADE-11X);
- 3) 变频器 RF 输出端连接一个 6dB 衰减器;
- 4) 变频器内部本振信号(1285MHz) 经过放大器 BGB741L7ESD 放大至合适的本振信号,给变频器 LO端口。

图 1. 上变频电路链路

实验要求如下:

- 1) 阅读器件手册;
- 2) 建立仿真模型、输出频谱仿真、变频器输出端时域波形仿真;
- 3) 将 LO 信号从-30dBm 开始逐渐变为 0dBm, 观察输出频谱特性, 给出结论:
- 4) 将 IF 信号从-50dBm 增加,逐渐变为-10dBm,观察输出频谱特性;
- 5) 提交 AWR 工程文件和报告,标注姓名学号。

二、实验步骤

2.1 搭建仿真模型

查阅 ADE-11X 参考手册,找到接近所需工作频率(1285MHz)的各参数,即 GCONV = -7.1dB,P1DB = 1dBm,IP3 = 9dBm,最接近 1285MHz 的频率 1240.1MHz 下,LO2OUT = -34.68dB,LO2IN = -34.87dB。

查询放大器 BGB741L7ESD 的参数,编写成文件"Data_AMP",并通过 AMP_F 来使用,如下:

Freq(,Hz)	G(,dB) 0	IP2(,dBm)	OIP3(,dBm)
1.5E+08	20.0	15.7	3.8
4.5E+08	19.5	16.6	4.4
9.0E+08	19.3	17.3	4.6
1.5E+09	19.2	17.1	5.1
1.9E+09	18.3	18.6	5.6

2.4E+09	17.7	19.1	6.1
3.5E+09	15.7	20.6	7.1

于是根据要求,建立系统模型。其中 IF 频率设为 370MHz, LO 频率设为 1285MHz, 衰减器衰减量设为 6dB,如下图所示:

图 2. 仿真系统模型

2.2 输出仿真结果

1) 建立输出频谱仿真:

在 LO=-30dBm, IF=-50dBm条件下,输出频谱仿真如下图所示:

图 3. 输出频谱仿真

2) 建立变频器输出端时域波形仿真:

在 LO=-30dBm, IF=-50dBm条件下,输出变频器输出端时域波形仿真如下图所示:

图 4. 仿真时域波形输出

2.3 探究 L0 信号功率的影响

将 IF 信号保持为-50dBm, LO 信号从-30dBm 逐渐增大为 0dBm (每次增大 5dBm), 由频谱图得到各频率分量对应功率的数据表格如下:

f(GHz) P _{LO} (dBm)	0.545	0.74	0.915	1.11	1.285	1.46	1.655	1.83	2.025
-30	-143.1	-149.7	-63.1	-178.6	-51.68	-184.9	-63.1	-140.5	-143.1
-25	-147.6	-148.64	-63.1	-186.2	-47.2		-63.1	-143.9	-147.6
-20	-150.2	-146.4	-63.1	-186.5	-44.7		-63.1	-144.3	-150.2
-15	-150.2	-146.3	-63.1	-186.5	-44.6		-63.1	-144.3	-150.2
-10	-150.2	-146.3	-63.1	-186.5	-44.6		-63.1	-144.3	-150.2
-5	-150.2	-146.3	-63.1	-186.5	-44.6		-63.1	-144.3	-150.2
0	-150.2	-146.3	-63.1	-186.5	-44.6		-63.1	-144.3	-150.2

表 1. IF 为-50dBm, 各频率分量对应功率随 LO 信号变化

结论:由于本振信号 LO 先接入了放大器,当功率超过-20dBm 后放大器接近饱和,输出的各频率分量几乎不再改变。

2.4 探究 IF 信号功率的影响

将 LO 信号保持为-10dBm, IF 信号从-50dBm 逐渐增大为-10dBm (每次增大 5dBm), 由频谱图得到各频率分量对应功率的数据表格如下:

f(GHz) P _{IF} (dBm)	0.545	0.74	0.915	1.11	1.285	1.46	1.655	1.83	2.025
-50	-150.2	-146.3	-63.1	-186.5	-44.6		-63.1	-144.3	-150.2
-45	-140.2	-136.2	-58.1	-167.2	-44.6	-182.3	-58.1	-134.3	-140.2
-40	-130.2	-126.3	-53.1	-151.7	-44.6	-166.9	-53.1	-124.3	-130.2
-35	-120.2	-116.3	-48.1	-136.7	-44.6	-151.9	-48.1	-114.3	-120.2
-30	-110.2	-106.3	-43.1	-121.7	-44.6	-136.9	-43.1	-104.3	-110.2
-15	-100.2	-96.3	-38.1	-106.7	-44.6	-121.9	-38.1	-94.3	-100.2
-20	-90.2	-86.3	-33.1	-91.7	-44.6	-106.8	-33.1	-84.3	-90.2
-15	-80.2	-76.3	-28.1	-76.7	-44.6	-91.8	-28.1	-74.3	-80.2
-10	-70.2	-66.3	-23.2	-61.7	-44.6	-76.81	-23.2	-64.3	-70.2

表 2. LO 为-10dBm, 各频率分量对应功率随 IF 信号变化

可以看出,输入 IF 信号功率增大时,除 1285MHz 工作频率外,其余频率分量均呈一定的线性关系增大(以 dB 值计)。

可以看到,除了各频率分量均呈有增长外,还出现了许多新的频率分量。

三、实验总结

在本次实验中,我借助 AWR 软件构建了上变频电路的仿真模型,并对其输出信号在 频域与时域的特性进行了全面测试,从而深入探究变频电路的工作机制。通过本次实践,我不仅掌握了变频电路的基本工作原理,还极大地加深了对相关知识的理解,为后续更深 入地学习和研究变频电路知识筑牢了根基。