What's Decidable About Arrays?

Aaron R. Bradley

Zohar Manna Henny B. Sipma

Computer Science Department

Stanford University

$\underline{\mathbf{Outline}}$

- \Rightarrow 0. Motivation
 - 1. Theories of Arrays
 - $2. \mathsf{SAT}_{\mathsf{A}}$
 - 4. Undecidable Problems
 - $5. SAT_{M}$
 - 6. Conclusion

Motivation int[] BUBBLESORT(int[] a) { int i, j, t; for (i := |a| - 1; i > 0; i := i - 1) { for (j := 0; j < i; j := j + 1) { if (a[j] > a[j+1]) { t := a[j];3 a[j] := a[j+1];a[j+1] := t;return a;

Does BubbleSort return a sorted array?

Motivation

```
\ell_0: Opre |a| \geq 0
                                                                                  input specification
\ell_f: Opost sorted(rv, 0, |a|-1)
                                                                               output specification
int[] BUBBLESORT(int[] a) {
                                                                                       loop assertions
    int i, j, t;
   \text{for } \ell_1 \colon \mathbb{Q} \left[ \begin{matrix} -1 \leq i < |a| \ \land \ |a| = |a|_0 \\ \land \ \text{partitioned}(a,0,i,i+1,|a|-1) \ \land \ \text{sorted}(a,i,a|-1) \end{matrix} \right]
   (i := |a| - 1, i > 0; i := i - 1)
                    1 \le i < |a| \land 0 \le j \le i \land |a| = |a|_0 
        \begin{array}{c|c} \text{for } \ell_2 \text{: } @ \left[ \land \text{ partitioned}(a,0,i,i+1,|a|-1) \right] \\ \land \text{ partitioned}(a,0,j-1,j,j) \ \land \ \text{sorted}(a,i,|a|-1) \end{array} \right] 
       (i := 0; \ j < i; j := j + 1)
           if (a[j] > a[j+1]) {
              t := a[j]; a[j] := a[j+1]; a[j+1] := t;
    return a;
Does BubbleSort return a sorted array? | Yes!
```

Motivation

Predicates:

• sorted (a, ℓ, u) : array a is sorted in range $[\ell, u]$

$$(\forall i, j)[\ell \le i \le j \le u \rightarrow a[i] \le a[j]]$$

• partitioned $(a, \ell_1, u_1, \ell_2, u_2)$

$$(\forall i, j)[\ell_1 \le i \le u_1 < \ell_2 \le j \le u_2 \rightarrow a[i] \le a[j]]$$

At the top of the inner loop (ℓ_2) :

Motivation

Verification process:

- Generate verification conditions.
- Prove that each verification condition is valid.

Example: verification condition (from ℓ_2 to ℓ_2 , with swapping)

How do we prove that verification conditions are valid?

Decision Procedures!

Motivation: Parameterized Systems

```
\begin{array}{l} \texttt{int[]} \ y := \texttt{int}[0..M-1]; \\ \theta \colon y[0] = 1 \ \land \ (\forall j \in [1,M-1]) \ y[j] = 0 \end{array}
```

```
egin{bmatrix} \mathbf{request}(y,i); \ \mathbf{while} \ (\mathbf{true}) \ \{ \ \mathbf{critical}; \ \mathbf{release}(y,i\oplus_M 1); \ \mathbf{noncritical}; \ \mathbf{request}(y,i); \ \} \end{bmatrix}
```

request
$$(y, i): y[i] > 0 \land y' = y\{i \triangleleft y[i] - 1\}$$

release $(y, i): y' = y\{i \triangleleft y[i] + 1\}$

Does Sem-N ensure mutual exclusion?

Motivation: Parameterized Systems

```
\begin{split} &\inf[\ ] \ y := \inf[0..M-1]; \\ &\theta \colon y[0] = 1 \ \land \ (\forall j \in [1,M-1]) \ y[j] = 0 \end{split}
```

```
[ \begin{array}{c} \mathbf{request}(y,i); \\ \mathbf{while} \\ & @ \ (\forall j \in [0,M-1]) \ y[j] = 0 \ \land \ |y| = |y_0| \\ & \ (\mathtt{true}) \\ \\ \{ \\ & \mathbf{critical}; \\ & \mathbf{release}(y,i \oplus_M 1); \\ & \mathbf{noncritical}; \\ & \mathbf{request}(y,i); \\ \} \\ \end{array} ]
```

Does Sem-N ensure mutual exclusion? Yes!

