Lecture 2

Relations and Functions

Dr. David Zmiaikou

What is a Relation?

* For two sets A and B, the **Cartesian product** $A \times B$ is the set of all ordered pairs whose first coordinate belongs to A and whose second coordinate belongs to B. That is,

$$A \times B = \{(a,b) : a \in A \text{ and } b \in B\}.$$

- * A **relation** (also called a **binary relation**) R from a set A to a set B is a subset of $A \times B$.
- * If $(a, b) \in R$, then a is said to be **related** to b, and we write a R b

 $A \times B = \{(a,x), (b,x), (c,x), (a,y), (b,y), (c,y), (a,z), (b,z), (c,z)\}$

 $R = \{(a,y), (b,z), (c,z)\}$

* For the sets $A = \{0, 1\}$ and $B = \{1, 2, 3\}$, let $R = \{(0, 2), (0, 3), (1, 2)\}$ be a relation from A to B.

Then 0 R 2, 0 R 3 and 1 R 2.

Since 0 is not related to 1, and 1 is not related to 3, we can also indicate this by writing

0 R 1 and 1 R 3.

* Let A be the set of positive integers and let B denote the set of negative integers. Define a relation R from A to B: a R b if $a + b \in \mathbb{N}$.

Give examples of some pairs of elements that are related by *R* and some that are not.

* Let A be the set of positive integers and let B denote the set of negative integers. Define a relation R from A to B: a R b if $a + b \in \mathbb{N}$.

Give examples of some pairs of elements that are related by *R* and some that are not.

Solution. We have 5 R (-2), since $5 + (-2) = 3 \in \mathbb{N}$. Because $2 + (-2) = 0 \notin \mathbb{N}$, it follows that 2 R (-2).

* For the sets $A = \{x, y, z\}$ and $B = \{0,1,2,3\}$, $R = \{(x,1), (x,2), (y,1), (z,0), (z,3)\}$ is a relation from A to B, which can be presented in the diagram below.

Types of Relations on a Set

* A **relation** R on a set S is a relation from S to S. In other words, R is a subset of $S \times S$.

- * Let *R* be a relation defined on a nonempty set *S*. Then *R* is
 - **reflexive** if a R a for all $a \in S$;
 - **symmetric** if whenever *a R b*, then *b R a*;
 - **transitive** if whenever *a R b* and *b R c*, then *a R c*.

- * Let $S = \{1, 2, 3, 4\}$. Consider the following relation on S: $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1)\}$. Which of the properties reflexive, symmetric and transitive does R possess?
 - * Let *R* be a relation defined on a nonempty set *S*. Then *R* is
 - **reflexive** if a R a for all $a \in S$;
 - **symmetric** if whenever *a R b*, then *b R a*;
 - **transitive** if whenever *a R b* and *b R c*, then *a R c*.

* Let $S = \{1, 2, 3, 4\}$. Consider the following relation on S: $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1)\}$. Which of the properties reflexive, symmetric and transitive does R possess?

Solution. The relation R is not reflexive since $(4,4) \notin R$. The relation R is not symmetric, since $(3,1) \in R$ but $(1,3) \notin R$. The relation R is not transitive, since $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$.

* A relation R is defined on the set \mathbb{N} of positive integers by a R b if a < b. Which of the properties reflexive, symmetric and transitive does R possess?

* A relation R is defined on the set \mathbb{N} of positive integers by a R b if a < b. Which of the properties reflexive, symmetric and transitive does R possess?

Solution. It isn't reflexive ($a \not< a$), it isn't symmetric ($a < b \not\Rightarrow b < a$) but it is transitive ($a < b, b < c \Rightarrow a < c$).

* A relation R is defined on the set \mathbb{Z} of integers by a R b if $ab \ge 0$. Which of the properties reflexive, symmetric and transitive does R possess?

* A relation R is defined on the set \mathbb{Z} of integers by a R b if $ab \ge 0$. Which of the properties reflexive, symmetric and transitive does R possess?

Answer. Reflexive, symmetric but not transitive.

* A relation R is defined on the set \mathbb{R} of real numbers by

x R y if $2x + y \ge 0$.

That is, x R y if (x, y) is a point in the Euclidean plane that lies on or to the right of the line y = -2x.

- (a) Give an example of two real numbers a and b such that a R b and two real numbers c and d such that c R d.
- (b) Is R reflexive?
- (c) Is *R* symmetric?
- (d) Is R transitive?

* A relation *R* is defined on the set *R* of real numbers by

$$x R y$$
 if $2x + y \ge 0$.

That is, x R y if (x, y) is a point in the Euclidean plane that lies on or to the right of the line y = -2x.

- (a) Give an example of two real numbers a and b such that a R b and two real numbers c and d such that c R d.
- (b) Is *R* reflexive?
- (c) Is *R* symmetric?
- (d) Is R transitive?

Answer. (a) 3 R 1 and (-3) R (-1); (b) no; (c) no; (d) no.

def Equivalence Relations

* A relation *R* on a nonempty set is an **equivalence relation** if *R* is reflexive, symmetric and transitive.

* Let R be an equivalence relation on a set A. For $a \in A$, the equivalence class [a] is defined by

$$[a] = \{x \in A : x R a\}.$$

In other words, [a] is the subset of all elements of A that are related to a by R.

* A relation R is defined on the set L of straight lines in the Euclidean plane by $l_1 R l_2$ if two lines l_1 and l_2 coincide or are parallel. Explain why R is an equivalence relation.

* A relation R is defined on $\mathbb{N} \times \mathbb{N}$ by (a,b) R (c,d) if ad = bc. Is R is an equivalence relation?

* A relation R is defined on $\mathbb{N} \times \mathbb{N}$ by (a,b) R (c,d) if ad = bc. Is R is an equivalence relation?

Answer. Yes, because R is reflexive, symmetric and transitive.

- * Let $S = \{1, 2, 3, 4, 5, 6\}$. Consider the following relation on S: $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (2, 3), (2, 6), (3, 2), (3, 6), (4, 1), (6, 2), (6, 3)\}.$
 - (a) Is R an equivalence relation?
 - (b) Describe the equivalence classes [1], [2], [3], [4], [5], [6].
- * Let *R* be an equivalence relation on a set *A*. For $a \in A$, the **equivalence class** [a] is defined by $[a] = \{x \in A : x R a\}.$

In other words, [a] is the subset of all elements of A that are related to a by R.

- * Let $S = \{1, 2, 3, 4, 5, 6\}$. Consider the following relation on S: $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (2, 3), (2, 6), (3, 2), (3, 6), (4, 1), (6, 2), (6, 3)\}.$
 - (a) Is R an equivalence relation?
 - (b) Describe the equivalence classes [1], [2], [3], [4], [5], [6].

Answer. (a) Yes;

(b)
$$[1] = \{1, 4\}, [2] = \{2, 3, 6\}, [3] = \{2, 3, 6\},$$

 $[4] = \{1, 4\}, [5] = \{5\}, [6] = \{2, 3, 6\}.$

- * A relation R is defined on \mathbb{Z} by a R b if a + b is even.
 - (a) Show that *R* is an equivalence relation.
 - (b) Describe the equivalence classes [0], [1], [-3] and [4].

- * A relation R is defined on \mathbb{Z} by a R b if a + b is even.
 - (a) Show that *R* is an equivalence relation.
 - (b) Describe the equivalence classes [0], [1], [-3] and [4].

Answer. (a) One has to check that R is is reflexive, symmetric and transitive.

(b) The equivalence classes are

```
[0] = \{x \in \mathbb{Z} : x \ R \ 0\} = \{x \in \mathbb{Z} : x + 0 \text{ is even}\} = \{x \in \mathbb{Z} : x \text{ is even}\} = \{\dots, -4, -2, 0, 2, 4, \dots\}
[1] = \{x \in \mathbb{Z} : x \ R \ 1\} = \{x \in \mathbb{Z} : x + 1 \text{ is even}\} = \{x \in \mathbb{Z} : x \text{ is odd}\} = \{\dots, -5, -3, -1, 1, 3, 5, \dots\}
[-3] = \{x \in \mathbb{Z} : x \ R \ (-3)\} = \{x \in \mathbb{Z} : x - 3 \text{ is even}\} = \{x \in \mathbb{Z} : x \text{ is odd}\} = \{\dots, -5, -3, -1, 1, 3, 5, \dots\}
[4] = \{x \in \mathbb{Z} : x \ R \ 4\} = \{x \in \mathbb{Z} : x + 4 \text{ is even}\} = \{x \in \mathbb{Z} : x \text{ is even}\} = \{\dots, -4, -2, 0, 2, 4, \dots\}.
```

Consequently, in this case [0] = [4] and [1] = [-3].

Equivalence Relations

* A **partition** of a nonempty set *A* is a collection of nonempty subsets of *A* such that every element of *A* belongs to exactly one of these subsets.

- * **Theorem 1.** Let R be an equivalence relation on a nonempty set A and let a and b be elements of A. Then [a] = [b] if and only if a R b.
- * **Theorem 2.** Let *R* be an equivalence relation defined on a nonempty set *A*. Then the set of all distinct equivalence classes of *A* resulting from *R* form a partition of *A*.

In particular, if [a] and [b] are two equivalence classes, then either [a] = [b] or $[a] \cap [b] = \emptyset$.

def Functions

- * Let A and B be two nonempty sets. A **function** f **from** A **to** B is a relation from A to B that associates with each element of A a *unique* element of B. It is denoted by $f: A \rightarrow B$.
- * The set *A* is called the **domain** of *f*, and *B* is the **codomain** of *f*.
- * If $b \in B$ is the unique element assigned to $a \in A$ by f, then we write b = f(a) and say that b is the **image** of a under f.
- * Let X be a subset of A. The **image** of X under f is the set $f(X) = \{f(x) : x \in X\}$.
- * The **range** of f is the image of its domain, that is f(A).

* Let $A = \{p, q\}$ and $B = \{0, 1, 2, 3, 5\}$. How many functions from A to B are there?

* Let $A = \{p, q\}$ and $B = \{0, 1, 2, 3, 4\}$. How many functions from A to B are there?

Answer. $25 = 5^2$.

def One-to-one Functions (Injections)

* For two nonempty sets A and B, a function $f: A \rightarrow B$ is said to be **one-to-one** if every two *distinct* elements of A have *distinct* images in B, that is,

$$a \neq b \Rightarrow f(a) \neq f(b)$$
.

A one-to-one function is also referred to as an **injective function** or an **injection**.

* Let $A = \{a, b, c\}$ and $B = \{w, x, y, z\}$. Consider the functions $f: A \to B$ and $g: A \to B$ defined by

$$f = \{(a, x), (b, z), (c, w)\}\$$
and $g = \{(a, w), (b, y), (c, w)\}.$

Are they one-to-one?

* Let $A = \{a, b, c\}$ and $B = \{w, x, y, z\}$. Consider the functions $f: A \to B$ and $g: A \to B$ defined by

$$f = \{(a, x), (b, z), (c, w)\}\$$
and $g = \{(a, w), (b, y), (c, w)\}.$

Are they one-to-one?

Answer. f is injective but g isn't.

- * Check whether the following functions are one-to-one:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 + 1$ for $x \in \mathbb{R}$.
 - (b) $g: \mathbb{Z} \to \mathbb{Z}$ is defined by $f(n) = \lceil n/2 \rceil$ for $n \in \mathbb{Z}$.
 - (c) $h : \mathbb{R} \to \mathbb{R}$ is defined by $h(x) = x^2 3x + 1$ for $x \in \mathbb{R}$.
 - (d) $k : \mathbb{R} \to \mathbb{R}$ is defined by k(x) = 5x 3 for $x \in \mathbb{R}$.

- * Check whether the following functions are one-to-one:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 + 1$ for $x \in \mathbb{R}$.
 - (b) $g: \mathbb{Z} \to \mathbb{Z}$ is defined by $f(n) = \lceil n/2 \rceil$ for $n \in \mathbb{Z}$.
 - (c) $h : \mathbb{R} \to \mathbb{R}$ is defined by $h(x) = x^2 3x + 1$ for $x \in \mathbb{R}$.
 - (d) $k : \mathbb{R} \to \mathbb{R}$ is defined by k(x) = 5x 3 for $x \in \mathbb{R}$.
 - Answer. (a) no; (b) no; (c) no; (d) yes.

def Onto Functions (Surjections)

* A function $f: A \rightarrow B$ is called **onto** if every element of B is the image of some element of A, that is,

$$f(A) = B$$
.

An onto function is also called a **surjective function** or a **surjection**.

* Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c, d\}$. Consider the functions $f: A \to B$ and $g: A \to B$ defined by

$$f = \{(1,b), (2,d), (3,d), (4,a), (5,c)\}$$
 and $g = \{(1,a), (2,a), (3,c), (4,c), (5,d)\}.$

Are they onto?

* Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c, d\}$. Consider the functions $f: A \to B$ and $g: A \to B$ defined by

$$f = \{(1,b), (2,d), (3,d), (4,a), (5,c)\}$$
 and $g = \{(1,a), (2,a), (3,c), (4,c), (5,d)\}.$

Are they onto?

Answer. f is surjective but g isn't.

- * Check whether the following functions are onto:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 4x 9 for $x \in \mathbb{R}$.
 - (b) $g: \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 3n for $n \in \mathbb{Z}$.
 - (c) $y : \mathbb{R} \to \mathbb{R}$ is defined by $y(x) = x^2 2x + 5$ for $x \in \mathbb{R}$.

* Check whether the following functions are onto:

(a) $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 4x - 9 for $x \in \mathbb{R}$.

(b) $g: \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 3n for $n \in \mathbb{Z}$.

(c) $y : \mathbb{R} \to \mathbb{R}$ is defined by $y(x) = x^2 - 2x + 5$ for $x \in \mathbb{R}$.

Answer. (a) yes; (b) no; (c) no.

Bijections

* If a function $f: A \rightarrow B$ is one-to-one and onto, then it is called a **bijective function**, a **bijection** or a **one-to-one** correspondence.

bijection = injection + surjection

* A bijective function *f* from *A* to *A* is also called a **permutation** on (or of) *A*.

* Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z, w\}$. Consider the function $f: A \to B$ defined by

$$f = \{(1, y), (2, w), (3, z), (4, x)\}.$$

Is it bijective?

* Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z, w\}$. Consider the function $f: A \to B$ defined by

$$f = \{(1, y), (2, w), (3, z), (4, x)\}.$$

Is it bijective?

Answer. yes.

- * Check whether the following functions are bijective:
 - (a) $f: \mathbb{R}^+ \to \mathbb{R}^+$ is defined by $f(x) = \sqrt{x}$ for $x \in \mathbb{R}^+$.
 - (b) $g: \mathbb{R}^+ \to \mathbb{R}$ is defined by $g(x) = \sqrt{x}$ for $x \in \mathbb{R}^+$.
 - (c) $h: \mathbb{R}^+ \to \mathbb{R}$ is defined by $h(x) = \sqrt[3]{x}$ for $x \in \mathbb{R}^+$.
 - (d) $u : \mathbb{R} \to \mathbb{R}$ is defined by $u(x) = \sqrt[3]{x}$ for $x \in \mathbb{R}$.

- * Check whether the following functions are bijective:
 - (a) $f: \mathbb{R}^+ \to \mathbb{R}^+$ is defined by $f(x) = \sqrt{x}$ for $x \in \mathbb{R}^+$.
 - (b) $g: \mathbb{R}^+ \to \mathbb{R}$ is defined by $g(x) = \sqrt{x}$ for $x \in \mathbb{R}^+$.
 - (c) $h: \mathbb{R}^+ \to \mathbb{R}$ is defined by $h(x) = \sqrt[3]{x}$ for $x \in \mathbb{R}^+$.
 - (d) $u : \mathbb{R} \to \mathbb{R}$ is defined by $u(x) = \sqrt[3]{x}$ for $x \in \mathbb{R}$.

Answer. (a) yes; (b) no; (c) no; (d) yes.

Functions and Cardinalities

- * **Theorem 3.** Let $f: A \rightarrow B$ be a function.
 - If f is injective, then $|A| \leq |B|$.
 - If f is surjective, then $|A| \ge |B|$.
 - If f is bijective, then |A| = |B|.

- * That is how one could compare "cardinalities" of infinite sets: if there exists a bijection between them, then have the same "cardinality".
- * If there is a bijection from \mathbb{N} to a set A, then the set A is said to be **countable** (or **denumerable**).

- * Q is countable
- * R isn't countable

Compositions and Inverse Functions

- * Theorem 4. Let $f: A \to B$ and $g: B \to C$ be two functions.
 - If f and g are injective, then so is $g \circ f$.
 - If f and g are surjective, then so is $g \circ f$.
 - If f and g are bijective, then so is $g \circ f$.
- * Theorem 5. A function $f: A \to B$ has an inverse function $f^{-1}: B \to A$ if and only if f is bijective.
 - Moreover, if f is bijective, then so is f^{-1} .

Thank you!