Automatic Generation of DFA Minimization Problems

Gregor Sönnichsen

Universität Bayreuth

17. Juli 2020

Automata theory is a classical topic in computer science curricula. Minimization of DFAs is a typical task for students:

 $[\]mathbf{1}_{\texttt{https://www.rindlerwahn.de/zeitdiebe-besiegen-und-mehr-lebenszeit-gewinnen}}$

Automata theory is a classical topic in computer science curricula. Minimization of DFAs is a typical task for students:

- sufficiently easy to understand
- practical applications
- understanding can be tested easily

 $[\]mathbf{1}_{\texttt{https://www.rindlerwahn.de/zeitdiebe-besiegen-und-mehr-lebenszeit-gewinnen}}$

Automata theory is a classical topic in computer science curricula. Minimization of DFAs is a typical task for students:

- sufficiently easy to understand
- practical applications
- understanding can be tested easily

Consequently, studying automatized generation of DFA minimization problems is interesting because it could. . .

 $[\]mathbf{1}_{\texttt{https://www.rindlerwahn.de/zeitdiebe-besiegen-und-mehr-lebenszeit-gewinnen}}$

Automata theory is a classical topic in computer science curricula. Minimization of DFAs is a typical task for students:

- sufficiently easy to understand
- practical applications
- understanding can be tested easily

Consequently, studying automatized generation of DFA minimization problems is interesting because it could...

- ... free up precious time for exercise constructors (if a generator is implemented)
- ...yield a deeper insight in the nature of such problems

1

 $[\]mathbf{1}_{\mathtt{https://www.rindlerwahn.de/zeitdiebe-besiegen-und-mehr-lebenszeit-gewinnen}}$

Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration and Conclusion

Problem definition

Preliminaries

We say a state q is *unreachable*, iff there is no word $w \in \Sigma^*$ such that $\delta^*(s,w)=q$.

A state pair $q_1,q_2\in Q$ is called *equivalent*, iff $\sim_A (q_1,q_2)$ is true, where

$$q_1 \sim_A q_2 \Leftrightarrow_{def} \forall z \in \Sigma^* \colon (\delta^*(q_1, z) \in F \Leftrightarrow \delta^*(q_2, z) \in F)$$

Example

Theorem

A DFA is minimal, iff it has neither unreachable nor equivalent states.

MinimizeDFA(A)

9:

- 1. Compute all unreachable states
- 2. Remove all unreachable states and their transitions.
- 3. Compute all inequivalent state pairs (\nsim_A)

```
1: function FindEquivPairs(A)
    i \leftarrow 0
2:
         m(0) \leftarrow \{(p,q),(q,p) \mid p \in F, q \notin F\}
3:
         do
4.
               i \leftarrow i + 1
5:
               m(i) \leftarrow \{(p,q), (q,p) \mid (p,q) \notin \bigcup m(\cdot) \land
6:
                                             \exists \sigma \in \Sigma : (\delta(p, \sigma), \delta(q, \sigma)) \in m(i-1)
7:
         while m(i) \neq \emptyset
8.
```

return $| | m(\cdot) |$ 4. Merge all equivalent state pairs

 $[\]mathbf{2}_{\texttt{http://www.cs.cornell.edu/gries/banquets/symposium40/images/faculty/jehyoung.jpg}$

Problem definition

A sample DFA minimization task...

<u>Task:</u> Consider the below shown deterministic finite automaton A:

Apply the minimization algorithm and illustrate for each state pair of A during which FindEquivPairs-iteration it was marked. Draw the resulting automaton.

Problem definition

... and its solution

Solution:

Step 1: Detect and eliminate unreachable states.

State 5 is unreachable.

Step 2: Apply FindEquivPairs to A and merge equivalent state pairs:

	0	1	2	3	4	6
0		1	0		0	2
1			0	1	0	1
2				0		0
3					0	2
4						0
6						

Problem Definition and Approach

DFAMinimization

<u>Given</u>: A DFA A_{task}.

<u>Task</u>: Compute $A_{sol} = MinimizeDFA(A_{task})$.

Main question: How to generate instances of DFAMinimization?

Problem Definition and Approach

DFAMinimization

<u>Given :</u> A DFA A_{task} .

<u>Task</u>: Compute $A_{sol} = MinimizeDFA(A_{task})$.

