日本国特許庁 JAPAN PATENT OFFICE

28. 5. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 5月27日

REC'D 2 2 JUL 2004

PCT

WIPO

出 願 番 号 Application Number:

特願2003-148918

[ST. 10/C]:

 \mathbb{J}^{3}

[JP2003-148918]

出 願 人 Applicant(s):

ホシデン株式会社

東京エレクトロン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 7月 8日

特許庁長官 Commissioner, Japan Patent Office 1) 11

【書類名】

特許願

【整理番号】

T103048300

【提出日】

平成15年 5月27日

【あて先】

特許庁長官 殿

【国際特許分類】

H04R 19/04

【発明の名称】

音響検出機構

【請求項の数】

9

【発明者】

【住所又は居所】 大阪府大阪市中央区北浜4丁目5番33号 住友金属工

業株式会社内

【氏名】

駒井 正嗣

【発明者】

【住所又は居所】 大阪府大阪市中央区北浜4丁目5番33号 住友金属工

業株式会社内

【氏名】

加川健一

【発明者】

【住所又は居所】 大阪府八尾市北久宝寺1丁目4番33号 ホシデン株式

会社内

【氏名】

大林 義昭

【発明者】

【住所又は居所】 大阪府八尾市北久宝寺1丁目4番33号 ホシデン株式

会社内

【氏名】

安田 護

【発明者】

【住所又は居所】

大阪府八尾市北久宝寺1丁目4番33号 ホシデン株式

会社内

【氏名】

佐伯 真一

【特許出願人】

【識別番号】

000194918

【住所又は居所】

大阪府八尾市北久宝寺1丁目4番33号

【氏名又は名称】

ホシデン株式会社

【特許出願人】

【識別番号】

000002118

【住所又は居所】

大阪府大阪市中央区北浜4丁目5番33号

【氏名又は名称】

住友金属工業株式会社

【代理人】

【識別番号】

100107308

【住所又は居所】 大阪府大阪市北区豊崎5丁目8番1号

【弁理士】

【氏名又は名称】

北村 修一郎

【電話番号】

06-6374-1221

【選任した代理人】

【識別番号】

100114959

【住所又は居所】

大阪府大阪市北区豊崎5丁目8番1号

【弁理士】

【氏名又は名称】 山▲崎▼ 徹也

【電話番号】

06-6374-1221

【手数料の表示】

【予納台帳番号】

049700

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9811620

要

【プルーフの要否】

【書類名】

明細書

【発明の名称】

音響検出機構

【特許請求の範囲】

【請求項1】 基板にコンデンサを形成する一対の電極を有し、この一対の電極のうち一方の電極はアコースティックホールに相当する貫通穴を形成した背電極であり、他方の電極は振動板である音響検出機構であって、

前記基板に対して前記振動板を形成し、この振動板と空隙を挟んで対向する位置に前記基板に支持される状態で前記背電極を形成し、この背電極が $5~\mu$ m $\sim 2~0~\mu$ m の厚みの多結晶シリコンで形成されていることを特徴とする音響検出機構。

【請求項2】 前記基板が結晶シリコン基板をベースとした支持基板で成り、前記単結晶シリコン基板として、(100)面方位のシリコン基板を用いていることを特徴とする請求項1記載の音響検出機構。

【請求項3】 前記振動板に対して不純物拡散処理が施されていることを特徴とする請求項1又は2記載の音響検出機構。

【請求項4】 前記基板が結晶シリコン基板をベースとした支持基板で成り、この支持基板が、SOIウェハーで構成されていることを特徴とする請求項1~3のいずれか1項に記載の音響検出機構。

【請求項5】 前記SOIウェハーの活性層を前記振動板として用いることを特徴とする請求項4記載の音響検出機構。

【請求項 6 】 前記振動板が、 $0.5 \mu m \sim 5 \mu m$ の厚みの単結晶シリコンで形成されていることを特徴とする請求項 4 記載の音響検出機構。

【請求項7】 前記基板が、単結晶シリコン基板上にシリコン酸化膜又はシリコン窒化膜を形成し、更に、このシリコン酸化膜上又はシリコン窒化膜上に多結晶シリコン膜を形成したSOI構造ウェハーで構成されていることを特徴とする請求項1記載の音響検出機構。

