Diszkrét matematika 1. középszint Gráfok

Juhász Zsófia jzsofia@inf.elte.hu jzsofi@gmail.com Mérai László diái alapján

Komputeralgebra Tanszék

2019 tavasz

Definíció ((irányítatlan) gráf)

A $G = (\varphi, E, V)$ hármast (irányítatlan) gráfnak nevezzük, ha E, Vhalmazok, $V \neq \emptyset$, $V \cap E = \emptyset$ és $\varphi \colon E \to \{\{v, v'\} \mid v, v' \in V\}$. E-t az élek halmazának, V-t a csúcsok (pontok) halmazának és φ -t az illeszkedési leképezésnek nevezzük. A φ leképezés E minden egyes eleméhez egy V-beli rendezetlen párt rendel.

FInevezés

 $v \in \varphi(e)$ esetén e illeszkedik v-re, illetve v végpontja e-nek.

Meg jegyzés

Az illeszkedési leképezés meghatározza az $I \subseteq E \times V$ illeszkedési relációt: $(e, v) \in I \Leftrightarrow v \in \varphi(e).$

Definíció (véges, végtelen és üres gráfok)

Ha E és V is véges halmazok, akkor a gráfot véges gráfnak nevezzük, egyébként végtelen gráfnak.

 $E = \emptyset$ esetén üres gráfról beszélünk.

Megjegyzés

Az informatikában elsősorban a véges gráfok játszanak szerepet, így a továbbiakban mi is véges gráfokkal foglalkozunk.

Definíció (hurokél, egyszerű gráf)

Ha egy él egyetlen csúcsra illeszkedik, azt hurokélnek nevezzük. Ha $e \neq e'$ esetén $\varphi(e) = \varphi(e')$, akkor e és e' párhuzamos élek. Ha egy gráfban nincs sem hurokél, sem párhuzamos élek, akkor azt egyszerű gráfnak nevezzük.

Gráfok alapfogalmai

Definíció (szomszédos élek, szomszédos csúcsok)

Az $e \neq e'$ élek szomszédosak, ha van olyan $v \in V$, amelyre $v \in \varphi(e)$ és $v \in \varphi(e')$ egyszerre teljesül. A $v \neq v'$ csúcsok szomszédosak, ha van olyan $e \in E$, amelyre $v \in \varphi(e)$ és $v' \in \varphi(e)$ egyszerre teljesül.

Definíció (csúcs fokszáma)

A v csúcs fokszámán (vagy fokán) a rá illeszkedő élek számát értjük, a hurokéleket kétszer számolva. Jelölése: d(v) vagy deg(v).

Definíció (izolált csúcs)

Ha d(v) = 0, akkor v-t izolált csúcsnak nevezzük.

Definíció (reguláris gráfok)

Ha egy gráf minden csúcsának a foka n, akkor azt n-reguláris gráfnak hívjuk. Egy gráfot regulárisnak nevezünk, ha valamely n-re n-reguláris.

Példa

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5\} \\ E &= \{e_1, e_2, e_3, e_4, e_5\} \\ \varphi &= \{(e_1, \{v_1, v_2\}), (e_2, \{v_1, v_2\}), (e_3, \{v_1, v_4\}), (e_4, \{v_3, v_4\}), (e_5, \{v_4\})\} \end{split}$$

A fokszámösszeg

Tétel (Fokszámösszeg)

A
$$G = (\varphi, E, V)$$
 gráfra

$$\sum_{v\in V}d(v)=2|E|.$$

Bizonyítás

Élszám szerinti teljes indukció: |E|=0 esetén mindkét oldal 0. Tfh. |E| = n esetén igaz az állítás. Ha adott egy gráf, amelynek n+1 éle van, akkor annak egy élét elhagyva egy n élű gráfot kapunk. Erre teljesül az állítás az indukciós feltevés miatt. Az elhagyott élt újra hozzávéve a gráfhoz az egyenlőség mindkét oldala 2-vel nő.

Definíció (gráfok izomorfiája)

A $G = (\varphi, E, V)$ és $G' = (\varphi', E', V')$ gráfok izomorfak, ha léteznek $f \colon E \to E'$ és $g \colon V \to V'$ bijektív leképezések, hogy minden $e \in E$ -re és $v \in V$ -re e pontosan akkor illeszkedik v-re, ha f(e) illeszkedik g(v)-re.

Példa

Megfelelő f és g bijekciók:

$$f = \{(e_1, c_5), (e_2, c_2), (e_3, c_3), (e_4, c_4), (e_5, c_1)\}\$$

$$g = \{(v_1, w_1), (v_2, w_4), (v_3, w_2), (v_4, w_5), (v_5, w_3)\}\$$

Definíció (teljes gráf)

Ha egy egyszerű gráfban bármely két különböző csúcs szomszédos, akkor teljes gráfról beszélünk. Tetszőleges $n \in \mathbb{Z}^+$ esetén az n csúcsú teljes gráfot K_n -nel jelöljük.

