LEC007 Inventory Management II

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Wagner-Whitin Model

INPUT:

Deterministic demand (non-stationary) over T periods

$$(d_1, d_2, d_3, \dots, d_{T-1}, d_T) \equiv$$

- No stockout is allowed
- Lead time L (setting L = 0 WLOG) =
- Fixed cost K > 0 per order
- Purchase cost c per unit (setting c = 0 WLOG)
- Inventory hold cost h > 0 per unit per unit of time

OUTPUT:

The optimal ordering strategy

Mixed Integer Linear Program (MILP)

Decision Variables

 $= q_t =$ the number of units ordered in period

 $y_t = 1$ if we order in period t, 0 otherwise

 $x_t =$ the inventory level at the end of period, with $x_0 \equiv 0$

minimize subject to

$$\sum_{t=1}^{T} (Ky_t + hx_t)$$

$$x_t = x_{t-1} + q_t - d_t \quad \forall t = 1, \dots, T$$

$$q_t \leq M y_t$$

$$x_t \ge 0$$

$$q_t \ge 0$$

$$y_t \in \{0, 1\}$$

$$\forall t = 1, \dots, T$$

Linking constraint ("a common trick")

Inventory-balance constraint

ZIO Property

• It is optimal to place orders only in time periods in which the inventory level is zero.

• This suggests that each order is of a size equal to the total demand in an integer number of subsequent periods, i.e., in period t, we either order d_t ,

or
$$d_t + d_{t+1}$$
,
or $d_t + d_{t+1} + d_{t+2}$,
and so on.

Dynamic Programming

Define θ_t to be the optimal cost in periods [t, T] if we place optimal orders over [t, T].

$$\theta_t = \min_{t < s \le T+1} \left\{ K + h \sum_{i=t}^{s-1} (i-t)d_i + \theta_s \right\}$$

$$\text{Cost of covering demands of periods}$$

$$t, t+1, \dots, s-1$$

$$\text{Define } \ell_t \text{ to be the optimal cost in periods } [t, T] \text{ if we place optimal orders over } [t, T].$$

$$\text{Out of covering demands of periods}$$

Boundary condition:

$$\theta_{T+1} \equiv 0$$

Dynamic Programming

Backward induction

$$\theta_t = \min_{t < s \le T+1} \left\{ K + h \sum_{i=t}^{s-1} (i-t)d_i + \theta_s \right\}.$$
 (3.39)

Algorithm 3.1 Wagner–Whitin algorithm

Numerical Example

K = 500, h = 2 per period. The demands are 90, 120, 80, and 70.

$$\theta_5 = 0$$

$$\theta_4 = K + h (0 \cdot d_4) + \theta_5$$

$$= 500 \quad [s(4) = 5]$$

$$\theta_3 = \min \{K + h (0 \cdot d_3) + \theta_4, K + h (0 \cdot d_3 + 1 \cdot d_4) + \theta_5\}$$

$$= \min \{1000, 640\}$$

$$= 640 \quad [s(3) = 5]$$

$$\theta_2 = \min \{K + h (0 \cdot d_2) + \theta_3, K + h (0 \cdot d_2 + 1 \cdot d_3) + \theta_4$$

$$K + h (0 \cdot d_2 + 1 \cdot d_3 + 2 \cdot d_4) + \theta_5\}$$

$$= \min \{1140, 1160, 940\}$$

$$= 940 \quad [s(2) = 5]$$

$$\theta_1 = \min \{K + h (0 \cdot d_1) + \theta_2, K + h (0 \cdot d_1 + 1 \cdot d_2) + \theta_3$$

$$K + h (0 \cdot d_1 + 1 \cdot d_2 + 2 \cdot d_3) + \theta_4$$

$$K + h (0 \cdot d_1 + 1 \cdot d_2 + 2 \cdot d_3 + 3 \cdot d_4) + \theta_5\}$$

$$= \min \{1440, 1380, 1560, 1480\}$$

$$= 1380 \quad [s(1) = 3]$$

If you think about this...

Figure 3.12 Wagner–Whitin network.

Shortest Path Problem

Input:

- Directed Graph G(V, E) with |V| = n, |E| = m
- Each edge $e \in E$ has non-negative length $l_e \ge 0$
- Source vertex s

Output:

For each $v \in V$, compute

L(v) = length of a shortest s-v path in G

Fastest algorithm is called Dijkstra's Algorithm

Caveat: length/weight/travel time $l_e \ge 0$!

Dijkstra's Algorithm

- Initialize $X = \{s\}, A[s] = 0, B[s] = \emptyset$
- Main loop
 - While $X \neq V$

- ▶ Of all edges $(v, w) \in E$ with $v \in X$ and $w \notin X$, pick the one that minimizes $A[v] + l_{vw}$ (Dijkstra's greedy criterion)
- ► Call the minimizing edge (v^*, w^*) and add vertex w^* to X
- ► Set $A[w^*] = A[v] + l_{v^*w^*}$
- $\blacktriangleright \operatorname{Set} B[w^*] = B[v^*] \cup (v^*, w^*)$

An Example

$$A[v] + l_{vw}$$
 (Dijkstra's greedy criterion)
min $(A[s] + l_{sa}, A[s] + l_{sb}) = \min(0 + 1, 0 + 4) = 1$

An Example

 $A[v] + l_{vw}$ (Dijkstra's greedy criterion)

 $\min (A[s] + l_{sb}, A[a] + l_{ab}, A[a] + l_{ac}) = \min (0 + 4, 1 + 2, 1 + 6) = 3$

An Example

 $A[v] + l_{vw}$ (Dijkstra's greedy criterion)

$$min(A[a] + l_{ac}, A[b] + l_{bc}) = min(1 + 6, 3 + 3) = 6$$

Non-Example

Dijkstra is incorrect on this G

• Use dynamic programming in this case

Proof of Correctness

Claim: A[v] = L[v] where A is the output of Dijkstra and L is true shortest distance

Proof: By induction, base case A[s] = L[s] = 0 is true.

Inductive Hypothesis (I.H.): all previous iterations are corrrect, i.e.,

 $\forall v \in X, A[v] = L[v]$ and B[v] gives the shortest path

In the current iteration, Dijkstra have chosen v^*w^* , we have $A[w^*] = A[v^*] + l_{v^*w^*}$ Now let P be any $s \to w^*$ path and it must "cross the frontier"

Length of P $\geq L(y) + l_{yz} + 0 = A(y) + l_{yz} + 0$, note that L(y) = A(y) by I.H. Also, by Dijkstra's greedy criterion,

Our length =
$$A[v^*] + l_{v^*w^*} \le A(y) + l_{yz} \le$$
 Length of P

General Graph Search

- Let q be an abstract queue object
 - add(node), which adds a node into q
 - popFirst(), which pops the first node from q
- General graph search

While q is not empty:

- $\triangleright v \leftarrow q.popFirst()$
- ▶ For all neighbors u of v such that $u \notin q$:
 - add(u)

General Graph Search

- General graph search
 - While q is not empty:
 - $\triangleright v \leftarrow q.popFirst()$
 - ▶ For all neighbors u of v such that $u \notin q$:
 - add(u)
- If q is a standard LIFO stack, then DFS
- If q is a standard FIFO queue, then BFS
- If q is a priority queue, then Dijkstra
- If q is a priority queue with a heuristic, then A*

Priority Queue Implementation

- $A[s] \leftarrow 0$, and $A[v] \leftarrow \infty$ for all $v \in V \setminus \{s\}$
- q.add(s)
- While q is not empty: Extract min-q
 - $\triangleright v \leftarrow q.popFirst()$
 - ▶ For all neighbors u of v such that $A[v] + l_{vu} \le A[u]$
 - $A[u] \leftarrow A[v] + l_{vu}$
 - q.update(u, A[u]) Decrease-key(q)

Runtime: If using binary minheap, O((|E| + |V|)logV)If using Fibonacci minheap, O(|E| + |V|logV)

Summary

- Wagner-Whitin model
- Dynamic Programming
- Shortest Path (Dijkstra's Algorithm)
- Next Up: Stochastic Inventory Model