【請求項8】 前記SOI構造ウェハーに形成された前記多結晶シリコン膜を振動板として用いることを特徴とする請求項7記載の音響検出機構。

【請求項9】 前記振動板が、0.5μm~5μmの厚みの前記多結晶シリ

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、基板にコンデンサを形成する一対の電極を有し、この一対の電極の うち一方の電極はアコースティックホールに相当する貫通穴を形成した背電極で あり、他方の電極は振動板である音響検出機構に関する。

[0002]

【従来の技術】

携帯電話機には従来からコンデンサマイクロホンが多用され、そのコンデンサマイクロホンの代表的な構造として、図6に示すものを例に挙げることができる。つまり、このコンデンサマイクロホンは、アコースティックホールに相当する複数の貫通穴hを形成した金属製のカプセル100の内部に、固定電極部300と振動板500とを、スペーサ400を挟み込む形態で一定間隔を持って対向配置すると共に、カプセル100の後部開口に基板600を嵌め込む形態で固定し、この基板600に対してJーFET等で成るインピーダンス変換素子700を備えている。この種コンデンサマイクロホンでは固定電極部300又は振動板500上に形成した誘電体材料に高電圧を印加し、加熱して電気的な分極を発生させて、表面に電荷を残留させたエレクトレット膜を生成することにより(同図では、振動板500を構成する金属や導電性のフィルムで成る振動体520にエレクトレット膜510を形成している)、バイアス電圧を不要とした構造である。そして、音による音圧信号によって振動板500が振動した場合には、振動板500と固定電極部300との距離が変化することで静電容量が変化し、この静電容量の変化をインピーダンス変換素子700を介して出力するよう機能する。

[0003]

上記のように構成される音響検出機構と類似する従来技術として、振動板となる基板(110)と、背面板(103)(本発明の背電極)となる基板(108)とを接着層(109)を介して重ね合わせ、熱処理により接着した後に、背面板となる基板(108)を研磨して所望の厚さとし、次に、夫々の基板(108

)・(109)とにエッチングマスク(112)を形成した後に、アルカリエッチング液で処理して、振動板(101)と背面板(103)とを得る。次に、背面板(103)を網目構造にし(本発明の貫通穴)、背面板(103)をエッチングマスクにして絶縁層(111)をフッ化水素酸でエッチングすることにより空隙層(104)を形成してコンデンサ型音響・圧力センサを構成している(例えば、特許文献1参照・番号は文献中のものを引用)。

[0004]

【特許文献1】

特開2002-27595号公報 (段落番号 [0030]~ [0035]、 図1、図3)

[0005]

【発明が解決しようとする課題】

図6に示す従来からのマイクロホンの出力を大きくする(感度を高める)ためには、固定電極部300と振動板500との間の静電容量を大きくする必要がある。そして、静電容量を大きくするには、固定電極部300と振動板500と間隔を小さくすることが有効となる。しかし、固定電極部300と振動板500と重畳面積を大きくすることはマイクロホン自体の大型化を招くものであり、前述したようにスペーサ400を配置する構造では、固定電極部300と振動板500との距離を小さくするについても限界があった。

[0006]

又、エレクトレットコンデンサマイクロホンでは、永久的電気分極を作り出すためにFEP(Fluoro Ethylene Propylene) 材等の有機系の高分子重合体が使用されることも多く、この有機系の高分子重合体を用いたものは耐熱性に劣るため、例えば、プリント基板に実装する場合にリフロー処理時の熱に耐え難く、実装する際にリフロー処理を行えないものであった。

[0007]

そこで、音響検出機構として、特許文献1に示されるようにシリコン基板に対して微細加工技術によって背電極と振動板とを形成した構造を採用することが考

えられる。この構造の音響検出機構は、小型でありながら背電極と振動板との距離を小さくして感度を高め、又、バイアス電源を必要とするものであるが、リフロー処理を可能とするものとなる。しかしながら、特許文献1に記載される技術では、アルカリエッチング液で単結晶シリコン基板をエッチングすることによって振動板を形成するので、振動板の厚さの制御が困難で、必要とする厚さの振動板を得難いものであった。

