Girard's cut elimination for iterated inductive definitions revisited

Anton Setzer *

Mathematisches Institut, Universität München Theresienstr. 39, D-80333 München, Germany email: setzer@rz.mathematik.uni-muenchen.de

October 23, 1995

1 $ID(\underline{O})$

- **General Assumption 1.1** (a) In the following, we will often introduce in the language of PA, extended by some predicates, new predicates. We will write $\lambda x.\phi(x)$, if ϕ is a formula, for the predicate P s.t. $P(x) :\Leftrightarrow \phi(x)$, similarly for more variables, eg $\lambda x, y, z.\phi(x, y, z)$ introduces a predicate with 3 arguments.
 - If we have a formula $\phi(x_1, \ldots, x_n, y_1, \ldots, y_l)$, then $\phi(r_1, \ldots, r_n)$ stands for the l-ary predicate $\lambda y_1, \ldots, y_l, \phi(r_1, \ldots, r_n, y_1, \ldots, y_l)$.
 - (b) We will use capital letters X, Y, Z for indicate predicates. So $\phi(x, y, X)$ will be a formula, having (possibly) free variables x and y and one predicate P. Then $\phi(s, t, P)$ is the result of substituting x by s, y by t and (if X is eg a binary predicate) X(r, r') by P(r, r') (which means, that, if $P \equiv \lambda x, y.\psi(x, y)$, we have to replace X(r, r') by $\psi(r, r')$).
 - (c) We define, if P is a n-ary predicate, $(r_1, \ldots, r_n) \in P :\equiv P(r_1, \ldots, r_n)$, esp. if n = 1 $r \in P :\equiv P(r)$.
- **Definition 1.2** (a) For a binary predicate P, $P_{\nu}(s) := P(\nu, s)$, $P_{\prec \nu}(r, s) := r \prec \nu \land P(r, s)$, similar for a 4-ary predicate Φ , $\Phi_{\nu}(X, Y, x) := \Phi(\nu, X, Y, x)$. Therefore P_{ν} is a unary predicate, similarly for $P_{\prec \nu}$, Φ_{ν} .
 - If A, B are unary (possibly $A \equiv P_{\nu}$), $A \subset B :\equiv \forall x.A(x) \to B(x)$, $A = B :\equiv A \subset B \land B \subset A$. We will talk in the same way of A as if it were a set, referring always to the formulas mentioned. Therefore P_{ν} denotes the set, s.t. $x \in P_{\nu} \Leftrightarrow P_{\nu}(x)$.
 - (b) The language of ID_R (we will omit in the following the mentioning of R) is the language of arithmetic, extended by a binary predicate I.
 - (c) We assume, that R is a primitive recursive linear ordering (usually a well-ordering). Therefore $R(x,y) \equiv f(x,y) = 0$ for some primitive recursive function f. $\underline{R}(x) :\equiv R(x,x)$, $\nu \prec \mu :\equiv R(\nu,\mu) \land \nu \neq \mu$, $\nu \preceq \mu :\equiv R(\nu,\mu)$, $\forall \nu \prec \rho. \phi :\equiv \forall \nu. \nu \prec \rho \rightarrow \phi$ etc.

^{*}most of this research was done while the author was visiting the university of Leeds as part of the EC Twinning Project "Proofs and Computation"

- (d) A formula $\Phi(\nu, X, Y, x)$ is fair, if X is a only positively occurring unary, Y a (arbitrarily occurring) binary predicate, ν , x are variables (esp. I does not occurr in I). We assume that we have some fair Φ fixed, and $\Phi_{\nu}(X, Y, x)$ will denote the set s.t. $x \in \Phi_{\nu}(X, Y) \leftrightarrow \Phi_{\nu}(X, Y, x)$ in the convention as in (a). $\Phi_{\nu}(X, Y)$.
- (e) The axioms of ID_R or ID are axioms of PA (in the extended language) plus the axioms:

(ID1)
$$\forall \nu \in \underline{R}.\Phi_{\nu}(P_{\nu}, P_{\prec \nu}) \subset P_{\nu}$$

(ID2)
$$\forall \nu \in \underline{R}.(\Phi_{\nu}(B, P_{\prec \nu}) \subset B) \to P_{\nu} \subset B$$

where in the last statement B is an arbitrary unary predicate (e.g. definable by a formula).

Definition 1.3 If α, β are ordinals, $f : \alpha \to \beta$, we define $f(\alpha) := \beta$. Note, that this definition depends on the choice of β , so whenever we define a function we will explicitly declare domain and codomain of it.

- **Definition 1.4** (a) Let $\mathcal{O} := \{(\alpha, \beta, \Omega) | \alpha < \beta < \Omega\}$. We will assume that if $\underline{O} \in \mathcal{O}$, $\underline{O} = (\alpha, \beta, \Omega)$, and if $\underline{O}' \in \mathcal{O}$, $\underline{O}' = (\alpha', \beta', \Omega')$. Unless stated differently, \underline{O} , \underline{O}' are always assumed to be elements of \mathcal{O} .
 - (b) If $\underline{O}, \underline{O}' \in \mathcal{O}$, then $f : \underline{O} \to \underline{O}'$ means, that $f : \Omega \to \Omega'$ and $f(\alpha) = \alpha'$, $f(\beta) = f(\beta')$.
 - (c) If $\underline{O}, \underline{O}' \in \mathcal{O}$, then we define $\underline{O} < \underline{O}'$ iff $\alpha = \alpha'$, $\beta = \beta'$, $\Omega < \Omega'$.

 We write $\iota_{\underline{OO}'}$ for the inclusion: $\underline{O} \to \underline{O}'$, $\iota_{\underline{OO}'}(z) := z$ (which implies $\iota_{\underline{O},\underline{O}'}(\Omega) = \Omega'$.
- (d) If $\Omega \leq \Omega'$ (not necessarily $\underline{O} \leq \underline{O}'$), then $\tilde{\iota}_{\underline{OO}'}$ is the inclusion, $\Omega \to \Omega'$, $\tilde{\iota}_{\underline{OO}'}(z) := z$.

Definition 1.5 (a) If γ is an ordinal, $\gamma^{\leq} := (\gamma + 1)$ (considered as a set), $M_{-1} := M \cup \{-1\}$, (i.e. $\gamma_{-1}^{\leq} = (\gamma + 1) \cup \{-1\}$). $\omega_{-1} = \omega \cup \{-1\}$).

(b) If $\underline{O} \in \mathcal{O}$, then $Deg(\underline{O}) := \alpha_{-1}^{\leq} \times \Omega_{-1}^{\leq} \times \omega_{-1}$.

Definition 1.6 Assume $\underline{O} \in \mathcal{O}$.

- (a) For $u', u \in \Omega_{-1}^{\leq}$ we define $u' < u :\Leftrightarrow u' <_{\underline{O}} u :\Leftrightarrow (u \neq -1 \land (u' = -1 \lor u' < u).$ $u' \ll u :\Leftrightarrow u' \ll_{\underline{O}} u :\Leftrightarrow u' < u < \Omega \lor (u' < \beta \land u = \Omega).$ The definition for the value -1 is only an auxiliary one, needed for $Deg(\underline{O})$ in (c). In the following by "for all u' < s" we mean "for all u' < s s.t. $u' \neq -1$ ", similar for \ll .
- (b) For $(t,u), (t',u') \in \Omega^{\leq}_{-1} \times \alpha^{\leq}_{-1}$ we define $(t',u') \ll (t,u) \Leftrightarrow (t',u') \ll_{\underline{O}} (t,u) \Leftrightarrow (t' < t \wedge u' < \beta) \vee (t' = t \wedge u' \ll_{\underline{O}} u).$ $(t',u') < (t,u) :\Leftrightarrow t' < t \vee (t' = t \wedge u' < u), (t',u') = (t,u) :\Leftrightarrow t' = t \wedge u' = u.$ For the values -1, the same applies as in (a), so by "for all (t',u') < (t,u)" we mean "for all (t',u') < (t,u) s.t. $t' \neq -1$ and $u' \neq -1$ ".
- (c) For $(t, u, n), (t', u', n') \in Deg(\underline{O})$ we define $(t', u', n') < (t, u, n) :\Leftrightarrow (t' < t \lor (t' = t \land u' < u) \lor (t' = t \land u' = u \land n' < n)).$

Remark 1.7 Let $t, t', t'' \in \Omega^{\leq}_{-1}$ or $t, t', t'' \in \Omega^{\leq}_{-1} \times \alpha^{\leq}_{-1}$.

(a) $t \ll t' \ll t'' \rightarrow t \ll t''$.

- (b) $t < t' \ll t'' \rightarrow (t \ll t'' \leftrightarrow t \ll t')$.
- (c) If $f : \underline{O} \to \underline{O}'$, then $t < t' \to f(t) < f(t')$ and $t \ll t' \to f(t) \ll f(t')$.

Proof:

(a) Assume $t \ll t' \ll t''$.

If $t, t', t'' \in \Omega_{-1}^{\leq}$, then if $t'' = \Omega$, $t < t' \leq \beta$, $t \ll t''$, otherwise $t < t' < t'' < \Omega$.

Case t = (s, u), t' = (s', u'), t'' = (s'', u''): $s \le s' \le s''$. If s < s' then $u < \beta$, $(s, u) \ll (s'', t'')$, if s' < s'', then $u < \beta$ or $u < u' < \beta$, $(s, u) \ll (s'', t'')$, and if s = s' = s'', then $u \ll u' \ll u''$, and again the assertion.

(b) Assume $t < t' \ll t''$.

If $t, t', t'' \in \Omega_{-1}^{\leq}$, then if $t'' = \Omega$, $t < t' < \beta$, $t \ll t''$, $t \ll t'$; if $t'' < \Omega$, t < t' < t'' and we have $t \ll t''$ and $t \ll t'$.

If t = (s, u), t' = (s', u'), t'' = (s'', u'') we have $s \le s' \le s''$. If s < s' then $t \ll t' \leftrightarrow u < \beta \leftrightarrow t \ll t''$.

If s = s' < s'' then by $t < t' \ll t''$ follows $u < u' < \beta$, $t \ll t''$, $t \ll t'$.

If s = s' = s'', then the assertion follows as in the case $t, t', t'' \in \Omega^{\leq}$.

(c): easy.

Definition 1.8 For $\underline{O} \in \mathcal{O}$ we define the semi-formal system $ID_R(\underline{O})$ or short $ID(\underline{O})$, in which we can interpret ID_R .

- (a) The symbols of $ID(\underline{O})$ are the logical connectives \land , \lor , \forall , \exists and \neg , the constant 0, the successor function S, + and \cdot , symbols for primitive recursive functions (which are for this analysis not essential), =, < (for = and < on natural numbers) further the predicates $I\!N^s$ ($s \leq \Omega$, unary), IA^s ($s \leq \alpha$, unary) and $I^{s,t}$ ($s \leq \alpha$, $t \leq \Omega$, binary). The formulas are built from primeformulas and negated primeformulas by \land , \lor , \exists and \forall , the negation being a defined operation using the deMorgan-laws.
 - We identify α -equivalent formulas, eg $\forall x.A$ and $\forall y.A[x/y]$ are identified, if A[x/y] is an allowed substitution.
- (b) Existential formulas are false arithmetical prime formulas, $A \vee B$, $\exists x.A$, $IN^u(a)$, $IA^u(a)$, $I_{\nu}^{t,u}(a)$. Universal formulas are the negation of existential formulas.
- (c) Let N(X,x) be the formula, depending on a unary predicate X, defined by $N(X,x) :\equiv x = 0 \lor \exists y. (y \in X \land x = S(y))$.

N is operator, by which we get the inductive definition of the natural numbers.

Let $I\!N^{\leq u}(a) := N(I\!N^u, a)$.

The rules of the system for IN^u will represent the axiom

(N)
$$\bigcup_{u' < u} I\!N^{\preceq u} \subset I\!N^u \subset \bigcup_{u' \ll u} I\!N^{\preceq u'} \quad u \leq \Omega$$

This means $I\!N^u$ is the iteration of N u times, $I\!N^u = \{x \in \omega | x < u\}$, $I\!N^{\preceq u} = \{x \in \omega | x \le u\}$ and further $I\!N^{\Omega} \subset \bigcup_{t \prec \beta} I\!N^{\preceq t} = I\!N^{\beta}$, especially $N(I\!N^{\beta}) \subset I\!N^{\Omega} \subset I\!N^{\beta}$, which is correct if β is at least the closure ordinal of N, i.e. $\omega < \beta$.

(d) Let $Acc(X, x) := x \in \underline{R} \land \forall y \prec x.y \in X$. Let $IA^{\preceq t}(a) := Acc(IA^t, a)$.

If we iterate $Acc\ t$ times, we get the elements of \underline{R} of order type < t.

The rules of the system for IA^u will represent the following axiom:

(IA)
$$IA^{u} = \bigcup_{v < u} IA^{\leq v} \qquad u < \alpha$$

Note, that these rules are symmetric.

This means IA^u is the iteration of $Acc\ u$ times, $IA^u = \{x \in \underline{R} | \ ||x|| < u\}$ and $IA^{\leq u} = \{x \in \underline{R} | \ ||x|| < u\}$ $\underline{R} | \|x\| \le u \}.$

We define $||t|| < u :\equiv IA^u(t), ||t|| < u :\equiv IA^{\leq u}(t), ||t|| = u :\equiv ||t|| < u \land \neg(||t|| < u).$

(e) Let $\Phi_{\nu,\underline{O}}(X,Y,x)$ be the result of restricting every quantifier to \mathbb{N}^{Ω} , i.e. $\forall x.\phi(x)$ is replaced $by \ \forall x.x \in \mathbb{N}^{\Omega} \to \phi'(x), \ \exists x.\phi(x) \ by \ \exists x.x \in \mathbb{N}^{\Omega} \land \phi'(x).$

$$\Phi^t_{\nu,O}(X,x) := (\|\nu\| = t \land \Phi_{\nu,\underline{O}}(X,I^{t,0}_{\prec \nu},x)) \lor (\|\nu\| < t \land x \in I)$$

i.e.

$$\Phi_{\nu,\underline{O}}^{t}(X,x) = \begin{cases} \Phi_{\nu,\underline{O}}(X,I_{\prec\nu}^{t,0}) & \text{if } \|\nu\| = t \\ X & \text{if } \|\nu\| < t \\ \emptyset & \text{if } t < \|\nu\| \end{cases}$$

 $I^{\preceq t,u}(a) := I^{\preceq \underline{o}^{t,u}}(a) := \Phi^t_{\nu,\underline{o}}(I^{t,u}_{\nu},a). \ \ Note, \ that \ I^{\preceq \underline{o}^{t,u}} \ \ depends \ \ only \ \ on \ \Omega.$ The rules of the system for $I^{t,u}$ will represent the following axioms:

$$(\mathrm{I}) \qquad \qquad \bigcup_{(t',u')<(t,u)} I^{\preceq\underline{o}t',u'} \subset I^{t,u} \subset \bigcup_{(t',u')\ll(t,u)} I^{\preceq\underline{o}t',u'} \quad (t,u) \leq (\alpha,\Omega)$$

Therefore we have, if $\|\nu\| = t$, $u < \Omega$, $I_{\nu}^{t,u} = (\Phi_{\nu,\underline{O}}(\cdot,I_{\prec\nu}^{t,0}))^u$, the assymetry expresses $\Phi_{\nu,\underline{O}}(I_{\nu}^{t,\beta},I_{\prec\nu}^{t,0})\subset I_{\nu}^{t,\Omega}\subset \bigcup_{(t',u')\ll(t,\Omega)}I^{\preceq t',u'}\subset I^{t,\beta}.$

In set theory follows from these axioms for all (t,u) s.t. $\|\nu\| < t$, that $I_{\nu}^{t,u} = I_{\nu}^{\|\nu\|,\beta}$. Proof by induction on (t,u) (< is naturally a well-ordering for $t \leq \alpha$, $u \leq \Omega$): $I_{\nu}^{t,u} = \bigcup_{\substack{(t',u') \ll (t,u) \\ (t',u') < (\parallel \nu \parallel),\Omega}} I_{\nu}^{t',u'} = \bigcup_{\substack{(t',u') \ll (t,u) \\ (t',u') < (\parallel \nu \parallel),\Omega}} I_{\nu}^{t',u'} \cup \bigcup_{\substack{(t',u') \ll (t,u) \\ (t',u') < (\parallel \nu \parallel),\Omega}} I_{\nu}^{t',u'} \subset I_{\nu}^{\parallel \nu \parallel ,\Omega} \cup I_{\nu}^{\parallel \nu \parallel ,\beta} \subset I_{\nu}^{\parallel \nu \parallel ,\beta} \subset I_{\nu}^{t,u}.$

For $t < \|\nu\|$ we have $I_{\nu}^{t,u} = \emptyset$.

The rules are correct, if β is at least the closure ordinal of the ν th inductive definition, i.e. $\omega_{\nu}^{ck} \leq \beta$. If α is the order type of R, and α is a limit ordinal, we have the condition $\omega_{\alpha}^{ck} \leq \beta$. Girard had a different definition, namely

$$\Phi_{\nu,\underline{O}}^{t}(X,x) :\equiv Acc(IA^{t},\nu) \wedge \Phi_{\nu,\underline{O}}(X,I_{\prec\nu}^{t,0},x),$$

therefore

$$\Phi_{\nu,\underline{O}}(X,x) = \begin{cases} \Phi_{\nu,\underline{O}}(X,I_{\prec\nu}^{t,0}) & if \|\nu\| \leq t \\ \emptyset & otherwise \end{cases}$$

- (f) Let $Term_{Cl}$ be the set of of closed Terms.
- (g) We define the relation $A \doteq_{\underline{O}} \bigwedge_{i \in I} A_i$ or $A \doteq_{\underline{O}} \bigvee_{i \in I} A_i$ for A being a closed formula in $ID(\underline{O})$ as follows (we usually omit the index Q):

(We abbreviate $\bigvee_{i \in \{i' \in J | i < j\}} \cdots$, by $\bigvee_{i < j} \cdots \bigvee_{i \in \{i' \in J | i < j\}}$, where J = Ord, the class of ordinals, or $J = Ord \times Ord$, corresponding to j, similar for $<_O$, \ll , \wedge .

 $A \doteq \bigvee_{i \in \emptyset} A_i$ if A is a false arithmetical primeformula.

 $B \lor C \stackrel{i \to i}{=} \bigvee_{i \in \{\underline{0},\underline{1}\}} A_i \text{ with } A_{\underline{0}} := B, A_{\underline{1}} :=$ $\exists x. A \doteq \bigvee_{t \in Term_{Cl}} A[x/t],$

$$C \\ N^{u}(a) \doteq_{\underline{O}} \bigvee_{u' <_{\underline{O}} u} N^{\preceq u'}(a), \qquad IA^{u}(a) \doteq \bigvee_{u' <_{\underline{U}}} IA^{\preceq u'}(a),$$

$$\begin{split} I_{\nu}^{t,u}(a) &\doteq_{\underline{O}} \bigvee_{(t',u') <_{\underline{O}}(t,u)} I_{\nu}^{\preceq_{\underline{O}}t',u'}(a), \\ \neg A &\doteq \bigvee_{i \in I} \neg A_i \text{ if } \overline{A} \doteq \bigwedge_{i \in I} A_i, \text{ if } A \text{ is a universal formula, except in the following two cases:} \\ \neg N^u(a) &\doteq_{\underline{O}} \bigwedge_{u' \ll_{\underline{O}}u} \neg N^{\preceq u'}(a), \qquad \qquad \neg I_{\nu}^{t,u}(a) \doteq_{\underline{O}} \bigwedge_{(t',u') \ll_{\underline{O}}(t,u)} I_{\nu}^{\preceq t',u'}(a), \end{split}$$

(h) We have the following list of rules:

$$(Cut, C)$$
 $C \neg C$

$$(\vee, A, j)$$
 $\stackrel{A_j}{=}$ $(if A \doteq \bigvee_{i \in I} A_i, j \in I)$ (\wedge, A) $\stackrel{\cdots A_j \cdots (j \in I)}{=}$ $(if A \doteq \bigwedge_{i \in I} A_i)$

The premisses are numbered by $J = \{\underline{0}, \underline{1}\}$ in the case of (Cut, C), J = I in the case of (\land, A) and $J = \{\underline{0}\}$ in the case of (\lor, A, i) , the J is called the index set of the rule. The main formulas of (\lor, A, j) and (\land, A) are A, and (Cut) has no main formula.

We define now inductively $\vdash^{\underline{O};\delta} \Gamma$, by: If

$$(Rule)$$
 $\frac{\Delta_i(i \in I)}{\Delta}$

is any rule, $\Delta \subset \Gamma$, and $\forall i \in I.\exists \delta' < \delta. \vdash^{\underline{O};\delta'} \Gamma, \Delta_i \text{ then } \vdash^{\underline{O};\delta} \Gamma \text{ holds.}$

- (i) We can define proofs as formal objects: If (Rule) is a rule with index set I, if the conclusion is Δ , the premisses are Δ_i , $(P_i)_{i\in I}$ are proofs of Γ, Δ, Δ_i , of height δ_i , then $(\Gamma, (Rule), (P_i)_{i\in I})$ is a proof of Γ, Δ of height $\sup\{\delta_i + 1 | i \in I\}$.
- (j) If $P = (\Gamma, (Rule), (P_i)_{i \in I})$ is a proof, Rule(P) := (Rule).

Definition 1.9 (a) For $(t, u, n) \in Deg(O)$, we define (t, u, n) + 1 := (t, u, n + 1).

(b) We define the degree $d^o(A) \in Deg(\underline{O})$ and the predicative degree $d^p(A) \in Deg(\underline{O})$ of a formula A in $ID(\underline{O})$ by:

 $d^{o}(A) := d^{p}(A) := (-1, -1, 0)$ if A is a prime arithmetical formula,

 $d^{o}(IN^{t}(a)) := (-1, t, 0).$

 $d^p(\mathbb{N}^t(a)) := (-1, t, 0) \text{ if } t \neq \Omega, d^p(\mathbb{N}^\Omega(a)) := (-1, -1, -1).$

 $d^{o}(IA^{t}(a)) := d^{p}(IA^{t}(a)) := (t, 0, 0).$

 $d^{o}(I_{\nu}^{t,u}(a)) := (t, u, 0).$

 $d^p(I_{\nu}^{t,u}(a)) := (t, u, 0) \ (if \ u \notin \{0, \Omega\}), \ d^p(I_{\nu}^{t,0}(a)) := d^p(I_{\nu}^{t,\Omega}(a)) := (-1, -1, -1).$

 $d^o(A \vee B) := \max\{d^o(A), d^o(B)\} + 1, \ d^p(A \vee B) := \max\{d^p(A), d^p(B)\} + 1,$

 $d^o(\exists x.A) := d^o(A) + 1, \ d^p(\exists x.A) := d^p(A) + 1.$

 $d^p(\neg A) := d^p(A), \ d^o(\neg A) := d^o(A), \ if \ A \ is \ a \ universal formula \ .$

Note, that, if B is a subformula of A, then $d^o(B) < d^o(A)$.

Definition 1.10 (a) The degree of a cut with cut formula A is $d^o(A)$, its predicative cut degree $d^p(A)$.

(b) A proof P in $ID(\underline{O})$ is of degree d iff for the degrees of its cuts we have d' < d, and of predicative cut degree d' iff for the predicative degrees of its cuts we have d' < d. We write $P \vdash_{d,d_p}^{\underline{O};\alpha} \Gamma$ for P is a proof of Γ in $ID(\underline{O})$ of degree d and predicative degree d_p .

Definition 1.11 Given a formula A of $ID(\underline{O})$, d a degree of the same theory, then A_r is the result of replacing every ordinal parameter l, $s.t.\beta < l < \Omega$, by Ω .

