

Rapport de projet

Conception d'une carte d'évaluation STM32

Auteurs

David Chauvet
Samuel Huet

Encadrants

Cyril Sagonero Lucas Testa

INTRODUCTION	5
SCHEMAS FONCTIONNEL	6
Nove at 1	
NIVEAU 1 FONCTIONS	6
	7
SIGNAUX NIVEAU 2	7
	8
CONTROLER CONTROLER NO BUILTOOTH	8
COMMUNIQUER VIA BLUETOOTH	9
COMMUNIQUER VIA ETHERNET	11
COMMUNIQUER VIA USB	12
COMMUNIQUER AVEC LES MODULES MIKROELECTRONICA	13
COMMUNIQUER AVEC UNE CAMERA	14
ALIMENTER	14
Programmer	15
ANALYSE STRUCTUREL	17
ANALISESTROCTOREE	1/
Lan	17
FONCTIONS	17
PHY ET ENVIRONNEMENT	18
Connecteur	18
FILTRAGE	18
RESET	18
HORLOGE	19
PROTECTION	19
Wan	20
FONCTIONS	21
FILTRAGE	21
CONNECTION	21
Programmation	21
Reset	21
CADENCEMENT	21
Adaptation	22
INTERFACE	22
FONCTIONS	23
PROTECTION	23
HORLOGE	23
USB & ALIMENTATION	24
FONCTIONS	25
USB	25
ALIMENTATIONS	25
LED	26
DEBUG	27
FONCTIONS	28
CONFIGURATION	29

CONNECTION	29
RESET	29
MULTIPLEXEUR	29
Micro	29
FONCTIONS	31
CUBE MX	31
NAND FLASH	32
Programmation	32
CADENCEMENT	33
RESET	33
FILTRAGE	34
SRAM	34
ROUTAGE	34
STACK-UP	34
REGLES	35
DCMI	35
ETHERNET	35
PAIR DIFFERENTIELS	35
QSPI	36
RF	36
ALIMENTATION	37
ENCOMBREMENT	37
PLACEMENT	38
TOP LAYER	38
ALIMENTATION	39
MASSE	39
BOTTOM LAYER	40
AJOUTS	41
CONCLUSION	41
CHAUVET DAVID	41
HUET SAMUEL	41
ANNEXES	42
GітHuв	42
Sources	42

Figure 1 - Diagramme fonctionnel de niveau 1	6
Figure 2 - Diagramme fonctionnel niveau 2 : Contrôler	8
Figure 3 - Diagramme fonctionnel niveau 2 : Bluetooth	9
Figure 4 - Diagramme fonctionnel niveau 2 : Ethernet	11
Figure 5 - Diagramme fonctionnel niveau 2 : USB	12
Figure 6 - Diagramme fonctionnel niveau 2 : MikroElectronica	13
Figure 7 - Diagramme fonctionnel niveau 2 : Caméra	
Figure 8 - Diagramme fonctionnel niveau 2 : Alimentation	14
Figure 9 - Diagramme fonctionnel niveau 2 : Programmateur	15
Figure 10 - Diagramme structurel : LAN	17
Figure 11 - Reset : LAN	18
Figure 12 - Diagramme structurel : WAN	20
Figure 13 - Diagramme structurel : Interface	22
Figure 14 - Diagramme structurel : USB/Alimentation	
Figure 15 - Application typique buck/boost	26
Figure 16 - Diagramme structurel : Debug	27
Figure 17 Diagramme structurel : Debug USB	
Figure 18 - Diagramme structurel Debug Multiplex	28
Figure 19 - Diagramme structurel : Nand Flash	29
Figure 20 - Diagramme structurel : Clock	30
Figure 21 - Diagramme structurel : Micro	30
Figure 22 - Diagramme structurel Micro BLE	30
Figure 23 - Fonctions CubeMX	31
Figure 24 - Pinout CubeMX	32
Figure 25 - Clock CubeMX	33
Figure 26 - Filtrage Micro	34
Figure 27 - Stack-up	34
Figure 28 - Paire différentiel Ethernet	35
Figure 29 - Paire différentiel USB	36
Figure 30 - Adaptation RF	36
Figure 31 - Piste d'alimentation externe	37
Figure 32 - Piste d'alimentation interne	37
Figure 33 - Top Overlay 1:1	38
Figure 34 - Top Layer 1:1	38
Figure 35 - Couche d'alimentation 1:1	39
Figure 36 - Couche de masse 1:1	39
Figure 37 - Bottom Overlay 1:1	40
Figure 38 - Bottom Layer 1:1	40
Figure 39 - GitHub	42

Tableau 1 - Fonctions principales	7
Tableau 2 - Signaux principaux	
Tableau 3 - Fonctions secondaire : Contrôler	8
Tableau 4 - Signaux secondaire : Contrôler	
Tableau 5 - Fonctions secondaires : Bluetooth	
Tableau 6 - Signaux secondaire : Bluetooth	10
Tableau 7 - Fonctions secondaires : Bluetooth	11
Tableau 8 - Signaux secondaires : Bluetooth	12
Tableau 9 - Fonctions secondaires : USB	12
Tableau 10 - Signaux secondaires : USB	
Tableau 11 - Fonctions secondaires : MikroElectronica	13
Tableau 12 - Signaux secondaires : Mikroelectronica	
Tableau 13 - Fonctions secondaires : Caméra	14
Tableau 14 - Signaux secondaires : Caméra	
Tableau 15 - Fonctions secondaires : Alimentation	15
Tableau 16 - Signaux secondaires : Alimentation	
Tableau 17 - Fonctions secondaires : Programmateur	
Tableau 18 - Signaux secondaires : Programmateur	
Tableau 19 - Fonctions structurelles : LAN	17
Tableau 20 - Filtrage : LAN	
Tableau 21 - Fonctions structurelles : WAN	21
Tableau 22 - Fonctions structurelles : Interface	
Tableau 23 - Fonctions structurelles : USB/Alimentation	
Tableau 24 - Consommation	25
Tableau 25 - Fonctions structurelles : Debug	
Tableau 26 - Fonctions structurelles : Micro	31

Introduction

Dans le cadre de notre cours de conception électronique avec Cyril Sagonero et Lucas Testa, il nous a été demandé de réaliser une carte de développement STM32. Ce projet a démarré le 14 novembre 2019 et se termine le 10 Janvier. L'objectif est de nous faire concevoir de A à Z une carte de développement STM32 répondant du mieux possible aux normes CEM. Les tests de validité de la carte ne seront pas effectués mais ce projet nous responsabilisera à ces normes.

Afin de nous faire gagner du temps certains composants nous ont étés imposés, on peut donc établir une liste des connectivités imposés.

