Лабораторная работа №3

Исследование однофазных автономных инверторов

1. Теоретическая справка

Автономный инвертор — устройство, преобразующее постоянное напряжение (ток) в переменное напряжение (ток) с неизменной или регулируемой частотой и работающее на автономную (не связанную с сетью) нагрузку. Инверторы широко применяются в регулируемом электроприводе и устройствах бесперебойного питания. В первом случае обычно используются трехфазные инверторы с возможностью регулирования частоты напряжения, во втором — однофазные или трехфазные с частотой выходного напряжения 50 Гц. В электротермических установках при помощи инверторов создается переменный ток высокой частоты. В электроэнергетике на основе инверторов выполняются устройства регулирования мощности.

Основой автономных инверторов являются полностью управляемые полупроводниковые ключи (транзисторы или запираемые тиристоры). Схемы автономных инверторов подразделяют на инверторы напряжения, инверторы тока и резонансные инверторы. Соответственно, первые обладают преимущественно свойствами источника напряжения, вторые — свойствами источника тока. Работа схем третьего типа основана на резонансных явлениях в цепи нагрузки.

Принцип действия однофазных инверторов рассмотрим на примере мостовой схемы инвертора напряжения с активно-индуктивной нагрузкой (рис. 1). В простейшем случае схема работает по следующему алгоритму: транзисторы включаются парами и поочередно проводят ток: сначала VT2, VT3, затем VT1, VT4 и т.д. На выходе инвертора формируется напряжение, имеющее форму меандра Длительность включенного (прямоугольное). состояния транзисторов равна половине периода формируемого напряжения. Известно, что при разложении меандра в ряд Фурье присутствуют все нечетные гармонические составляющие. Частота первой (основной) гармоники определяется периодом меандра. случаев напряжение большинстве такое не удовлетворяет требованиям потребителей. С целью улучшения гармонического состава инвертированного напряжения используются более сложные алгоритмы управления транзисторами, в частности, широтно-импульсное управление.

Широтно-импульсной модуляцией (ШИМ) называется импульсное управление, при котором ширина импульсов изменяется (модулируется) в пределах периода основной частоты для того, чтобы создать определенную форму выходного напряжения. Частота следования управляющих импульсов при этом остается неизменной. Простейшим вариантом организации ШИМ является однократная модуляция. В этом случае переключение каждой пары транзисторов происходит со смещением по отношению к другой. В результате на выходе инвертора формируется напряжение в виде меандра с нулевыми паузами. Это позволяет регулировать относительную длительность напряжение, изменяя ненулевых (коэффициент заполнения у). Амплитуда основной гармоники рассчитывается как

$$U_{ab1m} = \frac{4E}{\pi} \cdot \sin \frac{\gamma \pi}{2} \,.$$

Наиболее эффективным вариантом ШИМ является изменение ширины импульсов выходного напряжения по синусоидальному закону (синусоидальная ШИМ). Формирование импульсов происходит посредством

сравнения сигнала заданной формы (синусоидальной), называемого опорным или эталонным, с высокочастотным сигналом треугольной формы (несущим). Опорный сигнал является модулирующим и определяет форму выходного напряжения инвертора. Существуют модификации этого метода, в которых модулирующие сигналы представлены специальными функциями, отличными от синусоиды, что помогает подавить некоторые высшие гармоники. Управление на основе ШИМ позволяет формировать основную гармонику напряжения (тока) требуемой частоты с возможностью регулирования её амплитуды и фазы.

Рис. 1. Однофазный инвертор напряжения с RL-нагрузкой

В мостовой схеме инвертора возможна реализация двух типов ШИМ — двухполярной и однополярной. При двухполярной модуляции поочередно в проводящем состоянии находятся сначала VT1 и VT4, потом VT2 и VT3. Условия переключения транзисторов (рис. 2):

$$u_{\text{M}}(9) > u_{\text{H}}(9)$$
 – проводят $VT1$ и $VT4$; $u_{\text{M}}(9) < u_{\text{H}}(9)$ – проводят $VT2$ и $VT3$.

Рис. 2. Принцип формирования управляющих импульсов при двухполярной ШИМ

При однополярной модуляции формируется две последовательности управляющих импульсов — одна для VT1 и VT2, другая — для VT3 и VT4, как показано на рис. 3. Для этого используется два модулирующих сигнала, находящиеся в противофазе. Условия переключения:

$$u_{\rm M}^+(9) > u_{\rm H}(9) - VT1$$
 включен, $VT2$ выключен; $u_{\rm M}^-(9) > u_{\rm H}(9) - VT3$ включен, $VT4$ выключен.

