```
In [3]: import pandas as pd
         from chembl webresource client.new client import new client
In [5]: target = new client.target
         target query = target.search('CHEMBL233')
         targets = pd.DataFrame.from dict(target query)
         targets
Out[5]:
             cross references organism
                                                pref_name score species_group_flag target_chembl_id
                                                                                                                target_components
                                                                                                                                     target_type tax_id
                                                 Mu opioid
                                                                                                              [{'accession': 'P35372',
                                                                                                                                          SINGLE
                                  Homo
                           []
                                                              12.0
                                                                                                                                                   9606
         0
                                                                                              CHEMBL233
                                                                                  False
                                 sapiens
                                                                                                             'component descriptio...
                                                                                                                                        PROTEIN
                                                   receptor
                                  Homo
                                            CCR5/mu opioid
                                                                                                               [{'accession': 'P51681',
                                                                                                                                        PROTEIN
                                                               8.0
                           []
                                                                                  False
                                                                                         CHEMBL3301384
                                                                                                                                                   9606
         1
                                                                                                                                       COMPLEX
                                 sapiens
                                           receptor complex
                                                                                                             'component descriptio...
                                           Opioid receptors;
                                                                                                               [{'accession': 'P41143',
                                                                                                                                     SELECTIVITY
                                  Homo
         2
                           []
                                                               7.0
                                                                                         CHEMBL2095149
                                                                                                                                                    9606
                                                                                  False
                                 sapiens
                                                mu & delta
                                                                                                             'component descriptio...
                                                                                                                                          GROUP
                                           Opioid receptors;
                                                                                                               [{'accession': 'P41145',
                                  Homo
                                                                                                                                     SELECTIVITY
                           []
                                                               7.0
         3
                                                                                  False
                                                                                         CHEMBL2095156
                                                                                                                                                   9606
                                 sapiens
                                               mu & kappa
                                                                                                             'component descriptio...
                                                                                                                                          GROUP
                                                 Mu opioid
                                          receptor/Alpha-2A
                                                                                                               [{'accession': 'P08913',
                                                                                                                                        PROTEIN
                                  Homo
                                                               7.0
         4
                           []
                                                                                  False
                                                                                         CHEMBL3883321
                                                                                                                                                    9606
                                                                                                                                       COMPLEX
                                 sapiens
                                                 adrenergic
                                                                                                             'component descriptio...
                                                   receptor
                                               Cannabinoid
                                             receptor 1/Mu-
                                                                                                               [{'accession': 'P21554',
                                  Homo
                                                                                                                                        PROTEIN
                                                               7.0
         5
                           []
                                                                                  False
                                                                                         CHEMBL3885538
                                                                                                                                                   9606
                                 sapiens
                                                type opioid
                                                                                                             'component descriptio...
                                                                                                                                       COMPLEX
                                                   receptor
                                           Opioid receptors;
                                                                                                              [{'accession': 'P41145',
                                                                                                                                        PROTEIN
                                  Homo
                                                               6.0
         6
                           []
                                                                                                                                                    9606
                                                                                  False
                                                                                         CHEMBL2095181
                                            mu/kappa/delta
                                                                                                             'component_descriptio...
                                                                                                                                          FAMILY
                                 sapiens
In [8]: selected_target = targets.target_chembl_id[0]
         selected_target
```

Out[8]: 'CHEMBL233'

```
In [12]:
          activity = new client.activity
          res = activity.filter(target chembl id=selected target).filter(standard type="IC50")
In [15]:
          df = pd.DataFrame.from dict(res)
In [18]: print(len(res))
         2452
In [37]:
          df.head()
Out[37]:
             action_type activity_comment activity_id activity_properties assay_chembl_id assay_description assay_type assay_variant_accession assay_
                                                                                             Binding affinity on
          0
                   None
                                      None
                                                 32544
                                                                             CHEMBL749749
                                                                                                 cloned opioid
                                                                                                                       В
                                                                                                                                           None
                                                                                                receptor mu ...
                                                                                             Binding affinity on
          1
                   None
                                      None
                                                 33756
                                                                             CHEMBL749749
                                                                                                 cloned opioid
                                                                                                                        В
                                                                                                                                           None
                                                                                                receptor mu ...
                                                                                             Binding affinity on
          2
                                                                                                 cloned opioid
                   None
                                      None
                                                 38634
                                                                             CHEMBL749749
                                                                                                                        В
                                                                                                                                           None
                                                                                                receptor mu ...
                                                                                             Binding affinity on
           3
                                                 38643
                                                                             CHEMBL749749
                                                                                                 cloned opioid
                   None
                                      None
                                                                                                                        В
                                                                                                                                           None
                                                                                                receptor mu ...
                                                                                             Binding affinity on
          4
                   None
                                      None
                                                 39754
                                                                             CHEMBL749749
                                                                                                 cloned opioid
                                                                                                                       В
                                                                                                                                            None
                                                                                                receptor mu ...
         5 rows × 46 columns
In [33]:
          df.tail()
```

it[33]:		action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession
	2447	{'action_type': 'ANTAGONIST', 'description': '	None	25631924		CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
	2448	{'action_type': 'ANTAGONIST', 'description': '	None	25631925		CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
	2449	{'action_type': 'ANTAGONIST', 'description': '	None	25631926		CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
	2450	None	None	25778419	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5465602	Selectivity interaction (BET inhibitor selecti	В	None
	2451	None	None	25787567	[{'comments': None, 'relation': None, 'result	CHEMBL5474455	Selectivity interaction (Opioid Mu GTPgS	В	None

agoni...

5 rows × 46 columns

In [35]: df.info()
df.columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2452 entries, 0 to 2451
Data columns (total 46 columns):

# 	Columns (total 46 columns)	Non-Null Count	Dtype
0	action_type	66 non-null	object
1	activity_comment	1181 non-null	object
2	activity_id	2452 non-null	int64
3	activity_properties	2452 non-null	object
4	assay_chembl_id	2452 non-null	object
5	assay_description	2452 non-null	object
6	assay_type	2452 non-null	object
7	assay_variant_accession	0 non-null	object
8	assay_variant_mutation	0 non-null	object
9	bao_endpoint	2452 non-null	object
10	bao_format	2452 non-null	object
11	bao_label	2452 non-null	object
12	canonical_smiles	2419 non-null	object
13	data_validity_comment	7 non-null	object
14	data_validity_description	7 non-null	object
15	document_chembl_id	2452 non-null	object
16	document_journal	1339 non-null	object
17	document_year	1395 non-null	float64
18	ligand_efficiency	674 non-null	object
19	molecule_chembl_id	2452 non-null	object
20	molecule_pref_name	982 non-null	object
21	<pre>parent_molecule_chembl_id</pre>	2452 non-null	object
22	pchembl_value	1187 non-null	object
23	potential_duplicate	2452 non-null	int64
24	qudt_units	1531 non-null	object
25	record_id	2452 non-null	int64
26	relation	1496 non-null	object
27	src_id	2452 non-null	int64
28	standard_flag	2452 non-null	int64
29	standard_relation	1496 non-null	object
30	standard_text_value	0 non-null	object
31	standard_type	2452 non-null	object
32	standard_units	1531 non-null	object
33	standard_upper_value	0 non-null	object
34	standard_value	1509 non-null	object
35	target_chembl_id	2452 non-null	object
36	target_organism	2452 non-null	object

```
37 target pref name
                                        2452 non-null
                                                       object
         38 target tax id
                                                       obiect
                                        2452 non-null
         39 text value
                                        0 non-null
                                                       object
                                        0 non-null
         40 toid
                                                       object
         41 type
                                        2452 non-null object
                                                       object
         42 units
                                        1469 non-null
         43 uo units
                                       1531 non-null object
         44 upper value
                                       7 non-null
                                                       object
         45 value
                                       1509 non-null
                                                       object
        dtypes: float64(1), int64(5), object(40)
        memory usage: 881.3+ KB
Out[35]: Index(['action type', 'activity comment', 'activity id', 'activity properties',
                 'assay chembl id', 'assay description', 'assay type',
                 'assay variant accession', 'assay variant mutation', 'bao endpoint',
                'bao format', 'bao label', 'canonical smiles', 'data validity comment',
                'data validity description', 'document chembl id', 'document journal',
                 'document year', 'ligand efficiency', 'molecule chembl id',
                'molecule pref name', 'parent molecule chembl id', 'pchembl value',
                'potential duplicate', 'qudt units', 'record id', 'relation', 'src id',
                 'standard flag', 'standard relation', 'standard text value',
                 'standard type', 'standard units', 'standard upper value',
                'standard value', 'target_chembl_id', 'target_organism',
                'target_pref_name', 'target_tax_id', 'text_value', 'toid', 'type',
                'units', 'uo units', 'upper value', 'value'],
               dtvpe='object')
         df2 = df.dropna(subset=["standard value", "canonical smiles"])
In [42]: df2
```

Out[42]:

•	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession
0	None	None	32544	П	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
1	None	None	33756	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
2	None	None	38634	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
3	None	None	38643	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
4	None	None	39754	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
•••								
2447	{'action_type': 'ANTAGONIST', 'description': '	None	25631924		CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
2448	{'action_type': 'ANTAGONIST', 'description': '	None	25631925	0	CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
2449	{'action_type': 'ANTAGONIST', 'description': '	None	25631926	0	CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
2450	None	None	25778419	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5465602	Selectivity interaction (BET inhibitor selecti	В	None

	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession
2451	None	None	25787567	[{'comments': None, 'relation': None, 'result	CHEMBL5474455	Selectivity interaction (Opioid Mu GTPgS agoni	В	None
1500								

```
In [46]: len(df2.canonical_smiles.unique())
```

Out[46]: 1301

```
In [51]: df2_nr = df2.drop_duplicates(subset="canonical_smiles", keep="first").reset_index(drop=True)
```

In [54]: df2_nr

Out[54]:

0	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession
0	None	None	32544	П	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
1	None	None	33756	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
2	None	None	38634	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
3	None	None	38643	0	CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
4	None	None	39754		CHEMBL749749	Binding affinity on cloned opioid receptor mu	В	None
•••								
1296	{'action_type': 'ANTAGONIST', 'description': '	None	25631924		CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
1297	{'action_type': 'ANTAGONIST', 'description': '	None	25631925	0	CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
1298	{'action_type': 'ANTAGONIST', 'description': '	None	25631926		CHEMBL5365899	Antagonist activity at human mu opioid recepto	F	None
1299	None	None	25778419	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5465602	Selectivity interaction (BET inhibitor selecti	В	None

Data pre-processing of the bioactivity data

Combine the 3 columns (molecule_chembl_id,canonical_smiles,standard_value) and bioactivity_class into

```
In [62]: selection = ['molecule_chembl_id','canonical_smiles','standard_value']
    df3 = df2_nr[selection]
    df3
```

	molecule_chembl_id	canonical_smiles	standard_value
0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	5250.0
1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	3480.0
2	CHEMBL13470	C = CCN1C[C@H](C)N([C@H](c2ccc(C(=O)N(CC)CC)cc2)	320.0
3	CHEMBL127802	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	4130.0
4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	10000.0
•••			
1296	CHEMBL5429557	CN(C)[C@H](CNC(=O)[C@H]1C[C@]1(C)c1ccccc1)Cc1c	210.0
1297	CHEMBL5397104	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	110.0
1298	CHEMBL5414957	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	29.0
1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](100000.0
1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0

Out[62]:

Labeling compounds as either being active, inactive or intermediate

The bioactivity data is in the IC50 unit. Compounds having values of less than 1000 nM will be considered to be active while those greater than 10,000 nM will be considered to be inactive. As for those values in between 1,000 and 10,000 nM will be referred to as intermediate.

```
In [68]: bioactivity_threshold = []
for i in df3.standard_value:
    if float(i) >= 10000:
        bioactivity_threshold.append("inactive")
    elif float(i) <= 1000:
        bioactivity_threshold.append("active")
    else:
        bioactivity_threshold.append("intermediate")</pre>
```

```
In [71]: bioactivity_class = pd.Series(bioactivity_threshold, name='class')
    df5 = pd.concat([df3, bioactivity_class], axis=1)
    df5
```

Out[71]:	[71]: molecule_chembl_id		canonical_smiles	standard_value	class
	0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	5250.0	intermediate
	1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	3480.0	intermediate
	2	CHEMBL13470	C = CCN1C[C@H](C)N([C@H](c2ccc(C(=O)N(CC)CC)cc2)	320.0	active
	3	CHEMBL127802	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	4130.0	intermediate
	4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	10000.0	inactive
	•••				
	1296	CHEMBL5429557	CN(C)[C@H](CNC(=O)[C@H]1C[C@]1(C)c1ccccc1)Cc1c	210.0	active
	1297	CHEMBL5397104	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	110.0	active
	1298 CHEMBL5414957		CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	29.0	active
1299 CHEMBL20		CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](100000.0	inactive
	1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0	inactive

```
In [78]: df5.to_csv('opioid receptor_03_bioactivity_data_curated.csv', index=False)
In [84]: df = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\opioid receptor\opioid receptor_03_bioactivity_data_curated.csv")
df
```

	molecule_chembl_id	canonical_smiles	standard_value	class
0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	5250.0	intermediate
1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	3480.0	intermediate
2	CHEMBL13470	C = CCN1C[C@H](C)N([C@H](c2ccc(C(=O)N(CC)CC)cc2)	320.0	active
3	CHEMBL127802	CCCCN1CCC(=C(c2ccccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	4130.0	intermediate
4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	10000.0	inactive
•••				
1296	CHEMBL5429557	CN(C)[C@H](CNC(=O)[C@H]1C[C@]1(C)c1ccccc1)Cc1c	210.0	active
1297	CHEMBL5397104	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	110.0	active
1298	CHEMBL5414957	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	29.0	active
1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](100000.0	inactive
1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0	inactive

Out[84]:

```
In [88]: df_no_smiles = df.drop(columns='canonical_smiles')
In [91]: smiles = []
for i in df.canonical_smiles.tolist():
    cpd = str(i).split('.')
    cpd_longest = max(cpd, key = len)
    smiles.append(cpd_longest)

smiles = pd.Series(smiles, name = 'canonical_smiles')

In [94]: df_clean_smiles = pd.concat([df_no_smiles,smiles], axis=1)
    df_clean_smiles
```

:		molecule_chembl_id	standard_value	class	canonical_smiles
	0	CHEMBL423694	5250.0	intermediate	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1
	1	CHEMBL278078	3480.0	intermediate	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1
	2	CHEMBL13470	320.0	active	C = CCN1C[C@H](C)N([C@H](c2ccc(C(=O)N(CC)CC)cc2)
	3	CHEMBL127802	4130.0	intermediate	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1
	4	CHEMBL126946	10000.0	inactive	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1
	•••				
12	296	CHEMBL5429557	210.0	active	CN(C)[C@H](CNC(=O)[C@H]1C[C@]1(C)c1ccccc1)Cc1c
12	297	CHEMBL5397104	110.0	active	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1
12	298	CHEMBL5414957	29.0	active	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1
12	299	CHEMBL2017291	100000.0	inactive	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](
13	800	CHEMBL3643413	30000.0	inactive	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(

Out[94]:

Calculate Lipinski descriptors

Christopher Lipinski, a scientist at Pfizer, came up with a set of rule-of-thumb for evaluating the druglikeness of compounds. Such druglikeness is based on the Absorption, Distribution, Metabolism and Excretion (ADME) that is also known as the pharmacokinetic profile. Lipinski analyzed all orally active FDA-approved drugs in the formulation of what is to be known as the Rule-of-Five or Lipinski's Rule.

The Lipinski's Rule stated the following:

Molecular weight < 500 Dalton Octanol-water partition coefficient (LogP) < 5 Hydrogen bond donors < 5 Hydrogen bond acceptors < 10

```
In [99]: import numpy as np
from rdkit import Chem
from rdkit.Chem import Descriptors, Lipinski
```

Calculate descriptors

```
# Inspired by: https://codeocean.com/explore/capsules?query=tag:data-curation
In [105...
          def lipinski(smiles, verbose=False):
              moldata= []
              for elem in smiles:
                  mol=Chem.MolFromSmiles(elem)
                  moldata.append(mol)
              baseData= np.arange(1,1)
              i=0
              for mol in moldata:
                  desc MolWt = Descriptors.MolWt(mol)
                  desc MolLogP = Descriptors.MolLogP(mol)
                  desc NumHDonors = Lipinski.NumHDonors(mol)
                  desc_NumHAcceptors = Lipinski.NumHAcceptors(mol)
                  row = np.array([desc_MolWt,
                                   desc MolLogP,
                                   desc_NumHDonors,
                                   desc_NumHAcceptors])
                  if(i==0):
                       baseData=row
                  else:
                      baseData=np.vstack([baseData, row])
                  i=i+1
              columnNames=["MW","LogP","NumHDonors","NumHAcceptors"]
              descriptors = pd.DataFrame(data=baseData,columns=columnNames)
```

return descriptors

In [109...

df_lipinski = lipinski(df_clean_smiles.canonical_smiles)
df_lipinski

Out[109...

	MW	LogP	NumHDonors	NumHAcceptors
0	378.516	4.36250	1.0	3.0
1	378.516	4.36250	1.0	3.0
2	449.639	4.84720	0.0	4.0
3	404.598	5.86640	0.0	2.0
4	366.480	4.49300	1.0	2.0
•••				
1296	352.478	2.95890	2.0	3.0
1297	352.478	2.95890	2.0	3.0
1298	386.923	3.61230	2.0	3.0
1299	415.453	4.16254	1.0	7.0
1300	450.465	2.88450	1.0	7.0

1301 rows × 4 columns

Combine DataFrames

In [115...

df_lipinski

	MW	LogP	NumHDonors	NumHAcceptors
0	378.516	4.36250	1.0	3.0
1	378.516	4.36250	1.0	3.0
2	449.639	4.84720	0.0	4.0
3	404.598	5.86640	0.0	2.0
4	366.480	4.49300	1.0	2.0
•••			•••	
1296	352.478	2.95890	2.0	3.0
1297	352.478	2.95890	2.0	3.0
1298	386.923	3.61230	2.0	3.0
1299	415.453	4.16254	1.0	7.0
1300	450.465	2.88450	1.0	7.0

In [117...

df_lipinski.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1301 entries, 0 to 1300
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	MW	1301 non-null	float64
1	LogP	1301 non-null	float64
2	NumHDonors	1301 non-null	float64
3	NumHAcceptors	1301 non-null	float64

dtypes: float64(4)
memory usage: 40.8 KB

In [119...

df_lipinski.describe()

	MW	LogP	NumHDonors	NumHAcceptors
count	1301.000000	1301.000000	1301.000000	1301.000000
mean	460.980948	3.963422	2.023828	4.727902
std	181.132768	1.958788	2.685611	2.663670
min	115.220000	-8.073000	0.000000	1.000000
25%	365.433000	3.114900	1.000000	3.000000
50%	419.160000	3.950440	1.000000	4.000000
75%	496.604000	4.958700	2.000000	6.000000
max	1904.213000	12.487600	29.000000	26.000000

In [122... **df**

\cap	4-	г	1	7	7	
U	uι	ш	Т	_	_	

	molecule_chembl_id	canonical_smiles	standard_value	class
0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	5250.0	intermediate
1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	3480.0	intermediate
2	CHEMBL13470	C = CCN1C[C@H](C)N([C@H](c2ccc(C(=O)N(CC)CC)cc2)	320.0	active
3	CHEMBL127802	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	4130.0	intermediate
4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	10000.0	inactive
•••			•••	
1296	CHEMBL5429557	CN(C)[C@H](CNC(=O)[C@H]1C[C@]1(C)c1ccccc1)Cc1c	210.0	active
1297	CHEMBL5397104	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	110.0	active
1298	CHEMBL5414957	CN(C)[C@H](CNC(=O)[C@@H]1C[C@]1(C)c1ccccc1)Cc1	29.0	active
1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](100000.0	inactive
1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0	inactive

In [124... df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1301 entries, 0 to 1300 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	<pre>molecule_chembl_id</pre>	1301 non-null	object
1	canonical_smiles	1301 non-null	object
2	standard_value	1301 non-null	float64
3	class	1301 non-null	object

dtypes: float64(1), object(3)

memory usage: 40.8+ KB

In [126... df.describe()

ut[126		standard_value
	count	1.301000e+0
	mean	9.888287e+0
	std	6.473024e+0
	min	-2.810000e+0
	25%	5.800000e+0
	50%	1.100000e+0
	75%	9.600000e+0

max

combine the 2 DataFrame

2.000000e+06

```
In [132... df_combined = pd.concat([df,df_lipinski], axis=1)
```

In [135... df_combined

$\cap \cup +$	[10E
Ou L	TOO

	molecule_chembl_id	canonical_smiles	standard_value	class	MW	LogP	NumHDonors	Nu
0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	5250.0	intermediate	378.516	4.36250	1.0	
1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	3480.0	intermediate	378.516	4.36250	1.0	
2	CHEMBL13470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	320.0	active	449.639	4.84720	0.0	
3	CHEMBL127802	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	4130.0	intermediate	404.598	5.86640	0.0	
4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	10000.0	inactive	366.480	4.49300	1.0	
•••					•••	•••		
1296	CHEMBL5429557	CN(C)[C@H](CNC(=O) [C@H]1C[C@]1(C)c1ccccc1)Cc1c	210.0	active	352.478	2.95890	2.0	
1297	CHEMBL5397104	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	110.0	active	352.478	2.95890	2.0	
1298	CHEMBL5414957	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	29.0	active	386.923	3.61230	2.0	
1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](100000.0	inactive	415.453	4.16254	1.0	
1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0	inactive	450.465	2.88450	1.0	

1301 rows × 8 columns

In [137... d

df_combined.head()

Out[137		molecule_chembl_id	canonical_smiles	standard_value	class	MW	LogP	NumHDonors	NumHA
	0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	5250.0	intermediate	378.516	4.3625	1.0	
	1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	3480.0	intermediate	378.516	4.3625	1.0	
	2	CHEMBL13470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	320.0	active	449.639	4.8472	0.0	
	3	CHEMBL127802	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	4130.0	intermediate	404.598	5.8664	0.0	
	4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	10000.0	inactive	366.480	4.4930	1.0	
	4								Þ
In [139	df_	_combined.info()							
	<class 'pandas.core.frame.dataframe'=""></class>								

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1301 entries, 0 to 1300

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	<pre>molecule_chembl_id</pre>	1301 non-null	object
1	canonical_smiles	1301 non-null	object
2	standard_value	1301 non-null	float64
3	class	1301 non-null	object
4	MW	1301 non-null	float64
5	LogP	1301 non-null	float64
6	NumHDonors	1301 non-null	float64
7	NumHAcceptors	1301 non-null	float64

dtypes: float64(5), object(3)

memory usage: 81.4+ KB

In [141... df_combined.describe()

Out[141...

	standard_value	MW	LogP	NumHDonors	NumHAcceptors
count	1.301000e+03	1301.000000	1301.000000	1301.000000	1301.000000
mean	9.888287e+03	460.980948	3.963422	2.023828	4.727902
std	6.473024e+04	181.132768	1.958788	2.685611	2.663670
min	-2.810000e+04	115.220000	-8.073000	0.000000	1.000000
25%	5.800000e+01	365.433000	3.114900	1.000000	3.000000
50%	1.100000e+03	419.160000	3.950440	1.000000	4.000000
75%	9.600000e+03	496.604000	4.958700	2.000000	6.000000
max	2.000000e+06	1904.213000	12.487600	29.000000	26.000000

Convert IC50 to pIC50

To allow IC50 data to be more uniformly distributed, we will convert IC50 to the negative logarithmic scale which is essentially -log10(IC50).

This custom function pIC50() will accept a DataFrame as input and will:

Take the IC50 values from the standard_value column and converts it from nM to M by multiplying the value by 10 Take the molar value and apply - log10 Delete the standard_value column and create a new pIC50 column

```
In [148... # https://github.com/chaninlab/estrogen-receptor-alpha-qsar/blob/master/02_ER_alpha_R05.ipynb

import numpy as np

def pIC50(input):
    pIC50 = []

    for i in input['standard_value_norm']:
        molar = i*(10**-9) # Converts nM to M
        pIC50.append(-np.log10(molar))

    input['pIC50'] = pIC50
    x = input.drop('standard_value_norm', 1)
```

```
return x
          df combined.standard value.describe()
In [151...
Out[151...
           count
                    1.301000e+03
                    9.888287e+03
           mean
                    6.473024e+04
           std
                   -2.810000e+04
           min
                    5.800000e+01
           25%
           50%
                    1.100000e+03
           75%
                    9.600000e+03
                    2.000000e+06
           max
           Name: standard_value, dtype: float64
In [154...
          -np.log10( (10**-9)* 100000000 )
Out[154...
          1.0
           -np.log10( (10**-9)* 10000000000 )
In [156...
Out[156...
           -1.0
          def norm_value(input):
In [162...
              norm = []
              for i in input['standard_value']:
                  if i > 100000000:
                     i = 100000000
                   norm.append(i)
              input['standard_value_norm'] = norm
              x = input.drop('standard_value', axis=1)
              return x
```

We will first apply the norm_value() function so that the values in the standard_value column is normalized.

In [165...

df_norm = norm_value(df_combined)
df_norm

Out[165...

	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	st
0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	intermediate	378.516	4.36250	1.0	3.0	
1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	intermediate	378.516	4.36250	1.0	3.0	
2	CHEMBL13470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	active	449.639	4.84720	0.0	4.0	
3	CHEMBL127802	CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1	intermediate	404.598	5.86640	0.0	2.0	
4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	inactive	366.480	4.49300	1.0	2.0	
•••								
1296	CHEMBL5429557	CN(C)[C@H](CNC(=O) [C@H]1C[C@]1(C)c1ccccc1)Cc1c	active	352.478	2.95890	2.0	3.0	
1297	CHEMBL5397104	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	352.478	2.95890	2.0	3.0	
1298	CHEMBL5414957	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	386.923	3.61230	2.0	3.0	
1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453	4.16254	1.0	7.0	
1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(inactive	450.465	2.88450	1.0	7.0	

1301 rows × 8 columns

4

df_norm.standard_value_norm

In [168...

```
Out[168...
                     5250.0
                     3480.0
           1
                      320.0
           2
                     4130.0
           3
           4
                    10000.0
                      . . .
           1296
                      210.0
           1297
                      110.0
           1298
                       29.0
           1299
                   100000.0
           1300
                    30000.0
           Name: standard_value_norm, Length: 1301, dtype: float64
          df_norm.standard_value_norm.describe()
In [170...
Out[170...
           count
                    1.301000e+03
                    9.888287e+03
           mean
           std
                    6.473024e+04
           min
                   -2.810000e+04
           25%
                    5.800000e+01
           50%
                    1.100000e+03
           75%
                    9.600000e+03
           max
                    2.000000e+06
           Name: standard_value_norm, dtype: float64
          df_final = df_norm.drop('standard_value_norm', axis=1)
In [184...
```

df_final

\cap		+	Г1	0	4
U	u	L	1 4	-0	4

molecule_chembl_id		canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	
0	CHEMBL423694	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc(OC)c2)cc1	intermediate	378.516	4.36250	1.0	3.0	5.
1	CHEMBL278078	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccccc2OC)cc1	intermediate	378.516	4.36250	1.0	3.0	5.
2	CHEMBL13470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	active	449.639	4.84720	0.0	4.0	6.
3	3 CHEMBL127802 CCCCN1CCC(=C(c2cccc2)c2ccc(C(=O)N(CC)CC)cc2)CC1		intermediate	404.598	5.86640	0.0	2.0	5.
4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	c2)cc1 inactive 366	366.480 4.49300	1.0	2.0	5.	
•••								
1296 1297	CHEMBL5429557	CN(C)[C@H](CNC(=O) [C@H]1C[C@]1(C)c1ccccc1)Cc1c	active	352.478	2.95890	2.0	3.0	6.
	CHEMBL5397104	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	352.478	2.95890	2.0	3.0	6.
1298	CHEMBL5414957	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	386.923	3.61230	2.0	3.0	7.
1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453	4.16254	1.0	7.0	4.
1300	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(inactive	450.465	2.88450	1.0	7.0	4.

In []:

In [188...

df_final.pIC50.describe()

```
Out[188...
           count
                    1300.000000
                       6.223332
           mean
                       1.394669
           std
                       2.698970
           min
           25%
                       5.017729
           50%
                       5.958607
           75%
                       7.236572
                      10.903090
           max
           Name: pIC50, dtype: float64
```

Removing the 'intermediate' bioactivity class

Here, we will be removing the intermediate class from our data set.

```
In [194... df_2class = df_final[df_final["class"] != 'intermediate']
    df_2class
```

_			-	_	_	
n	1.1	+		1	a	/
U	и	L		_	\mathcal{L}	→

		molecule_chembl_id	canonical_smiles		MW	LogP	NumHDonors	NumHAcceptors	pIC!
	2	CHEMBL13470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	active	449.639	4.84720	0.0	4.0	6.4948
	4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	inactive	366.480	4.49300	1.0	2.0	5.0000
	8	CHEMBL338089	CCN(CC)C(=O)c1ccc(C(=C2CCN(c3ccccc3)CC2)c2cccc	inactive	424.588	6.27090	0.0	2.0	5.0000
	11	CHEMBL126842	CCN(CC)C(=O)c1ccc(C(=C2CCN(C)CC2)c2ccccc2)cc1	inactive	362.517	4.69610	0.0	2.0	5.0000
	17	CHEMBL129034	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc3ccccc23)cc1	active	398.550	5.50710	1.0	2.0	6.0877
	•••								
1	1296	CHEMBL5429557	CN(C)[C@H](CNC(=O) [C@H]1C[C@]1(C)c1ccccc1)Cc1c	active	352.478	2.95890	2.0	3.0	6.6777
1	1297	CHEMBL5397104	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	352.478	2.95890	2.0	3.0	6.9586
1	1298	CHEMBL5414957	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	386.923	3.61230	2.0	3.0	7.5376
1	1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453	4.16254	1.0	7.0	4.0000
1	1300	CHEMBL3643413	$\label{eq:ccc} \begin{split} CCC(=&O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)\\ (\end{split}$	inactive	450.465	2.88450	1.0	7.0	4.5228

```
In [319... df_2class.to_csv('opioid receptor_04_bioactivity_data_3class_pIC50.csv')
```

In [317... df_2class.columns

Exploratory Data Analysis (Chemical Space Analysis) via Lipinski descriptors

```
import seaborn as sns
sns.set(style='ticks')
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 10))
numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors', 'pIC50']
for i, column in enumerate(numeric_columns, 1):
    plt.subplot(2, 3, i) # 2 rows and 3 columns for better layout
    sns.boxplot(df_2class[column],color='green') # kde=True for kernel density estimate
    plt.title(f'boxplot of {column}')
    plt.xlabel(column)
    plt.ylabel('Frequency')
    plt.tight_layout()
    plt.show()
```


Frequency of Bioactivity Classes

```
In [213... # Set figure size
    plt.figure(figsize=(8, 6))
    # Count plot with hue
    sns.countplot(x='class', hue='class', data=df_2class, palette='viridis')
# Add Labels and title
    plt.xlabel('Bioactivity Class')
    plt.ylabel('Frequency')
    plt.title('Frequency of Bioactivity Classes')
# Show plot
    plt.show()
```

Frequency of Bioactivity Classes


```
In [220... sns.pairplot(df_2class, vars=['NumHDonors', 'NumHAcceptors'], hue='class', palette='colorblind')
# Show plot
plt.show()
```



```
In [224... sns.pairplot(df_2class, hue='class', palette='dark')
# Show plot
plt.show()
```



```
In [230...
    numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors']
    # Set figure size
    plt.figure(figsize=(12, 10))
    # Loop through numeric columns and create scatter plots
    for i, column in enumerate(numeric_columns, 1):
        plt.subplot(2, 2, i) # 2 rows, 2 columns layout
        sns.scatterplot(x=df_2class[column], y=df_2class['pIC50'], hue=df_2class['class'], palette='colorblind')
        plt.title(f'Scatter Plot: pIC50 vs {column}')
        plt.ylabel(column)
        plt.ylabel('pIC50')
    # Adjust Layout
    plt.tight_layout()
    plt.show()
```



```
In [233... plt.figure(figsize=(8, 5))
    sns.countplot(x="class", data=df, )
    plt.xlabel("Bioactivity Class")
    plt.ylabel("Count")
    plt.title("y Class Distribution")
    plt.show()
```



```
In [236... plt.figure(figsize=(6.6, 5.6))
    sns.scatterplot(x='MW', y='LogP', data=df_2class, hue='class', size='pIC50',palette='dark', edgecolor='black', alpha=0.7)
    plt.xlabel('MW', fontsize=14, fontweight='bold')
    plt.ylabel('LogP', fontsize=14, fontweight='bold')
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0)
    plt.show()

    dass
```



```
In [241...
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'pIC50', data = df_2class, hue = 'class', palette = 'coolwarm')
plt.xlabel('class', fontsize=14, fontweight='bold')
```

Out[241... Text(0.5, 0, 'class')

Statistical analysis | Mann-Whitney U Test

```
In [249...
# https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/
from numpy.random import seed
from scipy.stats import mannwhitneyu

def mannwhitney(descriptor, verbose=False):
    # Seed the random number generator for reproducibility
    seed(1)
```

```
# Select relevant columns
selection = [descriptor, 'class']
df = df 2class[selection]
# Split active and inactive classes
active = df[df['class'] == 'active'][descriptor]
inactive = df[df['class'] == 'inactive'][descriptor]
# Perform Mann-Whitney U test
stat, p = mannwhitneyu(active, inactive)
# Interpret the result
alpha = 0.05
interpretation = 'Same distribution (fail to reject H0)' if p > alpha else 'Different distribution (reject H0)'
# Store results in a DataFrame
results = pd.DataFrame({
    'Descriptor': [descriptor],
    'Statistics': [stat],
    'p': [p],
    'alpha': [alpha],
    'Interpretation': [interpretation]
})
# Save results to CSV
filename = f'mannwhitneyu_{descriptor}.csv'
results.to_csv(filename, index=False)
return results
```

In [252... mannwhitney('pIC50')

 Out[252...
 Descriptor
 Statistics
 p
 alpha
 Interpretation

 0
 pIC50
 NaN
 NaN
 0.05
 Different distribution (reject H0)

```
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'MW', data = df_2class,hue = 'class' , palette = 'dark')
plt.xlabel('class', fontsize=14, fontweight='bold')
plt.ylabel('MW', fontsize=14, fontweight='bold')
```

Out[258... Text(0, 0.5, 'MW')

LogP

```
In [269... plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'LogP', data = df_2class,hue = 'class' , palette = 'magma')
plt.xlabel(' class', fontsize=14, fontweight='bold')
plt.ylabel('LogP', fontsize=14, fontweight='bold')
```

Out[269... Text(0, 0.5, 'LogP')

Statistical analysis | Mann-Whitney U Test

In [272...

mannwhitney('LogP')

Out[272...

