Problem Set 1

Siria Angino and Giuseppe Brandi

February 15, 2017

Solutions are due Wednesday, February 22 2017

	nsider a standard normal distribution, i.e. $N(0,1)$. Evaluate: $P(x\leqslant -1.96)$	
(b)	$P(x \leqslant -1.64)$	
(c)	$P(x \leqslant 0)$	
(d)	$P(x \leqslant 1.64)$	
(e)	$P(x \leqslant 1.96)$	

	nsider two random variables X and Z , with $E[X]=2$, $E[Z]=1$, $Var[X]=1$, $Var[Z]=1$ = 0.5, $b=3$, $c=0.2$, $d=2$.
) Calculate $E[aX + b]$.
(b) Calculate $Var[aX + b]$.
(c	Assuming that X and Z are independent, calculate $Var[X+Z]$.
(d	Assuming that $Cov(X, Z) = 1$, calculate $Cov(aX + b, cZ + d)$.
(e	Generalize previous results for any finite $E[X], E[Z], Var[X], Var[Z], a, b, c$ and d .
(f	Assuming again $Cov(X, Z) = 1$, what can you say about $Corr(X, Z)$?
	X be a standard normal random variable and $Y=X^2$. Show that $E[Y X]=X^2$.

(b) Show that E[Y]=1.

(c) Show that E[XY]=0 (recall that, for a variable $Z \sim N(0,1), E[X^{2n+1}=0]$ for all $n \in \mathbb{N}$).

(d) Show that Cov(X, Y) = 0, thus Corr(X, Y) = 0.

opposite is true: $E[Y|X] = 0 \Rightarrow Corr(X, Y) = 0$.

As you will find out in this example, Corr(X,Y)=0 does not imply E[Y|X]=0. However the

4. Let $x_1, x_2, ..., x_n$ be a sample of size n from an unknown distribution with expectation equal to μ . Consider the following estimators of μ :

$$\hat{\mu}_1 = \sum_{i=1}^n x_i / n, \quad \hat{\mu}_2 = x_1, \quad \hat{\mu}_3 = \frac{x_1}{2} + \frac{1}{2(n-1)} \sum_{i=2}^n x_i.$$

(a) Which of those are unbiased?

(b) Which of these are consistent?

(c) Are all unbiased estimators consistent?

5. A stockbroker who wants to compare mean returns of two stocks. He collects data on 90 days of trading. The aggregated data is reported in the table below:

First stock	Second stock
$n_1 = 90$	$n_2 = 90$
$\bar{x}_1 = 0.15$	$\bar{x}_2 = 0.08$
$s_1 = 0.10$	s = 0.15

Are there any significant differences in the mean returns?							