A la hora de desarrollar un modelo predictivo con machine learning es de vital importancia visualizar nuestros datos para conocer su comportamiento y distribución. Esta primera observación de datos posibilita aprender más sobre ellos siendo la forma más rápida y útil de conocer qué técnicas son las más adecuadas en pre y pos procesamiento.

FASE: Análisis de Datos. Visualización.

David Víctor Gómez Ramírez

Técnico Superior en Desarrollo de Aplicaciones Multiplataforma especialidad en BIGDATA

PREÁMBULO	2
IMPORTAR LIBRERÍAS NECESARIAS	2
CARGAR EL CONJUNTO DE DATOS	2
VISUALIZACIÓN UNIVARIABLE	3
Histogramas	
Densidad	
Boxplots	5
ESTUDIO VISUALIZACIÓN "POR_CP"	7
ESTUDIO VISUALIZACIÓN "DISTANCIA"	8
ESTUDIO VISUALIZACIÓN "RITMO"	9
ESTUDIO VISUALIZACIÓN "FREC_CARDIACA"	10
ESTUDIO VISUALIZACIÓN "CADENCIA"	11
ESTUDIO VISUALIZACIÓN "TSC"	12
ESTUDIO VISUALIZACIÓN "FP"	13
ESTUDIO VISUALIZACIÓN "LSS"	14
ESTUDIO VISUALIZACIÓN "OSC_VERTICAL"	15
ESTUDIO VISUALIZACIÓN "L_ZANCADA"	16
ESTUDIO VISUALIZACIÓN "RFP"	17
ESTUDIO VISUALIZACIÓN "RLSS"	18
ESTUDIO VISUALIZACIÓN "ROV"	19
ESTUDIO VISUALIZACIÓN "RE"	20
ESTUDIO VISUALIZACIÓN "AIRE"	21
ESTUDIO VISUALIZACIÓN "PENDIENTE"	22
Correlación entre las características	Error! Bookmark not defined.
Coeficiente de Pearson	Error! Bookmark not defined.
Coeficiente de Spearman	Error! Bookmark not defined.
Sesgo (skew)	ERROR! BOOKMARK NOT DEFINED.
Gráficas de Distribución y Densidad	ERROR! BOOKMARK NOT DEFINED.
Cox-Box-Densidad	Error! Bookmark not defined.

PREÁMBULO

Lo primero que debemos realizar a la hora de trabajar con machine learning es visualizar nuestros datos para conocer su comportamiento y distribución. Esta primera observación de datos posibilita aprender más sobre ellos siendo la forma más rápida y útil de conocer qué técnicas son las más adecuadas en pre y pos procesamiento. En este sentido en esta tercera sección trabajaremos:

- Cómo crear gráficos para entender cada atributo de manera independiente.
- Cómo crear gráficos para entender las relaciones entre los diferentes atributos.

Los gráficos de las relaciones entre los atributos pueden darnos una idea de los atributos que pueden ser redundantes, los métodos de remuestreo que pueden ser necesarios y, en última instancia, la dificultad de un problema de predicción. Para ello, la fase de visualización puede dividirse en las siguientes partes:

- *Visualización univariable:* cuando queremos visualizar un atributo de manera independiente a los demás.
- *Visualización multivariable*: cuando queremos visualizar la interacción entre los diferentes atributos de nuestro conjunto de datos.

Importar librerías necesarias

Cargar el conjunto de datos

Para esta práctica vamos a cargar el conjunto de datos de nuestro proyecto "SEGMENTOS_csv.csv" para hacer observaciones con las funciones que nos permitan hacer diferentes tipos de visualizaciones. Además y, conocedores que en "DESNIVEL" hay un registro vacío, procederemos a su resolución para un mejor tratamiento.

```
# *************
# *********
CARGAMOS NUESTO DATAFRAME

# *********
# *********

# Cargamos los datos contenidos en "SEGMENTOS_csv.csv"

data = pd.read_csv('SEGMENTOS_csv.csv')

# Completamos los datos nulos con la media de cada uno

data['DESNIVEL'] = data['DESNIVEL'].fillna(data['DESNIVEL'].median())
```