[0008]

振動板の厚さの制御について考えるに、アルカリエッチング液でシリコン基板をエッチングすることによって振動板を形成するプロセスでは、振動板の厚さ制御性を向上させるためにSOIウェハーを利用する手法が有効である。つまり、この手法では、SOIウェハーの埋め込み酸化膜をアルカリエッチング液によるエッチングの停止層として利用できるため、SOIウェハーの活性層の厚みを設定することにより振動板の厚みを制御できるのである。

[0009]

これとは異なる手法として、SOIウェハーを用いずに単結晶シリコン基板上にシリコン酸化膜やシリコン窒化膜をアルカリエッチング液によるエッチング時に停止層として機能するエッチング停止層として形成し、当該エッチング停止層の上に多結晶シリコンを形成したSOI構造ウェハーを利用することが考えられる。このSOI構造ウェハーでは、アルカリエッチング液でシリコン基板をエッチングした場合に、エッチング停止層でエッチングを停止させることが可能となり、振動板の厚みの制御性を向上させるものとなる。

[0010]

しかしながら、SOIウェハーを利用する手法、あるいは、SOI構造ウェハーを利用する手法では、単結晶シリコンをベースにして複数の材料(膜や層)を積層した構造の音響検出機構となるので、エッチング停止層でエッチングを停止させて振動板を形成することにより、比較的薄い振動板を精度高く形成できる反面、単結晶シリコンに積層した複数の材料の熱膨張率の差異に起因する内部応力が振動板を歪ませるため、振動板が背電極に接触する、あるいは、振動板が背電極に接触しない場合でも、振動特性を悪化させて音圧信号に対する忠実な振動を

[0011]

本発明の目的は、厚みの制御により振動板を必要な厚さに形成しながら、振動板の歪みを抑制し、高感度となる音響検出機構を合理的に構成する点にある。

[0012]

【課題を解決するための手段】

本発明の請求項1に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

基板にコンデンサを形成する一対の電極を有し、この一対の電極のうち一方の電極はアコースティックホールに相当する貫通穴を形成した背電極であり、他方の電極は振動板である音響検出機構であって、

前記基板に対して前記振動板を形成し、この振動板と空隙を挟んで対向する位置に前記基板に支持される状態で前記背電極を形成し、この背電極が $5~\mu$ m $\sim 2~0~\mu$ m の厚みの多結晶シリコンで形成されていることを特徴とする点にある。

[0013]

[作用·効果]

上記特徴によると、例えば、エッチング停止層を形成した基板に対するエッチングによって比較的薄い厚みの振動板を形成した構造のように、エッチング停止層や振動板等を形成する複数の材料の熱膨張率の差異に起因する応力が振動板に作用する場合でも、この振動板に対向する位置に形成される背電極の厚みを5μm~20μmとなる比較的厚い値に設定することにより、振動板の機械的強度を高め、内部応力に起因する振動板の歪みを抑制し、振動板が背電極に接触する等の不都合を招くことがない。具体的な構造として図1に示す構造のマイクロホン(膜厚等の詳細は実施の形態を参照)では、図4に示すように、背電極Cの厚さ(背電極膜厚)を5μm~10μmの範囲に設定することにより、振動板Bの撓み量が3μm以下に抑制され、背電極の厚さを15μm~20μmの範囲に設定することにより、振動板Bの撓み量が1μm以下に抑制されるのである。又、上記特徴によると、エレクトレット層を形成しない構造となるので、プリント基板に実装する場合にもリフロー時の熱にも耐えるものとなる。その結果、背電極の

厚みの設定と云う簡単な構成を採用することにより振動板を薄く形成しても、内部応力によって振動板を歪ませる現象を回避するものとなり、高感度で、リフロー処理が可能な響検出機構が構成された。特に、本発明のように背電極の厚みを比較的厚い値に設定したものでは、この厚みの値を適切に設定することにより、共振周波数等の周波数特性を制御できると云う効果も奏する。

[0014]

本発明の請求項2に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

請求項1記載の音響検出機構において、前記基板が結晶シリコン基板をベース とした支持基板で成り、前記単結晶シリコン基板として、(100)面方位のシ リコン基板を用いていることを特徴とする点にある。

