几何-真题-女子赛 (2009 年-2014 年)

2025.6.23

1 2014年

1.1 Q1

 $\odot O_1$ 与 $\odot O_2$ 交于 A、B 两点,延长 O_1A 交 $\odot O_2$ 于点 C,延长 O_2A 交 $\odot O_1$ 于点 D,过点 B 作 $BE \parallel O_2A$ 交 $\odot O_1$ 于另一点 E。若 $DE \parallel O_1A$,求证: $DC \perp CO_2$ 。

1.2 Q6

在锐角 $\triangle ABC$ 中,AB > AC,D、E 分别是边 AB、AC 的中点。 $\triangle ADE$ 的外接圆与 $\triangle BCE$ 的外接圆交于点 P (异于点 E), $\triangle ADE$ 的外接圆与 $\triangle BCD$ 的外接圆交于点 Q (异于点 D)。求证: AP = AQ。

2 2013年

2.1 Q2

在梯形 ABCD 中, $AB \parallel CD$, $\odot O_1$ 与 DA、AB、BC 三边相切, $\odot O_2$ 与 BC、CD、DA 三边相切。设 P 是 $\odot O_1$ 与边 AB 的切点,Q 是 $\odot O_2$ 与边 CD 的切点。证明:AC、BD、PQ 三线共点。

2.2 Q7

 $\odot O_1$ 与 $\odot O_2$ 外切于点 T,四边形 ABCD 内接于 $\odot O_1$,直线 DA、CB 分别切 $\odot O_2$ 于点 E、F。直线 BN 平分 $\angle ABF$ 并与线段 EF 交于点 N。直线 FT 交 \widehat{AT} (不包含点 B 的弧) 内于另一点 M。求证:点 M 为 $\triangle BCN$ 的外心。

3 2012 年

3.1 Q2

圆 Γ_1 、 Γ_2 外切于点 T,点 A、E 在圆 Γ_1 上,直线 AB、DE 分别与圆 Γ_2 相切于点 B、D,直线 AE 与 BD 相交于点 P。求证: (1) $\frac{AB}{AT} = \frac{ED}{ET}$; (2) $\angle ATP + \angle ETP = 180^\circ$ 。

3.2 Q5

 $\triangle ABC$ 的内切圆 $\odot I$ 与边 AB、AC 分别相切于点 D、E, $\triangle BCI$ 的外心为 O。证明: ∠ODB = ∠OEC。

4 2011 年

4.1 Q2

四边形 ABCD 的对角线 AC 与 BD 相交于点 E, 边 AB、CD 的中垂线相交于点 F, 点 M、N 分别为边 AB、CD 的中点,直线 EF 分别与边 BC、AD 相交于点 P、Q。若 $MF \cdot CD = NF \cdot AB$ 且 $DQ \cdot BP = AQ \cdot CP$,求证: $PQ \perp BC$ 。

4.2 Q8

 $\odot O$ 为 $\triangle ABC$ 中 BC 边上的旁切圆,点 D、E 分别在线段 AB、AC 上,使得 $DE \parallel BC$ 。 $\odot O_1$ 为 $\triangle ADE$ 的内切圆, O_1B 交 DO 于点 F, O_1C 交 EO 于点 G。 $\odot O$ 切 BC 于点 M, $\odot O_1$ 切 DE 于点 N。求证: MN 平分线段 FG。

5 2010年

5.1 Q2

在 $\triangle ABC$ 中,AB = AC,D 为边 BC 的中点。E 是 $\triangle ABC$ 外一点,满足 $CE \perp AB$, $\overrightarrow{BE} = BD$ 。过线段 BE 的中点 M 作直线 $MF \perp BE$,交 $\triangle ABD$ 的外接圆的劣弧 \overrightarrow{AD} 于点 F。求证: $ED \perp DF$ 。

5.2 Q6

在锐角 $\triangle ABC$ 中, AB > AC, M 为 BC 的中点, $\angle BAC$ 的外角平分线交直线 BC 于点 P。点 K、F 在直线 PA 上, 使得 $MF \perp BC$, $MK \perp PA$ 。求证: $BC^2 = 4PF \cdot AK$ 。

6 2009 年

6.1 Q2

在 $\triangle ABC$ 中, $\angle BAC=90^\circ$,点 E 在 $\triangle ABC$ 的外接圆 Γ 的弧 BC (不含点 A) 内,AE>EC。连接 EC 并延长至点 F,使得 $\angle EAC=\angle CAF$,连接 BF 交圆 Γ 于点 D,连接 ED,记 $\triangle DEF$ 的外心为 O。求证: A、C、O 三点共线。

6.2 Q6

圆 Γ_1 、 Γ_2 内切于点 S,圆 Γ_2 的弦 AB 与圆 Γ_1 相切于点 C,M 是弧 AB(不含点 S)的中点,过点 M 作 MN \bot AB,垂足为 N。记圆 Γ_1 的半径为 r,求证: $AC \cdot CB = 2r \cdot MN$ 。

