# Ćwiczenie 9 - sprawozdanie

Wydajność złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych



Dominik Pawlus 06.06.2021

# 1. Cel projektu

Celem projektu jest sprawdzenie wpływu indeksacji danych na czas wykonywania zapytania w języku SQL. Do tego celu utworzona została baza danych zawierająca informacje znajdujące się w tabeli stratygraficznej oraz syntetyczną tabela wypełnioną liczbami od 0 do 999999. Dzięki wykonywaniu zapytań łączących ze sobą dwie powyższe tabele, można uzyskać statystycznie wartościowe wyniki obrazujące czas wykonywania operacji w języku SQL.

Dodatkowo, każdą z operacji wykonano w dwóch różnych systemach operacyjnych:

- 1. Na natywnie pracującym systemie Mac OS
- 2. Na wirtualizacji systemu Windows 10 poprzez platformę VM Ware Fusion

# 2. Konfiguracja sprzętowa

#### iMac 27" 2019

• CPU: Intel Core i9 (8 rdzeni) 3,6 GHz

• GPU: Radeon Pro Vega 48; 8 GB

• RAM: 64GB 2667 MHz DDR4

• Pamięć masowa: APPLE SSD SM1024L

• System operacyjny: Mac OS Big Sur 11.2.3

## Konfiguracja maszyny wirtualnej:

• Oprogramowanie: VM Ware Fusion 12.1.2

• System operacyjny: Windows 10 x64

• Przydzielona liczba rdzeni procesora: 4

• Przydzielona pamięć RAM: 16GB

Programem służącym do wykonania zadania w obu środowiskach był MySQL.

# 3. Wykonanie zadania

Po utworzeniu bazy danych oraz odpowiednich tabel każde z czterech zapytań zostało uruchomione **20** razy.

#### 1ZL

SELECT COUNT(\*) FROM Milion INNER JOIN GeoTabela ON (MOD(Milion.liczba, 88) = (GeoTabela.id\_pietro));

#### 2ZL

SELECT COUNT(\*) FROM Milion INNER JOIN GeoPietro ON (MOD(Milion.liczba, 88) = GeoPietro.id\_pietro) NATURAL JOIN GeoEpoka NATURAL JOIN GeoOkres NATURAL JOIN GeoEon;

#### 3ZL

SELECT COUNT(\*) FROM Milion WHERE MOD(Milion.liczba, 88) = (SELECT id\_pietro FROM GeoTabela WHERE MOD(Milion.liczba, 88) = (id\_pietro));

#### 47.1

SELECT COUNT(\*) FROM Milion WHERE MOD(Milion.liczba, 88) IN (SELECT GeoPietro.id\_pietro FROM GeoPietro NATURAL JOIN GeoEpoka NATURAL JOIN GeoOkres NATURAL JOIN GeoEra NATURAL JOIN GeoEon);

Poniższa tabela prezentuje otrzymane wyniki pomiarów przed dodaniem indeksów:

| MacOS - MySQL |     |       | Windows 10 - MySQL |     |     |       |     |
|---------------|-----|-------|--------------------|-----|-----|-------|-----|
| ZL1           | ZL2 | ZL3   | ZL4                | ZL1 | ZL2 | ZL3   | ZL4 |
| 327           | 385 | 21566 | 360                | 453 | 469 | 28875 | 485 |
| 328           | 358 | 21473 | 360                | 438 | 484 | 28859 | 484 |
| 323           | 360 | 21713 | 358                | 437 | 484 | 28875 | 484 |
| 328           | 359 | 21371 | 363                | 438 | 484 | 28922 | 469 |
| 327           | 358 | 21313 | 357                | 453 | 485 | 28922 | 469 |
| 326           | 363 | 21433 | 357                | 453 | 485 | 28906 | 469 |
| 324           | 361 | 21470 | 359                | 437 | 485 | 28813 | 468 |
| 330           | 360 | 21586 | 358                | 437 | 484 | 28891 | 484 |
| 328           | 358 | 21326 | 358                | 453 | 469 | 28953 | 469 |
| 326           | 362 | 21575 | 359                | 438 | 484 | 29063 | 484 |
| 329           | 363 | 21334 | 360                | 437 | 468 | 28891 | 469 |
| 324           | 357 | 21499 | 358                | 453 | 484 | 29141 | 469 |
| 326           | 358 | 21354 | 361                | 438 | 469 | 28969 | 469 |
| 326           | 359 | 21743 | 357                | 438 | 468 | 28969 | 469 |
| 327           | 358 | 21815 | 359                | 437 | 468 | 28875 | 469 |
| 326           | 360 | 21475 | 358                | 454 | 468 | 28907 | 468 |
| 332           | 358 | 21739 | 357                | 453 | 469 | 28875 | 469 |
| 326           | 360 | 21369 | 359                | 453 | 484 | 28844 | 468 |
| 324           | 361 | 21715 | 358                | 437 | 468 | 28859 | 484 |
| 326           | 359 | 21332 | 358                | 437 | 469 | 28859 | 469 |

