A[53.7] FO4 $_{(1V)}$,[183.02] $E_{u(1V)}$ 4-bit Absolute Value Detector

G7 Team member: Chengming Li, Haowei Ge, Rui Yang and Zhuohao Chang

Design Summary

- 1a) Circuit topology, 1b) Circuit Style
 - -(2 to 1 Mux + Simplified Half Adder + 3bit MSB to LSB Comparator)
 - -static CMOS, XOR, AND, and OR
 - -Moderate Area, Regular and Intuitive design. Simplified Half Adder uses less logic gates than normal Half Adder
- 2) Sizing + Vdd optimization / Sizing impact
 - Delay increase: [50]% out of 50%
 - Energy reduction : [27.58]% out of 50%
- 3) Sizing + Vdd optimization / V_{DD} impact
 - Delay increase: [50]% out of 50%
 - Energy reduction : [40]% out of 50%
- 4) Sizing + Vdd optimization / combination impact
 - Delay increase: [50]% out of 50%
 - Energy reduction : [56.5]%

Design Preview

• 1. Decide the sign of given input, i.e., compared input bit $3(A_3)$ with logic 0.

One input with A₃ and another input connects to ground.

• 2. Building a 3 bit 2's complement circuit, decision done by the step 1.

Output 3-bit magnitude

• 3. Output from step 2 and compared it with given threshold value(3-bit comparator).

Design Topology & Reasoning

Schematic

- S1 = ~A0 XOR 1 = A0
- S2 = ~A1 XOR C1 = ~A1 XOR ~A0
- S3 = ~A2 XOR C2 = ~A2 XOR(~A1 AND ~A0)

Simplified Half Adder

2-1 Mux(2's Complement refers figure 1) 3-bit Comparator

Design Topology (Continuing)

• AND gate can be implemented as below

• OR gate can be implemented as below

• XOR gate can be implemented as below

Design Topology & Reasoning

Reasoning

- -This is an intuitive design, and we got ideas from combinational logic.
- -Beyond that, we made a little improvement on the Half-Adder design, which uses less logic gates and so transistors. Thus, it saves energy from the design perspective.

Other options

- We have considered the full adder, ripple adder, etc. But we thought it was not necessary to put a full adder into the design, since we were not designing an ALU to do a very complex calculation. And main goal of this design is saving energy and with less transitors

Critical Path Analysis

• Highlight Critical Path

Critical Path Gate Sizing Approach

• Show sizing optimization of the critical path

• Sizing of each stage : $C_{in} = g \times C_{out}/f^*$

a = 1	b = 1.78	c = 0.79	d = 1.05	e = 1.88	f = 0.83	g = 1.11	h = 1.98
i = 2.64	j = 4.69	k = 5	I = 8.9	m = 9.49	n = 16.9	o = 18	

Critical Path Gate Sizing Approach (Continuing)

- $C_{out} = 32$ $C_{in} = 1$ • Parasitic delay: $p_{XOR} = \frac{6.5 \times 4 + 4.3 \times 4}{6.5 + 4.3} = 4$; $p_{NAND} = \frac{6.5 \times 2 + 4.3 \times 2}{6.5 + 4.3} = 2$; $p_{NOR} = \frac{6.5 \times 2 + 4.3 \times 2}{6.5 + 4.3} = 2$ • Logic effort: $g_{XOR} = \frac{6.5 \times 4 + 4.3 \times 4}{6.5 + 4.3} = 4$; $g_{NAND} = \frac{6.5 + 4.3 \times 2}{6.5 + 4.3} = 1.4$; $g_{NOR} = \frac{6.5 \times 2 + 4.3 \times 2}{6.5 + 4.3} = 1.6$
- G = 1*4*1.4*1*4*1.4*1*1.4*1*1.6*1*1.6*1*1.6*1=179.83
- B=1
- H = 32/1 = 32
- Path effort F = GHB = 179.83*32*1 = 5754.9
- Stage effort: $f^* = \sqrt[15]{F}$ 1.78
- Min delay = $15 \times f^* + (1+4+2+1+4+2+1+2+1+2+1+2+1+2+1) = 53.7$
- Ctot = 183.02
- Energy = $C_{tot} * V_{dd}^2 = 183.02 * 1^2$

Sizing & V_{DD} Energy Minimization

Sizing impact

• By using excel model provided in the lecture, E_{tot} drops down to 132.54, as 1.5* Delay_{min}

stag	ge	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	load		
size	2	1	1.20	1.49	1.84	2.27	2.78	3.37	4.04	4.77	5.48	6.08	6.36	5.93	4.16	0.00	32		
10																			
Ene	ergy	2.20	2.69	3.33	4.11	5.05	6.15	7.41	8.81	10.25	11.57	12.44	12.28	10.09	4.16	32.00		Etot	132.54

Vdd impact

•
$$Dmin = \frac{K*Vdd}{(Vdd-0.2)^2} = 53.64 = \frac{K*Vdd}{(Vdd-0.2)^2}$$

- K = 34.33
- $1.5 * Dmin = \frac{53.64*Vdd'}{(Vdd-0.2)^2}$
- Vdd' = 0.775
- Energy = $C_{tot} * V_{dd}^2 = 183.02 \times 0.775^2 = 109.93$
- Combination impact
 - Energy = $C_{tot} * V_{dd}^2 = 132.54 \times 0.775^2 = 79.61$

Sizing vs. V_{DD} Optimization?

- How did you decide about relative contribution of sizing and VDD in your overall delay increase?
 - Calculated energy consumption using either sizing optimization or Vdd optimization.
 - Estimated the energy reduction in these two methods.
 - Greater energy reduction is the better way to reduce energy in the design
- Vdd optimization is the better way for this design, since it reduces 40% energy when delay is 1.5 times minimum delay
- We end up 56.5% energy reduction when both optimization are applied

Discussion & Summary

- Three most important features of our design
 - 1. Simplified Half-Adder Circuit
 - 2. Intuitive Design
 - 3. 3bit Comparator, from MSB to LSB, using gt and eq signal.
- Given another chance, 3 things you would do different
 - 1. Trying using PTL
 - 2. Calculate other paths' delay
 - 3. We have little problem in our excel solver, as one of the stage effort is 0. But we can't figure out the cause of this problem. I think we could do it better if there is more time provided

