Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Use the epsilon-delta definition of continuity to prove that the function f(x) = 1 - 5x is continuous at x = 2.

Proof. Let $\epsilon > 0$ be given. Choose $\delta = \frac{\varepsilon}{5}$. Then for $|x - 2| < \delta$, this gives

$$|f(x) - f(2)| = |(1 - 5x) - (1 - 5(2))|$$

$$= |1 - 5x + 9|$$

$$= |-5x + 10|$$

$$= |-5||x - 2|,$$

and now we have

$$\begin{aligned} |-5||x-2| &< |-5| \cdot \delta \\ |-5||x-2| &< 5 \cdot \frac{\varepsilon}{5} \\ |-5||x-2| &< \varepsilon \end{aligned}$$

thus showing that f(x) is continuous at x=2.

2: Prove that every nonempty subset $A \subseteq \mathbb{R}$ that has a lower bound has a greatest lower bound, also known as the *infimum* and denoted $\inf(A)$.

Proof. Let a be a lower bound in A, then $a \le x$ for all $x \in A$. For every $x \in A$, multiplying both this and a by -1 would give $-x \le -a$ which would be the same as saying $y \le -a$ for all $y \in -A$. This then implies that the new set -A, where every $x \in A$ has been multiplied by -1, is nonempty and now bounded above. Therefore, by the Least Upper Bound Principle, there is a least upper bound $b \in -A$. Now we show that -b is the greatest lower bound of A.

To show that -b is a lower bound for A, assume the opposite; that -b is not a lower bound for A. Then there is a $z \in A$ such that z < -b, but multiplying both sides by -1 gives -z > b. Since $-z \in -A$, this contradicts the fact that b is a least upper bound of -A.

To show there is no number greater than -b that is a lower bound for A, assume the opposite; that there exists a number greater than -b that is a lower bound for A. Let j be a lower bound of A such that -b < j. Multiplying both sides by -1 gives b > -j. This then implies that $y \le -j < b$ for all $y \in -A$, however, this is a contradiction as well because we said that b was the least upper bound in -A.

Since -b is a lower bound for A, and there is no greater number that is also a lower bound of A, then -b must be the greatest lower bound of A.

3: Let $\mathbb{Q} = \{q_1, q_2, \dots, q_n, \dots\}$ be an enumeration of the rational numbers (note that the existence of such an enumeration follows from the fact that \mathbb{Q} is countable). Then define $f : \mathbb{R} \to \mathbb{R}$ as

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = q_n \\ 0 & \text{otherwise} \end{cases}.$$

Prove that f(x) is continuous if and only if x is irrational.

Proof. (\Longrightarrow) Let $x_0 \in \mathbb{R}$ be a rational number, then based on f, we know $f(x_0) > 0$. Since we know that there are many irrational numbers, we say there is a sequence $a_1, a_2, a_3, \ldots \in \mathbb{R}$ of irrational numbers such that a_n approaches x_0 as n approaches infinity. This then gives us $\lim_{n\to\infty} a_n = x_0$, however, we know that $\lim_{n\to\infty} f(a_n) = 0 \neq f(x_0)$. Therefore, this shows that f is not continuous when x_0 is rational.

(\iff) Let $x_0, x \in \mathbb{R}$ be irrational, and suppose that $\varepsilon > 0$. Then we can choose y where $y > \frac{1}{\varepsilon}$ and $y \in \mathbb{Z}$. From this, we can define a range containing every irrational number where its denominator is less than y. With $\delta > 0$, the interval is $(x_0 - \delta, x_0 + \delta)$ which is a subset of \mathbb{R} . Now, if $x \in (x_0 - \delta, x_0 + \delta)$ and it is irrational, then f(x) = 0. Additionally, if $x \in (x_0 - \delta, x_0 + \delta)$ and it is rational, then we have the inequality $0 < f(x) \le \frac{1}{y} < \varepsilon$. Regardless of whether or not x is rational or irrational, we have that $|f(x)| < \varepsilon$. So with $x \in (x_0 - \delta, x_0 + \delta)$, $|x - x_0| < \delta$, and $|f(x)| < \varepsilon$, this implies $|f(x) - f(x_0)| < \varepsilon$. Therefore, this shows that f is continuous at x_0 .