

Olimpiada Departamental de Física 2019 2Da Ronda - Nivel I

Iombre:
ECHA DE NACIMIENTO:
Dirección:
DEPARTAMENTO:
eléfono:
NSTITUCIÓN EDUCATIVA:

Problema 1: Un coche de montaña rusa, sube hasta un punto *A* en el cual éste, y sus gritones ocupantes, son lanzados pista abajo partiendo del reposo. Suponiendo que no hay fricción, calcule la rapidez en los puntos B, C y D.

Problema 2: En la figura se muestran dos bloques en contacto con una cuña inmóvil triangular(fija en la superficie), los bloques se deslizan a través de la superficie inclinada con un ángulo de 30° con respecto a la horizontal. El coeficiente de fricción entre el bloque de masa m = 2 kg y el plano inclinado es $\mu_1 = 0.20$ y el coeficiente de fricción entre el bloque de masa M=4~kg y el plano inclinado es $\mu_2=0.30$. Encuentra la aceleración de m. Nota: no considerar fricción entre los bloques m y M.

29 Octubre 2019 1 *Tiempo: 4.5 horas* **Problema 3:** Un yoyo de juguete de masa total $M = 0.24 \ Kg$ consta de dos discos de radio $R = 2.8 \ cm$ conectados por un eje delgado de radio $r = 0.25 \ cm$. Una cuerda de longitud $L = 1.2 \ m$ se enrolla alrededor del eje. Si el yoyo es arrojado hacia abajo con una velocidad inicial de $v = 1.4 \ m/s$, ¿Cuál es su velocidad de rotación cuando llega al final de la cuerda?

Problema 4: Tres masas puntuales idénticas de masa m se colocan en los vértices A, B y C de un cubo con longitud lateral a (ver figura). Se coloca otra masa idéntica en el punto central D del cubo.

- a) Calcule la fuerza gravitacional neta que actúa sobre la masa en *D*.
- b) ¿Dónde ubicarías una quinta masa idéntica para que la fuerza gravitacional neta que actúa sobre la masa en D se convierte en cero?

Problema 5: Se coloca una esfera de masa m y radio r=3 metros dentro de un recipiente con fondo plano y pared lateral inclinada, como se muestra en la figura. La esfera toca la pared inclinada en el punto A y el piso en punto B tal que no toca ninguna otra superficie. El contenedor, junto con la esfera, gira alrededor del eje vertical con el centro del contenedor con velocidad angular ω . La esfera está en reposo en relación con el contenedor. La fuerza normal aplicada por la superficie inferior y la superficie inclinada en la esfera son N_1 y N_2 respectivamente. No existe fricción entre las superficies.

- a) Encuentre el valor de ω por encima del cual N_2 se convierte mayor que N_1 .
- b) Encuentre el valor de ω por encima del cual la esfera deja contacto con el piso.

