5 Kontextfreie Grammatiken

5.1 Beispielgrammatiken

- Bitte auf den Unterschied zwischen dem einfachen Pfeil \rightarrow bei Produktionen und dem Doppelpfeil \Rightarrow bei Ableitungsschritten achten)
 - Beachte: Wenn $w_1 \to w_2$ gilt, dann auch $w_1 \Rightarrow w_2$, aber nicht unbedingt umgekehrt, wie man an der Grammatik $(\{X,Y\},\{\mathtt{a}\},X\{X\to Y,Y\to\mathtt{a}\})$ sieht:
 - Es gilt z.B. $XY \Rightarrow Xa$, aber es gibt keine Produktion $XY \to Xa$
- arbeiten Sie ein bisschen mit $G = (\{X\}, \{a, b\}, X, \{X \to \varepsilon \mid aX \mid bX\})$
 - Was kann man alles ableiten? ε , a, b, aa, ...
 - aha: alle Wörter überhaupt: $L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \{\}$?
 - suchen lassen ...
 - $z. B. (\{X\}, \{a, b\}, X, \{X \to X\}).$
 - wir haben sogar leere Produktionenmenge zugelassen: $(\{X\}, \{a, b\}, X, \{\})$ tuts auch.
 - allerdings: leere Alphabete haben wir verboten, also $(\{X\}, \{\}, X, P)$ geht *nicht*.
- Man arbeite mit $G = (\{X\}, \{(,)\}, X, \{X \to XX \mid (X) \mid \varepsilon\})$
 - man mache Beispielableitungen
 - * erste einfache wie $X \Rightarrow (X) \Rightarrow ((X)) \Rightarrow (((X))) \Rightarrow ((((X)))) \Rightarrow ((((X))))$ oder
 - * $X \Rightarrow XX \Rightarrow XXX \Rightarrow XXXXX \Rightarrow XXXXX$ und dann irgendwie weiter
 - Welche Wörter w sind ableitbar?
 - * anschaulich: ableitbar sind genau die "wohlgeformten Klammerausdrücke"
 - * jedenfalls gleich viele (und): $N_{\mathbf{f}}(w) = N_{\mathbf{f}}(w)$
 - * Das ist aber nur notwendig aber nicht hinreichend für Ableitbarkeit, denn) (ist z. B. nicht ableitbar.
 - * Man diskutiere die Adjektive "notwendig" und "hinreichend".

- * zusätzliche Eigenschaften? erst mal raten/ nachdenken/ rumprobieren lassen
- * aha: für jedes Präfix (es heißt das Präfix) v eines $w \in L(G)$ gilt: $N_{\ell}(v) \geq N_{\ell}(v)$

Das kann man sich gerade noch klar machen; aber der Beweis, dass man damit eine notwendige und hinreichende Bedingung für Ableitbarkeit hat, also eine Charakterisierung der Klammerausdrücke, ist wohl zu schwierig; ich sehe jedenfalls auf Anhieb keine vernünftige Erklärung.

- Man arbeite mit $G = (\{X\}, \{(,)\}, X, \{X \to (X)X \mid \varepsilon\}).$
 - siehe da: auch damit sind genau die wohlgeformten Klammerausdrücke ableitbar
- Und dann auch Grammatiken konstruieren *lassen*, z.B. für die folgenden formalen Sprachen über dem Alphabet $T = \{a, b\}$.
 - die Menge aller Wörter über T, in denen irgendwo das Teilwort baa vorkommt.

z. B. so:
$$(\{X,Y\},T,X,P)$$
 mit $P = \{X \to Y \text{baa}Y,Y \to aY | bY | \varepsilon\}$

- die Menge aller Wörter $w \in T^*$ mit der Eigenschaft, dass für alle Präfixe v von w gilt: $|N_{\mathbf{a}}(v) N_{\mathbf{b}}(v)| \leq 1$.
 - * Man überlege sich erst mal, welche Struktur Wörter der Länge 2, 4, ... haben: wenn ich das richtig sehe: {ab, ba}*
 - * Also leistet die Grammatik ($\{X,Y\},T,X,P$) mit $P=\{X\to abX|baX|a|b|\varepsilon\}$ das Gewünschte.
- Achtung: bitte nicht aus Versehen mit Grammatiken bzw. formalen Sprachen vom Aufgabenblatt 5 rumspielen

5.2 Unterschied \Rightarrow versus \Rightarrow^*

• bitte sicherstellen, dass der Unterschied zwischen \Rightarrow , also "genau ein Schritt", und \Rightarrow *, also "eine beliebige Anzahl Schritte" klar ist.

6 Relationen (Teil 2)

6.1 nochmal Relationen

• Standard-Definitionen aus der Vorlesung

```
- für R \subseteq M_1 \times M_2 und S \subseteq M_2 \times M_3:

S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}

- I_M = \{(x, x) \mid x \in M\}

- R^0 = I_M und \forall i \in \mathbb{N}_0 : R^{i+1} = R \circ R^i

- R^* = \bigcup_{i=0}^{\infty} R^i
```

- reflexive und transitive Relationen:
 - Definitionen klar machen:
 - * Beispiel: Gleichheit von Zahlen
 - * Beispiel: \leq
 - * Beispiel: Reihenfolge der Wörter im Duden (o.ä.)
 - · **Achtung:** Wir haben Asiaten in der Vorlesung; *langsam* anfangen (oder wissen Sie, wie in Japan Wörter sortiert werden?)
 - Wenn man eine Relation hin malt: Elemente $x, y \in M$ als Punkte und einen Pfeil von x nach y, falls xRy:
 - * Wie sieht das Bild aus, wenn die Relation reflexiv ist? Schlingen.
 - * Wie, wenn sie transitiv ist? (schwieriger zu beschreiben; nur Beispiele ansehen; Wenn man man einen Zyklus dabei hat: jeder mit jedem verbunden)
- z.B. in der Vorlesung offen gelassen:
 - Es sei R eine beliebige Relation und S eine Relation, die reflexiv und transitiv ist. Wenn $R \subseteq S$, dann ist sogar $R^* \subseteq S$.
 - Man beweise das, indem man durch vollständige Induktion zeigt: Für alle $i \in \mathbb{N}_0$: Wenn $R \subseteq S$, dann $R^i \subseteq S$.

6.2 Infixschreibweise

von Relationen

- das kennt jeder von $x \leq y$ etc.
- sicherstellen, dass das klar ist: xRy ist nichts anderes als $(x,y) \in R$