

GEOMETRÍA

Capítulo 5

TRIÁNGULOS

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales y, por lo tanto, el conocimiento de sus teoremas, clases, etc., es básico para comprender mejor a las demás figuras geométricas que estudiaremos posteriormente. Esta figura tiene en la actualidad diferentes usos y aplicaciones como podemos observar.

TRIÁNGULOS

<u>Definición</u>: Es aquella figura geométrica formada al unir 3 puntos no colineales mediante segmentos de recta.

- VÉRTICES: A,ByC
- LADOS : \overline{AB} , \overline{BC} y \overline{AC}

TEOREMAS

$$\alpha + \beta + \theta = 180^{\circ}$$

$$\omega + \phi + \chi = 360^{\circ}$$

$$\omega = \alpha + \beta$$

$$\Phi = \alpha + \theta$$

$$y = \beta + \theta$$

CLASIFICACIÓN DE LOS TRIÁNGULOS

Por las medidas de los lados.

Por las medidas de sus ángulos.

∆ Escaleno

∆ Isósceles

∆ Equilátero

△ Rectángulo

Teorema de la correspondencia

Si:

$$\alpha < \beta$$

Teorema de la existencia

$$b - c < a < b + c$$

HELICO | THEORY

$$\alpha + \beta = \theta + \phi$$

1. Halle el valor de x.

En el △ ACD:

$$2\beta + 2\theta + 130^{\circ} = 180^{\circ}$$

 $2\beta + 2\theta = 50^{\circ}$
 $\beta + \theta = 25^{\circ}$

En el ∆ ABC:

$$3 \beta + 3 \theta + x = 180^{\circ}$$

 $3(\beta + \theta) + x = 180^{\circ}$
25°

(Reemplazando)

2. Se tiene un triángulo ABC, donde la m ∢ A=60°, la medida del ángulo exterior de B es 5x y la medida del ángulo exterior de C

es 7x. Halle el valor de x.

En el △ ABC:

ω̈́

$$5x + 7x + 120^{\circ} = 360^{\circ}$$

 $12x = 240^{\circ}$
 $x = 20^{\circ}$

$$x = 20^{\circ}$$

01

3. Halle el valor de x

En el \triangle ABC : $3\alpha + 3\beta + 60^{\circ} = 180^{\circ}$ $3\alpha + 3\beta = 120^{\circ}$ $\alpha + \beta = 40^{\circ}$

$$X = 40^{\circ}$$

4. Halle el menor valor entero de x.

$$4x - 3x < 21 < 4x + 3x$$
 $x < 21 < 7x$
 $x < 21$
 $x < 21$

36°

01

3x

a

△ ABC y △ BCD: isósceles

$$6x + 6x + 36^{\circ} = 180^{\circ}$$

$$12x = 144^{\circ}$$

a

6x

6. En la figura, ¿cuál de los dos canes se encuentra más cerca a la comida.

 Teorema de la correspondencia

El can ubicado en el vértice B

7. Un terreno que está determinado por un triángulo ABC, se divide con 2 cercas (\overline{DE} y \overline{EF}) para hacer un jardín. Halle el valor de x, si $\delta+\beta=130^{\circ}$.