Outline

- 0. Motivation
- \Rightarrow 1. Theories of Arrays
 - $2. \mathsf{SAT}_{\mathsf{A}}$
 - 4. Undecidable Problems
 - $5. SAT_{M}$
 - 6. Conclusion

Background: Extensional Theory of Arrays $T_A^=$

$$\Sigma = \{ \cdot [\cdot], \cdot \{ \cdot \triangleleft \cdot \}, = \}$$

- Distinguished sorts:
 - Index sort T_{index}
 - Element sort T_{elem}
- Arrays: index \rightarrow elem, index \rightarrow index \rightarrow elem, ...
- Functions: $\cdot [\cdot]$ (read), $\cdot \{\cdot \triangleleft \cdot\}$ (write)
 - -a[i] is the value of the element of array a at index i
 - $a\{i \triangleleft e\}$ is the array a' s.t. a'[i] = e, and a'[j] = a[j] at all other $j \neq i$
- Predicates: = (equality)

$$e_1 \neq e_2 \land a\{i \triangleleft e_1\} = a\{i \triangleleft e_2\}$$
 $T_{\mathsf{A}}^{=}$ -unsatisfiable

Background: Extensional Theory of Arrays $T_A^=$ Satisfiability:

- <u>Full</u>: undecidable (even without extensionality)
 - encode FOL
- Quantifier-free: decidable
 - Without extensionality: [McCarthy, 62]
 - With extensionality, $T_A^=$: [Stump, Barrett, Dill & Levitt, 01]

Parameterized Theory of Maps $T_{\mathsf{M}}^{\mathsf{elem}}$

$$\Sigma_{\mathsf{M}} = \Sigma_{\mathsf{EUF}} \cup \Sigma_{\mathsf{elem}} \cup \{ \cdot [\cdot], \cdot \{ \cdot \triangleleft \cdot \} \}$$

- Uninterpreted indices
- Elements interpreted in parameter theory: T_{elem} (Note: multiple element theories possible.)
- Maps: $\mathsf{EUF} \to \mathsf{elem}, \; \mathsf{EUF} \to \mathsf{EUF} \to \mathsf{elem}, \; \dots$
- Functions: functions of T_{EUF} and T_{elem} and $\cdot [\cdot]$ (read), $\cdot \{\cdot \triangleleft \cdot\}$ (write)
- Predicates: predicates of T_{EUF} and T_{elem}

$$e_1 \neq e_2 \ \land \ a\{i \triangleleft e_1\} = a\{i \triangleleft e_2\}$$

$$\Downarrow$$

$$e_1 \neq e_2 \ \land \ (\forall j)(a\{i \triangleleft e_1\}[j] = a\{i \triangleleft e_2\}[j])$$

$$T_{\mathsf{M}}^{\mathsf{EUF}}\text{-unsatisfiable}$$

Theory of Maps $T_{\mathsf{M}}^{\mathsf{elem}}$

Satisfiability:

- <u>Full</u>: undecidable
- Quantifier-free:
 - decidable for some element theories[McCarthy, 62], [Nelson & Oppen, 79]
 - fragment augmented with permutation predicate decidable [Suzuki & Jefferson, 80]
- With map properties: decidable
 - One alternation of quantifiers, with syntactic constraints
 - "Natural" fragment: on the edge of decidability

Parameterized Theory of Arrays T_A^{elem}

$$\Sigma_{\mathsf{A}} = \Sigma_{\mathbb{Z}} \cup \Sigma_{\mathsf{elem}} \cup \{ \cdot [\cdot], \cdot \{ \cdot \triangleleft \cdot \} \}$$

- Indices interpreted in Presburger arithmetic $T_{\mathbb{Z}}$
- Elements interpreted in parameter theories: T_{elem} (Note: multiple element theories possible.)
- Arrays: $\mathbb{Z} \to \text{elem}$, $\mathbb{Z} \to \mathbb{Z} \to \text{elem}$, ...
- Functions: functions of $T_{\mathbb{Z}}$ and T_{elem} and $\cdot[\cdot]$ (read), $\cdot\{\cdot \triangleleft \cdot\}$ (write)
- Predicates: predicates of $T_{\mathbb{Z}}$ and T_{elem}

Theory of Arrays T_A^{elem}

Satisfiability:

- <u>Full</u>: undecidable
- Quantifier-free: decidable
 - decidable for some element theories
 [McCarthy, 62], [Nelson & Oppen, 79]
 - fragment with sorted and partitioned predicates decidable [Mateti, 81]
- With array properties: decidable
 - One alternation of quantifiers, with syntactic constraints
 - "Natural" fragment: on the edge of decidability

Our Contribution

- Studied theories of arrays (integer indices) and maps (uninterpreted indices).
- Identified decidable subfragments and provided decision procedures.
- Showed that several natural extensions result in undecidable fragments.
- Implementation in πVC , a verifying compiler.

