Amendments to the Claims:

This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-29 (Cancelled).

30 (Previously presented). A compound of formula (I):

$$R_2$$
 W CH_2OR_4 NHR_1

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-C\left(O\right)R_5;$

 R_2 and R_5 represent, independently, a branched or linear $\text{C}_{10}\text{-}\text{C}_{24}$ alkyl, alkenyl or polyenyl groups;

 ${f R}_3$ and ${f R}_4$ are independently a group -C(0)-NR₆ R₇, ${f R}_6$ and ${f R}_7$ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or ${f R}_3$ is a hydrogen; or

 $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)-$, $\mathbf{R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n-$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and

 ${\bf n}$ and ${\bf m}$, represent independently an integer from 1 to 10;

 \mbox{W} represents a group selected from -CH=CH-, -CH_2-CH (OH)- or -CH_2-CH_2-.

31 (Previously presented). The compound of Claim 30, wherein R_1 represents a $-C(0)R_5$ group, R_5 being as defined.

32 (Previously presented). The compound of Claim 30, wherein said R_2 and R_5 represent, independently, a linear or branched C_{12} - C_{18} alkyl or alkenyl groups.

33 (Previously presented). The compound of Claim 30, wherein W represents -CH=CH-.

34 (Previously presented). The compound of Claim 30, wherein ${\bf R_1}$ represents a -C (O) ${\bf R_5}$ group; ${\bf R_5}$ represents a ${\bf C_{12}-C_{18}}$ linear or branched alkyl or alkenyl; ${\bf W}$ represents - CH=CH-; ${\bf R_2}$

represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; $\mathbf{R_1}$ and $\mathbf{R_4}$ represent, independently, a group C(0)-NR₆R₇, and $\mathbf{R_3}$ may also

represent a hydrogen, wherein R_6 and R_7 represent, independently, a hydrogen or a polyalkylamine having the general formula (II):

$$+$$
R₈ $-$ NR₉ $+$ n

wherein

 $\mathbf{R_8}$ represent a C_1-C_4 alkyl;

 $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine branch of formula (II), said R_8 and R_9 may be the same or different for each alkylamine unit, $-R_8NR_9-$, in the polyalkylamine of formula (II); and

n represents an integer from 3 to 6.

35 (Previously presented). The compound of Claim 34, wherein R_3 is a hydrogen atom.

36 (Currently Amended). The new-compound of Claim 30, wherein $\mathbf{R_1}$ represents a $-C(0)R_5$ group; $\mathbf{R_5}$ represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; \mathbf{W} represents -CH=CH-; $\mathbf{R_2}$ represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; $\mathbf{R_3}$ and $\mathbf{R_4}$ represent independently a group C(0)-NR₆R₇, wherein $\mathbf{R_6}$ and $\mathbf{R_7}$ represent, independently, an alkylamine or a polyalkylamine having the general formula (II):

wherein

 $\mathbf{R_8}$ represent a C_1 - C_4 alkyl;

 $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine branch of formula (II), said R_8 and R_9 may be the same or different for each alkylamine unit, $-R_8NR_9-$, in the polyalkylamine of formula (II); and

n represents an integer from 3 to 6.

37 (Previously presented). The compound of Claim 30, wherein $\mathbf{R_1}$ represents a $C(0)R_5$ group; R_5 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; \mathbf{W} represents -CH=CH-; $\mathbf{R_2}$ represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bonded a heterocyclic ring comprising -C(0)-[NH-R₈] $_n$ -NH-C(0)-,

wherein

 R_8 represents a $C_1\text{--}C_4$ alkyl, wherein for each alkylamine unit having the formula -NH-R_8-, said R_8 may be the same or different; and

n represents an integer from 3 to 6.

38 (Previously presented). The compound of Claim 30, wherein said R_8 is a C_3-C_4 alkyl.

39 (Previously presented). The compound of Claim 30, being N-palmitoyl D-erythro sphingosyl-1-carbamoyl spermine.

40 (Currently Amended). The compound of Claim 30, having the chemical structure as depicted in Fig. 2C.follows:

41 (Previously presented). A process for the preparation of a sphingoid-polyalkylamine conjugate of formula (I)

$$R_2$$
 W CH_2OR_4 NHR_1

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-C\left(O\right)R_5;$

 R_2 and R_5 represent, independently, a branched or linear $\text{C}_{10}\text{-}\text{C}_{24}$ alkyl, alkenyl or polyenyl groups;

 R_3 and R_4 are independently a group -C(O)-NR₆ R₇, R_6 and R_7 being the same or different for R_3 and R_4 and represent, independently, a hydrogen, or a saturated or unsaturated

branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or

 \mathbf{R}_3 represents a hydrogen; or

 ${f R_3}$ and ${f R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)-$, ${f R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and ${f R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n-$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and

 \boldsymbol{n} and \boldsymbol{m} represent independently an integer from 1 to 10;

 \mathbf{W} represents a group selected from -CH=CH-, -CH₂-CH(OH)- or -CH₂-CH₂-;

the process comprises:

- (a) providing a sphingoid compound of formula (I) wherein R_1 , R_2 and W have the meaning as defined above and R_3 and R_4 represent, independently, a hydrogen atom or an oxo protecting group, wherein at least one of said R_3 and R_4 represent a hydrogen atom;
- (b) reacting said compound of step (a) with an activating agent, optionally in the presence of a catalyst, to obtain an activated R_3 and/or R_4 group;
- (c) reacting said activated sphingoid compound with a polyalkylamine;

