Credulous Acceptability, Poison Games & Modal Logic

Davide Grossi¹ and Simon Rey²

¹Bernoulli Institute, University of Groningen, Groningen, The Netherlands ²Sorbonne Université, ENS Paris Saclay, Paris, France

The Poison Game

Rules A directed graph $\langle W, R \rangle$ is given. \mathbb{P} select the first node $w_0 \in W$. After this initial choice, \mathbb{O} selects w_1 a successor of w_0 , \mathbb{P} then selects a successor of w_1 and so on. \mathbb{O} can choose any successor of the current node, but \mathbb{P} can only select successors which have not yet been visited (poisoned) by \mathbb{O} .

Winning conditions O wins if and only if P ends up in a position with no moves available.

Semi-kernels

A semi-kernel in a directed graph $\langle W, R \rangle$ is set $X \subseteq W$ s.t.:

- $\blacksquare \nexists x, y \in X \text{ s.t. } xRy$
- $\forall x \in X \text{ if } xRy \text{ then } \exists z \in X \text{ s.t.}$ yRz.

If $\langle W, R \rangle$ is an attack graph, then X is an **admissible set** of the attack graph iff it is a semi-kernel of the reverse graph $\langle W, R^{-1} \rangle$.

Theorem [3] Let $\langle W, R \rangle$ be a finite directed graph. There exists a nonempty semi-kernel in $\langle W, R \rangle$ if and only if \mathbb{P} has a winning strategy in the Poison Game for $\langle W, R \rangle$.

Example

In the graph {4} and {6} are two semi-kernels. There are three winning strategy for \mathbb{P} :

- choose 4 indefinitely: \rightarrow
- choose 6 indefinitely: -
- choose 1 and then depending on the reply by ○ resort to one of the two earlier strategies: → .

More Information

Full paper at
https:
//arxiv.org/
abs/1901.09180.

Syntax and Semantics

The language $\mathcal{L}^{\mathfrak{p}}$ is defined by the following grammar in BNF:

$$\mathcal{L}^{\mathfrak{p}}: \varphi ::= p \mid \neg \varphi \mid (\varphi \wedge \varphi) \mid \Diamond \varphi \mid \phi \varphi,$$

where $p \in \mathbf{P} \cup \{\mathfrak{p}\}$ with \mathbf{P} a countable set of propositional atoms and \mathfrak{p} a distinguished atom called *poison atom*.

This language is interpreted on Kripke models $\mathcal{M} = (W, R, V)$. A pointed model is a pair (\mathcal{M}, w) with $w \in \mathcal{M}$.

The semantics for the \spadesuit modality is as follows (others are standard):

$$(\mathcal{M}, w) \models \phi \varphi \Leftrightarrow \exists v \in W, wRv, (\mathcal{M}_v^{\bullet}, v) \models \varphi.$$

where

$$\mathcal{M}_{w}^{\bullet} = (W, R, V)_{w}^{\bullet} = (W, R, V'),$$

with $V'(p) = V(p), \forall p \in \mathbf{P} \text{ and } V'(\mathfrak{p}) = V(\mathfrak{p}) \cup \{w\}.$

Story

- 1 The **Poison Game** is a game on graphs that characterizes the existence of **semi-kernels** in a directed graph.
- 2 Semi-kernels correspond to admissible sets of arguments in attack graphs as defined in abstract argumentation;
- The existence of admissible sets (a.k.a., existence of credulously acceptable arguments) is thus characterized by the poison game.
- Several argumentation theory notions (a.k.a. semantics) are known to be expressed by specific modal formulae [4], but **no modal formula** is known to characterize the existence of credulously admissible arguments.
- Poison Modal Logic (PML) extends classical modal logic with one modality capturing the notion of 'poisoning' of a node in a graph.
- The paper shows PML has the right expressivity to characterize the existence of winning strategies in the Poison Game (in bounded games), and therefore credulous admissibility.
- We study the model theory and decidability of PML.

Expressivity

Let δ_n , with $n \in \mathbb{N}_{>0}$, be defined as: $\delta_1 = \Diamond \mathfrak{p}$; $\delta_{i+1} = \Diamond (\neg \mathfrak{p} \wedge \delta_i)$.

