Chapter 1

Mathematical introduction

1.1 Symbols

- I means the **unit interval**, defined to be the closed interval [0,1]. Or, in other words, the set of real numbers which are greather than or equal to zero and less than or equal to one;
- {}

1.2 Topology preliminaries

1.2.1 Continuous functions

A function $f: X \to Y$ is said to be **continuous** if for every open set $W \subseteq Y$, the inverse image of f

$$f^{-1}(W)\{x \in X \mid f(x) \in W\}$$
(1.1)

is an open subset of X.

1.2.2 Open sets

1.2.3 Cartesian product

Let A and B be two sets, for which the elements of A are denoted by a and the elements of B denoted by b. The **cartesian product** (abbreviated by the $symbol \times$) of A and B is a new set, say, C, which corresponds to the set formed by all ordered pairs (a,b). In other words,

$$C = A \times B = \{(a, b) \mid a \in A, b \in B\}. \tag{1.2}$$

a and b may as well be n- and m-tuples, where the corresponding $c \in C$ will be represented by a pair of tuples.

1.2.4 Product space

A product space X is the space defined by

$$X := \prod_{i} X_i, i \in [0, 1], \tag{1.3}$$

where X_i are the canonical projections $p_i: X \to X_i$, and the family of X_i is equipped with a product topology.

In its turn, a **product topology** on X is the topology with the fewest open sets for which p_i are all continuous.

1.2.5 Homotopy

Let X and Y be topological spaces, and f and g continuous functions, both mapping the space X into the space Y. A **homotopy** between f and g is defined to be a continuous function $h: X \times [0,1] \to Y$ such that if $x \in X$, then h(x,0) = f(x) and h(x,1) = g(x).

In other words, a homotopy h can be parameterized by a real number $t \in [0,1]$, such that h(x,t) will be a continuous function mapping the space X in the space Y for every value in its domain, where h(x,0) = f(x) and h(x,t) = g(x). To simplify its visualization, t can be regarded as the "time", and the mapping f(x) will be smoothly deformed until it reaches its final value g(x).

Alternatively, one can also view t as an "extra dimension", where h(x,t) will start from a "basis", the mapping f(x), and be smoothly deformed along the "extra dimension" t, until it reaches its "top", namely, g(x).

Two maps are said to be **homotopic** if and only if there exists a homotopy connecting them.

Chapter 2

Ordered media

For almost all of our purposes here an **ordered medium** can be regarded as a region of space described by a function f(r) that assigns to every point of the region an order parameter. The possible values of the order parameter constitute a space known as the ordered-parameter space (or manifold of internal states).

- 2.1 Order parameter
- 2.2 Topology of defects
- 2.2.1 Spins on the plane