EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Feb 9 2021

Randomized Linear Algebra Lecture 9: High-dimensional Problems, Least-norm Solutions and Randomized Methods

Faster Least Squares Optimization: Random Projection

▶ Left-sketching

Form SA and Sb where $S \in \mathbb{R}^{m \times n}$ is a random projection matrix

► Solve the smaller problem

$$\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

using any classical method.
 Direct method complexity md²

Gaussian Sketch

▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

Unbiased
$$\mathbb{E}\left[\tilde{x}\right] = x_{LS}$$

since $\tilde{x} = x_{LS} + \underbrace{\left(A^T S^T S A\right)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$

Gaussian Sketch

Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

Unbiased
$$\mathbb{E}\left[\tilde{x}\right] = x_{LS}$$

since $\tilde{x} = x_{LS} + \underbrace{\left(A^T S^T S A\right)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$

Variance

$$\mathbb{E}||A(\tilde{x} - x_{LS})||_2^2 = f(x_{LS})\frac{d}{m-d-1}$$

valid for $m > d+1$ where $f(x) = ||Ax - b||_2^2$

Gaussian Sketch

Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$

Unbiased
$$\mathbb{E}\left[\tilde{x}\right] = x_{LS}$$

since $\tilde{x} = x_{LS} + \underbrace{\left(A^T S^T S A\right)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$

Variance

$$\mathbb{E}||A(\tilde{x} - x_{LS})||_2^2 = f(x_{LS})\frac{d}{m-d-1}$$

valid for $m > d+1$ where $f(x) = ||Ax - b||_2^2$

- Function value $f(\tilde{x}) = ||A\tilde{x} b||_2^2 = ||A(\tilde{x} x_{LS})||_2^2 + ||Ax_{LS} b||_2^2$
- $\mathbb{E}f(\tilde{x}) f(x_{LS}) = f(x_{LS}) \frac{d}{m d 1}$

Variance Reduction by Averaging

Let $S_1,...,S_r$ be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x}_i = \arg\min_{x \in \mathbb{R}^d} \|S_i Ax - S_i b\|_2^2$

- $\blacktriangleright \text{ let } \tilde{x} = \frac{1}{r} \sum_{i=1}^{r} x_i$
- ▶ Unbiased $\mathbb{E}\left[\tilde{x}\right] = x_{LS}$
- ► Variance is reduced by $\frac{1}{r}$

Variance Reduction by Averaging

Let
$$S_1,...,S_r$$
 be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$

$$\tilde{x}_i = \arg\min_{x \in \mathbb{R}^d} \|S_i Ax - S_i b\|_2^2$$

- $\blacktriangleright \text{ let } \tilde{x} = \frac{1}{r} \sum_{i=1}^{r} x_i$
- ▶ Unbiased $\mathbb{E}\left[\tilde{x}\right] = x_{LS}$
- ► Variance is reduced by $\frac{1}{r}$
- $\blacktriangleright \mathbb{E}f(\tilde{x}) f(x_{LS}) = f(x_{LS}) \frac{1}{r} \frac{d}{m-d-1}$

High-dimensional Least Squares Problems

- $ightharpoonup A \in \mathbb{R}^{n \times d}$ where d > n
- ▶ no unique solution

High-dimensional Least Squares Problems

- $ightharpoonup A \in \mathbb{R}^{n \times d}$ where d > n
- ▶ no unique solution
- ightharpoonup minimum (ℓ_2) norm solution is unique

$$x_{\min-norm} = \arg\min_{Ax=b} ||x||_2^2$$

Minimum norm solution and SVD

$$x_{\min-norm} = \arg\min_{Ax=b} \|x\|_2^2$$

Random projection to reduce dimension: Right Sketch

$$x_{\min-norm} = \arg\min_{Ax=b} ||x||_2^2$$

▶ We can right multiply A and form AS where $S \in \mathbb{R}^{d \times m}$ and solve

$$\arg\min_{ASz=b} \|z\|_2^2$$

Random projection to reduce dimension: Right Sketch

$$x_{\min-norm} = \arg\min_{Ax=b} ||x||_2^2$$

▶ We can right multiply A and form AS where $S \in \mathbb{R}^{d \times m}$ and solve

$$\arg\min_{ASz=b} \|z\|_2^2$$

▶ How do we use $z \in \mathbb{R}^m$?

$$\begin{aligned} x_{\text{min-norm}} &= \arg\min_{Ax=b} \underbrace{\|x\|_2^2}_{f(x)} \\ \text{approximation} & \quad \tilde{x} = S\tilde{z} \\ \text{where } \tilde{z} &:= \arg\min_{ASz=b} \|z\|_2^2 \end{aligned}$$

$$x_{\text{min-norm}} = \arg\min_{Ax=b} \frac{\|x\|_2^2}{f(x)}$$
 approximation $\tilde{x} = S\tilde{z}$ where $\tilde{z} := \arg\min_{ASz=b} \|z\|_2^2$

- ► Let *S* be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$
- ▶ Is \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = x_{\text{min-norm}}$

$$\begin{aligned} x_{\text{min-norm}} &= \arg\min_{Ax=b} \frac{\|x\|_2^2}{f(x)} \\ \text{approximation} & \quad \tilde{x} = S\tilde{z} \\ \text{where } \tilde{z} &:= \arg\min_{ASz=b} \|z\|_2^2 \end{aligned}$$

- Let S be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$
- ls \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = x_{\text{min-norm}}$
- Yes, conditioned on SA

$$\tilde{x} \sim N(x_{\text{min-norm}}, VV^Tb^T(AS^TSA^T)^{-1}b)$$

- VV^T is the projection onto the null space of A
- ▶ error $\tilde{x} x_{\min-norm} \in \text{Null}(A)$

$$\begin{aligned} x_{\text{min-norm}} &= \arg\min_{Ax=b} \frac{\|x\|_2^2}{f(x)} \\ \text{approximation} & \quad \tilde{x} = S\tilde{z} \\ \text{where } \tilde{z} &:= \arg\min_{ASz=b} \|z\|_2^2 \end{aligned}$$

- ► Let S be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$
- ls \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = x_{\text{min-norm}}$
- Yes, conditioned on SA

$$\tilde{x} \sim N(x_{\text{min-norm}}, VV^Tb^T(AS^TSA^T)^{-1}b)$$

- $\triangleright VV^T$ is the projection onto the null space of A
- ▶ error $\tilde{x} x_{\min-norm} \in \text{Null}(A)$
- ► Using $\mathbb{E}(AS^TSA^T)^{-1} = AA^T \frac{m}{m-n-1}$ $\mathbb{E}\|\tilde{x} - x_{\text{min-norm}}\|_2^2 = \frac{d-n}{m-n-1}f(x_{\text{min-norm}}) = \frac{d-n}{m-n-1}\|x_{\text{min-norm}}\|_2^2$

Left Sketch vs Right Sketch Summary

- Both are unbiased using Gaussian projections
- \triangleright A is $n \times d$
- ▶ Left sketch n > d

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

Variance:
$$\mathbb{E}||A(\tilde{x}-x_{LS})||_2^2 = f(x_{LS})\frac{d}{m-d-1}$$

► Right sketch *d* > *n*

$$\tilde{z} = S\tilde{z}$$
 where $\tilde{z} := \arg\min_{ASz=b} \|z\|_2^2$

Variance:
$$\mathbb{E}\|\tilde{x} - x_{\text{min-norm}}\|_2^2 = f(x_{\text{min-norm}}) \frac{d-n}{m-n-1}$$

Back to Left Sketch: Which sketching matrices are good?

- We need to find conditions to guarantee approximate optimality
- ▶ Let $A = U\Sigma V^T$ SVD in compact form

some deterministic options

- \triangleright $S = U^T$ is $d \times n$
- \triangleright $S = A^T$

For random S matrices $A^T S^T S A$ needs to be invertible we want it to be close to $A^T A$

Approximate Matrix Multiplication

▶ Let the approximate product of AB be $C = AS^TSB$

$$\mathbb{P}\left[\|AB - C\|_F > \epsilon \|A\|_F \|B\|_F\right] \le \delta$$

- Follows from JL Moment property
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- lacksquare $S \in \mathbb{R}^{m imes n} \sim rac{1}{\sqrt{m}} imes \mathsf{Fast} \ \mathsf{JL} \ \mathsf{Transform} \ \mathsf{with} \ m = rac{c_3}{\epsilon} \log rac{1}{\delta}$

Approximate Matrix Multiplication

▶ Let the approximate product of AB be $C = AS^TSB$

$$\mathbb{P}\left[\|AB - C\|_F > \epsilon \|A\|_F \|B\|_F\right] \le \delta$$

- Follows from JL Moment property
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{c^2 \delta}$
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$
- ► Sparse JL and Fast JL are more efficient
- advantages: doesn't require any knowledge about matrices A and B (oblivious)
- optimal sampling probabilities depend on the column/row norms of A and B

Basic Inequality Method

- We minimize $\tilde{x} = \arg\min \|S(Ax b)\|_2^2$
- $ightharpoonup x_{LS}$ minimizes $||Ax b||_2^2$
- ▶ How far is \tilde{x} from x_{LS} ?
- ▶ **Step 1**. Establish two optimality (in)equalities for these variables
- $\|Ax_{LS} b\|_2^2 \le \|Ax' b\|_2^2$ for any x', i.e., $A^T(Ax_{LS} b) = 0$
- $||S(A\tilde{x}-b)||_2^2 \le ||S(Ax_{LS}-b)||_2^2$

Basic Inequality Method

- We minimize $\tilde{x} = \arg\min \|S(Ax b)\|_2^2$
- $ightharpoonup x_{LS}$ minimizes $||Ax b||_2^2$
- ▶ How far is \tilde{x} from x_{LS} ?
- ▶ **Step 1**. Establish two optimality (in)equalities for these variables
- $\|Ax_{LS} b\|_2^2 \le \|Ax' b\|_2^2$ for any x', i.e., $A^T(Ax_{LS} b) = 0$
- $||S(A\tilde{x}-b)||_2^2 \le ||S(Ax_{LS}-b)||_2^2$
- ▶ **Step 2**. Define error $\Delta = \tilde{x} x_{LS}$ and re-write these inequalities in terms of δ
- ▶ **Step 3**. Argue $S^TS \approx I$

Leverage Scores

Questions?