Definition 1.12 Assume $\underline{O} \in \mathcal{O}$

(a) We define the set of indices for rules as $\mathcal{I}(\underline{O}) := Term_{Cl} \cup \{\underline{0},\underline{1}\} \cup \Omega^{\leq} \cup (\alpha^{\leq} \times \Omega^{\leq}).$ $\vec{\mathcal{I}}(\underline{O})$ is the set of not empty sequences of $\mathcal{I}(\underline{O})$.

- (b) If $P = (\Gamma, \Delta, (Rule), (P_i)_{i \in I})$, then $P[i] := P_i$. If $A \doteq \bigwedge_{i \in I} B_i$ or $A \doteq \bigvee_{i \in I} B_i$, then $A[i] := B_i$, if $i \in I$.
- (c) In the situation above, for some $\vec{i} \in \vec{\mathcal{I}}(\underline{O})$, and P an $ID(\underline{O})$ -proof or formula we define $P[\vec{i}]$: If \vec{i} is the list containing the element i, then $P[\vec{i}] :\simeq P[i]$, and if $\vec{i} = i, \vec{j}$, then $P[\vec{i}]$ is defined if P[i] and $P[i][\vec{j}]$ are defined and in this case defined as $P[i][\vec{j}]$.

2 Images of Objects under functions f

Definition 2.1 Assume $\underline{O}', \underline{O} \in \mathcal{O}$. A good function $f : \underline{O}' \to \underline{O}$ is a function $f \in I(\Omega, \Omega')$, s.t. $f(\alpha') = \alpha$, and $f(\beta') = \beta$.

- (b) In the following we will define the image under f of indices, degrees, formulas, sequences, rules. In this case we have the usual definition of $f^{-1}(Q)$: $f^{-1}(Q)$ is defined iff $\exists P. f(P) = Q$, and in this case $f^{-1}(Q) = P$. f will always be injective therefore $f^{-1}(Q)$ is uniquely defined, if it is defined.
- (c) We will always extend a function $f: \Omega' \to \Omega$ by $f(\Omega') := \Omega$.
- (d) If $\underline{O} < \underline{O}'$, then $\iota_{O,O'}$ is the inclusion $\Omega \to \Omega'$.

Definition 2.2 Assume $\underline{O}', \underline{O} \in \mathcal{O}$ $f : \underline{O}' \to \underline{O}$ good.

- (a) The ordinal parameters in a formula or sequence of $ID(\underline{O})$ are the parameter u in the prime formulas $IN^u(a)$, $IA^u(a)$ and t, u in $I_{\nu}^{t,u}(a)$.
- (b) The ordinal parameters in a rule of $ID(\underline{O})$ are the ordinal parameter of A in (Cut, A), (\land, A) and i and the ordinal parameter of A in (\lor, A, i) .
- (c) The image of a rule, formula, sequence under f is the result of replacing the ordinal parameters of it by their image under f. Note, that if the object was of $ID(\underline{O}')$, $f:\underline{O}'\to\underline{O}$, then the image of the object will be an object of $ID(\underline{O})$.
- (d) If $i \in \vec{\mathcal{I}}(\underline{O}')$, then we define $\hat{f}(i)$ by $\hat{f}(i) = i$ if $i \in \{\underline{0},\underline{1}\} \cup Term_{Cl}$, $\hat{f}(i) := f(i)$ for $i \in \Omega + 1$ and $\hat{f}(s,t) := (f(s),f(t))$. We write f(i) for $\hat{f}(i)$ and extend f as well to $\vec{\mathcal{I}}$ by applying f to the elements of the sequence.
- (e) f(-1) := -1.
- (f) If $(t, u, n) \in Deg(\underline{O})$, then f(t, u, n) := (f(t), f(u), n).
- (g) For proofs we cannot define the image of a proof under f, since we get too few premisses, but only possibly the inverse image under it: Assume $Q = (\Gamma, \Delta, (Rule), (P_i)_{i \in I})$, then $f^{-1}(Q)$ is defined iff $\forall i \in range(f).f^{-1}(P_i)$ is defined (f extended as in definition 2.1 (f)). and $f^{-1}(Rule)$, $f^{-1}(f)$, $f^{-1}(f)$ are defined. In this case $f^{-1}(Q) := (f^{-1}(\Gamma), f^{-1}(\Delta), f^{-1}(Rule), (f^{-1}(P_{f(i)})_{i \in f^{-1}(I)}))$.

Remark 2.3 (a) If A is a formula of $ID(\underline{O}')$, $f: \Omega' \to \Omega$, then $d^o(f(B)) = f(d^o(B))$.

- (b) Note, that in the following cases, if P is a proof in $ID(\underline{O})$, we have a unique Q s.t. $f^{-1}(Q) = P$, written f(P) = Q, in each of the following two cases:
 - (i) If $\underline{O}' \leq \underline{O}$ and $f = \iota_{\underline{O}'\underline{O}}$ (the inclusion).

- (ii) If P is cut-free and all ordinal-parameters $< \Omega$ in the conclusion l are such that f(l) = l.
- (ii) can be rewritten as:
- (ii') If $P \vdash_{0,0} \Gamma$ for some Γ s.t. $f(\Gamma) = \widetilde{\iota}_{OO'}(\Gamma)$.

Lemma 2.4 Assume $\underline{O}_1, \underline{O}_2, \underline{O}_3, \underline{O}_4 \in \mathcal{O}$, $f : \underline{O}_1 \to \underline{O}_2$, $h : \underline{O}_2 \to \underline{O}_4$, $g : \underline{O}_1 \to \underline{O}_3$, $k : \underline{O}_3 \to \underline{O}_4$, $h \circ f = k \circ g$.

- (a) If i is an ordinal, index, formula, sequence of $ID(\underline{O}_3)$, $g^{-1}(i)$ is defined, then $h^{-1}(k(i))$ is defined, $h^{-1}(k(i)) = f(g^{-1}(i))$.
- (b) If $I \subset \mathcal{I}(\underline{O}_3)$, $f(g^{-1}(I)) \subset h^{-1}(k(I))$.
- (c) If Q is a proof in $ID(\underline{O}_3)$, s.t. $f(g^{-1}(Q))$, $h^{-1}(k(Q))$ are proofs, then $f(g^{-1}(Q)) = h^{-1}(k(Q))$.

Proof:

(a) Case $i < \Omega$. By assumption i = g(j), $fg^{-1}(i) = f(j)$, hf(j) = kg(j) = k(i), therefore $h^{-1}(k(i)) = f(j) = fg^{-1}(i)$.

The other cases follow, since the functions just act on the parameters.

- (b) by (a).
- (c) Proof by induction on the derivations.

Let

Q =

$$\frac{\cdots Q_i \vdash \Gamma_i \cdots (i \in I)}{\Gamma} \quad (Rule)$$

Then

$$f(g^{-1}(Q)) =$$

$$\frac{\cdots f(g^{-1}(Q_{f^{-1}(g(i))}))\cdots (i \in f(g^{-1}(I)))}{f(g^{-1}(\Gamma))} f(g^{-1}(Rule))$$

$$h^{-1}k(Q) =$$

$$\frac{\cdots h^{-1}(k(Q_{h(k^{-1}(i))}))\cdots (i\in h^{-1}(k(I)))}{h^{-1}(k(\Gamma))} \quad h^{-1}(k(Rule))$$

Now $fg^{-1}(Rule) = h^{-1}(k(Rule))$, $f(g^{-1}(I)) \subset h^{-1}(k(I))$. Since the proofs are correct, these sets must be identical. Further, for $i \in f(g^{-1}(I))$, $i = fg^{-1}(j) = h^{-1}k(j)$, therefore $g(f^{-1}(i)) = k^{-1}(h(j))$, $Q_{g(f^{-1}(i))} = Q_{k^{-1}(h(j))}$. Now $h^{-1}(k(Q_{g(f^{-1}(i))}))$, $fg^{-1}(Q_{k^{-1}(h(j))})$) are defined, by IH therefore equal, further the resulting sequences are equal, and therefore $h^{-1}(k(Q)) = fg^{-1}(Q)$.

Remark 2.5 Assume $f: \underline{O} \to \underline{O}'$ good, $t, t' \in \Omega_{-1}^{\leq}$ or $t, t' \in \Omega_{-1}^{\leq} \times \alpha_{-1}^{\leq}$ or $t, t' \in Deg(\underline{O})$.

- (a) $t < t' \to f(t) < f(t')$.
- (b) $t \ll_O t' \to f(t) \ll_{O'} f(t')$.

3 Categories

- **Definition 3.1** (a) Let C be a category. A category D is a direct extension of C if $Ob(D) \subset Ob(C) \times A$ for some class A and Mor(D)((a,b),(a',b')) = Mor(C)(a,a') $(a,a' \in C,b,b' \in A)$.
 - (b) If \mathcal{D} extends a category \mathcal{C} , and \mathcal{E} is a category, $L: \mathcal{E} \to \mathcal{C}$ and $M: \mathcal{E} \to \mathcal{D}$, then we say M extends L, if M(x) = (L(x), a(x)) for some $a(x) \in A$. We write in this case M_x for a(x).

Definition 3.2 (a) A finite set K is good, if $\underline{0}, \underline{a} \in K$, where $\underline{0}, \underline{a}$ are some distinguished objects.

- (b) Let ON be the category with Ob(ON) being the class of ordinals and $Mor_{ON}(x,y) := I(x,y) := \{f : x \to y | f \text{ is strictly increasing} \}.$
- (c) Let K be good. ON^K is the category with

$$Ob(ON^K) := \{(x,d)|x \ Ordinal \ , d: K \to x, d(\underline{0}) = 0\}$$

and

$$Mor_{ONK}((x,d),(y,e)) := J((x,d),(y,e)) := \{ f \in I(x,y) | e = f \circ d \}$$

- (d) We replace now Girard's definition of a good Category by the following definition of a suitable category, which seems to be the more general principle behind:

 A subcategory \mathcal{C} of ON^K for some finite good K is called a suitable category, if the following holds:
 - (i) C is a full subcategory of ON^K , e.g. for $(x,d),(y,e) \in C$, $Mor_C((x,d),(y,e)) = J((x,d),(y,e))$.
 - (ii) C is an initial segment of ON^K , i.e. if (x,d)C, $(y,e) \in ON^K$, $J((y,e),(x,d)) \neq \emptyset$, then $(y,e) \in C$.
 - (iii) $C \neq \emptyset$.
 - (iv) If $(x, d) \in \mathcal{C}$, x < y, then $(y, d) \in \mathcal{C}$.
- (e) If C, C' are suitable, $C \subset ON^K$, $C' \subset ON^{K'}$, then $C \leq C' :\Leftrightarrow K \subset K' \land (\forall (x,d) \in C'.(x,d|K) \in C) \land (\forall (x,d) \in C.\exists e : K' \to ON.e|K = d \land \exists x < y.(y,e) \in C').$ (Here | stands for restriction). Further we define $C \subset C' \Leftrightarrow K \subset K' \land (\forall (x,d) \in C'.(x,d|K) \in C)$.
- (f) If $C \subset C'$, (e.g. $C \leq C'$), $C \subset ON^K$, $C' \subset ON^{K'}$, F a functor from C into some category D, then $\theta_{CC'}(F)$ is the functor from C' into D, defined by $\theta_{C,C'}(F)(x,d') = F(x,d'|K)$, $\theta_{C,C'}(F)(f) = F(f)$.
- (g) $K_0 := \{\underline{0}, \underline{a}\}, \ C_0 := ON^{K_0}.$ K_d^x is the full subcategory of ON^K s.t. $Ob(K_d^x) = \{(y, e) \in ON^K | \exists x' > x.J((y, e), (x', d)) \neq \emptyset\}$.
- (h) A good functor on a suitable category C is a functor $C \to ON$, s.t.
 - (i) L commutes with direct limits and pull backs
 - (ii) L = I + L' for some L', i.e. L(x,d) = x + L'(x,d), if $f \in J((x,d),(y,e))$, then L(f) = f + L'(f), L(f)(z) = f(z) if z < x, L(f)(x+z) = y + L'(f)(z).

