الوحدة التعليمية: وظيفة الترميز وفك الترميز والمسترمز الوضعية التعليمية: مفكك الترميز والمسترمز

مدخل الدرس:

خلال الحوار مع الالة (الالة الحاسبة مثلا) يدخل المستعمل المعطيات عن طريق لوحة المفاتيح، مستعملا رموز النظام العشري، لكن الالة لا تفهم إلا النظام الثنائي و من الصعب على الانسان ان يفهم سلسلة طويلة من الاصفار والأحاد و لهذا السبب تصبح وظيفة الترميز و فك الترميز ضرورية.

يتحقق تحويل المعطيات من العشري الى الثنائي عن طريق المرمز (codeur) ولإظهار النتائج نحتاج الى فك الترميز بواسطة مفكك الترميز (Décodeur)

1- مفكك الترميز BCD- عشرى:

هو عبارة عن دارة الكترونية وظيفتها تحويل عدد من نظام ثنائي ترميز عشري BCD الى العشري الرمز:

E ₃	E ₂	E ₁	E ₀	S	DEC
0	0	0	0	So	0
0	0	0	1	S_1	1
0	0	1	0	S_2	2
0	0	1	1	S ₃	3
0	1	0	0	S ₄	4
0	1	0	1	S ₅	5
0	1	1	0	S 6	6
0	1	1	1	S ₇	7
1	0	0	0	S ₈	8
1	0	0	1	S 9	9

المعادلات باستعمال جدول كارنو:

 $S_{0} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{1} = \ \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{2} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}} \ \overline{E_{2}} \ \overline{E_{3}} \ , \ S_{3} = \overline{E_{0}} \ \overline{E_{1}$

التصميم المنطقي:

• الدارة المندمجة لمفكك الترميز (BCD-DEC):

نذكر من بين الدارات المندمجة لمفكك الترميز ما يلي:

- الدارة "74LS155" مفكك الترميز (2×4) ذو مدخلين و 4 مخارج
- الدارة "74LS138" مفكك الترميز (3×8) ذو 3مداخل و 8 مخارج
- الدارة "74LS154" مفكك الترميز (4×16) ذو 4 مداخل و 16 مخارج

2- مفكك الترميز من BCD الى سبع قطع: يتكون المرقن من سبع قطع موضوعة على شكل ثمانية وكل قطعة تحتوي على ثنائي ضوئي LED.

<u>الرمز</u>

يوجد نوعان من المرقنات:

مرقن 7 قطع ذو مصعد مشترك

مرقن 7 قطع ذو مهبط مشترك

تكتب الاعداد من 0 الى 9 بالستعمال المرقن 7 قطع كالتالى:

	الحقيقة	1010
	المحتنف	حصور ز
•	**	

E ₃	\mathbf{E}_2	\mathbf{E}_1	E ₀	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

المعادلات باستعمال جدول كارنو:

$$c = \overline{a}_1 + a_0 + a_2$$
 $b = \overline{a}_0 \overline{a}_1 + a_0 a_1 + \overline{a}_2$ $a = \overline{a}_0 \overline{a}_2 + a_0 a_2 + a_1 + a_3$

$$\mathbf{f} = \overline{\mathbf{a}}_{0}\overline{\mathbf{a}}_{1} + \overline{\mathbf{a}}_{1}\mathbf{a}_{2} + \overline{\mathbf{a}}_{0}\mathbf{a}_{2} + \mathbf{a}_{3} \quad \mathbf{e} = \overline{\mathbf{a}}_{0}\overline{\mathbf{a}}_{2} + \overline{\mathbf{a}}_{0}\mathbf{a}_{1} \quad \mathbf{d} = \overline{\mathbf{a}}_{0}\overline{\mathbf{a}}_{2} + \mathbf{a}_{1}\overline{\mathbf{a}}_{2} + \overline{\mathbf{a}}_{0}\mathbf{a}_{1} + \mathbf{a}_{0}\overline{\mathbf{a}}_{1}\mathbf{a}_{2} + \mathbf{a}_{3}\overline{\mathbf{a}}_{2} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}_{3}} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{3} + \mathbf{a}_{3}\overline{\mathbf{a}}_{$$

الدارة المندمجة لمفكك الترميز "BCD - 7قطع":

نذكر من بين الدارات المندمجة لمفكك الترميز BCD - 74LS46 - 74LS46 - 74LS46 مثال: الدارة المندمجة 74LS47

جميع القطع اذا كان BI في حالة "1"

3- المسترمن: Transcodeur

هو عبارة عن دارة منطقية تقوم بتحويل عدد من نظام الى اخر

مسترمز "ثنائي طبيعي- ثنائي انعكاسي": يحول عدد من ترميز ثنائي طبيعي الى ثنائي انعكاسي(gray)

Nombre	Code binaire pur				Code Gray				
décimal	B4	Вз	B2	B1	G4	G3	G2	G1	
0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	1	
2	0	0	1	0	0	0	1	1	
3	0	0	1	1	0	0	1	0	
4	0	1	0	0	0	1	1	0	
5	0	1	0	1	0	1	1	1	
6	0	1	1	0	0	1	0	1	
7	0	1	1	1	0	1	0	0	
8	1	0	0	0	1	1	0	0	
9	1	0	0	1	1	1	0	1	
10	1	0	1	0	1	1	1	1	
11	1	0	1	1	1	1	1	0	
12	1	1	0	0	1	0	1	0	
13	1	1	0	1	1	0	1	1	
14	1	1	1	0	1	0	0	1	
15	1	1	1	1	1	0	0	0	

جدول الحقيقة:

الرمز المنطقى:

استخراج المعادلات باستعمال جدول كارنو:

$$G_1 = B_1.\overline{B_2} + \overline{B_1}.B_2 = B_1 \oplus B_2$$

 $G_2 = B_2.\overline{B_3} + \overline{B_2}.B_3 = B_2 \oplus B_3$
 $G_3 = B_3.\overline{B_4} + \overline{B_3}.B_4 = B_3 \oplus B_4$
 $G_4 = B_4$

<u>B2</u>

التمثيل المنطقى: