New methods for large scale unsupervised learning

Hafiz TIOMOKO ALI

CentraleSupélec, University of ParisSaclay, France.

September 24, 2018

Introduction and motivation

Basics of Random Matrix Theory Large Sample Covariance Matrices Semi-circle law Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering Model and assumptions Main results Applications

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Motivation: Graph community detection

- ▶ Dense graph clustering on realistic block models.
- ▶ Asymptotic regime: number of nodes $n \to \infty$.
- ▶ Understanding of spectral clustering: Non-trivial behavior.

Motivation: Data clustering

- ▶ Clustering of n data vectors of dimension p $(n, p \to \infty)$.
- ► Affinity between vectors ⇒ Graph clustering
- ▶ Understanding of kernel spectral methods in the big-data regime.

Algorithm: Spectral clustering

Spectral clustering: objective

State-of-the-art

- Spectral community detection in graphs
 - ▶ Detectability phase transition threshold in dense and sparse graph models
 - Regime of study where clustering is asymptotically perfect.
 - Studies performed mostly on (too simple) SBM models.
 - Lack of eigenvectors characterization in involved models.
- Kernel spectral clustering
 - ▶ Algorithms derived from ad-hoc procedures (e.g., relaxation).
 - Little understanding of performance, even for Gaussian mixtures.
 - Study of n large with p fixed.

Objectives

- Study advanced statistical models (e.g., DC-SBM)
- \triangleright Study in big-data (both p and n large) and non-trivial regime of clustering.
- Benefit from concentration effect to study affinity matrices in both applications.
- Characterization of phase transition, eigenvectors content.

Introduction and motivation

Basics of Random Matrix Theory

Large Sample Covariance Matrices Semi-circle law Spiked models

Community detection in graphs
Motivations and model
Main results

Kernel spectral clustering
Model and assumptions
Main results
Applications

Introduction and motivation

Basics of Random Matrix Theory Large Sample Covariance Matrices

Semi-circle law Spiked models

Community detection in graphs
Motivations and model
Main results
Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Context

Baseline scenario: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ i.i.d. with $E[\mathbf{x}_1] = \mathbf{0}$, $E[\mathbf{x}_1 \mathbf{x}_1^*] = \mathbf{C}_p$:

▶ If $\mathbf{x}_1 \sim \mathcal{N}(0, \mathbf{C}_p)$, ML estimator for \mathbf{C}_p is the sample covariance matrix (SCM)

$$\hat{\mathbf{C}}_p = \frac{1}{n} \mathbf{X}^{(p)} (\mathbf{X}^{(p)})^* = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^*$$

$$(\mathbf{X}^{(p)} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}).$$

▶ If $n \to \infty$, then, strong law of large numbers

$$\hat{\mathbf{C}}_p \xrightarrow{\mathrm{a.s.}} \mathbf{C}_p.$$

or equivalently, in spectral norm

$$\|\hat{\mathbf{C}}_p - \mathbf{C}_p\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\|\hat{\mathbf{C}}_p - \mathbf{C}_p\| \not\to 0.$$

▶ For practical p, n with $p \simeq n$, leads to dramatically wrong conclusions

The Marčenko-Pastur law

Figure: Histogram of the eigenvalues of $\hat{\mathbf{C}}_p$ for p=500, n=2000, $\mathbf{C}_p=\mathbf{I}_p$.

Definitions

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_n of Hermitian matrix $\mathbf{X}^{(n)} \in \mathbb{R}^{n \times n}$ is

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \boldsymbol{\delta}_{\lambda_i(\mathbf{X}^{(n)})}.$$

Definition (Stieltjes transform)

Stieltjes transform $m_{\mu}(z)$ of real measurable function μ

$$m_{\mu}(z) = \int_{-\infty}^{\infty} \frac{1}{t-z} d\mu(t).$$

for $z \in Supp(\mu)^c$.

Theorem (Inverse transformation)

If μ has a density $f_{\mu}(x)$ at x

$$f_{\mu}(x) = \frac{1}{\pi} \lim_{y \to 0^{+}} \mathcal{I}[m_{\mu}(x+iy)].$$

Eigenvalue distribution of sample covariance matrices

Theorem ([Silverstein, Bai'95])

- $\mathbf{X}^{(p)} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}, \ \mathbf{x}_1 \ \textit{i.i.d. with } E[\mathbf{x}_1] = 0, \ E[\mathbf{x}_1 \mathbf{x}_1^*] = \mathbf{C}_p$
- $ightharpoonup \mathbf{C}_p \in \mathbb{C}^{p \times p} \text{ and } \mu_{\mathbf{C}_p} \xrightarrow{\mathbf{a.s.}} \nu.$

As $p,n \to \infty$ with $p/n \to c \in (0,\infty)$, e.s.d. μ_p of $\frac{1}{n}\mathbf{X}^{(p)}(\mathbf{X}^{(p)})^*$ satisfies

$$\mu_p \stackrel{\mathrm{a.s.}}{\longrightarrow} \mu_c$$

weakly, where m_{μ_c} Stieltjes transform of μ_c the unique solution for $z \in \mathbb{R}$ of

$$m_{\mu_c}(z) = \frac{1}{c} \left(-z + c \int \frac{t}{1 + ct \left[m_{\mu_c}(z) + \frac{c-1}{zc} \right]} d\nu(t) \right)^{-1} - \frac{c-1}{zc}.$$

The Marčenko-Pastur law

Theorem (Marčenko-Pastur Law [Marčenko, Pastur'67])

 $\mathbf{X}^{(p)} \in \mathbb{R}^{p imes n}$ with i.i.d. zero mean, unit variance entries. As $p,n \to \infty$ with $p/n \to c \in (0,\infty)$, e.s.d. μ_p of $\frac{1}{n}\mathbf{X}^{(p)}(\mathbf{X}^{(p)})^*$ satisfies

$$\mu_p \xrightarrow{\mathrm{a.s.}} \mu_c$$

weakly, where

- $\mu_c(\{0\}) = \max\{0, 1 c^{-1}\}\$
- on $(0,\infty)$, μ_c has continuous density f_c supported on $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}.$$

And m_{μ_c} Stieltjes transform of μ_c is given by

$$m_{\mu_c}(z) = \frac{1}{1 - c - z - cz m_{\mu_c}(z)}.$$

Introduction and motivation

Basics of Random Matrix Theory

Large Sample Covariance Matrices

Semi-circle law

Spiked models

Community detection in graphs Motivations and model Main results

Main results

Kernel spectral clustering Model and assumptions Main results

Applications

Conclusions and perspectives

Perspective

Contributions

The Deformed semi-circle law

Theorem (Deformed semi-circle Law [Th1.1, Girko, V.L'2001, P.2])

 $\mathbf{X}^{(n)} \in \mathbb{R}^{n \times n}$ symmetric, with independent entries $X_{ij}^{(n)}, \mathbb{E}[X_{ij}^{(n)}] = 0,$

 $Var[X_{ij}^{(n)}] = \sigma_{ij}^{(n)}$. As $n \to \infty$, e.s.d. u_n of $n^{-\frac{1}{2}}X^{(n)}$ satisfies

$$\mu_n \xrightarrow{\text{a.s.}} \mu$$

weakly where

$$m_{\mu}(z) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{-z - m_i(z)}$$

$$m_i(z) = \frac{1}{n} \sum_{j=1}^n \frac{\sigma_{ji}^{(n)}}{-z - m_j(z)}$$

with $m_{\mu}(z)$ Stieltjes transform of μ .

Particular case: the semi-circle law

Theorem (Semi-circle Law)

 $\mathbf{X}^{(n)} \in \mathbb{R}^{n \times n} \text{ symmetric, with i.i.d entries } X_{ij}^{(n)}, \, \mathbb{E}[X_{ij}^{(n)}] = 0, \, Var[X_{ij}^{(n)}] = 1.$

As $n \to \infty$, e.s.d. μ_n of $n^{-\frac{1}{2}}\mathbf{X}^{(n)}$ satisfy

$$\mu_n \xrightarrow{\text{a.s.}} \mu$$

weakly where μ has a density f supported on [-2,2] and defined as

$$f(x) = \frac{1}{2\pi} \sqrt{(4-x^2)^+}.$$

And m_{μ} Stieltjes transform of μ is given by

$$m_{\mu}(z) = -\frac{1}{z + m_{\mu}(z)}$$

Particular case: the semi-circle law

Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for n=500.

Introduction and motivation

Basics of Random Matrix Theory

Large Sample Covariance Matrices Semi-circle law

Spiked models

Community detection in graphs
Motivations and model
Main results

Kernel spectral clustering Model and assumptions Main results

Spiked models

Theorem (Eigenvalues)

- ▶ Let $\mathbf{Y}^{(n)} = \frac{\mathbf{X}^{(n)}}{\sqrt{n}} + \sum_{i=1}^k w_i \mathbf{v}_i \mathbf{v}_i^\mathsf{T}$ with ordered eigenvalues $\lambda_1(\mathbf{Y}^{(n)}) \geq \cdots \geq \lambda_n(\mathbf{Y}^{(n)})$ and $w_1 \geq \cdots \geq w_k$.
- $\qquad \qquad \mathbf{X}^{(n)} \in \mathbb{R}^{n \times n} \text{ symmetric, with i.i.d entries } X_{ij}^{(n)}, \ \mathbb{E}[X_{ij}^{(n)}] = 0, \ Var[X_{ij}^{(n)}] = 1.$
- $\blacktriangleright \mu_n \xrightarrow{\mathrm{a.s.}} \mu$ with support [-2,2], and m(z) Stieltjes transform of μ .

