# Import the dataset and do usual data analysis steps like checking the structure & characteristics of the dataset

## 1.1 Defining Problem Statement and Analysing basic metrics

```
In [50]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('aerofit.csv')
df2 =pd.read_csv('aerofit.csv')
```

#### In [4]:

```
df.head()
```

#### Out[4]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   |
| 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    |
| 2 | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    |
| 3 | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    |
| 4 | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    |

#### In [5]:

```
df.shape
```

#### Out[5]:

(180, 9)

#### In [8]:

df.sample(20)

#### Out[8]:

|     | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |
|-----|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|
| 27  | KP281   | 25  | Female | 14        | Partnered     | 3     | 3       | 48891  | 75    |
| 16  | KP281   | 23  | Female | 14        | Single        | 2     | 3       | 34110  | 103   |
| 126 | KP481   | 34  | Male   | 16        | Partnered     | 3     | 4       | 59124  | 85    |
| 155 | KP781   | 25  | Male   | 18        | Partnered     | 6     | 5       | 75946  | 240   |
| 44  | KP281   | 28  | Female | 14        | Partnered     | 2     | 3       | 46617  | 56    |
| 169 | KP781   | 30  | Male   | 18        | Partnered     | 5     | 5       | 99601  | 150   |
| 120 | KP481   | 33  | Male   | 13        | Partnered     | 4     | 4       | 53439  | 170   |
| 93  | KP481   | 23  | Male   | 16        | Partnered     | 3     | 3       | 45480  | 64    |
| 176 | KP781   | 42  | Male   | 18        | Single        | 5     | 4       | 89641  | 200   |
| 79  | KP281   | 50  | Female | 16        | Partnered     | 3     | 3       | 64809  | 66    |
| 110 | KP481   | 26  | Male   | 16        | Single        | 4     | 3       | 51165  | 106   |
| 31  | KP281   | 25  | Male   | 16        | Single        | 3     | 4       | 40932  | 113   |
| 86  | KP481   | 21  | Male   | 12        | Partnered     | 2     | 2       | 32973  | 53    |
| 137 | KP481   | 40  | Male   | 16        | Partnered     | 3     | 3       | 64809  | 95    |
| 170 | KP781   | 31  | Male   | 16        | Partnered     | 6     | 5       | 89641  | 260   |
| 22  | KP281   | 24  | Female | 16        | Single        | 4     | 3       | 42069  | 94    |
| 68  | KP281   | 38  | Male   | 16        | Partnered     | 3     | 3       | 46617  | 75    |
| 162 | KP781   | 28  | Female | 18        | Partnered     | 6     | 5       | 92131  | 180   |
| 125 | KP481   | 34  | Female | 16        | Partnered     | 4     | 3       | 64809  | 95    |
| 46  | KP281   | 28  | Male   | 14        | Single        | 3     | 3       | 52302  | 103   |

Observation: there are 180 rows 9 columns and it does not seem like there are any nested data

#### In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
    Column
                  Non-Null Count Dtype
#
    -----
                   -----
    Product
                  180 non-null
                                  object
0
1
                  180 non-null
                                  int64
    Age
2
                                  object
    Gender
                  180 non-null
3
    Education
                 180 non-null
                                  int64
4
    MaritalStatus 180 non-null
                                  object
5
    Usage
                  180 non-null
                                  int64
6
    Fitness
                  180 non-null
                                  int64
7
    Income
                 180 non-null
                                  int64
    Miles
                  180 non-null
                                  int64
dtypes: int64(6), object(3)
```

## In [9]:

memory usage: 12.8+ KB

```
df.columns
```

#### Out[9]:

```
Index(['Product', 'Age', 'Gender', 'Education', 'MaritalStatus', 'Usage',
       'Fitness', 'Income', 'Miles'],
      dtype='object')
```

**Observation:** There are 9 columns and and we can see that there are no null values in any of the columns

#### In [11]:

