

UNCLASSIFIED

AD 284 492

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

SEARCHED
SERIALIZED
INDEXED
FILED

284492

THE

Marquardt
CORPORATION

VAN NUYS, CALIFORNIA

1 - SEPTEMBER 1961

REPORT PR 281-1Q-1

COPY NO. 11

(TITLE -- UNCLASSIFIED)

TENSILE AND CREEP PROPERTIES OF

0.010 AND 0.020-INCH RENE' 41 ALLOY SHEET

FROM ROOM TEMPERATURE TO 2000°F

DATE 12 September 1962

REPORT PR 281-1Q-1

11

UNCLASSIFIED

(Title -- Unclassified)
TENSILE AND CREEP PROPERTIES OF
0.010 AND 0.050-INCH RENE' 41 ALLOY SHEET
FROM ROOM TEMPERATURE TO 2000° F

Contract AF 33(657)-8706

Project 281

PREPARED BY

R. C. Kay

R. C. Kay

APPROVED BY

M. J. Albom
Manager, Materials
and Process Section

CHECKED BY

J. W. Chambers

J. W. Chambers
Project Engineer

UNCLASSIFIED

THE
Marquardt
CORPORATION

VAN NUYS, CALIFORNIA

UNCLASSIFIED

REPORT PR 281-1Q-1

CONTENTS

<u>Section</u>		<u>Page</u>
I	SUMMARY	1
II	INTRODUCTION	1
III	OBJECTIVES	1
	A. Tensile Properties	1
	B. Creep Properties	1
IV	MATERIAL AND HEAT TREATMENTS	2
V	EXPERIMENTAL PROCEDURES AND RESULTS	2
	A. Tensile Properties	2
	B. Creep Properties	2
VI	DISCUSSION	2
	A. Tensile Properties	2
--	DISTRIBUTION	33

MAC A673

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

TABLES

<u>Table</u>		<u>Page</u>
I.	Chemical Composition of Three Heats of Rene' 41 Alloy.	4
II.	Heat Treatment of Three Heats of Rene' 41 Alloy.	5
III.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at a Slow Strain Rate	6
IV.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at a Slow Strain Rate	7
V.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at a Slow Strain Rate	8
VI.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at an Intermediate Strain Rate	9
VII.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at an Intermediate Strain Rate	10
VIII.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at an Intermediate Strain Rate	11
IX.	Short-Time Tensile Test Results on Rene' 41 Alloy Sheet at a Fast Strain Rate	12
X.	Comparison of Average Tensile Properties for Rene' 41 Alloy Sheet. .	13
XI.	1600°F Tensile Creep-Rupture Data for Rene' 41 Alloy Sheet	14
XII.	1800°F Tensile Creep-Rupture Data for Rene' 41 Alloy Sheet	15
XIII.	2000°F Tensile Creep-Rupture Data for Rene' 41 Alloy Sheet	16
XIV.	Creep-Rupture Data for Rene' 41 Alloy Sheet.	17

MAC A673

UNCLASSIFIED

UNCLASSIFIED

ILLUSTRATIONS

<u>Figure</u>	<u>Page</u>
1. The Marquardt TM-1A Elevated Temperature Test Machine Assembly . . .	18
2. Stress-Strain Curves for Rene' 41 Alloy Sheet, 0.010 inch	19
3. Stress-Strain Curves for Rene' 41 Alloy Sheet, 0.050 inch	20
4. Stress-Strain Curves for Rene' 41 Alloy Sheet, 0.050 inch	21
5. Proportional Limits for Rene' 41 Alloy Sheet	22
6. 0.2% Yield Strengths for Rene' 41 Alloy Sheet	23
7. Ultimate Tensile Strength for Rene' 41 Alloy Sheet as Affected by Strain Rate	24
8. Ultimate Tensile Strength for Rene' 41 Alloy Sheet as Affected by Material Thickness and Heat Treatment	25
9. Average Creep-Rupture Properties for Rene' 41 Alloy Sheet at 1600°F	26
10. Average Creep-Rupture Properties for Rene' 41 Alloy Sheet at 1800°F	27
11. Average Creep-Rupture Properties for Rene' 41 Alloy Sheet at 2000°F	28
12. Creep-Rupture Properties for Rene' 41 Alloy Sheet at 1400°F	29
13. Creep-Rupture Properties for Rene' 41 Alloy Sheet at 1600°F	30
14. Creep-Rupture Properties for Rene' 41 Alloy Sheet at 1700°F	31
15. Creep-Rupture Properties for Rene' 41 Alloy Sheet at 1800°F	32

NAC A 673

UNCLASSIFIED

UNCLASSIFIED

I. SUMMARY

A materials testing program was conducted to evaluate the important mechanical properties of Rene' 41 alloy sheet. Two thicknesses of sheet (0.010 and 0.050 inch) were used throughout the program. In addition, several tests were conducted using two different solution heat treatments (2150°F versus 1950°F) to determine their effect on mechanical properties.

Tensile properties were investigated from room temperature to 2000°F. Strain rate sensitivity of tensile properties was also investigated. Creep and rupture properties at temperatures from 1400° to 1800°F were determined for short times of 1 to 1000 seconds and for longer times of 10 to 100 hours.

II. INTRODUCTION

Rene' 41 alloy sheet has received extensive interest and usage from the aerospace industries because of its excellent combination of mechanical properties, oxidation resistance, and reasonable ease of fabrication. This test program was initiated because several specialized mechanical properties that could not be obtained from vendor literature were required by Marquardt designers, for example, the strain rate sensitivity of tensile properties. Therefore, a program was initiated for testing the two most widely used thicknesses of Rene' 41 sheet: 0.010 and 0.050 inch. An additional reason for selecting these two thicknesses was that previous work on superalloys had shown important differences in mechanical properties between these thicknesses.

Two vendor-recommended heat treatments for Rene' 41 alloy sheet exist. One to yield maximum creep properties (2150°F solution anneal) and another for maximum elevated temperature tensile properties (1950°F solution anneal). Both heat treatments were investigated for the two thicknesses of material utilized in the program.

III. OBJECTIVES

A. Tensile Properties

Tensile properties were determined at selected temperatures ranging from room temperature to 2000°F on two thicknesses of Rene' 41 alloy sheet and for two different solution heat treatment temperatures. The effect of various tensile test strain rates on room and elevated temperature tensile properties was determined.

B. Creep Properties

The 1600°, 1800°, and 2000°F creep and rupture data were determined for 0.050-inch thick Rene' 41 alloy sheet solution annealed at 1950°F. The 1400°, 1600°, 1700°, and 1800°F creep and rupture data were determined on 0.050-inch Rene' 41 alloy sheet solution annealed at 2150°F.

MAC A673

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

IV.

MATERIAL AND HEAT TREATMENTS

The chemical analyses of the three heats of Rene' 41 alloy sheet used in this investigation are listed in Table I. Table I also contains the allowable ranges for chemical composition of Rene' 41 alloy sheet from the General Electric Company specification. All heats of material used in this investigation met the specification. The heat treatments recommended by the General Electric Company are listed in Table II, along with the material heat numbers, thicknesses, and heat treatments used in this investigation.

V.

EXPERIMENTAL PROCEDURES AND RESULTS

A. Tensile Properties

The tensile specimens which were used had a 0.500-inch width of reduced section and a 2-inch gage length. All room and elevated temperature tensile tests were conducted on the Marquardt TM-1 elevated temperature test machine. Figure 1 is a photograph of this machine and its peripheral equipment. Elevated temperatures are obtained on this machine by resistance heating of the specimen. Three pairs of 36 gage wire thermocouples are welded to the specimen. One thermocouple is used for electronic feedback control of the temperature and the other two thermocouples are used to check and record the thermal gradient along the 2-inch gage length. Strain rates are electronically controlled with feedback from the linear transducer of the extensometer.

The results of tensile tests from room temperature to 2000°F on 0.010 and 0.050-inch thick Rene' 41 alloy sheet for three different strain rates are reported in Tables III through TX. Table X contains a comparison of yield strength with strain rate. Stress-strain curves to beyond 0.2% yield strength for temperatures from room temperature to 2000°F are presented in Figures 2 through 4. The variation of proportional limit, 0.2% yield strength, and ultimate tensile strength with strain rate and temperature are presented in Figures 5 through 7, respectively. Figure 8 illustrates the variation of ultimate tensile strength with temperature and for both thicknesses and heat treatments used in this investigation.

B. Creep Properties

The results of creep tests at 1400°, 1600°, 1800° and 2000°F for two heat treatments on 0.050-inch thick Rene' 41 alloy sheet are tabulated in Tables XI through XIV. These results are shown graphically in Figures 9 through 15.

VI.

