Tutorial Problems set-II

Note: All these problems can be solved using the updated slides.

[0.0.1] *Exercise* Find a necessary and sufficient condition for $\langle x, y \rangle = \sum_{i=1}^{n} \alpha_i x_i y_i$ to be an inner product on \mathbb{R}^n .

[0.0.2] Exercise Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f_A(x,y) = y^t A x$, where $x,y \in \mathbb{R}^2$. Show that f_A is an inner product on \mathbb{R}^2 if and only if $A = A^t$, $a_{11} > 0$, $a_{22} > 0$ and det(A) > 0.

[0.0.3] *Exercise* Let \mathbb{V} be a finite-dimensional vector space and let $B = \{u_1, \ldots, u_n\}$ be a basis for \mathbb{V} . Let $\langle x, y \rangle$ be an inner product on \mathbb{V} . If c_1, \ldots, c_n are any n scalars, show that there is exactly one vector x in \mathbb{V} such that $\langle x, u_1 \rangle = c_i$ for $i = 1, \ldots, n$.

[0.0.4] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be an inner product space. Show that $\langle x, y \rangle = 0$ for all $y \in \mathbb{V}$, then x = 0.

[0.0.5] *Exercise* Show that $\langle x, y \rangle = \sum_{i=1}^{n} \overline{x_i} y_i$ is not an inner product on \mathbb{C}^n .

[0.0.6] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be a finite inner product space. Prove that for $v \in \mathbb{V} - \{0\}$, the set $W = \{w \in \mathbb{V} : \langle w, v \rangle = 0\}$ is a subspace of \mathbb{V} of dimension $\text{DIM } \mathbb{V} - 1$.

[0.0.7] Exercise Decide which of the following functions define an inner product \mathbb{C}^2 . For $x = (x_1, y_1)$, $y = (y_1, y_2)$.

1.
$$\langle x, y \rangle = x_1 \overline{y_2}$$

$$2. \langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}$$

3.
$$\langle x, y \rangle = x_1 y_1 + x_2 y_2$$

4.
$$\langle x, y \rangle = 2x_1\overline{y_1} + i(x_2\overline{y_1} - x_1\overline{y_2}) + 2x_2\overline{y_2}$$