As $n \to \infty$, for $i = 1, \dots, k$

• If $|\omega_i| > \lim_{z \downarrow 2} - \frac{1}{m(z)} = 1$

$$\lambda_i(\mathbf{Y}^{(n)}) \stackrel{\text{a.s.}}{\longrightarrow} m^{-1} \left(-\frac{1}{\omega_i} \right) = \frac{1 + \omega_i^2}{\omega_i} > 2.$$

Otherwise

$$\lambda_i(\mathbf{Y}^{(n)}) \stackrel{\text{a.s.}}{\longrightarrow} 2.$$

Spiked models

Theorem (Eigenvectors)

- ▶ Let $\mathbf{Y}^{(n)} = \frac{\mathbf{X}^{(n)}}{\sqrt{n}} + \sum_{i=1}^{k} w_i \mathbf{v}_i \mathbf{v}_i^\mathsf{T}$ with ordered eigenvalues $\lambda_1(\mathbf{Y}^{(n)}) \ge \cdots \ge \lambda_n(\mathbf{Y}^{(n)})$ and $w_1 \ge \cdots \ge w_k$.
- $\qquad \qquad \mathbf{X}^{(n)} \in \mathbb{R}^{n \times n} \text{ symmetric, with i.i.d entries } X_{ij}^{(n)}, \ \mathbb{E}[X_{ij}^{(n)}] = 0, \ Var[X_{ij}^{(n)}] = 1.$
- $\blacktriangleright \mu_n \xrightarrow{\text{a.s.}} \mu$ with support [-2,2], and m(z) Stieltjes transform of μ .

As $n \to \infty$, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ deterministic vectors and \mathbf{u}_i eigenvector of $\mathbf{Y}^{(n)}$ associated with eigenvalue $\lambda_i(\mathbf{Y}^{(n)})$,

$$\mathbf{a}^{\mathsf{T}}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}\mathbf{b} - \frac{\omega_{i}^{2} - 1}{\omega_{i}^{2}}\mathbf{a}^{\mathsf{T}}\mathbf{v}_{i}\mathbf{v}_{i}^{\mathsf{T}}\mathbf{b} \cdot 1_{|\omega_{i}| > 1} \xrightarrow{\text{a.s.}} 0.$$

In particular

$$\left|\mathbf{v}_{i}^{\mathsf{T}}\mathbf{u}_{i}\right|^{2} \xrightarrow{\text{a.s.}} \frac{\omega_{i}^{2}-1}{\omega_{i}^{2}} \cdot 1_{\left|\omega_{i}\right|>1}.$$

Spiked models: eigenvectors

Figure: Simulated versus limiting $|\mathbf{u}_1^\mathsf{T}\mathbf{j}_1|^2$ for $\mathbf{Y} = \mathbf{X} + \omega_1\mathbf{j}_1\mathbf{j}_1^\mathsf{T}$, $\mathbf{j}_1 = \frac{2}{\sqrt{n}}[\mathbf{1}_{n/2}, \mathbf{0}_{n/2}]$, $X_{ij} \sim \mathcal{N}(0, 1/n)$, varying ω_1 .

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs

Motivations and model
Main results
Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model

Main results

Kernel spectral clustering
Model and assumptions
Main results
Applications

System Setting

Undirected graph with n nodes, m edges:

- "intrinsic" average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- ▶ k classes $\mathcal{C}_1, \dots, \mathcal{C}_k$ independent of $\{q_i\}$ of (large) sizes n_1, \dots, n_k , with preferential attachment C_{ab} between \mathcal{C}_a and \mathcal{C}_b
- $lackbox{ edge probability for nodes } i \in \mathcal{C}_{g_i}, j \in \mathcal{C}_{g_j}$:

$$P(i \sim j) = q_i q_j C_{g_i g_j}.$$

► adjacency matrix A with

$$A_{ij} \sim \text{Bernoulli}(q_i q_j C_{g_i g_j})$$

Affinity matrices used for spectral methods

Dense graphs:

- ► Adjacency: **A**.
- ► Modularity: $\mathbf{A} \mathbf{dd}^\mathsf{T}$, $\mathbf{d} = \mathbf{A1}$.
- ▶ Laplacian: $\mathcal{D}(\mathbf{d})^{-\frac{1}{2}}\mathbf{A}\mathcal{D}(\mathbf{d})^{-\frac{1}{2}}$.

Sparse graphs:

- ▶ Non-backtracking matrix (affinity between edges).
- ▶ Bethe-Hessian matrix: $\mathcal{D}(\mathbf{d}) \mathbf{A}$.

Limitations of Classical Spectral Methods

▶ 3 classes with μ bi-modal $(\mu = \frac{3}{4}\delta_{0.1} + \frac{1}{4}\delta_{0.5})$

Proposed Regularized Modularity Approach

Recall: $P(i \sim j) = q_i q_j C_{g_i g_j}$.

Dense Regime Assumptions: Non trivial regime when, $\forall a, b$, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

Community information is weak but highly redundant

Considered Matrix:

$$\mathbf{L}_{\alpha} = (2m)^{\alpha} \frac{1}{\sqrt{n}} \mathbf{D}^{-\alpha} \left[\mathbf{A} - \frac{\mathbf{d}\mathbf{d}^{\mathsf{T}}}{2m} \right] \mathbf{D}^{-\alpha}.$$

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs

Motivations and model

Main results

Simulations

Kernel spectral clustering Model and assumptions Main results Applications

Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)

As $n \to \infty$, $\|\mathbf{L}_{\alpha} - \tilde{\mathbf{L}}_{\alpha}\| \stackrel{\mathrm{a.s.}}{\longrightarrow} 0$, where

$$\mathbf{L}_{\alpha} = (2m)^{\alpha} \frac{1}{\sqrt{n}} \mathbf{D}^{-\alpha} \left[\mathbf{A} - \frac{\mathbf{d} \mathbf{d}^{\mathsf{T}}}{2m} \right] \mathbf{D}^{-\alpha}$$
$$\tilde{\mathbf{L}}_{\alpha} = \frac{1}{\sqrt{n}} \mathbf{D}_{q}^{-\alpha} \mathbf{X} \mathbf{D}_{q}^{-\alpha} + \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$$

with $\mathbf{D}_q = \mathrm{diag}(\{q_i\})$, \mathbf{X} zero-mean random matrix with variance profile,

$$\begin{split} \mathbf{U} &= \begin{bmatrix} \mathbf{D}_q^{1-\alpha} \frac{\mathbf{J}}{\sqrt{n}} & \mathbf{D}_q^{-\alpha} \mathbf{X} \mathbf{1}_n \end{bmatrix}, \ \, \underset{k}{\textit{rank } k+1} \\ \mathbf{\Lambda} &= \begin{bmatrix} (\mathbf{I}_k - \mathbf{1}_k \mathbf{c}^\mathsf{T}) \mathbf{M} (\mathbf{I}_k - \mathbf{c} \mathbf{1}_k^\mathsf{T}) & -\mathbf{1}_k \\ \mathbf{1}_k^\mathsf{T} & 0 \end{bmatrix} \end{split}$$

and
$$\mathbf{J} = [\mathbf{j}_1, \dots, \mathbf{j}_k]$$
, $\mathbf{j}_a = [0, \dots, 0, \mathbf{1}_{n_a}^\mathsf{T}, 0, \dots, 0]^\mathsf{T} \in \mathbb{R}^n$, $\mathbf{c} = \{c_a\}_{a=1}^k$, $c_a = n_a/n$.

Consequences:

- ▶ isolated eigenvalues beyond phase transition $\Leftrightarrow \lambda(\mathbf{M}) >$ "spectrum edge"
 - Optimal choice α_{opt} of α from study of limiting spectrum.
- eigenvectors correlated to $\mathbf{D}_a^{1-\alpha}\mathbf{J}$

Necessary regularization by $\mathbf{D}^{\alpha-1}$.

Eigenvalue Spectrum

Figure: 3 classes, $c_1=c_2=0.3, c_3=0.4, \ \mu=\frac{1}{2}\pmb{\delta}_{0.4}+\frac{1}{2}\pmb{\delta}_{0.9}, \ \mathbf{M}=4\begin{bmatrix}3&-1&-1\\-1&3&-1\\-1&-1&3\end{bmatrix}.$

Phase Transition

Theorem (Phase Transition)

Isolated eigenvalue $\lambda_i(\mathbf{L}_{\alpha})$ if $|\lambda_i(\bar{\mathbf{M}})| > \tau^{\alpha}$, $\bar{\mathbf{M}} = (\mathcal{D}(\mathbf{c}) - \mathbf{c}\mathbf{c}^{\mathsf{T}})\mathbf{M}$, where

$$au^{lpha} = \lim_{x\downarrow S^{lpha}_+} -rac{1}{g^{lpha}(x)}, \; ext{phase transition threshold}$$

with $[S_-^{\alpha}, S_+^{\alpha}]$ limiting eigenvalue support of \mathbf{L}_{α} and $g^{\alpha}(x)$ ($|x| > S_+^{\alpha}$) solution of

$$f^{\alpha}(x) = \int \frac{q^{1-2\alpha}}{-x - q^{1-2\alpha} f^{\alpha}(x) + q^{2-2\alpha} g^{\alpha}(x)} \mu(dq)$$
$$g^{\alpha}(x) = \int \frac{q^{2-2\alpha}}{-x - q^{1-2\alpha} f^{\alpha}(x) + q^{2-2\alpha} g^{\alpha}(x)} \mu(dq).$$

In this case, $\lambda_i(\mathbf{L}_\alpha) \stackrel{\mathrm{a.s.}}{\longrightarrow} (g^\alpha)^{-1} \left(-1/\lambda_i(\bar{\mathbf{M}})\right)$.

Clustering possible when $\lambda_i(\bar{\mathbf{M}}) > (\min_{\alpha} \tau_{\alpha})$:

- "Optimal" $\alpha_{\mathrm{opt}} \equiv \operatorname{argmin}_{\alpha} \{ \tau_{\alpha} \}.$
- From $\hat{q}_i \equiv \frac{\mathbf{d}_i}{\sqrt{\mathbf{d}^T \mathbf{1}_n}} \overset{\text{a.s.}}{\longrightarrow} q_i$, $\mu \simeq \hat{\mu} \equiv \frac{1}{n} \sum_{i=1}^n \delta_{\hat{q}_i}$ and thus:

Consistent estimator $\hat{\alpha}_{opt}$ of α_{opt} .

Introduction and motivation

Basics of Random Matrix Theory Large Sample Covariance Matrices Semi-circle law Spiked models

Community detection in graphs

Motivations and model Main results

Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Simulated Performance Results (2 masses of q_i)

Figure: 3 classes, $\mu = \frac{3}{4} \delta_{0.1} + \frac{1}{4} \delta_{0.5}$, $c_1 = c_2 = \frac{1}{4}$, $c_3 = \frac{1}{2}$, $\mathbf{M} = 100 \mathbf{I}_3$.

Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n=3000,\,k=3,\,c_i=\frac{1}{3},\,\mu=\frac{3}{4}\delta_{q_{\left(1\right)}}+\frac{1}{4}\delta_{q_{\left(2\right)}}$ with $q_{\left(1\right)}=0.1$ and $q_{\left(2\right)}=0.5,\,\mathbf{M}=\Delta\mathbf{I}_3,$ for $\Delta\in[5,50].$ Here $\alpha_{\mathrm{opt}}=0.07.$

Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n=3000,\,k=3,\,\mu=\frac{3}{4}\delta_{q_{\left(1\right)}}+\frac{1}{4}\delta_{q_{\left(2\right)}}$ with $q_{\left(1\right)}=0.1$ and $q_{\left(2\right)}\in[0.1,0.9],\,\mathbf{M}=10(2\mathbf{I}_3-\mathbf{1}_3\mathbf{1}_3^{\mathsf{T}}),\,c_i=\frac{1}{3}.$

Real Graph Example: PolBlogs (n = 1490, two classes)

 $\alpha = 1$

ВН

0.040

0.304

 $\simeq 0$

0.2723

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs
Motivations and model
Main results
Simulations

Kernel spectral clustering

Model and assumptions
Main results
Applications

Conclusions and perspectives Conclusions Perspectives Contributions

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering Model and assumptions

Main results Applications

Conclusions and perspectives Conclusions Perspectives Contributions

Setting and Basic Assumptions

Class definition:

$$\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{C}_a).$$

Growth rates: As $n \to \infty$, k remains fixed, and

$$p/n \to c_0 > 0$$
, $n_a/n \to c_a > 0$.

Growth rates

Growing $p \Rightarrow$ Control of μ_a , C_a to avoid trivial solutions.

Neyman-Pearson optimal rates:

Knowing μ and ϵ ,

- ▶ For $\mathbf{x} \sim \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I})$, can decide on classes when $\|\boldsymbol{\mu}\| \geq \mathcal{O}(1)$.
- ▶ For $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I} \pm \mathbf{E})$, can decide on classes when $\|\mathbf{E}\| \geq \mathcal{O}(p^{-\frac{1}{2}})$.

Neyman-Pearson separability rates

As $p \to \infty$, for all $a, b \in \{1, \dots, k\}$, when μ_a , \mathbf{C}_a known,

- $\| \mu_a \mu_b \| = O(1)$
- $\qquad \qquad ||\mathbf{C}_a|| \text{ bounded, } \quad |\operatorname{tr}(\mathbf{C}_a \mathbf{C}_b)| = O(\sqrt{p}), \qquad |\operatorname{tr}((\mathbf{C}_a \mathbf{C}_b)^2) = O(1) \ |.$

(Inner Product) Kernel Matrix

Object of interest: With $\mathbf{x}_i^{\circ} = \mathbf{x}_i - \frac{1}{n} \sum_{j=1}^n \mathbf{x}_j$, define

$$\mathbf{K} = \mathbf{P} \left\{ f \left(\frac{1}{p} (\mathbf{x}_i^{\circ})^{\mathsf{T}} \mathbf{x}_j^{\circ} \right) 1_{i \neq j} \right\} \mathbf{P}$$

where $\mathbf{P} = \mathbf{I}_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$ and f three-times differentiable around 0.

$$(f(\frac{1}{p}\|\mathbf{x}_i - \mathbf{x}_j\|^2)$$
 could be treated similarly)

Objective: Study:

- ▶ limiting spectrum of **K** (eigenvalues + eigenvectors)
- clustering performances.

