DANMARKS TEKNISKE UNIVERSITET

Side 1 af 4 sider

Skriftlig 2-timers prøve, 7. december 2015

Kursus: Matematik 2 01035

Tilladte hjælpemidler: Alle af DTU tilladte.

Vægtning af opgaverne: Sættet består af 4 opgaver, der vægtes som følger:

Opgave 1: 30 %; Opgave 2: 20%; Opgave 3: 20%; Opgave 4: 30%

Vægtningen er kun vejledende. Sættet bedømmes som en helhed. For at opnå fuldt point i opgave 2, 3, og 4 kræves at svarene er begrundet, eventuelt med en henvisning til lærebogen, og at mellemregninger medtages i rimeligt omfang.

NB. Opgave 1 er en multiple-choice opgave og svaret på hvert spørgsmål angives ved afkrydsning på det vedlagte løsningsark, der afleveres som en del af besvarelsen. Udregninger hørende til opgave 1 skal ikke afleveres og vil ikke kunne indgå i bedømmelsen. Ved svaret "ved ikke" gives 0 %, ved korrekt svar gives +5%, og ved et forkert svar gives -2.5%.

Opgave 1

(i) Betragt differentialligningen

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0\tag{1}$$

Vi vil bestemme samtlige reelle løsninger.

Svaret er:

- a) Den fuldstændige reelle løsning er $y(t) = c_1 e^{-t} + c_2 e^{-2t}$, hvor $c_1, c_2 \in \mathbb{R}$.
- b) Den fuldstændige reelle løsning er $y(t) = c_1 \cos(2t) + c_2 \sin(2t)$, hvor $c_1, c_2 \in \mathbb{R}$.
- c) Den fuldstændige reelle løsning er $y(t) = c_1 \cos(2t) + c_2 \cos(t)$, hvor $c_1, c_2 \in \mathbb{R}$.
- d) ved ikke.

Opgaven fortsætter - Vend!

(ii) Betragt differentialligningen

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = u\tag{2}$$

hvor u er en given påvirkning og y er den søgte løsning. Vi ønsker at bestemme det stationære svar når $u(t) = e^t$. Svaret er

- a) Det stationære svar er $u(t) = e^t$.
- b) Det stationære svar er $u(t) = \frac{1}{6}\cos(t)$.
- c) Det stationære svar er $u(t) = \frac{1}{6} e^t$.
- d) ved ikke.

(iii) Vi betragter fortsat differentialligningen (2), og vælger nu $u(t) = e^{-t}$. Vi undersøger om der findes løsninger på formen $u(t) = Ce^{-t}$, hvor $C \in \mathbb{R}$. Svaret er:

- a) Ligningen (2) har uendeligt mange løsninger på formen $u(t) = Ce^{-t}$.
- b) Ligningen (2) har ingen løsninger på formen $u(t) = Ce^{-t}$.
- c) Ligningen (2) har præcis en løsning på formen $u(t) = Ce^{-t}$.
- d) ved ikke.

(iv) Undersøg om rækken

$$\sum_{n=1}^{\infty} \tan(\frac{\pi}{4} + \frac{1}{n})$$

er betinget konvergent, absolut konvergent, eller divergent. Svaret er:

- a) Rækken er absolut konvergent.
- b) Rækken er betinget konvergent.
- c) Rækken er divergent.
- d) ved ikke.

(v) Undersøg om rækken

$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$$

er betinget konvergent, absolut konvergent, eller divergent. Svaret er:

- a) Rækken er absolut konvergent.
- b) Rækken er betinget konvergent.
- c) Rækken er divergent.
- d) ved ikke.

(vi) Bestem konvergensradius ρ for potensrækken

$$\sum_{n=1}^{\infty} \frac{n}{3^n} x^n.$$

Svaret er:

- a) $\rho = 1$.
- b) $\rho = 3$.
- c) $\rho = 0$.
- d) ved ikke.

Opgave 2 Lad $a \in \mathbb{R}$, og betragt differentialligningssystemet

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \text{ hvor } \mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 - a & a - 2 \end{pmatrix}.$$
 (3)

- (i) Find samtlige reelle løsninger til systemet (3) for a=2.
- (ii) Bestem de værdier af a for hvilke systemet er asymptotisk stabilt.

Opgaven fortsætter - Vend!

Opgave 3

(i) Vis at rækken

$$\sum_{n=1}^{\infty} \frac{1}{n^3} e^{nx}$$

er konvergent for alle $x \leq 0$.

Sæt nu

$$f(x) := \sum_{n=1}^{\infty} \frac{1}{n^3} e^{nx}, \ x \in]-\infty, 0].$$

(ii) Vis, at der for ethvert $N \in \mathbb{N}$ gælder at

$$\left| f(x) - \sum_{n=1}^{N} \frac{1}{n^3} e^{nx} \right| \le \sum_{n=N+1}^{\infty} \frac{1}{n^3}, \, \forall x \in]-\infty, 0].$$

(iii) Bestem $N \in \mathbb{N}$ således at

$$\left| f(x) - \sum_{n=1}^{N} \frac{1}{n^3} e^{nx} \right| \le 0.1, \, \forall x \in]-\infty, 0].$$

Opgave 4

Betragt den 2π -periodiske funktion f givet ved

$$f(x) = e^x - e^{-x}, x \in [-\pi, \pi[.$$

- (i) Skitser funktionen f på intervallet $[-\pi, 3\pi[$.
- (ii) Undersøg om Fourierrækken for funktionen f har en konvergent majorantrække.
- (iii) Lad $c_n, n \in \mathbb{Z}$, betegne Fourierkoefficienterne på kompleks form for funktionen f. Beregn tallet

$$\sum_{n=-\infty}^{\infty} |c_n|^2.$$