BUNDESREPUBLIK DEUTSCHLAND

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 56 283.4

Anmeldetag:

28. November 2003

Anmelder/Inhaber:

Osram Opto Semiconductors GmbH,

93049 Regensburg/DE

Bezeichnung:

Lichtemittierendes Halbleiterbauelement mit einer

Schutzdiode

IPC:

H 01 S, H 01 L

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 24. November 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

BEST AVAILABLE COPY

Brosig

A 9161 03/00 EDV-L

Beschreibung

Lichtemittierendes Halbleiterbauelement mit einer Schutzdiode

Die Erfindung betrifft eine lichtemittierendes Halbleiterbauelement nach dem Oberbegriff des Patentanspruchs 1.

Die zunehmende Miniaturisierung optoelektronischer
Bauelemente und spezielle Anforderungen, insbesondere
hinsichtlich des Schwellstroms und der Strahlqualität, führen
dazu, daß die strahlungsemittierende aktive Fläche derartiger
Bauelemente oftmals verhältnismäßig klein ausgebildet wird.
Andererseits ist bekannt, daß eine verhältnismäßig kleine
aktive Fläche eine erhöhte Empfindlichkeit des Bauelements
gegen elektrostatische Entladungen (ESD - Electro Static
Discharge) bewirkt. Derartige ESD-Spannungspulse können ein
optoelektronisches Bauelement in seiner Funktion
beeinträchtigen oder sogar zerstören.

Aus der US 6,185 240 B1 ist eine Vertikalresonator-Laserdiode (VCSEL - Vertical Cavity Surface Emitting Laser) bekannt, die zur Erhöhung der ESD-Festigkeit eine monolithisch auf dem Halbleitersubstrat integrierte Schutzdiode enthält. Durch einen mehrstufigen Ätzprozeß und eine geeignete Führung der Kontaktmetallisierungen ist diese Schutzdiode antiparallel zum VCSEL geschaltet, und schützt den VCSEL auf diese Weise vor ESD-Spannungspulsen, die in Sperrichtung des pn-Übergangs des VCSEL auftreten.

Ein weiteres strahlungsemittierendes Halbleiterbauelement mit verbesserter ESD-Festigkeit ist aus der DE 199 45 134 Al bekannt. Bei diesem Bauelement ist eine monolithisch integrierte Schutzdiode dadurch realisiert, daß ein Teil des pn-Übergangs mit einem Schottky-Kontakt versehen ist. Der mit dem Schottky-Kontakt versehene Teilabschnitt ist parallel zu dem lichtemittierenden Abschnitt geschaltet und weist die gleiche Durchlaßrichtung auf. Aufgrund einer steileren Strom-Spannungs-Kennlinie erfolgt der Stromfluß bei hohen Spannungen in Durchlaßrichtung bevorzugt durch den Schutzdiodenabschnitt. Dieses Bauelement ist auf diese Weise gegen ESD-Spannungspulse in Durchlaßrichtung geschützt.

Der Erfindung liegt die Aufgabe zugrunde, ein lichtemittierendes Halbleiterbauelement anzugeben, das sich durch
einen verbesserten Schutz gegen ESD-Spannungspulse in
Sperrichtung des lichtemittierenden pn-Übergangs auszeichnet
und mit verhältnismäßig geringem Aufwand herstellbar ist.

Diese Aufgabe wird durch ein lichtemittierendes
Halbleiterbauelement mit den Merkmalen des Patentanspruchs 1
gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der
Erfindung sind Gegenstand der abhängigen Ansprüche.

Ein lichtemittierendes Halbleiterbauelement enthält gemäß der Erfindung eine monolithisch hergestellte Halbleiterschichtenfolge, wobei ein Bereich n-dotierter Halbleiterschichten und ein Bereich p-dotierter Halbleiterschichten aufeinanderfolgen, und zwischen den Bereichen ein erster pn-Übergang ausgebildet ist, wobei der erste pn-Übergang von einem isolierenden Abschnitt in einen lichtemittierenden Abschnitt und einen Schutzdiodenabschnitt unterteilt ist. Der isolierende Abschnitt isoliert den lichtemittierenden Abschnitt und den Schutzdiodenabschnitt in dem Bereich der p-dotierten Halbleiterschichten elektrisch voneinander. Im Bereich des Schutzdiodenabschnitts ist auf dem Bereich der p-dotierten Halbleiterschichten eine n-

dotierte Schicht aufgebracht, die mit dem Bereich der pdotierten Halbleiterschichten des lichtemittierenden
Abschnitts elektrisch leitend verbunden ist und mit dem pdotierten Bereich des Schutzdiodenabschnitts einen zweiten
pn-Übergang ausbildet. Der Schutzdiodenabschnitt weist eine
größere Fläche als der lichtemittierende Abschnitt auf.

Demgemäß sind im Schutzdiodenabschnitt ein erster pn-Übergang und ein zweiter pn-Übergang mit entgegengesetzter Polung in Reihe geschaltet. Diese in Reihe geschalteten pn-Übergänge sind wiederum mit dem pn-Übergang des lichtemittierenden Abschnitts parallel geschaltet. Bei einer in Durchflußrichtung des ersten pn-Übergangs angelegten Spannung, beispielsweise der Betriebsspannung des lichtemittierenden Bauelements, ist der zweite pn-Übergang im Schutzdiodenabschnitt in Sperrichtung gepolt. Der Stromfluß erfolgt daher im wesentlichen nur durch den lichtemittierenden Abschnitt.

Wird dagegen eine Spannung in Sperrichtung des ersten pnÜbergangs an das Halbleiterbauelement angelegt, ist der
zweite pn-Übergang im Schutzdiodenabschnitt in
Durchflußrichtung gepolt. Der erste pn-Übergang ist in diesem
Fall sowohl im lichtemittierenden Abschnitt als auch im
Schutzdiodenabschnitt in Sperrichtung gepolt. Bei einem ESDSpannungspuls in Sperrichtung, der eine Durchbruchspannung
des ersten pn-Übergangs übersteigt, erfolgt der Stromfluß
bevorzugt durch den Schutzdiodenabschnitt, da dieser eine
größere Fläche als der lichtemittierende Abschnitt aufweist.
Die Gefahr einer Beschädigung oder Zerstörung des aufgrund
seiner geringen Fläche besonders empfindlichen ersten pnÜbergangs im lichtemittierenden Abschnitt wird dadurch
vorteilhaft vermindert.

7

Unter der Fläche des ersten pn-Übergangs im Schutzdiodenabschnitt bzw. im lichtemittierenden Abschnitt wird im Rahmen
der Erfindung die in der Ebene der Grenzfläche zwischen dem
p-dotierten Bereich und dem n-dotierten Bereich des ersten
pn-Übergangs für einen Stromfluss zwischen elektrischen
Kontakten des Bauelements zur Verfügung stehende Fläche
verstanden. Bei der Ermittlung dieser Flächen sollen
Flächenanteile nicht berücksichtigt werden, durch die ein
Stromfluss verhindert ist, beispielsweise aufgrund von zur
räumlichen Strombegrenzung in der Halbleiterschichtenfolge
vorgesehenen isolierenden Bereichen.

Bevorzugt ist die Fläche des ersten pn-Übergangs im Schutzdiodenabschnitt mindestens um einen Faktor 100 größer als im lichtemittierenden Abschnitt. In diesem Fall erfolgt der Stromfluß im Fall eines ESD-Spannungspulses im wesentlichen durch den Schutzdiodenabschnitt.

Ein Vorteil des erfindungsgemäßen lichtemittierenden Halbleiterbauelements besteht darin, daß die Schichtstruktur verhältnismäßig einfach hergestellt werden kann. Beispielsweise sind keine Ätzprozesse erforderlich, die sich von der Oberfläche der Halbleiterschichtenfolge bis zur Oberfläche des Substrats erstrecken, da der lichtemittierende Abschnitt und der Schutzdiodenabschnitt nur in dem Bereich der p-dotierten Halbleiterschichten voneinander isoliert werden müssen.

