Rapport TP HAE703E

PLL-Boucle à verrouillage de phase

1) Etude du VCO	2
1) Q1	2
2) Q2	2
2) Plage de verrouillage	3
1) Q3	3
2) Q4	3
3) Q5	3
4) Q6	4
5) Q7	4
3) Plage de capture	4
1) Q8	4
2) Q9	4
3) Q10	5
4) Q11	6
5) Q12	7
4) Modèle linéaire de la boucle verrouillée	8
1) Q13	8
2) Q14	8
3) 015	9

1) Etude du VCO

1) Q1

On a :
$$R_1 = 23k\Omega$$
; $C_1 = 10nF$; $f_0 = 45kHz$
$$f_s = f_0 + K \times V_{CC} \text{ et on a } f_0 = f_s \text{ pour } \frac{V_{DD}}{2} \text{ donc : } K = \frac{f_0}{V_{DD}/2} = \frac{45e^3}{5} = 9 \text{ kHz/V}.$$

2) Q2

Caractéristique réelle : f = 9481.4x - 3856.6.

2) Plage de verrouillage

1) Q3

La tension d'entrée du VCO est 5V. On retrouve cette tension pour un déphasage égal à 90°.

2) Q4

On peut observer un déphasage de -90°.

3) Q5

Fréquence du signal de sortie: f=45kHz.

Le déphasage du signal de sortie par rapport au signal d'entrée est de -90° (pour f0 centrale)

Fréquence (kHz)	Phase(en degrés)
45	-90°
50	-100°
60	-118,5°
70	-137,2°
80	-156°

4) Q6

La PLL n'est plus verrouillée pour une fréquence supérieure à 85 kHz et inférieure à 12 kHz (décrochage).

$$2F_L = 85 - 12 = 73 \text{ kHz}.$$

5) Q7

Théoriquement, la fréquence de verrouillage théorique se détermine à l'aide du VCO : on prend la fréquence pour $V_{\it DD}$ max et min.

$$2F_L = V_{DD max} - V_{DD min} = 83 - 0 = 83 kHz.$$

Pour la plage de verrouillage $(2F_L)$, on a une différence de fréquence entre la théorie et la pratique de 10 kHz.

3) Plage de capture

1) Q8

Pour la plage de capture, en diminuant progressivement nous observons un verrouillage pour f=60kHz.

2) Q9

Théorie:

$$2f_C = \frac{1}{\pi} \sqrt{\frac{2\pi f_L}{R_3 C_2}} = \frac{1}{\pi} \sqrt{\frac{\pi \times 73e^3}{10e^3 \times 4.7e^{-9}}} = 22.2 \text{ kHz}$$

Pratique:

$$2f_c = 60 - 28 = 32 \, kHz$$

Encore une fois, on relève une différence de 10 kHz entre la fréquence de capture théorique et pratique.

3) Q10
Réglages:
Frequency=4kHz; Amplitude=10Vpp; Offset=5Vcc

Le signal jaune est utilisé pour générer un signal qui varie en fréquence à l'aide d'un VCO. Cette allure de courbe permet de générer un signal en sortie de VCO qui va varier en fréquence car son Vcc oscille en tension de 0 à 10V.

Le signal vert, quant à lui, représente la sortie de la PLL : on peut clairement voir les captures et décrochages de la PLL.

4) Q11

DS0-X 2004A, MY58102654: Wed 0ct 25 11:37:24 2023

Plage de capture

Plage de verrouillage

5) Q12

DS0-X 2004A, MY58102654: Wed 0ct 25 11:45:06 2023

Plage de capture (0,74V)

Plage de verrouillage (6,9V)

En pratique:

Coefficient directeur de la droite=9481 Plage de capture=9481*0,737=**7 kHz** Plage de verrouillage=9481*6,9=**65,419 kHz**

Comparaison avec les valeurs théoriques (constructeur):

$$\begin{split} 2f_C &= \frac{1}{\pi} \sqrt{\frac{2\pi f_L}{R_3 C_3}} = \frac{1}{\pi} \sqrt{\frac{\pi \times 83e^3}{10e^3 \times 47e^{-9}}} = 7,5 \ kHz \\ 2f_L &= 2F_L = V_{DD \ max} - V_{DD \ min} = 83 - 0 = 83 \ kHz. \end{split}$$

On relève une différence d'environ 13 kHz entre la plage de verrouillage (2fL) théorique et pratique.