第一章 复数和复变函数 1.5 连续

若函数 f(x) 在 z_0 的邻域内(包括 z_0 本身)

已经单值确定,并且
$$\lim_{z \to z_0} f(z) = f(z_0)$$
,

则称 f(z)在 z_0 点连续。

1.6 导数

若函数在一点的导数存在,则称函数在该点可导。

f(z)=u(x,y)+iv(x,y)的导数存在的条件

(i)
$$\frac{\partial u}{\partial x}$$
、 $\frac{\partial u}{\partial y}$ 、 $\frac{\partial v}{\partial x}$ 、 $\frac{\partial v}{\partial y}$ 在点不仅存在而且

连续。

(ii)C-R 条件在该点成立。C-R 条件为

$$\begin{cases} \frac{\partial u(x, y)}{\partial x} = \frac{\partial v(x, y)}{\partial y} \\ \frac{\partial v(x, y)}{\partial x} = -\frac{\partial u(x, y)}{\partial y} \end{cases}$$

1.7 解析

若函数不仅在一点是可导的,而且在该点的 邻域内点点是可导的,则称该点是解析的。解析的必要条件:函数 f(z)=u+iv 在点 z 的

邻域内(i)
$$\frac{\partial u}{\partial x}$$
、 $\frac{\partial u}{\partial y}$ 、 $\frac{\partial v}{\partial x}$ 、 $\frac{\partial v}{\partial y}$ 存在。

(ii)C-R 条件在该点成立。

解析的充分条件:函数 f(z)=u+iv 在邻域内(i)

$$\frac{\partial u}{\partial x}$$
、 $\frac{\partial u}{\partial y}$ 、 $\frac{\partial v}{\partial x}$ 、 $\frac{\partial v}{\partial y}$ 不仅存在而且连续。

(ii)C-R条件在该点成立。

1.8 解析函数和调和函数的关系

拉普拉斯方程的解都是调和函数:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

①由此可见解析函数的实部和虚部都是调和函数。但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足 C—R 条件。

②当知道 f(z)=u(x,y)+iv(x,y)中的 u(x,y)时,如何求 v(x,y)?

通过 C-R 条件列微分方程

第二章 复变函数的积分

2.2 解析函数的积分

柯西定理: 若函数 f(z)在单连区域 D 内是解析的,则对于所有在这个区域内而且在两个公共端点 A 与 B 的那些曲线来讲,积分

$$\int_{A}^{B} f(z)dz$$
 的值均相等。

柯西定理推论: 若函数 f(z)在单连区域 D 内解析,则它沿 D 内任一围线的积分都等于

二连区域的柯西定理: 若 f(z)在二连区域 D 解析,边界连续,则 f(z)沿外境界线(逆时针方向)的积分等于 f(z)沿内境界线(逆时针方向)的积分。

n+1 连区域柯西定理:

$$\oint_{\Gamma_e} f(z)dz = \oint_{\Gamma_h} f(z)dz + \oint_{\Gamma_{h_2}} f(z)dz + \dots + \oint_{\Gamma_{h_n}} f(z)dz$$

推论: 在 f(z)的解析区域中,围线连续变形时,积分值不变。

2.3 柯西公式

若 f(z)在单连有界区域 D 内解析,在闭区域 D 的边界连续,则对于区域 D 的任何一个内

点 a,有
$$f(a) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z-a} dz$$
 其中 Γ 是境

界线。

2.5 柯西导数公式

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

第三章 级数

3.2 复变函数项级数

外尔斯特拉斯定理: 如果级数 $\sum_{k=0}^{\infty} u_k(z)$ 在境

界 Г上一致收敛,那么

- (i)这个级数在区域内部也收敛, 其值为 F(z)
- (ii)由它们的 m 阶导数组成的级数

 $\sum u_k^{(m)}(z)$ 在区域内也收敛,而且它们的和

等于 F^(m)(z)。

3.3 幂级数

阿贝尔(Abel)定理: 如果幂级数

$$\sum_{k=0}^{\infty} c_k (z-a)^k$$
 在点 z_0 处收敛,则在任一圆

|z-a|<=p|z₀-a|, 0<p<1 内, 幂级数一致收敛, 并且绝对收敛。

达朗贝尔(D'Alembert)判别法:对于幂级数,

计算下列极限
$$\lim_{k\to\infty} \frac{|c_{k+1}(z-a)^{k+1}|}{|c_k(z-a)^k|}$$

(i) 当极限值小于1时,幂级数在点z处绝对 收敛(ii)当极限值大于1时,幂级数在点z 处发散(iii)当极限值等于1时,敛散性不能 判断。

柯西判别法: 计算极限
$$\lim_{k\to\infty} \sqrt[k]{|c_k(z-a)^k|}$$

当极限值小于1时,幂级数在点z处绝对收 敛:而当极限值大于1时,幂级数在点z处发 散;极限值等于1时,不能判断

3.4 解析函数与幂级数

定理: 幂级数的和是收敛圆内的解析函数。

Taylor 级数:
$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots$$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots$$

$$\cos z = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots$$

$$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots + (-1)^n \frac{z^{n+1}}{n+1} + \dots$$
 —阶极点留数的一种算法:

3.5 解析函数与双边幂级数

定理: 双边幂级数的和是环形区域内的解析

函数。

环形区域内的解析函数可展成双边幂级数

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-a)^k$$

$$c_k = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\xi)}{(\xi - a)} d\xi$$
 称为 Laurant 系数

3.8 孤立奇点

非孤立奇点: 若函数 f(z)在 z=a 点的无论多 么小的邻域内,总有除 z=a 以外的奇点,则 z=a 是 f(z)的非孤立奇点。

孤立奇点: 若函数在 z=a 不可导(或无定义), 而在去心邻域 0<|z-a|< ε 解析,则 z=a 是 f(z) 的一个孤立奇点。

3.9 奇点分类

有限远奇点	极限性质	洛朗级数
可去奇点	limf(z)=有限	不含负幂项
	值	
极点	limf(z)=∞	含有限个负
		幂项
本性奇点	limf(z)=无定	含无限个负
	值	幂项

无穷远点	极限性质	洛朗级数
可去奇点	limf(z)=有限值	不含正幂项
极点	limf(z)=∞	含有限个正幂
		项
本性奇点	limf(z)=无定值	含无限个正幂
		项

第四章 留数

4.1 柯西公式的另一种形式

一阶极点留数: 若 g(z)在单连区域 D 内解析, a在D内,在D内作一环绕点a的围线C。 令 f(z)=g(z)/(z-a)则有:

$$\oint_C f(z)dz = 2\pi i \operatorname{Re} sf(a)$$

Re
$$sf(a) = \lim_{z \to a} (z - a) f(z)$$

如果
$$f(z) = \frac{\phi(z)}{\psi(z)}$$
 那么 $\operatorname{Res} f(a) = \frac{\phi(a)}{\psi'(a)}$

m阶极点的留数公式

Re
$$sf(a) = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]\Big|_{z=a}$$

4.2 用级数分析来分析留数定理

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-a)^k$$

则有 $\operatorname{Res} f(a) = c_{-1}$

多连区域的柯西定理:如果在围线 C 的内部 包含 n 个孤立奇点, 利用多连区域的柯西定

理就有
$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n \text{Re } sf(a_k)$$

4.3 无限远点的留数

Re
$$sf(\infty) = -\frac{1}{2\pi i} \oint f(z) dz = -c_{-1}$$

定理 1: 如果当 $z \rightarrow \infty$ 时,若 $zf(z) \rightarrow 0$,则 $Resf(\infty)=0$

定理 2:
$$\sum_{k=1}^{n} \operatorname{Resf}(a_{k}) + \operatorname{Re} sf(\infty) = 0$$

4.4 留数定理计算型积分

第一种类型: $\int_{a}^{2\pi} R(\cos \varphi, \sin \varphi) d\varphi$ 型积分

$$\cos \varphi = \frac{1}{2}(z + z^{-1}) \sin \varphi = \frac{1}{2}(z - z^{-1})$$

$$\int_{0}^{2\pi} R(\cos \varphi, \sin \varphi) d\varphi = \oint_{|z|=1} f(z) dz =$$
{在单位圆内各个奇点的留数之和}

