7B TestOfHyp

Contents

Tes	t of Hypothesis
	Example
A.2	figure
	figure
A.4	Standardize the statistic
A.5	fig
	Critical Value
A.7	fig
A.8	Under Alternative
A.9	fig
A.10	Type I and Type II Errors
A.11	l P-value vs $lpha$
A.12	2 Test of Hypothesis - upper-tailed alternative
A.13	3 Test of Hypothesis - lower-tailed alternative
A.14	4 Test of Hypothesis - two-tailed alternative

Textbook: Devore 8e

A Test of Hypothesis

[ToC]

A.1 Example

• Suppose we want to test two hypothesis

 H_0 :

p = .5

 H_A :

p = .6

• How can we test these hypothesis?

A.2 figure

n=50: If p=.5

A.3 figure

n=100: If p=.5

Number of Heads

n=500: If p=.5

A.4 Standardize the statistic

• Instead of looking at X, let's look at the z-score of $\hat{p} = X/n$.

$$Z = \frac{\vec{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

$$\frac{(.6-.5)}{\sqrt{(.5)(.5)/50}} = 1.414 \qquad \frac{(.6-.5)}{\sqrt{(.5)(.5)/100}} = 2 \qquad \frac{(.6-.5)}{\sqrt{(.5)(.5)/500}} = 4.47$$

A.5 fig

n=50: If p=.5

n=100: If p=.5

n=500: If p=.5

If p=.6

A.6 Critical Value

• Now that the distribution is fixed under H_0 , we can fix the critical value (blue line) as well:

A.7 fig

n=50: If p=.5

If p=.6

Niconale and a fill a sealer

n=500: If p=.5

If p=.6

A.8 Under Alternative

• What if the friend was cheating by different amount?

n=50: If p=.5

0.127 -6 -4 -2 0 2 4 6

n=50: If p=.5

n=50: If p=.5

If p=.65

A.9 fig

n=100: If p=.5

Number of Heads

n=100: If p=.5

If p=.65

A.10 Type I and Type II Errors

• With significance level α of our choice,

Prob of	don't reject H_0	reject H_0
H_0 is true	$1-\alpha$	(α)
H_A is true	(β)	Power = $1 - \beta$

- $\alpha = P(\text{ type I error }) = P(\text{ false positive})$
- $\beta = P(\text{ type II error}) = P(\text{ false negative})$

A.11 P-value vs α

 \bullet p-value is the probability of getting the observed value of test statistics z or 'worse' when H_0 is true.

A.12 Test of Hypothesis - upper-tailed alternative

1. Set up the null and alternative hypothesis

$$H_0$$
:

$$H_A$$
:

$$p = .5$$

2. Calculate the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

3. Get p-value

4. Conclude

If p-value is greater than α

If p-value is not greater than α

A.13 Test of Hypothesis - lower-tailed alternative

1. Set up the null and alternative hypothesis

$$H_0$$
:

$$p = .5$$

$$H_A$$
:

2. Calculate the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

3. Get p-value

4. Conclude

If p-value is greater than α

If p-value is less than α

A.14 Test of Hypothesis - two-tailed alternative

1. Set up the null and alternative hypothesis

$$H_0$$
:

$$p = .5$$

$$H_A$$
:

$$p \neq .5$$

2. Calculate the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

3. Get p-value

4. Conclude

If p-value is greater than α

If p-value is less than α

