2013 年第四届全国大学生数学竞赛决赛、 (非数学类) 试卷

一、简答下列各题 (本题 25 分)

1、计算
$$\lim_{x o 0+} \left[\ln \left(x \ln a \right) \cdot \ln \left(\frac{\ln ax}{\ln \left(x / a \right)} \right) \right], (a > 1).$$

2、设 f(u,v) 具有连续偏导数,且满足 $f_u(u,v)+f_v(u,v)=uv$,求 $y(x)=e^{-2x}f(x,x)$ 所满足的一阶微分方程,并求其通解。

- 3、求在 $[0,+\infty)$ 上的可微函数f(x),使 $f(x)=e^{-u(x)}$,其中 $u=\int_0^x f(t)\,\mathrm{d}\,t$.
- **4.** 计算不定积分 $\int x \arctan x \ln \left(1 + x^2\right) dx$.
- 5、过直线 $\begin{cases} 10x + 2y 2z = 27, \ x + y z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 z^2 = 27$ 的切平面,求此切平面的方

程.

二、(本题 15 分) 设曲面 $\Sigma: z^2 = x^2 + y^2, 1 \le z \le z$,其面密度为常数 ρ . 求在原点处的质量为 1 的质点和 Σ 之间的引力(记引力常数为 G).

三、(本题 15 分) 设f(x)在 $[1,+\infty)$ 连续可导,

$$f'(x) = rac{1}{1+f^2(x)} \Biggl[\sqrt{rac{1}{x}} - \sqrt{\ln\Bigl(1+rac{1}{x}\Bigr)} \Biggr],$$

证明: $\lim_{x \to +\infty} f(x)$ 存在.

四、(本题 15 分) 设函数 f(x) 在[-2,2] 上二阶可导,且|f(x)| < 1 ,又 $f^2(0)+\left[f'(0)\right]^2=4$. 试证在 $\left(-2,2\right)$ 内至少存在一点 ξ ,使得 $f(\xi)+f''\left(\xi\right)=0$.

五、(本题 15 分) 求二重积分
$$I=\displaystyle\iint\limits_{x^2+y^2<1}\left|x^2+y^2-x-y\right|\mathrm{d}\,x\,\mathrm{d}\,y.$$

六、(本题 15 分) 若对于任何收敛于零的序列 $\left\{x_n^{}\right\}$,级数 $\sum_{n=1}^{\infty}a_n^{}x_n^{}$ 都是收敛的,试证明级

1

数
$$\sum_{n=1}^{\infty} |a_n|$$
收敛.