### CQF Exam One Solution

### January 2025 Cohort

#### Siddharth Barnawal

## Optimal Portfolio Allocation

1)

We formulate the minimum variance portfolio as:

$$\arg\min_{w} \frac{1}{2} \text{ w' } \Sigma w$$

Subject to:

$$w'1 = 1, \qquad \mu_{\pi} = w'\mu = m$$

The Lagrangian multiplier of this minimum variance portfolio is:

$$L(w,\lambda,\gamma) = \frac{1}{2}w'\Sigma w + \lambda(1-w'1) + \gamma(m-w'\mu)$$

The partial derivatives are:

$$\frac{\partial L(w,\lambda,\gamma)}{\partial w} = \Sigma w - \lambda \mathbf{1} - \gamma \mu \quad (1)$$

$$\frac{\partial L(w,\lambda,\gamma)}{\partial \lambda} = 1 - w' 1 \quad (2)$$

$$\frac{\partial L(w,\lambda,\gamma)}{\partial \gamma} = m - w'\mu \quad (3)$$

Optimal Weight Allocation From equation (1),

• The optimal weight allocation is:

$$w^* = \Sigma^{-1}(\lambda 1 + \gamma \mu)$$

Substituting the value of  $w^*$  in the constraints:

$$\mu'$$
 w = m and 1' w = 1

$$\mu' \Sigma^{-1}(\lambda 1 + \gamma \mu) = \lambda \mu' \Sigma^{-1} 1 + \gamma \mu' \Sigma^{-1} \mu = m$$

$$1'\Sigma^{-1}(\lambda 1 + \gamma \mu) = \lambda 1'\Sigma^{-1}1 + \gamma 1'\Sigma^{-1}\mu = 1$$

Solving for  $\lambda$  and  $\gamma$ :

$$\begin{split} \lambda &= \frac{(\mu' \Sigma^{-1} \mu) - (1' \Sigma^{-1} \mu) \cdot m}{(1' \Sigma^{-1} 1) (\mu' \Sigma^{-1} \mu) - (1' \Sigma^{-1} \mu)^2} \\ \gamma &= \frac{(1' \Sigma^{-1} 1) \cdot m - (1' \Sigma^{-1} \mu)}{(1' \Sigma^{-1} 1) (\mu' \Sigma^{-1} \mu) - (1' \Sigma^{-1} \mu)^2} \\ \\ w^* &= \begin{bmatrix} -7.92630392 \\ -0.98068924 \\ 0.18958165 \\ 0.47620601 \end{bmatrix} \end{split}$$

2)

The shape of the plot  $\mu$  vs  $\sigma$  is found to be Elliptical. In the plot, we can find an efficient frontier from the origin to the upward direction.



#### Products and Market Risk

3)

The VaR with regard to each asset is calculated as:

$$\frac{\partial VaR(w)}{\partial w_i} = \mu_i + \text{Factor} \times \frac{(\Sigma w)_i}{\sqrt{w^T \Sigma w}}$$

where the factor is determined by the standard normal distribution,

$$\frac{\partial VaR(w)}{\partial w_i} = \mu_i + \Phi(1-0.99) \times \frac{(\Sigma w)_i}{\sqrt{w^T\Sigma w}}$$

Similarly, the Expected Shortfall (ES) with regard to each asset is calculated as:

$$\frac{\partial ES(w)}{\partial w_i} = \mu_i - \frac{\phi(\text{Factor})}{1-c} \times \frac{(\Sigma w_i)}{\sqrt{w^T \Sigma w}}$$

$$\frac{\partial ES(w)}{\partial w_i} = \mu_i - \frac{\phi\left(\Phi(1-0.99)\right)}{1-0.99} \times \frac{(\Sigma w)_i}{\sqrt{w^T \Sigma w}}$$

VaR and ES Sensitivity Table

| Asset | VaR Sensitivity      | ES Sensitivity       |
|-------|----------------------|----------------------|
| 1     | -0.6838647463691414  | -0.7834795763585853  |
| 2     | -0.3867988051998241  | -0.4431416674758421  |
| 3     | -0.22070940469615322 | -0.25285893417929894 |

4)

The Expected Shortfall (ES) is calculated as:

$$ES_c(X) = \mu - \sigma \frac{\phi(\Phi^{-1}(1-c))}{1-c}$$

where (c) is the range of percentiles:

$$[99.95, 99.75, 99.5, 99.25, 99, 98.5, 98, 97.5]$$

#### Expected Shortfall Table

| Percentile | Expected Shortfall |
|------------|--------------------|
| 99.95      | -3.55438           |
| 99.75      | -3.10436           |
| 99.5       | -2.89195           |
| 99.25      | -2.76124           |
| 99         | -2.66521           |
| 98.5       | -2.5247            |
| 98         | -2.42091           |
| 97.5       | -2.3378            |
|            |                    |

5)

Given Condition:

$$\alpha_{i+1} = \lambda \alpha_i \quad \text{where } \lambda \in (0,1)$$

$$\alpha_2 = \lambda \alpha_1$$

$$\alpha_3 = \lambda \alpha_2 = \lambda^2 \alpha_1$$

$$\alpha_4 = \lambda \alpha_3 = \lambda^3 \alpha_1$$

. . .

Since  $\alpha$  is the weight of assets,

$$\sum_{i=1}^{n->\infty}\alpha_i=1$$

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \dots = 1$$

$$\alpha_1 + \lambda \alpha_1 + \lambda^2 \alpha_1 + \lambda^3 \alpha_1 + \dots = 1$$

Since the above equation is the sum of a geometric progression,

$$\frac{\alpha_1}{1-\lambda} = 1$$

$$\alpha_1 = 1 - \lambda \tag{1}$$

Deriving the EWMA Model Equation:

$$\sigma_t^2 = \alpha_1 u_{n-1}^2 + \alpha_2 u_{n-2}^2 + \alpha_3 u_{n-3}^2 + \alpha_4 u_{n-4}^2 + \dots$$

$$= \alpha_1 u_{n-1}^2 + \lambda \alpha_1 u_{n-2}^2 + \lambda^2 \alpha_1 u_{n-3}^2 + \dots$$
 (2)

Shifting the Equation (2) by ( t-1 )

$$\sigma_{t-2}^2 = \alpha_2 u_{n-2}^2 + \alpha_2 u_{n-3}^2 + \alpha_3 u_{n-4}^2 + \dots$$

$$\lambda \sigma_{t-2}^2 = \lambda \alpha_1 u_{n-2}^2 + \lambda \alpha_2 u_{n-3}^2 + \lambda \alpha_3 u_{n-4}^2 + \dots$$

$$= \lambda \alpha_1 u_{n-2}^2 + \lambda^2 \alpha_1 u_{n-3}^2 + \lambda^3 \alpha_1 u_{n-4}^2 + \dots$$

(3)

Substituting Equation (3) into (2)

$$\sigma_t^2 = \alpha_1 u_{t-1}^2 + \lambda \sigma_{t-1}^2$$

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1-\lambda)u_{t-1}^2$$

[From Equation (1)]

# VaR Backtesting

6)

The total number of VaR breaches is 25 and the percentage of VaR breaches is 2.0508%. And, the total number of Consecutive VaR breaches

is 14 and the perecentage of Consecutive VaR breaches is 1.1484%.



total number of VaR breaches is 32 and

7)

The total number of VaR breaches is 32 and the percentage of VaR breaches is 2.5620%. And, the total number of Consecutive VaR breaches is 1.3610%.