	Descriptor	Statistics	р	alpha	Interpretation
0	LogP	105271.5	0.405549	0.05	Same distribution (fail to reject H0)

NumHDonors

```
In [283... plt.figure(figsize=(5.5, 5.5))
    plt.figure(figsize=(5.5, 5.5))
    sns.boxplot(x = 'class', y = 'NumHDonors', data = df_2class,hue = 'class' , palette = 'bright')
    plt.xlabel(' class', fontsize=14, fontweight='bold')
    plt.ylabel('NumHDonors', fontsize=14, fontweight='bold')

Out[283... Text(0, 0.5, 'NumHDonors')

    Figure size 550x550 with 0 Axes>
```


Statistical analysis | Mann-Whitney U Test

In [293... mannwhitney('NumHDonors')

Out[293...DescriptorStatisticspalphaInterpretation0NumHDonors123067.04.233636e-080.05Different distribution (reject H0)

NumHAcceptors

Statistical analysis | Mann-Whitney U Test

In [309...

mannwhitney('NumHAcceptors')

Out[309...

	Descriptor	Statistics	р	alpha	Interpretation
0	NumHAcceptors	91430.0	0.008387	0.05	Different distribution (reject H0)

Box Plots pIC50 values Taking a look at pIC50 values, the actives and inactives displayed statistically significant difference, which is to be expected since threshold values (IC50 < 1,000 nM = Actives while IC50 > 10,000 nM = Inactives, corresponding to pIC50 > 6 = Actives and pIC50 < 5 =

Inactives) were used to define actives and inactives.

Lipinski's descriptors Of the 4 Lipinski's descriptors (MW, LogP, NumHDonors and NumHAcceptors), only NumHDonors and NumHAcceptors exhibited difference between the actives and inactives while the other descriptors (only (MW, LogP shows statistically significant same difference between actives and inactives.

In [323...

df3 = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\opioid receptor\opioid receptor_04_bioactivity_data_3class_pIC50.csv")

In [325...

df3

\cap		+	г	\supset	7		
U	и	L	L	0	_	\supset	•••

	Unnamed: 0	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAccepto
0	2	CHEMBL13470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	active	449.639	4.84720	0.0	
1	4	CHEMBL126946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	inactive	366.480	4.49300	1.0	
2	8	CHEMBL338089	CCN(CC)C(=O)c1ccc(C(=C2CCN(c3ccccc3)CC2)c2cccc	inactive	424.588	6.27090	0.0	
3	11	CHEMBL126842	CCN(CC)C(=O)c1ccc(C(=C2CCN(C)CC2)c2cccc2)cc1	inactive	362.517	4.69610	0.0	
4	17	CHEMBL129034	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc3ccccc23)cc1	active	398.550	5.50710	1.0	
•••				•••	•••	•••		
951	1296	CHEMBL5429557	CN(C)[C@H](CNC(=O) [C@H]1C[C@]1(C)c1ccccc1)Cc1c	active	352.478	2.95890	2.0	
952	1297	CHEMBL5397104	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	352.478	2.95890	2.0	
953	1298	CHEMBL5414957	CN(C)[C@H](CNC(=O) [C@@H]1C[C@]1(C)c1ccccc1)Cc1	active	386.923	3.61230	2.0	
954	1299	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453	4.16254	1.0	
955	1300	CHEMBL3643413	$\label{eq:ccc} \begin{split} CCC(=&O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)\\ (\end{split}$	inactive	450.465	2.88450	1.0	

956 rows × 9 columns

4

df3.head()

\sim		4	-	-	0	
- 1	11	-	~	-)	×	
U	и		J	\leq	\circ	

Unnamed (: molecule_cheml	bl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors
0 2	2 CHEMBL13	3470	C=CCN1C[C@H](C)N([C@H] (c2ccc(C(=O)N(CC)CC)cc2)	active	449.639	4.8472	0.0	4.0
1 4	CHEMBL120	6946	CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1	inactive	366.480	4.4930	1.0	2.0
2 8	CHEMBL33	8089	CCN(CC)C(=O)c1ccc(C(=C2CCN(c3ccccc3)CC2)c2cccc	inactive	424.588	6.2709	0.0	2.0
3 11	CHEMBL12	6842	CCN(CC)C(=O)c1ccc(C(=C2CCN(C)CC2)c2cccc2)cc1	inactive	362.517	4.6961	0.0	2.0
4 17	CHEMBL129	9034 (CCN(CC)C(=O)c1ccc(C(=C2CCNCC2)c2cccc3cccc23)cc1	active	398.550	5.5071	1.0	2.0
4								

In [332...

df3.describe()

Out[332...

	Unnamed: 0	MW	LogP	NumHDonors	NumHAcceptors	pIC50
count	956.000000	956.000000	956.000000	956.000000	956.000000	955.000000
mean	677.293933	468.168969	3.875962	2.146444	4.843096	6.481876
std	364.371668	190.384243	2.008802	2.721929	2.745861	1.539089
min	2.000000	115.220000	-8.073000	0.000000	1.000000	2.698970
25%	388.250000	362.469250	2.958900	1.000000	3.000000	5.000000
50%	678.000000	423.794500	3.868980	1.000000	4.000000	6.596879
75%	998.250000	507.030000	4.937450	2.000000	6.000000	7.657577
max	1300.000000	1904.213000	12.487600	29.000000	26.000000	10.903090

```
In [345...
selection = ['canonical_smiles','molecule_chembl_id']
df3_selection = df3[selection]
df3_selection.to_csv('molecule.smi', sep='\t', index=False, header=False)
```

```
with open('molecule.smi', 'r') as file:
In [347...
           for _ in range(5):
               print(file.readline().strip())
         C = CCN1C[C@H](C)N([C@H](c2ccc(C(=0)N(CC)CC)c2)c2cccc(OC)c2)C[C@H]1C
                                                                                 CHEMBL13470
         CCN(CC)C(=0)c1ccc(C(=C2CCNCC2)c2ccc(F)cc2)cc1
                                                        CHEMBL126946
         CCN(CC)C(=0)c1ccc(C(=C2CCN(c3ccccc3)CC2)c2ccccc2)cc1
                                                                 CHEMBL338089
         CCN(CC)C(=0)c1ccc(C(=C2CCN(C)CC2)c2cccc2)cc1
                                                         CHEMBL126842
         CCN(CC)C(=0)c1ccc(C(=C2CCNCC2)c2cccc3cccc23)cc1
                                                                 CHEMBL129034
          with open('molecule.smi', 'r') as file:
In [349...
           line count = sum(1 for line in file)
          print("Total number of lines:", line_count)
```

Total number of lines: 956

Preparing the X and Y Data Matrices

```
In [396... X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [397... X
```

0		4	г.	-	0	\neg	
()	ш	т.		\prec	ч	-/	
\cup	ч			\sim	-	/	

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	Pubche
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	
•••										
6941	CHEMBL253998	1	1	1	0	0	0	0	0	
6942	CHEMBL502	1	1	1	0	0	0	0	0	
6943	CHEMBL3085398	1	1	1	0	0	0	0	0	
6944	CHEMBL13045	1	1	1	0	0	0	0	0	
6945	CHEMBL417799	1	1	0	0	0	0	0	0	

6946 rows × 882 columns

In [399... X.head()

0.	-4-1	$\Gamma \supset$	0	\sim	
()L	JT.	13	9	4	

•		Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP
	0	CHEMBL130478	1	1	0	0	0	0	0	0	
	1	CHEMBL336538	1	1	1	0	0	0	0	0	
	2	CHEMBL339995	1	1	1	0	0	0	0	0	
	3	CHEMBL341437	1	1	1	0	0	0	0	0	
	4	CHEMBL130098	1	1	0	0	0	0	0	0	

5 rows × 882 columns

In [402...

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6946 entries, 0 to 6945

Columns: 882 entries, Name to PubchemFP880

dtypes: int64(881), object(1)

memory usage: 46.7+ MB

In [403...

X.dtypes

Out[403...

object Name PubchemFP0 int64 PubchemFP1 int64 PubchemFP2 int64 PubchemFP3 int64 PubchemFP876 int64 PubchemFP877 int64 PubchemFP878 int64 int64 PubchemFP879 PubchemFP880 int64 Length: 882, dtype: object

In [404...

```
X = X.drop(columns=['Name'])
```

Oυ	+	[404
\cup \cup		1 404

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••										
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 881 columns

Y variable

```
In [409... y = df3['class']
```

```
In [410... y = y.map({'active': 1, 'inactive': 0})
```

Split dataset

```
In [414... print("Shape of X:", X.shape)
print("Shape of y:", y.shape)
```

```
Shape of X: (6946, 881)
         Shape of v: (956,)
In [418... X = X.iloc[:y.shape[0], :] # Trim X to match y
In [421... print("Shape of X:", X.shape)
          print("Shape of y:", y.shape)
         Shape of X: (956, 881)
         Shape of y: (956,)
         from sklearn.model selection import train test split
In [424...
          X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
In [427...
         from sklearn.preprocessing import StandardScaler
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.svm import SVC
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         scaler = StandardScaler()
In [430...
          X_train_scaled = scaler.fit_transform(X train)
          X test scaled = scaler.transform(X test)
          Logistic Regression Model
In [433...
         lr = LogisticRegression(max iter=600)
         lr.fit(X train, y train)
In [436...
Out[436...
                LogisticRegression
          LogisticRegression(max iter=600)
```

y_pred_lr = lr.predict(X_test)

y_pred_lr

In [439...

```
Out[439... array([1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,
                 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
                 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,
                 1], dtype=int64)
         print(classification report(y test, y pred lr))
In [444...
                      precision
                                   recall f1-score
                                                     support
                   0
                           0.63
                                     0.33
                                              0.44
                                                          99
                           0.72
                   1
                                     0.90
                                              0.80
                                                         188
            accuracy
                                              0.70
                                                         287
           macro avg
                                              0.62
                                                         287
                           0.68
                                     0.62
        weighted avg
                           0.69
                                     0.70
                                              0.67
                                                         287
         accuracy = accuracy score(y test, y pred lr)
In [447...
          print(f"Logistic Regression Model Accuracy: {accuracy * 100:.2f}%")
        Logistic Regression Model Accuracy: 70.38%
         cm = confusion matrix(y test, y pred lr)
In [450...
          ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Blues")
          ax.xaxis.set ticklabels(['prediction label 1', 'prediction label 2' ])
          ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
          [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
Out [450...
```


Logistic Regression Model Accuracy: 70.38%

```
Out[460... array([1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1,
                 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1,
                 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0,
                 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
                 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
                 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
                 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0,
                 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
                 1], dtype=int64)
         print(classification report(y test,y pred DT))
In [463...
                       precision
                                    recall f1-score
                                                       support
                    0
                            0.55
                                      0.53
                                                0.54
                                                            99
                            0.76
                    1
                                      0.78
                                                0.77
                                                           188
             accuracy
                                                0.69
                                                           287
            macro avg
                            0.65
                                                0.65
                                                           287
                                      0.65
         weighted avg
                                                0.69
                            0.69
                                      0.69
                                                           287
          accuracy = accuracy score(y test, y pred DT)
In [466...
          print(f"DecisionTreeClassifier Model Accuracy: {accuracy * 100:.2f}%")
         DecisionTreeClassifier Model Accuracy: 68.99%
In [475... cm = confusion matrix(y test, y pred DT)
          ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Set3")
          ax.xaxis.set ticklabels(['prediction label 1', 'prediction label 2' ])
          ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
Out[475... [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
```


DecisionTreeClassifier Model Accuracy: 68.99%

RandomForestClassifier

```
y pred rnf = rnf.predict(X test)
In [485...
         y pred rnf
Out[485...
          array([1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1,
                 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1,
                 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
                 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1,
                 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0,
                 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1,
                 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,
                 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
                 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,
                 1], dtvpe=int64)
         print(classification report(y test,y pred rnf))
In [486...
                       precision
                                   recall f1-score support
                   0
                            0.67
                                     0.49
                                               0.57
                                                           99
                           0.77
                                     0.87
                                               0.82
                                                          188
                   1
                                               0.74
                                                          287
             accuracy
           macro avg
                           0.72
                                     0.68
                                               0.69
                                                          287
        weighted avg
                           0.73
                                     0.74
                                               0.73
                                                          287
         accuracy = accuracy score(y test, y pred rnf)
In [499...
          print(f"RandomForestClassifier Model Accuracy: {accuracy * 100:.2f}%")
         RandomForestClassifier Model Accuracy: 74.22%
         cm = confusion matrix(y test, y pred rnf)
In [493...
          ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Reds")
          ax.xaxis.set ticklabels(['prediction_label_1', 'prediction_label_2'])
          ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
Out[493...
          [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
```


RandomForestClassifier Model Accuracy: 74.22%

K-Nearest Neighbors (KNN)

```
y pred knn = knn.predict(X test)
In [513...
         y pred knn
1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
                0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
                1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,
                1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
                1], dtvpe=int64)
         print(classification report(y test,y pred knn))
In [515...
                      precision
                                  recall f1-score support
                   0
                           0.66
                                    0.40
                                             0.50
                                                         99
                          0.74
                                    0.89
                                              0.81
                                                        188
                   1
                                                        287
            accuracy
                                             0.72
                                              0.65
           macro avg
                           0.70
                                    0.65
                                                        287
        weighted avg
                          0.71
                                    0.72
                                              0.70
                                                        287
         accuracy = accuracy score(y test, y pred knn)
In [519...
         print(f"KNeighborsClassifier Model Accuracy: {accuracy * 100:.2f}%")
        KNeighborsClassifier Model Accuracy: 72.13%
         cm = confusion matrix(y test, y pred knn)
In [530...
         ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Set1")
         ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2' ])
         ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
         [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
Out[530...
```


KNeighborsClassifier Model Accuracy: 72.13%

```
In [536... df3_X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [539... df3_X
```

\bigcap	14-	Гι		0	Ω	
Uι	a u	1.3)	0	フ	

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	Pubche
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	
•••										
6941	CHEMBL253998	1	1	1	0	0	0	0	0	
6942	CHEMBL502	1	1	1	0	0	0	0	0	
6943	CHEMBL3085398	1	1	1	0	0	0	0	0	
6944	CHEMBL13045	1	1	1	0	0	0	0	0	
6945	CHEMBL417799	1	1	0	0	0	0	0	0	

6946 rows × 882 columns

df3_X = df3_X.drop(columns=['Name'])
df3_X

Out[542...

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubchem
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••										
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 881 columns

In [565... Y = df3['pIC50']
Y

```
Out[565...
                6.49
                5.00
                5.00
           2
           3
                5.00
                6.09
                 . . .
          951
                6.68
          952
                6.96
                7.54
          953
          954
                4.00
          955
               4.52
          Name: pIC50, Length: 956, dtype: float64
In [567...
          dataset3 = pd.concat([df3_X,df3_Y], axis=1)
```

Out[567...

dataset3

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••			•••							
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 882 columns

```
from sklearn.model selection import train test split
In [569...
          import lazypredict
          from lazypredict.Supervised import LazyRegressor
         X.shape
In [570...
Out[570...
          (956, 133)
         # Remove Low variance features
In [572...
          from sklearn.feature selection import VarianceThreshold
          selection = VarianceThreshold(threshold=(.8 * (1 - .8)))
          X = selection.fit_transform(X)
          X.shape
Out[572...
          (956, 133)
In [575...
         X train, X test, Y train, Y test = train test split(X, Y, test size=0.2, random state=42)
In [597... print("X train shape:", X train.shape)
          print("Y train shape:", Y train.shape)
        X train shape: (764, 133)
         Y train shape: (764,)
         from sklearn.impute import SimpleImputer
In [603...
          import numpy as np
          # Convert Y train to NumPy array and reshape
          imputer = SimpleImputer(strategy="median")
          Y train = imputer.fit transform(Y train.values.reshape(-1, 1)).ravel()
         clf = LazyRegressor(verbose=0, ignore_warnings=True, custom_metric=None)
In [605...
          models, predictions = clf.fit(X_train, X_test, Y_train, Y_test)
          print(models)
               41/42 [00:33<00:00, 2.91it/s]
          98%
```

```
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.002196 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force col wise=true`.
[LightGBM] [Info] Total Bins 399
[LightGBM] [Info] Number of data points in the train set: 764, number of used features: 133
[LightGBM] [Info] Start training from score 6.471968
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
                                          Adjusted R-Squared \
Model
GradientBoostingRegressor
                                                        -1.82
RandomForestRegressor
                                                        -1.89
NuSVR
                                                        -1.91
BaggingRegressor
                                                        -1.94
LassoCV
                                                        -1.94
ElasticNetCV
                                                        -1.95
HistGradientBoostingRegressor
                                                        -1.95
PoissonRegressor
                                                        -1.97
LassoLarsIC
                                                        -1.99
                                                        -2.00
KNeighborsRegressor
LGBMRegressor
                                                        -2.00
BayesianRidge
                                                        -2.00
TweedieRegressor
                                                        -2.02
MLPRegressor
                                                        -2.02
GammaRegressor
                                                        -2.02
SVR
                                                        -2.02
AdaBoostRegressor
                                                        -2.03
LassoLarsCV
                                                        -2.05
                                                        -2.10
RidgeCV
OrthogonalMatchingPursuit
                                                        -2.14
OrthogonalMatchingPursuitCV
                                                        -2.14
LarsCV
                                                        -2.16
Ridge
                                                        -2.18
LinearRegression
                                                        -2.20
TransformedTargetRegressor
                                                        -2.20
SGDRegressor
                                                        -2.22
XGBRegressor
                                                        -2.22
                                                        -2.29
QuantileRegressor
```

DummyRegressor	-2.30
LassoLars	-2.30
Lasso	-2.30
ElasticNet	-2.30
ExtraTreesRegressor	-2.40
DecisionTreeRegressor	-2.40
HuberRegressor	-2.42
ExtraTreeRegressor	-2.50
LinearSVR	-2.71
PassiveAggressiveRegressor	-6.39
GaussianProcessRegressor	-15.44
KernelRidge	-54.35
Lars	-101317328680848368.00
RANSACRegressor	-26085060837268571862073344.00

	R-Squared	RMSE \
Model		
GradientBoostingRegressor	0.15	1.53
RandomForestRegressor	0.12	1.55
NuSVR	0.12	1.56
BaggingRegressor	0.11	1.56
LassoCV	0.11	1.56
ElasticNetCV	0.11	1.56
HistGradientBoostingRegressor	0.10	1.57
PoissonRegressor	0.10	1.57
LassoLarsIC	0.09	1.58
KNeighborsRegressor	0.09	1.58
LGBMRegressor	0.09	1.58
BayesianRidge	0.09	1.58
TweedieRegressor	0.08	1.58
MLPRegressor	0.08	1.58
GammaRegressor	0.08	1.58
SVR	0.08	1.59
AdaBoostRegressor	0.08	1.59
LassoLarsCV	0.07	1.59
RidgeCV	0.06	1.61
OrthogonalMatchingPursuit	0.05	1.62
OrthogonalMatchingPursuitCV	0.05	1.62
LarsCV	0.04	1.62
Ridge	0.03	1.63
LinearRegression	0.03	1.63
TransformedTargetRegressor	0.03	1.63

SGDRegressor	0.02	1.63
XGBRegressor	0.02	1.64
QuantileRegressor	-0.00	1.65
DummyRegressor	-0.00	1.65
LassoLars	-0.00	1.65
Lasso	-0.00	1.65
ElasticNet	-0.00	1.65
ExtraTreesRegressor	-0.03	1.68
DecisionTreeRegressor	-0.03	1.68
HuberRegressor	-0.04	1.69
ExtraTreeRegressor	-0.06	1.71
LinearSVR	-0.13	1.76
PassiveAggressiveRegressor	-1.25	2.48
GaussianProcessRegressor	-3.99	3.70
KernelRidge	-15.81	6.78
Lars	-30766518657011544.00	290138521.39
RANSACRegressor	-7921117950584173300285440.00	4655426293023.44

Time Taken

GnadiantPoostingPognasson	0.91
GradientBoostingRegressor	
RandomForestRegressor	2.23
NuSVR	0.16
BaggingRegressor	0.25
LassoCV	6.30
ElasticNetCV	8.45
HistGradientBoostingRegressor	1.95
PoissonRegressor	0.11
LassoLarsIC	0.30
KNeighborsRegressor	0.06
LGBMRegressor	0.56
BayesianRidge	0.14
TweedieRegressor	0.07
MLPRegressor	3.77
GammaRegressor	0.07
SVR	0.22
AdaBoostRegressor	0.28
LassoLarsCV	0.16
RidgeCV	0.24
OrthogonalMatchingPursuit	0.05
OrthogonalMatchingPursuitCV	0.10
LarsCV	0.65

Model

```
0.05
Ridge
LinearRegression
                                      0.16
TransformedTargetRegressor
                                      0.20
                                      0.05
SGDRegressor
XGBRegressor
                                      0.41
QuantileRegressor
                                      0.36
DummyRegressor
                                      0.03
LassoLars
                                      0.04
                                      0.04
Lasso
ElasticNet
                                      0.04
ExtraTreesRegressor
                                      2.61
DecisionTreeRegressor
                                      0.06
HuberRegressor
                                      0.29
ExtraTreeRegressor
                                      0.06
LinearSVR
                                      0.25
PassiveAggressiveRegressor
                                      0.04
GaussianProcessRegressor
                                      0.27
KernelRidge
                                      0.08
                                      0.15
Lars
                                      1.28
RANSACRegressor
```

```
from sklearn.datasets import make regression
In [613...
          X, Y = make regression(n samples=500, n features=10, noise=0.1, random state=42)
          # Ensure Y is 1D
          Y = np.ravel(Y)
          # Split Data
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
          # Check Data Validity
          print(X train.shape, X test.shape, Y train.shape, Y test.shape)
          # Initialize LazyRegressor
          clf = LazyRegressor(verbose=0, ignore_warnings=True, custom_metric=None)
          # Train & Evaluate Models
          models train, predictions train = clf.fit(X train, X train, Y train, Y train)
          models_test, predictions_test = clf.fit(X_train, X_test, Y_train, Y_test)
          # Display Results
          if models_test.empty:
           print("No models were evaluated! Check the data formatting.")
          else:
           print(models test)
           models test.to csv("model comparison.csv") # Save results if needed
```

(400, 10) (100, 10) (400,) (100,)

98%| 41/42 [00:06<00:00, 6.49it/s]

```
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000540 seconds.
You can set `force col wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 1337
[LightGBM] [Info] Number of data points in the train set: 400, number of used features: 10
[LightGBM] [Info] Start training from score 2.408682
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
100% 42/42 [00:06<00:00, 6.64it/s]
'tuple' object has no attribute ' name '
```

Invalid Regressor(s)

100% 42/42 [00:06<00:00, 6.02it/s]

```
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000289 seconds.
You can set `force col wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 1337
[LightGBM] [Info] Number of data points in the train set: 400, number of used features: 10
[LightGBM] [Info] Start training from score 2.408682
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

100% 42/42 [00:06<00:00, 6.05it/s]

	Adjusted R-Squared	R-Squared	RMSE	\
Model				
BayesianRidge	1.00	1.00	0.10	
LassoLarsCV	1.00	1.00	0.10	
LinearRegression	1.00	1.00	0.10	
TransformedTargetRegressor	1.00	1.00	0.10	
LarsCV	1.00	1.00	0.10	
Lars	1.00	1.00	0.10	
RANSACRegressor	1.00	1.00	0.10	
LassoLarsIC	1.00	1.00	0.10	
HuberRegressor	1.00	1.00	0.10	
SGDRegressor	1.00	1.00	0.10	
RidgeCV	1.00	1.00	0.11	
PassiveAggressiveRegressor	1.00	1.00	0.11	
LinearSVR	1.00	1.00	0.11	
LassoCV	1.00	1.00	0.29	
Ridge	1.00	1.00	0.38	
KernelRidge	1.00	1.00	2.39	
Lasso	1.00	1.00	3.12	
LassoLars	1.00	1.00	3.12	
ElasticNetCV	0.99	0.99	12.09	
LGBMRegressor	0.89	0.90	44.70	
GradientBoostingRegressor	0.87	0.89	47.40	
HistGradientBoostingRegressor	0.87	0.89	47.48	
OrthogonalMatchingPursuitCV	0.87	0.88	48.06	
ElasticNet	0.86	0.88	49.50	
ExtraTreesRegressor	0.81	0.83	57.80	
RandomForestRegressor	0.77	0.79	63.68	
XGBRegressor	0.76	0.78	65.73	
KNeighborsRegressor	0.75	0.77	66.94	
BaggingRegressor	0.73	0.76	69.17	
TweedieRegressor	0.71	0.74	72.34	
AdaBoostRegressor	0.67	0.70	76.75	
MLPRegressor	0.53	0.58	91.02	
DecisionTreeRegressor	0.37	0.43	105.87	
GaussianProcessRegressor	0.31	0.38	110.89	
OrthogonalMatchingPursuit	0.26	0.34	114.48	
ExtraTreeRegressor	0.13	0.21	124.60	
SVR	-0.00	0.10	133.54	
NuSVR	-0.03		135.16	
QuantileRegressor	-0.13		141.74	
DummyRegressor	-0.13		141.78	
, ,				

Madal	Time	Taken
Model BayesianRidge		0.03
LassoLarsCV		0.05
LinearRegression		0.02
TransformedTargetRegressor		0.03
LarsCV		0.07
Lars		0.03
RANSACRegressor		0.03
LassoLarsIC		0.03
HuberRegressor		0.05
SGDRegressor		0.02
RidgeCV		0.02
PassiveAggressiveRegressor		0.02
LinearSVR		0.04
LassoCV		0.19
Ridge		0.02
KernelRidge		0.03
Lasso		0.02
LassoLars		0.03
ElasticNetCV		0.22
LGBMRegressor		0.23
GradientBoostingRegressor		0.61
HistGradientBoostingRegressor		0.76
OrthogonalMatchingPursuitCV		0.03
ElasticNet		0.02
ExtraTreesRegressor		0.56
RandomForestRegressor		1.11
XGBRegressor		0.42
KNeighborsRegressor		0.03
BaggingRegressor		0.15
TweedieRegressor		0.03
AdaBoostRegressor		0.37
MLPRegressor		1.26
DecisionTreeRegressor		0.03
GaussianProcessRegressor		0.05
OrthogonalMatchingPursuit		0.02
ExtraTreeRegressor		0.03
SVR		0.05
NuSVR		0.05

QuantileRegressor	0.06
DummyRegressor	0.02

In [615... predictions_test

Out[615...

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
Bayesian Ridge	1.00	1.00	0.10	0.03
LassoLarsCV	1.00	1.00	0.10	0.06
LinearRegression	1.00	1.00	0.10	0.02
Transformed Target Regressor	1.00	1.00	0.10	0.03
LarsCV	1.00	1.00	0.10	0.07
Lars	1.00	1.00	0.10	0.03
RANSACRegressor	1.00	1.00	0.10	0.03
LassoLarsIC	1.00	1.00	0.10	0.03
HuberRegressor	1.00	1.00	0.10	0.05
SGDRegressor	1.00	1.00	0.10	0.02
RidgeCV	1.00	1.00	0.11	0.02
Passive Aggressive Regressor	1.00	1.00	0.11	0.02
LinearSVR	1.00	1.00	0.11	0.04
LassoCV	1.00	1.00	0.29	0.19
Ridge	1.00	1.00	0.38	0.02
KernelRidge	1.00	1.00	2.39	0.03
Lasso	1.00	1.00	3.12	0.02
LassoLars	1.00	1.00	3.12	0.03
ElasticNetCV	0.99	0.99	12.09	0.22
LGBMRegressor	0.89	0.90	44.70	0.23
GradientBoostingRegressor	0.87	0.89	47.40	0.61

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
HistGradientBoostingRegressor	0.87	0.89	47.48	0.76
OrthogonalMatchingPursuitCV	0.87	0.88	48.06	0.03
ElasticNet	0.86	0.88	49.50	0.02
ExtraTreesRegressor	0.81	0.83	57.80	0.56
RandomForestRegressor	0.77	0.79	63.68	1.11
XGBRegressor	0.76	0.78	65.73	0.42
KNeighborsRegressor	0.75	0.77	66.94	0.03
BaggingRegressor	0.73	0.76	69.17	0.15
TweedieRegressor	0.71	0.74	72.34	0.03
AdaBoostRegressor	0.67	0.70	76.75	0.37
MLPRegressor	0.53	0.58	91.02	1.26
DecisionTreeRegressor	0.37	0.43	105.87	0.03
Gaussian Process Regressor	0.31	0.38	110.89	0.05
OrthogonalMatchingPursuit	0.26	0.34	114.48	0.02
ExtraTreeRegressor	0.13	0.21	124.60	0.03
SVR	-0.00	0.10	133.54	0.05
NuSVR	-0.03	0.08	135.16	0.05
QuantileRegressor	-0.13	-0.02	141.74	0.06
DummyRegressor	-0.13	-0.02	141.78	0.02

Out[618...

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
Bayesian Ridge	1.00	1.00	0.10	0.03
LassoLarsCV	1.00	1.00	0.10	0.06
LinearRegression	1.00	1.00	0.10	0.02
TransformedTargetRegressor	1.00	1.00	0.10	0.03
LarsCV	1.00	1.00	0.10	0.07
Lars	1.00	1.00	0.10	0.03
RANSACRegressor	1.00	1.00	0.10	0.03
LassoLarsIC	1.00	1.00	0.10	0.03
HuberRegressor	1.00	1.00	0.10	0.05
SGDRegressor	1.00	1.00	0.10	0.02
RidgeCV	1.00	1.00	0.11	0.02
Passive Aggressive Regressor	1.00	1.00	0.11	0.02
LinearSVR	1.00	1.00	0.11	0.04
LassoCV	1.00	1.00	0.29	0.19
Ridge	1.00	1.00	0.38	0.02
KernelRidge	1.00	1.00	2.39	0.03
Lasso	1.00	1.00	3.12	0.02
LassoLars	1.00	1.00	3.12	0.03
ElasticNetCV	0.99	0.99	12.09	0.22
LGBMRegressor	0.89	0.90	44.70	0.23
Gradient Boosting Regressor	0.87	0.89	47.40	0.61

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
HistGradientBoostingRegressor	0.87	0.89	47.48	0.76
OrthogonalMatchingPursuitCV	0.87	0.88	48.06	0.03
ElasticNet	0.86	0.88	49.50	0.02
ExtraTreesRegressor	0.81	0.83	57.80	0.56
RandomForestRegressor	0.77	0.79	63.68	1.11
XGBRegressor	0.76	0.78	65.73	0.42
KNeighborsRegressor	0.75	0.77	66.94	0.03
BaggingRegressor	0.73	0.76	69.17	0.15
TweedieRegressor	0.71	0.74	72.34	0.03
AdaBoostRegressor	0.67	0.70	76.75	0.37
MLPRegressor	0.53	0.58	91.02	1.26
DecisionTreeRegressor	0.37	0.43	105.87	0.03
Gaussian Process Regressor	0.31	0.38	110.89	0.05
OrthogonalMatchingPursuit	0.26	0.34	114.48	0.02
ExtraTreeRegressor	0.13	0.21	124.60	0.03
SVR	-0.00	0.10	133.54	0.05
NuSVR	-0.03	0.08	135.16	0.05
QuantileRegressor	-0.13	-0.02	141.74	0.06
DummyRegressor	-0.13	-0.02	141.78	0.02

Bar plot of R-squared values

```
In [621... # Set figure size
    plt.figure(figsize=(9, 12))
    # Set Seaborn theme
    sns.set_theme(style="whitegrid")
    # Use a gradient color palette (like "viridis", "coolwarm", or "Spectral")
    ax = sns.barplot(
    y=predictions_train.index,
    x="R-Squared",
    data=predictions_train,
    palette=sns.color_palette("Spectral", len(predictions_train))
)
    # Set X-axis limits
    ax.set(xlim=(0, 1))
    # Show plot
    plt.show()
```


Bar plot of RMSE values

```
In [631... plt.figure(figsize=(9, 12))
    sns.set_theme(style="whitegrid")
    ax = sns.barplot(y=predictions_train.index, x="RMSE", data=predictions_train,palette=sns.color_palette("seismic", len(predictions_train.index, x="RMSE")
    out[631... [(0.0, 10.0)]
```

DecisionTreeRegressor ExtraTreeRegressor ExtraTreesRegressor GaussianProcessRegressor XGBRegressor LassoLarsCV RANSACRegressor LassoLarsIC LarsCV Lars LinearRegression TransformedTargetRegressor BayesianRidge HuberRegressor SGDRegressor RidgeCV PassiveAggressiveRegressor LinearSVR LassoCV Model Ridge KernelRidge Lasso LassoLars LGBMRegressor HistGradientBoostingRegressor ElasticNetCV GradientBoostingRegressor RandomForestRegressor BaggingRegressor OrthogonalMatchingPursuitCV ElasticNet

Bar plot of calculation time

In []: