WEB350

$Benjamin\ Weigel$ 10/01/2015

Contents

Automatic annotation of MS spectra	3
naringenin.CID.45eV	 3
naringenin.HCD.75eV	 4
naringenin.HCD.100eV	
eriodictyol.CID.45eV	 6
eriodictyol.HCD.75eV	 7
eriodictyol.HCD.100eV	
hesperetin.CID.45eV	
hesperetin.HCD.75eV	
hesperetin.HCD.100eV	
homoeriodictyol.CID.45eV	
homoeriodictyol.HCD.75eV	 13
homoeriodictyol.HCD.100eV	 14
apigenin.CID.45eV	
apigenin.HCD.75eV	
apigenin.HCD.100eV	 17
luteolin.CID.45eV	
luteolin.HCD.75eV	
luteolin.HCD.100eV	
diosmetin.CID.45eV	 21
diosmetin.HCD.75eV	
diosmetin.HCD.100eV	
chrysoeriol.CID.45eV	
chrysoeriol.HCD.75eV	
chrysoeriol.HCD.100eV	
kaempferol.CID.45eV	
kaempferol.HCD.75eV	
kaempferol.HCD.100eV	
quercetin.CID.45eV	
quercetin.HCD.75eV	
quercetin.HCD.100eV	
myricetin.CID.45eV	
myricetin.HCD.75eV	
myricetin.HCD.100eV	
ponciretin.CID.45eV	
$ponciretin. HCD. 75 eV \ldots \ldots$	
ponciretin.HCD.100eV	
acacetin.CID.45eV	
acacetin.HCD.75eV	
acacetin.HCD.100eV	
isorhamnetin.CID.45eV	
isorhamnetin.HCD.75eV	
isorhamnetin.HCD.100eV	
kaempferide CID 45eV	45

kaempferide.HCD.75eV					 				 										46
kaempferide.HCD.100eV					 														47

	substance	fragment	formula	MW	mz
1	naringenin	1,4B+-2H			147.04
2	naringenin	1,4B+-2H-2CO			91.05
3	naringenin	1,4B+-2H-CO			119.05
4	naringenin	AC+			179.03
5	naringenin	[M+H]+	C15H12O5	272.07	273.08
6	naringenin	[M+H-2C2H2O]+	C15H12O5	272.07	189.06

Automatic annotation of MS spectra

naring en in. CID. 45 eV

	mz	int	ppm	fragment
1	119.05	2.9	1.63	1,4B+-2H-CO
2	147.04	84.2	1.08	1,4B+-2H
3	153.02	100.0	0.82	1,3A+
4	179.03	4.1	0.83	AC+
5	189.05	4.5	1.18	[M+H-2C2H2O]+
6	231.07	4.0	0.99	[M+H-C2H2O]+
7	255.07	1.3	0.54	[M+H-H2O]+

naring en in. HCD. 75 eV

	mz	int	ppm	fragment
1	69.00	1.5	1.43	1,3A+-2CO-C2H4
2	91.05	23.8	1.01	1,4B+-2H-2CO
3	91.05	23.8	7.50	C7H7+
4	97.03	3.2	0.91	1,3A+-2CO
5	119.05	31.9	0.29	1,4B+-2H-CO
6	147.04	14.9	0.35	1,4B+-2H
7	153.02	100.0	0.02	1,3A+

${\bf naringenin. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	9.3	0.44	1,3A+-2CO-C2H4
2	81.03	1.4	6.94	C5H5O+
3	91.05	100.0	1.85	1,4B+-2H-2CO
4	91.05	100.0	6.66	C7H7+
5	97.03	9.5	0.04	1,3A+-2CO
6	111.01	1.8	5.60	1,3A+-C2H2O
7	119.05	33.6	1.31	1,4B+-2H-CO
8	125.02	1.0	0.73	1,3A+-CO
9	125.02	1.0	0.73	1,4A+
10	147.04	3.4	1.29	1,4B+-2H
11	153.02	69.1	1.22	1,3A+

${\rm eriodictyol. CID. 45eV}$

	mz	int	ppm	fragment
1	135.04	1.1	5.32	1,4B+-2H-CO
2	145.03	5.2	2.37	1,4B+-2H-H2O
3	153.02	30.9	1.92	1,3A+
4	161.06	2.4	1.31	[M+H-CH4-4CO]+
5	163.04	100.0	4.81	1,4B+-2H
6	179.03	20.0	4.24	AC+
7	187.04	4.0	0.57	[M+H-2C2H2O-H2O]+
8	205.05	3.0	0.40	[M+H-2C2H2O]+
9	247.06	3.4	0.29	[M+H-C2H2O]+
10	253.05	4.0	0.08	[M+H-2H2O]+
11	271.06	17.9	0.04	[M+H-H2O]+

${\it eriodictyol.} HCD.75eV$

	mz	int	ppm	fragment
1	69.00	1.7	1.54	1,3A+-2CO-C2H4
2	89.04	22.9	7.90	C7H5+
3	97.03	3.6	1.14	1,3A+-2CO
4	111.01	1.8	4.91	1,3A+-C2H2O
5	117.03	18.3	2.91	1,4B+-2H-H2O-CO
6	135.04	29.4	7.47	1,4B+-2H-CO
7	145.03	6.9	4.27	1,4B+-2H-H2O
8	153.02	100.0	0.18	1,3A+
9	163.04	10.0	6.22	1,4B+-2H
10	179.03	1.1	6.37	AC+

eriodicty ol. HCD. 100 eV

	mz	int	ppm	fragment
1	69.00	7.5	1.10	1,3A+-2CO-C2H4
2	81.03	1.2	8.26	C5H5O+
3	89.04	100.0	7.56	C7H5+
4	97.03	7.9	0.75	1,3A+-2CO
5	111.01	1.9	5.05	1,3A+-C2H2O
6	117.03	21.1	3.43	1,4B+-2H-H2O-CO
7	135.04	16.0	7.02	1,4B+-2H-CO
8	145.03	1.0	2.06	1,4B+-2H-H2O
9	153.02	49.8	0.52	1,3A+
10	163.04	1.0	5.84	1,4B+-2H

${\bf hesperetin. CID. 45eV}$

	mz	int	ppm	fragment
1	153.02	20.7	0.82	1,3A+
2	177.05	100.0	5.09	1,4B+-2H
3	179.03	27.6	5.69	AC+
4	201.05	1.3	1.19	[M+H-2C2H2O-H2O]+
5	219.07	2.4	1.46	[M+H-2C2H2O]+
6	261.08	2.3	1.43	[M+H-C2H2O]+
7	285.08	10.2	1.20	[M+H-H2O]+

${\bf hesperetin. HCD.75eV}$

	mz	int	ppm	fragment
1	69.00	2.0	0.66	1,3A+-2CO-C2H4
2	89.04	29.0	7.13	C7H5+
3	91.05	3.2	6.99	C7H7+
4	97.03	3.7	0.35	1,3A+-2CO
5	111.01	1.4	5.81	1,3A+-C2H2O
6	117.03	15.5	3.76	1,4B+-2H-C2H2O-H2O
7	134.04	10.7	2.02	1,4B+-2H-CO-CH3
8	149.06	14.8	5.61	1,4B+-2H-CO
9	153.02	100.0	0.62	1,3A+
10	177.05	4.5	4.75	1,4B+-2H
11	179.03	2.3	5.26	AC+
12	287.06	1.4	1.14	[M+H-CH4]+

${\bf hesperetin. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	8.7	0.11	1,3A+-2CO-C2H4
2	81.03	1.9	6.84	C5H5O+
3	89.04	100.0	6.53	C7H5+
4	91.05	7.0	6.41	C7H7+
5	97.03	9.2	0.35	1,3A+-2CO
6	111.01	2.1	6.36	1,3A+-C2H2O
7	117.03	13.1	4.47	1,4B+-2H-C2H2O-H2O
8	125.02	1.2	0.73	1,3A+-CO
9	125.02	1.2	0.73	1,4A+
10	134.04	19.6	2.70	1,4B+-2H-CO-CH3
11	137.02	3.1	1.00	0.3A +
12	149.06	5.4	4.79	1,4B+-2H-CO
13	153.02	62.7	1.42	1,3A+
14	179.03	1.6	5.43	AC+

${\bf homoeriodictyol. CID. 45eV}$

	mz	int	ppm	fragment
1	153.02	56.5	0.52	1,3A+
2	177.05	100.0	5.26	1,4B+-2H
3	179.03	29.9	5.78	AC+
4	219.07	1.4	1.67	[M+H-2C2H2O]+
5	261.08	2.3	1.54	[M+H-C2H2O]+
6	285.08	3.9	1.31	[M+H-H2O]+

${\bf homoeriodictyol. HCD. 75eV}$

	mz	int	ppm	fragment
1	69.00	2.1	0.77	1,3A+-2CO-C2H4
2	89.04	24.5	7.04	C7H5+
3	91.05	2.0	6.66	C7H7+
4	97.03	3.9	0.20	1,3A+-2CO
5	111.04	1.8	0.84	0.4A + +2H
6	117.03	32.1	3.69	1,4B+-2H-C2H2O-H2O
7	134.04	6.8	2.13	1,4B+-2H-CO-CH3
8	149.06	11.0	5.50	1,4B+-2H-CO
9	153.02	100.0	0.72	1,3A+
10	177.05	1.8	4.32	1,4B+-2H
11	179.03	1.8	5.09	AC+

${\bf homoeriodictyol. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	7.8	0.33	1,3A+-2CO-C2H4
2	81.03	1.2	6.94	C5H5O+
3	89.04	100.0	6.70	C7H5+
4	91.05	5.1	6.49	C7H7+
5	97.03	8.7	0.04	1,3A+-2CO
6	111.01	2.3	5.74	1,3A+-C2H2O
7	117.03	26.3	4.21	1,4B+-2H-C2H2O-H2O
8	134.04	13.5	2.70	1,4B+-2H-CO-CH3
9	137.02	1.8	0.56	0.3A +
10	149.06	3.4	4.79	1,4B+-2H-CO
11	153.02	57.8	1.32	1,3A+
12	179.03	1.1	5.01	AC+

apigenin. CID. $45\mathrm{eV}$

	mz	int	ppm	fragment
1	91.05	1.2	5.99	C7H7+
2	119.05	12.4	0.16	1,3B+
3	121.03	6.1	3.34	0.2B+
4	145.03	12.9	3.74	0.4B + - H2O
5	153.02	100.0	0.52	1,3A+
6	163.04	6.1	1.04	0.4B+
7	187.04	2.5	0.57	[M+H-2C2H2O]+
8	225.05	12.6	1.26	[M+H-H2O-CO]+
9	229.05	21.0	1.42	[M+H-C2H2O]+
10	242.06	14.2	2.85	[M+H-CHO].+
11	243.07	6.7	0.25	[M+H-CO]+
12	253.05	1.3	1.49	[M+H-H2O]+
13	271.06	2.3	0.72	[M+H]+

${\it apigenin.} HCD.75eV$

	mz	int	ppm	fragment
1	69.00	4.3	0.55	1,3A+-2CO-C2H4
2	81.03	1.2	7.31	C5H5O+
3	91.05	26.0	6.74	C7H7+
4	97.03	1.8	0.43	1,3A+-2CO
5	111.01	2.0	5.60	1,3A+-C2H2O
6	119.05	48.6	0.99	1,3B+
7	121.03	15.8	3.47	0.2B+
8	125.02	1.5	0.61	1,3A+-CO
9	125.02	1.5	0.61	1,4A+
10	131.05	1.7	3.67	[M+H-2CO-2C2H2O]+
11	145.03	17.3	3.42	0.4B + -H2O
12	153.02	100.0	0.92	1,3A+
13	163.04	7.6	0.76	0.4B+
14	187.04	2.5	1.39	[M+H-2C2H2O]+
15	197.06	3.8	1.38	[M+H-H2O-2CO]+
16	225.05	3.6	0.92	[M+H-H2O-CO]+
17	229.05	3.8	1.16	[M+H-C2H2O]+
18	242.06	1.0	0.89	[M+H-CHO].+
19	243.07	7.2	1.07	[M+H-CO]+
20	253.05	2.6	0.93	[M+H-H2O]+
21	271.06	84.2	1.06	[M+H]+

${\it apigenin.} HCD.100eV$

	mz	int	ppm	fragment
1	69.00	24.4	1.65	1,3A+-2CO-C2H4
2	81.03	2.7	8.73	C5H5O+
3	89.04	6.8	7.73	C7H5+
4	97.03	9.1	1.06	1,3A+-2CO
5	111.01	3.7	4.71	1,3A+-C2H2O
6	119.05	34.9	0.22	1,3B+
7	121.03	25.4	2.58	0.2B +
8	125.02	3.1	0.79	1,3A+-CO
9	125.02	3.1	0.79	1,4A+
10	131.05	5.0	4.83	[M+H-2CO-2C2H2O]+
11	143.05	1.1	2.61	[M+H-CH4-4CO]+
12	145.03	41.2	4.27	0.4B + -H2O
13	153.02	84.2	0.02	1,3A+
14	163.04	2.3	0.93	0.4B +
15	169.03	2.2	2.13	[M+H-2C2H2O-H2O]+
16	187.04	1.0	1.63	[M+H-2C2H2O]+
17	197.06	2.7	1.46	[M+H-H2O-2CO]+
18	242.06	1.5	1.71	[M+H-CHO].+
19	243.07	2.5	1.51	[M+H-CO]+
20	271.06	2.4	0.16	[M+H]+

${\bf luteolin. CID. 45eV}$

	mz	int	ppm	fragment
1	135.04	11.5	0.79	1,3B+
2	137.02	6.7	3.70	0.2B +
3	137.02	6.7	0.89	0.3A +
4	153.02	100.0	0.27	1,3A+
5	179.03	7.1	0.65	0.4B +
6	203.03	4.5	2.08	[M+H-2C2H2O]+
7	213.05	2.4	1.69	[M+H-H2O-2CO]+
8	227.03	2.9	2.10	[M+H-CH3OH-CO].+
9	231.07	2.2	0.13	[M+H-2CO]+
10	241.05	13.3	2.43	[M+H-H2O-CO]+
11	245.04	13.1	2.81	[M+H-C2H2O]+
12	258.05	47.4	4.37	[M+H-CHO].+
13	259.06	9.2	6.99	[M+H-CO]+
14	269.04	8.7	1.31	[M+H-H2O]+

${\bf luteolin. HCD.75eV}$

	mz	int	ppm	fragment
	60.00			
1	69.00	5.4	0.44	1,3A+-2CO-C2H4
2	81.03	1.6	7.31	C5H5O+
3	89.04	16.9	6.79	C7H5+
4	97.03	2.1	0.20	1,3A+-2CO
5	111.01	2.0	6.08	1,3A+-C2H2O
6	125.02	1.7	0.61	1,3A+-CO
7	125.02	1.7	0.61	1,4A+
8	127.04	1.2	0.79	1,4A++2H
9	135.04	39.7	1.69	1,3B+
10	137.02	12.2	3.59	0.2B+
11	137.02	12.2	0.78	0.3A +
12	147.04	1.5	3.03	[M+H-2CO-2C2H2O]+
13	153.02	100.0	1.12	1,3A+
14	161.02	15.5	2.49	0.4B + -H2O
15	179.03	3.3	1.31	0.4B +
16	199.04	1.4	1.15	[M+H-CH3OH-2CO].+
17	203.03	1.7	1.33	[M+H-2C2H2O]+
18	213.06	6.7	0.40	[M+H-H2O-2CO]+
19	241.05	15.5	0.78	[M+H-H2O-CO]+
20	258.05	3.0	0.94	[M+H-CHO].+
21	269.04	6.5	0.52	[M+H-H2O]+
22	287.06	66.3	0.82	[M+H]+

lute olin. HCD. 100 eV

	mz	int	ppm	fragment
1	69.00	22.5	1.32	1,3A+-2CO-C2H4
2	81.03	8.2	8.44	C5H5O+
3	89.04	100.0	7.73	C7H5+
4	97.03	8.7	0.83	1,3A+-2CO
5	111.01	3.0	4.78	1,3A+-C2H2O
6	124.02	2.2	0.28	1,4A.+
7	125.02	2.3	1.16	1,3A+-CO
8	125.02	2.3	1.16	1,4A+
9	127.04	2.1	0.11	1,4A++2H
10	137.02	15.8	2.92	0.2B +
11	137.02	15.8	0.11	0.3A +
12	147.04	3.1	3.66	[M+H-2CO-2C2H2O]+
13	153.02	87.3	0.32	1,3A+
14	161.02	29.3	3.34	0.4B + -H2O
15	185.02	1.9	2.58	[M+H-2C2H2O-H2O]+
16	187.04	1.6	1.30	[M+H-CH4-3CO]+
17	187.04	1.6	1.30	[M+H-H2O-2CO-C2H2]+
18	203.03	3.1	2.23	[M+H-2C2H2O]+
19	213.06	4.0	0.12	[M+H-H2O-2CO]+
20	216.04	1.2	2.65	[M+H-CH3-2CO].+
21	241.05	4.2	1.67	[M+H-H2O-CO]+
22	258.05	1.7	1.06	[M+H-CHO].+
23	287.05	1.6	1.99	[M+H]+

${\bf diosmetin. CID. 45eV}$

${\bf diosmetin. HCD. 75eV}$

	mz	int	ppm	fragment
1	153.02	8.0	0.32	1,3A+
2	229.05	12.2	2.09	[M+H-CH4-2CO]+
3	229.05	12.2	2.09	[M+H-H2O-CO-C2H2]+
4	257.04	6.8	1.49	[M+H-CH4-CO]+
5	258.05	100.0	2.60	[M+H-CH3-CO].+
6	286.05	20.3	1.85	[M+H-CH3].+

${\bf diosmetin. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	1.8	1.65	1,3A+-2CO-C2H4
2	97.03	1.7	0.91	1,3A+-2CO
3	111.01	1.3	4.98	1,3A+-C2H2O
4	124.02	4.4	0.84	1,4A.+
5	137.02	1.5	0.56	0.3A +
6	153.02	100.0	0.08	1,3A+
7	161.06	3.7	3.59	$[\mathrm{M} + \mathrm{H} - 2\mathrm{CO} - 2\mathrm{C} 2\mathrm{H} 2\mathrm{O}] +$
8	170.02	1.1	2.84	C7H6O5+
9	173.06	3.0	2.46	[M+H-CH4-4CO]+
10	187.04	5.8	2.77	[M+H-CH4-2CO-C2H2O]+
11	201.05	6.6	2.02	[M+H-CH4-3CO]+
12	201.05	6.6	2.02	[M+H-H2O-2CO-C2H2]+
13	203.03	28.6	2.01	[M+H-H2O-CO-2C2H2]+
14	213.05	3.6	2.19	[M+H-CH3OH-2CO].+
15	229.05	75.0	2.36	[M+H-CH4-2CO]+
16	229.05	75.0	2.36	[M+H-H2O-CO-C2H2]+
17	257.04	37.6	1.97	[M+H-CH4-CO]+
18	258.05	49.1	2.24	[M+H-CH3-CO].+

${\bf chrysoeriol. CID. 45eV}$

${\it chrysoeriol.} HCD.75eV$

	mz	int	ppm	fragment
1	153.02	8.3	0.08	1,3A+
2	229.05	12.8	2.36	[M+H-CH4-2CO]+
3	229.05	12.8	2.36	[M+H-H2O-CO-C2H2]+
4	257.04	6.7	1.85	[M+H-CH4-CO]+
5	258.05	100.0	2.95	[M+H-CH3-CO].+
6	286.05	18.3	2.17	[M+H-CH3].+

${\bf chrysoeriol. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	1.9	1.88	1,3A+-2CO-C2H4
2	89.04	1.0	7.47	C7H5+
3	97.03	2.2	1.30	1,3A+-2CO
4	111.01	1.1	4.71	1,3A+-C2H2O
5	124.02	4.8	0.90	1,4A.+
6	137.02	1.6	0.67	0.3A +
7	153.02	100.0	0.18	1,3A+
8	161.06	4.6	3.59	[M+H-2CO-2C2H2O]+
9	170.02	1.1	4.01	C7H6O5+
10	173.06	2.4	3.07	[M+H-CH4-4CO]+
11	187.04	5.0	2.85	[M+H-CH4-2CO-C2H2O]+
12	201.05	6.3	2.32	[M+H-CH4-3CO]+
13	201.05	6.3	2.32	[M+H-H2O-2CO-C2H2]+
14	203.03	31.2	2.23	[M+H-H2O-CO-2C2H2]+
15	213.05	3.7	2.34	[M+H-CH3OH-2CO].+
16	229.05	75.5	2.36	[M+H-CH4-2CO]+
17	229.05	75.5	2.36	[M+H-H2O-CO-C2H2]+
18	257.04	37.4	1.97	[M+H-CH4-CO]+
19	258.05	45.7	2.24	[M+H-CH3-CO].+

