Однородные локально нильпотентные дифференцирования триномиальных алгебр

Юлия Зайцева

ΜГУ

2018 год

Michel Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 3 (1970), 507–588

Фиксируем
$$n=n_0+n_1+n_2,\,n_i\in\mathbb{N}$$
 и наборы $l_i=(l_{ij}\mid j=1,\dots,n_i)\in\mathbb{N}^{n_i}$ для каждого $i=0,1,2.$ $\mathbb{K}[T_{ij}\mid i=0,1,2,\,1\leqslant j\leqslant n_i]$

Фиксируем
$$n=n_0+n_1+n_2,\,n_i\in\mathbb{N}$$
 и наборы $l_i=(l_{ij}\mid j=1,\ldots,n_i)\in\mathbb{N}^{n_i}$ для каждого $i=0,1,2.$
$$\mathbb{K}[T_{ij}\mid i=0,1,2,\,1\leqslant j\leqslant n_i]\ \ni\ g=T_0^{l_0}+T_1^{l_1}+T_2^{l_2}=$$

$$=T_{01}^{l_{01}}\ldots T_{0n_0}^{l_{0n_0}}+T_{11}^{l_{11}}\ldots T_{1n_1}^{l_{1n_1}}+T_{21}^{l_{21}}\ldots T_{2n_2}^{l_{2n_2}}-$$
 трином

Фиксируем
$$n=n_0+n_1+n_2,\,n_i\in\mathbb{N}$$
 и наборы $l_i=(l_{ij}\mid j=1,\dots,n_i)\in\mathbb{N}^{n_i}$ для каждого $i=0,1,2.$
$$\mathbb{K}[T_{ij}\mid i=0,1,2,\,1\leqslant j\leqslant n_i]\ \ni\ g=T_0^{l_0}+T_1^{l_1}+T_2^{l_2}=$$

$$=T_{01}^{l_{01}}\dots T_{0n_0}^{l_{0n_0}}+T_{11}^{l_{11}}\dots T_{1n_1}^{l_{1n_1}}+T_{21}^{l_{21}}\dots T_{2n_2}^{l_{2n_2}}-$$
 трином

Триномиальная гиперповерхность: $\{g=0\}\subset \mathbb{A}^n$.

Фиксируем
$$n=n_0+n_1+n_2,\,n_i\in\mathbb{N}$$
 и наборы $l_i=(l_{ij}\mid j=1,\ldots,n_i)\in\mathbb{N}^{n_i}$ для каждого $i=0,1,2.$
$$\mathbb{K}[T_{ij}\mid i=0,1,2,\,1\leqslant j\leqslant n_i]\ \ni\ g=T_0^{l_0}+T_1^{l_1}+T_2^{l_2}=$$

$$=T_{01}^{l_{01}}\ldots T_{0n_0}^{l_{0n_0}}+T_{11}^{l_{11}}\ldots T_{1n_1}^{l_{1n_1}}+T_{21}^{l_{21}}\ldots T_{2n_2}^{l_{2n_2}}-$$
 трином

Триномиальная гиперповерхность: $\{g=0\}\subset \mathbb{A}^n$. Триномиальная алгебра: $R(g):=\mathbb{K}[T_{ij}]/(g)$.

Фиксируем
$$n=n_0+n_1+n_2,\,n_i\in\mathbb{N}$$
 и наборы $l_i=(l_{ij}\mid j=1,\ldots,n_i)\in\mathbb{N}^{n_i}$ для каждого $i=0,1,2.$
$$\mathbb{K}[T_{ij}\mid i=0,1,2,\,1\leqslant j\leqslant n_i]\ \ni\ g=T_0^{l_0}+T_1^{l_1}+T_2^{l_2}=$$

$$=T_{01}^{l_{01}}\ldots T_{0n_0}^{l_{0n_0}}+T_{11}^{l_{11}}\ldots T_{1n_1}^{l_{1n_1}}+T_{21}^{l_{21}}\ldots T_{2n_2}^{l_{2n_2}}-\text{ трином}$$
 $w_{01}\ldots w_{0n_0}$ $w_{11}\ldots w_{1n_1}$ $w_{21}\ldots w_{2n_2}$ — веса

Триномиальная гиперповерхность: $\{g=0\} \subset \mathbb{A}^n$. Триномиальная алгебра: $R(g) := \mathbb{K}[T_{ij}]/(g)$.

Фиксируем
$$n=n_0+n_1+n_2,\,n_i\in\mathbb{N}$$
 и наборы $l_i=(l_{ij}\mid j=1,\ldots,n_i)\in\mathbb{N}^{n_i}$ для каждого $i=0,1,2.$
$$\mathbb{K}[T_{ij}\mid i=0,1,2,\,1\leqslant j\leqslant n_i]\ \ni\ g=T_0^{l_0}+T_1^{l_1}+T_2^{l_2}=$$

$$=T_{01}^{l_{01}}\ldots T_{0n_0}^{l_{0n_0}}+T_{11}^{l_{11}}\ldots T_{1n_1}^{l_{1n_1}}+T_{21}^{l_{21}}\ldots T_{2n_2}^{l_{2n_2}}-\text{трином}$$
 $w_{01}\ldots w_{0n_0}$ $w_{11}\ldots w_{1n_1}$ $w_{21}\ldots w_{2n_2}$ — веса

Триномиальная гиперповерхность: $\{g=0\}\subset \mathbb{A}^n$.

Триномиальная алгебра: $R(g) := \mathbb{K}[T_{ij}] / (g)$.

Градуирована группой

$$K = \mathbb{Z}^n / \langle l_{01}w_{01} + \ldots + l_{0n_0}w_{0n_0} = \ldots = l_{21}w_{21} + \ldots + l_{2n_2}w_{2n_2} \rangle,$$
 deg T_{ij} = образ w_{ij} при факторизации.

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

$$C = (c_0, c_1, c_2) \in \mathbb{Z}^3$$

$$1 \leqslant c_i \leqslant n_i$$

$$\beta = (\beta_0, \beta_1, \beta_2) \in \mathbb{K}^3$$

$$\beta_0 + \beta_1 + \beta_2 = 0$$

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

$$(i) \beta_{i} \neq 0 \forall i$$

$$C = (c_{0}, c_{1}, c_{2}) \in \mathbb{Z}^{3}$$

$$1 \leqslant c_{i} \leqslant n_{i}$$

$$\beta = (\beta_{0}, \beta_{1}, \beta_{2}) \in \mathbb{K}^{3}$$

$$\beta_{0} + \beta_{1} + \beta_{2} = 0$$

$$(ii) \beta_{i_{0}} = 0$$

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

$$(i) \ \beta_i \neq 0 \ \forall i$$

$$C = (c_0, c_1, c_2) \in \mathbb{Z}^3$$

$$1 \leqslant c_i \leqslant n_i$$

$$\beta = (\beta_0, \beta_1, \beta_2) \in \mathbb{K}^3$$

$$\beta_0 + \beta_1 + \beta_2 = 0$$

$$(ii) \ \beta_{i_0} = 0$$

(i)
$$\beta_i \neq 0 \; \forall i$$
 $+$ не более одного i_1 с $l_{i_1c_{i_1}} > 1$

$$+$$
 не более одного $i_1
eq i_0$ с $l_{i_1c_{i_1}} > 1$

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

 $\delta_{C,\beta}$ — однородное LND алгебры R(g).

$$g = T_{01}^{l_{01}} \dots T_{0n_0}^{l_{0n_0}} + T_{11}^{l_{11}} \dots T_{1n_1}^{l_{1n_1}} + T_{21}^{l_{21}} \dots T_{2n_2}^{l_{2n_2}}, \ R(g) = \mathbb{K}[T_{ij}] / (g)$$

 $\delta_{C,\beta}$ — однородное LND алгебры R(g).

Элементарные дифференцирования: $h\delta_{C,\beta}$, $h \in \text{Ker } \delta_{C,\beta}$.

Теорема (Гайфуллин, З. '18). Любое однородное локально нильпотентное дифференцирование алгебры R(g) элементарно.

Теорема (Аржанцев, Hausen, Herppich, Liendo '14)

The automorphism group of a variety with torus action of complexity one

Любое примитивное однородное локально нильпотентное

дифференцирование алгебры регулярных функций на

триномиальной поверхности элементарно.

Теорема (Гайфуллин, З. '18). Любое однородное локально нильпотентное дифференцирование алгебры R(g) элементарно.

План доказательства

Пусть δ — однородное LND алгебры R(g).

- **1.** Если $\delta(T_0^{l_0}), \, \delta(T_1^{l_1})$ и $\delta(T_2^{l_2})$ лежат в одном подпространстве размерности 1, то δ элементарно.
- **2.** Назовём переменную T_{ij} неядерной, если $\delta(T_{ij}) \neq 0$. Тогда в каждом мономе $T_i^{l_i}$ не больше одной неядерной переменной.
- 3. Используя показатели при неядерных переменных доказываем, что $\delta(T_0^{l_0}),\,\delta(T_1^{l_1})$ и $\delta(T_2^{l_2})$ лежат в одном подпространстве размерности 1.

Корни Демазюра

Корни алгебры R(g) для $g = T_{01}T_{02} + T_{11}T_{12} + T_{21}^2$.

Спасибо за внимание!