Torus and Algebra

Ji, Yong-hyeon

May 3, 2025

We cover the following topics in this note.

- Unit Circle
- Torus
- Elliptic Curve
- TBA

Contents

1	Uni	t Circle	3
	1.1	Quotient Space	5
	1.2	Total differential of $d\theta$	6
	1.3	Local Coordinate Function $\theta: U \to \mathbb{R}$	7
	1.4	Line Integral $\oint_{\mathcal{X}} d\theta$	8
		Winding Number	
2 Torus		us	11
	2.1	Quotient and Its Lattice Structure	11
	2.2	Local Angular Coordinates and Their Differential Forms	12
	2.3	Non-Exactness and the Integral of $d\theta$	13
3	Ellij	ptic Curve	14
A	Calculus		15
	A.1	Differentiation of Arctangent	15
	A.2	Generalizing Differentials	15

1 Unit Circle

The set $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is called the **unit circle**.

The standard parametrization of \mathbb{S}^1 is given by

$$t \mapsto (\cos t, \sin t), \quad t \in [0, 2\pi),$$

which implies the *trigonometric identity* $\cos^2 t + \sin^2 t = 1$. The mapping

$$\varphi : [0,2\pi) \longrightarrow \mathbb{S}^1$$

$$t \longmapsto (\cos t, \sin t)$$

provides a bijection between the half-open interval $[0, 2\pi)$ and the unit circle \mathbb{S}^1 .

Geometrically, it represents the set of points at a fixed distance 1 from the origin in \mathbb{R}^2 , while algebraically it can be seen as a group under complex multiplication.

The unit circle can be described in several equivalent ways. In \mathbb{R}^2 , it is given by:

$$\mathbb{S}^1 = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \}.$$

In the complex plane, we write:

$$\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \} = \{ re^{i\theta} : |r| = 1 \text{ and } \theta \in \mathbb{R} \}.$$

We show that multiplication of complex number is equivalent to addition of angles: let

$$z_1 = r_1 e^{i\theta_1} = r_1 (\cos \theta_1 + i \sin \theta_1) \in \mathbb{C} \text{ and}$$

$$z_2 = r_2 e^{i\theta_2} = r_2 (\cos \theta_2 + i \sin \theta_2) \in \mathbb{C}.$$

Then

$$\begin{split} z_1 \cdot z_2 &= r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = = r_1 r_2 \left(\cos\theta_1 + i\sin\theta_1\right) \left(\cos\theta_2 + i\sin\theta_2\right) \\ &= r_1 r_2 \left[\left(\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2\right) + i \left(\cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2\right) \right] \\ &= r_1 r_2 \left[\cos\left(\theta_1 + \theta_2\right) + i \sin\left(\theta_1 + \theta_2\right) \right] \\ &= r \left(\cos\theta + \sin\theta\right) \text{ with } \begin{cases} r &= r_1 r_2 \\ \theta &= \theta_1 + \theta_2. \end{cases} \end{split}$$

1.1 Quotient Space

Let

$$\pi: \mathbb{R} \to \mathbb{R}/\mathbb{Z}, \quad x \mapsto x + \mathbb{Z},$$

be the canonical projection onto the quotient group, where the equivalence relation is given by

$$x \sim y \iff x - y \in \mathbb{Z}.$$

Denote by

$$[x] = \{ y \in \mathbb{R} \mid y \sim x \} = x + \mathbb{Z}$$

the equivalence class of x. Then $\mathbb{R}/\mathbb{Z} = \{[x] : x \in \mathbb{R}\}.$

1.2 Total differential of $d\theta$

 $d\theta$ is globally defined, whereas θ is local (mod 2π).

Recall that if we express a point in the plane in polar coordinates, then

$$x = r \cos \theta$$
, $y = r \sin \theta$.

One observe that the polar angle θ may be expressed as

$$\tan \theta = \frac{y}{x} \implies \theta = \arctan(\frac{y}{x}), \quad x \neq 0.$$

Let $\theta(x, y) = \arctan\left(\frac{y}{x}\right)$ with $x \neq 0$. We compute the total differential:

$$d\theta = \frac{\partial \theta}{\partial x} dx + \frac{\partial \theta}{\partial y} dy.$$

