Physics 370 Homework #12 $^{5 \text{ problems}}$ Solutions

> 1.

From the experimental evidence that the force between nucleons has a range of about 1 fm, obtain a rough value (in $\rm MeV/c^2$) for the mass of the particle exchanged to convey the force, the pion.

Answer:_____

The range of an exchange particle is roughly $\Delta x=\frac{\hbar}{mc}$ and so it has mass $m=\frac{\hbar}{c\Delta x}$ and rest energy

$$mc^2 = \hbar c\Delta x = (6.58 \times 10^{-16} \,\text{eV} \cdot \text{s})(3 \times 10^8 \,\text{m/s})(10^{-15} \,\text{m}) = 2 \times 10^8 \,\text{eV} = 200 \,\text{MeV}$$

Thus one would expect the pion to have a mass of $200 \,\mathrm{MeV}/c^2$. This is about 40% larger than the measured value of $135\text{--}140 \,\mathrm{MeV}/c^2$, but certainly the right order of magnitude.

> 2.

- (a) Show that $\Psi_1(x,t) = Ae^{ikx-i\omega t}$ is a solution of both the Klein-Gordon and the Schrodinger equation.
- (b) Show that $\Psi_2(x,t) = Ae^{ikx}e^{i\omega t}$ is a solution of the Klein-Gordon but not of the Schrodinger equation.
- (c) Compare the time dependence of $|\Psi|^2$ for Ψ_1 and $\Psi = \Psi_1 + \Psi_2$.

Answer:

Let's do each equation separately. (a) The Schrodinger equation is

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = i\hbar\frac{\partial \Psi(x,t)}{\partial t}$$

Notice that $\frac{\partial \Psi_1}{\partial x}=ik\Psi_1$ and $\frac{\partial \Psi_1}{\partial t}=-i\omega\Psi_1.$ If we plug $\Psi_1(x,t)$ into the equation,

$$-\frac{\hbar^2}{2m} \left(-k^2 \Psi_1 \right) + V(x) \Psi_1 = i\hbar (-i\omega \Psi_1)$$

$$\implies \frac{\hbar^2 k^2}{2m} + V(x) = \hbar \omega$$

$$\implies \frac{p^2}{2m} + V(x) = E$$

which gives the correct energy relationship.

(b) Notice that $\frac{\partial \Psi_2}{\partial x} = ik\Psi_2$ and $\frac{\partial \Psi_2}{\partial t} = i\omega\Psi_2$ If we replace ω with $-\omega$, then $\frac{\hbar^2 k^2}{2m} + V(x) = -\hbar\omega$ or $\frac{p^2}{2m} + V(x) = -E$ which is not correct.

Now the Klein-Gordon equation is

$$-c^{2}\hbar^{2}\frac{\partial^{2}\Psi(x,t)}{\partial x^{2}}+m^{2}c^{4}\Psi(x,t)=-\hbar^{2}\frac{\partial^{2}\Psi(x,t)}{\partial t^{2}}$$

(a) Substituting in Ψ_1 , then

$$-c^{2}\hbar^{2}\left(-k^{2}\Psi_{2}\right) + m^{2}c^{4}\Psi_{2} = -\hbar^{2}\left(-\omega^{2}\Psi_{2}\right)$$

$$\implies \hbar^{2}k^{2}c^{2} + m^{2}c^{4} = \hbar^{2}\omega^{2}$$

$$\implies p^{2}c^{2} + m^{2}c^{4} = E^{2}$$

which is true.

- **(b)** If we replace ω with $-\omega$, the result is the same.
- (c) For definite-energy solutions to the Schrodinger equation, we expect $|\Psi|^2$ to remain constant. $|\Psi_1|$ is such a solution, and $|\Psi_1|^2 = |Ae^{ikx}e^{-i\omega t}|^2 = |A|^2$ and so it does. However

$$|\Psi_1 + \Psi_2| = |Ae^{ikx} \left(e^{i\omega t} + e^{-i\omega t} \right)|^2 = |2A\cos\omega t|^2$$

which is time-dependent. That's OK, because $\Psi_1 + \Psi_2$ is not a solution to the Schrodinger equation. However, it is a solution to the Klein-Gordon equation, and so we see that $|\Psi|^2$ does not stay constant, in general, for definite-energy solutions to the Klein-Gordon equation.

Trying to pull two quarks apart would produce more quarks in groups, or hadrons. Suppose that when the separation reaches 1 fm (the radius of a nucleon), the lightest hadron (a π^0) is created. How much force is involved?

Answer:_____

To create a π^0 particle requires $135\,{
m MeV}$ of energy. That energy is being supplied by the work $W=F_{ava}d$ done by the force F_{ava} applied to separate the charges. Thus

$$F_{avg} = \frac{W}{d} = \frac{135 \times 10^6 \,\text{eV}}{10^{-15} \,\text{m}} \times \frac{1.6 \times 10^{-19} \,\text{J}}{1 \,\text{eV}} = \boxed{21,600 \,\text{N}}$$

> 3.

This is a staggering force, equal to the force of gravity on a 2-1/2 ton object. By comparison, the electromagnetic force between two up quarks at that distance is

$$F = (9 \times 10^9) \frac{(2/3)^2 (1.6 \times 10^{-19} \,\mathrm{C})^2}{(10^{-15} \,\mathrm{m})^2} = 100 \,\mathrm{N}$$

, two hundred times smaller.

> 4.

Draw a Feynman diagram for the interaction

$$\tau^+ \to e^+ + \nu_e + \bar{\nu_\tau}$$

Prove that the interaction satisfies charge, energy, strangeness, lepton and baryon conservation.

Answer:

This is similar to the Feynman diagram in Figure 12.12. There is a change in particle type here, which means that this is due to a weak interaction. In the figure in the book, we see that a W boson can turn into a lepton and its corresponding antineutrino, and it can work in reverse, too. Thus, to change an antitauon into a positron, we could have something as shown in (a) here. It must be a W^+ boson to preserve charge conservation.

This isn't quite the reaction we want, but in a Feynman diagram you can always replace a particle with its antiparticle going backwards in time. If we do that with the tau neutrino, we get the Feynman diagram in (b), which is correct.

- Charge: On the left side is the tauon with charge +e. On the right side is the positron (charge +e), and two neutral neutrinos. Thus charge is conserved.
- We must confirm that the rest energy does not increase. The rest energy of the tauon is $1780\,\mathrm{MeV}$. The mass of the electron is $0.511\,\mathrm{MeV}$, the electron neutrino has mass no larger than $10^{-5}\,\mathrm{MeV}$, and the mass of the tau antineutrino is no larger than $20\,\mathrm{MeV}$, so at most the right hand side has a rest energy is $20.5\,\mathrm{MeV} < 1780\,\mathrm{MeV}$. Clearly most of the tauon's energy is converted into kinetic energy.
- None of these particles have strangeness, so strangeness is conserved.

- ullet e^+ has electron lepton number +1, ν_e -1, and the tau leptons have electron lepton number 0. Therefore, 0=+1-1+0 which is true. Meanwhile, the antitauon and the tau antineutrino have tau lepton number -1, and so -1=0+0-1, also true.
- All of these particles have baryon number 0, so baryon number is conserved.

> 5.

Show that the presence of a positive cosmological constant Ω_{Λ} in the Friedmann equation must, as R becomes very large, lead to an exponential expansion of the universe.

Answer:____

The Friedmann equation is

$$\frac{1}{R^2} \left(\frac{dR}{dt} \right)^2 = \frac{\Omega_M}{R^3} + \Omega_{\Lambda} - \frac{K'}{R^2}$$

where ${\cal R}$ is the measure of the Universe's size. We can multiply through by ${\cal R}^2$ to get

$$\left(\frac{dR}{dt}\right)^2 = \frac{\Omega_M}{R} + \Omega_{\Lambda}R^2 - K'$$

If R is very large, then $\Omega_{\Lambda}R^2$ dominates the other two terms on the right, and we have

$$\left(\frac{dR}{dt}\right)^2 \approx \Omega_{\Lambda} R^2$$

$$\implies \frac{dR}{dt} \approx \pm \sqrt{\Omega_{\Lambda}} R$$

$$\implies R(t) \sim e^{\pm \sqrt{\Omega_{\Lambda}} t}$$

If R starts off at 1 at the present time and is later very large, it's rather unlikely that it's in exponential decay, and so we surmise that we have exponential growth instead.