R PROGRAMMING Part 10

ผู้ช่วยศาสตราจารย์ ดร. อัชฌาณัท รัตนเลิศนุสรณ์ สาขาสถิติประยุกต์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

สารบัญ Contents

- •การวิเคราะห์ความแปรปรวน
- •การวิเคราะห์ความแปรปรวนทางเดียว
- •วิเคราะห์ความแปรปรวนทางเดียวด้วย โปรแกรมอาร์

การวิเคราะห์ความแปรปรวน

(Analysis of Variance: ANOVA)

การวิเคราะห์ความแปรปรวน เป็นการทุดสอบความ แตกต่างระหว่างค่าเฉลี่ยของประชากรตั้งแต่ 3 กลุ่มขึ้น ไป ซึ่งนิยมเรียกย่อ ๆ ว่า ANOVA (อ่านว่า อะโนวา)

ข้อตกลงของการวิเคราะห์ความแปรปรวน

- 1. ข้อมูลแต่ละกลุ่มมีการแจกแจงปรกติ
- 2. ข้อมูลแต่ละกลุ่มมีความแปรปรวนเท่ากัน
- 3. ข้อมูลแต่ละกลุ่มเป็นอิสระกัน

การวิเคราะห์ความแปรปรวนทางเดียว (One-way Analysis of Variance: One-way ANOVA)

•การวิเคราะห์ความแปรปรวนทางเดียว (One-way Analysis of Variance)

การวิเคราะห์ความแปรปรวนแบบทางเดียวเป็นการทดสอบ ความแตกต่างระหว่างค่าเฉลี่ยของประชากรตั้งแต่ 3 กลุ่มขึ้น ไปโดยมีปัจจัย 1 ปัจจัย (หรือตัวแปร 1 ตัวเดียว) ซึ่งสามารถ แบ่งออกเป็น k กลุ่ม (หรือระดับ) โดยที่แต่ละกลุ่มอาจมี จำนวนค่าสังเกตเท่ากันหรือไม่เท่ากันก็ได้

(One-way Analysis of Variance: One-way ANOVA)

รูปแบบข้อมูลของการวิเคราะห์ความแปรปรวนทางเดียว

กลุ่ม 1	กคุ่ม 2		กลุ่ม k
X_{11}	X_{21}		X_{k1}
X_{12}	X_{22}		X_{k2}
i i	Ē	:	Ė
$X_{1\nu_{i}}$	X_{2n_2}	:	X_{kn_k}
$X_{1.}$	$X_{2.}$		$X_{\mathbf{k}}$

โดยที่
$$X_{ij} \qquad \mbox{คือ} \qquad \mbox{ค่าลังเกตของกลุ่มที่ i hin } j$$

$$X_{i} \qquad \mbox{คือ} \qquad \mbox{ผลรวมค่าลังเกตทั้งหมดในกลุ่มที่ i}$$

$$n_1, n_2, \dots, n_k \qquad \mbox{คือ} \qquad \mbox{จำนวนค่าลังเกตในกลุ่มที่ } 1,2, \dots, k \mbox{ ตามลำดับ}$$

$$\mbox{และ } n = n_1 + n_2 + \dots + n_k$$

(One-way Analysis of Variance: One-way ANOVA)

•สมมติฐานของการวิเคราะห์ความแปรปรวนทางเดียว

$$H_0\colon \mu_1=\mu_2=\dots=\mu_k$$
 $H_1\colon \mu_i
eq \mu_j$, $i
eq j$ อย่างน้อย 1 คู่

สถิติทดสอบการวิเคราะห์ความแปรปรวนทางเดียว

$$F = \frac{MSTrt}{MSE}$$

```
โดยที่ F แทน ค่าสถิติเอฟที่คำนวณได้

MSTrt แทน ความแปรปรวนระหว่างกลุ่ม (Mean square between-groups)

MSE แทน ความแปรปรวนภายในกลุ่ม (Mean square within-groups)
```

(One-way Analysis of Variance: One-way ANOVA)

•ผลการวิเคราะห์ความแปรปรวนสามารถสร้างเป็นตารางได้ ดังนี้

ตารางที่ 1 แสดงสูตรการวิเคราะห์ความแปรปรวนแบบทางเดียว (One way ANOVA)

