Problemas de Robotica

Alumno: ELVI MIHAI SABAU SABAU

Ejercicio 1.	1
Fiercicio 2	5

Ejercicio 1.

Se ha de resolver la cinemática directa del robot SCORBOT ER-IX. Se trata de un robot de 5 grados de libertad y que permite manejar cargas de hasta 2 kg. En la siguiente figura se observa el robot real y un esquema con las longitudes de cada uno de sus eslabones.

En concreto se habrán de dibujar los sistemas de coordenadas obtenidos siguiendo el algoritmo de Denavit-Hartenberg empleando el siguiente esquema.

También se indicará la tabla de parámetros Denavit-Hartenberg obtenidos.

Despues para cada eje encontrado, situamos z y el sistema de la base, S0.

Situamos el resto de Si y situamos xi y yi restantes, de esta manera generamos un sistema dextrogiro.

Tabla de parámetros Denavit-Hartenberg

i	Θi	di	ai	αί
1	q5	392.5 mm	75.0 mm	-90°
2	q4 + 90°	0	280.0 mm	90°
3	q3	0	230.0 mm	0
4	q4 - 90°	0	245.5 mm	-90°

Reglas:

- Regla 10 (Θi): Que ángulo habría que girar zi-1 para que xi-1 y xi se situasen de forma paralelas.
- Regla 11 (di): Que distancia sobre zi-1 habría que mover Si-1 para alinear xi-1 y xi.
- Regla 12 (ai): Que distancia sobre xi-1 que habría que mover Si-1 para que su origen fuera el mismo que Si.
- Regla 12 (αi): Que ángulo que habría que girar xi-1 para que el nuevo Si-1 fuera el mismo que Si.

Ejercicio 2.

Calcular la cinemática directa del siguiente robot SCARA por métodos geométricos.

El robot tiene varias articulaciones, de las cuales:

- q1, q2 son rotaciones.
- q3 es prismatica.

Aplicamos el método geometrico a los ejes x4, y4 y z4.

- x4 = 12 * cos(q1) + 13 * cos(q1 + q2)
- y4 = 12 * sen(q1) + 13 * sen(q1 + q2)
- z4 = 11 q3

Y con esto, podemos obtener una posición N dada por:

• N = (x4, y4, z4)