Microcontrôleur (Composant : STM32H750VBT6)

- Ethernet (Composant : KSZ8081RNA)

Flash NAND (Composant : W25N01GVZEIT)

Bluetooth (BLUENRG-232)

Port Caméra (OV7670)

Il nous a également été imposé de respecter une dimension de la carte de 8cm par 8cm. De plus, en bonus, nous avons le choix d'ajouter ou non une SRAM. Nous avons décidé par nous-même, que dans le cadre une carte de développement, ajouter un programmateur interne serait judicieux. Cela permettrait d'avoir tout en un. Nous ajoutons donc le programmateur interne à notre cahier des charges.

Schémas fonctionnel

Niveau 1

Figure 1 - Diagramme fonctionnel de niveau 1

Numéro	Nom	Description
Fp1	Contrôler	Assurer la coordination entre les modules via un
		algorithme.
Fp2	Communiquer via Bluetooth	Assurer une communication Bluetooth avec un autre
		appareil. Permettre de plus la programmation de la
		fonction principale 1
Fp3	Communiquer via Ethernet	Assurer une communication via la protocole Ethernet
Fp4	Communiquer via USB	Assurer une communication via le protocole USB
Fp5	Communiquer avec les	Assurer une compatibilité avec les modules
	modules MikroElectronica	MikroElectronica via le socket Mikrobus
Fp6	Alimenter	Assurer l'alimentation des différentes fonctions.
Fp7	Programmer	Permettre la programmation et le Debug de l'algorithme
		envoyé au la fonction principale 1
Fp8	Communiquer avec une	Etablir le paramétrage et l'acquisition des données d'une
	caméra	caméra

Tableau 1 - Fonctions principales

Signaux

Nom	Туре	Description
Vbus	Signal continue	Alimentation brute non filtrée
Alim	Signal continue	Alimentation régulé et filtrée
USB	Signal numérique différentiel	Signal numérique de communication USB
Mkb	Ensemble de signaux	Ensemble de signaux numérique : SPI, UART, PWM, I2C,
	numérique et continue	mais aussi un signal analogique, un signal d'interruption,
		et un de reset
BLE	Signal numérique	Signal numérique de communication UART
Eth	Signal numérique	Signal numérique de communication Ethernet
SW	Signal numérique	Signal numérique de programmation SW
DCMI	Signal numérique	Signal numérique de communication DCMI

Tableau 2 - Signaux principaux

Niveau 2

Les liaisons laissés en l'air représentent une connexion avec un bloque fonctionnel extérieur.

Contrôler

Figure 2 - Diagramme fonctionnel niveau 2 : Contrôler

Fonctions

Numéro	Nom	Description
Fs1.1	Contrôler	Elément permettant l'exécution d'un programme
Fs1.2	Etendre la Flash	Etendre l'espace de stockage Flash de la fonction Contrôler
Fs1.3	Osciller à 32KHz	Cadencer à 32KHz la fonction Contrôler
Fs1.4	Osciller à 8MHz	Cadencer à 8MHz la fonction Contrôler
Fs1.5	Filtrer	Filtrer l'alimentation de la fonction Contrôler
Fs1.6	Filtrer	Filtrer l'alimentation de la fonction Etendre la Flash
Fs1.7	Assurer l'état de Reset	Maintenir l'état de reset pour une temps minimal
Fs1.8	Protéger	Protéger la ligne contre un courant excessif

Tableau 3 - Fonctions secondaire : Contrôler

Signaux

Nom	Type de signal	Description
3.3v	Alimentation continue	Alimentation des fonctions
3.3v_f	Alimentation continue	Alimentation filtré des fonctions
8MHz	Signal alternatif	Signal de cadencement
32KHz	Signal alternatif	Signal de cadencement
USB	Signal numérique	Signal de communication USB
Eth	Signaux numérique	Signal de communication Ethernet
Mkb	Signaux numérique	Ensemble de signaux de communication Mikrobus
Cam	Signaux numérique	Ensemble de signaux de communication Camera
SW	Signaux numérique	Signal de programmation
BLE	Signaux numérique	Signaux de communication BLE
Rst	Signal tout ou rien	Signal Reset de la fonction Contrôler
Rst_Wan	Signal tout ou rien	Signal de Reset de la Wan

Tableau 4 - Signaux secondaire : Contrôler

Communiquer via Bluetooth

Figure 3 - Diagramme fonctionnel niveau 2 : Bluetooth

Numéro	Fonction	Description
Fs2.1	Gérer le Bluetooth	Gère à la fois le protocole Bluetooth ainsi que le
		passage en RF
Fs2.2	Filtrer	Filtrer l'alimentation
Fs2.3	Permettre un reset externe	Maintenir l'état reset suffisamment longtemps
		pour qu'il soit pris en compte
Fs2.4	Adapter la ligne de communication	Adapter la ligne de communication
Fs2.5	Protéger	Protéger la ligne contre des sur courants
Fs2.6	Adapter la ligne	Adapter la ligne RF sur 50Ω
Fs2.7	Connecter une antenne	Connecter une antenne Bluetooth externe
Fs2.8	Cadencer	Cadencer le contrôleur
Fs2.9	Fournir une haute fréquence	Fournir au contrôleur une fréquence haute qu'il
		pourra exploiter

Tableau 5 - Fonctions secondaires : Bluetooth

Signaux

Nom	Type de signal	Description
3.3v	Signal d'alimentation	Signal d'alimentation 3.3v non filtré
3.3_f	Signal d'alimentation	Signal d'alimentation 3.3v filtré
SW	Signal numérique	Signal de programmation
UART	Signal numérique	Signal de communication et de programmation micro/BLE
32MHz	Signal alternatif	Signal servant à générer du 2.4GHz au BLE
RF	Signal HF	Signal 2.4GHz modulé
32KHz	Signal alternatif	Signal de cadencement du BLE
Rst	Signal tout ou rien	Signal de reset du BLE
Rst_micro	Signal tout ou rien	Signal ordonnant au micro un reset

Tableau 6 - Signaux secondaire : Bluetooth

Communiquer via Ethernet 3.3v Filtrer Cadencer -3.3v_f 25MHz Fs3.2 Fs3.7 Assurer la fonction Gerer le protocole -Rst -RMII-≯ Protéger -Rst**>** RMII→ Reset Ethernet Fs3.6 Fs3.3 Fs3.1 Eth Assurer une Montrer à l'utilisateur Filtrer **←**Eth→ connectivité RJ45 Fs3.5 Fs3.2 Fs3.4

