This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

[®] Off nl gungsschrift[®] DE 3507421 A1

(5) Int. Cl. 4: C 07 D 333/38

> C 07 D 333/44 C 07 D 409/04 C 09 B 29/033 C 09 B 29/36

BASF AG, 6700 Ludwigshafen, DE

71) Anmelder:

(7) Erfinder:
Schefczik, Ernst, Dr., 6700 Ludwigshafen, DE;
Etzbach, Karl-Heinz, Dr.; Eilingsfeld, Heinz, Dr., 6710
Frankenthal, DE

(54) Thiophenderivate

Die Erfindung betrifft Verbindungen der allgemeinen Formel i

sind

Die erfindungsgemäßen Verbindungen eignen sich in Abhängigkeit von der Konstitution als Diazo- und/oder Kupplungskomponenten oder allgemein als Farbstoffzwischenprodukte.

in der

X Chlor, Brom oder gegebenenfalls substituiertes Hydroxy oder Mercapto,

R Wasserstoff, C_1 - bis C_4 -Alkyl oder ein durch elektrophile Substitution einführbarer Rest,

R¹ Wasserstoff, Acyl oder gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Alkenyl,

R2 Wasserstoff oder gegebenenfalls substituiertes Alkyl oder Alkenyl,

R1 und R2 zusammen mit dem Stickstoff einen gesättigten Heterocyclus und

R¹ und R2 zusammen ein Rest der Formel

Patentansprüche

(1) Thiophenderivate der allgemeinen Formel I

in der

- X Chlor, Brom oder gegebenenfalls substituiertes Hydroxy oder Mercapto,
- R Wasserstoff, C₁- bis C₄-Alkyl oder ein durch elektrophile Substitution einführbarer Rest,
 - R¹ Wasserstoff, Acyl oder gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Alkenyl,
 - R2 Wasserstoff oder gegebenenfalls substituiertes Alkyl oder Alkenyl,
 - R¹ und R² zusammen mit dem Stickstoff einen gesättigten Heterocyclus und
- 15 R¹ und R² zusammen ein Rest der Formel

20 sind.

2. Verbindungen gemäß Anspruch 1 der Formel

in der

- X1 Chlor, Hydroxy, C1- bis C4-Alkoxy oder -Alkylthio, Phenoxy oder Phenylthio und
- B Wasserstoff, C₁- bis C₄-Alkyl, Formyl oder Cyan sind.

103/85 Eg 01.03.85

3. Verbindungen gemäß Anspruch 1 der Formel

05

in der

- B1 Wasserstoff, C₁- bis C₄-Alkyl, C₂- oder C₃-Hydroxyalkyl, Cyanethyl, C₁- bis C₄-Alkoxycarbonylethyl, C₁- bis C₄-Alkanoyloxyethyl, Allyl, Benzyl, Phenylethyl oder Cyclohexyl und
- 10 B² Wasserstoff, C₁- bis C₄-Alkyl, C₂- oder C₃-Hydroxyalkyl, Cyanethyl, C₁- bis C₄-Alkoxycarbonylethyl, C₁- bis C₄-Alkanoyloxyethyl oder Allyl sind und
 - X1 die für Anspruch 2 angegebene Bedeutung hat.

15

4. Verwendung der Verbindungen gemäß Anspruch 1 als Diazo- oder Kupplungskomponenten.

20

25

30

Thiophenderivate

Die Erfindung betrifft Verbindungen der allgemeinen Formel I

05

in der

- X Chlor, Brom oder gegebenenfalls substituiertes Hydroxy oder Mercapto,
- R Wasserstoff, C₁- bis C₄-Alkyl oder ein durch elektrophile Substitution einführbarer Rest,
 - R¹ Wasserstoff, Acyl oder gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Alkenyl,
 - R2 Wasserstoff oder gegebenenfalls substituiertes Alkyl oder Alkenyl,
 - R¹ und R² zusammen mit dem Stickstoff einen gesättigten Heterocyclus und
- 15 R¹ und R² zusammen ein Rest der Formel

20 sind.

25

30

Reste X sind neben den bereits genannten z. B. Alkoxy-, Cycloalkoxy, Aral-kyloxy- oder Aroxygruppen sowie die entsprechenden Mercaptoreste. Im einzelnen seien beispielsweise OH, OCH3, OC2H5, OC3H7, OC4H9, OCH2C8H5, OC6H11, OC6H5, OC6H4CH3, OC6H4Cl, SH, SCH3, SC2H5, SC3H7, S4H9, SCH2C6H5, SC2H4OH, SCH2C0OCH3, SCH2COOC2H5, SC6H11, SC6H5 oder SC6H4CH3 genannt.

Elektrophil einführbare Reste R sind z. B. Cl. Br. NO. NO2, SO3H, CHO. CN oder Acylreste, wobei Acylreste z. B. CH3CO, C2H5CO, C6H5CO, CH3SO2. C2H5SO2 oder C6H5SO2 sind.

Als Alkylreste für R sind z. B. CH3, C2H5, C3H7 oder C4H9 zu nennen.

Reste R¹ und R² sind neben Wasserstoff im Rahmen der allgemeinen Definition z. B. gegebenenfalls durch Chlor, Brom, Cyan, Hydroxy, C_1 - bis C_4 -

. 4

Alkoxy, C_1 - bis C_8 -Alkanoyloxy, C_1 - bis C_8 -Alkoxycarbonyl, Phenyl oder Tolyl substituiertes C_1 - bis C_4 -Alkyl, C_3 - bis C_5 -Alkenyl oder C_5 - bis C_7 -Cycloalkyl.

O5 Im einzelnen seien beispielsweise genannt: CH3. C2H5, C3H7, C4H9, C2H4OH, CH2CHOHCH3, C2H4CN, C2H4OCH3, C2H4OC2H5, C2H4OC4H9, C2H4OCOCH3, C2H4OCOC2H5, C2H4OCOC4H9, C2H4COOC4H9, C2H4COOC4H9, C2H4COOC6H17, C4H4COOC6H5, C4H4COOC6H3, C2H4COOC6H17, C4H4COOC6H5, C4H4C

Zusammen mit dem Stickstoff sind R^1 und R^2 z. B. Pyrrolidino, Piperidino, Morpholino, Piperazino oder N-Methylpiperazino.

Reste der Formel

15

10

sind vorzugsweise

=CH-N(CH₃)₂, =CH-N(C₂H₅)₂ oder =CH-N
$$C_{6}H_{5}$$

20

Zur Herstellung der Verbindungen der Formel I mit R=H oder C_1- bis C_4- Alkyl kann man Verbindungen der Formel II

25

mit Schwefel abgebenden Verbindungen umsetzen. In die Verbindung der Formel I mit R=H können durch elektrophile Substitution Reste R nach den üblichen Methoden eingeführt werden.

30

Weiterhin kann die Verbindung der Formel I mit R = H und X = OH auch dadurch hergestellt werden, daß man die Verbindung der Formel

C1CH2COC1

35 mit Malodinitril umsetzt und anschließend mit einem Sulfid reagieren läßt.

.5.

Einzelheiten der Herstellung können den Beispielen entnommen werden, in denen sich Angaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht beziehen.

Of In der japanischen Offenlegungsschrift 84/42376 von Nippon Kayaku Co. ist angegeben, daß man durch Umsetzung von Mercaptoessigestern mit Malodinitril Verbindungen der Formel I erhalten würde. Wie jedoch schon aus J. Org. Chem. 38, 3616 (1973) sowie J. Heterocyclic Chem. 16, 1541 (1979) hervorgeht, trifft das nicht zu, denn bei diesen Reaktionen entstehen ausschließlich Thiazolderivate.

Die Verbindungen der Formel I eignen sich sowohl als Diazo- als auch als Kupplungskomponenten, sofern R = H ist.

15 Von besonderer Bedeutung als Diazokomponenten sind Verbindungen der Formel I a

20 in der

- X1 Chlor, Hydroxy, C1- bis C4-Alkoxy oder -Alkylthio, Phenoxy oder Phenylthio und
- B Wasserstoff, C1- bis C4-Alkyl, Formyl oder Cyan sind.

25
Als Kupplungskomponenten sind besonders wertvoll Verbindungen der Formel
I b

30 in der

- B¹ Wasserstoff, C_1 bis C_4 -Alkyl, C_2 oder C_3 -Hydroxyalkyl, Cyanethyl, C_1 bis C_4 -Alkoxycarbonylethyl, C_1 bis C_4 -Alkanoyloxyethyl, Allyl, Benzyl, Phenylethyl oder Cyclohexyl und
- B² Wasserstoff, C₁- bis C₄-Alkyl, C₂- oder C₃-Hydroxyalkyl, Cyanethyl, 35

3507421

6

 C_1 - bis C_4 -Alkoxycarbonylethyl, C_1 - bis C_4 -Alkanoyloxyethyl oder Allyl sind und

X¹ die für Formel I a angegebene Bedeutung hat.

05

<u>Beispiele</u>

Beispiel 1

10

15

20

25

136 Teile 2-Cyan-3-ethoxicrotonsäurenitril werden in 200 Teilen N-Methyl pyrrolidon gelöst und mit 32 Teilen Schwefelblüte versetzt. Nun gießt man 25 Teile Triethylamin zu. Dabei erwärmt sich das Reaktionsgemisch und der zunächst suspendierte Schwefel geht in Lösung. Bei Erreichen von 50 °C wird mit einem Wasserbad gekühlt und die Temperatur auf 40 - 50 °C gehalten. Nach 2 Stunden wird die klare Lösung mit 1000 Teilen Wasser versetzt, wobei das Reaktionsprodukt kristallin ausfällt. Es wird abgesaugt, mit Wasser gewaschen und bei 60 °C im Vakuum getrocknet. Man erhält 142 Teile 2-Amino-3-cyan-4-ethoxithiophen in Form leicht braunstichiger Kristalle, die beim Lagern stark nachdunkeln. Eine aus Toluol umkristallisierte Probe zeigt einen Schmelzpunkt von 145 - 146 °C und folgende Analysenwerte:

C7H8N2OS (168)

ber.: C 50,0 H 4,8 N 16,7 O 9,5 S 19,0 gef.: 50,0 4,9 16,8 9,8 18,9

IR- und NMR-Spektren stehen mit der Konstitution im Einklang.

30

Beispiel 2

35 600 Teile Dimethylformamid, 40 Teile Triethylamin und 128 Teile Schwefel-

.7

-8-

blüte werden bei Raumtemperatur gerührt. Nun gibt man anteilweise 544 Teile 2-Cyan-3-ethoxicrotonsäurenitril in dem Maße zu, daß die Temperatur des
Reaktionsgemisches sich ohne Heizung bei 40 - 45 °C hält. Nach beendeter
Zugabe rührt man 4 Stunden nach und versetzt dann mit 4000 Teilen Wasser.
Man stellt die Kristallsuspension durch Zugabe von Essigsäure neutral und
arbeitet wie in Beispiel 1 beschrieben auf.

Ausbeute: 623 Teile 2-Amino-3-cyan-4-ethoxithiophen, das sind 92,7 % der Theorie.

10

15

20

25

05

Beispiel 3

Zu einem siedenden Gemisch aus 168 Teilen 2-Amino-3-cyan-4-ethoxithiophen und 500 Raumteilen Methanol wird eine Lösung von 20 Raumteilen conc. Salzsäure in 100 Raumteilen Wasser getropft. Man kocht noch 2 Stunden unter Rückfluß, verdünnt mit 400 Raumteilen Wasser und saugt ab. Nach dem Waschen mit Wasser und Trocknen erhält man 136 Teile 2-Amino-3-cyan-4-hydroxithiophen. Eine aus Essigsäure umkristallisierte Probe schmilzt nicht bis 300 °C und zeigt folgende Analysenwerte:

C5H4N2OS (140)

Das Produkt ist laut IR-Spektrum identisch mit der nach Beispiel hergestellten Verbindung.

30

Beispiel 4

35 Zu einem Gemisch aus 178 Teilen Chloracetylchlorid, 104 Teilen Malonsäure-

. 8.

-6-

3507421

dinitril und 900 Teilen Dimethylformamid werden unter Eiskühlung 350 Teile Triethylamin getropft. Man rührt die Lösung noch 1 h bei Raumtemperatur, gibt sie dann in eine Mischung aus 294,5 Teilen einer 40 %igen wäßrigen Ammoniumsulfidlösung, 1000 Teilen Eis und 1000 Teilen Wasser und rührt das Reaktionsgemisch noch 3 h bei Raumtemperatur. Der entstandene Niederschlag wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 137 Teile (62 % d. Th.) 2-Amino-3-cyan-4-hydroxy-thiophen.

Schmp.: > 300 °C (aus Eisessig), IR (KBr): 3260, 3061 (NH₂), 2219 (C=N), 1668, 1641 cm $^{-1}$ (C=0).

<u>Beispiel 5</u>

HO CN H3 C S NH2

15

20

25

05

194 Teile Triethylorthopropionat und 66 Teile Malodinitril werden am absteigenden Kühler 1 h bei 100 °C gerührt. Zum Entfernen flüchtiger Bestandteile wird 30 Minuten lang Vakuum angelegt und dann erkalten gelassen. Man nimmt in 150 Raumteilen Dimethylformamid auf und gibt 32 Teile Schwefelblüte zu. Nun werden 100 Raumteile Triethylamin zugetropft, die Temperatur wird durch Kühlen bei < 60 °C gehalten. Man rührt noch 2 h bei 50 °C nach, setzt 500 Teile Wasser und 150 Teile conc. Salzsäure zu und kocht 1 h. Nach dem Erkalten wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 131 Teile 2-Amino-3-cyan-4-hydroxi-5-methylthiophen. Die Verbindung ist alkalilöslich, eine aus Pentanol umkristallisierte Probe schmilzt bei 275 - 276 °C und zeigt folgende Analysenwerte:

C6H8N2OS (154)

ber.: C 46,8 H 3,9 N 18,2 O 10,4 S 20,8 gef.: 47,0 4,2 17,9 10,3 20,5

30

y-

o.z.0050/37600

3507421

9

Beispiel 6

Zu 500 Teilen Acetanhydrid werden bei Raumtemperatur 200 Teile Ameisensäure getropft und nach 2 Stunden 168 Teile 2-Amino-3-cyan-4-ethoxithiophen eingetragen. Man rührt 4 h bei 50 °C und läßt dann 1000 Teile Wasser in der Wärme zulaufen. Nach dem Erkalten wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 174 Teile 2-Formylamino-3-cyan-4-ethoxithiophen vom Schmelzpunkt 191 - 192 °C (aus Pentanol).

Beispiel 7

15

20

05

10

100 Teile wasserfreies Natriumacetat werden in 400 Raumteile Acetanhydrid eingetragen. Dazu gibt man 168 Teile 2-Amino-3-cyan-4-ethoxithiophen und kocht 4 h unter Rückfluß. Dann tropft man in der Wärme 800 Teile Wasser zu, läßt erkalten und saugt ab. Nach dem Waschen mit Wasser und Trocknen erhält man 194 Teile 2-Acetylamino-3-cyan-4-ethoxithiophen vom Schmelzpunkt 242 - 243 °C (aus Essigsäure).

CgH10N2O2S (210)

ber.: C 51,4 H 4,8 N 13,3 O 15,2 S 15,3 qef.: 51,2 4,7 13,3 15,5 15,2

Analog wurde 2-Propionylamino-3-cyan-4-ethoxithiophen hergestellt, Schmelzpunkt 223 - 224 °C (aus Pentanol).

30

25

Beispiel 8

35 168 Teile 2-Amino-3-cyan-4-ethoxithiophen werden in 500 Raumteilen Di-

١

methylformamid gelöst. Dazu gibt man 101 Teile Triethylamin und tropft bei 50 °C 130 Teile Monochloracetylchlorid zu. Man rührt 4 h bei 50 °C nach und trägt dann das Reaktionsgemisch auf 2000 Teile Wasser aus. Nach dem Absaugen, Waschen mit Wasser und Trocknen erhält man 240 Teile 2-(2-Chloracetylamino)-3-cyan-4-ethoxithiophen. Eine aus Essigsäure umkristallisierte Probe schmilzt bei 243 - 244 °C und hat einen Chlorgehalt von 14,1 % (ber. 14,5 %).

10 Beispiel 9

05

In 1000 Teilen Essigsäure werden 90 Teile wasserfreies Natriumacetat und 160 Teile Phthalsäureanhydrid gelöst. Dazu gibt man 168 Teile 2-Amino-3-cyan-4-ethoxithiophen und kocht 6 h unter Rückfluß. Man verdünnt mit 500 Teilen Wasser, läßt erkalten und saugt ab. Nach dem Waschen mit Wasser und Trocknen erhält man 203 Teile 2-Phthaloylimino-3-cyan-4-ethoxithiophen mit einem Schmelzpunkt von 173 - 174 °C (aus Essigsäure).

Beispiel 10

Zu einer Lösung von 200 Teilen Dimethylformamid in 2000 Raumteilen Toluol werden unter Kühlen bei 10 - 20 °C 350 Teile Phosphoroxitrichlorid zugetropft. Dann trägt man 168 Teile 2-Amino-3-cyan-4-ethoxithiophen ein und rührt 8 Stunden bei 40 °C. Nach dem Erkalten werden die abgeschiedenen Kristalle abgesaugt, mit Ethylacetat gewaschen und im Vakuum bei 30 °C getrocknet. Man erhält 271 Teile einer Verbindung der Konstitution

35 mit einem Cl⊖-Gehalt von 19,9 % (ber. 20,2 %), Schmelzpunkt 159 - 160 °C.

o.z.0050/37600

3507421

ì

11.

Beispiel 11

In ein Gemisch aus 1500 Raumteilen Chloroform und 250 Teilen Dimethylformamid werden unter Eiskühlung 400 Teile Phosphoroxitrichlorid eingetropft.

Dann gibt man 168 Teile 2-Amino-3-cyan-4-ethoxithiophen zu und kocht 4 h
unter Rückfluß. Beim Erkalten scheiden sich farblose Kristalle ab. Man
verdünnt mit 500 Raumteilen Ethylacetat, saugt ab und wäscht die Kristalle
mit Ethylacetat nach. Der Kristallkuchen wird in 2000 Teile Eiswasser
eingetragen und unter Rühren mit Natronlauge auf pH =8 gestellt. Nach 4
Stunden wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält
176 Teile 2-Formylamino-3-cyan-4-ethoxi-5-formylthiophen. Eine aus Pentanol umkristallisierte Probe schmilzt bei 230 - 231 °C und zeigt folgende
Analysenwerte:

C9H8N2O3S (224)

ber.: C 48,2 H 3,6 N 12,5 O 21,4 S 14,3 gef.: 48,3 3,9 12,7 21,1 14,5

20

25

05

10

15

Beispiel 12

In 2000 Raumteile Methanol werden 224 Teile 1-Formylamino-2-cyan-3-ethoxi-4-formylthiophen und 120 Teile Hydroxylammoniumchlorid eingetragen und bei Raumtemperatur gerührt. Dazu gießt man eine Lösung von 80 Teilen Natriumacetat in 300 Teilen Wasser und kocht 6 Stunden unter Rückfluß. Nach dem Erkalten verdünnt man mit 1000 Teilen Wasser und saugt ab. Man erhält nach dem Trocknen 232 Teile einer Verbindung der Konstitution

30

in Form farbloser Kristalle. Ein aus Pentanol umkristallisierte Probe schmilzt bei 255 - 256 °C und zeigt die folgenden Analysenwerte:

0.2.0050/37600

· 12.

3507421

CgHgN303S (239)

S 13,4 0 20,1 N 17,6 H 3,8 ber.: C 45,2

13,3 20,1 17,4 3,7 45,2 gef.:

05

Beispiel 13

Zu 600 Teilen Dimethylformamid werden unter Eiskühlung 87,2 Teile Phos-10 phoroxitrichlorid getropft. Man rührt das Gemisch 0,5 h bei 5 - 10 °C, gibt dann 66,5 Teile 2-Amino-3-cyan-4-hydroxy-thiophen zu und erhitzt die Lösung 1 h auf 70 °C. Anschließend trägt man das Reaktionsgemisch in 2000 Teile Eiswasser ein, filtriert ab und versetzt das Filtrat unter Rühren mit 350 Teilen Natriumacetat. Das danach ausfallende Produkt wird abge-15 saugt, mit Wasser gewaschen und getrocknet. Man erhält 69,8 Teile (69 % d. Th.) N, N-Dimethyl-N'-(4-chlor-3-cyan-thienyl-2)-formamidin.

Schmp.: 67 °C (aus Toluol/Hexan), IR (KBr): 3090 (CH), 2222 (C⊟N), 20 1636 cm ⁻¹ (C≡N).

Beispiel 14

25

4,5 Teile N,N-Dimethyl-N'-(4-chlor-3-cyan-thienyl-2)-formamidin werden in einer Mischung aus 20 Teilen Ameisensäure und 20 Teilen Wasser 1 h zum Sieden erhitzt. Nach dem Abkühlen auf Raumtemperatur wird das Produkt abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 3 Teile (77 % d. Th.) N-(4-chlor-3-cyan-thienyl-2)-formamid.

Schmp.: 241 °C, IR (KBr): 2222 (C≡N), 1678, 1646 cm -1 (C=O).

30

0.z. 0050/37600 3507421

ē

Beispiel 15

10,7 Teile N,N-Dimethyl-N'-(4-chlor-3-cyan-thienyl-2)-formamidin werden in 100 Teilen Eisessig gelöst, dann tropft man zu der Lösung 8 Teile Brom und erhitzt das Gemisch anschließend 3 h zum Sieden. Nach dem Abkühlen auf Raumtemperatur saugt man den entstandenen Niederschlag ab, wäscht ihn mit Eisessig, dann mit wäßriger Natriumbisulfitlösung und dann mit Wasser und trocknet ihn. Man erhält 13,4 Teile (72 % d. Th.) N,N-Dimethyl-N'-(5-brom-4-chlor-3-cyan-thienyl-2)-formamidin-hydrobromid.

Zers.-P.: 223 °C, IR (KBr): 2220 (C=N), 1692, 1633 cm -1 (C=N).

Beispiel 16

15

Zu 700 Teilen Dimethylformamid werden unter Eiskühlung 191 Teile Phosphoroxitrichlorid getropft, die Mischung wird noch 0,5 h bei 5 - 10 °C gerührt, dann werden 70 Teile 2-Amino-3-cyan-4-hydroxy-thiophen eingetragen. Man rührt die Lösung noch 1 h bei 70 °C und gibt sie dann in 2000 Teile Wasser. Der entstandene Niederschlag wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 116 Teile (96 % d. Th.) N,N-Dimethyl-N'-(4-chlor-3-cyan-5-formyl-thienyl-2)-formamidin.

Schmp.: 186 °C (aus Toluol), IR (KBr): 2220 (C≡N), 1657, 1623 cm -1 (C=O, C=N).

30

Beispiel 17

48,3 Teile N, N-Dimethyl-N'-(4-chlor-3-cyan-5-formyl-thienyl-2)-formamidin 05 werden in einer Mischung aus 200 Teilen Ameisensäure und 200 Teilen Wasser 3 h zum Sieden erhitzt. Nach dem Abkühlen auf Raumtemperatur wird das Produkt abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 33,5 Teile (90 % d. Th.) 2-Amino-4-chlor-3-cyan-5-formyl-thiophen.

10 Zers.-P.: 270 °C (aus Eisessig), IR (KBr): 3377, 3298, 3156 (NH₂), 2216 (C=N), 1623 cm $^{-1}$ (C=0).

Beispiel 18

Man erhitzt eine Mischung aus 9,7 Teilen N,N-Dimethyl-N'-(4-chlor-3-cyan-5-formyl-thienyl-2)-formamidin, 2,8 Teilen Hydroxylamin-hydrochlorid, 3,3 Teilen Natriumacetat und 50 Teilen Dimethylformamid unter Rühren 3 h auf 50 °C. Anschließend gibt man die Lösung in 200 Teile Wasser, saugt den Niederschlag ab und trocknet ihn. Man erhält 8,5 Teile (83 % d. Th.) N,N-Dimethyl-N'-(4-chlor-3-cyan-5-(N-hydroxy-formimidyl)-thienyl-2)-formamidin

25

20

15

Schmp.: 199 °C (aus Eisessig), IR (KBr): 2220 (C≡N), 1639 cm -1 (C=N).

Zu 70 Teilen Dimethylformamid werden unter Eiskühlung 4,6 Teile Phosphoroxitrichlorid gegeben, anschließend rührt man die Mischung noch 0,5 h bei 35

. 15.

5 - 10 °C und trägt dann 7,7 Teile N,N-Dimethyl-N'-(4-chlor-3-cyan-5-(N-hydroxy-formimidyl)-thienyl-2)-formamidin ein. Die Lösung wird noch 1 h bei Raumtemperatur gerührt und dann in 200 Teile Wasser gegeben. Der entstandene Niederschlag wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 6,1 Teile (85 % d. Th.) N,N-Dimethyl-N'-(4-chlor-3,5-dicyan-thienyl-2)-formamidin.

Schmp.: 226 °C (aus Eisessig), IR (KBr): 2235, 2225 (C=N), 1628 cm -1 (C=N).

10

Beispiel 20

Eine Mischung aus 5,4 Teilen N,N-Dimethyl-N'-(4-chlor-3,5-dicyan-thienyl-2)-formamidin, 40 Teilen Ethanol und 4,5 Teilen konz. Salzsäure wird 2 h zum Sieden erhitzt, heiß filtriert und das Filtrat in 100 Teile Wasser gegeben. Nach dem Absaugen des ausgefallenen Niederschlags wird dieser mit Wasser gewaschen und getrocknet. Man erhält 3,8 g (92 % d. Th.) 2-Amino-4-chlor-3,5-dicyan-thiophen.

Schmp.: 259 °C (aus Eisessig), IR (KBr): 3435, 3334, 3206 (NH₂), 2210 cm $^{-1}$ (C=N).

25

Beispiel 21

30

21,3 Teile N,N-Dimethyl-N'-(4-chlor-3-cyan-thienyl-2)-formamidin werden unter Eiskühlung in 100 Teile 100 %ige Salpetersäure eingetragen. Man läßt die Mischung 1 h bei Raumtemperatur rühren, fällt sie dann auf Eiswasser, saugt den entstandenen Niederschlag ab und wäscht ihn mit Wasser. Nach dem Trocknen erhält man 18,8 Teile (73 % d. Th.) N,N-Dimethyl-N'-(4-chlor-3-

cyan-5-nitro-thienyl-2)-formamidin.

Zers.-P.: 254 °C (aus Eisessig)

05

Beispiel 22

Eine Mischung aus 5,2 Teilen N,N-Dimethyl-N'-(4-chlor-3-cyan-5-nitro-thienyl-2-)-formamidin, 50 Teilen Ethanol und 5 Teilen konz. Salzsäure wird 3 h zum Sieden erhitzt und anschließend auf Eiswasser gegeben. Der Niederschlag wird abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 3,2 Teile (79 % d. Theorie) 2-Amino-4-chlor-3-cyan-5-nitro-thiophen.

15 Zers.-P.: 227 °C (aus o-Dichlorbenzol)

20

25

30