# Feedback Linearizable Discretizations of Mechanical Systems using Retraction Maps BTP Stage I Presentation

### Shrevas N B

B. Tech, Department of Aerospace Engineering IDDDP, Center for Systems and Control

November 26, 2024





Outline

- 1 Introduction
  - Feedback Linearization
  - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
  - Discretization of Vector Fields
  - Lift of Discretization Maps
- 3 Second-Order Mechanical Systems
  - Second-Order Differential Equations
  - Mechanical Systems
  - MF-Linearizability
- 4 Results





Shrevas N B IIT Bombay

- 1 Introduction
  - Feedback Linearization
  - Retraction and Discretization Maps
- - Discretization of Vector Fields
  - Lift of Discretization Maps
- - Second-Order Differential Equations
  - Mechanical Systems
  - MF-Linearizability





### Motivation

Outline

Consider a continous-time nonlinear system of the form:

$$\dot{x}(t) = f(x(t), u(t))$$

The corresponding discrete-time nonlinear system is given by:

$$x_{k+1} = F(x_k, u_k)$$

Assuming the following:

**1** There exists a coordinate transformation  $z := \varphi(x)$  and an auxiliary control  $v := \psi(x, u)$  such that  $\dot{z}(t) = Az(t) + Bv(t)$ where A, B are constant matrices.



### Motivation

Outline

Consider a continous-time nonlinear system of the form:

$$\dot{x}(t) = f(x(t), u(t))$$

The corresponding discrete-time nonlinear system is given by:

$$x_{k+1} = F(x_k, u_k)$$

Assuming the following:

- There exists a coordinate transformation  $z := \varphi(x)$  and an auxiliary control  $v := \psi(x, u)$  such that  $\dot{z}(t) = Az(t) + Bv(t)$  where A, B are constant matrices.
- 2 The discretization scheme is arbitrary.



### Question 1

Can we construct a discretization scheme such that the discrete system can also be linearized using  $\varphi(x)$  and  $\psi(x, u)$  similarly?





### Motivation

### Question 1

Can we construct a discretization scheme such that the discrete system can also be linearized using  $\varphi(x)$  and  $\psi(x, u)$  similarly?

### Question 2

Can we extend this scheme (geometrically) to second-order nonlinear mechanical systems?





Introduction

# **Definitions**

#### Continuous Feedback Linearization

A continous-time nonlinear system  $\dot{x}(t) = f(x(t), u(t))$  is said to be feedback linearizable if there exists a coordinate transformation  $z = \varphi(x)$  and a feedback control law  $v = \psi(x, u)$  such that the transformed system is linear  $\dot{z}(t) = Az(t) + Bv(t)$ .





Introduction

Outline

# **Definitions**

#### Continuous Feedback Linearization

A continous-time nonlinear system  $\dot{x}(t) = f(x(t), u(t))$  is said to he feedback linearizable if there exists a coordinate transformation  $z = \varphi(x)$  and a feedback control law  $v = \psi(x, u)$  such that the transformed system is linear  $\dot{z}(t) = Az(t) + Bv(t)$ .

#### Discrete Feedback Linearization

A discrete-time nonlinear system  $x_{k+1} = F(x_k, u_k)$  is said to be feedback linearizable if there exists a coordinate transformation  $z_k = \varphi(x_k)$  and a feedback control law  $v_k = \psi(x_k, u_k)$  such that the transformed system is linear  $z_{k+1} = Az_k + Bv_k$ , where  $x_k = x(t_k).$ 



Shrevas N B IIT Bombay

# Observations

Introduction

### Problem

Feedback linearizability of discrete-time systems depends on the choice of the discretization scheme.



Introduction

# Observations

#### Problem

Feedback linearizability of discrete-time systems depends on the choice of the discretization scheme.

### Objective

Given a (locally) feedback linearizable continuous-time nonlinear system, construct a discretization scheme such that the discrete-time system is also (locally) feedback linearizable.





Introduction

# Observations

#### Problem

Feedback linearizability of discrete-time systems depends on the choice of the discretization scheme.

### Objective

Given a (locally) feedback linearizable continuous-time nonlinear system, construct a discretization scheme such that the discrete-time system is also (locally) feedback linearizable.

### Strategy

We utilize the concept of **retraction maps** to construct such a discretization scheme.



Shreyas N B IIT Bombay

# Definition

We define a **retraction map** on a manifold M as a smooth map  $\mathcal{R}: TM \to M$ , such that if  $\mathcal{R}_x$  be the restriction of  $\mathcal{R}$  to  $T_xM$ , then the following properties are satisfied:

1  $\mathcal{R}_{x}(0_{x}) = x$  where  $0_{x}$  is the zero element of  $\mathcal{T}_{x}M$ .





# Definition

Outline

We define a **retraction map** on a manifold M as a smooth map  $\mathcal{R}: TM \to M$ , such that if  $\mathcal{R}_{\times}$  be the restriction of  $\mathcal{R}$  to  $T_{\times}M$ , then the following properties are satisfied:

- 1  $\mathcal{R}_{x}(0_{x}) = x$  where  $0_{x}$  is the zero element of  $\mathcal{T}_{x}M$ .
- 2  $D\mathcal{R}_x(0_x) = T_{0_x}\mathcal{R}_x = \mathbb{I}_{T_xM}$ , where  $\mathbb{I}_{T_xM}$  is the identity mapping on  $T_xM$ .





Retraction and Discretization Maps

Introduction

# Retraction Map

000



Figure: A visualization



Shreyas N B IIT Bombay

Retraction and Discretization Maps

# Discretization Map

A map  $\mathcal{D}: U \subset TM \longrightarrow M \times M$  given by

$$\mathcal{D}(x, v) \equiv \mathcal{D}_{x}(v) = (R_{x}^{1}(v), R_{x}^{2}(v))$$

where U is the open neighborhood of the zero section  $0_x \in TM$ , is called a discretization map on M, if the following properties are satisfied:



# Discretization Map

A map  $\mathcal{D}: U \subset TM \longrightarrow M \times M$  given by

$$\mathcal{D}(x, v) \equiv \mathcal{D}_{x}(v) = (R_{x}^{1}(v), R_{x}^{2}(v))$$

where U is the open neighborhood of the zero section  $0_x \in TM$ , is called a **discretization map** on M, if the following properties are satisfied:

- 2  $T_{0_x}R_x^2 T_{0_x}R_x^1 = \mathbb{I}_{T_xM}$ , which is the identity map on  $T_xM$  for any  $x \in M$ .





# Discretization Map

A map  $\mathcal{D}: U \subset TM \longrightarrow M \times M$  given by

$$\mathcal{D}(x, v) \equiv \mathcal{D}_{x}(v) = (R_{x}^{1}(v), R_{x}^{2}(v))$$

where U is the open neighborhood of the zero section  $0_x \in TM$ , is called a **discretization map** on M, if the following properties are satisfied:

- 2  $T_{0_x}R_x^2 T_{0_x}R_x^1 = \mathbb{I}_{T_xM}$ , which is the identity map on  $T_xM$  for any  $x \in M$ .





# Discretization Map

A map  $\mathcal{D}: U \subset TM \longrightarrow M \times M$  given by

$$\mathcal{D}(x, v) \equiv \mathcal{D}_{x}(v) = (R_{x}^{1}(v), R_{x}^{2}(v))$$

where U is the open neighborhood of the zero section  $0_x \in TM$ , is called a **discretization map** on M, if the following properties are satisfied:

- 2  $T_{0_x}R_x^2 T_{0_x}R_x^1 = \mathbb{I}_{T_xM}$ , which is the identity map on  $T_xM$  for any  $x \in M$ .

Example: The forward Euler discretization map is given by  $\overline{\mathcal{D}(x,v)} = (x,x+v)$ .



4 D > 4 A > 4 B > 4 B >

- 1 Introduction
  - Feedback Linearization
  - Retraction and Discretization Maps
- 2 Feedback Linearizable Discretizations
  - Discretization of Vector Fields
  - Lift of Discretization Maps
- 3 Second-Order Mechanical Systems
  - Second-Order Differential Equations
  - Mechanical Systems
  - MF-Linearizability
- 4 Results





Second-Order Mechanical Systems

# Notations

 $\blacksquare$   $\mathfrak{X}(M)$ : set of all vector fields on M.





- $\blacksquare$   $\mathfrak{X}(M)$ : set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$ : dynamical system defined by  $X \in \mathfrak{X}(M)$ .





- $\blacksquare$   $\mathfrak{X}(M)$ : set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$ : dynamical system defined by  $X \in \mathfrak{X}(M)$ .
- $\bullet$   $\tau_M: TM \longrightarrow M:$  canonical projection M s.t.  $\tau_M(x,v) = x$ .





