

The state of the s

WAS CARE

TO THE PARTY OF TH

THE PROPERTY OF THE PARTY OF TH

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ESTIMATION OF TWO PARAMETER LOGISTIC

Robert Kt Tsutakawa

Research Report 83-1
Mathematical Sciences Technical Report No. 130
December 1983

Department of Statistics
University of Missouri
Columbia, MO 65211

Programed under contract No. N00014-81-R0265; NR 150-464
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release: distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government

SECORET CENSSIFICATION OF THIS PAGE IT HOLD MAKE		بنية والمراب المربي والروان والمراب والمراب والمستقد والمراب والمستقد والمراب والمراب والمراب والمراب	
REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
Research Report 83-1			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
ESTIMATION OF TWO-PARAMETER L RESPONSE CURVES			
	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(#)		
Robert K. Tsutakawa	N00014-81-K 0265		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Statistics University of Missouri Columbia, Missouri 65211	10. PROGRAM ELÉMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-150-464		
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE		
Personnel and Training Rese	December 1983		
Office of Naval Research (Arlington, VA 22217	13. NUMBER OF PAGES 32		
14. MONITORING AGENCY NAME & ADDRESS(If different	15. SECURITY CLASS. (of this report)		
•		Unclassified	
	15a. DECLASSIFICATION, DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)			

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Item responses, logistic model, EM algorithm, maximum likelihood

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This paper presents a method for estimating certain characteristics of test items which are designed to measure ability, or knowledge, in a particular area. Under the assumption that ability parameters are sampled from a normal distribution, the EM algorithm is used to derive maximum likelihood estimates of item parameters of the two-parameter logistic item response curves. The observed information matrix is used to approximate the covariances of these estimates.

Responses to a questionnaire on general arthritis knowledge are used to illustrate the procedure and simulated data are used to compare the actual versus estimated items parameters. A computational note is included to facilitate the extensive numerical work required to implement the procedure.

ESTIMATION OF TWO-PARAMETER LOGISTIC ITEM RESPONSE CURVES

by

Robert K. Tsutakawa
University of Missouri-Columbia

ACKNOWLEDGEMENTS

This paper was prepared under Contract Number NOO014-81-K0265, NR 150-464 with the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research.

The author would like to thank Andrew Walker, Martha S. Rhodes and Hsin Ying Lin for extensive computational assistance. He would also like to thank the Multipurpose Arthritis Center, University of Missouri, for permission to use data from the arthritis questionnaire.

Access	ion For	,			
NTIS DTIC T Unanno Justif	AB				_
By				orio	
	Avail]	
Dist	Spec	ial		1	
A-1					

INTRODUCTION

We consider dichotomous responses by subjects to a set of test items, when the responses are assumed to follow the two parameter logistic model. Under the assumption that ability parameters are randomly sampled from a normal distribution with unknown parameters, empirical Bayes types estimates of ability and item parameters were proposed and illustrated for the one-parameter logistic (Rasch) model by Rigdon and Tsutakawa (1983). Here we will consider one of these estimators, namely MLF, where the extension to multiparameter item response models is straightforward and asymptotic methods are available from the theory of maximum likelihood estimation.

A standard procedure for estimating both ability and item parameters in the absence of prior distributions is maximum likelihood (cf. Lord 1980). Maximum likelihood estimation when the ability parameters have a common prior distribution have been studied by a number of authors, including, among others, Bock and Lieberman (1970), Andersen and Madsen (1977), Sanathanan and Blumenthal (1978), and Bock and Aitkin (1981). The latter two papers use different forms of the EM algorithm (Dempster, Laird, and Rubin 1977) to greatly simplify what previously appeared to be an insurmountable numerical problem.

This paper shows that by using the extended form of the EM algorithm, which does not require the presence of sufficient statistics, the computational difficulty is reduced to solving a series of 2 equations with 2 unknown, corresponding to the 2 parameters of the logistic curve. Although the equations must be numerically solved by some iterative method, the task is a vast simplification over methods where all parameters are found simultaneously. Under the

assumption that the ability parameters are independent and identically distributed, the classical maximum likelihood theory applies and the inverse of the observed information matrix may be used as an approximate covariance matrix of the estimated item parameters. The successful use of our method requires a fair amount of computation. Most of the computational burden is in accurately evaluating a large number of single intergals, which are basically expectations with respect to posterior distributions of abilities.

After describing our model and assumptions, we discuss the implementation of the EM algorithm to our problem. The equations at each iteration of the algorithm is then related to the likelihood equations. Responses to a questionnarie on arthritis knowledge will then be used to illustrate our method and simulations will be used to illustrate the reliability of the observed information matrix for assessing the errors in the item parameter estimates. Expressions of derivatives needed to carry out the computation are summarized in the last section.

ITEM RESPONSE MODEL

Consider n subjects responding to k test items designed to measure the ability of the subjects in a particular area. Let $\frac{Y}{x}$ be an n × k matrix of binary responses where $\frac{Y}{ij} = 1$ or 0 accordingly as the ith subject's response to item j is correct or incorrect, $i = 1, \dots, n$ and $j = 1, \dots, k$. A general framework in which to study such item responses is to consider some probability model,

$$p_{ij} = P(Y_{ij} = 1 | \theta_{i}, \xi_{j}),$$
 (2.1)

depending on a real valued ability parameter of the ith subject, θ_i , and a real or vector valued item parameter of the jth item, ξ_j . Given $\theta^T = (\theta_1, \dots, \theta_n)$ and $\xi^T = (\xi_1^T, \dots, \xi_k^T)$, where T denotes transpose, conditional independence among the responses in \underline{Y} is assumed, so that the joint probability of $\underline{Y} = \underline{Y}$, given (θ, ξ) is

$$P(\chi | e, \xi) = \prod_{i=1}^{n} \prod_{j=1}^{k} p_{ij}^{ij} (1 - p_{ij})^{1-\gamma_{ij}}.$$
 (2.2)

We further assume that θ may be treated as a random sample from some prior distribution with pdf $p(\theta \mid \lambda)$ having parameter λ .

In this paper we shall be discussing the estimation of ξ in the special case of the two-parameter logistic model, defined by

$$P(y_{ij}|\theta_{i},\alpha_{j},\beta_{j}) = \frac{e^{y_{ij}\alpha_{j}(\theta_{i}-\beta_{j})}}{e^{\alpha_{j}(\theta_{i}-\beta_{j})}}, \qquad (2.3)$$

 $y_{ij} = 0.1$, where ξ_j is now the vector (α_j, β_j) with $0 < \alpha_j < \infty$ and $-\infty < \beta_j < \infty$. For the prior of θ , we consider the normal distribution with mean μ and variance σ^2 so that $\lambda = (\mu, \sigma^2)$. However, due to the nonuniqueness of this parametrization we shall add the constraints $\mu=0$ and $\sigma^2=1$. We will thus assume that the prior pdf of θ is

$$p(\theta) = (2\pi)^{-1/2} \exp(-\theta^2/2),$$
 (2.4)

 $-\infty$ < θ < ∞ . It can be shown (Tsutakawa 1982), that there is an equivalence between this parametrization and the more familiar one

where the constraints are

k
$$\sum_{j=1}^{k} \beta_{j} = 0$$
 and $\prod_{j=1}^{k} \alpha_{j} = 1$,

with no restriction on (μ, σ^2) .

