Prova scritta di Calcolo Scientifico

Udine, 24 settembre 2018

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, p_{max}, p_{min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, p_{max}, p_{min} in modo che $p_{max} = p_{min}, realmin = 1/32$ e gli elementi siano 145. Calcola realmax.
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Siano $x = (0.\overline{1011})_2$. Determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Sia $y = (11.\overline{101})_2$. Determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Calcola $\tilde{z} = \tilde{x}fl(+)\tilde{y} \in \mathcal{F}$.
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente e il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = e^{\frac{1+2x}{1-x^2}}$ al variare di x.
 - Definisci l'errore algoritmico e il concetto di stabilità.
 - Supponendo che l'esponenziale sia calcolato un errore relativo maggiorato dalla precisione di macchina, studia la stabilità dell'algoritmo che valuta la funzione f.
- 3. Sia $f(x) = e^{2x^3 3x^2 + 1} 1$.
 - Determina una funzione F la cui valutazione non utilizza la funzione esponenziale in modo che F(x)=0 sia equivalente al problema f(x)=0. Disegna il grafico di F e determina le due radici reali α,β con $\alpha<\beta$.
 - Determina il massimo intervallo di convergenza ad α del metodo di Newton per F. Qual è l'ordine di convergenza? Giustifica le risposte.
 - Determina il massimo intervallo di convergenza a β del metodo di Newton per F. Qual è l'ordine di convergenza? Giustifica le risposte.

Applica il metodo a pendenza costante m per la funzione F.

- Studia la convergenza del metodo ad α. Proponi un valore di m e un valore x₀ per cui il metodo sia convergente in maniera monotona. Qual è l'ordine di convergenza? Giustifica le risposte.
- Studia la convergenza del metodo a β. Proponi un valore di m e un valore x₀ per cui il metodo sia convergente in maniera monotona. Qual è l'ordine di convergenza? Giustifica le risposte.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 1 & \alpha & 0\\ \alpha & 1 & \alpha\\ 0 & \alpha & 1 \end{array}\right).$$

- Disegna il grafico della funzione $\alpha \to ||A||_{\infty}$.
- Per quali valori di α non esiste la fattorizzazione LU di A? Giustifica la risposta.
- Determina $\alpha > 0$ tale che $||A||_{\infty} = 2$ e calcola la fattorizzazione LU di A.
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori di α si applica la strategia del pivot parziale al primo passo?
- Determina $\alpha < 0$ tale che $||A||_{\infty} = 5$ e calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Scrivi la pseudocodifica di un algoritmo che calcola la soluzione x di Ax = b con A triangolare inferiore di dimensione n e analizza il costo computazionale.
- 5. Sia $f(x) = \log_2(x)$. Dati i punti $P_0 = (\frac{1}{4}, f(\frac{1}{4})), P_1 = (\frac{1}{2}, f(\frac{1}{2})), P_2 = (1, f(1)).$
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x)-p(x) e determina una limitazione di $\max_{x\in [\frac{1}{4},4]}|f(x)-p(x)|$.
 - Dato l'ulteriore punto $P_3=(2,f(2))$., determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P₀, P₁, P₂ nel senso dei minimi quadrati.
 - Determina il polinomio r di primo grado di miglior approssimazione dei tre punti P_1, P_2, P_3 nel senso dei minimi quadrati.
- 6. Sia data una successione convergente. Definisci il concetto di ordine di convergenza.
 - Siano date le seguenti stime dell'errore relative a due successioni convergenti:
 - (a) 10^{-2} , 10^{-4} , 10^{-8} , ...
 - (b) 10^{-2} , 10^{-4} , 10^{-6} , ...

Quale successione converge linearmente? Determina una stima del fattore asintotico di convergenza.

- Dato un metodo di iterazione funzionale per il problema f(x) = 0. Proponi un criterio d'arresto e deriva la stima dell'errore.
- Scrivi la pseudocodifica di un algoritmo efficiente per calcolare il valore del polinomio $p_n(x) = \sum_{i=0}^n a_i x^i$ in un punto x assegnato e analizza la complessità computazionale.
- Scrivi la pseudocodifica per il metodo di bisezione e proponi un criterio di arresto.
- Scrivi la pseudocodifica di un algoritmo che calcola i coefficienti del polinomio $p_n(x)$ che interpola i punti $x_i, y_i, i = 0, ..., n$ nella forma di Newton.