rnnpsycholing Japanese NPI (sentences with embedding and matrix shika)

Takashi Morita

目次

roduction	
ad data	
nbedded verb region	
Visualization	
Regressions	
TOP	
DAT	
ain verb region	
Visualization	
Regressions	
TOP	
DAT	

Introduction

We are looking for a 2x2x2 interaction of:

- presence vs. absence of the Japanese NPI $shika~(\ \ \ \ \ \ \)$ in the main clause.
- affirmativeness vs. negativeness of main verb
- $\bullet\,$ affirmativeness vs. negativeness of embedded verb

for each of the three grammatical cases (TOP, DAT) of the shika-attached NP.

e.g.

- TOP
 - 佐藤-{しか, は} 社長-が パーティ-に 友人-を {呼んだ, 呼ばなかった} と {思った, 思わなかった}。
 - Sato-{shika, TOP} CEO-NOM party-DAT friend-ACC {invited, didn't invite} that {thought, didn't think}.
- DAT
 - 同僚-{にしか, に} 佐藤は 社長-が パーティ-に 友人-を {呼んだ, 呼ばなかった} と {思った, 思わなかった}。

- colleague-{DAT-shika, DAT} Sato-TOP CEO-NOM party-DAT friend-ACC {invited, didn't invite} that {thought, didn't think}.

Why is this interesting?

- 1. A grammatical sentence with *shika* in the main clause must have a negative main verb.
 - A significant increase in surprisal of the affirmative main verbs must be predicted by the LSTM conditioned on the presence of *shika* if the learning is successful.
- 2. Negation of the embedded verb does not satisfy the shika's grammatical condition.
 - No significant increase in surprisal of the affirmative embedded verbs given *shika* is expected for a successful learner.
 - Nor significant interaction between the main and embedded verbs given *shika* is expected for a successful learner.

Load data

```
rm(list = ls())
library(tidyverse)
library(brms)
library(lme4)
library(lmerTest)
library(plotrix)
REGIONS = c('main_prefix', 'embedded_prefix', 'embedded_V', 'complementizer', 'main_V', 'end')
token_based_data_path = 'jp_shika_test_sentences_embedded_shika-in-main_surprisal-per-token.tsv'
data_token_based = read_tsv(token_based_data_path)
## Parsed with column specification:
## cols(
##
     sent_index = col_integer(),
##
     token_index = col_integer(),
     token = col_character(),
##
##
     region = col_character(),
##
     log_prob = col_double(),
     shika_case = col_character(),
##
     shika = col_character(),
##
     embed_V = col_character(),
##
##
     main_V = col_character(),
##
     surprisal = col_double(),
     LSTM = col_character()
##
## )
```

```
# Fill the initial surprisal by O.
data_token_based[is.na(data_token_based$surprisal),]$surprisal = 0
data_token_based$region = factor(data_token_based$region, levels=REGIONS)
data_region_based = data_token_based %>%
    group_by(sent_index, region, shika, embed_V, main_V, shika_case) %>%
        summarise(surprisal=sum(surprisal)) %>%
        ungroup() %>%
   mutate(
        shika=factor(shika, levels=c("shika", "no-shika")),
        embed_V=factor(embed_V, levels=c("affirmative", "negative")),
        main_V=factor(main_V, levels=c("affirmative", "negative")),
        shika_case=factor(shika_case, levels=c("TOP", "DAT"))
# Sum coding of the variables.
contrasts(data_region_based$shika) = "contr.sum"
contrasts(data_region_based$embed_V) = "contr.sum"
contrasts(data_region_based$main_V) = "contr.sum"
# Make sure that the dataframe is sorted appropriately.
# First by embed_V (affirmative vs. negative)
data_region_based = data_region_based[order(data_region_based$embed_V),]
# Then by main_V
data_region_based = data_region_based[order(data_region_based$main_V),]
# finally by sent_index
data_region_based = data_region_based[order(data_region_based$sent_index),]
```

Embedded verb region

Visualization

```
# Focus on the V (verb) region.
data_V = subset(data_region_based, region == 'embedded_V')

# Get difference in surprisal between shika vs. no-shika.
data_V_shika = subset(data_V, shika == 'shika')
data_V_no_shika = subset(data_V, shika == 'no-shika')
data_V_shika$surprisal_diff = data_V_shika$surprisal - data_V_no_shika$surprisal

# Visualize the difference in surprisal increase/dicrease between affirmative vs. negative verbs.
data_V_shika %>%
```


Regressions

TOP

```
summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: surprisal_diff ~ embed_V + (1 | sent_index)
      Data: sub_data
##
##
## REML criterion at convergence: 3978.9
##
## Scaled residuals:
       Min
                  1Q
                      Median
                                    ЗQ
## -2.59434 -0.57830 0.00579 0.58077 2.00527
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## sent_index (Intercept) 0.3973
                                    0.6303
## Residual
                           0.1357
                                    0.3683
## Number of obs: 2688, groups: sent_index, 672
##
## Fixed effects:
##
                 Estimate Std. Error
                                             df t value Pr(>|t|)
## (Intercept) -1.035e-01 2.533e-02 6.710e+02 -4.084 4.95e-05 ***
## embed_V1
               -3.755e-02 7.104e-03 2.015e+03 -5.285 1.39e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
            (Intr)
## embed_V1 0.000
   • Significant negative effect of embed_V (affirmativeness = 1).
       - Negative verbs cause more
DAT
sub_data = subset(data_V_shika, shika_case == 'DAT')
m = lmer(
```

+ (1 | sent_index)

```
data=sub_data
summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: surprisal_diff ~ embed_V + (1 | sent_index)
     Data: sub_data
##
## REML criterion at convergence: 1811.6
## Scaled residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -3.5575 -0.3278 0.0332 0.4594 2.8311
##
## Random effects:
## Groups
              Name
                          Variance Std.Dev.
## sent_index (Intercept) 0.2363
                                   0.4861
## Residual
                          0.1067
                                   0.3266
## Number of obs: 1536, groups: sent_index, 384
##
## Fixed effects:
##
                Estimate Std. Error
                                            df t value Pr(>|t|)
## (Intercept) -4.800e-01 2.617e-02 3.830e+02 -18.34 <2e-16 ***
              3.747e-01 8.334e-03 1.151e+03
## embed_V1
                                                 44.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
           (Intr)
## embed_V1 0.000
```

• Significant positive effect of embed_V (affirmativeness = 1).

Main verb region

Visualization

```
# Focus on the V (verb) region.
data_V = subset(data_region_based, region == 'main_V')

# Get difference in surprisal between shika vs. no-shika.
data_V_shika = subset(data_V, shika == 'shika')
```


- TOP
 - Increas in surprisal in every condition.
- DAT
 - Small but expected signs of changes.

Regressions

TOP

```
sub_data = subset(data_V_shika, shika_case == 'TOP')
m = lmer(
       surprisal_diff
           ~ embed_V * main_V
              + (embed_V + main_V | sent_index)
       data=sub_data
       )
summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## surprisal_diff ~ embed_V * main_V + (embed_V + main_V | sent_index)
     Data: sub_data
##
## REML criterion at convergence: 1604.5
##
## Scaled residuals:
              1Q Median
      Min
                             3Q
                                   Max
## -4.9448 -0.3444 -0.0138 0.3504 4.8049
##
## Random effects:
## Groups
                        Variance Std.Dev. Corr
             Name
## sent_index (Intercept) 0.13922 0.3731
             embed V1
                        0.01594 0.1262
##
                                         0.52
                        0.05716 0.2391
                                        -0.59 -0.18
##
             main_V1
## Residual
                        0.01922 0.1386
## Number of obs: 2688, groups: sent_index, 672
##
## Fixed effects:
##
                    Estimate Std. Error
                                             df t value Pr(>|t|)
## (Intercept)
                   ## embed_V1
                   0.268
## main_V1
                   -0.180980 0.009603 670.999659 -18.846 < 2e-16 ***
## embed_V1:main_V1 -0.015856 0.002674 670.999947 -5.929 4.87e-09 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
               (Intr) emb_V1 man_V1
## embed_V1
                0.451
## main_V1
              -0.559 -0.156
## embd_V1:_V1 0.000 0.000 0.000
   • No significant effect of embed_V (affirmativeness = 1).
   • Significant negative effect of main_V (affirmativeness = 1).
   • Significant negative interaction.
DAT
sub_data = subset(data_V_shika, shika_case == 'DAT')
m = lmer(
        surprisal_diff
            ~ embed_V * main_V
                + (embed_V + main_V | sent_index)
        data=sub_data
        )
summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## surprisal_diff ~ embed_V * main_V + (embed_V + main_V | sent_index)
##
      Data: sub_data
##
## REML criterion at convergence: 600.4
##
## Scaled residuals:
                1Q Median
       Min
                                 3Q
                                        Max
## -4.5474 -0.3487 -0.0140 0.3562 3.0530
##
## Random effects:
                            Variance Std.Dev. Corr
##
    Groups
               Name
    sent_index (Intercept) 0.068481 0.26169
##
               {\tt embed\_V1}
                            0.008776 0.09368
##
                                               0.25
                            0.032726 0.18090 -0.56 -0.49
##
               main_V1
                            0.026540 0.16291
## Residual
```

Number of obs: 1536, groups: sent_index, 384

```
##
## Fixed effects:
##
                      Estimate Std. Error
                                                  df t value Pr(>|t|)
                                 0.013986 382.999963 -10.62
## (Intercept)
                     -0.148561
                                                               <2e-16 ***
## embed_V1
                                 0.006335 383.000063 -24.30
                     -0.153967
                                                               <2e-16 ***
## main_V1
                      0.337250
                                 0.010124 383.000058
                                                       33.31
                                                               <2e-16 ***
## embed_V1:main_V1
                      0.110475
                                 0.004157 382.999925
                                                       26.58
                                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
               (Intr) emb_V1 man_V1
## embed_V1
                0.182
## main_V1
               -0.489 -0.337
## embd_V1:_V1 0.000 0.000 0.000
```

- Significant negative effect of embed_V (affirmativeness = 1).
- Significant positive effect of main_V (affirmativeness = 1).
- Significant positive interaction.