Haplotype-based prediction of gene alleles using pedigrees and SNP genotypes

Yuri Pirola Gianluca Della Vedova Paola Bonizzoni Alessandra Stella Filippo Biscarini

DISCo, Univ. degli Studi di Milano-Bicocca, Milan, Italy yuri.pirola@disco.unimib.it

ACM-BCB 2013

ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics

Washington DC, September 22-25, 2013

Outline

- The computational problem
- Our approach
 - Description of the method
 - Experimental evaluation
- Conclusions and future works

The computational problem

Substituting expensive and specific assays for **typing gene alleles** with (cheaper) computational predictions based on routinely collected genetic data (SNP genotypes).

```
Gene alleles = different forms of a gene (protein) \neq SNV/indels/SV/CNV/...
```

Applications

Gene allele prediction/typing applications:

- HLA typing (humans)
 evaluation of organ transplantation compatibility
- Productive characters in animals/plants
 casein genes in cows/goats/sheep
 → milk yield and cheese quality

Most approaches in literature refer to HLA typing!

HLA-IBD

(Setty et al., JCB, 2011)

- combinatorial graph-based approach
- needs accurate prediction of IBD regions
- does not exploit pedigree information

MAG

(Li et al., Genetic Epidemiology, 2011)

- statistical approach
- good results in various settings

(Zhang et al., BMC Genetics, 2011), (Ayele et al., PLoS One, 2012)

does not exploit pedigree information

WSG-HI

(Xie et al., BMC Bioinf, 2010)

- combinatorial approach (on pedigrees)
- the pedigree must contain the individuals which the gene alleles are sought for

Our method

Our method:

```
 Gene-aware phasing of SNP genotypes on a training
 Minimum-error association computation population T
 Allele prediction on population U
```

1 – Gene-aware phasing

Step 1. Gene-aware phasing

Input: a pedigree of a training population T,

SNP genotypes and gene alleles for some individuals

Output: a min-recombinant haplotype configuration for T "com-

patible with" the observed gene alleles

Why? gene alleles are inherited together with haplotypes

How? • "Enrich" the SNP genotypes by inserting the given gene alleles according to the genetic map

• Phase the "enriched" genotypes

1 – Gene-aware phasing

Step 1. Gene-aware phasing

- **How?** "Enrich" the SNP genotypes by inserting the given gene alleles according to the genetic map
 - Phase the "enriched" genotypes

We need a phasing/HI method that takes into account:

- genotyping errors
- recombinations

- missing genotypes
- multiallelic loci

and that works on (potentially large) pedigrees!

 \rightarrow REHCSTAR2: extension of (Pirola *et al.*, TCBB, 2012)

2 – Minimum error association computation

Step 2. Minimum error association computation

Input: a haplotype configuration for T, the observed gene alleles

Output: a set M of weighted associations:

 $(\textit{haplotype} \ \overset{w}{\longmapsto} \ \textit{gene allele})$

Why? same haplotype \Longrightarrow same gene allele (likely)

(but not the converse!!)

How? minimize association errors

(error = same haplotype, different gene alleles)

- → Integer Linear Programming formulation
- \rightarrow weight w is the relative freq. of the haplotype in T

3 – Allele prediction

Step 3. Allele prediction

Input: a set M of weighted associations (hapl. $\stackrel{w}{\rightarrow}$ gene allele),

SNP genotypes of a population U

Output: gene alleles of individuals in U

How? "majority voting"-like

the predicted gene alleles are the ones associated to pair of haplotypes "compatible" with the SNP genotype

Everything is weighted by w and α^d

($w = \text{association weight}, \ \alpha \ \text{constant} \in (0, 1],$

 $d = \mathsf{Hamming} \ \mathsf{distance})$

Remark: parental relationships between T and U are not used.

Experimental evaluation

Application: Prediction of κ -casein on dairy cattle

Data: pedigree of >100K cattle,

pprox20K with κ -casein alleles pprox2.2K with SNP genotypes

 \approx 1.6K with both

(courtesy of Italian Brown Cattle Breeders' Association)

Strategy: cross-validation

(random disjoint subsets T and U , 100 replicates)

Metrics: (prediction) error rate = $\frac{\text{wrong predictions}}{\text{tot. predictions}}$

1 – Comparison with MAG

(Li et al., Genetic Epid., 2011)

2 – Sensitivity to the choice of the genomic region

Distribution of error rate using different genomic regions (centered at the κ -casein gene) for the prediction.

	AP				MAG			
Genomic region	1st quart.	Median	3rd quart.	Mean	1st quart.	Median	3rd quart.	Mean
[-500k; +500k] [-500k; +750k] [-500k; +1000k]	0.057 0.063 0.060	0.067 0.072 0.067	0.075 0.084 0.080	0.068 0.076 0.071	0.073 0.076 0.075	0.080 0.084 0.083	0.092 0.094 0.096	0.084 0.087 0.087
[-750k; +500k] [-750k; +750k] [-750k; +1000k]	0.059 0.067 0.063	0.069 0.075 0.070	0.077 0.086 0.079	0.071 0.078 0.073	0.073 0.075 0.075	0.082 0.085 0.085	0.093 0.097 0.099	0.085 0.088 0.087
[-1000k; +500k] [-1000k; +750k] [-1000k; +1000k]	0.054 0.055 0.055	0.060 0.063 0.064	0.070 0.077 0.078	0.063 0.068 0.067	0.072 0.075 0.075	0.084 0.085 0.086	0.095 0.101 0.100	0.085 0.088 0.087

Other experimental results

Part 3 – Sensitivity to the choice of α

- good results for $\alpha \le 0.1$ (median *err. rate* $\le 6.3\%$)
- worsen for $\alpha > 0.1$ (median *err. rate* $\geq 7.5\%$)

Part 4 – Sensitivity to the degree of relationships

Prediction error rate does not apparently correlate with the degree of relationships (kinship) among T and U

(but further investigation is needed!)

Conclusions

Gene-allele prediction from SNP genotypes has relevant applications (health/economic/ \dots)

Main characteristics of our approach:

- two well-distinguished training/prediction phases
- pedigree and gene-aware phasing to improve HI accuracy
- open source (http://allele-prediction.algolab.eu) (improvements are underway: ease of use, documentation, ...)

Ongoing/planned works

Ongoing/planned works:

- more extensive experimental comparison
- ullet exploiting relationships among T and U (if known)
- multi-population predictions

Acknowledgments:

We wish to thank Dr. Santus and Dr. Rossoni of the Italian Brown Cattle Breeders' Association (ANARB) for the data used in the experimental evaluation.

Thanks!

Questions?

Yuri Pirola - DISCo, Univ. of Milano-Bicocca (Milan, Italy)

E-Mail: yuri.pirola@disco.unimib.it

Additional Content

HLA-IBD

(Setty et al., JCB, 2011)

- combinatorial graph-based approach
- pre-phased SNP genotypes (haplotypes)
 - → identical-by-descent regions
 - \rightarrow HLA gene alleles
- Cons:
 - needs accurate prediction of IBD regions
 - does not exploit pedigree information

MAG

(Li et al., Genetic Epidemiology, 2011)

- statistical approach
- unphased SNP genotypes
 - \rightarrow haplotype frequencies
 - \rightarrow HLA gene alleles
- good results in various settings

```
(Zhang et al., BMC Genetics, 2011), (Ayele et al., PLoS One, 2012)
```

- Cons:
 - does not exploit pedigree information

WSG-HI

(Xie et al., BMC Bioinf, 2010)

- combinatorial approach (on pedigrees)
- unphased SNP genotypes
 - \rightarrow haplotype configuration space
 - → max-similarity labelling with HLA gene alleles
- Cons:
 - the pedigree must contain the individuals which the gene alleles are sought for

3 – Sensitivity to the choice of α

Distribution of error rate using different value for parameter α .

		Trair	ning	ıg		Validation				
α	1st quart.	Median	3rd quart.	Mean	1st quart.	Median	3rd quart.	Mean		
0.005	0.034	0.037	0.042	0.039	0.054	0.062	0.072	0.065		
0.010	0.034	0.037	0.042	0.038	0.054	0.063	0.072	0.065		
0.025	0.034	0.037	0.042	0.039	0.054	0.062	0.072	0.064		
0.050	0.035	0.037	0.042	0.039	0.054	0.060	0.070	0.063		
0.100	0.037	0.041	0.045	0.042	0.055	0.063	0.069	0.063		
0.250	0.062	0.067	0.075	0.068	0.067	0.075	0.083	0.076		
0.500	0.107	0.115	0.126	0.117	0.121	0.136	0.149	0.134		

(AP only)

