Stochastic Approximation from Finance to Data Science

Gilles Pagès

LPSM-Sorbonne-Université

(Labo. Proba., Stat. et Modélisation)

M2 Probabilités & Finance

Novembre 2020

- Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- 4 Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- 5 Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

- Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- 4 Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- 5 Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

Deterministic zero search and optimization

• Zero search: One aims at finding a zero θ^* of a function $h: \mathbb{R}^d \to \mathbb{R}^d$. In view of generic notations in stochastic approximation, we will denote

$$h(\theta), \ \theta \in \mathbb{R}^d$$

rather than h(x).

(d = 1 is mandatory just for graphs).

- Various methods (I):
 - Local recursive zero search (standard): θ_0 be fixed and let $\gamma > 0$ be small enough. Set

$$\theta_{n+1} = \theta_n - \gamma h(\theta_n), \quad n \geq 0$$

- Various methods (II):
 - Local recursive zero search. if h is C^1 (Newton-Raphson "false position" algoritm)

$$\theta_{n+1} = \theta_n - [J_h(\theta_n)]^{-1}h(\theta_n), \quad n \ge 0,$$

where $J_h(\theta)$ denotes the Jacobian of h at θ .

Idea: The tangent hyperplane is the best approximation of h (by an affine function)

$$h(\theta) \simeq h(\theta_n) + J_h(\theta_n)(\theta - \theta_n)$$

so θ_{n+1} is solution to $h(\theta_n) + J_h(\theta_n)(\theta - \theta_n) = 0$.

Very fast but also very unstable, especially when $J_h(\theta^*)$ is "small".

• Yet another local recursive zero search if h C^1 (Levenberg-Marquardt algorithm): Let $\lambda_n > 0$, $n \ge 1$,

$$\theta_{n+1} = \theta_n - \left[J_h(\theta_n) + \lambda_{n+1}I_d\right]^{-1}h(\theta_n), \quad n \geq 0.$$

turns out to be more stable... by an appropriate choice of λ_n .

- Various methods (III):
 - Global recursive zero search:
 - Idea: make the step decrease (not too fast) to "enlarge" in an adaptive way the convergence area of the algorithm...
 - Let γ_n , $n \geq 1$ satisfy

$$\sum_{n\geq 1} \gamma_n = +\infty$$
 and $\sum_{n\geq 1} \gamma_n^2 < +\infty$.

– Set

$$\theta_{n+1} = \theta_n - \gamma_{n+1}h(\theta_n), \ n \ge 0.$$

- To be continued....
- BUT WARNING! All these methods require

h can be computed at a reasonable cost.

Minimizing a (potential function)

• Gradient descent (GD):

Let
$$V: \mathbb{R}^d \to \mathbb{R}_+$$
, \mathcal{C}^1 with $\lim_{|x| \to +\infty} V(x) = +\infty$ so that $\operatorname{argmin}_{\mathbb{R}^d} V \neq \varnothing$.

How to compute $\operatorname{argmin} \& \min_{\mathbb{R}^d} V$????

• If moreover *V* is convex, then

$$\operatorname{argmin}_{\mathbb{R}^d} V = \{
abla V = 0 \}$$
 (is a convex set)

- Solution: set $h = \nabla V$,
- If ∇V Lipschitz, then (exercise)

$$\theta_n \to \theta^* \in \{\nabla V = 0\} = \operatorname{argmin}_{\mathbb{R}^d} V \quad \text{ as } \quad n \to +\infty.$$

• If V is not convex it often happens that

$$\operatorname{argmin} V \subsetneq \{\nabla V = 0\}.$$

Still set $h = \nabla V$ (what else?)

• Pseudo-gradient (back to zero search!):

The function h is often given (model) and (hopefully) there exists a Lyapunov function V s.t. $(h|\nabla V) \geq 0$ and

$$\{h=0\}\simeq\{(h|\nabla V)=0\}$$
 (\subset is ok!).

If
$$(d=2)$$
, $\mathcal{H}(V)(x) = \begin{pmatrix} -\partial_{x_2} V \\ \partial_{x_1} V \end{pmatrix}$ (Hamiltonian of $\nabla V(x)$) and
$$h(x) = \lambda \nabla V(x) + \mu \mathcal{H}(V)(x)$$

then, the above conditions are satisfied and $|h|^2$ has V-linear growth so that $\theta_n \to C(0;1)$ (if $\theta_0 \neq 0$) but does not converge "pointwise".

However, on this example, $V(\theta_n) \to \operatorname{argmin} V$

• It may happen that $\{h=0\} \neq \{(h|\nabla V)=0\} \neq \{\nabla V=0\} \neq \text{argmin } V !!.$

- Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- 4 Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

- Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- 4 Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- 5 Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

Implicitation: Implied Volatility

- Black-Scholes model: traded asset $X_t = x_0 e^{(r \frac{\sigma^2}{2})t + \sigma W_t}$, x_0 , volatility $\sigma > 0$, interest rate r, W standard Brownian motion.
- Call payoff $(X_{\tau} K)_{+} = \max(X_{\tau} K, 0)$ with strike price K and maturity T.
- Mark-to-Market quoted price: $Call_{M2Mkt} \in (0, x_0)$.
- Black-Scholes price at time 0

$$\begin{aligned} \operatorname{Call}_{BS}(x_0, K, r, \sigma, T) &= e^{-rT} \mathbb{E} \left(X_T - K \right)_+ \\ &= x_0 \Phi_0(d_1) - K e^{-rT} \Phi_0(d_2) \\ d_1 &= \frac{\log(\frac{x_0}{K}) + (r + \frac{\sigma^2}{2})T}{\sigma \sqrt{T}}, \quad d_2 = d_1 - \sigma \sqrt{T}. \end{aligned}$$

• Implicitation of the volatility: solve in σ the inverse problem

$$\operatorname{Call}_{BS}(\ldots,\sigma,\ldots) - \operatorname{Call}_{M2Mkt} = 0.$$

• Graphs of $\sigma \mapsto Call_{BS}(\sigma)$, $\sigma \in \mathbb{R}$: In-, At- and Out- the money.

- ullet The function is even in σ and the equation has two opposite solutions.
- As $\sigma < 0$ is meaningless, one considers on the whole real line \mathbb{R} ,

$$\sigma \longmapsto Call_{BS}(\sigma^+)$$

where
$$\sigma^+ = \max(\sigma, 0)$$
.

• It becomes a non-decreasing function.

Algo₁:

$$\sigma_{n+1} = \sigma_n - \gamma_{n+1} \underbrace{\left(\operatorname{Call}_{BS} \left(x_0, K, r, \sigma_n^+, T \right) - \operatorname{Call}_{M2Mkt} \right)}_{=:h(\sigma_n)}, \ \sigma_0 > 0$$

with $\gamma_n = \gamma > 0$ or decreasing assumption.

- Algo₂ (Newton's zero search)
 - The Vega:

$$\operatorname{Vega}_{BS}(\sigma) = \frac{\partial}{\partial \sigma} \operatorname{Call}_{BS}(\sigma) = x_0 \operatorname{sign}(\sigma) \sqrt{T} \frac{e^{-\frac{d_1(\sigma)^2}{2}}}{\sqrt{2\pi}}$$

• Implicit volatility search reads (works as long as $\sigma_n > 0...$):

$$\sigma_{n+1} = \sigma_n - \underbrace{\frac{1}{\operatorname{Vega}_{BS}(\sigma_n)}}_{=h'(\sigma_n)} \left(\underbrace{\operatorname{Call}_{BS}(x_0, K, r, \sigma_n, T) - \operatorname{Call}_{M2Mkt}}_{=:h(\sigma_n)} \right), \ \sigma_0 > 0.$$

[This is the actual algorithm with a "good choice" of σ_0 avoiding the negative side and ensuring a fast convergence (1).]