Since

$$\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial \theta} \left[\arctan\left(\frac{y}{x}\right) \right] = \frac{1}{1 + (y/x)^2} \cdot \frac{\partial}{\partial x} \left[\frac{y}{x}\right] = \frac{1}{(x^2 + y^2)/x^2} \cdot \left(-\frac{y}{x^2}\right) = \frac{x^2}{x^2 + y^2} \cdot \left(\frac{-y}{x^2}\right) = \frac{-y}{x^2 + y^2}$$

and

$$\frac{\partial \theta}{\partial y} = \frac{1}{1 + (y/x)^2} \cdot \frac{\partial}{\partial y} \left[\frac{y}{x} \right] = \frac{x^2}{x^2 + y^2} \cdot \left(\frac{1}{x} \right) = \frac{x}{x^2 + y^2},$$

we have the total differential of $\theta(x, y)$ is

$$d\theta = \frac{\partial \theta}{\partial x} dx + \frac{\partial \theta}{\partial y} dy = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$

This can be neatly written as

$$d\theta = \frac{x\,dy - y\,dx}{x^2 + y^2}.$$

1.3 Local Coordinate Function $\theta: U \to \mathbb{R}$

Consider the unit circle defined by $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

A natural idea is to assign to every point P = (x, y) its angle θ so that

$$P = (x, y) = (\cos \theta, \sin \theta)$$

Both θ and $\theta + 2\pi$ give the same point on the circle, because

$$(\cos(\theta + 2\pi), \sin(\theta + 2\pi)) = (\cos\theta, \sin\theta)$$

In $U := \mathbb{S}^1 \setminus \{(1,0)\}$, we can define an angular coordinate function

$$\begin{array}{cccc} \theta & : & U(\subsetneq \mathbb{S}^1) & \longrightarrow & \mathbb{R} \\ & P & \longmapsto & \theta(P) \end{array}.$$

Here, θ is only locally well defined.

1.4 Line Integral $\oint_{\gamma} d\theta$

Parameterize the Unit Circle We represent the unit circle as

$$\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

A standard parameterization is given by the function

$$\gamma: [0, 2\pi] \to \mathbb{S}^1, \qquad t \mapsto \gamma(t) = (\cos t, \sin t).$$

Differential Form $d\theta$ Since every point on the circle satisfies $x^2 + y^2 = 1$, we have

$$d\theta = \frac{-y\,dx + x\,dy}{x^2 + y^2} = -y\,dx + x\,dy.$$

Since $\gamma(t) = (\cos t, \sin t)$,

- (i) The *x*-coordinate is $x(t) = \cos t$. Then $dx = \frac{dx}{dt} dt = -\sin t dt$.
- (ii) The *y*-coordinate is $y(t) = \sin t$. Then $dy = \frac{dy}{dt} dt = \cos t dt$.

By (i) and (ii), we obtain

$$d\theta = -y dx + x dy$$

$$= -\sin t (dx) + \cos t (dy)$$

$$= -\sin t (-\sin t dt) + \cos t (\cos t dt)$$

$$= (\sin^2 t + \cos^2 t) dt$$

$$= dt.$$

Perform the Line Integral

$$\oint_{\gamma} d\theta = \oint_{0}^{2\pi} dt = \oint_{0}^{2\pi} 1 \ dt = \left[t\right]_{t=0}^{t=2\pi} = 2\pi - 0 = 2\pi.$$

Interpretation The value 2π represents the total angular change as one goes around the circle *once*. In a general situation, if a closed curve γ on \mathbb{S}^1 winds around the circle k times, the integral would yield

$$\oint_{\gamma} d\theta = 2\pi k, \quad \text{where } k \in \mathbb{Z}.$$

Here, $k \in \mathbb{Z}$ is called the **winding number**.

Key Point Even though the local function θ is defined only up to an additive constant of 2π , the line integral of its differential $d\theta$ gives a well-defined, global number measuring the rotation.

1.5 Winding Number

Winding Number via the Angular 1-form

Definition. Let

$$\gamma:[0,1]\to\mathbb{R}^2\setminus\{0\}$$

be a piecewise C^1 map with $\gamma(0) = \gamma(1)$; that is, γ is a closed, piecewise smooth curve in $\mathbb{R}^2 \setminus \{0\}$. Define the angular 1-form ω by

$$\omega := \frac{-y\,dx + x\,dy}{x^2 + y^2}.$$

Then the winding number of γ about the origin is defined by

wind
$$(\gamma, 0) := \frac{1}{2\pi} \oint_{\gamma} d\omega$$
.

It is a standard result that $\oint_{\gamma} \omega \in 2\pi \mathbb{Z}$, so that wind $(\gamma, 0) \in \mathbb{Z}$.

We can indeed define the winding number not just about the origin 0 but relative to any point $p \in \mathbb{R}^2$ (provided that p is not on the image of the curve). In such a case, one writes the winding number as wind(γ , p) rather than wind(γ , 0). The construction is analogous; one "centers" the angular coordinate at the point p instead of at 0.

Let $p \in \mathbb{R}^2$ be a fixed point and let

$$\gamma:[0,1]\to\mathbb{R}^2\setminus\{p\}$$

be a piecewise C^1 closed curve, that is, $\gamma(0) = \gamma(1)$ and $\gamma(t) \neq p$ for all $t \in [0, 1]$. Define the map

$$\widetilde{\gamma}(t) = \frac{\gamma(t) - p}{\|\gamma(t) - p\|},$$

which is a well-defined map from [0, 1] to the unit circle

$$S^1 = \{ z \in \mathbb{R}^2 : ||z|| = 1 \}.$$

Since $\widetilde{\gamma}(0) = \widetilde{\gamma}(1)$, the map $\widetilde{\gamma}$ is a loop in \mathbb{S}^1 . The *winding number* of γ about p is defined as the degree of $\widetilde{\gamma}$:

wind(
$$\gamma$$
, p) := deg($\widetilde{\gamma}$) $\in \mathbb{Z}$.

Equivalently, if we let ω denote the standard angular 1-form on $\mathbb{R}^2 \setminus \{0\}$,

$$\omega = \frac{-y\,dx + x\,dy}{x^2 + y^2},$$

then by substituting $x' = x - p_1$ and $y' = y - p_2$ (where $p = (p_1, p_2)$), one can define an angular coordinate about p and obtain

wind
$$(\gamma, p) = \frac{1}{2\pi} \int_{\gamma} \omega_p$$
,

where

$$\omega_p = \frac{-(y - p_2) dx + (x - p_1) dy}{(x - p_1)^2 + (y - p_2)^2}.$$

It is a standard result that

$$\int_{\mathcal{X}} \omega_p \in 2\pi \mathbb{Z},$$

so that wind(γ , p) $\in \mathbb{Z}$.

2 Torus

Note. The torus rotation parameter is set to θ_1 and θ_2 , each θ expresses

$$d\theta = \frac{-y\,dx + x\,dy}{x^2 + y^2}$$

globally (where θ itself is only a local parameter), and θ is not a gradient vector field; hence, the integral value over a circle is expressed by a nonzero integer multiple (of 2π).

These two (normalized) 1-forms constitute a basis of \mathbb{R}^2 when one identifies the collection of closed differential forms modulo exact forms.

2.1 Quotient and Its Lattice Structure

Consider

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\} \text{ and } \mathbb{Z}^2 = \{(m, n) : m, n \in \mathbb{Z}\}.$$

The quotient space $\mathbb{T}^2 \coloneqq \mathbb{R}^2/\mathbb{Z}^2$ is defined by the equivalence relation on \mathbb{R}^2

$$(x,y)\sim (x',y')\quad\Longleftrightarrow\quad (x-x',y-y')\in\mathbb{Z}^2.$$

Consider

$$\mathbb{T}^2\cong\mathbb{R}^2/\mathbb{Z}^2,$$

where the subgroup \mathbb{Z}^2 is regarded as a free (abelian) \mathbb{Z} -module of rank 2. That is, there exist vectors

$$v_1,v_2\in\mathbb{R}^2$$

such that every element of $\ensuremath{\mathbb{Z}}^2$ is uniquely expressible as

$$m v_1 + n v_2, \quad m, n \in \mathbb{Z}.$$

Consequently, the torus possesses two independent cycles which, topologically, are isomorphic to \mathbb{S}^1 . In particular, one may write

$$\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1.$$

 $[\mathbb{Z}^2$ as Free \mathbb{Z} -Module of Rank 2] Consider the abelian group

$$\mathbb{Z}^2 = \mathbb{Z} \oplus \mathbb{Z} := \big\{ (a,b) : a,b \in \mathbb{Z} \big\}$$

with addition defined coordinate-wise: (a, b) + (c, d) = (a + c, b + d). Since every element of \mathbb{Z}^2 can be uniquely expressed in the form

$$(a,b) = a \cdot (1,0) + b \cdot (0,1),$$

 $\mathbb{Z}^2 = \mathbb{Z} \oplus \mathbb{Z}$ is a free \mathbb{Z} -module with basis $\{(1,0),(0,1)\}$ (rank 2).

2.2 Local Angular Coordinates and Their Differential Forms

On each S^1 factor of T^2 one can introduce a local angular coordinate. More precisely, let

$$\theta_j: U_j \to \mathbb{R}, \quad j = 1, 2,$$

be smooth functions defined on open subsets $U_j \subset S^1$ such that for a point P in the corresponding open set we have the (local) identification

$$P = (\cos \theta_j(P), \sin \theta_j(P)).$$

Due to the periodicity of the trigonometric functions,

$$e^{i\theta} = e^{i(\theta + 2\pi k)}$$
 for all $k \in \mathbb{Z}$,

the function θ_j is defined only locally; its values are determined modulo 2π . Thus, while θ_j serves as a local coordinate (or parameter) on S^1 , it cannot be defined globally as a real-valued function on S^1 .

