

Supporting Online Material for

Oxide Interfaces—An Opportunity for Electronics

J. Mannhart* and D. G. Schlom*

*To whom correspondence should be addressed. E-mail: jochen.mannhart@physik.uni-augsburg.de (J.M.); schlom@cornell.edu (D.G.S.)

Published 26 March 2010, *Science* **327**, 1607 (2010) DOI: 10.1126/science.1181862

This PDF file includes:

Fig. S1

Table S1

References

Figure S1:

Sketch illustrating possible multilayer devices using interfaces in complex oxides. The illustration shows a cross-sectional cut through a hypothetical device.

Table S1:

	GaAs - Al _x Ga _{1-x} As	LaAlO ₃ - SrTiO ₃
Carrier density <i>n</i> (without gate field)	several 10 ¹⁰ - several 10 ¹¹ /cm ²	several 10 ¹³ /cm ²
Sheet resistance ρ (<i>H</i> =0)	order of 10-100 Ω/\Box (low T , samples with high- μ)	~ 200 Ω/□ (4.2 K) ~ 20 kΩ/□ (300 K)
Thickness d	order of 10 nm	~ 10 nm (4.2 K) ≤ 4 nm, possibly 0.4 nm (300 K)
Equivalent volume carrier concentration	order of 10 ¹⁷ /cm ³	order of 10 ²⁰ /cm ³
Typical thicknesses of the host layers in heterojunctions (<i>e.g.</i> , cap layers)	tens of nanometer	≥ 1.6 nm LaAlO ₃ (4 unit cells)
Hall mobility μ	$\geq 10^7 \text{ cm}^2/\text{Vs}$ (4.2 K)	≤ 1000 cm²/Vs (4.2 K) ≤ 10 cm²/Vs (300 K)
Effective mass <i>m</i> of carriers at interface	$m_{\rm e} \sim 0.07 \ m_{\rm o}$	$m_{\rm e} \sim 3 m_{\rm o}$
Mean scattering time τ , mean free path	100 psec, order of 100 μm	psec, tens of nm (4.2 K)
V _F	~ 3×10 ⁷ cm/s	several 10 ⁶ cm/s
Magnetic flux density inducing quantum Hall filling factor $v = 1$	order of 10 T	order of 1000 T
Energy dependence of density of states $N(E)$	step function of 2-DEG (ideal case)	complex function reflecting the <i>N(E)</i> -dependence of the Ti-, La-, and O-ions

	GaAs - Al _x Ga _{1-x} As	LaAlO ₃ - SrTiO ₃
Remarks	 two-dimensional electron gas (2-DEG); quantum well induced by band bending; 2D-subbands of nominally free electrons 	 two-dimensional electronic liquid (2-DEL); metal-insulator transition at a few 10¹² /cm²; quantum well structure as shown in Fig. 4; 2D-subbands composed of ionic orbital states with local character (e.g., Ti 3d, La 5d, O 2p); 2D-superconducting ground state; strong spin-orbit coupling.

Table S1:

Characteristic values of selected, fundamental parameters of LaAlO₃-SrTiO₃ (TiO₂-terminated) interfaces compared to the ones of GaAs-Al_xGa_{1-x}As interfaces. The table presents typical numbers of samples with good properties as published by January 2010. For data on the GaAs-Al_xGa_{1-x}As interfaces see, *e.g.*, (*S1-S7*). With respect to the data of the LaAlO₃-SrTiO₃ interfaces see, *e.g.*, for mobility and carrier concentration (*S8-S15*), superconducting transition (*S12*, *S16*), thickness of the electron system (*S15-S20*), spin-orbit coupling (*S21*), effective mass (*S22*, *S23*), spectral density of states (*S23*), with overviews given in (*S24-S26*). The estimation of v_F is based on the model of free electrons using $n_{2D}=k_F^2/2\pi$, the estimations of the scattering time and mean free path are based on the Drude model.

References Supporting Online Material:

- S1 T. Ando, A.B. Fowler, F. Stern, *Rev. Mod. Phys.* **54**, 437 (1982).
- S2 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge 1997.
- S3 H.L. Stormer, D.C. Tsui, and A.C. Gossard, *Rev. Mod. Phys.* **71**, S298 (1999).
- S4 H.L. Stormer, Rev. Mod. Phys. 71, 875 (1999).
- S5 J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, K. W. West, Phys. Rev. Lett. 88, 076801 (2002).
- S6 L. Pfeiffer, K.W. West, *Physica E* **20**, 57 (2003).
- S7 J.H. Davies, *The Physics of Low-Dimensional Semiconductors*, Cambridge University Press, Cambridge 2006.
- S8 A. Ohtomo, H.Y. Hwang, *Nature* **427**, 423 (2004).
- *S9* M. Huijben *et al.*, *Nat. Mater.* **5**, 556 (2006).
- S10 S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart, Science 313, 1942 (2006).
- S11 A. Brinkman et al., Nat. Mater. 6, 493 (2007).
- S12 A. Caviglia et al., Nature **456**, 624 (2008).
- S13 C. Bell et al., Phys. Rev. Lett. 103, 226802 (2009).
- S14 C. Bell, S. Harashima, Y. Hikita, H.Y. Hwang, Phys. Rev. Lett. 94, 222111 (2009).
- S15 O. Copie et al., Phys. Rev. Lett. 102, 216804 (2009).

- S16 N. Reyren et al., Science 317, 1196 (2007).
- S17 M. Basletic et al., Nat. Mater. 7, 621 (2008).
- S18 M. Sing et al., Phys. Rev. Lett. 102, 176805 (2009).
- S19 N. Reyren et al., Appl. Phys. Lett. 94, 112506 (2009).
- S20 T. Fix, F. Schoofs, J.L. MacManus-Driscoll, M-G. Blamire, Phys. Rev. Lett. 103, 166802 (2009).
- S21 A.D. Caviglia et al., "Tunable Rashba spin-orbit interaction at oxide interfaces", arXiv:0912.3731.
- S22 A. Dubroka et al., "Dynamical response and confinement of the electrons at the LaAlO3/SrTiO3 interface", arXiv:0910.0741.
- S23 M. Breitschaft et al., "Two-dimensional electron liquid state at LaAlO₃-SrTiO₃ interfaces", arXiv:0907.1176v1.
- S24 J. Mannhart, D.H.A. Blank, H.Y. Hwang, A.J. Millis, J.-M. Triscone, MRS Bulletin 33, 1027 (2008).
- S25 S.A. Pauli, P.R. Willmott, J. Phys.: Condens. Matter 20, 264012 (2008).
- S26 M. Huijben et al., Adv. Mater. 21, 1665 (2009).