Programming Test

Secure Multiparty Computation

- Yao's millionaire problem
 - Alice knows a secret x, Bob knows a secret y
 - Both together wants to know whether x>y, but none wish to reveal x or y
- Let, 1<= x,y <= 100, and Bob has public-private keys (PU_b and PR_b)

Alice

- 1. Compute C = E(PUb, M1), M1 -- a large random number
- 2. Compute C1 = C x and sends C1 to Bob

Bob

- 3. Bob computes $M2_i = D(PRb,C1+i)$, for $1 \le i \le 100$
- 4. Choose a large prime p (<M1); Bob can know the size of M1
 - 5. Compute $Z_i = M2_i \mod p$, 1 <= i < 100
- 6. Verify if $|Z_i Z_j| >= 2$ for all (i,j) and $0 < Z_i < p-1$, for all i, otherwise try another prime and repeat from step-4
- 7. Send to Alice the sequence: Z1, Z2,..., Z_y , $Z_{y+1} + 1$, $Z_{y+2} + 1$, ..., $Z_{y+1} + 1$, $Z_{y+2} + 1$, ...,
- 8. Check if x-th number in the sequence is congruent to M1 mod p, if so, x <y, otherwise x>y

 9. Alice tells the conclusion to Bob

10. Receive conclusion

Secure Multiparty Computation: example

Global: 1 <= x,y <=4

Alice (x = 4)

Compute C = E(PUb, M1) = 19, M1 = 39
 Compute C1 = C - x = 15

Bob (y = 2): RSA with parameters PUb = 7 and PRb = 23, n = 11

- 3. $M2_1 = D(PRb,15+1) = 16$; $M2_1 = D(PRb,15+2) = 18$; $M2_1 = D(PRb,15+3) = 2$; $M2_1 = D(PRb,15+4) = 39$ 4. P=31;
 - 5. Z₁ = 26 mod 31 = 26; similarly Z₂ = 18, Z₃ = 2, Z₄ = 8
 6. Verify all the conditions
 7. Send: (26, 18,2+1,8+1, 31

- 8. 4-th number (9) is not congruent to 39 (mod 31), hence x>y
 - 9. Send result of x>y to Bob

10. Receive result of x>y