Proof Checker Notes

Yu-Yang Lin

July 13, 2015

1 Syntax Grammar

(types)
$$\tau := bool \mid \tau \to \tau \mid nat \mid list \tau$$

(hypotheses) $A , B := \top \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \forall x : \tau . A \mid \exists x : \tau . A \mid t = t : \tau$
(terms) $e , t := x \mid tt \mid true \mid false \mid [\] \mid t :: t \mid zero \mid suc(t)$
(term context) $\psi := . \mid \psi, x : \tau$
 $\psi \vdash t : \tau$
 $\psi \vdash A prop$

2 Specification rules of terms typing and hypotheses

Note: functions are included as term types, but not directly as term constructors. Instead, function terms are added into the term context (ψ) manually. This simplifies the checker since function type inference is not required.

2.1 Terms

Natural Numbers:

$$\frac{\psi \vdash \text{zero : nat}}{\psi \vdash \text{suc(t) : nat}} \quad \text{(nat-suc-n)}$$

Booleans:

$$\frac{}{\psi \vdash \mathsf{true} : \mathsf{bool}} \quad \mathsf{(bool\text{-}true)} \qquad \frac{}{\psi \vdash \mathsf{false} : \mathsf{bool}} \quad \mathsf{(bool\text{-}false)}$$

Lists:

$$\frac{\psi \vdash [\] : \text{list t}}{\psi \vdash [\] : \text{list t}} \quad \text{(list-nil)} \qquad \frac{\psi \vdash \mathsf{t}' : \mathsf{t}}{\psi \vdash \mathsf{t}' : \mathsf{t}'' : \text{list t}} \quad \text{(list-cons)}$$

Variables:

$$\frac{x:\tau\in\psi}{\psi\vdash x:\tau}\quad \text{(var)}$$

Application:

$$\frac{\psi \vdash \mathsf{t} : \tau \to \tau' \qquad \psi \vdash \mathsf{t}' : \tau}{\psi \vdash \mathsf{t} \; \mathsf{t}' : \tau'} \quad (\mathsf{app})$$

2.2 Propositions

Truth and Falsity Propositions:

$$\frac{}{\psi \vdash \top \text{ prop}} \quad (\top \text{-prop}) \qquad \qquad \frac{}{\psi \vdash \bot \text{ prop}} \quad (\bot \text{-prop})$$

Binary Relation Propositions:

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \land B \text{ prop}} \quad (\land\text{-prop})$$

$$\frac{\psi \vdash A \operatorname{prop} \qquad \psi \vdash B \operatorname{prop}}{\psi \vdash A \vee B \operatorname{prop}} \quad (\lor \operatorname{-prop})$$

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \supset B \text{ prop}} \quad (\supset \text{-prop})$$

$$\frac{\psi \vdash t: \tau \qquad \psi \vdash t': \tau}{\psi \vdash (t = t': \tau) \text{ prop}} \quad \text{(eq-prop)}$$

Quantifier Propositions:

$$\frac{\psi, x : \tau \vdash A \text{ prop}}{\psi \vdash \forall x : \tau. A \text{ prop}} \quad (\forall \text{-prop})$$

$$\frac{\psi, x : \tau \vdash A \text{ prop}}{\psi \vdash \exists x : \tau. \text{ A prop}} \quad (\exists \text{-prop})$$

3 Implementation rules for type inference and checking

3.1 Syntax grammar

(infer)
$$e := x \mid e \mid true \mid false \mid zero \mid suc(e)$$

(check) $v := v :: v \mid nil \mid e$

Type Inferece Rule:

$$\overset{-}{\psi}\vdash\overset{-}{t}\Rightarrow\overset{+}{\tau}$$

Type Checking Rule:

$$\bar{\psi} \vdash \bar{t} \Leftarrow \bar{\tau}$$

3.2 Term type inference

Variables:

$$\frac{x:\tau\in\psi}{\psi\vdash x\Rightarrow\tau}\quad \text{(var)}$$

Application:

$$\frac{\psi \vdash t \Rightarrow \tau \rightarrow \tau' \qquad \psi \vdash t' \Leftarrow \tau}{\psi \vdash t \ t' \Rightarrow \tau'} \quad (app)$$

Natural Numbers:

$$\frac{\psi \vdash \mathsf{zero} \Rightarrow \mathsf{nat}}{\psi \vdash \mathsf{suc}(\mathsf{t}) \Rightarrow \mathsf{nat}} \quad \text{(nat-suc-n)}$$

Booleans:

$$\frac{}{\psi \vdash \text{true} \Rightarrow \text{bool}}$$
 (bool-false) $\frac{}{\psi \vdash \text{false} \Rightarrow \text{bool}}$ (bool-false)

Term type checking

Lists:

$$\frac{\psi \vdash [] \Leftarrow \text{list t}}{\psi \vdash [] \Leftarrow \text{list t}} \quad \text{(list-nil)} \qquad \frac{\psi \vdash t' \Leftarrow t \qquad \psi \vdash t'' \Leftarrow \text{list t}}{\psi \vdash t' :: t'' \Leftarrow \text{list t}} \quad \text{(list-cons)}$$

Inference Case:

$$\frac{\psi \vdash t \Rightarrow \tau' \qquad \tau = \tau'}{\psi \vdash t \Leftarrow \tau} \quad (app)$$

3.4 Propositions type checking

Truth and Falsity Propositions:

$$\frac{}{\psi \vdash \top \text{ prop}} \quad (\top \text{-prop}) \qquad \frac{}{\psi \vdash \bot \text{ prop}} \quad (\bot \text{-prop})$$

Binary Relation Propositions:

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \land B \text{ prop}} \quad (\land \text{-prop})$$

$$\frac{\psi \vdash A \operatorname{prop} \qquad \psi \vdash B \operatorname{prop}}{\psi \vdash A \vee B \operatorname{prop}} \quad (\vee\operatorname{-prop})$$

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \supset B \text{ prop}} \quad (\supset \text{-prop})$$

$$\frac{\psi \vdash t \Leftarrow \tau \qquad \psi \vdash t' \Leftarrow \tau}{\psi \vdash (t = t' \Leftarrow \tau) \text{ prop}} \quad \text{(eq-prop)}$$

Quantifier Propositions:

$$\frac{\psi, x \Leftarrow \tau \vdash A \text{ prop}}{\psi \vdash \forall x \Leftarrow \tau. A \text{ prop}} \quad (\forall \text{-prop})$$

$$\frac{\psi, x \Leftarrow \tau \vdash A \text{ prop}}{\psi \vdash \exists x \Leftarrow \tau. A \text{ prop}} \quad (\exists \text{-prop})$$

3.5 Function signatures

infer_term : $\psi \to {\mathsf t} \to {\mathsf \tau}$ option

check_term : $\psi \to t \to \tau \to unit option$ check_prop : $\psi \to A \to unit option$

val infer_term : ctx -> term -> tp option

val check_term : ctx -> term -> tp -> unit option

val check_prop : ctx -> prop -> unit option

4 Well-formedness of proofs

4.1 Syntax grammar

$$(proofs) \quad p\,,q \quad ::= \quad by\,H \\ \quad | \quad (p\,,q) \\ \quad | \quad let\,(H',H'') = H\,in\,p \\ \quad | \quad (p\,,q)\,\text{either} \\ \quad | \quad match\,\,[H]\,:\,\,(A\vee B)\,\,\,\text{with}\,\,\,(A\,,B)\,\,\,\text{with}\,\,\,(B\,,B'):\,\,p\to C \\ \quad | \quad B\,,B'']:\,\,p\to C \\ \quad | \quad B\,,B'']:\,\,q\to C \,\,(B\,,B''):\,\,q\to C \,\,(B\,,$$

4.2 Rules

Truth and Falsity:

$$\frac{}{\psi;\Gamma\vdash\top:C}\quad (\top R)\qquad \qquad \frac{}{\psi;\Gamma,H:\bot\vdash\mathsf{match}\,H\,\mathsf{with}\,\bot:C}\quad (\bot L)$$

Conjunction:

$$\frac{\psi;\Gamma,H:A\wedge B\,,\,H':A\,,\,H'':B\vdash p:C}{\psi;\Gamma,H:A\wedge B\vdash \text{let }(H',H'')\ =\ H\,\text{in }p:C}\quad (\land L)$$

$$\frac{\psi;\Gamma\vdash p:A\qquad \psi;\Gamma\vdash q:B}{\psi;\Gamma\vdash (p,q):A\wedge B}\quad (\land R)$$

Disjunction:

$$\frac{\psi; \Gamma, H: A \vee B, H': A \vdash p: C \qquad \psi; \Gamma, H: A \vee B, H'': B \vdash q: C}{\psi; \Gamma, H: A \vee B \vdash \text{match } [H] \text{ with } (A [H']: p \mid B [H'']: q): C} \quad (\lor L)$$

$$\frac{\psi; \Gamma \vdash p : A}{\psi; \Gamma \vdash \text{Left } p : A \lor B} \quad (\lor R_1)$$

$$\frac{\psi;\Gamma\vdash q:B}{\psi;\Gamma\vdash \text{Right }q:A\vee B}\quad (\vee R_2)$$