${\bf kaempferol. CID. 45eV}$

	mz	int	ppm	fragment
1	111.01	19.0	4.23	1,3A+-C2H2O
2	121.03	35.7	2.02	0.2B+
3	127.04	2.4	0.77	1,4A++2H
4	133.03	25.4	2.06	1,3B+-2H
5	137.02	10.9	1.52	0.2A+-CO
6	137.02	10.9	0.67	0.3A +
7	147.04	13.0	0.48	1,4B++2H-H2O
8	147.04	13.0	4.59	[M+H-2CO-2C2H2O]+
9	153.02	61.3	0.67	1,3A+
10	165.02	100.0	0.86	0.2A +
11	199.04	3.0	4.45	[M+H-CH3OH-2CO].+
12	203.03	6.6	2.08	[M+H-2C2H2O]+
13	213.05	77.0	2.98	[M+H-H2O-2CO]+
14	231.07	39.9	2.91	[M+H-2CO]+
15	241.05	99.1	2.68	[M+H-H2O-CO]+
16	243.06	5.4	4.71	[M+H-CO2]+
17	245.04	4.2	3.06	[M+H-C2H2O]+
18	258.05	46.3	2.36	[M+H-CHO].+
19	259.06	24.3	1.93	[M+H-CO]+
20	269.04	32.3	2.79	[M+H-H2O]+

${\bf kaempferol. HCD. 75eV}$

	mz	int	ppm	fragment
1	69.00	7.2	2.43	1,3A+-2CO-C2H4
2	81.03	3.1	9.29	C5H5O+
3	91.05	1.9	7.92	C7H7+
4	97.03	1.9	1.53	1,3A+-2CO
5	111.01	5.0	4.30	1,3A+-C2H2O
6	127.04	1.4	1.73	1,4A++2H
7	133.03	2.7	1.83	1,3B+-2H
8	137.02	13.5	1.08	0.2A+-CO
9	137.02	13.5	1.11	0.3A +
10	147.04	9.1	0.58	1,4B++2H-H2O
11	147.04	9.1	4.69	[M+H-2CO-2C2H2O]+
12	165.02	11.3	0.86	0.2A +
13	203.07	1.5	2.95	[M+H-3CO]+
14	213.05	19.6	2.84	[M+H-H2O-2CO]+
15	216.04	1.8	2.72	[M+H-CH3-2CO].+
16	231.07	4.6	2.58	[M+H-2CO]+
17	241.05	5.5	2.87	[M+H-H2O-CO]+
18	258.05	10.0	2.60	[M+H-CHO].+
19	259.06	3.3	2.87	[M+H-CO]+
20	269.04	2.1	3.69	[M+H-H2O]+
21	287.05	24.7	2.63	[M+H]+

${\bf kaempferol. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	32.9	2.54	1,3A+-2CO-C2H4
2	81.03	11.9	9.48	C5H5O+
3	89.04	6.1	8.84	C7H5+
4	97.03	9.2	1.93	1,3A+-2CO
5	111.01	3.9	4.02	1,3A+-C2H2O
6	121.03	69.3	1.89	0.2B+
7	124.02	1.3	2.38	1,4A.+
8	125.02	1.6	1.40	1,3A+-CO
9	125.02	1.6	1.40	1,4A+
10	127.04	1.6	0.19	1,4A++2H
11	133.03	1.2	2.87	1,3B+-2H
12	137.02	11.6	0.97	0.2A+-CO
13	137.02	11.6	1.22	0.3A +
14	147.04	8.1	0.68	1,4B++2H-H2O
15	147.04	8.1	4.80	[M+H-2CO-2C2H2O]+
16	153.02	100.0	0.77	1,3A+
17	159.04	1.3	2.80	[M+H-CH4-4CO]+
18	165.02	1.9	1.33	0.2A +
19	187.04	2.0	4.08	[M+H-CH4-3CO]+
20	187.04	2.0	4.08	[M+H-H2O-2CO-C2H2]+
21	203.03	1.3	1.71	[M+H-2C2H2O]+
22	213.05	11.8	3.05	[M+H-H2O-2CO]+
23	216.04	2.1	3.71	[M+H-CH3-2CO].+
24	241.05	1.0	0.40	[M+H-H2O-CO]+
25	269.04	2.3	3.24	[M+H-H2O]+

${\it quercetin.} CID.45 eV$

	mz	int	ppm	fragment
1	111.01	6.9	4.16	1,3A+-C2H2O
2	127.04	1.0	1.43	1,4A++2H
3	137.02	22.7	1.08	0.2A+-CO
4	137.02	22.7	1.08	0.2B+
5	137.02	22.7	1.11	0.3A +
6	149.02	9.8	0.89	1,3B+-2H
7	153.02	20.0	0.87	1,3A+
8	163.04	6.9	4.49	[M+H-2CO-2C2H2O]+
9	165.02	58.8	0.59	0.2A +
10	191.03	1.2	0.19	AC+
11	215.03	2.1	2.75	[M+H-CH3OH-2CO].+
12	219.03	3.7	3.10	[M+H-2C2H2O]+
13	229.05	70.4	3.22	[M+H-H2O-2CO]+
14	247.06	36.5	3.01	[M+H-2CO]+
15	257.04	100.0	3.03	[M+H-H2O-CO]+
16	274.05	19.9	4.60	[M+H-CHO].+
17	275.05	14.4	2.08	[M+H-CO]+
18	285.04	62.7	3.10	[M + H - H2O] +

${\it quercetin.} HCD.75 eV$

	mz	int	ppm	fragment
1	69.00	7.6	1.76	1,3A+-2CO-C2H4
2	81.03	8.0	8.73	C5H5O+
3	91.05	2.4	7.92	C7H7+
4	97.03	2.3	1.14	1,3A+-2CO
5	111.01	5.8	4.78	1,3A+-C2H2O
6	127.04	2.9	0.95	1,4A++2H
7	137.02	46.6	1.75	0,2A+-CO
8	137.02	46.6	1.75	0.2B+
9	137.02	46.6	0.44	0.3A +
10	145.03	2.0	0.28	1,4B++2H
11	149.02	2.7	2.12	1,3B+-2H
12	153.02	100.0	0.18	1,3A+
13	163.04	6.9	3.65	[M+H-2CO-2C2H2O]+
14	165.02	9.0	1.23	0.2A +
15	191.03	2.3	0.03	AC+
16	203.03	3.0	2.23	[M+H-CH4-3CO]+
17	203.03	3.0	2.23	[M+H-H2O-2CO-C2H2]+
18	219.03	1.1	2.47	[M+H-2C2H2O]+
19	229.05	49.2	2.42	[M+H-H2O-2CO]+
20	232.04	2.1	2.39	[M+H-CH3-2CO].+
21	247.06	1.9	2.95	[M+H-2CO]+
22	257.04	13.3	2.08	[M+H-H2O-CO]+
23	274.05	4.0	2.04	[M+H-CHO].+
24	285.04	6.2	1.92	[M+H-H2O]+
25	303.05	8.4	2.03	[M+H]+

${\bf quercetin. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	30.8	1.32	1,3A+-2CO-C2H4
2	81.03	39.4	8.35	C5H5O+
3	89.04	9.0	7.90	C7H5+
4	97.03	9.8	1.14	1,3A+-2CO
5	111.01	5.1	5.26	1,3A+-C2H2O
6	124.02	3.0	0.47	1,4A.+
7	125.02	1.4	0.61	1,3A+-CO
8	125.02	1.4	0.61	1,4A+
9	127.04	6.4	0.05	1,4A++2H
10	137.02	38.3	2.30	0,2A+-CO
11	137.02	38.3	2.30	0.2B+
12	137.02	38.3	0.11	0.3A +
13	145.03	3.6	0.46	1,4B++2H
14	149.02	3.7	3.04	1,3B+-2H
15	153.02	100.0	0.32	1,3A+
16	163.04	5.2	3.37	[M+H-2CO-2C2H2O]+
17	165.02	3.0	3.82	0.2A+
18	175.04	1.2	1.04	[M+H-CH4-4CO]+
19	203.03	10.5	1.63	[M+H-CH4-3CO]+
20	203.03	10.5	1.63	[M+H-H2O-2CO-C2H2]+
21	219.03	1.6	0.03	[M+H-2C2H2O]+
22	229.05	16.2	2.16	[M+H-H2O-2CO]+
23	257.04	2.1	1.25	[M+H-H2O-CO]+
24	285.04	2.7	0.96	[M+H-H2O]+

${\it myricetin.} CID.45eV$

	mz	int	ppm	fragment
1	111.01	3.5	4.64	1,3A+-C2H2O
2	127.04	3.9	1.07	1,4A++2H
3	137.02	5.6	1.75	0.2A+-CO
4	137.02	5.6	0.44	0.3A +
5	153.02	34.8	1.69	0.2B+
6	153.02	34.8	0.18	1,3A+
7	165.02	41.4	1.14	0.2A +
8	165.02	41.4	1.66	1,3B+-2H
9	179.03	7.0	3.22	[M+H-2CO-2C2H2O]+
10	231.03	1.8	2.54	[M+H-CH3OH-2CO].+
11	235.02	3.8	2.61	[M+H-2C2H2O]+
12	245.04	31.6	2.62	[M+H-H2O-2CO]+
13	263.05	25.4	2.52	[M+H-2CO]+
14	273.04	100.0	2.56	[M+H-H2O-CO]+
15	283.02	4.3	2.49	[M+H-2H2O]+
16	290.04	22.2	2.92	[M+H-CHO].+
17	291.05	6.4	1.27	[M+H-CO]+
18	301.03	39.6	2.46	[M+H-H2O]+

myricetin. HCD. 75 eV

	mz	int	ppm	fragment
1	69.00	7.9	1.54	1,3A+-2CO-C2H4
2	81.03	4.8	8.73	C5H5O+
3	91.05	2.3	7.41	C7H7+
4	97.03	3.4	1.22	1,3A+-2CO
5	111.01	5.9	4.91	1,3A+-C2H2O
6	124.02	2.0	0.71	1,4A.+
7	125.02	2.6	0.98	1,3A+-CO
8	125.02	2.6	0.98	1,4A+
9	127.04	1.6	1.13	1,4A++2H
10	137.02	15.0	1.86	0,2A+-CO
11	137.02	15.0	0.33	0.3A +
12	139.04	3.2	0.32	0.3A++2H
13	153.02	100.0	1.89	0.2B+
14	153.02	100.0	0.02	1,3A+
15	161.02	1.9	1.00	1,4B++2H
16	165.02	6.0	1.23	0.2A +
17	165.02	6.0	1.75	1,3B+-2H
18	170.02	1.4	3.47	C7H6O5+
19	179.03	9.0	2.79	[M+H-2CO-2C2H2O]+
20	191.03	1.9	0.75	AC+
21	191.03	1.9	2.06	[M+H-CH4-4CO]+
22	219.03	8.3	2.19	[M+H-CH4-3CO]+
23	219.03	8.3	2.19	[M+H-H2O-2CO-C2H2]+
24	231.03	1.4	3.33	[M+H-CH3OH-2CO].+
25	235.06	2.1	1.87	[M+H-3CO]+
26	245.04	21.6	2.19	[M+H-H2O-2CO]+
27	273.04	6.3	1.89	[M+H-H2O-CO]+
28	301.03	1.4	2.97	[M+H-H2O]+
29	319.04	1.1	2.15	[M+H]+

${\bf myricetin. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	28.8	1.65	1,3A+-2CO-C2H4
2	81.03	23.6	8.82	C5H5O+
3	89.04	7.2	7.90	C7H5+
4	97.03	13.8	1.14	1,3A+-2CO
5	111.01	7.2	4.85	1,3A+-C2H2O
6	124.02	15.2	1.08	1,4A.+
7	125.02	4.9	0.06	1,3A+-CO
8	125.02	4.9	0.06	1,4A+
9	127.04	4.4	0.71	1,4A++2H
10	137.02	31.9	1.75	0,2A+-CO
11	137.02	31.9	0.44	0.3A +
12	139.04	3.3	0.12	0.3A + +2H
13	153.02	100.0	1.79	0.2B+
14	153.02	100.0	0.08	1,3A+
15	161.02	4.1	0.91	1,4B++2H
16	165.02	4.0	0.40	0.2A +
17	165.02	4.0	0.92	1,3B+-2H
18	170.02	2.6	2.75	C7H6O5+
19	179.03	8.9	2.28	[M+H-2CO-2C2H2O]+
20	191.03	2.3	1.65	AC+
21	191.03	2.3	4.45	[M+H-CH4-4CO]+
22	219.03	20.6	2.19	[M+H-CH4-3CO]+
23	219.03	20.6	2.19	[M+H-H2O-2CO-C2H2]+
24	245.04	6.0	2.25	[M+H-H2O-2CO]+

ponciretin. CID. 45 eV

	mz	int	ppm	fragment
1	133.06	4.0	0.93	1,4B+-2H-CO
2	153.02	77.4	0.02	1,3A+
3	161.06	100.0	0.07	1,4B+-2H
4	179.03	5.2	0.27	AC+
5	203.07	3.7	1.90	[M+H-2C2H2O]+
6	245.08	2.8	1.97	[M+H-C2H2O]+
7	269.08	1.3	1.68	[M+H-H2O]+

${\bf ponciretin. HCD.75eV}$

	mz	int	ppm	fragment
1	69.00	1.6	0.66	1,3A+-2CO-C2H4
2	90.05	3.0	3.79	1,4B+-2H-2CO-CH3
3	91.05	1.1	6.91	C7H7+
4	97.03	3.4	0.20	1,3A+-2CO
5	103.05	5.8	1.79	1,4B+-2H-CO-CH2O
6	111.01	1.1	5.74	1,3A+-C2H2O
7	118.04	10.6	2.39	1,4B+-2H-CO-CH3
8	133.06	35.7	1.39	1,4B+-2H-CO
9	153.02	100.0	0.62	1,3A+
10	161.06	9.5	1.21	1,4B+-2H

${\bf ponciretin. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	13.4	0.44	1,3A+-2CO-C2H4
2	81.03	1.3	8.16	C5H5O+
3	89.04	21.7	6.70	C7H5+
4	90.05	49.4	3.96	1,4B+-2H-2CO-CH3
5	91.05	5.3	6.49	C7H7+
6	97.03	14.7	0.12	1,3A+-2CO
7	103.05	27.3	2.01	1,4B+-2H-CO-CH2O
8	111.01	3.8	6.36	1,3A+-C2H2O
9	118.04	57.1	2.59	1,4B+-2H-CO-CH3
10	125.02	1.3	0.31	1,3A+-CO
11	125.02	1.3	0.31	1,4A+
12	133.06	35.7	1.73	1,4B+-2H-CO
13	153.02	100.0	1.22	1,3A+
14	161.06	2.9	2.44	1,4B+-2H

acacetin. CID. 45 eV

	mz	int	ppm	fragment
1	133.06	2.1	0.56	1,3B+
2	153.02	4.8	1.37	1,3A+
3	242.06	6.7	3.98	[M+H-CH3-CO].+
4	243.06	1.2	4.21	[M+H-C2H2O]+
5	270.05	100.0	3.50	[M+H-CH3].+

acacetin.HCD.75eV

	mz	int	ppm	fragment
1	133.06	2.5	0.10	1,3B+
2	153.02	10.9	0.57	1,3A+
3	241.05	1.4	2.43	[M+H-CH4-CO]+
4	242.06	100.0	3.29	[M+H-CH3-CO].+
5	270.05	9.1	2.60	[M+H-CH3].+
6	285.08	3.6	2.91	[M+H]+

acacetin. HCD. 100 eV

 $\label{lem:web350} WEB350\label{lem:web350} $$WEB350\label{lem:web350}$ L9\pMS2,HCD\285.mzXML, Compound: acacetin HCD.100.eV, scan 3764$

	mz	int	ppm	fragment
1	69.00	1.1	1.32	1,3A+-2CO-C2H4
2	89.04	2.8	7.64	C7H5+
3	97.03	1.2	0.91	1,3A+-2CO
4	124.02	3.5	0.59	1,4A.+
5	153.02	100.0	0.02	1,3A+
6	170.02	1.3	2.93	C7H6O5+
7	185.06	1.3	2.79	[M+H-CH4-3CO]+
8	185.06	1.3	2.79	[M+H-H2O-2CO-C2H2]+
9	213.05	6.1	2.05	[M+H-CH4-2CO]+
10	213.05	6.1	2.05	[M+H-H2O-CO-C2H2]+
11	241.05	6.6	1.86	[M+H-CH4-CO]+
12	242.06	49.2	1.97	[M+H-CH3-CO].+

is or hamnet in. CID. 45 eV

WEB350_20_pMS2,HCD_317.mzXML, Compound: isorhamnetin CID.45.eV, scan 3498

	mz	int	ppm	fragment
1	139.04	8.9	0.12	0.3A + +2H
2	151.04	2.3	2.63	0.2B +
3	153.02	3.6	0.82	1,3A+
4	163.04	2.0	2.90	1,3B+-2H
5	165.02	6.3	2.16	0.2A +
6	177.05	1.8	2.12	[M+H-2CO-2C2H2O]+
7	229.05	2.6	1.82	[M+H-CH3OH-2CO].+
8	243.07	2.4	2.07	[M+H-H2O-2CO]+
9	257.04	8.0	1.25	[M+H-CH3OH-CO].+
10	261.08	8.2	1.43	[M+H-2CO]+
11	271.06	4.6	1.17	[M+H-H2O-CO]+
12	274.05	5.0	1.37	[M+H-CH3-CO].+
13	285.04	36.2	1.38	[M+H-CH3OH].+
14	288.06	2.9	4.78	[M+H-CHO].+
15	299.06	3.3	1.20	[M+H-H2O]+
16	302.04	100.0	1.69	[M+H-CH3].+

is or hamnet in. HCD. 75 eV

WEB350_20_pMS2,HCD_317.mzXML, Compound: isorhamnetin HCD.75.eV, scan 3503

		int	#0 #0 #00	fue gree ent
	mz	int	ppm	fragment
1	69.00	1.5	0.99	1,3A+-2CO-C2H4
2	81.03	1.1	8.07	C5H5O+
3	124.02	3.4	0.27	1,4A.+
4	137.02	3.6	2.75	0.2A+-CO
5	137.02	3.6	0.56	0.3A +
6	139.04	1.3	0.21	0.3A + +2H
7	151.04	2.4	2.73	0.2B+
8	153.02	100.0	0.82	1,3A+
9	163.04	1.2	3.00	1,3B+-2H
10	165.02	1.3	1.79	0.2A +
11	170.02	2.4	2.21	C7H6O5+
12	189.05	3.7	1.58	[M+H-CH4-4CO]+
13	191.03	1.1	1.94	AC+
14	203.03	18.3	1.26	[M+H-CH4-2CO-C2H2O]+
15	217.05	41.1	1.36	[M+H-CH4-3CO]+
16	217.05	41.1	1.36	[M+H-H2O-2CO-C2H2]+
17	219.03	7.1	1.36	[M+H-H2O-CO-2C2H2]+
18	229.05	33.2	1.09	[M+H-CH3OH-2CO].+
19	245.04	41.9	1.19	[M+H-CH4-2CO]+
20	245.04	41.9	1.19	[M+H-H2O-CO-C2H2]+
21	246.05	8.8	0.24	[M+H-CH3-2CO].+
22	256.04	2.2	0.97	[M+H-CH3-H2O-CO].+
23	257.04	7.3	1.02	[M+H-CH3OH-CO].+
24	273.04	13.0	1.00	[M+H-CH4-CO]+
25	274.05	6.3	0.71	[M+H-CH3-CO].+
26	285.04	11.0	1.06	[M+H-CH3OH].+
27	301.03	2.9	0.64	[M+H-CH4]+
_28	302.04	5.6	0.88	[M+H-CH3].+

