Combo 11 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 Programa de Lógica Matemática

Enuncie el programa de Lógica Matemática dado al final de la guía 8 y explique brevemente con qué definiciones matemáticas se van resolviendo los tres primeros puntos y qué teoremas garantizan la resolución del 4to punto de dicho programa.

El programa de lógica matemática dado es el siguiente:

- 1. Dar un modelo matemático del concepto de fórmula elemental de tipo τ
 - Sea $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ un tipo, diremos que τ' es una extensión de τ por nombres de constante si τ' es de la forma $(\mathcal{C}', \mathcal{F}, \mathcal{R}, a)$ con C' tal que $C \subseteq C'$
 - Las fórmulas de tipo τ son un modelo matemático de las fórmulas elementales puras de tipo τ (i.e., sin nombres de elementos fijos)
 - Los nombres de elementos fijos se usan en las pruebas elementales para denotar elementos fijos (a veces arbitrarios y otras veces que cumplen alguna propiedad)
 - Cuando uno realiza una prueba elemental en una teoría elemental (Σ, τ) , comienza la misma imaginando una estructura de tipo τ de la cual lo único que sabe es que cumple las sentencias de Σ . Luego, cuando fija un elemento y le pone nombre, digamos b, podemos pensar que expandió su estructura imaginaria a una de tipo $(\mathcal{C} \cup \{b\}, \mathcal{F}, \mathcal{R}, a)$ y continúa su razonamiento. Esto lo podemos hacer muchas veces a lo largo de una prueba, por lo cual su estructura imaginaria va cambiando de tipo
 - Esta mecánica de prueba nos deja ver que es natural modelizar las fórmulas elementales de tipo τ con fórmulas de tipo τ_1 , donde τ_1 es alguna extensión de τ por nombres de constante
- 2. Dar una definición matemática de cuándo una fórmula elemental de tipo τ es verdadera en una estructura de tipo τ para una asignación dada de valores a las variables libres y a los nombres de constantes fijas de la fórmula
 - La definición matemática de la relación " $\mathbf{A} \models \varphi[\vec{a}]$ "
- 3. Dar un modelo matemático del concepto de prueba elemental en una teoría elemental de tipo τ . A estos objetos matemáticos los llamaremos pruebas formales de tipo τ
 - La definición de prueba formal en una teoría de primer orden
- 4. Intenta probar matemáticamente que nuestro concepto de prueba formal de tipo τ es una correcta modelización matemática de la idea intuitiva de prueba elemental en una teoría elemental de tipo τ
 - Teorema de Corrección: $(\Sigma, \tau) \vdash \varphi$ implica $(\Sigma, \tau) \models \varphi$. Es decir, asegura que nuestro concepto de prueba formal no es demasiado permisivo como para permitir probar sentencias que son falsas en algún modelo de la teoría.
 - Teorema de Completitud: $(\Sigma, \tau) \vDash \varphi$ implica $(\Sigma, \tau) \vDash \varphi$. Es decir, asegura que no puede pasar que se de una prueba elemental de una sentencia φ en una teoría (Σ, τ) pero que no haya una prueba formal de φ en (Σ, τ) .