hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

Yohann Perez

Classification de phonèmes pour le jeu sérieux FunSpeech

Plan

- FunSpeech
 - O Problématique et algorithme actuel
- O Résolution de la problématique
 - O Production d'un son
 - O Jeu de données
 - O Caractéristiques acoustiques & algorithmes de classification
 - O Protocole de test
- Résultats
- Conclusion

Qu'est ce qu'un phonème?

- O Un phonème est une unité de base formant la parole
- Son distinct
 - Exemples: [a], [o], [i], [ch], [t] ...

FunSpeech

- Application tablette
- O Développée à HEPIA
- Destinée aux enfants sourds implantés
 - 2 à 6 ans
- O But: Encourager à la production de sons

Source: https://en.wikipedia.org/wiki/Cochlear_implant

FunSpeech - problématique

- O Jeu du clown
- Algorithme de reconnaissance de phonèmes

Investiguer les algorithmes de reconnaissance de sons.
Trouver une combinaison d'algorithmes qui devrait dans le futur remplacer celle actuellement utilisée

Source: FunSpeech

Algorithmes utilisés dans FunSpeech

Caractériser un phonème Bandes de fréquences

"Énergie" d'une bande = $\frac{\sum x_i^2}{\text{\'energie tot.}}$

Caractéristiques acoustiques de ce phonème: 4 [0.098, 0.136, 0.174, 0.244, 0.347]

Classifier un phonème Plus proche barycentre

Distance euclidienne
$$(p,q) = \sqrt{\sum_{i=1}^{n=5} (q_i - p_i)^2}$$

8

Démarche pour résoudre la problématique

- O Jeu de données
- Caractéristiques acoustiques
- Algorithmes de classification
- O Protocole de test

1	File	Group	Information	Length
2	m26er.wav	er	man	0.252
3	m49aw.wav	aw	man	0.293
4	w17aw.wav	aw	woman	0.341
5	g15er.wav	er	girl	0.331
6	w14iy.wav	iy	woman	0.261
7	b18er.wav	er	boy	0.304
8	b09ah.wav	ah	boy	0.285
6	m16er.wav	er	man	0.204

Jeu de données

Jeu de données FunSpeech

- 287 données
- 4 locuteurs (hommes)
- 7 phonèmes français

Inconvénient majeur

 Pas de phonèmes d'enfants alors qu'on souhaite reconnaitre des phonèmes d'enfants

Jeu de données Timedata

Western Michigan University

- O 1667 données
- 12 phonèmes anglais
- 139 locuteurs
 - 48 femmes et 45 hommes
 - 19 filles et 27 garçons

dataset_generate_csv.py

FunSpeech

1	File	Group	Information	Length
2	ou/user4_095201.wav	ou	user4	2.62
3	ou/user2_095002.wav	ou	user2	2.32
4	ou/user2_094848.wav	ou	user2	1.42
5	ou/user1_095001.wav	ou	user1	2.44

Timedata

1	File	Group	Information	Length
2	m26er.wav	er	man	0.252
3	m49aw.wav	aw	man	0.293
4	w17aw.wav	aw	woman	0.341
5	g15er.wav	er	girl	0.331

Caractéristiques acoustiques

Production d'un son

- Expiration
 - Détermine intensité (faible ou fort)

- Impulsion glottale
 - O Détermine la hauteur du son (aigu ou grave)

- Forme du canal vocal
 - O Détermine le phonème qui va être produit

Dans un signal vocal, l'impulsion glottale et la forme du canal vocal sont convoluées

Domaine cepstral

O Distinguer l'impulsion glottale et la forme du canal vocal

= Analyse cepstrale

 $Cepstre = FFT^{-1}(\ln(|FFT(x)|))$

 Évolution de l'impulsion glottale et de la forme du canal vocal au cours du temps

- Analyse par banc de filtres
- Analyse cepstrale

Banc de filtres pour capturer l'enveloppe spectrale

Autres bancs de filtres

features_extraction.py

- Extrait les caractéristiques sur
 - Échantillon de son
 - O Toute la durée du son
- Stocke les caractéristiques
 - Fichiers contenant des tableaux numpy

- numpy_arrays
 - funspeech

 - bands_full.npy
 - erbfccs_full.npy
 - erbfccs_sample.npy
 - fbank_full.npy
 - fbank_sample.npy
 - # lfccs_full.npy
 - floor
 lfccs_sample.npy
 - mfccs_full.npy
 - mfccs_sample.npy
 - mwfccs_full.npy
 - mwfccs_sample.npy
 - timedata

Algorithmes de classification

Algorithmes de classification

K – plus proches voisins

Séparateurs à vastes marges

Algorithmes de classification

Bagging

Combinaison de classificateurs

Protocole de test

Que doit faire mon protocole de test?

- O Déterminer si l'utilisation de phonèmes uniquement produits par des adultes pour l'entrainement d'un modèle suffit pour correctement classifier des phonèmes produits par des d'enfants
- O Déterminer combien le fait d'ajouter des données d'entrainement est bénéfique à la résolution de la problématique
- Comparer les différents combinaisons d'algorithme d'extraction et de classification pour déterminer laquelle est la plus performante et la plus adaptée pour résoudre la problématique

Protocole de test

Ensemble d'entrainement, de validation et de test

- O Séparer timedata en 2 sets de données : adultes et enfants
- Adultes : Ensemble d'entrainement et de validation
 - Entrainement → Pouvoir prédire
 - Validation → Ajustement des paramètres
- Enfants : Ensemble de test
 - → Estimation non biaisée

Validation croisée : K-Fold (ensemble adultes) & Optimisation du classificateur

O Recherche exhaustive pour trouver les paramètres qui donne le meilleur score sur l'ensemble de validation

5-fold C\		ADULTS				<pre>svm parameters = [{'kernel':['linear'],</pre>
Estimation 1	Validation	Train	Train	Train	Train	'C':[1,10,100],
Estimation 2	Train	Validation	Train	Train	Train	'gamma':np.logspace(-9,3,10)
Estimation 3	Train	Train	Validation	Train	Train	<pre>grid = GridSearchCV(SVC(probability=True),</pre>
Estimation 4	Train	Train	Train	Validation	Train	param_grid=svm_parameters, cv=nfold,
Estimation 5	Train	Train	Train	Train	Validation	·

Courbes d'apprentissage

Protocole de test

Évaluer la qualité de prédictions d'un modèle

- Métriques de classification
 - Précision
 - Incertitude
 - Temps

Procédures de validation

- Validation croisée
- Sets d'entrainement, de validation et de test
- Courbe d'apprentissage

- **Optimisation des** classificateurs
- GridSearchCV

Résultats

Temps d'extraction

Résultats

- 5 caractéristiques acoustiques
 - O Bandes de fréquences, Banc de filtres, MFCC et ses 3 variantes
- 5 algorithmes de classification
 - O Plus proche barycentre, Plus proches voisins, SVM et 2 méthodes ensemblistes

Algorithmes de FunSpeech Plus proche barycentre + bandes de fréquences

Précision: KNN + ERBFCC et KNN +MFCC

Précision: SVM + ERBFCC vs SVM + MFCC

Incertitude: KNN + ERBFCC vs SVM + ERBFCC

Précision: KNN ERBFCC vs SVM ERBFCC

Time: KNN + ERBFCC vs SVM ERBFCC

Combinaison de Linear SVM + RBF SVM + KNN + Bag. RBF SVM + Bag. KNN

Résultats - Conclusion

- Algorithme de classification : SVM
- O Caractéristiques acoustiques : ERB-FCC
- O Des phonèmes d'adultes sont suffisants pour classifier des phonèmes d'enfants
- O Limiter la taille de l'ensemble d'entrainement
- O Stagne 82 % de reconnaissance

De 40 % à 82 % de reconnaissance

