Neural Network Fundamental Single Layer Perceptron

Piji Li pjli@se.cuhk.edu.hk

Outline

- Introduction
- Structure
- Learning
- Tricks

Outline

- Introduction
- Structure
- Learning
- Tricks

Introduction

Deep Learning

Nowadays, deep learning techniques have been applied to fields like computer vision, speech recognition, natural language processing and bioinformatics where they have been shown to produce state-of-the-art results on various tasks.

Neural Network

 Deep neural networks, convolutional deep neural networks, deep recurrent neural networks.

Outline

- Introduction
- Structure
- Learning
- Tricks

Structure-single layer perceptron

- Single hidden layer FF and BP
- Regression(K = 1)
- Classification(K-class)
- Linear combinations
- Activation Function $\sigma(v)$

$$\begin{split} Z_m &= \sigma(\alpha_{0m} + \alpha_m^T X), \ m = 1, \dots, M \\ T_k &= \beta_{0k} + \beta_k^T Z, \ k = 1, \dots, K \\ f_k(X) &= g_k(T), \ k = 1, \dots, K \\ \sigma(v) &= 1/(1+e^{-v}) \\ g_k(T) &= T_k \\ g_k(T) &= \frac{e^{T_k}}{\sum_{\ell=1}^K e^{T_\ell}} \quad \text{Softmax function} \end{split}$$

Non-linear Model

- Notice that if σ is the identity function, then the entire model collapses to a linear model in the inputs.
- Hence a neural network can be thought of as a nonlinear generalization of the linear model, both for regression and classification.
- By introducing the nonlinear transformation, it greatly enlarges the class of linear models.

Outline

- Introduction
- Structure
- Learning
- Tricks

Parameters

$$\{\alpha_{0m}, \alpha_m; m = 1, 2, ..., M\}$$
 $M(p+1)$ weights $\{\beta_{0k}, \beta_k; k = 1, 2, ..., K\}$ $K(M+1)$ weights

Loss functions:

$$R(\theta) = \sum_{k=1}^K \sum_{i=1}^N (y_{ik} - f_k(x_i))^2 \qquad \qquad R(\theta) = -\sum_{i=1}^N \sum_{k=1}^K y_{ik} \log f_k(x_i)$$
 Sum-of-squared errors
 Cross-entropy

Minimize by GD

Back-Propagation(BP)

1986

D.E. Rumelhart, G.E. Hinton, R.J. Williams **Learning representation by back-propagating errors.** *Nature*, 323 (1986), pp. 533–536

- Solved learning problem
- ☐ Biological system
- ...

- Hard to train (non-convex, tricks)
- Hard to do theoretical analysis
- Small training sets ...

Back-Propagation(BP)

Here is back-propagation in detail for squared error loss:

$$R(\theta) \equiv \sum_{i=1}^{N} R_{i}$$

$$Z_{m} = \sigma(\alpha_{0m} + \alpha_{m}^{T} X), m = 1, ..., M$$

$$T_{k} = \beta_{0k} + \beta_{k}^{T} Z, k = 1, ..., K$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} (y_{ik} - f_{k}(x_{i}))^{2}$$

$$f_{k}(X) = g_{k}(T), k = 1, ..., K$$

Take derivatives:

$$\frac{\partial R_i}{\partial \beta_{km}} = -2(y_{ik} - f_k(x_i))g_k'(\beta_k^T z_i)z_{mi},$$

$$\frac{\partial R_i}{\partial \alpha_{m\ell}} = -\sum_{k=1}^K 2(y_{ik} - f_k(x_i))g_k'(\beta_k^T z_i)\beta_{km}\sigma'(\alpha_m^T x_i)x_{i\ell}.$$

Given these derivatives, a gradient descent update method:

$$\beta_{km}^{(r+1)} = \beta_{km}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \beta_{km}^{(r)}}$$
$$\alpha_{m\ell}^{(r+1)} = \alpha_{m\ell}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \alpha_{m\ell}^{(r)}}$$

Back-Propagation(BP)

$$\frac{\partial R_i}{\partial \beta_{km}} = \delta_{ki} z_{mi}$$

$$\frac{\partial R_i}{\partial \alpha_{m\ell}} = s_{mi} x_{i\ell}$$
 errors and
$$s_{mi} = \sigma'(\alpha_m^T x_i) \sum_{k=1}^K \beta_{km} \delta_{ki}$$

Two-pass algorithm:

- In the forward pass, the current weights are fixed and the predicted values are computed.
- In the backward pass, the output-layer errors are computed, and then back propagated to the hidden-layer errors.

Outline

- Introduction
- Structure
- Learning
- Tricks

Tricks-Initial values

- The weights are typically initialized to small random values chosen from a zero-mean Gaussian with a standard deviation of about 0.01.
- Note that if the weights are near zero, then the operative part of the sigmoid is roughly linear, and hence the neural network collapses into an approximately linear model.
- Use of exact zero weights leads to zero derivatives and perfect symmetry, and the algorithm never moves.
- Starting instead with large weights often leads to poor solutions.

Tricks-Regularization

Add a penalty to the error function

$$R(\theta) + \lambda J(\theta)$$

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

Tricks-Tuning

- Learning Rate
- Mini-batch size for batch learning
- Activation function
 - Rectifier function $f(x) = \max(0, x)$

Thanks a lot!

