Satisfiability Of Modal Logic Formulas

Martin Stoev, Anton Dudov 2019-9-28

1 Formula Representation

Let Var be the set of variables:

$$\mathbb{V}ar = \{p_0, p_1, p_2...\}$$

Let \mathbb{C}_t be the set of Term constants:

$$\mathbb{C}_t = \{0, 1\}$$

1.1 Term recursive definition

- $a \in \mathbb{C}_t$ is a term
- $p \in \mathbb{V}ar$ is a term
- If x is a term, then \bar{x} is a term as well
- If x and y are terms, then $x\sigma y$ is a term as well, where $\sigma \in \{\sqcap, \sqcup\}$

Let \mathbb{C}_f be the set of formula constants:

$$\mathbb{C}_f = \{T, F\}$$

1.2 Formula recursive definition

- $a \in \mathbb{C}_f$ is a formula
- If x and y are terms, then C(x, y) is a formula
- If x and y are terms, then $x \le y$ is a formula
- If x and y are terms, then $x \leq_m y$ is a formula
- If ϕ is a formula, then $\neg \phi$ is a formula as well
- If ϕ and ψ are formulas, then ϕ σ ψ is a formula as well, where $\sigma \in \{\lor, \land, \rightarrow, \leftrightarrow\}$

1.3 Definition: Atomic Formula

A formula will be called atomic formula if it is a constant or it is in one of the followings:

- C(x, y)
- $x \le y$
- $\bullet \ x \leq_m y$

where x and y are terms.

1.4 Definition/Theorem: Zero Term Formula

Let x and y be two terms, then:

$$x \le y \iff x \sqcap \bar{y} = 0 \tag{1}$$

A formula in the form $x \sqcap \bar{y} = 0$ will be called Zero Term Formula.

2 Tableaux

The Tableaux process is decision procedure, which recursively breaks down a given formula into basic components based on which a decision can be concluded. The recursive step which breaks down a formula creates one or two new formulas, which in terms of their structure are simpler then the initial formula. Since the recursive step can create at most two new formulas, this means the recursive step will create at most two branches or a binary tree, where the nodes are the formulas and the links represent the recursive step. The different branches are considered to be disjuncted while nodes of the same branch are considered in conjunction. The procedure modifies the tableau in such a way that the formula represented by the resulting tableau is equivalent to the original one.

Contradiction may arise when in the same branch, on some step there exists a formula and the negation of the same formula. If in some branch there exists a contradiction, then that branch closes. If all branches close then the proof is complete.

The main principle of the tableaux is to break complex formulae into smaller ones until complementary pairs of literals are produced or no further expansion is possible.

2.1 Definition: Tableaux Step

The Tableaux Step takes as input a formula and a set of accumulated formulae and produces as output one or two new formulae, depending on the operation. The set of accumulated formulae consist of the broken down formulae by previous tableaux steps. The output of the tableaux step depends on the rule applied to the formula.

Definition: Marked Formula

Let φ be a formula and X be the set of accumulated formulae, then φ is said to be marked as:

- true if and only if $\mathbb{T} \varphi$
- false if and only if $\mathbb{F}\varphi$

Definition: Accumulated Formulae

The accumulated formulae set consists only of marked formulae and the letter X will be usually used for its representation.

2.1.1 Rules

Negation

$$\frac{\mathbb{T}(\neg \varphi), X}{\mathbb{F}(\varphi), X} \qquad \frac{\mathbb{F}(\neg \varphi), X}{\mathbb{T}(\varphi), X}$$

And

$$\frac{\mathbb{T}(\varphi \wedge \psi), X}{\mathbb{T}\varphi, \mathbb{T}\psi, X} \qquad \frac{\mathbb{F}(\varphi \wedge \psi), X}{\mathbb{F}\varphi, X \qquad \mathbb{F}\psi, X}$$

Or

$$\frac{\mathbb{T}(\varphi \vee \psi), X}{\mathbb{T}\varphi, X \quad \mathbb{T}\psi, X} \qquad \frac{\mathbb{F}(\varphi \vee \psi), X}{\mathbb{F}\varphi, \mathbb{F}\psi, X}$$

Implication

$$\frac{\mathbb{T}(\varphi \to \psi), X}{\mathbb{F}\varphi, X \quad \mathbb{T}\psi, X} \qquad \frac{\mathbb{F}(\varphi \to \psi), X}{\mathbb{T}\varphi, \mathbb{F}\psi, X}$$

Equivalence

$$\frac{\mathbb{T}(\varphi \leftrightarrow \psi), X}{\mathbb{T}\varphi, \mathbb{T}\psi, X \qquad \mathbb{F}\varphi, \mathbb{F}\psi, X} \qquad \frac{\mathbb{F}(\varphi \leftrightarrow \psi), X}{\mathbb{T}\varphi, \mathbb{F}\psi, X \qquad \mathbb{F}\varphi, \mathbb{T}\psi, X}$$

The final output of the Tableaux process is "False" when all branches are closed or a set of atomic formulae, when there exists a branch which is not closed.

For our usecases the functionality of the tableaux process shall be extended to achive better results, since if the branch is not closed, there are additional calculations needed in order to verify that there is no contradiction, namely to verify that there is no contradiction on Term level. This verification can be done in different manners, depending on the algorithm type. The best way to think about it is to have the tableaux process return a list, where each element is the set of atomic formulae found in a specific branch. This way the atomic formulae for each branch are produced, and afterwards can be used in different algorithms. This is just an example, a way of thinking about the problem the real implementation is much more space efficient.

2.2 Tableaux implementation

The programming implementation of the tableaux method follows the standard tableaux process explaned above.

First interesting design decision is to keep all true formulae in one data set, and all false formulae in another data set. This enables fast searches wheter a formula has been marked as true or false.

Definition: Marked Formula Collection

Let X be a set of formulae, then X is called marked formula collection if and only if all formulae in X are marked as true or all formulae are marked as false.

This collection is implemented with unordered_map (hashmap), which stores the formulae by pointers to them, uses their precalculated hash and operator== to compare them. The average complexity for search, insert and erase in this collection is O(1).

There exist 8 important marked formula collections:

- formulas_T_ contains only formulae marked as true
- formulas_F_ contains only formulae marked as false, For example, if $\neg \varphi$ is encountered as an output of the tableaux step, then only φ is inserted into the formula_F_
- contacts_T_ contains only contacts formulae marked as true
- contacts_F_ contains only contacts formulae marked as false
- zero_terms_T_ contains only formulae of type $\varphi \leq \psi$ marked as true
- zero_terms_F_ contains only formulae of type $\varphi \leq \psi$ marked as false
- measured_less_eq_T_ contains only formulae of type $\varphi \leq_m \psi$ marked as true
- measured_less_eq_F_ contains only formulae of type $\varphi \leq_m \psi$ marked as false

Definition: Formula Contradiction

Let φ be a marked formula, then φ is causing a contradiction if any of the followings is true:

- φ is marked as true and $\varphi \in \text{formulas_F}_$
- φ is marked as false and $\varphi \in \text{formulas_T}_-$
- φ is a contact formula marked as true and $\varphi \in \text{contacts_F}$ _
- φ is a contact formula marked as false and $\varphi \in \text{contacts_T}$ _
- φ is a zero terms formula marked as true and $\varphi \in \text{zero_terms_F_}$
- φ is a zero terms formula marked as false and $\varphi \in \text{zero_terms_T_}$
- φ is a measured less formula marked as true and $\varphi \in \text{measured_less_eq_F_}$
- φ is a measured less formula marked as false and $\varphi \in \text{measured_less_eq_T_}$

Invariant

At any time, all formulae in all eight marked formula collections do not contradict.

A contradiction may occure if a formula is split and some of the resulting components causes a contradiction.

Example

Let's assume that contacts_T_ = { C(a, b)} and let's have a look at the following formula $\mathbb{T}(T \land \neg C(a, b))$.

By the rules of decomposition, namely the (\wedge) rule will produce $\mathbb{T}T$, $\mathbb{T}\neg C(a,b)$. Then the $\mathbb{T}\neg C(a,b)$ will be decomposed to $\mathbb{F}C(a,b)$ by the (\neg) rule, which causes a contradiction since C(a,b) is already present in contacts_T_ formulae

Tableaux Algorithm

Given a formula φ , the following algorithm determines final atomic formulae in all branches of the tableaux process.

As a first step if the formula φ is the constant F, then false is returned directly, otherwise the whole formula φ is inserted in formulas_T_.

Remarks

- true boolean value is used to represent the formula constant T
- false boolean value is used to represent the formula constant F
- The commutativity of the contacts: C(a,b) == C(b,a)

Few lemmas which will provide a much more efficient contradiction finding in the tableaux process.

Lemma: A

Let x be a term, suppose that the atomic formula x = 0 has already been marked as true, then marking the following formulae as true will lead to contradiction:

- C(x,y)
- C(y,x)

for some arbitrary term y.

Lemma: A-inverse

Let x, y and z be terms, suppose that the atomic formulae C(x,y) or C(z,x) has already been marked as true, then marking the formula x = 0 as true will lead to contradiction.