Комбинаторика.

«Комбинаторика — это искусство подсчета мощностей конечных множеств, заданных тем или иным способом».

Правило суммы. Если множество S разбито на непересекающиеся подмножества $S_1, S_2, ..., S_k$, то $|S| = |S_1| + |S_2| + ... + |S_k|$.

Количество реализаций события $A \lor B$ для взаимоисключающих событий A и B равно сумме количеств реализаций событий A и B.

Правило произведения. Если множество S является декартовым произведением множеств $S_1, S_2, ..., S_k$, то $|S| = |S_1 \times ... \times S_k| = |S_1| \cdot ... \cdot |S_k|$.

Количество реализаций события $A \wedge B$ для независимых событий A и B равно произведению количеств реализаций событий A и B.

Решение задачи по комбинаторике — это, прежде всего, построение такой модели разбиения множества, которая позволяет применять правила суммы и произведения.

Пример. Имеется колода из 4n ($n \ge 5$) карт, которая содержит карты четырех мастей по n карт каждой масти, занумерованных числами 1, 2, \dots , n. Подсчитать сколькими способами можно выбрать 5 карт так, что среди них окажется не более двух карт каждой масти.

Решение. Разобьем подходящие наборы на два вида (2, 1, 1, 1) и (2, 2, 1, 0) по количеству карт в масти.

По правилу суммы достаточно подсчитать количество наборов каждого вида.

Подсчитаем количество наборов второго вида в два этапа. Вначале выберем масти, которые соответствуют 1 и 0 карт. По правилу произведения это можно сделать 4.3=12 способами.

Затем выберем карты в каждой масти. 0 карт выбирается единственным способом. Одна карта n —способами. Две карты — $\frac{n(n-1)}{2}$ способами. Всего по правилу произведения получаем $12\cdot\frac{n(n-1)}{2}\cdot\frac{n(n-1)}{2}\cdot n\cdot 1=3n^3(n-1)^2$ наборов второго вида.

Аналогично наборов первого вида 2 $n^4(n-1)$

OTBET.
$$S = 2n^4(n-1) + 3n^3(n-1)^2$$

Простейшие формулы.

	Перестановки	размещения	сочетания	
без	$P_n = n!$	$A_n^k = \frac{n!}{(n-k)!}$	$C_n^k = \frac{n!}{k!(n-k)!}$	
повторений		(n-k)!	k!(n-k)!	
с повторе-	Пусть есть <i>r</i> видов	Пусть есть алфавит	Пусть есть <i>п</i> видов	
ниями	предметов, по n_i	из <i>п</i> букв. Сколько	предметов. Сколько	
	предмета каждого	существует различ-	существует различ-	
	вила. Сколько су-	ных строк ровно к	ных множеств, со-	
	ществует различных	букв данного алфа-	держащих ровно к	
	перестановок этих		предметов задан-	
	предметов.	n^k	ных видов.	
	$P(n_1,,n_k) = \frac{(n_1 + + n_k)!}{n_1! \cdot n_2! \cdot \cdot n_r!}$		$\widetilde{C}_n^k = C_{n+k-1}^{k-1}$	

Правило взаимно-однозначного соответствия. Если существует взаимно-однозначное соответствие $f:S \to S^*$, то $|S| = |S^*|$.

Пример. Вывести формулу сочетаний с повторениями.

Решение. Множество однозначно определяется количеством предметов каждого вида. Расположим множество таким образом, что вначале лежат элементы первого вида, затем второго и так далее.

Установим взаимно-однозначное соответствие между множествами и булевыми строками длины n+k, содержащими ровно k единиц. Количество элементов i-го вида равно количеству нулей перед i-ой единицей строки. Поскольку последним элементом строки обязательно будет 1, то количество таких строк равно C_{n+k-1}^{k-1} .

Пример. Оценить сверху максимальное количество внутренних точек пересечения диагоналей выпуклого *n*-угольника.

Решение. Пусть никакие три диагонали не пересекаются в одной точке. Тогда каждой точки пересечения диагоналей можно поставить в соответствие четыре вершины, которые соединяются пересекающимися диагоналями. Это соответствие взаимно-однозначное.

OTBET. C_n^4 .

Метод фиксации элемента.

Пример. Доказать, что $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$.

Доказательство. Зафиксируем выделенный элемент b. Разделим kэлементные подмножества на две непересекающиеся группы.

- I. Подмножества, которые содержат *b*.
- II. Подмножества, которые не содержат b.

Ясно, что первых C_{n-1}^{k-1} , а вторых C_{n-1}^{k} .

Определение. Числом Стирлинга второго рода из n по m, обозначаемым S(n,m), называется количество неупорядоченных разбиений n-элементного множества на m непустых подмножеств.

Пример.
$$S(5,4) = C_5^2 = 10$$
; $S(n,n) = S(n,1) = 1$.

Утверждение.
$$S(n,m) = S(n-1,m-1) + m \cdot S(n-1,m)$$
.

Доказательство проведем методом фиксации элемента. Выделим элемент b и рассмотрим два типа разбиений.

- I. Разбиения, в которых $\{b\}$ является элементом разбиения.
- II. Разбиения, в которых элемент b входит в подмножество разбиений с какими-то другими элементами.

Разбиений первого типа S(n-1,m-1). Разбиения второго типа посчитаем в два этапа. Вначале удалим b и разобьём полученное множество на m подмножеств S(n-1,m) способами, а затем добавим в одно из m подмножеств разбиения элемент b.

Подсчет числа отображений конечных множеств.

Будем рассматривать четыре типа отображений.

- 1. Произвольные.
- 2. Сюръективное.
- 3. Инъективное.
- 4. Биективное.

Обозначим $X,\ \widetilde{X},\ Y,\ \widetilde{Y}$ конечные множества такие, что $|X|=\left|\widetilde{X}\right|=m$ и $|Y|=\left|\widetilde{Y}\right|=n$. Знак $\widetilde{}$ означает, что множество состоит из одинаковых элементов.

Отображения $f: X \to Y$.

Произвольного типа. n^m .

Любой элемент множества X независимо отображается в один из элементов множества Y.

Сюръекции
$$(m \ge n)$$
. $S(m,n) \cdot n!$.

Разбить множество X на n непустых подмножеств, являющихся прообразом некоторого элемента из Y. Каждому подмножеству сопоставить различные элементы из Y.

Инъекции $(n \ge m)$. A_n^m .

Упорядочим элементы X и сопоставим каждому из них различные элементы Y. Получим упорядоченное подмножество из m элементов множества Y.

Биекции (n=m). P_n .

Является предельным случаем инъекции и биекции.

Отображения $f: X \to \widetilde{Y}$. (Грибы раскладываем по кучам)

Сюръекции $(m \ge n)$. S(m,n)·.

Разбить множество X на n непустых подмножеств (куч), являющихся прообразом некоторого элемента.

Произвольного типа.
$$\sum_{i=1}^{\min\{m,n\}} S(m,i)$$
.

Поскольку не все элементы из \widetilde{Y} имеют прообраз, то необходимо рассмотреть сюръекции на все i-элементные подмножества \widetilde{Y} .

Инъекции (*n*≥*m*). 1.

Каждый элемент из X является кучей, порядок куч не важен.

Биекции (n=m). 1.

Отображения $f:\widetilde{X}\to Y$. (Раздаём одинаковые монеты)

Произвольного типа. C_{m+n-1}^{n-1} .

Установим взаимно-однозначное соответствие с сочетаниями с повторением. Будем считать монеты первого человека монетами первого вида, монеты второго человека — монетами второго вида и так далее.

Сюръекции ($m \ge n$). C_{m-1}^{n-1} .

Поскольку все элементы из Y имеют прообраз, то не должно быть людей, не получивших монеты. Дадим каждому человеку по одной монете, а оставшиеся m-n монет распределим произвольным образом.

Инъекции $(n \ge m)$. C_n^m .

Выбираем т счастливчиков и даём им по монете.

Биекции (n=m). 1.

Обозначим P(m,k) количество разложений натурального числа m на k неупорядоченных положительных натуральных слагаемых. То есть разложения 6=3+2+1=2+1+3, отличающиеся порядком слагаемых считаются одинаковыми. Считаем, что P(m,k)=0, если m < k.

Отображения $f:\widetilde{X}\to\widetilde{Y}$. (Раскладываем одинаковые монеты в стопки)

Сюръекции $(m \ge n)$. P(m,n).

Поскольку все элементы неотличимы, то сюръекция однозначно определяется количеством прообразов каждого элемента из \widetilde{Y} .

Произвольного типа.
$$\sum_{i=1}^{\min\{m,n\}} P(m,i)$$
.

Поскольку не все элементы имеют прообраз, то возможны нулевые слагаемые. Поэтому суммируем разложения по всем возможным количествам слагаемых.

Инъекции и биекции по одной.

Комбинаторные тождества.

Утверждение.
$$P(m,n) = \sum_{i=1}^{n} P(m-n,i)$$
.

Доказательство. Назовем разложение на слагаемые разложением k-ого типа, если ровно k слагаемых больше 1. Разложений k-ого типа ровно P(m-n,k).

Разложения на множители для небольших чисел удобно изображать диаграммами Ферре.

Пример. 20=5+4+4+2+2+1

Утверждение. Число разложений числа m в неупорядоченную сумму ровно k натуральных слагаемых равно числу представлений m в виде неупорядоченной суммы натуральных слагаемых, наибольшее из которых равно k.

Упражнение. Доказать следующее утверждение.

Утверждение. Число представлений m в виде неупорядоченной суммы попарно различных натуральных слагаемых равно числу представлений m в виде неупорядоченной суммы нечетных слагаемых.

Определение. Числом Белла B_m называется число различных разбиений m-элементного множества на непустые подмножества.

Тогда количество произвольных отображений вида $f: X \to \widetilde{Y}$ равно числу Белла. $B_m = \sum_{i=1}^m S(m,i)$.

Утверждение.
$$B_m = \sum_{i=1}^m C_{m-1}^{i-1} B_{m-i}$$
 .

Доказательство. Применим метод фиксации элемента. Зафиксируем произвольный элемент b и рассмотрим содержащее его подмножество разбиения M_b . Назовем разбиение разбиением i-го типа, если $|M_b|=i$. Множества разбиений разных типов не пересекаются. Посчитаем количество разбиений i-го типа. Вначале собираем множество M_b , что можно сделать C_{m-1}^{i-1} , а затем разбиваем на непустые подмножества остальные m-i элементов.

Утверждение.
$$S(m,n) = \sum_{i=1}^{m-n+1} C_{m-1}^{i-1} S(m-i,n-1)$$
.

Теорема.
$$\sum_{k=1}^{n} A_m^k \cdot S(m,k) = m^n$$
 .

Доказательство. Справа стоит выражение для числа произвольных отображений вида $f: X \to Y$. Назовем отображением k-ого типа, если |f(X)| = k. Отображения k-ого типа считаем следующим образом. Вначале выбираем k-элементное множество (C_m^k), а затем выбираем сюръекцию на фиксированное множество $S(m,k) \cdot k!$.