FUNCTII CONTINUE PE SPATII METRICE SIRURI SI SERII DE FUNCTII

A) FUNCTII CONTINUE PE SPATII METRICE

Definitia 1. Fie o functie $f:D\subseteq X\to Y$ o functie, $A\subseteq D$ si $B\subseteq Y$.

- a) Multimea $f(A) = \{y \in Y | \exists x \in A \text{ astfel incat } f(x) = y\} \subseteq Y \text{ se numeste imaginea directa a multimii } A \text{ prin functia } f.$
- b) Multimea $f^{-1}(B) = \{x \in D | f(x) \in B \} \subseteq D$ se numeste preimaginea multimi
iB prin functia f.

Observatii. 1) $f(\emptyset) = \emptyset, f(D) = \operatorname{Im} f$.

2) $f^{-1}(\emptyset) = \emptyset, f^{-1}(Y) = D.$

Definitia 2. (definitii alternative pentru functii continue)

Se considera $f: D \subseteq (X, d_1) \to (Y, d_2)$ o functie si $x_0 \in D$.

- a) Functia f este continua in x_0 daca $\forall W \in V_{\tau_{d_2}}(f(x_0)) \exists V \in V_{\tau_{d_1}}(x_0)$ astfel incat $f(D \cap V) \subseteq W$.
- b) Functia f este continua in x_0 daca $\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0$ cu proprietatea ca $\forall x,y \in D$ cu $d_1(x,y) < \delta_{\varepsilon}$ avem ca $d_2(f(x),f(y)) < \varepsilon$.
- c) Functia f este continua in x_0 daca $\forall (x_n)_{n \in \mathbb{N}}$ sir din D cu $\lim_{n \to \infty} x_n = x_0$ avem ca $\lim_{n \to \infty} f(x_n) = f(x_0)$.

Definitia 3. Spunem ca functia $f: D \subseteq (X, d_1) \to (Y, d_2)$ este continua pe multimea $A \subseteq D$ daca f este continua in orice punct al multimii A.

Teorema 1. Fie $D \subseteq (X, d_1)$ o multime nevida pentru care $\exists x_0 \in IzoD$. Orice functie $f: D \subseteq (X, d_1) \Rightarrow (Y, d_2)$ este continua in x_0 .

Demonstratie. $x_0 \in IzoD \Rightarrow \exists V_0 \in V_{\tau_{d_1}}(x_0)$ astfel in at $V_0 \cap D = \{x_0\}$.

Fie $W \in V_{\tau_{d_2}}(f(x_0))$ o vecinatate arbitrara a punctului $f(x_0)$. Rezulta ca $f(x_0) \in W$.

Este adevarat ca $f(V_0 \cap D) = \{f(x_0)\} \subseteq W$.

Conform definitiei 1, pct. a deducem ca functia este continua in punctul x_0 . Teorema 2.(proprietatile functiilor continue) Fie $f:(X,d_1)\to (Y,d_2)$ o functie continua pe X. Sunt adevarate urmatoarrele afirmatiiS

- a) $\forall F \subseteq Y$ multime inchisa, multimea $f^{-1}(F) \subseteq X$ este multime inchisa;
- b) $\forall G \subseteq Y$ multime deschisa, multimea $f^{-1}(G) \subseteq X$ este multime deschisa;
- c) $\forall K \subseteq X$ multime compacta, multimea $f(K) \subseteq Y$ este multime compacta;
- d) $\forall A \subseteq X$ multime conexa, multimea $f(A) \subseteq Y$ este multime conexa;

Teorema 3. Fie $K \subseteq (X, d_1)$ o multime compacta. Orice functie continua $f: K \subseteq (X, d_1) \to \mathbb{R}$ este marginita si isi atinge mariginile.

Definitia 4. Fie $I \subseteq \mathbb{R}$ un interval si $f: I \to \mathbb{R}$ o functie. Spunem ca f are proprietatea lui Darboux daca $\forall x_1, x_2 \in X$ cu $x_1 \neq x_2, \forall \lambda \in \mathbb{R}$ situat intre $f(x_1)$ si $f(x_2)$ exista $c \in I$ situat intre x_1 si x_2 astfel incat $f(c) = \lambda$.

Teorema 5. Fie $I \subseteq R$ un interval.

- a) Orice functie continua $f: I \to \mathbb{R}$ are proprietatea lui Darboux.
- b) Fie $f:I\to\mathbb{R}$ o functie injectiva care are proprietatea lui Darboux. Atunci f este o functie strict monotona.

