양자 회로 물리적 자원 추정: Error Correction

장경배

https://youtu.be/viEG5eaLOR4

HANSUNG UNIVERSITY CryptoCraft LAB

Runtime Estimation

- 2017년 SHA-2/3 (Asiacrypt'17) 에서 사용된 Runtime 추정 방법을 전반적으로 따름
 - Reed-Muller 15-to-1 magic state distillation 방법을 사용 [*].

Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3

Matthew Amy^{1,4}, Olivia Di Matteo^{2,4}, Vlad Gheorghiu^{3,4}, Michele Mosca^{3,4,5,6}, Alex Parent^{2,4}, and John Schanck^{3,4}

		SHA-256	SHA3-256
Grover	T-count	1.27×10^{44}	2.71×10^{44}
	T-depth	3.76×10^{43}	2.31×10^{41}
	Logical qubits	2402	3200
	Surface code distance	43	44
	Physical qubits	1.39×10^7	1.94×10^7
Distilleries	Logical qubits per distillery	3600	3600
	Number of distilleries	1	294
	Surface code distances	$\{33, 13, 7\}$	$\{33, 13, 7\}$
	Physical qubits	5.54×10^5	1.63×10^8
Total	Logical qubits	$2^{12.6}$	2^{20}
	Surface code cycles	$2^{153.8}$	$2^{146.5}$
	Total cost	$2^{166.4}$	$2^{166.5}$

Table 3. Fault-tolerant resource counts for Grover search of SHA-256 and SHA3-256.

David R. Cheriton School of Computer Science, University of Waterloo, Canada Department of Physics & Astronomy, University of Waterloo, Canada

Department of Combinatorics & Optimization, University of Waterloo, Canada Institute for Quantum Computing, University of Waterloo, Canada

⁵ Perimeter Institute for Theoretical Physics, Canada

⁶ Canadian Institute for Advanced Research, Canada

Runtime Estimation: Assumptions

- 필요 가정들 (Surface code & Distillation)
 - Magic state injection error rate p_{in} : 10⁻³
 - Per-gate error rate p_g : $\mathbf{10^{-4}}$ $(p_{in}/10)$
 - Output error rate $p_{out} = 1/T count$
- 이러한 파라미터들을 가지고, 다음 알고리즘은 magic state distillation에 필요한 레이어들의 정보를 계산할 수 있음

Algorithm 4 Estimating the required number of rounds of magic state distillation and the corresponding distances of the concatenated codes

```
1: Input: \varepsilon, p_{in}, p_{out}, p_g (= p_{in}/10)

2: d \leftarrow \text{empty list } []

3: p \leftarrow p_{out}

4: i \leftarrow 0

5: repeat

6: i \leftarrow i + 1

7: p_i \leftarrow p

8: Find minimum d_i such that 192d_i(100p_g)^{\frac{d_i+1}{2}} < \frac{\varepsilon p_i}{1+\varepsilon}

9: p \leftarrow \sqrt[3]{p_i/(35(1+\varepsilon))}

10: d.append(d_i)

11: until p > p_{in}

12: Output: d = [d_1, \dots, d_i]
```

Runtime Estimation: Distillation

- ECC with n = 64에 대한 양자 공격 자원을 대상으로 해당 알고리즘을 사용
 - Distillation을 위해서는 다음 2개의 레이어가 요구됨 → [12, 6]
 - $d_1 = 12$, $d_2 = 6$
- Total qubits: 27000, Total Cycle: 180, Total time: 6951s (cycle 당 **200ns** 가정)

```
## layer-1 (Magic Distillation) ##
Physical qubits for T: 27000.0
Suface code cycles: 60 Layer-1

## layer-2 (Magic Distillation) ##
Physical qubits for T: 7200.0
Suface code cycles: 120 Layer-2

## Total layer ##
Total cycle: 180 Total cycles
Pipeline: 3.0
Single magic state gen time (s): 3.6e-05
Total magic state gen time (s): 6951.36000000001
```

Assumptions

T-count: 579280000

 p_{in} : 10^{-3}

 $p_g: 10^{-4}$

 p_{out} : 1 / T-count

Distillation layers

Total physical qubits & Total Cycles

27000 qubits

180 cycles (for 1 magic state)

(Total T gates X Total cycles X 200ns / pipeline)

