ASSUMPTION UNIVERSITY FACULTY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE COURSE OUTLINE

CSX3003/ITX2010/IT2230/BIS4787 DATA STRUCTURE AND ALGORITHM

Course Status: Major Required

Pre-requisite: Semester: 1/2022

Instructor: Asst. Prof. Dr. Thitipong Tanprasert (Sec 541)

Wednesday 9:00 – 12:00 Room: VMS0204

Office

VMS 608, VMS. Building 6th floor Email: thitipong@scitech.au.edu

Office Hours: 12:00 - 13:00 Thursday

10:00 - 12:00 Friday

References:

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, The MIT Press, 3rd Edition (2nd Edition is applicable)

Course Description

Analysis of complexity of algorithms, various data structures including array, string, stack, queue, dequeue, tree, graph, set and heap, applications and analysis of algorithms developed employing the data structures mentioned above including time and memory requirement analysis of various searching and sorting algorithms.

Course Objectives

- To equip students with fundamental concepts and skills required to understand, and apply essential
 data structures, including identify advantages and disadvantages of the studied data structures in
 terms of time and memory complexity, implement data structures as indexed- or linked-structure
 depending on appropriateness particular to each data structure, implement basic algorithms
 prescribed with certain data structures, apply the data structures in problem solving in order to
 maximize the solution performance.
- To balance theoretical foundation with practical skills so that students completing the course can continue with advanced courses in computer science subjects.

Lecture Schedule:

Weeks	Topics	Remarks
1	Introduction	Getting familiarized with the
		learning process and
		programming environment
2	Essential Coding Environment, Time	A simple workshop on
	Complexity	programming, running time
		measurement, and asymptotic
		bounds
3	Insertion sort and Merge sort	Different algorithmic paradigms
		for solving the same problem
		and how theoretical comparison
		is carried out
4	Quicksort	In-place O(nlgn) sorting and
		how balance affects recurrence
		tree
5	Heap, Heapsort, Prioirty Queue	Speeding up O(n ²) algorithm to
		O(nlgn)
6	Dynamic Set, Stack, Queue	

7	Dictionary: Direct-Address Table, Hash Table	
8	Binary Search Tree	Tree-structured dynamic set
9	Introduction to Red-Black Tree	Balance is the critical issue
	Midterm Examination	
10	Disjoint Sets	
11	Graph: representation, elementary lgorithms	
12	Weighted Graph, Minimum Spanning Trees	Kruskal's
13	Prim's and Dijsktra's Algorithms	Variance of BFS
14	Topological sort	Application of graph and DFS
15	Term project presentation	
	Final Examination	

Mark Allocation:

Term Project	20%
Assignments (4)	20%
Midterm Examination	30%
Final Examination	30%

Other Requirements:

- 80% attendance (<u>checked ONLY</u> within the first 15 minutes of each 90 minutes)
 IMPORTANT: The class attendance checking has been strongly enforced for many semesters and students who missed checking more than 20% had been withdrawn from the course.
 Therefore, it is emphasized here that the percentage of attendance is calculated from the checking in the first 15 minutes. A student who walks in later than the specified checking period may be allowed to sit in the class, but he or she will not be checked for attending the session.
- 2. Participating in the project presentation

Term Project Description:

A group of **no more than three** members will study an implementation of actual data structure in certain programming language. Alternatively, a study of an advanced data structure beyond the scope of the course may also be a project topic.