J. ЂОРЂЕВИЋ, З. РАДИВОЈЕВИЋ, М. ПУНТ, Б. НИКОЛИЋ, Д. МИЛИЋЕВ, Ј. ПРОТИЋ, А. МИЛЕНКОВИЋ

АРХИТЕКТУРА И ОРГАНИЗАЦИЈА РАЧУНАРА

ПРЕКИДИ, МАГИСТРАЛА И УЛАЗ/ИЗЛАЗ

ЗБИРКА РЕШЕНИХ ЗАДАТАКА

САДРЖАЈ

САДРЖАЈ		I
1.1 CF	КВЕНЦА САДРЖАЈА НА МАГИСТРАЛИ	2.
	ЗАДАТАК	
	ЗАДАТАК	
1.1.3	ЗАДАТАК	
1.1.4	ЗАДАТАК	
1.1.5	ЗАДАТАК	
1.1.6	ЗАДАТАК	31

1.1 СЕКВЕНЦА САДРЖАЈА НА МАГИСТРАЛИ

1.1.1 ЗАДАТАК

Посматра се рачунар код кога су меморијски и улазно/излазни адресни простори раздвојени. Меморијски и улазно/излазни адресни простори су капацитета 2^{16} бајтова, а ширина адресибилне речи у оба адресна простора је 8 битова. Адресе у меморијском и улазно/излазном адресном простору су 16-битне и односе се на 8-битне речи.

Адресна магистрала 16-битна, а магистрала података 8-битна.

Процесор је са једноадресним форматом инструкција. Операције се извршавају над 8-битним целобројним величинама без знака и са знаком. Од програмски доступних регистара постоји 8-битни акумулатор.

Инструкције су променљиве дужине (слика 1) и то један, два или три бајта. Битови првог бајта су означени са 23 до 16, другого бајта са 15 до 8 и трећег бајта са 7 до 0. Структура инструкција је дефинисана на следећи начин:

1. Безадресне инструкције.

Дужина инструкција је 1 бајт. Битови 23 и 22 имају фиксне вредности 00b, док се битовима 21 до 16, означеним са ОС, специфицира код операције. Инструкцијом НАLТ се зауставља процесор. Остале безадресне инструкције које се не користе у овом задатку су PUSH, POP, RTS, RTI и померачке инструкције. Инструкцијама НАLT, PUSH, POP, RTS и RTI су додељени кодови операција 000000b, 000001b, 000010b, 000011b и 000100b, респективно.

2. Инструкције скока и инструкција софтверског прекида.

Дужина инструкција је 3 бајта за инструкције апсолутног скока и 2 бајта за инструкције РС релативног скока и инструкцију софтверског прекида. Битови 23 до 21 имају фиксне вредности 010b, бит 20 има вредност 0 за инструкције апсолутног скока и вредност 1 за инструкције РС релативног скока и инструкцију софтверског прекида. Битовима 19 до 16, означеним са ОС, се специфицира код операције. Битови 15 до 8 и 7 до 0 представљају виши и нижи бајт 16-битне адресе код апсолутног скока, док битови 15 до 8 представљају померај као целобројну величину са знаком код РС релативног скока и број улаза у IV табелу као целобројну величину без знака код инструкције софтверског прекида. Инструкције апсолутног и РС релативног скока које се не користе су JMP, JSR и инструкције условног скока, док је инструкција софтверског прекида INS. Инструкцијама JSR и JMP су додељени кодови операција 0000b и 0001b, респективно, док је инструкцији INS додељен код 1111b.

3. IN и OUT инструкције

Дужина инструкција је 3 бајта. Битови 23 до 20 имају фиксне вредности 011b, док се битовима 20 до 16, означеним са ОС, специфицира код операције Битови 15 до 8 и 7 до 0 представљају виши и нижи бајт 16-битне адресе регистра у улазно/излазном адресном простору. Инструкцијом IN се садржај регистра из улазно/излазног адресног простора пребацује акумулатор, док се инструкцијом ОUТ чини обрнуто. Ове инструкције се не користе у овом задатку. Инструкцијама IN и OUT су додељени кодови операција 00000b и 00001b, респективно.

4. LOAD, STORE, аритметичке и логичке инструкције

Дужина инструкција је 2 или 3 бајта. Бит 23 има фиксну вредност 1b, битовима 22 до 18, означеним са ОС, се специфицира код операције, док се битовима 17 и 16 специфицира начин адресирања и то 00b, 01b, 10b и 11b за непосредно, меморијско директно, меморијско индиректно и РС реалитивно адресирање, респективно. Битови 15 до 8 представљају 8-битну непосредну величину у случају непосредног адресирања, па је тада дужина инструкције два бајта, док битови 15 до 8 и 7 до 0 представљају виши

и нижи бајт или 16-битне адресе меморијске локације у случају меморијског директног и меморијског индиректног адресирања или 16-битног помераја у случају РС реалитивног адресирања, па је тада дужина инструкције три бајта. Адреса меморијске локације дужине 16 бита у случају меморијског индиректно адресирања заузима две суседне меморијске локације, при чему се виши бајт адресе налази на нижој а нижи бајт на вишој меморијској локацији. Инструкцијом LOAD се непосредна величина из инструкције или садржај локације из меморијског адресног простора пребацује у акумулатор, док се инструкцијом STORE садржај акумулатора пребацује само у локацију у меморијском адресном простору јер непосредно адресирање за одредишни операнд није дозвољено. Инструкција ADD сабира садржај акумулатора и операнда специфицираног адресним делом инструкције и резултат смешта у акумулатор. Инструкција ADD реализује логичку И операцију садржаја акумулатора и операнда специфицираног адресним делом инструкције и резултат смешта у акумулатор. На сличан начин се реализују и остале аритметичке и логичке операције које се не користе у овом задатку. Инструкцијама LOAD, STORE, ADD и AND су додељени кодови операција 00000b, 00001b, 00010b и 00011b, респективно.

1. Безадресне инструкције

23 22 21 20 19 18 17 16

OC 10

OC 111

15 14 13 12 11 10 9 8

23 22 21 20 19 18 17 16

2. Инструкције скока и инструкција софтверског прекида
Инструкције апсолутног скока
23 22 21 20 19 18 17 16
Инструкције РС релативног скока и инструкција софтверског прекида
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 0 1 10 1 OC
3. IN и OUT инструкције
23 22 21 20 19 18 17 16
4. LOAD, STORE, аритметичке и логичке инструкције
LOAD, STORE, аритметичке и логичке инструкције – непосредно адресирање
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 1 OC 0 0
LOAD, STORE, аритметичке и логичке инструкције – меморијско директно адресирање
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
LOAD, STORE, аритметичке и логичке инструкције – меморијско индиректно адресирање
23 22 21 20 19 18 17 16

Слика 1 Формати инструкција

LOAD, STORE, аритметичке и логичке инструкције – PC релативно адресирање

Стек расте према нижим меморијским локацијама, а регистар SP указује на прву слободну меморијску локацију.

Садржај дела оперативне меморије је приказан на слици 2.

Адреса	0000h	0001h	0002h	0003h	0004h	0005h	0006h	0007h	0008h	0009h	000Ah	•••
Садржај	02h	34h	11h	05h	42h	36h	00h	03h	05h	00h	07h	
•••			•••		•••		•••	•••				
Адреса	3000h	3001h	3002h	3003h	3004h	3005h	3006h	3007h	3008h	3009h	300Ah	•••
Садржај	12h	34h	80h	05h	8Ah	00h	09h	85h	00h	17h	00h	•••

Слика 2 Садржај дела меморије

а) Навести секвенцу садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали при извршавању програма приказаног на 3. Претпоставити да се током извршавања овог програма не генерише прекид. Стога се приликом извршавања инструкција пролази само кроз фазе читање инструкције (IF), декодовање инструкције (IF) и извршавање операције (IE), а не и кроз фазу опслуживање прекида (IS).

адреса	инструг	кција	К	ментар	
3002h	LOAD	#5	;	непосредно адре	есирање
3004h	ADD	(0009h)	;	меморијско инди	иректно адресирање
3007h	STORE	0017h	;	меморијско дире	ектно адресирање
300Ah	HALT		;	заустављање про	оцесора

Слика 3 Програм

Решење:

а) Секвенца садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали је приказана у табели са слике 4.

У табели се користе следеће ознаке:

Рб -редни број циклуса на магистрали,

 $ABUS_{15..0}$ - садржај адресне магистрале,

DBUS_{7...0} - садржај магистрале података,

RD - управљачка линија магистрале која има вредност 1 када је у питању циклус читања,

WR - управљачка линија магистрале која има вредност 1 када је у питању циклус уписа,

M/IO - управљачки линија магистрале који има вредност 1 или 0 у зависности од тога да ли се циклус читања/уписа реализује са меморијским или улазно/излазним адресним простором, респективно,

 $PC_{15,0}$ - садржаї програмског бројача процесора након завршетка циклуса,

 $IR_{23..16}$ - садржај првог бајта прихватног регистра инструкције процесора након завршетка циклуса на магистрали,

 $IR_{15..8}$ - садржај другог бајта прихватног регистра инструкције процесора након завршетка циклуса на магистрали,

 $IR_{7:0}$ - садржај трећег бајта прихватног регистра инструкције процесора након завршетка циклуса на магистрали,

 $TMP_{15..0}$ - садржај прихватног регистра операнда или адресе операнда након уписа у дати регистар,

 $ACC_{7..0}$ - садржај акумулатора након уписа у дати регистар,

ІҒ- фаза читање инструкције,

ID - фаза декодовање инструкције (формирања адресе операнда и читања операнда),

IE - фаза *извршавање операције* и

Х- недефинисана хексадецимална вредност.

P6	ABUS ₁₅₀	DBUS_{70}	RD	WR	M/IO	$\mathrm{PC}_{15.0}$	IR_{2316}	$ m IR_{158}$	${ m IR}_{70}$	TMP_{150}	ACC_{70}	Коментар
	-	-	-	-	-	3002	-	-	-	-	-	
1	3002	80	1	0	1	3003	80	-	ı	-	-	IF: LOAD #5, први бајт инс.
2	3003	05	1	0	1	3004	80	05	-	-	1	IF: LOAD #5, други бајт инс.
										XX05		ID: LOAD #5, читање опрнд. из прихв. рег. инс., TMP _{7.0} = IR _{15.8}
											05	IE: LOAD #5, ACC ₇₀ =TMP ₇₀
3	3004	8A	1	0	1	3005	8A		-	-	05	IF: ADD (0009h), први бајт инс.
4	3005	00	1	0	1	3006	8A	00	-	-	05	IF: ADD (0009h), други бајт инс.
5	3006	09	1	0	1	3007	8A	00	09	-	05	IF: ADD (0009h), трећи бајт инс.
6	0009	00	1	0	1	3007	8A	00	09	00XX	05	ID: ADD (0009h), формирање адресе опрнд -читање вишег бајта, TMP ₁₅₈ =MEM[0009]
7	000A	07	1	0	1	3007	8A	00	09	0007	05	ID: ADD (0009h), формирање адресе опрнд -читање нижег бајта, TMP ₇₀ =MEM[000A]
8	0007	03	1	0	1	3007	8A	00	09	XX03	05	ID: ADD (0009h), читање опрнд. из мем. лок., TMP ₇₀ =MEM[0007]
											08	IE: ADD (0009h), ACC ₇₀ = ACC ₇₀ + TMP ₇₀
9	3007	85	1	0	1	3008	85	-	-	-		IF: STORE 0017h, први бајт инс.
10	3008	00	1	0	1	3009	85	00	1	-		IF: STORE 0017h, други бајт инс.
11	3009	17	1	0	1	300A	85	00	17	-		IF: STORE 0017h, трећи бајт инс.
										0017		ID: STORE 0017h, формирање адресе опрнд., TMP ₁₅₈ = IR ₁₅₈ , TMP ₇₀ = IR ₇₀
12	0017	08	0	1	1	300A	85	00	17	0017		IE: STORE 0017h, упис опрнд. у мем. лок., MEM[0017]= ACC ₇₀
13	300A	00	1	0	1	300B	00	-	-	-	08	IF: HALT , први бајт инс.
												IE: HALT , START=0

Слика 4 Секвенца садржаја на магистрали

Извршавање програма почиње фазом читање инструкције (IF) прве инструкције **LOAD** #5 на коју указује тренутна вредност 3002h садржаја програмског бројача PC_{15..0}. Прва инструкција је дужине два бајта који имају вредности 80h и 05h, а налазе се у меморији на адресама 3002h и 3003h, респективно. С обзиром да је ширина меморијске речи 8 битова, процесор из меморије чита бајт по бајт. Приликом читања прве инструкције процесор на магистрали генерише два циклуса читања из меморије. У првом циклусу читања процесор на линије адресне магистрале ABUS_{15.0} пропушта вредност 3002h програмског бројача PC_{15 0} како би са те адресе прочитао први бајт инструкције 80h. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/IOимају вредност 1. Прочитани садржај 80h се појављује на линијама магистрале података DBUS_{7:0} и уписује у разреде IR_{23:16} прихватног регистра инструкције процесора, а садржај програмског бројача PC_{15..0} инкрементира на 3003h. На сличан начин се у другом циклусу читања са адресе 3003h чита други бајт инструкције 05h. Прочитани садржај се појављује на линијама магистрале података $DBUS_{7:0}$ и уписује у разреде $IR_{15:8}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3004h.

У фази декодовања инструкције (ID) нема циклуса на магистрали, јер је операнд због коришћења непосредног адресирања специфициран другим бајтом инструкције и налази се у разредима $IR_{15:8}$ прихватног регистра инструкције. Фаза декодовања инструкције (ID) се састоји у пребацивању операнда чија је вредност 05h из разреда $IR_{15:8}$ прихватног регистра инструкције у разреде $TMP_{7:0}$ прихватног регистра операнда.

Са XX је означено да је садржај разреда TMP_{15:8} прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7:0}$ прихватног регистра операнда се уписује у акумулатор $ACC_{7:0}$.

По завршетку фазе *извршавање операције* (IE) прве инструкције **LOAD** #5 се прелази на фазу *читање инструкције* (IF) друге инструкције **ADD** (0009h). Друга инструкција је дужине три бајта који имају вредности 8Ah, 00h и 09h, а налазе се у меморији на адресама 3004h, 3005h и 3006h, респективно. Приликом читања друге инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова друге инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23:16}$, $IR_{15:8}$ и $IR_{7:0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3005h, 3006h и 3007h, респективно.

