Pengantar Machine Learning

Pertemuan 2 Tim Teaching JTI Politeknik Negeri Malang

Machine Learning

- Machine Learning, yang sering disingkat ML, adalah bagian dari kecerdasan buatan (AI) yang berfokus pada pengembangan algoritma komputer yang meningkat secara otomatis melalui pengalaman dan penggunaan data.
- Machine Learning adalah tentang membuat dan menerapkan algoritma yang memfasilitasi keputusan dan prediksi
- Dalam pemrograman tradisional, komputer mengikuti serangkaian instruksi yang telah ditetapkan sebelumnya untuk melakukan suatu tugas.
- Namun, dalam Machine Learning, komputer diberi serangkaian contoh (data) dan tugas untuk dilakukan, tetapi terserah pada komputer untuk mencari tahu cara menyelesaikan tugas berdasarkan contoh yang diberikan.

Machine Learning

- Jika kita ingin komputer mengenali gambar kucing, kita tidak memberinya instruksi khusus tentang seperti apa rupa kucing.
- Sebaliknya, kita memberinya ribuan gambar kucing dan membiarkan algoritme pembelajaran mesin mencari tahu pola dan fitur umum yang mendefinisikan kucing.
- Seiring berjalannya waktu, saat algoritme memproses lebih banyak gambar, ia menjadi lebih baik dalam mengenali kucing, bahkan saat disajikan dengan gambar yang belum pernah dilihatnya sebelumnya.

Machine Learning Workflow

🔾 dataсамр

[

Project setup

1. Understand the business goals

Speak with your stakeholders and deeply understand the business goal behind the model being proposed. A deep understanding of your business goals will help you scope the necessary technical solution, data sources to be collected, how to evaluate model performance, and more.

2. Choose the solution to your problem

Once you have a deep understanding of your problem—focus on which category of models drives the highest impact. See this Machine Learning Cheat Sheet for more information.

Data preparation

1. Data collection

Collect all the data you need for your models, whether from your own organization, public or paid sources.

2. Data cleaning

Turn the messy raw data into clean, tidy data ready for analysis. Check out this <u>data cleaning checklist</u> for a primer on data cleaning.

3. Feature engineering

Manipulate the datasets to create variables (features) that improve your model's prediction accuracy. Create the same features in both the training set and the testing set.

4. Split the data

Randomly divide the records in the dataset into a training set and a testing set. For a more reliable assessment of model performance, generate multiple training and testing sets using cross-validation.

Deployment

1. Deploy the model

Embed the model you chose in dashboards, applications, or wherever you need it.

2. Monitor model performance

Regularly test the performance of your model as your data changes to avoid model drift.

3. Improve your model

Continously iterate and improve your model post-deployment.

Replace your model with an updated version to improve performance.

Tipe Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Supervised Learning

SUPERVISED LEARNING

Supervised machine learning is a branch of artificial intelligence that focuses on training models to make predictions or decisions based on labeled training data.

Labeled Data

Unsupervised Learning

UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning where the algorithm learns from unlabeled data without any predefined outputs or target variables.

Reinforcement Learning

REINFORCEMENT LEARNING

Reinforcement learning is a machine learning paradigm that focuses on how agents learn to interact with an environment to maximize cumulative rewards.

DatabaseTown

Baby (Agent)

Algorithms and Approaches in Reinforcement Learning

- Q-learning
- Deep Q-networks (DQN)
- Policy Gradients Methods
- Proximal Policy Optimization (PPO)

Kegunaan Machine Learning

Beberapa bidang yang menggunakan Machine Learning:

- Healthcare

 Dalam perawatan kesehatan, pembelajaran mesin digunakan untuk memprediksi wabah penyakit, mempersonalisasi rencana perawatan pasien, dan meningkatkan akurasi pencitraan medis.

- Finance

Sektor keuangan juga mendapat banyak manfaat dari pembelajaran mesin.
 Pembelajaran mesin digunakan untuk penilaian kredit, perdagangan algoritmik, dan deteksi penipuan.

- Transportation

- Pembelajaran mesin merupakan inti dari revolusi mobil tanpa pengemudi.
- Perusahaan seperti Tesla dan Waymo menggunakan algoritma pembelajaran mesin untuk menginterpretasikan data sensor secara real-time, yang memungkinkan kendaraan mereka mengenali objek, membuat keputusan, dan menavigasi jalan secara otomatis.

Aplikasi Machine Learning

Recommendation System

- Sistem rekomendasi merupakan salah satu aplikasi pembelajaran mesin yang paling terlihat.
- Perusahaan seperti Netflix dan Amazon menggunakan pembelajaran mesin untuk menganalisis perilaku Anda di masa lalu dan merekomendasikan produk atau film yang mungkin Anda sukai.

Voice Assistant

 Asisten suara seperti Siri, Alexa, dan Google Assistant menggunakan pembelajaran mesin untuk memahami perintah suara Anda dan memberikan respons yang relevan

Aplikasi Machine Learning

- Deteksi penipuan (Fraud Detection)
 - Bank dan perusahaan kartu kredit menggunakan pembelajaran mesin untuk mendeteksi transaksi penipuan.
 - Dengan menganalisis pola perilaku normal dan abnormal, mereka dapat menandai aktivitas mencurigakan secara real-time.
- Media Social
 - Platform media sosial menggunakan pembelajaran mesin untuk berbagai tugas, mulai dari mempersonalisasi konten sehingga menyaring konten yang tidak pantas.

Karir Machine Learning

Career	Key Skills	Essential Tools
Data Scientist	Statistical analysis, Programming (Python, R), Machine learning, Data visualization, Problem-solving	Python, R, SQL, Hadoop, Spark, Tableau
Machine Learning Engineer	Programming (Python, Java, R), Machine learning algorithms, Statistics, System design	Python, TensorFlow, Scikit- learn, PyTorch, Keras
Research Scientist	Deep understanding of machine learning algorithms, Programming (Python, R), Research methodology, Strong mathematical skills	Python, R, TensorFlow, PyTorch, MATLAB