

SEQUENCE LISTING

<110> DUBENSKY Jr., Thomas W.
BROCKSTEDT, Dirk G.
BAHJAT, Keith
HEARST, John E.
COOK, David

<120> MODIFIED FREE-LIVING MICROBES, VACCINE
COMPOSITIONS AND METHODS OF USE THEREOF

<130> 282172002800

<140> Not Yet Assigned
<141> 2004-02-06

<150> US 60/446,051
<151> 2003-02-06

<150> US 60/449,153
<151> 2003-02-21

<150> US 60/490,089
<151> 2003-07-24

<150> US 60/511,869
<151> 2003-10-15

<150> Not Yet Assigned
<151> 2004-02-02

<160> 52

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 8
<212> PRT
<213> Murine

<400> 1
Ser Ile Ile Asn Phe Glu Lys Leu
1 5

<210> 2
<211> 12
<212> PRT
<213> Listeria monocytogenes

<400> 2
Asn Glu Lys Tyr Ala Gln Ala Tyr Pro Asn Val Ser
1 5 10

<210> 3
<211> 9
<212> PRT
<213> Murine

<400> 3
Val Ala Tyr Gly Arg Gln Val Tyr Leu
1 5

<210> 4
<211> 8
<212> PRT
<213> Herpes simplex virus

<400> 4
Ser Ser Ile Glu Phe Ala Arg Leu
1 5

<210> 5
<211> 2915
<212> DNA
<213> Listeria monocytogenes

<400> 5
atcacgaaaa atcccgctta tattttgaat aagcgggatt ttgatttattt tttcttagct 60
gttgcattc gttctccgt gcgttctta tcgcgttcta aaattggttt caagtattta 120
cctgtataag atttttttga gcgagcgatt ttttcaggtg tgccgggtgc aataatttg 180
ccgccaccat cgccacccctc tggacctaaa tcaatcaagt aatcagctg tttgataacg 240
tcaagattat gctcaataac aagtactgta tcgcattct ctttctacaag tctttgtaat 300
acttttagta aacgaccaat atcatctgog tggagtccgg tagttgggtc atccagaata 360
tagaaagatt ttccgttact acgttttatga agttccgaag ctatgttgc ggcgtgcgc 420
tcaccacctg aaagcgttagt tcgcagggtt ccaagtgcga tatagccaag accaacatct 480
acaatttgtt gaagtttacg cgcattctt gggttgggtgg tgaaatattc tagtccttcc 540
tctacagtca ttcttaatac tttagcaata tttttgcctt tataacgaa atcttaacgtc 600
tcaccattgt atcggtttcc atgacaaaact tcacagggtt catatacattc aggcaagaaa 660
tgcatttcaa ttttgcattat tccgtcgccct ttacacgcctt cgcaacggcc accttttacg 720
ttaaaaactaa agcgacctt ttataaaccg cgaactttgg cttcatttagt acttgcgaaa 780
aggtcacgaa tatcatcgaa agctcctgtt taagtagctg gattcgatct cgggtttctt 840
ccgattgggtt attgggtcaat attgataatt ttttttaggt tttcgatgcc ttttattttct 900
tttgttgcac ctgggtttcgtt tttttttcgtt tccgtcaacgc ttttcgcagt 960
acttcattca ctaacgaact ttacacgtt cctgaaactc cagttacaca ggaaaaagta 1020
gcttagtgaa tttttgcatt tacgtttttg agattatttg ctttagcacc aataatttct 1080
aattcttagtc cgttacctt tctacgttta gcaggactg gaataaaattt tttacctgaa 1140
agatagtcac cagtgtatggaa atttttatttta ttggcaactt cttctgggtt tccggctgca 1200
acaattcgtc cggccgtttc tccgtcaccc ggaccaatataaataaagata atctgcggcc 1260
atcatcgat tttcgatcgat tccgtcaacgc ataaggctgtt ttccaaatgtc acgcataactt 1320
tggagtgtgc tgattaaacg atcattatct cgttgcatttgc gaccgtatggaa aggttcatct 1380
aaaatataaa gtacaccgt aagtctggaa ccgatttgcgtt tagcaagtcg aattcgttgc 1440
gcttcgcccac cagaaagcgtt cccagctgca cggctcatttgc ttaggtatgc gagccaaaca 1500
tttttttaaga agccttagtct agcacaact tctttggaaa ttggcgctgc aatttgcgtt 1560
tctttttcgtt atagttctaa gccatcgaaag aaagcaagtgc cttcattaaat agaaaaactca 1620

ctgatttgcc caatatgatg gtcgttact ttaacggaaa gtgtttctc ttttagacga 1680
 tagccttac aagatggaca tggtaaatca gtcataattt gcgcatttg atcgctgtg 1740
 aaatcggaat ttgttcacg atagcgacgt tcgatattt gaagtatccc ttcaaacgga 1800
 atccacgtt cgcgtgtcat accgaaatca tttttgtatt cgaagtagaa ttcttatct 1860
 tttgatccat taaaataat atctaattct tctttggata gcttctcaag aggtgtatcc 1920
 atatctattc caaattctt acaggcagaa gctagattt gcgggttagta ctgtgaacta 1980
 attggcgcc aaggaataat agcaccttca tttagagaca tacttctatc aggaataacc 2040
 gtgtcgacat cgacttcaag tttagtcccc agtccatcac atgtggggca agcgc当地 2100
 gggctgttga aagagaacat tcttggttct aattcaccaa cggaaaaacc acaataaggg 2160
 cacgcatagt gttcactaaa taataattct ttatccccca ttatataaac aaccgcataa 2220
 ccatcagcta aacgaagagc agttcaatg gaatcataca gacgagtatt gatgccctct 2280
 ttaatcacaa tgcgatcaat aatgatttca atagaatgt ttttgtttt ctcaatttca 2340
 atttcgtcat tgatatcata aatttcttca tcaacacgaa ttcgaacata tccttcttt 2400
 ttgatttcct caatagttt ctatgtgtc ctttttttac cagaaacgat tggagccatt 2460
 atttgaatac gtgttttgc tgggtattct agaacacgat ctaccattt ttcgattgtt 2520
 tgagaagtga tttcaatacc gtgatttggaa caaaccggat gcccaacacg agcataaaagt 2580
 aagcgcaaat agtcatggat ttctgttaact gtcccaacag tggaaacgtgg attacggctt 2640
 gttgtttttt gatcaatcga aatggcaggg cttaatcctt caattaaatc cacatctgg 2700
 ttatccattt gccc当地aaaa ttggcgtgca tatgcccaca aagactctac ataacgtctt 2760
 tgccttctg cataaaatcgt atcaaaagca agcgaagatt tacctgaacc tgaagccca 2820
 gtcataacta ctaatttgc tcttaggaatc tctacatcaa tttttttaa gttatggct 2880
 cttgcaccctt gaattactat tttctcttta tccaa 2915

<210> 6
 <211> 1991
 <212> DNA
 <213> Listeria monocytogenes

<400> 6

tcatccttcc gcttttattt ccagtaaaggc atcgcaagt tcagcagcac gttcgaaatc 60
 aagtgcatttta gctgcttctt tcatttcattt ttccataacct tcaatgaata catcgcttc 120
 tttcttagac atttgttta aatcatgttgc cttcaactgt tctttttcat ctggc当地 180
 agtcgctgca atgataccac gaatttctt tttgattgtt tttggcgtaa tgccgtttt 240
 ttatattat tcaatttggaa ttttacgacg gcttctgtt tcgccaatag aatttgc当地 300
 cgaatcggtc attttacatg catacatgat tactcgaccg ttttattttc gagcagctcg 360
 acccatttgc tgaatttggaa aacgctcgaa acgaaggaat ctttcttttgc cgc当地 420
 aatagcgaca agagataactt caggttaatc gattcatttca cgaagtaatg taatttccaa 480
 gataacatca tacacaccaa gtcgaagggtc acgaatgtt tcgatttcgtt cgagcgtt 540
 cacttccgag tggagataact gtacttttac accagtttctt ttgagatgtt tggtaatc 600
 ctcggacatt tttttcgatc agtgggtatc taaaacacgt tcatttttctt cgacgc当地 660
 gttaatctca tccattaatgtt catcaatttgc tcatttgcattt ggacggattt ctacattttt 720
 gtcttagcaag ccagttggc gaatgatttgc ttcaatgaca tctggattttt tttcttaattt 780
 gtaagggcct ggtgtacgg atataaaatc aatttgcattt atatgttttcaaaatttcc 840
 taaacgaaac ggc当地attt cttagagcgat aggcaatcta aagccatgtt caactagcat 900
 ttgtttctg gcttggccc cgttaaacat accacgaaattt tgccgc当地tgc当地 960
 ctcattcaattt accatttggaa aatcatgttgc gaagtaatcgtt agtaacgtt atgggttaac 1020
 tcccgctgga cgaaggata aatgttcttca atagttcttca ataccagacg aatagcccat 1080
 ttcttccatc atttccaaat cataatttgc tgcgtttca aggccgttgc cttcttagaa 1140
 ttatattatc gcacgtaaaa cttaagacg gtcttcgtt tcagtttttatttataacaat 1200
 tgcttttttca ataatatcgt gtctgggttgc aaagtggat gccc当地aaaa tggaaacatg 1260
 ttctcttttctt cctataattt caccagtaag tgcattttact tctcttcaatttgc tttcaattt 1320
 atcaccgaaa aattcaatcc gcatacgtt ttcatttgcattt gaagctggaa aaatttgc当地 1380
 aacatcaccg cgaacacggc agcgttccacg ttgaaaatctt atatcatttgc gatcatattt 1440
 aatatctact aatttgc当地 gtagctgttgc acggcttattt tccatgcca cacgaagcga 1500
 aacgagcatc tctccatattt caatggc当地 acctaagccaa tagatacagc atacactcg 1560
 aatgataattt acatcgccatc gttcaaaaatc cgc当地atcgttgc gcaatgttgc 1620

gatttcatca ttgatacttg catcttttc gatatatgtg tcactttgcg gaacataggc 1680
ttctgggtga tagtaatcat agtaactgac aaaatattct acagcggtat ttggaaaaaa 1740
ctctttaaac tcgctataca gctgtccgc taacgtctta ttgtgagcca tgacaagtgt 1800
cggttattt acttctgaa tcacattgga tacggtaaaa gtttccctg taccggtgc 1860
accaaagtaaa gtttgggtt tcaaggcttt tttaatccc gcaactaatt gttctatcgc 1920
tctaggttgg ttcctgtg ggctatactt agaaactaac tcaaatttat cttcaactc 1980
ggattcccccc t 1991

<210> 7
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 7
gcaagtatac agttaagttt gtaacg 26

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 8
cttccgaag tggaagaaag catg 24

<210> 9
<211> 6654
<212> DNA
<213> Listeria monocytogenes

<400> 9
gcaagtatac agttaagttt gtaacgattt gtttgattt agactcaaaa cgtaaagttt 60
cttcatctac acgttaagtc gtttatcaa agaagattt aagtgcctca tcttctggat 120
attcttgaa tagttaatc atcgcgtgaa ctgtatc gttcgaatcg gatgtttaa 180
attcaatatt accattagca atttcaattt ctaaaataga aagtgttgc tcatgataaa 240
tgaaatcacg ttgcatttc gtgaagttt agaacggaa tggcatatct ttcacttgtt 300
taaatgcact atttagaaaa gaaccgattt ttccaccagc ttggataaaa tcattaacca 360
tattgcgcattt gtagtcttca cgatcttttag aagaattttc gccccttct tcttcatctc 420
tttcatgatt ttctggagtc gttctgggc gtctttacg acttttgc ggtgtataag 480
gatttccttgc attgttccaa ctttactgt aatcatatga tggttcttct tttgtttctt 540
cttcgatttt ttcttcttct ctcggagctg cagatcgacg aatattttct tttgtctgt 600
tttaccttc ttttttggaa atattttcaa gtagagtaag gcttcttca gtggatataa 660
taccttggtt tactaattcg agaatacgatc tacgttcatt ttccatatttc atttccttct 720
ataatttagg ctaaactattt tttaggcttgc ttccacatgc aagtgcacata tctgtttat 780
ctatgactct attatgaagg aaaatataat ttctgtcata caaccagagg atgattattt 840
gttggactt tgggtgggtt ggtcttaaga atcagaaaa atcccgctta tattttgaat 900
aagcgggatt ttgattttt ttctttagct gttcaattc gttctccgt gcgttcttta 960
tcgcgttcta aaattggttt caagtattt cctgtataag atttttttga gcgagcgatt 1020
ttttcaggtt tggccgttgc aataatttga ccggccacat cgccacattc tggaccta 1080
tcaatcaagt aatcagttt ttgataacg tcaagattat gctcaataac aagtactgtt 1140
tcgccattctt cttctacaag tctttgtat actttgatgta aacgaccaat atcatctgcg 1200

ctc当地tctaaacgaa gcggcctatt atctagagcg ctaggcaatc taaagccatg 4680
 atcaactagc atttgtttc tgcttggtc cccgttaaac ataccacgaa tttgcggcat 4740
 cgtaacgtgt gactcatcaa ttaccattt gaaatcatct gggagaagtaat cgagtaacgt 4800
 gtatgggtta actcccgtg gacgaaggaa taaatgtcta gaatagtctt caataccaga 4860
 gcaatagccc atttctcca tcatttccaa atcataattc gttcgctgtt caaggcgctg 4920
 agcttcttagc aatttattat ctgcacgtaa aacttaaga cggtcttcga gttcagctt 4980
 tatattaaca attgctttt tcataatatic aggtctgggt acaaaggtag aatgccggaa 5040
 aatggaaaca tggctcttt ctccctataat ttcaccagta agtgcacatca cttctcta 5100
 tcgttcaatt tcatcacccga aaaattcaat ccgcatacag tggcatctc ttgaagctgg 5160
 gaaaatttcg acaacatcac cgcaacacg gaagcgtcca cgttggaaat ctatatcatt 5220
 tcgatcatat tgaatatcta ctaatttgcg cagtagctga tcacggctaa tttccatgcc 5280
 aacacgaagc gaaacgagca tctctccata ttcaatcggc gaacctaaacg catagatata 5340
 cgatacactc gcaatgataa ttacatcgcc acgttcaaaa agcgcagcag tagcagagt 5400
 acgaagctt tcgatttcat cattgatact tgcacatctt tcgatataatg tgtcacttt 5460
 cggAACATAG gcttctgggt gatagtaatc atagtaactg acaaataattt ctacagcg 5520
 atttggggaaa aactcttaa actcgctata cagctgtccc gctaacgtct tatttgagc 5580
 catgacaagt gtcggcttat ttacttctt aatcacattt gatacgttaa aagtttccc 5640
 tgtacgggtt gcaccaagta aagtttgggt tttcaagcct ttttttaatc ccgcaactaa 5700
 ttgttctatc gctcttagtt ggtctccctt tgggtatac ttagaaacta actcaaattt 5760
 atccttcaac tcggatcccc cctattctgt atctgtccga ttctggtatac tgaaaagctt 5820
 tgggtttaaa aggtcttagca aagcaaaaag cggattttc agatccgtt atgtttctat 5880
 tttatcataa atattttaat tagccttagca aaaaccgaac atatttcgc attttgtgaa 5940
 aaataaaaaaa cgcaacctgt tgattacgct tttcttttatt ttatcactt tacgctttc 6000
 tacctatata ttgcttgt taaaatcac tgccacttctt ctttaaacgt cgccagcatat 6060
 acgttgcag cacaaaacca atggtcatcg aaaaagcatc aataataattt agccacatag 6120
 aactcgtata acctaacttgc gcaagaagcag caatcaaaat caccatcaa agcaagccg 6180
 cataacgatt ataagtgatt ctcgcaaaaaa gaataacaag gaggcaaggaaaataagcg 6240
 cagatataat ttgatccatc ttacgttccccc cccctttt tatgcgttcc gtaatgctt 6300
 ggtcggttatt tccgtttaa gctgtggtaa ttctgtttt tcgataccctt ttcagcaag 6360
 catatctggt aaaatttctt taaaaaaagta cttaaacgctc gccatttctc ggtactcata 6420
 aatgggttgca agtgcctcac tatagatttcc cacaaaaata tttctggat tccctttt 6480
 aatttcgcca aaggatcat ataacaatc tactttatca gaaattgcga ggatttccc 6540
 ttccaacgta ctgccttac ctcttttag caaatgacga taaatcggtt ggtacgtttc 6600
 tggaaatttcc cgttcaataa agtttttgcg catgcttcttccacttcgg aaag 6654

<210> 10
 <211> 4612
 <212> DNA
 <213> Listeria monocytogenes

<400> 10
 ccgggtgcaa taatttgacc gccaccatcg ccacccctg gacctaaatc aatcaagtaa 60
 tcagcttgc ttgataacgatc aagattatgc tcaataacaa gtactgtatc gcccattctct 120
 tctacaagtc ttgttaatac ttgtggtaaa cgaccaatata catctgcgtg gagtccggta 180
 gttgggttcat ccagaatata gaaagatttt ccgttactac gtttatgaag ttccgaagct 240
 agtttgcgc gctgcgttcc accaccgtaa agcgtatgg caggttgc aagtcgaata 300
 tagccaagac caacatctac aattgtttga agtttacgatc caattcttgg ttgggttgg 360
 aaatattcta gtccttccctc tacagtctt tctaataactt cagcaatattt tttccctta 420
 taacgaatata ctaacgttcc accattgtat cgtttccat gacaaacttc acagggtaca 480
 tatacatcag gcaagaaatg catttcaattt ttgatgatcc cgtgcgttcc acacgcctcg 540
 caacggccac cttttacgtt aaaactaaag cgacccctt tataaccacg aactttggct 600
 tcatttagtac ttgcggaaatg gtcacgatc tcatgcggaaatc ctccgttata agtagctgg 660
 ttgcgttcc gttttttttt gattgggtat tggtaatattt ttcttaggttt 720
 tcgatgcctt ttattttttt gttttccactt ggtttgggtt gttttctttagtattttctc 780
 gctaaacgctt ttgcggatc ttccatttactt aacgaacttt tacctgaacc tgaaactcca 840
 gttacacagg aaaaagtagc tagtggaaattt ttgcatttta cgtttttgcg attattttgc 900

ttagcaccaa taatttctaa ttcttagtccg ttacctttc tacgttagc agggactgga 960
 ataaaatttt tacctgaaag atagtcacca gtgatgaaat ttttattttt ggcaacttct 1020
 tctgggttgc cggtcgaaac aattcgccg ccgtttctc ctgcacccgg accaatatca 1080
 ataagataat ctgcggccat catcgatct tcgtcatgct caacgacaat aagctgttt 1140
 ccaatgtcac gcatacttg gagtgtgctg attaaacgat cattatctcg ttgatgaaga 1200
 ccgatgaaag gttcatctaa aatataaagt acaccagtaa gtctggaaacc gatttgtta 1260
 gcaagtcgaa ttctgtgcgc ttccggccacca gaaaggctcc cagctgcacg gctcattgtt 1320
 agtagtcga gcccacatt tttaagaag cctagtc tag cacgaacttc tttgaaaatt 1380
 ggcgctgcaa ttgtgtttc ttttcagat agttctaagc catcgaaaga agcaagtgc 1440
 tcattaaatag aaaactcaact gatttgccca atatgatggt cgtttacttt aacgaaagt 1500
 gtttcttctt ttagacata gccttacaa gatggacatg gtaaatcagt catatattgc 1560
 gccatttgat cgcgtgtgaa atcggaaattt gttcacatg agcgcacgtc gataatttgg 1620
 agtatccctt caaacgaaat ccacgtttcg cgtgtcatac cgaatatttatttttgc 1680
 aagtagaaattt ctatcttt tgatccattt aaaaataat ctaattcttc tttggatagc 1740
 ttctcaagag gtgtatccat atctattcca aattcttac aggcagaagc tagcatttgc 1800
 ggttagtact gtgaactaat tggcgccaa ggaataatag cacatttcatt tagagacata 1860
 ctcttatcag gaataaccgt gtcgacatcg acttcaagtt tagtcccaag tccatcacat 1920
 gtggggcaag cgccaaatgg gctgttggaa gagaacattc ttgggtctaa ttcaccaacg 1980
 gaaaaaccac aataaggcgca cgcatagtgt tcactaaata ataattctt atccccctt 2040
 atatcaacaa ccgcataacc atcagctaa cgaagagcag cttcaatgaa atcatacaga 2100
 cgagtattga tgccctttaatcacaatg cgatcaataa tgatttcaat agaatgctt 2160
 ttgttttctt caatttcaat ttctgtcattt atatcataaa ttctccatc aacacgaaattt 2220
 cgaacatatac ttctttttt gatttctca atagtttctt tatgtgtccc tttttacca 2280
 gaaacgattt gaggcattat ttgaataatcg gtttttctg gtttattctg aacacgatct 2340
 accattttgtt cgatttttg agaagtgtatt tcaataccgt gatttggaca aacccggatgc 2400
 ccaacacgag cataaaatgaa ggcacaaatag tcatggattt ctgtactgt cccacacgtg 2460
 gaaacgtggat tacggcttgc ttgttttttga tcaatcgaaa tggcagggtc taatccttca 2520
 attaaatcca catctggttt atccatttgc cctaaaaattt ggcgtgcata tgcggacaaa 2580
 gactctacat aacgttttg tcctctgca taaatcgat caaaagcaag cgaagattta 2640
 cctgaacctg aaagcccaatgataactact aatttgtctc taggaatctc tacatcaatg 2700
 ttttttaagt tatggctct tgcacccttca attactattt tctcttttcatc caatttcgct 2760
 tcattttttcc gcttttattt ccagtaaagc atcgcgaatg tcagcagcac gttcgaaatc 2820
 aagtcttta gctgcttctt tcatttcatg ttccatcacct tcaatgaata catcgcttc 2880
 ttcttagac atttgttta aatcatgttgc ttctactgtt tctcttttcatc tgcggcaga 2940
 agtcgtcgat atgataccac gaatttctt tttgattgtt tttggcgtaa tgccgtgtt 3000
 ttcttattat tcaatttttga ttacgacg gctttctgtt tgcaccaatag aattgcgcatt 3060
 cgaatcggcgc attttacatgatacatgat tactcgaccg ttttcatttac gagcagctcg 3120
 accattttgtt tgaattaaagg aacgctcgaa acgaaggaat ctttctttgtt ccgcattctaa 3180
 aatagcgaca agagataactt caaggtaaattt gattcattca cgaagtaatg taattccaaac 3240
 gataacatca tacacaccaa gtcgaagggtc acgaatgtt tcgattcgct cgagcgtt 3300
 cacttccgag tggagataact gtacttttac accagttctt ttgagataatg tggtaatc 3360
 ctccggacatt ttttcgta aggtgggtat taaaacacgt tcatttttctt cgacgcgatc 3420
 gttaatctca tccattaaatgtt catcaatttttgc tcatttgcattt ggacggattt ctacgattgg 3480
 gtctagcaag ccagttggcgc gaatgattttt tcatttgcata tctggattttt ttcttattt 3540
 gtaagggcctt ggtgtacggg atataaaatcat aatttgattt atatgcttctt caatttcttca 3600
 taaacgaaatc ggcatttttcatcattt ctatcgatcaggcaatcttca aagccatgtt caacttagcat 3660
 ttgttttctt gcttggccccc cttttaacat accacaaattt tgcggcatcg taacgtgtga 3720
 ctcatcaattt accatttttga aatcatcttgc gaagtaatcg agtaacgtt atgggttaac 3780
 tcccgctggaa cgaagggttataatgttca atagttcttca ataccagagc aatagcccat 3840
 ttcttccatc atttccaaat ttttttttttttgcataatttgc tcgctgttca aggccgttgcgatc tttcttagca 3900
 ttattttatctt gcacgtaaaa cttaaagacg gtttttttttttgcataatttgc tcgctgttca 3960
 tgcttttttca ataaatatcg gtctgggtac aaagtggat gccggggaaaa tggaaacatg 4020
 ttcttcttctt ctttttttttttgcataatttgc tcgctgttca ataccagagc aatagcccat 4080
 atcaccgaaa aattcaatcc gcatacagtg ttcatttgcataatttgc tcgctgttca 4140
 aacatcaccg cgaacacggaa agcgtccacg ttggaaatctt atatcatttgc gatcatatttgc 4200
 aatatctact aatttgcgcgttca atggcttcaattt tccatggccaa cacgaagcga 4260
 aacgagcatc tctccatattt caatcgccgttca acctaagccaa tagatacagc atacactcg 4320

aatgataatt acatcgac gttcaaaaag cgccggcgtga gcagagtgc gaagcttac 4380
gattcatca ttgatacttg catcttttc gatatatgtg tcactttgcg gaacataggc 4440
ttctggta tagtaatcat agtaactgac aaaatattct acagcgat ttggaaaaaa 4500
ctcttaaac tcgctataca gctgtccgc taacgtctta ttgtgagcca tgacaagtgt 4560
cggttattt acttctgaa tcacattgaa tacggaaaaa gtttccctg ta 4612

<210> 11
<211> 2042
<212> DNA
<213> Listeria monocytogenes

gatggtaatc agttaagttt gtaacgattt gtttgattt agactcaaaa cgtaaagttt 60
cttcatctac acgtaaagtc gtttatcaa agaagatttt aagtgcattca tcttctggat 120
attcttgaa tagtttaatc atcgcgtgaa ctggatattc gttcgaatcg gatggtttaa 180
attcaatatt accatttagca attcgaatt cttaaataga aagtgttgc tcattataaa 240
tgaaaatcacg ttgcatttc gtgaagttt agaaccggaa tggcatatct ttcacttgtt 300
taaatgcact atttagaaaaa gaaccgattt ttccaccagc ttggataaaa tcattaacca 360
tattgcgtat ggagtcttca cgtatcttag aagaattttc gccgccttc tcttcatttc 420
tttcatgatt ttctggagtc ggttctggc gtctttacg acttttttga ggtgtataag 480
gatttccttgc attgttccaa cctttactgt aatcatatga tggttcttct tttgtttctt 540
cttcgatttgc ttcttcttct ctcggagctg cagatcgacg aatatttttctt tttgtctgt 600
tttacatttcc tttttggaa atattttcaaa gtagagtaag ggcttcttca gtggatataa 660
tacattgttt tactaattcg agaatacgtt tacgttcattt tcatttttc atttcccttct 720
ataattttagg cttaaactattt ttaggttgc ttccatcatgc aagtgcata tctgttttat 780
ctatgactct attatgaagg aaaatataat ttctgtcata caaccagagg atgattattt 840
gttggactt tgggtgggtt ggtcttaaga atcacaaaaa atcccgcttta tattttgaat 900
aagcgggatt ttgattttt tttcttagct gttgcatttgc gttcttcgtt gcggttcttta 960
tcgcgttcta aaattgggtt caagtattttt cctgtataag atttttttga gcgagcgatt 1020
tttccagggtt tgccgggttgc accaagttttt gtttgggtt tcaaggctt tttttaatccc 1080
gcaactaattt gttctatcgc tcttaggttgc ttccttgc ggtataactt agaaactaac 1140
tcaaattttat cttcaactc ggattcccccc tattctgtat ctgtccgattt ctggatctg 1200
aaaagctttt tttgtaaaag gtcgttgc gaaaaaagcg gattttttagt atccgttaat 1260
gttctattt tatcataat atttaattaat gcctgttgc aaccgttacat attttcgtat 1320
ttgttggaaaa ataaaaaaacg caacctgttgc attacgtttt tcttttattttt atcactttta 1380
cgcttttcta ccttatattt tgctttgttcaaaaatactg ccactttctt ttaaacgtcg 1440
cagcatatac gttgtcaagca caaaaccaat ggtcatgttcaaa aagcatcaaa taataattag 1500
ccacatagaa ctcgtataac ctaacttggc agaaggcgttcaaaatca ccatcaaaaag 1560
caagccgaca taacgattat aagtgttgc cgcggggaa 1620
aataagcgca gatataattt gatccatctt acgttcccttcc cccttttttgcgttgc 1680
aatgttttgg tcgttatttc cgttgttgc gttgttgcattt ctgttttttgcgttgc 1740
tcagcaagca tatctggtaa aattttttttt aaaaagtact taacgttgc catttctcg 1800
tactcataaaa tgggttgc gtccttacta tagatttcca caaaaatattt ttctggattt 1860
cctttttgaa tttcgccaaa ggatttcatat aacaatcta ctttatcaga aatttgcgagg 1920
atttccctt ccaacgttact gtccttacct tcttttagca aatgttgc gata aatccggctgg 1980
tacgtttctg gaatttcccg ttcataataaag tttttgtca tgctttcttca cacttcggaa 2040
ag 2042

<210> 12
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 12		
ctctggtacc tcctttgatt agtatattc		29
<210> 13		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 13		
ctcctcgaga tccgcgtgtt tcctttcgat tg		32
<210> 14		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 14		
ctcctcgagt ccatgggggg ttctcatcat c		31
<210> 15		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 15		
ctcctcgagt gcggccgcaa gctt		24
<210> 16		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 16		
gtcaaaaacat acgctttat c		21
<210> 17		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 17		
acataaatcag tccaaagtag atgc		24

<210> 18
<211> 2762
<212> DNA
<213> Bacillus anthracis

<400> 18
actacttgct ctggcgttcc ggaaggcaacg atttgtccac ctttgtctcc gccttctgg 60
ccaaggtaaa cgatataatc cgctgtttta attacatcta aattatgttc aatgacaagt 120
accgtctcac cgctctcaac aagacgttgc agcacttcta gaagacggc gatcatgc 180
gcatgttaaac cagtcgttgg ctgcgtctaaa atgtatagtg tacgtcctgt agaacgacgg 240
tgtaattcag aagctaattt cacacgctgt gttcaccac cagataaaagt cgtggctgg 300
tgccctaatt tcataataacc aagcccaacg tctacaagcg tttgaagttt acgtttaatt 360
tttgggatat tagcgaagaa ctctactccg tttcaatcg tcatccctaa cacttcagaa 420
atgttttat cttatatactt cacttctaac gttcacggt tgtaacgttt accgtgacaa 480
acttcacacg gaacgtatac gtctggtaag aagtgcatac caattttaat aattccatca 540
ccacggcagc cttcacaacg tccacccttt acgttaaaagc tggaaacgc 600
ccgcgcactt tcgcttcatt cgttgcgc aacacatcac gaatatcatc gaacacacct 660
gtatagtttgc ctggattaga acgtgggtga cgaccgattt ggcatttttttgc 720
actttatcta aatgctcaag acctttat tctttatgag tacctggctt cgcttcgtt 780
ttatataact ttgcgttaa cgattttat agtacttcat taatcatcgt acttttacct 840
gatccagata caccgttac cgctacaaac gtaccaagcg ggaatgacat cttcggttc 900
tttaagttat tctctttgc accgacaatc tccactttac gtccatcacc tttacgttt 960
tcaagtggaa ctgaaataaa ctctttaccg cttaaataact tacctgttag tgaattctca 1020
tcttgcatac cttcagctgg tgtaaccgc gatacaactt gtccaccgtg aataacctgc 1080
ccaggcccga tatccagtaa ataatcagct gccatcatcg tatcttcatc atgctcaaca 1140
acaattaacg tattaccaa atcacgcatt tcttgcatacg tacgaataaag acgatcgta 1200
tcgcgctgat gcaaaccgat agaaggctca tcaagaatgt aaagcaccccc agtaagacgc 1260
gaaccaattt gcggtctaa acgaataacgt tgccgcctc caccagataa agttcctgc 1320
gcacgactta acgttaaata atctaaacca acgtttacta agaaccacaa ggcgttgc 1380
atttctctta aaattaaatg gcaattttt tttttttct ctgttagctc cacatttgag 1440
aagaattcct gtacttctt aacagaatac ttcttttttcat cagcaatcgt tttccgc 1500
acgaaaacag ctaaacttcc agcttttaaag cgtccgcctt tacacttcgg acaagcttg 1560
tctgccatat actttccat ttgttcacga atgtatccg aactcgctc acgataacga 1620
cgttcaatat ttggaaataac accttcaaat aaaatctcat ttccctttac ttgaccaat 1680
tcatttacat agcggaaata aactttctct tcaccgcctc cgtacaacac ttatcaaat 1740
aaatcttcg gtatatctt tacaggcaca tccatatcca cgccataatg attacataca 1800
gattgtaaaa gctgtggta atattgtgaa cttgtcggtt cccaaaggcgc aatcgatgc 1860
tcattnaatg ataaatccca gtcggaaata acaaggctta aatctaccc taaatttgag 1920
ccaaagcccat cacaagaagg acatgcaccg aacggactat tgaatgagaa catacgccgc 1980
tctaattctc caattgaaaa accacaatgc ggacaagcat gatgttact aaatagaagc 2040
tcctcttc ccataacatc gattaacact cgtccccgc caagctttaa tgcactttca 2100
agagaatcag caagacggct tgcgattccct ttttttacaa caatacggc aattacaact 2160
tcaatagaat gtttcttatt tttatcttaac gcaatatctt cagacacatc gagcatttca 2220
ccatcaacac gtacacaac ataaacccatc ttcttaatat cttcaagttac ttttacatgt 2280
gcacccatc gcccggaaac gataggagct aacacttgcgta atttcgtacg ttcagggtac 2340
tcaagttacac ggtctaccat ttgtctact gtttgcgtt taatttcaat gccatgattc 2400
ggacaaattt gcttaccaat tcgcgcctaa aataaaccgtt agtaatcata aatctccgtt 2460
accgttccaa cagttgaacg cgatttacga ctcgtcggtt tttgtatcgat tggaaatcgct 2520
ggagataagc cttcaatcgat atctacatcc ggcttacca tttgcctaa aaactggcgt 2580
gcatacgccat ataaacgattc tacgtatctg cgctgcctt ctgcataat cgtatcaaat 2640
gctaatgagg atttccctga accagacaat cctgttacaa cgacaagttg atttctcgga 2700
atggttacat caatattttt taagttatgt gctctagcac ctttacaac gataaaatcc 2760
tt 2762

<210> 19

<211> 1908
<212> DNA
<213> Bacillus anthracis

<400> 19
tgctttgct gtttcttca ttctgtttc catcttcgca attgtcttt cacgctctt 60
tttcgtcatc ttcttagctg gcgtcgcttc atatgtttcc ggctcttcag cagctgtcgt 120
tgacacggatt acatcacgca caccttttgc aatcggtttc ggcgttaatac catgtcttc 180
attgttaagct tcttgatatac tacgacgacg ctgcgtcttcaatcgcaa tccccatcga 240
tctcggtata cgatctgcgt acataataac gcgaccgtt tcattacgtg ctgcacggcc 300
aattgttga attaacaac gctctgaacg caagaatcct tccttatcg catctaaaat 360
agctacaagg gatactctg gaatatctaa tccttctcgc aataagttaa taccAACGAG 420
aacatcaaac ttaccaaggc gaagatctcg tataatttca atacgttcta acgtttcac 480
ttcagaatgc agataattca ccttaattcc tacatcttt aagtagtctg ttaaatcctc 540
tgacatcttc ttcgtaaag ttgttaattaa tacacgttca tttttgcaa tgcatctt 600
aatctctcct aatagatcgt caatctgcc tcatttgcgtt cgtatatacaa ttggcgatc 660
taaaaggccct gttggacgaa taatttgcgtt tattacttct ggcgactgct ctaattcata 720
cggtcctggc gttgctgaaa cgtaaataac ttgattcggtt ttctcttcaa actcatcaaa 780
tgtgagcggtt ctattatcta aagctgtatgg cagacggaaat ccatgatcca caagcactt 840
tttacgcgtc tggccccgt tatacatcgct tcttacttgc ggcactgata cgtgggactc 900
atccataacg attaagaat cttcgggaa atagtctaat aacgtataacg gcgttgcacc 960
cgctggacga agtgttaat gacgggaaata gtttcaatc cctgaacaaa agccatctc 1020
gcccatttcatc tctaaatcat aacgtgtacg ctgttctata cgctgcgtt ctaacaactt 1080
accgttatca ttaatttcct ttaaacgcgtc ttcttaattct ttttcgatat tttcaatagc 1140
gacccatc ttttcttcac gtgttaacgaa gtgagatgct gggaaagattt ctacatgatc 1200
acgttctgtc aataacttctc ccgttaaagc atttacttgc cgaatacgtt caatttcata 1260
gccaaaaaaac tcaattcgaa tgcaatgctc gtcaagtgtt gcccggaaata tttcaactac 1320
atotccgcgc acgcggaaatg taccacgctt gaaatcaata tcattacgtc catactgcac 1380
atcaacaagt tcacgaagca attgatttgcg gtcctttcc ataccaactc gaagtgaaac 1440
aactaactcg cggtattctt ctggagaacc taaaccatatac acacgaaa cactcgcaac 1500
aataattaca tcatccgtt caaataatgc ggacgttgcgtt gaggacgca atttatcgat 1560
ttcatcatta atctgcgtt cttttcaat aaacgttatct gtttgcgtt catacgcttc 1620
tggctgataa taatcgtaat aactaacaaa atattcaact gcattattcg gggaaaaagtc 1680
tttcaactca ctatataact gtcctgtcaa cgtttatttgcgtt gggccatgaa caagcgttgg 1740
ctttgcact tctttaatga catttgcgtt cgtaaatgtc ttacccgttc ctgtcgcccc 1800
aagcaacact tgcttttctt ttccactatt aattccctct acaagcttctt ctatagctac 1860
cggtgtatca ctttgcgggg aatacgttgcgtt gacaatttca aattgacg 1908

<210> 20
<211> 9
<212> PRT
<213> Murine

<400> 20
Ser Pro Ser Tyr Val Tyr His Gln Phe
1 5

<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 21	
Ser Pro Ser Tyr Ala Tyr His Gln Phe	
1	5
<210> 22	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 22	
gttaagttc atgtggacgg caaag	25
<210> 23	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 23	
aggctttttt cagttaacta tcctctcctt gattctagtt at	42
<210> 24	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 24	
caaggagagg atagttact gaaaaagacc taaaaaaagaa ggc	43
<210> 25	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 25	
tccccctgttc ctataattgt tagctc	26
<210> 26	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	

<400> 26	
gtggacggca aagaaacaac caaag	25
<210> 27	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 27	
gttcctataa ttgttagctc attttttc	29
<210> 28	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 28	
ctctggtacc tccttgatt agtatattc	29
<210> 29	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 29	
caatggatcc ctcgagatca taatttactt catccc	36
<210> 30	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 30	
atttctcgag tccatggggg gttctcatca tc	32
<210> 31	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 31	

ggtgctcgag tgccggccgca agctt	25
<210> 32	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 32	
cgattccccc agttatgttt accaccaatt tgctgca	37
<210> 33	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 33	
gcaaatttgtt ggttaaacata actagggaa t	31
<210> 34	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 34	
agtccaaatgtt atgcataatca tcaattt	27
<210> 35	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 35	
cgtatgtcca agttatgtcat atcatcaatt tgc	33
<210> 36	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 36	
gtcgaaattt gatgtatgc ataacttgga ctat	34

<210> 37
 <211> 9
 <212> PRT
 <213> E. coli

<400> 37
 Thr Pro His Pro Ala Arg Ile Gly Leu
 1 5

<210> 38
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 38
 ctgtgcttg cgaatggaaa gaagc 25

<210> 39
 <211> 43
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 39
 gtttcattc atacacttag acaagcggtt gctttgcac ttc 43

<210> 40
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 40
 gacaaggcggtt ggctttgcac cttc 24

<210> 41
 <211> 44
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 41
 caaaaggccaa cgcttgtcta agtgttatgaa tgaaaaccga gtgg 44

<210> 42
 <211> 25

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 42		
aagtgtatga atgaaaacctg agtgg		25
<210> 43		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 43		
catataaaagg ttccacaatt gccttttc		28
<210> 44		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 44		
gaagcagaaaa tgaagccaat actcaatc		28
<210> 45		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 45		
ggttccacaa ttgccttttc aataatc		27
<210> 46		
<211> 6		
<212> PRT		
<213> Bacillus anthracis		
<400> 46		
Lys Val Val Lys Asn Lys		
1	5	
<210> 47		
<211> 12		
<212> DNA		
<213> Bacillus subtilis		

<220>
<221> misc_feature
<222> 5, 6, 7, 8
<223> n = A,T,C or G

<400> 47
gaacnnnnngt tc

12

<210> 48
<211> 331
<212> PRT
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 48
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu
1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30
Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser
35 40 45
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Ser Pro
50 55 60
Ser Tyr Val Tyr His Gln Phe Ala Ala Asp Gln Ala Arg Glu Leu Ile
65 70 75 80
Asn Ser Trp Val Glu Ser Gln Thr Asn Gly Ile Ile Arg Asn Val Leu
85 90 95
Gln Pro Ser Ser Val Asp Ser Gln Thr Ala Met Val Leu Val Asn Ala
100 105 110
Ile Val Phe Lys Gly Leu Trp Glu Lys Thr Phe Lys Asp Glu Asp Thr
115 120 125
Gln Ala Met Pro Phe Arg Val Thr Glu Gln Glu Ser Lys Pro Val Gln
130 135 140
Met Met Tyr Gln Ile Gly Leu Phe Arg Val Ala Ser Met Ala Ser Glu
145 150 155 160
Lys Met Lys Ile Leu Glu Leu Pro Phe Ala Ser Gly Thr Met Ser Met
165 170 175
Leu Val Leu Leu Pro Asp Glu Val Ser Gly Leu Glu Gln Leu Glu Ser
180 185 190
Ile Ile Asn Phe Glu Lys Leu Thr Glu Trp Thr Val Leu Gln Glu Leu
195 200 205
Asn Val Thr Val Arg Thr Ser Ser Asn Val Met Glu Glu Arg Lys Ile
210 215 220
Lys Val Tyr Leu Pro Arg Met Lys Met Glu Glu Lys Tyr Asn Leu Thr
225 230 235 240
Ser Val Leu Met Ala Met Gly Ile Thr Asp Val Phe Ser Ser Ala
245 250 255
Asn Leu Ser Gly Ile Ser Ser Ala Glu Ser Leu Lys Ile Ser Gln Ala
260 265 270
Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly Arg Glu Val Val
275 280 285
Gly Ser Ala Glu Ala Gly Val Asp Ala Ala Ser Val Ser Glu Glu Phe
290 295 300
Arg Ala Asp His Pro Phe Leu Phe Cys Ile Lys His Ile Ala Thr Asn

305 310 315 320
Ala Val Leu Phe Phe Gly Arg Cys Val Ser Pro
 325 330

<210> 49
<211> 8
<212> PRT
<213> Gallus gallus

<400> 49
Ser Ile Ile Asn Phe Glu Lys Leu
1 5

<210> 50
<211> 9
<212> PRT
<213> Homo sapien

<400> 50
Val Leu Gln Glu Leu Asn Val Thr Val
1 5

<210> 51
<211> 9
<212> PRT
<213> Homo sapien

<400> 51
Tyr Leu Ser Gly Ala Asn Leu Asn Leu
1 5

<210> 52
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 52
Tyr Leu Ser Gly Ala Asp Leu Asn Leu
1 5