Corolar. Fie $I \subseteq R$ un interval si $f: I \to \mathbb{R}$ o functie continua.

- a) Daca $\exists a, b \in I$ cu $a \neq b$ astfel ca f(a)f(b) < 0, atunci $\exists c \in I$ situat intre a si b astfel incat f(c) = 0.
 - b) Daca f este functie injectiva, atunci f este strict monotona.

B) SIRURI DE FUNCTII

 $D \subseteq \mathbb{R}$

 $f_n: D \to \mathbb{R} \ \forall n \in \mathbb{N}$

Definitia 6. Spunem ca sirul de functii $(f_n)_{n\in\mathbb{N}}$ converge simplu pe multimea nevida $A \subseteq D$ daca $\forall x \in A \exists \lim f_n(x) \in \mathbb{R}$.

Notatii.

$$\lim_{n\to\infty} f_n(x) \stackrel{not}{=} f(x) \forall x \in A$$

$$f:A\to\mathbb{R}$$

$$f_n \stackrel{s}{\rightarrow} f$$

Definitia 7. Spunem ca sirul de functii $(f_n)_{n \in \mathbb{N}}$ converge uniform pe multimea nevida $A \subseteq D$ catre functia $f: A \to \mathbb{R}$ daca $\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N}$ astfel incat $|f_n(x) - f(x)| < \varepsilon \forall n \ge n_\varepsilon \text{ si } \forall x \in A.$

Notatie.

$$f_n \stackrel{u}{\rightarrow} f$$

Observatie.

$$f_n \stackrel{u}{\Rightarrow} f \Rightarrow$$

$$f_n \stackrel{s}{\rightarrow} f$$

Implicatia "" \Leftarrow "" este falsa. Sirul de functii $(f_n)_{n\in\mathbb{N}}$ cu $f_n:[0,1]\to\mathbb{R}, f_n(x)=x^n\ \forall x\in[0,1], n\in\mathbb{N}^*$ converge simplu pe [0,1], dar nu converge uniform pe [0,1].

Criteriul practic de convergenta uniforma. Se considera sirul de functii $(f_n)_{n\in\mathbb{N}}$, multimea nevida $A\subseteq X$ si functia $f:A\to\mathbb{R}$. Urmatoarele afirmatii sunt echivalente:

(i) $f_n \stackrel{u}{\rightarrow} f$

(ii)
$$\exists \lim_{n \to \infty} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) \equiv 0.$$

(ii) $\exists \lim_{n \to \infty} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = 0.$ Teorema lui Weierstrass pentru siruri de functii. Se considera sirul de functii $(f_n)_{n\in\mathbb{N}}$, multimea nevida $A\subseteq X$ si functia $f:A\to\mathbb{R}$ astfel ca $f_n\stackrel{u}{\to} f$. Daca $\exists x_0 \in A$ cu proprietatea ca f_n este functie continua in $x_0 \forall n \in \mathbb{N}$, atunci f este functie continua in x_0 .

Corolar. a) Daca $f_n \stackrel{u}{\to} f$ si f_n este functie continua pe multimea $A \forall n \in \mathbb{N}$, atunci f este functie continua pe multimea A.

b) Daca $f_n \stackrel{*}{\to} f$, $\exists x_0 \in A$ cu proprietatea ca f_n este functie continua in $x_0 \ \forall n \in \mathbb{N} \text{ si } f \text{ nu este functie continua in } x_0 \text{ , atunci } f_n \stackrel{u}{\Rightarrow} f.$

Teorema lui Dini. Fie $(f_n)_{n\in\mathbb{N}}$ un sir de functii continue cu $f_n:[a,b]\to\mathbb{R}$ $\forall n\in\mathbb{N}$ si $f:[a,b]\to\mathbb{R}$ o functie continua cu urmatoarele proprietati:

- b) $f_n \leq f_{n+1} \forall n \in \mathbb{N} \text{ sau } f_n \geq f_{n+1} \forall n \in \mathbb{N}.$

Atunci $f_n \stackrel{u}{\to} f$.

Teorema lui Polya Fie $(f_n)_{n\in\mathbb{N}}$ un sir de functii monotone cu $f_n:[a,b]\to$ $\mathbb{R} \ \forall n \in \mathbb{N} \ \text{si} \ f : [a, b] \to \mathbb{R} \ \text{o functie continua astfel ca} \ f_n \stackrel{s}{\to} f.$

C) SERII DE FUNCTII

 $D \subset \mathbb{R}$

 $f_n: D \to \mathbb{R} \ \forall n \in \mathbb{N}$

Sirului de functii $(f_n)_{n\in\mathbb{N}}$ i se asociaza sirul de functii $(s_n)_{n\in\mathbb{N}}$ cu

$$s_n : D \to \mathbb{R}, s_n(x) = f_0(x) + f_1(x) + \dots + f_n(x) \ \forall x \in D$$

Definitia 8. a) Perechea de siruri de functii $((f_n)_{n\in\mathbb{N}}, (s_n)_{n\in\mathbb{N}})$, notata $\sum_{n=0}^{\infty} f_n$, se numeste seria de functii asociata sirului $(f_n)_{n\in\mathbb{N}}$.

- b) f_n se numeste termenul general de rang n al seriei de functii $\sum_{n=0}^{\infty} f_n$.
- c) s_n se numeste suma partiala de rang n a seriei de functii $\sum_{n=0}^{\infty} f_n$.

Definitia 9. a) Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este simplu convergenta pe multimea $A \subseteq D$ daca sirul de functii $(s_n)_{n \in \mathbb{N}}$ converge simplu pe multimea A.

- b) Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este absolut convergenta pe multimea
- $A\subseteq D$ daca seria de functii $\sum_{n=0}^{\infty}|f_n|$ este simplu convergenta pe multimea $A\subseteq$ D.
- c) Spunem ca seria de functii $\sum_{n\equiv 0}^{\infty} f_n \text{ este uniform convergenta pe multimea} A \subseteq D \text{ daca sirul de functii } (s_n)_{n\in \mathbb{N}} \text{ converge uniform pe multimea} A.$

Observatii. a) Daca seria de functii $\sum_{n=0}^{\infty} f_n$ este absolut convergenta pe multimea A, atunci seria de functii $\sum_{n=0}^{\infty} f_n$ este simplu convergenta pe multimea A.

b) Daca seria de functii $\sum_{n=0}^{\infty} f_n$ este uniform convergenta convergenta pe multimea A, atunci seria de functii $\sum_{n=0}^{\infty} f_n$ este simplu convergenta pe multimea A.

Criteriul lui Weierstrass pentru serii de functii. Fie $(f_n)_{n\in\mathbb{N}}$ un sir de functii cu $f_n:D\subseteq\mathbb{R}\to\mathbb{R} \forall n\in\mathbb{N}$ si $(a_n)_{n\in\mathbb{N}}$ un sir de numere reale pozitive astfel ca $|f_n(x)| \leq a_n \ \forall n \in \mathbb{N}, \forall x \in D$. Daca seria de numere reale $\sum_{n=0}^{\infty} a_n$ este convergenta, atunci seria de functi
i $\sum_{n=0}^{\infty}f_n$ este uniform si absolut convergenta pe multimea D.

Criteriul lui Abel pentru serii de functii. Fie $(f_n)_{n\in\mathbb{N}}$ si $(g_n)_{n\in\mathbb{N}}$ doua siruri de functii cu $f_n, g_n : D \subseteq \mathbb{R} \to \mathbb{R} \forall n \in \mathbb{N}$ care indeplinesc urmatoarele conditii:

a) $f_n \to 0$

a) $f_n \to 0$ b) $f_{n+1} \le f_n \forall n \in \mathbb{N}$ c) $\exists M > 0$ astfel incat $|g_0(x) + ... + g_n(x)| \le M \forall n \in \mathbb{N}, \forall x \in D$.

Atunci seria de functii $\sum_{n=0}^{\infty} f_n g_n$ este uniform convergenta pe multimea D.

The mantru serii de functii. Fie $(f_n)_{n \in \mathbb{N}}$ si $(g_n)_{n \in \mathbb{N}}$ dou

Criteriul lui Dirichlet pentru serii de functii. Fie $(f_n)_{n\in\mathbb{N}}$ si $(g_n)_{n\in\mathbb{N}}$ doua siruri de functii cu $f_n,g_n:D\subseteq\mathbb{R}\to\mathbb{R} \forall n\in\mathbb{N}$ care indeplinesc urmatoarele conditii:

- a) $f_{n+1} \le f_n \forall n \in \mathbb{N} \text{ sau } f_{n+1} \ge f_n \forall n \in \mathbb{N}$
- b) $\exists M > 0$ astfel incat $|f_n(x)| \leq M \forall n \in \mathbb{N}, \forall x \in D$.
- c) seria de functii $\sum_{n=0}^{\infty} g_n$ converge uniform pe multimea D.

Atunci seria de functii $\sum_{n=0}^{\infty} f_n g_n$ este uniform convergenta pe multimea D.