However, the exterior derivative of θ_i ,

$$d\theta_i$$
,

is independent of the additive ambiguity. To be explicit, if $\widetilde{\theta}_j$ is any other local angular coordinate with

$$\widetilde{\theta}_j = \theta_j + 2\pi k, \quad k \in \mathbb{Z},$$

then

$$d\widetilde{\theta}_i = d(\theta_i + 2\pi k) = d\theta_i,$$

since the exterior derivative of a constant is zero. This shows that the 1-form $d\theta_j$ is uniquely defined on each S^1 factor, and thereby on the torus T^2 .

In standard Cartesian coordinates on $\mathbb{R}^2 \setminus \{0\}$, a direct computation yields the coordinate expression

$$d\theta = \frac{-y\,dx + x\,dy}{x^2 + y^2}.$$

When restricted to the unit circle (or to any circle via rescaling), this expression computes the infinitesimal change in the angle.

2.3 Non-Exactness and the Integral of $d\theta$

If $d\theta$ were exact—that is, if there existed a global smooth function f on S^1 such that $df = d\theta$ —then by the exactness property the integral over any closed curve would vanish:

$$\int_{\gamma} df = f(\gamma(1)) - f(\gamma(0)) = 0,$$

where γ is any closed loop. However, for a loop γ which represents a full rotation around the circle (or a nontrivial element in $H_1(S^1; \mathbb{Z})$), one has

$$\int_{\gamma} d\theta = 2\pi k,$$

with k being the winding number (typically nonzero). Hence, $d\theta$ is closed (since $d(d\theta) = 0$ identically) but not exact. The non-exactness of $d\theta$ reflects the nontrivial topology of S^1 and, by extension, of T^2 .

3 Elliptic Curve

An **elliptic curve** E over a field K (like \mathbb{C}) is given in Weierstrass form by a cubic polynomials in two variables:

$$E: \quad y^2 = x^3 + ax + b$$

where $a, b \in K$ satisfy the nonvanishing discriminant condition $\Delta = -16(4a^3 + 27b^2) \neq 0$.

A Calculus

A.1 Differentiation of Arctangent

Compute $\frac{d}{dx} \tan^{-1} u$:

$$y = \tan^{-1}(u),$$

$$\tan y = u,$$

$$\frac{d}{dx} \tan y = \frac{d}{dx} u,$$

$$\sec^2 y \frac{dy}{dx} = \frac{du}{dx},$$

$$\frac{dy}{dx} = \frac{1}{\sec^2 y} \frac{du}{dx}$$

$$= \frac{1}{1 + \tan^2 y} \frac{du}{dx} = \frac{1}{1 + u^2} \frac{du}{dx}.$$

Thus,

$$\frac{dy}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$
, i.e., $\frac{d}{dx} \tan^{-1} u = \frac{1}{1+u^2} \frac{du}{dx}$.

A.2 Generalizing Differentials

In single-variable calculus, we learn:

$$y = f(x) \implies \frac{dy}{dx} = f'(x) \implies dy = f'(x) dx.$$

If y depends on x alone, then a small change dx in x produces a corresponding small change dy in y. The amount of change in y is given by f'(x) dx.

Intuitive Idea. The derivative f'(x) tells us how fast y changes when x changes, and dx tells you how much x changed. We multiply the two to get the approximate change in y.

Extending to Two Variables. Now suppose x depends on two quantities, say r and θ . We write:

$$x = x(r, \theta)$$
.

We want to figure out what happens if both r and θ change a little bit. How does x change?

1. (Think of r changing while θ is frozen.) If we imagine θ held fixed, then x is effectively a one-variable function of r. So a small change in r (call it dr) would change x by

(rate of change w.r.t.
$$r$$
) $\times dr = \frac{\partial x}{\partial r} dr$.

The partial derivative of x with respect to r, $\frac{\partial x}{\partial r}$, tells us how fast x changes if only r changes and θ stays fixed.

2. (Think of θ changing while r is frozen.) Similarly, if r is held fixed, then x is effectively a one-variable function of θ . So a small change in θ (call it $d\theta$) would change x by

(rate of change w.r.t.
$$\theta$$
) $\times d\theta = \frac{\partial x}{\partial \theta} d\theta$.

3. (Add the two contributions together.) If *both* r and θ change at the same time, then the *total* change in x, which we call dx, is the sum of the two partial changes:

$$dx = \frac{\partial x}{\partial r} dr + \frac{\partial x}{\partial \theta} d\theta.$$