DISCUSSION

A. Tensile Properties

For 0.050 inch thick Rene' 41 alloy sheet solution heat treated at 1950°F, the proportional limit and yield strength become strain rate sensitive above 1200°F. For 0.010 and 0.050-inch Rene' 41 alloy sheet given a solution heat treatment at 2150°F, the strain rate sensitivity of proportional limit and yield strength does not begin until 1400°F. For 0.050-inch Rene' 41 alloy sheet, the

MAC A673

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

tensile strength becomes strain rate sensitive above 1450°F. At temperatures in the 1500°F to 2000°F range, very severe drops in strength can result from using slow strain rates. For example, the yield strength of 0.050-inch Rene' 41 alloy sheet solution heat treated at 1950°F is 107.5 Ksi at 1600°F using a 0.1 in./in./sec strain rate. With a 0.00001 in./in./sec strain rate, the yield strength drops to 56.0 Ksi. Other comparisons of strain rate sensitivity are given in Table X. As expected, the 1950°F solution heat treat temperature gives the 0.050-inch material superior ultimate tensile strength at all temperatures, as compared to a 2150°F solution heat treat temperature. The ultimate tensile strength of 0.010-inch thick Rene' 41 alloy sheet solution annealed at 2150°F is decidedly inferior to that of the 0.050-inch material for the same heat treatment. This behavior is illustrated in Figure 8.

MAC A673

UNCLASSIFIED

UNCLASSIFIED

TABLE I

CHEMICAL COMPOSITION OF THREE HEATS OF RENE' 41 ALLOY

Element	Heat Number (Haynes)			General Electric Co. Specification B50T59B
	TV707	TV353	TV716	
	0.010 in.	0.050 in.	0.050 in.	
Cr	19.22%	19.25%	19.05%	18.00 to 20.00%
Co	10.98	11.20	10.62	10.00 to 12.00
Mo	10.03	9.85	10.18	9.00 to 10.50
Al	1.45	1.49	1.44	1.40 to 1.60
Ti	3.03	3.15	3.12	3.00 to 3.30
Fe	1.44	0.67	1.48	5.00 max.
C	0.08	0.09	0.09	0.12 max.
Si	0.28	0.14	0.29	0.50 max.
S	0.007	0.005	0.007	0.015 max.
Mn	0.01	0.02	0.03	0.10 max.
B	0.005	0.005	0.005	0.003 to 0.010
Ni	Balance	Balance	Balance	Balance

MAC 4673

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

TABLE II

HEAT TREATMENTS OF THREE HEATS OF RENE' 41 ALLOY

(All heat treatments were preceded by a mill anneal at 1975°F, RC)

Heat Number (Haynes)	Thickness	Solution Treatment	Aging
TV707	0.010 in.	2150°F (1/2 hr) AC	1650°F (4 hrs)
TV353	0.050	1950°F (1/2 hr) RAC	1400°F (16 hrs)
TV716	0.050	2150°F (1/2 hr) RAC	1650°F (4 hrs)
<u>General Electric Co. Specification</u>			
B50T59C		1950°F (1/2 hr) AC	1400°F (16 hrs)
B50T59D		2150°F (1/2 hr) AC	1650°F (4 hrs)

MAC A673

UNCLASSIFIED

UNCLASSIFIED

VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

TABLE III

SHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT A SLOW STRAIN RATE

Thickness	= 0.050 in.	Machine	= ETTM
Heat Treatment	= 2150°F (1/2 hr) RAC + 1650°F (4 hrs)	Method of Heating	= Resistance
Heat Number	= TV716 (Haynes)	Heating Rate	= 200°F/sec
		Hold Time	= 5 min
		Strain Rate	= 0.00001 in./in./sec to YS 0.01 in./in./sec to Rupture
		Gage Length	= 2.0 in.

Specimen No.	Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
479D	RT	88	109	166	14	32×10^6 psi
480D	RT	89	110	172	17	32
481D	800	85	106	154	19	28
482D	1000	84	101	147	19	27
483D	1200	83	101	148	17	26
484D	1400	82	100	147	12	24
485D	1600	40	55	92	14	18.5
486D	1800	18	21	43	19	17.5

MAC A 673

UNCLASSIFIED

UNCLASSIFIED

THE Marquardt
INCORPORATED
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

TABLE IVSHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT A SLOW STRAIN RATE

Thickness = 0.050 in.
 Heat Treatment = 1975°F (1/2 hr) RAC +
 1400°F (16 hrs)
 Heat Number = TV353 (Haynes)

Machine = ETTM
 Method of Heating = Resistance
 Heating Rate = 200°F/sec
 Hold Time = 2 min
 Strain Rate = 0.00001 in./in./sec to YS
 0.01 in./in./sec to Rupture
 Gage Length = 2.0 in.