Implication:

$$\frac{\psi; \Gamma, H: A \supset B \vdash p: A \qquad \psi; \Gamma, H: A \supset B, H': B \vdash q: C}{\psi; \Gamma, H: A \supset B \vdash (p, B [H'] \text{ via } H, q): C} \quad (\supset L)$$

$$\frac{\psi; \Gamma, H: A \vdash p: B}{\psi; \Gamma \vdash (Assume A [H], p): A \supset B} \quad (\supset R)$$

Using hypotheses:

$$\psi$$
; Γ , $[H]$: $A \vdash by H : A$ (by)

$$\frac{\psi; \Gamma \vdash p : A}{\psi; \Gamma \vdash p \text{ Therefore A : A}} \quad \text{(therefore)}$$

4.3 Function signature

$$\texttt{check_proof} \; : \quad \psi \to \Gamma \to \; \mathsf{P} \; \to \; \mathsf{A} \; \to \; \mathsf{unit} \; \mathsf{option}$$

5 Dealing with quantifiers in proofs

5.1 Rules

Existentials:

$$\frac{\psi; \Gamma \vdash t : \tau \qquad \psi; \Gamma \vdash p : [x \mapsto t] A}{\psi; \Gamma \vdash \text{Choose } t; p : \exists x : \tau.A} \quad (\exists R)$$

$$\frac{\psi, y : \tau; \Gamma, H : \exists x : \tau. A, H' : [x \mapsto y] A \vdash p : C}{\psi; \Gamma, H : \exists x : \tau. A \vdash let (y, H') = H \text{ in } p : C}$$
 (\(\exists L\)

Universals:

$$\frac{\psi, y : \tau; \Gamma, \vdash p : [x \mapsto y] A}{\psi; \Gamma \vdash \text{Assume } y : \tau \cdot p : \forall x : \tau.A} \quad (\forall R)$$

$$\frac{\psi; \Gamma \vdash t : \tau \qquad \psi; \Gamma, H : \forall x : \tau . A, H' : [x \mapsto t] A \vdash p : C}{\psi; \Gamma, H : \forall x : \tau . A \vdash let H' = H \text{ with } t \text{ in } p : C} \quad (\forall L)$$

5.2 Substituting terms into variables

$$subs = [x \mapsto z]$$

val subs_term : var -> term -> term -> term
val subs_prop : var -> term -> prop -> var list -> prop

6 α-equivalence

6.1 Terms

Variables:

$$x \equiv x$$
 (var \equiv)

Booleans:

$$\overline{\text{true} \equiv \text{true}}$$
 (bool-true \equiv) $\overline{\text{false} \equiv \text{false}}$ (bool-false \equiv)

Natural Numbers:

$$\frac{1}{\text{zero} \equiv \text{zero}} \quad \text{(nat-zero} \equiv) \qquad \frac{t \equiv t'}{\text{suc(t)} \equiv \text{suc(t')}} \quad \text{(nat-suc-n} \equiv)$$

Lists:

Application:

$$\frac{e \equiv e' \qquad v \equiv v'}{e \ v \equiv e' \ v'} \quad \text{(var} \equiv \text{)}$$

6.2 Propositions

Truth and Falsity:

$$\begin{array}{ccc} & & & \\ \hline \top \equiv \top & & (\top \equiv) & & \hline \bot \equiv \bot & (\bot \equiv) \end{array}$$

Binary Relations:

$$\frac{A \equiv A' \qquad B \equiv B'}{A \wedge B \equiv A' \wedge B'} \quad (\land \equiv)$$

$$\frac{A \equiv A' \qquad B \equiv B'}{A \vee B \equiv A' \vee B'} \quad (\vee \equiv)$$

$$\begin{array}{c|c} A \equiv A' & B \equiv B' \\ \hline A \supset B \equiv A' \supset B' & (\supset \equiv) \end{array}$$

Equality:

$$\frac{t_1\equiv t_1' \qquad t_2\equiv t_2' \qquad \tau\equiv\tau'}{(t_1=t_2:\tau)\equiv (t_1'=t_2':\tau')}\quad (=\equiv)$$

Quantifiers:

$$\frac{\mathsf{M}\,z\,.\,(x\,z)\,\mathsf{B}\equiv(x\,z)\,\mathsf{B}'\qquad\tau\equiv\tau'}{\exists x:\tau.\,\mathsf{B}\equiv\exists y:\tau'.\,\mathsf{B}'}\qquad(\exists\,\equiv)$$

$$\frac{\forall z . (x z) B \equiv (x z) B' \qquad \tau \equiv \tau'}{\forall x : \tau . B \equiv \forall y : \tau' . B'} \quad (\forall \equiv)$$

6.3 Swapping variable names

$$swap = (x z)$$