11. Automata-based Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Mid-term questionnaires

- Generally, all happy
 - lectures, tutorials, feedback, etc.
- Comments/suggestions
 - don't split tutorial sessions
 - more unassessed exercises
 - assignment timing for extended version
 - additional (practical) context for material

Overview

- Regular safety properties
 - nondeterministic finite automata (NFAs)
- Model checking regular safety properties
 - LTS-NFA products

• See [BK08] Sections 4-4.2

Recap: Regular languages

- A set of finite words $\mathcal{L} \subseteq \Sigma^*$ is a regular language...
 - iff $\mathcal{L} = \mathcal{L}(E)$ for some regular expression E
 - iff $\mathcal{L} = \mathcal{L}(\mathcal{A})$ for some finite automaton \mathcal{A}

Languages/automata as properties

Recall:

- a linear-time property is a set of infinite words $P \subseteq (2^{AP})^{\omega}$
- (we assume non-terminating systems with infinite paths/traces)
- But we could represent a set of finite traces/words
 - as a regular language over alphabet 2^{AP}
 - or an NFA over alphabet 2^{AP}

Simple example

- finite traces where a failure eventually occurs
- $-AP = \{fail\}$
- $-2^{AP} = \{\emptyset, \{fail\}\}\$
- $-\mathcal{L}(A) = \{ \{ \text{fail} \}, \emptyset \{ \text{fail} \}, \emptyset \emptyset \{ \text{fail} \}, \emptyset \emptyset \emptyset \{ \text{fail} \}, \dots \}$

Regular safety properties

- A regular safety property is
 - a safety property for which the set of "bad prefixes" (finite violations) forms a regular language
- Example:
 - "a failure <u>never</u> occurs" □¬fail
 - $AP = \{fail\}$
 - $-2^{AP} = \{\emptyset, \{fail\}\}\$

- NFA \mathcal{A} : \emptyset Regexp: $\emptyset^* \{ \text{fail} \}$
- The bad prefixes are represented by an NFA over 2^{AP}
 - $\mathcal{L}(\mathcal{A}) = \{ \{ \text{fail} \}, \varnothing \{ \text{fail} \}, \varnothing \varnothing \{ \text{fail} \}, \varnothing \varnothing \varnothing \{ \text{fail} \}, \ldots \}$
- Note: we actually represent just minimal bad prefixes here
 - we could also represent all bad prefixes

- Regular safety property
 - "both servers are always up" \Box (¬down₁∧¬down₂)
 - $AP = {down_1, down_2}$
 - $-2^{AP} = \{\emptyset, \{down_1\}, \{down_2\}, \{down_1, down_2\}\}$
- Bad prefixes
 - any finite word ending in {down₁}, {down₂} or {down₁,down₂}

- Regular safety property:
 - "at most 2 failures occur"
 - $AP = \{try, fail\}$
 - $-2^{AP} = {\emptyset, \{fail\}, \{try\}, \{fail,try\}}$

NFA for bad prefixes:

Regular expression for bad prefixes:

```
(\neg fail)*.fail.(\neg fail)*.fail.(\neg fail)*.fail
```

fail denotes: ({fail} + {fail,try}) ¬fail denotes: (∅ + {try})

- NFA for regular safety property
 - $AP = \{a,b\}$

- Bad prefixes
 - any finite word where a appears and then b does not appear immediately afterwards
- Regular safety property
 - "b always immediately follows a" \square (a→ \bigcirc b)

- NFA for regular safety property
 - $AP = \{a,b\}$

- Bad prefixes
 - any finite word where b does not appear immediately after the first a (if there is an a)
- Regular safety property
 - "b always immediately follows the first occurrence of a"

Model checking

Given an LTS M and regular safety property P_{safe}

$$- M \vDash P_{safe} \Leftrightarrow Traces(M) \subseteq P_{safe}$$
$$\Leftrightarrow Traces_{fin}(M) \cap BadPref(P_{safe}) = \emptyset$$

• Given also an NFA \mathcal{A} representing the bad prefixes of P_{safe}

- Model checking M against regular safety property P_{safe}
 - check if any finite behaviour of M intersects with P_{safe}
 - which we do by constructing a product of M and A

Example 3 revisited

"at most 2 failures occur"

Product of an LTS and an NFA

- For an LTS M and an NFA A.
 - we construct the product LTS of M and \mathcal{A} , denoted M $\otimes \mathcal{A}$
- Synchronous parallel composition
 - transitions of NFA A synchronise with state labels of LTS M
 - allows finite traces/words that are in both M and A
- Product definition (informal)
 - states are pairs (s,q) of states from M and A
 - transitions go from (s,q) to (s',q') if $s \alpha \rightarrow s'$ in M and $q L(s') \rightarrow q'$ in \mathcal{A}
 - initial states are (s_0,q) where s_0 is some initial state of M and q_0 -L (s_0) → q for some initial state q_0 of \mathcal{A}
 - states (s,q) are labelled with "accept" if q is accepting in A

Product of an LTS and an NFA

- Formally:
 - for LTS M = (S, Act, \rightarrow , I, AP, L) and NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$
- The product D ⊗ A is:
 - the LTS ($S \times Q$, Act, \rightarrow ', I', {accept}, L')
- where:
 - $I' = \{(s_0,q) \mid s_0 \in I \text{ and } q_0 L(s_0) \rightarrow q \text{ for some } q_0 \in Q_0\}$
 - L'(((s,q)) = { accept } if $q \in F$ and L'(((s,q)) = \emptyset otherwise
 - →' is defined as follows:

$$s - \alpha \rightarrow s' \wedge q - L(s') \rightarrow q'$$

$$(s,q) - \alpha \rightarrow (s',q')$$

Example 3 revisited

Model checking

- Given an LTS M and regular safety property P_{safe}
 - and NFA \mathcal{A} representing the bad prefixes of P_{safe}
 - $M \vDash P_{safe} \Leftrightarrow Traces_{fin}(M) \cap \mathcal{L}(A) = \emptyset$

$$M \models P_{safe} \Leftrightarrow M \otimes A \models \Box \neg accept$$

- In other words
 - M \models P_{safe} iff no "accept" state is reachable in M \otimes \mathcal{A}
 - so model checking P_{safe} reduces to checking an invariant
- i.e., can be checked through reachability
 - see earlier discussion of invariants
 - also equivalent to checking CTL M⊗ \mathcal{A} $\vDash \neg \exists$ (true U accept)

Example 3 revisited

P_{safe} = "at most 2 failures occur"

 $M \not\models P_{safe}$ (since $M \otimes A \not\models \Box \neg accept$)

• Model check $\Box(a \rightarrow \bigcirc b)$ on LTS M

• Model check $\Box(a \rightarrow \bigcirc b)$ on LTS M

LTS M

$$M \not\models \Box(a \rightarrow \bigcirc b)$$

Summary

- Regular safety properties as finite automata
 - bad prefixes represented by an NFA
 - transitions labelled with propositional formulae
- Product of LTS and NFA
 - synchronise state labels of LTS with transitions of NFA
 - represents intersection of possible paths/runs
- Model checking regular safety properties
 - construct product LTS
 - reduces to checking an invariant, i.e. reachability

Next lecture

- Automata on infinite words
 - see Chapter 4.3,4.4 of [BK08]