第二种类型: $\int_{0}^{\infty} f(x)dx$ 型积分

注意,需要满足条件 $\lim_{z \to \infty} f(z) = 0$

$$\int_{0}^{\infty} f(x)dx = 2\pi i \{ 在上半平面的奇点留数之$$

(界限上的乘以 0.5) 和 }

第三种类型:
$$\int_{0}^{\infty} f(x)e^{imx} dx$$
 型积分

注意需要符合条件 $\lim_{z \to \infty} f(z) = 0$

$$\int_{-\infty}^{\infty} f(x)e^{imx} dx = 2\pi i \{f(z)e^{imz} \, \text{在上半平面的}$$

奇点留数之和}

4.7 围线积分方法

泊松积分:
$$\int_0^\infty e^{-ax^2} \cos bx dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-b^2/4a}$$

菲涅尔积分:

$$\int_0^{\infty} \cos x^2 dx = \int_0^{\infty} \sin x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$

第六章 积分变换

6.1 傅里叶级数

三角函数系的正交性

2π周期-展开定理:

$$f(x) = C_0 + \sum_{m=1}^{\infty} (C_m \cos mx + D_m \sin mx)$$

$$C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) d\xi$$

$$C_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\xi) \cos m \, \xi d\xi$$

$$D_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\xi) \sin m \, \xi d\xi$$

任意周期 21-展开定理:

$$f(x) = C_0 + \sum_{m=1}^{\infty} (C_m \cos m \frac{\pi}{l} x + D_m \sin m \frac{\pi}{l} x)$$

$$C_0 = \frac{1}{2!} \int_{-l}^{l} f(\xi) d\xi$$

$$C_{m} = \frac{1}{l} \int_{-l}^{l} f(\xi) \cos \frac{m \pi}{l} \xi d\xi$$

$$D_{m} = \frac{1}{l} \int_{-l}^{l} f(\xi) \sin \frac{m \pi}{l} \xi d\xi$$

6.2 傅立叶积分

$$f(x) = \int_0^\infty [C(k)\cos kx + D(k)\sin kx]dk$$

$$\begin{cases} C(k) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) \cos k\xi d\xi \\ D(k) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) \sin k\xi d\xi \end{cases}$$

$$\int_{-\infty}^{\infty} D(k) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) \sin k\xi d\xi$$

C(k)是偶函数, D(k)是奇函数

傅里叶公式

$$\stackrel{\leftarrow}{\diamondsuit} \widetilde{f}(k) \equiv \frac{1}{2} [C(k) - iD(k)]$$

则
$$f(x) = \int_{-\infty}^{\infty} \widetilde{f}(k)e^{ikx} dk$$

$$\widetilde{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) e^{ik\xi} d\xi$$

$$\widetilde{f}(k) = F[f(x)]$$

$$f(x) = F^{-1}[\tilde{f}(k)]$$

6.3 傅立叶变换

线性定理

$$F[C_1f_1 + C_2f_2] = C_1F[f_1] + C_2F[f_2]$$

导数定理

$$F[f'(x)] = ikF[f(x)]$$

$$F\left[\frac{d^{n} f(x)}{dx^{n}}\right] = (ik)^{n} F[f(x)]$$

积分定理

$$F\left[\int_{x_0}^x f(\xi)d\xi\right] = \frac{1}{ik}F[f(x)]$$

延迟定理

$$F[f(x-x_0)] = e^{-ikx_0}F[f(x)]$$

相似定理

$$F[f(ax)] = \frac{1}{a}\tilde{f}(\frac{k}{a})$$

卷积定理

$$F[\int_{-\infty}^{\infty} f_1(\xi) f_2(x-\xi) d\xi] = 2\pi \widetilde{f}_1(k) \widetilde{f}_2(k)$$

6.4 拉普拉斯变幻

$$\overline{\phi}(p) = \int_0^\infty \phi(t) e^{-pt} dt$$

注意当 t<0 时, $\phi(t)=0$

$$\overline{\phi}(p) = L[\phi(t)] \quad \phi(t) = L^{-1}[\overline{\phi}(p)]$$

$$\phi(t) \longleftrightarrow \overline{\phi}(p)$$

线性性质:

$$a\phi_1(t) + b\phi_2(t) = a\widetilde{\phi}_1(p) + b\widetilde{\phi}_2(p)$$

导数的象函数:

$$\frac{d\phi(t)}{dt} \leftrightarrow p\overline{\phi}(p) - \phi(0)$$

$$\frac{d^{n}\phi(t)}{dt^{n}} \leftrightarrow p^{n}\overline{\phi}(p) - p^{n-1}\phi(0) - p^{n-2}\phi'(0) - \dots - \phi^{n-1}(0)$$

积分的象函数

$$\int_0^t \phi(t)dt \leftrightarrow \frac{\overline{\phi}(p)}{p}$$

$$t^n \leftrightarrow \frac{n!}{n^{n+1}}$$

象函数的位移定理:

$$e^{at}\phi(t) \leftrightarrow \overline{\phi}(p-a)$$
 由此可得

$$e^{at}\cos \omega t \leftrightarrow \frac{p-a}{(p-a)^2+\omega^2}$$

$$e^{at} \sin \omega t \leftrightarrow \frac{\omega}{(p-a)^2 + \omega^2}$$

$$e^{at}ch \omega t \leftrightarrow \frac{p-a}{(p-a)^2-\omega^2}$$

$$e^{at} sh \omega t \leftrightarrow \frac{\omega}{(p-a)^2 - \omega^2}$$
 (用来求逆变換)

延迟函数的象函数

$$\phi(t)H(t) \leftrightarrow \overline{\phi}(p)$$

$$\phi(t-\tau)H(t-\tau) \leftrightarrow e^{-p\tau}\overline{\phi}(p)$$

卷积定理

$$L[\int_{0}^{t} \phi_{1}(\tau)\phi_{2}(t-\tau)d\tau] = L[\phi_{1}(t)]L[\phi_{2}(t)]$$

象函数的导数

$$(-t)^n \phi(t) \leftrightarrow \frac{d^n \overline{\phi}(p)}{dp^n}$$

积分公式:

$$\int_0^\infty \overline{\phi}(p) dp = \int_0^\infty \frac{\phi(t)}{t} dt$$

第八章 数学物理方程的导出

为八平 <u>数于的</u> 在万柱的订出		
$\frac{\partial^2 u(x,t)}{\partial t^2} = a^2 \frac{\partial^2 u(x,t)}{\partial x^2}$		
弦的横振动方程	u=弦的横向位移 a ² =F _T / ρ F _T =张力 ρ =单位长度弦的质量	
弦的纵振动方程	u=弦的纵向位移 a ² =E/ρ E=杨氏模量 ρ=单位长度弦的质量	

$\frac{\partial u(\overrightarrow{r},t)}{\partial t} = a^2 \nabla^2 u(\overrightarrow{r},t)$		
扩散方程	u=离子浓度,a ² =D	
	D=扩散系数	
热传导方程	u=温度,a ² =k/ρc	
	k=导热系数,ρ=质量密度	
	c=比热容	

$$\frac{\partial^{2} u(r,t)}{\partial t^{2}} = a^{2} \nabla^{2} u(r,t)$$
波动方程
$$u=\mathbf{E} \stackrel{\mathbf{I}}{\mathbf{E}} \stackrel{\mathbf{I}}{\mathbf$$

拉普拉斯方程	$\nabla^2 u(r,t) = 0$
稳恒状态扩散方程	u=粒子浓度
稳恒状态传导方程	u=温度
静电场方程	u=静电势

线性算符与解的叠加

	4) 174
初始条件	
扩散方程 热传导方	$\left u(r,t)\right _{t=0}=\phi$ (已知函数)
程	
波动方程	$ u(r,t) _{t=0} = \phi(已知函数)$

$$\left|\frac{\partial \mathbf{u}(\mathbf{r},\mathbf{t})}{\partial \mathbf{t}}\right|_{t=0} = \psi \ (\, \mathbf{E} \mathbf{知函数})$$

边界条件 $\left[\alpha \frac{\partial u}{\partial n} + \beta u\right]_{\Sigma} =$ 已知函数

