Artificial Intelligence/Machine Learning/Deep Learning: 'Bridging the Skills Gap'

Optional: Math Refresher - Statistics

A machine-learning system is trained rather than explicitly programmed. It is presented with many examples (features, labels) relevant to a task, and it **finds statistical structure** in these examples that eventually allows the system to come up with a model for automating the task.

Topics of this session include:

- 1. Sample Space, Random Variable, Probability Distribution of a Random Variable
- 2. Conditional Probability & Bayes Rule
 - Maximum Likelihood Estimate (MLE)
 - Maximize a Posterior (MAP)
- 3. Expected Value and Variance of a Random Variable
- 4. Discreet Probability Distributions: Bernoulli, Binomial
- 5. Continuous Probability Distributions: Gaussian/Normal Distribution
- 6. Weak Law of Large Numbers (WLLN)
- 7. Central Limit Theorem
- 8. Covariance/Variance Matrix of a Random Variable

A ML learning classification problem can be defined as follows:

We observe a dataset D= $\{(x_1, y_1), ..., (x_n, y_n)\} \rightarrow \text{drawn from a distribution } P_Y(Y|X) \text{ that we do now know!}$

x_i: feature vector y: label (class)

A binary classification problem is about learning the distribution of the label P_Y so that we can predict the label given a test point: $P(y|x_{test})$ – where $P(y|x_{test})$ is the conditional probability

Example: given the brain scans of a patient x_{test} We want to be able to predict if a patient has a tumor (y=1) or not (y=0)

Sample Space, Random Variable, Probability Distribution

Assume we have an experiment

Conditional Probability & Bayes Rule

Why is Bayes Rule so important for ML?

Dataset D = $\{(x_1, y_1), ..., (x_n, y_n)\} \rightarrow$ observed from some probability distribution **P** that we do now know \rightarrow but maybe we can approximate the distribution from the data!

Assume a simple 1-dimensional experiment of several coin tosses: D = {H, T, T, H, H, H, T, T, T, T}

Maximum Likelihood Estimation (MLE): given that I observe the data D, which parameters θ would make it most likely that I observe the data D \rightarrow MLE = argmax (D $\mid \theta$) where argmax refers to the parameters θ at which the function outputs are as large as possible.

For our coin toss experiment: looking at the data D we can estimate P(H) and P(T) as follows:

$$P(H) \approx \frac{n_H}{n_H + n_T} = 4/10 \rightarrow \text{not very accurate especially if sample size is small}$$

Could be problematic when for example n_H=0 (small number of coin tosses)

In this case we can for example add 1 to numerator and add 2 to denominator \rightarrow this is called smoothing. Alternatively, you can add m tosses of Hs and m tosses of Ts because you have a prior belief over the distribution $P(\theta)$

Maximize a Posterior (MAP)

Bayesians consider θ as a RV with a known distribution P(θ). P(θ) is called the prior and encodes your belief of what θ should be. MLE supporters claim that there is no given sample space where you can draw θ from.

 $P(D|\theta)$ is the MLE

Using Bayes we can estimate the distribution of the parameters θ

$$P(\theta|D) = \frac{P(D|\theta).P(\theta)}{P(D)}$$

Expectation and Variance of a Random variable

The expected value is the average value of a RV over a large number of experiments.

1/3 — probability
$$P(X=X)$$

1/6. 1/2 0

Average pay-off

=) $\frac{1}{6} \cdot 1 + \frac{1}{2} \cdot 2 + \frac{1}{3} \cdot 4 = 2.5$

Inhitive is

Center of Gravity. $E[X] = \sum_{x} P_{x}(x) \cdot xd$

given $\alpha, \beta \in \mathbb{R}$.

$$E[X] = \alpha$$

$$E[X] = \alpha$$

$$E[X] = \alpha$$

$$E[X] + \beta = \alpha E[X] + \beta$$

Variance of a RV: Var(X)

- Variance of a RV X with E[X]= μ is defined as Var[X]=E[(X- μ)²] or Var[X]=E[(X- μ)(X- μ)^T] or Var[X]=E[X²]-(E[X])²
- Var[X] is a RV
- Var(X) is a measure of the spread of the distribution with μ as reference point. Far away points are more penalized through squaring
- $Var[X] \ge 0$
- $Var[\alpha X + \beta] = a^2 Var[X]$ with α, β scalars
- $\sqrt{Var} = \sigma$ standard deviation

Discreet Probability Distributions: Bernoulli, Binomial

Bernoulli Distribution: discrete distribution with parameter **p**Random variable X takes the value 1 with probability p and value 0 with probability q=1-p.
Example: a coin toss

$$P_{X}(x)$$

$$P(x=0) = q = 1-p.$$

$$P(x=0) = q = 1-p.$$

$$E[X] = p \qquad (coin toss p = 50\%)$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$= P(X=1) \cdot 1^{2} + P(X=0) \cdot 0^{2} - (E[X])^{2}$$

$$\Rightarrow Var(X) = p - p^{2} = p(1-p) = pq.$$

Binomial distribution: discreet distribution with parameters **n** and **p**

Reflects the number of successes in a sequence of n independent (Bernoulli) experiments. If n=1 the binomial distribution is a Bernoulli distribution.

The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. In ML we will discuss this when we talk about Support Vector Machines (SVMs) and Naïve Bayes. For naïve Bayes we will assume that the prior $P(\theta)$ is binomial.

Continuous Probability Distributions: Gaussian/Normal Distribution

A continuous RV is described by its probability density function (pdf)

Gaussian or Normal Distribution

Example: a continuous random variable X is used to denote the height of all adult males in Singapore. In this specific case the distribution is a **Normal (Gaussian)**: $\mathcal{N}(\mu, \sigma^2)$ Lots of experiments tend to be Gaussian mainly because of the **central limit theorem**

A probability distribution whose sample space is the set of real numbers is called **univariate**, while a distribution whose sample space is a vector space $(X_1, X_2, X_3...)$ is called **multivariate**.

Weak Law of large numbers (WLLN)

Sample mean $E[\overline{X}]$ will converge to the population mean E[X] if $n \to \infty$

For Independent and Identically Distributed (i.i.d) RVs: X_1 , X_2 ,..., X_n , the sample mean \overline{X} is denoted by:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Since the X_i 's are RVs, the sample mean \overline{X} is also a RV

Assume a repetitive experiment (n times) of 100 coin tosses \rightarrow count the number of Hs.

The E[X]=50% while for example
$$\overline{X} = \frac{50 + 44 + \dots + 52}{n}$$

 $E[\overline{X}] = \frac{E[X_1] + E[X_2] + \dots + E[X_n]}{n} \rightarrow \text{by linearity of } E[X] \text{ and each } E[X_i] = E[X] \text{ because we expect 50}$ heads for each experiment

$$E[\overline{X}] = \frac{nE[X]}{n} = E[X]$$

$$Var[\overline{X}] = \frac{Var[X_1 + X_2 + \dots + X_n]}{n^2}$$
 and $Var[\alpha \overline{X}] = \alpha^2 Var[\overline{X}]$...in this case $\alpha = 1/n$

$$Var[\overline{X}] = \frac{Var[X_1] + Var[X_2] + \cdots + Var[X_n]}{n^2}$$
 since are X_i's independent

$$Var[\overline{X}] = \frac{nVar[X]}{n^2}$$
 because $Var[X_i] = Var[X]$

$$Var[\overline{X}] = \frac{Var[X]}{n}$$

Central Limit Theorem:

The sum of a large number of (i.i.d) RVs X_1 , X_2 ,..., X_n , with $E[X_i] = \mu < \infty$ and $Var[X_i] = \sigma^2$ is approximately normal, no matter what the distribution of the X_i 's are.

Covariance/Variance matrix

The Covariance of 2 RVs Cov(X,Y) = E[(X-E[X]) (Y-E[Y])] gives information about how the RVs are statistically related and how they move relative to each other.

Note that:

$$Cov(X,Y) = E[(X-E[X]) (Y-E[Y])] = E[XY-XE[Y]-E[X]Y+E[X]E[Y]] (1)$$

$$(1) = E[XY] + E[X]E[Y] - E[X]E[Y] - E[X]E[Y] = E[XY] - E[X]E[Y]$$

So Cov(X,Y) = E[XY] - E[X]E[Y]

Properties:

Cov(X,X)=Var[X]

Cov(X,Y)=Cov(Y,X)

If X and Y are independent Cov(X,Y)=0

Cov(aX,Y)=aCov(X,Y)

Cov(X+c,Y)=Cov(X,Y)

Variance - Covariance Matrix:

Let $X=(X_1,...,X_n)^T$ with X_i RVs with finite $Var[X_i]$ and $E[X_i]$

 $X^T.X$ is measure for similarity of the features: $(nxd)^*(dxn) \rightarrow nxn$ where n is number of samples and d is the dimension of the feature vector.

$$\mathbf{X}^\mathsf{T}.\mathbf{X} = \left(\begin{array}{ccc} & X_1 & & \\ \vdots & \ddots & \vdots \\ & X_d & \end{array}\right) \left(\begin{array}{ccc} & \cdots & \\ X_1 & \ddots & X_d \\ & \cdots & \end{array}\right) = \left(\begin{array}{ccc} X_1.X_1 & & X_1.X_d \\ \vdots & \ddots & \vdots \\ X_d.X_1 & & X_d.X_d \end{array}\right)$$

We assumed that we did mean normalization for all elements in the matrix Now we take the $E[X^TX]$ and divide by n

$$\rightarrow \begin{pmatrix} Var[X_1] & Cov(X_d,X_1) \\ \vdots & \ddots & \vdots \\ Cov(X_d,X_1) & Var[X_d] \end{pmatrix} \rightarrow \frac{1/n}{\begin{pmatrix} Var[X_1] & Cov(X_d,X_1) \\ \vdots & \ddots & \vdots \\ Cov(X_d,X_1) & Var[X_d] \end{pmatrix}} (2)$$

matrix is symmetric and square and diagonal shows the variances of the features X₁, ..., X_d

(2)
$$\rightarrow \sum = \text{Cov}(\mathbf{X}) = \frac{\mathbf{X}^T \cdot \mathbf{X}}{n}$$
 and \sum is the Covariance Matrix and \sum is Positive Semi-Definite

A matrix Σ is positive semi-definite if the scalar $X^T \Sigma X \ge 0$ for $X \in \mathbb{R}^n$

The eigenvalues of a square and symmetric positive semi-definite matrix are all positive.

It means that if we transform a vector X through Σ , the new vector Σ X will be pointing in the same general direction (θ <90°) and will not change sign.

 $X^T \cdot (\Sigma X) = |XT| \cdot |\Sigma X| \cdot \cos(\theta)$ and cos is positive as long as $\theta < 90^0$

