Coefficient covariance for permutet data with weights equal 1

Peter Hettegger

2020-11-28

This document contains R-code for analysing the coefficient covariance for two features with sample weights equal 1. We compare coefficient covariance of non-permuted data and permuted data. Therefore we assume a sample design with age and group (case, control) as covariates. group is the hypothesis coefficient.

age	group
7	case
11	case
17	case
27	case
6	case
26	case

The correlation coefficient of the error terms between feature 1 and feature 2 is assumed as 0.8. However, as it is a constant factor in the covariance of the coefficients, the value of the correlation coefficient solely changes the scales of the plots below, but not the pattern.

```
X <- model.matrix(~ 1 + age + group, samp.inf)
rho12 <- 0.8
# assume sigma1 = sigma2 = 1
sigma12 <- rho12

# define random uniformly distributed weights
W <- matrix(1, nrow = 2, ncol = n, byrow = TRUE)
W
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]</pre>
```

1 1 1 1 1 1 1 1

We now calculate the coefficient covariance for non-permuted data:

```
# whitening of X
X1 <- sqrt(W[1,]) * X
X2 <- sqrt(W[2,]) * X

cov.beta <- sigma12 * solve(t(X1) %*% X1) %*% t(X1) %*% X2 %*% solve(t(X2) %*% X2)</pre>
```

The coefficient covariance for permuted data is calculated by simulation (2000 permutations):

```
# group as "hypothesis coefficient"
# intercept and sex as "determined coefficients"
coef.h <- 3
tmp1 <- replicate(2000, {</pre>
    # Permute only hypothesis coefficient
    i <- sample(nrow(X))</pre>
    X1p <- X
    X2p <- X
    X1p[,coef.h] <- X1p[i,coef.h]</pre>
    X2p[,coef.h] <- X2p[i,coef.h]</pre>
    X1p \leftarrow sqrt(W[1,]) * X1p
    X2p \leftarrow sqrt(W[2,]) * X2p
    sigma12 * solve(t(X1p) %*% X1p) %*% t(X1p) %*% X2p %*% solve(t(X2p) %*% X2p)
})
E.cov.beta.r <- apply(tmp1, 1:2, mean)</pre>
sd.cov.beta.r <- apply(tmp1, 1:2, function(i)sqrt(var(i)))</pre>
```

Coefficient covariance for non-permuted data:

kable(cov.beta)

	(Intercept)	age	groupcontrol
(Intercept)	0.2271	-0.0092	-0.0772
age	-0.0092	0.0006	-0.0002
groupcontrol	-0.0772	-0.0002	0.1601

Expected coefficient covariance for permuted data:

```
kable(E.cov.beta.r)
```

	(Intercept)	age	groupcontrol
(Intercept)	0.2436	-0.0099	-0.0865
age	-0.0099	0.0006	0.0001
group control	-0.0865	0.0001	0.1706

Standard deviation of coefficient covariance for permuted data:

kable(sd.cov.beta.r)

	(Intercept)	age	groupcontrol
(Intercept)	0.0509	0.0018	0.0462
age	0.0018	0.0001	0.0028
groupcontrol	0.0462	0.0028	0.0180

The graphical representation of these tables is:

The given example shows, that even for weights equal 1, the dependence structure of coefficient estimates is not exactly retained for the assumed experimental design.

Session Info

sessionInfo()

```
## R Under development (unstable) (2020-11-14 r79432)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=German_Austria.1252 LC_CTYPE=German_Austria.1252
  [3] LC_MONETARY=German_Austria.1252 LC_NUMERIC=C
  [5] LC_TIME=German_Austria.1252
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
## other attached packages:
## [1] heatmap3_1.1.7
                          knitr_1.30
                                             ggplot2_3.3.2
                                                                randRotation_1.3.4
```

##					
	loade	ed via a namespace	(and not attached):		
##		xm12_1.3.2	magrittr_1.5	munsell_0.5.0	colorspace_2.0-0
##	[5]	R6_2.5.0	rlang_0.4.8	highr_0.8	fastcluster_1.1.25
##	[9]	stringr_1.4.0	tools_4.1.0	rbibutils_1.4	grid_4.1.0
##	[13]	gtable_0.3.0	xfun_0.19	withr_2.3.0	ellipsis_0.3.1
##	[17]	htmltools_0.5.0	yaml_2.2.1	digest_0.6.27	tibble_3.0.4
##	[21]	lifecycle_0.2.0	crayon_1.3.4	farver_2.0.3	vctrs_0.3.4
##	[25]	Rdpack_2.1	gbRd_0.4-11	glue_1.4.2	evaluate_0.14
##	[29]	rmarkdown_2.5	labeling_0.4.2	stringi_1.5.3	pillar_1.4.6
##	[33]	compiler_4.1.0	scales_1.1.1	pkgconfig_2.0.3	