Basics of Applied Analysis A Report

Alifian Mahardhika Maulana

August 3, 2018

Problem 1. Discuss the stability of the difference schemes for the transport equation

$$u_x + bu_x = 0 (1)$$

using von Neumann stability analysis:

1. "naive" explicit scheme

$$\frac{v_k^{n+1} - v_k^n}{\tau} + b \frac{v_{k+1}^n - v_{k-1}^n}{2h} = 0$$
 (2)

2. implicit scheme

$$\frac{v_k^{n+1} - v_k^n}{\tau} + b \frac{v_{k+1}^{n+1} - v_{k-1}^{n+1}}{2h} = 0$$
(3)

3. Discuss the dissipation and dispersion properties of the implicit scheme in (b). Is it a satisfactory scheme for (1)

Answer:

1. von Neumann stability analysis for "naive" explicit scheme: we rewrite (2) become,

$$v_k^{n+1} = v_k^n - \frac{R}{2}(v_{k+1}^n - v_{k-1}^n), \quad R := \frac{b\tau}{h}$$
(4)

then substitute $v_{k+q} = e^{iq\xi}\hat{v}^n$ to (4), we get

$$\hat{v}^{n+1} = \hat{v}^n \left(1 - \frac{R}{2} (e^{i\xi} - e^{-i\xi}) \right)$$
 (5)

then we define, $g(\xi) = \left(1 - \frac{R}{2}(e^{i\xi} - e^{-i\xi})\right) = 1 - iR\sin(\xi)$, taking norm of $g(\xi)$ we get

$$|g(\xi)| = |1 - iR\sin(\xi)| = \sqrt{1 + R^2\sin^2(\xi)}, \quad \xi = (-\pi, \pi)$$
 (6)

by (6) we get $|g(\xi)| > 1$, according to von Neumann stability, the explicit scheme (2) is unstable.

2. von Neumann stability analysis for implicit scheme: we rewrite (3) become,

$$\frac{R}{2}\left(v_{k+1}^{n+1} - v_{k-1}^{n+1}\right) + v_k^{n+1} = v_k^n, \quad R := \frac{b\tau}{h} \tag{7}$$

then substitute $v_{k+q} = e^{iq\xi} \hat{v}^n$ to (7), we get

$$\left(1 + \frac{R}{2} \left(e^{i\xi} - e^{-i\xi}\right)\right) \hat{v}^{n+1} = \hat{v}^{n}
\hat{v}^{n+1} = \frac{1}{\left(1 + \frac{R}{2} \left(e^{i\xi} - e^{-i\xi}\right)\right)} \hat{v}^{n}$$
(8)

then we define, $g(\xi) = \frac{1}{\left(1 + \frac{R}{2}\left(e^{i\xi} - e^{-i\xi}\right)\right)} = \frac{1}{(1 + iR\sin(\xi))}$, taking norm of $g(\xi)$ we get

$$|g(\xi)| = \left| \frac{1}{(1 + iR\sin(\xi))} \right| = \frac{1}{\sqrt{1 + R^2 \sin^2(\xi)}}, \quad \xi = (-\pi, \pi)$$
 (9)

by (9) we get $|g(\xi)| < 1$, according to von Neumann stability, the implicit scheme (3) is stable.

3. To analyze the dissipation and dispersion of (3), we substitute $v_{k+p}^{n+q} = e^{i(q\omega\tau + p\beta h)}$ to (7) we get,

$$\frac{R}{2} \left(e^{i(\omega\tau + \beta h)} - e^{i(\omega\tau - \beta h)} \right) + e^{i\omega\tau} = 1, \quad R := \frac{b\tau}{h}$$

$$\left(\frac{R}{2} \left(e^{i\beta h} - e^{-i\beta h} \right) + 1 \right) e^{i\omega\tau} = 1$$

$$(iR\sin(\beta h) + 1) e^{i\omega\tau} = 1$$

$$e^{i\omega\tau} = \frac{1}{(iR\sin(\beta h) + 1)}$$
(10)

taking norm of $e^{i\omega\tau}$, we get

$$|e^{i\omega\tau}| = e^{-\omega_2\tau} = \frac{1}{R^2 \sin^2(\beta h) + 1} \tag{11}$$

by (11), $e^{-\omega_2\tau} < 1$, therefore according to von Neumann stability analysis, the implicit scheme on (3) is **dissipative**.

Then, to analyze the dispersion, we take $\arg(e^{i\omega\tau})$,

$$\arg(e^{i\omega\tau}) = \arg(e^{i\omega_1\tau}) + \arg(e^{-\omega_2\tau})$$

= $\omega_1\tau + 0$ (12)

which, $\omega_1 \tau = \arctan\left(\frac{Im(e^{i\omega\tau})}{Re(e^{i\omega\tau})}\right)$, we can get the real and imajiner part of $e^{i\omega\tau}$ by first multiplying it with it's rational factor,

$$e^{i\omega\tau} = \frac{1}{(iR\sin(\beta h) + 1)} \frac{(iR\sin(\beta h) - 1)}{(iR\sin(\beta h) - 1)} = -\frac{iR\sin(\beta h) + 1}{R^2\sin^2 + 1}$$
(13)

then, $\omega_1 \tau = \arctan\left(\frac{Im(e^{i\omega\tau})}{Re(e^{i\omega\tau})}\right) = \frac{R\sin(\beta h)}{1} = R\sin(\beta h)$. Since $\omega_1 \tau$ is not a constant, therefore, according to von Neumann stability analysis, the implicit scheme on (3) is **dispersive**.

Problem 2. Show that the following implicit difference schemes for approximating the solution to

$$u_t + bu_x = au_{xx} \tag{14}$$

are unconditionally stable using the von Neumann stability analysis. Here $R = b^{\tau}_{h}, r = a^{\tau}_{h^{2}}$.

1.

$$v_k^{n+1} + \frac{R}{2}(v_{k+1}^{n+1} - v_{k-1}^{n+1}) - r(v_{k+1}^{n+1} - 2v_k^{n+1} + v_{k-1}^{n+1}) = v_k^n$$
(15)

2.

$$v_k^{n+1} + \frac{R}{4}(v_{k+1}^{n+1} - v_{k-1}^{n+1}) - \frac{r}{2}(v_{k+1}^{n+1} - 2v_k^{n+1} + v_{k-1}^{n+1}) = v_k^n - \frac{R}{4}(v_{k+1}^n - v_{k-1}^n) + \frac{r}{2}(v_{k+1}^n - 2v_k^n + v_{k-1}^n)$$
 (16)

Answer:

1. Substitute $v_{k+q} = e^{iq\xi} \hat{v}^n$ to (15) we get

$$\hat{v}^{n+1} + \frac{R}{2} (e^{i\xi} - e^{-i\xi}) \hat{v}^{n+1} - r(e^{i\xi} - 2 + e^{-i\xi}) \hat{v}^{n+1} = \hat{v}^n$$

$$\hat{v}^{n+1} \left(1 + \frac{R}{2} (e^{i\xi} - e^{-i\xi}) - r(e^{i\xi} - 2 + e^{-i\xi}) \right) = \hat{v}^n$$

$$\hat{v}^{n+1} = \frac{1}{\left(1 + \frac{R}{2} (e^{i\xi} - e^{-i\xi}) - r(e^{i\xi} - 2 + e^{-i\xi}) \right)} \hat{v}^n$$
(17)

then, we define:

$$g(\xi) = \frac{1}{\left(1 + \frac{R}{2}(e^{i\xi} - e^{-i\xi}) - r(e^{i\xi} - 2 + e^{-i\xi})\right)} = \frac{1}{\left(1 + iR\sin(\xi) + r(2\cos(\xi) - 2)\right)}$$

$$= \frac{1}{\left(1 + iR\sin(\xi) + r(-4\sin^2(\frac{\xi}{2}))\right)}$$
(18)

by (18), $g(\xi) < 1$, according to von Neumann stability analysis, if $g(\xi) < 1$ the scheme will be unconditionally stable.

2. Substitute $v_{k+q} = e^{iq\xi} \hat{v}^n$ to (16) we get,

$$\hat{v}^{n+1} + \frac{R}{4} (e^{i\xi} - e^{-i\xi}) \hat{v}^{n+1} - \frac{r}{2} (e^{i\xi} - 2 + e^{-i\xi}) \hat{v}^{n+1} = \hat{v}^n - \frac{R}{4} (e^{i\xi} - e^{-i\xi}) \hat{v}^n + \frac{r}{2} (e^{i\xi} - 2 + e^{-i\xi}) \hat{v}^n$$

$$\hat{v}^{n+1} \left(1 + \frac{R}{4} (e^{i\xi} - e^{-i\xi}) - \frac{r}{2} (e^{i\xi} - 2 + e^{-i\xi}) \right) = \hat{v}^n \left(1 - \frac{R}{4} (e^{i\xi} - e^{-i\xi}) + \frac{r}{2} (e^{i\xi} - 2 + e^{-i\xi}) \right)$$

$$\hat{v}^{n+1} = \frac{\left(1 - \frac{R}{4} (e^{i\xi} - e^{-i\xi}) + \frac{r}{2} (e^{i\xi} - 2 + e^{-i\xi}) \right)}{\left(1 + \frac{R}{4} (e^{i\xi} - e^{-i\xi}) - \frac{r}{2} (e^{i\xi} - 2 + e^{-i\xi}) \right)} \hat{v}^n$$

$$(19)$$

then, we define:

$$g(\xi) = \frac{\left(1 - \frac{R}{4}(e^{i\xi} - e^{-i\xi}) + \frac{r}{2}(e^{i\xi} - 2 + e^{-i\xi})\right)}{\left(1 + \frac{R}{4}(e^{i\xi} - e^{-i\xi}) - \frac{r}{2}(e^{i\xi} - 2 + e^{-i\xi})\right)} = \frac{\left(1 - \frac{R}{4}(2i\sin(\xi)) + \frac{r}{2}(2\cos(\xi) - 2)\right)}{\left(1 + \frac{R}{4}(2i\sin(\xi)) + \frac{r}{2}(2\cos(\xi) - 2)\right)}$$

$$= \frac{\left(1 - \frac{R}{4}(2i\sin(\xi)) + \frac{r}{2}(-4\sin^2(\frac{\xi}{2}))\right)}{\left(1 + \frac{R}{4}(2i\sin(\xi)) - \frac{r}{2}(-4\sin^2(\frac{\xi}{2}))\right)}$$

$$(20)$$

by (20), $g(\xi) < 1$, according to von Neumann stability analysis, if $g(\xi) < 1$ the scheme will be unconditionally stable.

Problem 3. Discuss the dissipation and dispersion of the following implicit numerical schemes for the wave equation

1.

$$\frac{v_k^{n+1} - 2v_k^n + v_k^{n-1}}{\tau^2} = \frac{v_{k+1}^{n+1} - 2v_k^{n+1} + v_{k-1}^{n+1}}{h^2}$$
(21)

2.

$$\frac{v_k^{n+1} - 2v_k^n + v_k^{n-1}}{\tau^2} = \frac{v_{k+1}^{n+1} - 2v_k^{n+1} + v_{k-1}^{n+1}}{2h^2} + \frac{v_{k+1}^{n-1} - 2v_k^{n-1} + v_{k-1}^{n-1}}{2h^2}$$
(22)

Answer:

1. Substitute $v_{k+p}^{n+q}=e^{i(q\omega\tau+p\beta h)}\hat{v}^n$ with $R=\frac{\tau}{h}$ to (21) we get,

$$\frac{(e^{i\omega\tau} - 2 + e^{-i\omega\tau})}{\tau^2} \hat{v}^n = \frac{(e^{i(\omega\tau + \beta h)} - 2e^{i\omega\tau} + e^{i(\omega\tau - \beta h)})}{h^2} \hat{v}^n$$

$$e^{i\omega\tau} - 2 + e^{-i\omega\tau} = R^2 (2\cos(\beta h) - 2)e^{i\omega\tau}$$
(23)

take $g = e^{i\omega\tau}$, (23) become

$$-2 + g^{-1} + g\left(1 - R^2(2\cos(\beta h) - 2)\right) = 0$$

$$-2 + g^{-1} + g\left(1 - R^2(-4\sin^2(\frac{\beta h}{2}))\right) = 0$$
 (24)

multiple by g we get

$$g^{2}(1 - R^{2}(-4\sin^{2}(\frac{\beta h}{2}))) - 2g + 1 = 0$$
(25)

solving (25) we get,

$$g = e^{i\omega\tau} = \frac{1 \pm i2R\sin(\frac{\beta h}{2})}{(1 - R^2(-4\sin^2(\frac{\beta h}{2})))}$$
(26)

taking norm of (26), we get

$$|e^{i\omega\tau}| = e^{i\omega_2\tau} = \max_{-\pi \le \frac{\beta h}{2} \le \pi} \left| \frac{1 \pm i2R\sin(\frac{\beta h}{2})}{(1 - R^2(-4\sin^2(\frac{\beta h}{2})))} \right| = \frac{1 \pm 2R}{1 + 4R^2}$$
 (27)

from (27), $e^{i\omega_2\tau}$ < 1, therefore according to von Neumann stability analysis, the implicit numerical scheme on (21) is **dissipative**.

Then, to analyze the dispersion, we take $\arg(e^{i\omega\tau})$,

$$\arg(e^{i\omega\tau}) = \arg(e^{i\omega_1\tau}) + \arg(e^{-\omega_2\tau})$$
$$= \omega_1\tau + 0$$
(28)

which, $\omega_1 \tau = \arctan\left(\frac{Im(e^{i\omega\tau})}{Re(e^{i\omega\tau})}\right)$, then, $\omega_1 \tau = \arctan\left(\frac{Im(e^{i\omega\tau})}{Re(e^{i\omega\tau})}\right) = \frac{2R\sin(\beta h)}{1} = 2R\sin(\beta h)$. Since $\omega_1 \tau$ is not a constant, therefore, according to von Neumann stability analysis, the implicit scheme on (21) is **dispersive**.

2. Substitute $v_{k+p}^{n+q} = e^{i(q\omega\tau + p\beta h)}\hat{v}^n$ with $R = \frac{\tau^2}{2h^2}$ to (22) we get,

$$\frac{\left(e^{i\omega\tau} - 2 + e^{-i\omega\tau}\right)}{\tau^{2}}\hat{v}^{n} = \frac{\left(e^{i(\omega\tau + \beta h)} - 2e^{i\omega\tau} + e^{i(\omega\tau - \beta h)}\right)}{2h^{2}}\hat{v}^{n} + \frac{\left(e^{i(-\omega\tau + \beta h)} - 2e^{-i\omega\tau} + e^{-i(\omega\tau + \beta h)}\right)}{2h^{2}}\hat{v}^{n} + \frac{\left(e^{i\omega\tau} - 2 + e^{-i\omega\tau}\right)}{2h^{2}}\hat{v}^{n} + \frac{\left(e^{i\omega\tau} - 2 + e^{-i\omega\tau}\right)}$$

take $g = e^{i\omega\tau}$, (29) become

$$g\left(1 - R(2\cos(\beta h) - 2)\right) + g^{-1}\left(1 - R(2\cos(\beta h) - 2)\right) - 2 = 0$$

$$g\left(1 - R(-4\sin^2(\frac{\beta h}{2})\right) + g^{-1}\left(1 - R(-4\sin^2(\frac{\beta h}{2})\right) - 2 = 0$$
(30)

multiple by g, we get

$$g^{2}\left(1 - R(-4\sin^{2}(\frac{\beta h}{2}))\right) + \left(1 - R(-4\sin^{2}(\frac{\beta h}{2}))\right) - 2g = 0$$
(31)

solving (31) we get,

$$g = e^{i\omega\tau} = \frac{2 \pm \sqrt{4 - 4(1 + 4R\sin^2(\frac{\beta h}{2}))^2}}{2(1 + 4R\sin^2(\frac{\beta h}{2}))}$$
(32)

taking norm of (32), we get

$$|e^{i\omega\tau}| = e^{i\omega_2\tau} = \max_{-\pi \le \frac{\beta h}{2} \le \pi} \left| \frac{2 \pm \sqrt{4 - 4(1 + 4R\sin^2(\frac{\beta h}{2}))^2}}{2(1 + 4R\sin^2(\frac{\beta h}{2}))} \right| = \frac{2 \pm (1 + 4R)}{2(1 + 4R)}$$
(33)

from (33), $e^{i\omega_2\tau} = 1$, therefore according to von Neumann stability analysis, the implicit numerical scheme on (22) is **non-dissipative**.

Then, to analyze the dispersion, we take $\arg(e^{i\omega\tau})$,

$$\arg(e^{i\omega\tau}) = \arg(e^{i\omega_1\tau}) + \arg(e^{-\omega_2\tau})$$
$$= \omega_1\tau + 0 \tag{34}$$

which, $\omega_1 \tau = \arctan\left(\frac{Im(e^{i\omega\tau})}{Re(e^{i\omega\tau})}\right)$, then, $\omega_1 \tau = \arctan\left(\frac{Im(e^{i\omega\tau})}{Re(e^{i\omega\tau})}\right) = 0$. Since $\omega_1 \tau$ is 0 because there is no imaginer part, therefore, according to von Neumann stability analysis, the implicit scheme on (22) is **non-dispersive**.