У фази декодовања инструкције (ID) постоје три циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор најпре у два циклуса на магистрали из меморије чита два бајта 16-битне адресе операнда, а затим у трећем циклусу на магистрали чита и сам 8-битни операнд. Адреса операнда је 16-битна и заузима две суседне меморијске локације, при чему се виши бајт адресе налази на нижој а нижи бајт адресе на вишој адреси. Адреса меморијске локације на којој се налази виши бајт адресе операнда дата је другим и трећим бајтом инструкције и налази се у разредима $IR_{15:8}$ (виши бајт) и $IR_{7:0}$ (нижи бајт) прихватног регистра инструкције. У прва два циклуса на магистрали процесор најпре из меморије са адресе 0009h чита садржај 00h, који представља виши бајт адресе операнда, и уписује у разреде TMP_{15:8}, а затим из меморије са адресе 000Аh чита садржај 07h, који представља нижи бајт адресе операнда, и уписује у разреде ТМР_{7:0}. У трећем циклусу на магистрали садржај 0007h прихватног регистра адресе операнда ТМР_{15:0} се користи као адреса меморијске локације са које се чита операнд чија је вредност 03h и уписује у разреде TMP_{7:0} прихватног регистра операнда. Пошто су у питању циклуси читања из меморије управљачки сигнали магистрале RD и M/IOимају вредност 1. Ca XX је означено да је садржај разреда ТМР_{15:8} прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај 03h разреда $TMP_{7:0}$ прихватног регистра операнда се сабира са садржајем 05h акумулатора $ACC_{7:0}$ и добијена сума 08h уписује у акумулатор $ACC_{7:0}$.

По завршетку фазе *извршавање операције* (IE) друге инструкције **ADD** (0009h) се прелази на фазу *читање инструкције* (IF) треће инструкције **STORE** 0017h. Трећа инструкција је дужине три бајта који имају вредности 85h, 00h и 07h, а налазе се у меморији на адресама 3007h, 3008h и 3009h, респективно. Приликом читања треће инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова треће инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23:16}$, $IR_{15:8}$ и $IR_{7:0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3008h, 3009h и 300Ah, респективно.

У фази *декодовање инструкције* (ID) нема циклуса на магистрали, јер се због коришћења меморијског директног адресирања у овој фази само формира адреса меморијске локације у коју треба да се упише 8-битни операнд дат садржајем акумулатора $ACC_{7:0}$. Фаза *декодовање инструкције* се састоји у пребацивању адресе меморијске локације чија је вредност 0017h и која је дата другим и трећим бајтом инструкције из разреда $IR_{15:8}$ (виши бајт) и $IR_{7:0}$ (нижи бајт) прихватног регистра инструкције у разреде $TMP_{15:8}$ и $TMP_{7:0}$ прихватног регистра адресе операнда.

У фази извршавање операције (IE) процесор на магистрали генерише циклус уписа у меморију. На линије адресне магистрале $ABUS_{15:0}$ се пропушта вредност 0017h прихватног регистра адресе операнда $TMP_{15:0}$ а на линије магистрале података $DBUS_{7:0}$ вредност 08h акумулатора $ACC_{7:0}$. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) треће инструкције **STORE** 0017h се прелази на фазу *читање инструкције* (IF) четврте инструкције **HALT**. Четврта инструкција је дужине јадан бајт који има вредности 00h, а налази се у меморији на адреси 300Ah. Приликом читања четврте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 300Bh.

Инструкција **HALT** је безадресна инструкција, па се после фазе читање инструкције одмах прелази на фазу *извршавање операције* (IE) у оквиру које се зауставља процесор.

1.1.2 ЗАЛАТАК

Посматра се рачунар код кога су меморијски и улазно/излазни адресни простори раздвојени. Меморијски и улазно/излазни адресни простори су капацитета 2^{16} бајтова, а ширина адресибилне речи у оба адресна простора је 8 битова. Адресе у меморијском и улазно/излазном адресном простору су 16-битне и односе се на 8-битне речи.

Адресна магистрала 16-битна, а магистрала података 8-битна.

Подаци над којима се извршавају операције су 8-битне целобројне величине без знака и са знаком. Процесор има четири 8-битна регистра опште намене R0 до R3.

Инструкције су променљиве дужине (слика 5) и то један или три бајта. Битови првог бајта су означени са 23 до 16, другого бајта са 15 до 8 и трећег бајта са 7 до 0. Структура инструкција је дефинисана на следећи начин:

1. Безадресне инструкције.

Дужина инструкција је 1 бајт. Битови 23 до 20 имају фиксне вредности 0000b, док се битовима 19 до 16, означеним са С, специфицира код операције. Инструкцијом HALT се зауставља процесор. Остале безадресне инструкције које се не користе су RTS и RTI. Инструкцијама HALT, RTS и RTI су додељени кодови операција 0000b, 0001b и 0010b, респективно.

2. Инструкције скока и инструкција софтверског прекида.

Дужина инструкција је 3 бајта за инструкције апсолутног скока и 2 бајта за инструкције РС релативног скока и инструкцију софтверског прекида. Битови 23 до 20 имају фиксне вредности 0001b, бит 19 има вредност 0 за инструкције апсолутног скока и вредност 1 за инструкције РС релативног скока и инструкцију софтверског прекида. Битовима 18 до 16, означеним са С, се специфицира код операције. Битови 15 до 8 и 7 до 0 представљају нижи и виши бајт 16-битне адресе скока код инструкција апсолутног скока, док битови 15 до 8 представљају померај као целобројну величину са знаком код инструкција РС релативног скока и број улаза у IV табелу код инструкције софтверског прекида. Инструкције апсолутног и РС релативног скока које се не користе су JMP, JSR и инструкције условног скока, док је инструкција софтверског прекида INS. Инструкцијама JSR и JMP су додељени кодови операција 000b и 001b, респективно, док је инструкцији INS додељен код 111b.

3. LOAD/STORE инструкције.

Дужина инструкција је 3 бајта. Битови 23 до 20 имају фиксне вредности 0010b, док се вредностима 0 и 1 бита 19, означеног са С, специфицирају кодови операција LOAD и STORE, респективно, вредностима 0 и 1 бита 18, означеног са А, специфицирају начини адресирања и то меморијско директно и меморијско индиректно адресирање у меморијском адресном простору, респективно, и вредностима 0 до 3 битова 17 и 16, означених са SD, специфицира један од четири регистра опште намене R0 до R3. Битови 15 до 8 и 7 до 0 представљају, у случају меморијског директног адресирања, нижи и виши бајт 16-битне адресе локације у меморијском адресном простору у којој се налази 8-битни операнд. Битови 15 до 8 и 7 до 0 представљају, у случају меморијског индиректног адресирања, нижи и виши бајт 16-битне адресе локације у меморијском адресном простору на којој се налази нижи а на првој следећој виши бајт 16-битне адресе локације у меморијском адресном простору у којој се налази 8-битни операнд. Инструкцијом LOAD се садржај локације из меморијског адресног простора пребацује у један од регистара опште намене, док се инструкцијом STORE чини обрнуто. Инструкција LOAD се користи, док се инструкција STORE не користи.

4. IN/OUT инструкције.

Дужина инструкција је 3 бајта. Битови 23 до 20 имају фиксне вредности 0011b, док се вредностима 0 и 1 бита 19, означеног са C, специфицирају кодови операција IN и

ОUT, респективно, вредностима 0 и 1 бита 18, означеног са А, специфицирају начини адресирања и то у/и директно и у/и индиректно адресирање регистра у улазно/излазном адресном простору, респективно, и вредностима 0 и 3 битова 17 и 16, означених са SD, специфицира један од четири регистра опште намене R0 до R3. Битови 15 до 8 и 7 до 0 представљају, у случају у/и директног адресирања, нижи и виши бајт 16-битне адресе регистра у улазно/излазном адресном простору у коме се налази 8-битни операнд. Битови 15 до 8 и 7 до 0 представљају, у случају у/и индиректног адресирања, нижи и виши бајт 16-битне адресе локације у меморијском адресном простору на којој се налази нижи а на првој следећој виши бајт 16-битне адресе регистра у улазно/излазном адресном простору у коме се налази 8-битни операнд. Инструкцијом IN се садржај регистра из улазно/излазног адресног простора пребацује у један од регистара опште намене, док се инструкцијом ОUT чини обрнуто. Инструкција ОUT се користи, док се инструкција IN не користи.

5. Аритметичке, логичке и померачке инструкције.

1. Безадресне инструкције

23 22 21 20 19 18 17 16

0 | 0 | 0 | 0

Дужина инструкција је 1 бајт. Битови 23 до 20, означени са С, вредностима 0100b до 1111b специфицирају кодове аритметичких, логичких и померачких операција, битови 19 и 18, означени са SD, вредностима 0 до 3 специфицирају један од регистара опште намене R0 до R3 који представља прво извориште и одредиште операнда и битови 17 и 16, означени са S2, вредностима 0 до 3 специфицирају један од регистара опште намене R0 до R3 који представља друго извориште операнда. Инструкција ADD сабира садржаје регистара опште намене специфицираних са SD и S2 и резултат смешта у регистар опште намене специфициран са SD. На сличан начин се реализују и остале аритметичке и логичке операције које се не користе. Померачке операције, које се не користе, померају садржај регистара опште намене специфициран са S2 и резултат смештају у регистар опште намене специфициран са SD. Инструкцији ADD је додељен код операције 0100b.

2. Инструкције скока и инструкција софтверског прекида Инструкције апсолутног скока 00010 C Инструкције РС релативног скока и инструкција софтверског прекида 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 00011 C 3. LOAD/STORE инструкције 0 0 1 0 CASD 4. IN/OUT инструкције –директно или индиректно адресирање 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 0 0 1 1 CASD 5. Аритметичке, логичке и померачке инструкције 23 22 21 20 19 18 17 16 C SDS2

Слика 5 Формати инструкција

Стек расте према вишим меморијским локацијама, а регистар SP указује на последњу заузету меморијску локацију.

Садржај дела оперативне меморије почев од адресе 003Dh је приказан на слици 6.

Адреса		003Dh	003Eh	003Fh	0040h	0041h	0042h	0043h	0044h	0045h	0046h
Садржај		04h	3Dh	00h	25h	3Eh	00h	22h	3Dh	00h	46h
Адреса	0047h	0048h	0049h	004Ah							
Садржај	39h	40h	00h	00h							

Слика 6 Садржај дела меморије

а) Навести секвенцу садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали при извршавању програма приказаног на 7. Претпоставити да се током извршавања овог програма не генерише прекид. Стога се приликом извршавања инструкција пролази само кроз фазе читање инструкције (IF), декодовање инструкције (IF) и извршавање операције (IE), а не и кроз фазу опслуживање прекида (IS).

```
адреса инструкција коментар

0040h LOAD R1, (3Eh) ; меморијско индиректно адресирање; R1=MEM[MEM[3Eh]]

0043h LOAD R2, 3Dh ; меморијско директно адресирање; R2=MEM[3Dh]

0046h ADD R1, R2 ; R1=R1+R2

0047h OUT R1, 40h ; у/и директно адресирање; IO[40h]=R1

004Ah HALT ; заустављање процесора
```

Слика 7 Програм

б) Навести који је садржај локације на адреси 0040h у меморијском адресном простору, а који регистра на адреси 0040h у улазно/излазном адресном простору након извршења датог програма.

Решење:

а) Секвенца садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали је приказана у табели са слике 8.

У табели се користе следеће ознаке:

Рб –редни број циклуса на магистрали,

 $ABUS_{15:0}$ - садржај адресне магистрале,

DBUS_{7:0} - садржај магистрале података,

- RD управљачка линија магистрале која има вредност 1 када је у питању циклус читања,
- WR управљачка линија магистрале која има вредност 1 када је у питању циклус уписа,
- M/IO- управљачки линија магистрале који има вредност 1 или 0 у зависности од тога да ли се циклус читања/уписа реализује са меморијским или улазно/излазним адресним простором, респективно,
 - PC_{15..0} садржај програмског бројача процесора након завршетка циклуса,
- $IR_{23:16}$ садржај првог бајта прихватног регистра инструкције процесора након завршетка циклуса на магистрали,
- $IR_{15:8}$ садржај другог бајта прихватног регистра инструкције процесора након завршетка циклуса на магистрали,
- $IR_{7:0}$ садржај трећег бајта прихватног регистра инструкције процесора након завршетка циклуса на магистрали,
- $TMP_{15:0}$ садржај прихватног регистра операнда или адресе операнда након уписа у дати регистар,

R1_{7:0} и R2_{7:0} садржаји регистара опште намене након уписа у дате регистре,

- IF- фаза читање инструкције,
- ID фаза декодовање инструкције (формирања адресе операнда и читања операнда),
- ІЕ фаза извршавање операције и
- Х- недефинисана хексадецимална вредност.

Рб	$ABUS_{15\dots0}$	DBUS_{70}	RD	WR	OI/W	PC_{150}	$ m IR_{2316}$	$ m IR_{158}$	IR_{70}	TMP_{150}	$R1_{70}$	$\mathbf{R2}_{70}$	Коментар
	-	-	-	-	-	0040	-	-	-		-	-	
		25	1	0	1	0041		-	-	-	-	-	IF: LOAD R1, (3Eh), први бајт инс.
		3E	1	0	1	0042			-	-	-	-	IF: LOAD R1, (3Eh), други бајт инс.
3	0042	00	1	0	1	0043	25	3E	00	-	-	-	IF: LOAD R1, (3Eh), трећи бајт инс.
4	003E	3D	1	0	1	0043	25	3E	00	XX3D	-	-	ID: LOAD R1, (3Eh), формирање адресе опрнд читање нижег бајта, TMP _{7.0} =MEM[003E]
5	003F	00	1	0	1	0043	25	3E	00	003D	-	-	ID: LOAD R1, (3Eh), формирање адресе опрнд читање вишег бајта, TMP _{15.8} =MEM[003F]
6	003D	04	1	0	1	0043	25	3E	00	XX04	-	-	ID: LOAD R1, (3Eh), читање опрнд. из мем. лок., TMP _{7.0} =MEM[003D]
											04		IE: LOAD R1, (3Eh), R1 _{7.0} =TMP _{7.0}
7	0043	F9	1	0	1	0044	22	-	-	-	04	-	IF: LOAD R2, 3Dh, први бајт инс.
8	0044	3D	1	0	1	0045	22	3D	-	-	04	-	IF: LOAD R2, 3Dh, други бајт инс.
9	0045	00	1	0	1	0046	22	3D	00	-	04	-	IF: LOAD R2, 3Dh, трећи бајт инс.
										003D	04	-	ID: LOAD R2, 3Dh, формирање адресе опрнд., TMP _{15.8} = IR _{7.0} , TMP _{7.0} = IR _{15.8}
10	003D	04	1	0	1	0046	22	3D	00	XX04	04	-	ID: LOAD R2, 3Dh, читање опрнд. из мем. лок., TMP _{7.0} =MEM[003D]
												04	IE: LOAD R2, 3Dh, R2 _{7.0} =TMP _{7.0}
11	0046	06	1	0	1	0047	06	-	-	-	04		IF: ADD R1, R2, први бајт инс.
											08	04	IE: ADD R1, R2, R1 ₇₀ =R1 ₇₀ +R2 ₇₀
12	0047	C1	1	0	1	0048	39	-	-	-	08	04	IF: OUT R1, 40h, први бајт инс.
13	0048	40	1	0	1	0049	39	40	-	-	08	04	IF: OUT R1, 40h, други бајт инс.
14	0049	00	1	0	1	004A	39	40	00	-			IF: OUT R1, 40h, трећи бајт инс.
										0040	08	04	ID: OUT R1, 40h, формирање адресе опрнд., TMP ₁₅₈ = IR ₇₀ , TMP ₇₀ = IR ₁₅₈
		08	0	1		004A		40	00	ı	08		IE: OUT R1, 40h, упис опрнд. у уи рег., UI[0040]= R1 ₇₀
16	004A	00	1	0	1	004B	00	-	-	-	08	04	IF: HALT , први бајт инс.
													IE: HALT , START=0

Слика 8 Секвенца садржаја на магистрали

Извршавање програма почиње фазом *читање инструкције* (IF) прве инструкције **LOAD** R1, (3Eh) на коју указује тренутна вредност 0040h садржаја програмског бројача $PC_{15..0}$. Прва инструкција је дужине три бајта који имају вредности 25h, 3Eh и 00h, а налазе се у локацијама меморије на адресама 0040h, 0041h и 0042h, респективно. С обзиром да је ширина меморијске речи 8 битова, процесор из меморије чита бајт по бајт. Приликом читања прве инструкција процесор на магистрали генерише три циклуса читања из меморије. У првом циклусу читања процесор на линије адресне магистрале $ABUS_{15..0}$ пропушта вредност 0040h програмског бројача $PC_{15..0}$ како би са те адресе прочитао први бајт инструкције F6h. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1. Прочитани садржај 25h се појављује на линијама магистрале података $DBUS_{7..0}$ и уписује у разреде $IR_{23..16}$ прихватног регистра инструкције процесора, а садржај програмског бројача $PC_{15..0}$ инкрементира на 0041h. На сличан начин се у другом и трећем циклусу читања

са адреса 0041h и 0042h читају други и трећи бајтови бајт инструкције 3Eh и 00h, респективно. Прочитани садржаји се појављује на линијама магистрале података $DBUS_{7..0}$ и уписује у разреде $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 0042h и 0043h, респективно.