Die Emissionswellenlänge des lichtemittierenden Halbleiterbauelements ist bei der Erfindung nicht auf den sichtbaren Spektralbereich beschränkt. Die Emission kann insbesondere auch im infraroten oder ultravioletten Spektralbereich erfolgen.

Die Halbleiterschichtenfolge ist beispielsweise auf einem Halbleitersubstrat aufgebracht. Es ist aber auch möglich, daß ein ursprünglich zum Aufwachsen der Halbleiterschichtenfolge verwendetes Aufwachssubstrat abgelöst ist. Zur Kontaktierung des lichtemittierenden Bauelements ist beispielsweise eine erste Kontaktmetallisierung auf einer von der Halbleiterschichtenfolge abgewandten Seite des Halbleitersubstrats und eine zweite Kontaktmetallisierung auf Teilbereichen der dem Halbleitersubstrat gegenüberliegenden Oberfläche des lichtemittierenden Abschnitts aufgebracht.

Der isolierende Abschnitt erstreckt sich zum Beispiel von der Oberseite der Halbleiterschichtenfolge bis in den Bereich der n-dotierten Schichten. Die n-dotierten Bereiche des lichtemittierenden Abschnitts und des Schutzdiodenabschnitts sind somit zumindest teilweise nicht von dem isolierenden Abschnitt unterbrochen.

Der lichtemittierende Abschnitt kann insbesondere durch eine Vertikalresonator-Laserdiode (VCSEL) gebildet sind. Der Laserresonator des VCSEL ist beispielsweise aus einer ersten Bragg-Reflektor-Schichtenfolge und einer zweiten Bragg-Reflektor-Schichtenfolge gebildet, von denen jede eine Mehrzahl von Schichtpaaren aufweist, wobei der erste pn-Übergang zwischen den beiden Bragg-Reflektoren angeordnet ist und einer der beiden Bragg-Reflektoren für die in dem pn-Übergang erzeugte Laserstrahlung teildurchlässig ist.

Bevorzugt ist in einer der beiden Bragg-Reflektor-Schichtenfolgen mindestens eine Stromapertur vorgesehen, mit der der Stromfluß durch den aktiven Bereich des lichtemittierenden Abschnitts räumlich begrenzt wird. Mit dieser Maßnahme kann insbesondere der Strahlquerschnitt eingeengt werden und die Schwellstromdichte verringert werden. Eine räumliche Begrenzung des Strahlquerschnitts ist weiterhin auch dadurch möglich, daß die zweite Kontaktmetallisierung die Oberfläche des lichtemittierenden Abschnitts derart teilweise bedeckt, daß ein unbedeckter Bereich als Lichtaustrittsöffnung verbleibt.

Der isolierende Abschnitt ist zum Beispiel als Graben ausgebildet, so daß der lichtemittierende Abschnitt und der Schutzdiodenabschnitt seitlich des Grabens eine mesaförmige Struktur aufweisen. Der Graben ist beispielsweise durch einen Ätzprozeß oder durch eine mechanische Mikrostrukturierung hergestellt. Die Innenseite des Grabens ist vorteilhaft mit einer isolierenden Schicht versehen. Die zweite Kontaktmetallisierung kann in diesem Fall nach der Erzeugung des Grabens aufgebracht werden und dabei der Graben mit dem Material der zweiten Kontaktmetallisierung aufgefüllt werden, ohne daß der Graben seine isolierende Wirkung verliert.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert.

Es zeigen:

- Figur 1 einen schematisch dargestellten Querschnitt durch ein lichtemittierendes Halbleiterbauelement gemäß der Erfindung und
- Figur 2 ein Ersatzschaltbild des in Figur 1 dargestellten Halbleiterbauelements.

