

VT8235

V-LINK CLIENT HIGHLY INTEGRATED SOUTH BRIDGE

HIGH BANDWIDTH V-LINK CLIENT CONTROLLER
INTEGRATED FAST ETHERNET
INTEGRATED DIRECT SOUND AC97 AUDIO,
ULTRADMA-133/100/66/33 MASTER MODE EIDE CONTROLLER,
SIX PORT USB CONTROLLER FOR USB 2.0 AND USB 1.1,
KEYBOARD / MOUSE CONTROLLER, RTC
LPC, SMBUS, SERIAL IRQ, PLUG AND PLAY, ACPI,
and PC2001 COMPLIANT Enhanced Power Management

Revision 1.22 October 24, 2002

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2002, VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT8233, VT8233A, VT8233C, and VT8235 may only be used to identify products of VIA Technologies.

VIA C3™ is a registered trademark of VIA Technologies.

AMD-K7™ and Athlon™ are registered trademarks of Advanced Micro Devices

Celeron™ ,Pentium™, Pentium-III™, Pentium-4™, MMX™, and Intel™ ,are registered trademarks of Intel Corporation

PS/2[™] is a registered trademark of International Business Machines Corporation

Windows XP[™], Windows 2000[™], Windows ME[™], Windows 98[™], Windows 95[™], and Plug and Play[™] are registered trademarks of Microsoft Corporation

PCI™ is a registered trademark of the PCI Special Interest Group.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office:

940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Web: http://www.viatech.com

Taipei Office:

8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453 Web: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	7/22/02	Initial external release (same as internal release 0.8 except for the addition of note on	DH
		GPO26-27 pin descriptions regarding suspend voltage operation)	
1.1	9/12/02	Updated VIA Corporate Logo on cover page; Updated V-Link feature bullets	DH
		Fixed misc typos and document formatting inconsistencies	
		Fixed Device #'s in register summary table headings	
		Fixed notes under Port 71 and 75 register descriptions	
		Fixed Dev17 F0 Rx5B[2], 81[2], 82[6]; Updated marking specs	
		Fixed VBAT voltage spec; Removed VPDVREF & VSDVREF from elec spec tables	
1.2	9/19/02	Corrected typos & misc document formatting inconsistencies	DH
		Added PDVREF, SDVREF pin descriptions; Fixed AOLGPI pin # in pin descriptions	
		Added missing PMIO Rx5C to register summary tables & updated reg bit definitions	
		Updated PMIO Rx2C[2]; Updated Function 5 I/O Rx48[23-0]	
		Replaced PDVREF and SDVREF in electrical specifications	
1.21	9/27/02	Fixed pin names of PCREQA/B and PCGNTA/B in pin descriptions	DH
1.22	10/24/02	Fixed register references in MSCK and MSDT pin descriptions	DH
		Fixed VLVREF voltage for V-Link 8x mode	
		Removed references to nonexistant ports 72-73	

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	
PINOUTS	
PIN DESCRIPTIONS	
REGISTERS	
REGISTER OVERVIEW.	
REGISTER DESCRIPTIONS	
Legacy I/O Ports	
Keyboard Controller I/O Registers	
DMA Controller I/O Registers	39
Interrupt Controller I/O Registers	40
Timer / Counter Registers	40
CMOS / RTC I/O Registers	
Keyboard / Mouse Wakeup Index / Data Registers	
Keyboard / Mouse Wakeup Registers	
Memory Mapped I/O APIC Registers	
Indexed I/O APIC Registers	
Configuration Space I/O	45
Device 16 Function 0 Registers - USB 1.1 UHCI Ports 0-1	
PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	
Device 16 Function 1 Registers - USB 1.1 UHCI Ports 2-3	
PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	
Device 16 Function 2 Registers - USB 1.1 UHCI Ports 4-5	54
PCI Configuration Space Header	54
USB-Specific Configuration Registers	
USB I/O Registers	
Device 16 Function 3 Registers - USB 2.0 EHCI	
PCI Configuration Space Header	
USB-Specific Configuration Registers	
EHCI USB 2.0 I/O Registers	
Device 17 Function 0 Registers – Bus Control and Power Management	
PCI Configuration Space Header	
ISA Bus Control	62
Miscellaneous Control	64
Function Control	65
Serial IRQ, LPC, and PC/PCI DMA Control	
Plug and Play Control - PCI	
GPIO and Miscellaneous Control	
Programmable Chip Select Control	
ISA Decoding Control	
Power Management-Specific Configuration Registers	
System Management Bus-Specific Configuration Registers	

SMB GPIO Slave Command Codes	
General Purpose I/O Control Registers	
Power Management I/O-Space Registers	
System Management Bus I/O-Space Registers	
Device 17 Function 1 Registers - Enhanced IDE Controller	93
PCI Configuration Space Header	93
IDE-Controller-Specific Configuration Registers	95
IDE Power Management Registers	99
IDE Back Door Registers	99
IDE Revision ID	
IDE I/O Registers	
Device 17 Function 5 Registers - AC97 Audio Controller	
PCI Configuration Space Header	
Audio-Specific PCI Configuration Registers	
I/O Base 0 Regs – Audio Scatter / Gather DMA	
Device 17 Function 6 Registers - AC97 Modem Controller	
PCI Configuration Space Header	
Modem-Specific PCI Configuration Registers	113
I/O Base 0 Regs – Modem Scatter / Gather DMA	
Device 18 Function 0 Registers - LAN	
PCI Configuration Space Header	
LAN-Specific PCI Configuration Registers	
LAN I/O Registers	
FUNCTIONAL DESCRIPTIONS	121
POWER MANAGEMENT	
Power Management Subsystem Overview	
Processor Bus States.	
System Suspend States and Power Plane Control	
General Purpose I/O Ports	
Power Management Events	
System and Processor Resume Events	
Legacy Power Management Timers	
System Primary and Secondary Events	
Peripheral Events	
ELECTRICAL SPECIFICATIONS	136
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	136
REGISTER BITS POWERED BY VBAT	137
REGISTER BITS POWERED BY VSUS25	137
POWER REQUIREMENTS	138
PACKAGE MECHANICAL SPECIFICATIONS	
FAUNAUTE WIEUHANIUAL SEEUIFIUA HUNS	

LIST OF FIGURES

FIGURE 1.	PC SYSTEM CONFIGURATION USING THE VT8235	5
FIGURE 2.	VT8235 BALL DIAGRAM (TOP VIEW)	6
	POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	
FIGURE 4.	SYSTEM BLOCK DIAGRAM USING THE VT8754 NORTH BRIDGE	. 134
FIGURE 5.	MECHANICAL SPECIFICATIONS – 487 PIN BALL GRID ARRAY PACKAGE	. 139

LIST OF TABLES

TABLE 1. <u>VT8235</u> PIN LIST (<u>NUMERICAL</u> ORDER)	7
TABLE 2. VT8235 PIN LIST (ALPHABETICAL ORDER)	
TABLE 3. PIN DESCRIPTIONS	
TABLE 4. MEMORY MAPPED REGISTERS	
TABLE 5. FUNCTION SUMMARY	
TABLE 6. SYSTEM I/O MAP	
TABLE 7. REGISTERS	
TABLE 8. KEYBOARD CONTROLLER COMMAND CODES	
TABLE 9. CMOS REGISTER SUMMARY	
TABLE 10. APIC FIXED IRQ ROUTING	
TABLE 11. PNP IRQ ROUTING TABLE	
1.11 <i>0</i> 11	•••••••••••

VT8235

LOW COST V-LINK CLIENT HIGHLY INTEGRATED SOUTH BRIDGE

HIGH BANDWIDTH V-LINK CLIENT CONTROLLER INTEGRATED FAST ETHERNET, INTEGRATED DIRECT SOUND AC97 AUDIO, ULTRADMA-133/100/66/33 MASTER MODE EIDE CONTROLLER, SIX PORT USB 2.0 CONTROLLER, KEYBOARD / MOUSE CONTROLLER, RTC, LPC, SMBUS, SERIAL IRQ, PLUG AND PLAY, ACPI, AND PC2001 COMPLIANT ENHANCED POWER MANAGEMENT

PRODUCT FEATURES

• Inter-operable with VIA Host-to-V-Link Host Controller

- Combine with VT8754 (Apollo P4X333) for a complete 533 / 400 MHz FSB Pentium 4 system
- Combine with VT8377 (Apollo KX400) for a complete 266 / 200 MHz FSB Athlon Socket-A system

High Bandwidth 533 MB/s 8-bit V-Link Client Controller

- Supports 66 MHz V-Link Client interface with total bandwidth of 533 MB/sec
- V-Link operates in 2x, 4x, and 8x modes
- Full duplex commands with separate Strobe / Command
- Request / Data split transaction
- Configurable outstanding transaction queue for V-Link Client accesses
- Auto Client Retry to eliminate V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency; all V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow.
- Highly efficient V-Link arbitration with minimum overhead; all V-Link transactions have predictable cycle length with known Command / Data duration
- Auto connect / reconnect capability and dynamic stop for minimum power consumption
- Parity checking to insure correct data transfers

Integrated Peripheral Controllers

- Integrated Fast Ethernet Controller with 1 / 10 / 100 Mbit capability
- Integrated USB 2.0 Controller with three root hubs and six function ports
- Dual channel UltraDMA-133 / 100 / 66 / 33 master mode EIDE controller
- AC-link interface for AC-97 audio codec and modem codec
- HSP modem support
- Integrated DirectSound compatible digital audio controller
- LPC interface for Low Pin Count interface to Super-I/O or ROM

• Integrated Legacy Functions

- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated DMA, timer, and interrupt controller
- Serial IRQ for docking and non-docking applications
- Fast reset and Gate A20 operation

Concurrent PCI Bus Controller

- 33 MHz operation
- Supports up to six PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec (data sent to north bridge via high speed V-Link Interface)
- PCI master snoop ahead and snoop filtering
- Eight DW of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Four lines of post write buffers from PCI masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for access by PCI masters
- Delay transaction from PCI master accessing DRAM
- Transaction timer for fair arbitration between PCI masters (granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system performance
- Complete steerable PCI interrupts
- PCI-2.2 compliant, 32 bit 3.3V PCI interface with 5V tolerant inputs

• Fast Ethernet Controller

- High performance PCI master interface with scatter / gather and bursting capability
- Standard MII interface to external PHYceiver
- 1 / 10 / 100 MHz full and half duplex operation
- Independent 2K byte FIFOs for receive and transmit
- Flexible dynamically loadable EEPROM algorithm
- Physical, Broadcast, and Multicast address filtering using hashing function
- Magic packet and wake-on-address filtering
- Software controllable power down

UltraDMA-133 / 100 / 66 / 33 Master Mode EIDE Controller

- Dual channel master mode hard disk controller supporting four Enhanced IDE devices
- Transfer rate up to 133MB/sec to cover PIO mode 4, multi-word DMA mode 2 drives, and UltraDMA-133 interface
- Increased reliability using UltraDMA-133/100/66 transfer protocols
- Thirty-two levels (doublewords) of prefetch and write buffers
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038i rev.1.0 and Windows-95 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support

Direct Sound Ready AC97 Digital Audio Controller

- AC-Link access to 4 CODECs (AC97 + AMC97 + MC97)
- Multichannel Audio
- Bus Master Scatter / Gather DMA
- Dedicated read and write channels supporting simultaneous stereo playback and record
- Dedicated read and write channels supporting simultaneous modem receive and transmit
- 1 stereo DirectSound channel with source / volume control / mixer
- 1 shared FM / SPDIF PCM read channel
- 1 dedicated channel supporting multi-channel audio
- 32-byte line-bufers for each SGD channel
- Programmable 8bit / 16bit mono / stereo PCM data format support
- AC97 2.1 compliant

• System Management Bus Interface

- Host interface for processor communications
- Slave interface for external SMBus masters

Universal Serial Bus Controller

- USB v2.0 and Enhanced Host Controller Interface (EHCI) v1.0 compatible
- USB v1.1 and Universal Host Controller Interface (UHCI) v1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter and gather capability
- Three root hubs and six function ports
- Integrated physical layer transceivers with optional over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

Sophisticated PC2001-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v1.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run, Power Management Enable (PME) control, and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- 32 general purpose input ports and 32 output ports
- Multiple internal and external SMI sources for flexible power management models
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm on external temperature sensing circuit
- I/O pad leakage control

• Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Steerable interrupts for integrated peripheral controllers: USB, floppy, serial, parallel, and audio
- Microsoft Windows XPTM, Windows NTTM, Windows 2000TM, Windows 98TM and plug and plug BIOS compliant

• Built-in NAND-tree pin scan test capability

- 0.22um, 2.5V, low power CMOS process
- Single chip 27 x 27 mm, 1.0 mm ball pitch, 487 pin BGA

OVERVIEW

The VT8235 South Bridge is a high integration, high performance, power-efficient, and high compatibility device that supports Intel and non-Intel based processor to V-Link bus bridge functionality to make a complete Microsoft PC2001-compliant PCI/LPC system. The VT8235 includes standard intelligent peripheral controllers:

- a) IEEE 802.3 compliant 10 / 100 Mbps PCI bus master Ethernet MAC with standard MII interface to external PHYceiver.
- b) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT8235 also supports the UltraDMA-133, 100, 66, and 33 standards to allow reliable data transfer at rates up to 133 MB/sec. The IDE controller is SFF-8038i v1.0 and Microsoft Windows-family compliant.
- c) Universal Serial Bus controller that is USB v2.0 / 1.1 and Universal HCI v2.0 / 1.1 compliant. The VT8235 includes three root hubs with six function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- d) Keyboard controller with PS2 mouse support.
- e) Real Time Clock with 256 byte extended CMOS. In addition to the standard ISA RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- f) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- g) Full System Management Bus (SMBus) interface.
- h) Integrated bus-mastering dual full-duplex direct-sound AC97-link-compatible sound system.
- i) Plug and Play controller that allows complete steerability of all PCI interrupts and internal interrupts / DMA channels to any interrupt channel. One additional steerable interrupt channel is provided to allow plug and play and reconfigurability of onboard peripherals for Windows family compliance.

The VT8235 also enhances the functionality of the standard ISA peripherals. The integrated interrupt controller supports both edge and level triggered interrupts channel by channel. The integrated DMA controller supports type F DMA in addition to standard ISA DMA modes. Compliant with the PCI-2.2 specification, the VT8235 supports delayed transactions and remote power management so that slower ISA peripherals do not block the traffic of the PCI bus. Special circuitry is built in to allow concurrent operation without causing dead lock even in a PCI-to-PCI bridge environment. The chip also includes eight levels (doublewords) of line buffers from the PCI bus to the ISA bus to further enhance overall system performance.

Figure 1. PC System Configuration Using the VT8235

PINOUTS Figure 2. VT8235 Ball Diagram (Top View) 10 2 3 4 5 7 8 9 11 12 13 14 15 18 19 20 21 22 23 24 25 26 Kev 6 17 CBE 2# GPIO GPIO AGP BZ# MRX MRX MTX MTX CLK USB OC0# USB P4+ USB GND USB USB GND USB USB GND VCC UPLL USB VCC USB VCC USB VCC EE CS# USB GND GND GND AD17 Α RDY# 11 12 D3 **ERR** D1DO P0+ **GPIO** M CRS USB P4– USB GND USB P2-USB VCC **GPIO** MD MTX EE DI USB USB USB P0-GND UPLL USB VCC USB VCC AD19 GND GND FRM# AD16 В GND GND GND USB GND USB GND USB GND REQ GPIO VGATE MD MRX MTX MTX M EE USB USB USB GND USB GND USB USB REXT USB USB VCC USB STOP# SERR# PERR# AD18 RDY# COL CKOC2# GND GND VCC VCC MII VCC25 VSUS USB REQ **GPIO** GPIO MRX MRX MII VCC MII VCC USB USB GND USB USB GND USB USB GND USB VCC UPLL USB CLK USB VCC REQ GNT VAD PAR D PÁR OC4# P3-D1 GNT VCC RAM VCC RAM GND MII VCC MII VCC2 USB P3+ USB P1+ GND UPLL VAD VAD AD11 AD13 AD14 GND **GND** GND **GND** E D0 VCC OC5# OC3# VCC 33 VCC 33 VCC 33 VCC 33 VCC 33 VCC 33 USB GND USB GND USB GND CBE VCC USB GND VCC VK VAD VBE VAD VAD GND VCC VCC GND VCC VCC AD10 AD9 AD12 VCC VK VAD 11 VAD 10 VAD DN DN AD8 GND **G6** 7 8 9 10 11 12 13 14 15 16 17 19 **G20** AD7 AD₆ AD4 18 STB STB# REQ 3# VCC VK VAD 12 LIP AD5 AD2 AD0 VCC GPIO Pins LAN Pins USB Pins Н GND **GND** Н STB STB# VAD **GNT** VL VREF VAD AD1 AD21 VCC J VCC AD3 CMD VAD VAD VAD AD20 AD22 AD23 **GND** VCC K K11 12 13 14 15 K16 V-Link VCC K COMP VCC VCC VK CBE 3# REQ VCC VK **VBE** AD24 AD25 PCI Pins L10 GND GND **GND** GND **GND** L17 Pins GND **GND** GND CĽK 1# VCC 33 VCC VK VCC VK VCC VK VCC VK VCC VK VCC VK GNT AD27 AD26 AD28 M **GND** M M GND GND **GND** GND GND M \mathbf{M} REQ5# GPI7 VCC VK VCC VK VCC VK VCC VK VCC VK VCC AD29 AD31 AD30 GND N N GND GND GND GND GND N N GND N VK INT INT INT GNT5# GPO7 VCC PLL VCC PLL GND VRD SLP VID SEL DP GND **GND GND** GND **GND** GND SLP# STP CLK# PCI RST# INT D# AC RST# VCC PCI CLK VCC GND CPU NMI GHI# INIT# R R GND **GND GND** GND **GND** R R **GND** R 33 33 AC BTCK VSUS 25 APIC IGN NE# AC SDI0 VCC T AC97 Pins T10 GND T17 T VCC INTR SMI# A20M# GND GND GND GND GND Pins D0 AC SDI1 U VCC U11 12 13 14 15 U16 U VCC VCC TPO SLP# FERR# KB CK AC SDI3 APIC PD GND **GND** VCC KB/MS Pins Pri **GND** V D1 CS1# A1 A2 MS DT BAT LOW# PD VREF PD COMP PD PME# W PM Pins IDE W GND **GND** W DAK# PD DRQ PD A0 PD IOW# SUS ST# PD RING# THRM# LPC Pins X-Bus Pins Sec IDE Pins Pins Y 33 IOR# RDY SUS A# GPO VSUS 33 VCC 33 PD D15 PD D1 PD **GND** 9 10 AA6 7 8 11 12 13 14 15 16 17 18 19 AA20 **GND** D14 **VSUS** VCC 33 VCC 33 VCC 33 SMB SMB PD PD VCC VCC VCC **GND** GND GND GND VCC GND GND GND AB ALRT# CK1 D12 D13 VSUS 33 VSUS GPIO E CPU SA19 XD 1 SD COMP VCC 33 VCC 33 SD IOW# SMB GPI XD 0 SDA1 SD PD PD GND GND IOR# GND **GND** LID# OSC GND STP# strap CS1# D11 D3 strap **PWR** RTC X1 RSM **GPIO** XD SD RDY SDD1 SA01 SD VREF SDD5 SA05 SDD9 SDD10 SDD13 SD SDCS3# PD PD IO RDY# SA18 SOE# XDPD IOW# REO# AD2 BTN# TRUD# RST# strap strap SA09 SA10 SA13 DAK# strap D5 D10 **PWR** GPI **GPIO** GPIO SPKR SA17 MEM XD XD SDD4 SDD7 SA07 SDD12 SDD15 SDA0 IRQ PΩ SER **GND** GND **GND GND** FRM# AD1 DRQ OK# BAT IRQ SA04 SA15 strap strap SA12 D6 SUS B# PWR GD IRQ 15 PCI STP# MEM W# ROMCS XD XD SDD0 SDD2 SA02 SDD3 SDD6 SDD8 SDD14 SDD11 SD SDA2 PD D8 SA16 TEST AD3 AD0 IOR# #/strap SA06 SA08 SA11 SA14 strap

Table 1. <u>VT8235</u> Pin List (<u>Numerical</u> Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name
A01	P	GND	D01	Ю	CBE1#	H26	0	UPSTB#	U23	I	APICCLK	AD04	I	RTCX1
A02		GND	D02	Ю	AD15	J01		AD03	U24	О	TPO	AD05	I	RSMRST#
A03		TRDY#	D03	Ю	PAR	J02		AD01	U25		SLP#			GPIOD / 30
A04		CBE2#	D04	I	REQ2#	J03		AD21	U26	I	FERR#			LREQ#
A05		AD17	D05	O	GNT1#	J04		GNT3#	V01	I		AD08		LAD2
A06 A07		GPIO11 GPIO12 / INTE# / PCGNTA	D06 D07	I IO	REQ0# GPIO10	J22 J23	IO P	VAD14 VLVREF	V02 V03	IO	KBDT / KBRC KBCK / A20G	AD09 AD10	I	IOW# IORDY
A07 A08		AGPBZ# / GPI6	D07	IO	GPIO10 GPIO14 / INTG#	J23	I	DNCMD	V03	P	GND			SA18 / O18 / strap
A09		MRXD3	D09	I	MRXD2	J25		VAD03	V22	P	GND	AD12	o	
A10		MRXERR	D10	I	MRXD1	J26	Ю	VAD02	V23	О	APICD1	AD13	Ю	XD7
A11		MTXD1	D11	P	MIIVCC	K01	Ю	AD20	V24	О	PDCS1#	AD14		
A12		MTXCLK	D12	P	MIIVCC	K02		AD22	V25	0	PDA1	AD15		SDRDY
A13		EECS#	D13	P	MIIVCC25	K03		AD23	V26	0	PDA2			SDD01 / SA01
A14 A15		EEDO USBOC0#	D14 D15	I P	USBOC4# VSUSUSB	K04 K22		GND VAD15	W01 W02		MSDT / IRQ12 MSCK / IRQ1	AD18		SDVREF SDD05 / SA05
A16	P	USBGND	D16	P	USBGND	K23	I	VLCOMP	W02	I	PME#			SDD09 / SA09
A17		USBP4+	D17	Ю	USBP5-	K24		VAD06	W04	Ī	BATLOW# / GPI5			SDD10 / SA10
A18	P	USBGND	D18	P	USBGND	K25	О	UPCMD	W22	P	PDVREF			SDD13 / SA13
A19	IO	USBP2+	D19	Ю	USBP3-	K26		VAD07	W23	I	PDCOMP	AD22	О	
A20		USBGND	D20	P	USBGND	L01		CBE3#	W24	0	PDCS3#	AD23	0	
A21		USBP0+	D21	IO	USBP1-	L02 L03		AD24 AD25	W25 W26		GND PDD A CV.#	AD24		PDD09
A22 A23		USBGND VCCUPLL	D22 D23	P I	VCCUPLL USBCLK	L03	I	REQ4#	Y01	O	PDDACK# CPUMISS / GPI17			PDD05 PDD10
A24		USBVCC	D23	P	USBVCC	L22	P	VCCVK	Y02	I	RING# / GPI3			SMBCK2 /
A25		USBVCC	D25	Ю	VAD08	L23	P	GND	Y03	o	SUSST1# / GPO3	AE02	o	
A26		USBVCC	D26	Ю	VPAR	L24	I	VCLK	Y04	I	THRM# / GPI18	AE03	I	
B01	P	GND	E01	Ю	AD11	L25		GND	Y22	I	PDDRO	AE04	P	VBAT
B02		GND	E02	IO	AD13	L26	IO	VBE1#	Y23		PDA0	AE05	Ю	
B03		DEVSEL#	E03	IO	AD14	M01		AD27	Y24	0	PDIOR#			GPIOC / GPIO25
B04 B05		FRAME# AD16	E04 E05	O P	GNT2# VCC33	M02 M03		AD26 AD28	Y25 Y26	O	PDIOW# PDRDY	AE07 AE08		LFRM# LAD1
B05		AD19	E05	O	GNT0#	M04		GNT4#	AA01	_	EXTSMI# / GPI2	AE08	0	
B07		GPIO9 / PCREQB	E07	P	RAMVCC	M22	P	VCCVK	AA02	0	SUSA# / GPO1	AE10	Ĭ	
B08		GPIO13 / INTF# / PCGNTB	E08	P	RAMGND	M23	P	VCCVK	AA03	OD	GPO0	AE11	Ю	SA17 / O17 / strap
B09		MDIO	E09	P	GND	M24	P	VCCVK	AA04		VSUS33	AE12		MEMR#
B10		MRXCLK	E10	I	MRXD0	M25	P	VCCVK	AA22		PDD15			XD6
B11		MTXD2	E11	P	MIIVCC	M26 N01		VCCVK	AA23		GND			XD3
B12 B13		MTXENA MCRS	E12 E13	P P	MIIVCC MIIVCC25	N01 N02		AD29 AD31	AA24 AA25		PDD00 PDD01	AE15 AE16	I P	SDDRO GND
B13		EEDI	E13	I	USBOC5#	N03		AD30	AA26		PDD14		Ю	
B15	I	USBOC1#	E15	Ī	USBOC3#	N04	I	REQ5# / GPI7	AB01	0	SUSCLK / GPO4			SDD07 / SA07
B16	P	USBGND	E16	P	GND	N22	P	VCCVK	AB02	I	SMBALRT#	AE19		GND
B17		USBP4-	E17	Ю	USBP5+	N23	P	VCCVK	AB03		SMBCK1			SDD12 / SA12
B18		USBGND	E18	P	USBGND	N24	P	VCCVK	AB04	P	VSUS33	AE21		
B19		USBP2-	E19 E20	IO P	USBP3+	N25 N26	P	VCCVK	AB22 AB23	P		AE22	P	GND SDAO / street
B20 B21		USBGND USBP0-	E20 E21	Ю	USBGND USBP1+	P01		VCCVK INTA#	AB23 AB24		PDD12 PDD02	AE23 AE24	O	
B21		USBGND	E22	P	GNDUPLL	P02		INTB#	AB25	P	GND	AE25	P	
B23		GNDUPLL	E23	P	GND	P03		INTC#	AB26		PDD13	AE26	Ю	
B24		USBVCC	E24	Ю	VAD05	P04		GNT5# / GPO7	AC01	I	LID# / GPI4	AF01	О	
B25		USBVCC	E25	P	GND	P22		PLLVCC	AC02	IO	SMBDT1	AF02	0	
B26		USBVCC	E26	IO		P23		PLLGND	AC03	I	GPI1	AF03		RTCX2
C01 C02		SERR# PERR#	F01 F02	IO	AD10 AD09	P24 P25		VRDPSLP / GPIO29 VIDSEL / GPIO28	AC04 AC05	P	VSUS33 VSUS33	AF04	I	PWRGD PCKRUN#
C02		STOP#	F03		AD12	P25 P26		DPSLP# / GPIO28			GPIOE / 31	AF05 AF06		PCISTP# / GPO6
		IRDY#			CBE0#	R01		INTD#	AC07	o		AF07		
C05	I	REQ1#	F22	P	VCCVK	R02	О	PCIRST#	AC08	P	GND		Ю	LAD0
C06		AD18	F23	Ю	VAD09	R03		ACRST#	AC09		GND	AF09		TEST
C07		GPIO15 / INTH#	F24		VBE0#	R04		GND	AC10					MEMW#
C08		VGATE / GPIO8 / PCREQA	F25		VAD00	R22		PCICLK	AC11		SA19 / O19 / strap	AF11		SA16 / O16 / strap
C09 C10		MDCK MRXDV	F26 G01		VAD01 AD07	R23 R24		NMI GHI# / GPIO22	AC12 AC13		OSC	AF12 AF13		ROMCS#/KBCS#/ XD5
C10		MTXD3	G02		AD07 AD06	R25		INIT#	AC14					XD2
C12		MTXD0	G03		AD04	R26		STPCLK#	AC15		SDCOMP			SDD00 / SA00
C13		MCOL	G04	Ю		T01	О	ACSYNC	AC16	P	GND	AF16		SDD02 / SA02
C14		EECK	G22		VAD11	T02		ACSDIN0	AC17		GND	AF17		SDD03 / SA03
C15		USBOC2#	G23		VAD10	T03		ACBITCLK	AC18		VCC33			SDD06 / SA06
C16		USBGND	G24		VAD13	T04		VSUS25	AC19		VCC33			SDD08 / SA08
C17 C18		USBGND USBGND	G25 G26		DNSTB DNSTB#	T22 T23		APICD0 INTR	AC20 AC21	P	GND SDIOW#			SDD11 / SA11 SDD14 / SA14
C18		USBGND	H01		AD05	T24		SMI#	AC21 AC22	o	SDA1 / strap	AF21 AF22		SDIOR#
C20		USBGND	H02	IO	AD02	T25		A20M#	AC23	ŏ	SDCS1#	AF23	ŏ	
C21		USBGND	H03		AD00	T26		IGNNE#	AC24		PDD04	AF24		IRQ15
C22		USBGND	H04	I	REO3#	U01	О	ACSDOUT	AC25	Ю	PDD11	AF25	Ю	PDD07
C23	I	USBREXT	H22		VAD12	U02	I	ACSDI2 /IO20/PCS0#			PDD03	AF26		PDD08
C24		USBVCC	H23	P	GND	U03	I	ACSDIN1			SMBDT2 / GPIO26			
C25		USBVCC	H24 H25	O	UPSTB GND	U04		VSUS25 VCC	AD02		PWRBTN#			
C26	P	USBVCC		•		U22	•	VCC V21, W21, AA5, AB5,	AD03	•	INTRUD# / GPI16	<u> </u>		

-7-

GND pins (28 pins): F6,11, G5, L11-16, M11-16, N5,11-16, P11-16, R11-16, T11-16, V21, W21, AA5, AB5,12-13,18-19 USBGND pins (4 pins): F18-21

VCC pins (18 pins): F9-10,14-15, H5, J5,21, K5,21, T5,21, U5,21, V5, AB8-9,16-17 VCC33 pins (25 pins): F5,7-8,12-13,16-17, L5, M5, P5,21, R5,21, W5, Y5,21, AA21, AB6-7,10-11,14-15,20-21 VCCVK pins (5 pins): G21, H21, L21, M21, N21

Table 2. VT8235 Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name
T25	OD	A20M#	R04	P	GND	C10	I	MRXDV	AF17	Ю	SDD03 / SA03	E19	Ю	USBP3+
T03	I	ACBITCLK	V04	P	GND	A10	I	MRXERR	AE17	Ю	SDD04 / SA04	B17	Ю	USBP4-
R03	Ō	ACRST#	V22	P	GND	W02		MSCK / IRO1			SDD05 / SA05	A17		USBP4+
T02	I	ACSDIN0	W25	P	GND	W01		MSDT / IRQ12	AF18			D17	IO	USBP5-
U03	I	ACSDIN1 ACSDI2 /IO20/PCS0#	AA23 AB22	P	GND	A12	I	MTXCLK			SDD07 / SA07	E17		USBP5+
U02 V01	I I	ACSDI3 /IO21/PCS1# /SLPB#	AB22 AB25	P P	GND GND	C12 A11	0	MTXD0 MTXD1	AF19 AD19		SDD08 / SA08 SDD09 / SA09	C23 A24	I P	USBREXT USBVCC
U01		ACSDOUT	AC08	P	GND	B11	ŏ	MTXD1 MTXD2	AD19			A25	P	USBVCC
T01	ŏ	ACSYNC	AC09	P	GND	C11		MTXD3	AF20			A26	P	USBVCC
H03		AD00	AC16	P	GND	B12	0	MTXENA	AE20		SDD12 / SA12	B24	P	USBVCC
J02	Ю	AD01	AC17	P	GND	R23	OD	NMI			SDD13 / SA13	B25	P	USBVCC
H02		AD02	AC20	P	GND	AC12	I	OSC			SDD14 / SA14	B26	P	USBVCC
J01	IO	AD03	AE16	P	GND	D03		PAR	AE21		SDD15 / SA15	C24	P	USBVCC
G03	IO	AD04	AE19	P	GND	AF05		PCKRUN#	AD22		SDDACK#	C25	P	USBVCC
H01 G02		AD05 AD06	AE22 AE25	P P	GND GND	R22 R02	O	PCICLK PCIRST#	AE15 AF22		SDDRQ SDIOR#	C26 D24	P P	USBVCC USBVCC
G02	IO	AD07	B23	P	GNDUPLL	AF06	o	PCISTP# / GPO6	AC21		SDIOK# SDIOW#	F25	IO	VAD00
G04		AD08	E22	P	GNDUPLL	Y23	O	PDA0			SDRDY	F26	Ю	VAD00 VAD01
F02			E06	Ō	GNT0#	V25		PDA1			SDVREF	J26	IO	VAD02
F01	Ю	AD10	D05	O	GNT1#	V26		PDA2	AE10		SERIRO	J25	Ю	VAD03
E01	Ю	AD11	E04	О	GNT2#	W23	I	PDCOMP	C01		SERR#	E26	Ю	VAD04
F03			J04	O	GNT3#	V24	О	PDCS1#			SLP#	E24	IO	VAD05
E02			M04	0	GNT4#	W24	0	PDCS3#	AB02		SMBALRT#	K24	IO	VAD06
E03			P04	O	GNT5# / GPO7	AA24		PDD00			SMBCK1	K26	IO	VAD07
D02 B05		AD15 AD16	AE03	I	GPI1	AA25		PDD01	AE01		SMBCK2 / GPIO27	D25	IO	VAD08
A05			AC03 B07	I	GPI1 GPIO9 / PCREQB			PDD02 PDD03	AC02 AD01		SMBDT1 SMBDT2 / GPIO26	F23 G23	IO IO	VAD09 VAD10
C06		AD18	D07	IO				PDD03 PDD04	T24		SMI#	G23	IO	VAD10 VAD11
B06		AD19	A06	Ю	GPIO11			PDD05	AD12			H22	Ю	VAD11 VAD12
		AD20	A07	IO	GPIO12/INTE#/PCGA			PDD06	AE09		SPKR / strap	G24	IO	VAD13
J03	Ю	AD21	B08	Ю	GPIO13/INTF#/PCGB	AF25	Ю	PDD07	C03		STOP#	J22	Ю	VAD14
III .	IO	AD22	D08	Ю	GPIO14 / INTG#			PDD08	R26		STPCLK#	K22	IO	VAD15
K03			C07		GPIO15 / INTH#			PDD09	AA02		SUSA# / GPO1	AE04	P	VBAT
L02	IO	AD24	AE05	IO				PDD10	AF02		SUSB# / GPO2	F24	IO	VBE0#
L03 M02			AE06		GPIOC / GPIO25			PDD11	AF01		SUSC#	L26	IO	
M02	IO IO	AD26 AD27	AD06 AC06	IO	GPIOD / 30 GPIOE / 31			PDD12 PDD13	AB01 Y03	0	SUSCLK / GPO4 SUSST1# / GPO3	U22 E05	P P	VCC VCC33
M03					GPO0			PDD13 PDD14	AF09	I	TEST	AC18	P	VCC33
					IGNNE#	AA22		PDD15	Y04	Ī	THRM# / GPI18	AC19	P	VCC33
N03		AD30	R25		INIT#	W26	0	PDDACK#	U24		TPO	A23	P	VCCUPLL
N02	Ю	AD31	P01	I	INTA#	Y22	I	PDDRQ	A03	Ю		D22	P	VCCUPLL
A08	I	AGPBZ# / GPI6	P02	I	INTB#	Y24		PDIOR#	K25		UPCMD	F22	P	VCCVK
U23		APICCLK	P03		INTC#	Y25		PDIOW#	H24		UPSTB	L22	P	VCCVK
T22		APICD0	R01	I	INTD#	Y26	I	PDRDY	H26		UPSTB#	M22	P	VCCVK
V23 W04		APICD1 BATLOW# / GPI5	T23 AD03	UD I	INTR INTRUD# / GPI16	W22 C02		PDVREF PERR#	D23 A16	I	USBCLK USBGND	M23 M24	P P	VCCVK VCCVK
F04		CBE0#	AC10	IO		P23	P	PLLGND	A18	P	USBGND	M25	P	VCCVK
		CBE1#	AD10		IORDY	P22	P	PLLVCC	A20	P	USBGND	M26	P	VCCVK
A04		CBE2#	AD09		IOW#	W03	I	PME#	A22	P	USBGND	N22	P	VCCVK
L01	IO	CBE3#	C04	Ю	IRDY#	AD02	I	PWRBTN#	B16	P	USBGND	N23	P	VCCVK
Y01		CPUMISS / GPI17	AE24	I	IRQ14	AF04	I	PWRGD	B18	P	USBGND	N24	P	VCCVK
AC07	0	CPUSTP# / GPO5	AF24	I	IRQ15	AE02	0		B20	P	USBGND	N25	P	VCCVK
B03		DEVSEL#			KBCK / A20G	E08	P	RAMGND	B22	P	USBGND	N26	P	VCCVK
J24 G25	I	DNCMD DNSTB	V02		KBDT / KBRC LAD0	E07	P	RAMVCC PEO0#	C16	P	USBGND	L24	I	VCLK VGATE / GPIO8
G25 G26		DNSTB#	AF08 AE08			D06 C05	I	REQ0# REQ1#	C17 C18		USBGND USBGND	C08 P25		VIDSEL/GIO28/PCRA
		DPSLP# / GPIO23			LAD1 LAD2	D04	I	REQ1# REQ2#	C19		USBGND	K23	I	VLCOMP
C14		EECK			LAD3	H04	I	REQ3#	C20	P	USBGND	J23	P	VLVREF
A13		EECS#			LFRM#	L04	Ī	REO4#	C21		USBGND	D26		VPAR
B14	I	EEDI	AC01	I	LID# / GPI4	N04	I	REQ5# / GPI7	C22		USBGND	P24		VRDPSLP/GPIO29
A14		EEDO	AD07	Ю	LREO#	Y02	I	RING# / GPI3	D16	P	USBGND	T04	P	VSUS25
		EXTSMI# / GPI2	C13		MCOL	AF12	O	ROMCS#/KBCS#/str	D18		USBGND	U04	P	VSUS25
U26		FERR#	B13	I	MCRS	AD05	I	RSMRST#	D20		USBGND	AA04	P	VSUS33
		FRAME# GHI# / GPIO22	C09	0		AD04		RTCX1	E18		USBGND	AB04		VSUS33
R24 A01		GND	B09 AE12		MDIO MEMR#	AF03 AF11		RTCX2 SA16 / O16 / strap	E20 A15	P	USBGND USBOC0#	AC04 AC05		VSUS33 VSUS33
A01 A02	P	GND			MEMR# MEMW#	AF11 AE11		SA16 / O16 / strap SA17 / O17 / strap	B15	I	USBOC1#			VSUSUSB
B01		GND	D11	P	MIIVCC	AD11		SA17 / O17 / strap	C15	I	USBOC2#	AC14		
B02		GND	D12	P	MIIVCC	AC11		SA19 / O19 / strap	E15	Ī	USBOC3#	AC13		
E09	P	GND	E11	P	MIIVCC	AE23	О	SDA0 / strap	D14	I	USBOC4#	AF14	Ю	XD2
E16	P	GND	E12	P	MIIVCC	AC22		SDA1 / strap	E14		USBOC5#	AE14	Ю	XD3
E23	P	GND	D13	P	MIIVCC25	AF23		SDA2 / strap	B21		USBP0-	AD14		
E25	P	GND	E13	P		AC15		SDCOMP SDCS1#	A21		USBP0+	AF13		
H23	P	GND	B10	I				SDCS1#	D21		USBP1-	AE13		
H25 K04	P P	GND GND	E10 D10	I	MRXD0 MRXD1			SDCS3# / strap SDD00 / SA00	E21 B19		USBP1+ USBP2-	AD13	10	אט/
L23		GND	D10 D09	I I	MRXD1 MRXD2			SDD00 / SA00 SDD01 / SA01			USBP2- USBP2+			
L25	P	GND	A09	I	MRXD3			SDD01 / SA01 SDD02 / SA02			USBP3-			
CND								W/21 A A 5 A D 5 12 13				<u> </u>	-	1

GND pins (28 pins): F6,11, G5, L11-16, M11-16, N5,11-16, P11-16, R11-16, T11-16, V21, W21, AA5, AB5,12-13,18-19 USBGND pins (4 pins): F18-21 VCC pins 18 pins): F9-10,14-15, H5, J5,21, K5,21, T5,21, U5,21, V5, AB8-9,16-17 VCC33 pins (25 pins): F5,7-8,12-13,16-17, L5, M5, P5,21, R5,21, W5, Y5,21, AA21, AB6-7,10-11,14-15,20-21 VCCVK pins (5 pins): G21, H21, L21, M21, N21

PIN DESCRIPTIONS

Table 3. Pin Descriptions

	V-Link Interface									
Signal Name	Pin #	I/O	Signal Description							
VAD[15:0]	K22, J22, G24, H22, G22, G23, F23, D25, K26, K24, E24, E26, J25, J26, F26, F25	Ю	Address / Data Bus. Bits 0-7 are implemented and bits 8-15 are reserved for future use. VAD[6:0] are used to send strap information to the chipset north bridge. At power up VAD[6:4] reflect the state of straps on pins SDA[2:0] and VAD[3:0] reflect the state of straps on pins SA[19:16]. The specific interpretation of these straps is north bridge chip design dependent.							
VPAR	D26	IO	Parity. If the VPAR function is implemented in a compatible manner on the north bridge, this pin should be connected to the north bridge VPAR pin (P4X333, P4X400, P4X800, KT400). If VPAR is not implemented in the north bridge chip or is incompatible with the 8235 (4x V-Link north bridges) connect this pin to an 8.2K pullup to 2.5V (Pro266, Pro266T, KT266, KT266A, KT333, P4X266, PN266, KN266, KM266, P4M266, P4N266). See app note AN222 for details.							
VBE[1:0]#	L26, F24	Ю	Byte Enables. VBE0# is used with VAD[7-0] and VBE1# is used with VAD[15-8] (VBE1# and VAD[15-8] are reserved for future use).							
VCLK	L24	I	V-Link Clock.							
UPCMD	K25	О	Command from Client-to-Host.							
DNCMD	J24	I	Command from Host-to-Client.							
UPSTB	H24	О	Strobe from Client-to-Host.							
UPSTB#	H26	О	Complement Strobe from Client-to-Host.							
DNSTB	G25	I	Strobe from Host-to-Client.							
DNSTB#	G26	I	Complement Strobe from Host-to-Client.							
VLVREF	J23	I	Voltage Reference.							
VLCOMP	K23	I	V-Link Compensation.							
VCCVK	(see pin list)	P	V-Link VK Power.							

Advanced Programmable Interrupt Controller (APIC) Interface										
Signal Name	Pin #	I/O	Signal Description							
APICD1	V23	О	Internal APIC Data 1. Function 0 Rx58[6] = 1							
APICD0	T22	О	Internal APIC Data 0. Function 0 Rx58[6] = 1							
APICCLK	U23	I	APIC Clock.							

Straps										
Signal Name	Pin#	I/O	Signal Description							
Strap / SDCS3#	AD23	I	Strap. State reflected on VAD[7] at powerup. No internal function.							
Strap / SDA2	AF23	I	Strap. State reflected on VAD[6] at powerup. No internal function.							
Strap / SDA1	AC22	I	Strap. State reflected on VAD[5] at powerup. No internal function.							
Strap / SDA0	AE23	I	Strap. State reflected on VAD[4] at powerup. No internal function.							
Strap / SA19	AC11	I	Strap. State reflected on VAD[3] at powerup. No internal function.							
Strap / SA18	AD11	I	Strap. State reflected on VAD[2] at powerup. No internal function.							
Strap / SA17	AE11	I	Strap. State reflected on VAD[1] at powerup. No internal function.							
Strap / SA16	AF11	I	Strap. State reflected on VAD[0] at powerup. No internal function.							
Strap / SOE#	AD12	I	Strap. Strap low to enable (high to disable) auto reboot.							
Strap / SPKR	AE9	I	Strap. Strap low to enable (high to disable) CPU frequency strapping							
Strap / ROMCS# / KBCS#	AF12	I	Strap. Strap high to enable LPC BIOS ROM							

	CPU Interface									
Signal Name	Pin#	I/O	Signal Description							
A20M#	T25	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation.							
			Logical combination of the A20GATE input (from internal or external keyboard controller) and Port 92 bit-1 (Fast_A20).							
FERR#	U26	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the							
			CPU. Internally generates interrupt 13 if active. Output voltage swing is programmable tot 1.5V or 2.5V by Device 17 Function 0 Rx67[2].							
ICNNE#	T26	OD								
IGNNE#	T26	OD	Ignore Numeric Error. This pin is connected to the CPU "ignore error" pin.							
INIT#	R25	OD	Initialization. The VT8235 asserts INIT# if it detects a shut-down special cycle on the PCI							
			bus or if a soft reset is initiated by the register							
INTR	T23	OD	CPU Interrupt. INTR is driven by the VT8235 to signal the CPU that an interrupt request							
			is pending and needs service.							
NMI	R23	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. The							
			VT8235 generates an NMI when PCI bus SERR# is asserted.							
SLP#	U25	OD	Sleep. Used to put the CPU to sleep.							
SMI#	T24	OD	System Management Interrupt. SMI# is asserted by the VT8235 to the CPU in response							
			to different Power-Management events.							
STPCLK#	R26	OD	Stop Clock. STPCLK# is asserted by the VT8235 to the CPU to throttle the processor							
			clock.							

Note: Connect each of the above signals to 150 Ω pullup resistors to VCC_CMOS (see Design Guide).

	CPU Speed Control Interface										
Signal Name	Pin#	I/O	Signal Description								
VGATE / GPIO8 / PCREQA	C8	Ι	Voltage Gate. Signal from the CPU voltage regulator. High indicates the voltage regulator output is stable. This pin performs the VGATE function if Device 17 Function $0 \text{ Rx}53[7] = 0$, $E5[4] = 1$ and $E4[3] = 0$.								
VIDSEL / GPIO28	P25	OD	Voltage Regulator ID Select. Connected to the CPU voltage regulator. Low selects the voltage ID from the CPU; high selects a different fixed voltage ID (the lower voltage used for CPU deep sleep mode). This pin performs the VIDSEL function if Func 0 RxE5[3] = 0.								
VRDSLP / GPIO29	P24	OD	Voltage Regulator Deep Sleep. Connected to the CPU voltage regulator. High selects the proper voltage for deep sleep mode. This pin performs the VRDPSLP function if Function $0 \text{ RxE5}[3] = 0$.								
GHI# / GPIO22	R24	OD	CPU Speed Select. Connected to the CPU voltage regulator, used to select high speed (L) or low speed (H). This pin performs the GHI# function if Function 0 RxE5[3] = 0.								
DPSLP# / GPIO23	P26	OD	CPU Deep Sleep.								
CPUMISS / GPI17	Y1	I	CPU Missing. Used to detect the physical presence of the CPU chip in its socket. High indicates no CPU present. Connect to the CPUMISS pin of the CPU socket. The state of this pin may be read in the SMBus 2 registers. This pin may be used as CPUMISS and GPI17 at the same time.								
AGPBZ# / GPI6	A8	I	AGP Busy. Low indicates that an AGP master cycle is in progress (CPU speed transitions will be postponed if this input is asserted low). Connected to the AGP Bus AGPBZ# pin.								

Summary of Internal Pull-Up / Pull-Down Resistor Implementation
Internal Pullups are present on pins KBCK, KBDT, MSCK, MSDT, SERIRQ, LAD[3:0]
Internal Pulldowns are present on pins SA[19-16] and all LAN pins

			PCI Bus Interface
Signal Name	Pin#	I/O	Signal Description
AD[31:0]	(see pin	IO	Address / Data Bus. Multiplexed address and data. The address is driven with FRAME#
	list)		assertion and data is driven or received in following cycles.
CBE[3:0]#	L1, A4,	IO	Command / Byte Enable. The command is driven with FRAME# assertion. Byte
	D1, F4		enables corresponding to supplied or requested data are driven on following clocks.
DEVSEL#	В3	IO	Device Select. The VT8235 asserts this signal to claim PCI transactions through positive
			or subtractive decoding. As an input, DEVSEL# indicates the response to a VT8235-
			initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.
FRAME#	B4	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that
T TAXIVIL'II	Б	10	one more data transfer is desired by the cycle initiator.
IRDY#	C4	Ю	Initiator Ready. Asserted when the initiator is ready for data transfer.
TRDY#	A3	IO	Target Ready. Asserted when the target is ready for data transfer.
STOP#	C3	IO	Stop. Asserted by the target to request the master to stop the current transaction.
SERR#	C1	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error
			condition. Upon sampling SERR# active, the VT8235 can be programmed to generate an
			NMI to the CPU.
PAR	D3	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.
INTA#	P1,	I	PCI Interrupt Request. The INTA# through INTD# pins are typically connected to the
INTB#	P2,		PCI bus INTA#-INTD# pins per the table below. INTE-H# are enabled by setting Device
INTC#	P3,		17, Function 0 Rx5B[1] = 1. BIOS settings must match the physical connection method.
INTD#	R1		INTA# INTB# INTC# INTD#
INTE#/GPIO12	A 7		PCI Slot 1 INTA# INTB# INTC# INTD#
/ PCGNTA, INTF# / GPIO13	A7,		PCI Slot 2 INTB# INTC# INTD# INTE#
/ PCGNTB,	В8,		PCI Slot 3 INTC# INTD# INTE# INTF# PCI Slot 4 INTD# INTE# INTF# INTG#
INTG#/ GPIO14,	D8,		PCI Slot 5 INTE# INTF# INTG# INTH#
INTH#/ GPIO15	C7		PCI Slot 6 INTF# INTG# INTH# INTA#
REQ5 # / GPI7,	N4	I	PCI Request. These signals connect to the VT8235 from each PCI slot (or each PCI
REQ4#,	L4	_	master) to request the PCI bus. To use pin N4 as REQ5#, Function 0 RxE4 must be set to
REQ3#,	H4		1 otherwise this pin will function as General Purpose Input 7.
REQ2#,	D4		
REQ1#,	C5		
REQ0#	D6		
GNT5 # / GPO7,	P4	О	PCI Grant. These signals are driven by the VT8235 to grant PCI access to a specific PCI
GNT4#,	M4		master. To use pin P4 as GNT5#, Function 0 RxE4 must be set to 1 otherwise this pin will
GNT3#,	J4		function as General Purpose Output 7.
GNT2#,	E4		
GNT1#,	D5		
GNT0#	E6	0	DCI Deset. This signal is used to reset devices attached to the DCI has
PCIRST#	R2	0	PCI Close. This signal is used to reset devices attached to the PCI bus.
PCICLK PCKPUN#	R22	I	PCI Clock. This signal provides timing for all transactions on the PCI Bus.
PCKRUN#	AF5	IO	PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT8235 drives this signal low when the PCI clock is running
			(default on reset) and releases it when it stops the PCI clock. External devices may assert
			this signal low to request that the PCI clock be restarted or prevent it from stopping.
			Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the
			"PCI Mobile Design Guide" and the VIA "VT8633 Apollo Pro266 Design Guide" for
			more details.
	<u> </u>	<u> </u>	

	LAN Controller - Media Independent Interface (MII)						
Signal Name	Pin #	I/O	PU	Signal Description			
MCOL	C13	I	<u>PD</u>	MII Collision Detect. From the external PHY.			
MCRS	B13	I	<u>PD</u>	MII Carrier Sense. Asserted by the external PHY when the media is active.			
MDCK	С9	О	<u>PD</u>	MII Management Data Clock. Sent to the external PHY as a timing reference for MDIO			
MDIO	В9	IO	<u>PD</u>	MII Management Data I/O. Read from the MDI bit or written to the MDO bit.			
MRXCLK	B10	I	<u>PD</u>	MII Receive Clock. 2.5 or 25 MHz clock recovered by the PHY.			
MRXD[3-0]	A9, D9, D10, E10	I	<u>PD</u>	MII Receive Data. Parallel receive data lines driven by the external PHY synchronous with MRXCLK.			
MRXDV	C10	I	PD	MII Receive Data Valid.			
MRXERR	A10	I	<u>PD</u>	MII Receive Error. Asserted by the PHY when it detects a data decoding error.			
MTXCLK	A12	I	<u>PD</u>	MII Transmit Clock. Always active 2.5 or 25 MHz clock supplied by the PHY.			
MTXD[3-0]	C11, B11, A11, C12	О	<u>PD</u>	MII Transmit Data. Parallel transmit data lines synchronized to MTXCLK.			
MTXENA	B12	О	<u>PD</u>	MII Transmit Enable. Signals that transmit is active from the MII port to the PHY.			
MIIVCC	D11, D12, E11, E12	Power		MII Interface Power. 3.3V ±5%.			
MIIVCC25	D13, E13	Power		MII Suspend Power. 2.5V ±5%.			
RAMVCC	E7	Power		Power For Internal LAN RAM. 2.5V ±5%.			
RAMGND	E8	Power		Ground For Internal LAN RAM.			

Serial EEPROM Interface									
Signal Name Pin # I/O PU Signal Description									
EECS#	A13	О		Serial EEPROM Chip Select.					
EECK	C14	О		Serial EEPROM Clock.					
EEDO	A14	О		Serial EEPROM Data Output.					
EEDI	B14	I		Serial EEPROM Data Input.					

These pins are disabled if the SDCS1# pin is strapped low to enable serial EEPROM connection via the MII interface.

	Low Pin Count (LPC) Interface								
Signal Name Pin # I/O PU Signal Description									
LFRM#	AE7	IO		LPC Frame.					
LREQ#	AD7	IO		LPC DMA / Bus Master Request.					
LAD[3-0]	AF7, AD8, AE8, AF8	IO	PU	LPC Address / Data.					

Note: Connect the LPC interface LPCRST# (LPC Reset) signal to PCIRST#

PC / PCI DMA								
Signal Name Pin # I/O PU Signal Description								
PCREQA / GPIO8 / VGATE	C8	I		PC / PCI Request A. Device 17 Function 0 Rx53[7] = 1				
PCREQB / GPIO9	В7	I		PC / PCI Request B. Device 17 Function 0 Rx53[7] = 1				
PCGNTA / GPIO12	A7	O		PC / PCI Grant A. Device 17 Function 0 Rx53[7] = 1				
PCGNTB / GPIO13	B8	O		PC / PCI Grant B. Device 17 Function 0 Rx53[7] = 1				

	Universal Serial Bus 2.0 Interface							
Signal Name	Pin#	I/O	Signal Description					
USBP0+	A21	IO	USB 2.0 Port 0 Data +					
USBP0-	B21	IO	USB 2.0 Port 0 Data –					
USBP1+	E21	IO	USB 2.0 Port 1 Data +					
USBP1-	D21	IO	USB 2.0 Port 1 Data –					
USBP2+	A19	IO	USB 2.0 Port 2 Data +					
USBP2-	B19	IO	USB 2.0 Port 2 Data –					
USBP3+	E19	IO	USB 2.0 Port 3 Data +					
USBP3-	D19	IO	USB 2.0 Port 3 Data –					
USBP4+	A17	IO	USB 2.0 Port 4 Data +					
USBP4-	B17	IO	USB 2.0 Port 4 Data –					
USBP5+	E17	IO	USB 2.0 Port 5 Data +					
USBP5-	D17	IO	USB 2.0 Port 5 Data –					
USBCLK	D23	I	USB 2.0 Clock. 48MHz clock input for the USB interface					
USBOC0#	A15	I	USB 2.0 Port 0 Over Current Detect. Port 0 is disabled if low.					
USBOC1#	B15	I	USB 2.0 Port 1 Over Current Detect. Port 1 is disabled if low.					
USBOC2#	C15	I	USB 2.0 Port 2 Over Current Detect. Port 2 is disabled if low.					
USBOC3#	E15	I	USB 2.0 Port 3 Over Current Detect. Port 3 is disabled if low.					
USBOC4#	D14	I	USB 2.0 Port 4 Over Current Detect. Port 4 is disabled if low.					
USBOC5#	E14	I	USB 2.0 Port 5 Over Current Detect. Port 5 is disabled if low.					
USBVCC	(see pin list)	Power	USB 2.0 Port Differential Output Interface Logic Voltage. 3.3V					
USBGND	(see pin list)	Power	USB 2.0 Port Differential Output Interface Logic Ground.					
VSUSUSB	D15	Power	USB 2.0 Suspend Power. $2.5V \pm 5\%$.					
VCCUPLL	A23, D22	Power	USB 2.0 PLL Analog Voltage. 2.5V ±5%.					
GNDUPLL	B23, E22	Power	USB 2.0 PLL Analog Ground.					

System Management Bus (SMB) Interface (I ² C Bus)						
Signal Name	Pin #	I/O	Signal Description			
SMBCK1	AB3	IO	SMB / I ² C Channel 1 Clock.			
SMBCK2 / GPI27 / GPO27	AE1	IO	SMB / I^2C Channel 2 Clock. Rx95[2] = 0			
SMBDT1	AC2	IO	SMB / I ² C Channel 1 Data.			
SMBDT2 / GPI26 / GPO26	AD1	IO	SMB / I^2C Channel 2 Data. $Rx95[2] = 0$			
SMBALRT#	AB2	I	SMB Alert. (enabled by System Management Bus I/O space Rx08[3] = 1) When the chip is enabled to allow it, assertion generates an IRQ or SMI interrupt or a power management resume event. Connect to a 10K ohm pullup to VSUS33 if not used.			

Programmable Chip Selects								
Signal Name Pin # I/O Signal Description								
PCS0# / GPIO20 / ACSDIN2	U2	О	Programmable Chip Select 0. RxE4[6]=1, E5[1]=1					
PCS1# / GPIO21 / ACSDIN3 / SLPBTN#	V1	О	Programmable Chip Select 1. RxE4[6]=1, E5[2]=1					

	UltraDMA-133 / 100 / 66 / 33 Enhanced IDE Interface							
Signal Name	Pin#	I/O	Signal Description					
PDRDY / PDDMARDY / PDSTROBE	Y26	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers					
SDRDY / SDDMARDY / SDSTROBE	AD15	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers					
PDIOR# / PHDMARDY / PHSTROBE	Y24	O	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert HDMARDY to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop HSTROBE to pause output data transfers					
SDIOR# / SHDMARDY / SHSTROBE	AF22	O	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert HDMARDY to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop HSTROBE to pause output data transfers					
PDIOW# / PSTOP	Y25	О	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.					
SDIOW# / SSTOP	AC21	O	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.					
PDDRQ	Y22	I	Primary Device DMA Request. Primary channel DMA request					
SDDRQ	AE15	I	Secondary Device DMA Request. Secondary channel DMA request					
PDDACK#	W26	0	Primary Device DMA Acknowledge. Primary channel DMA acknowledge					
SDDACK#	AD22	O	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge					
IRQ14	AE24	I	Primary Channel Interrupt Request.					
IRQ15	AF24	I	Secondary Channel Interrupt Request.					

U	UltraDMA-133 / 100 / 66 / 33 Enhanced IDE Interface (continued)						
Signal Name	Pin #	I/O	Signal Description				
PDCS1#	V24	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.				
PDCS3#	W24	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.				
SDCS1# / strap	AC23	0	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector. Strap low (resistor to ground) to enable serial EEPROM interface via the MII bus (this disables the EExx pins). This pin has an internal pullup to default to serial EEPROM interface via the Eexx pins.				
SDCS3# / strap	AD23	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector. Strap information is communicated to the north bridge via VAD[7].				
PDA[2-0]	V26, V25, Y23	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.				
SDA[2-0] / strap	AF23, AC22, AE23	О	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed. Strap information is communicated to the north bridge via VAD[6:4].				
PDD[15-0]	(see pin list)	IO	Primary Disk Data.				
SDD[15-0] / SA[15-0]	(see pin list)	IO / IO	Secondary Disk Data.				
PDCOMP	W23	I	Primary Disk Compensation.				
SDCOMP	AC15	I	Secondary Disk Compensation.				

Serial IRQ							
Signal Name	Pin #	I/O	Signal Description				
SERIRQ	AE10	I	Serial IRQ. This pin has an internal pull-up resistor.				

AC97 Audio / Modem Interface								
Signal Name		Pin#	I/O	Signal Description				
ACRST#		R3	О	AC97 Reset.				
ACBTCK		Т3	I	AC97 Bit Clock.				
ACSYNC		T1	O	AC97 Sync.				
ACSDO		U1	O	AC97 Serial Data Out.				
ACSDIN0	(VSUS33)†	T2	I	AC97 Serial Data In 0.				
ACSDIN1	(VSUS33)†	U3	I	AC97 Serial Data In 1.				
ACSDIN2 / GPIO20 / PCS0#			I	AC97 Serial Data In 2. RxE4[6]=0,E5[1]=0, PMIO Rx4C[20]=1				
ACSDIN3 / GPIO21 / PCS1# /	SLPBTN#	V1	I	AC97 Serial Data In 3. RxE4[6]=0,E5[2]=0, PMIO Rx4C[21]=1				

[†]The supply voltage for ACSDIN0-1 is VSUS33 so these inputs can support wake-up on modem ring.

	Internal Keyboard Controller						
Signal Name	Pin#	I/O	PU	Signal Description			
MSCK / IRQ1	W2	IO / I	PU	MultiFunction Pin (Internal mouse controller enabled by Rx51[1]) Rx51[2]=1 Mouse Clock. From internal mouse controller. Rx51[2]=0 Interrupt Request 1. Interrupt input 1.			
MSDT / IRQ12	W1	IO / I	PU	MultiFunction Pin (Internal mouse controller enabled by Rx51[1]) Rx51[2]=1 Mouse Data. From internal mouse controller. Rx51[2]=0 Interrupt Request 12. Interrupt input 12.			
KBCK / KA20G	V3	IO / I	PU	MultiFunction Pin (Internal keyboard controller enabled by Rx51[0]) Rx51[0]=1 Keyboard Clock. From internal keyboard controller Rx51[0]=0 Gate A20. Input from external keyboard controller.			
KBDT / KBRC	V2	IO/I	PU	MultiFunction Pin (Internal keyboard controller enabled by Rx51[0]) Rx51[0]=1 Keyboard Data. From internal keyboard controller. Rx51[0]=0 Keyboard Reset. From external keyboard controller (KBC) for CPURST# generation			
KBCS# / ROMCS# / strap	AF12	O/O		Keyboard Chip Select (Rx51[0]=0). To external keyboard controller chip. Strap high to enable LPC ROM:			

Note: KBCK, KBDT, MSCK, and MSDT are powered by the VSUS33 suspend voltage plane.

ISA Subset / Parallel BIOS ROM Interface						
Signal Name	Pin#	I/O	PU	Signal Description		
ROMCS# / KBCS# / strap	AF12	О		ROM Chip Select (Rx51[0]=1). Chip Select to the BIOS ROM. Strap high to enable LPC ROM.		
SPKR / strap	AE9	О		Speaker. Strap low to enable (high to disable) CPU frequency strapping.		
MEMR#	AE12	O		Memory Read.		
MEMW#	AF10	O		Memory Write.		
IOR#	AC10	О		I/O Read.		
IOW#	AD9	O		I/O Write.		
IORDY / GPI19	AD10	I		I/O Ready. Used to insert wait states in I/O or memory cycles. RxE5[0] = 0		
SOE# / strap	AD12	О		XD Bus Tranceiver Output Enable. Strap low to enable auto reboot.		
XD[7-0]	AD13, AE13, AF13, AD14, AE14, AF14, AC13, AC14	IO		XD Bus. For input of BIOS ROM data or data from other on-board I/O or memory devices.		
SA[19-16] / GPO[19-16]	AC11, AD11,	O	<u>PD</u>	System Address 19-16. Strap states are passed to North Bridge via		
/ straps	AE11, AF11			VAD[3-0]. Functions as SA[19-16] if $RxE4[5] = 0$.		
SA[15-0] / SDD[15-0]	(see pin list)	O		System Address 15-0.		

General Purpose Inputs										
Signal Name	Signal Name Pin # I/O Signal Description									
GPI0	(VBAT)	AE3	I	General Purpose Input 0. Status on PMIO Rx20[0]						
GPI1	(VSUS33)	AC3	I	General Purpose Input 1. Status on PMIO Rx20[1]						
GPI2 / EXTSMI#	(VSUS33)	AA1	I	General Purpose Input 2. Status on PMIO Rx20[4]						
GPI3 / RING#	(VSUS33)	Y2	I	General Purpose Input 3. Status on PMIO Rx20[8]						
GPI4 / LID#	(<i>VSUS33</i>)	AC1	I	General Purpose Input 4. Status on PMIO Rx20[11]						
GPI5 / BATLOW#	(<i>VSUS33</i>)	W4	I	General Purpose Input 5. Status on PMIO Rx20[12]						
<u>GPI6</u> / AGPBZ#		A8	I	General Purpose Input 6. Status on PMIO Rx20[5]						
<u>GPI7</u> / REQ5#		N4	I	General Purpose Input 7. $RxE4[2] = 0$						
GPI8 / GPO8 / PCREQA / VGATE		C8	I	General Purpose Input 8. $RxE4[3] = 0$, $E5[4]=0$, $53[7] = 0$						
<u>GPI9</u> / GPO9 / PCREQB		B7	I	General Purpose Input 9. $RxE4[3] = 0, 53[7] = 0$						
GPI10 / GPO10		D7	I	General Purpose Input 10. $RxE4[3] = 0$						
GPI11 / GPO11		A6	I	General Purpose Input 11. $RxE4[3] = 0$						
GPI12 / GPO12 / INTE# / PCGNTA		A7	I	General Purpose Input 12. $RxE4[4] = 0$, $5B[1]=0$, $53[7]=0$						
GPI13 / GPO13 / INTF# / PCGNTB		B8	I	General Purpose Input 13. $RxE4[4] = 0$, $5B[1]=0$, $53[7]=0$						
GPI14 / GPO14 / INTG#		D8	I	General Purpose Input 14. $RxE4[4] = 0$, $5B[1]=0$						
<u>GPI15</u> / GPO15 / INTH#		C7	I	General Purpose Input 15. $RxE4[4] = 0, 5B[1] = 0$						
<u>GPI16</u> / <u>INTRUDER#</u>	(VBAT)	AD3	I	General Purpose Input 16. Status on PMIO Rx20[6]						
GPI17 / CPUMISS		Y1	I	General Purpose Input 17. Status on PMIO Rx20[5]						
GPI18 / THRM# / AOLGPI		Y4	I	General Purpose Input 18. $Rx8C[3] = 0$						
GPI19 / <u>IORDY</u>		AD10	I	General Purpose Input 19. $RxE5[0] = 1$						
<u>GPI20</u> / GPO20 / <u>ACSDIN2</u> / PCS0#		U2	I	General Purpose Input 20. RxE4[6]=1, E5[1]=0,						
				$PMIO \ 4C[20] = 1$						
<u>GPI21</u> / GPO21 / <u>ACSDIN3</u> / PCS1#	/ SLPBTN#	V1	I	General Purpose Input 21. RxE4[6]=1, E5[2]=0						
				PMIO $4C[21] = 1$						
<u>GPI22</u> / GPO22 / GHI#		R24	I	General Purpose Input 22. $RxE5[3] = 1$, $PMIO 4C[22] = 1$						
<u>GPI23</u> / GPO23 / DPSLP#		P26	I	General Purpose Input 23. $RxE5[3] = 1$, $PMIO 4C[23] = 1$						
GPI24 / GPO24 / GPIOA		AE5	I	General Purpose Input 24. $RxE6[0] = 0$						
<u>GPI25</u> / GPO25 / GPIOC		AE6	I	General Purpose Input 25. $RxE6[1] = 0$						
GPI26 / GPO26 / <u>SMBDT2</u>	(VSUS33)	AD1	I	General Purpose Input 26. $Rx95[2] = 1, 95[3] = 0$						
GPI27 / GPO27 / <u>SMBCK2</u>	(VSUS33)	AE1	I	General Purpose Input 27. $Rx95[2] = 1, 95[3] = 0$						
GPI28 / GPO28 / VIDSEL		P25	I	General Purpose Input 28. $RxE5[3] = 1$, $PMIO 4C[28] = 1$						
GPI29 / GPO29 / VRDSLP		P24	I	General Purpose Input 29. $RxE5[3] = 1$, $PMIO 4C[29] = 1$						
GPI30 / GPO30 / GPIOD		AD6	I	General Purpose Input 30. $RxE6[6] = 0$						
GPI31 / GPO31 / GPIOE		AC6	I	General Purpose Input 31. $RxE6[7] = 0$						
Note: Default pin function is underline	1 ' .1 '	1	1							

Note: Default pin function is underlined in the signal name column above.

Note: Input pin status for the above GPI pins 31-0 is also available on PMIO Rx4B-48[31-0]

Note: See also Power Management I/O register Rx50 for input pin change status for GPI16-19 and 24-27

Note: See also Power Management I/O register Rx52 for SCI/SMI select for GPI16-19 and 24-27

Note: See also Power Management I/O register Rx4C. General purpose input pins 20-31 are shared with OD (open drain) general purpose output functions, so to use one of these pins as an input pin, a one must be written to the corresponding bit of PMIO Rx4C.

General Purpose I/O							
Signal Name	Pin#	I/O	Signal Description				
GPIOA / <u>GPI24</u> / GPO24	AE5	IO	General Purpose I/O A / 24. RxE6[0] = 1				
GPIOC / <u>GPI25</u> / GPO25	AE6	IO	General Purpose I/O C / 25.				
GPIOD / GPI30 / GPO30	AD6	IO	General Purpose I/O D / 30.				
GPIOE / GPI31 / GPO31	AC6	IO	General Purpose I/O E / 31.				

The output type of the above pins may be selected as either OD or TTL (see Device 17 Function 0 RxE7)

General Purpose Outputs							
Signal Name		Pin #	I/O	Signal Description			
<u>GPO0</u> ((VSUS33)	AA3	OD	General Purpose Output 0.			
	(VSUS33)	AA2	O	General Purpose Output 1. $Rx94[2] = 1$			
GPO2 / SUSB#	(VSUS33)	AF2	О	General Purpose Output 2. $Rx94[3] = 1$			
GPO3 / SUSST1#	(VSUS33)	Y3	О	General Purpose Output 3. $Rx94[4] = 1$			
GPO4 / SUSCLK	(VSUS33)	AB1	O	General Purpose Output 4. $Rx95[1] = 1$			
GPO5 / CPUSTP#		AC7	O	General Purpose Output 5. $RxE4[0] = 1$			
GPO6 / PCISTP#		AF6	O	General Purpose Output 6. RxE4[1] = 1			
GPO7 / <u>GNT5#</u>		P4	O	General Purpose Output 7. $RxE4[2] = 0$			
GPO8 / GPI8 / PCREQA / VGATE		C8	О	General Purpose Output 8. RxE4[3]=1, E5[4]=0, 53[7]=0			
GPO9 / GPI9 / PCREQB		В7	О	General Purpose Output 9. RxE4[3]=1, 53[7]=0			
GPO10 / <u>GPI10</u>		D7	О	General Purpose Output 10. RxE4[3]=1			
GPO11 / <u>GPI11</u>		A6	О	General Purpose Output 11. RxE4[3]=1			
GPO12 / GPI12 / INTE# / PCGNTA		A7	О	General Purpose Output 12. RxE4[4]=1, 5B[1]=0, 53[7]=0			
GPO13 / GPI13 / INTF# / PCGNTB		В8	О	General Purpose Output 13. RxE4[4]=1, 5B[1]=0, 53[7]=0			
GPO14 / <u>GPI14</u> / INTG#		D8	О	General Purpose Output 14. RxE4[4]=1, 5B[1]=0			
GPO15 / <u>GPI15</u> / INTH#		C7	O	General Purpose Output 15. RxE4[4]=1, 5B[1]=0			
GPO16 / <u>SA16</u> / strap		AF11	О	General Purpose Output 16. RxE4[5] = 1			
GPO17 / <u>SA17</u> / strap		AE11	О	General Purpose Output 17. RxE4[5] = 1			
GPO18 / <u>SA18</u> / strap		AD11	O	General Purpose Output 18. RxE4[5] = 1			
GPO19 / <u>SA19</u> / strap		AC11	O	General Purpose Output 19. $RxE4[5] = 1$			
GPO20 / GPI20 / <u>ACSDIN2</u> / PCS0#		U2	OD	General Purpose Output 20. RxE4[6]=1, E5[1]=0			
GPO21 / GPI21 / ACSDIN3 / PCS1# /S	SLPBTN#	V1	OD	General Purpose Output 21. RxE4[6]=1, E5[2]=0			
GPO22 / GPI22 / GHI#		R24	OD	General Purpose Output 22. RxE5[3]=1, PMIO 4C[22]=1			
GPO23 / GPI23 / DPSLP#		P26	OD	General Purpose Output 23. RxE5[3]=1, PMIO 4C[23]=1			
GPO24 / <u>GPI24</u> / GPIOA		AE5	O/OD	General Purpose Output 24. RxE6[0] = 1			
GPO25 / GPI25 / GPIOC		AE6	O/OD	General Purpose Output 25. RxE6[1] = 1			
GPO26 / GPI26 / <u>SMBDT2</u> (V	<i>VSUS33†</i>)	AD1	OD	General Purpose Output 26. $Rx95[2] = 1,95[3] = 1$			
GPO27 / GPI27 / <u>SMBCK2</u> (V	VSUS33†)	AE1	OD	General Purpose Output 27. $Rx95[2] = 1, 95[3] = 1$			
GPO28 / GPI28 / VIDSEL		P25	OD	General Purpose Output 28. $RxE5[3] = 1$, PMIO $4C[28]=1$			
GPO29 / GPI29 / VRDSLP		P24	OD	General Purpose Output 29. $RxE5[3] = 1$, PMIO $4C[29]=1$			
GPO30 / <u>GPI30</u> / GPIOD		AD6	O/OD	General Purpose Output 30. RxE6[6] = 1			
GPO31 / <u>GPI31</u> / GPIOE		AC6	O/OD	General Purpose Output 31. RxE6[7] = 1			

Note: The output state for each of the above general purpose outputs is selectable via Power Management I/O registers Rx4C-48

Note: The output types of GPO24-25 and 30-31 are selectable OD vs TTL (see Function 0 RxE7)

Note: Default pin functions are underlined in the table above.

 $[\]dagger$ The suspend voltage is only used for maintaining the operation of the SMB function on these pins (Device 17 Function 0 Rx95[3] = 0). If VCC power is lost, the GPIO function of these pins and the state of PMIO Rx4C[27:26] (which determines the GPO output level) will be lost also.

Power Management and Event Detection						
Signal Name	Pin#	I/O	Signal Description			
PWRBTN#	AD2	Ι	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. Internal logic powered by VSUS33.			
SLPBTN# / GPIO21 / ACSDIN3 / PCS1#	V1	I	Sleep Button. Used by the Power Management subsystem to monitor an external sleep button or switch. $RxE4[6] = 1$, $80[6] = 1$, $E5[2] = 0$ and PMIO $Rx4C[21] = 1$			
RSMRST#	AD5	Ι	Resume Reset. Resets the internal logic connected to the VSUS33 power plane and also resets portions of the internal RTC logic. Internal logic powered by VBAT.			
EXTSMI# / GPI2	AA1	IOD	External System Management Interrupt. When enabled to allow it, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. (10K PU to VSUS33 if not used) (3.3V only)			
PME#	W3	I	Power Management Event. (10K PU to VSUS33 if not used)			
SMBALRT#	AB2	I	SMB Alert . When programmed to allow it (SMB I/O Rx8[3]=1), assertion generates an IRQ, SMI, or power management event. (10K PU to VSUS33 if not used)			
LID# / <u>GPI4</u>	AC1	I	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high or high-to-low transitions to generate an SMI#. (10K PU to VSUS33 if not used)			
INTRUDER# / GPI16	AD3	I	Intrusion Indicator. The value of this bit may be read at PMIO Rx20[6]			
THRM# / GPI18 / AOLGPI	Y4	I	Thermal Alarm Monitor. Rx8C[3] = 1. Rising or falling edges (selectable by PMIO Rx2C[6]) may be detected to set status at PMIO Rx20[10]. Setting of this status bit may then be used to generate an SCI or SMI. THRM# may also be used to enable duty cycle control of stop-clock (STPCLK#) to automatically limit maximum temperature (see Device 17 Function 0 Rx8C[7-3]).			
RING# / <u>GPI3</u>	Y2	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. (10K PU to VSUS33 if not used)			
BATLOW# / GPI5	W4	I	Battery Low Indicator. (10K PU to VSUS33 if not used) (3.3V only)			
CPUSTP# / GPO5	AC7	О	CPU Clock Stop ($RxE4[0] = 0$). Signals the system clock generator to disable the CPU clock outputs. Not connected if not used.			
PCISTP# / GPO6	AF6	0	PCI Clock Stop (RxE4[1] = 0). Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.			
<u>SUSA#</u> / GPO1	AA2	О	Suspend Plane A Control (Rx94[2]=0). Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. (10K PU to VSUS33 if not used)			
<u>SUSB#</u> / GPO2	AF2	О	Suspend Plane B Control (Rx94[3]=0). Asserted during power management STR and STD suspend states. Used to control the secondary power plane. (10K PU to VSUS33 if not used)			
SUSC#	AF1	О	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry. (10K PU to VSUS33 if not used)			
<u>SUSST1#</u> / GPO3	Y3	О	Suspend Status 1 (Rx94[4] = 0). Typically connected to the North Bridge to provide information on host clock status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. Connect 10K PU to VSUS33.			
SUSCLK	AB1	0	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., VT8633 or VT8366) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes. Connect 10K PU to VSUS33.			
CPUMISS / GPI17	Y1	I	CPU Missing. Used to detect the physical presence of the CPU chip in its socket. High indicates no CPU present. Connect to the CPUMISS pin of the CPU socket. The state of this pin may be read in the SMBus 2 registers. This pin may be used as CPUMISS and GPI17 at the same time.			
<u>AOLGPI</u> / <u>GPI18</u> / <u>THRM#</u>	Y4	I	Alert On LAN. The state of this pin may be read in the SMBus 2 registers. This pin may be used as AOLGPI, GPI18 and THRM# all at the same time.			

	Resets, Clocks, and Power Status					
Signal Name	Pin#	I/O	Signal Description			
PWRGD	AF4	I	Power Good. Connected to the Power Good signal on the Power Supply. Internal logic powered by VBAT.			
PWROK#	AE2	О	Power OK. Internal logic powered by VSUS33.			
PCIRST#	R2	0	PCI Reset. Active low reset signal for the PCI bus. The VT8235 will assert this pin during power-up or from the control register.			
OSC	AC12	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.			
RTCX1	AD4	I	RTC Crystal Input : 32.768 KHz crystal or oscillator input. This input is used for the internal RTC and power-well power management logic and is powered by VBAT.			
RTCX2	AF3	О	RTC Crystal Output: 32.768 KHz crystal output. Internal logic powered by VBAT.			
TEST	AF9	I	Test.			
TPO	U24	О	Test Pin Output. Output pin for test mode.			

	Power and Ground				
Signal Name	Pin #	I/O	Signal Description		
VCC33	(see pin list)	P	I/O Power. 3.3V ±5%		
VCC	(see pin list)	P	Core Power. 2.5V ±5%. This supply is turned on only when the mechanical switch on		
			the power supply is turned on and the PWRON signal is conditioned high. <u>Note: The</u>		
			VT8235L core voltage is 2.5V so board designs that are intended to allow use of either		
			VT8235 or VT8235L should take this difference into account and allow the core		
CIND	(' 1' ()	D	voltage to be selected as either 2.5V (for the VT8235) or 3.3V (for the VT8235L).		
GND	(see pin list)	P	Ground. Connect to primary motherboard ground plane.		
VSUS33	AA4, AB4,	P	Suspend Power. 3.3V ±5%. Always available unless the mechanical switch of the		
	AC4, AC5		power supply is turned off. If the "soft-off" state is not implemented, then this pin can be		
			connected to VCC33. Signals powered by or referenced to this plane are: PWRGD,		
			RSMRST#, PWRBTN#, SMBCK1/2, SMBDT1/2, GP00, SUSA# / GP01, SUSB# /		
			GPO2, SUSC#, SUSST1# / GPO3, SUSCLK / GPO4, GPI1, GPI2 / EXTSMI#, GPI3 /		
VSUS25	T4, U4	P	RING#, GPI4 / LID, GPI5 / BATLOW#, GPI6 / PME#, SMBALRT# Suspend Power. 2.5V ±5%.		
VSUSUSB	D15	P	USB Suspend Power. 2.5V ±5%.		
VBAT	AE4	P	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2)		
VLVREF	J23	P	V-Link Voltage Reference. $0.9V \pm 5\%$ for 4x transfers and $0.625V \pm 5\%$ for 8x transfers.		
VCCVK	(see pin list)	P	V-Link Compensation Circuit Voltage. 2.5V ±5%		
MIIVCC	D11, D12,	P	LAN MII Power. 3.3V ±5%.Power for LAN Media Independent Interface (interface to		
	E11, E12		external PHY). Connect to VCC33 through a ferrite bead.		
MIIVCC25	D13, E13	P	LAN MII Suspend Power. 2.5V ±5%.		
RAMVCC	E7	P	LAN RAM Power. 2.5V ±5%. Power for LAN internal RAM. Connect to VCC		
			through a ferrite bead.		
RAMGND	E8	P	LAN RAM Ground. Connect to GND through a ferrite bead.		
USBVCC	(see pin list)	P	USB 2.0 Differential Output Power. 3.3V ±5%. Power for USB differential outputs		
			(USBP0+, P0-, P1+, P1-, P2+, P2-, P3+, P3-, P4+, P4-, P5+, P5-). Connect to VSUS33		
			through a ferrite bead.		
USBGND	(see pin list)	P	USB 2.0 Differential Output Ground. Connect to GND through a ferrite bead.		
VCCUPLL	A23, D22	P	USB 2.0 PLL Analog Voltage. 2.5V ±5%. Connect to VCC through a ferrite bead.		
GNDUPLL	B23, E22	P	USB 2.0 PLL Analog Ground. Connect to GND through a ferrite bead.		
PLLVCC	P22	P	PLL Analog Power. 2.5V ±5%. Connect to VCC through a ferrite bead.		
PLLGND	P23	P	PLL Analog Ground. Connect to GND through a ferrite bead.		
PDVREF	W22	P	IDE Primary Data Channel Voltage Reference. 0.9V†		
SDVREF	AD17	P	IDE Secondary Data Channel Voltage Reference. 0.9V†		

†Created by a resistive voltage divider of $1K\Omega$ 1% to 3.3V and 383Ω 1% to ground (see Design Guide)

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT8235. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 4. Memory Mapped Registers

FEC00000	APIC Index	(8-bit)
FEC00010	APIC Data	(32-bit)
FEC00020	APIC IRQ Pin Assertion	(8-bit)
FEC00040	APIC EOI	(8-bit)

[&]quot;APIC" = "Advanced Programmable Interrupt Controller"

Table 5. Function Summary

Bus	Device	Func	Device ID	<u>Function</u>
0	16 (10h)	0	3038h	USB 1.1 UHCI Ports 0-1
0	16 (10h)	1	3038h	USB 1.1 UHCI Ports 2-3
0	16 (10h)	2	3038h	USB 1.1 UHCI Ports 4-5
0	16 (10h)	3	3038h	USB 2.0 EHCI Ports 0-5
0	17 (11h)	0	3074h	Bus Control & Power Mgmt
0	17 (11h)	1	0571h	IDE Controller
0	17 (11h)	5	3059h	AC97 Audio Codec Controller
0	17 (11h)	6	3068h	MC97 Modem Codec Ctrlr
0	18 (12h)	0	3043h	VIA LAN Controller

Table 6. System I/O Map

<u>Port</u>	Function	Actual Port Decoding
00-1F	Master DMA Controller	0000 0000 000x nnnn
20-3F	Master Interrupt Controller	0000 0000 001x xxxn
40-5F	Timer / Counter	0000 0000 010x xxnn
60-6F	Keyboard Controller	0000 0000 0110 xnxn
(60h)	KBC Data	0000 0000 0110 x0x0
(61h)	Misc Functions & Spkr Ctrl	0000 0000 0110 xxx1
(64h)	KBC Command / Status	0000 0000 0110 x1x0
70-77	RTC/CMOS/NMI-Disable	0000 0000 0111 0nnn
78-7F	-available for system use-	0000 0000 0111 1xxx
80	-reserved- (debug port)	0000 0000 1000 0000
81-8F	DMA Page Registers	0000 0000 1000 nnnn
90-91	-available for system use-	0000 0000 1001 000x
92	System Control	0000 0000 1001 0010
93-9F	-available for system use-	0000 0000 1001 nnnn
A0-BF	Slave Interrupt Controller	0000 0000 101x xxxn
C0-DF	Slave DMA Controller	0000 0000 110n nnnx
E0-FF	-available for system use-	0000 0000 111x xxxx
100-CF7	-available for system use*	
CF8-CFB	PCI Configuration Address	0000 1100 1111 10xx
CFC-CFF	PCI Configuration Data	0000 1100 1111 11xx
D00-FFFF	-available for system use-	

Table 7. Registers

Legacy I/O Registers

Port	Master DMA Controller Registers	Default	Acc
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		WO
0A	Write Single Mask		WO
0B	Write Mode		wo
0C	Clear Byte Pointer FF		WO
0D	Master Clear		WO
0E	Clear Mask		WO
0F	Read / Write Mask		RW

<u>Port</u>	Master Interrupt Controller Regs	<u>Default</u>	Acc
20	Master Interrupt Control		*
21	Master Interrupt Mask	_	*
20	Master Interrupt Control Shadow		RW
21	Master Interrupt Mask Shadow	1	RW

^{*} RW if shadow registers are disabled

Port	Timer/Counter Registers	Default	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		WO

Port	Keyboard Controller Registers	Default	<u>Acc</u>
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	Default	Acc
70	CMOS Memory Address & NMI Disa		wo
71	CMOS Memory Data (128 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-Dh). Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

Legacy I/O Registers (continued)

<u>Port</u>	DMA Page Registers	Default	<u>Acc</u>
87	DMA Page – DMA Channel 0		RW
83	DMA Page – DMA Channel 1		RW
81	DMA Page – DMA Channel 2		RW
82	DMA Page – DMA Channel 3		RW
8F	DMA Page – DMA Channel 4		RW
8B	DMA Page – DMA Channel 5		RW
89	DMA Page – DMA Channel 6		RW
8A	DMA Page – DMA Channel 7		RW

<u>Port</u>	System Control Registers	<u>Default</u>	Acc
92	System Control		RW

Port	Slave Interrupt Controller Regs	Default	Acc
A0	Slave Interrupt Control	_	*
A1	Slave Interrupt Mask	_	*
A0	Slave Interrupt Control Shadow	_	$\mathbf{R}\mathbf{W}$
A1	Slave Interrupt Mask Shadow	_	$\mathbf{R}\mathbf{W}$

^{*} RW accessible if shadow registers are disabled

Port	Slave DMA Controller Registers	Default	Acc
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		WO
D4	Write Single Mask		WO
D6	Write Mode		WO
D8	Clear Byte Pointer FF		WO
DA	Master Clear		WO
DC	Clear Mask		wo
DE	Read / Write Mask		RW

Keyyboard / Mouse Wakeup Registers (I/O Space)

	Port	KB / Mouse Wakeup Registers	Default	<u>Acc</u>
ı	002E	Keyboard / Mouse Wakeup Index †	00	RW
	002F	Keyboard / Mouse Wakeup Data †	00	RW

[†] Keyboard / Mouse Wakeup registers (index values E0-EF defined below) are accessible if Function 0 PCI Configuration register Rx51[1] = 1.

<u>Keyboard / Mouse Wakeup Registers (Indexed via Port 2E/2F)</u>

Offset	Reserved	<u>Default</u>	Acc
00-DF	-reserved-		RO

Offset	KB / Mouse Wakeup (Rx51[1]=1)	<u>Default</u>	Acc
E0	Keyboard / Mouse Wakeup Enable	08	RW
E1	Keyboard Wakeup Scan Code Set 0	F0	RW
E2	Keyboard Wakeup Scan Code Set 1	00	RW
E3	Keyboard Wakeup Scan Code Set 2	00	RW
E4	Keyboard Wakeup Scan Code Set 3	00	RW
E5	Keyboard Wakeup Scan Code Set 4	00	RW
E6	Keyboard Wakeup Scan Code Set 5	00	RW
E7	Keyboard Wakeup Scan Code Set 6	00	RW
E8	Keyboard Wakeup Scan Code Set 7	00	RW
E9	Mouse Wakeup Scan Code Set 1	09	RW
EA	Mouse Wakeup Scan Code Set 2	00	RW
EB	Mouse Wakeup Scan Code Mask	00	RW
EC-EF	-reserved-	_	RO

Game Port Registers (I/O Space)

Offset	Game Port (200-20F typical)	<u>Default</u>	Acc
0	-reserved-	00	_
1	Game Port Status		RO
1	Start One-Shot		wo
2-F	-reserved-	00	_

Memory Mapped Registers - IOAPIC

Address	APIC Index / Data	Default	Acc
FEC00000	APIC Register Index	00	RW
FEC00001-0F	-reserved-	00	
FEC00010-13	APIC Register Data	0000 0000	RW
FEC00014-1F	-reserved-	00	_
FEC00020	APIC IRQ Pin Assertion	XX	WO
FEC00021-3F	-reserved-	00	
FEC00040	APIC EOI	XX	WO
FEC00041-FF	-reserved-	00	

0 APIC ID 0000 0000 RW 1 APIC Version 0017 8003 RO 2 APIC Arbitration 0000 0000 RO 3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection- AIRQ0 xxx1xxxx xxxxxxxx RW 13-12 I/O Redirection- AIRQ1 xxx1xxxx xxxxxxxx RW 15-14 I/O Redirection- AIRQ2 xxx1xxxx xxxxxxxxx RW 17-16 I/O Redirection- AIRQ3 xxx1xxxx xxxxxxxxx RW 19-18 I/O Redirection- AIRQ4 xxx1xxxx xxxxxxxxx RW 19-18 I/O Redirection- AIRQ4 xxx1xxxx xxxxxxxxx RW 19-18 I/O Redirection- AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection- AIRQ5 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.00	L DIC D	D 0 1/	
1 APIC Version 0017 8003 RO 2 APIC Arbitration 0000 0000 RO 3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxxx xxxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxxx xxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx			<u>Default</u>	<u>Acc</u>
2 APIC Arbitration 0000 0000 RO 3 Boot Configuration 0000 0000 RW 4-F -reserved- 0000 0000 — 11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxxx xxxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxxx xxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx				
3			0017 8003	RO
4-F -reserved- 0000 0000 — 11-10 I/O Redirection— AIRQ0 xxx1xxxx xxxxxxx RW 13-12 I/O Redirection— AIRQ1 xxx1xxx xxxxxxxx RW 15-14 I/O Redirection— AIRQ2 xxx1xxx xxxxxxxx RW 17-16 I/O Redirection— AIRQ3 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ4 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection— AIRQ5 xxx1xxx xxxxxxxx RW 1B-1A I/O Redirection— AIRQ6 xxx1xxx xxxxxxxx RW 1D-1C I/O Redirection— AIRQ6 xxx1xxx xxxxxxxx RW 1F-1E I/O Redirection— AIRQ7 xxx1xxx xxxxxxxx RW 21-20 I/O Redirection— AIRQ8 xxx1xxx xxxxxxxx RW 23-20 I/O Redirection— AIRQ9 xxx1xxx xxxxxxxx RW 25-24 I/O Redirection— AIRQ10 xxx1xxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxx xxxxxxxxx RW 31-30 I/O Redirection— AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW				
11-10 I/O Redirection—AIRQ0 xxx1xxxx xxxxxxxx RW 13-12 I/O Redirection—AIRQ1 xxx1xxx xxxxxxxx RW 15-14 I/O Redirection—AIRQ2 xxx1xxxx xxxxxxxx RW 17-16 I/O Redirection—AIRQ3 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection—AIRQ4 xxx1xxx xxxxxxxx RW 19-18 I/O Redirection—AIRQ5 xxx1xxx xxxxxxxx RW 1B-1A I/O Redirection—AIRQ6 xxx1xxxx xxxxxxxx RW 1D-1C I/O Redirection—AIRQ6 xxx1xxxx xxxxxxxx RW 1F-1E I/O Redirection—AIRQ7 xxx1xxxx xxxxxxxx RW 21-20 I/O Redirection—AIRQ9 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection—AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection—AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection—AIRQ11 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxxx RW	3	Boot Configuration	0000 0000	RW
13-12 I/O Redirection- AIRQ1 xxx1xxx xxxxxxx RW 15-14 I/O Redirection- AIRQ2 xxx1xxx xxxxxxx RW 17-16 I/O Redirection- AIRQ3 xxx1xxx xxxxxxx RW 19-18 I/O Redirection- AIRQ4 xxx1xxx xxxxxxx RW 19-18 I/O Redirection- AIRQ4 xxx1xxx xxxxxxx RW 1B-1A I/O Redirection- AIRQ5 xxx1xxx xxxxxxx RW 1D-1C I/O Redirection- AIRQ6 xxx1xxx xxxxxxx RW 1F-1E I/O Redirection- AIRQ7 xxx1xxx xxxxxxx RW 21-20 I/O Redirection- AIRQ8 xxx1xxx xxxxxxx RW 23-20 I/O Redirection- AIRQ9 xxx1xxx xxxxxxx RW 25-24 I/O Redirection- AIRQ10 xxx1xxx xxxxxxx RW 27-26 I/O Redirection- AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection- AIRQ12 xxx1xxx xxxxxxx RW 2B-2A I/O Redirection- AIRQ13 xxx1xxx xxxxxxxx RW 2D-2C I/O Redirection- AIRQ14 xxx1xxx xxxxxxxx RW 2F-2E I/O Redirection- AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection- AIRQ16 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection- AIRQ17 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection- AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection- AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection- AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection- AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection- AIRQ23 xxx1xxxx xxxxxxxx RW	4-F		0000 0000	—
15-14 I/O Redirection— AIRQ2	11-10	I/O Redirection– AIRQ0	xxx1xxxx xxxxxxxx	RW
17-16 I/O Redirection— AIRQ3	13-12	I/O Redirection– AIRQ1	xxx1xxxx xxxxxxxx	RW
19-18 I/O Redirection- AIRQ4	15-14	I/O Redirection– AIRQ2	xxx1xxxx xxxxxxx	RW
1B-1A I/O Redirection- AIRQ5	17-16	I/O Redirection– AIRQ3	xxx1xxxx xxxxxxxx	RW
1D-1C I/O Redirection- AIRQ6	19-18	I/O Redirection- AIRQ4	xxx1xxxx xxxxxxxx	RW
1F-1E I/O Redirection— AIRQ7 xxx1xxxx xxxxxxxx RW 21-20 I/O Redirection— AIRQ8 xxx1xxxx xxxxxxxx RW 23-20 I/O Redirection— AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection— AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection— AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	1B-1A	I/O Redirection– AIRQ5	xxx1xxxx xxxxxxxx	RW
21-20 I/O Redirection– AIRQ8 xxx1xxxx xxxxxxxxx RW 23-20 I/O Redirection– AIRQ9 xxx1xxxx xxxxxxxx RW 25-24 I/O Redirection– AIRQ10 xxx1xxxx xxxxxxxxx RW 27-26 I/O Redirection– AIRQ11 xxx1xxxx xxxxxxxxx RW 29-28 I/O Redirection– AIRQ12 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection– AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection– AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection– AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection– AIRQ16 xxx1xxxx xxxxxxxxx RW 35-34 I/O Redirection– AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection– AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection– AIRQ20 xxx1xxxx xxxxxxxxx RW 3B-3A I/O Redirection– AIRQ21 xxx1xxxx xxxxxxxxx RW 3D-3C I/O Redirection– AIRQ22 xxx1xxxx xxxxxxxxx RW	1D-1C	I/O Redirection– AIRQ6	xxx1xxxx xxxxxxx	RW
23-20 I/O Redirection—AIRQ9 xxx1xxxx xxxxxxx RW 25-24 I/O Redirection—AIRQ10 xxx1xxxx xxxxxxx RW 27-26 I/O Redirection—AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ12 xxx1xxxx xxxxxxxx RW 29-28 I/O Redirection—AIRQ13 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection—AIRQ14 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ15 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	1F-1E	I/O Redirection– AIRQ7	xxx1xxxx xxxxxxxx	RW
25-24 I/O Redirection— AIRQ10 xxx1xxxx xxxxxxxx RW 27-26 I/O Redirection— AIRQ11 xxx1xxx xxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxx RW 2B-2A I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection— AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection— AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	21-20	I/O Redirection– AIRQ8	xxx1xxxx xxxxxxxx	RW
27-26 I/O Redirection— AIRQ11 xxx1xxxx xxxxxxxxx RW 29-28 I/O Redirection— AIRQ12 xxx1xxxx xxxxxxxxx RW 2B-2A I/O Redirection— AIRQ13 xxx1xxxx xxxxxxxxx RW 2D-2C I/O Redirection— AIRQ14 xxx1xxxx xxxxxxxxx RW 2F-2E I/O Redirection— AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection— AIRQ16 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection— AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxxx RW	23-20	I/O Redirection– AIRQ9	xxx1xxxx xxxxxxx	RW
29-28 I/O Redirection—AIRQ12 xxx1xxx xxxxxxx RW 2B-2A I/O Redirection—AIRQ13 xxx1xxx xxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxx xxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	25-24	I/O Redirection– AIRQ10	xxx1xxxx xxxxxxxx	RW
2B-2A I/O Redirection—AIRQ13 xxx1xxxx xxxxxxxx RW 2D-2C I/O Redirection—AIRQ14 xxx1xxxx xxxxxxxx RW 2F-2E I/O Redirection—AIRQ15 xxx1xxxx xxxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	27-26	I/O Redirection– AIRQ11	xxx1xxxx xxxxxxxx	RW
2D-2C I/O Redirection— AIRQ14	29-28	I/O Redirection– AIRQ12	xxx1xxxx xxxxxxxx	RW
2F-2E I/O Redirection—AIRQ15 xxx1xxx xxxxxxx RW 31-30 I/O Redirection—AIRQ16 xxx1xxx xxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxx xxxxxxx RW	2B-2A	I/O Redirection– AIRQ13	xxx1xxxx xxxxxxx	RW
31-30 I/O Redirection—AIRQ16 xxx1xxxx xxxxxxxx RW 33-32 I/O Redirection—AIRQ17 xxx1xxxx xxxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxxx RW	2D-2C	I/O Redirection– AIRQ14	xxx1xxxx xxxxxxxx	RW
33-32 I/O Redirection—AIRQ17 xxx1xxx xxxxxxx RW 35-34 I/O Redirection—AIRQ18 xxx1xxx xxxxxxx RW 37-36 I/O Redirection—AIRQ19 xxx1xxx xxxxxxx RW 39-38 I/O Redirection—AIRQ20 xxx1xxx xxxxxxx RW 3B-3A I/O Redirection—AIRQ21 xxx1xxx xxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxx xxxxxxx RW	2F-2E	I/O Redirection– AIRQ15	xxx1xxxx xxxxxxx	RW
35-34 I/O Redirection— AIRQ18 xxx1xxxx xxxxxxxx RW 37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	31-30	I/O Redirection– AIRQ16	xxx1xxxx xxxxxxxx	RW
37-36 I/O Redirection— AIRQ19 xxx1xxxx xxxxxxxx RW 39-38 I/O Redirection— AIRQ20 xxx1xxxx xxxxxxxx RW 3B-3A I/O Redirection— AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection— AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection— AIRQ23 xxx1xxxx xxxxxxxx RW	33-32	I/O Redirection– AIRQ17	xxx1xxxx xxxxxxx	RW
39-38 I/O Redirection– AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection– AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection– AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection– AIRQ23 xxx1xxxx xxxxxxxx RW	35-34	I/O Redirection– AIRQ18	xxx1xxxx xxxxxxx	RW
39-38 I/O Redirection– AIRQ20 xxx1xxxx xxxxxxx RW 3B-3A I/O Redirection– AIRQ21 xxx1xxxx xxxxxxxx RW 3D-3C I/O Redirection– AIRQ22 xxx1xxxx xxxxxxxx RW 3F-3E I/O Redirection– AIRQ23 xxx1xxxx xxxxxxxx RW	37-36			RW
3B-3A I/O Redirection—AIRQ21 xxx1xxxx xxxxxxx RW 3D-3C I/O Redirection—AIRQ22 xxx1xxxx xxxxxxx RW 3F-3E I/O Redirection—AIRQ23 xxx1xxxx xxxxxxx RW	39-38	`	xxx1xxxx xxxxxxx	RW
3D-3C I/O Redirection- AIRQ22 xxx1xxxx xxxxxxx RW 3F-3E I/O Redirection- AIRQ23 xxx1xxxx xxxxxxx RW	3B-3A	`	xxx1xxxx xxxxxxx	
3F-3E I/O Redirection– AIRQ23 xxx1xxxx xxxxxxx RW	3D-3C	`	xxx1xxxx xxxxxxx	RW
`	3F-3E	I/O Redirection– AIRQ23	xxx1xxxx xxxxxxx	RW
	40-4F	`		_

Note: The "I/O Redirection" registers are 64-bit registers, so each uses two consecutive index locations, with the lower 32 bits at the even index and the upper 32 bits at the odd index.

Device 16 Function 0 Registers – USB 1.1 UHCI Ports 0-1

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	-reserved-	00	_
D	Latency Timer	16	RW
E-1F	-reserved-	00	_
23-20	USB I/O Registers Base Port Address	00000301	RW
24-2B	-reserved-	00	_
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3038	RO†
30-33	-reserved-	00	_
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	01	RO
3E-3F	-reserved-	00	

[†] RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	Default	Acc
40	USB Miscellaneous Control 1	40	RW
41	USB Miscellaneous Control 2	10	RW
42	USB Miscellaneous Control 3	03	RW
43	USB Miscellaneous Control 4	00	RW
44-47	-reserved- (test, do not program)	00	
48	USB Miscellaneous Control 5	00	RW
49	USB Miscellaneous Control 6	00	RW
4A	USB Miscellaneous Control 7	00	RW
4B-5F	-reserved-	00	
60	USB Serial Bus Release Number	10	RO
61-83	-reserved-	00	
84	PM Capability Status	00	RW
85-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	

<u>Memory Mapped I/O Registers – USB Controller</u>

Offset	USB I/O Registers	Default	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
С	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	

<u>Device 16 Function 1 Registers – USB 1.1 UHCI Ports 2-3</u>

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	-reserved-	00	_
D	Latency Timer	16	RW
E-1F	-reserved-	00	_
23-20	USB I/O Registers Base Port Address	00000301	RW
24-2B	-reserved-	00	_
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3038	RO†
30-33	-reserved-	00	
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	02	RO
3E-3F	-reserved-	00	_

[†] RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	<u>Acc</u>
40	USB Miscellaneous Control 1	40	RW
41	USB Miscellaneous Control 2	10	RW
42	USB Miscellaneous Control 3	03	RW
43	USB Miscellaneous Control 4	00	RW
44-47	-reserved- (test, do not program)	00	_
48	USB Miscellaneous Control 5	00	RW
49	USB Miscellaneous Control 6	00	RW
4A	USB Miscellaneous Control 7	00	RW
4B-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-83	-reserved-	00	_
84	PM Capability Status	00	RW
85-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	_

Memory Mapped I/O Registers - USB Controller

Offset	USB I/O Registers	Default	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
С	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	

Device 16 Function 2 Registers – USB 1.1 UHCI Ports 4-5

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	-reserved-	00	_
D	Latency Timer	16	RW
E-1F	-reserved-	00	_
23-20	USB I/O Registers Base Port Address	00000301	RW
24-2B	-reserved-	00	_
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3038	RO†
30-33	-reserved-	00	_
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E-3F	-reserved-	00	

[†] RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	Default	Acc
40	USB Miscellaneous Control 1	40	RW
41	USB Miscellaneous Control 2	10	RW
42	USB Miscellaneous Control 3	03	RW
43	USB Miscellaneous Control 4	00	RW
44-47	-reserved- (test, do not program)	00	_
48	USB Miscellaneous Control 5	00	RW
49	USB Miscellaneous Control 6	00	RW
4A	USB Miscellaneous Control 7	00	RW
4B-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-83	-reserved-	00	_
84	PM Capability Status	00	RW
85-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	

Memory Mapped I/O Registers – USB Controller

Offset	USB I/O Registers	Default	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	_

Device 16 Function 3 Registers – USB 2.0 EHCI Ports 0-5

Configuration Space USB Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3104	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	20	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	Cache Line Size	00	RW
D	Latency Timer	16	RW
E-F	-reserved-	00	_
13-10	EHCI Mem Mapped I/O Base Addr	0000 0000	RW
14-2B	-reserved-	00	
2D-2C	Sub Vendor ID	1106	RO†
2F-2E	Sub Device ID	3104	RO†
30-33	-reserved-	00	_
34	Power Management Capabilities	80	RO
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	

[†] RW if Rx42[4] = 1.

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	00	RW
41-47	-reserved- (Do Not Program)	00	—
48	USB Miscellaneous Control 5	A0	RW
49	USB Miscellaneous Control 6	20	RW
4A-4B	-reserved- (Do Not Program)	00	_
4C-4F	-reserved-	00	—
50-57	-reserved- (test, do not program)	00	_
58-5D	-reserved- (Do Not Program)	00	_
5E-5F	-reserved-	00	—
60	USB Serial Bus Release Number	20	RO
61	Frame Length Adjust	20	RW
63-62	Port Wake Capability	0001	RW
64-67	-reserved-	00	
6B-68	Legacy Support Extended Capability	0000 0001	RW
6F-6C	Legacy Support Control / Status	0000 0000	RW
70-83	-reserved-	00	
84	PM Capability Status	00	RW
85-FF	-reserved-	00	

Memory Mapped I/O Registers - USB EHCI

Offset	EHCI Capabilities	Default	Acc
00	Capability Register Length	00	RW
01	-reserved-	00	_
03-02	Interface Version Number	0100	RO†
07-04	Structure Parameters	0000 3206	RO†
0B-08	Capability Parameters	0000 6872	RO†
0C-0F	-reserved-	00	_

[†] RW if Rx42[4] = 1.

Offset	Host Controller Operation	<u>Default</u>	Acc
13-10	USB Command	0000 0000	RW
17-14	USB Status	0000 0000	RW
1B-18	USB Interrupt Enable	0000 0000	RW
1F-1C	USB Frame Index	0000 0000	RW
23-20	4G Segment Selector	0000 0000	RW
27-24	Frame List Base Address	0000 0000	RW
2B-28	Next Asynchronous List Address	0000 0000	RW
2C-4F	-reserved-	00	
53-50	Configured Flag Register	0000 0000	RW
57-54	Port 1 Status / Control	0000 0000	RW
5B-58	Port 2 Status / Control	0000 0000	RW
5C-FF	-reserved-	00	_

<u>Device 17 Function 0 Registers – Bus Control & Power Management</u>

Configuration Space Bus Control & PM Header Registers

Offset	Configuration Space Header	Default	<u>Acc</u>
1-0	Vendor ID	1106	RO
3-2	Device ID	3177	RO
5-4	Command	0087	$\mathbf{R}\mathbf{W}$
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	_
D	-reserved- (latency timer)	00	_
E	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	—
28-2B	-reserved- (unassigned)	00	
2D-2C	Sub Vendor ID	00	RO
2F-2E	Sub Device ID	00	RO
30-33	-reserved- (expan. ROM base addr)	00	_
34-3B	-reserved- (unassigned)	00	
3C	-reserved- (interrupt line)	00	_
3D	-reserved- (interrupt pin)	00	_
3E	-reserved- (min gnt)	00	
3F	-reserved- (max lat)	00	

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	Default	<u>Acc</u>
40	ISA Bus Control	00	RW
41	BIOS ROM Decode Control	00	RW
42	Line Buffer Control	00	RW
43	Delay Transaction Control	00	RW
44-47	-reserved-	00	_
48	Read Pass Write Control	00	RW
49	CCA Control	00	RW
4A-4B	-reserved-	00	_

Offset	Miscellaneous Control	<u>Default</u>	Acc
4C	IDE Interrupt Routing	00	RW
4D	-reserved-	00	_
4E	Internal RTC Test Mode	00	RW
4F	PCI Bus & CPU Interface Control	00	RW

Offset	Function Control	Default	Acc
50	Function Control 1	09	RW
51	Function Control 2	0D	RW

Offset	Serial IRQ, LPC & PC/PCI Control	Default	Acc
52	Serial IRQ & LPC Control	00	RW
53	PC/PCI DMA Control	00	RW

Offset	Plug and Play Control	Default	Acc
54	PCI Interrupt Polarity	00	RW
55	PnP Routing for PCI INTA	00	RW
56	PnP Routing for PCI INTB-C	00	RW
57	PnP Routing for PCI INTD	00	RW

Offset	GPIO and Miscellaneous Control	<u>Default</u>	Acc
58	Miscellaneous Control 0	40	RW
59	Miscellaneous Control 1	00	RW
5A	DMA Bandwidth Control	00	RW
5B	Miscellaneous Control 2	00	RW

Offset	Programmable Chip Select Control	<u>Default</u>	Acc
5D-5C	PCS0# I/O Port Address	0000	RW
5F-5E	PCS1# I/O Port Address	0000	RW
61-60	PCS2# I/O Port Address	0000	RW
63-62	PCS3# I/O Port Address	0000	RW
64	PCS[1-0]# I/O Port Address Mask	00	RW
65	PCS[3-2]# I/O Port Address Mask	00	RW
66	Programmable Chip Select Control	00	RW
67	Output Control	04	RW
68-6B	-reserved-	00	_

Offset	Miscellaneous	Default	<u>Acc</u>
6C	ISA Positive Decoding Control 1	00	RW
6D	ISA Positive Decoding Control 2	00	RW
6E	ISA Positive Decoding Control 3	00	RW
6F	ISA Positive Decoding Control 4	00	RW
71-70	Sub Vendor ID Backdoor	00	RW
73-72	Sub Device ID Backdoor	00	RW
70-78	-reserved-	00	_
79	PnP IRQ/DRQ Test (do not prog)	00	RW
7A	IDE / USB Test (do not program)	00	RW
7B	PLL Test (do not program)	00	RW
7C	I/O Pad Control	00	RW
7D-7F	-reserved-	00	_

Configuration Space Power Management Registers

Offset	Power Management	<u>Default</u>	Acc
80	General Configuration 0	00	RW
81	General Configuration 1	04	RW
82	ACPI Interrupt Select	00	RW
83	-reserved-	00	_
85-84	Primary Interrupt Channel	0000	RW
87-86	Secondary Interrupt Channel	0000	RW
8B-88	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
8C	Host Bus Power Mgmt Control	00	RW
8D	Throttle / Clock Stop Control	00	RW
8E-8F	-reserved-	00	_
93-90	GP Timer Control	0000 0000	RW
94	Power Well Control	00	RW
95	Miscellaneous Control	00	RW
96	Power On / Reset Control	00	RW
97	-reserved-	00	_
98	GP2 / GP3 Timer Control	00	RW
99	GP2 Timer	00	RW
9A	GP3 Timer	00	RW
9B-A0	-reserved-	00	_
A1	Write value for Offset 9 (Prog Intfc)	00	WO
A2	Write value for Offset A (Sub Class)	00	WO
A3	Write value for Offset B (Base Class)	00	WO
A4-BF	-reserved-	00	_
C3-C0	Power Management Capability	0002 0001	RO
C7-C4	Power Management Capability CSR	0000 0000	RW
C8-CF	-reserved-	00	_

Configuration Space SMBus Registers

Offset	System Management Bus	Default	Acc
D1-D0	SMBus I/O Base (16 Bytes)	0001	RW
D2	SMBus Host Configuration	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address Shadow Port 1	00	RW
D5	SMBus Slave Address Shadow Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-DF	-reserved-	00	

Configuration Space General Purpose I/O Registers

Offset	General Purpose I/O	Default	Acc
E0	GPI Inversion Control	00	RW
E1	GPI SCI / SMI Select	00	RW
E2-E3	-reserved-	00	_
E4	GPO Pin Select	00	RW
E5	GPIO I/O Select 1	00	RW
E6	GPIO I/O Select 2	00	RW
E7	GPO Output Type	00	RW
E8-FF	-reserved-	00	_

I/O Space Power Management Registers

Offset	Basic Control / Status Registers	<u>Default</u>	Acc
1-0	Power Management Status	0000	\mathbf{WC}
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	_
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	_

Offset	Processor Registers	<u>Default</u>	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	_

Offset	General Purpose Registers	<u>Default</u>	Acc
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	_

Offset	Generic Registers	Default	Acc
29-28	Global Status	0000	WC
2B-2A	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	
2F	SMI Command	00	RW
33-30	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38	GP Timer Reload Enable	0000 0000	RW
3C-3F	-reserved-	00	—

Offset	General Purpose I/O Registers	<u>Default</u>	Acc
40	Extended I/O Trap Status	00	WC
41	-reserved-	00	_
42	Extended I/O Trap Enable	00	RW
43-44	-reserved-	00	
45	SMI / IRQ / Resume Status	00	RO
46-47	-reserved-	00	l
4B-48	GPI Port Input Value	input	RO
4F-4C	GPO Port Output Value	FFFFCFFF	RW
50	GPI Pin Change Status	00	RW
51	-reserved-	00	l
52	GPI Pin Change SCI/SMI Select	00	RW
53-57	-reserved-	00	l
59-58	I/O Trap PCI I/O Address	0000	RO
5A	I/O Trap PCI Command / Byte Ena	00	RO
5B	-reserved-	00	
5C	CPU Performance Control	00	RW
5D-FF	-reserved-	00	_

I/O Space System Management Bus Registers

Offset	System Management Bus	<u>Default</u>	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
Е	-reserved-	00	_
F	SMBus GPIO Slave Address	00	RW

System Management Bus Command Codes

Code	System Management Bus	<u>Default</u>	Acc
00	SMBus GPIO Slave Input Data	1	RO
01	SMBus GPIO Slave Output Data	00	RW
02	SMBus GPIO Slave Polarity Inversion	F0	RW
03	SMBus GPIO Slave I/O Configuration	FF	RW

Device 17 Function 1 Registers – IDE Controller

Configuration Space IDE Header Registers

			г. —
<u>Offset</u>	Configuration Space Header	<u>Default</u>	<u>Acc</u>
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0290	RW
8	Revision ID	nn	RO
9	Programming Interface	85	RW
Α	Sub Class Code	01	RO
В	Base Class Code	01	RO
C-F	-reserved-	00	_
13-10	Base Address – Pri Data / Command	000001F1	RW
17-14	Base Address – Pri Control / Status	000003F5	RW
1B-18	Base Address – Sec Data / Command	00000171	RW
1F-1C	Base Address – Sec Control / Status	00000375	RW
23-20	Base Address – Bus Master Control	0000CC01	RW
24-2B	-reserved- (unassigned)	00	_
2D-2C	Sub Vendor ID	0000	RO
2F-2E	Sub Device ID	0000	RO
30-33	-reserved- (expan ROM base addr)	00	_
34	Capability Pointer	C0	RO
35-3B	-reserved- (unassigned)	00	_
3C	Interrupt Line	0E	RO
3D	Interrupt Pin	00	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
40	IDE Chip Enable	00	RW
41	IDE Configuration I	00	RW
42	IDE Configuration II	00	RW
43	IDE FIFO Configuration	0A	RW
44	IDE Miscellaneous Control 1	08	RW
45	IDE Miscellaneous Control 2	10	RW
46	IDE Miscellaneous Control 3	C0	RW
4B-48	IDE Drive Timing Control	A8A8A8A8	RW
4C	IDE Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	RW
4E	Sec Non-1F0 Port Access Timing	B6	RW
4F	Pri Non-1F0 Port Access Timing	B6	RW

Configuration Space IDE-Specific Registers (continued)

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
53-50	UltraDMA Extended Timing Control	07070707	RW
54	UltraDMA FIFO Control	04	RW
55	IDE Clock Gating	00	RW
56-5F	-reserved-	00	_
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	_
70	IDE Primary Status	00	RW
71	IDE Primary Interrupt Control	01	RW
72-77	-reserved-	00	_
78	IDE Secondary Status	00	RW
79	IDE Secondary Interrupt Control	01	RW
7A-7F	-reserved-	00	_
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	_
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-BF	-reserved-	00	_
C3-C0	Power Management Capabilities	0002 0001	RO
C7-C4	Power State	0000 0000	RW
C8-CF	-reserved-	00	_

Offset	IDE Back Door Registers	Default	Acc
D0	Back Door – Revision ID	06	RW
D1	-reserved-	00	_
D3-D2	Back Door – Device ID	0571	RW
D5-D4	Back Door – Sub Vender ID	0000	RW
D7-D6	Back Door – Sub Device ID	0000	RW
D8-F5	-reserved-	00	_
F6	IDE New Revision ID	07	RO
F7-FF	-reserved-	00	_

<u>I/O Registers – IDE Controller (SFF 8038 v1.0 Compliant</u>

Offset	IDE I/O Registers	Default	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	
2	Primary Channel Status	00	WC
3	-reserved-	00	_
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	
Α	Secondary Channel Status	00	WC
В	-reserved-	00	
C-F	Secondary Channel PRD Table Addr	00	RW

Device 17 Function 5 & 6 Registers – AC/MC97 Codecs

Function 5 Configuration Space AC97 Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3059	RO
5-4	Command	0000	RW
7-6	Status	0210	RO
8	Revision ID	50	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	04	RO
C-F	-reserved-	00	
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 (reserved)	0000 0000	—
1B-18	Base Address 2 (reserved)	0000 0000	_
1F-1C	Base Address 3 (reserved)	0000 0000	_
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	
2F-2C	Subsystem ID / SubVendor ID	0000 0000	$\mathbf{R}\mathbf{W}$
33-30	Expansion ROM (reserved)	0000 0000	
34	Capture Pointer	CO	$\mathbf{R}\mathbf{W}$
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Audio Codec-Specific Registers

Offset	Audio Codec Link Control	<u>Default</u>	<u>Acc</u>
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	-reserved-	00	
44	MC97 Interface Control	00	RO
45-47	-reserved-	00	
48	Value Change Rate Control	00	RW
49	S/PDIF Control	00	RW
4A-BF	-reserved-	00	
C3-C0	Power Management Capability	0002 0001	RO
C7-C4	Power State	0000 0000	RW
C8-FF	-reserved-	00	_

Function 6 Configuration Space MC97 Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RW
7-6	Status	0200	RO
8	Revision ID	70	RO
9	Programming Interface	00	RO
A	Sub Class Code	80	RO
В	Base Class Code	07	RO
C-F	-reserved-	00	
13-10	Base Address 0 - SGD Control/Status	0000 0001	\mathbf{RW}
17-14	Base Address 1 (reserved)	0000 0000	_
1B-18	Base Address 2 (reserved)	0000 0000	
1F-1C	Base Address 3 (reserved)	0000 0000	
23-20	Base Address 4 (reserved)	0000 0000	_
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	_
2F-2C	Subsystem ID / SubVendor ID	0000 0000	RW
33-30	Expansion ROM (reserved)	0000 0000	
34	Capture Pointer	D0	\mathbf{RW}
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space Modem Codec-Specific Registers

Offset	Modem Codec Link Control	Default	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RO
43	-reserved-	00	
44	MC97 Interface Control	00	RW
45-47	-reserved-	00	_
48	Value Change Rate Control	00	RO
49	S/PDIF Control	00	RO
4A-CF	-reserved-	00	_
D3-D0	Power Management Capability	0002 0001	RO
D7-D4	Power State	0000 0000	RW
D8-FF	-reserved-	00	_

Function 5 I/O Base 0 Registers – AC97 Audio S/G DMA

Offset	AC97 SGD I/O Registers	<u>Default</u>	Acc
x0	SGD Channel x Status	00	WC
x1	SGD Channel x Control	00	RW
x2	SGD Channel x Left Volume	3F	RW
х3	SGD Channel x Right Volume	3F	RW
x7-x4	SGD Channel x Table Pointer Base	0000 0000	WR
	SGD Channel x Current Address		RD
xB-x8	Stop Index / Data Type / Sample Rate	FF0F FFFF	RW
xF-xC	SGD Channel x Current Count	0000 0000	RO
40	SGD 3D Channel Status	00	WC
41	SGD 3D Channel Control	00	RW
42	SGD 3D Channel Format	00	RW
43	SGD 3D Channel Scratch	00	RW
47-44	SGD 3D Channel Table Pointer Base	0000 0000	WR
	SGD 3D Channel Current Address		RD
4B-48	SGD 3D Channel Slot Select	FF00 0000	RW
4F-4C	SGD 3D Channel Current Count	0000 0000	RO
71 -40	Chamici Current Count	0000 0000	NO
	-reserved-	00	—
			WC
50-5F	-reserved-	00	_
50-5F 60	-reserved- SGD Write Channel 0 Status	00	— WC
50-5F 60 61	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control	00 00 00	WC RW
50-5F 60 61 62 63	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format	00 00 00 00	WC RW RW
50-5F 60 61 62 63	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select	00 00 00 00 00	WC RW RW RW
50-5F 60 61 62 63 67-64	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base	00 00 00 00 00 000 0000 0000 FF00 0000	WC RW RW RW WR
50-5F 60 61 62 63 67-64 6B-68	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr	00 00 00 00 00 000 0000	WC RW RW RW WR RD
50-5F 60 61 62 63 67-64 6B-68	reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index	00 00 00 00 00 000 0000 0000 FF00 0000	WC RW RW RW WR RD RW
50-5F 60 61 62 63 67-64 6B-68 6F-6C 70	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index SGD Write Channel 0 Current Count	00 00 00 00 00 000 0000 FF00 0000	WC RW RW RW WR RD RW
50-5F 60 61 62 63 67-64 6B-68 6F-6C 70 71	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index SGD Write Channel 0 Current Count SGD Write Channel 1 Status	00 00 00 00 00 000 0000 0000 FF00 0000 0000 0000	WC RW RW RW RR RD RW RO
50-5F 60 61 62 63 67-64 6B-68 6F-6C 70	-reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index SGD Write Channel 0 Current Count SGD Write Channel 1 Status SGD Write Channel 1 Control	00 00 00 00 00 0000 0000 FF00 0000 0000 0000	WC RW RW RW RD RD RW RO WC
50-5F 60 61 62 63 67-64 6B-68 6F-6C 70 71 72 73	reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index SGD Write Channel 0 Current Count SGD Write Channel 1 Status SGD Write Channel 1 Format SGD Write Channel 1 Format SGD Write Channel 1 Select SGD Write Channel 1 Table Ptr Base	00 00 00 00 00 0000 0000 FF00 0000 000 0000 00	WC RW RW RD RW RO WC RW
50-5F 60 61 62 63 67-64 6B-68 6F-6C 70 71 72	reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index SGD Write Channel 0 Current Count SGD Write Channel 1 Status SGD Write Channel 1 Control SGD Write Channel 1 Format SGD Write Channel 1 Select	00 00 00 00 00 000 0000 0000 FF00 0000 000	WC RW RD RW RO RW
50-5F 60 61 62 63 67-64 6B-68 6F-6C 70 71 72 73 77-74	reserved- SGD Write Channel 0 Status SGD Write Channel 0 Control SGD Write Channel 0 Format SGD Write Channel 0 Select SGD Write Channel 0 Table Ptr Base SGD Write Channel 0 Current Addr SGD Write Channel 0 Stop Index SGD Write Channel 0 Current Count SGD Write Channel 1 Status SGD Write Channel 1 Format SGD Write Channel 1 Format SGD Write Channel 1 Select SGD Write Channel 1 Table Ptr Base	00 00 00 00 00 000 0000 0000 FF00 0000 000	RW RW RD RW RO RW RO RW RO RW RW RW RW RW

Offset AC97 / Audio Codec I/O Registers **Default** Acc 83-80 AC97 Controller Command / Status 0000 0000 RW 87-84 SGD Global IRQ Shadow 0000 0000 **RO** 8B-88 Modem Codec GPI Intr Status / GPIO 0000 0000 RO 8F-8C Modem Codec GPI Interrupt Enable 0000 0000 RO 90-9F Shadow PCI Config Registers 40-4F RO n/a A0-FF -reserved-00

Function 6 I/O Base 0 Registers – MC97 Modem S/G DMA

Offset	MC97 SGD I/O Registers	<u>Default</u>	Acc
0-7	-reserved-	00	_
8-F	-reserved-	00	_
10-17	-reserved-	00	_
18-1F	-reserved-	00	_
20-27	-reserved-	00	_
28-2F	-reserved-	00	_
30-37	-reserved-	00	
38-3F	-reserved-	00	—
40	SGD Read Channel Status	00	WC
41	SGD Read Channel Control	00	RW
42	SGD Read Channel Type	00	RW
43	-reserved-	00	_
47-44	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
4B-48	-reserved- (Test)	0000 0000	RO
4F-4C	SGD Read Channel Current Count	0000 0000	RO
50	SGD Write Channel Status	00	WC
51	SGD Write Channel Control	00	RW
52	SGD Write Channel Type	00	RW
53	-reserved-	00	_
57-54	SGD Write Channel Table Ptr Base	0000 0000	WR
	SGD Write Channel Current Address		RD
5B-58	Reserved (Test)	0000 0000	RO
5F-5C	SGD Write Channel Current Count	0000 0000	RO
60-7F	-reserved-	00	_

Offset	AC97 / Modem Codec I/O Registers	<u>Default</u>	<u>Acc</u>
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Global IRQ Shadow	0000 0000	RO
8B-88	Modem Codec GPI Intr Status / GPIO	0000 0000	WC
8F-8C	Modem Codec GPI Interrupt Enable	0000 0000	RW
90-9F	Shadow PCI Config Registers 40-4F	n/a	RO
A0-FF	-reserved-	00	_

Device 18 Function 0 Registers - LAN

Configuration Space LAN Header Registers

Offset	Configuration Space Header	Default	Acc
	Vendor ID	1106	RO
3-2	Device ID	3065	RO
5-4	Command	0000	RO
7-6	Status	0470	WC
8	Revision ID	40	RO
9	Programming Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	00	RO
С	Cache Line Size	00	$\mathbf{R}\mathbf{W}$
D	Latency Timer	00	$\mathbf{R}\mathbf{W}$
Е	Header Type	00	RO
F	BIST	00	RO
13-10	I/O Base Address	0000 0000	RW
17-14	Memory Base Address	0000 0000	RW
18-27	-reserved-	00	-
2B-28	Card Bus CIS Pointer	0000 0000	RW
2C-2F	-reserved-	00	
33-30	Expansion ROM Base Address	0000 0000	RW
34	Capabilities Offset	40	RO
35-3C	-reserved-	00	
3D	Interrupt Pin	01	RO
3E-3F	-reserved-	00	_

Configuration Space LAN Device Specific Registers

Offset	Power Management	<u>Default</u>	Acc
40	Capability ID	01	RO
41	Next Item Pointer	00	RO
43-42	Power Management Configuration	0002	RO
47-44	Power Management Control / Status	0000 0000	WC
48-FF	-reserved-	00	

I/O Space LAN Registers

	dee DAN Registers	_	
<u>Offset</u>	Power Management	<u>Default</u>	<u>Acc</u>
5-0	Ethernet Address		RW
6	Receive Control	00	RW
7	Transmit Control	08	RW
8	Command 0	00	RW
9	Command 1	00	RW
A-B	-reserved-	00	_
C	Interrupt Status 0	00	RW
D	Interrupt Status 1	00	RW
Е	Interrupt Mask 0	00	RW
F	Interrupt Mask 1	00	RW
17-10	Multicast Address		RW
1B-18	Receive Address		RW
1F-1C	Transmit Address		RW
23-20	Receive Status	0000 0000	RW
27-24	Receive Data Buffer Control	0000 0000	RO
2B-28	Receive Data Buffer Start Address		RO
2F-2C	Receive Data Buffer Branch Address		RO
30-3F	-reserved-	00	
43-40	Transmit Status	0000 0000	RW
47-44	Transmit Data Buffer Control	0000 0000	RO
4B-48	Transmit Data Buffer Start Address		RO
4F-4C	Transmit Data Buffer Branch Addr		RO
50-6B	-reserved-	00	
6C	PHY Address	01	RW
6D	MII Status	13	RW
6E	Buffer Control 0	00	RW
6F	Buffer Control 1	00	RW
70	MII Management Port Command	00	RW
71	MII Management Port Address	81	RW
73-72	PHY Data	0000	RW
74	EEPROM Command / Status	00	RW
75-77	-reserved-	00	_
78	EEPROM Control	00	RW

I/O Space LAN Registers (continued)

<u>Offset</u>	Power Management	<u>Default</u>	<u>Acc</u>
79	Configuration 1	00	RW
7A	Configuration 2	00	RW
7B	Configuration 3	00	RW
7C-7F	-reserved-	00	_
80	Miscellaneous 1	00	RW
81	Miscellaneous 2	00	RW
82	-reserved-	00	_
83	Sticky Hardware Control	00	RW
84	MII Interrupt Status	00	WC
85	-reserved-	00	_
86	MII Interrupt Mask	00	RW
87-8B	-reserved-	00	
8D-8C	Flash Address	0000	RW
8E	-reserved-	00	-
8F	Flash Write Data Output	00	RW
90	Flash Read / Write Command	00	RW
91	Flash Write Data Input	00	RO
92	-reserved-	00	_
93	Flash Checksum	00	RW
95-94	Suspend Mode MII Address	0000	RW
96	Suspend Mode PHY Address	00	RW
97	-reserved-	00	—
	Pause Timer	0000	RW
9A	Pause Status	00	RW
9B	-reserved-	00	_
9D-9C	Soft Timer 0	0000	RW
9F-9E	Soft Timer 1	0000	RW
	Wake On LAN Control Set / Clear	00 / 00	RW
A1/A5	Power Configuration Set / Clear	00 / 00	RW
	-reserved- (do not program)	00 / 00	_
	Wake On LAN Config Set / Clear	00 / 00	RW
A8-AF	-reserved-	00	-
B3-B0	Pattern CRC 0	0000 0000	
B7-B4	Pattern CRC 1	0000 0000	
	Pattern CRC 2	0000 0000	RW
BF-BC	Pattern CRC 3	0000 0000	RW
	Byte Mask 0	0000 0000	
	Byte Mask 1	0000 0000	RW
	Byte Mask 2	0000 0000	
FF-F0	Byte Mask 3	0000 0000	\overline{RW}

Register Descriptions

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW
7-6	Reserved always reads 0
5	Timer/Counter 2 OutputRO
	This bit reflects the output of Timer/Counter 2
	without any synchronization.
4	Refresh DetectedRO
	This bit toggles on every rising edge of the ISA bus
	REFRESH# signal.
3-2	Reserved RW, default=0
1	Speaker EnableRW
	0 Disabledefault
	1 Enable Timer/Ctr 2 output to drive SPKR pin
0	Timer/Counter 2 EnableRW
	0 Disabledefault
	1 Enable Timer/Counter 2
Dort 02	h System Control DW
	h - System ControlRW
Port 92 7-6	Hard Disk Activity LED Status
	Hard Disk Activity LED Status 0 Offdefault
7-6	Hard Disk Activity LED Status 0 Off
7-6 5-4	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0
7-6 5-4 3	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0
7-6 5-4 3 2	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0
7-6 5-4 3	Hard Disk Activity LED Status 0 Off
7-6 5-4 3 2	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0 A20 Address Line Enable 0 A20 disabled / forced 0 (real mode) default
7-6 5-4 3 2 1	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0 A20 Address Line Enable 0 A20 disabled / forced 0 (real mode) default 1 A20 address line enabled
7-6 5-4 3 2	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0 A20 Address Line Enable 0 A20 disabled / forced 0 (real mode) default 1 A20 address line enabled High Speed Reset
7-6 5-4 3 2 1	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0 A20 Address Line Enable 0 A20 disabled / forced 0 (real mode) default 1 A20 address line enabled High Speed Reset 0 Normal
7-6 5-4 3 2 1	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0 A20 Address Line Enable 0 A20 disabled / forced 0 (real mode) default 1 A20 address line enabled High Speed Reset 0 Normal 1 Briefly pulse system reset to switch from
7-6 5-4 3 2 1	Hard Disk Activity LED Status 0 Off default 1-3 On Reserved always reads 0 Power-On Password Bytes Inaccessabledefault=0 Reserved always reads 0 A20 Address Line Enable 0 A20 disabled / forced 0 (real mode) default 1 A20 address line enabled High Speed Reset 0 Normal

Port 60 - Keyboard Controller Input BufferWO

Keyboard Controller I/O Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status = 1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" that control pins dedicated to specific functions. In the integrated version, connections are hard wired as listed below. Outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

Bit Input Port

- 0 Keyboard Data In
- 1 Mouse Data In

Bit **Output Port**

- System Reset (1 = Execute Reset)0
- Gaste A20 (1 = A20 Enabled)1
- 2 Mouse Data Out
- 3 Mouse Clock Out
- 6 Keyboard Clock Out
- 7 Keyboard Data Out

Bit **Test Port**

- Keyboard Clock In 0
- Mouse Clock In

Hardwired Internal Connections

Keyboard Data Out (Open Collector) <=> Keyboard Data In Keyboard Clock Out (Open Collector) <=> Keyboard Clk In

Mouse Data Out (Open Collector) <=> Mouse Data In Mouse Clock Out (Open Collector) <=> Mouse Clock In

Keyboard OBF Interrupt => IRQ1

Mouse OBF Interrupt => IRQ12

Input / Output / Test Port Command Codes

C0h transfers input port data to the output buffer. D0h copies output port values to the output buffer. E0h transfers test input port data to the output buffer.

The above definitions are provided for reference only as actual keyboard and mouse control is no longer performed bit-by bit using the above ports but controlled directly by keyboard / mouse controller internal logic. Data is sent and received using the command codes listed on the following page.

	rite to port 60h if port 64h bit- $1 = 0$ (1=full).
Port 60	- Keyboard Controller Output BufferRO
Only re	ad from port 60h if port 64h bit- $0 = 1$ (0=empty).
	- Keyboard / Mouse StatusRO
7	Parity Error
	0 No parity error (odd parity received) default
	1 Even parity occurred on last byte received
	from keyboard / mouse
6	General Receive / Transmit Timeout 0 No errordefault
	1 Error
5	Mouse Output Buffer Full
3	0 Mouse output buffer emptydefault
	1 Mouse output buffer holds mouse data
4	Keylock Status
•	0 Locked
	1 Free
3	Command / Data
	0 Last write was data writedefault
	1 Last write was command write
2	System Flag
	0 Power-On Defaultdefault
	1 Self Test Successful
1	Input Buffer Full
	0 Input Buffer Emptydefault
	1 Input Buffer Full
0	Keyboard Output Buffer Full
	0 Keyboard Output Buffer Emptydefault
	 Keyboard Output Buffer Full
KBC C	Control Register(R/W via Commands 20h/60h)
7	Reserved always reads 0
6	PC Compatibility
	0 Disable scan conversion
	1 Convert scan codes to PC format; convert 2-
	byte break sequences to 1-byte PC-compatible
_	break codesdefault
5	Mouse Interface
	0 Enabledefault
4	1 Disable
4	Keyboard Interface 0 Enabledefault
	1 Disable
3	Reservedalways reads 0
2	System Flagdefault=0
-	This bit may be read back as status register bit-2
1	Mouse Interrupts
_	0 Disabledefault
	1 Enable - Generate interrupt on IRQ12 when
	mouse data comes into output buffer
0	Keyboard Interrupts
	0 Disable default
	1 Enable - Generate interrupt on IRQ1 when
	output buffer has been written.

Port 64 - Keyboard / Mouse Command......WO

This port is used to send commands to the keyboard $\!\!\!/$ mouse controller. The command codes recognized by the VT8235 are listed in the table below.

Table 8. Keyboard Controller Command Codes

Code	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)
21-3Fh	Read SRAM Data (next byte is Data Byte)
60h	Write Control Byte (next byte is Control Byte)
61-7Fh	Write SRAM Data (next byte is Data Byte)
A1h	Output Keyboard Controller Version #
A4h	Test if Password is installed
	(always returns F1h to indicate not installed)
A7h	Disable Mouse Interface
A8h	Enable Mouse Interface
A9h	Mouse Interface Test (puts test results in port 60h)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,
	3=data stuck lo, 4=data stuck hi, FF=general error)
AAh	KBC self test (returns 55h if OK, FCh if not)
ABh	Keyboard Interface Test (see A9h Mouse Test)
ADh	Disable Keyboard Interface
AEh	Enable Keyboard Interface
AFh	Return Version #
C0h	Read Input Port (read input data to output buffer)
C1h	Poll Input Port (read Mouse Data In
	continuously to status bit 5
C8h	Unblock Mouse Output (use before D1 to change
	active mode)
C9h	Reblock Mouse Output (protection mechanism
	for D1)
CAh	Read Mode (output KBC mode info to port 60
	output buffer: bit-0=0 if ISA, 1 if PS/2)
D0h	Read Output Port (copy output port values
	to port 60)
D1h	Write Output Port (data byte following is written to
	keyboard output port as if it came from keyboard)
D2h	Write Keyboard Output Buffer & clear status bit-5
	(write following byte to keyboard)
D3h	Write Mouse Output Buffer & set status bit-5 (write
	following byte to mouse; put value in mouse input
	buffer so it appears to have come from the mouse)
D4h	Write Mouse (write following byte to mouse)
E0h	Read Keyboard Clock In and Mouse Clock In
	(return in bits 0-1 respectively of response byte)
Exh	Set Mouse Clock Out per command bit 3
	Set Mouse Data Out per command bit 2
	Set Gate A20 per command bit 1
Fxh	Pulse Mouse Clock Out low for 6usec per cmd bit 3
	Pulse Mouse Data Out low for 6usec per cmd bit 2
	Pulse Gate A20 low for 6usec per command bit 1
	Pulse System Reset low for 6usec per cmd bit 0

All other codes not listed are undefined.

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0 Register Name Ch 0 Base / Current Address RW0000 0000 000x 0000 0000 0000 000x 0001 Ch 0 Base / Current Count RW0000 0000 000x 0010 Ch 1 Base / Current Address RW Ch 1 Base / Current Count 0000 0000 000x 0011 RW0000 0000 000x 0100 Ch 2 Base / Current Address RW0000 0000 000x 0101 Ch 2 Base / Current Count RW 0000 0000 000x 0110 Ch 3 Base / Current Address RW0000 0000 000x 0111 Ch 3 Base / Current Count RW**RW** 0000 0000 000x 1000 Status / Command 0000 0000 000x 1001 Write Request WO 0000 0000 000x 1010 Write Single Mask WO 0000 0000 000x 1011 Write Mode WO 0000 0000 000x 1100 Clear Byte Pointer F/F WO 0000 0000 000x 1101 **Master Clear** WO 0000 0000 000x 1110 Clear Mask WO 0000 0000 000x 1111 R/W All Mask Bits RW

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0 Register Name 0000 0000 1100 000x Ch 4 Base / Current Address \mathbf{RW} 0000 0000 1100 001x Ch 4 Base / Current Count RWCh 5 Base / Current Address 0000 0000 1100 010x RWCh 5 Base / Current Count 0000 0000 1100 011x RW 0000 0000 1100 100x Ch 6 Base / Current Address RW0000 0000 1100 101x Ch 6 Base / Current Count RW0000 0000 1100 110x Ch 7 Base / Current Address RW 0000 0000 1100 111x Ch 7 Base / Current Count RW0000 0000 1101 000x Status / Command RWWrite Request WO 0000 0000 1101 001x 0000 0000 1101 010x Write Single Mask WO 0000 0000 1101 011x Write Mode WO Clear Byte Pointer F/F 0000 0000 1101 100x WO 0000 0000 1101 101x **Master Clear** WO 0000 0000 1101 110x Clear Mask WO Read/Write All Mask Bits 0000 0000 1101 111x WO

Note that not all bits of the address are decoded.

The Master and Slave DMA Controllers are compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

Register Name
Channel 0 DMA Page (M-0)RW
Channel 1 DMA Page (M-1)RW
Channel 2 DMA Page (M-2)RW
Channel 3 DMA Page (M-3)RW
Channel 4 DMA Page (S-0)RW
Channel 5 DMA Page (S-1)RW
Channel 6 DMA Page (S-2)RW
Channel 7 DMA Page (S-3)RW

DMA Controller Shadow Registers

The DMA Controller shadow registers are enabled by setting function 0 Rx77 bit 0. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard DMA controller registers (writes are unchanged).

Port 0 - Channel 0 Base AddressRO
Port 1 - Channel 0 Byte CountRO
Port 2 - Channel 1 Base AddressRO
Port 3 - Channel 1 Byte CountRO
Port 4 - Channel 2 Base AddressRO
Port 5 - Channel 2 Byte CountRO
Port 6 - Channel 3 Base AddressRO
Port 7 - Channel 3 Byte CountRO
Port 8 –1 st Read Channel 0-3 Command RegisterRO
Port 8 – 2 nd Read Channel 0-3 Request RegisterRO
Port 8 – 3 rd Read Channel 0 Mode RegisterRO
Port 8 – 4 th Read Channel 1 Mode RegisterRO
Port 8 – 5 th Read Channel 2 Mode RegisterRO
Port 8 –6 th Read Channel 3 Mode RegisterRO
-
Port F - Channel 0-3 Read All MaskRO
Port C4 – Channel 5 Base AddressRO
Port C6 - Channel 5 Byte Count RO
Port C8 -Channel 6 Base Address RO
Port CA – Channel 6 Byte CountRO
Port CC - Channel 7 Base AddressRO
Port CE -Channel 7 Byte CountRO
Port D0 –1 st Read Channel 4-7 Command Register RO
Port D0 –2 Read Channel 4-7 Request RegisterRO
Port D0 – 3 rd Read Channel 4 Mode Register
Port Du – 5 Read Channel 4 Wlode Register
Port D0 –4 th Read Channel 5 Mode RegisterRO
Port D0 –5 th Read Channel 6 Mode RegisterRO
Port D0 -6 th Read Channel 7 Mode RegisterRO
Port DE -Channel 4-7 Read All MaskRO
TOTAL CHAMICITY MAN THE PROPERTY MAN TO THE PROPERTY OF THE PR

Interrupt Controller I/O Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O Address Bits 15-0 Register Name

0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0 Register Name

0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes are unchanged).

Port 20	- Master Interrupt Control ShadowRO
Port A	0 - Slave Interrupt Control ShadowRO
7	Reserved always reads 0
6	OCW3 bit 2 (POLL)
5	OCW3 bit 0 (RIS)
4	OCW3 bit 5 (SMM)
3	OCW2 bit 7 (R)
2	ICW4 bit 4 (SFNM)
1	ICW4 bit 1 (AEOI)
0	ICW1 bit 3 (LTIM)
Port 21	- Master Interrupt Mask ShadowRO
Port A	1 - Slave Interrupt Mask ShadowRO
7-5	Reserved always reads 0
4-0	T7-T3 of Interrupt Vector Address

Timer / Counter Registers

Ports 40-43 - Timer / Counter I/O Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	\mathbf{RW}
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Timer / Counter Shadow Registers

The following shadow registers are enabled for readback by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard timer / counter registers (writes are unchanged).

Port 40 – Counter 0 Base Count Value (LSB 1st MSB 2nd)RO Port 41 – Counter 1 Base Count Value (LSB 1st MSB 2nd)RO Port 42 – Counter 2 Base Count Value (LSB 1st MSB 2nd)RO

CMOS / RTC I/O Registers

Port 70	- CMOS AddressRW
7	NMI DisableRW
	0 Enable NMI Generation. NMI is asserted on
	encountering SERR# on the PCI bus.
	1 Disable NMI Generation default
6-0	CMOS Address (lower 128 bytes)RW
Port 71	- CMOS DataRW
7-0	CMOS Data (128 bytes)
Note:	Ports 70-71 may be accessed if Device 17 Function 0 Rx51 bit-3 is set to one to select the internal RTC. If Rx51 bit-3 is set to zero, accesses to ports 70-71 will be directed to an external RTC.
Port 74	- CMOS AddressRW
7.0	CMOS Address (256 bytes)

101177	- CMOS Audi CSS	••••••••••••••••••••••••••••••••••••••
7-0	CMOS Address (256 bytes)	RW

Port 75 - CMOS DataRW 7-0 CMOS Data (256 bytes)

Note: Ports 74-75 may be accessed only if Rx4E bit-3 (Port 74/75 Access Enable) is set to one to enable port 74/75 access.

Note: Ports 70-71 are compatible with PC industry-standards and may be used to access the lower 128 bytes of the 256-byte on-chip CMOS RAM. Ports 74-75 may be used to access the full on-chip extended 256-byte space in cases where the on-chip RTC is disabled.

Note: The system Real Time Clock (RTC) is part of the "CMOS" block. The RTC control registers are located at specific offsets in the CMOS data area (0-0Dh and 7D-7Fh). Detailed descriptions of CMOS / RTC operation and programming can be obtained from the VIA VT82887 Data Book or numerous other industry publications. For reference, the definition of the RTC register locations and bits are summarized in the following table:

Offset 00 01 02	Description Seconds Seconds Alarm Minutes	_	inary Range 00-3Bh 00-3Bh 00-3Bh	BCD Range 00-59h 00-59h 00-59h
03	Minutes Alarm		00-3Bh	00-59h
04	Hours	am 12hr:	01-1Ch	01-12h
		pm 12hr:	81-8Ch	81-92h
		24hr:	00-17h	00-23h
05	Hours Alarm	am 12hr:	01-1Ch	01-12h
		pm 12hr:	81-8Ch	81-92h
		24hr:	00-17h	00-23h
06	Day of the Wee	k Sun=1:	01-07h	01-07h
07	Day of the Mon	th	01-1Fh	01-31h
08	Month		01-0Ch	01-12h
09	Year		00-63h	00-99h

0A	Regist	<u>ter A</u>	
	7	UIP	Update In Progress
	6-4	DV2-0	Divide (010=ena osc & keep time)
	3-0	RS3-0	Rate Select for Periodic Interrupt

7	SET	Inhibit Update Transfers
6	PIE	Periodic Interrupt Enable
5	AIE	Alarm Interrupt Enable
4	UIE	Update Ended Interrupt Enable
3	SQWE	No function (read/write bit)
2	\mathbf{DM}	Data Mode (0=BCD, 1=binary)
1	24/12	Hours Byte Format (0=12, 1=24)
0	DSE	Daylight Savings Enable

0C	Register C		
	7	IRQF	Interrupt Request Flag
	6	PF	Periodic Interrupt Flag
	5	AF	Alarm Interrupt Flag
	4	UF	Update Ended Flag
	3-0	0	Unused (always read 0)

Register B

0D	Regist	er D	
	7	VRT	Reads 1 if VBAT voltage is OK
	6-0	0	Unused (always read 0)

0E-7C Software-Defined Storage Registers (111 Bytes)

<u>Offset</u>	Extended Functions	Binary Range	BCD Range
7D	Date Alarm	01-1Fh	01-31h
7E	Month Alarm	01-0Ch	01-12h
7F	Century Field	13-14h	19-20h

80-FF Software-Defined Storage Registers (128 Bytes)

Table 9. CMOS Register Summary

Keyboard / Mouse Wakeup Index / Data Registers

The Keyboard / Mouse Wakeup registers are accessed by performing I/O operations to / from an index / data pair of registers in system I/O space at port addresses 2Eh and 2Fh. The registers accessed using this mechanism are used to initialize Keyboard / Mouse Wakeup functions at index values in the range of E0-EF.

Keyboard / Mouse Wakeup initialization is accomplished in three steps:

- 1) Enter initialization mode (set Function 0 Rx51[1] = 1)
- 2) Initialize the chip
 - a) Write index to port 2Eh
 - b) Read / write data from / to port 2Fh
 - c) Repeat a and b for all desired registers
- 3) Exit initialization mode (set Function 0 Rx51[1] = 0)

Port <u>2Eh – Keyboard Wakeup IndexRW</u>

7-0 Index Value

Function 0 PCI configuration space register Rx51[1] must be set to 1 to enable access to the configuration registers.

Port 2Fh - Keyboard Wakeup DataRW

7-0 Data Value

Keyboard / Mouse Wakeup Registers

These registers are accessed via the port 2E / 2F index / data register pair with Function 0 Rx51[1] = 1 using the indicated index values below

Index E0 – Keyboard / Mouse Wakeup Enable (08h)RW 7-5always reads 0 4 **Reserved (Do Not Program)**......default = 03 Win98 Keyboard Power Key Wake-up 0 Disable 1 Enable.....default 2 Password Wake-up 0 Disable default Enable 1 PS/2 Mouse Wake-up 0 Disable default Enable 1 **Keyboard Wake-up** 0 Disable default

Index E1	l – Keyboard Wakeup Scan Code Set 0 (F0h) RW
7-0	Keyboard Wakeup First Scan Code def = F0h
Index E2	2 – Keyboard Wakeup Scan Code Set 1 (00h) RW
7-0	Keyboard Wakeup Second Scan Code def = 00h
Index E3	3 – Keyboard Wakeup Scan Code Set 2 (00h) RW
7-0	Keyboard Wakeup Third Scan Code def = 00h
Index E4	1 – Keyboard Wakeup Scan Code Set 3 (00h) RW
7-0	Keyboard Wakeup Fourth Scan Code def = 00h
Index E5	5 – Keyboard Wakeup Scan Code Set 4 (00h) RW
7-0	Keyboard Wakeup Fifth Scan Code def = 00h
Index E6	6 – Keyboard Wakeup Scan Code Set 5 (00h) RW
7-0	Keyboard Wakeup Sixth Scan Code def = 00h
Index E7	7 – Keyboard Wakeup Scan Code Set 6 (00h) RW
7-0	Keyboard Wakeup Seventh Scan Code $def = 00h$
Index E8	3 – Keyboard Wakeup Scan Code Set 7 (00h) RW
7-0	Keyboard Wakeup Eighth Scan Code $def = 00h$
Index E9	-Mouse Wakeup Scan Code Set 1 (09h)RW
7-0	Mouse Wakeup Scan Code Set 1def = 09h
Index EA	A –Mouse Wakeup Scan Code Set 2(00h) RW
7-0	Mouse Wakeup Scan Code Set 2def = 00h
Index EI	3 –Mouse Wakeup Scan Code Mask (00h) RW
	Mouse Wakeup Scan Code Maskdef = 00h

Enable

Memory Mapped I/O APIC Registers

Memor	y Address FEC00000 – APIC IndexRW
7-0	APIC Index default = 00h
	8-bit pointer to APIC registers.
Memor	y Address FEC00013-10 – APIC DataRW
31-0	APIC Data default = 0000 0000h
	Data for the APIC register pointed to by the APIC
	index
Memor	y Address FEC00020 – APIC IRQ Pin AssertionWO
7-5	Reserved always reads 0
4-0	APIC IRQ Numberdefault undefined
	IRQ # for this interrupt. Valid values are 0-23 only.
Memor	y Address FEC00040 – APIC EOI WO
7-0	Redirection Entry Cleardefault undefined
	When a write is issued to this register, the APIC will
	check this field and compare it with the vector field
	for each entry in the I/O redirection table. When a
	match is found, the "Remote_IRR" bit for that I/O

Redirection Entry will be cleared.

Indexed I/O APIC Registers

Offset 0	- APIC Identification (0000 0000h)RW
31-28	Reserved always reads 0
	APIC Identification default = 0
	Software must program this value before using the
	APIC.
23-0	Reserved always reads 0
Offset 1	- APIC Version (00178003)RO
31-24	Reservedalways reads 00h
23-16	Maximum Redirectionalways reads 17h
	Equal to the number of APIC interrupt pins minus
	one. For this APIC, this value is 17h (23 decimal).
15	PCI IRQ
	Always reads 1 to indicate that the IRQ assertion
	register is implemented and that PCI devices are
	allowed to write to it to cause interrupts.
14-8	Reserved always reads 0
7-0	APIC Versionalways reads 03h
	The implementation version for this APIC is 03h.
Offset 2	2 – APIC Arbitration (0000 0000h)RO
31-28	Reservedalways reads 00h
27-24	APIC Arbitration IDalways reads 00h
23-0	Reserved always reads 00h
Offset 3	B – Boot Configuration (0000 0000h)RW
31-1	
0	Interrupt Delivery Mechanism
	0 APIC Serial Busdefault
	1 Front Side Bus Message
	C

Offset 3F-10 - I/O Redirection Table

This table contains 24 registers, with one dedicated table entry for each of the 24 APIC interrupt signals. Each 64-bit register consists of two 32-bit values at consecutive index locations, with the low 32 bits at the even index and the upper 32 bits at the odd index. The default value for all registers is xxx1 xxxx xxxx xxxxxh.

Offset 11-10 - I/O Redirection - APIC IRQ0	RW
Offset 13-12 - I/O Redirection - APIC IRQ1	RW
Offset 15-14 - I/O Redirection - APIC IRQ2	RW
Offset 17-16 - I/O Redirection - APIC IRQ3	RW
Offset 19-18 – I/O Redirection – APIC IRQ4	
Offset 1B-1A – I/O Redirection – APIC IRQ5	RW
Offset 1D-1C - I/O Redirection - APIC IRQ6	RW
Offset 1F-1E - I/O Redirection - APIC IRQ7	
Offset 21-20 - I/O Redirection - APIC IRQ8	RW
Offset 23-22 - I/O Redirection - APIC IRQ9	RW
Offset 25-24 - I/O Redirection - APIC IRQ10	RW
Offset 27-26 - I/O Redirection - APIC IRQ11	RW
Offset 29-28 - I/O Redirection - APIC IRQ12	RW
Offset 2B-2A - I/O Redirection - APIC IRQ13	RW
Offset 2D-2C - I/O Redirection - APIC IRQ14	RW
Offset 2F-2E - I/O Redirection - APIC IRQ15	RW
Offset 31-30 - I/O Redirection - APIC IRQ16	RW
Offset 33-32 - I/O Redirection - APIC IRQ17	RW
Offset 35-34 - I/O Redirection - APIC IRQ18	RW
Offset 37-36 - I/O Redirection - APIC IRQ19	RW
Offset 39-38 - I/O Redirection - APIC IRQ20	RW
Offset 3B-3A - I/O Redirection - APIC IRQ21	RW
Offset 3D-3C - I/O Redirection - APIC IRQ22	RW
Offset 3F-3E - I/O Redirection - APIC IRQ23	RW

Format for Each I/O Redirection Table Entry:

roimat	101 Lacii 1/O	Reduction Table Entry.
Physical	Mode (bit-11	=0)
•	Reserved	always reads 0
	APIC ID	default = undefined
	Mode (bit-11:	
		$\frac{-17}{1}$ default = undefined
03-30	Destination	deraunt – undermed
EE 17	Dagamad	ala da O
55-17	Reserved	always reads 0
16	Interrupt M	esked
10		askeddefault
	1 Maske	
15		
15	Trigger Mo	1. C. 1.
		Sensitivedefault
		Sensitive
14		(Level Sensitive Interrupts Only). RO
		nessage with a matching interrupt vector
	receiv	ed from a local APIC
	1 Level	sensitive interrupt sent by IOAPIC
	accept	ted by local APIC(s)
13		put Pin Polarity
	0 Active	Highdefault
	1 Active	
12		itusRO
12		current status of the delivery of this
		current status of the derivery of this
	interrupt.	o activity)
	,	no activity)
		Pending (the interrupt has been injected
		s delivery is temporarily delayed either
		se the APIC bus is busy or because the
		ing APIC unit cannot currently accept
	the int	errupt)
11	Destination	
	Determines t	he interpretation of bits 56-63.
	0 Physic	cal Modedefault
	1 Logic	al Mode
10-8	Delivery Mo	
	Specifies ho	w the APICs listed in the destination
		act upon reception of this signal
		default
	001 Lowes	st Priority
	010 SMI	-
	011 -reser	ved-
	100 NMI	
	101 INIT	
	110 -reserv	ved-
	110 -leser	
	III LAUCII	IGI 1111

7-0 Interrupt Vector

Contains the interrupt vector for this interrupt. Vector values range from 10h to FEh.

Configuration Space I/O

Configuration space accesses for all functions use PCI configuration mechanism 1 (see PCI specification revision 2.2 for more details). The ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

There are 8 "functions" implemented in the VT8235 (see Table 5 on page 21). The following sections describe the registers and register bits of these functions.

<u>'ort Cr</u>	B-CF8 - Configuration AddressRW
31	Configuration Space Enable
	0 Disableddefault
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads (
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
10-8	Function Number
	Used to choose a specific function if the selected
	device supports multiple functions
7-2	Register Number
	Used to select a specific doubleword in the device's
	configuration space
1-0	Fixedalways reads (

Port CFF-CFC - Configuration DataRW

Offset 8 - Revision ID (nnh)RO

Device 16 Function 0 Registers - USB 1.1 UHCI Ports 0-1

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 0 PCI configuration space of the VT8235. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 0-1 (see function 1 for ports 2-3 and function 2 for ports 4-5).

PCI Configuration Space Header

Offset 1	1-0 - Vendor ID (1106h)RO
7-0	Vendor ID (1106h = VIA Technologies)
Offers 4	2.2 Davidas ID (2029b) DO
	3-2 - Device ID (3038h) RO
7-0	Device ID (3038h = VT8235 USB Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Spacedefault=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abortdefault=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)

Offset 8	
7-0	Silicon Revision Code (0 indicates first silicon)
	, , , , , , , , , , , , , , , , , , ,
Offset 9	9 - Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset 1	B - Base Class Code (0Ch=Serial Bus Controller)RO
	<u> </u>
Offcot 1	D - Latency Timer (16h)RW
Offset	J - Latency Timer (1011)
0.00	AAAA YIGD YO DAAAA DAAAA
Offset 2	23-20 - USB I/O Register Base AddressRW
31-16	Reserved always reads 0
15-5	· · · · · · · · · · · · · · · · · · ·
10 0	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
4-0	00001b
Offset 2	2D-2C - Sub Vendor ID (1106h)RO†
	2F-2E - Sub Device ID (3038h)RO†
† RW if	f Rx42[4] = 1.
Offcot 3	34 - Power Management Capabilities (80h) RW
Oliset.	94 - 1 Ower Wianagement Capabilities (6011) KW
Offset .	3C - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	USB Interrupt Routing
3-0	0000 Disableddefault
	0001 IRQ1
	0010 Reserved
	0010 Reserved 0011 IRQ3
	0011 IRQ3
	0011 IRQ3 0100 IRQ4
	0011 IRQ3 0100 IRQ4 0101 IRQ5
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14
Offset 3	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14 1111 Disabled
Offset 3 7-0	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14

USB-Specific Configuration Registers

ffset	40 - Miscellaneous Control 1 (40h)RW	Offset 41 - Miscellaneous Control 2 (10h)	RW
7	Reserved always reads 0	7 USB 1.1 Improvement for EOP	
6	Babble Option	This bit controls whether USB Specification	on 1.1 or
	This bit controls whether the port is disabled when	1.0 is followed when a stuffing error occurs	before an
	EOF (End-Of-Frame) babble occurs. Babble is	EOP (End-Of-Packet). A stuffing error resi	
	unexpected bus activity that persists into the EOF	the receiver sees seven consecutive ones in	
	interval. When this bit is 0, the port with the EOF	Under USB specification 1.1, when this occ	urs in the
	babble is disabled. When it is 1, it is not disabled	interval just before an EOP, the receiver w	ill accept
	0 Automatically disable babbled port when EOF	the packet. Under USB specification 1.0, the	ne packet
	babble occurs	is ignored.	_
	1 Don't disable babbled portdefault	0 USB Spec 1.1 Compliant (packet acce	pted) def
5	PCI Parity Check	1 USB Spec 1.0 Compliant (packet igno	red)
	0 Disable default	6-3 Reserved (Do Not Program)d	efault = 0
	1 Enable	2 Trap Option	
4	Frame Interval Select	Under the UHCI spec, port 60 / 64 is trap	ped only
	0 1 msec frame time default	when its corresponding enable bits are set. V	
	1 0.1 msec frame time	bit is set, trap can be set without checking to	he enable
3	USB Data Length Option	bits.	
	O Support TD length up to 1280 default	0 Set trap 60/64 status bits only when to	
	1 Support TD length up to 1023	enable bits are set	
	(TD = Transfer Descriptor)	1 Set trap 60/64 status bits without	checking
2	Improve FIFO Latency	enable bits	
	0 Improve latency if packet size < 64 bytes def	1 A20Gate Pass Through Option	
	1 Disable improvement	This bit controls whether the A20Gate pas	_
1	DMA Option	sequence (as defined in UHCI) is follow	
	0 Enhanced performance (8 DW burst access	A20Gate sequence consists of 4 command	
	with better FIFO latency) default	this bit is 0, the 4-command sequence is	
	1 Normal performance (16 DW burst access	When this bit is 1, the last command (write	e FFh to
	with normal FIFO latency)	port 64) is skipped.	
0	Reserved always reads 0	0 A20GATE Pass-through command	
		as defined in UHCI	detault
		1 Last command skipped	0.1.0
		0 Reserved (Do Not Program)d	etault = 0

Offset	42 - Miscellaneous Control 3 (03h)RW	Offset	49 - Miscellaneous Control 6 (03h)RW
7	Reserved (Do Not Program) default = 0		Reservedalways reads 0
6-5	Reserved always reads 0	5-4	Reserved (Do Not Program)default = 0
4	SubVendor ID / SubDevice ID Backdoor	3-2	Reservedalways reads 0
•	0 Rx2C-2F RO	1	EHCI Supports PME Assertion in D3 Cold State
	1 Rx2C-2F RW	•	0 Not Supported
3-2	Reserved (Do Not Program) default = 0		1 Supporteddefault
1-0	Reservedalways reads 11b	0	UHCI Supports PME Assertion in D3 Cold State
1-0	Reserved arways reads 115	v	0 Not Supported
Offset	43 - Miscellaneous Control 4 (00h)RW		1 Supporteddefault
7-5	Reservedalways reads 0		1 Supported
4	Reserved (Do Not Program) default = 0	Offset	4A - Miscellaneous Control 7 (00h)RW
3	Continue Transmission of Erroneous Data on	7-3	Reserved always reads 0
	FIFO Underrun	2	Reserved (Do Not Program) default = 0
	0 Enabledefault	1	Reservedalways reads 0
	1 Disable	0	Use External 60 MHz Clock
2	Issue CRC Error Instead of Stuffing Error on	v	0 Disable default
_	FIFO Underrun		1 Enable
	0 Enabledefault		1 214010
	1 Disable		
1-0	Reservedalways reads 0		
	210001 (00	<u>Offset</u>	60 - Serial Bus Release NumberRO
Offset	48 - Miscellaneous Control 5RW	7-0	Release Numberalways reads 10h
7-5	Reservedalways reads 0		
4-3	Reserved (Do Not Program) default = 0		
2	Issue Bad CRC5 in SOF After FIFO Underrun	Offact	94 DM Conchility Status DW
	0 Enabledefault		84 – PM Capability StatusRW
	1 Disable	7-0	PM Capability Status
1	Lengthen PreSOF Time		00 D0default
	The preSOF time point determines whether there is		01 -reserved-
	enough timein the remaining frame period to perform		10 -reserved-
	a 64-byte transaction. It prevents a packet that may		11 D3 Hot
	not fit in the remaining frame period from being		
	initiated. This bit controls whether the preSOF time		
	point is moved back so that the preSOF time is	Offset	C1-C0 - Legacy SupportRO
	lengthened.		UHCI v1.1 Compliantalways reads 2000h
	0 Disable default	15-0	Unci vi.i Computantaiways feads 2000ff
	1 Enable (PreSOF time lengthened)		
0	Issue Nonzero Bad CRC Code on FIFO Underrun		
v	A FIFO underrun occurs when there is no data in the		
	FIFO to supply data transmission. When this occurs,		
	the south bridge invalidates the data by sending an		
	incorrect CRC code to the device. This bit controls		
	the type of incorrect CRC sent.		
	0 Non zero CRC (recommended) default		
	1 All zero CRC		
	This option isn't really needed any more as non-zero		
	CDC 1		

CRC always works.

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

<u>I/O Offset 7-6 - Frame Number</u>

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Offset 8 - Revision ID (nnh)RO

Device 16 Function 1 Registers - USB 1.1 UHCI Ports 2-3

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 1 PCI configuration space of the VT8235. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 2-3 (see function 0 for ports 0-1 and function 2 for ports 4-5).

PCI Configuration Space Header

Offset 1	1-0 - Vendor ID (1106h)RO
7-0	Vendor ID (1106h = VIA Technologies)
Offcat 3	3-2 - Device ID (3038h) RO
7-0	Device ID (3038h = VT8235 USB Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Masterdefault=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Spacedefault=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abort default=0
12	Received Target Abortdefault=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)

Offset	8 - Kevision ID (nnn) KU
7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	9 - Programming Interface (00h)RO
Offset	A - Sub Class Code (03h=USB Controller)RO
	-
Offset	B - Base Class Code (0Ch=Serial Bus Controller)RO
0.00	
<u>Offset</u>	D - Latency Timer (16h)RW
Offset 2	23-20 - USB I/O Register Base AddressRW
31-16	Reserved always reads 0
15-5	
	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
4.0	
4-0	00001b
O.C 4 /	3D 2C C-1 V 1 ID (110(1) DO4
	2D-2C - Sub Vendor ID (1106h)RO†
Offset 2	2F-2E - Sub Device ID (3038h)RO†
† RW i	f Rx42[4] = 1.
1 22 2.	· · · · · · · · · · · · · · · · · · ·
0.00	14 D 15 (001) DW
Offset .	34 - Power Management Capabilities (80h) RW
	3C - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	USB Interrupt Routing
	0000 Disabled default
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled
Offset 3	3D - Interrupt Pin (02h)RO
7-0	Interrupt Pin default = 02h (INTB#)
	-

USB-Specific Configuration Registers

ffset	40 - Miscellaneous Control 1 (40h)RW	Offset 41 - Miscellaneous Control 2 (10h)	RW
7	Reserved always reads 0	7 USB 1.1 Improvement for EOP	
6	Babble Option	This bit controls whether USB Specification	on 1.1 or
	This bit controls whether the port is disabled when	1.0 is followed when a stuffing error occurs	before an
	EOF (End-Of-Frame) babble occurs. Babble is	EOP (End-Of-Packet). A stuffing error resi	
	unexpected bus activity that persists into the EOF	the receiver sees seven consecutive ones in	
	interval. When this bit is 0, the port with the EOF	Under USB specification 1.1, when this occ	urs in the
	babble is disabled. When it is 1, it is not disabled	interval just before an EOP, the receiver w	ill accept
	0 Automatically disable babbled port when EOF	the packet. Under USB specification 1.0, the	ne packet
	babble occurs	is ignored.	_
	1 Don't disable babbled portdefault	0 USB Spec 1.1 Compliant (packet acce	pted) def
5	PCI Parity Check	1 USB Spec 1.0 Compliant (packet igno	red)
	0 Disable default	6-3 Reserved (Do Not Program)d	efault = 0
	1 Enable	2 Trap Option	
4	Frame Interval Select	Under the UHCI spec, port 60 / 64 is trap	ped only
	0 1 msec frame time default	when its corresponding enable bits are set. V	
	1 0.1 msec frame time	bit is set, trap can be set without checking to	he enable
3	USB Data Length Option	bits.	
	O Support TD length up to 1280 default	0 Set trap 60/64 status bits only when to	
	1 Support TD length up to 1023	enable bits are set	
	(TD = Transfer Descriptor)	1 Set trap 60/64 status bits without	checking
2	Improve FIFO Latency	enable bits	
	0 Improve latency if packet size < 64 bytes def	1 A20Gate Pass Through Option	
	1 Disable improvement	This bit controls whether the A20Gate pas	_
1	DMA Option	sequence (as defined in UHCI) is follow	
	0 Enhanced performance (8 DW burst access	A20Gate sequence consists of 4 command	
	with better FIFO latency) default	this bit is 0, the 4-command sequence is	
	1 Normal performance (16 DW burst access	When this bit is 1, the last command (write	e FFh to
	with normal FIFO latency)	port 64) is skipped.	
0	Reserved always reads 0	0 A20GATE Pass-through command	
		as defined in UHCI	detault
		1 Last command skipped	0.1.0
		0 Reserved (Do Not Program)d	etault = 0

Offset	42 - Miscellaneous Control 3 (03h)RW	Offset	49 - Miscellaneous Control 6 (03h)RW
7	Reserved (Do Not Program) default = 0		Reservedalways reads 0
6-5	Reserved always reads 0	5-4	Reserved (Do Not Program) default = 0
4	SubVendor ID / SubDevice ID Backdoor	3-2	Reservedalways reads 0
•	0 Rx2C-2F RO	1	EHCI Supports PME Assertion in D3 Cold State
	1 Rx2C-2F RW	•	0 Not Supported
3-2	Reserved (Do Not Program) default = 0		1 Supporteddefault
1-0	Reservedalways reads 11b	0	UHCI Supports PME Assertion in D3 Cold State
1-0	Reserved arways reads 115	v	0 Not Supported
Offset	43 - Miscellaneous Control 4 (00h)RW		1 Supporteddefault
7-5	Reservedalways reads 0		1 Supported
4	Reserved (Do Not Program) default = 0	Offset	4A - Miscellaneous Control 7 (00h)RW
3	Continue Transmission of Erroneous Data on	7-3	Reserved always reads 0
	FIFO Underrun	2	Reserved (Do Not Program) default = 0
	0 Enabledefault	1	Reservedalways reads 0
	1 Disable	0	Use External 60 MHz Clock
2	Issue CRC Error Instead of Stuffing Error on	v	0 Disable default
_	FIFO Underrun		1 Enable
	0 Enabledefault		1 214010
	1 Disable		
1-0	Reservedalways reads 0		
	210001 (00	<u>Offset</u>	60 - Serial Bus Release NumberRO
Offset	48 - Miscellaneous Control 5RW	7-0	Release Numberalways reads 10h
7-5	Reservedalways reads 0		
4-3	Reserved (Do Not Program) default = 0		
2	Issue Bad CRC5 in SOF After FIFO Underrun	Offact	94 DM Conchility Status DW
	0 Enabledefault		84 – PM Capability StatusRW
	1 Disable	7-0	PM Capability Status
1	Lengthen PreSOF Time		00 D0default
	The preSOF time point determines whether there is		01 -reserved-
	enough timein the remaining frame period to perform		10 -reserved-
	a 64-byte transaction. It prevents a packet that may		11 D3 Hot
	not fit in the remaining frame period from being		
	initiated. This bit controls whether the preSOF time		
	point is moved back so that the preSOF time is	Offset	C1-C0 - Legacy SupportRO
	lengthened.		UHCI v1.1 Compliantalways reads 2000h
	0 Disable default	15-0	Unci vi.i Computantaiways feads 2000ff
	1 Enable (PreSOF time lengthened)		
0	Issue Nonzero Bad CRC Code on FIFO Underrun		
v	A FIFO underrun occurs when there is no data in the		
	FIFO to supply data transmission. When this occurs,		
	the south bridge invalidates the data by sending an		
	incorrect CRC code to the device. This bit controls		
	the type of incorrect CRC sent.		
	0 Non zero CRC (recommended) default		
	1 All zero CRC		
	This option isn't really needed any more as non-zero		
	CDC 1		

CRC always works.

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

<u>I/O Offset 7-6 - Frame Number</u>

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Device 16 Function 2 Registers - USB 1.1 UHCI Ports 4-5

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 0 PCI configuration space of the VT8235. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 4-5 (see function 0 for ports 0-1 and function 1 for ports 2-3).

PCI Configuration Space Header

Offset 1	1-0 - Vendor ID (1106h)RO
7-0	Vendor ID (1106h = VIA Technologies)
0.00	
Offset .	8-2 - Device ID (3038h) RO
7-0	Device ID (3038h = VT8235 USB Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Masterdefault=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abortdefault=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)

7-0 Silicon Revision Code (0 indicates first silicon)	RO
7 0 Billeon Revision Code (o maleutes inst sincon)	
	•
Offset 9 - Programming Interface (00h)	PΩ
Offset A - Sub Class Code (03h=USB Controller)	
'	
Offset B - Base Class Code (0Ch=Serial Bus Controll	er)KO
Offset D - Latency Timer (16h)	RW
Offset 23-20 - USB I/O Register Base Address	RW
31-16 Reservedalways i	
15-5 USB I/O Register Base Address. Port Addr	
the base of the 32-byte USB I/O Register	
corresponding to AD[15:5]	
4-0 00001b	
Offset 2D-2C - Sub Vendor ID (1106h)	RO†
Offset 2F-2E - Sub Device ID (3038h)	RO†
† RW if $Rx42[4] = 1$.	
Offset 34 - Power Management Capabilities (80h)	RW
Offset 3C - Interrupt Line (00h)	RW
7-4 Reservedalways i	RW
7-4 Reservedalways a 3-0 USB Interrupt Routing	RW reads 0
7-4 Reserved always a 3-0 USB Interrupt Routing 0000 Disabled	RW reads 0
7-4 Reserved	RW reads 0
7-4 Reserved always a 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved	RW reads 0
7-4 Reserved always a 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3	RW reads 0
7-4 Reserved always a 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4	RW reads 0
7-4 Reserved	RW reads 0
7-4 Reserved always a 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4	RW reads 0
7-4 Reserved	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14	RW reads 0
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14 1111 Disabled	RW reads 0 default
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14 1111 Disabled	RW reads 0 default
7-4 Reserved always of 3-0 USB Interrupt Routing 0000 Disabled 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14	RW reads 0 default

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1 (40h)RW	Offset 4	41 - Miscellaneous Control 2 (10h)RW
7	Reserved always reads 0	7	USB 1.1 Improvement for EOP
6	Babble Option		This bit controls whether USB Specification 1.1 or
	This bit controls whether the port is disabled when		1.0 is followed when a stuffing error occurs before an
	EOF (End-Of-Frame) babble occurs. Babble is		EOP (End-Of-Packet). A stuffing error results when
	unexpected bus activity that persists into the EOF		the receiver sees seven consecutive ones in a packet.
	interval. When this bit is 0, the port with the EOF		Under USB specification 1.1, when this occurs in the
	babble is disabled. When it is 1, it is not disabled		interval just before an EOP, the receiver will accept
	0 Automatically disable babbled port when EOF		the packet. Under USB specification 1.0, the packet
	babble occurs		is ignored.
	1 Don't disable babbled portdefault		0 USB Spec 1.1 Compliant (packet accepted) def
5	PCI Parity Check		1 USB Spec 1.0 Compliant (packet ignored)
	0 Disable default	6-3	Reserved (Do Not Program) default = 0
	1 Enable	2	Trap Option
4	Frame Interval Select		Under the UHCI spec, port 60 / 64 is trapped only
	0 1 msec frame time default		when its corresponding enable bits are set. When this
	1 0.1 msec frame time		bit is set, trap can be set without checking the enable
3	USB Data Length Option		bits.
	O Support TD length up to 1280 default		0 Set trap 60/64 status bits only when trap 60/64
	1 Support TD length up to 1023		enable bits are setdefault
	(TD = Transfer Descriptor)		1 Set trap 60/64 status bits without checking
2	Improve FIFO Latency		enable bits
	0 Improve latency if packet size < 64 bytes def	1	A20Gate Pass Through Option
	1 Disable improvement		This bit controls whether the A20Gate pass-through
1	DMA Option		sequence (as defined in UHCI) is followed. The
	0 Enhanced performance (8 DW burst access		A20Gate sequence consists of 4 commands. When
	with better FIFO latency) default		this bit is 0, the 4-command sequence is followed.
	1 Normal performance (16 DW burst access		When this bit is 1, the last command (write FFh to
	with normal FIFO latency)		port 64) is skipped.
0	Reserved always reads 0		0 A20GATE Pass-through command sequence
			as defined in UHCIdefault
			1 Last command skipped
		0	Reserved (Do Not Program) default = 0

Offset	42 - Miscellaneous Control 3 (03h)RW	Offset	49 - Miscellaneous Control 6 (03h)RW
7	Reserved (Do Not Program) default = 0		Reservedalways reads 0
6-5	Reserved always reads 0	5-4	Reserved (Do Not Program) default = 0
4	SubVendor ID / SubDevice ID Backdoor	3-2	Reservedalways reads 0
•	0 Rx2C-2F RO	1	EHCI Supports PME Assertion in D3 Cold State
	1 Rx2C-2F RW	•	0 Not Supported
3-2	Reserved (Do Not Program) default = 0		1 Supporteddefault
1-0	Reservedalways reads 11b	0	UHCI Supports PME Assertion in D3 Cold State
1-0	Reserved arways reads 115	v	0 Not Supported
Offset	43 - Miscellaneous Control 4 (00h)RW		1 Supporteddefault
7-5	Reservedalways reads 0		1 Supported
4	Reserved (Do Not Program) default = 0	Offset	4A - Miscellaneous Control 7 (00h)RW
3	Continue Transmission of Erroneous Data on	7-3	Reserved always reads 0
	FIFO Underrun	2	Reserved (Do Not Program) default = 0
	0 Enabledefault	1	Reservedalways reads 0
	1 Disable	0	Use External 60 MHz Clock
2	Issue CRC Error Instead of Stuffing Error on	v	0 Disable default
_	FIFO Underrun		1 Enable
	0 Enabledefault		1 214010
	1 Disable		
1-0	Reservedalways reads 0		
	210001 (00	<u>Offset</u>	60 - Serial Bus Release NumberRO
Offset	48 - Miscellaneous Control 5RW	7-0	Release Numberalways reads 10h
7-5	Reservedalways reads 0		
4-3	Reserved (Do Not Program) default = 0		
2	Issue Bad CRC5 in SOF After FIFO Underrun	Offact	94 DM Conchility Status DW
	0 Enabledefault		84 – PM Capability StatusRW
	1 Disable	7-0	PM Capability Status
1	Lengthen PreSOF Time		00 D0default
	The preSOF time point determines whether there is		01 -reserved-
	enough timein the remaining frame period to perform		10 -reserved-
	a 64-byte transaction. It prevents a packet that may		11 D3 Hot
	not fit in the remaining frame period from being		
	initiated. This bit controls whether the preSOF time		
	point is moved back so that the preSOF time is	Offset	C1-C0 - Legacy SupportRO
	lengthened.		UHCI v1.1 Compliantalways reads 2000h
	0 Disable default	15-0	Unci vi.i Computantaiways feads 2000ff
	1 Enable (PreSOF time lengthened)		
0	Issue Nonzero Bad CRC Code on FIFO Underrun		
v	A FIFO underrun occurs when there is no data in the		
	FIFO to supply data transmission. When this occurs,		
	the south bridge invalidates the data by sending an		
	incorrect CRC code to the device. This bit controls		
	the type of incorrect CRC sent.		
	0 Non zero CRC (recommended) default		
	1 All zero CRC		
	This option isn't really needed any more as non-zero		
	CDC 1		

CRC always works.

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

<u>I/O Offset 7-6 - Frame Number</u>

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Device 16 Function 3 Registers - USB 2.0 EHCI

This Enhanced Serial Bus host controller interface is fully compatible with EHCI specification v1.0. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the Device 16 Function 3 PCI configuration space of the VT8235. The USB I/O registers are defined in EHCI specification v1.0. The registers in this function control USB 2.0 functions (see functions 0-2 for USB 1.1 UHCI control).

PCI Configuration Space Header

Offset 1	1-0 - Vendor ID (1106h)RO
7-0	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device ID (3104h) RO
7-0	Device ID (3104h = VT8235 USB 2.0 EHCI
	Controller)
Offset 5	5-4 - Command (0000h)RW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Spacedefault=0 (disabled)
Offset 7	7-6 - Status (0210h)RWC
15	Reserved (detected parity error) always reads 0
14	Signaled System Errordefault=0
13	Received Master Abort default=0
12	Received Target Abortdefault=0
11	Signaled Target Abort default=0
10-9	DEVSEL# Timing
20,	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved fixed 10h (PCI PMI)
0 0	
Offset 8	B - Revision ID (nnh)RO

7-0 Silicon Revision Code

	A - Sub Class Code (03h=USB Controller)RC
Offset I	
	B - Base Class Code (0Ch=Serial Bus Controller)RC
Offset (C – Cache Line Size (10h)RW
	D - Latency Timer (16h)RW
Offset 1	
31-8	EHCI Memory Mapped I/O Registers Base
	Address. Memory Address for the base of the USE
	2.0 EHCI I/O Register block, corresponding to
	AD[31:8]
7-3	====== · · · · · · · · · · · · · · · ·
2-1	
0	Reservedalways reads 0
Offset 2	2D-2C - Sub Vendor ID (1106h)RO
Offset 2	2F-2E - Sub Device ID (3104h)RO
t RW if	f[Rx42[4] = 1.
Offset 3	34 - Power Management Capabilities (80h) RW
	. I oner management Capabinues (00ii) NV
	A STORE TRANSPORTER CAPADIBLES (OUI) RV
	3C - Interrupt Line (00h)RW
7-4	3C - Interrupt Line (00h)
	C - Interrupt Line (00h)
7-4	RC - Interrupt Line (00h)
7-4	Reserved always reads 0 USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1
7-4	RV Reserved always reads 0 USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved
7-4	RV Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3
7-4	RV Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4
7-4	Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5
7-4	BC - Interrupt Line (00h) RV Reserved always reads (000 Disabled) always reads (000 Disabled) 0000 Disabled default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
7-4	BC - Interrupt Line (00h) RW Reserved always reads (000 Disabled) defaul 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
7-4	Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
7-4	Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9
7-4	Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ9 1010 IRQ9 1010 IRQ9
7-4	Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ9 1010 IRQ9 1010 IRQ10 1011 IRQ10 1011 IRQ10 1011 IRQ1
7-4	Reserved
7-4	RW Reserved
7-4	Reserved always reads (USB Interrupt Routing 0000 Disabled defaul 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13 1110 IRQ14
7-4 3-0	Reserved
7-4 3-0	Reserved always reads (1) USB Interrupt Routing (1) 0000 Disabled defaul (1) 0001 IRQ1 (1) 0010 Reserved (1) 0010 IRQ4 (1) 0101 IRQ5 (1) 0110 IRQ6 (1) 1011 IRQ7 (1) 1000 IRQ8 (1) 1001 IRQ9 (1) 1011 IRQ11 (1) 1100 IRQ12 (1) 1101 IRQ13 (1) 1101 IRQ13 (1)

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1 (40h)RW	Offset 60 - Serial Bus Release Number (20h)RO
7	Reserved always reads 0	7-0 Release Number always reads 20h for USB 2.0
6	Babble Option This bit controls whether the port is disabled when	Offset 61 - Frame Length Adjust (20h)RO
	EOF (End-Of-Frame) babble occurs. Babble is unexpected bus activity that persists into the EOF interval. When this bit is 0, the port with the EOF babble is disabled. When it is 1, it is not disabled 0 Automatically disable babbled port when EOF babble occurs	Offset 63-62 – Port Wake Capability (0001h)RO
_	1 Don't disable babbled portdefault	Offset 6B-68 - Legacy Support Extended Capability RO
5	PCI Parity Check	31-0 Capabilitiesalways reads 0000 0001h
	0 Disable default	
4	1 Enable Personned (Do Not Brogram) default = 0	Offset 6F-6C - Legacy Support Control / StatusRW
4 3-2	Reserved (Do Not Program) default = 0 Reserved always reads 0	31-0 Control / Statusalways reads 0000 0000h
3-2 1	DMA Options	
1	0 16 DW burst access default	
	1 8 DW burst access	Offset 84 – PM Capability StatusRW
0	Reservedalways reads 0	7-0 PM Capability Status
		00 D0default
Offset	48 - Miscellaneous Control 1 (A0h)RW	01 -reserved-
7-6	Reserved (Do Not Program) default = 0	10 -reserved-
5	CCA Burst Access	11 D3 Hot
	0 Burst enable	
	1 Burst disabledefault	
4-1	Reservedalways reads 0	
0	Reserved (Do Not Program) default = 0	
Offset	49 - Miscellaneous Control 2 (20h)RW	
7-6	Reserved (Do Not Program) default = 0	
5	Clock Auto Stop	
	0 Disable, no stop	
	1 Enable, auto stopdefault	
4	Auto Power Down Receiver Squelch Detector	
4	Auto Power Down Receiver Squelch Detector 0 Auto Power Down	

..... always reads 0

Reserved

EHCI USB 2.0 I/O Registers

These registers are compliant with the EHCI v1.0 standard. Refer to the EHCI v1.0 specification for further details.

EHCI Capabilities

I/O Offset 0 - Capability Register Length (10h)

I/O Offset 3-2 - Interface Version Number (0100h)RO† I/O Offset 7-4 - Structure Parameters (0000 3206h)RO† I/O Offset B-8 - Capability Parameters (0000 6872h) .RO† \uparrow RW if Rx42[4] = 1.

Host Controller Operations

I/O Offset 13-10 - USB Command

I/O Offset 17-14 - USB Status

I/O Offset 1B-18 - USB Interrupt Enable

I/O Offset 1F-1C - USB Frame Index

I/O Offset 23-20 - 4G Segment Selector

I/O Offset 27-24 - Frame List Base Address

I/O Offset 2B-28 - Next Asynchronous List Address

I/O Offset 53-50 - Configured Flags

I/O Offset 57-54 - Port 0 Status / Control

I/O Offset 5B-58 - Port 1 Status / Control

Device 17 Function 0 Registers – Bus Control and Power Management

All registers are located in the device 17 function 0 configuration space of the VT8235. These registers are accessed through PCI configuration mechanism #1 via I/O address 0CF8h / 0CFCh.

PCI Configuration Space Header

Offset 1	-0 - Vendor ID (1106h)RO
Offset 3	3-2 - Device ID (3177h) RO
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address / Data Stepping
	0 Disable
	1 Enable default
6-4	Reserved always reads 0
3	Special Cycle Enable RW, default = 0
2	Bus Master always reads 1
1	Memory SpaceRO, reads as 1
0	I/O Space RO, reads as 1
Offset 7	7-6 - StatusRWC
15	Detected Parity Error write one to clear
14	Signalled System Erroralways reads 0
13	Signalled Master Abortwrite one to clear
12	Received Target Abortwrite one to clear
11	Signalled Target Abortwrite one to clear
10-9	DEVSEL# Timing fixed at 01 (medium)
8	Data Parity Detected
Ü	Reads 1 if PERR# is asserted (driven or observed) or
	a bus master data parity error occurred.
7	Fast Back-to-Back Capable always reads 0

.....always reads 0

Offset 8 - Revision ID (nnh)RO 7-0 Revision ID
Offset 9 - Program Interface (00h)RO Offset A - Sub Class Code (01h)RO
Offset B - Class Code (06h)
7-0 Header Type Code 80h (Multifunction Device) Offset F - BIST (00h)
Offset 2F-2C - Subsystem IDRO
Use offset 70-73 to change the value returned.

6-0 Reserved

ISA Bus Control

	<u>40 - ISA Bus Control (00h)RW</u>	Oliber	<u>42 – Line Buffer Control (00h)RW</u>
7	ISA Command Delay	7	ISA Master DMA Line Buffer
	0 Normal default		Controls whether the DMA line buffer is used.
	1 Extra		0 Disabledefault
6	I/O Recovery Time		1 Enable. Master DMA waits until the line
Ū	The number of clocks between 2 I/O commands		buffer is full (8 DWords) before transmitting
	0 Disabledefault		data (bit-6 must also be enabled to insure that
	1 Enable (Rx4C[7:6] determines the # of clocks)		there are no coherency issues).
5	ROM Wait States	6	Gate Interrupt Until Line Buffer Flush Complete
3		U	This bit should be enabled if bit-7 is enabled.
	1 0 Wait States		0 Disable default
4	ROM Write		1 Enable. IRQs are gated until the line buffer is
	0 Disable (ROM writes are ignored) default		flushed to insure that there are no coherency
	1 Enable (ROM can be written)	_	issues.
3	Double DMA Clock	5	Flush Line Buffer for Interrupt
	0 DMA clock runs at 4 MHz default		This bit controls whether the line bufer is flushed
	1 DMA clock runs at 8 MHz		when an interrupt request is generated. This bit
2	4D0 / 4D1 Port Configuration		should be enabled if bit-7 is enabled.
	Controls whether ports 4D0 / 4D1 can be configured.		0 Disabledefault
	Ports 4D0 / 4D1 determine whether IRQ requests are		1 Enable
	edge or level triggerred (4D0[7-0] for IRQ7-0,	4	Uninterruptable Burst Read
	4D1[7-0] for IRQ15-8) (0 = level, 1 = edge).		0 Disabledefault
	0 Disable default		1 Enable. The PCI bus is not granted to DMA
	1 Enable		until burst read transactions from the north
1	DMA / Interrupt / Timer Shadow Register Read		bridge are completed.
	0 Disable default	3	Gate IRQ Until Line Bufer Flush Completed
	1 Enable (shadow register values can be read)	_	0 Disable default
0	Double ISA Bus Clock		1 Enable
v	0 Bus clock runs at PCLK / 4 (8 MHz) default	2-0	Reservedalways reads 0
	1 Bus clock runs at PCLK / 2 (16 MHz)	- 0	110501 vou
0.66			43 - Delay Transaction Control (00h)RW
	41 – BIOS ROM Decode Control (00h)RW	7-4	Reserved (Do Not Program) default = 0
Setting	these bits to 1 enables the indicated address range to be	3	Delayed Transactions (PCI Spec Rev 2.1)
include	ed in the ROMCS# decode:		
	ed in the ROMCS# decode:		This bit controls whether delayed transactions
7			
7 6	000E0000h-000EFFFFhdefault=0 (disable)		This bit controls whether delayed transactions
6	000E0000h-000EFFFFh default=0 (disable) FFF00000h-FFF7FFFFh default=0 (disable)		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled.
6 5	000E0000h-000EFFFFh	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4	000E0000h-000EFFFFh	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE800000h-FFEFFFFFhdefault=0 (disable)FFE00000h-FFE7FFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3 2 1	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3 2	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC80000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	2	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC80000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	1	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses		This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	1	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	1	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. 0 Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	1	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	1	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable
6 5 4 3 2 1 0	000E0000h-000EFFFFhdefault=0 (disable)FFF00000h-FFF7FFFFhdefault=0 (disable)FFE80000h-FFEFFFFFhdefault=0 (disable)FFD80000h-FFDFFFFFhdefault=0 (disable)FFD00000h-FFD7FFFFhdefault=0 (disable)FFC80000h-FFCFFFFFhdefault=0 (disable)FFC90000h-FFC7FFFFhdefault=0 (disable)FFC00000h-FFC7FFFFhdefault=0 (disable)ROMCS# is always active when ISA addresses	1	This bit controls whether delayed transactions (delayed read / write and posted write) are enabled. O Disable

Offset 48 – Read Pass Write Control.....RW

7 APIC FSB Fixed at Low DW

- 0 Disable (Address Bit-2 not masked)..... default
- 1 Enable (force A2 from APIC FSB to low)

Address bit A2 controls whether data is in the lower (0) or upper (1) doubleword of a quadword sent to the CPU. When this bit is enabled, A2 is masked which means it is always 0 to select the lower doubleword.

6-4 Reservedalways reads 0

3 AC97 / LPC Read Pass Write

- O Disable (a read cannot be performed before a preceeding write has been completed) .. default
- Enable (internal AC97 and LPC devices are allowed to perform a read before a preceding write)

2 IDE Read Pass Write

- O Disable (a read cannot be performed before a preceeding write has been completed) .. default
- 1 Enable (the internal IDE controller is allowed to perform a read before a preceeding write)

1 USB Read Pass Write

- O Disable (a read cannot be performed before a preceeding write has been completed) .. default
- Enable (the internal USB controllers are allowed to perform a read before a preceeding write)

0 NIC Read Pass Write

- O Disable (a read cannot be performed before a preceeding write has been completed) .. default
- Enable (the internal LAN controller is allowed to perform a read before a preceeding write)

7	49 - CCA Control RW Reserved always reads 0
6	South Bridge Internal Master Devices Priority
	Higher Than External PCI Master
	0 Disabledefault
	1 Enable
	The "CCA" is an internal arbiter that controls the
	priority of external PCI masters vs. internal master
	devices. Normally priority is the same for internal
	and external PCI master devices, but when this bit is
	enabled, internal master devices are given higher
	priority than external PCI masters (3/4 : 1/4).
5	CCA Clean to Mask Off IRQ
	Controls whether interrupt requests are gated until
	data is written to memory.
	0 Disabledefault
	1 Enable
-3	Reserved (Do Not Program) default = 0
2	WSC Mask Off INTR
	Controls whether INTR is masked until write snoop
	is complete.

0 Disable.....default

1-0 Reserved (Do Not Program)default = 0

Miscellaneous Control

Offset 4	4C - IDE Interrupt Routing (04h)RW
7-6	I/O Recovery Time Select
	When Rx40[6] is enabled, this field determines the
	I/O recovery time.
	00 1 Bus Clock default
	01 2 Bus Clock
	10 4 Bus Clock
	11 8 Bus Clock
5-4	Reserved (do not program) default = 0
3-2	IDE Secondary Channel IRQ Routing
	00 IRQ14
	01 IRQ15default
	10 IRQ10
	11 IRQ11
1-0	IDE Primary Channel IRQ Routing
	00 IRQ14default
	01 IRQ15
	10 IRQ10
	11 IRQ11
Note: I	RQ Routing to the APIC is fixed as follows:
INTA#	=> IRQ16
INTR#	-> IRO17

 Π INTB# => IRQ17 INTC# => IRQ18 INTD# => IRQ19 IDE IRQ => IRQ20 USB1 IRQ \Rightarrow IRQ21 USB2 IRQ \Rightarrow IRQ21 if Rx59[5] = 0 => IRQ23 if Rx59[5] = 1AC97 / MC97 IRQ => IRQ22

Table 10. APIC Fixed IRQ Routing

Offset 4	4E - Internal RTC Test ModeRW
7-5	Reserved always reads 0
4	Last Port 70/74 Written Status
	0 Last write was to port 70default
	1 Last write was to port 74
3	Extra RTC Port 74/75
	The RTC is normally accessed though ports 70/74.
	This bit controls whether two extra ports (74 / 75)
	can be used to access the RTC.
	0 Disabledefault
	1 Enable
2-0	Reserved (Do Not Program) default = 0
	,
Offset 4	4F – PCI Bus and CPU Interface ControlRW
Offset 4	4F – PCI Bus and CPU Interface ControlRW
	4F – PCI Bus and CPU Interface ControlRW
7-4	4F – PCI Bus and CPU Interface ControlRW Reservedalways reads 0
7-4	4F – PCI Bus and CPU Interface ControlRW Reservedalways reads 0 CPU Reset Source
7-4	Reserved always reads 0 CPU Reset Source This bit determines whether CPU Reset (generated
7-4	AF – PCI Bus and CPU Interface Control
7-4	Reserved always reads 0 CPU Reset Source This bit determines whether CPU Reset (generated through port 92 or the keyboard) uses INIT or CPURST.
7-4	Reserved always reads 0 CPU Reset Source This bit determines whether CPU Reset (generated through port 92 or the keyboard) uses INIT or CPURST. 0 Use CPURST as CPU Reset
7-4	Reserved always reads 0 CPU Reset Source This bit determines whether CPU Reset (generated through port 92 or the keyboard) uses INIT or CPURST. 0 Use CPURST as CPU Reset

Function Control

Offset :	<u> 50 – Fi</u>	unction Control 1 (09h)RW				
7	Device 17 Function 6 MC97					
	0	Enabledefault				
	1	Disable				
6	Devi	ce 17 Function 5 AC97				
	0	Enabledefault				
	1	Disable				
5	Devi	ce 16 Function 1 USB 1.1 UHCI Ports 2-3				
	0	Enabledefault				
	1	Disable				
4	Devi	vice 16 Function 0 USB 1.1 UHCI Ports 0-1				
	0	Enabledefault				
	1	Disable				
3	Devi	ice 17 Function 1 IDE				
	0	Enable				
	1	Disabledefault				
2	Devi	ce 16 Function 2 USB 1.1 UHCI Ports 4-5				
	0	Enabledefault				
	1	Disable				
1	Devi	vice 16 Function 4 USB 2.0 EHCI				
	0	Enabledefault				
	1	Disable				
0	Inter	ernal AudioRO				
	0	Disable				
	1	Enabledefault				

Offset :	51 – F	unction C	Control 2 (0Dh)	RW		
7-6	Reserved always reads 0					
5	Internal LAN Controller Clock Gating					
	When bit-4 of this register is disabled, the LAN					
	function is disabled but the LAN controller clock is					
	not gated automatically. This bit controls whether					
	the clock is actually gated.					
	0	Disable		default		
	1	Enable				
4	Internal LAN Controller					
	0	Disable		default		
	1	Enable				
3	Inter	nal RTC				
	0	Disable				
	1	Enable.	•••••	default		
2	Internal PS2 Mouse					
	0	Disable				
	1			default		
1	1 Internal KBC Configuration					
	0 Disable ports 2E / 2F offsets E0-EF.					
	1 Enable ports 2E / 2F offsets E0-EF					
0	Inter	nal KBC				
	0	Disable				
	1	Enable.		default		
			0 / Disable			
		<u>Pin</u>	(External KBC)			
		AF12	KBCS#			
		V2	KBRC	KBDT		
		V3		KBCK		
		W1		MSDT		
		W2	IRQ1	MSCK		

Plug and Play Control - PCI

Serial IRQ, LPC, and PC/PCI DMA Control

Offset 52 - Serial IRQ & LPC Control (00h).....RW Offset 54 - PCI Interrupt Polarity.....RW Reservedalways reads 0 LPC Short Wait Abort 6 The following bits all default to "level" triggered (0) 0 Disabledefault Enable. During a short wait, the cycle is 3 PCI INTA# Invert (edge) / Non-invert (level). (1/0) PCI INTB# Invert (edge) / Non-invert (level) . (1/0) aborted after 8Ts. PCI INTC# Invert (edge) / Non-invert (level). (1/0) 5 **LPC Frame Wait State Time** 1 0 Frame Wait State is 1T..... default 0 PCI INTD# Invert (edge) / Non-invert (level). (1/0) 1 Frame Wait State is 2T Note: PCI INTA-D# normally connect to PCI interrupt pins **LPC Stop to Start Frame Wait State** INTA-D# (see pin definitions for more information). 0 Enable. One idle state is inserted between Stop and Start default Offset 55 – PCI PNP Interrupt Routing 1RW Disable. Stop is followed immediately by **PCI INTA# Routing** (see PnP IRQ routing table) Start. 3-0 Reservedalways reads 0 **Serial IRO** 3 Offset 56 – PCI PNP Interrupt Routing 2RW 0 Disabledefault Enable (IRQ asserted via SerialIRQ pin AE10) **PCI INTC# Routing** (see PnP IRQ routing table) 2 **Serial IRQ Quiet Mode** 3-0 PCI INTB# Routing (see PnP IRQ routing table) 0 Continuous Mode default Offset 57 – PCI PNP Interrupt Routing 3RW 1 Ouiet Mode **7-4 PCI INTD# Routing** (see PnP IRQ routing table) **Serial IRO Start-Frame Width** 00 4 PCI Clocks default 3-0 Reservedalways reads 0 01 6 PCI Clocks 10 8 PCI Clocks 11 10 PCI Clocks Table 11. PnP IRQ Routing Table Offset 53 – PC/PCI DMA ControlRW PCI DMA Pair A and Pair B 0000 Disabled......default 0 Disable default 0001 IRQ1 Enable 0010 Reserved **PCI DMA Channel 7** 0011 IRO3 0 Disable default 0100 IRQ4 Enable 0101 IRO5 **PCI DMA Channel 6** 5 0110 IRO6 0 Disable default 0111 IRQ7 Enable 1 1000 Reserved **PCI DMA Channel 5** 1001 IRO9 0 Disable default 1010 IRQ10 1 Enable 1011 IRO11 3 **PCI DMA Channel 3** 1100 IRQ12 0 Disable default 1101 Reserved Enable 1110 IRO14 2 **PCI DMA Channel 2** 1111 IRQ15 0 Disable default Enable **PCI DMA Channel 1** 0 Disable default Enable **PCI DMA Channel 0** 0 Disabledefault Enable

GPIO and Miscellaneous Control

Offset	58 – Miscellaneous Control 0 (40h)RW
7	Reserved always reads 0
6	Internal APIC
	0 Disable
	1 Enabledefault
5	South Bridge Interrupt Cycles Run at 33 MHz
	0 Disable default
	1 Enable
4	Address Decode
	0 Subtractivedefault
	1 Positive
3	RTC High Bank Access
	O Disable access to upper 128 bytes default
	1 Enable access to upper 128 bytes
2	RTC Rx32 Write Protect
	0 Disable (not protected) default
	1 Enable (write protected)
1	RTC Rx0D Write Protect
	0 Disable (not protected) default
	1 Enable (write protected)
0	RTC Rx32 Map to Century Byte
	Controls whether RTC Rx32 is mapped to the
	century byte.
	0 Disable default
	1 Enable

Offset :	59 – Miscellaneous Control 1 (00h)RW
7-6	Reservedalways reads 0
5	LPC RTC
	0 Disabledefault
	1 Enable
4	LPC Keyboard
	0 Disable (ISA Keyboard)default
	1 Enable (LPC Keyboard)
3	External MCCS to LPC
	Controls whether external MCCS is through LPC or
	ISA when internal MCCS is not used.
	0 Disable (ISA MCCS)default
	1 Enable (LPC MCCS)
2	Internal MCCS (Microcontroller Chip Select)
	0 Disable (external MCCS)default
	1 Enable (internal MCCS)
1	A20M# Active
	0 Disable (A20M# signal not asserted) default
	1 Enable (A20M# signal asserted)
0	NMI on PCI Parity Error
	0 Disabledefault
	1 Enable (to generate NMI, Port 61[3] and Port
	70[7] must also be set)

Offset :	5A – DMA Bandwidth Control (00h)	RW
7	DMA Channel 7 Bandwidth	
	0 Normal	default
	1 Improved	
6	DMA Channel 6 Bandwidth	
	0 Normal	default
	1 Improved	
5	DMA Channel 5 Bandwidth	
	0 Normal	default
	1 Improved	
4	DMA Single Transfer Mode Bandwidth	1
	0 Normal	
	1 Improved	
3	DMA Channel 3 Bandwidth	
	0 Normal	default
	1 Improved	
2	DMA Channel 2 Bandwidth	
	0 Normal	default
	1 Improved	
1	DMA Channel 1 Bandwidth	
	0 Normal	default
	1 Improved	
0	DMA Channel 0 Bandwidth	
	0 Normal	default
	1 Improved	
	1	

The above bits determine if DMA bandwidth is improved for the specified channel. If enabled, bandwidth improvement is accomplished by reducing the transaction latency between the DMA Controller and the LPC Bus Controller.

Offset :	5B – Miscellaneous Control 2 (01h) RW
7-4	Reserved always reads 0
3	Bypass APIC De-Assert Message
	0 Disabledefault
	1 Enable
2	APIC HyperTransport Mode
	0 Disabledefault
	1 Enable
1	INTE#, INTF#, INTG#, INTH# (pins GPIO12-15)
	0 Disabledefault
	1 Enable
0	Dynamic Clock Stop
	0 Disable
	1 Enable default

Programmable Chip Select Control

Offset 5	5D-5C – PCS 0 I/O Port Address (0000h)RW	Offset	66 - PCS Control (00h)RW
15-0	PCS 0 I/O Port Addressdefault = 0	7	PCS 3 Internal I/O
			0 Disable (External)default
	5F-5E – PCS 1 I/O Port Address (0000h)RW		1 Enable (Internal)
15-0	PCS 1 I/O Port Address default = 0	6	PCS 2 Internal I/O
Offcot (61 60 DCS 2 I/O Dowt Address (0000h) DW		0 Disable (External)default
	61-60 – PCS 2 I/O Port Address (0000h)RW		1 Enable (Internal)
15-0	PCS 2 I/O Port Address default = 0	5	PCS 1 Internal I/O
Offset (63-62 – PCS 3 I/O Port Address (0000h)RW		0 Disable (External)default
	PCS 3 I/O Port Address default = 0		1 Enable (Internal)
15-0	T CD 3 I/O I OIL Mulicipalities and a conduct - 0	4	PCS 0 Internal I/O
			0 Disable (External)default
		TD1 1	1 Enable (Internal)
Offset (65-64 – PCS I/O Port Address Mask (0000h)RW		bove 4 bits determine whether Programmable Chip
15-12	PCS 3 I/O Port Address Mask 3-0	Selects	0-3 are treated as internal I/O
	0000 Decode range is 1 byte default	3	PCS 3
	0001 Decode range is 2 bytes		0 Disabledefault
	0011 Decode range is 4 bytes		1 Enable
	0111 Decode range is 8 bytes	2	PCS 2
	1111 Decode range is 16 bytes		0 Disabledefault
11-8	PCS 2 I/O Port Address Mask 3-0		1 Enable
	0000 Decode range is 1 byte default	1	PCS 1
	0001 Decode range is 2 bytes		0 Disabledefault
	0011 Decode range is 4 bytes	0	1 Enable
	0111 Decode range is 8 bytes	0	PCS 0 0 Disabledefault
7-4	1111 Decode range is 16 bytes PCS 1 I/O Port Address Mask 3-0		1 Enable
/-4	0000 Decode range is 1 byte default		1 Enable
	0000 Decode range is 1 byte		
	0011 Decode range is 4 bytes		
	0111 Decode range is 8 bytes	Offset	67 - Output Control (04h)RW
	1111 Decode range is 16 bytes	7-3	Reserved always reads 0
3-0	PCS 0 I/O Port Address Mask 3-0	2	FERR Voltage
2 0	0000 Decode range is 1 byte default		0 2.5V
	0001 Decode range is 2 bytes		1 1.5Vdefault
	0011 Decode range is 4 bytes	1-0	Reserved always reads 0
	0111 Decode range is 8 bytes		
	1111 Decode range is 16 bytes		
	-		

ISA Decoding Control

Offset (6C – ISA Positive Decoding Control 1RW	Offset 6E -	ISA Positive Decoding Control 3RW
7	On-Board I/O (Ports 00-FFh) Positive Decoding	7 CO	OM Port B Positive Decoding
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
6	Microsoft-Sound System I/O Port Positive	6-4 CO	OM-Port B Decode Range
	Decoding		00 3F8h-3FFh (COM1)default
	0 Disable default		01 2F8h-2FFh (COM2)
	1 Enable (bits 5-4 determine the decode range)	0	10 220h-227h
5-4	Microsoft Sound System I/O Decode Range		11 228h-22Fh
	00 0530h-0537h default		00 238h-23Fh
	01 0604h-060Bh		01 2E8h-2EFh (COM4)
	10 0E80-0E87h		10 338h-33Fh
	11 0F40h-0F47h	1	11 3E8h-3EFh (COM3)
3	Internal APIC Positive Decoding		OM Port A Positive Decoding
	0 Disable default		0 Disabledefault
	1 Enable		1 Enable
2	BIOS ROM Positive Decoding	2-0 CO	OM-Port A Decode Range
	0 Disable default		00 3F8h-3FFh (COM1)default
	1 Enable		01 2F8h-2FFh (COM2)
1	Internal PCS1# Positive Decoding		10 220h-227h
	0 Disabledefault		11 228h-22Fh
	1 Enable		00 238h-23Fh
0	Internal PCS0# Positive Decoding		01 2E8h-2EFh (COM4)
	0 Disable default		10 338h-33Fh
	1 Enable	1	11 3E8h-3EFh (COM3)
	1 Bildoic	1	
0.00			TGA D AND D IN G A LA DIN
	6D – ISA Positive Decoding Control 2RW	Offset 6F –	ISA Positive Decoding Control 4RW
Offset o	6D – ISA Positive Decoding Control 2RW FDC Positive Decoding	Offset 6F – 7-6 Re	servedalways reads 0
	FDC Positive Decoding O Disable	Offset 6F – 7-6 Re 5 PC	servedalways reads 0 (S2# and PCS3# Positive Decoding
7	FDC Positive Decoding O Disable default Enable	Offset 6F – 7-6 Re 5 PC	servedalways reads 0 S2# and PCS3# Positive Decoding Disabledefault
	FDC Positive Decoding O Disable	Offset 6F – 7-6 Re 5 PC	servedalways reads 0 S2# and PCS3# Positive Decoding Disabledefault Enable
7	FDC Positive Decoding Control 2RW FDC Positive Decoding 0 Disable	Offset 6F – 7-6 Re 5 PC	served
6	FDC Positive Decoding Control 2RW FDC Positive Decoding O Disable	Offset 6F = 7-6 Re 5 PC	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default
7	FDC Positive Decoding Control 2RW FDC Positive Decoding 0 Disable	Offset 6F = 7-6 Re 5 PC	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable default Enable
6	FDC Positive Decoding Control 2RW FDC Positive Decoding 0 Disable default 1 Enable LPT Positive Decoding 0 Disable default 1 Enable LPT Decode Range 00 3BCh-3BFh, 7BCh-7BEh default	Offset 6F – 7-6 Re 5 PC 4 I/C	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable C Decoding Range
6	FDC Positive Decoding Control 2RW FDC Positive Decoding 0 Disable default 1 Enable LPT Positive Decoding 0 Disable default 1 Enable LPT Decode Range 00 3BCh-3BFh, 7BCh-7BEh default 01 378h-37Fh, 778h-77Ah	Offset 6F – 7-6 Re 5 PC 4 I/C	served
6	FD – ISA Positive Decoding Control 2	Offset 6F – 7-6 Re 5 PC 4 I/C	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable C Decoding Range PC Decoding Range PC Primary default Secondary
7 6 5-4	FDC Positive Decoding Control 2	Offset 6F – 7-6 Re 5 PC 4 I/C 3 FI 2 So	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable C Decoding Range Primary default Secondary C Decoding Very default C Secondary C Decoding Range D Primary default C Secondary C Decoding Range
6	FDC Positive Decoding Control 2RW FDC Positive Decoding 0 Disable	Offset 6F – 7-6 Re 5 PC 4 I/C 3 FI 2 So	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable D Port 0CF9h Positive Decoding Disable default Enable C Decoding Range Primary default Secondary Und Blaster Positive Decoding Disable default
7 6 5-4	FDC Positive Decoding Control 2	Offset 6F – 7-6 Re 5 PC 4 I/C 3 FI 2 So	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable D Port 0CF9h Positive Decoding Disable default Enable C Decoding Range D Primary default Secondary Und Blaster Positive Decoding Disable default Enable D Primary default D Secondary Und Blaster Positive Decoding D Disable default Enable
7 6 5-4	## FDC Positive Decoding Control 2	Offset 6F – 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So	served always reads 0 S2# and PCS3# Positive Decoding Disable default Decoding Disable default Enable Decoding Range Primary default Secondary Disable default Decoding Range
7 6 5-4	## FDC Positive Decoding Control 2	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So (served always reads 0 S2# and PCS3# Positive Decoding Disable default Decoding Disable default Enable Decoding Range Primary default Secondary Disable default Decoding Range Decoding Ran
7 6 5-4	FDC Positive Decoding Control 2	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So () ()	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Decoding Disable default Enable Common default Enable Common default Secondary default Secondary default Enable default Enable default Enable default Secondary default Enable default Secondary default Enable default
7 6 5-4 3 2	FDC Positive Decoding Control 2	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So ()	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable PC Decoding Range Primary default Secondary default Secondary default Enable default Enable default Secondary default Enable default Secondary default
7 6 5-4	FDC Positive Decoding O Disable default Enable LPT Positive Decoding O Disable default Enable LPT Decode Range OO 3BCh-3BFh, 7BCh-7BEh default O1 378h-37Fh, 778h-77Ah O278h-27Fh, 678h-67Ah 11 -reserved- Game Port Positive Decoding O Disable default Enable MIDI Positive Decoding O Disable default Enable MIDI Positive Decoding O Disable default Enable MIDI Decode Range	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So ()	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Decoding Disable default Enable Common default Enable Common default Secondary default Secondary default Enable default Enable default Enable default Secondary default Enable default Secondary default Enable default
7 6 5-4 3 2	FDC Positive Decoding O Disable default Enable LPT Positive Decoding O Disable default Enable LPT Decode Range OO 3BCh-3BFh, 7BCh-7BEh default O1 378h-37Fh, 778h-77Ah 10 278h-27Fh, 678h-67Ah 11 -reserved- Game Port Positive Decoding O Disable default Enable MIDI Decode Range OO 300-303h default	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So ()	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable PC Decoding Range Primary default Secondary default Secondary default Enable default Enable default Secondary default Enable default Secondary default
7 6 5-4 3 2	FDC Positive Decoding Control 2	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So ()	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable PC Decoding Range Primary default Secondary default Secondary default Enable default Enable default Secondary default Enable default Secondary default
7 6 5-4 3 2	FDC Positive Decoding O Disable default Enable LPT Positive Decoding O Disable default Enable LPT Decode Range OO 3BCh-3BFh, 7BCh-7BEh default O1 378h-37Fh, 778h-77Ah 10 278h-27Fh, 678h-67Ah 11 -reserved- Game Port Positive Decoding O Disable default Enable MIDI Decode Range OO 300-303h default	Offset 6F = 7-6 Re 5 PC 4 I/C 3 FI 2 So 1-0 So ()	served always reads 0 S2# and PCS3# Positive Decoding Disable default Enable Port 0CF9h Positive Decoding Disable default Enable PC Decoding Range Primary default Secondary default Secondary default Enable default Enable default Secondary default Enable default Secondary default

I/O Pad Control

Offset '	7C – I/O Pad Control (00h)RW
7-6	Reserved always reads 0
5-4	IDE Interface Output Drive Strength
	00 Lowest default
	11 Highest
3-2	PLL PCLK Input Delay Select
	00 default
	11
1-0	PLL CLK66 Feedback Delay Select
	00 default
	11

Power Management-Specific Configuration Registers

Hiset	80 – General Configuration 0 (00h)RW
7	Reserved always reads 0
6	Sleep Button
	0 Disable default
	1 Sleep Button is on GPI21 / ACSDIN3 pin (V1)
5	Debounce LID and PWRBTN# Inputs for 200us
	This bit controls whether the debounce circuit for the
	LID# and PWRBTN# inputs is enabled to reduce
	possible noise.
	0 Disable default
	1 Enable
4	Reserved (Do Not Program) default = 0
3	Microsoft Sound Monitor in Audio Access
	This bit controls whether an I/O access to the sound
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.
	0 Disable default
	1 Enable
2	Game Port Monitor in Audio Access
	This bit controls whether an I/O access to the game
	port sets I/O Rx33-30[10] (Audio Access Status) = 1.
	0 Disable default
	1 Enable
1	Sound Blaster Monitor in Audio Access
	This bit controls whether an I/O access to the sound
	blaster port sets I/O Rx33-30[10] (Audio Access
	Status) = 1.
	0 Disable
0	1 Enable MIDI Monitor in Audio Access
U	This bit controls whether an I/O access to the MIDI
	port sets I/O Rx33-30[10] (Audio Access Status) = 1. 0 Disable
	1 Enable
	1 Eliavie

7	I/O Enable for ACPI I/O Base
	0 Disable access to ACPI I/O blockdefault
	1 Allow access to Power Management I/O
	Register Block (see offset 4B-48 to set the
	base address for this register block). The
	definitions of the registers in the Power
	Management I/O Register Block are included
	later in this document, following the Power
	Management Subsystem overview.
4	Reserved always reads 0
3	ACPI Timer Count Select
	0 24-bit Timer default
	1 32-bit Timer
	RTC Enable Signal Gated with PSON (SUSC#) in
	Soft-Off Mode
	This bit controls whether RTC control signals are
	gated during system suspend state. This is to prevent
	CMOS and Power-Well register data from being
	corrupted during system on/off when the control
	signals (PWRGD) may not be stable.
	0 Disable
	1 Enabledefault
	Clock Throttling Clock Select (STPCLK#)
	This bit controls the timer tick base for the throttle
	timer.
	0 30 usec (480 usec cycle time when using a 4-
	bit timer)
	1 1 msec (16 msec cycle time when using a 4-bit
	timer)
	The timer tick base can be further lowered to 7.5 usec (120 usec cycle time when using a 4-bit timer) by
	(170 lisec cycle time when lising a 4-bit timer) by
	setting $Rx8D[4] = 1$. When $Rx8D[4] = 1$, the setting

of this bit is ignored.

Reserved (Do Not Program)default = 0

iiset a	82 - ACPI Interrupt SelectKW
7	ATX / AT Power Indicator RC
	0 ATX
	1 AT
6	PSON (SUSC#) Gating RC
	During system on/off, this status bit reports whether
	PSON gating state has been completed, 0 meaning
	that gating is active now and 1 meaning that gating is
	complete. Software should not access any CMOS or
	Power-Well registers until this bit becomes 1 is
	Rx81[2] = 1 (see register description on previous
	page).
	0 PSON Gating Active
	1 PSON Gating Complete
5	Reserved always reads (
4	SUSC# AC-Power-On Default Value RC
	This bit is written at RTC Index 0D bit-7. If this bit
	is 0, the system is configured to "default on" when
	power is connected.
3-0	SCI Interrupt Assignment
	This field determines the routing of the ACPI IRQ.
	0000 Disableddefaul
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 IRQ15

1

Offset 85-84 - Primary Interrupt Channel (0000h)RW

If a device IRQ is enabled as a Primary IRQ, that device's IRQ can be used to generate wake events. The bits in this register are used in conjunction with:

- PMIO Rx28[7] Primary Resume Status
- PMIO Rx2A[7] Primary Resume Enable

If a device on one of the IRQ's is set to enable the Primary Interrupt, once the device generates an IRQ, the PMIO Rx28[7] status bit will become 1 to report the occurrence of the Primary IRQ. If PMIO Rx2A[7] is set to 1 to enable Resume-on-Primary-IRQ, the IRQ then becomes a wake event.

15 1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel 1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel 14 1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel 13 1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel 12 1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel 11 1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel 10 9 1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel 8 1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel 7 1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel 6 1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel 5 1/0 = Ena/Disa IRO5 as Primary Introt Channel 4 1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel 3 1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel 2 always reads 0

1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel

1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel

Offset 87-86 - Secondary Interrupt Channel (0000h) RW

For legacy PMU, the bits in this register are used in conjunction with:

- PMIO Rx28[1] Secondary Event Timer Timeout Status
- PMIO Rx2A[7] SMI on Secondary Event Timer Timeout

Secondary IRQ's are different from Primary IRQ's in that systems that resume due to a Secondary IRQ can return directly to suspend state after the secondary event timer times out. For this to work, PMIO Rx2A[1] needs to be set to one to enable SMI-on-Secondary-Event-Timer-Timeout (when PMIO Rx28[1] = 1). The timer's count value can be set via Rx93-90[27-26].

15

1/0 = Ena/Disa IRQ15 as Secondary Intr Channel 1/0 = Ena/Disa IRQ14 as Secondary Intr Channel 14 1/0 = Ena/Disa IRO13 as Secondary Intr Channel 13 1/0 = Ena/Disa IRQ12 as Secondary Intr Channel 12 1/0 = Ena/Disa IRQ11 as Secondary Intr Channel 11 1/0 = Ena/Disa IRQ10 as Secondary Intr Channel 10 9 1/0 = Ena/Disa IRQ9 as Secondary Intr Channel 8 1/0 = Ena/Disa IRQ8 as Secondary Intr Channel 7 1/0 = Ena/Disa IRQ7 as Secondary Intr Channel 6 1/0 = Ena/Disa IRQ6 as Secondary Intr Channel 5 1/0 = Ena/Disa IRO5 as Secondary Intr Channel 4 1/0 = Ena/Disa IRQ4 as Secondary Intr Channel 3 1/0 = Ena/Disa IRQ3 as Secondary Intr Channel 2always reads 0 1 1/0 = Ena/Disa IRQ1 as Secondary Intr Channel 0 1/0 = Ena/Disa IRQ0 as Secondary Intr Channel

Offset 8B-88 – Power Management I/O Base.....RW Offset 8D - Throttle / Clock Stop Control.....RW always reads 0 **Throttle Timer Reset**......def = 031-16 Reserved 6-5 15-7 Power Management I/O Register Base Address **Throttle Timer** Port Address for the base of the 128-byte Power This field determines the number of bits used for the Management I/O Register block, corresponding to throttle timer, which in conjunction with the throttle See "Power Management I/O Space timer tick determines the cycle time of STPCLK#. Registers" in this document for definitions of the For example, if a 2-bit timer and a 7.5 usec timer tick registers in the Power Management I/O Register are selected, the STPCLK# cycle time would be 30 usec $(2**2 \times 7.5)$. If a 4-bit timer and a 7.5 usec Block 6-0 0000001b timer tick is selected, the cycle time would be 120 usec (2**4 x 7.5). Offset 8C – Host Bus Power Management Control......RW 0x 4-Bitdefault **Thermal Duty Cycle** 10 3-Bit This field determines the duty cycle of STPCLK# 11 2-Bit when the THRM# pin is asserted. The duty cycle Fast Clock (7.5us) as Throttle Timer Tick indicates the percentage of performance (the lower This bit controls whether the throttle timer tick uses the percentage, the lower the performance and the 7.5 usec as its time base (120 usec cycle time when higher the power savings). The STPCLK# duty cycle using a 4-bit timer). when THRM# is NOT asserted is controlled by 0 Timer Tick is selected by Rx80[1] default PMIO Rx10[3:0]. If the setting in that field is lower Timer Tick is 7.5 usec (Rx80[1] is ignored) than the setting in this field, the lower setting will be 3 **SMI Level Output (Low)** used for thermal duty cycle. 0 Disable.....default 0000 Reserved......default Enable (during an SMI event, SMI# is held 0001 0-6.25% low until SMI event status is cleared) 0010 6.25-12.50% **Internal Clock Stop for PCI Idle** 0011 18.75-25.00% This bit controls whether the internal PCI clock is 0100 31.25-37.50% stopped when PCKRUN# is high. 0101 37.50-43.75% 0 PCI clock is not stoppeddefault 0110 43.75-50.00% 1 PCI clock is stopped 0111 50.00-56.25% **Internal Clock Stop During C3** 1000 56.25-62.50% This bit controls whether the internal PCI clock is 1001 62.50-68.75% stopped during C3 state. 1010 68.75-75.00% 0 PCI clock is not stoppeddefault 1011 75.00-87.50% 1 PCI clock is stopped 1100 75.00-81.25% **Internal Clock Stop During Suspend** 1101 81.25-87.50% This bit controls whether the internal PCI clock is 1110 87.50-93.75% stopped during Suspend state. 1111 93.75-100% 0 PCI clock is not stoppeddefault **THRM Enable** 3 1 PCI clock is stopped 0 Disable default 1 Enable **Processor Break Event** 2 0 Disable default Enable 1-0 Reserved always reads 0

Offset 93-90 - GP Timer Control (0000 0000h).....RW

31-30 Conserve Mode Timer Count Value

01 1/8 second

10 1 second

11 1 minute

29 Conserve Mode Status

This bit reads 1 when in Conserve Mode

28 Conserve Mode

This bit controls whether conserve mode (throttling) is enabled. When this bit is set, the system can enter conserve mode when primary activity is not detected within a given time period (determined by bits 31-30 of this register). Primary activity is defined in PMIO Rx33-30.

0 Disabledefault

1 Enable

27-26 Secondary Event Timer Count Value

01 64 milliseconds

10 ½ second

11 by EOI + 0.25 milliseconds

25 Secondary Event Occurred Status

This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the secondary event timer is counting down.

24 Secondary Event Timer Enable

- 0 Disable default
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4) Write to load count value; Read to get current count

15-8 GP0 Timer Count Value (base defined by bits 1-0) Write to load count value; Read to get current count

7 GP1 Timer Start

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP1 Timer Automatic Reload

- 0 GP1 Timer stops at 0default 1 Reload GP1 timer automatically after counting down to 0
- 5-4 GP1 Timer Base
 - 00 Disable.....default
 - 01 1/16 second
 - 10 1 second
 - 11 1 minute

3 GP0 Timer Start

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP0 Timer Automatic Reload

- GP0 Timer stops at 0default
 Reload GP0 timer automatically after counting down to 0
- 1-0 GP0 Timer Base
 - 00 Disabledefault
 - 01 1/16 second
 - 10 1 second
 - 11 1 minute

Offset	94 – Power Well Control WO	Offset 95 - Miscellaneous Power Well ControlRW
7	SMBus Clock Select	7 CPUSTP# to SUSST# Delay Select
-	0 SMBus Clock from 14.31818 MHz Divider	This bit controls the delay between the deassertion of
	1 SMBus Clock from RTC 32.768 KHz defult	CPUSTP# and the deassertion of SUSST# during a
6	Reservedalways reads 0	resume.
5	Internal PLL Reset During Suspend	0 1 msec minimumdefault
3	0 Enabledefault	1 125 usec minimum
	1 Disable	6 SUSST# Deasserted Before PWRGD for STD
4	SUSST1# / GPO3 Select (Pin Y3)	0 Disable default
4		
	0 SUSST1#default 1 GPO3	1 Enable (SUST# is deasserted before PWRGD
•		when resuming from STD)
3	GPO2 / SUSB# Select (Pin AF2)	5 Keyboard / Mouse Port Swap
	0 SUSB#default	This bit determines whether the keyboard and mouse
_	1 GPO2	ports can be swapped.
2	GPO1 / SUSA# Select (Pin AA2)	0 Disabledefault
	0 SUSA# default	1 Enable
	1 GPO1	4 Reservedalways reads 0
1-0	GPO0 Output Select (Pin AA3)	3 SMB2 / GPO Select
	This field controls the GPO0 output signal for Pulse	0 SMBDT2 / SMBCK2default
	Width Modulation.	1 GPO26 / GPO27
	00 GPO0 Fixed Output Level (defined by PMIO	2 AOL 2 SMB Slave
	Rx4C[0]) default	This bit controls whether external SMB masters can
	01 GPO0 output is 1 Hz "SLOWCLK"	access internal SMB registers (for Alert-On-LAN).
	10 GPO0 output is 4 Hz "SLOWCLK"	0 Enable (external SMB masters may reset /
	11 GPO0 output is 16 Hz "SLOWCLK"	resume the system (when $Rx96[4]=1$) or detect
		GPI status)default
		1 Disable
		1 SUSCLK / GPO4 Select
		0 SUSCLKdefault
		1 GPO4
		0 USB Wakeup for STR / STD / SoftOff
		This bit controls whether USB Wakeup is enabled
		when PMIO Rx21-20[14] (USB Wakeup Status) = 1 .
		This allows wakeup from STR, STD, Soft Off, and
		POS.
		0 Disable default
		1 Enable
		1 Eliaule
		Offset 96 - Power On / Reset ControlRW
		7-4 Reserved always reads 0
		•
		3-0 CPU Frequency Strapping Value Output to NMI,
		3-0 CPU Frequency Strapping Value Output to NMI, INTR, IGNNE#, and A20M# during RESET#
		3-0 CPU Frequency Strapping Value Output to NMI,

internal frequency. If the CPU hangs due to inappropriate settings written here, the GP3 timer (second timeout) can be used to initiate a system reboot (PMIO Rx42[2] = 1). Refer to the BIOS

Porting Guide for additional details.

DXX

Offset 98 – GP2 / GP3 Timer ControlRW

7 GP3 Timer Start

On setting this bit to 1, the GP3 timer loads the value defined by Rx5A and starts counting down. The GP3 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP3 timer counts down to zero, then the GP3 Timer Timeout Status bit is set to one (bit-13 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP3 Timer Timeout Enable bit is set (bit-13 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP3 Timer Automatic Reload

- 0 GP3 Timer stops at 0 default
- 1 Reload GP3 timer automatically after counting down to 0

5-4 GP3 Timer Tick Select

- 00 Disable default
- 01 1/16 second
- 10 1 second
- 11 1 minute

3 GP2 Timer Start

On setting this bit to 1, the GP2 timer loads the value defined by Rx59 and starts counting down. The GP2 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP2 timer counts down to zero, then the GP2 Timer Timeout Status bit is set to one (bit-12 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP2 Timer Timeout Enable bit is set (bit-12 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP2 Timer Automatic Reload

- 0 GP2 Timer stops at 0default
- 1 Reload GP2 timer automatically after counting down to 0

1-0 GP2 Timer Tick Select

- 00 Disable default
- $01 \quad 1/16 \ second$
- 10 1 second
- 11 1 minute

Offset 9	<u> 9 – GP2 TimerRW</u>
7	Write: GP2 Timer Load Value default = 0
	Read: GP2 Timer Current Count
Offset 9	9A – GP3 TimerRW
7	Write: GP3 Timer Load Value default = 0
	Read: GP3 Timer Current Count
Offset (C3-C0 – Power Management CapabilityRO
	C3-C0 – Power Management CapabilityRO Power Management Capability. always reads 0002h
31-16	Power Management Capability. always reads 0002h
31-16	Power Management Capability always reads 0002h Next Pointer
31-16 15-8	Power Management Capability. always reads 0002h
31-16 15-8 7-0	Power Management Capability always reads 0002h Next Pointer
31-16 15-8 7-0 Offset (Power Management Capability always reads 0002h Next Pointer always reads 00h Capability ID always reads 01h C7-C4 – Power Mgmt Capability CSR
31-16 15-8 7-0 Offset 0 31-24	Power Management Capability always reads 0002h Next Pointer always reads 00h Capability ID always reads 01h
31-16 15-8 7-0 Offset 0 31-24 23-16	Power Management Capability always reads 0002h Next Pointer always reads 00h Capability ID always reads 01h C7-C4 – Power Mgmt Capability CSR RW Power Management Data always reads 00h

Offset 00 CD2 Times

System Management Bus-Specific Configuration Registers **SMB GPIO Slave Command Codes** Offset D1-D0 - SMBus I/O BaseRW SMBus Command Code 0 - GPIO Slave Input Port..... RO **15-4 I/O Base (16-byte I/O space)** default = 00h Input Data default per pins Reflects the incoming logic levels of the pins, 3-0 Fixed always reads 0001b regardless of whether the pin is defined as an input or Offset D2 - SMBus Host ConfigurationRW an output. Writes to this register have no effect. always reads 0 Reserved SMBus Command Code 1 – GPIO Slave Output Port.. RW 3 **SMBus Interrupt Type** SMIdefault **Output Data**default = 0 1 SCI Controls the levels of the GPIO output pins defined Reservedalways reads 0 as outputs. Bit values in this register have no effect on pins defined as inputs. Reads from this register 1 **SMBus Interrupt Enable** 0 Disable SCI / SMI default reflect the saved value last written, not the actual pin Enable SCI / SMI 0 **SMBus Host Controller Enable** SMBus Cmd Code 2 - GPIO Slave Polarity Inversion.. RW 0 Disable SMB controller functions....... default **Polarity Inversion**default = 0Fh Enable SMB controller functions This register enables polarity inversion of pins Offset D3 – SMBus Host Slave CommandRW defined as inputs by Command Code 3. SMBus Host Slave Command Code default=0 Corresponding pin's polarity unchanged Corresponding pin's polarity inverted Offset D4 - SMBus Slave Address for Port 1.....RW SMBus Cmd Code 3 – GPIO Slave I/O Configuration.. RW SMBus Slave Address for Port 1..... default=0 **Input / Output Configuration**.......... default = 0FFh Read / Write for Shadow Port 1 This register configures the directions of the I/O pins. Offset D5 - SMBus Slave Address for Port 2.....RW 0 Corresponding pin is an output SMBus Slave Address for Port 2......default=0 Corresponding pin is an input......default Read / Write for Shadow Port 2 Offset D6 - SMBus Revision IDRO

7-0 SMBus Revision Code

General Purpose I/O Control Registers

Offset	E0 – GPI Inversion ControlRW			
7-0	7-0 GPI[27-24, 19-16] Input Inversion			
	0 Non-inverted input default			
	1 Inverted input			
Off.	E1 CDICCI (CMICI)			
	E1 – GPI SCI / SMI SelectRW			
7-0	GPI[27-24, 19-16] SCI / SMI Select			
	When GPI[27-24,19-16] are set to enable SCI / SMI			
	generation (PMIO Rx52), this field determines			
	whether an SCI or SMI is generated.			
	0 SCIdefault			
	1 SMI			
Offset	E4 – GPO Pin SelectRW			
7	Reserved always reads 0			
6	ACSDIN2,3 / GPIO20,21 Select (Pins U2, V1)			
	This bit is ignored if any of RxE5 bits 1, 2, 4, or $5 = 1$			
	0 $U2 = ACSDIN2$, $V1 = ACSDIN3$ default			
	1 $U2 = GPIO20$, $V1 = GPIO21$			
5	SA[19:16] / GPO[19:16] Select (AC11, AD11,			
	AE11, AF11)			
	0 SA[19:16]default			
	1 GPO[19:16]			
4	GPIO[15:12] Direction			
	0 Input (pins are GPI[15:12]) default			
	1 Output (pins are GPO[15:12])			
3	GPIO[11:8] Direction			
	0 Input (pins are GPI[11:8]) default			
_	1 Output (pins are GPO[11:8])			
2	GNT5# / GPO7 Select (Pin P4)			
	REQ5# / GPI7 Select (Pin N4)			
	0 P4 = GPO7, N4 = GPI7 default			
1	1 P4 = GNT5#, N4 = REQ5# PCISTP# / GPO6 Select (Pin AF6)			
1	0 V6 = PCISTP#default			
	1 V6 = GPO6			
0				
	CPUSTP# / GPO5 Select (Pin AC7)			
•	CPUSTP# / GPO5 Select (Pin AC7) 0 Y5 = CPUSTP#default			

Offset I	E5 – GPIO I/O Select 1RW	
7	Voltage Regulator Change Timer Select	
	0 100 usecdefault	
	1 200 usec	
6	AGPBZ# Source of Bus Master Status	
	0 Disabledefault	
	1 Enable	
5	Reserved always reads 0	
4	VGATE on GPIO8 (Pin C8)	
	0 U2 = GPIO8default	
	1 U2 = VGATE (bit 1 and RxE4[6] are ignored)	
3	CPU Frequency Change	
	0 Enable default	
	1 Disable	
2	PCS1# on ACSDIN3 (Pin V1)	
	0 V1 = ACSDIN3 / GPIO21 / SLPBTN#.default	
	1 $V1 = PCS1\# (RxE4[6] ignored)$	
1	PCS0# on ACSDIN2 (Pin U2)	
	0 U2 = ACSDIN2 / GPIO20default	
	1 $U2 = PCS0\# (RxE4[6] ignored)$	
0	IORDY / GPI19 Select (Pin AD10)	
	0 AD10 = IORDYdefault	
	1 $AD10 = GPI19$	
	E6 – GPIO I/O Select 2RW	
7	GPI31 / GPO31 (GPIOE) Select (Pin AC6)	
	0 AC6 = GPI31 default	
	1 $AC6 = GPO31 / GPIOE$	
6	GPI30 / GPO30 (GPIOD) Select (Pin AD6)	
	0 AD6 = GPI30default	
	1 $AD6 = GPO30 / GPIOD$	
5-2	Reserved always reads 0	
1	GPI25 / GPO25 (GPIOC) Select (Pin AE6)	
	0 AE6 = GPI25 default	
	1 $AE6 = GPO25 / GPIOC$	
0	GPI24 / GPO24 (GPIOA) Select (Pin AE5)	
	0 AE5 = GPI24default	
	1 AE5 = GPO24 / GPIOA	
Offset I	E7 – GPO Output TypeRW	
	its determine whether the indicated GPO pin is open	
	TTL when the corresponding bit of $RxE6 = 1$.	
drain or	The when the corresponding of of RAE0 = 1.	
7	GPO31 OD/TTL Select (Pin AC6)	
6	GPO30 OD/TTL Select (Pin AD6)	
5-2	Reserved always reads 0	
1	GPO25 OD/TTL Select (Pin AE6)	
0	GPO24 OD/TTL Select (Pin AE5)	
For all defined bits above:		
- 01 un C	0 ODdefault	
	1 TTL	
		

Power Management I/O-Space Registers

Basic Power Management Control and Status

	s in this register are set only by hardware and can be software by writing a one to the desired bit position.		s in this register correspond to the bits in the Power ment Status Register at offset 1-0.
•		•	•
15	Wakeup Status	15	Reservedalways reads 0
	Reserved always reads 0		Reserved always reads 0
11	Abnormal Power-Off Status default = 0	11	Reserved always reads 0
10	RTC Alarm Statusdefault = 0	10	RTC Alarm Enabledefault = 0
	This bit is set when the RTC generates an alarm (on assertion of the RTC IRQ signal).		This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI Enable bit) to be generated when the RTC Status bit is set.
9	Sleep Button Status default = 0	9	Sleep Button Enabledefault = 0
	This bit is set when the sleep button is pressed (SLPBTN# signal asserted low).		This bit may be set to trigger either an SCI or SMI when the Sleep Button Status bit is set.
8	Power Button Status default = 0	8	Power Button Enable default = 0
	This bit is set when the PWRBTN# signal is asserted		This bit may be set to trigger either an SCI or an SMI
	low. If the PWRBTN# signal is held low for more		(depending on the setting of the SCI Enable bit) to be
	than four seconds, this bit is cleared, the Power		generated when the Power Button Status bit is set.
	Button Status bit is set, and the system will transition		
	into the soft off state.		D 1
7-6	Reserved always reads 0	7-6	Reserved always reads 0
5	Global Status default = 0	5	Global Enable
	This bit is set by hardware when the BIOS Release bit is set (typically by an SMI routine to release		This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI Enable bit) to be
	control of the SCI / SMI lock). When this bit is		generated when the Global Status bit is set.
	cleared by software (by writing a one to this bit		generated when the Global Status bit is set.
	position) the BIOS Release bit is also cleared at the		
	same time by hardware.	4	Reservedalways reads 0
4	Bus Master Status default = 0	-	2.00.02 , 0.0
	This bit is set when a system bus master requests the		
	system bus. All PCI master, ISA master and ISA		
	DMA devices are included.	3-1	Reserved always reads 0
3-1	Reserved always reads 0	0	ACPI Timer Enable default = 0
0	ACPI Timer Carry Status default = 0		This bit may be set to trigger either an SCI or an SMI
	The bit is set when the 23^{rd} (31st) bit of the 24 (32)		(depending on the setting of the SCI Enable bit) to be
	bit ACPI power management timer changes.		generated when the Timer Status bit is set.

I/O Offset 5-4 - Power Management Control.....RW

15 Soft Resume

This bit is used to allow a system using an AT power supply to operate as if an ATX power supply were being used. Refer to the BIOS Porting Guide for implementation details.

- 0 Disable default
- 1 Enable
- **14 Reserved** always reads 0

12-10 Sleep Type

- 000 Normal On
- 001 Suspend to RAM (STR)
- 010 Suspend to Disk (STD) (also called Soft Off). The VCC power plane is turned off while the VSUS33 and VBAT planes remain on.
- 011 Reserved
- 100 Power On Suspend without Reset
- 101 Power On Suspend with CPU Reset
- 110 Power On Suspend with CPU/PCI Reset
- 111 Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

- 9 Reservedalways reads 0
- 8 STD Command Generates System Reset Only
- - This bit is set by ACPI software to indicate the release of the SCI / SMI lock. Upon setting of this bit, the hardware automatically sets the BIOS Status bit. The bit is cleared by hardware when the BIOS Status bit is cleared by software. Note that the setting of this bit will cause an SMI to be generated if the BIOS Enable bit is set (bit-5 of the Global Enable register at offset 2Ah).

1 Bus Master Reload

This bit controls whether bus master requests (PMIO Rx00[4] = 1) transition the processor from C3 to C0 state.

- 0 Bus master requests are ignored by power management logicdefault
- Bus master requests transition the processor from the C3 state to the C0 state

0 SCI / SMI Select

This bit controls whether SCI or SMI is generated for power management events triggered by the Power Button, Sleep Button, and RTC (when PMIO Rx1-0 bits 8, 9, or 10 equal one).

- 0 Generate SMI.....default
- 1 Generate SCI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, Timer Status & Global Status always generate SCI and BIOS Status always generates SMI.

I/O Offset 0B-08 - Power Management TimerRW

31-24 Extended Timer Value

This field reads back 0 if the 24-bit timer option is selected (Rx41 bit-3).

23-0 Timer Value

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

I/O Offset 13-10 - Processor & PCI Bus ControlRW				
	Reserved always reads 0			
11	Disable PCISTP# When PCKRUN# is Deasserted			
	0 Enabledefault			
	1 Disable			
10	PCI Bus Clock Run Without Stop			
	0 PCKRUN# is always asserted default			
	1 PCKRUN# will be de-activated after the PCI			
	bus is idle for 26 clocks			
9	Host Clock Stop			
	This bit controls whether CPUSTP# is asserted in C3			
	and S1 states. Normally CPUSTP# is not asserted in			
	C3 and S1 states, only STPCLK# is asserted.			
	0 CPUSTP# will not be asserted in C3 and S1			
	states (only STPCLK# is asserted) default			
	1 CPUSTP# will be asserted in C3 and S1 states			
8	Assert SLP# for Processor Level 3 Read			
	This bit controls whether SLP# is asserted in C3			
	state.			
	0 SLP# is not asserted in C3 state default			
	1 SLP# is asserted in C3 state			
	Used with Intel CPUs only.			
7	Lower CPU Voltage During C3/S1			
	This bit controls whether the CPU voltage is lowered			
	when in C3/S1 state. The voltage is lowered using			
	the VRDSLP signal to the voltage regulator. PMIO			
	RxE5[3] must be 0 to enable the voltage change			
	function. Bits 8 and 9 of this register must also be set			
	to 1.			
	0 Disable (normal voltage during C3/S1) def			
	1 Enable (lower voltage during C3/S1)			
6-5	Reserved always reads 0			

4 Throttling Enable

Setting this bit starts clock throttling (modulating the STPCLK# signal) regardless of the CPU state. The throttling duty cycle is determined by bits 3-0 of this register.

3-0 Throttling Duty Cycle

This field determines the duty cycle of the STPCLK# signal when the system is in throttling mode ("Throttling Enable" bit set to one). The duty cycle indicates the percentage of performance (the lower the percentage, the lower the performance and the higher the power savings).

0000 Reserved
0001 0-6.25%
0010 6.25-12.50%
0011 18.75-25.00%
0100 31.25-37.50%
0101 37.50-43.75%
0110 43.75-50.00%
0111 50.00-56.25%
1000 56.25-62.50%
1001 62.50-68.75%
1010 68.75-75.00%
1110 75.00-87.50%
1100 75.00-81.25%
1101 81.25-87.50%
1110 87.50-93.75%

1111 93.75-100%

I/O Offset 14 - Processor Level 2.....RO

7-0 Level 2always reads 0 Reads from this register put the processor into the Stop Grant state (the VT8235 asserts STPCLK# to suspend the processor). Wake up from Stop Grant state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

I/O Offset 15 - Processor Level 3.....RO

7-0 Level 3always reads 0 Reads from this register put the processor in the C3 clock state with the STPCLK# signal asserted. If Rx10[9] = 1 then the CPU clock is also stopped by asserting CPUSTP#. Wakeup from the C3 state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

General Purpose Power Management Registers

I/O Off	fset 21-20 - General Purpose StatusRWC		
15	North Bridge SERR# Status		
14	8		
	For STR / STD / Soff		
13	AC97 Wake-Up Status		
	Can be set only in suspend mode		
12	Battery Low Status		
	Set when the BATLOW# input is asserted low.		
11	Notebook Lid Status		
	Set when the LID input detects the edge selected by		
	Rx2C bit-7 (0=rising, 1=falling).		
10	Thermal Detect Status		
	Set when the THRM# input detects the edge selected		
	by Rx2C bit-6 (0=rising, 1=falling).		
9	Reservedalways reads 0		
8	Ring Status		
	Set when the RING# input is asserted low.		
7	Reservedalways reads 0		
6	INTRUDER# Status		
	Set when the INTRUDER# pin is asserted low.		
5	PME# Status		
	Set when the PME# pin is asserted low.		
4	EXTSMI# Status		
	Set when the EXTSMI# pin is asserted low.		
3	Internal LAN PME Status		
	Set when the internal LAN PME signal is asserted.		
2	Internal KBC PME Status		
	Set when the internal KBC PME signal is asserted.		
1	GPI1 Status		
	Set when the GPI1 pin is asserted low.		
0	GPI0 Status		
	Set when the GPI0 pin is asserted low.		

Note that the above bits correspond one for one with the bits of the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24: an SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set to one.

The above bits are set by hardware only and can only be cleared by writing a one to the desired bit.

I/O Offset 23-22 - General Purpose SCI EnableRW			
15	Enable SCI on setting of Rx21-20[15]def=0		
14	Enable SCI on setting of Rx21-20[14]def=0		
13	Enable SCI on setting of Rx21-20[13]def=0		
12	Enable SCI on setting of Rx21-20[12]def=0		
11	Enable SCI on setting of Rx21-20[11]def=0		
10	Enable SCI on setting of Rx21-20[10]def=0		
9	Reserved always reads 0		
8	Enable SCI on setting of Rx21-20[8]def=0		
7	Reserved always reads 0		
6	Enable SCI on setting of Rx21-20[6]def=0		
5	Enable SCI on setting of Rx21-20[5]def=0		
4	Enable SCI on setting of Rx21-20[4]def=0		
3	Enable SCI on setting of Rx21-20[3]def=0		
2	Enable SCI on setting of Rx21-20[2]def=0		
1	Enable SCI on setting of Rx21-20[1]def=0		
0	Enable SCI on setting of Rx21-20[0]def=0		

These bits allow generation of an SCI using a separate set of conditions from those used for generating an SMI.

I/O Offset 25-24 - General Purpose SMI EnableRW			
15	Enable SMI on setting of Rx21-20[15]def=0		
14	Enable SMI on setting of Rx21-20[14]def=0		
13	Enable SMI on setting of Rx21-20[13]def=0		
12	Enable SMI on setting of Rx21-20[12]def=0		
11	Enable SMI on setting of Rx21-20[11]def=0		
10	Enable SMI on setting of Rx21-20[10]def=0		
9	Reserved always reads 0		
8	Enable SMI on setting of Rx21-20[8]def=0		
7	Reserved always reads 0		
6	Enable SMI on setting of Rx21-20[6]def=0		
5	Enable SMI on setting of Rx21-20[5]def=0		
4	Enable SMI on setting of Rx21-20[4]def=0		
3	Enable SMI on setting of Rx21-20[3]def=0		
2	Enable SMI on setting of Rx21-20[2]def=0		
1	Enable SMI on setting of Rx21-20[1]def=0		
0	Enable SMI on setting of Rx21-20[0]def=0		

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Generic Power Management Registers

I/O Of	fset 29-28 - Global StatusRWC	<u>I</u>
15	GPIO Range 1 Access Status default = 0	
14	GPIO Range 0 Access Status default = 0	
13	GP3 Timer Timeout Status default = 0	
12	GP2 Timer Timeout Status default = 0	
11	SERIRQ SMI Status default = 0	
10	Rx5[5] Write SMI Status default = 0	
	This bit reports whether Rx5[5] is written. If	
	Rx2B[3] is set to enable SMI, an SMI in generated	
	when this bit $= 1$.	
9	Reserved always reads 0	
8	PCKRUN# Resume Status default = 0	
	This bit is set when PCI bus peripherals wake up the	
	system by asserting PCKRUN#	
7	Primary IRQ/INIT/NMI/SMI Resume Statusdef=0	
	This bit is set at the occurrence of primary IRQs as	
	defined in Rx85-84 of PCI configuration space	
6	Software SMI Status default = 0	
	This bit is set when the SMI Command port (Rx2F)	
	is written.	
5	BIOS Status default = 0	
	This bit is set when the Global Release bit is set to	
	one (typically by the ACPI software to release	
	control of the SCI/SMI lock). When this bit is reset	
	(by writing a one to this bit position) the Global	
	Release bit is reset at the same time by hardware.	
4	Legacy USB Status default = 0	
	This bit is set when a legacy USB event occurs. This	
•	is normally used for USB keyboards.	
3	GP1 Timer Time Out Status default = 0	
•	This bit is set when the GP1 timer times out.	
2	GP0 Timer Time Out Status default = 0	
1	This bit is set when the GP0 timer times out.	
1	Secondary Event Timer Time Out Status def=0	
	This bit is set when the secondary event timer times	
0	Out.	
U	Primary Activity Status	
	This bit is set at the occurrence of any enabled primary system activity (see the Primary Activity	
	Detect Status register at offset 30h and the Primary Activity Detect Enable register at offset 34h). After	
	checking this bit, software can check the status bits in	
	the Primary Activity Detect Status register at offset	
	30h to identify the specific source of the primary	
	event. Note that setting this bit can be enabled to	
	reload the GP0 timer (see bit-0 of the GP Timer	
	Reload Enable register at offset 38).	

Note that SMI can be generated based on the setting of any of the above bits (see the Rx2A Global Enable register bit descriptions in the right hand column of this page).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

The bits in this register are for SMI's only while the bits in Rx21-20 are for SMI's and SCI's

I/O Of	fset 2B-2A - Global EnableRW
15	GPIO Range 1 SMI Enabledefault = 0
14	GPIO Range 0 SMI Enabledefault = 0
13	GP3 Timer Timeout SMI Enabledefault = 0
12	GP2 Timer Timeout SMI Enable default = 0
11	SERIRQ SMI Enabledefault = 0
10	SMI on Sleep Enable Write default = 0
	•
9	Reserved always reads 0
8	PCKRUN# Resume Enabledefault = 0
	This bit may be set to trigger an SMI to be generated
	when the PCKRUN# Resume Status bit is set.
7	Primary IRQ/INIT/NMI/SMI Resume Enable In
	Post State default = 0
	This bit may be set to trigger an SMI to be generated
	when the Primary IRQ / INIT / NMI / SMI Resume
	Status bit is set.
6	SMI on Software SMI default = 0
	This bit may be set to trigger an SMI to be generated
	when the Software SMI Status bit is set.
5	SMI on BIOS Status default = 0
	This bit may be set to trigger an SMI to be generated
	when the BIOS Status bit is set.
4	SMI on Legacy USB default = 0
	This bit may be set to trigger an SMI to be generated
	when the Legacy USB Status bit is set.
3	SMI on GP1 Timer Time Out default = 0
	This bit may be set to trigger an SMI to be generated
•	when the GP1 Timer Timeout Status bit is set.
2	SMI on GP0 Timer Time Out default = 0
	This bit may be set to trigger an SMI to be generated
1	when the GPO Timer Timeout Status bit is set.
1	SMI on Secondary Event Timer Time Out def=0 This bit may be set to trigger an SMI to be generated
	when the Secondary Event Timer Timeout Status bit
	is set.
0	SMI on Primary Activitydefault = 0
U	This bit may be set to trigger an SMI to be generated
	when the Primary Activity Status bit is set.

I/O Off	set 2D-2C - Global ControlRW	
	Reserved always reads 0	
11	IDE Secondary Bus Power-Off	
	0 Disable default	
	1 Enable	
10	IDE Primary Bus Power-Off	
	0 Disable default	
	1 Enable	
9	Reserved always reads 0	
8	SMI Active	
	0 SMI Inactivedefault	
	1 SMI Active. If the SMI Lock bit is set, this bit	
	needs to be written with a 1 to clear it before	
	the next SMI can be generated.	
7	LID Triggering Polarity	
	0 Rising Edge default	
	1 Falling Edge	
6	THRM# Triggering Polarity	
	0 Rising Edge default	
	1 Falling Edge	
5	Battery Low Resume Disable	
	0 Enable resume default	
	1 Disable resume from suspend when	
	BATLOW# is asserted	
4-3	Reserved always reads 0	
2	Power Button Triggering Select	
	0 SCI/SMI generated by PWRBTN# rising edge	
	default	
	1 SCI/SMI generated by PWRBTN# falling	
	edge	
	Set to zero to avoid the situation where the Power	
	Button Status bit is set to wake up the system then	

1 BIOS Release

the soft-off state.

This bit is set by legacy software to indicate release of the SCI/SMI lock. Upon setting of this bit, hardware automatically sets the Global Status bit. This bit is cleared by hardware when the Global Status bit cleared by software.

reset again by PBOR Status to switch the system into

Note that if the Global Enable bit is set (Power Management Enable register Rx2[5]), then setting this bit causes an SCI to be generated (because setting this bit causes the Global Status bit to be set).

0 SMI Enable

- 0 Disable all SMI generation...... default
- 1 Enable SMI generation

I/O Offset 2F - SMI CommandRW

7-0 SMI Command

Writing to this port sets the Software SMI Status bit. Note that if the Software SMI Enable bit is set (see Global Enable register Rx2A[6]), then an SMI is generated.

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in Rx37-34. If the corresponding bit is set in that register, setting of a bit below will cause the Primary Activity Status (PACT_STS) bit to be set (Global Status register Rx28[0]). All bits in this register default to 0, are set by hardware only, and may only be cleared by writing 1s to the desired bit.

- 31-11 Reservedalways read 0
 10 Audio Access Status(AUD_STS)
 Set if Audio is accessed.
 - 9 Keyboard Controller Access Status..... (KBC_STS) Set if the KBC is accessed via I/O port 60h.
 - 8 VGA Access Status......(VGA_STS)
 Set if the VGA port is accessed via I/O ports 3B03DFh or memory space A0000-BFFFFh.
 - 7 Parallel Port Access Status......(LPT_STS) Set if the parallel port is accessed via I/O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
 - 6 Serial Port B Access Status (COMB_STS)
 Set if the serial port is accessed via I/O ports 2F82FFh or 2E8-2Efh (COM2 and COM4 respectively).
 - 5 Serial Port A Access Status(COMA_STS) Set if the serial port is accessed via I/O ports 3F8-3FFh or 3E8-3EFh (COM1 and COM3, respectively).
 - 4 Floppy Access Status.....(FDC_STS)
 Set if the floppy controller is accessed via I/O ports
 3F0-3F5h or 3F7h.
 - 3 Secondary IDE Access Status.....(SIDE_STS) Set if the IDE controller is accessed via I/O ports 170-177h or 376h.
 - 2 Primary IDE Access Status(PIDE_STS) Set if the IDE controller is accessed via I/O ports 1F0-1F7h or 3F6h.
 - Primary Interrupt Activity Status.....(PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Function 4 PCI configuration register offset 44h).
 - **O** PCI Master Access Status......(DRQ_STS)
 Set on the occurrence of PCI master activity.

Note: Setting of Primary Activity Status (PACT_STS) may be done to enable a "Primary Activity Event": an SMI will be generated if the Primary Activity Enable bit is set (Global Enable register Rx2A[0]) and/or the GP0 timer will be reloaded if the "GP0 Timer Reload on Primary Activity" bit is set (GP Timer Reload Enable register Rx38[0]).

Note: Bits 2-9 above also correspond to bits of GP Timer Reload Enable register Rx38: If bits are set in that register, setting a corresponding bit in this register will cause the GP1 timer to be reloaded.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in Rx33-30. Setting of any of these bits also sets the Primary Activity Status (PACT_STS) bit (Rx28[0]) which causes the GP0 timer to be reloaded (if the Primary Activity GP0 Enable bit is set) or generates an SMI (if Primary Activity Enable is set).

ctivity	Enabl	e is set).
31-11	Rese	rvedalways read 0
10	SMI	on Audio Status (AUD_EN)
	0	
	1	Set PACT_STS if AUD_STS is set
9	SMI	on Keyboard Controller Status (KBC_EN)
	0	Don't set PACT_STS if KBC_STS is set def
	1	Set PACT STS if KBC STS is set
8	SMI	on VGA Status(VGA_EN)
	0	Don't set PACT_STS if VGA_STS is set def
	1	Set PACT_STS if VGA_STS is set
7	SMI	on Parallel Port Status(LPT_EN)
	0	
	1	Set PACT_STS if LPT_STS is set
6	SMI	on Serial Port B Status(COMB_EN)
	0	Don't set PACT_STS if COMB_STS is set.def
	1	Set PACT_STS if COMB_STS is set
5	SMI	on Serial Port A Status (COMA_EN)
	0	Don't set PACT_STS if COMA_STS is set.def
	1	Set PACT_STS if COMA_STS is set
4	SMI	on Floppy Status(FDC_EN)
	0	Don't set PACT_STS if FDC_STS is set def
	1	Set PACT_STS if FDC_STS is set
3	SMI	on Secondary IDE Status(SIDE_EN)
	0	Don't set PACT_STS if SIDE_STS is set def
	1	Set PACT_STS if SIDE_STS is set
2	SMI	on PrimaryIDE Status (PIDE_EN)
	0	Don't set PACT_STS if PIDE_STS is set def
	1	Set PACT_STS if PIDE_STS is set
1	SMI	on Primary IRQ Status(PIRQ_EN)
	0	Don't set PACT_STS if PIRQ_STS is setdef
	1	Set PACT_STS if PIRQ_STS is set
0	SMI	on PCI Master Status(DRQ_EN)
		Don't set PACT_STS if DRQ_STS is set def

Set PACT STS if DRO STS is set

I/O Off	set 3B-38 - GP Timer Reload EnableRW	I/O Off	Set 40 – Extended I/O Trap StatusRWC
All bits	in this register default to 0 on power up.	7-5	Reservedalways reads 0
	Reserved always reads 0	4	BIOS Write Access Status
7	GP1 Timer Reload on KBC Access	3	GP3 Timer Second Timeout With No Cycles
-	0 Normal GP1 Timer Operation default		0 Disable default
	1 Setting of KBC_STS causes the GP1 timer to		1 Enable (GP3 timer timed out twice with no
	reload.		cycles in between)
6	GP1 Timer Reload on Serial Port Access	2	GP3 Timer Second Timeout Status
Ü	0 Normal GP1 Timer Operation default	1	GPIO Range 3 Access Status
	1 Setting of COMA_STS or COMB_STS causes	0	GPIO Range 2 Access Status
	the GP1 timer to reload.	v	or rounge a recommendation
		I/O Off	Set 42 – Extended I/O Trap EnableRW
5	Reserved always reads 0	7-5	Reserved always reads 0
	·	4	SMI on BIOS Write Access
4	GP1 Timer Reload on <u>VGA Access</u>		This bit controls whether SMI is generated when
	0 Normal GP1 Timer Operation default		BIOS Write Access Status $Rx40[4] = 1$.
	1 Setting of VGA_STS causes the GP1 timer to		0 Disabledefault
	reload.		1 Enable (can be reset only by OCI_Reset)
3	GP1 Timer Reload on IDE/Floppy Access	3	Reserved always reads 0
	0 Normal GP1 Timer Operation default	2	GP3 Timer Second Timeout Reboot
	1 Setting of FDC_STS, SIDE_STS, or		This bit controls whether the system is rebooted
	PIDE_STS causes the GP1 timer to reload.		when the GP3 timer times out twice $(Rx40[2] = 1)$.
			0 Disabledefault
2	GP3 Timer Reload on GPIO Range 1 Access		1 Enable
	0 Normal GP3 Timer Operation default	1	SMI on GPIO Range 3 Access
	1 Setting of GR1_STS causes the GP3 timer to		This bit controls whether SMI is generated when
	reload.		GPIO range 3 is accessed $(Rx40[1] = 1)$
1	GP2 Timer Reload on GPIO Range 0 Access		0 Disabledefault
	0 Normal GP2 Timer Operation default		1 Enable
	1 Setting of GR0_STS causes the GP2 timer to	0	SMI on GPIO Range 2 Access
	reload.		This bit controls whether SMI is generated when
			GPIO range 2 is accessed $(Rx40[0] = 1)$
0	GP0 Timer Reload on Primary Activity		0 Disabledefault
	0 Normal GP0 Timer Operation default		1 Enable
	1 Setting of PACT_STS causes the GP0 timer to		
	reload. Primary activities are enabled via the		
	Primary Activity Detect Enable register (offset		

37-34) with status recorded in the Primary Activity Detect Status register (offset 33-30).

General Purpose I/O Registers

/O OI	set 45 – SMI / IRQ / Resume Status	ΚU	
7-5	Reserved always read	ds 0	
4	Latest PCSn Status		
	0 Latest PCSn was an I/O Read		
	1 Latest PCSn was an I/O Write		
3	Serial SMI Status		
	This bit is used to report a Serial-IRQ-generated S	MI.	
2	Reservedalways read	ds 0	
1	SMBus IRQ Status		
	This bit is used to report an SMBus SMI.		
0	SMBus Resume Status		
	This bit is used to report an SMBus Resume Event		

I/O Offset 4B-48 - GPI Port Input Value (GPIVAL) RO 31-0 GPI[31-0] Input Value Read Only

I/O Offset 4F-4C - GPO Port Output Value (GPOVAL)RW

Reads from this register return the last value written (held on chip). Some GPIO pins can be used as both input and output (GPIO pins 8-15 and 20-31). The output type of these pins is OD (open drain) so to use one of these pins as an input pin, a one must be written to the corresponding bit of this register. See also Function 0 RxE4[4-3] for I/O control of GPIO pins 8-15.

31-0 GPO[31-0] Output Value.....def = FFFFFFFh

7	GPI27 Pin Change Status	default =
6	GPI26 Pin Change Status	default =
5	GPI25 Pin Change Status	default
4	GPI24 Pin Change Status	default
3	GPI19 Pin Change Status	default
2	GPI18 Pin Change Status	default
1	GPI17 Pin Change Status	default
0	GPI16 Pin Change Status	

7	GPI27	Pin	SCI	/SMI	Select
,	(TI 14 /	1 111	171	/ L71VII	DUCLE

- 6 GPI26 Pin SCI / SMI Select
- 5 GPI25 Pin SCI / SMI Select
- 4 GPI24 Pin SCI / SMI Select
- 3 GPI19 Pin SCI / SMI Select
- 2 GPI18 Pin SCI / SMI Select
- 1 GPI17 Pin SCI / SMI Select
- 0 GPI16 Pin SCI / SMI Select
 - 0 SCI on pin input change default
 - 1 SMI on pin input change

I/O Trap Registers

<u>I/O Offset 57-54 – I/O Trap PCI DataRC</u>
31-0 PCI Data During I/O Trap SMI
I/O Offset 59-58 – I/O Trap PCI I/O AddressRO
15-0 PCI Address During I/O Trap SMI
I/O Offset 5A – I/O Trap PCI Command / Byte Enable RO
7-4 PCI Command Type During I/O Trap SMI
3-0 PCI Byte Enable During I/O Trap SMI

I/O Offset 5C – CPU Performance Control......RW 7-2 Reservedalways reads 0

1 Lower CPU Voltage During C3 / S1

This bit controls the CPU voltage in C3/S1 state. The voltage is lowered using the VGATE signal (PMIO RxE5[4] must be 0 to enable the voltage change function).

- 0 Disable (normal voltage during C3/S1) def
- 1 Enable (lower voltage during C3/S1)

0 Lower CPU Frequency During C3/S1

This bit controls the CPU frequency in C3/S1 state. The frequency is lowered using the GHI# signal (PMIO RxE5[3] must be 0 to enable the frequency change function).

- 0 Disable (normal frequency during C3/S1)...def
- 1 Enable (lower frequency during C3/S1)

System Management Bus I/O-Space Registers

The base address for these registers is defined in RxD1-D0 of the Device 17 Function 0 PCI configuration registers. The System Management Bus I/O space is enabled for access by the system if Device 17 Function 0 RxD2[0] = 1.

	set 00 – SMBus Host StatusRWC	I/O Of
7	Reserved always reads 0	7-6
6	SMB SemaphoreRWC	5
	This bit is used as a semaphore among various	
	independent software threads that may need to use	
	the Host SMBus logic and has no effect on hardware.	
	After reset, this bit reads 0. Writing 1 to this bit	
	causes the next read to return 0, then all reads after	
	that return 1. Writing 0 to this bit has no effect.	
	Software can therefore write 1 to request control and	
	if readback is 0 then it will own usage of the host	
	controller.	4
5	Reserved	7
4	Failed Bus TransactionRWC	
7	0 SMBus interrupt not caused by failed bus	
	transaction default	
	1 SMBus interrupt caused by failed bus	
	transaction. This bit may be set when the	
	KILL bit (I/O Rx02[1]) is set and can be	
_	cleared by writing a 1 to this bit position.	3
3	Bus CollisionRWC	
	0 SMBus interrupt not caused by transaction	
	collisiondefault	
	1 SMBus interrupt caused by transaction	
	collision. This bit is only set by hardware and	
	can be cleared by writing a 1 to this bit	
	position.	
2	Device ErrorRWC	2
	0 SMBus interrupt not caused by generation of	
	an SMBus transaction error default	
	1 SMBus interrupt caused by generation of an	
	SMBus transaction error (illegal command	
	field, unclaimed host-initiated cycle, or host	
	device timeout). This bit is only set by	
	hardware and can be cleared by writing a 1 to	
	this bit position.	
1	SMBus InterruptRWC	
	0 SMBus interrupt not caused by host command	
	completion default	1
	1 SMBus interrupt caused by host command	0
	completion. This bit is only set by hardware	
	and can be cleared by writing a 1 to this bit	
	position.	
0	Host BusyRO	
v	0 SMBus controller host interface is not	
	processing a command	
	1 SMBus host controller is busy processing a	
	command. None of the other SMBus registers	
	should be accessed if this bit is set.	
	should be decessed if this off is set.	

I/O Off	Set 01h – SMBus Slave StatusRWC
7-6	Reserved always reads 0
5	Alert StatusRWC
	0 SMBus interrupt not caused by SMBALERT#
	signaldefault
	1 SMBus interrupt caused by SMBALERT#
	signal. This bit will be set only if the Alert
	Enable bit is set in the SMBus Slave Control
	Register at I/O Offset R08[3]. This bit is only
	set by hardware and can be cleared by writing
	a 1 to this bit position.
4	Shadow 2 StatusRWC
	0 SMBus interrupt not caused by address match
	to SMBus Shadow Address Port 2 default
	1 SMBus interrupt or resume event caused by
	slave cycle address match to SMBus Shadow
	Address Port 2. This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
3	Shadow 1 StatusRWC
	0 SMBus interrupt not caused by address match
	to SMBus Shadow Address Port 1 default
	1 SMBus interrupt or resume event caused by
	slave cycle address match to SMBus Shadow
	Address Port 1. This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
2	Slave StatusRWC
	0 SMBus interrupt not caused by slave event
	matchdefault
	1 SMBus interrupt or resume event caused by
	slave cycle event match of the SMBus Slave
	Command Register at PCI Function 4
	Configuration Offset D3h (command match)
	and the SMBus Slave Event Register at
	SMBus Base + Offset 0Ah (data event match).
	This bit is only set by hardware and can be
	cleared by writing a 1 to this bit position.
1	Reserved always reads 0
0	Slave BusyRO
	0 SMBus controller slave interface is not
	processing datadefault
	1 SMBus controller slave interface is busy
	receiving data. None of the other SMBus
	registers should be accessed if this bit is set.
	-

<u>I/O Off</u> 7 6	Reserved Always reads 0 Start always reads 0 0 Writing 0 has no effect default 1 Start Execution of Command	I/O Offset 03h – SMBus Host Command
	Writing a 1 to this bit causes the SMBus controller host interface to initiate execution of the command programmed in the SMBus Command Protocol field (bits 4-2). All necessary registers should be programmed prior to writing a 1 to this bit. The Host Busy bit (SMBus Host Status Register bit-0) can be used to identify when the SMBus controller has completed command execution.	I/O Offset 04h – SMBus Host Address
5-2	SMBus Command Protocol Selects the type of command the SMBus host controller will execute. Reads or Writes are determined by Rx04[0]. 0000 Quick default 0001 Byte 0010 Byte Data 0011 Word Data 0100 Process Call 0101 Block 0110 I2C with 10-bit Address	 I/O Offset 05h - SMBus Host Data 0
1	0111 -reserved- 10xx -reserved- 1100 I2C Process Call 1101 I2C Block 1110 I2C with 7-bit Address 1111 Universal Kill Transaction in Progress	I/O Offset 06h – SMBus Host Data 1
	0 Normal host controller operation default 1 Stop host transaction currently in progress. Setting this bit also sets the FAILED status bit (Host Status bit-4) and asserts the interrupt selected by the SMB Interrupt Select bit (Function 4 SMBus Host Configuration Register RxD2[3]).	Reads and writes to this register are used to access the 32-byte block data storage array. An internal index pointer is used to address the array. It is reset to 0 by reads of the SMBus Host Control register (I/O Offset 2) and incremented automatically by each access to this register. The transfer of block data into (read) or out of (write) this storage array during an SMBus transaction always starts at index address 0.
0	Interrupt Enable 0 Disable interrupt generation	7-0 SMBUS Block Datadefault = 0

Enable generation of interrupts on completion

of the current host transaction.

I/O Off	fset 08h – SMBus Slave ControlRW	I/O Offset 0B-0Ah – SMBus Slave EventRW
7-5	Reservedalways reads 0	This register is used to enable generation of interrupt or
4	SMBus GPIO Slave Enable	resume events for accesses to the host controller's slave port.
_	0 Disable	15-0 SMBus Slave Event default = 0
	1 Enable generation of a resume event upon an	This field contains data bits used to compare against
	external SMBus master generating a	incoming data to the SMBus Slave Data Register (I/O
	transaction with an address that matches the	Offset 0Ch). When a bit in this register is set and the
	GPIO Slave Address register (I/O offset 0Fh).	corresponding bit the Slave Data register is also set,
3	SMBus Alert Enable	an interrupt or resume event will be generated if the
_	0 Disable	command value matches the value in the SMBus
	1 Enable generation of an interrupt or resume	Slave Command register and the access was to
	event on the assertion of the SMBALERT#	SMBus host address 10h.
	signal	
2	SMBus Shadow Port 2 Enable	I/O Offset 0D-0Ch – SMBus Slave DataRO
	0 Disabledefault	This register is used to store data values for external SMBus
	1 Enable generation of an interrupt or resume	master accesses to the shadow ports or the SMBus host
	event on external SMBus master generation of	controller's slave port.
	a transaction with an address that matches the	15-0 SMBus Slave Datadefault = 0
	SMBus Slave Shadow Port 2 register (PCI	This field contains the data value which was
	function 4 configuration register RxD5).	transmitted during an external SMBus master access
1	SMBus Shadow Port 1 Enable	whose address field matched one of the slave shadow
	0 Disable default	port addresses or the SMBus host controller slave
	1 Enable generation of an interrupt or resume	port address of 10h.
	event on external SMBus master generation of	I/O Offset 0Fh - SMBus GPIO Slave Address (30h) RW
	a transaction with an address that matches the	
	SMBus Slave Shadow Port 1 register (PCI	
	function 4 configuration register RxD4).	This field specifies the address to match against
0	SMBus Slave Enable	incoming SMBus addresses for a GPIO slave. 0 Reserved always reads 0
	0 Disable default	o Reservedarways reads o
	1 Enable generation of an interrupt or resume	
	event on external SMBus master generation of	
	a transaction with an address that matches the	
	SMBus host controller slave port of 10h, a	
	command field which matches the SMBus	
	Slave Command register (PCI function 4 configuration register RxD3), and a match of	
	one of the corresponding enabled events in the	
	SMBus Slave Event Register (I/O Offset 0Ah).	
	Simbus share Event Register (1/0 Offset OAII).	
	fset 09h – SMBus Shadow CommandRO	
	egister is used to store command values for external	
	master accesses to the host slave and slave shadow	
ports.		
7-0	Shadow Command	
	This field contains the command value which was	

received during an external SMBus master access whose address field matched the host slave address (10h) or one of the slave shadow port addresses.

Device 17 Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT8235. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h=VIA)RO			
Offset 3-2 - Device ID (0571h=IDE Controller)RO			
15-3	6-4 – Command (0000h)RW Reserved always reads 0		
2	Bus Master default = 0 (disabled)		
	S/G operation can be issued only when the "Bus		
	Master" bit is enabled.		
1	Reserved always reads 0		
0	I/O Space default = 0 (disabled)		
	When the "I/O Space" bit is disabled, the device will		
	not respond to any I/O addresses for both compatible		
	and native mode.		

Offset 7	<u> 7-6 – Status (0290h))</u>	RO
15	Detected Parity Error	fixed at 0
14	Signalled System Error.	fixed at 0
13	Received Master Abort.	default = 0
12	Received Target Abort	default = 0
11	Signalled Target Abort.	fixed at 0
10-9	DEVSEL# Timing	. always reads 01 (medium)
8	Data Parity Detected	fixed at 0
7	Fast Back to Back	fixed at 1
6-5	Reserved	always reads 0
4	Capability List	fixed at 1
3-0	Reserved	always reads 0

Offset 8 - Revision ID (06)RO 7-0 Revision Code for IDE Controller Logic Block

Offset 9 - Programming InterfaceRW			
7	Master IDE Capability fixed at 1 (Supported		
6-4	Reservedalways reads		
3	Programmable Indicator - Secondary fixed at 1		
	Supports both modes (may be set to either mode by	y	
	writing Rx42[6])		
2	Channel Operating Mode - Secondary		
	0 Compatibility Modedefaul	t	
	1 Native Mode		
1	Programmable Indicator - Primary fixed at		
	Supports both modes (may be set to either mode by		
	writing Rx42[7])		
0	Channel Operating Mode - Primary		
	0 Compatibility Modedefaul	t	
	1 Native Mode		
Compatibility Mode (fixed IRQs and I/O addresses):			
	Command Block Control Block		
Chanr	<u>Registers</u> <u>Registers</u> <u>IRQ</u>		
Pri	1F0-1F7 3F6 14		
Sec	170-177 376 15		
Native PCI Mode (registers are programmable in I/O space) Command Block Control Block			

N

	Command Block	Control Block
Channel	Registers	Registers
Pri	BA @offset 10h	BA @offset 14h
Sec	BA @offset 18h	BA @offset 1Ch

Command register blocks are 8 bytes of I/O space Control registers are 4 bytes of I/O space (only byte 2 is used)

Offset A - Sub Class Code (01h=IDE Controller).....RO

Offset B - Base Class Code (01h=Mass Storage Ctrlr) ... RO

Offset 13-10 - Pri Data / Command Base AddressRW	Offset 2D-2C – Sub Vendor ID (0000h)RO
Specifies an 8 byte I/O address space.	The readback value may be changed by writing to RxD5-D4.
31-16 Reserved always read 0 15-3 Port Address default=01F0h 2-0 Fixed at 001b fixed	Offset 2F-2E – Sub Device ID (0000h)RO The readback value may be changed by writing to RxD7-D6.
Offset 17-14 - Pri Control / Status Base AddressRW Specifies a 4 byte I/O address space of which only the third byte is active (i.e., 3F6h for the default base address of 3F4h). 31-16 Reservedalways read 0 15-2 Port Addressdefault=03F4h 1-0 Fixed at 01b	Offset 34 - Capability Pointer (C0h)RO
1-0 Pixeu at 010	Offset 3C - Interrupt Line (0Eh)RO
Offset 1B-18 - Sec Data / Command Base AddressRW Specifies an 8 byte I/O address space. 31-16 Reserved	7-4 Reserved
8038i rev 1.0 specification.	Offset 3D - Interrupt Pin (00h)RO
31-16 Reserved	7-0 Interrupt Routing Mode 00h Legacy mode interrupt routing
-	Offset 3E - Minimum Grant (00h)RO
	Offset 3F - Maximum Latency (00h)RO

IDE-Controller-Specific Configuration Registers

Offset 4	40 - Chip Enable (00h)RW
7-2	Reservedalways reads 0
1	Primary Channel
	0 Disabledefault
	1 Enable
0	Secondary Channel
	0 Disable default
	1 Enable
Offset 4	41 - IDE Configuration I (00h)RW
7	Primary IDE Read Prefetch Buffer
	0 Disable default
	1 Enable
6	Primary IDE Post Write Buffer
	0 Disable default
	1 Enable
5	Secondary IDE Read Prefetch Buffer
	0 Disable default
_	1 Enable
4	Secondary IDE Post Write Buffer
	0 Disable default
3-0	1 Enable Reservedalways reads 0
3-0	Reservedalways reads 0
Offset 4	42 - IDE Configuration II (00h)RW
7	PIO Operating Mode - Primary Channel
	Selects the mode used in the primary channel for the
	I/O Base Address (not IRQ routing or sharing)
	0 Compatibility Mode (fixed addressing). default 1 Native PCI Mode (flexible addressing)
6	1 Native PCI Mode (flexible addressing) PIO Operating Mode - Secondary Channel
O	Selects the mode used in the secondary channel for
	the I/O Base Address (not IRQ routing or sharing)
	0 Compatibility Mode (fixed addressing). default
	1 Native PCI Mode (flexible addressing)
5-0	Reserved always reads 0

43 - FIFO Configuration (0Ah)RW
Reserved always reads 0
Primary Channel FIFO Threshold
Determines the threshold required before the primary
channel FIFO is flushed.
00 FIFO flushed when 1/4 full
01 FIFO flushed when 1/2 full
10 FIFO flushed when 3/4 fulldefault
11 FIFO flushed when completely full (32 DWs)
Secondary Channel FIFO Threshold
Determines the threshold required before the
secondary channel FIFO is flushed.
00 FIFO flushed when 1/4 full
01 FIFO flushed when 1/2 full
10 FIFO flushed when 3/4 fulldefault
11 FIFO flushed when completely full (32 DWs)

Offset	44 - Miscellaneous Control 1 (08h)RW	Offset	45 - Miscellaneous Control 2 (20h)RW
7-5	Reserved always reads 0	7	Reservedalways reads 0
4	PIO Read Pre-Fetch Byte Counter	6	Interrupt Steering Swap
	Determines whether the amount of data prefetched		Controls whether primary and secondary channel
	under PIO read is limited.		interrupts are swapped.
	0 Disable (no limit) default		0 Primary channel interrupt is steered to IRQ14,
	1 Enable. The maximum number of bytes that		Secondary channel is steered to IRQ15. default
	can be prefetched is determined by Rx61-		1 Primary channel interrupt is steered to IRQ15,
	60[11:0] for the primary channel and Rx69-		Secondary channel interrupt steered to IRQ14
	68[11:0] for the secondary channel.	5	Reservedalways reads 1
3	Bus Master IDE Status Register Read Retry	4	Rx3C Write Protect
	Determines whether a read to the bus master IDE		0 Disable (writes to Rx3C are allowed) default
	status register is retried when DMA operation is not		1 Enable (writes to Rx3C are ignored). Under
	complete.		Native Mode (Rx9[2]=1 or Rx9[0]=1) Rx3C
	O Disable. Reads will return status even if DMA		should not be write protected as it is used to
	operation is not complete.		route IRQ lines.
	1 Enable. Reads of the status register are	3	"Memory-Read-Multiple" Command
	automatically retried while DMA operation is		0 Disabledefault
	not completedefault		1 Enable
2	Packet Command Prefetching	2	"Memory-Write-and-Invalidate" Command
	Determines whether prefetching is enabled for packet		0 Disabledefault
	commands. Packet commands are commands for		1 Enable
	ATAPI, which is used for operating devices such as	1-0	Reservedalways reads 0
	CD-ROM drives.		
	0 Disable default		
	1 Enable	Offeed	AC Misselleneous Control 2 (C0h)
1	Reserved always reads 0		46 - Miscellaneous Control 3 (C0h)RW
0	UltraDMA Host Must Wait for First Transfer	7	Primary Channel Read DMA FIFO Flush
	Before Termination		0 Disable
	0 Enable. The UltraDMA host must wait until at		1 Enable. The primary channel DMA FIFO is
	least the first transfer is completed before it		flushed when an interrupt request is generated
	can terminate a transaction default		default
	1 Disable	6	Secondary Channel Read DMA FIFO Flush
			0 Disable
			1 Enable. The secondary channel DMA FIFO is
			flushed when an interrupt request is generated
		5 A	Reserved always reads 0
		3-11	R PSPEVPII SIMOVE TAGAE II

Offset 4B-48 - Drive Timing Control (A8A8A8A8h).....RW

The following fields define the Active Pulse Width and Recovery Time for the IDE DIOR# and DIOW# signals when accessing the data ports (1F0 and 170):

31-28	Primary Drive 0 Active Pulse Width def=1010b
27-24	Primary Drive 0 Recovery Timedef=1000b
23-20	Primary Drive 1 Active Pulse Width def=1010b
19-16	Primary Drive 1 Recovery Timedef=1000b
15-12	Secondary Drive 0 Active Pulse Width def=1010b
11-8	Secondary Drive 0 Recovery Time def=1000b
7-4	Secondary Drive 1 Active Pulse Width def=1010b
3-0	Secondary Drive 1 Recovery Time def=1000b

The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks. For example, if the value in the field is 1010b (10 decimal), the active pulse width or recovery time is 11 PCI clocks.

Offset 4C - Address Setup Time (FFh).....RW

The following fields define the Address Setup Time. The Address Setup Time is measured from the point when address signals are stable to the point when DIOR# and DIOW# are asserted. The IDE specification requires the setup time to not exceed 1T. However, the VT8233 provides flexibility for devices that may not be able to meet the 1T requirement.

- 7-6 Primary Drive 0 Address Setup Time
- 5-4 Primary Drive 1 Address Setup Time
- 3-2 Secondary Drive 0 Address Setup Time
- 1-0 Secondary Drive 1 Address Setup Time

For each field above:

00 1T

01 2T

10 3T

11 4Tdefaul

Offset 4E -	- Sec	Non	-1F() P	ort	Access	Timing	(B6h)	<u>RW</u>

7-4 DIOR# / **DIOW**# **Active Pulse Width**......def = 0Bh

3-0 DIOR# / DIOW# Recovery Time......def = 06h

Offset 4F - Pri Non-1F0 Port Access Timing (B6h)RW

7-4 DIOR# / DIOW# Active Pulse Widthdef = 0Bh

The above fields define the primary and secondary channel DIOR# and DIOW# active pulse widths and recovery times when accessing non-data ports. The times are defined in terms of PCI clocks and the actual value is equal to the value encoded in the field plus one.

Offset 5	3-50 - UltraDMA Extended Timing ControlRW
31	Pri Drive 0 UltraDMA-Mode Enable Method
	0 Enable by using "Set Feature" command def
20	1 Enable by setting bit-30 of this register
30	Pri Drive 0 UltraDMA-Mode Enable
	0 Disabledefault
••	1 Enable UltraDMA-Mode Operation
29	Pri Drive 0 Transfer Mode
	0 DMA or PIO Modedefault
	1 UltraDMA Mode
28	Pri Drive 0 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
27-24	Pri Drive 0 Cycle Time (T = 7.5 ns for 133 MHz)
	0000 2T
	0001 3T
	0010 4T
	0011 5T
	0100 6T
	0101 7T
	0110 8T
	0111 9Tdefault
	1000 10T
	1001 11T
	1010 12T
	1011 13T
	1100 14T
	1101 15T
	1110 16T
	1111 17T
23	Pri Drive 1 UltraDMA-Mode Enable Method
22	Pri Drive 1 UltraDMA-Mode Enable
21	Pri Drive 1 Transfer Mode
20	Pri Drive 1 Cable Type Reporting
	0 40-pin cable is being useddefault
	1 80-pin cable is being used
19-16	Pri Drive 1 Cycle Timedefault = 0111b
15	Sec Drive 0 UltraDMA-Mode Enable Method
14	Sec Drive 0 UltraDMA-Mode Enable Sec Drive 0 UltraDMA-Mode Enable
13	Sec Drive 0 Transfer Mode
12	Sec Drive 0 Transfer Mode Sec Drive 0 Cable Type Reporting
12	0 40-pin cable is being useddefault
	1 80-pin cable is being used
11-8	
11-8	Sec Drive 0 Cycle Timedefault = 0111b
7	Sec Drive 1 UltraDMA-Mode Enable Method
6	Sec Drive 1 UltraDMA-Mode Enable
5	Sec Drive 1 Transfer Mode
4	Sec Drive 1 Cable Type Reporting
-	0 40-pin cable is being useddefault
	1 80-pin cable is being used
3-0	Sec Drive 1 Cycle Timedefault = 0111b
	See Brive 1 Cycle Time

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

Offset	54 – UltraDMA FIFO Control (04h)RW
7	Reserved always reads 0
6	Lower ISA Request Priority When Write Device
	Packet Command is Issued
	The IDE secondary channel shares a bus internally
	with the ISA interface. When this bit is enabled, the
	IDE secondary channel is given higher priority over
	ISA, which results in better performance.
	0 Disable default
	1 Enable
5	Clear Native Mode Interrupt on Falling Edge of
	Gated Interrupt
	0 Disable default
	1 Enable. The interrupt will be automatically
	cleared on the falling edge of the gated
	interrupt.
4	Improve PIO Prefetch and Post-Write
-	Performance
	0 Enable. PIO prefetch and post write
	performance is increased by being given
	higher throughputdefault
	1 Disable
3	Memory Prefetch Size
	This bit determines how many lines are prefetched
	from memory for IDE transactions.
	0 Prefetch 1 line
	1 Prefetch 2 lines (16 DoubleWords). This
	setting improves ATA100 throughput.
2	Change Drive Clears All FIFO & Internal States
_	0 Disable
	1 Command switch from one drive to another
	drive in the same channel terminates all
	previous outstanding transactions involving
	the previous drivedefault
1	Reserved always reads 0
0	Complete DMA Cycle with Transfer Size Less
ŭ	Than FIFO Size
	0 Enable. DMA transfer size is less than the
	FIFO size default
	1 Disable

Offset 5	55 – IDE Clock Gating (00h)RW
7-2	Reserved always reads 0
1	Dynamic 100 / 133 MHz Clock Gating
	0 Enabledefault
	1 Disable
0	Dynamic 66 MHz Clock Gating
	0 Enable default
	1 Disable
15-12	Reserved
Offset 6	9-68 - Secondary Sector Size (0200h)RW
	Reserved always reads 0
11-0	Number of Bytes Per Sector def=200h (512 bytes)
	This field determines the maximum number of bytes
	that can be prefetched when $Rx44[4] = 1$.

Offset	70 – Primary IDE Status RO	IDE Power Management Registers
7	Interrupt StatusRO	IDE I ower management registers
	1 Primary channel interrupt request pending	Offset C3-C0 – Power Management CapabilitiesRO
6	Prefetch Buffer StatusRO	31-0 PCI PM Block 1always reads 0002 0001h
	1 PIO Prefetch transaction in progress	This field reports support details for Power
5	Post Write Buffer StatusRO	Management Capabilities according to the PCI Power
	1 PIO Post Write transaction in progress	Management specification.
4	DMA Read Prefetch StatusRO	Management specification.
_	1 DMA Read Prefetch transaction in progress	Offset C7-C4 – Power StateRO
3	DMA Write Pipeline StatusRO	31-2 Reservedalways reads 0
•	1 DMA Write transaction in progress	1-0 Power State
2	S/G Operation Complete	00 D0default
1	FIFO Empty StatusRO	01 -reserved-
1	1 Primary Channel FIFO empty	10 -reserved-
0	Response to External DMA RequestRO	11 D3 Hot
v	1 External pri channel DMA request pending	
	2 Zinorium pri oriminior Zivir roquest perioring	
<u>Offset</u>	71 – Primary Interrupt Control (01h)RW	
7-1	Reserved always reads 0	IDE Back Door Registers
0	Interrupt Gating	
	0 Disable	Offset D0 - Back Door - Revision ID (06h)RW
	1 Enable (IRQ output gated until FIFO empty)default	
	uciauii	Offset D3-D2 – Back Door – Device ID (0571h)RW
		Offset D5-D4 - Back Door - Sub-Vendor ID (0000h) RW
Offset	78 – Secondary IDE StatusRO	Offset D7-D6 – Back Door – Sub-Device ID (0000h) RW
7	Interrupt StatusRO	Office D7 D0 Buch D001 Sub Device 1D (00001) RVV
	1 Secondary channel interrupt request pending	
6	Prefetch Buffer StatusRO	
_	1 PIO Prefetch transaction in progress	IDE Revision ID
5	Post Write Buffer StatusRO	
4	1 PIO Post Write transaction in progress DMA Read Prefetch StatusRO	Offset F6 – IDE New Revision ID (07h)RO
4	1 DMA Read Prefetch transaction in progress	
3	DMA Write Pipeline StatusRO	
	1 DMA Write transaction in progress	
2	S/G Operation CompleteRO	IDE I/O Registers
	1 Scatter / Gather operation complete	
1	FIFO Empty StatusRO	These registers are compliant with the SFF 8038I v1.0
	1 Secondary Channel FIFO empty	standard. Refer to the SFF 8038I v1.0 specification for further
0	Response to External DMA RequestRO	details.
	1 External sec channel DMA request pending	I/O Offset 0 - Primary Channel Command
Offset	79 - Secondary Interrupt Control (01h)RW	70 Offset 0 - 1 Timar y Channel Command
7-1	Reserved always reads 0	I/O Offset 2 - Primary Channel Status
0	Interrupt Gating	
	0 Disable	I/O Offset 4-7 - Primary Channel PRD Table Address
	1 Enable (IRQ output gated until FIFO empty)	
	default	
		I/O Offset 8 - Secondary Channel Command
Offset	83-80 – Primary S/G Descriptor Address RO	I/O Offset A - Secondary Channel Status
Offset	8B-88 – Secondary S/G Descriptor Address RO	I/O Offcot C F Secondary Channel DDD Table Address
These 1	registers are used for debugging purposes only.	I/O Offset C-F - Secondary Channel PRD Table Address

Device 17 Function 5 Registers - AC97 Audio Controller

The audio controller interface is hardware compatible with AC97. The PCI configuration registers for the audio controller are located in the function 5 PCI configuration space. The I/O registers are located in the system I/O space.

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO	Offset 1	<u> 13-10 - Base Address 0 – SGD</u>	Control / Status RW
7-0	Vendor ID (1106h = VIA Technologies)		Reserved	
Off 43	14 D ' ID	15-8	Base Address	default = $00h$
	3-2 - Device IDRO	7-0	00000001b (256 bytes)	
7-0	Device ID (3059h = VT8235 Audio Controller)			
Offset 5	5-4 - CommandRW			
	Reserved always reads 0	Device	0 Offset 2D-2C – Subsystem	Vendor ID (0000h)*RO
9	Reserved (fast back-to-back) fixed at 0	15-0	Subsystem Vendor ID	default = 0
8	SERR# Enable fixed at 0	*This re	egister is RW if function 5-6 Rx	$\kappa 44[4] = 1$
7	Reserved (address stepping) fixed at 0			
6	Reserved (parity error response) fixed at 0	Device	<u> 0 Offset 2F-2E – Subsystem I</u>	D (0000h)*RO
5	Reserved (VGA palette snoop) fixed at 0		Subsystem ID	
4	Reserved (memory write and invalidate) fixed at 0		egister is RW if function 5-6 Rx	
3	Reserved (special cycle monitoring) fixed at 0			
2	Bus Master fixed at 0	Offset 3	34 – Capture Pointer (C0h)	RO
1	Memory Space fixed at 0			
0	I/O Spacedefault=0 (disabled)	Offset 3	BC - Interrupt Line	RW
06645	DO.	7-4	Reserved	
	7-6 - Status RO	3-0	Audio Interrupt Routing	y
15	Detected Parity Error fixed at 0		0000 Disabled	default
14	Signalled System Error fixed at 0		0001 IRQ1	
13	Received Master Abort fixed at 0		0010 Reserved	
12	Received Target Abort fixed at 0		0011 IRQ3	
11	Signalled Target Abort fixed at 0		0100 IRQ4	
10-9	DEVSEL# Timing		0101 IRQ5	
	00 Fast		0110 IRQ6	
	01 Medium fixed		0111 IRQ7	
	10 Slow		1000 IRQ8	
	11 Reserved		1001 IRQ9	
8	Data Parity Error fixed at 0		1010 IRQ10	
7	Fast Back-to-Back Capable fixed at 0		1011 IRQ11	
6-5	Reserved always reads 0		1100 IRO12	
4	PM 1.1 fixed at 1		1101 IRQ13	
3-0	Reserved always reads 0		1110 IRQ14	
Offcot 9	3 - Revision ID (nnh)RO		1111 Disabled	
	Silicon Revision Code		APIC (See Device 17 Function	on 0 Rx4D[7])
7-0	Silicon Revision Code default = nnn		x000 IRQ16	L 1/
			x001 IRQ17	
			x010 IRQ18	
Offset 9	O - Programming Interface (00h)RO			
	<u> </u>		x111 IRQ23	
Offset A	A - Sub Class Code (01h=Audio Device)RO		-	
		Offset 3	BD - Interrupt Pin (03h)	RO
Offset I	3 - Base Class Code (04h=Multimedia Device) RO	Off	DE Minimum Com 4 (001)	DO.
		Utiset 3	BE - Minimum Grant (00h)	RO

Offset 3F - Maximum Latency (00h).....RO

<u>Audio-Specific PCI Configuration Registers</u>

Offset 4	40 – A	C Link Interface Status RO
7-6	Resei	rvedalways reads 0
5	Code	c CID=11b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)
4	Code	c CID=10b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)
3	Reser	rvedalways reads 0
2	Code	c CID=01b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)
1	AC97	Low-Power StatusRO
	0	AC97 Codecs not in low-power mode
	1	AC97 Codecs in low-power mode
		This bit reports 1 when Rx26[4] of the codecs
		is 1. It is used to determine whether the bit-
		clock should be gated.
0	Code	c CID=00b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (audio ctrlr can access codec)

ffset 4	41 – A	<u> C Link Interface Control RW</u>		
7	AC-Link Interface			
	0	Disabledefault		
	1	Enable		
6	AC-I	Link Reset		
	0Ass	ert AC-Link Reset (used for cold reset)def		
	1De-a	assert AC-Link Reset		
5	AC-I	AC-Link Sync		
	0	Release SYNCdefault		
	1	Force SYNC High (used for warm reset)		
4	AC-Link Serial Data Out			
	0	Release SDOdefault		
	1	Force SDO High		
3	Variable-Sample-Rate On-Demand Mode			
	0	Disable (AC Link sends data every frame)def		
	1	Enable (AC Link sends data only when there is		
		a request from the codec)		
2	3D A	udio Channel Slots 3/4		
	0	Disable default		
	1	Enable		
	Note that slots 7/8 and 6/9 do not have to be selected			
	as the	ey are not muxed with DXS as are slots 3/4)		
1-0	Rese	rved always reads 0		

Offset	42 – Function EnableKW	Offset 4	<u> 48 – Volume Change Rate Control Ryv</u>
7-6	Reserved always reads 0	7-4	Volume Change Rate
5	Function 5 Config Reg Rx2C WritableRW		This field controls the volume change rate in the
	0 Device 17 Function 5 Rx2C-2F RO default		sample rate converter
	1 Device 17 Function 5 Rx2C-2F RW		0000 Volume Adjust Every Frame (sync cycle)def
4-0	Reserved always reads 0		
	•		1111 Volume Adjust Every 16 Frames (sync cycles)
		3	Sync
			This bit reports whether there is activity in function 5
	44 – MC97 Interface ControlRO		(audio). When function 6 (modem) enters low-power
Mappe	d RO to function 5 (RW in func 6) for status reporting.		state and wants to gate bit-clock, software needs to
7	AC-Link Interface for Slot-5 (Modem) RO		check this bit to see whether bit-clock can actually be
	0 Disable default		gated, as function 5 shares the same bit-clock.
	1 Enable		0 Function 5 activity in progress that requires
6	Secondary Codec SupportRO		bit-clock
	0 Disabledefault		1 Function 5 does not need bit-clock so bit-clock
	1 Enable		can be gated
5	Function 6 Config Reg Rx9-B WritableRO	2-0	ReservedRW
	0 Device 17 Function 6 Rx9-B RO default		
	1 Device 17 Function 6 Rx9-B RW		
4	Function 6 Config Reg 2Ch WritableRO	0.00	AO CADDIE C A L
	0 Device 17 Function 6 Rx2C-2F RO default	· ·	49 – S/PDIF ControlRW
	1 Device 17 Function 6 Rx2C-2F RW	7-4	Reservedalways reads 0
3	SyncRO	3	DX3 (DirectSound) Channel S/PDIF Support
	This bit reports whether there is activity in function 6		This bit controls whether DirectSound Channel 3 is
	(modem). When function 5 (audio) enters low-power		used as S/PDIF support
	state and wants to gate bit-clock, software needs to		0 Disabledefault
	check this bit to see whether bit-clock can actually be	•	1 Enable
	gated, as function 6 shares the same bit-clock.	2	Reservedalways reads 0
	0 Function 6 activity in progress that requires	1-0	S/PDIF Data Slot Select
	bit-clock		00 Slot 10/11default
	1 Function 6 does not need bit-clock so bit-clock		01 Slot 3/4
	can be gated		10 Slot 7/8
2-0	Reserved always reads 0		11 Slot 6/9
			a. a
			C3-C0 – Power Mgmt CapabilityRO
		31-0	Power Mgmt Capabilityalways reads 0002 0001h
		Offset	C7-C4 – Power StateRW
		31-2	Reservedalways reads 0
		1-0	Power State (D3 / D0 Only)

<u>I/O Base 0 Regs – Audio Scatter / Gather DMA</u>

DXS Channel 0-3 SGD Registers (x = 0-3)

I/O Off	set x0	- DXS Channel x SGD StatusRWC	I/O Off
7	SGD	Active RO	7
	0	SGD has completed or been terminated default	
	1	SGD Active	
6-5	Reser	rvedalways reads 0	6
4	Curr	ent SGD Index Equals Stop IndexRO	
	0	SGD index not equal to stop index default	
	1	SGD index being processed equals the stop	5
		index. This bit differs from bit-2 of this	
		register in that this bit becomes 1 as soon as	
		the SGD reaches the index equal to the stop	4
		index. Bit-2 becomes 1 after the SGD finishes	3
		processing the index equal to the stop index.	
		So this bit will always turn on before bit-2.	
3		Trigger QueuedRO	
		bit reports whether the trigger used to restart the	
		operation is queued (I/O Offset $x1[1] = 1$ while	2
	_	GD engine is running).	
	0	SGD trigger not queued default	
	1	SGD trigger queued (when SGD reaches EOL,	
_	~~~	it will restart).	
2		Stop Interrupt StatusRWC	_
	1	SGD finished the index equal to the stop index	1
	COD	set in xB-x8[31-24].	
1		EOL (End Of Link)RWC	
	1	Block is the last of the link. May be used by	
		software as a signal to generate an interrupt	0
0	CCD	request if I/O Offset $x1[1] = 1$.	U
0	SGD	FlagRWC Block complete. May be used by software as a	
	1	signal to generate an interrupt request if I/O	
		Offset $x1[0] = 1$.	
		Offset Al[O] – 1.	

7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD operation
5	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD operation
	SGD Auto-Start
	0 Stop at EOLdefault
	1 Auto Restart at EOL
	Reserved always reads 0
	SGD Pause
	O Release pause and resume the transfer
	1 Pause SGD read operation (SGD pointer stays
	at the current address). SGD will finish
	transferring the current block before pausing.
	Interrupt on Stop Index = Current Index and End
	of Block
	Controls whether an interrupt is generated when the
	current index equals the stop index $(x0[2] = 1)$.
	0 Disabledefault
	1 Enable
	Interrupt on EOL @ End of Block
	Controls whether an interrupt is generated on EOL
	(x0[1] = 1).
	0 Disabledefault
	1 Enable
)	Interrupt on FLAG @ End-of-Block
	Controls whether an interrupt is generated on FLAG
	(x0[0] = 1).
	0 Disable default

1 Enable

I/O Off	set x2 – DXS Left Channel x Volume (3Fh)RW
	set x3 – DXS Right Channel x Volume (3Fh)RW
7-6	Reserved (Do Not Program)always write 0's
5-0	Volume Control
	000000 0 db
	 000111 -10.5 db
	011111 -46.5 db
	111111 Muted (instead of -94.5 db) default
I/O Offs	set x7-x4 – DXS Chan x SGD Table Ptr BaseRW
31-0	SGD Table Pointer Base Address (even addr) W
	Current Pointer AddressR
	Current Fointer Address
I/O Offs	
	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24	set xB-x8 – StopIndex / DataType / SampleRateRW
31-24 23-22	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22	set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22	Set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22 21-20	Set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting
31-24 23-22 21-20	Set xB-x8 – StopIndex / DataType / SampleRate RW SGD Stop Index Setting

converter can properly convert the sample into the required 48 KHz sample output. Program as (2^{20})

48.000) * Sample Rate

I/O Offset xF-xC - DXS Chan x SGD Current Count.... RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Audio SGD Table Format

<u>63</u>	<u>62</u>	<u>61-56</u>	<u>55-32</u>	<u>31-0</u>
EOL	FLAG	-reserved-	Base	Base
			Count	Address
			[23:0]	[31:0]

- **EOL** End Of Link. 1 indicates this block is the last of the link. If the channel "Interrupt on EOL" bit is set, then an interrupt is generated at the end of the transfer.
- **FLAG** Block Flag. If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.

Multichannel SGD Registers

I/O Of	fset 40 – Multichannel SGD StatusRWC	I/O Of	fset 41 – Multichannel SGD ControlRW
7	SGD ActiveRO	7	SGD StartWO (always reads 0)
	0 SGD has completed or been terminated default		0 No effect
	1 SGD Active		1 Start SGD operation
6-5	Reserved always reads 0	6	SGD TerminateWO (always reads 0)
4	Current SGD Index Equals Stop IndexRO		0 No effect
	0 SGD index not equal to stop index default		1 Terminate SGD operation
	1 SGD index being processed equals the stop	5	SGD Auto-Start
	index. This bit differs from bit-2 of this		0 Stop at EOLdefault
	register in that this bit becomes 1 as soon as		1 Auto Restart at EOL
	the SGD reaches the index equal to the stop	4	Reserved always reads 0
	index. Bit-2 becomes 1 after the SGD finishes	3	SGD Pause
	processing the index equal to the stop index.		0 Release pause and resume the transfer
	So this bit will always turn on before bit-2.		1 Pause SGD read operation (SGD pointer stays
3	SGD Trigger QueuedRO		at the current address). SGD will finish
	This bit reports whether the trigger used to restart the	_	transferring the current block before pausing.
	SGD operation is queued (I/O Offset 41[1] = 1 while	2	Interrupt on Stop Index = Current Index and End
	the SGD engine is running).		of Block
	0 SGD trigger not queued		Controls whether an interrupt is generated when the
	1 SGD trigger queued (when SGD reaches EOL,		current index equals the stop index $(40[2] = 1)$.
2	it will restart).		0 Disable default
2	SGD Stop Interrupt StatusRWC	1	1 Enable
	1 SGD finished the index equal to the stop index	1	Interrupt on EOL @ End of Block Controls whether an interrupt is generated on EOL
1	set in 4B-48[31-24]. SGD EOL (End Of Link)RWC		Controls whether an interrupt is generated on EOL $(40[1] = 1)$.
1	1 Block is the last of the link. May be used by		(40[1] = 1). 0 Disabledefault
	software as a signal to generate an interrupt		1 Enable
	request if I/O Offset $41[1] = 1$.	0	Interrupt on FLAG @ End-of-Block
0	SGD FlagRWC	U	Controls whether an interrupt is generated on FLAG
U	1 Block complete. May be used by software as a		(40[0] = 1).
	signal to generate an interrupt request if I/O		0 Disabledefault
	Offset $41[0] = 1$.		1 Enable
	L-J		

I/O Offset 4B-48 – Multichannel SGD Slot Select......RW

I/O Offset 42 – Multichannel SGD Format.....RW

I/O Offset 47-44 - Multichannel SGD Table Ptr Base ...RW

31-0 SGD Table Pointer Base Address (even addr).... W

Current Pointer AddressR

7	PCM Format	31-24 SGD Stop Index Setting default = FFh
	Selects the PCM format used by the controller to	23-20 Data Select of Slot 9
	process the incoming sample.	0 No data assigned to slot 9default
	0 8-bitdefault	1 1 st data in sample assigned to slot 9
	1 16-bit	2 2 nd data in sample assigned to slot 9
6-4	Number of Channels Supported	3 3 rd data in sample assigned to slot 9
	000 -reserved default	4 4 th data in sample assigned to slot 9
	001 One Channel	5 5 th data in sample assigned to slot 9
	010 Two Channels	6 6 th data in sample assigned to slot 9
	011 Three Channels	7-F -reserved
	100 Four Channels	19-16 Data Select of Slot 6
	101 Five Channels	15-12 Data Select of Slot 8
	110 Six Channels	11-8 Data Select of Slot 7
	111 -reserved-	7-4 Data Select of Slot 4
3-0	Reservedalways reads 0	3-0 Data Select of Slot 3
I/O Of	fset 43 – Multichannel Scratch RegisterRW	I/O Offset 4F-4C – Multichannel SGD Current Count RO
7-0	No Hardware Function default = 00h	31-24 Current SGD Index
7-0	110 Italia wale I alletoni delaan – 0011	This field reports the index the SGD engine is
		currently processing

e is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Write Channel 0 SGD Registers

I/O Of	fset 60 – Write Channel 0 SGD StatusRWC
7	SGD ActiveRO
	0 SGD has completed or been terminated default
	1 SGD Active
6	SGD PausedRO
	0 SGD not pauseddefault
	1 SGD Paused
5	Reserved always reads 0
4	Current SGD Index Equals Stop IndexRO
	0 SGD index not equal to stop index default
	1 SGD index being processed equals the stop
	index. This bit differs from bit-2 of this
	register in that this bit becomes 1 as soon as
	the SGD reaches the index equal to the stop
	index. Bit-2 becomes 1 after the SGD finishes
	processing the index equal to the stop index.
	So this bit will always turn on before bit-2.
3	SGD Trigger QueuedRO
	This bit reports whether the trigger used to restart the
	SGD operation is queued (I/O Offset 61[1] = 1 while
	the SGD engine is running).
	0 SGD trigger not queued default
	1 SGD trigger queued (when SGD reaches EOL,
	it will restart).
2	SGD Stop Interrupt StatusRWC
	1 SGD finished the index equal to the stop index
	set in 6B-68[31-24].
1	SGD EOL (End Of Link)RWC
	1 Block is the last of the link. May be used by
	software as a signal to generate an interrupt
	request if I/O Offset $61[1] = 1$.
0	SGD FlagRWC
	1 Block complete. May be used by software as a
	signal to generate an interrupt request if I/O
	Offset $61[0] = 1$.

/O Off	set 61 – Write Channel 0 SGD ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD operation
5	SGD Auto-Start
	0 Stop at EOLdefault
	1 Auto Restart at EOL
4	Reserved always reads 0
3	SGD Pause
	0 Release pause and resume the transfer
	1 Pause SGD read operation (SGD pointer stays
	at the current address). SGD will finish
	transferring the current block before pausing.
2	Interrupt on Stop Index = Current Index and End
	of Block
	Controls whether an interrupt is generated when the
	current index equals the stop index $(60[2] = 1)$.
	0 Disabledefault
	1 Enable
1	Interrupt on EOL @ End of Block
	Controls whether an interrupt is generated on EOL
	(60[1] = 1).
	0 Disabledefault
	1 Enable
0	Interrupt on FLAG @ End-of-Block
	Controls whether an interrupt is generated on FLAG
	(60[0] = 1).
	0 Disabledefault
	1 Enable

I/O Of	fset 62	- Write Channel 0 SGD FormatRW
7	Rese	rved (Do Not Program)always write 0
6	Reco	rding FIFO
	0	Disable default
	1	Enable
5-0	Rese	rvedalways reads 0
I/O Off	foot 63	– Write Channel 0 Input SelectRW
7-3	Rese	
2	Input	t Source Select
	0	Line In (Slot 3, 4)default
	1	Mic In (Slot 6)
1-0	Reco	rding Source Select
	00	Primary Codex default
	01	Secondary Codec 01
	10	Secondary Codec 10
	11	Secondary Codec 11
	11	becondary codec 11

I/O Off	fset 67-64 – Wr Channel 0 SGD Table Ptr Basel	RW
31-0	SGD Table Pointer Base Address (even addr)	. W
	Current Pointer Address	F

<u>set 6B-68 – Write Channel 0 SGD Stop Index RW</u>
SGD Stop Index Setting default = FFh
Reservedalways reads 0
PCM Format
Selects the PCM format used by the controller to
process the incoming sample.
00 8-bit Monodefault
01 8-bit Stereo
10 16-bit Mono
11 16-bit Stereo
ReservedRW
Reserved always reads 0

I/O Offset 6F-6C - Wr Channel 0 SGD Current Count. RO

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Write Channel 1 SGD Registers

7	SGD	ActiveRO	-
	0	SGD has completed or been terminated default	
	1	SGD Active	
6	SGD	PausedRO	
	0	SGD not pauseddefault	
	1	SGD Paused	
5	Rese	rvedalways reads 0	
4	Curr	ent SGD Index Equals Stop IndexRO	
	0	SGD index not equal to stop index default	
	1	SGD index being processed equals the stop	4
		index. This bit differs from bit-2 of this	
		register in that this bit becomes 1 as soon as	
		the SGD reaches the index equal to the stop	
		index. Bit-2 becomes 1 after the SGD finishes	
		processing the index equal to the stop index.	
		So this bit will always turn on before bit-2.	
3		Trigger QueuedRO	
		bit reports whether the trigger used to restart the	
		operation is queued (I/O Offset 71[1] = 1 while	
	the So	GD engine is running).	
	0	66	
	1	SGD trigger queued (when SGD reaches EOL,	
		it will restart).	
2	SGD	Stop Interrupt StatusRWC	
	1	SGD finished the index equal to the stop index	
		set in 7B-78[31-24].	
1	SGD	EOL (End Of Link)RWC	
	1	Block is the last of the link. May be used by	
		software as a signal to generate an interrupt	
		request if I/O Offset $71[1] = 1$.	
0	SGD	S	
	1	Block complete. May be used by software as a	
		signal to generate an interrupt request if I/O	

O Off	set 71	- Write Channel 1 SGD ControlRW
7	SGD	StartWO (always reads 0)
	0	No effect
	1	Start SGD operation
6	SGD	TerminateWO (always reads 0)
	0	No effect
	1	Terminate SGD operation
5	SGD	Auto-Start
	0	Stop at EOLdefault
	1	Auto Restart at EOL
4	Reser	rvedalways reads 0
3	SGD	Pause
	0	Release pause and resume the transfer
	1	Pause SGD read operation (SGD pointer stays
		at the current address). SGD will finish
		transferring the current block before pausing.
2		rupt on Stop Index = Current Index and End
	of Blo	
		ols whether an interrupt is generated when the
		nt index equals the stop index $(70[2] = 1)$.
	0	
	_ 1	Enable
1		rupt on EOL @ End of Block
		ols whether an interrupt is generated on EOL
] = 1).
	0	Disabledefault
	1	Enable
0		rupt on FLAG @ End-of-Block
		ols whether an interrupt is generated on FLAG
] = 1).
		Disable default
	1	Enable

I/O Off	fset 72	- Write Channel 1 SGD FormatRW
7	Rese	rved (Do Not Program)always write 0
6	Reco	rding FIFO
	0	Disable default
	1	Enable
5-0	Rese	rvedalways reads 0
I/O Off	fset 73	– Write Channel 1 Input SelectRW
7-3	Rese	rvedalways reads 0
2	Input	t Source Select
	0	Line In (Slot 3, 4)default
	1	Mic In (Slot 6)
1-0	Reco	rding Source Select
	00	Primary Codex default
	01	Secondary Codec 01
	10	Secondary Codec 10
	11	Secondary Codec 11

I/O Off	set 77-74 – Wr Channel 1 SGD Table Ptr Basel	RW
31-0	SGD Table Pointer Base Address (even addr)	. W
	Current Pointer Address	F

I/O Offset 7B-78 – Write Channel 1 SGD Stop Index RW				
31-24	SGD Stop In	dex Setting default = FFh		
23-22	Reserved	always reads 0		
21-20	PCM Format			
	Selects the F	PCM format used by the controller to		
	process the in	coming sample.		
	00 8-bit N	Ionodefault		
	01 8-bit S	tereo		
	10 16-bit	Mono		
	11 16-bit	Stereo		
19-16	Reserved	RW		
15-0	Reserved	always reads 0		

<u>I/O Offset 7F-7C – Wr Channel 1 SGD Current Count. RO</u>

31-24 Current SGD Index

This field reports the index the SGD engine is currently processing.

23-0 Current SGD Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Codec Command / Status SGD Registers

These registers are used to send commands to the codecs

I/O Offset 83-80 – AC97 Controller Cmd (W) / Status (R)				
This register may be accessed from either function 5 or 6				
31-30	Code	c IDRW		
	00	Select Codec CID = 00		
	01	Select Codec CID = 01		
	10	Select Codec CID = 10		
	11	Select Codec CID = 11		
29	Code	c 11 Data / Status / Index ValidRO		
	0	Not Valid		
	1	Valid (OK to Read bits 0-23)		
28	Code	c 10 Data / Status / Index ValidRO		
	0	Not Valid		
	1	Valid (OK to Read bits 0-23)		
27	Code	c 01 Data / Status / Index ValidRO		
	0	Not Valid		
	1	Valid (OK to Read bits 0-23)		
26	Reserved always reads 0			
25	Codec 00 Data / Status / Index ValidRO			
	0	Not Valid		
		Valid (OK to Read bits 0-23)		
24	AC97 Controller BusyRO			
	0	Codec is ready for a register access command		
	1	AC97 Controller is sending a command to the		
		codec (commands are not accepted)		
23	Codec Register Read / Write ModeRW			
	0	Select Codec register write mode		
	1	Select Codec register read mode		
22-16		c Register Index [7:1]RW		
	Index of the AC97 codec register to access (in the			
	attached codec). Data must be written before or a			
	the same time as Index because writing to the index			
	triggers the AC97 controller to access the addressed			
		register over the AC-link interface.		
15-0	Code	c Register DataRW		

I/O Off	set 87-84 - Audio SGD Status ShadowRO
31	Audio Record 1 SGD Active Shadow(Rx70[7])
30	Audio Record 1 SGD Stop Shadow(Rx70[2])
29	Audio Record 1 SGD EOL Shadow(Rx70[1])
28	Audio Record 1 SGD Flag Shadow(Rx70[0])
27	Audio Record 0 SGD Active Shadow(Rx60[7])
26	Audio Record 0 SGD Stop Shadow(Rx60[2])
25	Audio Record 0 SGD EOL Shadow(Rx60[1])
24	Audio Record 0 SGD Flag Shadow(Rx60[0])
	-
23-20	Reserved always reads 0
19	MultiChannel SGD Active Shadow(Rx40[7])
18	MultiChannel SGD Stop Shadow(Rx40[2])
17	MultiChannel SGD EOL Shadow(Rx40[1])
16	$MultiChannel\ SGD\ Flag\ Shadow(Rx40[0])$
15	DX Channel 3 SGD Active Shadow(Rx30[7])
14	DX Channel 3 SGD Stop Shadow(Rx30[2])
13	DX Channel 3 SGD EOL Shadow(Rx30[1])
12	DX Channel 3 SGD Flag Shadow(Rx30[0])
11	DX Channel 2 SGD Active Shadow(Rx20[7])
10	DX Channel 2 SGD Stop Shadow(Rx20[2])
9	DX Channel 2 SGD EOL Shadow(Rx20[1])
8	DX Channel 2 SGD Flag Shadow(Rx20[0])
7	DX Channel 1 SGD Active Shadow(Rx10[7])
6	DX Channel 1 SGD Stop Shadow
5	DX Channel 1 SGD EOL Shadow(Rx10[2])
4	DX Channel 1 SGD Flag Shadow(Rx10[1])
3	DX Channel 0 SGD Active Shadow(Rx10[0])
2	DX Channel 0 SGD Stop Shadow
1	DX Channel 0 SGD EOL Shadow(Rx00[2])
0	DX Channel 0 SGD Flag Shadow(Rx00[1])
	set 8B-88 – Codec GPI Interrupt Status / GPIO. RO
This reg	ister may be accessed from either function 5 or 6
31-16	GPI Interrupt StatusRO
	R GPI[15-0] Interrupt Status
	W 1 to clear
15-0	Codec GPIORO
	R Reflect status of Codec GPI[15-0]
	W Triggers AC-Link slot-12 output to codec
I/O Off	set 8F-8C – Codec GPI Interrupt EnableRO
	ister may be accessed from either function 5 or 6
_	Interrupt on GPI[15-0] Change of StatusRO
31-10	0 Disable
	1 Enable
15-0	Reservedalways reads 0
13-0	neserveuaiways feads 0
Offset 9	0-9F – Mapped from Function 5/6 Rx40-4FRO

Device 17 Function 6 Registers - AC97 Modem Controller

The modem controller interface is hardware compatible with AC97. The PCI configuration registers for the modem controller are located in the function 6 PCI configuration space. The I/O registers are located in the system I/O space.

PCI Configuration Space Header

	-0 - Vendor ID (1106h)RO
7-0	Vendor ID (1106h = VIA Technologies)
Offset 3	8-2 - Device ID (3068h)RO
7-0	Device ID (3068h = VT8235 Modem Controller)
Offcat 5	5-4 – Command (0000h)RW
15-10	Reserved always reads 0
9	Reserved (fast back-to-back)
8	SERR# Enable fixed at 0
7	Reserved (address stepping) fixed at 0
6	Reserved (parity error response) fixed at 0
5	Reserved (VGA palette snoop) fixed at 0
4	Reserved (work parette shoop) fixed at 0
3	Reserved (special cycle monitoring) fixed at 0
2	Bus Master fixed at 0
1	Memory Space fixed at 0
0	I/O Space default=0 (disabled)
U	1/O Space default=0 (disabled)
Offset 7	7-6 - Status (0200h)RO
15	Detected Parity Error always reads 0
14	Signalled System Error fixed at 0
13	Received Master Abort fixed at 0
12	Received Target Abort fixed at 0
11	Signalled Target Abort fixed at 0
10-9	DEVSEL# Timing
	00 Fast
	01 Medium fixed
	10 Slow
	11 Reserved
8	Data Parity Error fixed at 0
7	Fast Back-to-Back Capable fixed at 0
6-0	Reserved always reads 0
Offset 8	3 - Revision ID (nnh)RO
7-0	Silicon Revision Code default = nnh
Offset 9	- Programming Interface (00h)*RO
Offset A	A - Sub Class Code (80h)*RO
	3 - Base Class Code (07h)*RO
*Registe	ers 9-B are RW if function 5-6 Rx44[5] = 1

Offset 1	13-10 - Base Address 0 - SGD Control / Status RW		
31-16	Reserved always reads 0		
15-8			
7-0	00000001b (256 bytes)		
	0 Offset 2D-2C – Subsystem Vendor ID (0000h)*RO		
	Subsystem Vendor ID default = 0		
*This re	egister is RW if function 5-6 Rx44[4] = 1		
Device	0 Offset 2F-2E – Subsystem ID (0000h)*RO		
15-0			
*This re	egister is RW if function 5-6 Rx44[4] = 1		
	<u>3C - Interrupt Line (00h)RW</u>		
7-4	Reserved always reads 0		
3-0	Modem Interrupt Routing		
	0000 Disabled		
	0001 IRQ1 0010 Reserved		
	0010 Reserved 0011 IRQ3		
	0100 IRQ4		
	0100 IRQ4 0101 IRQ5		
	0110 IRQ6		
	0111 IRQ7		
	1000 IRQ8		
	1001 IRQ9		
	1010 IRQ10		
	1011 IRQ11		
	1100 IRQ12		
	1101 IRQ13		
	1110 IRQ14		
	1111 Disabled		
	APIC (See Device 17 Function 0 Rx4D[7])		
	x000 IRQ16		
	x001 IRQ17		
	x010 IRQ18		
	 x111 IRQ23		
Offset 3	BD - Interrupt Pin (03h)RO		
	BE - Minimum Grant (00h)RO		
Offset 3	BF - Maximum Latency (00h)RO		

Modem-Specific PCI Configuration Registers

Offset 4	40 – A	C Link Interface Status RO
7-6	Resei	rvedalways reads 0
5	Code	c CID=11b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
4	Code	c CID=10b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
3	Reser	rvedalways reads 0
2	Code	c CID=01b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)
1	AC97	Low-Power StatusRO
	0	AC97 Codecs not in low-power mode
	1	AC97 Codecs in low-power mode
		This bit reports 1 when Rx26[4] of the codecs
		is 1. It is used to determine whether the bit-
		clock should be gated.
0	Code	c CID=00b Ready StatusRO
	0	Codec Not Ready
	1	Codec Ready (modem ctrlr can access codec)

tiset 4	<u> 11 – A</u>	<u> C Link Interface Control RW</u>
7	AC-I	Link Interface
	0	Disabledefault
	1	Enable
6	AC-I	Link Reset
	0Ass	ert AC-Link Reset (used for cold reset)def
	1De-	assert AC-Link Reset
5		Link Sync
	0	Release SYNCdefault
	1	Force SYNC High (used for warm reset)
4	AC-I	Link Serial Data Out
	0	Release SDOdefault
	1	Force SDO High
3		able-Sample-Rate On-Demand Mode RO
	This	bit is controlled through function 5 but may be
	read	from function 6.
	0	Dismote (110 Dinn serios data e very traine)der
	1	Zimere (170 Zimi senus dutu em) when there is
		a request from the codec)
2		udio Channel Slots 3/4RO
		bit is controlled through function 5 but may be
		from function 6.
	0	2 154010
	1	Enable
		that slots 7/8 and 6/9 do not have to be selected
		ey are not muxed with DXS as are slots 3/4)
1-0	Rese	rvedalways reads 0

Offset 42 – Function EnableRO	Offset 48 – Volume Change Rate ControlRO
This register is controlled through function 5 but may be read from function 6.	This register is controlled through function 5 but may be read from function 6.
 7-6 Reserved	7-4 Volume Change Rate
	1111 Volume Adjust Every 16 Frames (sync cycles) 3 Sync
Offset 44 – MC97 Interface ControlRW	This bit reports whether there is activity in function 5
7 AC-Link Interface for Slot-5 (Modem) 0 Disable	(audio). When function 6 (modem) enters low-power state and wants to gate bit-clock, software needs to check this bit to see whether bit-clock can actually be
6 Secondary Codec Support 0 Disable	gated, as function 5 shares the same bit-clock. 0 Function 5 activity in progress that requires bit-clock
5 Function 6 Config Reg Rx9-B Writable 0 Device 17 Function 6 Rx9-B RO default	1 Function 5 does not need bit-clock so bit-clock can be gated
1 Device 17 Function 6 Rx9-B RW4 Function 6 Config Reg 2Ch Writable	2-0 ReservedRW
 Device 17 Function 6 Rx2C-2F RO default Device 17 Function 6 Rx2C-2F RW 	Offset 49 – S/PDIF ControlRO This register is controlled through function 5 but may be read
This bit reports whether there is activity in function 6 (modem). When function 5 (audio) enters low-power state and wants to gate bit-clock, software needs to check this bit to see whether bit-clock can actually be gated, as function 6 shares the same bit-clock. O Function 6 activity in progress that requires bit-clock 1 Function 6 does not need bit-clock so bit-clock can be gated 2-0 Reserved	from function 6. 7-4 Reserved RO 3 DX3 (DirectSound) Channel S/PDIF Support RO This bit controls whether DirectSound Channel 3 is used as S/PDIF support 0 Disable default 1 Enable 2 Reserved RO 1-0 S/PDIF Data Slot Select RO 00 Slot 10/11 default 01 Slot 3/4 10 Slot 7/8 11 Slot 6/9
	Offset D3-D0 – Power Mgmt CapabilityRO 31-0 Power Mgmt Capabilityalways reads 0002 0001h
	Offset D7-D4 – Power StateRW
	31-2 Reservedalways reads 0 1-0 Power State (D3 / D0 Only)

I/O Base 0 Regs - Modem Scatter / Gather DMA

Modem SGD Read Channel Registers

I/O Off	set 40 – Modem SGD Read Channel StatusRWC
7	SGD ActiveRO
	0 SGD has completed or been terminated default
	1 SGD Active
6	SGD PausedRO
	0 SGD not pauseddefault
	1 SGD Paused
5-4	Reserved always reads 0
3	SGD Trigger QueuedRO
	This bit reports whether the trigger used to restart the
	SGD operation is queued (I/O Offset 41[1] = 1 while
	the SGD engine is running).
	0 SGD trigger not queueddefault
	1 SGD trigger queued (when SGD reaches EOL,
	it will restart).
2	SGD Stop Interrupt StatusRWC
	1 SGD finished the index equal to the stop index
	set in 4B-48[31-24].
1	SGD EOL (End Of Link)RWC
	1 Block is the last of the link. May be used by
	software as a signal to generate an interrupt
0	request if I/O Offset $41[1] = 1$.
0	SGD FlagRWC
	1 Block complete. May be used by software as a
	signal to generate an interrupt request if I/O
	Offset $41[0] = 1$.

I/O Offset 41 – Modem SGD Read Channel ControlRW			
7	SGD StartWO (always reads 0)		
	0 No effect		
	1 Start SGD read channel operation		
6	SGD TerminateWO (always reads 0)		
	0 No effect		
	1 Terminate SGD read channel operation		
5-4	Test (Do Not Program)always write 0		
3	SGD PauseRW		
	0 Release SGD read channel pause and resume		
	the transfer from the paused line		
	1 Pause SGD read channel operation (SGD read		
	channel pointer stays at the current address)		
2-0	Reserved always reads 0		

I/O Off	et 42 – Modem SGD Read Channel Type RW		
7	Auto-Start SGD at EOL		
	0 Stop at EOLdefault		
	1 Auto restart at EOL		
6-4	Reserved always reads 0		
3-2	Interrupt Select		
	This bit determines the timing of interrupt generation		
	when bit-1 or bit-0 of this register are equal to 1.		
	00 Interrupt at PCI Read of Last Linedefault		
	01 Interrupt at Last Sample Sent		
	10 Interrupt at Less Than One Line to Send		
	11 -reserved-		
1	Interrupt on EOL @ End of Block		
	0 Disabledefault		
	1 Enable		
0	Interrupt on FLAG @ End-of-Blk		
	0 Disabledefault		
	1 Enable		
I/O Offset 47-44 – Modem SGD R Ch Table Ptr Base RW			
31-0	SGD Table Pointer Base Address (even addr) W		
	Current Pointer AddressR		

I/O Offset 4F-4C - Modem SGD R Ch Current Count.. RO

31-24 Current Modem SGD Read Channel Index

This field reports the index the SGD engine is currently processing.

23-0 Current Modem SGD Read Channel Count

This field reports the count remaining in the current entry being processed. For example, if 10 bytes of a 30-byte count have been transferred, this field would read 20 to indicate 20 bytes remaining.

Modem SGD Table Format

<u>63</u>	<u>62</u>	<u>61</u>	<u>60-56</u>	<u>55-32</u>	<u>31-0</u>
EOL	FLAG	STOP	-reserved-	Base	Base
				Count	Address
				[23:0]	[31:0]

Modem SGD Write Channel Registers

I/O Of	fset 50 – Modem SGD Write Channel Status RO	I/O Off	set 5
7	SGD ActiveRO	7	Aut
	0 SGD has completed or been terminated default		0
	1 SGD Active		1
6	SGD PausedRO	6-2	Res
	0 SGD not pauseddefault	1	Inte
	1 SGD Paused		0
5-4	Reserved always reads 0		1
3	SGD Trigger QueuedRO	0	Inte
	This bit reports whether the trigger used to restart the		0
	SGD operation is queued (I/O Offset 51[1] = 1 while		1
	the SGD engine is running).		
	0 SGD trigger not queueddefault		
	1 SGD trigger queued (when SGD reaches EOL,	I/O Off	set 5
_	it will restart).	31-0	SGI
2	SGD Stop Interrupt StatusRWC	31-0	Cui
	1 SGD finished the index equal to the stop index		Cui
4	set in 5B-58[31-24].		
1	SGD EOL (End Of Link)RWC		
	1 Block is the last of the link. May be used by	I/O Off	<u>set 5</u>
	software as a signal to generate an interrupt	31-24	Cui
0	request if I/O Offset 51[1] = 1. SGD FlagRWC		This
U	SGD FlagRWC 1 Block complete. May be used by software as a		curr
	signal to generate an interrupt request if I/O	23-0	Cui
	Offset $51[0] = 1$.		This
	Offset $\mathcal{F}[0] = 1$.		entr
			30-l
			reac
I/O Of	fset 51 – Modem SGD Write Channel ControlRW		
7	SGD StartWO (always reads 0)		
	0 No effect	TO	
	1 Start SGD write channel operation	EOL	End
6	SGD TerminateWO (always reads 0)		link
	0 No offeet		ther

7	SGD StartWO (always reads 0
	0 No effect
	1 Start SGD write channel operation
6	SGD TerminateWO (always reads 0
	0 No effect
	1 Terminate SGD write channel operation
5-4	Test (Do Not Program)always write
3	SGD PauseRV
	0 Release SGD write channel pause and resum
	the transfer from the paused line
	1 Pause SGD write channel operation (SGI
	write channel pointer stays at current address)
2	Reserved always reads
1	Reset Modem Write SGD OperationRV
0	Reservedalways reads

I/O Of	fset 52 – Modem SGD Write Channel Type RW		
7	Auto-Start SGD at EOL		
	0 Stop at EOLdefault		
	1 Auto restart at EOL		
6-2	Reserved always reads 0		
1	Interrupt on EOL @ End of Block		
	0 Disabledefault		
	1 Enable		
0	Interrupt on FLAG @ End-of-Blk		
	0 Disabledefault		
	1 Enable		

I/O Offset 57-54 – Modem SGD W Ch Table Ptr Base . RW 31-0 SGD Table Pointer Base Address (even addr) W Current Pointer Address R

I/O Offset 5F-5C - Modem SGD W Ch Current Count. RO

- 31-24 Current Modem SGD Write Channel Index
 This field reports the index the SGD engine is currently processing.
- 23-0 Current Modem SGD Write Channel Count
 This field reports the count remaining in the current
 entry being processed. For example, if 10 bytes of a
 30-byte count have been transferred, this field would
 read 20 to indicate 20 bytes remaining.
- EOL End Of Link. 1 indicates this block is the last of the link. If the channel "Interrupt on EOL" bit is set, then an interrupt is generated at the end of the transfer
- **FLAG** Block Flag. If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set, then an interrupt is generated at the end of this block.
- **STOP** <u>Block Stop.</u> If set, transfer pauses at the end of this block. To resume the transfer, write 1 to Rx?0[2].

Codec Command / Status SGD Registers

These registers are used to send commands to the codecs

Offset 8	3-80 -	- AC97 Controller Command (W) / Status (R)			
This reg	This register may be accessed from either function 5 or 6				
31-30	Codec IDRW				
	00	Select Codec CID = 00			
	01	Select Codec CID = 01			
	10	Select Codec CID = 10			
	11	Select Codec CID = 11			
29	Code	c 11 Data / Status / Index ValidRO			
	0	Not Valid			
	1	Valid (OK to Read bits 0-23)			
28	Code	c 10 Data / Status / Index ValidRO			
	0	Not Valid			
	1	Valid (OK to Read bits 0-23)			
27		c 01 Data / Status / Index ValidRO			
	0	Not Valid			
	1	Valid (OK to Read bits 0-23)			
26		rvedalways reads 0			
25	Code	c 00 Data / Status / Index ValidRO			
	0	1 to the terms of			
	1	Valid (OK to Read bits 0-23)			
24	AC97	7 Controller BusyRO			
	0	Codec is ready for a register access command			
	1	AC97 Controller is sending a command to the			
		codec (commands are not accepted)			
23	Code	c Register Read / Write ModeRW			
	0	Select Codec register write mode			
	1	Select Codec register read mode			
22-16	Codec Register Index [7:1]RW				
	Index of the AC97 codec register to access (in the				
	attached codec). Data must be written before or at				
	the same time as Index because writing to the index				
	triggers the AC97 controller to access the addressed				
	codec register over the AC-link interface.				
15-0	Code	c Register DataRW			

Offset 8	87-84 – Modem SGD Status Shadow	RO
31-30	Reservedalw	vays reads 0
29	Modem Write SGD Active Shadow	(Rx50[7])
28	Modem Read SGD Active Shadow	(Rx40[7])
27-26	Reservedalw	vays reads 0
25	Modem Write SGD Stop Shadow	(Rx50[2])
24	Modem Read SGD Stop Shadow	(Rx40[2])
23-22		
21	Modem Write SGD EOL Shadow	
20	Modem Read SGD EOL Shadow	(Rx40[1])
19-18		•
17	Modem Write SGD Flag Shadow	
16	Modem Read SGD Flag Shadow	(Rx40[0])
15-0	Reservedalw	/ays reads 0
	8B-88 – Codec GPI Interrupt Status / GP. gister may be accessed from either function:	
-	GPI Interrupt Status	
	R GPI[15-0] Interrupt Status W 1 to clear	
15-0	Codec GPIO	RW
	R Reflect status of Codec GPI[15-0]	
	W Triggers AC-Link slot-12 output to	codec
Offset 8	8F-8C – Codec GPI Interrupt Enable	RW
This reg	gister may be accessed from either function :	5 or 6
31-16	Interrupt on GPI[15-0] Change of Statu	sRW
01 10	0 Disable	
	1 Enable	
15-0	Reservedalw	vays reads 0

Offset 90-9F - Mapped from Function 5/6 Rx40-4F...... RO

Device 18 Function 0 Registers - LAN

All registers are located in the Device 18 Function 0 PCI configuration space of the VT8235. These registers are accessed through PCI configuration mechanism #1 via I/O address CF8 / CFC.

PCI Configuration Space Header

Offset 1-0 - Vendor ID = 1106h RO	Offset 34 – Capabilities Offset (40h)RO
Offset 3-2 - Device ID = 3065hRO	7-0 Capabilities Offset
	Offset into the LAN function PCI space pointing to
Offset 5-4 - CommandRW	the location of the <u>first</u> item in the function's
15-3 Reserved always reads 0	capability list.
2 Bus Masteralways reads 0	000 + 200 T + + + T
1 Memory Space always reads 0	Offset 3C - Interrupt LineRW
$0 \qquad \mathbf{I/O Space} \qquad \qquad RW, default = 0$	7-4 Reserved always reads 0
Official 7 (Status (0400h)	3-0 LAN Interrupt Routing
Offset 7-6 – Status (0400h)	0000 Disabled
15 Detected Parity Error always reads 0	0001 IRQ1 0010 Reserved
 Signalled System Error always reads 0 Received Master Abort always reads 0 	0010 Reserved 0011 IRQ3
 13 Received Master Abort always reads 0 12 Received Target Abort always reads 0 	0100 IRQ4
11 Signalled Target Abort always reads 0	0100 IRQ4 0101 IRQ5
10-9 DEVSEL# Timing fixed at 10 (slow)	0110 IRQ6
8 Data Parity Detectedalways reads 0	0111 IRQ7
7 Fast Back-to-Back Capablealways reads 0	1000 IRQ8
6 UDF Supportalways reads 1	1001 IRQ9
5 66 MHz Capablealways reads 1	1010 IRQ10
4 Capabilities (e.g. PCI Pwr Mgmt) always reads 1	1011 IRQ11
3-0 Reserved always reads 0	1100 IRQ12
000 (0 P 11 TP (101)	1101 IRQ13
Offset 8 - Revision ID (40h) RO	1110 IRQ14
Offset 9 - Program InterfaceRO	1111 Disabled
Offset A - Sub Class CodeRO	<u>APIC</u> (See Device 17 Function 0 Rx4D[7])
Offset B - Class CodeRO	x000 IRQ16
	x001 IRQ17
Offset C – Cache Line SizeRW	x010 IRQ18
This register must be implemented by master devices that can	 v111 IDO22
generate the memory-write-and-invalidate command.	x111 IRQ23
	Offset 3D - Interrupt Pin (01h)RO
Offset D – Latency TimerRW	7-0 Interrupt Routing Mode
This register must be implemented as writable by any master	00h Legacy mode interrupt routing
that can burst more than two data phases.	01h Native mode interrupt routingdefault
om . = = = (001)	
Offset E - Header Type (00h)RO	LAN-Specific PCI Configuration Registers
Offset F - BIST (00h)RO	Office 4 40 Compa L 124 or ID (01L)
	Offset 40 – Capability ID (01h)RO
	7-0 Capability IDalways reads 01h
Offset 13-10 – I/O Base Address (0000 0000h)RW	Identifies the linked list item as being PCI power
Offset 17-14 – Memory Base Address (0000 0000h)RW	management registers
Offset 2B-28 – Card Bus CIS Pointer (0000 0000h)RW	Offset 41 – Next Item Pointer (00h)RO
	7-0 Next Item Pointeralways reads 00h
Offset 33-30 – Expansion ROM Base (0000 0000h)RW	Offset into the LAN function PCI space pointing to
	the leastion of the next item in the function's

the location of the next item in the function's

capability list.

Offset 43-42 – Power Mgmt Configuration (0002h) RO 15-11 Power State In Which LAN Can Assert PME#..... default = 01xxxx PME# can be asserted from D3C x1xxx PME# can be asserted from D3H xx1xx PME# can be asserted from D2 xxx1x PME# can be asserted from D1 xxxx1 PME# can be asserted from D0 **D2 PM State** 10 0 Not Supported default 1 Supported **D1 PM State** 0 Not Supported default Supported PCI 3.3V Auxiliary Current Requirements..... 8-6 always reads 0 **Device-Specific Initialization**..... always reads 0 5 4 Reservedalways reads 0 **PME# Operation Uses PCI Clock** 3 0 No PCI clock req'd for PME# generation ... def PME# generated using PCI clock 2-0 Power Management Interface Revision . reads 010b Readback of 010b indicates compliance with revision 1.1 of the power mangement interface specification

Offset 47-44 – Power Management Control / Status... RWC

31-0 Control / Status......default = 0000 0000h (see Power Management Specification 1.0)

LAN I/O Registers

Offset 05-00 - Ethernet AddressRW Unless the EEPROM is disabled, the Ethernet Address is loaded to this register from the EEPROM every time the system starts up. Offset 06 - Receive Control (00h)RW

Receive FIFO Threshold

This field determines the threshold required before data in the receive FIFO is forwarded. When the FIFO reaches the level selected in this field, data will

start b	eing forwarded.
000	64 bytedefault
001	32 byte
010	128 byte
011	256 byte
100	512 byte
101	768 byte

110 1024 byte

111 Store & Forward (data is forwarded after the entire packet has been received)

Physical Address Packets Accepted

- 0 Packets with a physical destination address are not accepted......default All packets with a physical destination address are accepted......default
- 3 **Broadcast Packets Accepted**
 - 0 Broadcast packets are rejected default
 - Broadcast packets are accepted
- 2 **Multicast Packets Accepted**
 - 0 Multicast packets are rejected default
 - Multicast packets are accepted

Small Packets Accepted 1

- 0 Packets smaller than 64 bytes are rejected .. def
- 1 Packets smaller than 64 bytes are accepted

0 **Error Packets Accepted**

- 0 Packets with receive errors are rejected def
- Packets with receive errors are accepted

Offset 07 - Transmit Control (08h).....RW

Transmit FIFO Threshold

This field determines the threshold required before

	data i	n the transmit FIFO is forwarded. When the		
	FIFO reaches the level selected in this field, data will			
	start being forwarded.			
	<u>100T</u> 10T			
	000	128 byte 64 bytedefault		
	001	256 byte 128 byte		
		512 byte 256 byte		
		1024 byte 512 byte		
		Store & Forward		
4	Reser	rvedalways reads 0		
3	Backe	Backoff Priority Selection		
	This b	This bit determines the backoff algorithm used when		
	collision occurs.			
	0	VIA backoff algorithm		
	1	NSC compatible backoff algorithm default		
2-1	Trans	smit Loopback Mode		
		Normal default		
	01	Internal loopback (signal is looped back to the		
	host from the MAC)			
	10	10 MII loopback (signal is looped back to the host		
	from the PHY)			
	11			
0	Reser	vedalways reads 0		

Offset	08 - Command 0 (00h)RW	Offset (09 – Command 1 (00h)RW
7 6	Reservedalways reads 0 Receive Poll Demanddefault = 0 If this bit is set to 1, the Receive Descriptor (RD) will	7	Software Reset 0 No reset
5	be polled once (this bit will be cleared by hardware after the polling is complete) Transmit Poll Demand default = 0 If this bit is set to 1, the Transmit Descriptor (TD)	6	Receive Poll Demand 1
	will be polled once (this bit will be cleared by hardware after the polling is complete)	5	Transmit Poll Demand 1default = 0 This bit functions the same as $Rx8[5]$. The function
4	Transmit Process 0 Transmit engine disableddefault 1 Transmit engine enabled (transmit may occur)	4	can be enabled by setting either bit (for backward compatibility). Reservedalways reads 0
3	Receive Process 0 Receive disableddefault 1 Receive enabled	3	TD / RD Auto Polling 0 Enable (polling interval is determined by Rx6F[2:0])default
2	Stop NIC 0 NIC enabled	2	1 Disable Full Duplex 0 Set MAC to half duplex modedefault
1	Start NIC 0 No command entered default 1 Start the NIC	1 0	1 Set MAC to full duplex mode Reservedalways reads 0 Early Receive Mode
0	Begin Initialization Process		 Disable (interrupt is generated after a packet has been completely received)default Enable (interrupt is generated as soon as packet reception has started)

1

Offset (0C – Interrupt Status 0 (00h)RW	Offset 0E – Interrupt Mask 0 (00h)RW
7	CRC or Miss Packet Tally Counter Overflow Set if either counter overflows (both counters are 16 bits) PCI Bus Error	Bits correspond to the bits in Interrupt Status Register 0. An interrupt is generated when corresponding bits in both registers equal 1.
U	Set if PCI bus error occurred.	Offset 0F – Interrupt Mask 1 (00h)RW
5	Receive Buffer Link Error Set when there is not enough buffer space for a packet requiring multiple buffers. Transmit Buffer Underflow	Bits correspond to the bits in Interrupt Status Register 1. An interrupt is generated when corresponding bits in both registers equal 1.
3	Transmit Error (Packet Transmit Aborted) Set due to excessive collisions (more than 16),	
2	transmit underflow, or transmit data linking error Receive Error	Offset 17-10 – Multicast AddressRW
2	Set due to CRC error, frame alignment error, FIFO overflow, or received data linking error	The value in this register determines which Multicast addresses are received.

Offset <u>0D - Interrupt Status 1 (00h)RW</u>

Packet Transmitted Successfully Packet Received Successfully

General Purpose Interrupt

This bit is set when there is a general purpose interrupt event (Rx84). This bit is set when any bit in Rx84 equals one and when its corresponding mask bit in Rx86 also equals one.

- **Port State Change (PHY)** 6
- **Transmit Abort Due to Excessive Collisions**

Set when there is a transmit error that is due to excessive collisions. Alternatively, Rx0C[3] is set for all transmit errors.

Receive Buffer Full

Set when there is no more buffer space available in system memory.

3 **Receive Packet Race**

> Set when there is not enough room in the FIFO to receive an additional packet.

- 2 **Receive FIFO Overflow**
- **Transmit FIFO Underflow** 1
- **Early Receive Interrupt**

Set if a packet is being received and Rx9[0] = 1.

Offset 1B-18 – RX AddressRW

This register reports the receive transcriptor address that is being accessed.

Offset 1F-1C - TX Address.....RW

This register reports the transmit transcriptor address that is being accessed.

31 Descriptor Owner 0 Descriptor Owned By Host (NIC cannot access descriptor) 1 Descriptor Owned by NIC (NIC can access descriptor) This bit has no default so must be set by the driver at initialization. 30-27 Reserved	Offset 2	3-20 – Receive Status (0000 0000h)RW		
access descriptor) 1 Descriptor Owned by NIC (NIC can access descriptor) This bit has no default so must be set by the driver at initialization. 30-27 Reserved always reads 0 26-16 Received Packet Length RO, def = 0 15 Received Packet Successfully RO, def = 0 14 Reserved always reads 0 13 NIC Accepted Multicast Packet RO, def = 0 14 NIC Accepted Broadcast Packet RO, def = 0 15 NIC Accepted Physical Address PacketRO, def = 0 16 Chain Buffer def o occupy a single receive transcriptor. 9-8 Buffer Descriptor Start / End RO For packets too large to occupy a single receive descriptor and thus occupy multiple RD's, this field reports whether this RD is the start, middle or end. 10 Chain Buffer Middle Descriptor 10 Chain Buffer Start Descriptor 11 Single Buffer Descriptor (packet accupies only one descriptor) 7 Buffer Underflow Error RO, default = 0 6 System Error RO, default = 0 5 Run Packet (< 64 bytes) RO, default = 0 4 Long Packet (> 2500 bytes) RO, default = 0 5 FIFO Overflow Error RO, default = 0	31	Descriptor Owner		
1 Descriptor Owned by NIC (NIC can access descriptor) This bit has no default so must be set by the driver at initialization. 30-27 Reserved		0 Descriptor Owned By Host (NIC cannot		
descriptor) This bit has no default so must be set by the driver at initialization. 30-27 Reserved		access descriptor)		
This bit has no default so must be set by the driver at initialization. 30-27 Reserved		1 Descriptor Owned by NIC (NIC can access		
initialization. 30-27 Reserved		descriptor)		
Reserved		This bit has no default so must be set by the driver at		
26-16 Received Packet Length		<u>initialization.</u>		
15 Received Packet Successfully	30-27	→		
14 Reserved				
 NIC Accepted Broadcast Packet	15			
 NIC Accepted Broadcast Packet	14			
 NIC Accepted Physical Address PacketRO, def = 0 Chain Buffer				
Set if packet too large to occupy a single receive transcriptor. 9-8 Buffer Descriptor Start / End		•		
Set if packet too large to occupy a single receive transcriptor. 9-8 Buffer Descriptor Start / End		NIC Accepted Physical Address PacketRO , $def = 0$		
transcriptor. 9-8 Buffer Descriptor Start / End	10			
 9-8 Buffer Descriptor Start / End				
For packets too large to fit into a single receive descriptor and thus occupy multiple RD's, this field reports whether this RD is the start, middle or end. 00 Chain Buffer Middle Descriptor		*		
descriptor and thus occupy multiple RD's, this field reports whether this RD is the start, middle or end. 00 Chain Buffer Middle Descriptor default 01 Chain Buffer End Descriptor 10 Chain Buffer Start Descriptor 11 Single Buffer Descriptor (packet accupies only one descriptor) 7 Buffer Underflow Error	9-8			
reports whether this RD is the start, middle or end. 00 Chain Buffer Middle Descriptor				
00 Chain Buffer Middle Descriptor default 01 Chain Buffer End Descriptor 10 Chain Buffer Start Descriptor 11 Single Buffer Descriptor (packet accupies only one descriptor) 7 Buffer Underflow Error				
01 Chain Buffer End Descriptor 10 Chain Buffer Start Descriptor 11 Single Buffer Descriptor (packet accupies only one descriptor) 7 Buffer Underflow Error				
10 Chain Buffer Start Descriptor 11 Single Buffer Descriptor (packet accupies only one descriptor) 7 Buffer Underflow Error				
11 Single Buffer Descriptor (packet accupies only one descriptor) 7 Buffer Underflow Error				
one descriptor) 7		*		
7 Buffer Underflow Error				
6 System Error	-	1 /		
 5 Run Packet (< 64 bytes)	-			
4 Long Packet (> 2500 bytes)	-			
3 FIFO Overflow Error RO, default = 0	_			
	-			
	2	Frame Alignment Error RO, default = 0		
1 CRC Error				
0 Receiver Error	_			

Offset 2	<u> 27-24 – Rx Data Buffer Control</u>	(0000 0000h)RO
31-11	Reserved	always reads 0
10-0	Rx Data Buffer Size	default = 0
	The receive data buffer size for	r this descriptor. The
	total byte count of the entire fr	ame will be stored in
	the last descriptor.	
Offset 2	2B-28 – Rx Data Buffer Start A	ddressRO
	<u> 2B-28 – Rx Data Buffer Start A</u> Rx Data Buffer Start Address	
31-0		
31-0 Offset 2	Rx Data Buffer Start Address	AddressRO
31-0 Offset 2	Rx Data Buffer Start Address 2F-2C – Rx Data Buffer Branch	AddressRO
31-0 Offset 2 31-0	Rx Data Buffer Start Address 2F-2C – Rx Data Buffer Branch	AddressRO

Offset 4	13-40 – Transmit Status (0000 0000h)RW	Offset 4	17-44 – Tx Data Buffer Control (0000 0000h)RO
31	Descriptor Owner	31-24	Reserved always reads 0
	0 Descriptor Owned By Host (NIC cannot	23	Send-Complete Interrupt
	access descriptor)		0 Interrupt not generateddefault
	1 Descriptor Owned by NIC (NIC can access		1 Interrupt generated after send complete
	descriptor)	22	End of Transmit Packet
	This bit has no default so must be set by the driver at		For packets too large to fit into a single transmit
	initialization.		descriptor and thus occupy multiple TD's, this bit
30-16	Reserved always reads 0		reports whether this TD is the End TD.
15	Transmit Error RO , default = 0		0 This TD is not the End TDdefault
	0 Transmit Successful default		1 This TD is the End TD
	1 Excessive Collisions During Transmit Attempt	21	Start of Transmit Packet
14	Reserved always reads 0		For packets too large to fit into a single transmit
13	System Error RO , default = 0		descriptor and thus occupy multiple TD's, this bit
12	Invalid TD Format or Structure or TD Overflow		reports whether this TD is the Start TD.
	RO , default = 0		0 This TD is not the Start TDdefault
11	Transmit Data FIFO UnderflowRO , $def = 0$		1 This TD is the Start TD
10	Carrier Sense Lost During Transmit RO , $def = 0$		Reserved always reads 0
9	Out of Window CollisionRO, $def = 0$	16	Disable CRC Generation default = 0
	(collision outside initial 64 bytes)	15	Chain Buffer $default = 0$
8	Transmit Abort (Excessive Collisions) . RO , $def = 0$		Reserved always reads 0
7	CD Heartbeat Issued (10BaseT Only) RO, $def = 0$	10-0	Tx Data Buffer Size default = 0
6-5	Reserved always reads 0		The transmit data buffer size for this descriptor. The
4	Collision Detected During Transmit RO, def = 0		total byte count of the entire frame will be stored in
3-0	Collision Retry CountRO, $def = 0$		the last descriptor.
		Offset 4	B-48 – Tx Data Buffer Start AddressRO
		31-0	Tx Data Buffer Start Address
			F-4C – Tx Data Buffer Branch AddressRO
			Tx Data Buffer Branch Address
		3-1	Reserved always reads 0
		0	Tx Interrupt Enable
			0 Issue interrupt for this packetdefault

No interrupt generated

Offset	6C – PHY Address (01h)RW	Offset (6E – Buffer Control 0 (00h)RW
7-6	MII Management Polling Timer Interval (Polling	7-6	Reserved always reads 0
	PHY)	5-3	Rx FIFO Threshold Control
	00 1024 MDC Clock Cycles default		000 Determined by Offset 6 Rcv Ctrl Reg default
	01 512 MDC Clock Cycles		~000 Determined by bits 2-0 of this register
	10 128 MDC Clock Cycles	2-0	DMA Length
	11 64 MDC Clock Cycles		000 32 bytes 8 DWdefault
	MDC is an internal clock with a 960 ns cycle time.		001 64 bytes 16 DW
5	Accelerate MDC Speed		010 128 bytes 32 DW
	0 Normal default		011 256 bytes 64 DW
	1 4x Accelerated		100 512 bytes 128 DW
4-0	Extended PHY Device Addressdefault = 01h		101 1024 bytes 256 DW
	Stored from EEPROM during power-up or EEPROM		11x Store & Forward
	auto-reload but can be programmed by software	Offcot	GE Duffor Control 1 (00h) DW
Offcot	6D – MII Status (13h)RW		6F - Buffer Control 1 (00h)RW
			Reservedalways reads 0 Tx FIFO Threshold Control
7	PHY Reset 0 PHY reset not asserteddefault	5-3	000 Determined by Rx7 Transmit Control default
	1 PHY reset asserted		~000 Determined by KX7 Transmit Control default
6-5	Reservedalways reads 0	2-0	Polling Interval Timer
4	PHY Option	2-0	This field determines the polling interval when TD /
7	0 PHY address updated from EEPROM		RD Auto-Polling is enabled (Rx09[3]=0).
	1 Use default PHY address of 0001hdefault		000 4 PCI Clocksdefault
3	PHY Device Received Error		001 1 PCI Clock
·	0 No MII error default		010 2 PCI Clocks
	1 MII Error		011 8 PCI Clocks
2	Reserved always reads 0		100 16 PCI Clocks
1	Link Failure		101 32 PCI Clocks
	0 Link successful		110 64 PCI Clocks
	1 Link unsuccessful (no connection)default		111 128 PCI Clocks
0	PHY Speed		
	0 100 Mb		
	1 10 Mbdefault		

Offset 70 – MII Management Port Command (00h)RW Offset 74 – EEPROM Command / Status (00h).....RW MII (PHY) Auto Polling **EEPROM Program Complete......RO**, def = 00 Disable default Set when EEPROM loading is complete. **EEPROM Embedded Program Enable**......def = 0Enable (polling interval determined by When this bit is set, configuration data (in Rx6E, 6F, Rx6C[7:6]) PHY Read 74, 78, 79, 7A, and 7B) will start to be programmed Every time this bit is set to one, the PHY is read into the EEPROM. once. The address read is determined by Rx71[4:0] **Dynamically Reload EEPROM Content**def = 0 5 When this bit toggles, the Ethernet ID (Rx5-0) is and the data is stored in Rx73-72. **PHY Write** reloaded from EEPROM. 5 Every time this bit is set to one, the PHY is written **EEPROM Direct Program Mode** 0 Disable.....default The address written is determined by Rx71[4:0] and the value in Rx73-72 will be written to 1 Enable (see bits 3-0) the PHY. **EEPROM Direct Programming Chip Select** This bit must be set to allow proramming of the 0 Disabledefault 1 Enable EEPROM using bits 2-0 **EEPROM Direct Programming Clock PHY Direct Programming Mode** 0 Disable (bits 3-0 are ignored) (see bits 6-5) def This bit acts as the clock for direct programming of 1 Enable (bits 6-5 are ignored) (see bits 2-0) the EEPROM. 3 **MDIO Output Enable Indicator EEPROM Direct Programming Read Data In. RO PHY Direct Programming Write Data Out** During direct programming (read), the value in this During direct programming (write), the value in this bit is written to the EEPROM every time bit-2 of this bit is written to the PHY every time bit-0 of this register (the "clock") toggles. register (the "clock") toggles. **EEPROM Direct Programming Wr Data Out** PHY Direct Programming Read Data In...... RO During direct programming (write), the value in this During direct programming (read), every time the bit is written to the EEPROM every time bit-2 of this "clock" (bit-0) toggles, the value from the PHY is register (the "clock") toggles. stored in this bit. **PHY Direct Programming Clock** This bit acts as the clock during direct reads from and Offset 78 - EEPROM Control (00h)RW direct writes to the PHY. **EEPROM Embedded & Direct Programming** Offset 71 - MII Management Port Address (81h).....RW 0 Disable (EEPROM cannot be programmed) def Enable (allow EEPROM to be programmed) **Polling Status Extension Clock** 0 Polling mechanism is busy (polling can't be 0 Disable.....default Enable (the clock to the EEPROM is sent prior Polling mechanism is idle (polling can be to the start of data to allow more time for the initiated)default EEPROM to return to the ready state) **Polling Type** 5-0 Reservedalways reads 0 0 Poll One Cycle default 1 Auto polling – close the pause function at bit-5 5 **Polling Complete** 0 Polling not complete......default Polling complete (auto polling data ready) MII Management Port Address Bits 4-0..def = 01h This field contains the address of the PHY register to be read or written. <u>Offset 73-72 – PHY Data.....RW</u>

placed in this register.

After a PHY read, the data read from the PHY is stored in this register. For writes to the PHY, the data to be written is

Offset	79 – Configuration 1 (00h)RW	Offset	7A – Configuration 2 (00h)RW
6	Transmit Frame Queueing 0 Enable (frames from the PCI bus can be queued in the transmit FIFO – a maximum of 2 packets may be queued)	7 6 5	Reserved
5	0 Enable	4-0	Read This bit controls whether PCI delayed transactions are enabled. 0 Disable default 1 Enable Reserved always reads 0
3	Transmit FIFO DMA Interleaved to Receiving FIFO DMA After 32 DW Transaction This bit controls whether during a transmit, priority can be given to a receive transaction. O Disable	Offset 7 6-4 3 2	7B - Configuration 3 (00h) RW Memory Mapped I/O Access 0 Disable default 1 Enable Reserved (Do Not Program) default = 0 Backoff Algorithm 0 Fixed default 1 Random DEC Capture Effect Solution 0 Disable default 1 Enable AMD Capture Effect Solution 0 Disable default 1 Enable default
2	Memory Read Wait States (for ISA only) 0 None default 1 Insert one wait state 2222	0	Backoff Algorithm Optional 0 Disable default 1 Enable
1	Memory Write Wait States s (for ISA only) 0 None		
0	Latency Timer This bit controls whether PCI Delayed Transactions are enabled. 0 Disable		

Offset	80 – Miscellaneous 1 (00h)RW
7-4	Reserved always reads 0
3	Full Duplex Flow Control
	0 Disable default
	1 Enable
2	Half Duplex Flow Control
	0 Disabledefault
	1 Enable
1	Soft Timer 0 Status / Start
	0 Timer Counting default
	(write 0 after time out to start timer counting)
	1 Timer Timed Out
0	Soft Timer 0 Enable
	0 Disable default
	1 Enable timer to count
Offset	81 – Miscellaneous 2 (00h)RW
7	Reserved always reads 0
7 6	Reserved always reads 0 Force Software Reset
•	Force Software Reset
•	Force Software Reset Setting this bit resets the MAC. This bit functions
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set,
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines.
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines. This bit is used when Rx09[7] cannot force a reset
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines. This bit is used when Rx09[7] cannot force a reset due to issues with the state machines.
•	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines. This bit is used when Rx09[7] cannot force a reset due to issues with the state machines. O Normal
6	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines. This bit is used when Rx09[7] cannot force a reset due to issues with the state machines. O Normal
5	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines. This bit is used when Rx09[7] cannot force a reset due to issues with the state machines. O Normal
5 4-1	Force Software Reset Setting this bit resets the MAC. This bit functions differently from Rx09[7] in that when Rx09[7] is set, the MAC will reset only after all state machines are in idle mode (all on-going transactions have been completed). When this bit is set, the MAC will be reset regardless of the status of the state machines. This bit is used when Rx09[7] cannot force a reset due to issues with the state machines. O Normal

7	Legacy WOL Status (for software reference) RO		
	This bit reports whether legacy WOL is supported.		
	The value is usually derived from a jumper switch.		
	0 Disabledefault		
	1 Enable		
6-4	Reserved always reads 0		
3	Legacy WOL StatusRO		
	This bit is set when there is a legacy WOL event.		
	0 No legacy WOL event occurreddefault		
	1 Legacy WOL event occurred		
2	Legacy WOL Enable		
	This bit controls whether legacy WOL is a wake		
	event.		
	0 Disable (if a wake event is detected (bit- $3 = 1$),		
	PME# will not be asserted)default		
	1 Enable (if a wake event is detected (bit- $3 = 1$),		
	PME# will be asserted)		
1-0	Sticky DS Shadow		
	This field reports the current power management		
	state of the device.		
	00 D0 Statedefault		
	01 D1 State		
	10 D2 State		
	11 D3 State		

Offset 84 – MII Interrupt Status (00h)RWC	Offset 8D-8C – Flash AddressRW	
The bits in this register correspond to bits in the MII Interrupt Mask register (Rx86). An interrupt is generated when corresponding bits in both registers equal one.	This register stores the address that is read from or written to when reading or configuring the BootROM.	
 7-4 Reserved (Do Not Program)	15-0 Flash Address [15:0] default = 0 Offset 8F – Flash Write Data Out RW This register stores the data that is written to the BootROM. 7-0 Flash Write Data Out default = 0 Offset 90 – Flash Read / Write Command RW 7-2 Reserved always reads 0 1 Boot ROM Embedded Write Command def = 0	
All bits above: write 0 to clear the interrupt Offset 86 – MII Interrupt Mask (00h)	Setting this bit initiates a write transaction (data in Rx8F will be written to the address specified in Rx8D-8C). O Boot ROM Embedded Read Command def = 0 Setting this bit initiates a read transaction (data in the address specified in Rx8D-8C will be read and stored in Rx91).	
7-4 Reserved (Do Not Program)	Offset 91 – Flash Write Data In	
	programming.7-0 EEPROM Checksumdefault = 0	

Offset 9F-9E - Soft Timer 1 (0000h)RW

Soft Timer 1 Count Value.....default = 0 This field reports the count value of soft timer 1.

Offset 95-94 – Suspend Mode MII Address (0000h)RW	Offset 99-98 – Pause Timer (0000h)RW
15-0 MII Address During Suspend	7-0 Pause Timer Value
This field stores the address of the PHY to access	Offset 9A – Pause Status (00h)RW
during suspend state. This field selects the PHY	7-1 Reserved always reads 0
while Rx95-94 selects the specific register within the PHY.	Pause StatusNot pauseddefaultPaused
	Offset 9D-9C – Soft Timer 0 (0000h)RW 7-0 Soft Timer 0 Count Valuedefault = 0
	This field reports the count value of soft timer 0.

Offset A0 – Wake On LAN Control Set (00h).....RW Offset A4 – Wake On LAN Control Clear (00h)....RW

- 7 Link Off Detected (determines whether the system wakes up from link off detection)
- **6 Link On Detected** (determines whether the system wakes up from link <u>on</u> detection)
- 5 Magic Packet Filter (determines whether the system wakes up when a Magic Packet is detected)
- 4 Unicast Filter (determines whether the system wakes up when a Unicast Packet is detected)
- 3 CRC3 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC3 pattern is detected)
- 2 CRC2 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC2 pattern is detected)
- 1 CRC1 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC1 pattern is detected)
- **O** CRC0 Pattern Match Filtering (determines whether the system wakes up when packet matching CRC0 pattern is detected)

All bits above:

0	Disable		default
---	---------	--	---------

1 Enable

Offset A1 – Power Configuration Set (00h).....RW Offset A5 - Power Configuration Clear (00h)RW always reads 0 7-6 Reserved WOL Type 5 0 Driven by Level......default 1 Driven By Pulse Legacy WOL 4 0 Disabledefault Enable Reserved always reads 0 3-2 **Reserved (Do Not Program)**.....default = 0

Offset A3 – Wake On LAN Configuration Set (00h) RW Offset A7 – Wake On LAN Configuration Clear (00h). RW

- 7 Force Power Management Enable over PME Enable Bit (Legacy Use Only)
- **6** Full Duplex During Suspend
- 5 Accept Multicast During Suspend

This bit controls whether multicast packets are accepted during suspend state. Whether a multicast packet will actually wake up the system depends on whether the packet is a type of packet set to wake up the system, as determined by RxA0[5:0].

4 Accept Broadcast During Suspend

This bit controls whether broadcast packets are accepted during suspend state. Whether a broadcast packet will actually wake up the system depends on whether the packet is a type of packet set to wake up the system, as determined by RxA0[5:0].

- 3 MDC Acceleration
- 2 Extend Clock During Suspend

When enabled, the clock to the PHY is sent prior to the start of data to allow more time for the PHY to return to ready state.

- 1-0 Reserved always reads 0
 All bits above:
 - 0 Disable default
 1 Enable

127-0 CRC3 Patterndefault = 0

Offset B3-B0 - Pattern CRC0.....RW

RW
RW
RW

Offset FF-F0 – Byte Mask 3.....RW

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT8235 is indicated in the following block diagram:

Figure 3. Power Management Subsystem Block Diagram

Refer to ACPI Specification v1.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT8235 supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the Processor Level 2 register (PMIO Rx14) is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates STPCLK#.
- C3: Suspend. Entered when the Processor Level 3 register (PMIO Rx15) is read. In addition to STPCLK# assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT8235. If the Host Stop bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1# and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the Throttle Enable bit to 1, the duty cycle defined in Throttle Duty Cycle (PMIO Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THRM# Duty Cycle (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT8235. The first power plane (VSUS33) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VSUS33 and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT8235 is powered by VCC. The amount of logic powered by VSUS33 is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT8235 supports multiple system suspend states by configuring the SLP_TYP field of ACPI I/O space register Rx4-5:

- a) POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the Host Stop bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT8235. As to the PCI bus, setting the PCLK Run bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be deactivated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI_STP bit is enabled. When the system resumes from POS, the VT8235 can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to RAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (e.g., VSUS25 of the VT8633) and the suspend logic of the VT8235 (VSUS33).
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT8235 (VSUS33).
- **d) Mechanical Off:** This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the Sleep Enable bit to 1. Three power plane control signals (SUSA#, SUSB# and SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT8235.

One additional suspend status indicator (SUSST1#) is provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT8235 includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT8235 offers many general-purpose I/O ports with the following capabilities:

- I²C / SMB Support
- Thermal Detect
- Notebook Lid Open / Close Detect
- Battery Low Detect
- Twelve General Purpose Input Ports (multiplexed with other functions).
- Nineteen General Purpose Output Ports (1 dedicated and 18 multiplexed with other functions)
- Four General Purpose Input / Output Ports (multiplexed with other functions)

In addition, the VT8235 provides an external dedicated SMI pin (EXTSMI#). The external SMI input can be programmed to trigger an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pin and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- 1) **ACPI-required Fixed Events** defined in the PM1a Status and PM1a Enable registers. These events can trigger either SCI or SMI depending on the SCI Enable bit:
 - PWRBTN# Triggering
 - · RTC Alarm
 - · Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP Status and GP SCI Enable, and GP SMI Enable registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - · External SMI triggering
 - · USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- 3) Generic Global Events defined in the Global Status and Global Enable registers. These registers are mainly used for SMI:
 - PCI Bus Clock Run Resume
 - Primary Interrupt Occurance
 - · GP0 and GP1 Timer Time Out
 - Secondary Event Timer Time Out
 - Occurrence of Primary Events
 (defined in the Primary Activity Status and Primary Activity Enable registers)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- a) VSUS-based events. Event logic resides in the VSUS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMIn#.

Figure 4. System Block Diagram Using the VT8754 North Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT8235 includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events **Conserve Mode Timer**: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP Timer Count).
- 2) Then activate counting by setting the GP0 Start or GP1 Start bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0 Timeout Enable and GP1 Timeout Enable in the Global Enable register) with status recorded (GP0 Tomeout Status and GP1 Timeout Status in the Global Status register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. The secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the Primary Activity Status and Primary Activity Enable registers:

Bit Event
7 Keyboard Access
6 Serial Port Access
1/O port 60h
1/O ports 3F8h-3FFh, 2F8h-2FFh,
3F8h 3FFh or 2F8h 2FFh

3E8h-3EFh, or 2E8h-2EFh

5 Parallel Port Access
 4 Video Access
 I/O ports 378h-37Fh or 278h-27Fh
 I/O ports 3B0h-3DFh or memory
 A/B segments

I/O ports 1F0h-1F7h, 170h-177h,

or 3F5h

2 Reserved

3 IDE/Floppy Access

1 **Primary Interrupts** Each channel of the interrupt controller can be programmed to

be a primary or secondary interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the Primary Activity Enable register to 1. If enabled, the occurrence of the primary event reloads the GP0 timer if the Primary Activity GP0 Enable bit is also set to

1. The cause of the timer reload is recorded in the corresponding bit of Primary Activity Status register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0 Timeout Enable bit in the Global Enable register to one) to trigger an SMI to switch the system to a power down mode.

The VT8235 distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT8235 allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the Primary IRQ Channel and Secondary IRQ Channel registers. Secondary interrupts are the only system secondary events defined in the VT8235.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ Enable bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the Primary Activity Enable bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT8235 through the GP1 timer. The following four categories of peripheral events are distinguished (via the GP Reload Enable register):

Bit-7 Keyboard Access
Bit-6 Serial Port Access
Bit-4 Video Access
Bit-3 IDE/Floppy Access

The four categories are subsets of the primary events as defined in Primary Activity Enable and the occurrence of these events can be checked through a common register Primary Activity Status. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Comment
T_{S}	Storage Temperature	-55	125	°C	
$T_{\rm C}$	Case Operating Temperature	0	85	°C	
V _{CC}	Core Voltage	-0.5	2.625	Volts	2.5V (VT8235L is 3.3V Core)
V_{SUS25}	Suspend Voltage – 2.5V	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{SUSUSB}	Suspend Voltage – USB	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{SUSMII}	Suspend Voltage – LAN	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCVK}	V-Link Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCPLL}	PLL Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCUPLL}	USB PLL Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V _{CCRAM}	RAM Voltage	-0.5	$V_{CC} + 0.3$	Volts	2.5V
V_{CC33}	I/O Voltage	-0.5	3.6	Volts	3.3V
V_{SUS33}	Suspend Voltage – 3.3V	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V _{CCUSB}	USB Voltage	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V _{CCMII}	LAN Voltage	-0.5	$V_{CC33} + 0.3$	Volts	3.3V
V_{BAT}	Battery Voltage	$V_{CC33} - 0.9$	$V_{CC33} + 0.3$	Volts	3.3V
V _{VLVREF}	Reference Voltage – V-Link	-0.5	V _{CCVK} * 0.38	Volts	0.9V
V _{PDVREF}	Reference Voltage – Primary IDE	-0.5		Volts	
V _{SDVREF}	Reference Voltage – Secondary IDE	-0.5		Volts	
	Input voltage (3.3V only inputs)	-0.5	V _{CC33} + 0.3	Volts	FERR#, USBCLK, PWRBTN#, EXTSMI#, BATLOW#, SMBCK1-2, SMBDT1-2

Note: Stress above the conditions listed may cause permanent damage to the device.

Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $T_C = 0$ - $85^{\circ}C$

 $V_{CC} = V_{SUS25} = V_{SUSUSB} = V_{SUSMII} = V_{CCVK} = V_{CCPLL} = V_{CCUPLL} = V_{CCRAM} = 2.5V \pm 5\%,$

 $V_{CC33} = V_{SUS33} = V_{CCUSB} = V_{CCMII} = 3.3V \pm 5\%, \ V_{BAT} = 3.3V + 0.3 \ / \ -0.9V, \ V_{PDVREF} = V_{SDVREF} = V_{VLVREF} = 0.9V \pm 5\%, \ GND = 0V + 0.000 \ A_{PDVREF} = 0.000 \ A_{PDVRE$

Symbol	Parameter	Min	Max	Unit	Condition
$V_{\rm IL}$	Input low voltage	-0.5	0.8	V	
V_{IH}	Input high voltage	2.0	$V_{CC33} + 0.3$	V	
V_{OL}	Output low voltage	-	0.45	V	$I_{OL} = 4.0 \text{mA}$
V _{OH}	Output high voltage	2.4	ı	V	$I_{OH} = -1.0 \text{mA}$
$I_{\rm IL}$	Input leakage current	-	±10	uA	$0 < V_{IN} < V_{CC33}$
I_{OZ}	Tristate leakage current	-	±20	uA	$0.45 < V_{OUT} < V_{CC33}$

Register Bits Powered by VBAT

Register	Description
RTC Rx0D[7]	VBAT Voltage OK
F0 Rx96[3:0]	CPU Frequency Strapping Value
PMIO Rx20[0]	GPI0 Status
PMIO Rx20[6]	INTRUDER# Status
PMIO Rx22[2]	Enable SCI on KBC PME Asserted

Register Bits Powered by VSUS25

Register	Description		
F0 Rx81[2]	RTC Enable Gated During Soft Off		
F0 Rx94[7:0]	Power Well Control Register		
F0 Rx95[3:0]	Misc Power Well Control Register		
PMIO Rx00[15,11,10,8]	Wake, Abnormal PowerOff, RTC Alarm, and Power Button Status bits		
PMIO Rx02[10,8]	RTC Alarm and Power Button Enables		
PMIO Rx04[12:10]	Sleep Type		
PMIO Rx20[13,11,9:8,5:2]	AC97 Wakeup, LID, USB Resume, Ring, PME#, EXTSMI#, LAN PME, and KBC PME Status bits		
PMIO Rx22[13,11,8,6:3,1:0]	SCI on corresponding bits of PMIO Rx20		
PMIO Rx24[13,11,8,6:3,1:0]	SMI on corresponding bits of PMIO Rx20		
PMIO Rx2C[7,5,2]	LID polarity, Battery Low Resume Disable, Power Button triggering select		
PMIO Rx4C[4:0]	GPO 4:0 Output Value		

Power Requirements

 $T_C = 0 - 85^{\circ}C$

 $V_{CC} = V_{SUS25} = V_{SUSUSB} = V_{SUSMII} = V_{CCVK} = V_{CCPLL} = V_{CCUPLL} = V_{CCRAM} = 2.5V \pm 5\%,$

 $V_{CC33} = V_{SUS33} = V_{CCUSB} = V_{CCMII} = 3.3V \pm 5\%, \ V_{BAT} = 3.3V + 0.3 \ / \ -0.9V, \ V_{PDVREF} = V_{SDVREF} = V_{VLVREF} = 0.9V \pm 5\%, \ GND = 0V + 0.000 \ A_{PDVREF} = 0.000 \ A_{PDVRE$

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CC}	Power Supply Current – Core (3.3V)			mA	At max operating frequency
I_{CC33}	Power Supply Current – I/O (3.3V)			mA	At max operating frequency
I_{SUS33}	Power Supply Current – Suspend (3.3V)			mA	At max operating frequency
I_{SUS25}	Power Supply Current – Suspend (2.5V)			mA	At max operating frequency
I_{SUSUSB}	Power Supply Current – Suspend USB (2.5V)			mA	At max operating frequency
I_{SUSMII}	Power Supply Current – Suspend LAN (2.5V)			mA	At max operating frequency
I _{CCUSB}	Power Supply Current – USB (3.3V)			mA	At max operating frequency
I_{CCUPLL}	Power Supply Current – USB PLL (2.5V)			mA	At max operating frequency
I_{CCPLL}	Power Supply Current – PLL (2.5V)			mA	At max operating frequency
I_{CCVK}	Power Supply Current – V-Link (2.5V)			mA	At max operating frequency
I_{CCMII}	Power Supply Current – LAN (3.3V)			mA	At max operating frequency
I_{CCRAM}	Power Supply Current – RAM (2.5V)			mA	At max operating frequency
I _{VLVREF}	Power Supply Current – V-Link Reference (0.9V)			uA	At max operating frequency
I_{PDVREF}	Power Supply Current – Primary IDE Reference			uA	At max operating frequency
I_{SDVREF}	Power Supply Current – Secondary IDE Reference			uA	At max operating frequency
I_{BAT}	Power Supply Current – RTC Battery (3.3V)		5	uA	At max operating frequency
P_{D}	Power Dissipation		2.5	W	At max operating frequency

PACKAGE MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications – 487 Pin Ball Grid Array Package