Tutorial MLR

Joaquin Vanschoren, Mykola Pechenizkiy, Anne Driemel

1 Machine Learning in R

```
In [185]: # Preliminaries
                             # ML librabry
          library(mlr)
                             # ML datasets, models, sharing
          library(OpenML)
          # Plotting
          library(ggplot2)
          library(cowplot)
          library(parallelMap)
          library(gridExtra)
          # Data manipulation
          library(plyr)
          # mlr configs
          options(width = 70)
          configureMlr(show.info = FALSE)
          configureMlr(show.learner.output = FALSE)
          # OpenML config to set your API key (only do this once)
          # setOMLConfig(apikey = qwertyuiop1234567890, verbosity=0)
          # If you want all algorithms in mlr, install the dependencies
          # install.packages(c("party", "RWeka", "e1071", "rpart", "car", "ada", "bartMachine", "kohonen", "mbo
                                "SwarmSVM", "LiblineaR", "glmnet", "deepnet", "extraTrees", "FNN", "gbm", "Discr
                                "kknn", "class", "kernlab", "MASS", "lqa", "mda", "RSNNS", "neuralnet", "nodeHarv
          #
          #
                                caret", "randomForest", "randomForestSRC", "ranger", "klaR", "rFerns", "rknn",
          #
                                "rrlda", "sda", "sparseLDA", "elasticnet", "xqboost", "tqp", "crs", "Cubist", "ea
                                "DiceKriqinq", "laGP", "pls", "penalized", "rsm", "flare", "clue", "fpc", "CoxBoo
```

1.1 Machine learning packages in ${ m R}$

• The Good: hundreds of ML packages, many comply to an unwritten interface definition

```
model = fit(target ~ ., data = train.data, ...)
predictions = predict(model, newdata = test.data, ...)
```

- The Bad: some have different API, many others have package-dependent functionality for general procedures
- The Ugly: meta-information and hyperparameters buried in docs (if documented at all), large experiments lead to tedious error-prone code

2 mlr package (machine learning in R)

- Domain-specific language for machine learning concepts
- Unified interface:
 - Tasks: data and meta-info (e.g. target features)
 - Learners: fit a model, make predictions
 - Resampling: evaluate a model, optimize hyperparameters
- Reflections: all objects are queryable, you can program on them
- OO structure: generic algorithms (Bagging, Stacking, Feature Selection,...)
- Guide: https://mlr-org.github.io/mlr-tutorial/
- Reference: http://rpackages.ianhowson.com/cran/mlr/

2.1 mlr tasks

- Encapsulate data and meta-data about it (e.g. target features)
- Define precisely what you want to do with the data
- Types: regression, classification, clustering,...

Create regression task on the 'BostonHousing' dataset from the mlbench package

2.1.1 Task introspection: what's in a task?

```
In [4]: names(task)
                                      # objects in a task
                                      # objects in the task description
        names(task$task.desc)
        str(getTaskId(task))
                                      # a unique ID that we can track
        getTaskSize(task)
                                      # number of data points
        getTaskFeatureNames(task) # feature names
         getTaskTargetNames(task) # name of target feature
         summary(getTaskTargets(task)) # distribution of target values
   1. 'type' 2. 'env' 3. 'weights' 4. 'blocking' 5. 'task.desc'
   1. 'id' 2. 'type' 3. 'target' 4. 'size' 5. 'n.feat' 6. 'has.missings' 7. 'has.weights' 8. 'has.blocking'
chr "BostonHousing"
   1. 'crim' 2. 'zn' 3. 'indus' 4. 'chas' 5. 'nox' 6. 'rm' 7. 'age' 8. 'dis' 9. 'rad' 10. 'tax' 11. 'ptratio' 12. 'b'
13. 'lstat'
   'medv'
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 5.00 17.02 21.20 22.53 25.00 50.00
```

Get the actual data set from a task

```
'data.frame':
                     506 obs. of 14 variables:
$ crim
                0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn
                 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
         : num
         : num
                2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas
         : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
$
  nox
                 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
                 6.58 6.42 7.18 7 7.15 ...
$
  rm
         : num
                 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$
         : num
  age
                4.09 4.97 4.97 6.06 6.06 ...
$
  dis
         : num
$ rad
         : num
                1 2 2 3 3 3 5 5 5 5 ...
$ tax
                 296 242 242 222 222 222 311 311 311 311 ...
         : num
$ ptratio: num
                 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ b
                 397 397 393 395 397 ...
         : num
                 4.98 9.14 4.03 2.94 5.33 ...
$ lstat : num
$ medv
          : num
                 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
```

2.2 OpenML integration

- There are many datasets available, but often hard to find, different formats,...
- Often no view on what are current state-of-the-art models for a dataset
- To compare, we need to rerun all other algorithms ourselves

OpenML.org: Collaboration platform for machine learning

- Datasets, models, evaluations shared by anyone (reproducible and reusable)
- Predefined tasks with train/test splits so that results are comparable
- Run large-scale experiments effortlessly, automatically share results
- Overview of state-of-the-art, leaderboards,...

2.2.1 Load any dataset from OpenML

2417

	did	name	${\bf Number Of Instances}$	NumberOfFeatures
1	1	anneal	898	39
2	2	anneal	898	39
3	3	kr-vs-kp	3196	37
4	4	labor	57	17
5	5	arrhythmia	452	280
6	6	letter	20000	17
7	7	audiology	226	70
8	8	liver-disorders	345	7
9	9	autos	205	26
10	10	lymph	148	19
11	11	balance-scale	625	5
12	12	mfeat-factors	2000	217
13	13	breast-cancer	286	10
14	14	mfeat-fourier	2000	77
15	15	breast-w	699	10
16	16	mfeat-karhunen	2000	65
17	18	mfeat-morphological	2000	7
18	20	mfeat-pixel	2000	241
19	21	car	1728	7
20	22	mfeat-zernike	2000	48

2.2.2 Search for specific datasets

55 61 iris 150 5 3 821 969 iris 150 5 2 did name NumberOfInstances NumberOfFeatures NumberOfClasse 6 6 letter 20000 17 26 24 26 nursery 12960 9 5 30 32 pendigits 10992 17 10 57 70 BNG(anneal,nominal,1000000) 1000000 39 6 58 71 BNG(anneal,ORIG,nominal,1000000) 1000000 39 6 did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 breast-w 699 10 2 22 24 mushroom 8124			did	name	Numb	oerOfInstances	Numb	oerOfFeatures	Numb	erOfClasses		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		55	61	iris	150		5		3	_		
6 6 letter 20000 17 26 24 26 nursery 12960 9 5 30 32 pendigits 10992 17 10 57 70 BNG(anneal,nominal,1000000) 1000000 39 6 58 71 BNG(anneal,ORIG,nominal,1000000) 1000000 39 6 did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2	85	21	969	iris	150		5		2			
24 26 nursery 12960 9 5 30 32 pendigits 10992 17 10 57 70 BNG(anneal,nominal,1000000) 1000000 39 6 58 71 BNG(anneal,ORIG,nominal,1000000) 1000000 39 6 did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2			did	name				NumberOfIn	stances	NumberOfFeatu	res N	VumberOfClasses
30 32 pendigits 10992 17 10 57 70 BNG(anneal,nominal,1000000) 1000000 39 6 58 71 BNG(anneal,ORIG,nominal,1000000) 1000000 39 6 did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2		6	6	letter				20000		17	2	6
57 70 BNG(anneal,nominal,1000000) 1000000 39 6 58 71 BNG(anneal,ORIG,nominal,1000000) 1000000 39 6 did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2	2^{4}	4	26	nursery				12960		9	5	
58 71 BNG(anneal.ORIG,nominal,1000000) 1000000 39 6 did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2	30	0	32	pendigits	S			10992		17	1	0
did name NumberOfInstances NumberOfFeatures NumberOfClasses 3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2	5	7	70	BNG(ani	neal,no	ominal,1000000)		1000000		39	6	
3 3 kr-vs-kp 3196 37 2 4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2	58	8	71	BNG(ani	neal.O	RIG,nominal,10	(00000)	1000000		39	6	
4 4 labor 57 17 2 13 13 breast-cancer 286 10 2 15 15 breast-w 699 10 2		Ì	did	name		NumberOfInsta	ances	NumberOfFea	tures	NumberOfClasses		
13 13 breast-cancer 286 10 2 2 15 15 breast-w 699 10 2		3	3	kr-vs-kp		3196		37		2	_	
15 15 breast-w 699 10 2	4	4	4	labor		57		17		2		
	13	3	13	breast-ca	ncer	286		10		2		
22 24 mushroom 8124 23 2	1.	5	15	breast-w		699		10		2		
	2:	$2 \mid$	24	mushroon	m	8124		23		2		

2.2.3 Create an mlr task on an OpenML dataset

Supervised task: ddata

Type: classif Target: class Observations: 366

Features:

numerics factors ordered 1 33 0

Missings: TRUE Has weights: FALSE Has blocking: FALSE

Classes: 6

1 2 3 4 5 6 112 61 72 49 52 20 Positive class: NA

2.2.4 Load predefined OpenML tasks

So you can use the same train/test samples as everyone else (and compare results)

OpenML Task 35 :: (Data ID = 35)

Task Type : Supervised Classification

Data Set : dermatology :: (Version = 1, OpenML ID = 35)

Target Feature(s) : class

Estimation Procedure: Stratified crossvalidation (1 x 10 folds)

2.2.5 List all OpenML tasks

	task.id	task.type	name	target.feature	estimation.procedure
1	1	Supervised Classification	anneal	class	10-fold Crossvalidation
2	2	Supervised Classification	anneal	class	10-fold Crossvalidation
3	3	Supervised Classification	kr-vs-kp	class	10-fold Crossvalidation
4	4	Supervised Classification	labor	class	10-fold Crossvalidation
5	5	Supervised Classification	arrhythmia	class	10-fold Crossvalidation
6	6	Supervised Classification	letter	class	10-fold Crossvalidation

