PDE (Partial Differential Equations) for Systems (PES)

Project Idea and Strategic Options

Andreas Heckmann, Lâle Evrim Briese, Martin Otter (DLR)

Modelica Design Meeting, March 20, 2018

Background

The FMI success story

- Standardized interface for model based development of systems
- 2008: Kick-off of project MODELISAR

- 2018: Currently nearly 108 tool-vendors support FMI
- Still ongoing development
 - Modelica Association Project FMI
 - Emphysis (Embedded systems with physical models in the production code soft.) by e.g.

 BOSCH SIEMENS OF SPACE

+ Model-exchange

Cosimulation of the behavioral models and the embedded controller software

Background

Cyber-Physical Systems

- Rely on existence of digital twins
- Integrate data and physical system description
 - Living digital simulation models
- Application fields are numerous, potentially unlimited, e.g.
 - Engineer, prototype and validate systems, optimize operation, monitor conditions and health, organize maintenance, ...
 - Concerns the complete product life cycle
- Innovate value chains

System components with relevant distributed properties (PDEs)

- Represented by e.g. Finite Elements/Volumes/Differences, CFD, ...
- Available exchange formats are
 - Proprietary, only (e.g. *.mnf, *.fbi, *.cdb, *.sub, *.op2,)
 - Limited to mechanical domain
 - Limited functionality
 - Not stable (frequent changes of specification)

Motivation

Resources of PDE tools are to be unlocked for digitalization.

- Strong industrial requests for usage of (order reduced) PDE models in systems simulation and digital twins as demanded by Industry 4.0.
- Features research on appropriate model reduction techniques.

Multidisciplinary context offers bilateral R&D advantages.

- More collaborative work through coupling of interests.
- Exploit Big Data from real life to improve future products

Examples

Automotive suspension (mechanics)

- Monitor dynamic load accumulation of e.g. lower A-arm in operation
- Predict fatigue online with real life data in Electronic Control Unit (ECU)

Brake (heat transfer domain)

- Estimate disc, pad and e.g. hydraulic fluid temperature online in ECU
- control cooperative operation with redundant actuators, e.g. electric drives, magnet track brake, ... accordingly (brake blending)

PDE for Systems

Ideas

- Standardized format for the export / exchange of semi-discretized PDE models
 - Exploit FMI experiences and network
 - PDE -FMUs for co-simulation and/or model exchange
 - Option to introduce spatially distributed loads
 - Option to protect know-how by providing only DLL, no data
- Generic interface with respect to physical domain
 Mechanics, heat transfer, electro-magnetics, fluid-mechanics, Fluid-Structure-Int., ...
- Real time capability is an important aspect, but not mandatory in general
- Development driven by collection of use cases
- Consortium supposed to include industrial users, PDE tool vendors (FEM, FD, CFD, ..),
 system simulation tool vendors and University/research organizations
- Specification to be published under same open source license as FMI (<u>CC-BY-SA</u>)
- Current understanding: 3D to 3D coupling is out-of-focus.

PDE for Systems (cont'd)

Initial work flow

- F... Model with $x \cdot 10^6$ Degrees of Freedom (DoF)
- F... Model Reduction

FE output filter

- F... Reduced Model with $x \cdot 10^3$ DoF (Superelement Matrices)
- F.. Geometry Data
- Retained DoF

(Extended) FMI input specification

- System of Differential Equations
- Physical interfaces (e.g. frames, heat ports ...for nodes)

Future extensions of the minimum data set are intended.