Outline

- $\blacksquare$   $\mathfrak{X}(M)$ : set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$ : dynamical system defined by  $X \in \mathfrak{X}(M)$ .
- $\bullet$   $\tau_M: TM \longrightarrow M:$  canonical projection M s.t.  $\tau_M(x, v) = x$ .
- $h = t_{k+1} t_k$ : time step of discretization.





Outline

- $\blacksquare$   $\mathfrak{X}(M)$ : set of all vector fields on M.
- $\dot{x}(t) = X(x(t))$ : dynamical system defined by  $X \in \mathfrak{X}(M)$ .
- $\bullet$   $\tau_M: TM \longrightarrow M:$  canonical projection M s.t.  $\tau_M(x, v) = x$ .
- $h = t_{k+1} t_k$ : time step of discretization.
- $\blacksquare \mathcal{D}^{TM}$  is a discretization map on M.





Discretization of Vector Fields

## Discretization of Vector Fields

### Proposition

Let  $X(\cdot, u_k) \in \mathfrak{X}(M)$  be a controlled vector field on M. Then, for a given discretization scheme  $\mathcal{D}$ ,

$$\mathcal{D}^{-1}(x_k, x_{k+1}) = hX(\tau_M(\mathcal{D}^{-1}(x_k, x_{k+1})), u_k)$$

is an implicit numerical discretization of  $\dot{x}(t) = X(x(t), u(t))$ .





Discretization of Vector Fields

## Discretization of Vector Fields

### Proposition

Let  $X(\cdot, u_k) \in \mathfrak{X}(M)$  be a controlled vector field on M. Then, for a given discretization scheme  $\mathcal{D}$ ,

$$\mathcal{D}^{-1}(x_k, x_{k+1}) = hX(\tau_M(\mathcal{D}^{-1}(x_k, x_{k+1})), u_k)$$

is an implicit numerical discretization of  $\dot{x}(t) = X(x(t), u(t))$ .

### Example

The forward Euler discretization scheme  $\mathcal{D}(x, v) = (x, x + v)$  yields  $\approx$ the explicit Euler form  $x_{k+1} = x_k + hX(x_k, u_k)$ .



Shrevas N B

IIT Bombay

# Tangent Lift

### Proposition

Let  $\varphi: M \longrightarrow N$  be a smooth map (diffeomorphism). For a given discretization map  $\mathcal{D}^{TM}:TM\longrightarrow M\times M$  on M, the map  $\mathcal{D}_{\varphi} := (\varphi \times \varphi) \circ \mathcal{D}^{TM} \circ T\varphi^{-1}$  is a discretization map on N i.e.,  $\mathcal{D}_{\varphi} \equiv \mathcal{D}^{TN} : TN \longrightarrow N \times N.$ 

$$\begin{array}{c|c}
TM & \xrightarrow{I \varphi} & TN \\
\mathcal{D}^{TM} \downarrow & & \downarrow \mathcal{D}^{TN} \\
M \times M & \xrightarrow{\varphi \times \varphi} & N \times N
\end{array}$$



# Feedback Linearizable Discretization

### Proposition

Let  $\varphi$  be the linearizing coordinate transformation and  $\psi$  be the linearizing feedback. Let  $\mathcal{D}^{TN}$  be a discretization map that discretizes the continuous-time linear system to a discrete-time linear system. Then,

$$\mathcal{D}^{TM} = (\varphi \times \varphi)^{-1} \circ \mathcal{D}^{TN} \circ T\varphi$$

is a discretization on M which discretizes the continuous-time system to a discrete-time nonlinear system such that the discrete-time system is feedback linearizable using  $z_k := \varphi(x_k)$  and  $v_k := \psi(x_k, u_k)$ .





Shreyas N B IIT Bombay

- - Feedback Linearization
  - Retraction and Discretization Maps
- - Discretization of Vector Fields
  - Lift of Discretization Maps
- 3 Second-Order Mechanical Systems
  - Second-Order Differential Equations
  - Mechanical Systems
  - MF-Linearizability





# Discretization of SODEs

A second-order differential equation (SODE) is a vector field X such that  $\tau_{TM}(X) = T\tau_M(X)$ . Locally,

$$X = \dot{x}^{i} \frac{\partial}{\partial x^{i}} + X^{i}(x^{i}, \dot{x}^{i}) \frac{\partial}{\partial \dot{x}^{i}}$$
 (4.1)

To find the integral curves of X is equivalent to solving the SODE:

$$\frac{d^2}{dt^2}x(t) = X\left(x(t), \frac{d}{dt}x(t)\right) \tag{4.2}$$





# Discretization of SODEs

Now, we wish to discretize this using the notion of the discretization map on TM. We would like to tangently lift a discretization on M to obtain  $\mathcal{D}^{TTM}: TTM \longrightarrow TM \times TM$ . This yields the following numerical scheme:

$$hX\left(\left(\tau_{TM}\circ\left(\mathcal{D}^{TTM}\right)^{-1}\right)\left(x_{k},y_{k};x_{k+1},y_{k+1}\right)\right)$$

$$=\left(\mathcal{D}^{TTM}\right)^{-1}\left(x_{k},y_{k};x_{k+1},y_{k+1}\right)$$
(4.3)





# What is different here?

The double tangent bundle TTM admits two different vector bundle structures:

1 The canonical vector bundle with projection  $\tau_{TM}: TTM \longrightarrow TM$ .



Second-Order Differential Equations

# What is different here?

The double tangent bundle TTM admits two different vector bundle structures:

- 1 The canonical vector bundle with projection  $\tau_{TM}: TTM \longrightarrow TM.$
- The vector bundle given by the projection of the tangent map  $T\tau_M:TTM\longrightarrow TM$ .





Second-Order Differential Equations

# What is different here?

The double tangent bundle *TTM* admits two different vector bundle structures:

- **1** The canonical vector bundle with projection  $\tau_{TM}: TTM \longrightarrow TM$ .
- 2 The vector bundle given by the projection of the tangent map  $T\tau_M: TTM \longrightarrow TM$ .





4 D > 4 A > 4 B > 4 B >

Outline

# What is different here?

The double tangent bundle TTM admits two different vector bundle structures:

- 1 The canonical vector bundle with projection  $\tau_{TM}: TTM \longrightarrow TM$ .
- The vector bundle given by the projection of the tangent map  $T\tau_M:TTM\longrightarrow TM$ .

Denote the canonical involution map  $\kappa_M: TTM \longrightarrow TTM$  which is a vector bundle isomorphism, over the identity of TM.

$$\kappa_M(x, v, \dot{x}, \dot{v}) = (x, \dot{x}, v, \dot{v})$$



Shrevas N B IIT Bombay Second-Order Differential Equations

# Why is this important?

The tangent lift of a vector field X on M does not define a vector field on TM. It is necessary to consider the composition  $\kappa_M \circ TX$ to obtain a vector field on TM, and this is called the complete lift  $X^c$  of the vector field X. Hence, a similar technique must be used to lift a discretization map from TM to TTM.

### **Proposition**

If  $\mathcal{D}^{TM}: TM \longrightarrow M \times M$  is a discretization map on M, then  $\mathcal{D}^{TTM} = T\mathcal{D}^{TM} \circ \kappa_M$  is a discretization map on TM.



4 D > 4 A > 4 B > 4 B >

Shrevas N B IIT Bombay

# Tangent Lift of Discretization Map



Figure: Commutation of maps around TTM





Second-Order Differential Equations

# The whole (slightly intimidating) picture



Figure: The Commutator



## More Notation

 $\Gamma_{ik}^i$ : Christoffel symbols (connection coefficients) on M.





- $\Gamma_{ik}^i$ : Christoffel symbols (connection coefficients) on M.
- $\blacksquare$   $\nabla$  : symmetric affine connection on M.





- $\Gamma_{ik}^i$ : Christoffel symbols (connection coefficients) on M.
- lacksquare  $\nabla$  : symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots x^n)$ : local coordinates on M.





Outline

- $\Gamma_{jk}^i$ : Christoffel symbols (connection coefficients) on M.
- lacksquare  $\nabla$  : symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots x^n)$ : local coordinates on M.
- $\mathfrak{g} = \{g_1, \dots, g^r, \dots, g_m\}$ : control vector fields.





Outline

- $\Gamma'_{ik}$ : Christoffel symbols (connection coefficients) on M.
- $\blacksquare$   $\nabla$  : symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots, x^n)$ : local coordinates on M.
- $\mathfrak{g} = \{g_1, \dots, g^r, \dots, g_m\}$ : control vector fields.
- e: uncontrolled vector field.





Outline

- $\Gamma'_{ik}$ : Christoffel symbols (connection coefficients) on M.
- $\blacksquare$   $\nabla$  : symmetric affine connection on M.
- $\mathbf{x} = (x^1, \dots, x^i, \dots, x^n)$ : local coordinates on M.
- $\mathfrak{g} = \{g_1, \dots, g^r, \dots, g_m\}$ : control vector fields.
- e: uncontrolled vector field.
- ℜ : Riemannian curvature tensor





Outline

- $\Gamma_{jk}^i$ : Christoffel symbols (connection coefficients) on M.
- lacksquare  $\nabla$  : symmetric affine connection on M.
- $x = (x^1, \dots, x^i, \dots x^n)$ : local coordinates on M.
- $\mathbf{g} = \{g_1, \dots, g^r, \dots, g_m\}$ : control vector fields.
- e: uncontrolled vector field.
- ℜ : Riemannian curvature tensor
- ann: annihilator.





## Definition

### Mechanical Systems

A mechanical control system  $(\mathcal{MS})_{(n,m)}$  is defined by a 4-tuple  $(M, \nabla, \mathfrak{q}, e)$  where:

$$\nabla_{\dot{x}}\dot{x} = e(x) + \sum_{r=1}^{m} g_r(x)u_r$$
 (4.4)

Or equivalently in local coordinates  $x = (x^1, \dots, x^n)$  on M,

$$\ddot{x}^{i} = -\Gamma^{i}_{jk}(x)\dot{x}^{j}\dot{x}^{k} + e^{i}(x) + \sum_{r=1}^{m} g_{r}^{i}(x)u_{r}$$
 (4.5)



## Definition

We can write this as two first-order differential equations:

$$\dot{x}^{i} = y^{i};$$

$$\dot{y}^{i} = -\Gamma^{i}_{jk}(x)y^{j}y^{k} + e^{i}(x) + \sum_{r=1}^{m} g_{r}^{i}(x)u_{r}$$
(MS)

### Objective

Given a mechanical control system  $(\mathcal{MS})_{(n,m)}$ , we wish to construct a discretization scheme such that the discrete-time system is mechanical feedback linearizable.



Shreyas N B IIT Bombay

4 D > 4 A > 4 B > 4 B >

# Mechanical Feedback Linearizability

$$\mathcal{E}^0 = \operatorname{span}\{g_r, 1 \leqslant r \leqslant m\} \; ; \; \mathcal{E}^j = \operatorname{span}\{\operatorname{ad}_e^i g_r, 1 \leqslant r \leqslant m, 0 \leqslant i \leqslant j\}$$

#### $\mathsf{Theorem}$



# Mechanical Feedback Linearizability

$$\mathcal{E}^0 = \operatorname{span}\{g_r, 1 \leqslant r \leqslant m\} \; ; \; \mathcal{E}^j = \operatorname{span}\{\operatorname{ad}_e^i g_r, 1 \leqslant r \leqslant m, 0 \leqslant i \leqslant j\}$$

#### Theorem

A mechanical system  $(\mathcal{MS})_{(n,m)}$  is mechanical feedback (MF) linearizable, locally around  $x_0 \in M$  iff, in the neighborhood of  $x_0$ :

 $\blacksquare$  (ML1)  $\mathcal{E}^0$  and  $\mathcal{E}^1$  are of constant rank



Outline

# Mechanical Feedback Linearizability

$$\mathcal{E}^0 = \operatorname{span}\{g_r, 1 \leqslant r \leqslant m\} \; ; \; \mathcal{E}^j = \operatorname{span}\{\operatorname{ad}_e^i g_r, 1 \leqslant r \leqslant m, 0 \leqslant i \leqslant j\}$$

#### $\mathsf{Theorem}$

- $\blacksquare$  (ML1)  $\mathcal{E}^0$  and  $\mathcal{E}^1$  are of constant rank
- lacksquare (ML2)  $\mathcal{E}^0$  is involutive



Outline

## Mechanical Feedback Linearizability

$$\mathcal{E}^0 = \operatorname{span}\{g_r, 1 \leqslant r \leqslant m\} \; ; \; \mathcal{E}^j = \operatorname{span}\{\operatorname{ad}_e^i g_r, 1 \leqslant r \leqslant m, 0 \leqslant i \leqslant j\}$$

#### $\mathsf{Theorem}$

- $\blacksquare$  (ML1)  $\mathcal{E}^0$  and  $\mathcal{E}^1$  are of constant rank
- $\blacksquare$  (ML2)  $\mathcal{E}^0$  is involutive
- (ML3) ann  $\mathcal{E}^0 \subset \text{ann } \mathfrak{R}$