- (d) removing said protecting group thereby obtaining said sphingoid-polyalkylamine conjugate of formula (I) as defined above.
- 42 (Previously presented). The process of Claim 41, wherein said sphingoid-polyalkylamine conjugate is N-palmitoyl D-erythro sphingosyl-1-carbamoyl spermine.
- 43 (Previously presented). The process of Claim 41, wherein said protecting group is a primary amine protecting group selected from trifluoroacetamide, fmoc, carbobenzoxy (CBZ), dialkyl Phosphoramidates.
- 44 (Previously presented). The process of Claim 41, wherein said activating agent is selected from N,N'-disuccinimidylcarbonate, di- or tri-phosgene or an imidazole derivative.
- 45 (Previously presented). The process of Claim 41, wherein said activation is performed in the presence of a catalyst, the catalyst being selected from 4-dimethylamino pyridine (DMAP), tetrazole, dicyanoimidazole or diisopropylethylamine.
- 46 (Previously presented). The process of Claim 41, for obtaining a di-substituted sphingoid-polyalkylamine conjugate, wherein

in step (a) both R_3 and R_4 are hydrogen atoms, and said process comprises reacting the compound of formula (I) with

at least two equivalents of polyalkylamine to obtain a disubstituted sphingoid-polyalkylamine conjugate, with identical polyalkylamine substituents.

47 (Previously presented). The process of Claim 41, for obtaining a di-substituted sphingoid-polyalkylamine conjugate, wherein

in step (a) at least one of R₃ or R₄ is protected with a protecting group, the process comprises reacting in step (c) the activated sphingoid compound with a first polyalkylamine; removing the protecting group of R₃ or R₄ to obtain an unprotected oxo group; reacting the unprotected compound with an activating agent to obtain an activated mono-substituted sphingoid-polyalkylamine conjugate; and reacting said activated mono-substituted sphingoid-polyalkylamine conjugate with a second polyalkylamine, thereby obtaining a di-substituted sphingoid-polyalkylamine conjugate, said first and second polyalkylamine may be the same or different.

48 (Previously presented). The process of Claim 41, for obtaining a heterocyclic sphingoid-polyalkylamine conjugate, wherein

in step (a) both R_3 and R_4 are hydrogen atoms, said sphingoid compound is reacted with at least two equivalents of an activating agent to obtain an activated sphingoid with both R_3 and R_4 activated and reacting said activated sphingoid

compound with less than an equivalent of polyalkylamine, thereby obtaining a heterocyclic sphingoid-polyalkylamine conjugate.

49 (Currently Amended). The process of Claim 41, for obtaining any one of the sphingoid-polyalkylamine conjugates as follows: depicted in Figs. 1A to 1D.

50 (Previously presented). A composition comprising a sphingoid-polyalkylamine conjugate of the formula (I):

$$R_2$$
— W

OR₃

CH₂OR₄

NHR₁

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-C\left(O\right)R_5;$

 R_2 and R_5 represent, independently, a branched or linear $\text{C}_{10}\text{-}\text{C}_{24}$ alkyl, alkenyl or polyenyl groups;

 ${f R}_3$ and ${f R}_4$ are independently a group -C(0)-NR₆ R₇, ${f R}_6$ and ${f R}_7$ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or

R₃ is a hydrogen; or

 ${f R_3}$ and ${f R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)-$, ${f R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and ${f R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n-$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; an

 ${f n}$ and ${f m}$ are independently an integer from 1 to 10;

 \boldsymbol{W} represents a group selected from -CH=CH-, -CH_2-CH(OH)- or -CH_2-CH_2-.

51 (Withdrawn). The composition of Claim 50, further comprising a pharmaceutically acceptable carrier.

52 (Withdrawn). The composition of Claim 50, wherein said sphingoid-polyalkylamine conjugate is N-palmitoyl D-erythro sphingosyl-1-carbamoyl spermine.

53 (Withdrawn). The composition of Claim 50, further comprising a biologically active molecule.

54 (Withdrawn). In the method of capturing a molecule having a negative charge, a negative dipole or a local negative dipole with a conjugate capable of capturing said molecule by electrostatic interaction, the improvement wherein said conjugate is a compound of formula (I):

$$R_2$$
— W

OR₃

CH₂OR₄

NHR₁

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-\text{C}\left(O\right)R_5;$

 R_2 and R_5 represent, independently, a branched or linear $\text{C}_{10}\text{-}\text{C}_{24}$ alkyl, alkenyl or polyenyl groups;

 ${f R_3}$ and ${f R_4}$ are independently a group -C(0)-NR₆ R₇, ${f R_6}$ and ${f R_7}$ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or

R₃ is a hydrogen; or

 $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)$, $\mathbf{R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and \mathbf{n} and \mathbf{m} are independently an integer from 1 to 10;

 \pmb{W} represents a group selected from -CH=CH-, -CH_2- CH(OH)- or -CH_2-CH_2-.

55 (Withdrawn/Currently Amended). The <u>use_method</u> of Claim 54, wherein said compound is N-palmitoyl D-erythro sphingosyl-1-carbamoyl spermine.

56-58 (Cancelled)

 $\,$ 59 (Previously Presented). The compound of Claim 34, wherein R_3 and R_4 represent the same or different polyalkylamine.