2007~2008 学年第一学期 《复变函数与积分变换》课程考试试卷(B卷)

	院(系)	专业班级	_学号	_姓名
--	------	------	-----	-----

考试日期: 年月日

考试时间: 0:00~0:00

题号	_	11	111	四	五	六	七	总分
得分								

得分	
评卷人	

- 一、选择题 (每题 2 分,共 20 分)

$$1$$
、复数 $3+4i$ 的模为()

- A. $\sqrt{5}$; B. $5\sqrt{5}$; C. 5.
- 2、复数 -1-3i 的主辐角为()

- A. $\arctan 3$; B. $\arctan 3 + \pi$; C. $\arctan 3 \pi$.
- 3、|z+i|>|z-i|所表示的平面区域为()

- A. 上半平面; B. 下半平面; C. 单位圆的内部.
- 4、Ln(-1)的值为()

A. $(2k+1)\pi i$; B. $2k\pi i$; C. 无意义.

- 5、方程 $z^2 2i = 0$ 的根为()

A.
$$z_1 = 1 + i$$
, $z_2 = -1 - i$;

B.
$$z_1 = 1 + i$$
, $z_2 = -1 + i$;

C.
$$z_1 = 1 + i$$
, $z_2 = 1 - i$.

- 6、函数 $f(z) = 2xy ix^2$ ()
 - A. 处处可导; B. 仅在y = 0上可导; C. 处处不可导.
- $7 \stackrel{\triangleright}{\nabla} f(z) = 2xy + i(y^2 x^2)$, $\iiint f \sqrt{z} = ($
 - A. 2x+2yi; B. 2y-2xi; C. 2x-2yi.
- 8、级数 $\sum_{n=0}^{+\infty} (-1)^n \frac{i}{n}$ ()
 - A. 绝对收敛; B. 条件收敛; C. 发散.
- 9、z = 0 是函数 $f(z) = \frac{\sin z}{z^2}$ 的()
 - A. 可去奇点; B. 二阶极点; C. 一阶极点.
- 10、区域 $D = \{z : 0 < \text{Im } z < \pi\}$ 在映射 $w = e^z$ 下的像为() A. 单位圆的内部; B. 下半平面; C. 上半平面.

得分 二、填空题 (每题 2 分, 共 10 分)

- 1、函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z=i 点展开成泰勒 (Taylor) 级数的 收敛半径为___.
- 2、积分 $\oint_{|z|=4} \frac{\sin z}{(z-\pi)^2} dz = \underline{\qquad}$.
- 3、映射 $f(z) = z^2 + 4z$ 在 z = -1 + i 处的旋转角为 .
- 4、函数 $f(t) = \cos 2t$ 的 Fourier 变换为 $F(\omega) =$ _____.
- 5、函数 $F(s) = \frac{1}{s(s-1)}$ 的 Laplace 逆变换为 $f(t) = \underline{\hspace{1cm}}$.

得 分	
评卷人	

三、计算题 (每 题 5 分, 共 20 分)

$$1, \oint_{|z|=2} \frac{\sin^2 z}{z^2(z-1)} dz$$

$$2 \int_{|z|=2} z^3 \cos \frac{1}{z} dz$$

$$3 \int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 4} \, \mathrm{d}x$$

$$4 \sqrt{\int_0^{2\pi} \frac{1}{5 + 4\sin\theta}} d\theta$$

得 分	
评卷人	

四、(12 分)已知调和函数 $u(x,y) = x^2 - y^2 + 2xy$, 求函数 v(x,y), 使函数 f(z) = u + iv 解析且 满足 f(i) = -1 + i.

得 分	
评卷人	

五、(12 分)将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z = 0 点 展开为洛朗(Laurent)级数.

得分	
评卷人	

六、(14 分)求把区域 $D = \{z : |z| > 1, \text{ Im } z > 0\}$ 映射到单位圆内部的共形映射.

得分	
评卷人	

$$\exists x \Box (t) + y(t) = 1, \quad x(0) = 0,$$

$$\exists x(t) - y \Box t) = t, \quad y(0) = 1.$$

2007~2008 学年第一学期 《复变函数与积分变换》课程考试试卷(B卷)解 答

院(系)专业班级			学号	号		姓名	ĭ		
	:	考试日期]: 年月	月日		考	试时间:	0:00~0:0	0
	题号	_		三	四	五	六	七	总分

得 分	
评卷人	

得分

一、选择题(每题2分,共20分)

1、复数 +4i 的模为 (C)

A. $\sqrt{5}$; B. $5\sqrt{5}$; C. 5.

2、复数 -1-3i 的主辐角为(C)

A. $\arctan 3$; B. $\arctan 3 + \pi$; C. $\arctan 3 - \pi$.

3、|z+i|>|z-i|所表示的平面区域为(A)

A. 上半平面; B. 下半平面; C. 单位圆的内部.

4、Ln(-1)的值为(A)

A. $(2k+1)\pi i$; B. $2k\pi i$; C. 无意义.

5、方程 $z^2 - 2i = 0$ 的根为 (A)

A.
$$z_1 = 1 + i$$
, $z_2 = -1 - i$;

B.
$$z_1 = 1 + i$$
, $z_2 = -1 + i$;

C.
$$z_1 = 1 + i$$
, $z_2 = 1 - i$.

6、函数
$$f(z) = 2xy - ix^2$$
 (B)

A. 处处可导; B. 仅在
$$y = 0$$
上可导; C. 处处不可导.

7、设
$$f(z) = 2xy + i(y^2 - x^2)$$
, 则 $f(z) = (B)$

A
$$2x + 2vi$$

B.
$$2y-2xi$$

A.
$$2x+2yi$$
; B. $2y-2xi$; C. $2x-2yi$.

8、级数
$$\sum_{n=1}^{+\infty} (-1)^n \frac{i}{n}$$
 (B)

- A. 绝对收敛; B. 条件收敛; C. 发散.

9、
$$z = 0$$
 是函数 $f(z) = \frac{\sin z}{z^2}$ 的 (C)

- A. 可去奇点; B. 二阶极点; C. 一阶极点.

10、区域
$$D = \{z : 0 < \text{Im } z < \pi\}$$
 在映射 $w = e^z$ 下的像为(C)

- A. 单位圆的内部; B. 下半平面; C. 上半平面.

得 分	
评卷人	

二、填空题(每题2分,共10分)

1、函数
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 在 $z = i$ 点展开成泰勒 (Taylor) 级数的 收敛半径为 $\sqrt{\frac{2}{z}}$

2、积分
$$\oint_{|z|=4} \frac{\sin z}{(z-\pi)^2} dz = \underline{-2\pi}i$$

3、映射
$$f(z) = z^2 + 4z$$
 在 $z = -1 + i$ 处的旋转角为_____.

$$\pi(\delta(\omega+2)+\delta(\omega+2))$$

4、函数
$$f(t) = \cos 2t$$
 的 Fourier 变换为 $F(\omega) =$ ______.

5、函数
$$F(s) = \frac{1}{s(s-1)}$$
 的 Laplace 逆变换为 $f(t) = \underline{\mathbf{e}^t} - \mathbf{1}$

得分 三、计算题 (每题 5 分, 共 20 分) **评卷人**

$$1, \oint_{|z|=2} \frac{\sin^2 z}{z^2(z-1)} dz$$

解: 令 $f(z) = \frac{\sin^2 z}{z^2(z-1)}$, 在 |z| = 2 内, 函数 f(z) 有两个奇点. z=0 为可去奇点, Res[f(z), 0]=0, z=1 为一阶极点, Res[f(z), 1] = lim(z-1)f(z) $=\frac{\sin^2 z}{z^2}\bigg| = \sin^2 1,$

原式= $2\pi i(\text{Res}[f(z), 0] + \text{Res}[f(z), 1]) = 2\pi i \sin^2 1$.

$$2 \int_{|z|=2}^{\infty} z^3 \cos \frac{1}{z} dz$$

解: 令 $f(z) = z^3 \cos \frac{1}{z}$, 在 |z| = 2 内, z = 0 为 f(z) 的本性奇点, $z^{3}\cos\frac{1}{z}=z^{3}\left(1-\frac{1}{2!z^{2}}+\frac{1}{4!z^{4}}-\frac{1}{6!z^{6}}+\cdots\right)=\cdots+\frac{1}{4!}\cdot\frac{1}{z}+\cdots,$ 原式= $2\pi i \operatorname{Res}[f(z), 0] = \frac{2\pi i}{4!} = \frac{\pi i}{12}$.

$$3 \int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 4} dx$$

解: 令 $f(z) = \frac{e^{iz}}{z^2 + 4}$,它在上半平面只有一个简单极点 z = 2i,

Res
$$[f(z), 2i] = \frac{e^{iz}}{2z} \bigg|_{z=2i} = \frac{e^{-2}}{4i}$$
,
原式 = Re $(2\pi i \operatorname{Res}[f(z), 2i]) = \frac{\pi e^{-2}}{2} = \frac{\pi}{2e^2}$.

$$4 \int_0^{2\pi} \frac{1}{5 + 4\sin\theta} d\theta$$

原式 =
$$\oint_{|z|=1} \frac{1}{\left(5 + \frac{4(z^2 - 1)}{2iz}\right)} \frac{dz}{iz} = \oint_{|z|=1} \frac{1}{2z^2 + 5iz - 2} dz$$
.

可知它在|z|=1内只有一个简单极点 $z_0=-\frac{i}{2}$,

原式=
$$2\pi i \operatorname{Res}[f(z), z_0] = \frac{2\pi i}{4z + 5i} \bigg|_{z=z_0} = \frac{2\pi}{3}$$
.

得 分	
评卷人	

四、(12 分)已知调和函数 $u(x,y) = x^2 - y^2 + 2xy$, 求函数 v(x,y), 使函数 f(z) = u + iv 解析且 满足 f(i) = -1 + i.

$$f(z) = x^2 - y^2 + 2xy + i(2xy + y^2 - x^2 + c)$$
;

得 分	
评卷人	

五、(12 分)将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z = 0 点 展开为洛朗(Laurent) 级数.

M:
$$f(z) = \frac{1}{(z-1)(z-2)} = -\frac{1}{z-1} + \frac{1}{z-2} = \frac{1}{1-z} - \frac{1}{2-z}$$
,

在复平面上以原点为中心分为三个解析环:

$$0 \le |z| < 1$$
, $1 < |z| < 2$, $2 < |z| < +\infty$.

(1) 在 $0 \le |z| < 1$ 内,

$$f(z) = \frac{1}{1-z} - \frac{1}{2\left(1-\frac{z}{2}\right)}$$
$$= \sum_{n=0}^{+\infty} z^n - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} = \sum_{n=0}^{+\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n.$$

(2) 在 1 < |z| < 2 内,

$$f(z) = -\frac{1}{z\left(1 - \frac{1}{z}\right)} - \frac{1}{2\left(1 - \frac{z}{2}\right)}$$
$$= -\frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} = -\sum_{n=0}^{+\infty} \frac{1}{z^{n+1}} - \sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}}.$$

(3) 在 $2 < |z| < +\infty$ 内,

$$f(z) = -\frac{1}{z\left(1 - \frac{1}{z}\right)} + \frac{1}{z\left(1 - \frac{2}{z}\right)}$$
$$= -\frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} + \frac{1}{z} \sum_{n=0}^{+\infty} \frac{2^n}{z^n} = \sum_{n=0}^{+\infty} (2^n - 1) \frac{1}{z^{n+1}}.$$

得分	
评卷人	

六、(14 分)求把区域 $D = \{z : |z| > 1, \text{Im } z > 0\}$ 映射到单位圆内部的共形映射.

得 分	七、(12分)利用 Laplace 变换求解微分方程组:
评卷人	$\exists x \Box t) + y(t) = 1, x(0) = 0,$

解: 对方程两边取拉氏变换并代入初值得

$$\begin{cases} sX(s) + Y(s) = \frac{1}{s}, \\ X(s) - (sY(s) - 1) = \frac{1}{s^2}. \end{cases}$$
 $\forall x$ $\Rightarrow \begin{cases} X(s) = \frac{1}{s^2(s^2 + 1)}, \\ Y(s) = \frac{s}{s^2 + 1}. \end{cases}$

求拉氏逆变换得 $\begin{cases} x(t) = t - \sin t, \\ y(t) = \cos t. \end{cases}$