МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

> Милославов Глеб Евгеньевич Б04-105

1 Введение

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностногонатяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

Оборудование: Прибор Ребиндера с термостатом и микроманометром, спирт и вода.

2 Теория к работе

Наличие поверхностного слоя приводит к различию давлений по разные стороны отискривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{R}$$

 σ - коэффициент поверхностного натяжения, R - радиус кривизны поверхности раздела двух фаз. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

3 Описание экспериментальной установки

На рисунке ниже изображена экспериментальная установка. Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В. Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружён вжидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают-пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP , необходимого для прохождения пузырьков.

Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. При закрытом кране К2 открывают кран К1, разряжение воздуха в колбе создаётся когда вода вытекает из крана К1 по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром. Для стабилизации температуры исследуемой жидкости через рубашку D колбы В непрерывно прогоняется вода из термостата.

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключитьвлияние гидростатического давления столба жидкости. Однако при измерении температурной зависимости коэффициента поверхностного натяжения возникает ряд сложностей. Во-первых, большая теплопроводность металлической трубки приводитк тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры.

Обе погрешности можно устранить, погрузив кончик трубки глубже в жидкость. Полное давление, измеренное при этом микроманометром, $P = \Delta P + \rho g h$ не зависит от температуры жидкости. Величину $\rho g h$ следует измерить двумя способами. Во-первых, замерить величину $P_1 = \Delta P'$, когда кончик трубки только касается поверхности жидкости. Затем при этой же температуре опустить иглу глубже в жидкость и замерить $P_2 = \rho g h + \Delta P$ " ($\Delta P'$, ΔP " – давление Лапласа). Из-за несжимаемости жидкости можно положить $\Delta P' = \Delta P$ " и тогда $\rho g h = P_2 - P_1$. Во-вторых, при измерениях P1 и P2 замерить линейкой глубину погружения иглы h.

4 Эксперементальная часть

1. Оценим случаюйную погрешность как среднеквадратичное отклонение измерений на колбе со спиртом, измерив ΔP_{max} несколько раз при одинаковых услових, запишем данные в таблицу:

$\mathcal{N}_{ar{0}}$	1	2	3	4
ΔP_{max} , дел	38,5	39,0	38,5	39,0
ΔP_{max} , Πa	75,51	76,49	75,51	76,49

Таблица 1: Данные для расчёта среднеквадратичного отклонения ΔP_{max}

В результате получили:

$$\sigma_{\text{случ}} = 0,75 \; \Pi \text{a} \quad (\varepsilon = 1\%)$$

Тогда учитывая, что $\sigma_{\text{сист}} = 0,98$ Па, полную погрешность посчитаем как

$$\sigma_{\Delta P} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} = 1,23$$
 Па

2. Далее работаем с колбой с водой. Измерим P_1, h_1 при таком положении иглы, чтобы она едва касалась поверхности жидкости, и измерим P_2, h_2 , утопив иглу до предела. Получили:

Nº	1	2
P_{max} , дел	126,0	208,5
P_{max} , Πa	247,1	408,9
h, cm	2,40	0,65
σ_h , cm	0,025	0,025

Таблица 2: Данные для сравнения Δh_1 и Δh_2

Тогда:

$$\Delta h_1 = h_1 - h_2 = (1,75 \pm 0,04) \text{ cm}; \quad \Delta h_2 = \frac{P_1 - P_2}{\rho g} = (1,37 \pm 0,02) \text{ cm}.$$

$$\sigma_{\Delta h_1} = \sqrt{\sigma_{h_1}^2 + \sigma_{h_2}^2}; \quad \sigma_{\Delta h_2} = \frac{1}{gh} \sqrt{\sigma_{P_1}^2 + \sigma_{P_2}^2}$$

Полученные значения для глубины погружения близки, но всё же не перекрываются погрешностью. Скорее всего расхождения обусловлены влиянием краевых эффектов, которое дало нам слегка завышенное значение P_2 .

3. Снимем показания P_2 с установки с водой, полученные данные и дальнейшие расчёты внесём в таблицу:

t, C	T, K	Р2, дел	Р2, Па	Delta Р, Па	σ, Н/м	σ(σ), Н/м
25,5	298,5	208,5	408,9	237,32	68,23	4,38
30,3	303,3	207,0	406,0	234,38	67,38	4,34
35,3	308,3	205,0	402,1	230,46	66,26	4,30
40,2	313,2	203,5	399,1	227,51	65,41	4,27
45,1	318,1	201,5	395,2	223,59	64,28	4,22
50,1	323,1	200,0	392,3	220,65	63,44	4,19
55,0	328,0	198,5	389,3	217,71	62,59	4,16
60,1	333,1	197,0	386,4	214,77	61,75	4,12

Погрещность σ_{σ} была посчитана следующим образом:

$$\sigma_{\sigma} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2}$$
, где $\sigma_{\text{случ}} = \frac{P_2}{P_{\text{спирт}}} \sigma_{\text{случ спирт}}$, а $\sigma_{\text{сист}} = \sigma \sqrt{\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2}$

По полученным данным построим график зависимости $\sigma(T)$. Видно, что все точки довольно хорошо ложаться на прямую. В результате линейной аппроксимации получили:

$$\boxed{\frac{d\sigma}{dT} = -0.189 \pm 0.004 \frac{\mathrm{H}}{\mathrm{M} \cdot \mathrm{K}}} \quad (\varepsilon = 1.8\%)$$

Также изобразим зависимость от температуры теплоты образования единицы поверхности жидкости q и поверхностной энергии U единицы площади F:

Отсюда видно, что обе зависимости линейны на исследуемом диапазоне температур, более того вероятно, что $\frac{U}{F}(T)=const=125\pm1~\frac{{\it Дж}}{{\it м}^2}$

5 Вывод

1. Эксперементальным путём определили коэффициент поверхностного натяжения воды для разных температур, например, при 25°C $\sigma=68,2\pm4,4$ H/м, тогда как табичное значение для данной температуры $\sigma=71,9$ H/м ($\varepsilon=5\%$), что сходиться с полученным с учётом погрешности.

- 2. Также исследовали зависимость коэффициента поверхностного натяжения воды от температуры в диапазоне 25-60°С, в результате линейной аппроксимации получили $\frac{d\sigma}{dT}=-0,189\pm0,004$ $\frac{\rm H}{\rm M\cdot K}$, тогда как табичное значение для данного диапазона температур $\frac{d\sigma}{dT}=-0,164$ $\frac{\rm H}{\rm M\cdot K}$ ($\varepsilon=13\%$).
- 3. В результате линейной аппроксимации получили графиков q(T) и $\frac{U}{F}(T)$ получили, что обе зависимости хорошо линиаризуемы на диапазоне температур 25-60°C, причём $\frac{U}{F}(T)=const=125\pm 1$ $\frac{D_{\rm cm}}{M^2}$.