# Alligator Inspired Robot Report

Group 4:-

Shubham Chouksey 1701ME45

Arya Das

1701CS11

# CAD Design (Changes)





# Simplified V-REP Model (Changes)



### Creep Gait



# Order of Legs in Creep Gait







#### **Trot Gait**



#### Camera



#### Camera properties:

Type: Perspective

• Resolution: 32x32

• FoV: 60°

#### Environment





# Control System Overview



#### Low level instructions

The trot gait algorithm has been implemented in Lua on V-REP. The overall control system is a bang-bang controller. There are 4 high-level instructions the robot can follow:

- Move forward
- Turn right
- Turn left
- Stop

For moving forward, right and left the parameters of the trot gait are modified slightly. Then the corresponding joint angles are calculated and finally the target joint positions are set. For stopping, all joints are set to their default position.

#### Communication over ROS

The system has 2 ROS nodes - one is vrep\_ros\_interface (V-REP) and the other is controller (the computer vision program).

They communicate over 2 channels - image (to transfer the image captured by the camera) and alg\_ctrl (to send a high level instruction back to V-REP).

vrep\_ros\_interface subscribes to alg\_ctrl and publishes to image. controller subscribes to image and publishes to alg\_ctrl.

#### Communication over ROS





Raw image



After thresholding

Raw image



After thresholding

Raw image



After thresholding

#### Thank You!