MAT 340

Ders 6

Bazi Onemli Surekli Dagilimlar

Surekli Duzgun Dagilim

X; [a,b] araligindaki tum degerleri esit olasilikla alan bir surekli rassal degisken oldugu kabul kabul edilsin.

[a, b] araliginda surekli duzgun rassal degisken X'in yogunluk fonksiyonu

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & o.w. \end{cases}$$

X s.r.d. nin olasilik yogunluk fonksiyonunun grafiksel gosterimi;

Surekli Duzgun Dagilim

f(x) asagidaki ozellikleri sagladigindan dolayi bir olasilik yogunluk fonksiyonudur.

1)
$$f(x) \ge 0$$
, $\begin{cases} b > 0 & a < 0 & b - a > 0 \\ b < 0 & a < 0 & b - a > 0 \end{cases}$

2)
$$\int_{-\infty}^{\infty} f(x)dx = \int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{1}{b-a} dx = \frac{1}{(b-a)}.(b-a) = 1$$

X surekli duzgun rassal degiskenin ortalamasi

$$\mu = E(x) = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^{2}}{2} \bigg|_{a}^{b} = \frac{b^{2} - a^{2}}{2(b-a)} = \frac{b+a}{2}$$

X r.d. degiskenin ortalamasi [a,b] araliginin orta noktasina esittir.

Surekli Duzgun Dagilim

X surekli duzgun r.d. varyansi

$$\sigma^{2} = V(x) = E(x^{2}) - [E(x)]^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a} dx - \left[\frac{b+a}{2}\right]^{2}$$

$$= \frac{1}{b-a} \frac{x^{3}}{3} \Big|_{a}^{b} - \frac{(b+a)^{2}}{4} = \frac{b^{3} - a^{3}}{3(b-a)} - \frac{(b+a)^{2}}{4}$$

$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{(b^{2} + 2ab + a^{2})}{4}$$

$$= \frac{4b^{2} + 4ab + 4a^{2} - 3b^{2} - 6ab - 3a^{2}}{12} = \frac{b^{2} - 2ab + a^{2}}{12}$$

$$= \frac{(b-a)^{2}}{12}$$

Ornek

[0,2] araliginda bir nokta rassal olarak secilmektedir. Secilen noktanin 1 ile 3/2 arasinda olma olasiligi nedir?

X'in o.y.f;

$$f(x) = \begin{cases} \frac{1}{2} & 0 < x < 2 \\ 0 & \text{o.w.} \end{cases}$$

Surekli Duzgun Dagilim

Ornek

Bir celik cubugun dayaniklilik gucu [50,70] arasında duzgun dagilima sahip rassal degiskendir.

$$f(h) = \begin{cases} \frac{1}{20} & 50 < h < 70 \\ 0 & o.w. \end{cases}$$

Rassal olarak secilen bir celik cubugun dayaniklilik gucunun 65'den az olma olasiligi nedir?

Duzgun dagilimin dagilim fonksiyonu $F(x)=P(X \le x)$;

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(s)ds = \int_{a}^{x} \frac{1}{b-a} ds = \frac{x-a}{b-a}$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

Surekli Duzgun Dagilim

Surekli duzgun dagilimin dagilim fonksiyonunun grafiksel gosterimi

Istatistik biliminde en onemli surekli dagilim normal dagilimdir.

Doga, Endustri Arastirma

Normal dagilimin grafiksel gosterimi can egrisi olarak adlandirilir.

Normal Dagilim

Normal dagilima sahip bir X rassal degisken normal rassal degisken olarak adlandirilir.

Ortalamasi μ ve varyansi σ^2 olan X normal rassal degiskenin yogunluk fonksiyonu :

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma}} e^{-(1/2)[(x-\mu)/\sigma]^2} & -\infty < x < \infty \\ 0 & \text{o.w.} \end{cases}$$

where $\pi = 3.14159...$ and e = 2.71828...

Farkli standart sapmaya (σ) sahip normal dagilimlarin grafiksel gosterimi:

Normal Dagilim

Gercek hayatta karsilasilan cogu proses degiskeni ve yigin normal dagilima sahiptir. Ornegin;

- Yukseklik
- Agirlik
- Insan ve hayvanlardaki diger fiziksel karakteristikler
- Bilimsel deneylerdeki olcum hatalari vb.

- Can egrisi
- Ortalama etrafinda simetrik
- Surekli
- Egri altindaki alan 1'e esittir.
- Yaklasik olarak
 - Ortalamadan 1 standart sapma kadar uzaklikta kalan alan toplam alanin %68,
 - 2 standart sapma uzaklikta kalan alan toplam alanin % 95 ve
 - 3 standart sapma uzaklikta kalan alan toplam alanin %99.7 icermektedir.

Bu kural Gozlemsel Kural olarak adlandirilir.

- Normal dagilim ile ayni ozelliklere sahiptir. Standart Normal Dagilimda;
 - Ortalama 0,
 - Varyans 1,
 - Standart sapma 1 ve
 - □ Degerler z ile gosterilir;

$$z = \frac{x - \mu}{\sigma}$$

Standart Normal Dagilim

Ortalamasi 0 ve varyansi 1 olan standart normal degisken Z icin olasilik yogunluk fonksiyonu:

$$f(z) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{Z^2}{2}} & -\infty < Z < \infty \\ 0 & \text{o.w.} \end{cases}$$

•Standart normal dagilim icin yogunluk egrisi, yada z egrisi:

Standart Normal Dagilim

Ornek

Stansart normal dagilimda asagida verilen z degerleri icin egri altında kalan alanı bulunuz:

- a) z = 1.84'in saginda kalan alan
- b) z=-1.97 ve z=0.86 arasinda kalan alan

a) z = 1.84'un saginda kalan alan (Tablo A.3'u kullanarak) 1-0.9671 = 0.0329

b) z = -1.97 ve z = 0.86 arasinda kalan alan ; z= 0.86'in solunda kalan alan eksi z = -1.97'nin solunda kalan alana esittir. 0.8051-0.0244 = 0.7807

Standart Normal Dagilim

Ornek

 Standart normal dagilimda z degerinin 1.25'den kucuk deger alma olasiligini bulunuz.

$$(z < 1.25) = ($$
 Tablo A.3'de 1.2 satiri ile 0.05 kolonun kesisimi $)$
= 0.8944

 Standart normal dagilimda z degerinin -0.38'den kucuk deger alma olasiligini bulunuz.

$$(z < -0.38) = 1 - (Tablo A.3' de 0.3 satiri ile .08 kolonun kesistigi noktadaki deger)$$

= $1 - 0.648 = 0.352$

Standarts normal dagilim icin k=?

- (a) P(Z>k) = 0.3015
- (b) P(k<Z<-0.18)=0.4197

Standart Normal Dagilim

- Normal dagilim icin ilgili olasiliklarin hesaplanabilmesi icin oncelikle X degeri standardize edilerek z degeri hesaplanir. Z degeri kullanilarak ilgili olasilik degeri hesaplanir.
- X; ortalamasi μ ve varyansi σ^2 olan normal dagilima sahip olsun. X rassal degiskeni icin z degeri:

$$z = \frac{x - \mu}{\sigma}$$

Standardize edilmis sinir degerleri:

$$a^* = \frac{a - \mu}{\sigma}$$
 $b^* = \frac{b - \mu}{\sigma}$

Normal Dagilim

$$\left\{ \begin{array}{l} \text{Probability of x values satisfying} \\ \text{a < x < b} \end{array} \right\} = \left\{ \begin{array}{l} \text{probability of z values satisfying} \\ \text{a}^* < z < b^* \end{array} \right\} \\
 \left\{ \begin{array}{l} \text{Probability of x values satisfying} \\ \text{x < a} \end{array} \right\} = \left\{ \begin{array}{l} \text{probability of z values satisfying} \\ \text{z < a}^* \end{array} \right\} \\
 \left\{ \begin{array}{l} \text{Probability of x values satisfying} \\ \text{x > b} \end{array} \right\} = \left\{ \begin{array}{l} \text{probability of z values satisfying} \\ \text{z > b}^* \end{array} \right\}$$

Ornek

X rassal degiskeni ortalamasi μ =50 ve varyansi σ^2 =100 olan normal dagilima sahiptir. X'in 45 ve 62 arasinda deger alma olasiligini bulunuz.

Normal Dagilim

Ornek

X r.s. degiskeni ortalamasi μ =300 ve standart sapmasi σ =50 olan normal dagilima sahiptir. P(X>362)=?

Ornek

X r.s. degiskeni ortalamasi μ =300 ve standart sapmasi σ =50 olan normal dagilima sahiptir. P(X>362)=?

Cozum

$$P(X > 362) = P(Z > 1.24) = 1 - P(Z < 1.24)$$

= 1 - 0.8925
= 0.1075

Normal Dagilim

Ornek

Ortalamasi μ = 40, ve standart sapmasi σ = 6 olan bir normal dagilim icin asagidaki olasilik degerlerini veren X degerini bulunuz.

- (a) P(X < x) = 0.45 ise x = ?
- (b) P(X > x) = 0.14 ise x = ?

Normal Dagilim		

Ornek:

Bir isletmede uretilen bilyalarin capinin 3±0.01 cm olmasi istenmektedir. Belirlenen spesifikasyonlarin disina cikan bilyalar iskartaya ayrilmaktadir. Uretimi gerceklestiren proseste bilyalarin capi, ortalamasi 3 cm ve standart sapmasi 0.005 olan normal dagilima sahiptir. Bu proseste iskartaya ayrilan bilyalarin orani nedir?

Normal Dagilim		

Ornek: Belirli bir derste ogrencilerin basarisi aritmetik ortalamasi 60 ve standart sapmasi 12 olan normal dagilima sahiptir. Bu dersin sinavina giren bir ogrencinin almis oldugu notun

- a) 72'den buyuk
- b) 52 ile 66 arasinda
- c) 46'dan az olma olasiligi nedir?
- Bu sinava 80 ogrenci girdigi bilindigine gore 72 ve daha fazla puan ogrenci sayisi nedir?

Ornek: $X \sim N(\mu, \sigma^2)$

- a) $P(\mu \sigma < X < \mu + \sigma) = ?$
- b) $P(\mu-2\sigma < X < \mu+2\sigma)=?$
- c) $P(\mu-3\sigma < X < \mu+3\sigma)=?$

Binom Dagilimin Normal Dagilima Yakinsamasi

- n buyuk oldugunda binom olasilik fonksiyonu kullanarak ilgili olasiliklari hesaplamak cok zaman alici olmaktadir.
- Binom dagilim icin ilgili olasiliklarin hesaplanmasi icin hazirlanan tablolardan yararlanilabilir. Bu tablolar sadece n <= 50 ve secilen p degerleri icin kullanilabilir.
- n buyuk ise veya secilen n ile p degerleri icin tablo kullanilamiyorsa, ilgili olasiliklarin hesaplanmasinda normal dagilimdan yararlanilabilir (Binom dagilimin normal dagilima yakinsama ozelliginden dolayi).

Binom ve Normal Dagilimin Karsilastirilmasi

$$\mathbf{n} = \mathbf{10}, \quad \boldsymbol{\pi} = \mathbf{0.2}$$

Binom Dagilimin Normal Dagilima Yakinsamasi

- X ~ Binom(n, p)
- n> 20 ve $0.05 (veya np <math>\ge 5$ veya n(1-p) ≥ 5) ise
- X~Normal(μ, σ)
- E(X)= μ= n p

$$\sigma = \sqrt{np(1-p)}$$
$$z = \frac{x - np}{\sqrt{np(1-p)}} \sim N(0,1).$$

Binom Dagilimin Normal Dagilima Yakinsamasi

- Binom dagilim kesikli bir dagilim iken normal dagilim surekli bir dagilimdir.
- Binom dagilim icin normal dagilim ile hassas olasilik degerlerini elde edebilmek amaciyla sureklilik duzeltmesi yapilmasi gerekir.
- Bu islem hesaplanacak olasilik degerine bagli olarak x degerine
 0.5 degerinin eklenmesi yada cikarilmasi ile gerceklestirilir.

Binom Dagilimin Normal Dagilima Yakinsamasi

Ornek

Bir fakultedeki ogrencilerin %60'i erkek %40'i bayandir. Bu fakulteden 50 ogrenci rassal olarak secildiginde yaridan fazlasinin bayan olma olasiligi nedir?

- X= ornektedki bayan sayisi.
- X~binom(50,0.40)
- n = 50 ve p = 0.4.
- $E(X) = np = 50 \times 0.4 = 20$; $np(1-p) = 50 \times 0.4 \times 0.6 = 12$,
- X ~ N(20, 3.44).
- P(X > 25)=? $z = \frac{25-20}{\sqrt{12}} = 1.44$
- P(X > 25) = P(Z > 1.44) = 1 P(Z < 1.44) = 1 0.9251 = 0.075

Binom Dagilimin Normal Dagilima Yakinsamasi

- · Binom dagilim kullanılarak ilgili olasilik degeri hesaplandiginda;
- P(X>25) = P(X=26) + P(X=27) + ... + P(X=50) = 0.0573
- sureklilik duzeltme ozelligi kullanirsa;

$$p(x > 25) = p(z > \frac{25.5 - 20}{\sqrt{12}}) = p(z > 1.5877)$$

Using entry in row 1.5 and column .08 in Table 4 p(z > 1.5877) = 0.5 - .4429 = 0.0571

Binom Dagilimin Normal Dagilima Yakinsamasi

- •Benzer sekilde ornekteki bayan sayisinin 18'den kucuk olma olasiligi ile ilgileniliyorsa;
- •Sureklilik duzeltme ozelligi kullanilarak

$$p(x<18) = p(z < \frac{17.5 - 20}{\sqrt{12}}) = p(z < -2.5/3.44) =$$
$$p(z < -.726) = .2358 = ~23.6\%$$

Binom Dagilimin Normal Dagilima Yakinsamasi

Ornek X~Binom (15, 0.40)

a)
$$P(X=4) = ?$$

Binom dagilim kullanilirsa; P(X=4) = 0.1268

Binom dagilimin Normal dagilima yaklasimi kullanirsa;

$$\mu = np = (15)(0.4) = 6$$
 and $\sigma^2 = npq = (15)(0.4)(0.6) = 3.6$ and $\sigma = \sqrt{3.6} = 1.897$

$$z_1 = \frac{(4-0.5)-6}{1.897} = -1.32$$
 and $z_2 = \frac{(4+0.5)-6}{1.897} = -0.79$

$$P(X = 4) = P(-1.32 < Z < -0.79)$$

$$= P(Z < -0.79) \cdot P(Z < -1.32)$$

$$= 0.2148 \cdot 0.0934$$

$$= 0.1214$$

Binom Dagilimin Normal Dagilima Yakinsamasi

b)
$$P(7 \le X \le 9) = ?$$

Binom dagilim kullanilirsa; $P(7 \le X \le 9) = 0.3546$

Binom dagilimin Normal Dagilima Yaklasimi kullanilirsa;

$$z_1 = \frac{(7 - 0.5) - 6}{1.897} = 0.26$$
 and $z_2 = \frac{(9 + 0.5) - 6}{1.897} = 1.85$

$$P(7 \le X \le 9) = P(0.26 < Z < 1.85)$$

$$= P(Z < 1.85) - P(Z < 0.26)$$

$$= 0.9678 - 0.6026$$

$$= 0.3652$$

 $X; [0,\infty)$ araliginda degerler alan surekli rassal degisken ise

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & o.w. \end{cases}$$

$$\lambda = \frac{1}{\beta}$$

$$f(x) = \begin{cases} \frac{e^{\frac{-x}{\beta}}}{\beta} & 0 \le x < \infty \\ 0 & o.w. \end{cases}$$

Ustel Dagilim

f(x), asagidaki ozelliklerden dolayi bir olasilik yogunluk fonksiyonudur.

1)
$$\lambda > 0$$
 and $\lambda e^{-\lambda x} > 0$ thus $f(x) > 0$

2)
$$\int_{0}^{\infty} \lambda e^{-\lambda x} dx = \int_{0}^{\infty} f(x) dx = -e^{-\lambda x} \Big|_{0}^{\infty} = 0 - (-1) = 1$$

X'in beklenen degeri;

$$\mu = E(x) = \int_{0}^{\infty} x \lambda e^{-\lambda x} dx$$

Integrating by parts and letting $\lambda e^{-\lambda x} dx = dv$

 ${
m X}={
m u}$, we obtain ${
m v}=-e^{-\lambda x}$, du=dx. Thus

$$E(X) = \left[-x e^{-\lambda x} \Big|_0^{\infty} + \int_0^{\infty} e^{-\lambda x} dx \right] = -\frac{1}{\lambda} e^{-\lambda x} \Big|_0^{\infty} = \frac{1}{\lambda}$$

Ustel Dagilim

X'in varyansi;

$$E(x^2) = \frac{2}{\lambda^2}$$

$$\sigma^2 = V(X) = E(x^2) - [E(x)]^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

Dagilim Fonksiyonu

$$F(x) = P(X \le x) = \int_{0}^{x} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{0}^{x} = -e^{-\lambda x} - (-e^{-\lambda(0)}) = -e^{-\lambda x} + 1 = 1 - e^{-\lambda x}$$

$$F(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & o.w. \end{cases}$$

Ustel Dagilim

Ornek:

Bir elektrik cihazin arizalanmadan kullanim suresini gosteren rassal degisken X, asagidaki dagilim fonksiyonuna sahiptir.

$$F(x) = P(X \le x) = \begin{cases} 1 - e^{-\frac{x}{500}} & x \ge 0\\ 0 & \text{o.w.} \end{cases}$$

- a) X r.d. nin olasilik yofunluk fonksiyonunu bulunuz.
- b) Cihazin kullanim suresinin 100 ile 200 saat arasinda olma olasiligi nedir?
- c) Cihazin kullanim suresinin 300 saaten fazla olma olasiligi nedir?

Ornek:

Telefon ile konusma suresini tanimlayan X rassal degiskeninin o.y.f. :

$$f(x) = \lambda e^{-\lambda x}$$
 $0 \le x \le \infty$.

ise

a)
$$F(x) = ?$$

b)
$$P(5 < x \le 10) = ?$$

Ustel Dagilim		

Ornek:

Bir kutuphanecinin kitaplara kart yerlestirme suresi ortalamasi 20 saniye olan ustel dagilima sahiptir. Kart yerlestirme suresi icin;

- a) P(X≤30)=?
- b) P(X≥20)=?
- c) P(20≤X≤30)=?
- d) $P(x \le t) = 0.5$ ise t = ?

Ustel Dagilim	

Ornek:

Bir sistemde bulunan bir parcanin arizalanma zamani ortalamasi 5 yil olan ustel dagilima sahiptir. 5 farkli sistemde bu parcadan birer tane bulundugunda, en az iki tanesinin 8 yildan fazla sure calisiyor olmasi olasiligi nedir?

Poisson ve Ustel Dagilimlar Arasindaki Iliski

- Belirli bir zaman araliginda olan oluslarin sayisi poisson dagilima sahipse, oluslar arasinda gecen zamanda ustel dagilima sahiptir.
- Ornegin; her hafta bir urune olan taleplerin sayisi poisson dagilima sahipse, talepler arasinda gecen zaman da ustel dagilima sahiptir.
- Bir degisken kesikli, digeri ise surekli rassal degiskendir.

Poisson ve Ustel Dagilimlar Arasindaki Iliski

 X, ortalamasi λt olan Poisson dagilima sahip bir rassal degisken ise olasilik fonksiyonu;

$$P(x) = \begin{cases} \frac{e^{-\lambda t} (\lambda t)^x}{x!} & x = 0,1,2...\\ 0 & o.w. \end{cases}$$

Poisson ve Ustel Dagilimlar Arasindaki Iliski

- X; (0,t] aralaginda ilgilenilen olayin ortaya cikma sayisi iken bu aralikta biri digerini izleyen olaylar arasinda gecen sure de bir r.d. olacaktir.
- Ornegin, X r.d. bir bilet gisesinde kuyruga giren musteri sayisi iken gelen musteriler arasinda gecen sure de r.d. dir.
- T: Poisson dagilmis r.d.nin biri digerini izleyen iki olay arasinda gecen sure
- T'nin dagilim fonksiyonu;
- $P(T \le t) = F(t) \rightarrow P(T > t) = 1 F(t)$

Poisson ve Ustel Dagilimlar Arasindaki Iliski

 P(T>t)'ye gore biri digerini izleyen iki olay arasinda gecen surenin t'den buyuk olmasi, bu arada hic olayin ortaya cikmamasi yani Poisson dagilmis r.d. nin (0,t]'de sifir degerini almasina esdegerdir.

$$P(T > t) = P(X = 0) = \frac{e^{-\lambda t} (\lambda t)^0}{0!} = e^{-\lambda t}$$

$$F(t) = P(T \le t) = 1 - P(T > t)$$

$$F(t) = 1 - e^{-\lambda t}$$

$$f(t) = \frac{\partial F(t)}{\partial t} = \lambda e^{-\lambda t} \to \text{Ustel Dagilim}$$

Ustel Dagilim

Ornek:

Bir merkezi islem birimine her 10 dakikada ortalama 4 is gelmektedir.

- Merkezi islem birimine gelen islerin varislararasi zamaninin dagilimini,
- b) 10 dakikada hic is gelmeme olasiligini
- c) Biri digerini izeleyen iki is arasinda gecen surenin 4 dakika veya daha fazla olma olasiligini

bulunuz.

Ustel Dagilim		

Ornek:

Bir benzin istasyonuna her 4 dakikada ortalama 2 arac gelmektedir.

- Bu istasyona gelen arac sayilariyla, biri digerini izleyen iki arac arasinda gecen surenin dagilimi nedir?
- b) Istasyona 4 dk. da gelen arac sayisinin 1'den fazla oldugu bilindiginde arac sayisinin 4'den az olma olasiligi nedir?
- c) Iki arac gelisi arasindaki surenin 2 dakikadan az oldugu bilindiginde bu surenin 1 dk. dan fazla cikma olasiligi nedir?

Ustel Dagilim

Ornek:

Bir kafeteryada siparis edilen kola sayisi ortalamasi saatte 30 kola ile poisson dagilima sahiptir.

- a. 22:00 ile 24:00 saatleri arasinda 60 adet kola siparisinin verilme olasiligini bulunuz.
- b. 09:00 ile 13:00 saatleri arasinda siparis edilen kolanin ortalamasini ve varyansini bulunuz.
- Iki kola siparisi arasinda gecen surenin 1 ile 3 dakika arasinda olma olasiligini bulunuz.

Ustel Dagilim	

Ustel Dagilim		

References

- Walpole, Myers, Myers, Ye, (2002),
 - Probability & Statistics for Engineers & Scientists
- Dengiz, B., (2004),
 - □ Lecture Notes on Probability, http://w3.gazi.edu.tr/web/bdengiz
- Hines, Montgomery, (1990),
 - □ Probability & Statistics in Engineering & Management Science