Chapitre 9 : K-algèbres

K désigne ici toujours un corps (commutatif)

I Définition

Soit E un ensemble, muni de deux lois internes \oplus et \otimes , et d'une loi externe à opérateurs dans K, ·.

Alors $(E, \oplus, \otimes, \cdot)$ est une \mathbb{K} -algèbre lorsque :

- (E, \oplus, \cdot) est un \mathbb{K} -ev.
- La loi \otimes est associative et admet un élément neutre (qu'on note 1_E)
- La loi \otimes est distributive sur la loi \oplus .
- Pour tous $u, v \in E$, et tout $\lambda \in \mathbb{K}$, $(\lambda u) \otimes v = u \otimes (\lambda v) = \lambda(u \otimes v)$

Notation : les lois \oplus et \otimes sont généralement notées + et \times .

Exemples:

R est une R-algèbre (pour les lois usuelles), et C aussi. (C est aussi une C-algèbre). $(\Re(X,\mathbb{K}),+\times,\cdot)$ est une \mathbb{R} -algèbre, X étant un ensemble quelconque.

II Sous-algèbres

Définition:

Une sous-algèbre d'une \mathbb{K} -algèbre $(E,+,\times,\cdot)$, c'est une partie F de E qui contient 1_E et qui est stable pour chacune des trois lois, c'est-à-dire :

$$-1_E \in F$$
 $-\forall (u,v) \in$

$$-\forall (u,v) \in F^2, u+v \in F \text{ et } u \times v \in F$$
 $-\forall u \in K, \forall \lambda \in \mathbb{K}, \lambda u \in F$

Proposition:

Une sous-algèbre d'une K-algèbre est une K-algèbre.

Exemple:

L'ensemble des fonctions polynomiales de K dans K constitue une sous-algèbre de l'algèbre $(\mathfrak{F}(\mathbb{K},\mathbb{K}),+,\times,\cdot)$.

III Morphisme de K-algèbre

Définition:

Soient $(E,+,\times,\cdot)$, $(F,+,\times,\cdot)$ deux \mathbb{K} -algèbres. Soit $\varphi:E\to F$. Alors φ est un morphisme de K-algèbres lorsque :

- $\forall (u, v) \in E^2, \varphi(u + v) = \varphi(u) + \varphi(v) \qquad \forall (u, v) \in E^2, \varphi(u \times v) = \varphi(u) \times \varphi(v)$
- $\forall u \in E, \forall \lambda \in \mathbb{K}, \varphi(\lambda u) = \lambda \varphi(u)$
- $\varphi(1_{E}) = 1_{E}$

Exemple:

L'ensemble des suites convergentes est une sous algèbre de la R-algèbre des suites réelles, et l'application qui à une suite convergente associe sa limite est un morphisme d'algèbres.