

Multiresolution Mixture Modeling using Merging of Mixture Components

Prem Raj Adhikari^{1,2}, Jaakko Hollmén^{1,2}

Parsimonious Modelling Research Group in

¹Department of Information and Computer Science

Aalto University School of Science, Finland

²Helsinki Institute for Information Technology (HIIT)

{prem.adhikari,jaakko.hollmen}@aalto.fi

Management Summary

- The multiresolution data
- Mixture Models of multiresolution data
- Experiments on two chromosomal aberrations datasets
- Summary and Conclusions

Multiple Resolutions of Data

- ► Older Generation Technology ⇒ Data in Coarse Resolution
- ► New Generation Technology ⇒ Data in Fine Resolution

Different resolutions of data produced over the years.

How to analyze data in multiple resolutions i.e. different dimensions?

Multiresolution Data in Cancer Genomics

Multiresolution Mixture Modelling Algorithm

Finite Mixture Models of the Multivariate Bernoulli Distributions for 0-1 Data

$$P(x) = \sum_{i=1}^{J} \pi_{i} P(x|\theta_{i}) = \sum_{j=1}^{J} \pi_{j} \prod_{i=1}^{d} \theta_{ii}^{x_{i}} (1 - \theta_{ji})^{1-x_{i}}$$

What is done?

Until the change in KL divergence is very small

- How is it done?
- Fast approximation of KL divergence (P. R. Adhikari, J. Hollmén, DS 2012)

$$KL = \sum_{i \in X^*} \pi_{\alpha} \prod_{m=1}^{d} \left(\alpha_{m}^{X_{im}^*} (1 - \alpha_{m})^{(1 - X_{im}^*)} \right) - \sum_{i i \in Y^*} \pi_{\beta} \prod_{n=1}^{d'} \left(\beta_{n}^{Y_{iin}^*} (1 - \beta_{n})^{(1 - Y_{iin}^*)} \right)$$

Retrain the mixture models in different resolutions

Performance of Multiresolution Mixture Model

Better generalization through multiresolution mixture models

Summary and Conclusions

- The sources of multiresolution data
- Multiresolution mixture modelling using merging of mixture components
- Fast approximation of KL divergence as the criterion to merge the components
- Better generalization over single resolution mixture models

Thanks, Questions, Comments and Feedback