Figure 4 - Diagramme fonctionnel niveau 2 : Ethernet

Fonctions

Led-

Numéro	Fonction	Description
Fs2.1	Gérer le Bluetooth	Gère à la fois le protocole Bluetooth ainsi que le passage en RF
Fs2.2	Filtrer	Filtrer l'alimentation
Fs2.3	Permettre un reset	Maintenir l'état reset suffisamment longtemps pour qu'il
	externe	soit pris en compte
Fs2.4	Adapter la ligne de	Adapter la ligne de communication
	communication	
Fs2.5	Protéger	Protéger la ligne contre des sur courants
Fs2.6	Adapter la ligne	Adapter la ligne RF sur 50Ω
Fs2.7	Connecter une	Connecter une antenne Bluetooth externe
	antenne	
Fs2.8	Cadencer	Cadencer le contrôleur
Fs2.9	Fournir une haute	Fournir au contrôleur une fréquence haute qu'il pourra
	fréquence	exploiter

Tableau 7 - Fonctions secondaires : Bluetooth

Signaux

Nom	Type de signal	Description
3.3v	Signal d'alimentation	Signal d'alimentation 3.3v non filtré
3.3v_f	Signal d'alimentation	Signal d'alimentation 3.3v filtré
25MHz	Signal alternatif	Signal de cadencement du phy
RMII	Signal numérique	Signal de communication micro/phy
Eth	Signal numérique différentiel	Signal de communication phy/périphérique
Led	Signal tout ou rien	Signal montrant qu'une communication s'opère
Rst	Signal tout ou rien	Signal ordonnant le reset du phy

Tableau 8 - Signaux secondaires : Bluetooth

Communiquer via USB

Figure 5 - Diagramme fonctionnel niveau 2 : USB

Fonctions

Numéro	Nom	Description
Fs4.1	Permettre le branchement à un	Port standard permettant la connexion avec un Host
	périphérique	
Fs4.2	Protéger	Protéger le système d'une puissance excessive

Tableau 9 - Fonctions secondaires : USB

Signaux

Nom	Туре	Description
5v	Signal continue	Alimentation 5v permettant l'alimentation
USB_5	Signal numérique	Signal numérique 0-5v différentiel
USB	Signal numérique	Signal numérique différentiel

Tableau 10 - Signaux secondaires : USB

Communiquer avec les modules MikroElectronica

Figure 6 - Diagramme fonctionnel niveau 2 : MikroElectronica

Fonctions

Numéro	Nom	Description
Fs5.1	Permettre la compatibilité avec	Permettre le branchement des différents modules
	le support Mikrobus	MikroElectronica disposant d'un port mikrobus

Tableau 11 - Fonctions secondaires : MikroElectronica

Signaux

Nom	Туре	Description	
5v	Signal continue	Alimentation 5v permettant l'alimentation	
3.3v	Signal continue	Alimentation 3.3v permettant l'alimentation	
Mkb	Signal numérique	Ensemble de signaux numérique et de bus de communication	
		synchrone et asynchrone duplex	

Tableau 12 - Signaux secondaires : Mikroelectronica

Communiquer avec une caméra

Figure 7 - Diagramme fonctionnel niveau 2 : Caméra

Fonctions

Numéro	Fonction	Description	
Fs8.1	Permettre le branchement de la caméra	Brochage permettant le branchement	
		direct d'un module OV7670	
Fs8.2	Cadencer la caméra et le contrôleur		
Fs8.3	Protéger la caméra d'un courant excessit		
Fs8.4	Adapter le protocole de communication	Maintenir l'état un état haut par défaut en	
		permanence	

Tableau 13 - Fonctions secondaires : Caméra

Signaux

Nom	Type de signal	Description
3.3v	Signal d'alimentation	Signal d'alimentation 3.3v non filtré
12C	Signal numérique	Signal I2C permettant la configuration de la caméra
DCMI	Signal numérique	Signal DCMI permettant l'envois de l'image capturé
24MHz	Signal alternatif	Signal de cadencement partagé entre la caméra et le micro

Tableau 14 - Signaux secondaires : Caméra

Alimenter

Figure 8 - Diagramme fonctionnel niveau 2 : Alimentation

Numéro	Nom	Description
Fs6.1	Permettre la branchement d'une	Permettre la connexion d'une alimentation externe
	alimentation Jack	et standard
Fs6.2	Stabiliser l'alimentation 5v	Convertit et stabilise la tension d'entrée en tension 5v
		stable
Fs6.3	Stabiliser l'alimentation 3.3v	Convertit et stabilise la tension d'entrée en tension
		3.3v stable
Fs6.4	Montrer à l'utilisateur le bon	Montrer à l'utilisateur, par un moyen rapide à
	fonctionnement de	visualiser, le bon fonctionnement de l'alimentation
	l'alimentation	

Tableau 15 - Fonctions secondaires : Alimentation

Signaux

Nom	Туре	Description
12v	Tension d'alimentation	Alimentation 12v en attente d'être convertie
5v	Tension d'alimentation	Alimentation 5v dédié au Mikrobus
5v_USB	Tension d'alimentation	Alimentation 3.3v dédié à la quasi-totalité de la carte

Tableau 16 - Signaux secondaires : Alimentation

Programmer

Figure 9 - Diagramme fonctionnel niveau 2 : Programmateur

Numéro	Fonction	Description
Fs7.1	Exécuter le programme	Exécute le programme de Debug (STLINK) et sert
	de Debug	d'intermédiaire entre PC et Microcontrôleur
Fs7.2	Cadencer	Cadencer le debugger
Fs7.3	Configurer	Configurer le debugger pour qu'il s'accorde avec le
		programme STLINK
Fs7.4	Filtrer	Filtrer l'alimentation d'éventuels parasites
Fs7.5	Protéger	Protéger le contrôleur contre un sur courant éventuel
Fs7.6	Montrer à l'utilisateur	Montrer à l'utilisateur le bon fonctionnement du Debug
Fs7.8	Permettre la connexion	Permettre une connexion débuggeur/ordinateur
	avec un ordinateur	
Fs7.9	Protéger	Protéger le débuggeur contre les surtensions et sur courants
Fs7.10	Permettre un Reset	Permettre un reset manuel du contrôleur et du module
	manuel	Bluetooth
Fs7.11	Multiplexer la	Permettre la programmation du contrôleur et du BLE via un
	programmation	switch

Tableau 17 - Fonctions secondaires : Programmateur

Signaux

Nom	Type de signal	Description
3.3v	Signal d'alimentation	Signal d'alimentation 3.3v non filtré
3.3v_f	Signal d'alimentation	Signal d'alimentation 3.3v non filtré
Conf	Signal tout ou rien	Signal de configuration du contrôleur Debug
Led	Signal tout ou rien	Signal indiquant une programmation en cours
SW	Signal numérique	Signal de programmation
8MHz	Signal alternatif	Signal de cadencement
USB	Signal numérique différentiel	Signal de communication USB interfaçant débuggeur et
		PC