Das in Figur 1 dargestellte lichtemittierende
Halbleiterbauelement ist eine Vertikalresonator-Laserdiode
(VCSEL). Der VCSEL enthält ein Substrat 1, auf das eine
Halbleiterschichtenfolge 2 aufgebracht ist. Die Halbleiterschichtenfolge 2 enthält einen Bereich n-dotierter Schichten
3 und einen Bereich p-dotierter Halbleiterschichten 4,
zwischen denen ein erster pn-Übergang 5a,5b ausgebildet ist.
Der pn-Übergang 5a,5b wird von einem isolierenden Abschnitt 6
in einen lichtemittierenden Abschnitt 7 und einen
Schutzdiodenabschnitt 8 unterteilt. Die Fläche des ersten pnÜberagngs 5a im lichtemittierenden Abschnitt 7 ist größer,
bevorzugt um mehr als einen Faktor 100 größer, als die Fläche
des ersten pn-Übergangs 5b im Schutzdiodenabschnitt 8.

Der pn-Übergang 5a im lichtemittierenden Abschnitt 7 stellt die aktive Zone des VCSEL dar. Der Bereich n-dotierte Halbleiterschichten 3 und der Bereich p-dotierter Halbleiterschichten 4 enthalten Bragg-Reflektoren ausgebildet, jeweils eine Mehrzahl reflektierender Schichtpaare (nicht dargestellt) enthalten. Die Bragg-Reflektoren bilden den Laserresonator des VCSEL. Der der Oberfläche des VCSEL zugewandte Bragg-Reflektor im Bereich der p-dotierten Halbleiterschichten 4 ist zur Auskopplung der Laserstrahlung 18 teildurchlässig ausgebildet.

Die elektrische Kontaktierung des VCSEL ist durch eine erste Kontaktmetallisierung 11 an der von der Halbleiterschichtenfolge 2 abgewandten Seite des Substrats 1 und eine zweite Kontaktmetallisierung 12 an der Oberfläche der Halbleiterschichtenfolge 2 realisiert. Die Oberfläche des lichtemittierenden Abschnitts 7 ist nur teilweise von der zweiten Kontaktmetallisierung 12 bedeckt, so daß eine Lichtaustritts-

Ť

öffnung 17 verbleibt. Die Oberfläche des lichtemittierenden Abschnitts 7 ist in diesem Bereich bevorzugt mit einer isolierenden Schicht 16 versehen, welche die Oberflächen der Halbleiterschichten insbesondere von Oxidation oder sonstigen Umwelteinflüssen schützt.

Der Stromfluß durch den lichtemittierenden Abschnitt 7 ist vorteilhaft durch eine Stromaperturblende 14 auf einen zentralen Bereich 15 begrenzt. Die Stromaperturblende 14 kann insbesondere im Bereich der p-dotierten Halbleiterschichten 4 ausgebildet sein. Beispielsweise ist in diesem Bereich 4 eine Aluminium enthaltende Halbleiterschicht, insbesondere AlAs, vorhanden, in der Teilbereiche 14 oxidiert sind. Die oxidierten Bereiche 14 wirken isolierend, so daß der Stromfluß auf einen zentralen Bereich 15 eingeschränkt wird. Eine Stromaperturblende 14 kann auch im Schutzdiodenabschnitt 8 vorhanden sein. Zwar ist eine Begrenzung der für den Stromfluss zur Verfügung stehenden Fläche in diesem Abschnitt nicht erwünscht, allerdings kann eine Herstellung der Stromaperturblende auf beiden Seiten des Grabens 19 das Herstellungsverfahren vereinfachen. In diesem Fall sollte die Fläche die Stromaperturblende 14 im Schutzdiodenabschnitt 8 wesentlich kleiner als die Fläche des pn-Übergangs 5b im Schutzdiodenabschnitt 8 sein.

Der isolierende Abschnitt 6 ist beispielsweise als ein Graben 19, der sich von der Oberfläche der Halbleiterschichten 2 bis in den Bereich der n-dotierten Halbleiterschichten 3 erstreckt, ausgebildet. Die p-dotierten Bereiche 4 des lichtemittierenden Abschnitts 7 und des Schutzdiodenabschnitts 8 werden durch den Graben 19 voneinander getrennt und elektrisch isoliert. Der Bereich n-dotierter Halbleiterschichten 3 ist dagegen zumindest nicht vollständig von dem

Graben 19 unterbrochen, so daß der lichtemittierende
Abschnitt 7 und der Schutzdiodenabschnitt 8 in diesem Bereich
elektrisch miteinander verbunden sind. Der den isolierenden
Abschnitt 6 bildende Graben 19 kann beispielsweise durch
einen Ätzprozeß oder eine mechanische Bearbeitung, wie zum
Beispiel Fräsen, hergestellt werden. Auf seiner Innenseite
ist der Graben 19 vorteilhaft mit einer isolierenden Schicht
16 versehen. Dadurch wird sichergestellt, daß beim Aufbringen
der zweiten Kontaktmetallisierung 12 kein Kurzschluß zwischen
dem lichtemittierenden Abschnitt 7 und dem
Schutzdiodenabschnitt 8 auftritt. Vor dem Aufbringen der
isolierenden Schicht 16 können die Stromaperturblenden 14
durch einen Oxidationsprozeß von der Innenseite des Grabens
19 aus hergestellt werden.

Anstatt den isolierenden Abschnitt 6 als Graben 19 auszubilden, ist es alternativ ist es auch möglich, daß der isolierende Abschnitt 6 durch Implantation oder Diffusion eines Fremdmaterials in die Halbleiterschichtenfolge 2, oder durch eine Oxidation eines Teils der Halbleiterschichtenfolge 2 hergestellt ist.

Im Bereich des Schutzdiodenabschnitts 8 ist auf die Oberfläche des Bereichs der p-dotierten Halbleiterschichten 4 eine n-dotierte Halbleiterschicht 9 aufgebracht. Dazwischen ist ein zweiter pn-Übergang 10 ausgebildet. Auf die n-dotierte Halbleiterschicht 9 ist ein zur elektrischen Kontaktierung des VCSEL vorgesehenes Bondpad 13 aufgebracht, das mit der zweiten Kontaktmetallisierung 12 elektrisch leitend verbunden ist. Im Bereich des Schutzdiodenabschnitts 8 sind der erste pn-Übergang 5b und der zweite pn-Übergang 10 in Reihe geschaltet. Durch die erste Kontaktmetallisierung 11 und die zweite Kontaktmetallisierung 12 beziehungsweise das

Bondpad 13 sind der lichtemittierende Abschnitt 7 und der Schutzdiodenabschnitt 8 parallel geschaltet.

Dies wird durch das in Figur 2 dargestellte Ersatzschaltbild verdeutlicht. Die linke Seite des Ersatzschaltbilds entspricht dem lichtemittierenden Abschnitt 7 und die rechte Seite dem Schutzdiodenabschnitt 8. Der lichtemittierende Abschnitt 7 enthält nur den ersten pn-Übergang 5a. Dieser ist auch im Schutzdiodenabschnitt 8 enthalten, wobei aber der zweite pn-Übergang 10 in entgegengesetzter Polung mit diesem in Reihe geschaltet ist.

Beim Betrieb des VCSEL liegt die Betriebsspannung an den Kontakten 20, 21 in Durchflußrichtung des ersten pn-Übergangs 5a,5b an. Der zweite pn-Übergang 10 im Schutzdiodenabschnitt ist in diesem Fall in Sperrichtung gepolt, so daß der Stromfluß im wesentlichen nur durch den lichtemittierenden Abschnitt erfolgt. Bei einem ESD-Spannungspuls in Sperrichtung des ersten pn-Übergangs 5a,5b ist der zweite pn-Übergang 10 dagegen in Durchlaßrichtung gepolt, so daß der elektrische Widerstand des Schutzdiodenabschnitts 8 im wesentlichen vom Widerstand des ersten pn-Übergangs 5b bestimmt wird. Da die Fläche des ersten pn-Übergangs 5b im Schutzdiodenabschnitt 8 größer ist als die Fläche des ersten pn-Übergangs 5a im lichtemittierenden Abschnitt 7, fließt ein durch den Spannungspuls bewirkter Sperrstrom im wesentlichen durch den ersten pn-Übergang 5b im Schutzdiodenabschnitt 8. Der zur Strahlungserzeugung vorgesehene erste pn-Übergang 5a im lichtemittierenden Abschnitt 7 wird dadurch vor einer Schädigung durch den Spannungspuls geschützt. Die Schutzwirkung ist um so besser, je größer das Verhältnis der Fläche des ersten pn-Übergangs (5a,5b) im

Schutzdiodenabschnitt 8 im Vergleich zur Fläche im lichtemittierenden Abschnitt 7 ist.

Im Rahmen der Erfindung ist es möglich, daß die angegebenen Leitungstypen p und n der Halbleiterschichten jeweils gegeneinander vertauscht sind. In diesem Fall sind alle in der Beschreibung genannten Leitungstypen p und n als gegeneinander ausgetauscht anzusehen.

Die Erläuterung der Erfindung anhand des Ausführungsbeispiels ist selbstverständlich nicht als Einschränkung auf dieses zu verstehen. Vielmehr umfaßt die Erfindung die offenbarten Merkmale sowohl einzeln als auch in jeder Kombination miteinander, auch wenn diese Kombinationen nicht explizit in den Ansprüchen angegeben sind.

Patentansprüche

- 1. Lichtemittierendes Halbleiterbauelement mit einer monolithisch hergestellten Halbleiterschichtenfolge (2), wobei ein Bereich n-dotierter Halbleiterschichten (3) und ein Bereich p-dotierter Halbleiterschichten (4) aufeinanderfolgen, und zwischen den Bereichen (3, 4) ein erster pn-Übergang (5a,5b) ausgebildet ist, wobei der erste pn-Übergang (5a,5b) von einem isolierenden Abschnitt (6) in einen lichtemittierenden Abschnitt (7) und einen Schutzdiodenabschnitt (8) unterteilt ist, dadurch gekennzeichnet, daß
 - der isolierende Abschnitt (6) den lichtemittierenden Abschnitt (7) und den Schutzdiodenabschnitt (8) in dem Bereich der p-dotierten Halbleiterschichten (4) elektrisch voneinander isoliert,
 - der Bereich der p-dotierten Halbleiterschichten (4) im Schutzdiodenabschnitt (8) auf der von dem ersten pnÜbergang (5b) abgewandten Seite mit einer n-dotierten Halbleiterschicht (9) versehen ist, die mit dem Bereich pdotierter Halbleiterschichten (4) im Schutzdiodenabschnitt (8) einen zweiten pn-Übergang (10) ausbildet und mit dem Bereich p-dotierter Halbleiterschichten (4) im lichtemittierenden Abschnitt (7) elektrisch leitend verbunden ist, und
 - der erste pn-Übergang (5a,5b) im Schutzdiodenabschnitt (8) eine größere Fläche als im lichtemittierenden Abschnitt (7) aufweist.
 - 2. Lichtemittierendes Halbleiterbauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Fläche des ersten pn-Übergangs (5a,5b) im

Schutzdiodenabschnitt (8) um mindestens einen Faktor 100 größer ist als im lichtemittierenden Abschnitt (7)

3. Lichtemittierendes Halbleiterbauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Halbleiterschichtenfolge (2) auf einem Halbleitersubstrat (1) aufgebracht ist.

- 4. Lichtemittierendes Halbleiterbauelement nach Anspruch 3, dadurch gekennzeichnet, daß eine erste Kontaktmetallisierung (11) auf einer von der Halbleiterschichtenfolge (2) abgewandten Seite des Halbleitersubstrats (1) und eine zweite Kontaktmetallisierung (12) auf Teilbereichen einer dem Halbleitersubstrat (1) gegenüberliegenden Oberfläche der Halbleiterschichtenfolge (2) aufgebracht ist.
 - 5. Lichtemittierendes Halbleiterbauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Bereich n-dotierter Halbleiterschichten (3) zumindest teilweise nicht von dem isolierenden Abschnitt (6) unterbrochen ist.
 - 6. Lichtemittierendes Halbleiterbauelement nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß sich der isolierende Abschnitt (6) von einer dem Halbleitersubstrat (1) gegenüberliegenden Oberfläche der Halbleiterschichtenfolge (2) bis in den Bereich der n-

dotierten Schichten (3) erstreckt.

- 7. Lichtemittierendes Halbleiterbauelement nach einem der vorhergehenden-Ansprüche, dadurch gekennzeichnet, daß der lichtemittierende Abschnitt (7) durch eine Vertikalresonator-Laserdiode (VCSEL) gebildet ist.
- 8. Lichtemittierendes Halbleiterbauelement nach Anspruch 7, dadurch gekennzeichnet, daß der der erste pn-Übergang (5a,5b) zwischen einer ersten Bragg-Reflektor-Schichtenfolge und einer zweiten Bragg-Reflektor-Schichtenfolge, von denen jede eine Mehrzahl von Schichtpaaren aufweist, angeordnet ist, und die beiden Bragg-Reflektor-Schichtenfolgen einen Laser-Resonator bilden, wobei eine der beiden Bragg-Reflektor-Schichtenfolgen für die in dem pn-Übergang (5a) erzeugte Laserstrahlung (18) teildurchlässig ist.
 - 9. Lichtemittierendes Halbleiterbauelement nach Anspruch 8, dadurch gekennzeichnet, daß in einer der beiden Bragg-Reflektor-Schichtenfolgen mindestens eine Stromapertur (14) zur räumlichen Begrenzung eines im Betrieb der Vertikalresonator-Laserdiode durch den ersten pn-Übergang (5a) im lichtemittierenden Abschnitt (7) fließenden Betriebsstroms vorgesehen ist.
 - 10. Lichtemittierendes Halbleiterbauelement nach einem der Ansprüche 4 bis 9; dadurch gekennzeichnet, daß die zweite Kontaktmetallisierung (12) die Oberfläche des lichtemittierenden Abschnitts derart teilweise bedeckt,

daß ein unbedeckter Bereich als Lichtaustrittsöffnung (17) verbleibt.

11. Lichtemittierendes Halbleiterbauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der isolierende Abschnitt (6) als Graben (19) ausgebildet ist.

Lichtemittierendes Halbleiterbauelement nach Anspruch
 11,

dadurch gekennzeichnet, daß der lichtemittierende Abschnitt (7) und der Schutzdiodenabschnitt (8) seitlich des Grabens (19) eine mesaförmige Struktur aufweisen.

13. Lichtemittierendes Halbleiterbauelement nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Graben (19) durch Flächen begrenzt wird, die mit einer isolierenden Schicht (16) versehen ist.

14. Lichtemittierendes Halbleiterbauelement nach Anspruch 13, dadurch gekennzeichnet, daß der Graben (19) mit einem Material aufgefüllt ist, aus dem die zweite Kontaktmetallisierung (12) ausgebildet ist.

15. Lichtemittierendes Halbleiterbauelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der isolierende Abschnitt (6) durch einen Implantations-, Diffusions- oder Oxidationsprozess ausgebildet ist.

16. Lichtemittierendes Halbleiterbauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß n-Dotierung und p-Dotierung der Halbleiterschichten gegeneinander ausgetauscht sind.

Fig. 1

Fig. 2

Zusammenfassung

Lichtemittierendes Halbleiterbauelement mit einer Schutzdiode

Die Erfindung betrifft ein lichtemittierendes Halbleiterbauelement, das eine Halbleiterschichtenfolge (2) mit einem Bereich p-dotierter Halbleiterschichten (4) und ndotierte Halbleiterschichten (3) enthält, zwischen denen ein erster pn-Übergang (5a,5b) ausgebildet ist. Der pn-Übergang (5a,5b) ist in lateraler Richtung von einem isolierenden Abschnitt (6) in einen lichtemittierenden Abschnitt (7) und eine Schutzdiodenabschnitt (8) unterteilt. Im Bereich des Schutzdiodenabschnitts (8) ist auf dem p-dotierten Bereich eine n-dotierte Schicht (9) aufgebracht, die mit dem pdotierten Bereich (4) einen als Schutzdiode fungierenden zweiten pn-Übergang (10) ausbildet, wobei der Schutzdiodenabschnitt (8) eine größere laterale Ausdehnung als der lichtemittierende Abschnitt (7) aufweist. Der Schutzdiodenabschnitt (8) schützt das lichtemittierende Halbleiterbauelement vor Spannungspulsen durch elektrostatische Entladungen (ESD).

Figur 1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.