 $L_0 := I$ (identity).

(i) If L is a good functor on C, an L-parameter is a Functor $l: C \to ON$ s.t. $l(x,d) \leq L(x,d)$ for $(x,d) \in C$ and for $f \in J((x,d),(y,e))$, L(f)(l(x,d)) = l(y,e). Special L-parameters are l(x,d) = 0 (written as 0), $l(x,d) = d(\underline{a})$ (written as $\underline{\alpha}$), l(x,d) = x (written as $\underline{\beta}$) and l(x,d) = L(x,d) (written as $\underline{\Omega}$). We define, if l,m are L-parameters $l \leq m :\Leftrightarrow \forall (x,d) \in C.l(x,d) \leq m(x,d)$, $l < m :\Leftrightarrow \forall (x,d) \in C.l(x,d) < m(x,d)$, and l+m to be the L-parameter, s.t. (l+m)(x,d) = l(x,d) + m(x,d).

Remark 3.3 (a) K_d^x is suitable.

(b) If C is suitable, $C \subset ON^K$, $(x, d) \in C$, then, $K_d^x \subset C$.

Proof:

(a) K_d^x is suitable: $K_d^x \neq \emptyset$, since $(x',d) \in K_d^x$, if x < x' and $rng(d) \subset x'$. If $(y,e) \in K_d^x$, y < z, $h \in J((y,e),(x',d)) \neq \emptyset$, x < x', then let z = y + z', $g : z \to x' + z'$, g(u) := h(u) for u < y, g(z+u) := x' + u, then $g \in J((z,e),(x'+z',d))$, $(z,e) \in K_d^x$. That K_d^x is an initial segment is obvious.

(b) obvious.

Definition 3.4 Assume L is a good functor, then L(x,d) represents the element $(d(\underline{a}), x, L(x,d)) \in \mathcal{O}$, e.g. $ID(L(x,d)) := ID(d(\underline{a}), x, L(x,d))$, or $\vdash^{L(x,d);\delta} \Gamma$ stands for $\vdash^{(d(\underline{a}),x,L(x,d));\delta} \Gamma$

Definition 3.5 Assume L, M are good functors.

- (a) A natural transformation between good functors L = I + L' and M = I + M' is good, if T = I + T' (i.e. $T_{x,d}(z) = z$ if z < x, $T_{x,d}(x+z) = x + T'_{x,d}(z)$).
- (b) $L \leq M$ iff M = L + L'.
- (c) If $L(x,d) \leq M(x,d)$ for all x,d, then let \widetilde{E}_{LM} represent the family of functions $\widetilde{E}_{LMxd} := \widetilde{\iota}_{L(x,d),M(x,d)} : L(x,d) \to M(x,d)$, $\widetilde{E}_{LMxd}(z) = z$. Note, that by definition, we have $\widetilde{E}_{LMxd}(L(x,d)) = M(x,d)$. \widetilde{E}_{LM} is in general not a natural transformation, in the case $L \leq M$ it is a natural transformation, and denoted by E_{LM} .

4 Definition of ID(L)

Definition 4.1 The language of ID(L):

(a) We define FOR_L as the category extending C with

$$Ob(FOR_L) = \{(x, d, A) | (x, d) \in \mathcal{C}, A \text{ a formula of } ID(L(x, d))\},\$$

$$Mor(FOR_L)((x, d, A), (y, e, B)) = \{ f \in J((x, d), (y, e)) | L(f)(A) = B \}.$$

- (b) The language of ID(L) is defined as follows: the formulas (called L-formulas) are functors A from C into FOR_L , extending $Id: C \to C$ (i.e. $A(x,d) = (x,d,A_{xd})$ for some $A_{x,d}$, A(f) = f).
 - It can be easily checked, that these functors commute with pullbacks and direct limits.
- (c) Note that if we define a class FOR'_L of formulas by: every arithmetical prime formula is in FOR'_L , if A, B are in FOR'_L and x is a variable, then $\neg A$, $A \land B$, $A \lor B$, $\forall x.A$ and $\exists x.A$ are in FOR'_L , and if l, l' are L-parameters, s, t are terms, then $IN^l(a)$, $IA^l(a)$ and $I^{l,l'}(s,t)$ are in FOR'_L . Then FOR'_L are (except C is empty) all L-formulas, where for $A \in FOR'_L$ A_{xd} is the result of substituting all L-parameters l by l(x,d). We will usually write L-formulas as an element of FOR'_L .

(d) In a similar way we can define $f(\Gamma)$ for sequences and introduce the category SEQ_L of L-sequents in C as functors from C into SEQ_L . If $\Gamma, \Gamma' \in SEQ_L$ the concationation Γ, Γ' is defined by $(\Gamma, \Gamma')_{xd} = \Gamma_{xd}, \Gamma'_{xd}$.

Definition 4.2 Definition of the proofs in ID(L), or L-proofs.

- (a) We define the category of proofs $PROOF_L$, extending SEQ_L as follows: objects are 4-tupels (x, d, Γ, P) , s.t. $(x, d) \in \mathcal{C}$, P is a proof of the sequence Γ in ID(L(x, d)). Morphisms from (x, d, Γ, P) to (y, e, Γ', Q) are $f \in J((x, d), (y, e))$ such that $f^{-1}(Q) = P$. This forces $f^{-1}(\Gamma') = \Gamma$.
- (b) An L-proof of a sequence Γ is a functor P from C into $PROOF_L$ extending Γ (i.e. $P(x,d) = (x,d,\Gamma_{x,d},P_{x,d})$ with $\Gamma(x,d) = (x,d,\Gamma_{x,d})$, and P(f) = f). It is obvious, that L-proofs commute with direct limits and pull-backs.
- **Definition 4.3** (a) Let Deg_L be the category, extending a K-category C, s.t. $Ob(Deg_L) = \{(x,d,d^o)|(x,d) \in C \land d^o \in Deg(L(x,d))\}$, and $Mor(Deg_L)((x,d,d^o),(y,e,e^o)) = \{f \in J((x,d),(y,e))|f(d^o) = e^o\}$.

An L-degree is a functor $D: \mathcal{C} \to Deg_L$, extending $Id: \mathcal{C} \to \mathcal{C}$ (so $D(x, d) = (x, d, D_{xd})$). By remark 2.3 every L-formula A has a degree $d^o(A)$ in ID(L) defined by $d^o(A)_{x,d} = d^o(A_{x,d})$. The degree of a formula is therefore $d^o(A)_{xd} = (-1, -1, n)$ or $d^o(A)_{xd} = (-1, l_1(x, d), n)$ or $d^o(A)_{xd} = (l_1(x, d), l_2(x, d), n)$, where l_1 and l_2 are L-parameters, $n \in \mathbb{N}$.

Definition 4.4 A proof P in ID(L) is of degree D if $P_{x,d}$ is of degree D_{xd} for all (x,d) in C.

Note, that the degree of an L-proof need not exist, since

$$D_{xd} := \sup\{t+1|t \text{ is the degree of a cut in } P_{x,d}\}$$

need not be the degree of a formula of ID(L).

All proofs, coming from finitary proofs of the first order theory ID have a degree $(\underline{a}, \underline{\Omega}, n)$ some integer n.

Definition 4.5 (a) We define categories \mathcal{I}_L , $\vec{\mathcal{I}}_L$ of L-indices as the category, extending \mathcal{C} , s.t. $Ob(\mathcal{I}_L) = \{(x,d,i)|(x,d) \in \mathcal{C} \land i \in \mathcal{I}(L(x,d))\}$, $Mor(\mathcal{I}_L)((x,d,i),(y,e,j)) = \{f \in Mor_{\mathcal{C}}((x,d),(y,e))|f(i)=j\}$, $\vec{\mathcal{I}}_L$ is defined as \mathcal{I} with \mathcal{I} replaced by $\vec{\mathcal{I}}$.

An L-index is a functor $I: \mathcal{C} \to \vec{\mathcal{I}}$ extending Id.

Indices are now of the form $I_{xd} = \underline{0}$, $I_{xd} = \underline{1}$, $I_{xd} = t$, $I_{xd} = l(x,d)$, $I_{xd} = (u(x,d), l(x,d))$, where u, l are L-parameters and t is a term. We write $I = \underline{0}, \underline{1}, t, l, (t, l)$ in these cases respectively.

If P is an L-proof or L-formula and I an L-index, then we possibly define P[I] by $P[I](x,d) := (x,d,P_{xd}[I_{xd}])$.

It follows, that if P[I] is defined, then P[I] is an L-proof, L-formula.

(Note that by definition I_{xd} is never the empty sequence)

(b) We define a category $Rule_L$ of L-rules as the category, extending C, s.t. $Ob(\mathcal{I}_L) = \{(x, d, rule) | rule \in Rule(L(x, d))\}$, and $Mor(\mathcal{I}_L)((x, d, rule), (y, e, rule')) = \{f \in Mor_C((x, d), (y, e)) | f(rule) = rule'\}$.

An L-rule is a functor Rule: $C \to Rule_L$ extending Id.

If P is an L-proof, than we the functor with $Rule(P)_{xd} := Rule(P_{xd})$ defines an L-rule. Rules are now of the form $Rule_{xd} = (Cut, C_{xd}), (\land, A_{xd}), (\lor, A_{xd}, I_{xd}),$ where A, C are L-formulas, I is an L-index, which we will write as $(Cut, C), (\land, A), (\lor, A, I)$. **Definition 4.6** If T is a good transformation, it introduces a natural transformation betweed formulas, sequents, degrees, indices and rules:

If F is a formula, sequent, proof, degree, index, rule in ID(L), define $T(F)(x,d) := T_{xd}(F_{xd})$. We can define T(P) for proofs P by $T(P)(x,d) := T_{xd}(P_{xd})$ not in general, but in the following cases:

- (i) if T is of the form E_{LM}
- (ii) if the $P \vdash_{0,0}^{L} \Gamma$ for some Γ s.t. $T(\Gamma) = \widetilde{E}_{LM}(\Gamma)$.
- (ii) is esp. fulfilled if
- (ii') $P \vdash_{0,0}^{L} E_{L'L}(\Gamma)$, for some L', Γ s.t. $T \circ E_{L'L} = E_{L'M}$, in which case we have $T(P) \vdash_{0,0}^{L} E_{L'M}(\Gamma)$.
- **Remark 4.7** (a) If we have $T: L \to M$, and P is an L-proof of Γ of degree D and predicative degree D_p s.t. T(P) is defined, then T(P) is a proof of $T(\Gamma)$ of degree T(D) and predicative degree $T(D_P)$.
 - (b) If we have two good categories C < C', $\theta := \theta_{CC'}$, then, if P is an L-proof of a sequent S of degree D, predicative degree D_p in C then $\theta(P)$ is a $\theta(L)$ -proof of $\theta(S)$ of degree $\theta(D)$, predicative degree $\theta(D_p)$ in C'.

5 Double Bar-Induction

We have now to compare proofs and degress of ID(L) and ID(M), which actually depend on the L and M:

Definition 5.1 (a) We define an ordering on proofs: P < P' iff P'[I] = P for some L-index I.

- (b) For degrees D, D' of L-proofs we define $D < D' : \Leftrightarrow \forall (x,d) \in \mathcal{C}.D_{xd} < D'_{xd}, and <math>D \equiv D' : \Leftrightarrow \forall (x,d) \in \mathcal{C}.D_{xd} = D'_{xd}.$
- (c) We can compare degrees and proofs in the same category C, but with different functor L as follows: If D is a degree, P a proof of ID(M), D' a degree, P' a proof of ID(L), and $L \leq M$, then, with $E := E_{LM}$, we define
 - D < D' iff D < E(D').
 - $D \equiv D' \text{ iff } D \equiv E(D').$
 - P < P' iff P < E(P').
- (d) Using θ , we can compare degrees and proofs of different good categories. If $C, C' \leq C''$, then we define, if L is a good functor on C, L' a good functor on C', D is a degree, P a proof of ID(L), D' a degree, P' a proof of ID(L'), and then, with $\theta := \theta_{CC''}$, $\theta' := \theta_{C'C''}$, we define D < D' iff $\theta(D) < \theta'(D')$.
 - $D \equiv D' \text{ iff } \theta(D) \equiv \theta'(D').$
 - $P < P' \text{ iff } \theta(P) < \theta'(P').$

This definition is independent of the choice of \mathcal{C}'' .