For the above model, the joint distribution of (Y_i^T, θ_i) , where $Y_i^T = (Y_{i1}, \dots, Y_{ik})$, is given by

$$f(\mathbf{y}_{\mathbf{i}}^{\mathbf{T}}, \boldsymbol{\theta}_{\mathbf{i}} | \boldsymbol{\xi}) = p(\boldsymbol{\theta}_{\mathbf{i}}) \prod_{j=1}^{k} P(\mathbf{y}_{\mathbf{i}j} | \boldsymbol{\theta}_{\mathbf{i}}, \boldsymbol{\alpha}_{j}, \boldsymbol{\beta}_{j})$$
(2.5)

and the joint distribution of (Y, θ) by

$$f(\underline{y},\underline{\theta}|\underline{\xi}) = \prod_{j=1}^{n} f(\underline{y}_{\underline{i}}^{T},\underline{\theta}_{\underline{i}}|\underline{\xi}). \qquad (2.6)$$

Thus the marginal probability of response y_i for the ith subject is

$$P(y_{i}^{T}|\xi) = \int f(y_{i}^{T}, \theta_{i}|\xi) d\theta_{i}$$
 (2.7)

and for all subjects

$$P(\underline{y}|\underline{\xi}) = \prod_{i=1}^{n} P(\underline{y}_{i}^{T}|\underline{\xi}). \qquad (2.8)$$

The loglikelihood function of $\xi^T = \{(\alpha_1, \beta_1), \dots, (\alpha_k, \beta_k)\}$ is thus given by

$$L(\xi) = \sum_{i=1}^{n} \log \int p(\theta_i) \prod_{j=1}^{k} P(y_{ij} | \theta_{i}, \alpha_{j}, \beta_{j}) d\theta_{i}. \qquad (2.9)$$

PARAMETER ESTIMATION VIA

THE EM ALGORITHM

In this section we outline the use of EM algorithm for obtaining $\hat{\xi}$, the maximum likelihood estimate of ξ , when the loglikelihood function is given by (2.9). Basically the algorithm consists of iteratively deriving the value of ξ which maximizes the posterior expectation

$$T(\xi) = E\{\log f(\underline{y}, \theta, |\xi) | \underline{y}, \xi^{\circ}\}, \qquad (3.1)$$

given y and a provisional estimate ξ °, where ξ ° is initially some approximation to $\hat{\xi}$ and is replaced at the end of each iteration by the maximizing value of ξ .

 For the two-parameter logistic model (2.3), each iteration reduces to solving the equations,

$$\sum_{i=1}^{n} y_{ij} = \sum_{i=1}^{n} \int \frac{p(\theta_{i} | y_{i}, \xi^{\circ})}{1 + \exp\{-\alpha_{j}(\theta_{i} - \beta_{i})\}} d\theta_{i}, \qquad (3.2)$$

$$\sum_{i=1}^{n} y_{ij} \int \theta_{i} p(\theta_{i} | y_{i}, \xi^{\circ}) d\theta_{i} = \sum_{i=1}^{n} \int \frac{\theta_{i} p(\theta_{i} | y_{i}, \xi^{\circ})}{1 + \exp\{-\alpha_{j}(\theta_{i} - \beta_{i})\}} d\theta_{i},$$

for (α_{j}, β_{j}) , separately for j = 1, ..., k, where

$$\xi^{\circ} = \{ (\alpha_{1}^{\circ}, \beta_{1}^{\circ}), \dots, (\alpha_{k}^{\circ}, \beta_{k}^{\circ}) \}^{T}, \text{ and}$$

THE PARTY CONTRACT CONTRACT OF THE PARTY OF

$$p(\theta_{i}|y_{i},\xi^{\circ}) = \frac{f(y_{i},\theta_{i}|\xi^{\circ})}{P(y_{i}|\xi^{\circ})}, \qquad (3.3)$$

the posterior pdf of θ_i , given $\xi = \xi^{\circ}$ and observation y_i , i=1,...,n. The solution at the end of each iteration is used as the value of ξ° in the next iteration, and the process continues till convergence is attained.

Since the solution to the equation (3.2) has no simple expression it must be derived numerically by iterative methods such as the one by Marquardt (1963). Moreover, the integrals must be evaluated by numerical techniques such as Gauss-Hermite. The expressions for the derivative needed for the implementation these methods are summarized in the last section.

It is instructive to compare equations (3.2) with the likelihood equation which $\hat{\xi}$ satisfies. The likelihood equations, which are obtained by setting the first partial derivatives of (2.9) with respect to α_{j} and β_{j} equal to zero, are

$$\sum_{i=1}^{n} Y_{ij} = \sum_{i=1}^{n} \left\{ \frac{p(\theta_{i} | Y_{i}, \xi)}{1 + \exp\{-\alpha_{j}(\theta_{i} - \beta_{j})\}} d\theta_{i} \right.$$

$$\sum_{i=1}^{n} y_{ij} \int \theta_{i} p(\theta_{i} | y_{i}, \xi) d\theta_{i} = \sum_{i=1}^{n} \int \frac{\theta_{i} p(\theta_{i} | y_{i}, \xi)}{1 + \exp(-\alpha_{j}(\theta_{i} - \beta_{j}))} d\theta_{i},$$
(3.4)

j=1,...,k, where $\xi = \{(\alpha_1, \beta_1), ..., (\alpha_k, \beta_k)\}$ The only difference between the two systems of equations (3.2) and (3.4) is in the role ξ and ξ° . In (3.2) ξ° is a fixed known value at each iteration, whereas in (3.4) ξ is an unknown to be solved. Solving (3.4) directly requires simultaneously finding 2k unknowns in 2k equations.

On the other hand, each iteration of the EM algorithm only requires finding a series of 2 unknowns in 2 equations. Note that once convergence is attained using the EM algorithm, the successive values of ξ° remain unchanged and satisfy the likelihood equations (3.4).

ERRORS IN PARAMETER ESTIMATES

Since the vector valued observations $\chi_1, \chi_2, \ldots, \chi$ are independent with a common distribution (2.7), we appe to the asymptotic properties of the maximum likelihood ϵ ator to assess the reliability of $\hat{\xi}$. For large samples, $\hat{\xi}$ is approximately normal with mean ξ and covariance $I^{-1}(\xi)$, the reciprocal of the Fisher information matrix $I(\xi)$. In practice ξ is unknown and $I(\xi)$ is difficult to compute. We therefore propose estimating $I(\xi)$ by the observed information matrix $I(\hat{\xi})$, defined as the negative second derivative matrix of the loglikelihood function (2.9). Justifications for this approximation are given in Efron and Hinkley (1978). Expressions of $I(\xi)$ suitable for numerical computation are summarized below under computational notes. Numerical examples of this approximation are shown in the next two sections.

APPLICATION TO ARTHRITIS KNOWLEDGE

We illustrate our method using responses from hospital patients to a 50 item questionnaire on general information regarding arthritis. The questionnarie was completed by n = 167 subjects. Of the original 50 items, 3 were deleted since their parameters could not be estimated, and we thus used the remaining k = 47 items.

Estimates of (α_j, β_j) and there covariances are summarized in Table 1.

Insert Table l about here

SIMULATION

To obtain some indication of performance, our method was applied to a randomly generated data set, Y, using n = 200ability parameters randomly selected from a standard normal distribution and k = 50 pairs of item parameters (α_i, β_i) whose values are in the range typically encountered in pratice. Figures 1, 2 and 3 present plots of the estimated versus simulated values of α, β , and θ . The estimates for θ are posterior means obtained from (3.3) with $\xi^{\circ} = \hat{\xi}$, as in Rigdon and Tsutakawa (1983). We note a fairly high correlation of .988 and .974 for β and θ , respectively, but a somewhat lower one, .881, for α . The estimated covariances for (α, β) are summarized in Table 2 together with standardized errors $(\hat{\alpha} - \alpha)/SD(\hat{\alpha})$ and $(\hat{\beta} - \beta)/SD(\hat{\beta})$, where SD's are square roots of the variances approximated by $I^{-1}(\underline{\xi})$. simulation was repeated using n = 400 and k = 25, with similar results on the standardized errors. Although these results appear quite plausible, until we obtain more experience using $I(\xi)$ the method should be used with caution for data sets of smaller sizes or when the model may not be appropriate.

Insert Figure 1,2, & 3 and Table 2 about here

COMPUTATIONAL NOTES

We now summarize expressions for the first two derivatives of the loglikelihood function (2.9) and the posterior expectation (3.1), which may be used to evaluate $I(\hat{\xi})$ and to maximize $T(\xi)$, respectively.

For each i = 1, ..., n and u = 1, ..., k let

$$\mathbf{g_{1}(i,u,\theta)} = \frac{\partial P(\mathbf{y_{iu}}|\theta,\alpha_{u},\beta_{u})}{\partial \alpha_{u}} / P(\mathbf{y_{iu}}|\theta,\alpha_{u},\beta_{u}),$$

$$g_2(i,u,\theta) = \frac{\partial P(y_{iu} | \theta, \alpha_u, \beta_u)}{\partial \beta_u} / P(y_{iu} | \theta, \alpha_u, \beta_u),$$

$$h_{11}(i,u,\theta) = \frac{\partial^{2}P(y_{iu}|\theta,\alpha_{u},\beta_{u})}{\partial\alpha_{u}^{2}} / P(y_{iu}|\theta,\alpha_{u},\beta_{u}),$$

$$h_{12}(i,u,\theta) = \frac{\partial^{2} P(y_{iu} | \theta, \alpha_{u}, \beta_{u})}{\partial \alpha_{u} \partial \beta_{u}} / P(y_{iu} | \theta, \alpha_{u}, \beta_{u}),$$

$$h_{22}(i,u,\theta) = \frac{\partial^{2}P(y_{iu}|\theta,\alpha_{u},\beta_{u})}{\partial\beta_{u}^{2}} / P(y_{iu}|\theta,\alpha_{u},\beta_{u}),$$

$$\phi_{\theta u} = \{1 + \exp[-\alpha_u(\theta - \beta_u)]\}^{-1}, \text{ and } \psi_{\theta u} = 1 - \phi_{\theta u}.$$

By taking derivatives it is readily shown that

$$g_1(i,u,\theta) = (y_{iu} - \phi_{\theta u})(\theta - \beta_u),$$

$$g_2(i,u,\theta) = -\alpha_u(y_{iu} - \phi_{\theta u}),$$

$$h_{11}(i,u,\theta) = (y_{iu} - \phi_{\theta u})(\psi_{\theta u} - \phi_{\theta u})(\theta - \beta_{u})^{2},$$

$$\mathbf{h}_{12}(\mathbf{i},\mathbf{u},\boldsymbol{\theta}) = (\mathbf{y}_{\mathbf{i}\mathbf{u}} - \boldsymbol{\phi}_{\boldsymbol{\theta}\mathbf{u}}) [1 + \boldsymbol{\alpha}_{\mathbf{u}}(\boldsymbol{\psi}_{\boldsymbol{\theta}\mathbf{u}} - \boldsymbol{\phi}_{\boldsymbol{\theta}\mathbf{u}}) (\boldsymbol{\theta} - \boldsymbol{\beta}_{\mathbf{u}})],$$

and

$$h_{22}(i,u,\theta) = (y_{iu} - \phi_{\theta u}) \alpha_u^2 (\psi_{\theta u} - \phi_{\theta u}).$$

Now define the following posterior expectations of the derivatives and their products by

$$\bar{g}_{s}(i,u) = \int g_{s}(i,u,\theta) p(\theta | y_{i}, \xi) d\theta, \qquad (7.1)$$

$$\bar{h}_{st}(i,u) = \int h_{st}(i,u,\theta) p(\theta | y_i, \xi) d\theta, \qquad (7.2)$$

$$\bar{d}_{st}(i,u,v) = \int g_s(i,u,\theta)g_t(i,v,\theta)p(\theta|y_i,\xi)d\theta, \qquad (7.3)$$

s,t = 1,2, u,v = 1,...,k, $u \neq v$, where $p(\theta | y_i, \xi)$ is defined by (3.3).

Then the first and second derivatives of the loglikelihood function $L(\xi)$, defined by (2.9), may be expressed by

$$\frac{\partial L(\xi)}{\partial \alpha_{\mathbf{u}}} = \sum_{i=1}^{n} \bar{g}_{i}(i,\mathbf{u}), \qquad (7.4)$$

$$\frac{\partial^2 L(\xi)}{\partial \beta_u} = \sum_{i=1}^n \bar{g}_2(i,u), \qquad (7.5)$$

$$\frac{\partial^{2}L(\xi)}{\partial \alpha_{u}\partial \alpha_{v}} = \begin{cases} \sum_{i=1}^{n} \{\bar{h}_{11}(i,u) - \bar{g}_{1}^{2}(i,u)\} & \text{if } u = v \\ \\ \sum_{i=1}^{n} \{\bar{d}_{11}(i,u,v) - \bar{g}_{1}(i,u)\bar{g}_{1}(i,v)\} & \text{if } u \neq v, \end{cases}$$
(7.6)

$$\frac{\partial^{2}L(\xi)}{\partial \alpha_{u}\partial \beta_{v}} = \begin{cases}
\sum_{i=1}^{n} \{\bar{h}_{12}(i,u) - \bar{g}_{1}(i,u)\bar{g}_{2}(i,u)\} & \text{if } u = v \\
\sum_{i=1}^{n} \{\bar{d}_{12}(i,u,v) - \bar{g}_{1}(i,u)\bar{g}_{2}(i,v)\} & \text{if } u \neq v,
\end{cases} (7.7)$$

$$\frac{\partial^{2}L(\xi)}{\partial g_{u}\partial g_{v}} = \begin{cases} \sum_{i=1}^{n} \{\bar{h}_{22}(i,u) - \bar{g}_{2}^{2}(i,u)\} & \text{if } u = v \\ \\ \sum_{i=1}^{n} \{\bar{d}_{22}(i,u,v) - \bar{g}_{2}(i,u)\bar{g}_{2}(i,v)\} & \text{if } u \neq v, \end{cases}$$
(7.8)

for u, v = 1, ..., k.

For any pair (ξ, ξ°) , define the posterior expectations of derivativies and their products,

$$\tilde{g}_{s}(i,u) = \int g_{s}(i,u,\theta) p(\theta | y_{i},\xi^{\circ}) d\theta,$$
 (7.9)

$$\tilde{h}_{st}(i,u) = \int h_{st}(i,u,\theta) p(\theta | y_i, \xi^\circ) d\theta, \qquad (7.10)$$

$$\tilde{\mathbf{d}}_{st}(\mathbf{i},\mathbf{u}) = \int \mathbf{g}_{s}(\mathbf{i},\mathbf{u},\theta) \mathbf{g}_{t}(\mathbf{i},\mathbf{u},\theta) \mathbf{p}(\theta | \mathbf{y}_{\mathbf{i}}, \boldsymbol{\xi}^{\circ}) d\theta . \tag{7.11}$$

These integrals are indentical to (7.1) - (7.3) when $\xi = \xi^{\circ}$, but are generally not identical to them when $\xi \neq \xi^{\circ}$. The derivatives of $T(\xi)$ may then be summarized by

$$\frac{\partial T(\xi)}{\partial \alpha_{\mathbf{u}}} = \sum_{i=1}^{n} \tilde{\mathbf{g}}_{1}(i,\mathbf{u}), \qquad (7.12)$$

$$\frac{\partial \mathbf{T}(\xi)}{\partial \beta_{\mathbf{u}}} = \sum_{i=1}^{n} \widetilde{\mathbf{g}}_{2}(i,\mathbf{u}), \qquad (7.13)$$

$$\frac{\partial^{2} T(\xi)}{\partial \alpha_{u} \partial \alpha_{v}} = \begin{cases} \sum_{i=1}^{n} \{\tilde{h}_{11}(i,u) - \tilde{d}_{11}(i,u)\} & \text{if } u = v \\ 0 & \text{if } u \neq v, \end{cases}$$

$$(7.14)$$

$$\frac{\partial^{2} T(\xi)}{\partial \alpha_{u} \partial \beta_{v}} = \begin{cases} \sum_{i=1}^{n} \{ \tilde{h}_{12}(i, u) - \tilde{d}_{12}(i, u) \} & \text{if } u = v \\ \vdots & \vdots & \vdots \\ 0 & \text{if } u \neq v, \end{cases}$$
 (7.15)

$$\frac{\partial^{2} T(\xi)}{\partial \beta_{u}^{\partial \beta_{v}}} = \begin{cases} \sum_{i=1}^{n} \{\tilde{h}_{22}(i,u) - \tilde{d}_{22}(i,u)\} & \text{if } u = v \\ 0 & \text{if } u \neq v, \end{cases}$$

$$(7.16)$$

 $u,v = 1,\ldots,k.$

We note that the numerical solution to (3.2) and the evaluation of $I(\hat{\xi})$ are quite sensitive to the accuracy of the numerical approximation of integrals. A typical integral is a posterior expectation and, except for a constant factor, has the form

$$\int H(\theta) p(\theta) \prod_{j=1}^{k} P(y_{ij} | \theta, \alpha_{j}, \beta_{j}) d\theta, \qquad (7.17)$$

where the function H varies from integral to integral. The missing constant factor is the reciprocal of this integral when $H(\theta) \equiv 1$. Since $p(\theta)$ is the standard normal pdf, the integral has the Mth oder Gauss-Hermite approximation

$$\pi^{-1/2} \sum_{\ell=1}^{M} H(\sqrt{2} \times_{\ell}) \prod_{j=1}^{k} P(y_{ij} | \sqrt{2} \times_{\ell'}^{\alpha} j'^{\beta} j) w_{\ell}$$
 (7.18)

where $(x_1, w_1), \ldots, (x_m, w_M)$ are the nodes and weights. (See Strout and Secrest 1966). Since the nodes are based on the prior of θ_i and not its posterior, there is some loss in accuracy when the posterior is displaced from the prior. To avoid this loss one can select the nodes around the posterior mean m_i using the posterior standard deviation c_i as the scale factor. To find m_i and c_i we first use (7.18) with $H(\theta) = \theta$ for m_i and $H(\theta) = (\theta - m_i)^2$ for c_i^2 . Then the Gauss-Hermite approximation to (7.17) becomes

$$\sqrt{2} c_{i} \int_{\ell=1}^{M} w_{\ell} H(m_{i} + \sqrt{2} c_{i} x_{\ell}) \exp(x_{\ell}^{2}) \\
\times p(m_{i} + \sqrt{2} c_{i} x_{\ell}) \int_{j=1}^{R} P(y_{ij} | m_{i} + \sqrt{2} c_{i} x_{\ell}, \alpha_{j}, \beta_{j}).$$

FIGURE 1

ESTIMATED VS. ACTUAL ALPHA FROM SIMULATION WITH N=200 AND K=50

ACTUAL ALPHA

FIGURE 2

FROM SIMULATION WITH N=200 AND K=50

ACTUAL BETA

FIGURE 3

FROM SIMULATION WITH N=200 AND K=50

ACTUAL THETAS

TABLE I PARAMETER ESTIMATES AND COVARIANCES

FOR ARTHRITIS EXAMPLE

		TON ANIMALI	19 EXAMPLE		
Item	â	β̂	Var(ĝ)	$Var(\hat{\alpha},\hat{\beta})$	Var(ĝ)
1	1.14	-2.44	0.1287	0.1910	0.3490
2	1.96	-1.69	0.1837	0.0381	0.0310
3	0.62	-3.96	0.0722	0.4022	2.5197
	1.84	-1.64	0.1552	0.0365	0.0353
4		-2.03	0.1124	0.0988	0.1431
5	1.30	-1.86	0.0981	0.0508	0.0754
6	1.41		0.0983	0.0700	0.1031
7	1.31	-1.85	0.3574	-0.0004	0.0111
8	2.67	-1.28	0.0765	0.0579	0.1033
9	1.20	-1.85		0.0123	0.0192
10	2.12	-1.26	0.1855		0.1205
11	1.12	-1.84	0.0715	0.0625	0.3838
12	0.73	-2.40	0.0436	0.1027	
13	1.05	-1.77	0.0562	0.0457	0.1053
14	0.95	-1.86	0.0538	0.0592	0.1467
15	0.65	-2.43	0.0418	0.1170	0.4909
16	1.65	-1.21	0.0983	0.0064	0.0253
17	0.70	-2.21	0.0491	0.1162	0.4076
18	0.36	-3.89	0.0370	0.3704	4.1652
19	0.69	-1.74	0.0431	0.0802	0.2588
20	0.52	-2.18	0.0400	0.1425	0.6913
21	1.52	-0.89	0.0728	-0.0030	0.0220
22	1.13	-0.98	0.0567	0.0151	0.0436
23	1.11	-0.96	0.0536	0.0150	0.0443
24	0.67	-1.36	0.0432	0.0643	0.1909
25	0.51	-1.45	0.0365	0.0871	0.3493
26	0.68	-0.98	0.0374	0.0363	0.1159
· 27	0.60	-0.91	0.0416	0.0523	0.1598
28	0.52	-1.05	0.0352	0.0593	0.2250
29	1.10	-0.39	0.0563	0.0058	0.0338
30	1.06	-0.40	0.0575	0.0085	0.0361
31	0.91	-0.33	0.0462	0.0081	0.0444
32	0.26	-1.06	0.0331	0.1350	0.9367
33	0.77	-0.17	0.0480	0.0074	0.0545
34	0.70	-0.19	0.0452	0.0094	0.0648
	0.61	-0.18	0.0419	0.0121	0.0831
35	0.67	0.04	0.0478	-0.0003	0.0664
36	1.00	0.08	0.0475	-0.0034	0.0360
37		0.11	0.0954	-0.0035	0.0258
38	1.29	0.44	0.0506	-0.0242	0.0770
39 .	0.68		0.0758	-0.0176	0.0400
40	1.01	0.38 1.18	0.0758	-0.1052	0.3755
41	0.46		0.0442	-0.1222	0.4979
42	0.42	1.33		-0.2974	2.3145
43	0.30	2.17	0.0444	-0.0952	0.1897
44	0.75	1.28	0.0712	-0.0952	0.3862
45	0.68	1.71	0.0734		1.2395
46	0.54	2.48	0.0686	-0.2752	5.5250
47	0.44	3.85	0.0840	-0.6664	5.5250

ASSERT MANAGE AND SERVICE CONTROL CONTROL CONTROL CONTROL AND CONTROL AND CONTROL CONT

TABLE II

COVARIANCES AND STANDARDIZED ERRORS

FROM SIMULATION

	^	^ ^	^	Standar	dized Error	
Item	Var(α)	Cov(α,β)	Var(β)	â	β	
1	0.0913	0.0303	0.0320	0.33	0.52	
2	0.0492	0.0220	0.0388	-0.14	1.78	
3	0.1395	0.0200	0.0164	0.75	1.23	
4	0.1042	0.0369	0.0347	-0.48	-0.96	
5	0.3488	0.0178	0.0088	1.59	1.42	
6	0.4080	0.0176	0.0082	1.42	1.29	
7	0.1349	0.0100	0.0121	0.91	2.74	
8	0.1032	0.0115	0.0151	0.75	2.33	
9	0.1747	0.0107	0.0108	0.77	1.72	
10	0.0581	0.0153	0.0268	0.24	1.19	
11	0.0515	0.0185	0.0333	-1.31	0.77	
12	0.0714	0.0167	0.0237	-0.28	0.48	
13	0.1907	0.0057	0.0089	0.49	1.79	
14	0.0746	0.0055	0.0160	0.57	2.32	
. 15	0.1534	-0.0029	0.0086	-0.35	2.35	
16	0.0496	0.0092	0.0255	0.24	-0.41	
17	0.3044	-0.0112	0.0064	1.87	2.93	
18	0.0561	9.0051	0.0202	0.05	-0.94	
19	0.0855	0.0215	0.0166	-0.70	-0.78	
20	0.0572	-0.0009	0.0178	-0.07	0.47	
21	0.0589	-0.0052	0.0170	-0.77	0.28	
22	0.0658	-0.0064	0.0155	1.01	0.75	
23	0.0666	-0.0076	0.0155	0.96	0.94	
24	0.0519	-0.0057	0.0195	0.71	0.57	
25	0.1745	-0.0192	0.0101	1.11	1.12	
26	0.0787	-0.0138	0.0150	0.03	0.49	
27	0.0587	-0.0085	0.0176	0.34	-0.72	
28	0.0905	-0.0161	0.0143	0.93	0.50	
29	0.0390	-0.0129	0.0320	-1.39	0.70	
30	0.0727	-0.0225	0.0195	0.55	0.92	
31	0.0443	-0.0288	0.0440	-1.35	1.65	
32	0.0495	-0.0251	0.0330	-0.98	0.55	
33 .	0.1206	-0.0341	0.0197	-0.01	0.60	
34	0.1315	-0.0464	0.0258	-0.12	0.81	
35	0.0687	-0.0346	0.0316	0.52	0.11	
36	0.0568	-0.0216	0.0261	0.19	-1.62	
37	0.0781	-0.0400	0.0321	0.03	0.26	
38	0.0716	-0.0520	0.0510	-0.89	1.47	
39	0.0974	-0.0392	0.0261	0.25	-0.40	
40	0.0647	-0.0433	0.0426	0.11	0.50	
41	0.1214	-0.0403	0.0222	0.69	-1.04	•
42	0.0794	-0.0460	0.0370	0.50	0.35	
43	0.1112	-0.0482	0.0287	0.58	-0.01	
44	0.3021	-0.0824	0.0249	0.95	0.19	
45	0.1651	-0.0559	0.0238	1.23	-0.85	
46	0.0522	-0.0511	0.0533	-0.42	0.33	
47	0.0909	-0.0608	0.0442	1.25	-0.57	
48	0.0539	-0.0566	0.0714	-0.63	-0.31	
49	0.1972	-0.1049	0.0475	1.45	-0.12	
50	0.1587	-0.1260	0.0814	0.24	0.52	

REFERENCES

- Andersen, R.D. & Madsen, M. Estimating the parameters of the latent population distribution. <u>Psychometrika</u>, 1977, <u>42</u>, 357-374.
- 2. Bock, R.D. & Aitkin, M. Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika, 1981, 46, 443-459.
- Bock, R.D. & Lieberman, M. Fitting a response model for n dichotomously scored items. <u>Psychometrika</u>, 1970, <u>35</u>, 179-197.
- 4. Dempster, A.P. Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm (with discussion). <u>Journal of the Royal Statistical Society</u>, Series B, 1977, 39, 1-38.
- 5. Efron, B. & Hinkley, D.V. The observed versus expected information. <u>Biometrika</u>, 1978, <u>65</u>, 457-487.
- 6. Lord, F.M. Applications of Item Response Theory to Practical

 Testing Problems. Hillsdale, New Jersey: Lawrence Erlbaum,

 1980.
- 7. Marquardt, D.W. An algorithm for least-squares estimation of non-linear parameters, <u>Journal for the Society of Applied</u>
 Mathematics, 1963, 11, 431-441.
- 8. Rigdon, S.E. & Tsutakawa, R.K. Estimation in latent trait models. To appear in Psychometrika, 1983.
- Sanathanan, L. & Blumenthal, S. The logistic model and estimation of latent structure. <u>Journal of the American</u> <u>Statistical Association</u>, 1978, 73, 794-799.
- 10. Stroud, A.H. & Secrest, D. Gaussian quadrature formulas. Englewood Cliffs, New Jersey: Prentice Hall, 1966.
- 11. Tsutakawa R.K. Estimation of item parameters and the GEM algorithm. Proceedings of the 1982 Item Response Theory and Computerized Adaptive Testing Conference.

