밑바닥부터 시작하는 딥러닝2

CONTENTS

순환신경망 RNN

게이트가 추가된 RNN

RNN, BPTT, Time RNN, RNNLM

RNN

RNN은 시계열 데이터를 처리하기 유리함.

그림과 같이 순환하는 신경망을 의미함.

때문에 과거의 정보를 기억하면서 데이터 갱신

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

위 식으로 정보를 갱신 함.

1. RNN

RNN, BPTT, Time RNN, RNNLM

BPTT

Backpropagation Through Time

시간 방향으로 펼친 신경망의 오차 역전파법

문제점 : 시간의 크기가 커지면 소비하는 컴퓨팅 자원도 그만큼 커짐.

해결법: Truncated BPTT

역전파의 신경망을 적당히 자른다. 잘라낸 신경 망 단위로 학습을 진행한다.

1. RNN

RNN, BPTT, Time RNN, RNNLM

그림 6-2 RNN 계층의 계산 그래프(MatMul 노드는 행렬 곱을 나타냄)

RNN 구현

 $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

위의 식을 보기 좋게 풀어 놓은 것이다.

가중치끼리 행렬 곱을 하고 편향을 더한 후에 tanh 함수를 지나게 되면 된다.

1. RNN

RNN, BPTT, Time RNN, RNNLM

```
class RNN:
    def __init__(self, Wx, Wh, b):
        self.params = [Wx, Wh, b]
        self.grads = [np.zeros_like(Wx), np.zeros_like(Wh), np.zeros_like(b)]
        self.cache= None
    def forward(self, x, h_prev):
        Wx, Wh, b = self.params
        t = np.matmul(h_prev, Wh) + np.matmul(x, Wx) + b
        h_next = np.tanh(t)
        self.cache = (x, h_prev, h_next)
        return h_next

0.3s
```

RNN 구현

이를 코드로 옮기면 다음과 같다.

파라미터를 입력 받아 저장하고

위의 식을 그대로 연산해주면 된다.

Cache는 역전파 연산을 위해 필요한 것이다.

```
def backward(self, dh_next):
 Wx, Wh, b = self.params
  x, h_prev, h_next = self.cache
  dt = dh_next * (1 - h_next ** 2)
  db = np.sum(dt, axis=0)
  dWh = np.matmul(h_prev.T, dt)
  dh_prev = np.matmul(dt, Wh.T)
  dWx = np.matmul(x.T, dt)
  dx = np.matmul(dt, Wx.T)
  self.grads[0][...] = dWx
  self.grads[1][...] = dWh
  self.grads[2][...] = db
  return dx, dh_prev
```

RNN 구현

Tanh 함수의 경우 (1 - x ** 2) 를 곱해서 보낸다.

나머지는 앞에서 배웠던

Matmul 연산의 역전파이다.

이를 grads 리스트에 저장해준다.

Time RNN

그림 5-22 Time RNN 계층은 은닉 상태를 인스턴스 변수 h로 보관한다. 그러면 은닉 상태를 다음 블록에 인계할 수 있다.

RNN, BPTT, Time RNN, RNNLM

class TimeRNN: def __init__(self, Wx, Wh, b, stateful=False): self.params = [Wx, Wh, b] self.grads = [np.zeros_like(Wx), np.zeros_like(Wh), np.zeros_like(b)] self.h, self.dh = None, None self.stateful = stateful def set_state(self, h): self.h = h def reset_state(self): self.h = None

Time RNN

Stateful 에는 bool 형 데이터를 저장.

True이면 은닉 상태를 유지한다는 뜻임.

False일 때는 영행렬로 초기화함.

RNN, BPTT, Time RNN, RNNLM

1. RNN

```
def forward(self, xs):
 Wx, Wh, b = self.params
 N, T, D = xs.shape
 D, H = Wx.shape
 self.layers = []
 hs = np.empty((N, T, H), dtype = 'f')
 if not self.stateful or self.h is None:
   self.h = np.zeros((N, H), dtype='f')
 for t in range(T):
   layer = RNN(*self.params)
   self.h = layer.forward(xs[:, t, :], self.h)
   hs[:, t, :] = self.h
   self.layers.append(layer)
 return hs
```

Time RNN

기울기 소실/ 폭발

Vanishing gradient (NN winter2: 1986-2006)

Tanh의 미분 값은

(1 - y ** 2) 이기 때문에

층을 지날수록 기울기가 줄어들게 된다.

기울기 소실/ 폭발

기울기 소실/폭발, LSTM, 게이트, LSTM 구현

if
$$||g|| > threshold$$

$$g \leftarrow \frac{threshold \times g}{\|g\|}$$

where: g is the gradient and

||g|| is the norm of the gradient

기울기 폭발 대책

기울기 클리핑을 사용한다.

기울기의 L2 노름이 문턱값을 초과하면 기울기를 줄여준다.

단순하지만 잘 작동한다고 한다.

기울기 소실/폭발, LSTM, 게이트, LSTM 구현

기울기 소실과 LSTM

LSTM의 게이트는 수도꼭지와 같은 역할을 한다.

게이트는

Out gate, forget gate, input gate

새로운 기억 셀 이 있다.

기울기 소실/폭발, LSTM, 게이트, LSTM 구현

기울기 소실/폭발, LSTM, 게이트, LSTM 구현

```
def forward(self, x, h_prev, c_prev):
 A = np.matmul(x, Wx) + np.matmul(h_prev, Wh) + b
  f = A[:, :H]
 g = A[:, H:2*H]
 i = A[:, 2*H:3*H]
 o = A[:, 3*H:]
  f = sigmoid(f)
 g = sigmoid(g)
 i = sigmoid(i)
  o = sigmoid(o)
 c_next = f * c_prev + g * i
 h_next = o * np.tanh(c_next)
 self.cache = (x, h_prev, i, f, g, o, c_next)
  return h_next, c_next
```

LSTM 순전파 구현

최종적으로 다음과 같은 연산을 한다.

기울기 소실/폭발, LSTM, 게이트, LSTM 구현

(a) Standard Neural Net

(b) After applying dropout.

추가 개선

그림 6-35 언어 모델에서의 가중치 공유 예: Embedding 계층과 Softmax 앞단의 Affine 계층이 가중치를 공유한다.

Thank you