DOMAIN:

Automobile

CONTEXT:

The data concerns city-cycle fuel consumption in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5 continuous attributes

DATA DESCRIPTION:

The data concerns city-cycle fuel consumption in miles per gallon Attribute Information:

- 1. mpg: continuous
- 2. cylinders(cyl): multi-valued discrete
- 3. displacement(disp): continuous
- 4. horsepower(hp): continuous
- 5. weight(wt): continuous
- 6. acceleration(acc): continuous
- 7. model year(yr): multi-valued discrete
- 8. origin: multi-valued discrete
- 9. car name: string (unique for each instance)

PROJECT OBJECTIVE:

Goal is to cluster the data and treat them as individual datasets to train Regression models to predict 'mpg'

In [1]:

```
1 #importing required packages
 2 import numpy as np
 3 import pandas as pd
4 import matplotlib.pyplot as plt
 5 import seaborn as sns
6 from sklearn.linear_model import LinearRegression
   from scipy import stats
8 from scipy.stats import zscore
9 from scipy.cluster.hierarchy import dendrogram,linkage
10 from scipy.cluster.hierarchy import fcluster
11 from sklearn.cluster import KMeans
12 from sklearn.metrics import silhouette_samples,silhouette_score
   %matplotlib inline
14 sns.set(color codes=True)
15 import warnings
   warnings.filterwarnings('ignore')
16
   from sklearn.model_selection import train_test_split
17
18
```

In [2]:

```
#load data files
ca=pd.read_json('car.json')
ca1=pd.read_csv('car name.csv')
car=pd.concat([ca,ca1],axis=1)

row,column=car.shape
print('the dataset contain ',row,'row and',column,'columns')
car.head()
```

the dataset contain 398 row and 9 columns

Out[2]:

	mpg	cyl	disp	hp	wt	acc	yr	origin	car_name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

In [3]:

```
#save this data
car.to_csv('mpg.csv',index=False)
car.to_excel('mpg.xlsx',index=False)
car.to_json('mpg.json',orient='split',compression='infer',index='true')
```

In [4]:

```
car=car.drop('car_name',axis=1)
car['origin']=car['origin'].replace({1:'america',2:'europe',3:'asia'})
car.head()
```

Out[4]:

	mpg	cyl	disp	hp	wt	acc	yr	origin
0	18.0	8	307.0	130	3504	12.0	70	america
1	15.0	8	350.0	165	3693	11.5	70	america
2	18.0	8	318.0	150	3436	11.0	70	america
3	16.0	8	304.0	150	3433	12.0	70	america
4	17.0	8	302.0	140	3449	10.5	70	america

In [5]:

```
1 car.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 8 columns):
    Column Non-Null Count Dtype
 0
            398 non-null
                            float64
    mpg
 1
            398 non-null
                            int64
    cyl
 2
    disp
            398 non-null
                            float64
 3
    hp
            398 non-null
                            object
 4
            398 non-null
                            int64
    wt
                            float64
 5
            398 non-null
    acc
 6
            398 non-null
                            int64
    yr
7
    origin 398 non-null
                          object
dtypes: float64(3), int64(3), object(2)
memory usage: 25.0+ KB
```

In [6]:

1 car.describe()

Out[6]:

	mpg	cyl	disp	wt	acc	yr
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000

In [7]:

- 1 #hourse power
- 2 hpISDigit=pd.DataFrame(car.hp.str.isdigit())

In [8]:

```
1 car[hpISDigit['hp']==False]
```

Out[8]:

	mpg	cyl	disp	hp	wt	acc	yr	origin
32	25.0	4	98.0	?	2046	19.0	71	america
126	21.0	6	200.0	?	2875	17.0	74	america
330	40.9	4	85.0	?	1835	17.3	80	europe
336	23.6	4	140.0	?	2905	14.3	80	america
354	34.5	4	100.0	?	2320	15.8	81	europe
374	23.0	4	151.0	?	3035	20.5	82	america

