Probleme informatice (parțial) rezolvate matematic

2018 FMI - Lecții de pregătire pentru admitere

Scop

Trucuri (matematice) pentru a rezolva unele probleme informatice.

Scop

Trucuri (matematice) pentru a rezolva unele probleme informatice. Trucuri (informatice) pentru a rezolva unele probleme matematice.

Provocare: Project Euler

Pe scurt

Probleme de numărare și Programare dinamică

2 Probleme cu numere; Divizibilitate; Algoritmul lui Euclid

Probleme de numărare: Plan

- ☐ Descoperirea formulei recursive
- □ (Opțional) rezolvarea recursiei
- □ Programarea soluției.

Problemă

Q1

Dacă o echipă de baschet are 9 jucători, în câte moduri își poate alege cei 5 jucători în teren?

Truc matematic: Combinări de *n* luate câte *k*

Formula recursivă

$$C_n^0 = 1, \quad C_n^n = 1, \quad C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

Rezolvarea recursiei

$$C_n^k = \frac{n!}{(n-k)!k!}$$

C_n^k — formula directă

$$C_n^k = C_n^{n-k} = \frac{n!}{(n-k)!k!}$$

C_n^k — formula directă

```
C_n^k = C_n^{n-k} = \frac{n!}{(n-k)!k!} = \frac{(n-k+1)\cdot(n-k+2)\cdot\cdots\cdot(n-k+k)}{1\cdot 2\cdot\cdots\cdot k}
unsigned long long combination(unsigned n, unsigned k) {
    k = \min(k, n-k);
    unsigned long long numarator = 1, numitor = 1;
    for (int i = 1; i <= k; i++) {
         numarator = numarator * (n - k + i);
         numitor = numitor * i;
    }
    return numarator / numitor;
```

C_n^k — formula directă

$$C_n^k = C_n^{n-k} = \frac{n!}{(n-k)!k!} = \frac{(n-k+1)\cdot(n-k+2)\cdot\cdots\cdot(n-k+k)}{1\cdot 2\cdot\cdots\cdot k}$$
unsigned long long combination(unsigned n, unsigned k) {
 k = min(k, n-k);
 unsigned long long numarator = 1, numitor = 1;
 for (int i = 1; i <= k; i++) {
 numarator = numarator * (n - k + i);
 numitor = numitor * i;
 }
 return numarator / numitor;
}

Câte operații se fac? Observati vreo problemă?

C_n^k — Definiția recursivă

```
C_n^0 = 1, C_n^n = 1, C_n^k = C_{n-1}^k + C_{n-1}^{k-1}

unsigned long long combination(unsigned n, unsigned k) {
    k = min(k, n-k);
    if (k == 0 || n == k) return 1;
    return combination(n-1, k) + combination(n-1, k-1);
}
```

C_n^k — Definiția recursivă

```
C_n^0 = 1, C_n^n = 1, C_n^k = C_{n-1}^k + C_{n-1}^{k-1}

unsigned long long combination(unsigned n, unsigned k) {
    k = min(k, n-k);
    if (k == 0 || n == k) return 1;
    return combination(n-1, k) + combination(n-1, k-1);
}
```

Observați vreo problemă?

C_n^k — Definiția recursivă

```
C<sub>n</sub> = 1, C<sub>n</sub> = 1, C<sub>n</sub> = C<sub>n-1</sub> + C<sub>n-1</sub>
unsigned long long combination(unsigned n, unsigned k) {
    k = min(k, n-k);
    if (k == 0 || n == k) return 1;
    return combination(n-1, k) + combination(n-1, k-1);
}

Observaţi vreo problemă?
Câte adunări se fac?
```

Truc: reținerea valorilor deja calculate

```
C_n^0 = 1, C_n^n = 1, C_n^k = C_{n-1}^k + C_{n-1}^{k-1}
unsigned long long memo[101][101];
unsigned long long combination(unsigned n, unsigned k) {
    k = \min(k, n-k);
    if (k == 0 | | n == k) return 1:
    unsigned long long cnk = memo[n][k];
    if (cnk == 0) {
        cnk = combination(n-1, k) + combination(n-1, k-1);
        memo[n][k] = cnk;
    return cnk;
```

Truc: reținerea valorilor deja calculate

```
C_n^0 = 1, C_n^n = 1, C_n^k = C_{n-1}^k + C_{n-1}^{k-1}
unsigned long long memo[101][101];
unsigned long long combination(unsigned n, unsigned k) {
    k = \min(k, n-k);
    if (k == 0 | | n == k) return 1:
    unsigned long long cnk = memo[n][k];
    if (cnk == 0) {
        cnk = combination(n-1, k) + combination(n-1, k-1);
        memo[n][k] = cnk;
    return cnk;
```

Câte adunări se fac?

