Lectures 9: Introduction to dynamic choices

ECON 4620 Cornell University Adam Harris

Part 2: Dynamic choices

Overview of the next month

- Today: Motivating examples: Solving dynamic problems (using analytical methods).
- 3/4, 3/6, 3/11: Dynamic programming—a systematic computational approach to solving dynamic models.
- 3/13, 3/18: Applications to firm choices: investment, advertising, etc.
- 3/20: Review session.
- **3/25**: Prelim #2.

PS4 (which I'll post later today) is due on 3/11; PS5 is due on 3/18.

What do we mean by **dynamic**? Choices being made at different points in time.

What do we mean by **dynamic**? Choices being made at different points in time.

Example:

- Consider a monopolist who produces maple syrup in two periods t = 1, 2.
- In each period, monopolist faces inverse demand curve P(q) = 160 q and has constant marginal cost $c_t = 120$
- What is the monopolist's optimal choice of q_1 , q_2 ?

What do we mean by **dynamic**? **Interrelated** choices being made at different points in time. Current choice affects future payoffs.

Example:

- Consider a monopolist who produces maple syrup in two periods t = 1, 2.
- In each period, monopolist faces inverse demand curve P(q) = 160 q and has constant marginal cost $c_t = 120$
- What is the monopolist's optimal choice of q_1 , q_2 ?

What do we mean by **dynamic**? **Interrelated** choices being made at different points in time. Current choice affects future payoffs.

Example:

- Consider a monopolist who produces maple syrup in two periods t = 1, 2.
- In each period, monopolist faces inverse demand curve P(q) = 160 q and has constant marginal cost $c_t = 120 Q_t^{\text{past}}$ where Q_t^{past} is the total quantity produced in all past periods. (*Learning by doing*.)
- What is the monopolist's optimal choice of q_1 , q_2 ?

Elements common to static and dynamic problem:

Payoff/loss function: The objective is to maximize payoff or minimize loss.

Elements common to static and dynamic problem:

Payoff/loss function: The objective is to maximize payoff or minimize loss.

Elements specific to dynamic problem:

Time: Discrete versus continuous, finite versus infinite.

Elements common to static and dynamic problem:

Payoff/loss function: The objective is to maximize payoff or minimize loss.

Elements specific to dynamic problem:

- Time: Discrete versus continuous, finite versus infinite.
- State variable(s): What gets "carried forward" from one period to another? In other words, what
 aspect of history affects payoffs today? (E.g., capital stock, brand reputation, production technology,
 inventory).

Elements common to static and dynamic problem:

Payoff/loss function: The objective is to maximize payoff or minimize loss.

Elements specific to dynamic problem:

- Time: Discrete versus continuous, finite versus infinite.
- State variable(s): What gets "carried forward" from one period to another? In other words, what
 aspect of history affects payoffs today? (E.g., capital stock, brand reputation, production technology,
 inventory).
- Transition process: How does current state and action affect next period's state?

Dynamic choices: Another example

- Again, consider a monopolist who produces maple syrup in two periods t = 1, 2.
- Again, in each period, the monopolist faces inverse demand curve P(q) = 160 q.
- Now, rather than learning by doing, marginal cost of production in each period is determined by capital stock: $c_t = 120 K_t$, where K_t is the capital stock in period t.
- The monopolist can improve next period's capital stock through investment I_t : $K_{t+1} = K_t + I_t$. But investment is costly: I_t^2 .
- What are the monopolist's optimal choices?

Dynamic choices: Another example

- Again, consider a monopolist who produces maple syrup in two periods t = 1, 2.
- Again, in each period, the monopolist faces inverse demand curve P(q) = 160 q.
- Now, rather than learning by doing, marginal cost of production in each period is determined by capital stock: $c_t = 120 K_t$, where K_t is the capital stock in period t.
- The monopolist can improve next period's capital stock through investment I_t : $K_{t+1} = K_t + I_t$. But investment is costly: I_t^2 .
- What are the monopolist's optimal choices of q_1 , q_2 , q_3 , l_1 , l_2 ?

Dynamic choices: A stochastic example

- Again, consider a monopolist who produces maple syrup in two periods t = 1, 2.
- Again, in each period, the monopolist faces inverse demand curve P(q) = 160 q.
- In period 1, marginal cost is 80. In period 2, marginal cost is 80 if the trees are healthy, but 140 if the trees are unhealthy.
- − The monopolist can improve the chances of healthy trees by investing in fertilizer. The cost of each ton of fertilizer is 375, and the probability of healthy trees in period 2 is Λ (I − 3) where I is the number of tons of fertilizer used and Λ is the logistic function.
- The monopolist is risk neutral. That is, the monopolist's objective is maximizing expected profit.
- What are the monopolist's optimal choices of q_1, q_2^H, q_2^U, I ?

Dynamic choices: A stochastic example

- Again, consider a monopolist who produces maple syrup in two periods t = 1, 2.
- Again, in each period, the monopolist faces inverse demand curve P(q) = 160 q.
- In period 1, marginal cost is 80. In period 2, marginal cost is 80 if the trees are healthy, but 140 if the trees are unhealthy.
- − The monopolist can improve the chances of healthy trees by investing in fertilizer. The cost of each ton of fertilizer is 375, and the probability of healthy trees in period 2 is Λ (I − 3) where I is the number of tons of fertilizer used and Λ is the logistic function.
- The monopolist is risk neutral. That is, the monopolist's objective is maximizing expected profit.
- What are the monopolist's optimal choices of q_1 , q_2^H , q_2^U , I?
- What if the cost of fertilizer were 376 per ton instead of 375?