Resolución de algunos ejercicios de la práctica 3 (tercera parte)

Continuidad

29. Sean las funciones
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$
 y $g(x) = x + 3$.

-a- ¿Es correcto decir que f = g?

-b- ¿Cómo son los límites $\lim_{x\to 2} f(x)$ y $\lim_{x\to 2} g(x)$? Justificar la respuesta.

-a-
$$f(x) \neq g(x)$$
, pues aunque $f(x) = \frac{x^2 + x - 6}{x - 2} = \frac{(x + 3)(x - 2)}{x - 2} = x + 3$ si $x \neq 2$, el $Dom(f) = \mathbb{R} - \{2\}$, mientras que $g(x) = x + 3$ tiene $Dom(g) = \mathbb{R}$.

-b- Por carácter local del límite, como f(x)=g(x) para todo $x\neq 2$ y $\lim_{x\to 2}g(x)=5$ entonces $\lim_{x\to 2}f(x)=5.$

30. Analizar la continuidad de cada una de las siguientes funciones en el punto x_0 indicado en cada caso.

-a- $f_1(x)=\left\{egin{array}{ll} x & ext{si } x<1 \\ 2-x & ext{si } x\geq 1 \end{array}\right.$, $(x_0=1).$ f_1 es continua en $x_0=1$ sí y sólo si existe $\lim_{x\to 1}f(x)=f(1).$ Observemos que $\lim_{x\to 1^-}x=1=\lim_{x\to 1^+}2-x$ luego existe límite en $x_0=1$ y coincide con f(1)=2-1=1, luego f_1 es continua en $x_0=1.$

-b- $f_2(x)=\left\{ egin{array}{ll} -4 & ext{si } x\leq 0 \\ \dfrac{1}{x+1} & ext{si } x>0 \end{array}
ight., \ (x_0=0). \ f_2 \ ext{es continua en } x_0=0 \ ext{si } y \ ext{sólo si existe} \lim_{x \to 0} f(x)=0 \ ext{si } x>0 \end{array}
ight.$

f(0). Observemos que $\lim_{x\to 0^-} -4 = -4 \neq \lim_{x\to 0^+} \frac{1}{x+1} = 1$ luego no existe límite en $x_0=0$, por lo tanto f_2 no es continua en $x_0=0$.

31. Dar un ejemplo de una función cuyo dominio sea el intervalo [0,1], que sea continua en el intervalo (0,1) pero no en el intervalo [0,1].

Podemos pensar en una función tal que sea continua en (0,1) pero $\lim_{x\to 1^-} f(x) \neq f(1)$ o bien $\lim_{x\to 0^+} f(x) \neq f(0)$.

Un ejemplo: $f(x) = \left\{ \begin{array}{ll} x & \text{si } 0 \leq x < 1, \\ 0 & \text{si } x = 1 \end{array} \right.$

32. Determinar los puntos de continuidad y clasificar las discontinuidades de las siguientes funciones:

-a- $f_1(x) = [x]$. La función [x] = k en cada intervalo [k, k+1) con $k \in \mathbb{Z}$, es constante y luego continua, pero no es continua en x = k para ningún $k \in \mathbb{Z}$ pues

$$\lim_{x \to k^{-}} [x] = k - 1 \neq \lim_{x \to k^{+}} [x] = k$$

Luego [x] presenta una discontinuidad inevitable de salto finito (uno) en cada $k \in \mathbb{Z}$. Por lo tanto [x] es continua $\mathbb{R} - \mathbb{Z}$.

-b-
$$f_2(x) = \begin{cases} \frac{2x^2 + 7x - 4}{x + 4} & \text{si } x \neq -4 \\ 3 & \text{si } x = -4 \end{cases}$$
.

La función f_2 está definida en todo \mathbb{R} . Si $x \neq -4$, $f_2(x) = \frac{2x^2 + 7x - 4}{x + 4} = \frac{(x + 4)(2x - 1)}{x + 4} = 2x - 1$ es continua por ser lineal. En x = -4, calculamos $\lim_{x \to -4} \frac{2x^2 + 7x - 4}{x + 4} \stackrel{CLL}{=} \lim_{x \to -4} 2x - 1 = -9 \neq f(-4) = 3$ luego f_2 presenta una discontinuidad evitable en x = -4. Por lo tanto f_2 es continua en $\mathbb{R} - \{-4\}$.

-c- $f_3(x) = \frac{x^2 + 2x - 3}{2x^2 - 6x + 4}$ es continua en su dominio $\mathbb{R} - \{2, 1\}$ por ser una función racional.

-d-
$$f_4(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & \text{si } x \neq 1 \\ -5 & \text{si } x = 1 \end{cases}$$

La función f_4 está definida en todo \mathbb{R} . En $\mathbb{R} - \{1\}$ es continua por ser una función racional. En x=1, calculamos $\lim_{x\to 1}\frac{x^3-1}{x-1}\stackrel{CLL}{=}\lim_{x\to 1}x^2+x+1=3\neq f_4(1)=-5$ luego f_4 presenta una discontinuidad evitable en x=1. Por lo tanto f_4 es continua en $\mathbb{R}-\{1\}$.

-e-
$$f_5(x) = \begin{cases} x^2 - 2 & \text{si } x \le 3\\ 2x + 1 & \text{si } x > 3 \end{cases}$$

 f_5 está definida en $\mathbb R$. En $(-\infty,3)$ es continua por ser una función cuadrática. En $(3,+\infty)$ es continua por ser lineal. En x=3, calculamos $\lim_{x\to 3^-} x^2-2=7=\lim_{x\to 3^+} 2x+1$ y coincide con $f_5(3) = 3^2 - 2 = 7$. Por lo tanto f_5 es continua.

33. Dadas las funciones

$$f_1(x) = \frac{x^2 - 4}{x - 2}, \qquad f_2(x) = \frac{|3 - x|}{x - 3}, \qquad f_3(x) = 0 \ \forall \ x \in \mathbb{R} \setminus \mathbb{Q},$$

determinar para cuáles de ellas se puede definir una función $F_i: \mathbb{R} \to \mathbb{R}$ continua tal que coincida con f_i , es decir,

$$F_i(x) = f_i(x) \quad \forall \ x \in Dom(f_i), \ i = 1, 2, 3.$$

-a- $f_1(x)=rac{x^2-4}{x-2}$ es continua en su dominio $\mathbb{R}-\{2\}$ por ser una función racional, además existe $\lim_{x o 2}f_1(x)=\lim_{x o 2}rac{x^2-4}{x-2}\stackrel{CLL}{=}\lim_{x o 2}x+2=4$, entonces podemos definir una función F_1 continua

en \mathbb{R} que coincida con f_1 en $\mathbb{R} - \{2\}$, como sigue:

$$F_1(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{si } x \neq 2\\ 4 & \text{si } x = 2 \end{cases}$$

-b- $f_2(x) = \frac{|3-x|}{x-3} = \operatorname{sgn}(x-3)$ con $\operatorname{Dom}(f_2) = \mathbb{R} - \{3\}$, como la función f_2 presenta una discontinuidad inevitable en x=3 (de salto finito) no es posible definir F_2 continua en \mathbb{R} que coincida con f_2 en $\mathbb{R} - \{3\}$.

☞34.

- -a- Probar que si f es una función continua en el punto x = a, entonces la función |f| también lo verifica.
- -b- Mostrar, mediante un ejemplo, que la afirmación recíproca no es cierta. Es decir, si |f| es continua en el punto x = a, no necesariamente f es continua en x = a.
- -a- Sea f es una función continua en x=a, es decir, $\lim_{x\to a} f(x)=f(a)$, por proposición 2, entonces $\lim_{x\to a} |f(x)| = |f(a)|$, luego |f| es continua en x=a.
- -b- La afirmación recíproca no es cierta, basta considerar $f(x) = \begin{cases} 1 & \text{si } x \geq 0 \\ -1 & \text{si } x < 0 \end{cases}$, resulta |f(x)| = 1es continua en a=0, pero f no es continua en a=0.

35. En los siguientes ejemplos se consideran dos funciones f y g. Hallar, en cada caso, la ley de la composición $h = f \circ g$ y analizar sus puntos de continuidad.

-a-
$$f(x) = x + 1$$
, $g(x) = x^2 - x$

-C-
$$f(x) = \sqrt{x}, g(x) = \frac{x+1}{x-1}.$$

-a-
$$f(x) = x + 1, g(x) = x^2 - x.$$

-b- $f(x) = \frac{x + |x|}{2}, g(x) = \begin{cases} x & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$

- -a- Sean f(x)=x+1 con $\mathrm{Dom}(f)=\mathbb{R}$ y $\mathrm{Rec}(f)=\mathbb{R}$ y $g(x)=x^2-x$ con $\mathrm{Dom}(g)=\mathbb{R}$ y $\operatorname{Rec}(g) = [-\frac{1}{4}, +\infty)$. La función compuesta $h = f \circ g$ tiene como $\operatorname{Dom}(h) = \{x \in \operatorname{Dom}(g) : g \in \operatorname{Dom}(g) : g \in \operatorname{Dom}(g) = \{x \in \operatorname{Dom}(g) : g \in$ $g(x) \in \mathrm{Dom}(f)$ = $\{x \in \mathbb{R} : g(x) \in \mathbb{R}\} = \mathbb{R}$, la ley es $h(x) = f(g(x)) = x^2 - x + 1$ resulta continua por ser polinómica ($h = f \circ g$ es continua en a sii g es continua en a y f es continua en g(a)).
- $\text{-b-} \quad \operatorname{Sean} f(x) = \frac{x + |x|}{2} = \begin{cases} 0 & \operatorname{si} x < 0 \\ x & \operatorname{si} x \geq 0 \end{cases} \\ \operatorname{con} \operatorname{Dom}(f) = \mathbb{R} \operatorname{y} \operatorname{Rec}(f) = \mathbb{R}_0^+ \operatorname{y} g(x) = \begin{cases} x & \operatorname{si} x < 0 \\ x^2 & \operatorname{si} x \geq 0 \end{cases} ,$ $con Dom(g) = \mathbb{R} y Rec(g) = \mathbb{R}$

Observemos que f es continua en \mathbb{R}^- por ser constante y en \mathbb{R}^+ por ser lineal y como $\lim_{n \to \infty} 0 = 0$ $0=\lim_{x\to 0^+}x=f(0)=0$, resulta entonces f continua.

g es continua en \mathbb{R}^- por ser lineal y en \mathbb{R}^+ por ser cuadrática y como $\lim_{x \to 0^-} x = 0 = \lim_{x \to 0^+} x^2 = 0$ g(0) = 0, resulta entonces g continua.

La función compuesta $h = f \circ g$ tiene como

$$\mathrm{Dom}(h) = \{x \in \mathrm{Dom}(g) : g(x) \in \mathrm{Dom}(f)\} = \{x \in \mathbb{R} : g(x) \in \mathbb{R}\} = \mathbb{R}$$

y la ley es

$$h(x) = f(g(x)) = \begin{cases} 0 & \text{si } g(x) < 0 \\ g(x) & \text{si } g(x) \ge 0 \end{cases} = \begin{cases} 0 & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$$

resulta continua en \mathbb{R}^- por ser constante y en \mathbb{R}^+ por ser cuadrática y además en 0 pues $\lim_{x\to 0^-}0=0=\lim_{x\to 0^+}x^2=h(0)=0$. Por lo tanto h es continua.

- **36.** Sea la función g definida por $g(x) = \frac{x-1}{\sqrt{x}-1}$.
- -a- Determinar su dominio.
- -b- Trazar la gráfica de la función g.
- -c- Calcular $\lim_{x \to 1} g(x)$.
- -d- ¿Es posible encontrar una función f continua en x=1 tal que f(x)=g(x) para todo $x\neq 1$? En caso afirmativo, escribir su ley.
- -a- Sea $g(x) = \frac{x-1}{\sqrt{x}-1}$, entonces el dominio es

$$Dom(g) = Dom(x-1) \cap \{x \in Dom(\sqrt{x}-1) : \sqrt{x} \neq 1\} = \mathbb{R} \cap (\mathbb{R}_0^+ - \{1\}) = \mathbb{R}_0^+ - \{1\}$$

-b- Para trazar la gráfica de la función g observemos que si $x \ge 0$ y $x \ne 1$, podemos escribir

$$g(x) = \frac{x-1}{\sqrt{x}-1} = \frac{(x-1)(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)} = \frac{(x-1)(\sqrt{x}+1)}{x-1} = \sqrt{x}+1$$

luego la G_g coincide con la gráfica de $\sqrt{x}+1$ si $x\neq 1$.

- -c- Siendo $g(x)=\sqrt{x}+1$ si $x\neq 1$, tenemos $\lim_{x\to 1}g(x)\stackrel{CLL}{=}\lim_{x\to 1}\sqrt{x}+1=2.$
- -d- ¿Es posible encontrar una función f continua en x=1 tal que f(x)=g(x) para todo $x\neq 1$? Si, es posible definir f continua tal que f(x)=g(x) para $x\neq 1$, como $f(x)=\sqrt{x}+1$ para todo $x\geq 0$.

37. Determinar el valor de $a \in \mathbb{R}$ tal que la función resulte continua en \mathbb{R} .

$$f(x) = \begin{cases} x^2 \operatorname{sen}(\frac{1}{x}) & \text{si } x \neq 0 \\ a & \text{si } x = 0 \end{cases}$$

La función f será continua en $\mathbb R$ si es continua en cada $x \in \mathbb R$.

Si, $x \neq 0$, como $f(x) = x^2 \sin \frac{1}{x}$ es el producto de x^2 (que es continua por ser polinómica) y $\sin \frac{1}{x}$ (que es continua por ser la composición de funciones continuas en $x \neq 0$), luego f resulta continua en $\mathbb{R} - \{0\}$.

Para ver la continuidad en x = 0,

$$\lim_{x \to 0} x^2 \frac{\text{acotada}}{\sin x} = 0 = f(0) = a.$$

Luego debe ser a=0, resultando f continua en \mathbb{R} . (Aunque como habíamos visto la función $\operatorname{sen}(\frac{1}{x})$ tiene una discontinuidad esencial en x=0).

38. Determinar los valores de a y b para los cuales se verifica

$$\lim_{x \to 0} \frac{\cos(ax^2) - b}{2x^4} = -1.$$

$$\lim_{x \to 0} \frac{\overbrace{\cos(ax^2) - b}^{2x^2}}{\underbrace{2x^4}_{0}} = -1 \Rightarrow \lim_{x \to 0} (\cos(ax^2) - b) = 0 \Rightarrow b = 1$$

Además, $a \neq 0$ pues sino $\lim_{x \to 0} \frac{\overbrace{\cos(ax^2) - 1}^{=1}}{2x^4} = \lim_{x \to 0} 0 = 0.$ Luego $\lim_{x \to 0} \frac{\cos(ax^2) - 1}{2x^4} = \lim_{x \to 0} \frac{(\cos(ax^2) - 1)(\cos(ax^2) + 1)}{(2x^4)(\cos(ax^2) + 1)} = \lim_{x \to 0} \frac{-\sin^2(ax^2)}{(2x^4)(\cos(ax^2) + 1)} = \lim_{x \to 0} \frac{\sin(ax^2)}{ax^2} \underbrace{\frac{\sin(ax^2)}{(ax^2)}}_{1} \underbrace{\frac{-a^2}{2(\cos(ax^2) + 1)}}_{2} = \frac{-a^2}{4} = -1 \Leftrightarrow a = \pm 2$

https://www.geogebra.org/classic/ezmze2x9

39. Determinar los valores $a, b \in \mathbb{R}$ tales que la función resulte continua en \mathbb{R} .

$$f(x) = \begin{cases} 2x & \text{si } x < 1\\ ax^2 + b & \text{si } 1 \le x \le 2\\ 4x & \text{si } x > 2 \end{cases}$$

La función f será continua en \mathbb{R} si es continua en cada $x \in \mathbb{R}$.

Si, x < 1, f(x) = 2x es continua por ser una función lineal.

Si, 1 < x < 2, $f(x) = ax^2 + b$ es continua por ser una función cuadrática.

Si, x > 2, f(x) = 4x es continua también por ser lineal.

Es continua en x = 1 sí y sólo si

$$\lim_{x \to 1^{-}} 2x = 2 = \lim_{x \to 1^{+}} ax^{2} + b = a + b = f(1)$$

Es continua en x=2 sí y sólo si

$$\lim_{x \to 2^{-}} ax^{2} + b = \frac{a(2)^{2}}{b} + \frac{b}{b} = f(2) = \lim_{x \to 2^{+}} 4x = 8$$

Luego f será continua en \mathbb{R} sí y sólo si

$$a+b=2$$
 y $4a+b=8 \Leftrightarrow a=2$ y $b=0$

https://www.geogebra.org/classic/k8jqszfz

Teoremas de valor intermedio

40. Dada la función $f:[-1,4]\to\mathbb{R}$ tal que

$$f(x) = \begin{cases} 3 & \text{si } -1 \le x < 0, \\ 2 - x^2 & \text{si } 0 \le x \le 4, \end{cases}$$

analizar si el teorema de Bolzano asegura la existencia de un punto $c\in (-1,4)$ tal que f(c)=0.

La función f está definida en [-1,4], veamos si verifica las hipótesis del Teorema de Bolzano, para ello: f es continua en $-1 \le x < 0$ por ser constante, es continua en $0 < x \le 4$ por ser cuadrática, pero no es continua en x = 0 pues

$$\lim_{x \to 0^{-}} 3 = 3 \neq \lim_{x \to 0^{+}} 2 - x^{2} = 2.$$

Sin embargo, f es continua en [0,4] pues $\lim_{x\to 0^+} 2-x^2=2=f(0)$, además $f(0)f(4)=2\cdot (-14)<0$ luego el Teorema de Bolzano asegura que

existe
$$c \in (0,4) \subset (-1,4)$$
 tal que $f(c) = 0$

- **41.** Considerar la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3 x^2 + 1$ para $x \in \mathbb{R}$.
- -a- Demostrar que existe un número $c \in [n, n+1]$ para algún $n \in \mathbb{Z}$ tal que f(c) = 0.
- -b- Aproximar c con un error menor que 0.01.
- -c- Probar que existe un número $\beta \in \mathbb{R}$ tal que $f(\beta) = 20$.

La función $f(x)=x^3-x^2+1$ es continua en todo \mathbb{R} , en particular lo es en cualquier intervalo [n,n+1] para todo $n\in\mathbb{Z}$.

a- Observamos que f(-1) = -1, f(0) = 1 y f continua en [-1,0] luego (TB)

existe
$$c \in (-1,0)$$
 tal que $f(c) = 0$

b- Por método de bisección, un número $c_{n+1}=\frac{a_n+b_n}{2}\in(a,b)=(-1,0)$ aproxima al cero c de la función f con error $|c_{n+1}-c|<\frac{b-a}{2^{n+1}}$, luego buscamos n tal que

$$\frac{b-a}{2^{n+1}} < 0.01 \Leftrightarrow \frac{0-(-1)}{2^{n+1}} < \frac{1}{100} \Leftrightarrow 100 < 2^{n+1}$$

basta considerar n=6 pues $100 < 2^7 = 128$.

c- Hallar β tal que $f(\beta)=20$, es equivalente a buscar β tal que $g(\beta)=f(\beta)-20=0$. $g(x)=x^3-x^2-19$ es continua en $\mathbb R$, luego en cualquier intervalo cerrado, además $g(3)=3^3-3^2-19=-1$ y $g(4)=4^3-4^2-19=29$ luego (TB) existe $\beta\in(3,4)$ tal que $g(\beta)=0$ o sea

existe
$$\beta \in (3,4)$$
 tal que $f(\beta) = 20$

****42.** Demostrar que existe un único número $c \in \mathbb{R}$ solución de la ecuación:

$$\cos x - \sqrt{x} = 0$$

Consideremos $f(x) = \cos x - \sqrt{x}$ definida y continua en \mathbb{R}_0^+ .

Busquemos un intervalo [a, b] en donde se pueda aplicar el Teorema de Bolzano.

•
$$f(0) = 1 > 0$$
 y $f(1) = \frac{1}{\cos 1} - \sqrt{1} < 0$

• f es continua en [0,1], pues lo es en todo su dominio por ser la resta de dos funciones continuas.

Luego, por el Teorema de Bolzano, existe $c \in (0,1)$ tal que f(c) = 0 o equivalentemente la ecuación $\cos x - \sqrt{x} = 0$ tiene una solución en (0,1).

¿Cómo podemos probar que esta solución es única?

Podemos observar que como $\cos x$ y $-\sqrt{x}$ son funciones estrictamente decrecientes en [0,1], resulta f estrictamente decreciente, por lo tanto f no tiene otra raíz en [0,1].