Further we see, that if D < D', then $\theta(D) < \theta(D')$ similar for P.

(e) We define for pairs (D, P), where P is a proof of degree D: $(D, P) < (D', P') :\Leftrightarrow (D < D' \lor (D \equiv D' \land P < P'))$.

Remark 5.2 If $L_1 \leq L_2 \leq L_3 \leq \cdots$, then we can define a functor $L = \sup(L_n)_{n \in \omega}$ by $L(x,d) = \sup\{L_n(x,d) | n \in \omega\}$, and $L(f)(z) := L_n(f)(z)$ if $z < L_n(x,d)$. Then $L_n \leq L$.

Proof: Obvious.

Theorem 5.3 Double bar induction on degrees and proofs: The relation < defined in 5.1 is wellfounded.

Proof:

Assume a strictly decreasing sequence $(K_n, x_n, d_n, \mathcal{C}_n, L_n, D_n, P_n)$, where P_n is a L_n proof of degree D_n on the category $\mathcal{C}_n \subset ON^{K_n}$, $(x_n, d_n) \in \mathcal{C}_n$, $K_n \subset K_{n+1}$, $x_n < x_{n+1}$ and $d_{n+1}|K_n = d_n$.

Define $K := \bigcup K_n$, d defined by $d|K_n = d_n$, (here | stands for restriction), $x := \sup\{x_n|n \in \omega\}$, $\mathcal{C} := K_d^x$, $\theta_n := \theta_{\mathcal{C}_n\mathcal{C}}$. then with $P'_n := \theta_n(P_n)$, $D'_n := \theta_n(D_n)$, $L'_n := \theta_n(L_n)$ (P'_n, D'_n) is a strictly decreasing sequence in \mathcal{C} of L'_n proofs and degrees, L'_n is increasing. Let $L := \sup(L_n)_{n \in \omega}$, Let $E_n := E_{L'_n,L}$. Then the sequence (D''_n, P''_n) defined by $D''_n := E_n(D'_n)$, $P''_n := E_n(P'_n)$ is a strictly decreasing sequence of pairs (z,t), where z is a degree, t is a well-founded proof-tree, and we have a contradiction.

(Note that $D'_{n+1} < D'_n$, by definition therefore $D'_{n+1} < E_{L'_n,L'_{n+1}}(D'_n)$, therefore $D'_{n+1} = E_{n+1}(D'_{n+1}) < E_{n+1}(E_{L'_n,L'_{n+1}}(D'_{n+1})) = E_n(D'_n)$, similar for P).

6 Local Cutelimination

Definition 6.1 In the following we will define several operations, which tranform proofs into proofs, depending on certain parameters, written as $Operation_{\underline{O}}(s_1, \ldots, s_n)$, where P is a proof in $ID(\underline{O})$. Such an operation is called functorial, if for good $f: \underline{O}' \to \underline{O}$, if $f^{-1}(s_i)$ is defined for all i (if s_i is a term, variable, then $f^{-1}(s_i) := s_i$), then $f^{-1}(Operation_{\underline{O}}(s_1, \ldots, s_n)) = Operation_{\underline{O}'}(f^{-1}(s_1), \ldots, f^{-1}(s_n))$.

- **Lemma 6.2** (a) We can define an operation $rRed_{\underline{O}}(P;\Gamma;\Gamma')$, s.t. if $P \vdash_{d,d_p}^{\underline{O};\delta} \Gamma$, Γ' is the result of replacing in Γ some parameters $\beta < s < \Omega$ by Ω , then $rRed_{\underline{O}}(P;\Gamma;\Gamma') \vdash_{d,d_p}^{\underline{O};\delta} \Gamma$. This operation is functorial.
 - (b) We can define an operation $\wedge elim_{\underline{O}}(P; \Gamma; A; i)$, s.t. if $P \vdash_{d,d_p}^{\underline{O};\delta} \Gamma, A$, $A \doteq_{\underline{O}} \bigwedge_{i \in I} A_i$ and $i \in I$, then $\wedge elim_{\underline{O}}(P; \Gamma; A; i) \vdash_{d,d_p}^{\underline{O};\delta} \Gamma, A_i$.

 This operation is functorial.
 - (c) We can define an operation $\wedge red_{\underline{O}}(P; \Gamma; A; A'; I')$, s.t. if $P \vdash_{\overline{d}, d_p}^{\underline{O}; \delta} \Gamma, A, A \doteq \bigwedge_{i \in I} A_i, A' \doteq \bigwedge_{i \in I'} A_i, I' \subset I$, then $\wedge red_{\underline{O}}(P; \Gamma; A; A'; I') \vdash_{\overline{d}, d_p}^{\underline{O}; \delta} \Gamma, A'$.

 The operation is functorial. In the cases $A = I_{\nu}^{t,u}(a), A' = I_{\nu}^{t',u'}(a), (t',u') \ll (t,u)$, or $A = I\!N^u(a), A' = I\!N^{u'}(a), u' \ll u$, we can omit the parameter I'.
 - (d) We can define an operation $\forall red_{\underline{O}}(P; \Gamma; A; A'; I')$ s.t. if $P \vdash_{d,d_p}^{\underline{O};\delta} \Gamma, A, A \doteq \bigvee_{i \in I} A_i, A' \doteq \bigvee_{i \in I'} A_i, I \subset I', then <math>\forall red_{\underline{O}}(P; \Gamma; A; A'; I') \vdash \vdash_{d,d_p}^{\underline{O};\delta} \Gamma, A'.$ The operation is functorial. In the cases $A = I_{\nu}^{t,u}(a), A' = I_{\nu}^{t',u'}(a), (t,u) < (t',u'), or <math>A = IN^{u}(a), A' = IN^{u'}(a), u < u', the only cases, we actually use, we don't need to mention the parameter <math>I'$.
 - (e) We can define an operation $Weak_{\underline{O}}(P;\Gamma')$, s.t. if $P \vdash_{d,d_p}^{\underline{O};\delta} \Gamma$, then $Weak_{\underline{O}}(P;\Gamma') \vdash_{d,d_p}^{\underline{O};\delta} \Gamma,\Gamma'$. The operation is functorial.
 - (f) We can define an operation $\beta change_{\alpha,\beta',\Omega}(P;\beta)$, s.t. if $P \vdash_{d,d_p}^{\alpha,\beta',\Omega;\delta} \Gamma$, $\alpha < \beta < \beta' < \Omega'$, then $\beta change_{\alpha,\beta',\Omega}(P;\beta) \vdash_{d,d_p}^{\alpha,\beta,\Omega;\delta} \Gamma$.

 The operation is functorial.

(g) We can define an operation $\Omega change_{\alpha,\beta,\Omega'}(P;\Omega;\Gamma;\Gamma')$, s.t. if $P \vdash_{d,d_p}^{\alpha,\beta,\Omega;\delta} \Gamma$, $\alpha < \beta < \Omega < \Omega'$, Γ' is the result of replacing all, except of some positive occurrences, of Ω by Ω' , d', d'_p is the result of replacing Ω by Ω' in d, d_p then $\Omega change_{\alpha,\beta,\Omega'}(P;\Omega;\Gamma;\Gamma') \vdash_{d',d'_p}^{\alpha,\beta,\Omega';\delta} \Gamma'$. The operation is functorial.

Proof: All the following proofs are trivial, we just present them here for completeness. By recursion on the proofs, let in all cases the proof be

$$\frac{\cdots P_j \vdash \Gamma, \Delta_j \cdots (j \in J)}{\Gamma} \quad (Rule)$$

(a) Case (Rule) = (Cut, A): Then $rRed(P, \Gamma, \Gamma') :=$

$$\frac{rRed(P_{\underline{0}}; \Gamma, A; \Gamma', A_r) \vdash \Gamma', A_r}{\Gamma'} \frac{rRed(P_{\underline{1}}; \Gamma, \neg A; \Gamma', \neg A_r) \vdash \Gamma', \neg A_r}{\Gamma'} (Cut, A)$$

Case (Rule) is not a cut:

If $(Rule) = (\land, A)$, let $(Rule') = (\land, A')$, where A' is the formula, corresponding to A in Γ' , $A \doteq \bigwedge_{i \in I} A_i$, $A' \doteq \bigwedge_{i \in I'} A'_i$. Then A'_i corresponds to A_i , and $I' \subset I$; let J' := I'. If $(Rule) = (\lor, A, i)$, let $(Rule') = (\lor, A', i)$, where A' defined as before, $A \doteq \bigwedge_{i \in I} B_i$, $A' \doteq \bigwedge_{i \in I'} B'_i$. Then B'_i corresponds to B_i for $i \in I$, and $I \subset I'$. Let in this case $A_{\underline{0}} := B_i$, $A'_0 := B'_i$, $J' := \{\underline{0}\}$.

Then we define

 $rRed(P, \Gamma, \Gamma') :=$

$$\frac{\cdots rRed(P_i; \Gamma, A_i; \Gamma', A_i') \vdash \Gamma, A_i' \cdots (i \in J')}{\Gamma} \qquad (Rule')$$

(b) Case (Rule) has not main premisse A. Then $\wedge elim_{\underline{O}}(P; \Gamma; A; i) :=$

$$\frac{\cdots \wedge elim(P_j; \Gamma, \Delta_j; A; i) \vdash \Gamma, \Delta_j, A_i \cdots (j \in I)}{\Gamma, A_i}$$
 (Rule)

Case (Rule) has main premisse A, then $\wedge elim_{\underline{O}}(P; \Gamma; A; i) := \wedge elim(P_i; \Gamma; A; i)$, and $\wedge elim_{\underline{O}}(P; \Gamma, A_i; A; i) \vdash \Gamma, A_i$.

(c) Case (Rule) has not main premisse A. Then $\wedge red_{\underline{O}}(P; \Gamma; A; A'; I') :=$

$$\frac{\cdots \wedge red(P_j; \Gamma, \Delta_j; A; A'; I') \vdash \Gamma, \Delta_j, A' \cdots (j \in J)}{\Gamma, A'}$$
 (Rule)

Case (Rule) has main premisse A, then (Rule) = (\land, A) , $\land red_O(P; \Gamma; A; A'; I') :=$

$$\frac{\cdots \wedge red(P_j; \Gamma, A_j; A; A'; I') \vdash \Gamma, A_j, A' \cdots (j \in I')}{\Gamma, A'} \quad (\wedge, A')$$

(d) Case (Rule) has not main premisse A. Then $\forall red_O(P; \Gamma; A; i; I') :=$

$$\frac{\cdots \vee red(P_j; \Gamma, \Delta_j; A; A'; I') \vdash \Gamma, \Delta_j, A' \cdots (j \in J)}{\Gamma, A'} \quad (Rule)$$

Case (Rule) has main premisse A, then (Rule) = (\lor, A, i) , $i \in I'$, $\lor red_{\underline{O}}(P; \Gamma; A; A'; I') :=$

$$\frac{\vee red(P_{\underline{0}}; \Gamma, A_i; A; A'; I') \vdash \Gamma, A_i, A'}{\Gamma, A'} \quad (\vee, A', i)$$

(e)

 $Weak_O(P; \Gamma') :=$

$$\frac{\cdots Weak(P_j; \Gamma') \vdash \Gamma, \Delta_j, \Gamma'}{\Gamma, \Gamma'} \quad (Rule)$$

(f) If $A \doteq_{\alpha,\beta',\Omega} \bigwedge_{i\in I} A_i$, then $A \doteq_{\alpha,\beta,\Omega} \bigwedge_{i\in I'} A_i$ for some $I' \subset I$, and if $A \doteq_{\alpha,\beta',\Omega} \bigvee_{i\in I} A_i$, then $A \doteq_{\alpha,\beta,\Omega} \bigvee_{i\in I} A_i$.

Therefore we can define

 $\beta change(P; \beta) :=$

$$\frac{\cdots rRed(P_i; \Gamma, \Delta_i; \beta) \vdash \Gamma, \Delta_i \cdots (i \in J')}{\Gamma} \quad (Rule')$$

where J' = J in case of an \vee or Cut rule, and if $(Rule) = (\wedge, A)$, $A \doteq_{\alpha,\beta',\Omega} \bigwedge_{i \in J} A_i$, then J' defined by $A' \doteq_{\alpha,\beta,\Omega} \bigwedge_{i \in J'} A_i$.

(g) Case (Rule) = (Cut, A), A' be the result of replacing all occurrences of Ω by Ω' in A. Then let $Q := \Omega change(P_{\underline{0}}; \Omega; \Gamma, A; \Gamma', A')$, $Q' := \Omega change(P_{\underline{1}}; \Omega; \Gamma, \neg A; \Gamma', \neg A')$, $\Omega change_{\alpha,\beta,\Omega'}(P; \Omega; \Gamma; \Gamma') :=$

$$\frac{Q \vdash \Gamma', A' \qquad Q' \vdash \Gamma', \neg A'}{\Gamma} \quad (Cut, A')$$

Case (Rule) is not a cut:

If $(Rule) = (\land, A)$, let $(Rule') = (\land, A')$, where A' is the formula, corresponding to A in Γ' , $A \doteq_{\alpha,\beta,\Omega} \bigwedge_{i\in I} A_i$, $A' \doteq_{\alpha,\beta,\Omega'} \bigwedge_{i\in I} A_i'$. Then A'_i corresponds to A_i . (Note in case $A = \neg I^{s,u}_{\nu}(a) \ u < \Omega$, then $I = \{(s',u') | (s' < s \land u' < \beta) \lor (s' = s \land u' < u)\}$, A' = A, $A_{s',u'} = \neg I^{\preceq_{\alpha,\beta,\Omega}s',u'}_{\nu} A'_{s',u'} = \neg I^{\preceq_{\alpha,\beta,\Omega'}s',u'}_{\nu}$. If $A = \neg I^{s,\Omega}_{\nu}(a)$, $I = \{(s',u') | (s' \leq s \land u' < \beta)\}$, $A' = \neg I^{s,\Omega'}_{\nu}(a)$, $A_{s',u'} = \neg I^{\preceq_{\alpha,\beta,\Omega'}s',u'}_{\nu} A'_{s',u'} = \neg I^{\preceq_{\alpha,\beta,\Omega'}s',u'}_{\nu}$. If $(Rule) = (\lor, A, i)$, let $(Rule') = (\lor, A', i)$, where A' defined as before, $A \doteq \bigwedge_{i \in I} B_i$, $A' \doteq \bigwedge_{i \in I'} B'_i$. Then B'_i corresponds to B_i for $i \in I$, and $I \subset I'$. Let the $A_{\underline{0}} := B_i$, $A'_0 := B'_i$.

Then we define $\Omega change(P, \Omega, \Gamma, \Gamma') :=$

$$\frac{\cdots \Omega change(P_i; \Gamma, A_i; \Gamma', A_i') \vdash \Gamma', A_i' \cdots (i \in J)}{\Gamma'} \quad (Rule')$$

Lemma 6.3 We can define an operation $PredCut_{\underline{O}}(P;Q;\Gamma;\Gamma';A)$, s.t. if $P \vdash_{d,d_p}^{\underline{O};\gamma} \Gamma, A$, $Q \vdash_{d,d_p}^{\underline{O};\delta} \Gamma', \neg A, d^o(A) < d, d^p(A) \leq d_p, d_p \neq (-1,-1,-1), then$

$$PredCut_{\underline{O}}(P;Q;\Gamma;\Gamma';A) \vdash^{\underline{O}}_{d,d_n} \Gamma,\Gamma'$$

The operation is functorial.

Proof: By induction on $\gamma \# \delta$.

W.l.o.g. A is existential. If $d^p(A) < d_p$, then

 $PredCut(P; Q; \Gamma; \Gamma'; A) :=$

$$\frac{Weak(P;\Gamma') \vdash \Gamma, \Gamma', A}{\Gamma, \Gamma'} \qquad \frac{Weak(Q;\Gamma) \vdash \Gamma, \Gamma', \neg A}{\Gamma, \Gamma'} \qquad (Cut, A)$$

Assume now $d^p(A) = d_p(\neq (-1, -1, -1)).$

Let

P =

$$\frac{\cdots P_j \vdash \Gamma, A, \Delta_j \cdots (j \in J)}{\Gamma, A} \quad (Rule)$$

Case A is not a main premisse of (Rule). Then $PredCut_O(P; Q; \Gamma; \Gamma'; A) :=$

$$\frac{\cdots PredCut(P_i; Q; \Gamma, \Delta_i; \Gamma'; A) \vdash \Gamma, \Delta_i, \Gamma' \cdots (i \in J)}{\Gamma, \Gamma'} \qquad (Rule')$$

Case A is the main premisse of $(Rule) = (\bigvee, A, i)$, $(A \not\equiv I_{\nu}^{t,u}(a) \text{ or } i = (t, u'))$. Then i is an index of $\neg A$ as well. Let

 $Q := PredCut(P; Q; \Gamma, A_i; \Gamma'; A),$

 $Q' := Weak(\wedge elim(P; \Gamma; \neg A; i); \Gamma),$

 $PredCut_O(P; Q; \Gamma; \Gamma'; A) :=$

$$\frac{Q \vdash \Gamma, \Gamma', A_i}{\Gamma, \Gamma'} \vdash \Gamma, \Gamma', \neg A_i \atop \Gamma, \Gamma'$$
 (Cut, A_i)

Case otherwise. Therefore A is the main premisse of $(Rule) = (\bigvee, A, i), A \equiv I_{\nu}^{t,u}(a), i = (t', u'), t' < t$. Let

 $\begin{array}{l} P' := Weak(PredCut(P_{\underline{0}};Q;\Gamma,I_{\nu}^{\preceq t',u'}(a);\Gamma';I_{\nu}^{t,u}),I_{\nu}^{t,0}(a)), \\ P'' := \end{array}$

$$\frac{P' \vdash \Gamma, \Gamma', I_{\nu}^{\preceq t', u'}(a), I_{\nu}^{t, 0}(a)}{\Gamma, \Gamma', I_{\nu}^{t, 0}(a)} \quad (\vee, I_{\nu}^{t, 0}(a), (t', u'))$$

 $P''' := Weak(\wedge red(Q; \Gamma'; \neg I_{\nu}^{t,u}(a); \neg I_{\nu}^{t,0}(a)); \Gamma)$ $PredCut(P; Q; \Gamma; \Gamma'; A) :=$

$$\frac{P'' \vdash \Gamma, \Gamma', I_{\nu}^{t,0}(a)}{\Gamma, \Gamma'} \qquad \qquad P''' \vdash \Gamma, \Gamma', \neg I_{\nu}^{t,0}(a) \qquad \qquad (Cut, I_{\nu}^{t,0}(a))$$

Lemma 6.4 We can define an operation $PredCutelim_{\underline{O}}(P, d_p)$, s.t. if $P \vdash_{\underline{d.d_n}}^{\underline{O}} \Gamma$, $PredCutelim_O(P, d_p) \vdash_{d=0}^{O} \Gamma.$

The operation is functorial.

Proof: Induction on the d_p , side induction on the height of the derivation. Let

P =

$$\frac{\cdots P_j \vdash \Gamma, \Delta_j \cdots (j \in J)}{\Gamma} \quad (Rule)$$

Case (Rule) is not a Cut: Then

 $PredCutelim(P, d_p) :=$

$$\frac{\cdots PredCutelim(P_j, d_p) \vdash \Gamma, \Delta_j \cdots (j \in J)}{\Gamma}$$
 (Rule)

Case (Rule) = (Cut, A). $Q_i := PredCutelim(P_i), Q_{\underline{0}} \vdash_{d,0} \Gamma, A, Q_{\underline{1}} \vdash_{d,0} \Gamma, \neg A. Q :=$ $PredCut(Q_0, Q_1, \Gamma; \Gamma; A) \vdash_{d,d_p(A)} \Gamma, d_p(A) < d_p. PredCut(P, d_p) := PredCut(Q, d_p(A)).$

Lemma 6.5 We can define an operation $ImpredCut_{\alpha,\beta,\Omega''}(P;Q;\Omega;\Omega';\Gamma;\Gamma';A;\widetilde{\Gamma};\widetilde{A})$, s.t. if we have the following situation:

$$\alpha < \beta < \Omega < \Omega' < \Omega''$$
.

A is existential, $d_n(A) = (-1, -1, -1)$ (so $A \in \{I_n^{s,0}(a), I_n^{s,0}(a), I_n^{s,0}(a)\}$ for some s), $d^{o}(A) \leq d$

 $\widetilde{\Gamma}$ is the result of replacing in Γ all, except of some positive occurrences, of Ω by Ω'' ,

A is the result of replacing all occurrences of Ω by Ω'' in A,

d' the result of replacing in d Ω by Ω' , similar for d'_p and d_p ,

$$\begin{split} d_p'' &:= \max\{d', d_p'\}, \\ P \vdash_{d, d_p}^{\alpha, \beta, \Omega; \gamma} \Gamma, A, \ Q \vdash_{d', d_p'}^{\alpha, \Omega', \Omega''; \delta} \Gamma', \neg \widetilde{A}, \end{split}$$

 $ImpredCut_{\alpha,\beta,\Omega''}(P;Q;\Omega;\Omega';\Gamma;\Gamma';A;\widetilde{\Gamma};\widetilde{A}) \vdash_{d',d''}^{\alpha,\beta,\Omega'';\gamma\#\delta} \widetilde{\Gamma},\Gamma'.$

The operation is functorial.

Proof: By induction on $\gamma \# \delta$.

Let

P =

$$\frac{\cdots P_j \vdash \Gamma, A, \Delta_j \cdots (j \in J)}{\Gamma, A} \quad (Rule)$$

Case A is not a main premisse of (Rule). Then $ImpredCut_{\alpha,\beta,\Omega'}(P;Q;\Omega;\Gamma;\Gamma';A;\widetilde{\Gamma};\widetilde{A}) :=$

$$\underbrace{-\cdots ImpredCut_{\underline{O}}(P;Q;\Omega;\Gamma,\Delta_{i};\Gamma';A;\widetilde{\Gamma},\widetilde{\Delta}_{i};\widetilde{A}) \vdash \widetilde{\Gamma},\widetilde{\Delta}_{i}\cdots(i\in J)}_{\widetilde{\Gamma}} \quad (\widetilde{Rule})$$

16

where in $\widetilde{\Delta}_i$, we have made the same changes as in $\widetilde{\Gamma}$ in the \wedge and \vee rules, in the case of a Cut $\widetilde{\Delta}$ is the result of replacing in Δ all Ω by Ω'' , and (\widetilde{Rule}) is the result of making the corresponding changes.

