Stress distribution and the fragility of supercooled melts

Dmytro Bevzenko and Vassiliy Lubchenko

Department of Chemistry, University of Houston, Houston, TX 77204-5003

(Dated: October 30, 2018)

We formulate a minimal ansatz for local stress distribution in a solid that includes the possibility of strongly anharmonic short-length motions. We discover a broken-symmetry metastable phase that exhibits an aperiodic, frozen-in stress distribution. This aperiodic metastable phase is characterized by many distinct, nearly degenerate configurations. The activated transitions between the configurations are mapped onto the dynamics of a long range classical Heisenberg model with 6-component spins and anisotropic couplings. We argue the metastable phase corresponds to a deeply supercooled non-polymeric, non-metallic liquid, and further establish an order parameter for the glass-to-crystal transition. The spin model itself exhibits a continuous range of behaviors between two limits corresponding to frozen-in shear and uniform compression/dilation respectively. The two regimes are separated by a continuous transition controlled by the anisotropy in the spin-spin interaction, which is directly related to the Poisson ratio σ of the material. The latter ratio and the ultra-violet cutoff of the theory determine the liquid configurational entropy. Our results suggest that liquid's fragility depends on the Poisson ratio in a non-monotonic way. The present ansatz provides a microscopic framework for computing the configurational entropy and relaxational spectrum of specific substances.

If cooled sufficiently rapidly, a liquid may fail to crystallize, but will instead remain in a metastable, supercooled state. Upon further cooling, the relaxation times in a supercooled liquid grow very rapidly as the mass transport becomes activated, in contrast with the mainly collisional transport near the fusion temperature. Because the local structures are much longer-lived than the vibrational equilibration times, the activated-transport regime represents a state with a broken translational symmetry, even though the corresponding, aperiodic structure shows no obvious distinction from a snapshot of an ordinary, uniform liquid. (It is said the heterogeneity is "dynamical.") Since the symmetry is broken gradually with lowering the temperature - beginning with the highest frequency motions - a transition into this "aperiodic-crystal" state is not sharp, but, instead, is a soft cross-over centered at a temperature $T_{\rm cr}$, 1,2 corresponding universally to viscosity 10 Ps or so. 2,3 The cross-over into the activated regime is a finite-dimensional analog of a mean-field kinetic catastrophe of the mode-coupling theory (MCT), whereby the motional barriers would diverge at a temperature T_A , even though the configurational entropy is still extensive.^{4,5}

In additional contrast to the mean-field transition at T_A , the cross-over at T_{cr} exhibits two emerging length scales: One length scale is the molecular length a that signifies the volumetric size of a chemically rigid unit - often called the "bead" - that is not significantly perturbed during activated transport. Conversely, the beads interact with each other weakly, comparably to the Lennard-Jones interaction.² The bead may be thought of as a coarse-graining length, beyond which activated motions are largely independent of chemical detail, but fully characterized by a single, bulk quantity. This bulk quantity is the excess liquid entropy relative to the corresponding crystal, usually called the configurational entropy. The magnitude of the configurational entropy per bead, s_c , directly gives the number of alternative aperiodic con-

figurations available to a region of a supercooled liquid containing N beads, i.e. $e^{s_c N/k_B}$. The bead usually contains two-three atoms, but could be bigger for molecular liquids containing large rigid units such as benzene. The other length scale emerging during the crossover is the so called Lindemann length d_L , 1,6,7 which is the molecular displacement at the mechanical stability edge. This length is nearly universal: $d_L \simeq a/10$, and characterizes bead displacements during transitions between distinct aperiodic packings in the metastable, aperiodic crystal phase. One may view the crossover into the activated liquid regime as a "localization" transition, whereby the emerging metastability of local structures is signaled by a discontinuous transition from a uniform liquid to a state with a non-zero force constant of the Einstein-oscillator.¹ The random first order transition (RFOT) theory utilizes this view to analyze the activated transport in chemically distinct (non-polymeric) fluids in a unified fashion.^{8–10} (See Ref. 11 for a review.) The RFOT theory predicts that in a fully developed activated regime, the structural relaxation time is determined solely by the configurational entropy per bead:^{2,9}

$$\tau = \tau_{\text{vibr}} \exp(32k_B/s_c),\tag{1}$$

where $\tau_{\rm vibr} \simeq 1$ psec is the microscopic time scale characterizing vibrational relaxation. By Eq.(1), system-specific deviations from the pure Arrhenius temperature dependence of τ result from variations in the value of the heat capacity jump at the glass transition temperature T_g per bead: $\Delta c_p \equiv T(\partial s_c/\partial T)|_{T=T_g}$. The so called fragility index $m \equiv d(\log \tau)/Td(1/T)|_{T=T_g}$ gives a quantitative measure of that deviation. Small and large deviations from the Arrhenius T-dependence (corresponding to small and large m respectively) are often called strong and fragile behaviors. ^{12,13} The RFOT theory predicts $m \simeq 34.7 \Delta c_p$, ^{2,9,14} in excellent agreement with experiment.

Hall and Wolynes have put forth a simple specific