

CSD2259 Tutorial 6

Some notes

- Solving $ax \equiv b \pmod{m}$ means giving solutions (in x) in one of the forms
 - 1. $x \equiv c \pmod{n}$, or
 - 2. x = c + kn for $k \in \mathbb{Z}$
- To solve $ax \equiv b \pmod{m}$, we do following steps
 - 1. Check if b is divisible by gcd(a, m). If no, the equation has no solution. If yes, divide all terms of the equation by gcd(a, m) to get a new equation

$$a_1 x \equiv b_1 \pmod{m_1}$$

2. The solution is

$$x \equiv a_1^{-1}b_1 \pmod{m_1} \Leftrightarrow x = a_1^{-1}b_1 + km_1,$$

where a_1^{-1} is the modular inverse of $a_1 \mod m_1$.

Problem 1. The Bezout coefficients of two integers a, m are integers s, t such that $as+mt = \gcd(a, m)$. Using extended Euclidean algorithm, find the Bezout's coefficients of a and m in the following cases.

(a)
$$a = 34, m = 55$$
 (b) $a = 117, m = 213$ (c) $a = 3454, m = 4666$

Problem 2. Solve the linear congruence $ax \equiv b \pmod{m}$ in the following cases.

- (a) a = 34, m = 55, b = 3
- (b) a = 117, m = 213, b = 5
- (c) a = 3454, m = 4666, b = 2

Remark: Use the results of Question 1.

Problem 3. Let m be a positive integer. The set of all possible remainders when dividing a number by m is $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$.

- (a) How many integers $x \in \mathbb{Z}_{93}$ satisfies $36x \equiv 9 \pmod{93}$?
- (b) Let a, b, m be positive integers. Put $d = \gcd(a, m)$ and assume $d \mid b$. Find the number of integers $x \in \mathbb{Z}_m$ which satisfies the equation

$$ax \equiv b \pmod{m}$$
.

(c) Without actually solving, find out how many solutions x there are in the set \mathbb{Z}_n , where n is the modulo.

(i)
$$25x \equiv 2 \pmod{15}$$
 (ii) $25x \equiv 10 \pmod{15}$ (iii) $55x \equiv 121 \pmod{187}$

Problem 4. In this problem, we learn to solve system of linear congruences

$$\begin{cases} a_1 x \equiv b_1 \pmod{m_1} \\ a_2 x \equiv b_2 \pmod{m_2} \end{cases}$$

To solve this system, we do the following

- 1. Solve the 1st equation $a_1x \equiv b_1 \pmod{m_1}$: Assume the solution is $x \equiv x_0 \mod k_1$, that is, $x = x_0 + yk_1$.
- 2. Replace $x = x_0 + yk_1$ into the 2nd equation $a_2x \equiv b_2 \pmod{m_2}$ to get an equation in y and solve for y.

As an application, solve the following system

$$\begin{cases} 2x \equiv 5 \pmod{9} \\ 16x \equiv 6 \pmod{70} \end{cases}$$

Hints and Instructions

1-2. Try it.

3b. Answer: gcd(a, m).

4. Answer: x = 241 + 315k with $k \in \mathbb{Z}$.