In [9]:

```
car=car.replace('?',np.nan)
car[hpISDigit['hp']==False]
```

Out[9]:

	mpg	cyl	disp	hp	wt	асс	yr	origin
32	25.0	4	98.0	NaN	2046	19.0	71	america
126	21.0	6	200.0	NaN	2875	17.0	74	america
330	40.9	4	85.0	NaN	1835	17.3	80	europe
336	23.6	4	140.0	NaN	2905	14.3	80	america
354	34.5	4	100.0	NaN	2320	15.8	81	europe
374	23.0	4	151.0	NaN	3035	20.5	82	america

In [10]:

```
1 car.median()
```

Out[10]:

```
mpg 23.0 cyl 4.0 disp 148.5 hp 93.5 wt 2803.5 acc 15.5 yr 76.0 dtype: float64
```

```
In [11]:
```

```
car['hp'].fillna((car['hp'].median()),inplace=True)
car.isnull()
```

Out[11]:

	mpg	cyl	disp	hp	wt	acc	yr	origin
0	False							
1	False							
2	False							
3	False							
4	False							
393	False							
394	False							
395	False							
396	False							
397	False							

398 rows × 8 columns

In [12]:

```
1 car.isnull().sum()
```

Out[12]:

```
      mpg
      0

      cyl
      0

      disp
      0

      hp
      0

      wt
      0

      acc
      0

      yr
      0

      origin
      0

      dtype:
      int64
```

In [13]:

```
car['mpg_level']=car['mpg'].apply(lambda X:'low' if X<17 else 'high' if X>29 else 'me
car.head()
```

Out[13]:

mpg_level	origin	yr	acc	wt	hp	disp	cyl	mpg	
median	america	70	12.0	3504	130.0	307.0	8	18.0	0
low	america	70	11.5	3693	165.0	350.0	8	15.0	1
median	america	70	11.0	3436	150.0	318.0	8	18.0	2
low	america	70	12.0	3433	150.0	304.0	8	16.0	3
median	america	70	10.5	3449	140.0	302.0	8	17.0	4

In [14]:

```
car_cat=car.iloc[:,[1,6,7,8]]
car_cat.head()
```

Out[14]:

	cyl	yr	origin	mpg_level
0	8	70	america	median
1	8	70	america	low
2	8	70	america	median
3	8	70	america	low
4	8	70	america	median

In [15]:

```
car_num=car.drop(['cyl','yr','origin','mpg_level'],axis=1)
car_num.head()
```

Out[15]:

	mpg	disp	hp	wt	acc
0	18.0	307.0	130.0	3504	12.0
1	15.0	350.0	165.0	3693	11.5
2	18.0	318.0	150.0	3436	11.0
3	16.0	304.0	150.0	3433	12.0
4	17.0	302.0	140.0	3449	10.5

In [16]:

```
#plot cat variable
 2
   fig=plt.figure(1,(14,8))
 3
 4
   for i,car in enumerate(car_cat.columns):
 5
        ax=plt.subplot(2,2,i+1)
        sns.countplot(car_cat[car],order=car_cat[car].value_counts().index)
 6
 7
        ax.set_xlabel(None)
        ax.set_title(f'Distribution of {car}')
 8
 9
        plt.tight_layout()
10
11
   plt.show()
12
13
```


