

Ciencia de la Computación

Sistemas Operativos

Docente Rosa Yuliana Gabriela Paccotacya Yanque

Laboratorio 6

Entregado el 28/09/2025

Fabricio Arián Messa Mandujano

Semestre VI 2025-2

"El alumno declara haber realizado el presente trabajo de acuerdo a las normas de la Universidad Católica San Pablo"

Laboratorio 6 - Algoritmos de planificación

Tabla de datos para Round Robin con su quántum:

Quántum	Avg Response Time	Avg Turnaround Time	Avg Waiting Time	Context Switches
1	0.75	12.75	8.25	15
2	1.50	12.75	8.25	9
4	3.25	11.75	7.25	5
8	4.75	9.25	4.75	3
16	4.75	9.25	4.75	3

Preguntas:

1. ¿Cómo afecta **q** al tiempo de respuesta y retorno promedio? ¿Por qué?

A medida que el quántum aumenta, el tiempo de respuesta promedio también aumenta, porque los procesos deben esperar más entre cada turno de ejecución, pero el tiempo de retorno promedio tiende a disminuir, porque los procesos pueden completarse en menos rondas cuando el quántum es grande.

2. ¿Qué efecto tiene **q** en el número de cambios de contexto?

El número de cambios de contexto disminuye drásticamente al aumentar el quántum y esto se debe porque los procesos pasan más tiempo ejecutando antes de ser interrumpidos.

3. ¿Existe un **q** óptimo en tu experimento? ¿Por qué ese valor parece "bueno"?

Los valores de quántum entre 8 y 16 consiguen bajos tiempos de retorno y menos cambios de contexto y esto mejora la eficiencia del sistema. Sin embargo, si el quántum es demasiado alto, la equidad entre procesos puede disminuir.

4. ¿Qué sucede cuando $\mathbf{q} \to 1$ (muy pequeño) y cuando $\mathbf{q} \to \mathbf{x}$ (muy grande)?

Cuando el quántum es muy pequeño, hay demasiados cambios de contexto y sobrecarga, pero cuando es muy grande, el Round Robin se comporta como un FCFS, favoreciendo procesos largos y perjudicando la respuesta de los cortos.

5. ¿Qué compromisos prácticos habría que considerar al elegir **q** en un sistema real?

El valor de quántum debe balancear la sobrecarga por cambios de contexto y la equidad para los usuarios, y un valor intermedio es ideal para la mayoría de sistemas operativos multitarea.

Screenshots

Quántum → 1

Quántum \rightarrow 2

	Robin (qua Llegada R				ultados: Respuesta	Retorn	Espera	
1 2 3 4				14 16 15 18				
P						12.7		
[0] Avera	l Robin - Di Pl[l]Pl Ige Waiting Ige Turnarou Ext Switches	[2]P2 Time: 8.2 Ind Time:	2[3] 25]P1[5]	P1[6]	-P3[7]	P3[8]P2[9]P2[10]P4[11]P4[12]P1[13]P1[14]P3[15]P2[16]P4[17]P4[18]

Quántum → 4

Round Robin (quantum=4) - Tabla de resultados: ID Llegada Rafaga Inicio Fin Respuesta Retorno	Espera
1 0 6 0 13 0 13 2 2 5 4 18 2 16 3 4 3 8 11 4 7 4 6 4 13 17 7 11	
Round Robin - Diagrama de Gantt:	 7.25 ?2[7]P2[8]P3[9]P3[10]P3[11]P1[12]P1[13]P4[14]P4[15]P4[16]P4[17]P2[18]

Quántum → 8

Quántum → 16

Conclusiones

El experimento muestra que el valor del quántum impacta significativamente el rendimiento y la eficiencia del algoritmo Round Robin. Entonces es recomendable elegir un quántum suficientemente grande para minimizar la sobrecarga, pero no tanto como para perder la equidad entre procesos. La experimentación y el tipo de carga de trabajo son fundamentales para encontrar el valor óptimo.