Otoczka wypukła dla zbioru punktów w przestrzeni dwuwymiarowej

Dokumentacja projektu Algorytmy geometryczne

K. Kafara Ł. Czarniecki

Spis treści

1	Informacje techniczne					
	1.1	Budov	wa programu	. 3		
		1.1.1	Moduł lib	. 3		
		1.1.2	Moduł pure	. 3		
		1.1.3	Moduł vis	. 4		
	1.2	Wyma	agania techniczne	. 4		
	1.3	Korzy	stanie z programu	. 4		
		1.3.1	Uruchomienie wizualizacji	. 4		
2	Oznaczenia i definicje					
3	Pro	blem		4		
4	Algorytmy					
	4.1	Algory	ytm Grahama	. 4		
		4.1.1	Opis działania	. 5		
		4.1.2	Szczegóły			
		4.1.3	Złożoność	. 5		
		4.1.4	Kod	. 6		
	4.2	Algory	ytm Jarvisa	. 7		
		4.2.1	Opis działania	. 7		
		4.2.2	Szczegóły	. 7		
		4.2.3	Złożoność	. 7		
		4.2.4	Kod	. 7		
	4.3	Algory	ytm górna-dolna	. 8		
		4.3.1	Opis działania			
		4.3.2	Złożoność	. 9		
		4.3.3	Kod	. 9		

4.4	Algorytm przyrostowy				
	4.4.1	Opis działania	9		
	4.4.2	Szczegóły	10		
	4.4.3	Złożoność	11		
	4.4.4	Kod	12		
4.5	Algory	ytm dziel i zwyciężaj	14		
	4.5.1	Opis działania	14		
	4.5.2	Szczegóły	14		
	4.5.3	Złożoność	14		
	4.5.4	Kod	14		
4.6	Algory	ytm Chana	14		
	4.6.1	Opis działania	14		
	4.6.2	Szczegóły	14		
	4.6.3	Złożoność	14		
	4.6.4	Kod	14		

Spis rysunków

Spis tablic

1 Informacje techniczne

1.1 Budowa programu

Program złożony jest z następujących modułów:

- *lib* biblioteczny zawiera zbiór pomocniczych funkcji i struktur danych wykorzystywanych przez algorytmy.
- pure algorytmy w czystej postaci tj. nie posiadające części wizualizacyjnej.
- vis algorytmy wraz z kodem odpowiadającym za wizualizację

Poniżej przedstawiamy dokładny opis zawartości poszczególnych modułów.

1.1.1 Moduł lib

Moduł zawiera w sobie następujące podmoduły:

- 1. $geometric_tool_lab.py$ narzędzie graficzne dostarczone w ramach przedmiotu Al-gorytmy geometryczne
- 2. getrand.py zawiera funkcje generujące zbiory punktów różnych typów
- 3. sorting.py zawiera implementację iteracyjnej wersji algorytmu QuickSort wykorzystywaną m.in w algorytmie Grahama
- 4. stack.py zawiera klasę implementującą stos
- 5. util.py zawiera szereg funkcji pomocniczych wykorzystywanych przez zaimplementowane algorytmy
- 6. mytypes.py zawiera definicje typów stworzone w celu zwiększenia czytelności kodu

1.1.2 Moduł pure

Moduł zawiera w sobie następujące podmoduły:

- 1. divide_conq.py implementacja algorytmu dziel i zwyciężaj
- 2. graham.py implementacja algorytmu Grahama
- 3. increase.py implementacja algorytmu przyrostowego
- 4. jarvis.py implementacja algorytmu Jarvisa
- 5. lowerupper.py implementacja algorytmu "górna-dolna"

1.1.3 Moduł vis

Moduł zawiera w sobie następujące podmoduły:

- 1. $divide_conq_vis.py$ implementacja algorytmu dziel i zwyciężaj wraz z kodem two-rzącym wizualizację
- 2. $graham_vis.py$ implementacja algorytmu Grahama wraz z kodem tworzącym wizualizację
- 3. $increase_vis.py$ implementacja algorytmu przyrostowego wraz z kodem tworzącym wizualizację
- 4. $jarvis_vis.py$ implementacja algorytmu Jarvisa wraz z kodem tworzącym wizualizację
- 5. lowerupper_vis.py implementacja algorytmu "górna-dolna"wraz z kodem tworzącym wizualizację

1.2 Wymagania techniczne

- 1. Python 3.9.0 64-bit lub nowszy
- 2. Jupyter Notebook

1.3 Korzystanie z programu

1.3.1 Uruchomienie wizualizacji

W celu uruchomienia wizualizacji algorytmów należy uruchomić notebook (poprzez Jupyter Notebook) program.ipynb, a następnie zapoznać się z zamieszczona tam instrukcja.

2 Oznaczenia i definicje

Na potrzeby dalszych wywodów przyjmujemy w tym miejscu szereg oznaczeń i definicji:

3 Problem

Wyznaczyć otoczkę wypukłą podanego zbioru punktów płaszczyzny dwuwymiarowej.

4 Algorytmy

4.1 Algorytm Grahama

W celu opisania sposobu działania algorytmu Grahama, definiujemy następujacą relację \leq_Q określoną dla dowolnych dwóch punktów płaszczyzny P_1 , P_2 względem wybranego i ustalonego punktu odniesienia Q.

 $P_1 \preceq_Q P_2 \Leftrightarrow (\angle(P_1, Q, OX) < \angle(P_2, Q, OX)) \lor (\angle(P_1, Q, OX) = \angle(P_2, Q, OX) \land d(P_1, Q) \leqslant d(P_2, Q))$

gdzie d(P,Q) oznacza odległość od siebie dwóch dowolnych punktów płaszczyzny.

Tak zdefiniowana relacja jest liniowym porządkiem (zwrotna, antysymetryczna, przechodnia i spójna).

4.1.1 Opis działania

- 1. Wyznaczamy najniższy punkt Q wyjściowego zbioru (jeżeli jest wiele o tej samej rzędnej bierzemy ten o najmniejszej odciętej).
- 2. Ustawiamy go jako pierwszy element zbioru.
- 3. Sortujemy pozostałe punkty względem relacji \leq_Q .
- 4. Usuwamy wszystkie, poza najbardziej oddalonym od Q, punkty leżące na półprostej QP, dla każdego P
- 5. Kładziemy pierwsze 3 punkty zbioru na stos S.
- 6. Iterujemy kolejno po punktach z posortowanego zbioru nie będących na stosie: Niech bieżącym punktem będzie P:
 - (a) Dopóki P nie jest po lewej stronie $S_{n-1}S_n$ wykonujemy (b)
 - (b) Uswamy punkt ze stosu.
 - (c) Dodajemy P na stos.
- 7. Zwracamy zawartość stosu.

4.1.2 Szczegóły

- Najniższy punkt wyjściowego zbioru (punkt 1) wyznaczamy w czasie liniowym, iterując po kolejnych punktach zbioru.
- Wszystkie punkty leżacej na jednej prostej, poza najbardziej oddalonym od Q usuwamy w czasie liniowym w następujący sposób: Iterując przez posortowaną tablicę, zaczynająć od indeksu i:=1, zapamiętujemy ostatni indeks na który wstawialiśmy j (na początku j:=1). Jeżeli Q, P_i , P_{i+1} są współliniowe to i:=i+1. Jeżeli nie są współliniowe to P_i wpisujemy na pozycję j, a następnie j:=j+1. Następnie, w dalszej części algorytmu posługujemy się częścią tablicy $[0,\ldots,j-1]$.

4.1.3 Złożoność

Operacją dominującą w algorytmie jest sortowanie – realizowane w czasie $O(n \lg n)$. Wybór punktu najniższego, redukcja punktów współlinowych oraz iterowanie (punkt 6, zauważmy, że każdy punkt zbioru wyjściowego jest obsługiwany co najwyżej 2 razy – gdy jest dodawany do otoczki i gdy jest ewentualnie usuwany) są realizowane w czasie O(n). Algorytm Grahama ma zatem złożoność $O(n \lg n)$.

