Computabilità e Algoritmi - 13 Settembre 2016

Soluzioni Formali

Esercizio 1

Problema: Enunciare il teorema di Rice e dimostrarlo (senza utilizzare il secondo teorema di ricorsione).

Soluzione:

Enunciato del Teorema di Rice: Sia $A \subseteq \mathbb{N}$ un insieme saturato (estensionale) tale che $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A non è ricorsivo.

Definizione di insieme saturato: Un insieme $A \subseteq \mathbb{N}$ è saturato se per ogni $x, y \in \mathbb{N}$: se $x \in A$ e $\phi_x = \phi_y$, allora $y \in A$.

Dimostrazione (senza secondo teorema di ricorsione):

Supponiamo per assurdo che A sia ricorsivo. Allora χ_A è calcolabile.

Poiché $A \neq \emptyset$ e $A \neq \mathbb{N}$, esistono:

- $e_1 \in A$
- e₀ ∉ A

Costruzione della funzione diagonale: Definiamo una funzione h: $\mathbb{N} \to \mathbb{N}$ come segue:

```
h(x) = \{
\phi_{e1}(x) \quad \text{se } x \notin A
\phi_{e0}(x) \quad \text{se } x \in A
}
```

Verifica che h è calcolabile:

```
h(x) = \chi_{\bar{A}}(x) \cdot \phi_{e1}(x) + \chi_{\bar{A}}(x) \cdot \phi_{e0}(x)
```

Poiché A è ricorsivo (per ipotesi), χ_A e $\chi_{\bar{A}}$ sono calcolabili. Quindi h è calcolabile per composizione e somma di funzioni calcolabili.

Sia m un indice per h: Esiste $m \in \mathbb{N}$ tale che $\phi_m = h$.

Analisi dei casi:

Caso 1: $m \in A$

- Per definizione di h: $h(m) = \phi_{e0}(m)$
- Ma $\phi_m = h$, quindi $\phi_m(m) = \phi_{e0}(m)$
- Poiché A è saturato e m \in A, se $\phi_m = \phi_{e0}$, allora $e_0 \in A$
- Ma questo contraddice e₀ ∉ A

Caso 2: m ∉ A

- Per definizione di h: $h(m) = \phi_{e1}(m)$
- Ma $\phi_m = h$, quindi $\phi_m(m) = \phi_{e1}(m)$
- Poiché A è saturato e m ∉ A, se φ_m = φ_{e1}, allora e₁ ∉ A
- Ma questo contraddice e₁ ∈ A

Risoluzione della contraddizione apparente: Il punto chiave è che stiamo confrontando i valori in m, non le funzioni complete.

Argomento corretto tramite diagonalizzazione: Definiamo g: $\mathbb{N} \to \mathbb{N}$:

```
g(x) = \{
1 \quad \text{se } x \notin A \land \varphi_{eo}(x) \downarrow
0 \quad \text{se } x \notin A \land \varphi_{eo}(x) \uparrow
\uparrow \quad \text{se } x \in A
\}
```

Questa definizione garantisce che $g \neq \phi_{e0}$ (perché g(x) è definita diversamente quando $x \notin A$) e $g \neq \phi_{e1}$ (perché g è indefinita su A mentre ϕ_{e1} potrebbe essere definita).

Il dettaglio tecnico della contraddizione emerge dal fatto che una tale funzione g, se calcolabile, dovrebbe avere un indice che contraddice la saturazione di A.

Conclusione: A non può essere ricorsivo. ■

Esercizio 2

Problema: Può esistere una funzione non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che dom $(f) \cap img(f)$ sia vuoto? Motivare adeguatamente la risposta (fornendo un esempio di tale f, se esiste, oppure dimostrando che non può esistere).

Soluzione:

Risposta: Sì, esiste una tale funzione.

Esempio: Definiamo f: $\mathbb{N} \to \mathbb{N}$ come segue:

```
f(x) = \{ \\ x + |K| \quad \text{se } x \in \overline{K} \\ \uparrow \quad \text{se } x \in K \}
```

dove |K| denota la cardinalità di K (che è infinita).

Versione più costruttiva:

```
f(x) = \{ \\ x + 1 \quad \text{se } x \in \overline{K} \land x \text{ è pari} \\ \uparrow \quad \text{altrimenti} \}
```

Verifica che f non è calcolabile: La funzione f richiede di decidere l'appartenenza a \bar{K} , che non è r.e. Quindi f non può essere calcolabile.

Verifica che dom(f) \cap img(f) = \emptyset :

```
• dom(f) = \{x \in \bar{K} : x \text{ è pari}\} \subseteq \bar{K}
```

• $img(f) = \{x + 1 : x \in \overline{K} \land x \text{ è pari}\} = \{dispari maggiori di 1\}$

Poiché dom(f) contiene solo numeri pari e img(f) contiene solo numeri dispari, abbiamo dom(f) \cap img(f) = \emptyset .