Specimen No.	Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
938A	RT	132.0	151.0	182.0	11	29.0×10^6 psi
939A	RT	131.0	148.0	179.0	10	29.0
940A	RT	126.0	150.0	184.0	12	30.0
951A	RT	129.0	148.0	184.0	12	30.5
960A	800	120.0	133.0	169.0	18	25.0
961A	800	123.0	138.0	165.0	15	26.0
962A	1200	109.0	130.0	161.0	15	25.0
963A	1200	107.0	132.0	166.0	17	24.0
964A	1200	110.0	129.0	163.0	20	24.0
928A	1600	40.0	67.5	106.5	6.5	18.0
929A	1600	36.0	54.7	110.5	7.5	16.0
930A	1600	30.0	49.0	104.7	6.5	17.0
931A	1800	10.1	14.7	42.5	17	12.5
945A	1800	6.0	14.0	40.5	21	12.0
970A	2000	--	2.2	13.2	32	6.5
971A	2000	--	2.4	15.6	44	7.0
972A	2000	--	3.2	16.4	28	5.5

MAC A673

UNCLASSIFIED

UNCLASSIFIED

TABLE V

**SHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT A SLOW STRAIN RATE**

Thickness = 0.010 in.
 Heat Treatment = 2150°F (1/2 hr) AC +
 1650°F (4 hrs)
 Heat Number = TV707 (Haynes)

Machine = ETTM
 Method of Heating = Resistance
 Heating Rate = 200°F/sec
 Hold Time = 5 min
 Strain Rate = 0.00001.in./in./sec to YS
 0.01 in./in./sec to Rupture
 Gage Length = 2.0 in.

Specimen No.	Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
212E	RT	70.1	88.4	119.5	7	29.2 x 10 ⁶ psi
211E	RT	62.5	84.6	121.8	9	29.6
214E	800	66.0	79.9	112.0	12	26.0
215E	800	66.3	80.0	113.0	12	27.0
216E	1000	61.0	77.8	109.9	13	25.9
217E	1000	59.0	73.0	107.0	13	26.9
218E	1200	58.4	76.0	103.9	10	24.0
219E	1200	54.0	74.1	102.0	10	24.4
220E	1400	62.0	80.8	103.0	5	21.9
221E	1400	61.0	81.8	104.0	5	24.0
222E	1600	38.4	51.9	88.0	8	19.0
223E	1600	34.0	49.5	85.0	9	19.9
224E	1800	15.8	20.6	40.5	10	14.2
225E	1800	13.0	18.0	37.3	10	14.8
226E	2000	1.9	3.0	18.3	15	11.0
227E	2000	2.2	3.1	18.2	18	9.0

MAC A673

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

TABLE VI

SHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT AN INTERMEDIATE STRAIN RATE

Thickness = 0.050 in.
 Heat Treatment = 2150°F (1/2 hr) RAC +
 1650°F (4 hrs)
 Heat Number = TV716 (Haynes)

Machine = ETTM
 Method of Heating = Resistance
 Heating Rate = 200°F/sec
 Hold Time = 5 min
 Strain Rate = 0.001 in./in./sec to YS
 0.01 in./in./sec to Rupture
 Gage Length = 2.0 in.

Specimen No.	Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
487D	RT	88	112	174	18	31×10^6 psi
488D	RT	92	114	172	16	32
489D	800	83	104	155	19	29
490D	1000	88	104	153	22	27
491D	1200	85	104	150	26	26
492D	1400	78	102	144	20	25
493D	1600	66	88	112	19	22
494D	1800	38	45	59	21	19

MAC A573

UNCLASSIFIED

UNCLASSIFIED

TABLE VII

SHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT AN INTERMEDIATE STRAIN RATE

Thickness = 0.050 in.
 Heat Treatment = Sol. HT 1950°F (1/2 hr)
 RAC & Aged at 1400°F (16 hrs) AC
 Heat Number = TV353 (Haynes)

Machine = ETTM
 Method of Heating = Resistance
 Heating Rate = 200°F/sec
 Strain Rate = 0.001 in./in./sec to YS
 0.01 in./in./sec to Rupture
 Gage Length = 2.0 in.

Specimen No.	Test Temperature (°F)	Hold Time (min)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
923A	RT	--	134.0	151.0	185.0	12	29.5×10^6 psi
924A	RT	--	135.0	154.0	189.0	13	30.0
950A	RT	--	131.0	146.0	187.0	15	30.5
952A	800	2	111.0	131.0	166.0	15	26.0
953A	800	2	116.0	132.0	167.0	16	26.5
954A	800	2	117.0	132.0	171.0	19	27.0
955A	1200	2	108.0	128.0	163.0	18	24.0
956A	1200	2	105.0	129.0	164.0	16	25.0
957A	1200	30	110.0	129.0	163.0	16	23.0
958A	1400	2	96.0	121.0	158.0	12	22.0
959A	1400	2	102.0	123.0	158.0	13	21.0
933A	1600	2	64.0	96.0	114.0	7.5	19.5
934A	1600	2	63.0	92.0	107.0	8	18.0
935A	1600	30	60.0	89.0	108.0	8	19.0
936A	1800	2	22.0	32.0	46.0	17.5	13.0
937A	1800	2	22.0	31.0	45.0	15	12.5
932A	1800	30	17.0	23.0	35.0	19	12.5
925A	2000	2	7.0	9.0	16.5	45	7.5
926A	2000	2	8.0	9.5	16.0	51	6.5
927A	2000	30	7.0	9.0	14.0	30	8.5

