1.9.6

The cyclic group of order 6 is the group defined by generators a, b and relations $a^2 = b^3 = a^{-1}b^{-1}ab = e$.

Proof. Let $X = \{a, b\}$ and let F(X) be the free group on X. Consider the normal subgroup N of F(X) generated by the relations $a^2 = e$, $b^3 = e$, and $a^{-1}b^{-1}ab = e$. Then $G \cong F(X)/N$.

We claim that G is cyclic of order 6, i.e., $G \cong \mathbb{Z}/6\mathbb{Z}$. The relation $a^{-1}b^{-1}ab = e$ implies ab = ba, so G is abelian. The relations $a^2 = e$ and $b^3 = e$ show that the orders of a and b are 2 and 3, respectively.

Since G is abelian and generated by a and b, every element of F(X)/N can be written as $a^i b^j N$ for $i \in \{0,1\}$ and $j \in \{0,1,2\}$, giving $2 \times 3 = 6$ elements, so $|G| \le 6$.

Define a homomorphism $\varphi: F(X)/N \to \mathbb{Z}/6\mathbb{Z}$ by $\varphi(a) = 3$ and $\varphi(b) = 2$. This is well-defined since 3+3=0 and 2+2+2=0 in $\mathbb{Z}/6\mathbb{Z}$, matching the relations. The commutativity also matches the structure of $\mathbb{Z}/6\mathbb{Z}$.

Since φ is surjective and $|F(X)/N| \le 6$, it follows that |F(X)/N| = 6 and φ is an isomorphism. Thus, $G \cong F(X)/N \cong \mathbb{Z}/6\mathbb{Z}$, as claimed.

1.9.10

The operation of free product is commutative and associative: for any groups $A, B, C, A*B \cong B*A$ and $(A*B)*C \cong A*(B*C)$.

Proof. Let A, B, C be groups. First, we show that $A*B \cong B*A$. The free product A*B consists of all reduced words formed by alternating elements from A and B, and the same holds for B*A. Therefore we can define a homomorphism $\varphi: A*B \to B*A$ where φ is the identity map. The correspondence that sends each reduced word in A*B to the same word in B*A (just swapping the roles of A and B). Clearly we have that φ is surjective. To see that φ is injective, note that if $\varphi(w) = e$ in B*A, then w must be the empty word in A*B, since the only way for a reduced word to map to the identity is if it is itself the identity. Thus, $\ker(\varphi) = \{e\}$, so φ is injective. Thus, $A*B \cong B*A$.

Next, we show that $(A*B)*C\cong A*(B*C)$. We know that (A*B)*C consists of reduced words alternating among A*B and C, but each letter from A*B is itself a reduced word in A and B. By flattening, every element of (A*B)*C can be written as a reduced word in A, B, and C, with no two consecutive letters from the same group. Likewise, A*(B*C) consists of reduced words alternating among A and B*C, and each letter from B*C is a reduced word in B and C. Again, flattening yields reduced words in A, B, and C, with no two consecutive letters from the same group. Define a map $\Phi: (A*B)*C \to A*(B*C)$ as follows: Given a reduced word w in (A*B)*C, write w as a sequence of letters $x_1x_2\cdots x_n$, where each x_i is either a non-identity element from A*B or C. If x_i is from A*B, further decompose it into its reduced word in A and B. Concatenate all these letters to obtain a reduced word in A, B, and C. This word is then interpreted as an element of A*(B*C). Similarly, define the inverse map $\Psi: A*(B*C) \to (A*B)*C$ by grouping consecutive letters from A and A into elements of A*B, and letters from A as elements of A*B, and grouping preserves the reduced word property: no two consecutive letters come from the same group, and the group operation is respected. It is clear that A and A are inverses of each other, since flattening and grouping are mutually inverse operations. Therefore, A is a bijection. Hence, A*B and A*B is A*C.

Hence, the free product is both commutative and associative.

1.9.11

If N is the normal subgroup of A * B generated by A, then $(A * B)/N \cong B$.

Proof. Let N be the normal subgroup of A * B generated by A. We want to show that $(A * B)/N \cong B$.

The subgroup N is the smallest normal subgroup containing all elements of A, so in the quotient (A*B)/N, every element of A becomes identified with the identity. In other words, for any $a \in A$, aN = N in the quotient.

Now, consider any element $w \in A * B$. We can write w as a reduced word $x_1x_2 \cdots x_n$, where each x_i is either in A or B. In the quotient (A * B)/N, any occurrence of $x_i \in A$ can be replaced by the identity, since $x_iN = N$. Therefore, wN is equal to the product of all the x_i that are in B, with all A-letters removed. This product is simply an element of B, since the group operation in B is preserved.

Thus, every coset in (A * B)/N can be uniquely represented by an element bN for some $b \in B$. The identity coset is N, which corresponds to the identity element e_B in B.

Define a map $\varphi: (A*B)/N \to B$ by $\varphi(bN) = b$ for $b \in B$. To see that φ is well-defined, note that every element of (A*B)/N is of the form bN for a unique $b \in B$, as shown above.

Next, we check that φ is a homomorphism. For any $b_1, b_2 \in B$,

$$\varphi(b_1N \cdot b_2N) = \varphi(b_1b_2N) = b_1b_2 = \varphi(b_1N)\varphi(b_2N).$$

So φ preserves the group operation.

To see that φ is surjective, observe that for any $b \in B$, bN is a coset in (A * B)/N, and $\varphi(bN) = b$.

To check injectivity, suppose $\varphi(b_1N) = \varphi(b_2N)$. Then $b_1 = b_2$, so $b_1N = b_2N$.

Therefore, φ is a well-defined isomorphism. Thus we conclude that $(A*B)/N \cong B$.

1.9.12

If G and H each have more than one element, then G * H is an infinite group with center $\langle e \rangle$.

Proof. Let G and H be groups, each with more than one element. We want to show that their free product G*H is infinite and that its center is trivial.

First, we show that G * H is infinite. Since both G and H have more than one element, pick $g \in G$ and $h \in H$ with $g \neq e_G$ and $h \neq e_H$. Consider the sequence of words $w_n = (gh)^n$ for $n \geq 1$. Each w_n is a reduced word of length 2n, and no two such words are equal in G * H because the free product imposes no relations between g and h other than those in their respective groups. Thus, for every n, w_n is distinct, and we can construct arbitrarily long reduced words. Therefore, G * H is infinite.

Next, we show that the center of G*H is trivial. Recall that the center Z(G*H) consists of all elements $z \in G*H$ such that zw = wz for all $w \in G*H$. Clearly, the identity element e is in the center. Suppose z is a nontrivial reduced word in G*H. We will show that z cannot commute with all elements of G*H.

Let z be a reduced word of length $k \geq 1$, say $z = x_1 x_2 \cdots x_k$, where each x_i is in G or H, and consecutive x_i are from different groups. Without loss of generality, suppose $x_k \in H$. Pick $h \in H$ with $h \neq e_H$ and $h \neq x_k^{-1}$. Consider the element w = h. Then,

$$zw = x_1 x_2 \cdots x_k h$$

is a reduced word ending with $x_k h$ (which is not the identity since $h \neq x_k^{-1}$). On the other hand,

$$wz = hx_1x_2\cdots x_k$$

is a reduced word starting with h, which is distinct from zw because the reduced word structure is different. Thus, $zw \neq wz$. A similar argument applies if $x_k \in G$ by choosing $g \in G$ with $g \neq e_G$ and $g \neq x_k^{-1}$.

Therefore, the only element that commutes with all elements of G * H is the identity. Thus, the center of G * H is trivial:

$$Z(G*H) = \langle e \rangle.$$

1.9.15

If $f: G_1 \to G_2$ and $g: H_1 \to H_2$ are homomorphisms of groups, then there is a unique homomorphism $h: G_1 * H_1 \to G_2 * H_2$ such that $h|_{G_1} = f$ and $h|_{H_1} = g$.

Proof. Let $f: G_1 \to G_2$ and $g: H_1 \to H_2$ be group homomorphisms. We wish to construct a homomorphism $h: G_1 * H_1 \to G_2 * H_2$ such that $h|_{G_1} = f$ and $h|_{H_1} = g$, and show that it is unique.

Recall that every element of the free product $G_1 * H_1$ can be written uniquely as a reduced word $a_1 a_2 \cdots a_n$, where each a_i is a non-identity element from either G_1 or H_1 , and consecutive a_i are from different groups. The empty word corresponds to the identity element.

Define $h: G_1 * H_1 \to G_2 * H_2$ as follows:

- For $g \in G_1$, set h(g) = f(g).
- For $h_1 \in H_1$, set $h(h_1) = q(h_1)$.
- For a reduced word $a_1a_2\cdots a_n$ in G_1*H_1 , where each a_i is in G_1 or H_1 , define

$$h(a_1a_2\cdots a_n)=h(a_1)h(a_2)\cdots h(a_n).$$

• For the identity element (the empty word), set h(e) = e.

We first verify that h is a homomorphism. Let $w = a_1 a_2 \cdots a_n$ and $w' = b_1 b_2 \cdots b_m$ be reduced words in $G_1 * H_1$. The product ww' is obtained by concatenating the words, and if the last letter of w and the first letter of w' are from the same group, their product is taken in that group and the result is reduced accordingly. Since f and g are homomorphisms, h respects the group operations within G_1 and H_1 , and the concatenation of images under h corresponds to the product in $G_2 * H_2$, with reduction occurring in the same way. Thus,

$$h(ww') = h(a_1a_2 \cdots a_nb_1b_2 \cdots b_m) = h(a_1)h(a_2) \cdots h(a_n)h(b_1)h(b_2) \cdots h(b_m) = h(w)h(w').$$

Therefore, h is a homomorphism.

Next, we check that h restricts to f on G_1 and to g on H_1 . For any $g \in G_1$, h(g) = f(g) by definition, and for any $h_1 \in H_1$, $h(h_1) = g(h_1)$. Thus, $h|_{G_1} = f$ and $h|_{H_1} = g$.

Finally, we show that h is unique with these properties. Suppose $h': G_1 * H_1 \to G_2 * H_2$ is another homomorphism such that $h'|_{G_1} = f$ and $h'|_{H_1} = g$. For any reduced word $a_1 a_2 \cdots a_n$ in $G_1 * H_1$, we have

$$h'(a_1 a_2 \cdots a_n) = h'(a_1)h'(a_2) \cdots h'(a_n).$$

But $h'(a_i) = f(a_i)$ if $a_i \in G_1$, and $h'(a_i) = g(a_i)$ if $a_i \in H_1$, which matches the definition of $h(a_i)$. Therefore,

$$h'(a_1 a_2 \cdots a_n) = h(a_1)h(a_2) \cdots h(a_n) = h(a_1 a_2 \cdots a_n).$$

Thus, h' = h on all elements of $G_1 * H_1$, so h is unique.

In summary, there exists a unique homomorphism $h: G_1 * H_1 \to G_2 * H_2$ such that $h|_{G_1} = f$ and $h|_{H_1} = g$.

2.1.10

- (a) Show that the additive group of rationals \mathbb{Q} is not finitely generated.
- (b) Show that \mathbb{Q} is not free.
- (c) Conclude that Exercise 9 is false if the hypothesis "finitely generated" is omitted.
- (a) *Proof.* Suppose, for contradiction, that \mathbb{Q} is finitely generated as an abelian group. That is, there exist finitely many elements $q_1, q_2, \ldots, q_n \in \mathbb{Q}$ such that every rational number can be written as an integer linear combination of these generators. Write each q_i in lowest terms as $q_i = \frac{a_i}{b_i}$, where $a_i \in \mathbb{Z}$, $b_i \in \mathbb{N}$, and $\gcd(a_i, b_i) = 1$.

Let $k = b_1 b_2 \cdots b_n$ be the product of all denominators. Consider the subgroup $H = \langle q_1, q_2, \dots, q_n \rangle \leq \mathbb{Q}$. Any element $q \in H$ can be written as an integer linear combination:

$$q = d_1q_1 + d_2q_2 + \dots + d_nq_n = \frac{d_1a_1}{b_1} + \frac{d_2a_2}{b_2} + \dots + \frac{d_na_n}{b_n}$$

for some $d_1, \ldots, d_n \in \mathbb{Z}$. By clearing denominators, we can write this sum as a single fraction with denominator k:

$$q = \frac{d_1 a_1 \frac{k}{b_1} + d_2 a_2 \frac{k}{b_2} + \dots + d_n a_n \frac{k}{b_n}}{k}$$

Thus, every element of H is a rational number whose denominator divides k; in other words, $H \subseteq \langle \frac{1}{k} \rangle$, the subgroup of $\mathbb Q$ consisting of all rational numbers with denominator dividing k.

However, \mathbb{Q} contains elements such as $\frac{1}{k+1}$, which cannot be written as an integer linear combination of elements with denominator k. Therefore, $\langle q_1, \ldots, q_n \rangle$ cannot be all of \mathbb{Q} , contradicting our assumption that \mathbb{Q} is finitely generated.

Hence, the additive group of rationals \mathbb{Q} is not finitely generated.

