Inhaltsverzeichnis

1	Gev	Gewöhnliche Differentialgleichungen				
	1.1	Allgemeiner Fall	3			
	1.2 Lösungsalgorithmus					
		1.2.1 Euler-Cauchy-Algorithmus	4			
		1.2.2 Leapfrog Algorithmus	4			
		1.2.3 Velocity-Verlet-Algorithmus	5			
		1.2.4 Verlet-Algorithmus	5			
		1.2.5 Runge-Kutta Verfahren	7			
		1.2.6 Schrittweitenanpassung und Fehlerkontrolle	9			
	1.3	Stabilität von ODEs	10			
	1.4	Molekulardynamik	13			
		1.4.1 Anwendung	13			
		1.4.2 Exkurs: Parallele Programmierung	16			
2	Par	rtielle Differentialgleichungen	21			
	2.1		21			
		· ·	21			
		2.1.2 Lösung für lineare Gleichungssysteme	23			
		2.1.3 Praktische Implementation für die Poissongleichung	26			
	2.2					
		2.2.1 Anfangs- und Randbedingungen	27			
		2.2.2 Diskretisierung und Stabilitätsanalyse	27			
3 Zufallszahlen und Monte-Ca		allszahlen und Monte-Carlo Simulationen	31			
	3.1	Erzeugung von Pseudozufallszahlen	31			
		3.1.1 Algorithmen	31			
		3.1.2 Erzeugen von Zufallszahlen mit einer beliebiger Verteilung	32			
	3.2	Monte-Carlo-Integration hochdimensionaler Integrale	33			
	- · -	3.2.1 MC-Simulationen in der stat. Physik	34			
		3.2.2 Ising-Modell	38			
			41			

Kapitel 1

Gewöhnliche Differentialgleichungen

ODE: ordinary differential equations typische Beispiele in der Physik:

a) Ratengleichung / Populationsdynamik

$$\frac{dn}{dt}(t) = (r_+ - r_-)n(t)$$

mit n(t) Anzahl der Induividuen zur Zeit t

 r_{+} Geburtenrate r_{-} Todesrate/Zerfallsrate

 $r = r_{+} - r_{-} = f(n)$ Reproduktionsrate

Bei Parametern $r=r_0$ unabhängig von n spricht man vom Malthus'schen Wachstumsmodell (radioaktiver Zerfall), für $r=r_0(1-K_n)$ vom Pearl-Verhulst-Modell. Die Wachstumsrate nimmt mit Dichte n ab.

b) klassische Mechanik

 $m\ddot{\vec{x}}(t) = \vec{F}(\vec{x}(t), \vec{x}.(t), t)$ Newtonsche Bewegungsgleichung (ODE 2.Ordnung)

 $\dot{\vec{y}} = \begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial p} \\ -\frac{\partial \mathcal{H}}{\partial q} \end{pmatrix}$ Hamiltonsche Bewegungsgleichungen (2 ODE 1. Ordnung)

1.1 Allgemeiner Fall

Sei $\vec{y}(t) \in \mathbb{R}^n$ Vektorfunktion eines skalaren Parameters $t \in \mathbb{R}$, dann ist

$$f(\vec{y}(t), \vec{y}^{(1)}(t), \vec{y}^{(2)}(t), \dots, \vec{y}^{(n)}(t)) = 0$$

implizite Darstellung einer durch \vec{y} gelösten ODE. Alternativ

$$\vec{y}^{(n)}(t) = \vec{g}(\vec{y}^{(1)}(t), \vec{y}^{(2)}(t), \dots, \vec{y}^{(n-1)}(t), t)$$

wobei $\vec{y}^{(k)}(t) = \frac{\mathrm{d}^k y}{\mathrm{d}t^2 k}$. Ein zugehöriges Anfangswertproblem ist gegeben durch die Anfangsbedingungen

$$\vec{y}(t_0) = \vec{y}_0 \vec{y}_0^{n-1} = \vec{y}_{n-1}$$

1.2 Lösungsalgorithmus

a) Umschreiben einer ODE n-ter Ordnung in n ODEs 1.Ordnung

$$y'_{n-1}(t) = y_n(t) = \vec{g}(\vec{y}_0, \vec{y}_1,, \vec{y}_{n-1}, t))$$

$$y'_{n-2} = y_{n-1}$$

$$\vdots$$

$$y'_0 = y_1$$

$$\Rightarrow \vec{y}'(t) = \vec{F}(\vec{y}(t), t)$$

mit Anfangswertproblem $\vec{y}(t_0) = \vec{y}^{(0)}$

b) Diskretisierung des skalaren Parameters $t \in [t_0, t_0 + T]$ Man wählt Stützpunkte $t_0 < t_1 < t_2 < ...t_N = T$, häufig eine equidistante Diskretisierung $t_i = t_0 + \Delta t$ mit $\Delta t = \frac{T}{N}$ und erhält die formale Lösung:

$$\vec{y}(t_{i+1}) = \vec{y}(t_i) + \int t_i t_{i+1} dt' \vec{F}(\vec{y}(t'), t')$$

Auf das diskretisierte Problem können nun folgende mehr oder weniger einfachen Algorithmen zur mehr oder weniger guten Lösung angewendet werden.

1.2.1 Euler-Cauchy-Algorithmus

$$\vec{y}(t_{i+1}) = \vec{y}(t_i) + \Delta t \vec{F}(\vec{y}(t_i), t_i) + \mathcal{O}(\Delta t^2)$$
 pro Schritt

Alternativ lässt sich diese Iteration durch die Newton-Gregory-Vorwärtsableitung schreiben

$$\vec{F}(y(t_i), t_i) = \vec{y}'(t_i) = \frac{\vec{y}(t_{i+1}) - \vec{y}(t_i)}{\Delta t} + \mathcal{O}(\Delta t)$$

Der globale Fehler des EC-Algorithmus lässt sich abschätzen durch

$$\varepsilon(t) \sim N\mathcal{O}\left(\Delta t^2\right) \sim N\mathcal{O}\left(\frac{T^2}{N^2}\right)$$

$$\sim \mathcal{O}\left(\frac{T^2}{N}\right) \stackrel{N \to \infty}{\longrightarrow} 0$$

1.2.2 Leapfrog Algorithmus

Anstatt der Newton-Gregory-Ableitung wird hier die symmetrische Stirling-Ableitung verwendet.

$$\vec{F}(y(t_i), t_i) = \vec{y}'(t_i) = \frac{\vec{y}(t_{i+1}) - \vec{y}(t_{i-1})}{2\Delta t} + \mathcal{O}(\Delta t^2)$$

Auflösen nach $\vec{y}(t_{i+1})$ ergibt

$$\vec{y}(t_{i+1}) = \vec{y}(t_{i-1}) + 2\vec{F}(y(t_i), t_i)\Delta t + \mathcal{O}(\Delta t^3)$$

mit globalem Fehler: $\varepsilon(T) \approx \mathcal{O}(\Delta t^2)$

Dabei ist zu beachten, dass $y(t_{-1})$ im Anfangswertproblem nicht bekannt ist, daher bestimme $\vec{y}(t_1)$ gemäß Euler-Cauchy. Am Anfang ist beträgt also der Schrittfehler des Algorithmus $\mathcal{O}\left(\Delta t^2\right)$, der globale Fehler bleibt $\mathcal{O}\left(\Delta t^2\right) \sim \varepsilon(T)$

1.2.3 Velocity-Verlet-Algorithmus

Anwendung des Leapfrog-Algorithmus auf die klassische Mechanik

$$\ddot{\vec{x}}(t) = \vec{a}(\vec{x}(t), t), \qquad \vec{a} = \frac{\vec{F}}{m}$$

mit Kraft \vec{F} und Masse m. Definiere die Hilfsgröße \vec{y}

$$\vec{y}(t) = \begin{pmatrix} \vec{x}(t) \\ \vec{v}(t) \end{pmatrix}, \qquad \dot{\vec{y}} = \begin{pmatrix} \vec{v}(t) \\ \vec{a}(\vec{x}(t), t) \end{pmatrix}$$

$$\vec{x}(t_{i+1}) = \vec{x}(t_{i-1}) + 2\Delta t \ \vec{v}(t_i)$$
$$\vec{v}(t_{i+1}) = \vec{v}(t_{i-1}) + 2\Delta t \ \vec{a}(\vec{x}(t_i), t_i)$$

Spalte die Gleichung für \vec{v} in zwei Teilschritte

$$t_{i-1}: \begin{bmatrix} \vec{v}(t_i) = \vec{v}(t_{i-1}) + \vec{a}(\vec{x}(t_{i-1}), t_{i-1}) \\ \vec{x}(t_{i+1}) = \vec{x}(t_{i-1}) + 2\vec{v}(t_i)\Delta t \end{bmatrix}$$
$$t_{i+1}: [\vec{v}(t_{i+1}) = \vec{v}(t_i) + \vec{a}(\vec{x}(t_{i+1}), t_{i+1})\Delta t]$$

alternativ:
$$\vec{a}(\vec{x}(t_j), t_j) = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2 2}\Big|_{t=t_j}$$

$$= \frac{\frac{\mathrm{d}^2 x}{\mathrm{d}t^2 2}\Big|_{t=t_{j+1}} - \frac{\mathrm{d}^2 x}{\mathrm{d}t^2 2}\Big|_{t=t_{j-1}}}{2\Delta t}$$

$$= \frac{1}{2\Delta t} \left(\frac{x(t_{j+2}) - x(t_j)}{2\Delta t} - \frac{x(t_j) - x(t_{j-2})}{2\Delta t} \right)$$

$$= \frac{1}{4(\Delta t)^2} \left(x(t_{j+2}) + x(t_{j-2}) - 2x(t_j) \right)$$

$$\Rightarrow \vec{x}(t_{j+2}) = 2\vec{x}(t_j) - \vec{x}(t_{j-2}) + 4(\Delta t)^2 \vec{a}(x(t_j), t_j)$$

1.2.4 Verlet-Algorithmus

Velocity-Verlet \rightarrow Verlet: exterminiere die Geschwindigkeit

$$\begin{vmatrix} \vec{x}(t_{i+1}) = \vec{x}(t_{i-1}) + 2\vec{v}(t_i)\Delta t \\ \vec{x}(t_{i+1}) = \vec{x}(t_{i-1})2 \left[\vec{v}(t_{i-2}) + 2\vec{a}(\vec{x}(t_{i-1}), t_{i-1})\Delta t \right] \Delta t \\ \vec{x}(t_{i-1}) = \vec{x}(t_{i-3}) + 2\vec{v}(t_{i-2})\Delta t \end{vmatrix}$$

$$\Rightarrow \vec{x}(t_{i+1}) = 2\vec{x}(t_{i-1}) - \vec{x}(t_{i-3}) + 4\vec{a}(x(t_{i-1}), t_{i-1})\Delta t^2$$

Vorteile des Verlet-Algorithmus in der klass. Mechanik

Zeitumkehrinvarianz der diskreten Zeitentwicklung ist exakt (nicht nur bis zur Ordnung $\mathcal{O}\left(\Delta t^3\right)$ in einem Zeitschritt, sondern mit Maschinengenauigkeit)

Zu zeigen: $t_{i-1} \to t_{i+1}$ unter Zeitumkehr mit Velocity-Verlet

$$\tilde{x}(t_{i+1}) := x(t_{i+1})$$

$$\tilde{v}(t_{i+1}) := -v(t_{i+1})$$

$$t_{i+1} \to t_{i+3}$$

$$\tilde{x}(t_{i+3}) \stackrel{!}{=} x(t_{i-1})$$

$$\tilde{v}(t_{i+3}) \stackrel{!}{=} v(t_{i-1})$$

Exakte Drehimpulserhaltung für Zentralpotential

Abbildung 2.1: Erhaltung des Phasenraumvolumens

Erhaltung des Phasenraumvolumens

$$\begin{split} \Gamma &= \int\limits_{A(t_0)} d\vec{p} d\vec{x} \rightarrow [t] \int\limits_{A(t)} d\vec{p}' d\vec{x}' \\ \text{Abbildung } \vec{x}' &= \vec{x}(t + \Delta t) = \vec{x}'(\vec{x}, \vec{p}) \\ \Gamma &= \begin{pmatrix} \vec{x} \\ \vec{p} \end{pmatrix} \quad \stackrel{\Delta t}{\longrightarrow} \quad \Gamma' = \begin{pmatrix} \vec{x}' \\ \vec{p}' \end{pmatrix} \\ \Gamma' &= \int\limits_{A'} d\vec{p} d\vec{x} = \int\limits_{A} dp dx \left| \frac{\partial (\vec{x'}, \vec{p'})}{\partial (\vec{x}, \vec{p})} \right| = ! \Gamma \end{split}$$

Jakobi-Determinante der Abbildung von $(\vec{x}, \vec{p}) \to (\vec{x'}, \vec{p'}) \to \begin{vmatrix} \frac{\partial (\vec{x'}, \vec{p'})}{\partial (\vec{x}, \vec{p})} \end{vmatrix}$

1.2.5 Runge-Kutta Verfahren

Ausgangspunkt: formale Lösung in einem Zeitschritt

$$\begin{split} \vec{y}(t+\Delta t) &= \vec{y}(t) + \int_{t}^{t+\Delta t} dt' \qquad \vec{F}(y(t'),t') \\ &= \vec{y}(t) + \Delta t \int_{0}^{1} d\alpha \qquad \vec{F}(y(t+\alpha \Delta t),t+\alpha \Delta t) \end{split}$$

hier klammer mit = $g(\alpha)$

Idee: approximiere das Integral durch eine numerische Quadratur

$$\vec{g}(\alpha) = \vec{F}(y(t+\alpha\Delta t), t+\alpha\Delta t)$$

$$\int_0^1 d\alpha \vec{g}(\alpha) = \sum_{j=1}^m \beta_j \vec{g}(\gamma_j) \qquad \gamma_j, j=1,...,m \text{Stützstellen/Knoten}$$

$$\beta_j \text{Gewichte}$$

 $\begin{array}{l} \text{fordere } g(\alpha) = 1 \text{ exakt integriert FORMEL?} \\ \rightarrow \vec{y}(t+\Delta t) \approx \vec{y}(t) + \Delta t \sum_{j=1}^m \beta_j \vec{g}(r_j) \end{array}$

Problem: $\vec{g}(\gamma_j) = \vec{F}(\vec{y}(t+\gamma_j\Delta t), t+\gamma_j\Delta t)$ sind unbekannt

Lösung:

$$\vec{y}(t + \gamma_j \Delta t) = \vec{y}(t) + \Delta t \int_0^{\gamma_j} d\alpha \, \vec{g}(\alpha) \approx \vec{y}(t) + \Delta t \left[\sum_{l=1}^m \alpha_{j,l} \vec{g}(\gamma_l) \right]$$

und benutze die gleichen Stützstellen γ_j fordere $\gamma_j=\int_0^{\gamma_j}\mathrm{d}\alpha\approx\sum_{l=1}^m\alpha_{j,l}$

Expliziter RK-Algorithmus: $\alpha_{j,l} = 0$, j <= l definiere Abkürzungen: Hier ist was auskommentiert. weil es nicht kompiliert

$$\vec{k}_j \equiv \vec{F}(y(t + \gamma_j \Delta t), t + \gamma_j \Delta t) = \vec{g}(\gamma_j)$$

$$\Rightarrow \vec{k}_{j} \approx \vec{F}(\vec{y}(t) + \Delta t \sum_{l=1}^{m} \alpha_{j,l} \vec{k}_{l}, t + \gamma_{j} \Delta t)$$
und $y(t + \Delta t) = y(t) + \Delta t \sum_{i=1}^{m} \beta_{j} \vec{k}_{j}$

$$explizites RK Verfahren,$$
falls $\alpha_{j,l} = 0$ für $j \leq l$

Runge-Kutta Algorithmus

Koeffizienten lassen sich im RK-Tablaue/ Butcher-Matrix zusammenfassen:

$$\begin{pmatrix} \gamma_1 & \alpha_{11} & \alpha_{12} & \dots & \alpha_{1m} \\ \gamma_2 & \alpha_{21} & \alpha_{22} & \dots & \alpha_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \gamma_m & \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{mm} \\ \hline 1 & \beta_1 & \beta_2 & \dots & \beta_m \end{pmatrix} \text{ für explizites Verfahren:}$$

explizites RK-Verfahren 2-stufig m=2

$$\begin{pmatrix} \gamma_1 = 0 & 0 & 0 \\ \gamma_2 = 1 & \alpha = \alpha_{21} & 0 \\ \hline 1 & \beta_1 & \beta_2 = 1 - \beta_1 \end{pmatrix} \quad \vec{k}_1 = \vec{F}(\vec{y}(t), t) \\ \vec{k}_2 = \vec{F}(\vec{y}(t) + \Delta t \alpha_{21} \vec{k}_1, t + \gamma_2 \Delta t)$$

$$\vec{y}(t + \Delta t) = \vec{y}(t) + \Delta t \beta_1 \vec{F}(\vec{y}(t), t) + \Delta t (\beta_1 - 1) \underbrace{\vec{F}(\vec{y}(t) + \Delta t \alpha_{21} \vec{k}_1, t + \gamma_2 \Delta t)}_{\vec{k}_2}$$

optimiere die beiden Parameter $\alpha = \alpha_{21} = \gamma_2$, $\beta = \beta_1 = 1 - \beta_2$ so, dass der Fehler von der Ordnung Δt^3 ist.

$$\begin{split} \vec{y}(t+\Delta t) - \vec{y}(t) &= \vec{F}(\vec{y}(t),t)\Delta t + \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\vec{F}(\vec{y}(t),t)\Delta t^2 + \mathcal{O}\left(\Delta t^3\right) \\ &= \vec{F}(\vec{y}(t),t)\Delta t + \frac{1}{2}\left[\frac{\partial \vec{F}}{\partial \vec{y}}\frac{\partial \vec{y}}{\partial t} + \frac{\partial \vec{F}}{\partial t}\right]\Delta t^2 + \mathcal{O}\left(\Delta t^3\right) \\ &= \vec{F}(\vec{y}(t),t)\Delta t + \frac{1}{2}\left[\frac{\partial \vec{F}}{\partial \vec{y}}\vec{F} + \frac{\partial \vec{F}}{\partial t}\right]\Delta t^2 + \mathcal{O}\left(\Delta t^3\right) \end{split}$$

Taylor-Entwicklung der RK2-Lösung:

$$\vec{y}(t+\Delta t) - \vec{y}(t) = \beta \vec{F}(y(t),t)\Delta t + (1-\beta) \left[\vec{F}(\vec{y}(t),t) + \frac{\partial \vec{F}}{\partial \vec{y}} \alpha \Delta t \vec{k}_1 + \frac{\partial \vec{F}}{\partial t} \alpha \Delta t \right] \Delta t + \mathcal{O}\left(\Delta t^3\right)$$

$$= \vec{F}(y(t),t)\Delta t + \Delta t^2 (1-\beta_1)\alpha \left[\frac{\partial \vec{F}}{\partial \vec{y}} \vec{F} + \frac{\partial \vec{F}}{\partial t} \right] + \mathcal{O}\left(\Delta t^3\right)$$

Koeffizientenvergleich liefert $(1 - \beta)\alpha \stackrel{!}{=} 1/2 \rightarrow$ wähle $\alpha = 1/2$ $\beta = 0$ \Rightarrow exakte Entwinklung und RK2 stimmen bis Ordnung $\mathcal{O}\left(\Delta t^3\right)$ überein.

RK2-Verfahren:

$$\overrightarrow{y}(t+\Delta t) = \overrightarrow{y}(t) + \Delta t \overrightarrow{F}(\overrightarrow{y}(t) + \frac{1}{2}\Delta t \overrightarrow{k}_1, t + \frac{1}{2}\Delta t)$$
mit $\overrightarrow{k}_1 = \overrightarrow{F}(\overrightarrow{y}(t), t)$

Vergleich zwischen RK2 und Leapfrog:

RK:
$$y(t+2\Delta t) = y(t) + 2\Delta t F(y(t) + \Delta t F(y(t),t), t + \Delta t)$$

 $y(t+\Delta t) = y(t-\Delta t) + 2\Delta t F(y(t-\Delta t) + 2\Delta t F(y(t-\Delta t),t)$
LF: $y(t+\Delta t) = y(t-\Delta t) + 2\Delta t F(y(t),t)$

Standard RK4-Verfahren(ohne Beweis)

$$\begin{pmatrix} \gamma_1 = 0 & 0 & 0 & 0 & 0 \\ \gamma_2 = \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \gamma_3 = \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ \gamma_4 = 1 & 0 & 0 & 1 & 0 \\ \hline 1 & \beta_1 = \frac{1}{6} & \beta_2 = \frac{2}{6} & \beta_3 = \frac{2}{6} & \beta_4 = \frac{1}{6} \end{pmatrix} \begin{array}{c} \vec{k}_1 = \vec{F}(\vec{y}(t), t) \\ \vec{k}_2 = \vec{F}(\vec{y}(t) + \Delta t^1 / 2\vec{k}_1, t + \frac{1}{2} \Delta t) \\ \vec{k}_3 = \vec{F}(\vec{y}(t) + \Delta t^1 / 2\vec{k}_2, t + \frac{1}{2} \Delta t) \\ \vec{k}_3 = \vec{F}(\vec{y}(t) + \Delta t\vec{k}_3, t + \Delta t) \\ \vec{k}_j = \vec{F}(\vec{y}(t) + \Delta t \sum_l \alpha_{j,l} \vec{k}_l, t + \gamma_j \Delta t) \\ \end{cases}$$

$$\vec{y}(t + \Delta t) = \vec{y}(t) + \frac{\Delta t}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right) + \mathcal{O}\left(\Delta t^5\right)$$

1.2.6 Schrittweitenanpassung und Fehlerkontrolle

$$\vec{y}(t_0) = \vec{y}_0, \qquad \vec{y}(t + \Delta t) = \vec{y}^{(0)}(t + \Delta t) + c\Delta t^{m+1} + \mathcal{O}(\Delta t^{m+2})$$

mit gleichem Anfangwert Idee: Zeitpropagation um Δt

$$y_1(t + \Delta t) = y^{(0)}(t + \Delta t) + c\Delta t^{m+1} + \mathcal{O}\left(\Delta t^{m+2}\right)$$

2x Zeit
propagation um $\frac{\Delta t}{2}$

$$y_{2}(t + \Delta t/2) = y^{(0)}(t + \Delta t/2) + c\left(\frac{\Delta t}{2}\right)^{m+1} + \mathcal{O}\left(\Delta t^{m+2}\right)$$
$$y_{2}(t + \Delta t) = y^{(0)}(t + \Delta t) + 2c\left(\frac{\Delta t}{2}\right)^{m+1} + \mathcal{O}\left(\Delta t^{m+2}\right)$$

Mit der Differenz zwischen den Schritten:

$$\Rightarrow \Delta y_{12} = |y_1(t + \Delta t) - y_2(t + \Delta t)|$$
$$= |c| \left(1 - \frac{1}{2^m}\right) \Delta t^{m+1}$$

Abbildung 3.1: Skizze mit numerisscher Lösung y(t) und tatsächlicher Lösung $y^{(0)}(t)$

Ziel: wähle $\widetilde{\Delta t}$ so, dass

$$|y_{2}(t + \widetilde{\Delta t}) - y^{(0)}(t + \widetilde{\Delta t})| = \frac{|c|}{2^{m}} \widetilde{\Delta t}^{m+1} \le \delta_{0}$$

$$\Rightarrow \frac{|c|^{2-m} \widetilde{\Delta t}^{m+1}}{|c| \widetilde{\Delta t}^{m+1} (1 - 2^{-m})} \le \frac{\delta_{0}}{\Delta y_{12}}$$

$$\Rightarrow \left(\frac{\widetilde{\Delta t}}{\Delta t}\right)^{m+1} \le \frac{\delta_{0}}{\Delta y_{12}} \left(1 - \frac{1}{2^{m}}\right) \frac{1}{2^{m}} \le \frac{\delta_{0}}{\Delta y_{12}}$$

$$\Rightarrow \widetilde{\Delta t} \le \left(\frac{\delta_{0}}{|\Delta y_{12}|}\right)^{\frac{1}{m+1}} \Delta t$$

Algorithmus:

falls $\Delta t \leq \widetilde{\Delta t} \rightarrow y(t + \Delta t)$ ist OK und benutze $\widetilde{\Delta t}$ im nächsten Schritt falls $\Delta t \geq \widetilde{\Delta t} \rightarrow$ ist nicht OK und berechne $y(t + \widetilde{\Delta t})$ neu mit $\widetilde{\Delta t}$.