Además $-1 \le \cos x \le 1$ para todo x, y $\sqrt{x} > 1$ si x > 1, luego f(x) < 0 para todo $x \ge 1$, por lo tanto f no tiene otra raíz si $x \ge 1$.

- **33.** Un **punto fijo** de una función f es un número $\xi \in Dom(f)$ tal que $f(\xi) = \xi$.
- -a- Representar gráficamente una función continua $f:[0,1]\to\mathbb{R}$ tal que $\mathbf{Im}(f)\subseteq[0,1]$ y determinar gráficamente si f tiene un punto fijo.
- -b- ¿ Es posible trazar la gráfica de una función continua $f:[0,1]\to\mathbb{R}$ tal que su imagen está contenida en [0,1] y que no tenga un punto fijo?
- -c- Demostrar que si $f:[0,1]\to\mathbb{R}$ es una función continua, tal que $\mathbf{Im}(f)\subseteq[0,1]$, entonces f tiene un punto fijo.

Sugerencia: Aplicar el teorema de Bolzano a la función $g:[0,1]\to\mathbb{R}$, donde g(x)=f(x)-x.

a,b- https://www.geogebra.org/classic/wjjbzfn6

c- Sea $f:[0,1]\to\mathbb{R}$ una función continua, tal que $\mathrm{Rec}(f)\subseteq[0,1]$.

Definimos una función $g:[0,1]\to\mathbb{R}$, como g(x)=f(x)-x, entonces resulta:

$$-g(0)=f(0)-0\geq 0.$$
 Si $g(0)=0=f(0)$, entonces 0 es punto fijo de f (1). Sino, será $g(0)>0$.

$$-g(1)=f(1)-1\leq 0.$$
 Si $g(1)=0=f(1)-1$, entonces 1 es punto fijo de f (2). Sino, será $g(1)<0$.

-g continua en [0,1] por ser resta de funciones continuas.

Podemos aplicar (TB) a la función g(x) = f(x) - x, es decir,

existe
$$c \in (0,1)$$
 tal que $g(c) = 0 = f(c) - c$ (3).

Resultando en cualquiera de los casos (1), (2) o (3), que

existe
$$c \in [0,1]$$
 tal que $f(c) = c$

es decir la función

f tiene un punto fijo en [0,1]

44. Demostrar que si la función f es continua y no tiene ceros en el intervalo [a,b] entonces f(x)>0 para todo $x \in [a, b]$, o bien f(x) < 0 para todo $x \in [a, b]$.

Sea f una función continua y que no se anula en [a,b], debemos demostrar que $\forall x \in [a,b], f(x)$ es siempre positiva o siempre negativa.

Por contrarecíproco, suponemos que existen $x_1, x_2 \in [a, b]$ tales que $f(x_1)$ y $f(x_2)$ tienen signos distintos. Por ejemplo,

$$f(x_1) > 0$$
 y $f(x_2) < 0$

Como f es continua en [a,b], en particular, f es continua en $[x_1,x_2]\subseteq [a,b]$ y $f(x_1)f(x_2)<0$, luego por (TB)

existe
$$c \in (x_1, x_2)$$
 tal que $f(c) = 0$

pero esto contradice la hipótesis de que f no tiene ceros en [a, b]. Por lo tanto,

$$f(x) > 0$$
 para todo $x \in [a, b]$, o bien $f(x) < 0$ para todo $x \in [a, b]$

\infty45. En cada uno de los siguientes casos demostrar que la función f_i es estrictamente monótona en su dominio. Obtener su inversa (ley y dominio) y estudiar la continuidad de la misma.

-a-
$$f_1(x) = 2x - 5, x \in \mathbb{R}$$
.

-b-
$$f_2(x) = x^2 + 4, x \le 0.$$

$$-\text{c-} \quad f_3(x) = \left\{ \begin{array}{ll} 2x - 1 & \text{si } x \le 1, \\ x^2 & \text{si } 1 < x \le 3, \\ 3\sqrt{3x} & \text{si } x > 3. \end{array} \right.$$

Recordemos: Teorema (Continuidad de la función inversa). Si f es creciente y continua en un intervalo [a,b], entonces:

- 1- existe la función inversa f^{-1} definida sobre el intervalo [f(a), f(b)],
- 2- f^{-1} es creciente en [f(a), f(b)],
- 3- f^{-1} es continua en [f(a), f(b)].

