

Triangles Ex 4.6 Q3

Answer:

Given: The area of two similar triangles is 81cm² and 49cm² respectively.

To find

- (1) Ratio of their corresponding heights.
- (2) Ratio of their corresponding medians.
- (1) We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \left(\frac{\text{altitude1}}{\text{altitude2}}\right)^2$$
$$\frac{81}{49} = \left(\frac{\text{altitude1}}{\text{altitude2}}\right)^2$$

Taking square root on both sides, we get

 $\frac{9}{7} = \frac{\text{altitude1}}{\text{altitude2}}$

altitude1:altitude2=9:7

(2) We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their medians.

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \left(\frac{\text{median1}}{\text{median2}}\right)^2$$
$$\frac{81}{49} = \left(\frac{\text{median1}}{\text{median2}}\right)^2$$

Taking square root on both sides, we get

 $\frac{9}{7} = \frac{\text{median 1}}{\text{median 2}}$

median1: median2 = 9:7

Triangles Ex 4.6 Q4

Answer:

Given: The area of two similar triangles is 169cm^2 and 121cm^2 respectively. The longest side of the larger triangle is 26 cm.

To find: Longest side of the smaller triangle

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

$$\frac{ar(\text{larger triangle})}{ar(\text{smaller triangle})} = \left(\frac{\text{side of the larger triangle}}{\text{side of the smaller triangle}}\right)^2$$

$$\frac{169}{121} = \left(\frac{\text{side of the larger triangle}}{\text{side of the smaller triangle}}\right)^2$$

Taking square root on both sides, we get

$$\frac{13}{11} = \frac{\text{side of the larger triangle}}{\text{side of the smaller triangle}}$$

$$\frac{1}{11}$$
 = side of the smaller triangle

side of the smaller triangle =
$$\frac{11 \times 26}{13}$$
 = 22 cm

Hence, the longest side of the smaller triangle is $\boxed{22\ cm}$

Triangles Ex 4.6 Q5

Answer:

Given: Two isosceles triangles have equal vertical angles and their areas are in the ratio of 36:25. To find: Ratio of their corresponding heights.

Suppose ΔABC and ΔPQR are two isosceles triangles with $\angle A = \angle P$

Now, AB = AC and PQ = PR

$$\therefore \frac{AB}{AC} = \frac{PQ}{PR}$$

In ΔABC and ΔPQR.

$$\angle A = \angle P$$

$$\frac{AB}{AC} = \frac{PQ}{PR}$$

∴ ∆ABC -∆PQR (SAS Similarity)

Let AD and PS be the altitudes of ΔABC and ΔPQR , respectively.

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

Hence, the ratio of their corresponding heights is 6 : 5.

********* END ********