Chapter 4. Part 3

February 11, 2022

2 4.8 Exponential Distribution

Bell Shaped

- Bell Shaped
- Symmetrical

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are equal.

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are equal.
- Location is determined by the mean, μ .

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are equal.
- Location is determined by the mean, μ .
- Spread is determined by the standard deviation, σ .

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are equal.
- Location is determined by the mean, μ .
- Spread is determined by the standard deviation, σ .

Increase μ shifts the distribution right.

Decrease μ shifts the distribution left.

Changing σ increases or decreases the spread.

Increase μ shifts the distribution right.

Decrease μ shifts the distribution left.

Changing σ increases or decreases the spread.

Increase μ shifts the distribution right.

Decrease μ shifts the distribution left.

Changing σ increases or decreases the spread.

Decrease μ shifts the distribution left.

Changing σ increases or decreases the spread.

A and B have the same mean but different standard deviations.

B and C have different means and different standard deviations.

Decrease μ shifts the distribution left.

Changing σ increases or decreases the spread.

A and B have the same mean but different standard deviations.

B and C have different means and different standard deviations.

The Normal Distribution Density Function

The normal probability density function of a normal distributed variable X with mean μ and variance σ^2 :

$$f(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(X-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-0.5\left(\frac{X-\mu}{\sigma}\right)^2}$$

where

- \bullet e = the mathematical constant approximated by 2.71828
- \bullet $\pi =$ the mathematical constant approximated by 3.14159
- ullet $\mu=$ the population mean
- ullet $\sigma=$ the population standard deviation
- X =any value of the continuous variable

The Normal Distribution Density Function

The normal probability density function of a normal distributed variable X with mean μ and variance σ^2 :

$$f(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(X-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-0.5\left(\frac{X-\mu}{\sigma}\right)^2}$$

where

- \bullet e = the mathematical constant approximated by 2.71828
- \bullet $\pi =$ the mathematical constant approximated by 3.14159
- ullet $\mu=$ the population mean
- $oldsymbol{\circ}$ $\sigma=$ the population standard deviation
- X =any value of the continuous variable

Standardized Normal Distribution

A normal distribution with $\mu=0$ and $\sigma=1$ is called standardized normal distribution, denoted by Z:

$$f(Z) = \frac{1}{\sqrt{2\pi}}e^{-0.5Z^2}$$

Suppose that X has normal distribution with μ, σ^2 . Set

$$Z = \frac{X - \mu}{\sigma}.$$

Then Z is the standardized normal random variable.

Suppose that X has normal distribution with μ, σ^2 . Set

$$Z = \frac{X - \mu}{\sigma}.$$

Then Z is the standardized normal random variable.

Example

Suppose that X has normal distribution with μ, σ^2 . Set

$$Z = \frac{X - \mu}{\sigma}.$$

Then Z is the standardized normal random variable.

Example

Suppose that X has normal distribution with μ, σ^2 . Set

$$Z = \frac{X - \mu}{\sigma}.$$

Then Z is the standardized normal random variable.

Example

$$Z = \frac{X - \mu}{\sigma} = \frac{11 - 10}{2} = 0.5$$

Suppose that X has normal distribution with μ, σ^2 . Set

$$Z = \frac{X - \mu}{\sigma}.$$

Then Z is the standardized normal random variable.

Example

$$Z = \frac{X - \mu}{\sigma} = \frac{11 - 10}{2} = 0.5$$

Definition

The cumulative standardized distribution of Z is

$$\Phi(a) = P(Z \le a) = P(Z < a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-0.5z^2} dz$$

given in Appendix Table III (page 708).

Example

$$\Phi(1.5) = 0.9332$$
, $\Phi(Z \le 0) = 0.5$, $\Phi(Z < -0.5) = 0.3085$

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022 8/16

Compute $P(0.5 < Z \le 1.2)$.

ThienNV (FPTU)

Compute $P(0.5 < Z \le 1.2)$.

$$P(0.5 < Z \le 1.2) = \Phi(1.2) - \Phi(0.5) = 0.885 - 0.691 = 0.194$$

Example

Compute P(Z > -1.33).

$$P(Z > -1.33) = 1 - P(Z \le -1.33) = 1 - \Phi(-1.33) = 1 - 0.092 = 0.908$$

9/16

Chapter 4. Part 3 February 11, 2022

Compute $P(0.5 < Z \le 1.2)$.

$$P(0.5 < Z \le 1.2) = \Phi(1.2) - \Phi(0.5) = 0.885 - 0.691 = 0.194$$

Example

Compute P(Z > -1.33).

$$P(Z > -1.33) = 1 - P(Z \le -1.33) = 1 - \Phi(-1.33) = 1 - 0.092 = 0.908$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q ○

9/16

ThienNV (FPTU) Chapter 4. F

Finding Normal Probabilities

Suppose X has a normal distribution with mean μ and standard deviation σ .

