Problem I. Count Subarrays

Time limit 1000 ms

Code length Limit 50000 B

OS Linux

You are given a permutation P of length N.

For each $1 \le i \le N$, find the number of subarrays of P with sum i.

Note that in a permutation of length N, each integer from 1 to N appears exactly once.

Input Format

The first line contains an integer T, the number of test cases.

The first line of each test case contains a positive integer N – the length of P.

The second line contains N space separated distinct integers, $P_1, P_2 \dots P_N$ — denoting the permutation P.

Output Format

For each test case, output on a new line, N space–separated integers, where the i^{th} integer denotes the number of subarrays with sum i.

Constraints

- $1 \le T \le 10^5$
- $1 \le N \le 10^5$
- $1 \le P_i \le N$
- $P_i \neq P_j$ if $i \neq j$
- The sum of N over all test cases won't exceed $2 \cdot 10^5$.

Sample

Input	Output
3 1 1 2 1 2 3 3 1 2	1 1 1 1 1 2

Explanation

Test case 1:

- Only possible subarray with sum 1 is [1].

Test case 2:

- Only possible subarray with sum 1 is [1].
- Only possible subarray with sum 2 is [2].

Test case 3:

- Only possible subarray with sum 1 is [1].
- Only possible subarray with sum 2 is [2].
- Subarrays with sum 3 are $\left[3\right]$ and $\left[1,2\right]$.