Feuille d'exercice n° 24 : Espaces vectoriels de dimension finie – Exercices supplémentaires

Exercice 1 Soit $n \in \mathbb{N}$. Démontrer que la famille $S = (X^k(1-X)^{n-k})_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$, et déterminer, pour tout $p \in \{0, 1, ..., n\}$, les composantes du polynôme X^p dans la base S.

Exercice 2 Déterminer pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs $\begin{pmatrix} 1 \\ 0 \\ t \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}$, $\begin{pmatrix} t \\ 0 \\ 1 \end{pmatrix}$ forment une base de \mathbb{R}^3 .

Exercice 3 Soit $\omega \in \mathbb{C}^*$ et $n \in \mathbb{N}$. On note $\varphi : \mathbb{C}_n[X] \to \mathbb{C}_n[X]$. $P \mapsto \omega P + P'$

- 1) Montrer que φ est surjective.
- 2) Montrer que pour tout $P \in \mathbb{C}_n[X]$, l'application $\mathbb{R} \to \mathbb{C}$ admet une primitive de la forme $x \mapsto P(x)e^{\omega x}$ at $x \mapsto Q(x)e^{\omega x}$, où Q est un polynôme de degré au plus n.

Exercice 4

Déterminer un supplémentaire de $\{P \in \mathbb{R}_3[X] \mid P(0) = P'(1) = 0\}$ dans $\mathbb{R}_4[X]$.

Exercice 5

Dans $\mathbb{R}_3[X]$ on note E l'espace vectoriel des polynômes de degré inférieur ou égal à 1. Déterminer un sous-espace vectoriel supplémentaire de E et en donner une base.

Exercice 6 Montrer qu'il existe une unique forme linéaire f sur \mathbb{R}^2 telle que f(1,2) = 2 et f(-2,1) = 5. Déterminer le noyau et l'image de f.

Exercice 7

Théorèmes de factorisation.

Soit E, F et G des \mathbb{K} -espace vectoriels, avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, G étant de dimension finie.

- 1) Soit $u \in \mathcal{L}(F, E)$ et $v \in \mathcal{L}(G, E)$. Montrer qu'il existe $h \in \mathcal{L}(G, F)$ tel que $v = u \circ h$ si et seulement si $\operatorname{Im}(v) \subset \operatorname{Im}(u)$.
- 2) Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(E, G)$. Montrer qu'il existe $h \in \mathcal{L}(G, F)$ tel que $u = h \circ v$ si et seulement si $\operatorname{Ker}(v) \subset \operatorname{Ker}(u)$.

On pourra réaliser un schéma à chaque fois pour se représenter la situation.

Exercice 8 Soit E un \mathbb{K} -espace-vectoriel de dimension 2p, avec $p \in \mathbb{N}^*$. Soit u un endomorphisme de E de rang p, vérifiant $u^2 = 0$. Comparer Im u et Ker u.

Exercice 9 Montrer que l'ensemble $F = \{ (x, y, z, t) \in \mathbb{R}^4 \mid 2x + 3y - z - t = 0 \}$ est un hyperplan de \mathbb{R}^4 . En déterminer une base, un supplémentaire ainsi qu'une base de ce supplémentaire.