Plan

- Interpolation polynomiale
- 2 Intégration et dérivation numérique
- 3 Résolution des équations non linéaires
- 4 Résolution numérique des équations différentielles
- Optimisation numérique

Motivations

Exemple introductif : on considère un pendule initialement au repos et présentant une déviation θ_0 par rapport à la verticale. L'équation différentielle régissant la déviation $\theta(t)$ est :

$$\begin{cases} \theta''(t) = -\frac{g}{L}\sin\theta(t) \\ \theta(0) = \theta_0 \\ \theta'(0) = 0 \end{cases}$$

- Lorsque θ_0 est petit, on peut se permettre de faire une approximation de $\sin\theta(t)$ au premier ordre, ce qui conduit à supposer $\sin\theta(t)\approx\theta(t)$ \Rightarrow $\theta(t)=\theta_0\cos(\omega t)$ où $\omega=\sqrt{\frac{g}{I}}$
- Si θ_0 n'est pas petit cette approximation n'est plus valable \Longrightarrow résolution numérique
- L'objet de ce cours est de présenter les principales techniques numériques permettant d'atteindre cet objectif.

Équations différentielles d'ordre 1

Soit f une fonction définie de $[t_0; t_0 + T] \times \mathbb{R}^d \to \mathbb{R}$. Le problème de Cauchy consiste à trouver $y: [t_0; t_0 + T] \to \mathbb{R}^d$ solution de :

$$\begin{cases} y'(t) = f(t, y(t)) \text{ pour } t \in [t_0; t_0 + T] \\ y(t_0) = y_0 \end{cases}$$

- La variable t représente souvent le temps mais pas toujours!
- La condition $y(t_0) = y_0$ est une condition initiale ou la condition de Cauchy.
- On commence à s'intéresser au système à l'instant t_0
- Sous certaines conditions sur f ce problème admet une unique solution.
- Toute équation d'ordre supérieur ou égal à 2 peut être transformée en une équation d'ordre 1.
- Ici on se focalise sur le cas d=1

Exemples d'équations différentielles d'ordre 1

Exercice 1 : Résoudre les systèmes suivants :

$$\begin{cases} y'(t) = t; & t \in [0; +\infty[\\ y(0) = 1 \end{cases}$$

,

$$\begin{cases} y'(t) = t \times y(t); & t \in [1; +\infty[\\ y(1) = 2 \end{cases}$$

et

$$\left\{ \begin{array}{ll} y'(t) & = & -y^2(t); \quad t \in [1; +\infty[\\ y(1) & = & 1 \end{array} \right.$$

Principe:

- On subdivise l'intervalle $[t_0; t_0 + T]$ en N sous-intervalles $[t_n; t_{n+1}]$ où n = 0, ..., N - 1
- On choisit, pour simplifier, une subdivision uniforme : $t_n = t_0 + nh$ où $h = \frac{T}{N}$ est le pas de discrétisation
- On veut construire une méthode numérique permettant de définir des approximations y_n de $y(t_n)$
- Première idée : faire une approximation de la dérivée par un développement limité

$$y(t_{n+1}) = y(t_n + h) \approx y(t_n) + hy'(t_n) = y(t_n) + hf(t_n, y(t_n))$$

et donc on propose le schéma suivant

$$y_{n+1} = y_n + hf(t_n, y_n)$$

Manel Tavachi

interprétation graphique :

- Reprenons la condition initiale $y(t_0) = y_0$ et détermine dans quelle direction on doit avancer à partir du point (t_0, y_0) pour obtenir le point (t_1, y_1) qui est une approximation du point $(t_1, y(t_1))$
- Nous ne connaissons pas le graphe de y mais par contre nous connaissons la pente en tout point.
- $y'(t_0) = f(t_0, y(t_0)) = f(t_0, y_0) \Rightarrow$ équation de la tangente au point (t_0, y_0)

$$y = y_0 + f(t_0, y_0)(t - t_0)$$

- En $t = t_1$ on obtient $y_1 = y_0 + f(t_0, y_0)(t_1 t_0) = y_0 + hf(t_0, y_0)$
- ullet En général nous avons $y_1
 eq y(t_1) \Longrightarrow$ une forte répercussion sur la suite
- Pour calculer y_2 une valeur approchée $y(t_2)$ nous allons utiliser y_1 et non $y(t_1)$

$$y_2 = y_1 + hf(t_1, y_1)$$

⇒ propagation de l'erreur

Méthode d'Euler explicite : lien avec l'intégration numérique

• En intégrant l'équation y'(t) = f(t, y(t)) entre t_n et t_{n+1} , on obtient :

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

• On peut approcher cette intégrale par la méthode des rectangles à gauche :

$$y(t_{n+1}) - y(t_n) \approx hf(t_n, y(t_n))$$

 \implies on retrouve la méthode d'Euler $y_{n+1} = y_n + hf(t_n, y_n)$

Autres méthodes d'intégration ⇒ autres schémas numériques

Algorithme:

- Étant donné un nombre maximal d'itérations N, un pas de temps $h = \frac{T}{N}$ et une condition initiale (t_0, y_0)
- **2** Pour $0 \le n \le N 1$:

$$y_{n+1} = y_n + hf(t_n, y_n)$$

$$t_{n+1} = t_n + h$$

Arrêt

Exercice 2 : On considère le problème de Cauchy suivant :

$$\begin{cases} y'(t) &= -y(t) + t + 1; & t \in [0; 1] \\ y(0) &= 1 \end{cases}$$

- Résoudre cette équation différentielle « à la main » c'est-à-dire en donnant la solution analytique.
- Résoudre ensuite cette équation différentielle par la méthode d'Euler. Vous obtiendrez alors une solution numérique.
- Comparer la solution numérique à la solution analytique.
- Comparer les résultats numériques à la solution analytique en prenant $N=10,\ N=20$ et N=40

Stabilité de la méthode d'Euler explicite

Exercice 3 : On considère le problème de Cauchy suivant :

$$\begin{cases} y'(t) &= -150y(t) + 30; \quad t \in]0; +\infty[\\ y(0) &= \frac{1}{5} \end{cases}$$

On peut montrer que la solution exacte de ce problème est $y:t\mapsto \frac{1}{5}$. On perturbe maintenant la condition initiale en prenant $y(0)=\frac{1}{5}+\varepsilon$. La nouvelle solution est alors $y(t)=\frac{1}{5}+\varepsilon e^{-150t}$. Pour ε petit cette nouvelle solution est très proche de celle trouvée avec la condition initiale non perturbée.

Stabilité

Une méthode numérique est dite **stable** si l'on retrouve cette propriété au niveau de la solution numérique.

Stabilité de la méthode d'Euler explicite

Nous allons tester la stabilité du schéma d'Euler explicite sur cette équation.

- Appliquer le schéma d'Euler explicite à ce problème de Cauchy sur l'intervalle [0; 1]. Tracer le graphe de la solution obtenue.
- Appliquer maintenant le schéma d'Euler explicite à ce problème en utilisant la condition initiale $y(0) = \frac{1}{5} + \varepsilon$ avec $\varepsilon = 10^{-10}$ pour plusieurs valeurs de N. Tracer les graphes des résultats obtenus. Qu'observe-t-on?
- Que peut-on déduire quant à la stabilité du schéma d'Euler dans ce cas?

Manel Tavachi

- Pour simplifier on ne considère ici que le cas d'un pas fixe $h = \frac{T}{N}$
- Une méthode de résolution d'équation différentielle est dite à un pas si elle est de la forme :

$$y_{n+1} = y_n + h\Phi(t_n, y_n, h), \quad \text{pour } 0 \le n \le N-1$$

οù Φ : $[t_0; t_0 + T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ est une fonction que l'on supposera continue.

- La méthode d'Euler est une méthode à un pas où : $\Phi(t, y, h) = f(t, y)$.
- On désigne par méthodes à pas multiples les méthodes qui nécessitent également la solution numérique aux temps $t_{n-1}, t_{n-2}, ...$

Retour au lien avec l'intégration

En intégrant l'équation y'(t) = f(t, y(t)) entre t_n et t_{n+1} , on obtient :

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

- ullet Méthode de rectangle à gauche \Rightarrow méthode d'Euler explicite ou progressive
- ullet Méthode de rectangle à droite \Rightarrow méthode d'Euler implicite ou rétrograde :

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$$

 Méthode de rectangle avec point milieu ⇒ méthode du point milieu et selon certains auteur méthode d'Euler modifiée :

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

$$\approx hf(t_n + \frac{h}{2}, y(t_n + \frac{h}{2}))$$

• Méthode de rectangle avec point milieu : on ne connaît pas $y(t_n + \frac{h}{2})$ mais on peut l'approcher

$$\tilde{y}_n = y_n + \frac{h}{2}f(t_n, y_n)
y_{n+1} = y_n + hf(t_n + \frac{h}{2}, \tilde{y}_n)$$

C'est un schéma prédicteur-correcteur explicite

Méthode de trapèze ⇒ Méthode de Crank-Nicolson

$$y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

$$\approx \frac{h}{2} (f(t_n, y(t_n)) + f(t_{n+1}, y(t_{n+1})))$$

et donc :

$$y_{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1}))$$

Manel Tayachi

• Méthode de trapèze en utilisant Euler pour calculer $y_{n+1} \Rightarrow$ Méthode de Heun ou Runge-Kutta d'ordre 2 :

$$\tilde{y}_n = y_n + hf(t_n, y_n)
y_{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_{n+1}, \tilde{y}_n)))$$

- Les méthode D'Euler, d'Euler modifié et de Heun font partie des méthodes de Runge-Kutta
- Principe : on introduit des points intermédiaires pour avoir une meilleur approximation de l'intégrale $\int_{t}^{t_{n+1}} f(t, y(t)) dt$
- Méthode de Simpson :

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt \approx \frac{h}{6} \left(f(t_n, y(t_n)) + 4f(t_n + \frac{h}{2}, y(t_n + \frac{h}{2})) + f(t_{n+1}, y(t_{n+1})) \right)$$

 \Rightarrow approximation de $y(t_n + \frac{h}{2})$ et $y(t_{n+1})$ par Euler et Heun

Manel Tavachi

Méthode de Runge-Kutta d'ordre 4 RK4

Algorithme:

- Étant donné un nombre maximal d'itérations N, un pas de temps $h = \frac{I}{N}$ et une condition initiale (t_0, y_0)
- ② Pour 0 < n < N 1:

$$\begin{cases} k_1 &= hf(t_n, y_n) \\ k_2 &= hf(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}) \\ k_3 &= hf(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}) \\ k_4 &= hf(t_n + h, y_n + k_3) \\ y_{n+1} &= y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ t_{n+1} &= t_n + h \end{cases}$$

Arrêt

Manel Tavachi

Méthode d'Euler modifiée

Algorithme:

- Étant donné un nombre maximal d'itérations N, un pas de temps $h = \frac{T}{N}$ et une condition initiale (t_0, y_0)
- **2** Pour $0 \le n \le N 1$:

$$\begin{cases}
\tilde{y}_n &= y_n + \frac{h}{2}f(t_n, y_n) \\
y_{n+1} &= y_n + hf(t_n + \frac{h}{2}, \tilde{y}_n) \\
t_{n+1} &= t_n + h
\end{cases}$$

Arrêt

Méthode de Runge-Kutta d'ordre 2 RK2

Algorithme:

- Étant donné un nombre maximal d'itérations N, un pas de temps $h = \frac{T}{N}$ et une condition initiale (t_0, y_0)
- **2** Pour $0 \le n \le N 1$:

$$\begin{cases} k_1 &= hf(t_n, y_n) \\ k_2 &= hf(t_n + h, y_n + k_1) \\ y_{n+1} &= y_n + \frac{1}{2}(k_1 + k_2) \\ t_{n+1} &= t_n + h \end{cases}$$

Arrêt

Méthodes de Runge-Kutta

Exercice 4 : On reprend le problème de Cauchy de l'exercice 2 :

$$\begin{cases} y'(t) &= -y(t) + t + 1; & t \in [0; 1] \\ y(0) &= 1 \end{cases}$$

- Résoudre cette équation différentielle par la méthode d'Euler modifiée, la méthode de RK2 et la méthode de RK4.
- Comparer les solutions numériques avec la solution exacte
- Pour différentes valeurs de N comparer les 3 méthodes entre elles en calculant l'erreur et afficher le temps de calcul.

Pour finir...

• Il existe des méthode basées sur le développement de Taylor

• La méthode numérique parfaite n'existe pas et souvent nous avons des compromis à faire : précisions vs temps de calcul

• Regarder la fonction Scilab ode

Pour aller plus loin : méthode d'Euler implicite

$$\forall 0 \leq n \leq N-1; \quad y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$$

- Ainsi, à chaque étape de l'algorithme on doit résoudre une équation, le plus souvent non linéaire.
- A chaque itération, notons g la fonction définie par $g(y) = y_n + hf(t_{n+1}, y) y$
- Il suffit alors de résoudre l'équation g(y) = 0 à chaque itération \Rightarrow commande fsolve de Scilab
- Vous pouvez tester cette méthode sur l'équation de l'exercice 3
- Testez la stabilité de cette méthode