- (b) Si la fuerza ${\bf F}$ tiene una magnitud de 6 kg y forma un ángulo de $\pi/6$ rad con la horizontal, apuntando hacia la derecha, hallar W en kg-metros.
- 40. Si una partícula de masa m se mueve con velocidad v, su momento es p = mv. En un juego de canicas, una canica con una masa de 2 gramos (g) se tira con una velocidad de 2 metros por segundo (m/s), choca con dos canicas de masa 1 g cada una y queda inmóvil. Una de las canicas sale con una velocidad de 3 m/s formando un ángulo de 45° con la dirección incidente de la canica grande, como se muestra en la Figura 1.R.1. Suponiendo que el momento total antes y después de la colisión es el mismo (de acuerdo con la ley de conservación del momento), ¿con qué ángulo y velocidad se ha movido la segunda canica?

Figura 1.R.1 Momento y canicas.

41. Demostrar que para todo x, y, z,

$$\begin{vmatrix} x+2 & y & z \\ z & y+1 & 10 \\ 5 & 5 & 2 \end{vmatrix} = - \begin{vmatrix} y & x+2 & z \\ 1 & z-x-2 & 10-z \\ 5 & 5 & 2 \end{vmatrix}.$$

42. Demostrar que

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} \neq 0$$

si x, y y z son distintos.

43. Demostrar que

$$\begin{vmatrix} 66 & 628 & 246 \\ 88 & 435 & 24 \\ 2 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 68 & 627 & 247 \\ 86 & 436 & 23 \\ 2 & -1 & 1 \end{vmatrix}.$$

44. Demostrar que

$$\begin{vmatrix} n & n+1 & n+2 \\ n+3 & n+4 & n+5 \\ n+6 & n+7 & n+8 \end{vmatrix}$$

tiene el mismo valor independientemente del valor de n. ¿Cuál es ese valor?

- **45.** Indicar si las siguientes cantidades son vectores o escalares.
 - (a) La población actual de Santa Cruz, California
 - (b) El par que un ciclista ejerce sobre su bicicleta.
 - (c) La velocidad del viento que mueve una veleta.
 - (d) La temperatura de una pizza metida en un horno.
- **46.** Hallar una matriz 4×4 , C, tal que para toda matriz 4×4 , A, se cumpla que CA = 3A.
- **47.** Sean

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

- (a) Hallar A^{-1}, B^{-1} y $(AB)^{-1}$.
- (b) Demostrar que $(AB)^{-1} \neq A^{-1}B^{-1}$ but $(AB)^{-1} = B^{-1}A^{-1}$
- **48.** Si se supone que $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ es invertible y sus elementos son enteros. ¿Qué condiciones se deben satisfacer para que $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1}$ tenga elementos enteros?
- **49.** El volumen de un tetraedro con aristas concurrentes \mathbf{a} , \mathbf{b} , \mathbf{c} está dado por $V = \frac{1}{6}\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.
 - (a) Expresar el volumen como un determinante.
 - (b) Evaluar V cuando $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{b} = \mathbf{i} \mathbf{j} + \mathbf{k}, \mathbf{c} = \mathbf{i} + \mathbf{j}.$

Utilizar la siguiente definición para los Ejercicios 50 y 51: Sean $\mathbf{r}_1, \dots, \mathbf{r}_n$ vectores en \mathbb{R}^3 desde 0 a las masas m_1, \dots, m_n . El **centro de masas** es el vector

$$\mathbf{c} = \frac{\sum_{i=1}^{n} m_i \mathbf{r}_i}{\sum_{i=1}^{n} m_i}.$$