(b) Proof. Assume \mathbb{Q} were free, say with a generating set X. Let $\iota: X \to \mathbb{Q}$ be the inclusion map. Define $f: X \to \mathbb{Z}$ by f(x) = 1 for all $x \in X$. By the universal property of free abelian groups, there exists a unique homomorphism $\varphi: \mathbb{Q} \to \mathbb{Z}$ such that $\varphi \circ \iota = f$. Then, see that $\varphi(\iota(x)) = f(x) = 1$ for all $x \in X$. Since φ is a homomorphism, for any $q \in \mathbb{Q}$, which can be expressed as a finite integer linear combination of elements from X, we have

$$\varphi(q) = \varphi\left(\sum_{i=1}^{n} d_i x_i\right) = \sum_{i=1}^{n} d_i \varphi(x_i) = \sum_{i=1}^{n} d_i.$$

However, this implies that $\varphi(q)$ is always an integer, which contradicts the fact that \mathbb{Q} contains elements that cannot be mapped to integers in a way that preserves the group structure. For example, consider $q = \frac{1}{2}$. There is no integer n such that $\varphi\left(\frac{1}{2}\right) = n$ while still satisfying the homomorphism property for all elements of \mathbb{Q} . Thus, φ cannot be well-defined for all of \mathbb{Q} , contradicting the assumption that \mathbb{Q} is free. Therefore, \mathbb{Q} is not a free abelian group.

(c) Sine \mathbb{Q} is an abelian group where no element (except 0) has finite order, exercise 9 does not hold. This is the case as in (a) we showed that \mathbb{Q} is not finitely generated, and in (b) we showed that \mathbb{Q} is not free. Thus, the hypothesis "finitely generated" is necessary for exercise 9 to hold.

Problem 1

(Algebra Qual, Jan 2016) Let D_k be the dihedral group of order 2k, where $k \geq 3$.

- (a) Show that the number of automorphisms of the group D_k is equal to $k \cdot \varphi(k)$. Here φ is the Euler φ -function.
- (b) Automorphisms of D_k form a group; let us denote it by $Aut(D_k)$. What is the structure of $Aut(D_k)$? Describe the group as explicitly as you can.
- (a) *Proof.* Recall that D_k is generated by two elements r and s with relations $r^k = s^2 = e$ and $srs = r^{-1}$. The element r represents a rotation by $\frac{2\pi}{k}$ radians, and s represents a reflection.

An automorphism $\varphi \in \operatorname{Aut}(D_k)$ is determined by its action on the generators r and s. Since φ must preserve the order of elements, we have: $-\varphi(r)$ must be an element of order k. The elements of order k in D_k are precisely the powers of r, i.e., $\{r^m: 1 \leq m < k, \gcd(m,k) = 1\}$. There are $\varphi(k)$ such elements. $-\varphi(s)$ must be an element of order 2. The elements of order 2 in D_k are the reflections, which can be written as sr^j for $0 \leq j < k$. There are exactly k such elements

Therefore, for each choice of $\varphi(r) = r^m$ (with gcd(m, k) = 1), there are k choices for $\varphi(s)$. Thus, the total number of automorphisms is given by:

$$|\operatorname{Aut}(D_k)| = k \cdot \varphi(k).$$

(b) The automorphism group $\operatorname{Aut}(D_k)$ of the dihedral group D_k can be understood by analyzing how automorphisms act on the generators of D_k . Recall that D_k is generated by a rotation r of order k and a reflection s of order k, with the relation $srs^{-1} = r^{-1}$.

Any automorphism must send r to another element of order k, which must be some power r^a where a is coprime to k (i.e., $a \in (\mathbb{Z}/k\mathbb{Z})^{\times}$). Similarly, s can be sent to $r^b s$ for some $b \in \mathbb{Z}/k\mathbb{Z}$, since $r^b s$ is also a reflection.

The set of possible choices for a forms the group $(\mathbb{Z}/k\mathbb{Z})^{\times}$, and the choices for b form the group $\mathbb{Z}/k\mathbb{Z}$. However, the way a and b interact is not independent: the choice of a affects how b acts, so the automorphism group is not a direct product, but a semidirect product.

Therefore, we have:

$$\operatorname{Aut}(D_k) \cong (\mathbb{Z}/k\mathbb{Z})^{\times} \ltimes \mathbb{Z}/k\mathbb{Z}$$

where $(\mathbb{Z}/k\mathbb{Z})^{\times}$ acts on $\mathbb{Z}/k\mathbb{Z}$ by multiplication.

Problem 2

(Algebra Qual, Aug 2018) For a finite group G, denote by s(G) the number of its subgroups.

