

Álgebra Lineal 2 Escuela Profesional de Matemática Faculdad de Ciencias Universidad Nacional de Ingeniería

Lista 4 de Ejercicios

Ciclo: 2016.1

Tema: Operadores auto-adjuntos

A lo largo de esta lista, E y F denotarán e.p.i. de dimensión finita (salvo se diga lo contrario), $\mathcal{L}(E,F) := \{A: E \to F \; ; \; A \text{ es lineal}\}$, $\operatorname{End}(E) := \mathcal{L}(E,E)$, y un operador $A \in \operatorname{End}(E)$ será llamado de **normal** si A y A^* conmutan y **diagonalizable** si E posee una base formada por autovectores de A. Un subconjunto $\Sigma \subset E$ es llamado de **elipsoide** cuando existe una base ortonormal $\{u_1, \ldots, u_n\}$ de E y números positivos a_1, \ldots, a_n tales que

$$\Sigma = \{ v = x_1 u_1 + \dots + x_n u_n \in E ; a_1 x_1^2 + \dots + a_n x_n^2 = 1 \}.$$

- 1. Sea $A \in \text{End}(E)$ diagonalizable y sea $F \subset E$ subespacio. Si F es invariante por A, pruebe que existe un subespacio $G \subset E$ también invariante por A tal que $E = F \oplus G$.
- 2. Sean $A, B \in \text{End}(E)$ auto-adjuntos.
 - (a) Pruebe que AB + BA es autoadjunto.
 - (b) ¿Qué se puede decir sobre AB BA?
- 3. Sean $A, B \in \text{End}(E)$ auto-adjuntos. Pruebe que A y B conmutan sii E posee una base ortonormal formada por autovectores comunes a B y A.
- 4. Sea P una proyección ortogonal y $\alpha>0$. Exprese la raíz cuadrada de definida positiva de $I+\alpha P$ en términos de P.
- 5. Analice si los siguientes subconjuntos del espacio vectorial $\mathcal{L}(E)$ es un subespacio vectorial, un cono o un cono convexo:
 - (a) operadores normales,
 - (b) operadores autoadjuntos,
 - (c) operadores semidefinidos positivos.
- 6. Sea $A \in \text{End}(E)$ autoadjunto. Para todo $k \in \mathbb{N}$ impar, pruebe que existe un único operador autoadjunto $X \in \text{End}(E)$ tal que $X^k = A$. Si k es par, existe X autoadjunto con $X^k = A$ sii $A \geq 0$. En este caso, X puede ser escogido semidefinido positivo y entonces es único.
- 7. Sea $A \in \text{End}(E)$.
 - (a) Si $A^*A = -A$, pruebe que los autovalores de A pertenecen al conjunto $\{0, -1\}$.
 - (b) Dé una matriz $\mathbf{a} \in \mathcal{M}(2 \times 2)$ tal que $a_{11} = -1/3$ y $\mathbf{a}^{\top} \mathbf{a} = -\mathbf{a}$.
 - (c) ¿Cuántas matriz del tipo del ítem anterior existen?

- 8. Sea $A \in \text{End}(E)$ autoadjunto y sea $B \in \text{End}(E)$. Pruebe las siguientes proposiciones:
 - (a) B^*AB es autoadjunto.
 - (b) $A \ge 0 \implies B^*AB \ge 0$.
 - (c) A > 0, B es invertible $\Rightarrow B^*AB > 0$.
- 9. Sea $A \in \text{End}(E)$ invertible y sea $\Sigma \subset E$ un elipsoide. Pruebe que $A(\Sigma)$ es un elipsoide. (Sugerencia: use el Teorema de los Valores Singulares.)
- 10. Sea $\Sigma \subset E$. Pruebe que Σ es un elipsoide sii existe $A \in \operatorname{End}(E)$ definido positivo tal que

$$\Sigma = \{ v \in E \; ; \; \langle Av, v \rangle = 1 \}.$$

- 11. Sea $A \in \text{End}(E)$ autoadjunto y sea $B \in \text{End}(E)$ definido positivo. Pruebe las siguientes proposiciones:
 - (a) X es la raíz cuadrada positiva de $B \Rightarrow XAX$ es autoadjunto.
 - (b) v es autovector de $XAX \Leftrightarrow Xv$ es autovector de BA.
 - (c) BA es diagonalizable.
 - (d) E posee una base tal que para todo $v \in \text{existe } \lambda \in \mathbb{R} \text{ con } Av = \lambda Bv$.
- 12. Sea $A \in \text{End}(E)$ autoadjunto. Pruebe que

$$A = \lambda_1 P_1 + \cdots + \lambda_m P_m$$

donde

- (a) $\lambda_1 < \cdots < \lambda_m$.
- (b) P_i es una proyección ortogonal, i = 1, ..., m.
- (c) $P_i P_j = 0$ si $i \neq j$.
- (d) $P_1 + \cdots + P_m = I$.

Pruebe también que la expresión de A con las propiedades de arriba es única.

13. Pruebe que todo operador autoadjunto A es suma de operadores autoadjuntos de rango 1, los cuales pueden ser tomados semidefinidos positivos si A fuese semidefinido positivo.