

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

ОТЧЕТ *К ЛАБОРАТОРНОЙ РАБОТЕ НА ТЕМУ*:

Решение задач интерполирования Вариант 1

Студент	ФН2-51Б		Н.О. Акиньшин	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Студент	ФН2-51Б		А.С. Джагарян	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	

ОГЛАВЛЕНИЕ 2

Оглавление

1.	Контрольные вопросы	3
2.	Дополнительные вопросы	7
3.	Дополнительные вопросы 2	9
4	Результаты	10

1. Контрольные вопросы

1) Определите количество арифметических операций, требуемое для интерполирования функции в некоторой точке

многочленом Лагранжа (включая построение самого многочлена) на сетке с числом узлов, равным n.

Ответ. Запишем полином Лагранжа

$$L_n(x) = \sum_{k=0}^{n} \prod_{j=0; j \neq k}^{n} \left(\frac{x - x_j}{x_k - x_j} \right) y_k$$

Оценим количество операция для построения коэффициентов, сразу подставив нужную точку.

$$S = (n-1) \cdot (n+1) = n^2 - 1$$

2) Определите количество арифметических операций, требу- емое для интерполирования функции в некоторой точке

кубическим сплайном (включая затраты на вычисление ко- эффициентов сплайна) на сетке с числом узлов, равным n.

Ответ. Пусть имеется точка $x_0 \in [x_{i-1}, x_i]$, тогда по следующей формуле можно вычислить $s_i(x_0)$ за 9 операций умножения.

$$s_i = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_i - 1)^3, i = 1 \dots n$$

Однако для этого надо вычислить $a_i, b_i, c_i, d_i \, \forall i = 1 \dots n$.

Подсчитаем количество операций требуемое для вычисления коэффициентов a_i .

$$a_i = y_{i-1} \, \forall i = 1, 2, \dots n$$

Таким образом требуется 0 операций умножения

Подсчитаем количество операций требуемое для вычисления коэффициентов c_i . Заметим, что $c_1=0$. Остальные коэффициенты можно найти решив следующую трех-диагональную систему методом прогонки. Для начало нужно вычислить следующие вспомогательные коэффициенты $h_i=x_i-x_{i-1}, g_i=\frac{y_i-y_{i-1}}{h_i}, \forall i=1\dots n$. Для вычисления требуется п умножений. Также $2^*(n-1)$ для вычисления коэффициентов системы. Теперь требуется решить систему.

$$h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_i c_{i+1} = 3(g_i - g_{i-1}), \forall i = 1 \dots n$$

Данная система имеет размерность n-1 на n-1. Из теории известно, что для решения такой системы требуется 5*(n-1)-4 умножений.

Подсчитаем количество операций требуемое для вычисления коэффициентов b_i

$$b_i = g_i - \frac{(c_{i+1} + 2c_i)h_i}{3}, \forall i = 1 \dots n$$

Из формул следует, что требуется 2*п операций.

Подсчитаем количество операций требуемое для вычисления коэффициентов d_i

$$d_i = \frac{c_{i+1} - c_i}{3 * h_i}, \forall i = 1 \dots n$$

Из формул следует, что требуется 2*п операций.

Итого требуется 9 + n + 2(n-1) + 5 * (n-1) - 4 + 2n + 2n = 12n - 2 операций.

3) Функция $f(x) = e^x$ интерполируется многочленом Лагранжа на отрезке [0,2] на равномерной сетке с шагом h = 0,2 Оцените ошибку экстраполяции в точке x = 2,2, построив многочлен Лагранжа и подставив в него это значение, а также по формуле для погрешности экстраполяции.

Ответ. Построим многочлен Лагранжа

$$L_n(x) = \sum_{k=0}^n \prod_{j=0; j \neq k}^n \left(\frac{x - x_j}{x_k - x_j}\right) y_k =$$

$$= 7.6167 \cdot 10^{-7} * x^{10} + 2.53759 \cdot 10^{-8} * x^9 + 3.29048 \cdot 10^{-5} * x^8 + 0.000183677 * x^7 + 0.00140624 * x^6 + 0.00831992 * x^5 + 0.0416734 * x^4 + 0.166665 * x^3 + 0.5 * x^2 + 1 * x + 1$$

Подставим точку x = 2.2

$$L_n(2.2) = 9.02501$$

Тогда погрешность

$$|L_n(2.2) - e^{2.2}| = 3.49943 * 10^{-6}$$

Теперь посчитаем погрешность по формуле для экстраполяции

$$|f(x^*) - L_n(x^*)| \le h^{n+1} \max_{y \in [a;b]} |f^{(n+1)(y)}|,$$

где $x^* \in [b+h, b+2h]$. Тогда для $x^* = 2.2$

$$|e^{2.2} - L_n(2.2)| \le 0.2^{11}e^2 \approx 1.51328 * 10^{-7}$$

4) Выпишите уравнения для параметров кубического сплай- на, если в узлах x_0 и x_n помимо значений функции y_0 и y_n заданы первые производные $y'(x_0)$ и $y'(x_n)$

Ответ. Сплайн на i-ом отрезке выглядит следующим образом $s_i = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_i - 1)^3$ Всего 4n коэффициентов. Таким образом для определения коэффициентов нужно 4n условий.

Сплайн должен проходить через все заданные точки т.е. должно выполняться условие $S(x_i) = y_i$, что тоже самое $s_i(x_{i-1}) = y_{i-1}, s_i(x_i) = y_i, \forall i = 1 \dots n$. Отсюда получаем 2т условий.

Из условия непрерывности первой и второй производной (т.е. производные справа и слева в узлах сетки должны совпадать) для внутренних узлов сетки получаем.

$$S'(x_i - 0) = S'(x_i + 0), S''(x_i - 0) = S''(x_i + 0), \forall i = 1 \dots n - 1$$

Данные условия можно переписать, как

$$S'_{i}(x_{i}) = S'_{i+1}(x_{i}), S''_{i}(x_{i}) = S''_{i+1}(x_{i}), \forall i = 1 \dots n-1$$

Получили 4n-2 условий требуется еще 2 условия. В классической интерполяции полагаются условия $S''(x_0) = S''(x_n) = 0$. Однако, поскольку даны условия на первые производные, то имеем следующие условия $S'(x_0) = y'_0$, $S'(x_n) = y'_n$ либо, что тоже самое $S'_1(x_0) = y'_0$, $S'_n(x_n) = y'_n$

В итоге коэффициенты a_i, b_i, c_i, d_i можно найти из следующей системы

$$\begin{cases}
S_i(x_{i-1}) = y_{i-1}, S_i(x_i) = y_i, \, \forall i = 1 \dots n \\
S'_i(x_i) = S'_{i+1}(x_i), \, S''_i(x_i) = S''_{i+1}(x_i), \, \forall i = 1 \dots n - 1 \\
S'_1(x_0) = y'_0, \, S'_n(x_n) = y'_n
\end{cases}$$
(1)

5) Каковы достоинства и недостатки сплайн-интерполяции и интерполяции многочленом Лагранжа?

Ответ.

(а) Интерполяционный полином Лагранжа имеет вид $L_n(x) = \sum_{k=0}^n f_k \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$. Также интерполяция Лагранжа является глобальной т.е. один полином приближает функцию, в отличии от интерполяции Сплайном, где на каждом отрезке свой приближающий полином.

При добавлении точек многочлен Лагранжа приходиться полностью пересчитывать, в отличии от интерполяции сплайном в котором, придется либо добавить либо изменить один сплайн, а остальные сплайны не изменятся.

Пусть значения функции f известны не точно, а лишь с некоторой погрешностью δf_i : $f_i = f_i^0 + \delta f_i$. Как сильно исказится при этом интерполяционный полином?

$$L_n(x) = L_n(x, f^0 + \delta f) = L_n(x, f^0) + L_n(x, \delta f)$$

(b) Для того чтобы установить влияние погрешности входных данных на построенный полином, необходимо оценить $\max_{||\delta f|| \leqslant \delta} ||L_n(x,\delta f)||_C$ Если ввести нормированную погрешность, то для оценки влияния погрешности входных данных требуется вычислить величину $\eta = \max_{||\widehat{\delta f})|| \leqslant 1} ||L_n(x,\widetilde{\delta f})||_C$

Для равномерной сетки $\eta = O(2^n)$. Для $\eta = O(lnn)$. Таким образом погрешности связанные с неточностью входной информации при глобальной интерполяции сильно возрастают.

(c) Если функция не имеет n+1 ой ограниченной производной, то погрешность в случаи глобальной интерполяции в отличии от интерполяции сплайном может вести себя плохо. Рассмотрим следующие теоремы

Теорема(Фабера). Для любой последовательности сеток, существует непрерывная на отрезке функция f(x) такая, что последовательность $\{L_n(x)\}$ не сходится равномерно f(x)

Теорема(Марцинкевича). Для любой непрерывной на отрезке функции f(x) существует последовательность сеток такая, что $\{L_n(x)\} \rightrightarrows f(x)$

Например рассмотрим функцию $f(x) = \frac{1}{1+25x^2}$

Использование глобальной полиномиальной интерполяции на равномерной сетке дает расходимость на участках $|x| \in (0.73;1)$ при бесконечном увеличении числа точек разбиения. Причиной этого, очевидно, является увеличение нормы производной данной функции при возрастании ее порядка.

Однако при интерполяции сплайном имеет место следующая теорема

Теорема. Пусть $u = f(x) \in C^4[a,b]$, f''(a) = f''(b) = 0, $M_4 = ||f(4)||_C$, $S_3(x)$ – сплайн третей степени. Тогда верно

$$||f - S_3||_C \le C_1 M_4 h^4; ||f' - S_3'||_C \le C_2 M_4 h^3; ||f'' - S_3''||_C \le C_3 M_4 h^2$$

Отсюда следует, что для указанного класса функций не только S_3 сходится к f, но и ее первая и вторая производные сходятся к соответствующим производным. Функцию S_3 можно дифференцировать.

6) Какие свойства полиномов Чебышева и чебышевских сеток Вам известны?

Ответ. При интерполяции желательно, чтобы погрешность $||f-\widetilde{f}||$ была минимальна, также при увеличении числа точек интерполяции погрешность должна стремится к 0. Однако в случаи глобальной интерполяции (полиномом Лагранжа)

$$||f - \widetilde{f}||_C = ||f - L_n|| \le \frac{M_{n+1}}{(n+1)!} ||w||_C$$

Таким образом выберем функцию $w(x) = \prod_{i=0}^n (x-x_i)$, так чтобы $||w||_C$ была минимальна т.е. требуется решить задачу $\min_{x_0,...,x_n} \max_{x \in [a,b]} |w(x)|$. Решением данной задачи является полином Чебышева.

$$w(x) = T_{n+1}(x) = \frac{(b-a)^{n+1}}{2^{2n+1}}cos((n+1)arccos(\frac{2x-(b+a)}{b-a}))$$

Таким образом узлы Чебышевской сетки имеют вид

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}cos(\frac{(2k+1)\pi}{2(n+1)})$$

Также $||w||_C = \frac{1}{2^{2n+1}}(b-a)^{n+1}$. Итого для Чебышевской сетки имеем оценку погрешности

$$||f - \widetilde{f}|| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}} = \epsilon_{ch}$$

Сравним данную сетку с равномерной. Для равномерной сетки имеем оценку погрешности

$$|f - L_n| \le \frac{M_{n+1}}{n+1} h^{n+1} = \frac{M_{n+1}}{n+1} (\frac{b-a}{n})^{n+1} = \epsilon_R$$

Рассмотрим отношение погрешностей

$$\frac{\varepsilon_R}{\varepsilon_{ch}} = (\frac{4}{e})^n \frac{1}{\sqrt{n}} \to \infty$$

Следовательно при увеличении количества узлов интерполяции погрешность на Чебышевской сетке будет меньше чем на равномерной сетке(на любой сетке) в соответствующее число раз.

Для равномерной сетки $\eta = O(2^n)$. Для $\eta = O(lnn)$. Т.е. погрешность возникающая из неточности входных данных будет меньше на Чебышевской сетки чем на равномерной.

