2017 ISL A2

Tristan Shin 14 July 2018

Let q be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes the following three lines of real numbers on the blackboard:

- In the first line, Gugu writes down every number of the form a b, where a and b are two (not necessarily distinct) numbers on his napkin.
- In the second line, Gugu writes down every number of the form qab, where a and b are two (not necessarily distinct) numbers from the first line.
- In the third line, Gugu writes down every numer of the form $a^2 + b^2 c^2 d^2$, where a, b, c, d are four (not necessarily distinct) numbers from the *first line*.

Determine all values of q such that, regardless of the numbers on Gugu's napkin, every number in the second line is also a number in the third line.

The answer is $q \in \{-2, 0, 2\}$. If q = 0, this clearly works since $0 = a^2 + a^2 - a^2 - a^2$. Now, observe the identity

$$2(x_1 - x_2)(x_3 - x_4) = (x_2 - x_3)^2 + (x_1 - x_4)^2 - (x_1 - x_3)^2 - (x_2 - x_4)^2,$$

so q=2 works. Negating the identity shows that q=-2 works.

For integers $i_j \in [1, 10]$, j = 1, 2, ..., 8, define the polynomial $T_{i_1, i_2, ..., i_8}(x_1, x_2, ..., x_{10})$ as $q(x_1 - x_2)(x_3 - x_4) - (x_{i_1} - x_{i_2})^2 - (x_{i_3} - x_{i_4})^2 + (x_{i_5} - x_{i_6})^2 + (x_{i_7} - x_{i_8})^2$.

Then the polynomial

$$\prod_{1 \le i < j \le 10} (x_i - x_j) \prod_{i_j=1}^{10} T_{i_1, i_2, \dots, i_8} (x_1, x_2, \dots, x_{10})$$

is identically zero because any choice of x_1, x_2, \ldots, x_{10} outputs zero. This is because if the x_i are pairwise distinct, then Gugu can write them on his napkin and one of the T polynomials must output zero by the condition. Thus, one of the factors of this polynomial must be identically zero, so $T_{i_1,i_2,\ldots,i_8} \equiv 0$ for some i_1,i_2,\ldots,i_8 .

Now, look at the coefficient of x_1x_3 in $T_{i_1,i_2,...,i_8}$. If none of the square terms are $(x_1 - x_3)^2$, then the coefficient is q. If one of them is, then the coefficient is $q \pm 2$. If two of them are, then the coefficient is either q or $q \pm 4$. If three of them are, then the coefficient is $q \pm 2$. If four of them are, then the coefficient is q. Since the coefficient should be 0, we have that $q = 0, \pm 2, \pm 4$.

Suppose that $q = \pm 4$. Then exactly two of the square terms are $(x_1 - x_3)^2$, and they have the same sign. Then look at the coefficient of x_2x_4 . A similar analysis shows that the other two square terms are $(x_2 - x_4)^2$. But then the same analysis shows that two square terms must be $(x_2 - x_3)^2$, which is impossible. So $q \neq \pm 4$ and thus $q \in \{-2, 0, 2\}$.

1