STP140N8F7

N-channel 80 V, 3.5 mΩ typ., 90 A STripFET™ F7 Power MOSFET in a TO-220 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот	
STP140N8F7	80 V	$4.3~\text{m}\Omega$	90 A	200 W	

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging	
STP140N8F7	140N8F7	TO-220	Tube	

Contents STP140N8F7

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	TO-220 type A package information	10
5	Revisio	n history	12

STP140N8F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	80	V	
V _G s	Gate-source voltage	± 20	V	
I _D	Drain current (continuous) at T _C = 25 °C	90 (1)	Α	
I _D	Drain current (continuous) at T _C = 100 °C	90	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	360	Α	
Ртот	Total dissipation at T _C = 25 °C	200 W		
E _{AS} ⁽³⁾	Single pulse avalanche energy 515		mJ	
Tj	Operating junction temperature)	
T _{stg}	Storage temperature	- 55 to 175 C		

Notes:

Table 3: Thermal data

	Symbol	Parameter	Value	Unit
	R _{thj-case}	Thermal resistance junction-case	0.75	°C/W
Ī	R _{thj-amb}	thermal resistance junction-ambient	62.5	°C/W

⁽¹⁾Limited by package

⁽²⁾Pulse width is limited by safe operating area

 $^{^{(3)}}$ Starting Tj =25 °C, Id = 18.5 A, Vdd = 50 V

Electrical characteristics STP140N8F7

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 250 μA	80			>
	Zero gate voltage	$V_{GS} = 0$, $V_{DS} = 80 \text{ V}$			1	μΑ
IDSS	Drain current	V _{GS} = 0, V _{DS} = 80 V, T _J =125 °C			10	μΑ
Igss	Gate-source leakage current	V _{DS} = 0, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} =10 V, I _D = 45 A		3.5	4.3	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	6340	ı	pF
Coss	Output capacitance	$V_{GS} = 0$, $V_{DS} = 40 \text{ V}$, $f = 1$	-	1195	1	pF
Crss	Reverse transfer capacitance	MHz	-	105	-	pF
Qg	Total gate charge	N/ 40 N/ 1 04 A	-	96	ı	nC
Q_{gs}	Gate-source charge	$V_{DD} = 40 \text{ V}, I_D = 64 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	30	-	nC
Q_{gd}	Gate-drain charge	VG5 - 10 V	-	26	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	26	-	ns
t _r	Rise time	$V_{DD} = 40 \text{ V}, I_D = 45 \text{ A R}_G = 4.7 \Omega, V_{GS} =$		51	-	ns
t _{d(off)}	Turn-off-delay time	10 V	-	82	1	ns
t _f	Fall time		-	44	-	ns

Table 7: Source drain diode

Table 1: Odarde aram aloue						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		90	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		360	Α
V _{SD} (2)	Forward on voltage	$V_{GS} = 0$, $I_{SD} = 90$ A	ı		1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 64 A, di/dt = 100 A/μs,	ı	58		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V	•	92		nC
I _{RRM}	Reverse recovery current	T _j = 150 °C	-	3.2		Α

Notes:

⁽¹⁾Pulse width is limited by safe operating area

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4: Output characteristics

(A) VGS= 10V

300

7V

6V

200

150

100

50

0

2 4 6 8 VDS(V)

STP140N8F7 Electrical characteristics

Figure 10: Normalized gate threshold voltage vs. temperature

VGS(th)
(norm)

1.2

ID= 250µA

0.6

0.4

-75
-25
0
25
75
125
175
TJ(°C)

Test circuits STP140N8F7

AM01468v1

3 Test circuits

Figure 13: Switching times test circuit for resistive load

RL 2200 3.3 µF VDD

VGS RG ND.U.T.

Figure 14: Gate charge test circuit

VI = 20V = V GMAX

VI = 20V = V GMAX

VI = 20V = V GMAX

AM01469v1

Figure 16: Unclamped inductive load test circuit

VD 0 2200 3.3 µF VDD

VI PW AM01471v1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 19: TO-220 type A package outline

Table 8: TO-220 type A mechanical data

	1 able 0. 10-220	mm	
Dim.			
	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ÆP	3.75		3.85
Q	2.65		2.95

Revision history STP140N8F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes	
25-Aug-2014	1	First release.	
09-Oct-2014	2	Updated Figure 3: "Thermal impedance"	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

