Math 210B Algebra: Homework 3

 $\mathrm{Feb}~8\mathrm{th},~2019$

Professor Sharifi

Anish Chedalavada

Exercise 1. Let G be a profinite group.

a. Show that if a subgroup of G is open, then every subgroup containing it is open,

b. Show that G is topologically isomorphic to \hat{G} via the map to \hat{G} as a limit if and only if every subgroup of G is open.

Proof. Let $G = \lim G_i$ be the profinite group in consideration for G_i finite, discrete. a. Let $H \subset G$ be an open subgroup. We have that for any $H \subset K \subset G$ subgroup, $K = \bigcup_{k \in K} kH$ cosets of $H \subset K$. However, as left multiplication is a homeomorphism, it is an open map, and thus kH is open and K is a union of open sets, and is thus open.

b. Suppose that $G \cong \hat{G}$ topologically via the limit map. We thus have continuous maps $\pi_N : G \mapsto G/N$ equipped with the discrete topology for any N a normal subgroup of finite index. We have that $\pi_N^{-1}\{e\} = N$, and as the preimage of an open set is open for a continuous map, we have that N must be open for any normal subgroup of finite index. Furthermore, given any arbitrary subgroup H of finite index, we have that the Cayley Theorem map $\lambda : G \to \Sigma_{[G:H]}$ via left multiplication by g must have a kernel of finite index properly contained in H, implying that H has an open subgroup and is thus open by part a.

Conversely, suppose every subgroup of finite index in G is open. In particular, we have that the surjection $G \to G/N$ must be a continuous surjection of topological groups for N finite index, as the preimage of any $gN \in G/N$ open is $gN \in G$ which is an open coset of G as N is open. Thus, as we have topological homomorphisms $G \to G/N$ for any normal subgroup of finite index, we have an induced map $G \mapsto \hat{G}$ given by $g \mapsto \prod_{G/N} gN$. This map is injective as the kernel must be contained in $\bigcap_{N \text{normal}} N \subset \bigcap_{i \in I} \ker \pi_i = \{e\}$ for I indexing G_i , $\pi_i : G \to G_i$ projection onto the ith coordinate. We have that for cosets $xN \in G/N$, the preimage $\pi_N^{-1}\{xN\}$ for $\pi_N : \hat{G} \to G/N$ forms a basis for the topology of \hat{G} . Under the canonical map $G \to \hat{G}$ given above, we have that $xN \subset \pi_N^{-1}\{xN\}$ for $xN \in G$ identified with its image in \hat{G} . Thus, we have that any element of the basis of \hat{G} must intersect G, implying that G is a compact, dense subset of $\hat{G} \Longrightarrow G \to \hat{G}$ surjective, and thus this is a bijective continuous homomorphism from a compact space to a Hausdorff space, yielding the claim.

Exercise 2. Show that $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ as topological rings.

Proof. Let S be an arbitrary ring. We have the natural isomorphism $\operatorname{Hom}(S,\widehat{\mathbb{Z}}) \cong \lim_n \operatorname{Hom}(S,\mathbb{Z}/m\mathbb{Z}) \cong \lim_n \operatorname{Hom}(S,\mathbb{Z}/m\mathbb{Z}) \cong \lim_n \operatorname{Hom}(S,\mathbb{Z}/p_i^{v_i(n)}\mathbb{Z})$ where $v_i(n)$ is the largest power of p_i that can divide n. The above limit can be rewritten as: $\prod_{p \text{ prime}} \lim_n \operatorname{Hom}(S,\mathbb{Z}/p_i^{v_i(n)}\mathbb{Z}) \cong \prod_{p \text{ prime}} \operatorname{Hom}(S,\mathbb{Z}_p) \cong \operatorname{Hom}(S,\prod_{p \text{ prime}} \mathbb{Z}_p)$. By the Yoneda Lemma, as the Hom functors are naturally isomorphic and h_A is a fully faithful embedding into the category of functors $Rng \to Set$ we have that $\widehat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$.

Exercise 3. Show that $R[G] \otimes_{\mathbb{R}} R[H] \cong R[G \times H]$ as R algebras for G and H groups.

Proof. Consider the map $f:R[G]\times R[H]\to R[G\times H]$ via $f:(\sum_I r_i g_i,\sum_J r_j g_j)\mapsto \sum_{I,J} r_i r_j (g_i,h_j)$ for I,J finite indexing sets. This map is clearly bilinear, (which also yields well-definedness) and is also surjective, and thus must factor through a surjective map $\overline{f}:R[G]\otimes_{\mathbb{R}}R[H]\to R[G\times H]$. As R-modules, we may exhibit an explicit inverse via the map $k:(g,h)\mapsto g\otimes h$. This map is well defined as $g'\otimes h'=g\otimes h$ for g=g',h=h'. As both algebras are free R-modules, it suffices to check the map is an inverse on the bases for both. Furthermore, we have that $k\overline{f}(g\otimes h)=g\otimes h$ and that fk(g,h)=(g,h); thus, the map agrees on bases for both R-modules. Furthermore, we have that the map extends to multiplicative maps, as $\overline{f}((g,h)\cdot(g',h'))=gg'\otimes hh'=g\otimes h\cdot g'\otimes h'=\overline{f}(g,h)\cdot f(g',h')$. Similarly, $k(g\otimes h\cdot g'\otimes h')=(gg',hh')=(g,h)(g',h')=k(g\otimes h)\cdot k(g'\otimes h')$. Thus, we have inverse R algebra homomorphisms given by \overline{f} and k, yielding the result.