In [17]:

```
car_num.hist(bins=20,figsize=(10,8),color='pink')
plt.show()
```


In [18]:

```
plt.figure(figsize=(18,14))
col=1
for i in car_num.columns:
   plt.subplot(3,3,col)
   sns.distplot(car_num[i],color='g')
   col+=1
```



```
In [19]:
 1 | car=pd.concat([car_cat,car_num],axis=1)
In [20]:
   car.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
 #
     Column
                Non-Null Count Dtype
0
                398 non-null
     cyl
                                  int64
     yr
 1
                398 non-null
                                  int64
 2
                398 non-null
                                 object
     origin
 3
     mpg_level 398 non-null
                                 object
 4
                398 non-null
     mpg
                                 float64
 5
                398 non-null
                                 float64
     disp
 6
                                 float64
     hp
                398 non-null
 7
     wt
                398 non-null
                                 int64
                398 non-null
                                 float64
     acc
dtypes: float64(4), int64(3), object(2)
memory usage: 28.1+ KB
In [21]:
 1 car=pd.get_dummies(car,columns=['origin'])
In [22]:
 1 | car=pd.get_dummies(car,columns=['mpg_level'])
In [23]:
 1 car.head()
Out[23]:
                disp
                                acc origin_america origin_asia origin_europe mpg_lev
   cyl yr mpg
                       hp
0
    8 70
           18.0 307.0 130.0
                           3504 12.0
                                                1
                                                           0
                                                                       0
    8 70
               350.0
                     165.0
                           3693 11.5
1
          15.0
                                                1
                                                           0
                                                                       0
2
    8 70
          18.0 318.0 150.0
                           3436 11.0
                                                                       0
3
    8 70
          16.0 304.0 150.0 3433 12.0
                                                           0
                                                                       0
    8 70 17.0 302.0 140.0 3449 10.5
                                                                       0
In [24]:
    Hcar=car.copy()
```

2 Kcar=car.copy()

In [25]:

- 1 #pair plot for the numeric attributes
- 2 car_attr=car.iloc[:,0:7]
- 3 sns.pairplot(car_attr,diag_kind='kde')
- 4 sns.pairplot(car_attr,diag_kind='hist')

Out[25]:

<seaborn.axisgrid.PairGrid at 0x235138b9b80>

In [26]:

1 sns.pairplot(car_attr,diag_kind='auto')

Out[26]:

<seaborn.axisgrid.PairGrid at 0x2351632a790>

In [27]:

- 1 #dropping the created dummy variable
 - 2 car2=car.drop(['origin_america','origin_asia','origin_europe','mpg_level_high','mpg_]

In [28]:

```
plt.figure(figsize=(25,20))
col = 1
for i in car2.columns:
plt.subplot(3,3,col)
sns.boxplot(car2[i],color='blue')
col +=1
```


In [29]:

```
#replacing outliers with IQR (Q1 and Q3 +-1.5*IQR)
IQR1 = stats.iqr(car2['hp'], interpolation = 'midpoint')
IQR2 = stats.iqr(car2['acc'], interpolation = 'midpoint')
```

In [30]:

```
1  Q3 = car2['hp'].quantile(0.75)
2  car2['hp'] = np.where(car2["hp"] >(Q3+1.5*IQR1), 198.5,car2['hp'])
3  sns.boxplot(car2['hp']);
```


In [31]:

```
1  Q1 = car2['acc'].quantile(0.25)
2  Q31=car2['acc'].quantile(0.75)
3  car2['acc'] = np.where(car2["acc"] >(Q31+1.5*IQR2),22.10 ,car2['acc'])
4  car2['acc'] = np.where(car2["acc"] <(Q1-1.5*IQR2),(Q1-1.5*IQR2),(Q1-1.5*IQR2),car2['acc'])
5  sns.boxplot(car2['acc']);</pre>
```


In [32]:

```
1 #checking for correlation
```

- plt.figure(figsize=(10,8))
- 3 corr=car2.corr()
- 4 sns.heatmap(corr,annot=True);

Heirarchical Clustering

In [33]:

```
1 #separating numeric variables
```

- 2 cc = car.iloc[:,0:7]
- 3 cc.head()

Out[33]:

	cyl	yr	mpg	disp	hp	wt	acc
0	8	70	18.0	307.0	130.0	3504	12.0
1	8	70	15.0	350.0	165.0	3693	11.5
2	8	70	18.0	318.0	150.0	3436	11.0
3	8	70	16.0	304.0	150.0	3433	12.0
4	8	70	17.0	302.0	140.0	3449	10.5

In [34]:

```
1 cc_z = cc.apply(zscore)
2 cc_z.head()
```

Out[34]:

	cyl	yr	mpg	disp	hp	wt	acc
0	1.498191	-1.627426	-0.706439	1.090604	0.673118	0.630870	-1.295498
1	1.498191	-1.627426	-1.090751	1.503514	1.589958	0.854333	-1.477038
2	1.498191	-1.627426	-0.706439	1.196232	1.197027	0.550470	-1.658577
3	1.498191	-1.627426	-0.962647	1.061796	1.197027	0.546923	-1.295498
4	1.498191	-1.627426	-0.834543	1.042591	0.935072	0.565841	-1.840117

In [35]:

```
1 link_method = linkage(cc_z.iloc[:,0:7], method = 'average')
```

In [36]:

- 1 #plotting the H-cluster
- plt.figure(figsize=(25, 10))
- 3 dendrogram(link_method)
- 4 plt.show()

In [37]:

```
# dendrogram function to arrive at dendrogram
dendrogram(
link_method,
truncate_mode='lastp',
p=2,
)
plt.show()
```


In [38]:

```
#vieweing the clusters formed
clusters = fcluster(link_method, 2, criterion='maxclust')
clusters
```

Out[38]:

```
2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2,
   2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
   2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
   2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
   2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2,
   2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
   2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
   2, 2], dtype=int32)
```

In [39]:

```
1 cc_z['clusters_H'] = clusters
2 cc_z.head()
```

Out[39]:

	cyl	yr	mpg	disp	hp	wt	acc	clusters_H
0	1.498191	-1.627426	-0.706439	1.090604	0.673118	0.630870	-1.295498	1
1	1.498191	-1.627426	-1.090751	1.503514	1.589958	0.854333	-1.477038	1
2	1.498191	-1.627426	-0.706439	1.196232	1.197027	0.550470	-1.658577	1
3	1.498191	-1.627426	-0.962647	1.061796	1.197027	0.546923	-1.295498	1
4	1.498191	-1.627426	-0.834543	1.042591	0.935072	0.565841	-1.840117	1

In [40]:

```
#attaching the clusters formed to the scales data
cc_z.clusters_H.value_counts().sort_index()
```

Out[40]:

1 100
 2 298

Name: clusters_H, dtype: int64

In [41]:

```
1 cc['clusters_H']=clusters
2 Hcar['clusters_H']=clusters
3 cc.head()
```

Out[41]:

	cyl	yr	mpg	disp	hp	wt	acc	clusters_H
0	8	70	18.0	307.0	130.0	3504	12.0	1
1	8	70	15.0	350.0	165.0	3693	11.5	1
2	8	70	18.0	318.0	150.0	3436	11.0	1
3	8	70	16.0	304.0	150.0	3433	12.0	1
4	8	70	17.0	302.0	140.0	3449	10.5	1

In [42]:

- 1 #create a new data set named Hclus
- 2 Hclus=cc
- 3 Hclus.head()

Out[42]:

	cyl	yr	mpg	disp	hp	wt	acc	clusters_H
0	8	70	18.0	307.0	130.0	3504	12.0	1
1	8	70	15.0	350.0	165.0	3693	11.5	1
2	8	70	18.0	318.0	150.0	3436	11.0	1
3	8	70	16.0	304.0	150.0	3433	12.0	1
4	8	70	17.0	302.0	140.0	3449	10.5	1

In [43]:

- aggdata=cc.iloc[:,0:8].groupby('clusters_H').mean()
 aggdata['Freq']=cc.clusters_H.value_counts().sort_index()
- 3 aggdata

Out[43]:

	cyl	yr	mpg	disp	hp	wt	acc	ı
clusters_H								
1	7.980000	73.740000	14.684000	345.470000	160.400000	4121.560000	12.702000	_
2	4.607383	76.771812	26.477852	142.404362	85.479866	2584.137584	16.529866	

In [44]:

```
#plotting the clusters formed
plt.figure(figsize=(10, 8))
sns.scatterplot(x="mpg", y="hp", hue="clusters_H",data=cc_z,palette=['green','brown']
```


K-Means Clustering

In [45]:

```
#seperating the numeric values
cc = car.iloc[:,0:7]
cc_z1 = cc.apply(zscore)
cc_z1.head()
```

Out[45]:

	cyl	yr	mpg	disp	hp	wt	асс
0	1.498191	-1.627426	-0.706439	1.090604	0.673118	0.630870	-1.295498
1	1.498191	-1.627426	-1.090751	1.503514	1.589958	0.854333	-1.477038
2	1.498191	-1.627426	-0.706439	1.196232	1.197027	0.550470	-1.658577
3	1.498191	-1.627426	-0.962647	1.061796	1.197027	0.546923	-1.295498
4	1.498191	-1.627426	-0.834543	1.042591	0.935072	0.565841	-1.840117

In [46]:

```
#calculatint the within sum of squares
wss =[]
for i in range(1,5):
KM = KMeans(n_clusters=i)
KM.fit(cc_z1)
wss.append(KM.inertia_)
wss
```

Out[46]:

[2785.99999999995, 1294.8418950727323, 946.019790855379, 738.39232815273 18]

In [47]:

```
#plotting the WSS against the number of cluster to come up with optimal number of clu
plt.plot(range(1,5), wss);
plt.title('Elbow Method');
plt.xlabel("Number of Clusters")
plt.ylabel("WSS");
```


In [48]:

```
1 k_means = KMeans(n_clusters = 2)
2 k_means.fit(cc_z1)
3 labels = k_means.labels_
```

In [49]:

```
1 silhouette_score(cc_z1,labels)
```

Out[49]:

0.48235946103916116

In [50]:

```
#calculating silhouette score for different centroids
kmeans_kwargs = {
   "init": "random",
   "n_init": 10,
   "max_iter": 300,
   "random_state": 42,
   }
}
silhouette_coefficients = []
```

In [51]:

```
for k in range(2, 7):
kmeans = KMeans(n_clusters=k, **kmeans_kwargs)
kmeans.fit(cc_z1)
score = silhouette_score(cc_z1,kmeans.labels_)
silhouette_coefficients.append(score)
```

In [52]:

```
#plotting silhouette score for different centroids
plt.plot(range(2, 7), silhouette_coefficients)
plt.xticks(range(2, 7))
plt.xlabel("Number of Clusters")
plt.ylabel("Silhouette Coefficient")
plt.show()
```


In [53]:

```
1 #attaching the labels to the datasets
```

- 2 cc["cluster_K"] = labels
- 3 Kcar['cluster_K']=labels
- 4 Kclus=cc
- 5 Kclus.head()

Out[53]:

	cyl	yr	mpg	disp	hp	wt	acc	cluster_K
0	8	70	18.0	307.0	130.0	3504	12.0	0
1	8	70	15.0	350.0	165.0	3693	11.5	0
2	8	70	18.0	318.0	150.0	3436	11.0	0
3	8	70	16.0	304.0	150.0	3433	12.0	0
4	8	70	17.0	302.0	140.0	3449	10.5	0

In [54]:

```
1 cc.cluster_K.value_counts().sort_index()
```

Out[54]:

0 1051 293

Name: cluster_K, dtype: int64

In [55]:

```
1 cc_z1["cluster_K"] = labels
2 cc_z1.head()
```

Out[55]:

	cyl	yr	mpg	disp	hp	wt	асс	cluster_K
0	1.498191	-1.627426	-0.706439	1.090604	0.673118	0.630870	-1.295498	0
1	1.498191	-1.627426	-1.090751	1.503514	1.589958	0.854333	-1.477038	0
2	1.498191	-1.627426	-0.706439	1.196232	1.197027	0.550470	-1.658577	0
3	1.498191	-1.627426	-0.962647	1.061796	1.197027	0.546923	-1.295498	0
4	1.498191	-1.627426	-0.834543	1.042591	0.935072	0.565841	-1.840117	0

In [56]:

```
aggdata=cc.iloc[:,0:8].groupby('cluster_K').mean()
aggdata['Freq']=cc.cluster_K.value_counts().sort_index()
aggdata
```

Out[56]:

```
        cyl
        yr
        mpg
        disp
        hp
        wt
        acc
        Final coluster_K

        0 7.923810 73.742857 14.851429 341.809524 158.000000 4093.771429 12.867619
        1 2.867619
        4.569966 76.822526 26.619113 140.250853 85.061433 2567.860068 16.535836 2
```

In [57]:

```
#plotting the clusters
plt.figure(figsize=(10, 8))
sns.scatterplot(x="mpg", y="hp", hue="cluster_K",
data=cc_z1,
palette=['green','brown']);
```