MAC A 673

UNCLASSIFIED

UNCLASSIFIED

The Marquardt Corporation
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

TABLE VIII

SHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT AN INTERMEDIATE STRAIN RATE

Thickness = 0.010 in.
 Heat Treatment = 2150°F (1/2 hr) AC +
 1650°F (4 hrs)
 Heat Number = TV707 (Haynes)

Machine = ETTM
 Method of Heating = Resistance
 Heating Rate = 200°F/sec
 Hold Time = 5 min
 Strain Rate = 0.001 in./in./sec to Yield
 0.001 in./in./sec to Rupture
 Gage Length = 2.0 in.

Specimen No.	Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
196E	RT	67.0	86.5	118.7	9	30.4×10^6 psi
197E	RT	69.0	88.7	122.5	9	30.4
X1	RT	67.0	86.4	115.0	8	29.4
X2	RT	72.0	87.0	114.0	7	29.8
198E	800	64.0	80.0	112.0	12	27.0
199E	800	62.0	81.8	119.0	13	26.2
200E	1000	61.0	79.9	109.0	11	26.5
201E	1000	60.0	78.5	108.0	11	26.0
202E	1200	56.0	76.0	104.0	10	23.0
203E	1200	51.0	77.1	106.0	10	24.0
204E	1400	52.0	77.0	105.9	7	22.0
205E	1400	54.0	79.0	107.0	6	23.1
206E	1600	44.0	71.0	85.0	8	22.5
207E	1600	45.5	72.0	86.6	8	21.4
228E	1800	18.5	30.2	38.3	12	17.7
208E	1800	25.5	36.5	43.0	13	17.0
X3	1800	24.0	33.1	41.0	9.5	16.5
X4	1800	25.0	32.0	38.1	9.5	16.3
210E	2000	7.5	8.5	14.3	20	12.2
211E	2000	7.2	8.7	14.2	18	11.9

MAC A673

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

TABLE IX

SHORT-TIME TENSILE TEST RESULTS
ON RENE' 41 ALLOY SHEET AT A FAST STRAIN RATE

Thickness = 0.050 in.
 Heat Treatment = 1975°F (1/a hr) RAC +
 1400°F (16 hrs)
 Heat Number = TV353 (Haynes)

Machine = ETTM
 Method of Heating = Resistance
 Heating Rate = 200°F/sec
 Hold Time = 5 min
 Strain Rate = 0.1 in./in./sec from Start
 to Rupture
 Gage Length = 2.0 in.

Specimen No.	Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation (%)	Modulus of Elasticity
947A	RT	120.0	158.0	190.0	15	29.0×10^6 psi
948A	RT	110.0	148.0	179.0	15	30.0
949A	RT	113.0	156.0	183.0	16	30.0
967A	800	102.0	131.0	166.0	21	24.0
966A	800	100.0	130.0	166.0	24	23.0
965A	1200	98.0	125.0	156.0	20	22.0
968A	1200	99.0	127.0	158.0	17	21.0
969A	1200	98.0	126.0	158.0	18	22.0
973A	1600	90.0	103.0	120.0	12	16.0
974A	1600	84.0	101.0	116.0	14	17.5
975A	1600	96.0	110.0	124.0	14	16.0
976A	1800	54.0	65.0	75.0	22	12.0
977A	1800	49.0	60.0	77.0	20	10.0
978A	2000	20.0	23.5	24.5	27	7.5
979A	2000	19.0	23.0	25.0	46	9.5
980A	2000	20.0	25.0	26.5	74	8.0

MAC A573

UNCLASSIFIED

UNCLASSIFIED

Marquardt
VAN NUYS, CALIFORNIA

PR 281-1Q-1
REPORT

TABLE X

COMPARISON OF AVERAGE TENSILE PROPERTIES FOR RENE' 41 ALLOY SHEET
SOLUTION HEAT TREATED AT 1950°F AND AGED AT 1400°F FOR 16 HOURS

Test Temperature	0.2% Yield Strength 0.00001 in./in./sec	Strength 0.001 in./in./sec	Ultimate Strength 0.01 in./in./sec	Elongation in 2.0 in.
RT	150.0 ksi	150.0 ksi	184.0 ksi	6.5%
1000°F	129.0	129.0	165.0	8.7
1200	126.0	126.0	164.0	8
1400	108.0	122.0	158.0	6
1600	55.0	92.0	110.0	5

NOTE:

Sheet = 0.050 in. thick, (Heat TV353)

MAC A 673

UNCLASSIFIED

UNCLASSIFIED

The Marquardt Corporation
VAN NUYS, CALIFORNIA

PR 281-1Q-1
REPORTTABLE XI

1600°F TENSILE CREEP-RUPTURE DATA FOR RENE 41' ALLOY SHEET

Heat Treatment = Sol. HT 1950°F (1/2 hr) RAC
Age 1400°F (16 hrs) AC

Heat Number = TV353

Machine = ETTM
Heating = Resistance
Sheet Thickness = 0.050 in.
Gage Length = 2.0 in.

