User Guide

GUI has some fileds and buttons as viewed in the photo, each one has a meaning or a function:

- Input equations: user can enter input equations here which he want to solve, it can have spaces or tabs but must be in valid format containing x1,x2,....,xn and their coefficients like:
 (x1+x2+2*x3 = 3 or x1 -2*x2 +2*x3 = 3)
- 2. Drop down list: user can select the desired method he wants to solve linear system using it by just selecting it
- 3. Initial value: user can enter initial value here in case of using iterative methods (it is only visible and able to be used in case of selecting an iterative method from drop down list options, otherwise it will be invisible)

 (Default value = [0,0,0,......] n zeros)

- 4. Tolerance: user can specify tolerance / Absolute error which is allowed in the final solutions of x1,x2,...,xn to increase accuracy (Default value = 0.00001)
- 5. Iterations: user can specify maximum number of iterations allowed it iterative method if he cares more about running time versus accuracy (Default value = 50)
- 6. Initial value, tolerance and iterations in the right half side like the mentioned above but it is used to the second iterative method (Jacobi iterative) in case of using All Methods, otherwise it will be invisible always and we use the ones in the left half side only.
- 7. Read File Button: allow user to choose input file (extension: ".txt") to read parameters and input equations from it, the input file must be in valid and fixed format:
 - The first line must contain number of equations we want to solve .
 - The n next line each one will contain an equation till finishing all the equations.
 - The next line don't have any fixed format but for flexibility we make it ("key name") then next line you can write ("key value") for example:

```
{
    3
    x1+x2+x3 = 3
    x1+2*x2+x3 = 4
    x1+2*x2+3*x3 = 4
    initial
    1 2 1
    tolerance
    0.00004
    iterations
    20
}
```

8. Solve Button: to solve equations with the given parameters, if the parameters are valid then we will execute method call, otherwise we will show a message "invalid input" in comment field, if inputs are valid then we will look for solutions if we can get it then display the solutions in an appropriate view depending on the selected methods like (tables, matrix representation) we will see that in sample runs section.

Note: after solving using any method we output the solutions in a text file which is located in same directory where running GUI exists.

Sample runs

First Example

Solving using Gauss Elimination with showing every step using Next and Previous Buttons which are allowed and visible only in Direct Methods

The output will be:

Second Example

Solving using Gauss Seidel with initial value = [0.5, 0, 0.5]Output data will be viewed in table format.

The output file will be:

2					output@	GaussSeidel.txt -	Notepad				- d >
File Edit Format											
i	x1i	x2i	x3i	x1i+1	x2i+1	x3i+1	Err1	Err2	Err3	Time	
1.000000	0.500000	0.000000	0.500000	1.500000	0.500000	1.000000	0.000000	0.000000	0.000000	0.297012	
2.000000	1.500000	0.500000	1.000000	0.500000	0.750000	0.875000	1.000000	0.250000	0.125000	0.345328	
3.000000	0.500000	0.750000	0.875000	0.375000	0.875000	0.625000	0.125000	0.125000	0.250000	0.403858	
4.000000	0.375000	0.875000	0.625000	0.500000	0.937500	0.406250	0.125000	0.062500	0.218750	0.377480	
5.000000	0.500000	0.937500	0.406250	0.656250	0.968750	0.250000	0.156250	0.031250	0.156250	0.382833	
6.000000	0.656250	0.968750	0.250000	0.781250	0.984375	0.148438	0.125000	0.015625	0.101563	0.377950	
7.000000	0.781250	0.984375	0.148438	0.867188	0.992188	0.085938	0.085938	0.007813	0.062500	0.379280	
8.000000	0.867188	0.992188	0.085938	0.921875	0.996094	0.048828	0.054688	0.003906	0.037109	0.376858	
9.000000	0.921875	0.996094	0.048828	0.955078	0.998047	0.027344	0.033203	0.001953	0.021484	0.388700	
10.000000	0.955078	0.998047	0.027344	0.974609	0.999023	0.015137	0.019531	0.000977	0.012207	0.392223	
11.000000	0.974609	0.999023	0.015137	0.985840	0.999512	0.008301	0.011230	0.000488	0.006836	0.375784	
12.000000	0.985840	0.999512	0.008301	0.992188	0.999756	0.004517	0.006348	0.000244	0.003784	0.420873	
13.000000	0.992188	0.999756	0.004517	0.995728	0.999878	0.002441	0.003540	0.000122	0.002075	0.430783	
14.000000	0.995728	0.999878	0.002441	0.997681	0.999939	0.001312	0.001953	0.000061	0.001129	0.378343	
15.000000	0.997681	0.999939	0.001312	0.998749	0.999969	0.000702	0.001068	0.000031	0.000610	0.381664	
16.000000	0.998749	0.999969	0.000702	0.999329	0.999985	0.000374	0.000580	0.000015	0.000328	0.369246	
17.000000	0.999329	0.999985	0.000374	0.999641	0.999992	0.000198	0.000313	0.000008	0.000175	0.383738	
18.000000	0.999641	0.999992	0.000198	0.999809	0.999996	0.000105	0.000168	0.000004	0.000093	0.375959	
19.000000	0.999809	0.999996	0.000105	0.999899	0.999998	0.000055	0.000090	0.000002	0.000050	0.375555	
20.000000	0.999899	0.999998	0.000055	0.999947	0.999999	0.000029	0.000048	0.000001	0.000026	0.379801	
21.000000	0.999947	0.999999	0.000029	0.999972	1.000000	0.000015	0.000025	0.000000	0.000014	0.390914	
22.000000	0.999972	1.000000	0.000015	0.999985	1.000000	0.000008	0.000013	0.000000	0.000007	0.385535	
23.000000	0.999985	1.000000	0.000008	0.999992	1.000000	0.000004	0.000007	0.000000	0.000004	0.390370	

