Sketches for Polynomial Kernels

- For p = 2
- S_1 and S_2 be Gaussian matrices • $Q' = (QS_1) * (QS_2)$

(* denotes hadamard product)

- Given any ${m Q}$ and ${m K}$, if # of columns in S_1 and S_2 is large enough, with a high probability

• Similar extensions to larger powers p

 $Q' \cdot (K')^{\mathsf{T}} \approx (Q^{\otimes 2} \cdot (K^{\otimes 2})^{\mathsf{T}})$

Sketches for Polynomial Kernels

- For p = 2
 - S_1 and S_2 be Gaussian matrices
 - $Q' = (QS_1) * (QS_2)$ (* denotes hadamard product)
- Given any ${\cal Q}$ and ${\cal K}$, if # of columns in S_1 and S_2 is large enough, with a high probability

$$Q' \cdot (K')^{\mathsf{T}} \approx (Q^{\otimes 2} \cdot (K^{\otimes 2})^{\mathsf{T}})$$

ullet Similar extensions to larger powers p

