Máquinas de soporte vectorial

Se generó un dataset de ejemplo para mostrar un caso en el que las máquinas de soporte vectorial demuestran su potencial. El dataset utilizado es SVM-Anillos.csv.

Al visualizar los datos, las clases parecerían estar separadas mediante un anillo. Por esta razón podríamos plantearnos las siguientes hipótesis:

- 1) Utilizar un kernel lineal es una mala opción, pues no existe una recta que haga una buena separación de los 2 conjuntos.
- Probablemente un kernel radial o uno polinómico de grado par obtenga buenos resultados

Flujo de Rapidminer

Cross validation

Resultados:

Kernel lineal

accuracy: 49.50% +/- 10.66% (micro average: 49.50%)

	true interior	true exterior	class precision
pred. interior	59	60	49.58%
pred. exterior	41	40	49.38%
class recall	59.00%	40.00%	

Kernel radial

accuracy: 100.00% +/- 0.00% (micro average: 100.00%)

	true interior	true exterior	class precision
pred. interior	100	0	100.00%
pred. exterior	0	100	100.00%
class recall	100.00%	100.00%	

Kernel Polinómico Par e Impar

accuracy: 100.00% +/- 0.00% (micro average: 100.00%)

	true interior	true exterior	class precision		
pred. interior	100	0	100.00%		
pred. exterior	0	100	100.00%		
class recall	100.00%	100.00%			
accuracy: 71.50% +/- 9.14% (micro average: 71.50%)					
	true interior	true exterior	class precision		
pred. interior	95	52	64.63%		
pred. exterior	5	48	90.57%		
class recall	95.00%	48.00%			

Observamos el mismo comportamiento que con el kernel radial para un kernel polinómico de grado 2. Modificando el grado del kernel a valores pares, se puede ver una accuracy de 100%, mientras que utilizando un grado impar, los resultados se acercan más al 70-75% utilizando 10-fold-CV.

Cambio de la constante C

No se observan cambios notorios al modificar la constante c para este dataset, dado que los datos están perfectamente separados.

Conclusiones

Como conclusión, se probaron ambas hipótesis planteadas mediante el entrenamiento de diferentes máquinas de soporte vectorial con la utilización de distintos kernels.