Polynomial Betti numbers

Alexandra Seceleanu (with L. Avramov and Z. Yang)

University of Nebraska-Lincoln

The problem

Setup:

- R local (or graded) ring
- M R-module
- $\beta_i^R(M) i^{th}$ total Betti number of M
- $P_M^R(t) = \sum \beta_i^R(M) t^i$ Poincaré series of M

Phylosophy:

- the first few Betti numbers of M reflect properties of M
- the long-term behavior of Betti numbers of R-modules reflects the properties of R

Some classical examples

The long-term behavior of Betti numbers of R-modules reflects the properties of R:

Auslander-Buchsbaum-Serre:

$$\beta_i^R(M) = 0, \forall M, i \gg 0 \iff R \text{ is regular}$$

• Eisenbud:

$$\beta_i^R(M) = \text{constant}, \forall M, i \gg 0 \iff R \text{ is a hypersurface}$$

The question

Question

What rings R have the property that for all modules M, the Betti numbers $\beta_i^R(M)$ are given by a polynomial in i for $i \gg 0$?

The question

Question

What rings R have the property that for all modules M, the Betti numbers $\beta_i^R(M)$ are given by a polynomial in i for $i \gg 0$?

Equivalently

Question

What rings R have the property that for each module M there is a polynomial $p_M(t)$ and $c_M \in \mathbb{N}$ such that $P_M^R(t) = \frac{p_M(t)}{(1-t)^{c_M}}$.

We say R has polynomial Betti numbers if it is as above.

Polynomial growth for Betti numbers

Gulliksen:

Betti numbers over R are bounded by polynomials $\implies R$ is a CI.

In this case $\beta_{2i}^R(M)$ and $\beta_{2i+1}^R(M)$ are given by two polynomials.

Example

$$R = k[x, y]/(x^{3}, y^{3}), M = R/(x, y)^{2}$$
$$\beta_{i}^{R}(M) = \begin{cases} \frac{3}{2}i + 1, & \text{if i is even} \\ \frac{3}{2}i + \frac{3}{2}, & \text{if i is odd} \end{cases}$$

More about Poincaré series over Cl's

- If R is a CI, then $Ext_R^{\bullet}(M,k)$ is a $k[\chi_1,\ldots,\chi_c]$ -module with
 - $deg(\chi_i) = 2$
 - $c = \operatorname{codim}(R)$
- Thus

$$P_M^R(t) = H\left(Ext_R^{\bullet}(M,k)\right) = \frac{p_M(t)}{(1-t^2)^c}$$

If R has polynomial Betti numbers, then $(1+t)^c \mid p_M(t)$ for all M.

Main result – I

Let $R = P/(f_1, f_2, \dots, f_c)$ be a CI (c = codimR).

Avramov If R has polynomial Betti numbers, then $f_1,\ldots,f_{c-1}\in m^2\setminus m^3$.

Main result - I

Let
$$R = P/(f_1, f_2, \dots, f_c)$$
 be a CI $(c = \text{codimR})$.

Avramov If R has polynomial Betti numbers, then $f_1, \ldots, f_{c-1} \in m^2 \setminus m^3$.

Theorem (Avramov-S.-Yang: Sufficient conditions)

(i) Assume R is graded. Then R has polynomial Betti numbers if

$$\deg(f_1) = \deg(f_2) = \ldots = \deg(f_{c-1}) = 2$$

(ii) Assume R is local. Then R has polynomial Betti numbers if

$$f_1, f_2, \dots, f_{c-1} \in m^2 \setminus m^3$$

and their images in gr(P)

$$f_1^*, f_2^*, \dots, f_{c-1}^* \in \frac{m^2}{m^3}$$
 form a regular sequence.

Sufficient conditions sketch

- Let $R = P/(f_1, f_2, \dots, f_c)$ be a CI and M an R-module
- The hypothesis $e(P/(f_1, f_2, ..., f_{c-1})) = 2^{c-1}$
- We can adjust to having $R = P/(g_1, g_2, \dots, g_c)$ such that
 - $Q = P/(g_1, g_2, \dots, g_{c-1})$ has $e(Q) = 2^{c-1}$ (min. mult.) and
 - $P_M^R(t) = \frac{P_M^Q(t)}{(1-t^2)} + \text{a polynomial } (\chi_C \text{ almost regular on } Ext_R^{\bullet}(M,k)).$
- $P_M^Q(t) = \frac{p_Q(t)}{(1-t)^{c-1}}$ with $(1+t) \mid p_Q(t)$ (Avramov, Şega)
- Now $P_M^R(t) = \frac{P_M^Q(t)}{(1-t^2)} = \frac{P_Q(t)}{(1-t)^c(1+t)} = \frac{P_M(t)}{(1-t)^c}$.

Main result - II

Let
$$R = P/(f_1, f_2, \dots, f_c)$$
 be a CI $(c = \text{codimR})$

Theorem (Avramov-S.-Yang: Necessary & sufficient conditions)

(i) Assume R is graded. Then R has polynomial Betti numbers iff

$$\deg(f_1) = \deg(f_2) = \ldots = \deg(f_{c-1}) = 2$$

(ii) Assume R is local and $c \le 4$. Then R has polynomial Betti numbers iff $f_1, f_2, \ldots, f_{c-1} \in m^2 \setminus m^3$ and the initial forms $f_1^*, f_2^*, \ldots, f_{c-1}^* \in \operatorname{gr}(P)$ form a regular sequence.

Necessary conditions sketch

When R doesn't satisfy our conditions, we produce explicit modules without polynomial Betti numbers: $c \le 4$, $I_2^* = (f_1^*, f_2^*, f_3^*) \subset gr(P)$

- ullet if $I_2^*\subset (\ell_1,\ell_2)$ then set $M=R/(m^2+(\ell_1,\ell_2))$
- if $I_2^* \subset (\ell, q)$ then set $M = R/(m^2 + (\ell))$
- if $I_2^* \subset (T.C.)$ then set $M = R/(m^3 + (T.C.))$

Compute $P_M^R(t)$ explicitly and check that M exhibits non-polynomial Betti numbers.

New formula for Golod rings

Theorem (Avramov-S.-Yang)

If R is a CI and S is a Golod ring with $\varphi: R \twoheadrightarrow S$, then

$$P_{S}^{R}(t) = \frac{(1+t)((1-t^{2})^{a}-1)+tP_{S}^{Q}(t)}{t(1-t)^{c}(1+t)^{c-b}},$$

where

- Q → S minimal Cohen presentation
- b = rank of the linear part of $Ker(\varphi)$
- a stems from comparing Cohen presentations for R and S