In [58]:

```
1 Hcar.clusters_H.value_counts().sort_index()
```

Out[58]:

1 100 2 298

Name: clusters_H, dtype: int64

```
In [59]:
 1 Kcar.cluster_K.value_counts().sort_index()
Out[59]:
     105
0
     293
Name: cluster_K, dtype: int64
In [60]:
 1 Hcar.shape
Out[60]:
(398, 14)
In [61]:
 1 Kcar.shape
Out[61]:
(398, 14)
In [62]:
 1 car.head()
Out[62]:
   cyl yr mpg disp
                       hp
                             wt acc origin_america origin_asia origin_europe mpg_lev
    8 70 18.0 307.0 130.0 3504 12.0
                                                                       0
                                                          0
0
                                                1
```

Linear regression on the original dataset

8 70 15.0 350.0 165.0 3693 11.5

8 70 18.0 318.0 150.0 3436 11.0

8 70 16.0 304.0 150.0 3433 12.0

8 70 17.0 302.0 140.0 3449 10.5

```
In [63]:
```

1

2

3

```
1 X = car.drop(['mpg','origin_europe','mpg_level_low'], axis=1)
```

1

1

0

0

0

0

0

0

0

0

```
In [64]:
```

```
1 y = car[['mpg']]
```

```
In [65]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.30, random_state=15)
regression_model = LinearRegression()
regression_model.fit(X_train, y_train)
LinearRegression()
```

Out[65]:

LinearRegression()

In [66]:

```
for idx, col_name in enumerate(X_train.columns):
   print("The coefficient for {} is {}".format(col_name,
   regression_model.coef_[0][idx]))
```

```
The coefficient for cyl is -0.5134441386218385
The coefficient for yr is 0.44346504291168337
The coefficient for disp is 0.010688858394646908
The coefficient for hp is 0.010315514536314019
The coefficient for wt is -0.004538788568737129
The coefficient for acc is 0.19183425608862725
The coefficient for origin_america is -1.7306209513688977
The coefficient for origin_asia is -0.8976724344009391
The coefficient for mpg_level_high is 8.552374663817035
The coefficient for mpg_level_median is 1.5941218694850414
```

In [67]:

```
intercept = regression_model.intercept_[0]
print("The intercept for our model is {}".format(intercept))
```

The intercept for our model is -1.663571756865423

In [68]:

```
1 V=regression_model.score(X_train, y_train)
2 V
```

Out[68]:

0.8967703023839787

Linear regression on data with K means cluster

In [69]:

```
1 Kcar['cluster_K']=Kcar['cluster_K'].astype('category')
2 Kcar['cluster_K'] = Kcar['cluster_K'].replace({1: 'heavy', 0:
3 'light'})
4 Kcar = pd.get_dummies(Kcar, columns=['cluster_K'])
```

```
In [70]:
```

```
1 Kcar.head()
```

Out[70]:

	cyl	yr	mpg	disp	hp	wt	acc	origin_america	origin_asia	origin_europe	mpg_le
0	8	70	18.0	307.0	130.0	3504	12.0	1	0	0	
1	8	70	15.0	350.0	165.0	3693	11.5	1	0	0	
2	8	70	18.0	318.0	150.0	3436	11.0	1	0	0	
3	8	70	16.0	304.0	150.0	3433	12.0	1	0	0	
4	8	70	17.0	302.0	140.0	3449	10.5	1	0	0	

In [71]:

```
1 X = Kcar.drop(['mpg','origin_europe','mpg_level_low','cluster_K_light'],
2 axis=1)
```

In [72]:

```
1 y = Kcar[['mpg']]
```

In [73]:

```
1 X_train, X_test, y_train, y_test = train_test_split(X, y,
2 test_size=0.30, random_state=12)
3 regression_model = LinearRegression()
4 regression_model.fit(X_train, y_train)
5 LinearRegression()
```

Out[73]:

LinearRegression()

