Equivariant Geometric Algebra

Course: Deep Learning

Degree: Msci. In Al & Robotics

Yusupha Juwara & Ali Ghasemi

Prof: Silvestri

A.Y. 2023/24

- In recent years, two very important and popular research areas in Deep Learning have been:
 - ➤ How can symmetries be encoded using equivariant deep learning?
 - ➤ How can geometric objects be represented through algebraic structures?

Projective Geometric Algebra

- ▶ Denoted as $G_{3,0,1}$, is a 16-dimensional algebra
- Provide a powerful framework for representing and manipulating geometric objects and transformations in 3D space.
- Extend traditional vector algebra to include:
 - ❖ Geometric Primitives like points, lines, planes, and volumes
 - **Geometric operations** such as rotations, translations, and reflection
- Incorporate 4th homogeneous coordinate e_0
 - * Resulting in a vector space spanned by the basis $\{e_0, e_1, e_2, e_3\}$.

Representation of Geometric Objects

- PGA can represent scalars, points, lines, planes, and pseudoscalars in 3D space as multivectors of different grades.
- The 16-dimensional basis vectors' space summary is as follows:
 - ❖ Scalar {1} Grade 0
 - \diamond Vectors (Planes) $\{e_0, e_1, e_2, e_3\}$ Grade 1
 - \bullet Bivector (Lines) $\{e_{01}, e_{02}, e_{03}, e_{12}, e_{13}, e_{23}\}$ Grade 2
 - **Trivectors** (Points) $\{e_{012}, e_{013}, e_{023}, e_{123}\}$ Grade 3
 - Pseudoscalar $\{e_{0123}\}$: Grade 4

1/3 - Operations

Geometric Product

Combines Inner and Outer products of vectors -> composition of geometric objects and transformations.

$$xy = \langle x, y \rangle + x \wedge y$$

Reverse

- Reverse the sequence of the basis vectors in each blade
- For a k-blade $A = a_1 \wedge a_2 \wedge \cdots \wedge a_k$ where \wedge represents the outer product, the reverse \tilde{A} is given by:

$$\tilde{A} = a_k \wedge a_{k-1} \wedge \dots \wedge a_1 = (-1)^{\frac{k(k-1)}{2}} (a_1 \wedge a_2 \wedge \dots \wedge a_k)$$

> Norm

Computed as the square root of the inner product of the multivector with itself

$$|x| = \sqrt{\langle x, x \rangle}$$

2/3 - Operations

Dual

- Reflect geometric elements across the duality relationship between the primal and dual spaces.
- ❖ Act on basis elements by swapping "empty" and "full" dimensions.

Join

- Designed to be dual to the meet.
- ♣ In PGA, where ∧ (meet) is an intersection, it is customary to denote the join by a ∨:

$$A \vee B = (A^* \wedge B^*)^*$$

Table 1: Duality table

$1^* = e_{0123}$	$e_{0123}^* = 1$
$e_0^* = e_{123}$	$e_{123}^* = -e_0$
$e_1^* = -e_{023}$	$e_{023}^* = e_1$
$e_2^* = e_{013}$	$e_{013}^* = -e_2$
$e_3^* = -e_{012}$	$e_{012}^* = e_3$
$e_{01}^* = e_{23}$	$e_{23}^* = e_{01}$
$e_{02}^* = -e_{13}$	$e_{13}^* = -e_{02}$
$e_{03}^* = e_{12}$	$e_{12}^* = e_{03}$

3/3 - Operations

\triangleright Grade involution \hat{x}

- Flips the sign of odd-grade elements such as vectors and trivectors
- Leave even-grade elements unchanged.

Sandwich Product

❖ To apply a versor u to any element x, the sandwich product is used and it is grade-preserving:

$$\rho_u(x) = \begin{cases} uxu^{-1} & \text{if } u \text{ is even} \\ u\hat{x}u^{-1} & \text{if } u \text{ is odd} \end{cases}$$

Transformations

> Spin transformations:

- Closely related to rotations in space & represented by elements called spinors in geometric algebra.
- ❖ A spinor is a multivector that can be used to represent rotations in any dimension.
- Spin transformations preserve the orientation and magnitude of vectors.
- They are associated with even-grade multivectors in geometric algebra.

Pin transformations:

- Include both rotations and reflections and are represented by pinors.
- ❖ A pinor is a multivector that can represent both rotations and reflections.
- Pin transformations include both spin transformations (rotations) and reflections.
- They can be associated with both even and odd-grade multivectors in geometric algebra.

Equivariance Check

✓ Equivariance, in this context, means that applying a transformation before the operation yields the same result as applying the operation and then the transformation.