Outline

- 0. Motivation
- 1. Theories of Arrays
- $\Rightarrow 2. \mathsf{SAT}_{\mathsf{A}}$
 - 4. Undecidable Problems
 - $5. SAT_{M}$
 - 6. Conclusion

 $T_{\mathsf{A}}^{\mathsf{elem}}$: Array Property

A formula of the form

$$(\forall \bar{i})(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))$$

where

- $\bar{i} \in \mathbb{Z}^n$ is vector of index variables
- *n* is the **height** of the property
- $\varphi_I(\bar{i})$ is the index guard
- $\varphi_V(\bar{i})$ is the value constraint

$T_{\mathsf{A}}^{\mathsf{elem}}$: Array Property

$$(\forall \bar{i})(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))$$

Index guard $\varphi_I(\bar{i})$:

iguard
$$\rightarrow$$
 iguard \land iguard \mid iguard \lor iguard \mid atom atom \rightarrow expr \leq expr \mid expr $=$ expr expr \rightarrow $uvar \mid$ pexpr pexpr \rightarrow $\mathbb{Z} \mid \mathbb{Z} \cdot evar \mid$ pexpr \rightarrow pexpr

uvar is any universally quantified variable.evar is any existentially quantified integer variable.

$$(\forall i, j)(\ell + 2 \leq i \land i \leq u + 2k - 1 \land i \leq j \land 2\ell \leq 3u \rightarrow \ldots)$$

$T_{\mathsf{A}}^{\mathsf{elem}}$: Array Property

$$(\forall \bar{i})(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))$$

Value constraint $\varphi_V(\bar{i})$:

All occurrences of $i \in \overline{i}$ in $\varphi_V(\overline{i})$ are as reads a[i].

No nested reads $a_1[a_2[i]]$.

$$(\forall i, j)(i \le j \rightarrow a[i] \le a[j])$$

$T_{\mathsf{A}}^{\mathsf{elem}}$: Array Property Fragment

Subfragment of $\exists^*\forall^*$ -fragment of T_A^{elem} .

Existentially-closed Boolean combinations of array properties and quantifier-free $T_{\mathsf{A}}^{\mathsf{elem}}$ -formulae.

Example: validity of

$$(\forall *) \begin{bmatrix} 1 \leq i < |a| \ \land \ 0 \leq j \leq i \ \land \ |a| = |a|_0 \\ \land \ \mathsf{partitioned}(a,0,i,i+1,|a|-1) \\ \land \ \mathsf{partitioned}(a,0,j-1,j,j) \ \land \ \mathsf{sorted}(a,i,|a|-1) \\ \land \ j < i \ \land \ a[j] > a[j+1] \\ 1 \leq i < |a| \ \land \ 0 \leq j+1 \leq i \ \land \ |a| = |a|_0 \\ \land \ \mathsf{partitioned}(a\{j \lhd a[j+1]\}\{j+1 \lhd a[j]\},0,i,i+1,|a|-1) \\ \land \ \mathsf{partitioned}(a\{j \lhd a[j+1]\}\{j+1 \lhd a[j]\},0,j,j+1,j+1) \\ \land \ \mathsf{sorted}(a\{j \lhd a[j+1]\}\{j+1 \lhd a[j]\},i,|a|-1) \end{bmatrix}$$

Examples: Definable Predicates

 $T_{\mathsf{A}}^{\mathsf{elem}}$:

$$(\forall i)(a[i] = b[i]) \qquad a = b$$

$$(\forall i)(\ell \leq i \leq u \ \rightarrow \ a[i] = b[i])$$

$$\mathsf{beq}(\ell, u, a, b)$$

 $T_{\mathsf{A}}^{\mathbb{Z}},\,T_{\mathsf{A}}^{\mathbb{R}}$:

$$(\forall i,j) (\ell \leq i \leq j \leq u \ \rightarrow \ a[i] \leq a[j])$$
 sorted (ℓ,u,a)

$$(\forall i, j)(\ell_1 \leq i \leq u_1 < \ell_2 \leq j \leq u_2 \rightarrow a[i] \leq a[j])$$

$$\mathsf{partitioned}(\ell_1, u_1, \ell_2, u_2, a)$$

Also "weak" permutation as approximation to permutation of [Suzuki & Jefferson, 80]

Algorithm: SAT_A

Reduction from array property formula ψ to equisatisfiable quantifier-free $(T_{\mathsf{EUF}} \cup T_{\mathbb{Z}} \cup T_{\mathsf{elem}})$ -formula ψ' .

- 1. Expand definitions. Convert to negation normal form (NNF).
- 2. Apply (write) to remove writes.
- 3. Apply (exists) to remove \exists .
- 4. Construct **index set**. Apply (forall) to remove \forall .
- 5. Convert to equisatisfiable quantifier-free $(T_{\mathsf{EUF}} \cup T_{\mathbb{Z}} \cup T_{\mathsf{elem}})$ -formula. Decide satisfiability in combined theory.

Algorithm: SAT_A (Step 1)

Replace literals with definitions.

Push negations past quantifiers.

$$\varphi: \neg \mathsf{sorted}(\ell, u, a\{k \triangleleft e\}) \\ \Downarrow \\ \neg ((\forall i, j)(\ell \leq i \leq j \leq u \ \rightarrow \ a\{k \triangleleft e\}[i] \leq a\{k \triangleleft e\}[j])) \\ \Downarrow \\ (\exists i, j)(\ell \leq i \leq j \leq u \ \land \ a\{k \triangleleft e\}[i] > a\{k \triangleleft e\}[j])$$

Algorithm: SAT_A (Step 2)

Apply (write) exhaustively to remove writes:

$$\frac{\psi[a\{i \triangleleft e\}]}{\psi[b] \wedge b[i] = e \wedge (\forall j)(j \neq i \rightarrow a[j] = b[j])}$$
for fresh b (write)

To meet syntactic requirements of index guard, rewrite third conjunct:

$$(\forall j)(j \le i - 1 \lor i + 1 \le j \rightarrow a[j] = b[j])$$

$$(\exists i, j)(\ell \le i \le j \le u \land a\{k \triangleleft e\}[i] > a\{k \triangleleft e\}[j])$$

$$\downarrow \downarrow$$

$$(\exists i, j)(\ell \le i \le j \le u \land b[i] > b[j]) \land b[k] = e$$

$$\land (\forall j)(j \ne k \rightarrow a[j] = b[j])$$

Algorithm: SAT_A (Step 3)

Apply (exists) rule exhaustively:

$$\frac{\psi[(\exists \overline{i})(\varphi_I(\overline{i}) \land \neg \varphi_V(\overline{i}))}{\psi[\varphi_I(\overline{j}) \land \neg \varphi_V(\overline{j})]} \text{ for fresh } \overline{j} \quad \text{(exists)}$$

$$(\exists i, j)(\ell \leq i \leq j \leq u \land b[i] > b[j]) \land b[k] = e$$

$$\land (\forall j)(j \neq k \rightarrow a[j] = b[j])$$

$$\Downarrow$$

$$\ell \leq j_1 \leq j_2 \leq u \land b[j_1] > b[j_2] \land b[k] = e$$

$$\land (\forall j)(j \neq k \rightarrow a[j] = b[j])$$

Algorithm: SAT_A (Step 4)

Form index set \mathcal{I} , and apply (forall) exhaustively.

$$\frac{\psi[(\forall \bar{i})(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))]}{\psi\left[\bigwedge_{\bar{i}\in\mathcal{I}^n}(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))\right]}$$
 (forall)

What is \mathcal{I} ?

Algorithm: Index Sets of ψ

Read Set: Array reads $\mathcal{R} = \{t : \cdot [t] \in \psi \land t \text{ not } \forall \text{ quantified} \}.$

Bounds Set: \mathcal{B} , root pexpr terms in index guards.

Full Index Set:

$$\mathcal{I} \stackrel{\text{def}}{=} \begin{cases} \{0\} & \text{if } \mathcal{R} = \mathcal{B} = \emptyset \\ \mathcal{R} \cup \mathcal{B} & \text{otherwise} \end{cases}$$

$$b[k] = e \land (\forall i)(\underbrace{i \neq k}_{i \leq k-1 \ \lor \ i \geq k+1} \rightarrow a[i] = b[i])$$

$$\mathcal{R} = \{k\}$$

$$\mathcal{B} = \{k-1, k+1\}$$

$$\mathcal{I} = \{k-1, k, k+1\}$$

Algorithm: Index Set of ψ

New indices (k-1, k+1) from (write) **represent intervals**:

- closed intervals between symbolic indices and bounds
- two open intervals: to the left and to the right

Algorithm: SAT_A (Step 4)

$$\ell \le j_1 \le j_2 \le u \land b[j_1] > b[j_2] \land b[k] = e$$
$$\land (\forall j)(j \ne k \rightarrow a[j] = b[j])$$

$$\mathcal{R} = \{j_1, j_2, k\}$$
 $\mathcal{B} = \{k - 1, k + 1\}$
 $\mathcal{I} = \{j_1, j_2, k - 1, k, k + 1\}$

$$\psi$$

$$\ell \le j_1 \le j_2 \le u \land b[j_1] > b[j_2] \land b[k] = e$$

$$\land \bigwedge_{j \in \mathcal{I}} (j \ne k \rightarrow a[j] = b[j])$$

Algorithm: SAT_A (Step 5)

- Associate with each n-dimensional array variable a a fresh uninterpreted n-ary function f_a .
- Replace each array read $a[i,\ldots,j]$ by $f_a(i,\ldots,j)$.

 $(T_{\mathsf{EUF}} \cup T_{\mathbb{Z}})$ -satisfiable $\Rightarrow \varphi$ is $T_{\mathsf{A}}^{\mathbb{Z}}$ -satisfiable.

• Decide this (QF) formula's satisfiability in $T_{\mathsf{EUF}} \cup T_{\mathbb{Z}} \cup T_{\mathsf{elem}}$.

$$\ell \leq j_1 \leq j_2 \leq u \wedge b[j_1] > b[j_2] \wedge b[k] = e$$

$$\wedge \bigwedge_{j \in \mathcal{I}} (j \neq k \rightarrow a[j] = b[j])$$

$$\downarrow \downarrow$$

$$\ell \leq j_1 \leq j_2 \leq u \wedge f_b(j_1) > f_b(j_2) \wedge f_b(k) = e$$

$$\wedge \bigwedge_{j \in \mathcal{I}} (j \neq k \rightarrow f_a(j) = f_b(j))$$

Example: $T_A^{\mathbb{Z}}$ -unsatisfiable (Step 1)

$$\varphi: \begin{cases} \mathsf{sorted}(0,5,a\{0 \lhd 7\}\{5 \lhd 9\}) \\ \land \; \mathsf{sorted}(0,5,a\{0 \lhd 11\}\{5 \lhd 13\}) \end{cases} \\ \Downarrow \\ (\forall i,j)(0 \leq i \leq j \leq 5 \; \rightarrow \; a\{0 \lhd 7\}\{5 \lhd 9\}[i] \leq a\{0 \lhd 7\}\{5 \lhd 9\}[j]) \\ \land \; (\forall i,j)(0 \leq i \leq j \leq 5 \; \rightarrow \; a\{0 \lhd 11\}\{5 \lhd 13\}[i] \leq a\{0 \lhd 11\}\{5 \lhd 13\}[j]) \end{cases}$$

Example:
$$T_A^{\mathbb{Z}}$$
-unsatisfiable (Step 2)

$$(\forall i,j)(0 \leq i \leq j \leq 5 \rightarrow \underbrace{a\{0 \triangleleft 7\}\{5 \triangleleft 9\}[i]}_{b} \leq \underbrace{a\{0 \triangleleft 7\}\{5 \triangleleft 9\}[j]}_{c})$$

$$\land \ (\forall i,j)(0 \leq i \leq j \leq 5 \rightarrow \underbrace{a\{0 \triangleleft 11\}\{5 \triangleleft 13\}[i]}_{d} \leq \underbrace{a\{0 \triangleleft 11\}\{5 \triangleleft 13\}[j]}_{e})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Example: $T_{\mathsf{A}}^{\mathbb{Z}}$ -unsatisfiable

In particular,

$$c[1] \le c[5] = 9 < 11 = d[0] \le d[1]$$

and

$$c[1] = b[1] = a[1] = d[1]$$

Contradiction.

 $\Rightarrow \varphi$ is $T_{\mathsf{A}}^{\mathbb{Z}}$ -unsatisfiable.

Note: New indices essential for proof.

Correctness

Theorem.

If satisfiability of quantifier-free $(T_{\text{EUF}} \cup T_{\mathbb{Z}} \cup T_{\text{elem}})$ -formulae is decidable, then $\mathsf{SAT}_{\mathsf{A}}$ is a decision procedure for satisfiability in the array property fragment of $T_{\mathsf{A}}^{\mathsf{elem}}$.

Outline

- 0. Motivation
- 1. Theories of Arrays
- $2. \mathsf{SAT}_{\mathsf{A}}$
- \Rightarrow 4. Undecidable Problems
 - $5. SAT_{M}$
 - 6. Conclusion

<u>Undecidable Problems</u>

An undecidable fragment results (for some element theory) with

- ∃*∀_Z∃_Z-fragment
 (with same restrictions otherwise)
- nested reads $(e.g., a_1[a_2[i]],$ where i is universally quantified);
- \bullet array reads by \forall variable in index guard;
- general arithmetic expressions over \forall index variables (even just addition of 1, e.g., i+1)

Open Question

Fragment with < in index guard (equivalently, negation).

Could express that an array has unique elements:

$$(\forall i, j)(i < j \rightarrow a[i] \neq a[j])$$

Outline

- 0. Motivation
- 1. Theories of Arrays
- $2. \mathsf{SAT}_{\mathsf{A}}$
- 4. Undecidable Problems
- \Rightarrow 5. SAT_M
 - 6. Conclusion

Maps: Map Property Fragment

$$(\forall \overline{k})(\varphi_K(\overline{k}) \to \varphi_V(\overline{k}))$$

Key Guard $\varphi_K(\overline{k})$

kguard
$$\rightarrow$$
 kguard \land kguard \mid kguard \lor kguard \mid atom atom \rightarrow var $=$ var $\mid evar \neq var \mid var \neq evar$ var \rightarrow $evar \mid uvar$

Value Constraint $\varphi_V(\overline{k})$:

All occurrences of $k \in \overline{k}$ in $\varphi_V(\overline{k})$ are as reads h[k]. No nested reads $h_1[h_2[k]]$.

Fragment:

Existentially-closed Boolean combinations of map property formulae and quantifier-free $T_{\mathsf{M}}^{\mathsf{elem}}$ -formulae.

Algorithm: SAT_M

1. Step 1 of SAT_A .

$$2. \ \frac{\psi[h\{k \triangleleft e\}]}{\psi[h'] \wedge h'[k] = e \wedge (\forall j)(j \neq k \ \rightarrow \ h[j] = h'[j])} \quad \text{(write)}$$

- 3. Step 3 of SAT_A.
- 4. $\mathcal{R} = \{t : \cdot [t] \in \psi\}; \mathcal{B} \text{ contains } \textit{evars of key guards};$ $\mathcal{K} = \mathcal{R} \cup \mathcal{B} \cup \{\kappa\}, \text{ for fresh } \kappa.$

$$\frac{\psi[(\forall \overline{k})(\varphi_K(\overline{k}) \to \varphi_V(\overline{k}))]}{\psi\left[\bigwedge_{\overline{k} \in \mathcal{K}^n_{\psi_3}} (\varphi_K(\overline{k}) \to \varphi_V(\overline{k}))\right]}$$
 (forall)

- 5. Construct $\psi_4 \wedge \bigwedge_{k \in \mathcal{K} \setminus \{\kappa\}} k \neq \kappa$.
- 6. Step 5 of SAT_A; procedure for $T_{\text{EUF}} \cup T_{\text{elem}}$.

Maps

Theorem.

If satisfiability of quantifier-free $(T_{\mathsf{EUF}} \cup T_{\mathsf{elem}})$ -formulae is decidable, then $\mathsf{SAT}_{\mathsf{M}}$ is a decision procedure for satisfiability in the map property fragment of $T_{\mathsf{M}}^{\mathsf{elem}}$.

Relevant undecidability proofs carry over to maps.

Application: DP for Hashtables

Operations:

- put(h, k, v): map k to v
- remove(h, k) remove mapping on k
- get(h, k): return mapped element

Predicates:

- init(h): true iff h maps nothing
- $k \in \text{keys}(h)$: key membership
- $k \in K_1 \cup K_2$
- $k \in K_1 \cap K_2$
- $k \in \overline{K}$

Application: DP for Hashtables

- 1. Construct $\psi \wedge \top \neq \bot$, for fresh constants \top and \bot .
- 2. Rewrite

$$\begin{split} \psi[\mathsf{put}(h,k,v)] \; \Rightarrow \; \psi[h'] \wedge h' &= h\{k \lhd v\} \wedge \mathsf{keys}_{h'} = \mathsf{keys}_h\{k \lhd \top\} \\ \psi[\mathsf{remove}(h,k)] \; \Rightarrow \; \psi[h'] \wedge \mathsf{keys}_{h'} &= \mathsf{keys}_h\{k \lhd \bot\} \end{split}$$

