

Index

ALTERYX

- Overview
- How it works
- Learning Datasets
- Pros and cons

PIPELINE

- Data Ingestion and discovery
- Data Validation
- Data Structuring
- Data Enrichment
- Data Filtering
- Data Cleaning

RESULTS

- Final pipeline
- Datasets obtained
- Conclusion

1 Overview

Alteryx is a data science and business intelligence platform that provides tools for data analysis, report creation, and predictive modeling. It features capabilities such as data processing, cleaning, and preparation, statistical analysis, and the creation of interactive dashboards.

It is designed to be used by non technical users, making it a popular option for businesses looking to analyze their data.

Alteryx includes a *drag and drop interface* that allows users to create workflow for data processing, analysis, and report creation. Users *can import* data from various sources, such as excel format and CSV files

Once the data is processed, users can utilize predictive models and statistical analysis features to generate insights that can inform business decisions

1 Learning Datasets

Dataset about crimes

Dataset about retail sales

1 Tools used

Pros and Cons

Intuitive and easy to use interface,
 allowing even non expert users to create
 complex data analysis workflows

 Offers proprietary formats like 'yxdb' that we used to write and read data

Advanced data preparation tools,
 including join, union, cleaning, and data transformation

 Support for a wide variety of file formats, including Excel, CSV, JSON, and SQL

High pricing for some organizations

it is not possible to define global variables

 Complexity in transitioning from SQL to Alteryx for some advanced functionality

Index

ALTERYX

- Overview
- How it works
- Learning Datasets
- Pros and cons

PIPELINE

- Data Ingestion and discovery
- Data Validation
- Data Structuring
- Data Enrichment
- Data Filtering
- Data Cleaning

RESULTS

- Final pipeline
- Datasets obtained
- Conclusion

(2) Data ingestion and discovery

Column Cleaning

date	gas_amount	gas_average_cost	howmuch_pay	total_amount	average_gas_bill_cost
16 Dicembre 2020	383,66	0,32 €/smc	383,66	383,66	0,86 €/smc
21 Novembre 2020	386,63	0,37 €/smc	197,77	197,77	0,86 €/smc
12 Dicembre 2020	15,69	0,22 €/smc	31,63	31,63	0,65 €/smc
5 Dicembre 2020	67,55	0,29 €/smc	114,12	114,12	0,73 €/smc

date	gas_amount	gas_average_cost	average_gas_bill_cost	total_amount	howmuch_pay
2020-12-16	383.66	0.32	0.86	383.66	383.66
2020-11-21	386.63	0.37	0.86	197.77	197.77
2020-12-12	15.69	0.22	0.65	31.63	31.63

(2) Data ingestion and discovery

Column Casting

	Field	Type		Size	Rename	Description	^
\square	bill_id	Int64	•	8		Invoice identifier	
	user_code	V_WString	•	254		(Anonymized) code for the customer that owns thi	
\square	customer_code	V_WString	•	254		Combined with user_code provides a unique iden	
	city	V_WString	•	254		City where the utility is located	
\square	address	V_WString	•	254		(Anonymized) address of the utility location	
	nominative	V_WString	•	254		(Anonymized) customer name	
	sex	V_WString	•	254		Sex of the customer it could be 'M', 'F', 'P', with '	
\square	age	Int32	-	4		Age of the customer, set to null for commercial ac	
\square	supply_type	V_WString	•	254		Supply type ('light', 'gas', 'gas and light')	
	date	V_WString	•	254			
	light_start_date	V_WString	•	254			
	light_end_date	V_WString	•	254			
	New_light_start_date	Date	•	10	start_date	Start date of invoice	
\square	New_light_end_date	Date	•	10	end_date	End date of invoice	
\square	New_emission_date	Date	•	10	emission_date	Emission date	
\square	New_gas_amount	Double	•	8	gas_amount	Gas fee to pay	
\square	New_gas_average_cost	Double	•	8	gas_average_cost	Average cost of gas	
	gas_consumption	Float	-	4		Consumed gas	
\square	gas_offer	V_WString	•	254		Name of the subscribed gas plan (anonymized)	
\square	New_average_gas_bill_cost	Double	•	8	average_gas_bill_cost	Average cost for the gas invoice	
\square	gas_system_charges	Float	•	4		Extra gas fees	
	gas_material_cost	Float	-	4		Costs for gas	
\square	gas_transport_cost	Float	•	4		Extra gas fees	
	F1_kWh	Float	-	4		kWh of electricity consumed in the F1 time slot	
\square	F2_kWh	Float	•	4		kWh of electricity consumed in the F2 time slot	
\square	F3_kWh	Float	-	4		kWh of electricity consumed in the F3 time slot	
\square	light_average_cost	Float	•	4		Average cost of electricity	
\square	light_consumption	Float	-	4		Consumed electricity	
\square	light_offer_type	V_WString	•	254		Kind of plan for the electricity ('single zone', "bizo	
\square	light_offer	V_String	-	254		Name of the subscribed electricity plan (anonymiz	
\square	New_light_amount	Double	•	8	light_amount	Amount to pay for the electricity	
\square	New_average_unit_light_cost	Double	•	8	average_unit_light_cost	Average cost for the electricity	
\square	New_average_light_bill_cost	Double	•	8	average_light_bill_cost	Average cost for the electricity invoice	
\square	light_system_charges	Float	-	4		Extra electricity fees	
\square	light_transport_cost	Float	•	4		Extra electricity fees	
\square	light_material_cost	Float	-	4		Costs for electricity	

² Data ingestion and discovery

Locate Missing Values

Data ingestion and discovery

Locate Outliers

² Data Validation

```
IIF(REGEX_Match
                                                                                        IIF(REGEX Match
                                                                                                          ([_CurrentField_],"
                                                                                        ([_CurrentField_],"
           • Check permitted characters
                                                                                        ^[\D'\-]
                                                                                                           ^[\w]
                                                                                                          *$"),"Correct","N
                                                                                        *$"), "Correct", "N.
                                                                                                          ot C...
IIF(REGEX_Match([_CurrentField_],"^[\D'\- ]*$"),"Correct" ,"Not Correct")
IIF(REGEX_Match([_CurrentField_],"^[\w]*$"),"Correct" ,"Not Correct")
```

2

Data Validation

Check data range

- **«age»** column have 111689(1,06% of the dataset) rows with value < 18
- The column 'total_amount' defined as the sum of 'light_amount', 'gas_amount' and 'extra_fees' is correct
- The column 'howmuch_pay' is defined as the sum of 'tv' and total_amount'. incorrect values: 257825 (2,46% of the dataset) and will be correct in Data Enrichment step
- For Numeric attributes having values less than zero

F1_kWh	103454 (0.99%)	total_amount	31006 (0.3%)
F2_kWh	96042 (0.91%)	light_amount	30359 (0.3%)
F3_kWh	93080 (0.89%)	gas_system_charges	2900681 (27,63%)
tv	384 (0.004%)	light_system_charges	56722 (0.54%)
gas_amount	152185 (1.45%)	gas_material_cost	140490 (1.34%)
extra_fees	351630 (3.35%)	light_material_cost	33499 (0.32%)
gas_consumption	338653 (3.23%)	gas_transport_cost	144439 (1.38%)
light_consumption	96921 (0.92%)	light_transport_cost	121300 (1.16%)
howmuch_pay	17 (0.00006%)		

²) Data Validation

• Check column uniqueness

OLD DUPLICATE COLUMN

date, light_start_date, gas_end_date light_end_date, gas_start_date gas_average_cost, average_unit_gas_cost

REPLACEMENT **COLUMN**

start_date end_date

² Data Validation

• Find data-mismatched data types

gas_offer		Float		Name of the subscribed gas plan (anonymized)	
light_offer Str		String		Name of the subscribed electricity plan (anonymized)	
gas_offer	V_WString	•	254		Name of the subscribed gas plan (anonymized)
light_offer	V_String	•	254		Name of the subscribed electricity plan (anonymiz

(2) Data Structuring

Change column datatype

gas_offer [float] -> gas_offer[string]

Delete column

date, gas_start_date, gas_end_date

Rename column

F1_kWh -> f1_kwh

F2_kWh -> f2_kwh

F3_kWh -> f3_kwh

light_start_date -> start_date

light_end_date -> end_date

² Data Enrichment

Since the data in the howmuch_pay column, calculated as the sum of 'total_amount' and 'tv', are wrong in 257825 (2,46% of the dataset), so we decided to re-calculate them to obtain the correct results.

Converted null values to O

Adjusted the String characters

Spazi bianchi iniziali e finali	
Tab, interruzioni di riga e Whitespace dupli	cato
Tutti gli spazi bianchi	
☐ Lettere	
Numeri	
Punteggiatura	
Modifica maiuscole/minuscole	

Set Title Case

- Set sex=P
- Transalate the supply tupe

Set Null Supply Type to "standard bill"

Correct typo "light offer type"

Data Cleaning

• Light invoces set null gas fields


```
gas_consumption
                   (3)
IIF([supply_type]="light", Null(),
[gas_consumption])
Tipo di dati: Float
                          Dimensione: 4
average_gas_bill_cost 🔞
IIF([supply type]="light", Null(),
[average_gas_bill_cost])
Tipo di dati: Double
                           Dimensione: 8
gas_system_charges 🔞
IIF([supply_type]="light", Null(),
[gas system charges])
Tipo di dati: Float
                            Dimensione: 4
```

```
y gas_material_cost

IIF([supply_type]="light", Null(),
[gas_material_cost])

Tipo di dati: Float

y gas_transport_cost

IIF([supply_type]="light", Null(),
[gas_transport_cost])

Tipo di dati: Float

Tipo di dati: Float

Dimensione: 4
```

• Gas invoces set null light fields

Index

ALTERYX

- Overview
- How it works
- Learning Datasets
- Pros and cons

PIPELINE

- Data Ingestion and discovery
- Data Validation
- Data Structuring
- Data Enrichment
- Data Filtering
- Data Cleaning

RESULTS

- Final pipeline
- Datasets obtained
- Conclusion

(3) Final Pipeline

• Data format correction

(3) Final Pipeline

Data cleaning

3) Final Pipeline

Check the condition

Filtro personalizzato

```
([F1 kWh] < 0) OR
   ([F2_kWh] < 0) OR
   ([F3 kWh] < 0) OR
   ([age] < 18) OR
   ([tv] < 0) OR
(IsNull([address])) OR
   (IsNull([nominative]))OR
   (IsNull([city]))OR
   (IsNull([start_date])) OR
   (IsNull([end date])) OR
   (([gas_consumption] < 0 OR
   IsNull([gas_consumption])) and [supply_type] IN
   ('gas', 'gas and light')) OR
   (([light_consumption] < 0 OR
   IsNull([light_consumption])) and [supply_type]
   IN ('light', 'gas and light')) OR
   ((Round(IIF(IsNull([light_consumption]), 0,
   [light_consumption]), 0.01) !=
   Round(IIF(IsNull([F1_kWh]), 0, [F1_kWh]) +
   IIF(IsNull([F2_kWh]), 0, [F2_kWh]) +
   IIF(IsNull([F3_kWh]), 0, [F3_kWh]), 0.01)) and
   [supply type] IN ('light', 'gas and light'))
```

Final Pipeline

• Creation of the 3 DBs

(3) Datasets obtained

• Customer 3.898.716 of records

• Utilty 4.967.519 of records

• Invoices 9.781.634 of records

Conclusion

 Offers the possibility of caching the intermediate result

 Execution times depend on hardware

 Use the maximum resources available

AMP allows parallel pipeline execution

Great community

Does not offer complex tools.

 Saves temporary files between steps on disk

 Learning the interface and features may take time

Thanks for your attention!

