Inequalities

Youming Zhao

Email: youming0.zhao@gmail.com

First draft: January 1, 2022 Last update: October 14, 2023

4 Contents

5	1	Definitions	1
6		1.1 Norm	1
7		1.2 Vector <i>p</i> -norms	2
8		1.3 Dual norm	2
9	2	Quadratic mean, average mean, geometric mean, and harmonic mean	3
10		2.1 An inequality about the difference between AM and GM	6
11		2.2 Power mean inequality	6
12		2.3 Weighted power mean inequality	6
13		2.4 Applications	7
14	3	Young inequality	7
15	4	Hölder inequality	7
16		4.1 Generalized Hölder inequality	8
17		4.2 Cauchy-Schwarz inequality	10
18		4.3 Two variants of Cauchy-Schwarz inequality	10
19	5	Minkowski inequality	10
20	6	Rearrangement inequalities	11
21		6.1 Chebyshev's inequality	12
22	1	Definitions	
23	1.	1 Norm	
24	A	function $f: \mathbf{R}^n \to \mathbf{R}$ with dom $f = \mathbf{R}^n$ is called a norm if	
25		• f is nonnegative: $f(x) \ge 0$ for all $x \in \mathbf{R}^n$	
26		• f is definite: $f(x) = 0$ if and only if $x = 0$	
27		• f is homogeneous: $f(tx) = t f(x)$, for all $x \in \mathbf{R}^n$ and $t \in \mathbf{R}$	
28		• f satisfies the triangle inequality: $f(x+y) \leq f(x) + f(y)$, for all $x, y \in \mathbf{R}^n$.	

$_{29}$ 1.2 Vector p-norms

A vector p-norm denoted $\|\cdot\|_p$ is defined as,

$$\|\mathbf{x}\|_p := (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}} = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, \quad p \ge 1, \mathbf{x} \in \mathbf{R}^n.$$

The most commonly used vector *p*-norms are ℓ_1 -norm, ℓ_2 -norm, and ℓ_{∞} -norm.

$$\|\mathbf{x}\|_{1} := |x_{1}| + |x_{2}| + \dots + |x_{n}| = \sum_{i=1}^{n} |x_{i}|$$

$$\|\mathbf{x}\|_{2} := \sqrt{|x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}} = \sqrt{\sum_{i=1}^{n} |x_{i}|^{2}} = \sqrt{x^{T}x}$$

$$\|\mathbf{x}\|_{\infty} := \max_{1 \ge i \ge n} |x_{i}|.$$

where the $|\cdot|$ sign is not omitted in the definition of $|\cdot|_2$ to emphasize the importance of the $|\cdot|$ operation in the calculations of all p-norms. $\|\mathbf{x}\|_2$ is also known as Euclidean norm.

34 1.3 Dual norm

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$||z||_* = \sup\{z^T x \mid ||x|| \le 1\}.$$

- It is easy to show that the dual norm satisfies all properties of a norm, so the dual norm is a norm.
- Proposition 1 (Inner product, norm, and dual norm). Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The
- associated dual norm $||z||_*$ satisfies

$$z^T x \le ||x|| ||z||_*,$$

- where $x, z \in \mathbf{R}^n$.
- 40 Proof. From the definition of dual norm, we have

$$z^T x \le \|z\|_*$$

with all x satisfying $||x|| \le 1$. So the inequality also holds for ||x|| = 1,

$$z^T x \le ||z||_* = ||x|| ||z||_*.$$

Let x = ty with t > 0. Then we get

$$z^{T}(ty) \le ||ty|| ||z||_{*} = t||y|| ||z||_{*} \iff z^{T}y \le ||y|| ||z||_{*},$$

- as desired. Note that there is no requirement on the value of ||y||.
- 44 Proposition 2 (Dual norm of Euclidean norm is Euclidean norm). The dual norm of
- 45 Euclidean norm is Euclidean norm, i.e.,

$$||z||_2 = \sup\{z^T x \mid ||x||_2 \le 1\}.$$

Proof. According to Cauchy-Schwarz inequality, we get

$$z^T y \le ||y||_2 ||z||_2.$$

- Given z, the equality holds if and only if y=z. If $\|y\|_2$ is required to be not greater than 1, then $y=\frac{z}{\|z\|_2}$ which maximizes z^Ty and the maximum is $z^T\frac{z}{\|z\|_2}=\|z\|_2$. Thus, $\|z\|_2=\sup\{z^Tx\mid \|x\|_2\leq 1\}$,
- which is exactly the definition of dual norm.
- **Proposition 3 (Dual norm of** ℓ_{∞} -norm is ℓ_1 -norm). The dual norm of the ℓ_{∞} -norm is the ℓ_1 -norm.
- *Proof.* Since $||x||_{\infty} \le 1$, $x_i = \operatorname{sgn}(z_i)$ for each $i \in \{1, \ldots, n\}$ can maximize $z^T x$, where $\operatorname{sgn}(t)$ is the
- sign function which outputs 1 for positive inputs, -1 for negative inputs, and 0 for zero inputs,
- respectively. Thus,