Navy

CANADAS ARRESTA CARRESTA CARRE

- l Dr. Nick Bond Office of Naval Research Liaison Office, Far East APO San Francisco, CA 96503
- 1 Lt. Alexander Bory Applied Psychology Measurement Division NAMRL NAS Pensacola, FL 32508
- 1 Dr. Robert Breaux NAVTRAEQUIPCEN Code N-095R Orlando, FL 32813
- 1 Dr. Robert Carroll NAVOP 115 Washington , DC 20370
- Chief of Naval Education and Training Liason Office Air Force Human Resource Laboratory Operations Training Division WILLIAMS AFB, AZ 85224
- 1 Dr. Stanley Collyer Office of Naval Technology 800 N. Quincy Street Arlington, VA 22217
- 1 CDR Mike Curran Office of Naval Research 800 N. Quincy St. Code 270 Arlington, VA 22217
- 1 Mike Durmeyer
 Instructional Program Development
 Building 90
 NET-PDCD
 Great Lakes NTC, IL 60088
- 1 Dr. Richard Elster
 Department of Administrative Sciences
 Naval Postgraduate School
 Monterey, CA 93940
- 1 DR. PAT FEDERICO Code P13 NPRDC San Diego, CA 92152

Navy

- 1 Dr. Cathy Fernandes Navy Personnel R&D Center San Diego, CA 92152
- 1 Mr. Paul Foley
 Navy Personnel R&D Center
 San Diego, CA 92152
- l Dr. Jim Hollan
 Code 14
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Dr. Ed Hutchins
 Navy Personnel R&D Center
 San Diego, CA 92152
- l Dr. Norman J. Kerr Chief of Naval Technical Training Naval Air Station Memphis (75) Millington, TN 38054
- 1 Dr. Leonard Kroeker
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 Dr. William L. Maloy (02)
 Chief of Naval Education and Training
 Naval Air Station
 Pensacola, FL 32508
- 1 Dr. James McBride Navy Personnel R&D Center San Diego, CA 92152
- 1 Dr William Montague NPRDC Code 13 San Diego, CA 92152
- 1 Dr. William E. Nordbrock FMC-ADCO Box 25 APO, NY 09710
- 1 Library, Code P201L Navy Personnel R&D Center San Diego, CA 92152
- l Technical Director
 Navy Personnel R&D Center
 San Diego, CA 92152

Navy

- 6 Personnel & Training Research Group Code 442PT Office of Naval Research Arlington, VA 22217
- 1 Special Asst. for Education and Training (OP-01E) Rm. 2705 Arlington Annex Washington, DC 20370
- 1 Office of the Chief of Naval Operations Research Development & Studies Branch OP 115 Washington, DC 20350
- 1 LT Frank C. Petho, MSC, USN (Ph.D)
 CNET (N-432)
 NAS
 Pensacola, FL 32508
- l Dr. Bernard Rimland (01C)
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 Dr. Carl Ross CNET-PDCD Building 90 Great Lakes NTC, IL 60088
- 1 Dr. Robert G. Smith
 Office of Chief of Naval Operations
 OP-987H
 Washington, DC 20350
- 1 Dr. Alfred F. Smode, Director Training Analysis & Evaluation Group Dept. of the Navy Orlando, FL 32813
- 1 Dr. Richard Snow Liaison Scientist Office of Naval Research Branch Office, London Box 39 FPO New York, NY 09510
- l Dr. Richard Sorensen
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 Dr. Frederick Steinheiser CNO - OP115 Navy Annex Arlington, VA 20370

Navy

- 1 Mr. Brad Sympson
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 Dr. Martin A. Tolcott
 Leader, Psychological Sciences Division
 Office of Naval Research
 800 N. Quincy St.
 Arlinsgon, VA 22217
- 1 Dr. James Tweeddale Technical Director Navy Personnel R&D Center San Diego, CA 92152
- 1 Dr. Frank Vicino
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 Dr. Edward Wegman
 Office of Naval Research (Code 411S&P)
 800 North Quincy Street
 Arlington, VA 22217
- 1 Dr. Ronald Weitzman
 Naval Postgraduate School
 Department of Administrative
 Sciences
 Monterey, CA 93940
- 1 Dr. Douglas Wetzel
 Code 12
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 DR. MARTIN F. WISKOFF NAVY PERSONNEL R& D CENTER SAN DIEGO, CA 92152
- 1 Mr John H. Wolfe
 Navy Personnel R&D Center
 San Diego, CA 92152
- 1 Dr. Wallace Wulfeck, III
 Navy Personnel R&D Center
 San Diego, CA 92152

Marine Corps

- 1 H. William Greenup Education Advisor (E031) Education Center, MCDEC Quantico, VA 22134
- l Director, Office of Manpower Utilizatio HQ, Marine Corps (MPU) BCB, Bldg. 2009 Quantico, VA 22134
- 1 Headquarters, U. S. Marine Corps
 Code MPI-20
 Washington, DC 20380
- 1 Special Assistant for Marine
 Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy St.
 Arlington, VA 22217
- 1 DR. A.L. SLAFKOSKY
 SCIENTIFIC ADVISOR (CODE RD-1)
 HQ, U.S. MARINE CORPS
 WASHINGTON, DC 20380
- 1 Major Frank Yohannan, USMC
 Headquarters, Marine Corps
 (Code MPI-20)
 Washington, DC 20380

Army

- 1 Technical Director U. S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Mr. James Baker Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Kent Eaton Army Research Institute 5001 Eisenhower Blvd. Alexandria , VA 22333
- 1 Dr. Beatrice J. Farr U. S. Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Myron Fischl U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Milton S. Katz Training Technical Area U.S. Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Harold F. O'Neil, Jr. Director, Training Research Lab Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Commander, U.S. Army Research Institute
 for the Behavioral & Social Sciences
 ATTN: PERI-BR (Dr. Judith Orasanu)
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Joseph Psotka, Ph.D.
 ATTN: PERI-1C
 Army Research Institute
 5001 Eisenhower Ave.
 Alexandria, VA 22333

Army

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

- 1 Dr. Robert Sasmor U. S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 DR. ROBERT J. SEIDEL US Army Research Institute 5001 Eisenhower Ave. 300 N. WASHINGTON ST. Alexandria, VA 22333
- 1 Dr. Joyce Shields
 Army Research Institute for the
 Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- l Dr. Hilda Wing Army Research Institute 5001 Eisenhower Ave. Alexandria, VA 22333

Air Force

- 1 Air Force Human Resources Lab
 AFHRL/MPD
 Brooks AFB, TX 78235
- 1 Technical Documents Center Air Force Human Resources Laboratory WPAFB, OH 45433
- 1 U.S. Air Force Office of Scientific Research Life Sciences Directorate, NL Bolling Air Force Base Washington, DC 20332
- 1 Air University Library AUL/LSE 76/443 Maxwell AFB, AL 36112
- 1 Dr. Earl A. Alluisi HQ. AFHRL (AFSC) Brooks AFB, TX 78235
- 1 Mr. Raymond E. Christal AFHRL/MOE Brooks AFB, TX 78235
- 1 Dr. Alfred R. Fregly
 AFOSR/NL
 Bolling AFB, DC 20332
- 1 Dr. Genevieve Haddad Program Manager Life Sciences Directorate AFOSR Bolling AFB, DC 20332
- 1 Dr. T. M. Longridge
 AFHRL/OTE
 Williams AFB, AZ 85224
- 1 Mr. Randolph Park
 AFHRL/MOAN
 Brooks AFB, TX 78235
- 1 Dr. Roger Pennell Air Force Human Resources Laboratory Lowry AFB, CO 80230
- 1 Dr. Malcolm Ree
 AFHRL/MP
 Brooks AFB, TX 78235

Air Force

- 1 3700 TCHTW/TTGHR 2Lt Tallarigo Sheppard AFB, TX 76311
- 1 Lt. Col James E. Watson HQ USAF/MPXOA The Pentasgon Washington, DC 20330
- 1 Major John Welsh AFHRL/MOAN Brooks AFB , TX
- 1 Dr. Joseph Yasatuke
 AFHRL/LRT
 Lowry AFB, CO 80230

ASSESSED INSCREASE PROPERTY SERVING SERVINGS PROPERTY ARCHITICS DESCRIPTION AND ASSESSED AND ASSESSED ASSESSED.

Department of Defense

- 12 Defense Technical Information Center
 Cameron Station, Bldg 5
 Alexandria, VA 22314
 Attn: TC
- 1 Dr. Craig I. Fields
 Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209
- 1 Dr. William Graham Testing Directorate MEPCOM/MEPCT-P Ft. Sheridan, IL 60037
- 1 Jerry Lehnus
 HQ MEPCOM
 Attn: MEPCT-P
 Fort Sheridan, IL 60037
- 1 Military Assistant for Training and Personnel Technology Office of the Under Secretary of Defens for Research & Engineering Room 3D129. The Pentagon Washington, DC 20301
- 1 Dr. Wayne Sellman
 Office of the Assistant Secretary
 of Defense (MRA & L)
 2B269 The Pentagon
 Washington, DC 20301
- 1 Major Jack Thorpe
 DARPA
 1400 Wilson Blvd.
 Arlington, VA 22209
- 1 Dr. Robert A. Wisher
 OUSDRE (ELS)
 The Pentagon, Room 3D129
 Washington, DC 20301

Civilian Agencies

- 1 Dr. Susan Chipman Learning and Development National Institute of Education 1200 19th Street NW Washington, DC 20208
- 1 Dr. Arthur Melmed
 724 Brown
 U. S. Dept. of Education
 Washington, DC 20208
- 1 Dr. Andrew R. Molnar
 Office of Scientific and Engineering
 Personnel and Education
 National Science Foundation
 Washington, DC 20550
- 1 Dr. Vern W. Urry
 Personnel R&D Center
 Office of Personnel Management
 1900 E Street NW
 Washington, DC 20415
- Mr. Thomas A. Warm
 U. S. Coast Guard Institute
 P. O. Substation 18
 Oklahoma City, OK 73169
- l Dr. Joseph L. Young, Director Memory & Cognitive Processes National Science Foundation Washington, DC 20550

- l Dr. James Algina University of Florida Gainesville, FL 326
- 1 Dr. Erling B. Andersen
 Department of Statistics
 Studiestraede 6
 1455 Copenhagen
 DENMARK
- 1 Dr. Isaac Bejar Educational Testing Service Princeton, NJ 08450
- 1 Dr. Menucha Birenbaum School of Education Tel Aviv University Tel Aviv, Ramat Aviv 69978 Israel
- 1 Dr. Werner Birke
 Personalstammamt der Bundeswehr
 D-5000 Koeln 90
 WEST GERMANY
- l Dr. R. Darrell Bock Department of Education University of Chicago Chicago, IL 60637
- 1 Dr. Robert Brennan
 American College Testing Programs
 P. O. Box 168
 Iowa City, IA 52243
- 1 Dr. Glenn Bryan 6208 Poe Road Bethesda, MD 20817
- 1 Dr. Ernest R. Cadotte 307 Stokely University of Tennessee Knoxville, TN 37916
- 1 Dr. John B. Carroll 409 Elliott Rd. Chapel Hill, NC 27514
- 1 Dr. Norman Cliff
 Dept. of Psychology
 Univ. of So. California
 University Park
 Los Angeles, CA 90007

- 1 Dr. Allan M. Collins
 Bolt Beranek & Newman, Inc.
 50 Moulton Street
 Cambridge, MA 02138
- 1 Dr. Hans Crombag Education Research Center University of Leyden Boerhaavelaan 2 2334 EN Leyden The NETHERLANDS
- 1 CTB/McGraw-Hill Library 2500 Garden Road Monterey, CA 93940
- 1 Dr. Dattpradad Divgi Syracuse University Department of Psychology Syracuse, NE 33210

では、100mmでは、1

ANNA VOIZOUZA TOKSIKSSA LZRZZKEZ TSKSKSSS. AGAZZKA V

- l Dr. Fritz Drasgow Department of Psychology University of Illinois 603 E. Daniel St. Champaign, IL 61820
- 1 Dr. Susan Embertson PSYCHOLOGY DEPARTMENT UNIVERSITY OF KANSAS Lawrence, KS 66045
- 1 ERIC Facility-Acquisitions 4833 Rugby Avenue Bethesda, MD 20014
- l Dr. Benjamin A. Fairbank, Jr. McFann-Gray & Associates, Inc. 5825 Callaghan Suite 225 San Antonio, TX 78228
- 1 Dr. Leonard Feldt Lindquist Center for Measurment University of Iowa Iowa City, IA 52242
- 1 Dr. Richard L. Ferguson
 The American College Testing Program
 P.O. Box 168
 Iowa City, IA 52240

- 1 Univ. Prof. Dr. Gerhard Fischer Liebiggasse 5/3 A 1010 Vienna AUSTRIA
- Professor Donald Fitzgerald University of New England Armidale, New South Wales 2351 AUSTRALIA
- 1 Dr. Dexter Fletcher University of Oregon Department of Computer Science Eugene, OR 97403
- 1 Dr. John R. Frederiksen
 Bolt Beranek & Newman
 50 Moulton Street
 Cambridge, MA 02138
- 1 Dr. Janice Gifford
 University of Massachusetts
 School of Education
 Amherst, MA 01002
- 1 Dr. Robert Glaser
 Learning Research & Development Center
 University of Pittsburgh
 3939 O'Hara Street
 PITTSBURGH, PA 15260
- 1 Dr. Bert Green
 Johns Hopkins University
 Department of Psychology
 Charles & 34th Street
 Baltimore, MD 21218
- 1 Dr. Ron Hambleton School of Education University of Massachusetts Amherst, MA 01002
- 1 Dr. Paul Horst 677 G Street, #184 Chula Vista, CA 90010
- 1 Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 603 East Daniel Street
 Champaign, IL 61820

- l Dr. Earl Hunt Dept. of Psychology University of Washington Seattle, WA 98105
- 1 Dr. Jack Hunter 2122 Coolidge St. Lansing, MI 48906
- l Dr. Huynh Huynh College of Education University of South Carolina Columbia, SC 29208
- 1 Dr. Douglas H. Jones
 Advanced Statistical Technologies
 Corporation
 10 Trafalgar Court
 Lawrenceville, NJ 08148
- l Professor John A. Keats
 Department of Psychology
 The University of Newcastle
 N.S.W. 2308
 AUSTRALIA
- 1 Dr. William Koch University of Texas-Austin Measurement and Evaluation Center Austin, TX 78703
- l Dr. Marcy Lansman
 The L. L. Thurstone Psychometric
 Laboratory
 University of North Carolina
 Davie Hall 013A
 Chapel Hill, NC 27514
- 1 Dr. Alan Lesgold Learning R&D Center University of Pittsburgh 3939 O'Hara Street Pittsburgh, PA 15260
- 1 Dr. Michael Levine
 Department of Educational Psychology
 210 Education Bldg.
 University of Illinois
 Champaign, IL 61801

- 1 Dr. Charles Lewis
 Faculteit Sociale Wetenschappen
 Rijksuniversiteit Groningen
 Oude Boteringestraat 23
 9712GC Groningen
 Netherlands
- l Dr. Robert Linn College of Education University of Illinois Urbana, IL 61801
- 1 Mr. Phillip Livingston
 Systems and Applied Sciences Corporatio
 6811 Kenilworth Avenue
 Riverdale, MD 20840
- 1 Dr. Robert Lockman Center for Naval Analysis 200 North Beauregard St. Alexandria, VA 22311
- 1 Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08541
- 1 Dr. James Lumsden
 Department of Psychology
 University of Western Australia
 Nedlands W.A. 6009
 AUSTRALIA
- 1 Dr. Gary Marco Stop 31-E Educational Testing Service Princeton, NJ 08451
- l Dr. Scott Maxwell Department of Psychology University of Notre Dame Notre Dame, IN 46556
- l Dr. Samuel T. Mayo Loyola University of Chicago 820 North Michigan Avenue Chicago, IL 60611
- 1 Mr. Robert McKinley
 American College Testing Programs
 P.O. Box 168
 Iowa City, IA 52243

- 1 Dr. Barbara Means Human Resources Research Organization 300 North Washington Alexandria, VA 22314
- 1 Dr. Robert Mislevy 711 Illinois Street Geneva, IL 60134
- 1 Dr. Allen Munro Behavioral Technology Laboratories 1845 Elena Ave.. Fourth Floor Redondo Beach, CA 90277
- 1 Dr. W. Alan Nicewander University of Oklahoma Department of Psychology Oklahoma City, OK 73069
- l Dr. Donald A Norman Cognitive Science, C-015 Univ. of California, San Diego La Jolla, CA 92093
- 1 Dr. Melvin R. Novick 356 Lindquist Center for Measurment University of Iowa Iowa City, IA 52242
- 1 Dr. James Olson WICAT, Inc. 1875 South State Street Orem, UT 84057
- l Wayne M. Patience American Council on Education GED Testing Service, Suite 20 One Dupont Cirle, NW Washington, DC 20036
- 1 Dr. James A. Paulson Portland State University P.O. Box 751 Portland, OR 97207
- 1 Dr. James W. Pellegrino University of California, Santa Barbara Dept. of Psychology Santa Barabara, CA 93106

- 1 Dr. Mark D. Reckase ACT P. O. Box 168 Iowa City, IA 52243
- 1 Dr. Lauren Resnick
 LRDC
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 1521
- 1 Dr. Thomas Reynolds
 University of Texas-Dallas
 Marketing Department
 P. O. Box 688
 Richardson, TX 75080
- 1 Dr. Andrew M. Rose American Institutes for Research 1055 Thomas Jefferson St. NW Washington, DC 20007
- 1 Dr. Lawrence Rudner 403 Elm Avenue Takoma Park, MD 20012
- 1 Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208
- 1 PROF. FUMIKO SAMEJIMA DEPT. OF PSYCHOLOGY UNIVERSITY OF TENNESSEE KNOXVILLE, TN 37916
- 1 Dr. Walter Schneider Psychology Department 603 E. Daniel Champaign, IL 61820
- 1 Lowell Schoer
 Psychological & Quantitative
 Foundations
 College of Education
 University of Iowa
 Iowa City, IA 52242
- l Dr. Kazuo Shigemasu 7-9-24 Kugenuma-Kaigan Fujusawa 251 JAPAN

l Dr. Edwin Shirkey
Department of Psychology
University of Central Florida
Orlando, FL 32816

- 1 Dr. William Sims Center for Naval Analysis 200 North Beauregard Street Alexandria, VA 22311
- 1 Dr. H. Wallace Sinaiko Program Director Manpower Research and Advisory Services Smithsonian Institution 801 North Pitt Street Alexandria, VA 22314
- 1 Dr. Kathryn T. Spoehr Psychology Department Brown University Providence, RI 02912
- 1 Dr. Robert Sternberg
 Dept. of Psychology
 Yale University
 Box 11A, Yale Station
 New Haven, CT 06520

- 1 Dr. Peter Stoloff Center for Naval Analysis 200 North Beauregard Street Alexandria, VA 22311
- 1 Dr. William Stout University of Illinois Department of Mathematics Urbana, IL 61801
- 1 DR. PATRICK SUPPES INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES STANFORD UNIVERSITY STANFORD, CA 94305
- 1 Dr. Hariharan Swaminathan Laboratory of Psychometric and Evaluation Research School of Education University of Massachusetts Amherst, MA 01003

- l Dr. Kikumi Tatsuoka Computer Based Education Research Lab 252 Engineering Research Laboratory Urbana, IL 61801
- 1 Dr. Maurice Tatsuoka 220 Education Bldg 1310 S. Sixth St. Champaign, IL 61820
- l Dr. David Thissen Department of Psychology University of Kansas Lawrence, KS 66044
- 1 Dr. Douglas Towne Univ. of So. California Behavioral Technology Labs 1845 S. Elena Ave. Redondo Beach, CA 90277
- 1 Dr. Robert Tsutakawa Department of Statistics University of Missouri Columbia, MO 65201
- 1 Dr. J. Uhlaner
 Uhlaner Consultants
 4258 Bonavita Drive
 Encino, CA 91436
- 1 Dr. V. R. R. Uppuluri
 Union Carbide Corporation
 Nuclear Division
 P. O. Box Y
 Oak Ridge, TN 37830
- 1 Dr. David Vale
 Assessment Systems Corporation
 2233 University Avenue
 Suite 310
 St. Paul, MN 55114
- 1 Dr. Kurt Van Lehn Xerox PARC 3333 Coyote Hill Road Palo Alto, CA 94304
- 1 Dr. Howard Wainer Division of Psychological Studies Educational Testing Service Princeton, NJ 08540

- l Dr. Michael T. Waller
 Department of Educational Psychology
 University of Wisconsin--Milwaukee
 Milwaukee, WI 53201
- Dr. Brian Waters
 HumRRO
 300 North Washington
 Alexandria, VA 22314
- l Dr. Phyllis Weaver 2979 Alexis Drive Palo Alto, CA 94304
- 1 Dr. David J. Weiss N660 Elliott Hall University of Minnesota 75 E. River Road Minneapolis, MN 55455
- 1 Dr. Donald O. Weitzman Mitre Corporation 1820 Dolley Madison Blvd McLean, VA 22102
- l Dr. Rand R. Wilcox University of Southern California Department of Psychology Los Angeles, CA 90007
- 1 Wolfgang Wildgrube Streitkraefteamt Box 20 50 03 D-5300 Bonn 2 WEST GERMANY
- l Dr. Bruce Williams
 Department of Educational Psychology
 University of Illinois
 Urbana, IL 61801
- 1 Dr. Wendy Yen CTB/McGraw Hill Del Monte Research Park Monterey, CA 93940

02-84