Redes Neurais Artificiais (RNA)

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br github.com/andrehochuli/teaching

Plano de Aula

- Revisão Avaliação 1
- Regressão
- Exercícios

Regressão vs Classificação

- Classificação: Determina uma classe (0,1,2,3)
- Regressão: Determina valores contínuos (preço, clima, vendas, logística, sinais...)

Regressão vs Classificação

Regressão: Compreender a relação entre as características dos dados e a variável dependente (target).

Mapeao X em Y contínuo

Linear Não Linear

Regressão - KNN

Considere o dataset para determinar o peso de uma pessoa:

ID	Height	Age	Weight
1	5	45	77
2	5.11	26	47
3	5.6	30	55
4	5.9	34	59
5	4.8	40	72
6	5.8	36	60
7	5.3	19	40
8	5.8	28	60
9	5.5	23	45
10	5.6	32	58
11	5.5	38	?

Regressão - KNN

Dado K vizinhos, computa-se a média

$$K=3$$

```
ID11 = (77+72+60)/3
ID11 = 69.66 kg
```

$$K = 50$$

ID	Height	Age	Weight
1	5	45	77
4	5.9	34	59
5	4.8	40	72
6	5.8	36	60
10	5.6	32	58

Como avaliar o erro?

Mean-Square-Error (MSE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Height	Age	Weight	Predicted	Diff
5	40	71	69	-2
5.9	23	86	80	-6
4.5	51	65	77	12
5.3	36	89	82	-7
5.1	48	75	67	-8
			MSE	121

Regressão - Árvores

Predictors				Target
			_	
Outlook	Temp	Humidity	Windy	Hours Played
Rainy	Hot	High	Faice	26
Rainy	Hot	High	True	30
Overoast	Hot	High	Falce	48
Sunny	Mild	High	Falce	46
Sunny	Cool	Normal	False	62
Sunny	Cool	Normal	True	23
Overoast	Cool	Normal	True	43
Rainy	Mild	High	Falce	36
Rainy	Cool	Normal	False	38
Sunny	Mild	Normal	Falce	48
Rainy	Mild	Normal	True	48
Overoast	Mild	High	True	62
Overoast	Hot	Normal	Falce	44
Sunny	Mild	High	True	30

Regressão - Árvores

Determina a homogeneidade pelo do desvio padrão, média e coeficiente de variação

Hours Played
25
30
46
45
52
23
43
35
38
46
48
52
44
30

$$Count = n = 14$$

$$Average = \bar{x} = \frac{\sum x}{n} = 39.8$$

Standard Deviation =
$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = 9.32$$

Coeffeicient of Variation =
$$CV = \frac{S}{\bar{x}} * 100\% = 23\%$$

Regressão - Árvores

Desvio padrão para dois atributos:

$$S(T, X) = \sum_{c \in X} P(c)S(c)$$

		Hours Played (StDev)	Count
Outlook	Overcast	3.49	4
	Rainy	7.78	5
	Sunny	10.87	5
			14

$$S(Hours, Outlook) = P(Sunny)*S(Sunny) + P(Overcast)*S(Overcast) + P(Rainy)*S(Rainy)$$

= $(4/14)*3.49 + (5/14)*7.78 + (5/14)*10.87$
= 7.66

$$SDR(T, X) = S(T) - S(T, X)$$

Redução do Desvio Padrão

$$SDR(Hours, Outlook) = S(Hours) - S(Hours, Outlook)$$

= $9.32 - 7.66 = 1.66$

O maior SDR é escolhido como raiz

		Hours Played (StDev)	
Outlook	Overcast	3.49	
	Rainy	7.78	
	Sunny	10.87	
SDR=1.66			

		Hours Played (StDev)	
High		9.36	
Humidity	Normal	8.37	
SDR=0.28			

		Hours Played (StDev)
	Cool	10.51
Temp.	Hot	8.95
	Mild	7.65
SDR= 0.48		

		Hours Played (StDev)
Minds.	False	7.87
Windy	True	10.59

Como escolher o critério de parada?

Considere um limiar de CV < 10% ou count <= 3

Overcast => OK Rainy e Sunny ainda precisam de 'divisões'

		Hours Played (StDev)	Hours Played (AVG)	Hours Played (CV)	Count
Overcast		3.49	46.3	8%	4
Outlook	Rainy	7.78	35.2	22%	5
	Sunny	10.87	39.2	28%	5

Outlook - Sunny

'Windy' é determinante

Major SDR

CV > 8% ou count ≤ 3

Temp	Humidity	Windy	Hours Played
Mild	High	FALSE	45
Cool	Normal	FALSE	52
Cool	Normal	TRUE	23
Mild	Normal	FALSE	46
Mild	High	TRUE	30
			S = 10.87
			AVG = 39.2
			CV = 28%

		Hours Played (StDev)	Count	
Tomo	Cool	14.50	2	
Temp	Mild	7.32	3	

SDR = 10.87-((2/5)*14.5 + (3/5)*7.32) = 0.678

		Hours Played (StDev)	Count
Unmidite	High	7.50	2
Humidity	Normal	12.50	3

SDR = 10.87-((2/5)*7.5 + (3/5)*12.5) = 0.370

		Hours Played (StDev)	Count	
Winds	False	3.09	3	
Windy	True	3.50	2	

SDR = 10.87-((3/5)+3.09 + (2/5)+3.5) = 7.62

Outlook - Rainy

Ra	İ	n	У	
			_	

'Temp' é determinante

Maior SDR

CV > 8% ou count ≤ 3

Temp	Humidity	Windy	Hours Played
Hot	High	FALSE	25
Hot	High	TRUE	30
Mild	High	FALSE	35
Cool	Normal	FALSE	38
Mild	Normal	TRUE	48
			S = 7.78
			AVG = 35.2
			CV = 22%

		Hours Played (StDev)	Count
	Cool	0	1
Temp	Hot	2.5	2
	Mild	6.5	2

SDR = 7.78 - ((1/5)*0+(2/5)*2.5 + (2/5)*6.5) 4.18

4		Hours Played (StDev)	Count	
Hamaldita.	High	4.1	3	
Humidity	Normal	5.0	2	

SDR = 7.78 - ((3/5)*4.1 + (2/5)*5.0) = 3.32

:		Hours Played (StDev)	Count	
Mr. J.	False	5.6	3	
Windy	True	9.0	2	

SDR = 7.78 - ((3/5)*5.6 + (2/5)*9.0) = 0.82

	Outle	ook	_			
Sunny	Overcast		Rainy			_
			$\overline{}$		Temp	Hours Played
				_	Cool	38
Windy	46.3		Temp		Hot Hot	25
	_				Mild	30 35
FALSE	TRUE	Cool	Hot	Mild	Mild	48
TALSE	11102		1100	Ivilia		
\equiv						
47.7	26.5	38	27.5	41.5		

Regressão - SVM

Regressão - MLP

Perceptron - Classificação

Perceptron - Regressão

Regressão - MLP

MLP - Classificação

Lets Code

Abordaremos a construção dos modelos de regressão utilizando um dataset para prever preços de casas.

Acompanhe e crie sua implementação em conjunto com o professor.

Código base em: