

```
Entscopy (class) = - PA 1092 PA -PO 1092 PO
                   =-\left(\frac{5}{10}\right) \log_2\left(\frac{5}{10}\right) - \left(\frac{5}{10}\right) \log_2\left(\frac{5}{10}\right)
                    = I {equal # of D & D ex }
 X_1 : X_1(1) : [4+, 1-]
        XI(0): [4-, I+]
            S: [5+, 5-]
Info. gain (XI) = Entropy (class) - & 1 Sul Enuso
             = I - (5) H(x_1, I) - (5) H(X_1, 0)
  H(X1,1) = -4 1092(4) - (1) 1092(1)
             =-(0.8)(-0.32)-(0.2)(-2.32)
 H(X_1,0) = -(\frac{1}{5})\log_2(\frac{1}{5}) - (\frac{4}{5})\log_2(\frac{4}{5})
 Ig(X_1) = I - 5(0.72) - \frac{5}{10}(0.72)
X_2 = X_2(1) : [2+, ]-J
        X_2(0): [3+, 4-]
             S: [5+, 5-]
H(X_2, I) = -\binom{2}{3} \log_2(\frac{2}{3}) - \binom{1}{3} \log_2(\frac{1}{3})
               = - (0.66) (-0.599) - (0.33) (-1.599)
              = 0.395+0.527
             = 1.05
```

H (X2,0) =
$$-\left(\frac{3}{7}\right)\log_2\left(\frac{3}{7}\right) - \left(\frac{4}{7}\right)\log_2\left(\frac{4}{7}\right)$$
= $-(0.428)(-1.22) - (0.57)(-0.81)$
= $0.522 - 0.4617$
= 0.98

Ig (X2) = $1 - \left(\frac{3}{10}\right)(1.05) - \left(\frac{7}{10}\right)(0.98)$
= 0.037

X3: $X_3(1): [0+,2-7]$
 $X_3(0): [5+,3-7]$
S: $[5+,5-7]$
H (class /X3 = 0) = $-\left(\frac{5}{8}\right)\log_2\left(\frac{5}{8}\right) - \left(\frac{3}{8}\right)\log_2\left(\frac{3}{8}\right)$
= $-(0.625)(-0.648) - (0.575)(-1.415)$
= $0.423 + 0.530$
= 0.953
H (class /X3 = 1) = 0
Ig (X3) = $1 - 0 - 0.762$
= 0.238

X1 has the highest gain among other attaibutes. So, we take X1 as a root hode.

H (class) = $-\left(\frac{4}{5}\right)\log_2\left(\frac{4}{5}\right) - \left(\frac{1}{5}\right)\log_2\left(\frac{1}{5}\right)$
= 0.72
where X1 is $1: [4+, 1-7]$
X2 (1): $[1+, 0-7]$
X2 (0): $[3+, 1-7]$

H(class |
$$X_2 = 0$$
) = $-\left(\frac{3}{4}\right) \log_2\left(\frac{3}{4}\right) - \left(\frac{1}{4}\right) \log_2\left(\frac{1}{4}\right)$

= $-\left(0.7s\right) (-0.41s) - \left(0.2s\right) (-2)$
= $-0.311 + 0.5$
= -0.811
H($X_1 = 1 | X_2 = 1$) = 0

Tg(X_2) = $0.7z - \left(\frac{1}{5}\right) (0) - \left(\frac{4}{5}\right) (0.811)$
= $0.7z - 0.6488$
= $0.07z$
 $X_3(0) : [0-, 0+]$ pure class $X_3(0) : [0-, 0+]$ pure class $X_3(0) : [0-, 4+]$ entropy H($X_1 = 1, X_3(1)$) = H($X_1 = 1, X_3(0)$) = 0

Tg(X_3) = $0.7z$

L X_3 has higher entropy than X_2 , we choose X_3 .

Other borand, when $X_1 = 0$,

 $X_1 = 0 : [1+, 4-]$
H($X_1 = 0$) = $-\left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right) - \left(\frac{4}{5}\right) \log_2\left(\frac{4}{5}\right)$
= $0.7z$
 $X_1 = 0 : [1+, 4-]$
H($X_1 = 0$) = $-\left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right) - \left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right)$
= $0.7z$
 $X_1 = 0 : [1+, 4-]$
H($X_1 = 0$) = $-\left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right) - \left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right)$
= $0.7z$
 $X_1 = 0 : [1+, 4-]$
H($X_1 = 0$) = $-\left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right) - \left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right)$
= $0.7z$
 $X_1 = 0 : [1+, 4-]$
H($X_1 = 0$) = $-\left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right) - \left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right)$
= $0.7z$
 $X_1 = 0 : [1+, 4-]$
H($X_1 = 0$) = $-\left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right) - \left(\frac{1}{5}\right) \log_2\left(\frac{1}{5}\right)$
= -1
 $X_2 = 0$

Scanned by CamScanner