Heaps

- Heaps
- Properties
- · Deletion, Insertion, Construction
- Implementation of the Heap
- Implementation of Priority Queue using a Heap
- An application: HeapSort

Heaps (Min-heap)

Complete binary tree that stores a collection of keys (or key-element pairs) at its internal nodes and that satisfies the additional property:

 $key(parent) \leq key(child)$ REMEMBER: complete binary tree all levels are full, except the last one, which is left-filles

Max-heap

$key(parent) \ge key(child)$

We do not need to add dummy leaves.

Height of a Heap

- Theorem: A heap storing n keys has height O(log n)
 Proof:
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i=0, ..., h-1 and at least one key at depth h, we have $n \ge 1+2+4+...+2^{h-1}+1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

depth keys $0 \quad 1$ $1 \quad 2$ $h-1 \quad 2^{h-1}$ $h \quad \text{at least 1}$

Notice that

- We could use a heap to implement a priority queue
- · We store a (key, element) item at each node

removeMin():

- → Remove the root
- → Re-arrange the heap!

Removal From a Heap

- The removal of the top key leaves a hole
- We need to fix the heap
- First, replace the hole with the last key in the heap
- Then, begin Downheap
 ...

Note example uses dummy leaves (this is optional)

Downheap

• Downheap compares the parent with the smallest child. If the child is smaller, it switches the two.

Downheap Continues

Downheap Continues

End of Downheap

 Downheap terminates when the key is greater than the keys of both its children or the bottom of the heap is reached.

(total #swaps) \leq (h - 1), which is $O(\log n)_{11}$

(note: h swaps if not using dummy leaves)

Heap Insertion

The key to insert is 6

Heap Insertion

Add the key in the *next available position* in the heap.

Now begin Upheap.

Upheap

· Swap parent-child keys out of order

Upheap Continues

End of Upheap

- Upheap terminates when new key is greater than the key of its parent or the top of the heap is reached
- (total #swaps) \leq (h 1), which is $O(\log n)$

removeMin()

```
public Entry<K,V> removeMin() {
64
65
         if (heap.isEmpty()) return null;
         Entry\langle K, V \rangle answer = heap.get(0);
66
         swap(0, heap.size() - 1);
67
         heap.remove(heap.size() -1);
68
         downheap(0);
69
70
         return answer;
71
                                     protected void downheap(int j) {
                               31
                                        while (hasLeft(j)) {
                               32
                                                                            // continue to bottom (or brea
                                          int leftIndex = left(i):
                               33
                                          int smallChildIndex = leftIndex:
                               34
                                                                                     // although right may
                               35
                                          if (hasRight(j)) {
                                              int rightIndex = right(j);
                               36
                                              if (compare(heap.get(leftIndex), heap.get(rightIndex)) > 0)
                               37
                                                smallChildIndex = rightIndex;
                                                                                     // right child is small
                               38
                               39
                                          if (compare(heap.get(smallChildIndex), heap.get(j)) >= 0)
                               40
                               41
                                            break:
                                                                                     // heap property has
                                          swap(j, smallChildIndex);
                               42
                                          j = smallChildIndex;
                               43
                                                                                        continue at position
                               44
                               45
                                                                                                      17
```

Excerpt from the texbook Java code pages 378-379.

Insert(key, value)

```
55
      /** Inserts a key-value pair and returns the entry created. */
      public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
56
57
        checkKey(key);
                           // auxiliary key-checking method (could throw exception)
         Entry < K, V > newest = new PQEntry < > (key, value);
58
        heap.add(newest);
                                                       // add to the end of the list
59
        upheap(heap.size() -1);
                                                        // upheap newly added entry
60
61
        return newest:
62
            /** Moves the entry at index j higher, if necessary, to restore the heap property. */
      21
      22
            protected void upheap(int j) {
              while (j > 0) {
      23
                                         // continue until reaching root (or break statement)
                int p = parent(i):
      24
      25
                if (compare(heap.get(j), heap.get(p)) >= 0) break; // heap property verified
      26
                swap(j, p);
                                                       // continue from the parent's location
      27
               j = p;
      28
      29
```

Heap Construction

We could insert the items one at the time with a sequence of Heap Insertions:

$$\sum_{k=1}^{n} \log k = O(n \log n)$$

But we can do better

Bottom-up Heap Construction

 We can construct a heap storing n given keys using a bottom-up construction

Construction of a Heap

Idea: Recursively re-arrange each sub-tree in the heap starting with the leaves

Example 1 (Max-Heap)

--- keys already in the tree ---

I am not drawing the leaves anymore here

Example 1

 $\underline{4} \leftrightarrow 9$

This is not a heap!

 $\underline{4} \leftrightarrow 7$

Example 1

Finally: 10

24

<u>2</u> ↔ 8

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

Example 2 Min-Heap {14,9,8,25,5,11,27,16,15,4,12,6,7,23,20}

Analysis of Heap Construction

Before we start

?

$$\sum 2^{-j} = 1/2 + 1/4 + 1/8 + 1/16 + \cdots \le 1$$

Analysis of Heap Construction

(let us not consider the dummy leaves)

Number of swaps

h = 4

h is the max level

level i ----- h - i swaps

Analysis of Heap Construction

Number of swaps

At level i the number of swaps is

At level i there are < 2 nodes

Total:
$$\leq \sum_{i=0}^{\infty} (h - i) \cdot 2^i$$

Let j = h-i, then i = h-j and

$$\sum_{i=0}^{h} (h-i) \cdot 2^{i} = \sum_{j=0}^{h} 2^{h-j} = 2^{h} \sum_{j=0}^{h} 2^{-j}$$

Consider $\sum_{j} 2^{-j}$:

$$\sum j 2^{-j}$$
 <= 2

So
$$2^{h} \sum_{j} 2^{-j} <= 2 \cdot 2^{h} = 2 \cdot n$$
 $O(n)$

$$2^{h} \sum_{j=1}^{h} j/2^{j} \le 2^{h+1}$$

Where h is O(log n)

So, the number of swaps is
$$\leq O(n)$$

Implementing a Heap with an Array

A heap can be nicely represented by an array list (array-based),

where the node at rank i has

- left child at rank 2i+1

and

- right child at rank 2i + 2

0	1	2	3	4	5	6	7

Example (with indexes 1..N)

Reminder if using indices 1 to n:

Left child of T[i]	T[2i]	if	2i ≤ n
Right child of T[i]	T[2i+1]	if	$2i + 1 \le n$
Parent of T[i]	T[i div 2]	if	i > 1
The Root	T[1]	if	n>0
Leaf? T[i]	TRUE	if	2i > n

Reminder if using indices 0 to n-1:

Left child of T[i]	T[2i+1]	if	2i +1 ≤ n-1
Right child of T[i]	T[2i+2]	if	$2i + 2 \le n-1$
Parent of T[i]	T[(i-1) div 2]	if	i > 0
The Root	T[0]	if	N>0
Leaf? T[i]	TRUE	if	2i+1 > n-1

Implementation of a Priority Queue with a Heap

(remove root + downheap)

Application: Sorting Heap Sort

PriorityQueueSort where the PQ is implemented with a HEAP

```
Algorithm PriorityQueueSort(S, P):
       Input: A sequence S storing n elements, on which a
              total order relation is defined, and a Priority
            Queue P that compares keys with the same relation
       Output: The Sequence S sorted by the total
                      order relation
       while - S.isEmpty() do
              e ← S.removeFirst()
                                         Build Heap
              P.insertItem(e, e)
       while - P.isEmpty() do
              e ← P.removeMin()
              S.insertLast(e)
                                         Remove from heap
```

Application: Sorting Heap Sort

Construct initial hear

O(n)

	Construct initial r	neap O(n)
	remove root	O(1)
n times	re-arrange	O(log n)
	remove root	O(1)
	re-arrange	O(log (n-1))
	• • •	• •
	• • •	

When there are i nodes left in the PQ: [log i]

HeapSort in Place

Instead of using a secondary data structure P to sort a sequence S, We can execute heapsort « in place » by dividing S in two parts, one representing the heap, and the other representing the sequence. The algorithm is executed in two phases:

- ✓ Phase 1: We build a max-heap so to occupy the whole structure.
- ✓ Phase 2: We start with the part « sequence » empty and we grow it by removing at each step i (i=1..n) the max value from the heap and by adding it to the part « sequence », always maintaining the heap properties for the part « heap ».

Now the part heap is smaller, the part Sequence contains a single element.

Not a heap anymore!

Not a heap anymore!

Not a heap anymore!

Now it is a heap again!

Pseudocode for in-place HEAPSORT

(based on wikipedia pseudocode)

```
procedure heapsort(A,n) {
 input: an unordered array A of length n
 heapify(A,n) // in O(n) with bottom-up heap construction
                // or in O(n log n) with n heap insertions
// Loop Invariant: A[0:end] is a heap; A[end+1:n-1] is sorted
  end \leftarrow n - 1
  while end > 0 do
     swap(A[end], A[0])
     end \leftarrow end - 1
     downHeap(A, 0, end)
```

```
Procedure downHeap(A, start, end) {
  root \leftarrow start
  while root * 2 + 1 \le end do (While the root has at least one child)
     child \leftarrow root * 2 + 1 (Left child)
     swap ← root (Keeps track of child to swap with)
     if A[swap] < A[child]
        swap ← child
     (If there is a right child and that child is greater)
     if child+1 \le end and A[swap] < A[child+1]
        swap \leftarrow child + 1
     if swap = root
        (case in which we are done with downHeap)
        return
     else
        swap(A[root], A[swap])
        root ← swap (repeat to continue downHeap the child now)
```

```
procedure heapify(A, n)
  (start is assigned the index in 'A' of the last parent node)
  (the last element in a 0-based array is at index n-1;
  find the parent of that element)
  start \leftarrow floor ((n-2)/2)
  while start > 0 do
     (downHeap the node at index 'start' to the proper place)
     downHeap(A, start, n - 1)
     (go to the next parent node)
     start \leftarrow start - 1
// after this loop array A is a heap
```

HeapSort in Place

Continue example on the board.