Лекция 5-6 Многомерные случайные величины

- Совместная функция распределения.
 Маргинальные распределения.
- 2. Двумерная дискретная случайная величина.
- 3. Двумерная непрерывная случайная величина.
- 4. Независимые случайные величины.
- 5. Числовые характеристики двумерной случайной величины.

1. Совместная функция распределения случайных величин

Пусть случайные величины $X_1, X_2, ..., X_n$ заданы на вероятностном пространстве (Ω, \mathbf{B}, P) .

Определение 1

Совокупность с.в. $X_1, X_2, ..., X_n$ называется многомерной (n-мерной) случайной величиной или n-мерным вектором.

Обозначение:
$$\vec{X} = (X_1, X_2, ..., X_n)$$

Случайные величины $X_1, X_2, ..., X_n$ – координаты случайного вектора:

при n=1 $\vec{X}=X-$ одномерный случайный вектор;

при n=2 $\vec{X}=(X_1,X_2)$ – двумерный случайный вектор.

С каждым элементарным событием $\omega \in \Omega$ связан набор числовых значений $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$.

Обозначим событие:

$$\{X_1 < x_1\} \cap \{X_2 < x_2\} \cap \dots \cap \{X_n < x_n\} =$$

$$= \{X_1 < x_1, X_2 < x_2, \dots, X_n < x_n\}$$

Определение 2

Совместной (п-мерной) функцией распределения случайных величин $X_1, X_2, ..., X_n$ или функцией распределения (вероятностей) случайного вектора $\vec{X} = (X_1, X_2, ..., X_n)$ называется функция, значение которой в точке $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ равно вероятности пересечения событий $\{X_1 < x_1\}, \{X_2 < x_2\}, ..., \{X_n < x_n\},$ т.е.:

$$F(x_1, x_2, \dots, x_n) = P\{X_1 < x_1, X_2 < x_2, \dots, X_n < x_n\}$$
 или

$$F_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n)$$
 © I.Krivtsova

 $\overrightarrow{X} = (X_1, X_2)$ – двумерный случайный вектор.

Двумерная функция распределения

$$F(x_1, x_2) = P\{X_1 < x_1, X_2 < x_2\}$$

 $F(a_1, a_2) = P\{X_1 < a_1, X_2 < a_2\}$ — вероятность попадания т. (X_1, X_2) в квадрант с вершиной в т. (a_1, a_2)

Значение двумерной ф.р.

Свойства функции $F(x_1, x_2)$

Теорема 1

- 1. $0 \le F(x_1, x_2) \le 1$
- 2. $F(x_1,x_2)$ неубывающая функция по каждому из x_1, x_2
- 3. $F(-\infty, x_2) = F(x_1, -\infty) = 0$
- **4.** $F(+\infty, +\infty) = 1$
- 5. $F(x_1,x_2)$ непрерывная слева $\forall (x_1,x_2) \in \mathbb{R}^2$ по каждому из аргументов

6.
$$P(a_1 \le X_1 < b_1, a_2 \le X_2 < b_2) =$$

= $F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2)$

7.
$$F_{X_1,X_2}(x,+\infty) = F_{X_1}(x)$$
, $F_{X_1,X_2}(+\infty,x) = F_{X_2}(x)$

Функции $F_{X_1}(x)$ и $F_{X_2}(x)$ называются одномерными (частными или маргинальными) функциями распределения случайных величин X_1 и X_2 .

Свойство 7 устанавливает связь между двумерной функцией распределения случайного вектора $\overrightarrow{X} = (X_1, X_2)$ и одномерными функциями распределения с.в. X_1 и X_2 .

2. Двумерная дискретная случайная величина

Определение 3

Двумерная с.в. (X,Y) называется дискретной, если каждая из случайных величин X и Y является дискретной.

$$X = \{x_1, x_2, \dots, x_n\}$$
 $Y = \{y_1, y_2, \dots, y_m\}$
 (x_i, y_j) – координаты случайного вектора (X, Y)

Совместное распределение двумерной с.в.

X	${\cal Y}_1$	${\mathcal Y}_2$	•••	\mathcal{Y}_m
x_1	p_{11}	p_{12}	•••	p_{1m}
x_2	p_{21}	p_{22}	•••	p_{2m}
•••	•••	•••	•••	•••
x_n	p_{n1}	p_{n2}	•••	p_{nm}

Табл.1

– система двух дискретных случайных величин (X, Y), где X и Y – составляющие систему случайные величины.