Embedding Table

Object / operator		Scalar Vector		Bivector		Trivector		PS	
		e_0	e_i	e_{0i}	e_{ij}	e_{0ij}	e_{123}	e_{0123}	
Scalar $\lambda \in \mathbb{R}$	λ	0	0	0	0	0	0	0	
Plane w/ normal $n \in \mathbb{R}^3$, origin shift $d \in \mathbb{R}$	0	d	n	0	0	0	()	0	
Line w/ direction $n \in \mathbb{R}^3$, orthogonal shift $s \in \mathbb{R}^3$	0	0	0	s	n	0	0	0	
Point $p \in \mathbb{R}^3$	0	0	0	0	0	p	1	0	
Pseudoscalar $\mu \in \mathbb{R}$	0	0	0	0	0	0	0	μ	
Reflection through plane w/ normal $n \in \mathbb{R}^3$, origin shift $d \in \mathbb{R}$	0	d	n	0	0	0	0	0	
Translation $t \in \mathbb{R}^3$	1	0	0	$\frac{1}{2}t$	0	0	0	0	
Rotation expressed as quaternion $q \in \mathbb{R}^4$	q_0	0	0	0	q_i	0	0	0	
Point reflection through $p \in \mathbb{R}^3$	0	0	0	0	0	p	1	0	

Table 1: Embeddings of common geometric objects and transformations into the projective geometric algebra $\mathbb{G}_{3,0,1}$. The columns show different components of the multivectors with the corresponding basis elements, with $i, j \in \{1, 2, 3\}, j \neq i$, i.e. $ij \in \{12, 13, 23\}$. For simplicity, we fix gauge ambiguities (the weight of the multivectors) and leave out signs (which depend on the ordering of indices in the basis elements).

Embedding Figures

- 3D PGA environment which is equal to the linear space of planes.
- Bivectors are considered as lines
- Trivectors are points

Geometric Algebra Transformer (GATr) Architecture

Figure 1: Overview over the GATr architecture. Boxes with solid lines are learnable components, those with dashed lines are fixed.

Components of GATr Architecture

1/5 - Equivariant Layer Norm

• Normalize each multivector separately using the invariant inner product of $G_{3,0,1}$:

$$\frac{x}{\sqrt{(E_c \langle x, x \rangle)}}$$

2/5 – Gated Non-linearity

 Apply gated GELU to the scalar component of the multivector outputs to control the activation of the entire multivector:

$$GatedGELU(x) = GELU(x_1) x$$

- where x_1 is the scalar component of the multivector x.
- We can use the same gated nonlinearity properties for other activations, such as ReLU, Sigmoid, and Tanh.
- For exmple, for **ReLU**:

GatedReLU(x) = **ReLU**(
$$x_1$$
) x

3/5 - Equivariant Linear Transformation

Perform equivariant linear transformation on multivector inputs

$$\phi(x) = \sum_{k=0}^{d} w_k \langle x \rangle_k + \sum_{k=0}^{d+1} v_k e_0 \langle x \rangle_k$$

- where x is the input multivector, $\langle x \rangle_k$ is the blade projection of x to grade k, w_k and v_k are learnable parameters, and e_0 is the homogeneous basis vector.
- Additionally, if auxiliary scalars are provided, such as pressure in our case, then performs another linear transformation on it, not necessarily equivariant.

4/5 - Geometric Bilinear Transformation

Perform geometric bilinear operations, that is two operations: geometric product and join:

$$Geometric(x, y; z) = Concatenate_{channel}(xy, EquiJoin(x, y; z))$$

where $EquiJoin(x, y; z) = z_{0123}(x^* \wedge y^*)^*$, and z_{0123} is the **pseudoscalar** component of a reference multivector z.

5/5 - Geometric Attention

- Represent the geometric attention mechanism, a crucial part of the GATr architecture
- Responsible for capturing geometric relationships between multivectors.

Attention
$$(q, k, v)$$
 = $\sum_{i} Softmax_{i} \frac{\sum_{c} \langle q_{i}, k_{i} \rangle}{\sqrt{(8n_{c})}} v_{i}$

Equivariant LSTM

Results

Model	Non-norm data F1 score	Norm data F1 score
SVM	100%	98.625%
Log Reg	100%	98%

Model	F1 Score	Mem Footprint (MB)	Num Params (K)
GATr	100%	0.1	25.1
EquiLinear	98.855	0.008	2.1
BiEquiLinear	96.47%	0.074	18.4
EquiLSTM	100%	0.009	2.3
BiEquiLSTM	≈ 100%	0.014	3.4