Outline

# Mechanical Feedback Linearizability

$$\mathcal{E}^0 = \operatorname{span}\{g_r, 1 \leqslant r \leqslant m\} \; ; \; \mathcal{E}^j = \operatorname{span}\{\operatorname{ad}_e^i g_r, 1 \leqslant r \leqslant m, 0 \leqslant i \leqslant j\}$$

#### $\mathsf{Theorem}$

- $\blacksquare$  (ML1)  $\mathcal{E}^0$  and  $\mathcal{E}^1$  are of constant rank
- $\blacksquare$  (ML2)  $\mathcal{E}^0$  is involutive
- (ML3) ann  $\mathcal{E}^0 \subset \text{ann } \mathfrak{R}$
- $\blacksquare$  (ML4) ann  $\mathcal{E}^0 \subset \text{ann } \nabla g_r$  for all  $r: 1 \leqslant r \leqslant m$



# Mechanical Feedback Linearizability

$$\mathcal{E}^0 = \operatorname{span}\{g_r, 1 \leqslant r \leqslant m\} \; ; \; \mathcal{E}^j = \operatorname{span}\{\operatorname{ad}_e^i g_r, 1 \leqslant r \leqslant m, 0 \leqslant i \leqslant j\}$$

#### $\mathsf{Theorem}$

- $\blacksquare$  (ML1)  $\mathcal{E}^0$  and  $\mathcal{E}^1$  are of constant rank
- $\blacksquare$  (ML2)  $\mathcal{E}^0$  is involutive
- (ML3) ann  $\mathcal{E}^0 \subset \text{ann } \mathfrak{R}$
- (ML4) ann  $\mathcal{E}^0 \subset \text{ann } \nabla g_r$  for all  $r: 1 \leq r \leq m$
- $\blacksquare$  (ML5) ann  $\mathcal{E}^1 \subset \text{ann } \nabla^2 e$



## Mechanical Feedback Linearizability

For planar mechanical systems (n = 2):

### Proposition

A planar mechanical system  $(\mathcal{MS})_{(2,1)}$  is locally MF-linearizable at  $x_0 \in M$  to a controllable  $(\mathcal{LMS})_{(2,1)}$ , if and only if it satisfies the following conditions:





## Mechanical Feedback Linearizability

For planar mechanical systems (n = 2):

### Proposition

A planar mechanical system  $(\mathcal{MS})_{(2,1)}$  is locally MF-linearizable at  $x_0 \in M$  to a controllable  $(\mathcal{LMS})_{(2,1)}$ , if and only if it satisfies the following conditions:

 $\blacksquare$  (MD1) g and ad<sub>e</sub>g are independent





# Mechanical Feedback Linearizability

For planar mechanical systems (n = 2):

### Proposition

A planar mechanical system  $(\mathcal{MS})_{(2,1)}$  is locally MF-linearizable at  $x_0 \in M$  to a controllable  $(\mathcal{LMS})_{(2,1)}$ , if and only if it satisfies the following conditions:

- (MD1) g and  $ad_eg$  are independent
- 2 (MD2)  $\nabla_g g \in \mathcal{E}^0$  and  $\nabla_{ad_g g} g \in \mathcal{E}^0$



Results



Outline

## Mechanical Feedback Linearizability

For planar mechanical systems (n = 2):

### Proposition

A planar mechanical system  $(\mathcal{MS})_{(2,1)}$  is locally MF-linearizable at  $x_0 \in M$  to a controllable  $(\mathcal{LMS})_{(2,1)}$ , if and only if it satisfies the following conditions:

- (MD1) g and  $ad_eg$  are independent
- 2 (MD2)  $\nabla_g g \in \mathcal{E}^0$  and  $\nabla_{ad_g g} g \in \mathcal{E}^0$
- $(MD3) \nabla^2_{g,ad_{\alpha}g} ad_{e}g \nabla^2_{ad_{\alpha}g,g} ad_{e}g \in \mathcal{E}^0$





- - Feedback Linearization
  - Retraction and Discretization Maps
- - Discretization of Vector Fields
  - Lift of Discretization Maps
- - Second-Order Differential Equations
  - Mechanical Systems
  - MF-Linearizability
- 4 Results





### Inertia Pendulum



Figure: Inertia Wheel Pendulum



Shreyas N B

IIT Bombay

## TORA System



Figure: Translational Oscillator with Rotational Actuator