2.2.6 Search for specific tasks

In [11]: subset(tasks, name == "breast-cancer")[, taskcols]

	task.id	task.type	name	target.feature	estimation.procedure
13	13	Supervised Classification	breast-cancer	Class	10-fold Crossvalidation
66	72	Learning Curve	breast-cancer	Class	10 times 10-fold Learning Cu
231	243	Supervised Classification	breast-cancer	Class	33% Holdout set
341	1712	Learning Curve	breast-cancer	Class	10-fold Learning Curve
402	1777	Supervised Classification	breast-cancer	Class	5 times 2-fold Crossvalidation
511	1893	Supervised Classification	breast-cancer	Class	10 times 10-fold Crossvalidat
566	1954	Supervised Classification	breast-cancer	Class	Leave one out
698	2181	Supervised Data Stream Classification	breast-cancer	Class	Interleaved Test then Train
2865	5533	Clustering	breast-cancer	NA	50 times Clustering
4881	10125	Clustering	breast-cancer	NA	50 times Clustering

2.3 mlr learners

- Wrappers around fit() and predict() functions
- Learners: 73 Classification, 54 Regression, 8 Clustering,...
- Descriptions of parameter sets
- Annotations (e.g. handles missing values)
- Naming convention <tasktype>.<functionname>

```
makeLearner("classif.rpart")
makeLearner("regr.rpart")
```

2.3.1 Create learner

Initializes a learner with default hyperparameters, not trained yet. Naming convention: <task>.<algorithm>

Learner classif.rpart from package rpart

Type: classif

Name: Decision Tree; Short name: rpart

Class: classif.rpart

Properties: twoclass, multiclass, missings, numerics, factors, ordered, prob, weights

Predict-Type: response Hyperparameters: xval=0

Search for available learners via the help page ?learners or listLearners()

In [13]: ?learners

All supported learners can be found by listLearners or as a table in the tutorial appendix: http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/.

In [14]: listLearners()[0:10,c(1,2,5,20)]

	class	type	name	note
1	classif.ada	classif	ada Boosting	'xval' has been set to '0' by d
2	classif.avNNet	classif	Neural Network	'size' has been set to '3' by de
3	classif.bartMachine	classif	Bayesian Additive Regression Trees	'use_missing_data' has been se
4	classif.bdk	classif	Bi-Directional Kohonen map	
5	classif.binomial	classif	Binomial Regression	Delegates to 'glm' with freely
6	classif.blackboost	classif	Gradient Boosting With Regression Trees	See '?ctree_control' for possib
7	classif.boosting	classif	Adabag Boosting	'xval' has been set to '0' by d
8	classif.bst	classif	Gradient Boosting	Renamed parameter 'learner'
9	classif.cforest	classif	Random forest based on conditional inference trees	See '?ctree_control' for possible
10	classif.clusterSVM	${\it classif}$	Clustered Support Vector Machines	'centers' set to '2' by default.

	class	$_{\mathrm{type}}$	package	short.name
1	classif.bartMachine	classif	bartMachine	bartmachine
2	classif.blackboost	classif	mboost,party	blackbst
3	classif.boosting	classif	adabag,rpart	adabag
4	classif.cforest	classif	party	cforest
5	classif.ctree	classif	party	ctree
6	classif.gbm	classif	$_{ m gbm}$	$_{ m gbm}$
7	classif.J48	classif	RWeka	j48
8	classif.JRip	classif	RWeka	jrip
9	classif.naiveBayes	classif	e1071	nbayes
10	classif.OneR	classif	RWeka	oner
11	classif.PART	classif	RWeka	part
12	${\it classif.} {\it random} {\it ForestSRC}$	classif	${\bf randomForestSRC}$	rfsrc
13	classif.rpart	classif	rpart	rpart

	class	$_{\mathrm{type}}$	package	short.name
1	classif.boosting	classif	adabag,rpart	adabag
2	classif.cforest	classif	party	cforest
3	classif.ctree	classif	party	ctree
4	classif.gbm	classif	$_{ m gbm}$	$_{ m gbm}$
5	classif.J48	classif	RWeka	j48
6	classif.JRip	classif	RWeka	jrip
7	classif.naiveBayes	classif	e1071	nbayes
8	classif.OneR	classif	RWeka	oner
9	classif.PART	classif	RWeka	part
10	classif.randomForestSRC	classif	${\rm random} {\rm ForestSRC}$	rfsrc
11	classif.rpart	classif	rpart	rpart

2.3.2 Hyperparameters

List all hyperparameters

```
Type len Def Constr Req Tunable Trafo
                integer
minsplit
                               20 1 to Inf
                                                  TRUE
minbucket
                integer
                               - 1 to Inf
                                                  TRUE
ср
                numeric
                           - 0.01
                                    0 to 1
                                                  TRUE
maxcompete
                {\tt integer}
                               4 0 to Inf
                                                  TRUE
                                5 0 to Inf
                                                  TRUE
maxsurrogate
                integer
usesurrogate
               discrete
                               2
                                     0,1,2
                                                  TRUE
surrogatestyle discrete
                               0
                                       0,1
                                                  TRUE
maxdepth
                integer
                               30 1 to 30
                                                  TRUE
xval
                integer
                               10 0 to Inf
                                                 FALSE
parms
                untyped
                                                 FALSE
```

Setting hyperparameters at creation time

Learner classif.rpart from package rpart

Type: classif

Name: Decision Tree; Short name: rpart

Class: classif.rpart

Properties: twoclass, multiclass, missings, numerics, factors, ordered, prob, weights

Predict-Type: response

Hyperparameters: xval=0,maxdepth=20,cp=0.1

Learner classif.rpart from package rpart

Type: classif

Name: Decision Tree; Short name: rpart

Class: classif.rpart

Properties: twoclass, multiclass, missings, numerics, factors, ordered, prob, weights

Predict-Type: response Hyperparameters: xval=0

2.3.3 Learner properties

- numerics, factors, ordered: Handles numeric, factors (categories), ordered features
- missings: Handles missing values in the data
- weights: Training examples can be weighted
- one class, two class, multiclass: Handles 1,2, multi-class classification problems
- class.weights: Handles class weights
- prob: Can predict probabilities
- se: Can predict standard errors (for regression)

Querying and setting learner properties

1. 'twoclass' 2. 'multiclass' 3. 'missings' 4. 'numerics' 5. 'factors' 6. 'ordered' 7. 'prob' 8. 'weights'

```
Learner classif.rpart from package rpart
Type: classif
Name: Decision Tree; Short name: rpart
Class: classif.rpart
Properties: twoclass, multiclass, missings, numerics, factors, ordered, prob, weights
Predict-Type: prob
Hyperparameters: xval=0
Learner regr.randomForest from package randomForest
Type: regr
Name: Random Forest; Short name: rf
Class: regr.randomForest
Properties: numerics, factors, ordered, se
Predict-Type: se
Hyperparameters: se.method=bootstrap,se.boot=50,ntree.for.se=100
2.3.4 Training a learner
  • Training: fitting a model to the given data (as defined in a task)
In [21]: iristask = convertOMLTaskToMlr(getOMLTask(task.id=59))$mlr.task
        lrn = makeLearner("classif.rpart")
        model = train(lrn,iristask)
        names(model)
        model$learner.model
  1. 'learner' 2. 'learner.model' 3. 'task.desc' 4. 'subset' 5. 'features' 6. 'factor.levels' 7. 'time'
n = 150
node), split, n, loss, yval, (yprob)
     * denotes terminal node
1) root 150 100 Iris-setosa (0.33333333 0.33333333 0.33333333)
 3) petallength>=2.45 100 50 Iris-versicolor (0.00000000 0.50000000 0.50000000)
   6) petalwidth< 1.75 54 5 Iris-versicolor (0.00000000 0.90740741 0.09259259) *
   In [85]: library(rpart.plot) # For plotting rpart trees
        rpart.plot(model$learner.model, extra = 4)
```


2.3.5 Making predictions

• Given a trained model, make predictions for a test set

```
In [22]: n = getTaskSize(iristask)
         train.set = seq(1, n, by = 2) # odd rows for training
         test.set = seq(2, n, by = 2) # even rows for testing
        model = train(lrn, iristask, subset = train.set) # train with subbset
         pred = predict(model, task = iristask, subset = test.set) # predict the rest
        pred
Prediction: 75 observations
predict.type: response
threshold:
time: 0.02
           truth
                    response
   2 Iris-setosa Iris-setosa
   4 Iris-setosa Iris-setosa
   6 Iris-setosa Iris-setosa
  8 Iris-setosa Iris-setosa
9 10 Iris-setosa Iris-setosa
11 12 Iris-setosa Iris-setosa
```

2.3.6 Visualizing predictions

- mlr includes several functions to visualize learning performance
- returns a ggplot object which you can manipulate as usual

Classification: only 2D visualizations

Regression: 1D and 2D visualizations

2.4 mlr resampling (evaluation)

- Estimate generalization error of our models
- Repeatedly fit models on training sets
- Evaluate performance on independent test sets and average performance results

2.4.1 Evaluation measures

• Default measure for classification: Mean misclassification error (mmce)

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)$$

• Default measure for regression: Mean squared error (mse)

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

```
In [27]: listMeasures("classif") # All available classification measures
         print(mmce)
         listMeasures("regr") # All available regression measures
         print(mse)
```

1. 'timepredict' 2. 'gmean' 3. 'acc' 4. 'auc' 5. 'ber' 6. 'fn' 7. 'fp' 8. 'fnr' 9. 'gpr' 10. 'featperc' 11. 'ppv' 12. 'fpr' 13. 'mmce' 14. 'timeboth' 15. 'npv' 16. 'timetrain' 17. 'fdr' 18. 'tnr' 19. 'mcc' 20. 'bac' 21. 'tpr' 22. 'tn' 23. 'f1' 24. 'tp' 25. 'multiclass.auc' 26. 'brier'

Name: Mean misclassification error

Performance measure: mmce

Properties: classif,classif.multi,req.pred,req.truth

Minimize: TRUE Best: 0; Worst: 1 Aggregated by: test.mean Note:

1. 'timepredict' 2. 'sae' 3. 'sse' 4. 'rmse' 5. 'expvar' 6. 'rsq' 7. 'featperc' 8. 'arsq' 9. 'timeboth' 10. 'timetrain' 11. 'mae' 12. 'mse' 13. 'medae' 14. 'medse'

Name: Mean of squared errors Performance measure: mse

Properties: regr, req. pred, req. truth

Minimize: TRUE Best: 0; Worst: Inf Aggregated by: test.mean Note:

Evaluations are included in the predictions object

```
In [48]: lrn = makeLearner("classif.rpart")
         lrn = setPredictType(lrn, "prob") # We need probabilities
         model = train(lrn, iristask, subset = train.set) # train with subbset
         pred = predict(model, task = iristask, subset = test.set) # predict the rest
         performance(pred)
         performance(pred, measures = list(mlr::multiclass.auc, mlr::acc))
         # timetrain also needs the model
         performance(pred, measures = mlr::timetrain, model = model)
```

mmce: 0.05333333333333333

multiclass.auc 0.8333333333333 acc 0.9466666666666667

timetrain: 0.0049999999999545

2.4.2 Resampling strategies

- Cross-validation (CV): Split data in k roughly equal parts (folds), iteratively use one as the test set and the remainder as the training set, then average the performance estimates. k typically 5..10.
- Repeated Cross-validation (RepCV): Repeat CV i times (randomly shuffling the data points), and average the CV results
- Leave-one-out Cross-validation (L00): Cross-Validation with k=n= the number of data points
- Holdout, training/test (Holdout): Randomly split the data in a train and test set. Typically 70/30 split.
- Subsampling, a.k.a Monte-Carlo Cross-Validation (Subsample). Draw k random holdouts, and average the results. k typically 30..100
- Out-of-bag bootstrap (Bootstrap): Randomly draw B training sets of size n with replacement (points can be drawn more than once). These are expected to contain 63,2% of the original data points. The non-drawn (out-of-bag, OOB) points form the test sets. B typically 30..100
- Bootstrapping with the 632-rule (B632): Variant of OOB bootstrapping that takes a weighted average of the OOB bootstrap estimate and the training set error on the whole dataset. Less pessimistic than the OOB bootstrap.
- Stratified resampling: Option for all strategies, creates splits so that class labels occur in equal proportions as in the original data

First create resample description, then execute with learner and task. Returned resample object contains all performance estimates.

```
In [69]: rdesc = makeResampleDesc("CV", iters = 3)
         lrn = makeLearner("classif.rpart")
         r = resample(lrn, iristask, resampling = rdesc)
         print(r)
         # Shorthand
         r = crossval("classif.rpart", iristask, iters = 3)
Resample Result
Task: OpenML-Task-59
Learner: classif.rpart
mmce.aggr: 0.07
mmce.mean: 0.07
mmce.sd: 0.01
Runtime: 0.0765791
In [73]: names(r)
         head(r$measures.test) # Results per CV fold
         head(as.data.frame(r$pred)) # Final predictions
```

1. 'learner.id' 2. 'task.id' 3. 'measures.train' 4. 'measures.test' 5. 'aggr' 6. 'pred' 7. 'models' 8. 'err.msgs' 9. 'extract' 10. 'runtime'

	1001	mmee			
1	1	0.06			
2	2	0.06			
3	3	0.06			
	id	truth	response	iter	set
1	2	Iris-setosa	Iris-setosa	1	test
2	3	Iris-setosa	Iris-setosa	1	test
3	7	Iris-setosa	Iris-setosa	1	test
4	9	Iris-setosa	Iris-setosa	1	test
5	11	Iris-setosa	Iris-setosa	1	test
6	13	Iris-setosa	Iris-setosa	1	test
- '	٠	.1 1.1			1 .

To retrieve the models, set model=TRUE and extract it from the resample object

```
In [87]: r = resample(lrn, iristask, resampling = rdesc, model = TRUE)
         names(r)
         print(r$models[]) # 3 models are returned (one for each fold)
   1. 'learner.id' 2. 'task.id' 3. 'measures.train' 4. 'measures.test' 5. 'aggr' 6. 'pred' 7. 'models' 8. 'err.msgs'
9. 'extract' 10. 'runtime'
\lceil \lceil 1 \rceil \rceil
Model for learner.id=classif.rpart; learner.class=classif.rpart
Trained on: task.id = OpenML-Task-59; obs = 100; features = 4
Hyperparameters: xval=0
Model for learner.id=classif.rpart; learner.class=classif.rpart
Trained on: task.id = OpenML-Task-59; obs = 100; features = 4
Hyperparameters: xval=0
[[3]]
Model for learner.id=classif.rpart; learner.class=classif.rpart
Trained on: task.id = OpenML-Task-59; obs = 100; features = 4
Hyperparameters: xval=0
   To compare multiple learners, reuse the same train/test sets for all by saving an instance of the resampling
In [88]: rin = makeResampleInstance(rdesc, iristask)
         model1 = resample("classif.rpart", iristask, resampling = rin)
         model2 = resample("classif.knn", iristask, resampling = rin)
         print(model1$aggr)
         print(model2$aggr)
mmce.test.mean
          0.06
mmce.test.mean
    0.0466667
```

2.4.3 Benchmarking

- Comparing algorithms over many datasets
- Train and test sets need to be synchronized: learners see the same data splits
- Can be combined with feature selection, hyperparameter tuning: mlr wrappers
- Results stored in well-defined container object

A regression benchmark

	task.id	learner.id	${\tt mse.test.mean}$
1	${\tt BostonHousing}$	regr.rpart	22.265629
2	${\tt BostonHousing}$	${\tt regr.randomForest}$	10.367255
3	${\tt BostonHousing}$	regr.lm	23.772084
4	mtcars	regr.rpart	18.155233
5	mtcars	${\tt regr.randomForest}$	5.586592
6	mtcars	regr.lm	18.570632
7	swiss	regr.rpart	111.221114
8	swiss	${\tt regr.randomForest}$	71.357052
9	swiss	regr.lm	65.568089

Accessing benchmark results

In [98]: head(getBMRAggrPerformances(bmr, as.df = TRUE), 3) # Aggregated results
 head(getBMRPerformances(bmr, as.df = TRUE), 3) # Per-fold results
 head(getBMRPredictions(bmr, as.df = TRUE), 3) # Predictions

	task.id	learner.id	mse.test.mean				
1	BostonHousing	regr.rpart	regr.rpart 22.26563				
2	BostonHousing	regr.randor	nFore	est 10.	36726		
3	BostonHousing	$_{ m regr.lm}$		23.	77208		
	task.id	learner.id	iter	mse			
1	BostonHousing	regr.rpart	1	39.09	643		
2	BostonHousing	regr.rpart	2	27.29	989		
3	BostonHousing	regr.rpart	3	22.45	146		
	task.id	learner.id	id	truth	response	iter	set
1	BostonHousing	regr.rpart	4	33.4	32.4449	1	test
2	BostonHousing	regr.rpart	6	28.7	24.96066	1	test
3	BostonHousing	regr.rpart	14	20.4	21.58367	1	test
Vist	ializing performan	ice					

In [99]: plotBMRBoxplots(bmr, measure = mlr::mse)

In [101]: # Summary plot
 plotBMRSummary(bmr)

A classification benchmark

```
In [106]: # Classification benchmark with OpenML
          cv10f = makeResampleDesc("CV", iters = 10)
          tasks = list(
              convertOMLTaskToMlr(getOMLTask(task.id=59))$mlr.task, # iris
              convertOMLTaskToMlr(getOMLTask(task.id=57))$mlr.task, # ionosphere
              convertOMLTaskToMlr(getOMLTask(task.id=2382))$mlr.task # wine
          learners = list(
              makeLearner("classif.rpart"),
              makeLearner("classif.knn"),
              makeLearner("classif.randomForest")
          bmr = benchmark(learners, tasks, cv10f, mlr::mmce)
          bmr
                             learner.id mmce.test.mean
           task.id
1 OpenML-Task-2382
                          classif.rpart
                                            0.13529412
2 OpenML-Task-2382
                            classif.knn
                                            0.20849673
3 OpenML-Task-2382 classif.randomForest
                                            0.01699346
4
   OpenML-Task-57
                          classif.rpart
                                            0.11658730
5
   OpenML-Task-57
                            classif.knn
                                            0.13388889
6
   OpenML-Task-57 classif.randomForest
                                            0.06539683
                                            0.0666667
7
   OpenML-Task-59
                          classif.rpart
8
   OpenML-Task-59
                            classif.knn
                                            0.04000000
   OpenML-Task-59 classif.randomForest
                                            0.05333333
  Benchmark + share automatically on OpenML
In [108]: task.ids = c(59,57,2382)
          for (lrn in learners) {
            for (id in task.ids) {
              task = getOMLTask(id)
              res = runTaskMlr(task, lrn) # shorthand to run OpenML tasks
              run.id = uploadOMLRun(res) # upload results
```

2.5 Hyperparameter tuning

} }

- Find the 'best' hyperparameters for a given dataset
- Tuners iteratively evaluate hyperparameters and move to next setting
- mlr offers many tuners through the same interface
- All info logged in OptPath object

2.5.1 Tuning strategies

- Grid search: exhaustively try all combinations on finite grid
- Random search: draw parameters randomly (scales better)
- Iterated F-Racing: all candidatea are trained in parallel, on increasing amount of data (steps). At each step, models that perform statistically worse than others are dropped
- Model-based (Bayesian) optimization: while evaluating parameter settings, a surrogate model learns the hyperparameter space and predicts interesting parameter settings to try next
- ...

A simple grid search

```
In [135]: task = convertOMLTaskToMlr(getOMLTask(task.id=2073))$mlr.task #yeast
          lrn = makeLearner("classif.rpart")
          rdesc = makeResampleDesc("CV", iters = 3)
          ps = makeParamSet( # Define the grid
              makeIntegerParam("maxdepth", lower = 2, upper = 30),
              makeNumericParam("cp", lower = 0, upper = 0.5)
          ctrl = makeTuneControlGrid(resolution=10) # Use a grid search
          res = tuneParams(lrn,task, rdesc, par.set = ps, control = ctrl,
                          measures = list(acc, setAggregation(acc, test.sd)))
          res
Tune result:
Op. pars: maxdepth=5; cp=0
acc.test.mean=0.572,acc.test.sd=0.00464
  Replace the controller to try other tuning strategies - http://mlr-org.github.io/mlr-
tutorial/devel/html/tune/index.html#tuning-hyperparameters
In [141]: ctrl = makeTuneControlIrace(maxExperiments = 200L) # Iterative F-Racing
          ctrl = makeTuneControlRandom(maxit = 200L) # Random Search
In [136]: res$opt.path
          opt.grid = as.data.frame(res$opt.path)
          head(opt.grid)
Optimization path
  Dimensions: x = 2/2, y = 2
  Length: 100
  Add x values transformed: FALSE
 Error messages: TRUE. Errors: 0 / 100.
  Exec times: TRUE. Range: 0.056 - 0.18. 0 NAs.
```

	maxdepth	$^{\mathrm{cp}}$	acc.test.mean	acc.test.sd	dob	eol	error.message	exec.time
1	2	0	0.485849	0.005050532	1	NA	NA	0.065
2	5	0	0.5721057	0.004635381	2	NA	NA	0.069
3	8	0	0.5640126	0.01202452	3	NA	NA	0.093
4	11	0	0.5559154	0.02168465	4	NA	NA	0.086
5	14	0	0.5491732	0.02384237	5	NA	NA	0.107
6	18	0	0.5491732	0.02384237	6	NA	NA	0.105

```
In [137]: g = ggplot(opt.grid, aes(x = maxdepth, y = cp, fill = acc.test.mean, label = round(acc.test.se
         g + geom_tile() + geom_text(color = "white")
```


2.5.2 Nested resampling

- Never optimize parameters over the same test data as used for estimating the final performance of the model
- Nested resampling: embed the whole model selection process into an outer resampling loop
- In mlr you can wrap the learner in a tuning procedure with makeTuneWrapper

Nested subsampling with 2 iterations in the inner loop (for selecting hyperparameters) and 3-fold cross-validation in the outer loop (for final evaluation)

2.6 ROC analysis

mmce.sd: 0.01 Runtime: 51.4186

- mlr has support for plotting ROC curves and doing ROC analysis
- $\bullet \ http://mlr-org.github.io/mlr-tutorial/devel/html/roc_analysis/index.html\\$

1.00

0.75

False positive rate

In [182]: plotThreshVsPerf(df)

0.00

Compare learners


```
In [184]: qplot(x = fpr, y = tpr, color = learner, data = df$data, geom = "path")
```


2.7 Extra: Handling datasets in R

- In R, datasets are represented as R Data Frames
- Here, we show some useful methods. Skip it if you know them.

Also see: - R Cookbook: http://www.cookbook-r.com/ - DataCamp tutorial: https://www.datacamp.com/community/tutorials/15-easy-solutions-data-frame-problems-r

2.7.1 Basics

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

```
Sepal.Width
                                                     Petal.Width
 Sepal.Length
                                    Petal.Length
Min. :4.300
                 Min.
                         :2.000
                                   Min.
                                          :1.000
                                                    Min.
                                                           :0.100
 1st Qu.:5.100
                  1st Qu.:2.800
                                   1st Qu.:1.600
                                                    1st Qu.:0.300
Median :5.800
                  Median :3.000
                                   Median :4.350
                                                    Median :1.300
Mean
       :5.843
                  Mean
                        :3.057
                                   Mean
                                          :3.758
                                                    Mean
                                                          :1.199
3rd Qu.:6.400
                  3rd Qu.:3.300
                                   3rd Qu.:5.100
                                                    3rd Qu.:1.800
Max.
       :7.900
                  Max.
                         :4.400
                                   Max.
                                         :6.900
                                                    Max.
                                                           :2.500
       Species
 setosa
           :50
versicolor:50
 virginica:50
In [31]: names(iris) # All feature names
         dim(iris)
                      # Dimensions
         nrow(iris) # Number of rows / examples
         ncol(iris) # Number of columns / features
   1. 'Sepal.Length' 2. 'Sepal.Width' 3. 'Petal.Length' 4. 'Petal.Width' 5. 'Species'
   1. 150 2. 5
   150
   5
2.7.2 Slicing
In [32]: head(iris$Petal.Length) # Select specific feature
         iris[1:5,3]
                          # Select values in row 1:5, column 3
         head(iris[,c("Petal.Length", "Petal.Width")]) # Select columns by name
         iris[3.]
                          # Select row 3
   1.\ 1.4\ 2.\ 1.4\ 3.\ 1.3\ 4.\ 1.5\ 5.\ 1.4\ 6.\ 1.7
   1. 1.4 2. 1.4 3. 1.3 4. 1.5 5. 1.4
       Petal.Length Petal.Width
    1
       1.4
                     0.2
    2
                     0.2
       1.4
    3
      1.3
                     0.2
                     0.2
    4
      1.5
                     0.2
    5
       1.4
    6
       1.7
                     0.4
       Sepal.Length
                     Sepal.Width
                                  Petal.Length Petal.Width
                                                              Species
    3
                     3.2
                                   1.3
                                                 0.2
       4.7
                                                              setosa
In [33]: # R will convert a single column to a vector, use drop=FALSE to avoid
         head(iris[,c("Petal.Length")])
         head(iris[,c("Petal.Length"), drop=FALSE])
   1. 1.4 2. 1.4 3. 1.3 4. 1.5 5. 1.4 6. 1.7
       Petal.Length
    1
       1.4
    2
       1.4
    3
      1.3
    4
      1.5
       1.4
    5
    6
       1.7
```

2.7.3 Applying functions

2.7.4 Subsetting

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
54	5.5	2.3	4	1.3	versicolor
60	5.2	2.7	3.9	1.4	versicolor
65	5.6	2.9	3.6	1.3	versicolor
72	6.1	2.8	4	1.3	versicolor
90	5.5	2.5	4	1.3	versicolor
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

```
'data.frame':
                     50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species
             : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
'data.frame':
                     50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num    0.2    0.2    0.2    0.2    0.4    0.3    0.2    0.2    0.1    ...
$ Species
             : Factor w/ 1 level "setosa": 1 1 1 1 1 1 1 1 1 1 ...
```

2.7.5 Removing and adding rows

In [37]: small_iris = iris[iris\$Sepal.Length < 4.5,] # Remove rows based on test
 head(small_iris)
 new_row = c(4.0, 3.0, 1.0, 0.2, "setosa")
 small_iris = rbind(small_iris, new_row)
 head(small_iris)</pre>

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
9	4.4	2.9	1.4	0.2	setosa
14	4.3	3	1.1	0.1	setosa
39	4.4	3	1.3	0.2	setosa
43	4.4	3.2	1.3	0.2	setosa
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
9	4.4	2.9	1.4	0.2	setosa
14	4.3	3	1.1	0.1	setosa
39	4.4	3	1.3	0.2	setosa
43	4.4	3.2	1.3	0.2	setosa
5	4	3	1	0.2	setosa

2.7.6 Removing and adding columns

	Sepal.Length	Petal.Length	Petal.Width	Species		
1	5.1	1.4	0.2	setosa		
2	4.9	1.4	0.2	setosa		
3	4.7	1.3	0.2	setosa		
4	4.6	1.5	0.2	setosa		
5	5	1.4	0.2	setosa		
6	5.4	1.7	0.4	setosa		
	Sepal.Length	Petal.Length	Petal.Width	Species	Sepa	al.Width
1	5.1	1.4	0.2	setosa	3.5	
2	4.9	1.4	0.2	setosa	3	
3	4.7	1.3	0.2	setosa	3.2	
4	4.6	1.5	0.2	setosa	3.1	
5	5	1.4	0.2	setosa	3.6	
6	5.4	1.7	0.4	setosa	3.9	
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Wi	idth	Species
1	5.1	3.5	1.4	0.2		setosa
2	4.9	3	1.4	0.2		setosa
3	4.7	3.2	1.3	0.2		setosa
4	4.6	3.1	1.5	0.2		setosa
5	5	3.6	1.4	0.2		setosa
6	5.4	3.9	1.7	0.4		setosa

2.7.7 Generating data

Several R packages allow you to generate synthetic data

```
In [39]: library(mlbench)
    newdata = as.data.frame(mlbench.spirals(n=1000, cycles=1.5, sd=0.05))
    spirals = ggplot(data=newdata, aes(x=x.1, y=x.2, color=classes)) + geom_point() + coord_fixed(newdata = as.data.frame(mlbench.threenorm(n=1000, d=2))
    blobs = ggplot(data=newdata, aes(x=x.1, y=x.2, color=classes)) + geom_point() + coord_fixed(ranewdata = as.data.frame(mlbench.cassini(n=1000, relsize=c(2,2,1)))
    waves = ggplot(data=newdata, aes(x=x.1, y=x.2, color=classes)) + geom_point() + coord_fixed(ranewdata = as.data.frame(mlbench.ringnorm(n=1000, d=2))
    shapes = ggplot(data=newdata, aes(x=x.1, y=x.2, color=classes)) + geom_point() + coord_fixed(ranewdata, aes(x=x.1, y=x.2, color=class
```


2.7.8 Visualizing data (ggplot)

- http://www.cookbook-r.com/Graphs/index.html
- https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