$$\sup\{z^T x \mid ||x||_{\infty} \le 1\} = \sum_{i=1}^n |z_i| = ||z||_1,$$

- as desired.
- **Proposition 4 (Dual norm of** ℓ_1 -norm is ℓ_{∞} -norm). The dual norm of the ℓ_1 -norm is the ℓ_{∞} -norm.
- *Proof.* We find the maximum of all $|z_i|, \forall i \in \{1, \dots, n\}$ and denote it by $|z_i|$. Then we let $x_i = 1$ and $x_i = 0$ with $i \neq j$, which satisfies the requirement of $||x||_1 \leq 1$. Then,

$$\sup\{z^T x \mid ||x||_1 \le 1\} = |z_j| = ||z||_{\infty},$$

- as desired.
- **Proposition 5 (Dual norm of** ℓ_p -norm is ℓ_q -norm). The dual norm of the ℓ_p -norm is the ℓ_q -norm, where $p, q \ge 1$ and 1/p + 1/q = 1. That is,

$$z^T x \le ||x||_p ||z||_q.$$

This proposition is similar to Hölder inequality.

$\mathbf{2}$ Quadratic mean, average mean, geometric mean, and harmonic mean 65

- The content in this section is largely taken from Xicheng Peng et al. Exploring Inequalities. 2016. In
- this section, we give the relationships between quadratic mean (QM), average mean (AM), geometric
- mean (GM), and harmonic mean (HM). The result is QM \geq AM \geq GM \geq HM.
- **Theorem 6.** For any positive real number a_1, a_2, \dots, a_n , we have the following inequalities

$$\frac{1}{\frac{1}{a_1} + \frac{1}{a_1} + \dots + \frac{1}{a_n}} \leq \sqrt[n]{\frac{Geometric\ Mean}{\sqrt[n]{a_1 a_2 \cdots a_n}}} \leq \sqrt[n]{\frac{Arithmetic\ Mean}{a_1 + a_2 + \dots + a_n}} \leq \sqrt[n]{\frac{Quadratic\ Mean}{n}}$$
(1)

- where the equalities hold if and only if $a_1 = a_2 = \cdots = a_n$. This inequality chain is also denoted as $H(n) \le G(n) \le A(n) \le Q(n)$.
- We will provide two proofs. The first proof employs Jensen's inequality and is simpler compared with the second proof.

Proof. Let $f(x) = -\ln x$, then $f''(x) = \frac{1}{x^2} > 0$ which implies that f is convex. For all $a_i > 0$, by Jensen's inequality,

$$f(\frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n}) \le \frac{1}{n} \left(f(\frac{1}{a_1}) + f(\frac{1}{a_2}) + \dots + f(\frac{1}{a_n}) \right)$$
$$-\ln(\frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n}) \le \frac{1}{n} \left(-\ln(\frac{1}{a_1}) - \ln(\frac{1}{a_2}) + \dots - \ln(\frac{1}{a_n}) \right)$$
$$\ln(\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}) \le \frac{1}{n} (\ln a_1 + \ln a_2 + \dots + \ln a_n)$$
$$\ln(\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}) \le \ln \sqrt[n]{a_1 a_2 \dots a_n}$$

⁷⁶ Since ln is increasing,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \cdots a_n}$$

where the equality holds if and only if $a_1 = a_2 = \cdots = a_n$. The "if" part is obvious. For the "only if"

part, suppose the equality holds with $a_1 \neq a_2 = a_3 = \cdots = a_n$, then let $a_1 = ka_2(k > 0)$ we have

$$\frac{n}{(n-1+\frac{1}{k})\frac{1}{a_2}} = a_2 \sqrt[n]{k} \Longleftrightarrow \frac{n}{(n-1+\frac{1}{k})} = \sqrt[n]{k} \Longleftrightarrow n = \sqrt[n]{k}(n-1+\frac{1}{k})$$

Let $x = \sqrt[n]{k}$ and it is clear that x > 0. Then

$$nx^{n-1} = (n-1)x^n + 1 \iff (n-1)x^n - nx^{n-1} + 1 = 0$$

 $(n-1)x^{n} - nx^{n-1} + 1 = (n-1)x^{n} - (n-1)x^{n-1} - x^{n-1} + 1$ $= (n-1)x^{n-1}(x-1) - (x^{n-1}-1)$ $= (n-1)x^{n-1}(x-1) - (x-1)(x^{n-2} + x^{n-3} + \dots + 1)$ $= (x-1)[(n-1)x^{n-1} - (x^{n-2} + x^{n-3} + \dots + 1)]$ $= (x-1)[(n-1)x^{n-1} - (n-1)x^{n-2} + (n-2)x^{n-2} - x^{n-3} - \dots - 1]$ $= (x-1)[(n-1)x^{n-2}(x-1) + (n-2)x^{n-2} - x^{n-3} - \dots - 1]$ $= (x-1)[(n-1)x^{n-2}(x-1) + (n-2)x^{n-2} - (n-2)x^{n-3} + (n-3)x^{n-3} - \dots - 1]$ $= (x-1)[(n-1)x^{n-2}(x-1) + (n-2)x^{n-3}(x-1) + (n-3)x^{n-3} - \dots - 1]$ $= (x-1)[(n-1)x^{n-2}(x-1) + (n-2)x^{n-3}(x-1) + (n-3)x^{n-4}(x-1) + \dots + (x-1)]$ $= (x-1)^{2}[(n-1)x^{n-2} + (n-2)x^{n-3} + (n-3)x^{n-4} + \dots + 1]$

Due to the fact that any polynomial that has positive coefficients cannot have roots on the nonnegative real axis¹, 1 is the only roots which contradicts the supposition that $a_1 \neq a_2$. Hence, $a_1 = a_2 = \cdots = a_n$ is the necessary and sufficient condition for the equality to hold.

