Perform the following operations using Python on the Heart Disease data sets

a. Data cleaning b. Data integration c. Data transformation d. Error correcting e. Data model building

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

In [4]:

```
df = pd.read_csv('heart.csv')
```

In [5]:

df

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	t
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

1025 rows × 14 columns

a. Data cleaning

a.1 Removing Missing or Null Values:

```
In [6]:
df.dropna(axis=0,how='any')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
 #
    Column
              Non-Null Count Dtype
               -----
0
    age
              1025 non-null
                               int64
 1
              1025 non-null
    sex
                              int64
 2
    ср
              1025 non-null
                              int64
 3
    trestbps 1025 non-null
                             int64
 4
              1025 non-null
    chol
                             int64
 5
    fbs
              1025 non-null
                              int64
                              int64
 6
    restecg
              1025 non-null
 7
    thalach 1025 non-null int64
 8
              1025 non-null int64
    exang
 9
    oldpeak
              1025 non-null
                              float64
 10
    slope
              1025 non-null
                              int64
 11
              1025 non-null
                              int64
    ca
 12
    thal
              1025 non-null
                               int64
 13 target
              1025 non-null
                               int64
dtypes: float64(1), int64(13)
memory usage: 112.2 KB
```

a.2 Reading and Removing Duplicate Values

· Reading Duplicates:

```
In [7]:
```

```
df.duplicated(subset=['trestbps'])
Out[7]:
0
        False
        False
1
2
        False
3
        False
4
        False
         . . .
1020
         True
1021
         True
1022
         True
1023
         True
         True
Length: 1025, dtype: bool
```

Remove Duplicates:

```
In [9]:
```

```
df.drop_duplicates(keep=False)
```

Out[9]:

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

a.3 Handling Outliers:

In [10]:

```
def remove_outliers(df,columns,n_std):
    for col in columns:
        print('Working on coloumn: {}'.format(col))

    mean = df[col].mean()
    sd = df[col].std()

    df = df[(df[col] <= mean+(n_std*sd))]
    return df

df</pre>
```

Out[10]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	t
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

1025 rows × 14 columns

localhost:8888/notebooks/chit4.ipynb#

b. Data integration

```
In [11]:
```

```
df1 = pd.read_csv('AirQualityUCI.csv',sep=';')
df1
```

Out[11]:

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx
0	10/03/2004	18.00.00	2,6	1360.0	150.0	11,9	1046.0	1
1	10/03/2004	19.00.00	2	1292.0	112.0	9,4	955.0	1
2	10/03/2004	20.00.00	2,2	1402.0	88.0	9,0	939.0	1
3	10/03/2004	21.00.00	2,2	1376.0	80.0	9,2	948.0	1
4	10/03/2004	22.00.00	1,6	1272.0	51.0	6,5	836.0	1
9466	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
9467	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
9468	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
9469	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
9470	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

9471 rows × 17 columns

In [12]:

pd.concat([df,df1])

Out[12]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	 NOx(GT)
0	52.0	1.0	0.0	125.0	212.0	0.0	1.0	168.0	0.0	1.0	 NaN
1	53.0	1.0	0.0	140.0	203.0	1.0	0.0	155.0	1.0	3.1	 NaN
2	70.0	1.0	0.0	145.0	174.0	0.0	1.0	125.0	1.0	2.6	 NaN
3	61.0	1.0	0.0	148.0	203.0	0.0	1.0	161.0	0.0	0.0	 NaN
4	62.0	0.0	0.0	138.0	294.0	1.0	1.0	106.0	0.0	1.9	 NaN
9466	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
9467	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
9468	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
9469	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN
9470	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN

10496 rows × 31 columns

localhost:8888/notebooks/chit4.ipynb#

c. Data transformation

```
In [13]:
```

```
dt = df.groupby(['age','cp'])
dt.first()
```

Out[13]:

		sex	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
age	ср												
29	1	1	130	204	0	0	202	0	0.0	2	0	2	1
34	1	0	118	210	0	1	192	0	0.7	2	0	2	1
	3	1	118	182	0	0	174	0	0.0	2	0	2	1
35	0	1	120	198	0	1	130	1	1.6	1	0	3	0
	1	1	122	192	0	1	174	0	0.0	2	0	2	1
71	1	0	160	302	0	1	162	0	0.4	2	2	2	1
	2	0	110	265	1	0	130	0	0.0	2	1	2	1
74	1	0	120	269	0	0	121	1	0.2	2	1	2	1
76	2	0	140	197	0	2	116	0	1.1	1	0	2	1
77	0	1	125	304	0	0	162	1	0.0	2	3	2	0

108 rows × 12 columns

d. Error correcting

e. Data model building

```
In [14]:
```

```
from sklearn.model_selection import train_test_split
train,test=train_test_split(df,random_state=0,test_size=.25)
```

```
In [15]:
```

```
print("Training Dataset:",train.shape)
```

Training Dataset: (768, 14)

```
In [16]:
```

```
print("Testing Dataset:",test.shape)
```

Testing Dataset: (257, 14)

In []: