

1 Билет 14

Основная теорема арифметики в $\mathbb{Z}[t]$

Определение

Многочлен $f \in \mathbb{Z}[t]$ — тривиальный, если c(f) = 1.

Теорема 4

Любой многочлен $f \in \mathbb{Z}[x]$ с положительным старшим коэффициентом раскладывается в произведение $f = r_1 \dots r_k \cdot p_1 \dots, p_n$, где $r_1, \dots, r_k \in \mathbb{P}$, а $p_1, \dots, p_n \in \mathbb{Z}[x]$ — тривиальные неприводимые многочлены с положительными старшими коэффициентами. Разложение единственно с точностью до перестановки сомножителей.

• Разумеется, многочлен $f \in \mathbb{Z}[x]$ с отрицательным старшим коэффициентом раскладывается в аналогичное произведение $f = -r_1 \dots r_k \cdot p_1 \dots, p_n$.

Доказательство. \exists • Пусть $f = c(f) \cdot g$, тогда $g \in \mathbb{Z}[x]$ и c(g) = 1. По ОТА в \mathbb{Z} существует разложение на простые множители $c(f) = r_1 \dots r_k$.

- ullet Пусть a- старший коэффициент g. Тогда a>0.
- ullet По ОТА в $\mathbb{Q}[x]$ существует разложение $g=aq_1'q_2\dots q_n$, где q_1',q_2,\dots,q_n неприводимые в $\mathbb{Q}[x]$ многочлены.
- ullet Положим $q_1:=aq_1'$, тогда q_1 также неприводим в $\mathbb{Q}[x].$
- \bullet Итак, $g = q_1 q_2 \dots q_n$.
- ullet По Лемме 9 существует разложение $g=p_1\dots p_n$, где $p_i\in\mathbb{Z}[x]$ и $p_i=c_iq_i,\ c_i\in\mathbb{Q}.$
- Можно считать, что старший коэффициент каждого p_i положителен: иначе заменим p_i на $-p_i$ и c_i на $-c_i$.
- ullet Так как $p_i \sim q_i$ в $\mathbb{Q}[x]$, многочлены p_1, \dots, p_n неприводимы в $\mathbb{Q}[x]$, а значит, и в $\mathbb{Z}[x]$.
- \bullet Тогда $f = r_1 \dots r_k \cdot p_1 \dots p_n$.
- ullet По Следствию 1 имеем $c(f) = c(r_1 \dots r_k \cdot p_1 \dots p_n) = r_1 \dots r_k \cdot c(p_1) \dots c(p_n) = c(f) \cdot c(p_1) \dots c(p_n),$ откуда $c(p_1) = \dots c(p_n) = 1.$
- ullet Значит, $f=r_1\dots r_k\cdot p_1\dots p_n$ искомое разложение.

! • Предположим, что разложение не единственно:

$$f=r_1\dots r_k p_1\dots p_n=s_1\dots s_\ell q_1\dots q_m,$$
 (1) где $r_1,\dots,r_k,s_1,\dots,s_\ell\in\mathbb{P}$ и $p_1\dots p_n,q_1\dots q_m\in\mathbb{Z}[x]$ —

неприводимые тривиальные многочлены с положительными старшими коэффициентами.

- По Лемме 8, тогда $c(p_1 \dots p_n) = c(p_1) \dots c(p_n) = 1$, откуда $c(f) = r_1 \dots r_k$ разложение на простые множители. Аналогично, $c(f) = s_1 \dots s_\ell$ разложение на простые множители.
- ullet По ОТА в \mathbb{Z} , эти разложения могут отличаться только порядком множителей, что нам и надо.
- ullet Пусть $g:=rac{1}{c(f)}f\in \mathbb{Z}[x]$, тогда $g=p_1\dots p_n=q_1\dots q_m$ два разложения g в произведение неприводимых в $\mathbb{Z}[x]$ тривиальных многочленов.
- ullet По Следствию 2 это два разложения g в произведение неприводимых многочленов в $\mathbb{Q}[x]$.

- Пусть p_i^* многочлен, полученный из p_i делением на старший коэффициент (для всех $i \in \{1,\dots,n\}$), а q_j^* многочлен, полученный из q_j делением на старший коэффициент (для всех $j \in \{1,\dots,m\}$), а a старший коэффициент f.
- Тогда $g = ap_1^* \dots p_n^* = aq_1^* \dots q_m^*$ два разложения g в $\mathbb{Q}[x]$ в произведение неприводимых многочленов со старшим коэффициентом 1, а по ОТА в $\mathbb{Q}[x]$ (Теорема 3.5) такие разложения могут отличаться лишь порядком сомножителей.
- ullet Значит, m=n и можно считать, что $p_i^*=q_i^*$ для всех i.
- Тогда существует такое $c_i \in \mathbb{Q}$, что $p_i = c_i q_i$. Тогда $c_i > 0$ (так как c_i равно отношению положительных старших коэффициентов p_i и q_i).
- ullet Нам остается доказать, что $c_1=\dots=c_n=1$. Пусть это не так. Из (1) ясно, что $c_1c_2\dots c_n=1$. Значит, НУО $c_1>1$.
- ullet Пусть $c_1=rac{a_1}{b_1}$ представление в виде несократимой дроби. Тогда $(a_1,b_1)=1,\ a_1>1.$
- ullet Пусть $q_1(t)=d_wt^w+\cdots+d_0$, тогда $p_1(t)=rac{a_1d_w}{b_1}t^w+\cdots+rac{a_1d_0}{b_1}.$
- ullet Так как $(a_1,b_1)=1$, для всех $i\in\{1,\ldots,w\}$ мы имеем $rac{a_1d_i}{b_1}\stackrel{.}{:} a_1$. Значит, $1=c(p_1)\stackrel{.}{:} a_1$, противоречие.

Альтернативно одарённое доказательство:

f - многочлен в Z[x]

Переведём его в Q[x], где он имеет единственное разложение на неприводимые .

 $f_q = a \cdot q_1 q_2 \cdot \dots \cdot q_n$

Тогда по Лемме 9:

 $\forall q_i \exists p_i \in Z, c_i \in Q : p_i = c_i \cdot q_i$

Т.к р $\sim q$, то р неприводим в $Q[x] \to$ неприводим и в Z[x].

Тогда $f = r_1 r_2 ... r_k p_1 p_2 ... p_n$ - искомое разложение

Единственность разложения в Z[x], на мой взгляд, следует из единственности в Q[x]

2 Билет 14

Критерий Эйзенштейна

Теорема 5

Пусть $f(x)=a_nt^n+\cdots+a_1t+a_0\in\mathbb{Z}[t]$ и $p\in\mathbb{P}$ таковы, что $a_n\not\mid p$, $a_{n-1},\ldots,a_0\not\mid p$ и $a_0\not\mid p^2$. Тогда f — неприводим в $\mathbb{Z}[t]$.

Доказательство. • Предположим противное. Пусть f = gh, где $\deg(g) > 0$ и $\deg(h) > 0$.

- ullet Пусть $g(t) = b_m t^m + \dots + b_0$, $h(t) = c_k t^k + \dots + c_0$ (тогда m+k=n).
- ullet Так как $c_0b_0=a_0\stackrel{.}{.} p$ и $c_0b_0\not/p^2$, НУО $b_0\stackrel{.}{.} p$ и $c_0\not/p$.
- ullet Так как $b_m c_k = a_n \c/p$, мы имеем $b_m \c/p$. Следовательно, можно выбрать наименьший такой индекс ℓ , что $b_\ell \c/p$.
- ullet Тогда $a_\ell=b_\ell c_0+\sum\limits_{i=0}^{\ell-1}b_i c_{\ell-i}
 ot/p$, так как $b_\ell c_0
 ot/p$, а для всех $i\in\{0,\dots,\ell-1\}$ $b_i
 ot/p$.
- ullet Значит, $a_\ell \not \mid p$. Но $\ell \leq m < n$, противоречие.

Следствие 3

Пусть $f(x) = a_n t^n + \dots + a_1 t + a_0 \in \mathbb{Z}[t]$ и $p \in \mathbb{P}$ таковы, что $a_0 \not p$, $a_1, \dots, a_n \not p$ и $a_n \not p^2$. Тогда f — неприводим в $\mathbb{Z}[t]$.

• Доказательство аналогично Теореме 5.