[0015]

〔作用・効果〕

上記特徴によると、(100) 面方位のシリコン基板特有の面方位の方向に選択的にエッチングを進行させ得るので、エッチングパターンに対して忠実となる精密なエッチングを可能にする。その結果、必要とする形状の加工を実現できるものとなった。

[0016]

本発明の請求項3に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

請求項1又は2記載の音響検出機構において、前記振動板に対して不純物拡散 処理が施されていることを特徴とする点にある。

[0017]

[作用・効果]

上記特徴によると、振動板に対して不純物拡散処理を施すことにより、振動板の応力を制御できるものとなり、この応力を制御することにより振動板の張力を制御することが可能となる。その結果、良好に振動板の歪みを解消できるものとなった。特に、この構成の場合、振動板の膜厚と背電極の厚みとの組み合わせにより、更に、良好に振動板の歪みを抑制できると云う効果を奏する。

[0018]

本発明の請求項4に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

請求項1~3のいずれか1項に記載の音響検出機構において、前記基板が結晶シリコン基板をベースとした支持基板で成り、この支持基板が、SOIウェハーで構成されていることを特徴とする点にある。

[0019]

〔作用・効果〕

上記特徴によると、SOIウェハーに対する処理により、このSOIウェハーに形成された埋め込み酸化膜をアルカリエッチング液によるエッチングの停止層として利用でき、又、SOIウェハーに既に形成された膜を振動板として用いることや、新たに形成した膜を振動板に使用することが可能となる。その結果、予め必要な膜が形成されたSOIウェハーを用いることにより容易に音響検出機構が構成された。

[0020]

本発明の請求項5に係る音響検出機構の特徴、作用・効果は次の通りである。 〔特徴〕

請求項4記載の音響検出機構において、前記SOIウェハーの活性層を前記振動板として用いることを特徴とする点にある。

[0021]

[作用・効果]

上記特徴によると、SOIウェハーに対して既に形成されている活性層を振動板として用いるので、振動板を形成するための処理を必要とすることがない。その結果、振動板を形成するための膜を新たに形成しなくとも容易に音響検出機構が構成された。

[0022]

本発明の請求項6に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

請求項4記載の音響検出機構において、前記振動板が、0.5 μm~5 μmの

[0023]

[作用·効果]

上記特徴によると、集積回路を製造するために確立されている技術を基にして単結晶シリコンを用いて $0.5 \mu m \sim 5 \mu m$ と云う比較的薄い厚さの振動板を形成することにより音圧信号に対して振動板を反応良く振動させることが可能となる。その結果、高感度な音響検出機構が構成された。

[0024]

本発明の請求項7に係る音響検出機構の特徴、作用・効果は次の通りである。 〔特徴〕

請求項1記載の音響検出機構において、前記支持基板が、単結晶シリコン基板上にシリコン酸化膜又はシリコン窒化膜を形成し、更に、このシリコン酸化膜上又はシリコン窒化膜上に多結晶シリコン膜を形成したSOI構造ウェハーで構成されていることを特徴とする点にある。

[0025]

〔作用・効果〕

上記特徴によると、単結晶シリコン基板上に形成したシリコン酸化膜又はシリコン窒化膜の上面に対して多結晶シリコン膜を形成したものでは、単結晶シリコンに対するエッチングによって多結晶シリコン膜、若しくは、この外面に形成される膜を振動板として形成する場合にも、シリコン酸化膜又はシリコン窒化膜をエッチング停止層として利用できるものとなる。その結果、膜厚の設定により振動板を薄く形成することも容易となり高感度な音響検出機構を構成できる。特に、例えば、単結晶シリコン基板をベースにして酸化シリコンより外層側に形成した多結晶シリコンで振動板を形成し、この外方に酸化シリコンで成る犠牲層を介在させる形態で形成した多結晶シリコンによって背電極を形成するものでは、背電極(多結晶シリコン)の熱膨張率を基準として、振動板Bを形成する多結晶シリコン膜の以外の膜の熱膨張率に起因する応力が圧縮方向に応力が作用するものとなるが、シリコン窒化膜は引っ張り方向に応力を作用させる性質を有するので、このシリコン窒化膜を形成することにより、圧縮方向への応力と引っ張り方向

への応力とをバランスさせて振動板に作用する応力を軽減できると云う効果も奏 する。

[0026]

本発明の請求項8に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

請求項7記載の音響検出機構において、前記SOI構造ウェハーに形成された 前記多結晶シリコン膜を振動板として用いることを特徴とする点にある。

[0027]

〔作用・効果〕

上記特徴によると、多結晶シリコン膜を振動板として用いるので、特別に膜を 形成しなくとも、SOI構造のウェハーに形成された膜を利用して振動板を形成 できるものとなる。その結果、製造時の処理工程を低減して容易に音響検出機構 が構成された。

[0028]

本発明の請求項9に係る音響検出機構の特徴、作用・効果は次の通りである。 [特徴]

請求項7記載の音響検出機構において、前記振動板が、 $0.5 \mu m \sim 5 \mu m$ の厚みの前記多結晶シリコンで形成されていることを特徴とする点にある。

[0029]

〔作用・効果〕

上記特徴によると、集積回路を製造するために確立されている技術を基にして 多結晶シリコンを用いて比較的薄い厚さの振動板を形成することが可能となる。 その結果、高感度な音響検出機構が構成された。

[0030]

【発明の実施の形態】

以下、本発明の実施の形態を図面に基づいて説明する。

図1には本発明の音響検出機構の一例としてのシリコンコンデンサマイクロホン (以下、マイクロホンと略称する)の断面を示している。このマイクロホンは単結晶シリコン基板をベースにした支持基板Aに成膜した多結晶シリコン膜によ

って振動板Bと背電極Cとを形成し、この振動板Bと背電極Cとの間に対してシリコン酸化膜(SiO_2)で成る犠牲層をスペーサDとして配置した構造を有している。このマイクロホンは、振動板Bと背電極Cとをコンデンサとして機能させるものであり、音圧信号によって振動板Bが振動する際のコンデンサの静電容量の変化を電気的に取出す形態で使用される。

[0031]

このマイクロホンにおける支持基板Aの大きさは一辺が $5.5\,\mathrm{mm}$ の正方形で厚さが $600\,\mu\,\mathrm{m}$ 程度に形成されている。振動板Bの大きさは一辺が $2.0\,\mathrm{mm}$ の正方形で厚さが $2\,\mu\,\mathrm{m}$ に設定されている。背電極Cには一辺が $10\,\mu\,\mathrm{m}$ 程度の正方形のアコースティックホールに相当する複数の貫通穴Caが形成されている。尚、同図では一部の膜や層の厚さを誇張して描いている。

[0032]

このマイクロホンは、単結晶シリコン基板301の表面側にシリコン酸化膜302、及び、多結晶シリコン膜303を形成して成るSOI構造ウェハーの表面側に対して、犠牲層305と多結晶シリコン膜306とを形成し、表面側の多結晶シリコン膜306に対するエッチングにより背電極C、及び、複数の貫通穴Caを形成し、単結晶シリコン基板301の裏面側から多結晶シリコン膜303の部位までエッチングを行うことにより音響開口Eを形成し、この音響開口Eの部位に露出する多結晶シリコン膜303で前記振動板Bを形成し、更に、犠牲層305のエッチングを行うことにより振動板Bと背電極Cとの間に空隙領域Fを形成し、かつ、このエッチングの後に振動板Bの外周部位に残留する犠牲層305でスペーサDを形成した構造を具備したものであり、以下に、このマイクロホンの製造工程を図2(a)~(e)及び図3(f)~(j)に基づいて説明する。

[0033]

工程(a):厚さ600 μ mの(100)面方位の単結晶シリコンで基板301の両面に対して熱酸化により厚さ0.8 μ mのシリコン酸化膜302(SiO2)と、LP-CVD(Low Pressure Chemical Vapor Deposition)法により厚さ2 μ mの多結晶シリコン303とを形成してSOI構造ウェハーとなる支持基板Aを形成する。

本発明では、SOI構造ウェハーとして前記工程(a)に示した構造のものに限らず、単結晶シリコン301に対してシリコン窒化膜(Si $_3$ N $_4$)を形成し、このシリコン窒化膜の上面に対して多結晶シリコン303を形成したSOI構造ウェハーを用いるものであっても良い。又、多結晶シリコン303の厚さは 2μ mに限るものでは無く、 0.5μ m $\sim 5\mu$ mの範囲で形成されるものであれば良い。

[0035]

工程(b):工程(a)で形成した支持基板Aの表面(図面では上側)に対してP-CVD(Plasma Chemical Vapor Deposition)法により厚さ $5\,\mu\,m$ のシリコン酸化膜(SiO₂) を犠牲層 $3\,0\,5$ として形成する。

[0036]

工程(c):工程(b)で形成した犠牲層 305の表面に対してLP-CVD (Low Pressure Chemical Vapor Deposition) 法により多結晶シリコン膜 306を 5μ m $\sim 20\mu$ m の範囲の厚みで形成する。尚、この多結晶シリコン膜 306で背電極 C が形成されるものであり、この多結晶シリコン膜 306 は基板の両面に形成される。

[0037]

工程(d):工程(c)で形成した多結晶シリコン膜306の表面にフォトレジストを塗布し、フォトリングラフィの技術によって不要な部位を除去してレジストパターン307を形成する。

[0038]

工程(e):工程(d)で形成したレジストパターン307をマスクにしてRIE (Reactive Ion Etching)の技術によるエッチングを行うことにより、上面側の多結晶シリコン膜306から背電極Cのパターンを形成する。このように背電極Cのパターンを形成する際には、複数の貫通穴Caが同時に形成される。このようにエッチングを行うことにより裏面側(図面では下側)の多結晶シリコン膜306、及び、この下層の多結晶シリコン膜303は除去される。

[0039]

工程(f)・(g):次に、裏面(図面では下側)にシリコン窒化膜309を形成し、この表面にフォトレジストを塗布し、フォトリソグラフィの技術によって不要な部位を除去してレジストパターンを形成し、この後、レジストパターンをマスクにしてRIE(Reactive Ion Etching)の技術によるエッチングを行うことにより、シリコン窒化膜309と、この下層のシリコン酸化膜302とを除去して、後述する工程(i)において行われるアルカリエッチング液によるエッチングを実現するシリコンエッチング用の開口パターン310を形成する。

[0040]

工程(h)・(i):次に、表面側に保護膜としてシリコン窒化膜311(Si3N4)を形成し、この後、裏面側に対して、エッチング液としてTMAH(テトラメチルアンモニウムハイドロオキサイド)の水溶液を用いて異方性エッチングを行うことによりシリコン基板301を除去して前記音響開口Eを形成する。このエッチングの際にはシリコン酸化膜302(埋め込み酸化膜)のエッチング速度がシリコン基板301のエッチング速度より充分に低速であるため、このシリコン酸化膜302がシリコンエッチング停止層として機能する。

[0041]

工程(j):次に、保護膜として形成したシリコン窒化膜311(Si3N4) と、犠牲層305と、音響開口の側に露出するシリコン酸化膜302と、シリコン基板の裏面に残存するシリコン窒化膜309及びシリコン酸化膜302をHFによるエッチングによって除去することにより、多結晶シリコン膜303によって振動板Bを形成し、この振動板Bと背電極Cとの間に空隙領域Fを形成し、残存する犠牲層305によってスペーサDが形成される。この後、ステンシルマスクを用いてAu(金)を所望の領域に蒸着して取出し用電極315を形成してマイクロホンが完成するのである。

[0042]

背電極Cとして機能する多結晶シリコン膜306の膜厚を変化させ、前述した 工程によって製造したマイクロホンにおいて、振動板Bの撓み量をレーザ変位計 により測定した結果を図4に示している。同図に示されるように、背電極Cを厚 くするに伴い、振動板Bの撓み量(振動板撓み量)が少なくなる傾向に制御され ていることが分かる。特に、背電極 C の厚さ(背電極膜厚)を $5~\mu$ $m\sim10~\mu$ m の範囲に設定することにより、振動板 B の撓み量が $3~\mu$ m以下に抑制され、背電極 C の厚さを $1~5~\mu$ $m\sim2~0~\mu$ mの範囲に設定することにより、振動板 B の撓み量が $1~\mu$ m以下に抑制されることが分かる。

[0043]

このように、本発明の音響検出機構は、微細加工技術を用いて支持基板Aに対して振動板Bと背電極Cとを形成した構造を採用しているので、音響検出機構全体を極めて小型に構成することが可能となり、携帯電話機のような小型の機器に対して容易に組込めるばかりか、プリント基板に実装する場合にも、高温でのリフロー処理に耐え得るので、装置の組立を容易にするものとなる。

[0044]

特に、本発明のよう支持基板Aに対するエッチングによって振動板を形成するものでは、振動板Bの厚みを薄くして高感度のマイクロホンを得るものであるが、支持基板Aに形成される複数の膜や層を構成する材料の熱膨張率が異なるので、マイクロホンとして完成した際に、熱膨張率の差に起因する応力が振動板Bに対して圧縮方向に作用するものであるが、本発明のように振動板Bと対応する位置に配置した背電極Cに多結晶シリコン膜306を用い、この背電極Cの厚みを厚く(具体的には5 μ m~20 μ m)形成することで振動板Bの機械的強度を高めるものとなり、内部応力に起因して振動板Bを歪ませる方向への力が作用する状況でも振動板Bの歪みを抑制して、振動板Bを薄く形成しても、内部応力によって振動板Bを歪ませる現象を回避して高感度のマイクロホン(音響検出機構の一例)を構成し得るのである。

[0045]

[別実施の形態]

本発明は上記実施の形態以外に、例えば、以下のように構成することも可能である(この別実施の形態では前記実施の形態と同じ機能を有するものには、実施の形態と共通の番号、符号を付している)。

[0046]

(イ) 上記実施の形態では、単結晶シリコン301に対してシリコン酸化膜30

[0047]

(ロ) SOIウェハーを支持基板Aとして利用し、背電極Cの膜厚を変化させてシリコンコンデンサマイクロホンを製造したものにおいて、製造時の構造体破損率を算出した結果を図5のように示すことが可能である。同図に示されるように、この構造を利用した場合には、SOIウェハーを利用した場合には、振動板B自体の内部応力が低減されるため、SOI構造ウェハーを利用する場合より、振動板Bの撓み量が低減されるものとなる。特に、機械強度確保の面から背電極Cの厚みは 5μ m以上であることが望ましい。

[0048]

(ハ)本発明の音響検出機構は、振動板Bの材料として、多結晶シリコンや活性層だけに限るものではなく、金属膜のように導電性のある膜、あるいは、導電性膜と樹脂膜のように絶縁性膜とを積層した構造のものを用いて振動板Bを形成して良い。特に金属膜を用いる場合には、タングステンなどの高融点金属を用いても良い。

[0049]

(二)本発明は前述したように背電極Cの厚みの設定により、振動板Bに作用する応力の軽減(制御)を実現するものであるが、このように背電極Cを厚く形成する構成に加えて、振動板Bに不純物拡散を施すことで振動板Bの応力制御を行うことも可能である。具体的な処理の一例を挙げると、イオン注入法により、ホウ素をエネルギー30kV、ドーズ量2E16cm-2 で振動板Bを形成する多結晶シリコン膜302中に導入し、活性化熱処理として窒素雰囲気にて115

0℃、8時間の熱処理を施すことで、圧縮応力を有する振動板Bを形成することができる。これによりアルカリエッチング液によるシリコンエッチングの停止層であるシリコン酸化膜やシリコン窒化膜の膜厚比と不純物拡散と背電極の厚さとを組み合わせることで総合的に振動板Bの張力を制御して、振動板Bに作用する応力を張力でバランスさせて、振動板Bに作用する張力を解除することや、必要とする張力を作用させた振動板Bを形成できるのである。

[0050]

(ホ)音響検出機構を構成する支持基板Aに対して、振動板Bと背電極Cとの間の静電容量変化を電気信号に変換して出力するよう機能する集積回路を形成することも可能である。このように集積回路を形成したものでは、取出し用電極315と、集積回路との間をボンディングワイヤ等で結線することにより、振動板Bと背電極Cと集積回路とを電気的に接続できるものとなる。この構成では、振動板Bと背電Cとの間の静電容量の変化を電気信号に変換して出力する電気回路をプリント基板上等に形成する必要がなく、本構造の音響検出機構を用いる機器の小型化、構造の簡素化を実現する。

[0051]

(へ) 本発明の音響検出機構はマイクロホンの他に、空気振動や空気の圧力変化 に感応するセンサとして利用することも可能である。

【図面の簡単な説明】

【図1】

コンデンサマイクロホンの断面図

【図2】

コンデンサマイクロホンの製造工程を連続的に示す図

【図3】

コンデンサマイクロホンの製造工程を連続的に示す図

図4

背電極膜厚と振動板撓み量との関係をグラフ化した図

【図5】

背電極膜厚と構造体破損率との関係をグラフ化した図

【図6】

従来のコンデンサマイクロホンの断面図

【符号の説明】

301 ・ 単結晶シリコン基	₹板
----------------	----

302 シリコン酸化膜

303 多結晶シリコン

A 支持基板

B 振動板

C 背電極

C a 貫通穴

【書類名】

図面

【図1】

A: 支持基板 301: 単結晶シリコン基板

B: 振動板 302: シリコン酸化膜

C: 背電極 303: 多結晶シリコン膜

D: スペーサ 305: 犠牲層

E: 音響開口 306: 多結晶シリコン膜

F: 空隙領域 315: 取出し電極

【図5】

ページ: 1/E

【書類名】 要約書

【要約】

【課題】 振動板を厚みを制御して必要な厚さに形成しながら、振動板の歪みが 抑制される音響検出機構を構成する。

【解決手段】 単結晶シリコン基板 301 をベースとした支持基板 A の多結晶シリコン膜 303 で振動板 B を形成し、この振動板 B と対向する位置に対してスペーサ D を介して背電極 C を配置し、この背電極 C の厚みを $5~\mu$ m $\sim 20~\mu$ m に設定した。

【選択図】 図1

ページ: 1/E

【書類名】

出願人名義変更届

【提出日】

平成16年 2月 3日

【あて先】

特許庁長官 殿

【事件の表示】

【出願番号】

特願2003-148918

【承継人】

【識別番号】

000219967

【氏名又は名称】

東京エレクトロン株式会社

【承継人代理人】

【識別番号】

100107308

【弁理士】

【氏名又は名称】

北村 修一郎

【電話番号】

06-6374-1221

【ファクシミリ番号】

06-6375-1620

【手数料の表示】

【予納台帳番号】

049700

【納付金額】

4,200円

【提出物件の目録】

【物件名】

委任状 1

【援用の表示】

同日付けで提出した特願2002-256669の出願人名義変

更届に添付のものを援用する

【物件名】

持分譲渡証書 1

【提出物件の特記事項】 追って補充する

【物件名】

同意書 1

【提出物件の特記事項】 追って補充する

特願2003-148918

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-148918

受付番号 50400174534

書類名 出願人名義変更届

担当官 塩野 実 2151

作成日 平成16年 3月 9日

<認定情報・付加情報>

【承継人】

【識別番号】 000219967

【住所又は居所】 東京都港区赤坂五丁目3番6号

【氏名又は名称】 東京エレクトロン株式会社

【承継人代理人】 申請人

【識別番号】 100107308

【住所又は居所】 大阪府大阪市北区豊崎5丁目8番1号

【氏名又は名称】 北村 修一郎

特願2003-148918

出願人履歴情報

識別番号

[000194918]

1. 変更年月日

1990年10月17日

[変更理由]

名称変更

住 所

大阪府八尾市北久宝寺1丁目4番33号

氏 名 ホシデン株式会社

出願人履歴情報

識別番号

[000002118]

1. 変更年月日

1990年 8月16日

[変更理由]

新規登録

住 所

大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友金属工業株式会社

特願2003-148918

出 願 人 履 歴 情 報

識別番号

[000219967]

1. 変更年月日

2003年 4月 2日

[変更理由] 住 所

氏 名

住所変更 東京都港区赤坂五丁目3番6号

東京エレクトロン株式会社