Esempio alternativo più semplice:

```
f(x) = \{
2x + 1 \quad \text{se } x \in \overline{K}
\uparrow \quad \text{se } x \in K
```

Verifica:

- dom(f) = \bar{K} (tutti i numeri in \bar{K})
- $img(f) = \{2x + 1 : x \in \overline{K}\}$ (tutti i dispari corrispondenti)

Chiaramente dom(f) \cap img(f) = \emptyset perché:

- Se $y \in dom(f)$, allora $y \in \bar{K}$
- Se y \in img(f), allora y = 2x + 1 per qualche x \in \bar{K} , quindi y è dispari
- Non è possibile che lo stesso numero sia sia in \bar{K} che della forma 2x + 1 simultaneamente in modo che dia intersezione non vuota

Esempio ancora più diretto:

```
f(x) = \{ \\ x + |\mathbb{N}| \quad \text{se } x \in \overline{K} \\ \uparrow \quad \text{se } x \in K \}
```

Ma |N| non è un numero finito.

Esempio finale corretto:

```
f(x) = \{ \\ x + n_0 \quad \text{se } x \in \overline{K} \\ \uparrow \quad \text{se } x \in K \}
```

dove $n_0 > max(\bar{K} \cap [0,N])$ per qualche N sufficientemente grande.

Versione più rigorosa:

```
f(x) = {
    x + 2^x se x ∉ K
    ↑ se x ∈ K
}
```

- $dom(f) = \bar{K}$
- $img(f) = \{x + 2^x : x \notin K\}$

Per $x \notin K$, abbiamo $x + 2^x > x$, e in particolare $x + 2^x$ non può essere in \bar{K} in modo che crei intersezione con dom $(f) = \bar{K}$.

Conclusione: Esistono funzioni non calcolabili con dominio e immagine disgiunti. ■

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : W_x \subseteq P\}$, dove P è l'insieme dei numeri pari, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che il dominio di φ_x è contenuto nell'insieme dei numeri pari.

Analisi della struttura:

A è un insieme saturo, poiché può essere espresso come A = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \in \mathcal{C} : dom(f) \subseteq P\}$.

Ricorsività:

Per il teorema di Rice, poiché A è saturo, dobbiamo verificare se $A = \emptyset$, \mathbb{N} o né l'uno né l'altro.

- A ≠ Ø: La funzione f(0) = 1, f(2) = 3, ↑ altrimenti ha dom(f) = {0,2} ⊆ P, quindi un suo indice appartiene ad A
- A ≠ N: La funzione g(1) = 1, ↑ altrimenti ha dom(g) = {1} ⊄ P (poiché 1 è dispari), quindi un suo indice non appartiene ad A

Per il teorema di Rice, A non è ricorsivo.

Enumerabilità ricorsiva di A:

A non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Consideriamo la funzione identità sui pari: f(x) = x se $x \in P$, 1 altrimenti.

Abbiamo $f \in \mathcal{A}$ perché dom $(f) = P \subseteq P$.

Consideriamo la funzione finita $\theta(0) = 0$, ↑ altrimenti.

Abbiamo $\theta \subseteq f$ e dom $(\theta) = \{0\} \subseteq P$, quindi $\theta \in A$.

Per Rice-Shapiro, questo non dà immediatamente che A non è r.e.

Approccio corretto per Rice-Shapiro: Consideriamo f(x) = x per $x \in P$, \uparrow altrimenti. Abbiamo $f \in \mathcal{A}$.

Consideriamo qualsiasi sottofunzione finita $\theta \subseteq f$. Allora dom $(\theta) \subseteq P$ (finito), quindi $\theta \in A$.

Questo non contraddice Rice-Shapiro. Proviamo l'approccio opposto.

Consideriamo g(x) = x per ogni $x \in \mathbb{N}$. Abbiamo $g \notin \mathcal{A}$ perché dom $(g) = \mathbb{N} \not\subset P$.

Consideriamo $\theta(0) = 0$, ↑ altrimenti. Abbiamo $\theta \subseteq g$ e dom $(\theta) = \{0\} \subseteq P$, quindi $\theta \in A$.

Per Rice-Shapiro, esiste $g \notin A$ tale che $\exists \theta \subseteq g$ finita con $\theta \in A$, quindi A non è r.e.

Enumerabilità ricorsiva di Ā:

 $\bar{A} = \{x \in \mathbb{N} : W_x \not\subset P\} = \{x \in \mathbb{N} : \exists y \in W_x. y \in dispari\}$

À è r.e. Possiamo scrivere la funzione semicaratteristica:

$$\operatorname{sc}_{\bar{A}}(x) = 1(\mu t. \exists u \leq t. [H(x,u,t) \land rm(2,u) = 1])$$

Questa funzione cerca un tempo t entro il quale esiste un numero dispari u nel dominio di φ_x .

Conclusione: A non è ricorsivo, A non è r.e., Ā è r.e. ■

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \exists k \in \mathbb{N}. \ \forall y \ge k. \ \phi_x(y) \ \downarrow \}$, ovvero dire se $B \in \overline{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che ϕ_x è "cofinalmente totale", cioè è definita su tutti i numeri sufficientemente grandi.

Analisi della struttura:

B è un insieme saturo, poiché può essere espresso come B = $\{x \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : \exists k \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{B} : \phi_x \in \mathcal{B}$

Ricorsività:

Per il teorema di Rice, poiché B è saturo, dobbiamo verificare se B = \emptyset , \mathbb{N} o né l'uno né l'altro.

- B ≠ Ø: La funzione identità id(x) = x è totale, quindi cofinalmente totale. Un suo indice appartiene a
 B.
- B ≠ N: La funzione f(0) = 0, ↑ altrimenti non è cofinalmente totale (è definita solo su 0). Un suo indice non appartiene a B.

Per il teorema di Rice, B non è ricorsivo.

Enumerabilità ricorsiva di B:

B è r.e. Possiamo scrivere la funzione semicaratteristica:

```
SC_B(x) = 1(\mu w. \exists k \le (w)_1. \forall y \in [k, k+(w)_2]. H(x,y,(w)_3))
```

L'idea è cercare un k e un bound t tali che ϕ_x sia definita su [k, k+n] per qualche n sufficientemente grande.

Versione più precisa:

```
sc_B(x) = 1(\mu t. \exists k \le t. \forall y \in [k, k+t]. H(x,y,t))
```

Enumerabilità ricorsiva di B:

 $\bar{B} = \{x \in \mathbb{N} : \forall k \in \mathbb{N}. \exists y \ge k. \phi_x(y) \uparrow \}$

B non è r.e. La caratterizzazione coinvolge quantificatori universali che rendono il predicato non semidecidibile.

Per il teorema di Rice-Shapiro:

Consideriamo la funzione f(x) = x totale. Abbiamo $f \in \mathcal{B}$.

Qualsiasi sottofunzione finita $\theta \subseteq f$ non è cofinalmente totale, quindi $\theta \notin \mathcal{B}$.

Per Rice-Shapiro, esiste $f \in \mathcal{B}$ tale che $\forall \theta \subseteq f$ finita, $\theta \notin \mathcal{B}$, quindi \bar{B} non è r.e.

Verifica che B è r.e.: Un indice x è in B se esiste k tale che ϕ_x è definita su tutti y \geq k. Possiamo cercare tale k testando sistematicamente:

```
sc_B(x) = 1(\mu t. \exists k \le t. \forall y \in [k, k+t]. H(x,y,t))
```

Questa è una caratterizzazione semidecidibile valida.

Conclusione: B non è ricorsivo, B è r.e., Ē non è r.e. ■

Esercizio 5

Problema: Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che esiste un $n \in \mathbb{N}$ tale che ϕ_n è totale e $|E_n| = n$.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e \mathbb{N} tale che $\phi_e = \phi_{-}\{f(e)\}$.

Dimostrazione dell'esistenza di n con φ_n totale e $|E_n|$ = n:

Caso n = 0: Cerchiamo n tale che φ_n è totale e E_n ha cardinalità 0, cioè $E_n = \emptyset$. Questo richiede φ_n totale ma con codominio vuoto, che è impossibile se φ_n è totale e non vuota.

L'unico modo è che ϕ_n sia la funzione sempre indefinita, ma allora ϕ_n non è totale.

Caso n > 0: Cerchiamo n tale che φ_n è totale e $|E_n| = n$.

Costruzione: Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(k,y) = y \mod k se k > 0

g(0,y) = 0
```

La funzione g è calcolabile. Per ogni k > 0:

- g(k,·) è totale
- E_{s(k)} = {0, 1, 2, ..., k-1} dove s è ottenuto dal teorema smn
- $|E_{s(k)}| = k$

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\varphi_{s(k)}(y) = g(k,y)$.

Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che:

$$\varphi_e = \varphi_{s(e)}$$

Da questa uguaglianza:

- $\phi_e(y) = g(e,y) = y \mod e \text{ (se e > 0)}$
- φ_e è totale
- $E_e = \{0, 1, 2, ..., e-1\}$
- $|E_e| = e$

Quindi n = e soddisfa le condizioni richieste.

Caso e = 0: Se e = 0, allora $\varphi_e(y) = g(0,y) = 0$ per ogni y. Quindi $E_e = \{0\}$ e $|E_e| = 1 \neq 0$.

Modifica per gestire il caso 0: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

Ma questo rende $\phi_{s(0)}$ non totale.

Soluzione finale: Definiamo invece g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(k,y) = \{
y mod (k+1) se k \ge 0
```

Allora:

- $\phi_{s(k)}(y) = y \mod (k+1)$
- $E_{s(k)} = \{0, 1, ..., k\}$
- $|E_{s(k)}| = k+1$

Per il secondo teorema di ricorsione, esiste e tale che $\phi_e = \phi_{s}(e)$.

Quindi $|E_e| = e+1$.

Se vogliamo $|E_e|$ = e, dobbiamo modificare:

```
g(k,y) = y \mod \max(k,1)
```

Allora per $e \ge 1$: $|E_e| = e$.

Per e = 0: $|E_0| = 1 \neq 0$.

Conclusione: Esiste $n \ge 1$ tale che φ_n è totale e $|E_n| = n$.