Homework 2 STA 307

Malcolm, Vejay, Rohan, Tyler

February 25, 2024

```
# Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from ISLP import load_data
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
AUTO = load_data("Auto")
```

Question 1

```
# Question1
selected_coloumns = ['mpg','cylinders', 'displacement', 'weight', 'acceleration','horsepower']
X = AUTO[selected_coloumns]
y = AUTO['origin'] # Origin of car (1. American, 2. European, 3. Japanese)
print(X.head)
print("American cars: {0}".format((y == 1).sum())) # American
print("European cars: {0}".format((y == 2).sum())) # European
print("Japanese cars: {0}".format((y == 3).sum())) # Japanese
```

<pre><bound method="" ndframe.head="" of<="" pre=""></bound></pre>				mpg	cylinders	displacement	weight	acceleration		
	0	18.0	8	307.0	3504		12.0	130		
	1	15.0	8	350.0	36	93	11.5	165		
	2	18.0	8	318.0	34	36	11.0	150		
	3	16.0	8	304.0	34	33	12.0	150		
	4	17.0	8	302.0	34	49	10.5	140		
	387	27.0	4	140.0	27	90	15.6	86		
	388	44.0	4	97.0	21	30	24.6	52		
	389	32.0	4	135.0	22	95	11.6	84		
	390	28.0	4	120.0	26	25	18.6	79		
	391	31.0	4	119.0	27	20	19.4	82		

horsepow

[392 rows x 6 columns]>

American cars: 245 European cars: 68 Japanese cars: 79

Question 2

```
# Question2
print("Standard deviation")
print(X.std())
print("\n")
print("Mean")
print(X.mean())
```

Standard deviation

mpg 7.805007 cylinders 1.705783 displacement 104.644004 weight 849.402560 acceleration 2.758864 horsepower 38.491160

dtype: float64

Mean

mpg 23.445918 cylinders 5.471939 displacement 194.411990 weight 2977.584184 acceleration 15.541327 horsepower 104.469388

dtype: float64

Qustion 3

 \mathbf{a}

```
# Question3_parta
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X)
components = pca.components_
x = np.arange(components.shape[1]) # 6
plt.plot(x, components[0], label='1')
plt.plot(x, components[1], label='2')
plt.xticks(ticks=x, labels=X.columns, rotation=45)
plt.xlabel('Features')
plt.ylabel('Principal Component Weights')
plt.title('Principal Component Weights per Feature')
plt.legend()
plt.tight_layout()
plt.savefig("plot.png", bbox_inches='tight')
plt.close()
```


b

It seems pca is caputring the data with larger scales this can lead to misleading conclusions about the importance of features

Question 4

cylinders

displacement

1.0

1.0

```
means = np.mean(X, axis=0)
stds = np.std(X, axis=0)
Z = (X - means) / stds
means_Z = np.mean(Z, axis=0)
 stds_Z = np.std(Z, axis=0)
print(means_Z, stds_Z)
                  1.450087e-16
mpg
cylinders
                -1.087565e-16
displacement
                -7.250436e-17
weight
                -1.812609e-17
acceleration
                 4.350262e-16
horsepower
                -1.812609e-16
dtype: float64 mpg
                                  1.0
```

weight 1.0
acceleration 1.0
horsepower 1.0
dtype: float64

Question 5

 \mathbf{a}

```
# Question5_parta
pca = PCA(n_components=2)
Z_reduced = pca.fit_transform(Z)
print("Reduced data size:", Z_reduced.shape)
components = pca.components_
plt.plot(x, components[0], label='1')
plt.plot(x, components[1], label='2')
plt.xticks(ticks=x, labels=Z.columns, rotation=45)
plt.xlabel('Features')
plt.ylabel('Principal Component Weights')
plt.title('Principal Component Weights per Feature')
plt.legend()
plt.tight_layout()
plt.savefig("plot-standard.png", bbox_inches='tight')
plt.close()
# plt.show()
```


b

It seems that the three most important features are 'cylinders', 'displacement', and 'weight', as the first principal component (ϕ 1) weighs these more heavily, with 'displacement' appearing to have the highest contribution to variance by a small margin.

 \mathbf{c}

```
# Question5_partc
dot_product = np.dot(components[0], components[1])
# Calculate the magnitude (norm) of each principal component to check if it's equal to one
magnitude_phi1 = np.linalg.norm(components[0])
magnitude_phi2 = np.linalg.norm(components[1])
print("Dot product", dot_product)
print("Magnitude phi 1",magnitude_phi1)
print("Magnitude phi 2", magnitude_phi2)
```

Question 6

 \mathbf{a}

```
# Question6_parta
origins = ["American", "European", "Japanese"]
# plt.figure(figsize=(8, 6))
for origin in [1, 2, 3]:
    subset = Z_reduced[origin == y]
    plt.scatter(subset[:, 0], subset[:, 1], label=origins[origin - 1], alpha=0.7)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of Car Dataset by Origin')
plt.legend(title='Car Origin')
plt.legend(title='Car Origin')
plt.savefig("plot-scatter.png")
plt.close()
```


b

```
# Assuming AUTO is a pandas DataFrame containing the dataset

# Calculate mean value of the feature (e.g., 'mpg') for each class
mean_mpg_american = AUTO[AUTO['origin'] == 1]['displacement'].mean()
mean_mpg_european = AUTO[AUTO['origin'] == 2]['displacement'].mean()
mean_mpg_japanese = AUTO[AUTO['origin'] == 3]['displacement'].mean()

# Display the mean values
print("Mean displacement for American cars:", mean_mpg_auropean)
print("Mean displacement for European cars:", mean_mpg_european)
print("Mean displacement for Japanese cars:", mean_mpg_japanese)

# Determine which class has the largest mean value for the feature
if mean_mpg_american > mean_mpg_european and mean_mpg_american > mean_mpg_japanese:
    print("American cars have the largest mean displacement.")
elif mean_mpg_european > mean_mpg_american and mean_mpg_european > mean_mpg_japanese:
    print("European cars have the largest mean displacement.")
else:
    print("Japanese cars have the largest mean displacement.")
```

Mean displacement for American cars: 247.5122448979592 Mean displacement for European cars: 109.63235294117646 Mean displacement for Japanese cars: 102.70886075949367 American cars have the largest mean displacement.

```
mean_acceleration_american = AUTO[AUTO['origin'] == 1]['acceleration'].mean()
mean_acceleration_european = AUTO[AUTO['origin'] == 2]['acceleration'].mean()
mean_acceleration_japanese = AUTO[AUTO['origin'] == 3]['acceleration'].mean()

print("Mean acceleration for American cars:", mean_acceleration_american)
print("Mean acceleration for European cars:", mean_acceleration_european)
print("Mean acceleration for Japanese cars:", mean_acceleration_japanese)
print("European cars have the largest mean acceleration:", mean_acceleration_european)
```

```
Mean acceleration for American cars: 14.990204081632651
Mean acceleration for European cars: 16.79411764705882
Mean acceleration for Japanese cars: 16.17215189873418
```

European cars have the largest mean acceleration: 16.79411764705882

Question 7

 \mathbf{a}

plot-pca-6

```
pca = PCA(n_components=6)
Z_reduced = pca.fit_transform(Z)
print("here")
components = pca.components_
x = np.arange(components.shape[1]) # 6
print("here")
plt.plot(x, components[0], label='1')
plt.plot(x, components[1], label='2')
plt.plot(x, components[2], label='3')
plt.plot(x, components[3], label='4')
plt.plot(x, components[4], label='5')
plt.plot(x, components[5], label='6')
plt.xticks(ticks=x, labels=Z.columns, rotation=45)
plt.xlabel('Features')
plt.ylabel('Principal Component Weights')
plt.title('Principal Component Weights per Feature')
plt.legend()
plt.tight_layout()
plt.savefig("plot-pca-6.png", bbox_inches='tight')
plt.close()
```


 \mathbf{b}

