

-Regelungstechnik-

Laborprotokoll

Laborversuch 5

Schwebende Kugel

Student: Daniel Lipaj

Universität: Hochschule Karlsruhe

Studiengang: Elektro- und Informationstechnik

Studienvertiefung: Informationstechnik

Semester: WS23/23

Dozent: Prof. Dr.-Ing. Keller

Bearbeitet am: 7. Dezember 2023

Inhaltsverzeichnis

1	Aufgabe 1 - Regelstrecke	1
2	Aufgabe 2 - Regelkreis mit P-Regler	4
3	Aufgabe 3 - Regelkreis mit PD-Regler	11
Αŀ	Abbildungsverzeichnis	
Tabellenverzeichnis		15

1 Aufgabe 1 - Regelstrecke

a Berechnen Sie "von Hand" die Polstellen der Regelstrecke gegeben durch die Über- tragungsfunktion GS (s) entsprechend Gleichung (7).

$$G_s(s) = \underbrace{\frac{c_i}{(R+sL)} \cdot \underbrace{(s^2m - c_y)}_{=0}}_{}$$

$$R + sL = 0$$

$$s_1 = -\frac{R}{L}$$

 $\operatorname{mit} R = 5\Omega$

und

$$L = 0, 1H$$

$$s_1 = -\frac{5\Omega}{0,1H} = \underline{\underline{50}}$$

$$s^2m - c_y = 0$$

$$s^2m = c_y$$

$$s^2 = \frac{c_y}{m}$$

$$s = \pm \sqrt{\frac{c_y}{m}}$$

$$\operatorname{mit} c_y = 0.01 \frac{N}{cm} \cdot \frac{100cm}{1m} = 1 \frac{N}{m}$$

und

$$m = 10g \cdot \frac{1Kg}{1000g} = 0,01Kg$$

$$s_{2/3} = \pm \sqrt{\frac{1\frac{N}{m}}{0,01Kg}} = \underline{\pm 10}$$

Abbildung 1: Aufgabe 1. Postellen Diagramm

c) Erstellen Sie ein Simulink-Modell der Regelstrecke.

Abbildung 2: Aufgabe 1. Simulink Modell der Regelstrecke

d/e) Schalten Sie einen Spannungssprung von 1 V (u = 1 V \cdot (t)) auf, und stellen Sie die Antwort der Regelstrecke dar.

Abbildung 3: Aufgabe 1. Plot

In der Abbildung 3 ist zu erkennen, dass die Antwort des Systems gegen Unendlich strebt. Damit ist das System instabil.

2 Aufgabe 2 - Regelkreis mit P-Regler

a) Erstellen Sie ein Simulink-Modell eines Positionsregelkreises und benutzen Sie dabei einen P-Regler mit Verstärkung KR.

Abbildung 4: Aufgabe 2. Simulink Modell mit P-Regler

b) Stellen Sie die Antwort des Regelkreises für 5 (von Ihnen gewählte) verschiedene Werte der Reglerverstärkung KR dar.

Abbildung 5: Aufgabe 2. Plot mit Kr=100

Abbildung 6: Aufgabe 2. Plot mit Kr=500

Abbildung 7: Aufgabe 2. Plot mit Kr=1000

Abbildung 8: Aufgabe 2. Plot mit Kr=1200

Abbildung 9: Aufgabe 2. Plot mit Kr=1500

c) Finden Sie eine Reglerverstärkung, bei der der Regelkreis stabil, d.h. die Sollposition 0 erreicht wird?

Es konnte kein Verstärkungsfaktor gefunden werden, bei dem die Sollposition von 0 erreicht wird. Stattdessen konnte lediglich mittels eines P-Reglers eine konstante Schwingung erzeugt werden. Siehe Abbildung 9:

Abbildung 10: Aufgabe 2. Plot mit Kr=900

3 Aufgabe 3 - Regelkreis mit PD-Regler

a) Stellen Sie nun die Verstärkung des P-Reglers auf den Wert $Kr=4\frac{V}{mm}$ ein. Fügen Sie zusätzlich einen D-Anteil ein. Stellen Sie die Kugelposition und die Stellgröße zusammen in einem Diagramm dar.

Abbildung 11: Aufgabe 3. Simulink Modell mit PD-Regler

Abbildung 12: Aufgabe 3. Plot mit Tv=1

b) Ab welchem Wert von TV ist der Regelkreis stabil?

Abbildung 13: Aufgabe 3. Gerade Stabil für Tv=1

c) Verändern Sie nun TV so, dass der Regelkreis gedämpft und ohne merkliche Schwingneigung in den Endwert geht, der Regelkreis aber dennoch eine mög- lichst gute Dynamik hat.

Abbildung 14: Aufgabe 3. Gerade Stabil für

Abbildungsverzeichnis

1	Aufgabe 1. Postellen Diagramm	2
2	Aufgabe 1. Simulink Modell der Regelstrecke	2
3	Aufgabe 1. Plot	3
4	Aufgabe 2. Simulink Modell mit P-Regler	4
5	Aufgabe 2. Plot mit Kr=100	5
6	Aufgabe 2. Plot mit Kr=500	6
7	Aufgabe 2. Plot mit Kr=1000	7
8	Aufgabe 2. Plot mit Kr=1200	8
9	Aufgabe 2. Plot mit Kr=1500	9
10	Aufgabe 2. Plot mit Kr=900	10
11	Aufgabe 3. Simulink Modell mit PD-Regler	11
12	Aufgabe 3. Plot mit Tv=1	11
13	Aufgabe 3. Gerade Stabil für Tv=1	12
14	Aufgabe 3. Gerade Stabil für	13

Tabellenverzeichnis