Abstract Algebra: Homework 3

Huize Shi - A92122910

February 2, 2018

Section 5:

11.

Let H be a $n \times n$ matrix with determinant -1. This is not a subgroup of G because H is not closed. Let $h_1, h_2 \in H$:

$$det(h_1 \cdot h_2) = det(h_1) \cdot det(h_2) = -1 \cdot -1 = 1$$

Since matrix with determinant 1 is not in H, H is not a subgroup of G.

39.

- a. True. Associativity is a part of the definition of Group.
- **b**. False. Every element in a group must have a inverse. This means that the cancellation law must hold.
- **c**. True. Every group is a subset of itself which is a group.
- **d**. False. Only the group itself is the improper subgroup.
- **e**. False. Only the element(s) whoes absolute value is the smallest are the generator(s).
- **f**. False. <2>=<-2>
- **g**. False. Set of negative numbers is closed under addition but not closed under multiplicaiton.
- h. False. Subgroup has additional constraints such as closed under opteration.
- ${f i}.$ True. It's generated by 1 and 3
- j. False. Subset of a group may not contain identity.

40.

Given
$$G=\langle \mathbb{Z},\cdot \rangle$$

$$x^2=e$$

$$x^2=1$$

$$x_1=1,\ x_2=-1$$

41.

Let $g_1, g_2 \in \langle G, * \rangle, h_1, h_2 \in \langle H, * \rangle, H \leq G \Rightarrow h \in G$.

$$h \in G \Rightarrow \phi(h) \in G'$$

Since H is a group, $\phi(H)$ is a group. Since $\phi(h) \in H \land \phi(h) \in G$, $\phi(H) \subseteq \phi(G)$

43.

Proof. Show that $\{hk \mid h \in H, k \in K\}$ is closed under *, contain identity element and inverses for all elements: Let $A = \{hk \mid h \in H, k \in K\}$

Closure: Let $a, b \in A \Rightarrow a = hk$, $b = h'k' \mid h$, $h' \in H \land k$, $k' \in K$. Wants to show $a * b \in A$

$$a * b \in A$$
$$hkh'k' \in A$$

Since A is Abelian, the following is true:

$$hh'kk' \in A$$

 $hh' \in H \land kk' \in K$
 $a * b \in A$

Left identity: Show that $\exists e_A \in A \mid e_A * a = a, \forall a \in A$ Let $e_A = e_G \mid e_G * g = g, \forall g \in G$. Wants to show $e_A * a = a$, since $H, K \subseteq G \Rightarrow h, k \in G$ the following holds:

$$(e_G)(hk) = (e_G h)k$$
$$= hk$$

Ergo $\exists e_A \in A \mid e_A * a = a, \forall a \in A$

Left inverse: Show that $\exists \ a^{-1} \in A \ | \ a^{-1} * a = e_A = e_G, \ \forall a \in A$ Since $H, \ K \leq G, \ h^{-1}h = k^{-1}k = e_G = e_A, \ \text{let} \ a^{-1} = h^{-1}k^{-1}$:

$$a^{-1}a = (h^{-1}k^{-1})(hk)$$

= $(h^{-1}h)(k^{-1}k)$
= $e_Ae_A = e_A$

Ergo the inverse $a^{-1} \exists \forall a \in A, a^{-1}a = e_A$

Since we have now shown that the set $A = \{hk \mid h \in H, k \in K\}$ is closed under *, associative, has left identity and has left inverse, it can be concluded that the set $A = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.

51.

Proof.
$$H_a = \{x \in G \mid xa = ax\}$$

Closure: Let $x, y \in H_a \mid ax = xa, \ ay = ya$

$$a(xy) = (ax)y$$

$$= (xa)y$$

$$= x(ay)$$

$$= x(ya)$$

$$= (xy)a$$

Since a(xy) = (xy)a holds, $xy \in H_a$, H_a is closed.

Left identity: Let e be the identity in G. Since $a \in G$, The following holds e * a = a.

Left inverse: Let $x \in H_a \mid ax = xa$

$$ax = xa$$

$$a(xx^{-1}) = xax^{-1}$$

$$a = xax^{-1}$$

$$x^{-1}a = (x^{-1}x)ax^{-1}$$

$$x^{-1}a = ax^{-1}$$

Ergo, the inverse of a is also in H_a Hence shown that $H_a = \{x \in G \mid xa = ax\}$ is a subgroup of G.

Section 6:

18.

$$\gcd(30, 42) = 6$$
$$\frac{42}{6} = 7$$

There are 7 elements in \mathbb{Z}_{42} manufactured by 30.

27.

$$\begin{split} gcd(0,12) &= 0 \\ gcd(1,12) &= 1 \\ gcd(2,12) &= 2 \\ gcd(3,12) &= 3 \\ gcd(4,12) &= 4 \\ gcd(5,12) &= 1 \\ gcd(6,12) &= 6 \\ gcd(7,12) &= 1 \\ gcd(8,12) &= 4 \\ gcd(9,12) &= 3 \\ gcd(10,12) &= 2 \\ gcd(11,12) &= 1 \\ \end{split}$$

Subgroups for \mathbb{Z}_{12} are <0>,<1>,<2>,<3>,<4>,<6>

32.

- a. True. Cyclic group can be expressed as ja_i . Since a^n is a repeatedly operated on itself, cyclic group is trivially Abelian.
- **b**. False. Klein 4-Group is Abelian but not cyclic.
- **c**. False. There is always a number whose absolute distance is closer to 0 than the generator.
- **d**. False The group $2\mathbb{Z}$ is only generated by <2> and <-2>, 4 is generated by 2 but it is not a generator of $2\mathbb{Z}$.
- e. True. Diagnal symmetric tabel exists for every dimension.
- f. False. Klein 4-Group is not cyclic and it is of order 4.
- **g**. False. 9 is coprime to 20, therefore 9 generates \mathbb{Z}_{20} , but 9 is not a prime.

- **h.** False. $G \cap G$ does not necessarily contain the identity element.
- i. True.
- **j**. True. There are at least two number (1 and n-1) are coprime to n when n $\stackrel{.}{\iota}$ 2.

33.

The Klein 4-Group is Abelian but not cyclic.

44.

Given a subgroup H, of cyclic group G, H is trivially cyclical if $H = \{e\}$. Otherwise let a be a generator of the cyclic group H. Let n be the smallest element $\in \mathbb{Z}^+$ such that $a^n \in H$. For any other member, $a^m \in H$, division algorithm for n divided by m states that $n = qm \mid q \in \mathbb{Z}$. Hence shown $a^m = (a^n)^q$.

46.

Let $a, b \in G$, show