Informe de la pràctica 3 - Àlgebra Lineal Numèrica

Tomàs Ortega

29 de maig de 2017

$\mathbf{\acute{I}ndex}$

1	Intr	${ m ntroducci\acuteo}$		
	1.1	Norm	es matricials	
	1.2	Nomb	re de condició \dots 2	
2	Sist	emes 1	Lineals 2	
	2.1	Mètod	les directes	
		2.1.1	Factorització LU	
		2.1.2	Factorització Cholesky	
		2.1.3	Factorització QR	
		2.1.4	Factorització SVD	
	2.2	Mètoc	les iteratius	
		2.2.1	Mètode de Jacobi	
		2.2.2	Mètode de Gauss-Seidel	
		2.2.3	Mètode de Sobrerelaxació	
3	Càl	cul de	valors i vectors propis 3	
	3.1		na de Gerschgorin	
	3.2		le de la Potència	
		3.2.1	Potència estàndard	
		3.2.2	Potència inversa	
		3.2.3	Potència desplaçada	
		3.2.4	Potència inversa desplaçada	
	3.3	· · - · -	les de Reducció	
	0.0	3.3.1	Mètode de Jacobi	
		3.3.2	Mètode de Hyman	
		3.3.3	Mètode QR	
		0.0.0	Microdic Sit	

1 Introducció

1.1 Normes matricials

Una norma matricial és una aplicació que compleix, per a matrius quadrades

- 1. $||A|| \geq 0,$ i $||A|| = 0 \iff A = 0$
- $2. \ ||\alpha A|| = |\alpha| \cdot ||A||$
- 3. $||A + B|| \le ||A|| + ||B||$
- 4. $||AB|| \le ||A|| \cdot ||B||$

Una norma matricial és consistent amb una vectorial si compleix

$$\frac{||Ax||}{||x||} = \left|\left|A\frac{x}{||x||}\right|\right| \leq ||A|| \implies ||A|| = \max_{||x||=1} ||Ax||$$

Tenim que $||A||_2 = \sqrt{\rho(A^T A)}$

1.2 Nombre de condició

$$\mu(A) = ||A||||A^{-}1||$$

2 Sistemes Lineals

2.1 Mètodes directes

Si tenim un sistema amb errors,

$$\left| \left| \frac{\delta x}{||x||} \right| \right| \le \mu(A) \left[\frac{||\delta b||}{b} + \frac{||\delta A||}{||A||} \cdot \frac{||x + \delta x||}{||x||} \right]$$

Si suposem que $||x|| = ||x + \delta x||$ veiem que $\mu(A)$ condiciona l'error en la solució.

2.1.1 Factorització LU

 $\exists\iff$ tots els menors principals són diferents a 0. Triga aproximadament $2n^3/3$ per triangular, n^2 per resoldre. Mètode de Crout obté U amb elements a la diagonal que són 1.

2.1.2 Factorització Cholesky

Obté una factorització $A = L \cdot L^T$ en aproximadament $n^3/3$ operacions, (aproximadament la meitat que LU).

2.1.3 Factorització QR

 $\exists\iff A$ és de rang màxim. Cost: $2mn^2+2n^3/3$ Gram-Schmidt:

$$\mathbf{u}_1 = \mathbf{a}_1, \qquad \qquad \mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \tag{1}$$

$$\mathbf{u}_2 = \mathbf{a}_2 - \operatorname{proj}_{\mathbf{u}_1} \mathbf{a}_2,$$
 $\mathbf{e}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|}$ (2)

$$\mathbf{u}_3 = \mathbf{a}_3 - \operatorname{proj}_{\mathbf{u}_1} \mathbf{a}_3 - \operatorname{proj}_{\mathbf{u}_2} \mathbf{a}_3, \qquad \mathbf{e}_3 = \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|}$$
(3)

$$\vdots \hspace{1.5cm} \vdots \hspace{1.5cm} (4)$$

$$\mathbf{u}_k = \mathbf{a}_k - \sum_{i=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j} \mathbf{a}_k, \qquad \mathbf{e}_k = \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}$$
 (5)

$$R = Q^T A = \begin{pmatrix} e_1 & e_2 & \dots & e_k \end{pmatrix}^T A$$

2.1.4 Factorització SVD

Costa més que QR, és més estable. Cost: $2mn^2 + 11n^3$

$$\Delta = U \Sigma V^T$$

On U és $m \times n$, σ és $n \times n$ i V^T és $n \times n$

On U i V són ortogonals i σ és diagonal i té la diagonal de valors singulars.