1.3 Stabilität von ODEs

betrachte y(t) = F(y(t), t) mit Anfangsbedingung, $y^{(0)}$ sei die exakte Lösung, y(t) die numerische.

$$y(t) = y^{(0)}(t) + e(t)$$

Stabilität Wachstum des Fehlers e(t)

$$y(t_{i+1}) = y^{(0)}(t_{i+1}) + e(t_{i+1}) = y(t_i) + F(y(t_i), t_i)\Delta t + \mathcal{O}\left(\Delta t^2\right)$$

$$= y^{(0)}(t_i) + e(t_i) + F(y(t_i), t_i)\Delta t + \mathcal{O}\left(\Delta t^2\right)$$

$$= T(y^{(0)}(t_i), e(t_i)) \quad \text{Zeittrans.fuerdenZeitschritt}\Delta t$$

$$y^{(0)}(t_{i+1}) + e(t_{i+1}) = \underbrace{T(y^0(t_i), 0)}_{=y^{(0)}(t_i)} + \underbrace{\frac{\mathrm{d}T}{\mathrm{d}e}}_{=} e(t_i) + \dots$$

Abschätzung für die Zeitentwicklung des globalen Fehlers $e(t_{i+1}) = T'e(t_i)$ Stabilität: Fehler bleibt beschränkt für t-->oo falls $\left|\frac{\mathrm{d}T}{\mathrm{d}e}\right|$

a) $dy/dt = \lambda y$ $\lambda \in \mathbb{C}$ Lösung bleibt beschränkt falls $|1 + \lambda \Delta t| \leq 1$ impliziter Euler-Algorithmus

$$\dot{y}(t) = r_0 [1 - Ky(t)] y(t)$$
 $y(t = 0) = y_0$

Abbildung 3.2

Abbildung 3.3

analytische Lösung:
$$y(t) = \frac{y_0 e^{r_0 t}}{1 + K y_0 (e^{r_0 t} - 1)}$$

Euler Cauchy Algorithmus:

$$y(t_{i+1}) = y(t_i) + r_0(1 - Ky(t_i))y(t_i)\Delta t = (1 + r_0\Delta t)y(t_i) - r_oK\Delta ty^2(t_i)$$

$$\alpha y(t_{i+1}) = \underbrace{(1 + r_0\Delta t)}_{=\text{const.}} \alpha y(t_i) \underbrace{\left[1 - \frac{r_0K\Delta t}{1 + r_0\Delta t}y(t_i)\right]}_{1 - x(t_i)}$$

$$x(t_{i+1}) = 4\mu x(t_i) \left[1 - x(t_i) \right] \quad \text{logistische Abbildung}$$

$$x^{(0)}(t_{i+1}) + e(t_{i+1}) = T(x_i^{(0)}, e_i) = 4\mu(x^{(0)}(t_i) + e(t_i)) \left[1 - ((x^{(0)}(t_i) + e(t_i))) \right]$$

$$T'(x, e = 0) = 4\mu(1 - 2x)$$

 \rightarrow Stabilitätskriterium $|T'|=4\mu|1-2x|\leq 1$

$$t \longrightarrow \infty \quad \Rightarrow x \longrightarrow \frac{4\mu - 1}{4\mu}$$

$$\Rightarrow |T'| \longrightarrow 4\mu \left| \frac{4\mu - 2(4\mu - 1)}{4\mu} \right| = |2 - 4\mu| \le 1$$

$$\Rightarrow 4\mu \le 3 \qquad \mu \le \frac{3}{4} \quad \text{oder} \quad r_0 \Delta t \le 2$$

t = 1000 Zeitschritte

Item? gedämpfte Schwingungungungungungung....

$$0 = \ddot{y} + \Gamma \dot{y} + \omega_0^2 y$$

$$y_1(t) = y(t)$$

$$y_2(t) = \dot{y}_1(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -\Gamma y_2 - \omega_0^2 y_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega_0^2 & -\Gamma \end{pmatrix}$$

$$\dot{\vec{y}} = F(\vec{y}, t) = \mathbb{L} \quad \text{mit} \quad \mathbb{L} = \frac{\partial \vec{F}}{\partial \vec{y}} = \begin{pmatrix} 0 & 1 \\ -\omega_0^2 & -\Gamma \end{pmatrix} = const.$$

Euler-Cauchy Algorithmus

$$\vec{y}(t_{i+1}) = \vec{y}(t_1) + \mathbb{L}\vec{y}(t_i)\Delta t = (1 + \mathbb{L}\Delta t)\vec{y}(t_i)$$
$$\mathbb{T}(\vec{y}, \vec{e}) = (1 + \mathbb{L}\Delta t)(\vec{y} + \vec{e}) \qquad \mathbb{T}' = \frac{\partial \mathbb{T}}{\partial \vec{e}} = 1 + \mathbb{L}\Delta t$$

Stabilitätskriterium: alle Eigenwerte der Matrix \mathbb{T}' sind betragsmäßig ≤ 1

$$\begin{split} \mathbb{T}' &= \begin{pmatrix} 1 & \Delta t \\ -\omega_0^2 \Delta t & 1 - \Gamma \Delta t \end{pmatrix} \\ &\rightarrow \text{Charakteristisches Polynom} \\ \lambda_{1,2} &= 1 - \frac{\Gamma \Delta t}{2} \pm \sqrt{\frac{(\Gamma \Delta t)^2}{4} - (\omega_0 \Delta t)^2} \end{split}$$

Fallunterscheidung

i) unterdämpfte Schwingung $\Gamma \leq 2\omega_0$

$$\to \omega_0^2 \Delta t \le \Gamma$$

ii) Kriechfall $\Gamma > 2\omega_0$

$$2\Gamma \Delta t < 4 + (\omega_0 \Delta t)^2$$

allgemeine Überlegung: ohne Beweis: $\dot{y}(t) = F(y(t),t), \quad y(t_0) = y_0$ Idee: nähere ODE linear um t_0

$$\begin{split} \delta y(t) &= y(t) - y_0 - F(y_0 t_0)(t - t_0) \\ \delta \dot{y}(t) &= \dot{y}(t) - F(y_0, t_0) = F(y(t), t) - F(y_0, t_0) = \left. \frac{\mathrm{d}F}{\mathrm{d}y} \right|_0 (y(t) - y_0) + \left. \frac{\mathrm{d}F}{\mathrm{d}t} \right|_0 \Delta t \\ &= \left. \frac{\partial F}{\partial y} \right|_0 \delta y(t) + \left\{ \left. \frac{\partial F}{\partial y_0} \right|_0 F(y_0, t_0) + \frac{\partial F}{\partial t} \right\} \Delta t \end{split}$$

Euler-Schritt für δy

$$\delta y(t_{i+1}) = \frac{\mathrm{d}F}{\mathrm{d}y}\Big|_{0} \Delta t \delta y(t_{i}) + \mathcal{O}\left(\Delta t^{2}\right)$$

Ersetze $\lambda \longrightarrow \frac{\mathrm{d}F}{\mathrm{d}y}\Big|_{0}$.

Abbildung 4.1: Fliegender Fußball

1.4 Molekulardynamik

Velocity-Verlet-Algorithmus Newton'sche Bewegungsgleichungen:

$$\begin{split} \ddot{\vec{x}} &= \vec{a}(\vec{x},t), \qquad \vec{a} = \frac{\vec{F}}{m} \\ \vec{v}\left(t + \frac{\Delta t}{2}\right) &= \vec{v}(t) + \frac{1}{2}\vec{a}(\vec{x},t)\Delta t \\ \vec{x}\left(t + \Delta t\right) &= \vec{x}(t) + \vec{v}\left(t + \frac{\Delta t}{2}\right)\Delta t \\ \vec{v}\left(t + \Delta t\right) &= \vec{v}\left(t + \frac{\Delta t}{2}\right) + \frac{1}{2}\vec{a}(\vec{x}(t + \Delta t), t + \Delta t)\Delta t \\ &= \vec{v}(t) + \frac{1}{2}(\vec{a}(\vec{x}(t), t) + \vec{a}(\vec{x}(t + \Delta t), t + \Delta t))\Delta t \end{split}$$

1.4.1 Anwendung

Fußball

physikalisches Problem: Ball soll in linke obere Ecke des Tors fliegen \rightarrow schräger Wurf

$$\begin{split} \ddot{\vec{x}} &= \vec{a} \quad \text{Beschleunigung} \\ \text{Kräfte} \\ \vec{F}_G &= -m * g * \hat{e}_z \\ \vec{F}_R &= -\frac{c_w}{2} \rho A |\vec{v}|^2 \hat{e}_v \\ \vec{F}_M &= \frac{c_M}{2} \rho A R \vec{\omega} \times \vec{v} \end{split}$$

- $A \quad {\rm Ball querschnitt}$
- ρ Luftdichte
- c_w Widerstandskoeffizient
- R Ballradius
- ω Winkelgeschwindigkeit

phys. Modell:

$$\label{eq:model} m\ddot{\vec{x}} = -mg\hat{e}_z - \frac{c_w}{2}\rho A|\vec{v}|^2\hat{e}_v + \frac{c_M}{2}\rho AR\vec{\omega}\times\vec{v}$$

dimensionslose Größen:

$$\begin{split} \vec{x}(t) &\longrightarrow \tilde{x}(\tau) \\ \vec{x} &= L\tilde{x} \quad \text{Längenskala} \\ t &= T\tau \quad \text{Zeitskala} \end{split}$$
 Geschwindigkeit
$$\dot{\vec{x}} = \frac{\mathrm{d}}{\mathrm{d}t}L\tilde{x} = \frac{L}{T}\frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tau} = \frac{L}{T}\tilde{x}'$$
 Beschleunigung
$$\ddot{\vec{x}} = \frac{L}{T^2}\tilde{x}''$$

Schreiben wir damit die dimensionslose Bewegungsgleichung als

$$\tilde{x}'' = -\tilde{g}e_z - \tilde{c_w}|\tilde{x}'|^2\hat{e}_{\tilde{x}'} + \tilde{c_M}\vec{\omega} \times \tilde{x}'$$
mit $\tilde{g} = \frac{gT^2}{L}$, $\tilde{c_w} = \frac{c_w\rho AL}{2m}$ und $\tilde{c_M} = \frac{c_w\rho AR}{2m}$

Anfangswert- und Randwertprobleme hier gegeben:

$$ilde{x}(0)= ilde{0}$$
 o.B.d.A. Wahl des Koord.ursprungs $ilde{x}(T_0)=L_0$
$$ilde{y}(T)=rac{B}{2} \\ ilde{z}(T)=H
ight\} ext{ linke, obere Ecke, T Flugzeit zum Tor}$$

Anfangswerte \tilde{x} , \tilde{v} und $\tilde{\omega}$

Randwerte $\tilde{x}(0), \tilde{x}(T_0)$ 10 Unbekannte $\tilde{x}(0), \, \tilde{v}(0), \, \tilde{\omega}, \, T$ 4-dim. Lösungsraum

Einschränkung: $\tilde{v}_x(0)$ $\vec{\omega}$ wähle ich zusätzlich \rightarrow eindeutige Lösung $\tilde{y}(0)$ und $\tilde{z}'(0)$ + Randwerte

Algorithmus und Implementation Algorithmus: Schießmethode

Idee: Rate geeignete Startwerte und verbessere geeignete Startwerte aus schiefem Wurf - 0. Ordnung $c_w=c_m=0$

$$\tilde{x}(T_0) = L_0 \qquad T_0 = \frac{L_0}{\tilde{v}_x(0)}$$

$$\tilde{z}(T_0) = \tilde{v}_z(0)\tau - \frac{1}{2}\tilde{g}\tau^2 = H_0$$

$$\tilde{y}(T_0) = \tilde{v}_y(0)\tau$$

$$\tilde{z}'_0 = \frac{v_x^{(0)}H_0}{L_0} + \frac{1}{2}\tilde{g}\frac{L_0}{\tilde{v}(0)}$$

$$\Rightarrow \tilde{y}''(0) = \frac{v_x^0}{L_0}\frac{B_0}{2}$$
geeignete Zustände

"verbessern" = Nullstellensuche Integriere Bewegungsgleichung bis T_0 gegeben durch $\tilde{x}(T_0) = L_0$.

$$\tilde{y}(T_0) - \frac{B_0}{2} = 0$$
 2. Gleichungen für zwei Unbekannte
$$\tilde{z}'(0)$$

$$\tilde{z}'(0)$$

 \rightarrow Empfehlung: Newton-Raphson

Abbildung 4.2: Wasserglas

Abbildung 4.3: Ach. Egal...

Vielteichensystem

Periodische Randbedingungen und "minimum image convention", Boxstrukturen

Frage: Wie simuliere ich einen kleinen Ausschnitt des Wasserglases?

Geometrische Einschränkung: konstante Dichte $\rho = N/V$

Minimierung von Randeffekten: periodische Randbedingungen.

Idee: Umgebe das System mit Bildern von sich selbst.

Zwei Operationen:

a) Zurückfalten einer beliebigen Position \vec{x} in das zentrale Bild \vec{x}_P

b) minimum image convention paarweise Wechselwirkung $V(d) \to$ kleinster Abstand d_2 , Berechnung:

$$d = \underbrace{x_2 - x_3}_{d_1} - L(\text{rint}) \left(\frac{x_2 - x_3}{L}\right)$$
$$\Rightarrow |d| \le \frac{L}{2}$$

c) Boxstrukturen um Nachbarn effizient zu finden typisch: paarweise Wechselwirkungen mit endlicher Reichweite V(r)=0 für $r>r_0$

Abbildung 4.4: Unterboxen

Berechnund der Kraft auf Teilchen

$$\vec{F}_i = \sum_{j \neq i} \vec{F}_{ij} = -\sum_{j \neq i} \frac{\partial v(r_{ij})}{\partial r_i} \qquad r_{ij} = |\vec{r}_i - \vec{r}_j|$$

 \Rightarrow Berechnung aller Kräfte/Energien ist $\mathcal{O}(n^2)$

Trick: Unterteile die Simulationszelle in Unterboxen mit Kantenlänge r_c .

Teilchen i kann nur mit Teilchen j der gleichen oder benachbarten Boxen interagieren.

$$\begin{split} \vec{F_i} &= \underbrace{\sum_{b \in \mathbb{N}achbar} \sum_{j \in b} \vec{F_{ij}}}_{3^d} \\ \Rightarrow \text{Berechnung: } 3^d \cdot \rho \cdot r_c^3 \cdot N \propto \mathcal{O}\left(N\right) \end{split}$$

Implementierung:

- a) Funktion, welche aus den Teilchenkoordinaten den Index der zugehörigen Box bestimmt
- b) jede Unterbox kennt die Liste der Teilchen, welche sich in ihrer Box befinden
- c) bei der Teilchenbewegung wird die Boxliste auf den neuesten Stand gebracht. Das heißt, verlässt ein Teilchen seine Box, muss es daraus entfernt werden und in eine neue Box eingetragen werden.

1.4.2 Exkurs: Parallele Programmierung

Warum? Die Taktfrequenz moderner CPUs steigt seit Anfang 2000 nicht weiter an. Aber: Entwicklung von Multi- & Manycore-Architekturen \Rightarrow Für weine weitere Steigerung der Leistung ist eine Verteilung auf parallele Prozesse notwendig.

1.4.2.1 Generelle Betrachtung

Jeder Algorithmus kann in einen parallelen Anteil t_p und eine seriellen Anteil aufgteilt werden. t_p wird von n_p Professoren bearbeitet. Der maximale Speedup skaliert linear mit n_p .

Abbildung 4.5: Amdahlsches Gesetz

Konstante Problemgröße – Strong Scaling Amdahlsches Gesetz (1967)

Gesamtlaufzeit:
$$T=t_s+t_p$$

$$\eta_S=\frac{T}{t_s+\frac{t_p}{np}}$$

Der Speedup ist limitiert durch den seriellen Anteil, in der Realität zudem nach einem Synchronisationsanteil.

$$\eta_S = \frac{T}{t_S + \frac{t_p}{n_p} + t_{\mathcal{O}(n_p)}} < 1$$
 für große n_p

Skalierbare Problemgröße (Weak Scaling) Gustavsons Gesetz (1980)

Statt fester Systemgröße und die Ausführungszeit T fixiert und die Problemgröße mit np angepasst.

$$\eta_S = (1 - \frac{t_S}{T}) + n_p \frac{t_p}{T}$$

Einschränkungen:

- i) Nicht anwendbar wenn algorithmischer Aufwand stärker als linear ansteigt.
- ii) Nicht jedes Problem ist sinnvoll vergrößerbar
- iii) Synchronisations $t_{\mathcal{O}(n_p)}$

1.4.2.2 Architekturen

Non-shared memory Unabhängige Computer werden mittels eines Netzwerkes zusammengeschlossen

Geeignet für Berechnung von großem bis sehr großem Aufwand Parallelisierungsansätze:

Abbildung 4.6: Architekturen

Vorteile	Nachteile
beliebig skalierbar	erhöhter Programmieraufwand
günstige Hardware	teure Netzwerkarchitektur oder langsame Synchronisation
	hoher Speicherbedarf

- i) Teilung des Gesamtproblems in möglichst unabhängige Teilprobleme.
- ii) Kommunikation selten, dafür große Mengen

Implementierung: Message Passing Interface MPI

Shared Memory Mehrere CPUs greifen auf einen gemeinsamen Speicher zu. Geeignet für die Parallelisierung von Problemen mit kleinem bis mittlerem Aufwand

Vorteile	Nachteile
schnelle Kommunikation	begrenzte Parallelität
z.T. einfache Programmierung	mögliche Race conditions

Parallelisierungsansätze:

- i) Jede mögliche Berechnung parallel implementieren auch kleine Teilstücke
- ii) Unabhängige Schleifenkörper

Implementierung: OpenMP, pthreads, std:thread (C++)

Abbildung 4.7: Accelerator-Architektur

Accelerator (GPU) Accelerator haben ihren eigenen (schnellen) Speicher und beschleunigen durch extreme Parallelität.

Zur Zeit schnellste Implementationsmöglichkeit für mittlere bis große Probleme. Implementierungen: CUDA: Nvidia GPUs, OpenACC: versch.

1.4.2.3 Anwendungsbeispiel: Molekulardynamik-Simulationen

Vorteile	Nachteile
hohe Parallelität	hoher Programmieraufwand
sehr schelle Speicher	Verfügbarkeit
Energieeffizient	limitierte Kommunikation
	doppelte Speicherverwaltung
	hohe Parallelität notwendig

Domain Decomposition

- Unabhängige Berechnung der Einzeldomänen
- Kommunikation aller Teilchen in den Ghostlayern Nur nächte Nachbarn = $t_{\mathcal{O}(n_p)} = \mathcal{O}\left(1\right)$
- \Rightarrow MPI-Parallel umsetzen

Particle Decomposition

- 1) Berechnung der Jräfte $\vec{F_i}$ parallel $\forall i$
- 2) Synchronisation
- 3) Parallellelelelelele Propagation aller Teilchen

 $\label{eq:moderne MD-Packete kombinieren beide Strategien, z.B.~ {\tt HOOMD-blue}, \\ {\tt LAMMPS}$

Kapitel 2

Partielle Differentialgleichungen

Typische Beispiele

a) Wellengleichung

$$\left(\Delta-c^2\frac{\partial^2}{\partial t^2}\right)\varphi(\vec{x},t)=0$$

- b) Navier-Stokes-Gleichung
- c) Poissongleichung

$$\Delta\varphi(x) = -\frac{1}{\varepsilon_0}\rho(\vec(x))$$

d) Diffusionsgleichung

$$\frac{\partial p}{\partial t} = D\Delta p$$

e) Fokker-Planck-Gleichung

$$\frac{\partial p}{\partial t} = -\nabla(\vec{A}p) + \frac{1}{2}\Delta(Bp)$$

 $p(\vec{x},t)$ Wahrscheinlichkeitsdichte

2.1 Lösungsverfahren

hier: betrachten lineare PDE

$$\mathscr{L}(\varphi(x)) = b(\vec{x})$$

 \mathcal{L} lineare Differential operator, $\vec{x} \in \Omega$, Randwertproblem mit

$$\varphi(x) = V_0(\vec{x}) \qquad x \in \partial \Omega$$

2.1.1 Finite Differenzen

Idee:

- a) diskretisiere den Raum $\vec{x} \in \mathbb{R}^n$ durch ein Gitter
- b) approximiere den Differentialoperator durch finite Differenzen
- c) lineare PDE \rightarrow lineares Gleichungssystem

Abbildung 1.1: omega

Beispiel: Poissongleichung in 2 räumlichen Dimensionen $\Delta \varphi = \frac{1}{\varepsilon_0} \rho(\vec{x})$ $\vec{x} \in \mathbb{R}^2$ + Randbedingungen

reguläres Quadratgitter

$$\vec{x} = (i_x k_x, i_y k_y) \qquad i_x, i_y \in \mathbb{N}_0$$

$$0 \le i_x < N_x \qquad k_x = \frac{L_x}{N_x - 1}$$

$$0 \le i_y < N_y$$

Initialisierung der Gitterpunkte

- a) i_x , i_y
- b) typewriter-Indizierung

$$j=N_xi_y+i_x \qquad j=0,...,N_xN_y-1$$
 oder
$$j=N_xi_y+i_x+1 \qquad j=1,...,N_xN_y=N$$

Schritt b): Wdh.

$$f(x)$$
 $x \in \mathbb{R}$ $f_i = f(x_i)$ $x_i = k_i$
 $f''(x_i) = \frac{f_{i+1} + f_{i-1} - 2f_i}{k^2} + \mathcal{O}(k^2)$

Verallgemeinerung auf den Laplaceoperator:

$$\Delta\varphi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\varphi \approx \frac{\varphi(i_x + 1, i_y) + \varphi(i_x - 1, i_y) - 2\varphi(i_x, i_y)}{h_x^2} + \frac{\varphi(i_x, i_y + 1) + \varphi(i_x, i_y - 1) - 2\varphi(i_x, i_y)}{h_y^2}$$

$$\Delta\varphi(i_x, i_y) = \frac{1}{h^2} [\varphi(i_x + 1, i_y) + \varphi(i_x - 1, i_y) + \varphi(i_x, i_y + 1) + \varphi(i_x, i_y - 1) - 4\varphi(i_x, i_y)]$$

Diskretisierung der Poissongleichung $\frac{1}{4}\Delta\varphi(x,y) = -\frac{1}{4\varepsilon_0}\rho(x,y)$

$$\frac{1}{4} \left[\varphi(i_x + 1, i_y) + \varphi(i_x - 1, i_y) + \varphi(i_x, i_y + 1) + \varphi(i_x, i_y - 1) \right] - \varphi(i_x, i_y) = \frac{h^2}{4\varepsilon_0} \rho(i_x, i_y)$$

Für alle inneren Punkte von Ω . NB: $\rho=0 \to \text{Laplace Gleichung } \Delta \varphi=0$ $\varphi(i_x,i_y)=\text{arithmetisches Mittel der vier nächsten Nachbarn.}$ $\varphi(i_x,i_y)=V_0(i_x,i_y)$ auf dem Rand $\partial\Omega$

Schritt c): benutze die Typewriter-Indizierung $1 \le j \le N = N_x N_y$ diskretisierte Laplace-Gleichung ist ein lineares Gleichungssystem

$$\Delta\varphi(\underbrace{i_x,i_y}_{\text{2D-Indizierung}}) = \Delta\varphi(i) = \underbrace{A}_{Matrix}\vec{\varphi}$$

mit der Matrix A

$$A = \begin{pmatrix} -4 & 1 & & & \\ 1 & -4 & 1 & & \\ & 1 & -4 & 1 \\ & & & \ddots \end{pmatrix} \quad \text{in der Diagonalen -4} \\ \text{obere und untere Nebendiagonale } +1 \quad (i_x+1,i_y) \text{ und } (i_x-1,i_y) \\ \text{2 weitere Diagonalen von 1} \quad (i_x,i_y+1) \text{ und } (i_x,i_y-1) \\ \end{array}$$

$$\vec{b} = -\frac{1}{\varepsilon_0} \rho(i_x, i_y) = \begin{pmatrix} -1/\varepsilon_0 \rho(1) \\ -1/\varepsilon_0 \rho(2) \\ \vdots \end{pmatrix} \qquad \begin{array}{c} + \text{Modifikation für Randpunkte} \\ -1/\varepsilon_0 \rho & \to & V_0 \\ \end{array}$$

$$\Delta \varphi = -\frac{1}{\varepsilon_0} \rho$$
$$A\varphi = b$$

So also transformierte die lineare PDE in ein lineares Gleichungssystem, und sie lebte glücklich und zufrieden bis an ihr Ende.

2.1.2 Lösung für lineare Gleichungssysteme

LU-Zerlegung (Gauß)

Scheibe die Matrix A = LU

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ & 1 & 0 & 0 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix} \quad \begin{array}{l} \text{untere Dreiecksmatrix} \\ \frac{N(N-1)}{2} \text{ unbekannte Einträge} \\ \\ U = \begin{pmatrix} 0 & & \\ 0 & 0 & \\ 0 & 0 & 0 \\ \end{pmatrix} \quad \begin{array}{l} \text{obere Dreiecksmatrix} \\ \frac{N(N+1)}{2} \text{ unbekannte Einträge} \\ \end{array}$$

Doolittle-Algorithmus

$$A = LU$$

$$a_{ij} = \sum_{p=1}^{N} l_{ip} u_{p_j} = \sum_{p=1}^{\min(i,j)} l_{ip} u_{pj}$$

$$i = 1 a_{1j} = l_{11}u_{1j}$$

$$u_{1j} = a_{1j} weil l_{11} = 1$$

$$i = 2 a_{2j} = l_{21}u_{1j} + l_{22}u_{2j}$$

$$u_{2j} = a_{2j} - l_{21}u_{1j}$$

$$i = 3 a_{3j} = l_{31}u_{1j} + l_{32}u_{2j} + l_{33}u_{3j}$$

$$u_{3j} = a_{3j} - l_{31}u_{1j} - l_{32}u_{2j}$$

$$j = 1$$
 $a_{i1} = l_{i1}U_{11}$ $l_{i1} = \frac{a_{i1}}{u_{11}}$
 $j = 2$ $a_{i2} = l_{i1}U_{12} + l_{i2}U_{22} \dots$

Ordnung $N^2 \times N$ (N = Anzahl der Argumente)

Vorwärtssubstitution $c = L^{-1}b$

$$c_1 = \frac{b_1}{l_{11}} \quad \text{und} \quad c_i = \frac{1}{l_{ii}} \left(b_i - \sum_{j=1}^{i-1} l_{ij} c_j \right) \qquad i = 1, \cdots, N \quad \text{aufsteigend}$$

$$LC = \begin{pmatrix} 1 & \cdots & 0 \\ & \ddots & \\ & & 1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} c_1 \\ l_{21} c_1 + c_2 \\ \vdots \\ b_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$$

Rücksubstitution $U\varphi = c$

 $i=1,\cdots,N$ absteigend

$$\varphi_n = \frac{c_n}{U_{nn}}$$
 $\varphi_i = \frac{1}{U_{ii}} \left(c_i - \sum_{j=i+1}^N U_{ij} \varphi_j \right)$

 $\Rightarrow \text{LU }(\mathcal{O}\left(N^{2}\right)) + \text{Vorwärts }(\mathcal{O}\left(N^{2}\right)) + \text{Rückwärts }(\ \mathcal{O}\left(N^{2}\right)) = \text{L\"{o}sung }\mathcal{O}\left(N^{3}\right)$

2.1.2.1 Iterative Lösungen

Problem: $A\varphi = b$

Idee: zerlege A = B + (A - B) wobei B "einfach" invertiert werden kann.

$$B\varphi = b - (A - B)\varphi$$
$$\varphi = B^{-1} (b - [A - B] \varphi)$$

Iterationsverfahren: φ ist Fixpunkt der Abbildung

n-ter Iterationsschritt

$$\varphi^{n} = B^{-1}(b - (A - B)\varphi^{(n-1)})$$
$$= B^{-1}b + \underbrace{\begin{bmatrix} \mathbb{1} - B^{-1}A \end{bmatrix}}_{=:Q} \varphi^{(n-1)}$$

Ohne Beweis: Iterationsverfahren konvergiert falls ||Q|| < 1.

Jacobi-Verfahren : B = D = diag A

$$B^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & & & \\ & \frac{1}{a_{22}} & & \\ & & \frac{1}{a_{33}} & \\ & & & \ddots \end{pmatrix}$$

komponENTEnweise:

$$\varphi_i^{(n)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^M a_{ij} \varphi_j^{(n-1)} \right)$$

Gesamtschrittverfahren - auf der rechten Seite sind nur alte Werte

Gauß-Seidel Verfahren Einzelschritt – verwende die neuen Werte wo vorhanden

$$\varphi_i^{(n)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} \varphi_j^{(n)} - \sum_{j=i+1}^{N} a_{ij} \varphi_j^{(n-1)} \right)$$

Anwendung auf Poissongleichung

$$\underbrace{\frac{1}{h^2}[\varphi(i_x+1,i_y)+\varphi(i_x-1,i_y)+\varphi(i_x,i_y+1)+\varphi(i_x,i_y-1)]}_{A-B} - \underbrace{\frac{4}{h^2}\varphi(i_x,i_y)}_{\text{diag}B} = \underbrace{\frac{-1}{\varepsilon_0}\rho(i_x,i_y)}_{b}$$

Jacobi-Verfahren

$$\varphi^{(n)}(i_x, i_y) = \frac{1}{4} \left(\frac{h^2}{\varepsilon_0} \rho(i_x, i_y) + \left[\varphi^{(n-1)}(i_x + 1, i_y) + \varphi^{(n-1)}(i_x - 1, i_y) + \varphi^{(n-1)}(i_x, i_y + 1) + \varphi^{(n-1)}(i_x, i_y - 1) \right] \right)$$

im Inneren von Ω .

Relaxationsverfahren

$$\varphi^{(n)} = B^{-1}b + (\infty - B^{-1}A)\varphi^{n-1}$$

$$= \varphi^{(n-1)} + B^{-1}(b - A\varphi^{(n-1)})$$

$$\Delta\varphi^{(n)} = \varphi^{(n)} - \varphi^{(n-1)} = B^{-1}(b - A\varphi^{(n-1)})$$

Änderung von φ im n-ten Iterationsschritt auch

$$arphi^n=arphi^{n-1}+lpha\Deltaarphi^n$$
 $lpha=1$ Jacobi-/Gauß-Seidel-Verfahren $lpha<1$ Unterrelaxation $lpha>1$ Überrelaxation $lpha\geq 2$ divergent

es gibt ein optimales $\alpha < 2$ so dass die Überrelaxation am schnellsten konvergiert.

$$\alpha_{\mathrm{opt}} \approx 2 - \frac{c}{n}$$
 $c = \mathrm{const}$
$$n = \mathrm{Dimension\ der\ Matrix}$$

Beispiel: Gauß-Seidel mit Überrelaxation (SOR - sequential overrelaxation)

a) berechne nach Gauß-Seidel

$$\varphi_i^* = \frac{1}{a_i i} \left(b_i - \sum_{j=1}^{i-1} a_{ij} \varphi_j^* - \sum_{j=i+1}^{N} a_{ij} \varphi_j^{(n-1)} \right)$$

b) SOR

$$\varphi_i^{(n)} = \varphi_i^{n-1} + \alpha(\varphi_i^* - \varphi_1^{(n-1)}) = (1 - \alpha)\varphi_i^{(n-1)} + \alpha\varphi_i^*$$

Abbruchkriterium:

- (i) Residuum $r^{(n)} = ||A\varphi b|| < \varepsilon$
- (ii) Anzahl der Schritte/Iterationen $(\mathcal{O}(n))$

Praktische Implementation für die Poissongleichung 2.1.3

2D-Beispiel
$$\Delta \varphi = -\frac{1}{\varepsilon_0} \rho(x), \quad \vec{x} \in \Omega \subset \mathbb{R}^2$$

Randbedingung $\varphi(x) = \varphi_0, x \in \partial \Omega$

Hier: $\Omega=\{(x,y)|-\frac{L}{2}\leq x,y\leq \frac{L}{2}\}$ und $\varphi_0=0$. zu a) iterative Lösung: nur eine Inhomogenität $b=1/\varepsilon_0\rho$ und A ist dünn besetzt.

SOR mit Gauß-Seidel

$$\begin{array}{ll} h & \text{räumliche Diskretisierung} \\ i_x, i_y = 0 \dots N & (N+1 \text{ Stützstellen in jede Raumrichtung}) \\ h = \Delta x = \frac{L}{N} & \\ & \frac{1}{h^2} [\varphi(i_x+1,i_y) + \varphi(i_x-1,i_y) + \varphi(i_x,i_y+1) + \varphi(i_x,i_y-1)] - \frac{4}{h^2} \varphi(i_x,i_y) = -\frac{1}{\varepsilon_0} \rho(i_x,i_y) \end{array}$$

a) Gauß-Seidel Verfahren

Gauß-Seidel Verfahren
$$\begin{cases} \varphi^{(n)}(i_x,i_y) &= \frac{1}{4} \left(\frac{h^2}{\varepsilon_0} \rho(i_x,i_y) + \left[\varphi^{(n)}(i_x+1,i_y) + \varphi^{(n)}(i_x-1,i_y) + \varphi^{(n)}(i_x,i_y+1) + \varphi^{(n)}(i_x,i_y-1) \right] \right) \\ & \text{mit } n \to n-1 \text{ falls noch nicht vorhanden} \\ \varphi^*(i_x,i_y) &= \dots \end{cases}$$

b) SOR

$$\begin{cases} \varphi(i_x, i_y) &= (1 - \alpha)\varphi(i_x, i_y) + \alpha \varphi^*(i_x, i_y) \\ & \text{optimiere } \alpha \end{cases}$$

Verifikation

a) Vergleich mit näherungsweiser analytischer Lösung

$$\varphi(r) = -\frac{1}{2\pi\varepsilon_0} \ln r + const \qquad \text{elektr. Potential einer 2D-Punktladung}$$

Spiegelladungsmethode ab erste Näherung für d << L

b) Gaußscher Satz

$$\vec{E} = -\Delta \varphi$$
 $\Delta \vec{E} = \frac{\rho}{\varepsilon_0}$ $\int d\vec{A} \cdot \vec{E} = \frac{1}{\varepsilon_0} \times \text{eingeschlossene Ladung}$

2.2 Wellengleichung

$$\frac{\partial \varphi}{\partial t^2} = u^2 \Delta \varphi \qquad u \quad \text{Ausbreitungsgeschwindigkeit}$$

$$t \geq 0 \qquad 0 \geq x \geq L$$

2.2.1 Anfangs- und Randbedingungen

Anfang:

$$\varphi(x,t=0)=\varphi_0(x)$$

$$\frac{\partial \varphi}{\partial t}(x,t=0)=\varphi'(x) \quad \text{für} \quad 0\leq x\leq L \text{ und } t=t_0=0$$

Rand:

- (i) Dirichlet-Randbedingung φ -Werte am Rand gegeben, d.h. $\varphi(x=0,t)=\varphi_0(t)$ und $\varphi(x=L,t)=\varphi_L(t)$
- (ii) Neumann-Randbedingung $\frac{\partial \varphi}{\partial x}$ am Rand gegeben. häufig $\frac{\partial \varphi}{\partial x}=0$ am Rand $x=0,L,\,t\geq 0$
- (iii) Periodische Randbedingungen $\varphi(0,t) = \varphi(L,t)$
- (iv) speziell für Wellengleichung allgemeine Lösung $\varphi(x,t)=f(x\pm ut)$ keine Reflexion/Abgang

2.2.2 Diskretisierung und Stabilitätsanalyse

$$\begin{aligned} x_i &= i\Delta x \\ t_n &= n\Delta t \\ \frac{\partial^2 \varphi}{\partial t^2} &\longrightarrow \frac{\varphi(x_i, t_{n+1}) - 2\varphi(x_i, t_n) + \varphi(x_i, t_{n-1})}{\Delta t^2} \\ \frac{\partial^2 \varphi}{\partial x^2} &\longrightarrow \frac{\varphi(x_{i+1}, t_n) - 2\varphi(x_i, t_n) + \varphi(x_{i-1}, t_n)}{\Delta x^2} \end{aligned}$$

Einsetzen in die PDE und Auflösen nach $\varphi(x_i, t_{n+1})$

$$\varphi(x_i, t_{n+1}) = 2(1 - \beta^2)\varphi(x_i, t_n) - \varphi(x_i, t_{n-1}) + \beta^2 \left\{ \varphi(x_{i+1}, t_n) + \varphi(x_{i-1}, t_n) \right\}$$

mit $\beta = \frac{u\Delta t}{\Delta x}$ Courant-Friedrichs-Lewy-Parameter (dimensionslos)

Anfangs- und Randbedingungen

Anfangsbedingung: $\varphi(x_i, t_0)$, $\varphi(x_i, t_{-1}$ Randbedingung: i = 0, ..., I mit $I = \frac{L}{\Delta x}$

- (a) Dirichletsche RB: $\varphi(x_0, t_n)$ und $\varphi(x_I, t_n)$ gegeben $\forall t_n$
- (b) Neumannsche RB:

$$\varphi(x_0, t_n) = \varphi(x_1, t_n)$$
$$\varphi(x_I, t_n) = \varphi(x_{I-1}, t_n)$$

gegeben $\forall t_n$

(c) periodische RB:

$$\varphi(x_{-1,t_n)=\varphi(x_N,t;n)}$$
$$\varphi(x_{N+1},t_n) = \varphi(x_0,t;n)$$

(d) Abgang rechts

$$\begin{split} \frac{\partial \varphi}{\partial t}\bigg|_{\text{rechts}} &= -u \left. \frac{\partial \varphi}{\partial x} \right|_{\text{rechts}} \\ \frac{\varphi(x_N, t_{n+1} - \varphi(x_N, t_n)}{\Delta t} &= -u \frac{\varphi(x_N, t_n - \varphi(x_{N-1}, t_n)}{\Delta x} \end{split}$$

Daraus erhält man durch Umstellen

$$\varphi(x_N, t_{n+1}) = \varphi(x_N, t_n) - \beta \left\{ \varphi(x_N, t_n) - \varphi(x_{N-1}, t_n) \right\}$$

2.2.2.1 Stabilitätsanalyse

Fourierzerlegung der allgemeinen Lösung in ebene Wellen

$$\begin{split} \varphi(x,t) &= e^{i(kx - \omega t)} & \text{mit} u = \frac{\omega}{k} \\ \varphi(x,t+\Delta t) &= e^{i(kx - \omega[t+\Delta t])} = \varphi(x,t) \underbrace{e^{-i\omega\Delta t}}_{G \text{ gain}} \end{split}$$

Forderung |G| = 1

Frage: Was ist der Verstärkungsfaktor (gain) für diese Gleichung?

$$\varphi(x_{i}, t_{n+1}) = e^{i k x_{i} - i \omega [t_{n} - \Delta t]}
= 2(1 - \beta^{2}) e^{i k x_{i} - i \omega t_{n}} - e^{i k x_{i} - i \omega [t_{n} - \Delta t]} + \beta^{2} \left\{ e^{i k [x_{i} + \Delta x] - i \omega t_{n}} + e^{i k [x_{i} - \Delta x] - i \omega t_{n}} \right\}
= \varphi(x_{i}, t_{n}) G$$

$$G = 2(1 - \beta^{2}) - \frac{1}{G} + \beta^{2} 2 \cos k \Delta x = 2 - \frac{1}{G} - 4\beta^{2} \sin^{2} \frac{k \Delta x}{2}$$

$$G = 1 - 2\beta^{2} \sin^{2} \alpha \pm \sqrt{(1 - 2\beta^{2} \sin^{2} \alpha)^{2} - 1}$$

1. Fall $\beta < 1$

$$G = 1 - 2\beta^2 \sin^2 \alpha \pm i \sqrt{1 - (1 - 2\beta^2 \sin^2 \alpha)^2}$$
$$|G| = (\Re G)^2 + (\Im G)^2 = (1 - 2\beta^2 \sin^2 \alpha)^2 - [1 - (1 - 2\beta^2 \sin^2 \alpha)^2] = 1 \quad \forall \alpha$$

2. Fall $\beta>1 \qquad |G|\neq 1$ für mindestens ein α

 \Rightarrow Stabilität für $\beta < 1$:

$$\beta = \frac{u\Delta t}{\Delta x} \quad \to \quad \Delta t^2 < \frac{\Delta x^2}{u^2}$$

Diffusions gleichung: $\Delta t \lesssim \frac{\Delta x^2}{D}$

Kapitel 3

Zufallszahlen und Monte-Carlo Simulationen

3.1 Erzeugung von Pseudozufallszahlen

Gute Eigenschaften von Zufallszahlen

- a) Verteilung: Gleichverteilung auf dem Intervall $x \in [0,1]$ bzw. $i \in [0,N]$. Andere Verteilungen (z.B Gauß) können daraus konstruiert werden
- b) möglichst keine Korrelation von Zufallszahlen $P(x_i, x_j) = P(x_i), P(x_j)$ stat. unabhängig insbesondere $< x_i, x_j > = < x_i > < x_j >$
- c) lange Periode, d.h. die Sequenz von Zufallszahlen wiederholt sich nicht
- ... Vorhersagbarkeit, Schnelligkeit, Speichereffizienz ... gesucht: Pseudozaufallszahlen deterministische Sequenz von Zahlen $\{x_i\}$ mit guten Eigenschaften durch einen arithmetischen Algorithmus.

3.1.1 Algorithmen

(i) linearer kongruenter Zufallsgenerator Rekursionsgleichung:

$$I_{n+1} = (a I_n + c) \mod m$$
$$x_n = \frac{I_n}{m}$$

- \rightarrow maximale Periodenlänge: m
- \rightarrow Güte hängt stark von den Parametern $a,\,c$ und mab

gut:
$$a = 48271$$
 $m = 2^{31} - 1$ $c = 0$
schlecht: $a = 65539$ $m = 2^{31}$ $c = 0$

(ii) Schieberegister-Zufallsgenerator

$$I_n = I_{n-p} \widehat{\text{XOR}} I_{n-q}$$
 R250 $p = 250$, $q = 147 (\text{Kirkpartit / Stoll 1981})$

- + Periode 2^{249}
- bennötigt 250 Zufallszahlen zum Starten
- gut aber $< x_n x_{n-1} x_{n-s} > = < x_n > < x_{n-1} > < x_{n-s} > = \frac{1}{8} = 0.125$ außer r = 250 s = 147 \Rightarrow $< x_n x_{n-1} x_{n-s} > = 0.107$

3.1.2 Erzeugen von Zufallszahlen mit einer beliebiger Verteilung

Ziel: generiere Zufallszahlen x mit einer Verteilung P(x)

Inversionsmethode

1. bestimme Stammfunktion (kumulative Verteilungsfunktion)

$$F(x) = \int_{-\infty}^{x} \mathrm{d}x' P(x')$$

- 2. ziehe Zufallszahl u gleichverteilt in [0,1]
- 3. $x = F^{-1}(u)$ ist gemäß P(x) verteilt.

$$\operatorname{Prob}(F^{-1}(u) \le x) = \operatorname{Prob}(u \le F(x)) = F(x)$$

Rejection-Methode

- 1. Wähle eine Hilfsverteilung g(x), welche erzeugt werden kann, mit $p(x) \le k g(x) \quad \forall x$ und ein festes k.
- 2. Sei u_i gleichverteilt in [0,1] und v_i verteilt gemäß g
- 3. Akzeptiere $x = v_i$ falls $k u_i g(v_i) < P(v_i)$, ansonsten wiederhole ab 2.

Wahrscheinlichkeit, dass $x = v_i$ akzeptiert wird ist $\frac{P(x)}{k(g(x))}$.

Abbildung 2.1: Aufteilung des Volumens in Gitterzellen

3.2 Monte-Carlo-Integration hochdimensionaler Integrale

Problem eines Gitterverfahrens in d Dimensionen

- a) Unterteile das Volumen in Gitterzellen
- b) berechne das Integral

$$I = \int_{\Omega} \mathrm{d}^d x f(x) \approx \sum_{i=1}^N \Delta x^d f(x_i) \qquad \begin{array}{l} x_i \text{ Stützstelle in dem Teilvolumen} \\ N \text{ Anzahl Gitterzellen in } \Omega \end{array}$$

$$\delta I \propto \Delta x^{n+1} \qquad n = 0$$

Simpson Integration n = 3 (d=1)

$$I = \frac{\Delta x}{6} \left\{ f(x_0) + 2 \sum_{i=1}^{N-1} +4 \sum_{i=1}^{N} f\left(\frac{x_{i-1} + x_i}{2}\right) + f(x_N) \right\}$$

Problem: N fest $\longrightarrow \Delta x \propto N^{-1/d} \longrightarrow \delta I \propto N^{-\frac{n+1}{d}}$ in hohen Dimensionen $d \gg 1$ reduziert sich der Fehler $\delta I \sim N^{-\frac{n+1}{d}}$ nur sehr langsam nach n

Alternative: Monte-Carlo-Integration

$$\begin{split} I &= \int\limits_{\Omega} \mathrm{d}^d x f(x) \approx \frac{V_{\Omega}}{N} \, \sum_{i=1}^N f(\xi_i) \qquad &\xi_i \quad \text{sind zufällige Stützstellen gleichverteilt in } \Omega \\ &= V_{\Omega} \, \langle f \rangle \end{split}$$

$$\delta I \approx V_\Omega \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}} \sim N^{-1/2} \qquad \text{unabhängig von } d$$

 \Rightarrow MC-Integration ist besser falls $\frac{1}{2}>\frac{n+1}{d}\rightarrow d=2\left(n+1\right)$

3.2.1 MC-Simulationen in der stat. Physik

thermodynamischer Mittelwert: $\langle f \rangle = \frac{\int \mathrm{d}^d x p(x) f(x)}{\int \mathrm{d}^d x p(x)}$

kanonisches Ensemble: $p(x) = \frac{1}{Z} e^{\frac{\mathcal{H}}{k_B T}}$

 \mathcal{H} Energie/Hamiltonian k_B Boltzmann-Konstante T Temperatur Z Zustandssumme

 $\langle f \rangle = \frac{\int \mathrm{d}^d x e^{-\frac{\mathcal{H}}{kT}} f(x)}{\int \mathrm{d}^d x e^{-\frac{\mathcal{H}}{kT}}} \qquad \begin{array}{l} x = (r,p) \text{ Phasenraum } 6N\text{-dim} \\ x = r \text{ Konfigurations raum } 3N\text{-dim} \end{array}$

Probleme

- 1) hochdimensionales Integral \rightarrow MC-Integration
- 2) Normierung Z ist unbekannt
- 3) p(x) variiert stark weil $H \propto N$ (extensiv)

Beispiel Lennard-Jones-Kugel gleichverteilt im Simulationsvolumen $V \to h$ äufiger Überlapp $\to h$ ohe Energie $\to verschwindend kleines p$

Eine Lösung des Problems bietet das *Importance Sampling*. Konstruiere zur Integration eine Folge von Zuständen x_i , $i = 0, 1, 2 \dots$, welche der Verteilung p(x) genügen

$$\langle f \rangle = \frac{\int d^d x p(x) f(x)}{\int d^d x p(x)} \approx \frac{1}{N} \sum_{i=1}^N f(x_i) = \langle f \rangle_p$$

duch Verwendung des Markov-Prozesses. Es gilt also für x_i die Markov-Eigenschaft

$$P_k(x_k|x_{k-1},x_{k-2},\ldots,x_0) = P_k(x_k|x_{k-1})$$

wobei P_k die Wahrscheinlichkeit ist, im k-Schritt bei x_k zu sein unter der Voraussetzung zuvor im $x_{k-1}, x_{k-2}, \ldots, x_0$ ist Zur Bestimmung von P_k genügt es also, den Zustand x_{k-1} zu kennen, es gibt keine direkte Abhängigkeit von x_{k-2}, x_{k-3}, \ldots

stationärer Markov-Prozess

$$P_k(x_k|x_{k-1})$$
 Wahrscheinlichkeit im k-ten Schritt $x_{k-1} \to x_k$
= $p(x_k|x_{k-1})$
= $T(k_{k-1} \to x_k)$ Übergangswahrscheinlichkeit

Normierung: $\sum_{y} R(x \to y) = 1$

mit Wahrscheinlichkeit 1 springt die Folge aus x zu irgendeinem y.

Zustände diskret: x ist ein Index

$$T(x \to y) = T_{xy}$$
 Matrix $T(x \to y)\vec{1} = \vec{1}$

1 ist rechter Eigenvektor zum Eigenwert 1

diskrete Mastergleichung: Bilanzgleichung für die Wahrscheinlichkeit $P_k(x)$

$$P_k(x) = \sum_y P_{k-1}(y)T(y \to x)$$

$$P_{k-1}(x) = \sum_y T(x \to y) P_{k-1}(x)$$

$$\Delta_k P(x) = P_k(x) - P_{k-1}(x) = \sum_y \left(\underbrace{P_{k-1}(y)T(y \to x)}_{\text{Sprünge in den Zu-}} - \underbrace{P_{k-1}(x)T(x \to y)}_{\text{Sprünge aus x in stand x aus y}} \right)$$

stationäre Verteilung p_{eq} Gleichgewicht/Equilibrium ist nicht von dem Schritt k abhängig.

$$\Delta_k P(x) = 0$$
 Bedingung:
$$\sum_y \left(p_{eq}(y) T(y \to x) - p_{eq}(x) T(x \to y) \right) = 0$$

für Übergangswahrscheinlichkeit $T(x \to y)$.

$$p_{eq} = \sum_{y} p_{eq}(y)T(y \to x)$$
$$p_{eq} = \sum_{y} p_{y,eq}T_{yx}$$
$$p_{eq} = p_{eq}\vec{1}$$

 \Rightarrow p_{eq} ist der linke Eigenvektor von T mit Eigenwert 1 hinreichende Bedingung: detailed balance

$$p_{eq}(y)T(y \to x) = p_{eq}(x)T(x \to y)$$

Frage: Wie konstruiere ich $T(x \to y)$

3.2.1.1 Metropolis-Algorithmus

$$T(x \to y) = \Pi(x \to y)\omega(x \to y)$$

 $\Pi(x \to y)$ – Wahrscheinlichkeit, dass man vorschlägt, von x nach y zu gehen.

 $\omega(x \to y)$ Wahrscheinlichkeit, dass man den Vorschlag annimmt

Wähle nun für ω

$$\omega(x \to y) = \text{metrop}\left(\frac{p_{eq}(y)\Pi(y \to x)}{p_{eq}(x)\Pi(x \to y)}\right)$$

mit metrop(x) = min(1,x) und x =
$$\frac{\text{metrop}(1)}{\text{metrop}(^{1/x})}$$

$$\begin{split} P_{eq}(x)T(x\to y) &= P_{eq}(y)\pi(y\to x) \, \mathrm{metrop} \left(\frac{P_{eq}(x)\pi(x\to y)}{P_{eq}(y)\pi(y\to x)} \right) \\ &\stackrel{!}{=} P_{eq}(x)\pi(x\to y) \, \mathrm{metrop} \left(\underbrace{\frac{P_{eq}(y)\pi(y\to x)}{P_{eq}(x)\pi(x\to y)}}_{\xi} \right) \\ &\frac{P_{eq}(y)\pi(y\to x)}{P_{eq}\pi(x\to y)} &= \frac{\mathrm{metrop}(\xi)}{\mathrm{metrop}(1/\xi)} = \xi \end{split}$$

Beispiel System von N wechselwirkenden Teilchen im Volumen V bei Temperatur T (periodische Randbedingung: mininum image convention)

- i) zufällige Verschiebung
 - 1) wähle zufällig ein Teilchen i $p_1(i) = \frac{1}{N}$
 - 2) Wähle den Verschiebungsvektor $\vec{\Delta r}$ zufällig aus einem Volumen welches symmetrisch zum Ursprung ist: $p_2(\vec{\Delta r}) = p_2(\vec{\Delta r})$ z.B. Würfel $\left[-\frac{\Delta L}{2}, \frac{\Delta L}{2}\right]^D$ $p_2(\vec{\Delta r}) = \frac{1}{\Delta L^2}$ \Rightarrow Vorschlagswahrscheinlichkeit

$$\pi(\vec{r_i} \to \vec{r_i}' = \vec{r_i} + \vec{\Delta r}) = \frac{1}{N \Delta L^D}$$

Vorschlagswahrscheinlichkeit für den inversen Move.

$$\pi(\vec{r_i}' = \vec{r_i} + \vec{\Delta r} \rightarrow \vec{r_i}) = \frac{1}{N \Delta L^D}$$

3) Akzeptiere den Move mit

$$\begin{split} \omega(\vec{r_i} \to \vec{r_i}') &= \text{metrop}\left[\frac{p_{eq}(\{\vec{r_i}'\})\pi(\vec{r_i}' \to \vec{r_i})}{p_{eq}(\{\vec{r_i}\})\pi(\vec{r_i}' \to \vec{r_i})}\right] = \text{metrop}\left[\exp\left(-\frac{\mathcal{H}(\{\vec{r}'\}) - \mathcal{H}(\{\vec{r}\})}{kT}\right)\right] \\ &= \text{metrop}\left[\exp\left(-\frac{\Delta\mathcal{H}}{kT}\right)\right] \end{split}$$

Optimiere ΔL :

- a) je größer ΔL desto schneller dekorrelliert man die Sequenz einer Konfiguration
- b) bei großem ΔL ist $p_{eq}(\{\vec{r'}\})$ häufig klein (d.h. die neue Konfiguration hat z.B. einen Überlapp zwischen Teilchen) \to kleine Akzeptanzrate

betrachte die diskrete Trajektorie eines Teilchens i

$$\vec{r_i}(t_0) \longrightarrow \vec{r_i}(t_0+1) \longrightarrow \cdots \longrightarrow \vec{r_i}(t_0+t)$$

$$\vec{r_i}(t_0+t) = \vec{r_i} + \sum_{t'=1}^t \Delta \widetilde{\vec{r_i}}(t') \text{ mit } \Delta \widetilde{\vec{r_i}}(t) = \begin{cases} \Delta \vec{r_i} \text{ falls im } t \text{ Schritt das Teilchen} \\ i \text{ ausgewählt und der MC Move akzeptiert} \\ 0 \text{ sonst} \end{cases}$$

zusätzliche Annahmen:

- stationär: im Gleichgewicht d.h. wenn $p(\{r\})$ gegen $p_{eq}(\{r\})$ konvergiert ist, dann hängt die Verteilung von $\delta \vec{r_i}(t) = \vec{r_i}(t_0 + t) - \vec{r_i}(t_0)$ nicht von t_0 ab

- Es gibt keinen makroskopischen Teilchenfluss $\langle \delta \vec{r_i}(t) \rangle = 0$ und $\left\langle \Delta \widetilde{\vec{r_i}}(t) \right\rangle = 0$
- für große Zeit differenzen $t\/$ sind die akzeptierten Verschiebungen unkorreliert
- ⇒ Ansatz für die Autokorrelationskoeffizienten

$$C(t) = \left\langle \Delta \widetilde{r_i}(t_0 + t) \ \Delta \widetilde{r_i}(t_0) \right\rangle - \underbrace{\left\langle \Delta \widetilde{r_i}(t_0 + t) \right\rangle}_{= 0} \underbrace{\left\langle \Delta \widetilde{r_i}(t_0) \right\rangle}_{= 0} = A e^{-t/\tau}$$

$$C(t) \to 0 \quad \text{für } t \to \infty \text{ und } t \gg \tau$$

$$\langle \delta \vec{r_i}(t) \rangle = 0 \quad \text{kein Drift}$$

$$\langle \delta^{?} \vec{r_i}(t) \rangle = \left\langle \sum_{t'=1}^{t} \Delta \tilde{r_i}(t') \sum_{t''=1}^{t} \Delta \tilde{r_i}(t'') \right\rangle = \sum_{t'=1}^{t} \sum_{t''=1}^{t} \left\langle \Delta \tilde{r_i}(t') \Delta \tilde{r_i}(t'') \right\rangle = \sum_{t'=1}^{t} \sum_{t''=1}^{t} = C(t' - t'')$$

$$= \int_{0}^{t} dt' \int_{0}^{t} dt'' C(t' - t'') = \int_{0}^{t} dt_0 \int_{-t_0}^{t-t_0} d\Delta t C(\Delta t) \approx \int_{0}^{t} dt_0 \int_{-\infty}^{\infty} d\Delta t C(\Delta t)$$

$$= 2t \int_{0}^{\infty} d\Delta t C(\Delta t) = 2Dt$$

Optimiere ΔL so dass die Verschiebung groß bzw. Diffusion schnell, mean square displacement, mittleres quadratische Verschiebung

$$\langle \delta^2 \vec{r_i}(t) \rangle = 2D(\Delta L)t \longrightarrow \text{maximal} \quad t \text{ fest als Funktion von } \Delta L$$

ii) force-bias Monte Carlo

Idee: benutze die Kraft $\vec{F_i}$ auf Teilchen i um einen guten Vorschlag zu machen

- 1) Wähle ein Teilchen zufällig $p_1(i) = \frac{1}{N}$
- 2) Wähle Verschiebungsvorschlag:

$$\vec{\Delta r_i(t)} = \underbrace{\vec{F_i}(t)\Delta A + \vec{\Delta R}}_{\text{bias in Richtung der Kraft}}$$
zufälliger Anteil der Verschiebung

Wähle $\vec{\Delta R}$ Gauß'sch verteilt

$$p_2(\vec{\Delta R}) = \left(\frac{1}{4\pi k T \Delta A}\right)^{\frac{3}{2}} \exp\left(-\frac{\vec{\Delta R}^2}{4\pi \Delta A}\right)$$
$$\langle \Delta R_{\alpha}^2 \rangle = 2kT \Delta A$$

Vorschlagswahrscheinlichkeit:

$$\pi(\vec{r_i} \to \vec{r_i}' = \vec{r_i} + \vec{\Delta r_i}) = \frac{1}{N} \frac{1}{(4\pi kT\Delta A)^{\frac{3}{2}}} \exp\left(-\frac{(\vec{r_i}' - \vec{r_i} - \vec{F_i}\Delta A)^2}{4kT\Delta A}\right)$$

Vorschlagswahrscheinlichkeit für inversen Move

$$\pi(\vec{r}' \to \vec{r}_i) = \frac{1}{N} \frac{1}{(4\pi k T \Delta A)^{\frac{3}{2}}} \exp\left(-\frac{(\vec{r}_i - \vec{r}_i' - \vec{F}_i' \Delta A)^2}{4k T \Delta A}\right)$$

detailed balance

$$\begin{split} \frac{\omega(\vec{r_i} \to \vec{r_i}')}{\omega(\vec{r_i}' \to \vec{r_i}')} &= \frac{p_{eq}(\vec{r_i}')\pi(\vec{r_i}' \to \vec{r_i})}{p_{eq}(\vec{r_i})\pi(\vec{r_i}' \to \vec{r_i})} = \exp\left(\frac{\Delta \mathcal{H}}{kT}\right) \frac{\exp\left(-\frac{(\vec{r_i}' - \vec{r_i} - \vec{F_i}\Delta A)^2}{4kT\Delta A}\right)}{\exp\left(-\frac{(\vec{r_i} - \vec{r_i}' - \vec{F_i}'\Delta A)^2}{4kT\Delta A}\right)} \\ &= \exp\left(-\frac{\Delta \mathcal{H}}{kT} - \frac{(\vec{F'} + \vec{F})(\vec{r'} - \vec{r})}{2kT}\right) \times \exp\left(-\frac{\Delta A}{4kT}(\vec{F'}^2 - \vec{F}^2)\right) \\ \omega(\vec{r} \to \vec{r'}) &= \operatorname{metrop}\left\{\exp\left(-\frac{1}{kt}\left[\Delta \mathcal{H} + \frac{\vec{F'} + \vec{F}}{2}(\vec{r'} - \vec{r}) + \frac{\Delta A}{4kT}(\vec{F'}^2 - \vec{F}^2)\right]\right)\right\} \\ \Delta \mathcal{H} &= \mathcal{H}(\vec{r'}) - \mathcal{H}(\vec{r}) \approx \mathcal{H}(\vec{r}) + \frac{\partial \mathcal{H}}{\partial \vec{r}}(\vec{r'} - \vec{r}) + \mathcal{O}\left(\Delta r^2\right) - \mathcal{H}(r) \\ &= -\vec{F}(\vec{r'} - \vec{r}) = -\frac{\vec{F}(r) + \vec{F}(r')}{2}(\vec{r'} - \vec{r}) \end{split}$$

- Argument der Exponentialfunktion variiert wenig als bei zufälliger Verschiebung
- höhere Akzeptanz bei gleichen $\langle \Delta R^2 \rangle$
- schnellere Dekorrelation der Konfiguration

3.2.2 Ising-Modell

Ernst Ising 2. Phys. 31,253 (1925) Idee: uniaxialer Magnet

- Spins sitzen auf einem Gitter und einer Achse, in die das magnetische Moment bevorzugt zeigen kann.
- skalare Variable $s_i = \pm 1$ am Gitterplatz i.

$$\mathcal{H} = -J \sum_{\langle ij \rangle} s_i s_j$$
 Summe über alle Paare nächster Nachbarn Stärke der paarweisen WW

Boltzmann Gewicht

$$p_{eq}(\{s_i\}) = \frac{1}{Z}e^{-\frac{\mathcal{H}}{kt}} = -\frac{1}{Z}\exp\left(\frac{J}{kt}\sum_{\langle i,j\rangle}s_is_j\right)$$
$$\sum_{\{s_i\}}p_{eq}(\{s_i\}) = 1 \to Z(T,N) = \sum_{\{s_i\}}\exp\left(-\frac{\mathcal{H}}{kT}(\{s_i\})\right)$$

Single-Spin-Flip-Algorithmus

$$\omega(s_i \to -s_i) = \text{metrop}\left(\exp\left(\frac{\Delta \mathcal{H}}{kT}\right)\right)$$

$$\Delta \mathcal{H} = \mathcal{H}(-s_i) - \mathcal{H}(s_i)$$

Im 2D-Quadratgitter berechnet sich die Energiedifferenz leichter aus den nächsten Nachbarn $\Delta \mathcal{H} = 2J(s_{j1} + s_{j2} + s_{j3} + s_{j4})$.

Kann man den Spin auch deterministisch auswählen?