Specimen No.	Stress Level (Ksi)	Load Extension (%)	Time to Produce Indicated Creep (sec)				Creep In 900 sec (%)	Time To Rupture (sec)	Elongation At Rupture (%)	Residual UTS (Ksi)
			0.05%	0.2%	0.5%	1.0%				
990A	90	0.55	--	1.3	3.7	6.6	11	16	--	--
991A	90	0.65	0.4	2.0	4.4	8.0	13	16	--	--
984A	90	0.65	0.5	1.5	6.0	10.0	16	22	--	--
992A	75	0.20	2.0	9	25	44	71	101	--	--
993A	75	0.25	3.0	14	31	54	82	113	--	--
994A	75	0.25	1.4	10	25	40	68	96	--	--
995A	60	0.25	10	71	173	281	403	534	--	--
996A	60	0.25	11	69	190	316	454	595	--	--
997A	60	0.27	11	59	157	260	370	495	--	--
3B	45	0.22	40	320	950	--	--	--	0.49	900+
998A	45	0.22	35	285	710	--	--	--	0.69	900+
999A	45	0.25	22	217	390	650	--	--	0.13	900+
1B	45	0.22	20	270	807	--	--	--	0.55	900+
2B	45	0.22	34	260	--	--	--	--	--	--
2B1	45	0.22	34	320	--	--	--	--	--	--
987A	30	0.10	90	780	--	--	--	--	0.22	900+
988A	30	0.10	82	935	--	--	--	--	0.19	900+
989A	30	0.10	55	960	--	--	--	--	0.19	900+

MAC A 673

UNCLASSIFIED

UNCLASSIFIED

THE
Marquardt
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

TABLE XII

1800°F TENSILE-CREEP RUPTURE DATA FOR RENE' 41 ALLOY SHEET

Heat Treatment = Sol. HT 1950°F (1/2 hr) RAC
Age 1400°F (16 hrs) AC

Heat Number = TV353

Machine = EITM
Heating = Resistance
Sheet Thickness = 0.050 in.
Gage Length = 2.0 in.

Specimen No.	Stress Level (Ksi)	Load Extension (%)	Time to Produce Indicated Creep (sec)	Creep In 900 sec			Elongation At Rupture (%)	Residual UTs (Ksi)
				0.05%	0.2%	0.5%		
5B	34	0.25	0.5	3.0	8.5	18	78	--
6B	34	0.3	--	1.0	3.0	5.5	19	42
7B	34	0.3	--	1.5	3.0	6.4	23	52
8B	28	0.2	1.4	8.5	23	42	108	--
9B	28	0.25	--	2.1	6	17	75	150
10B	28	0.2	1.0	4.0	14	29	100	119
24B	28	0.2	1.1	6.0	17.5	34	113	178
11B	22	0.15	5.2	36	113	225	134	--
12B	22	0.16	8.8	43	125	220	102	10.5
13B	22	0.15	2.0	34	68	115	112	673
14B	22	0.1	1.0	9.2	34	74	125	13
15B	22	0.2	4.6	18	44	82	144	578
25B	22	0.17	4.0	25	71	130	212	306
17B	18	0.22	8.4	112	275	478	285	225
18B	18	0.10	6.0	93	255	481	225	359
23B	18	0.15	18	113	249	426	359	411
20B	10	0.05	44	290	--	--	2.87	12.5
21B	10	0.05	18	360	--	--	2.75	900+
22B	10	0.05	20	297	--	--	3.7	900+
							0.34	900+
							0.31	900+
							0.29	900+

MAC A673

UNCLASSIFIED

UNCLASSIFIED

THE Marquardt
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

TABLE XIII

2000°F TENSILE CREEP-RUPTURE DATA FOR RENE: 41 ALLOY SHEET

Heat Treatment = Sol. HT 1950°F (1/2 hr) RAC
 Age 1400°F (16 hrs) AC
 Heat Number = 17353

Machine = ETM
 Heating = Resistance
 Sheet Thickness = 0.050 in.
 Gage Length = 2.0 in.

Specimen No.	Stress Level 1 (ksi)	Load Extension (%)	Time to Produce Indicated Creep (sec)						Creep In 900 sec (%)	Time To Rupture (sec)	Elongation At Rupture (%)	Residual UTS (Ksi)
			0.05%	0.2%	0.5%	1.0%	2.0%	4.0%				
21A	10	0.25	0.2	0.7	1.2	2.6	5.3	11	16	--	42	--
21B	10	0.2	0.3	0.8	1.5	2.8	5.7	12	20	--	41	--
25A	10	0.25	--	0.7	1.5	2.4	4.7	8.5	13	--	58	--
29B	8	0.025	0.5	1.6	4.5	9.8	20	41	62	--	186	--
30B	8	0.035	0.5	2.2	5.2	10	21	41	63	--	178	--
31B	8	0.025	0.8	2.0	4.5	8.5	18	36	53	--	171	--
32B	6	0.03	1.3	5.7	16	34	70	146	223	--	762	--
33B	6	0.04	1.2	11.0	19	42	89	194	300	--	839	--
34B	6	0.03	1.4	9.7	32	70	155	334	500	11.5	900+	13.1
38B	6	0.1	1.2	5.4	18	38	79	165	244	--	605	--
35B	4	0.02	5.2	40	120	275	610	--	--	2.89	900+	13.5
36B	4	0.02	3.2	28	100	237	520	--	--	3.03	900+	13.5
37B	4	0.02	3.8	52	200	420	--	--	--	1.8	900+	14.4
40B	4	0.01	5.0	45	175	350	650	--	--	2.86	900+	13.4
41B	2	--	Heat Malfunction							---	0.13	2220+
42B	2	--	1620	--	--					0.33	2915+	--
43B	2	--	220	1050	--					--	--	--

UNCLASSIFIED

UNCLASSIFIED

REPORT PR 281-1Q-1

TABLE XIV
CREEP-RUPTURE DATA FOR RENE' 41 ALLOY SHEET

Heat Treatment = Sol. HT 2150°F (1/2 hr) AC
Age 1650°F (4 hrs) AC
Heat Number = TV716

Specimen No.	Stress Level (Ksi)	Test Temperature (°F)	Time to Produce Indicated Creep (min)				Time to Rupture (min)	Elongation in 2 in. (%)
			0.05%	0.2%	0.5%	1.0%		
464D	65	1400	660	1860	3060	--	3860	--
466D	65	1400	300	1290	2340	3156	3984	--
500D	80	1400	90	198	333	482	729	--
513D	34	1400	--	--	--	--	No creep	3930
514D	36	1400	--	--	--	--	No creep	5334
459D	20	1600	444	2070	3828	5200	6216	--
465D	28	1600	432	1000	1620	--	--	2136
511D	17	1600	3120	1980	7980	--	--	10,236
516D	15	1600	2400	4800	8610	14,520	--	15,534
502D	28	1600	24	750	1360	1,896	2010	2,376
455D	10	1700	1080	2190	4140	7380	12,636	9
457D	23	1700	75	300	516	685	855	5
518D	10	1700	1152	3120	6600	10,800	--	8
519D	12	1700	1920	3120	4800	6,660	--	1
467D	6	1800	276	1164	2400	3530	6300	11,340
468D	11	1800	320	624	960	--	--	11,436
520D	6	1800	660	1830	3450	5160	7610	3
521D	8	1800	30	300	780	1270	1900	9

MAC A673

UNCLASSIFIED

UNCLASSIFIED

THE *Marquardt*
CORPORATION
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

CA 2536-2

FIGURE 1 - The Marquardt TM-1A Elevated Temperature Test Machine Assembly

MAC A673

UNCLASSIFIED

UNCLASSIFIED

THE
Marquardt
CORPORATION
VAN NUYS, CALIFORNIA

REPORT # 281-12-1

MAC 4673

28A475 UNCLASSIFIED

UNCLASSIFIED

THE Marquardt
COMPANY
VAN NUYS, CALIFORNIA

REPORT 20-1Q-1

STRESS - STRAIN CURVES FOR RENE 41 ALLOY SHEET

SOL. AT 2150 °F (960 °C) PAC.
AGED AT 1650 °F (900 °C)
GAGE LENGTH = 25.0 MM.
HEAT TV 716
SHEET THICKNESS = 0.0050 MM.

