

Model Optimization and Tuning Phase

Template

Date	11 July 2024
Team ID	SWTID1720162737
Project Title	Predicting Compressive Strength Of Concrete Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase:

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression		acc=r2_score(y_test,pred) print('accuracy of linear regression Regression:',acc*100) accuracy of linear regression Regression: 58.61758560675364
Ridge Regression		acc=r2_score(y_test,pred) print('accuracy of Ridge regression Regression:',acc*100) accuracy of Ridge regression Regression: 58.61760529691513
Lasso Regression		acc=r2_score(y_test,pred) print('accuracy of lasso regression Regression:',acc*100) accuracy of lasso regression Regression: 58.78727632129104

Random Forest Regression	<pre># Initialize the RandomForestRegressor rfr = RandomForestRegressor() # Define the parameter grid param_grid = { 'n_estimators': [100, 200, 300, 400, 500], 'max_depth': [Rone, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False] } # Initialize GridSearchCV grid_search = GridSearchCV(estimator=rfr, param_grid=param_grid,</pre>	print(f'Optimal Hyperparameters:{best_params}') acc=r2_score(y_test,pred) print('accuracy of RandomForestRegression:',acc*100) Optimal Hyperparameters:{'bootstrap': True, 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200} accuracy of RandomForestRegression: 93.22882639139073
Decision Tree Regression		acc=r2_score(y_test,pred) print('accuracy of Decision Tree Regression:',acc*100) accuracy of Decision Tree Regression: 88.49267192424941
Gradient Boosting regression	gb = forallesthooting/agressor() a before the parameter distribution para_dist = {	print(f'Optimal Hyperparameters:{best_params}') acc=r2_score(y_test,pred) print('accuracy of XGBoost Regression:',acc*100) Optimal Hyperparameters:{'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 500} accuracy of XGBoost Regression: 93.80577042460435
XGBoost Regression	### ### ### ### ### ### ### ### ### ##	print(f'Optimal Hyperparameters:{best_params}') acc=r2_score(y_test,pred) print('accuracy of XGBoost Regression:',acc*100) Optimal Hyperparameters:{'colsample_bytree': 0.954660201039391, 'learning_rate': 0.06175599 6520003385, 'max_depth': 6, 'min_child_weight': 2, 'n_estimators': 489, 'subsample': 0.6039 708314340944} accuracy of XGBoost Regression: 94.18826209575943

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric

Linear Regression	acc=r2_score(y_test,pred) print('accuracy of linear regression Regression:',acc*100) accuracy of linear regression Regression: 58.61758560675364 print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MME:', metrics.mean_absolute_error(y_test,pred)) MSE: 110.18594180669501 MAE: 8.261594213211119 print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) RMSE: 10.49694916662432	print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 110.18594180669541 MSE: 110.49694910666412
Ridge Regression	acc=r2_score(y_test,pred) print('accuracy of Ridge regression Regression:',acc*100) accuracy of Ridge regression Regression: \$8.61760529691513 print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MWE:', metrics.mean_absolute_error(y_test,pred)) MSE: 110.18588937913565 MAE: 8.261589878127149 print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) RMSE: 10.49694666934798	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('MMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 110.188037913565 MAE: 8.261580378137149 RMSE: 10.49694666934798</pre>
Lasso Regression	acc=r2_score(y_test,pred) print('accuracy of lasso regression Regression:',acc*100) accuracy of lasso regression Regression: 58.78727632129104 print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) MSE: 109.73411869605009 MAE: 8.244898966700172 print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) RMSE: 10.475405419173526	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MSE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 109.73411866665009 MAE: 8.244889806700172 RMSE: 10.475405419173526</pre>
RandomForest Regression	acc=r2_score(y_test,pred) print("accuracy of RandomForest Regression:",acc*100) accuracy of RandomForest Regression: 88.4926/192424941 print("MSE: ",metrics.mean_squared_error(pred,y_test)) print("MSE: ",np.sqrt(metrics.mean_squared_error(pred,y_test))) MSE: 21.511922606580977 RMSE: 4.6380947166461555	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 23.58769288556324 MAE: 3.514256978126178 RMSE: 4.856654124863775</pre>
Decision Tree Regression	acc=r2_score(y_test,pred) print('accuracy of Decision Tree Regression:',acc*100) accuracy of Decision Tree Regression: 88.49267192424941 print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MME:', metrics.mean_absolute_error(y_test,pred)) MSE: 30.63972463414634 MA: 3.6327804378048777 print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) RMSE: 5.5353161277515435	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 30.639774653414634 MAE: 30.639724654777 RMSE: 5.5353161277515435</pre>
Gradient Boosting regression	score=r2_score(y_pred,y_test) print("accuracy of GradientBoosting Regression:: ",score*100) accuracy of GradientBoosting Regression:: 88.2676758265551 print("MSE: ",metrics.mean_squared_error(pred,y_test)) print("RMSE: ",np.sgrt(metrics.mean_squared_error(pred,y_test))) MSE: 30.63972463414634 RMSE: 5.5353161277515435	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('MMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 25.861465265637968 MAE: 3.6224784271501735 RMSE: 5.085416921515675</pre>

XG Boost Regression	score=r2_score(pred,y_test) print("accuracy of XGBoost Regression:: ",score*100) accuracy of XGBoost Regression:: 92.62911257081528 print("MSE: ",metrics.mean_squared_error(pred,y_test)) print("MSE: ",np.sqrt(metrics.mean_squared_error(pred,y_test))) MSE: 17.96478280626198 RMSE: 4.238488268977747	print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('MSE:', np. sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 15.474491372763513 MAE: 2.4345691099265588 MMSE: 3.933763004142918
------------------------	--	---

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
XG Boost	'XG Boost Regression' the best performance and generalizability on unseen
Regression.	data, considering factors beyond just raw accuracy.