第九章 本征函数法			
弦振动	弦振动方程的第一类边值问题		
定解问题	$\frac{\partial^2 u(x,t)}{\partial t^2} = a^2 \frac{\partial^2 u(x,t)}{\partial x^2}$		
	$u _{t=0} = \phi(x), u_t _{t=0} = \psi(x)$ u(0,t) = u(l,t) = 0		
分离 变量	u(x,t) = X(x)T(t)		
解本 证方 程	$\begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = X(l) = 0 \end{cases}$		
	本征值 $\lambda = \lambda_n = \left(\frac{n\pi}{l}\right)^2$		
	本征函数 $X(x) = X_n(x) = \sin \frac{n\pi}{l}x$		
解非本征	$T''(t) + a^2 \lambda_n T(t) = 0$ 的通解为		
方程	$T(t) = T_n(t) = C_n \cos \frac{n\pi a}{l} t + D_n \sin \frac{n\pi a}{l} t$		
定解问题的解	$u(x,t) = \sum_{n=1}^{\infty} T_n(t) X_n(x) =$		
H47/01	$\sum_{n=1}^{\infty} \left(C_n \cos \frac{n \pi a}{l} t + D_n \sin \frac{n \pi a}{l} t \right) \sin \frac{n \pi}{l} x$		
由初 始条 件和	$u(x,0) = \phi(x) = \sum_{n=1}^{\infty} C_n \sin \frac{n\pi}{l} x$		
	$\left u_{t} \right _{t=0} = \psi(x) = \sum_{n=1}^{\infty} D_{n} \frac{n \pi a}{l} \sin \frac{n \pi}{l} x$		
定系 数	$C_n = \frac{2}{l} \int_0^l \phi(\xi) \sin \frac{n\pi}{l} \xi d\xi$		
	$D_{n} = \frac{2}{n\pi a} \int_{0}^{l} \psi(\xi) \sin \frac{n\pi}{l} \xi d\xi$		

热传导方程第二类边值问题

热传导万程第二类辺值问题			
定解问题	$\frac{\partial u(x,t)}{\partial t} = a^2 \frac{\partial^2 u(x,t)}{\partial x^2}$ $u_x _{x=0} = 0, u_x _{x=l} = 0$ $u(x,0) = \phi(x)$		
 分离 变量	u(x,t) = X(x)T(t)		
解本 证方 程	$\begin{cases} X''(x) + \lambda X(x) = 0 \\ X'(0) = X'(l) = 0 \end{cases}$		
	本征值 $\lambda = \lambda_n = (\frac{n\pi}{l})^2$ 本征函数 $X(x) = X_n(x) = \cos \frac{n\pi}{l} x$		
解非 本征 方程	$T''(t) + a^2 \lambda_n T(t) = 0$ 的通解为 $T(t) = T_n(t) = C_n e^{\left[-\left(\frac{an\pi}{l}\right)^2 t\right]}$		
定解问题的解	$u(x,t) = C_0 + \sum_{n=1}^{\infty} C_n e^{\left[-\left(\frac{an\pi}{l}\right)^2 t\right]} \cos\frac{n\pi}{l} x$		
由初 始条 件和	$u(x,t) = C_0 + \sum_{n=1}^{\infty} C_n \cos \frac{n\pi}{l} x$		
傅里 叶级 数确	$C_0 = \frac{1}{l} \int_0^l \phi(\xi) d\xi$ $C_n = \frac{2}{l} \int_0^l \phi(\xi) \cos \frac{n\pi}{l} \xi d\xi$		
定系 数			

$X''(x) + \lambda X(x) = 0$ 本征值和本征函数系

齐次边界条件	本征值	本征函数
		系
$X\left(0\right) = X\left(l\right) = 0$	$\lambda_n = \left(\frac{n\pi}{l}\right)^2$	$\sin \frac{n\pi}{l}x$
X'(0) = X'(l) = 0	$\lambda_n = \left(\frac{n\pi}{l}\right)^2$	$\cos \frac{n\pi}{l}x$
X(0) = X'(l) = 0	$\lambda_n = \left[\frac{(n+\frac{1}{2})\pi}{l}\right]^2$	$\sin \frac{(n+\frac{1}{2})\pi}{l}x$

第一类边界条件齐次化的一般方法

非齐次边界条 件	$u(0,t) = \mu_1(t)$ $u(l,t) = \mu_2(t)$
齐次化方法	$u(x,t) = v(x,t) + \mu_1(t) + \frac{x}{l} [\mu_2(t) - \mu_1(t)]$

非齐次方程按本征函数系展开的解法

非齐次方程按本征函数系展开的解法		
定解问题	$\frac{\partial^2 v(x,t)}{\partial t^2} = a^2 \frac{\partial^2 v(x,t)}{\partial x^2} + f(x,t)$	
	$ v _{x=0} = 0, v _{x=l} = 0$	
	$ v _{t=0} = 0, v_t _{t=0} = 0$	
本征		
函数	$X(x) = X_n(x) = \sin \frac{n\pi}{l} x$	
非齐	∞	
次项	$f(x,t) = \sum_{n} f_n(t) \sin \frac{n\pi x}{t}$	
按本	n=1 l	
征函	$f_n(t) = \frac{2}{l} \int_0^l f(\xi, t) \sin \frac{n \pi \xi}{l} d\xi$	
数展	$\int_{n}^{\infty} (l) = \int_{0}^{\infty} \int_{0}^{\infty} (\zeta, l) \sin \left(-\frac{\alpha \zeta}{l} \right)$	
开		
定解	$^{\circ}$ $n\pi$	
问题	$v(x,t) = \sum_{n=0}^{\infty} T_n(t) x i n \frac{n \pi}{l} x$	
试解	n=1	
$T_n(t)$	$n \pi a$	
的确	$T_n''(t) + (\frac{n\pi a}{l})^2 T_n(t) - f_n(t) = 0$	
定	$\left T_{n} \right _{t=0} = 0, T_{n}' \big _{t=0} = 0$	
	$T_n(t) = \frac{l}{n \pi a} \int_0^t f_n(\tau) \sin \frac{n \pi a(t-\tau)}{l} d\tau$	

第十章 勒让德多项式

微分方程的幂级数解法

二阶齐次线性常微分方程

$$\frac{d^{2}y(z)}{dz^{2}} + p(z)\frac{dy(z)}{dz} + q(z)y(z) = 0$$

将试解
$$y(z) = \sum_{k=0}^{\infty} C_k (z - z_0)^k$$
 代入方程, 求

系数的递推公式,从而求出方程的解

连带勒让德方程

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + [l(l+1) - \frac{m^2}{1-x^2}]y = 0$$

勒让德方程

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + l(l+1)y = 0$$

勒让德方程的通解

$$y(x) = C_0 y_0(x) + C_1 y_1(x)$$

$$y_0(x) = 1 - \frac{l(l+1)}{2!}x^2 + \frac{(l-2)l(l+1)(l+3)}{4!}x^4$$

$$- \dots + (-1)^k (l-2k+2)(l-2k+4)\dots$$

$$l(l+1)(l+3)\dots(l+2k-1)x^{2k}/(2k)! + \dots$$

$$y_1(x) = x - \frac{(l-1)(l+2)}{3!}x^2 + \frac{(l-3)(l-1)(l+2)(l+4)}{5!}x^5 - \dots +$$

$$(-1)^{k} (l-2k+1)(l-2k+3)...$$

$$(l+2)(l+4)...(l+2k)x^{2k+1}/(2k+1)!+...$$

系数递推关系

$$C_{n+2} = \frac{(n-l)(n+l+1)}{(n+2)(n+1)} C_n$$

勒让德多项式

对 $y_0(x)$ 或 $y_1(x)$ 乘以适当常数, 使得 x^1 的最

高项系数为
$$C_l = \frac{(2l)!}{2^l(l!)^2}$$
时的多项式称为勒

让德多项式,此时相应的 C_{l-2n} 为

$$C_{l-2n} = (-1)^n \frac{(2l-2n)!}{n!2^l (l-n)!(l-2n)!}$$

勒让德级数表达式

$$P_{l}(x) = \sum_{k=0}^{k_{m}} (-1)^{k} \frac{(2l-2k)!}{k!2^{l}(l-k)!(l-2k)!} x^{l-2k}$$

$$k_m = \left[\frac{l}{2}\right]$$
(高斯函数)

