Nelder-Meadov algoritam s heuristikama

Mateo Dujić, Matija Šantek mentor: doc. dr. sc. Goranka Nogo

Prirodoslovno-matematički fakultet

24. siječanj, 2022

- Općenito
- 2 Nelder-Meadov alg.
- Meta-heuristike
- 4 Rezultati

- Općenito
- 2 Nelder-Meadov alg.
- Meta-heuristike
- 4 Rezultati

Općenito

• Nelder-Meadov algoritam dizajniran je za rješavanje optimizacijskog problema minimizacije nelinearne funkcije $f: \mathbb{R}^n \to \mathbb{R}$

Općenito

- Nelder-Meadov algoritam dizajniran je za rješavanje optimizacijskog problema minimizacije nelinearne funkcije $f: \mathbb{R}^n \to \mathbb{R}$
- metoda koristi samo funkcijske vrijednosti u nekim točkama iz \mathbb{R}^n

Općenito

- Nelder-Meadov algoritam dizajniran je za rješavanje optimizacijskog problema minimizacije nelinearne funkcije $f: \mathbb{R}^n \to \mathbb{R}$
- metoda koristi samo funkcijske vrijednosti u nekim točkama iz \mathbb{R}^n
- ne pokušava računati približnu vrijednost gradijenta na ikojoj od tih točaka

Sadržaj

- Općenito
- 2 Nelder-Meadov alg.
- 3 Meta-heuristike
- 4 Rezultati

Nelder-Meadov algoritam

• algoritam je baziran na simpleksima

- algoritam je baziran na simpleksima
- simplex $S \in \mathbb{R}^n$ je konveksna ljuska n+1 vrhova $x_0, \dots, x_n \in \mathbb{R}^n$

Nelder-Meadov algoritam

- algoritam je baziran na simpleksima
- simplex $S \in \mathbb{R}^n$ je konveksna ljuska n+1 vrhova $x_0, \dots, x_n \in \mathbb{R}^n$
- ullet npr. simpleks u \mathbb{R}^2 je trokut, a u \mathbb{R}^3 je tetraedar

Nelder-Meadov algoritam

- algoritam je baziran na simpleksima
- ullet simplex $S \in \mathbb{R}^n$ je konveksna ljuska n+1 vrhova $x_0,\ldots,x_n\in\mathbb{R}^n$
- npr. simpleks u \mathbb{R}^2 je trokut, a u \mathbb{R}^3 je tetraedar

Slika: simpleksi u \mathbb{R}^2 i \mathbb{R}^3

• Pretraživanje započinje s n+1 točkom koje se smatraju vrhovima radnog simpleksa i pripadajućim funkcijskim vrijednostima u tim točkama $f_i = f(x_i), j = 0, \dots, n$

Opis algoritma

- Pretraživanje započinje s n+1 točkom koje se smatraju vrhovima radnog simpleksa i pripadajućim funkcijskim vrijednostima u tim točkama $f_j = f(x_j), \ j=0,\ldots,n$
- Vrhovi početnog simpleksa ne smiju pripadati istoj hiperravnini

Opis algoritma

- Pretraživanje započinje s n+1 točkom koje se smatraju vrhovima radnog simpleksa i pripadajućim funkcijskim vrijednostima u tim točkama $f_i = f(x_i), j = 0, ..., n$
- Vrhovi početnog simpleksa ne smiju pripadati istoj hiperravnini
- Metoda tada vrši niz transformacija radnog simpleksa S, koje su usmjerene *smanjivanju* funkcijskih vrijednosti vrhova

- Pretraživanje započinje s n+1 točkom koje se smatraju vrhovima radnog simpleksa i pripadajućim funkcijskim vrijednostima u tim točkama $f_i = f(x_i), j = 0, \dots, n$
- Vrhovi početnog simpleksa ne smiju pripadati istoj hiperravnini
- Metoda tada vrši niz transformacija radnog simpleksa S, koje su usmjerene *smanjivanju* funkcijskih vrijednosti vrhova
- U svakom koraku, transformacije su određene računanjem jednog ili više novih testnih vrhova koje se uspoređuju s već izračunatim vrhovima na simpleksu

- Pretraživanje započinje s n+1 točkom koje se smatraju vrhovima radnog simpleksa i pripadajućim funkcijskim vrijednostima u tim točkama $f_i = f(x_i), j = 0, \dots, n$
- Vrhovi početnog simpleksa ne smiju pripadati istoj hiperravnini
- Metoda tada vrši niz transformacija radnog simpleksa S, koje su usmjerene *smanjivanju* funkcijskih vrijednosti vrhova
- U svakom koraku, transformacije su određene računanjem jednog ili više novih testnih vrhova koje se uspoređuju s već izračunatim vrhovima na simpleksu
- Proces se završava kada radni simplex S postane dovoljno malen u nekom smislu ili kada funkcijske vrijednosti f_i budu dovoljno blizu u nekom smislu (dano je da su f s kojima radimo neprekidne)

Psudokod

Nelder-Meadov algoritam

1: **procedure** SIMPLEXLOCALSEARCH(početna točka, λ , parametri za uvjete zaustavljanja)

Psudokod

Nelder-Meadov algoritam

- 1: **procedure** SIMPLEXLOCALSEARCH(početna točka, λ , parametri za uvjete zaustavljanja)
- 2: konstruiraj simpleks iz dane početne točke i λ
- 3: **while** nisu ispunjeni uvjeti zaustavljanja **do**
- 4: izračunaj info za zaustavljanje
- 5: transformiraj simpleks
- 6: **end while**
- 7: **return** najbolji vrh simpleksa
- 8: end procedure

 Jedna iteracija Nelder-Meadova algoritma sastoji se od sljedeća tri koraka:

- Jedna iteracija Nelder-Meadova algoritma sastoji se od sljedeća tri koraka:
 - Poredamo vrhove. Označimo indekse h, s, l kao najgori (highest), drugi najgori (second highest) i najbolji (lowest) vrh, redom. Oznake su onda:

- Jedna iteracija Nelder-Meadova algoritma sastoji se od sljedeća tri koraka:
 - Poredamo vrhove. Označimo indekse h, s, l kao najgori (highest), drugi najgori (second highest) i najbolji (lowest) vrh, redom. Oznake su onda:

$$f_h = \max_j f_j, \qquad f_s = \max_{j \neq h} f_j, \qquad f_l = \min_j f_j.$$

- Jedna iteracija Nelder-Meadova algoritma sastoji se od sljedeća tri koraka:
 - Poredamo vrhove. Označimo indekse h, s, l kao najgori (highest), drugi najgori (second highest) i najbolji (lowest) vrh, redom. Oznake su onda:

$$f_h = \max_j f_j, \qquad f_s = \max_{j \neq h} f_j, \qquad f_l = \min_j f_j.$$

2 Izračunamo središte *c* najbolje strane - to je ona nasuprot najgorem vrhu *x_h*:

- Jedna iteracija Nelder-Meadova algoritma sastoji se od sljedeća tri koraka:
 - Poredamo vrhove. Označimo indekse h, s, l kao najgori (highest), drugi najgori (second highest) i najbolji (lowest) vrh, redom. Oznake su onda:

$$f_h = \max_j f_j, \qquad f_s = \max_{j \neq h} f_j, \qquad f_l = \min_j f_j.$$

2 Izračunamo središte c najbolje strane - to je ona nasuprot najgorem vrhu x_h :

$$c:=\frac{1}{n}\sum_{j\neq h}x_j.$$

- Jedna iteracija Nelder-Meadova algoritma sastoji se od sljedeća tri koraka:
 - 1 Poredamo vrhove. Označimo indekse h, s, l kao najgori (highest), drugi najgori (second highest) i najbolji (lowest) vrh, redom. Oznake su onda:

$$f_h = \max_j f_j, \qquad f_s = \max_{j \neq h} f_j, \qquad f_l = \min_j f_j.$$

Izračunamo središte c najbolje strane - to je ona nasuprot najgorem vrhu x_h :

$$c:=\frac{1}{n}\sum_{j\neq h}x_j.$$

Primijenimo odgovarajuću transformaciju: izračunamo novi radni simpleks iz prethodnog.

• Prvo, pokušajmo zamijeniti samo najgori vrh x_h boljim vrhom koristeći refleksiju, ekspanziju ili kontrakciju u odnosu na najbolju stranu.

- Prvo, pokušajmo zamijeniti samo najgori vrh x_h boljim vrhom koristeći refleksiju, ekspanziju ili kontrakciju u odnosu na najbolju stranu.
 - Uočimo da sada sve testne točke leže na pravcu koji prolazi kroz točke x_h i c te najviše dvije se računaju u jednoj iteraciji.

- Prvo, pokušajmo zamijeniti samo najgori vrh x_h boljim vrhom koristeći refleksiju, ekspanziju ili kontrakciju u odnosu na najbolju stranu.
 - Uočimo da sada sve testne točke leže na pravcu koji prolazi kroz točke x_h i c te najviše dvije se računaju u jednoj iteraciji.
- Ako ovo uspije, prihvaćena točka postaje novi vrh radnog simpleksa i transformacija je gotova.

- Prvo, pokušajmo zamijeniti samo najgori vrh x_h boljim vrhom koristeći refleksiju, ekspanziju ili kontrakciju u odnosu na najbolju stranu.
 - Uočimo da sada sve testne točke leže na pravcu koji prolazi kroz točke x_h i c te najviše dvije se računaju u jednoj iteraciji.
- Ako ovo uspije, prihvaćena točka postaje novi vrh radnog simpleksa i transformacija je gotova.
- ullet Ako ne uspije, skupljamo simpleks prema najboljem vrhu x_l .

- Prvo, pokušajmo zamijeniti samo najgori vrh x_h boljim vrhom koristeći refleksiju, ekspanziju ili kontrakciju u odnosu na najbolju stranu.
 - Uočimo da sada sve testne točke leže na pravcu koji prolazi kroz točke x_h i c te **najviše dvije** se računaju u jednoj iteraciji.
- Ako ovo uspije, prihvaćena točka postaje novi vrh radnog simpleksa i transformacija je gotova.
- Ako ne uspije, skupljamo simpleks prema najboljem vrhu x_l .
 - Samo u ovom slučaju, **računamo** *n* **vrhova odjednom**.

- Transformacije su kontrolirane s 4 parametra:
 - $oldsymbol{0}$ α za refleksiju,
 - \bigcirc β za kontrakciju,
 - $oldsymbol{\circ} \gamma$ za ekspanziju i

- Transformacije su kontrolirane s 4 parametra:
 - $oldsymbol{0}$ α za refleksiju,
 - \mathbf{Q} β za kontrakciju,
 - $oldsymbol{0}$ γ za ekspanziju i
 - $oldsymbol{\Phi}$ za skupljanje.
- Trebaju zadovoljavati sljedeće uvjete:

$$\alpha > 0$$
, $0 < \beta < 1$, $\gamma > 1$, $\gamma > \alpha$, $0 < \delta < 1$.

- Transformacije su kontrolirane s 4 parametra:
 - $\mathbf{0}$ α za refleksiju,
 - \bigcirc β za kontrakciju,
 - $oldsymbol{3}$ γ za ekspanziju i
 - $oldsymbol{0}$ δ za skupljanje.
- Trebaju zadovoljavati sljedeće uvjete:

$$\alpha > 0$$
, $0 < \beta < 1$, $\gamma > 1$, $\gamma > \alpha$, $0 < \delta < 1$.

Obično se koristi:

$$\alpha=1,\quad \beta=rac{1}{2},\quad \gamma=2,\quad \delta=rac{1}{2}.$$

• **Refleksija**: izračunamo točku refleksije $x_r := c + \alpha(c - x_h)$ i $f_r := f(x_r)$. Ako je $f_l \le f_r \le f_s$, prihvatimo x_r i završi iteraciju.

Slika: Refleksija i ekspanzija

• **Ekspanzija**: ako $f_r < f_l$, izračunaj točku ekspanzije $x_e := c + \gamma(x_r - c)$ i $f_e := f(x_e)$. Ako $f_e < f_r$, prihvati x_e i završi iteraciju. Inače (ako je $f_e \ge f_r$), prihvati x_r i završi iteraciju.

- **Kontrakcija**: Ako $f_r \geq f_s$, izračunaj točku kontrakcije x_c koristeći bolju od točaka x_h i x_r .
 - Vanjska: Ako $f_s < f_r < f_h$ izračunaj $x_c := c + \beta(x_r c)$ i $f_c := f(x_c)$. Ako $f_c \le f_r$, prihvati x_c i završi iteraciju. Inače, primijeni skupljanje.
 - Unutarnja: Ako $f_r \geq f_h$, izračunaj $x_c := c + \beta(x_h + c)$ i $f_c := f(x_c)$. Ako $f_c < f_h$, prihvati x_c i završi iteraciju. Inače, primijeni skupljanje.

Slika: Vanjska i unutarnja kontrakcija

• **Skupljanje**: Izračunaj n novih vrhova $x_j := x_l + \delta(x_j - x_l)$ i $f_j := f(x_j)$, za $j = 0, \ldots, n$,, pri čemu $j \neq l$.

Slika: Skupljanje

- Meta-heuristike

Meta-heuristike

 Kako Nelder-Meadov algoritam funkcionira po principu 'spuštanja niz padinu', rješenja će uglavnom biti u lokalnim optimumima, a ne u globalnim.

Meta-heuristike

- Kako Nelder-Meadov algoritam funkcionira po principu 'spuštanja niz padinu', rješenja će uglavnom biti u lokalnim optimumima, a ne u globalnim.
- Da bismo izbjegli 'zaglavljivanje', predstavljamo nekoliko principa bježanja iz lokalnih optimuma.

Meta-heuristike

- Kako Nelder-Meadov algoritam funkcionira po principu 'spuštanja niz padinu', rješenja će uglavnom biti u lokalnim optimumima, a ne u globalnim.
- Da bismo izbjegli 'zaglavljivanje', predstavljamo nekoliko principa bježanja iz lokalnih optimuma.
- To su redom:
 - Iterirani slučajni početak
 - Usmjereni bijeg
 - Ne-Tabu pretraživanje
 - Simulirano kaljenje

Kako Nelder-Meadov algoritam funkcionira po principu 'spuštanja niz padinu', rješenja će uglavnom biti u lokalnim

- optimumima, a ne u globalnim.

 Da bismo izbjegli 'zaglavljivanje', predstavljamo nekoliko principa bježanja iz lokalnih optimuma.
- To su redom:
 - Iterirani slučajni početak
 - Usmjereni bijeg
 - Ne-Tabu pretraživanje
 - Simulirano kaljenje
- Svaka ima neke svoje parametre, ali sve metode imaju parametar "Najveći broj iteracija u Nelder-Meadovu algoritmu" kojim zaustavljamo traženje nakon dovoljnog broja iteracija.

Općenito Nelder-Meadov alg. Meta-heuristike Rezultati

Meta-heuristike

- Kako Nelder-Meadov algoritam funkcionira po principu 'spuštanja niz padinu', rješenja će uglavnom biti u lokalnim optimumima, a ne u globalnim.
- Da bismo izbjegli 'zaglavljivanje', predstavljamo nekoliko principa bježanja iz lokalnih optimuma.
- To su redom:
 - Iterirani slučajni početak
 - Usmjereni bijeg
 - Ne-Tabu pretraživanje
 - Simulirano kaljenje
- Svaka ima neke svoje parametre, ali sve metode imaju parametar "Najveći broj iteracija u Nelder-Meadovu algoritmu" kojim zaustavljamo traženje nakon dovoljnog broja iteracija.
- Koristimo ga jer nam je iskustvo u traženju funkcija pokazalo da u većini slučajeva algoritam, sam po sebi, ne pronalazi bolja rješenja te ga nema smisla čekati.