3. Rewrite

$$\psi[\operatorname{get}(h,k)] \Rightarrow \psi[h[k]]$$

$$\psi[\operatorname{init}(h)] \Rightarrow \psi[(\forall k)(h[k] = \bot)]$$

$$\psi[k \in \operatorname{keys}(h)] \Rightarrow \psi[\operatorname{keys}_h[k] \neq \bot]$$

$$\psi[k \in K_1 \cup K_2] \Rightarrow \psi[k \in K_1 \lor k \in K_2]$$

$$\psi[k \in K_1 \cap K_2] \Rightarrow \psi[k \in K_1 \land k \in K_2]$$

$$\psi[k \in \overline{K}] \Rightarrow \psi[\neg(k \in K)]$$

Example: Hashtables

Example specification:

$$(\forall k \in \mathsf{keys}(h))(\mathsf{get}(h,k) \ge 0)$$

Example verification condition:

$$\begin{cases} (\forall h, s, v, h') \\ \left[(\forall k \in \mathsf{keys}(h)) \ \mathsf{get}(h, k) \geq 0 \ \land \ v \geq 0 \ \land \ h' = \mathsf{put}(h, s, v) \right] \\ \rightarrow (\forall k \in \mathsf{keys}(h')) \ \mathsf{get}(h', k) \geq 0 \end{cases}$$

Remark:

Key sets provide means for reasoning about modifying hashtables.

Outline

- 0. Motivation
- 1. Theories of Arrays
- $2. \mathsf{SAT}_{\mathsf{A}}$
- 4. Undecidable Problems
- $5. SAT_{M}$
- \Rightarrow 6. Conclusion

Experience

Implemented in πVC , a verifying compiler for pi language. (pi for **Prove It**)

- Used in undergraduate/graduate course at Stanford.
- Relied heavily on array decision procedure.

Tricks:

- Simple resolution.
- Phased introduction of symbolic index terms.

Performance results (examples):

Program	Time	Program	Time
MERGESORT	20s	BubbleSort	1s
InsertionSort	$1 \mathrm{s}$	QUICKSORT	7s
BINARYSEARCH	1s	SEM-N	- 1s $ $

Future Work

- Decidability of extension with $\langle (\neq) \rangle$.
- Complexity for particular element theories.
- Array invariant generation.

SAT_A is Sound

Lemma. If ψ is satisfiable, then ψ_5 is satisfiable.

Proof. Universal quantification weakened to finite conjunction.

Lemma. If ψ_5 is satisfiable, then ψ is satisfiable.

Proof.

Assume

$$I \models \psi_5$$

(I is a model of ψ_5).

Construct model J from I s.t.

$$J \models \psi$$

Define project operation under I

$$\mathsf{proj}: \mathbb{Z} o \mathcal{I}^I$$

 $proj(z) = t^I$ such that

- $t \in \mathcal{I}$
- t^I is nearest neighbor to z

$$-t^{I} \leq z \wedge (\forall s \in \mathcal{I})(s^{I} \leq t^{I} \vee s^{I} > z)$$

$$- \text{ or } t^I > z \wedge (\forall s \in \mathcal{I})(s^I \ge t^I)$$

Extend
$$\operatorname{proj}(z_1,\ldots,z_k) = (\operatorname{proj}(z_1),\ldots,\operatorname{proj}(z_k)).$$

Construct model J of ψ :

- Equate all non-array variables in J and I.
- $\bullet \ a^J[\overline{z}] = f_a^J(\operatorname{proj}(\overline{z}))$

Now prove $J \models \psi$.

Steps 1, 3, 5 are easy.

Step 2 implements the definition of array write.

Focus on Step 4.

$$\frac{\psi[(\forall \bar{i})(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))]}{\psi\left[\bigwedge_{\bar{i}\in\mathcal{I}^n}(\varphi_I(\bar{i}) \to \varphi_V(\bar{i}))\right]}$$
 (forall)

Strategy:

Suppose for all is applied to ψ' . Prove that if

$$J \models \psi' \left[\bigwedge_{\bar{i} \in \mathcal{I}_{\psi}^n} (\varphi_I(\bar{i}) \to \varphi_V(\bar{i})) \right]$$

then

$$J \models \psi' \left[(\forall \overline{i}) (\varphi_I(\overline{i}) \to \varphi_V(\overline{i})) \right]$$

Sufficient to prove

$$J \models \left[\bigwedge_{\overline{i} \in \mathcal{I}_{\psi}^{n}} (\varphi_{I}(\overline{i}) \to \varphi_{V}(\overline{i})) \to (\forall \overline{i})(\varphi_{I}(\overline{i}) \to \varphi_{V}(\overline{i})) \right]$$

- 1. $\ell^J \leq m^J \Rightarrow \operatorname{proj}(\ell^J) \leq \operatorname{proj}(m^J)$ $\ell^J = m^J \Rightarrow \operatorname{proj}(\ell^J) = \operatorname{proj}(m^J)$ (structural induction over index guard)
- 2. $a^J[\overline{z}] = a^J[\operatorname{proj}(\overline{z})]$

Q.E.D.

SAT_A is a Decision Procedure

Theorem.

If satisfiability of quantifier-free $(T_{\text{EUF}} \cup T_{\mathbb{Z}} \cup T_{\text{elem}})$ -formulae is decidable, then $\mathsf{SAT}_{\mathsf{A}}$ is a decision procedure for satisfiability in the array property fragment of $T_{\mathsf{A}}^{\mathsf{elem}}$.

Theorem.

If satisfiability of quantifier-free $(T_{\text{EUF}} \cup T_{\mathbb{Z}} \cup T_{\text{elem}})$ -formulae is in NP, then for the subfragment of the array property fragment of $T_{\text{A}}^{\text{elem}}$ in which all array property formulae have height at most N, satisfiability is NP-complete.

Proof.

Polynomial (in $|\psi|$) increase in size of formula.

Polynomial (in $|\psi|$) number of rule applications.

<u>Undecidable Problems</u>

Theorem.

Satisfiability of the $\exists^* \forall_{\mathbb{Z}} \exists_{\mathbb{Z}}$ -fragment of both $T_{\mathsf{A}}^{\mathbb{R}}$ and $T_{\mathsf{A}}^{\mathbb{Z}}$ is undecidable, even with syntactic restrictions like in the array property fragment.

Proof.

Reduce from termination:

Given loop L, construct formula φ_L that is unsatisfiable iff L always terminates.

<u>Undecidable Problems</u>

Lemma. Termination of loops of this form is undecidable:

$$\mathbf{real}\ x_1,\dots,x_n$$
 $heta: \bigwedge_{i\in I\subseteq\{1,\dots,n\}} x_i = c_i$
 $\mathbf{while}\ x_1\geq 0\ \mathbf{do}$
 $\mathbf{choose}\ au_i:\ \mathbf{x}:=A_i\mathbf{x}$
 \mathbf{done}

- $c_i \in \mathbb{Z}, A_i \in \mathbb{Z}^{n \times n}$
- θ : initial condition
- x_1, \ldots, x_n range over \mathbb{R} (or \mathbb{Z})

See *Polyranking for Polynomial Loops*, available at http://theory.stanford.edu/~arbrad, for proof.

Undecidable Problems

- One array variable x_i per loop variable x_i .
- Encode transitions:

$$\rho_{\tau}(s,t) \stackrel{\text{def}}{=} \bigwedge_{i=1}^{n} x_{i}[t] = A_{i,1} \cdot x_{1}[s] + \dots + A_{i,n} \cdot x_{n}[s]$$

• Encode guard:

$$g(s) \stackrel{\text{def}}{=} x_1[s] \ge 0$$

• Encode initial condition:

$$\theta(s) \stackrel{\text{def}}{=} \bigwedge_{i \in I \subseteq \{1, \dots, n\}} x_i[s] = c_i$$

• Construct φ :

$$\varphi: (\exists x_1, \dots, x_n, z)(\forall i)(\exists j) \left[\theta(z) \land g(z) \land \bigvee_k \rho_{\tau_k}(i, j) \land g(j) \right]$$

<u>Undecidable Problems</u>

Theorem.

Extending the array property fragment with any of

- nested reads $(e.g., a_1[a_2[i]], \text{ where } i \text{ is universally quantified});$
- array reads by a universally quantified variable in the index guard;
- general Presburger arithmetic expressions over universally quantified index variables (even just addition of 1, e.g., i+1) in the index guard or in the value constraint

results in a fragment of $T_A^{\mathbb{Z}}$ for which satisfiability is undecidable.

Proof.

Similar reduction from termination.