

Analytic Geometry

CS115 - Math for Computer Science

TS. Lương Ngọc Hoàng TS. Dương Việt Hằng

September 9, 2023

Roadmap

- Norm
- Inner Products
- Lengths and Distances
- Angles and Orthogonality
- Orthonormal Basis
- Orthogonal Complement
- Inner Product of Functions
- Orthogonal Projections
- Rotations

Norm

- A notion of the length of vectors
- Definition. A norm on a vector space V is a function $\|\cdot\|: V \mapsto \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ the following hold:
 - Absolutely homogeneous: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$
 - Triangle inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$
 - Positive definite: $||x|| \ge 0$ and $||x|| \iff x = 0$

Example for $V \in \mathbb{R}^n$

• Manhattan Norm (also called ℓ_1 norm) For $\mathbf{x} = [x_1, \cdots, x_n] \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_1 :== \sum_{i=1}^n |x_i|$$

• Euclidean Norm (also called ℓ_2 norm) For $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_2 :== \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\mathbf{x}^\mathsf{T}\mathbf{x}}$$

Formal Definitions

- An inner product is a mapping $\langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{R}$ that satisfies the following conditions for all vectors $u, v, w \in V$ and all scalars $\lambda \in \mathbb{R}$:
 - 1. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
 - 2. $\langle \lambda \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle$
 - 3. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$
 - 4. $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ and equal iff $\mathbf{v} = 0$
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called an inner product space.

Examples

• Example. $V = \mathbb{R}^n$ and the dot product $\langle x, y \rangle := x^T y$

• Example. $V = \mathbb{R}^2$ and $\langle x, y \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$

• Example. $V = \{\text{continuous functions in } \mathbb{R} \text{ over } [a,b]\}, \langle u,v \rangle := \int_a^b u(x)v(x)dx$

Positive/Negative Definite Matrix

Definitions:

- 1) An nxn symmetric real matrix **A** is said to be **positive-definite if** $x^TAx > 0$ for all non-zero $x \in \mathbb{R}^n$
- 2) An *nxn* symmetric real matrix **A** is said to be **positive-semidefinite if** $x^TAx \ge 0$ for all non-zero $x \in \mathbb{R}^n$
- 3) An nxn symmetric real matrix A is said to be negative-definite if $x^TAx < 0$ for all non-zero $x \in \mathbb{R}^n$
- 4) An nxn symmetric real matrix A is said to be negative-semidefinite if $x^TAx \le 0$ for all non-zero $x \in R^n$

Example 1:
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Example 2:
$$A = \begin{bmatrix} 9 & -15 \\ -15 & 25 \end{bmatrix}$$

Positive/Negative Definite Matrix

Definitions:

- 1) An nxn symmetric real matrix A is said to be **positive-definite** if $x^TAx > 0$ for all non-zero $x \in \mathbb{R}^n$
- 2) An nxn symmetric real matrix A is said to be **positive-semidefinite if** $x^TAx \ge 0$ for all non-zero $x \in R^n$
- 3) An nxn symmetric real matrix ${\bf A}$ is said to be negative-definite if ${\bf x}^T{\bf A}{\bf x}<{\bf 0}$ for all non-zero ${\bf x}{\in}R^n$
- 4) An nxn symmetric real matrix A is said to be negative-definite if $x^TAx \le 0$ for all non-zero $x \in R^n$

Theory:

Let A be *nxn* symmetric real matrix **A.** All eigenvalues of A are real.

- 1) A is positive definite if and only if all of its eigenvalues are positive
- 2) A is positive semi-definite if and only if all of its eigenvalues are non-negative.
- A is negative definite if and only if all of its eigenvalues are negative
- 4) A is negative semi-definite if and only if all of its eigenvalues are non-positive.
- 5) A is indefinite if and only if it has both positive and negative eigenvalues.

Positive definiteness

• Test 1: A matrix A will be positive definite if all its eigenvalues are positive; that is, all the values of λ that satisfy the determinental equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

should be positive.

