Some Sufficient Conditions for the Controllability of Wave Equations with Variable Coefficients

Yuning Liu*

Abstract

In this work, we present some easily verifiable sufficient conditions that guarantee the controllability of wave equations with non-constant coefficients. These conditions work as complements for those obtained in [3].

1 Introduction and the Main Results

Let T > 0 and $\Omega \subset \mathbb{R}^n$ be a bounded domain with a C^2 boundary $\partial \Omega$. Let $a^{ij} \in C^1(\overline{\Omega})(i, j = 1, \dots, n)$ such that $a^{ij} = a^{ji}$ and $A \stackrel{\triangle}{=} (a^{ij})_{1 \leq i,j \leq n}$ is a uniformly positive definite matrix. Consider the following hyperbolic equation:

$$\begin{cases} y_{tt} - \sum_{i,j=1}^{n} \left(a^{ij} y_{x_i} \right)_{x_j} = 0 & \text{in } (0,T) \times \Omega, \\ y = 0 & \text{on } (0,T) \times \partial \Omega, \\ y(0) = y_0, \ y_t(0) = y_1 & \text{on } \Omega. \end{cases}$$

$$(1.1)$$

Here $(y_0, y_1) \in H_0^1(\Omega) \times L^2(\Omega)$. In order to establish the boundary observability estimate for the equation (1.1) by multiplier method or Carleman estimate, one needs the following conditions (see [2] for example):

Condition 1.1. There exists a function $d \in C^2(\overline{\Omega})$ such that

$$\sum_{i,j=1}^{n} \left\{ \sum_{i',j'=1}^{n} \left[2a^{ij'} (a^{i'j} d_{x_i'})_{x_{j'}} - a^{ij}_{x_{j'}} a^{i'j'} d_{x_{i'}} \right] \right\} \xi^i \xi^j \ge \mu_0 \sum_{i,j=1}^{n} a^{ij} \xi_i \xi_j, \tag{1.2}$$

when $(x, \xi_1, \dots, \xi_n) \in \overline{\Omega} \times \mathbb{R}^n$, and such that and

$$|\nabla d| > 0 \quad \text{in } \overline{\Omega}. \tag{1.3}$$

Remark 1.1. One can directly verify the following: The condition (1.2) is equivalent to that the matrix

$$B = (b^{ij})_{1 \le i,j \le n} \stackrel{\triangle}{=} \left(\sum_{i',j'=1}^{n} \left(a^{ij'} a^{i'j} d_{x_{i'}x_{j'}} + \frac{a^{ij'} a^{i'j}_{x_{j'}} + a^{jj'} a^{i'i}_{x_{j'}} - a^{ij}_{x_{j'}} a^{i'j'}}{2} d_{x_{i'}} \right) \right)_{1 \le i,j \le n}$$
(1.4)

is uniformly positive definite.

The function d verifying (1.2) and (1.3) does not exist for some cases. This can be seen from the following example:

^{*}Faculty of Mathematics, University of Regensburg, D-93053, Regensburg, Germany. (liuyuning.math@gmail.com). The author was partially supported by the University of Regensburg.

Example 1.1. Let $\Omega = \{(x,y) : x^2 + y^2 \le 2\}$. Let $(a^{ij})_{1 \le i,j \le 2} = \text{diag } (a^1,a^2)$ with $a^1(x,y) = a^2(x,y) = 1 + x^2 + y^2$. By an indirect proof based on the Geometric Control Condition given in [1], we can show that there is no such a function d that satisfies (1.2).

Now, we study the existence of functions d verifying (1.2) and (1.3) for suitable $(a^{ij})_{1 \leq i,j \leq n}$. We will focus our studies on the special case where $A = (a^{ij})_{1 \leq i,j \leq n} = \operatorname{diag}(a^1, \dots, a^n)$, where $a^i \in C^1(\overline{\Omega})$. From Example 1.1, we see that even in this case, the above-mentioned functions d may not exist. Thus, it is interesting to provide certain easily verifiable condition to ensure the existence of such functions d in the case when A is diagonal. The main results of this study are as follows:

Theorem 1.1. Let $A = \operatorname{diag}(a^1, \dots, a^n)$, with $a^i \in C^1(\overline{\Omega})$ $(1 \leq i \leq n)$, be positive uniformly definite over $\overline{\Omega}$. If there exists $j \in \{1, \dots, n\}$ such that all the terms of $\{a^i_{x_j}\}_{1 \leq i \leq n; i \neq j}$ remain positive (or negative) over $\overline{\Omega}$, then there is a function $d \in C^2(\overline{\Omega})$ verifying Condition 1.1.

It is worth mentioning that, in the statement of the main theorem, we don't need the structural condition on $a_{x_j}^j$ where j is the fixed index. Before carrying out the proof, we give two corollaries. The first one corresponds to the case j = 1:

Corollary 1.1. Let $A = \operatorname{diag}(a^1, \dots, a^n)$, with $a^i \in C^1(\overline{\Omega})$, $i = 1, \dots, n$, be positive uniformly definite over $\overline{\Omega}$. Suppose that

$$a_{x_1}^k > 0 \ (or \ a_{x_1}^k < 0) \ over \ \overline{\Omega}, \ for \ 2 \le k \le n,$$
 (1.5)

then, there is a function $d \in C^2(\overline{\Omega})$ verifying Condition 1.1.

Corollary 1.2. Let $A = \operatorname{diag}(a^1, a^2)$, with $a^1, a^2 \in C^1(\overline{\Omega})$, be positive uniformly definite over $\overline{\Omega}$. Suppose that $a^1_{x_2}$ (or $a^2_{x_1}$) is either positive or negative over $\overline{\Omega}$. Then there is a function $d \in C^2(\overline{\Omega})$ satisfying Condition 1.1.

2 Proof of Main Theorem:

Proof of Theorem 1.1: case 1. We first consider the following case:

$$a_{x_i}^i < 0$$
, uniformly over $x \in \overline{\Omega}$, for all $1 \le i \le n$ with $i \ne j$. (2.1)

where j is a fixed index. Let

$$d \triangleq d(x) = e^{\lambda(c+x_j)} + \sum_{1 \le i \le n, i \ne j} e^{\lambda x_i}, \ x \in \overline{\Omega},$$

where c > 0 satisfies that

$$\min_{x \in \overline{\Omega}} \{c + x_j\} \ge 1 + \max_{x \in \overline{\Omega}} \sum_{1 < i < n, i \neq j} |x_i|, \tag{2.2}$$

and $\lambda > 0$ is a large number will be determined later. Using (2.2), one could check that the function d(x) enjoys the following properties:

• For any $1 \le i \le n$,

$$d_{x_i x_i} > 0, \ d_{x_i} > 0, \quad \text{uniformly for } x \in \overline{\Omega} \ .$$
 (2.3)

• For any $1 \le i \le n$,

$$\lim_{\lambda \to +\infty} \frac{d_{x_i}}{d_{x_i x_i}} = 0 \quad \text{uniformly for } x \in \overline{\Omega} .$$
 (2.4)

• For any $1 \le i \le n$ with $i \ne j$,

$$\lim_{\lambda \to +\infty} \frac{d_{x_i}}{d_{x_j}} = 0, \quad \lim_{\lambda \to +\infty} \frac{d_{x_i x_i}}{d_{x_j}} = 0, \quad \text{uniformly for } x \in \overline{\Omega} \ . \tag{2.5}$$

From Remark 1.1, to prove d enjoys (1.2) for the case $A = \operatorname{diag}(a^1, \dots, a^n)$, we only need to show the uniformly positivity of the following matrix:

$$B = \frac{1}{2} \left(a^i a_{x_i}^j d_{x_j} + a^j a_{x_j}^i d_{x_i} \right)_{1 \le i, j \le n}$$

$$+ \operatorname{diag} \left((a^1)^2 d_{x_1 x_1} - \frac{1}{2} \sum_{k=1}^n a^k a_{x_k}^1 d_{x_k}, \cdots, (a^n)^2 d_{x_n x_n} - \frac{1}{2} \sum_{k=1}^n a^k a_{x_k}^n d_{x_k} \right). \quad (2.6)$$

To achieve this goal, we only need to show that all the leading principal minors of B are positive. In order to avoid the terrible expansion of the determinant, we shall make full use of the asymptotic behavior with respect to the parameter λ . We denote by e_i the i-th standard basis of \mathbb{R}^n and by $\{B_i\}_{i=1}^n$ the row vector of $B_{\underline{\cdot}}$ It can be verified that, with a very large $\lambda > 0$, the matrix B is uniformly positive definite over $\overline{\Omega}$ if and only if all the leading principal minors of

the matrix $\tilde{B}(x,\lambda) := \begin{bmatrix} \vdots \\ \frac{B_{j-1}}{d_{x_j}} \\ \frac{B_j}{d_{x_j x_j}} \\ \frac{B_{j+1}}{d_{x_j}} \\ \vdots \\ B_n \end{bmatrix}$ is uniformly positive over $\overline{\Omega}$. This later condition is relatively $\tilde{B}(x,\lambda) = \lim_{\lambda \to +\infty} \tilde{B}(x,\lambda) \text{ and } \tilde{B}(x,\lambda) \text{ and } \tilde{B}(x,\lambda) \text{ and } \tilde{B}(x,\lambda)$

the condition (2.1) guarantees that all the leading principal minors of $B(x, +\infty)$ are uniformly positive over $\overline{\Omega}$. Now we give the details of this:

By (2.6)

$$B_{j} = \frac{1}{2} \left(a^{j} a_{x_{j}}^{l} d_{x_{l}} + a^{l} a_{x_{l}}^{j} d_{x_{j}} \right)_{1 \le l \le n} + \left((a^{j})^{2} d_{x_{j} x_{j}} - \frac{1}{2} \sum_{k=1}^{n} a^{k} a_{x_{k}}^{j} d_{x_{k}} \right) e_{j}$$
 (2.7)

Making use of (2.3),(2.4) and (2.5), we deduce

$$\lim_{\lambda \to +\infty} \frac{B_j}{d_{x_i x_i}} = (a^j)^2 e_j \quad \text{uniformly for } x \in \overline{\Omega}.$$
 (2.8)

In the same spirit, for $1 \le i \le n$ with $i \ne j$, we have

$$B_{i} = \frac{1}{2} \left(a^{i} a_{x_{i}}^{l} d_{x_{l}} + a^{l} a_{x_{l}}^{i} d_{x_{i}} \right)_{1 \leq l \leq n} + \left((a^{i})^{2} d_{x_{i}x_{i}} - \frac{1}{2} \sum_{k=1}^{n} a^{k} a_{x_{k}}^{i} d_{x_{k}} \right) e_{i}$$
 (2.9)

One could verify by using (2.4) and (2.5) that

$$\lim_{\lambda \to +\infty} \frac{B_i}{d_{x_i}} = \frac{1}{2} a^i a_{x_i}^j e_j - \frac{1}{2} a^j a_{x_j}^i e_i \quad \text{uniformly for any } x \in \overline{\Omega}.$$
 (2.10)

By (2.18) and (2.20), we deduce that

$$\lim_{\lambda \to +\infty} \begin{pmatrix} \frac{B_1}{d_{x_j}} \\ \vdots \\ \frac{B_{j-1}}{d_{x_j}} \\ \frac{B_j}{d_{x_j x_j}} \\ \frac{B_{j+1}}{d_{x_j}} \\ \vdots \\ \frac{B_n}{d_{x_j}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}a^j a_{x_j}^1 & \cdots & 0 & \frac{1}{2}a^1 a_{x_1}^j & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & -\frac{1}{2}a^j a_{x_j}^{j-1} & \frac{1}{2}a^{j-1} a_{x_{j-1}}^j & 0 & \cdots & 0 \\ 0 & \cdots & 0 & (a^j)^2 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{1}{2}a^{j+1} a_{x_{j+1}}^j & -\frac{1}{2}a^j a_{x_j}^{j+1} & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{1}{2}a^n a_{x_n}^j & 0 & \cdots & -\frac{1}{2}a^j a_{x_j}^n \end{pmatrix}$$

$$(2.11)$$

uniformly for $x \in \overline{\Omega}$. We deduce from the above formula and (2.3), (2.1) that all the leading principal minors of $B(x,\lambda)$ are uniformly positive with a large λ . This complete the proof.

Proof of Theorem 1.1, case 2. Here we discuss the case when

$$a_{x_i}^i > 0$$
, uniformly over $x \in \overline{\Omega}, 1 \le i \le n, i \ne j$, (2.12)

where j is a fixed index. In this case, the proof is quite similar as above: we define a function

$$d \triangleq d(x) = e^{-\lambda(x_j - c)} + \sum_{1 \le i \le n, i \ne j} e^{-\lambda x_i}, \ x \in \overline{\Omega},$$

where c > 0 satisfies that

$$\max_{x \in \overline{\Omega}} \{x_j - c\} + 1 \le \min_{x \in \overline{\Omega}} \sum_{1 \le i \le n, i \ne j}^n |x_i|, \tag{2.13}$$

and $\lambda > 0$ is a large number will be determined later. Using (2.13), one could also check that the function d(x) enjoys the following properties:

• For any $1 \le i \le n$,

$$d_{x_i} < 0, \ d_{x_{ii}} > 0, \quad \text{uniformly for } x \in \overline{\Omega} \ .$$
 (2.14)

• For any $1 \le i \le n$,

$$\lim_{\lambda \to +\infty} \frac{d_{x_i}}{d_{x_j x_j}} = 0 \quad \text{uniformly for } x \in \overline{\Omega} .$$
 (2.15)

• For any $1 \le i \le n$ with $i \ne j$,

$$\lim_{\lambda \to +\infty} \frac{d_{x_i}}{d_{x_j}} = 0, \quad \lim_{\lambda \to +\infty} \frac{d_{x_i x_i}}{d_{x_j}} = 0, \quad \text{uniformly for } x \in \overline{\Omega} .$$
 (2.16)

As before, we deduce from (2.14),(2.15) and (2.16) that the matrix B is uniformly positive

As before, we deduce from (2.14),(2.15) and (2.16) that the matrix
$$B$$
 is uniformly positive definite if and only if all the leading principal minors of the matrix $\hat{B}(x,\lambda) := \begin{pmatrix} -\frac{B_1}{d_{x_j}} \\ \vdots \\ -\frac{B_{j-1}}{d_{x_j}} \\ \frac{B_j}{d_{x_j,x_j}} \\ -\frac{B_{j+1}}{d_{x_j}} \\ \vdots \\ -\frac{B_n}{d_{x_j}} \end{pmatrix}$ is

uniformly positive over $\overline{\Omega}$ when λ is large enough. By (2.6)

$$B_{j} = \frac{1}{2} \left(a^{j} a_{x_{j}}^{l} d_{x_{l}} + a^{l} a_{x_{l}}^{j} d_{x_{j}} \right)_{1 \leq l \leq n} + \left((a^{j})^{2} d_{x_{j} x_{j}} - \frac{1}{2} \sum_{k=1}^{n} a^{k} a_{x_{k}}^{j} d_{x_{k}} \right) e_{j}$$
 (2.17)

Making use of (2.15) and (2.16), we deduce

$$\lim_{\lambda \to +\infty} \frac{B_j}{d_{x_j x_j}} = (a^j)^2 e_j \quad \text{uniformly for } x \in \overline{\Omega}.$$
 (2.18)

In the same spirit, for $1 \le i \le n$ with $i \ne j$, we have

$$B_i = \frac{1}{2} \left(a^i a^l_{x_i} d_{x_l} + a^l a^i_{x_l} d_{x_i} \right)_{1 \le l \le n} + \left((a^i)^2 d_{x_i x_i} - \frac{1}{2} \sum_{k=1}^n a^k a^i_{x_k} d_{x_k} \right) e_i \tag{2.19}$$

One could verify by using (2.4) and (2.5) that

$$\lim_{\lambda \to +\infty} \frac{B_i}{d_{x_i}} = \frac{1}{2} a^i a_{x_i}^j e_j - \frac{1}{2} a^j a_{x_j}^i e_i \quad \text{uniformly for any } x \in \overline{\Omega}.$$
 (2.20)

By (2.18) and (2.20), we deduce that

$$\lim_{\lambda \to +\infty} \begin{pmatrix} \frac{B_1}{d_{x_j}} \\ \vdots \\ \frac{B_{j-1}}{d_{x_j}} \\ \frac{B_j}{d_{x_j}} \\ \frac{B_{j+1}}{d_{x_j}} \\ \vdots \\ \frac{B_n}{d_{x_j}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}a^j a_{x_j}^1 & \cdots & 0 & \frac{1}{2}a^1 a_{x_1}^j & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & -\frac{1}{2}a^j a_{x_j}^{j-1} & \frac{1}{2}a^{j-1} a_{x_{j-1}}^j & 0 & \cdots & 0 \\ 0 & \cdots & 0 & (a^j)^2 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{1}{2}a^{j+1} a_{x_{j+1}}^j & -\frac{1}{2}a^j a_{x_j}^{j+1} & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{1}{2}a^n a_{x_n}^j & 0 & \cdots & -\frac{1}{2}a^j a_{x_j}^n \end{pmatrix}$$

uniformly for $x \in \overline{\Omega}$. The above formula implies

$$\lim_{\lambda \to +\infty} \begin{pmatrix} -\frac{B_{1}}{d_{x_{j}}} \\ \vdots \\ -\frac{B_{j-1}}{d_{x_{j}}} \\ \frac{B_{j}}{d_{x_{j}x_{j}}} \\ -\frac{B_{j+1}}{d_{x_{j}}} \\ \vdots \\ -\frac{B_{n}}{d_{x_{j}}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}a^{j}a_{x_{j}}^{1} & \cdots & 0 & -\frac{1}{2}a^{1}a_{x_{1}}^{j} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & \frac{1}{2}a^{j}a_{x_{j}}^{j-1} & -\frac{1}{2}a^{j-1}a_{x_{j-1}}^{j} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & (a^{j})^{2} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & -\frac{1}{2}a^{j+1}a_{x_{j+1}}^{j} & \frac{1}{2}a^{j}a_{x_{j}}^{j+1} & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -\frac{1}{2}a^{n}a_{x_{n}}^{j} & 0 & \cdots & \frac{1}{2}a^{j}a_{x_{j}}^{n} \end{pmatrix}$$

$$(2.22)$$

uniformly for $x \in \overline{\Omega}$. We deduce from the above formula and (2.14), (2.12) that all the leading principal minors of $\hat{B}(x,\lambda)$ are uniformly positive with a large λ . This complete the proof.

3 Examples and Comments

There have been a lot of conditions to ensure the existence of the function d. In [3] (see also [4]), the author provides a sectional curvature condition to guarantee the existence of functions

d. This condition is that the sign of the sectional curvature function k for the Riemannian manifold, with a metric $A^{-1} = (a^{ij})_{1 \le i,j \le n}^{-1}$, is either positive or negative over $\overline{\Omega}$.

In this section, we will compare the condition in Theorem 1.1 with the above-mentioned

In this section, we will compare the condition in Theorem 1.1 with the above-mentioned condition given in [3]. Then, we will see some advantage can be taken from the condition in Theorem 1.1. First, [3] needs the C^{∞} -regularity for coefficients $a^{i,j}$; while our Theorem 1.1 only needs the C^1 -regularity for coefficients. Second (more important), there are many cases which can be solved by our Theorem 1.1, but cannot be solved by the sectional curvature condition provided in [3]. Here, we present an example to explain the second advantage above-mentioned.

Example 3.1. Let $A = \operatorname{diag}(a^1, a^2)$, where $a^1, a^2 \in C^{\infty}(\overline{\Omega})$. Suppose that $a_{x_1}^2 < 0$ over $\overline{\Omega}$. By Theorem 1.1 or Corollary 1.2, there is a function $d \in C^2(\overline{\Omega})$ verifying Condition 1.1. However, by making use of the sectional curvature condition provided in [3], we cannot imply the existence of the above-mentioned d. In fact, after some computation, one can see that the sectional curvature given by the metric A^{-1} is as follows:

$$k = \frac{1}{4(a^1 a^2)^2} \left[a^2 a_{x_1}^1 a_{x_1}^2 + a^1 (a_{x_1}^2)^2 - 2a^1 a^2 a_{x_1 x_1}^2 \right]. \tag{3.1}$$

From (3.1), one can construct many such a^i , i=1,2, with the property that $a_{x_1}^2 < 0$ over $\overline{\Omega}$, such that the corresponding k changes its sign over $\overline{\Omega}$.

Here, we provide one of them as follows: Let $\Omega = \{(x_1, x_2) : (x_1 - 2)^2 + x_2^2 < 3/2\} \subset \mathbb{R}^2$. Let $a^1 = e^{\mu_1 x_1}$ and $a^2 = e^{-\mu_2 x_1^2}$, where μ_1 and μ_2 satisfy

$$\mu_1 > 0; \ \mu_2 > 0; \ \mu_1 + 2\mu_2 < 2; \ 3\mu_1 + 18\mu_2 > 2.$$
 (3.2)

Clearly, (3.2) has solutions.

In this case, it is clear that $a_{x_1}^2 < 0$ over $\overline{\Omega}$ because $x_1 > 0$ over $\overline{\Omega}$. From (3.1), we see

$$4(a^{1}a^{2})^{2}k = -2\mu_{1}\mu_{2}x_{1}e^{\mu_{1}x_{1}-2\mu_{2}x_{1}^{2}} + 4\mu_{2}^{2}x_{1}^{2}e^{\mu_{1}x_{1}-2\mu_{2}x_{1}^{2}} + 4\mu_{2}e^{\mu_{1}x_{1}-2\mu_{2}x_{1}^{2}} - 8\mu_{2}^{2}x_{1}^{2}e^{\mu_{1}x_{1}-2\mu_{2}x_{1}^{2}}$$

$$= -2\mu_{2}e^{\mu_{1}x_{1}-2\mu_{2}x_{1}^{2}}(\mu_{1}x_{1}+2\mu_{2}x_{1}^{2}-2).$$

From (3.2), it follows that

$$(\mu_1 x_1 + 2\mu_2 x_1^2 - 2)\big|_{x_1=1} < 0$$

and

$$(\mu_1 x_1 + 2\mu_2 x_1^2 - 2)\big|_{x_1=3} > 0.$$

Hence, k > 0 in the set $\Omega \cap \{(x_1, x_2) : x_1 = 1\}$; while k < 0 in the set $\Omega \cap \{(x_1, x_2) : x_1 = 3\}$. From these, we conclude that k changes its sign over $\overline{\Omega}$. Therefore, the method in [3] does not work for the current case.

The next two examples are taken from [3] for which the existence can be ensured by either the sectional curvature condition provided in [3] or our Theorem 1.1.

Example 3.2. Let $A = (a^{ij})_{1 \le i,j \le 2} = \text{diag}(e^{x^3 + y^3}, e^{x^3 + y^3})$. One can directly check that

$$a_{x_1}^2 = 3y^2 e^{x^3 + y^3} > 0.$$

Then, according to Theorem 1.2, there is a d satisfying (1.2) and (1.3).

Example 3.3. Let $A = (a^{ij})_{1 \le i,j \le 2} = \operatorname{diag}(e^{x+y}, e^{x+y})$. One can easily check that $a_{x_1}^2 = e^{x+y} > 0$. Then, by Theorem 1.2, there exists a d satisfing (1.2) and (1.3).

Remark 3.1. The sectional curvature condition provided in [3] works better than our Theorem 1.1 when a^{ij} is not of diagonal form. For instance, the Example 3.2 in [3].

Acknowledgements

The author want to thank Professor Gengsheng Wang for pointing out the prototype of this result and his help on the examples.

References

- [1] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30(1992), 1024–1065.
- [2] X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., 46(2007), 1578–1614.
- [3] P. F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim., 37(1999), 1568–1599.
- [4] P. F. Yao, Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach, Chapman and Hall/CRC Press, Boca Raton, 2011.