Third Example

Solving using All Methods with initial value = [0.5, 0, 0.5]For Gauss Seidel Method.

The Curves between number of iterations and approximate root at this iterations will be plotted in case of using all methods and will be like:

Curve for x1

Curve for x2

Curve for x3

The output Files:

• Gauss Elimination File:

• Gauss Jordan File:

```
_ 🗇 ×
                                                                                                                                                                                                                                                  outputGaussJordan.txt - Notepad
 <u>File Edit Format View H</u>elp

        Step 2
        2

        2:0000000000
        1.0000000000

        0:0000000000
        1.0000000000

        0:0000000000
        5.000000000

        0:0000000000
        3.500000000

        -2.5000000000
        5.0000000000

        0:0000000000
        1.0000000000

                                                                                                                                                            5.0000000000

        Step 3

        2.000000000
        1.000000000
        1.000000000

        0.000000000
        5.000000000
        0.00000000

        0.000000000
        0.000000000
        -2.500000000

 Step 4

        Step 4
        1.000000000
        1.000000000
        1.800000000

        2.0000000000
        0.000000000
        1.0000000000
        1.800000000

        0.000000000
        5.000000000
        0.000000000
        1.000000000

        0.000000000
        0.000000000
        -2.500000000
        1.4300000000

                                                                                                                                                       1.0000000000

        Step 5

        2.0000000000
        0.000000000
        1.0000000000
        1.800000000

        0.0000000000
        0.000000000
        1.0000000000
        1.0000000000

        0.000000000
        0.000000000
        1.0000000000
        4.3000000000

        0.000000000
        0.0000000000
        1.0000000000
        4.3000000000

                                                                                                                                                         4.30000000000

        Step 6
        0.0000000000
        0.0000000000
        0.0000000000
        1.35200000000

        0.0000000000
        0.0000000000
        0.0000000000
        1.0000000000
        1.000000000

        0.0000000000
        0.0000000000
        -2.5000000000
        1.3000000000
        4.3000000000

 Solutions
 Solutions
1.760000000
0.200000000
-1.720000000
```

• LU Decomposition File :

```
outputLUDecomposition.txt - Notepad
                                                                                                                                                                                                   _ 🗇 ×
<u>File Edit Format View Help</u>
Matrix A
2.0000000000 1.000000000 1.0000000000
2.0000000000 6.000000000 1.0000000000
1.0000000000 4.0000000000 -2.0000000000
 Step 1 to get U
3.0000000000 1.0000000000 1.0000000000
0.0000000000 6.000000000 0.0000000000
0.000000000 3.500000000 -1.5000000000
                                  -1.5000000000
Matrix U
 3.0000000000 1.0000000000 1.0000000000
0.0000000000 6.0000000000 0.0000000000
0.0000000000 0.0000000000 -1.5000000000
Matrix L
1.000000000 0.000000000 0.000000000
1.000000000 1.000000000 0.000000000
1.0000000000 1.000000000 0.0000000000 0.5000000000 0.7000000000 1.0000000000
2.00000000000
1.00000000000004.300000000000
X Solutions
1.7600000000
0.2000000000
 -1.7200000000
```

