CZ4079 Final Year Project

A Machine Learning-Based Approach to Time-Dependent Shortest Path Queries

Wei Yumou

School of Computer Science and Engineering Nanyang Technological University

Agenda

- Introduction
- 2 Preliminary Processing
- 3 Landmark Graph
- Travel Time Estimation

Introduction: Problem

Introduction: Problem

• A **dynamic road network** G = (V, E) with a time-dependent weight function $w : E, t \to \mathbb{R}$

Introduction: Problem

- A **dynamic road network** G = (V, E) with a time-dependent weight function $w : E, t \to \mathbb{R}$
- A query Q(u, v, t) that asks for a shortest path from u to v departing at time moment t

Wei Yumou CZ4079 FYP Presentation May 4, 2017 4 / 23

 Traditional Bellman-Ford or Dijkstra's algorithm do not work with dynamic edge weights ("the curse of traditionality")

- Traditional **Bellman-Ford or Dijkstra's algorithm** do not work with dynamic edge weights ("the curse of traditionality")
- The new machine learning-based approach draws on collective wisdom of thousands of taxi drivers

- Traditional Bellman-Ford or Dijkstra's algorithm do not work with dynamic edge weights ("the curse of traditionality")
- The new machine learning-based approach draws on collective wisdom of thousands of taxi drivers
- **Unsupervised learning** is employed to figure out the time-dependent edge costs

- Traditional Bellman-Ford or Dijkstra's algorithm do not work with dynamic edge weights ("the curse of traditionality")
- The new machine learning-based approach draws on collective wisdom of thousands of taxi drivers
- **Unsupervised learning** is employed to figure out the time-dependent edge costs
- A modified Dijkstra's algorithm calculates a shortest path on the fly

• Arbitrary *u* and *v*

- Arbitrary *u* and *v*
- Sparse sample points

- Arbitrary *u* and *v*
- Sparse sample points
- Limited GPS accuracy

Figure 1: Examples of challenges

Agenda

- Introduction
- Preliminary Processing
- 3 Landmark Graph
- Travel Time Estimation

Preliminary Processing: Data Description

- Is collected from Computational Sensing Lab at Tsinghua University
- Contains 83 million GPS records from 8,602 taxis in Beijing during May of 2009

Field	Explanation
CUID	ID for each taxi
UNIX_EPOCH	Unix timestamp
GPS_LONG	Longitude in WGS-84
GPS_LAT	Latitude in WGS-84
HEAD	Heading direction
SPEED	Instantaneous speed (m/s)
OCCUPIED	Hired (1) or not (0)

Table 1: A summary of the seven original fields

7 / 23

ullet GPS coordinate translation: 1.34°N, 103.68°E ightarrow SCSE, NTU

- ullet GPS coordinate translation: 1.34°N, 103.68°E ightarrow SCSE, NTU
- China GPS shift problem: WGS84 v.s. BD09

Figure 2: An example of China GPS shift problem

Wei Yumou CZ4079 FYP Presentation May 4, 2017 8 / 23

- GPS coordinate translation: 1.34°N, 103.68°E \rightarrow SCSE, NTU
- China GPS shift problem: WGS84 v.s. BD09
- Solution: WGS84 \xrightarrow{Baidu} BD09 \xrightarrow{Baidu} Street

Figure 2: An example of China GPS shift problem

Figure 3: An example of outliers

Theorem (Majority Clustering Theorem)

If a reasonable reverse geocoder is used to reverse-geocode a set of GPS data points which are mapped to a particular street in reality, then, when plotted on a 2-D plane, majority (more than 50%) of the points must be clustered together to form a rough shape that is similar to the shape of the street that they are supposed to be mapped to.

Theorem (Majority Clustering Theorem)

If a **reasonable reverse geocoder** is used to reverse-geocode a set of GPS data points which are mapped to a particular street *in reality*, then, when plotted on a 2-D plane, majority (more than 50%) of the points must be clustered together to form a rough shape that is similar to the shape of the street that they are supposed to be mapped to.