У фази декодовања инструкције (ID) постоје три циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор најпре у два циклуса на магистрали из меморије чита два бајта 16-битне адресе операнда, а затим у трећем циклусу на магистрали чита и сам 8-битни операнд. Адреса операнда је 16-битна и заузима две суседне меморијске локације, при чему се нижи бајт адресе налази на нижој а виши бајт на вишој адреси. Адреса меморијске локације на којој се налази нижи бајт адресе операнда дата је другим и трећим бајтом инструкције и налази се у разредима IR_{15.8} (нижи бајт) и IR_{7.0} (виши бајт) прихватног регистра инструкције. У прва два циклуса на магистрали процесор најпре из меморије са адресе 003Ећ чита садржај 3Dh, који представља нижи бајт адресе операнда, и уписује у разреде TMP_{7..0}, а затим из меморије са адресе 003Fh чита садржај 00h, који представља виши бајт адресе операнда, и уписује у разреде TMP_{15..8}. У трећем циклусу на магистрали садржај 003Dh прихватног регистра адресе операнда ТМР_{15..0} се користи као адреса меморијске локације са које се чита операнд чија је вредност 04h и уписује у разреде ТМР_{7..0} прихватног регистра операнда. Пошто су у питању циклуси читања из меморије управљачки сигнали магистрале RD и M/IOимају вредност 1. Ca XX је означено да је садржај разреда ТМР_{15:8} прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7..0}$ прихватног регистра операнда се уписује у регистар $R1_{7..0}$.

По завршетку фазе *извршавање операције* (IE) прве инструкције **LOAD** R1, (3Eh) се прелази на фазу *читање инструкције* (IF) друге инструкције **LOAD** R2, 3Dh. Друга инструкција је дужине три бајта који имају вредности 22h, 3Dh и 00h, а налазе се у меморији на адресама 0043h, 0044h и 0045h, респективно. Приликом читања друге инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова друге инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 0044h, 0045h и 0046h, респективно.

У фази *декодовања инструкције* (ID) постоји један циклус на магистрали, јер процесор због коришћења меморијског директног адресирања у једном циклусу на магистрали из меморије чита 8 битни операнд. Најпре се адреса меморијске локације, чија је вредност 003Dh и која је дата другим и трећим бајтом инструкције из разреда $IR_{15..8}$ (нижи бајт) и $IR_{7..0}$ (виши бајт), пребацује у разреде $TMP_{7..0}$ и $TMP_{15..8}$ прихватног регистра адресе операнда, респективно. Затим се у циклусу на магистрали садржај 003Dh прихватног регистра адресе операнда $TMP_{15..0}$ користи као адреса меморијске локације са које се чита операнд чија је вредност 04h и уписује у разреде $TMP_{7..0}$ прихватног регистра операнда. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и $M/\overline{10}$ имају вредност 1. Са XX је означено да је садржај разреда $TMP_{15..8}$ прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7:0}$ прихватног регистра операнда се уписује у регистар $R2_{7:0}$.

По завршетку фазе *извршавање операције* (IE) друге инструкције **LOAD** R2, 3Dh се прелази на фазу *читање инструкције* (IF) треће инструкције **ADD** R1, R2. Трећа инструкција је дужине један бајт који има вредности 06h, а налази се у меморији на адреси 0046h. Приликом читања треће инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта треће инструкције се

реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 0047h.

Ова инструкција нема фазу *декодовање инструкције* (ID) јер се као изворишта и одредиште операнада имплицитно користе регистри опште намене.

У фази *извршавање операције* (IE) садржај 04h регистра опште намене $R1_{7..0}$ се сабира са садржајем 04h регистра опште намене $R2_{7..0}$ и добијена сума 08h уписује у регистар опште намене $R1_{7..0}$.

По завршетку фазе *извршавање операције* (IE) треће инструкције **ADD** R1, R2 се прелази на фазу *читање инструкције* (IF) четврте инструкције **OUT** R1, 40h. Четврта инструкција је дужине три бајта који имају вредности 39h, 40h и 00h, а налазе се у меморији на адресама 0047h, 0048h и 0049h, респективно. Приликом читања четврте инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 0048h, 0049h и 004Ah, респективно.

У фази *декодовање инструкције* (ID) нема циклуса на магистрали, јер се због коришћења у/и директног адресирања у овој фази само формира адреса регистра улазно/излазног адресног простора у који треба да се упише 8-битни операнд дат садржајем регистра опште намене $R1_{7..0}$. Фаза *декодовање инструкције* (ID) се састоји у пребацивању адресе регистра улазно/излазног адресног простора, чија је вредност 0040h и која је дата трећим и другим бајтом инструкције, из разреда $IR_{7..0}$ (виши бајт) и $IR_{15..8}$ (нижи бајт) прихватног регистра инструкције у разреде $TMP_{15..8}$ и $TMP_{7..0}$ прихватног регистра адресе операнда.

У фази извршавање операције (IE) процесор на магистрали генерише циклус уписа у регистар улазно/излазног адресног простора. На линије адресне магистрале $ABUS_{15..0}$ се пропушта вредност 0040h прихватног регистра адресе операнда $TMP_{15..0}$ а на линије магистрале података $DBUS_{7..0}$ вредност 08h регистра опште намене $R1_{7..0}$. Пошто је у питању циклус уписа у регистар улазно/излазног адресног простора управљачки сигнали магистрале WR и M/\overline{IO} имају вредности 1 и 0, респективно.

По завршетку фазе *извршавање операције* (IE) четврте инструкције **OUT** R1,0040h се прелази на фазу *читање инструкције* (IF) пете инструкције **HALT**. Пета инструкција је дужине јадан бајт који има вредности 00h, а налази се у меморији на адреси 004Ah. Приликом читања пете инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта пете инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15.0}$ инкрементира на 004Bh.

Инструкција **HALT** је безадресна инструкција, па се после фазе *читање инструкције* (IF) одмах прелази на фазу *извршавање операције* (IE) у оквиру које се зауставља процесор.

в) Са слике 6 се добија да садржај локације са адресе 40h у меморијском адресном простору износи 25h.

Садржај локације са адресе 40h у улазно/излазном простору се добија као резултат извршавања инструкција програма са слике 7.

Првом инструкцијом **LOAD** R1, (3Eh) се, због меморијског индиректног адресирања, најпре са адресе 003Eh и прве следеће адресе (003Fh) у меморијском адресном простору чита нижи и виши бајт 16 битне адресе 003Dh са које се затим из меморијског адресног простора чита 8-битни операнд чија је вредност 4h и уписује у регистар R1.

Другом инструкцијом **LOAD** R2, 3Dh се, због директног меморијског адресирања, са адресе 003Dh из меморијског адресног простора чита 8-битни операнд чија је вредност 4h и уписује у регистар R2.

Трећа инструкција **ADD** R1, R2 се сабира садржај регистра R1, чија је вредност 4h, и регистра R2, чија је вредност 4h, и резултат, чија је вредност 8h, уписује у регистар R1.

Инструкцијом **OUT** се, због у/и директног адресирања, садржај регистра R1, чија је вредност 8h, уписује у регистар на адреси 40h у улазно/излазном адресном простору.

Према томе, садржај локације са адресе 40h у меморијском адресном простору је 25h, а садржај регистра са адресе 40h у улазно/излазном адресном простору је 08h.

1.1.3 ЗАДАТАК

Посматра се процесор описан у задатку 1.1.1.

Садржај дела оперативне меморије је приказан на слици 9, при чему су све вредности дате у хексадецималном облику.

Адреса	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	000B
Садржај	02	34	11	05	42	36	00	03	05	00	07	07
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
Адреса	5000	5001	5002	5003	5004	5005	5006	5007	5008	5009	500A	
Садржај	82	00	09	89	00	0B	50	03	00	17	00	
Адреса	500B	500C	500D	500E	500F	5010	5011	5012	5013	5014	5015	
Садржај	02	85	00	06	01	03	50	03	00	17	00	

Слика 9 Садржај дела меморије

а) Навести секвенцу садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали при извршавању програма приказаног на слици 10. Претпоставити да се током извршавања овог програма не генерише прекид. Стога се приликом извршавања инструкција пролази само кроз фазе читање инструкције (IF), декодовање инструкције (IF) и извршавање операције (IE), а не и кроз фазу опслуживање прекида (IS).

Претпоставити да је пре почетка извршавања главног програма SP = E000h. Навести вредност почетне адресе потпрограма означене са X.

```
адреса инструкција
                       коментар
;главни програм
                ; меморијско индиректно адресирање ACC=MEM[MEM[0009h]]
5000h LOAD (9)
5003h ADD 0Ah ; меморијско директно ACCl=ACCl+MEM[000Ah]
5006h JSR (PC)3 ; скок у потпрограм PC релативан скок 5008h HALT ; заустављање процесора
5009h ...
;потпрограм
     POP
Χ
                    ; упис садржаја врха стека у акумулатор; MEM[-SP]=ACC
X+1
      STORE 0006h; меморијско директно адресирање MEM[0006h]=ACC
X+4
      PUSH ; упис садржаја акумулатора на стек МЕМ[SP++]=ACC
    RTS
X + 5
                    ; повратак из потпрограма
X+6
      . . .
```

Слика 10 Програм

Решење:

а) Секвенца садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали је приказана у табели са слике 11. У табели се користе исте ознаке као и у табели са слике 4 из задатка 1.1.1, при чему се јавља и колона SP_{15 0} - указивач на врх стека након ажурирања његовог садржаја.

При извршавању инструкције JSR (PC)3h, вредност PC је 5008h, јер PC указује на наредну инструкцију, померај је 3h, па се, због PC релативног скока, за адресу скока добија PC + 3 = 500Bh. Због тога је почетна адреса потпрограма X = 500Bh.

P6	ABUS _{15.0}	DBUS ₇₀	RD	WR	M/IO	$PC_{15.0}$	IR ₂₃₁₆	IR ₁₅₈	$ m IR_{70}$	TMP_{150}	ACC ₇₀	\mathbf{SP}_{150}	Коментар
	ł	I								`			
	-	-	-	-	-	5000	-	-	-	-	-	E000	
1	5000		1	0	1	5001	82	-	-	-	-		IF: LOAD (9h), први бајт инс.
	5001		1	0	1	5002				-	-		IF: LOAD (9h), други бајт инс.
3	5002	09	1	0	1	5003	82	00	09	-	-	E000	IF: LOAD (9h), трећи бајт инс.
4	0009	00	1	0	1	5003	82	00	09	00XX	-	E000	ID: LOAD (9h), формирање адресе опрнд читање вишег бајта, TMP ₁₅₈ =MEM[0009]
5	000A	07	1	0	1	5003	82	00	09	0007	-	E000	ID: LOAD (9h), формирање адресе опрнд читање нижег бајта, TMP ₇₀ =MEM[000A]
6	0007	03	1	0	1	5003	82	00	09	XX03	-	E000	ID: LOAD (9h), читање опрнд. из мем. лок., TMP _{7.0} =MEM[0007]
											03	E000	IE: LOAD (9h), ACC ₇₀ =TMP ₇₀
7	5003	89	1	0	1	5004	89	-	-	-	03		IF: ADD 0Bh, први бајт инс.
	5004		1	0	1	5005		00		-	03		IF: ADD 0Bh, други бајт инс.
-	5005			0	1	5006		00		_	03		IF: ADD 0Вh, трећи бајт инс.
	2002	011	1	Ū	-	2000	07	00	OB	000B	03	E000	ID: ADD 0Bh, формирање адресе опрнд., TMP _{15.8} = IR _{15.8} , TMP _{7.0} = IR _{7.0}
10	000B	07	1	0	1	5006	89	00	0В	XX07	03	E000	ID: ADD 0Bh, читање опрнд. из мем. лок., TMP ₇₀ =MEM[000B]
											0A	F000	IE: ADD 0Bh, ACC ₇₀ = ACC ₇₀ +TMP ₇₀
11	5006	50	1	0	1	5007	50	-	-	_	0A		IF: JSR (PC)3, први бајт инс.
-	5007			0	1	5007		03		_	0A		IF: JSR (РС)3, други бајт инс.
	E000			1	1	5008				_	0A		IE: JSR (РС)3, нижи бајт РС на стек
13	LUUU	00	U	1	1	3000	50	03		_			IE: JSR (PC)3, SP=SP-1
1/	DFFF	50	Λ	1	1	5008	50	03	-	_			IE: JSR (PC)3, виши бајт PC на стек
14	DITT	50	U	1	1	3008	50	03	_	_	UA	DITT	IE: JSR (PC)3, SP=SP-1,
						500B					0A	DFFE	PC=PC+3= 5008+3=500Bh
15	500B	02	1	0	1	500C	02	-	_	_	ΩA	DEFE	IF: POP , први бајт инс.
13	300 D	02	1	U	1	300C	02			_			IE: POP , SP=SP+1,
16	DFFF	50	1	0	1	500C	02	-	_	_			IE: РОР , бајт са стека у АСС
	500C		1	0	1		85		-	_			IF: STORE 0006h, први бајт инс.
	500D			0	1		85			_			IF: STORE 0006h, други бајт инс.
	500E			0	1	500E			06				IF: STORE 0006h, трећи бајт инс.
1)	300L	00	•		1	3001	0.5	00	00				ID: STOPE 0006h donwaran a amaga ounun
										0006	50	DFFF	ТМР ₁₅₈ = IR ₁₅₈ , ТМР ₇₀ = IR ₇₀
20	0006	50	0	1	1	500F	85	00	06	_	50	DFFF	IE: STORE 0006h, упис оприд. у мем. лок.,
								-	-				$MEM[0006] = ACC_{70}$
	500F		1	0	1	5010	01	-	-	-			IF: PUSH, први бајт инс.
22	DFFF	50	0	1	1	5010	01	-	-	-			IE: PUSH, бајт из АСС на стек
	= - :		_			- c:	_						IE: PUSH, SP=SP-1
23	5010	03	1	0	1	5011	03	-	-	-			IF: RTS , први бајт инс.
													IE: RTS, SP=SP+1,
24	DFFF	50	1	0	1	50XX	03	-	-	-			IE: RTS , бајт са стека у виши бајт РС
		0 -				- 0	0				50		IE: RTS, SP=SP+1,
	E000			0	1		03	-	-	-	50		IE: RTS, бајт са стека у нижи бајт РС
26	5008	00	1	0	1	0009	00	-	-	-	50	E000	IF: HALT , први бајт инс.
													IE: HALT , START=0

