

EVER HUGHES

AMANDA NG

MAIN PROJECT: HOUSEHOLD GREENHOUSE GAS (GHG) MAP

Modelling, mapping, and making sense of trends in the GHG emissions of household activity in Canada

BACKGROUND

USA Household GHG model by UC Berkeley, 2013

Canadian model of household GHG

Move from provincial

GHG to DA level

emissions

Finding: cities have lower household

GHG than suburbs

Project Goals

☐ Create a nationwide map of household GHG emissions, specified at a local level

☐ Model the emissions based on urban form (ex. housing type) and demographic (ex. income, commute time) variables

☐ Create a situational tool to compare GHG based on housing composition

Overall aim: demonstrate environmental benefits of cities/urban living (in comparison to suburbs)

MODEL PROCESS

RESEARCH & PLANNING

- Review original paper
- Narrow scope
- Identify key variables
- Find data sources

MODEL BUILDING, ANALYSIS

- Clean and merge datasets
- Build linear regression model in R
 - Try different predictor variables
 - Adjust training data
 - Compare coefficients, R^2 value
 - Identify inconsistencies, improve model

MAPPING & REVISION

- Predict each DA's average household GHG based off model
- Map results in QGIS, check patterns
- Revise model

Household GHG Emissions

Energy consumption (EC)

Electricity, natural gas

Model emissions by linear regression

* Vehicle use Motor fuels

Model Equation:

Household GHG Emissions = β_0 + β_1 (Income) + β_2 (Population density) +

 β_3 (Commute) + β_4 (% Houses) + β_5 (% Apartments) + β_6 (# vehicles) +

 β_7 (Age of home) + β_8 (Carbon intensity electricity) + β_9 (Gas price) +

 β_{10} (Natural gas price)

Key Findings

- Downtown areas: **lower household emissions** (smaller dwellings, public transit, etc.)
- > Suburban areas : **higher household emissions** (larger homes, longer commute, etc.)

Ring of higher emissions around city core

Vancouver

Key Findings

Income, commute time, % houses, # vehicles and home age are positively correlated with GHG

% apartments and gas prices are negatively correlated with GHG

Interactive tool

Goal

Develop a tool to demonstrate how changes in housing type will affect GHG emissions per household

How does it work?

- 1. Choose a location (i.e. DA number)
- 2. Extract original demographic values
- 3. Calculate original GHG emission
- 4. Modify housing data by:
 - Changing # houses
 - Changing # apartments
- 5. Calculate new GHG emission
- 6. Present difference in GHG emission due to direct changes in housing type

ADDITIONAL **PROJECTS**

Business GHG Emissions

• 250+ maps each of CMA data

National dataset of businesses

> Frequency of name

Local Business Index

Toronto

Food vs retail

ADDITIONAL PROJECTS

Social connection

- Multinomial logistic regression model
- Examine the relationships between urban form variables (independent variables) and social connection variables (dependent variables)

Local personal contacts
Sense of belonging

Income
Density
Housing type
Immigrants
Visible minorities
Education
Main mobility type

TAKEAWAYS PARTION EXPLORATION TO ENRI

EXPLORATION, EXPERIENCE, & ENRICHMENT

Data science skills

- Data cleaning, management, and analysis
- Programming in R

- Data visualization
- Regression analysis
- Excel, MS Office
- QGIS

Transferable skills

- Communication
- Organization
- Collaboration
- Critical thinking

Immersion in workplace

- Participated in meetings
- Presentations
- Observation
- Work-life balance

