Computação Gráfica

Transformações Geométricas

Prof. Alaor Cervati Neto

2022/1

- Renderizamos objetos 2D de forma estática.
- Agora forneceremos movimento a nossos objetos.
- ► Transformações geométricas são operações aplicadas na descrição geométrica dos objetos (vértices).

Transformações geométricas primárias:

- ► Translação.
- Escala.
- Rotação.

Transformações geométricas secundárias:

- ► Reflexão.
- ► Cisalhamento.

Transformações Geométricas 2D

Transformações Geométricas 2D

Coordenadas Homogêneas:

- Sistema de coordenadas em geometria projetiva.
- ▶ Um ponto no espaço 2D é uma projeção de um ponto 3D no plano.

Um ponto 2D em coordenadas homogêneas:

- Possui três valores: (x_h, y_h, h) .
- ▶ Onde h é um parâmetro homogêneo ($h \neq 0$).

Por conveniência, usaremos h = 1:

- Mantemos as coordenadas Euclidianas.
- Obtemos maior poder de representação.

Translação

Adicionar offsets às coordenadas de um objeto:

Translação

Considerando uma coordenada (x, y):

- Adicionando um offset (t_x, t_y) .
- Nova coordenada (x', y'):

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases}$$

Notação matricial: P' = P + T:

$$P = \begin{bmatrix} x \\ y \end{bmatrix}, P' = \begin{bmatrix} x' \\ y' \end{bmatrix}, T = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Translação em Coordenadas Homogêneas

- Permite translação com multiplicação de matrizes.
- ▶ Sejam as coordenadas (x, y, h) e um offset (t_x, t_y) .
- A nova coordenada é (x'_h, y'_h, h) :

Nova coordenada
$$\left\{ \begin{bmatrix} x_h' \\ y_h' \\ h \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}}_{\text{Matriz de translação}} \begin{bmatrix} x_h \\ y_h \\ h \end{bmatrix} \right\} \text{Coordenada original}$$

Translação em Coordenadas Homogêneas

Quando h = 1, voltamos ao sistema de coordenadas cartesiano:

$$\begin{cases} x'_h = (1 \cdot x_h + 0 \cdot y_h + t_x \cdot h) \implies x'_h = x_h + t_x \\ y'_h = (0 \cdot x_h + 1 \cdot y_h + t_y \cdot h) \implies y'_h = y_h + t_y \\ h = (0 \cdot x_h + 0 \cdot y_h + 1 \cdot h) \implies h = 1 \end{cases}$$

Translação em Coordenadas Homogêneas

Portanto, quando h=1, as coordenadas cartesianas são um caso particular de coordenadas homogêneas:

$$P' = T(t_x, t_y) \cdot P$$
 $egin{bmatrix} x' \ y' \ 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ 1 \end{bmatrix}$

Escala

Altera o tamanho de um objeto por um dado fator:

Escala

Considerando uma coordenada (x, y):

- Fator de escala (s_x, s_y) .
- Nova coordenada (x', y'):

$$\begin{cases} x' = x \cdot s_x \\ y' = y \cdot s_y \end{cases}$$

Notação matricial:

$$P' = S \cdot P$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Escala em Coordenadas Homogêneas

$$P' = S(s_x, s_y) \cdot P$$
Nova coordenada
$$\left\{ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{Matriz de escala}} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \right\} \text{Coordenada original}$$

 s_x e s_y devem ser maiores que zero.

Se $s_x > 1$ e $s_y > 1$ o objeto aumenta.

Se $s_x < 1$ e $s_y < 1$ o objeto diminui.

Se $s_x = s_y$ a escala é uniforme.

Se $s_x \neq s_y$ a escala é diferencial.

Move o objeto ao redor de um eixo em um ângulo:

Rotacionamos (x, y) a partir da origem do sistema de coordenadas:

Considerando uma coordenada (x, y):

- O raio r é constante, ϕ é o ângulo original de P=(x,y) e θ é o ângulo de rotação.
- Nova coordenada (x', y'):

$$\begin{cases} \cos(\phi + \theta) = \frac{x'}{r} \implies x' = r\cos(\phi + \theta) \\ \sin(\phi + \theta) = \frac{y'}{r} \implies y' = r\sin(\phi + \theta) \end{cases}$$

Soma de ângulos:

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$
$$\sin(\alpha + \beta) = \cos\alpha \cdot \sin\beta + \sin\alpha \cdot \cos\beta$$

Portanto:

$$\begin{cases} x' = r \cos \phi \cdot \cos \theta - r \sin \phi \cdot \sin \theta \\ y' = r \cos \phi \cdot \sin \theta + r \sin \phi \cdot \cos \theta \end{cases}$$

Descrevendo P por coordenadas polares:

$$x = r \cos \phi, y = r \sin \phi$$

Por substituição:

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta \end{cases}$$

Na forma matricial:

$$P' = R \cdot P$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotação em Coordenadas Homogêneas

Nova coordenada
$$\left\{ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{Matriz de rotação}} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \right\} \text{Coordenada original}$$

Matriz de Transformação

A grande vantagem de coordenadas homogêneas é que uma sequência de transformações pode ser representada em uma única matriz:

$$P' = M_2 \cdot M_1 \cdot P$$
$$= (M_2 \cdot M_1) \cdot P$$
$$= M \cdot P$$

A transformação é dada por M em vez de M_1 e M_2 .

Escala com ponto de referência

- 1. Translação do objeto para a origem considerando o ponto de referência (x_f, y_f) .
- 2. Transformação de escala.
- 3. Translação do objeto para a posição original.

Rotação com ponto de referência

- 1. Translação do objeto para a origem considerando o ponto de referência (x_f, y_f) .
- 2. Transformação de rotação.
- 3. Translação do objeto para a posição original.

Em Resumo

- Dada uma matriz de transformação qualquer *M*.
- Dadas as coordenadas P.
- Novas coordenadas são $P' = M \cdot P$.
- Simples multiplicação de matrizes.
- ▶ Podemos gerar transformações compostas a partir de translação, escala e rotação.

Entretanto

Multiplicação de matrizes pode não ser comutativa, isto é, $M_2 \cdot M_1 \neq M_1 \cdot M_2$:

Figura: (a) primeiro o objeto é transladado depois rotacionado em 45⁰ (b) primeiro o objeto é rotacionado em 45⁰, depois transladado.

Reflexão

$$x = 0: \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, y = 0: \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, x = 0 e y = 0: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Cisalhamento

Cisalhamento (*shearing*) na direção de *x*:

$$\begin{bmatrix} 1 & sh_{\chi} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Figura: Convertendo um quadrado em um paralelogramo usando $sh_x = 2$.

Transformações Geométricas 3D

Transformações Geométricas 3D

- São extensões de métodos 2D.
- Porém incluindo a coordenada z.
- ▶ São representadas por matrizes 4×4 .

Translação

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Escala

$$\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} = \begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}$$

$$P' = R_z(\theta) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = R_{X}(\theta) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = R_{y}(\theta) \cdot P$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Transformações Geométricas em OpenGL

- Por padrão, OpenGL trabalha com coordenadas homogêneas em 3D (x, y, z, h).
- Para atividades com objetos 2D:
 - ▶ h = 1.
 - ightharpoonup z = 0.

Material de base para a aula

- ► Transformação Geométrica 3D. Fernando Paulovich. Slides SCC 250 Computação Gráfica, 2010.
- ► Hughes, J. F., Van Dam, A., Foley, J. D., McGuire, M., Feiner, S. K., & Sklar, D. F. (2014). Computer graphics: principles and practice. Terceira Edição. Pearson Education.
- ► Computação Gráfica: Aulas 03 e 04. Slides de Ricardo M. Marcacini. Disciplina SCC0250/0650, ICMC/USP, 2021.

Exercício complementar

O objeto *TeaPot* (também chamado Bule de Newell) é um modelo criado em 1975 por Martin Newell como parte de sua pesquisa em computação gráfica na Universidade de Utah.

Exercício complementar

Crie um programa que modele este objeto (o conjunto de vértices que o descreve está disponível em https://github.com/kretash/UtahTeapot) usando a primitiva GL_TRIANGLES. Aplique transformações para alterar o objeto de modo a posicioná-lo da forma que considerar melhor e gere a matriz de transformação correspondente.