

### **Final Presentation**

How various features of East Asian Restaurants in CA influence their review stars?

## Data preprocessing

# **Extract**

### Process

- 1. Extract **East Asian Restaurants** (Keyword: Chinese, Korean, etc.) in CA
- 2. Include all original features (e.g. **business name, stars** and **attributes** like **TakeOut option**, **Parking availability, etc**).
- 3. Data size: 14825 \* 87
- 1. Remove permanently closed restaurant
- 2. Extract object data (e.g. hour, parking, etc)
- 3. Initialize new features (daily & weekly working hour)

# Combine

- 1. Combine **business data** with **review data** using **'business\_id'**;
- 2. Apply NLP strategies (e.g. remove stop words, punctuations, symbols; lemmatization)
- 3.Initialize sentiment (based on customer's review star)

# Polish

1. Unify type in mixed-type feature

## **Preliminary Analysis Recap**





## **Shiny App: Word Cloud View**



- 1. Due to python virtual environment on shinyapp.io, python plotting functions can't be shown properly (word cloud)
- 2. Word cloud view was removed in newer version of shiny

## **Shiny App: Text Frequency view**



# **Shiny App: Text Importance View**



# **Shiny App: Parking Map & Modeling**



# **Modeling data**

Y



|   | comment<br>star                                 | Hour per<br>week                              | HasTV                                                     | Alcohol                      | WiFi                         | Garage                          | Dinner                      | Accept<br>Noise         |
|---|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|------------------------------|------------------------------|---------------------------------|-----------------------------|-------------------------|
|   | Star given by customer                          | Weekly<br>open hours<br>of each<br>restaurant | Is there a<br>TV in the<br>restaurant                     | Provide<br>Alcohol<br>or not | ls free<br>WiFi<br>available | Any<br>place to<br>park<br>cars | Provide<br>dinner<br>Or not | Is the noise acceptable |
| - | Multi-<br>Categorical<br>Ordinal<br>(1,2,3,4,5) | Continuous<br>(16h-102h)                      | Binary Categorical data (1 indicates yes; 0 indicates no) |                              |                              |                                 | 8                           |                         |

#### **Cumulative Logit Models For Ordinal Responses**

#### **Model function:**

$$logit[P(Y \le j)] = log[\frac{P(Y \le j)}{1 - P(Y \le j)}] = log[\frac{\pi_1^+ \dots + \pi_j^-}{\pi_{j+1}^+ \dots + \pi_j^-}] = \alpha_j^- + \beta x, j = 1, 2, ..., J - 1$$

$$P(Y \le j) = exp(\alpha_j^- + \beta x) / [1 + exp(\alpha_j^- + \beta x)], j = 1, 2, ..., J - 1$$
with 12 significant features:
$$\frac{P(Y \le j | X = x + 1) / P(Y > j | X = x + 1)}{P(Y \le j | X = x) / P(Y > j | X = x)}$$

#### **Result with 12 significant features:**

| _ |             |                                       |               |                                       |          |                                       |                    | $= \exp(\beta) =$                     | $\exp(0.008) \approx 1$ |
|---|-------------|---------------------------------------|---------------|---------------------------------------|----------|---------------------------------------|--------------------|---------------------------------------|-------------------------|
|   | variable    | coefficient<br>&significance<br>level | variable      | coefficient<br>&significance<br>level | variable | coefficient<br>&significance<br>level | variable           | coefficient<br>&significance<br>level |                         |
|   | Intercept 1 | -3.843***                             | BikeParking1  | 0.621***                              | lot1     | -0.143**                              | dinner1            | 0.268**                               |                         |
|   | Intercept 2 | -3.204***                             | Reservations1 | 0.133**                               | valet1   | -0.683***                             | Total_hour         | 0.008***                              |                         |
|   | Intercept 3 | -2.582***                             | Alcohol1      | -0.416***                             | garage1  | -0.877***                             | acceptable noise1  | 1.301***                              |                         |
|   | Intercept 4 | -1.632***                             | WiFi1         | -0.267***                             | street1  | 0.269***                              | upscale<br>classy1 | -0.176**                              | 9                       |

Significant level: \*\*\* p < 0.001, \*\* p < 0.01, \* p < 0.05

### **Cumulative Logit Models under different categories**

#### **Difference between Japanese and Chinese restaurants:**

|                    | барансяс                               |                    |                                        |  |  |  |
|--------------------|----------------------------------------|--------------------|----------------------------------------|--|--|--|
| variable           | coefficient<br>& significance<br>level | variable           | coefficient<br>& significance<br>level |  |  |  |
| Intercept 1        | -3.563***                              | BikeParking1       | 0.948***                               |  |  |  |
| Intercept 2        | -2.888***                              | Good For<br>Groups | 0.455***                               |  |  |  |
| Intercept 3        | -2.247***                              | garage1            | -0.801***                              |  |  |  |
| Intercept 4        | -1.269***                              | WiFi1              | -0.839***                              |  |  |  |
| Total_hour         | 0.014***                               | street1            | 0.461***                               |  |  |  |
| upscale<br>classy1 | -0.360***                              |                    |                                        |  |  |  |

Significant level: \*\*\* p < 0.001, \*\* p < 0.01, \* p < 0.05

#### Chinese

|                    | Chinese                                |              |                                        |  |  |  |
|--------------------|----------------------------------------|--------------|----------------------------------------|--|--|--|
| variable           | coefficient<br>& significance<br>level | variable     | coefficient<br>& significance<br>level |  |  |  |
| Intercept 1        | -2.768***                              | BikeParking1 | 0.692***                               |  |  |  |
| Intercept 2        | -2.153***                              | HasTV        | -0.225*                                |  |  |  |
| Intercept 3        | -1.592**                               | Alcohol1     | -0.687***                              |  |  |  |
| Intercept 4        | -0.627**                               | lot1         | 0.585***                               |  |  |  |
| Total_hour         | 0.021***                               | dinner1      | -0.343*                                |  |  |  |
| upscale<br>classy1 | 0.387***                               |              |                                        |  |  |  |

Significant level: \*\*\* p < 0.001, \*\* p < 0.01, \* p < 0.05

#### **Goodness of fit test**

 $H_0$ : The model fits the data well  $H_1$ : The model doesn't fit the data well

| Goodness of Fit test |             |         |       |  |  |
|----------------------|-------------|---------|-------|--|--|
|                      | $\chi^2$    | p-value |       |  |  |
| 12features<br>Model  | 4.29 * 10 4 | 42740   | 0.238 |  |  |
| Chinese              | 6594.96     | 6629    | 0.614 |  |  |
| Japanese             | 1.802 * 104 | 18041   | 0.527 |  |  |

### **Conclusion**



### Limitation





# THANK YOU

