工程數學 Midterm #1 Oct 20, 2020

總分 100 註: 計算小錯誤無部份給分,每題的給分標準註記於題目旁,請仔細作答答案卷請務必在每一張寫上姓名、學號,沒寫不算分。請求出下列各 ODE 的解

1. (15%) 給分標準:全對給分,無部份給分

$$\frac{dy}{dx} = \frac{y^2 - x^2}{2xy} \quad \Leftrightarrow \quad y(x) = x \ u(x)$$

2. (15%) 給分標準:全對給分,無部份給分

$$(x^2 - 9)\frac{dy}{dx} + xy = 0$$

3. (10%) 給分標準:全對給分,無部份給分

$$x\frac{dy}{dx} = 4y$$

4. (10%) 給分標準:全對給分,無部份給分

$$\frac{dy}{dx} = 5y$$

5. (10%) 給分標準:全對給分,無部份給分

$$2xy dx + (x^2 - 1)dy = 0$$

6. (15%) 給分標準:全對給分,無部份給分

$$-2xy \, dx + (3x^2 - y^2)dy = 0$$

7. (10%) 給分標準:全對給分,無部份給分

$$y'' - 9y' + 14y = 0$$

8. (15%) 給分標準:全對給分,無部份給分

$$y'' - 4y = 12x, y(0) = 4, y'(0) = 1$$

公式表

求 **y**h:

Auxiliary equation: $m^2 + am + b = 0$

根為: $\frac{-a\pm\sqrt{a^2-4b}}{2}$

 $\sqrt{a^2-4b}$ 解有三種可能:

<1>相異實根: m_1, m_2

ODE 通解為: $y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$

<2>實數重根: m

ODE 通解為: $y = (c_1 + c_2 x)e^{mx}$

<3>複數根 (共軛虚根): $\alpha \pm \omega i$

ODE 通解為: $y = e^{\alpha x} (A \cos \omega x + B \sin \omega x)$

求 yp: Undetermined coefficients method (未定係數法):

R(x)	y _p 假設型
k	A
e ^{ax}	Ae^{ax}
cos bx 或 sin bx	A cos bx + B sin bx
x^n	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x^1 + A_0$
cx^n	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x^1 + A_0$
$x^n e^{nx}$	$e^{nx}(A_nx^n + A_{n-1}x^{n-1} + + A_1x^1 + A_0)$
cx^ne^{nx}	$e^{nx}(A_nx^n + A_{n-1}x^{n-1} + + A_1x^1 + A_0)$
$x^n \cos bx \stackrel{\text{deg}}{=} x^n \sin bx$	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x^1 + A_0) \cos bx +$
	$(B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x^1 + B_0) \sin bx$

註: a, b, c, k, n, A, B 為常數