Truc: tabelare

Triunghiul lui Pascal

Truc: tabelare

```
unsigned long long linie_triunghi[101];
unsigned long long combination(unsigned n, unsigned k) {
 k = \min(k, n-k);
  if (k == 0 | | n == k) return 1:
  linie_triunghi[0] = 1;
  for (int i = 1; i <= n; i++) {
    if (i <= k) linie_triunghi[i] = 1;</pre>
    for (unsigned j = min(k, i-1); j > 0; j--)
      linie_triunghi[j] =
          linie_triunghi[j-1] + linie_triunghi[j];
  }
  return linie_triunghi[k];
```

Truc: tabelare

```
unsigned long long linie_triunghi[101];
unsigned long long combination(unsigned n, unsigned k) {
 k = \min(k, n-k);
  if (k == 0 | | n == k) return 1:
  linie_triunghi[0] = 1;
  for (int i = 1; i <= n; i++) {
    if (i <= k) linie_triunghi[i] = 1;</pre>
    for (unsigned j = min(k, i-1); j > 0; j--)
      linie_triunghi[j] =
          linie_triunghi[j-1] + linie_triunghi[j];
  }
  return linie_triunghi[k];
```

Problemă

Q2

În câte moduri putem acoperi *n* trepte cu *n* dreptunghiuri, unde dreptunghiurile pot avea orice formă?

Alegerea triunghiului din colț

Să considerăm cazul cu 6 trepte.

Alegerea triunghiului din colț

Să considerăm cazul cu 6 trepte.

În acest mod nu se poate obține o acoperire cu 6 dreptunghiuri!

Fiecare dreptunghi trebuie să acopere o treaptă!

Fiecare dreptunghi trebuie să acopere o treaptă!

Deci, dreptunghiul din colț împarte problema în două.

Fiecare dreptunghi trebuie să acopere o treaptă!

Deci, dreptunghiul din colț împarte problema în două.

Formula recursivă

Notăm cu C_n numărul de acoperiri pentru n trepte. Se observă relația:

$$C_6 = C_5 + C_1 \cdot C_4 + C_2 \cdot C_3 + C_3 \cdot C_2 + C_4 \cdot C_1 + C_5$$

Fiecare dreptunghi trebuie să acopere o treaptă!

Deci, dreptunghiul din colț împarte problema în două.

Formula recursivă

Notăm cu C_n numărul de acoperiri pentru n trepte. Se observă relația:

$$C_6 = C_5 + C_1 \cdot C_4 + C_2 \cdot C_3 + C_3 \cdot C_2 + C_4 \cdot C_1 + C_5$$

$$C_6 = \sum_{k=1}^6 C_{k-1} C_{n-k}, \text{ cu } C_0 = 1.$$

Truc: Numerele lui Catalan

Formula recursivă

$$C_n = \sum_{k=1}^n C_{k-1} C_{n-k}$$
, cu $C_0 = 1$.

$$\Box C_0 = 1$$
,

$$\Box \ C_n = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-2} C_1 + C_{n-1} C_0$$

Truc: Numerele lui Catalan

Formula recursivă

$$C_n = \sum_{k=1}^n C_{k-1} C_{n-k}$$
, cu $C_0 = 1$.

- $\Box C_0 = 1$,
- $\Box \ \ C_n = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-2} C_1 + C_{n-1} C_0$

Rezolvarea recursiei

$$C_n = \frac{1}{n+1} C_{2n}^n$$

Truc: Numerele lui Catalan

Formula recursivă

$$C_n = \sum_{k=1}^n C_{k-1} C_{n-k}$$
, cu $C_0 = 1$.

- $\Box C_0 = 1$,

Rezolvarea recursiei

$$C_n = \frac{1}{n+1} C_{2n}^n$$

Exemplu:

1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790

Q

În câte moduri putem paranteza produsul $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$?

Q

În câte moduri putem paranteza produsul $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$?

Exemplu (n=3)

- $\square x_0 \cdot (x_1 \cdot (x_2 \cdot x_3))$
- $\square x_0 \cdot ((x_1 \cdot x_2) \cdot x_3)$
- $\square (x_0 \cdot x_1) \cdot (x_2 \cdot x_3)$
- $\square ((x_0 \cdot x_1) \cdot x_2) \cdot x_3$
- $\square (x_0 \cdot (x_1 \cdot x_2)) \cdot x_3$

Q

În câte moduri putem paranteza produsul $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$?

Rezolvare:

Notăm cu p_n numărul parantezărilor lui $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$. Observăm

$$(x_0 \cdot \ldots \cdot x_k) \cdot (x_{k+1} \cdot \ldots \cdot x_n) \downarrow \qquad \qquad \downarrow \\ p_k \qquad \qquad p_{n-k-1}$$

Q

În câte moduri putem paranteza produsul $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$?

Rezolvare:

Notăm cu p_n numărul parantezărilor lui $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$. Observăm

$$(x_0 \cdot \ldots \cdot x_k) \cdot (x_{k+1} \cdot \ldots \cdot x_n) \downarrow \qquad \qquad \qquad$$

$$p_n = \sum_{k=0}^{n-1} p_k \cdot p_{n-k-1} = p_0 \cdot p_{n-1} + p_1 \cdot p_{n-2} + \ldots + p_{n-2} \cdot p_1 + p_{n-1} \cdot p_0$$

Q

În câte moduri putem paranteza produsul $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$?

Rezolvare:

Notăm cu p_n numărul parantezărilor lui $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$. Observăm

$$(x_0 \cdot \ldots \cdot x_k) \cdot (x_{k+1} \cdot \ldots \cdot x_n) \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad p_n - k - 1$$

Deci

$$p_n = \sum_{k=0}^{n-1} p_k \cdot p_{n-k-1} = p_0 \cdot p_{n-1} + p_1 \cdot p_{n-2} + \ldots + p_{n-2} \cdot p_1 + p_{n-1} \cdot p_0$$

Se observă că $p_n = C_n$, deci numărul parantezărilor unui produs de n+1 factori este numărul lui Catalan C_n .

Problemă

Q3

În câte moduri se poate scrie un număr n ca sumă a k numere?

$$n = n_1 + n_2 + \ldots + n_k,$$

 $0 < n_1 \le n_2 \le \ldots \le n_k$

O partiție a mulțimii A este o familie de submulțimi $\{A_i\}_{i\in I}$ care verifică următoarele proprietăți:

- **■** $A_i \neq \emptyset$ pentru orice $i \in I$,
- $\exists A_i \cap A_j = \emptyset \text{ pentru } i \neq j \in I.$

Mulțimile A_i se numesc clase ale parției.

Exemplu

Care sunt partițiile mulțimii $A = \{1, 2, 3\}$?

Exemplu

Care sunt partițiile mulțimii $A = \{1, 2, 3\}$?

 \Box {1, 2, 3}

Exemplu

Care sunt partițiile mulțimii $A = \{1, 2, 3\}$?

- \Box {1, 2, 3}
- \Box {1,2}, {3}
- \Box {1,3}, {2}
- \square {2,3}, {1}

Exemplu

```
Care sunt partițiile mulțimii A = \{1, 2, 3\} ?
```

- \Box {1, 2, 3}
- \Box {1,2}, {3}
- \Box {1,3}, {2}
- \square {2,3}, {1}
- \Box {1}, {2}, {3}

Nr. elem.:	0	1	2	3	4	5	6	7	8	9	10
Nr. partiții:	1	1	2	5	15	52	203	877	4140	21147	115975

Nr. elem.:	0	1	2	3	4	5	6	7	8	9	10
Nr. partiții:	1	1	2	5	15	52	203	877	4140	21147	115975

Numărul lui Bell B_n : numărul partițiilor unei mulțimi cu n elemente

Nr. elem.:	0	1	2	3	4	5	6	7	8	9	10
Nr. partiții:	1	1	2	5	15	52	203	877	4140	21147	115975

Numărul lui Bell B_n : numărul partițiilor unei mulțimi cu n elemente Numărul lui Stirling de tipul II S(n,k): numărul partițiilor cu k clase ale unei mulțimi cu n elemente

Nr. elem.:	0	1	2	3	4	5	6	7	8	9	10
Nr. partiții:	1	1	2	5	15	52	203	877	4140	21147	115975

Numărul lui Bell B_n : numărul partițiilor unei mulțimi cu n elemente

Numărul lui Stirling de tipul II S(n, k): numărul partițiilor cu k clase ale unei mulțimi cu n elemente

$$B_n = S(n,1) + S(n,2) + \ldots + S(n,n-1) + S(n,n)$$

Exemplu

Care sunt partițiile mulțimii $A = \{1, 2, 3\}$?

 \Box {1, 2, 3}

 $\Box S(3,1) = 1$

- \Box {1,2}, {3}
- \Box {1,3}, {2} \Box S(3,2) = 3
- \square {2,3}, {1}
- \square {1}, {2}, {3} \square S(3,3) = 1

$$B_3 = S(3,1) + S(3,2) + S(3,3) = 5$$

Exempli

Care sunt partițiile mulțimii $A = \{1, 2, 3\}$?

 \Box {1, 2, 3}

 $\Box S(3,1) = 1$

 \Box {1,2}, {3}

 $\Box S(3,2) = 3$

 \square {1,3}, {2} \square {2,3}, {1} \square {1}, {2}, {3}

 $\Box S(3,3) = 1$

$$B_3 = S(3,1) + S(3,2) + S(3,3) = 5$$

Observați că S(n,1) = 1, S(n,n) = 1

Dacă știm să calculăm S(n, k) pentru orice $k \le n$ $\mid *** \mid *** \mid \cdots \mid *** \mid$

Dacă știm să calculăm S(n,k) pentru orice $k \leq n$ $\mid *** \mid *** \mid \cdots \quad \cdots \quad \mid *** \mid$ atunci știm să calculăm și S(n+1,k):

Dacă știm să calculăm S(n,k) pentru orice $k \le n$ $\mid *** \mid *** \mid \cdots \quad \cdots \quad \mid *** \mid$ atunci știm să calculăm și S(n+1,k): $\mid \mid *** \mid *** \mid \cdots \quad \cdots \quad \mid *** \mid \bullet \mid$

Dacă știm să calculăm S(n,k) pentru orice $k \le n$ $\mid *** \mid *** \mid \cdots \quad \cdots \quad \mid *** \mid$ atunci știm să calculăm și S(n+1,k):

Dacă știm să calculăm S(n, k) pentru orice $k \le n$

atunci știm să calculăm și S(n+1, k):

- 2 | * * * | * * * | ... | * * | ... | * * * |

Formula recursivă

- $\Box S(n+1,k) = S(n,k-1) + kS(n,k)$
- □ Condițiile inițiale: S(1,1) = 1 și S(n,0) = S(0,k) = 0

Truc: Numărul partițiilor unei mulțimi în k clase

```
Input: n \ge 1, numărul de elemente al mulțimii M
Output: Un vector S în care S[k] este numărul partițiilor lui M cu k
        clase
Data: Un vector S de dimensiune n
begin
   S[1] := 1
   for i := 2 to n do
      S[i] := 1
     for k := i-1 down to 2 do
      | S[k] := k * S[k] + S[k-1]
      end
   end
end
return S
```

Q

Să se determine numărul funcțiilor surjective
$$f: \{1, \dots, n\} \rightarrow \{1, \dots, k\}.$$

Q

Să se determine numărul funcțiilor surjective
$$f: \{1, \dots, n\} \to \{1, \dots, k\}.$$

Rezolvare:

Notăm acest număr cu $\sigma(n,k)$. Observăm că

- \square partiționăm mulțimea $\{1,\ldots,n\}$ în k clase în S(n,k) moduri
- \square ducem câte un element din fiecare partiție în mulțimea $\{1,\ldots,k\}$ în k! moduri (permutări de k elemente este k!)

Deci răspunsul este $\sigma(n, k) = k!S(n, k)$

Q

Să se determine numărul relațiilor de echivalență care se pot defini pe mulțimea $\{1,\ldots,n\}$.

Q

Să se determine numărul relațiilor de echivalență care se pot defini pe mulțimea $\{1, \ldots, n\}$.

Rezolvare:

Oricărei relații de echivalență R pe $\{1,\ldots,n\}$ îi asociem o partiție a mulțimii $\{1,\ldots,n\}$ astfel:

$$(i,j) \in R \quad \Leftrightarrow \quad i \neq j \text{ sunt în aceeași clasă}$$

Observăm că în acest mod se stabilește o bijecție între mulțimea relațiilor de echivalență și partițiile mulțimii $\{1, \ldots, n\}$.

Atunci răspunsul este dat de numărul partițiilor mulțimii $\{1, \ldots, n\}$.

Q

Să se determine numărul matricilor *A* pătratice de dimensiune *n* care conțin doar 0 și 1, și care verifică următoarele proprietăți:

- $A[i, i] = 1 \text{ or. } 1 \le i \le n,$
- $A[i,j] = A[j,i] \text{ or. } 1 \le i,j \le n,$
- A[i,j]=1 și A[j,k]=1 implică A[i,k]=1 or. $1 \leq i,j,k \leq n$

Q

Să se determine numărul matricilor *A* pătratice de dimensiune *n* care conțin doar 0 și 1, și care verifică următoarele proprietăți:

- $A[i, i] = 1 \text{ or. } 1 \le i \le n,$
- $A[i,j] = A[j,i] \text{ or. } 1 \le i,j \le n,$
- A[i,j]=1 și A[j,k]=1 implică A[i,k]=1 or. $1 \leq i,j,k \leq n$

Rezolvare:

Asociem lui A o partiție a mulțimii $\{1, \ldots, n\}$ astfel:

$$A[i,j] = 1 \Leftrightarrow i \neq j \text{ sunt în aceeași clasă}$$

Observăm că în acest mod se stabilește o bijecție între mulțimea matricilor de acest tip și partițiile mulțimii $\{1,\ldots,n\}$. Atunci răspunsul este dat de numărul partițiilor mulțimii $\{1,\ldots,n\}$.

În câte moduri se poate scrie un număr n ca sumă a k numere? $n = n_1 + n_2 + \ldots + n_k, \ 0 < n_1 \le n_2 \le \ldots \le n_k$

În câte moduri se poate scrie un număr n ca sumă a k numere?

$$n = n_1 + n_2 + \ldots + n_k, \ 0 < n_1 \le n_2 \le \ldots \le n_k$$

Descoperirea recursiei:

Dacă p(n, k) este acest număr, observăm că avem două grupuri de partiții:

- \blacksquare partiții cu 1 în ele, i.e. 1 + ceva
- partiții fără 1

În câte moduri se poate scrie un număr n ca sumă a k numere?

$$n = n_1 + n_2 + \ldots + n_k$$
, $0 < n_1 \le n_2 \le \ldots \le n_k$

Descoperirea recursiei:

Dacă p(n, k) este acest număr, observăm că avem două grupuri de partiții:

- \blacksquare partiții cu 1 în ele, i.e. 1 + ceva
- partiţii fără 1

Formula recursivă

$$p(0,0) = 0$$
, $p(n,0) = p(0,k) = 0$,
 $p(n,k) = p(n-1,k-1) + p(n-k,k)$

Problemă

Q4

În câte moduri putem acoperi o placă de $2 \times N$ cu piese de domino 1×2 ?

Piese de domino

Exemplu

Pentru o placă de 2×7 , o soluție este:

Fie F_n numărul acoperirilor unei table $2 \times n$.

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ?

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ? $F_1 = 1$

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ? $F_1 = 1$

Cât este F_2 ?

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ? $F_1 = 1$

Cât este F_2 ? $F_2 = 2$

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ? $F_1 = 1$

Cât este F_2 ? $F_2 = 2$

Ştiind să calculăm F_k pt. or. k < n, cât este F_n ?

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ? $F_1 = 1$

Cât este F_2 ? $F_2 = 2$

Ştiind să calculăm F_k pt. or. k < n, cât este F_n ?

Fie F_n numărul acoperirilor unei table $2 \times n$.

Cât este F_1 ? $F_1 = 1$

Cât este F_2 ? $F_2 = 2$

Ştiind să calculăm F_k pt. or. k < n, cât este F_n ?

$$F_n = F_{n-1} + F_{n-2}$$

Truc: Numerele lui Fibonacci

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ pentru $n \ge 2$

Truc: Numerele lui Fibonacci

$$F_0=1$$
, $F_1=1$, $F_n=F_{n-1}+F_{n-2}$ pentru $n\geq 2$

```
Input: n \ge 1
Output: Al n-lea număr din secvența Fibonacci begin

| f1 := 1
| f2 := 1
| for i := 2 to n do
| aux := f1
| f1 := f2
| f2 := aux + f2
| end

end

return f2
```

Reproducerea iepurilor

- □ Populația începe cu o singură pereche de iepuri.
- ☐ Fiecare pereche de iepuri produce o nouă pereche în două luni.
- Presupunem că iepurii nu mor niciodată.
- ☐ Câte perechi de iepuri vor fi peste *n* luni?

Reproducerea iepurilor

- ☐ Populația începe cu o singură pereche de iepuri.
- ☐ Fiecare pereche de iepuri produce o nouă pereche în două luni.
- Presupunem că iepurii nu mor niciodată.
- □ Câte perechi de iepuri vor fi peste *n* luni?

Rezolvare:

Dacă f_n este numărul de perechi de iepuri peste n luni, atunci avem relațiile $f_0=1$, $f_1=1$, $f_{n+1}=f_n+f_{n-1}$ pentru $n\geq 2$.

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

Rezolvare:

 \square Fie s_n numărul secvențelor de lungime n care nu conțin 0-uri consecutive.

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

- \square Fie s_n numărul secvențelor de lungime n care nu conțin 0-uri consecutive.
- \square Se observă că $s_0 = 1$ (cuvântul vid) și $s_1 = 2$.

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

- \square Fie s_n numărul secvențelor de lungime n care nu conțin 0-uri consecutive.
- \square Se observă că $s_0 = 1$ (cuvântul vid) și $s_1 = 2$.
- □ O secvență de lungime *n* care nu conține 0-uri consecutive se poate termina în:

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

- \square Fie s_n numărul secvențelor de lungime n care nu conțin 0-uri consecutive.
- \square Se observă că $s_0 = 1$ (cuvântul vid) și $s_1 = 2$.
- □ O secvență de lungime *n* care nu conține 0-uri consecutive se poate termina în:
 - \square 0: ??...?10, unde |??...?| = n-2

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

- \square Fie s_n numărul secvențelor de lungime n care nu conțin 0-uri consecutive.
- \square Se observă că $s_0 = 1$ (cuvântul vid) și $s_1 = 2$.
- □ O secvență de lungime *n* care nu conține 0-uri consecutive se poate termina în:
 - \square 0: ??...?10, unde |??...?| = n-2
 - □ 1: ??...?1, unde |??...?| = n-1

Q

Care este numărul secvențelor binare de lungime *n* care nu conțin 0-uri consecutive?

- \square Fie s_n numărul secvențelor de lungime n care nu conțin 0-uri consecutive.
- \square Se observă că $s_0 = 1$ (cuvântul vid) și $s_1 = 2$.
- □ O secvență de lungime *n* care nu conține 0-uri consecutive se poate termina în:
 - \square 0: ??...?10, unde |??...?| = n-2
 - □ 1: ??...?1, unde |??...?| = n-1
- □ Deci $s_n = s_{n-1} + s_{n-2}$.

Q

Care este numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive?

Q

Care este numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive?

Rezolvare:

 \square Fie a_n numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive.

Q

Care este numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive?

- \square Fie a_n numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive.
- \square Se observă că $a_0 = 1$ (mulțimea vidă) și $a_1 = 2$.

Q

Care este numărul submulțimilor lui $\{1, \ldots, n\}$ care nu conțin două numere consecutive?

- \square Fie a_n numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive.
- □ Se observă că $a_0 = 1$ (mulțimea vidă) și $a_1 = 2$.
- □ Pentru $n \ge 2$, dacă A este o submulțime a lui $\{1, ..., n\}$ care nu conține două numere consecutive, atunci avem două cazuri:

Q

Care este numărul submulțimilor lui $\{1, \ldots, n\}$ care nu conțin două numere consecutive?

- □ Fie a_n numărul submulțimilor lui $\{1, ..., n\}$ care nu conțin două numere consecutive.
- \square Se observă că $a_0 = 1$ (mulțimea vidă) și $a_1 = 2$.
- □ Pentru $n \ge 2$, dacă A este o submulțime a lui $\{1, ..., n\}$ care nu conține două numere consecutive, atunci avem două cazuri:
 - □ n este în A: Atunci n-1 nu poate să fie în A și $A \setminus \{n\}$ este o submulțime a lui $\{1, \ldots, n-2\}$ care nu conțin două numere consecutive.

Q

Care este numărul submulțimilor lui $\{1, \ldots, n\}$ care nu conțin două numere consecutive?

- □ Fie a_n numărul submulțimilor lui $\{1, ..., n\}$ care nu conțin două numere consecutive.
- \square Se observă că $a_0 = 1$ (mulțimea vidă) și $a_1 = 2$.
- □ Pentru $n \ge 2$, dacă A este o submulțime a lui $\{1, ..., n\}$ care nu conține două numere consecutive, atunci avem două cazuri:
 - n este în A: Atunci n-1 nu poate să fie în A și $A \setminus \{n\}$ este o submulțime a lui $\{1, \ldots, n-2\}$ care nu conțin două numere consecutive
 - \square *n* nu este în *A*: Atunci *A* este o submulțime a lui $\{1, \ldots, n-1\}$ care nu conțin două numere consecutive.

Q

Care este numărul submulțimilor lui $\{1, \ldots, n\}$ care nu conțin două numere consecutive?

- \square Fie a_n numărul submulțimilor lui $\{1,\ldots,n\}$ care nu conțin două numere consecutive.
- \square Se observă că $a_0 = 1$ (mulțimea vidă) și $a_1 = 2$.
- □ Pentru $n \ge 2$, dacă A este o submulțime a lui $\{1, ..., n\}$ care nu conține două numere consecutive, atunci avem două cazuri:
 - n este în A: Atunci n-1 nu poate să fie în A și $A \setminus \{n\}$ este o submulțime a lui $\{1, \ldots, n-2\}$ care nu conțin două numere consecutive.
 - \square *n* nu este în *A*: Atunci *A* este o submulțime a lui $\{1, \ldots, n-1\}$ care nu conțin două numere consecutive.
- \Box Deci $a_n = a_{n-2} + a_{n-1}$.

Problemă

Q6

În câte zerouri se termină 100! ? $100! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 97 \cdot 98 \cdot 99 \cdot 100$

Algoritmul naiv

```
Input: n \in \mathbb{N}
Output: Numărul de zerouri din n!
begin
   fact := 1
   for i := 2 to n do
   | fact := fact * i
   end
   z := 0
   while fact mod 10 = 0 do
      fact := fact div 10
     z := z + 1
   end
end
return z
```

Algoritmul naiv

```
Input: n \in \mathbb{N}
Output: Numărul de zerouri din n!
begin
   fact := 1
   for i := 2 to n do
   | fact := fact * i
   end
   z := 0
   while fact mod 10 = 0 do
      fact := fact div 10
     z := z + 1
   end
end
return z
```

Observați vreo problemă?

□ Zerourile de la sfârșitul lui *n*! apar din produse de 2 și 5

- ☐ Zerourile de la sfârșitul lui *n*! apar din produse de 2 și 5
- Descompunem n! în factori primi: $n! = 2^{k_2} * 3^{k_3} * 5^{k_5} * \cdots$

- ☐ Zerourile de la sfârșitul lui *n*! apar din produse de 2 și 5
- □ Descompunem n! în factori primi: $n! = 2^{k_2} * 3^{k_3} * 5^{k_5} * \cdots$
- \square Numărul zerourile de la sfârșitul lui n! este $min(k_2, k_5)$.

- ☐ Zerourile de la sfârșitul lui *n*! apar din produse de 2 și 5
- Descompunem n! în factori primi: $n! = 2^{k_2} * 3^{k_3} * 5^{k_5} * \cdots$
- \square Numărul zerourile de la sfârșitul lui n! este $min(k_2, k_5)$.
- \square Sunt mai puțini factori 5 decât 2, deci nr. de zerouri căutat este k_5 .

- □ Zerourile de la sfârșitul lui *n*! apar din produse de 2 și 5
- Descompunem n! în factori primi: $n! = 2^{k_2} * 3^{k_3} * 5^{k_5} * \cdots$
- \square Numărul zerourile de la sfârșitul lui n! este $min(k_2, k_5)$.
- □ Sunt mai puţini factori 5 decât 2, deci nr. de zerouri căutat este k_5 .
- \square $k_5 =$ nr. numerelor mai mici ca n divizibile cu 5 + nr. numerelor mai mici ca n divizibile cu 25 + nr. numerelor mai mici ca n divizibile cu $125 + \dots$

$$k_5 = \sum_{i>1} \left\lfloor \frac{n}{5^i} \right\rfloor, \quad \text{unde} \quad \left\lfloor \frac{n}{5^{i+1}} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{n}{5^i} \right\rfloor}{5} \right\rfloor$$

$$k_5 = \sum_{i \ge 1} \left\lfloor \frac{n}{5^i} \right\rfloor, \quad \text{unde} \quad \left\lfloor \frac{n}{5^{i+1}} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{n}{5^i} \right\rfloor}{5} \right\rfloor$$

Input: $n \in \mathbb{N}$

Output: Numărul de zerouri din n!

```
\begin{array}{c|c} \textbf{begin} \\ \textbf{z} := \textbf{0} \\ \textbf{while } \textbf{n} \neq \textbf{0} \textbf{ do} \\ \mid \textbf{n} := \textbf{n} \textit{ div } \textbf{5} \\ \mid \textbf{z} := \textbf{z} + \textbf{n} \\ \textbf{end} \end{array}
```

end

return z

Problemă

Q7

Pentru două numere $n\geq 1$ și $p\geq 1,\ n\geq p,$ găsiți x și y cu proprietatea $\times n \ + \ yp = cmmdc(n,p)$

Algoritmul lui Euclid (scăderi repetate)

```
Input: n, p \in \mathbb{N}, n \geq p
Output: cmmdc(n, p)
begin
   while n \neq p do
     else
      p := p - n
      end
   end
end
return n
```

Algoritmul lui Euclid (ultimul rest nenul)

```
Input: n, p \in \mathbb{N}, n \ge p
Output: cmmdc(n, p)
begin

while p \ne 0 do

aux := p

p := n \mod p

n := aux
end
end
return n
```

Algoritmul începe cu n și p și constă în calcularea

- \square unei secvențe q_1,\ldots,q_k de câturi și a
- \square unei secvențe r_0, \ldots, r_{k+1} de resturi

astfel încât:

```
r_0 = n
r_1 = p
...
r_{i+1} = r_{i-1} - q_i r_i și 0 \le r_{i+1} < r_i
...
```

Algoritmul se termină când un rest r_{k+1} este 0 și cmmdc-ul este r_k .

Câturile q_1, \ldots, q_k nu sunt folosite!

```
Input: n, p \in \mathbb{N}, n \geq p
Output: cmmdc(n, p)
begin
  r := n
   r' := p
   while r' \neq 0 do
      ct := r div r'
      aux := r
      r' := aux - ct * r'
   end
end
return r
```

Truc: Algoritmul lui Euclid extins

Algoritmul lui Euclid extins permite calcularea a doi întregi x și y astfel încât

$$xn + yp = cmmdc(n, p)$$
 (Identitatea lui Bézout)

Truc: Algoritmul lui Euclid extins

Algoritmul începe cu n și p, și constă în adăugarea a două secvențe suplimentare

- $\square x_0,\ldots,x_k$ și
- \square y_0,\ldots,y_k d

astfel încât

$$r_i = x_i * n + y_i * p$$

$$r_0 = n$$
 $r_1 = p$...

$$x_0=1$$
 $x_1=0$...

$$y_0 = 0$$
 $y_1 = 1$...

Formula recursivă

$$r_{i+1} = r_{i-1} - q_i r_i$$
 astfel încâ t $0 \le r_{i+1} < r_i$

$$x_{i+1} = x_{i-1} - q_i x_i$$

$$y_{i+1} = y_{i-1} - q_i y_i$$

Truc: Algoritmul lui Euclid extins

Algoritmul se termină când un rest r_{k+1} este 0. În acest caz obținem:

- \square r_k este cmmdc(n,p)
- \square Coeficienții Bézout sunt x_k și y_k , adică:

$$x_k n + y_k p = cmmdc(n, p) = r_k$$

Algoritmul lui Euclid extins

```
Input: n, p
Output: r = cmmdc(n, p) și x, y, astfel încât x * a + y * b = r
begin
   x := 1 \quad x' := 0
   y := 0 \quad y' := 1
   r := n \quad r' := p
   while r' \neq 0 do
     ct := r div r'
      aux := r \quad r := r' \quad r' := aux - ct * r'
       aux := x \quad x := x' \quad x' := aux - ct * x'
     aux := y \quad y := y' \quad y' := aux - ct * y'
   end
end
return r,x,y
```

Aplicații

Q

Să se verifice dacă n este inversabil modulo p. În caz afirmativ, să se determine $n^{-1} (mod \ p)$.