Совместное распределение вероятностей

двумерной дискретной с.в. (X, Y) – соответствие между возможными значениями координат (x_i, y_j) и их вероятностями $p_{ij} = p(x_i, y_j)$.

Обозначим: Табл.1

События $\{X=x_i, Y=y_j\}$, где $i=1\div n, j=1\div m$ образуют полную группу несовместных событий, поэтому сумма их вероятностей равна 1: $\sum_{i=1}^n \sum_{j=1}^m p_{ij} = 1$ © I.Krivts

© I.Krivtsova ITMO University

Совместная функция распределения случайных величин X и Y:

$$F(x,y) = \sum_{\substack{i: x_i < x \\ j: y_j < y}} \mathbf{p}_{ij}$$

где суммирование p_{ij} ведется по всем тем значениям i и j, для которых $x_i < x$, $y_i < y$.

В *схеме Бернулли* n=2; случайный вектор $\vec{X} = (X,Y)$, где X,Y – число успехов в i-том эксперименте, i=1,2.

ITMO University

Совместная функция распределения F(x,y) © I.Krivtsova

ITMO University

Одномерные (маргинальные) распределения

Правило 1:

Для нахождения маргинального распределения с.в. X необходимо в первой строке таблицы записать значения x_i , а во второй — суммы соответствующих вероятностей i-той строки из Tабл.1:

$$p(x_i) = p(x_i, y_1) + p(x_i, y_2) + \dots + p(x_i, y_m)$$

где
$$i=1\div n$$
.

Правило 2:

Для нахождения маргинального распределения с.в. Y необходимо в первой строке таблицы записать значения y_j , а во второй — суммы соответствующих вероятностей j-того столбца из Tабл. 1:

$$p(y_j) = p(x_1, y_j) + p(x_2, y_j) + ... + p(x_n, y_j)$$
 где $j = 1 \div m$.

Условные законы распределения

(X, Y) – двумерная с.в. Зафиксируем $Y=y_j$.

Определение 4

Условной вероятностью того, что $X=x_i$ при условии, что $Y=y_j$, называется условная вероятность события $\{X=x_i\}$ при условии события $\{Y=y_i\}$, т.е.

$$P(X=x_i / Y=y_j) = \frac{P(X=x_i, Y=y_j)}{P(Y=y_j)}$$

Обозначение: $p(x_i/y_i)$, $i=1 \div n$.

Условные вероятности вычисляют по формуле:

$$p(x_i/y_j) = \frac{p(x_i, y_j)}{p(y_j)} = \frac{p_{ij}}{p_j}$$

Условный закон распределения с.в. X при условии, что $Y=y_j$, это соответствие между возможными значениями x_i и их условными вероятностями $p(x_i/y_j)$, $i=1\div n$.

Зафиксируем $X=x_i$.

Обозначим условную вероятность того, что $Y=y_j$ при условии, что $X=x_i$:

$$p(y_j/x_i), j=1 \div m$$
.

Условные вероятности вычисляют по формуле:

 $p(y_j/x_i) = \frac{p(x_i, y_j)}{p(x_i)} = \frac{p_{ij}}{p_i}$

Условный закон распределения с.в. Y при условии, что $X=x_i$, это соответствие между возможными значениями y_j и условными вероятностями $p(y_j/x_i)_{\odot} j=1\div m_{\odot}$

3. Двумерная непрерывная случайная величина

Определение 5

Непрерывной двумерной случайной величиной (X, Y) называется с.в., совместная функция распределения которой имеет вид:

$$F(x_1,x_2)=\int_{-\infty}^{x_1}\int_{-\infty}^{x_2}f(y_1,y_2)\;dy_1\,dy_2$$
 , где

ITMO University

- интеграл справа сходится
- $f(y_1, y_2)$ непрерывная (за исключением отдельных точек) функция по обоим аргументам. © I.Krivtsova

 $f(x_1,x_2)$ — совместная двумерная плотность распределения случайных величин X и Y.

По теореме о дифференцировании интеграла с переменным верхним пределом в точках непрерывности плотности имеем:

$$f(x_1, x_2) = \frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2} = \frac{\partial^2 F(x_1, x_2)}{\partial x_2 \partial x_1}$$

Совместная n-мерная плотность распределения случайных величин $X_1, X_2, ..., X_n$, или плотность распределения случайного вектора $\overrightarrow{X} = (X_1, X_2, ..., X_n)$:

$$f(x_1,x_2,...,x_n) = \frac{\partial^n F(x_1,x_2,...,x_n)}{\partial x_1 \partial x_2 ... \partial x_n}$$

Свойства функции $f(x_1, x_2)$

Теорема 2

1.
$$f(x_1, x_2) \ge 0$$

2.
$$P(a_1 < X < b_1, a_2 < Y < b_2) =$$

$$= \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} f(x_1, x_2) dx_2$$

3.
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x_1, x_2) dx_1 dx_2 = 1$$

4.
$$P(X=x_1, Y=x_2) = 0$$

5. Маргинальная плотность распределения с.в. *X*:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \ dy$$

6. Маргинальная плотность распределения с.в. *Y*:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \ dx$$

Замечание

Свойство 2 можно обобщить:

$$P((X,Y) \in D) = \iint_D f(x,y) dx dy$$

Условные законы распределения

Пусть f(x,y), $f_X(x)$ и $f_Y(y)$ – непрерывные функции.

Определение 6

Условной функцией распределения с.в. X при условии Y=y называется функция

$$F_X(x / Y=y) = \frac{1}{f_Y(y)} \int_{-\infty}^{X} f(u,y) du$$

f(x,y) — непрерывная $\Rightarrow F_X(x / Y = y)$ имеет производную по x, т.е. существует условная плотность распределения с.в. X при условии Y = y:

$$f_X(x/y) = \frac{f(x,y)}{f_Y(y)}$$

Определение 7

Условной функцией распределения с.в. Y при условии X=x называется функция

$$F_Y(y / X = x) = \frac{1}{f_X(x)} \int_{-\infty}^{y} f(x, v) dv$$

Условная плотность распределения с.в. Y при условии X=x:

$$f_Y(y/x) = \frac{f(x,y)}{f_X(x)}$$

Условная функция распределения отражает только вероятностную (стохастическую) связь между случайными величинами.

Предсказать точное значение одной с.в. по значению другой, вообще говоря, невозможно.

4. Независимые случайные величины

Определение 8

Случайные величины X и Y называются независимыми, если их совместная функция распределения является произведением одномерных функций распределения:

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$

В противном случае случайные величины называются зависимыми Krivtsova ITMO University

С.в. X и Y независимы \Rightarrow события $\{X < x\}$ и $\{Y < y\}$ являются независимыми.

Независимыми являются и все события $\{x_1 \le X < x_2\}$ и $\{y_2 \le Y < y_2\}$.

Замечание

С.в. X и Y независимы \Leftrightarrow независимы любые события $\{X \in A\}$ и $\{Y \in B\}$, где A и B – любые интервалы или объединения интервалов.

Определение 9

Случайные величины $X_1, X_2, ..., X_n$, заданные на одном и том же вероятностном пространстве, называются независимыми в совокупности, если

$$F(x_1, x_2, ..., x_n) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot ... \cdot F_{X_n}(x_n)$$

Теорема 3

 $egin{aligned} \mathcal{A}$ искретные с.в X и Y независимы $\Leftrightarrow \forall x_i$ и $\forall y_j \\ p(x_i,y_j) = p(x_i).p(y_j) \end{aligned}$ или $p_{ij} = p_i \cdot p_j$

Теорема 4

Hепрерывные c.e Xи Y независимы ⇔

$$\forall x,y \quad f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

С.в. X и Y являются H езависимыми \Leftrightarrow условное распределение (функция распределения, плотность распределения) с.в. X при условии Y совпадает с безусловным распределением с.в. X.

В частности, дискретные с.в. являются независимыми \Leftrightarrow условные вероятности совпадают с безусловными:

$$p(x_i/y_i) = p(x_i), i=1 \div n$$

5. Числовые характеристики двумерной случайной величины

Математическим ожиданием двумерной д.с.в. (X, Y) называется вектор $\overrightarrow{m} = (m_x, m_y)$, компоненты которого определяются по формулам:

$$m_{x} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} p_{ij}$$

$$m_{y} = \sum_{i=1}^{n} \sum_{j=1}^{m} y_{j} p_{ij}$$

Дисперсией двумерной д.с.в. (X, Y) называется вектор $\overrightarrow{D} = (D_x, D_y)$, где:

$$D_{x} = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{i} - m_{x})^{2} p_{ij}$$

$$D_{y} = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_{j} - m_{y})^{2} p_{ij}$$

Ковариацией (корреляционным

моментом) K_{xy} случайных величин X и Y называется число, равное математическому ожиданию произведения отклонений случайных величин от их математических ожиданий:

$$K_{xy} = M[(X - m_x) \cdot (Y - m_y)]$$

Обозначение: cov(X,Y)

