The GEModelTools Package for Solving HANK Models in Python

Jeppe Druedahl Emil Holst Partsch

Abstract

This note provides an overview of the GEModelTools package for solving general equilibrium models easily in Python using the sequence-space method.

You can learn how to use the package following these steps:

- 1. Read this document
- 2. Install the package
- 3. Run the example notebooks
- 4. Read the commented code for the example notebooks
- 5. Implement your own model

Literature: Boppart et al. (2018) and Auclert et al. (2021).

Structure:

Section 1 describes the class of models considered

Section 2 explains the required user inputs and available methods

Section 3 explains how to efficiently compute the household Jacobian

 ${\bf Section} \ {\bf 4} \ {\bf explains} \ {\bf additional} \ {\bf features}$

Section 5 provides basic troubleshooting

Code:

 $Package: \ github.com/JeppeDruedahl/GEModelTools$

 $Notebooks: \ github.com/JeppeDruedahl/GEModelToolsNotebooks$

Requirements: Rely on EconModel and ConSav.

Packages:

 $github.com/NumEconCopenhagen/EconModel\\github.com/NumEconCopenhagen/ConsumptionSaving$

Notebooks:

 $github.com/NumEconCopenhagen/EconModelNotebooks\\ github.com/NumEconCopenhagen/ConsumptionSavingNotebooks$

1 Model class

In this section, we describe the class of general equilibrium models with heterogeneous agents the package is designed solve, and explain how to use the sequence space method developed in Auclert et al. (2021) to solve them. The starting point is a model with perfect foresight, where the non-linear transition path can be found given the initial distribution of agents and a sequence of exogenous shocks. Next, we show how to solve for the linearized impulse responses. These impulse responses are equal to those from a model with aggregate risk once it is linearized and certainty equivalence holds. This implies that the sequence space method can be used to simulate time-series data for aggregate variables and the distribution of agents. Throughout this note a simple Aiygari-model is used as an example.

1.1 Model class

We consider economies where:

- 1. Time is discrete (index t).
- 2. There is a continuum of households (index i, when needed).
- 3. There is perfect foresight wrt. all aggregate variables, X, indexed by \mathcal{N} ,

$$X = \{X_t\}_{t=0}^{\infty} = \{X^j\}_{j \in \mathcal{N}} = \{X_t^j\}_{t=0, j \in \mathcal{N}}^{\infty},$$

where $\mathcal{N} = \mathcal{Z} \cup \mathcal{U} \cup \mathcal{O}$, and \mathcal{Z} are exogenous shocks, \mathcal{U} are unknowns, \mathcal{O} are outputs, and $\mathcal{H} \in \mathcal{O}$ are targets.

- 4. The model structure is described in terms of a set of blocks indexed by \mathcal{B} , where each block has inputs, $\mathcal{I}_b \subset \mathcal{N}$, and outputs, $\mathcal{O}_b \subset \mathcal{O}$, and there exists functions $h^o(\{X^i\}_{i\in\mathcal{I}_b})$ for all $o\in\mathcal{O}_b$.
- 5. The blocks are *ordered* such that (i) each output is *unique* to a block, (ii) the first block only have shocks and unknowns as inputs, and (iii) later blocks only additionally take outputs of previous blocks as inputs. This implies the blocks can be structured as a *directed acyclical graph* (DAG).
- 6. The number of targets are equal to the number of unknowns, and an equilibrium implies $X^o = 0$ for all $o \in \mathcal{H}$. Equivalently, the model can be summarized by an target equation system from the unknowns and shocks to the targets,

$$H(U,Z) = 0, (1)$$

and an auxiliary model equation to infer all variables

$$X = M(U, Z). (2)$$

A steady state satisfy

$$H(U_{ss}, Z_{ss}) = 0$$
 and $X_{ss} = M(U_{ss}, Z_{ss})$.

7. The discretized household block can be written recursively as

$$\boldsymbol{v}_t = v(\boldsymbol{v}_{t+1}, \boldsymbol{X}_t^{hh}) \tag{3}$$

$$\boldsymbol{a}_t^* = a^*(\boldsymbol{v}_{t+1}, \boldsymbol{X}_t^{hh}) \tag{4}$$

$$\mathbf{D}_t = \Pi(\mathbf{X}_t^{hh})' \underline{\mathbf{D}}_t \tag{5}$$

$$\boldsymbol{Y}_{t}^{hh} = \boldsymbol{y}(\boldsymbol{v}_{t+1}, \boldsymbol{X}_{t}^{hh})' \boldsymbol{D}_{t} \tag{6}$$

$$\underline{\boldsymbol{D}}_{t+1} = \tilde{\Lambda}(\boldsymbol{v}_{t+1}, \boldsymbol{X}_t^{hh})' \boldsymbol{D}_t \tag{7}$$