2. Дополнительные вопросы

1) Оценка количества операций для построение полинома Лагранжа

Ответ. Сначала посчитаем количество операций для построения одного коэффициента многочлена Лагранжа.

$$c_k(x) = \prod_{j=0; j \neq k}^{n} \left(\frac{x - x_j}{x_k - x_j} \right)$$

Тогда одно умножение в скобке, и для перемножения n многочленов 1 степени необходимо 2^n умножений. Тогда для расчета кожффициента $c_k(x)$ необходимо $S_1 = 2^{n-1} * (n-1) * (n-1)$, где первый множитель n-1 отвечает за умножение в знаменатиле, а второй – за деление получившегося многочлена n-1 степени на знаменатель. Согласно

$$L_n(x) = \sum_{k=0}^{n} c_k(x) y_k$$

 $S_2 = S_1 + 1$ и итоговая сумма

$$S = (n+1)S_2 = (n+1)(2^{n-1} * (n-1) * (n-1) + 1) = 1 + 2^{n-1} +$$

$$n + 2^{n-1}n - 2^n n + 2^{n-1}n^2 - 2^n n^2 + 2^{n-1}n^3$$

2) Почему на функции Рунге норма ошибки стремится к бесконечности при достаточно большом количетсве узлов?

Ответ. Если рассматривать интерполяцию Лагранжа на равномерной сетке, то оценка погрешности оценивается по следующей формуле

$$||f - L_n|| \le \frac{||f^{n+1}(x)||}{n+1} \cdot (\frac{b-a}{n})^{n+1}$$

При увеличении количества точек интерполяции норма ошибка растет. Это связано с тем, что $||f^{(n+1)}||$ не ограничено при росте n. Однако, только этого было бы не достаточно. Оказывается, что $||f^{(n+1)}||$ растет быстрее чем $(\frac{b-a}{n})^{n+1} \cdot \frac{1}{n}$. Для того, чтобы это показать проведем расчеты в wolfram mathematica. Рассмотрим таблицу

Таблица 1. Норма ошибки пример рунге равномерная сетка

Количество узлов п	Норма ошибки интерполяции
	на равномерной сетке
10	< 0.4
40	10^{-6}
70	< 0.005
100	109
130	10^{43}
199	10^{112}

На чебышевской сетке ситуация немного улучшиться за счет того что корни распределены ближе к краям отрезка. В случаи Чебышевской сетки погрешность можно оценить по формуле

$$||f - L_n|| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}} = \epsilon_{ch}$$

Проведем аналогичные расчеты для чебышевской сетки.

Таблица 2. Норма ошибки пример рунге чебышевская сетка

Количество узлов п	Норма ошибки интерполяции		
	на равномерной сетке		
30	< 0.35		
100	109		
130	10^{43}		
187	10^{106}		

3) Что такое многочлен, наименее отклоняющийся от 0?

Ответ. Многочлен $T_n(x)$ степени n со старшим коэффициентом 1 для которого величина $\max_{x\in[-1,1]}|T_n(x)|$ является минимальной называется многочленом наименее уклоняющегося от нуля. т.е это многочлен $\min_{T_n(x)}\max_{y\in[-1;\,1]}|T_n(x)|$.

3. Дополнительные вопросы 2

1) Какая связь между тригонометрической и полиномиальной интерполяцией?

Ответ. Запишем тригонометрический полином на равномерной сетке

$$Q_n = a_0 + \sum_{k=1}^{n} (a_k \cos(k\omega x) + b_k \sin(k\omega x)),$$

где $\omega = \frac{2\pi}{b-a}$. Чебышевская сетка задается

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{2k-1}{2n}\pi)$$

Запишем полином Лагранжа

$$\sum_{k=0}^{n} f_i \prod_{i=0: i \neq k}^{n} \frac{x - x_i}{x_k - x_i}.$$

Запишем полином Лагранжа на чебышевской сетке

$$\sum_{k=0}^{n} f_{i} \prod_{i=0: i \neq k}^{n} \frac{x - \frac{a+b}{2} - \frac{b-a}{2} \cos(\frac{2i-1}{2n}\pi)}{\frac{a+b}{2} + \frac{b-a}{2} \cos(\frac{2k-1}{2n}\pi) - \frac{a+b}{2} - \frac{b-a}{2} \cos(\frac{2i-1}{2n}\pi)}.$$

