

Initiation au NoSQL

Etape 2 – Les spécialités du NoSQL

A propos

L'objectif de ce support de cours est de comprendre quels sont les différences qu'apporte le NoSQL.

Plan

- Think Different
- Le graphe
- Le document
- Le timeseries

Think Different

Understand the limits

Exercice 1 – Manipulation SQL - <u>Une question d'ordre</u>

Exercice 2 – Manipulation SQL – Le stream de contenu

Exercice 3 – Manipulation SQL – La série temporelle

But, for this, keep specialized ...

Dans le cours précédent, nous avons vu que la performance du NoSQL c'est de spécialiser les limites du SQL en effet, c'est cette spécialisation qui permet d'enlever des contraintes là où SQL aura, pour rester générique, mis des bornes.

Il est donc nécessaire de saisir les spécialités de chaque branches NoSQL pour comprendre leurs forces et leurs faiblesses.

Recherche des types de spécialités NoSQL

Exercice 1 – Chapitre Recherche

Le graphe

Exemple: Neo4j, Titan

Forces	Faiblesses
Vision/Représentation graphe	Peu efficace sur des forts volumes de donnée à agréger (moyenne,)
Facilement evolutif	Impossible de rendre obligatoire un champ

la clé-valeur (Time Séries)

Exemple:

Forces	Faiblesses
Très efficace pour le stockage de séries temporelles	Pas évolutif
Faible consommation (peut fonctionner sur un capteur).	

Le document

Exemple: MongoDB,

Forces	Faiblesses	
Performant sur des volumes de données importants	Risque de perte de données	
Forte réactivité d'écriture et de lecture		
Facilement evolutif	Impossible de rendre obligatoire un champ (le contrôle d'intégrité des données doit se faire côté code).	

Des usages avant tout

BDD	Usage	Exemple d'usage
SQL	Tout ce qui concerne les contenus dont l'intégrité est à assurer et peu variant	Base client, Commandes, ERP,
Graphe	Tout ce qui nécessite une approche de rapprochement profonde ou multi-contenu	Réseaux (sociaux, connaissance,)
Clé-Valeur	Tout ce qui concerne des mesures temporelles	ІоТ
Document	Tout ce qui est volumineux et doit être traité rapidement.	Big Data