Оптимальное управление подвижным источником теплового воздействия при легировании заготовок кварцевых оптических волокон

В. П. Первадчук 1 , Д. Б. Владимирова 2 , А. Н. Кокоулин 3

Пермский национальный исследовательский политехнический университет ^{1,2}pervadchuk@mail.ru, ³a.n.kokoulin@at.pstu.ru

Аннотация. В настоящей работе рассматривается задача оптимального управления подвижным источником теплового воздействия в процессе легирования методом MCVD (modified chemical vapor deposition). Задача оптимального управления ставится на базе математической модели нагрева кварцевой трубы подвижным тепловым источником. Цель управления — стабилизация температурного поля на поверхности нагреваемой кварцевой трубы, в соответствии с заданным критерием оптимальности.

Ключевые слова: оптимальное управление; распределенные системы; подвижный тепловой источник; процесс MCVD

I. Введение

Анализ температурных процессов, протекающих в зоне разогрева, и синтез системы автоматического регулирования, построенной на сравнении заданного и измеряемого температурных полей, перспективным направлением развития технологии Проектирование MCVD. такой системы дополнительные требования к наблюдаемости объекта управления, требует учета распределенных свойства объекта управления. Переход к рассмотрению процесса управления температурным полем на поверхности трубы в процессе MCVD как системы с распределёнными параметрами фокусирует внимание на относительно новых систем управления - систем управления с подвижным источником воздействия. Подвижное воздействия является, по существу, способом управления систем распределёнными параметрами. Принципиальная схема процесса легирования методом MCVD представлена на рис. 1.

А. А. Пестерев

ПАО Пермская научно-производственная приборостроительная компания a.a.pesterev@gmail.com

Рис. 1. Схематическое изображение процесса *MCVD*: 1 – кварцевая труба; 2 – движущаяся горелка (стрелки показывают направление движения); 3 – пламя горелки; 4 – зона реакции

II. Описание объекта управления, постановка задачи

В работах [10, 11] рассмотрена математическая модель нагрева кварцевой трубы подвижным источником воздействия, представленная уравнением теплопроводности следующего вида

$$\frac{\partial T(t,z)}{\partial t} - a \frac{\partial^2 T(t,z)}{\partial z^2} + \alpha T(t,z) + \beta T^4(t,z) = F(u,t,z)$$
 (1)

где t — время; z — координата; u — управление; T — температура кварца; a — коэффициент температуропроводности; α и β — некоторые коэффициенты.

Правая часть уравнения (1) зависит от теплового потока. Энергия теплового потока расходуется на нагрев кварцевой трубы, теплообмен с парогазовой смесью, поступающей внутрь трубы, а также на излучение и теплообмен с окружающей средой. В данной постановке функция F имеет вид:

$$F(u,t,z) = \frac{S_R}{\rho c V} q(z,t) + \frac{S_R \alpha_c}{\rho c V} T_c + \frac{S_R \alpha_c \beta}{\rho c V} T_c^4 + \frac{S_{r_0} \alpha_z}{\rho c V} T_c$$

где р, c, λ — плотность удельная теплоемкость и теплопроводность кварца соответственно; $a_{\scriptscriptstyle \Gamma}$ и a_c — коэффициенты теплообмена с газом и внешней средой; S_R и $S_{\scriptscriptstyle TO}$ — площади внешней и внутренней цилиндрических

поверхностей, V — объем полого цилиндра, T_c и T_c — температура газа и внешней среды.

Дифференциальное уравнение в частных производных второго порядка с нелинейным оператором вида (1) решается при задании начальных и граничных условий [10].

Предположим, что известно программное движение (состояние), т.е. известны функции $\Delta T(t,z)$ и $\Delta u(t,z)$. Однако реальное (истинное) состояние системы всегда будет отличаться от программного. Поэтому можно записать, что

$$T(t,z) = T*(t,z) + \Delta T(t,z)$$

$$u(t,z) = u*(t,z) + \Delta u(t,z)$$

где T(t,z) и u(t,z) — реальное состояние системы; $\Delta T(t,z)$ и $\Delta u(t,z)$ — возмущения (отклонение реального состояния от программного).

В работе [11] из (1) получено линеаризованное уравнение теплопроводности для возмущений $\Delta T(t,z)$, которое имеет вид:

$$\frac{\partial \Delta T}{\partial t} - a \frac{\partial^2 \Delta T}{\partial z^2} + \alpha \frac{\partial \Delta T}{\partial z} + \beta \Delta T = \gamma \Delta u$$

Подвижный источник нагрева — тепловой поток q(z,t) от газовой горелки опишем функцией Гаусса, имеющей вид[10]

$$q(t,z) = q_{\text{max}} \cdot e^{-\left(\frac{z - \int_{0}^{t} v(\xi) d\xi}{H}\right)^{2}}$$

где $v(\xi)$ — скорость движения горелки, H — дисперсия (ширина формы теплового источника), q_{max} — мощность горелки.

Исследование математической модели подвижного источника представлено в работе [12].

Целью оптимального стабилизирующего управления является подбор таких параметров горелки как ее мощность, форма пламени и скорость движения, при которых

$$|\Delta T(t,z)| \to 0$$

В данной работе в качестве функции управления $\Delta u(t,z)$ определим мощность горелки q_{max} , а целевой функционал для задачи оптимального управления представим в следующем виде [10]

$$F(u, \Delta T) = \int_{0}^{\tau} \int_{0}^{L} \Delta T^{2} dz dt + \sigma \int_{0}^{\tau} \int_{0}^{L} \Delta u^{2} dz dt$$

где τ – время управления, L – длина кварцевой трубы, σ – некоторый параметр, характеризирующий цену управления.

Тогда согласно работе [11] система оптимальности, состоящая из дифференциальных уравнений для функций $\Delta T(t,z)$ и сопряженной с ней вспомогательной функции p(t,z), будет иметь вид:

$$\begin{cases}
\frac{\partial \Delta T}{\partial t} - a \frac{\partial^2 \Delta T}{\partial z^2} + \alpha \frac{\partial \Delta T}{\partial z} + \beta \Delta T = -\frac{\gamma^2 p}{\sigma}, \\
\frac{\partial p}{\partial t} + a \frac{\partial^2 p}{\partial z^2} + \alpha \frac{\partial p}{\partial z} - \beta p = -\Delta T, \\
\Delta T|_{t=0} = T_0(z), p|_{t=\tau} = 0, \\
\Delta T|_{z=0} = T_1(z), p|_{z=0} = 0, \\
\frac{\partial \Delta T}{\partial z}|_{z=L} = T_2(z), \frac{\partial p}{\partial z}|_{z=L} = 0.
\end{cases} \tag{2}$$

Вспомогательная функция p(t,z) и функция управления $\Delta u(t,z)$ связаны соотношением следующего вида:

$$\Delta u(t,z) = -\frac{\gamma^2 p(t,z)}{\sigma}$$

Важно отметить ключевую особенность данной постановки задачи оптимального управления — возможность получить приближенное решение системы (2) в аналитическом виде, что пригодно для использования в режиме реального времени систем автоматического управления.

Следует отдельно отметить, что управление скоростью движения горелки и расходом азота на обдув горелки в проектируемой системе управления осуществляется по программному закону.

III. ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНОГО СТАБИЛИЗИРУЮЩЕГО РЕГУЛЯТОРА

Поясним принцип действия проектируемой системы управления, представленной на рис. 2.

Предположим, что длительность процесса MCVD равна Tn. Под процессом в данном случае будем иметь ввиду проход горелки в направлении подачи парогазовой смеси от z=0 до z=L. Тогда для любого t из [0,Tn] нам известно распределение температуры $T^*(t,z)$ и соответствующее управление $u^*(t,z)$. Пусть контроль фактической температуры осуществляется с помощью сканирующего пирометра через равные промежутки времени, равные τ . Тогда решение задачи оптимального стабилизирующего управления тепловым источником будет происходить на временном промежутке $[0,\tau]$. Причем, при t1=0 $(t1\in[0,\tau])$, нам известны значения

$$\Delta T(0,z) = T(0,z) - T*(0,z)$$

где T(0,z)=T(t,z) — это фактическая температура, полученная с помощью сканирующего пирометра в момент времени t. Принимая $\Delta T(0,z)$ за начальное условие, а граничные условия для $\Delta T(t,z)$ равным нулю вычислим

температуру $\Delta T^*(t,z)$ и изменение во времени теплового потока (управления) $\Delta u^*(t,z)$. Это управление будет действовать только на временном промежутке $[0,\tau]$, по истечении которого происходит новый замер температуры, вычисляем $\Delta T(0,z)$ и т.д.

Рис. 2. Принцип действия системы управления

IV. ЗАКЛЮЧЕНИЕ

В работе рассмотрена задача оптимального управления подвижным источником теплового воздействия в процессе MCVD. Предложенный способ управления основан на математической модели нагрева кварцевой трубы подвижным источником воздействия.

Список литературы

- [1] Бурков, В.Д., Иванов, Г.А. Физико-технологические основы волоконно-оптической техники. М.: ГОУ ВПО МГУЛ, 2007. 222с.
- [2] M. Choi, K.S. Park, J. Cho, Modelling of chemical vapour deposition for optical fibre manufacture // Opt. Quant. Electron. 27 (5) (1995) 327-335.

- [3] K.B. Mcafee, K.L. Walker, R.A. Laudise, R.S. Hozack, Dependence of equilibria in the modified chemical vapor-deposition process on Sicl4, Gecl4, and O-2 // J. Am.Ceram. Soc. 67 (6) (1984) 420-424.
- [4] Suzanne R. Nagel, J. B. Macchesney, And Kenneth L. Walker. An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance // IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-18, NO. 4, APRIL 1982.
- [5] L. Cognolato. Chemical Vapour Deposition for Optical Fibre Technology // JOURNAL DE PHYSIQUE IV Colloque C5, supplkment au Journal de Physique 11, Volume 5, juin 1995.
- [6] D. L. Wood, K. L. Walker, J. B. Macchesney, Member, J. R. Simpson, And R. Csencsits. Germanium Chemistry in the MCVD Process for Optical Fiber Fabrication // JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. LT-5. NO. 2. FEBRUARY 1987.
- [7] Бутковский А.Г., Пустыльников Л.М. Теория подвижного управления системами с распределенными параметрами. М.: «Наука», 1980.
- [8] Фурсиков А.В. Оптимальное управление распределенными системами. Теория и приложения: Учебное пособие. Новосибирск: Научная книга, 1999. 352 с. (Университетская серия).
- [9] Егоров А.И. Оптимальное управление тепловыми и диффузионными процессами. М.: Наука, 1978, 464 с.
- [10] Первадчук В.П., Шумкова Д.Б. Оптимальное управление в задачах с подвижным тепловым источником // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2010. Т. 2. № 98. С. 37-44.
- [11] В.П. Первадчук, Д.Б. Владимирова, Д.Н. Дектярев. Оптимальное стабилизирующие управление подвижным тепловым источником в процессе MCVD // Прикладная фотоника. Т. 3, № 1, 2016.
- [12] В.П. Первадчук, Д.Б. Владимирова, Д.Н. Дектярев, А.А.Пестерев Моделирование нагрева кварцевых труб подвижным источником воздействия для решения задачи управления процессом МСVD // Международный научно-исследовательский журнал. 2016. № 9-2 (51). С. 76-82.