Data-Driven Intelligent Systems

Lecture 24
Text Mining II/II

http://www.informatik.uni-hamburg.de/WTM/

Overview

- Information retrieval
 - Stop words; Stemming
 - Term-document matrix
 - Latent semantic indexing
 - Word2Vec
- Text classification
- Ontologies

Similarity-based Retrieval in Text Data

- Finds similar documents based on a set of common keywords
- Answer should be based on the degree of relevance based on the nearness of the keywords, relative frequency of the keywords, etc.

Stop list

- Set of words that are deemed *irrelevant*, even though they may appear frequently
- E.g., a, the, of, for, to, with, etc.
- Stop lists may vary when document set varies

Stop Words

- Many of the most frequently used words in English are almost worthless in retrieval and text mining – these words are called stop words
 - the, of, and, to,
 - Typically up to about 400 to 500 such words
 - For an application or domain, specific stop words list may be constructed
- Why do we need to remove stop words?
 - Reduce data file size
 - stop words account for 20-30% of total word counts
 - Improve efficiency
 - stop words have a large number of hits
 - stop words are not useful for searching or text mining

Stemming

- Several words are syntactic variants of each other since they share a common word stem
- Techniques are used to find the root/stem of a word:
 - E.g.,
 - user engineering
 - users engineered
 - used engineer
 - using engineers
 - stem: use engineer
- This improves effectiveness of retrieval and text mining
 - match similar words
 - reduce indexing size
 - combing words with same roots may reduce indexing size as much as 40-50%.

Basic stemming algorithm example: Porter Algorithm

remove ending

- if a word ends with a consonant other than s, followed by an s, then delete s.
- if a word ends in es, drop the s.
- if a word ends in ing, delete the ing unless the remaining word consists only of one letter or of th.
- If a word ends with ed, preceded by a consonant, delete the ed unless this leaves only a single letter.
- •

transform words

 if a word ends with "ies" but not "eies" or "aies" then "ies --> y."

Better than Stemmers: Lemmatizers

- Find the base of a word considering the intended meaning
 - E.g. ``saw´´
 → see (verb)
 → saw (noun)
- Requires context, e.g. by using a POS tagger
- Open area of research
- NLTK Python toolkit has both, stemmer and lemmatizer http://www.nltk.org

Overview

- Information retrieval
 - Stop words; Stemming
 - Term-document matrix
 - Latent semantic indexing
 - Word2Vec
- Text classification
- Ontologies

Term-Document Matrix

- Most common form of representation in text mining is the term-document matrix
 - Term: typically a single word, but could be a word phrase like "text mining"
 - Document: a generic term meaning a collection of text to be retrieved
 - Can be large terms are often 50k or more, documents can be in the billions (www)
 - Can be binary or use counts

Term-Document Matrix Example (1)

Example: 10 documents: 6 terms

	Database	SQL	Index	Regression	Likelihood	linear
D1	24	21	9	0	0	3
D2	32	10	5	0	3	0
D3	12	16	5	0	0	0
D4	6	7	2	0	0	0
D5	43	31	20	0	3	0
D6	2	0	0	18	7	6
D7	0	0	1	32	12	0
D8	3	0	0	22	4	4
D9	1	0	0	34	27	25
D10	6	0	0	17	4	23

Each document is just a vector of terms

$$D_i = (d_{i1}, d_{i2}, ..., d_{it})$$

sometimes boolean

Distances in TD Matrices

- Given a term doc matrix representation
- Now we can define distances between documents D_i and D_j
- Elements of matrix can be {0,1} or term frequencies or normalized weights like TF-IDF
- Can use Euclidean distance or cosine similarity
- Cosine similarity proven to work well:

$$S_{c}(D_{i}, D_{j}) = \frac{\sum_{k=1}^{T} d_{ik} d_{jk}}{\sqrt{\sum_{k=1}^{T} d_{ik}^{2} \sum_{k=1}^{T} d_{jk}^{2}}} = \frac{D_{i} \cdot D_{j}}{|D_{i}| |D_{j}|}$$

$$= \cos(\theta)$$

- if docs are the same, $S_c = 1$
- if nothing in common, $S_c=0$

angle between

 D_i and D_i

Term / Document Matrix Example (2)

Example: 10 documents: 6 terms

	Database	SQL	Index	Regression	Likelihood	linear
D1	24	21	9	0	0	3
D2	32	10	5	0	3	0
D3	12	16	5	0	0	0
D4	6	7	2	0	0	0
D5	43	31	20	0	3	0
D6	2	0	0	18	7	6
D7	0	0	1	32	12	0
D8	3	0	0	22	4	4
D9	1	0	0	34	27	25
D10	6	0	0	17	4	23

- Calculate cosine similarities / Euclidean distances
- What would you want these to look like?

Visualisation of Document distance

Images plot pairwise distances between documents

white: small distance dark: large distance

R function: 'image'

Overview

- Information retrieval
 - Stop words; Stemming
 - Term-document matrix
 - Latent semantic indexing
 - Word2Vec
- Text classification
- Ontologies

Towards Semantic Information Retrieval

- A query is a representation of the user's information needs
 - Normally a list of words.
- Once we have a TD matrix, queries can be represented as a vector in the same space
 - "Database Index" = (1,0,1,0,0,0)
- Query can be a simple question in natural language

- Calculate cosine similarity between query and documents
 - Returns a ranked vector of documents

Towards Semantic Information Retrieval

- Problem 1: similar queries can be posed in many ways
 - Synonymy: car or automobile; beetroot or beet; ...
 - → documents with either term are relevant
- Problem 2: semantics of query might remain unclear
 - Polysemy: crane (bird or construction equipment)
- Possibilities to address in particular problem 1:
 - Synonym lists or Thesauri ← imperfect and difficult to maintain
 - Latent Semantic Indexing (LSI), aka. Latent Semantic Analysis
 - tries to extract the latent semantics in the documents
 - Word2Vec, vector representation of words
 - represents semantics of words
- Search what I meant, not what I said!

Latent Semantic Indexing

- The TD matrix D has $N \times T$ entries, with T = #terms
- T is too large and should be reflected in k<<T typical "topics"</p>
- Use singular value decomposition (SVD) to find k topics
 - ← generalization of principal component analysis (PCA)
 - Create a square matrix $D^T \cdot D$ of size $T \times T$
 - It reflects the correlations between terms over the documents
 - (like the affinity matrix A (normalized as L) in spectral clustering)
 - The first k principal components are k orthogonal basis vectors, which explain most variance in the data
 - Reduce data to an N × k matrix, with little information loss
 - (like the eigenvector matrix X in spectral clustering)
- Each direction is a linear combination of the input terms, and defines a cluster of "topics" in the data

Ex.: Eigenvectors to a block-diagonal Matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $D^T \cdot D$, reflects correlations between terms

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Eigenvectors

(get stretched, but not rotated, when multiplied with matrix)

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

k eigenvectors/directions, each being a linear combination of the input terms, forming "clusters" of terms into topics

- T = 20 terms
- k= 5 PCs / Topics

LSI Example

• T = 20 terms

LSI Example

• k=5 PCs / Topics

LSI Example

Previous example: 10 documents: 6 terms

- Here, top 2 PC
 - 1. docs 1,2,3,4,5
 - 2. docs 6,7,8,9,10

LSI Example

Previous example: 10 documents: 6 terms

- Here, top 2 PC
 - 1. docs 1,2,3,4,5
 - 2. docs 6,7,8,9,10
- Two new documents, one with frequent term "SQL", another with frequent term "Databases"
- Even if they have no phrases directly in common, they are close in LSI space

Overview

- Information retrieval
 - Stop words; Stemming
 - Term-document matrix
 - Latent semantic indexing
 - Word2Vec
- Text classification
- Ontologies

Word2vec

Another approach to capture the *meaning* of words

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key ideas:
 - Predict surrounding words of every word
 - Using a multi-layer perceptron (MLP) with 1 hidden layer
 - Small number of *linear* hidden units → compression
 - Large-scale training
 - involving all domains / topics together

Word2vec - Continuous Bag-of-Words

- E.g. "The cat sat on floor"
 - window size = 2

Word2vec - CBOW

Word2vec - CBOW

linear hidden units

Word2vec – Some Interesting Results

 Word analogies – test for linear relationships (Mikolov, 2014)

Word2vec - links

- Implementations (google original and Python/gensim)
 - https://code.google.com/archive/p/word2vec/
 - https://rare-technologies.com/deep-learning-with-word2vecand-gensim/
- Pretrained word vectors
 - Trained on 100 billion words from a Google News dataset
 - 3 million words, 300 features (* 4bytes/feature = 3.35 GB)
 - http://mccormickml.com/2016/04/12/googles-pretrainedword2vec-model-in-python/

Applications of Word Vectors

- Word Similarity
 - Synonyms (plane, aircraft)
 - Stemming, inflections/tense forms (thought -> think)
 - Clustering
- Machine translation
- POS tagging and named entity recognition
- Relation extraction
- Sentiment analysis (e.g. words nearby "happy" or "sad")

Overview

- Information retrieval
 - Stop words; Stemming
 - Term-document matrix
 - Latent semantic indexing
 - Word2Vec
- Text classification
 - Ontologies

Manual Knowledge Acquisition

- Traditional rationalist approaches to language processing require human specialists to specify and formalize the required knowledge.
- Rules in language have numerous exceptions and irregularities.
 - "All grammars leak." Edward Sapir (1921)
- Manually developed systems were expensive to develop and their abilities were limited and "brittle" (not robust).

Automatic Learning Approach

- Use machine learning methods to automatically acquire the required knowledge from appropriately annotated text corpora.
- "corpus based", "statistical", or "empirical" approach
- Statistical learning methods widely used in NLP and Speech processing

Learning Approach

Advantages of the Learning Approach

- Large amounts of electronic text are now available
- Annotating/labeling corpora is easier and requires less expertise than manual knowledge engineering
- Learning algorithms today can handle large amounts of data and acquire accurate probabilistic knowledge
- This knowledge allows robust processing
 - handles linguistic regularities as well as exceptions

Text Classification

- Motivation: automatic classification of text documents
 - Web pages, e-mails, corporate intranets, etc.
- Classification Process
 - Data preprocessing ← text-specific
 - Define training- and validation set
 - Create the classification model / algorithm
 - Validate the model
 - Classify new text documents

Text Classification Algorithms

- K-Nearest Neighbors
- Decision Trees
- Boosting
- Naïve Bayes
- Support Vector Machines
- Neural Networks

Text Classification with deep CNN

- Preprocessing:
 - word2vec representation of words
 - bring all documents to same length (cutting or 0-padding)
- Model:
 - 1D-convolution .. pooling .. softmax on output (classes)
 - Observe training and validation error; then classify new docs
- Lift limitation of same-length texts:
 - Recurrent Neural Networks (hardly "understand" text)
 - Hierarchical Attention Networks (require a lot of training data)

Text Classification with Tools

Text Classification Software

Weka: http://www.cs.waikato.ac.nz/ml/weka/

Machine Learning Group at University of Waikato.

Project	Software	Book	Publications	People	Related

Home

Getting started Requirements Download Documentation FAQ Citing Weka

Weka 3: Data Mining Software in Java

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

Weka is open source software issued under the GNU General Public License.

- Natural Language Toolkit, NLTK https://www.nltk.org
- spaCy (written in Python and Cython)
 https://spacy.io

Overview

- Information retrieval
 - Stop words; Stemming
 - Term-document matrix
 - Latent semantic indexing
 - Word2Vec
- Text classification
- Ontologies

Ontologies

- An ontology defines types, properties and interrelationships of entities
- Can be represented as a semantic network
- Early forms:
 - a thesaurus groups words according to similarity of meaning
 - a taxonomy is organized w.r.t. hierarchical relations
- Examples and extensions:
 - ConceptNet, WordNet, HowNet, Groningen Meaning Bank, BabelNet, CyC, Watson
 - DBpedia
 - data from Wikipedia documents
 - WikiData
 - metadata to supplement Wikipedia docs

ConceptNet – an Ontology with Rich Semantic Relationships

Play around:

http://conceptnet5.media.mit.edu/data/5.4/c/en/toast

WordNet Lexicon

An extensive *lexical network* for the English language

- Contains over 138,838 words.
- Several graphs, one for each part-of-speech.
- Synsets (sets of cognitive synonyms), each defining a semantic sense.
- Relationship information (antonym, hyponym, ...)
- Encodes some of the lexicon that humans carry with them when interpreting text.

WordNet Lexicon

- Nouns:
 - > 90,000 forms
 - 116,000 senses

Relations ———

_	_	
hypernym	breakfast -> meal	
hyponym	meal -> lunch	
has-member	faculty -> professor	
member-of	copilot -> crew	
has-part	table -> leg	
part-of	course -> meal	
antonym	leader -> follower	

- Verbs
 - >10,000 forms
 - 20,000 senses

Hypernym	fly-> travel	
Troponym	walk -> stroll	
Entails	snore -> sleep	
Antonym	increase -> decrease	

BabelNet – a new Multilingual Ontology

A very large multilingual ontology with 5.5 millions of concepts • A wide-coverage "encyclopedic dictionary" • Obtained from the automatic integration of WordNet and Wikipedia • Enriched with automatic translations of its concepts • Connected to the Linguistic Linked Open Data cloud!

http://www.babelnet.org/

CyC

- CyC: Knowledge base and ontology framework
- Q&A system in the 80s; can reason things never directly told
- Built originally on first-order predicate logic

17,000 types of relations

 7,000,000 assertions relating these terms

- opencyc.org

Domain-Specific Knowledge

(e.g., Healthcare, Computer Security, Command and Control, Mortgage Banking, ...)

Domain-Specific Facts and Data

Watson and the DeepQA Text Mining project

Watson: computer system to compete in real time with expert humans in the <u>Jeopardy</u> Quiz

- Content acquisition: Domain analysis, automatic corpus expansion, leveraging of the content
- Question analysis: Parsing, lexical answer type detection, semantic role labelling, co-referencing, syntactic and semantic reasoning, decomposition
- Hypothesis generation: Get best candidates based on search and constraint satisfaction
- Filtering, scoring and ranking: Machine learning and much more to estimate confidence.

Watson on Jeopardy!

Further reading:

- IBM's Watson/DeepQA: http://dl.acm.org/citation.cfm?id=2019525
- In the news: http://www.bbc.co.uk/news/technology-20159531

Summary

- Much available information is stored in text databases
 - Growing collections of documents from various sources
- Todays tools become increasingly essential
 - Classify documents
 - Compare documents, retrieve and rank importance
 - Find patterns and trends
- Information retrieval tools are for everybody`s taste
 - Simple count-based (bag of words)
 - Analysing grammar
 - Statistical learning methods

Finish with some fun? (built by our team some time ago)

