Chapter 3 The Karnaugh Map

- A graphic approach to simplify any function
- No guarantee of finding a minimum solution; sum of product and product of sum
- Definitions

Boolean function
$$f(x): B^n \to B$$

 $f(x): \{0,1\}^n \to \{0,1\}$

letter: a constant or a variable

literal: a letter or its complement

EX) B =
$$\{0,1\}$$
, variable : x_1, x_2

letter: $x_1, x_2, 0, 1$

literal: $x_1, x_2, 0, 1, x_1', x_2'$

Review on product and sum term

Product term (product, term)

1

a non-constant literal

a conjunction of non-constant literals where no letter appears more than once

1,
$$X_1$$
, X_1X_2 , $X_1X_2X_1'(X)$, $X_1+X_2'(X)$

Sum term

0

a non-constant literal

a disjunction of non-constant literals where no letter appears more than once

$$0, X_1, X_1+X_2', X_1'X_2(X), X_1+X_2+X_1'(X)$$

Minterm and Maxterm

Minterm

: 모든 변수가 항상 한번씩 사용된 product term(곱항)

Ex) 변수: X, Y, Z X'YZ, XYZ', XYZ, X'Y'Z', XY(X), X'Z(X)

Maxterm

: 모든 변수가 항상 한번씩 사용된 sum term(합항)

Ex) 변수: X, Y, Z

$$X+Y+Z$$
, $X'+Y+Z'$, $X'+Y'+Z'$, $X'+YZ(X)$, $X+Z'(X)$

Ex) 3개의 변수에 대한 Minterm 과 Maxterm

변수	Min	term	Maxterm		
A B C	Minterm	표시	Maxterm	표시	
0 0 0	A'B'C'	m0	A + B + C	M0	
0 0 1	A'B'C	m1	A + B + C'	M1	
0 1 0	A'BC'	m2	A + B' + C	M2	
0 1 1	A'BC	m3	A + B' + C'	M3	
1 0 0	AB'C'	m4	A' + B + C	M4	
1 0 1	AB'C	m5	A' + B + C'	M5	
1 1 0	ABC'	m6	A' + B' + C	M6	
1 1 1	ABC	m7	A' + B' + C'	M7	

Boolean function

- Sum of product (SOP), disjunctive normal form (DNF), $\Sigma\Pi$ $f = x_1x_2' + x_2'x_3 + x_1x_3'$
- Product of sum (POS), conjunctive normal form (CNF), $\Pi\Sigma$ $f = (x_1 + x_2)(x_2 + x_3)(x_3 + x_1)$
- Canonical sum of product : sum of minterms

$$f(A,B,C) = A'B'C + A'BC + AB'C + ABC$$

= $m_1 + m_3 + m_5 + m_7$
= $\Sigma (1, 3, 5, 7)$

Canonical product of sum: product of maxterms

$$f(A,B,C) = (A+B+C)(A+B'+C)(A'+B+C)(A'+B'+C)$$

$$= M_0 M_2 M_4 M_6$$

$$= \Pi (0, 2, 4, 6)$$
₃₋₄

Karnaugh Map (1953. NOV)

• F(A,B,C,D) = A'B'C'D'+A'BC+AB'C+BD+CD (SOP) = Σ (0,3,5,6,7,10,11,13,15) canonical SOP

- Implicant : 2^k 개의 1의 묶음
- Prime Implicant : 더 큰 묶음(Implicant)에 포함되지 않는 묶음
- Essential Prime Implicant

하나의 prime Implicant를 형성하고 있는 1 들 중에서 적어도 하나는 다른 Implicant에 속하지 않고 자신의 Prime Implicant 묶음에만 속하는 Prime Implicant

• 간략화된 함수에는

E.P.I 전부와 non-essential P.I 일부 포함

Karnaugh Map

$$F = \underline{BC} + \underline{AC'} + (+ \underline{AB})$$

$$\underline{PI} \qquad PI$$

$$EPI$$

Implicant

: a product term p that is included in the function f ($p \le f$)

Ex)
$$f = xy' + yz$$
, $xy'(PI)$, xyz

PI (Prime Implicant)

: an implicant that is not included in any other implicant of f (canot be combined with another term to eliminate a variable)

EPI (Essential Prime Implicant)

: a PI which includes a minterm that is not included in any other P.I.

Optimization Algorithm

- Find <u>all</u> prime implicants.
- Include <u>all</u> essential prime implicants in the solution
- Select a minimum cost set of non-essential prime implicants to cover all minterms not yet covered:
 - Obtaining an optimum solution: See Reading Supplement
 - More on Optimization
 - Obtaining a good simplified solution: Use the Selection Rule

Karnaugh Map

2 variable map

A'B'	A B'
A'B	АВ

2 variable map example

X	у	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

(a) Truth table

(c) OR: x + y

(b) AND: *xy*

(d) XOR: x'y + xy'

Three-variable Maps

A B A'B'		A'B	A B	AB'	
$C \setminus 00$		01 11		10	
C' 0	A'B'C'	A'B C'	A B C'	A B'C'	
C 1	A'B'C	A'B C	ABC	A B'C	

AB				
$C \setminus$	00	01	11	10
0	0	2	6	4
1	1	3	7	5

$\setminus B$	7			
A	00	01	11	10
0	0	1	3	2
1	4	5	7	6

Adjacencies on three- and four-variable maps

Three-variable map

(a) Map organization

(b) Example subcubes of size 4

(c) Example subcubes of size 2

Map representation of carry and sum functions

c_{i}	x_i	y_i	C_{i+1} S_i
0	0	0	0 0
0	0	1	0 1
0	1	0	0 1
0	1	1	1 0
1	0	0	0 1
1	0	1	1 0
1	1	0	1 0
1	1	1	1 1

(a) Truth table

(b) Carry function: $c_{i+1} = x_i y_i + c_i x_i + c_i y_i$

(c) Sum function: $s_i = x'_i y'_i c_i + x'_i y_i c'_i + x_i y'_i c'_i + x_i y_i c_i$

Example x'yz' + x'yz + xy'z' + xy'z + xyz.

$$x'y + xy' + yz$$

Example Function with Two Minimal Forms

$$F = \sum m(0,1,2,5,6,7)$$

$$F = a'b' + bc' + ac$$

Four-variable Maps

CD	00	01	11	10	CD	00	01	11	10
00	0	4	12	8	00	A'B'C'D'	A'B C'D'	A B C′D′	A B'C'D'
01	1	5	13	9	01	A'B'C'D	A'B C'D	A B C′D	A B'C'D
11	3	7	15	11	11	A'B'C D	A'B C D	ABCD	A B'C D
10	2	6	14	10	10	A'B'C D'	A'B C D'	A B C D'	A B'C D'

$g(w, x, y, z) = \Sigma m(2, 5, 6, 7, 9, 10, 11, 13, 15)$

$$g = xz + wz + w'yz' + wx'y$$

$$g = xz + wz + w'yz' + x'yz'$$

$$g = xz + wz + x'yz' + w'xy$$

G = A'BC' + A'CD + ABC + AC'D

CDAL	00	01	11	10
00		1		
01		1	1	1
11	1	1_	1	
10			1	

K-map example

$$F = w'y'z' + wz + xyz + w'y.$$

PIs

PI list: w'z', wz, yz, w'y

EPI list: w'z', wz

Cover lists: (1) w'z', wz, yz

(2) w'z', wz, w'y

(b) PI, EPI, and cover lists

$$(1) F = w'z' + wz + yz$$

$$(2) F = w'z' + wz + w'y$$

(c) Two functional expressions

A Five Variable Map

• A five-variable map consists of $2^5 = 32$ squares

B C D E	00	A = 0) 11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

B C D E	00	A = 1	<i>1</i> 11	10
00	16	20	28	24
01	17	21	29	25
11	19	23	31	27
10	18	22	30	26

K-map with Don't Cares

- Sometimes a function table or map contains entries for which it is known:
 - the input values for the minterm will never occur, or
 - The output value for the minterm is not used
- In these cases, the output value need not be defined
- Instead, the output value is defined as a "don't care"
- By placing "don't cares" (an "x" entry) in the function table or map, the cost of the logic circuit may be lowered.
- Example 1: A logic function having the binary codes for the BCD digits as its inputs. Only the codes for 0 through 9 are used. The six codes, 1010 through 1111 never occur, so the output values for these codes are "x" to represent "don't cares."

K-map with Don't Cares

- Minterm expansion for incompletely specified function

$$F = \sum m(0,3,7) + \sum d(1,6)$$
 Don't Cares

- Maxterm expansion for incompletely specified function

$$F = \prod M(2,4,5) \prod D(1,6)$$

$F(A,B,C,D) = \sum m(1,7,10,11,13) + \sum d(5,8,15)$

Minimum Solution

F = BD + A'C'D + AB'C

F = BD + A'C'D + (AB'D' or ACD) are not used in the minimum solution

A seven-segment display

Truth table of seven segment display

Digit	W	Х	Y	Z	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	Х	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	Χ	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	Χ	0	1	1
-	1	0	1	0	Х	Χ	Χ	Χ	Χ	Χ	X
-	1	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	X
-	1	1	0	0	Х	Χ	Χ	Χ	Χ	Χ	X
-	1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	X
-	1	1	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
-	1	1	1	1	X	Χ	X	X	X	X	Х