Gauss Seidel File :

• Jacobi Iterative File :

i	x1i	x2i	x3i	×1i+1	x2i+1	x3i+1	Err1	Err2	Err3	Time	
1.000000	0.000000	0.000000	0.000000	1.000000	0.500000	-3.000000	0.000000	0.000000	0.000000	0.242039	
2.000000	1.000000	0.500000	-3.000000	2.250000	0.666667	-1.500000	1.250000	0.166667	1.500000	0.458919	
3.000000	2.250000	0.666667	-1.500000	1.416667	0.000000	-0.541667	0.833333	0.666667	0.958333	0.489714	
4.000000	1.416667	0.000000	-0.541667	1.270833	0.118056	-2.291667	0.145833	0.118056	1.750000	0.568842	
5.000000	1.270833	0.118056	-2.291667	2.086806	0.458333	-2.128472	0.815972	0.340278	0.163194	0.555227	
6.000000	2.086806	0.458333	-2.128472	1.835069	0.159144	-1.039931	0.251736	0.299190	1.088542	0.403346	
7.000000	1.835069	0.159144	-1.039931	1.440394	0.061632	-1.764178	0.394676	0.097512	0.724248	0.461806	
3.000000	1.440394	0.061632	-1.764178	1.851273	0.313899	-2.156539	0.410880	0.252267	0.392361	0.417241	
000000	1.851273	0.313899	-2.156539	1.921320	0.242332	-1.446566	0.070047	0.071566	0.709973	0.429901	
.000000	1.921320	0.242332	-1.446566	1.602117	0.100654	-1.554675	0.319203	0.141678	0.108109	0.436206	
.000000	1.602117	0.100654	-1.554675	1.727011	0.225074	-1.997633	0.124894	0.124419	0.442957	0.433233	
.000000	1.727011	0.225074	-1.997633	1.886280	0.257269	-1.686348	0.159269	0.032195	0.311285	0.469826	
.000000	1.886280	0.257269	-1.686348	1.714539	0.152298	-1.542323	0.171740	0.104971	0.144025	0.440361	
.000000	1.714539	0.152298	-1.542323	1.695012	0.185541	-1.838134	0.019527	0.033243	0.295811	0.432531	
.000000	1.695012	0.185541	-1.838134	1.826297	0.241352	-1.781412	0.131284	0.055811	0.056722	0.468466	
.000000	1.826297	0.241352	-1.781412	1.770030	0.188136	-1.604149	0.056266	0.053215	0.177264	0.425963	
.000000	1.770030	0.188136	-1.604149	1.708006	0.177348	-1.738712	0.062024	0.010789	0.134563	0.517977	
.000000	1.708006	0.177348	-1.738712	1.780682	0.220450	-1.791301	0.072676	0.043102	0.052589	0.454373	
.000000	1.780682	0.220450	-1.791301	1.785426	0.204990	-1.668759	0.004744	0.015460	0.122542	0.489219	
.000000	1.785426	0.204990	-1.668759	1.731885	0.182985	-1.697308	0.053541	0.022005	0.028549	0.484976	
.000000	1.731885	0.182985	-1.697308	1.757162	0.205590	-1.768088	0.025277	0.022605	0.070780	0.547858	
.000000	1.757162	0.205590	-1.768088	1.781249	0.208961	-1.710240	0.024088	0.003371	0.057849	0.541107	
.000000	1.781249	0.208961	-1.710240	1.750639	0.191290	-1.691454	0.030610	0.017671	0.018786	0.538663	
.000000	1.750639	0.191290	-1.691454	1.750082	0.198362	-1.742100	0.000558	0.007072	0.050646	0.608378	
.000000	1.750082	0.198362	-1.742100	1.771869	0.206989	-1.728234	0.021787	0.008627	0.013866	0.548001	
.000000	1.771869	0.206989	-1.728234	1.760622	0.197416	-1.700087	0.011246	0.009573	0.028147	0.505299	
.000000	1.760622	0.197416	-1.700087	1.751335	0.196474	-1.724857	0.009287	0.000942	0.024770	0.475961	
.000000	1.751335	0.196474	-1.724857	1.764191	0.203698	-1.731385	0.012856	0.007224	0.006528	0.501723	
.000000	1.764191	0.203698	-1.731385	1.763844	0.200500	-1.710509	0.000348	0.003197	0.020876	0.526536	
.000000	1.763844	0.200500	-1.710509	1.755004	0.197137	-1.717077	0.008839	0.003363	0.006569	0.888799	
.000000	1.755004	0.197137	-1.717077	1.759970	0.201178	-1.728224	0.004966	0.004041	0.011146	0.718667	
.000000	1.759970	0.201178	-1.728224	1.763523	0.201381	-1.717659	0.003553	0.000202	0.010565	0.525600	
.000000	1.763523	0.201381	-1.717659	1.758139	0.198435	-1.715477	0.005384	0.002945	0.002181	0.484615	
.000000	1.758139	0.198435	-1.715477	1.758521	0.199867	-1.724060	0.000382	0.001431	0.008582	0.407639	
.000000	1.758521	0.199867	-1.724060	1.762097	0.201170	-1.721006	0.003576	0.001303	0.003053	0.299097	

30.000000	1.763844	0.200500	-1.710509	1.755004	0.197137	-1.717077	0.008839	0.003363	0.006569	0.888799	
31.000000	1.755004	0.197137	-1.717077	1.759970	0.201178	-1.728224	0.004966	0.004041	0.011146	0.718667	
32.000000	1.759970	0.201178	-1.728224	1.763523	0.201381	-1.717659	0.003553	0.000202	0.010565	0.525600	
33.000000	1.763523	0.201381	-1.717659	1.758139	0.198435	-1.715477	0.005384	0.002945	0.002181	0.484615	
34.000000	1.758139	0.198435	-1.715477	1.758521	0.199867	-1.724060	0.000382	0.001431	0.008582	0.407639	
35.000000	1.758521	0.199867	-1.724060	1.762097	0.201170	-1.721006	0.003576	0.001303	0.003053	0.299097	
36.000000	1.762097	0.201170	-1.721006	1.759918	0.199469	-1.716613	0.002178	0.001701	0.004394	0.391191	
37.000000	1.759918	0.199469	-1.716613	1.758572	0.199463	-1.721103	0.001347	0.000006	0.004490	0.525877	
38.000000	1.758572	0.199463	-1.721103	1.760820	0.200660	-1.721789	0.002248	0.001197	0.000686	0.498912	
39.000000	1.760820	0.200660	-1.721789	1.760564	0.200025	-1.718270	0.000256	0.000635	0.003519	0.681253	
40.000000	1.760564	0.200025	-1.718270	1.759123	0.199524	-1.719668	0.001442	0.000501	0.001398	0.523137	
41.000000	1.759123	0.199524	-1.719668	1.760072	0.200237	-1.721392	0.000950	0.000714	0.001723	0.389077	
42.000000	1.760072	0.200237	-1.721392	1.760577	0.200208	-1.719490	0.000505	0.000029	0.001902	0.400020	
43.000000	1.760577	0.200208	-1.719490	1.759641	0.199723	-1.719296	0.000936	0.000485	0.000194	0.452170	
44.000000	1.759641	0.199723	-1.719296	1.759787	0.200002	-1.720735	0.000146	0.000280	0.001439	0.493436	
45.000000	1.759787	0.200002	-1.720735	1.760366	0.200194	-1.720102	0.000579	0.000191	0.000633	0.500173	
46.000000	1.760366	0.200194	-1.720102	1.759954	0.199895	-1.719430	0.000412	0.000299	0.000672	0.446500	
47.000000	1.759954	0.199895	-1.719430	1.759767	0.199920	-1.720233	0.000187	0.000025	0.000803	0.450034	
48.000000	1.759767	0.199920	-1.720233	1.760156	0.200116	-1.720276	0.000389	0.000196	0.000043	0.453435	
49.000000	1.760156	0.200116	-1.720276	1.760080	0.199994	-1.719689	0.000077	0.000122	0.000587	0.440747	
50.000000	1.760080	0.199994	-1.719689	1.759848	0.199922	-1.719972	0.000232	0.000072	0.000283	0.444436	
30.00000	1.750000	0.133334	-1.719009	1.733646	0.199922	-1./199/2	0.000232	0.000072	0.000283	0.444430	