

Въпрос 23 за държавен изпит

Минимизация на детерминирани крайни автомати

1.Дефиниция за краен автомат и автоматен език

Определение 1 . Азбука наричаме множеството $\Sigma = \{\sigma_1, \sigma_2, \sigma_m\}$.

Σе крайно множество

Означаваме Σ^* множеството от всички думи над дадена азбука Σ

Определение 2 .Нека $w \in \Sigma^*$, броят на членовете на w ще наричаме дължина на w и ще означаваме c |w| .

$$\xi$$
 - празната дума . Ако $\left|w\right|=0$ то $\left|w\right|=\xi$ $\left|w\right|=1$ то $\left|w\right|=0$

Със Σ^n отбелязваме можеството от думи с дължина \mathbf{n} .

Определение 3 . Конкатенациа на две думи $u,v\in\Sigma^*$ наричаме

$$u.v$$
 и тяхната дължина $e^-\left|u.v\right|=\left|u\right|+\left|v\right|$

Свойства:

- 1) $\xi w = w\xi = w$ sa $\forall w \in \Sigma^*$
- 2) (uv)w = u(vw) = uvw

Нека са дадени $u, v \in \Sigma^*$

- 1) u е начало на $v \Leftrightarrow v = uw$ за $w \in \Sigma^*$
- 2) u е край на $v \iff v = wu, w \in \Sigma^*$
- 3) u е поддума на $v \Leftrightarrow v = w'uw''$, $w', w'' \in \Sigma^*$

Определение 4 .Eзик над множеството Σ нариаме L , L – множеството от думи от Σ^* .

L – подмножество на Σ^* .

Определение 5 .Нека е дадена азбука Σ . Краен автомат над Σ ще наричаме всяка наредена четворка (Q,R,S,T) , където Q е крайно множество .

Q

- множество (множество на състоянията)

 $R \subseteq Qx\Sigma xQ$

- таблица на преходите

 $S \subseteq Q$

- множество на началните състояния

 $T \subseteq Q$

- множество на заключителните състояния

Пояснение :: Ако имаме (q, σ, q) където $q, q' \in Q$ и $\sigma \in \Sigma$, то множеството $(q, \sigma, q') \in R$ и казваме ,че автомата преминава от състояние q в състояние q.

Определение 6 .Kазваме , че автомата A = (Q, R, S, T) е детерминиран ако |S| = 1 и за $(q, \sigma, q') \in R$ и $(q, \sigma, q'') \in R$ следва че q' = q''.

Определение 7. Казваме че автомата А е тотално детерминиран автомат ако за $\forall q \in Q$ и $\forall \sigma \in \Sigma$, $\exists ! \ q'$ за което $(q, \sigma, q') \in R$.

Пример: (Тотално детерминиран автомат)

$$Q = \{q_0, q_1\} \ , \ L = \{a, b\} \ , \ R = \{(q_0, a, q_0), (q_0, b, q_1), (q_1, a, q_0), (q_1, b, q_1)\} \ ,$$

$$S = \{q_0\} \ , \ T = \{q_1\}$$

Тотален детерминиран автомат

Определение 8 . Дефинираме графа $G_{{}_{\!A}}$ по следния начин $G_{{}_{\!A}}=(Q,R,\alpha,\beta)$, където Q е множество на върховете, R е множество на ребрата, $\alpha(q,\sigma,q') = q$, $\beta(q,\sigma,q') = q'$.

Определение 9 . $\mu_{\scriptscriptstyle A}(q,\sigma)=q^{\scriptscriptstyle +} \iff (q,\sigma,q^{\scriptscriptstyle +})\in R$, $\operatorname{rng}(\mu_{\scriptscriptstyle A})\subseteq Q$.

 $\mu_{\scriptscriptstyle A}$ наричаме функция на матрицата на преходите .

Определение 10 . Нека е дадена думата $w=c_1,....,c_n$, $c_i\in\Sigma$ и $e_1,...,e_n$ път в $G_{\scriptscriptstyle A}$ състоящ се от n на брой ребра , $e_{\scriptscriptstyle i}=c_{\scriptscriptstyle i}, i=2,...$ $\alpha(c1)=S$, тогава казваме, че $(e_1,...,e_n)$ е допустим за w.

Определение 11 .Казваме че думата w се приема от автомата А, ако съществува път в $G_{\scriptscriptstyle A}$ допустим за w и имащ край в T .

Забележка : ξ се приема от A ако $S \cap T \neq \emptyset$.

Определение 12 "Дадени са състоянията q , \overline{q} и $w=c_1,...,c_n$. Казваме ,че \overline{q} eдостижим от q чрез w ако e $G_{_{\! A}}$ съществува път $(e_{_{\! 1}},...,e_{_{\! n}})$ от q до \overline{q} , такъeче буквата на e_i да бъде c_i , i=1,...,n и бележим $q\longrightarrow q$.

/* Свойства : $q \longrightarrow q$

1.
$$A: q \longrightarrow \overline{q} \Leftrightarrow q = \overline{q}$$

2. Ако
$$A:q \longrightarrow q$$
 и $A:q \longrightarrow q$, то $A:q \longrightarrow q$

2. Ако
$$A: q \longrightarrow q$$
 и $A: q \longrightarrow q$, то $A: q \longrightarrow q$ 3. $A: q \longrightarrow q$, то $\exists q$ такова че $A: q \longrightarrow q$ и $A: q \longrightarrow q$ */

Определение 15 .Казваме, че w се приема от А точно тогава когато за някое $q \in S$ и $q \in T$ е изпълнено условието $A: q \longrightarrow q$.

Определение 16. Език на автомат се нарича множеството от онези думи, които се приемат от автомата A и бележим L(A).

Определение 17 .Един език наричаме автоматен, когато той е език на автомат.

2. Еквивалентни автомати

Определение 18 . Дадени са автоматите A и B над азбуката Σ . Казваме ,че A и B са еквивалентни ако техните езици съвпадат т.е. L(A) = L(B) .

Теорема за детерминизация

Ако A е краен автомат над Σ ,то съществува тотален детерминиран краен автомат над Σ ,който е еквивалентен на A .

```
// За по-любознателните Доказателство : Алгоритъм за детерминизация на автомат A=(P,Q,S,T) A'=(P(Q),R',\{S\},T') \mu:P(Q)x\Sigma\to P(Q) X\in P(Q) , \sigma\in\Sigma Полагаме \mu(x,\sigma)=\{q'|(q,\sigma,q')\in R, за някое q\in X \} R'=\{(x,\sigma,\mu(x,\sigma))|x\in P(Q),\sigma\in\Sigma\} T'=\{x\in P(Q)|x\cap T\neq\varnothing\} Тогава A' е тотално детерминиран автомат . //
```

3. Недостижими и неразличими (еквивалентни) състояния

Определение 19 . Даден е краен автомат A = (Q,R,S,T) , $q \in Q$.Казваме ,че q е достижимо ,ако $A: s \underset{w}{\longrightarrow} q$, за $s \in S$ u $w \in \Sigma^*$.

Дадена е азбука Σ и тотално детерминиран автомат A=(Q,R,S,T) $\mu_A:Qx\Sigma^*\to Q$ $L(A)=\{w\in\Sigma^*\mid \mu_A(s,w)\in T\}$ Разглеждаме $q\in Q$ $L_q(A)=\{w\in\Sigma^*\mid \mu_A(q,w)\in T\}$ Забележка : $L_s(A)=L(A)$

Определение 20 .
$$q,q \in Q$$
 Казваме , че $q \Leftrightarrow q$ ако $L_q(A) = L_q(A)$

За еквивалентните състояния са в сила релациите :

1) Рефлективност

$$L_q(A) = L_q(A)$$

2) Симетричност

$$L_q(A) = L_{\overline{q}}(A)$$
 и $L_{\overline{q}}(A) = L_q(A)$

3) Транзитивност

$$L_q(A)=L_{\overline{q}}(A)$$
 и $L_{\overline{q}}(A)=L_q$ (A) , то следва $L_q(A)=L_q$ (A)

Свойства:

1) Ако $q \in T, q \notin T \Rightarrow q \neq q$

2) Нека $q \Leftrightarrow \overline{q}$ и е даден автомата А тогава съществуват думи $w_0 \in \Sigma^*$ такива че $\mu_A(q,w_0) \Leftrightarrow \mu_A(\overline{q},w_0)$

4. Минимални автомати

Определение 21 .Минимален автомат наричаме такъв тотално детерминиран автомат, който не е еквивалентен на никой друг тотално детерминиран автомат с по-малко на брой състояния.

Твърдение 1. Всеки автомат е еквивалентен на някой минимален автомат Доказателство: Вземаме всички автомати еквивалентни на дадения. От тях избираме този, който има най —малко състояния.

Твърдение 2.Ако един автомат е минимален ,то той няма недостижими състояния .

Доказателство :Ако има недостижими състояния, то ние ще ги премахнем и ще получим автомат минимален на дадения, следва противоречие.

Твърдение 3. Ако един автомат е минимален, то всеки две еквивалентни негови състояния съвпадат.

Доказателство : $q \neq q_0 \quad q \Leftrightarrow q_0$ следва съществува автомат с 1 по-малко състояния еквивалентен на дадения . Следва противоречие .

Теорема: Нека A е тотален детерминиран автомат, на който всички състояния са достижими и в който всеки две еквивалентни състояния съвпадат. Тогава A е минимален автомат. (Няма доказателство)

Алгоритъм за минимизация на тотално детерминиран автомат

Дадено: A(Q, R,S,T) тот. дет. автомат

Резултат: тот. дет. автомат $A_{\scriptscriptstyle 0}$ минимален за езика $L_{\scriptscriptstyle A}$

Алгоритъм:

- 1) Образуваме разбиването $Q_0 = \{Q_1^0, Q_2^0\}$ на Q където $Q_1^0 = Q \setminus T$, $Q_2^0 = T$. Нека i=0 .
- 2) Нека сме построили разбиването $Q^i = \{Q^i_1, Q^i_2, ..., Q^i_{l_i}\}$ на Q за някое i . Всяко Q^i_j разбиваме на подможествата $Q^{i+1}_{j_1}$, $Q^{i+1}_{j_1+1}$, , $Q^{i+1}_{j_1+r}$ такива ,че елементите на всяко от тях не се проявяват като нееквивалентни с теста на едната буква(*) , за никое $\sigma \in \Sigma$. Обединяваме получените разбивания и получаваме разбиването $Q^{i+1} = \{Q^{i+1}_1, Q^{i+1}_2,, Q^{i+1}_{l_{i+1}}\}$
- 3) Ако Q^i и Q^{i+1} са едно и също разбиване край . В противен случай i=i+1 и преминаваме към 2 .

КРАЙ.

(*)**Тест на едната буква:**Състоянията q_1 и q_2 на тот. детерм. автомат A не са еквивалентни , ако съществува $\sigma \in \Sigma$ такова ,че $\mu(q_1,\sigma)$ и $\mu(q_2,\sigma)$ не са еквивалентни .

Нека $Q^r = Q^{r+1} = Q^{r+2} = \dots$ е последното разбиване получено от алгоритьма . Всяко подмонжество на Q^r се състои само от еквивалентни състояния . Като не е възможно еквивалентни състояния да са в различни множества на рабиването . Построяваме минималния автомат $A_0(Q,R,S,T)$ където $Q_0 = Q^r$. Началното състояние s_0 е това Q_i^r за което $s_0 \in Q_i^r$. Множеството от заключителни състояния $s_0 = \{Q_k^r \mid Q_k^r \subseteq T\}$.

5. Единственост с точност до изоморфизъм на минималния автомат еквивалентен на даден тотален детерминиран автомат

Теорема за единственост с точност до изоморфизъм

Нека A(Q, R,S,T) и A'(Q',R',S',T') са със следните свойства L(A)=L(A')=L , А и A' са минимални , $Q'\subseteq Q$. Тогава съществува (еднозначно) обратимо изображение h на Q върху Q'

- 1) $h:(s_0)=s_0$ ', където $s_0 \in S$
- 2) h:(T) = T'
- 3) $\forall q \in Q$ и $\forall \, \sigma \in \Sigma \,$, $h(\mu(q,\sigma)) = \mu'(h(q),\sigma)$, $\, \mu \,$ функция на

матрицата на преходите

Доказателсвто:

Нека $q \in Q$, А минимален $\Rightarrow q$ достижимо $\Rightarrow q = \mu(s_0, u)$, за $u \in \Sigma^*$.

Нека $h(q) := \mu'(s_0, u)$

Коректност : Ще покажем , че h не зависи от u .

Нека $q = \mu(s_0, v)$, $v \in \Sigma^*$

 $\mu(s_0,u)=\mu(s_0,v) \Rightarrow u$ и v са еквивалентни спрямо L . Но по условие L е език на $A' \Rightarrow \mu'(s'_0,u)=\mu'(s'_0,v)$

Нека $q' \in Q'$ и A' е минимален по условие $\Rightarrow q'$ е достижимо $\Rightarrow q' = \mu'(s_0',u)$ за $u \in \Sigma^*$

Означаваме $q\coloneqq \mu(s_0,u)$, тогава $h(q)=\mu'(s_0,u)=q$ т.е. h е изображение върху . Ще докажем ,че h е обратимо .

Нека $q_1 \neq q_2$, $q_1, q_2 \in Q$

 $q_1 = \mu(s_0, u_1) \text{ M } q_2 = \mu(s_0, u_2) \text{ , } u_1, u_2 \in \Sigma^*$

 q_1 и q_2 не са неразличими $\Rightarrow u_1$ и u_2 не са еквивалентни относно L $h(q_1) = \mu'(\dot{s_0}, u_1)$, $h(q_2) = \mu'(\dot{s_0}, u_2)$, u_1 и u_2 не са еквивалентни $\Rightarrow h(q_1) \neq h(q_2)$ \Rightarrow доказахме биекция .