# Multivariate response models for global quality of life measures

#### Annette Kifley

Principal supervisor: Gillian Heller

Associate supervisors: Jun Ma

David Bulger

Adjunct supervisor: Val Gebski

Contributors/collaborators: Ken Beath

NHMRC Clinical Trial Centre

#### Clinical trial data on health-related QOL

Two studies

#### 1: UBQVG:

Cross-sectional study, 200 cancer patients, to validate UBQ-C questionnaire

#### 2: ANZ0001 study - baseline data only in this talk:

Longitudinal clinical trial

325 patients with advanced breast cancer

Compared oral therapy (intermittent or continuous

capecitabine) vs standard intravenous regimen (CMF)

#### QOL assessments

Global measures from UBQ-C, LASA scales:

- perceived overall health state
- perceived overall QOL
  Both continuous mark a line from best to worst possible

Subdimensional measures from UBQ-C  $\pm$  other scales:

- recent health impact on specific physical, social, self-care capabilities
  - Ordinal categories: None, Slight, Severe, Can't do
- recent distress levels due to specific symptoms, potential side effects, thoughts, emotions
  - Ordinal levels: 0,1,...,10 (none to extreme)

### Health-related disability items

Physical: Walk several blocks

Climb a flight of stairs

Undertake vigorous activities

Social: Usual daily activities

Social life

Leisure activities

Self-care: Wash

Dress

Eat/drink

Go to toilet

#### Distress items

Shortness of breath Sadness

Sleeping difficulty Anxiety

Nausea/vomiting Unhappy with appearance/weight

Lack of energy Uncertainty about future

Aches/pains Anger/resentment

Loss of appetite Loneliness

Hair loss Loss of self confidence

Diarrhoea Feeling dependent

Constipation Thoughts of chemoRx

Numbness Unable to concentrate

### Research question

We want to summarise the available information on global health-related QOL in a way that will facilitate comparisons between treatments in clinical studies

#### Common methods:

- Select one of the global item scores
- Use the mean of the two global items
- Calculate individual scale scores from subitem measures
- Develop and model a theoretical framework of subdomains of QOL and relate them to overall QOL

# Distribution of global measures

#### Health thermometer - measured values



# Distribution of global measures

Overall QOL - measured values



### Subitem distns - distress scales

Difficulty sleeping - Distribution - 11 response levels



# Correlations between items

| Items                    | $\mathbf{UBQVG}$                                                                           | $\mathbf{ANZ0001}$          |  |
|--------------------------|--------------------------------------------------------------------------------------------|-----------------------------|--|
| The two global items     | $\rho = 0.62$                                                                              | $\rho = 0.65$               |  |
| Disabilities             | Mostly 0.4-0.6                                                                             | 0.4-0.8                     |  |
| Disabilities and globals | Mostly 0.4-0.6                                                                             | 0.4-0.6                     |  |
| Distresses               | Diverse, many uncorrelated pairs                                                           |                             |  |
|                          | A few 0.6-0.8 between psych items istresses and globals 0.05-0.6. Moderate for things like |                             |  |
| Distresses and globals   |                                                                                            |                             |  |
|                          | energy, anxiety, confidence, dependence (both)                                             |                             |  |
|                          | breath, sleep, future (UBQVG)                                                              |                             |  |
|                          | sickness, aches,                                                                           | sadness, appetite (ANZ0001) |  |

### How many dimensions in the data?

Principal components analysis of subdimension item measures:

% Var

#### **UBQVG**

PC1 33% Good vs poor overall QOL

PC2 12% Diff. psych vs phys items

PC3+ 6% (PC3) etc Many small compts explain the rest

#### **ANZ0001**

PC1 38%

PC2 9% Diff. disability vs phys vs psych

PC3+ 5% (PC3) etc

### Missing responses are common

|                                  | UBQVG | ANZ0001 |
|----------------------------------|-------|---------|
| No of participants               | 200   | 325     |
| No with complete data            | 120   | 209     |
| No with no responses at all      | 4     | 16      |
| No with sporadic missing items   | 72    | 100     |
| No with completed item responses | 5944  | 9085    |

Imputation option

Commonly missed items often excluded - doesnt help much Missingness issues worse in the longitudinal data Assessments not compulsory

#### Multilevel latent variable model for QOL

Level 3: Underlying global QOL

Level 2: Global measures or item groups

Level 1: Specific items (subdimensions)



Derived Perceived Perceived QOL/Health QOL Health

### Corresponding model formulation

Full factor model:

$$y_{ijk} = \beta_i + \lambda_i^{(2)} \eta_{jk}^{(2)} + \lambda_j^{(3)} \eta_k^{(3)} + \epsilon_{ijk}$$

y item responses,  $\epsilon_{ijk}$  random error

i items, j global measures or item groups, k subjects

 $\eta$  latent constructs,  $\lambda$  factor loadings

 $\beta$  fixed means/intercepts

Clusters involving direct global measures (j in 1,2) have no loading on  $\eta_{jk}^{(2)}$ 

Initially, MVN errors and latent variables will be assumed  $\eta_{jk}^{(2)} \sim N(0, \psi^{(2)}) \quad \eta_k^{(3)} \sim N(0, \psi^{(3)}) \quad \epsilon_{ijk} \sim N(0, \theta_i)$ 

#### Estimation

All models estimated in R using maximum likelihood

Approach as described by Skrondal and Rabe-Hesketh

Marginal likelihood - marginal to all latent variables Integrals over latent variable distributions approximated using quadrature

NLM function used for optimisation

## How many latent constructs?

One (2L) Only  $\eta_k^{(3)}$ , no intermediate level in the model

Direct, indirect subdim items both load directly

Distinguished by factor loadings only

Two (3Lscale)  $\eta_k^{(3)}$  plus a single  $\eta_{jk}^{(2)}$ 

Single group for all subdim items in a QOL qunaire

 $\eta_{jk}^{(2)}$  captures within-scale correlation btw subitems

Sets direct global and indirect subdim items apart

Four (3Ldomain)  $\eta_k^{(3)}$  plus three  $\eta_{jk}^{(2)}$ 

Items grouped by roughly defined domains:

Disability, Physical distress, Psychological distress

# Model comparisons

| Latent constructs            | Npar    | LogL | BIC   |
|------------------------------|---------|------|-------|
|                              | UBQVG   |      |       |
| One (Two level model)        | 92      | 926  | -1366 |
| Two (Three level by scale)   | 93      | 1103 | -1716 |
| Four (Three level by domain) | 95      | 1153 | -1805 |
|                              |         |      |       |
|                              | ANZ0001 |      |       |
| One (Two level model)        | 89      | 1393 | -2276 |
| Two (Three level by scale)   | 90      | 1353 | -2191 |
| Four (Three level by domain) | 92      | 1632 | -2737 |

A smaller (or more negative) BIC is better

### Estimated betas (ANZ)

#### Beta parameters (3 level model by domain)



### Estimated factor loadings (ANZ)

#### Item-level lambda parameters (3 level model by domain)



### Estimated factor loadings (ANZ)

#### Factor loading parameters for global QOL



### Estimated latent variable variances (ANZ)

#### Variance parameters for latent variables



### Estimated residual variances (ANZ)

#### Theta parameters (3 level model by domain)



### Can we simplify the model?

The full factor model involves a very large number of parameters - can we simplify?

- Many of the item-level parameters are not meaningfully different
  - however the item groups do not provide a basis for summarising
- Can we constrain some of the variance components to reduce the item-level variation modelled?

# Which variance components matter?

|                                  | Simple random                | Full factor            |  |  |
|----------------------------------|------------------------------|------------------------|--|--|
|                                  | effect model (p=4)           | model (p=94)           |  |  |
| Item means                       | Common $\beta_0$             | Item-varying           |  |  |
| Item residvars                   | Common $\theta$ Item-varying |                        |  |  |
| $\operatorname{Var}(\eta^{(2)})$ | Freely estimated             | Freely estimated       |  |  |
| $\operatorname{Var}(\eta^{(3)})$ | Freely estimated             | Freely estimated       |  |  |
| Loadings:                        |                              |                        |  |  |
| Subdims                          | All 1:1                      | Free (except 1)        |  |  |
| Globals                          | All 1:1                      | Possibly free (exc. 1) |  |  |

#### Model comparisons

Analysis of UBQVG (196 subjects, 5944 item responses)

| Model                                                   | Npar | LogL | BIC   |
|---------------------------------------------------------|------|------|-------|
| A) Simplest $(\beta_0, \psi^{(2)}, \psi^{(3)}, \theta)$ | 4    | -144 | 309   |
| B) As for A exc. item-varying $\beta_i$                 | 35   | 727  | -1269 |
| C) As for B exc. free loadings                          | 65   | 897  | -1452 |
| D) As for B exc. free residvars                         | 66   | 975  | -1602 |
| E) Fullest                                              | 94   | 1104 | -1712 |

Model A:  $Var(\eta^{(3)}) = 0.017 (95\% \text{ CI } 0.014, 0.022)$ 

Model E:  $Var(\eta^{(3)}) = 0.016 (95\% \text{ CI } 0.0084, 0.020)$ 

# Empirical Bayes estimates of $\eta_k^{(3)}$

#### **Density plot for four models (ANZ0001)**



# Empirical Bayes estimates of $\eta_k^{(3)}$

#### Difference between predictions of four models



# Empirical Bayes estimates of $\eta_k^{(3)}$

#### Density plot for four models (UBQVG)



#### Summary

- We used irregular multilevel latent variable models with a mixture of random and non-random cluster types to accommodate direct and indirect QOL item measures
- Models that delineated QOL domains performed better and captured item correlations better, even for QOL data not focussed around theoretical domains
- Model simplification based on selecting variance components or grouping meaningfully different parameters did not compete or were impractical
- Empirical Bayes predictions of latent global QOL were meaningfully different between models

# Thank you