- a) Schreibmaschinenart
- b) Schachbrettmuster

Abbildung 2.3: Können gleichzeitig geflippt werden, weil sie nicht miteinander wechselwirken

Aussage:

- a) erfüllt nicht detailed balance, da der Schritt nicht sofort in einen Single-Spin-Flip umgekehrt werden kann
- b) Stationarität der Mastergleichung

$$\sum_{\{s_i\}} p_{eq}(\{s_i\}) T(\{s_i\} - \{s_i'\}) = p_{eq}$$

$$\longrightarrow \text{neue Wahrscheinlichkeitsverteilung}(\{s_i'\})$$

$$\rightarrow \text{alte Wahrscheinlichkeitsverteilung}$$

Für eine feste, konfigurationsunabhängige Permutation $i(1), i(2) \dots i(N)$ von $1 \dots N$ ist

$$T = T_{i(1)} T_{i(2)} \dots T_{i(N)}$$

Single-Spin-Flip erfüllt detailed balance

$$T_{i(1)} = T(s_{i(1)} \to s_{(?)}) \quad \text{hat als festen Eigenvektor } p_{eq}$$

$$p_{eq}T_{i(1)} = p_{eq}$$

$$\Rightarrow p_{eq}T = \underbrace{p_{eq}T_{i(1)}}_{p_{eq}}T_{i(2)...T_{i(N)}} = p_{eq}T_{i(2)}...T_{i(N)} = \cdots = p_{eq}T_{i(N)} = p_{eq}$$

Bei $\frac{J}{kT}>>1$ beobachtet man getrennte Domänen von + und - Spins.

$\mbox{Tieftemperaturverhalten} \quad p_{eq}(\{s\}) = \frac{1}{Z} e^{-\frac{\mathcal{H}}{kkT}} \label{eq:peq}$

• $T \to 0$: nur Grundzustände, welche die Energie maximieren, haben ein signifikantes Gebiet. Es gibt zwei Grundzustände ($E_0 = -2JN$)

$$s_i = 1 \quad \forall i \quad \lor \quad s_i = -1 \quad \forall i \tag{2.1}$$

2N 1. angeregte Zustände (1 Spin ausgeflippt, $E_1 = -2JN + 8J$)

Bemerkung: \mathcal{H} hat die Symmetrie $s_i \to -S_i \ \forall i$ aber Grundzustand hat diese Symmetrie nicht \to spontan gebrochen Oberservable:

- 1. Energie $\mathcal{H}(\{s\})$
- 2. Magnetisierung / Spin $m = \frac{1}{N} \sum_{i=1}^{N} s_i$

L.Onsager
$$\Rightarrow \frac{J}{kt \, crit} = \frac{1}{2} \ln(1 + \sqrt{2})$$

aufeinander folgende Konfigurationen sind nicht unabhängig. Statistische Fehler eines Mittelwerts

$$a = \frac{1}{T} \sum_{t=1}^{T} A_t$$

$$A_t \longrightarrow \text{MC Schritt}$$
Observable

Erwartungswert des Stat. Fehlers

$$\left[\delta A^{2}\right] = \left[\frac{1}{T}\sum_{i=1}^{N}(A_{t} - [A])\right]^{2} \qquad \left[\dots\right] \text{ Mittelung über Realisierungen}$$

$$\left(\text{Runs mit unterschiedlichen Zufallszahlen}\right)$$

$$\left[A\right] = \langle A \rangle = \lim_{T \to \infty} \frac{1}{T}\sum_{t} A_{t}$$

$$\left[\delta A^{2}\right] = \frac{1}{T}\sum_{t} (A_{t} - [A])^{2} + \frac{2}{T^{2}}\sum_{t=1}^{T}\sum_{t'>t}^{T} \left[A_{t}A_{t'} - [A]^{2}\right]$$

$$\left[\delta A^{2}\right] = \frac{1}{T}\sum_{t} (A_{t} - [A])^{2} + \frac{2}{T^{2}}\sum_{\Delta t=1}^{T} (T - \Delta t)\left[\underbrace{A_{t}A_{t+\Delta t} - [A]^{2}}_{A(t+\Delta t)}\right]$$

 $C(\Delta t)$ ist die sogenannte Autokorellationsfunktion. normierte Autokorrelationsfunktion

$$\varphi(\Delta t) = \frac{C(\Delta t)}{C(0)} = \frac{\left[A_t A_{t+\Delta t - [A]^2}\right]}{[A^2] - [A]^2}$$

$$\left[\delta A^2\right] = \frac{1}{T} \left([A^2] - [A]^2\right) + \frac{Z}{T^2} \sum_{\Delta t = 1}^T \left(T - \Delta T\right) \left([A^2] - [A]^2\right) \varphi(\Delta t)$$

$$= \frac{1}{T} \left([A^2] - [A]^2\right) + \left\{1 + 2 \int_0^T d\Delta t (1 - \frac{\Delta t}{T}) \varphi(\Delta t)\right\}$$

$$= \frac{1}{T} \left([A^2] - [A]^2\right) (1 + 2\tau) = \frac{[A^2] - [A]^2}{T'} \quad \text{mit } T' = \frac{T}{1 + 2\tau} \approx \frac{T}{2\tau}$$

3.2.3 Diffusions-Monte-Carlo

Fragestellung Wie findet man den Grundzustand eines quantenmechanischen Systems? Hier: betrachten ein Teilchen in einem Potential stationärer Zustande:

$$\psi(r,t) = \psi_0(r)e^{-\frac{i}{\hbar}E_0t}$$

$$\int dx |\psi_0(r)|^2 = 1 \qquad \text{Normierung}$$

speziell für Grundzustand ist $\psi(x)$ reell (Zeitumkehrinvarianz und nicht-entartet) SGL:

Schrödingergleichung

$$i\hbar \frac{\partial}{\partial t} \psi = \tilde{\mathcal{H}} \psi = (\mathcal{H} - E_T) \psi \quad \text{mit} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x)$$

imaginäre Zeit

$$\tau = \frac{i}{\hbar}t \quad \Rightarrow \quad i\hbar \frac{\partial}{\partial t} = i\hbar \frac{\mathrm{d}\tau}{\mathrm{d}t} \frac{\partial}{\partial \tau} = -\frac{\partial}{\partial \tau}$$
$$\frac{\partial}{\partial \tau}\psi = \left(-\frac{\hbar^2}{2m}\Delta + V - E_T\right)\psi$$
$$\psi(x,\tau) \stackrel{\tau \to \infty}{\longrightarrow} \mathcal{N}\psi_0(x)$$

$$\psi(x,\tau) = \langle x|\psi(\tau)\rangle \, \langle x|e^{-\tilde{\mathcal{H}}\tau} \, |\psi(0)\rangle = \sum_{n} \langle x|e^{-\tilde{\mathcal{H}}\tau} \, |n\rangle \, \langle n|\psi(0)\rangle$$

$$= \sum_{n} \underbrace{\langle x|n\rangle}_{\psi_{n}(x)} e^{-(E_{n}-E_{T})\tau} \underbrace{\langle n|\psi(0)\rangle}_{c_{n}} = \sum_{n} c_{n}\psi_{n}(x)e^{-(E_{n}-E_{T})\tau}$$

$$= c_{0}\psi_{0}(x) + \sum_{n=1}^{\infty} c_{n}\psi_{n}e^{-(E_{n}-E_{0})\tau} \xrightarrow{\tau \to \infty} c_{0}\psi_{0}$$

2) Zeitentwicklungsoperator

$$\mathcal{U}(\tau) = e^{-\tilde{\mathcal{H}}\tau} = e^{+\mathcal{L}_1\tau - \mathcal{L}_2\tau}$$
 Kinetische Energie:
$$\mathcal{L}_1 = \frac{\hbar^2}{2m}\Delta = D\Delta \qquad \qquad D = \frac{\hbar^2}{2m} \quad \text{Diffusionsprozess}$$
 Potentielle Energie:
$$\mathcal{L}_2 = -\left[V(x) - E_T\right]$$

Trotterzerlegung von $\mathcal{U}(\tau)$

$$\mathcal{U}(\tau) = e^{(\mathcal{L}_1 + \mathcal{L}_2)\tau} = \lim_{n \to \infty} \left(e^{\mathcal{L}_2 \frac{\tau}{n}} e^{\mathcal{L}_2 \frac{\tau}{n}} \right)^n$$

Fehler $\propto e^{[\mathcal{L}_1, \mathcal{L}_2] \frac{\tau^2}{2}}$

$$\mathcal{U}(\tau) = \underbrace{e^{\mathcal{L}_2 \, \Delta \tau} \, e^{\mathcal{L}_2 \, \Delta \tau} \times e^{\mathcal{L}_2 \, \Delta \tau} \, e^{\mathcal{L}_2 \, \Delta \tau} \dots}_{n \text{ mal}} \qquad \Delta \tau = \frac{\tau}{n}$$

3) Fasse $\psi(x,\tau)$ als Wahrscheinlichkeitsverteilung auf (QM: $|\psi|^2$) OK für Grundzustand

fasse $\mathcal{U}(\tau) = T_2 T_1 T_2 T_1$ als Übergangswahrscheinlichkeiten einer MC Simulation auf konstruiere den zugehörigen Markov-Prozess \rightarrow stationäre Lsg. $\psi_0(x)$.

a)

$$\psi'(x) = T_1 \psi(x) = e^{\mathcal{L}_1 \Delta \tau} \psi(x) = e^{D\nabla^2 \Delta \tau} \psi(x)$$

$$= \int dy \underbrace{G(x, y)}_{} \psi(y) = \int dy \langle x | e^{\mathcal{L}_1 \Delta \tau} | y \rangle \langle y | \psi \rangle$$
Green'sche Funktion

$$\langle x|e^{D\tau\Delta}|y\rangle = \int \mathrm{d}k \mathrm{d}k' \, \langle x|k\rangle \underbrace{\langle k|e^{D\tau\Delta}|k'\rangle}_{\delta_{k,k'}} \langle k'|y\rangle = \int \mathrm{d}k \frac{1}{\sqrt{2\pi}} e^{ikx} e^{D\tau k^2} e^{iky}$$
$$= \frac{1}{\sqrt{2\pi}D\Delta\tau} e^{-\frac{(x-y)^2}{2D\Delta\tau}}$$

 $T_1 = \text{Faltung mit } G$

$$\psi(x) \approx \sum_{i=1}^{N} \delta(x - r_i)$$
 $i = 1...N$ Teichen am Ort r_i

Wahrscheinlichkeitsverteilung von N Teilchen

$$\psi(x) = \sum_{i=1}^{N} \frac{1}{\sqrt{2\pi D\Delta \tau}} e^{\frac{-(x-r_i)^2}{2D\Delta \tau}} \approx \sum_{i=1}^{N} \delta(x-r_i)$$
 $\vec{r_i} \longrightarrow \vec{r_i}' = \vec{r_i} + \vec{\Delta r_i}$

als Monte-Carlo-Schritt mit $P(\Delta \tau) = \frac{1}{\sqrt{2\pi D \Delta \tau}} e^{\frac{\Delta r^2}{2D \Delta \tau}}$

$$\psi''(x) = T_2 \psi'(x) = e^{\mathcal{L}_2 \Delta \tau} \psi'(x) = e^{-[V(x) - E_T] \Delta \tau} \psi'(x)$$

$$T_2 = \text{Multiplikatoren mit Wachstumsfaktor} \quad q = e^{-[V(x) - E_T] \Delta \tau}$$

$$\psi''(x) \approx \sum_{i=1}^{N} q(x_i) \delta(x - x_i) \approx \sum_{i=1}^{N} \delta(x - x_i)$$

anstelle das Gewicht der Teilchen zu verändern benutze Wachstumsprozess. D.h berechne $s=q+x \quad 0 \leq x < 1$ gleichverteilte Zufallszahl

Anzahl der Teilchen bei r'_i 1 $\longrightarrow floor(s)$

OK, weil
$$\langle floor(s) \rangle = q = (i-1)\varepsilon + i(1-\varepsilon) = i-\varepsilon = q$$

 \implies hintereinander ausführen liefert den kompletten Prozess $e^{\mathcal{L}\tau}$

 $\psi(0) \longrightarrow \psi(x,\tau) \propto \psi_0(x)$ mit $E_T = E_0$ =Grundzustandsenergie

Wahl von $E_T \approx E_0$

$$\mathcal{H}\psi_0 = \left(-D\nabla^2 + V\right)\psi_0 = E_0\psi_0$$
$$E_0 = \frac{\mathcal{H}\psi_0(x)}{\psi_0(x)}\Big|_{\forall x}$$

Sei \bar{N} die angestrebte Anzahl von Teilchen

$$\begin{split} \bar{N} &\stackrel{!}{=} N'' \propto e^{\Delta \tau \delta E_T} N' \\ \delta E_T &= -\frac{1}{\Delta \tau} \log \frac{N}{\bar{N}} \\ \text{geeignete Wahl:} \quad E_T &= \frac{1}{N} \sum_{i=1}^N V(r_i) - \kappa \log \frac{N}{\bar{n}} \end{split}$$