# Oraz po dodaniu indeksów:

| MacOS - MySQL |      |      |      | Windows 10 -MySQL |     |      |      |
|---------------|------|------|------|-------------------|-----|------|------|
| ZL1           | ZL2  | ZL3  | ZL4  | ZL1               | ZL2 | ZL3  | ZL4  |
| 1158          | 1262 | 1349 | 1282 | 1515              | 453 | 2000 | 1937 |
| 1094          | 1262 | 1358 | 1250 | 1515              | 453 | 2000 | 1906 |
| 1099          | 1256 | 1351 | 1257 | 1531              | 453 | 2016 | 1907 |
| 1097          | 1272 | 1349 | 1257 | 1516              | 453 | 2000 | 1922 |
| 1090          | 1253 | 1357 | 1257 | 1516              | 454 | 2000 | 1906 |
| 1089          | 1270 | 1357 | 1262 | 1515              | 453 | 2000 | 1906 |
| 1098          | 1263 | 1358 | 1255 | 1515              | 453 | 2016 | 1907 |
| 1096          | 1278 | 1347 | 1263 | 1531              | 453 | 2000 | 1906 |
| 1096          | 1265 | 1354 | 1257 | 1500              | 453 | 2015 | 1907 |
| 1083          | 1268 | 1351 | 1254 | 1531              | 453 | 2016 | 1906 |
| 1091          | 1261 | 1355 | 1254 | 1515              | 469 | 2016 | 1922 |
| 1088          | 1257 | 1364 | 1249 | 1515              | 454 | 2000 | 1907 |
| 1093          | 1265 | 1365 | 1255 | 1516              | 453 | 2016 | 1922 |
| 1094          | 1256 | 1341 | 1264 | 1515              | 453 | 1984 | 1906 |
| 1088          | 1274 | 1360 | 1254 | 1515              | 454 | 2015 | 1922 |
| 1089          | 1257 | 1359 | 1261 | 1516              | 469 | 2000 | 1906 |
| 1089          | 1261 | 1345 | 1252 | 1516              | 469 | 2015 | 1922 |
| 1086          | 1262 | 1358 | 1258 | 1515              | 454 | 2000 | 1907 |
| 1093          | 1253 | 1360 | 1259 | 1516              | 453 | 2016 | 1922 |
| 1088          | 1264 | 1351 | 1263 | 1531              | 453 | 2016 | 1906 |

Podsumowanie uzyskanych wyników prezentują poniższa tabela oraz wykres:

|           | MacOS |       |          | Windows 10 |       |         |  |
|-----------|-------|-------|----------|------------|-------|---------|--|
|           | Min   | Max   | Avg      | Min        | Max   | Avg     |  |
| 1ZL       | 323   | 332   | 327,5    | 437        | 454   | 443,7   |  |
| 1ZL_index | 1083  | 1158  | 1094,95  | 1500       | 1531  | 1517,75 |  |
| 2ZL       | 357   | 385   | 360,85   | 468        | 485   | 476,4   |  |
| 2ZL_index | 1253  | 1278  | 1262,95  | 453        | 469   | 455,6   |  |
| 3ZL       | 21313 | 21815 | 21510,05 | 28813      | 29141 | 28913,4 |  |
| 3ZL_index | 1341  | 1365  | 1354,45  | 1984       | 2016  | 2007,05 |  |
| 4ZL       | 357   | 363   | 358,7    | 468        | 485   | 473,4   |  |
| 4ZL_index | 1249  | 1282  | 1258,15  | 1906       | 1937  | 1912,6  |  |



### 4. Wnioski

Po przeanalizowaniu wyników można dojść do wniosku, że indeksacja przyspiesza wykonywanie zapytań tylko w niektórych przypadkach. Na systemie Mac OS w zapytaniach nr 1, 2 oraz 4 czas po wykonaniu indeksacji tabel wyraźnie wzrastał. Wyjątkiem było zapytanie nr 3 podczas którego średni czas spadł prawie dwudziestokrotnie. Podczas eksperymentu na platformie Windows zapytania nr 1 oraz 2 również wymagały więcej czasu na wykonanie po zastosowaniu indeksacji. Czas wykonania zapytania nr 2 zmienił się bardzo nieznacznie (o ok. 4%), natomiast w przypadku 3 zaobserwowany został równie duży przeskok co w przypadku Mac OS.