Computación Paralela - Práctica 1

Tipos derivados y Procesos dinámicos

En esta práctica vamos a aprender a utilizar tipos derivados y a generar procesos dinámicamente en MPI. La práctica consiste en implementar la multiplicación de dos matrices cuadradas de NxN elementos. Para ello, vamos a enviar la matriz A entera y la columna i-ésima de la matriz B al proceso i, el cual se encargará de realizar el cálculo de cada una de las filas de la matriz A por la columna de la matriz B. La figura 1 muestra el proceso.

						Columna i de la Matriz		z Columna i	Columna i de la Matriz	
	Matriz A en el proceso n					B en el proceso i		resultado e	resultado en el proceso i	
\langle	1	2	3	4	5	$>$ \square	40\	Œ	589	
	6	7	8	9	10		41	1	744	
	11	12	13	14	15		42	2	799	
	16	17	18	19	20		43	3	854	
	21	22	23	24	25		44	4	909	
	26	27	28	29	30		45/	5	964	
						`	\bigcirc			

Figura 1. Multiplicación de la matriz A por la columna i en el proceso i

Como vemos en la figura 1, al multiplicar una matriz por una columna, nos da como resultado otra columna. Sin embargo, a efectos de programación, no definimos un vector de Nx1 (N filas por 1 columna), sino que definimos un vector 1xN (1 fila por N columnas). Entonces, para convertir la columna de la matriz B en una fila, lo que hacemos es usar un tipo derivado que envíe los datos de una columna del proceso padre y los reciba el proceso hijo en forma de fila. De forma análoga, cuando un proceso hijo envíe la fila resultado al proceso padre, enviará la fila y el proceso padre la recibirá usando el tipo derivado, almacenándola en forma de columna.

Por tanto, tendremos un proceso padre que creará N procesos hijos, enviará a cada uno la matriz A y la columna i-ésima de la matriz B y recibirá de cada uno la columna i-ésima de la matriz resultado. El pseudocódigo de los procesos padre e hijos lo vemos en el Algoritmo 1.

Como el objetivo de esta práctica es familiarizarse en el uso de tipos derivados y de la creación dinámica de hilos, no haremos ningún tipo de análisis de rendimiento de la aplicación.

Una vez finalizada, se comprimirán los dos ficheros de código (proceso padre y proceso hijo) en un fichero con las iniciales del alumno seguido de un guión bajo y P1 (por ejemplo, en mi caso sería JMGC_P1) y se subirá mediante la tarea creada a tal efecto en el campus virtual.

Proceso padre

Inicializa el entorno MPI del padre Inicializa las matrices A y B Lanza N procesos hijos Crea un tipo derivado para enviar 1 columna Para i desde 0 hasta N

Envía la matriz A al proceso i Envía la columna i de B al proceso i

Fin para

Para i desde 0 hasta N

Recibe la columna i de R del proceso i

Mostrar la matriz resultado Liberar el tipo derivado

Finaliza el entorno MPI del padre

Proceso hijo i-ésimo

Inicializa el entorno MPI del hijo

Obtiene su rank

Obtiene el comunicador con el padre

Recibe la matriz A

Recibe la columna i-ésima de B (Col)

Para i desde 0 hasta N

ColResult[i]=0

Para j desde 0 hasta N

ColResult [i]+=MatrizA[i][j]*Col[j]

Envía la columna ColResult al padre

Finaliza el entorno MPI del hijo

Algoritmo 1. Pseudocódigo de los procesos padre e hijos.