CHAPITRE

19

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES SCALAIRES À COEFFICIENTS CONSTANTS

Dans tout ce chapitre On désigne par \mathbb{K} le corps \mathbb{R} ou \mathbb{C} . Le terme intervalle désigne un intervalle de \mathbb{R} non vide et non réduit à un point.

19.1 ENSEMBLE DES SOLUTIONS

§1 Définitions

Définition 1

On appelle **équation différentielle linéaire scalaire à coefficients constants** une équation qui s'écrit sous la forme

$$a_n y^{(n)}(t) + \dots + a_1 y'(t) + a_0 y(t) = u(t),$$
 (E)

où $a_0, a_1, \dots, a_n \in \mathbb{K}$, et $u : J \to \mathbb{K}$ une application continue.

Lorsque $a_n \neq 0$, on dit que l'équation (E) est d'ordre n.

On appelle équation homogène associée à (E), l'équation différentielle

$$a_n y^{(n)}(t) + \dots + a_1 y'(t) + a_0 y(t) = 0.$$

Définition 2

Soit $I \subset J$ un intervalle et $f: I \to \mathbb{K}$ une application. On dit que f est solution de (E) sur I si

- l'application f est dérivable n fois sur I, et
- $\bullet \ \, \forall t \in I, a_n f^{(n)}(t) + \dots + a_1 f'(t) + a_0 y(t) = u(t).$

Résoudre ou **intégrer** l'équation différentielle E sur I, c'est donner toutes les solutions définies sur I.

Une **courbe intégrale** de E est la courbe représentative d'une solution de E.

Notation

On note encore $\mathcal{S}_E(I)$ l'ensemble des solutions de (E) sur l'intervalle I.

Exemple 3

La fonction $f: t \mapsto e^{3t} - e^{-t}$ est solution sur \mathbb{R} de l'équation différentielle

$$y'(t) - 3y(t) = 4e^{-t}$$

mais aussi de l'équation différentielle

$$y''(t) - 2y'(t) - 3y(t) = 0.$$

En effet, f est une fonction dérivable sur \mathbb{R} (et même deux fois dérivable) et pour $t \in \mathbb{R}$,

$$f(t) = e^{3t} - e^{-t},$$
 $f'(t) = 3e^{3t} + e^{-t},$ $f''(t) = 9e^{3t} - e^{-t}.$

On a donc pour tout $t \in \mathbb{R}$,

$$f'(t) - 3f(t) = 3e^{3t} + e^{-t} - 3e^{3t} + 3e^{-t} = 4e^{-t}$$

et
$$f''(t) - 2f'(t) - 3f(t) = 9e^{3t} - e^{-t} - 6e^{3t} - 2e^{-t} - 3e^{3t} + 3e^{-t} = 0.$$

Exemple 4

Les solutions de y'(t) = u(t) sur l'intervalle I sont les primitives de la fonction u sur I.

Remarque

Il est habituel d'écrire l'équation différentielle $y'(t) - 3y(t) = 4e^{-t}$ de manière plus compacte, en supprimant la variable de la fonction inconnue,

$$v' - 3v = 4e^{-t}$$
.

Dans la suite... Le programme se limite aux équations d'ordre 1 et 2. Nous nous limiterons donc aux équations de la forme

$$ay''(t) + by'(t) + cy(t) = u(t)$$
 (E)

où $a, b, c \in \mathbb{K}$, le scalaire a étant éventuellement nul. Le système homogène associé devient

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (H)

§2 Structure de l'ensemble des solutions

Proposition 5

Principe de superposition des solutions

Soient $a, b, c \in \mathbb{K}$ et $u_1, u_2 \in \mathcal{F}(I, \mathbb{K})$. On considère les équations différentielles

$$(E_1)$$
: $ay''(t) + by'(t) + cy(t) = u_1(t)$
 $et(E_2)$: $ay''(t) + by'(t) + cy(t) = u_2(t)$.

Si f_1 et f_2 sont solutions sur I respectivement de (E_1) et (E_2) , alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, l'application $f = \lambda f_1 + \mu f_2$ est solution sur I de l'équation différentielle

$$ay''(t) + by'(t) + cy(t) = \lambda u_1(t) + \mu u_2(t).$$

Théorème 6

S'il existe une solution $f_0 \in \mathcal{S}_E(I)$, alors

$$\mathcal{S}_E(I) = f_0 + \mathcal{S}_H(I) = \left\{ f_0 + h \mid h \in \mathcal{S}_H(I) \right\}.$$

Si une fonction donnée f_0 est solution d'une équation différentielle, on dit souvent que f_0 est une «**solution particulière**» de l'équation différentielle. En fait, *chaque solution de l'équation est une «solution particulière»*.

Lorsque l'on donne la forme générale de toutes les solutions, on parle de la^1 «solution générale» de l'équation différentielle.

Le théorème affirme que la solution générale de l'équation est toujours la somme d'une solution particulière et de la solution générale de l'équation homogène associée.

§3 Solutions complexes d'une équation à coefficients réels

Proposition 7

Soit a, b et c trois nombres réels, et $u:I\to\mathbb{C}$. Une application f est solution complexe de l'équation différentielle

$$ay''(t) + by'(t) + cy(t) = u(t)$$
 (E)

si et seulement si $\Re e(f)$ et $\Im m(f)$ sont respectivement solutions de

$$ay''(t) + by'(t) + cy(t) = \Re(u)(t)$$
 et $ay''(t) + by'(t) + cy(t) = \Im(u)(t)$

Ce résultat est complètement faux si a, b ou c ne sont pas réels!

 $^{^{1}!!!!!!}$

19.2 RÉSOLUTION D'UNE ÉQUATION D'ORDRE 1

§1 Solutions d'une équation homogène

Théorème 8

Soit $(a, b) \in \mathbb{K}^2$, $a \neq 0$. Les solutions de l'équation homogène

$$ay'(t) + by(t) = 0$$

sur un intervalle $I \subset \mathbb{R}$ sont les fonctions f_{λ} où

$$\begin{array}{cccc} f_{\lambda}: & I & \to & \mathbb{K} & , \ et \ \lambda \in \mathbb{K}. \\ & t & \mapsto & \lambda \exp\left(-\frac{b}{a}t\right) \end{array}$$

Démonstration. Soit $y:I\to\mathbb{K}$ une application. Posons $r=-\frac{b}{a}$ et $z:t\mapsto y(t)e^{-rt}$. Autrement dit, nous allons chercher les solutions $y:I\to\mathbb{K}$ sous la forme

$$\forall t \in I, y(t) = z(t)e^{rt}.$$

Donc la fonction z est dérivable si et seulement si y est dérivable. Sous cette hypothèse,

$$\forall t \in I, ay'(t) + by(t) = a.z'(t).e^{rt} + a.z(t).r.e^{rt} + b.z(t)e^{rt}$$
$$= a.z'(t)e^{rt} \qquad \text{car } a.r + b = 0$$

Puisque $e^{\frac{b}{a}t}$ n'est jamais nul,

$$\begin{split} y \in \mathcal{S}_H(I) &\iff \forall t \in I, z'(t) = 0 \\ &\iff \exists \lambda \in \mathbb{K}, \forall t \in I, z(t) = \lambda \\ &\iff \exists \lambda \in \mathbb{K}, \forall t \in I, y(t) = \lambda e^{rt} \end{split} \qquad \text{car I est un intervalle.}$$

Définition 9

Le polynôme aX + b est appelé **polynôme caractéristique** de l'équation différentielle

$$ay'(t) + by(t) = 0.$$

En notant r = -b/a la racine de ce polynôme, les solutions de l'équation différentielle sont donc les applications $t \mapsto \lambda e^{rt}$ avec $\lambda \in \mathbb{K}$ quelconque.

Exemple 10

On considère l'équation différentielle d'inconnue $y : \mathbb{R} \to \mathbb{R}$

$$(E)$$
: $3y'(t) + 4y(t) = 8$.

Le second membre étant constant, il est facile de trouver une solution apparente

$$f: t \mapsto 2$$
.

De plus, l'équation homogène associée à (E)

$$(H): 3y'(t) + 4y(t) = 0,$$

a pour polynôme caractéristique 3X + 4 qui a pour racine $\frac{-4}{3}$. Les solutions de l'équation homogène associée à (E) sont les applications

$$\mathbb{R} \to \mathbb{R} , \text{ avec } \lambda \in \mathbb{R}.$$

$$t \mapsto \lambda e^{-\frac{4}{3}t}$$

L'équation (E) étant linéaire, ses solutions sur $\mathbb R$ sont donc les applications

$$f_{\lambda}: \mathbb{R} \to \mathbb{R}$$
, avec $\lambda \in \mathbb{R}$.
 $t \mapsto 2 + \lambda e^{-\frac{4}{3}t}$

On peut aussi dire que l'*ensemble* des solutions de (E) sur \mathbb{R} est

$$\mathcal{S}_E(\mathbb{R}) = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ & t & \mapsto & 2 + \lambda e^{-\frac{4}{3}t} \end{array} \middle| \lambda \in \mathbb{K} \right\}.$$

§2 Cas d'un second membre polynôme

Théorème 11

Soit $(a,b) \in \mathbb{K}^2$, $a \neq 0$, et $Q = a_0 + a_1 X + \cdots + a_n X^n$ un polynôme de degré n. Alors l'équation

$$ay'(t) + by(t) = a_0 + a_1t + \dots + a_nt^n$$

admet une solution particulière sur \mathbb{R} de la forme

2.
$$\mathbb{R} \to \mathbb{K}$$
 $si b = 0 \text{ et } a \neq 0.$

$$t \mapsto t \left(b_0 + b_1 t + \dots + b_n t^n \right)$$

avec $b_0, \ldots, b_n \in \mathbb{K}$ à déterminer.

§3 Cas d'un second membre exponentielle

Théorème 12

Soit $(a, b, A, m) \in \mathbb{K}^4$, $a \neq 0$ et P = aX + b. Alors l'équation

$$av'(t) + bv(t) = Ae^{mt}$$

admet une solution particulière sur \mathbb{R} de la forme

1. $\mathbb{R} \to \mathbb{K}$ si m n'est pas racine de P (i.e. $am + b \neq 0$). $t \mapsto Be^{mt}$

2.
$$\mathbb{R} \to \mathbb{K}$$
 si m est racine de P (i.e. $am + b = 0$).
 $t \mapsto Bte^{mt}$

avec $B \in \mathbb{K}$ à déterminer.

§4 Problème de Cauchy

Définition 13

Un **problème de Cauchy** du premier ordre est la donnée d'une équation différentielle du premier ordre (E) et d'une condition initiale $y(t_0) = y_0$. Résoudre ce problème, c'est déterminer les solutions f de (E) qui vérifient de plus $f(t_0) = y_0$.

Théorème 14

Cas particulier du théorème de Cauchy-Lipschitz

Soit $a \in \mathbb{K}$ et $u: I \to \mathbb{K}$ une application continue sur un intervalle $I, t_0 \in I$ et $y_0 \in \mathbb{K}$. Le problème de Cauchy

$$\begin{cases} y'(t) + ay(t) = u(t) \\ y(t_0) = y_0 \end{cases}$$
 (E)

admet une solution unique.

Par conséquent, (dans le cas réel) il existe une unique courbe intégrale de E passant par le point $M_0(t_0, y_0)$.

Démonstration.

Exemple 15

Soit $k \in \mathbb{K}$. La fonction $f: \mathbb{R} \to \mathbb{K}$ est l'unique fonction dérivable sur \mathbb{R} solution $t \mapsto e^{-kt}$

du problème de Cauchy

$$\begin{cases} y'(t) + ky(t) = 0\\ y(0) = 1 \end{cases}$$

Exemple 16

Résoudre le problème de Cauchy d'inconnue $y: \mathbb{R} \to \mathbb{R}$

$$\begin{cases}
(E): 2y'(t) - 3y(t) = 7e^{-5t} + 5e^{-7t} \\
y(1) = \pi.
\end{cases}$$

§5 Applications

Décharge d'un condensateur dans une résistance

Étudions la décharge d'un condensateur de capacité C dans une résistance R; autrement dit, cherchons la variation du courant i et de la différence de potentiel v en fonction du temps t (figure 19.1).

Figure 19.1:

Soient v_0 la différence de potentiel aux bornes à l'instant initial et q_0 la charge contenue dans le condensateur. Nous savons que $q_0 = Cv_0$.

Plaçons nous au bout du temps t après la fermeture de l'interrupteur. À ce moment, la charge qui *reste* dans le condensateur est q (le condensateur a déjà perdu une partie de sa charge), et la différence de potentiel aux bornes (qui varie de v_0 à 0) est devenue v, et

$$q = Cv$$
.

On connaît la relation entre l'intensité du courant arrivant sur le condensateur et la variation de charge de l'armature positive

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = C\frac{\mathrm{d}v}{\mathrm{d}t}.$$

D'autre part, aux bornes de R, il y a une différence de potentiel -v, et la loi d'Ohm nous donne

$$i = -v/R$$
 d'où $C \frac{dv}{dt} = -\frac{v}{R}$.

c'est-à-dire

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{RC}v = 0.$$

Cette équation différentielle a pour polynôme caractéristique $X + \frac{1}{RC}$ qui a pour racine $\frac{-1}{RC}$. Nous en déduisons

$$v(t) = \lambda \exp\left(-\frac{t}{RC}\right).$$

Pour déterminer la constante λ , remarquons que si t=0, alors $v(0)=v_0$. Donc $\lambda=v_0$ et

$$v(t) = v_0 \exp\left(-\frac{t}{RC}\right)$$

C'est une fonction exponentielle décroissante

Le produit RC s'appelle **constante de temps** du circuit et se note τ . Ce nombre caractérise la vitesse de la décharge. Le temps τ est celui au bout duquel la différence de potentiel v_0 est divisée par e; en effet, lorsque $t = \tau$,

$$v(\tau) = v_0 e^{-\tau/\tau} = v_0 e^{-1} = \frac{v_0}{e} \approx 0.37 v_0 \approx \frac{1}{3} v_0.$$

La dérivée est

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} = -\frac{v_0}{\tau}e^{-t/\tau}.$$

Lorsque $t=0, \frac{\mathrm{d} v}{\mathrm{d} t}(t=0)=-v_0/\tau$; la tangente en t=0 à la courbe coupe donc l'asymptote v=0 en $t=\tau$.

Soit α l'angle de la tangente au point $(0, v_0)$ avec (Ox); par définition $\tan \alpha = -v_0/\tau$, et l'on voit que

- si τ est grand, l'angle α est petit, et ν diminue lentement,
- si τ est petit, l'angle α est grand, et v diminue rapidement.

Le courant i est donnée par

$$i(t) = -\frac{v(t)}{R} = -\frac{v_0}{R} \exp\left(-\frac{t}{\tau}\right) = i_0 \exp\left(-\frac{t}{\tau}\right),$$

et son graphe a la même forme que celui de v en fonction du temps t.

Figure 19.2:

Nous allons chercher le temps au bout duquel le courant i et la différence de potentiel v sont égaux à 5% de leurs valeurs initiales. Ce temps t est défini par l'équation

$$v(t) = \frac{5}{100}v_0 = v_0 e^{-t/\tau},$$

soit

$$e^{t/\tau} = 20$$
,

ou encore

$$t = \ln(20)\tau \approx 2.99573\tau \approx 3\tau.$$

De manière analogue, le temps au bout duquel le courant i et la différence de potentiel v sont égaux au centième de leurs valeurs initiales (temps au bout duquel on considère que la décharge est pratiquement terminée) est

$$t = \ln(100)\tau \approx 4.6\tau$$
.

Le temps recherché est environ 5τ .

Régime sinusoïdal d'un dipôle RC

On étudie le dipôle RC en régime sinusoïdal: un générateur impose aux bornes de ce dipôle la tension

$$e(t) = E \cos(\omega t)$$
.

Initialement, le condensateur est chargé: $v(t = 0) = V_0$.

Figure 19.3:

La loi des mailles permet d'écrire

$$Ri(t) + v(t) = e(t)$$

ce qui donne, en tenant compte que $i(t) = C \frac{dv(t)}{dt}$

$$RC\frac{\mathrm{d}v(t)}{\mathrm{d}t} + v(t) = E\cos(\omega t) \tag{19.1}$$

c'est-à-dire

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{1}{RC}v(t) = \frac{E}{RC}\cos(\omega t)$$
 (19.2)

Les solutions de l'équation homogène associée ont étés vues précédemment, elle sont de la forme

$$v(t) = \lambda \exp\left(-\frac{t}{RC}\right)$$
 avec $\lambda \in \mathbb{R}$.

On cherche une solution particulière de l'équation 19.2 sous forme complexe. Puisque

$$\frac{E}{RC} \in \mathbb{R} \text{ et } \cos(\omega t) = \Re e \left(e^{j\omega t} \right),$$

(pour éviter des confusions avec l'intensité i, on note $j^2=-1$) et que $j\omega$ n'est pas racine du polynôme caractéristique $X+\frac{1}{RC}$, On cherche une solution particulière (complexe) de l'équation

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{1}{RC}v(t) = \frac{E}{RC}e^{j\omega t} \tag{19.3}$$

sous la forme $v(t) = ae^{j\omega t}$: injectons dans l'équation 19.3

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{1}{RC}v(t) = aj\omega e^{j\omega t} + \frac{a}{RC}e^{j\omega t} = \frac{E}{RC}e^{j\omega t}$$

c'est-à-dire, puisque $e^{j\omega t}$ n'est pas nul,

$$a\left(j\omega + \frac{1}{RC}\right) = \frac{E}{RC}.$$

On trouve donc $a = \frac{E}{1 + jRC\omega}$ et donc une solution particulière

$$v_c(t) = \frac{E}{1 + jRC\omega}e^{j\omega t} = E\frac{1 - jRC\omega}{1 + (RC\omega)^2}e^{j\omega t}.$$

L'équation 19.2 étant linéaire et à coefficients réels, une solution particulière est donnée par

$$v_p(t) = \Re e \left(v_c(t) \right) = E \left(\frac{1}{1 + (RC\omega)^2} \cos(\omega t) + \frac{RC\omega}{1 + (RC\omega)^2} \sin(\omega t) \right).$$

Résultat assez décevant pour le physicien! Mais (\mathfrak{S}) nous reconnaissons une superposition de sinusoïdes : nous allons mettre $v_c(t)$ sous la forme $A \exp(j(\omega t + \varphi))$. On a

$$A = \left| \frac{E}{1 + jRC\omega} \right| = \frac{E}{\sqrt{1 + (RC\omega)^2}} \quad \text{ et } \quad \varphi = \arg(E) - \arg(1 + jRC\omega) = 0 - \arg(1 + jRC\omega)$$

En s'assurant que $\omega > 0$, on peut choisir

$$A = \left| \frac{E}{1 + jRC\omega} \right| = \frac{E}{\sqrt{1 + (RC\omega)^2}} \quad \text{et} \quad \varphi = -\arctan(RC\omega).$$

Finalement, une solution particulière de l'équation 19.2 est

$$v_p(t) = \frac{E}{\sqrt{1 + (RC\omega)^2}} \cos(\omega t - \arctan(RC\omega)).$$

et la solution générale est donnée par les fonctions

$$v(t) = \frac{E}{\sqrt{1 + (RC\omega)^2}} \cos(\omega t - \arctan(RC\omega)) + \lambda \exp\left(-\frac{t}{RC}\right).$$

Initialement, on a $v(t = 0) = V_0$ et donc

$$\frac{E}{\sqrt{1 + (RC\omega)^2}}\cos(\varphi) + \lambda = V_0,$$

c'est-à-dire,

$$\lambda = V_0 - \frac{E}{\sqrt{1 + (RC\omega)^2}} \cos \varphi = V_0 - \frac{E}{1 + (RC\omega)^2}.$$

Et finalement, la solution vérifiant $v(t=0) = V_0$ est donnée par

$$v(t) = \frac{E}{\sqrt{1 + (RC\omega)^2}} \cos\left(\omega t - \arctan(RC\omega)\right) + \left(V_0 - \frac{E}{1 + (RC\omega)^2}\right) \exp\left(-\frac{t}{RC}\right).$$

Le terme $\lambda \exp(-\frac{t}{RC})$ est un terme transitoire qui est pratiquement négligeable au bout de $5\tau = 5RC$. Le terme $A\cos(\omega t - \varphi)$ est le régime permanent. Si l'on impose $v(t=0) = v_0$, on obtient cette fois-ci:

19.3 RÉSOLUTION D'UNE ÉQUATION D'ORDRE 2

§1 Solutions complexes de l'équation homogène associée

Considérons tout d'abord l'équation ay'' + by' + cy = 0; dans un premier temps nous allons supposer que a, b, c sont complexes et chercher les solutions complexes.

En s'inspirant de ce qu'on sait sur les solutions des équations du premier ordre, on cherche tout d'abord à savoir si des fonctions exponentielles sont solutions.

Soit donc $f_r: t \mapsto e^{rt}$. Alors

$$af_r''(t) + bf_r'(t) + cf_r(t) = (ar^2 + br + c)e^{rt},$$

et donc f_r sera solution de l'équation différentielle si et seulement si r est racine du polynôme $P = aX^2 + bX + c$.

Définition 17

Le polynôme

$$aX^2 + bX + c$$

est appelé **polynôme caractéristique** de l'équation différentielle ay'' + by' + cy = 0.

La découverte de ce polynôme caractéristique est due à Euler.

Théorème 18

Soit $(a, b, c) \in \mathbb{C}^3$, $a \neq 0$. On considère l'équation différentielle

$$ay''(t) + by'(t) + cy(t) = 0$$
 (H)

On note $P = aX^2 + bX + c$ son polynôme caractéristique et $\Delta = b^2 - 4ac \in \mathbb{C}$ le discriminant de P.

1. Si $\Delta \neq 0$, alors P admet deux racines distinctes r_1 et r_2 et

$$\mathcal{S}_H(\mathbb{R}) = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \lambda \operatorname{e}^{r_1 t} + \mu \operatorname{e}^{r_2 t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right. \right\}$$

2. Si $\Delta = 0$, alors P admet une racine double $r = \frac{-b}{2a}$ et

$$\mathcal{S}_H(\mathbb{R}) = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & (\lambda t + \mu) \, \mathrm{e}^{rt} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right. \right\}$$

Démonstration. L'équation caractéristique de (H) est une équation du second degré à coefficients complexes. Elle admet donc deux racines distinctes ou égales que l'on notera r_1 et r_2 . Nous savons également que la somme des racines $(r_1 + r_2)$ est le nombre complexe $-\frac{b}{a}$. On considère y une application de $\mathbb R$ dans $\mathbb C$ deux fois dérivable sur $\mathbb R$. On définit alors la fonction z par 2

$$\forall t \in \mathbb{R}, z(t) = y(t) e^{-r_1 t}$$
.

²Cette démonstration est similaire à la méthode de variation de la constante (au programme de SUP) ou d'abaissement de l'ordre (au programme de SPÉ): on connait une solution particulière de (H) (ici $f_{r_1}: t\mapsto \mathrm{e}^{+r_1t}$) et l'on cherche les solutions sous la forme $t\mapsto z(t)f_{r_1}(t)$. C'est une méthode qui revient très souvent dans la résolution d'équations différentielles.

Nous remarquons que la fonction z est deux fois dérivable sur \mathbb{R} avec

$$\forall t \in \mathbb{R}, y(t) = z(t) e^{r_1 t}$$
.

On a donc

$$\forall t \in \mathbb{R}, y'(t) = (z'(t) + r_1 z(t)) e^{r_1 t} \text{ et } y''(t) = (z''(t) + 2r_1 z'(t) + r_1^2 z(t)) e^{r_1 t}.$$

Pour $t \in \mathbb{R}$, nous obtenons

$$ay''(t) + by'(t) + cy(t) = \left(az''(t) + (2ar_1 + b)z'(t) + (ar_1^2 + br_1 + c)z(t)\right) e^{r_1 t}$$

$$= a e^{r_1 t} \left(z''(t) + \left(2r_1 + \frac{b}{a}\right)z'(t)\right)$$

$$= a e^{r_1 t} \left(z''(t) + \left(2r_1 - (r_1 + r_2)\right)z'(t)\right)$$

$$= a e^{r_1 t} \left(z''(t) + (r_1 - r_2)z'(t)\right).$$

Puisque $e^{r_1 t}$ n'est jamais nul, la fonction y est solution de (H) si et seulement si la fonction z est solution de l'équation différentielle

$$z''(t) + (r_1 - r_2)z'(t) = 0$$

si et seulement si z' est solution de l'équation

$$Z'(t) + (r_1 - r_2)Z(t) = 0$$

si et seulement si il existe un nombre complexe k_1 tel que

$$\forall t \in \mathbb{R}, z'(t) = k_1 e^{(r_2 - r_1)t}.$$

1. Si le polynôme caractéristique de (H) a deux racines distinctes, c'est-à-dire si $r_2 - r_1 \neq 0$, alors y est solution si et seulement si il existe deux nombres complexes k_1 et k_2 tels que

$$\forall t \in \mathbb{R}, z(t) = \frac{k_1}{r_2 - r_1} e^{(r_2 - r_1)t} + k_2,$$

c'est-à-dire si et seulement si

$$\forall t \in \mathbb{R}, y(t) = z(t) e^{r_1 t} = k_2 e^{r_1 t} + \frac{k_1}{r_2 - r_1} e^{r_2 t}.$$

Lorsque (k_1, k_2) parcourt \mathbb{C}^2 , $\left(k_2, \frac{k_1}{r_2 - r_1}\right)$ parcourt \mathbb{C}^2 . Ainsi, y est solution de (H) si et seulement si il existe deux nombres complexes λ et μ tels que

$$\forall t \in \mathbb{R}, v(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$$

2. Si le polynôme caractéristique de (H) a une racine double, c'est-à-dire $r_1 = r_2 = r$, alors y est solution de (H) si et seulement si il existe deux nombres complexes k_1 et k_2 tels que

$$\forall t \in \mathbb{R}, z(t) = k_1 t + k_2,$$

c'est-à-dire si et seulement si

$$\forall t \in \mathbb{R}, y(t) = z(t) e^{rt} = (k_1 t + k_2) e^{rt}.$$

§2 Solutions réelles de l'équation homogène associée

On cherche ici les solutions réelles de (H) où a, b et c sont des nombres réels.

Théorème 19

Soit $(a, b, c) \in \mathbb{R}^3$, $a \neq 0$. On considère l'équation différentielle

$$ay''(t) + by'(t) + cy(t) = 0$$
 (H)

On note $P = aX^2 + bX + c$ son polynôme caractéristique et $\Delta = b^2 - 4ac \in \mathbb{R}$ le discriminant de P.

1. Si $\Delta > 0$, alors P admet deux racines réelles distinctes r_1 et r_2 et

$$\mathcal{S}_H(\mathbb{R}) = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & \lambda \operatorname{e}^{r_1 t} + \mu \operatorname{e}^{r_2 t} \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right. \right\}$$

2. Si $\Delta = 0$, alors P admet une racine double $r = \frac{-b}{2a}$ et

$$\mathcal{S}_H(\mathbb{R}) = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & (\lambda t + \mu) \, \mathrm{e}^{rt} \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right. \right\}$$

3. Si $\Delta < 0$, alors P admet deux racines complexes conjuguées $\alpha + i\omega$ et $\alpha - i\omega$ et

$$\mathcal{S}_{H}(\mathbb{R}) = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & (\lambda \cos(\omega t) + \mu \sin(\omega t)) \, \mathrm{e}^{\alpha t} \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^{2} \right\}$$

Démonstration.

- 1. Même démonstration que le cas complexe $\Delta \neq 0$.
- **2.** Même démonstration que le cas complexe $\Delta = 0$.

3.

(CN) Supposons que $y : \mathbb{R} \to \mathbb{R}$ soit une solution réelle de (H). Alors y est en particulier une solutions à valeurs complexes. Il existe donc deux *complexes* λ et μ tels que

$$\forall t \in \mathbb{R}, y(t) = \left(\lambda e^{i\omega t} + \mu e^{-i\omega t}\right) e^{\alpha t}.$$

Or, y étant à valeurs réelles, nous avons $y = \Re e(y)$. Donc, ³

$$\forall t \in \mathbb{R}, y(t) = (\Re e(\lambda) \cos(\omega t) - \Im m(\lambda) \sin(\omega t) + \Re e(\mu) \cos(\omega t) + \Im m(\mu) \sin(\omega t)) e^{\alpha t}.$$

Il existe donc deux nombres réels λ' et μ' tels que

$$\forall t \in \mathbb{R}, \, y(t) = \left(\lambda' \cos(\omega t) + \mu' \sin(\omega t)\right) e^{\alpha t}.$$

³ Let let le suffit pas d'imposer (λ, μ) ∈ \mathbb{R}^2 dans les solutions complexes pour obtenir les solutions réelles.

(CS) Réciproquement, on considère les fonctions y_1 et y_2 définies par

$$\forall t \in \mathbb{R}, \quad y_1(t) = \frac{1}{2} \left(e^{(\alpha + i\omega)t} + e^{(\alpha - i\omega)t} \right) = \cos(\omega t) e^{\alpha t}$$
$$y_2(t) = \frac{1}{2} \left(e^{(\alpha + i\omega)t} - e^{(\alpha - i\omega)t} \right) = \sin(\omega t) e^{\alpha t}.$$

Ces deux fonctions sont solutions réelles de (H) car elles sont solutions complexes de (H) et sont clairement à valeurs réelles. Le principe de superposition assure qu'il en est donc de même de toutes leurs combinaisons linéaires réelles.

Remarque

Dans le cas $\Delta < 0$, les solutions de (H) peuvent également être données par les fonctions $\mathbb{R} \to \mathbb{R}$ avec $(A, \varphi) \in \mathbb{R}^2$. $t \mapsto A e^{\alpha t} \cos(\omega t + \varphi)$

Exemple 20

Déterminer les solutions réelles et complexes de l'équation différentielle

$$y''(t) + y'(t) + y(t) = 0.$$

Le polynôme caractéristique de l'équation est $X^2 + X + 1$, son discriminant est -3 < 0, et ses racines sont $\frac{-1 \pm i\sqrt{3}}{2}$. Les solutions complexes de l'équation différentielle sont donc les fonctions

Les solutions réelles de l'équation différentielle sont les fonctions

$$\mathbb{R} \to \mathbb{R} \quad \text{avec } \lambda, \mu \in \mathbb{R}.$$

$$t \mapsto \left(\lambda \cos\left(\frac{\sqrt{3}}{2}t\right) + \mu \sin\left(\frac{\sqrt{3}}{2}t\right)\right) e^{-t/2}$$

Exemple 21

Déterminer les solutions réelles et complexes de l'équation différentielle

$$y''(t) - 3y'(t) + 2y(t) = 0.$$

Le polynôme caractéristique de l'équation est $X^2 - 3X + 2$, son discriminant est 1 > 0, et ses racines sont 1 et 2. Les solutions complexes de l'équation différentielle sont donc les fonctions

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} & \text{avec } \lambda, \mu \in \mathbb{C}. \\ t & \mapsto & \lambda e^t + \mu e^{2t} \end{array}$$

Les solutions réelles de l'équation différentielle sont donc les fonctions

$$\begin{array}{ll} \mathbb{R} & \to & \mathbb{R} & \text{avec } \lambda, \mu \in \mathbb{R}. \\ t & \mapsto & \lambda e^t + \mu e^{2t} \end{array}$$

Exemple 22

Déterminer les solutions réelles et complexes de l'équation différentielle

$$y''(t) - 4y'(t) + 4y(t) = 0.$$

Le polynôme caractéristique de l'équation est $X^2 - 4X + 4$, son discriminant est 0, et sa

_

racine (double) est 2. Les solutions complexes de l'équation différentielle sont donc les fonctions

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} & \text{avec } \lambda, \mu \in \mathbb{C}. \\ t & \mapsto & (\lambda t + \mu) e^{2t} \end{array}$$

Les solutions réelles de l'équation différentielle sont donc les fonctions

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} & \text{avec } \lambda, \mu \in \mathbb{R}. \\ t & \mapsto & (\lambda t + \mu) e^{2t} \end{array}$$

§3 Cas d'un second membre polynôme

Théorème 23

Soit $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$, et $Q = a_0 + a_1 X + \dots + a_n X^n$ un polynôme de degré n. Alors l'équation

$$ay''(t) + by'(t) + cy(t) = a_0 + a_1t + \dots + a_nt^n$$

admet une solution particulière sur R de la forme

3.
$$\mathbb{R} \rightarrow \mathbb{K}$$
 $si c = 0 \text{ et } b = 0.$

$$t \mapsto t^2 \left(b_0 + b_1 t + \dots + b_n t^n \right)$$

avec $b_0, \ldots, b_n \in \mathbb{K}$ à déterminer.

§4 Cas d'un second membre exponentielle

Les équations linéaires du second ordre à coefficients constants sont très utiles dans l'étude de systèmes mécaniques ou électriques. Dans ce contexte, on utilise un vocabulaire particulier.

Soit l'équation

$$\ddot{y} + 2\alpha \dot{y} + \omega_0^2 y = f(t) \tag{19.4}$$

avec α et ω_0^2 des réels positifs. Cela «oublie» quelques cas de ce cours (sûrement une histoire de frottements...).

La fonction f est appelée **signal d'entrée** et la solution y (déterminée en général par des conditions initiales en t=0) le **signal de sortie**. La constante ω_0 est appelée la **pulsation propre** du système régi par l'équation (et $\omega_0/2\pi$ est sa fréquence propre).

Lorsqu'un signal (d'entrée ou de sortie) est de la forme $t \mapsto Ae^{i\omega t}$ ou $A\cos(\omega t + \varphi)$, |A| est son amplitude et ω sa pulsation.

Théorème 24

Soit
$$(a, b, cA, m) \in \mathbb{K}^4$$
, $a \neq 0$ et $P = aX^2 + bX + c$. Alors l'équation
$$ay''(t) + by'(t) + cy(t) = Ae^{mt}$$

admet une solution particulière sur \mathbb{R} de la forme

1.
$$\mathbb{R} \to \mathbb{K}$$
 sim n'est pas racine de P.
 $t \mapsto Be^{mt}$
(i.e. $am^2 + bm + c \neq 0$).

2.
$$\mathbb{R} \to \mathbb{K}$$
 si m est racine simple de P.
 $t \mapsto Bte^{mt}$
(i.e. $am^2 + bm + c = 0$ et $\Delta = b^2 - 4ac \neq 0$).

3.
$$\mathbb{R} \to \mathbb{K}$$
 si m est racine double de P.
 $t \mapsto Bt^2e^{mt}$
(i.e. $am^2 + bm + c = 0$ et $\Delta = b^2 - 4ac = 0$).

avec $B \in \mathbb{K}$ à déterminer.

Exemple 25

Déterminer les solutions réelles de l'équation différentielle

$$y''(t) + 2y'(t) + y(t) = e^{-t}.$$

Méthode

Lorsque $(a, b, c, \alpha, \omega) \in \mathbb{R}^5$, $a \neq 0$, les solutions des équations différentielles

$$ay''(t) + by'(t) + cy(t) = e^{\alpha t} \cos(\omega t)$$

$$ay''(t) + by'(t) + cy(t) = e^{\alpha t} \sin(\omega t)$$

sont les parties réelles et imaginaire des solutions (complexes) de l'équation différentielle

$$ay''(t) + by'(t) + cy(t) = e^{(\alpha + i\omega)t}.$$

Exemple 26

Déterminer les solutions réelles de l'équation différentielle $y''(t) + 4y'(t) + 5y(t) = e^{-2t}\sin(t)$.

§5 Problème de Cauchy

Définition 27

Un **problème de Cauchy du second ordre** est la donnée d'une équation différentielle du second ordre (E) et d'une condition initiale $y(t_0) = y_0$ et $y'(t_0) = y'_0$. Résoudre ce problème, c'est déterminer les solutions f de (E) qui vérifient de plus $f(t_0) = y_0$ et $f'(t_0) = y'_0$.

Théorème 28

Cas particulier du théorème de Cauchy-Lipschitz

Soit $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$ et $u : I \to \mathbb{K}$ une application continue sur un intervalle I. Pour tous $t_0 \in I$, $y_0 \in \mathbb{K}$ et $y_0' \in \mathbb{K}$. Le problème de Cauchy

$$\begin{cases} ay''(t) + by'(t) + cy(t) &= u(t) \\ y(t_0) &= y_0 \\ y'(t_0) &= y_0' \end{cases}$$

admet une solution unique.

Par conséquent, (dans le cas réel) il existe une unique courbe intégrale de E passant par un point $M_0(t_0, y_0)$ déterminée du plan et admettant en ce point une tangente fixée.

Démonstration. Admise. Si l'on suppose l'existence, il est facile de montrer l'unicité.

19.4 APPLICATIONS

Si au circuit *RC*, on ajoute une inductance en série, la différence de potentiel aux bornes de l'inductance est

$$u_L(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t} = L \frac{\mathrm{d}^2 q(t)}{\mathrm{d}t^2}.$$

À l'aide de la loi des mailles; on obtient

Figure 19.4:

$$Ri(t) + L\frac{\mathrm{d}i(t)}{\mathrm{d}t} + v(t) = e(t)$$

et puisque $i(t) = C \frac{dv(t)}{dt}$, on obtient

$$LC\frac{\mathrm{d}^2 v}{\mathrm{d}t^2} + RC\frac{\mathrm{d}v(t)}{\mathrm{d}t} + v(t) = e(t). \tag{19.5}$$

Étude du régime libre

Nous allons nous intéresser dans un premier temps au comportement du circuit lorsque le condensateur a été préalablement chargé $(v(t=0)=v_0)$ et lorsqu'il se décharge dans la bobine et la résistance.

L'équation différentielle correspondant à ce régime libre est l'équation homogène associée à (19.5)

$$LC\frac{d^2v(t)}{dt^2} + RC\frac{dv(t)}{dt} + v(t) = 0.$$
 (19.6)

Posons pour simplifier l'écriture

$$\alpha = \frac{R}{2L}$$
 et $\omega_0^2 = \frac{1}{LC}$,

nous obtenons l'équation fondamentale

$$\frac{d^2v(t)}{dt^2} + 2\alpha \frac{dv(t)}{dt} + \omega_0^2 v(t) = 0.$$
 (19.7)

Son polynôme caractéristique est $P = X^2 + 2\alpha X + \omega_0^2$. Nous devons distinguer trois cas, suivant que le discriminant $\Delta = 4(\alpha^2 - \omega_0^2)$ est strictement positif, nul ou strictement négatif.

Premier cas : $\alpha^2 - \omega_0^2 > 0$. C'est-à-dire $(R/2L)^2 > 1/LC$, ou encore

$$R > 2\sqrt{\frac{L}{C}}$$
.

Le polynôme caractéristique a deux racines réelles,

$$r_1 = -\alpha + \beta$$
, $r_2 = -\alpha - \beta$, où $\beta = \sqrt{\alpha^2 - \omega_0^2}$.

On a donc

$$\forall t \in \mathbb{R}, v(t) = Ae^{(\beta-\alpha)t} + Be^{-(\beta+\alpha)t},$$

où $(A, B) \in \mathbb{R}^2$ sont à déterminer. De plus,

$$\forall t \in \mathbb{R}, i(t) = \frac{\mathrm{d}q}{\mathrm{d}t} = C \frac{\mathrm{d}v}{\mathrm{d}t} = C \left(A(\beta - \alpha)e^{(\beta - \alpha)t} - B(\beta + \alpha)e^{-(\beta + \alpha)t} \right).$$

Compte tenu des conditions initiales pour t = 0:

$$v(t=0) = v_0$$
 et $i(t=0) = 0$,

Les constantes A et B sont donc données par le système

$$\left\{ \begin{array}{ccc} A+B &= \upsilon_0 \\ A(\beta-\alpha)-B(\beta+\alpha) &= 0 \end{array} \right. \iff A = \frac{\upsilon_0(\beta+\alpha)}{2\beta} \text{ et } B = \frac{\upsilon_0(\beta-\alpha)}{2\beta}.$$

Compte-tenu du fait que $\beta^2 - \alpha^2 = -\omega_0^2$, on obtient

$$v(t) = \frac{v_0}{2\beta} \left((\beta + \alpha)e^{(\beta - \alpha)t} + (\beta - \alpha)e^{-(\beta + \alpha)t} \right)$$

et $i(t) = -\frac{v_0 C \omega_0^2}{2\beta} \left(e^{(\beta - \alpha)t} - e^{-(\beta + \alpha)t} \right).$

On remarquera que les coefficients $\beta - \alpha$ et $-(\beta + \alpha)$ sont tous deux strictement négatifs. La fonction v, somme de deux exponentielles décroissantes, est elle-même décroissante. On dit qu'il y a **régime apériodique amorti**.

Ainsi, chose curieuse, v décroît lentement, et cependant |i| passe par un maximum, correspondant bien entendu au point d'inflexion de v, puisque v'' s'annule en même temps que i'.

Deuxième cas : $\alpha^2 - \omega_0^2 = 0$ C'est-à-dire $(R/2L)^2 = 1/LC$, ou encore

$$R = 2\sqrt{\frac{L}{C}}.$$

Le polynôme caractéristique a une racine double, à savoir $r = -\alpha$. On a donc

$$\forall t \in \mathbb{R}, v(t) = e^{-\alpha t}(A + Bt).$$

où $(A, B) \in \mathbb{R}^2$ sont à déterminer. De plus,

$$i(t) = C \left(-\alpha (A + Bt) + B \right) e^{-\alpha t}.$$

Un calcul analogue au précédent fournit aussitôt

$$v(t) = v_0 e^{-\alpha t} (1 + \alpha t) \qquad i(t) = -CV \alpha^2 t e^{-\alpha t}.$$

Puisque $i = C \, dv / dt$, on voit que v est encore décroissante. D'autre part $\frac{di(t)}{dt} = CV\alpha^2 e^{-\alpha t}(1-\alpha t)$. Donc i passe par un maximum lorsque $t = 1/\alpha$, correspondant bien sûr à un point d'inflexion pour v. Les graphe ont la même allure que dans le cas précédent. On dit qu'il y a **régime critique**. C'est également un régime apériodique amorti.

Troisième cas : $\alpha^2 - \omega_0^2 < 0$ C'est-à-dire $(R/2L)^2 < 1/LC$, ou encore

$$R < 2\sqrt{\frac{L}{C}}.$$

Le polynôme caractéristique a deux racines complexes conjuguées

$$r_1 = -\alpha + j\beta$$
 $r_2 = -\alpha - j\beta$ avec $\beta = \sqrt{\omega_0^2 - \alpha^2}$.

On a donc

$$\forall t \in \mathbb{R}, v(t) = e^{-\alpha t} \left(A \cos(\beta t) + B \sin(\beta t) \right)$$

et $i(t) = Ce^{-\alpha t} \left((A\beta - B\alpha) \cos(\beta t) - (B\alpha + A\beta) \sin(\beta t) \right).$

Les conditions initiales conduisent cette fois à $A=v_0$ et $A\alpha-B\beta=0$. D'où $B=A\alpha/\beta=v_0\alpha/\beta$ et

$$v(t) = v_0 e^{-\alpha t} \left(\cos(\beta t) + \frac{\alpha}{\beta} \sin(\beta t) \right).$$

Si l'on pose $\varphi = \arctan(\beta/\alpha)$, on en déduit

$$\cos \varphi = \frac{\alpha}{\sqrt{\beta^2 + \alpha^2}} = \frac{\alpha}{\omega_0}$$
 et $\sin \varphi = \frac{\beta}{\sqrt{\beta^2 + \alpha^2}} = \frac{\beta}{\omega_0}$;

d'où

$$v(t) = v_0 \frac{\omega_0}{\beta} e^{-\alpha t} \sin(\beta t + \varphi) \qquad i(t) = \frac{C v_0 \omega_0^2}{\beta} e^{-\alpha t} \sin(\beta t).$$

On dit qu'il y a régime pseudo-périodique.

Oscillations forcées

Prenons $\alpha=2$, $\omega_0=3$ (cas du régime pseudo-périodique). Considérons maintenant que le signal d'entrée est de la forme $A\sin(\omega t)$.

Plus précisément, nous étudions l'équation (19.5) équivalente à

$$\frac{d^2v}{dt^2} + 4\frac{dv(t)}{dt} + 9v(t) = 3\sin(2t).$$
 (19.8)

Considérons alors l'équation

$$\frac{d^2v}{dt^2} + 4\frac{dv(t)}{dt} + 9v(t) = \exp(j2t).$$
 (19.9)

Puisque 2j n'est pas racine du polynôme caractéristique $X^2 + 4X + 9$, on peut trouver une solution particulière de (19.9) sous la forme

$$v(t) = Be^{j2t}.$$

d'où

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} = 2Bje^{j2t} \qquad \qquad \frac{\mathrm{d}^2v(t)}{\mathrm{d}t^2} = -4Be^{j2t}$$

ce qui donne, en injectant dans (19.9)

$$\frac{\mathrm{d}^2 v}{\mathrm{d}t^2} + 4 \frac{\mathrm{d}v(t)}{\mathrm{d}t} + 9v(t) = e^{j2t} \iff (-4B + 8Bj + 9B)e^{j2t} = e^{j2t}$$
$$\iff B(5 + 8j) = 1$$
$$\iff B = \frac{1}{5 + 8j} = \frac{5 - 8j}{89}.$$

Une solution particulière de l'équation (19.9) est donc

$$v_c(t) = \frac{5 - 8j}{89} (\cos(2t) + j\sin(2t)),$$

L'équation (19.5) étant linéaire à coefficients réels, on en déduit une solution particulière donnée par

$$v_p(t) = 3 \, \mathfrak{Tm} \left(v_c(t) \right) = \frac{15}{89} \sin(2t) - \frac{24}{89} \cos(2t) = \frac{3}{89} (5 \sin(2t) - 8 \cos(2t))$$

ou bien avec $\varphi = \arctan(8/5)$

$$v_c(t) = \frac{1}{\sqrt{89}} e^{-j\varphi} e^{2jt} = \frac{1}{\sqrt{89}} e^{j(2t-\varphi)}$$
$$v_p(t) = \frac{3}{\sqrt{89}} \sin(2t - \varphi).$$

La solution générale de l'équation différentielle est donnée par les fonctions

$$v(t) = e^{-2t} \left(\lambda \cos \left(\sqrt{5}t \right) + \mu \sin \left(\sqrt{5}t \right) \right) + \frac{3}{\sqrt{89}} \sin \left(2t - \varphi \right).$$

avec $(\lambda, \mu) \in \mathbb{R}^2$ à déterminer en fonction des conditions initiales v(t=0) et i(t=0). Remarquons qu'au bout de quelques périodes, on a $v(t) \approx \frac{3}{\sqrt{89}} \sin{(2t-\varphi)}$.

Voici un autre exemple, avec des calculs un peu plus pénibles, mais un résultat plus amusant...

CHAPITRE

A.1 FONCTION D'UNE VARIABLE RÉELLE À VALEURS DANS $\mathbb C$

Définition 1

Soit $I \subset \mathbb{R}$ et $f: I \to \mathbb{C}$. On définit les fonctions suivantes de I dans \mathbb{C} :

$$\Re e(f) : x \mapsto \Re e(f(x))$$

 $\bar{f} : x \mapsto f(\bar{x})$

$$\mathfrak{Tm}(f): x \mapsto \mathfrak{Tm}(f(x))$$

 $|f|: x \mapsto |f(x)|.$

Théorème 2

Soit $f: I \to \mathbb{C}$ et $a \in I$.

- 1. f est continue en a si et seulement si $\Re(f)$ et $\Im(f)$ sont continues en a.
- 2. f est dérivable en a si et seulement si $\Re e(f)$ et $\Im m(f)$ sont dérivables en a. Dans ce cas

$$f'(a) = (\Re \mathfrak{e}(f))'(a) + i \left(\Im \mathfrak{m}(f)\right)'(a).$$

Test 3

Soit $(a, b) \in \mathbb{R}^2$ et m = a + ib. Soit $f : \mathbb{R} \to \mathbb{C}, x \mapsto e^{mx}$. Montrer que f est dérivable sur \mathbb{R} et

$$\forall t \in \mathbb{R}, f'(t) = me^{mt}.$$

Plus généralement, on démontre

Proposition 4

Soit I un intervalle de \mathbb{R} *et soit* φ : $I \to \mathbb{C}$ *une fonction dérivable sur I. Alors la fonction*

$$f: I \to \mathbb{C}$$
$$x \mapsto e^{\varphi(x)}$$

est dérivable sur I et

$$\forall x \in I \ f'(x) = \varphi'(x)e^{\varphi(x)}.$$

A.2 COMPLÉMENTS HP: CAS D'UN SECOND MEMBRE POLYNÔME-EXPONENTIELLE

§1 Ordre 1

Dans le cas où les coefficients de l'équation sont constants et le second membre de la forme polynôme-exponentielle, on peut trouver une solution particulière sous la forme polynôme-exponentielle.

Théorème 5

Soit $(a, b, m) \in \mathbb{K}^2$, $a \neq 0$, P = aX + b et S un polynôme à coefficients dans \mathbb{K} . Alors l'équation

$$ay'(t) + by(t) = S(t) e^{mt}$$

admet une solution particulière sur \mathbb{R} de la forme

1.
$$\mathbb{R} \to \mathbb{K}$$
 si m n'est pas racine de P (i.e. $am + b \neq 0$).
 $t \mapsto R(t)e^{mt}$

2.
$$\mathbb{R} \to \mathbb{K}$$
 si m est racine de P (i.e. $am + b = 0$). $t \mapsto tR(t)e^{mt}$

où R est un polynôme à coefficients dans \mathbb{K} de même degré que le polynôme S.

Remarque

Si le second membre est une combinaison linéaire de fonction polynôme-exponentielle, on utilise le principe de superposition des solutions.

Exemples 6

Résoudre les équations différentielles suivantes sur \mathbb{R} .

1.
$$y'(t) + 2y(t) = te^{-t}$$
.

2.
$$y'(t) + 2y(t) = e^{-2t}$$
.

3.
$$y'(t) + 2y(t) = t\cos(2t)$$
 en utilisant $t\cos 2t = \Re e(te^{2it})$.

4.
$$y'(t) + 2y(t) = te^{-t} + e^{-2t} + 8t\cos(2t)$$
.

§2 Ordre 2

Théorème 7

Soit $(a, b, c, m) \in \mathbb{K}^4$, $a \neq 0$, $P = aX^2 + bX + c$ et S un polynôme à coefficients dans \mathbb{K} . Alors l'équation

$$ay''(t) + by'(t) + cy(t) = S(t) e^{mt}$$

admet une solution particulière sur \mathbb{R} de la forme ^a

- 1. $t \mapsto R(t) e^{mt}$ si m n'est pas racine de P (i.e. $am^2 + bm + c \neq 0$).
- **2.** $t \mapsto tR(t) e^{mt}$ si m est une racine simple de P (i.e. $am^2 + bm + c = 0$ et $\Delta \neq 0$).
- 3. $t \mapsto t^2 R(t) e^{mt}$ si m est la racine double de P (i.e. $am^2 + bm + c = 0$ et $\Delta = 0$).

où R est un polynôme à coefficients dans \mathbb{K} de même degré que le polynôme S.

^a7: On peut résumer en disant que l'on peut trouver une solution particulière sous la forme $t \mapsto t^{\alpha} R(t) e^{mt}$ où α est l'ordre de multiplicité de m par rapport à P.