Слика 11 Секвенца садржаја на магистрали

Извршавање програма почиње фазом *читање инструкције* (IF) прве инструкције **LOAD** (9h) на коју указује тренутна вредност 5000h садржаја програмског бројача $PC_{15..0}$. Прва инструкција је дужине три бајта који имају вредности 82h, 00h и 09h, а

налазе се у локацијама меморије на адресама 5000h, 5001h и 5002h, респективно. С обзиром да је ширина меморијске речи 8 битова, процесор из меморије чита бајт по бајт. Приликом читања прве инструкција процесор на магистрали генерише три циклуса читања из меморије. У првом циклусу читања процесор на линије адресне магистрале ABUS $_{15:0}$ пропушта вредност 5000h програмског бројача $PC_{15..0}$ како би са те адресе прочитао први бајт инструкције 82h. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1. Прочитани садржај 82h се појављује на линијама магистрале података DBUS $_{7:0}$ и уписује у разреде $IR_{23:16}$ прихватног регистра инструкције процесора, а садржај програмског бројача $PC_{15..0}$ инкрементира на 5001h. На сличан начин се у другом и трећем циклусу читања са адреса 5001h и 5002h читају други и трећи бајтови бајт инструкције 00h и 09h, респективно. Прочитани садржаји се појављује на линијама магистрале података DBUS $_{7:0}$ и уписује у разреде $IR_{15:8}$ и $IR_{7:0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 5002h и 5003h, респективно.

У фази декодовања инструкције (ID) постоје три циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор најпре у два циклуса на магистрали из меморије чита два бајта 16-битне адресе операнда, а затим у трећем циклусу на магистрали чита и сам 8-битни операнд. Адреса операнда је 16-битна и заузима две суседне меморијске локације, при чему се нижи бајт адресе налази на вишој а виши бајт на нижој адреси. Адреса меморијске локације на којој се налази виши бајт адресе операнда дата је другим и трећим бајтом инструкције и налази се у разредима IR_{15:8} (виши бајт) и IR_{7:0} (нижи бајт) прихватног регистра инструкције. У прва два циклуса на магистрали процесор најпре из меморије са адресе 0009h чита садржај 00h, који представља виши бајт адресе операнда, и уписује у разреде TMP_{15:8}, а затим из меморије са адресе 000Ah чита садржај 07h, који представља нижи бајт адресе операнда, и уписује у разреде ТМР7:0. У трећем циклусу на магистрали садржај 0007h прихватног регистра адресе операнда ТМР_{15:0} се користи као адреса меморијске локације са које се чита операнд чија је вредност 03h и уписује у разреде TMP_{7:0} прихватног регистра операнда. Пошто су у питању циклуси читања из меморије управљачки сигнали магистрале RD и M/IO имају вредност 1. Ca XX је означено да је садржај разреда ТМР_{15:8} прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7..0}$ прихватног регистра операнда се уписује у регистар $ACC_{7:0}$.

По завршетку фазе *извршавање операције* (IE) прве инструкције **LOAD** (9h) се прелази на фазу *читање инструкције* (IF) друге инструкције **ADD** 0Bh. Друга инструкција је дужине три бајта који имају вредности 89h, 00h, 0Bh, а налазе се у меморији на адресама 5003h, 5004h и 5005h, респективно. Приликом читања друге инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова друге инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23:16}$, $IR_{15:8}$ и $IR_{7:0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 5004h, 5005h и 5006h, респективно.

У фази *декодовања инструкције* (ID) постоји један циклус на магистрали, јер процесор због коришћења меморијског директног адресирања у једном циклусу на магистрали из меморије чита 8 битни операнд. Најпре се адреса меморијске локације, чија је вредност 000Bh и која је дата другим и трећим бајтом инструкције из разреда $IR_{15..8}$ (виши бајт) и $IR_{7..0}$ (нижи бајт), пребацује у разреде $TMP_{15..8}$ и $TMP_{7..0}$ прихватног регистра адресе операнда, респективно. Затим се у циклусу на магистрали садржај 000Bh прихватног регистра адресе операнда $TMP_{15..0}$ користи као адреса регистра из улазно/излазног адресног простора са које се чита операнд чија је вредност 07h и

уписује у разреде $TMP_{7..0}$ прихватног регистра операнда. Пошто је у питању циклус читања из регистра улазно/излазног адресног простора управљачки сигнали магистрале RD и M/\overline{IO} имају вредности 1 и 0, респективно. Са XX је означено да је садржај разреда $TMP_{15..8}$ прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7:0}$ прихватног регистра операнда се сабира са садржајем регистра $ACC_{7..0}$ и резултат уписује у регистар $ACC_{7..0}$.

По завршетку фазе *извршавање операције* (IE) друге инструкције **ADD** 0Bh се прелази на фазу *читање инструкције* (IF) треће инструкције **JSR** (PC)3h. Трећа инструкција је дужине два бајта који имају вредности 50h и 03h, а налазе се у меморији на адресама 5006h и 5007h. Приликом читања треће инструкције процесор на магистрали генерише два циклуса читања из меморије. Циклуси читања бајтова треће инструкције се реализују на идентичан начин као и циклуси читања бајтова прве и друге инструкције. Прочитане вредности се уписују у разреде $IR_{23:16}$ и $IR_{15:8}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 5007h и 5008h, респективно.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) најпре се на стеку чува програмски бројач $PC_{15..0}$, а затим се адреса потпрограма уписује у програмски бројач $PC_{15..0}$.

Садржај регистра $PC_{15..0}$ смешта се на стек у два циклуса уписа на магистрали. Пошто SP указује на прву слободну локацију и стек расте ка нижим адресама, најпре се на адресу E000h уписује нижи бајт PC, $PC_{7..0}$ =08h па се SP декрементира, а затим се на адресу DFFFh уписује виши бајт PC, $PC_{15..8}$ =50h па се SP декрементира на вредност DFFEh. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1. Адреса скока се рачуна као збир $PC_{15..0}$, чија је вредност 5008h, и 8-битног помераја садржаног у другом бајту инструкцијског регистра $IR_{15:8}$, чија је вредност 3. Добијени збир 500Bh се смешта у $PC_{15..8}$.

По завршетку фазе *извршавање операције* (IE) треће инструкције **JSR** (PC)3 се прелази на фазу *читање инструкције* (IF) четврте инструкције **POP**. Четврта инструкција је дужине јадан бајт који има вредности 02h, а налази се у меморији на адреси 500Bh. Приликом читања четврте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 500Ch.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази извршавање операције (IE) се реализују један циклуса читања на магистрали. Најпре се садржај SP, који указује на прву слободну локацију на стеку инкрементира, па се користи да се у циклусу читања на магистрали, са стека, са адресе DFFFh, чита вредност 50h и уписује у акумулатор $ACC_{7..0}$. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) четврте инструкције **POP** се прелази на фазу *читање инструкције* (IF) пете инструкције **STORE** 0006h. Пета инструкција је дужине три бајта који имају вредности 85h, 00h и 06h, а налазе се у меморији на адресама 500Ch, 500Dh и 500Eh, респективно. Приликом читања пете инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова пете инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде IR_{23:16}, IR_{15:8} и IR_{7:0} прихватног регистра инструкције, а садржај програмског бројача PC_{15..0}.инкрементира на 500Dh, 500Eh и 500Fh, респективно.

У фази *декодовања инструкције* (ID) нема циклуса на магистрали, јер се због коришћења меморијског директног адресирања у овој фази само формира адреса меморијске локације у коју треба да се упише 8-битни операнд дат садржајем акумулатора $ACC_{7:0}$. Фаза *декодовања инструкције* (ID) се састоји у пребацивању адресе меморијске локације чија је вредност 0006h и која је дата другим и трећим бајтом инструкције из разреда $IR_{15:8}$ (виши бајт) и $IR_{7:0}$ (нижи бајт) прихватног регистра инструкције у разреде $TMP_{15:8}$ и $TMP_{7:0}$ прихватног регистра адресе операнда.

У фази *извршавање операције* (IE) процесор на магистрали генерише циклус уписа у меморију. На линије адресне магистрале $ABUS_{15..0}$ се пропушта вредност 0006h прихватног регистра адресе операнда $TMP_{15..0}$ а на линије магистрале података $DBUS_{7..0}$ вредност 50h акумулатора $ACC_{7..0}$. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) пете инструкције **STORE** 0006h се прелази на фазу *читање инструкције* (IF) шесте инструкције **PUSH**. Шеста инструкција је дужине један бајт који има вредности 01h, а налази се у меморији на адреси 500Fh. Приликом читања шесте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 5010h.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) се реализују један циклуса уписа на магистрали. Пошто SP указује на прву слободну локацију и стек расте ка нижим адресама, најпре се на адреси DFFFh уписује садржај акумулатора $ACC_{7..0}$ =50h, па се затим SP декрементира, Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) шесте инструкције **PUSH** се прелази на фазу *читање инструкције* (IF) седме инструкције **RTS**. Седма инструкција је дужине јадан бајт који има вредности 03h, а налази се у меморији на адреси 5010h. Приликом читања седме инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта седме инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15:0}$ инкрементира на 5011h.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) се реализују два циклуса читања на магистрали. Најпре се садржај SP, који указује на прву слободну локацију на стеку, инкрементира, па се затим, у првом циклусу читања на магистрали, са врха стека, са адресе DFFFh, чита вредност 50h, која представља виши бајт адресе повратка из потпрограма, и уписује у виши бајт регистра PC, $PC_{15..8}$. Потом се садржај SP, који указује на прву слободну локацију на стеку, поново инкрементира, па се затим, у другом циклусу читања на магистрали, са врха стека, са адресе E000h, чита вредност 08h, која представља нижи бајт адресе повратка из потпрограма, и уписује у нижи бајт регистра PC, $PC_{7..0}$. Пошто су у питању циклуси читања из меморије управљачки сигнали магистрале RD и M/IO имају вредност 1.

По завршетку фазе *извршавање операције* (IE) седме инструкције **RTS** се прелази на фазу *читање инструкције* (IF) осме инструкције **HALT**. Осма инструкција је дужине јадан бајт који има вредности 00h, а налази се у меморији на адреси 5008h. Приликом читања осме инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта осме инструкције се реализују на идентичан

начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 5009h.

Инструкција **HALT** је безадресна инструкција, па се после фазе *читање инструкције* (IF) одмах прелази на фазу *извршавање операције* (IE) у оквиру које се зауставља процесор.

1.1.4 ЗАДАТАК

Посматра се процесор описан у задатку 1.1.2.

Садржај дела оперативне меморије је приказан на слици 12, при чему су све вредности дате у хексадецималном облику.

Адреса	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	•••
Садржај	37	A1	B5	08	02	36	00	33	56	07	00	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
Адреса	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	300A	
Садржај	21	00	00	39	09	00	10	0D	30	00	00	
Адреса	300B	300C	300D	300E	300F	3010	3011	3012	3013	3014	3015	
Садржај	02	85	2D	09	00	01	50	03	00	17	00	•••

Слика 12 Садржај дела меморије

а) Навести секвенцу садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали при извршавању програма приказаног на слици 13. Претпоставити да се током извршавања овог програма не генерише прекид. Стога се приликом извршавања инструкција пролази само кроз фазе читање инструкције (IF), декодовање инструкције (IF) и извршавање операције (IE), а не и кроз фазу опслуживање прекида (IS).

Претпоставити да је пре почетка извршавања главног програма SP = D000h.

```
адреса инструкција коментар
;главни програм
3000h LOAD R1, 0h ; меморијско директно адресирање, R1=MEM[0h]
3003h OUT R1, 9h ; у/и директно адресирање, IO[9h]=R1
3006h JSR 300Dh ; скок у потпрограм апсолутан скок
3009h HALT ; заустављање процесора
300Ah ...
;потпрограм
300Dh STORE R1, (9h); меморијско индиректно адресирање, МЕМ[МЕМ[9]]= R1
3010h RTS ; повратак из потпрограма
3011h ...
```

Слика 13 Програм

Решење:

а) Секвенца садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали је приказана у табели са слике 14. У табели се користе исте ознаке као и у табели са слике 8 из задатка 1.1.2, при чему нема колоне за $R2_{7..0}$, а јавља се и колона $SP_{15..0}$ - указивач на врх стека након ажурирања његовог садржаја.