导数表达式

$$P_{l}(x) = \frac{1}{2^{l} l!} \frac{d^{l}}{dx^{l}} (x^{2} - 1)^{l}$$

围线积分表达式

$$P_{l}(z) = \frac{1}{2\pi i} \frac{1}{2^{l}} \oint_{C} \frac{(\xi^{2} - 1)^{l}}{(\xi - z)^{l+1}} d\xi$$

定积分表达式

$$P_{l}(\cos \theta) = \frac{1}{\pi} \int_{0}^{\pi} [\cos \theta + i \sin \theta \cos \varphi]^{l} d\varphi$$

性质

$$P_{l}(-x) = (-1)^{l} P_{l}(x)$$

$$\begin{cases} P_{2n+1}(0) = 0 \\ P_{2n}(0) = (-1)^{n} \frac{(2n)!}{2^{2n} n! n!} \end{cases}$$

$$P_{l}(1) = 1$$

$$P_{l}(-1) = (-1)^{l}$$

$$|P_{l}(\cos \theta)| \le 1$$

勒让德方程的本征方程

刘维尔方程

$$\frac{d}{dx}[k(x)\frac{dy}{dx}] - q(x)y - \lambda w(x)y = 0$$

勒让德方程

$$\frac{d}{dx}(1-x^{2})\frac{dy}{dx} + l(l+1)y = 0$$

权函数: w(x)=1

本征函数: P_i(x)

正交性:
$$\int_{-1}^{1} P_l(x) P_k(x) dx = 0, l \neq k$$

模:
$$N_l = \sqrt{\int_{-1}^1 [P_l(x)]^2 dx} = \sqrt{\frac{2}{2l+1}}$$

广义傅立叶级数展开

$$f(x) = \sum_{l=0}^{\infty} f_l P_l(x), f_l = \frac{2l+1}{2} \int_{-1}^{1} f(x) P_l(x) dx$$

$$g(\theta) = f(\cos \theta)v = \sum_{l=0}^{\infty} g_l P_l(\cos \theta),$$

$$g_l = \frac{2l+1}{2} \int_0^{\pi} g(\theta) P_l(\cos \theta) \sin \theta d\theta$$

母函数

$$\frac{1}{\sqrt{1 - 2r\cos\theta + r^2}} = \begin{cases}
\sum_{l=0}^{\infty} r^l P_l(\cos\theta), r < 1 \\
\sum_{l=0}^{\infty} \frac{1}{r^{l+1}} P_l(\cos\theta), r > 1
\end{cases}$$

$$\frac{d}{dx} [x^{\nu} J_{\nu}(x)] = x^{\nu} J_{\nu-1}(x)$$

$$\frac{d}{dx} [x^{\nu} J_{\nu}(x)] = -x^{\nu} J_{\nu-1}(x)$$

$$\frac{1}{\sqrt{1 - 2rx + r^2}} = \begin{cases} \sum_{l=0}^{\infty} r^l P_l(x), r < 1\\ \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} P_l(x), r > 1 \end{cases}$$

递推公式

$$(n+1) P_{n+1}(x) - (2n+1)x P_n(x) + n P_{n-1}(x) = 0$$

$$P_{n}(x) = P'_{n+1}(x) - 2x P'_{n}(x) + P'_{n-1}(x)$$

$$P'_{n+1}(x) = x P'_n(x) + (n+1) P_n(x)$$

$$x P'_n(x) - P'_{n-1}(x) = n P_n(x)$$

$$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1) P_n(x)$$

具有轴对称性质的拉普拉斯方程

$$\nabla^2 u(r,\theta,\varphi) = \nabla^2 u(r,\theta) = 0$$

$$u(r, \theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$

R(r)	$\Theta(heta)$	$\Phi(\varphi)$
非本征函数	本征函数	本征函数
$r^{l}, r^{-(l+1)}$	1,m=0	$P_l(\cos \theta)$

$$u(r,\theta) = \sum_{l=0}^{\infty} (a_l r^l + b_l \frac{1}{r^{l+1}}) P_l(\cos \theta)$$

第十一章 贝塞尔函数

贝塞尔函数

v 阶贝塞尔函数 v 阶贝塞尔方程的特解

$$J_{v}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(v+k+1)} \left(\frac{x}{2}\right)^{v+2k}$$

$$J_{-v}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(-v+k+1)} (\frac{x}{2})^{-v+2k}$$

递推关系

$$\frac{d}{dx}[x^{\nu}J_{\nu}(x)] = x^{\nu}J_{\nu-1}(x)$$

$$\frac{d}{dx}[x^{-\nu}J_{\nu}(x)] = -x^{-\nu}J_{\nu+1}(x)$$

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$

$$J_{v-1}(x) - J_{v+1}(x) = 2J'_{v}(x)$$

整阶贝塞尔函数

$$J_{m}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(m+k+1)} \left(\frac{x}{2}\right)^{m+2k}$$

奇偶性:
$$J_m(-x) = (-1)^m J_m(x)$$

线性相关性: $J_{m}(x) = (-1)^{m} J_{m}(x)$

渐进性质 当|x|>>1 时

$$J_m(x) \approx \sqrt{\frac{2}{n\pi}} \cos(x - \frac{m\pi}{2} - \frac{\pi}{4}) + O(x^{-3/2})$$

M 阶贝塞尔方程的本征问题

$$\frac{d}{d\rho} \left[\rho \frac{dR(\rho)}{d\rho}\right] + (\omega^2 \rho - \frac{m^2}{\rho})R(\rho) = 0$$

自然边界条件

$$k(\rho)|_{\rho=0} = \rho|_{\rho=0} = 0$$

边界条件:

$$\left[\alpha \frac{dR(\rho)}{d\rho} + \beta R(\rho)\right]_{\rho=b} = 0$$

本征函数:
$$R_n(\rho) = J_m(\omega_n \rho)$$

本征值:
$$\alpha\omega J'_{m}(\omega b) + \beta J_{m}(\omega b) = 0$$
 的解 ω

正交性:
$$\int_0^b J_m(\omega_n \rho) J_m(\omega_j \rho) \rho d\rho = 0$$

模:
$$N_n^2 = \int_0^b J_m^2(\omega_n \rho) \rho d\rho =$$

$$\frac{b^{2}}{a} \{ [J'_{m}(\omega_{n}b)]^{2} + (1 - \frac{m^{2}}{(\omega_{n}b)^{2}}) [J'_{m}(\omega_{n}b)]^{2} \}$$

展开定理

$$f(\rho) = \sum_{n=1}^{\infty} f_n J_m(\omega_n \rho)$$

$$f(\rho) = \sum_{n=1}^{\infty} f_n J_m(\omega_n \rho)$$

$$f_n = \frac{1}{N_n^2} \int_0^b f(\rho) J_m(\omega_n \rho) \rho d\rho$$

贝塞尔函数的性质

母函数:
$$e^{\frac{x}{2}(z-\frac{1}{z})} = \sum_{m=-\infty}^{\infty} J_m(x)z^m$$

加法公式:
$$J_m(a+b) = \sum_{k=-\infty}^{\infty} J_k(a) J_{m-k}(b)$$

平面波用柱面波展开公式

$$e^{ikr\cos\varphi} = \sum_{m=-\infty}^{\infty} J_m(kr)i^m e^{im\varphi}$$

$$e^{-ikr\sin\theta} = \sum_{m=-\infty}^{\infty} J_m(kr)(-1)^m e^{im\theta}$$

$$e^{ikr\sin\xi} = \sum_{m=-\infty}^{\infty} J_m(kr)e^{im\xi}$$

积分表达式

$$J_m(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ix\sin\xi - im\xi} d\xi$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(m\xi - x \sin \xi) d\xi$$

围线积分表达式

$$J_{m}(x) = \frac{1}{2\pi i} \oint_{v} \frac{e^{\frac{x}{2}(z-\frac{1}{z})}}{z^{m+1}} dz$$