Advanced Microeconomics II Rationalizability

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

March 3, 2015

Brett Graham (WISE)

March 3, 2015

Rationalizability

- NE has strong informational requirements.
- Strong assumptions about beliefs.
- What if we rely only on rationality.
- A strategy is permissible if it is a best response to some 'rational' belief about what the other players might do.
- Beliefs about the actions of player *j* must be rational in that they must also be a best response to some rational belief by j.
- And so on....

Brett Graham (WISE)

March 3, 2015

Rationalizable Strategies - Pearce

Definition

An action $a_i \in A_i$ is rationalizable in the strategic game $\{N, (A_i), (u_i)\}$ if there exists

- a collection $((X_i^t)_{i \in N})_{t=1}^{\infty}$ of sets with $X_i^t \subset A_i$ for all j and t,
- a belief μ_i^1 of player i whose support is a subset of X_{-i}^1 , and
- for each $j \in N$, each $t \ge 1$, and each $a_i \in X_i^t$ a belief $\mu_i^{t+1}(a_i)$ of player j whose support is a subset of X_{-i}^{t+1}

such that

- a_i is a best response to the belief μ_i^1 of player i
- $X_i^1 = \emptyset$ and for each $j \in N \setminus \{i\}$ the set X_i^1 is the set of all $a_i' \in A_j$ such that there is some a_{-i} in the support of μ_i^1 for which $a_i = a_i'$
- for every player $j \in N$ and every $t \ge 1$ every action $a_j \in X_i^t$ is a best response to the belief $\mu_i^{t+1}(a_i)$ for player j
- for each $t \ge 2$ and each $j \in N$ the set X_i^t is the set of all $a_i' \in A_i$ such that there is some player $k \in \mathbb{N}\setminus\{j\}$, some action $a_k \in X_k^{t-1}$, and some a_{-k} in the support of $\mu_k^t(a_k)$ for which $a_i'=a_i$.

Rationalizable Strategies - Matching Pennies

How do we rationalize H for player 1?

t	$\mu_1^t(a_1)$	$\mu_2^t(a_2)$	X_1^t	X_2^t
1	$\mu_1^1: Pr(a_2 = H) = 1$		Ø	{ <i>H</i> }
2		$\mu_2^2(H): Pr(a_1 = T) = 1$	{ <i>T</i> }	Ø
3	$\mu_1^3(T): Pr(a_2 = T) = 1$		Ø	{ <i>T</i> }
4		$\mu_2^4(T)$: $Pr(a_1 = H) = 1$	{ <i>H</i> }	Ø
5	$\mu_1^5(H): \Pr(a_2 = H) = 1$		Ø	{ <i>H</i> }

There are many possible ways to rationalize H for player 1.

t	$\mu_1^t(a_2)$	$\mu_2^t(a_2)$	X_1^t	X_2^t
1	$\mu_1^1 : \Pr(a_2 = H) = 3/4$		Ø	$\{H,T\}$
2		$\mu_2^2(H)$: $\Pr(a_1 = T) = 1$ $\mu_2^2(T)$: $\Pr(a_1 = H) = 1$	$\{H,T\}$	Ø
3	$\mu_1^3(H) : \Pr(a_2 = H) = 1$ $\mu_1^3(T) : \Pr(a_2 = T) = 1$		Ø	{ <i>H</i> , <i>T</i> }

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 Brett Graham (WISE) Advanced Microeconomics II March 3, 2015

Rationalizable Strategies - Bernheim

Definition

An action $a_i \in A_i$ is rationalizable in the strategic game $\{N, (A_i), (u_i)\}$ if for each $j \in N$ there is a set $Z_i \subset A_i$ such that

- $a_i \in Z_i$
- every action $a_i \in Z_i$ is a best response to a belief $u_i(a_i)$ of player jwhose support is a subset of Z_{-i} .

