$$\frac{d^2}{dt^2} (fg \circ \alpha) = \frac{d}{dt} \left[\frac{d}{dt} ((f \circ \alpha)(g \circ \alpha)) \right]$$
$$= \frac{d}{dt} \left[(f \circ \alpha)'(g \circ \alpha) + (f \circ \alpha)(g \circ \alpha)' \right]$$
$$=$$

Un pulso empezando en $t=t_0$ se puede construir haciendo:

$$g\left(t-\frac{T}{2}-t_0\right),$$

donde primero los llevamos a empezar en el origen (por eso el primer $\frac{T}{2}$) y luego lo llevamos a t_0 . Los otros dos pulsos son $g\left(t-\frac{T}{2}-2t_0\right)$ y $g\left(t-\frac{T}{2}-3t_0\right)$. Tu función completa se ve como:

$$f(t) = g_1 \left(t - \frac{T}{2} - t_0 \right) + g_2 \left(t - \frac{T}{2} - 2t_0 \right) + g_3 \left(t - \frac{T}{2} - 3t_0 \right),$$

por lo que

$$\mathcal{F}(f) = \mathcal{F}(g_1 + g_2 + g_3),$$

= $\mathcal{F}(g_1) + \mathcal{F}(g_2) + \mathcal{F}(g_3).$

Ahora utilizando que $\mathcal{F}(f(t-a)) = e^{-i\omega a}\mathcal{F}(f)$, sale el problema.