Runtime Estimation: Distillation Pipeline

다시 정리하자면: bottom: 60 cycles마다 1개 magic state 준비 • middle: 각 magic state를 120 cycles 동안 처리 • 전체 자원은 bottom layer 1개만 실행할 수 있을 만큼 → 파이프라인은 다음처럼 흘러갑니다: 시간 구간 실행 중인 magic state 완성되는 시점 0-60 bottom(#1) bottom(#2), middle(#1) 60-120 120-180 bottom(#3), middle(#2) #1 done 180-240 bottom(#4), middle(#3) #2 done bottom(#5), middle(#4) 240-300 #3 done bottom(#6), middle(#5) 300-360 #4 done

Warm-up

Runtime Estimation: Distillation

- 앞선 magic state distillation 과정은 병렬화 될 수 있음
 - Based on the **T-count / T-depth ratio** $(T_c_d) \rightarrow 177 (=579280000 / 3291340)$
- Magic state distillation에 대하여 177개의 Factory를 가동시킬 수 있음 (병렬로)
 - 앞서 pipeline = 3이였으니, 59 (=177/3)의 Factory를 가동
 - 큐빗 수는 59배 증가시키지만 Runtime 59배 감소

```
## Final stage ##
T_c_d: 177
Updated pyhsical qubits for T: 1593000.0
Updated total magic state gen time (s): 117.81966101694917
```

Runtime Estimation: Clifford Group

- Clifford 그룹에 대한 물리적 큐빗 또한 고려해야함
 - Clifford 게이트 수 그리고 논리적 큐빗 수에 따라 결정
 - 2069721680 Clifford gates
 - 3698 qubits

$$\#p_{in} = 10^{-3} \left(\frac{p_{in}}{0.0125} \right)^{\frac{d+1}{2}} < \frac{1}{2069721680} ,$$

< equation, 최소 d를 만족 >

Clifford part

Threshold: 4.831567498486077e-10

d: 16

Physical qubits for Clifford: 2959200.0

- Clifford 그룹에 대한 Surface code cycle은 최종 Runtime에 영향을 주지 않음 (일반적으로)
 - 비용이 사소하며 Magic state distillation과 병렬로 동작 가능함

Result For Quantum Attack on ECC (n = 64)

Logical resources:

T count: 579280000

Clifford count: 2069721680

Qubit count: 3699 T depth: 3291340

Physical Assumptions (1)

- Magic state injection error rate p_{in} : 10^{-3}
- Per-gate error rate p_g : 10^{-4} $(p_{in}/10)$
- Output error rate $p_{out} = \frac{1}{T count}$
- Two layers [12, 6]
- Speed for a surface code cycle: 200ns

Total result (qubits, times, cycles) (1)

Result

Total physical qubits: 4552200.0

Total seconds: 117.81966101694917

Total surface code cycles: 592441200

Physical Assumptions (2)

- Magic state injection error rate p_{in} : 10^{-4}
- Per-gate error rate p_g : $\mathbf{10^{-5}}$ $(p_{in}/\mathbf{10})$
- Output error rate $p_{out} = \frac{1}{T count}$
- One layer [8]
- Speed for a surface code cycle: 200ns

Total result (qubits, times, cycles) (2)

```
## Result ##
Total physical qubits: 1270800.0
Total seconds: 52.364293785310736
Total surface code cycles: 263307200
```

Quantum Attacks on SHA-2, SHA-3 and AES

SHA-256

```
## Result ## Total physical qubits: 44064450.0 Total seconds: 2.845506949764195e+38 (9.02 \times 10^{30} \text{ years}) Total surface code cycles: 1423946073974535652641229491110751774965760000
```

• SHA3-256

```
## Result ## Total physical qubits: 722075512.5 Total seconds: 5.130565689874264e+36 ^{(1.63 \times 10^{29} \text{ years})} Total surface code cycles: 25656686017559200948490621461454986936320000
```

AES-256

```
## Result ## Total physical qubits: 98329612.5 Total seconds: 1.1467880786104924e+37 (3.63 \times 10^{29} \text{ years}) Total surface code cycles: 57470976679332610124618992073659170737356800
```

Quantum Attack on Binary ECC

• Binary ECC (n = 571)

Classical security (bits)	RSA*	$\mid \text{ECC}^* \mid$
80	1024	160 - 223
112	2048	$oxed{224-255}$
128	3072	256-383
192	7680	384-511
256	15360	≥ 512

- *: Product of two primes (in number of bits).
- *: Order of generator point (in number of bits).

Runtime Estimation

Result

Total physical qubits: 1049891784.375

Total seconds: 11.348013945176435

Total surface code cycles: 56742400

13026 Factories

감사합니다