

1. Considere el reticulado L_2 . Encuentre $v \vee x$, $s \vee v$ y $u \vee v$.

2. Demuestre que en todo poset reticulado se cumple $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$

$$2V(y18) \leq (2Vy) \Lambda$$

Por definicion de supremo i

 $2 \leq (2V, 9) \Lambda(2V8)$

- 3. Determine cuáles de los siguientes mapeos f de P a Q son isomorfismos. En caso de no serlo determine qué es lo que falla.
 - a) $P = Q = (\mathbb{Z}, \leq) \text{ y } f(x) = x + 1.$
 - b) $P = Q = (\mathbb{Z}, \leqslant)$ y f(x) = 2x.
 - c) $P = Q = (\mathcal{P}(\{a, b, c\}, \subseteq) \text{ y } f(A) = A^c.$

a)
$$P = Q = (Z, \xi)$$
 y $F(x) = x + 1$ gi es.
b) $P = Q = (Z, \xi)$ y $F(x) = 2x$ Yo es ques no cumple la biy echividad en Z
G) $P = Q = (P(\xi a, b, c3), \xi)$ y $F(A) = A^{c}$

vennes que Q C & a, b, c }, chequenas F (6) = 8 = & a, b, c }

Pero & a, b, c & P por la bento no (a cumple, de la final de la comple)

- 8. a) Defina una función biyectiva f del reticulado (L_3, \leq_3) en el reticulado (L_4, \leq_4) que preserve el orden, es decir, tal que $x \leq_3 y \Longrightarrow f(x) \leq_4 f(y)$.
 - b) Compruebe que no se cumple $x \leq_3 y \iff f(x) \leq_4 f(y)$. La función f es un ejemplo que muestra que preservación del orden no implica isomorfismo.
 - c) Pruebe también que f no preserva supremo ni ínfimo.

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $a \vee b := \sup\{a, b\}$ $y a \wedge b := \inf\{a, b\}.$

 $g \leq h \equiv \text{False}$ $f(g) \le f(h) \equiv \text{True}$

c)

$$f(\sup\{g,h\}) = f(i)$$

$$\sup\{f(g),f(h)\} = \sup\{l,k\} = l$$

9. Sea $(L, \emptyset, \emptyset)$ un retículo. Demostrar que $x \otimes (y \otimes z) = z \otimes (y \otimes x)$.

10. (del teórico) Sea $(L, \emptyset, \emptyset)$ un retículo y considere la relación de orden parcial definida por $x \leq y \iff x \otimes y = y$. Probar que $x \otimes y$ es cota superior del conjunto $\{x, y\}$.

Definición

Sea $\mathbf{P} = (P, \leq)$ un poset, $c \in P$ y $S \subseteq P$. Decimos que

• c es cota superior de S sii para todo $a \in S$, $a \le c$.

ndo 5 70, 43 • c es cota inferior de S sii para todo $a \in S$, $c \le a$. esto es que sup (xvy)=y Por lo fanto y ≥ 2