is or hamnet in. HCD. 100 eV

WEB350_20_pMS2,HCD_317.mzXML, Compound: isorhamnetin HCD.100.eV, scan 3500

	mz	int	ppm	fragment
1	69.00	8.2	1.43	1,3A+-2CO-C2H4
2	81.03	6.9	8.35	C5H5O+
3	89.04	1.9	7.90	C7H5+
4	97.03	3.4	0.83	1,3A+-2CO
5	111.01	5.7	4.98	1,3A+-C2H2O
6	124.02	13.9	0.65	1,4A.+
7	137.02	13.0	2.19	0.2A+-CO
8	137.02	13.0	0.00	0.3A +
9	151.04	1.2	4.15	0.2B+
10	153.02	100.0	0.22	1,3A+
11	159.04	2.5	0.64	1,4B++2H
12	163.04	5.3	2.44	1,3B+-2H
13	165.02	1.0	2.16	0.2A +
14	170.02	3.5	2.75	C7H6O5+
15	189.05	10.6	2.23	[M+H-CH4-4CO]+
16	191.03	1.9	1.22	AC+
17	203.03	36.8	1.86	[M+H-CH4-2CO-C2H2O]+
18	217.05	56.0	2.06	[M+H-CH4-3CO]+
19	217.05	56.0	2.06	[M+H-H2O-2CO-C2H2]+
20	219.03	13.3	1.64	[M+H-H2O-CO-2C2H2]+
21	229.05	14.8	2.02	[M+H-CH3OH-2CO].+
22	245.04	34.3	1.94	[M+H-CH4-2CO]+
23	245.04	34.3	1.94	[M+H-H2O-CO-C2H2]+
24	257.04	1.6	1.49	[M+H-CH3OH-CO].+
25	273.04	1.9	2.79	[M+H-CH4-CO]+
26	285.04	3.0	0.85	[M+H-CH3OH].+

${\bf kaempferide. CID. 45eV}$

	mz	int	ppm	fragment
1	111.04	1.3	0.29	0.4A + +2H
2	135.04	18.4	4.22	0.2B+
3	137.02	4.0	3.75	0.2A+-CO
4	137.02	4.0	1.56	0.3A +
5	139.04	100.0	1.11	0.3A + +2H
6	153.02	28.2	1.92	1,3A+
7	161.06	13.4	2.25	1,4B++2H-H2O
8	161.06	13.4	1.50	[M+H-2CO-2C2H2O]+
9	165.02	31.0	3.27	0.2A +
10	213.06	3.5	0.03	[M+H-CH3OH-2CO].+
11	217.05	2.2	0.80	[M+H-2C2H2O]+
12	227.07	2.3	0.35	[M+H-H2O-2CO]+
13	241.05	15.6	0.40	[M+H-CH3OH-CO].+
14	245.08	16.7	0.60	[M+H-2CO]+
15	255.07	3.1	0.90	[M+H-H2O-CO]+
16	257.04	2.9	0.42	[M+H-CH4-CO]+
17	258.05	9.2	0.71	[M+H-CH3-CO].+
18	269.04	10.7	0.52	[M+H-CH3OH].+
19	272.07	20.1	0.31	[M+H-CHO].+
20	273.08	2.7	0.20	[M+H-CO]+
21	283.06	2.1	0.47	[M+H-H2O]+
22	285.04	2.0	2.03	[M+H-CH4]+
23	286.05	61.7	0.36	[M+H-CH3].+

${\bf kaempferide. HCD. 75eV}$

-50

m/z

	mz	int	ppm	fragment
1	69.00	3.0	0.99	1,3A+-2CO-C2H4
2	81.03	1.2	8.16	C5H5O+
3	91.05	3.5	6.99	C7H7+
4	111.01	1.2	5.94	1,3A+-C2H2O
5	124.02	10.9	0.02	1,4A.+
6	135.04	14.0	3.32	0.2B+
7	137.02	6.5	2.86	0.2A+-CO
8	137.02	6.5	0.67	0.3A +
9	139.04	6.5	0.01	0.3A + +2H
10	153.02	65.1	0.62	1,3A+
11	161.06	3.7	0.93	1,4B++2H-H2O
12	161.06	3.7	2.83	[M+H-2CO-2C2H2O]+
13	165.02	6.3	2.25	0.2A+
14	170.02	10.3	2.30	C7H6O5+
15	173.06	1.9	2.28	[M+H-CH4-4CO]+
16	187.04	3.8	2.04	[M+H-CH4-2CO-C2H2O]+
17	201.05	25.4	1.49	[M+H-CH4-3CO]+
18	201.05	25.4	1.49	[M+H-H2O-2CO-C2H2]+
19	203.03	3.3	1.48	[M+H-H2O-CO-2C2H2]+
20	213.05	10.5	1.05	[M+H-CH3OH-2CO].+
21	227.07	1.6	0.82	[M+H-H2O-2CO]+
22	229.05	100.0	1.56	[M+H-CH4-2CO]+
23	229.05	100.0	1.56	[M+H-H2O-CO-C2H2]+
24	230.06	94.0	1.41	[M+H-CH3-2CO].+
25	240.04	1.8	2.13	[M+H-CH3-H2O-CO].+
26	241.05	2.0	1.10	[M+H-CH3OH-CO].+
27	257.04	17.0	1.25	[M+H-CH4-CO]+
28	258.05	58.2	1.42	[M+H-CH3-CO].+
29	269.04	10.8	1.20	[M+H-CH3OH].+
30	272.07	1.8	1.88	[M+H-CHO].+
31	285.04	4.5	0.96	[M+H-CH4]+
32	286.05	11.6	1.00	[M+H-CH3].+
33	301.07	9.2	1.68	[M+H]+

${\bf kaempferide. HCD. 100eV}$

	mz	int	ppm	fragment
1	69.00	9.9	0.33	1,3A+-2CO-C2H4
2	81.03	3.7	7.69	C5H5O+
3	89.04	1.8	6.61	C7H5+
4	97.03	3.2	0.04	1,3A+-2CO
5	111.01	3.1	5.81	1,3A+-C2H2O
6	124.02	41.7	0.27	1,4A.+
7	135.04	4.8	3.66	0.2B+
8	137.02	7.7	2.75	0.2A+-CO
9	137.02	7.7	0.56	0.3A +
10	147.04	3.0	2.73	1,3B+-2H
11	153.02	67.2	1.22	1,3A+
12	165.02	1.9	2.53	0.2A+
13	170.02	8.4	2.03	C7H6O5+
14	173.06	13.4	1.93	[M+H-CH4-4CO]+
15	187.04	12.9	1.55	[M+H-CH4-2CO-C2H2O]+
16	201.05	49.7	1.11	[M+H-CH4-3CO]+
17	201.05	49.7	1.11	[M+H-H2O-2CO-C2H2]+
18	203.03	11.3	1.18	[M+H-H2O-CO-2C2H2]+
19	213.05	10.5	1.05	[M+H-CH3OH-2CO].+
20	229.05	100.0	1.22	[M+H-CH4-2CO]+
21	229.05	100.0	1.22	[M+H-H2O-CO-C2H2]+
22	230.06	9.0	2.51	[M+H-CH3-2CO].+
23	257.04	5.9	0.54	[M+H-CH4-CO]+
24	258.05	1.8	0.48	[M+H-CH3-CO].+
25	269.04	3.4	0.52	[M+H-CH3OH].+
_26	285.04	1.2	0.64	[M+H-CH4]+

302(100)299(3)288 (3) 285 (36) 271 (5) 261 (8) 257 (8) 243 (2) 139(9)229(3) 165(6)151(2)274(5)177(2)153(4)163(2)isorhamnetin 137 (4) 135 (18) 137 (4) 139 (100) 111 (1) 286 (62) 285 (2) 283 (2) 273 (3) 272 (20) 269 (11) 257 (3) 255 (3) 245 (17) 241 (16) 227 (2) 217 (2) 213 (4) 161(13)153(28)165(31)161(13)258(9)kaempferide 273 (100)263 (25)301 (40) 291 (6) 290 (22)153(35) 111(4)165 (41) 127 (4)137 (6) 153 (35) 137 (6) 165(41)283(4)245(32)235(4)231(2)(7) (7)тугісетіп 257 (100) 2 247 (37) 285 (63) 275 (14) 274 (20) 149(10) 127(1) $229 (70) \\
219 (4) \\
215 (2)$ 153(20) 111(7)163 (7) 191 (1) 165 (59) 137 (23) 137 (23) quercetin 269 (32) 259 (24) 258 (46) 241 (99) 231 (40) 213 (77) 203 (7) 199 (3) 137 (11) 121 (36) 137 (11) 153 (61) 111 (19) 133(25) 127(2)245(4)147 (13) (65(100))147 (13) 243(5)kaempferol 270(100) 286(100) 286(100)chrysoeriol Table 1: Fragment table for method CID.45 diosmetin 243(1)242(7)153(5)133(2)acacetin 163 (6) 179 (7) 145 (13) 153 (100) 153 (100) 269 (9) 259 (9) 258 (47) 241 (13) 231 (2) 227 (3) 213 (2) 203 (4) 135(11)245(13)137 (7) 137 (7) niloətul 253 (1) 243 (7) 242 (14) 119(12)229(21)225(13)121(6)271(2) 187 (3) 91(1) apigenin 261(2)153 (21) 153 (57) 147 (84) 163 (100) 161 (100) 177 (100) 177 (100)219(1)285(4)179(30)homoeriodictyol 285(10)219(2)179(28)201(1)261(2)hesperetin .53(100) 153(31) 153(77)269(1)245(3)203(4)179(5)4 ponciretin 133 (271(18)179(20)253 (4) 247 (3) 187 (4) 161 (2) 145(5)135(1)205(3)eriodictyol 255(1)231(4)189(5)179(4)3 naringenin 119 ([M+H-CC₂H₂OH-CO]⁺ [M+H-H₂O-2CO]⁺ [M+H-2C₂H₂O]⁺ $[M+H-CH_3OH-2CO]^{\bullet+}$ $[M+H-2C_2H_2O-H_2O]^+$ $[M+H-CH_4-4CO]^+$ $[M+H-2CO-2C_2H_2O]^+$ $[M+H-CH_3-CO]^{\bullet+}$ $[M+H-CO_2]^{+}$ $M+H-H_2O-CO]^+$ $M+H-CH_4-CO]^+$ 2 [M+H-CH₃] + 4
3 [M+H-CH₃] + 4
4 [M+H-H₂O] + 4
5 [M+H-CH₃] + 4
6 [M+H-CH₃] + 1
7 [M+H-CH₃O]] + 1
8 [M+H-CH₃O]] + 1
10 [M+H-CH₃O]] + 1
11 [M+H-CO₂] + 1
12 [M+H-CO₂] + 1
13 [M+H-CO₂] + 1
14 [M+H-CO₂] + 1
15 [M+H-CO₂] + 1
16 [M+H-CO₂] + 1
17 [M+H-CO₂] + 1
18 [M+H-CO₂] + 1
19 [M+H-CO₂] + 1
17 [M+H-CO₂] + 1
18 [M+H-CO₂] + 1
19 [M+H-CO₂] + 1
20 [M+H-CH₃OH-CO]] + 1
21 [M+H-CO₂] + 1
22 [M+H-CH₃OH-CO]] + 1
23 [M+H-CH₃OH-CO]] + 1
24 [M+H-CO₄] + 1
25 [M+H-CH₃OH-CO]] + 1
26 [M+H-CH₃OH-CO]] + 1
27 [M+H-CH₃OH-CO]] + 1
28 [M+H-CH₃OH-CO]] + 1
29 [M+H-CH₃OH-CO]] + 1
21 [M+H-CO₄DO]] + 1
22 [M+H-CH₃OH-CO]] + 1
23 [M+H-CH₃OH-CO]] + 1
24 [M+H-CH₃OH-CO]] + 1
25 [M+H-CH₃OH-CO]] + 1
26 [M+H-CH₃OH-CO]] + 1
27 [M+H-CH₃OH-CO]] + 1
28 [M+H-H-CH₃OH-CO]] + 1
28 [M+H-H-CH₃OH-CO]] + 1
28 [M+H-H-CH₃OH-CH₃OH-CO]] + 1
28 [M+H-H-CH₃O $M+H-CH_3OH]^{\bullet}+$ fragment