Previous work: Kernel spectral clustering $(f'(0) \neq 0)$

Assumption (Separability Rate)

As $p \to \infty$, for all $a, b \in \{1, \dots, k\}$,

- $\| \mu_a \mu_b \| = O(1)$
- $||\mathbf{C}_a|| \text{ bounded, } |tr(\mathbf{C}_a \mathbf{C}_b)| = O(\sqrt{p}), |tr((\mathbf{C}_a \mathbf{C}_b)^2) = O(p)|.$
- f such that $f(0) = \mathcal{O}(1), f'(0) = \mathcal{O}(1), f''(0) = \mathcal{O}(1).$

Key Result: As $n, p \to \infty$, and assumption above,

• for all $i \neq j$, irrespective of the class,

$$\boxed{\frac{1}{p}(\mathbf{x}_i^{\circ})^{\mathsf{T}}\mathbf{x}_j^{\circ} \to 0, \quad \frac{1}{2p}\|\mathbf{x}_i - \mathbf{x}_j\|^2 \to \tau.}$$

- counter-intuitive curse of dimensionality: all vectors are far.
- ▶ but allows for Taylor-expansion of K_{ij} around f(0):

$$\begin{split} K_{ij} &= f(0) + f'(0) \left[\frac{1}{p} \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b + \frac{1}{p} \mathbf{w}_i^\mathsf{T} \mathbf{w}_j + \ldots \right] \\ &+ \frac{1}{2} f''(0) \left[\frac{1}{p^2} \mathsf{tr} \left(\mathbf{C}_a - \mathbf{C}_b \right)^2 \right] + o(1) \end{split}$$

(for
$$x_i = \boldsymbol{\mu}_a + \mathbf{w}_i$$
, $x_i = \boldsymbol{\mu}_b + \mathbf{w}_i$)

► Model type: Marčenko-pastur+ Spikes.

Previous work: Kernel spectral clustering $f'(0) \neq 0$

Assumption (Separability Rate)

As $p \to \infty$, for all $a, b \in \{1, \dots, k\}$,

- $\| \mu_a \mu_b \| = O(1)$
- $ightharpoonup \|\mathbf{C}_a\|$ bounded, $|tr(\mathbf{C}_a \mathbf{C}_b)| = O(\sqrt{p})$, $tr((\mathbf{C}_a \mathbf{C}_b)^2) = O(p)$.
- f such that $f(0) = \mathcal{O}(1), f'(0) = \mathcal{O}(1), f''(0) = \mathcal{O}(1).$

Conclusions:

- ▶ limiting e.s.d of kernel: Marčenko-pastur law.
- ► Can do better on class covariance rates.
- ▶ f'(0) = 0: asymptotic trivial clustering \Rightarrow Can improve growth rates for covariances.

Previous work: Kernel spectral clustering (f'(0) = 0)

Assumption (Separability Rate)

As $p \to \infty$, for all $a, b \in \{1, \dots, k\}$,

- $\| \mu_a \mu_b \| = O(1)$
- $\qquad \qquad ||\mathbf{C}_a|| \ \ \text{bounded}, \quad |\mathsf{tr}(\mathbf{C}_a \mathbf{C}_b)| = O(\sqrt{p}), \qquad \boxed{\mathsf{tr}((\mathbf{C}_a \mathbf{C}_b)^2) = O(\sqrt{p})}.$
- f such that $f(0) = \mathcal{O}(1), f'(0) = 0, f''(0) = \mathcal{O}(1).$

$$\sqrt{p}K_{ij} = f(0) + \frac{f''(0)}{2} \left[\frac{1}{p\sqrt{p}} (\mathbf{w}_i^\mathsf{T} \mathbf{w}_j)^2 + \frac{1}{p\sqrt{p}} \mathsf{tr} \left(\mathbf{C}_a - \mathbf{C}_b \right)^2 \right] + o(1)$$

Conclusions:

- ► Model type: Semi-circle + spikes.
- ▶ Better rates in class-covariance.
- Sub-optimal in class means discrimination (means discarded).

New kernel design

Assumption (Separability Rate)

As $p \to \infty$, for all $a, b \in \{1, \dots, k\}$,

- $\|\boldsymbol{\mu}_a \boldsymbol{\mu}_b\| = O(1)$
- $\qquad \qquad ||\mathbf{C}_a|| \ \ \textit{bounded}, \quad |\textit{tr}(\mathbf{C}_a \mathbf{C}_b)| = O(\sqrt{p}), \qquad ||\textit{tr}((\mathbf{C}_a \mathbf{C}_b)^2) = O(\sqrt{p})|$
- $f'(0) = \frac{\alpha}{\sqrt{p}}, \quad \frac{1}{2}f''(0) = \beta.$

Taylor approximation:

$$\begin{split} \sqrt{p}K_{ij} &= f(0) + \frac{\alpha}{\alpha} \left[\frac{1}{p} \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b + \frac{1}{p} \mathbf{w}_i^\mathsf{T} \mathbf{w}_j + \ldots \right] \\ &+ \frac{\beta}{p} \left[\frac{1}{p\sqrt{p}} \mathsf{tr} \left(\mathbf{C}_a - \mathbf{C}_b \right)^2 + \frac{1}{p\sqrt{p}} (\mathbf{w}_i^\mathsf{T} \mathbf{w}_j)^2 \right] + o(1) \end{split}$$

(for
$$x_i = \boldsymbol{\mu}_a + \mathbf{w}_i$$
, $x_j = \boldsymbol{\mu}_b + \mathbf{w}_j$)

Findings:

- ► Model type: Marcenko-pastur+Semi-circle+spikes.
- Balance between class means and covariances.

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering

Model and assumptions

Main results

Applications

Conclusions and perspectives Conclusions Perspectives Contributions

Random equivalent

Theorem (Asymptotic Equivalent for K)

For
$$f$$
 such that $f'(0)=rac{lpha}{\sqrt{p}},\,rac{1}{2}f''(0)=rac{oldsymbol{eta}}{oldsymbol{eta}}$, as $n,p o\infty$,

$$\|\mathbf{K} - \hat{\mathbf{K}}\| \stackrel{\mathrm{a.s.}}{\longrightarrow} 0$$

where

$$\sqrt{p}\hat{\mathbf{K}} \equiv \alpha \mathbf{P} \mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{P} + \beta \mathbf{P} \Phi \mathbf{P} + \mathbf{U} \mathbf{A} \mathbf{U}^{\mathsf{T}} - (f(0) + \tau f'(0)) \mathbf{P}$$

with

$$\begin{split} \mathbf{W} &= [\mathbf{w}_1, \dots, \mathbf{w}_n], \quad \Phi_{ij} = \sqrt{p} \left[((\mathbf{w}_i)^\mathsf{T} \mathbf{w}_j)^2 - \frac{1}{p^2} tr \mathbf{C}_a \mathbf{C}_b \right] \mathbf{1}_{i \neq j} \\ \mathbf{U} &= \begin{bmatrix} \mathbf{J}, \mathbf{P} \mathbf{W}^\mathsf{T} \mathbf{M} \end{bmatrix}, \quad \mathbf{J} = [\mathbf{j}_1, \dots, \mathbf{j}_k], \quad \mathbf{j}_a = (0, \dots, \mathbf{1}_{n_a}, \dots, 0)^\mathsf{T} \\ \mathbf{A} &= \begin{bmatrix} \alpha \mathbf{M}^\mathsf{T} \mathbf{M} + \beta \mathbf{T} & \alpha \mathbf{I}_k \\ \alpha \mathbf{I}_k & 0 \end{bmatrix}, \quad \mathbf{M} = [\mu_1, \dots, \mu_k], \quad \mathbf{T} = \frac{1}{p\sqrt{p}} \left\{ tr (\mathbf{C}_a - \mathbf{C}_b)^2 \right\}. \end{split}$$

Role of α , β :

- Weighs Marčenko–Pastur versus semi-circle parts.
- Trade-off between means and covariance discrimination.

Limiting Eigenvalue Distribution

Theorem (Limiting Eigenvalue Distribution)

As $n, p \to \infty$,

$$\mu_n \equiv \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(\mathbf{K})} \xrightarrow{\mathcal{L}} \mu$$

with μ (having compact support $\mathcal S$) given by its Stieltjes transform $m(z)=\int \frac{\mu(d\lambda)}{\lambda-z}$, unique solution of

$$\frac{1}{m(z)} = -z + \frac{\alpha}{p} \operatorname{tr} \mathbf{C}^{\circ} \left(\mathbf{I}_p + \frac{\alpha m(z)}{c_0} \mathbf{C}^{\circ} \right)^{-1} - \frac{2\beta^2}{c_0} m(z) \left(\frac{1}{p} \operatorname{tr} (\mathbf{C}^{\circ})^2 \right)^2.$$

where

$$\mathbf{C}^{\circ} \triangleq \sum_{a=1}^{k} c_a \mathbf{C}_a.$$

Mixed Marcenko-Pastur & Wigner Spectrum

- ▶ **PW**^T**WP**: Marcenko–Pastur like spectrum
- ▶ PΦP: semi-circle (Wigner) like spectrum
- ► UAU^T: produces spikes under phase transition!

Here for
$$f(x)=\frac{1}{2}\beta\left(x+\frac{1}{\sqrt{p}}\frac{\alpha}{\beta}\right)^2,$$

$$\alpha=8,\ \beta=1$$

$$\alpha=4,\ \beta=3$$

$$\alpha=1,\ \beta=8$$

$$\alpha=1,\ \beta=8$$

Figure: Eigenvalues of K versus limiting law, $p=2048, n=4096, k=2, n_1=n_2, \mu_i=3\delta_i$.

Spikes

Theorem

Let $\rho \in \mathbb{R} \setminus \mathcal{S}$ be such that

$$\frac{m(\rho)}{4c_0}(\alpha\delta g(\rho) + \beta\theta) + 1 = 0$$

with

$$g(\rho) = \frac{1}{p} tr (\mathbf{I}_p + \frac{\alpha m(\rho)}{c_0} \mathbf{C}^{\circ})^{-1}$$
$$\delta = \|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|^2$$
$$\theta = \frac{1}{\sqrt{p}} tr (\mathbf{C}_1 - \mathbf{C}_2)^2.$$

Then, there exists λ_i eigenvalue of $\hat{\mathbf{K}}$ such that

$$|\lambda_j - \rho| \xrightarrow{\text{a.s.}} 0.$$

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering

Model and assumptions

Applications

Conclusions and perspectives Conclusions Perspectives Contributions

Performance of Kernel Spectral Clustering

Datasets	$\ oldsymbol{\mu}_1 - oldsymbol{\mu}_2\ ^2$	$\frac{1}{\sqrt{p}}$ TR $(\mathbf{C}_1 - \mathbf{C}_2)^2$	Ratio
MNIST (digits 1, 7)	612	1990	3.3
MNIST (digits 3, 6)	441	1119	2.5
MNIST (digits 3, 8)	212	652	3.0
EEG (SETS A, E)	2.4	109	45.4

Figure: Spectral clustering accuracy for MNIST and EEG, versus Gaussian kernel $(K_{ij}=e^{-\frac{1}{2}\|\mathbf{x}_i-\mathbf{x}_j\|^2})$.

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Conclusions and perspectives

Conclusions Perspectives Contributions

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Conclusions and perspectives Conclusions

Perspectives Contribution

Conclusions

Spectral community detection in dense and heterogeneous graphs:

- In heterogeneous dense graph models, adjacency, Laplacian not always optimal even with proper eigenvector normalization.
- We found a matrix with better phase transition in challenging cases.
- ▶ We characterize content of the eigenvectors ⇒ Improved version of E.M algorithm.

Kernel spectral clustering:

- Original intuitions of ML algorithms in small dimensions most often no longer valid in high dimensions.
- Under non-trivial regime, concentration of key quantities allows for understanding of kernel matrices.
- We conciliate previous findings to propose new kernel design with better means and covariances discriminative rates.

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Conclusions and perspectives

Conclusions

Perspectives

Contributions

Perspectives

Spectral Community detection.

- Study of Fisher-score matrix for spectral clustering.
- Sparse DCSBM
- Complexity/Performance tradeoff of spectral methods.

Kernel spectral clustering.

- \bigcirc Off-line estimation of kernel (α, β) .
- Study of kernel spectral clustering under other statistical models (heavy tails,...).

Use of the technical developed tools in the understanding of performances of other machine learning algorithms beyond spectral ones?

Introduction and motivation

Basics of Random Matrix Theory
Large Sample Covariance Matrices
Semi-circle law
Spiked models

Community detection in graphs Motivations and model Main results Simulations

Kernel spectral clustering
Model and assumptions
Main results
Applications

Conclusions and perspectives

Perspectives
Contributions

Contributions I

Journals (2 published)

Tiomoko Ali, H. and Couillet, R. Improved spectral community detection in large heterogeneous networks. Journal of Machine Learning Research, 18:149.

Couillet, R., Wainrib, G., Sevi, H., and Tiomoko Ali, H. The asymptotic performance of linear echo state neural networks. Journal of Machine Learning Research, 17(178):135.

Conferences (6 published, 1 submitted)

Tiomoko Ali, H. and Couillet, R. Performance analysis of spectral community detection in realistic graph models. In ICASSP16.

Tiomoko Ali, H. and Couillet, R. community detection in heterogeneous networks. In Signals, Systems and Computers, 2016 50th Asilomar Conference.

Tiomoko Ali, H., Kammoun, A., and Couillet, R. Random matrix asymptotic of inner product kernel spectral clustering. In ICASSP18.

Tiomoko Ali, H., Kammoun, A., and Couillet, R. Random matrix-improved kernels for large dimensional spectral clustering. In Statistical Signal Processing Workshop (SSP), 2018.

Couillet, R., Wainrib, G., Sevi, H., and Tiomoko Ali, H. Training performance of echo state neural networks. In Statistical Signal Processing Workshop (SSP), 2016.

Contributions II

Couillet, R., Wainrib, G., Tiomoko Ali, H., and Sevi, H. A random matrix approach to echo-state neural networks. In International Conference on Machine Learning (ICML 2016).

Ali, H. T., Liu, S., Yilmaz, Y., Hero, A., Couillet, R., and Rajapakse, I. Latent heterogeneous multilayer community detection.

The End

Thank you.