```
df.describe()
```

#### Out[11]:

|       | Age        | Education  | Usage      | Fitness    | Income        | Miles      |
|-------|------------|------------|------------|------------|---------------|------------|
| count | 180.000000 | 180.000000 | 180.000000 | 180.000000 | 180.000000    | 180.000000 |
| mean  | 28.788889  | 15.572222  | 3.455556   | 3.311111   | 53719.577778  | 103.194444 |
| std   | 6.943498   | 1.617055   | 1.084797   | 0.958869   | 16506.684226  | 51.863605  |
| min   | 18.000000  | 12.000000  | 2.000000   | 1.000000   | 29562.000000  | 21.000000  |
| 25%   | 24.000000  | 14.000000  | 3.000000   | 3.000000   | 44058.750000  | 66.000000  |
| 50%   | 26.000000  | 16.000000  | 3.000000   | 3.000000   | 50596.500000  | 94.000000  |
| 75%   | 33.000000  | 16.000000  | 4.000000   | 4.000000   | 58668.000000  | 114.750000 |
| max   | 50.000000  | 21.000000  | 7.000000   | 5.000000   | 104581.000000 | 360.000000 |

Observation: All the relevant count, mean, std, min, 3 quartiles and max for each of the numeric fields. Usage can be treated as a categorical data between 1 and 7. Fitness is a categorical data between 1 to 5. Age, education, Income and miles are more continuous in nature.

#### In [12]:

df.describe(include=object)

#### Out[12]:

|        | Product | Gender | MaritalStatus |
|--------|---------|--------|---------------|
| count  | 180     | 180    | 180           |
| unique | 3       | 2      | 2             |
| top    | KP281   | Male   | Partnered     |
| freq   | 80      | 104    | 107           |

Observation: As can be seen above KP281 is the most popular model . more than 2/3rd (104) of the customers are Male. Most of the customer are Partnered. SO at first glance it seems like Male partnered customer is the most likely to buy a KP281, but that is not the full story.

# 2 Detect Outliers

#### In [13]:

df.head()

#### Out[13]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   |
| 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    |
| 2 | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    |
| 3 | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    |
| 4 | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    |

#### In [14]:

```
sns.boxplot(df['Age'])
```

D:\anaconda\_home\lib\site-packages\seaborn\\_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpreta tion.

warnings.warn(

#### Out[14]:

<AxesSubplot:xlabel='Age'>



Observation: As can be seen values roughly above 46 are outliers

#### In [16]:

```
sns.boxplot(df['Education'])
```

D:\anaconda\_home\lib\site-packages\seaborn\\_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpreta tion.

warnings.warn(

#### Out[16]:

<AxesSubplot:xlabel='Education'>



Observation: Education roughly above 20 years can be considered as outliers

#### In [17]:

```
sns.boxplot(df['Usage'])
```

D:\anaconda\_home\lib\site-packages\seaborn\\_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpreta tion.

warnings.warn(

#### Out[17]:

<AxesSubplot:xlabel='Usage'>



Observation: Usage above 5 can be considered an outlier

#### In [18]:

```
sns.boxplot(df['Fitness'])
```

D:\anaconda\_home\lib\site-packages\seaborn\\_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpreta tion.

warnings.warn(

#### Out[18]:

<AxesSubplot:xlabel='Fitness'>



Observation: Fitness lower than 2 can be considered as outlier

#### In [19]:

```
sns.boxplot(df['Income'])
```

D:\anaconda\_home\lib\site-packages\seaborn\\_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpreta tion.

warnings.warn(

#### Out[19]:

<AxesSubplot:xlabel='Income'>



Observation: Income more than 80000 can be considered as outlier

#### In [20]:

```
sns.boxplot(df['Miles'])
```

D:\anaconda\_home\lib\site-packages\seaborn\\_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpreta tion.

warnings.warn(

#### Out[20]:

<AxesSubplot:xlabel='Miles'>



Observation: Expected miles roughly more than 180 can be considered as outlier

# 3 Check if features like marital status, age have any effect on the product purchased (using countplot, histplots, boxplots etc)

## 3.1 Visual Analysis - Univariate & Bivariate

#### In [3]:

df.head()

#### Out[3]:

|   | Product | Age | Gender | Education | <b>Marita Status</b> | Usage | Fitness | Income | Miles |
|---|---------|-----|--------|-----------|----------------------|-------|---------|--------|-------|
| 0 | KP281   | 18  | Male   | 14        | Single               | 3     | 4       | 29562  | 112   |
| 1 | KP281   | 19  | Male   | 15        | Single               | 2     | 3       | 31836  | 75    |
| 2 | KP281   | 19  | Female | 14        | Partnered            | 4     | 3       | 30699  | 66    |
| 3 | KP281   | 19  | Male   | 12        | Single               | 3     | 3       | 32973  | 85    |
| 4 | KP281   | 20  | Male   | 13        | Partnered            | 4     | 2       | 35247  | 47    |

#### In [76]:

sns.countplot(x ='Product',hue='Gender', data = df)

#### Out[76]:

<AxesSubplot:xlabel='Product', ylabel='count'>



Observation: KP281 and KP481 are almost equaly popular among Male and Female whereas KP781 is significantly more popular among Male customers

#### In [6]:

```
sns.countplot(x ='Product',hue='MaritalStatus', data = df)
```

#### Out[6]:

<AxesSubplot:xlabel='Product', ylabel='count'>



Observation: Partnered people are more likely to buy treadmills across all 3 products. But the difference between single and partnered people keeps decreasing from KP281 to KP481 to KP781

#### In [7]:

```
sns.countplot(x ='Product', hue='Fitness', data = df)
```

#### Out[7]:

<AxesSubplot:xlabel='Product', ylabel='count'>



Observation: People who rate themselves as 2 and 3 are more likely to buy KP281 and KP481 where as people who rate themselves as 4 and 5 are more likely to buy KP781

#### In [78]:

```
plt.figure(figsize=(15,8))
plt.xticks(rotation=45)
sns.histplot(hue ='Product',x="Education", bins=9, data = df, kde=True)
plt.show()
```



Observation: People with 14, 16 or 18 years of education are more likely to buy a treadmill. all three products are popular among people with education 16 or less. whereas people with education level 18 and above almost exclusively buy KP781

#### In [79]:

```
plt.figure(figsize=(15,8))
plt.xticks(rotation=45)
sns.histplot(hue ='Product',x="Age", bins=8, data = df)
plt.show()
```



Observation: Treadmills are mostly popular in the 22 to 34 years of Age range, the likelihood of buying a treadmill decreases with increase in age. KP781 is particularly popular in the 22 to 26 years of age range

#### In [23]:

```
plt.figure(figsize=(15,8))
plt.xticks(rotation=45)
sns.histplot(hue ='Product',x="Income", bins=10, data = df, kde=True)
plt.show()
```



Observation: People with income above 75000 almost exclusively buy KP781. People with income from 30000 to 59000 generally prefer KP281 and KP481. Popularity of treadmill is lowest in the 66000 to 74000 income range

# 4 Representing the marginal probability like - what percent of customers have purchased KP281, KP481, or KP781 in a table

## 4.1 Non-Graphical Analysis: Value counts and unique attributes

#### In [27]:

```
df.head()
```

#### Out[27]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   |
| 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    |
| 2 | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    |
| 3 | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    |
| 4 | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    |

#### In [28]:

```
df['Product'].value_counts()
```

#### Out[28]:

KP281 80 **KP481** 60 KP781 40

Name: Product, dtype: int64

Observation: the entry-level KP281 is the most popular product.

#### In [29]:

```
df['Gender'].value_counts()
```

#### Out[29]:

Male 104 Female 76

Name: Gender, dtype: int64

Observation: Male buy more treadmill

#### In [30]:

```
df['MaritalStatus'].value_counts()
```

#### Out[30]:

Partnered 107 73

Name: MaritalStatus, dtype: int64

Observation: Partnered people are more likely to buy treadmill

```
In [31]:
```

```
df['Fitness'].value_counts()
Out[31]:
3
     97
5
     31
2
     26
4
     24
Name: Fitness, dtype: int64
```

Observation: People rating themselves at fitness 3 is almost 3 time likely to buy a treadmill than the second most common rating of 5

# 5 Check correlation among different factors using heat maps or pair plots

```
In [41]:
```

```
sns.heatmap(df.corr(),annot=True, cmap="crest")
```

#### Out[41]:

<AxesSubplot:>



**Observation:** features that seem like most correlated are:

- 1. Age seems to have the least coorelation with other fields
- 2. Education correlated to Income
- 3. Income and Fitness are very highly correlated to most of the other fields. which means they are key determining factors while making a purchase decision

#### In [70]:

```
sns.scatterplot(x='Income',y='Product', hue="Product",data=df)
```

#### Out[70]:

<AxesSubplot:xlabel='Income', ylabel='Product'>



Observation: People with income above 75000 almost exclusively buy KP781. People with income from 30000 to 59000 generally prefer KP281 and KP481. Popularity of treadmill is lowest in the 66000 to 74000 income range

#### In [71]:

```
sns.scatterplot(x='Age',y='Product', hue="Product",data=df)
```

#### Out[71]:

<AxesSubplot:xlabel='Age', ylabel='Product'>



Observation: Treadmills are mostly popular in the 22 to 34 years of Age range. the likelihood of buying a treadmill decreases with increase in age.

#### In [72]:

```
sns.scatterplot(x='Education',y='Product', hue="Product",data=df)
```

#### Out[72]:

<AxesSubplot:xlabel='Education', ylabel='Product'>



Observation: people with education level 18 and above almost exclusively buy KP781. people with education level lower than 14 prefer either KP281 or KP481

#### In [73]:

```
sns.scatterplot(x='Fitness',y='Product', hue="Product",data=df)
```

#### Out[73]:

<AxesSubplot:xlabel='Fitness', ylabel='Product'>



Observation: People who rate themselves as lower than 3 are more likely to buy KP281 and KP481 where as people who rate themselves as 4 and 5 are more likely to buy KP781

#### In [74]:

```
sns.scatterplot(x='Miles',y='Product', hue="Product",data=df)
```

#### Out[74]:

<AxesSubplot:xlabel='Miles', ylabel='Product'>



Observation: People who intend to run more than 240 Mile almost exclusively buy KP781. Whereas People who want to run less than 100 miles tend to prefer either of KP281 or KP481

#### In [42]:

```
plt.figure(figsize=(8,8))
sns.pairplot(data=df,hue="Product")
```

#### Out[42]:

<seaborn.axisgrid.PairGrid at 0x2063ff25d90>

<Figure size 800x800 with 0 Axes>



Observation:

# Probability- marginal, conditional probability.

## 6.1 analyse data using pandas.crosstab to identify the relation between the different parameters

#### In [44]:

```
pd.crosstab(df['Product'], [df['Gender'], df['MaritalStatus']])
```

#### Out[44]:

| Gender        |         | Female    |        | Male      |        |  |  |
|---------------|---------|-----------|--------|-----------|--------|--|--|
| MaritalStatus |         | Partnered | Single | Partnered | Single |  |  |
|               | Product |           |        |           |        |  |  |
|               | KP281   | 27        | 13     | 21        | 19     |  |  |
|               | KP481   | 15        | 14     | 21        | 10     |  |  |
|               | KP781   | 4         | 3      | 19        | 14     |  |  |

Observation: KP781 is more popular among Male. partnered people are more likely to buy treadmills. partnered female has a higher preference for KP281.

#### In [45]:

```
pd.crosstab(df['Product'], [df['Gender'], df['Education']])
```

#### Out[45]:

| Gender    | ender Female |    |    |    |    | Male |    |    |    |    |    |    |    |    |
|-----------|--------------|----|----|----|----|------|----|----|----|----|----|----|----|----|
| Education | 13           | 14 | 15 | 16 | 18 | 21   | 12 | 13 | 14 | 15 | 16 | 18 | 20 | 21 |
| Product   |              |    |    |    |    |      |    |    |    |    |    |    |    |    |
| KP281     | 0            | 18 | 2  | 19 | 1  | 0    | 2  | 3  | 12 | 2  | 20 | 1  | 0  | 0  |
| KP481     | 1            | 12 | 0  | 14 | 2  | 0    | 1  | 1  | 11 | 1  | 17 | 0  | 0  | 0  |
| KP781     | 0            | 0  | 0  | 2  | 4  | 1    | 0  | 0  | 2  | 0  | 13 | 15 | 1  | 2  |

Observation: KP281 and KP481 is mostly popular among male and female Education of 14 and 16. KP 781 is mostly popular among Male in the education of 16 and 18. Male 16 year Education in general has the highest chance of buying a treadmill across all 3 products.

