Advanced Machine Learning

Bogdan Alexe,

bogdan.alexe@fmi.unibuc.ro

University of Bucharest, 2nd semester, 2020-2021

Assignment 1

Deadline: Sunday, 25th of April 2021

Upload your solutions at: https://tinyurl.com/AML-2021-ASSIGNMENT1

- 1. (0.5 points) Give an example of a finite hypothesis class \mathcal{H} with $VCdim(\mathcal{H}) = 2021$. Justify your choice.
- 2. (0.5 points) Consider \mathcal{H}_{balls} to be the set of all balls in \mathbb{R}^2 :

$$\mathcal{H}_{balls} = \{B(x,r),\, x \in \mathbb{R}^2,\, r \geq 0 \ \}, \text{ where } B(x,r) = \{y \in \mathbb{R}^2 | \ \| \ y - x \ \|_2 \leq r \}$$

As mentioned in the lecture, we can also view \mathcal{H}_{balls} as the set of indicator functions of the balls B(x,r) in the plane: $\mathcal{H}_{balls} = \{ h_{x,r} : \mathbb{R}^2 \to \{0,1\}, h_{x,r} = \mathbf{1}_{B(x,r)}, x \in \mathbb{R}^2, r > 0 \}.$

Can you give an example of a set A in \mathbb{R}^2 of size 4 that is shattered by \mathcal{H}_{balls} ? Give such an example or justify why you cannot find a set A of size 4 shattered by \mathcal{H}_{balls} .

3. (1 point) Let $X = \mathbb{R}^2$ and consider \mathcal{H}_{α} the set of concepts defined by the area inside a right triangle ABC with the two catheti AB and AC parallel to the axes (Ox and Oy) and with AB/AC = α (fixed constant > 0). Consider the realizability assumption. Show that the class \mathcal{H}_{α} can be (ϵ, δ) – PAC learned by giving an algorithm A and determining an upper bound on the sample complexity $m_H(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied.

Assignment 1

Deadline: Sunday, 25th of April 2021

Upload your solutions at: https://tinyurl.com/AML-2021-ASSIGNMENT1

- 4. (1 point) Consider \mathcal{H} to be the class of all centered in origin sphere classifiers in the 3D space. A centered in origin sphere classifier in the 3D space is a classifier h_r that assigns the value 1 to a point if and only if it is inside the sphere with radius r > 0 and center given by the origin $\mathbf{O}(0,0,0)$. Consider the realizability assumption.
 - a. show that the class \mathcal{H} can be (ϵ, δ) PAC learned by giving an algorithm A and determining an upper bound on the sample complexity $m_H(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied. (0.5 points)
 - b. compute VCdim(H). (0.5 points)
- 5. (1 point) Let $\mathcal{H} = \{h_{\theta} : \mathbb{R} \to \{0,1\}, h_{\theta}(x) = \mathbf{1}_{[\theta,\theta+1] \cup [\theta+2,+\infty)}(x), \theta \in \mathbb{R}\}$. Compute VCdim(\mathcal{H}).
- 6. (1 point) Let X be an instance space and consider $\mathcal{H} \subseteq \{0,1\}^X$ a hypothesis space with finite VC dimension. For each $x \in X$, we consider the function $z_x \colon \mathcal{H} \to \{0,1\}$ such that $z_x(h) = h(x)$ for each $h \in \mathcal{H}$. Let $Z = \{z_x \colon \mathcal{H} \to \{0,1\}, x \in X\}$. Prove that $VCdim(Z) < 2^{VCdim(H)+1}$.

Ex-officio: 0.5 points

Recap - VCdim(\mathcal{H}_{sin})

$$VCdim(\mathcal{H}_{thresholds}) = 1, VCdim(\mathcal{H}_{intervals}) = 2, VCdim(\mathcal{H}_{lines}) = 3, VCdim(\mathcal{H}_{rec}^{2}) = 4$$

Consider $\mathcal{H} = \mathcal{H}_{sin}$ be the set of sin functions:

$$\mathcal{H}_{\sin} = \{ \mathbf{h}_{\theta} : \mathbf{R} \to \{0,1\} | \mathbf{h}_{\theta}(\mathbf{x}) = \left[\sin(\theta \mathbf{x}) \right], \theta \in \mathbf{R} \}, \left[-1 \right] = 0$$

Show that VCdim(\mathcal{H}_{sin}) = ∞ based on the following lemma:

Let $x \in (0, 1)$ and let $0.x_1x_2x_3...$ be the binary representation of x. Then, for any natural number m, provided that there exist $k \ge m$ such that $x_k = 1$, we have:

$$\left[\sin(2^m\pi x)\right] = 1 - x_m$$

Recap - VCdim($\mathcal{H}S_0^n$)

$$\mathcal{H}S_0^{n} = \{h_{w,0} : \mathbf{R}^n \to \{-1, 1\}, h_{w,0}(x) = sign\left(\sum_{i=1}^n w_i x_i\right) \mid w \in \mathbf{R}^n\}$$

For n = 2 we have:

$$\mathcal{H}S_0^2 = \{h_{w1,w2} \colon \mathbf{R}^2 \to \{-1, 1\}, h_{w1,w2}(x) = \text{sign}(w_1 x_1 + w_2 x_2) | (w_1, w_2) \in \mathbf{R}^2 \}$$

What is the $VCdim(HS_0^2)$?

Does HS_0^2 shatter a set A of three points?

Difficult to reason geometrically... choose the algebraic proof.

Recap - VCdim($\mathcal{H}S_0^n$)

Proof:

*1*st part − show that $VCdim(\mathcal{H}S_0^n) \ge n$

 $A = \{e_1, e_2, ..., e_n\}$, the orthonormal basis of \mathbb{R}^n is shattered by $\mathcal{H}S_0^n$.

 2^{nd} part – show that $VCdim(\mathcal{H}S_0^n) < n+1$

Any set $A = \{x_1, x_2, ..., x_{n+1}\}$ of n+1 points in \mathbb{R}^n cannot be shattered by $\mathcal{H}S_0^n$. Provide an algebraic proof, based on the fact that $\{x_1, x_2, ..., x_{n+1}\}$ are linearly dependent in \mathbb{R}^n .

So,
$$VCdim(\mathcal{H}S_0^n) = n$$

Similarly, it can be shown that $VCdim(\mathcal{HS}^n) = n + 1$

The fundamental theorem of statistical learning

The fundamental theorem of statistical learning

Theorem (The Fundamental Theorem of Statistical Learning).

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following statements are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. \mathcal{H} is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for \mathcal{H} .
- 6. \mathcal{H} has a finite VC-dimension.

A finite VC- dimension guarantees learnability. Hence, the VC-dimension characterizes PAC learnability.

Proof

- \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for H.
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. H is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for \mathcal{H} .
- H has a finite VC-dimension.

Proof:

- 1 \rightarrow 2 follows from lecture 4: uniform convergence property \rightarrow every sample S is ε-representative \rightarrow ERM is a successful agnostic PAC learner
- $2 \rightarrow 3$, $3 \rightarrow 4$ (lecture 5), $2 \rightarrow 5$ follow immediately from the definition
- $4 \rightarrow 6$ (lecture 5), $5 \rightarrow 6$ follow from the No-Free Lunch theorem
- Need to prove $6 \rightarrow 1$ (the hardest part)

Remember – lecture 4: uniform convergence property

Definition (uniform convergence)

A hypothesis class \mathcal{H} has the *uniform convergence property* wrt a domain $\mathcal{Z}=X\times Y$, loss fct. ℓ if:

- there exists a function $m_H^{UC}:(0,1)^2 \to N$
- such that for all $(\varepsilon, \delta) \in (0,1)^2$
- and for any probability distribution \mathcal{D} over \mathcal{Z}

if S is a sample of $m \ge m_H^{UC}(\varepsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D} , then, with probability of at least $1 - \delta$, S is ε -representative.

Definition (ε – representative sample)

A sample S is called ε – representative wrt domain Z, hypothesis class \mathcal{H} , loss function ℓ and distribution \mathcal{D} if: $\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$.

Lemma

Let S be a sample that is $\varepsilon/2$ – representative wrt domain \mathcal{Z} , hypothesis class \mathcal{H} , loss function ℓ and distribution \mathcal{D} . Then any output of $\mathrm{ERM}_{\mathcal{H}}(S)$ i.e any $h_S \in \mathrm{argmin}_h \, \mathrm{L}_S(h)$ satisfies:

$$L_{\mathcal{D}}(A(S)) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property*

Two steps:

- 1. (Sauer's lemma) If $VCdim(\mathcal{H}) \leq d < \infty$, then even though \mathcal{H} might be infinite, when restricting it to a finite set $C \subseteq X$, its "effective" size, $|\mathcal{H}_C|$, is only $O(|C|^d)$. That is, the size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.
- 2. we have shown in lecture 4 that finite hypothesis classes enjoy the uniform convergence property. We generalize this result and show that uniform convergence holds whenever the hypothesis class has a "small effective size." By "small effective size" we mean classes for which $|\mathcal{H}_C|$ grows polynomially with |C|.