Now we show $GM \leq AM$,

$$f(\frac{a_1 + a_2 + \dots + a_n}{n}) \le \frac{1}{n} \left(f(a_1) + f(a_2) + \dots + f(a_n) \right)$$
$$-\ln(\frac{a_1 + a_2 + \dots + a_n}{n}) \le \frac{1}{n} \left(-\ln(a_1) - \ln(a_1) + \dots - \ln(a_1) \right)$$

¹https://mtns2018.hkust.edu.hk/media/files/0073.pdf. Besides that paper, we can also prove this fact via contradiction. Suppose this kind of polynomial P(x) has some positive real roots, say $P(x_0) = 0$, then each term of $P(x_0)$ is positive which leads to $P(x_0) > 0$, a contradiction. Thus, x_0 does not exist.

$$\ln(\frac{a_1 + a_2 + \dots + a_n}{n}) \ge \frac{1}{n} (\ln a_1 + \ln a_2 + \dots + \ln a_n)$$

$$\ln(\frac{a_1 + a_2 + \dots + a_n}{n}) \ge \ln \sqrt[n]{a_1 a_2 \dots a_n}$$

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

Let $g(x) = x^2$, then g''(x) = 2 > which indicates that g is convex.

Now we show AM≤QM. By Jensen's inequality, we have

$$g(\frac{a_1 + a_2 + \dots + a_n}{n}) \le \frac{1}{n} (g(a_1) + g(a_2) + \dots + g(a_n))$$
$$(\frac{a_1 + a_2 + \dots + a_n}{n})^2 \le \frac{1}{n} (a_1^2 + a_2^2 + \dots + a_n^2)$$
$$\frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$$

87 This completes our proof.

We first introduce a lemma for the second proof.

Lemma 7. If $a_i > 0, i = 1, 2, \dots, n$, and $a_1 a_2 \dots a_n = 1$, then $a_1 + a_2 + \dots + a_n \ge n$ where the equality holds iff $a_1 = a_2 = \dots = a_n = 1$.

91 *Proof.* Let $x_i = \ln a_i, i = 1, 2, \dots, n$.

$$a_1a_2\cdots a_n=1 \iff \ln a_1+\ln a_2+\cdots+\ln a_n=0 \iff x_1+x_2+\cdots+x_n=0$$

Since $e^x \ge x + 1$,

$$a_1 + a_2 + \dots + a_n = e^{x_1} + e^{x_2} + \dots + e^{x_n} > (x_1 + 1) + (x_2 + 1) + \dots + (x_n + 1) = n$$

where the equality holds iff $x_i = 0, \forall i = 1, 2, \dots, n$, i.e., $a_i = 1, \forall i = 1, 2, \dots, n$ due to the fact that $e^x = x + 1$ iff x = 0. Thus, $a_1 + a_2 + \dots + a_n = n$ iff $a_1 = a_2 = \dots = a_n = 1$.

Next, we prove this inequality chain using Lemma 7.

96 Proof. 1. $H(n) \leq G(n)$

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \Longleftrightarrow \frac{\sqrt[n]{a_1 a_2 \dots a_n}}{a_1} + \frac{\sqrt[n]{a_1 a_2 \dots a_n}}{a_2} + \dots + \frac{\sqrt[n]{a_1 a_2 \dots a_n}}{a_n} \ge n$$

We observe that $\frac{\sqrt[n]{a_1 a_2 \cdots a_n}}{a_1} \cdot \frac{\sqrt[n]{a_1 a_2 \cdots a_n}}{a_2} \cdot \cdots \cdot \frac{\sqrt[n]{a_1 a_2 \cdots a_n}}{a_n} = 1$. By Lemma 7, the above holds. The equality holds iff $\frac{\sqrt[n]{a_1 a_2 \cdots a_n}}{a_1} = \frac{\sqrt[n]{a_1 a_2 \cdots a_n}}{a_2} = \cdots = \frac{\sqrt[n]{a_1 a_2 \cdots a_n}}{a_n}$, i.e., $a_1 = a_2 = \cdots = a_n$.

 $2. \ G(n) \le A(n)$

$$\sqrt[n]{a_1a_2\cdots a_n} \leq \frac{a_1+a_2+\cdots+a_n}{n} \Longleftrightarrow \frac{a_1}{\sqrt[n]{a_1a_2\cdots a_n}} + \frac{a_2}{\sqrt[n]{a_1a_2\cdots a_n}} + \cdots + \frac{a_n}{\sqrt[n]{a_1a_2\cdots a_n}} \geq n$$

We observe that $\frac{a_1}{\sqrt[n]{a_1a_2\cdots a_n}} \cdot \frac{a_2}{\sqrt[n]{a_1a_2\cdots a_n}} \cdot \cdots \cdot \frac{a_n}{\sqrt[n]{a_1a_2\cdots a_n}} = 1$. By Lemma 7, the above holds. The equality holds iff $\frac{a_1}{\sqrt[n]{a_1a_2\cdots a_n}} = \frac{a_2}{\sqrt[n]{a_1a_2\cdots a_n}} = \cdots = \frac{a_n}{\sqrt[n]{a_1a_2\cdots a_n}}$, i.e., $a_1 = a_2 = \cdots = a_n$.

