The three fondamental mechanisms of AI: Search, Optimisation, Learning

Hugues Bersini IRIDIA-CODE ULB Use indifferently different techniques for the same problems

15	2	1	12
8	5	6	11
4	9	10	7
3	14	13	

8								
		3	6					
	7			9		2		
	5				7			
				4	5	7		
			1				3	
		1					3 6	8
		8	5				1	
	9					4		

- **A*** = search
- Genetic Algorithm = optimisation
- Q-Learning = learning

How to differentiate them:

- CPU Time and Memory
- Algorithm Complexity
- Ease to integrate Human Expertise

Multiple ways to mix or to hybridize them

- Make AI becoming a software tool box
- For instance:
 - Learn the right heuristic for A*
 - Improve the optimisation algorithm for the learning phase of Neural Nets
 - Learn the best parameters of a Genetic Algorithm
 - Combine them: Optimisation + Neural Nets
 - + Classical problem solving algorithms not originally coming from and with AI

Not immune to fashion

- Neural Nets many successive deads and resurrections: 50', 80', 2000'
 - Connectionims, NN, Deep Learning
- Fuzzy Sets in the 80'
- Complexity Theory: Chaos, Multi-Agents
- The Deep Learning current fashion

First Exemple: the 15 puzzle game

1	2	3		5	8	1		1	2	3
4	5	6			3	7		4	5	6
7	8			4	2	6		8	7	
	(a) (b)			'		(c)				

Breath First

A*

Genetic Algorithms

[1,3,4,2,3,1] et [1,4,3,3] pour donner [1,3,4,3,3] et [1,3,2,3,1]

Fitness = Individual size: nbr of moves + nbr of bad positions at the end of the sequence of moves

Drawbacks and Discussions

- Disappear the notion of states and trees that guide the search
- Possibility of very long sequences or sequences composed of cycles.
- In A*, possibility of backtracking, very guided construction of moves
- It's very possible that after a very long CPU time, solution will be found
- Many Al users choose to favour CPU time instead of Cognitive time
- But this CPU time saving still makes a lot of sense and honors and gives tribute to human intelligence

Q-Learning

The state is each possible configuration

The actions are all possibles moves from that state

Drawbacks and discussions

- The notion of state is well preserved
- The best sequence of moves will be even found for teach initial configuration (each initiat state)
- Learning to compensate for the need for an intermediary evolution of the state
- The only possible feedback is at the end like with GA
- But even so, it could be possible to run an invert A* (called also dynamic programming) to accelerate the search.
- But still a learning of the best A* heuristic might still be an interesting idea.

Snake and Tetris

Snake: A* or Q-Learning

- The states can be defined relatively to the snake head, to limit the size.
- The four actions are easy to define
- The snake moves independently of the actions. Hard to draw the search tree.
- A* becomes very problematic since no final state really exists.
- Much easier to use reinforcement or a cost function to evaluate the performance of the snake and thus the player.
- -> Reinforcement Learning or NN + GA are classical ways to find the best player.

Connect-4 and two players game.

Connect-4

The Min-Max Strategy for the Tic-Tac-Toe

With heuristics

Learning the heuristics

Learning by statistics.
Playing randomly and
computing the number of lost games
vs the number of winning games.

Discovering the shortest path: Dijkstra or A*

Graph: Dijkstra's Algorithm With Animation (Shortest Path Search)

Dijkstra's Rules

Rule 1: Make sure there is no negative edges. Set distance to source vertex as zero and set all other distances to infinity.

Rule 2: Relax all vertices adjacent to the current vertex.

Rule 3: Choose the closest vertex as next current vertex.

Rule 4: Repeat Rule 2 and Rule 3 until the queue or reach the destination.

If (D[C] + D[AdjEdge]) < D[Adj] {Update Adj's D with new shortest path}

$\mathbf{D} = 2 \qquad \qquad \mathbf{D} = 6$	Q <= V	A	В	C	D	E	F
$\begin{array}{c} B \\ \end{array}$	A	0 ^A	2 ^A	4 ^A	$\infty^{\mathbf{A}}$	∞ A	$\infty^{\mathbf{A}}$
D=0 2	B	0 ^A	2 ^A	3 ^B	6 ^B	4 ^B	$\infty^{\mathbf{A}}$
S A 1 3 D = 6 F	0	0 ^A	2 ^A	3 ^B	6 ^B	4 ^B	$\infty^{\mathbf{A}}$
4	E				6 ^B	4 ^B	66
(C) (E) 2							
Fait state of the filer la page pour affice of the filer la page p	cher plus de	détails				*	15

GA and ACO for shortest path

Distinguishing a cat from a dog: NN and DL