- (a) Show that s(G) is finite.
- (b) Show that if H is a nontrivial subgroup of G, then s(G/H) < s(G).
- (c) Show that s(g) = 2 if and only if G is a cyclic of prime order.
- (d) Show that s(G) = 3 if and only if G is cyclic group whose order is a square of a prime.

Let G be a finite group.

- (a) Proof. Since G is finite, it has a finite number of elements. Any subgroup $H \leq G$ is determined by a subset of G that is closed under the group operation and taking inverses. The number of subsets of a finite set with n elements is 2^n , which is finite. Since not all subsets are subgroups, the number of subgroups s(G) is at most $2^{|G|}$, which is finite. Therefore, s(G) is finite.
- (b) Proof. Let H be a nontrivial subgroup of G. Consider the quotient group G/H. There is a natural correspondence between the subgroups of G/H and the subgroups of G that contain H. Specifically, if K/H is a subgroup of G/H, then K is a subgroup of G containing H. Conversely, if K is a subgroup of G/H. This correspondence is bijective.

Since H is nontrivial, there exists at least one subgroup of G that contains H, namely H itself. However, not all subgroups of G contain H. Therefore, the number of subgroups of G/H is strictly less than the number of subgroups of G. Hence, we have:

$$s(G/H) < s(G)$$
.

- (c) Proof. (\Rightarrow) Suppose s(G)=2. The only subgroups of G are the trivial subgroup $\langle e \rangle$ and G itself. Then for any $g \in G$ with $g \neq e$, the subgroup $\langle g \rangle$ generated by g must be either $\langle e \rangle$ or G. Since $g \neq e$, we have $\langle g \rangle = G$. Thus, G is cyclic and generated by any of its non-identity elements. Now, if the order of G were composite, say |G|=mn with m,n>1, then G would have a subgroup of order m (by Cauchy's theorem), contradicting the assumption that s(G)=2. Therefore, the order of G must be prime. Hence, $G\cong \mathbb{Z}/p\mathbb{Z}$ for some prime p.
 - (\Leftarrow) Conversely, if $G \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p, then the only subgroups of G are $\langle e \rangle$ and G itself. Thus, s(G) = 2. Hence, we conclude that s(G) = 2 if and only if G is cyclic of prime order.
- (d) *Proof.* We prove both directions.
 - (\Rightarrow) Suppose G is a cyclic group of order p^2 for some prime p. Then $G \cong \mathbb{Z}/p^2\mathbb{Z}$, and every subgroup of G is cyclic. The subgroups of a cyclic group of order p correspond to the divisors of p. For $p = p^2$, the divisors are 1, p, and p^2 . Thus, the subgroups are:
 - The trivial subgroup $\langle e \rangle$ of order 1,
 - The subgroup $\langle a^p \rangle$ of order p, where a is a generator of G,
 - The whole group G itself, of order p^2 .

There are no other divisors of p^2 , so these are the only subgroups. Therefore, s(G) = 3.

(\Leftarrow) Now suppose G is a finite group with s(G) = 3. That is, G has exactly three subgroups: the trivial subgroup, G itself, and one proper nontrivial subgroup H. We claim that G must be cyclic of order p^2 for some prime p.

First, note that every group has the trivial subgroup and itself as subgroups, so the only possibility for s(G) = 3 is that there is exactly one proper nontrivial subgroup H. Consider any $a \in G$ with $a \neq e$. The subgroup $\langle a \rangle$ generated by a is a subgroup of G. Since s(G) = 3, every non-identity element must generate either G or H. If a generates G, then G is cyclic. If a generates G, then G is cyclic as well.

Suppose G is not cyclic. Then for every $a \neq e$, $\langle a \rangle$ is a proper subgroup, so must be H. But then H contains all non-identity elements of G, so H = G, which is a contradiction. Therefore, G must be cyclic.

Let |G| = n. Suppose n = pq for distinct primes p and q. Then G would have subgroups of orders p and q, contradicting the assumption that there is only one proper nontrivial subgroup. Thus, n must be a power of a single prime, say $n = p^k$. If $k \ge 3$, then G would have subgroups of orders p and p^2 , again contradicting the assumption. Hence, k must be 1 or 2. If k = 1, then G is cyclic of prime order, which has s(G) = 2. Thus, k must be 2.

Therefore, G is cyclic of order p^2 for some prime p.

Thus, as desired, s(G) = 3 if and only if G is cyclic of order p^2 for some prime p.