P6	$ m ABUS_{150}$	\mathbf{DBUS}_{70}	RD	WR	M/IO	PC_{150}	$ m IR_{2316}$	IR ₁₅₈	${ m IR}_{70}$	TMP_{150}	SP_{150}	$\mathbf{R}1_{70}$	Коментар
	-	-	-	-	-	3000		-	-		D000		
1		21	1	0	1	3001		-	-	-	D000		IF: LOAD R1, 0h, први бајт инс.
2	3001		1	0	1	3002			-	-	D000		IF: LOAD R1, 0h, други бајт инс.
3	3002	00	1	0	1	3003	21	00	00	-	D000	-	IF: LOAD R1, 0h, трећи бајт инс.
										0000	D000		ID: LOAD R1, 0h, формирање адресе опрнд., TMP ₁₅₈ = IR ₇₀ , TMP ₇₀ = IR ₁₅₈
4	0000	37	1	0	1	3003	21	00	00	XX37	D000	-	ID: LOAD R1, 0h, читање опрнд. из мем. лок., TMP ₇₀ =MEM[0000]
												37	IE: LOAD R1, 0h, R1 ₇₀ = TMP ₇₀
5	3003	39	1	0	1	3004	39	-	-	-	D000	37	IF: OUT R1, 9h, први бајт инс.
	3004			0	1	3005			-	-			IF: OUT R1, 9h, други бајт инс.
7	3005	00	1	0	1	3006	39	09	00	-	D000	37	IF: OUT R1, 9h, трећи бајт инс.
										0009	D000	37	IF: OUT R1, 9h, формирање адресе опрнд. TMP ₁₅₈ = IR ₇₀ , TMP ₇₀ = IR ₁₅₈
8	0009	37	0	1	0	3006	39	09	00	-	D000	37	IE: OUT R1, 9h, упис опрнд. у уи рег., UI[0009]= R1 ₇₀
9	3006	10	1	0	1	3007	10	-	-	-	D000	37	IF: JSR 300Dh, први бајт инс.
10	3007			0	1	3008			_	-			IF: JSR 300Dh, други бајт инс.
	3008			0	1	3009				-			IF: JSR 300Dh, трећи бајт инс.
											D001	37	IE: JSR 300Dh, SP=SP+1,
12	D001	09	0	1	1	3009	10	0D	30	-	D001	37	IE: JSR 300Dh, нижи бајт РС на стек
											D002	37	IE: JSR 300Dh, SP=SP+1,
13	D002	30	0	1	1	3009	10	0D	30	-	D002	37	IE: JSR 300Dh, виши бајт РС на стек
						300D				-	D002	37	IE: JSR 300Dh, PC=300Dh
14	300D	2D	1	0	1	300E	2D	1	-	-	D002	37	IF: STORE R1,(9h), први бајт инс.
15	300E	09	1	0	1	300F	2D	09	-	-			IF: STORE R1,(9h), други бајт инс.
16	300F	00	1	0	1	3010	2D	09	00	-	D002	37	IF: STORE R1,(9h), трећи бајт инс.
17	0009	07	1	0	1	3010	2D	09	00	XX07	D002	37	ID: STORE R1,(9h), формирање адресе опрнд читање нижег бајта, TMP ₇₀ =MEM[0009]
18	000A	00	1	0	1	3010	2D	09	00	0007	D002	37	ID: STORE R1,(9h), формирање адресе опрнд читање вишег бајта, TMP _{15.8} =MEM[000A]
19	0007	37	0	1	1	3010	2D	09	00	-	D002	37	IE: STORE R1,(9h), упис опрнд. у мем. лок., МЕМ[0007]= R1 _{7.0}
20	3010	01	1	0	1	3011	01	-	_	_	D002	37	IF: RTS , први бајт инс.
	D002			0		30XX		-	-	-			IE: RTS , бајт са стека у виши бајт РС
													IE: RTS, SP=SP-1
22	D001	09	1	0	1	3009	01	-	-	-			IE: RTS, бајт са стека у нижи бајт РС
											D000		IE: RTS, SP=SP-1
23	3009	00	1	0	1	300A	00	-	-	-	D000	37	IF: HALT , први бајт
											D000	37	IE: HALT, START=0

Слика 14 Секвенца садржаја на магистрали

Извршавање програма почиње фазом *читање инструкције* (IF) прве инструкције **LOAD** R1, 0h на коју указује тренутна вредност 3000h садржаја програмског бројача $PC_{15..0}$. Прва инструкција је дужине три бајта који имају вредности 21h, 00h и 00h, а налазе се у локацијама меморије на адресама 3000h, 3001h и 3002h, респективно. С обзиром да је ширина меморијске речи 8 битова, процесор из меморије чита бајт по бајт. Приликом читања прве инструкција процесор на магистрали генерише три циклуса читања из меморије. У првом циклусу читања процесор на линије адресне

магистрале ABUS $_{15:0}$ пропушта вредност 3000h програмског бројача PC $_{15..0}$ како би са те адресе прочитао први бајт инструкције 21h. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/ $\overline{\text{IO}}$ имају вредност 1. Прочитани садржај 21h се појављује на линијама магистрале података DBUS $_{7..0}$ и уписује у разреде IR $_{23..16}$ прихватног регистра инструкције процесора, а садржај програмског бројача PC $_{15..0}$ инкрементира на 3001h. На сличан начин се у другом и трећем циклусу читања са адреса 3001h и 3002h читају други и трећи бајт инструкције 00h и 00h, респективно. Прочитани садржаји се појављује на линијама магистрале података DBUS $_{7:0}$ и уписује у разреде IR $_{15..8}$ и IR $_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача PC $_{15..0}$ инкрементира на 3002h и 3003h, респективно.

У фази *декодовања инструкције* (ID) постоји један циклус на магистрали, јер процесор због коришћења меморијског директног адресирања у једном циклусу на магистрали из меморије чита 8 битни операнд. Најпре се адреса меморијске локације, чија је вредност 0000h и која је дата другим и трећим бајтом инструкције из разреда $IR_{15..8}$ (нижи бајт) и $IR_{7..0}$ (виши бајт), пребацује у разреде $TMP_{7..0}$ и $TMP_{15..8}$ прихватног регистра адресе операнда, респективно. Затим се у циклусу на магистрали садржај 0000h прихватног регистра адресе операнда $TMP_{15..0}$ користи као адреса меморијске локације са које се чита операнд чија је вредност 37h и уписује у разреде $TMP_{7..0}$ прихватног регистра операнда. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1. Са XX је означено да је садржај разреда $TMP_{15..8}$ прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7..0}$ прихватног регистра операнда се уписује у регистар $R1_{7..0}$.

По завршетку фазе *извршавање операције* (IE) прве инструкције **LOAD** R1, 0h се прелази на фазу *читање инструкције* (IF) друге инструкције **OUT** R1, 9h. Друга инструкција је дужине три бајта који имају вредности 39h, 09h и 00h, а налазе се у меморији на адресама 3003h, 3004h и 3005h, респективно. Приликом читања друге инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова друге инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3004h, 3005h и 3006h, респективно.

У фази *декодовање инструкције* (ID) нема циклуса на магистрали, јер се због коришћења у/и директног адресирања у овој фази само формира адреса регистра улазно/излазног адресног простора у који треба да се упише 8 битни операнд дат садржајем регистра опште намене $R1_{7..0}$. Фаза *декодовање инструкције* (ID) се састоји у пребацивању адресе регистра улазно/излазног адресног простора чија је вредност 0009h и која је дата трећим и другим бајтом инструкције из разреда $IR_{7..0}$ (виши бајт) и $IR_{15..8}$ (нижи бајт) прихватног регистра инструкције у разреде $TMP_{15..8}$ и $TMP_{7..0}$ прихватног регистра адресе операнда.

У фази извршавање операције (IE) процесор на магистрали генерише циклус уписа у регистар улазно/излазног адресног простора. На линије адресне магистрале $ABUS_{15..0}$ се пропушта вредност 0009h прихватног регистра адресе операнда $TMP_{15..0}$ а на линије магистрале података $DBUS_{7..0}$ вредност 37h регистра опште намене $R1_{7..0}$. Пошто је у питању циклус уписа у регистар улазно/излазног адресног простора управљачки сигнали магистрале WR и M/\overline{IO} имају вредности 1 и 0, респективно.

По завршетку фазе *извршавање операције* (IE) друге инструкције **OUT** R1, 9h се прелази на фазу *читање инструкције* (IF) треће инструкције **JSR** 300Dh. Трећа инструкција је дужине три бајта који имају вредности 10h, 0Dh, 30h, а налазе се у меморији на адресама 3006h, 3007h, 3008h. Приликом читања треће инструкције

процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова треће инструкције се реализују на идентичан начин као и циклуси читања бајтова прве и друге инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3007h, 3008 и 3009h респективно.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) садржај регистра $PC_{15..0}$ смешта се на стек у два циклуса уписа на магистрали. Пошто SP указује на последњу заузету локацију и стек расте ка вишим адресама, најпре се SP инкрементира па се на адресу D001h уписује нижи бајт PC, $PC_{7..0}$ =09h, а затим се SP поново инкрементира па се на адресу D002h уписује виши бајт PC, $PC_{15..8}$ =30h. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале PC0 имају вредност PC1. Адреса апсолутног скока, чија вредност PC1. Адреса апсолутног скока, чија вредност PC1. В се смешта у регистар PC1.

По завршетку фазе *извршавање операције* (IE) треће инструкције **JSR** 300Dh се прелази на фазу *читање инструкције* (IF) четврте инструкције **STORE** R1, (9h). Четврта инструкција је дужине три бајта који имају вредности 2Dh, 09h и 00h, а налазе се у меморији на адресама 300Dh, 300Eh и 300Fh, респективно. Приликом читања четврте инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 300Eh, 300Fh и 3010h, респективно.

У фази *декодовања инструкције* (ID) постоје два циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор у два циклуса на магистрали из меморије чита два бајта 16 битне адресе операнда. На нижој меморијској адреси 0009h, садржаној у разредима $IR_{7..0}$ (виши бајт) и $IR_{15..8}$ (нижи бајт) прихватног регистра инструкције, се налази нижи бајт адресе операнда 07h, а на првој следећој вишој меморијској адреси 000Ah се налази виши бајт адресе операнда 00h на коју је потребно уписати садржај регистра $R1_{7..0}$ у фази *извршавање операције* (IE). Најпре се у првом циклусу на магистрали из меморије са адресе 0009h чита нижи бајт адресе операнда 07h и смешта у разреде $TMP_{7:0}$ прихватног регистра адресе операнда, а затим се у другом циклусу на магистрали из меморије са адресе 000Ah чита виши бајт адресе операнда 00h и смешта у разреде $TMP_{15..8}$ прихватног регистра адресе операнда. У циклусу читања управљачки сигнали RD и $M/\overline{10}$ имају вредност 1.

У фази извршавање операције (IE) процесор на магистрали генерише циклус уписа у меморију. На линије адресне магистрале $ABUS_{15..0}$ се пропушта вредност 0007h прихватног регистра адресе операнда $TMP_{15..0}$ а на линије магистрале података $DBUS_{7..0}$ вредност 37h регистра $R1_{7..0}$. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) четврте инструкције **STORE** R1, (9h) се прелази на фазу *читање инструкције* (IF) пете инструкције **RTS**. Пета инструкција је дужине јадан бајт који има вредности 01h, а налази се у меморији на адреси 3010h. Приликом читања пете инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта пете инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3011h.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) се реализују два циклуса читања на магистрали. Најпре се садржај SP, који указује на задњу заузету локацију на стеку, користи да се у првом циклусу читања на магистрали, са стека, са адресе D002h, чита вредност 30h, која представља виши бајт адресе повратка из потпрограма, и уписује у виши бајт регистра PC, PC_{15..8}, па се затим садржај SP декрементира. Потом се, садржај SP, који указује на задњу заузету локацију на стеку, користи да се у другом циклусу читања на магистрали, са стека, са адресе D001h, чита вредност 09h, која представља нижи бајт адресе повратка из потпрограма, и уписује у нижи бајт регистра PC, PC_{7..0}, па се затим садржај SP поново декрементира. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/IO имају вредност 1.

По завршетку фазе *извршавање операције* (IE) пете инструкције **RTS** се прелази на фазу *читање инструкције* (IF) шесте инструкције **HALT**. Шеста инструкција је дужине јадан бајт који има вредности 00h, а налази се у меморији на адреси 3009h. Приликом читања шесте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта шесте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 300Ah.

Инструкција **HALT** је безадресна инструкција, па се после фазе *читање инструкције* (IF) одмах прелази на фазу *извршавање операције* (IE) у оквиру које се зауставља процесор.

1.1.5 ЗАДАТАК

Посматра се процесор описан у задатку 1.1.2.

Садржај дела оперативне меморије је приказан на слици 15, при чему су све вредности дате у хексадецималном облику.

Адреса	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	•••
Садржај	37	A1	B5	08	0E	30	00	33	56	07	00	•••
	•••	•••			•••							•••
Адреса	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	100A	
Садржај	00	30	06	00	07	00	30	20	56	07	00	•••
•••	•••			•••			•••	•••				•••
Адреса	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	300A	
Садржај	25	02	10	26	04	10	1F	02	00	25	03	
Адреса	300B	300C	300D	300E	300F	3010	3011	3012	3013	3014	3015	•••
Садржај	02	85	2D	46	02	01	50	03	00	17	00	

Слика 15 Садржај дела меморије

а) Навести секвенцу садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали при извршавању програма приказаног на слици 16.

Претпоставити да се током извршавања овог програма генерише само прекид изазван инструкцијом софтверског прекида INS. Инструкција INS је тако реализована да се у фази извршавање операције (IE) на најпре на стек ставља садржај програмског бројача PC, а затим на основу броја улаза у IV табелу, датог адресним делом инструкције INS, и почетне адресе IV табеле, дате садржајем регистра IVTP, добија адреса улаза у IV табели из кога се чита адреса прекидне рутине и уписује у PC. Стога се приликом извршавања инструкција пролази само кроз фазе читање инструкције (IF), декодовање инструкције (IF) и извршавање операције (IE), а не и кроз фазу опслуживање прекида (IS).

Претпоставити да је пре почетка извршавања главног програма SP=4000h, IVTP=0h и PC=3000h.

```
адреса инструкција
                         коментар
;главни програм
3000h LOAD R1, (1002h)
                         ; memorijsko indirektno adresiranje
                           R1=MEM[MEM[1002h]]
3003h LOAD R2, (1004h) ; memorijsko indirektno adresiranje
                          R2=MEM[MEM[1004h]]
3006h INS #2
                         ; softverski prekid
3008h HALT
                         ; zaustavljanje procesora
3009h ...
;прекидна рутина
300Eh ADD R2, R1
                         ; R2=R2+R1
300Fh RTI
                         ; povratak iz prekidne rutine
3010h ...
                           Слика 16 Програм
```

Решење:

а) Секвенца садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали је приказана у табели са слике 17. У табели се користе исте ознаке као и у табели са слике 8 из задатка 1.1.2, при чему се јавља и колона $SP_{15..0}$ - указивач на врх стека након ажурирања његовог садржаја.

