

Understanding Cryptography

Homework No.4

Due Date: 01.02.04

1. Let m_1 and m_2 be two positive integers that are relatively prime. Given any two integers a and b, there exists an integers x such that

$$x \equiv a \pmod{m_1}$$

 $x \equiv b \pmod{m_2}$

Prove any two solutions of these equations are congruent to each other modulo m_1m_2 .

2.1. Compute the two public keys and the common key for the DHKE scheme with the parameters p = 467, $\alpha = 2$, a = 228, b = 57.

2.2. We now design another DHKE scheme with the same prime p = 467as in problem 2.1. this time, we use the element $\alpha = 4$. The element 4 has order 233 and generates a subgroup with 233 elements. Compute k_{AB} for :

$$a = 400, b = 134$$

 $a = 167, b = 134$

2.3. Why are the session keys identical?

3. Explain Attack Man-in-the-middle to Diffie –Hellman Key Exchange.

- **4.1**. What is a primitive root of a number?
- **4.2.**Find all primitive root module 25.
- **4.3.** Find a primitive root modulo 11², modulo 2.11²

5. If Alice uses ELGamal with p = 467, $g(primitive\ root) = 2$, $a(private\ key) = 153$, find Alice's public key, encode the message m = 331, with k = 197 and then decode the associated ciphertext.

Optional Question

6.Proof the problems of decrypting arbitrary ElGamalciphertext mod p and breaking arbitrary Diffie-Hellman mod p are equivalent.

7.In the DHKE protocol, the private keys are chosen from the set $\{2, ..., p-1\}$. Why are the values 1 and p-1 are not considered?

NOTE: Describe the weakness of those two values.

8.Let pbe a prime then prove for every positive integer α :

$$a^{p} \equiv a \pmod{p}$$
$$(x+y)^{p} \equiv x^{p} + y^{p} \pmod{p}$$

9.

• CrypTool:

- 1 1963497163 is the product of two prime numbers, use tools within the CrypTool to find these two prime numbers.
- 2 Choose three large prime numbers, three Carmichael numbers, and three regular composite numbers, and use CrypTool primality test tools to do the following exercises;
 - i Test the primality of your chosen numbers using Fermat test.
 - ii Test their primality using Miller-Rabin test.
- 3 Generate an asymmetric key pair using RSA algorithm, your own last name, first name and student number (as your PIN). Show the generated key pair. (Hint: go to Digital Signatures/PKI:: PKI:: Generate/Import Keys)
- 4 Use the key pair generated in the previous question and a text of your choice to do the following exercises;
 - i Encrypt the text using RSA encryption.
 - ii Decrypt the ciphertext in the previous part using the same algorithm.
- 5 Use Diffie-Hellman visualization tool to see its key exchange procedure. (Hint: go to Indiv. Procedures :: Protocols :: Diffie-Hellman Demonstration)