Сделаем замену

$$x = \frac{a+b}{2} + \frac{b-a}{2}\cos\varphi$$

и подставим

$$\sum_{k=0}^{n} f_{i} \prod_{\substack{i=0: i \neq k}}^{n} \frac{\frac{b-a}{2} \cos \varphi - \frac{b-a}{2} \cos(\frac{2i-1}{2n}\pi)}{\frac{b-a}{2} \cos(\frac{2k-1}{2n}\pi) - \frac{b-a}{2} \cos(\frac{2i-1}{2n}\pi)}.$$

Получили произведение косинусов. Заметим, что косинус в произвольной степени легко привести к линейной комбинации sin и cos. То есть получили тригонометрический полином на равномерной сетке.

2) Есть ли смысл в чебышевской сетке при сплайн-интерполяции?

Ответ. Нет смысла, потому что для сплайн-интерполяции справедлива следующая оценка

$$||f - S_3||_C \leqslant C_1 M_4 h^4$$

Для чебышевской сетки известно, что при увеличении количества точек $h \to 0$

 Основные отличия интерполирования при помощи полиномов Лагранжа и интерполирования при помощи сплайнов?

Ответ.

- (а) Сплайн локальная интерполяция, полином Лагранжа глобальная интерполяция
- (b) Лагранж сильнее чувствителен к погрешностям
- (c) Если функция не имеет n+1 ой ограниченной производной, то погрешность в случае глобальной интерполяции в отличии от интерполяции сплайном может вести себя плохо.

Таблица 3. Норма ошибка в зависимости от сетки и узлов на ней для $y=x^2$

Количество узлов п	Норма ошибки интерполяции	Норма ошибки интерполяции
	на равномерной сетке	на чебышевской сетке
4	1.39e-17	1.11e-15
8	1.57e-14	8.27e-14
16	4.16e-11	4.12e-10
32	0.0013	0.027
64	1.8e+11	9.44e+13
128	$3.30\mathrm{e}{+41}$	3.37e + 46

Таблица 4. Норма ошибка в зависимости от сетки и узлов на ней для примера Рунге

Количество узлов п	Норма ошибки интерполяции	Норма ошибки интерполяции
	на равномерной сетке	на чебышевской сетке
4	0.02	0.01
8	0.002	0.0004
16	3.99e-05	3.11e-07
32	0.003	0.024
64	1.33e+13	$1.04e{+14}$
128	4.18e+43	4.16e + 46

Таблица 5. Норма ошибка в зависимости от сетки и узлов на ней для $y=\frac{1}{\arctan(1+10x^2)}$

Количество узлов n Норма ошибки интерполяции		Норма ошибки интерполяции
	на равномерной сетке	на чебышевской сетке
4	0.41	0.43
8	1.24	0.31
16	54.22	0.14
32	194965	0.027
64	3.17e + 16	5.28e+14
128	$3.24e{+50}$	5.39e+46

Таблица 6. Норма ошибка в зависимости от сетки и узлов на ней для $y=(4x^3+2x^2-4x+2)^{\sqrt{2}}+$ $\arcsin\frac{1}{5+x-x^2}-5$

Количество узлов п	Норма ошибки интерполяции	Норма ошибки интерполяции
	на равномерной сетке	на чебышевской сетке
4	0.6	0.33
8	0.02	0.008
16	0.009	7.25e-05
32	0.008	0.004
64	6.8e+11	$4.36e{+14}$
128	5.66e + 43	2.3e+47

Таблица 7. Норма ошибка в зависимости от сетки и узлов на ней для тестового примера варианта №2

Количество узлов п	Норма ошибки интерполяции	Норма ошибки интерполяции
	на равномерной сетке	на чебышевской сетке
4	2.47	1.81
8	2.79	2.42
16	32.12	2.62
32	2563.75	2.43
64	1.25e+13	2.47e+14
128	$2.99e{+43}$	$8.25 \mathrm{e}{+45}$

