

INFS 7901 Database Principle Project Proposal

Turtle Conservation and Research Database System

Picture from: https://www.adoptananimalkits.com/animal encyclopedia

Name: Jie Zhang

Student Number: s4755838

Project description

The Turtle Conservation and Research Database System has been meticulously designed to facilitate the conservation and study of turtles. This comprehensive platform serves as a centralized repository, aiding researchers and wildlife organizations in collecting, managing, and analyzing data concerning individual turtles, their species, habitats, and conservation efforts.

The database encompasses seven distinct domains, namely Turtle, Turtle species, Habitat, Tag, Researcher, Marine Biologist, and Conservationist. The attribute domains primarily consist of character, numeric, date, time, and Boolean values, each of which is extensively defined in the accompanying text.

This application is equipped with a wide range of functionalities that enable researchers to manage individual turtles, species, habitats, observations, conservation projects, and researcher profiles. Additionally, the platform supports data analysis, visualization, and collaboration among researchers, ensuring secure access control and user management. The system provides three main functionalities, which are as follows:

- 1. Researchers can register and log in using their unique Researcher ID.
- 2. All entities' information can be accessed through a simple search function.
- 3. Users can add, delete, and update data related to all entities.

The final project will be developed using MySQL and Python, providing a robust and reliable database management system for researchers and conservationists.

ER Diagram

ER-diagram: Turtle Conservation and Research Database

Relational cardinality

(Non-weak) Binary 1: N Relationship	Binary M: N Relationship
Turtle (N)- Turtle Species (1)	Turtle Species (M) – Habitat (N)
	Turtle (M) – Researcher (N)

Participation cardinality

Relationship	Participation cardinality
Belong_to	Turtle (T)-Turtle Species (T)
Live_in	Turtle Species (T)- Habitat (T)
Research_in	Researcher (P) – Turtle (T)
Tag_in	Turtle (P) – Tag (T)

Schema

Mapping ER-diagram to Schema processing

Step1: Strong entities mapping: Turtle, Turtle Species, Habitat, Researcher

Choose one key attribute as primary key (using underscore) for each relationship.

Turtle (<u>Turtle ID</u>, TName, Date_of_Birth, Gender, Species_ID (FK))

Turtle Species (Species_ID, Species_Name, Conservation_Status)

Habitat (Habitat ID, Region, HName, Description)

Researcher (**Researcher ID**, RName, Association)

Step 2: Weak Entity Mapping: There is only one weak entity Tag.

Combine the primary key of weak entity and the owner's primary key which is Turtle_ID as Tag_in. Also add owner's primary key as the foreign key of Tag_in.

Tag_in (Turtle ID, Tag ID, Issue_date, expire_date)

Foreign Key: Tag_in.Turtle_ID -> Turtle.Turtle_ID

Step 3:(Non-weak) Binary 1: N Relationship: Turtle (N)- Turtle Species (1)

Add foreign key to Turtle (N) side, as a result

Foreign Key: Turtle. Species_ID-> Turtle Species. Species_ID

Step 4: Binary M: N Relationship:

Turtle Species (M) – Habitat (N)

Turtle (M) – Researcher (N)

To create a new relation to represent it and combine the two entities' primary key as the new relationship's primary key, then add the foreign key as follows:

Live_in (Species_ID, Habitat_ID)

Research_in (<u>Turtle ID</u>, <u>Researcher ID</u>)

Foreign Key:

Live_in. Species_ID-> Turtle Species. Species_ID

Live_in. Habitat_ID-> Habitat. Habitat_ID

Research_in. Turtle_ID-> Turtle. Turtle_ID

Research_in. Researcher _ID-> Researcher. Researcher _ID

Step 5: Multivalued Attributes and sub-class: MarineBiologist, Conservationist

Create a new relation for each multivalued attribute, and choose this method to deal with subclass, create a relational table for the superclass and create a relational table for each subclass. The primary key of each of the subclass is the primary key of the superclass.

MarineBiologist (**Researcher_ID**, Level, Expertise)

Conservationist (**Researcher_ID**, Level, Expertise)

MarineBiologist_ Expertise (**Researcher_ID**, Expertise)

Conservationist_ Expertise (**Researcher_ID**, Expertise)

Foreign Key:

MarineBiologist_ Expertise. Researcher _ID-> MarineBiologist. Researcher _ID

Conservationist_ Expertise. Researcher _ID-> Conservationist. Researcher _ID

Relations

Turtle (<u>Turtle_ID</u>, TName, Date_of_Birth, Gender, Species_ID (FK))

Turtle Species (Species ID, Species_Name, Conservation_Status)

Habitat (<u>Habitat ID</u>, Region, HName, Description)

Researcher (**Researcher ID**, RName, Association)

MarineBiologist (**Researcher_ID**, Level, Expertise)

Conservationist (**Researcher_ID**, Level, Expertise)

Tag_in (<u>Turtle_ID</u>, <u>Tag_ID</u>, Issue_date, expire_date)

Live_in (Species_ID, Habitat_ID)

Research_in (<u>Turtle_ID</u>, <u>Researcher_ID</u>)

MarineBiologist_ Expertise (**Researcher_ID**, Expertise)

Conservationist_ Expertise (**Researcher_ID**, Expertise)

Foreign Keys

Tag_in.Turtle_ID -> Turtle.Turtle_ID

Turtle. Species_ID-> Turtle Species. Species_ID

Live_in. Species_ID-> Turtle Species. Species_ID

Live_in. Habitat_ID-> Habitat. Habitat_ID

Research_in. Turtle_ID-> Turtle. Turtle_ID

Research_in. Researcher _ID-> Researcher _ID

MarineBiologist_Expertise. Researcher _ID-> MarineBiologist. Researcher _ID

Conservationist_ Expertise. Researcher _ID-> Conservationist. Researcher _ID

Functional Dependencies

Turtle

Turtle_ID→{TName, Date_of_Birth, Gender, Species_ID}

Turtle Species

Species_ID→{Species_Name, Conservation_Status}

Habitat

Habitat_ID→ {Region, HName, Description}

Researcher

Researcher _ID, Association→ {RName}

• MarineBiologist_Expertise:

Researcher _ID→ {Level, Expertise}

• Conservationist_Expertise:

Researcher _ID→ {Level, Expertise}

Tag

Turtle_ID, Tag_ID→ {Issue_date, expire_date}

Research_in

Turtle_ID→ Researcher _ID

Normalized Schema (include domain constrains)

Table 1 - Turtle

Turtle_ID (PK)	TName	Date_of_Birth	Gender	Species_ID(FK)
varchar or char	varchar data	date data type,	varchar data	Numeric data
data type,	type, with a	used to store	type	type, used to
depending on	maximum	date values in a		store the unique
the length of the	length of	specific format.		identifier of
ID.	characters			each species in
	allowed.			the table.

It's already in BCNF, because Turtle_ID→{TName, Date_of_Birth, Gender, Species_ID} and Turtle_ID is a superkey.

Table 2 - Turtle Species

Species_ID (PK)	Species_Name	Conservation_Status
Numeric data type, used to	varchar data type	varchar data type, used to
store the unique identifier of		store the conservation status
each species in the table.		of each species, such as
		"Endangered", "Threatened",
		"Vulnerable" etc.

It's already in BCNF, because Species_ID→{Species_Name, Conservation_Status} and Species_ID is a superkey.

Table 3 - Habitat

Habitat_ID (PK)	Region	HName	Description
Numeric data type,	Varchar data type,	Varchar, used to	Varchar, used to
used to store the	used to store the	store the name of the	store a description of
unique identifier of	region where the	habitat.	the habitat.
each habitat in the	habitat is located.		
table.			

It's already in BCNF, because <u>Habitat ID→</u> {Region, HName, Description} and Habitat_ID is a superkey.

Not normalised Table-Researcher

Researcher _ID (PK)	Association (PK)	RName

Researcher _ID, Association→ {RName}

Because RName is only dependent on Researcher _ID, it's partial dependent, it's not in 2NF, so split it to two tables, first one contains Researcher _ID, Name, Association_ID as a foreign key referring to another new table with Association_ID as primary key. Table 4 and Table 5 is in 3NF and also satisfy BCNF.

Table 4 - Researcher

Researcher _ID (PK)	RName	Association_ID (FK)
varchar or char data type,	Varchar, used to store the	Numeric data type, used to
depending on the length of	name of the Researcher	store the unique identifier of
the ID.		each association in the table.

Table 5 - Association

Association_ID (PK)	Association
Numeric data type, used to store the unique	Varchar data type, used to store the name of
identifier of each association in the table.	the association.

Table 6 - MarineBiologist

Researcher _ID (PK)	Level
varchar or char data type, depending on the	VARCHAR data type, used to store the level
length of the ID.	of the MarineBiologist

Researcher _ID→ {Level}, so Table6 is already in BCNF, because Researcher _ID is a superkey.

Table 7 - Conservationist

Researcher _ID (PK)	Level
varchar or char data type, depending on the	VARCHAR data type, used to store the level
length of the ID.	of the Conservationist

Same explanation as Table6

Table 8 - MarineBiologist_Expertise

Researcher $_{ID}(PK)(FK)$	Expertise (<i>PK</i>)
varchar or char data type, depending on the	used to store the area of expertise of
length of the ID.	MarineBiologist

As MarineBiologist_ Expertise is mapped from multivalued attributes, the primary kye is combined with MarineBiologist's primary key (Researcher_ID) and Expertise together. And

Researcher_ID is a foreign key as well. There is no non-trivial relationship, so Table 8 is already in BCNF.

Table 9 - Conservationist_ Expertise

Researcher _ID (PK) (FK)	Expertise (PK)
varchar or char data type, depending on the	used to store the area of expertise of
length of the ID.	Conservationist

Same situation as Table 8, Table 9 is already in BCNF.

Table 10 - Research_in

Turtle_ID (PK) (FK)	Researcher _ID (FK)	
varchar or char data type, depending on the	varchar or char data type, depending on the	
length of the ID.	length of the ID.	

Turtle_ID→ Researcher _ID, and Turtle_ID is a superkey, so Table 10 is in BCNF.

Table 11 - Live_in

Species_ $ID(PK)(FK)$	Habitat_ID(PK) (FK)	
Numeric data type, used to store the unique	Numeric data type, used to store the unique	
identifier of each species in the table.	identifier of each habitat in the table.	

There is no non-trivial relationship, so Table 11 is already in BCNF.

Table12 - Tag_in

Turtle_ID(PK) (FK)	Tag_ID (PK)	Issue_date	expire_date
varchar or char data	Numeric data type,	Date data type, used	Date data type, used
type, depending on	used to store the	to store the date	to store the date
the length of the ID.	unique identifier of	when the tag was	when the tag will
	each tag in the table.	issued.	expire.

Because Tag is a weak entity, Tag_in is a new created relationship between owner Turtle and tag, in Table12, Turtle_ID and Tag_ID are combined to represent primary key. And Turtle_ID is also a foreign key referring to Table1- Turtle. And table10 is already in BCNF, because Turtle_ID, Tag_ID \(\) {Issue_date, expire_date}, where Turtle_ID plus Tag_ID is a superkey.

PK = Primary Key; FK = Foreign Key

Table1 - Table12 (blue colour) are all normalised schema.