Negative definiteness

- Equivalently, a matrix is **negative-definite** if all its **eigenvalues** are **negative**
- It is positive-semidefinite if all its eigenvalues are all greater than or equal to zero
 - It is negative-semidefinite if all its eigenvalues are all less than or equal to zero

Example: $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

Example:
$$A = \begin{pmatrix} 6 & 5 & 12 \\ 5 & 19 & 0 \\ 12 & 3 & 7 \end{pmatrix}$$

Positive definiteness

• **Test 2:** Another test that can be used to find the positive definiteness of a matrix **A** of order *n* involves evaluation of the determinants

$$A = \begin{vmatrix} a_{11} \\ a_{2} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$A_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$A_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \cdots a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots a_{2n} \\ a_{31} & a_{32} & a_{33} \cdots a_{3n} \\ \vdots & & & \\ a_{n1} & a_{n2} & a_{n3} \cdots a_{nn} \end{vmatrix}$$

- The matrix **A** will be **positive definite** if and only if all the values $A_1, A_2, A_3, ... A_n$ are positive
- The matrix **A** will be **negative definite** if and only if the sign of A_i is $(-1)^j$ for j=1,2,...,n
- If some of the A_j are positive and the remaining A_j are zero, the matrix A will be positive semidefinite

Example:

$$A = \begin{pmatrix} 6 & 5 & 12 \\ 5 & 19 & 0 \\ 12 & 3 & 7 \end{pmatrix}$$

A???

Inner Product and Positive Definite Matrix

- Consider an *n*-dimensional vector space V with an inner product $\langle \cdot, \cdot \rangle$ and an ordered basis $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ of V.
- Any $\mathbf{x}, \mathbf{y} \in V$ can be represented as: $\mathbf{x} = \sum_{i=1}^{n} \psi_i \mathbf{b}_i$ and $\mathbf{y} = \sum_{i=j}^{n} \lambda_j \mathbf{b}_j$ for some ψ_i and λ_j , $i, j = 1, \dots, n$.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} \psi_{i} \mathbf{b}_{i}, \sum_{i=j}^{n} \lambda_{j} \mathbf{b}_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i} \left\langle \mathbf{b}_{i}, \mathbf{b}_{j} \right\rangle \lambda_{j} = \hat{\mathbf{x}}^{\mathsf{T}} \mathbf{A} \hat{\mathbf{y}},$$

where $\mathbf{A}_{ij} = \langle \mathbf{b}_i, \mathbf{b}_j \rangle$ and $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinates w.r.t. B.

- Then, if $\forall x \in V \setminus \{0\} : x^T A x > 0$ (i.e., A is symmetric, positive definite), $\hat{x}^T A \hat{y}$ legitimately defines an inner product (w.r.t. B)
- Properties
 - The kernel of **A** is only $\{0\}$, because $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \neq 0 \implies \mathbf{A}\mathbf{x} \neq 0$ if $\mathbf{x} \neq 0$.
 - The diagonal elements a_{ii} of **A** are all positive, because $a_{ii} = \mathbf{e}_i^\mathsf{T} \mathbf{A} \mathbf{e}_i > 0$.

Length

Inner product naturally induces a norm by defining:

$$\|x\| := \sqrt{\langle x, x \rangle}$$

- Not every norm is induced by an inner product
- Cachy-Schwarz inequality. For the induced norm by the inner product,

$$|\langle x, y \rangle| \leq ||x|| ||y||$$

Distance

Now, we can introduce a notion of distance using a norm as:

Distance.
$$d(x, y) := ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

- If the dot product is used as an inner product in \mathbb{R}^n , it is Euclidian distance.
- Note. The distance between two vectors does NOT necessarily require the notion of norm. Norm is just sufficient.
- Generally, if the following is satisfied, it is a suitable notion of distance, called metric.
 - Positive definite. $d(x, y) \ge 0$ for all x, y and $d(x, y) = 0 \iff x = y$
 - Symmetric. d(x, y) = d(y, x)
 - ∘ Triangle inequality. $d(x, z) \le d(x, y) + d(y, z)$

Angle, Orthogonal, and Orthonorma

· Using C-S inequality,

$$-1 \leq rac{\langle oldsymbol{x}, oldsymbol{y}
angle}{\|oldsymbol{x}\| \ \|oldsymbol{y}\|} \leq 1$$

• Then, there exists a unique $\omega \in [0,\pi]$ with

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}$$

• We define ω as the angle between ${\bf x}$ and ${\bf y}$.

• Definition. If $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, in other words their angle is $\pi/2$, we say that they are orthogonal, denoted by $\mathbf{x} \perp \mathbf{y}$. Additionally, if $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$, they are orthonormal.

Example

- Orthogonality is defined by a given inner product. Thus, different inner products may lead to different results about orthogonality.
 - Example. Consider two vectors $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathsf{T}} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \boldsymbol{y}$$
, they are not orthogonal.

$$\cos \omega = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} = -\frac{1}{3} \implies \omega \approx 1.91 \text{ rad } \approx 109.5^{\circ}$$

Orthogonal Matrix

• Definition. A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, iff its columns (or rows) are orthonormal so that

$$\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I} = \mathbf{A}^{\mathsf{T}}\mathbf{A}$$
, implying $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$.

- We can use $A^{-1} = A^{T}$ for the definition of orthogonal matrices.
- Fact 1. A, B: orthogonal $\implies AB$: orthogonal
- Fact 2. **A**: orthogonal \implies det(**A**) = ± 1

Orthogonal Matrix

The linear mapping Φ by orthogonal matrices preserve length and angle (for the dot product)

$$\|\Phi(\mathbf{A})\| = \|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{x} = \|\mathbf{x}\|^2$$
$$\cos \omega = \frac{(\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{y})}{\|\mathbf{A}\mathbf{x}\| \|\mathbf{A}\mathbf{y}\|} = \frac{\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{y}}{\sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{y}}} = \frac{\mathbf{x}^{\mathsf{T}}\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Orthonormal Basis

- Basis that is orthonormal, i.e., they are all orthogonal to each other and their lengths are 1.
- Standard basis in \mathbb{R}^n , $\{e_1, \ldots, e_n\}$, is orthonormal.
 - Question. How to obtain an orthonormal basis?
- Use Gaussian elimination to find a basis for a vector space spanned by a set of vectors.
 - Given a set $\{b_1, \ldots, b_n\}$ of unorthogonal and unnormalized basis vectors. Apply Gaussian elimination to the augmented matrix $(BB^T|B)$
 - 2. Constructive way: Gram-Schmidt process

Orthogonal Projections

- · Big data: high dimensional
- However, most information is contained in a few dimensions
- Projection: A process of reducing the dimensions (hopefully) without loss of much information
- Example. Projection of 2D dataset onto 1D subspace

Projection onto Lines (1D Subspaces)

- Consider a 1D subspace $U \subset \mathbb{R}^n$ spanned by the basis **b**.
- For $\mathbf{x} \in \mathbb{R}^n$, what is its projection $\pi_U(\mathbf{x})$ onto U (assume the dot product)?

$$\langle \mathbf{x} - \pi_{U}(\mathbf{x}), \mathbf{b} \rangle = 0 \stackrel{\pi_{U}(\mathbf{x}) = \lambda \mathbf{b}}{\longleftrightarrow} \langle \mathbf{x} - \lambda \mathbf{b}, \mathbf{b} \rangle = 0$$

$$\implies \lambda = \frac{\langle \mathbf{b}, \mathbf{x} \rangle}{\|\mathbf{b}\|^{2}} = \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|\mathbf{b}\|^{2}}, \text{ and } \pi_{U}(\mathbf{x}) = \lambda \mathbf{b} = \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|\mathbf{b}\|^{2}} \mathbf{b}$$

(a) Projection of x ∈ R² onto a subspace U
with basis vector b.

Inner Product and Projection

- We project x onto b, and let $\pi_b(x)$ be the projected vector.
- Question. Understanding the inner project $\langle x, b \rangle$ from the projection perspective?

$$\langle \mathbf{x}, \mathbf{b} \rangle = \|\pi_{\mathbf{b}}(\mathbf{x})\| \times \|\mathbf{b}\|$$

In other words, the inner product of x and b is the product of (length of the projection of x onto b) × (length of b)

(a) Projection of x ∈ R² onto a subspace U
with basis vector b.