Таблица 8. Исследование скорости сходимости функции $y = \sin(\pi x)$, h = 1, q = 1/3

	таолица 6. Исследование скорости сходимости функции $y = \sin(\pi x), n = 1, q = 1/3$				
n	Шаг сетки	Норма ошибки	Отношение оши-	Порядок сходимо-	
		err_n	\int бок $z_n = \frac{err_n}{err_{n-1}}$	сти $p_n = \log_q z_n$	
1	h	1	_	_	
2	qh	0.018	0.018	3.62	
3	q^2h	7.45e-09	4.14e-7	13.2	
4	q^3h	4.32e+09	5.79e17	-36.8	
5	q^4h	$6.75\mathrm{e}{+66}$	1.56e57	-118.7	

Таблица 9. Исследование скорости сходимости функции $y=\sin(\pi x),\ h=0.5,\ q=0.5$ для сплайн-интерполяции

n	Шаг сетки	Норма ошибки	Отношение оши-	Порядок сходимо-
		err_n	бок $z_n = \frac{err_n}{err_{n-1}}$	сти $p_n = \log_q z_n$
1	h	1.39461	_	
2	qh	0.764926	0.548487	0.86647
3	q^2h	0.390168	0.510073	0.971225
4	q^3h	0.196034	0.502435	0.992992
5	q^4h	0.0981353	0.500603	0.99826

Таблица 10. Исследование скорости сходимости функции $y=\sin(\pi x)$

Количество узлов п	Порядок сходи-	Порядок сходи-	Порядок сходимо-	Порядок сходимо-
	мости полинома	мости полинома	сти сплайна на от-	сти сплайна на от-
	Лагранжа на рав-	Лагранжа на че-	резке [-1, 1]	резке [-1.25, 1.25]
	номерной сетке	бышевской сетке		
8	_	_	_	_
16	20.45	21.76	0.971225	0.411548
32	-22.02	-26.25	0.992992	0
64	-48.37	-53	0.99826	0
128	-102.515	-105	0.999563	0

Рис. 1. Интерполирование примера Рунге для 4 узлов многочленом Лагранжа

Рис. 2. Интерполирование примера Рунге для 8 узлов многочленом Лагранжа

Рис. 3. Интерполирование примера Рунге для 16 узлов многочленом Лагранжа

Рис. 4. Интерполирование $y=\frac{1}{\arctan(1+10x^2)}$ для 4 узлов многочленом Лагранжа

Рис. 5. Интерполирование $y=\frac{1}{\arctan(1+10x^2)}$ для 8 узлов многочленом Лагранжа

Рис. 6. Интерполирование $y=\frac{1}{\arctan(1+10x^2)}$ для 16 узлов многочленом Лагранжа

Рис. 7. Интерполирование $y=\frac{1}{\arctan(1+10x^2)}$ для 16 узлов многочленом Лагранжа

Рис. 8. Интерполирование $y=(4x^3+2x^2-4x+2)^{\sqrt{2}}+\arcsin\frac{1}{5+x-x^2}-5$ для 4 узлов многочленом Лагранжа

Рис. 9. Интерполирование $y=(4x^3+2x^2-4x+2)^{\sqrt{2}}+\arcsin\frac{1}{5+x-x^2}-5$ для 8 узлов многочленом Лагранжа

Рис. 10. Интерполирование примера Рунге для 4 узлов сплайном

Рис. 11. Интерполирование примера Рунге для 8 узлов сплайном

Рис. 12. Интерполирование примера Рунге для 16 узлов сплайном

Рис. 13. Интерполирование $y=(4x^3+2x^2-4x+2)^{\sqrt{2}}+\arcsin\frac{1}{5+x-x^2}-5$ для 4 узлов сплайном

Рис. 14. Интерполирование $y=(4x^3+2x^2-4x+2)^{\sqrt{2}}+\arcsin\frac{1}{5+x-x^2}-5$ для 8 узлов сплайном