

Ù&@^œ^¦ÊÁQ}&È		H€»Á/ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ∄, ãÁÜæ&\ ∄, *ÁÛ^• ৫^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.73$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.15 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 1.85 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	1		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>48</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.75	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.383	k-ft
$M_z =$	0.036	k-ft
M _{y allowable} =	1.266	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>34%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6	
$F_{ty} =$	35	ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.002	k-ft
$P_n =$	0.113	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>5%</u>	

A cross brace kit is required every 37 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	<u>Rear</u>
Tensile Load =	<u>48.58</u>	<u>1735.74</u> k
Compressive Load =	978.93	<u>1142.28</u> k
Lateral Load =	<u>1.67</u>	<u>1041.87</u> k
Moment (Weak Axis) =	0.00	0.00 k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24964.1 in-lbs Resisting Force Required = 832.14 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1386.90 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding 240.35 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 600.88 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 240.35 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 $P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	322 lbs	322 lbs	322 lbs	322 lbs	373 lbs	373 lbs	373 lbs	373 lbs	492 lbs	492 lbs	492 lbs	492 lbs	-20 lbs	-20 lbs	-20 lbs	-20 lbs
FB	217 lbs	217 lbs	217 lbs	217 lbs	486 lbs	486 lbs	486 lbs	486 lbs	507 lbs	507 lbs	507 lbs	507 lbs	-800 lbs	-800 lbs	-800 lbs	-800 lbs
F_V	29 lbs	29 lbs	29 lbs	29 lbs	430 lbs	430 lbs	430 lbs	430 lbs	342 lbs	342 lbs	342 lbs	342 lbs	-481 lbs	-481 lbs	-481 lbs	-481 lbs
P _{total}	2443 lbs	2533 lbs	2624 lbs	2714 lbs	2762 lbs	2853 lbs	2944 lbs	3034 lbs	2902 lbs	2992 lbs	3083 lbs	3173 lbs	322 lbs	377 lbs	431 lbs	485 lbs
M	250 lbs-ft	250 lbs-ft	250 lbs-ft	250 lbs-ft	466 lbs-ft	466 lbs-ft	466 lbs-ft	466 lbs-ft	516 lbs-ft	516 lbs-ft	516 lbs-ft	516 lbs-ft	669 lbs-ft	669 lbs-ft	669 lbs-ft	669 lbs-ft
е	0.10 ft	0.10 ft	0.10 ft	0.09 ft	0.17 ft	0.16 ft	0.16 ft	0.15 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	2.08 ft	1.78 ft	1.55 ft	1.38 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	244.8 psf	243.6 psf	242.4 psf	241.4 psf	251.8 psf	250.3 psf	248.9 psf	247.5 psf	260.9 psf	258.9 psf	257.1 psf	255.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	313.5 psf	309.1 psf	305.2 psf	301.5 psf	379.6 psf	372.2 psf	365.5 psf	359.3 psf	402.3 psf	393.9 psf	386.3 psf	379.2 psf	290.5 psf	189.5 psf	158.3 psf	144.3 psf

Ballast Width

1903 lbs 1994 lbs 2084 lbs 2175 lbs

23 in

<u>24 in</u>

22 in

21 in

Maximum Bearing Pressure = 402 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbs S.F. = 1.67 Weight Required = 0.00 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		21 in			21 in		21 in			
Support	Outer	Inner	Outer	Outer	Outer Inner Outer		Outer	Inner	Outer	
F _Y	52 lbs	126 lbs	50 lbs	162 lbs	448 lbs	159 lbs	15 lbs	37 lbs	14 lbs	
F _V	0 lbs	0 lbs	0 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2409 lbs	2482 lbs	2406 lbs	2405 lbs	2691 lbs	2402 lbs	704 lbs	726 lbs	703 lbs	
M	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	
f _{min}	275.2 sqft	283.6 sqft	274.9 sqft	274.5 sqft	307.4 sqft	274.3 sqft	80.5 sqft	82.9 sqft	80.4 sqft	
f _{max}	275.3 psf	283.7 psf	275.0 psf	275.2 psf	307.7 psf	274.7 psf	80.5 psf	83.0 psf	80.4 psf	

Maximum Bearing Pressure = 308 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.753 k	Maximum Axial Load =	1.098 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>13%</u>	Utilization =	<u>19%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.601 k	Maximum Axial Load =	0.113 k
Maximum Axial Load = M8 Bolt Shear Capacity =	0.601 k 5.692 k	Maximum Axial Load = M10 Bolt Capacity =	0.113 k 8.894 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.006 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 48.00 \text{ in}$$

$$J = 0.255$$

$$124.989$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.7 \text{ ksi}$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

L14

$$L_{b} = 48.00 \text{ in}$$

$$J = 0.255$$

$$129.794$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$ME = MDIRC-1.6Dc* \sqrt{(1.05)}$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 29.7$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$k = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.266 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 7.4$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

$$\phi F_L = 28.5 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{ll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 21.0529 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} \mathsf{L_b} = & 33.78 \text{ in} \\ \mathsf{ry} = & 1.374 \\ \mathsf{Cb} = & 1.36 \\ & 24.5845 \\ & & \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ \mathsf{S1} = & 1.37733 \\ & S2 = & 1.2C_c \\ & \mathsf{S2} = & 79.2 \\ & \varphi \mathsf{F_L} = & \varphi \mathsf{b} [\mathsf{Bc\text{-}Dc^*Lb/(1.2^*ry^*\sqrt{(Cb))}}] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.8 \text{ ksi}$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

(R)
$$\frac{\theta_{Y}}{1.00}$$

3.4.16.1 N/A for Weak Direction

S1 = $S2 = C_t$ S2 = 141.0 $\phi F_L = 1.17 \phi y F c y$ $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2 3.4.16.2

$$\begin{array}{lll} \text{N/A for Strong Direction} & & b/t = & 24.46 \\ & t = & 2.6 \\ & ds = & 6.05 \\ & rs = & 3.49 \\ & S = & 21.70 \\ & \rho st = & 0.22 \\ & F_{UT} = & 9.37 \\ & F_{ST} = & 28.24 \\ & \phi F_L = Fut + (Fst - Fut) \rho st < Fst \end{array}$$

3.4.18 h/t =24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{rll} \phi F_L St = & 29.8 \text{ ksi} \\ Ix = & 364470 \text{ mm}^4 \\ & 0.876 \text{ in}^4 \\ y = & 37.77 \text{ mm} \\ Sx = & 0.589 \text{ in}^3 \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$y = 37.77 \text{ mm}$$

 $Sx = 0.589 \text{ in}^3$
 $M_{max}St = 1.463 \text{ k-ft}$

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

$$\varphi F_L = Fut + (Fst - Fut)pst < Fst$$

 $\varphi F_L = 13.5 \text{ ksi}$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 13.5 \text{ ksi} \\ y = & 217168 \text{ mm}^4 \\ & 0.522 \text{ in}^4 \\ x = & 29 \text{ mm} \\ \text{Sy} = & 0.457 \text{ in}^3 \\ M_{\text{max}} W k = & 0.513 \text{ k-ft} \end{array}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{b_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 31.2 \text{ ksi}$$

$$\varphi F_L = 31.2 \text{ ks}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

0.096 in⁴

0.163 in³

15 mm

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 18.00 \text{ in} \\ J &= & 0.16 \\ & 47.2194 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.2 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 15 \\ Cc = & 15 \\ \end{array}$$

$$\begin{array}{cccc} S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \varphi F_L = & 1.3 \varphi y F c y \\ \varphi F_L = & 43.2 \text{ ksi} \\ \end{array}$$

$$\begin{array}{cccc} \varphi F_L W k = & 31.2 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ X = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ \end{array}$$

$$\begin{array}{ccccc} M_{max} W k = & 0.423 \text{ k-ft} \end{array}$$

7.75

mDbr

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6P}$$

$$S1 = 1.6Dp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{1}{mDhr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 33.3 ksi

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

x = 15 mm

$$x = 15 \text{ mr}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$
 103.073

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.408 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 1$$

$$c_2 = k_1 Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 in^3$$

SCHLETTER

Compression

3.4.7 $\lambda = 1.68476$ r = 0.437 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi c = 0.81587$ $\phi F_L = (\phi cc Fcy)/(\lambda^2)$ $\phi F_L = 10.0603 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 10.06 \text{ ksi}$
 $\phi F_L = 323.87 \text{ mm}^2$
0.50 in²
 $\phi F_L = 5.05 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-113.295	-113.295	0	0
2	M16	V	-182.257	-182,257	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	226.59	226.59	0	0
2	M16	V	108.369	108.369	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	228.145	2	280.456	2	.003	10	0	10	0	1	0	1
2		min	-268.874	3	-423.807	3	15	3	0	3	0	1	0	1
3	N7	max	.002	3	271.634	1	.016	10	0	10	0	1	0	1
4		min	13	2	3.287	12	539	1	0	1	0	1	0	1
5	N15	max	0	15	753.023	1	.148	9	0	9	0	1	0	1
6		min	-1.284	2	-37.369	3	688	3	001	3	0	1	0	1
7	N16	max	727.462	2	878.679	2	0	2	0	9	0	1	0	1
8		min	-801.436	3	-1335.184	3	-86.303	3	0	3	0	1	0	1
9	N23	max	.002	3	271.856	1	.746	1	.001	1	0	1	0	1
10		min	13	2	3.717	12	016	10	0	10	0	1	0	1
11	N24	max	228.145	2	282.87	2	87.045	3	0	9	0	1	0	1
12		min	-269.474	3	-423.063	3	003	10	0	3	0	1	0	1
13	Totals:	max	1182.208	2	2636.577	2	0	9						
14		min	-1339.836	3	-2211.349	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	202.226	2	.656	4	.111	1	0	10	0	15	0	1
2			min	-363.406	3	.154	15	073	3	0	1	0	1	0	1
3		2	max	202.352	2	.605	4	.111	1	0	10	0	15	0	15
4			min	-363.312	3	.142	15	073	3	0	1	0	3	0	4
5		3	max	202.477	2	.553	4	.111	1	0	10	0	15	0	15
6			min	-363.218	3	.13	15	073	3	0	1	0	3	0	4
7		4	max	202.603	2	.502	4	.111	1	0	10	0	9	0	15
8			min	-363.123	3	.118	15	073	3	0	1	0	3	0	4
9		5	max	202.729	2	.451	4	.111	1	0	10	0	9	0	15
10			min	-363.029	3	.106	15	073	3	0	1	0	3	0	4
11		6	max	202.855	2	.4	4	.111	1	0	10	0	9	0	15
12			min	-362.934	3	.094	15	073	3	0	1	0	3	0	4
13		7	max	202.981	2	.349	4	.111	1	0	10	0	9	0	15
14			min	-362.84	3	.082	15	073	3	0	1	0	3	0	4
15		8	max	203.107	2	.298	4	.111	1	0	10	0	9	0	15
16			min	-362.746	3	.07	15	073	3	0	1	0	3	0	4
17		9	max	203.233	2	.247	4	.111	1	0	10	0	1	0	15
18			min	-362.651	3	.058	15	073	3	0	1	0	3	0	4
19		10	max	203.358	2	.195	4	.111	1	0	10	0	1	0	15
20			min	-362.557	3	.046	15	073	3	0	1	0	3	0	4
21		11	max	203.484	2	.144	4	.111	1	0	10	0	1	0	15
22			min	-362.462	3	.033	12	073	3	0	1	0	3	0	4
23		12	max	203.61	2	.103	2	.111	1	0	10	0	1	0	15
24			min	-362.368	3	.013	12	073	3	0	1	0	3	0	4
25		13	max	203.736	2	.064	2	.111	1	0	10	0	1	0	15
26			min	-362.274	3	014	3	073	3	0	1	0	3	0	4
27		14	max	203.862	2	.024	2	.111	1	0	10	0	1	0	15
28			min	-362.179	3	044	3	073	3	0	1	0	3	0	4
29		15	max	203.988	2	014	15	.111	1	0	10	0	1	0	15
30			min	-362.085	3	074	3	073	3	0	1	0	3	0	4
31		16	max	204.114	2	026	15	.111	1	0	10	0	1	0	15
32			min	-361.99	3	111	4	073	3	0	1	0	3	0	4
33		17	max	204.24	2	038	15	.111	1	0	10	0	1	0	15
34			min	-361.896	3	163	4	073	3	0	1	0	3	0	4
35		18	max	204.365	2	05	15	.111	1	0	10	0	1	0	15
36			min	-361.802	3	214	4	073	3	0	1	0	3	0	4
37		19	max	204.491	2	062	15	.111	1	0	10	0	1	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft	l LC	y-y Mome		z-z Mome	<u>LC</u>
38				-361.707	3	265	4	073	3	0	1	0	3	0	4
39	M3	1		187.255	2	1.759	4	.002	10	0	10	00	1	0	4
40				-177.951	3	.414	15	<u>145</u>	1	0	1	0	10	0	15
41		2	max	187.186	2	1.582	4	.002	10	0	10	0	1	0	2
42			min	-178.003	3	.372	15	145	1	0	1	0	10	0	12
43		3		187.116	2	1.405	4	.002	10	0	10	0	1	0	2
44			min	-178.055	3	.33	15	145	1	0	1	0	10	0	3
45		4	max	187.047	2	1.228	4	.002	10	0	10	0	1	0	15
46			min	-178.107	3	.289	15	145	1	0	1	0	10	0	4
47		5	max	186.978	2	1.051	4	.002	10	0	10	0	1	0	15
48			min	-178.159	3	.247	15	145	1	0	1	0	10	0	4
49		6	max	186.908	2	.875	4	.002	10	0	10	0	1	0	15
50			min	-178.211	3	.206	15	145	1	0	1	0	10	0	4
51		7		186.839	2	.698	4	.002	10	0	10	0	1	0	15
52			min	-178.263	3	.164	15	145	1	0	1	0	10	0	4
53		8	max	186.77	2	.521	4	.002	10	0	10	0	1	0	15
54				-178.315	3	.123	15	145	1	0	1	0	10	001	4
55		9	max	186.7	2	.344	4	.002	10	0	10	0	1	0	15
56				-178.367	3	.081	15	145	1	0	1	0	10	001	4
57		10	max	186.631	2	.167	4	.002	10	0	10	0	1	0	15
58		10		-178.419	3	.039	15	145	1	0	1	0	10	001	4
59		11		186.562	2	.019	2	.002	10	0	10	0	1	0	15
60				-178.471	3	038	3	145	1	0	1	0	10	001	4
61		12		186.492	2	044	15	.002	10	0	10	0	1	0	15
62		12	min	-178.523	3	186	4	145	1	0	1	0	10	001	4
63		13		186.423	2	085	15	.002	10	0	10	0	1	0	15
64		13		-178.575	3	363	4	145	1	0	1	0	10	001	4
		14			2	303 127	15	.002	10	0	10	0	1	<u>001</u> 0	15
65		14		186.354					1		1	0			
66		4.5		-178.627	3_	54	4	145		0			10	<u>001</u>	4
67 68		15	max	186.284 -178.679	3	168 717	15	.002 145	10	<u>0</u> 	10	<u> </u>	10	<u>0</u> 	15
		16				<i>111</i> 21	15								
69		16		186.215	2			.002	10	0	10	0	9	0	15
70		47		-178.731	3	894	4	<u>145</u>	1	0	1	0	11	0	4
71		17		186.146	2	252	15	.002	10	0	10	0	10	0	15
72		40		-178.783	3	-1.071	4	145	1	0	1	0	1	0	4
73		18		186.076	2	293	15	.002	10	0	10	0	10	0	15
74		40		-178.835	3	-1.247	4	<u>145</u>	1	0	1	0	1	0	4
75		19		186.007	2	335	15	.002	10	0	10	0	10	0	1
76				-178.887	3_	-1.424	4	145	1	0	1	0	1	0	1
77	<u>M4</u>	1	max		_1_	0	1	.016	10	0	1	0	3	0	1
78					12	0	1	565	1	0	1	0	2	0	1
79		2		270.534	_1_	0	1	.016	10	0	1	0	15	0	1
80			min	2.737	12	0	1	<u>565</u>	1	0	1	0	1	0	1
81		3		270.599	_1_	0	1	.016	10	0	1	0	15	0	1
82			min	2.769	12	0	1	565	1	0	1	0	1	0	1
83		4	max	270.663	_1_	0	1	.016	10	0	1	0	10	0	1
84			min	2.801	12	0	1	565	1	0	1	0	1	0	1
85		5	max		_1_	0	1	.016	10	0	1	0	10	0	1
86			min		12	0	1	565	1	0	1	0	1	0	1
87		6	max	270.793	1	0	1	.016	10	0	1	0	10	0	1
88			min	2.866	12	0	1	565	1	0	1	0	1	0	1
89		7	max	270.857	1	0	1	.016	10	0	1	0	10	0	1
90			min	2.898	12	0	1	565	1	0	1	0	1	0	1
91		8	max		1	0	1	.016	10	0	1	0	10	0	1
92			min	2.931	12	0	1	565	1	0	1	0	1	0	1
93		9	max		1	0	1	.016	10	0	1	0	10	0	1
94			min	2.963	12	0	1	565	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC_
95		10	max	271.052	11	0	1	.016	10	0	1	0	10	0	1
96			min	2.996	12	0	1	565	1	0	1	0	1	0	1
97		11	max	271.116	1	0	1	.016	10	0	1	0	10	0	1
98			min	3.028	12	0	1	565	1	0	1	0	1	0	1
99		12	max	271.181	1	0	1	.016	10	0	1	0	10	0	1
100		40	min	3.06	12	0	1	565	1	0	1	0	1	0	1
101		13	max	271.246	1	0	1	.016	10	0	1	0	10	0	1
102		4.4	min	3.093	12	0	1	565	1	0	1	0	1	0	1
103		14	max	271.31	1	0	1	.016	10	0	1	0	10	0	1
104		15	min	3.125	12	0	1	565	1	0	1	0	1	0	1
105		15	max	271.375	1 12	0	1	.016	10	0	1	0	10	0	1
106		16	min	3.157	1	0	1	565	10	0	1	0	_		1
107 108		16	max	271.44 3.19	12	0	1	.016 565	10	0	1	0	10	0	1
109		17		271.504	1	0	1	.016	10	0	1	0	10	0	1
110		17	max min	3.222	12	0	1	565	1	0	1	0	1	0	1
111		18	max	271.569	1	0	1	.016	10	0	1	0	10	0	1
112		10	min	3.254	12	0	1	565	1	0	1	0	1	0	1
113		19	max	271.634	1	0	1	.016	10	0	1	0	10	0	1
114		13	min	3.287	12	0	1	565	1	0	1	0	1	0	1
115	M6	1	max	632.538	2	.656	4	.023	9	0	3	0	3	0	1
116	IVIO		min	-1097.981	3	.154	15	272	3	0	2	0	2	0	1
117		2	max	632.663	2	.605	4	.023	9	0	3	0	3	0	15
118		_	min	-1097.887	3	.142	15	272	3	0	2	0	2	0	4
119		3	max	632.789	2	.553	4	.023	9	0	3	0	3	0	15
120			min	-1097.792	3	.13	15	272	3	0	2	0	2	0	4
121		4	max		2	.502	4	.023	9	0	3	0	3	0	15
122			min	-1097.698	3	.118	15	272	3	0	2	0	2	0	4
123		5	max	633.041	2	.451	4	.023	9	0	3	0	3	0	15
124			min	-1097.603	3	.106	15	272	3	0	2	0	2	0	4
125		6	max	633.167	2	.407	2	.023	9	0	3	0	3	0	15
126			min	-1097.509	3	.086	12	272	3	0	2	0	2	0	4
127		7	max	633.293	2	.367	2	.023	9	0	3	0	9	0	15
128			min	-1097.415	3	.067	12	272	3	0	2	0	3	0	4
129		8	max	633.419	2	.327	2	.023	9	0	3	0	9	0	15
130				-1097.32	3	.047	12	272	3	0	2	0	3	0	4
131		9	max		2	.288	2	.023	9	0	3	0	9	0	15
132			min	-1097.226	3	.027	12	272	3	0	2	0	3	0	4
133		10	max	633.67	2	.248	2	.023	9	0	3	0	9	0	12
134			min	-1097.131	3	001	3	272	3	0	2	0	3	0	2
135		11		633.796	2	.208	2	.023	9	0	3	0	9	0	12
136				-1097.037	3	031	3	272	3	0	2	0	3	0	2
137		12		633.922	2	.168	2	.023	9	0	3	0	9	0	12
138				-1096.943	3	061	3	272	3	0	2	0	3	0	2
139		13	max	634.048	2	.128	2	.023	9	0	3	0	9	0	12
140			min		3	091	3	272	3	0	2	0	3	0	2
141		14	max	634.174	2	.088	2	.023	9	0	3	0	9	0	12
142			min	-1096.754	3	121	3	272	3	0	2	0	3	0	2
143		15	max	634.3	2	.048	2	.023	9	0	3	0	9	0	12
144			min	-1096.659	3	151	3	272	3	0	2	0	3	0	2
145		16	max	634.426	2	.009	2	.023	9	0	3	0	9	0	12
146			min	-1096.565	3	181	3	272	3	0	2	0	3	0	2
147		17	max	634.551	2	031	2	.023	9	0	3	0	9	0	12
148			min	-1096.471	3	211	3	272	3	0	2	0	3	0	2
149		18	max	634.677	2	05	15	.023	9	0	3	0	9	0	3
150			min	-1096.376	3	24	3	272	3	0	2	0	3	0	2
151		19	max	634.803	2	062	15	.023	9	0	3	0	9	0	3

