S.E. (E&TC/ Electronics)

DIGITAL ELECTRONICS

(204185) (2012 Course)

111	ne:	2 Hours] [Max. Marks:	[Max. Marks: 50	
Inst	ructi	ons to the candidates:		
	1)	Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10, Q.11 of Q.12.	r	
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.		
	<i>3</i>)	Figures to the right indicate full marks.		
	,	Assume suitable data, if necessary.		
	5)	Use of logarithmic tables, slide rule and electronic non programmable calculator is allowed.		
Q1	a.	Explain following characteristics of digital ICs		
		1. Noise margin		
		2. Fan in & Fan out	02	
	b	Simplify and implement following expression using K-map.		
		$Y=\sum m (1,5,6,7,11,12,13,15)$	04	
		OR		
Q2	a	Draw CMOS circuit for NOR gate.	02	
		Design and implement following function using 4:1 multiplexer		
		$F = \sum m(1,3,4,5)$	04	
Q3	а	Draw and explain TTL to CMOS interface.	04	
	b	What do you mean by multiplexure tree? Explain.	02	
		OR		
Q4	а	Give comparisons between TTL. ECL and CMOS logic families.	04	

	b	What do you mean by priority encoder?	02
Q5	а	Draw and explain SR Flip Flop using NAND gates.	02
	b	Convert D to T flipflop	04
		OR	
Q6	а	What is clock skew and clock jittering in synchronous circuits?	02
	b	Design a mod-6 synchronous counter.	04
Q7	а	Compare Mealy machine with Moore machines.	02
	b	Design a sequence detector to detect the sequence 110, using JK flip-flops. Use Mealy Machine	04
		OR	
Q8		Reduce following state diagram 0/0 a 1/0 0/0 1/0 1/0 0/0 e 1/1 1/1	06
Q9	а	Draw and explain CPLD with it's block diagram.	06
	b	Design seven-segment decoder using PLA.	07
		OR	
Q10	a	Differentiate between static and dynamic RAM?	04

03

Compare between different types of PLDs.

	С	Implement following function using PLA	
		$F_1(A, B, C) = \sum M(0, 2, 5, 7)$	
		$F_2(A, B, C) = \sum M(2, 3, 4, 5)$	06
Q11	а	Differentiate between signals and variables.	04
	b	What is a structural type of modeling? Explain with an example	04
	С	Write VHDL code for 3:8 decoder using case statement	05
		OR	
Q12	а	Explain architecture with different modeling styles.	06
	b	Explain the difference between concurrent and sequential statements.	04
	C	Explain loop statement with example.	03