$$f(n) = 3n^{2} + 8n + 2$$

$$g(n) = n^{2}$$

$$3n^{2} + 8n + 2 \le 3n^{2} + 8n^{2} + 2n^{2}$$

$$3n^{2} + 8n + 2 \le 13n^{2}$$

$$2 g(n)$$

$$f(n) = O(n^{2})$$

$$4lso \quad f(n) = O(n^{1})$$

$$f(n) = o(2^{n})$$

$$3n^{2} + 8n + 2 \ge 13n^{2}$$

$$2 f(n) \quad f(n) = \Omega(n^{2})$$

$$3n^{2} + 8n + 2 \ge 13n^{2}$$

$$4lso \quad f(n) = \Omega(n^{2})$$

$$4ls$$

O notation is also called average notation.

Scanned with CamScanner

Example 3
$$\frac{1}{2}n^2$$
, $3n^2 = O(n^2)$.

$$\frac{1}{a}n^2 + 3n^2 \leq \frac{1}{2}n^2 + 3n^2 \quad \forall n > 1.$$

$$\frac{1}{2}xn^2 + 3n \leq \frac{7}{2}n^2$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\frac{1}{2}n^{2} \leq \frac{1}{2}n^{2} + 3n \leq \frac{7}{4}n^{2}$$

For given functions, indicate whether
$$f(n) = O(g(n))$$
, $f(n) = \Omega(g(n))$ or both
$$f(n) = \pi \log n \qquad g(n) = |On\log(10n)|$$

Argument: Both f(n) & g(n) are O(nlogn) f(n) & g(n) are functions of same growth rate, so they are just constant multiples of each other and they can be upper & lower bound of each other for different constants, so f(n) = O(g(n))

Mathemetical proof:

$$\frac{\text{Big-Oh}}{f(n)} \leq cg(n)$$
 $m \log n \leq c(lon \log lon)$

let $c = 1$, the above inequality holds
for all $n > 1$ So, $n = 1$

So,
$$f(n) = O(g(n))$$
.

$$\int (n) = 100n + 109n , g(n) = n + (109n)^{2}$$
if $f(n) = O(g(n)) & f(n) = \Omega(g(n))$

then $f(n) = \Theta(g(n))$.

Big-Oh

 $f(n) \neq cg(n)$.

100n + 109n $\neq c(n + (109n)^{2})$

100n + 109n $\neq (100(n + (109n)^{2}))$

100

$$f(n) = \Omega L(g(n))$$

$$\frac{\text{Big-}\Omega}{f(n)} \geq Cg(n)$$

$$loon + logn \geq C(n + (logn)^2)$$

$$let c = 1 \quad \text{A inequality}$$
will hold for all $n \geq lo$

$$So, no = 10$$

$$So, f(n) = \Omega L(g(n))$$

$$f(n) = \theta(g(n))$$

 $k_2 n^2 \le \frac{n^2}{800} - 400n + 36 \le k_1 n^2$ Prove that $\begin{cases} f(n) = n^2 - 400n + 36 \le k_1 n^2 \end{cases}$ let's solve for k_1 $\frac{n^2}{800} - 400n + 36 \le k_1 n^2$ is $\theta(n^2)$ divide both sides by n^2 $\frac{1}{900} - \frac{400}{n} + \frac{36}{n^2} \le k_1$

> 400 >36 n

So, a larger value is being subtracted from $\frac{1}{800}$ and a smaller value is being added. So, overall result on L.H.S would be less than I so we can choose $k_1 = \frac{1}{800}$ be inequality will be satisfied. This works for $\frac{1}{100} = \frac{1}{100} = \frac{1}{100}$

Q Lets solve for k2

 $K_2 \leq \frac{1}{800} - \frac{400}{n} + \frac{36}{n^2}$

Again by same analysis as above, R.H.S would be smaller than I (as a larger value i.e. 400 is being subtracted and a smaller value i.e. $\frac{36}{n^2}$ is being added). So k_2 would be less than $\frac{1}{800}$. lets choose $k_1 = \frac{1}{8000}$. Plugging this value of k_1 , we can find No. $(N_0 = 360,000)$

So, $k_1 = \frac{1}{9000}$ $k_2 = \frac{1}{900}$ $n_0 = 360,000$

There can be multiple solutions but k_1, k_2, n_0 are an tre constants.