Source of variation	df	Sum of square (SS)	Mean square (MS)	F
Between- groups	k-1	$SSTrt = \sum_{i=1}^{k} \left(\frac{X_{i}^{2}}{n_{i}} \right) - \frac{X_{i}^{2}}{n}$	MSTrt= SSTrt k-1	$F = \frac{MSTrt}{MSE}$
Within-groups	n-k	SSE=SST-SSTrt	$MSE = \frac{SSE}{n-k}$	
Total	n-1	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - \frac{X_{}^2}{n}$		

(One-way Analysis of Variance: One-way ANOVA)

โดยที่	F	แทน	ค่าสถิติเอฟที่คำนวณได้
	SSTrt	แทน	ผลบวกของกำลังสองระหว่างกลุ่ม (Sum of squares between groups)
	SSE	แทน	ผลบวกของกำลังสองภายในกลุ่ม (Sum of squares within groups)
	SST	แทน	ผลบวกของยกกำลังสองทั้งหมด (Total Sum of squares)
	\mathbf{n}_i	แทน	จำนวนข้อมูลในกลุ่มที่ i
	k	แทน	จำนวนกลุ่มตัวอย่างทั้งหมด
n	$= \sum_{i=1}^{k} n_{i}$	แทน	จำนวนค่าสังเกตทั้งหมด
	$X_{i.}$	แทน	ผลรวมของค่าสังเกตในกลุ่มที่ i
	<i>X</i>	แทน	ผลรวมของค่าสังเกตทั้งหมด
4	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2$	แทน	ผลรวมค่าสังเกตแต่ละค่ายกกำลังสอง

ตัวอย่างที่ 1. กำหนดให้ข้อมูลคะแนนสอบ (คะแนนเต็ม 30 คะแนน)

ซึ่งได้จากวิธีสอน 3 วิธี ดังนี้

วิธีสอนที่ 1	วิธีสอนที่ 2	วิธีสอนที่ 3
7	11	17
6	12	6
15	9	18
8	7	14
15	17	16
6	12	8
12	19	7
8	11	15
16	13	9
	8	11
	10	
93	129	121

จงทดสอบว่าคะแนนเฉลี่ยของคะแนนสอบของวิธีการ

สอนทั้ง 3 วิธีแตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05

วิธีทำ

1) ตั้งสมมติฐาน

$$H_0\colon \mu_1=\mu_2=\mu_3 \ H_1\colon \mu_i
eq \mu_j$$
 , $i
eq j$ อย่างน้อย 1 คู่

- 2) กำหนดระดับนัยสำคัญ lpha = 0.05
- 3) คำนวณค่าสถิติ $m{F}$ นำข้อมูลจากตารางข้างต้น มาคำนวณตามสูตรในตารางที่ 2 ดังแสดง รายละเอียดดังนี้

ตารางที่ 2 แสดงวิธีการคำนวณค่าต่าง ๆ ในการวิเคราะห์ความแปรปรวนทางเดียว

วิธีสอนที่ 1		วิธีสอนที่ 2		วิธีส	เอนที่ 3
x_{1j}	x_{1j}^{2}	X_{2j}	x_{2j}^{2}	x_{3j}	x_{3j}^{2}
7	49	11	121	17	289
6	36	12	144	6	36
15	225	9	81	18	324
8	64	7	49	14	196
15	225	17	289	16	256
6	36	12	144	8	64
12	144	19	361	7	49
8	64	11	121	15	225
16	256	13	169	9	81
		8	64	11	121
		10	100		
X _{1.} = 93	$\sum_{j=1}^{n_1} X_{1j}^2 = 1099$	X ₂ = 129	$\sum_{j=1}^{n_2} X_{2j}^2 = 1643$	X _{3.} = 121	$\sum_{j=1}^{n_3} X_{3j}^2 = 1641$

ผศ.ดร.อัชฌาณัท รัตนเลิศนุสรณ์

<mark>ตัวอย่างการวิเคราะห์ความแปรปรวนทางเดียว</mark>

(One-way ANOVA example)

$$n = 9 + 11 + 10 = 30$$

$$X_{n} = 93 + 129 + 121 = 343$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{2} - \frac{X_{i}^{2}}{n} = 4383 - 3921.633 = 461.367$$

$$SSTrt = \sum_{i=1}^{k} \left(\frac{X_{i}^{2}}{n_{i}}\right) - \frac{X_{i}^{2}}{n} = 961 + 1512.818 + 1464.1 - 3921.633 = 16.285$$

$$SSE = SST - SSTrt = 461.367 - 16.285 = 445.082$$

$$MSTrt = \frac{SSTrt}{k - 1} = \frac{16.285}{2} = 8.1425$$

$$MSE = \frac{SSE}{n - k} = \frac{445.082}{27} = 16.4845$$

จะได้ว่าค่าสถิติทดสอบ
$$F = \frac{MSTrt}{MSE} = \frac{8.1425}{16.4845} = 0.49$$

สามารถเสนอผลการวิเคราะห์ความแปรปรวนทางเดียวดังนี้

ตารางที่ 3 แสดงผลการคำนวณค่าในการวิเคราะห์ความแปรปรวนทางเดียว

แหล่งความแปรปรวน	df	SS	MS	F
ระหว่างกลุ่ม	2	16.285	8.1425	0.49
ภายในกลุ่ม	27	445.082	16.4845	
รวมทั้งหมด	29	461.367		

4) เปิดตารางค่าวิกฤต F (Critical values of F)

df₁ คือ df ของ MSTrt และ df₂ คือ df ของ MSE

ดังนั้นให้เปิดตารางเอฟ $df_1 = 2$ และ $df_2 = 27$ ที่ $\mathbf{C} = 0.05$

จะได้ค่าวิกฤต F = 3.35

จากนั้นนำค่า F ที่คำนวณได้ในข้อ 3) คือ F = 0.49 มาเปรียบเทียบกับค่าวิกฤต F = 3.35 ที่

CI = 0.05 พบว่า ค่า F ที่คำนวณได้ < ค่าวิกฤต F

ดังนั้น จึงยอมรับ $H_0: \mu_1 = \mu_2 = \mu_3$

สรุปได้ว่า <u>วิธีสอนทั้ง 3 แบบให้ผลไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ</u> หรือกล่าวอีกนัยหนึ่ง ว่า วิธีสอบทั้ง 3 แบบให้ผลไม่แตกต่างกัน

หมายเหตุ : ในกรณีที่ ค่า F จากการคำนวณ ≥ ค่าวิกฤต F จะเป็นการปฏิเสธ Ho หรืออีกนัยหนึ่ง เป็น ยอมรับ H₁ ซึ่งแสดงว่า มีค่าเฉลี่ยอย่างน้อย 1 คู่ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ณ ระดับ Ω ที่ กำหนด ต้องทำการทดสอบต่อไปว่าค่าเฉลี่ยคู่ใดบ้างที่แตกต่างกัน และแตกต่างกันอย่างไร โดยใช้การ เปรียบเทียบพหุคูณ (Multiple comparison test) ตามวิธีของเชฟเฟ่ (Scheffe's method) การ ทดสอบ HSD ของทูกีย์ (Tukey's HSD test) หรือ วิธีของนิวแมนคูลส์ (Newman Keuls method) ซึ่งเป็นวิธี "post hoc" หมายถึง วิธีการที่ตามมาหลังการวิเคราะห์ความแปรปรวน

ตัวอย่างที่ 2 ให้ตารางการวิเคราะห์ความแปรปรวนทางเดียวมีลักษณะดังนี้

แหล่งความแปรปรวม	df	SS	MS	F
ระหว่างกลุ่ม	3			
ภายในกลุ่ม		25.0		
รวมทั้งหมด	34	150.0		

จงตอบคำถามดังนี้

- 1. เติมตัวเลขในตารางวิเคราะห์ความแปรปรวนทางเดียวให้สมบูรณ์
- 2. จำนวนกลุ่มมีกี่กลุ่ม (k)
- 3. จำนวนข้อมูลทั้งหมด (n)
- 4. จงเขียนสมมติฐานว่าง และสมมติฐานทางเลือก
- 5. ถ้ากำหนดให้lpha=0.05 จงหาค่าวิกฤต F
- 6. เขียนสรุปผลการทดสอบสมมติฐาน

วิธีทำ

1. ตารางวิเคราะห์ความแปรปรวนทางเดียวที่สมบูรณ์คือ

แหล่งความแปรปรวน	df	SS	MS	F
ระหว่างกลุ่ม	3	114	38.00	32.76
ภายในกลุ่ม	31	36.0	1.61	
รวมทั้งหมด	34	150.0		

2. จำนวนกลุ่มมีกี่กลุ่ม(k)

3. จำนวนข้อมูลทั้งหมด (n)

4. เขียนสมมติฐานว่าง และสมมติฐานทางเลือก ได้ดังนี้

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

$$H_1$$
 : $\mu_i \neq \mu_j$ อย่างน้อย 1 คู่

- 5. ถ้า $\alpha = 0.05$ จะได้ค่าวิกฤต F คือ $F_{0.05,(3,31)} = 2.9113$
- เนื่องจาก F = 32.76 ซึ่งมากกว่าค่าวิกฤต 2.9113 ดังนั้นจึงสรุปว่าปฏิเสธสมมติฐานว่าง นั่นคือ มีค่าเฉลี่ยอย่างน้อย 1 คู่ที่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ จึงต้องทำการทดสอบต่อไปว่า ค่าเฉลี่ยคู่ใดบ้างที่แตกต่างกัน โดยใช้การเปรียบเทียบพหุคูณ (Multiple comparison test)

ฟังก์ชัน/การทำงานของฟังก์ชันที่เกี่ยว

ฟังก์ชันในโปรแกรมอาร์	การทำงานของฟังก์ชัน
aov()	สร้างตารางวิเคราะห์ความแปรปรวน ภายใต้ข้อสมมติว่าความแปรปรวนของแต่ละกลุ่มเท่ากัน (homogeneity of variance) คือก่อนที่จะใช้ ฟังก์ชันนี้ ต้องทดสอบ Bartlett test ก่อนและได้ผล การทดสอบว่ายอมรับ H_0 : ความแปรปรวนของแต่ละ กลุ่มมีค่าเท่ากัน
<pre>bartlett.test()</pre>	ทดสอบความแปรปรวนของประชากรว่าเท่ากันหรือไม่ ใช้กับข้อมูลตั้งแต่ $oldsymbol{3}$ กลุ่มขึ้นไป H_0 : ความแปรปรวนของแต่ละกลุ่มมีค่าเท่ากัน H_1 : มีความแปรปรวนอย่างน้อย $oldsymbol{1}$ คู่ที่ไม่เท่ากัน

ฟังก์ชัน/การทำงานของฟังก์ชัน

ฟังก์ชันในโปรแกรมอาร์	การทำงานของฟังก์ชัน
oneway.test()	สร้างตารางวิเคราะห์ความแปรปรวน โดยไม่ต้องคำถึงถึงข้อสมมติว่าความแปรปรวนของแต่ ละกลุ่มเท่ากัน (homogeneity of variance) คือไม่ต้องทดสอบ Bartlett test
TurkeyHSD()	ทดสอบ Multiple comparison โดยวิธีของ Turkey ก่อนที่จะใช้ฟังก์ชันนี้ต้องมีผลการทดสอบ one-way ANOVA ว่าปฏิเสธสมมติว่าง

ด้วยโปรแกรมอาร์

```
#
   one-way anova
   date: 20/02/2021
#example1:
x=c(7,6,15,8,15,6,12,8,16,
   11,12,9,7,17,12,19,11,13,8,10,
   17,6,18,14,16,8,7,15,9,11)
trt=as.factor(c(rep(1,9),rep(2,11),rep(3,10)))
dataf=data.frame(x,trt)
plot(x~trt) #plot trt[i] vs x
bartlett.test(x~trt)
#Bartlett test of homogeneity of variances
```

> bartlett.test(x~trt)

Bartlett test of homogeneity of variances

data: x by trt

Bartlett's K-squared = 0.3945, df = 2,

p-value = 0.821

p-value (0.821) > $\pmb{\alpha}$ (0.05) แสดงว่า ยอมรับ H_0 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2$


```
> summary(aov(x~trt,data=dataf))

Df Sum Sq Mean Sq F value Pr(>F)

trt 2 16.3 8.142 0.494 0.616

Residuals 27 445.1 16.485
```

```
สรุปค่าที่ได้จากโปรแกรม
```

```
SSTrT = 16.2848, SSE = 445.0818
df of treatment = 2 (k-1) , df of error = 27 (n-k)
MSTrt = SSTrT/2 = 16.2848/2 = 8.1424 , MSE = SSE/27 = 445.0818/27 = 16.4845
F = MSTrt/MSF = 8.1424/16.4845 = 0.4939
```

F = MSTrt/MSE = 8.1424/16.4845 = 0.4939 เนื่องจาก F 0.05 (2, 27) = 3.3541 (ค่าวิกฤติ) > qf(0.05,df1=2,df2=27,lower.tail=FALSE) [1] 3.354131

เปรียบเทียบ F ที่คำนวณได้คือ 0.4939 กับ F ค่าวิกฤติ (3.3541) พบว่า 0.4939 < 3.3541 แสดงว่า ยอมรับ $H_0: \mu_1 = \mu_2 = \mu_3$ นั่นคือ ค่าเฉลี่ยของคะแนนสอบของวิธีการสอนทั้ง 3 วิธีไม่แตกต่างกัน

ด้วยโปรแกรมอาร์

```
> oneway.test(x~trt,data=dataf, var.equal = TRUE)
        One-way analysis of means

data: x and trt
F = 0.49394, num df = 2, denom df = 27,
p-value = 0.6156
```

เปรียบเทียบ p-value (0.6156)กับ alpha (0.05) พบว่า 0.6156 > 0.05 แสดงว่า ยอมรับ $H_0: \mu_1 = \mu_2 = \mu_3$ นั่นคือ ค่าเฉลี่ยของคะแนนสอบของวิธีการสอนทั้ง 3 วิธีไม่แตกต่างกัน

กรณีที่เปรียบเทียบ p-value กับ alpha (0.05) แล้วพบว่า p-value < alpha ก็แสดงว่า ปฏิเสธ H_0 : มี $\mu_i \neq \mu_j$ อย่างน้อย1คู่ที่ไม่เท่ากัน นั่นคือ ค่าเฉลี่ยของคะแนนสอบของวิธีการสอนทั้ง 3 วิธีให้ผลแตกต่างกันต้องทำการ เปรียบเทียบค่าเฉลี่ยรายคู่ต่อไป

นักวิจัยตลาดคนหนึ่งต้องการทราบว่า รถตู้ที่กำลังได้รับความนิยมในตลาด 3 ยี่ห้อ คือ A, B และ C จะกินน้ำมันต่างกันหรือไม่ จึงสุ่มตัวอย่างรถแต่ละยี่ห้อมาอย่างละ 4 คัน แล้วให้น้ำมัน คันละ 3 ลิตร บันทึกระยะทางที่รถแต่ละคันวิ่งได้จนน้ำมันหมด ดังข้อมูลดังตาราง

ยี่ห้อรถ	ระยะท	างที่รถแต่ละ	รวม			
А	21	26	25	20	92	
В	23	26	25	18	92	
С	35	38	35	32	140	

จงสรุปผลการทดสอบดังกล่าว ที่ระดับนัยสำคัญ 0.05

ข้อมูลต่อไปนี้เป็นจำนวนผลผลิตที่ชำรุดจากการตรวจพบในแต่ละวันของเครื่องจักร 5 เครื่องใน ระยะเวลา 5 วัน จงทดสอบว่าประสิทธิภาพของเครื่องจักรทั้ง 5 เครื่องแตกต่างกันหรือไม่ ที่ ระดับนัยสำคัญ 0.01

วัน	เครื่องจักร						
314	Α	В	С	D	Е		
1	7	12	14	19	7		
2	7	17	18	25	10		
3	15	12	18	22	11		
4	11	18	19	19	15		
5	9	18	19	23	11		
รวม	49	77	88	108	54		

#