Aplicații

Q

Să se verifice dacă n este inversabil modulo p. În caz afirmativ, să se determine $n^{-1} \pmod{p}$.

Rezolvare:

- □ Algoritmul lui Euclid permite calcularea a doi întregi x și y astfel încât xn + yp = cmmdc(n, p).
- □ Dacă cmmdc(n, p) = 1, atunci $n^{-1}(mod p) = x$.

Problemă

Q8

Care este cel mai mic număr natural *n* care împărțit la 2 dă restul 1, împărțit la 3 dă restul 2, împărțit la 5 dă restul 3, iar împărțit la 7 dă restul 4?

Problemă

Q8

Care este cel mai mic număr natural *n* care împărțit la 2 dă restul 1, împărțit la 3 dă restul 2, împărțit la 5 dă restul 3, iar împărțit la 7 dă restul 4?

Q

Fie p_1, \ldots, p_k numere naturale prime între ele și $0 \le s_i < p_i$, oricare $1 \le i \le k$.

Determinați $s \ge 0$ astfel încât $s = s_i \pmod{p_i}$ oricare $1 \le i \le k$.

Teoremă

$$s = \sum_{i=1}^{k} (s_i \cdot P_i \cdot x_i),$$

unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} (mod p_i)$ oricare $1 \le i \le k$.

Teoremă

$$s = \sum_{i=1}^k (s_i \cdot P_i \cdot x_i),$$

unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} (mod p_i)$ oricare $1 \le i \le k$.

Observați că x_i poate fi calculat folosind Algoritmul lui Euclid extins.

$$s = \sum_{i=1}^k (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} \pmod{p_i}$ or. i .

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$

$$s = \sum_{i=1}^k (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} \pmod{p_i}$ or. i .

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$

$$P = 2 * 3 * 5 * 7 = 210$$

$$s = \sum_{i=1}^k (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} \pmod{p_i}$ or. i .

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$

$$P = 2 * 3 * 5 * 7 = 210$$

$$P_1 = 105, 1 = 105^{-1} \pmod{2}, x_1 = 1$$

$$s = \sum_{i=1}^k (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} \pmod{p_i}$ or. i .

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$

$$P = 2 * 3 * 5 * 7 = 210$$

$$P_1 = 105, 1 = 105^{-1} \pmod{2}, x_1 = 1$$

$$P_2 = 70, 1 = 70^{-1} \pmod{3}, x_2 = 1$$

$$s = \sum_{i=1}^k (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} \pmod{p_i}$ or. i .

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$
 $P = 2 * 3 * 5 * 7 = 210$

$$P_1 = 105, 1 = 105^{-1} \pmod{2}, x_1 = 1$$

$$P_2 = 70, 1 = 70^{-1} \pmod{3}, x_2 = 1$$

$$P_3 = 42$$
, $3 = 42^{-1} \pmod{5}$, $x_3 = 3$

$$s = \sum_{i=1}^k (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} \pmod{p_i}$ or. i .

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$
 $P = 2 * 3 * 5 * 7 = 210$
 $P_1 = 105$, $1 = 105^{-1} \pmod{2}$, $x_1 = 1$
 $P_2 = 70$, $1 = 70^{-1} \pmod{3}$, $x_2 = 1$
 $P_3 = 42$, $3 = 42^{-1} \pmod{5}$, $x_3 = 3$
 $P_4 = 30$, $4 = 30^{-1} \pmod{7}$, $x_4 = 4$

$$s = \sum_{i=1}^{k} (s_i P_i x_i)$$
, unde $P_i = \frac{p_1 \cdots p_k}{p_i}$ și $x_i = P_i^{-1} (mod \ p_i)$ or. *i*.

Deci s = 1 * 105 * 1 + 2 * 70 * 1 + 3 * 42 * 3 + 4 * 30 * 4 = 1109

Exemplu

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$
 $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$
 $P = 2 * 3 * 5 * 7 = 210$
 $P_1 = 105$, $1 = 105^{-1} \pmod{2}$, $x_1 = 1$
 $P_2 = 70$, $1 = 70^{-1} \pmod{3}$, $x_2 = 1$
 $P_3 = 42$, $3 = 42^{-1} \pmod{5}$, $x_3 = 3$
 $P_4 = 30$, $4 = 30^{-1} \pmod{7}$, $x_4 = 4$

54 / 55

Baftă la examen!