Таким образом, при однополярной ШИМ возможно четыре комбинации состояний транзисторов, указанные в табл. 1 (проводящему состоянию соответствует 1, выключенному — 0). В результате на нагрузке формируется трехуровневое напряжение.

Рис. 3. Принцип формирования управляющих импульсов при однополярной ШИМ

 Табл. 1. Комбинации состояний транзисторов при однополярной ШИМ

 VT1
 VT2
 VT3
 VT4

	VT1	VT2	VT3	VT4	
I	1	0	0	1	$u_{ab} = +E$
II	0	1	1	0	$u_{ab} = -E$
III	1	0	1	0	$u_{ab}=0$
IV	0	1	0	1	$u_{ab}=0$

Как при однополярной, так и при двухполярной модуляции амплитуда первой гармоники выходного напряжения инвертора зависит от соотношения амплитуд модулирующего и несущего сигналов (коэффициента модуляции M):

$$U_{ab1m} = M \cdot E .$$

Режим работы, при котором амплитуда модулирующих сигналов больше амплитуды несущего сигнала называется перемодуляцией. При этом амплитуда

первой гармоники выходного напряжения будет превышать напряжение источника. Максимально возможная амплитуда основной гармоники в этом случае:

$$U_{ab1m,\,\max} = \frac{4E}{\pi}.$$

2. Описание работы

Цель работы

Исследование принципа работы и характеристик однофазного мостового инвертора с управлением различными методами синусоидальной широтно-импульсной модуляции.

Компьютерная модель

Модель однофазного мостового инвертора напряжения в программе MatLab/Simulink показана на рис. 4. Транзисторный мост моделируется при помощи блока $Universal\ Bridge$, окно настроек параметров которого приведено на рис. 5. Задаются значения сопротивления транзисторов ($R_{on}=0.5\ {\rm Om}$) и падения напряжения на транзисторах и диодах ($V_f=1.5\ {\rm B},\ V_{fd}=0.8\ {\rm B}$).

Рис. 4. Модель однофазного мостового инвертора

В состав модели также входят:

- блок управления инвертором (Control System);
- источник постоянного напряжения (DC Source);
- *RL*-нагрузка (*Load*);
- амперметры и вольтметры;

- блоки вычисления гармонических составляющих измеряемых сигналов (Fourier);
- анализаторы гармонического состава измеряемых сигналов (*Harmonics*);
- блоки расчета действующих значений измеряемых сигналов (*RMS*);
- блоки численного отображения величин (Display);
- осциллографы (*Scope*).

Рис. 5. Окно настройки параметров блока Universal Bridge

Данные для выполнения работы

Исходными данными в работе являются (табл. 2):

- напряжение источника (U_{DC});
- сопротивление нагрузки ($R_{\rm H}$);
- индуктивность нагрузки ($L_{\rm H}$).

Табл. 2. Исходные данные

№ бриг.	1	2	3	4	5	6	7	8	9
U_{DC} , B	250	260	270	280	290	300	310	320	330
$R_{\rm H}$, Om	10	20	30	40	50	60	70	80	90
$L_{ m H}$, Гн	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9

3. Порядок выполнения работы

3.1. Исследование принципа действия инвертора

Для проведения исследования необходимо открыть в программе MatLab6.5 файл « $Lab3_a$ » и произвести моделирование при значениях параметров нагрузки $R_{\rm H}$ и $L_{\rm H}$, указанных в табл. 2. Значения $R_{\rm H}$ и $L_{\rm H}$ задаются в блоке Load, U_{DC} — в блоке DC Source. Моделирование проводится при 6 значениях коэффициента заполнения γ (задается в блоке GAMMA): 1, 2/3, 1/2, 1/3, 1/4, 1/8.

Запуск модели на расчет осуществляется кнопкой L (Start simulation) на панели инструментов в окне модели. Диаграммы тока и напряжения на нагрузке и тока источника снимаются с осциллографа Scope1, диаграммы напряжения и токов транзистора и диода – с осциллографа *Scope2*, диаграммы сигналов управления – с осциллографа Scope3, гармонический состав тока и напряжения – показания блоков Harmonics I и Harmonics U. Необходимо сохранить диаграммы в виде графических файлов (при помощи команды *PrtScr*), предварительно изменив отображения кнопкой (Autoscale) на панели инструментов в окне осциллографа. Диаграммы сохраняются для трех значений у: 1, 1/2 и 1/4. Для всех значений у необходимо сохранить только гармонический состав напряжения (блок Harmonics U), записать значение коэффициента гармоник напряжения (показания Display4).

По полученным данным определить значения амплитуд наиболее значимых гармоник U_{nm} и вычислить коэффициенты гармоник напряжения для заданных коэффициентов заполнения (γ):

$$K_{\Gamma} = \sqrt{\sum_{n \neq 1}^{\infty} U_{n \, m}^2} / U_{1 \, m} \,,$$

где $U_{1\,m}$ – амплитуда 1-ой гармоники, $U_{n\,m}$ – амплитуда n-ой гармоники.

Определить теоретические значения коэффициента гармоник напряжения для заданных коэффициентов заполнения (γ):

$$K_{\Gamma} = \frac{U_{\rm B\Gamma}}{U_1} = \sqrt{\frac{U^2}{U_1^2} - 1},$$

$$U = E \cdot \sqrt{\gamma}, \ U_1 = \frac{U_{1m}}{\sqrt{2}},$$

где $U_{\rm B\Gamma}$ – действующее значение высших гармоник (всех, кроме основной), U_1 – действующее значение 1-ой (основной) гармоники напряжения, U – действующее значение напряжения (всех гармоник, включая основную).

По полученным результатам необходимо построить:

- зависимость амплитуды основной гармоники напряжения от γ и соответствующую теоретическую характеристику;
- зависимость амплитуд 3-й, 5-й, 7-й и 9-й гармоник напряжения от у;
- зависимости коэффициентов гармоник напряжения от γ (1 по измеренным значениям, 2 рассчитанную по гармоникам, 3 теоретическую).

3.2. Исследование инвертора с двухполярной ШИМ

Для проведения исследования необходимо открыть в программе MatLab6.5 файл $(Lab3_b)$ » и выполнить моделирование при указанных в табл. 2 параметрах. Моделирование проводится при 6 значениях коэффициента модуляции M (задается в блоке MOD): 0,1; 0,5; 1; 1,5; 3; 5. Для M = 0,5; 1 и 1,5 необходимо сохранить диаграммы с осциллографов Scope1, Scope2, Scope3 и показания блоков $Harmonics_U$ и $Harmonics_I$. Для всех значений M записать значения амплитуды основной гармоники напряжения (верхняя строчка блока Display1), коэффициента гармоник напряжения (показания Display4) и коэффициента искажения напряжения (показания Display5).

По полученным данным для M = 1 определить значения амплитуд 4-х наиболее значимых гармоник $U_{n\,m}$ и вычислить коэффициент гармоник напряжения. Сравнить полученное значение с измеренным.

По результатам необходимо построить:

- зависимость амплитуды основной гармоники напряжения от коэффициента модуляции (регулировочную характеристику) и соответствующую теоретическую зависимость;
- зависимость коэффициента гармоник (несинусоидальности) напряжения от M;
- зависимость коэффициента искажения напряжения от M.

3.3. Исследование инвертора с однополярной ШИМ

Для проведения исследования необходимо открыть в программе MatLab6.5 файл « $Lab3_c$ » и произвести моделирование при указанных в табл. 2 параметрах. Моделирование проводится при 6 значениях коэффициента модуляции M (задается в блоке MOD): 0,1; 0,5; 1; 1,5; 3; 5. Для M=0,5; 1 и 1,5 необходимо сохранить диаграммы с осциллографов Scope1, Scope2, Scope3 и показания блоков $Harmonics_U$ и $Harmonics_I$. Для всех значений M необходимо записать величину амплитуды основной гармоники напряжения (верхняя строчка блока Display1), значения коэффициента гармоник напряжения (показания Display4) и коэффициента искажения напряжения (показания Display5).

По полученным данным для M=1 определить значения амплитуд 4-х наиболее значимых гармоник $U_{n\,m}$ и вычислить коэффициент гармоник напряжения. Сравнить полученное значение с измеренным и со значениями, полученными в п. 3.2.

По результатам требуется построить (на той же координатной плоскости, что и зависимости п. 3.2):

- зависимость амплитуды основной гармоники напряжения от M;
- зависимость коэффициента гармоник напряжения от M;
- зависимость коэффициента искажения напряжения от M.

3.4. Исследование внешних и энергетических характеристик

Исследование проводится для двух случаев:

- 1) инвертор с однополярной ШИМ при M = 1 (модель «Lab3~c»);
- 2) инвертор без ШИМ при $\gamma = 1$ (модель «*Lab3 a*»).

При снятии внешних характеристик изменяются параметры нагрузки $R_{\rm H}$, $L_{\rm H}$. Необходимо выполнить моделирование для 3-х значений $R_{\rm H}$: 10 Ом, 20 Ом, 90 Ом. При этом для каждого $R_{\rm H}$ рассчитывается величина $L_{\rm H}$ так, чтобы постоянная времени нагрузки оставалась неизменной и равной $\tau = L_{\rm H}/R_{\rm H} = 0.01\,c$. Результаты заносятся в табл. 3, диаграммы сохранять не нужно. Амплитуды первых гармоник напряжения и тока нагрузки и их начальные фазы ($U_{\rm H1m}$, ϕ_U , $I_{\rm H1m}$, ϕ_I) определяются по показаниям блока Display1, среднее значение тока источника — по показаниям блока Display2. Средние и действующие значения токов транзистора и диода определяются по показаниям Display3 ($I_{VT\,cp}$, $I_{VD\,cp}$, $I_{VD\,p}$).

Дан	ные		Измерения								Вычисления					
Сопротивление нагрузки	Индуктивность нагрузки	Ср. знач. тока источника	Амплитуда 1-й гарм. напряжения	Амплитуда 1-й гармоники тока	Начальная фаза напряжения	Начальная фаза тока	Ср. знач. тока транзистора	Дейст. знач. тока транзистора	Среднее значение тока диода	Действующее знач. тока диода	Потребляемая мощность	Полная мощность по 1-й гарм.	Активная мощность по 1-й гарм.	Реактивная мощность по 1-й гарм.	Мощность потерь в инверторе	Мощность потерь (теоретическая)
$R_{ m H}$	L_{H}	I_{Hcp}	$U_{ m H1m}$	$I_{\rm H1m}$	φ_U	φ_I	$I_{VT\mathrm{cp}}$	I_{VT} Д	$I_{V\!D{ m cp}}$	$I_{VD_{ m I}}$	P_{H}	$S_{ m H1}$	P_{H1}	Q_{H1}	P_{Π}	$P_{\Pi,{\scriptscriptstyle { m T}}}$
Ом	Гн	A	В	A	гр	гр	A	A	A	A	Вт	BA	Вт	вар	Вт	Вт
90	0,9															
20	0,2															
10	0,1															

Табл. 3. Внешние и энергетические характеристики

Сдвиг по фазе между первыми гармониками напряжения и тока нагрузки (угол нагрузки) рассчитывается по формуле:

$$\varphi_{\rm H} = \varphi_U - \varphi_I$$

Полная, активная и реактивная мощности нагрузки по 1-ой гармонике определяются по выражениям:

$$S_{\rm H1} = \frac{U_{\rm H1m} \cdot I_{\rm H1m}}{2}, \ P_{\rm H1} = S_{\rm H1} \cdot \cos \varphi_{\rm H}, \ Q_{\rm H1} = S_{\rm H1} \cdot \sin \varphi_{\rm H}.$$

Мощность, потребляемая инвертором от источника постоянного напряжения:

$$P_{\mathrm{H}} = U_{DC} \cdot I_{\mathrm{H\,cp}}$$
.

Мощность потерь в инверторе по измеренным данным рассчитывается как

$$P_{\Pi} = 4 \Big(V_f I_{VT \, \text{cp}} + V_{fd} I_{VD \, \text{cp}} + \Big(I_{VT \, \pi}^2 + I_{VD \, \pi}^2 \Big) R_{on} \Big).$$

Также для инвертора с ШИМ-управлением необходимо рассчитать мощность потерь по теоретическим формулам:

$$\begin{split} P_{\Pi,\tau} &= 4 \Big(P_{VT} + P_{VD} \Big), \\ P_{VT} &= V_f \frac{I_m}{2\pi} \bigg(1 + \frac{M\pi}{4} \cos \phi \bigg) + \frac{I_m^2 R_{on}}{2} \bigg(\frac{1}{4} + \frac{2M}{3\pi} \cos \phi \bigg), \\ P_{VD} &= V_{fd} \frac{I_m}{2\pi} \bigg(1 - \frac{M\pi}{4} \cos \phi \bigg) + \frac{I_m^2 R_{on}}{2} \bigg(\frac{1}{4} - \frac{2M}{3\pi} \cos \phi \bigg). \end{split}$$

где I_m – амплитуда 1-ой гармоники тока нагрузки, $\phi = \operatorname{arctg}(\omega L_{\rm H}/R_{\rm H})$ – угол нагрузки.

Для инвертора без модуляции теоретически мощность потерь определяется следующим образом:

$$\begin{split} P_{\Pi,\tau} &= 4 \Big(P_{VT} + P_{VD} \Big), \\ P_{VT} &= V_f \frac{I_m}{2\pi} \Big(1 + \cos \phi \Big) + \frac{I_m^2 R_{on}}{4\pi} \Bigg(\pi - \phi + \frac{1}{2} \sin 2\phi \Bigg), \\ P_{VD} &= V_{fd} \frac{I_m}{2\pi} \Big(1 - \cos \phi \Big) + \frac{I_m^2 R_{on}}{4\pi} \Bigg(\phi - \frac{1}{2} \sin 2\phi \Bigg). \end{split}$$

По данным табл. 3 для двух исследованных случаев необходимо построить: - внешние (нагрузочные) характеристики инверторов $U_{\text{H1m}} = f(I_{\text{H1m}})$;

- энергетические характеристики:

 $P_{\rm H} = f(P_{\rm H1}), S_{\rm H1} = f(P_{\rm H1}), Q_{\rm H1} = f(P_{\rm H1})$ – на одном графике (для каждого случая); $P_{\rm H} = f(P_{\rm H1}), P_{\rm H, T} = f(P_{\rm H1})$ – на отдельной координатной плоскости.

3.5. Исследование работы инвертора с LC-фильтром

Для проведения исследования необходимо открыть в программе MatLab6.5 файл « $Lab3_d$ ». Моделирование проводится при заданных параметрах Γ -образного индуктивно-емкостного фильтра на выходе инвертора: L_{Φ} = 20 м Γ н, C_{Φ} = 200 мк Φ . При этом инвертор работает на активную нагрузку ($R_{\rm H}$ = 50 Ом и $R_{\rm H}$ = 10 Ом). Параметры нагрузки, фильтра и источника задаются в командном окне программы MATLAB в виде: R=[значение], L=20e-3, C=200e-6, U=[значение]. Исследуется работа для трех алгоритмов управления:

- 1) однократная ШИМ при $\gamma = 1$;
- 2) двухполярная синусоидальная ШИМ при M = 1;
- 3) однополярная синусоидальная ШИМ при M = 1.

Диаграммы напряжения на входе и на выходе фильтра (на нагрузке), напряжения на дросселе фильтра и тока дросселя снимаются с осциллографов Scope1, Scope2, Scope3. Также необходимо сохранить гармонический состав отфильтрованного напряжения на нагрузке (показания блоков $Harmonics\ U$).

По полученным данным необходимо определить значения амплитуд гармонических составляющих напряжения инвертора после фильтрации (на нагрузке) и его коэффициент гармоник.

Определить коэффициент фильтрации по формуле:

$$K_{\Phi n} = \frac{U_{mn, \text{BMX}}}{U_{mn, \text{BX}}} = \frac{1}{\left(\omega_n/\omega_0\right)^2 - 1} = \frac{1}{\omega_n^2 L_{\Phi} C_{\Phi} - 1},$$

где $U_{m\,n}$ вх, $U_{m\,n,\,\text{вых}}$ — амплитуда n-ой гармоники напряжения соответственно на входе и на выходе фильтра, ω_0 — резонансная частота фильтра, ω_n — частота наиболее значимой фильтруемой гармоники.

При заданных параметрах LC-фильтра и нагрузки требуется рассчитать:

- передаточную функцию фильтра: $W(j\omega) = \frac{U_{\text{вых}}(j\omega)}{U_{\text{вх}}(j\omega)};$
- резонансную частоту фильтра: $f_0 = \frac{1}{2\pi\sqrt{L_{\Phi}C_{\Phi}}}$;
- коэффициент затухания: $\xi = \frac{1}{2R_{\rm H}} \sqrt{\frac{L_{\Phi}}{C_{\Phi}}}$;
- амплитудо-частотную характеристику (AЧX): $A(\omega) = |W(j\omega)|$;
- фазо-частотную характеристику (ФЧХ): $\varphi(\omega) = arctg \frac{\operatorname{Im} W(j\omega)}{\operatorname{Re} W(j\omega)}$.

Для заданных значений сопротивления нагрузки необходимо построить АЧХ и ФЧХ фильтра в соответствии с полученными выражениями $A(\omega)$ и $\phi(\omega)$, а также асимптотические АЧХ и ФЧХ фильтра в логарифмическом масштабе (ЛАЧХ и ЛФЧХ).

4. Контрольные вопросы

- 1. Поясните принцип действия мостового инвертора.
- 2. Объясните принцип формирования импульсов управления транзисторами мостового инвертора при управлении методами синусоидальной ШИМ?
- 3. Сравните работу инвертора при различных методах управления: однократной ШИМ, двухполярной и однополярной синусоидальной ШИМ.
- 4. Каково назначение выходного фильтра инвертора и каковы его основные характеристики?
- 5. Проанализируйте нагрузочные, энергетические и регулировочные характеристики инверторов.