Analisi Matematica II Richiami sui numeri complessi

Virginia De Cicco Sapienza Univ. di Roma

Analisi complessa

Richiami sui numeri complessi

Definizioni

In questa lezione richiamiamo alcune nozioni sul campo dei numeri complessi.

Si indica con $\mathbb C$ l'insieme dei numeri complessi, ossia l'insieme delle coppie ordinate di $\mathbb R^2$ con le seguenti operazioni di addizione e moltiplicazione:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(x_1,y_1)(x_2,y_2)=(x_1x_2-y_1y_2,x_1y_2+y_1x_2).$$

Dato $z = (x, y) \in \mathbb{C}$, x è detta la parte reale di z e y è detta la parte immaginaria di z e si scrive

$$x = \operatorname{Re}(z) e y = \operatorname{Im}(z).$$

Coniugato

Si definisce il *coniugato di z* nel seguente modo:

$$\overline{z} = (x, -y)$$
.

I numeri complessi del tipo (x,0) sono isomorfi ai numeri reali \mathbb{R} . Si identifica solitamente (x,0) con $x \in \mathbb{R}$.

I numeri complessi del tipo (0, y) sono i cosiddetti *numeri immaginari*.

Il numero immaginario i:=(0,1) è detto *unità immaginaria* ed ha la proprietà che $i^2=-1$. Usando il numero i, si ha che un qualunque numero complesso z si può scrivere come

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + iy.$$

Coordinate cartesiane

Pertanto oltre alla notazione come coppia z = (x, y), si usa spesso anche la notazione z = x + iy. Le coordinate x e y di z sono dette anche *coordinate cartesiane*.

Avendo identificato i numeri complessi con le coppie di \mathbb{R}^2 , si parla spesso di \mathbb{C} come del *piano complesso*, dove i numeri reali sono i punti dell'asse delle x, mentre i numeri immaginari sono i punti dell'asse delle y.

Il campo dei numeri complessi è *algebricamente chiuso*, cioè ogni polinomio (non costante) a coefficienti in $\mathbb C$ ammette almeno uno zero complesso. Questo è il cosiddetto *teorema fondamentale dell'algebra*.

A differenza di \mathbb{R} , il campo \mathbb{C} dei numeri complessi non è ordinato, cioè non esiste una relazione d'ordine totale in \mathbb{C} che sia compatibile con le operazioni algebriche.

Coordinate polari

Introduciamo le *coordinate polari o trigonometriche* (ρ, θ) nel piano complesso. Dato $z = x + iy \in \mathbb{C}$ definiamo il *modulo* come

$$\rho = |z| := \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$$

Si verificano facilmente le seguenti proprietà :

$$|z| \ge 0$$
, $|z| = 0$ se e solo se $z = 0$,

$$|z_1+z_2| \leq |z_1|+|z_2|, \quad |z_1z_2|=|z_1||z_2|.$$

Inoltre per ogni $w=u+iv\in\mathbb{C}$ si ha

$$|u| \le |w|, \qquad |v| \le |w| \tag{1}$$

e

$$|w| \le |u| + |v|. \tag{2}$$

Argomento

Definiamo ora l'argomento θ di z. Dato $z=x+iy\in\mathbb{C}$, $z\neq 0$ consideriamo il numero $\frac{z}{|z|}$; si ha che

$$\left|\frac{z}{|z|}\right|=1.$$

Quindi esiste un angolo θ tale che

$$\frac{z}{|z|} = \cos\theta + i \, \sin\theta$$

$$z = |z|(\cos\theta + i \, \sin\theta).$$

Tale θ è detto *argomento* di z.

Chiaramente l'argomento è definito a meno di multipli di 2π . Si indica con

l'insieme degli argomenti di z. Un elemento di questo insieme è detto anche determinazione dell'argomento di z. Si definisce infine l'argomento principale Arg(z) come l'unico elemento di arg(z) che appartiene all'intervallo $(-\pi, \pi]$.

7 / 12

Esempi

Diamo alcuni esempi:

$$Arg(1) = 0, \qquad Arg(i) = \pi/2, \qquad Arg(-1) = \pi, \qquad Arg(-i) = -\pi/2.$$

I numeri reali positivi hanno argomento principale uguale a 0, mentre i numeri reali negativi hanno argomento principale uguale a π .

I numeri del semiasse immaginario positivo hanno argomento principale uguale a $\frac{\pi}{2}$, mentre i numeri del semiasse immaginario negativo hanno argomento principale uguale a $-\frac{\pi}{2}$.

Prodotti e potenze

Nelle coordinate polari il prodotto di numeri complessi assume una forma molto semplice. Precisamente, dati

$$z_1 = |z_1|(\cos\theta_1 + i \ \text{sen}\theta_1), \quad z_2 = |z_2|(\cos\theta_2 + i \ \text{sen}\theta_2)$$

si ha

$$\begin{split} z_1z_2 &= |z_1||z_2|((\cos\theta_1\cos\theta_2 - sen\theta_1sen\theta_2) + i(sen\theta_1\cos\theta_2 + cos\theta_1sen\theta_2)) = \\ &= |z_1||z_2|(\cos(\theta_1 + \theta_2) + isen(\theta_1 + \theta_2)). \end{split}$$

Se $z_1=z_2$, si ha $z^2=|z|^2(\cos 2\theta+i sen\ 2\theta)$ e in generale si dimostra per induzione che vale la seguente formula della potenza, detta formula di De Moivre:

$$z^n = |z|^n (\cos n\theta + i sen n\theta) \quad \forall n \in \mathbb{N}.$$

Radici

Si consideri ora il problema dell'inversione della funzione $f(z)=z^2$; usando la formula della potenza si ha che, dato $w \in \mathbb{C}$, l'equazione $z^2=w$ ammette l'unica soluzione z=0 se w=0 e altrimenti ammette le due soluzioni

$$z = \sqrt{|w|} \left[\cos \left(\frac{\theta + 2k\pi}{2} \right) + i \, \operatorname{sen} \left(\frac{\theta + 2k\pi}{2} \right) \right] \qquad k = 0, 1,$$

dove $\theta = Arg(w)$.

La soluzione per k=0 si dice radice quadrata principale. Analogamente, dato $w\in\mathbb{C}$, l'equazione $z^n=w$ ammette l'unica soluzione z=0 se w=0 e altrimenti ammette le n soluzioni

$$z = |w|^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \operatorname{sen} \left(\frac{\theta + 2k\pi}{n} \right) \right] \qquad k = 0, 1, \dots, n-1.$$
 (3)

Testo d'esame del 22 febbraio 2011

Domanda a risposta multipla Le radici cubiche del numero complesso -8i sono

a)
$$2i, \sqrt{3} - i, -\sqrt{3} - i$$

a)
$$2i, \sqrt{3} - i, -\sqrt{3} - i$$
 b) $-2i, \sqrt{3} + i, \sqrt{3} - i$

c)
$$-2i, \frac{\sqrt{3}}{3} + \frac{1}{2}i, \frac{\sqrt{3}}{3} - \frac{1}{2}i$$
 d) $2i, \frac{\sqrt{3}}{3} + \frac{1}{2}i, \frac{\sqrt{3}}{3} - \frac{1}{2}i$.

d)
$$2i$$
, $\frac{\sqrt{3}}{3} + \frac{1}{2}i$, $\frac{\sqrt{3}}{3} - \frac{1}{2}i$

Soluzione a)

Struttura metrica in \mathbb{C}

Lo spazio $\mathbb C$ eredita la struttura metrica di $\mathbb R^2$, cioè la distanza già nota in $\mathbb R^2$ coincide con la distanza in $\mathbb C$ così definita

$$d(z_1,z_2):=|z_1-z_2|$$

che viene detta la distanza (o metrica) tra z_1 e z_2 . Quindi, in particolare |z|=d(z,0) rappresenta la distanza di un punto $z\in\mathbb{C}$ dall'origine.

Si definisce inoltre intorno circolare (o palla) di centro z_0 e raggio r>0 l'insieme

$$B_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}.$$

Per esempio $B_1(0):=\{z\in\mathbb{C}:|z|<1\}$ è la palla di centro l'origine e raggio 1, mentre $B_3(1+2i):=\{z\in\mathbb{C}:|z-(1+2i)|<3\}$ è la palla di centro $z_0=1+2i$ e raggio 3.

In maniera analoga, si può definire l'insieme $\{z \in \mathbb{C} : |z - z_0| = r\}$ che rappresenta la circonferenza di centro z_0 e raggio r, cioè il bordo della palla $B_r(z_0)$.