IN THE SPECIFICATION

Please amend page 2, paragraphs 1-6, lines 1-23 of the specification as follows:

Furthermore, it has been found that the wires as described and claimed in the present application not only perfectly solve the above-mentioned <u>frequency distortion</u> problem but also permit other applications in which the purity of transmission of the electric signal is essential for obtaining excellent final performance.

Brief Description of the Several Views of the Drawings

FIG. 1 is a schematic of the wire of the present invention; and

FIG. 2 is a flowchart of a process for fabricating the wire of FIG. 1.

Detailed description of the invention

The wires <u>10</u> according to the invention <u>are shown in FIG. 1 and</u> consist of a normal metal wire <u>12</u> able to conduct the current, for example a copper wire, the outer surface <u>14</u> of which is covered in an alloy <u>16</u> containing tin, antimony and copper.

Preferably the various metals constituting the alloy <u>16</u> are present in the following concentrations:

Tin	from	74%	to	98.9%
Antimony	from	1%	to	10%
Copper	from	0.1%	to	25%

More preferably the alloy <u>16</u> according to the invention consists of Tin 95%, Antimony 4%, Copper 1%.

Normally the qualities of the wire 10 increase as the thickness of the alloy layer increases.

To obtain a wire 10 according to the invention, the <u>fabrication process 18 shown in FIG.</u>

2 is performed, in which the metallic wire 12 is passed through a flux in step 20 and left to dry in step 22, pre-heated in step 24, and then dipped in a bath consisting of the molten alloy in step 26.

The metallic wire 12 is dipped in a bath consisting of the molten alloy 16 in step 26. Obviously the time the <u>metallic</u> wire 12 is left in the bath will depend on the temperature of the bath, the type of metal constituting the <u>metallic</u> wire 12 and its dimensions in order to permit deposit of the alloy 16 on the <u>metallic</u> wire 12 without the latter melting or being damaged by immersion for too long at an excessively high temperature.