```
In [46]:
```

```
pd.crosstab(df['Product'], [df['Gender'], df['Fitness']])
```

#### Out[46]:

| Gender  | Fe | male |    | Male |   |   |   |    |   |    |
|---------|----|------|----|------|---|---|---|----|---|----|
| Fitness | 1  | 2    | 3  | 4    | 5 | 1 | 2 | 3  | 4 | 5  |
| Product |    |      |    |      |   |   |   |    |   |    |
| KP281   | 0  | 10   | 26 | 3    | 1 | 1 | 4 | 28 | 6 | 1  |
| KP481   | 1  | 6    | 18 | 4    | 0 | 0 | 6 | 21 | 4 | 0  |
| KP781   | Λ  | Ω    | 1  | 1    | 5 | Λ | Λ | 3  | 6 | 24 |

Observation: Male and female with a fitness score of 3 is more likely to buy KP281 or KP481/ Where as male of female with fitness rating 5 is more likely to buy KP781

```
In [80]:
```

```
pd.crosstab(df['Product'], [df['Gender'], df['Usage']])
```

#### Out[80]:

| Gender  | Fer | Female |   |   |   | Male |    |    |   |   |   |
|---------|-----|--------|---|---|---|------|----|----|---|---|---|
| Usage   | 2   | 3      | 4 | 5 | 6 | 2    | 3  | 4  | 5 | 6 | 7 |
| Product |     |        |   |   |   |      |    |    |   |   |   |
| KP281   | 13  | 19     | 7 | 1 | 0 | 6    | 18 | 15 | 1 | 0 | 0 |
| KP481   | 7   | 14     | 5 | 3 | 0 | 7    | 17 | 7  | 0 | 0 | 0 |
| KP781   | 0   | 0      | 2 | 3 | 2 | 0    | 1  | 16 | 9 | 5 | 2 |

Observation: Female with usage 2 and 3 is more likely to buy KP281 and KP 481. Male with usage 3 tend to buy KP281 or KP481 . Where as KP781 is preferred by Male with usage 4 or 5

```
In [49]:
```

pd.crosstab(df['Product'], [df['Gender'], df['MaritalStatus'],df['Fitness'],df['Educati

#### Out[49]:

|        |               |         | Product   | KP281 | KP481 | KP781 |
|--------|---------------|---------|-----------|-------|-------|-------|
| Gender | MaritalStatus | Fitness | Education |       |       |       |
| Female | Partnered     | 2       | 14        | 4     | 1     | 0     |
|        |               |         | 15        | 1     | 0     | 0     |
|        |               |         | 16        | 2     | 1     | 0     |
|        |               | 3       | 14        | 9     | 4     | 0     |
|        |               |         | 15        | 1     | 0     | 0     |
|        |               |         | 16        | 8     | 8     | 0     |
|        |               | 4       | 14        | 1     | 1     | 0     |
|        |               | 5       | 16        | 1     | 0     | 1     |
|        |               |         | 18        | 0     | 0     | 3     |
|        | Single        | 1       | 18        | 0     | 1     | 0     |
|        |               | 2       | 14        | 1     | 3     | 0     |
|        |               |         | 16        | 2     | 1     | 0     |
|        |               | 3       | 13        | 0     | 1     | 0     |
|        |               |         | 14        | 2     | 2     | 0     |
|        |               |         | 16        | 5     | 3     | 0     |
|        |               |         | 18        | 1     | 0     | 0     |
|        |               |         | 21        | 0     | 0     | 1     |
|        |               | 4       | 14        | 1     | 1     | 0     |
|        |               |         | 16        | 1     | 1     | 0     |
|        |               |         | 18        | 0     | 1     | 1     |
|        |               | 5       | 16        | 0     | 0     | 1     |

|        |               |         | Product   | KP281 | KP481 | KP781 |
|--------|---------------|---------|-----------|-------|-------|-------|
| Gender | MaritalStatus | Fitness | Education |       |       |       |
| Male   | Partnered     | 1       | 16        | 1     | 0     | 0     |
|        |               | 2       | 12        | 0     | 1     | 0     |
|        |               |         | 13        | 2     | 0     | 0     |
|        |               |         | 14        | 1     | 0     | 0     |
|        |               |         | 16        | 1     | 4     | 0     |
|        |               | 3       | 14        | 2     | 3     | 0     |
|        |               |         | 16        | 10    | 10    | 0     |
|        |               |         | 18        | 1     | 0     | 1     |
|        |               | 4       | 13        | 0     | 1     | 0     |
|        |               |         | 14        | 1     | 1     | 0     |
|        |               |         | 16        | 2     | 1     | 2     |
|        |               |         | 18        | 0     | 0     | 2     |
|        |               |         | 21        | 0     | 0     | 1     |
|        |               | 5       | 14        | 0     | 0     | 1     |

Observation: Male, partnered, 3 fitnessescore, and 16 year education AND Female, partnered, 3 fitness score, and 16 year education are more likely to buy a KP281 or KP481 treadmill. where as Male, Partnered with fitness rating 4 or 5 is more likely to buy KP781.

Single

# 6.2 With all the above steps you can answer questions like: What is the probability of a male customer buying a KP781 treadmill?

|           |   | 14 | 7 | 5 | 1 |  |
|-----------|---|----|---|---|---|--|
| In [43]:  |   | 15 | 1 | 1 | 0 |  |
| df.head() |   | 16 | 4 | 2 | 0 |  |
| ,         |   | 18 | 0 | 0 | 1 |  |
| Out[43]:  | 4 | 14 | 1 | 1 | 0 |  |

|   | Product | Age | Gender | Educa | tion | 15<br>Marit | alStatus      | Usage | Fitness | Income | Miles |
|---|---------|-----|--------|-------|------|-------------|---------------|-------|---------|--------|-------|
| 0 | KP281   | 18  | Male   |       | 14   | 16          | 1<br>Single   | 0     | 0 4     | 29562  | 112   |
| 1 | KP281   | 19  | Male   |       | 15   | 18          | 0<br>Single   | 02    | 1 3     | 31836  | 75    |
| 2 | KP281   | 19  | Female | 5     | 14   | <b>16</b> P | 1<br>artnered | 04    | 7 3     | 30699  | 66    |
| 3 | KP281   | 19  | Male   |       | 12   | 18          | 0<br>Single   | 03    | 3 3     | 32973  | 85    |
| 4 | KP281   | 20  | Male   |       | 13   | <b>21</b>   | 0<br>artnered | 04    | 1 2     | 35247  | 47    |

## 6.2.1 Marginal probability

```
In [51]:
```

```
df.groupby('Gender').size().div(len(df))
```

#### Out[51]:

Gender

Female 0.422222 Male 0.577778 dtype: float64

#### In [60]:

```
bins = [18, 20, 25, 30, 35, 40, 46] #removed outlier 50
groups = df.groupby(['Product', pd.cut(df['Age'], bins)])
groups.size().unstack()
```

#### Out[60]:

| Age     | (18, 20] | (20, 25] | (25, 30] | (30, 35] | (35, 40] | (40, 46] |
|---------|----------|----------|----------|----------|----------|----------|
| Product |          |          |          |          |          |          |
| KP281   | 5        | 28       | 21       | 11       | 8        | 4        |
| KP481   | 4        | 24       | 7        | 17       | 6        | 1        |
| KP781   | 0        | 17       | 13       | 4        | 2        | 2        |

#### In [59]:

```
groups.size().unstack().div(len(df))
```

#### Out[59]:

| Age     | (18, 20] | (20, 25] | (25, 30] | (30, 35] | (35, 40] | (40, 46] |
|---------|----------|----------|----------|----------|----------|----------|
| Product |          |          |          |          |          |          |
| KP281   | 0.027778 | 0.155556 | 0.116667 | 0.061111 | 0.044444 | 0.022222 |
| KP481   | 0.022222 | 0.133333 | 0.038889 | 0.094444 | 0.033333 | 0.005556 |
| KP781   | 0.000000 | 0.094444 | 0.072222 | 0.022222 | 0.011111 | 0.011111 |

Observation: Male have a higher probability to buy a treadmill. KP281 and KP781 is most popular in the age group of 20 to 30. Where as KP481 is popular in the age group 20 to 25 and 30 to 35.

#### In [57]:

```
df.groupby('MaritalStatus').size().div(len(df))
```

#### Out[57]:

MaritalStatus

Partnered 0.594444 Single 0.405556

dtype: float64

Observation: Partnered people has almost 60 % chance to buy a treadmill.

### In [63]:

```
bins2 =[30000, 40000,50000,60000,70000, 80000]
groups2 = df.groupby(['Product', pd.cut(df['Income'], bins2)])
groups2.size().unstack()
```

#### Out[63]:

| Incom  | e (30000, 40000] | (40000, 50000] | (50000, 60000] | (60000, 70000] | (70000, 80000] |
|--------|------------------|----------------|----------------|----------------|----------------|
| Produc | et               |                |                |                |                |
| KP28   | <b>1</b> 22      | 25             | 26             | 6              | 0              |
| KP48   | <b>1</b> 9       | 21             | 23             | 7              | 0              |
| KP78   | 1 0              | 5              | 6              | 6              | 4              |

#### In [64]:

```
groups2.size().unstack().div(len(df))
```

#### Out[64]:

| Income  | (30000, 40000] | (40000, 50000] | (50000, 60000] | (60000, 70000] | (70000, 80000] |
|---------|----------------|----------------|----------------|----------------|----------------|
| Product |                |                |                |                |                |
| KP281   | 0.122222       | 0.138889       | 0.144444       | 0.033333       | 0.000000       |
| KP481   | 0.050000       | 0.116667       | 0.127778       | 0.038889       | 0.000000       |
| KP781   | 0.000000       | 0.027778       | 0.033333       | 0.033333       | 0.022222       |

Observation: people with income between 30k and 60k tend to buy KP281 or KP481. Where as people with income more than 70k almost exclusively buy KP781

## 6.2.2 Conditional Probability:

```
In [66]:
```

```
pd.crosstab(df['Product'], df['Gender'], margins=True, normalize="columns")
```

#### Out[66]:

| Gender |         | Female   | Male     | All      |  |
|--------|---------|----------|----------|----------|--|
|        | Product |          |          |          |  |
|        | KP281   | 0.526316 | 0.384615 | 0.444444 |  |
|        | KP481   | 0.381579 | 0.298077 | 0.333333 |  |
|        | KP781   | 0.092105 | 0.317308 | 0.222222 |  |

#### Observation:

#### In [67]:

```
pd.crosstab(df['Product'], df['MaritalStatus'], margins=True, normalize="columns")
```

#### Out[67]:

| MaritalStatus | Partnered | Single   | All      |  |
|---------------|-----------|----------|----------|--|
| Product       |           |          |          |  |
| KP281         | 0.448598  | 0.438356 | 0.444444 |  |
| KP481         | 0.336449  | 0.328767 | 0.333333 |  |
| KP781         | 0 214953  | 0 232877 | ი 222222 |  |

#### Observation:

#### In [68]:

```
pd.crosstab(df['Product'], df['Fitness'], margins=True, normalize="columns")
```

#### Out[68]:

| Fitness | 1   | 2        | 3        | 4        | 5        | All      |
|---------|-----|----------|----------|----------|----------|----------|
| Product |     |          |          |          |          |          |
| KP281   | 0.5 | 0.538462 | 0.556701 | 0.375000 | 0.064516 | 0.444444 |
| KP481   | 0.5 | 0.461538 | 0.402062 | 0.333333 | 0.000000 | 0.333333 |
| KP781   | 0.0 | 0.000000 | 0.041237 | 0.291667 | 0.935484 | 0.222222 |

Observation: people with fitness rating 1 or 2 never buys KP781 . whereas people with fitness rating 5 never buys KP481

# 7 Customer Profiling - Categorization of users.

### 7.1 KP281

#### **Customer Profile:**

1. Age: 20 to 30

2. Gender: Female / Male 3. Education: 14 to 16 4. Marital Status: Partnered

5. Usage: 2 to 3 6. Fitness: 2/3

7. Income: 30000 to 59000 8. Miles: less than 150

## 7.2 KP481

#### **Customer Profile:**

1. Age: 20 to 25 or 30 to 35 2. Gender: Male / female 3. Education: 14 to 16 4. Marital Status: Partnered

5. Usage : 2 to 3 6. Fitness: 2/3

7. Income: 30000 to 59000 8. Miles: less than 150

## 7.3 KP781

#### **Customer Profile:**

1. Age: 22 to 26 2. Gender: Male

3. Education: greater than 16 4. Marital Status: Partnered

5. Usage: 4 to 5 6. Fitness: 4/5

7. Income: greater than 75000 8. Miles: greater than 200

## 8 Some recommendations and actionable insights, based on the inferences

## 8.1 Business Insights based on Non-Graphical and Visual **Analysis**

All the insights and observations are mentioned next to each cell after both graphical and nongraphical analysis is done. Marked as "Observation"

## 8.2 Recommendations

- 1. KP281 and KP481 has overlapping customer profile. SO they can be either clubbed into a single product or changes shoul be made to make them more different to appeal to different demographic
- 2. Single people are less likely to buy treadmills over all. so more effort needs to go in to attract more single customers.
- 3. People with education lower than 14 does not buy treadmills . So the efforts needs to be made to make the product more accessible to this demographic.
- 4. Lower priced entry level model needed for income group less than 30k