Iterirani slučajni početak

• Ova metoda sastoji se od ponovnog pokretanja algoritma od slučajnog rješenja svaki put kada simpleks konvergira po kriteriju ϵ ili kada je dostignut maksimalan broj evaluacija M.

Iterirani slučajni početak

- Ova metoda sastoji se od ponovnog pokretanja algoritma od slučajnog rješenja svaki put kada simpleks konvergira po kriteriju ϵ ili kada je dostignut maksimalan broj evaluacija M.
- U svakoj iteraciji, na slučajan način se izabere točka i simpleks se ponovno izgradi iz te točke.

Iterirani slučajni početak

- Ova metoda sastoji se od ponovnog pokretanja algoritma od slučajnog rješenja svaki put kada simpleks konvergira po kriteriju ϵ ili kada je dostignut maksimalan broj evaluacija M.
- U svakoj iteraciji, na slučajan način se izabere točka i simpleks se ponovno izgradi iz te točke.
- Kad god se najbolje rješenje dodatno popravi, provodi se novo lokalno pretraživanje s kriterijem zaustavljanja ϵ' , za profinjenje lokalnog optimuma.

Pseudokod

Iterirani slučajni početak

```
1: procedure IteratedSimplex(\epsilon, \epsilon', \lambda, M)
        k = 0
 2:
        while k < M do
 3:
            x = slučajno odabrana točka u danim ogradama
 4.
            x = SimplexLocalSearch(x, \lambda, \epsilon, M - k)
 5:
            k+= ukupan broj evaluacija funkcije
 6.
            if x^* nije inicijaliziran ili x bolji od x^* then
 7:
                x^* = SimplexLocalSearch(x, \epsilon', \lambda, M - k)
8:
                k+= ukupan broj evaluacija funkcije
9:
            end if
10:
        end while
11:
        return x^*
12:
13: end procedure
```

• Kada simpleks konvergira po kriteriju ϵ , počni širiti simpleks kroz njegov najbolji vrh (stalno ažurirajući poredak vrhova).

- Kada simpleks konvergira po kriteriju ϵ , počni širiti simpleks kroz njegov najbolji vrh (stalno ažurirajući poredak vrhova).
- Ekspanzija će isprva smanjiti kvalitetu točaka, ali nakon određenog broja ponavljanja, dostignut će lokalni 'pessimum' i ekspanzije koje se budu dalje vršile će voditi napretku.

- Kada simpleks konvergira po kriteriju ϵ , počni širiti simpleks kroz njegov najbolji vrh (stalno ažurirajući poredak vrhova).
- Ekspanzija će isprva smanjiti kvalitetu točaka, ali nakon određenog broja ponavljanja, dostignut će lokalni 'pessimum' i ekspanzije koje se budu dalje vršile će voditi napretku.
- Dozvolit ćemo da se ekspanzija vrši dok god se ne popravi najgora točka simpleksa. U toj točki očekujemo da se nalazimo na drugoj strani brda.

- Kada simpleks konvergira po kriteriju ϵ , počni širiti simpleks kroz njegov najbolji vrh (stalno ažurirajući poredak vrhova).
- Ekspanzija će isprva smanjiti kvalitetu točaka, ali nakon određenog broja ponavljanja, dostignut će lokalni 'pessimum' i ekspanzije koje se budu dalje vršile će voditi napretku.
- Dozvolit ćemo da se ekspanzija vrši dok god se ne popravi najgora točka simpleksa. U toj točki očekujemo da se nalazimo na drugoj strani brda.
- Dakle, ako algoritam ponovno pokrenemo iz te točke, očekujemo da ćemo doseći drugi lokalni optimum.

Pseudokod

```
Usmjereni bijeg
 1: procedure DirectionalEscape(\epsilon, \epsilon', \lambda, M)
2:
        k = 0
3:
        x = slučajno odabrana točka u danim ogradama
4:
        while k < M do
5:
            x = SimplexLocalSearch(x, \lambda, \epsilon, M - k)
6:
            k+= ukupan broj evaluacija funkcije
7:
            if x^* nije inicijaliziran or x bolji od x^* then
8:
                x^* = SimplexLocalSearch(x, \epsilon', \lambda, M - k)
9:
            end if
10:
            while xWorst nije inicijaliziran or x bolji od xWorst do
11:
                xWorst = x
12:
                x = \gamma \cdot s^* + (1 - \gamma)\hat{s}
13:
                s^* = x
14:
            end while
15:
             k+= ukupan broj evalucija funkcije
16:
        end while
17:
        return x*
18: end procedure
```

 Istraživanjem meta-heuristika nad Nelder-Meadovim algoritmom ustanovilo se da će algoritam pronaći dobra rješenja ako pretražujemo područja prethodnih lokalnih optimuma, umjesto da ih izbjegavamo, kao što je to slučaj kod Tabu pretraživanja.

- Istraživanjem meta-heuristika nad Nelder-Meadovim algoritmom ustanovilo se da će algoritam pronaći dobra rješenja ako pretražujemo područja prethodnih lokalnih optimuma, umjesto da ih izbjegavamo, kao što je to slučaj kod Tabu pretraživanja.
- Objašnjenje ovog zaključka svodi se na to da lokalni optimumi često znaju biti blizu drugih lokalnih optimuma.

- Istraživanjem meta-heuristika nad Nelder-Meadovim algoritmom ustanovilo se da će algoritam pronaći dobra rješenja ako pretražujemo područja prethodnih lokalnih optimuma, umjesto da ih izbjegavamo, kao što je to slučaj kod Tabu pretraživanja.
- Objašnjenje ovog zaključka svodi se na to da lokalni optimumi često znaju biti blizu drugih lokalnih optimuma.
- Dakle, moglo bi imati smisla pretražiti područje oko prethodnih optimuma, umjesto da ih izbjegavamo.

 Odatle naziv Ne-tabu pretraživanje. U ovome algoritmu, područje oko lokalnog optimuma se pretražuje pogađanjem slučajnih rješenja u njegovoj blizini i ponovnim pokretanjem pretraživanja iz njih.

- Odatle naziv Ne-tabu pretraživanje. U ovome algoritmu, područje oko lokalnog optimuma se pretražuje pogađanjem slučajnih rješenja u njegovoj blizini i ponovnim pokretanjem pretraživanja iz njih.
- Parametri koje metoda koristi su:
 - $oldsymbol{0}$ σ zadaje udaljenost od trenutnog baznog rješenja, koristi se za dobivanje novih rješenja

- Odatle naziv Ne-tabu pretraživanje. U ovome algoritmu, područje oko lokalnog optimuma se pretražuje pogađanjem slučajnih rješenja u njegovoj blizini i ponovnim pokretanjem pretraživanja iz njih.
- Parametri koje metoda koristi su:
 - $oldsymbol{0}$ σ zadaje udaljenost od trenutnog baznog rješenja, koristi se za dobivanje novih rješenja
 - R zadaje broj pokušaja pogađanja oko svakog baznog rješenja (nakon R koraka bazno rješenje se mijenja novim najboljim pronađenim rješenjem)

- Odatle naziv Ne-tabu pretraživanje. U ovome algoritmu, područje oko lokalnog optimuma se pretražuje pogađanjem slučajnih rješenja u njegovoj blizini i ponovnim pokretanjem pretraživanja iz njih.
- Parametri koje metoda koristi su:
 - $oldsymbol{0}$ σ zadaje udaljenost od trenutnog baznog rješenja, koristi se za dobivanje novih rješenja
 - R zadaje broj pokušaja pogađanja oko svakog baznog rješenja (nakon R koraka bazno rješenje se mijenja novim najboljim pronađenim rješenjem)
- Napomenimo odmah da je teško pogoditi dobre parametre.

Pseudokod

```
1: procedure NonTabuSearch(\epsilon, \epsilon', \lambda, M, \sigma, R)
2:
        k = 0, x = slučajno odabrana točka u danim ogradama
 3:
        x = SimplexLocalSearch(x, \lambda, \epsilon, M - k)
 4:
        k+= ukupan broj evaluacija funkcije
5:
        x^* = x. v = x
6:
        while k < M do
7:
            for i = 1 to R do
8:
                x_i = y_i \pm \sigma \cdot (u_i - I_i)
9:
                x = SimplexLocalSearch(x, \lambda, \epsilon, M - k)
10:
                 k+= ukupan broj evaluacija funkcije
11:
                 if x bolji od x^* then
12:
                     x = SimplexLocalSearch(x, \lambda, \epsilon', M - k)
13:
                     k+= ukupan broj evaluacija funkcije
14:
                 end if
15:
                 if x' nije inicijaliziran or x bolji od x' then
16:
                     x' = x
17:
                 end if
18:
             end for
             v = x'
19:
20:
         end while
21:
         return x*
22: end procedure
```

 U ovome slučaju heuristika se svodi na sljedeće: prilikom početne veće temperature, s većom vjerojatnosti prihvaćamo lošija rješenja u odnosu na slučaj kada je temperatura niža i manja vjerojatnost da prihvatimo lošija rješenja.

- U ovome slučaju heuristika se svodi na sljedeće: prilikom početne veće temperature, s većom vjerojatnosti prihvaćamo lošija rješenja u odnosu na slučaj kada je temperatura niža i manja vjerojatnost da prihvatimo lošija rješenja.
- Svakako, ako u koraku pronađemo rješenje koje je bolje nego korak prije, na njemu vršimo Nelder-Meadov algoritam.

- U ovome slučaju heuristika se svodi na sljedeće: prilikom početne veće temperature, s većom vjerojatnosti prihvaćamo lošija rješenja u odnosu na slučaj kada je temperatura niža i manja vjerojatnost da prihvatimo lošija rješenja.
- Svakako, ako u koraku pronađemo rješenje koje je bolje nego korak prije, na njemu vršimo Nelder-Meadov algoritam.
- Rješenja pronalazimo u okolini radijusa z kojeg smanjujemo ako pronađemo lošije rješenje, a povećavamo ako pronađemo bolje rješenje.

- U ovome slučaju heuristika se svodi na sljedeće: prilikom početne veće temperature, s većom vjerojatnosti prihvaćamo lošija rješenja u odnosu na slučaj kada je temperatura niža i manja vjerojatnost da prihvatimo lošija rješenja.
- Svakako, ako u koraku pronađemo rješenje koje je bolje nego korak prije, na njemu vršimo Nelder-Meadov algoritam.
- Rješenja pronalazimo u okolini radijusa z kojeg smanjujemo ako pronađemo lošije rješenje, a povećavamo ako pronađemo bolje rješenje.

Pseudokod

```
1: procedure Simulated Annealing (\epsilon, \lambda, T, \beta, \mu)
2:
        x = slučajno rješenje i postavi radijus z
 3:
        while T > 0 do
 4:
            k = 0
5:
            while k \le \mu do
6:
                generiraj susjedna rješenja u listu L i zapamti u x' najbolje
7:
                \Delta E = f(x') - f(L[-1])
                if \delta E < 0 then:
8:
9:
                    x = SimplexLocalSearch(x', \epsilon, \lambda)
10:
                     zapamti taj x i z = 2 \cdot z
11:
                 else
12:
                     if rand() < exp(-\Delta E/T) then
13:
                         zapamti taj x i z = 0.5z
14:
                     end if
15:
                 end if
16:
             end while
17:
             T = T - \beta
18:
         end while
19:
        x^* = najbolje nađeno rješenje
20:
         x^* = SimplexLocalSearch(x^*, \epsilon, \lambda)
21:
         return x*
22: end procedure
```

Sadržaj

- Općenito
- 2 Nelder-Meadov alg.
- Meta-heuristike
- 4 Rezultati

 U ovom odjeljku vizualiziramo u tri dimenzije sve funkcije koje smo testirali običnim Nelder-Meadovim algoritmom i svim funkcijama koje smo naveli.

- U ovom odjeljku vizualiziramo u tri dimenzije sve funkcije koje smo testirali običnim Nelder-Meadovim algoritmom i svim funkcijama koje smo naveli.
- Svaka funkcija je testirana 50 puta svakom metodom te su rezultati navedeni u odgovarajućim tablicama.

- U ovom odjeljku vizualiziramo u tri dimenzije sve funkcije koje smo testirali običnim Nelder-Meadovim algoritmom i svim funkcijama koje smo naveli.
- Svaka funkcija je testirana 50 puta svakom metodom te su rezultati navedeni u odgovarajućim tablicama.
- Također, da bismo vizualizirali kvalitetu pojedine metode, ugrubo ćemo ih bodovati.

- U ovom odjeljku vizualiziramo u tri dimenzije sve funkcije koje smo testirali običnim Nelder-Meadovim algoritmom i svim funkcijama koje smo naveli.
- Svaka funkcija je testirana 50 puta svakom metodom te su rezultati navedeni u odgovarajućim tablicama.
- Također, da bismo vizualizirali kvalitetu pojedine metode, ugrubo ćemo ih bodovati.
- Zasebno promatramo prosječno nađena rješenja i najbolje nađena rješenja te redom dodijeljujemo bodova za svaku funkciju svakoj metodi, ovisno koja je ona u poretku (4 bodova najbolje rješenje, 3 drugo najbolje, pa 2 i 1).

- U ovom odjeljku vizualiziramo u tri dimenzije sve funkcije koje smo testirali običnim Nelder-Meadovim algoritmom i svim funkcijama koje smo naveli.
- Svaka funkcija je testirana 50 puta svakom metodom te su rezultati navedeni u odgovarajućim tablicama.
- Također, da bismo vizualizirali kvalitetu pojedine metode, ugrubo ćemo ih bodovati.
- Zasebno promatramo prosječno nađena rješenja i najbolje nađena rješenja te redom dodijeljujemo bodova za svaku funkciju svakoj metodi, ovisno koja je ona u poretku (4 bodova najbolje rješenje, 3 drugo najbolje, pa 2 i 1).
- Dvama najgorim rješenjima ne dodjeljujemo bodove.

Sferna funkcija

$$f(x) = \sum_{i=1}^{N} x_i^2, x_i \in [-30, 30], i = 1, \dots, N$$

Rezultati za sfernu funkciju

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder-Meadov algoritam	9.3772e-48	0.0	1	100000	1	1	1
Iterirani slučajni početak	2.5e-323	0.0	1	100000	1	1	1
Usmjereni bijeg	9.3402e-42	0.0	0.1	100000	1	1	1
Ne-tabu pretraživanje	7.6601e-11	4.2881e-20	10	1000	1	2	1
Simulirano kaljenje	5.0515e-75	5.4294e-192	10	100000	1	1	100

Slika: Sferna funkcija testirana na svim metodama

Analiza rezultata za sfernu funkciju

 Sve osim ne-tabu i simuliranog kaljenja našle su u nekom trenutku najbolje rješenje, ali prosječno najbolje su bile iterirani slučajni početak i simulirano kaljenje.

Analiza rezultata za sfernu funkciju

- Sve osim ne-tabu i simuliranog kaljenja našle su u nekom trenutku najbolje rješenje, ali prosječno najbolje su bile iterirani slučajni početak i simulirano kaljenje.
- Za ovu funkciju je zato najbolje rezultate pokazao iterirani slučajni početak.

Analiza rezultata za sfernu funkciju

- Sve osim ne-tabu i simuliranog kaljenja našle su u nekom trenutku najbolje rješenje, ali prosječno najbolje su bile iterirani slučajni početak i simulirano kaljenje.
- Za ovu funkciju je zato najbolje rezultate pokazao iterirani slučajni početak.
- Iskustvo testiranja je pokazalo da je najbolje za ovu funkciju pustiti da se Nelder Meadov algoritam izvrši do kraja jer ona nema lokalnih minimuma (osim globalnog u nuli koji je rješenje).

Rosenbrock

$$f(x) = \sum_{i=1}^{d-1} 100 \cdot (x_{i+1} - x_i^2)^2 + (x_i - 1)^2, x_i \in [-30, 30], i = 1, \dots, N$$

Općenito Nelder-Meadov alg. Meta-heuristike Rezultati

Rezultati za Rosenbrock

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder- Meadov algoritam	2972616.8259	0.1100	0.1	100000	1	1	1
Iterirani slučajni početak	781414.9711	1.737e-17	1	100000	1	1	1
Usmjereni bijeg	0.0	0.0	10	1000	1	1	1
Ne-tabu pretraživanje	508.6913	6.7596e-20	10	1000	1	2	1
Simulirano kaljenje	4.0122e-17	0.0	10	1000	1	1	100

Slika: Rosenbrock testiran na svim metodama

Analiza rezultata za Rosenbrock

 Otprilike pola funkcija je pronašlo najbolje rješenje, međutim pogotovo uspješnim pokazao se usmjereni bijeg koji je u svakom mogućem pokretanju pronašao najbolje rješenje.

Analiza rezultata za Rosenbrock

- Otprilike pola funkcija je pronašlo najbolje rješenje, međutim pogotovo uspješnim pokazao se usmjereni bijeg koji je u svakom mogućem pokretanju pronašao najbolje rješenje.
- S druge strane, većina ostalih funkcija imali su jako veliku prosječnu vrijednost.

Analiza rezultata za Rosenbrock

- Otprilike pola funkcija je pronašlo najbolje rješenje, međutim pogotovo uspješnim pokazao se usmjereni bijeg koji je u svakom mogućem pokretanju pronašao najbolje rješenje.
- S druge strane, većina ostalih funkcija imali su jako veliku prosječnu vrijednost.
- Najgorim se pokazao obični Nelder-Meadov algoritam i po ovoj funkciji vidimo korist heuristika u odnosu na obični algoritam.

Ackley

$$f(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{N}x_i^2}\right) - \exp\left(\frac{1}{N}\sum_{i=1}^{N}\cos(2\pi x_i)\right) + 20 + e, \quad x_i \in [-30, 30], \quad i = 1, \dots, N$$

Općenito Nelder-Meadov alg. Meta-heuristike Rezultati

Rezultati za Ackley

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder-Meadov algoritam	1.4103	3.5527e-15	10	100000	1	1	1
Iterirani slučajni početak	0.2718	3.5527e-15	10	100000	1	1	1
Usmjereni bijeg	2.7711e-15	0.0	10	1000	1	1	1
Ne-tabu pretraživanje	2.4825e-11	3.5527e-15	10	1000	1	2	1
Simulirano kaljenje	2.0322e-14	3.5527e-15	10	1000	1	1	100

Slika: Ackley testiran na svim metodama

Analiza rezultata za Ackley

• Sve metode, osim usmjerenog bijega pronašle su isto najbolje rješenje, $3.5527 \cdot 10^{-15}$.

Analiza rezultata za Ackley

- Sve metode, osim usmjerenog bijega pronašle su isto najbolje rješenje, $3.5527 \cdot 10^{-15}$.
- Funkcija Ackley pokazala se kao tvrd orah, koju smo jedino uspjeli riješiti usmjerenim bijegom. Najgorim se opet pokazao obični Nelder-Meadov algoritam.

Griewank

$$f(x) = \sum_{i=1}^{N} \frac{(x_i - 100)^2}{4000} - \prod_{i=1}^{N} \cos\left(\frac{x_i - 100}{\sqrt{i}}\right) + 1, \quad x_i \in [-600, 600], \quad i = 1, \dots, N$$

Rezultati za Griewank

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder-Meadov algoritam	2.1931	0.6378	1	100000	1	1	1
Iterirani slučajni početak	1.4187	2.8755e-14	1	100000	1	1	1
Usmjereni bijeg	0.0683	0.0	0.1	5000	1	1	1
Ne-tabu pretraživanje	1.7222e-05	0.0	0.1	1000	1	2	1
Simulirano kaljenje	0.0273	0.0	0.1	5000	1	1	10

Slika: Griewank testiran na svim metodama

Analiza rezultata za Griewank

 Sve metode, osim običnog N.M. i iteriranog slučajnog početka uspjele su u nekom trenutku pronaći najbolje rješenje.

Analiza rezultata za Griewank

- Sve metode, osim običnog N.M. i iteriranog slučajnog početka uspjele su u nekom trenutku pronaći najbolje rješenje.
- Za ovu funkciju, prosječno najboljom pokazalo se ne-tabu pretraživanje, najgorom opet Nelder-Meadov algoritam.

Michalewicz

$$f(x) = -\sum_{i=1}^{N} \sin(x_i) \cdot \sin^{2m}\left(\frac{i \cdot x_i^2}{\pi}\right), \quad x_i \in [0, \pi], \quad i = 1, \dots, N$$

Općenito Nelder-Meadov alg. Meta-heuristike Rezultati

Rezultati za Michalewicz

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder-Meadov algoritam	-3.5838	-5.3661	10	100000	1	1	1
Iterirani slučajni početak	-4.5594	-6.3828	10	100000	1	1	1
Usmjereni bijeg	-5.8197	-7.4364	10	1000	1	1	1
Ne-tabu pretraživanje	-6.1145	-7.4298	10	1000	0.1	10	1
Simulirano kaljenje	-8.5811	-9.5785	10	1000	1	- /	100

Slika: Michalewicz testiran na svim metodama

Analiza rezultata za Michalewicz

 Ova funkcija pokazala se također tvrdim orahom i nijedna metoda nije uspjela pronaći njezin minimum.

Analiza rezultata za Michalewicz

- Ova funkcija pokazala se također tvrdim orahom i nijedna metoda nije uspjela pronaći njezin minimum.
- Najbliže najboljem rješenju bilo je simulirano kaljenje, a ona se pokazala i prosječno najboljom.

Analiza rezultata za Michalewicz

- Ova funkcija pokazala se također tvrdim orahom i nijedna metoda nije uspjela pronaći njezin minimum.
- Najbliže najboljem rješenju bilo je simulirano kaljenje, a ona se pokazala i prosječno najboljom.
- Obični Nelder-Meadov algoritam opet je bio najgori.

Shekel

$$f(x) = -\sum_{i=1}^{m} \left(\frac{1}{\sum_{j=1}^{N} (x_j - C_{ji})^2 + \beta_i} \right), \quad x_i \in [0, 10], \quad i = 1, \dots, N$$

Općenito Nelder-Meadov alg. Meta-heuristike Rezultati

Rezultati za Shekel

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder-Meadov algoritam	-6.4879	-10.5364	10	100000	1	1	1
Iterirani slučajni početak	-9.9228	-10.5364	10	100000	1	1	1
Usmjereni bijeg	-10.1498	-10.5364	10	1000	1	1	I
Ne-tabu pretraživanje	-10.5362	-10.5364	10	1000	1	2	1
Simulirano kaljenje	-7.9302	-10.5364	10	5000	1	1	10

Slika: Shekel testiran na svim metodama

Analiza rezultata za Shekel

 Ova funkcija bila je u manje dimenzija nego funkcije prije pa su sve metode uspjele pronaći najbolje rješenje.

Analiza rezultata za Shekel

- Ova funkcija bila je u manje dimenzija nego funkcije prije pa su sve metode uspjele pronaći najbolje rješenje.
- Prosječno najboljim pokazalo se ne-tabu pretraživanje, a najgorim ponovno obični N.M. algoritam.

Langermann

$$f(x) = -\sum_{i=1}^m c_i \cos \left(\pi (x_1 - a_{i1})^2 + (x_2 - a_{i2})^2\right) e^{-\frac{(x_1 - a_{i1})^2 + (x_2 - a_{i2})^2}{\pi}}, \quad x_i \in [0, 10], \quad i = 1, \dots, N$$

Rezultati za Langermann

Metoda	Prosječna nađena vrijednost	Najbolja nađena vrijednost	Lambda	Najviše it. u N-M	Sigma	R	Temp
Obični Nelder-Meadov algoritam	-1.6914	-4.0614	10	100000	1	1	1
Iterirani slučajni početak	-1.9287	-4.1276	10	100000	/	1	1
Usmjereni bijeg	-2.6621	-4.1223	10	1000	1	1	1
Ne-tabu pretraživanje	-3.8754	-4.1556	10	1000	0.1	2	1
Simulirano kaljenje	-3.1604	4.1557	10	5000	1	1	10

Slika: Langermann testiran na svim metodama

Analiza rezultata za Langermann

 Ova funkcija, unatoč što je samo u 2 dimenzije, nije bila lako rješiva u metodama. Nijedna metoda nije pronašla najbolje rješenje.

Analiza rezultata za Langermann

- Ova funkcija, unatoč što je samo u 2 dimenzije, nije bila lako rješiva u metodama. Nijedna metoda nije pronašla najbolje rješenje.
- Najbolje rješenje (u odnosu na druge metode) pronašlo je simulirano kaljenje, a prosječno najbolje ne-tabu pretraživanje.

Rezultati po poretku

Suma po poretku prosječne nađene vrijednosti

Rezultati po poretku

Suma prethodne dvije tablice rezultati

Literatura

- Saša Singer and John Nelder, *Nelder-Mead algorithm*, http://www.scholarpedia.org/article/Nelder-Mead_algorithm (2009)
- João Pedro Pedroso, Simple meta-heuristics using the simplex algorithm for non-linear programming, (2007)
- Ahmed Fouad Ali, Hybrid Simulated Annealing and Nelder-Mead algorithm for solving large-scaleglobal optimization problems, (2014)