 D_0 is given

$$oldsymbol{X}_t^{hh} = \{oldsymbol{X}_t^i\}_{i \in \mathcal{I}_{hh}}$$

$$oldsymbol{Y}^{hh}_t = \{oldsymbol{X}^o_t\}_{o \in \mathcal{O}_{hh}},$$

where v_t and a_t^* are the value and policy functions over some grid of the idiosyncratic states, D_t is the distribution over the idiosyncratic states in terms of the probability mass at each grid point with *endogenous* transition matrix $\tilde{\Lambda}(v_{t+1}, X_t^{hh})$ and *exogenous* transition matrix $\Pi(X_t^{hh})$, Y_t is aggregated outputs with $y(v_{t+1}, X_t)$ as individual level measures. The full transition matrix is

$$\begin{split} \Lambda(\boldsymbol{v}_{t+1}, \boldsymbol{X}_t^{hh}) &= \tilde{\Lambda}(\boldsymbol{v}_{t+1}, \boldsymbol{X}_t^{hh}) \Pi(\boldsymbol{X}_{t+1}^{hh}) \\ \boldsymbol{D}_{t+1} &= \Lambda(\boldsymbol{v}_{t+1}, \boldsymbol{X}_t^{hh}, \boldsymbol{X}_{t+1}^{hh})' \boldsymbol{D}_t \end{split}$$

8. Given the sequence of shocks, Z, there exists a truncation period, T, such all variables return to steady state beforehand.

It is straightforward to numerically evaluate the model starting from the shocks and unknowns going forward block by block along the directed acyclical graph (DAG). Derivatives can also be calculated along this graph to construct Jacobians. Computationally, the central challenge is to compute the derivatives of the household block. This can be done efficiently as explained below in section 3 with the so-called »fake new algorithm « from Auclert et al. (2021). With the sequence-space Jacobians, the truncated equation system, $H(U, \mathbf{Z}) = 0$, can be solved straightforwardly with a quasi-Newton solver (e.g. using Broyden's method).

Alternatively, the model can be solved to a first order by total differentiating equation (1)

$$H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ,$$
 (8)

where we refer to G_U as the general equilibrium solution matrix. By also total differentiating equation (2), the remaining linearized impulse responses can be calculated as

$$d\mathbf{X} = M_{\mathbf{U}}d\mathbf{U} + M_{\mathbf{Z}}d\mathbf{Z}$$
$$= \underbrace{(-M_{\mathbf{U}}\mathbf{H}_{\mathbf{U}}^{-1}\mathbf{H}_{\mathbf{Z}} + M_{\mathbf{Z}})}_{\equiv \mathbf{G}}d\mathbf{Z}.$$

where G is the full general equilibrium matrix.

1.2 Example: A simple Aiygari-model

We now consider how a simple Aiygari-model fits into this setup.

Firms. A representative firm rent capital, K_{t-1} , and hire labor, L_t , to produce goods, with the production function

$$Y_t = \Gamma_t K_{t-1}^{\alpha} L_t^{1-\alpha},\tag{9}$$

where Γ_t is technology and considered an exogenous shock. Capital depreciates with the rate δ . Profit maximization by

$$\max_{K_{t-1}, L_t} Y_t - w_t L_t - r_t^k K_{t-1}$$

implies the standard pricing equations

$$r_t^k = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha - 1} \tag{10}$$

$$w_t = (1 - \alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha} \tag{11}$$

where r_t^k is rental rate of capital and w_t is the wage rate. The implied (real) interest rate is $r_t = r_t^k - \delta$.

Households. Households are heterogeneous ex ante with respect to their discount factor, β_i , and ex post with respect to their productivity, z_t , and assets, a_{t-1} . Each period household exogenously supply z_t units of labor, and choose consumption c_t subject to a no-borrowing constraint. Households have *perfect foresight* wrt. to the interest rate and the wage rate, $\{r_t, w_t\}_{t=0}^{\infty}$, and solve the problem

$$v_{t}(\beta_{i}, z_{t}, a_{t-1}) = \max_{a_{t}, c_{t}} \frac{c_{t}^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_{t} \left[v_{t+1}(\beta_{i}, z_{t+1}, a_{t}) \right]$$
s.t.
$$a_{t} + c_{t} = (1+r_{t})a_{t-1} + w_{t}z_{t}$$

$$\log z_{t} = \rho \log z_{t-1} + \varepsilon_{t}^{z}, \varepsilon_{t}^{z} \sim \mathcal{N}(\mu_{z}, \sigma_{z}), \mathbb{E}[z_{t}] = 1$$

$$a_{t} \geq 0,$$

$$(12)$$

where implicitly $v_t(\beta_i, z_t, a_{t-1}) = v(\beta_i, z_t, a_{t-1}, \{r_\tau, w_\tau\}_{\tau=t}^{\infty})$.

The household problem is discretized, and optimal savings function, a^* , is computed on sorted grids for β_i , z_t and a_{t-1} generically denoted $\mathcal{G}_x = \{x^0, x^1, \dots, x^{\#_{x-1}}\}$. The transition probabilities for z_t are denoted $\pi_{i_{z+1},i_z} = \Pr[z^{i_{z+1}}|z^{i_z}]$. Let \mathbf{D}_t denote the distribution of households in terms of the probability mass on each grid point (i.e. a discrete histogram). The following updating algorithm can now be used:

- 1. Set $\underline{D}_{t+1}(\beta^{i_{\beta+}}, z^{i_{z+}}, a^{i_{a+}}) = 0$ for all $i_{\beta+}, i_{z+}$ and i_{a+} .
- 2. For each i_{β} , i_z and i_{a+} :
 - (a) Find largest $\iota \in \{0, 1, \dots, \#_a 2\}$ such that $a^*(i_\beta, i_z, i_a) \geq a^{\iota}$.
 - (b) Calculate $\omega = \frac{a^{\iota+1} a^*(i_{\beta}, i_z, i_a)}{a^{\iota+1} a^{\iota}} \in [0, 1].$
 - (c) Increment $\underline{\boldsymbol{D}}_{t+1}(\beta^{i_{\beta}}, z^{i_{z}}, a^{\iota})$ with $\omega \boldsymbol{D}_{t}(\beta^{i_{\beta}}, z^{i_{z}}, a^{i_{a}})$
 - (d) Increment $\underline{\boldsymbol{D}}_{t+1}(\beta^{i\beta}, z^{iz}, a^{i+1})$ with $(1-\omega)\boldsymbol{D}_t(\beta^{i\beta}, z^{iz}, a^{ia})$
- 3. For each i_{β} , i_{z} and i_{a+} : $\mathbf{D}_{t+1}(\beta^{i_{\beta+}}, z^{i_{z+}}, a^{i_{a+}}) = \sum_{i_{z}=0}^{\#_{z}-1} \pi_{i_{z+}, i_{z}} \underline{\mathbf{D}}_{t+1}(\beta^{i_{\beta}}, z^{i_{z}}, a^{i_{a}})$

This algorithm first distributes probability mass from an existing point in \mathbf{D}_t , to the neighboring points of the optimal savings choice in the endogenous dimension, weighted by ω , to get the beginning-of-period distribution $\underline{\mathbf{D}}_t$. Second, it accounts for the transition to decision-relevant distribution, \mathbf{D}_{t+1} , by the exogenous transition probabilities, π_{i_z+,i_z} . In matrix form this is $\mathbf{D}_{t+1} = \Pi'_t \tilde{\Lambda}'_t \mathbf{D}_t$, where the $\tilde{\Lambda}_t$ is constructed from ι and ω , and Π_t is constructed from π_{i_z+,i_z} .

The aggregate supply of savings can be calculated as

$$A_t^{hh} = \int a_t^*(\beta_i, z_t, a_{t-1}) d\mathbf{D}_t$$

$$= \sum_{i_\beta} \sum_{i_z} \sum_{i_a} a_t^*(\beta_i, z_t, a_{t-1}) \mathbf{D}_t(\beta^{i_\beta}, z^{i_z}, a^{i_a})$$

$$= \mathbf{a}_t' \mathbf{D}_t$$
(13)

and aggregate consumption can be calculated as

$$C_t^{hh} = \int c_t^*(\beta_i, z_t, a_{t-1}) d\mathbf{D}_t$$

$$= \sum_{i_\beta} \sum_{i_z} \sum_{i_a} c_t^*(\beta_i, z_t, a_{t-1}) \mathbf{D}_t(\beta^{i_\beta}, z^{i_z}, a^{i_a})$$

$$= c_t' \mathbf{D}_t$$
(14)

Market clearing. Market clearing requires

Capital:
$$K_t = A_t^{hh}$$

Labour: $L_t = \int z_t dD_t = 1$
Goods: $Y_t = C_t^{hh} + K_t - K_{t-1} + \delta K_{t-1}$

Stationary equilibrium. The stationary equilibrium (steady state for aggregate variables) for a given Γ_{ss} is

- 1. Quantities K_{ss} and L_{ss} ,
- 2. prices r_{ss} and w_{ss} ,
- 3. a distribution D_{ss} over a_{t-1} and z_t
- 4. and policy functions $a_{ss}^*(z_t, a_{t-1})$ and $c_{ss}^*(z_t, a_{t-1})$

are such that

- 1. $a_{ss}^*(\bullet)$ and $c_{ss}^*(\bullet)$ solves the household problem with $\{r_{ss}, w_{ss}\}_{t=0}^{\infty}$
- 2. $D_{ss} = \Lambda'_{ss}D_{ss}$ is the invariant distribution implied by the household problem
- 3. Firms maximize profits, $r_{ss} = \alpha A_{ss} (K_{ss}/L_{ss})^{\alpha-1}$ and $w_{ss} = (1-\alpha)A_{ss} \left(\frac{r_t + \delta}{\alpha A_{ss}}\right)^{\frac{\alpha}{\alpha-1}}$
- 4. The labor market clears, i.e. $L_{ss} = \int z_{ss} dD_{ss} = 1$
- 5. The capital market clears, i.e. $K_{ss} = \int a_{ss}^*(\beta_i, z_t, a_{t-1}) dD_{ss}$
- 6. The goods market clears, i.e. $Y_{ss} = \int c_{ss}^*(\beta_i, z_t, a_{t-1}) dD_{ss} + \delta K_{ss}$

This is a root-finding problem, which can be solved as follows:

- 1. Guess on r_{ss}
- 2. Calculate w_{ss}
- 3. Solve the infinite horizon household problem
- 4. Simulate until convergence of D_{ss}
- 5. Calculate supply $A_{ss}^{hh} = \int a_{ss}^*(\beta_i, z_t, a_{t-1}) d\boldsymbol{D}_{ss}$
- 6. Calculate demand $K_{ss} = \left(\frac{r_{ss} + \delta}{\alpha Z_{ss}}\right)^{\frac{1}{\alpha 1}} L_{ss}$
- 7. If for some tolerance ϵ

$$\left| A_{ss}^{hh} - K_{ss} \right| < \epsilon$$

5

then stop, otherwise update r_{ss} appropriately and return to step 2

Transition path. In terms of the general formulation above, we can write the model in terms of

1. Shocks: $\mathbf{Z} = \{ \mathbf{\Gamma} \}$

2. Unknowns: $U = \{K\}$

3. Targets: $\{K_t - A_t^{hh}\}$ (asset market clearing)

4. Aggregate variables: $X = \{\Gamma, K, r, w, L, C, Y, A^{hh}, C^{hh}\}$

5. Household inputs: $\boldsymbol{X}_{t}^{hh} = \{\boldsymbol{r}, \boldsymbol{w}\}$

6. Household outputs: $\boldsymbol{Y}_{t}^{hh} = \{\boldsymbol{A}^{hh}, \boldsymbol{C}^{hh}\}$

This implies the equation system

$$\boldsymbol{H}(\boldsymbol{K}, \boldsymbol{\Gamma}) = \mathbf{0} \Leftrightarrow$$

$$\begin{bmatrix} K_t - A_t^{hh} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}, \ \forall t \in \{0, 1, \dots, T - 1\}$$

$$(15)$$

where we have

$$egin{aligned} L_t &= 1 \ r_t &= lpha \Gamma_t (K_{t-1}/L_t)^{lpha - 1} \ w_t &= (1 - lpha) \Gamma_t \left(rac{r_t + \delta}{lpha \Gamma_t}
ight)^{rac{lpha}{lpha - 1}} \ A_t^{hh} &= a_t' D_t \ D_{t+1} &= \Lambda_t D_t \ D_0 &= \Pi_{ss} \Lambda_{ss}' D_{ss} \end{aligned}$$

The sequence-space solution method described above can therefore be used to find the non-linear transition for an arbitrary sequence for for Γ_t . The full Jacobians can be written as

$$\boldsymbol{H}_{\boldsymbol{K}} = \mathcal{J}^{A^{hh},r} \mathcal{J}^{r,K} + \mathcal{J}^{A^{hh},w} \mathcal{J}^{w,K} - \boldsymbol{I}$$
(16)

$$\boldsymbol{H}_{\boldsymbol{Z}} = \mathcal{J}^{A^{hh},r} \mathcal{J}^{r,Z} + \mathcal{J}^{A^{hh},w} \mathcal{J}^{w,Z}$$

$$\tag{17}$$

where $\mathcal{J}^{A^{hh},\bullet}$ are the Jacobians of the household problem, which must be found numerically, and $\mathcal{J}^{\bullet,K}$ and $\mathcal{J}^{\bullet,Z}$ are the Jacobians of the firm block, which can in principle be found analytically.

1.3 Aggregate risk and simulation

The sequence-space solution method above was used to solve with *perfect foresight* with respect to all aggregate variables. The linearized impulse responses can, however, be shown

to also be the linearized impulse responses in a model with aggregate risk, where \mathbf{Z}_t is a $MA(\infty)$ process with coefficient $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation $\boldsymbol{\epsilon}_t$.

For a time series of the innovations, $\tilde{\epsilon}_t$, the resulting time series of the shocks and all endogenous variables can be computed with truncation by

$$d\tilde{\mathbf{Z}}_t = \sum_{s=0}^{T} d\mathbf{Z}_s \tilde{\boldsymbol{\epsilon}}_{t-s} \tag{18}$$

$$d\tilde{\boldsymbol{X}}_{t} = \sum_{s=0}^{T} d\boldsymbol{X}_{s} \tilde{\boldsymbol{\epsilon}}_{t-s}$$
(19)

where dX_s is the value of the impulse response function s periods after the shock has arrived.

To simulate a panel of household, we need to know how the policy functions change. Let $\partial \mathbf{a}_{i_g}^{\star}/\partial X_k^{hh}$ be the derivative of the policy function at grid point i_g to a k periods ahead shock to input X^{hh} . The impulse responses for each grind point then is then computed using the product rule

$$da_{i_g,s}^{\star} = \sum_{s'=s}^{T-1} \sum_{X^{hh} \in \mathbf{X}^{hh}} \frac{\partial a_{i_g}^{\star}}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

The time path of the policy can then be computed as

$$\boldsymbol{a}_{i_g}^{\star} = \sum_{s=0}^{T} da_{i_g,s}^{\star} \tilde{\boldsymbol{\epsilon}}_{t-s},$$

and a panel of households can be simulated using the standard updating rule for the distribution.

1.3.1 Simple Aiygari-model

Assume that Γ_t is an AR(1) process driven by Gaussian shocks with standard deviation σ then $d\mathbf{Z} = d\mathbf{\Gamma} = \begin{bmatrix} 1 & \rho & \rho^2 & \cdots \end{bmatrix}'$ and $\epsilon_t \sim \mathcal{N}(0,1)$ and the general formulate above applies.

2 Using the GEModelClass

The central tool in GEModelTools is the GEModelClass, which is an add-on to the basic EconModelClass (documented here). An example of the setup is shown in Listing 1. The three methods .settings(), .setup() and .allocate() are all called automatically when the model is created.

A model of the GEModelClass consists of the following list of namespaces:

- 1. Parameters: .par
- 2. Steady state: .ss
- 3. Transition path: .path
- 4. Simulation: .sim

The user is required to specify some variable lists in .settings() for:

1. Aggregate variables: .varlist.

Used as path. VARNAME.

2. Household grids: .grid_hh.

Used as par.VARNAME_grid.

3. Household inputs: .inputs_hh.

Must be in .varlist.

4. Household outputs: .outputs_hh.

Must not be in .varlist.

The aggregate variable $VARNAME.upper()_hh$ must be in .varlist_hh.

5. Household policy functions: .pols_hh.

Must be subset of .outputs_hh.

6. Household intertemporal variables: .pols_hh.

Must not be in .varlist.

7. Shocks: .shocks.

Should be in .varlist.

8. Unknowns: .unknowns.

Should be in .varlist.

9. Targets: .targets.

Should be in .varlist.

The user must choose the following **settings** in .setup():

- 1. Number of exogenous *fixed* states: par.Nfix
- 2. Number of exogenous *stochastic* states: par.Nz
- 3. **Number of grid points for endogenous variables:** par.Nendo1, par.Nendo2,... where endo1, endo2,..., is in .grids_hh
- 4. Length of transition period: par. T
- 5. Length of simulation: par.simT

```
6. For each shock in .shocks:
```

Initial jump: par.jump_SHOCKNAME

Persistence: par.rho_SHOCKNAME

Standard deviation: par.std_SHOCKNAME

7. Optional solver settings:

```
par.max_iter_solve, par.max_iter_simulate, par.max_iter_broyden
par.tol_solve, par.tol_simulate, par.tol_broyden
```

In .allocate() the internal method .allocate_GE() can now be called to allocate:

1. Exogenous grids and transition matrices:

```
par.z_grid_ss, shape=(par.Nz,)
par.z_trans_ss, shape=(par.Nz,)
```

par.z_ergodic_ss, shape=(par.Nz,)

par.z_grid_path, shape=(par.T,par.Nz)

par.z_trans_path, shape=(par.T,par.Nz,par.Nz)

Remark: path.z_trans_path[t] is the transition matrix from \underline{D}_t to D_t

2. Distribution:

```
ss.D, shape=sol_shape
path.D, shape=(par.T,*sol_shape)
sim.D, shape=(par.simT,*sol_shape)
```

3. Household outputs in .outputs_hh:

```
ss.OUTPUTNAME, shape=sol_shape
```

path.OUTPUTNAME, shape=(par.T,*sol_shape)

sim.OUTPUTNAME, shape=(par.simT,*sol_shape) (only .pols_hh)

Aggregated variables:

ss.OUTPUTNAME.upper()_hh, scalar

path.OUTPUTNAME.upper()_hh, shape=(par.T,)

sim.OUTPUTNAME.upper()_hh, shape=(par.simT,) (only .pols_hh)

sim.OUTPUTNAME.upper()_hh_from_D, shape=(par.simT,) (only .pols_hh)

4. Aggregate variables in .varlist:

```
ss.VARNAME, scalarpath.VARNAME
```

```
shape=(par.T,len(inputs_endo)×par.T)
```

sim.VARNAME, shape=(par.simT,)

Remark:

path.VARNAME[0,t] is the value in period t.

path.VARNAME[i,t] for i > 0 should be considered undefined behavior.

5. Household Jacobian, .jac_hh:

```
jac_hh[(OUTPUTNAME.upper()_hh,INPUTNAME)], each shape=(par.T,par.T)
```

6. Full Jacobian, . jac:

```
jac[(OUTPUTNAME,INPUTNAME)], each shape=(par.T,par.T)
```

7. Solution matrix:

```
H<sub>U</sub>: H<sub>L</sub>U, with shape shape=(par.T,par.T)
H<sub>Z</sub>: H<sub>L</sub>Z, with shape shape=(par.T,par.T)
G<sub>U</sub>: G<sub>L</sub>U, with shape shape=(par.T,par.T)
8. Impulse-responses of linearized model, .IRF:
        IRF[(OUTPUTNAME,SHOCKNAME)], each shape=(par.T,)
```

Finally, the user must also provide the following **methods**:

- 1. .create_grids() (method), which creates the grids for the endogenous variables, the grid and transition matrix for the exogenous variable, and compute guesses for all variables in .intertemps_hh() in .ss. This is called each time we solve for the steady state of the household problem (in .solve_hh_ss(), see below)
- 2. .find_ss() (method), which solves for the steady state, i.e. fills ss, and solve and simulate the household problem in steady state (call .solve_hh_ss() and . simulate_hh_ss(), see below).
- 3. .create_grids_path() (method), which creates the grid and the transition matrix for the exogenous variable along the transition path. Can rely on paths in .inputs_hh. This is called each time we solve the household problem backwards along the transition path (in .solve_hh_path(), see below).

Compared to the general model formulation above the code, currently, only allows for a structure with the household block and pre- and post-blocks. The user must provide the following **jitted**¹ **functions**:

- 1. Bellman iteration (function), .solve_hh_bakcwards_step() which iterates one step backwards in the household problem. Inputs must by: par and z_grid (grid for z in period t), z_trans_plus (transition matrix in t+1). All variables in .inputs_hh, .outputs_hh and .intertemps_hh. All variables in .intertemps_hh with suffice _plus.
- 2. Evaluate block before household block (function), .block_pre(). Inputs must be: (par,ss,path,ncols), where ncols is 1 or len(unknowns)×par.T, and the latter is used to evaluate the path simultaneously for all one step changes. After this block has been evaluated all paths in .inputs_hh must be filled.
- 3. Evaluate block after household block (function), .block_post(). Same requirements as .block_pre(). Can rely on paths in .ouputs_hh.

The following internal methods are **now available**:

1. .solve_hh_ss(): Solve household problem in steady state \rightarrow ss.VARNAME.

1

¹ The function should be decorated with @numba.njit.

- 2. .simulate_hh_ss(): Simulate household problem in steady state \rightarrow ss.D and ss.VARNAME.upper()_hh for all variables in .outputs_hh.
- 3. .solve_hh_path(): Solve household problem \rightarrow path.VARNAME
- 4. .simulate_hh_path(): Simulate household problem → path.D and path.VARNAME. upper()_hh for all variables in .outputs_hh.
- 5. .compute_jacs(skip_hh=False,skip_shocks=False): Compute the Jacobians → jac_hh, H_U, H_Z, and jac.
- 6. .find_transition_path(): Find transition path \rightarrow path.
- 7. .find_IRFs(reuse_G_U=False): Find linearized impulse-response \rightarrow IRF[VARNAME].
- 8. .simulate(skip_hh=False,reuse_G_U=False): Simulate $model \rightarrow sim.VARNAME$.

The default for the *impulses-responses* is to consider AR(1) shocks given by par.jump_VARNAME and par.rho_VARNAME. Both solution methods .find_transition_path() and .find_IRFs_path () also accepts a dictionary like shock_specs={dSHOCKE:CUSTOMPATH} as input, where CUSTOMPATH is an arbitrary path for the shocks for which to compute the solution.

The default for the *simulation* is to consider AR(1) shocks given by par.std_VARNAME and par.rho_VARNAME. The aggregated household variables also exists in a version with suffix _from_D, where the response is calculated by linearizing the policy function and then aggregating explicitely.

```
from EconModel import EconModelClass
   from GEModelTools import GEModelClass
 3
 4
   class MyModelClass(EconModelClass, GEModelClass):
 5
 6
       def settings(self):
 7
 8
           self.grids_hh = [] # grids
 9
           self.pols_hh = [] # policy functions
10
           self.inputs_hh = [] # inputs to hh problem
           self.outputs_hh = [] # output of hh problem
11
12
           self.intertemps_hh = [] # intertemporal variables in hh problem
13
14
           self.shocks = [] # exogenous inputs
15
           self.unknowns= [] # endogenous inputs
16
           self.targets = [] # targets
17
           self.varlist = [] # all variables
18
19
           self.solve_hh_backwards_step = solve_hh_backwards_step
20
           self.block_pre = block_pre
21
           self.block_post = block_post
22
23
       def setup(self):
24
25
           par = self.par
26
           par.Nfix = 1
27
           par.Nz = 2
28
           par.NVARNAME = 100 # number of grid points
29
           par.jump_VARNAME = -0.01 # initial jump
30
           par.rho_VARNAME = 0.8 # AR(1) coefficeint
31
           par.std_VARNAME = 0.01 # standard deviation
32
           par.T = 500 # length of path
33
           par.simT = 500 # length of simulation
34
35
       def allocate(self):
36
37
           self.allocate_GE()
38
39
       def find_ss(self): pass
40
       def create_grids(self): pass
41
       def create_grids_path(self): pass
42
```

Listing 1: Example: Setup

3 Efficient computation of the household Jacobian

In this section, we explain how the Jacobian of the household block can be computed efficiently. This algorithm is fully generic, and the package can be used without understanding this section in detail. Throughout the section we for simplicity assume $\Pi(X_t^{hh}) = \Pi_{ss}$, such that we have $D_0 = D_{ss}$ as given.²

The household block can be summarized as

$$\mathbf{Y}^{hh} = hh(\mathbf{X}^{hh}). \tag{20}$$

We are interested in finding the Jacobian around the steady state, i.e.

$$\mathcal{J}^{hh} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}.$$
 (21)

We let $\mathcal{J}^{hh,o,i}_{t,s}$ denote the derivative of output o to input i at time t for a shock at time s. Let $\boldsymbol{v}^{s,i}_{t}$, $\boldsymbol{D}^{s,i}_{t}$ and $\boldsymbol{Y}^{s,i}_{t}$ denote the solution to the equation system (3)-(6) when all inputs are at their steady state value except in period s, where there is an infinitesimal shock dx to input variable i. Let $\Lambda^{s,i}_{t} = \Lambda(\boldsymbol{v}^{s,i}_{t+1}, X^{s,i}_{t})$ and $\boldsymbol{y}^{s,i}_{t} = y(\boldsymbol{v}^{s,i}_{t+1}, X^{s,i}_{t})$ denote the transition matrix and the individual measures associated with this solution. We can therefore write

$$\boldsymbol{D}_{t}^{s,i} = \left(\Lambda_{t-1}^{s,i}\right)' \boldsymbol{D}_{t-1}^{s,i} \tag{22}$$

$$\boldsymbol{Y}_{t}^{s,i} = \left(\boldsymbol{y}_{t}^{s,i}\right)' \boldsymbol{D}_{t}^{s,i}. \tag{23}$$