Main question: How to generate instances of DFAMinimization?

Idea: First generate A_{sol} , then add equivalent, then unreachable states.

Generate DFA Minimization Problem

- Generate Minimal DFA
 (using a rejection algorithm and randomization/enumeration)
- Extend Minimal DFA
 - Add Equivalent States
 - Add Unreachable States

Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration and Conclusion

Rejection Algorithm

Approach: Generate test DFAs until they match the demanded properties.

- 1: **function** GenNewMinDFA (n_s, k, n_F, d, p)
- 2: $I \leftarrow \text{all DFAs in DB}_{found} \text{ matching } n_s, k, n_F$
- 3: **while** True **do**
- 4: generate DFA A_{test} with $|Q|, |\Sigma|, |F|$ matching n_s, k, n_F
- 5: **if** A_{test} not minimal **or** $d \neq \mathfrak{D}(A_{test})$ **then**
- 6: **continue**
- 7: **if** p = 1 **and** A_{test} is not planar **then**
- 8: **continue**
- 9: **if** A_{test} is isomorph to any DFA in / **then**
- 10: continue
- 11: save A_{test} and its respective properties in DB_{found}
- 12: **return** A_{test}

³ https://moviewriternyu.files.wordpress.com/2015/10/rejection.jpg

Test DFA Generation

We will restrict ourselves to $Q = [0, n_s - 1], \ \Sigma = [0, k - 1], \ s = 0.$

Test DFA Generation

We will restrict ourselves to $Q = [0, n_s - 1], \ \Sigma = [0, k - 1], \ s = 0.$

Generation...

(a) by randomization:

$$F = random_subset(Q)$$
 $\delta(q, \sigma) = choose_one(Q)$ $\forall q \in Q, \sigma \in \Sigma$

Test DFA Generation

We will restrict ourselves to $Q = [0, n_s - 1], \Sigma = [0, k - 1], s = 0.$

Generation...

(a) by randomization:

$$F = random_subset(Q)$$
 $\delta(q, \sigma) = choose_one(Q)$ $\forall q \in Q, \sigma \in \Sigma$

(b) by enumeration: An enumeration state $s_{n_s,k,n_F} = (F_F, F_\delta)$ has the following semantics:

$$F_F[i] = 1 \Leftrightarrow_{def} i \in F$$
 $F_{\delta}[i * k + j] = q \Leftrightarrow_{def} \delta(i, j) = q$

Example state: $s_{4,2,2} = (0110)_2 (10 \ 13 \ 22 \ 03)_4$

Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration and Conclusion

Adding Equivalent States (1)

We now want to add states r_1, \ldots, r_{n_e} to the solution DFA, such that every r_i is equivalent to a state e in the solution DFA:

$$\forall i \in [1, n_e] \colon \exists e \in Q_{sol} \colon r_i \sim_A e$$

Whenever we add a state r_i , we will first choose an $e \in Q_{sol}$, then we add the transitions of r_i .

Adding Equivalent States (1)

We now want to add states r_1, \ldots, r_{n_e} to the solution DFA, such that every r_i is equivalent to a state e in the solution DFA:

$$\forall i \in [1, n_e] \colon \exists e \in Q_{sol} \colon r_i \sim_A e$$

Whenever we add a state r_i , we will first choose an $e \in Q_{sol}$, then we add the transitions of r_i .

Adding Equivalent States (1)

We now want to add states r_1, \ldots, r_{n_e} to the solution DFA, such that every r_i is equivalent to a state e in the solution DFA:

$$\forall i \in [1, n_e] \colon \exists e \in Q_{sol} \colon r_i \sim_A e$$

Whenever we add a state r_i , we will first choose an $e \in Q_{sol}$, then we add the transitions of r_i .

Adding Equivalent States (1)

We now want to add states r_1, \ldots, r_{n_e} to the solution DFA, such that every r_i is equivalent to a state e in the solution DFA:

$$\forall i \in [1, n_e] \colon \exists e \in Q_{sol} \colon r_i \sim_A e$$

Whenever we add a state r_i , we will first choose an $e \in Q_{sol}$, then we add the transitions of r_i .

Adding Equivalent States (2) - Outgoing Transitions

Observation:

$$r_i \sim_A e \implies \forall \sigma \in \Sigma : [\delta(r_i, \sigma)]_{\sim_A} = [\delta(e, \sigma)]_{\sim_A}$$

Consequently:

R1: For each symbol $\sigma \in \Sigma$ choose exactly one state $q \in [\delta(e, \sigma)]_{\sim_A}$ and set $\delta(r_i, \sigma) = q$.

Adding Equivalent States (2) - Outgoing Transitions

Observation:

$$r_i \sim_A e \implies \forall \sigma \in \Sigma : [\delta(r_i, \sigma)]_{\sim_A} = [\delta(e, \sigma)]_{\sim_A}$$

Consequently:

R1: For each symbol $\sigma \in \Sigma$ choose exactly one state $q \in [\delta(e, \sigma)]_{\sim_A}$ and set $\delta(r_i, \sigma) = q$.

Adding Equivalent States (2) - Outgoing Transitions

Observation:

$$r_i \sim_A e \implies \forall \sigma \in \Sigma : [\delta(r_i, \sigma)]_{\sim_A} = [\delta(e, \sigma)]_{\sim_A}$$

Consequently:

R1: For each symbol $\sigma \in \Sigma$ choose exactly one state $q \in [\delta(e, \sigma)]_{\sim_A}$ and set $\delta(r_i, \sigma) = q$.

Adding Equivalent States (2) - Outgoing Transitions

Observation:

$$r_i \sim_A e \implies \forall \sigma \in \Sigma : [\delta(r_i, \sigma)]_{\sim_A} = [\delta(e, \sigma)]_{\sim_A}$$

Consequently:

R1: For each symbol $\sigma \in \Sigma$ choose exactly one state $q \in [\delta(e, \sigma)]_{\sim_A}$ and set $\delta(r_i, \sigma) = q$.

Adding Equivalent States (2) - Outgoing Transitions

Observation:

$$r_i \sim_A e \implies \forall \sigma \in \Sigma : [\delta(r_i, \sigma)]_{\sim_A} = [\delta(e, \sigma)]_{\sim_A}$$

Consequently:

R1: For each symbol $\sigma \in \Sigma$ choose exactly one state $q \in [\delta(e, \sigma)]_{\sim_A}$ and set $\delta(r_i, \sigma) = q$.

Adding Equivalent States (3) - Ingoing Transitions

Let q be a state s.t. $\delta(q, \sigma) = p$ and we want $\delta(q, \sigma) = r_i$. q must remain in its equivalence class

- \Rightarrow p must be in $[r_i]_{\sim_A} = [e]_{\sim_A}$
- \Rightarrow q has to have a transition to some state in $[r_i]_{\sim_A} = [e]_{\sim_A}$

Adding Equivalent States (3) - Ingoing Transitions

Let q be a state s.t. $\delta(q, \sigma) = p$ and we want $\delta(q, \sigma) = r_i$.

- q must remain in its equivalence class
- \Rightarrow p must be in $[r_i]_{\sim_A} = [e]_{\sim_A}$
- \Rightarrow q has to have a transition to some state in $[r_i]_{\sim_A} = [e]_{\sim_A}$

Observation: Since r_i must be reachable, we require that there is at least one such transition for which $q \neq r_i$ is true.

Adding Equivalent States (3) - Ingoing Transitions

Let q be a state s.t. $\delta(q, \sigma) = p$ and we want $\delta(q, \sigma) = r_i$.

- q must remain in its equivalence class
- \Rightarrow p must be in $[r_i]_{\sim_A} = [e]_{\sim_A}$
- \Rightarrow q has to have a transition to some state in $[r_i]_{\sim_A} = [e]_{\sim_A}$

Observation: Since r_i must be reachable, we require that there is at least one such transition for which $q \neq r_i$ is true.

Furthermore, we see that p must have at least 2 *ingoing elements*.

$$in(q) = |d^-(q)| + egin{cases} 1 & ext{if } s = q \ 0 & ext{else} \end{cases}$$

Adding Equivalent States (3) - Ingoing Transitions

Let q be a state s.t. $\delta(q, \sigma) = p$ and we want $\delta(q, \sigma) = r_i$.

- q must remain in its equivalence class
- \Rightarrow p must be in $[r_i]_{\sim_A} = [e]_{\sim_A}$
- \Rightarrow q has to have a transition to some state in $[r_i]_{\sim_A} = [e]_{\sim_A}$

Observation: Since r_i must be reachable, we require that there is at least one such transition for which $q \neq r_i$ is true.

Furthermore, we see that p must have at least 2 ingoing elements.

$$\mathit{in}(q) = |d^-(q)| + egin{cases} 1 & ext{if } s = q \ 0 & ext{else} \end{cases}$$

R2: Choose at least one $((q, \sigma), p) \in \delta$ with [p] = [e] and $in(p) \ge 2$. For at least one chosen transition $q \ne r_i$ must be true. Remove each $((q, \sigma), p)$ from δ and add $((q, \sigma), r_i)$.

Adding Equivalent States (3) - Ingoing Transitions

R2: Choose at least one $((q, \sigma), p) \in \delta$ with [p] = [e] and $in(p) \ge 2$. For at least one chosen transition $q \ne r_i$ must be true. Remove each $((q, \sigma), p)$ from δ and add $((q, \sigma), r_i)$.

Adding Equivalent States (3) - Ingoing Transitions

R2: Choose at least one $((q, \sigma), p) \in \delta$ with [p] = [e] and $in(p) \ge 2$. For at least one chosen transition $q \ne r_i$ must be true. Remove each $((q, \sigma), p)$ from δ and add $((q, \sigma), r_i)$.

Adding Equivalent States (3) - Ingoing Transitions

R2: Choose at least one $((q, \sigma), p) \in \delta$ with [p] = [e] and $in(p) \ge 2$. For at least one chosen transition $q \ne r_i$ must be true. Remove each $((q, \sigma), p)$ from δ and add $((q, \sigma), r_i)$.

Adding Unreachable States

Reminder: We say a state q is *unreachable*, iff there is no word $w \in \Sigma^*$ such that $\delta^*(s, w) = q$.

```
1: function AddUnrStates (A, n_u, c)

2: U \leftarrow \emptyset

3: for n_u times do

4: let q be the new state

5: steal ingoing tr. from a random subset of U \times \Sigma

6: add outgoing tr. to |\Sigma| random states

7: add q to U

8: return A
```

Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration and Conclusion

Live Demonstration

 $[\]mathbf{4}_{\mathtt{https://sagamer.co.za/wp-content/uploads/2015/03/loading-please-wait.png}$

This presentation has...

- ▶ introduced the problem of DFA Minimization Problem Generation
- piven an overview over a possible solution
- shown that the theoretic results might be useful in praxis

This presentation has...

- ▶ introduced the problem of DFA Minimization Problem Generation
- given an overview over a possible solution
- ▶ shown that the theoretic results might be useful in praxis

Lookout:

- more parameters, ranged parameters

 The *degree* of a state q is defined as $deg(q) = |d^{-}(q)| + |d^{+}(q)|$. \Rightarrow capping the max. degree?
- investigate planarity and drawing algorithms
- complexity analysis

This presentation has...

- ▶ introduced the problem of DFA Minimization Problem Generation
- given an overview over a possible solution
- ▶ shown that the theoretic results might be useful in praxis

Lookout:

- more parameters, ranged parameters

 The *degree* of a state q is defined as $deg(q) = |d^{-}(q)| + |d^{+}(q)|$. \Rightarrow capping the max. degree?
- investigate planarity and drawing algorithms
- complexity analysis

Thanks for listening!

This presentation has...

- ▶ introduced the problem of DFA Minimization Problem Generation
- given an overview over a possible solution
- ▶ shown that the theoretic results might be useful in praxis

Lookout:

- more parameters, ranged parameters

 The *degree* of a state q is defined as $deg(q) = |d^{-}(q)| + |d^{+}(q)|$. \Rightarrow capping the max. degree?
- investigate planarity and drawing algorithms
- complexity analysis

Thanks for listening even longer!

Definition

We will call a word w distinguishing word of p, q, iff

$$\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \notin F$$

Lemma

Iff $(p,q) \in m(n)$, the shortest distinguishing word of p,q has length n.

Lemma

If FindEquivPairs has done n iterations and terminated (so $\mathfrak{D}(A) = n$), then the longest word w, that is a shortest distinguishing word for any state pair, has length $\mathfrak{D}(A) - 1$.

Theorem

Given two DFAs A, A'. If both are accessible and L(A) = L(A'), then FindEquivPairs runs with the same number of iterations on them: $\mathfrak{D}(A) = \mathfrak{D}(A')$.