Données d'entrées :

- Nombre de décroissances simulées, N
- Abondance relative des isotopes, pmf_1 ()
- Constante de Birks, $k_{\rm B}$
- Paramètre libre, L
- Mesure, n_D , n_T

Boucle principale : de i = 1 à i = N

Tirage du radionucléide : $Rad_i \sim pmf_1$ ()

Simulation des transitions nucléaires :

- Lecture du fichier PenNuc
- Tirage de la branche (P_1, E_1)
- Tirage des transitions isomériques
 - Boucle « while » jusqu'au niveau fondamental du noyau fils $\rightarrow (P_{j+1}, E_{j+1})$
- Bilan énergétique

Simulation des transitions atomiques :

- $\to \left(P_{j+1}, E_{j+1}\right)$

Boucle secondaire : de j = 1 à i = M

Simulation de l'interaction rayonnement matière:

- $P_j = \beta \rightarrow P_j' = e^-$ via spectre BetaShape, $E_j \rightarrow E_j'$
- Tirage $P_j = \gamma \rightarrow P_j' = e^-$ via kernel PENELOPE, $E_j \rightarrow E_j'$

Boucle secondaire : de j = 1 à i = M

Simulation du quenching de scintillation

- Si $P'_i = e^-$, modèle de Birks électron $E'_i \to E''_i$
- Si $P_i'=lpha$, modèle de Birks alpha $E_j' o E_j''$

Calcul de l'efficacité de détection pour le tirage i

•
$$\varepsilon_{Si} = 1 - \exp\left(-L\frac{\sum_{j=1}^{M} E_{j}^{\prime\prime}}{3}\right)$$
 (1-PMT)

- $\varepsilon_{Ti} = \varepsilon_S^3$ (3-PMT) $\varepsilon_{Di} = 3\varepsilon_S^2 2\varepsilon_T$ (2-PMT)

Calcul de l'efficacité de détection global

- $\varepsilon_{T}(L) = \overline{\varepsilon_{T\underline{i}}} \pm \sigma(\varepsilon_{T\underline{i}}); \varepsilon_{D}(L) = \overline{\varepsilon_{D\underline{i}}} \pm \sigma(\varepsilon_{D\underline{i}})$ $tdcr(L) = \left(\frac{\varepsilon_{T\underline{i}}}{\varepsilon_{D\underline{i}}}\right) \pm \sigma\left(\frac{\varepsilon_{T\underline{i}}}{\varepsilon_{D\underline{i}}}\right)$
- Résidus = $\left(tdcr(L) \frac{n_T}{n_T}\right)$