1 3000 25 1 0 1 3001 25 0 1 4000 IF: LOAD R1,(1002h), први бајт инс. 3 3002 10 1 3003 25 02 10 - 4000 IF: LOAD R1,(1002h), први бајт инс. 4 1002 06 1 0 1 3003 25 02 10 XXXX - 4000 IF: LOAD R1,(1002h), формирање ад оприд. 1 читање нижет бајта. 5 1003 00 1 0 1 3003 25 02 10 XXX0 - 4000 порид читање нижет бајта. порид читање вишет бајта. порид читање вишет бајта. порид читање вишет бајта. порид. 1 нем. люх., ТМР _{7,0} =MEM[1002] По сорон раза ва сорон раз	P6	ABUS ₁₅₀	DBUS ₇₀	RD	WR	M/IO	PC_{150}	IR ₂₃₁₆	IR_{158}	$ m IR_{70}$	TMP_{150}	R1 ₇₀	R2 ₇₀		Коментар
2 3001 02 1 0 1 1 3002 25 02 4000 IF: LOAD R1, (1002h), други бајт инс. 3 3002 10 1 0 1 3003 25 02 10 4000 IF: LOAD R1, (1002h), трем бајт инс. 4 1002 06 1 0 1 3003 25 02 10 XX06 - 4000 IF: LOAD R1, (1002h), формирање ад оприд читање вишег бајта, ТМР _{7,6} —МЕМ[1002] 5 1003 00 1 0 1 3003 25 02 10 0006 4000 IF: LOAD R1, (1002h), формирање ад оприд читање вишег бајта, ТМР _{7,6} —МЕМ[1003] 6 0006 00 1 0 1 3003 25 02 10 XX00 4000 IF: LOAD R1, (1002h), читање оприд. 1 мем. лок., ТМР _{7,6} —МЕМ[0006] 7 3003 26 1 0 1 3004 26 00 - 4000 IF: LOAD R1, (1002h), читање оприд. 1 мем. лок., ТМР _{7,6} —МЕМ[0006] 8 3004 04 1 0 1 3005 26 04 - 00 - 4000 IF: LOAD R2, (1004h), при бајт инс. 9 3005 10 1 0 1 3006 26 04 10 XX07 00 - 4000 IF: LOAD R2, (1004h), формирање ад оприд читање вишег бајта, ТМР _{7,6} —МЕМ[1004] 10 1004 07 1 0 1 3006 26 04 10 XX07 00 - 4000 IF: LOAD R2, (1004h), формирање ад оприд читање вишег бајта, ТМР _{7,6} —МЕМ[1004] 11 1005 00 1 0 1 3006 26 04 10 XX03 00 - 4000 IF: LOAD R2, (1004h), формирање ад оприд читање вишег бајта, ТМР _{7,6} —МЕМ[1004] 11 3006 00 1 0 1 3008 1F 02 - 00 33 4000 IF: INS #2, први бајт инс. 13 3006 IF: 1 0 1 3008 IF 02 - 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 IF 02 - 00 33 4000 IF: INS #2, први бајт инс. 15 4001 08 0 1 1 3008 IF 02 - 00 33 4001 IE: INS #2, виши бајт РС на стек 4002 IE: INS #2, виши бајт РС на стек 4002 IE: INS #2, виши бајт РС на стек 11 IE: INS #2, виши бајт РС на стек 11 IE: INS #2, виши бајт РС на стек 11 0 1 3006 16 00 33 4001 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 11 0 1 3007 02 00 33 4001 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 11 0 1 3007 02 00 33 4001 IE: RTI, први бајт инс. 16 4002 30 1 1 0 1 3008 IF 02 00 33 4002 IE: ADD R2, R1, први бајт инс. 17 0004 0E 1 0 1 3008 IF 02 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 11 0 1 3008 IF 02 00 33 4002 IE: ADD R2, R1, први бајт инс. 18 0005 30 I 0 1		-	-	-	-	-	3000	-	-	-	-	-	-	4000	
3 3002 10 1 0 1 3003 25 02 10 0 0 0 0 1 3003 25 02 10 0 0 0 0 0 1 0 1 3003 25 02 10 0 0 0 0 0 0 0 0	1			1		1				-	-	-	-		
4 1002 06 1 0 1 3003 25 02 10 XX06 - 4000 ID: LOAD R1, (1002h), формирање ад оприд читање вишег бајта, ТМР, д=МЕМ[1002] 5 1003 00 1 0 1 3003 25 02 10 0006 - 4000 ID: LOAD R1, (1002h), формирање ад оприд читање вишег бајта, ТМР, д=MEM[1003] 6 0006 00 1 0 1 3003 25 02 10 XX00 - 4000 ID: LOAD R1, (1002h), читање оприд. и мем. лок., ТМР, д=MEM[0006] 7 3003 26 1 0 1 3004 26 00 - 4000 IF: LOAD R2, (1004h), први бајт инс. 8 3004 04 1 0 1 3005 26 04 10 - 00 - 4000 IF: LOAD R2, (1004h), први бајт инс. 9 3005 10 1 0 1 3006 26 04 10 XX07 00 - 4000 IF: LOAD R2, (1004h), формирање ад оприд читање вишег бајта, ТМР, д=MEM[1003] 11 1005 00 1 0 1 3006 26 04 10 XX07 00 - 4000 IF: LOAD R2, (1004h), формирање ад оприд читање вишег бајта, ТМР, д=MEM[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 ID: LOAD R2, (1004h), формирање ад оприд читање вишег бајта, ТМР, д=MEM[1005] 12 0007 33 1 0 1 3008 1F 02 - 00 33 4000 IF: INS #2, први бајт инс. 13 3006 1F 1 0 1 3008 1F 02 - 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 1F 02 - 00 33 4000 IF: INS #2, први бајт инс. 16 4002 30 0 1 1 XX0E IF 02 - 00 33 4001 IE: INS #2, први бајт РС на стек 4001 IE: INS #2, први бајт РС на стек 4001 IE: INS #2, први бајт инс. 16 4002 30 0 1 1 3008 1F 02 - 00 33 4002 IE: INS #2, први бајт РС на стек 11 0004 IP: INS #2, први бајт РС на стек 12 III III III III III III III III III	2			1	0	1				-	-	-	-		1,0
4 1002 06 1 0 1 3003 25 02 10 XX06 - 4000 опрыд читање вишег бајта, ТМР, 0=MEM[1002] 5 1003 00 1 0 1 3003 25 02 10 0006 - 4000 опрыд читање вишег бајта, ТМР, 0=MEM[1003] 6 0006 00 1 0 1 3003 25 02 10 XX00 - 4000 опрыд читање вишег бајта, ТМР, 0=MEM[1003] 7 3003 26 1 0 1 3004 26 0 0 4000 опрыд. опрыд	3	3002	10	1	0	1	3003	25	02	10	-	-	1	4000	IF: LOAD R1, (1002h), трећи бајт инс.
S 1003 00	4	1002	06	1	0	1	3003	25	02	10	XX06	ı	ı	4000	TMP ₇₀ =MEM[1002]
Note	5	1003	00	1	0	1	3003	25	02	10	0006	-	-	4000	TMP ₁₅₈ =MEM[1003]
7 3003 26 1 0 1 3004 26 00 - 4000 IF: LOAD R2, (1004h), први бајт инс. 8 3004 04 1 0 1 3005 26 04 00 - 4000 IF: LOAD R2, (1004h), други бајт инс. 9 3005 10 1 0 1 3006 26 04 10 - 00 - 4000 IF: LOAD R2, (1004h), трећи бајт инс. 10 1004 07 1 0 1 3006 26 04 10 XX07 00 - 4000 IF: LOAD R2, (1004h), формирање ад опрнд - читање нижег бајта, ТМР _{7.0} =MEM[1004] 11 1005 00 1 0 1 3006 26 04 10 0007 00 - 4000 прнд - читање вишег бајта, ТМР _{7.0} =MEM[1004] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 IF: LOAD R2, (1004h), формирање ад опрнд - читање вишег бајта, ТМР _{15.8} =MEM[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 IF: LOAD R2, (1004h), формирање ад опрнд - читање вишег бајта, ТМР _{15.8} =MEM[1005] 13 3006 IF 1 0 1 3007 IF - 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 IF 02 - 00 33 4000 IF: INS #2, први бајт инс. 15 4001 08 0 1 1 3008 IF 02 - 00 33 4001 IE: INS #2, врачу вајт РС на стек 4002 IE: INS #2, врачу вајт РС на стек 4002 IE: INS #2, врачу навање адресе улаза V табели (0h+2*2=4h) 17 0004 0E 1 0 1 XX0E IF 02 - 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС IE: INS #2, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IE: ADD R2, R1, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, бајт са стека у виши бајт РС IE: RTI, бајт са стека у виши бајт РС	6	0006	00	1	0	1	3003	25	02	10	XX00		-	4000	мем. лок., TMP ₇₀ =MEM[0006]
8 3004 04 1 0 1 3005 26 04 - - 00 - 4000 IF: LOAD R2, (1004h), други бајт инс. 9 3005 10 1 0 1 3006 26 04 10 - 4000 IF: LOAD R2, (1004h), трећи бајт инс. 10 1004 07 1 0 1 3006 26 04 10 XX07 00 - 4000 оприд - читање нижег бајта, ТМР _{7.0} =MEM[1004] ID: LOAD R2, (1004h), формирање ад оприд - читање вишег бајта, ТМР _{1.5.8} =MEM[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 ID: LOAD R2, (1004h), формирање ад оприд - читање вишег бајта, ТМР _{7.0} =MEM[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 ID: LOAD R2, (1004h), формирање ад оприд - читање вишег бајта, ТМР _{7.0} =MEM[0007] 12 0007 33 1 0 1 3006 16 10 0 10 10 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								<u> </u>							
9 3005 10 1 0 1 3006 26 04 10 - 00 - 4000 IF: LOAD R2, (1004h), трећи бајт инс. 10 1004 07 1 0 1 3006 26 04 10 XX07 00 - 4000 опрнд - читање нижег бајта, ТМР _{7.0} =МЕМ[1004] 11 1005 00 1 0 1 3006 26 04 10 0007 00 - 4000 опрнд - читање нижег бајта, ТМР _{7.0} =МЕМ[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 ID: LOAD R2, (1004h), формирање ад тМР _{15.8} =МЕМ[1005] 13 3006 1F 1 0 1 3007 1F - 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 IF 02 - 03 33 4000 IF: INS #2, други бајт инс. 15 4001 08 0 1 1 3008 IF 02 - 03 33 4000 IF: INS #2, други бајт инс. 16 4002 30 0 1 1 3008 IF 02 - 00 33 4000 IE: INS #2, нижи бајт РС на стек 4002 IE: INS #2, читање нижег бајта адресе прек. ругине и упис у нижи бајт РС ПР 18 0005 30 1 0 1 300F 04 - 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. ругине и упис у нижи бајт РС 19 300E 46 1 0 1 3010 02 - 00 33 4002 IE: INS #2, први бајт инс. 20 300F 02 1 0 1 3010 02 - 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 3008 IF 02 - 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 19 300E 46 1 0 1 300F 46 - 00 33 4002 IE: RTI, први бајт инс. 20 300F 02 1 0 1 3010 02 - 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 - 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 11 IIII инс. 21 4002 30 1 0 1 30XX 02 - 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 11 IIII инс. 21 4002 30 1 0 1 30XX 02 - 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 11 IIII инс. 21 4002 30 1 0 1 30XX 02 - 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 11 IIII инс.										-	-		-		
10 1004 07 1 0 1 3006 26 04 10 XX07 00 - 4000 опрнд - читање нижег бајта, тМР _{7.0} =МЕМ[1004] 11 1005 00 1 0 1 3006 26 04 10 0007 00 - 4000 опрнд - читање вишег бајта, тМР _{7.0} =МЕМ[1004] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 опрнд - читање вишег бајта, тМР _{15.8} =МЕМ[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 опрнд - читање вишег бајта, тМР _{15.8} =МЕМ[1005] 13 3006 1F 1 0 1 3007 1F 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 1F 02 00 33 4000 IF: INS #2, врви бајт инс. 15 4001 08 0 1 1 3008 1F 02 00 33 4001 IE: INS #2, виши бајт РС на стек 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300F 46 00 33 4002 IF: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IF: RTI, први бајт инс. 33 4002 IF: RTI, први бајт инс. 31 4002 IF: RTI, први бајт инс.	-					1				-	-	_	-		1,0
10 1004 07 1 0 1 3006 26 04 10 3006 26 04 10 XX07 00 - 4000 опрнд - читање нижег бајта, TMP _{7.0} =MEM[1004] 11 1005 00 1 0 1 3006 26 04 10 0007 00 - 4000 опрнд - читање вишег бајта, TMP _{7.0} =MEM[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 мем. лок., TMP _{7.0} =MEM[0007] 13 3006 1F 1 0 1 3007 1F 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 1F 02 00 33 4000 IF: INS #2, врши бајт РС на стек 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 300E 1F 02 00 33 4002 IF 1NS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 46 1 0 1 300F 46 00 33 4002 IF: RTI, први бајт инс. 20 300F 02 1 0 1 30XX 02 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 0 1 1 30XX 02 00 33 4002 IE: RTI, грви бајт инс. 18 0005 30 1 0 1 300E 46 1 0 1 300E 46 00 33 4002 IE: RTI, грви бајт инс. 19 300E 46 1 0 1 30XX 02 00 33 4002 IE: RTI, први бајт инс. 20 300F 02 1 0 1 30XX 02 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, грви бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, грви бајт инс.	9	3005	10	1	0	1	3006	26	04	10	-	00	-	4000	
11 1005 00 1 0 1 3006 26 04 10 0007 00 - 4000 опрнд - читање вишег бајта, тМР _{15.8} =МЕМ[1005] 12 0007 33 1 0 1 3006 26 04 10 XX33 00 - 4000 опрнд - читање вишег бајта, тМР _{15.8} =МЕМ[1005] 13 3006 1F 1 0 1 3007 1F - 0 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 1F 02 - 0 0 33 4000 IF: INS #2, хР=хР+1 15 4001 08 0 1 1 3008 1F 02 - 0 0 33 4001 IE: INS #2, кР=хР+1 16 4002 30 0 1 1 3008 1F 02 - 0 0 33 4002 IE: INS #2, израчунавање адресе улаза IV табели (0h+2*2=4h) 17 0004 0E 1 0 1 300E 1F 02 - 0 0 33 4002 IF: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300F 46 - 0 0 3 34002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 3010 02 - 0 0 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 - 0 0 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 300X 02 - 0 0 33 4002 IE: RTI, први бајт инс.	10	1004	07	1	0	1	3006	26	04	10	XX07	00	- 1	4000	опрнд - читање нижег бајта,
12 0007 35 1 0 1 3006 26 04 10 XX33 00 - 4000 мем. лок., ТМР _{7.0} =MEM[0007] 13 3006 1F 1 0 1 3007 1F 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 1F 02 00 33 4001 IE: INS #2, други бајт инс. 15 4001 08 0 1 1 3008 1F 02 00 33 4001 IE: INS #2, врши бајт РС на стек 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 22 300F 02 1 0 1 30XX 02 00 33 4002 IE: RTI, бајт са стека у виши бајт РС	11	1005	00	1	0	1	3006	26	04	10	0007	00	ı	4000	TMP ₁₅₈ =MEM[1005]
13 3006 IF 1 0 1 3007 IF 00 33 4000 IF: INS #2, први бајт инс. 14 3007 02 1 0 1 3008 IF 02 00 33 4000 IF: INS #2, први бајт инс. 15 4001 08 0 1 1 3008 IF 02 00 33 4001 IE: INS #2, нижи бајт РС на стек 16 4002 30 0 1 1 3008 IF 02 00 33 4002 IE: INS #2, нижи бајт РС на стек 17 0004 0E 1 0 1 XX0E IF 02 - 00 33 4002 IE: INS #2, нижи бајт РС на стек 18 0005 30 1 0 1 300E IF 02 - 00 33 4002 IE: INS #2, нижи бајт ис у нижи бајт РС 19 300E 46 1 0 1 300E 1 0 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002<	12	0007	33	1	0	1	3006	26	04	10	XX33	00		4000	мем. лок., TMP ₇₀ =MEM[0007]
14 3007 02 1 0 1 3008 1F 02 00 33 4000 IF: INS #2, други бајт инс. 15 4001 08 0 1 1 3008 1F 02 00 33 4001 IE: INS #2, SP=SP+1 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 00 33 4002 IF: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 00 33 4002 IF: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4001 IE: RTI, бајт са стека у виши бајт РС															
15 4001 08 0 1 1 3008 1F 02 00 33 4001 IE: INS #2, SP=SP+1 15 4001 08 0 1 1 3008 1F 02 00 33 4001 IE: INS #2, нижи бајт РС на стек 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4001 IE: RTI, бајт са стека у виши бајт РС 10 1 30XX 02 00 33 4001 IE: RTI, бајт са стека у виши бајт РС 18 100				1		1				-					1 0
15 4001 08 0 1 1 3008 1F 02 00 33 4001 IE: INS #2, нижи бајт РС на стек 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4001 IE: RTI, бајт са стека у виши бајт РС	14	3007	02	1	0	1	3008	1F	02	-	-	00	33		** *
16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, SP=SP+1 16 4002 30 0 1 1 3008 1F 02 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4001 IE: RTI, бајт са стека у виши бајт РС 18 1005 100 100 100 100 100 100 100 100 10															
16 4002 30 0 1 1 3008 1F 02 - 0004 00 - 00 33 4002 IE: INS #2, виши бајт РС на стек 17 0004 0E 1 0 1 XX0E 1F 02 - 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 - 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у нижи бајт РС 19 300E 46 1 0 1 300F 46 - 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 - 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 - 00 33 4001 IE: RTI, бајт са стека у виши бајт РС	15	4001	08	0	1	1	3008	1F	02	-	-	00	33		
17 0004 0E 1 0004 00 4002 IE: INS #2, израчунавање адресе улаза IV табели (0h+2*2=4h) 17 0004 0E 1 0 1 XX0E 1F 02 - - 00 33 4002 IE: INS #2, израчунавање адресе улаза IV табели (0h+2*2=4h) 18 0005 30 1 0 1 300E 1F 02 - - 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 19 300E 46 1 0 1 300F 46 - - 00 33 4002 IF: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 - - 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 - - 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 21 4002 30 1 0 1 30XX 02 - - 00<														4002	IE: INS #2, SP=SP+1
17 0004 0E 1 0 1 XX0E 1F 02 - - 00 33 4002 IE: INS #2, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 - - 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 - - 00 33 4002 IF: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 - - 00 33 4002 IE: ADD R2, R1, R270=R270+R170 20 300F 02 1 0 1 3010 02 - - 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 - - 00 33 4002 IE: RTI, бајт са стека у виши бајт РС	16	4002	30	0	1	1	3008	1F	02	-	-	00	33	4002	IE: INS #2, виши бајт РС на стек
17 0004 0E 1 0 1 XX0E IF 02 - 00 33 4002 прек. рутине и упис у нижи бајт РС 18 0005 30 1 0 1 300E 1F 02 - 00 33 4002 IE: INS #2, читање вишег бајта адресе прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 - 0 00 33 4002 IE: ADD R2, R1, први бајт инс. 20 300F 02 1 0 1 3010 02 - 0 00 33 4002 IE: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 - 0 00 33 4001 IE: RTI, бајт са стека у виши бајт РС 10 33 4001 IE: RTI, SP=SP-1											0004	00		4002	1 V Таоели (оп+2 * 2=4п)
18 0005 30 1 0 1 300E IF 02 - 00 33 4002 прек. рутине и упис у виши бајт РС 19 300E 46 1 0 1 300F 46 00 33 4002 Прек. рутине и упис у виши бајт РС 20 300F 02 1 0 1 3010 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 Прек. рутине и упис у виши бајт инс. 21 4002 30 1 0 1 30XX 02 - 00 30	17	0004	0E	1	0	1	XX0E	1F	02	-	-	00	33	4002	1 10 0
33 4002 IE: ADD R2, R1, R2 ₇₀ =R2 ₇₀ +R1 ₇₀ 20 300F 02 1 0 1 3010 02 00 33 4002 IF: RTI , први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI , бајт са стека у виши бајт РС 00 33 4001 IE: RTI , SP=SP-1				1		1			02	-	-				
20 300F 02 1 0 1 3010 02 00 33 4002 IF: RTI, први бајт инс. 21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 00 33 4001 IE: RTI, SP=SP-1	19	300E	46	1	0	1	300F	46	_	_		00	33	4002	IF: ADD R2, R1, први бајт инс.
21 4002 30 1 0 1 30XX 02 00 33 4002 IE: RTI, бајт са стека у виши бајт РС 00 33 4001 IE: RTI, SP=SP-1															
00 33 4001 IE: RTI , SP=SP-1				1	0				_	_	_				7 1 3
	21	4002	30	1	0	1			_	_		00	33	4002	IE: RTI , бајт са стека у виши бајт РС
22 4001 08 1 0 1 3008 C0 00 33 4001 IE: RTI баіт са стека у нижи баіт РС												00	33	4001	IE: RTI , SP=SP-1
1-1.001 00 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	22	4001	08	1	0	1	3008	C0	-	-	-	00	33	4001	IE: RTI , бајт са стека у нижи бајт РС
4000 IE: RTI , SP=SP-1															
23 3008 00 1 0 1 3009 00 00 33 4000 IF: HALT , први бајт	23	3008	00	1	0	1	3009	00	-	-	-	00	33		*
4000 IE: HALT , START=0															

