DESIGN FOR MANUFACTURE PRODUCTION ENGINEERING ME5005/ME4002

General forging loads

For homogenous wo set

forging:

 and volume V is constant: $V = A_0 h_0 = A_1 h_1 = A_1 h_1$

F=YA

Room 2.14 Tel: 490 2213 bill.wright@ucc.ie Dr. Bill Wright

Lecture 13: Design for Forging

Design for Manufacture: Lecture 13

Design for Manufacture: Lecture 13

産化 height can never be reached

Required load F is Propertions desired height h

 $F = Y_{t} \frac{V}{h}$

Hence:

Web loading considerations

- Forging components with very thin webs requires:
- Very high loads
 · increasing inversely
 proportional to web thickness - Special forging techniques
 - Webs or thin areas parallel to the parting line are limited by: (e.g. Coming
 - Die geometry
- of web Minimur thickness

age of

		l
g किन्दी and material	200	
70	0007	
n and preferred	000L	
ses denending on plan		

18

10

Design for Manufacture: Lecture 13

$p = x_{max} = d$ WEB Forging blind holes Design for Manufacture. Lecture 13 and whether hole base is: • PLC_E • Opposite another hole (forming a thin web) · Maximum hole depth determined by hole $h_{max} \approx 1.5d$ diameter $h_{max} = d$ · Rounded

Forging through holes

- Aloles are not usually forged in a single
 - As hole is forged, a thin এ৫৮ i produced at the base of the hole
- cannot forge to <u>rears</u> thickness Lass hole diameters will leave thicker webs as greater loads required Thin webs require excessive loads,
 - Holes formed in two separate stages - High stresses in the die cores
 - requiring different dies: Create main shape
- Rune L through thin web in a second operation
- Increase in component cost

Forged holes mean extra

Consider post-machining operation

Design for Manufacture: Lecture 13

To commonise, use $R_{min} = 0.25h$ recommended Radius required on Radius required on Parting line Design for Manufacture: Lecture 13 All corners running parallel or perpendicular to the forsing direction will require وشدسنها

recommended

r = 0.07h

 $r_{min} = 0.04h$ R = 0.25h

R's

R2

Radiusing corners for forging

recommended minimum

minimum

R_{min} = 0.17h

Draft angles

- All surfaces perpendicular to parting lines will require draft angles
- Internal angles Wood than external

 Forged component recovers elastically when load is removed and grips any cores in the die
 - Draft angles for presses are bould than for hammers
- Hammer impacts are with the high energy and force the component onto the die
- Presses have a continuous <u>auerage</u> load
 - Forged component may be held in top part of die if top surface draft angles are reduced by $\frac{O \cdot S}{}^{\circ} \frac{1}{1}^{\circ}$ Facilitates component removal

	INTERNAL	EXTERNAL
HAMMER	7° - 10°	5°-7°
PRESS	3° - 5°	2°-3°

Design for Manufacture: Lecture 13

Forging plant size

Lerge	•	
preferred when	is required	
Presses (hydraulic)	deformation of material	

Methods not accurate enough to guarantee a press

- Gives an indication of plant size and cost

working if near its me wimm

For impression dies (most common):

Calculate the plan area A

Estimate press loads

- Apply a load without an impact
- Load may be maintained continuously over the stroke length
 - ~ 100 tonnes: · Small:
 - ~ 500-1,000 tonnes: Medium:
 - €1.0M €5.0M €10.0M ~ 5,000-10,000 tonnes: Large:
- this sections are Hammers preferred when large area required
- Apply a load utilizing an impact (kinetic energy)
 - Loads Joury as the kinetic energy is used up
- Load depends on the rate of dece larection

 - Medium: Small:
- $\sim 50,000 \text{ m.kg}$ ~ 5.000 m.ka

Design for Manufacture: Lecture 13

10

- Estimate $sh < \rho < factor: K_f = 6.0, 8.0$ or 10.0 (simple \rightarrow complex)

Quick method - multiply plan area by 1.2 x 1.2 = 1.44

– Estimate <u>flesh مامحال</u> • General rule of add 10% all the way around

- Estimate maximum $t_{n,\ell}$ strain: $\varepsilon = \ln(h_o / h_i)$

- Estimate maximum $\frac{R_{L_0}}{L_0}$ stress: $Y_t = K \varepsilon^n$

Aluminium: x 0.9 Stainless Steel: x 1.8 Titanium alloy: x 2.5

Include scaling factors for:

Use: F = K,Y,A

20% increase in forging temperature: x 0.8

Design for Manufacture: Lecture 13

Estimate hammer energy

- Estimates more accurate but more complex
- and Leyout, but most Really requires die duscan parameters can be estimated
- Calculate the component plan area A
- Estimate Leal Land area
 General rule of add 10% all the way around
 - Quick method multiply plan area by 0.44 Calculate Lote blan area A + Anash
 - Calculate the component volume V
- Estimate <u>বিক্</u>ৰম volume using a flash thickness of <u>S</u> mm
 - Calculate total volume $V + V_{flash}$ Calculate *mean thickness t* = total volume/total area

· Different charts exist for different materials and hammer sizes

Use a hammer sizing chart

Design for Manufacture Lecture 13

Hammer sizing chart

Hammer sizing example #1

Hammer sizing chart

- Plan area: 120 x 25 = 3,000mm²
 - Flash area: 3,000 x 0.44 = 1,320mm²

120

Total plan area: $4,320 \text{ mm}^2 = 43.2 \text{cm}^2$

25

Component volume = $20 \times 3,000$ = 60,000mm³

20

- Flash volume: 1,320 x 5 = 6,600mm³
- Total volume: 60,000 + 6,600 = 66,600mm³
- Mean thickness = 66,600/4,320 =
- Hammer energy = ???m.kg Use chart

Design for Manufacture: Lecture 13

13

14

ffath Files forging

Hammer sizing example #2

- Plan area: $120 \times 20 = 2,400 \text{mm}^2$
 - Flash area: 2,400 x 0,44 = 1,056mm²
- Total plan area: 3,456 mm² = 34.6cm²
- Component volume = $25 \times 2,400$ = 60,000mm³
 - Flash volume: 1,056 x 5 = 5,280mm³
- Total volume: 60,000 + 5,280 = 65,280mm³
- Hammer energy = ???m.kg

Design for Manufacture. Lecture 13

16

1900 1900 1900 1900

Hammer sizing example #3

- Plan area: $25 \times 20 = 500 \text{mm}^2$
- Flash area: 500 x 0.44 = 220mm²
- Fotal plan area: 720mm² = 7.2cm²
- Component volume = $120 \times 500 = 60,000 \text{ mm}^3$
- Flash volume: 220 x 5 = .100mm³
- 120 Total volume: 60,000 + 1,100 = 61,100mm³
 - Mean thickness = 61,100/720 =
 - 84.9mm
- Use chart
- Hammer energy = ???m.kg
- Plan area and mean thickness are not on the chart!!

Design for Manufacture: Lecture 13

Estimate starting shape

- workpiece can Choice of the correct pre-forme of simplify forging design
 - Try and minimise amount of deformation required
 - Semi-finished pre-forms are standard:
- Bars/rods (round, square, hexagonal), slab, plate, bloom
 - Check overall dimensions of desired component:
 - If 3 axes are roughly equal: · Use bar, slab or plate
- If a axes are larger than the other: Use plate or slab
 - If L axis larger than the others:

Use rod or bar

- For significant deformation, starting shape 400
 - e.g. round bar or square bar?

Design for Manufacture: Lecture 13

Component orientation

- Component orientation in the dies is with
 - when sizing forging plant

 אבים plant

 premare area is the surface area

 perpendicular to the forging
 - Example 3 is impossible to forge
- Material must deform to be perpendicular to the parting line
 - Flash lands will not be able to fill the cavity
 - - Example 2 is uncertain
- Required hammer energy is on the bound docty. of the sizing chart

 Insufficient accuracy to guarantee hammer size required

Same plan area A

Same volume V

- Example 1 requires a 500m.kg hammer
- Shape and component complexed not considered, e.g.: hates

Design for Manufacture: Lecture 13

'H' section harder to

volume and mean Same flash area,

thickness t

Component redesign

- Estimate starting shape of pre-formed workpiece
- Eliminate ____ geometry that cannot be forged
 - Check suitability of individual features and redesign: Select suitable parting line(s) to avoid due kick
- Ribs, webs, slots, holes
- Radius corners that require it (parelled to parting line)
- : internal, external, top/bottom die Check dreat
 - Check orientation of component in the dies
- Hammer or press?
- May depend on orientation
- Estimate hammer/press size
 - Re-check!

Design for Manufacture, Lecture 13

20

Self-study exercise

- Top slot of bracket holds edge of a large rectangular plate in a specific position
 - Base slot fits over a guide rail
- No movement allowed between plate and clamp in any direction
- Bolt hole locations and chamfered corners locate with other geometry
 - No cosmetic surfaces
- Increase in strength required
- Redesign for forging in aluminium alloy using:
- A hammer
 A hydraulic press
 Discuss the suitability for forging in either of the two orientations shown
 Shaded surfaces give plan area

7 Design for Manufacture: Lecture 13

22 000 0 Bracket dimensions (mm) Top (Plan) View **Bottom View** Design for Manufacture: Lecture 13 120,410 0 10 Side View End View 38