Exercise 4. a. Show that tensor products commute with colimits.

b. Give an example to show that tensor products in general do not commute with limits.

Proof. a. As the balanced tensor product functor $-\otimes_R N$ is a left adjoint (via the tensor-Hom adjunction), we have that left adjoint functors must preserve colimits and thus this functor must also preserve colimits. b. Consider the following diagram:

$$\mathbb{Z} \xrightarrow{0 \atop 2} \mathbb{Z}$$

The limit of the above diagram (which we will denote N_1) is the equalizer of 0 and 2, i.e. the kernel of this map, given by 0. However, applying the tensor product functor $-\otimes \mathbb{Z}/2$ under the observation that $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2 \cong \mathbb{Z}/2$ as left \mathbb{Z} modules, we have the diagram:

$$\mathbb{Z}/2 \stackrel{0}{\Longrightarrow} \mathbb{Z}/2$$

The map given by multiplication by 2 coincides with the 0 map for $\mathbb{Z}/2$, and thus the equalizer (kernel) of the above 2-multiplication is the whole module $\mathbb{Z}/2$, which we will denote N_2 . However, if this functor commuted with all limits, we have $N_1 \cong N_2$, which is clearly not true.

Exercise 5 (Problem 6).

Proof. Let $N^{\perp} = \{f \in M^* \mid f(N) = 0\}$. We have the natural pullback map $h^* : (M/N)^* \to M^*$ along the map $h : M \to M/N$ the canonical surjection (this is a map of right R-modules). Given $\phi \in (M/N)^*$ we have $h^*\phi(m) = \phi \circ h(m)$, which is a map that disappears on N as h(N) = 0. Thus, $h^* : (M/N)^* \to N^{\perp}$. This map is injective, as if $h^*\varphi(m) = 0$ then $\varphi \circ h(m) = 0 \ \forall \ m \in M$, which is online possible if $\varphi \in (M/N)^*$ was itself 0. Similarly, it is surjective, as given a map $f \in N^{\perp}$, we have that $f : M \to R$ s.t. f(N) = 0, which, by the first isomorphism theorem, yields a distinct map $\overline{f} : M/N \to R$ s.t. $f = h^*\overline{f}$, and $f \in N^{\perp}$. Thus, $(M/N)^* \cong N^{\perp}$.

Now consider M^*/N^{\perp} . We have the natural map $res_N: M^*/N^{\perp} \to N^*$ given by $res_N f = f|_N$. This map is also clearly a right R-module homomorphism. Furthermore, we have that $res_N f = 0 \implies f|_N = 0$, or that $f(N) = 0 \implies f = 0 \in M^*/N^{\perp}$, so res_N is an injection.

Exercise 6. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha] \cong \mathbb{Q}(\alpha)$.

Proof. Consider $f: \mathbb{Z}[t] \times \mathbb{Q} \to \mathbb{Q}[t]$ given by $nt^i \times q \mapsto qnt^i$. The map is clearly \mathbb{Z} -bilinear, well-defined, and is surjective. We have that it must factor through a surjective map $\overline{f}: \mathbb{Z}[t] \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q}[t]$, in fact as a ring homomorphism. We may define an inverse map, given by $k: \mathbb{Q}(t) \to \mathbb{Z}[t] \otimes \mathbb{Q}$ via $k: \sum_I n_i t^i \mapsto \sum_I n_i \otimes t^i$. This map is well defined as if $\sum_I n'_{i'} t^{i'} = \sum_{I'} n_{i'} t^{i'}$ with I indexing set of distinct is and n_i nonzero then i = i', n = n', and $n \otimes t^i = n' \otimes t^{i'}$. It is clearly a ring homomorphism as it preserves multiplicativity and additivity, and is thus an inverse ring homomorphism to \overline{f} as $k\overline{f} = id$, $\overline{f}k = id$. Thus, $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} \cong \mathbb{Q}[t]$. In particular, under this isomorphism, we have that the ideal $(f) \subset \mathbb{Q}[t]$ if $f = m_{\mathbb{Q}}(\alpha)$ viewed with coefficients in \mathbb{Z}) is the isomorphic image of the ideal $\mathbb{Q} \otimes (f_{\mathbb{Z}})$. We thus have that $\mathbb{Q}[t]/(f) \cong \mathbb{Q} \otimes_{\mathbb{Z}}[t]/(f_{\mathbb{Z}}) \cong \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]$. \square

Exercise 7. Let K/F be a finite separable extension of fields, E an arbitrary extension of F. Show that $K \otimes_F E$.

Proof. By the primitive element theorem, $K = F(\alpha) = F[t]/(f)$ for f an irreducible polynomial with coefficients in F. By similar logic as in the previous problem, we have that $K \otimes_F E = E[t]/(f)$. Decomposing f into its coprime factors $h_1, ..., h_n$ in E, we have that by Chinese Remainder Theorem, $E[t]/(f) \cong E[t]/(h_1) \times ... \times E[t]/(h_n)$. As F is separable, we have that $h_1, ..., h_n$ are always irreducible, (as if h_i were not irreducible then $h_i = gh$ for g, h not coprime by assumption, which is only possible if they share a root.). Thus, $K \otimes_F E \cong E[t] \cong E[t]/(h_1) \times ... \times E[t]/(h_n)$ for $h_1, ..., h_n$ irreducible, yielding the result.