

SISTEMAS LINEARES 1

Trabalho Final

Professor: Natanael Nunes

Período: 2020.1

Curso: Engenharia Eletrônica

Aluna: Gabriela dos Santos

DRE: 118044310

26 de Fevereiro de 2021

Conteúdo

1	Que	estão 1	2
	1.1	Circuito 1	2
	1.2	Circuito 2	7
	1.3	Circuito 3	12
	1.4	Circuito 4	17
	1.5	Circuito 5	22
	1.6	Circuito 6	27
2	Que	estão 2	32
	2.1	Letra A	32
	2.2	Letra B e C	33
	2.3	Letra D e E	34
	2.4	Letra F e G	34
	2.5	letra H	35
	2.6	Letra I, J, K e L	36
3	Que	estão 3	37
	3.1	Função 1	38
		3.1.1 Para $\alpha = 0.1$	38
		3.1.2 Para $\alpha = 1$	42
		3.1.3 Para $\alpha = 10 \ldots \ldots \ldots \ldots \ldots$	47
		3.1.4 Para $\alpha = 100$	51
	3.2		56
		3.2.1 Para $\beta = 0.1$	56
		3.2.2 Para $\beta = 1$	61
		3.2.3 Para $\beta = 10 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	65
		,	70

1 Questão 1

1.1 Circuito 1

Letra A

O circuito 1 consiste em um RC ligado em série, uma boa aplicação comercial para este circuito é um filtro passa-baixa. O filtro passa-baixa permite que apenas frequências abaixo da frequência de corte sejam levadas ao amplificador. No caso em questão o filtro será utilizado para deixar passar apenas frequências abaixo de $\omega = 100 rad/s$.

Letra B

 $R = 10~000~\Omega$

 $C = 10^{-6} F$

Letra C

De acordo com a lei de kirchoff das tensões a soma das tensões na malha devem ser iguais a zero. Deste modo, substituindo as tensões de cada componente temos:

$$V(t) = R \cdot \frac{\partial q(t)}{\partial t} + q(t) \cdot \frac{1}{C}$$

Letra D

Para encontrar a função de transferência primeiro aplicamos a transformada de Laplace em todos os termos e então dividimos a função de saída pela entrada:

$$Q(s)V(s)^{-1} = RC^{-1} \cdot \frac{1}{s + RC^{-1}}$$

Substitiundo os valores temos:

$$Q(s)V(s)^{-1} = 100 \cdot \frac{1}{s+100}$$

Letra E

Letra F

Letra G

Letra H

Letra I

Letra J,K,L e M

1.2 Circuito 2

Letra A

O circuito 2 consiste em um RL ligado em série, uma boa aplicação comercial para este circuito é a de filtro passa-alta. Analogamente ao filtro passa-baixa, o filtro passa-alta permite que apenas frequências acima da frequência de corte sejam passadas para a saída do sistema. No presente trabalho a frequência de corte foi de $\omega = 10^{-7} rad/s$.

Letra B

 $R = 10~000\Omega$

 $L = 10^{-3}H$

Letra C

Utilizando a lei de kirchoff das tensões e destrinchando as tensões de cada componente obtemos:

$$V(t) = Ri(t) + L \cdot \frac{\partial i(t)}{\partial t}$$

Letra D

$$I(s) \cdot V(s)^{-1} = \frac{1}{R + Ls}$$

substituindo pelos valores dos componentes: $I(s) \cdot V(s)^{-1} = \frac{1}{10^4 + 10^{-3}s}$

Letra E

Letra F

Diagrama de Bode CIRCUITO 2

Letra G

Letra H

Letra I

Letra J,K,L e M

1.3 Circuito 3

Letra A

O terceiro circuito consiste em um RC paralelo. Esse circuito pode exercer papel de filtro de corrente. No caso, a corrente que queremos filtar é aquela que tem até $\omega=10^6 rad/s$.

Letra B

 $R = 10^4 \Omega$

 $C = 10^{-6} F$

Letra C

Utilizando a lei de kirchoff das correntes e substituindo pelas correntes de seus respectivos componentes temos:

$$i(t) = V(t) \cdot \frac{1}{R} + C \cdot \frac{\partial V(t)}{\partial t}$$

Letra D

$$V(s) \cdot I(s)^{-1} = C^{-1} \cdot \frac{1}{(RC)^{-1} + s}$$

substituindo pelos componentes do circuito temos:

$$V(s) \cdot I(s)^{-1} = 10^6 \cdot \frac{1}{10^2 + s}$$

Letra E

Letra F

Letra G

Letra H

Letra I

Letra J,K,L e M

1.4 Circuito 4

Letra A

O circuito 4 consiste em um circuito RL paralelo. Assim como o paralelo de RC uma boa aplicação para o circuito RL é a filtragem de corrente. Nesse projeto queremos permitir passagem de corrente de ate $\omega = 0,7rad/s$.

Letra B

 $R = 10\Omega$

 $L = 10^{-3}H$

Letra C

Analogamente ao RC paralelo ao aplicarmos a lei de kirfchoff da correntes temos:

$$1 \cdot \frac{\partial i(t)}{\partial t} = R^{-1} \cdot \frac{\partial v(t)}{\partial t} + L^{-1} \cdot v(t)$$

Letra D

Aplicando a transformada de Laplace nos elementos e dividindo a saída pela entrada temos a função de transferência:

$$V(s) \cdot I(s)^{-1} = Rs \cdot \frac{1}{s + RL^{-1}}$$

Substituindo os elementos:

$$V(s) \cdot I(s)^{-1} = 10s \cdot \frac{1}{s+10^3}$$

Letra E

Letra F

Diagrama de Bode CIRCUITO 4

Letra G

Letra H

Letra I

Letra J,K,L e M

1.5 Circuito 5

Letra A

O circuito 5 consiste em um circuito RCL paralelo. Uma boa aplicação para este circuito é a de filtro passa-faixa. Esse filtro permiti a passagem de frequência de valores presentes em uma faixa determinada.

Letra B

$$L = 1.5 \cdot 10^{-3} H$$

 $R = 1\Omega$

C = 1F

Letra C

EDO do circuito aplicando lei de kirchoff das correntes:

$$1 \cdot \tfrac{\partial i(t)}{\partial t} = R^{-1} \cdot \tfrac{\partial v(t)}{\partial t} + C \cdot \tfrac{\partial^2 v(t)}{\partial t^2} + L^{-1} \cdot v(t)$$

Letra D

A função de transferência:

$$V(s) \cdot I(s)^{-1} = C^{-1} \cdot \frac{s}{s^2 + s \cdot (CR)^{-1} + (CL)^{-1}}$$

$$V(s) \cdot I(s)^{-1} = 1 \cdot \frac{s}{s^2 + s + 1, 5^{-3}}$$

Letra E

Letra F

Diagrama de Bode CIRCUITO 5

Letra G

Letra H

Letra I

Letra J,K,L e M

1.6 Circuito 6

Letra A

O circuito 6 consiste em um RCL em série. Assim como no circuito anterior uma boa aplicação comercial para este circuito é a do filtro paassa-faixa.

Letra B

$$L = 1.5 \cdot 10^{-3} H$$

$$R = 1\Omega$$

$$C = 1F$$

Letra C

Aplicando a lei de kirchoff das tensões temos a EDO:

$$1 \cdot \tfrac{\partial v(t)}{\partial t} = L \cdot \tfrac{\partial^2 i(t)}{\partial t^2} + R \cdot \tfrac{\partial i(t)}{\partial t} + C^{-1} \cdot i(t)$$

Letra D

Aplicando a transformada de Laplace temos:

$$I(s) \cdot V(s)^{-1} = L^{-1} \cdot \frac{s}{s^2 + R \cdot L^{-1} + C \cdot L^{-1}}$$

substituindo os valores:

$$I(s) \cdot V(s)^{-1} = 1, 5^{-3} \cdot \frac{s}{s^2 + 1, 5 \cdot 10^3 + 1, 5 \cdot 10^{-3}}$$

Letra E

Letra F

Diagrama de Bode CIRCUITO 6

Letra G

Letra H

Letra I

Letra J,K,L e M

2 Questão 2

Tendo por DRE = 118044310, os valores dos coeficientes do Diagrama de Blocos foram A = 8; B = 12; C = 4; e D = 5;

2.1 Letra A

A análise do Diagrama de Blocos nos retorna:

$$x'(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

Ao utilizar a transformada de Laplace nas equações encontramos por

$$y(t)$$
 como $Y(s) = CX(s) + DU(s)$

$$x'(t)$$
 como $sX(s) = AX(s) + BU(s)$.

Temos que sX(s)-AX(s)= BU(s) nos retorna X(s) = U(s) $\cdot \frac{B}{s-A}$

Com isso temos que Y(s) = CX(s)+DU(s)
$$\rightarrow Y(s) = U(s) \cdot \frac{CB}{s-A} + DU(s)$$

A função de transferência será $\mathbf{Y}(\mathbf{s}) \cdot \frac{1}{U(s)} = \frac{CB}{s-A} + D$

Substituindo os valores dos coficientes temos:

$$Y(s) \cdot \frac{1}{U(s)} = (5s + 8) \cdot \frac{1}{s - 8}$$

2.2 Letra B e C

Os diagramas de Polos e zeros e de Bode da função de transferência.

Diagrama de Bode Função questão 2

2.3 Letra D e E

Substituindo os valores do diagrama de blocos nas equações encontradas no item acima temos:

$$x'(t) = 8x(t) + 12u(t)$$

$$y(t) = 4x(t) + 5u(t)$$

2.4 Letra F e G

As respostas ao Degrau unitário e a Rampa unitária são:

2.5 letra H

2.6 Letra I, J, K e L

3 Questão 3

Para encontrarmos a EDO de uma função de transferência sabemos que:

$$H(s) = Y(s) \cdot \frac{1}{X(s)}$$

3.1 Função 1

Para a função de transferência $\mathbf{H}(\mathbf{s}) = (1 + \alpha s) \cdot \frac{1}{s^2 + 2s + 2}$

$$(1 + \alpha s) \cdot \frac{1}{s^2 + 2s + 2} = Y(s) \cdot \frac{1}{X(s)}$$

multiplicando os termos de maneira cruzada temos:

$$(s^2 + 2s + 2) \cdot Y(s) = (1 + \alpha s)X(s)$$

Aplicando a transformada inversa de Laplace encontramos:

$$y''(t)+2y'(t)+2y(t)=\alpha x'(t) + x(t)$$

3.1.1 Para $\alpha = 0.1$

Letra A: EDO

A função de transferência é H(s) = $(1+0.1s) \cdot \frac{1}{s^2+2s+2}$

$$y"(t) + 2y'(t) + 2y(t) = 0.1x'(t) + x(t)$$

Letra B: Diagrama de Polos e zeros

Letra C: Diagrama de Bode

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.1.2 Para $\alpha = 1$

Letra A: EDO A função de transferência é $H(s)=(1+1s)\cdot\frac{1}{s^2+2s+2}$ y"(t)+2y'(t)+2y(t) = x'(t)+x(t)

Letra C: Diagrama de Bode

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.1.3 Para $\alpha = 10$

Letra A: EDO A função de transferência é H(s) = $(1+10s) \cdot \frac{1}{s^2+2s+2}$ y"(t)+2y'(t)+2y(t) = 10x'(t)+x(t)

Letra B: Diagrama de Polos e zeros

Letra C: Diagrama de Bode

Diagrama de Bode Função1, a = 10

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.1.4 Para $\alpha = 100$

Letra A: EDO A função de transferência é $H(s)=(1+100s)\cdot\frac{1}{s^2+2s+2}$ y"(t)+2y'(t)+2y(t) = 100x'(t)+x(t)

Letra C: Diagrama de Bode

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.2 Função 2

A segunda função de transferência é H(s) = (s+10^4) $\cdot \frac{1}{s^2+20\beta s+100}$

Analogamente a função 1 a EDO da função 2 será:

$$y"(t) + 20\beta y'(t) + 100y(t) = x'(t) + 10^4 x(t)$$

3.2.1 Para $\beta = 0.1$

Letra A: EDO

A função de transferência é H(s) = (s+10^4) $\cdot \frac{1}{s^2+2s+100}$

$$y''(t)+2y'(t)+100y(t) = x'(t)+10^4x(t)$$

Letra C: Diagrama de Bode

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.2.2 Para $\beta = 1$

Letra A: EDO A função de transferência é H(s) = (s+10⁴) · $\frac{1}{s^2+20s+100}$ y"(t)+20y'(t)+100y(t) = x'(t)+10⁴x(t)

Letra B: Diagrama de Polos e zeros

Letra C: Diagrama de Bode

Diagrama de Bode Função2, b = 1

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.2.3 Para $\beta = 10$

Letra A: EDO A função de transferência é H(s) = $(s+10^4) \cdot \frac{1}{s^2+200s+100}$ y"(t)+200y'(t)+100y(t) = x'(t)+10^4x(t)

Letra C: Diagrama de Bode

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

3.2.4 Para $\beta = 100$

Letra A: EDO A função de transferência é $H(s) = (s+10^4) \cdot \frac{1}{s^2+2000s+100}$ y"(t)+2000y'(t)+100y(t) = x'(t)+10^4x(t)

Letra B: Diagrama de Polos e zeros

Letra C: Diagrama de Bode

Diagrama de Bode Função2, b = 100

Letra D: Resposta ao degrau unitátio

Letra E: Resposta a rampa unitária

Letra F: Resposta a onda quadrada

Letra G, H, I e J: Harmonicas