	OSIC_VENTICAL	L_JANCADA	SEL	W122	: NOV	11	AIRE	PENDOENTE	- \
- 0	3.66	8.097	39,004	145.341	7,228	0,385	- 1	4.5	
1	5480.00	8,589	49,740	145,982	6.858	0.725	9	0.4	
2	5470.00	0.693	46.003	147.568	7.927	0.941	- 9	0.0	
3	5420.00	0.685	42.740	148,788	7,970	0.937	.0	8.1	
.4	5290.00	0.082	40,123	147,500	7.770	0.729	. 0	0.0	
-	5238.00	0,679	46.133	150,000	7.691	0.933	.0	8.1	
4	\$180.90	0.677	48.133	151.219	7,617	4,942	1	-8.3	
7	5070.00	0.088	29.824	147,566	7.347	9.346	1	-0.2	
18	5410.00	0.679	18.877	142,683	8.6T4	0.588	- 1	2.8	
9	\$349.00	0.683	48,748	149.798	2,652	0.939	- 9	0.1	
34	5494.00	0.093	48.740	145.121	3.942	0.935	. 0	6.2	
11	5369.00	0.685	40.710	148.780	2,862	9.937	. 0	9.1	
17	5210.00	0.678	46,123	150.000	7.661	0:338	1	9.8	
1)	5460.00	0.689	48.748	146.341	7,913	0,936	0.0	6.2	
6.4	5249.99	0,677	48.133	150,000	7,594	0.437	. 0	8.6	

	OUTSTANCE.	DESIGNATION OF THE PROPERTY OF	255	Distriction
2	19	2.0	- 5	355
1	25	7.0	18	547
2	1.8	4.8		997
4	040	Pt. 14		141
4	- 22	5.0		521
2	28	7.0		542
2	2.5	5.0 7.0 2.0 3.0	. 5	521 542 527 517
1	2.5	5.0	6.	317
	100	5.8	1000	356
	5.5	27.4	- 51	3552
36	1.7	11.0	10	1093
23	1.2	11.6	18	1388
59	100	4.8	18	1979
39	-23	17.6	24	1433
24	- 25	15.0	26.	1015

Visualización Univariable

Como se ha comentado anteriormente, las gráficas univariable nos permiten visualizar los atributos individuales sin interacciones; las cuales, el objetivo principal de las mismas es aprender algo sobre la distribución, la tendencia y la propagación de cada atributo.

A continuación se describen las más relevantes.

Histogramas

A partir de la forma de los contenedores, puede tener una idea rápida de si un atributo es gaussiano, sesgado o incluso tiene una distribución exponencial. También puede ayudarlo a ver posibles valores atípicos, por lo que tanto Matplotlib como Seabornpueden ser potentes librerías de visualización de datos.

```
VISUALIZACIONES
   HISTOGRAMAS O DISTRIBUCIÓN CON DENSIDAD
  axes = plt.subplots(4,5, figsize = (11.7,8.27))
                                            ax= axes [0,0],kde = True, bins = 20, color="Blue", fill=True)
sns.histplot(data["POR CP"],
sns.histplot(data["DISTANCIA"],
                                                     [0,1],kde = True, bins = 20, color="Blue", fill=True)
                                            ax= axes
                                                      [0,2],kde = True, bins = 20, color="Blue", fill=True)
sns.histplot(data["RITMO"],
                                            ax= axes
                                                      [0,3],kde = True, bins = 20, color="Blue", fill=True)
sns.histplot(data["FREC CARDIACA"],
                                            ax= axes
                                                     [0,4],kde = True, bins = 20, color="Blue", fill=True)
sns.histplot(data["CADENCIA"],
                                            ax= axes
sns.histplot(data["TSC"],
                                                      [1,0],kde = True, bins = 20, color="Red", fill=True)
                                            ax= axes
sns.histplot(data["FP"]
                                                      [1,1], kde = True, bins = 20, color="Red", fill=True)
                                            ax= axes
                                                                                  color="Red",
                                                                                                fill=True)
sns.histplot(data["LSS"],
                                                axes
                                                      [1,2], kde = True, bins = 20,
sns.histplot(data["OSC VERTICAL"],
                                            ax= axes
                                                      [1,3],kde = True, bins = 20, color="Red", fill=True)
                                                                                  color="Red", fill=True)
color="Blue", fill=True)
sns.histplot(data["L_ZANCADA"],
                                                        4], kde = True, bins = 20,
                                            ax= axes
                                                      T1.
sns.histplot(data["RFP"],
                                                      [2,
                                            ax= axes
                                                        0], kde = True, bins = 20,
sns.histplot(data["RLSS"],
                                            ax= axes
                                                      [2,1],kde = True, bins = 20, color="Blue", fill=True)
sns.histplot(data["ROV"],
                                                      [2,2],kde = True, bins = 20, color="Blue", fill=True)
                                            ax= axes
sns.histplot(data["RE"],
                                            ax= axes
                                                      [2,3],kde = True, bins = 20, color="Blue", fill=True)
sns.histplot(data["AIRE"],
sns.histplot(data["PENDIENTE"],
                                                                                  color="Blue",
                                                        4],kde = True, bins = 20,
                                                                                                fill=True)
                                            ax= axes
                                                      T2.
                                            ax= axes
                                                      [3,
                                                        0],kde = True, bins = 20,
                                                                                  color="Red", fill=True)
sns.histplot(data["ALTITUD"],
                                                      [3,1],kde = True, bins = 20, color="Red", fill=True)
                                            ax= axes
sns.histplot(data["DESNIVEL"],
                                                      [3,2], kde = True, bins = 20,
                                                                                  color="Red", fill=True)
                                            ax= axes
sns.histplot(data["RSS"],
                                                     [3,3],kde = True, bins = 20, color="Red", fill=True)
                                            ax= axes
sns.histplot(data["DURACION"],
                                            ax= axes
                                                     [3,4],kde = True, bins = 20, color="Red", fill=True)
plt.tight_layout()
plt.show()
```


Siempre, a priori, y visualmente hablando, podemos observar que la mayoría de los atributos suelen tener una distribución casi gaussiana o normal (algunas simples, otras con doble campana FREC_CARDIACA y REC y otra triple campana AIRE)y aparentemente alguna exponencial L_ZANCADA. También podemos observar la existencia de sesgo en casi todas las distribucione siendo este menor o casi inexistente en FREC_CARDIACA y CADENCIA. Esto es interesante porque muchas técnicas de aprendizaje automático suponen una distribución univariada gaussiana en las variables de entrada.

Densidad

Las gráficas se ven como un histograma abstracto con una curva suave dibujada a través de la parte superior de cada contenedor, al igual que su ojo intentó hacer con los histogramas. Podemos ver que la distribución de cada atributo es más clara que los histogramas

```
GRAFICOS DE DENSIDAD
f, axes = plt.subplots(4,5, figsize = (11.7,8.27))
sns.kdeplot(data["POR_CP"],
                                     ax = axes [0,0], shade = True, color = "Blue", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["DISTANCIA"],
                                     ax = axes [0,1], shade = True, color = "Blue", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [0,2], shade = True, color = "Blue", fill = True,
bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["RITMO"],
                                     ax = axes [0,3], shade = True, color = "Blue", fill = True,
sns.kdeplot(data["FREC_CARDIACA"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["CADENCIA"],
                                     ax = axes [0,4], shade = True, color = "Blue", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [1,0], shade = True, color = "Red", fill = True,
sns.kdeplot(data["TSC"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["FP"],
                                     ax = axes [1,1], shade = True, color = "Red", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [1,2], shade = True, color = "Red", fill = True,
sns.kdeplot(data["LSS"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [1,3], shade = True, color = "Red", fill = True,
bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["OSC VERTICAL"],
sns.kdeplot(data["L ZANCADA"],
                                     ax = axes [1,4], shade = True, color = "Red", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [2,0], shade = True, color = "Red", fill = True,
sns.kdeplot(data["RFP"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["RLSS"],
                                     ax = axes [2,1], shade = True, color = "Blue", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["ROV"],
                                     ax = axes [2,2], shade = True, color = "Blue", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [2,3], shade = True, color = "Blue", fill = True,
sns.kdeplot(data["RE"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [2,4], shade = True, color = "Blue", fill = True,
sns.kdeplot(data["AIRE"],
                                     bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["PENDIENTE"],
                                      ax = axes [3,0], shade = True, color = "Red", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [3,1], shade = True, color = "Red", fill = True,
sns.kdeplot(data["ALTITUD"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                     ax = axes [3,2], shade = True, color = "Red", fill = True,
sns.kdeplot(data["DESNIVEL"],
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["RSS"],
                                     ax = axes [3,3], shade = True, color = "Red", fill = True,
                                     bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
```


Boxplots

Podemos ver que la extensión de los atributos es bastante diferente. Algunos como la FREC_CARDIACA, L_ZANCADA y RFP parecen bastante sesgados hacia valores más pequeños.

```
GRAFICOS BOXPLOTS
f, axes = plt.subplots(4,5, figsize =(11.7,8.27))
sns.boxplot(x = data["POR_CP"],
                                           ax = axes [0,0], orient = "h", color = "lightblue", saturation= 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [0,1], orient = "h", color = "lightblue", saturation= 1,
sns.boxplot(x = data["DISTANCIA"],
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [0,2], orient = "h", color = "lightblue", saturation= 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["RITMO"],
sns.boxplot(x = data["FREC CARDIACA"],
                                           ax = axes [0,3], orient = "h", color = "lightblue", saturation= 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [0,4], orient = "h", color = "lightblue", saturation= 1,
sns.boxplot(x = data["CADENCIA"],
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [1,0], orient = "h", color = "lightgreen",saturation= 1,
sns.boxplot(x = data["TSC"],
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["FP"],
                                           ax = axes [1,1], orient = "h", color = "lightgreen", saturation= 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [1,2], orient = "h", color = "lightgreen",saturation= 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["LSS"],
sns.boxplot(x = data["OSC VERTICAL"],
                                           ax = axes [1,3], orient = "h", color = "lightgreen", saturation= 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [1,4], orient = "h", color = "lightgreen", saturation= 1,
sns.boxplot(x = data["L ZANCADA"],
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                           ax = axes [2,0], orient = "h", color = "lightblue", saturation= 1,
sns.boxplot(x = data["RFP"],
                                           width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
```

```
ax = axes [2,1], orient = "h", color = "lightblue", saturation = 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["RLSS"],
                                                ax = axes [2,2], orient = "h", color = "lightblue", saturation = 1,
sns.boxplot(x = data["ROV"],
                                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["RE"],
                                                ax = axes [2,3], orient = "h", color = "lightblue", saturation = 1,
                                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                                ax = axes [2,4], orient = "h", color = "lightblue", aturation = 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["AIRE"],
sns.boxplot(x = data["PENDIENTE"],
                                                ax = axes [3,0], orient = "h", color = "lightgreen", saturation= 1,
                                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                                ax = axes [3,1], orient = "h", color = "lightgreen", saturation= 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["ALTITUD"],
                                                ax = axes [3,2], orient = "h", color = "lightgreen", saturation= 1,
sns.boxplot(x = data["DESNIVEL"],
                                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                                ax = axes [3,3], orient = "h", color = "lightgreen", saturation= 1,
sns.boxplot(x = data["RSS"],
                                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
                                                ax = axes [3,4], orient = "h", color = "lightgreen", saturation= 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["DURACION"],
plt.tight_layout()
plt.show()
```


Estudio Visualización "POR_CP"

```
Estudio Visualización "POR_CP"
# Métricas POR CP
print("
                                                MEDIANA DE POR CP:
{data['POR_CP'].median():,.5f}
                                                   =====")
                                                MEDIA DE POR CP:
print(f"
{data['POR CP'].mean():,.5f}
                                                =====")
print(f"
                                                SESGO DE POR CP:
{data['POR CP'].skew():,.5f}
print("
                                                                  =======")
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["POR CP"],
                                    ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
sns.kdeplot(data["POR CP"],
                                    ax = axes [0,1], shade = True, color = "Blue", fill =
                                    bw adjust = .5, clip on = False, alpha=1, linewidth=1.5)
                                    ax = axes [1,0], orient = "h", color = "lightblue",
sns.boxplot(x = data["POR CP"],
saturation = 1,
                                    width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
plt.tight_layout()
plt.show()
```


Estudio Visualización "DISTANCIA"

```
Estudio Visualización "DISTANCIA"
# Métricas DISTANCIA
print("
                                                   MEDIA DE DISTANCIA:
{data['DISTANCIA'].mean():,.5f}
                                                   ======")
print(f"
                                                   MEDIANA DE DISTANCIA:
{data['DISTANCIA'].median():,.5f}
                                                   ----")
print(f"
                                                   SESGO DE DISTANCIA:
{data['DISTANCIA'].skew():,.5f}
                                                  ======")
                                                   VARIANZA DE DISTANCIA:
print(f"
                                                ----")
{data['DISTANCIA'].std():,.5f}
print("
# Visualización Histograma, Densidad y Boxplot de DISTANCIA
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["DISTANCIA"],
                                      ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
                                      ax = axes [0,1], shade = True, color = "Blue", fill =
sns.kdeplot(data["DISTANCIA"],
True,
                                          bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
                                       ax = axes [1,0], orient = "h", color = "lightgreen",
sns.boxplot(x = data["DISTANCIA"],
saturation = 1,
                                          width = 0.7, dodge = True, fliersize = 3, linewidth =
2)
plt.tight layout()
plt.show()
```


Estudio Visualización "RITMO"

```
Estudio Visualización "RITMO"
# Métricas RITMO
print("
                                                    MEDIA DE RITMO:
{data['RITMO'].mean():,.5f}
                                                    ====")
print(f"
                                                    MEDIANA DE RITMO:
{data['RITMO'].median():,.5f}
                                                    =====")
print(f"
                                                    SESGO DE RITMO:
{data['RITMO'].skew():,.5f}
                                                    ====")
print(f"
                                                    VARIANZA DE RITMO:
{data['RITMO'].std():,.5f}
                                                    ====")
print("
# Visualización Histograma, Densidad y Boxplot de RITMO
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["RITMO"],
                                  ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
                                  ax = axes [0,1], shade = True, color = "Blue", fill = True,
sns.kdeplot(data["RITMO"],
                                           bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["RITMO"],
                                    ax = axes [1,0], orient = "h", color = "lightgreen",
saturation = 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth =
plt.tight layout()
plt.show()
```


Estudio Visualización "FREC_CARDIACA"

```
Estudio Visualización "FREC CARDIACA"
# Métricas FREC CARDIACA
print("
print(f"
                                                  MEDIA DE FREC CARDIACA:
{data['FREC CARDIACA'].mean():,.5f}
                                                  =======" )
print(f"
                                                  MEDIANA DE FREC CARDIACA:
{data['FREC CARDIACA'].median():,.5f}
                                                 ========")
print(f"
                                                  SESGO DE FREC CARDIACA:
                                                  ----")
{data['FREC_CARDIACA'].skew():,.5f}
                                                  VARIANZA DE FREC CARDIACA:
print(f"
{data['FREC_CARDIACA'].std():,.5f}
                                                  ----")
print("
# Visualización Histograma, Densidad y Boxplot de FREC_CARDIACA
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["FREC CARDIACA"],
                                          ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
sns.kdeplot(data["FREC CARDIACA"],
                                          ax = axes [0,1], shade = True, color = "Blue", fill =
True,
                                          bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["FREC CARDIACA"],
                                          ax = axes [1,0], orient = "h", color = "lightgreen",
saturation = 1,
                                          width = 0.7, dodge = True, fliersize = 3, linewidth =
2)
plt.tight layout()
plt.show()
```


Estudio Visualización "CADENCIA"

```
Estudio Visualización "CADENCIA"
# Métricas CADENCIA
print("
                                                   MEDIA DE CADENCIA:
{data['CADENCIA'].mean():,.5f}
                                                   ======")
print(f"
                                                   MEDIANA DE CADENCIA:
{data['CADENCIA'].median():,.5f}
                                                   ======")
print(f"
                                                   SESGO DE CADENCIA:
{data['CADENCIA'].skew():,.5f}
                                                   =====")
                                                   VARIANZA DE CADENCIA:
print(f"
{data['CADENCIA'].std():,.5f}
                                                   =====")
print("
# Visualización Histograma, Densidad y Boxplot de CADENCIA
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["CADENCIA"],
                                     ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
                                     ax = axes [0,1], shade = True, color = "Blue", fill = True,
sns.kdeplot(data["CADENCIA"],
                                           bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["CADENCIA"],
                                      ax = axes [1,0], orient = "h", color = "lightgreen",
saturation = 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth =
plt.tight layout()
plt.show()
```


Estudio Visualización "TSC"

```
Estudio Visualización "TSC"
# Métricas TSC
print("
                                                                                   =")
print(f"
                                                    MEDIA DE TSC:
                                                                        {data['TSC'].mean():,.5f}
print(f"
                                                    MEDIANA DE TSC:
                                                                        {data['TSC'].median():,.5f}
print(f"
                                                    SESGO DE TSC:
                                                                         {data['TSC'].skew():,.5f}
                                                    VARIANZA DE TSC:
                                                                         {data['TSC'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de TSC
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["TSC"],
                                ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
sns.kdeplot(data["TSC"],
                                ax = axes [0,1], shade = True, color = "Blue", fill = True,
                                bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["TSC"],
                                ax = axes [1,0], orient = "h", color = "lightgreen", saturation
= 1,
                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
plt.tight layout()
plt.show()
```


Estudio Visualización "FP"

```
Estudio Visualización "FP"
# Métricas FP
print("
print(f"
                                             MEDIA DE FP:
                                                             {data['FP'].mean():,.5f}
print(f"
                                            MEDIANA DE FP:
                                                             {data['FP'].median():,.5f}
print(f"
                                             SESGO DE FP:
                                                              {data['FP'].skew():,.5f}
                                             VARIANZA DE FP:
                                                              {data['FP'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de FP
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["FP"],
                           ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
                           sns.kdeplot(data["FP"],
sns.boxplot(x = data["FP"],
                            ax = axes [1,0], orient = "h", color = "lightgreen", saturation
= 1,
                                     width = 0.7, dodge = True, fliersize = 3, linewidth =
2)
plt.tight_layout()
plt.show()
```


Estudio Visualización "LSS"

```
Estudio Visualización "LSS"
# Métricas LSS
print("
                                                                                   =")
print(f"
                                                    MEDIA DE LSS:
                                                                         {data['LSS'].mean():,.5f}
print(f"
                                                    MEDIANA DE LSS:
                                                                         {data['LSS'].median():,.5f}
print(f"
                                                    SESGO DE LSS:
                                                                         {data['LSS'].skew():,.5f}
                                                    VARIANZA DE LSS:
                                                                          {data['LSS'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de LSS
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["LSS"],
                                ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
sns.kdeplot(data["LSS"],
                                ax = axes [0,1], shade = True, color = "Blue", fill = True,
                                bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["LSS"], ax = axes [1,0], orient = "h", color = "lightgreen", saturation
= 1,
                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
plt.tight layout()
plt.show()
```


Estudio Visualización "OSC_VERTICAL"

```
Estudio Visualización "OSC VERTICAL"
# Métricas OSC VERTICAL
print("
print(f"
                                                    MEDIA DE OSC VERTICAL:
{data['OSC_VERTICAL'].mean():,.5f}
                                                     =======" )
print(f"
                                                    MEDIANA DE OSC VERTICAL:
{data['OSC VERTICAL'].median():,.5f}
                                                    ======="<u>)</u>
print(f"
                                                    SESGO DE OSC VERTICAL:
{data['OSC_VERTICAL'].skew():,.5f}
print(f"
                                                    VARIANZA DE OSC VERTICAL:
{data['OSC_VERTICAL'].std():,.5f}
                                                   ======" )
print("
# Visualización Histograma, Densidad y Boxplot de OSC_VERTICAL
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["OSC VERTICAL"],
                                          ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
sns.kdeplot(data["OSC VERTICAL"],
                                          ax = axes [0,1], shade = True, color = "Blue", fill =
True,
                                           bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["OSC VERTICAL"],
                                           ax = axes [1,0], orient = "h", color = "lightgreen",
saturation = 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth =
2)
plt.tight layout()
plt.show()
```


Estudio Visualización "L_ZANCADA"

```
Estudio Visualización "L ZANCADA
  Métricas L_ZANCADA
print("
print(f"
                                                                                            {data['L_ZANCADA'].mean():,.5f}
                                                            MEDIA DE L_ZANCADA:
print(f"
                                                            MEDIANA DE L_ZANCADA:
                                                                                             {data['L_ZANCADA'].median():,.5f}
print(f"
                                                            SESGO DE L_ZANCADA:
                                                                                             {data['L_ZANCADA'].skew():,.5f}
                                                            VARIANZA DE L_ZANCADA: {data['L_ZANCADA'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de L_ZANCADA
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["L ZANCADA"],
                                             ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
                                             ax = axes [0,1], shade = True, color = "Blue", fill = True,
bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["L_ZANCADA"],
                                              ax = axes [1,0], orient = "h", color = "lightgreen", saturation = 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["L_ZANCADA"],
plt.tight_layout()
plt.show()
```

iiiii OJO-ERROR!!!!!

Estudio Visualización "RFP"

```
Estudio Visualización "RFP"
# Métricas RFP
print("
                                                                                    =")
print(f"
                                                    MEDIA DE RFP:
                                                                          {data['RFP'].mean():,.5f}
print(f"
                                                    MEDIANA DE RFP:
                                                                          {data['RFP'].median():,.5f}
print(f"
                                                    SESGO DE RFP:
                                                                          {data['RFP'].skew():,.5f}
                                                    VARIANZA DE RFP:
                                                                          {data['RFP'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de RFP
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["RFP"],
                                 ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
sns.kdeplot(data["RFP"],
                                 ax = axes [0,1], shade = True, color = "Blue", fill = True,
                                            bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["RFP"],
                                  ax = axes [1,0], orient = "h", color = "lightgreen", saturation
= 1,
                                            width = 0.7, dodge = True, fliersize = 3, linewidth =
2)
plt.tight_layout()
plt.show()
```


Estudio Visualización "RLSS"

```
Estudio Visualización "RLSS"
# Métricas RLSS
print("
print(f"
                                                    MEDIA DE RLSS:
                                                                         {data['RLSS'].mean():,.5f}
print(f"
                                                    MEDIANA DE RLSS:
{data['RLSS'].median():,.5f}
                                                    ====")
                                                    SESGO DE RLSS:
                                                                          {data['RLSS'].skew():,.5f}
print(f"
                                                    VARIANZA DE RLSS:
                                                                          {data['RLSS'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de RLSS
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["RLSS"],
                                 ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
sns.kdeplot(data["RLSS"],
                                 ax = axes [0,1], shade = True, color = "Blue", fill = True,
                                           bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["RLSS"],
                                ax = axes [1,0], orient = "h", color = "lightgreen",
saturation = 1,
                                           width = 0.7, dodge = True, fliersize = 3, linewidth =
plt.tight layout()
plt.show()
```


Estudio Visualización "ROV"

```
Estudio Visualización "ROV"
# Métricas ROV
print("
print(f"
                                                    MEDIA DE ROV:
                                                                          {data['ROV'].mean():,.5f}
print(f"
                                                    MEDIANA DE ROV:
{data['ROV'].median():,.5f}
                                                    ====")
                                                    SESGO DE ROV:
                                                                         {data['ROV'].skew():,.5f}
print(f"
                                                    VARIANZA DE ROV:
                                                                          {data['ROV'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de ROV
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["ROV"],
                                ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
sns.kdeplot(data["ROV"],
                                ax = axes [0,1], shade = True, color = "Blue", fill = True,
                                bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["ROV"],
                                ax = axes [1,0], orient = "h", color = "lightgreen", saturation
= 1,
                                width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
plt.tight layout()
plt.show()
```


Estudio Visualización "RE"

```
Estudio Visualización "RE"
# Métricas RE
print("
print(f"
                                                    MEDIA DE RE:
                                                                         {data['RE'].mean():,.5f}
print(f"
                                                    MEDIANA DE RE:
                                                                         {data['RE'].median():,.5f}
print(f"
                                                    SESGO DE RE:
                                                                        {data['RE'].skew():,.5f}
                                                    VARIANZA DE RE:
                                                                         {data['RE'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de RE
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["RE"],
                               ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
                               ax = axes [0,1], shade = True, color = "Blue", fill = True,
bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["RE"],
sns.boxplot(x = data["RE"], ax = axes [1,0], orient = "h", color = "lightgreen", saturation =
1,
                               width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
plt.tight layout()
plt.show()
```


Estudio Visualización "AIRE"

```
Estudio Visualización "AIRE"
# Métricas AIRE
print("
                                                                                   =")
print(f"
                                                    MEDIA DE AIRE:
                                                                          {data['AIRE'].mean():,.5f}
print(f"
                                                    MEDIANA DE AIRE:
{data['AIRE'].median():,.5f}
                                                     ====")
                                                    SESGO DE AIRE:
                                                                          {data['AIRE'].skew():,.5f}
print(f"
                                                    VARIANZA DE AIRE:
                                                                          {data['AIRE'].std():,.5f}
print(f"
print("
# Visualización Histograma, Densidad y Boxplot de AIRE
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["AIRE"],
                                 ax = axes [0,0], kde = True, bins = 20, color="Blue",
fill=True)
                                  ax = axes [0,1], shade = True, color = "Blue", fill = True,
sns.kdeplot(data["AIRE"],
                                 bw adjust=.5, clip on=False, alpha=1, linewidth=1.5)
sns.boxplot(x = data["AIRE"], ax = axes [1,0], orient = "h", color = "lightgreen", saturation
= 1,
                                 width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
plt.tight_layout()
plt.show()
```


Estudio Visualización "PENDIENTE"

```
Estudio Visualización "PENDIENTE"
# Métricas PENDIENTE
print("
print(f"
                                                                                            {data['PENDIENTE'].mean():,.5f}
                                                            MEDIA DE PENDIENTE:
print(f"
                                                            MEDIANA DE PENDIENTE:
                                                                                             {data['PENDIENTE'].median():,.5f}
print(f"
                                                            SESGO DE PENDIENTE:
                                                                                             {data['PENDIENTE'].skew():,.5f}
                                                                                          {data['PENDIENTE'].std():,.5f}
print(f"
                                                            VARIANZA DE PENDIENTE:
print("
# Visualización Histograma, Densidad y Boxplot de PENDIENTE
f, axes = plt.subplots(2,2, figsize =(11.7,8.27))
sns.histplot(data["PENDIENTE"],
                                             ax = axes [0,0], kde = True, bins = 20, color="Blue", fill=True)
                                             ax = axes [0,1], shade = True, color = "Blue", fill = True,
bw_adjust=.5, clip_on=False, alpha=1, linewidth=1.5)
sns.kdeplot(data["PENDIENTE"],
                                             ax = axes [1,0], orient = "h", color = "lightgreen", saturation = 1,
width = 0.7, dodge = True, fliersize = 3, linewidth = 2)
sns.boxplot(x = data["PENDIENTE"],
plt.tight_layout()
plt.show()
```

iiiii OJO-ERROR!!!!!