Fact Let $(\mathcal{M}, w) \in \mathfrak{M}^{\emptyset}$ with $\mathcal{M} = (W, R, V)$, then for $n \in \mathbb{N}_{>0}$ there exists $w \in W$ such that $(\mathcal{M}, w) \models \blacklozenge \delta_n$ if and only if there is a cycle of length $i \leq n$ in the frame (W, R). So PML is not bisimulation invariant nor enjoys the tree model property.

PML is a proper fragment of the memory logic known as $\mathcal{M}(\mathfrak{D}, \mathfrak{D})$ [1]. PML can be embedded into $\mathcal{H}(\downarrow)$.

Standard translation

P is the first order predicate for $p \in \mathbf{P}$ and \mathfrak{P} is the one for \mathfrak{p} .

$$ST_{x}^{N}(p) = P(x), \forall p \in \mathbf{P}$$

$$ST_{x}^{N}(\neg \varphi) = \neg ST_{x}^{N}(\varphi)$$

$$ST_{x}^{N}(\varphi \wedge \psi) = ST_{x}^{N}(\varphi) \wedge ST_{x}^{N}(\psi)$$

$$ST_{x}^{N}(\Diamond \varphi) = \exists y \left(R(x, y) \wedge ST_{y}^{N}(\varphi) \right)$$

$$ST_{x}^{N}(\blacklozenge \varphi) = \exists y \left(R(x, y) \wedge ST_{y}^{N \cup \{y\}}(\varphi) \right)$$

$$ST_{x}^{N}(\mathfrak{p}) = \mathfrak{P}(x) \vee \bigvee_{y \in N} (y = x).$$

Main Theorems

- For $(\mathcal{M}, w) \in \mathfrak{M}$ and $\varphi \in \mathcal{L}^{\mathfrak{p}}$ a formula, we have: $(\mathcal{M}, w) \models \varphi$ iff $\mathcal{M} \models ST_x^{\emptyset}(\varphi)[x := w]$.
- For any two pointed models (\mathcal{M}_1, w_1) and (\mathcal{M}_2, w_2) , if $(\mathcal{M}_1, w_1) \iff (\mathcal{M}_2, w_2)$ then $(\mathcal{M}_1, w_1) \leftrightsquigarrow (\mathcal{M}_2, w_2)$.
- For any two ω -saturated models (\mathcal{M}_1, w_1) and (\mathcal{M}_2, w_2) , if $(\mathcal{M}_1, w_1) \iff (\mathcal{M}_2, w_2)$ then $(\mathcal{M}_1, w_1) \rightleftharpoons (\mathcal{M}_2, w_2)$.
- A FOL formula is equivalent to the translation of a $\mathcal{L}^{\mathfrak{p}}$ formula if and only if it is p-bisimulation invariant.
- The satisfiability problem for PML₃ is undecidable.
- PML does not have the Finite Model Property.

Where: \iff is the modal equivalence and \Rightarrow the poison bisimulation relation (p-bisimulation).

Winning positions in PML

Winning positions for \mathbb{O} are defined by the following infinitary formula:

$$\mathfrak{p} \vee \Diamond \Box \mathfrak{p} \vee \Diamond \Box \Diamond \Box \mathfrak{p} \vee \cdots$$

Dually, winning positions for \mathbb{P} are:

$$\neg \mathfrak{p} \wedge \Diamond \blacksquare \neg \mathfrak{p} \wedge \Diamond \blacksquare \Diamond \blacksquare \neg \mathfrak{p} \wedge \cdots.$$

Open questions

- Sabotage modal logic [2]
- Proof system for PML
- Fixed-point PML: μ PML

References

- [1] C. Areces, D. Figueira, S. Figueira, and S. Mera. The expressive power of memory logics. *Review of Symbolic Logic*, 4(2):290–218, 2011.
- [2] G. Aucher, J. van Benthem, and D. Grossi. Modal logics of sabotage revisited. *Journal of Logic and Computation*, 28(2):269–303, 2017.
- [3] P. Duchet and H. Meyniel. Kernels in directed graphs: a poison game. *Discrete mathematics*, 115(1-3):273–276, 1993.
- [4] D. Grossi. On the logic of argumentation theory. In W. van der Hoek, G. Kaminka, Y. Lespérance, and S. Sen, editors, *Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010)*, pages 409–416. IFAAMAS, 2010.