Building blocks. The value function equation (3) is forward looking so $\boldsymbol{v}_t^{s,i} = \boldsymbol{v}_{ss}$ after the shock has arrived, i.e. for t > s. Additionally, only the time span until the shock arrives matter so $\boldsymbol{v}_t^{s,i} = \boldsymbol{v}_{t-1}^{s-1,i}$ when $t \leq s$. This carries over to $\Lambda_t^{s,i}$ and $\boldsymbol{y}_t^{s,i}$ such that for all $t, s \geq 1$

$$\mathbf{y}_{t}^{s,i} = \begin{cases} \mathbf{y}_{ss} & t > s \\ \mathbf{y}_{T-1-(s-t)}^{T-1,i} & t \leq s \end{cases} \text{ and } \Lambda_{t}^{s,i} = \begin{cases} \Lambda_{ss} & t > s \\ \Lambda_{T-1,i}^{T-1,i} & t \leq s \end{cases}.$$
 (24)

This implies that $\boldsymbol{y}_t^{s,i}$ and $\Lambda_t^{s,i}$ can be found for any t and s once $\boldsymbol{y}_t^{T-1,i}$ and $\Lambda_t^{T-1,i}$ is known for $t \in \{0,1,\ldots,T-1\}$, which only requires a single backwards iteration from a shock in period T-1 for each input.

For later use, we define the following objects:

 $^{^{2}}$ Should be generalized in future version.

$$\mathcal{Y}_{s}^{o,i} \equiv \frac{d\boldsymbol{Y}_{0}^{o,s,i}}{dx} = \frac{(d\boldsymbol{y}_{t}^{o,s,i})'}{dx} \boldsymbol{D}_{ss}$$
$$\mathcal{D}_{s}^{i} \equiv \frac{d\boldsymbol{D}_{1}^{s,i}}{dx} = \frac{(d\Lambda_{0}^{s,i})'}{dx} \boldsymbol{D}_{ss}$$
$$\mathcal{E}_{t}^{o} \equiv (\Lambda_{ss})^{t} \boldsymbol{y}_{ss}^{o},$$

where $\mathcal{Y}_s^{o,i}$ and \mathcal{D}_s^i are derivatives of the outputs and the distribution at respectively time 0 and time 1 to a shock at time s, and \mathcal{E}_t^o is an expectation vector. The cost of computing $\mathcal{Y}_s^{o,i}$ and \mathcal{D}_s^i for $s \in \{0, 1, \dots, T-1\}$ are similar to a full forward simulation for T periods. The cost of computing \mathcal{E}_s^o is negligible in comparison and can be done recursively, $\mathcal{E}_t^o = \Lambda_{ss}\mathcal{E}_{t-1}^o$ with $\mathcal{E}_0^o = \mathbf{y}_{ss}^o$.

The task is to build the full Jacobian from these building blocks. To do this, we first need to take the total derivative of equations (22) and (23) around the steady state,

$$d\mathbf{D}_{t}^{s,i} = \Lambda'_{ss} d\mathbf{D}_{t-1}^{s,i} + (d\Lambda_{t-1}^{s,i})' \mathbf{D}_{ss}$$
(25)

$$d\mathbf{Y}_t^{o,s,i} = (\mathbf{y}_{ss}^o)'d\mathbf{D}_t^s + (d\mathbf{y}_t^{o,s,i})'\mathbf{D}_{ss}.$$
 (26)

Edge of the Jacobian First consider the effect on output at time 0 from at shock at time s. We immediately have

$$\mathcal{J}_{0,s}^{hh,i,o} = \frac{dY_0^{o,s,i}}{dx} = \mathcal{Y}_s^{i,o}$$
 (27)

Next consider the effect on output at time $t \geq 1$ form a shock at time 0. Combining equation (25) with only the time span mattering in equation (24) implies for $t \geq 2$

$$dD_{t}^{0,i} = \Lambda'_{ss} dD_{t-1}^{0,i} + \underbrace{\left(d\Lambda_{t-1}^{0,i}\right)'}_{=0} D_{ss}$$

$$= \Lambda'_{ss} dD_{t-1}^{0,i}$$

$$= (\Lambda'_{ss})^{t-1} dD_{1}^{0,i}.$$
(28)

Combining (26) with only the time span mattering in equation (24), and the above equation (31) implies for $t \ge 1$,

$$dY_t^{o,0,i} = (\mathbf{y}_{ss}^o)' d\mathbf{D}_t^{0,i} + \underbrace{(d\mathbf{y}_t^{o,0,i})'}_{=0} \mathbf{D}_{ss} = (\mathbf{y}_{ss}^o)' d\mathbf{D}_t^{0,i} = (\mathbf{y}_{ss}^o)' (\Lambda'_{ss})^{t-1} d\mathbf{D}_1^{0,i}.$$
(29)

Combining equation (28) and (29) implies for $t \ge 1$

$$\mathcal{J}_{t,0}^{hh,i,o} = \frac{dY_t^{o,0,i}}{dx} = (\mathcal{E}_{t-1}^o)' \mathcal{D}_0^i$$
(30)

Inner parts of the Jacobian. Combining (25) with only the time span mattering in equation (24), implies for $t, s \ge 1$

$$d\boldsymbol{D}_{t+1}^{s,i} - d\boldsymbol{D}_{t}^{s-1,i} = \Lambda'_{ss} \left(d\boldsymbol{D}_{t}^{s,i} - d\boldsymbol{D}_{t-1}^{s-1,i} \right) + \underbrace{\left(d\Lambda_{t-1}^{s,i} - d\Lambda_{t-2}^{s-1,i} \right)'}_{=0} \boldsymbol{D}_{ss}$$

$$= \Lambda'_{ss} \left(d\boldsymbol{D}_{t}^{s,i} - d\boldsymbol{D}_{t-1}^{s-1,i} \right)$$

$$= (\Lambda'_{ss})^{2} \left(d\boldsymbol{D}_{t-2}^{s,i} - d\boldsymbol{D}_{t-2}^{s-1,i} \right)$$

$$= \vdots$$

$$= (\Lambda'_{ss})^{t-1} \left(d\boldsymbol{D}_{1}^{s,i} - \underline{d\boldsymbol{D}_{0}^{s-1,i}} \right)$$

$$= (\Lambda'_{ss})^{t-1} d\boldsymbol{D}_{1}^{s,i}$$

$$(31)$$

where $\boldsymbol{D}_0 = \boldsymbol{D}_{ss}$ implies $d\boldsymbol{D}_0^{s-1,i} = 0$ in the next to last line.

Combining (26) with only the time span mattering in equation (24), and the above equation (31), implies for $t, s \ge 1$

$$dY_{t}^{o,s,i} - dY_{t-1}^{o,s-1,i} = (\boldsymbol{y}_{ss}^{o})' \left(d\boldsymbol{D}_{t}^{s,i} - d\boldsymbol{D}_{t-1}^{s-1,i} \right) + \underbrace{\left(d\boldsymbol{y}_{t}^{o,s,i} - d\boldsymbol{y}_{t-1}^{o,s-1,i} \right)'}_{=0} \boldsymbol{D}_{ss}$$
(32)
$$= (\boldsymbol{y}_{ss}^{o})' \left(d\boldsymbol{D}_{t}^{s,i} - d\boldsymbol{D}_{t-1}^{s-1,o} \right)$$

$$= (\boldsymbol{y}_{ss}^{o})' \left(\Lambda'_{ss} \right)^{t-1} d\boldsymbol{D}_{1}^{s}$$

$$= (\mathcal{E}_{t-1}^{o})' d\boldsymbol{D}_{1}^{s,i}$$

Combining (31) and (32) for $t, s \ge 1$ implies

$$\mathcal{J}_{t,s}^{hh,i,o} - \mathcal{J}_{t-1,s-1}^{hh,i,o} = \frac{dY_{t}^{o,s,i} - dY_{t-1}^{o,s-1,i}}{dx} \Leftrightarrow
\mathcal{J}_{t,s}^{hh,i,o} = \mathcal{J}_{t-1,s-1}^{hh,i,o} + (\mathcal{E}_{t-1}^{o})' \mathcal{D}_{s}^{i}$$
(33)

Recursive formulation Define the object

$$\mathcal{F}_{t,s}^{i,o} = \begin{cases} \mathcal{Y}_s^{o,i} & t = 0\\ (\mathcal{E}_{t-1}^o)' \mathcal{D}_s^i & t \ge 1 \end{cases}$$
 (34)

Combining equations (27), (30) and (33), the household Jacobian can be written recursively by

$$\mathcal{J}_{t,s}^{i,o} = \sum_{k=0}^{\min\{t,s\}} \mathcal{F}_{t-k,s-k}^{i,o} \tag{35}$$

4 Additional features

The following methods are available:

```
    .show_IRFS((...)
        Show IRFs.
    .compare_IRFS(...)
        Compare IRFs across models.
    .print_unpack_varlist(...):
        Print unpacking of all variables for use in .block_pre(...) and .block_post(...).
    .test_hh_path(...):
        Test time-invariance when inputs are at their steady state values.
    .test_jac_hh(...):
        Compare Jacobians calculated with a direct and the fake news algorithm.
```

6. .test_path(...):

Test time-invariance when inputs are at their steady state values.

5 Troubleshooting

The transition path cannot be found. Considering the following

 $1. \ \, \text{Use finer tolerances for finding the steady state}$

```
par.tol_solve↓
par.tol_simulate↓
```

2. Extend the transition period

```
par.T↑
```

3. Decrease the size and persistence of the size

```
par.jump_VARNAME↓
par.rho_VARNAME↓
```

4. Change other parameters making the model more stable (e.g. more strict Taylor rule, less sticky prices/wages)

References

Auclert, A., Bardóczy, B., Rognlie, M., and Straub, L. (2021). Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models. *Econometrica*, 89(5):2375–2408.

Boppart, T., Krusell, P., and Mitman, K. (2018). Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative. *Journal of Economic Dynamics and Control*, 89:68–92.