In the Claims

- 1. (currently amended) A product obtainedable by reacting
 - a) At least one compound of formula (I)

HO
$$\xrightarrow{R_1}$$
 CH_2 - $(S)_m$ - CH_2 - O - Y $(I)[[[,]]]$

wherein

one of R_1 and R_2 independently of one another represents hydrogen or a substituent selected from the group consisting of C_1 - C_{18} alkyl, phenyl, $(C_1$ - C_4 alkyl)₁₋₃phenyl, phenyl- C_1 - C_3 alkyl, $(C_1$ - C_4 alkyl)₁₋₃phenyl- $(C_1$ - $(C_3$ alkyl)₁₋₃phenyl- $(C_1$ - $(C_3$ alkyl)₁₋₃phenyl- $(C_1$ - $(C_4$ alkyl)₁₋₃phenyl- $(C_1$

R₃ represents hydrogen or methyl;

Y represents hydrogen or C₁-C₆alkyl; and m represents zero or 1; with

b) At least one compound of formula (II)

$$R_4$$
-OH (II)[[,]]

wherein R₄ represents C₄-C₂₅alkyl;

and

c) At least one compound of formula (III)

$$HO \longrightarrow S \longrightarrow OH \qquad (III)[[.]]$$

wherein R₅ and R₅' independently of one another represent hydrogen or C₁-C₆alkyl.

2. (currently amended) A product according to claim 1, obtainedable by reacting

- a) At least one compound of formula (I)[[,]] wherein one of R_1 and R_2 represents methyl or tert-butyl and the other one of R_1 and R_2 represents tert-butyl; R_3 represents hydrogen; Y represents C_1 - C_6 alkyl; and m represents zero or one; and
- b) At least one compound of formula (II)[[,]] wherein R₄ represents C₄-C₁₈alkyl; and
- c) At least one compound of formula (III)[[,]] wherein R₅ and R₅' represent hydrogen.

3. (currently amended) A product according to claim 1, obtainedable by reacting

- a) At least one compound of formula (I)[[,]] wherein one of R_1 and R_2 represents methyl or tert-butyl and the other one of R_1 and R_2 represents tert-butyl; R_3 represents hydrogen; Y represents methyl and m represents zero; and
- b) At least one compound of formula (II) [[,]] wherein R₄ represents C₄-C₁₈alkyl; and
- c) At least one compound of formula (III)[[,]] wherein R₅ and R₅' represent hydrogen.

4. (currently amended) A product according to claim 1, obtained by reacting

a) A mixture comprising a compound <u>of formula (I)[[,]]</u> wherein R_1 and R_2 represent tert-butyl; R_3 represents hydrogen; Y represents methyl and m represents zero; and

10/723,744 - 3 - LA/1-22803/A

A compound of formula (I)[[,]] wherein one of R_1 and R_2 represents methyl and the other one tert-butyl; R_3 represents hydrogen; Y represents methyl and m represents zero; and

- b) At least one compound of formula (II)[[,]] wherein R₄ represents C-C₁₈alkyl; and
- c) At least one compound of formula (III)[[,]] wherein R_5 and R_5 ' represent hydrogen.
- 5. (original) A composition comprising
 - A) A product according to claim 1; and
 - B) A functional fluid subject to oxidative, thermal or light induced degradation.
- 6. (original) A composition comprising
 - A) A product according to claim 1; and
 - B) A base oil of lubricating viscosity.
- **7.** (currently amended) A process for preparing a liquid mixture of phenolic sulphur-containing antioxidants, which <u>process</u> comprises reacting
 - a) At least one compound of formula (I)[[,]]

HO
$$R_2$$
 CH_2 CH_2

wherein

one of R_1 and R_2 independently of one another represents hydrogen or a substituent selected from the group consisting of C_1 - C_{18} alkyl, phenyl, $(C_1$ - C_{4} alkyl)₁₋₃phenyl, phenyl- C_1 - C_3 alkyl, $(C_1$ - C_4 alkyl)₁₋₃phenyl- $(C_1$ - $(C_3$ alkyl)₁₋₃phenyl-(C

R₃ represents hydrogen or methyl;

Y represents hydrogen or C₁-C₆alkyl;

m represents zero or 1; wherein R₄, R₂, R₃, Y and m are as defined in claim 1[[,]] with

b) At least one compound of formula (II)[[,]]

wherein R₄ represents C₄-C₂₅alkyl; wherein R₄ is as defined in claim 1[[;]] and

c) At least one compound of formula (III)[[,]]

wherein R_5 and R_5 ' independently of one another represent hydrogen or C_1 - C_6 alkyl wherein R_5 and R_5 ' are as defined in claim 1.

8. (original) A process for stabilising a composition of matter subject to oxidative, thermal or light induced degradation, which comprises adding to said composition of matter at least one product according to claim **1**.

10/723,744 - 5 - LA/1-22803/A

- 9. (new) A process according to claim 7, which process comprises reacting
 - a) At least one compound of formula (I) wherein one of R_1 and R_2 represents methyl or tert-butyl and the other one of R_1 and R_2 represents tert-butyl; R_3 represents hydrogen; Y represents C_1 - C_6 alkyl; and m represents zero or one; and
 - b) At least one compound of formula (II) wherein R₄ represents C₄-C₁₈alkyl; and
 - c) At least one compound of formula (III) wherein R₅ and R₅' represent hydrogen.
- 10. (new) A process according to claim 7, which process comprises reacting
 - a) At least one compound of formula (I) wherein one of R_1 and R_2 represents methyl or tert-butyl and the other one of R_1 and R_2 represents tert-butyl; R_3 represents hydrogen; Y represents methyl and m represents zero; and
 - b) At least one compound of formula (II) wherein R₄ represents C₄-C₁₈alkyl; and
 - c) At least one compound of formula (III) wherein R₅ and R₅' represent hydrogen.
- 11. (new) A process according to claim 7, which process comprises reacting
 - a) A mixture comprising a compound of formula (I) wherein R_1 and R_2 represent tert-butyl; R_3 represents hydrogen; Y represents methyl and m represents zero; and A compound of formula (I) wherein one of R_1 and R_2 represents methyl and the other one tert-butyl; R_3 represents hydrogen; Y represents methyl and m represents zero; and
 - b) At least one compound of formula (II) wherein R₄ represents C-C₁₈alkyl; and
 - c) At least one compound of formula (III) wherein R₅ and R₅' represent hydrogen.

10/723,744 - 6 - LA/1-22803/A