Obliczenia naukowe Lista1

Stanisław Woźniak

1 Zadanie 1

- 1.1 Macheps Epsilon Maszynowy
- 1.2 Eta
- 1.3 Max Float Największa wartość
- 2 Zadanie 2 Wzór na macheps

2.1 Problem

Należało stwierdzić eksperymentalnie prawdziwość wzoru Kahana na epsilon maszynowy (macheps), który jest według niego opisany wzorem:

$$3*(\frac{4}{3}-1)-1$$

2.2 Wyniki

Porównanie wyników z poprawnym epsilonem maszynowym:

	Wyliczony według wzoru	poprawny
Float16	-0.000977	0.000977
Float32	$1.1920929 * 10^{-7}$	$1.1920929 * 10^{-7}$
Float64	$-2.220446049250313*10^{-16}$	$2.220446049250313*10^{-16}$

2.3 Wnioski

3 Zadanie 3 - Rozmieszczenie liczb zmiennopozycyjnych

3.1 Problem

Należało sprawdzić eksperymentalnie własność liczb w arytmetyce Float64 w przedziale [1, 2], że każda z nich może być przedstawiona wzorem:

$$x = 1 + k * \delta$$

gdzie
$$k = 1, 2, ...2^{52} - 1$$
 oraz $\delta = 2^{-52}$

3.2 Wynik

Wyniki wychodzą zgodne dla podanego wzoru porównywanego z funkcją nextfloat. Przy porównaniu liczb w bitach możemy również zauważyć, że wyniki są takie same w obu przypadkach.

3.3 Wnioski

Podany wzór jest poprawny, gdyż liczba δ jest reprezentowana jako jeden najmniej znaczący bit w arytmetyce Float64. Mnożąc po kolei przez każdą liczbę k uzyskujemy każdą możliwą reprezentację 52 najmniej znaczacych bitów, czyli mantysy.

Natomiast liczby w przedzale $[\frac{1}{2}, 1]$ są rozmieszczone z różnicą $\delta = 2^{-53}$, a w przedziale [2, 4] sa rozmieszczone z różnicą $\delta = 2^{-51}$, ponieważ liczba ostateczna jest w reprezentacji $mantysa*2^{cecha}$. Wynikiem czego są różnice pomiędzy δ w przedziale $[\frac{1}{2}, 1]$ a δ w przedziale [1, 2] lub [2, 4].

4 Zadanie 4

4.1 Problem

Należało znaleźć liczbę w arytmetyce Float
64 z przedziału 1 < x < 2, taką, że
 $x*\frac{1}{x}\neq 1.$

4.2 Wynik

${ m najmniejsza}$	największa
1.000000057228997	1.9999999850988384

4.3 Wnioski

5 Zadanie 5 - Iloczyn skalarny dwóch wektorów

5.1 Problem

Przy pomocy 4 różnych algorytmów do policzenia iloczynu skalarnego, należało porównać wyniki do prawidłowej wartości: $-1.00657107000000*10^{-11}$. Dane wektory:

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

5.2 Algorytmy i ich wyniki

- 1. Algorytm liczący sumę kolejnych iloczynów wartości wektora
- 2. Algorytm liczący sumę kolejnych iloczynów wartości wektora zaczynając od ostatniego
- 3. Algorytm po wyliczeniu iloczynów dodaje wyniki dodatnie od największego do najmniejszego, następnie dodaje osobno wyniki ujemne od najmniejszego do największego. Ostatecznie obie składowe sumują się w końcowy wynik.
- 4. Algorytm po wyliczeniu iloczynów dodaje wyniki dodatnie od najmniejszego do największego, następnie dodaje osobno wyniki ujemne od największego do najmniejszego. Ostatecznie obie składowe sumują się w końcowy wynik.

Wyniki:

$\operatorname{algorytm}$	wynik dla Float32	wynik dla Float64
pierwszy	-0.4999443	$1.0251881368296672 * 10^{-10}$
drugi	-0.4543457	$-1.5643308870494366 * 10^{-10}$
${ m trzeci}$	-0.5	0.0
czwarty	-0.5	0.0

poprawna wartość:

 $-1.00657107000000 * 10^{-11}$

5.3 Wnioski

6 Zadanie 6 - Porównanie dwóch takich samych funkcji

6.1 Problem

Podane zostały dwie funkcje, które w praktyce są identyczne. W arytmetyce Float64 należało porównać wyniki każdej z nich dla $x=8^{-1},8^{-2},8^{-3},...$

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

6.2 Wyniki

X	f(x)	g(x)
8^{-1}	0.0077822185373186414	0.0077822185373187065
8^{-2}	0.00012206286282867573	0.00012206286282875901
8^{-3}	$1.9073468138230965 * 10^{-6}$	$1.907346813826566 * 10^{-6}$
8^{-4}	$2.9802321943606103 * 10^{-8}$	$2.9802321943606116 * 10^{-8}$
8^{-5}	$4.656612873077393 * 10^{-10}$	$4.6566128719931904 * 10^{-10}$
8^{-6}	$7.275957614183426 * 10^{-6}12$	$7.275957614156956 * 10^{-12}$
8^{-7}	$1.1368683772161603 * 10^{-13}$	$1.1368683772160957 * 10^{-13}$

6.3 Wnioski

7 Zadanie 7 - Pochodna oraz różnica błędu

7.1 Problem

Należało porównać przyblizoną wartość pochodnej funkcji f w punkcie $x_0 = 1$ z jej rzeczywistą wartością. Gdzie $f(x) = \sin x + \cos 3x$.

Błąd do obliczenia:

$$|f'(x_0) - \widetilde{f}'(x_0)|$$

Natomiast przybliżenie jest liczone ze wzoru:

$$\tilde{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

Przy obliczeniach należało używać arytmetyki Float
64 oraz $h=2^{-n}$, gdzie n $=0,\!1,\!2,\!..52$

7.2 Wyniki

Wyliczony bład z powyższego wzoru dla poszczególnych n oraz pokazanie zmiany h

n	h	błąd
0	1.0	1.9010469435800585
1	0.5	1.753499116243109
2	0.25	0.9908448135457593
:	<u>:</u>	:
27	$7.450580596923828 * 10^{-9}$	$3.460517827846843*10^{-8}$
28	$3.725290298461914 * 10^{-9}$	$4.802855890773117 * 10^{-9}$
29	$1.862645149230957 * 10^{-9}$	$5.480178888461751 * 10^{-8}$
:	:	:
50	$8.881784197001252 * 10^{-16}$	0.11694228168853815
51	$4.440892098500626 * 10^{-16}$	0.11694228168853815
52	$2.220446049250313 * 10^{-16}$	0.6169422816885382

7.3 Wnioski