Monika Mittal

Evanston, IL , USA • 224-432-8020 • Email • Inspire • LinkedIn • GitHub • Website

Bringing a rich blend of research experience from CERN and advanced skills in data science, I am a seasoned professional with over 5 years of experience in machine learning and big data analytics. Recognized with awards like the CMS Achievement Award and a contributor to key scholarly publications, my career is marked by a commitment to excellence and innovation. Eager to apply my analytical acumen in data science role, I aim to harness data insights for strategic business growth. I am authorized to work in the USA (EAD holder).

SKILLS

Data Science & AI: Machine Learning, Big Data Analytics, Computer Vision AI, Large Language Models. **Programming**: Proficient in Python, SQL, C++, PySpark, Shell Scripting, GitHub, CD/CI, Docker. **Visualization & Cloud Technologies**: Skilled in Matplotlib, Seaborn, Tableau, AWS Sagemaker, ROOT. **Additional Tools**: LATEX, Keynote, Microsoft Excel.

Soft Skills: Analytical thinking, problem-solving, clear communication.

EXPERIENCE

Data Science Consultant (Contractual) **EULER RESEARCH LLC, IL, USA**

Sept 2023 - Present

- Spearheaded the creation of an end-to-end document extraction and summarization pipeline, integrating advanced computer vision and NLP techniques, along with API implementation.
- Trained and fine tuned deep learning model to detect table boundaries in documents with 90% accuracy.
- Integrated optical character recognition and large language models for efficient extraction and summarization of tabular data.

Data Science Postdoctoral researcher CMS Exeriment CERN, Switzerland Sept 2020 - Aug 2023

- Engineered Python classes to handle pre-processing and cleaning of 10 pb (~10¹⁵ records) of protonproton collision data and implemented selection to identify records.
- Innovate key features, crafted and deployed a Graph Neural Network (GNN) model using PyTorch for discerning Vector Boson Scattering (VBS) from non-VBS events, yielding a 10% sensitivity enhancement.
- A 10-fold reduction in processing time obtained through utilizing NumPy arrays for vectorization.
- Efficient parallel processing of massive dataset through deployment of GitHub's CI/CD to a Docker image.
- Extracted quantitative results with statistical hypothesis testing and a enhance in exclusion limits on dark matter production cross-section by 20% through implementation of category using maximum likelihood.
- Designed an automatic tailored Python-based algorithm and customized dashboard visualization using matplotlib to pinpoint the source of noise for the comprehensive testing of electronic sensors, resulting in an impressive 80% reduction. Presented results at ICHEP 2022 in Bologna, Italy.
- Co-ordinated and managed data-taking operations of CMS muon detectors, ON-CALL to carry out detector-related issues during commissioning and crucial initial phase.

Data Science Postdoctoral researcher ATLAS Experiment CERN, Switzerland Apr 2017 - Aug 2020

- Lead the team of researchers to strategize and execute data analysis for imbalanced dataset, successfully identified findings, lead to publications in prestigious scientific journals including Nature, PRL, and PRD.
- Developed and optimized a ML-based classification algorithm to detect and classify VBS events resulting in accuracy surpassing 90% and improving efficiency by 50% relative to existing methods.
- Modeling of event process through simulations were used to develop a groundbreaking approach that correlates interference and quantifies uncertainty due to interference at around 6-7%.
- Curated and prepared simulation and real data to analyze the correlation between hit rates in the ATLAS
 Muon Spectrometer and LHC luminosity. Developed a linear regression model to enhance the
 understanding of detector behavior as a function of operational conditions. The model successfully
 predicts detector behavior for new operating conditions, aligning well with operational data.
- Formulated mathematical modelling of noise in cavern and forecasted to generate synthetic data.
- Expertly leveraged SQL for intricate data extraction and processing, managing voluminous and structured datasets encompassing diverse attributes.

EDUCATION

Ph.D. in Computational Physics

Punjab University, Chandigarh & CERN, Switzerland

Jan 2011 - Feb 2016

Dissertation: A novel approach to Vector Boson Fusion (VBF) search analysis

- Proposed the conceptualization of the data analysis, employing BDT to enhance the efficiency by 5%.
- Employed the test statistic to successfully reject alternate hypotheses and results published in EPJC.
- First Indian recipient awarded with the CMS Achievement Award, CERN. Leveraged data mining techniques and time series analysis to monitor health and mapping of newly deployed sensors.

PROJECTS:

Univariate and Multivariate Time Series Forecasting:

Aug, 2023 - Present

- Time series forecasting using regression, ARIMA family models to predict the stock prices.
- Enhanced the metric (MSE) using SOTA deep learning methods for time series forecasting LSTM and transformers.
- Envisioned a streaming pipeline to make real-time predictions of stocks data.
 - Saved and access dataset via Cassandra cluster deployed on local machine.

Credit Card Fraud Mitigation Strategies using ML on AWS sagemaker using RAPIDS

April 2023

- Designed and implemented a comprehensive suite of fraud mitigation strategies, including anomaly detection algorithms and risk scoring models, resulting in minimised fraud losses and increased efficiency.
- Trained machine learning-based system to detect and prevent credit card fraud, achieving an exceptional 85.9% F1 score with a precision and recall rate of 88% and 84%.

Sentiment analysis model for Twitter Data

Oct 2022

- Devised and executed a data pipeline using Apache Cassandra, processing and storing a dataset of ~4000 tweets.
- Used NLTK to pre-process and train machine learning models, including SVC, Naive Bayes, and regression techniques to analyze the sentiment of tweets with an accuracy of 81%, extracting valuable insights from the data.

Statistical Analysis of COVID-19 Outbreak in Indian States_

Aug 2020

- Utilized descriptive statistics to calculate the percentage of infected individuals per state and the deceased percentage, providing insights into the severity of the outbreak in different areas.
- Estimated the reproduction number (RO) for various states in India, offering valuable insights into the transmission dynamics of the virus. Maximum RO value measured to be 1.79 for Gujarat.

COURSES/CERTIFICATIONs

Time series analysis and Forecasting	Jan 2024
Python For Finance: Investment Fundamentals and Data Analytics	Dec 2023
JPMorgan Chase & Co. Quantitative Research Virtual Experience Program on Forage	Oct 2023

- Completed a simulation focused on quantitative research methods
- Analyzed a book of loans to estimate a customer's probability of default
- Used dynamic programming to convert FICO scores into categorical data to predict defaults

7 1 0 0	,
 Hands-on Machine Learning with AWS and NVIDIA 	July 2023
 Databases and SQL for Data Science by IBM 	Feb 2021
 Neural Networks and Deep learning by DeepLearning.ai 	Mar 2021
Statistics for Data Science by IBM	Mar 2021
• Applied Data science with python specialisation by University of Mic	chigan Aug 2020