Table 2: Fragment table for method HCD.75

				Table 2: Fragment table for method HCD.75	Fragm	ent tabl	e tor me	thod H	CD.75						
fragment	naringenin	foctodictyol	ponciretin	nesperetin	homoeriodictyol	піпэзідв	niloətul	ясасеіп	diosmetin	chrysoeriol	кветргего	пітээләпр	тутісеtіп	каетргетіде	nisorhamnetin
[M+H] [M+H]						271 (84)	287 (66)	285 (4) 270 (9)	286 (20)	286 (18)	287 (25)	303 (8)	319(1)	301 (9) 286 (12)	302 (6)
				287 (1)		253(3)	269 (6)				269(2)	285 (6)	301(1)	285 (5)	301 (3)
5 [M+H-CO] ⁺ 6 [M+H-CHO]•+ 7 [M+H-CH ₃ OH]•+						243 (7) 242 (1)	258 (3)				259(3) $258(10)$	274 (4)		272(2) 269(11)	285 (11)
H H H H + + + + W W W W W W W W						229 (4) 225 (4)	241 (16)	242 (100) 3 241 (1)	$242 (100) 258 (100) 258 (100) \\ 241 (1) 257 (7) 257 (7)$			257 (13)	273 (6)	258 (58) 257 (17)	274 (6) 273 (13)
12 [M+H-2CO] ⁺ 13 [M+H-CH ₃ OH-CO] [•] + 14 [M+H-CH ₃ -H ₂ O-CO] [•] +												247 (2)		241 (2) 240 (2)	257 (7) 256 (2)
$\begin{array}{c} 15 \ [\mathrm{MHH-CH}_3 - 2\mathrm{CO}]^{-1} \\ 16 \ [\mathrm{MHH-H}_2 \mathrm{O} - \mathrm{CO} - \mathrm{C}_2 \mathrm{H}_2]^{+} \\ 17 \ [\mathrm{MHH-CH}_4 - 2\mathrm{CO}]^{+} \end{array}$									229 (12) $229 (12)$	229 (13) 229 (13)		232 (2)			246 (9) 245 (42) 245 (42)
						197 (4)	213 (7)				213 (20) 203 (2)	229 (49)	245 (22) 235 (2)		
						101 (2)	199(1)					(1) 617	231(1)	213 (11)	229 (33)
												203 (3) 203 (3)	219 (8) 219 (8)		217 (1) $217 (41)$ $217 (41)$ $203 (18)$
		:			1	131(2)	147 (1)				147 (9)		191 (2) 179 (9)		189 (4)
28 AC+ 29 0,2A+ 30 0,2A+		179(1)		179(2)	179 (2)						165 (11)		191(2) $165(6)$ $137(15)$	165 (6) $137 (7)$	$191 (1) \\ 165 (1) \\ 137 (4)$
31 0,2B ⁺ 32 0,3A ⁺						121 (16)	137 (12) 137 (12)					137 (47) 1 137 (47)	153 (100) $137 (15)$	135 (14) 137 (7)	151 (2) 137 (4)
$33\ 0,3A^{+}+2H$ $34\ 0,4A^{+}+2H$					111(2)								139(3)	139(7)	139(1)
-H ₂ O	153 (100)	153 (100) 153 (100)	153 (100) 153 (100)		153 (100)		$ \begin{array}{c} 179(3) \\ 161(16) \\ 153(100) \end{array} $	153 (11)	153 (8)	153 (8)		153 (100) 153 (100)	153 (100)	153 (65) 153 (100)	153 (100)
38 1,3A^+ -CO 39 1,3A^+ -C ₂ H ₂ O	1	111(2)	111 (1)	111(1)			125(2) $111(2)$				111 (5)	111 (6)	125 (3) $111 (6)$	111(1)	
$40 \text{ L}, 3A^{+} - 2CO$ $41 \text{ L}, 3A^{+} - 2CO - C_{2}H_{4}$ $42 \text{ L}, 3R^{+}$	97 (3) 69 (2)	97 (4) 69 (2)	97 (3) 69 (2)	97 (4) 69 (2)	97 (4) 69 (2)	97 (2) $69 (4)$ $119 (49)$	97 (2) 69 (5) 135 (40)	133 (3)			(2) (2) (2) (3)	97 (Z) 69 (8)	97 (3) 69 (8)	(8) (9)	69(1)
$43 1,38^{+} - 2H$ $44 1,48^{+} + 2H$						(c+) c++	127 (1)				133(3) $127(1)$	149 (3) 127 (3)	165(6) $127(2)$		163(1)
45 1,4A•+ 46 1,4A+ 77 1 4B+±9H						125(1)	125(2)					(6) 24	124 (2) 125 (3)	124 (11)	124 (3)
48 1,4B ⁺ - 2H	147 (15)	163(10)	161 (10)	177 (4)	177(2)						147 (9)			161 (4)	
$50.148^{+} - 2H - H_{2}O$ $51.148^{+} - 2H - H_{2}O$ $51.148^{+} - 2H - CO - CH_{3}$ $52.148^{+} - 2H - CO - CH_{3}$	119 (32)	145(7) $135(29)$	133 (36) 118 (11)	149 (15) 134 (11)	149 (11) 134 (7)						(c) 1111			(1)	
53 1,4B - ZH-CO-CH2O 54 1,4B+-2H-2CO 55 1 4R ⁺ -2H-2CO-CH2	91 (24)		103 (6)												
$56 \frac{114B^{+} - 2H - C_{2}H_{2}O - H_{2}O}{57 \frac{114B^{+} - 2H - H_{2}O - CO}{57 \frac{114B^{+} - 2H - H_{2}O -$		117 (18)		117 (15)	117 (32)										
58 C7H ₆ O ₅ 59 C7H ₇ 60 C7H ₇	91 (24)	89 (23)	91 (1)	91 (3) 89 (29)	91 (2)	91 (26)	89 (17)				91(2)	91 (2)	170(1) $91(2)$	170 (10) 91 (4)	170(2)
61 C ₅ H ₅ O ⁺						81 (1)	81 (2)				81 (3)	81 (8)	81 (5)	81 (1)	81(1)

\simeq
0
Į
\sim
Э
$C \setminus$
\mathcal{H}
Н
┙
ŏ
\simeq
4
5
Ĭ
_
Н
for
Ŧ
a
1
$\overline{\mathbf{c}}$
_
50
_
+
П
0
Ě
⊐
ിർ
ਲੋ
ä
H
\mathfrak{C}
P
ap
\vdash

				Table	o. 110	SHICHE	Capita 10	TITICOTIC	7077	001.					
fragment	піпэзпітвп	eriodictyol	ponciretin	hesperetin	homoeriodictyol	ninəgiqs	niloətul	nitəəsəs	diosmetin	chrysoeriol	ksempferol	пітестер	тугісеtіп	kaempferide	nitənmsd102i
1 [M+H] ⁺						271(2)	287 (2)							36E (1)	
						(269(2)	285 (3)		(1) 607	
						243(2) 242(2)	258(2)								
										0				269 (3)	285 (3)
$\frac{1}{8} \frac{[M+H-CH_3-CO]^2}{[M+H-CH_4-CO]^4}$								$242 (49) \\ 241 (7)$	258 (49) 257 (38)	258 (46) 257 (37)				258(2) 257(6)	273(2)
							241(4)			,	241(1)	257 (2)			
$10 [M+H-CH_3OH-CO]^{-1}$ $11 [M+H-CH_3-2CO]^{\bullet+}$							216(1)				216(2)			230(9)	257 (2)
								213 (6) 213 (6)	229 (75) 229 (75)	229 (76) 229 (76)			C4 C4	S S	245 (34) 245 (34)
$14 [M+H-H_2O-2CO]^+$ $15 [M+H-2C_2H_2O]^+$						197(3) $187(1)$	213(4) 203(3)				213(12) 203(1)	229 (16) $219 (2)$	245 (6)		
16 [M+H-CH ₃ OH-2CO]•+							,		213 (4)	213 (4)	,			213 (10)	229 (15)
							187(2) $187(2)$	185(1) $185(1)$	201 (7) 201 (7) 201 (7)	201 (6) 201 (6) 201 (6)	187 (2) 187 (2)	203 (10) 203 (10)	219 (21) 219 (21)		217 (56) 217 (56) 217 (56)
						169(2)	185(2)								()
21 [M+H-CH ₄ -2CO-C ₂ H ₂ O] ⁺ 22 [M+H-CH ₄ -4CO] ⁺ 23 [M+H-2CO-2C ₂ H ₂ O] ⁺						143 (1) 131 (5)	147 (3)		187 (6) 173 (3) 161 (4)	187 (5) 173 (2) 161 (5)	159(1) $147(8)$	175(1) $163(5)$	191(2)	187 (13) 173 (13)	203(37) $189(11)$
				179(2)	179 (1)									168 (0)	191(2)
$^{23}_{20}$ $^{0.2A}_{-CO}$ $^{27}_{0.2B}$						121 (25) 137 (16)	137 (16)					137 (38) $137 (38)$	163 (4) $137 (32)$ $153 (100)$	$\frac{103}{137}$ (8) $\frac{135}{5}$ (5)	163(1) $137(13)$ $151(1)$
28 0,3A ⁺ 29 0.3A ⁺ +2H				137 (3)	137 (2)		137 (16)		137(1)	137 (2)	137 (12)	137 (38)		137 (8)	137 (13)
$0.4B^{+}$						163(2)	((6) 601		
$31.0,4B^{+}-H_{2}O$ $32.1,3A^{+}$	153 (69)	153 (69) 153 (50)	153 (100)	153 (63)	153 (58)		161 (29) 153 (87)	153 (100) 153 (100) 153 (100)	.53 (100)		_	_	$\overline{}$	153 (67) 1	153 (100)
33 1,3A ⁺ -CO 34 1 3A ⁺ -C ₂ H ₂ O	$\begin{vmatrix} 125 (1) \\ 111 (2) \end{vmatrix}$	111 (9)	125(1)	125(1)	111 (9)	125(3)	125(2)		111 (1)	111 (1)	125(2)	125 (1)	125(5)	111 (3)	111 (6)
3 4 1,3 A $^{-}$ C 2,1 Z 2 C 2 S 3 S 1,3 A+ $^{-}$ ZC 2 C 2 H 4 S 2,7 F+ 2 C 2 C 2 H 4 S 2,7 F+ 2 C 2 C 2 H 4 S 2,7 F+ 2 C 2 C 2 H 4 S 2,7 F+ 2 C 2 C 2 H 4 S 2 C 2 F+ 2 C	97 (10) 69 (9)	97 (8)	97 (15) 69 (13)	(5) 111 (6) 63 (6) (6)	97 (9) 97 (9) 69 (8)	97 (9) $69 (24)$	97 (9) 69 (22)	97 (1) 69 (1)	97 (2) 69 (2)	97(2) 69(2)	97 (9) 69 (33)	97 (10) 69 (31)	97 (14) 69 (29)	97(3) $69(10)$	97 (3) 69 (8)
$38\ 1,3B^{+}-2H$ $30\ 1.4A^{+}-2H$						(66) 611	197 (9)				133(1)	149 (4)	165 (4)	147(3)	163(5)
40 1,4A •+ 41 1 4A +	125 (1)		125 (1)	125(1)		125 (3)	124 (2) $125 (2)$	124(4)	124 (4)	124 (5)	124 (1) $125 (2)$	124 (3) 125 (1)	124 (15) $125 (5)$	124 (42)	124 (14)
42 1,4B ⁺ +2H	1 (2)	1691	(2) (2)									145 (4)	161 (4)		159(2)
$^{43}_{44}$ 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	147 (0)		(e) 101								147 (8)				
45 1,4B ⁺ -2H-H ₂ O 46 1,4B ⁺ -2H-CO 47 1,4B ⁺ -2H-CO-CH ₃	145 (3 119 (34) 135 (1	145(1) $135(16)$	133 (36) 118 (57)	149(5) $134(20)$	149 (3) 134 (13)										
$48 1,4B^{+} - 2H - CO - CH_{2}O$ $49 1.4B^{+} - 2H - 2CO$	(100)		103(27)												
50 1,4B^{+} $-2H$ $-2CO$ $-CH_{3}$ 51 1,4B^{+} $-2H$ $-C_{5}H_{5}O$ $-H_{5}O$			90 (49)	117 (13) 117 (26)	117 (26)										
$52 \frac{1}{4}B^{+} - 2H - H_{2}O - CO$ $53 \frac{C_{7}H_{6}O_{7}^{+}}{1}$		117 (21)		•	,			170(1)	170(1)	170(1)			170(3)	170(8)	170(3)
$54 \text{ C}_7 \text{H}_7^+$	91 (100)			91 (7)	91 (5)						į	į			
$55 \text{ C}_7\text{H}_5^+$ $56 \text{ C}_5\text{H}_5\text{O}^+$	81(1)	89 (100) 81 (1)	89 (22) $81 (1)$	89 (100) 89 (100) 81 (2) 81 (1)	89 (100) 81 (1)	89 (7) 81 (3)	89 (100) 81 (8)	89(3)		89(1)	89 (6) 81 (12)	89 (9) 81 (39)	89 (7) 81 (24)	89 (2) 81 (4)	89 (2) 81 (7)

91 (7) 91 (5) 89 (100) 89 (100) 81 (2) 81 (1) 153(58)111(2)97(9) 69(8) 149 (5) 149 (3) 134 (20) 134 (13) homoeriodictyol_HCD.100 153 (63) 125 (1) 111 (2) 97 (9) 69 (9) 125 (1) 179 (2) 137 (3) ${\it hesperetin_HCD.100}$ $133 (36) \\
118 (57) \\
103 (27)$ 153 (69) 153 (50) 153 (100) 91 (5) 89 (22) 81 (1) 125(1) 1111(4) 97(15) 69(13) 125(1) 161(3) ${\tt ponciretin_HCD.100}$ $163 (1) \\
145 (1) \\
135 (16)$ 117(21)89(100) $\begin{array}{c} 1111(2) \\ 97(8) \\ 69(8) \end{array}$ 81 (1) eriodictyol_HCD.100 |91 (100)125(1) 111(2) 97(10) 69(9) 125(1) 147(3)81(1) $naringenin_HCD.100$ 111 (2) 153 (100) 149(11) 134(7)177(2)91(2) 89(24)179(2)97(4)69(2) $homoeriodictyol_HCD.75$ Table 4: Fragment table for type *flavanon* 153(100)149 (15) 134 (11)177(4)111(1)97(4) 69(2) 91(3) 89(29) $hesperetin_HCD.75$ 153 (100) 153 (100) 153 (100) $133 (36) \\
118 (11) \\
103 (6)$ 161(10)97(3) 97(3) 69(2)90(3)91(1)ponciretin_HCD.75 $\begin{array}{c}
 163 (10) \\
 145 (7) \\
 135 (29)
 \end{array}$ 111(2)97(4) 69(2) 89 (23) ${\rm eriodictyol_HCD.75}$ 147(15)91 (24)91(24)97 (3) 69 (2) naringenin_HCD.75 147 (84) 163 (100) 161 (100) 177 (100) 177 (100)153 (100) 153 (31) 153 (77) 153 (21) 153 (57)179(30)261(2)219(1) $homoeriodictyol_CID.45$ 179(28)261 (2) 219 (2) 201 (1) $hesperetin_CID.45$ 245 (3) 203 (4) 179(5)ponciretin_CID.45 271 (18) 253 (4) 247 (3) 205 (3) 187 (4) 161 (2) 179 (20) 145(5) 135(1)eriodictyol_CID.45 231(4) 189(5)179(4)119(3)naringenin_CID.45 $\begin{array}{c} 4 & [M+H-C_2H_2O]^+ \\ 5 & [M+H-C_2H_2O]^+ \\ 6 & [M+H-2C_2H_2O]^+ \\ 7 & [M+H-CH_4-4CO]^+ \\ 8 & AC^+ \\ 9 & 0.3A^+ \\ 10 & 0.4A^+ + 2H \\ 11 & 1.3A^+ - CO \\ 13 & 1.3A^+ - CO \\ 14 & 1.3A^+ - CO \\ 15 & 1.3A^+ - CO \\ 15 & 1.3A^+ - CO \\ 15 & 1.3A^+ - CO \\ 19 & 1.4B^+ - 2H \\ 17 & 1.4B^+ - 2H \\ 17 & 1.4B^+ - 2H - CO \\ 19 & 1.4B^+ - 2H - CO \\ 20 & 1.4B^+ - 2H - CO - CH_3 \\ 21 & 1.4B^+ - 2H - CO - CH_3 \\ 21 & 1.4B^+ - 2H - CO - CH_3 \\ 22 & 1.4B^+ - 2H - CO - CH_3 \\ 21 & 1.4B^+ - 2H - CO - CH_3 \\ 22 & 1.4B^+ - 2H - CO - CH_3 \\ 21 & 1.4B^+ - 2H - CO - CH_3 \\ 22 & 1.4B^+ - 2H - CO - CH_3 \\ 22 & 1.4B^+ - 2H - CO - CH_3 \\ 23 & 1.4B^+ - 2H - CO - CH_3 \\ 24 & 1.4B^+ - 2H - CO - CO \\ 25 & 1.4B^+ - 2H - CO - CO \\ 25 & 1.4B^+ - 2H - H_2O - CO \\ 25 &$ $[M+H-H_2O]^+$ $[M+H-2H_2O]^+$ fragment