The Growth function

Definition

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted by τ_H , where $\tau_{\mathcal{H}} \colon N \to N$, is defined as:

$$\tau_H(m) = \max_{C \subseteq X: |C| = m} |H_C|$$

In other words, $\tau_H(m)$ is the maximum number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

Observation: if $VCdim(\mathcal{H}) = d$ then for any $m \le d$ we have $\tau_{\mathcal{H}}(m) = 2^m$. In such cases, \mathcal{H} induces all possible functions from C to $\{0,1\}$.

What happens when m becomes larger than the VC-dimension? Answer given by the Sauer's lemma: the growth function $\tau_{\mathcal{H}}$ increases polynomially rather than exponentially with m.

The Growth function

Definition

Let \mathcal{H} be a hypothesis class. $\tau_H(m)$ is the maximum number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

 $\tau_H(m) = \max_{C \subseteq X: |C| = m} |H_C|$

Example: consider $\mathcal{H} = \mathcal{H}_{thresholds}$ be the set of threshold functions over the real line $\mathcal{H}_{thresholds} = \{h_a : \mathbf{R} \to \{0, 1\}, h_a(\mathbf{x}) = \mathbf{1}_{[\mathbf{x} < a]}, a \in \mathbf{R}\}, |\mathcal{H}_{thresholds}| = \infty$. We know that $VCdim(\mathcal{H}) = 1$.

Consider C = $\{c_1, c_2, ..., c_m\}$ a set of m points, with $c_i < c_j$. What is $\tau_H(m)$?

The Growth function

Definition

Let \mathcal{H} be a hypothesis class. $\tau_H(m)$ is the maximum number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

$$\tau_H(m) = \max_{C \subseteq X: |C| = m} |H_C|$$

 $h_{a\ m}$ label points $c_1, c_2, ..., c_m$ with labels (1, 1, 1,, 1, 0)

 $h_{a m+1}$ label points $c_1, c_2, ..., c_m$ with labels (1, 1, 1, ..., 1, 1)

Example:

The Sauer's lemma

Lemma (Sauer – Shelah – Perles)

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) \leq d < \infty$. Then, for all m, we have that:

 $\tau_H(m) \leq \sum_{i=0}^d C_m^i$

In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$

Lemma (Sauer – Shelah – Perles)

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) \leq d < \infty$. Then, for all m, we have that:

$$\tau_H(m) \le \sum_{i=0}^a C_m^i$$

In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$

Proof

To prove the lemma it suffices to prove the following stronger claim:

For any
$$C = \{c_1, c_2, ..., c_m\}$$
 we have:
 $|\mathcal{H}_C| \le |\{B \subseteq C: \mathcal{H} \text{ shatters B}\}|$, for all \mathcal{H} a hypothesis class

The reason why this claim is sufficient to prove the lemma is that if $VCdim(\mathcal{H}) \le d$ then no set B whose size is larger than d is shattered by \mathcal{H} and therefore:

$$\tau_H(m) = \max_{C \subseteq X: |C| = m} \left| H_C \right| \le \max_{C \subseteq X: |C| = m} \left| \{ B \subseteq C: \left| B \right| \le d \} \right| \le \sum_{i=0}^{d} C_m^i$$

We will employ induction over the size of C

First step: Fix \mathcal{H} and consider |C| = 1.

If $|\mathcal{H}_C| = 1 \le |\{B \subseteq C : \mathcal{H} \text{ shatters B}\}| = 1$ ($\mathcal{H} \text{ shatters the empty set}$).

If $|\mathcal{H}_C| = 2 \le |\{B \subseteq C: \mathcal{H} \text{ shatters } B\}| = 2 \ (\mathcal{H} \text{ shatters the empty set and } C)$

Induction step:

Assume the claim holds for $|C| \le m$ and prove it for |C| = m+1.

So, $Y_0 = \mathcal{H}_{C}$

0	1	1	1	1
1	0	0	1	0
1	0	0	0	1
	•••	•••		•••

We will employ induction over the size of C

First step: Fix \mathcal{H} and consider |C| = 1.

If $|\mathcal{H}_C| = 1 \le |\{B \subseteq C : \mathcal{H} \text{ shatters B}\}| = 1$ ($\mathcal{H} \text{ shatters the empty set}$).

If $|\mathcal{H}_C| = 2 \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}| = 2 \ (\mathcal{H} \text{ shatters the empty set and } C)$

Induction step:

Assume the claim holds for $|C| \le m$ and prove it for |C| = m+1.

Fix \mathcal{H} and consider $C = \{c_1, c_2, \dots, c_m, c_{m+1}\}$ and $C' = \{c_1, c_2, \dots, c_m\}$.

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

If there exists two different function h_1 and h_2 in \mathcal{H} that agree with g on C' then they will disagree on c_{m+1} : $h_1(c_{m+1}) \neq h_2(c_{m+1})$. They are two different functions in \mathcal{H} but they will be counted only once in Y_0 .

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

Take $Y_1 = \{g: C' \to \{0, 1\} | \text{ exists } h_I, h_2 \in \mathcal{H} \text{ such that } h_I(c) = g(c) \text{ for all } c \in C' \text{ and } h_I(c_{m+1}) = 0 \text{ AND } h_2(c) = g(c) \text{ for all } c \in C' \text{ and } h_2(c_{m+1}) = 1\}$

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

Take
$$Y_1 = \{g: C' \to \{0, 1\} | \text{ exists } h_1, h_2 \in \mathcal{H} \text{ such that } h_1(c) = g(c) \text{ for all } c \in C' \text{ and } h_1(c_{m+1}) = 0 \text{ AND } h_2(c) = g(c) \text{ for all } c \in C' \text{ and } h_2(c_{m+1}) = 1\}$$

- We have that $Y_1 \subseteq Y_0$
- Y_1 contains only those restriction h_{C} , that come from two different functions h_1 and h_2 from \mathcal{H}
- Y_0 might contain restrictions h_C , that come from a single h from H.
- For simplicity let's assume that C = X, X is the domain of \mathcal{H} .
- We have that $|H| = |Y_0| + |Y_1|$

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

Take $Y_1 = \{g: C' \to \{0, 1\} | \text{ exists } h_I, h_2 \in \mathcal{H} \text{ such that } h_I(c) = g(c) \text{ for all } c \in C' \text{ and } h_I(c_{m+1}) = 0 \text{ AND } h_2(c) = g(c) \text{ for all } c \in C' \text{ and } h_2(c_{m+1}) = 1\}$

		1	I		I	1
	C ₁	C ₂	• • •	c _m	C _{m+1}	
$Y_1 \longrightarrow$	1	1	0	1	0	h ₁
	1	1	0	1	1	h ₂
V	0	1	1	1	1	
10	1	0	0	1	0	
	1	0	0	0	1	
	•••	•••	•••	•••	•••	

Now, we will apply our induction hypothesis on Y₀

$$|Y_0| = |\mathcal{H}_{C'}| \leq |\{B \subseteq C' \colon \mathcal{H} \text{ shatters } B\}| = |\{B \subseteq C \colon \mathcal{H} \text{ shatters } B \text{ and } c_{m+1} \notin B\}|$$

Take
$$\mathcal{H}' = \{h_1 \in \mathcal{H} \text{ such that there exists } h_2 \in \mathcal{H} \text{ s. t. for all } c \in \mathbb{C}' \text{ we have } h_1(c) = h_2(c) \text{ but } h_1(c_{m+1}) \neq h_2(c_{m+1})\}$$

Then
$$Y_1 = \mathcal{H}'_{C'}$$
 = set of function on C' with two extensions on c_{m+1}

Use the induction hypothesis here, on Y_1 :

$$|Y_1| = |\mathcal{H'}_{C'}| \le |\{B \subseteq C' : \mathcal{H'} \text{ shatters B}\}| = |\{B \subseteq C : \mathcal{H} \text{ shatters B and } c_{m+1} \in B\}|$$

So, we have that
$$|\mathcal{H}| = |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters B}\}|$$

$\tau_{\mathcal{H}}$ grows polynomially

Corollary

Let H be a hypothesis class with VCdim(H) = d. Then for all $m \ge d$:

$$\tau_H(m) \le \left(\frac{em}{d}\right)^d = O(m^d)$$

Proof:

From the Sauer lemma we have:

$$\tau_{H}(m) \leq \sum_{i=0}^{d} C_{m}^{i} \leq \sum_{i=0}^{d} \left(C_{m}^{i} \times \left(\frac{m}{d} \right)^{d-i} \right) \leq \sum_{i=0}^{m} \left(C_{m}^{i} \times \left(\frac{m}{d} \right)^{d-i} \right) = \left(\frac{m}{d} \right)^{d} \sum_{i=0}^{m} \left(C_{m}^{i} \times \left(\frac{d}{m} \right)^{i} \right)$$

$$m \geq d$$

$$\tau_{H}(m) \leq \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m} \left(C_{m}^{i} \times \left(\frac{d}{m}\right)^{i}\right) = \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m} \leq \left(\frac{m}{d}\right)^{d} \left(e^{\frac{d}{m}}\right)^{m} = \left(\frac{em}{d}\right)^{d}$$
Newton's binomial formula

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property*

Two steps:

- 1. (Sauer's lemma) If $VCdim(\mathcal{H}) = d < \infty$, then even though \mathcal{H} might be infinite, when restricting it to a finite set $C \subseteq X$, its "effective" size, $|\mathcal{H}_C|$, is only $O(|C|^d)$. That is, the size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.
- 2. we have shown in lecture 4 that finite hypothesis classes enjoy the uniform convergence property. We generalize this result and show that uniform convergence holds whenever the hypothesis class has a "small effective size." By "small effective size" we mean classes for which $|\mathcal{H}_C|$ grows polynomially with |C|.

Uniform converge holds for \mathcal{H} with small effective size

Theorem

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ we have:

$$\left| L_D(h) - L_S(h) \right| \le \frac{4 + \sqrt{\log(\tau_H(2m))}}{\delta\sqrt{2m}}$$

Proof:

- in the book, is beyond the scope of this lecture

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property.*

Combine the last result with Sauer lemma: $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$ to obtain: for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of S ~ \mathcal{D}^m we have:

$$\left|L_{D}(h) - L_{S}(h)\right| \leq \frac{4 + \sqrt{\log(\tau_{H}(2m))}}{\delta\sqrt{2m}} \leq \frac{4 + \sqrt{d\log(2em/d)}}{\delta\sqrt{2m}} \leq \frac{2\sqrt{d\log(2em/d)}}{\delta\sqrt{2m}} \leq \frac{2\sqrt{d\log(2em$$

$$|L_D(h) - L_S(h)| \le \frac{1}{\delta} \frac{\sqrt{2d \log(2em/d)}}{\sqrt{m}} < \varepsilon$$

This leads (see the calculation in the book) to:

$$m \ge 4 \frac{2d}{(\delta \varepsilon^2)} \log(\frac{2d}{\delta \varepsilon^2}) + \frac{4d \log(2\varepsilon/d)}{(\delta \varepsilon^2)}$$

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property*.

for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of S ~ \mathcal{D}^m we have that if:

$$m \ge 4 \frac{2d}{(\delta \varepsilon^2)} \log(\frac{2d}{\delta \varepsilon^2}) + \frac{4d \log(2\varepsilon/d)}{(\delta \varepsilon^2)}$$

then the sample S is ε -representative

$$|L_D(h) - L_S(h)| \le \frac{1}{\delta} \frac{\sqrt{2d \log(2em/d)}}{\sqrt{m}} < \varepsilon$$

So, we have that:
$$m_H^{UC}(\varepsilon, \delta) \le 4 \frac{2d}{(\delta \varepsilon^2)} \log(\frac{2d}{\delta \varepsilon^2}) + \frac{4d \log(2\varepsilon/d)}{(\delta \varepsilon^2)}$$

The derived bound is not the tightest possible, there exist another bound much tighter (see next).

The fundamental theorem of statistical learning – quantitative version

Theorem

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0–1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1 , C_2 such that:

1. \mathcal{H} has the uniform convergence property with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

3. \mathcal{H} is PAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

The VC dimension determines (along with ε , δ) the samples complexities of learning a class. It gives us a lower and an upper bound.

Intuition for deriving the lower bounds

The PAC case (realizable case)

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Pick a set $A = \{x_1, x_2, ..., x_d\}$ of size $d = VCdim(\mathcal{H})$ that is shattered by \mathcal{H} . Choose the following (adversarial) probability distribution \mathcal{D} over \mathcal{X} :

$$\mathcal{D}(x_1) = 1-4\epsilon$$
, $\mathcal{D}(x_i) = 4\epsilon/(d-1)$, $i = 2,3,...,d$, $\mathcal{D}(x) = 0$, for all x in $X \setminus A$

By the No Free Lunch theorem as long as a sample S hits $B = \{x_2, ..., x_d\}$ at most (d-1)/2 times, the probability of making an error over B is $\geq 1/4$. This happens because we see less then half of the domain B points. So, our expected error with respect to \mathcal{D} is $4\epsilon/4 = \epsilon$.

If the sample S has size m, then roughly $4m\varepsilon$ points will hit $B = \{x_2, ..., x_d\}$. So, to make less than ε errors we need to have $4m\varepsilon > (d-1)/2$, $m > (d-1)/8\varepsilon$