Слика 17 Секвенца садржаја на магистрали

Извршавање програма почиње фазом *читање инструкције* (IF) прве инструкције **LOAD** R1, (1002h) на коју указује тренутна вредност 3000h садржаја програмског бројача $PC_{15..0}$. Прва инструкција је дужине три бајта који имају вредности 25h, 02h и 10h, а налазе се у локацијама меморије на адресама 3000h, 3001h и 3002h, респективно.

С обзиром да је ширина меморијске речи 8 битова, процесор из меморије чита бајт по бајт. Приликом читања прве инструкција процесор на магистрали генерише три циклуса читања из меморије. У првом циклусу читања процесор на линије адресне магистрале $ABUS_{15..0}$ пропушта вредност 3000h програмског бројача $PC_{15..0}$ како би са те адресе прочитао први бајт инструкције 25h. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1. Прочитани садржај 25h се појављује на линијама магистрале података $DBUS_{7..0}$ и уписује у разреде $IR_{23..16}$ прихватног регистра инструкције процесора, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3001h. На сличан начин се у другом и трећем циклусу читања са адреса 3001h и 3002h читају други и трећи бајт инструкције 02h и 10h, респективно. Прочитани садржаји се појављују на линијама магистрале података $DBUS_{7..0}$ и уписују у разреде $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3002h и 3003h, респективно.

У фази декодовања инструкције (ID) постоје три циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор најпре у два циклуса на магистрали из меморије чита два бајта 16-битне адресе операнда, а затим у трећем циклусу на магистрали чита и сам 8-битни операнд. Адреса операнда је 16-битна и заузима две суседне меморијске локације, при чему се нижи бајт адресе налази на нижој а виши бајт адресе на вишој адреси. Адреса меморијске локације на којој се налази нижи бајт адресе операнда дата је другим и трећим бајтом инструкције и налази се у разредима $IR_{15..8}$ (нижи бајт) и $IR_{7..0}$ (виши бајт) прихватног регистра инструкције. У прва два циклуса на магистрали процесор најпре из меморије са адресе 1002h чита садржај 06h, који представља нижи бајт адресе операнда, и уписује у разреде ТМР_{7..0}, а затим из меморије са адресе 1003h чита садржај 00h, који представља виши бајт адресе операнда, и уписује у разреде ТМР_{15..8}. У трећем циклусу на магистрали садржај 0006h прихватног регистра адресе операнда ТМР_{15..0} се користи као адреса меморијске локације са које се чита операнд чија је вредност 00h и уписује у разреде TMP_{7..0} прихватног регистра операнда. Пошто су у питању циклуси читања из меморије управљачки сигнали магистрале RD и M/IO имају вредност 1. Са XX је означено да је садржај разреда ТМР_{15..8} прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7:0}$ прихватног регистра операнда се уписује у регистар $R1_{7:0}$.

По завршетку фазе *извршавање операције* (IE) прве инструкције **LOAD** R1, (1002h) се прелази на фазу *читање инструкције* (IF) друге инструкције **LOAD** R2, (1004h). Друга инструкција је дужине три бајта који имају вредности 26h, 04h и 10h, а налазе се у меморији на адресама 3003h, 3004h и 3005h, респективно. Приликом читања друге инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова друге инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3004h, 3005h и 3006h, респективно.

У фази *декодовања инструкције* (ID) постоје три циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор најпре у два циклуса на магистрали из меморије чита два бајта 16-битне адресе операнда, а затим у трећем циклусу на магистрали чита и сам 8-битни операнд. Истим поступком као и у првој инструкцији најпре се са адреса 1004h и 1005h читају нижи бајт 07h и виши бајт 00h 16 битне адресе операнда и смештају у разреде $TMP_{7..0}$ и $TMP_{15..8}$, прихватног регистра адресе операнда, а затим се садржај 0007h прихватног регистра адресе операнда $TMP_{15..0}$ користи као адреса меморијске локације са које се чита операнд чија је вредност 33h и уписује у разреде $TMP_{7..0}$ прихватног регистра операнда. Пошто су у

питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1. Са XX је означено да је садржај разреда $TMP_{15..8}$ прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7:0}$ прихватног регистра операнда се уписује у регистар $R2_{7:0}$.

По завршетку фазе *извршавање операције* (IE) друге инструкције **LOAD** R2, (1004h) се прелази на фазу *читање инструкције* (IF) треће инструкције **INS** #2. Трећа инструкција је дужине два бајта који имају вредности 1Fh и 02h, а налазе се у меморији на адресама 3006h и 3007h, респективно. Приликом читања треће инструкције процесор на магистрали генерише два циклуса читања из меморије. Циклуси читања бајтова треће инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$ и $IR_{15..8}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3007h и 3008h, респективно.

Ова инструкција је нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) најпре се на стеку чува програмски бројач $PC_{15..0}$, а затим се из улаза два IV табеле чита адреса прекидне рутине и уписује у програмски бројач $PC_{15..0}$. Садржај регистра $PC_{15..0}$ смешта се на стек у два циклуса уписа на магистрали. Пошто SP указује на последњу заузету локацију и стек расте ка вишим адресама, најпре се SP инкрементира па се на адресу 4001h уписује нижи бајт $PC_{7..0}$ =08h, а затим се SP поново инкрементира па се на адресу 4002h уписује виши бајт $PC_{7..0}$ =30h. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1. Нижи бајт адресе прекидне рутине се налази у IV табели на адреси која се рачуна по формули

IVTP+i*size=0h+2*2=4h,

где је IVTP почетна адресе IV табеле, дата садржајем регистра IVTP, і број улаза у IV табелу, задат адресним делом инструкције софтверског прекида, а size број бајтова које заузима адреса прекидне рутине у IV табели. Виши бајт адресе прекидне рутине се налази у IV табели на првој следећој адреси. Стога се у два циклуса читања на магистрали, најпре са адресе 0004h чита вредност 0Eh и уписује у разреде $PC_{7..0}$, а затим са адресе 0005h и вредност 30h и уписује у разреде $PC_{15..8}$ програмског бројача $PC_{15..0}$. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) треће инструкције **INS** #2 се прелази на фазу *читање инструкције* (IF) четврте инструкције **ADD** R2, R1. Четврта инструкција је дужине јадан бајт који има вредности 46h, а налази се у меморији на адреси 300Eh. Приликом читања четврте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23:16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 300Fh.

Ова инструкција нема фазу *декодовање инструкције* (ID) јер се као изворишта и одредиште операнада имплицитно користе регистри опште намене.

У фази *извршавање операције* (IE) садржај 33h регистра опште намене $R2_{7..0}$ се сабира са садржајем 00h регистра опште намене $R1_{7..0}$ и добијена сума 33h уписује у регистар опште намене $R2_{7.0}$.

По завршетку фазе *извршавање операције* (IE) четврте инструкције **ADD** R2, R1 се прелази на фазу *читање инструкције* (IF) пете инструкције **RTI**. Пета инструкција је дужине јадан бајт који има вредности 02h, а налази се у меморији на адреси 300Fh. Приликом читања пете инструкције процесор на магистрали генерише један циклус

читања из меморије. Циклус читања једног бајта пете инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3010h.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) се реализују два циклуса читања на магистрали. Најпре се садржај SP, који указује на задњу заузету локацију на стеку, користи да се у првом циклусу читања на магистрали, са стека, са адресе 4002h, чита вредност 30h, која представља виши бајт адресе повратка из потпрограма, и уписује у виши бајт регистра PC, PC_{15..8}, па се затим садржај SP декрементира. Потом се, садржај SP, који указује на задњу заузету локацију на стеку, користи да се у другом циклусу читања на магистрали, са стека, са адресе 4001h, чита вредност 08h, која представља нижи бајт адресе повратка из потпрограма, и уписује у нижи бајт регистра PC, PC_{7..0}, па се затим садржај SP поново декрементира. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/IO имају вредност 1.

По завршетку фазе *извршавање операције* (IE) пете инструкције **RTI** се прелази на фазу *читање инструкције* (IF) шесте инструкције **HALT**. Шеста инструкција је дужине јадан бајт који има вредности 00h, а налази се у меморији на адреси 3008h. Приликом читања шесте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта шесте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3009h.

Инструкција **HALT** је безадресна инструкција, па се после фазе *читање инструкције* (IF) одмах прелази на фазу *извршавање операције* (IE) у оквиру које се зауставља процесор.

1.1.6 ЗАДАТАК

Посматра се процесор описан у задатку 1.1.1.

Садржај дела оперативне меморије је приказан на слици 18, при чему су све вредности дате у хексадецималном облику.

Адреса	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	
Садржај	37	A1	00	08	2A	30	40	00	56	07	00	
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
Адреса	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	100A	•••
Садржај	00	30	06	00	40	08	40	00	40	05	00	•••
			•••	•••				•••				•••
Адреса	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	300A	
Садржај	82	00	02	8F	02	1F	03	00	00	25	03	
Адреса	4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	400A	•••
Садржај	60	00	08	04	02	01	50	03	00	17	00	

Слика 18 Садржај дела меморије

а) Навести секвенцу садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали при извршавању програма приказаног на слици 19.

Претпоставити да се током извршавања овог програма генерише само прекид изазван инструкцијом софтверског прекида INS. Инструкција INS је тако реализована да се у фази извршавање операције (IE) на најпре на стек ставља садржај програмског бројача PC, а затим на основу броја улаза у IV табелу, датог адресним делом инструкције INS, и почетне адресе IV табеле, дате садржајем регистра IVTP, добија адреса улаза у IV табели из кога се чита адреса прекидне рутине и уписује у PC. Стога се приликом извршавања инструкција пролази само кроз фазе читање инструкције (IF), декодовање инструкције (IF) и извршавање операције (IE), а не и кроз фазу опслуживање прекида (IS).

Претпоставити да је пре почетка извршавања главног програма SP=6036h, IVTP=0h и PC=3000h.

```
адреса инструкција
                        коментар
;главни програм
3000h LOAD (02h)
                        ; memorijski indirektno adresiranje
                         ACC = MEM[02h]
3003h AND #2
                        ;neposredno adresiranje
                        ACC = ACC \& 2
3005h INS #3
                        ; softverski prekid
3007h HALT
                        ; zaustavljanje procesora
3008h ...
;прекидна рутина
                        ; ACC=IO[8h]
4000h IN 8h
                        ; povratak iz prekidne rutine
4003h RTI
4004h ...
```

Слика 19 Програм

Решење:

а) Секвенца садржаја на адресној магистрали, магистрали података и управљачкој магистрали за сваки циклус на магистрали је приказана у табели са слике 20. У табели се користе исте ознаке као и у табели са слике 4 из задатка 1.1.1, при чему се јавља и колона $SP_{15..0}$ - указивач на врх стека након ажурирања његовог садржаја.

P6	ABUS ₁₅₀	DBUS ₇₀	RD	WR	M/IO	PC _{15.0}	IR ₂₃₁₆	IR_{158}	$ m IR_{70}$	TMP_{150}	ACC ₇₀	\mathbf{SP}_{150}	Коментар
	AB	DB	, ,		2		II	П	I	T.	Υ	S	
	-	-	-	-	-	3000	-	-	-	-	-	6036	
1	3000	82	1	0	1	3001		-	-	-	-		IF: LOAD (02h), први бајт инс.
2	3001	00	1	0	1	3002			-	-	-		IF: LOAD (02h), други бајт инс.
3	3002	02	1	0	1	3003	82	00	02	-	-	6036	IF: LOAD (02h), трећи бајт инс.
4	0002	00	1	0	1	3003	82	00	02	00XX	-	6036	ID: LOAD (02h), формирање адресе опрнд читање вишег бајта, TMP _{15.8} =MEM[0002]
5	0003	08	1	0	1	3003	82	00	02	0008	-	6036	ID: LOAD (02h), формирање адресе опрнд - читање нижег бајта, TMP _{7.0} =MEM[0003]
6	0008	56	1	0	1	3003	82	00	02	XX56	-	6036	ID: LOAD (02h), читање опрнд. из мем. лок., TMP _{7.0} =MEM[0008]
											56	6036	IE: LOAD (02h), ACC ₇₀ =TMP ₇₀
7	3003	8F	1	0	1	5004	8F	-	_	-			IF: AND #2h, први бајт инс.
8	3004	02	1	0	1	5005	8F	02	-	-			IF: AND #2h, други бајт инс.
										XX02			ID: AND #2h, читање опрнд. из прихв. рег. инс., TMP ₇₀ = IR ₁₅₈
											02	6036	IE: AND #2h, ACC ₇₀ =ACC ₇₀ &TMP ₇₀
9	3005	5F	1	0	1	3006	5F	-	_	_			IF: INS #3h, први бајт инс.
10	3006		1	0	1	3007			_	_			IF: INS #3h, други бајт инс.
11	6036		0	1	1	3007			-	_	02		IE: INS #3h, нижи бајт РС на стек
													IE: INS #3h, SP=SP-1
12	6035	30	0	1	1	3007	5F	03	_	-	02		IE: INS #3h, виши бајт РС на стек
													IE: INS #3h, SP=SP-1
										0006	02	6034	IE: INS #3h, израчунавање адресе улаза 3 у IV табели (0h+3*2=6h)
13	0006	40	1	0	1	40XX	5F	03	-	-	02	6034	IE: INS #3h, читање вишег бајта адресе прек. рутине и упис у виши бајт РС
14	0007	00	1	0	1	4000	5F	03	-	-	02	6034	IE: INS #3h, читање нижег бајта адресе прек. рутине и упис у нижи бајт РС
15	4000	60	1	0	1	4001	60	-	_	_	02	6034	IF: IN 8h, први бајт инс.
16	4001	00	1	0	1			00	_	-	02		IE: IN 8h, други бајт инс.
17	4002	08	1	0	1	4003			08	-	02		IF: IN 8h, трећи бајт инс.
										0008	02		IF: IN 8h, формирање адресе опрнд., TMP ₁₅₈ = IR ₁₅₈ , TMP ₇₀ = IR ₇₀
18	0008	56	1	0	0	4003	60	00	08	XX56	02	6034	ID: IN 8h, читање опрнд. из уи рег. TMP ₇₀ =UI[0008]
											56	6034	IE: IN 8h , ACC ₇₀ =TMP ₇₀
19	4003	04	1	0	1	4004	04	-	-	-			IF: RTI , први бајт инс.
													IE: RTI , SP=SP+1
20	6035	30	1	0	1	30XX	04	-	-	-	56		IE: RTI, бајт са стека у виши бајт РС
													IE: RTI , SP=SP+1
21	6036	07	1	0	1	3007	04	-	-	-	56	6036	IE: RTI , бајт са стека у нижи бајт РС
22	3007	00	1	0	1	3008	00		_	_	56	6036	IF: HALT , први бајт инс.
													IE: HALT, START=0

Слика 20 Секвенца садржаја на магистрали

Извршавање програма почиње фазом *читање инструкције* (IF) прве инструкције **LOAD** (2h) на коју указује тренутна вредност 3000h садржаја програмског бројача PC_{15..0}. Прва инструкција је дужине три бајта који имају вредности 82h, 00h и 02h, а налазе се у локацијама меморије на адресама 3000h, 3001h и 3002h, респективно. С обзиром да је ширина меморијске речи 8 битова, процесор из меморије чита бајт по

бајт. Приликом читања прве инструкција процесор на магистрали генерише три циклуса читања из меморије. У првом циклусу читања процесор на линије адресне магистрале $ABUS_{15..0}$ пропушта вредност 3000h програмског бројача $PC_{15..0}$ како би са те адресе прочитао први бајт инструкције 82h. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1. Прочитани садржај 82h се појављује на линијама магистрале података $DBUS_{7..0}$ и уписује у разреде $IR_{23..16}$ прихватног регистра инструкције процесора, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3001h. На сличан начин се у другом и трећем циклусу читања са адреса 3001h и 3002h читају други и трећи бајтови бајт инструкције 00h и 02h, респективно. Прочитани садржаји се појављује на линијама магистрале података $DBUS_{7..0}$ и уписује у разреде $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3002h и 3003h, респективно.

У фази декодовања инструкције (ID) постоје три циклуса на магистрали, јер због коришћења меморијског индиректног адресирања процесор најпре у два циклуса на магистрали из меморије чита два бајта 16-битне адресе операнда, а затим у трећем циклусу на магистрали чита и сам 8-битни операнд. Адреса операнда је 16-битна и заузима две суседне меморијске локације, при чему се нижи бајт адресе налази на вишој а виши бајт на нижој адреси. Адреса меморијске локације на којој се налази виши бајт адресе операнда дата је другим и трећим бајтом инструкције и налази се у разредима $IR_{15..8}$ (виши бајт) и $IR_{7..0}$ (нижи бајт) прихватног регистра инструкције. У прва два циклуса на магистрали процесор најпре из меморије са адресе 0002h чита садржај 00h, који представља виши бајт адресе операнда, и уписује у разреде ТМР_{15.8}, а затим из меморије са адресе 0003h чита садржај 08h, који представља нижи бајт адресе операнда, и уписује у разреде ТМР_{7..0}. У трећем циклусу на магистрали садржај 0008h прихватног регистра адресе операнда ТМР_{15 0} се користи као адреса меморијске локације са које се чита операнд чија је вредност 56h и уписује у разреде ТМР_{7..0} прихватног регистра операнда. Пошто је у питању циклуси читања из меморије управљачки сигнали магистрале RD и M/IO имају вредност 1. Ca XX је означено да је садржај разреда ТМР_{15:8} прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7..0}$ прихватног регистра операнда се уписује у регистар $ACC_{7.0}$.

По завршетку фазе *извршавање операције* (IE) прве инструкције **LOAD** (2h) се прелази на фазу *читање инструкције* (IF) друге инструкције **AND** #2h. Друга инструкција је дужине два бајта који имају вредности 8Fh и 02h, а налазе се у меморији на адресама 3003h и 3004h. Приликом читања друге инструкције процесор на магистрали генерише два циклуса читања из меморије. Циклуси читања бајтова друге инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23:16}$ и $IR_{15:8}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3004h и 3005h, респективно.

У фази *декодовање инструкције* (ID) нема циклуса на магистрали, јер је операнд због коришћења непосредног адресирања специфициран другим бајтом инструкције и налази се у разредима $IR_{15..8}$ прихватног регистра инструкције. Фаза *декодовања инструкције* (ID) се састоји у пребацивању операнда чија је вредност 02h из разреда $IR_{15..8}$ прихватног регистра инструкције у разреде $TMP_{7..0}$ прихватног регистра операнда. Са XX је означено да је садржај разреда $TMP_{15..8}$ прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) се примењује логичка И операција над садржајима акумулатора $ACC_{7..0}$ и разреда $TMP_{7:0}$ прихватног регистра операнда и резултат уписује у акумулатор $ACC_{7:0}$.

По завршетку фазе *извршавање операције* (IE) друге инструкције **AND** #2h се прелази на фазу *читање инструкције* (IF) треће инструкције **INS** #3. Трећа инструкција је дужине два бајта који имају вредности 1Fh и 03h, а налазе се у меморији на адресама 3005h и 3006h, респективно. Приликом читања треће инструкције процесор на магистрали генерише два циклуса читања из меморије. Циклуси читања бајтова треће инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$ и $IR_{15..8}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3006h и 3007h, респективно.

Ова инструкција је нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) најпре се на стеку чува програмски бројач $PC_{15..0}$, а затим се из улаза 3 IV табеле чита адреса прекидне рутине и уписује у програмски бројач $PC_{15..0}$. Садржај регистра $PC_{15..0}$ смешта се на стек у два циклуса уписа на магистрали. Пошто SP указује на прву слободну локацију и стек расте ка нижим адресама, најпре се на адресу 6036h уписује нижи бајт PC, $PC_{7..0}$ =07h па се SP декрементира, а затим се на адресу 6035h уписује виши бајт PC, $PC_{15..8}$ =30h па се SP декрементира на вредност 6034h. Пошто је у питању циклус уписа у меморију управљачки сигнали магистрале WR и M/\overline{IO} имају вредност 1. Виши бајт адресе прекидне рутине се налази у IV табели на адреси која се рачуна по формули

IVTP+i*size=0h+2*3=6h,

где је IVTP почетна адресе IV табеле, дата садржајем регистра IVTP, і број улаза у IV табелу, задат адресним делом инструкције софтверског прекида, а size број бајтова које заузима адреса прекидне рутине у IV табели. Нижи бајт адресе прекидне рутине се налази у IV табели на првој следећој адреси. Стога се у два циклуса читања на магистрали, најпре са адресе 0006h чита вредност 40h и уписује у разреде $PC_{15..8}$, а затим са адресе 0007h и вредност 00h и уписује у разреде $PC_{7..0}$ програмског бројача $PC_{15..0}$. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и M/\overline{IO} имају вредност 1.

По завршетку фазе *извршавање операције* (IE) треће инструкције **INS** #3 се прелази на фазу *читање инструкције* (IF) четврте инструкције **IN** 8h. Четврта инструкција је дужине три бајта који имају вредности 60h, 00h и 08h, а налазе се у меморији на адресама 4000h, 4001h и 4002h, респективно. Приликом читања четврте инструкције процесор на магистрали генерише три циклуса читања из меморије. Циклуси читања бајтова четврте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитане вредности се уписују у разреде $IR_{23..16}$, $IR_{15..8}$ и $IR_{7..0}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 4001h, 4002h и 4003h, респективно.

У фази *декодовања инструкције* (ID) постоји један циклус на магистрали, јер процесор због коришћења у/и директног адресирања у једном циклусу на магистрали из улазно/излазног адресног простора чита 8 битни операнд. Најпре се адреса регистра из улазно/излазног адресног простора, чија је вредност 0008h и која је дата другим и трећим бајтом инструкције из разреда $IR_{15..8}$ (виши бајт) и $IR_{7..0}$ (нижи бајт), пребацује у разреде $TMP_{15..8}$ и $TMP_{7..0}$ прихватног регистра адресе операнда, респективно. Затим се у циклусу на магистрали садржај 0008h прихватног регистра адресе операнда $TMP_{15..0}$ користи као адреса регистра из улазно/излазног адресног простора са које се чита операнд чија је вредност 56h и уписује у разреде $TMP_{7..0}$ прихватног регистра операнда. Пошто је у питању циклус читања из регистра улазно/излазног адресног простора управљачки сигнали магистрале RD и M/\overline{IO} имају вредности 1 и 0, респективно. Са XX је означено да је садржај разреда $TMP_{15..8}$ прихватног регистра операнда недефинисан.

У фази *извршавање операције* (IE) садржај разреда $TMP_{7:0}$ прихватног регистра операнда се уписује у регистар $ACC_{7:0}$.

По завршетку фазе *извршавање операције* (IE) четврте инструкције **IN** 8h се прелази на фазу *читање инструкције* (IF) пете инструкције **RTI**. Пета инструкција је дужине јадан бајт који има вредности 04h, а налази се у меморији на адреси 4003h. Приликом читања пете инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта пете инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 4004h.

Ова инструкција нема фазу декодовање инструкције (ID).

У фази *извршавање операције* (IE) се реализују два циклуса читања на магистрали. Најпре се садржај SP, који указује на прву слободну локацију на стеку инкрементира, па се користи да се у првом циклусу читања на магистрали, са стека, са адресе 6035h, чита вредност 30h, која представља виши бајт адресе повратка из потпрограма, и уписује у виши бајт регистра PC, $PC_{15..8}$, па се затим садржај SP инкрементира. Потом се, садржај SP користи да се у другом циклусу читања на магистрали, са стека, са адресе 6036h, чита вредност 07h, која представља нижи бајт адресе повратка из потпрограма, и уписује у нижи бајт регистра PC, $PC_{7..0}$. Пошто је у питању циклус читања из меморије управљачки сигнали магистрале RD и $M/\overline{10}$ имају вредност 1.

По завршетку фазе *извршавање операције* (IE) пете инструкције **RTI** се прелази на фазу *читање инструкције* (IF) шесте инструкције **HALT**. Шеста инструкција је дужине јадан бајт који има вредности 00h, а налази се у меморији на адреси 3007h. Приликом читања шесте инструкције процесор на магистрали генерише један циклус читања из меморије. Циклус читања једног бајта шесте инструкције се реализују на идентичан начин као и циклуси читања бајтова прве инструкције. Прочитана вредност се уписује у разреде $IR_{23..16}$ прихватног регистра инструкције, а садржај програмског бројача $PC_{15..0}$ инкрементира на 3008h.

Инструкција **HALT** је безадресна инструкција, па се после фазе *читање инструкције* (IF) одмах прелази на фазу *извршавање операције* (IE) у оквиру које се зауставља процесор.