

Systems of Ordinary Differential Equations > Linear Systems of Two Equations

10.
$$x_{tt}'' - ay_t' + bx = 0$$
, $y_{tt}'' + ax_t' + by = 0$.

This equation is used for describing the horizontal motion of a pendulum taking into account the Earth rotation.

Solution with $a^2 + 4b > 0$:

$$x = C_1 \cos(\alpha t) + C_2 \sin(\alpha t) + C_3 \cos(\beta t) + C_4 \sin(\beta t),$$

$$y = -C_1 \sin(\alpha t) + C_2 \cos(\alpha t) - C_3 \sin(\beta t) + C_4 \cos(\beta t),$$

where C_1, \ldots, C_4 , and

$$\alpha = \frac{1}{2}a + \frac{1}{2}\sqrt{a^2 + 4b}, \quad \beta = \frac{1}{2}a - \frac{1}{2}\sqrt{a^2 + 4b}.$$

Reference

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/sysode/sode0110.pdf