Clase 4:

Métodos numéricos 2D

Métodos numéricos 2D

- Motivación en el marco de la materia
- Métodos de integración 2D (problemas de valor inicial)
 - Euler
 - Runge-Kutta orden 4 (RK4)
 - Odeint y solve_ivp (Scipy)
- Vamos a ver en el Colab
- Bibliografía

Motivación en el marco de la materia

Sistemas dinámicos, autónomos, unidimensionales, regidos por ODE

$$\dot{x} = dx/dt = f(x) \longrightarrow$$
 campo vector

Buscamos puntos fijos y estudiamos su estabilidad

$$\dot{x}=f(x)=0$$
 \longrightarrow raíces de f(x) $\left.rac{df}{dx}
ight|_{x^*}=f'(x^*)$ \longrightarrow derivada numérica (linearización)

Resolvimos integrando numéricamente (problema del valor inicial)

$$x(t)$$
 \longrightarrow solución \longrightarrow trayectoria

Motivación en el marco de la materia

Métodos de integración 2D

Tenemos el sistema

$$\dot{x} = f(t, x, y)$$

 $\dot{y} = g(t, x, y)$

$$rac{dec{x}}{dt}=ec{f}(t,ec{x})$$

Euler

$$egin{aligned} x_{n+1} &= x_n + h f(t_n, x_n, y_n) \ y_{n+1} &= y_n + h g(t_n, x_n, y_n) \end{aligned}$$

$$ec{x}_{n+1} = ec{x}_n + hec{f}(t_n,ec{x}_n)$$

RK4

$$ec{x}_{n+1} = ec{x}_n + rac{h}{6}(ec{K}_1 + 2ec{K}_2 + 2ec{K}_3 + ec{K}_4)$$

$$ec{K}_1 = ec{f} \left(t_n, ec{x}_n
ight) \ ec{K}_2 = ec{f} \left(t_n + rac{h}{2}, ec{x}_n + rac{h}{2} ec{K}_1
ight) \ ec{K}_3 = ec{f} \left(t_n + rac{h}{2}, ec{x}_n + rac{h}{2} ec{K}_2
ight) \ ec{K}_4 = ec{f} \left(t_n + h, ec{x}_n + h ec{K}_3
ight)$$

Odeint (LSODA)

scipy.integrate.solve_ivp (RK45)

Vamos a hacer en el Colab

- Generalizar métodos de integración numérica
- Funciones integradas en paquetes (Scipy)
- Integrar hacia atrás
 - Para qué piensan que puede servir?
- Graficar campo vector, visualización
- Nulclinas
- Puntos fijos y estabilidad
- Variedades invariantes
- Ciclos límite

Sistemas dinámicos 2D

Bibliografía recomendada

Mindlin 2018

Strogatz 1994

Lynch 2018

