15. g-adische Entwicklungen

Vereinbarung: Stets in diesem Paragraphen: $g \in \mathbb{N}, g \geq 2, G := \{0, 1, \dots, g - 1\}.$

Satz 15.1 (Konvergenz g-adischer Entwicklungen)

- (1) Sei $(z_n)_{n\geq 1}$ eine Folge in $G \implies \sum_{n=1}^{\infty} \frac{z_n}{q^n}$ ist konvergent.
- (2) Ist $m \in \mathbb{N} \implies \sum_{n=m}^{\infty} \frac{g-1}{g^n} = \frac{1}{g^{m-1}}$

Beweis

- (1) $\frac{|z_n|}{g^n} = \frac{z_n}{g^n} \le \frac{g-1}{g^n} \ \forall n \in \mathbb{N}. \ \sum_{n=1}^{\infty} \frac{g-1}{g^n} \ \text{ist konvergent} \ \stackrel{12.2}{\Longrightarrow} \ \text{Behauptung.}$
- $(2) \sum_{n=m}^{\infty} \frac{g-1}{g^n} = \frac{g-1}{g^m} + \frac{g-1}{g^{m+1}} + \dots = \frac{g-1}{g^m} \cdot \left(1 + \frac{1}{g} + \frac{1}{g^2} + \dots\right) = \frac{g-1}{g^m} \cdot \frac{1}{1 \frac{1}{g}} = \frac{1}{g^{m-1}}.$

Definition

Sei $(z_n)_{n\geq 1}$ eine Folge in G und es gelte $(*)z_n\neq g-1$ für unendlich viele $n\in\mathbb{N}$. Dann heißt $0,z_1z_2z_3\ldots:=\sum_{n=1}^\infty\frac{z_n}{q^n}$ ein g-adischer Bruch oder eine g-adische Entwicklung.

Beispiele:

- (1) g = 10 (Dezimalentwicklung); $0, 333... = \sum_{n=1}^{\infty} \frac{3}{10^n} = \frac{1}{3}$.
- (2) g = 2 (Dualentwicklung); $0, 111000... = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$.

Bemerkung: (1) Die Negation von (*) lautet: $z_n = g - 1$ ffa $n \in \mathbb{N}$.

- (2) Ist $0, z_1 z_2 z_3 \dots$ ein g-adischer Bruch und existiert ein $m \in \mathbb{N}$: $z_n = 0$ für n > m, so schreibt man: $0, z_1 z_2 z_3 \dots z_m$
- (3) $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ seien konvergent und es gelte $a_n \leq b_n \ \forall n \in \mathbb{N} \implies \sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$. Gilt zusätzlich $a_n < b_n$ für ein $n \in \mathbb{N}$, so gilt $\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} b_n$ (Beweis in Übung).

Satz 15.2 (Eindeutigkeit der g-adischen Entwicklung)

Sei $a = 0, z_1 z_2 z_3 \dots$ ein g-adischer Bruch.

- $(1) \ a \in [0,1)$
- (2) Ist $0, w_1 w_2 w_3 \dots$ eine weitere g-adische Entwicklung von a, so gilt $z_n = w_n \ \forall n \in \mathbb{N}$.

15. g-adische Entwicklungen

Beweis

(1)
$$0 \le a = \sum_{n=1}^{\infty} \frac{z_n}{q^n} \stackrel{(*),Bem.(2)}{<} \sum_{n=1}^{\infty} \frac{g-1}{q^n} \stackrel{15.1}{=} 1.$$

(2) **Annahme:** $\exists n \in \mathbb{N} : z_n \neq w_n$. Sei m der kleinste solche Index, also $z_m \neq w_m$ und $z_j = w_j$ für $j=1,\ldots,m-1$. Etwa $z_m < w_m \implies z_m-w_m < 0 \stackrel{z_m-w_m \in \mathbb{Z}}{\Longrightarrow} z_m-w_m \leq -1$. $\forall n \in \mathbb{N} : z_n - w_n \le z_n \le g - 1. \ \exists \nu \in \mathbb{N} \ \mathrm{mit} \ \nu \ge m + 1 \ \mathrm{und} \ z_\nu - w_\nu < g - 1.$ (andererenfalls $z_{\nu} - w_{\nu} = g - 1 \ \forall \nu \geq m + 1 \implies z_{\nu} = w_{\nu} + g - 1 \ \forall \nu \geq m + 1 \implies$ $w_{\nu} = 0 \quad \forall \nu \geq m+1 \Longrightarrow z_{\nu} = g-1 \quad \forall \nu \geq m+1. \text{ Widerspruch zu (*)}. \text{ Dann:}
 0 = a-a = \sum_{n=1}^{\infty} \frac{z_n}{g^n} - \sum_{n=1}^{\infty} \frac{w_n}{g^n} = \sum_{n=1}^{\infty} \frac{z_n - w_n}{g^n} = \sum_{n=m}^{\infty} \frac{z_n - w_n}{g^n}$ $=\underbrace{\frac{z_m - w_m}{g^m}}_{\leq -\frac{1}{g^m}} + \underbrace{\sum_{n=m+1}^{\infty} \frac{z_n - w_n}{g^n}}_{<\sum_{n=m+1}^{\infty} \frac{g-1}{g^n}} < -\frac{1}{g^m} + \underbrace{\sum_{n=m+1}^{\infty} \frac{g-1}{g^n}}_{=\frac{1}{g^n}} = 0$ $\implies 0 < 0$ Widerspruch

Satz 15.3 (Existenz der g-adischen Entwicklung)

Ist $a \in [0,1)$, so lässt sich a eindeutig als g-adischer Bruch darstellen.

Beweis

Eindeutigkeit siehe 15.2.

Existenz: Definiere $(z_n)_{n\geq 1}$ wie folgt: $z_1 := [a \cdot g], z_{n+1} := [(a - \frac{z_1}{q} - \frac{z_2}{q} - \dots - \frac{z_n}{q}) \cdot g^{n+1}]$ $(n \geq 1)$. In der Übung: $z_n \in G \ \forall n \in \mathbb{N}$

Es gilt:
$$(**)\underbrace{\frac{z_1}{g} + \frac{z_2}{g^2} + \cdots \frac{z_n}{g^n}}_{=:s_n} \le a < \underbrace{\frac{z_1}{g} + \frac{z_2}{g^2} + \cdots \frac{z_n}{g^n}}_{=:s_n} + \frac{1}{g^n} \ \forall n \in \mathbb{N} \implies s_n \le a < s_n + \frac{1}{g^n} \ \forall n \in \mathbb{N}$$

Noch zu zeigen ist:
$$z_n \neq g-1$$
 für unendlich viele n . Annahme: $\exists m \in \mathbb{N} : z_n = g-1 \ \forall n \geq m$.
Dann: $a = \sum_{n=1}^{\infty} z_n g^n = \sum_{\substack{n=1 \ = s_{m-1}}}^{m-1} \frac{z_n}{g^n} + \sum_{\substack{n=m \ = s_{m-1}}}^{\infty} \frac{g-1}{g^n} \implies a = s_{m-1} + \frac{1}{g^{m-1}} \text{ Widerspruch zu (**).}$

Bemerkung: Ist $a \in \mathbb{R}$, $a \geq 0$, so lässt sich a eindeutig in der Form $a = [a] + 0, z_1 z_2 z_3 \dots$ darstellen. Ist g = 10, so schreibt man dafür $a = [a], z_1 z_2 z_3 \dots$ Beispiel: 1,333...

Satz 15.4 (\mathbb{R} ist überabzählbar)

Die Menge der reellen Zahlen ist überabzählbar.

Beweis

Es genügt zu zeigen: [0, 1) ist überabzählbar.

Annahme: [0,1) ist abzählbar, also $[0,1)=\{a_1,a_2,\ldots\}, a_j\neq a_k$ für $j\neq k$. Für $j\in\mathbb{N}$ sei $a_j=0,z_1^{(j)}z_2^{(j)}z_3^{(j)}\ldots$ die 3-adische Entwicklung von a_j . $(z_k^{(j)}\in\{0,1,2\})$.

$$z_k := \begin{cases} 1 & \text{falls } z_k^{(k)} \in \{0, 2\} \\ 0 & \text{falls } z_k^{(k)} = 1 \end{cases}$$

Dann: $z_k \neq z_k^{(k)} \ \forall k \in \mathbb{N}, \ z_k \neq g-1 \ \forall k \in \mathbb{N}. \ a := 0, z_1 z_2 z_3 \dots = \sum_{n=1}^{\infty} \frac{z_n}{g^n}. \ 15.2 \implies a \in [0,1) \implies \exists m \in \mathbb{N} : a = a_m \implies 0, z_1 z_2 z_3 \dots = 0, z_1^{(m)} z_2^{(m)} z_3^{(m)} \dots \ 15.2 \implies z_j = z_j^{(m)} \ \forall j \in \mathbb{N} \implies z_m = z_m^{(m)}.$ Widerspruch!