Case A is the main premisse of $(Rule) = (\bigvee, A, i), A \equiv I_{\nu}^{s,0}(a), I_{\nu}^{s,\Omega}(a), \mathbb{N}^{\Omega}(a)$. We consider the case $A \equiv I_{\nu}^{s,\Omega}(a)$.

$$P_{\underline{0}} \vdash \Gamma, I_{\nu}^{\preceq s',t'}(a), I_{\nu}^{s,\Omega}(a).$$

$$Q' := ImpredCut(P_{\underline{0}}; Q; \Omega; \Gamma; I_{\nu}^{\preceq_{\alpha,\beta,\Omega}s',t'}(a); \Gamma'; A; \widetilde{\Gamma}; I_{\nu}^{\preceq_{\alpha,\beta,\Omega''}s't'}(a); \widetilde{A}),$$

$$Q' \vdash \widetilde{\Gamma}, \Gamma', I_{\nu}^{\preceq_{\alpha,\beta,\Omega''}s't'}(a). \ Q'' := \wedge elim(Q; \Gamma'; \neg \widetilde{A}; I_{\nu}^{\preceq_{\alpha,\Omega',\Omega''}s't'}(a))$$

$$Q'' \vdash^{\alpha,\Omega',\Omega''} \Gamma', \neg I_{\nu}^{\preceq_{\alpha,\Omega',\Omega''}s',t'}(a).$$

 $Q''' := Weak(\beta change_{\alpha,\Omega',\Omega''}(Q'';\beta),\widetilde{\Gamma}), \ Q''' \vdash \widetilde{\Gamma},\Gamma',\neg I_{\nu}^{\preceq_{\alpha,\Omega',\Omega''}s',t'}(a) \text{ which is the same as } \widetilde{\Gamma},\Gamma',\neg I_{\nu}^{\preceq_{\alpha,\beta,\Omega''}s',t'}(a),$

and the result is now

$$\frac{Q' \vdash \widetilde{\Gamma}, \Gamma', I_{\nu}^{\preceq_{\alpha,\beta,\Omega''}s't'}(a)}{\widetilde{\Gamma}, \Gamma'} \underbrace{Q''' \vdash \widetilde{\Gamma}, \Gamma', \neg I_{\nu}^{\preceq_{\alpha,\Omega',\Omega''}s',t'}(a)}_{\widetilde{\Gamma}, \Gamma'} \underbrace{(Cut, I_{\nu}^{\preceq s',t'}(a))}_{}$$

Lemma 6.6 (a) For every operation operation $\underline{o}(s_1, \ldots, s_n)$ in Lemma 6.2 (a) - (e) we can define an operation $Operation_L(S_1, \ldots, S_n)$, where S_i are the ID(L) objects, corresponding to the $ID(\underline{O})$ -objects s_i , which fulfill the corresponding relations, except that we don't get any ordinal bounds).

E.g. in 6.2 (c) we have:

If
$$P \vdash_{D,D_p}^L \Gamma, A, A_{xd} \doteq \bigwedge_{i \in I_{xd}} A_{xd}^i, A'_{xd} \doteq \bigwedge_{i \in I'_{xd}} A_{xd}^i, I'_{xd} \subset I_{xd}$$
, for all $f \in J((x,d),(y,e))$, $L(f)^{-1}(I'_{ye}) = I'_{xd}$, then $\land red_L(P; \Gamma; A; A'; I') \vdash_{D,D_p}^L \Gamma, A'$.

- (b) We can do the same for 6.2 (g): We can define an operation $\Omega change_M(P; L; \Gamma; \Gamma')$ s.t. if $P \vdash_{D,D_p}^L \Gamma$, $L \leq M$ $E := E_{LM}$, Γ' is the result of replacing all, except of some positive occurrences of the L-parameter L by M, then $\Omega change_M(P; L) \vdash_{E(D),E(D_p)} \Gamma'$. The operation is functorial.
- (c) Lemma 6.4 extends as in (a).
- (d) Lemma 6.5 extends to an operation on L-proofs as follows: We can define an operation $ImpredCut_L(P;Q;\Gamma;A;D,D_p)$, s.t. if we have the following

We can define an operation $ImpredCut_L(P;Q;\Gamma;A;D,D_p)$, s.t. if we have the following situation:

$$\begin{split} M &:= L \circ (L+1) \ (M(x,d) = L(L(x,d)+1,d), \ M(f) = L(L(f)+1)), \\ d_p(A) &= (-1,-1,-1) \ (so \ A \in \{I_{\nu}^{s,0}(a),I_{\nu}^{s,\Omega}(a),I_{\nu}^{\Omega}(a)\}), \\ d^o(A) &\leq D, \end{split}$$

 $\Gamma = \Gamma_r$,

 $P \vdash_{D,D_p}^L \Gamma, A, Q \vdash_{D,D_p}^L \Gamma, \neg A,$

then, with $E := E_{LM}$ we have:

 $ImpredCut_L(P; Q; \Gamma; A; D, D_p) \vdash_{E(D), 0}^{M} E(\Gamma).$

Proof: (a) Define $Operation_L(S_1, \ldots, S_n)_{xd}^{\sim} := operation_{L(x,d)}(S_{1,x,d}, \ldots, S_{n,x,d})$. By the functoriality follows, that we get an L-proof.

(b), (c): similar.

(d). Assume A is existential. Let $P' := PredCut_L(P, D_p), \ Q' := PredCut_L(Q, D_p), \ D'_{pxd} := D^o(A_{xd})$. We define $ImpredCut_L(P; Q; \Gamma; A) :=$

 $PredCutelim_{M(x,d)}($ $ImpredCut_{M(x,d)}($ $P'_{xd}; Q'_{L(x,d)+1,d}; L(x,d); L(x,d) + 1; \Gamma_{xd}; E(\Gamma_{xd}); A_{xd}; E(\Gamma_{xd}); A_{L(x,d)+1,d}), D'_{p,L(x,d),d}).$ $P' \vdash_{D,0}^{L} \Gamma, A, \ Q' \vdash_{D,0}^{L} \Gamma, \neg A, \ d_0(A) \leq D, \ \Gamma = \Gamma_r, \ E := E_{LM}, \text{ therefore } P'_{xd} \vdash_{D_{xd},0}^{L(x,d)} \Gamma_{xd}, A_{xd}.$ Further for the embedding $\iota : x \to L(x,d) + 1$ we have $L(\iota) : L(x,d) \to L(x,d)$ L(L(x,d)+1,d). (note that $\iota \circ d = d$. $\Gamma_{L(x,d)+1,d} = L(\iota)(\Gamma_x,d)$). Since $\Gamma = \Gamma_r$, $L(\iota)(z) = E_{xd}(z)$ for z < x or z = L(x,d), follows therefore $\Gamma_{L(x,d)+1,d} = L(\iota)(\Gamma_{xd}) =$ $(E(\Gamma_{xd}))$ which is the result of replacing L(x,d) by M(x,d). A similar relationship we have for $D_{L(x,d)+1,d}$ and D_{xd} . $Q'_{L(x,d)+1,d}$ $\vdash_{E_{xd}(D_{xd})0}^{d(\underline{a}),L(x,d)+1,M(x,d)} E(\Gamma_{xd}), E(\neg A_{xd}),$ therefore $ImpredCut_L(P;Q;\Gamma;A;\widetilde{\Gamma})_{xd} \vdash_{E(D),0}^{d(\underline{a}),x,M(x,d)} E(\Gamma_{xd}).$ Further if $f \in J((x,d),(y,e))$, then $M(f)^{-1}(P_{ye}) = L(L(f)+1)^{-1}(P_{ye}) = L(f)^{-1}(P_{ye}) = L$ P_{xd} , since all parameters in P_{ye} are less than L(x,d)+1, and L=E+L' for some L', further $M(f)^{-1}(Q_{L(x,d)+1e}) = L(L(f)+1)^{-1}(Q_{L(x,d)+1,e}) = Q_{L(y,e)+1,d}$, similar for the other parameters, therefore $M(f)^{-1}(ImpredCut_L(P;Q;\Gamma;A))_{ye} = ImpredCut_L(P;Q;\Gamma;A)_{xd}$.

7 Global Cutelimination

Theorem 7.1 (Cutelimination for ID(L)) If Γ is a sequent of ID(L), and Γ is provable in ID(L), then Γ_r is cut-free provable in ID(L') for some good functor L'. Further, if L is s.t. L(n) is finite for all $n \in \mathbb{N}$, then this holds for L', too. If L is recursive, then L' is recursive, too. (If L is primitive recursive, L' need not be primitive recursive).

Proof of the Main Theorem 7.1: We proof the following Lemma:

Lemma 7.2 We can define operations Λ and N with arguments being a degree D, a good functor L and an L-proof P of degree D, all on a suitable category \mathcal{C} , such that if $P \vdash_{D,0}^{L} \Gamma$ then $M := \Lambda_D(L, P)$ is a good functor, $L \leq M$, and $N_D(L, P) \vdash_{Q,Q}^M E_{LM}(\Gamma_r)$. Further, if we have: If L is recursive, then $\Lambda_D(L,P)$ is recursive, if L(n) is finite for $n \in \omega$, then the same holds for $\Lambda_D(L, P)$.

Proof: by induction on (D, P).

Assume $\Lambda_{D'}(L', P')$, $N_{D'}(L', P')$ are constructed for (L', P') < (L, P).

Let

 $P_{xd} =$

$$\frac{\cdots P_{xd}^j \vdash \Gamma_{xd}, \Delta_{xd}^j \cdots (j \in J_{xd})}{\Gamma_{xd}} \quad (Rule_{xd})$$

We have for $f \in J((x,d),(y,e))$,

$$L(f)^{-1}(P_{ye}) = P_{xd},$$

$$L(f)^{-1}(\Gamma_{ye}) = \Gamma_{xd},$$

$$L(f)^{-1}(Rule_{ye}) = Rule_{xd},$$

$$L(f)^{-1}(P_{ye}^{L(f)(j)}) = P_{xd}^{j},$$

$$L(f)^{-1}(\Gamma_{ve}^{L(f)(j)}) = \Gamma_{xd}^{j}.$$

$$L(f)^{-1}(\Gamma_{ye}^{L(f)(j)}) = \Gamma_{xd}^{j}$$

Case $(Rule) = (\land, A)$, A atomic arithmetical.

$$\Lambda_D(L,P) := L, \ N_D(L,P) := P.$$

Case $(Rule) = (\lor, A, I), A = N_{\nu}^{u}(a) \text{ and } I = u', \beta < u' \text{ or } I_{\nu}^{t,u}(a), I = (t', u'), \beta < u'.$ Consider the case $A = I_{\nu}^{t,u}(a)$.

Let
$$M' := N_D(L, P^{\underline{0}}), \ Q' := \Lambda_D(L, P^{\underline{0}}), \ Q' \vdash_{0,0}^{M'} E_{LM}(\Gamma_r), I_{\nu}^{\preceq_{M'}t',M'}(a).$$

Let $\Lambda_D(P, L) := M := M' + 1,$

$$Q'' := \Omega change_{M}(Q'; M'; E_{LM'}(\Gamma_{r}), I_{\nu}^{\preceq_{M'}t', M'}(a); E_{LM}(\Gamma_{r}), I_{\nu}^{\preceq_{M}t'M'}(a)),$$

$$N_{D}(L, P) := \frac{Q'' \vdash_{0,0}^{M} E_{LM}(\Gamma_{r}), I_{\nu}^{\preceq_{M}t'M'}(a)}{E_{LM}(\Gamma_{r})} \quad (\vee, I_{\nu}^{t,M}(a), (t', M')))$$

Case $Rule = (\lor, A, I)$, but different from the case before. Then let $\Lambda_D(P, L) := M := \Lambda_D(L, P^0)$, $Q' := \Lambda_D(L, P^0)$,

 $N_D(P, L) := Q :=$

$$\frac{Q' \vdash_{0,0}^{M} E_{LM}(\Gamma_r, A_{r,I})}{E_{LM}(\Gamma_r)} \quad (\vee, E_{LM}(A_r), I)$$

Case $(Rule) = (\land, A_0 \land A_1).$

 $M_i := \Lambda_D(L, P^i), \ Q^i := N_D(L, P^i).$ We need to unify the functors $M_{\underline{0}}, \ M_{\underline{1}}$: Let $M_i = L + M_i', \ M := L + M_{\underline{0}}' + M_{\underline{1}}' (= M_{\underline{0}} + M_{\underline{1}}').$

 $T^{\underline{0}} := E_{M_{\underline{0}},M}$. Let $T^{\underline{1}}_{xd}(z) := z$, if z < L(x,d), $T^{\underline{1}}_{xd}(L(x,d)+z) := M_{\underline{0}}(x,d)+z$, if $z < M'_{\underline{1}}(x,d)$.

Let $R^i := T^i(Q^i)$. $R^{\underline{1}}$ is defined, since $Q^{\underline{1}} \vdash_{0,0}^{\underline{M_{\underline{1}}}} E_{LM\underline{1}}(\Gamma_r, A_{\underline{1},r})$, $T^{\underline{1}}E_{LM_{\underline{1}}} = E_{LM}$ (see definition 4.6, condition (ii')).

Further, because $T^{\underline{0}} \circ E_{LM\underline{0}} = T^{\underline{1}} \circ E_{LM\underline{1}} = E_{LM}$, we can define, with $E := E_{LM}$, $\Lambda_D(L,P) := M$,

 $N_D(L,P) :=$

Case (Rule) = (Cut, C).

Since $D_p = 0$, $D_p(C) = (-1, -1, -1)$. Let M, Q^i be defined as in the case before, $\widetilde{M} := M \circ (M+1)$, $\widetilde{P} := ImpredCut_M(Q^{\underline{0}}, Q^{\underline{1}}, \Gamma, C, 0)$. $\widetilde{P} \vdash_{D(C), 0}^{\widetilde{M}} E_{M\widetilde{M}}(E_{LM}(\Gamma_r))$, the last sequence is equal to $E_{L\widetilde{M}}(\Gamma_r)$. Now $\Lambda_D(L, P) := \Lambda_{D(C)}(\widetilde{M}, \widetilde{P})$, $N_D(L, P) := N_{D(C)}(\widetilde{M}, \widetilde{P})$.

Case $(Rule) = (\land, \forall x. A(x)).$

 $M_t := \Lambda_D(L, P^t), \ Q^t := N_D(L, P^t).$ Let $M_t = L + M'_t, \ M := L + \Sigma_{t \in Term_{Cl}} M'_t$ (where the sum is taking in some ordering < of the closed terms).

 $T_{xd}^t(z) := z$, if z < L(x,d), $T_{xd}^t(L(x,d) + z) := \sum_{s < t} M_s(x,d) + z$, if $z < M_t(x,d)$.

Let $R^i := T^i(Q^i)$. R^i is defined, since $R^i \circ E_{LM_i} = E_{LM}$, Q^t is a cut-free proof of $E_{LM_t}(\Gamma_{rt})$, see definition 4.6, condition (ii').

Let $E := E_{LM}$, $\Lambda_D(L, P) := M$,

 $N_D(L,P) :=$

$$\frac{\cdots Q^t \vdash_{0,0}^M E(\Gamma_r, A(t)_r) \cdots \quad (t \in Term_{Cl})}{E(\Gamma_r)} \quad (\land, E(\forall x. A(x)))$$

Case $(Rule) = (\wedge, A), A \equiv \neg \mathbb{N}^{\widetilde{u}}(a), \neg IA^{\widetilde{u}}(a), \neg I_{\nu}^{\widetilde{t},\widetilde{u}}(a)$. We consider only the case $A \equiv \neg I_{\nu}^{\widetilde{t},\widetilde{u}}(a)$.

 $P_{xd} =$

$$\frac{\cdots P_{xd}^{t,u} \vdash \Gamma_{xd}, \neg I_{\nu}^{\preceq t,u}(a) \cdots ((t,u) \ll_{L(x,d)} (t'(x,d), u'(x,d)))}{\Gamma_{xd}} \quad (\land, \neg I_{\nu}^{\widetilde{t}(x,d),\widetilde{u}(x,d)}(a))$$

Let
$$t'(x,d) := \tilde{t}(x,d), u'(x,d) := \begin{cases} \tilde{u}(x,d) & \text{if } \tilde{u}(x,d) < x \\ L(x,d) & \text{otherwise} \end{cases}$$
.

Then $I_{\nu}^{u',t'}(a) = (I_{\nu}^{\widetilde{u},\widetilde{t}})_r$.

We want to construct a cut-free proof of $E_{LM}(\Gamma_r)$ and have $I_{\nu}^{t'u'}(a)$ occurs in Γ_r .

We will use therefore $P_{xd}^{t,u}$ only for $(t,u) \ll (t'(x,d),u'(x,d))$ (note that, if $(t,u) \ll (t'(x,d),u'(x,d))$, then $(t,u) \ll (\widetilde{t}(x,d),\widetilde{u}(x,d))$.

Let $K' := K \uplus \{\underline{2},\underline{3}\}$, where \uplus stands for disjoint union. We write (x,d,t,u) for $(x,d') \in ON^{K'}$ s.t. d'|K = d, $d(\underline{2}) = t$, $d(\underline{3}) = u$. (| stands for restriction)

Let C' be the full sub-category of $ON^{K'}$ with

 $Ob(\mathcal{C}') = \{(x, d, t, u) | (t, u) \ll_{L(x,d)} (t'(x, d), u'(x, d)) \}.$

Lemma 7.3 Assume $(t'(x,d), u'(x,d)) \neq (0,0)$.

- (a) C' is a suitable category.
- (b) $C \leq C'$.

Proof: (a) We check the properties:

- (i) C' is a full subcategory of $ON^{K'}$.
- (ii) If $(y, e, t'', u'') \in C'$, $f \in J((x, d, t, u), (y, e, t'', u''))$, then

 $(t'', u'') \ll_{L(y,e)} (l'(y,e), u'(y,e)), t'' = f(t), u'' = f(u), l'(y,e) = f(l'(x,d)), u'(y,e) = f(u'(x,d)) (t,u) \ll_{L(x,d)} (l'(x,d), u'(x,d)), (x,d,t,u) \in \mathcal{C}',$ therefore \mathcal{C}' is an initial segment.

- (iii) If $(x, d) \in \mathcal{C}$, $x' := max\{1, x\}$, then $(x', d) \in \mathcal{C}$, $(x', d, 0, 0) \in \mathcal{C}' \neq \emptyset$, since $(t'(x, d), u'(x, d)) \neq (0, 0)$.
- (iv) If $(x, d, t, u) \in \mathcal{C}'$, x < y, then $(y, d) \in \mathcal{C}$. Let $\iota : x \to y$ be the embedding. $(t, u) = L(\iota)(t, u) \ll L(\iota)(t'(x, d), u'(x, d)) = (t'(y, d), u'(y, d)), (y, d, t, u) \in \mathcal{C}'$.
- (b): If $(x, d, t, u) \in C'$, we have $(x, d) \in C$, with $x' := max\{x, 1\}, (x', d) \in C, (x', d, 0, 0) \in C'$.

Definition 7.4 (a) Let $\theta := \theta_{CC'}$.

(b)
$$L' := \theta(L), P' := \theta(P), \hat{t} := \theta(t'), \hat{u} := \theta(u'), D' := \theta(D), \Gamma' := \theta(\Gamma_r)$$

- $(c) \ \ Let \ T(x,d,t,u) := t, \ U(x,d,t,u) := u. \ \ T, \ U \ \ are \ L'-terms, \ (T,U) \ll (\hat{t},\hat{u}).$
- (d) Let P'' := P'[(T, U)]. $P''_{xdtu} \vdash \Gamma_{xd}, I_{\nu}^{\leq_{L(x,d)}tu}$.
- (e) Let $M := \Lambda_{D'}(L', P'')$, $Q := N_{D'}(L', P'')$. Let M = L' + M'. $Q \vdash^M E_{L'M}(\Gamma'), \neg I_{\nu}^{\preceq_M TU}(a)$. (This is defined in this way only if $t(x, d) \neq 0$ or $u(x, d) \neq 0$, but otherwise C' is empty, and we can define M, Q as the only functors on an empty category.)
- (f) Let N be the good functor $\mathcal{C} \to ON$, $N(x,d) = L(x,d) + \sum_{(t,u) \ll_{L(x,d)}(t'(x,d),u'(x,d))} M'(x,d,t,u)$, where the (t,u) are taken in increasing order.

```
(Note, that if (t'', u'') < (t, u) \ll (t'(x, d), u'(x, d)) by Lemma 1.7 (b) we have (t'', u'') \ll
(t'(x,d),u'(x,d)) \leftrightarrow (t'',u'') < (t,u), \text{ therefore we can order them as will with respect to } \ll .)
If f \in J((x,d),(y,e)), N(f)(z) := L(f)(z) for z < L(x,d),
N(f)(L(x,d) + (\sum_{(t'',u'') \ll (t,u)} M'(x,d,t'',u'')) + z) :=
      L(y,e) + (\sum_{(t'',u'') \ll (f(t),f(u))} M'(y,e,t'',u'')) + M'(f_{tu})(z),
      where f_{tu} \in J((x, d, t, u), (y, e, f(t), f(u))), f_{tu}(z) := f(z).
```

- (q) Let $N' := \theta(N)$.
- (h) We define $V: M \to N'$: if $z < L(x,d), V_{xdtu}(z) := z$, if $z < M'(x, d, t, u), V_{xdtu}(L(x, d) + z) := L(x, d) + (\sum_{(t'', u'') \leqslant (t, u)} M'(x, d, t'', u'')) + z.$

Remark 7.5 (a) $V \circ E_{L'M} = E_{L'N}$.

(b) V is a natural transformation.

Proof: (a): trivial.

(b): If
$$f \in J((x, d, t, u), (y, e, t'', u''))$$
, $f' \in J((x, d), (y, e))$, $f'(z) = f(z)$, then if $z < L(x, d)$,
$$N'(f)(V_{xdtu}(z)) = N(f)(z) = L(f)(z) = V_{yet''u''}(L(f)(z)) = V_{yet''u''}(L'(f)(z))$$
$$= V_{vet''u''}(M(f)(z))$$

and

if z < M(x, d, t, u), then

$$N'(f)(V_{xdtu}(L(x,d)+z)) = N(f')(L(x,d)+\Sigma_{(t''',u''')\ll(t,u)}M'(x,d,t''',u''')+z) = L(y,e) + \Sigma_{(t''',u''')\ll(f'(t),f'(u))}M'(y,e,t''',u''') + M'(f'_{tu})(z) = V_{yef'(t)f'(u)}(L(y,e)+M'(f'_{tu})(z)) = V_{yet''u''}(L(y,e)+M'(f)(z)) = V_{yet''u''}(M(f)(L(x,d)+z)).$$

Definition 7.6 Let R := V(Q).

R can be defined, because $V \circ E_{L'M} = E_{L'N}$ and $Q \vdash_{0.0}^{M} E_{L'M}(\Gamma', \neg I_{\nu}^{\leq_{L'}TU})$.

We see now $R_{xdtu} \vdash E_{L'N'}(\theta(\Gamma_r))_{xdtu}, \neg I_{\nu}^{\leq_{N'(x,d,t,u)}tu}(a)$.

 $E_{L'N'xdtu}(z) = E_{LNxd}(z), \ \theta(\Gamma_r)_{xdtu} = (\Gamma_r)_{xd}.$

Therefore $R_{xdtu} \vdash E_{LN}(\Gamma_r)_{xd}, \neg I_{\nu}^{\leq_{N(x,d)}tu}(a)$.

If $f \in J((x,d),(y,e)), (t,u) \ll (t'(x,d),u'(x,d)),$ then

 $f_{tu} \in J((x, d, t, u), (y, e, f(t), f(u))).$

Then we have

 $R_{xdtu} = V_{xdtu}(Q_{xdtu}) = V_{xdtu}(M(f_{tu})^{-1}(Q_{yef(t)f(u)})) = N'(f_{tu})^{-1}(V_{yef(t)f(u)}Q_{yef(t)f(u)}) =$ $N(f)^{-1}(R_{yef(t)f(u)})$, using $V_{vef(t)f(u)}M(f_{tu}) = N'(f_{tu})V_{xdtu}$ and Lemma 2.4. We define now $\Lambda_D(L, P) := N$,

 $(N_D(L,P))_{xdtu} :=$

$$\frac{\cdots R_{xdtu} \vdash_{0,0}^{N(x,d)} E_{LN}(\Gamma_r), \neg I_{\nu}^{\preceq_{N(x,d)}t,u} \cdots}{E_{LN}(\Gamma_r)} ((t,u) \ll (t'(x,d), u'(x,d)))$$

$$\frac{(t,u) \ll (t'(x,d), u'(x,d))}{(\wedge, I_{\nu}^{t'(x,d),u'(x,d)}(a))}$$

and are done.