Свойства ковариации

$$1. K_{xy} = K_{yx}$$

$$2. \quad K_{xx} = D_x \text{ , } K_{yy} = D_y$$

3.
$$K_{xy} = M[X \cdot Y] - M[X] \cdot M[Y]$$

4.
$$D[X \pm Y] = D[X] + D[Y] \pm 2K_{xy}$$

5.
$$X$$
 и Y независимы $\Rightarrow K_{xy} = 0$

$$6. /K_{xy} / \leq \sqrt{D_x} \sqrt{D_y}$$

CP

Доказательство:

1) Пусть
$$Z = \sigma_y X - \sigma_x Y$$
, найдем D_z .
$$D_z = M[(Z - m_z)^2] = M[Z^2] - 2m_z^2 + m_z^2 =$$

$$= M[Z^2] - (M[Z])^2 = M[\sigma_y^2 X^2 - 2\sigma_x \sigma_y XY + \sigma_x^2 Y^2] -$$

$$- (\sigma_y M[X] - \sigma_x M[Y])^2 =$$

$$= \sigma_y^2 M[X^2] - 2\sigma_x \sigma_y M[XY] + \sigma_x^2 M[Y^2] - \sigma_y^2 (M[X])^2 +$$

$$+ 2\sigma_x \sigma_y M[X]M[Y] - \sigma_x^2 (M[Y])^2 =$$

$$= \sigma_y^2 (M[X^2] - m_x^2) - 2\sigma_x \sigma_y (M[XY] - M[X]M[Y]) +$$

$$+ \sigma_x^2 (M[Y^2] - m_y^2) = \sigma_y^2 D_x - 2\sigma_x \sigma_y K_{xy} + \sigma_x^2 D_y =$$

$$= \sigma_y^2 \sigma_x^2 - 2\sigma_x \sigma_y K_{xy} + \sigma_x^2 \sigma_y^2$$

$$D_z = 2\sigma_x^2 \sigma_y^2 - 2\sigma_x \sigma_y K_{xy} + \sigma_x^2 \sigma_y^2$$
 ITMO University

- 2) Аналогично, для $Z = \sigma_{y}X + \sigma_{x}Y$, получаем $K_{xy} \ge -\sigma_{x}\sigma_{y}$
- 3) Таким образом, $-\sigma_{\!_{\! X}}\sigma_{\!_{\! Y}} \leq K_{\!_{\! X\! Y\! }} \leq \sigma_{\!_{\! X}}\sigma_{\!_{\! Y\! }}$ или

$$|K_{xy}| \le \sqrt{D_x} \sqrt{D_y}$$

7.
$$|K_{xy}| = \sqrt{D_x} \sqrt{D_y} \iff \exists a,b \in \mathbb{R}$$
:
 $Y = aX - b$

CP

Замечание:

если X и Y связаны линейной зависимостью $Y = aX - b, \ a \neq 0,$ то

$$K_{xy} = a K_{xx} = a D[X]$$

Вывод

Знак ковариации совпадает со знаком коэффициента *a*.

Формулы для расчетов

$$K_{xy} = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i - m_x) \cdot (y_j - m_y) p_{ij}$$

$$K_{xy} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j p_{ij} - m_x m_y$$

$$K_{xy} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - m_x)(y - m_y) f(x, y) dx dy$$

Определение 10

Случайные величины X и Y называются некоррелированными, если их ковариация равна нулю, т.е.

$$K_{xy}=0$$

Замечания:

- 1. $K_{xy} = 0 \neq X$ и Y независимые. О зависимости X и Y сделать никакого вывода нельзя.
 - 2. $K_{xy} \neq 0 \Rightarrow X$ и Y заведомо зависимы.

Коэффициентом корреляции r_{xy} с.в. X и Y называется число, равное отношению ковариации этих величин к произведению их средних квадратических отклонений:

$$r_{xy} = \frac{K_{xy}}{\sigma_x \sigma_y}$$

Свойства коэффициента корреляции

1.
$$r_{xx} = 1$$

- 2. X и Y независимы и существуют D[X], $D[Y] \Rightarrow r_{xy} = 0$
- 3. $|r_{xy}| \le 1$

4. $|r_{xy}|=1 \Leftrightarrow \exists \ a,b \in \mathbb{R}$, что Y=aX+b с вероятностью 1,

причем $a>0 \Leftrightarrow r_{xy}=1, \ a<0 \Leftrightarrow r_{xy}=-1$ Имеет место функциональная зависимость с.в. Y от с.в. X- по значению одной с.в. можно однозначно определить значение другой.

- при $r_{xy} > 0$ говорят о *положительной* корреляционной зависимости с.в. X и Y
- при $r_{xy} < 0$ об *отрицательной*.

Вывод:

ковариация и коэффициент корреляции характеризуют степень линейной зависимости случайных величин.

Чем больше $|r_{xy}|$, тем более линейна зависимость между величинами X и Y.

Вывод:

из некоррелированности случайных величин не следует их независимость. Ковариация (коэффициент корреляции) случайных величин отражает, насколько их зависимость близка к линейной.

Рассмотрим n-мерный случайный вектор $\vec{X} = (X_1, X_2, ..., X_n)$.

Определение 11

Матрицей ковариаций (ковариационной матрицей) случайного вектора \vec{X} называется матрица

$$\Sigma = (\sigma_{ij}) = (cov(X_i, X_j)), \quad i,j = 1 \div n$$

состоящая из ковариаций случайных величин X_i и X_j .

Свойства матрицы ковариаций

- 1. Матрица Σ симметрическая.
- 2. Пусть $\overrightarrow{Y}=(Y_1,Y_2,\ldots,Y_m)$ m-мерный случайный вектор, такой, что

$$\vec{Y} = \vec{X} \cdot A + \vec{b}$$

Тогда матрица ковариаций случайного вектора \overrightarrow{Y} :

$$\Sigma_{\vec{Y}} = A^T \cdot \Sigma_{\vec{X}} \cdot A$$

3. Матрица ковариаций Σ неотрицательно определена, т.е.

$$\forall \vec{a} \quad \vec{a} \cdot \Sigma \cdot \vec{a}^T \ge 0$$

Замечание

Если ранг r матрицы Σ r < n, то среди случайных величин X_1, X_2, \ldots, X_n ровно r таких, что остальные n-r случайных величин являются их линейной комбинацией.

Определение 12

Корреляционной (нормированной ковариационной) матрицей случайного вектора $\overrightarrow{X} = (X_1, X_2, \dots, X_n)$ называется матрица

$$P = (r_{xy}) = (r(X_i, X_j))$$
, где $i, j = 1 \div n$

состоящая из коэффициентов корреляции случайных величин X_i и X_j .

Корреляционная матрица порядка *п* имеет вид:

$$P = \begin{pmatrix} 1 & r_{12} & \dots & r_{1n} \\ r_{21} & 1 & & r_{2n} \\ \vdots & \ddots & \vdots \\ r_{n1} & r_{n2} & \cdots & 1 \end{pmatrix}$$

Условные характеристики с.в.

Условным математическим ожиданием одной из случайных величин X или Y двумерной д.с.в. (X, Y) называется ее математическое ожидание, вычисленное при условии, что другая с.в. приняла определенное значение, т.е.:

$$M(X/Y=y_j) = \sum_{i=1}^n x_i \cdot p(x_i/y_j),$$
 где $p(x_i/y_j) = \frac{p_{ij}}{p(y_j)}$

- среднее значение с.в. X при условии, что $Y \!\! = \!\! y_j$.

Значение $M(X/y_j)$ зависит только от значения y_j .

Определение 13

Условным математическим ожиданием д.с.в. X относительно д.с.в. Y называется функция

$$M(X/Y) = g(Y)$$

случайной величины Y, где область определения функции есть $Y=\{y_1, y_2, ..., y_m\}$, а каждому значению аргумента y_j поставлено в соответствие число

$$g(y_j) = M(X/y_j)$$

Функция g(y), выражающая зависимость, в среднем, с.в. X от значений с.в. Y называется регрессией X на Y.

Её график — *линия регрессии* X на Y .

$$M(Y/X=x_i) = \sum_{j=1}^m y_j \cdot p(y_j/x_i),$$
 где $p(y_j/x_i) = \frac{p_{ij}}{p(x_i)}$

- *среднее значение* с.в. Y при условии, что $X=x_i$.

Функция M(Y/X) = h(X) случайной величины X, где область определения функции есть $X=\{x_1, x_2, ..., x_n\}$, а каждому значению аргумента x_i поставлено в соответствие число

 $h(x_i) = M(Y/x_i)$

Функция h(x) выражающая зависимость в среднем с.в. Y от значений с.в. X называется регрессией Y на X.

Её график – линия регрессии Y на X.

Условная функция распределения отражает только *вероятностную* (*стохастическую*) *связь* между случайными величинами.

Предсказать точное значение одной с.в. по значению другой, вообще говоря, невозможно.