	chrysoeriol_HCD.100		258 (46) 257 (37)	229 (76) 229 (76)	213 (4)	203 (31) 201 (6) 201 (6)	187 (5) 173 (2) 161 (5)	137(2)	153 (100)	111(1) 97(2) 69(2)	124 (5)	170(1)	89 (1)
	diosmetin_HCD.100		258 (49) 257 (38)	229 (75) 229 (75)	213 (4)	203 (29) $201 (7)$ $201 (7)$	187 (6) 173 (3) 161 (4)	137 (1)	153 (100) 153 (100) 153 (100)	111 (1) 97 (2) 69 (2)	124 (4)	170(1)	
	acacetin_HCD.100		242 (49) 241 (7)	213 (6) 213 (6)		185 (1) $185 (1)$				97 (1) 69 (1)	124 (4)	170 (1)	89 (3)
	luteolin_HCD.100	287 (2)	241 (4)	216 (1)	203(3)	187 (2) $187 (2)$ $185 (2)$		137 (16)		111 (3) 97 (9) 69 (22)		125(2)	89 (100) 81 (8)
	001.GDH_ninsgiqs	271 (2) 243 (2) 242 (2)			187 (1)	169(2)	143 (1) 131 (5) 121 (25)	163 (2)	$\frac{153(84)}{125(3)}$	111 (4) 97 (9) 69 (24)	119 (35)	125 (3)	89 (7) 81 (3)
5: Fragment table for type flavone	chrysoeriol_HCD.75	286 (18)	258 (100) $257 (7)$	229 (13) 229 (13)					153(8)				
	diosmetin_HCD.75	286 (20)	242 (100) 258 (100) 241 (1) 257 (7)	$229 (12) \\ 229 (12)$					153(8)				
	acacetin_HCD.75	285 (4) 270 (9)	242 (100) 241 (1)						153 (11)		133 (3)		
	luteolin_HCD.75	287 (66) 269 (6) 258 (3)	241 (16)	(7) 010	203(2) $199(1)$		147(1) $137(12)$	137 (12) $179 (3)$ $161 (16)$	153 (100) 125 (2)	111(2) 97(2) 69(5)	135 (40) 127 (1)	125(2)	89 (17) 81 (2)
	č7.d⊃H_ninegiqs	271 (84) 253 (3) 243 (7) 242 (1)	225 (4)	107	187 (2)		131 (2) $121 (16)$	163 (8)	153 (100) $125 (1)$	111(2) $97(2)$ $69(4)$	119 (49)	125 (1)	91 (26)
	chrysoeriol_CID.45	286 (100)											
Table 5:	64. CID_nitemsoib	286 (100)											
	64.«ПЭ_піժээвэв	270 (100) 286 (100) 286 (100)	242 (7)						153(5)		133(2)		
	δ4.CID_niloədul	$269 (9) \\ 259 (9) \\ 258 (47) \\ 245 (13)$	241 (13) 231 (2)	227 (3)	203 (4)		137 (7)	137 (7)	153 (100)		135 (11)		
	spigenin_CID.45	271 (2) 253 (1) 243 (7) 242 (14)	225 (21)		187 (3)		121 (6)	163 (6) 145 (13)	153 (100) 153 (100)		119 (12) 135 (11)		91(1)
	†nəmzeri	1 [M+H] ⁺ 2 [M+H-CH ₃]•+ 3 [M+H-H ₂ O] ⁺ 4 [M+H-CO] ⁺ 5 [M+H-CHO]•+ 6 [M+H-CHO]•+		11 [M+H-CH ₃ OH-CO]•+ 12 [M+H-CH ₃ OH-CO]•+ 13 [M+H-CH ₃ -2CO]•+ 14 [M+H-H ₂ O-CO-C ₂ H ₂]+ 15 [M+H-CH ₄ -2CO]+ 16 [M+H-CH ₄ -2CO]+			$22 \left[M + H - CH_4 - 2CO - C_2H_2O \right]^+$ $23 \left[M + H - CH_4 - 4CO \right]^+$ $24 \left[M + H - 2CO - 2C_2H_2O \right]^+$ $25 \cdot 0.2B^+$	26 0,3A ⁺ 27 0,4B ⁺ 28 0,4B ⁺ —H ₂ O	29 1,3A+ 30 1,3A+ CO	$31 1,3A + C_2H_2O$ $32 1,3A + 2CO$ $33 1,3A + 2CO - C_2H_4$	34 1,3B+ 35 1,4A++2H 36 1,4A++	37 1,4A ⁺ 38 C ₇ H ₆ O ₅ ⁺	39 C ₇ H ⁺ 40 C ₇ H ⁺ 41 C ₅ H ₅ O ⁺

									64.6	4	6.4			_	-			Τ			_				
	kaempferide_HCD.100	00 1	285 (1)	269 (3)	0	258(2)	257 (6)		230(9) $229(100)$	223 (100)	213 (10)	203 (11) $201 (50)$ $201 (50)$	187 (13)	(01)011	165(2)	135 (5)	137 (8)	153 (67)	111 (3)	69(10) $147(3)$	124 (42)		170(8)	89 (2)	81 (4)
	myricetin_HCD.100									245 (6)		219 (21) $219 (21)$	101 (9)	179(9)	191 (2) $165 (4)$ $137 (32)$	153 (100)	137 (32) $139 (3)$	153 (100)	111(7)	69 (29) $165 (4)$	127 (4) $124 (15)$	125(5) $161(4)$	170(3)	(2) 68	81 (24)
	quercetin_HCD.100		285 (3)				257 (2)			229 (16)	219(2)	203 (10) $203 (10)$	175 (1)	163(5)	165(3)	137 (38)	137 (38)	153 (100)	111 (5) $97 (10)$	69(31) $149(4)$	127 (6)	125 (1) $145 (4)$		(6) 68	81 (39)
	kaempferol_HCD.100		269(2)				241(1)		216(2)	213(12)	203(1)	187 (2) 187 (2)	150(1)	147 (8)	165(2)	121 (69)	137 (12)	153 (100)	111 (4)	69 (33) $133 (1)$	127(2) $124(1)$	125(2)	147 (8)	(9) 68	81 (12)
	isorhamnetin_HCD.75	302 (6)	301 (3)	285 (11)	(i	274(6)	273 (13)	257 (7)	256(2) $246(9)$ $245(42)$		229 (33)	219(7) $217(41)$ $217(41)$	203 (18)	103 (4)	191 (1) 165 (1) 137 (4)	151 (2)	137 (4) 139 (1)	153 (100)		69(1) 163(1)	124 (3)		170(2)		81(1)
vonole	kaempferide_HCD.75	301 (9) 286 (12)	(c) (27	272(2) 269(11)	0	258 (58)	257 (17)	241(2)	240(2) $230(94)$ $229(100)$	227(2)	213 (11)	203(3) $201(25)$ $201(25)$	$\frac{187}{172}$	161(4)	165 (6)	135 (14)	137 (7) $139 (7)$	153 (65)	111 (1)	69(3)	124 (11)		161 (4) $170 (10)$	91 (4)	81(1)
Table 6: Fragment table for type flavonole	myricetin_HCD.75	319(1)	301(1)				273(6)			245 (22)	231(1)	219(8)	101 (3)	179(9)	191 (2) $165 (6)$ $137 (15)$	153 (100)	137 (15) $139 (3)$	153 (100)	111 (6) $97 (3)$	69 (8) 165 (6)	127 (2)	125 (3) $161 (2)$	170(1)	91 (2)	81(5)
ble for t	дТ.ДОН_пітээтыр	303 (8)	285 (6)	274(4)			257 (13)	(4) (4)	232 (2)	229 (49)	219(1)	203 (3)		163 (7)		137 (47)	137 (47)	153(100)	111 (6)	$69 (8) \\ 149 (3)$	127 (3)	145(2)	3	91(2)	81(8)
ment ta	kaempferol_HCD.75	287 (25)	269(2)	258(10)			241(5)	(0) 107	216(2)	213 (20)				147 (9)	165 (11)	(++)	137 (14)		111 (5)	69 (7) 133 (3)	127 (1)		147 (9)	91 (2)	81(3)
6: Frag	54. GID. 45	302 (100)	299 (3)	288 (3) 285 (36)	1 1	274(5)	271 (5)	257 (8)		243(2)	229 (3)			177(2)	165(6)	151(2)	139 (9)	153(4)		163(2)	•				
Table	kaempferide_СПD.45	286 (62)	283(2) $283(2)$ $272(2)$	272 (20) 269 (11)	0	258(9)		241 (16)		227(2)	217(2) 213(4)			161 (13)	165 (31)	135 (18)	137 (4) $139 (100)$ $111 (1)$	153(28)					161 (13)		
	myricetin_CID.45		301 (40)	290 (22)	283 (4)		273 (100)	603 (60)		245 (32)	235 (4) 231 (2)			179(7)	165 (41)	153 (35)	137 (6)	153(35)	111 (4)	165 (41)	127 (4)				
	quercetin_CID.45		285 (63)	274 (20)			257 (100)			229 (70)	219(4) 215(2)			163(7)	191 (1) $165 (59)$ $137 (23)$	137 (23)	137 (23)	153(20)	111 (7)	149 (10)	127(1)				
	kaempferol_CID.45		269 (32)	258 (46)	245 (4)	243(5)	241 (99)	(04) 167		213 (77)	203(7) 199(3)			147 (13)	165 (100)	121 (36)	137 (11)	153(61)	111 (19)	133 (25)	127(2)		147 (13)		
	fragment		$[M+H-CH_4]$ $[M+H-H_2O]$ + [M+H-GO]+	+		$10 \ [\mathrm{M} + \mathrm{H} - \mathrm{CH}_3 - \mathrm{CO}]^{2} \ 11 \ [\mathrm{M} + \mathrm{H} - \mathrm{CO}_2]^{+}$	30]+ 30]+	[M+H-CH ₃ OH-CO]•+	$\begin{array}{c} 16 \ [\mathrm{M+H-CH_3-H_2O-CO}]^{\bullet} \\ 17 \ [\mathrm{M+H-CH_3-2CO}]^{\bullet} \\ 18 \ [\mathrm{M+H-H_2O-CO-C_2H_2}]^{+} \\ 19 \ [\mathrm{M+H-H_2O-CO-C_2H_2}]^{+} \end{array}$			$24 \text{ [M+H-H}_2O-CO-2C}_2H_2]^+$ $25 \text{ [M+H-H}_2O-2CO-C}_2H_2]^+$ $26 \text{ [M+H-CH}_4-3CO]^+$			30 AC 31 0,2A+ 32 0 2A+ CO	0,2B+	34 0,3A	37 1,3A+ 38 1 3A+	$^{39}_{1,3A}$ $^{+}$ $^{-}$	41 1,3A $^{+}$ 2CO $^{-}$ C2H $_{4}$ 42 1,3B $^{+}$ 2H	43 1,4A ⁺ +2H 44 1,4A [•] +	$45\ 1,4A^{+}$ $46\ 1,4B^{+}+2H$	$47 \text{ 1,4B}^+ + 2H - H_2O$ $48 \text{ C}_7 \text{ H}_6O_5^+$	$^{49}_{50}$ $^{7}_{H_5}$ $^{50}_{7}$ $^{2}_{H_5}$	51 C ₅ H ₅ O ⁺
				-							- '					-			- `		. *				'

245 (34) 245 (34)

273(2)

isorhamnetin_HCD.100

229 (15) 219 (13) 217 (56) 217 (56) 203 (37) 189 (11) 191 (2) 165 (1) 137 (13) 137 (13)

153 (100)

111 (6) 97 (3) 69 (8) 163 (5) 124 (14) 159 (2) 170 (3)