Example

•
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

$$m{P}_{\pi} = rac{m{b}m{b}^{\mathsf{T}}}{\|m{b}\|^2} = rac{1}{9} egin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} egin{pmatrix} 1 & 2 & 2 \end{pmatrix} = rac{1}{9} egin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix}$$

For
$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
,

$$\pi_U(\mathbf{x}) = \mathbf{P}_{\pi}\mathbf{x} = \frac{1}{9} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix} \in \mathrm{span}[\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}]$$

Projection onto General Subspace

•
$$\mathbb{R}^n \to 1$$
-Dim

• A basis vector **b** in 1D subspace

$$\pi_{U}(\mathbf{x}) = \frac{\mathbf{b}\mathbf{b}^{\mathsf{T}}\mathbf{x}}{\mathbf{b}^{\mathsf{T}}\mathbf{b}}, \ \lambda = \frac{\mathbf{b}^{\mathsf{T}}\mathbf{x}}{\mathbf{b}^{\mathsf{T}}\mathbf{b}}$$
$$\mathbf{P}_{\pi} = \frac{\mathbf{b}\mathbf{b}^{\mathsf{T}}}{\mathbf{b}^{\mathsf{T}}\mathbf{b}}$$

- $\mathbb{R}^n \to m$ -Dim, (m < n)
- A basis matrix $B = (\boldsymbol{b}_1, \cdots, \boldsymbol{b}_m) \in \mathbb{R}^{n \times m}$ $\pi_U(\boldsymbol{x}) = \boldsymbol{B}(\boldsymbol{B}^\mathsf{T}\boldsymbol{B})^{-1}\boldsymbol{B}^\mathsf{T}\boldsymbol{x}, \ \lambda = (\boldsymbol{B}^\mathsf{T}\boldsymbol{B})^{-1}\boldsymbol{B}^\mathsf{T}\boldsymbol{x}$ $\boldsymbol{P}_\pi = \boldsymbol{B}(\boldsymbol{B}^\mathsf{T}\boldsymbol{B})^{-1}\boldsymbol{B}^\mathsf{T}$
- $\lambda \in \mathbb{R}^1$ and $\lambda \in \mathbb{R}^m$ are the coordinates in the projected spaces, respectively.
- $(B^TB)^{-1}B^T$ is called pseudo-inverse.

Example

•
$$U = \text{span}\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \end{bmatrix} \subset \mathbb{R}^3 \text{ and } \mathbf{x} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}. \text{ Check that } \{ \begin{bmatrix} 1 & 1 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}^\mathsf{T} \} \text{ is a basis.}$$

• Let
$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
. Then, $\mathbf{B}^{\mathsf{T}} \mathbf{B} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$

• Can see that
$${m P}_{\pi} = {m B} {({m B}^{\mathsf{T}} {m B})}^{-1} {m B}^{\mathsf{T}} = rac{1}{6} egin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$
, and

$$\pi_U(\mathbf{x}) = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$$

Gram-Schmidt Orthogonalization Method (G-S method)

- Constructively transform any basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)$ of *n*-dimensional vector space V into an orthogonal/orthonormal basis $(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n)$ of V
- Iteratively construct as follows

$$u_1 := b_1
 u_k := b_k - \pi_{\text{span}[u_1,...,u_{k-1}]}(b_k), k = 2,...,n$$
(*)

Example

• A basis
$$(m{b}_1,m{b}_2)\in\mathbb{R}^2, \ m{b}_1=egin{pmatrix}2\\0\end{pmatrix}$$
 and $m{b}_2=egin{pmatrix}1\\1\end{pmatrix}$

•
$$\boldsymbol{u}_1 = \boldsymbol{b}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
 and

$$oldsymbol{u}_2 = oldsymbol{b}_2 - \pi_{\mathsf{span}[oldsymbol{u}_1]}(oldsymbol{b}_2) = rac{oldsymbol{u}_1 oldsymbol{u}_2^\mathsf{T}}{\|oldsymbol{u}_1\|} oldsymbol{b}_2 = egin{pmatrix} 1 \ 1 \end{pmatrix} - egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} 1 \ 1 \end{pmatrix} = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

 u₁ and u₂ are orthogonal. If we want them to be orthonormal, then just normaliation would do the job.