Vale un teorema análogo para f decreciente y continua en [a, b].

-a- Sea $f_1(x)=2x-5$, $x\in\mathbb{R}$, con $\mathrm{Dom}(f_1)=\mathrm{Rec}(f_1)=\mathbb{R}$ f_1 es continua por ser lineal, además f_1 es estrictamente creciente pues

$$x_1 < x_2 \Rightarrow 2x_1 < 2x_2 \Rightarrow 2x_1 - 5 < 2x_2 - 5 \Rightarrow f_1(x_1) < f_1(x_2)$$

Entonces existe la inversa f_1^{-1} con

$$Dom(f_1^{-1}) = Rec(f_1) = \mathbb{R}$$
 y $Rec(f_1^{-1}) = Dom(f_1) = \mathbb{R}$

y la ley

$$f_1(x) = 2x - 5 = y \quad \Leftrightarrow \quad f_1^{-1}(x) = \frac{x+5}{2}$$

Por teorema de continuidad de la inversa, resulta f_1^{-1} estrictamente creciente y continua.

https://www.geogebra.org/classic/mmzu5x4v

-c- Sea
$$f_3(x) = \begin{cases} 2x - 1 & \text{si } x \le 1, \\ x^2 & \text{si } 1 < x \le 3, \\ 3\sqrt{3x} & \text{si } x > 3. \end{cases}$$
 con $\text{Dom}(f_3) = \mathbb{R}$

Continuidad, f_3 es continua, en efecto:

- $-f_3$ es continua en x < 1 por ser lineal.
- $-f_3$ es continua en 1 < x < 3 por ser cuadrática.
- $-f_3$ es continua en x > 3 por ser composición de continuas.
- $-f_3$ es continua en x=1 pues $\lim_{x\to 1^-} 2x-1=1=\lim_{x\to 1^+} x^2=f_3(1)$.
- f_3 es continua en x=3 pues $\lim_{x\to 3^-}x^2=9=\lim_{x\to 3^+}3\sqrt{3x}=f_3(3)$.

Monotonía, f_3 es estrictamente creciente pues:

- $-\operatorname{Si} x_1 < x_2 \le 1 \Leftrightarrow f_3(x_1) = 2x_1 1 < 2x_2 1 = f_3(x_2)$, o sea f_3 es estrictamente creciente en $(-\infty, 1]$.
- Si $1 < x_1 < x_2 \le 3 \Leftrightarrow f_3(x_1) = x_1^2 < x_2^2 = f_3(x_2)$, o sea f_3 es estrictamente creciente en (1,3].
- Si $3 < x_1 < x_2 \Leftrightarrow f_3(x_1) = 3\sqrt{3x_1} < 3\sqrt{3x_2} = f_3(x_2)$, o sea f_3 es estrictamente creciente en $(3, +\infty)$.
- Además, si $x_1 \le 1 < x_2 \le 3 < x_3 \Leftrightarrow f_3(x_1) = 2x_1 1 \le 1 < x_2^2 = f_3(x_2) \le 9 < 3\sqrt{3x_3} = f_3(x_3)$.

Entonces el

$$Rec(f_3) = (-\infty, 1] \cup (1, 9] \cup (9, +\infty) = \mathbb{R}$$

Luego existe la inversa f_3^{-1} con $\mathrm{Dom}(f_3^{-1}) = \mathrm{Rec}(f_3) = \mathbb{R}, \, \mathrm{Rec}(f_3^{-1}) = \mathrm{Dom}(f_3) = \mathbb{R}$ Y la ley

$$f_3(x) = \begin{cases} 2x - 1 & \text{si } x \le 1, \\ x^2 & \text{si } 1 < x \le 3, \\ 3\sqrt{3x} & \text{si } x > 3. \end{cases} \qquad f_3^{-1}(x) = \begin{cases} \frac{x + 1}{2} & \text{si } x \le 1, \\ \sqrt{x} & \text{si } 1 < x \le 9, \\ \frac{x^2}{27} & \text{si } x > 9. \end{cases}$$

Por teorema de continuidad de la inversa, resulta f_3^{-1} estrictamente creciente y continua

https://www.geogebra.org/classic/efwh4ruf

Y alejándonos las gráficas: https://www.geogebra.org/classic/wub2hxvw

