

RFID Entrance Guard System

Overview

This lesson will teach you how to use RC522 RFID module, and you can learn how to read and write cards through the RFID Entrance Guard System experiment.

Specification

Please view "MFRC522.pdf"

Path: \Public materials\Datasheet\ MFRC522.pdf

Pin definition

RC522	Arduinc
3.3V	->+3.3\
RST	->D9
GND	->GND
IRQ	->Null
MISO	->D12
MOSI	->D11
SCK	->D13
SDA	->D10

1

Hardware required

	T	
Material diagram	Material name	Number
	RC522 RFID	1
	RFID Card	1
	RFID Key	1
	Button	1
	LED	2
-4113-	220/330Ω resistor	2
-4113-	10KΩ resistor	1
	USB Cable	1
	MEGA 2560	1
	Breadboard	1
	Jumper wires	Several

Connection diagram

Note: For this module, please use a 3.3V power supply, or it will get burnt.

Sample code

Note: sample code under the **Sample code** folder

You need to add the **RFID** to the Arduino library file directory, otherwise the compiler does not pass. **Please refer to 'How to add library files.docx'.**

```
#include <SPI.h>
#include <RFID.h>
const int LED1 = 3;
const int LED2 = 4;
boolean flag = false; //Write card flag
RFID rfid(10,9);
//The fourth byte is card's serial number and the five byte is card's Check byte
unsigned char serNum[5];
// Write data
unsigned char writeDate[16] ={'W', 'e', 'l', 'c', 'o', 'm', 'e', 'T', 'o', 'S', 'm', 'r', 'a', 'z', 'a', 0};
//A password original sector, 16 sectors, each sector password 6Byte
unsigned char sectorKeyA[16][16] = {
                    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},};
                   //A password new sector, 16 sectors, each sector password 6Byte
unsigned char sectorNewKeyA[16][16] = {
                    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                    {0xFF, 0xFF, 0xFF,
0xFF},
                    {0xFF, 0xFF, 0xFF,
0xFF},};
void setup()
                    Serial.begin(9600);
                    SPI.begin();
                    rfid.init();
                     pinMode(LED1,OUTPUT);
                    pinMode(LED2,OUTPUT);
                    attachInterrupt(0, WriteCardInterrupt, RISING);
}
void loop()
                    unsigned char i,tmp;
                    unsigned char status;
                    unsigned char str[MAX LEN];
                    unsigned char RC size;
```



```
unsigned char blockAddr;
    //Detecting card
    rfid.isCard();
    //Reading the card serial number
    if (rfid.readCardSerial())
    {
        Serial.print("The card's number is: ");
        Serial.print(rfid.serNum[0],HEX);
        Serial.print(rfid.serNum[1],HEX);
        Serial.print(rfid.serNum[2],HEX);
        Serial.print(rfid.serNum[3],HEX);
        Serial.print(rfid.serNum[4],HEX);
        Serial.println(" ");
    }
    //Select card and return memory size(note:Card is locked to prevent multiple read
and write rfid.selectTag(rfid.serNum);
    // write data to card
    blockAddr = 7;
                                 //data block 7
    if(flag==true)
        if (rfid.auth(PICC AUTHENT1A, blockAddr, sectorKeyA[blockAddr/4],
        rfid.serNum) == MI_OK) //authenticate
             //Write data
             status = rfid.write(blockAddr, sectorNewKeyA[blockAddr/4]);
             Serial.print("Set the new card password, and can modify the data of the
             Sector:");
             Serial.println(blockAddr/4,DEC);
             //Write data
             blockAddr = blockAddr - 3; //data block 4
             status = rfid.write(blockAddr, writeDate);
             if(status == MI OK)
                 Serial.println("Write card OK!");
                 digitalWrite(LED2,LOW); //LED status for writing card
                 delay(1000);
                 flag=false; //Reset interrupt status
             }else{
                 Serial.println("Write card Error!");
             }
        }
    //Read card
```



```
blockAddr = 7;
                                 //data block 7
    status = rfid.auth(PICC AUTHENT1A, blockAddr, sectorNewKeyA[blockAddr/4],
rfid.serNum);
    if (status == MI_OK) //authenticate
    {
         //Read Data
         blockAddr = blockAddr - 3; //data block 4
         if( rfid.read(blockAddr, str) == MI OK)
         {
             Serial.print("Read from the card ,the data is: ");
             Serial.println((char *)str);
             for(int j=0;j<2;j++) // LED status for reading card
             {
                  digitalWrite(LED1,HIGH);
                  digitalWrite(LED2,HIGH);
                  delay(500);
                  digitalWrite(LED1,LOW);
                  digitalWrite(LED2,LOW);
                  delay(500);
             }
        }
    }
    rfid.halt();
    flashled();
                    // LED lamp for detecting card
void WriteCardInterrupt() //Interrupt function
    digitalWrite(LED2,HIGH);
    flag = true;
void flashled()
    digitalWrite(LED1,LOW);
    delay(200);
    digitalWrite(LED1,HIGH);
    delay(200);
    Serial.println("Detecting card......");
}
/* Tips: Open serial port monitor.
* LED1 blinking and LED2 off
                                            Detecting card
* LED1 blinking and LED2 on
                                            Waiting for write card
                                   ->
* LED1 and LED2 blinking
                                            Reading card is finished
                                   ->
*/
```


Example picture

Result

Language reference

Tips: click on the following name to jump to the web page.

If you fail to open, use the Adobe reader to open this document.

attachInterrupt

Application effect

Detecting card: LED1 blinking and LED2 off

Writing card: Press the button, and then put the card/key on top of RC522.

LED1 and LED2 blinking->Writing card is finished. Reading card: Put the card/key on top of RC522.

LED1 and LED2 blinking->Writing card is finished.

* We are a leading manufacturer of electronic components for Arduino and Raspberry Pi.

* Official website: http://www.smraza.com/

* We have a professional engineering team dedicated to providing tutorials and support to help you get started.

* If you have any technical questions, please feel free to contact our support staff via email at support@smraza.com

* We truly hope you enjoy the product, for more great products please visit our

Amazon US store: http://www.amazon.com/shops/smraza

Amazon CA store: https://www.amazon.ca/shops/AMIHZKLK542FQ
Amazon UK store: http://www.amazon.co.uk/shops/AVEAJYX3AHG8Q
Amazon DE store: http://www.amazon.de/shops/AVEAJYX3AHG8Q
Amazon IT store: http://www.amazon.it/shops/AVEAJYX3AHG8Q
Amazon ES store: https://www.amazon.es/shops/AVEAJYX3AHG8Q

^{*} About Smraza: