

Minimum spanning tree.

Tree Definitions:

- n-1 edges and connected.
- n-1 edges and no cycles.
- All pairs of vertices connected by unique path.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E

Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : EKruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u$.

find(x) – returns root of pointer structure.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $\mathsf{makeset}(\mathsf{s}) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $\mathsf{makeset}(\mathsf{s}) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u$.

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure. union(x,y) - point to larger rank root.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u$.

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure. union(x,y) - point to larger rank root. increase rank if tied.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

makeset(s) – $\pi(u) = u$.

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure. union(x,y) - point to larger rank root. increase rank if tied.

 $> 2^k$ nodes in rank k root tree. $O(\log n)$ depth structure.

Def: A tree is a connected graph with no cycles.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

L

B

A = E

Adding any edge between components

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

F

Adding any edge between components

⇒ reduces number of components by one.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

F

Adding any edge between components

⇒ reduces number of components by one.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

L

Adding any edge between components

 \implies reduces number of components by one.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components

 \implies reduces number of components by one.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components

⇒ reduces number of components by one.

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components

reduces number of components by one.

After n-1 additions

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components

 \implies reduces number of components by one.

After n-1 additions one component!

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components \implies reduces number of components by one. After n-1 additions one component!

After n-1 additions one component! (If more additions,

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components

 \implies reduces number of components by one.

After n-1 additions one component! (If more additions, inside component

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components \implies reduces number of components by one. After n-1 additions one component! (If more additions, inside component \implies cycle!)

Def: A tree is a connected graph with no cycles.

Property: A tree has n-1 edges.

Start with empty graph with *n* components.

Adding any edge between components

reduces number of components by one.

After n-1 additions one component! (If more additions, inside component \implies cycle!)

Def: A tree is a connected graph with no cycles.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not,

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges. Must have at least n-1 edges to be connected.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges. Must have at least n-1 edges to be connected. Doh!

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges. Must have at least n-1 edges to be connected. Doh! \to no cycle.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges. Must have at least n-1 edges to be connected. Doh! \rightarrow no cycle.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges. Must have at least n-1 edges to be connected. Doh! \rightarrow no cycle.

Def: A tree is a connected graph with no cycles.

Property: A connected graph with n-1 edges is a tree.

If not, there is n-1 edge connected graph with a cycle.

Remove edge on cycle, still connected. And n-2 edges. Must have at least n-1 edges to be connected. Doh! \rightarrow no cycle.

Def: A tree is a connected graph with no cycles.

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Come back together.

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Come back together.

 \implies cycle!

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Come back together.

 \implies cycle! Not Tree!

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Come back together.

⇒ cycle! Not Tree!

If yes, connected and no cycle.

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Come back together.

⇒ cycle! Not Tree!

If yes, connected and no cycle. Tree!

Def: A tree is a connected graph with no cycles.

Property: A graph is a tree if and only if it has a unique path between every pair of nodes.

If two paths:

Diverge

Come back together.

⇒ cycle! Not Tree!

If yes, connected and no cycle. Tree!

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Yes?

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Yes? No?

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Yes? No?

Yes.

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Yes? No?

Yes. If edge weights positive.

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Yes? No?

Yes. If edge weights positive.

If negative edges, then restrict to tree.

Given a graph, G = (V, E), edge weights w_e , find the cheapest possible connected subgraph.

Will it be a tree?

Yes? No?

Yes. If edge weights positive.

If negative edges, then restrict to tree.

Given a graph, G = (V, E), edge weights w_e , find the lowest weight spanning tree.

Shortest Path Tree from s!

Shortest path from *s* to *v* in tree?

MST? Yes! Shortest path from *s* to *v* in tree? No!

MST - cheapest spanning tree of graph.

MST? Yes!

Shortest path from *s* to *v* in tree? No!

Shortest Path Tree from s!

MST - cheapest spanning tree of graph.

Shortest path tree

MST? Yes!

Shortest path from s to v in tree? No!

MST? Yes!

Shortest path from *s* to *v* in tree? No!

MST - cheapest spanning tree of graph.

Shortest path tree

- contains shortest paths from s to other nodes.

MST? Yes!

Shortest path from *s* to *v* in tree? No!

MST - cheapest spanning tree of graph.

Shortest path tree

- contains shortest paths from s to other nodes.

MST -

MST? Yes!

Shortest path from *s* to *v* in tree? No!

MST - cheapest spanning tree of graph.

Shortest path tree

- contains shortest paths from *s* to other nodes.

MST -

do not care about shortest paths!

MST? Yes!

Shortest path from *s* to *v* in tree? No!

MST - cheapest spanning tree of graph.

Shortest path tree

- contains shortest paths from *s* to other nodes.

MST -

do not care about shortest paths! just lowest weight tree.

MST: total cost is 2+4+3+1+5=15.

Smallest edge across any cut is in some MST.

Smallest edge across any cut is in some MST.

Smallest edge across any cut is in some MST.

Tree Connected \Longrightarrow

Smallest edge across any cut is in some MST.

Tree Connected \implies there exists e' across cut! Replace e' with e.

Smallest edge across any cut is in some MST.

Tree Connected \implies there exists e' across cut! Replace e' with e. Every pair remains connected.

Smallest edge across any cut is in some MST.

Tree Connected ⇒ there exists *e'* across cut! Replace *e'* with *e*. Every pair remains connected.

If used *e'* can use path through *e*.

Smallest edge across any cut is in some MST.

Tree Connected ⇒ there exists *e'* across cut! Replace *e'* with *e*. Every pair remains connected.

If used *e'* can use path through *e*.

and n-1 edges.

Smallest edge across any cut is in some MST.

Tree Connected \Longrightarrow

there exists e' across cut! Replace e' with e.

Every pair remains connected.

If used e' can use path through e.

and n-1 edges.

So still a tree

Smallest edge across any cut is in some MST.

Tree Connected \Longrightarrow

there exists e' across cut! Replace e' with e.

Every pair remains connected.

If used e' can use path through e.

and n-1 edges.

So still a tree and is no more costly $(w(e) \le w(e'))$.

Smallest edge across any cut is in some MST.

Tree Connected \Longrightarrow

there exists e' across cut! Replace e' with e.

Every pair remains connected.

If used e' can use path through e.

and n-1 edges.

So still a tree and is no more costly $(w(e) \le w(e'))$.

```
Sort edges. F = 0. For each edge: e If no cycle, F = F + e.
```

```
Sort edges. F = . For each edge: e If no cycle, F = F + e. How to check for cycle for edge (u, v) in F?
```

```
Sort edges.
```

F =. For each edge: e If no cycle, F = F + e.

How to check for cycle for edge (u, v) in F?

Check for path between u and v in F.

```
Sort edges.
```

F =. For each edge: e If no cycle, F = F + e.

How to check for cycle for edge (u, v) in F?

Check for path between u and v in F.

Total Running time?

```
Sort edges.
```

F =. For each edge: e If no cycle, F = F + e.

How to check for cycle for edge (u, v) in F?

Check for path between u and v in F.

Total Running time?

O(n) time

```
Sort edges.
```

F =. For each edge: e If no cycle, F = F + e.

How to check for cycle for edge (u, v) in F?

Check for path between u and v in F.

Total Running time?

O(n) time $\rightarrow O(nm)$ for Kruskals.

Sort edges.

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Sort edges.

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Sort edges.

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

Sort edges.

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

At beginning each node by itself.

Sort edges.

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

At beginning each node by itself. Adding edge, joins component.

Sort edges.

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

At beginning each node by itself. Adding edge, joins component. Edge (u, v) in cycle?

```
Sort edges.
```

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

At beginning each node by itself.

Adding edge, joins component.

Edge (u, v) in cycle? u and v in same component.

```
Sort edges.
```

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

At beginning each node by itself.

Adding edge, joins component.

Edge (u, v) in cycle? u and v in same component.

```
Sort edges.
```

F =. For each edge: e = (u, v) If no cycle in F, add edge.

Main issue: Check for cycle.

Maintain connected components.

At beginning each node by itself.

Adding edge, joins component.

Edge (u, v) in cycle? u and v in same component.

Disjoint Sets Data Structure.

makeset(x) - makes singleton set $\{x\}$.

```
Sort edges.
F =. For each edge: e = (u, v)
   If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
```

```
Sort edges.
F =. For each edge: e = (u, v)
   If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
union(x,y) - merge sets containing x and y.
```

Sort edges.

```
F =. For each edge: e = (u, v)
   If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
union(x,y) - merge sets containing x and y.
"If no cycle"
```

Sort edges.

F =. For each edge: e = (u, v)

```
If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
union(x,y) - merge sets containing x and y.
"If no cycle" \equiv "find(u) \neq find(v)"
```

```
Sort edges.
F =. For each edge: e = (u, v)
   If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
union(x,y) - merge sets containing x and y.
"If no cycle" \equiv "find(u) \neq find(v)"
"Add edge"
```

```
Sort edges.
F =. For each edge: e = (u, v)
   If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
union(x,y) - merge sets containing x and y.
"If no cycle" \equiv "find(u) \neq find(v)"
"Add edge" \equiv "union(u,v)"
```

```
Sort edges.
F =. For each edge: e = (u, v)
   If no cycle in F, add edge.
Main issue: Check for cycle.
Maintain connected components.
At beginning each node by itself.
Adding edge, joins component.
Edge (u, v) in cycle? u and v in same component.
Disjoint Sets Data Structure.
makeset(x) - makes singleton set {x}.
find(x) - finds set containing x.
union(x,y) - merge sets containing x and y.
"If no cycle" \equiv "find(u) \neq find(v)"
"Add edge" \equiv "union(u,v)"
```

Maintain pointers: $\pi(x)$ for each x.

makeset(x)

$$\mathbf{makeset(x)} \ \pi(x) = x.$$

$$\pi(\operatorname{find}(x)) = \operatorname{find}(y)$$

```
\begin{aligned} & \mathbf{makeset(x)} \ \pi(x) = x. \\ & \mathbf{union(x,y)} \\ & \pi(\mathsf{find}(x)) = \mathsf{find}(y) \\ & \mathbf{find(x)} \\ & \mathbf{if} \ \pi(x) == x \\ & \mathbf{return} \ x \\ & \mathbf{else} \\ & \mathbf{find}(\pi(x)) \end{aligned}
```



```
makeset(x) \pi(x) = x.
union(x,y)
   \pi(\operatorname{find}(x)) = \operatorname{find}(y)
find(x)
   if \pi(x) == x
      return x
   else
       find(\pi(x))
  How long does find take?
   (A) O(n)
```



```
makeset(x) \pi(x) = x.
union(x,y)
   \pi(\operatorname{find}(x)) = \operatorname{find}(y)
find(x)
  if \pi(x) == x
      return x
  else
      find(\pi(x))
  How long does find take?
   (A) O(n)
   (B) O(1)
   (C) Depends.
```


Maintain pointers: $\pi(x)$ for each x.

```
makeset(x) \pi(x) = x.
union(x,y)
   \pi(\operatorname{find}(x)) = \operatorname{find}(y)
find(x)
  if \pi(x) == x
      return x
  else
      find(\pi(x))
  How long does find take?
   (A) O(n)
   (B) O(1)
   (C) Depends.
```

Want depth to be small!

Maintain pointers: $\pi(x)$ for each x. **makeset(x)**

Maintain pointers: $\pi(x)$ for each x.

makeset(x) $\pi(x) = x$.

```
Maintain pointers: \pi(x) for each x. 
 \mathbf{makeset(x)}\ \pi(x) = x. 
 \mathbf{find(x)} 
 \mathbf{if}\ \pi(x) == x 
 \mathbf{return}\ x 
 \mathbf{else} 
 \mathbf{find}(\pi(x))
```

```
Maintain pointers: \pi(x) for each x.

makeset(x) \pi(x) = x.

find(x)

if \pi(x) == x

return x

else

find(\pi(x))

Make a bit less deep: union-by-rank.
```

```
Maintain pointers: \pi(x) for each x. 

makeset(x) \pi(x) = x. 

find(x) 

if \pi(x) == x 

return x 

else 

\operatorname{find}(\pi(x)) 

Make a bit less deep: union-by-rank. 

union(x,y)
```

```
Maintain pointers: \pi(x) for each x.
makeset(x) \pi(x) = x.
find(x)
  if \pi(x) == x
     return x
  else
      find(\pi(x))
Make a bit less deep: union-by-rank.
union(x,y)
Use roots of x and y.
```

```
Maintain pointers: \pi(x) for each x.
makeset(x) \pi(x) = x.
find(x)
  if \pi(x) == x
     return x
  else
     find(\pi(x))
Make a bit less deep: union-by-rank.
union(x,y)
Use roots of x and y.
Which points to which?
```

```
Maintain pointers: \pi(x) for each x.
makeset(x) \pi(x) = x.
find(x)
  if \pi(x) == x
     return x
  else
     find(\pi(x))
Make a bit less deep: union-by-rank.
union(x,y)
Use roots of x and y.
Which points to which?
"smaller" to "larger"
```

```
Maintain pointers: \pi(x) for each x.
makeset(x) \pi(x) = x.
find(x)
  if \pi(x) == x
     return x
  else
     find(\pi(x))
Make a bit less deep: union-by-rank.
union(x,y)
Use roots of x and y.
Which points to which?
"smaller" to "larger" ..sort of.
```

Union by rank.

Initially: rank(x) = 0.

Union by rank.

```
Initially: rank(x) = 0.

union(x,y)

r_x = find(x)

r_y = find(y)
```

```
Initially: rank(x) = 0.

union(x,y)

r_x = \text{find}(x)

r_y = \text{find}(y)

if rank(r_x) < rank(r_y):
```

```
Initially: rank(x) = 0.

union(x,y)
r_x = \text{find}(x)
r_y = \text{find}(y)
if rank(r_x) < rank(r_y):
\pi(r_x) = r_y
```

```
Initially: rank(x) = 0.

union(x,y)

r_x = \text{find}(x)

r_y = \text{find}(y)

if rank(r_x) < rank(r_y):

\pi(r_x) = r_y

else:

\pi(r_y) = r_x
```

```
Initially: \operatorname{rank}(x) = 0.

\operatorname{union}(x,y)

r_x = \operatorname{find}(x)

r_y = \operatorname{find}(y)

\operatorname{if} \operatorname{rank}(r_x) < \operatorname{rank}(r_y):

\pi(r_x) = r_y

\operatorname{else:}

\pi(r_y) = r_x

\operatorname{if} \operatorname{rank}(r_x) = \operatorname{rank}(r_y):

\operatorname{rank}(r_x) + 1
```

Lemma: Pop's got a higher rank:

Lemma: Pop's got a higher rank: $rank(x) < rank(\pi(x))$

Lemma: Pop's got a higher rank: $rank(x) < rank(\pi(x))$

Lemma: Pop's got a higher rank: $rank(x) < rank(\pi(x))$

Duh!

```
Lemma: Pop's got a higher rank:
          rank(x) < rank(\pi(x))
Duh!
Code enforces it.
union(x,y):
  if rank(r_x) < rank(r_y):
         \pi(r_{\mathsf{x}}) = r_{\mathsf{v}}
  else:
         \pi(r_{v})=r_{x}
         if rank(r_x) == rank(r_y):
              rank(r_x) += 1
```

```
Lemma: Pop's got a higher rank:
           rank(x) < rank(\pi(x))
            if x \neq \pi(x).
Duh!
Code enforces it.
union(x,y):
   if rank(r_x) < rank(r_y):
         \pi(r_{\mathsf{x}}) = r_{\mathsf{v}}
   else:
         \pi(r_{v})=r_{x}
         if rank(r_x) == rank(r_y):
               rank(r_x) += 1
Initially?
```



```
union(x,y):

:

:f rank(r_X) < rank(r_y):

\pi(r_X) = r_y

else:

\pi(r_Y) = r_X

if rank(r_X) == rank(r_y):

rank(r_X) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

```
\begin{aligned} & \mathsf{union}(x,y) \colon \\ & \vdots \\ & \mathsf{if} \ \mathsf{rank}(r_X) < \mathsf{rank}(r_y) \colon \\ & \pi(r_X) = r_y \\ & \mathsf{else} \colon \\ & \pi(r_Y) = r_x \\ & \mathsf{if} \ \mathsf{rank}(r_X) = \mathsf{rank}(r_y) \colon \\ & \mathsf{rank}(r_X) + = 1 \end{aligned}
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

```
union(x,y):

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_Y):

\pi(r_X) = r_Y

else:

if \operatorname{rank}(r_X) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_Y):

\operatorname{rank}(r_X) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction: Base Case

```
union(x,y):

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_Y):

\pi(r_X) = r_Y

else:

if \operatorname{rank}(r_X) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_Y):

\operatorname{rank}(r_X) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction: Base Case ?

```
union(x,y):

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_Y):

\pi(r_X) = r_Y

else:

if \operatorname{rank}(r_X) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_Y):

\operatorname{rank}(r_X) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

Base Case?

- (A) $2^0 \ge 1$
- (B) $2^1 \ge 1$

```
union(x,y):

:

if \operatorname{rank}(r_x) < \operatorname{rank}(r_y):

\pi(r_x) = r_y

else:

\pi(r_y) = r_x

if \operatorname{rank}(r_y) = \operatorname{rank}(r_y):

\operatorname{rank}(r_x) + 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

Α.

```
union(x,y):

:

:

if rank(r_x) < rank(r_y):

\pi(r_x) = r_y

else:

\pi(r_y) = r_x

if rank(r_x) == rank(r_y):

rank(r_x) += 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

```
union(x,y):

:

:

if rank(r_x) < rank(r_y):

\pi(r_x) = r_y

else:

\pi(r_y) = r_x

if rank(r_x) == rank(r_y):

rank(r_x) += 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

Induction: Base Case ?

base Gase

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_X) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_X) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

```
rank(x) was k-1
```

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_Y) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

```
rank(x) was k-1 so has \geq 2^{k-1} nodes.
```

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_Y) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

 $\operatorname{rank}(x)$ was k-1 so has $\geq 2^{k-1}$ nodes. by ind. hyp.

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_Y) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree.

Induction:

Base Case?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

rank(x) was k-1 so has $\geq 2^{k-1}$ nodes. by ind. hyp. gains nodes from rank k-1 node

```
union(x,y):

:

:

if \operatorname{rank}(r_x) < \operatorname{rank}(r_y):

\pi(r_x) = r_y

else:

\pi(r_y) = r_x

if \operatorname{rank}(r_x) = \operatorname{rank}(r_y):

\operatorname{rank}(r_x) + = 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

Base Case ?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

rank(x) was k-1 so has $\geq 2^{k-1}$ nodes. by ind. hyp. gains nodes from rank k-1 node with $\geq 2^{k-1}$ nodes

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_Y) + 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

Base Case ?

(A)
$$2^0 \ge 1$$

(B)
$$2^1 \ge 1$$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

rank(x) was k-1 so has $\geq 2^{k-1}$ nodes. by ind. hyp. gains nodes from rank k-1 node with $\geq 2^{k-1}$ nodes $\Rightarrow > 2^{k-1} + 2^{k-1} = 2^k$ nodes.

```
union(x,y):

:

:

if \operatorname{rank}(r_X) < \operatorname{rank}(r_y):

\pi(r_X) = r_y

else:

\pi(r_Y) = r_X

if \operatorname{rank}(r_X) = \operatorname{rank}(r_y):

\operatorname{rank}(r_Y) + 1
```

Lemma: Any rank k root node has $\geq 2^k$ nodes in its tree. Induction:

Base Case?

- (A) $2^0 > 1$
- (B) $2^1 \ge 1$

A. Initially rank(x) = 0, 1 node in tree.

Induction step:

When rank(x) goes up to k.

rank(x) was k-1 so has $\geq 2^{k-1}$ nodes. by ind. hyp. gains nodes from rank k-1 node with $\geq 2^{k-1}$ nodes $\Rightarrow > 2^{k-1} + 2^{k-1} = 2^k$ nodes.

Exactly 2^k nodes in tree of rank k?

Exactly 2^k nodes in tree of rank k? Yes?

Exactly 2^k nodes in tree of rank k? Yes? No?

Exactly 2^k nodes in tree of rank k? Yes? No? No.

```
Exactly 2^k nodes in tree of rank k? Yes? No? No. 

: 

if \operatorname{rank}(r_x) < \operatorname{rank}(r_y): 

\pi(r_x) = r_y
:
```

```
Exactly 2^k nodes in tree of rank k? Yes? No? No. 

: 

if \operatorname{rank}(r_x) < \operatorname{rank}(r_y): 

\pi(r_x) = r_y
:
```

Gains nodes without gaining rank!

Back to complexity.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

Back to complexity.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A.

Back to complexity.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$,

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

```
Find(x) is
```

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only *k* steps in find.

```
Find(x) is
```

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only k steps in find.

O(k)

Find(x) is

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank *k* root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only *k* steps in find.

 $O(k) = O(\log n)$ time.

```
Find(x) is
```

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only *k* steps in find.

 $O(k) = O(\log n)$ time.

Yay!

```
Find(x) is
```

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank *k* root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only *k* steps in find.

 $O(k) = O(\log n)$ time.

Yay!

Can we do better?

```
Find(x) is
```

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank k root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only *k* steps in find.

$$O(k) = O(\log n)$$
 time.

Yay!

Can we do better? Yes. We will see better.

```
Find(x) is
```

- (A) $O(\log n)$ time.
- (B) O(1) time
- (C) O(n) time.

A. (and (C)).

Rank *k* root node has $\geq 2^k$ nodes.

Only *n* nodes in any set.

Every rank at most $\log n$, (otherwise, $> 2^{\log n} = n$ nodes.)

Parent has higher rank. Code enforces it.

Only *k* steps in find.

$$O(k) = O(\log n)$$
 time.

Yay!

Can we do better? Yes. We will see better.

Kruskal Implementation.

|V| unions. |E| finds.

Kruskal Implementation.

|V| unions. |E| finds.

 $O(|E|\log n)$ time!

Kruskal Implementation.

|V| unions. |E| finds.

 $O(|E|\log n)$ time!

Versus O(|E||V|).

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E

Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u.$

find(x) – returns root of pointer structure.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E

Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Add edges in this order if no cycle. Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $\mathsf{makeset}(\mathsf{s}) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u.$

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure. union(x,y) - point to larger rank root.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

 $makeset(s) - \pi(u) = u$.

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure. union(x,y) - point to larger rank root. increase rank if tied.

Tree Definitions:

n-1 edges and connected.

n-1 edges and no cycles.

All pairs of vertices connected by unique path.

Minimum Spanning Tree: G = (V, E), weights w : E Kruskal: Sort edges.

Add edges in this order if no cycle.

Cut property:

Exists MST with minimum weight edge across cut.

Union-Find Data Structure.

Pointer implementation: $\pi(u)$.

Pointer implementation: $\pi(u)$ makeset(s) – $\pi(u) = u$.

find(x) – returns root of pointer structure.

union(x,y) – $\pi(find(x)) = \pi(find(y))$.

Union by rank: $O(\log n)$ depth for pointer structure. union(x,y) - point to larger rank root. increase rank if tied.

 $> 2^k$ nodes in rank k root tree.

 $O(\log n)$ depth structure.