Model Name

: Schletter, Inc. : HCV

Standard DV/Min

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
152			min	-1096.282	3	27	3	272	3	0	2	0	3	0	2
153	M7	1	max	601.396	2	1.761	4	.037	3	0	9	0	1	0	2
154			min	-501.204	3	.414	15	014	1	0	3	0	3	0	3
155		2	max	601.327	2	1.584	4	.037	3	0	9	0	1	0	2
156			min	-501.256	3	.372	15	014	1	0	3	0	3	0	3
157		3	max	601.257	2	1.407	4	.037	3	0	9	0	1	0	2
158			min	-501.308	3	.331	15	014	1	0	3	0	3	0	3
159		4	max		2	1.23	4	.037	3	0	9	0	1	0	2
160			min	-501.36	3	.289	15	014	1	0	3	0	3	0	3
161		5	max	601.119	2	1.054	4	.037	3	0	9	0	1	0	15
162			min	-501.412	3	.248	15	014	1	0	3	0	3	0	3
163		6	max	601.049	2	.877	4	.037	3	0	9	0	1	0	15
164			min	-501.464	3	.206	15	014	1	0	3	0	3	0	4
165		7	max	600.98	2	.7	4	.037	3	0	9	0	1	0	15
166			min	-501.516	3	.165	15	014	1	0	3	0	3	0	4
167		8	max		2	.523	4	.037	3	0	9	0	1	0	15
168			min	-501.568	3	.123	15	014	1	0	3	0	3	001	4
169		9	max		2	.35	2	.037	3	0	9	0	1	0	15
170			min	-501.62	3	.078	12	014	1	0	3	0	3	001	4
171		10	max	600.772	2	.212	2	.037	3	0	9	0	1	0	15
172		10	min	-501.672	3	.004	3	014	1	0	3	0	3	001	4
173		11	max		2	.074	2	.037	3	0	9	0	1	0	15
174		11	min	-501.724	3	1	3	014	1	0	3	0	3	001	4
		12							3			-	1		
175		12	max		2	043	15	.037	1	0	9	0		0	15
176		4.2	min	-501.776	3	203	3	014		0	3	0	3	001	4
177		13	max		2	085	15	.037	3	0	9	0	1	0	15
178		4.4	min	-501.828	3	361	4	014	1	0	3	0	3	001	4
179		14	max		2	126	15	.037	3	0	9	0	1	0	15
180		4.5	min	-501.88	3	538	4	014	1	0	3	0	3	001	4
181		15	max	600.425	2	168	15	.037	3	0	9	0	1	0	15
182		40	min	-501.932	3	715	4	014	1	0	3	0	3	0	4
183		16	max		2	21	15	.037	3	0	9	0	1	0	15
184			min	-501.984	3_	892	4	014	1	0	3	0	3	0	4
185		17	max		2_	251	15	.037	3	0	9	0	1	0	15
186			min	-502.036	3_	-1.068	4_	014	1	0	3	0	3	0	4
187		18	max		2	293	15	.037	3	0	9	0	9	0	15
188			min	-502.088	3	-1.245	4	014	1	0	3	0	3	0	4
189		19	max		2	334	15	.037	3	0	9	0	9	0	1
190			min	-502.14	3	-1.422	4	014	1	0	3	0	3	0	1
191	<u>M8</u>	1	max	751.859	_1_	0	1	.156	9	0	1	0	2	0	1
192				-38.243	3	0	1	683	3	0	1	0	3	0	1
193		2	max	751.923	<u>1</u>	0	1_	.156	9	0	1	0	9	0	1
194			min	-38.194	3	0	1	683	3	0	1	0	3	0	1
195		3	max	751.988	1	0	1	.156	9	0	1	0	9	0	1
196			min	-38.146	3	0	1	683	3	0	1	0	3	0	1
197		4	max	752.053	1	0	1	.156	9	0	1	0	9	0	1
198			min	-38.097	3	0	1	683	3	0	1	0	3	0	1
199		5	max		1	0	1	.156	9	0	1	0	9	0	1
200			min	-38.049	3	0	1	683	3	0	1	0	3	0	1
201		6	max	752.182	1	0	1	.156	9	0	1	0	9	0	1
202			min	-38	3	0	1	683	3	0	1	0	3	0	1
203		7		752.247	1	0	1	.156	9	0	1	0	9	0	1
204			min	-37.952	3	0	1	683	3	0	1	0	3	0	1
205		8		752.312	1	0	1	.156	9	0	1	0	9	0	1
206			min	-37.903	3	0	1	683	3	0	1	0	3	0	1
207		9	max	752.376	1	0	1	.156	9	0	1	0	9	0	1
208			min	-37.855	3	0	1	683	3	0	1	0	3	0	1
200			1111111	·51.000	J	U		005	J	U		U	J	U	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

209	000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	I -		l _	1
211			10				_				_	1				_
212			4.4													
213			11											_		_
214			40										_			
216			12													-
14			12									_				
218			13				_								_	-
19			4.4							_				_	1	
229			14								-					_
220			4.5							_	_	_	_	_		•
221			15							_				_		
1			40													
17 max 172 max 175 m			16											_		_
224			4-7								-					
225			1/													-
226			40								_	_		_		
19			18				_								_	_
228			1.0							_						
239 M10			19								-		_			-
230											_	_		_		•
231		<u>M10</u>	1						_							_
232																_
233			2						_							
Description													_			_
235			3	max												
236				min							_					_
237			4	max										_	_	
238				min					106	•					1	
Color			5	max						10	0		0	-	0	15
240				min					106	•	_		0	_		
241 7 max 204.248 2 .349 4 0 10 0 1 0 1 0 15 242 min -291.206 3 .082 15 106 1 0 3 0 3 0 4 243 8 max 204.374 2 .298 4 0 10 0 1 0 9 0 15 244 min -291.112 3 .07 15 -106 1 0 3 0 3 0 4 245 9 max 204.5 2 .247 4 0 10 0 1 0 10 0 15 246 min -291.018 3 .058 15 106 1 0 3 0 3 0 4 247 10 max 204.626 2 .195 4 0			6						_							
242 min -291.206 3 .082 15 106 1 0 3 0 3 0 4 243 8 max 204.374 2 .298 4 0 10 0 1 0 9 0 15 244 min -291.112 3 .07 15 106 1 0 3 0 3 0 4 245 9 max 204.5 2 .247 4 0 10 0 1 0 10 0 15 246 min -291.018 3 .058 15 106 1 0 3 0 3 0 4 247 10 max 204.626 2 .195 4 0 10 0 1 0 10 0 15 248 min -290.829 3 .034 15 106 1<				_									0		0	_
243 8 max 204.374 2 .298 4 0 10 0 1 0 9 0 15 244 min -291.112 3 .07 15 106 1 0 3 0 3 0 4 245 9 max 204.5 2 .247 4 0 10 0 1 0 10 0 15 246 min -291.018 3 .058 15 106 1 0 3 0 3 0 4 247 10 max 204.626 2 .195 4 0 10 0 1 0 10 0 15 248 min -290.923 3 .046 15 106 1 0 3 0 3 0 4 249 11 max 204.752 2 .144 4 0			7	max					_							15
244 min -291.112 3 .07 15 106 1 0 3 0 3 0 4 245 9 max 204.5 2 .247 4 0 10 0 1 0 10 0 15 0 10 0 1 0 10 0 15 0 15 246 min -291.018 3 .058 15 106 1 0 3 0 3 0 4 4 0 10 0 1 0 10 0 1 0 10 0 1 0 10 0 1 0 10 0 1 0 10 0 1 0 10 0 1 0 10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>0</td> <td>3</td> <td>0</td> <td>_</td>				min								3	0	3	0	_
245 9 max 204.5 2 .247 4 0 10 0 1 0 10 0 15 246 min -291.018 3 .058 15 106 1 0 3 0 3 0 4 247 10 max 204.626 2 .195 4 0 10 0 1 0 10 0 15 248 min -290.923 3 .046 15 -106 1 0 3 0 3 0 4 249 11 max 204.752 2 .144 4 0 10 0 1 0 10 0 15 250 min -290.829 3 .034 15 106 1 0 3 0 3 0 4 251 12 max 204.877 2 .103 2 0 <td></td> <td></td> <td>8</td> <td>max</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>15</td>			8	max						10	0		0		0	15
246 min -291.018 3 .058 15 106 1 0 3 0 3 0 4 247 10 max 204.626 2 .195 4 0 10 0 1 0 10 0 15 248 min -290.923 3 .046 15 106 1 0 3 0 3 0 4 249 11 max 204.752 2 .144 4 0 10 0 1 0 10 0 15 250 min -290.829 3 .034 15 106 1 0 3 0 3 0 4 251 12 max 204.877 2 .103 2 0 10 0 1 0 10 0 1 0 10 0 15 15 15 15 15 10				min			.07	15	106	•	0	3	0	3	0	_
247 10 max 204.626 2 .195 4 0 10 0 1 0 10 0 15 248 min -290.923 3 .046 15 106 1 0 3 0 3 0 4 249 11 max 204.752 2 .144 4 0 10 0 1 0 10 0 15 250 min -290.829 3 .034 15 106 1 0 3 0 3 0 4 251 12 max 204.827 2 .103 2 0 10 0 1 0 10 0 15 252 min -290.734 3 .022 15 106 1 0 3 0 3 0 4 253 13 max 205.003 2 .064 2 0			9	max					_	10			0		0	15
248 min -290.923 3 .046 15 106 1 0 3 0 3 0 4 249 11 max 204.752 2 .144 4 0 10 0 1 0 10 0 15 250 min -290.829 3 .034 15 106 1 0 3 0 3 0 4 251 12 max 204.877 2 .103 2 0 10 0 1 0 10 0 15 15 252 min -290.734 3 .022 15 106 1 0 3 0 3 0 4 253 13 max 205.003 2 .064 2 0 10 0 1 0 10 0 1 0 10 0 15 15 15 15 15 15 15				min	-291.018	3	.058	15	106	1	0	3	0	_	0	
249 11 max 204.752 2 .144 4 0 10 0 1 0 10 0 15 250 min -290.829 3 .034 15 106 1 0 3 0 3 0 4 251 12 max 204.877 2 .103 2 0 10 0 1 0 10 0 15 252 min -290.734 3 .022 15 106 1 0 3 0 3 0 4 253 13 max 205.003 2 .064 2 0 10 0 1 0 10 0 15 254 min -290.64 3 .001 3 106 1 0 3 0 3 0 4 255 14 max 205.129 2 .024 2 0 </td <td></td> <td></td> <td>10</td> <td>max</td> <td>204.626</td> <td></td> <td>.195</td> <td></td> <td>0</td> <td>10</td> <td>0</td> <td>_1_</td> <td>0</td> <td>10</td> <td>0</td> <td>15</td>			10	max	204.626		.195		0	10	0	_1_	0	10	0	15
250 min -290.829 3 .034 15 106 1 0 3 0 3 0 4 251 12 max 204.877 2 .103 2 0 10 0 1 0 10 0 15 252 min -290.734 3 .022 15 106 1 0 3 0 3 0 4 253 13 max 205.003 2 .064 2 0 10 0 1 0 10 0 15 254 min -290.64 3 .001 3 106 1 0 3 0 3 0 4 255 14 max 205.129 2 .024 2 0 10 0 1 0 10 0 15 256 min -290.546 3 029 3 106 <t< td=""><td>248</td><td></td><td></td><td>min</td><td>-290.923</td><td>3</td><td>.046</td><td>15</td><td>106</td><td>1</td><td>0</td><td>3</td><td>0</td><td>3</td><td>0</td><td>4</td></t<>	248			min	-290.923	3	.046	15	106	1	0	3	0	3	0	4
251 12 max 204.877 2 .103 2 0 10 0 1 0 10 0 15 252 min -290.734 3 .022 15 106 1 0 3 0 3 0 4 253 13 max 205.003 2 .064 2 0 10 0 1 0 10 0 15 254 min -290.64 3 .001 3 106 1 0 3 0 3 0 4 255 14 max 205.129 2 .024 2 0 10 0 1 0 10 0 15 256 min -290.546 3 029 3 106 1 0 3 0 3 0 4 257 15 max 205.255 2 014 15 0	249		11	max	204.752	2	.144		0	10	0		0		0	15
252 min -290.734 3 .022 15106 1 0 3 0 3 0 3 0 4 253 13 max 205.003 2 .064 2 0 10 0 1 0 10 0 15 254 min -290.64 3 .001 3106 1 0 3 0 3 0 3 0 4 255 14 max 205.129 2 .024 2 0 10 0 10 0 1 0 10 0 15 256 min -290.546 3029 3106 1 0 3 0 3 0 3 0 4 257 15 max 205.255 2014 15 0 10 0 1 0 10 0 15 258 min -290.451 306 4106 1 0 3 0 3 0 3 0 4 259 16 max 205.381 2026 15 0 10 0 1 0 0 1 0 10 0 15 260 min -290.357 3111 4106 1 0 3 0 3 0 3 0 4 261 17 max 205.507 2038 15 0 10 0 1 0 0 1 0 10 0 15 262 min -290.262 3163 4106 1 0 3 0 3 0 3 0 4 263 18 max 205.633 205 15 0 10 0 1 0 0 1 0 10 0 15 264 min -290.168 3214 4106 1 0 3 0 3 0 3 0 3 0 4				min					106			3				_
253 13 max 205.003 2 .064 2 0 10 0 1 0 10 0 15 254 min -290.64 3 .001 3 106 1 0 3 0 3 0 4 255 14 max 205.129 2 .024 2 0 10 0 1 0 10 0 15 256 min -290.546 3 029 3 106 1 0 3 0 3 0 4 257 15 max 205.255 2 014 15 0 10 0 1 0 10 0 15 258 min -290.451 3 06 4 106 1 0 3 0 3 0 4 259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min			12						_							15
254 min -290.64 3 .001 3 106 1 0 3 0 3 0 4 255 14 max 205.129 2 .024 2 0 10 0 1 0 10 0 15 256 min -290.546 3 029 3 106 1 0 3 0 3 0 4 257 15 max 205.255 2 014 15 0 10 0 1 0 10 0 15 258 min -290.451 3 06 4 106 1 0 3 0 3 0 4 259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106				min					106	•	0	3	0		0	_
255 14 max 205.129 2 .024 2 0 10 0 1 0 10 0 15 256 min -290.546 3 029 3 106 1 0 3 0 3 0 4 257 15 max 205.255 2 014 15 0 10 0 1 0 10 0 15 258 min -290.451 3 06 4 106 1 0 3 0 3 0 4 259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1			13				.064			10	0		0		0	15
256 min -290.546 3 029 3 106 1 0 3 0 3 0 4 257 15 max 205.255 2 014 15 0 10 0 1 0 10 0 15 258 min -290.451 3 06 4 106 1 0 3 0 3 0 4 259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106	254			min	-290.64	3	.001		106	1	0	3	0	3	0	4
257 15 max 205.255 2 014 15 0 10 0 1 0 10 0 15 258 min -290.451 3 06 4 106 1 0 3 0 3 0 4 259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 <td></td> <td></td> <td>14</td> <td></td> <td></td> <td>2</td> <td>.024</td> <td></td> <td>_</td> <td>10</td> <td></td> <td>1</td> <td>0</td> <td></td> <td>0</td> <td>15</td>			14			2	.024		_	10		1	0		0	15
257 15 max 205.255 2 014 15 0 10 0 1 0 10 0 15 258 min -290.451 3 06 4 106 1 0 3 0 3 0 4 259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 0 10 0 15 264 min -290.168 3 214 4 106 1 0 3 0 3 0 4						3	029		106	1		3		_	0	4
259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 0 10 0 15 264 min -290.168 3 214 4 106 1 0 3 0 3 0 4			15	max		2	014	15	0	10	0	1	0	10	0	15
259 16 max 205.381 2 026 15 0 10 0 1 0 10 0 15 260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 0 10 0 15 264 min -290.168 3 214 4 106 1 0 3 0 3 0 4									106	1	0	3	0		0	
260 min -290.357 3 111 4 106 1 0 3 0 3 0 4 261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 0 10 0 15 264 min -290.168 3 214 4 106 1 0 3 0 3 0 4			16							10					0	15
261 17 max 205.507 2 038 15 0 10 0 1 0 10 0 15 262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 0 10 0 15 264 min -290.168 3 214 4 106 1 0 3 0 3 0 4									<u>1</u> 06			3	0		0	
262 min -290.262 3 163 4 106 1 0 3 0 3 0 4 263 18 max 205.633 2 05 15 0 10 0 1 0 10 0 15 264 min -290.168 3 214 4 106 1 0 3 0 3 0 4			17							10						15
263									106			3	0		0	
264 min -290.168 3214 4106 1 0 3 0 3 0 4			18							10	-		_			_
,, , , , , , , , , , , , , , , , , ,	265		19			2	062	15	0	10	0	1	0	10	0	15

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	LC_
266			min	-290.074	3	265	4	106	1	0	3	0	3	0	4
267	M11	1	max	186.827	2	1.759	4	.151	1	0	3	0	3	0	4
268			min	-178.778	3	.414	15	055	3	0	10	0	1	0	15
269		2	max	186.758	2	1.582	4	.151	1	0	3	0	3	0	2
270			min	-178.83	3	.372	15	055	3	0	10	0	1	0	3
271		3	max	186.689	2	1.405	4	.151	1	0	3	0	3	0	2
272			min	-178.882	3	.33	15	055	3	0	10	0	1	0	3
273		4	max	186.619	2	1.228	4	.151	1	0	3	0	3	0	15
274			min	-178.934	3	.289	15	055	3	0	10	0	1	0	4
275		5	max	186.55	2	1.051	4	.151	1	0	3	0	3	0	15
276			min	-178.986	3	.247	15	055	3	0	10	0	1	0	4
277		6	max	186.481	2	.875	4	.151	1	0	3	0	3	0	15
278			min	-179.038	3	.206	15	055	3	0	10	0	1	0	4
279		7	max	186.411	2	.698	4	.151	1	0	3	0	3	0	15
280			min	-179.09	3	.164	15	055	3	0	10	0	1	0	4
281		8	max	186.342	2	.521	4	.151	1	0	3	0	3	0	15
282			min	-179.142	3	.123	15	055	3	0	10	0	1	001	4
283		9	max	186.273	2	.344	4	.151	1	0	3	0	3	0	15
284		9	min	-179.194	3	.081	15	055	3	0	10	0	1	001	4
285		10		186.203	2	.167	4	.151	1		3	0	3	0	15
286		10	max min	-179.246	3	.039	15	055	3	0	10	0	1	001	4
287		11		186.134	2	.039	2	.151	1		3	0	3	0	15
		11	max	-179.298			3		3	0					
288		40	min		3	045		055		0	10	0	1	001	4
289		12	max	186.065	2	044	15	.151	1	0	3	0	3	0	15
290		40	min	-179.35	3	186	4	055	3	0	10	0	1	001	4
291		13	max	185.995	2	085	15	.151	1	0	3	0	3	0	15
292		4.4	min	-179.402	3	363	4	055	3	0	10	0	1	001	4
293		14	max	185.926	2	127	15	.151	1	0	3	0	3	0	15
294			min	-179.454	3	54	4	055	3	0	10	0	1	001	4
295		15	max	185.857	2	168	15	.151	1	0	3	0	3	0	15
296		1.0	min	-179.506	3	717	4	055	3	0	10	0	1	0	4
297		16	max	185.788	2	21	15	.151	1	0	3	0	3	0	15
298			min	-179.558	3	894	4	055	3	0	10	0	10	0	4
299		17	max	185.718	2	252	15	.151	1	0	3	0	3	0	15
300			min	-179.61	3	-1.071	4	055	3	0	10	0	10	0	4
301		18	max	185.649	2	293	15	.151	1	0	3	0	3	0	15
302			min	-179.662	3	-1.247	4	055	3	0	10	0	10	0	4
303		19	max	185.58	2	335	15	.151	1	0	3	0	3	0	1
304			min	-179.714	3	-1.424	4	055	3	0	10	0	10	0	1
305	M12	1	max	270.691	1	0	1	.781	1	0	1	0	2	0	1
306				3.134	12	0	1	016	10	0	1	0	3	0	1
307		2	max	270.756	1	0	1	.781	1	0	1	0	1	0	1
308			min	3.167	12	0	1	016	10	0	1	0	15	0	1
309		3	max	270.82	1	0	1	.781	1	0	1	0	1	0	1
310			min	3.199	12	0	1	016	10	0	1	0	10	0	1
311		4	max	270.885	1	0	1	.781	1	0	1	0	1	0	1
312			min	3.231	12	0	1	016	10	0	1	0	10	0	1
313		5	max	270.95	1	0	1	.781	1	0	1	0	1	0	1
314			min	3.264	12	0	1	016	10	0	1	0	10	0	1
315		6	max	271.014	1	0	1	.781	1	0	1	0	1	0	1
316			min	3.296	12	0	1	016	10	0	1	0	10	0	1
317		7		271.079	1	0	1	.781	1	0	1	0	1	0	1
318			min	3.328	12	0	1	016	10	0	1	0	10	0	1
319		8		271.144	1	0	1	.781	1	0	1	0	1	0	1
320		Ť	min	3.361	12	0	1	016	10	0	1	0	10	0	1
321		9	max		1	0	1	.781	1	0	1	0	1	0	1
322		Ť	min	3.393	12	0	1	016	10	0	1	0	10	0	1
022			1111111	0.000	12	0		.010	10	U		<u> </u>	10	J	

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	271.273	1	0	1	.781	1	0	1	0	1	0	1
324			min	3.426	12	0	1	016	10	0	1	0	10	0	1
325		11	max	271.338	1	0	1	.781	1	0	1	0	1	0	1
326			min	3.458	12	0	1	016	10	0	1	0	10	0	1
327		12	max	271.403	1	0	1	.781	1	0	1	0	1	0	1
328			min	3.49	12	0	1	016	10	0	1	0	10	0	1
329		13	max	271.467	1	0	1	.781	1	0	1	0	1	0	1
330			min	3.523	12	0	1	016	10	0	1	0	10	0	1
331		14	max	271.532	1	0	1	.781	1	0	1	0	1	0	1
332			min	3.555	12	0	1	016	10	0	1	0	10	0	1
333		15	max	271.597	1	0	1	.781	1	0	1	0	1	0	1
334			min	3.587	12	0	1	016	10	0	1	0	10	0	1
335		16	max	271.661	1	0	1	.781	1	0	1	.001	1	0	1
336		1	min	3.62	12	0	1	016	10	0	1	0	10	0	1
337		17	max	271.726	1	0	1	.781	1	0	1	.001	1	0	1
338			min	3.652	12	0	1	016	10	0	1	0	10	0	1
339		18	max	271.791	1	0	1	.781	1	0	1	.001	1	0	1
340		'	min	3.684	12	0	1	016	10	0	1	0	10	0	1
341		19	max	271.856	1	0	1	.781	1	0	1	.001	1	0	1
342		13	min	3.717	12	0	1	016	10	0	1	0	10	0	1
343	M1	1	max	76.151	1	342.466	3	.243	10	0	2	.036	1	0	2
344	IVII		min	3.159	15	-222.182	2	-18.198	1	0	3	0	10	0	3
345		2		76.291	1	342.285	3	.243	10	0	2	.032	1	.048	2
346			max min	3.201	15	-222.424	2	-18.198	1	0	3	0	10	075	3
		3			3	4.254	9	.244	10		10	_	1		
347		3	max	90.115 -16.15					1	0	1	.028	10	.096	3
348		1	min		10	-24.984	2	-18.139		0		0		147	
349		4	max	90.22	3	4.053	9	.244	10	0	10	.024	1	.101	2
350		-	min	-16.034	10	-25.226	2	-18.139	1	0	1	0	10	145	3
351		5	max	90.325	3	3.851	9	.244	10	0	10	.02	1	.107	2
352			min	-15.917	10	-25.468	2	-18.139	1	0	1	0	10	142	3
353		6	max	90.43	3	3.65	9	.244	10	0	10	.016	1	.112	2
354		-	min	-15.801	10	-25.709	2	-18.139	1	0	1	0	10	139	3
355		7	max	90.534	3	3.448	9	.244	10	0	10	.012	1	.118	2
356			min	-15.685	10	-25.951	2	-18.139	1	0	1	0	10	136	3
357		8	max	90.639	3	3.247	9	.244	10	0	10	.008	1	.124	2
358			min	-15.568	10	-26.193	2	-18.139	1	0	1	0	10	133	3
359		9	max	90.744	3	3.045	9	.244	10	0	10	.004	1	.129	2
360		1.0	min	-15.452	10	-26.435	2	-18.139	1	0	1	0	10	13	3
361		10	max	90.848	3	2.844	9	.244	10	0	10	.002	3	.135	2
362			min	-15.336	10	-26.677	2	-18.139	1	0	1	0	10	127	3
363		11	max		3	2.642	9	.244	10	0	10		3	.141	2
364			min	-15.219	10	-26.919	2	-18.139	1	0	1	004	1	124	3
365		12	max	91.058	3	2.441	9	.244	10	0	10		10	.147	2
366			min	-15.103	10	-27.16	2	-18.139	1	0	1	008	1	121	3
367		13		91.163	3	2.239	9	.244	10	0	10		10	.153	2
368			min	-14.986	10	-27.402	2	-18.139	1	0	1	012	1	118	3
369		14	max	91.267	3	2.038	9	.244	10	0	10	0	10	.159	2
370			min	-14.87	10	-27.644	2	-18.139	1	0	1	016	1	115	3
371		15	max		3	1.836	9	.244	10	0	10	0	10	.165	2
372			min	-14.754	10	-27.886	2	-18.139	1	0	1	02	1	111	3
373		16	max	89.21	2	127.08	2	.245	10	0	1	0	10	.169	2
374			min	-6.025	3	-165.094	3	-18.267	1	0	3	024	1	107	3
375		17	max	89.35	2	126.838	2	.245	10	0	1	0	10	.142	2
376			min	-5.92	3	-165.275	3	-18.267	1	0	3	028	1	071	3
377		18	max	-3.2	15	328.284	2	.261	10	0	3	0	10	.072	2
378			min	-76.288	1	-163.003	3	-18.85	1	0	2	032	1	036	3
379		19	max	-3.157	15	328.042	2	.261	10	0	3	0	10	0	2

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								_	
380			min	-76.148	1_	-163.185	3	-18.85	1_	0	2	036	1_	0	3
381	<u>M5</u>	1	max	187.508	1	1093.472	3	0	11	0	9	.011	3	0	3
382			min	-2.055	3	-700.884	2	-78.214	3	0	3	0	11	0	2
383		2	max	187.647	1	1093.291	3	0	11	0	9	0	9	.151	2
384			min	-1.95	3	-701.126	2	-78.214	3	0	3	006	3	237	3
385		3	max	250.018	3	4.843	9	8.466	3	0	3	0	9	.301	2
386			min	-52.123	2	-83.958	2	181	9	0	9	022	3	469	3
387		4	max	250.123	3	4.641	9	8.466	3	0	3	0	9	.319	2
388			min	-51.983	2	-84.2	2	181	9	0	9	02	3	458	3
389		5	max	250.227	3	4.44	9	8.466	3	0	3	0	9	.338	2
390			min	-51.844	2	-84.442	2	181	9	0	9	018	3	447	3
391		6	max	250.332	3	4.238	9	8.466	3	0	3	0	9	.356	2
392			min	-51.704	2	-84.684	2	181	9	0	9	016	3	436	3
393		7	max	250.437	3	4.037	9	8.466	3	0	3	0	9	.374	2
394			min	-51.564	2	-84.926	2	181	9	0	9	014	3	425	3
395		8	max	250.541	3	3.835	9_	8.466	3	0	3	0	9	.393	2
396			min	-51.425	2	-85.167	2	181	9	0	9	013	3	414	3
397		9	max	250.646	3	3.634	9	8.466	3	0	3	0	9	.411	2
398			min	-51.285	2	-85.409	2	181	9	0	9	011	3	403	3
399		10	max	250.751	3	3.432	9	8.466	3	0	3	0	2	.43	2
400			min	-51.145	2	-85.651	2	181	9	0	9	009	3	392	3
401		11	max	250.856	3	3.231	9	8.466	3	0	3	0	2	.448	2
402			min	-51.006	2	-85.893	2	181	9	0	9	007	3	381	3
403		12	max	250.96	3	3.029	9	8.466	3	0	3	0	2	.467	2
404			min	-50.866	2	-86.135	2	181	9	0	9	005	3	37	3
405		13	max	251.065	3	2.828	9	8.466	3	0	3	0	2	.486	2
406			min	-50.727	2	-86.377	2	181	9	0	9	003	3	359	3
407		14	max	251.17	3	2.626	9	8.466	3	0	3	0	2	.505	2
408			min	-50.587	2	-86.618	2	181	9	0	9	002	3	347	3
409		15	max	251.274	3	2.425	9	8.466	3	0	3	0	3	.523	2
410			min	-50.447	2	-86.86	2	181	9	0	9	0	9	336	3
411		16	max	279.681	2	417.219	2	8.438	3	0	3	.002	3	.538	2
412			min	-23.72	3	-472.187	3	181	9	0	2	0	9	321	3
413		17	max	279.821	2	416.978	2	8.438	3	0	3	.003	3	.447	2
414			min	-23.615	3	-472.368	3	181	9	0	2	0	9	219	3
415		18	max	-3.381	12	1038.759	2	7.757	3	0	3	.005	3	.225	2
416			min	-187.659	1	-505.855	3	033	9	0	9	0	9	109	3
417		19	max	-3.311	12	1038.518	2	7.757	3	0	3	.007	3	0	3
418			min	-187.52	1	-506.036	3	033	9	0	9	0	9	0	2
419	M9	1	max	76.064	1	342.375	3	83.161	3	0	3	0	10	0	2
420			min	0.4=	15	-222.182	2	243	10	0	2	036	1	0	3
421		2	max	76.203	1	342.194	3	83.161	3	0	3	0	10	.048	2
422			min	3.192	15	-222.424	2	243	10	0	2	032	1	075	3
423		3	max		3	4.243	9	17.958	1	0	1	.015	3	.096	2
424			min	-15.795	10	-24.957	2	-2.712	3	0	10	027	1	147	3
425		4	max	89.684	3	4.042	9	17.958	1	0	1	.015	3	.101	2
426			min	-15.679	10	-25.199	2	-2.712	3	0	10	023	1	144	3
427		5	max	89.788	3	3.84	9	17.958	1	0	1	.014	3	.107	2
428			min	-15.563	10	-25.441	2	-2.712	3	0	10	02	1	142	3
429		6	max	89.893	3	3.639	9	17.958	1	0	1	.014	3	.112	2
430			min		10	-25.683	2	-2.712	3	0	10	016	1	139	3
431		7	max	89.998	3	3.437	9	17.958	1	0	1	.013	3	.118	2
432			min	-15.33	10	-25.924	2	-2.712	3	0	10	012	1	136	3
433		8	max	90.103	3	3.236	9	17.958	1	0	1	.012	3	.124	2
434		0	min	-15.214	10	-26.166	2	-2.712	3	0	10	008	1	133	3
435		9	max	90.207	3	3.034	9	17.958	1	0	1	.012	3	.129	2
436		-	min	-15.097	10	-26.408	2	-2.712	3	0	10	004	1	13	3
400			1111111	10.031	IU	-20.400		-2.112	J	U	10	004		10	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
437		10	max	90.312	3	2.833	9	17.958	1	0	1	.011	3	.135	2
438			min	-14.981	10	-26.65	2	-2.712	3	0	10	0	1	127	3
439		11	max	90.417	3	2.631	9	17.958	1	0	1	.011	3	.141	2
440			min	-14.865	10	-26.892	2	-2.712	3	0	10	0	10	124	3
441		12	max	90.521	3	2.43	9	17.958	1	0	1	.01	3	.147	2
442			min	-14.748	10	-27.133	2	-2.712	3	0	10	0	10	121	3
443		13	max	90.626	3	2.228	9	17.958	1	0	1	.012	1	.153	2
444			min	-14.632	10	-27.375	2	-2.712	3	0	10	0	10	118	3
445		14	max	90.731	3	2.026	9	17.958	1	0	1	.016	1	.159	2
446			min	-14.515	10	-27.617	2	-2.712	3	0	10	0	10	115	3
447		15	max	90.836	3	1.825	9	17.958	1_	0	1	.019	1_	.165	2
448			min	-14.399	10	-27.859	2	-2.712	3	0	10	0	10	111	3
449		16	max	89.401	2	126.75	2	18.09	1	0	10	.024	1	.169	2
450			min	-7.01	3	-165.671	3	-2.762	3	0	3	0	10	107	3
451		17	max	89.541	2	126.508	2	18.09	1	0	10	.027	1	.142	2
452		40	min	<u>-6.906</u>	3	-165.852	3	-2.762	3	0	3	0	10	071	3
453		18	max	<u>-3.191</u>	15	328.284	2	18.881	1	0	2	.032	1	.072	2
454		40	min	<u>-76.194</u>	1_	-162.992	3	-2.29	3	0	3	0	10	036	3
455		19	max	-3.149	15	328.042	2	18.881	1	0	2	.036	1	0	2
456	MAO	4	min	<u>-76.055</u>	1	-163.173	3	-2.29	3	0	3	0	10	0	3
457	M13	1	max	83.154	3	222.097	2	-3.15	15	0	2	.036	1	0	2
458		2	min	243	10	-342.428	3	<u>-76.059</u>	1_	0	3	<u> </u>	10	.13	3
459 460			max	83.154 243	3 10	158.53 -243.636	3	-2.39 -57.186	15	0	2	003	3 10	085	3
461		3		83.154	3	94.962	2	-1.63	15		2	<u>003</u> .011	3	.217	3
462		3	max min	243	10	-144.844	3	-38.312	1	0	3	015	1	141	2
463		4	max	83.154	3	31.394	2	.269	10	0	2	.008	3	.259	3
464			min	243	10	-46.052	3	-19.439	1	0	3	028	1	169	2
465		5	max	83.154	3	52.74	3	3.331	2	0	2	.005	3	.257	3
466			min	243	10	-32.173	2	-6.141	3	0	3	032	1	169	2
467		6	max	83.154	3	151.531	3	18.308	1	0	2	.002	3	.212	3
468			min	243	10	-95.741	2	-5.036	3	0	3	029	1	14	2
469		7	max	83.154	3	250.323	3	37.182	1	0	2	0	3	.123	3
470			min	243	10	-159.309	2	-3.93	3	0	3	016	1	084	2
471		8	max	83.154	3	349.115	3	56.055	1	0	2	.006	2	.003	1
472			min	243	10	-222.876	2	-2.825	3	0	3	001	3	01	3
473		9	max	83.154	3	447.907	3	74.929	1	0	2	.034	1	.114	2
474			min	243	10	-286.444	2	-1.719	3	0	3	002	3	188	3
475		10	max	83.154	3	-7.275	15	93.802	1	0	2	.071	1	.256	2
476			min	243	10	-546.699	3	.528	12	0	3	014	3	409	3
477		11	max		1	286.444		2.578	3	0	3	.033	1	.114	2
478			min	243	10	-447.907	3	-74.842	1	0	2	013	3	188	3
479		12		18.231	1	222.876	2	3.683	3	0	3	.006	2	.003	1
480			min	243	10	-349.115		-55.968	1	0	2	012	3	01	3
481		13		18.231	1_	159.309	2	4.789	3	0	3	00	10	.123	3
482			min	243	10	-250.323	3	-37.095	1	0	2	016	1	084	2
483		14	max	18.231	1_	95.741	2	5.895	3	0	3	001	15	.212	3
484			min	243	10	-151.531	3	-18.221	1	0	2	029	1	14	2
485		15	max	18.231	1	32.173	2	7	3	0	3	001	15	.257	3
486		4 -	min	243	10	-52.739	3	-3.331	2	0	2	032	1	169	2
487		16	max	18.231	1	46.052	3	19.526	1	0	3	0	12	.259	3
488		4-	min	243	10	-31.394	2	268	10	0	2	028	1	169	2
489		17	max	18.231	1	144.844	3	38.399	1	0	3	.003	3	.217	3
490		4.0	min	243	10	-94.962	2	1.639	15	0	2	015	1	141	2
491		18		18.231	1	243.636	3	57.273	1	0	3	.007	3	.13	3
492		40	min	243	10	-158.53	2	2.399	15	0	2	003	10	085	2
493		19	max	18.231	1	342.428	3	76.146	_ 1	0	3	.036	1	0	2

Schletter, Inc. HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]		_		_	
494	1440	4	min	243	10	-222.097	2	3.159	15	0	2	0	10	0	3
495	M16	1	max	2.294	3_	328.149	2	-3.149	15	0	3	.036	1	0	2
496			min	-18.847	1_	-163.202	3	-76.06	1_	0	2	0	10	0	3
497		2	max	2.294	3	233.932	2	-2.389	15	0	3	.006	1	.062	3
498			min	-18.847	1_	-116.953	3	-57.186	1_	0	2	003	10	125	2
499		3	max	2.294	3_	139.714	2	-1.63	15	0	3	0	3	.104	3
500			min	-18.847	1_	-70.704	3	-38.313	1	0	2	015	1_	208	2
501		4	max	2.294	3_	45.497	2	.255	10	0	3	001	15	.125	3
502		_	min	-18.847	1_	-24.455	3	-19.439	1	0	2	028	1_	249	2
503		5	max	2.294	3_	21.795	3	3.307	2	0	3	001	15	.126	3
504			min	-18.847	1_	-48.72	2	-4.024	3	0	2	032	1_	248	2
505		6	max	2.294	3_	68.044	3	18.308	1	0	3	001	15	.106	3
506		_	min	-18.847	_1_	-142.938	2	-2.919	3	0	2	029	1_	206	2
507		7	max	2.294	3	114.293	3	37.181	1	0	3_	0	10	.065	3
508			min	-18.847	1_	-237.155	2	-1.813	3	0	2	016	1_	121	2
509		8	max	2.294	3	160.542	3	56.055	1	0	3	.006	2	.005	2
510		_	min	-18.847	_1_	-331.373	2	708	3	0	2	008	3	0	15
511		9	max	2.294	3	206.791	3	74.928	1	0	3	.034	1	.173	2
512			min	-18.847	1_	-425.59	2	.398	3	0	2	008	3	077	3
513		10	max	.261	10	-7.272	<u>15</u>	93.802	1	0	<u>15</u>	.071	1	.383	2
514			min	-18.847	_1_	-519.808	2	-2.83	3	0	2	007	3	18	3
515		11	max	.261	10	425.59	2	-1.314	12	0	2	.033	1	.173	2
516			min	-18.816	<u>1</u>	-206.791	3	-74.835	1	0	3	001	3	077	3
517		12	max	.261	10	331.373	2	577	12	0	2	.006	2	.005	2
518			min	-18.816	1	-160.542	3	-55.961	1	0	3	002	3	0	15
519		13	max	.261	10	237.155	2	.487	3	0	2	0	10	.065	3
520			min	-18.816	1_	-114.293	3	-37.088	1	0	3	016	1	121	2
521		14	max	.261	10	142.938	2	1.592	3	0	2	001	12	.106	3
522			min	-18.816	1	-68.044	3	-18.214	1	0	3	029	1	206	2
523		15	max	.261	10	48.72	2	2.698	3	0	2	0	12	.126	3
524			min	-18.816	1_	-21.795	3	-3.307	2	0	3	032	1	248	2
525		16	max	.261	10	24.455	3	19.533	1	0	2	0	3	.125	3
526			min	-18.816	1	-45.497	2	255	10	0	3	028	1	249	2
527		17	max	.261	10	70.704	3	38.406	1	0	2	.003	3	.104	3
528			min	-18.816	1	-139.714	2	1.638	15	0	3	015	1	208	2
529		18	max	.261	10	116.953	3	57.28	1	0	2	.006	1	.062	3
530			min	-18.816	1	-233.932	2	2.398	15	0	3	003	10	125	2
531		19	max	.261	10	163.202	3	76.153	1	0	2	.036	1	0	2
532			min	-18.816	1	-328.149	2	3.157	15	0	3	0	10	0	3
533	M15	1	max	0	1	.835	3	.136	3	0	1	0	1	0	1
534			min	-112.072	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	_1_	.742	3	.136	3	0	1	0	1	0	1
536			min	-112.143	3	0	1_	0	1	0	3	0	3	0	3
537		3	max	0	1_	.649	3	.136	3	0	1	0	1	0	1
538			min	-112.213	3	0	1_	0	1	0	3	0	3	0	3
539		4	max	0	1	.556	3	.136	3	0	1	0	1	0	1
540			min	-112.284	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.464	3	.136	3	0	1	0	1	0	1
542			min	-112.354	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.371	3	.136	3	0	1	0	1	0	1
544				-112.425	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.278	3	.136	3	0	1	0	3	0	1
546			min	-112.495	3	0	1	0	1	0	3	0	1	0	3
547		8	max	0	1	.185	3	.136	3	0	1	0	3	0	1
548				-112.566	3	0	1	0	1	0	3	0	1	001	3
549		9	max	0	1	.093	3	.136	3	0	1	0	3	0	1
550			min	-112.636	3	0	1	0	1	0	3	0	1	001	3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

EE4	Member	Sec		Axial[lb]							LC	y-y Mome		_	LC
551		10	max	0	1	0	1	.136	3	0	<u>1</u>	0	3	0	1
552 553		11	min	-112.707	<u>3</u>	0	1	.136	<u>1</u> 3	0	<u>3</u>	0	3	001 0	1
554		- 11	max min	0 -112.777	3	093	3	.130	1	0	3	0	1	001	3
555		12	max	0	_ <u></u>	0	1	.136	3	0	1	0	3	0	1
556		12	min	-112.848	3	185	3	0	1	0	3	0	1	001	3
557		13	max	0	1	0	1	.136	3	0	1	0	3	0	1
558			min	-112.918	3	278	3	0	1	0	3	0	1	0	3
559		14	max	0	1	0	1	.136	3	0	1	0	3	0	1
560			min	-112.989	3	371	3	0	1	0	3	0	1	0	3
561		15	max	0	1	0	1	.136	3	0	1	0	3	0	1
562			min	-113.059	3	464	3	0	1	0	3	0	1	0	3
563		16	max	0	_1_	0	1	.136	3	0	_1_	0	3	0	1
564			min	-113.13	3	556	3	0	1	0	3	0	1	0	3
565		17	max	0	_1_	0	_1_	.136	3_	0	_1_	0	3	0	1
566			min	-113.2	3	649	3	0	1_	0	3	0	1	0	3
567		18	max	0	_1_	0	1	.136	3	0	_1_	0	3	0	1
568			min	-113.271	3	742	3	0	1_	0	3	0	1_	0	3
569		19	max	0	_1_	0	1	.136	3	0	1	0	3	0	1
570	N440A	4	min	-113.341	3	835	3	0	1_	0	3	0	1	0	1
571	M16A	1	max	0	2	1.428	4	.038	1	0	3	0	3	0	1
572			min	-111.736	3	0	2	056	3	0	1	0	1	0	1
573		2	max	0	2	1.269	4	.038	1	0	<u>3</u>	0	3	0	2
574		3		-111.665	3	1.111	2	056	3	0	_	0		0	4
575 576		3	max min	0 -111.595	3	0	2	.038 056	<u>1</u>	0	<u>3</u>	0	3	0	4
577		4	max	0	2	.952	4	.038	<u> </u>	0	3	0	3	0	2
578		4	min	-111.524	3	.932	2	056	3	0	1	0	1	001	4
579		5	max	0	2	.793	4	.038	<u> </u>	0	3	0	3	0	2
580			min	-111.454	3	0	2	056	3	0	1	0	1	001	4
581		6	max	0	2	.635	4	.038	1	0	3	0	3	0	2
582			min	-111.383	3	0	2	056	3	0	1	0	1	001	4
583		7	max	0	2	.476	4	.038	1	0	3	0	3	0	2
584				-111.313	3	0	2	056	3	0	1	0	1	002	4
585		8	max	0	2	.317	4	.038	1	0	3	0	3	0	2
586			min	-111.242	3	0	2	056	3	0	1	0	1	002	4
587		9	max	0	2	.159	4	.038	1	0	3	0	3	0	2
588			min	-111.172	3	0	2	056	3	0	1	0	1	002	4
589		10	max	0	2	0	1_	.038	_1_	0	3	0	3	0	2
590				-111.101	3	0	1_	056	3	0	1_	0	1	002	4
591		11	max		2	0	2	.038	1	0	3	0	3	0	2
592			min	-111.031	3	159	4	056	3	0	1_	0	1	002	4
593		12	max	.067	13	0	2	.038	1_	0	3	0	3	0	2
594		40	min		3	317	4	056	3	0	1	0	1	002	4
595		13	max	.164	13	0	2	.038	1	0	3	0	1_4	0	2
596		4.4	min		3	476	4	056	3	0	1	0	4	002	4
597 598		14	max	.261 -110.819	<u>13</u>	635	4	.038 056	<u>1</u> 3	0	<u>3</u>	0	3	001	4
		15		.358	<u>၂</u> 13	035	2	.038	<u>ာ</u> 1	0	3		<u> </u>	0	2
599 600		10	max	-110.749	3	793	4	056	3	0	<u> </u>	0	3	001	4
601		16	max	.455	13	/93 0	2	.038	<u>3</u> 1	0	3	0	1	0	2
602		10	min	-110.678	3	952	4	056	3	0	1	0	3	001	4
603		17	max	.569	4	0	2	.038	<u> </u>	0	3	0	1	0	2
604		l '		-110.608	3	-1.111	4	056	3	0	1	0	3	0	4
605		18	max	.69	4	0	2	.038	1	0	3	0	1	0	2
606				-110.537	3	-1.269	4	056	3	0	1	0	3	0	4
607		19	max	.81	4	0	2	.038	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec	Axial[lb	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min -110.46		-1.428	4	056	3	0	1	0	3	0	1

Envelope Member Section Deflections

LIIV	воре метн	JEI C	Jecui	on Dene	Cuo	13									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	2	.009	2	.003	1	4.504e-6	10	NC	3	NC	1
2			min	004	3	009	3	002	3	-2.913e-4	1	4188.08	2	NC	1
3		2	max	.002	2	.009	2	.003	1	4.29e-6	10	NC	3	NC	1
4			min	003	3	009	3	002	3	-2.78e-4	1	4570.535	2	NC	1
5		3	max	.002	2	.008	2	.002	1	4.076e-6	10	NC	3	NC	1
6			min	003	3	009	3	002	3	-2.648e-4	1	5025.344	2	NC	1
7		4	max	.002	2	.007	2	.002	1	3.861e-6	10	NC	1	NC	1
8			min	003	3	008	3	002	3	-2.515e-4	1	5569.952	2	NC	1
9		5	max	.002	2	.006	2	.002	1	3.647e-6	10	NC	1	NC	1
10			min	003	3	008	3	001	3	-2.382e-4	1	6227.603	2	NC NC	1
11		6		.003	2	.006	2	.002	1	3.433e-6	10	NC	1	NC	1
12		6	max min	003	3	008	3	002 001	3		1	7029.782	2	NC NC	1
		7								-2.25e-4					•
13		7	max	.001	2	.005	2	.002	1	3.219e-6	<u>10</u>	NC 0040,000	1	NC NC	1
14			min	002	3	007	3	001	3	-2.117e-4	1	8019.939	2	NC NC	1
15		8	max	.001	2	.004	2	.001	1	3.004e-6	10	NC	1	NC	1
16			min	002	3	007	3	0	3	-1.984e-4	1	9259.388	2	NC	1
17		9	max	.001	2	.004	2	.001	1	2.79e-6	<u>10</u>	NC	_1_	NC	1
18			min	002	3	006	3	0	3	-1.852e-4	<u>1</u>	NC	1_	NC	1
19		10	max	0	2	.003	2	.001	1	2.576e-6	10	NC	_1_	NC	1
20			min	002	3	006	3	0	3	-1.719e-4	1_	NC	1_	NC	1
21		11	max	0	2	.003	2	0	1	2.362e-6	<u> 10</u>	NC	<u>1</u>	NC	1
22			min	002	3	005	3	0	3	-1.586e-4	1	NC	1	NC	1
23		12	max	0	2	.002	2	0	1	2.147e-6	10	NC	1	NC	1
24			min	001	3	005	3	0	3	-1.454e-4	1	NC	1	NC	1
25		13	max	0	2	.002	2	0	1	1.933e-6	10	NC	1	NC	1
26			min	001	3	004	S	0	3	-1.321e-4	1	NC	1	NC	1
27		14	max	0	2	.001	2	0	1	1.719e-6	10	NC	1	NC	1
28			min	0	3	003	3	0	3	-1.188e-4	1	NC	1	NC	1
29		15	max	0	2	0	2	0	1	1.504e-6	10	NC	1	NC	1
30			min	0	3	003	3	0	3	-1.056e-4	1	NC	1	NC	1
31		16	max	0	2	0	2	0	1	1.29e-6	10	NC	1	NC	1
32		10	min	0	3	002	3	0	3	-9.231e-5	1	NC	1	NC	1
33		17	max	0	2	0	2	0	1	1.076e-6	10	NC	1	NC	1
34		- 17	min	0	3	001	3	0	3	-7.904e-5	1	NC	1	NC	1
35		18	max	0	2	0	2	0	1	8.617e-7	10	NC	1	NC NC	1
36		10	min	0	3	0	3	0	3	-6.578e-5	1	NC	1	NC NC	1
37		19		0	1	0	1	0	1	6.474e-7	•	NC	1	NC NC	1
		19	max		1	0	1	0	1	-5.251e-5	<u>10</u>	NC NC	1	NC NC	1
38	MO	4	min	0							1_				
39	M3	1	max	0	1	0	1	0	1	2.485e-5	1	NC NC	1	NC NC	1
40			min	0		0	1	0	1	-3.079e-7		NC NC	1_	NC NC	1
41		2	max	0	3	0	2	0		3.308e-5	1	NC NC	1	NC NC	1
42			min	0	2	0	3	0	1	-3.968e-7	10	NC	1	NC NC	1
43		3	max	0	3	0	2	0	10		1_	NC	1	NC NC	1
44			min	0	2	002	3	0	1	-4.857e-7	10	NC	<u>1</u>	NC	1
45		4	max	0	3	0	2	00	3	4.954e-5	_1_	NC	_1_	NC	1
46			min	0	2	003	3	0	9	-5.746e-7	10	NC	1	NC	1
47		5	max	0	3	0	2	0	3	5.777e-5	1_	NC	1	NC	1
48			min	0	2	003	3	0	9	-6.635e-7	10	NC	1	NC	1
49		6	max	0	3	0	2	0	3	6.6e-5	1_	NC	1	NC	1
50			min	0	2	004	3	0	9	-7.524e-7	10	NC	1	NC	1
51		7	max	0	3	0	2	0	3	7.423e-5	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio L
52			min	0	2	005	3	0	9 -8.412e-7 10 NC 1 NC 1
53		8	max	0	3	0	2	0	3 8.246e-5 1 NC 1 NC 1
54			min	0	2	006	3	0	9 -9.301e-7 10 NC 1 NC 1
55		9	max	0	3	.001	2	0	3 9.07e-5 1 NC 1 NC 1
56		10	min	0	2	006	3	0	10 -1.019e-6 10 NC 1 NC 1
57 58		10	max	.001 001	3	.002 007	3	<u>0</u> 	1 9.893e-5 1 NC 1 NC 1 10 -1.108e-6 10 NC 1 NC 1
59		11	min max	.001	3	.002	2	0	1 1.072e-4 1 NC 1 NC 1
60			min	001	2	007	3	0	10 -1.197e-6 10 NC 1 NC 1
61		12	max	.001	3	.003	2	0	1 1.154e-4 1 NC 1 NC 1
62		12	min	001	2	008	3	0	10 -1.286e-6 10 NC 1 NC 1
63		13	max	.001	3	.003	2	0	1 1.236e-4 1 NC 1 NC 1
64			min	001	2	008	3	0	10 -1.375e-6 10 NC 1 NC 1
65		14	max	.001	3	.004	2	.001	1 1.319e-4 1 NC 1 NC 1
66			min	002	2	008	3	0	10 -1.464e-6 10 NC 1 NC 1
67		15	max	.002	3	.005	2	.001	1 1.401e-4 1 NC 1 NC 1
68			min	002	2	008	3	0	10 -1.552e-6 10 9076.236 2 NC
69		16	max	.002	3	.006	2	.002	1 1.483e-4 1 NC 1 NC 1
70			min	002	2	008	3	0	10 -1.641e-6 10 7682.131 2 NC 1
71		17	max	.002	3	.007	2	.002	1 1.565e-4 1 NC 1 NC 1
72			min	002	2	008	3	0	10 -1.73e-6 10 6605.083 2 NC 1
73		18	max	.002	3	.008	2	.002	1 1.648e-4 1 NC 1 NC 1
74			min	002	2	008	3	0	10 -1.819e-6 10 5763.382 2 NC 1
75		19	max	.002	3	.009	2	.002	1 1.73e-4 1 NC 3 NC 1
76			min	002	2	008	3	0	10 -1.908e-6 10 5099.653 2 NC
77	M4	1_	max	.001	1	.011	2	0	10 2.697e-6 10 NC 1 NC 1
78			min	0	12	009	3	002	1 -2.195e-4 1 NC 1 NC 1
79		2	max	.001	1 12	.01	2	0	10 2.697e-6 10 NC 1 NC 1
80		3	min	<u> </u>	1	009 .01	2	002 0	. 2.1000 1 1 110
82		3	max min	<u>.001</u>	12	008	3	002	10 2.697e-6 10 NC 1 NC 1 1 -2.195e-4 1 NC 1 NC 1
83		4	max	.001	1	.009	2	- <u>002</u> 0	10 2.697e-6 10 NC 1 NC 1
84		_	min	0	12	008	3	001	1 -2.195e-4 1 NC 1 NC 1
85		5	max	.001	1	.008	2	0	10 2.697e-6 10 NC 1 NC 1
86			min	0	12	007	3	001	1 -2.195e-4 1 NC 1 NC 1
87		6	max	0	1	.008	2	0	10 2.697e-6 10 NC 1 NC 1
88			min	0	12	007	3	001	1 -2.195e-4 1 NC 1 NC 1
89		7	max	0	1	.007	2	0	10 2.697e-6 10 NC 1 NC 1
90			min	0	12	006	3	0	1 -2.195e-4 1 NC 1 NC 1
91		8	max	0	1	.007	2	0	10 2.697e-6 10 NC 1 NC 1
92			min	0	12	006	3	0	1 -2.195e-4 1 NC 1 NC 1
93		9	max	0	1	.006	2	0	10 2.697e-6 10 NC 1 NC 1
94			min	0	12	005	3	0	1 -2.195e-4 1 NC 1 NC 1
95		10	max	0	1	.005	2	0	10 2.697e-6 10 NC 1 NC 1
96			min	0	12	005	3	0	1 -2.195e-4 1 NC 1 NC 1
97		11	max	0	1	.005	2	0	10 2.697e-6 10 NC 1 NC 1
98		40	min	0	12	004	3	0	1 -2.195e-4 1 NC 1 NC 1
99		12	max	0	1	.004	2	0	10 2.697e-6 10 NC 1 NC 1
100		10	min	0	12	004	3	0	1 -2.195e-4 1 NC 1 NC 1 10 2.697e-6 10 NC 1 NC 1
101		13	max	0	12	.004	3	<u>0</u> 	10 2.00.00 1.0 1.0
102		14	min	<u> </u>	1	003 .003	2	0	
103		14	max	0	12	003	3	0	10 2.697e-6 10 NC 1 NC 1 1 -2.195e-4 1 NC 1 NC 1
105		15	max	0	1	.002	2	0	10 2.697e-6 10 NC 1 NC
106		13	min	0	12	002	3	0	1 -2.195e-4 1 NC 1 NC 1
107		16	max	0	1	.002	2	0	10 2.697e-6 10 NC 1 NC 1
108		1	min	0	12	002	3	0	1 -2.195e-4 1 NC 1 NC 1
100			1111111			.002			. 2.1000 1 1 110

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]					LC	(n) L/z Ratio	
109		17	max	0	1	.001	2	0	10	2.697e-6	<u>10</u>	NC	_1_	NC	1_
110			min	0	12	001	3	0	1	-2.195e-4	1	NC	1	NC	1
111		18	max	0	1	0	2	0	10	2.697e-6	10	NC	_1_	NC	1_
112			min	0	12	0	3	0	1	-2.195e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	2.697e-6	10	NC	1	NC	1
114			min	0	1	0	1	0	1	-2.195e-4	1	NC	1	NC	1
115	M6	1	max	.006	2	.03	2	0	9	4.83e-4	3	NC	3	NC	1
116			min	011	3	028	3	006	3	-8.418e-8	2	1310.583	2	6193.628	3
117		2	max	.006	2	.028	2	0	9	4.681e-4	3	NC	3	NC	1
118			min	01	3	027	3	006	3	-9.632e-7	1	1403.083	2	6571.734	3
119		3	max	.005	2	.026	2	0	9	4.533e-4	3	NC	3	NC	1
120			min	009	3	025	3	006	3	-2.419e-6	1	1509.175	2	7021.708	3
121		4	max	.005	2	.024	2	0	9	4.385e-4	3	NC	3	NC	1
122			min	009	3	024	3	005	3	-3.875e-6	1	1631.585	2	7558.815	3
123		5	max	.005	2	.022	2	<u>.003</u>	9	4.237e-4	3	NC	3	NC	1
124		+ 5	min	008	3	022	3	005	3	-5.33e-6	1	1773.83	2	8203.336	3
125		6	max	.004	2	.022	2	003	9	4.089e-4	3	NC	3	NC	1
		- 0													_
126		-	min	008	3	021	3	004	3	-6.786e-6		1940.512	2	8982.593	3
127		7	max	.004	2	.018	2	0	9	3.94e-4	3	NC	3_	NC 2004 240	1
128			min	007	3	019	3	004	3	-8.242e-6	1_	2137.776	2	9934.042	3
129		8	max	.004	2	.017	2	0	9	3.792e-4	3	NC	3	NC	1
130			min	007	3	018	3	004	3	-9.697e-6	_1_	2374.003	2	NC	1
131		9	max	.003	2	.015	2	0	9	3.644e-4	3_	NC	3	NC	1_
132			min	006	3	016	3	003	3	-1.115e-5	1_	2660.931	2	NC	1
133		10	max	.003	2	.013	2	0	9	3.496e-4	3	NC	3	NC	1
134			min	005	3	015	3	003	3	-1.261e-5	1	3015.515	2	NC	1
135		11	max	.003	2	.011	2	0	9	3.348e-4	3	NC	3	NC	1
136			min	005	3	013	3	002	3	-1.406e-5	1	3463.181	2	NC	1
137		12	max	.002	2	.01	2	0	9	3.199e-4	3	NC	3	NC	1
138		T -	min	004	3	011	3	002	3	-1.552e-5	1	4043.88	2	NC	1
139		13	max	.002	2	.008	2	0	9	3.051e-4	3	NC	3	NC	1
140		10	min	004	3	01	3	002	3	-1.698e-5	1	4824.172	2	NC	1
141		14	max	.002	2	.007	2	0	9	2.903e-4	3	NC	1	NC	1
142		14	min	003	3	008	3	001	3	-1.843e-5	1	5923.842	2	NC NC	1
143		15		.003	2	.005	2		9	2.755e-4	3	NC	1	NC	1
144		15	max	002	3	007	3	<u> </u>	3	-1.989e-5	1	7582,402	2	NC NC	1
		4.0	min								•				•
145		16	max	.001	2	.004	2	0	9	2.607e-4	3	NC	1_	NC	1
146			min	002	3	005	3	0	3	-2.134e-5		NC	1_	NC	1
147		17	max	0	2	.002	2	0	1	2.458e-4	3_	NC	1_	NC	1
148			min	001	3	003	3	0	3	-2.28e-5	1_	NC	1_	NC	1
149		18	max	0	2	.001	2	0	1	2.31e-4	3	NC	1_	NC	1
150			min	0	3	002	3	0	3	-2.425e-5		NC	1_	NC	1
151		19	max	0	1	0	1	0	1	2.162e-4	3	NC	1_	NC	1
152			min	0	1	0	1	0	1	-2.571e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	1.21e-5	1_	NC	1_	NC	1
154			min	0	1	0	1	0	1	-1.015e-4	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.12e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-7.631e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.029e-5	1	NC	1	NC	1
158			min	0	2	004	3	0	1	-5.116e-5		NC	1	NC	1
159		4	max	0	3	.004	2	.001	3	9.377e-6	1	NC	<u> </u>	NC	1
160			min	001	2	006	3	0	1	-2.601e-5		NC	1	NC	1
161		5	max	.001	3	.005	2	.002	3	8.468e-6	1	NC	1	NC	1
162			min	002	2	008	3	<u>.002</u>	1	-8.603e-7	3	8968.057	2	NC NC	1
		G					2					NC	1	NC NC	1
163		6	max	.002	3	.006		.002	3	2.429e-5	3				_
164		-	min	002	2	009	3	0	1	0	2	7184.156	2	NC NC	1
165		7	max	.002	3	.008	2	.002	3	4.944e-5	3	NC	<u>1</u>	NC	1_

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
166			min	002	2	011	3	0	1	0	5	5963.445	2	NC	1
167		8	max	.002	3	.009	2	.003	3	7.459e-5	3	NC	3	NC	1
168			min	003	2	013	3	0	1	-2.442e-7	4	5068.095	2	NC	1
169		9	max	.003	3	.011	2	.003	3	9.973e-5	3	NC	3	NC	1
170			min	003	2	014	3	0	1	-1.257e-6	9	4379.616	2	NC	1
171		10	max	.003	3	.012	2	.003	3	1.249e-4	3	NC	3	NC	1
172		1	min	003	2	016	3	0	1	-2.501e-6	9	3832.322	2	NC	1
173		11	max	.003	3	.014	2	.003	3	1.5e-4	3	NC	3	NC	1
174		+ ' '	min	004	2	017	3	0	9	-3.745e-6	9	3386.746	2	NC	1
175		12	max	.003	3	.015	2	.003	3	1.752e-4	3	NC	3	NC	1
176		12	min	004	2	018	3	<u>.003</u>	9	-4.989e-6	9	3017.606	2	NC	1
		40							_						_
177		13	max	.004	3	.017	2	.003	3	2.003e-4	3_	NC 0707.004	3	NC NC	1
178			min	005	2	<u>019</u>	3	0	9	-6.233e-6	9	2707.821	2	NC	1
179		14	max	.004	3	.019	2	.003	3	2.255e-4	3	NC	3_	NC	1
180			min	005	2	021	3	0	9	-7.477e-6	9	2445.332	2	NC	1
181		15	max	.004	3	.021	2	.003	3	2.506e-4	3	NC	3	NC	1
182			min	005	2	022	3	0	9	-8.721e-6	9	2221.299	2	NC	1
183		16	max	.005	3	.023	2	.003	3	2.758e-4	3	NC	3	NC	1
184			min	006	2	023	3	0	9	-9.965e-6	9	2029.046	2	NC	1
185		17	max	.005	3	.025	2	.003	3	3.009e-4	3	NC	3	NC	1
186			min	006	2	024	3	0	9	-1.121e-5	9	1863.406	2	NC	1
187		18	max	.005	3	.027	2	.003	3	3.261e-4	3	NC	3	NC	1
188		1	min	006	2	024	3	0	9	-1.245e-5	9	1720.302	2	NC	1
189		19	max	.006	3	.029	2	.003	3	3.512e-4	3	NC	3	NC	1
190		13	min	007	2	025	3	0	9	-1.37e-5	9	1596.473	2	NC	1
191	M8	1	max	.004	1	.034	2	0	9	-1.09e-7	10	NC	1	NC	1
	IVIO	+-			3		3					NC	1		
192		1	min	0		028		002	3	-2.595e-4	3			8947.938	3
193		2	max	.003	1	.032	2	0	9	-1.09e-7	10	NC	1	NC 0750.440	
194			min	0	3	027	3	002	3	-2.595e-4	3	NC	1_	9756.113	
195		3	max	.003	1	.03	2	0	9	-1.09e-7	10	NC	1	NC	1
196			min	0	3	025	3	002	3	-2.595e-4	3	NC	1_	NC	1
197		4	max	.003	1	.029	2	0	9	-1.09e-7	10	NC	_1_	NC	1
198			min	0	3	023	3	002	3	-2.595e-4	3	NC	1_	NC	1
199		5	max	.003	1	.027	2	0	9	-1.09e-7	10	NC	_1_	NC	1
200			min	0	3	022	3	001	3	-2.595e-4	3	NC	1_	NC	1
201		6	max	.003	1	.025	2	0	9	-1.09e-7	10	NC	1	NC	1
202			min	0	3	02	3	001	3	-2.595e-4	3	NC	1	NC	1
203		7	max	.002	1	.023	2	0	9	-1.09e-7	10	NC	1	NC	1
204			min	0	3	019	3	001	3	-2.595e-4	3	NC	1	NC	1
205		8	max	.002	1	.021	2	0	9	-1.09e-7	10	NC	1	NC	1
206			min	0	3	017	3	0	3	-2.595e-4	3	NC	1	NC	1
207		9	max	.002	1	.019	2	0	9	-1.09e-7	10	NC	1	NC	1
208		3	min	0	3	016	3	0	3	-2.595e-4	3	NC	1	NC	1
209		10		.002	1	.017	2	0	9	-1.09e-7		NC	1	NC	1
		10	max		3		3	0			10	NC	1		1
210		4.4	min	0		014			3	-2.595e-4	3			NC NC	
211		11	max	.002	1	.015	2	0	9	-1.09e-7	10	NC	1	NC NC	1
212		10	min	0	3	013	3	0	3	-2.595e-4	3_	NC	1_	NC NC	1
213		12	max	.001	1	.013	2	00	9	-1.09e-7	<u>10</u>	NC	_1_	NC	1
214			min	0	3	011	3	0	3	-2.595e-4	3	NC	1_	NC	1
215		13	max	.001	1	.011	2	0	9	-1.09e-7	10	NC	_1_	NC	1
216			min	0	3	009	3	0	3	-2.595e-4	3	NC	1	NC	1
217		14	max	0	1	.01	2	0	9	-1.09e-7	10	NC	1	NC	1
218			min	0	3	008	3	0	3	-2.595e-4	3	NC	1	NC	1
219		15	max	0	1	.008	2	0	9	-1.09e-7	10	NC	1	NC	1
220			min	0	3	006	3	0	3	-2.595e-4	3	NC	1	NC	1
221		16	max	0	1	.006	2	0	9	-1.09e-7	10	NC	1	NC	1
222		10	min	0	3	005	3	0	3	-2.595e-4	3	NC	1	NC	1
			1111111		U	.000	J	U	J	2.0000-4	U	110		110	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		o LC
223		17	max	0	1	.004	2	0	9	-1.09e-7	10	NC	1_	NC	1
224			min	0	3	003	3	0	3	-2.595e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	9	-1.09e-7	10	NC	1	NC	1
226			min	0	3	002	3	0	3	-2.595e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-1.09e-7	10	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.595e-4	3	NC	1	NC	1
229	M10	1	max	.002	2	.009	2	0	10	2.882e-4	1	NC	3	NC	1
230	IVITO	<u> </u>	min	003	3	009	3	002	1	-5.682e-4		4192.19	2	NC	1
		2		.002	2	.009	2	<u>002</u> 0	3	2.741e-4		NC	3	NC	1
231			max								1				1
232			min	003	3	009	3	002	1	-5.487e-4	3	4575.147	2	NC NC	-
233		3	max	.002	2	.008	2	0	3	2.601e-4	1	NC	3	NC	1
234			min	003	3	009	3	001	1	-5.293e-4	3_	5030.577	2	NC	1
235		4	max	.002	2	.007	2	0	3	2.46e-4	_1_	NC	_1_	NC	1
236			min	002	3	008	3	001	1	-5.098e-4	3	5575.961	2	NC	1
237		5	max	.002	2	.006	2	0	3	2.319e-4	1	NC	1	NC	1
238			min	002	3	008	3	001	1	-4.904e-4	3	6234.593	2	NC	1
239		6	max	.001	2	.006	2	0	3	2.178e-4	1	NC	1	NC	1
240			min	002	3	008	3	001	1	-4.709e-4	3	7038.023	2	NC	1
241		7	max	.001	2	.005	2	0	3	2.037e-4	1	NC	1	NC	1
242			min	002	3	007	3	001	1	-4.515e-4	3	8029.804	2	NC	1
243		8		.001	2	.004	2	<u>001</u> 0	3		1	NC	1	NC	1
		-	max							1.897e-4					
244			min	002	3	007	3	0	1	-4.32e-4	3_	9271.395	2	NC NC	1
245		9	max	.001	2	.004	2	0	3	1.756e-4	_1_	NC	_1_	NC	1
246			min	002	3	006	3	0	1	-4.126e-4	3	NC	1_	NC	1
247		10	max	0	2	.003	2	0	3	1.615e-4	_1_	NC	_1_	NC	1
248			min	001	3	006	3	0	1	-3.931e-4	3	NC	1	NC	1
249		11	max	0	2	.003	2	0	3	1.474e-4	1	NC	1	NC	1
250			min	001	3	005	3	0	1	-3.737e-4	3	NC	1	NC	1
251		12	max	0	2	.002	2	0	3	1.333e-4	1	NC	1	NC	1
252			min	001	3	005	3	0	1	-3.542e-4	3	NC	1	NC	1
253		13	max	0	2	.002	2	0	3	1.193e-4	1	NC	1	NC	1
254		10	min	0	3	004	3	0	1	-3.348e-4	3	NC	1	NC	1
255		14		0	2	.001	2	0	3	1.052e-4	1	NC	1	NC	1
		14	max		3						<u> </u>		1		1
256		4.5	min	0		003	3	0	1	-3.154e-4	3	NC NC	-	NC NC	
257		15	max	0	2	0	2	0	3	9.111e-5	1_	NC	1	NC NC	1
258			min	0	3	003	3	0	1	-2.959e-4	3	NC	1_	NC	1
259		16	max	0	2	0	2	0	3	7.703e-5	_1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-2.765e-4	3	NC	1	NC	1
261		17	max	0	2	0	2	0	3	6.295e-5	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-2.57e-4	3	NC	1	NC	1
263		18	max	0	2	0	2	0	3	4.888e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-2.376e-4		NC	1	NC	1
265		19	max	0	1	0	1	0	1	3.48e-5	1	NC	1	NC	1
266		15	min	0	1	0	1	0	1	-2.181e-4	3	NC	1	NC	1
	M11	1			1		1		1	1.03e-4		NC	1	NC	1
267	IVI I I		max	0		0		0			3				
268			min	0	1	0	1	0	1	-1.657e-5	1_	NC NC	1_	NC NC	1
269		2	max	0	3	0	2	0	1	7.842e-5	3	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-2.644e-5	1_	NC	1_	NC	1
271		3	max	0	3	0	2	0	1	5.387e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-3.631e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	11	2.932e-5	3	NC	1	NC	1
274			min	0	2	003	3	001	3	-4.618e-5		NC	1	NC	1
275		5	max	0	3	0	2	0	11	4.779e-6	3	NC	1	NC	1
276		—	min	0	2	003	3	002	3	-5.606e-5	1	NC	1	NC	1
277		6		0	3	<u>003</u> 0	2	<u>002</u> 0	10	8.013e-7	10	NC	1	NC	1
		0	max		2										_
278		-	min	0		004	3	002	3	-6.593e-5	1	NC NC	1	NC NC	1
279		7	max	0	3	0	2	0	10	9.e-7	10	NC	<u>1</u>	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC			(n) L/z Ratio	
280			min	0	2	005	3	002		-7.58e-5	1_	NC	1_	NC	1
281		8	max	0	3	0	2	0		9.987e-7	10	NC	_1_	NC	1_
282			min	0	2	006	3	002		8.567e-5	_1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0		1.097e-6	10	NC	1_	NC	1
284		40	min	0	2	006	3	003		9.554e-5	1_	NC NC	1_	NC NC	1
285		10	max	.001	3	.002	2	0		1.196e-6	<u>10</u>	NC NC	1	NC NC	1
286		4.4	min	001	2	007	3	003		1.179e-4	3	NC NC	1_	NC NC	1
287		11	max	.001	3	.002	2	0		1.295e-6	10	NC NC	1	NC NC	1
288		12	min	001		007	3	003		1.425e-4 1.393e-6	3	NC NC	1	NC NC	1
289 290		12	max	.001 001	3	.003 008	3	003		-1.67e-4	<u>10</u> 3	NC NC	1	NC NC	1
291		13	min max	.001	3	.003	2	003 0		1.492e-6	10	NC NC	1	NC NC	1
292		13	min	001	2	008	3	003		1.916e-4	3	NC NC	1	NC NC	1
293		14	max	.001	3	.004	2	0		1.591e-6	10	NC	1	NC	1
294		14	min	002	2	008	3	003		2.161e-4	3	NC	1	NC	1
295		15	max	.002	3	.005	2	0		1.69e-6	10	NC	1	NC	1
296		10	min	002	2	008	3	003		2.407e-4	3	9088.772	2	NC	1
297		16	max	.002	3	.006	2	0		1.788e-6	10	NC	1	NC	1
298		1.0	min	002	2	008	3	003	3 -2	2.652e-4	3	7691.709	2	NC	1
299		17	max	.002	3	.007	2	0		1.887e-6	10	NC	1	NC	1
300			min	002	2	008	3	003		2.898e-4	3	6612.603	2	NC	1
301		18	max	.002	3	.008	2	0		.986e-6	10	NC	1	NC	1
302			min	002	2	008	3	003		3.143e-4	3	5769.443	2	NC	1
303		19	max	.002	3	.009	2	0		2.084e-6	10	NC	3	NC	1
304			min	002	2	008	3	003		3.389e-4	3	5104.66	2	NC	1
305	M12	1	max	.001	1	.011	2	.003	1 3	3.667e-4	3	NC	1	NC	2
306			min	0	12	009	3	0	10 -2	2.916e-6	10	NC	1	7728.053	1
307		2	max	.001	1	.01	2	.002	1 3	3.667e-4	3	NC	1_	NC	2
308			min	0	12	009	3	0		2.916e-6	10	NC	1_	8428.991	1
309		3	max	.001	1	.01	2	.002		3.667e-4	3	NC	_1_	NC	2
310			min	0	12	008	3	0		2.916e-6	10	NC	1_	9263.296	1
311		4	max	.001	1	.009	2	.002		3.667e-4	3	NC	_1_	NC	_1_
312			min	0	12	008	3	0		2.916e-6	10	NC	_1_	NC	1_
313		5	max	.001	1	.008	2	.002		3.667e-4	3_	NC	1_	NC	1
314			min	0	12	007	3	0		2.916e-6	10	NC	1_	NC	1
315		6	max	0	1	.008	2	.001		3.667e-4	3	NC	1	NC	1_
316		-	min	0	12	007	3	0		2.916e-6	10	NC	1_	NC NC	1
317		7	max	0	1	.007	2	.001		3.667e-4	3	NC	1	NC NC	1
318			min	0	12	006	3	0		2.916e-6		NC NC	1_	NC NC	1
319		8	max	0	1 12	.007	3	.001	1 3	3.667e-4 2.916e-6	3	NC NC	1	NC NC	1
320		9	min			006	2	0				NC NC			
321		+ 9	max	0	1 12	.006 005	3	0		3.667e-4 2.916e-6	3	NC NC	1	NC NC	1
323		10		0	1	.005	2	0		3.667e-4	3	NC NC	1	NC NC	1
324		10	max min	0	12	005	3	0		2.916e-6		NC	1	NC NC	1
325		11	max	0	1	.005	2	0		3.667e-4	3	NC	1	NC	1
326			min	0	12	004	3	0		2.916e-6		NC	1	NC	1
327		12	max	0	1	.004	2	0		3.667e-4	3	NC	1	NC	1
328		12	min	0	12	004	3	0		2.916e-6		NC	1	NC	1
329		13	max	0	1	.004	2	0		3.667e-4	3	NC	1	NC	1
330		13	min	0	12	003	3	0		2.916e-6		NC	1	NC NC	1
331		14	max	0	1	.003	2	0		3.667e-4	3	NC	1	NC	1
332		1,7	min	0	12	003	3	0		2.916e-6		NC	1	NC	1
333		15	max	0	1	.002	2	0		3.667e-4	3	NC	1	NC	1
334		'	min	0	12	002	3	0		2.916e-6		NC	1	NC	1
335		16	max	0	1	.002	2	0		3.667e-4	3	NC	1	NC	1
336		1.5	min	0	12	002	3	0		2.916e-6		NC	1	NC	1
					12	.002				0 .00 0	10	1,0			

