COMP3251 Lecture 6: Closest Pair

Input: A set of *n* points in a plane (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) .

Output: A pair of distinct points whose distance is smallest.

Input: A set of *n* points in a plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

Output: A pair of distinct points whose distance is smallest.

- 1) Compute the distance of all n(n-1)/2 pairs of distinct points.
- 2) Output the pair whose distance is smallest.

Input: A set of *n* points in a plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

Output: A pair of distinct points whose distance is smallest.

- 1) Compute the distance of all n(n-1)/2 pairs of distinct points.
- 2) Output the pair whose distance is smallest.

Input: A set of *n* points in a plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

Output: A pair of distinct points whose distance is smallest.

- 1) Compute the distance of all n(n-1)/2 pairs of distinct points.
- 2) Output the pair whose distance is smallest.

Input: A set of *n* points in a plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

Output: A pair of distinct points whose distance is smallest.

- 1) Compute the distance of all n(n-1)/2 pairs of distinct points.
- 2) Output the pair whose distance is smallest.

Input: A set of *n* points in a plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

Output: A pair of distinct points whose distance is smallest.

A straight-forward closest algorithm:

- 1) Compute the distance of all n(n-1)/2 pairs of distinct points.
- 2) Output the pair whose distance is smallest.

Running time: O(n²)

 If all points are on the same line, we can first sort them and then check only the n - 1 neighboring pairs.

- If all points are on the same line, we can first sort them and then check only the n - 1 neighboring pairs.
- This takes O(n log n) time.

- If all points are on the same line, we can first sort them and then check only the n - 1 neighboring pairs.
- This takes O(n log n) time.

Idea: If some pairs of points are obviously too far, then we can simply ignore them.

Divide: Sort the points by their *x*-coordinates.

Draw a vertical line L so that n/2 points on each side.

Assumption (for ease of discussion): No two points have same *x*-coordinate.

Recurse: Find the closest pair on each side.

Recurse: Find the closest pair on each side.

Combine: Find the closest pair with one point on each side.

Output the closest of the three pairs.

Recurse: Find the closest pair on each side.

Combine: Find the closest pair with one point on each side.

Output the closest of the three pairs.

Recurse: Find the closest pair on each side.

Combine: Find the closest pair with one point on each side.

Output the closest of the three pairs.

A straightforward brute-force approach: Compare all (n/2)² pairs with one point on each side, and return the smallest one.

A straightforward brute-force approach: Compare all (n/2)² pairs with one point on each side, and return the smallest one.

- 1) **Divide** takes $O(n \log n)$ time; 2) **Recurse** takes 2 T(n/2) time;
- 3) **Combine** takes $O(n^2)$ time. So $T(n) = 2 T(n/2) + O(n^2) = O(n^2)$.

Let δ_L and δ_R be the distance of the closest pairs on the left and on the right respectively. Let $\delta = min (\delta_L, \delta_R)$.

Let δ_L and δ_R be the distance of the closest pairs on the left and on the right respectively. Let $\delta = min (\delta_L, \delta_R)$.

Example: $\delta_L = 4$, $\delta_R = 5$, and $\delta = 4$.

Let δ_L and δ_R be the distance of the closest pairs on the left and on the right respectively. Let $\delta = min \ (\delta_L, \ \delta_R)$.

Example: $\delta_L = 4$, $\delta_R = 5$, and $\delta = 4$.

Idea: Focus on pairs with one point in each side and has distance $< \delta$.

Note: We only need to consider points within δ of the dividing line.

1) Sort points in the 2δ -strip in ascending order of the y-coordinate.

- 1) Sort points in the 2δ -strip in ascending order of the y-coordinate.
- 2) For each point a, check the distances to its 7 subsequent points.

- 1) Sort points in the 2δ -strip in ascending order of the y-coordinate.
- 2) For each point a, check the distances to its 7 subsequent points.
- 3) Output the closest pair found in step 2.

- 1) Sort points in the 2δ -strip in ascending order of the y-coordinate.
- 2) For each point a, check the distances to its 7 subsequent points.
- 3) Output the closest pair found in step 2.

Why is it correct?

- Let a and b be a pair of points with one point on each side such that their distance is $\leq \delta$, and a is lower than b in the y-coordinate.
- We will prove that b is among the 7 subsequent points of a in the sorted list, i.e., $b \in \{1, 2, 3, 4, 5, 6, 7\}$. Then, the algorithm would have checked and remembered their distance in step 2.

Observation 1: There are at most 4 points in any square of size δ on the left of the dividing line.

• Why? Recall that $\delta = \min(\delta_L, \delta_R)$. Thus, $\delta \leq \delta_L$.

Observation 1: There are at most 4 points in any square of size δ on the left of the dividing line.

• Why? Recall that $\delta = \min(\delta_L, \delta_R)$. Thus, $\delta \leq \delta_L$.

1) Consider any square of size δ on the left the dividing line δ

Observation 1: There are at most 4 points in any square of size δ on the left of the dividing line.

• Why? Recall that $\delta = \min(\delta_L, \delta_R)$. Thus, $\delta \leq \delta_L$.

1) Consider any square of size δ on the left the dividing line \sim

2) Divide the square into 4 sub-squares of size $\delta/2$

Observation 1: There are at most 4 points in any square of size δ on the left of the dividing line.

- Why? Recall that $\delta = \min(\delta_L, \delta_R)$. Thus, $\delta \leq \delta_L$.
 - 1) Consider any square of size δ on the left the dividing line \sim
 - 2) Divide the square into 4 sub-squares of size $\delta/2$
 - 3) Points in the same sub-square are at most $\frac{\delta}{\sqrt{2}} < \delta \leq \delta_L$ apart.

Observation 1: There are at most 4 points in any square of size δ on the left of the dividing line.

- Why? Recall that $\delta = \min(\delta_L, \delta_R)$. Thus, $\delta \leq \delta_L$.
 - 1) Consider any square of size δ on the left the dividing line \sim
 - 2) Divide the square into 4 sub-squares of size $\delta/2$
 - 3) Points in the same sub-square are at most $\frac{\delta}{\sqrt{2}} < \delta \leq \delta_L$ apart.
 - 4) Points on the left of the dividing line are at least δ_{L} apart. So there are ≤ 1 point in each sub-square, and ≤ 4 points in the square.

Observation 1: There are at most 4 points in any square of size δ on the left of the dividing line.

Observation 2: There are at most 4 points in any square of size δ on the right of the dividing line. (Same argument)

- 1) Recall that the distance between a and b is $\leq \delta$ and a is lower than b in the y-coordinate.
- 2) b must be in the shaded area, which is comprised of two squares of size δ .
- 3) There are ≤ 4 points in each square, and thus ≤ 8 points in the shaded area.
- 4) There are ≤ 7 points in the shaded area other than point a. So b must be one of 1, 2, 3, 4, 5, 6, 7.

An *O(n log²n)* Time Divide and Conquer Algorithm for Closest Pair

Divide:

- 1) Sort the points by their *x*-coordinates.
- 2) Draw a vertical line L so that n/2 points on each side.

Recurse:

- 3) Find the closest pair on the left of L, let δ_L be the distance.
- 4) Find the closest pair on the right of L, let δ_R be the distance.

Combine:

- 5) Let $\delta = \min(\delta_L, \delta_R)$.
- 6) Let S be the set of points that are at most δ from L.
- 7) Sort points in S in the *y*-coordinate and check the distance between each point and next 7 points.
- 8) Return the closest pair among step 3, 4, and 7

Running Time Analysis

- How to analyze T(n)?
 - Divide step takes O(n log n) time (bottleneck is sorting).
 - Recurse step take 2 T(n/2) time.
 - Combine step takes O(n log n) time (bottleneck is sorting).
- $T(n) = 2 T(n/2) + O(n \log n) = O(n \log^2 n)$
 - Intuition:
 - If T(n) = 2 T(n/2) + O(n), then $T(n) = O(n \log n)$.
 - The extra log factor in the recurrence relation becomes an extra log factor in the final answer.
 - Note that we cannot directly use the Master theorem here.
 - We can prove it either by repeatedly expanding T(.) using the recurrence relation, or by mathematical induction.

Optional Reading

- We can actually implement the same algorithm in O(n log n) time, with some extra efforts
- See, e.g., the slides below: <u>https://www.cs.purdue.edu/homes/ayg/CS251/slides/chap15d.pdf</u>
- YouTube video by Tim Roughgarden: <u>https://www.youtube.com/watch?v=jAigdwcATNw</u>
- There is a ton of other resources available online