05/11/2019 Lab4_ExC

Data Analysis - Lab 4

M. Sébastien MASCHA & M. Sauvage Pierre

ISEP Paris - September 24th, 2019

Exercice C - Optimal cluster number in exoplanet data

In this exercice, we will try to guess the optimal number of clusters to be found in an arti□cial data set describing the atmospheric characteristics of exoplanets.

Import of libraries

This document has been done using python on Jupyter Notebook with the librairies:

- · maths for sqrt, pi, exp
- · Numpy to manipulate arrays
- · pandas to import csv
- · matplotlib to plot graphics
- seaborn to make your charts prettier (built on top of Matplotlib)
- · sklearn: tools for data mining and data analysis
- · mlxtend: tools for ploting PCA

In [13]:

```
import data

from math import sqrt,pi,exp
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns; sns.set()

import sklearn
from sklearn import metrics
from sklearn.metrics import pairwise_distances
from sklearn.cluster import KMeans
```

Question 1 - Open the file

localhost:8889/lab

05/11/2019 Lab4_ExC

```
In [14]:
```

```
df = pd.read_csv("data/exo4_atm_extr.csv", sep =';')
df = df.drop(['Type'], axis=1)
print(df.shape)

df.head()
```

(1000, 11)

Out[14]:

	PH2O	PHe	PCH4	PH2	PN2	PNH3	PO2	PAr	PCO2	PSO2	PK
0	0.0	8.7	1.3	87.30	0.0	2.70	0.0	0.0	0.0	0.0	0.00
1	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.02
2	0.1	7.1	1.7	86.45	0.0	1.15	0.0	0.0	0.0	3.5	0.00
3	0.0	2.7	0.0	3.70	41.5	0.00	31.3	6.6	14.2	0.0	0.00
4	0.1	11.4	1.1	86.10	0.0	0.20	0.0	0.0	0.0	1.1	0.00

Question 2 - Write down the different properties of the Calinski-Harabasz and Davies- Bouldin indexes.

Calinski-Harabasz

- Not normalized
- · Better when higher
- With balanced clusters, the CH index is generally a good criterion to indicate the correct number of clusters.

Davies- Bouldin indexes

- A lower DB value means a better clustering.
- This index is not normalized.
- It favors spherical clusters.
- It is biased so that it gives lower values with less clusters.

Question 3 - Calinski-Harabasz and Davies-Bouldin

```
In [19]:
```

```
kmeans_model = KMeans(n_clusters=3, random_state=1).fit(df.values)
labels = kmeans_model.labels_
print( "Calinski-Harabasz score is :" )
metrics.calinski_harabasz_score(df.values, labels)
```

Calinski-Harabasz score is:

```
Out[19]:
```

2527.9845312566085

localhost:8889/lab

05/11/2019 Lab4_ExC

```
In [20]:
```

```
print( "Davies-Bouldin score is :" )
metrics.davies_bouldin_score(df.values, labels)
```

Davies-Bouldin score is:

Out[20]:

0.3172965483768289

Question 4 - PCA

```
In [21]:
```

Out[21]:

principal component 1 principal component 2

0	62.601028	20.801273
1	-11.658641	-23.016774
2	61.723247	20.286628
3	-20.497593	-18.427451
4	61.875945	20.367130

In []:

localhost:8889/lab 3/3