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	3.667e-4	3	NC	_1_	NC	1
338			min	0	12	001	3	0	10	-2.916e-6	10	NC	1_	NC	1
339		18	max	0	1	00	2	0	1	3.667e-4	3_	NC	_1_	NC	1
340			min	0	12	0	3	0	10	-2.916e-6	10	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	3.667e-4	3	NC	_1_	NC	1
342	5.4.4	1	min	0	1	0	1	0	1	-2.916e-6	10	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max	.009	3	.025	3	.004	3	5.928e-3	2	NC	1	NC NC	1
344		 	min	009	2	021	2	0	9	-8.687e-3	3	NC NC	1_	NC NC	1
345		2	max	.008	3	.015	3	.003	3	2.923e-3	2	NC	4	NC NC	1
346		2	min	009	2	012	3	002 .002	1	-4.279e-3	3	4707.979 NC	3	NC NC	1
347		3	max	.008	3	.005	2		3	4.653e-5 -1.467e-4	<u>3</u>	2438.764	4	NC NC	1
349		4	min	009 .008	3	004 .003	2	003 .002	3		3	NC	<u>3</u> 4	NC NC	1
350		4	max	009	2	003	3	003	1	4.786e-5 -1.227e-4	1	1737.732	3	NC NC	1
351		5		.008	3	003 .01	2	.003	3	4.92e-5	3	NC	<u>3</u> 4	NC NC	1
352		-	max	009	2	009	3	003	1	-9.88e-5	1	1403.461	3	NC	1
353		6	max	.008	3	.015	2	.001	3	5.053e-5	3	NC	4	NC	1
354		+	min	009	2	015	3	003	1	-7.487e-5	1	1216.919	3	NC	1
355		7	max	.008	3	.019	2	.001	3	5.187e-5	3	NC	4	NC	1
356		1	min	009	2	019	3	003	1	-5.172e-5	9	1106.057	2	NC	1
357		8	max	.008	3	.023	2	0	3	5.32e-5	3	NC	4	NC	1
358			min	009	2	022	3	002	1	-3.36e-5	9	1019.529	2	NC	1
359		9	max	.008	3	.025	2	0	3	5.454e-5	3	NC	4	NC	1
360			min	009	2	023	3	001	9	-1.549e-5	9	967.761	2	NC	1
361		10	max	.008	3	.026	2	0	3	5.588e-5	3	NC	4	NC	1
362			min	009	2	024	3	0	9	1.695e-7	10	943.043	2	NC	1
363		11	max	.008	3	.025	2	.001	3	5.721e-5	3	NC	4	NC	1
364			min	009	2	023	3	0	9	-1.965e-7	10	942.536	2	NC	1
365		12	max	.008	3	.024	2	.001	3	6.873e-5	1	NC	4	NC	1
366			min	009	2	021	3	0	10	-5.626e-7	10	967.225	2	NC	1
367		13	max	.008	3	.021	2	.002	1	9.266e-5	_1_	NC	4	NC	1
368			min	009	2	018	3	0	10	-9.286e-7	10	1022.495	2	NC	1
369		14	max	.008	3	.016	2	.002	1	1.166e-4	_1_	NC	4_	NC	1
370			min	009	2	014	3	0	10	-1.295e-6		1120.886	2	NC	1
371		15	max	.008	3	.01	2	.002	1	1.405e-4	_1_	NC	4	NC	1
372			min	009	2	009	3	0	10			1290.039	2	NC	1
373		16	max	.008	3	.003	2	.002	1	1.577e-4	1_	NC	4	NC	1
374		+	min	009	2	003	3	0	10	-1.931e-6		1597.846	2	NC NC	1
375		17	max	.008	3	.005	3	.002	1	6.868e-5	3	NC	4_	NC NC	1
376		40	min	009	2	006	2	0	10	-9.393e-6	9	2263.728	2	NC NC	1
377		18	max	.008	3	.012	3	0		4.26e-3		NC	4	NC NC	1
378		10	min	009	2	017	2	0	10	-2.253e-3	3	4387.504	2	NC NC	1
379		19	max	.008	3	.021	3	0 0	3	8.59e-3	2	NC NC	<u>1</u> 1	NC NC	1
380	M5	1	min	009	2	028	3		9	-4.619e-3	3		1	NC NC	1
381	CIVI	1	max min	.025 028	3	.078 065	2	<u>.004</u> 0	9	8.485e-6 0	<u>3</u> 15	NC NC	1	NC NC	1
383		2	max	.025	3	.046	3	.005	3	1.366e-4	3	NC	4	NC	1
384		+-	min	028	2	038	2	0	9	-1.572e-5	9	1507.405	3	NC	1
385		3	max	.025	3	.016	3	.006	3	2.622e-4	3	NC	<u>5</u>	NC	1
386		-	min	028	2	012	2	<u>.000</u>	9	-3.125e-5	9	781.279	3	NC	1
387		4	max	.025	3	.011	2	.007	3	2.534e-4	3	NC	5	NC	1
388			min	028	2	009	3	0	9	-2.977e-5	9	557.431	3	NC	1
389		5	max	.025	3	.031	2	.008	3	2.445e-4	3	NC	5	NC	1
390			min	028	2	03	3	0	9	-2.829e-5	9	450.822	3	9368.834	_
391		6	max	.025	3	.048	2	.008	3	2.357e-4	3	NC	5	NC	1
392			min	028	2	046	3	0	9	-2.681e-5	9	391.444	3	8457.521	3
393		7	max	.025	3	.061	2	.009	3	2.268e-4	3	NC	5	NC	1
			max	.020		.001		.000		т					

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
394			min	028	2	059	3	0	9	-2.533e-5	9	348.751	2	8039.285	
395		8	max	.025	3	.072	2	.008	3	2.179e-4	3	NC	5	NC	1
396			min	028	2	<u>067</u>	3	0	9	-2.385e-5	9	321.379	2	7949.458	3
397		9	max	.025	3	.078	2	.008	3	2.091e-4	3	NC	5	NC	1
398		40	min	028	2	072	3	0	9	-2.237e-5	9	304.993	2	8126.19	3
399		10	max	.025	3	.081	2	.008	3	2.002e-4	3	NC	5	NC	1
400			min	028	2	073	3	0	9	-2.089e-5	9	297.152	2	8562.681	3
401		11	max	.025	3	.08	2	.007	3	1.914e-4	3_	NC	5	NC NC	1
402		10	min	028	2	071	3	0	9	-1.941e-5	9	296.957	2	9295.422	3
403		12	max	.025	3	.075	2	.006	3	1.825e-4	3	NC 004.740	5_	NC NC	1
404		40	min	028	2	065	3	0	9	-1.793e-5	9	304.716	2	NC	1
405		13	max	.024	3	.065	2	.006	3	1.737e-4	3_	NC 200 400	5_	NC NC	1
406			min	028	2	056	3	0	9	-1.645e-5	9	322.123	2	NC	1
407		14	max	.024	3	.051	2	.005	3	1.648e-4	3	NC	5	NC NC	1
408			min	028	2	043	3	0	9	-1.497e-5	9	353.135	2	NC	1
409		15	max	.024	3	.033	2	.004	3	1.56e-4	3	NC	5	NC	1
410		4.0	min	028	2	027	3	0	9	-1.349e-5	9	406.47	2	NC	1
411		16	max	.024	3	.009	2	.003	3	1.424e-4	3_	NC	5	NC NC	1
412			min	028	2	008	3	0	9	-1.312e-5	9	503.555	2	NC	1
413		17	max	.024	3	.014	3	.002	3	1.641e-5	3	NC	5_	NC	1
414		10	min	028	2	02	2	0	9	-3.921e-5	9	713.745	2	NC	1
415		18	max	.024	3	.038	3	.001	3	6.398e-6	3	NC	4	NC	1
416		10	min	028	2	<u>053</u>	2	0	9	-2.006e-5	9_	1383.807	2	NC	1
417		19	max	.024	3	.063	3	0	3	-3.484e-8	<u>15</u>	NC	_1_	NC	1
418			min	028	2	088	2	0	9	-1.426e-6	3	NC	_1_	NC	1
419	<u>M9</u>	1	max	.009	3	.024	3	.003	3	8.704e-3	3	NC	1_	NC	1
420			min	009	2	021	2	001	9	-5.928e-3	2	NC	<u>1</u>	NC	1
421		2	max	.009	3	.014	3	.002	3	4.282e-3	3	NC	4	NC	1
422			min	009	2	012	2	0	10	-2.923e-3	2	4710.139	3	NC	1
423		3	max	.009	3	.005	3	.002	1	9.605e-5	_1_	NC	4_	NC	1
424			min	009	2	004	2	0	10	-5.836e-5	3	2439.901	3	NC	1
425		4	max	.009	3	.003	2	.002	1	7.438e-5	1_	NC	4_	NC	1
426		-	min	009	2	003	3	001	3	-6.348e-5	3	1738.517	3	NC	1
427		5	max	.008	3	.01	2	.002	1	5.271e-5	_1_	NC	4_	NC	1
428			min	009	2	01	3	002	3	-6.859e-5	3	1404.045	3	9126.892	3
429		6	max	.008	3	.015	2	.002	1	3.104e-5	1	NC	4	NC Tools	1
430		<u> </u>	min	009	2	015	3	003	3	-7.371e-5	3	1217.371	3	7938.936	
431		7	max	.008	3	.019	2	.002	1	1.598e-5	11	NC	4	NC TOTAL	1
432			min	009	2	<u>019</u>	3	004	3	-7.882e-5	3	1106.342	2	7253.483	
433		8	max	.008	3	.023	2	.001	1	5.025e-6	11	NC	4	NC	1
434			min		2	022	3	005		-8.394e-5				6874.277	
435		9	max	.008	3	.025	2	0	11	-4.062e-7		NC OCO OCO	4_	NC	1
436		40	min	009	2	024	3	005	3	-8.905e-5	3	968.029	2	6712.753	3
437		10	max	.008	3	.026	2	0	11	-4.821e-8	10	NC	4_	NC	1
438		1.4	min	009	2	024	3	005	3	-9.416e-5	3	943.312	2	6731.318	
439		11	max	.008	3	.025	2	0	10	3.098e-7	10	NC	4_	NC	1
440		1.0	min	009	2	023	3	005	3	-9.928e-5	3	942.812	2	6923.731	3
441		12	max	.008	3	.024	2	0	10		10	NC 007.540	4_	NC 7044 407	1
442		10	min	009	2	021	3	005	3	-1.044e-4	3_	967.516	2	7311.107	
443		13	max	.008	3	.021	2	0	10	1.026e-6	<u>10</u>	NC 4000 000	4_	NC 7040 440	1
444		4.4	min	009	2	018	3	004	3	-1.207e-4	1_	1022.808	2	7949.442	
445		14	max	.008	3	.016	2	0	10		<u>10</u>	NC 4404 004	4_	NC	1
446		1-	min	009	2	<u>014</u>	3	004	3	-1.423e-4	1_	1121.234	2	8954.572	
447		15	max	.008	3	.01	2	0	10		10	NC	4_	NC NC	1
448		4.0	min	009	2	009	3	003	3	-1.64e-4	1_	1290.443	2	NC	1
449		16	max	.008	3	.003	2	0	10		10	NC 4500 044	4	NC NC	1
450			min	009	2	003	3	003	1	-1.803e-4	1_	1598.341	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

