Wayfair

Cutomer data analysis

- Whether a B2B customer will purchase or not in the next 30 days
- 2. How much a B2B customer will spend in the next 30 days

Steps to Process

- Data Cleaning
- Data Splitting
- Model Selection
- Model Evaluation
- Feature Importance
- Model Optimization
- Final Output

Data Cleaning

- 1. First I divided the columns into two parts :
- Categorical Column
- Numerical Column
- 2. 75% of the numerical column has values 0.0 → I put 0.0 in null values.
- 3. The categorical columns are given values 0,1,2,3..to help the operation. For example:

```
→ Purchase id : 'None' : 0,
'1to2' : 1,
```

4. This is how all the columns are turned into numerical columns

```
Number of uniques: 3
                                 10.Check for categorical null values
Number of uniques: 3
numorderone
                                 df.isnull().sum()
0.0
        12598
1.0
          128
                                 cuid
2.0
                                 convert 30
dtype: int64
                                 revenue 30
                                 roll up
                                 currentstatus
                                 companytypegroup
                                 team
                                 customersource
purchase id = {'None':0,
                                 accrole
           '1to2':1,
                                 num employees
           '3to5':2,
           '6to10':3,
                                 num purchases year
           '11to25':4,
                                 cost purchases year
           '25plus':5,
                                 enrollmentmethod
```

numorderone

Data Splitting

- K fold method
- Train test split

Model Selection

- K Nearest Neighbor (KNN)
- Logistic Regression (LR)
- Stochastic Gradient Descent (SDGC)
- Naïve Byes (NB)
- Random Forest (RF)
- Gradient Boosting (GB)
- Decision Tree (DT)
- Lasso Regression
- ElasticNet Regression
- XGB Boost
- Ridge Regression

Classification Model Evaluation

For 'Convert_30' based on accuracy and AUC score

0.8

0.6

Train Test
Split
Method

Baseline and Optimization

Classification Problem

- After analyzing AUC and Accuracy Score the model Random Forest, Gradient Boosting and Naïve Byes are three best models for the classification problem.
- The results shows Gradient Boosting as the best model.

Feature Importance

A Startup PowerPoint Presentation

Negatively Co-related

- The Top three Negatively Correlated features are :
- Number of billing
- Average quote price
- Number of tasks attendance in year sixty

AUC ROC Curve

- The Optimized Gradient Boosting Score is 0.891
- According to AUC and ROC curve the normalized data give AUC of 0.755

Regression Model Evaluation

Based on Root Means Square Error

- After Running the dataset through Linear ,Lasso, Ridge, Random Forest and Gradient Boosting egression, we get these rmse scores.
- Gradient Boosting gives lowest rmse score among them

Model Selection and Final Output

For Predicting 'Convert_30' and 'Revenue Gradient Boosting algorithm gives out best scores

final_output

	cuid	Pred_Convert_30	Pred_Revenue_30	roll_up	currentstatus	companytypegroup	team	customersource	accrole	num_employees	
0	16838	0	0.000000	1	2	1	1	7	0	1	
1	532175	0	3.117012	1	2	1	1	12	0	3	
2	532176	1	680.475910	1	2	1	1	7	0	4	
3	532187	1	1548.518722	1	2	1	1	7	2	0	
4	16938	0	0.000000	1	2	0	1	8	2	0	
5	532189	0	1.668936	1	3	1	1	0	0	5	
6	16948	1	597.291492	1	3	0	1	5	0	0	
7	532197	1	848.869829	1	2	0	1	0	0	2	
8	17017	0	0.000000	1	2	1	1	14	2	0	
9	17020	0	2.099910	1	3	1	1	7	0	4	
10	532205	0	75.329731	1	3	1	1	7	3	0	
11	532211	0	0.000000	1	2	0	1	7	0	1	
12	17139	0	6.455771	1	3	1	1	8	2	0	