Data Science Survival Skills

Exercise 4 – Data exploration and visualization

Today's workflow

Data exploration

Create plots

Create figure & edit

Plotting distributions

histplot(df, x)

DataFrame

boxplot(df, x)

pointplot(df, x)

violinplot(df, x)

seaborn

import seaborn as sns
sns.histplot(df, x="Age")

Visualization

understand the context

choose an effective visual

eliminate clutter

focus attention

tell a story

Removing clutter and focusing attention

Shoppers Begins Shopping for Holidays

More women start their holiday shopping early

Removing clutter and focusing attention

BEFORE

Project Risks by Category: Issues Raised vs. Resolved

AFTER

Project risks by category

UNRESOLVED | RESOLVED

Some coding

Raster graphics vs. vector graphics

	Raster	Vector
File extensions	. png .jpg .gif	.svg .ai .emf
Built from	Pixels	Mathematical equations, lines, and curves
Usage	Photos, presentations, web,	Figures for scientific papers, illustrations, logos,
Pros and cons	- Lose quality when resized + compatibility	+ Don't lose quality when resized (very scalable)

Example: Scientific Figure

Figure 1. A single latent space channel is sufficient for glottis segmentation. (A) Glottis segmentation of endoscopic images using deep neural networks (DNNs) with latent space Ψ . (B) Convergence of segmentation DNNs across different latent space channels with enabled skip connections. Gradient from black to red indicates fewer channels. The gray line indicates maximum IoU score. (C) Convergence of segmentation DNNs across different latent space channels with disabled skip connections. Gradient from black to magenta indicates fewer channels. The gray line indicates maximum IoU score from panel B. (D) Performance of best performing segmentation DNNs on validation set (solid lines) and evaluated on test set (dashed lines) with enabled (with, red) and disabled (without, magenta) skip connections across latent space (Ψ) channels measured by mean intersection over union (IoU). The asterisk indicates the architecture used in the subsequent experiments.

Editing plots in Inkscape

Download: https://inkscape.org/

Tutorials: https://inkscape-manuals.readthedocs.io/

Make font editable:

```
plt.rcParams['svg.fonttype'] = 'none'
```

Inkscape

Set figure size:

File → Document properties

Snap to grid points

View → ☑ Page Grid

View → Show/Hide → Snap controls bar → Activate snapping 🔨

Aligning elements

Inkscape

Save as SVG (vector graphic)

File → Save as ...

Export as PNG (raster graphic)

File → Export ...

More coding

Questions?

And we are done!

Thank you