Crypto101 Express

Stream ciphers

DaVinciCode

15/06/20

Rappel

- Chiffrement par bloc
 - comment faire pour chiffrer un message de longueur indéterminée?
 - problème de transmission des clés

Rappel

- Chiffrement par bloc
 - comment faire pour chiffrer un message de longueur indéterminée?
 - problème de transmission des clés

Avec le chiffrement par blocs

• diviser le message par blocs et les chiffrer indépendamment

• on appelle ce mode d'opération le mode ECB (Electronic codebook)

•

$$C_i = E_k(P_i)$$

Désavantages du mode ECB

• deux blocs identiques seront chiffrés de la même manière

Démo - Message

Démo - Chiffrement idéal

Démo - Chiffrement avec ECB

CBC mode

- Cipher block chaining
- \bullet $C_i = E_k(P_i \oplus C_{i-1})$
- \bullet On XOR chaque bloc P_i par le bloc chiffré C_{i-1} précédent pour brouiller les motifs
 - deux blocs égaux ne seront pas chiffrés de la même manière

Graphique - Chiffrement avec CBC

• $C_0 = IV$ (initialization vector)

Graphique - Déchiffrement avec CBC

 $\bullet \ P_i = D_k(C_i) \oplus C_{i-1}$

DaVinciCode

Initialization vector

- il est envoyé avec le message chiffré
- il doit être imprévisible, mais pas secret
 - il ne doit surtout pas être égal à la clef

Attaques si l'IV est prévisible

- imaginons le site d'une banque qui utilise le mode CBC pour chiffrer les données de ses clients
 - pour simplifier, 1 solde \Rightarrow 1 bloc
 - on peut actualiser notre solde
- base de données:

Client	Solde
Alice Mallory Bob	$\begin{aligned} C_A &= E(k, IV_A \oplus P_A) \\ C_M &= E(k, IV_M \oplus P_M) \\ C_B &= E(k, IV_B \oplus P_B) \end{aligned}$

Attaques si l'IV est prévisible

- Mallory est maline
 - elle arrive à prédire les IV qui ont été utilisés pour chiffrer les données pour chaque client (IV_A, IV_M, IV_B)
 - elle a accès à la base de données chiffrées
- lacktriangledown elle actualise son solde $P_M = IV_M \oplus IV_A \oplus G$
- 2 la banque actualise la base de données: $C_M = E(k, IV_M \oplus P_M)$

$$\iff C_M = E(k, IV_M \oplus (IV_M \oplus IV_A \oplus G))$$

$$\iff C_M = E(k, IV_A \oplus G)$$

 $oldsymbol{0}$ si $C_M=C_A$, alors Mallory a trouvé le solde d'Alice (G)

Remarque

Cette banque aurait aussi du avoir une clé \boldsymbol{k} différente pour chaque client