Interpretable Machine Learning

GAM & Boosting

Learning goals

- Generalized additive model
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

GENERALIZED ADDITIVE MODEL (GAM) • Hastie and Tibshirani (1986)

Problem: LM not suitable if relationship between features and target variable is not linear

GENERALIZED ADDITIVE MODEL (GAM) • Hastie and Tibshirani (1986)

Problem: LM not suitable if relationship between features and target variable is not linear

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals / buckets of feature values)

Problem: LM not suitable if relationship between features and target variable is not linear

Workaround in LMs / GLMs.

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals / buckets of feature values)

Idea of GAMs:

• Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have a smoothness parameter to control flexibility (prevent overfitting) → Needs to be chosen, e.g., via cross-validation

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data \leadsto more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

Interpretation

- Interpretation needs to be done visually and relative to average prediction
- Edf (effective degrees of freedom) represents complexity of smoothness

MODEL-BASED BOOSTING Bühlmann and Yu 2003

- Recall: Boosting iteratively combines weak base learners (BL)
- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possible)

MODEL-BASED BOOSTING > Bühlmann and Yu 2003

- Recall: Boosting iteratively combines weak base learners (BL)
- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possible)
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):

$$b_j(x,\theta) + b_j(x,\theta^*) = b_j(x,\theta+\theta^*)$$

- Recall: Boosting iteratively combines weak base learners (BL)
- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possible)
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):

$$b_j(x,\theta) + b_j(x,\theta^*) = b_j(x,\theta+\theta^*)$$

$$\hat{f}^{[1]}(x) = \hat{f}_0 + \nu b_3(x_3, \theta^{[1]})$$

- Recall: Boosting iteratively combines weak base learners (BL)
- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possible)
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):

$$b_j(x,\theta) + b_j(x,\theta^*) = b_j(x,\theta+\theta^*)$$

$$\widehat{f}^{[1]}(x) = \widehat{f}_0 + \nu b_3(x_3, \theta^{[1]})
\widehat{f}^{[2]}(x) = \widehat{f}^{[1]}(x) + \nu b_3(x_3, \theta^{[2]})$$

- Recall: Boosting iteratively combines weak base learners (BL)
- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possible)
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):

$$b_j(x,\theta) + b_j(x,\theta^*) = b_j(x,\theta+\theta^*)$$

$$\begin{split} \widehat{f}^{[1]}(x) &= \widehat{f}_0 + \nu b_3(x_3, \theta^{[1]}) \\ \widehat{f}^{[2]}(x) &= \widehat{f}^{[1]}(x) + \nu b_3(x_3, \theta^{[2]}) \\ \widehat{f}^{[3]}(x) &= \widehat{f}^{[2]}(x) + \nu b_1(x_1, \theta^{[3]}) \\ &= \widehat{f}_0 + \nu \left(b_3(x_3, \theta^{[1]} + \theta^{[2]}) + b_1(x_1, \theta^{[3]}) \right) \\ &= \widehat{f}_0 + \widehat{f}_3(x_3) + \widehat{f}_1(x_1) \end{split}$$

- Recall: Boosting iteratively combines weak base learners (BL)
- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possible)
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):

$$b_j(x,\theta) + b_j(x,\theta^*) = b_j(x,\theta+\theta^*)$$

$$\begin{split} \widehat{f}^{[1]}(x) &= \widehat{f}_0 + \nu b_3(x_3, \theta^{[1]}) \\ \widehat{f}^{[2]}(x) &= \widehat{f}^{[1]}(x) + \nu b_3(x_3, \theta^{[2]}) \\ \widehat{f}^{[3]}(x) &= \widehat{f}^{[2]}(x) + \nu b_1(x_1, \theta^{[3]}) \\ &= \widehat{f}_0 + \nu \left(b_3(x_3, \theta^{[1]} + \theta^{[2]}) + b_1(x_1, \theta^{[3]}) \right) \\ &= \widehat{f}_0 + \widehat{f}_3(x_3) + \widehat{f}_1(x_1) \end{split}$$

Final model is additive (as GAMs), where each component function is interpretable

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b_j(x_j,\theta)=x_j\theta+\theta_0$$
 for $j=1,\ldots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as least square estimate of LMs

1000 iter. with $ u=$ 0.1	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

Relative frequency of selected BLs across iterations

 \Rightarrow Converges to solution of LM

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b_j(x_j,\theta)=x_j\theta+\theta_0$$
 for $j=1,\ldots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as least square estimate of LMs
- Early stopping allows feature selection and might prevent overfitting (regularization)

1000 iter. with $ u=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

20 iter. with $\nu=$ 0.1	Intercept	Weights
days_since_2011	-1210.27	3.3
season	0	WINTER: -276.9 SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
temp	-1118.94	73.2
offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

 $[\]Rightarrow$ Converges to solution of LM

MODEL-BASED BOOSTING - LINEAR EXAMPLE: INTERPRETATION

Feature importance (risk reduction over iterations)

→ days_since_2011 most important, followed by temp

MODEL-BASED BOOSTING - INTERPRETATION

- Fit model on bike data with different BL types Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

MODEL-BASED BOOSTING - INTERPRETATION

- Fit model on bike data with different BL types Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

- Total effect for days_since_2011
 - → Combination of partial effects of linear BL and centered spline BL