Benchmarking: Joseph Nihill

DP algorithm with respective 8x8 pixel image, 10x10 pixel image with num_iters = 1000.

Naïve versus DP algorithm with respective 8x8 pixel image, 10x10 pixel image, and only 12x12 dp pixel image with num_iters = 100.

Naïve versus DP algorithm with respective 8x8 pixel image, 10x10 pixel image, 12x12 pixel image with num_iters = 20.

DP algorithm runtime for sunset_small and sunset_full using num_iters = 250. The runtime for the Naïve algorithm is not recordable since it was greater than 70 seconds for a 12 x 12 image.

Analysis

1. What is the recurrence for a horizontal seam?

$$M(i,j) = e(i,j) + min(M(i-1,j-1), M(i-1,j), M(i-1,j+1))$$

2.Assume m>1. Show that the set of potential vertical seams grows in complexity at least exponential in n.

Let M denote the first column, for the first column there are M choices, for the second column there are M² choices because there are M possible choices for each M. For the third column, M³, and for the Nth column there are Mⁿ choices.

3. What is the asymptotic time complexity of the dynamic programming algorithm?

Initializing first row of matrix = O(M)

Constructing matrix = O(M*N)

Finding minimum entry on last row = O(M)

Traversing Matrix from bottom to top = O(N)

Overall time complexity = O(M*N)

4.Does the time complexity of both the DP and non-DP algorithm make sense given the results of the benchmarking?

Yes, it can be derived from benchmarking that the non-DP algorithm grows exponentially for $O(M^n)$ because the function explores every possibility. 8x8 Naïve \sim .2s, 10x10 Naïve \sim 5s, 12x12 Naïve \sim 84s. Since the DP algorithm is storing the values as it goes, the DP algorithm is incredibly more efficient by growing by a factor of O(M * N), we can see this in the run time of sunset small at \sim .045s and sunset large at \sim .7s.