Normalize
$$Z = \frac{X - \mu}{\sigma}$$
.

$$P(X < b) = P\left(Z < \frac{b-\mu}{\sigma}\right)$$

$$P(X > a) = P\left(Z > \frac{a-\mu}{\sigma}\right)$$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Suppose X is normal with mean 12 and standard deviation 2. Find P(X > 13.2).

11 / 16

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022

Suppose X is normal with mean 12 and standard deviation 2. Find P(X>13.2).

We have

$$P(X > 13.2) = P(Z > \frac{13.2 - 12}{2}) = P(Z > 0.6)$$

= $1 - P(Z < 0.6) = 1 - \Phi(0.6) = 1 - 0.726 = 0.274$

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022 11 / 16

Suppose X is normal with mean 12 and standard deviation 2. Find P(X > 13.2).

We have

$$P(X > 13.2) = P(Z > \frac{13.2 - 12}{2}) = P(Z > 0.6)$$

= $1 - P(Z < 0.6) = 1 - \Phi(0.6) = 1 - 0.726 = 0.274$

11 / 16

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022

A machine pours beer into 16 oz. bottles. Experience has shown that the number of ounces poured is normally distributed with a variance of 2.69 ounces. Find the probabilities that the amount of beer the machine will pour into the next bottle will be between 15.5 and 16 ounces.

A machine pours beer into 16 oz. bottles. Experience has shown that the number of ounces poured is normally distributed with a variance of 2.69 ounces. Find the probabilities that the amount of beer the machine will pour into the next bottle will be between 15.5 and 16 ounces.

Answer: Let X be the amount of beer the machine will pour into the next bottle.

A machine pours beer into 16 oz. bottles. Experience has shown that the number of ounces poured is normally distributed with a variance of 2.69 ounces. Find the probabilities that the amount of beer the machine will pour into the next bottle will be between 15.5 and 16 ounces.

Answer: Let X be the amount of beer the machine will pour into the next bottle. Then X is normal with mean $\mu=16$ and standard deviation $\sigma=\sqrt{2.69}=1.64$. We want to find the probability P(15.5 < X < 16).

A machine pours beer into 16 oz. bottles. Experience has shown that the number of ounces poured is normally distributed with a variance of 2.69 ounces. Find the probabilities that the amount of beer the machine will pour into the next bottle will be between 15.5 and 16 ounces.

Answer: Let X be the amount of beer the machine will pour into the next bottle. Then X is normal with mean $\mu=16$ and standard deviation $\sigma=\sqrt{2.69}=1.64$. We want to find the probability P(15.5 < X < 16).

$$P(15.5 < X < 16) = P\left(\frac{15.5 - 16}{1.64} < Z < \frac{16 - 16}{1.64}\right)$$

= $P(-0.305 < Z < 0) = \Phi(0) - \Phi(-0.305) = 0.5 - 0.38 = 0.12$

12 / 16

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022

A machine pours beer into 16 oz. bottles. Experience has shown that the number of ounces poured is normally distributed with a variance of 2.69 ounces. Find the probabilities that the amount of beer the machine will pour into the next bottle will be between 15.5 and 16 ounces.

Answer: Let X be the amount of beer the machine will pour into the next bottle. Then X is normal with mean $\mu=16$ and standard deviation $\sigma=\sqrt{2.69}=1.64$. We want to find the probability P(15.5 < X < 16).

$$P(15.5 < X < 16) = P\left(\frac{15.5 - 16}{1.64} < Z < \frac{16 - 16}{1.64}\right)$$

= $P(-0.305 < Z < 0) = \Phi(0) - \Phi(-0.305) = 0.5 - 0.38 = 0.12$

12 / 16

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022

4.8 Exponential Distribution

Definition

The random variable X that equals the distance between successive events of a Poisson process with mean number of events $\lambda > 0$ per unit interval is an exponential random variable with parameter λ .

Definition

The random variable X that equals the distance between successive events of a Poisson process with mean number of events $\lambda > 0$ per unit interval is an exponential random variable with parameter λ . The probability density function of X is

$$f(x) = \lambda e^{-\lambda x}, \ 0 \le x < \infty.$$

Definition

The random variable X that equals the distance between successive events of a Poisson process with mean number of events $\lambda>0$ per unit interval is an exponential random variable with parameter λ . The probability density function of X is

$$f(x) = \lambda e^{-\lambda x}, \ 0 \le x < \infty.$$

Definition

The random variable X that equals the distance between successive events of a Poisson process with mean number of events $\lambda > 0$ per unit interval is an exponential random variable with parameter λ . The probability density function of X is

$$f(x) = \lambda e^{-\lambda x}, \ 0 \le x < \infty.$$

Theorem

If the random variable X has an exponential distribution with parameter λ . Then

$$\mu = E(X) = \frac{1}{\lambda}, \quad \sigma = \frac{1}{\lambda}.$$

Definition

The random variable X that equals the distance between successive events of a Poisson process with mean number of events $\lambda>0$ per unit interval is an exponential random variable with parameter λ . The probability density function of X is

$$f(x) = \lambda e^{-\lambda x}, \ 0 \le x < \infty.$$

Theorem

If the random variable X has an exponential distribution with parameter λ . Then

$$\mu = E(X) = \frac{1}{\lambda}, \quad \sigma = \frac{1}{\lambda}.$$

Suppose X is exponential with parameter λ . For k > 0

$$P(X \le k) = \int_0^k \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^k = 1 - e^{-\lambda k}$$

Suppose X is exponential with parameter λ . For k > 0

$$P(X \le k) = \int_0^k \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^k = 1 - e^{-\lambda k}$$

Suppose X is exponential with parameter λ . For k > 0

$$P(X \le k) = \int_0^k \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^k = 1 - e^{-\lambda k}$$

$$P(X > k) = \int_{k}^{\infty} \lambda e^{-\lambda x} dx = e^{-\lambda k}$$

$$P(k_1 < X < k_2) = \int_{k_1}^{k_2} \lambda e^{-\lambda x} dx = e^{-\lambda k_1} - e^{-\lambda k_2}$$

Suppose X is exponential with parameter λ . For k > 0

$$P(X \le k) = \int_0^k \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^k = 1 - e^{-\lambda k}$$

$$P(X > k) = \int_{k}^{\infty} \lambda e^{-\lambda x} dx = e^{-\lambda k}$$

$$P(k_1 < X < k_2) = \int_{k_1}^{k_2} \lambda e^{-\lambda x} dx = e^{-\lambda k_1} - e^{-\lambda k_2}$$

14 / 16

Example

The time between customer arrivals at a furniture store has an approximate exponential distribution with mean of 9 minutes. If a customer just arrived, find the probability that the next customer will not arrive for at least 15 minutes.

Example

The time between customer arrivals at a furniture store has an approximate exponential distribution with mean of 9 minutes. If a customer just arrived, find the probability that the next customer will not arrive for at least 15 minutes.

Answer: Let X the time between customer arrivals. Then X has an exponential distribution with parameter $\lambda=\frac{1}{9}$. We want to compute P(X>15). We have

$$P(X > 15) = \int_{15}^{\infty} \frac{1}{9} e^{-x/9} dx = -e^{-\frac{1}{9}x} \Big|_{15}^{\infty} = e^{-15/9} = 0.189$$

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022 15 / 16

Example

The time between customer arrivals at a furniture store has an approximate exponential distribution with mean of 9 minutes. If a customer just arrived, find the probability that the next customer will not arrive for at least 15 minutes.

Answer: Let X the time between customer arrivals. Then X has an exponential distribution with parameter $\lambda=\frac{1}{9}$. We want to compute P(X>15). We have

$$P(X > 15) = \int_{15}^{\infty} \frac{1}{9} e^{-x/9} dx = -e^{-\frac{1}{9}x} \Big|_{15}^{\infty} = e^{-15/9} = 0.189$$

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022 15 / 16

Answer: Let X the time between successive TV watching. Then X is exponential with $\lambda = 0.2$. We want to compute P(X < 4).

16 / 16

Answer: Let X the time between successive TV watching. Then X is exponential with $\lambda = 0.2$. We want to compute P(X < 4).

Answer: Let X the time between successive TV watching. Then X is exponential with $\lambda=0.2$. We want to compute P(X<4).

$$P(X < 4) = \int_0^4 0.2e^{-0.2x} dx = 1 - e^{-4*0.2} = 0.55$$

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022 16 / 16

Answer: Let X the time between successive TV watching. Then X is exponential with $\lambda = 0.2$. We want to compute P(X < 4).

$$P(X < 4) = \int_0^4 0.2e^{-0.2x} dx = 1 - e^{-4*0.2} = 0.55$$

16 / 16

ThienNV (FPTU) Chapter 4. Part 3 February 11, 2022