波形信道_传一个符号(一)作业

1. 二元波形信道用如下波形表示"0"和"1",两者等概发送。

- ① 给出 E_s
- ② 给出最佳接收的内积波形(要求归一化)
- ③ 给出匹配滤波器(要求在T时刻抽样最佳)
- ④ 给出③中抽样点对应的电平信道
- ⑤ 计算误比特率,用 V, T, n_0 表示
- ⑥ 若采用(7,4)汉明码,则误块率为多少?
- ⑦ 在⑥问中传送4个bit的总能耗是多少,平均传1个bit的能耗是多少?
- ⑧ 在⑥问中若传1个bit所用的能量限制为 E_b , 给出 E_b 与V, T的关系
- ⑨ 画出③中匹配滤波器的输出波形
- ⑩ 若 $p(t) = V \operatorname{rect}(\frac{t-T/2}{T})$ 替代匹配滤波器冲激响应,其余不变,重做⑤⑥

波形信道_传一个符号(二)作业

2. 有一复电平的四元波形实现如下:

"00"
$$\cos 1000\pi t$$
 "01" $\sin 1000\pi t$ "11" $-\cos 1000\pi t$ "10" $-\sin 1000\pi t$ 0 $\leqslant t < 1$ 其中"0""1"等概发送, $n_0 = 0.2$

- ① 给出 E_s
- ② 接收机的结构如下图,证明其最优性

- ③ 给出I,Q两路输入判决器的电平分布
- ④ 给出判决映射关系,即 $f: y_I + jy_Q \longrightarrow \{0,1\}^2$
- ⑤ 给出误比特率 P_b

波形信道_传一个符号(二)作业

3. 有一一般的波形信道如下。 "0"和 "1"等概 发送, $R_n(\tau) = \frac{n_0}{2} \delta(\tau)$

- ① 计算 E_s
- ② 给出两种标准正交基及其各自对应的电平信道
- ③ 给出误比特率 P_b