HAC A673

28A435 UNCLASSIFIED

~~UNCLASSIFIED~~

THE
Marquardt
VAN NUYS, CALIFORNIA

REPORT

MAC A673

48A476 UNCLASSIFIED

UNCLASSIFIED

The Marquardt
Corporation
VAN NUYS, CALIFORNIA

REPORT

MAC A673

28A+77 UNCLASSIFIED

UNCLASSIFIED

THE Marquardt CORPORATION
VAN NUYS, CALIFORNIA

REPORT PR 281-19-

0.2% YIELD STRENGTHS FOR

RENE' 41 ALLOY SHEET

MAC A673

28A478 UNCLASSIFIED

UNCLASSIFIED

THE Marquardt
CORPORATION
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

MAC A673

28A479 UNCLASSIFIED

UNCLASSIFIED

The Marquardt Corporation
VAN NUYS, CALIFORNIA

PR 281-1Q-1
REPORT

MAC A 673

28A542 UNCLASSIFIED

UNCLASSIFIED

**THE Marquardt CORPORATION
VAN NUYS, CALIFORNIA**

REPORT PR 281-1Q-1

MAC A673

~~28B252 UNCLASSIFIED~~

- 26 -

FIGURE 9

UNCLASSIFIED

THE Marquardt
VAN NUYS, CALIFORNIA

REPORT PR 231-IQ-1

PERCENT GAGE - PEGGAGE - PROPERTIES

TEST SHEET AT 100°F

ST 100°F

MACHINE - 2774
HEATING - PEGGAGE
GAGE LENGTH - 2.074
SHEET THICKNESS - 0.050 IN.
HEAT NUMBER - 71-353
TEST TYPE - 950°F (240°C)
AGED AT 100°F (38°C)

(15%) 15.57315

NAC A673

28B253 UNCLASSIFIED

UNCLASSIFIED

THE Marquardt
CORPORATION
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

ACF-2 - BURSTING PROPERTIES FOR PELLON 41
AT 101 STRETCH AT 100%

PULLURE

10.0% CTE¹⁰
0.5% CTE¹⁰

PARCHMENT - PRE-BEF20
HEATING - FURNACE
GROUT LEVEL = 2.0 IN.
SHIRT THICKNESS = 0.050 IN.
HEAT CHARGE = 716
HEAT TREATMENT: 1650°F (920°C)
860°F (460°C) 1650°F (920°C) AC

100

TIME (hours)

0 21

C. 63.94%

MAC A673

28B268 UNCLASSIFIED

UNCLASSIFIED

THE Marquardt
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

MAC A673

28B269 UNCLASSIFIED

- 10 -

JUNE 19

UNCLASSIFIED

THE Marquardt CORPORATION
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

MAC 673

28B270 UNCLASSIFIED

- 1 -

FIGURE 10

UNCLASSIFIED

THE Marquardt
VAN NUYS, CALIFORNIA

REPORT PR 281-1Q-1

CROSS - SECTION - PROSPECTS FOR ENE 41
PLAN SHEET NO 1890 4

12 10 8 6 4 2

10 8 6 4 2

HEATING - BBC 200
HEATING - PURNATE
GAGE LENGTH - 2.0 IN
SHEET THICKNESS - 0.050 IN
HEAT NUMBER - TV 716
HEAT TREATMENT - 1450°F (400°C) AC
AGED BY 1450°F (400°C)

18 CROWN
PREFAB

100

10
100
1000 (10000)

10
100

(152) 5538115

MAC A673

28B271 UNCLASSIFIED

UNCLASSIFIED

DISTRIBUTION

Copy No.

Transmitted to

1. Syracuse University Research Institute
Department of Chemical Eng. & Metallurgy
Syracuse 10, N. Y.
Attn.: Dr. Volker Weiss
2. Syracuse University Research Institute
Box 145, University Station
Syracuse 10, N. Y.
Attn.: Dr. C. S. Grove, Jr.
3. Defense Metals Information Center
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio
- 4, 5. Commander
Aeronautical Systems Division
Directorate of Materials & Processes
Wright-Patterson AFB, Ohio
Attn.: ASRCEM-1
6. Thermophysical Properties Research Center
School of Mechanical Engineering
Lafayette, Indiana
Attn.: Dr. Y. S. Touloukian
7. Plastec
Picatinny Arsenal
Dover, New Jersey
8. Belfour Engineering Co.
Suttons Bay, Michigan
Attn.: Albert J. Belfour
9. Hughes Aircraft Company
Florence and Teale Streets
Culver City, California
Attn.: E. M. Wallace, Library Services

MAC 463

UNCLASSIFIED

UNCLASSIFIED

REPORT S-289

DISTRIBUTION (Continued)

<u>Copy No.</u>	<u>Transmitted to</u>
10.	Commander Aeronautical Systems Division Directorate of Materials & Processes Wright-Patterson AFB, Ohio Attn.: ASRCEE
11 to 20.	Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia Attn.: TIPA
21.	Forest Products Laboratory Madison 5, Wisconsin Attn.: Mr. Fred Werren
22.	Commander Aeronautical Systems Division Directorate of Materials and Processes Wright-Patterson AFB, Ohio Attn.: ASRCEM-1, Library

MAC A673

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED