# Der Hilbertraum

Lyxnn

31.10.2021



Es sei  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$ 

## 1.1 Defnition und einführende Beispiele

**Definition 1.1** (inneres Produkt, Skalarprodukt)

Ein <u>inneres Produkt</u> auf einem K-Vektorraum V ist eine positiv definite hermitesche Sesquilinearform  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ , das heißt:  $\forall x, y, z \in V$  und  $\forall \alpha \in \mathbb{K}$  gilt:

- 1) Positiv Definit:  $\langle x, x \rangle \geq 0$  und  $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ .
- 2) Hermitesch:  $\langle x, y \rangle = \overline{\langle y, x \rangle}$ .
- 3) Sesquilinear:  $\langle x + \alpha y, z \rangle = \langle x, z \rangle + \overline{\alpha} \langle y, z \rangle$  und  $\langle x, y + \alpha z \rangle = \langle x, y \rangle + \alpha \langle x, z \rangle$ .

### Bemerkung 1.2

Das Skalarprodukt kann auch linear im ersten und semilinear im zweiten Argument definiert werden. Im Hinblick auf die Bra-Ket-Notation wird es im Folgenden wie oben definiert verwendet, da damit das Skalarprodukt als  $\langle x|y\rangle$  geschrieben werden kann, wobei  $\langle x|$  Bra und  $|y\rangle$  Ket genannt wird.

Die Abbildung  $\langle x|:V\to\mathbb{K},\ y\mapsto\langle x|y\rangle$  kann als Linearform (lineare Abbildung vom Vektorraum V in den zugrundeliegenden Körper  $\mathbb{K}$ ) auf V aufgefasst werden.

### **Definition 1.3** (Prähilbertraum, Innenproduktraum)

Sei V ein  $\mathbb{K}$ -Vektorraum und sei  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$  ein inneres Produkt, so ist

 $(V, \langle \cdot, \cdot \rangle)$  ein <u>Prhilbertraum</u>.

## **Definition 1.4** (Hilbertraum)

Ein <u>Hilbertraum</u> ist ein bezüglich der vom inneren Produkt induzierten Norm  $||\cdot|| = \sqrt{\langle \cdot, \cdot \rangle}$  vollständiger Prähilbertraum.

## Beispiel 1.5

- 1. komplexer n-dimensionaler Koordinatenraum mit Standardskalarprodukt:  $(\mathbb{C}^n, \langle x, y \rangle = \sum_{k=1}^n \overline{x}_k y_k).$
- 2. Folgenraum  $\ell^2(\mathbb{N}) = \left\{ (x_n) \, n \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}^2$  mit  $\langle x, y \rangle = \sum_{k=1}^n \overline{x}_k y_k$ .
- 3. Lebesgue-Raum  $L_2$ . Sei  $(S, \mathcal{A}, \mu)$  ein Maßraum,  $\mathcal{L}_2(S, \mathcal{A}, \mu) := \{f : S \to \mathbb{K}, \int_S |f|^2 d\mu < \infty\}$ , und  $\mathcal{N} = \{f \in \mathcal{L}_2 \mid f = 0\mu$  fast überall  $\}$ , so ist  $L_2$  der Quotientenraum  $\mathcal{L}_2/\mathcal{N}$ . Mit

$$\langle f, g \rangle_{L_2} = \int_S \langle f(x), g(x) \rangle d\mu(x)$$

ist ein inneres Produkt definiert, wobei das Skalarprodukt im Integral, das Standardskalarprodukt bezeichne;

die Vollständigkeit liefert der aus der Maßtheorie Satz von Riesz-Fischer.

## 1.2 Orthonormalbasen

**Definition 1.6** (Orthonormalsystem)

Eine Teilmenge  $\mathcal{E}$  eines Hilbertraums  $\mathcal{H}$  heißt  $\underline{Orthonormalsystem}$ , falls ||e||=1  $\forall e \in \mathcal{E}$  und  $\langle e, f \rangle = 0 \ \forall e, f \in \mathcal{E}$  mit  $e \neq f$ .

### **Definition 1.7** (Orthonormalbasis)

Ein Orthonormalsystem  $\mathcal{E}$  heißt  $\underline{Orthonormalbasis}$  (oder vollständiges Orthonormalsystem) von  $\mathcal{H}$ , falls  $span(\mathcal{E})$  ( $span(\mathcal{E}) := \{\sum_{i=1}^{n} \lambda_i a_i \mid \lambda_i \in \mathbb{K}, e_i \in \mathcal{E}, n \in \mathbb{N}\}$ ) dicht in  $\mathcal{H}$  liegt (also  $\overline{span(\mathcal{E})} = \mathcal{H}$ ).

## Bemerkung 1.8

Damit lässt sich jedes  $x \in \mathcal{H}$  als Grenzwert einer Folge in  $span(\mathcal{E})$  Schreiben.

**Definition 1.9** (orthogonales Komplement)

Sei V eine Teilmenge eines Hilbertraums  $\mathcal{H}$ .

 $V^{\perp} := \{ w \in \mathcal{H} \mid \forall v \in V : \langle v, w \rangle = 0 \}$  heißt das orthogonale Komplement von V.

## Satz 1.10 (Charakterisierung einer Orthonormalbasis)

Sei  $\mathcal{E} = \{e_k \mid k \in \mathbb{N}\}$  ein abzählbares Orthonormalsystem in einem Hilbertraum  $\mathcal{H}$ .

Dann sind die folgenden vier Aussagen äquivalent:

- 1.  $\mathcal{E}^{\perp} = \{0\}.$
- 2.  $\mathcal{E}$  ist Orthonormalbasis.
- 3. Es gilt  $\forall x \in \mathcal{H}$ :

$$x = \sum_{k=1}^{\infty} \langle e_k, x \rangle e_k.$$

4. Es gilt  $\forall x, y \in \mathcal{H}$ 

$$\langle x, y \rangle = \sum_{k=1}^{\infty} \langle x, e_k \rangle \langle e_k, y \rangle.$$

**Beweis.** "(1)  $\Rightarrow$  (2)" :  $U := \overline{span(\mathcal{E})}$ .  $\mathcal{E} \subset U$  liefert  $U^{\perp} \subset \mathcal{E}^{\perp}$ , also  $U^{\perp} = \{0\}$ . Sei nun  $x \in \mathcal{H}$ . Definiere  $s_n = \sum_{k=1}^n \langle e_k, x \rangle e_k$ . Dann ist  $(s_n)_n$  eine Cauchyfolge, da gilt:

$$||s_n - s_m||^2 = \left\| \sum_{k=m+1}^n \langle e_k, x \rangle e_k \right\|^2 = \left\langle \sum_{j=m+1}^n \langle e_j, x \rangle e_j, \sum_{k=m+1}^n \langle e_k, x \rangle e_k \right\rangle =$$

$$= \sum_{k=m+1}^n \langle e_k, x \rangle \left\langle \sum_{j=m+1}^n \langle e_j, x \rangle e_j, e_k \right\rangle = \sum_{k=m+1}^n \langle e_k, x \rangle \sum_{j=m+1}^n \overline{\langle e_j, x \rangle} \delta_{jk} =$$

$$= \sum_{k=m+1}^n |\langle e_k, x \rangle|^2 \le \sum_{k=m+1}^\infty |\langle e_k, x \rangle|^2 \to 0 \text{ für } m \to \infty.$$

Damit existiert  $s = \lim_{n \to \infty} s_n \in U$ . Nun folgt aber mit der Stetigkeit des Skalar-produkts

$$\forall k : \langle s - x, e_k \rangle = \lim_{n \to \infty} \langle s_n - x, e_k \rangle = 0.$$

Insbesondere ist  $s - x \in U^{\perp}$ , also s = x und damit  $x \in U$ . Nun folgt  $U = \mathcal{H}$ . "(2)  $\Rightarrow$  (3)": Die Partialsumme  $s_n = \sum_{k=1}^n \langle e_k, x \rangle e_k$  für  $x \in \mathcal{H}, n \in \mathbb{N}$ .  $\forall 1 \leq j \leq n : \langle e_j, s_n - x \rangle = \langle e_j, s_n \rangle - \langle e_j, x \rangle = \sum_{k=1}^n \langle e_k, x \rangle \langle e_j, e_k \rangle - \langle e_j, x \rangle = 0$  Damit folgt:  $\forall y \in span(e_1, \dots, e_n) : y \perp s_n - x$ , also mit dem Satz des Pythagoras (anwendbar, da  $x - s_n \perp s_n - y$  und letzteres aus  $span(e_1, \dots, e_n)$ ):  $||x - y||^2 = ||x - s_n||^2 + ||s_n - y||^2 \geq ||x - s_n||^2.$ 

Abschließend ist eine Folge  $(x_n)_n \to x$  und eine monoton steigende Folge  $(m_n)_n \subset \mathbb{N}$ , so gewählt, dass  $x_n \in span(e_1, \ldots, e_{m_n})$ .

Dann ist  $0 \le ||x - s_{m_n}||^2 \le ||x - x_n||^2 \to 0$ . Wegen  $||x - s_{n+1}||^2 \le ||x - s_n||^2$  konvergiert  $(s_n)_n$  gegen x, was die Behauptung liefert.

"(3)  $\Rightarrow$  (4)": wieder  $s_n = \sum_{k=1}^n \langle e_k, x \rangle e_k$  und  $t_n = \sum_{k=1}^n \langle e_k, y \rangle e_k$ . Dann folgt:  $\langle s_n, t_n \rangle = \sum_{k=1}^n \langle x, e_k \rangle \langle e_k, y \rangle$ . Wegen  $s_n \to x$  und  $t_n \to y$  folgt mit der Stetigkeit des Skalarprodukts die Behauptung.

"(4)  $\Rightarrow$  (1)": Nun y = x. Es folgt:  $||x||^2 = \sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2$ . Sei  $x \in \mathcal{E}^{\perp}$ . Dann gilt  $\forall k \in \mathbb{N} : \langle x, e_k \rangle = 0$  und damit folgt  $||x||^2 = 0$  also x = 0.

## Definition 1.11

Existiert für einen Hilbertraum  $\mathcal{H}$  eine abzählbare Orthonormalbasis  $\mathcal{E}$ , dann nennt man den Hilbertraum  $\mathcal{H}$  separabel.