4.1.4 Kod

```
1 def get_point_cmp(ref_point: Point, eps: float = 1e-7) -> Callable:
       def point_cmp(point1, point2):
2
           orient = orientation(ref_point, point1, point2, eps)
3
4
           if orient == -1:
5
               return False
           elif orient == 1:
               return True
           elif dist_sq(ref_point, point1) <= dist_sq(ref_point, point2):</pre>
9
               return True
10
11
           else:
12
               return False
13
      return point_cmp
14
15
16
17 def graham(points: ListOfPoints) -> ListOfPoints:
       istart = index_of_min(points, 1)
18
19
      points[istart], points[0] = points[0], points[istart]
20
21
      qsort_iterative(points, get_point_cmp(points[0]))
22
23
      i, new_size = 1, 1
24
25
      while i < len(points):</pre>
26
           while (i < len(points) - 1) \</pre>
27
           (orientation(points[0], points[i], points[i + 1], 1e-7) == 0):
28
               i += 1
29
30
           points[new_size] = points[i]
31
32
           new_size += 1
           i += 1
33
34
       s = Stack()
35
       s.push(points[0])
36
       s.push(points[1])
37
38
       s.push(points[2])
39
      for i in range(3, new_size, 1):
40
           while orientation(s.sec(), s.top(), points[i], 1e-7) != 1:
41
               s.pop()
42
43
           s.push(points[i])
44
      return s.s[:s.itop+1]
47
```

4.2 Algorytm Jarvisa

4.2.1 Opis działania

- 1. Wyznaczamy najniższy punkt Q wyjściowego zbioru (jeżeli jest wiele o tej samej rzędnej bierzemy ten o najmniejszej odciętej).
- 2. Dodajemy Q do zbioru punktów otoczki.
- 3. Przeglądamy punkty zbioru w poszukiwaniu takiego, który wraz z ostatnim punktem otoczki tworzy najmniejszy kąt skierowany względem ostatniej znanej krawędzi otoczki. Dla pierwszego szukanego punktu, kąt namierzamy względem poziomu.
- 4. Znaleziony punkt dodajemy do zbioru punktów otoczki, jeżeli jest różny od Q.
- 5. Powtarzamy punkty 3 i 4 tak długo aż znalezionym punktem nie będzie Q.
- 6. Zwracamy listę punktów otoczki.

4.2.2 Szczegóły

- Najniższy punkt wyjściowego zbioru (punkt 1) wyznaczamy w czasie liniowym, iterując po kolejnych punktach zbioru.
- W celu wyznaczenia punktu wyspecyfikowanego w punkcie 3. nie obliczamy wartości odpowiedniego kąta. Zamiast tego, równoważnie, wyznaczamy punkt P, który wraz z ostatnim znanym punktem otoczki P_0 tworzy wektor P_0P dla którego wszystkie pozostałe punkty zbioru są po lewej stronie. Robimy to w czasie liniowym korzystając z znanych własności wyznacznika.

4.2.3 Złożoność

Zauważmy, że jeżeli otoczka jest k - elementowa, to główna pętla algorytmu (punkty 3–4) wykonuje się k-razy. Każdy krok pętli (znalezienie odpowiedniego punktu P) zajmuje czas liniowy. Pozostałe operacj w algorytmie zajmują co najwyżej czas liniowy. Zatem algrytm Jarvisa ma złożoność O(nk).

4.2.4 Kod

```
def jarvis(points: ListOfPoints) -> ListOfPoints:
2 EPS = 1e-8

d convex_hull = []

start_idx = index_of_min(points, 1)

convex_hull.append(start_idx)

rand_idx = 0 if start_idx != 0 else 1
```

```
12 prev = start_idx
13
14 while True:
       imax = rand_idx
15
16
       for i in range(len(points)):
17
18
           if i != prev and i != imax:
                orient = orientation(
19
                             points[prev],
20
                             points[imax],
21
                             points[i],
22
                             EPS
23
                          )
24
                if orient == -1:
25
                    imax = i
26
                elif orient == 0 and \
28
                      (dist_sq(points[prev], points[imax]) < dist_sq(points[</pre>
29
      prev], points[i])):
30
                    imax = i
31
       if imax == start_idx:
32
           break;
33
34
       convex_hull.append(imax)
       prev = imax
37
38
  return points[convex_hull]
39
```

W ostatniej linii algorytmu, korzystamy z możliwości bibliteki numpy.

4.3 Algorytm górna-dolna

4.3.1 Opis działania

- 1. Sortujemy punkty rosnąco po odciętych (w przypadku rówych, mniejszy jest punkt o mniejszej rzędnej).
- 2. Pierwsze dwa punkty z posortowanego zbioru wpisujemy do zbioru punktów otoczki górnej oraz dolnej.
- 3. Iterujemy po zbiorze punktów zaczynając od i=2 (trzeciego punktu), niech P będzie bieżącym punktem:
 - (a) Dopóki górna (dolna) otoczka ma co najmniej 2 punkty i P nie znajduje się po prawej (lewej) stronie odcinka skierowanego utworzonego przez ostatniej dwa punkty otoczki (ostatni jest końcem odcinka), wykonujemy (b):
 - (b) Usuwamy ostatni punkt z otoczki górej (dolnej).
 - (c) Dodajemy P do punktów otoczki górnej (dolnej).

- 4. Odwracamy kolejność wierzchołków w otoczce dolnej.
- 5. Łączymy zbioru punktów otoczki górnej oraz dolnej.
- 6. Zwracamy złączony zbiór punktów otoczki.

4.3.2 Złożoność

Dominującą operacją w algorytmie jest sortowanie realizowane w czasie $O(n \lg n)$. Każdy krok pętli (dla wyznaczania otoczki górnej oraz dolnej) zajmuje czas stały. Zauważmy, że podobnie do algorytmu Grahama każdy z punktów jest rozważany co najwyżej dwukrotnie – w momencie dodania do otoczki i przy ewentualnym usunięciu ze zbioru punktów otoczki. Pozostałe operacje realizowane są w czasie liniowym. Zatem algorytm "górnadolna" ma złożoność $O(n \lg n)$.

4.3.3 Kod

```
def lower_upper(point2_set: ListOfPoints) -> ListOfPoints:
2 if len(point2_set) < 3: return None</pre>
4 point2_set.sort(key = operator.itemgetter(0, 1))
6 upper_ch = [ point2_set[0], point2_set[1] ]
7 lower_ch = [ point2_set[0], point2_set[1] ]
9 for i in range( 2, len(point2_set) ):
      while len(upper_ch) > 1 and orientation(upper_ch[-2], upper_ch[-1],
      point2_set[i]) != -1:
11
          upper_ch.pop()
12
      upper_ch.append(point2_set[i])
13
14
15 for i in range(2, len(point2_set)):
      while len(lower_ch) > 1 and orientation(lower_ch[-2], lower_ch[-1],
      point2_set[i]) != 1:
          lower_ch.pop()
17
18
      lower_ch.append(point2_set[i])
19
21 lower_ch.reverse()
upper_ch.extend(lower_ch)
24 return upper_ch
```

4.4 Algorytm przyrostowy

4.4.1 Opis działania

Ogólne sformułowanie algorytmu ma postać:

1. Dodajemy pierwsze 3 punkty do zbioru punktów otoczki.

- 2. Iterujemy po pozostałych punktach. Niech P będzie punktem bieżącym:
 - (a) Jeżeli P nie należy do wnętrza obecnie znanej otoczki wykonumejmy (b) oraz (c).
 - (b) Znajdujemy styczne do obecnie znanej otoczki poprowadzone przez punkt P.
 - (c) Aktualizujemy otoczkę.
- 3. Zwracamy punkty otoczki.

Możemy go jednak sformułować inaczej, co pozwoli na uproszenie implementacji, przy zachowaniu takiego samego rzędu złożoności.

- 1. Sortujemy punkty rosnąco po odciętych (w przypadku rówych, mniejszy jest punkt o mniejszej rzednej).
- 2. Dodajemy pierwsze 3 punkty do zbioru punktów otoczki, w takiej kolejności, aby były podane w kolejności odwrotnej do ruchu wskazówek zegara.
- 3. Iterujemy po pozostałych punktach. Niech P będzie punktem bieżącym:
 - (a) Znajdujemy styczne do obecnie znanej otoczki poprowadzone przez punkt P.
 - (b) Aktualizujemy otoczkę.
- 4. Zwracamy punkty otoczki.

Dzięki wstępnemu posortowaniu puntków, omijamy konieczność testowania należenia P do otoczki znanej w danym kroku algorytmu, ponieważ biorąc kolejny punkt mamy gwarancję, że nie należy on do wcześniej znanej otoczki.

4.4.2 Szczegóły

Wyznaczanie stycznych

Styczne wyznaczamy w czasie logartymicznym względem liczby punktów należących do otoczki do której szukamy stycznych, wykonując poszukiwanie binarne elementów skrajnych (najmniejszego i największego) względem następującego porządku, określonego dla dowolnych dwóch punktów płaszczyzny P_1 , P_2 , względem ustalonego punktu Q:

 $P_1 >_Q P_2 \Leftrightarrow P_2$ znajduje się po lewej stronie odcinka skierowanego QP_1 .

W tak określonym porządku elementem największym będzie prawy punkt styczności P_{max} , ponieważ wszystkie inne punkty otoczki znajdują się na lewo od prostej (stycznej) QP_{max} . Podobnie lewym punktem styczności będzie element najmniejszy w zadanym porządku P_{min} .

Wyznaczanie P_{max} (P_{min} wyznaczamy w sposób zupełnie analogiczny):

Wprowadźmy najpierw potrzebne oznaczenia:

Q punkt zewnętrzny, przez który mają przechodzić styczne do otoczki.

Niech otoczka będzie dana w postaci ciągu punktów P_0,\ldots,P_{k-1} $(P_k:=P_0)$ będących

współrzędnymi kolejnych wierzchołków w kolejności przeciwnej do ruchu wskazówek zegara.

Krawędź skierowaną otoczki e_i definiujemy następująco: $e_i := P_i P_{i+1}$.

Krawędź $e_i := P_i P_{i+1}$ jest skierowana w górę $\Leftrightarrow P_{i+1} >_Q P_i$.

Krawędź e_i jest skierowana w dół, jeżeli nie jest skierowana w górę.

- 1. Jeżeli P_0 jest większy od swoich obudwu sąsiadów, to go zwracamy jako element największy.
- 2. Definujemy indeksy l := 0, r := k
- 3. Dopóki nie znajdziemy elementu największego:
 - (a) Wyznaczamy indeks środkowego elementu $m:=\left\lfloor\frac{l+k}{2}\right\rfloor$
 - (b) Jezeli P_m jest elementem największym:
 - Zwracamy P_m .
 - (c) Jeżeli e_l jest skierowana w górę:
 - i. Jeżeli e_m jest skierowana w dół
 - \bullet r := m
 - ii. W przeciwnym przypadku
 - A. Jeżeli $P_l >_Q P_m$:
 - r := m
 - B. W przeciwnym przypadku
 - l := m
 - (d) W przeciwnym przypadku:
 - i. Jeżeli e_m jest skierowana w górę:
 - \bullet l := m
 - ii. W przeciwnym przypadku:
 - A. Jeżeli $P_m >_O P_l$:
 - \bullet r := m
 - B. W przeciwnym przypadku:
 - l := m

4.4.3 Złożoność

Posortowanie punktów zajmuje $O(n \lg n)$. Każde wykonanie pętli zajmuje czas logarytmiczny względem liczebności otoczki znanej w danej iteracji. Zatem złożoność algorytmu jest rzędu $O(n \lg n)$

4.4.4 Kod

```
1 def right_tangent(polygon: ListOfPoints, point: Point) -> Union[int, None
      n = len(polygon)
3
      if n < 3: return None
4
      if orientation(polygon[0], polygon[1], point) == 1 and orientation(
6
      polygon[-1], polygon[0], point) == -1:
          return 0
8
      left = 0
9
10
      right = n
11
      while True:
12
          mid = (left + right) // 2
13
14
           is_mid_down: bool = (orientation(polygon[mid], polygon[(mid + 1)
15
      % n], point) == 1)
16
           if is_mid_down and orientation(polygon[mid - 1], polygon[mid],
17
      point) == -1:
              return mid % n
18
19
           is_left_up: bool = (orientation(polygon[left % n], polygon[(left
20
      + 1) % n], point) == -1)
21
           if is_left_up:
22
               if is_mid_down:
23
                   right = mid
24
               else:
25
                   if orientation(point, polygon[left], polygon[mid]) == 1:
26
27
                       right = mid
                   else:
28
                       left = mid
29
           else:
30
               if not is_mid_down:
31
                   left = mid
32
33
               else:
                   if orientation(point, polygon[mid % n], polygon[left % n
34
      ]) == 1:
                       right = mid
35
                   else:
36
                       left = mid
37
38
40 def left_tangent(polygon: ListOfPoints, point: Point) -> Union[Point,
      None]:
      n = len(polygon)
41
42
      if n < 3: return None</pre>
43
44
1eft = 0
```

```
right = n
46
47
      if orientation(point, polygon[1], polygon[0]) == 1 and orientation(
48
      point, polygon[-1], polygon[0]) == 1:
49
           return 0
50
51
      while True:
           mid = (left + right) // 2
53
           is_mid_down: bool = (orientation(point, polygon[mid % n], polygon
54
      [(mid + 1) \% n]) == 1)
           if (not is_mid_down) and orientation(point, polygon[(mid - 1) % n
      ], polygon[mid % n]) == 1:
               return mid % n
58
           is_left_down: bool = (orientation(point, polygon[left], polygon[(
59
      left + 1) % n]) == 1)
60
61
           if is_left_down:
               if not is_mid_down:
62
                   right = mid
63
               else:
64
                   if orientation(point, polygon[mid % n], polygon[left % n
65
      ]) == 1:
                       right = mid
66
                   else:
67
                       left = mid
68
           else:
69
               if is_mid_down:
70
                   left = mid
71
72
               else:
73
                   if orientation(point, polygon[left % n], polygon[mid % n
      ]) == 1:
                       right = mid
74
                   else:
75
                       left = mid
76
77
  def increase_with_sorting(point2_set: ListOfPoints) -> Union[ListOfPoints
79
      if len( point2_set ) < 3: return None</pre>
80
81
      point2_set.sort(key = operator.itemgetter(0, 1))
82
83
84
      convex_hull = point2_set[:3]
85
      if orientation(convex_hull[0], convex_hull[1], convex_hull[2]) == -1:
86
           convex_hull[1], convex_hull[2] = convex_hull[2], convex_hull[1]
87
88
      for i in range(3, len( point2_set )):
           left_tangent_idx = left_tangent(convex_hull, point2_set[i])
           right_tangent_idx = right_tangent(convex_hull, point2_set[i])
91
92
```

```
left_tangent_point = convex_hull[left_tangent_idx]
93
           right_tangent_point = convex_hull[right_tangent_idx]
94
95
           deletion_side: Literal[-1, 1] = orientation(left_tangent_point,
96
      right_tangent_point, point2_set[i])
97
98
           if orientation(left_tangent_point, right_tangent_point,
       convex_hull[(left_tangent_idx + 1) % len(convex_hull)]) ==
       deletion_side:
               step = 0
99
           else:
100
               step = -1
           left = (left_tangent_idx + 1) % len(convex_hull)
103
104
           while convex_hull[left] != right_tangent_point:
               convex_hull.pop(left)
106
               left = (left + step) % len(convex_hull)
107
108
           convex_hull.insert(left, point2_set[i])
109
110
       return convex_hull
111
```

- 4.5 Algorytm dziel i zwyciężaj
- 4.5.1 Opis działania
- 4.5.2 Szczegóły
- 4.5.3 Złożoność
- 4.5.4 Kod
- 4.6 Algorytm Chana
- 4.6.1 Opis działania

cokolwiek [Che89]

- 4.6.2 Szczegóły
- 4.6.3 Złożoność
- 4.6.4 Kod

Bibliografia

[Che89] Otfried Cheong. Computational Geometry, Algorithms and Applications. 1989.