Mixed Precision 1/40

Newton's Method in Mixed Precision

C. T. Kelley NC State University tim_kelley@ncsu.edu Supported by NSF, ARO

RTG, September 2019

Mixed Precision 2 / 40

Outline

- 1 Nonlinear Equations and Backward Error
 - Newton's Method
 - Inexact function and Jacobian
- 2 Linear Solver Woes
 - This Talk's Problem
 - The Backward Error Bites You
 - Probalistic Rounding Analysis
- 3 Example. You figure it out.
- 4 Summary

Mixed Precision 3 / 40

Outline

- 1 Nonlinear Equations and Backward Error
 - Newton's Method
 - Inexact function and Jacobian
- 2 Linear Solver Woes
 - This Talk's Problem
 - The Backward Error Bites You
 - Probalistic Rounding Analysis
- 3 Example. You figure it out.
- 4 Summary

Mixed Precision 4 / 40

-Nonlinear Equations and Backward Error

Newton's Method

Nonlinear Equations

Objective: solve

$$\mathbf{F}(\mathbf{x}) = 0$$

where

$$\mathbf{F} = (f_1, f_2, \dots, f_N)^T$$
.

Newton's method is

$$\mathbf{x}_+ = \mathbf{x}_c - \mathbf{F}'(\mathbf{x}_c)^{-1}\mathbf{F}(\mathbf{x}_c).$$

Jacobian:

$$(\mathbf{F}')_{ij} = \partial f_i / \partial x_i$$

Mixed Precision 5 / 40

Nonlinear Equations and Backward Error

Newton's Method

Local Convergence to distinguished root x*

Standard assumptions for local convergence:

There is $\mathbf{x}^* \in D$ such that

- **F**(x^*) = 0,
- $\mathbf{F}'(\mathbf{x}^*)$ is nonsingular, and
- **F**'(x) is Lipschitz continuous with Lipschitz constant γ , i. e.

$$\|\mathbf{F}'(\mathbf{x}) - \mathbf{F}'(\mathbf{y})\| \le \gamma \|\mathbf{x} - \mathbf{y}\|,$$

for all $\mathbf{x}, \mathbf{y} \in D$.

Mixed Precision 6 / 40

-Nonlinear Equations and Backward Error

Newton's Method

Rules for talking about Newton's method

- x* is the solution in SA which may not be the one you want
- $\mathbf{e} = \mathbf{x} \mathbf{x}^*$ is the error
- Convergence theorems in terms of change from
 - current iteration x_c to
 - next iteration x₊

Mixed Precision 7 / 40

Nonlinear Equations and Backward Error

Newton's Method

Famous local convergence theorem

Assume that the standard assumptions hold, $\mathbf{x}_c \in D$, and that

$$\|\mathbf{e}_c\| \leq \frac{1}{2\|\mathbf{F}'(\mathbf{x}^*)^{-1}\|\gamma}.$$

Then

$$\|\mathbf{F}'(\mathbf{x}^*)^{-1}\|/2 \le \|\mathbf{F}'(\mathbf{x}_c)^{-1}\| \le 2\|\mathbf{F}'(\mathbf{x}^*)^{-1}\|.$$

Moreover, if \mathbf{e}_+ is the Newton iterate from \mathbf{x}_c then

$$\|\mathbf{e}_{+}\| \le \gamma \|\mathbf{F}'(\mathbf{x}^*)^{-1}\| \|\mathbf{e}_c\|^2 \le \|\mathbf{e}_c\|/2.$$

C. T. Kelley

Mixed Precision 8 / 40

Nonlinear Equations and Backward Error

Newton's Method

For the entire iteration . . .

Corollary: Assume that the standard assumptions hold, $\mathbf{x}_0 \in D$, and that

$$\|\mathbf{e}_0\| \leq rac{1}{2\|\mathbf{F}'(\mathbf{x}^*)^{-1}\|\gamma}.$$

Then the

- Newton iteration exists (i. e. $\mathbf{F}'(\mathbf{x}_n)$ is nonsingular for all n),
- converges to x*, and
- the convergence is q-quadratic

$$\|\mathbf{e}_{n+1}\| = O(\|\mathbf{e}_n\|^2)$$

Mixed Precision 9 / 40

-Nonlinear Equations and Backward Error

Newton's Method

What does this mean?

In an ideal world where

- precision is infinite,
- derivatives are analytic,
- linear solvers are exact,

Newton's method works great with good initial data.

But . . .

Mixed Precision 10 / 40

-Nonlinear Equations and Backward Error

Inexact function and Jacobian

... you'll be doing it wrong.

In practice, you get

$$\mathbf{x}_+ = \mathbf{x}_c - \mathbf{J}_c^{-1}(\mathbf{F}(\mathbf{x}_c) + \mathbf{E}_c)$$

where

- **J**_c \approx **F**'(\mathbf{x}_c) (maybe badly)
- **E**_c is the (usually small) error in **F**

Mixed Precision 11 / 40

-Nonlinear Equations and Backward Error

Inexact function and Jacobian

A less famous theorem

Same assumptions as for Newton plus

$$\|\mathbf{F}_c - \mathbf{F}'(\mathbf{x}_c)\| \le \frac{1}{4\|F'(x^*)^{-1}\|}.$$

Then J_c is nonsingular and \mathbf{x}_+ satisfies

$$\|e_+\| \le \|\mathbf{F}'(\mathbf{x}^*)^{-1}\| \bigg(\gamma \|e_c\|^2 + 6\|\mathbf{J}_c - \mathbf{F}'(\mathbf{x}_c)\| \|e_c\| + 8\|\mathbf{E}_c\| \bigg).$$

C. T. Kelley Mixed Precision Mixed Precision 12 / 40

-Nonlinear Equations and Backward Error

Inexact function and Jacobian

Local Improvement Theorem

Same assumptions as for Newton and, for all n,

$$\|\mathbf{J}_n - \mathbf{F}'(\mathbf{x}_n)\| \le \frac{1}{4\|F'(x^*)^{-1}\|}.$$

and

$$\|\mathbf{E}_n\| \leq \epsilon_F$$
.

Then

$$\|\mathbf{e}_{n+1}\| = O(\|\mathbf{e}_n\|^2 + \|\mathbf{J}_n - \mathbf{F}'(\mathbf{x}_n)\|\|\mathbf{e}_n\| + \epsilon_F).$$

The theorem does not predict convergence, rather stagnation.

Mixed Precision 13 / 40

-Nonlinear Equations and Backward Error

Inexact function and Jacobian

Examples

$$\bullet$$
 $\epsilon_F = 0$, $\mathbf{J}_n = \mathbf{F}(\mathbf{x}_n)$: Newton

- ullet $\epsilon_F > 0$, floating point error: Newton in practice
- \bullet $\epsilon_F > 0$, \mathbf{J}_n finite difference Jacobian, step h
 - Use optimal $h = \sqrt{\epsilon_F}$ and
 - $\|\mathbf{e}_{n+1}\| = O(\|\mathbf{e}_n\|^2 + h\|\mathbf{e}_n\| + \epsilon_F)$
 - Same behavior as Newton until stagnation.
- \bullet $\epsilon_F > 0$, $\mathbf{J}_n = \mathbf{F}'(\mathbf{x}_0)$, chord method

Mixed Precision 14/40

-Nonlinear Equations and Backward Error

Inexact function and Jacobian

Implementation: ignore ϵ_F

```
Intialize \mathbf{x}_0, n=0, termination criteria while Not happy do

Evaluate \mathbf{F}(\mathbf{x}_n); terminate?

Evaluate \mathbf{J}_n \approx \mathbf{F}'(\mathbf{x}_n)

Solve \mathbf{J}_n \mathbf{s} = -\mathbf{F}(\mathbf{x}_n)

\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{s}
end while
```

Mixed Precision 15 / 40

- Nonlinear Equations and Backward Error

☐Inexact function and Jacobian

Genius Idea!

- Store **J** in reduced precision.
- Solve in reduced precision.
 - Cut $O(N^2)$ storage by factor of 2 (single)
 - Cut $O(N^3)$ work by factor of 2 (single)
- How can you lose? Why isn't this in all the books?

The case in this talk

 $\epsilon_{\it F}$ floating point double precision roundoff

- $lackbox{ } \epsilon_F$ floating point double precision roundoff
- $\mathbf{J}_c = \mathbf{J}_N + \mathbf{J}_{be}$ where
- Solver is double, single, or half precision LU
 - **J**_N is the nominal approximation you give the linear solver $\mathbf{F}'(\mathbf{x}_c)$ in double or finite-difference approximation
 - lacktriangle The solver returns the solution of ${f J}_{be}{f s}=-{f F}({f x}_c)-{f E}_c$

So the less famous theorem says ...

$$\|\mathbf{e}_{n+1}\| = O\bigg(\|\mathbf{e}_n\|^2 + (\|\mathbf{J}_{Nn} - \mathbf{F}'(\mathbf{x}_n)\| + \|\mathbf{J}_{Nn} - \mathbf{J}_{be}\|)\|\mathbf{e}_n\| + \epsilon_F\bigg).$$

The Jacobian you think you have is harmless

- Analytic Jacobian: $\|\mathbf{J}_{Nn} \mathbf{F}'(\mathbf{x}_n)\| + O(\epsilon_F)$
- Difference Jacobian: $\|\mathbf{J}_{Nn} \mathbf{F}'(\mathbf{x}_n)\| + O(\epsilon_F^{1/2})$
- But what about the backward error?
- Large backward error → slow nonlinear convergence. Can we see this numerically?

What is that backward error?

The standard thing you get in school is from, for example

J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

If you're solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ and the solver shows up with

$$(\mathbf{A} + \delta \mathbf{A})\mathbf{x} = \mathbf{b}$$

then page 49 says $\|\delta \mathbf{A}\|_{\infty} \leq 3g_{PP}N^3\epsilon_S \|\mathbf{A}\|_{\infty}$, where

- \blacksquare g_{PP} is the growth factor and
- \bullet ϵ_S is the unit roundoff in the precision of the solver.

What does this mean?

Suppose $g_{PP} = 1$, you are still in trouble if N is large.

$$N^3\epsilon_S=O(1)$$
 if

- (double): $\epsilon_S = 10^{-16}$, $N \approx 2 \times 10^5$
- (single): $\epsilon_S = 10^{-8}$, $N \approx 5 \times 10^2$
- (half): $\epsilon_S = 10^{-4}$, $N \approx 22$

These results are clearly silly. What's up?

Details

NICHOLAS J. HIGHAM, <u>Accuracy and Stability of Numerical Algorithms</u>, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

Page 175-177: Componentwise backward error (ignore permutation matrix)

$$|\delta \mathbf{A}| \leq 2\gamma_N |\hat{L}||\hat{U}|$$

where $\hat{\mathbf{L}}\hat{\mathbf{U}} = \mathbf{A} + \delta\mathbf{A}$ and

$$\gamma_{N} = \frac{N\epsilon_{S}}{1 - N\epsilon_{S}}$$

Did the N^3 go away?

Nope!

The growth factor part is

$$\hat{g}_{PP} = \frac{\max |\hat{\mu}_{ij}|}{\max |\mathbf{A}_{ij}|}$$

So

- $|L_{ij}| \le 1$ implies (worst case) $\|\hat{L}\|_{\infty} \le N$
- lacksquare Define \hat{g}_{PP} by $|\hat{U}_{ij}| \leq \hat{g}_{PP} |\mathbf{A}_{ij}|$ and so

$$\|\hat{U}\|_{\infty} \leq \hat{g}_{PP} N \|\mathbf{A}\|_{\infty}.$$

More N^3

Bottom line:

$$\|\mathbf{J}_N - \mathbf{J}_{be}\|_{\infty} \leq 2N^2 \gamma_N \hat{g}_{PP} \|\mathbf{J}_{be}\|_{\infty}.$$

■ The N^3 is from

$$N^2 \gamma_N = \frac{N^3 \epsilon_S}{1 - N \epsilon_S}$$

Are we doomed?

Nope!

In many cases $|\hat{\mu}||\hat{\mu}| \leq C|A|$

- **A** symmetric
- Totally positive **A** (so $L_{ij} \ge 0$ and $U_{ij} \ge 0$)

So, in the perfect world where

- $|\hat{\mu}||\hat{\mu}| \leq C|A|$ and
- $g_{PP} = O(1),$

$$\|\mathbf{J}_N - \mathbf{J}_{be}\|_{\infty} = O(N\epsilon_S)$$
?

Probably even better . . .

Probalistic Rounding Analysis

- N. J. HIGHAM AND T. MARY, A new approach to probabilistic rounding error analysis, Tech. Report 2018.33, Manchester Institute for Mathematical Sciences, School of Mathematics, The University of Manchester, 2018.
- I. C. F. IPSEN AND H. ZHOU, Probabilistic error analysis for inner products, 2019.

Big assumption: rounding errors are independen Some people in the room do not believe this.

Probalistic Rounding Analysis

Higham-Mary results: Lots of notation

Define

$$ilde{\gamma}(\lambda) = \exp\left(\lambda\sqrt{\mathsf{N}}\epsilon_{\mathcal{S}} + rac{\mathsf{N}\epsilon_{\mathcal{S}}^2}{1-\epsilon_{\mathcal{S}}}
ight) - 1$$

$$P(\lambda) = 1 - 2 \exp\left(-\frac{\lambda^2 (1 - \epsilon_S)^2}{2}\right)$$

and

$$Q(\lambda, N) = 1 - N(1 - P(\lambda))$$

Limiting cases

- $N\epsilon_S$ small $o ilde{\gamma}(\lambda) pprox \lambda \sqrt{N}\epsilon_S$
- ϵ_S small, λ large $\to P(\lambda) \approx 1$
- N large and λ large and curated $\rightarrow Q(\lambda, N^3) \approx 1$ independently of N

At last, a theorem!

Theorem:

Use Gaussian elimination for $\mathbf{A}\mathbf{x} = \mathbf{b}$. The the computed LU factors $\hat{\mathbf{L}}$ and $\hat{\mathbf{U}}$ satisfy

$$\mathbf{A} + \delta \mathbf{A} = \hat{\mathbf{L}}\hat{\mathbf{U}}$$
 and $|\delta \mathbf{A}| \leq (3\tilde{\gamma}(\lambda) + \tilde{\gamma}(\lambda)^2)|\hat{\mathbf{L}}||\hat{\mathbf{U}}|$

with probability at least $Q(\lambda, N^3/3 + 3N^2/2 + 7N/6)$. Wait! What? Is this good?

Mixed Precision

Goodness of results

Remember, we get to pick λ to make things look good.

- $N\epsilon_S$ small so $(3\tilde{\gamma}(\lambda) + \tilde{\gamma}(\lambda)^2) = O(\epsilon_S \sqrt{N})$
 - Much better than O(N)
- Grow $\lambda \approx \sqrt{\log(N)}$ and $Q(\lambda, N^3/3 + 3N^2/2 + 7N/6) \approx 1$

So you can use \sqrt{N} with confidence(?)

What should we observe if \sqrt{N} is the right thing?

- lacktriangle Trouble (slow nonlinear convergence) when $\sqrt{N}\epsilon_S \geq .1$
 - Double: $N \approx 10^{30}$. Not on my computer.
 - Single: $N \approx 10^{14}$. Not on my computer.
 - Half: $N \approx 10^6$. Maybe if we push it.
- Expectation: Single just as good as double.
- Expect to see deterioration with N for half.

Chandrasekhar H-equation

Midpoint rule discretization

$$\mathcal{F}(H)(\mu) = H(\mu) - \left(1 - \frac{c}{2} \int_0^1 \frac{\mu H(\mu)}{\mu + \nu} d\nu\right)^{-1} = 0.$$

- Defined on *C*[0, 1]
- \mathcal{F}' nonsingular for $0 \le c < 1$. Simple fold singularity at c = 1.
- Any sensible discretization inherits the singularity structure.

Discrete Problem

$$\mathbf{F}(\mathbf{u})_i \equiv u_i - \left(1 - \frac{c}{2N} \sum_{j=1}^N \frac{u_j \mu_i}{\mu_j + \mu_i}\right)^{-1} = 0.$$

Midpoint rule says

$$\frac{c}{2N}\sum_{i=1}^{N}\frac{u_{j}\mu_{i}}{\mu_{j}+\mu_{i}}=\frac{c(i-1/2)}{2N}\sum_{i=1}^{N}\frac{u_{j}}{i+j-1}.$$

so can evaluate **F** in $O(N \log(N))$ work with FFT.

C. T. Kelley

Analytic Jacobian

Define **M** by

$$\mathbf{M}(\mathbf{u})_i = \frac{c(i-1/2)}{2N} \sum_{i=1}^{N} \frac{u_i}{i+j-1}$$

and compute the Jacobian analytically as

$$\mathbf{F}'(\mathbf{u}) = \mathbf{I} - \operatorname{diag}(\mathbf{G}(\mathbf{u}))^2 \mathbf{M}$$

where

$$\mathbf{G}(\mathbf{u})_i = \left(1 - \frac{c}{2N} \sum_{j=1}^N \frac{u_j \mu_i}{\mu_j + \mu_i}\right)^{-1}.$$

Takes $O(N^2)$ work.

Experiments

- c = .5, .99, 1.0 (no theory for c = 1.0)
- Analytic and forward difference Jacobians
 Theory predicts single as good as double
- Double, single, and half precision factor/solve
- Everything else in double
- $N = 2^p$, p = 10, ..., 14, $2^14 = 16384$ Larger N took far to long in half.

Mixed Precision 34 / 40

c = .5, double and single

Mixed Precision 35 / 40

Example. You figure it out.

c = .5, half

Mixed Precision 36 / 40

Example. You figure it out.

c = .99, double and single

Mixed Precision 37 / 40

Example. You figure it out.

c = .99, half

Mixed Precision 38 / 40

c = 1.0, double and single, theory not from this talk

c=1.0, half, DOOM! Some theory out there

Summary

- Low quality linear solvers are just fine
 - $lue{}$ Single precision o same nonlinear results
 - lacksquare Half precision o not great
- The precision for you is 32!
- c = 1.0 is different