7. Протоколы электронной цифровой подписи

- 7.1. Общие сведения.
- 7.2. Протокол на базе RSA.
- 7.3. Алгоритм цифровой подписи ГОСТ 34.10-94.
- 7.4. Алгоримтм цифровой подписи ГОСТ Р 343.10-2001 и ГОСТ Р 34 10-2012.
- 7.5. Разновидности ЭЦП.
- 7.6. Юридические основания использования ЭЦП.

Вопросы для самопроверки.

7.1. Общие сведения

Протоколы ЭЦП с одной стороны относят к протоколам аутентификации, т.к. гарантируют, что сообщение поступило от достоверного отправителя, а с другой стороны к протоколам контроля целостности, т.к. гарантируют, что сообщение пришло в неискаженном виде. Более того, получатель в дальнейшем может использовать ЭЦП как доказательство достоверности сообщения третьим лицам (арбитру) в том случае, если отправитель впоследствии попытается отказаться от него.

Говоря о схеме цифровой подписи, обычно имеют в виду следующую классическую ситуацию:

- отправитель знает содержание сообщения, которое он подписывает;
- получатель, зная открытый ключ проверки подписи, может проверить правильность подписи полученного сообщения в любое время без какого-либо разрешения и участия отправителя;
- безопасность схемы подписи гарантируется.

Электронная цифровая подпись – реквизит электронного документа, предназначенный для защиты данного документа от подделки, полученный в результате криптографического преобразования информации с использованием закрытого ключа ЭЦП и позволяющий идентифицировать владельца сертификата ключа подписи, а также установить отсутствие искажения информации в электронном документе.

Электронная цифровая подпись — информация в электронной форме, которая присоединена к другой информации в электронной форме (подписываемой информации) или иным образом связана с такой информацией и которая используется для определения лица, подписывающего информацию.

[Электронная цифровая] подпись — строка бит, полученная в результате процесса формирования подписи (ISO/IEC 14888-1:2008 "Информационные технологии. Методы защиты. Цифровые подписи с приложением. Часть 1. Общие положения" и ГОСТ Р 34.10-2012 "Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи").

При создании цифровой подписи по классической схеме отправитель:

- применяет к исходному сообщению T хеш-функцию h(T) и получает хеш-образ r сообщения;
- вычисляет цифровую подпись **s** по хеш-образу **r** с использованием своего закрытого ключа;
- посылает сообщение **T** вместе с цифровой подписью **s** получателю.

Получатель, отделив цифровую подпись от сообщения, выполняет следующие действия:

- применяет к полученному сообщению ${f T}$ хеш-функцию ${f h}({f T})$ и получает хешобраз ${f r}$ сообщения;
- расшифровывает хеш-образ ${\bf r}'$ из цифровой подписи ${\bf s}$ с использованием открытого ключа отправителя;
- проверяет соответствие хеш-образов ${\bf r}$ и ${\bf r}'$ и если они совпадают, то отправитель действительно является тем, за кого себя выдает, и сообщение при передаче не подверглось искажению.

Как видно из этой схемы, порядок использования ключей обратный тому, который используется при передаче секретных сообщений. Вначале отправитель использует свой закрытый ключ, а затем получатель применяет открытый ключ отправителя.

Существует несколько схем ЭЦП, которые, как правило, применяются совместно с определенными хеш-функциями. Некоторые из них приведены в таблице.

Таблица 7.1. Схемы ЭЦП

Схема цифровой подписи	Задача	Хеш-функция
RSA	Разложение числа на множители	MD4 или MD5 (Message Digest Algorithm - алгоритм краткого изложения сообщения, Р. Ривест)
DSS (NIST ¹ . FIPS Publication 186: Digital Signature Standard (DSS). May 1994) DSS – Федеральный стандарт цифровой подписи США	Дискретное логарифмирование	SHA-1 (NIST. FIPS Publication 180: Secure Hash Standard (SHS). May 1993) SHS – стандарт хэш- функции США SHA - Secure Hash Algorithm – алгоритм хеш-функции
ECDSA (Elliptic Curve Digital Signature Algorithm) - алгоритм цифровой подписи на эллиптических кривых Принят в качестве стандарта ISO ² 14888-3 в 1998 г., ANSI ³ X9.62 – 1999 г., IEEE ⁴ 1363 – 2000 г. и NIST 186-2 – 2000 г. (последняя редакция – NIST. FIPS Publication 186-3: Digital Signature Standard (DSS). June 2009)	Дискретное логарифмирование в группе точек эллиптической кривой	SHA (NIST. FIPS 180-3: Secure Hash Standard (SHS). October 2008)
ГОСТ 34.10-94 (Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма)	Дискретное логарифмирование	ГОСТ 34.11-94 (Информационная технология. Криптографическая защита информации. Функция хэширования)
ГОСТ Р 34.10-2001 (Информационная технология. Криптографическая защита информации. Процессы формирования и проверки	Дискретное логарифмирование в группе точек эллиптической кривой	ГОСТ 34.11-94 (Информационная технология. Криптографическая защита

электронной цифровой подписи)		информации. Функция хэширования)
ГОСТ Р 34.10-2012 (Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи)	Дискретное логарифмирование в группе точек эллиптической кривой	ГОСТ Р 34.11-2012 (Информационная технология. Криптографическая защита информации. Функция хэширования)

Примечания.

- ¹NIST Национальный Институт стандартов и технологий, США (The National Institute of Standards and Technology).
- ²ISO Международная организация по стандартизации (International Organization for Standardization).
 - ³ANSI Американский национальный институт стандартов (American National Standards Institute).
- ⁴IEEE Институт инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers).

7.2. Протокол на базе RSA

- Этап 1. Выработка ключей (выполняет отправитель \mathbf{A}) см. лекцию "Шифрование с открытым ключом".
 - Этап 2. Отправка сообщения и электронной подписи (выполняет отправитель A).

Таблица 7.2. Отправка сообщения и ЭЦП на базе алгоритма RSA

№ π/π	Описание операции	Пример
1	Вычисление хеш-образа $\mathbf{h} = \mathbf{h}(\mathbf{T})$, где \mathbf{T} – исходное сообщение, $\mathbf{h}(\mathbf{T})$ – хеш-функция (для MD5 длина хеш-образа 128 бит).	h = 7
2	Выработка цифровой подписи $\mathbf{s} = \mathbf{h}^{d} \mod n$, где $\mathbf{d} - $ закрытый ключ отправителя \mathbf{A} , $\mathbf{n} - $ часть открытого ключа отправителя \mathbf{A} .	
3	Отправка получателю B исходного сообщения T и цифровой подписи \mathbf{s} .	

Этап 3. Получение сообщения и проверка электронной подписи (выполняет получатель В).

Таблица 7.3. Получение сообщения и проверка ЭЦП на базе алгоритма RSA

№ п/п	Описание операции	Пример
1	Вычисление хеш-образа по полученному сообщению $\mathbf{h'} = \mathbf{h}(\mathbf{T'})$, где $\mathbf{T'} - \mathbf{m}$ полученное сообщение. Если $\mathbf{T} = \mathbf{T'}$, то должно быть $\mathbf{h} = \mathbf{h'}$.	h' = 7
2	Вычисление хеш-образа из цифровой подписи $\mathbf{h} = \mathbf{s}^{\mathbf{e}} \bmod n$, где \mathbf{e} и \mathbf{n} — открытый ключ отправителя \mathbf{A} .	$h = 63^5 \bmod 91 = 7$
3	T .к. $h' = h$, то получатель ${\bf B}$ делает вывод, что полученное сообщение T' $= T$ и оно действительно отправлено ${\bf A}$.	

7.3. Алгоритм цифровой подписи ГОСТ 34.10-94

Алгоритм цифровой подписи ГОСТ 34.10-94 похож на DSS-94, вариация на тему алгоритмов Шнорра и Эль-Гамаля.

Этап 1. Выработка ключей (выполняет отправитель А).

Таблица 7.4. Выработка ключей для ЭПЦ по ГОСТ 34.10-94

№ п/п	Описание операции	Пример
1	Выбор p - простого числа (для ГОСТ $509 битов, либо 1020 битов).$	p = 79
2	Выбор q - простого числа - множителя $(p-1)$ (для ГОСТ $254 < q < 256$ битов).	q = 13
3	Выбор a - любого числа, меньшего $(p-1)$, для которого $a^q \mod p = 1$.	$8^{13} \mod 79 = 1,$ a = 8
4	Выбор закрытого ключа х - числа, меньшего q.	x = 4
5	Вычисление открытого ключа $\mathbf{y} = \mathbf{a}^{\mathbf{x}} \bmod \mathbf{p}$.	$y = 8^4 \mod 79$ $= 67$
6	Публикация ключей. Первые три параметра p , q и a - открыты и могут совместно использоваться пользователями сети, y – персональный открытый ключ для одного пользователя, x – персональный закрытый ключ отправителя A .	

Этап 2. Отправка сообщения и электронной подписи (выполняет отправитель А).

Таблица 7.5. Отправка сообщения и ЭЦП по ГОСТ 34.10-94

№ п/п	Описание операции	Пример
1	Вычисление хеш-образа $\mathbf{h} = \mathbf{h}(T)$ (для ГОСТ длина хеш-образа 256 бит).	h = 7
2	Выбор ${f k}$ - любого числа, меньшего ${f q}$.	k = 11
3	Вычисление двух значений: $\mathbf{w} = \mathbf{a}^k \mod p$ и $\mathbf{w}' = \mathbf{w} \mod q$ (для ГОСТ длина \mathbf{w}' 256 бит). Если $\mathbf{w}' = 0$, перейти к этапу 2 и выбрать другое значение числа \mathbf{k} .	$w = 8^{11} \mod 79 = 21$ $w' = 21 \mod 13 = 8$
4	Вычисление $\mathbf{s} = (\mathbf{x} \ \mathbf{w}' + \mathbf{k} \ \mathbf{h}) \ mod \ q$ (для ГОСТ длина $\mathbf{s} \ 256 \ бит$). Если $\mathbf{s} = 0$, перейти \mathbf{k} этапу 2 и выбрать другое значение числа \mathbf{k} .	$s = (4*8 + 11*7) \mod 13 = 5$
5	Отправка получателю B исходного сообщения T и цифровой подписи (\mathbf{w} ', \mathbf{s}).	

Этап 3. Получение сообщения и проверка электронной подписи (выполняет получатель В).

Таблица 7.6. Получение сообщения и проверка ЭЦП по ГОСТ 34.10-94

№ п/п	Описание операции	Пример
1	Вычисление хеш-образа по полученному сообщению $\mathbf{h'} = \mathbf{h}(\mathbf{T'})$. Если $\mathbf{T} = \mathbf{T'}$, то должно быть $\mathbf{h} = \mathbf{h'}$.	h' = 7
2	Вычисление $\mathbf{v} = \mathbf{h}^{, q-2} \mod q$.	$v = 7^{11} \mod 13 = 2$
3	Вычисление двух значений: $\mathbf{z_1} = (s \ v) \ \text{mod} \ q \ u \ \mathbf{z_2} = ((q - w') \ v) \ \text{mod} \ q.$	$z_1 = (5 * 2) \mod 13 = 10$ $z_2 = ((13 - 8) * 2)$ $\mod 13 = 10$
4	Вычисление $\mathbf{u} = ((a^{z1} * y^{z2}) \mod p) \mod q$.	$u = ((8^{10} * 67^{10}) \bmod 79) \bmod 13 = 8$
5	T .к. $w' = u$, то получатель \mathbf{B} делает вывод, что полученное сообщение $T' = T$ и оно действительно отправлено \mathbf{A} .	

7.4. Алгоримтм цифровой подписи ГОСТ Р 343.10-2001 и ГОСТ Р 34 10-2012

Алгоритмы цифровой подписи ГОСТ Р 34.10-2001 и ГОСТ Р 34.10-2012 совпадают и похожи на ECDSA.

Этап 1. Выработка ключей (выполняет отправитель **A**) - см. Лекцію «Шифрование с открытым ключом».

Этап 2. Отправка сообщения и электронной подписи (выполняет отправитель А).

Таблица 7.7. Отправка сообщения и ЭЦП по ГОСТ 34.10-2001 (34.10-2012)

№ п/п	Описание операции	Пример
1	Вычисление хеш-образа $\mathbf{h} = \mathbf{h}(\mathbf{T})$ (для ГОСТ длина хеш-образа 256 бит).	h = 7
2	Вычисление $\mathbf{e} = \mathbf{h} \mod \mathbf{q}$, где $\mathbf{q} - \text{часть открытого ключа}$ отправителя \mathbf{A} .	e = 7 mod 47 = 7
3	Выбор k - любого числа, меньшего q.	k = 11
4	Определение точки эллиптической кривой $\mathbf{C}(\mathbf{x_c},\mathbf{y_c}) = \mathbf{k} \ \mathbf{P}(\mathbf{x_p},\mathbf{y_p})$, где $\mathbf{P}(\mathbf{x_p},\mathbf{y_p})$ – часть открытого ключа отправителя \mathbf{A} .	C = 11 * P(7, 17) = (16, 16)
5	Вычисление $\mathbf{r} = x_c \mod q$. Если $r = 0$, перейти к этапу 2 и выбрать другое значение числа k .	$r = 16 \mod 47 = 16$
6	Вычисление \mathbf{s} = (r d + k e) mod q, где \mathbf{d} - закрытый ключ отправителя \mathbf{A} . Если \mathbf{s} = 0, перейти к этапу 2 и выработать другое значение числа k.	s = (16*10 + 11*7) $mod 47 = 2$
7	Отправка получателю B исходного сообщения T и цифровой подписи (\mathbf{r}, \mathbf{s}) .	

Этап 3. Получение сообщения и проверка электронной подписи (выполняет получатель В).

Таблица 7.8. Получение сообщения и проверка ЭЦП по ГОСТ 34.10-2001 (34.10-2012)

№ п/п	Описание операции	Пример
1	Вычисление хеш-образа по полученному сообщению $\mathbf{h'} = \mathbf{h}(\mathbf{T'})$. Если $\mathbf{T} = \mathbf{T'}$, то должно быть $\mathbf{h} = \mathbf{h'}$.	h' = 7
2	Вычисление e' = h' mod q.	$e' = 7 \mod 47 = 7$
3	Вычисление $\mathbf{v} = \mathbf{e}^{'-1} \mod q$. $(\mathbf{e}^{'} * \mathbf{e}^{'-1}) \mod q = 1$.	$e^{'-1} = 27$ v = 27 mod 47 = 27
4	Вычисление двух значений: $\mathbf{z_1} = (s \ v) \ \text{mod} \ q \ u \ \mathbf{z_2} = ((q - r) \ v) \ \text{mod} \ q.$	$z_1 = (2 * 27) \mod 47 = 7$ $z_2 = ((47 - 16) * 27) \mod 47 = 38$
5	Определение точки эллиптической кривой $\mathbf{C}'(\mathbf{x}_{c'}, \mathbf{y}_{c'}) = \mathbf{z}_1 \ \mathbf{P}(\mathbf{x}_p, \mathbf{y}_p) + \mathbf{z}_2 \ \mathbf{Q}(\mathbf{x}_q, \mathbf{y}_q)$, где $\mathbf{Q}(\mathbf{x}_q, \mathbf{y}_q)$ – часть открытого ключа отправителя \mathbf{A} .	C' = 7 P(7, 17) + 38 Q(36, 20) = (22, 26) + (11, 31) = (16, 16)
6	Вычисление $\mathbf{r'} = \mathbf{x_{c'}} \mod \mathbf{q}$.	r' = 16 mod 47 = 16
7	T .к. $r' = r$, то получатель \mathbf{B} делает вывод, что полученное сообщение $T' = T$ и оно действительно отправлено \mathbf{A} .	

7.5. Разновидности ЭЦП

Кроме классической схемы ЭЦП различают еще несколько специальных :

- схема "конфиденциальной" (неотвергаемой) подписи подпись не может быть проверена без участия сгенерировавшего ее лица;
- схема подписи "вслепую" ("затемненной" подписи) отправитель не знает подписанного им сообщения;
- схема "мультиподписи" вместо одного отправителя сообщение подписывает группа из нескольких участников;
- схема "групповой" подписи получатель может проверить, что подписанное сообщение пришло от члена некоторой группы отправителей, но не знает, кем именно из членов группы оно подписано. В тоже время, в случае необходимости, отправитель может быть определен;
- и др.

7.6. Юридические основания использования ЭЦП

В системах, где число пользователей исчисляется сотнями и тысячами, для проверки ЭЦП используются так называемые сертификаты ЭЦП (ЭП).

Сертификат ЭЦП – открытый ключ с некоторой дополнительной информацией о его владельце (регистрационный номер сертификата, ФИО владельца, срок действия и т.д.), подписанный ключом **Центра сертификации** (ЦС, Certificate Authority, CA, Удостоверяющий центр, УЦ).

Сертификат ключа проверки электронной подписи – электронный документ или документ на бумажном носителе, выданные УЦ либо доверенным лицом удостоверяющего центра и подтверждающие принадлежность ключа проверки ЭП владельцу сертификата ключа проверки ЭП.

Квалифицированный сертификат ключа проверки электронной подписи — сертификат ключа проверки ЭП, выданный аккредитованным УЦ или доверенным лицом аккредитованного УЦ либо федеральным органом исполнительной власти, уполномоченным в сфере использования ЭП.

При получении документа, подписанного ЭЦП, вначале подается запрос в ЦС, который высылает сертификат ЭЦП, информацию об окончании срока его действия или информацию об отсутствии сертификата. Если ЦС выслал сертификат, то считается, что документ послал именно тот, кто указан в сертификате. Для автоматизации деятельности ЦС применяется системы, называемые системы поддержки инфраструктуры открытых ключей (Public Key Infrastructure, PKI).

Впервые ссуда под ЭЦП (на покупку дома) была выдана в США 25 июля 2000г.

Вопросы для самопроверки

- 1. Дайте определение понятию "электронная цифровая подпись".
- 2. Опишите последовательность действий участников протокола при отправке и проверке ЭЦП.
- 3. Какой порядок использования ключей (открытый; закрытый) при отправке и проверке ЭЦП?
- 4. Опишите схему протокола ЭЦП на основе алгоритма RSA.
- 5. Перечислите специальные схемы ЭЦП.
- 6. Назовите цель введения в действие Федерального закона "Об электронной цифровой подписи".

Практическая работа №2.3.

Электронная цифровая подпись (RSA, ГОСТы 34.10-94 и 34.10-2001)

В практической работе необходимо привести последовательность выполнения процедур генерации и проверки ЭЦП с использованием следующих способов:

- на базе алгоритмы RSA;
- по ГОСТ 34.10-94;
- по ГОСТ 34.10-2001.

При оформлении отчета необходимо привести таблицы генерации ключей, отправки сообщения с ЭЦП и получения сообщения с ЭЦП. В качестве хеш-образа исходного сообщения h(T) принять коды, соответственно, 1-ой, 2-ой и 3-ей буквы своей фамилии согласно их положению в алфавите.