Zufallszahlen und MonteCarlo Methoden in der Teilchenphysik

LMU Bachelor Kurs Apr 27, 2022

Guenter Duckeck

Zufallszahlen erzeugen

- Python notebook im github Verzeichnis
- Teilchenphysik
 - MC Ereignis Generatoren
 - Detektorsimulation
- Zusammenfassung

Monte Carlo Generatoren

Einfache Reaktion bei LHC:

$$pp \rightarrow Z/y \rightarrow e+e- + Jets$$

- Ereignis-Generatoren werden benutzt, um Teilchenreaktionen zu simulieren
 - z. B. Pythia, Herwig++, Sherpa, Alpgen, PowHeg, . . .
 - Ausgabe: "Kollisionsereignisse", d. h. für jedes Ereignis wird eine Liste von Teilchen generiert zusammen mit den Vierervektoren, etc.

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Final-state radiation: timelike parton showers

Multiple parton-parton interactions . . .

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The strings fragment to produce primary hadrons

These are the particles that hit the detector

MC Gen - Beispiel

LHA event information and listing 1 weight = 1.8982e-05 scale = 3.3269e+02 (GeV) process = $alpha_em = 7.8165e-03$ $alpha_strong = 1.0700e-01$ Participating Particles id stat mothers colours p_x tau 2 -1 0 0 501 0 0.000 0.000 2832.442 2832.442 -1 -1 0 0 0 501 0.000 0.000 -60.411 60.411 1000024 1 1 2 0 0 21.435 218.452 526.439 622.751 1000023 1 1 2 0 0 -21.435 -218.452 2245.592 2270.102 1 0.000 0.000 0.000 0.000 250.000 0.000 250.000 0.000

----- End LHA event information and listing

$$u + \bar{d} \rightarrow \widetilde{\chi}_1^+ + \widetilde{\chi}_2^0$$

(Liste der "PDG ID"s = Durchnumerierung aller Elementarteilchen)

Monte-Carlo-Ereignis-Generatoren

Beispiel

vollständige Beschreibung des Kollisionsereignisses entsprechend umfangreich:

PYTHIA Event Listing (complete event)														
200			status			daughters		coloura						
0	90	(avatem)	-11	not	ners	awug.	nters	0	Lours	p_x 0.000	P_y 0.000	P_Z 0.000	8000.000	8000.000
1	2212	(p+)	-12	ō	0	62	ō	0	0	0.000	0.000	4000.000	4000.000	0.938
2	2212	(p+)	-12	0	0	63	0	. 0	0	0.000	0.000	-4000.000	4000.000	0.938
3 4	-1	(u) (dbar)	-21 -21	7 8	7	5	6	501	501	0.000	0.000	2832.442	2832.442	0.000
5	1000024	(chi 1+)	-22	3	4	9	9	ő	0	21.435	218.452	526.439	622.751	250.000
6	1000023	(~chi 20)	-22	3	4	10	10	0	0	-21.435	-218.452	2245.592	2270.102	250.000
7	2	(u)	-42	41	41	. 3	3	501	0	-0.000	0.000	2832.442	2832.442	0.000
8	1000024	(dbar) (~chi_1+)	-41	40	40	43	43	0	503	0.000 25.711	-0.000 213.290	-188.076 515.821	188.076 612.148	250.000
10	1000024	(~chi_20)	-44	6	6	44	44	ő	ő	-20.347	-219.766	2256.062	2280.576	250.000
11	21	(q)	-43	8	0	38	39	501	503	-5.364	6.476	-127.517	127.794	0.000
12	21	(g)	-31	19	19	14	15	505	504	0.000	0.000	20.177	20.177	0.000
13	21	(g) (q)	-31 -33	12	13	14	15	504	506	0.000 -3.818	0.000	-9.805 -9.162	9.805	0.000
15	21	(q)	-33	12	13	18	18	505	507	3.818	-1.424	19.534	19.955	0.000
16	21	(q)	-51	14	0	21	21	508	506	-1.731	3.062	1.424	3.795	0.000
17	21 21	(g)	-51 -52	14 15	0 15	23	23	507 505	508 507	-1.632 3.363	-1.807 -1.255	-8.259 17.207	8.610 17.577	0.000
19	21	(g) (q)	-42	25	25	12	12	505	504	-0.000	0.000	20.177	20.177	0.000
20	21	(q)	-41	26	0	2.4	13	509	506	0.000	-0.000	-41.014	41.014	0.000
21	21	(g)	-44	16	16	27	27	508	506	-1.437	3.004	1.118	3.513	0.000
22 23	21 21	(g) (q)	-44 -44	18	18 17	28 29	28	505 507	507 508	3.409	-1.264 -2.217	17.475 -8.370	17.849 8.671	0.000
24	21	(g)	-43	20	- 0	30	30	507	504	-2.434	0.476	-31 059	31 158	0.000
25	21	(q)	-42	51	0	19	19	505	504	0.000	-0.000	20.177	20.177	0.000
26 27	2	(u)	-41	52 21	52 21	31	20	509	506	-0.000	0.000	-646.205	646.205	0.000
28	21 21	(g) (q)	-44 -44	21	21	37	37	508	506	-1.451 3.407	3.037	1.165	3.562 17.804	0.000
29	21	(g)	-44	23	23	32	33	507	508	0.362	-1.985	-8.405	8.644	0.000
30	21	(g)	-44	24	24	56	56	509	504	-2.795	1.322	-31.046	31.200	0.000
31 32	21	(u)	-43 -51	26	0	57	57 36	506	508	0.476	-1.115 -1.799	-605.171 -7.906	605.172 8.226	0.330
32	21	(g) (q)	-51 -51	29	0	50	36 50	507	510	-0.922	-0.223	0.020	0.949	0.000
34	21	(q)	-52	28	28	48	49	505	507	3.306	-1.221	16.910	17.273	0.000
35	21	(g)	-51	32	0	55	55	510	511	0.422	-1.705	-7.406	7.611	0.000
36 37	21 21	(g) (a)	-51 -52	32 27	27	59 53	59 53	511 508	508 506	0.832	0.181	-0.394	0.938	0.000
38	21	(g)	-51	11	-0	45	45	501	512	-1.319	0.455	-15 992	16.035	0.000
39	21	(q)	-51	11	0	4.6	46	512	503	-4.273	6.022	-116.692	116.926	0.000
40	-1	(dbar)	-53 -42	42 62	.0	8	8	501	503	-0.000	0.000	-193.243	193.243	0.000
42	-1	(u) (dbar)	-42 -41	63	62	47	40	501	513	0.000	-0.000	2832.442	2832.442	0.000
43	1000024	(~chi 1+)	-44	9	9	6.4	64	o o	0	25.812	213.204	515.658	611.985	250.000
4.4	1000023	(~chi_20)	-44	10	10	65	65	0	0	-20.321	-219.788	2256.233	2280.747	250.000
45	21 21	(g)	-44 -44	38	38	66	66	501	512	-1.057 -4.027	0.426 5.814	-15.993 -116.702	16.034	0.000
47	21	(g) (q)	-43	42	23	68	68	503	513	-0.408	0.343	-23.868	23.874	0.000
48	21	(q)	-51	34	0	5.4	54	505	514	3.119	-1.352	16.843	17.183	0.000
49	21	(g)	-51	34	.0	60	60	514	507	0.109	0.112	0.069	0.171	0.000
50 51	21 21	(g) (q)	-52 -41	33 69	33 69	58 61	58 25	507 505	510 515	-0.844	-0.204	0.018	0.869 22.541	0.000
52	2	(u)	-42	70	70	26	26	509	0	0.000	0.000	-646.205	646.205	0.000
53	21	(g)	-44	37	37	71	71	508	506	-1.310	2.800	1.037	3.261	0.000
54 55	21	(g)	-44 -44	48	48	72 73	72 73	505 510	514	3.189	-1.040	16.848	17.179 7.596	0.000
56	21 21	(g) (q)	-44	35	35	7.4	7.4	509	511 504	0.423 -2.795	-1.703 1.324	-7.391	31.206	0.000
57	2	(u)	-44	31	31	75	75	506	0	0.476	-1.115	-605.145	605.147	0.330
58	21	(g)	-44	50	50	76	76	507	510	-0.842	-0.196	0.022	0.865	0.000
59 60	21 21	(g)	-44 -44	36 49	36 49	77 78	77	511 514	508 507	0.833	0.186	-0.398	0.942	0.000
61	21	(g) (g)	-43	51	42	79	79	504	515	-0.084	-0.369	2.348	2.378	0.000
62	2	(u)	-61	1	0	41	41	504	0	-0.592	0.805	2832.440	2832.440	0.000
63	-1	(dbar)	-61	.2	.0	42	42	0	504	0.466	-1.387	-217.111	217.116	0.000
64 65	1000024	(~chi_1+) (~chi_20)	-62 -62	43	43	83 102	103	0	0	25.798 -20.769	213.056	514.977 2256.941	611.359 2281.397	250.000
66	21	(q)	-62	45	45	129	129	501	512	-1.022	0.324	-15.996	16.031	0.000
67	21	(q)	-62	46	46	138	138	512	503	-3.776	5.068	-116.725	116.896	0.000
68	21	(g)	-62	47	47	137	137	503	504	-0.357	0.191	-23.869	23.872	0.000

