

# UNC2452: Highly Evasive Attacker Leverages Supply Chain to Compromise Targets

Nicole Oppenheim Ben Withnell Willi Ballenthin



# **Innovation Cycle**





# **UNC2452 & FireEye Customers**

- Detections
- Hunting
- Notifications
- Webinar & Blog



# **Threat Attribution Methodology**





# **Threat Attribution Methodology**





## **UNC2452 & Associated Clusters**



Low Malware Footprint



Prioritizes Stealth



High OPSEC



Targeted & Resourced

# TTPs of UNC2452

...and associated Clusters

# **Supply Chain Compromise**

MITRE TECHNIQUE: T1195.002

Summary: UNC2452 has compromised the SolarWinds supply chain. They distribute backdoored updates to unsuspecting customers.



# **Supply Chain Compromise**

Summary: UNC2452 has compromised the SolarWinds supply chain. They distribute backdoored updates to unsuspecting customers.

MITRE TECHNIQUE: T1195.002



## Supply Chain: SolarWinds: SolarWinds.Orion.Core.BusinessLayer.dll

Digitally-signed plug-in for SolarWinds Orion

Large amount of legitimate code

400+ classes

3,000+ methods

~45,000 lines of source code

One namespace implements the SUNBURST backdoor

A second region of code invokes backdoor

Signature Dates:

March, 2020

April, 2020

May, 2020

Hides in plain sight:

OrionImprovementBusinessLayer

appld

ReportWatcherPostpone





### **Malware: SUNBURST**

MD5: b91ce2fa41029f6955bff20079468448 (other variants, see blog)
SHA256: 32519b85c0b422e4656de6e6c41878e95fd95026267daab4215ee59c107d6c77
Digital signature date: March 24, 2020

No binary similarity or code reuse was identified in malware repositories.

**Summary:** SolarWinds.Orion.Core.BusinessLayer.dll (b91ce2fa41029f6955bff20079468448) is a SolarWinds-signed plugin component of the Orion software framework. This plugin contains a malicious class named that communicates via HTTP to a command-and-control (C2) server to retrieve commands, called "Jobs", that are executed on the system.



#### Characteristics

#### **Capabilities**

- Blocklist of analysis tools and services including: FireEye HX, floss, AV
- System survey and reconnaissance
- Full control of system

Registry

**Processes** 

Files

#### **Network Protocol**

- DGA + DNS-based C2 coordinator
- Outbound traffic masquerades as Orion Improvement Program
- Commands returned in fake .NET config (steganography)





# Steganography

**MITRE TECHNIQUE: T1027.003** 



### Hidden C2 Protocol

Commands extracted from fake .NET assembly configs

Regular expressions select:

- GUIDs
- Hexadecimal strings

Decrypt, decode, and dispatch

```
<?xml version="1.0" encoding="utf-8"?>
<assembly Name="SolarWinds.Orion.Apollo" Version="4.8"</pre>
Key=' {e7140000-10fd-4a4b-83b2-5aa6ee3b03e3}
<dependencies>
<assemblvIdentity</pre>
     Name="System.Reactive.Core" Version="3.0.3000.0" Culture="
   Key="{2a017710-db0d-fd99-8897-54119bfab21a}"
    PublicKeyToken="5abe213f12a64419"
    Hash= 86aba554ede5f74b898090ca77f6755e />
   <assemblvidentity</pre>
   Name="SolarWinds.AgentManagement.Messaging.Core"
   Version="2.1.0.1257" Culture="neutral"
   Key="{8c9766ff-9e82-4c69-49a9-becf4a28e9db}"
     PublicKeyToken="4fb7efeddfe06d8b"
    Hash="6fc6eb6fae3ea79772e5e38febc5f123"/>
      <assemblyIdentity</pre>
   Name="SolarWinds.CortexPlugin.Orion.Monitoring.Contracts"
   Version="3.0.0.3149" Culture="neutral"
   Key="{ede8f3f1-afe2-a2ec-fb4f-82f88915c6f1}"
PublicKeyToken="97bb0555a6a1cfc3"
Hash="c1aa692e8561743f82006f57ce3ec50e"/>
```





### **Malware: SUNBURST**

MD5: b91ce2fa41029f6955bff20079468448 (other variants, see blog)
SHA256: 32519b85c0b422e4656de6e6c41878e95fd95026267daab4215ee59c107d6c77
Digital signature date: March 24, 2020

No binary similarity or code reuse was identified in malware repositories.

**Summary:** SolarWinds.Orion.Core.BusinessLayer.dll (b91ce2fa41029f6955bff20079468448) is a SolarWinds-signed plugin component of the Orion software framework. This plugin contains a malicious class named that communicates via HTTP to a command-and-control (C2) server to retrieve commands, called "Jobs", that are executed on the system.



### **Technologies**

- FireEye NX
- FireEye HX



## Countermeasures

- 4x Yara rules [code patterns]
- 16x Snort rules [C2 protocol]
- 4x HX IOCs [behavior]



#### Indicators

Domain: avsvmcloud[.]com

URL: /swip/Events

String: OrionImprovementBusinessLayer

Named Pipe:

583da945-62af-10e8-4902-a8f205c72b2e





### Malware: TEARDROP

**Memory-Only Dropper** 

No binary similarity or code reuse with the dropper was identified in malware repositories.

**Summary:** The malware runs as a service, spawns a thread, and reads from the file "gracious\_truth.jpg" which has a fake JPEG header. Next, it decodes an embedded payload using custom rolling XOR algorithm, and manually loads into memory embedded payload using custom PE-like file format.



#### **Data Source**

- Endpoint Agent
- AV Logs



#### **Technologies**

- FireEye HX: MalwareGuard
- Windows Defender



#### Countermeasures

- MalwareGuard
- 2x Yara



#### **Artifacts**

#### HX file\_operation\_closed

actor-process: SolarWinds.BusinessLayerHost.exe file-path: C:\Windows\SysWOW64\NetSetupSvc.dll

#### Windows Defender Exploit Guard log entries

Process '...\svchost.exe' (PID ...) would have been blocked from loading the non-Microsoft-signed binary '\Windows\SysWOW64\NetSetupSvc.dll'.



#### **Payload**

Layers of loaders unpack a BEACON backdoor in-memory.





# **Attacker Hostname** Masquerades

MITRE TECHNIQUE: NOT FOUND

Summary: The Attackers use legitimate victim hostnames as the hostname on their C2 servers for masquerades during remote access sessions



#### **Data Source**

- Internet Scan Data
- Remote Access Logs



#### **Impact**

Results in enumerated attacker infrastructure and timelines of use, which can be used to trace attacker access through a compromised environment



## **Analyst Methodology**

#### 1. Identify Attacker Infrastructure:

- Query internet-wide scan data sources for infrastructure serving SSL certs on tcp/3389 with your environment's hostnames in the Common Name (CN).
  - NOTE: IP Scan history often showed IPs switching between default (WIN-\*) hostnames and victim's hostnames



- Cross Reference identified infrastructure with IP records from your Remote Access Logs
  - NOTE: Attacker has a high level of OPSEC, they'll most likely use a single account per IP Address







# **Domestic Infrastructure** Hosting

MITRE TECHNIQUE: NOT FOUND

Summary: The Attackers use infrastructure originating from the country where their victims are located. However, their remote authentications often were from impossible locations when analyzed against that user's legitimate logins.



#### Data Source

Remote Access Logs



#### **Technologies**

- SIEM
- https://github.com/fireeye/GeoLogonalyzer
- (Integrated into FireEve Helix)



#### **Impact**

Identify patterns of not only attacker behavior but of common legitimate-use behavior which can be excluded from intrusion analysis



## **Analyst Methodology**

#### **Identify Suspicious Logons**

Analyze logons sourced from different regions within windows of time in which a human being cannot feasibly travel

#### **Identify Logins From Attacker ASNs**

- After identifying malicious IP addresses, monitoring for remote access from the same ASN may yield further attacker infrastructure
- Baselining and normalizing ASNs used for legitimate remote access may identify attacker infrastructure









# Remote Access From VPS

MITRE TECHNIQUE: T1583.003 or T1584.003

Summary: The Attackers primarily use DCH (distributed cloud hosting) infrastructure to authenticate to environments



#### **Data Source**

- ip2location
- Remote Access Logs



#### **Technologies**

SIEM



#### **Impact**

Identify additional attacker infrastructure



## **Analyst Methodology**

#### **Identify Suspicious Logons**

- Monitoring remote access authentications from DCH IP addresses may identify malicious access
- Available Tool:
  - https://github.com/fireeye/GeoLogonalyzer (integrated into FireEye Helix)





## **Lateral Movement**

MITRE TECHNIQUE: T1021 (REMOTE SERVICES)

Summary: The Attackers move laterally with multiple credentials from one host, once authenticated to Remote Access



#### **Data Source**

 Windows Event Logs with EIDs: 4624, 4625, 4628, 21, 22



#### **Technologies**

- SIEM
- HX LogonTracker module



#### **Impact**

This analysis quickly identifies systems used by an attacker to move laterally through the environment and can help prioritize those systems for deeper forensic analysis



## **Analyst Methodology**

#### **Identify One: Many relationships for Logons**

- Use HX's LogonTracker module, to graph all logon activity and analyze for systems displaying a 1:many relationship between source systems and accounts.
  - One system authenticating to multiple systems, with multiple credentials
  - Never with the credentials used for remote access





# **Temporary File Replacement**

MITRE TECHNIQUE: NOT FOUND

Summary: The Attackers remotely execute utilities by identifying a legitimate file, supplanting it with their own utility for use and then replacing the original file



#### **Data Source**

SMB Logs



#### **Technologies**

NSM Sensors



#### **Impact**

This analysis allows analysts to identify attackers staging, obfuscating, and executing malware on hosts.



## **Analyst Methodology**

#### **Identify Attackers Supplanting Utilities**

 Look for SMB sessions that show access to legitimate directories and follow a delete-create-execute-delete-create pattern in a short amount of time





# Temporary Task Modification

MITRE TECHNIQUE: T1053.005 (SCHEDULED TASK/JOB: SCHEDULED TASK)
MITRE SUB-TECHNIQUE: NOT FOUND

Summary: The Attackers temporarily **UPDATE** existing, legitimate Scheduled Tasks to execute their tools before returning the Scheduled Task to its original state



#### **Data Source**

- Microsoft-Windows-TaskScheduler/Operational event log
   EID 140, task updated
- Security event log -- EID 4702



#### **Impact**

This technique is likely used for OPSEC purposes, specific detections for this technique will increase likelihood of discovering an intrusion



## **Analyst Methodology**

#### **Monitor Existing Scheduled Tasks for Temporary Updates**

- Use frequency analysis of task updates to identify anomalous modifications to tasks
  - Look for suspicious modifications to legitimate Windows tasks
- Monitor for legitimate Windows tasks executing new/unknown binaries



# **UNC2452 & FireEye Customers**

- We've deployed detections across our Products
- Hunted across appliance telemetry and notified impacted customers
- We will continue to hunt across product telemetry
- Coordination across Incident Response engagements
- Managed Defense is actively hunting and providing compromise reports to their impacted customers
- Releasing a blog that includes
  - Overview Activity
  - Attacker techniques
  - In-depth Malware on SUNBURST



## **Recommended Actions**

- Following recommendations are for immediate mitigation techniques:
  - Ensure the SolarWinds servers are isolated / contained until a further review
    - This should include blocking all Internet egress from SolarWinds servers.
  - If SolarWinds infrastructure is not isolated, consider taking the following steps:
    - Restrict scope of connectivity to endpoints from SolarWinds servers especially those that would be considered Tier 0 / crown jewel assets
    - Restrict the scope of accounts that have local administrator privileged on SolarWinds servers.
    - Block Internet egress from servers or other endpoints with SolarWinds software.

# Recommendation Actions (con't)

- Consider (at a minimum) changing passwords for accounts that have access to SolarWinds servers / infrastructure.
- If SolarWinds is used to managed networking infrastructure, consider conducting a review of network device configurations for unexpected / unauthorized modifications.
  - Note, this is a proactive measure due to the scope of SolarWinds functionality, not based on investigative findings.
  - SolarWinds should be releasing a blog post shortly which will include their specific mitigation actions and recommendations



# **Summary**

- Best Operational Security we've seen across our investigations
- Attacker is highly skilled and motivated
- Leverages inherent Trust through Supply Chain
- Highly Evasive and Resourced
- FireEye's signatures to detect this threat actor and supply chain attack in the wild are available here: <a href="https://github.com/fireeye/sunburst\_countermeasures">https://github.com/fireeye/sunburst\_countermeasures</a>