Multicriteria Optimization Notes

Definition 0.1. A **feasible solution** $\widehat{x} \in X$ is called **efficient** (or **Pareto optimal**) if there is no $x \in X$ such that $f(x) \leq f(\widehat{x})$. If \widehat{x} is efficient, then $\widehat{y} = f(\widehat{x})$ is called a **nondominated point**. If $a, b \in X$ and $f(a) \leq f(b)$, then we say a **dominates** b and f(a) dominates f(b). The set of all efficient solutions is denoted X_E and the set of all nondominated points is denoted Y_N .

Definition 0.2. Consider the following MOP:

$$\min_{x\in X}(f_1(x),\ldots,f_p(x)).$$

1. The point $y^{\mathrm{I}}=(y_1^{\mathrm{I}},\ldots,y_p^{\mathrm{I}})$ given by

$$y_k^{\mathrm{I}} := \min_{x \in X} f_k(x) = \min_{y \in Y} y_k,$$

is called the **ideal point** of the MOP.

2. The point $y^{\mathrm{N}}=(y_1^{\mathrm{N}},\ldots,y_p^{\mathrm{N}})$ given by

$$y_k^{\mathrm{I}} := \max_{x \in X_E} f_k(x) = \max_{y \in Y_N} y_k,$$

is called the **nadir point** of the MOP.

3. The point $y^{\mathrm{U}}=(y_1^{\mathrm{U}},\ldots,y_p^{\mathrm{U}})$ given by

$$y_k^{\mathrm{U}} = y_k^{\mathrm{I}} - \varepsilon$$

where $\varepsilon > 0$ is a small constant, is claled the **utopian point** of the MOP.

Remark 1. See page 35 in Ehrgott for illustration.