Tableau 18 - Signaux secondaires : Programmateur

Analyse structurel

Lan

Figure 10 - Diagramme structurel : LAN

Fonctions

Numéro	Fonction	Description	Composants
Fs3.1	Gérer le protocole Envoyer et recevoir des trames		U4, R39, R36, R34
	Ethernet	Ethernet	
Fs3.2	Filtrer	Filtrer l'alimentation et éliminer	C10, C11, C12, C13, C14,
		tous les signaux indésirables	C15, C16, C17, C21, C22, F1
Fs3.3	Protéger	Protéger les composants d'une	R32, R33, R35, R37, R38,
		éventuelle différence de potentiel	R40
Fs3.4	Assurer une	Permettre le branchement d'un	R41, R42, R43, R44, R45,
	connectivité RJ45	câble Ethernet RJ45	R46, J3
Fs3.5	Montrer à	Montrer à l'utilisateur qu'une	R48
	l'utilisateur	communication a bien lieu	
Fs3.6	Assurer la fonction	ion Veiller à maintenir suffisamment D2, D3, R47, C20	
	Reset	longtemps l'état de reset	
Fs3.7	Cadencer	Donner une fréquence de	Q2, C18, C19
		fonctionnement au composant	
		principale	
Tahlagu 10 I	Tableau 19 - Fonctions structurelles · I AN		

Tableau 19 - Fonctions structurelles : LAN

Phy et Environnement

Comme dit précédemment, le composant principal, à savoir le Phy Ethernet, ou PhyCeiver, nous a été imposé : il s'agit du KSZ8081RNA. Concernant donc le paramétrage de ce composant, la datasheet nous explique de connecter la broche REXT à une résistance de $6.49k\Omega$, celle-ci permettant au phy lui-même de déterminer son courant de sortie. Les résistances R36 et R34 sont des résistances de tirages afin d'imposer une tension haute sur la ligne, leur valeur importe peu.

Connecteur

Le connecteur choisis est un connecteur Ethernet 8 contacts. Il intègre deux led qui permet de gagner de la place sur le montage en évitant d'ajouter une led externe. La normalisation de ce connecteur permet une compatibilité maximum avec les équipements équipé pour communiquer en Ethernet. Ce connecteur intègre également un filtrage magnétique, qui nous évite de mettre un magnétique externe qui prendrait une place très importante.

Filtrage

Le filtrage se fait au travers de condensateur de découplage. Ainsi, en fonction du courant consommé, on pourra en déduire une résistance équivalente, et donc un filtre RC dont la fréquence de coupure se calcule par : $f=\frac{1}{2\pi RC}$. Le condensateur n'étant pas un composant parfait, on placera en général un deuxième condensateur environ à une décade au-dessus pour filtrer les fréquences plus hautes.

Couple	Fréquence de coupure
C16, C17	1.5MHz
C21, C22	1.5MHz
C10, C11	15.9KHz
C12, C13	NC*
C14, C15	5.7KHz

Tableau 20 - Filtrage : LAN

Reset

Figure 16. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output

Figure 11 - Reset : LAN

Pour l'interface reset du phy Ethernet, j'ai utilisé la note d'application fournit par la datasheet de ce dernier, expliquant le schéma et le détail des composant à utiliser dans le cadre d'un reset commandé par un composant externe type FPGA ou CPU.

^{*}Consommation interne non spécifié, la datasheet conseille de connecter à la broche VDD_1.2 deux condensateurs $0.1\mu F$ et $2.2\mu F$

Horloge

L'horloge est fournie par un quartz à 25MHz, comme préconisé dans la datasheet. Cette option étant la moins contraignante par rapport à un oscillateur actif et plus précis qu'un oscillateur interne. Les condensateurs sous le quartz doivent être adapté à ce dernier. Sur le quartz sélectionné, la capacité de charge est indiquée à 12pF. Ce qui signifie que le calcule $\frac{C_{18}\cdot C_{19}}{C_{18}+C_{19}}$ doit être égale à la capacité de charge. Ou, pour simplifier les calcule, on peut dire que les capacités doivent être environ égales au double de la capacité de charge du quartz. Donc dans notre cas, 24pF. Idéalement il serait mieux de prendre en compte la capacité parasite de la piste (Environ entre 2pF et 5pF) qui devrait alors s'ajouter au calcul produit sur somme. Cependant, on peut considérer cette capacité parasite comme négligeable.

Protection

Les résistances en série sur les ports de communications sont une protection. En effet, si la tension de sortie des deux broches diffère, ces résistances limitent le courant. La tension de sortie minimum du phy étant de 2.4v, et la tension de sortie du microcontrôleur étant au maximum de 3.3v, le courant sera, dans le pire des cas de 9mA.

Wan

Figure 12 - Diagramme structurel : WAN

Numéro	Fonction	Description	Composants
Fs2.1	Gérer le Bluetooth	Gère à la fois le protocole Bluetooth ainsi	U10
		que le passage en RF	
Fs2.2	Filtrer	Filtrer l'alimentation	C59, C60, C55, C56,
			C57, C58, C62, C63,
			C64, C65
Fs2.3	Permettre un reset	Maintenir l'état reset suffisamment	R66, C61
	externe	longtemps pour qu'il soit pris en compte	
Fs2.4	Adapter la ligne de	Adapter la ligne de communication	R61, R62
	communication		
Fs2.5	Protéger	Protéger la ligne contre des sur courants	R63, R64, R65
Fs2.6	Adapter la ligne	Adapter la ligne RF sur 50Ω	U11, C66, C67, R50
Fs2.7	Connecter une	Connecter une antenne Bluetooth	ANT1
	antenne	externe	
Fs2.8	Cadencer	Cadencer le contrôleur	Q5, C68, C69, L4
Fs2.9	Fournir une haute	Fournir au contrôleur une fréquence	Q6, C70, C71, L3
	fréquence	haute qu'il pourra exploiter	

Tableau 21 - Fonctions structurelles : WAN

Filtrage

Pour une consommation maximale de 30mA, les condensateurs raccordés aux broches VBAT filtrent à la fréquence 15KHz. En revanche, les autres condensateurs sont raccordés à des régulateurs internes et les valeurs de condensateurs sont donnés par la datasheet.

Connection

Le connecteur d'antenne choisis est un connecteur UFL. Celui-ci présente l'avantage de pouvoir changer d'antenne, mais aussi d'être très peu gourmand en terme de place, comparé à un SMA par exemple. Par contre, il est très peu recommandé dans les appareils soumis à des vibrations ou secousses. On préférera alors utiliser un SMA.

Programmation

Pour la programmation de ce microcontrôleur, nous avons choisis deux options : D'une part la programmation peut être faite à travers le microcontrôleur principale (STM32). Celui-ci est alors raccordé en UART (qui permet la programmation) et un GPIO est relié au reset du BLE afin de compléter la programmation. Mais dans le cas où on souhaitera de débugger le BLE seul nous avons également ajouté une programmation SW, donc raccordé à un système de Debug STLINK.

Reset

Le système de reset est exactement similaire à celui présent sur le micro, les calculs y sont détaillés.

Cadencement

Le cadencement se fait via 2 quartz. Le premier, basse fréquence, permet de cadencer le microcontrôleur, a 32KHz. Les condensateurs associés sont calculés et expliqué dans la partie LAN, ceux-ci dépendent de la capacité de charge du quartz. La self quant à elle permet de préciser la fréquence et est fourni par la datasheet. Le second quartz, à 32MHz, permet au BLE de créer par PLL une haute fréquence (2.4GHz).

Adaptation

L'adaptions de la ligne HF est très importante sans quoi une grande partie de l'énergie sera perdu. On place donc une adaptation 50Ω en sortie du BLE, et on place également une adaptation en π avec des composants nuls. On pourra alors modifier la valeur des composants après des tests pour affiner le réglage.

Interface

Figure 13 - Diagramme structurel : Interface

Numéro	Fonction	Description	Composants
Fs8.1	Permettre le branchement de la caméra	Brochage permettant le branchement direct d'un module OV7670	J2
Fs8.2	Cadencer	Cadencer la caméra et le contrôleur	X1, R30, R31, C9
Fs8.3	Protéger	Protéger la caméra d'un courant excessif	R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29
Fs8.4	Adapter le protocole de communication	Maintenir l'état un état haut par défaut en permanence	R17, R18
Fs5.1	Communiquer avec les modules MikroElectronica	Permettre le branchement de modules MikroElectronica	Mikrobus1

Tableau 22 - Fonctions structurelles : Interface

Protection

Les résistances de 22Ω font office de protection contre les différences de potentiels. Ainsi la tension minimum de la camera est de 2.97, ce qui fait un courant maximum de 15mA sur ces broches.

Horloge

Pour cadencer la caméra, nous avons choisis un oscillateur externe, plus précis qu'un quart, mais légèrement plus contraignant car il faut l'alimenter. Cependant il était nécessaire car il était impossible d'atteindre la fréquence de 24MHz avec les quartz que nous avons choisis.

USB & Alimentation

Figure 14 - Diagramme structurel : USB/Alimentation

Numéro	Fonction	Description	Composants
Fs4.1	Permettre le branchement d'un périphérique USB	Permettre le branchement d'un périphérique USB en respectant les normes au niveau des connectiques.	J4
Fs4.2	Protéger	Eviter les surtensions ainsi que les courants excessifs	U6, R52, R53
Fs6.1	Permettre le branchement d'une alimentation Jack	Permettre le branchement d'une alimentation jack en respectant les normes au niveau des connectiques	D5
Fs6.2	Réguler une tension 5v	Réguler une tension de 5v que la tension d'entrée soit de 5v ou 12v.	D4, D6, D7, C52, C53, R60, C54, U9, L1, C48, R59, C49, C50, C51
Fs6.3	Réguler une tension de 3.3v	Réguler une tension à 3.3v en limitant au mieux les parasites	C42, U7, C46, R57, R54, R58, C43, C44, U8, C47, R56, C45
Fs6.4	Montrer à l'utilisateur le bon fonctionnement de l'alimentation	Montrer à l'utilisateur, par un moyen rapide à visualiser, le bon fonctionnement de l'alimentation	R55, D4

Tableau 23 - Fonctions structurelles : USB/Alimentation

USB

Le module de protection USBLC6-2P6 protège le microcontrôleur des éventuelles surtensions, en effet, il peut supporter jusqu'à 15kV en pic. Les deux résistances sont là, comme dit précédemment, pour éviter les courant excessifs. On limite donc le courant à une vingtaine de mA. Le connecteur quant à lui sera de type Mini-USB femelle, celui-ci étant largement rependu pour les Devices. La broche ID du connecteur servira au second périphérique, pour déterminer si notre carte est un Host ou un Device. Câblé à la masse, il s'agit d'un Device.

Alimentations

DC/DC

L'alimentation est une partie à ne pas négliger. Elle doit effet permettre de délivrer, en plus de la tension, le courant ainsi que la dissipation nécessaire. Pour commencer j'ai mis en commun toutes les tensions par le biais de diodes afin d'éviter le retour de courants.

Par la suite, j'ai opté pour un régulateur à découpage, permettant d'abaisser la tension à 5v. Ceux-ci permettent une chute de tension plus importantes pour un même courant consommé sans que la montée en température ne devienne un gros inconvénient.

Partie Partie	Consommation
Microcontrôleur	620mA
Mikrobus	630mA
Debug	150mA
Camera	18mA
Lan	47mA
Wan	30mA
Total	1.5A

Tableau 24 - Consommation

Le tableau ci-dessus représente la consommation de chacune des parties. La partie Mikrobus étant composé de modules de constructeur différents, il est difficile d'estimer une consommation. J'ai donc arrondi afin que la consommation totale de la carte soit d'1.5A à plein régime. Nous devons donc nous assurer que les alimentations soient capables de délivrer ce courant.

La première partie est donc composé d'un buck-boost à sortie fixe 5v qui se chargera de réguler une tension avec une entrée variant de 3.8v à 12v. Celui-ci est capable de délivrer jusqu'à 2A. Pour sa mise

Figure 15 - Application typique buck/boost

en place, j'ai utilisé principalement l'application typique fournit par le constructeur pour les buck-boost à sortie fixe 5v. On peut tout de même calculer la dissipation du boitier.

Pour se faire, il va d'abord falloir calculer la puissance dissipée par l'alimentation. On utilisera donc cette formule : $P = \frac{V_{out} \cdot I_{out}}{Rendement} - (V_{out} \cdot I_{out}) = 0.83W$. A raison d'une dissipation de 63°C/W, l'élévation de température sera de 53°C. Même avec une température ambiante élevé (40°C), cela reste largement raisonnable par rapport à la

température de fonctionnement maximum du composant (125°C)

LDO

Pour ensuite abaisser la tension à 3.3v, il aurait été intéressant d'utiliser un DC/DC, cependant, ce dernier engendre un bruit sur l'alimentation non négligeable provoqué par son mode de fonctionnement. Ceci n'est pas souhaitable et on utilise généralement un LDO pour filtrer ce bruit. J'ai donc décidé de mettre en place un LDO. Mais le courant étant relativement important, il est difficile de mettre en place un LDO capable de dissiper $(V_{in}-V_{out})\cdot I=2.55W$. Il était alors possible de mettre en place un DC/DC suivis d'un LDO, mais l'environnement du DC/DC étant assez imposant, il est plus judicieux économiquement de placer deux LDO en cascade, ceux-ci se partageant alors la dissipation.

J'ai donc dans un premier temps divisé par deux le drop-out nécessaire : $\frac{5-3.3}{2}=0.85V$ et ai donc décidé de dimensionner un LDO pour réguler une tension de 5-0.85=4.15V. J'ai utilisé pour ce faire des MCP1726 qui peuvent se décliner en deux versions : ajustable ou non. Pour le premier on dimensionne donc le pont diviseur lié à la broche Sense, celle-ci réglant la tension de sortie par cette formule : $V_{out}=0.41\frac{R_{54}+R_{57}}{R_{57}}=4.15V$. On peut alors calculer la dissipation, qui s'élève à 1.275*41=53°C d'élévation de température. En prenant en compte le fait que le composant fonctionne jusqu'à 125°C, c'est tout à fait acceptable.

Pour le second, j'ai utilisé le même régulateur, mais afin de limiter les composants externes, j'ai choisis la version à sortie fixe à 3.3v. Il a donc suffi de condensateurs filtrage et c'est tout.

Led

J'ai également placé une led afin de montrer à l'utilisateur que l'alimentation fonctionne. Celleci fonctionnant sous 20mA, et la chute de tension de la diode étant de 1.6v, une résistance de 100Ω permet un courant de 17mA.

Debug

Figure 16 - Diagramme structurel : Debug

Figure 17 Diagramme structurel : Debug USB

Figure 18 - Diagramme structurel Debug Multiplex

Numéro	Fonction	Description	Composants
Fs7.1	Exécuter le programme	Exécute le programme de Debug	U2
	de Debug	(STLINK) et sert d'intermédiaire	
		entre PC et Microcontrôleur	
Fs7.2	Cadencer	Cadencer le debugger	Q1, C5, C6
Fs7.3	Configurer	Configurer le debugger pour qu'il	R1, R2, R3, R7, R8, R9
		s'accorde avec le programme	
		STLINK	
Fs7.4	Filtrer	Filtrer l'alimentation d'éventuels	C1, C2, C3, C4
		parasites	
Fs7.5	Protéger	Protéger le contrôleur contre un sur	R11, R12, R13
		courant éventuel	
Fs7.6	Montrer à l'utilisateur	Montrer à l'utilisateur le bon	R10, D1
		fonctionnement du Debug	
Fs7.8	Permettre la connexion	Permettre une connexion	J1
	avec un ordinateur	débuggeur/ordinateur	
Fs7.9	Protéger	Protéger le débuggeur contre les	U3, R14, R15, R16
		surtensions et sur courants	
Fs7.10	Permettre un Reset	Permettre un reset manuel du	R4, R5, R6, BP1, C7
	manuel	contrôleur et du module Bluetooth	
Fs7.11	Multiplexer la	Permettre la programmation du	U1, S1
	programmation	contrôleur et du BLE via un switch	

Tableau 25 - Fonctions structurelles : Debug

Configuration

Pour s'assurer de la compatibilité du programme STLINK V2 avec notre débuggeur, j'ai utilisé la schématique de la Dev-Board STM34F4 Discovery. Sur ce dernier, j'ai pu déterminer les connexion SWDIO, SWCLK et Reset ainsi que le cadencement. Cette schématique m'a également fourni les résistances de filtrage.

Connection

La connexion entre le débuggeur et l'ordinateur se fera par le biais d'un micro-USB, largement rependu pour les Devices. On n'oubliera pas le circuit de protection pour éviter les surtensions et les courants excessifs. Cette partie est exactement la même que la connexion qui se fera du contrôleur à l'ordinateur.

Reset

J'ai choisis de placer le reset en amont du multiplexeur afin d'éviter d'en placer deux. Le bouton force donc simplement la broche à l'état bas. La résistance de tirage et la capa sont là pour s'assurer que l'état bas reste tel quel suffisamment longtemps pour qu'il soit pris en compte. Le calcul de ce temps est détaillé dans la partie Micro. Les deux résistances en série sont là pour éviter un retour de courant trop important.

Multiplexeur

Le multiplexeur évite de devoir mettre en œuvre deux débuggeur. On choisira donc grâce à un micro switch quel contrôleur (BLE ou Micro) programmer.

Micro

Figure 19 - Diagramme structurel : Nand Flash

Figure 20 - Diagramme structurel: Clock

Figure 21 - Diagramme structurel : Micro

Figure 22 - Diagramme structurel Micro BLE

Numéro	Fonction	Description	Composants
Fs1.1	Contrôler	Elément permettant l'exécution d'un	U12
		programme	
Fs1.2	Etendre la Flash	Etendre l'espace de stockage Flash de la	U5
		fonction Contrôler	
Fs1.3	Osciller à 32KHz	Cadencer à 32KHz la fonction Contrôler	Q3, C40, C41
Fs1.4	Osciller à 8MHz	Cadencer à 8MHz la fonction Contrôler	Q4, C38, C39
Fs1.5	Filtrer	Filtrer l'alimentation de la fonction	C25, C26, C27, C29,
		Contrôler	C30, C31, C32, C33,
			C34, C35, C36, C37
Fs1.6	Filtrer	Filtrer l'alimentation de la fonction Etendre	C23, C24
		la Flash	
Fs1.7	Assurer l'état de	S'assurer que l'état bas de Reset soit	R49, C28
	Reset	maintenu suffisamment longtemps pour	
		être compris par la fonction Contrôler	
Fs1.8	Protéger	Protéger la broche Reset du Wan contre un	R51
		courant excessif	

Tableau 26 - Fonctions structurelles : Micro

Cube mx

Figure 23 - Fonctions CubeMX

Figure 24 - Pinout CubeMX

Nand Flash

La Nand flash communique en QSPI, qui est une SPI composé de 4 fils. Pour la mettre en œuvre, il nous a donc simplement fallu activer la QSPI sur notre microcontrôleur.

Programmation

La programmation pourra se faire de deux façons. D'une part par le protocole SW permettant le Debug via un débuggeur STLINK. Mais d'autre part on pourra programmer le micro via Bluetooth. En effet, le BLE est relié au micro via une UART permettant la programmation, et un GPIO du BLE est dédié au reset du micro.

Cadencement

Le cadencement du microcontrôleur se fera par des quartz pour les raisons citées précédemment. Pour exploiter tout le potentiel de notre microcontrôleur, j'ai choisis d'intégrer sur notre carte 2 quartz. Un haute fréquence, et un basse fréquence.

Afin d'atteindre la fréquence maximale de fonctionnement de 480MHZ, il est nécessaire que l'oscillation externe soit de 8MHz comme le montre la capture d'écran de CubeMX ci-dessous. De même, pour profiter d'un OS temps réel sur notre carte, une oscillation basse fréquence est indispensable. Un quartz à 32.768KHz est donc indispensable. Le détail des calculs pour les capacités de charges sont exprimés dans la sous-partie Horloge de la LAN.

Figure 25 - Clock CubeMX

Reset

Le Reset s'effectue sur le microcontrôleur par la présence d'un état bas sur la broche Reset. Cependant, cet état doit être maintenu suffisamment de temps pour s'assurer de la bonne compréhension du Reset. Ainsi, grâce à ce montage, lorsque la broche reset est forcée à l'état bas, le condensateur se décharge instantanément. Mais il mettra un certain temps à se charger, temps caractérisé par la valeur du couple $\tau=RC=1ms$. Or, d'après la datasheet de notre microcontrôleur, l'état bas doit être maintenu pendant 377 μ s.

La charge d'un condensateur est caractérisé par la formule suivante $u(t)=3.3(1-e^{\frac{-t}{\tau}})$. On peut donc calculer la tension à ses bornes après 377 μ s : $u(377\mu s)=1V$. Or la technologie CMOS indique qu'un état bas sera lu si la broche est au maximum à $0.3 \cdot 3=1V$.

Filtrage D3 domain (System logic, EXTI, CPU, periphera RAM) 10 D2 domain RAM) RAM) Flash HSE, PLLS regulato RTC, Wakeup logic, backup 10 RAM REF BUF ADC, DAC OPAMP

Pour satisfaire le filtrage du microcontrôleur, j'ai utilisé la note d'application fournit par la datasheet du constructeur. Il est donc inscrit sur celleci la valeur de chaque condensateur ainsi que la broche à laquelle la rattacher.

Concernant la flash externe, pour un courant de fonctionnement maximum de 35mA, la résistance équivalente est donc de 100Ω . Les condensateurs de découplages coupent donc à la fréquence de 15KHz.

Figure 26 - Filtrage Micro

SRAM

La SRAM, fonctionnant sur un port parallèle, pour une vitesse de transfert maximum, était un composant facultatif proposé. Cependant, en vue de l'encombrement de notre microcontrôleur, il nous a été impossible de trouver un port parallèle complet, disponible, et compatible avec une SRAM. Nous avons donc dû nous résoudre à ne pas l'inclure.

Routage

Stack-up

Le but de notre carte est de respecter au mieux les normes CEM. Notre carte comportera donc 4 couches, deux couches de signaux, une couche de masse et une couche d'alim. De plus, un se basera

sur un stack-up FR4, qui définit l'épaisseur du cuivre ainsi l'épaisseur et la nature du diélectrique. Voici donc un aperçu de l'épaisseur du cuivre ainsi que celui du diélectrique. On peut également ajouter la constante diélectrique qui se mesure généralement à 1MHz et qui vaut, pour du FR4, à une valeur compris entre 4.2–4.8.

Figure 27 - Stack-up

Règles

DCMI

Le DCMI est un protocole de communication dédié aux équipement de capture d'image ou de vidéo. La fréquence de ce dernier dépend de la fréquence de rafraichissement de notre module de capture. Dans notre cas 24MHz. Il est composé de différentes horloges et d'un port parallèle donnant la valeur des pixels. La rapidité de ce protocole de communication nous impose des contraintes lors du routage. Ici, les lignes du DCMI doivent toutes faire environ la même longueur. La datasheet nous explique qu'une tolérance est possible à 7mm près, mais je l'ai personnellement abaissé à 2.

Ethernet

L'Ethernet se décompose en deux parties, d'une part les pairs différentiels qui proviennent du connecteur Ethernet et d'autre part du protocole RMII entre le phy et le micro. Ce protocole dont la vitesse maximum est de 100MHz, subit les mêmes contraintes que le DCMI. Un écart de longueur au niveau des pistes impliquerait un déphasage, j'ai donc limité l'écart de longueur entre les pistes à 2mm.

Pair différentiels

Ethernet Differential Pairs Target Zdiff Formula Restrictions: Conductor Width (W) mm Ohms 0.1 < W/H < 3.0 0.1 < S/H < 3.0 Conductor Spacing (S) 0,3 mm Conductor Height (H) 0,14 mm W/H = 1.429S/H = 2.1437differential 91.190 Ohms 48.575 Ohms +/- Tolerance = 2.5% 93,469 Ohms

Figure 28 - Paire différentiel Ethernet

88.910 Ohms

Entre le connecteur Ethernet et le phy, le signal se propage à travers deux pairs différentiels. En connaissant la distance séparant les pistes de la couche internet (voir le stack-up), et en faisant varier l'espacement des lignes et la largeur des pistes, on peut arriver à trouver une impédance différentielle de 90Ω et une impédance caractéristique à 50Ω . Pour se faire, nous avons utilisé le logiciel PCB Saturn. Celui-ci intègre les formules afin de calculer les impédances caractéristiques.

USB

De même pour l'USB, bien que les valeurs soient légèrement différentes, le résultat est sensiblement le même.

Figure 29 - Paire différentiel USB

QSPI

Le signal QSPI correspond au signal entre la Flash externe est le micro. Il se doit d'être très rapide. On peut lire sur la datasheet de la Nand Flash que la vitesse de transfert QSPI peut atteindre 416MHz. Lors du routage, nous devons donc faire attention à ce que les lignes aient la même longueur (j'ai choisis 2mm). Exception faite du signal d'horloge, qui risque de rayonner de façon importante si l'adaptation en longueur est trop importante. On fera donc également attention à ne pas positionner la flash trop loin du micro.

Figure 30 - Adaptation RF

La ligne RF, directement sortie du BLE se doit d'être adapté à 50Ω afin que l'énergie apporté ne soit pas perdue. C'est pourquoi la datasheet du BLE préconise de placer un adaptateur 50Ω en sortie du BLE. Très précisément à $800\mu m$ de la sortie. Par la suite c'est à nous d'adapter la ligne grâce à PCB Saturn. Encore une fois en se servant du stack-up, on peut définir la largeur de la ligne ainsi que sa clearance pour obtenir une ligne se rapprochant le plus de 50Ω jusqu'au connecteur d'antenne. Le montage en π est toujours là pour parfaire notre adaptation une fois celle-ci réalisé.

Alimentation

Pour l'alimentation nous devons calculer la largeur des pistes. Celle-ci doit être suffisante pour laisser passer un courant important. Nous avons déterminé 1.5A. Pour se faire, j'ai utilisé <u>le blog de Nononux</u> qui propose un calculateur en ligne. On peut donc faire le calcule pour la couche externe et la couche interne :

Figure 31 - Piste d'alimentation externe

Figure 32 - Piste d'alimentation interne

Encombrement

La taille de la carte nous a été imposé lors du cahier des charges. La carte ne doit pas faire plus de 8cm par 8cm. Cependant, c'est l'unique contrainte de taille qui nous a été donné. Aucun trou de perçage n'a été prévu et aucun encombrement vertical non plus.

Placement

Top layer

Overlay

Figure 33 - Top Overlay 1:1

Typon

Figure 34 - Top Layer 1:1

Alimentation

Figure 35 - Couche d'alimentation 1:1

Masse

Figure 36 - Couche de masse 1:1

Bottom Layer

Overlay

Figure 37 - Bottom Overlay 1:1

Typon

Figure 38 - Bottom Layer 1:1

Ajouts

Vous aurez sans doute constaté que quelques éléments se sont vu rajouté sur la carte et qui n'ont pas été détaillés dans le présent rapport. Il existe deux changements majeurs. D'une part, étant donné la large place ainsi que la non connexion de la quasi-totalité d'un port du micro, j'ai décidé d'ajouter un port GPIO en bas de la carte. De plus, pour éviter toute mauvaise surprise, j'ai ajouté des headers de programmation, en sortie du multiplexeur, permettant d'utiliser un programmateur externe. Celui-ci serai utilisé si on découvre que notre programmateur ne fonctionne pas ou comporte une erreur.

Ces quelques ajouts font grimper la BOM de quelques euros mais apportent un confort certain et une sécurité pour les futurs utilisateurs de la carte.

Conclusion

Chauvet David

Ce fut une expérience toute nouvelle et très enrichissante pour ma part. Je n'avais jamais utilisé le logiciel Altium avant ce projet de conception de carte électronique. Il s'agissait donc entièrement d'une découverte.

J'avais pour mission de créer la schématique du BLE, puis de commencer le routage du PCB pour mieux comprendre et appréhender Altium. J'ai également pu compter sur mon binôme qui m'a donné des conseils et des précisons sur le fonctionnement du logiciel. Il est parfois repassé derrière mon travail pour que celui-ci soit le plus exhaustif possible.

Je serai à nouveau amené à concevoir ce genre de carte, voire d'effectuer un travail plus poussé, j'ai donc des progrès à faire si je veux pouvoir être plus autonome sur ce type de projet.

Huet Samuel

Les délais courts nous ont obligés à faire des compromis aussi bien sur la schématique que sur le routage. Certaines valeurs ont été extraites directement de la datasheet sans pour autant avoir été calculés. Cela peut entrainer des erreurs d'inattentions ou d'incompréhension. On retrouve cela par exemple sur le programmateur, dont il m'a été difficile de comprendre exactement le fonctionnement. Concernant le routage, j'ai négligé certains points. Notamment les vias qui ne sont pas du tout adapté selon le signal, mais aussi l'alimentation arrivant sur les composants arrive par un seul via, ce qui est peu souhaitable car cela entraine une inductance parasite. Mais par manque de temps je n'ai pas pu intégrer cela.

Cependant, dans l'ensemble nous avons réussi à respecter les contraintes les plus importantes, et j'ai personnellement beaucoup appris grâce à ce projet. Les différentes contraintes qui régissent la CEM ou les fonctionnalités d'Altium en sont un exemple. On pourra citer par exemple le via stitching, ou la possibilité de lier les composants d'une librairie avec un fournisseur. Je compte bien utiliser ces connaissances et les approfondir dans mes futurs projets pour être plus efficace.

Annexes

GitHub

Afin de centraliser toutes les informations nécessaires à la compréhension du projet ainsi qu'à sa conception, toutes les données ont été importé au sein d'un même repository Github. Vous trouverez donc en scannant ce QRcode (ou en cliquant dessus) le projet Altium, les différents fichiers générés, la BoM ainsi que la dernière mise à jour de ce présent rapport. Le projet est sans licence et il est ouvert à tous de participer à son amélioration sous toutes ses formes.

Sources

Phy (référence)

www.farnell.com/datasheets/2310338.pdf?src-supplier=Element14

Phy (aide)

https://www.renesas.com/eu/en/doc/DocumentServer/012/R19AN0014ED0102 ASSP.pdf

RJ45

http://www.farnell.com/datasheets/1736687.pdf?_ga=2.102175939.333202117. 1574096918-1106813667.1574096918

Quartz phi

http://www.farnell.com/datasheets/2048793.pdf? ga=2.30960893.333202117.1 *574096918-1106813667.1574096918*

Feritte

https://www.mouser.fr/datasheet/2/281/QNFA9102-1485076.pdf

Diode 1N4148

https://datasheet.ciiva.com/26921/getdatasheetpartid-764103-26921186.pdf?src-supplier=Verical

Empreinte mikrobus

https://www.mikroe.com/mikrobus

Cablage caméra

https://www.lucidar.me/fr/arduino/camera-ov7670-and-arduino/

Datasheet caméra

http://web.mit.edu/6.111/www/f2016/tools/OV7670 2006.pdf

Debuger micro

http://e.pavlin.si/2016/02/22/st-link-v2-on-a-single-sided-diy-pcb/

ESD microUSB debuger

https://fr.farnell.com/stmicroelectronics/usblc6-2p6/reseau-de-diode-tvsusb2/dp/1295310

BOOTLOADER Micro

https://www.st.com/content/ccc/resource/technical/document/application_note/b9/9b/16/3a/12/1e/40/0c/CD00167594.pdf/files/CD00167594.pdf/jcr:content/translations/en.CD00167594.pdf

BOOTLOADER_BLE (choix de l'uart prioritaire)

https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/6f/b7/ec/16/1f/41/1c/DM00294188/files/DM00294188.pdf/jcr:content/translations/en.DM00294188.pdf

DCMI sur STM32

https://www.st.com/content/ccc/resource/technical/document/application_note/group0/c0/ef/15/38/d1/d6/49/88/DM00373474/files/DM00373474.pdf/jcr:content/translations/en.DM00373474.pdf