Matching pennies example

- How to rationalize H for player 1.
- Set $Z_1 = \{H, T\}, Z_2 = \{H, T\}.$

March 3, 2015

Simple Example

	b_1	b_2	b_3	b_4
a_1	0,7	2,5	7,0	0, 1
a_2	5, 2	3,3	5, 2	0, 1
<i>a</i> ₃	7,0	2,5	0,7	0,1
a_4	0,0	0, -2	0,0	10, -1

- What are the set of mixed strategy Nash equilibria?
- What are the set of rationalizable strategies?
- b₄ is not rationalizable.
 - If μ_2 : $Pr(a_4) > 1/2$ then b_3 does better than b_4 .
 - ▶ If μ_2 : $\Pr(a_4) \le 1/2$ then b_2 does better than b_4 .
- a₄ is not rationalizable.
 - ▶ $b_4 \notin Z_2$ for any belief over $\{b_1, b_2, b_3\}$ a_2 does better than a_4 .

Rationalizable Strategies - Equivalence

Lemma

The two definitions of rationalizable are equivalent.

- (\Rightarrow) Set $Z_i = \{a_i\} \cup (\bigcup_{t=1}^{\infty} X_i^t)$ and $Z_i = (\bigcup_{t=1}^{\infty} X_i^t)$ for each $i \in \mathbb{N} \setminus \{i\}.$
- (\Leftarrow) Define $\mu_i^1 = \mu_i(a_i)$ and $\mu_i^t(a_i) = \mu_i(a_i)$ for each $j \in N$ and each integer t > 2.
 - ▶ Let $X_i^1 = \emptyset$ and for each $j \in N \setminus \{i\}$ let X_i^1 be the set of all $a_i' \in A_i$ such that there is some a_{-i} in the support of μ_i^1 for which $a_i = a_i'$
 - ▶ for each $t \ge 2$ and each $j \in N$ let X_i^t be the set of all $a_i' \in A_j$ such that there is some player $k \in \mathbb{N} \setminus \{j\}$, some action $a_k \in X_k^{t-1}$, and some a_{-k} in the support of $\mu_k^t(a_k)$ for which $a_i' = a_i$.

Cournot Rationalizable

- $G = \{\{1, 2\}, (A_i), (u_i)\}$ where $A_i = [0, \infty)$ and $u_i(a_1, a_2) = a_i(1 - a_1 - a_2).$
- What are the set of Nash equilibria?
- What are the set of rationalizable strategies?
- The game is symmetric so $Z_1 = Z_2 = Z$.
- $m = \inf Z$, $M = \sup Z$ so if a_i is rationalizable then $m \le a_i \le M$.
- Given a belief $\mu_i(a_i)$ over Z, $B_i(a_i) = (1 \mathsf{E}(a_i))/2$, so $(1-M)/2 < a_i < (1-m)/2$.
- ullet The set of best responses to possible beliefs over Z is larger than Z(Whv?)
- Thus $\{m \ge (1-M)/2, M \le (1-m)/2\} \Rightarrow M = m = 1/3.$
- The set of rationalizable strategies is equal to the set of Nash equilibria.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 Advanced Microeconomics II March 3, 2015 Brett Graham (WISE)

Rationalizable Strategies and Correlated Equilibrium

Lemma

Every action used with positive probability by some player in a correlated equilibrium of a finite strategic game is rationalizable.

- For each player i let Z_i be the set of actions that player i uses with positive probability in the correlated equilibrium.
- $a_i \in Z_i$ is a best response to what belief over Z_{-i} ?
 - ▶ The same probability distribution as that generated by the strategies of other players, conditional on player i choosing to play a_i .
 - ▶ Are these strategies a subset of Z_{-i} ? Yes.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 9

Rationalizable Strategies and Independent Probability Distributions

- We could restrict rationalising beliefs to be a product of independent probability distribution over A_{-i} .
- If so, correlated equilibrium strategies are not a subset of rationalizable strategies.

- M_2 is rationalizable if we allow correlation $Z_1 = \{U, D\}, Z_2 = \{L, R\}, Z_3 = \{M_2\}.$
- Not so if we restrict beliefs to be the product of independent probability distribution over A_{-i} . Requires $4pq + 4(1-p)(1-q) \ge \max\{8pq, 8(1-p)(1-q), 3\}$.

Brett Graham (WISE) Advanced Microeconomics II March 3, 2015 10 / 1