Two-step procedure:

 $Outlier\ Detection = Outlier\ Identification + Outlier\ Removal$

Outlier Identification: Clustering

Outlier Identification: Clustering

ullet Sample point concentration o cluster concentration

Outlier Identification: Clustering

- Sample point concentration → cluster concentration
- Top k% (k = 50) largest clusters as groups of correct sample points

Outlier Identification: Clustering

- $\bullet \ \, \mathsf{Sample} \ \, \mathsf{point} \ \, \mathsf{concentration} \, \to \mathsf{cluster} \ \, \mathsf{concentration}$
- Top k% (k = 50) largest clusters as groups of correct sample points
- ullet 10 imes 10 self-organising feature maps implementation

Outlier Identification: Clustering

- $\bullet \ \, \mathsf{Sample} \ \, \mathsf{point} \ \, \mathsf{concentration} \, \to \mathsf{cluster} \ \, \mathsf{concentration}$
- Top k% (k=50) largest clusters as groups of correct sample points
- ullet 10 imes 10 self-organising feature maps implementation

Outlier Identification: Clustering

- $\bullet \ \, \mathsf{Sample} \ \, \mathsf{point} \ \, \mathsf{concentration} \, \to \mathsf{cluster} \ \, \mathsf{concentration}$
- Top k% (k = 50) largest clusters as groups of correct sample points
- ullet 10 x 10 self-organising feature maps implementation

Outlier Removal: Distance Threshold d_{max}

ullet Assign sample points to legal centroids no farther than d_{max}

Outlier Identification: Clustering

- ullet Sample point concentration o cluster concentration
- Top k% (k = 50) largest clusters as groups of correct sample points
- ullet 10 x 10 self-organising feature maps implementation

- ullet Assign sample points to legal centroids no farther than d_{max}
- Remove all "orphan" sample points

Outlier Identification: Clustering

- $\bullet \ \, \mathsf{Sample} \ \, \mathsf{point} \ \, \mathsf{concentration} \, \to \mathsf{cluster} \ \, \mathsf{concentration}$
- Top k% (k = 50) largest clusters as groups of correct sample points
- ullet 10 x 10 self-organising feature maps implementation

- ullet Assign sample points to legal centroids no farther than d_{max}
- Remove all "orphan" sample points
- Use real physical distance on the Earth

Outlier Identification: Clustering

- $\bullet \ \, \mathsf{Sample} \ \, \mathsf{point} \ \, \mathsf{concentration} \, \to \mathsf{cluster} \ \, \mathsf{concentration}$
- Top k% (k = 50) largest clusters as groups of correct sample points
- ullet 10 x 10 self-organising feature maps implementation

- ullet Assign sample points to legal centroids no farther than d_{max}
- Remove all "orphan" sample points
- Use real physical distance on the Earth
- Set $d_{max} = 30$ m or 50m

Figure 4: A plot of neuron positions after training

12 / 23

Figure 5: A plot of sample points after outlier removal

Wei Yumou CZ4079 FYP Presentation May 4, 2017 13 / 23

Agenda

- Introduction
- 2 Preliminary Processing
- 3 Landmark Graph
- Travel Time Estimation

14 / 23

Landmark Graph: Basic Ideas

Definition (Landmark)

A landmark is a road segment that is frequently traversed by taxi drivers according to the taxi GPS trajectory database.

Definition (Landmark)

A landmark is a road segment that is frequently traversed by taxi drivers according to the taxi GPS trajectory database.

Rationale

Sample points too sparse to model every street accurately

Definition (Landmark)

A landmark is a road segment that is frequently traversed by taxi drivers according to the taxi GPS trajectory database.

Rationale

- Sample points too sparse to model every street accurately
- Landmarks resemble common human thinking

Definition (Landmark)

A landmark is a road segment that is frequently traversed by taxi drivers according to the taxi GPS trajectory database.

Rationale

- Sample points too sparse to model every street accurately
- Landmarks resemble common human thinking

Step to build landmark graph

Separate sample points into trips

Definition (Landmark)

A landmark is a road segment that is frequently traversed by taxi drivers according to the taxi GPS trajectory database.

Rationale

- Sample points too sparse to model every street accurately
- Landmarks resemble common human thinking

Step to build landmark graph

- Separate sample points into trips
- Count occurrences of each street

Definition (Landmark)

A landmark is a road segment that is frequently traversed by taxi drivers according to the taxi GPS trajectory database.

Rationale

- Sample points too sparse to model every street accurately
- Landmarks resemble common human thinking

Step to build landmark graph

- Separate sample points into trips
- Count occurrences of each street
- Find connections between two landmarks

Landmark Graph: Trip Identification

CUID	UTC	GPS_LONG	GPS_LAT	OCCUPIED	TRIP_ID
1	1/5/2009 0:02:00	116.39616	39.81294	0	4552265
1	1/5/2009 0:04:00	116.39575	39.82296	0	4552265
1	1/5/2009 0:07:00	116.39567	39.82774	0	4552265
1	1/5/2009 17:08:00	116.30142	39.98105	1	1
1	1/5/2009 17:10:00	116.29514	39.98419	1	1
1	1/5/2009 17:11:00	116.28959	39.98289	1	1
1	1/5/2009 17:12:00	116.28087	39.97552	1	1
1	1/5/2009 17:16:00	116.26813	39.93537	1	1
1	1/5/2009 18:11:00	116.36537	39.95019	0	4552271
1	1/5/2009 18:12:00	116.36546	39.94886	0	4552271
1	1/5/2009 18:13:00	116.35927	39.94528	0	4552271

Table 2: An example of trip identification

Landmark Graph: Frequency Counting

CUID	UTC	GPS_LONG	GPS_LAT	Street	TRIP_ID
1	1/5/2009 0:02:00	116.39616	39.81294	А	4552265
1	1/5/2009 0:04:00	116.39575	39.82296	А	4552265
1	1/5/2009 0:07:00	116.39567	39.82774	В	4552265
1	1/5/2009 17:08:00	116.30142	39.98105	С	1
1	1/5/2009 17:10:00	116.29514	39.98419	С	1
1	1/5/2009 17:11:00	116.28959	39.98289	С	1
1	1/5/2009 17:12:00	116.28087	39.97552	А	1
1	1/5/2009 17:16:00	116.26813	39.93537	Α	1
1	1/5/2009 18:11:00	116.36537	39.95019	В	4552271
1	1/5/2009 18:12:00	116.36546	39.94886	С	4552271
1	1/5/2009 18:13:00	116.35927	39.94528	С	4552271

Table 3: An illustration of frequency counting

Landmark Graph: Construction

For each trip

- Select a landmark j
- ullet Record intermediate streets while searching for the next landmark k
- Repeat the process starting from k until all streets are examined

Agenda

- Introduction
- 2 Preliminary Processing
- Landmark Graph
- Travel Time Estimation

Definition (Significant Edge)

A significant edge in a landmark graph G = (V, E) is an edge $e \in E$ that has a support at least m, where m is a parameter specified in advance.

Definition (Significant Edge)

A significant edge in a landmark graph G = (V, E) is an edge $e \in E$ that has a support at least m, where m is a parameter specified in advance.

• Build a predictive model for travel time of each significant edge

Definition (Significant Edge)

A significant edge in a landmark graph G = (V, E) is an edge $e \in E$ that has a support at least m, where m is a parameter specified in advance.

- Build a predictive model for travel time of each significant edge
- Separate weekday's travel time from weekend's

Definition (Significant Edge)

A significant edge in a landmark graph G = (V, E) is an edge $e \in E$ that has a support at least m, where m is a parameter specified in advance.

- Build a predictive model for travel time of each significant edge
- Separate weekday's travel time from weekend's
- Evaluate results against Baidu's estimates

Figure 6: An example of travel time patterns

Possible Explanations

• Drivers choose different routes to travel between the two landmarks

Possible Explanations

- Drivers choose different routes to travel between the two landmarks
- Drivers have different driving skills, preferences and behaviours

Possible Explanations

- Drivers choose different routes to travel between the two landmarks
- Drivers have different driving skills, preferences and behaviours
- The GPS devices report locations periodically, therefore, durations like 60 seconds or 120 seconds are very common

Travel Time Estimation: Clustering

Figure 7: An illustration of travel time clustering