Meg jegyzés

- Tetszőleges $n \in \mathbb{Z}^+$ esetén az n-csúcsú teljes gráfok izomorfak, tehát a fenti K_n gráf egyértemű ("izomorfia erejéig").
- Az n csúcsú teljes gráfnak $\binom{n}{2} = n(n-1)/2$ éle van.

Definíció (páros gráf)

A $G=(\varphi,E,V)$ gráfot páros gráfnak nevezzük, ha V-nek létezik V' és V'' diszjunkt halmazokra való felbontása úgy, hogy minden él egyik végpontja V'-nek, másik végpontja pedig V''-nek eleme.

Definíció $(K_{m,n})$

Azt az egyszerű páros gráfot, amelyben |V'|=m, |V''|=n és minden V''-beli csúccs minden V''-beli csúccsal szomszédos, $K_{m,n}$ -nel jelöljük.

Példa

További példák

Definíció (ciklus, ösvény, csillag)

Tetszőleges $n \in \mathbb{N}^+$ -re a C_n ciklus csúcsai egy n-szög csúcspontjainak feleltethetők meg, és pontosan akkor szomszédos C_n -ben két csúcs, ha az n-szögben nekik megfelelő csúcsok szomszédosak.

Tetszőleges $n \in \mathbb{N}$ -re a P_n ösvény C_{n+1} -ből valamely él törlésével adódik. Tetszőleges $n \in \mathbb{N}^+$ -re az S_n csillag a $K_{n,1}$ gráf másik neve.

Példák

2019 tavasz

Gráfok alapfogalmai: egyszerű gráf komplementere

Definíció (gráf komplementere)

Egy G egyszerű gráf komplementere az a \overline{G} egyszerű gráf, melynek csúcshalmaza megegyezik G csúcshalmazával, és amelyben két csúcs pontosan akkor van összekötve éllel, ha G-ben nincs.

Példa

2019 tavasz

Gráfok alapfogalmai

Definíció (részgráf, feszített részgráf, szupergráf)

A $G'=(\varphi',E',V')$ gráfot a $G=(\varphi,E,V)$ gráf részgráfjának nevezzük, ha $E'\subseteq E,\ V'\subseteq V$ és $\varphi'\subseteq \varphi.$ Ekkor G-t a G' szupergráfjának hívjuk. Ha E' minden olyan élet tartalmaz, melynek végpontjai V'-ben vannak, akkor G'-t a V' által meghatározott feszített (vagy telített) részgráfnak nevezzük.

Példa

G-nek G_1 részgráfja, de nem feszített részgráfja, míg G_2 feszített részgráfja.

Definíció (élek törlése gráfból)

Ha $G = (\varphi, E, V)$ egy gráf, és $E' \subseteq E$, akkor a G-ből az E' élhalmaz törlésével kapott gráfon a $G' = (\varphi|_{E \setminus E'}, E \setminus E', V)$ részgráfot értjük.

Definíció (csúcsok törlése gráfból)

Ha $G=(\varphi,E,V)$ egy gráf, és $V'\subseteq V$, akkor legyen E' az összes olyan élek halmaza, amelyek illeszkednek valamely V'-beli csúcsra. A G-ből a V' csúcshalmaz törlésével kapott gráfon a $G'=(\varphi|_{E\setminus E'},E\setminus E',V\setminus V')$ részgráfot értjük.

Gráfok alapfogalmai

Definíció (séta)

Legyen $G = (\varphi, E, V)$ egy gráf, $n \in \mathbb{N}$. Egy G-beli n hosszú séta v_0 -ból v_n -be egy

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sorozat, ahol

- $v_i \in V \quad \forall \ 0 \leq j \leq n$ -re,
- $e_{\nu} \in E \quad \forall \ 1 < k < n$ -re.
- $\varphi(e_m) = \{v_{m-1}, v_m\} \quad \forall \ 1 < m < n$ -re.

Ha $v_0 = v_n$, akkor zárt sétáról beszélünk, különben nyílt sétáról.

Definíció (vonal)

Ha a sétában szereplő élek mind különbözőek, akkor vonalnak nevezzük. Az előzőeknek megfelelően beszélhetünk zárt vagy nyílt vonalról.

Definíció (út)

Ha a sétában szereplő csúcsok mind különbözőek, akkor útnak nevezzük.

Megjegyzés

- Egy út mindig vonal.
- A nulla hosszú séták mind utak, és egyetlen csúcsból állnak.
- Egy egy hosszú séta pontosan akkor út, ha a benne szereplő él nem hurokél.

Definíció (kör)

Egy legalább egy hosszú zárt vonalat körnek nevezünk, ha a kezdő- és végpont megyegyeznek, de egyébként a vonal pontjai különböznek.