Monte-Carlo-Ereignis-Generatoren

Beispiel

vollständige Beschreibung des Kollisionsereignisses entsprechend umfangreich:

```
| 130 | 131 | 132 | 133 | 134 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135
```

Monte-Carlo-Ereignis-Generatoren

Beispiel

vollständige Beschreibung des Kollisionsereignisses entsprechend umfangreich:

```
gamma
```

Monte Carlo generation

Matrix elements (ME):

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

2) Resonance decays: includes correlations.

Parton Showers (PS):

3) Final-state parton showers.

4) Initial-state parton showers.

Slide: Else Lytken et al.

Monte-Carlo Event Generation (Overview)

Monte Carlo generation

5) Multiple parton—parton interactions.

6) Beam remnants, with colour connections.

5) + 6) = Underlying Event

Slide: Else Lytken et al.

- $e^+e^- \rightarrow Y(4S) \rightarrow BB$ Anfangszustand genau bekannt
 - → Generation startet mit Y(4S)-Teilchen
 - → Zerfallskette simuliert mit EvtGen-Software (Verzweigungsverhältnisse und Zerfallsmodelle)
- e+e- → dd Simulation von Fragmentation ähnlich wie bei ATLAS
- e+e- → f+f-Spezielle Generatoren basierend auf QED-Rechnungen

```
-213 (rho-)
      -211 (pi-)
       111 (pi0)
           22 (gamma)
           22 (gamma)
   323 (K*+)
     311 (K0)
       310 (K S0)
         211 (pi+)
        -211 (pi-)
     211 (pi+)
-521 (B-)
   423 (D*0)
     421 (D0)
      -321 (K-)
       211 (pi+)
      22 (gamma)
    15 (tau-)
      13 (mu-)
     -14 (anti-nu mu)
      16 (nu tau)
   -16 (anti-nu tau)
```

300553 (Upsilon(4S)) 521 (B+)

> 443 (J/psi) 211 (pi+)

-211 (pi-) 211 (pi+)

- Detektorsimulation:
 - erhält Teilchenliste aus Ereignis-Generator als Eingabe
 - simuliert Durchgang aller Teilchen durch Detektorkomponenten
 - Coulombstreuung (simuliert Streuwinkel)
 - Teilchenzerfälle (simuliert Lebensdauer)
 - Ionisierungsenergie (simuliert ΔE)
 - elektromagnetische / hadronische Schauer
 - schlussendlich: Signale in Detektorausleseelektronik
- Simulierte Ausgabe hat gleiches Format wie echte Daten
 - einfacher Vergleich zwischen Daten und MC

(vorausgesetzt die Effizienzen sind gleich)

- Programmpaket: GEANT4 (toolkit for the simulation of the passage of particles through matter using MC methods, initiated 1994, CERN)
 - verwendet von ATLAS, CMS, ALICE, LHCb, ILC, Belle-II, ..., Astrophysikern, für klinische Studien, für Simulation von Strahlungsgefahr für Astronauten, in der Mikroelektronik, ...

Komplexes Beispiel zur Monte Carlo Methode

Moderne Experimente der Hochenergiephysik bestehen aus sehr vielen einzelnen Detektoren

- L3 am LEP Beschleuniger (CERN) hatte u.a. etwa 11 000 Kristalle zur Energiemessung
- ullet CMS am LHC Beschleuniger wird ca. $15\,000$ Silizium-Streifendetektoren enthalten mit etwa 10^7 einzelnen Kanälen

Zur Analyse der Daten werden sehr detailierte MC Simulationen benötigt

- Simulation der physikalischen Reaktion: alle enstehenden Teilchen und deren erwartete Energie-, Impuls- und Winkelverteilungen
- Nachweiswahrscheinlichkeit für jedes Detektorelement
- Orts- und Energieauflösung jeder einzelnen Detektorkomponente

Am Ende der Simulation stehen digitalisierte Signale der einzelnen Detektorkomponenten, die sich nicht von echten Daten unterscheiden

Der simulierte Datensatz dient dann zur Optimierung der Selektion und Bestimmung der Akzeptanz

Komplexes Beispiel zur Monte Carlo Methode

-CMS Experiment am LHC Beschleuniger am CERN: Simulation eines Top-Paar-Ereignisses $pp \to t\bar{t} + X$

Komplexes Beispiel zur Monte Carlo Methode

-CMS Experiment am LHC Beschleuniger am CERN: Im Vergleich zu einem realen Ereignisse in den Daten $pp \to t\bar t + X$

Monte-Carlo Event Generation: in ATLAS

Monte Carlo (MC) - What is MC?

- MC simulates what happens at the LHC and ATLAS
- Many different programmes can be used at each stage

Monte-Carlo Event Generation: "Truth Record"

MC Generation

- MC Generator stops with set of "stable" final state particles
- Complete 4-vector info is known about every particle
- All parent-daughter relations are known and stored
- High energy parton state known as parton level
- Stable particle state known as hadron level
- This level of information is often called the truth record
- This is the pure event before it interacts with any apparatus

Reconstruction

Going from electronic pulses to analysis objects

- Data and MC pass through the same reconstruction algorithms
- Raw electronic pulses reconstructed into:
 - Tracks
 - Calorimeter deposits
- Which are then reconstructed into:
 - · Jets, electron, muons, taus,
 - Photons, tracks, missing $E_{\rm T}$

Real life issues need to be reflected in the MC

- · Some parts of the detector become faulty over time
- e.g. A section of the calorimeter readout dies and cannot be repaired until the detector is opened up in a shutdown
- Lets say that this affects x% of the data luminosity
- Need to generate MC with this problem in x% of the MC
 - Cannot know x until end of year
 - ullet \Rightarrow Need to reprocess the MC at the end of the year
- Some MC bugs do not become apparent for some time

Teilchenidentifikation in ATLAS

- Schematische Darstellung von Teilchenidentifikation in ATLAS (und ähnlich aufgebauten Detektoren)
- Tatsächliche Implementation = komplexe Algorithmen, oftmals mit ML

Zusammenfassung

Kurzer Überblick zu

- Monte Carlo Methoden
- Zufallszahlen erzeugen
- Beliebig verteilte Zufallszahlen
- Ereignis-Generatoren in der Teilchenphysik
- Detektorsimulation

Zufallszahlen und MC Simulation auch für viele andere Bereiche wichtig:

Statistik, "Toy"-Experimente, Risikoabschätzung, ...