In [74]:

```
for idx, col_name in enumerate(X_train.columns):
print("The coefficient for {} is {}".format(col_name,regression_model.coef_[0][idx])
```

```
The coefficient for cyl is -1.1945995644778

The coefficient for yr is 0.4318651041505994

The coefficient for disp is 0.01747749627911041

The coefficient for hp is -0.010138045835905619

The coefficient for wt is -0.0040684301693864056

The coefficient for acc is 0.1856482874625008

The coefficient for origin_america is -1.6918315494304075

The coefficient for origin_asia is -0.7407779192303029

The coefficient for mpg_level_high is 9.283120939156875

The coefficient for cluster_K_heavy is -2.5115140143384753
```

```
In [75]:
    intercept = regression_model.intercept_[0]
    print("The intercept for our model is {}".format(intercept))
The intercept for our model is 3.715660821055735
In [76]:
 1 regression_model.score(X_train, y_train)
Out[76]:
0.8942370456543635
In [77]:
 1 K=regression_model.score(X_test, y_test)
In [78]:
 1 K
Out[78]:
0.9117893808052381
Linear regression on data with H-clusters
In [80]:
    Hcar['clusters_H']=Hcar['clusters_H'].astype('category')
    Hcar['clusters_H']=Hcar['clusters_H'].replace({1:'heavy', 2:'light'})
    Hcar = pd.get_dummies(Hcar,columns=['clusters_H'])
 4 Hcar.head()
Out[80]:
   cyl yr mpg
                disp
                       hp
                             wt
                                acc
                                     origin_america origin_asia origin_europe mpg_lev
               307.0 130.0 3504 12.0
0
    8 70
           18.0
                                                           0
                                                                       0
          15.0 350.0 165.0 3693 11.5
1
    8 70
                                                1
                                                           0
                                                                       0
2
    8 70
          18.0 318.0 150.0
                           3436 11.0
                                                1
                                                           0
                                                                       0
3
    8 70
          16.0 304.0 150.0 3433 12.0
                                                1
                                                           0
                                                                       0
    8 70 17.0 302.0 140.0 3449 10.5
                                                           n
                                                                       0
In [81]:
 1 | X = Hcar.drop(['mpg','origin_europe','mpg_level_low','clusters_H_light'],axis=1)
```

In [82]:

1 y = Hcar[['mpg']]

```
In [83]:
 1 | X_train, X_test, y_train, y_test = train_test_split(X, y,
 2 test_size=0.30, random_state=10)
 3 regression_model = LinearRegression()
 4 regression_model.fit(X_train, y_train)
 5 LinearRegression()
Out[83]:
LinearRegression()
In [84]:
    for idx, col name in enumerate(X train.columns):
    print("The coefficient for {} is {}".format(col_name,
 3 regression_model.coef_[0][idx]))
The coefficient for cyl is -1.0104832432577142
The coefficient for yr is 0.4475417357550146
The coefficient for disp is 0.01511520052461407
The coefficient for hp is -0.013301584387234512
The coefficient for wt is -0.004264179780672395
The coefficient for acc is 0.11805139164484812
The coefficient for origin_america is -2.1174569315391127
The coefficient for origin_asia is -1.3974915348558072
The coefficient for mpg_level_high is 8.565948239298272
The coefficient for mpg level median is 1.6577250698582815
The coefficient for clusters_H_heavy is 2.038974468807401
In [85]:
 1 intercept = regression_model.intercept_[0]
 2 print("The intercept for our model is {}".format(intercept))
The intercept for our model is 2.5727293182332573
In [86]:
 1 regression_model.score(X_train, y_train)
Out[86]:
0.8988409890950728
In [87]:
   H=regression model.score(X test, y test)
 2
   H
Out[87]:
```

0.9010238373846695

In [88]:

```
modellists = []
modellists.append(['Linear Regression on Original Data set', V*100])
modellists.append(['Linear Regression with K means clusters', K*100])
modellists.append(['Linear Regression with Heirarchical clusters',H*100])
mdl_df = pd.DataFrame(modellists, columns = ['Model','r^2 on Test'])
mdl_df
```

Out[88]:

Model r^2 on Test

0	Linear Regression on Original Data set	89.677030
1	Linear Regression with K means clusters	91.178938
2	Linear Regression with Heirarchical clusters	90.102384