451		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
453	451		17	max	.008	3	.005	3	0	10	8.247e-5	3		4	NC	1
455	452			min	009	2	006	2	003	1	-6.921e-5	9	2264.38	2	NC	1
455	453		18	max	.008	3	.012	3	0	10	2.33e-3	3	NC	4	NC	1
456	454			min	009	2	017	2	002	1	-4.26e-3	2	4388.727	2	NC	1
456	455		19	max	.008	3	.021	3	0	3	4.616e-3	3	NC	1	NC	1
458				min			028		0					1	NC	1
459		M13	1			9			.009	3		3		1		1
460				_												
A60			2													•
661																
A62			3													
663			3													1
A65			1													
666			4													
A66			_					_						_		•
468			5													
468																
A69			6	_												2
A70	468			min	003	3				2		2		3		1
471	469		7	max	0	9	.128	3	.016	3	9.324e-3	3	NC	5	NC	1
A72	470			min	004	3	096	2	017	2	-8.034e-3	2	928.352	3	NC	1
472	471		8	max	0	9	.107	3	.019	3	1.024e-2	3	NC	4	NC	1
473	472			min	004	3	084	2	022	2		2	1163.675	3	7206.093	2
474			9	max										4		1
475					-											2
476			10					_						_		
477			10													
478			11													
480				_												
480			12													
481			12													
Max			40													
483			13													
484 min 004 3 104 2 013 2 -7.243e-3 2 815.945 3 6079.24 3 485 15 max 0 9 .145 3 .021 3 7.508e-3 3 NC 5 NC 2 486 min 004 3 105 2 009 2 -6.453e-3 2 798.414 3 6260.521 1 487 16 max 0 9 .134 3 .018 3 6.596e-3 2 788.414 3 6260.521 1 488 min 004 3 096 2 007 2 -5.662e-3 2 883.821 3 6603.931 1 489 17 max 0 9 .077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 489 1 18 max <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
485 15 max 0 9 .145 3 .021 3 7.508e-3 3 NC 5 NC 2 486 min 004 3 105 2 009 2 -6.453e-3 2 798.414 3 6260.521 1 487 16 max 0 9 .134 3 .018 3 6.596e-3 3 NC 5 NC 2 488 min 004 3 096 2 007 2 -5.662e-3 2 883.821 3 6603.931 1 489 17 max 0 9 .077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 min 004 3 051 2			14		-											
486 min 004 3 105 2 009 2 -6.453e-3 2 798.414 3 6260.521 1 487 16 max 0 9 .134 3 .018 3 6.596e-3 3 NC 5 NC 2 488 min 004 3 096 2 007 2 -5.662e-3 2 883.821 3 6603.931 1 489 17 max 0 9 .108 3 .014 3 5.684e-3 3 NC 4 NC 2 490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 18 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 492 min 004 3				min				_								
487 16 max 0 9 .134 3 .018 3 6.596e-3 3 NC 5 NC 2 488 min 004 3 096 2 007 2 -5.662e-3 2 883.821 3 6603.931 1 489 17 max 0 9 .108 3 .014 3 5.684e-3 3 NC 4 NC 2 490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 min 004 3 051 2 -0.08 2 -4.081e-3 2 2138.172 3 NC 1 492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 min 004 3 021			15							3		3_				2
488 min 004 3 096 2 007 2 -5.662e-3 2 883.821 3 6603.931 1 489 17 max 0 9 .108 3 .014 3 5.684e-3 3 NC 4 NC 2 490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 18 max 0 9 .07 3 .011 3 4.773e-3 3 NC 4 NC 1 492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021<				min	004	3	105			2		2		3		1
489 17 max 0 9 .108 3 .014 3 5.684e-3 3 NC 4 NC 2 490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 18 max 0 9 .07 3 .011 3 4.773e-3 3 NC 4 NC 1 492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3	487		16	max	0		.134	3	.018	3	6.596e-3	3	NC	5		2
490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 18 max 0 9 .07 3 .011 3 4.773e-3 3 NC 4 NC 1 492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3	488			min	004	3	096	2	007	2	-5.662e-3	2	883.821	3	6603.931	1
490 min 004 3 077 2 007 2 -4.871e-3 2 1160.616 3 9100.991 1 491 18 max 0 9 .07 3 .011 3 4.773e-3 3 NC 4 NC 1 492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3	489		17	max	0	9	.108	3	.014	3	5.684e-3	3	NC	4	NC	2
491 18 max 0 9 .07 3 .011 3 4.773e-3 3 NC 4 NC 1 492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3 028 2 009 2 -3.14e-3 3 NC 1 NC 1 497 2 max 0 9	490			min	004	3	077	2	007	2		2	1160.616	3	9100.991	1
492 min 004 3 051 2 008 2 -4.081e-3 2 2138.172 3 NC 1 493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3 028 2 009 2 -3.14e-3 3 NC 1 NC 1 497 2 max 0 9 .045 3 .011 3 5.207e-3 2 NC 4 NC 1 498 min 0 3 11 <			18													1
493 19 max 0 9 .025 3 .009 3 3.861e-3 3 NC 1 NC 1 494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3 028 2 009 2 -3.14e-3 3 NC 1 NC 1 497 2 max 0 9 .045 3 .011 3 5.207e-3 2 NC 4 NC 1 498 min 0 3 072 2 008 2 -3.853e-3 3 2162.003 2 NC 1 499 3 max 0 9 .065																
494 min 004 3 021 2 009 2 -3.29e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3 028 2 009 2 -3.14e-3 3 NC 1 NC 1 497 2 max 0 9 .045 3 .011 3 5.207e-3 2 NC 4 NC 1 498 min 0 3 072 2 008 2 -3.853e-3 3 2162.003 2 NC 1 499 3 max 0 9 .065 3 .014 3 6.219e-3 2 NC 4 NC 2 500 min 0 3 11 2<			19													
495 M16 1 max 0 9 .021 3 .008 3 4.195e-3 2 NC 1 NC 1 496 min 0 3 028 2 009 2 -3.14e-3 3 NC 1 NC 1 497 2 max 0 9 .045 3 .011 3 5.207e-3 2 NC 4 NC 1 498 min 0 3 072 2 008 2 -3.853e-3 3 2162.003 2 NC 1 499 3 max 0 9 .065 3 .014 3 6.219e-3 2 NC 4 NC 2 500 min 0 3 11 2 007 2 -4.566e-3 3 1170.537 2 9114.508 1 501 4 max 0 9 <			10		-											
496 min 0 3 028 2 009 2 -3.14e-3 3 NC 1 NC 1 497 2 max 0 9 .045 3 .011 3 5.207e-3 2 NC 4 NC 1 498 min 0 3 072 2 008 2 -3.853e-3 3 2162.003 2 NC 1 499 3 max 0 9 .065 3 .014 3 6.219e-3 2 NC 4 NC 2 500 min 0 3 11 2 007 2 -4.566e-3 3 1170.537 2 9114.508 1 501 4 max 0 9 .08 3 .017 3 7.232e-3 2 NC 5 NC 2 502 min 0 3 136 2		M16	1					_						_		
497 2 max 0 9 .045 3 .011 3 5.207e-3 2 NC 4 NC 1 498 min 0 3 072 2 008 2 -3.853e-3 3 2162.003 2 NC 1 499 3 max 0 9 .065 3 .014 3 6.219e-3 2 NC 4 NC 2 500 min 0 3 11 2 007 2 -4.566e-3 3 1170.537 2 9114.508 1 501 4 max 0 9 .08 3 .017 3 7.232e-3 2 NC 5 NC 2 502 min 0 3 136 2 007 2 -5.279e-3 3 887.367 2 6621.846 1 503 5 max 0 9 .088 3 .02		IVITO														
498 min 0 3 072 2 008 2 -3.853e-3 3 2162.003 2 NC 1 499 3 max 0 9 .065 3 .014 3 6.219e-3 2 NC 4 NC 2 500 min 0 3 11 2 007 2 -4.566e-3 3 1170.537 2 9114.508 1 501 4 max 0 9 .08 3 .017 3 7.232e-3 2 NC 5 NC 2 502 min 0 3 136 2 007 2 -5.279e-3 3 887.367 2 6621.846 1 503 5 max 0 9 .088 3 .02 3 8.244e-3 2 NC 5 NC 2 504 min 0 3 148 2 <td></td> <td></td> <td>2</td> <td></td> <td>•</td> <td></td> <td></td>			2											•		
499 3 max 0 9 .065 3 .014 3 6.219e-3 2 NC 4 NC 2 500 min 0 3 11 2 007 2 -4.566e-3 3 1170.537 2 9114.508 1 501 4 max 0 9 .08 3 .017 3 7.232e-3 2 NC 5 NC 2 502 min 0 3 136 2 007 2 -5.279e-3 3 887.367 2 6621.846 1 503 5 max 0 9 .088 3 .02 3 8.244e-3 2 NC 5 NC 2 504 min 0 3 148 2 009 2 -5.993e-3 3 795.921 2 6288.237 1 505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0			+													1
500 min 0 3 11 2 007 2 -4.566e-3 3 1170.537 2 9114.508 1 501 4 max 0 9 .08 3 .017 3 7.232e-3 2 NC 5 NC 2 502 min 0 3 136 2 007 2 -5.279e-3 3 887.367 2 6621.846 1 503 5 max 0 9 .088 3 .02 3 8.244e-3 2 NC 5 NC 2 504 min 0 3 148 2 009 2 -5.993e-3 3 795.921 2 6288.237 1 505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0 3 147 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></td<>			2													2
501 4 max 0 9 .08 3 .017 3 7.232e-3 2 NC 5 NC 2 502 min 0 3 136 2 007 2 -5.279e-3 3 887.367 2 6621.846 1 503 5 max 0 9 .088 3 .02 3 8.244e-3 2 NC 5 NC 2 504 min 0 3 148 2 009 2 -5.993e-3 3 795.921 2 6288.237 1 505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0 3 147 2 013 2 -6.706e-3 3 804.402 2 6678.701 3			3		-											
502 min 0 3 136 2 007 2 -5.279e-3 3 887.367 2 6621.846 1 503 5 max 0 9 .088 3 .02 3 8.244e-3 2 NC 5 NC 2 504 min 0 3 148 2 009 2 -5.993e-3 3 795.921 2 6288.237 1 505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0 3 147 2 013 2 -6.706e-3 3 804.402 2 6678.701 3			4													
503 5 max 0 9 .088 3 .02 3 8.244e-3 2 NC 5 NC 2 504 min 0 3 148 2 009 2 -5.993e-3 3 795.921 2 6288.237 1 505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0 3 147 2 013 2 -6.706e-3 3 804.402 2 6678.701 3			4		_											
504 min 0 3 148 2 009 2 -5.993e-3 3 795.921 2 6288.237 1 505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0 3 147 2 013 2 -6.706e-3 3 804.402 2 6678.701 3																
505 6 max 0 9 .089 3 .023 3 9.257e-3 2 NC 5 NC 2 506 min 0 3 147 2 013 2 -6.706e-3 3 804.402 2 6678.701 3			5													
506 min 0 3147 2013 2 -6.706e-3 3 804.402 2 6678.701 3				min				_				3				
506 min 0 3147 2013 2 -6.706e-3 3 804.402 2 6678.701 3			6	max	0		.089			3		2		5		
	506				0	3	147	2	013	2		3	804.402	2	6678.701	3
	507		7	max	0	9	.084	3	.024	3		2	NC	5	NC	1

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	134	2	017	2	-7.419e-3	3	899.273	2	5973.177	3
509		8	max	0	9	.076	3	.025	3	1.128e-2	2	NC	4_	NC	1
510			min	0	3	115	2	022	2	-8.132e-3	3	1096.264	2	5661.608	3
511		9	max	0	9	.067	3	.025	3	1.229e-2	2	NC	4	NC	1
512			min	0	3	096	2	026	2	-8.845e-3	3	1394.056	2	5522.028	2
513		10	max	0	9	.063	3	.024	3	1.331e-2	2	NC	4	NC	4
514			min	0	3	088	2	028	2	-9.559e-3	3	1598.774	2	5004.549	2
515		11	max	0	9	.067	3	.023	3	1.229e-2	2	NC	4	NC	1
516			min	0	3	096	2	026	2	-8.843e-3	3	1394.056	2	5522.035	2
517		12	max	0	9	.076	3	.021	3	1.128e-2	2	NC	4	NC	1
518			min	0	3	115	2	022	2	-8.128e-3	3	1096.264	2	7243.991	2
519		13	max	0	9	.084	3	.02	3	1.027e-2	2	NC	5	NC	1
520			min	0	3	134	2	017	2	-7.412e-3	3	899.273	2	8404.51	3
521		14	max	0	9	.089	3	.018	3	9.257e-3	2	NC	5	NC	2
522			min	0	3	147	2	013	2	-6.697e-3	3	804.402	2	7799.7	1
523		15	max	0	9	.088	3	.015	3	8.245e-3	2	NC	5	NC	2
524			min	0	3	148	2	009	2	-5.981e-3	3	795.921	2	6299.886	1
525		16	max	0	9	.08	3	.013	3	7.233e-3	2	NC	5	NC	2
526			min	0	3	136	2	007	2	-5.266e-3	3	887.367	2	6640.159	1
527		17	max	0	9	.065	3	.011	3	6.221e-3	2	NC	4	NC	2
528			min	0	3	11	2	007	2	-4.55e-3	3	1170.537	2	9151.375	
529		18	max	0	9	.045	3	.009	3	5.208e-3	2	NC	4	NC	1
530			min	0	3	072	2	008	2	-3.835e-3	3	2162.003	2	NC	1
531		19	max	0	9	.021	3	.008	3	4.196e-3	2	NC	1	NC	1
532			min	0	3	028	2	009	2	-3.119e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	4.042e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-4.892e-5	2	NC	1	NC	1
535		2	max	0	3	0	15	0	1	8.124e-4	3	NC	1	NC	1
536			min	0	2	003	4	0	3	-4.478e-4	2	NC	1	NC	1
537		3	max	0	3	001	15	.003	1	1.221e-3	3	NC	1	NC	1
538		1	min	0	2	006	4	003	3	-8.467e-4	2	NC	1	9266.42	3
539		4	max	0	3	002	15	.006	2	1.629e-3	3	NC	1	NC	4
540			min	0	2	008	4	007	3	-1.246e-3	2	7821.324	4	5136.506	_
541		5	max	0	3	002	15	.009	2	2.037e-3	3	NC	3	NC	4
542		1	min	0	2	01	4	012	3	-1.645e-3	2	6103.059	4	3381.863	
543		6	max	0	3	003	15	.013	2	2.445e-3	3	NC	5	NC	4
544		T .	min	001	2	012	4	017	3	-2.043e-3	2	5136.369	4	2467.774	_
545		7	max	0	3	003	15	.017	2	2.853e-3	3	NC	5	NC	4
546			min	001	2	014	4	022	3	-2.442e-3	2	4555.033	4	1932.194	
547		8	max	0	3	004	15	.021	2	3.261e-3	3	NC	5	NC	4
548		10	min	002	2	015	4	027	3	-2.841e-3		4206.143		1595.048	
549		9	max	0	3	004	15	.025	2	3.67e-3	3	NC	5	NC	4
550			min	002	2	016	4	032	3	-3.24e-3	2	4018.351	4	1374.227	3
551		10	max	<u>002</u> 0	3	004	15	.028	2	4.078e-3	3	NC	5	NC	4
552		10	min	002	2	016	4	035	3	-3.639e-3	2	3958.942	4	1228.431	3
553		11		.002	3	016 004	15	.029	2	4.486e-3	3	NC	5	NC	4
		+ ' '	max												
554		40	min	002	2	016	4	038	3	-4.038e-3	2	4018.351	4_	1135.961	3
555		12	max	.001	3	004	15	.03	2	4.894e-3	3	NC	5	NC 4000 007	4
556		40	min	002	2	015	4	038	3	-4.437e-3	2	4206.143	4_	1086.067	3
557		13	max	.001	3	003	15	.029	2	5.302e-3	3_	NC 4555 000	5	NC 407F C7C	4
558			min	003	2	014	4	037	3	-4.836e-3	2	4555.033	4_	1075.676	
559		14	max	.001	3	003	15	.025	2	5.71e-3	3_	NC 5400,000	5_	NC 4400 544	4
560			min	003	2	012	4	034	3	-5.235e-3	2	5136.369	4_	1109.544	
561		15	max	.001	3	002	15	.021	1	6.119e-3	3	NC	3	NC	4
562			min	003	2	011	4	028	3	-5.634e-3	2	6103.059	4_	1204.964	
563		16	max	.002	3	0	2	.014	1	6.527e-3	3	NC	1_	NC	4
564			min	003	2	008	4	019	3	-6.033e-3	2	7821.324	4	1408.825	3

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.002	2	.006	1	6.935e-3	3	NC	1	NC	4
566			min	003	2	006	4	006	3	-6.431e-3	2	NC	1	1868.178	3
567		18	max	.002	3	.004	2	.01	3	7.343e-3	3	NC	1	NC	4
568			min	004	2	003	4	012	2	-6.83e-3	2	NC	1	3326.847	3
569		19	max	.002	3	.007	2	.031	3	7.751e-3	3	NC	1	NC	1
570			min	004	2	001	9	03	2	-7.229e-3	2	NC	1	NC	1
571	M16A	1	max	0	2	.002	2	.009	3	2.206e-3	3	NC	1	NC	1
572			min	002	3	002	3	009	2	-2.242e-3	2	NC	1	NC	1
573		2	max	0	2	0	2	.002	3	2.124e-3	3	NC	1	NC	1
574			min	002	3	003	4	004	2	-2.14e-3	2	NC	1	9285.847	3
575		3	max	0	2	001	15	.003	1	2.041e-3	3	NC	1	NC	4
576			min	002	3	006	4	003	3	-2.039e-3	2	NC	1	5259.305	3
577		4	max	0	2	002	15	.006	1	1.959e-3	3	NC	1	NC	4
578			min	002	3	008	4	008	3	-1.937e-3	2	7821.324	4	4004.762	3
579		5	max	0	2	002	15	.008	1	1.877e-3	3	NC	3	NC	4
580			min	001	3	011	4	011	3	-1.836e-3	2	6103.059	4	3463.339	3
581		6	max	0	2	003	15	.009	1	1.794e-3	3	NC	5	NC	4
582			min	001	3	012	4	012	3	-1.734e-3	2	5136.369	4	3229.926	3
583		7	max	0	2	003	15	.01	1	1.712e-3	3	NC	5	NC	4
584			min	001	3	014	4	013	3	-1.633e-3	2	4555.033	4	3178.056	3
585		8	max	0	2	004	15	.01	1	1.629e-3	3	NC	5	NC	4
586			min	001	3	015	4	013	3	-1.531e-3	2	4206.143	4	3265.246	3
587		9	max	0	2	004	15	.009	1	1.547e-3	3	NC	5	NC	4
588			min	001	3	016	4	013	3	-1.43e-3	2	4018.351	4	3487.29	3
589		10	max	0	2	004	15	.008	1	1.465e-3	3	NC	5	NC	4
590			min	0	3	016	4	011	3	-1.328e-3	2	3958.942	4	3868.246	3
591		11	max	0	2	004	15	.007	1	1.382e-3	3	NC	5	NC	4
592			min	0	3	016	4	01	3	-1.227e-3	2	4018.351	4	4466.45	3
593		12	max	0	2	004	15	.006	1	1.3e-3	3	NC	5	NC	4
594			min	0	3	015	4	008	3	-1.125e-3	2	4206.143	4	5398.339	3
595		13	max	0	2	003	15	.005	1	1.217e-3	3	NC	5	NC	2
596			min	0	3	014	4	006	3	-1.024e-3	2	4555.033	4	6900.14	3
597		14	max	0	2	003	15	.003	1	1.135e-3	3	NC	5	NC	1
598			min	0	3	012	4	004	3	-9.222e-4	2	5136.369	4	9497.023	3
599		15	max	0	2	002	15	.002	1	1.053e-3	3	NC	3	NC	1
600			min	0	3	01	4	002	3	-8.207e-4	2	6103.059	4	NC	1
601		16	max	0	2	002	15	.001	14	9.703e-4	3	NC	_1_	NC	1
602			min	0	3	008	4	0	3	-7.192e-4	2	7821.324	4	NC	1
603		17	max	0	2	001	15	0	4	8.879e-4	3	NC	1_	NC	1
604			min	0	3	005	4	0	2	-6.177e-4	2	NC	1_	NC	1
605		18	max	0	2	0	15	0	3	8.055e-4	3	NC	1	NC	1
606			min	0	3	003	4	0	2	-5.161e-4	2	NC	1_	NC	1
607		19	max	0	1	0	1	0	1	7.231e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-4.146e-4	2	NC	1_	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.