Gilles PAGÈS (LPSM)

¹S. Manaster, G. Koehler (1982). The calculation of Implied Variance from the Black–Scholes Model: A Note, *The Journal of Finance*, 37(1):227–230

Implicitation: Implied Correlation I

• 2-dim (correlated) Black-Scholes model:

$$X_t^i=x_0^i\mathrm{e}^{(r-\frac{\sigma_i^2}{2})t+\sigma_iW_t^i},\;x_0^i,\;\sigma_i>0,i=1,2$$
 with $\langle W^1,W^2\rangle_t=\rho t.$

• Best-of-Call Payoff:

$$\big(\max(X^1_\tau,X^2_\tau)-K\big)_+$$

Premium at time 0

$$\mathsf{Best\text{-}of\text{-}Call}_{BS}(\dots,\rho,\dots) = e^{-rT}\mathbb{E}\left(\,\mathsf{max}(X^1_\tau,X^2_\tau) - K\right)_+.$$

- ullet Organized markets on such options are market of the correlation ho.
- The volatilities σ_i , i = 1, 2, are known from vanilla option markets on X^1 and X^2 .

How to "extract" the correlation ρ ?

Deterministic algo(s):

$$\rho_{n+1} = \rho_n - \gamma_{n+1} \Big(\underbrace{\mathsf{Best-of-Call}_{BS}(\rho_n) - \mathsf{Best-of-Call}_{M2Mkt}}_{=:h(\rho_n)} \Big).$$

or the Levenberg-Marquard variant of Newton's zero search algorithm

$$\rho_{n+1} = \rho_n - \frac{\mathsf{Best\text{-}of\text{-}Call}_{BS}(\rho_n) - \mathsf{Best\text{-}of\text{-}Call}_{M2Mkt}}{\partial_\rho \mathsf{Best\text{-}of\text{-}Call}_{BS}(\rho_n) + \lambda_n}.$$

- Except that we have no (simple) closed form for the B-S price and its $\rho\text{-}$ derivative.
- The correlation $\rho \in [-1, 1]$. Projections are possible but....
- What to do?

- Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

Minimization: Value-at-risk/Conditional Value-at-risk/I

• Let $X = \varphi(Z)$, $Z : (\Omega, \mathcal{A}, \mathbb{P}) \to \mathbb{R}^q$ be an integrable random variable representative of a loss and let $\alpha \in (0, 1)$, $\alpha \simeq 1$.

Value-at-Risk_{$$\alpha$$} $(X) = \alpha$ -quantile = inf $\{\xi : \mathbb{P}(X \leq \xi) \geq \alpha\}$.

• For simplicity, assume X has a density $f_X > 0$ on \mathbb{R} . Then $\xi_{\alpha} = \mathsf{VaR}_{\alpha}(X)$ is the unique solution to

$$\mathbb{P}(X \leq \xi_{\alpha}) = \alpha \Longleftrightarrow \mathbb{P}(X > \xi_{\alpha}) = 1 - \alpha.$$

The conditional Value-at-Risk is defined by

$$\mathsf{CVaR}_{\boldsymbol{\alpha}}(X) = \mathbb{E}(X \mid X \geq \mathsf{VaR}_{\boldsymbol{\alpha}}(X)).$$

• Rockafellar-Uryasev Potential (2):

$$V(\xi) = \xi + \frac{1}{1-\alpha} \mathbb{E}(X-\xi)_+, \quad \xi \in \mathbb{R}.$$

²R.T. Rockafellar, S. Uryasev (2000). Optimization of Conditional Value-At-Risk, *The Journal of Risk*, **2**(3):21-41. www.ise.ufl.edu/uryasev.

ullet The function V is convex and $\lim_{|\xi| o +\infty} V(\xi) = +\infty$ since

$$V(\xi) \geq \xi$$
 so that $\lim_{\xi \to +\infty} V(\xi) = +\infty$

and

$$V(\xi) \geq \xi + rac{1}{1-lpha} (\mathbb{E} \, X - \xi)_+$$
 by Jensen's inequality $\geq \xi + rac{1}{1-lpha} (\mathbb{E} \, X - \xi)$ $= -rac{lpha}{1-lpha} \xi + rac{1}{1-lpha} \mathbb{E} \, X o + \infty$ as $\xi o -\infty$.

ullet By exchanging differentiation and \mathbb{E} , we get

$$V'(\xi) = 1 - \frac{1}{1 - \alpha} \mathbb{P}(X > \xi).$$

- $V'(\xi) = 0$ iff $\mathbb{P}(X > \xi) = 1 \alpha$ iff $\xi = \xi_{\alpha}$.
- Moreover

$$V(\xi_{\alpha}) = \frac{\xi_{\alpha} \mathbb{P}(X > \xi_{\alpha}) + \mathbb{E}(X - \xi_{\alpha})_{+}}{\mathbb{P}(X > \xi_{\alpha})} = \frac{\mathbb{E}X\mathbf{1}_{\{X > \xi_{\alpha}\}}}{\mathbb{P}(X \ge \xi_{\alpha})}$$
$$= \mathbb{E}(X \mid X \ge \mathsf{VaR}_{\alpha}(X)) = \mathsf{CVaR}_{\alpha}(X).$$

• (GD) pour la $VaR_{\alpha}(X)$: $h(\xi) = V'(\xi)$. Let $\xi_0 \in \mathbb{R}$,

$$\xi_{n+1} = \xi_n - \gamma_{n+1} \left(1 - \frac{1}{1 - \alpha} (1 - F_X(\xi_n)) \right)$$

= $\xi_n - \frac{\gamma_{n+1}}{1 - \alpha} (F_X(\xi_n) - \alpha), \quad n \ge 0.$

• Newton/Levenberg-Marquardt algo: $\xi_0 \in \mathbb{R}$,

$$\xi_{n+1} = \xi_n - \frac{F_X(\xi_n) - \alpha}{f_Y(\xi_n) + \lambda_n(?)}, \quad n \ge 0.$$

• Why not ! But $X = \varphi(Z)$ (the whole portfolio of a CIB Bank!) $\Rightarrow q$ large and no closed form for the c.d.f. $F_x(\xi) = \mathbb{P}(X \leq \xi)$ of X.

- Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- 4 Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- 5 Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

- oxdot Optimization (deterministic, the origins)
- Examples from Finance
 - Implicitation
 - Minimization
- 3 Learning procedures
 - Abstract Learning
 - Supervised Learning
 - Unsupervised Learning (clustering)
- 4 Stochastic algorithms/Approximation
 - From Robbins-Monro to Robbins-Siegmund
 - Stochastic Gradient Descent (SGD) and pseudo-SGD
- 5 Examples revisited by SFD
 - Numerical probability
 - Learning (supervised and unsupervised)
- 6 Application to Neural Networks and deep learning
 - Linear neural network
 - One hidden layer feedforward perceptron
 - Toward deep learning
 - Multilayer feedforward perceptron and Backpropagation

Abstract Learning

- Huge dataset $(z_k)_{k=1:N}$ with of possibly high dimension d: $N \simeq 10^6$, even 10^9 , and $d \simeq 10^3$. [Image, profile, text, . . .]
- Set of parameters $\theta \in \Theta \subset \mathbb{R}^K$, K large (see later on).
- There exists a smooth local loss function/local predictor

$$v(\theta, z)$$
.

• Global loss function: $V(\theta) = \frac{1}{N} \sum_{k=1}^{N} v(\theta, z_k)$

with gradient
$$\nabla V(\theta) = \frac{1}{N} \sum_{k=1}^{N} \nabla_{\theta} v(\theta, z_k)$$
.

Solving the minimization problem

$$\min_{\theta \in \Theta} V(\theta)$$
.

• Suggests a (GD) i.e. $h = \nabla V$ [or others...if $\nabla^2_{\theta} v(\theta, z)$ exists]:

$$\theta_{n+1} = \theta_n - \gamma_{n+1} \nabla V(\theta_n)$$

$$= \theta_n - \frac{\gamma_{n+1}}{N} \sum_{k=1}^{N} \nabla_{\theta} v(\theta, z_k), \ n \ge 0,$$

with the step sequence satisfying the (DS) assumption.