2019 tavasz

Példa

út: $v_1, e_1, v_2, e_2, v_3, \ldots, v_6, e_6, v_7$;

vonal, de nem út: $v_1, e_1, v_2, e_2, v_3, \dots, v_7, e_7, v_3, e_8, v_9$;

kör: $v_3, e_3, v_4, e_4, v_5, e_5, v_6, e_6, v_7, e_7, v_3$.

Állítás (Út létrehozása sétából)

Egy G gráfban a különböző v és v' csúcsokat összekötő sétából alkalmasan törölve éleket és csúcsokat a v-t v'-vel összekötő utat kapunk.

Bizonyítás

Legyen az állításban szereplő séta a következő:

$$v = v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n = v'.$$

Ha valamely i < j esetén $v_i = v_j$, akkor töröljük az

$$e_{i+1}, v_{i+1}, e_{i+2}, v_{i+2}, \dots, v_{j-1}, e_j, v_j$$

részt, és ismételjük ezt, amíg van csúcsismétlődés. Ha már nincs, akkor utat kaptunk. Mivel minden lépésben csökken a séta hossza, ezért az eljárás véges sok lépésben véget ér.

Gráfok alapfogalmai

Definíció (összefüggő gráf)

Egy gráfot összefüggőnek nevezünk, ha bármely két csúcsa összeköthető sétával.

A $G = (\varphi, E, V)$ gráf esetén V elemeire vezessük be a \sim relációt: $v \sim v'$ pontosan akkor, ha G-ben vezet séta v-ből v'-be.

A \sim ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V-n.

A csúcsok egy adott ilyen osztálya által meghatározott feszített részgráf a gráf egy komponense.

Megjegyzés

- Bármely él két végpontja azonos osztályba tartozik (Miért?), így a gráf minden éle hozzátartozik egy komponenshez.
- Egy gráf akkor és csak akkor összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen komponense van.

Fák

Definíció (fa)

Egy gráfot fának nevezünk, ha összefüggő és körmentes.

Tétel (Fák ekvivalens jellemzése I.)

Egy G egyszerű gráfra a következő feltételek ekvivalensek:

- G fa:
- G összefüggő, de bármely él törlésével kapott részgráf már nem összefüggő (azaz G miminális összefüggő gráf);
- ha v és v' a G különböző csúcsai, akkor pontosan 1 út van v-ből v'-be:
- G-nek nincs köre, de bármilyen új él hozzávételével kapott gráf már tartalmaz kört (azaz G maximális körmentes gráf).

A bizonyítás menete

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$$

Bizonyítás

$$(1) \Rightarrow (2)$$

G összefüggősége következik a fa definíciójából. Az állítás másik részét indirekten bizonyítjuk.

Tfh. létezik egy olyan e él (a végpontjai legyenek v és v') a gráfban, aminek a törlésével kapott gráf összefüggő. Ekkor létezne út v-ből v'-be, amit kiegészítve a törölt éllel és a megfelelő csúccsal egy kört kapnánk:

$$v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v', e, v.$$

(2) \Rightarrow (3)

Legalább egy út létezik az összefüggőség miatt. Indirekten bizonyítjuk, hogy nem létezhet két különböző út:

Tfh. 2 út is létezik a különböző v és v' csúcsok között, legyenek ezek: $v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v'$ és $v, e'_1, v'_1, e'_2, \ldots, v'_{m-1}, e'_m, v'$. Legyen k a legkisebb olyan index, amelyre $v_k \neq v'_k$. (Miért létezik ilyen?) Az e_k élt törölve összefüggő gráfot kapunk, mert a v_{k-1}, e_k, v_k séta helyettesíthető a $v_{k-1}, e'_k, v'_k, \ldots, e'_m, v', e_n, v_{n-1}, e_{n-1}, v_{n-2}, \ldots, v_{k+1}, e_{k+1}, v_k$ sétával.

Fák

Bizonyítás

$$(3) \Rightarrow (4)$$

Annak a bizonyítása, hogy nincs kör a gráfban indirekt: tfh. létezik kör: $v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v$. Ekkor v_1 és v között két különböző út is van: $v_1, e_2, \ldots, v_{n-1}, e_n, v$ illetve v_1, e_1, v . Ha a hozzávett e él hurokél, és a v csúcsra illeszkedik, akkor v, e, v kör lesz. Ha a hozzávett e él a különböző v és v' csúcsokra illeszkedik, akkor a köztük lévő utat megfelelően kiegészítve kapunk kört:

$$v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v', e, v.$$
(4) \Rightarrow (1)

Az, hogy G-nek nincs köre triviálisan teljesül. Kell, hogy G összefüggő, vagyis tetszőleges v és v' csúcsa között van út. Vegyük a gráfhoz a v-re és v'-re illeszkedő e élet. Az így keletkező körben szerepel e (Miért?): v', e, v, e1, v1, e2, . . . , vn-1, en, v' út lesz v és v' között