

UNIVERSITAS GADJAH MADA

Color Model and Pixel Relations

Wahyono, Ph.D.
Department of Computer Science and Electronics
Faculty of Mathematics and Natural Sciences
Universitas Gadjah Mada, Yogyakarta, Indonesia
Email: wahyo@ugm.ac.id

Color Models

- A mathematical system for representing color
- The human eye combines 3 primary colors (using the 3 different types of cones) to discern all possible colors.
- Colors are just different light frequencies
 - Red 700nm wavelength
 - Green 546.1 nm wavelength
 - Blue 435.8 nm wavelength

Primary Color

- Primary colors of light are additive
 - Primary g colors are red, green, and blue
 - Combining red + green + blue yields white
- Primary colors of pigment are subtractive
 - Primary colors are cyan, magenta, and yellow
 - Combining cyan Combining cyan magenta yellow yields + magenta + yellow yields black

RGB Color Model

Active displays, such as computer monitors and television sets, emit combinations of red, green and blue light. This is an **additive** color model

CMY Color model

Passive displays, such as color inkjet printers, **absorb** light instead of emitting it. Combinations of **cyan**, **magenta** and **yellow** inks are used. This is a **subtractive** color model.

RGB vs CMY

Magenta – Red + Blue Cyan = Blue + Green Yellow = Green + Red

Magenta – White - Green Cyan = White - Red Yellow = White - Blue

RGB Color Cube

RGB 24-bit color cube

RGB and **CMY** Color Cubes

RGB and CMY Color Cubes

RGB Example

Original

Red Band

Green Band

Blue Band

RGB Example

Original

No Red

No Green

No Blue

Hue

- A subjective measure of color
- Average human eye can perceive ~200 diff t l different colors

Saturation

- Relative purity of the color. Mixing more "white" with a color reduces its saturation.
- Pink has the same hue as red but less saturation

Intensity

The brightness or darkness of an object

- Hue is defined as an angle
 - 0 degrees is RED
 - 120 d iegrees is GREEN
 - 240 degrees is BLUE
- Saturation is defined as the percentage of distance from the center of the HSI triangle to the pyramid surface.
 - Values range from 0 to 1.
- Intensity is denoted as the distance "up" the axis from black.
 - Values range from 0 to 1.

Conversion Between RGB and HS

Converting color from RGB to HSI

$$H = \begin{cases} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B > G \end{cases} \text{ with } \theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^2 + (R - B)(G - B)]^{\frac{1}{2}}} \right\}$$

$$S = 1 - \frac{3}{(R + G + B)} [\min(R, G, B)]$$

$$I = \frac{1}{3} [R + G + B]$$

Converting color from HSI to RGB

$$B = I(1-S)$$

$$R = I \left[1 + \frac{S \cos H}{\cos(60-H)} \right]$$

$$G = 1 - (R+B)$$

$$B = I(1-S)$$

$$R = I\left[1 + \frac{S\cos H}{\cos(60-H)}\right]$$

$$G = I\left[1 + \frac{S\cos(H-120)}{\cos(60-(H-120))}\right]$$

$$G = I-(R+B)$$

$$B = I-(R+G)$$

$$G = I(1-S)$$

$$B = I \left[1 + \frac{S \cos(II - 240)}{\cos(60 - (H - 240))} \right]$$

$$R = 1 - (G + B)$$

Other Color Models

- RGB (CIE), RnGnBn (TV National Television Standard Committee)
- XYZ (CIE)
- UVW (UCS de la CIE), U*V*W* (UCS modified by the CIE)
- YUV, YIQ, YCbCr
- YDbDr
- DSH, HSV, HLS, IHS
- Munsel color space (cylindrical representation)
- CIELuv
- CIELab
- SMPTE-C RGB
- YES (Xerox)
- Kodak Photo CD, YCC, YPbPr, ...

Color Distance

- Quantifying the difference (or similarity) between two colors
 - L1 metric is the taxi-cab distance
 - L2 metric is the straight-line distance
- Distances are often normalized to the interval [0-1]
 - Compute the distance in normalized color space
 - Divide by maximum possible distance in that space

Color Distance

Color Model Selection

- The type of representation depends on the applications at hand.
 - For display or printing, choose primary colors so that more colors can be produced. E.g. RGB for displaying and CMY for printing.
 - For analysis of color differences, HSI is more suitable.
 They corresponds closely with the way humans describe and interpret color.
 - For transmission or storage choose a less redundant representation, eg. YIQ or YUV or YCbCr

Skin Detection

M. Jones and J. Rehg, <u>Statistical Color Models with Application to Skin</u> <u>Detection</u>, <u>International Journal of Computer Vision</u>, 2002.

Basic Relationship

- Definitions:
 - f(x,y): digital image
 - Pixels: q, p (p,q \in f)
 - A subset of pixels of f(x,y): S
- A typology of relations:
 - Neighbourhood
 - Adjacency
 - Connectivity
 - Region & boundary
 - Distance

Neighboring, Adjacency

- $N_4(p)$: 4-neighbors
- $N_D(p)$: 4-diagonal neighbors
- $N_8(p) = N_4(p) \cup N_D(p) : 8$ neighbors

- Adjacency:
 - V: a set of gray levels s.t. if a pixel's gray level in V, it will be used to establish adjacency.
 - 4-adjacency
 - 8-adjacency
 - m-adjacency

Neighbors of Pixel

- A pixel p at (x,y) has 2 horizontal and 2 vertical neighbors:
 - (x+1,y), (x-1,y), (x,y+1), (x,y-1)
 - This set of pixels is called the 4-neighbors of p: N₄(p)

Neighbors of Pixel

- The 4 diagonal neighbors of p are: (N_D(p))
 - (x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)

• $N_4(p) + N_D(p) \rightarrow N_8(p)$: the 8-neighbors of p

Adjacent Pixels

- Two pixels are adjacent if:
 - They are neighbors in some sense (e.g. N₄(p), N₈(p), ...)
 - Their gray levels satisfy a specified criterion of similarity V (e.g. equality, ...)

 V is the set of gray-level values used to define adjacency (e.g. V={1} for adjacency of pixels of value 1)

Adjacent Pixels

p is adjacent to q if:

$$\begin{cases} q \in \{N_4(p), N_8(p), ...\} \\ f(p) \in V \\ f(q) \in V \end{cases}$$

- We consider three types of adjacency:
 - 4-adjacency: two pixels p and q with values from V are 4adjacent if q is in the set N₄(p)
 - 8-adjacency: two pixels p and q with values from V are 8adjacent if q is in the set N₈(p)

Adjacent Pixels

- The third type of adjacency:
 - m-adjacency: p and q with values from V are m-adjacent if:
 - q is in N₄(p)

or

- q is in N_D(p) and the set N₄(p)∩N₄(q) has no pixels with values from V
- Mixed adjacency is a modification of 8-adjacency and is used to eliminate the multiple path connections that often arise when 8adjacency is used.

Adjacency: Example

Adjacency: Example

Subset Adjacency

 Two image subsets S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2.

$N_D(p)$									
				0					
				0					
				0					
0	0	1	1	1	0	0	0	0	0
0				1					

Path

- A path (curve) from pixel p with coordinates (x,y) to pixel q with coordinates (s,t) is a sequence of distinct pixels:
 - Q: (x_0,y_0) , (x_1,y_1) , ..., (x_n,y_n)
 - where (x₀,y₀)=(x,y), (x_n,y_n)=(s,t), and (x_i,y_i) is adjacent to (x_{i-1},y_{i-1}), for 1≤i ≤n
 - n is the length of the path (|Q|).
- If $(x_0, y_0) = (x_n, y_n)$, then Q is a closed path
- 4-, 8-, and m-paths can be defined depending on the type of adjacency specified.

Connectivity

 Connectivity between pixels is important for establishing boundaries of objects and components of regions in an image

Connectivity

- Two pixels (p∈S, q∈S) are connected in S if there exists a path between them consisting entirely of pixels in S
- For any pixel p in S, the set of pixels in S that are connected to p is a connected component of S.
- If S has only one connected component then S is called a connected set.

Region and Boundary

- Let R be a subset of pixels:
 - R is a <u>region</u> if R is a connected set.
 - Its boundary (border, contour) is the set of pixels in R that have <u>at least one</u> neighbor <u>not</u> in R
 - An edge can be the region boundary (in binary images)

 For pixels p,q,z with coordinates (x,y), (s,t), (u,v), D is a distance function or metric if:

$$D(p,q) \ge 0$$
 ($D(p,q)=0$ iff $p=q$)
 $D(p,q) = D(q,p)$ and
 $D(p,z) \le D(p,q) + D(q,z)$

- Euclidean distance:
 - $D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$
 - Points (pixels) having a distance less than or equal to r from (x,y) are contained in a disk of radius r centered at (x,y).

- D₄ distance (city-block distance):
 - $D_4(p,q) = |x-s| + |y-t|$
 - forms a diamond centered at (x,y)
 - e.g. pixels with D₄≤2 from p

```
2
2 1 2
2 1 0 1 2
D<sub>4</sub> = 1 are the 4-neighbors of p
2 1 2
2 2
```

- D₈ distance (chessboard distance):
 - $D_8(p,q) = max(|x-s|,|y-t|)$
 - Forms a square centered at p
 - e.g. pixels with D₈≤2 from p

 D₄ and D₈ distances between p and q are independent of any paths that exist between the points because these distances involve only the coordinates of the points (regardless of whether a connected path exists between them).

 However, using m-adjacency the value of the distance (length of path) between two pixels depends on the values of the pixels along the path and those of their neighbors.

e.g. assume p, p₂, p₄ = 1

 p_1 , p_3 = can have either 0

or 1

 p_3 p_4

 (p_1) p_2

p

If only connectivity of pixels valued 1 is allowed, and p_1 and p_3 are 0, the m-distance between p and p_4 is 2.

If either p_1 or p_3 is 1, the distance is 3.

If both p_1 and p_3 are 1, the distance is 4 $(p p_1 p_2 p_3 p_4)$

Connected Component Labelling

0	0	0	0	0	0	0
1	0	0	0	1	1	1
1	1	1	0	0	1	0
1	1	0	0	0	1	0
0	0	0	1	0	1	0
0	0	1	1	0	0	0
0	0	0	0	0	1	1

0	0	0	0	0	0	0
1	0	0	0	2	2	2
1	1	1	0	0	2	0
1	1	0	0	0	2	0
0	0	0	3	0	2	0
0	0	3	3	0	0	0
0	0	0	0	0	4	4

(b)

Post Test

1	0	0	0	1
0	1	1	0	1
1	0	0	1	0
1	1	1	0	1

$$V = \{1\}$$

2	3	7	6	4
2	1	3	3	4
1	7	3	6	7
1	2	1	2	6

- 1. Gambarkan ketetanggaan dengan
 - 4-adjaceny
 - 8-adjacency
 - M-adjacency
- 2. Hitunglah e-distance, 4-distance dan m-distance dari pixel (0,0) ke (4,3)

UNIVERSITAS GADJAH MADA

THANK YOU