3.
$$A(n) \leq Q(n)$$
. Let $c = \frac{a_1 + a_2 + \dots + a_n}{n}$ and $a_i = c + \alpha_i, \forall i = 1$. Then

$$a_1 + a_2 + \dots + a_n = nc + \alpha_1 + \alpha_2 + \dots + \alpha_n$$

= $a_1 + a_2 + \dots + a_n + (\alpha_1 + \alpha_2 + \dots + \alpha_n)$

So, $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 0$.

$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} = \sqrt{\frac{(c + \alpha_1)^2 + (c + \alpha_2)^2 + \dots + (c + \alpha_n)^2}{n}}$$

$$= \sqrt{\frac{nc^2 + 2c(\alpha_1 + \alpha_2 + \dots + \alpha_n) + \alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}{n}}$$

$$= \sqrt{\frac{nc^2 + \alpha_2^2 + \dots + \alpha_n^2}{n}}$$

$$= \sqrt{c^2 + \frac{\alpha_2^2 + \dots + \alpha_n^2}{n}}$$

$$> \sqrt{c^2} = c$$

where the third equality follows from $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 0$ and $c = \frac{a_1 + a_2 + \cdots + a_n}{n}$. Lemma 7 is not involved with the proof of $A(n) \leq Q(n)$.

Note. AM≥GM≥HM can be proved using induction; see Theorem 1.2.2 of Jixiu Chen et al. Mathematical Analysis, third edition.

¹⁰⁸ 2.1 An inequality about the difference between AM and GM

- Proposition 8. Given $a, b, c \in \mathbb{R}_+$, show $3(\frac{a+b+c}{3} \sqrt[3]{abc}) \ge 2(\frac{a+b}{2} \sqrt{ab})$.
- 110 Proof. After simple algebra, it suffices to show

$$c + 2\sqrt{ab} > 3\sqrt[3]{abc}$$

If we consider $2\sqrt{ab}$ as $\sqrt{ab} + \sqrt{ab}$ on the LHS, we can use AM-GM to get

$$c + \sqrt{ab} + \sqrt{ab} > 3\sqrt[3]{\sqrt{ab} \cdot \sqrt{ab} \cdot c} = 3\sqrt[3]{abc}.$$

112 This completes our proof.

104

105

This result can be easily generalized to the general case, namely,

$$(n+1)\left(\frac{a_1^2+a_2^2+\cdots+a_{n+1}^2}{n+1}-\sqrt[n+1]{a_1a_2\cdots a_{n+1}}\right)\geq n\left(\frac{a_1^2+a_2^2+\cdots+a_n^2}{n}-\sqrt[n]{a_1a_2\cdots a_n}\right).$$

114 2.2 Power mean inequality

Refer to Page 106 of Xicheng Peng et al. Exploring Inequalities. 2016. This will be done later.

₆ 2.3 Weighted power mean inequality

Refer to Page 108 of Xicheng Peng et al. Exploring Inequalities. 2016. This will be done later.

118 2.4 Applications

Proposition 9. Given positive reals a, b, c and a + b + c = 1, show that $ab + bc + ca \le \frac{1}{3}$.

20 Proof. Since the geometric mean is not less than the average mean, we have

$$\sqrt{\frac{a^2 + b^2 + c^2}{3}} \ge \frac{a + b + c}{3} = \frac{1}{3} \Longleftrightarrow a^2 + b^2 + c^2 \ge \frac{1}{3}.$$

121 Furthermore, we have

$$ab + bc + ca = \frac{(a+b+c)^2 - (a^2+b^2+c^2)}{2} = \frac{1 - (a^2+b^2+c^2)}{2} \le \frac{1 - 1/3}{2} = \frac{1}{3},$$

122 as desired.

$_{\scriptscriptstyle 23}$ 3 Young inequality

Theorem 10. Given $x, y \ge 0$, $p, q \ge 1$, and 1/p + 1/q = 1, the inequality

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q,$$

where the equality holds if and only if $x^p = y^q$.

Proof. The claim is obvious for the case when either x = 0 or y = 0. When x and y are positive reals, we let $f(t) = e^x$, then f'' > 0. So f is convex. By the Jensen's inequality,

as desired. The equality follows from the condition for the equality of Jensen's inequality to hold with any convex function. \Box

¹³⁰ 4 Hölder inequality

A classic result concerning p-norms is the Hölder inequality in inner-product form:

Theorem 11 (Hölder inequality). For any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ and p, q > 1 satisfying 1/p + 1/q = 1, the following

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q, \quad \frac{1}{p} + \frac{1}{q} = 1$$

132 holds. The equality holds if and only if $\frac{|x_1|^p}{|y_1|^q} = \frac{|x_2|^p}{|y_2|^q} = \cdots = \frac{|x_n|^p}{|y_n|^q}$ holds.

We provide two proofs here. The first proof employs Young inequality and the second proof makes use of the fact that the dual norm of p-norm is q-norm with $p, q \ge 0$ and 1/p + 1/q = 1.

Proof. The claim is trivial either $\mathbf{x} = \mathbf{0}$ or $\mathbf{y} = \mathbf{0}$. Suppose that $\mathbf{x} \neq \mathbf{0}$ or $\mathbf{y} \neq \mathbf{0}$. For any $i \in \{1, 2, \dots, n\}$, letting $s = \frac{|x_i|}{(\sum_{i=1}^n |x_i|^p)^{1/p}}$ and $t = \frac{|y_i|}{(\sum_{i=1}^n |y_i|^q)^{1/q}}$, by Young's inequality, we have

$$st = \frac{|x_i|}{(\sum_{i=1}^n |x_i|^p)^{1/p}} \frac{|y_i|}{(\sum_{i=1}^n |y_i|^q)^{1/q}} \le \frac{1}{p} \left(\frac{|x_i|}{(\sum_{i=1}^n |x_i|^p)^{1/p}}\right)^p + \frac{1}{q} \left(\frac{|y_i|}{(\sum_{i=1}^n |y_i|^q)^{1/q}}\right)^q$$

$$\frac{|x_i y_i|}{(\sum_{i=1}^n |x_i|^p)^{1/p} (\sum_{i=1}^n |y_i|^q)^{1/q}} \le \frac{1}{p} \frac{|x_i|^p}{\sum_{i=1}^n |x_i|^p} + \frac{1}{q} \frac{|y_i|^p}{\sum_{i=1}^n |y_i|^q}$$

Summing up over i,

$$\frac{\sum_{i=1}^{n} |x_{i}y_{i}|}{(\sum_{i=1}^{n} |x_{i}y_{i}|} \leq \frac{1}{p} \frac{\sum_{i=1}^{n} |x_{i}|^{p}}{\sum_{i=1}^{n} |x_{i}|^{p}} + \frac{1}{q} \frac{\sum_{i=1}^{n} |y_{i}|^{p}}{\sum_{i=1}^{n} |y_{i}|^{q}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 $_{138}$ as desired.

Now we present the second proof.

Proof. Recall the definition of dual norm,

$$||x||_p = \max_{||z||_q < 1} x^T z.$$

Thus, $x^Tz \leq \|x\|_p$ holds for any z satisfying $\|z\|_q \leq 1$, including $\|z\|_q = 1$. When $\|z\|_q = 1$, we have

$$x^T z \le \|x\|_p \|z\|_q$$

Now let z = ty with t > 0. Thus, we have

$$x^T(ty) \le ||x||_p ||ty||_q \Longleftrightarrow x^T y \le ||x||_p ||y||_q$$

where $||y||_q = ||z/t||_q = 1/t ||z||_q = 1/t > 0$. This completes the proof.

The key part of the above proof is using the dual representation of the ℓ_p norm, namely, $\|x\|_p = \max_{\|z\|_q \le 1} x^T z$.

4.1 Generalized Hölder inequality

Setting $\lambda_1 = 1/p$ and $\lambda_2 = 1/q$ in (2) yields

$$\left(\sum_{i=1}^{n} |x_i|^{1/\lambda_1}\right)^{\lambda_1} \left(\sum_{i=1}^{n} |y_i|^{1/\lambda_2}\right)^{\lambda_2} \ge \sum_{i=1}^{n} (|x_i|^{1/\lambda_1})^{\lambda_1} (|y_i|^{1/\lambda_1})^{\lambda_1},$$

where $0 < \lambda_1, \lambda_2 < 1$ and $\lambda_1 + \lambda_2 = 1$. Continuing on this notational trick by setting $a_{i1} = |x_i|^{1/\lambda_1}$ and $a_{i2} = |x_i|^{1/\lambda_2}$ for any $i \in \{1, 2, \dots, n\}$ gives

$$\left(\sum_{i=1}^{n} a_{i1}\right)^{\lambda_1} \left(\sum_{i=1}^{n} a_{i2}\right)^{\lambda_2} \ge \sum_{i=1}^{n} (a_{i1})^{\lambda_1} (a_{i2})^{\lambda_2}.$$

where $a_{i1}, a_{i2} \ge 0$ for any $i \in \{1, 2, ..., n\}$. This form is beautiful. If it can be generalized to λ_m (m > 2), it will be wonderful. Yes, it is. We formalize it into the following theorem.

Theorem 12 (Generalized Hölder inequality). Given a matrix $A \in \mathbb{R}^{n \times m}$ with all nonnegative entries a_{ij} and $0 < \lambda_j < 1$ satisfying $\lambda_1 + \lambda_2 + \cdots + \lambda_m = 1$, it holds that

$$(\sum_{i=1}^{n} a_{i1})^{\lambda_{1}} (\sum_{i=1}^{n} a_{i2})^{\lambda_{2}} \cdots (\sum_{i=1}^{n} a_{im})^{\lambda_{m}}$$

$$\geq a_{11}^{\lambda_{1}} a_{12}^{\lambda_{2}} \cdots a_{1m}^{\lambda_{m}} + a_{21}^{\lambda_{1}} a_{22}^{\lambda_{2}} \cdots a_{2m}^{\lambda_{m}} + \cdots + a_{n1}^{\lambda_{1}} a_{n2}^{\lambda_{2}} \cdots a_{nm}^{\lambda_{m}}$$

$$= \sum_{i=1}^{n} a_{i1}^{\lambda_{1}} a_{i2}^{\lambda_{2}} \cdots a_{im}^{\lambda_{m}}$$

152 Compactly,

$$\prod_{i=1}^{m} (\sum_{i=1}^{n} a_{ij})^{\lambda_j} \ge \sum_{i=1}^{n} \prod_{j=1}^{m} a_{ij}^{\lambda_j}.$$

Proof. We prove this generalized Hölder inequality by mathematical induction. When m=2, it is exactly Theorem 11, i.e., the canonical Hölder inequality. Suppose the claim holds when m=k.

When m=k+1, let $\lambda_1+\lambda_2+\cdots+\lambda_k=s$ and denote $t_i=\lambda_i/s, i=1,2,\ldots,k$. Then

$$\sum_{i=1}^{n} a_{i1}^{\lambda_{1}} a_{i2}^{\lambda_{2}} \cdots a_{im}^{\lambda_{m}} = \sum_{i=1}^{n} (a_{i1}^{t_{1}} a_{i2}^{t_{2}} \cdots a_{ik}^{t_{k}})^{s} a_{i,k+1}^{\lambda_{k+1}}$$

$$\leq \left(\sum_{i=1}^{n} \left((a_{i1}^{t_{1}} a_{i2}^{t_{2}} \cdots a_{ik}^{t_{k}})^{s} \right)^{\frac{1}{s}} \right)^{s} \left(\sum_{i=1}^{n} (a_{i,k+1}^{\lambda_{k+1}})^{\frac{1}{\lambda_{k+1}}} \right)^{\lambda_{k+1}}$$

$$= \left(\sum_{i=1}^{n} a_{i1}^{t_{1}} a_{i2}^{t_{2}} \cdots a_{ik}^{t_{k}} \right)^{s} \left(\sum_{i=1}^{n} a_{i,k+1} \right)^{\lambda_{k+1}}$$

$$\leq \left(\left(\sum_{i=1}^{n} a_{i1} \right)^{t_{1}} \left(\sum_{i=1}^{n} a_{i2} \right)^{t_{2}} \cdots \left(\sum_{i=1}^{n} a_{ik} \right)^{t_{k}} \right)^{s} \left(\sum_{i=1}^{n} a_{i,k+1} \right)^{\lambda_{k+1}}$$

$$= \left(\sum_{i=1}^{n} a_{i1} \right)^{\lambda_{1}} \left(\sum_{i=1}^{n} a_{i2} \right)^{\lambda_{2}} \cdots \left(\sum_{i=1}^{n} a_{ik} \right)^{\lambda_{k}} \left(\sum_{i=1}^{n} a_{i,k+1} \right)^{\lambda_{k+1}}$$

where the first inequality and the second inequality follow from the classic Hölder inequality and the induction assumption, respectively. This completes the proof. \Box

The generalized Hölder inequality can also be applied to the case where $\lambda_1 + \lambda_2 + \cdots + \lambda_m < 1$. For this, we have the following corollary.

Corollary 13. Given a matrix $A \in \mathbf{R}^{n \times m}$ with all nonnegative entries a_{ij} and $0 < \lambda_j < 1$ satisfying $\lambda_1 + \lambda_2 + \cdots + \lambda_m = r < 1$, it holds that

$$(\sum_{i=1}^{n} a_{i1})^{\lambda_{1}} (\sum_{i=1}^{n} a_{i2})^{\lambda_{2}} \cdots (\sum_{i=1}^{n} a_{im})^{\lambda_{m}}$$

$$\geq n^{r-1} a_{11}^{\lambda_{1}} a_{12}^{\lambda_{2}} \cdots a_{1m}^{\lambda_{m}} + n^{r-1} a_{21}^{\lambda_{1}} a_{22}^{\lambda_{2}} \cdots n^{r-1} a_{2m}^{\lambda_{m}} + \cdots + n^{r-1} a_{n1}^{\lambda_{1}} a_{n2}^{\lambda_{2}} \cdots a_{nm}^{\lambda_{m}}$$

$$= n^{r-1} \sum_{i=1}^{n} a_{i1}^{\lambda_{1}} a_{i2}^{\lambda_{2}} \cdots a_{im}^{\lambda_{m}}$$

162 Compactly,

$$\prod_{j=1}^{m} (\sum_{i=1}^{n} a_{ij})^{\lambda_j} \ge n^{r-1} \sum_{i=1}^{n} \prod_{j=1}^{m} a_{ij}^{\lambda_j}.$$

Proof. By the generalized Hölder inequality, letting $\alpha = 1 - r$ yields

$$(1+1+\dots+1)^{\alpha} \left(\sum_{i=1}^{n} a_{i1}\right)^{\lambda_{1}} \left(\sum_{i=1}^{n} a_{i2}\right)^{\lambda_{2}} \cdots \left(\sum_{i=1}^{n} a_{im}\right)^{\lambda_{m}}$$

$$\geq a_{11}^{\lambda_{1}} a_{12}^{\lambda_{2}} \cdots a_{1m}^{\lambda_{m}} + a_{21}^{\lambda_{1}} a_{22}^{\lambda_{2}} \cdots a_{2m}^{\lambda_{m}} + \cdots + a_{n1}^{\lambda_{1}} a_{n2}^{\lambda_{2}} \cdots a_{nm}^{\lambda_{m}}$$

$$= \sum_{i=1}^{n} a_{i1}^{\lambda_{1}} a_{i2}^{\lambda_{2}} \cdots a_{im}^{\lambda_{m}}.$$

164 Equivalently,

165

$$\left(\sum_{i=1}^{n} a_{i1}\right)^{\lambda_{1}} \left(\sum_{i=1}^{n} a_{i2}\right)^{\lambda_{2}} \cdots \left(\sum_{i=1}^{n} a_{im}\right)^{\lambda_{m}} \ge n^{r-1} \sum_{i=1}^{n} a_{i1}^{\lambda_{1}} a_{i2}^{\lambda_{2}} \cdots a_{im}^{\lambda_{m}}$$

6 4.2 Cauchy-Schwarz inequality

A very important special case of Hölder inequality is **Cauchy-Schwarz inequality**:

$$|x^T y| \le ||x||_2 ||y||_2.$$

which can also be expressed as $(x^T y)^2 \le ||x||_2^2 ||y||_2^2$. Here, $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$.

$$(x_1y_1 + x_2y_2 + \dots + x_ny_n)^2 \le (x_1^2 + x_2^2 + \dots + x_n^2)(y_1^2 + y_2^2 + \dots + y_n^2)$$
$$(\sum_{i=1}^n x_iy_i)^2 = \sum_{i=1}^n x_i^2 \sum_{i=1}^n y_i^2$$

4.3 Two variants of Cauchy-Schwarz inequality

Given $a_i \in \mathbf{R}$ and $b_i > 0 (i = 1, 2, \dots, n)$, let $y_i = \sqrt{b_i}$ and $x_i = \frac{a_i}{\sqrt{b_i}}$. Then we have an important variant of Cauchy-Schwarz inequality.

$$(\sum_{i=1}^{n} \frac{a_i}{\sqrt{b_i}} \sqrt{b_i})^2 = (\sum_{i=1}^{n} a_i)^2 \le (\sum_{i=1}^{n} \frac{a_i^2}{b_i}) \sum_{i=1}^{n} b_i \iff \sum_{i=1}^{n} \frac{a_i^2}{b_i} \ge \frac{(\sum_{i=1}^{n} a_i)^2}{\sum_{i=1}^{n} b_i}.$$

For $a_i > 0$ and $b_i > 0 (i = 1, 2, \dots, n)$, letting $x_i = \sqrt{\frac{a_i}{b_i}}$ and $y_i = \sqrt{a_i b_i}$ gives

$$\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i^2 \ge (\sum_{i=1}^{n} x_i y_i)^2 \iff \sum_{i=1}^{n} \frac{a_i}{b_i} \cdot \sum_{i=1}^{n} a_i b_i \ge (\sum_{i=1}^{n} a_i)^2 \iff \sum_{i=1}^{n} \frac{a_i}{b_i} \ge \frac{(\sum_{i=1}^{n} a_i)^2}{\sum_{i=1}^{n} a_i b_i}.$$

Theorem 14 (Minkowski inequality). Given $x_i, y_i \geq 0, i = 1, 2, ..., n$ and $p \geq 1$, the following

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

holds. By the definition of p-norm (see section 1.2), the equivalent vector form

$$\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$$

176 holds.

Since the following proof employs Hölder inequality in which 1/p + 1/q = 1 is required and $q \to +\infty$ as $p \to 1$, we need to consider the case of p = 1 separately. The triangle inequality is enough to show the case of p = 1.

Proof. We observe that when either $x_i=0$ or $y_i=0$, or $x_i+y_i=0, i=1,2,\ldots,n$, the result is trivial. Now we show the case when $\sum_{i=1}^n x_i+y_i\neq 0$.

We first prove the case of p = 1. By the triangle inequality, we have

$$\sum_{i=1}^{n} |x_i + y_i| \le \sum_{i=1}^{n} (|x_i| + |y_i|) = \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |y_i| \iff \|\mathbf{x} + \mathbf{y}\|_1 \le \|\mathbf{x}\|_1 + \|\mathbf{y}\|_1.$$

Now we turn to the case of p > 1.

$$\sum_{i=1}^{n} |x_i + y_i|^p = \sum_{i=1}^{n} |x_i + y_i| |x_i + y_i|^{p-1} \le \sum_{i=1}^{n} |x_i| |x_i + y_i|^{p-1} + \sum_{i=1}^{n} |y_i| |x_i + y_i|^{p-1},$$

where the last inequality follows from the triangle inequality.

Applying Hölder inequality on both terms of the RHS gives

$$\sum_{i=1}^{n} |x_i| |x_i + y_i|^{p-1} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_i + y_i|^{q(p-1)}\right)^{\frac{1}{q}} = \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{q}}$$

$$\sum_{i=1}^{n} y_i |x_i + y_i|^{p-1} \le \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_i + y_i|^{q(p-1)}\right)^{\frac{1}{q}} = \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{q}}$$

where the equalities follow from the fact that q(p-1) = p due to Hölder inequality's condition, i.e., 1/p + 1/q = 1. Adding the above two inequalities up yields,

$$\begin{split} \sum_{i=1}^{n} |x_i + y_i|^p &\leq (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{n} |x_i + y_i|^p)^{\frac{1}{q}} + (\sum_{i=1}^{n} |y_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{n} |x_i + y_i|^p)^{\frac{1}{q}} \\ & \qquad \qquad \diamondsuit \\ \frac{\sum_{i=1}^{n} |x_i + y_i|^p}{(\sum_{i=1}^{n} |x_i + y_i|^p)^{\frac{1}{q}}} &\leq (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}} + (\sum_{i=1}^{n} |y_i|^p)^{\frac{1}{p}} \\ & \qquad \qquad \diamondsuit \\ (\sum_{i=1}^{n} |x_i + y_i|^p)^{1 - \frac{1}{q}} &\leq (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}} + (\sum_{i=1}^{n} |y_i|^p)^{\frac{1}{p}} \iff (\sum_{i=1}^{n} |x_i + y_i|^p)^{\frac{1}{p}} &\leq (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}} + (\sum_{i=1}^{n} |y_i|^p)^{\frac{1}{p}}, \end{split}$$

as desired.

189

6 Rearrangement inequalities

For two sequences $a_1 \le a_2 \le \cdots \le a_n$ and $b_1 \le b_2 \le \cdots \le b_n$ with reals a_i and b_i , the following inequalities

$$\underbrace{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}_{\text{reverse sum}} \leq \underbrace{a_1b_{\pi(1)} + a_2b_{\pi(2)} + \dots + a_nb_{\pi(n)}}_{\text{disordered sum}} \leq \underbrace{a_1b_1 + a_2b_2 + \dots + a_nb_n}_{\text{sequential sum}}$$

hold, where $\pi(1), \pi(2), \ldots, \pi(n)$ is any permutation of $1, 2, \ldots, n$. Simply speaking, reverse sum \leq disordered sum \leq sequential sum.

Proof. ² We want to prove that the identity permutation maximizes $a_1b_{\pi(1)} + a_2b_{\pi(2)} + \cdots + a_nb_{\pi(n)}$. Suppose for the sake of contradiction $\pi(i)$ is the smallest integer such that $\pi(i) \neq i$, then $\pi(i) = j(j > i)$ (since $1, \ldots, i-1$ have been assigned). Meanwhile, there exists a number k > i such that $\pi(k) = i$ as some number must be assigned to i.

Now, since i < j, it follows that $b_i \le b_j$. Likewise, since i < k, it follows that $a_i \le a_k$. Thus,

$$(a_k - a_i)(b_j - b_i) \ge 0 \Longrightarrow a_k b_j + a_i b_i \ge a_i b_j + a_k b_i,$$

which demonstrates that the sum $a_1b_{\pi(1)} + a_2b_{\pi(2)} + \cdots + a_nb_{\pi(n)}$ is not decreased by changing $\pi(j) = i$ and $\pi(k) = i$ to $\pi(i) = i$ and $\pi(k) = j$. This implies the identity permutation gives the maximum possible value of the sum $a_1b_{\pi(1)} + a_2b_{\pi(2)} + \cdots + a_nb_{\pi(n)}$, as desired. Moreover, the reverse identity permutation gives the minimum possible value of the sum $a_1b_{\pi(1)} + a_2b_{\pi(2)} + \cdots + a_nb_{\pi(n)}$. \square

6.1 Chebyshev's inequality

198

203

For two sequences $a_1 \leq a_2 \leq \cdots \leq a_n$ and $b_1 \leq b_2 \leq \cdots \leq b_n$ with reals a_i and b_i , by the rearrangement inequalities, we always have the following inequalities

$$x_{1}y_{n} + x_{2}y_{n-1} + \dots + x_{n}y_{1} \leq x_{1}y_{1} + x_{2}y_{2} + \dots + x_{n}y_{n} \leq x_{1}y_{1} + x_{2}y_{2} + \dots + x_{n}y_{n}$$

$$x_{1}y_{n} + x_{2}y_{n-1} + \dots + x_{n}y_{1} \leq x_{1}y_{2} + x_{2}y_{3} + \dots + x_{n}y_{1} \leq x_{1}y_{1} + x_{2}y_{2} + \dots + x_{n}y_{n}$$

$$x_{1}y_{n} + x_{2}y_{n-1} + \dots + x_{n}y_{1} \leq x_{1}y_{3} + x_{2}y_{4} + \dots + x_{n}y_{2} \leq x_{1}y_{1} + x_{2}y_{2} + \dots + x_{n}y_{n}$$

$$\dots$$

$$x_{1}y_{n} + x_{2}y_{n-1} + \dots + x_{n}y_{1} \leq x_{1}y_{n} + x_{2}y_{1} + \dots + x_{n}y_{n-1} \leq x_{1}y_{1} + x_{2}y_{2} + \dots + x_{n}y_{n}$$

Summing up the above inequalities gives

$$n(x_1y_n + x_2y_{n-1} + \dots + x_ny_1) \le (x_1 + x_2 + \dots + x_n)(y_1 + y_2 + \dots + y_n) \le n(x_1y_1 + x_2y_2 + \dots + x_ny_n)$$

$$\frac{1}{n}(x_1y_n + x_2y_{n-1} + \dots + x_ny_1) \le \frac{1}{n^2}(x_1 + x_2 + \dots + x_n)(y_1 + y_2 + \dots + y_n) \le \frac{1}{n}(x_1y_1 + x_2y_2 + \dots + x_ny_n)$$

$$\frac{1}{n}\sum_{i=1}^n x_iy_{n+1-i} \le \frac{1}{n}\sum_{i=1}^n x_i \cdot \frac{1}{n}\sum_{i=1}^n y_i \le \frac{1}{n}\sum_{i=1}^n x_iy_i$$

which is called Chebyshev's inequality.

²https://brilliant.org/wiki/rearrangement-inequality/