2.2 Mètodes iteratius

Volem trobar B i c tal que Ax = b sigui x = Bx + c i el límit de les x vagi a la solució.

Ho fem amb A = P - (P - A), aleshores $x = P^{-1}(P - A)x + P^{-1}b$ i fem l'esquema iteratiu.

Convergeix $\iff \rho(B) < 1$, amb velocitat $-\ln(\rho(B))$

Tenim una fita de l'error

$$||x - x^k|| \le \frac{||B||}{1 - ||B||} ||x^k - x^{k-1}||$$

2.2.1 Mètode de Jacobi

Si A és estrictament diagonalment dominant perfiles aleshores convergeix, ja que la $||B||_{\infty} < 1$ P = D i apliquem esquema.

2.2.2 Mètode de Gauss-Seidel

Si A és estrictament diagonalment dominant per files, aleshores convergeix.

Si A és simètrica i definida positiva convergeix.

P = L i apliquem esquema.

2.2.3 Mètode de Sobrerelaxació

És una millora de Gauss-Seidel que s'aplica en alguns casos per a convergència més ràpida.

$$\rho(B_{\omega}) \ge |\omega - 1| \implies 0 \le \omega \le 2 \text{ si volem que convergeixi.}$$

$$B = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$$

$$c = \hat{\omega}(D - \omega \hat{L})^{-1}\hat{b}$$

3 Càlcul de valors i vectors propis

Si tenim v VEP trobem el seu VAP λ amb

$$\lambda = \frac{v^T A v}{v^T v}$$

3.1 Teorema de Gerschgorin

Proposició: Siguin $\lambda_1, ..., \lambda_n$ els VAPs d'una matriu A diagonalitzable, aleshores

$$\lambda_k \in \bigcup_{i=1}^n C_i; \quad C_i = \{z \in \mathbb{C}, \quad |z - a_{ii}| \le r_i, \quad r_i = \sum_{j \ne i} |a_{ij}|\}$$

Demostració: λ VAP de VEP $x \neq 0 \implies$

$$(\lambda - a_{ii})x_i = \sum_{j \neq i} a_{ij}x_j$$

Triem k tal que $||x||_{\infty} = |x_k| \implies$

$$|\lambda - a_{kk}| \le \sum_{j \ne k} \frac{|a_{kj}||x_j|}{|x_k|} \le \sum_{j \ne k} |a_{kj}| = r_k \implies \lambda \in \{|z - a_{kk}| \le r_k\}$$

3.2 Mètode de la Potència

3.2.1 Potència estàndard

A amb VAPs reals $|\lambda_1| \ge ... \ge |\lambda_n|$, $x_{k+1} = Ax_k = A^k x_0$. Perquè convergeixi sense disparar-se es normalitza x_k i es converteix en y_k , i queda

$$z_{k+1} = Ay_k, \quad y_{k+1} = \frac{z_{k+1}}{||z_{k+1}||}, \quad \left(\frac{z_k}{y_k}\right)_i \to \lambda_1$$

Això convergirà més ràpid com més petit sigui $\left|\frac{\lambda_2}{\lambda_1}\right|$

3.2.2 Potència inversa

 λ VAP de VEP v de $A\iff\lambda^{-1}$ és VAP de VEP v de A^{-1}

3.2.3 Potència desplaçada

 λ VAP de VEP v de $A \iff \lambda - q$ és VAP de VEP v de A - qI Ho usem per intentar millorar la velocitat de convergència.

3.2.4 Potència inversa desplaçada

 λ VAP de VEP v de $A \iff (\lambda - q)^{-1}$ és VAP de VEP v de $(A - qI)^{-1}$ S'usa per refinar aproximacions de VAPs.

3.3 Mètodes de Reducció

3.3.1 Mètode de Jacobi

Suposem A simètrica (en veritat volem VAPs reals) s'usen canvis de base ortogonals. Aleshores fem $A_0 = A$, $A_k = Q_k^T A_{k-1} Q_k$. A_k manté simetria i VAPs.

3.3.2 Mètode de Hyman

Mitjançant (n-2)(n-1)/2 rotacions, s'obté una matriu Hessenberg superior, i es calcula el polinomi característic. Amb un mètode numèric es troben les arrels d'aquest polinomi, és a dir, els VAPs.

3.3.3 Mètode QR

Idea: Construir $A = A_0, A_1, ...$ tals que $A_s = Q_s R_s$, i $A_{s+1} = R_s Q_s$, i d'aquesta manera A_s tendeix cap a triangular superior, i fem servir el mateix que abans.