Camada de Rede

Roteamento

DCA0130 - Redes de Computadores

Prof. Carlos M. D. Viegas

Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte

Camada de Rede

- Principais funções do roteador
 - Encaminhamento/repasse:
 - Move os pacotes de um enlace de entrada para um enlace de saída no roteador
 - Roteamento:
 - Determina a rota/caminho a ser seguida/o pelos pacotes
 - Algoritmos de roteamento
 - Mantém informações de roteamento para outras redes
 - Não guardam estado sobre conexões fim a fim
 - Não existe o conceito de "conexão" na camada de rede

Introdução aos Algoritmos de Roteamento

- Os algoritmos de roteamento são executados nos roteadores
 - Determinam qual a interface de saída deve ser utilizada para a transmissão de um pacote
 - Existem diversas métricas para determinar o melhor caminho:
 - Menor número de hops
 - Menor atraso
 - Menor taxa de perda de pacotes
 - Largura de banda disponível
 - O processo de roteamento consiste no preenchimento e atualização das tabelas que contêm as informações de custo para cada enlace de saída
 - Os algoritmos de roteamento são responsáveis por obter essas informações
 - É importante destacar que um roteador não armazena o caminho completo em suas tabelas
 - O encaminhamento/repasse é o processo que trata a chegada dos pacotes, consultando a tabela de roteamento e direcionando-os para a interface de saída (definida previamente pelo algoritmo roteamento)

Introdução aos Algoritmos de Roteamento

• As rotas podem ser:

- Estáticas
 - As rotas são definidas manualmente (fixas)
 - Útil quando a escolha de rotas fixas é desejável
 - Não responde bem em caso de falhas

Dinâmicas

- Alteram as decisões de roteamento automaticamente para refletir mudanças de topologia ou de tráfego na rede
 - Baseadas em métricas, por exemplo: menor atraso, menor taxa de perda de pacotes, etc.
- Os algoritmos de roteamento podem ser:
 - Baseados em tabelas (proativos): o algoritmo de roteamento constrói uma tabela que é atualizada periodicamente
 - Sob demanda (reativos): o algoritmo de roteamento só toma a decisão quando requisitado (ou seja, sob demanda)

- Roteamento por Vetor de Distâncias (DV)
 - Conhecido como algoritmo de Bellman-Ford
 - Os algoritmos de roteamento DV são sob-demanda (reativos)
 - Cada roteador mantém uma tabela contendo a menor distância até cada destino e qual interface de saída deve ser utilizada (distribuído)
 - As tabelas são atualizadas com base na troca de informações com seus vizinhos (iterativo)
 - Não é necessário que todos os roteadores executem o roteamento simultaneamente (assíncrono)
 - O algoritmo RIP (Routing Information Protocol) é um exemplo de DV
 - Ideia básica do vetor de distâncias:
 - Cada nó envia periodicamente sua estimativa de vetor de distância (DV) aos vizinhos
 - Quando um nó X recebe uma nova estimativa DV do vizinho, ele atualiza seu próprio DV usando a equação de Bellman-Ford
 - Os DV's são enviados para todos os vizinhos até a convergência!

- Roteamento por Vetor de Distâncias Exemplo
 - Estado inicial

Info at	Distance to Node				
node	Α	В	C	D	Ε
Α	0	7	00	00	1
В	7	0	1	00	8
С	œ	1	0	2	00
D	œ	œ	2	0	2
E	1	8	œ	2	0

- Roteamento por Vetor de Distâncias Exemplo
 - D envia vetor para E

- Roteamento por Vetor de Distâncias Exemplo
 - B envia vetor para A

- Roteamento por Vetor de Distâncias Exemplo
 - E envia vetor para A

- Roteamento por Vetor de Distâncias Exemplo
 - Até a convergência...

Info at	Distance to Node				
node	Α	В	C	D	E
Α	0	6	5	3	1
В	6	0	1	3	5
С	5	1	0	2	4
D	3	3	2	0	2
E	1	5	4	2	0

Vetor de distância de A

Dest	Custo	Next Hop
В	6	Е
С	5	Е
D	3	Е
Е	1	E

Vetor de distância de B

Dest	Custo	Next Hop
Α	6	С
С	1	С
D	3	С
Ε	5	С

- Roteamento por Vetor de Distâncias Exemplo
 - Até a convergência...

Info at	Distance to Node				
node	Α	В	C	D	E
Α	0	6	5	3	1
В	6	0	1	3	5
С	5	1	0	2	4
D	3	3	2	0	2
E	1	5	4	2	0

Vetor de distância de C

Dest	Custo	Next Hop
Α	5	D
В	1	В
D	2	D
E	4	D

Vetor de distância de D

Dest	Custo	Next Hop
Α	3	Е
В	3	С
С	2	С
Е	2	Ε

- Roteamento por Vetor de Distâncias Exemplo
 - Até a convergência...

Info at	Distance to Node				
node	Α	В	C	D	Ε
Α	0	6	5	3	1
В	6	0	1	3	5
С	5	1	0	2	4
D	3	3	2	0	2
E	1	5	4	2	0

Vetor de distância de E

Dest	Custo	Next Hop
Α	1	Α
В	5	D
С	4	D
D	2	D

- Roteamento por Vetor de Distâncias
 - Problema da contagem ao infinito
 - O estabelecimento das rotas pela rede é chamado de convergência
 - Apesar de convergir para a resposta correta, o roteamento por vetor de distâncias pode ser feito de forma lenta
 - Quando um nó falha, a atualização das tabelas pode demorar, uma vez que os vizinhos anunciarão aos demais que conseguem chegar até o nó que falhou (mas na realidade não conseguem)

- Roteamento por Vetor de Distâncias (na prática) RIP
 - RIPv1 (Routing Information Protocol)
 - Definido pela RFC 1058 para IPv4
 - A métrica utilizada é o número de máquinas intermediárias (número de *hops*)
 - Não suporta máscaras de sub-rede (classful)
 - Cada roteador divulga sua tabela periodicamente a cada 30 segundos
 - As mensagens divulgadas levam n tuplas contendo: <redes destino, métrica>
 - A divulgação para os vizinhos é realizada por *broadcast* (endereço IP 255.255.255.255)
 - No procedimento normal, se a rota n\u00e3o for atualizada em 180 segundos \u00e9 considerada inating\u00eavel
 - A informação de rota inatingível é repassada aos roteadores "vizinhos" (diretamente alcançáveis)
 - RIPv2
 - Definido pelas RFCs 1721 e 1722 para IPv4
 - Similar ao RIPv1, mas com suporte a máscaras de sub-rede (classless)
 - A divulgação para os vizinhos é realizada por *multicast* (endereço IP 224.0.0.9)

- Roteamento por Vetor de Distâncias (na prática) RIP
 - Comandos para habilitar o RIP no Cisco Packet Tracer (na CLI)
 - RIPv1

```
(digitar antes enable, e em seguida configure terminal)
router rip
  network [rede_a_anunciar]
```

• RIPv2

```
(digitar antes enable, e em seguida configure terminal)
router rip
  version 2
  no auto-summary
  network [rede a anunciar]
```

- Roteamento por Vetor de Distâncias (na prática) RIP
 - Problemas/desvantagens:
 - RIPv1 não possui mecanismos de segurança/autenticação
 - É suscetível a IP spoofing ("falsificação" de IP)
 - RIPv2 implementa hash MD5 para autenticação
 - Não permite balanceamento de carga
 - Não tem controle da "idade" das mensagens
 - Mensagens "velhas" podem ser processadas após mensagens "novas"
 - Causa inconsistências nas tabelas de roteamento
 - Limitação de número de roteadores intermediários (máximo 15 hops)
 - Métrica = 16, indica rota inalcançável
 - RIPv1 não suporta máscaras de sub-rede
 - RIPv2 suporta
 - Não é possível formar hierarquia de roteadores, isto é, a rede é plana
 - Não escalável

- Roteamento por Estado de Enlace (LS)
 - O roteamento por vetor de distância demora para convergir devido ao problema da contagem ao infinito
 - Os algoritmos de roteamento LS são baseados em tabela (proativos)
 - O roteamento por estado de enlace foi proposto para resolver esse problema
 - Todos os nós precisam conhecer o mapa da rede para aplicar o algoritmo de caminho mínimo
 - Conhecido como algoritmo de Dijkstra
 - Cada roteador realiza os seguintes passos:
 - 1. Descobrir seus vizinhos e aprender seus endereços de rede
 - 2. Medir o atraso (ou o custo) até cada um de seus vizinhos
 - 3. Criar um pacote que informe tudo o que acabou de aprender
 - 4. Enviar este pacote e receber pacotes de todos os outros roteadores
 - 5. Calcular o caminho mais curto até cada um dos outros roteadores
 - O algoritmo OSPF (Open Shortest Path First) é um exemplo de LS

- Roteamento por Estado de Enlace
 - 1. Descobrir seus vizinhos e aprender seus endereços de rede
 - Um pacote 'hello' é enviado em cada enlace do roteador
 - Cada vizinho que receber, deve responder informando quem é (seu endereço de rede)
 - 2. Medir o atraso (ou o custo) até cada um de seus vizinhos
 - O algoritmo de estado de enlace exige que cada roteador conheça o atraso para cada um de seus vizinhos
 - Esse atraso é medido de forma automática:
 - Um pacote especial 'echo' é enviado e devolvido imediatamente pelo receptor
 - Com o tempo de ida e volta (RTT) desse pacote é possível estimar o atraso

- Roteamento por Estado de Enlace
 - 3. Criar um pacote contendo tudo que acabou de aprender (pacote de estado de enlace)
 - Os pacotes devem conter: identidade do transmissor, número de sequência, idade (TTL), lista de vizinhos e os custos do enlace
 - Quando criar estes pacotes?
 - Periodicamente em intervalos regulares
 - Na ocorrência de eventos significativos (quebra de enlace gerada pela saída de algum vizinho)

- Roteamento por Estado de Enlace
 - 4. Enviar este pacote e também receber os pacotes dos outros roteadores
 - Todos os roteadores precisam receber os pacotes de estado de enlace de forma rápida e confiável
 - Para isso é utilizada a técnica de inundação (flooding) e cada pacote deverá ter um número de sequência único e um tempo de vida
 - Para tornar o algoritmo mais robusto, os pacotes de estado de enlace são retidos antes de serem transmitidos
 - Aguardam um determinado tempo em uma área de retenção caso mais pacotes de estado de enlace cheguem
 - Caso chegue um pacote de estado de enlace, proveniente da mesma origem, mas com número de sequência diferente, é descartado o mais antigo

- Roteamento por Estado de Enlace
 - 5. Calcular o caminho mais curto até cada um dos outros roteadores
 - Uma vez que uma rota tenha "acumulado" um conjunto completo de pacotes de estado de enlance, é possível criar um grafo de sub-rede
 - Executa-se então o algoritmo de Dijkstra localmente para obter o caminho mais curto até todos os destinos possíveis
 - O resultado desse algoritmo é armazenado na tabela de roteamento e a operação de repasse se baseará na mesma

- Roteamento por Estado de Enlace (na prática) OSPF
 - OSPF (Open Shortest Path First)
 - Definido pela RFC 2328 para IPv4 e RFC 5340 para IPv6
 - A métrica utilizada é o custo da interface (baseado a largura de banda)
 - Cada roteador mantém uma base de dados descrevendo a topologia
 - Constrói uma árvore de menores caminhos alcançáveis
 - Calcula rotas com base no algoritmo de Dijkstra
 - Rápida convergência e rápida recuperação de enlaces quebrados
 - Oferece balanceamento de carga
 - Em caso de rotas com mesmo "custo", a carga é dividida por igual para cada uma
 - Permite particionar a rede em múltiplas zonas/áreas
 - Suporta máscaras de sub-rede (classless)

- Roteamento por Estado de Enlace (na prática) OSPF
 - Comandos para habilitar o OSPFv2 no Cisco Packet Tracer (na CLI)

```
(digitar antes enable, e em seguida configure terminal)
```

```
router ospf [id_processo]
  network [rede_a_anunciar] [mascara_wildcard] area [numero_da_zona]
```