> Newton + Quasi - Newton

Last time:

- Grad. Descent w/ fixed step size is slow
- Line Search + Wolfe Cond => convergence to a fixed pt.

for a wide range of descent directions

- Backtracking

Newton's Method

$$x_{k+1} \leftarrow x_{\overline{k}} - \frac{f_{\mu}(x_{\overline{k}})}{f_{\mu}(x_{\overline{k}})}$$

$$f^{k} = f(\vec{x}^{k})$$

$$f^{k} = \nabla f(\vec{x}^{k})$$

$$f^{k} = \nabla^{2} f(\vec{x}^{k})$$

$$\nabla q(\vec{x}) = \vec{g}^L + H^L(\vec{x} - \vec{x}^L) = 0$$

$$H^{k} \overrightarrow{x}^{*} = -\overrightarrow{g}^{k} + H^{k} \overrightarrow{x}^{k}$$

$$\overrightarrow{x}^{k+1} = \overrightarrow{x}^{*} = \overrightarrow{x}^{k} - (H^{k})^{-1} \overrightarrow{g}^{k}$$
Newton Step

$$\vec{d}^k = -(t^k)^{-1} \vec{g}^k$$
 Newton Direction

交绳术

loop
$$\vec{J}^{k} \leftarrow -(H^{k})^{-1} \vec{g}^{k}$$

$$\alpha^{k} \leftarrow \operatorname{argmin} (f(\vec{x} + \alpha \vec{J}^{k})) \leftarrow \operatorname{backtracking}$$

$$\vec{\chi}^{k+1} = \vec{\chi} + \alpha^{k} \vec{J}^{k}$$

Advantages

Gradient	Newton
Ease of Implementation VK	(auto-diff makes easier)
Practical Efficiency (#steps) (1 11 (computation)	Evaluating + Inverting expensive
Natural Step Size	√ (=1)
Theory Thm 3.3	76 m 3.5

Rates of Convergence
Q-linear

$$\exists r \in (0,1)$$
 such that

||xk+1-x*|| Er for all k sufficiently large

Q-superlinear

Q-quadratic

3 M>0 such that

$$\frac{\|\dot{\mathbf{x}}^{k+1} - \dot{\mathbf{x}}^{*}\|}{\|\dot{\mathbf{x}}^{k} - \dot{\mathbf{x}}^{*}\|^{2}} \leq M$$

for all k sufficiently large

Theorem 3.3.

gred desc-

When the steepest descent method with exact line searches (3.26) is applied to the strongly convex quadratic function (3.24), the error norm (3.27) satisfies

$$||x_{k+1} - x^*||_Q^2 \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 ||x_k - x^*||_Q^2, \tag{3.29}$$

where $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ are the eigenvalues of Q.

Linear *TQ x

 $\|\hat{x}\|_{Q} = \int x^{T} Q x$

Theorem 3.5.

Suppose that f is twice differentiable and that the Hessian $\nabla^2 f(x)$ is Lipschitz continuous (see (A.42)) in a neighborhood of a solution x^* at which the sufficient conditions (Theorem 2.4) are satisfied. Consider the iteration $x_{k+1} = x_k + p_k$, where p_k is given by (3.30). Then

- (i) if the starting point x_0 is sufficiently close to x^* , the sequence of iterates converges to x^* ;
- (ii) the rate of convergence of $\{x_k\}$ is quadratic; and
- (iii) the sequence of gradient norms $\{\|\nabla f_k\|\}$ converges quadratically to zero.

Want: Newton-Like convergence Only gradient evaluations

Break: In I-D case how do we approximate Newton's method with only f, f' evaluations?

Secant Method

$$f''(x^{k}) = \frac{f'(x^{k}) - f'(x^{k+1})}{x^{k} - x^{k-1}}$$

$$x^{k+1} \leftarrow x^{k} - \frac{x^{k} - x^{k+1}}{f'(x^{k}) - f'(x^{k+1})} f'(x^{k})$$

$$Quasi - Newfon methods$$

$$x^{k+1} \leftarrow x^{k} - x^{k} Q^{k} g^{k} \qquad Q^{k} \text{ approximates } (f^{k})^{-1}$$

$$Typically \qquad Q^{(i)} = I$$

$$g^{k+1} = g^{k+1} - g^{k}$$

$$g^{k+1} = x^{k-1} - x^{k}$$

$$Q \leftarrow Q - \frac{Qx^{k}}{x^{2}Qx^{k}} + \frac{3}{x^{2}}$$

$$Q \leftarrow Q - \frac{Qx^{k}}{x^{2}Qx^{k}} + \frac{3}{x^{2}}$$

$$Q \leftarrow Q - \frac{Qx^{k}}{x^{2}Qx^{k}} + \frac{3}{x^{2}}$$

$$Q \leftarrow Q - \frac{(3x^{k})^{2}Q}{x^{2}Qx^{k}} + \frac{3}{x^{2}}$$

$$Q \leftarrow Q$$

Theorem 6.6.

Suppose that f is twice continuously differentiable and that the iterates generated by the BFGS algorithm converge to a minimizer x^* at which Assumption 6.2 holds. Suppose also that (6.52) holds. Then x_k converges to x^* at a superlinear rate.

Problem: Maintains large; dense Q

L-BFGS: store in values of
$$\vec{J}, \vec{\gamma}$$

$$\vec{q}^{(m)} = \nabla \left((\vec{x}^{k}) + \text{hen} \right)$$

$$\vec{q}^{(i)} = q^{(i')} - \frac{(\vec{J}^{(i')})^{\top} \vec{q}^{(i')}}{(\vec{r}^{(i')})^{\top} \vec{J}^{(i')}} \vec{\gamma}^{(i')}$$

$$\vec{Z}^{(o)} = \vec{Z}^{(m)} \odot \vec{J}^{(m)} \odot \vec{q}^{(m)}$$

$$\vec{Z}^{(i)} = \vec{Z}^{(i-1)} + \vec{J}^{(i-1)} \left((\vec{J}^{(i')})^{\top} \vec{J}^{(i')} \right) - (\vec{J}^{(i')})^{\top} \vec{J}^{(i')}$$

$$\vec{J} = -\vec{Z}^{(m)}$$

Gradient Q-N Newton

Linearly Super Linearly Quad

estimating Q inverting Hessian

or

keeping-history