IBM Docket No. PO920000107US1 Ser. No.: 09/841,505 Examiner M. Dirnyan

-3 - **IEN**

(A) AMENDMENT OF THE CLAIMS:

	·
1	1. (Currently Amended) A logic synthesis method for reducing
2	the delay of a timing critical path in a circuit, comprising
3	the steps of:
4	(a) selecting a gate which is not an inverter in the
5	timing critical path [[,]];
6	(b) swapping said timing critical path to a pin of said
7	gate [[,]];
8	
9	(c) replacing said gate with a functionally equivalent
10	tapered gate [[,]];
11	
12	(d) performing a timing analysis of said circuit [[,]];
13	and
14	(e) if said timing analysis of said circuit
15	indicates improvement in a worst case delay through said
16	circuit [[,]];
17	
18	(f) then retaining said tapered gate,
19	and
20	(g) if said timing analysis of said circuit indicates
21	no improvement in said worst case delay through said circuit
22	[[,]] <u>z</u>
23	
24	(h) then swapping said tapered gate back to said
25	selected gate for use in said circuit.
1	2. (Currently Amended) The logic synthesis method of claim 1
2	_ wherein

IBM Docket No. PO920000107USI Ser. No.: 09/841,505 Examiner M. Dimyan

-4- **IBM**

said gate is selected from a gate library comprising a

- 3 set of non-tapered gates and a set of tapered gates, and
- 4 wherein in said gate library,
- 5 said non-tapered gates are characterized by a stack of
- 6 devices of the same width and said tapered gates are
- 7 characterized by a stack of devices of different widths.

8

- 3. (Currently Amended) The logic synthesis method of claim 1
- wherein said gate is selected from a gate library
- 2 comprising a set of non-tapered gates and a set of tapered
- 3 gates,
- 4 and wherein each set in said gate library comprises one or
- 5 more of the following gates: NAND gates, NOR gates,
- 6 AND-OR-INVERT gates, and OR-AND-INVERT gates.

7 .

- 4. (Currently Amended) A logic synthesis method as in claim
- 1 3 _ whereby the delay through said tapered gate and the
- 2 delay through said non-tapered gate are compared.

3

- [[6.]] 5. (Currently Amended) A logic synthesis method as in
- 1 claim 1 _ whereby a plurality of tapered gates exist for a
- 2 non-tapered gate, said plurality of tapered gates being
- 3 functionally equivalent to said non-tapered gate.

4

- [[7.]] 6. (Currently Amended) A logic synthesis method as in
- claim [[6]] 5, whereby the selection of said plurality of
- 2 tapered gates available for use in said circuit is swapped
- 3 into said circuit for comparison with a timing analysis of
- 4 the circuit.

5

- [[8.]] 7. (Currently Amended) A logic synthesis method as in
- claim [[7]] 6, whereby the delay through said plurality of

2

IBM Docket No. PO920000107US1 Ser. No.: 09/841,505 Examiner M. Dimyan

-5- IBM

tapered gates and the delay through said non-tapered gate are compared.

3 4

[[9.]] 8. (Currently Amended) A logic synthesis method as in

claim [[8]] 7, whereby the gate of said plurality of gates

2 which yields the shortest delay is the one retained for said

3 circuit.

4