Suites arithmético-géométriques

 $\ensuremath{\mathbb{Q}}$ Comment expliciter une suite arithmético-géométrique.

Exercice 1. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-3$, et :

 \rightarrow page 11

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{15}u_n + 3.$$

Exercice 2. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{2}$, et :

 \rightarrow page 11

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -6u_n + 1.$$

Exercice 3. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 11

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n + 27.$$

Exercice 4. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{5}{2}$, et :

 \rightarrow page 11

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{3}u_n - \frac{3}{22}.$$

Exercice 5. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{3}$, et :

 \rightarrow page 12

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{34}u_n + \frac{1}{4}.$$

Exercice 6. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 12

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -3u_n + \frac{14}{5}.$$

Exercice 7. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-2$, et :

 \rightarrow page 12

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n + 1.$$

Exercice 8. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-4$, et :

 \rightarrow page 13

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{3}u_n - 1.$$

Exercice 9. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=2$, et :

 \rightarrow page 13

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{4}u_n - \frac{73}{2}.$$

Exercice 10. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-2$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n + 1.$$

Exercice 11. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1,$ et :

 \rightarrow page 13

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n - \frac{1}{3}.$$

Exercice 12. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 14

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{10}u_n - 2.$$

Exercice 13. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{6}$, et :

 \rightarrow page 14

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - 6.$$

Exercice 14. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 14

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 45u_n + 1.$$

Exercice 15. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 15

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + 2.$$

Exercice 16. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{2}{53}$, et :

 \rightarrow page 15

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - 1.$$

Exercice 17. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=2$, et :

 \rightarrow page 15

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{3}{7}u_n - 14.$$

Exercice 18. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 16

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -3u_n + \frac{2}{3}.$$

Exercice 19. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0,$ et :

 \rightarrow page 16

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - \frac{1}{2}.$$

Exercice 20. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{30}u_n + 1.$$

Exercice 21. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1,$ et :

 \rightarrow page 16

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n - 34.$$

Exercice 22. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 17

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{3}u_n - \frac{3}{2}.$$

Exercice 23. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1,$ et :

 \rightarrow page 17

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{4}u_n + 3.$$

Exercice 24. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 17

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - 1.$$

Exercice 25. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=2$, et :

 \rightarrow page 18

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n - \frac{1}{8}.$$

Exercice 26. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 18

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n - \frac{1}{2}.$$

Exercice 27. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{2}$, et :

 \rightarrow page 18

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{2}{3}u_n + 1.$$

Exercice 28. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{2}{7}$, et :

 \rightarrow page 18

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{4}u_n + 1.$$

Exercice 29. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 19

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n + \frac{1}{3}.$$

Exercice 30. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 13u_n + 2.$$

Exercice 31. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-\frac{1}{29}$, et :

 \rightarrow page 19

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 14u_n - 1.$$

Exercice 32. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{3}{4}$, et :

 \rightarrow page 20

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{8}u_n + 2.$$

Exercice 33. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 20

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{11}{2}u_n - \frac{1}{8}.$$

Exercice 34. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 20

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{4}{5}u_n + 5.$$

Exercice 35. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=7$, et :

 \rightarrow page 21

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -4u_n - 1.$$

Exercice 36. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{2}$, et :

 \rightarrow page 21

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n + 2.$$

Exercice 37. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 21

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 4u_n - \frac{1}{8}.$$

Exercice 38. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-17$, et :

 \rightarrow page 21

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{13}{4}u_n + 3.$$

Exercice 39. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 22

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + 1.$$

Exercice 40. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{4}$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{20}u_n + 2.$$

Exercice 41. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=5,$ et :

 \rightarrow page 22

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{5}u_n - \frac{1}{20}.$$

Exercice 42. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{2}$, et :

 \rightarrow page 23

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{3}{4}u_n - 1.$$

Exercice 43. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=5,$ et :

 \rightarrow page 23

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{4}u_n - 100.$$

Exercice 44. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 23

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{8}{3}u_n - \frac{1}{11}.$$

Exercice 45. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 24

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n - 4.$$

Exercice 46. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{2}$, et :

 \rightarrow page 24

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 8u_n - 3.$$

Exercice 47. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 24

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{19}u_n - \frac{2}{3}.$$

Exercice 48. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 24

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 3u_n + 10.$$

Exercice 49. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1,$ et :

 \rightarrow page 25

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{3}u_n - 1.$$

Exercice 50. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{2}$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{67}{2}u_n - 3.$$

Exercice 51. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 25

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{39}{2}u_n - \frac{1}{2}.$$

Exercice 52. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 26

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{4}u_n - \frac{1}{3}.$$

Exercice 53. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 26

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 5u_n - 2.$$

Exercice 54. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 26

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{6}u_n + 2.$$

Exercice 55. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{2}{5}$, et :

 \rightarrow page 27

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -25u_n + 1.$$

Exercice 56. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{13}$, et :

 \rightarrow page 27

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{3}{2}u_n - \frac{13}{18}.$$

Exercice 57. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=5$, et :

 \rightarrow page 27

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - 2.$$

Exercice 58. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 27

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{4}u_n + \frac{1}{8}.$$

Exercice 59. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 28

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - 1.$$

Exercice 60. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=3$, et :

 \rightarrow page 28

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n + 1.$$

Exercice 61. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=2$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{2}{7}u_n - \frac{1}{2}.$$

Exercice 62. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=2447,$ et :

 \rightarrow page 29

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - \frac{1}{3}.$$

Exercice 63. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 29

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + \frac{1}{4}.$$

Exercice 64. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 29

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{2}u_n + 1.$$

Exercice 65. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 30

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{3}u_n - \frac{1}{2}.$$

Exercice 66. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-3$, et :

 \rightarrow page 30

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n - \frac{1}{16}.$$

Exercice 67. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 30

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - \frac{1}{2}.$$

Exercice 68. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 30

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - \frac{3}{2}.$$

Exercice 69. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 31

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{3}u_n + 1.$$

Exercice 70. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 31

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + \frac{1}{2}.$$

Exercice 71. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - 1.$$

Exercice 72. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1,$ et :

 \rightarrow page 32

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{2}{15}u_n - 1.$$

Exercice 73. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 32

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -5u_n + 3.$$

Exercice 74. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=1$, et :

 \rightarrow page 32

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{5}u_n + \frac{1}{3}.$$

Exercice 75. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 33

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{4}u_n + \frac{1}{2}.$$

Exercice 76. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-3$, et :

 \rightarrow page 33

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -3u_n - 9.$$

Exercice 77. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 33

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - \frac{11}{5}.$$

Exercice 78. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=\frac{4}{69}$, et :

 \rightarrow page 33

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n - 1.$$

Exercice 79. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-2$, et :

 \rightarrow page 34

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n - 3.$$

Exercice 80. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=2$, et :

 \rightarrow page 34

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -6u_n - 1.$$

Exercice 81. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{3}$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 12u_n - \frac{1}{5}.$$

Exercice 82. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-2$, et :

 \rightarrow page 35

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + \frac{1}{4}.$$

Exercice 83. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{6}$, et :

 \rightarrow page 35

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - 2.$$

Exercice 84. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{2}$, et :

 \rightarrow page 35

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{2}{5}u_n + 1.$$

Exercice 85. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 35

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n - 2.$$

Exercice 86. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{1}{2}$, et :

 \rightarrow page 36

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{4}u_n + 3.$$

Exercice 87. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-2$, et :

 \rightarrow page 36

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - \frac{4}{5}.$$

Exercice 88. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-3$, et :

 \rightarrow page 36

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - \frac{1}{70}.$$

Exercice 89. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 37

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 6u_n + \frac{1}{8}.$$

Exercice 90. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 37

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n + 26.$$

Exercice 91. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 37

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -\frac{1}{3}u_n + \frac{1}{7}.$$

Exercice 92. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - 3.$$

Exercice 93. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{3},$ et :

 \rightarrow page 38

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n + \frac{1}{2}.$$

Exercice 94. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=-\frac{11}{2}$, et :

 \rightarrow page 38

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + 2.$$

Exercice 95. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-\frac{1}{2}$, et :

 \rightarrow page 38

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 3u_n - \frac{1}{3}.$$

Exercice 96. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 39

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n - 1.$$

Exercice 97. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=-1$, et :

 \rightarrow page 39

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + \frac{1}{3}.$$

Exercice 98. Déterminer l'unique suite $(u_n)_{n\geq 0}$ vérifiant : $u_0=0$, et :

 \rightarrow page 39

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n - \frac{1}{3}.$$

Exercice 99. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{11}{3}$, et :

 \rightarrow page 40

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + \frac{1}{5}.$$

Exercice 100. Déterminer l'unique suite $(u_n)_{n\geqslant 0}$ vérifiant : $u_0=\frac{2}{3}$, et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -u_n + 5.$$

Corrigé 1. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{15}\lambda + 3$. On trouve immédiatement pour solution: $\lambda = \frac{45}{14}$.

 \leftarrow page 1

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{15}u_n + 3\right) - \left(\frac{1}{15}\lambda + 3\right) = \frac{1}{15}\left(u_n - \frac{45}{14}\right) = \frac{1}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{15}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{15}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{15}\right)^n v_0 + \frac{45}{14} = \left(\frac{1}{15}\right)^n \left(u_0 - \frac{45}{14}\right) + \frac{45}{14} = -\frac{87}{14} \left(\frac{1}{15}\right)^n + \frac{45}{14},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -3$. D'où l'expression explicite demandée.

Corrigé 2. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -6\lambda + 1$. On trouve immédiatement pour solution : $\lambda = \frac{1}{7}$.

 \leftarrow page 1

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-6u_n + 1) - (-6\lambda + 1) = -6\left(u_n - \frac{1}{7}\right) = -6v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -6. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-6)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-6)^n v_0 + \frac{1}{7} = (-6)^n \left(u_0 - \frac{1}{7}\right) + \frac{1}{7} = -\frac{9}{14} (-6)^n + \frac{1}{7},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{2}$. D'où l'expression explicite demandée.

 \leftarrow page 1

Corrigé 3. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{2}\lambda + 27$. On trouve immédiatement pour solution: $\lambda = 54$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n + 27\right) - \left(\frac{1}{2}\lambda + 27\right) = \frac{1}{2}\left(u_n - 54\right) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 + 54 = \left(\frac{1}{2}\right)^n (u_0 - 54) + 54 = -53 \left(\frac{1}{2}\right)^n + 54,$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 4. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{3}\lambda - \frac{3}{22}$. On trouve immédiatement pour solution: $\lambda = -\frac{9}{88}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{3}u_n - \frac{3}{22}\right) - \left(-\frac{1}{3}\lambda - \frac{3}{22}\right) = -\frac{1}{3}\left(u_n + \frac{9}{88}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{3}\right)^n v_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{3}\right)^n v_0 - \frac{9}{88} = \left(-\frac{1}{3}\right)^n \left(u_0 + \frac{9}{88}\right) - \frac{9}{88} = -\frac{211}{88} \left(-\frac{1}{3}\right)^n - \frac{9}{88},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{5}{2}$. D'où l'expression explicite demandée.

Corrigé 5. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{34}\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{17}{66}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$.

On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{34}u_n + \frac{1}{4}\right) - \left(\frac{1}{34}\lambda + \frac{1}{4}\right) = \frac{1}{34}\left(u_n - \frac{17}{66}\right) = \frac{1}{34}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{34}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{34}\right)^nv_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{34}\right)^n v_0 + \frac{17}{66} = \left(\frac{1}{34}\right)^n \left(u_0 - \frac{17}{66}\right) + \frac{17}{66} = \frac{5}{66} \left(\frac{1}{34}\right)^n + \frac{17}{66},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{3}$. D'où l'expression explicite demandée.

Corrigé 6. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -3\lambda + \frac{14}{5}$. On trouve immédiatement pour solution : $\lambda = \frac{7}{10}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$.

On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-3u_n + \frac{14}{5}\right) - \left(-3\lambda + \frac{14}{5}\right) = -3\left(u_n - \frac{7}{10}\right) = -3v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -3. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-3)^n\,v_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = (-3)^n v_0 + \frac{7}{10} = (-3)^n \left(u_0 - \frac{7}{10} \right) + \frac{7}{10} = -\frac{7}{10} (-3)^n + \frac{7}{10},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 7. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{2}\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{2}{3}$.

Ensuite, on introduit la suite $(v_n)_{n\geq 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n + 1\right) - \left(-\frac{1}{2}\lambda + 1\right) = -\frac{1}{2}\left(u_n - \frac{2}{3}\right) = -\frac{1}{2}v_n$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{2}\right)^n v_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 + \frac{2}{3} = \left(-\frac{1}{2}\right)^n \left(u_0 - \frac{2}{3}\right) + \frac{2}{3} = -\frac{8}{3} \left(-\frac{1}{2}\right)^n + \frac{2}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -2$. D'où l'expression explicite demandée.

Corrigé 8. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{3}\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{3}{2}$.

Ensuite, on introduit la suite $(v_n)_{n\geq 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{3}u_n - 1\right) - \left(\frac{1}{3}\lambda - 1\right) = \frac{1}{3}\left(u_n + \frac{3}{2}\right) = \frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{3}\right)^nv_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{3}\right)^n v_0 - \frac{3}{2} = \left(\frac{1}{3}\right)^n \left(u_0 + \frac{3}{2}\right) - \frac{3}{2} = -\frac{5}{2} \left(\frac{1}{3}\right)^n - \frac{3}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -4$. D'où l'expression explicite demandée.

Corrigé 9. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{4}\lambda - \frac{73}{2}$. On trouve immédiatement pour solution : $\lambda = -\frac{146}{5}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{4}u_n - \frac{73}{2}\right) - \left(-\frac{1}{4}\lambda - \frac{73}{2}\right) = -\frac{1}{4}\left(u_n + \frac{146}{5}\right) = -\frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{4}\right)^n v_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{4}\right)^n v_0 - \frac{146}{5} = \left(-\frac{1}{4}\right)^n \left(u_0 + \frac{146}{5}\right) - \frac{146}{5} = \frac{156}{5} \left(-\frac{1}{4}\right)^n - \frac{146}{5},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 2$. D'où l'expression explicite demandée.

Corrigé 10. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -2\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{1}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-2u_n + 1) - (-2\lambda + 1) = -2\left(u_n - \frac{1}{3}\right) = -2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -2. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-2)^n\,v_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = (-2)^n v_0 + \frac{1}{3} = (-2)^n \left(u_0 - \frac{1}{3}\right) + \frac{1}{3} = -\frac{7}{3} (-2)^n + \frac{1}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -2$. D'où l'expression explicite demandée.

Corrigé 11. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -2\lambda - \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{9}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-2u_n - \frac{1}{3}\right) - \left(-2\lambda - \frac{1}{3}\right) = -2\left(u_n + \frac{1}{9}\right) = -2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -2. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-2)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-2)^n v_0 - \frac{1}{9} = (-2)^n \left(u_0 + \frac{1}{9} \right) - \frac{1}{9} = \frac{10}{9} (-2)^n - \frac{1}{9},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 12. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{10}\lambda - 2$. On trouve immédiatement pour solution: $\lambda = -\frac{20}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{10}u_n - 2\right) - \left(-\frac{1}{10}\lambda - 2\right) = -\frac{1}{10}\left(u_n + \frac{20}{11}\right) = -\frac{1}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{10}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{10}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{10}\right)^n v_0 - \frac{20}{11} = \left(-\frac{1}{10}\right)^n \left(u_0 + \frac{20}{11}\right) - \frac{20}{11} = \frac{20}{11} \left(-\frac{1}{10}\right)^n - \frac{20}{11},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 13. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{2}\lambda - 6$. On trouve immédiatement pour solution: $\lambda = -12$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n - 6\right) - \left(\frac{1}{2}\lambda - 6\right) = \frac{1}{2}\left(u_n + 12\right) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 - 12 = \left(\frac{1}{2}\right)^n (u_0 + 12) - 12 = \frac{73}{6} \left(\frac{1}{2}\right)^n - 12,$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{6}$. D'où l'expression explicite demandée.

Corrigé 14. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = 45\lambda + 1$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{44}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (45u_n + 1) - (45\lambda + 1) = 45\left(u_n + \frac{1}{44}\right) = 45v_n,$$

← page 2

 \leftarrow page 2

donc $(v_n)_{n\geq 0}$ est une suite géométrique de raison 45. On en déduit : $\forall n\in\mathbb{N},\ v_n=45^nv_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = 45^n v_0 - \frac{1}{44} = 45^n \left(u_0 + \frac{1}{44} \right) - \frac{1}{44} = -\frac{43}{44} \cdot 45^n - \frac{1}{44},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 15. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda + 2$. On trouve immédiatement pour solution: $\lambda = 1$.

Ensuite, on introduit la suite $(v_n)_{n\geq 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n + 2) - (-\lambda + 2) = -1(u_n - 1) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + 1 = (-1)^n (u_0 - 1) + 1 = -(-1)^n v_0 + 1$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 16. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{2}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n - 1) - (-\lambda - 1) = -1\left(u_n + \frac{1}{2}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{2} = (-1)^n \left(u_0 + \frac{1}{2} \right) - \frac{1}{2} = \frac{49}{106} (-1)^n - \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{2}{53}$. D'où l'expression explicite demandée.

Corrigé 17. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{7}\lambda - 14$. On trouve immédiatement pour solution: $\lambda = -\frac{49}{2}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{3}{7}u_n - 14\right) - \left(\frac{3}{7}\lambda - 14\right) = \frac{3}{7}\left(u_n + \frac{49}{2}\right) = \frac{3}{7}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{7}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{3}{7}\right)^nv_0$. Or $u_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement:

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{3}{7}\right)^n v_0 - \frac{49}{2} = \left(\frac{3}{7}\right)^n \left(u_0 + \frac{49}{2}\right) - \frac{49}{2} = \frac{53}{2} \left(\frac{3}{7}\right)^n - \frac{49}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 2$. D'où l'expression explicite demandée.

Corrigé 18. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -3\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{6}$.

 $\leftarrow \text{page } 2$

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-3u_n + \frac{2}{3}\right) - \left(-3\lambda + \frac{2}{3}\right) = -3\left(u_n - \frac{1}{6}\right) = -3v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -3. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-3)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-3)^n v_0 + \frac{1}{6} = (-3)^n \left(u_0 - \frac{1}{6} \right) + \frac{1}{6} = -\frac{1}{6} (-3)^n + \frac{1}{6},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 19. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda - \frac{1}{2}$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n - \frac{1}{2}\right) - \left(-\lambda - \frac{1}{2}\right) = -1\left(u_n + \frac{1}{4}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{4} = (-1)^n \left(u_0 + \frac{1}{4} \right) - \frac{1}{4} = \frac{1}{4} (-1)^n - \frac{1}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 20. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{30}\lambda + 1$. On trouve immédiatement pour solution : $\lambda = \frac{30}{29}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{30}u_n + 1\right) - \left(\frac{1}{30}\lambda + 1\right) = \frac{1}{30}\left(u_n - \frac{30}{29}\right) = \frac{1}{30}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{30}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{30}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{30}\right)^n v_0 + \frac{30}{29} = \left(\frac{1}{30}\right)^n \left(u_0 - \frac{30}{29}\right) + \frac{30}{29} = -\frac{30}{29} \left(\frac{1}{30}\right)^n + \frac{30}{29},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 21. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{2}\lambda - 34$. On trouve immédiatement pour solution: $\lambda = -\frac{68}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n - 34\right) - \left(-\frac{1}{2}\lambda - 34\right) = -\frac{1}{2}\left(u_n + \frac{68}{3}\right) = -\frac{1}{2}v_n,$$

← page 2

 \leftarrow page 2

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 - \frac{68}{3} = \left(-\frac{1}{2}\right)^n \left(u_0 + \frac{68}{3}\right) - \frac{68}{3} = \frac{71}{3} \left(-\frac{1}{2}\right)^n - \frac{68}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 22. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{3}\lambda - \frac{3}{2}$. On trouve immédiatement pour solution : $\lambda = -\frac{9}{8}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{3}u_n - \frac{3}{2}\right) - \left(-\frac{1}{3}\lambda - \frac{3}{2}\right) = -\frac{1}{3}\left(u_n + \frac{9}{8}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{3}\right)^n v_0 - \frac{9}{8} = \left(-\frac{1}{3}\right)^n \left(u_0 + \frac{9}{8}\right) - \frac{9}{8} = \frac{9}{8} \left(-\frac{1}{3}\right)^n - \frac{9}{8},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 23. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{4}\lambda + 3$. On trouve immédiatement pour solution : $\lambda = 4$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{4}u_n + 3\right) - \left(\frac{1}{4}\lambda + 3\right) = \frac{1}{4}\left(u_n - 4\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{4}\right)^n v_0 + 4 = \left(\frac{1}{4}\right)^n (u_0 - 4) + 4 = -3\left(\frac{1}{4}\right)^n + 4,$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 24. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda - 1$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{2}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n - 1) - (-\lambda - 1) = -1\left(u_n + \frac{1}{2}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{2} = (-1)^n \left(u_0 + \frac{1}{2} \right) - \frac{1}{2} = \frac{1}{2} (-1)^n - \frac{1}{2},$$

← page 3

On a alors:

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 25. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{2}\lambda - \frac{1}{8}$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{12}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

 \leftarrow page 3

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n - \frac{1}{8}\right) - \left(-\frac{1}{2}\lambda - \frac{1}{8}\right) = -\frac{1}{2}\left(u_n + \frac{1}{12}\right) = -\frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{2}\right)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 - \frac{1}{12} = \left(-\frac{1}{2}\right)^n \left(u_0 + \frac{1}{12}\right) - \frac{1}{12} = \frac{25}{12} \left(-\frac{1}{2}\right)^n - \frac{1}{12},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 2$. D'où l'expression explicite demandée.

Corrigé 26. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{2}\lambda - \frac{1}{2}$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n - \frac{1}{2}\right) - \left(-\frac{1}{2}\lambda - \frac{1}{2}\right) = -\frac{1}{2}\left(u_n + \frac{1}{3}\right) = -\frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{2}\right)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 - \frac{1}{3} = \left(-\frac{1}{2}\right)^n \left(u_0 + \frac{1}{3}\right) - \frac{1}{3} = -\frac{2}{3} \left(-\frac{1}{2}\right)^n - \frac{1}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 27. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{2}{3}\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{3}{5}$. Ensuite, on introduit la suite $(v_n)_{n \geq 0}$ dont le terme général est défini par: $\forall n \in \mathbb{N}, v_n = u_n - \lambda$.

 \leftarrow page 5

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{2}{3}u_n + 1\right) - \left(-\frac{2}{3}\lambda + 1\right) = -\frac{2}{3}\left(u_n - \frac{3}{5}\right) = -\frac{2}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{2}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{2}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{2}{3}\right)^n v_0 + \frac{3}{5} = \left(-\frac{2}{3}\right)^n \left(u_0 - \frac{3}{5}\right) + \frac{3}{5} = -\frac{1}{10} \left(-\frac{2}{3}\right)^n + \frac{3}{5},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 28. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel

 λ tel que: $\lambda = \frac{1}{4}\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{4}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{4}u_n + 1\right) - \left(\frac{1}{4}\lambda + 1\right) = \frac{1}{4}\left(u_n - \frac{4}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{4}\right)^n v_0 + \frac{4}{3} = \left(\frac{1}{4}\right)^n \left(u_0 - \frac{4}{3}\right) + \frac{4}{3} = -\frac{34}{21} \left(\frac{1}{4}\right)^n + \frac{4}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{2}{7}$. D'où l'expression explicite demandée.

Corrigé 29. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{2}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{9}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n + \frac{1}{3}\right) - \left(-\frac{1}{2}\lambda + \frac{1}{3}\right) = -\frac{1}{2}\left(u_n - \frac{2}{9}\right) = -\frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{2}\right)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 + \frac{2}{9} = \left(-\frac{1}{2}\right)^n \left(u_0 - \frac{2}{9}\right) + \frac{2}{9} = -\frac{2}{9} \left(-\frac{1}{2}\right)^n + \frac{2}{9},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 30. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda=13\lambda+2$. On trouve immédiatement pour solution : $\lambda=-\frac{1}{6}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (13u_n + 2) - (13\lambda + 2) = 13\left(u_n + \frac{1}{6}\right) = 13v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 13. On en déduit : $\forall n\in\mathbb{N},\ v_n=13^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 13^n v_0 - \frac{1}{6} = 13^n \left(u_0 + \frac{1}{6} \right) - \frac{1}{6} = -\frac{5}{6} \cdot 13^n - \frac{1}{6},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 31. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 14\lambda - 1$. On trouve immédiatement pour solution: $\lambda = \frac{1}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (14u_n - 1) - (14\lambda - 1) = 14\left(u_n - \frac{1}{13}\right) = 14v_n,$$

← nage 3

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 14. On en déduit : $\forall n\in\mathbb{N},\ v_n=14^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 14^n v_0 + \frac{1}{13} = 14^n \left(u_0 - \frac{1}{13} \right) + \frac{1}{13} = -\frac{42}{377} \cdot 14^n + \frac{1}{13},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{29}$. D'où l'expression explicite demandée.

Corrigé 32. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{8}\lambda + 2$. On trouve immédiatement pour solution: $\lambda = \frac{16}{7}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{8}u_n + 2\right) - \left(\frac{1}{8}\lambda + 2\right) = \frac{1}{8}\left(u_n - \frac{16}{7}\right) = \frac{1}{8}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{8}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{8}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{8}\right)^n v_0 + \frac{16}{7} = \left(\frac{1}{8}\right)^n \left(u_0 - \frac{16}{7}\right) + \frac{16}{7} = -\frac{43}{28} \left(\frac{1}{8}\right)^n + \frac{16}{7},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{3}{4}$. D'où l'expression explicite demandée.

Corrigé 33. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{11}{2}\lambda - \frac{1}{8}$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{52}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{11}{2}u_n - \frac{1}{8}\right) - \left(-\frac{11}{2}\lambda - \frac{1}{8}\right) = -\frac{11}{2}\left(u_n + \frac{1}{52}\right) = -\frac{11}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{11}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{11}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{11}{2}\right)^n v_0 - \frac{1}{52} = \left(-\frac{11}{2}\right)^n \left(u_0 + \frac{1}{52}\right) - \frac{1}{52} = -\frac{51}{52} \left(-\frac{11}{2}\right)^n - \frac{1}{52},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 34. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{4}{5}\lambda + 5$. On trouve immédiatement pour solution: $\lambda = \frac{25}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{4}{5}u_n + 5\right) - \left(-\frac{4}{5}\lambda + 5\right) = -\frac{4}{5}\left(u_n - \frac{25}{9}\right) = -\frac{4}{5}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{4}{5}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{4}{5}\right)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{4}{5}\right)^n v_0 + \frac{25}{9} = \left(-\frac{4}{5}\right)^n \left(u_0 - \frac{25}{9}\right) + \frac{25}{9} = -\frac{25}{9} \left(-\frac{4}{5}\right)^n + \frac{25}{9},$$

On a alors:

On a alors:

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 35. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -4\lambda - 1$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$.

 \leftarrow page 4

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-4u_n - 1) - (-4\lambda - 1) = -4\left(u_n + \frac{1}{5}\right) = -4v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -4. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-4)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-4)^n v_0 - \frac{1}{5} = (-4)^n \left(u_0 + \frac{1}{5} \right) - \frac{1}{5} = \frac{36}{5} (-4)^n - \frac{1}{5},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 7$. D'où l'expression explicite demandée.

Corrigé 36. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 2\lambda + 2$. On trouve immédiatement pour solution: $\lambda = -2$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$.

 \leftarrow page 4

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (2u_n + 2) - (2\lambda + 2) = 2(u_n + 2) = 2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 2. On en déduit : $\forall n\in\mathbb{N},\ v_n=2^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 2^n v_0 - 2 = 2^n (u_0 + 2) - 2 = \frac{5}{2} \cdot 2^n - 2,$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 37. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = 4\lambda - \frac{1}{8}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{24}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(4u_n - \frac{1}{8}\right) - \left(4\lambda - \frac{1}{8}\right) = 4\left(u_n - \frac{1}{24}\right) = 4v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 4. On en déduit : $\forall n\in\mathbb{N},\ v_n=4^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 4^n v_0 + \frac{1}{24} = 4^n \left(u_0 - \frac{1}{24} \right) + \frac{1}{24} = -\frac{25}{24} \cdot 4^n + \frac{1}{24},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 38. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{13}{4}\lambda + 3$. On trouve immédiatement pour solution: $\lambda = \frac{12}{17}$.

← page 4

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{13}{4}u_n + 3\right) - \left(-\frac{13}{4}\lambda + 3\right) = -\frac{13}{4}\left(u_n - \frac{12}{17}\right) = -\frac{13}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{13}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{13}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{13}{4}\right)^n v_0 + \frac{12}{17} = \left(-\frac{13}{4}\right)^n \left(u_0 - \frac{12}{17}\right) + \frac{12}{17} = -\frac{301}{17} \left(-\frac{13}{4}\right)^n + \frac{12}{17},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -17$. D'où l'expression explicite demandée.

Corrigé 39. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda + 1$. On trouve immédiatement pour solution : $\lambda = \frac{1}{2}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n + 1) - (-\lambda + 1) = -1\left(u_n - \frac{1}{2}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{1}{2} = (-1)^n \left(u_0 - \frac{1}{2} \right) + \frac{1}{2} = -\frac{3}{2} (-1)^n + \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 40. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{20}\lambda + 2$. On trouve immédiatement pour solution : $\lambda = \frac{40}{19}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{20}u_n + 2\right) - \left(\frac{1}{20}\lambda + 2\right) = \frac{1}{20}\left(u_n - \frac{40}{19}\right) = \frac{1}{20}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{20}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{20}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{20}\right)^n v_0 + \frac{40}{19} = \left(\frac{1}{20}\right)^n \left(u_0 - \frac{40}{19}\right) + \frac{40}{19} = -\frac{179}{76} \left(\frac{1}{20}\right)^n + \frac{40}{19},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{4}$. D'où l'expression explicite demandée.

Corrigé 41. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{5}\lambda - \frac{1}{20}$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{16}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{5}u_n - \frac{1}{20}\right) - \left(\frac{1}{5}\lambda - \frac{1}{20}\right) = \frac{1}{5}\left(u_n + \frac{1}{16}\right) = \frac{1}{5}v_n,$$

 \leftarrow page 4

 \leftarrow page 4

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{5}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{5}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{5}\right)^n v_0 - \frac{1}{16} = \left(\frac{1}{5}\right)^n \left(u_0 + \frac{1}{16}\right) - \frac{1}{16} = \frac{81}{16} \left(\frac{1}{5}\right)^n - \frac{1}{16},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 5$. D'où l'expression explicite demandée.

Corrigé 42. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{4}\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -4$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{3}{4}u_n - 1\right) - \left(\frac{3}{4}\lambda - 1\right) = \frac{3}{4}(u_n + 4) = \frac{3}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{3}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{3}{4}\right)^n v_0 - 4 = \left(\frac{3}{4}\right)^n (u_0 + 4) - 4 = \frac{7}{2} \left(\frac{3}{4}\right)^n - 4,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 43. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{4}\lambda - 100$. On trouve immédiatement pour solution : $\lambda = -\frac{400}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{4}u_n - 100\right) - \left(\frac{1}{4}\lambda - 100\right) = \frac{1}{4}\left(u_n + \frac{400}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{4}\right)^n v_0 - \frac{400}{3} = \left(\frac{1}{4}\right)^n \left(u_0 + \frac{400}{3}\right) - \frac{400}{3} = \frac{415}{3} \left(\frac{1}{4}\right)^n - \frac{400}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 5$. D'où l'expression explicite demandée.

Corrigé 44. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{8}{3}\lambda - \frac{1}{11}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{55}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{8}{3}u_n - \frac{1}{11}\right) - \left(\frac{8}{3}\lambda - \frac{1}{11}\right) = \frac{8}{3}\left(u_n - \frac{3}{55}\right) = \frac{8}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{8}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{8}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{8}{3}\right)^n v_0 + \frac{3}{55} = \left(\frac{8}{3}\right)^n \left(u_0 - \frac{3}{55}\right) + \frac{3}{55} = -\frac{58}{55} \left(\frac{8}{3}\right)^n + \frac{3}{55},$$

On a alors:

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 45. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{2}\lambda - 4$. On trouve immédiatement pour solution : $\lambda = -\frac{8}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

 \leftarrow page 5

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n - 4\right) - \left(-\frac{1}{2}\lambda - 4\right) = -\frac{1}{2}\left(u_n + \frac{8}{3}\right) = -\frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{2}\right)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 - \frac{8}{3} = \left(-\frac{1}{2}\right)^n \left(u_0 + \frac{8}{3}\right) - \frac{8}{3} = \frac{8}{3} \left(-\frac{1}{2}\right)^n - \frac{8}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 46. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 8\lambda - 3$. On trouve immédiatement pour solution: $\lambda = \frac{3}{7}$. Ensuite, on introduit la suite $(v_n)_{n \geq 0}$ dont le terme général est défini par: $\forall n \in \mathbb{N}, v_n = u_n - \lambda$.

 \leftarrow page 5

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (8u_n - 3) - (8\lambda - 3) = 8\left(u_n - \frac{3}{7}\right) = 8v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 8. On en déduit : $\forall n\in\mathbb{N},\ v_n=8^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 8^n v_0 + \frac{3}{7} = 8^n \left(u_0 - \frac{3}{7} \right) + \frac{3}{7} = \frac{1}{14} \cdot 8^n + \frac{3}{7},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 47. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{19}\lambda - \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = -\frac{19}{30}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

 \leftarrow page 5

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{19}u_n - \frac{2}{3}\right) - \left(-\frac{1}{19}\lambda - \frac{2}{3}\right) = -\frac{1}{19}\left(u_n + \frac{19}{30}\right) = -\frac{1}{19}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{19}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{19}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{19}\right)^n v_0 - \frac{19}{30} = \left(-\frac{1}{19}\right)^n \left(u_0 + \frac{19}{30}\right) - \frac{19}{30} = -\frac{11}{30} \left(-\frac{1}{19}\right)^n - \frac{19}{30},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 48. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 3\lambda + 10$. On trouve immédiatement pour solution: $\lambda = -5$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (3u_n + 10) - (3\lambda + 10) = 3(u_n + 5) = 3v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 3. On en déduit : $\forall n\in\mathbb{N},\ v_n=3^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 3^n v_0 - 5 = 3^n (u_0 + 5) - 5 = 4 \cdot 3^n - 5,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 49. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{3}\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{3}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{3}u_n - 1\right) - \left(-\frac{1}{3}\lambda - 1\right) = -\frac{1}{3}\left(u_n + \frac{3}{4}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{3}\right)^n v_0 - \frac{3}{4} = \left(-\frac{1}{3}\right)^n \left(u_0 + \frac{3}{4}\right) - \frac{3}{4} = \frac{7}{4} \left(-\frac{1}{3}\right)^n - \frac{3}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 50. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{67}{2}\lambda - 3$. On trouve immédiatement pour solution: $\lambda = -\frac{2}{23}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{67}{2}u_n - 3\right) - \left(-\frac{67}{2}\lambda - 3\right) = -\frac{67}{2}\left(u_n + \frac{2}{23}\right) = -\frac{67}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{67}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{67}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{67}{2}\right)^n v_0 - \frac{2}{23} = \left(-\frac{67}{2}\right)^n \left(u_0 + \frac{2}{23}\right) - \frac{2}{23} = -\frac{19}{46} \left(-\frac{67}{2}\right)^n - \frac{2}{23},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 51. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{39}{2}\lambda - \frac{1}{2}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{37}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{39}{2}u_n - \frac{1}{2}\right) - \left(\frac{39}{2}\lambda - \frac{1}{2}\right) = \frac{39}{2}\left(u_n - \frac{1}{37}\right) = \frac{39}{2}v_n,$$

 \leftarrow page 5

1 0

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{39}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{39}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{39}{2}\right)^n v_0 + \frac{1}{37} = \left(\frac{39}{2}\right)^n \left(u_0 - \frac{1}{37}\right) + \frac{1}{37} = -\frac{1}{37} \left(\frac{39}{2}\right)^n + \frac{1}{37},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 52. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{4}\lambda - \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = -\frac{4}{15}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{4}u_n - \frac{1}{3}\right) - \left(-\frac{1}{4}\lambda - \frac{1}{3}\right) = -\frac{1}{4}\left(u_n + \frac{4}{15}\right) = -\frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{4}\right)^n v_0 - \frac{4}{15} = \left(-\frac{1}{4}\right)^n \left(u_0 + \frac{4}{15}\right) - \frac{4}{15} = \frac{4}{15} \left(-\frac{1}{4}\right)^n - \frac{4}{15},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 53. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = 5\lambda - 2$. On trouve immédiatement pour solution : $\lambda = \frac{1}{2}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (5u_n - 2) - (5\lambda - 2) = 5\left(u_n - \frac{1}{2}\right) = 5v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 5. On en déduit : $\forall n\in\mathbb{N},\ v_n=5^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 5^n v_0 + \frac{1}{2} = 5^n \left(u_0 - \frac{1}{2} \right) + \frac{1}{2} = -\frac{3}{2} \cdot 5^n + \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 54. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + 2$. On trouve immédiatement pour solution: $\lambda = \frac{12}{7}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{6}u_n + 2\right) - \left(-\frac{1}{6}\lambda + 2\right) = -\frac{1}{6}\left(u_n - \frac{12}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{12}{7} = \left(-\frac{1}{6}\right)^n \left(u_0 - \frac{12}{7}\right) + \frac{12}{7} = -\frac{5}{7} \left(-\frac{1}{6}\right)^n + \frac{12}{7},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 55. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -25\lambda + 1$. On trouve immédiatement pour solution : $\lambda = \frac{1}{26}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\leftarrow$$
 page 6

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-25u_n + 1) - (-25\lambda + 1) = -25\left(u_n - \frac{1}{26}\right) = -25v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -25. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-25)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-25)^n v_0 + \frac{1}{26} = (-25)^n \left(u_0 - \frac{1}{26} \right) + \frac{1}{26} = \frac{47}{130} (-25)^n + \frac{1}{26},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{2}{5}$. D'où l'expression explicite demandée.

Corrigé 56. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{3}{2}\lambda - \frac{13}{18}$. On trouve immédiatement pour solution : $\lambda = \frac{13}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\leftarrow$$
 page 6

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{3}{2}u_n - \frac{13}{18}\right) - \left(\frac{3}{2}\lambda - \frac{13}{18}\right) = \frac{3}{2}\left(u_n - \frac{13}{9}\right) = \frac{3}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{3}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{3}{2}\right)^n v_0 + \frac{13}{9} = \left(\frac{3}{2}\right)^n \left(u_0 - \frac{13}{9}\right) + \frac{13}{9} = -\frac{178}{117} \left(\frac{3}{2}\right)^n + \frac{13}{9},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{13}$. D'où l'expression explicite demandée.

Corrigé 57. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda - 2$. On trouve immédiatement pour solution : $\lambda = -1$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\leftarrow$$
 page 6

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n - 2) - (-\lambda - 2) = -1(u_n + 1) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - 1 = (-1)^n (u_0 +) - 1 = 6 (-1)^n - 1,$$

puisque par hypothèse de l'énoncé on a : $u_0 = 5$. D'où l'expression explicite demandée.

Corrigé 58. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{4}\lambda + \frac{1}{8}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{6}$.

On a alors:

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{4}u_n + \frac{1}{8}\right) - \left(\frac{1}{4}\lambda + \frac{1}{8}\right) = \frac{1}{4}\left(u_n - \frac{1}{6}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{4}\right)^n v_0 + \frac{1}{6} = \left(\frac{1}{4}\right)^n \left(u_0 - \frac{1}{6}\right) + \frac{1}{6} = -\frac{7}{6} \left(\frac{1}{4}\right)^n + \frac{1}{6},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 59. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{2}$. Ensuite, on introduit la suite $(v_n)_{n \geq 0}$ dont le terme général est défini par: $\forall n \in \mathbb{N}, v_n = u_n - \lambda$.

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n - 1) - (-\lambda - 1) = -1\left(u_n + \frac{1}{2}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{2} = (-1)^n \left(u_0 + \frac{1}{2} \right) - \frac{1}{2} = \frac{3}{2} (-1)^n - \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 60. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 2\lambda + 1$. On trouve immédiatement pour solution: $\lambda = -1$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (2u_n + 1) - (2\lambda + 1) = 2(u_n + 1) = 2v_n$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 2. On en déduit : $\forall n\in\mathbb{N},\ v_n=2^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 2^n v_0 - 1 = 2^n (u_0 + 1) - 1 = 4 \cdot 2^n - 1$$

puisque par hypothèse de l'énoncé on a : $u_0 = 3$. D'où l'expression explicite demandée.

Corrigé 61. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{2}{7}\lambda - \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = -\frac{7}{10}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{2}{7}u_n - \frac{1}{2}\right) - \left(\frac{2}{7}\lambda - \frac{1}{2}\right) = \frac{2}{7}\left(u_n + \frac{7}{10}\right) = \frac{2}{7}v_n,$$

 \leftarrow page 6

 \leftarrow page 6

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{2}{7}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{2}{7}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{2}{7}\right)^n v_0 - \frac{7}{10} = \left(\frac{2}{7}\right)^n \left(u_0 + \frac{7}{10}\right) - \frac{7}{10} = \frac{27}{10} \left(\frac{2}{7}\right)^n - \frac{7}{10},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 2$. D'où l'expression explicite demandée.

Corrigé 62. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda - \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{6}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n - \frac{1}{3}\right) - \left(-\lambda - \frac{1}{3}\right) = -1\left(u_n + \frac{1}{6}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{6} = (-1)^n \left(u_0 + \frac{1}{6} \right) - \frac{1}{6} = \frac{14683}{6} (-1)^n - \frac{1}{6},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 2447$. D'où l'expression explicite demandée.

Corrigé 63. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda + \frac{1}{4}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{8}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n + \frac{1}{4}\right) - \left(-\lambda + \frac{1}{4}\right) = -1\left(u_n - \frac{1}{8}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{1}{8} = (-1)^n \left(u_0 - \frac{1}{8} \right) + \frac{1}{8} = -\frac{9}{8} (-1)^n + \frac{1}{8},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 64. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{2}\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{2}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{2}u_n + 1\right) - \left(-\frac{1}{2}\lambda + 1\right) = -\frac{1}{2}\left(u_n - \frac{2}{3}\right) = -\frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(-\frac{1}{2}\right)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{2}\right)^n v_0 + \frac{2}{3} = \left(-\frac{1}{2}\right)^n \left(u_0 - \frac{2}{3}\right) + \frac{2}{3} = -\frac{5}{3} \left(-\frac{1}{2}\right)^n + \frac{2}{3},$$

On a alors:

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 65. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{3}\lambda - \frac{1}{2}$. On trouve immédiatement pour solution : $\lambda = -\frac{3}{8}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$.

 \leftarrow page 7

 \leftarrow page 7

 \leftarrow page 7

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{3}u_n - \frac{1}{2}\right) - \left(-\frac{1}{3}\lambda - \frac{1}{2}\right) = -\frac{1}{3}\left(u_n + \frac{3}{8}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{3}\right)^n v_0 - \frac{3}{8} = \left(-\frac{1}{3}\right)^n \left(u_0 + \frac{3}{8}\right) - \frac{3}{8} = \frac{3}{8} \left(-\frac{1}{3}\right)^n - \frac{3}{8},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 66. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -2\lambda - \frac{1}{16}$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{48}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-2u_n - \frac{1}{16}\right) - \left(-2\lambda - \frac{1}{16}\right) = -2\left(u_n + \frac{1}{48}\right) = -2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -2. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-2)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-2)^n v_0 - \frac{1}{48} = (-2)^n \left(u_0 + \frac{1}{48} \right) - \frac{1}{48} = -\frac{143}{48} (-2)^n - \frac{1}{48},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -3$. D'où l'expression explicite demandée.

Corrigé 67. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda - \frac{1}{2}$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n - \frac{1}{2}\right) - \left(-\lambda - \frac{1}{2}\right) = -1\left(u_n + \frac{1}{4}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{4} = (-1)^n \left(u_0 + \frac{1}{4} \right) - \frac{1}{4} = -\frac{3}{4} (-1)^n - \frac{1}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 68. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda - \frac{3}{2}$. On trouve immédiatement pour solution: $\lambda = -\frac{3}{4}$.

On a alors:

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n - \frac{3}{2}\right) - \left(-\lambda - \frac{3}{2}\right) = -1\left(u_n + \frac{3}{4}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{3}{4} = (-1)^n \left(u_0 + \frac{3}{4} \right) - \frac{3}{4} = \frac{7}{4} (-1)^n - \frac{3}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 69. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{3}\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{3}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{3}u_n + 1\right) - \left(-\frac{1}{3}\lambda + 1\right) = -\frac{1}{3}\left(u_n - \frac{3}{4}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(-\frac{1}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{3}\right)^n v_0 + \frac{3}{4} = \left(-\frac{1}{3}\right)^n \left(u_0 - \frac{3}{4}\right) + \frac{3}{4} = \frac{1}{4} \left(-\frac{1}{3}\right)^n + \frac{3}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 70. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda + \frac{1}{2}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n + \frac{1}{2}\right) - \left(-\lambda + \frac{1}{2}\right) = -1\left(u_n - \frac{1}{4}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{1}{4} = (-1)^n \left(u_0 - \frac{1}{4} \right) + \frac{1}{4} = \frac{3}{4} (-1)^n + \frac{1}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 71. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{2}\lambda - 1$. On trouve immédiatement pour solution : $\lambda = -2$. Ensuite, on introduit la suite $(v_n)_{n\geq 0}$ dont le terme général est défini par : $\forall n \in \mathbb{N}, v_n = u_n - \lambda$.

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n - 1\right) - \left(\frac{1}{2}\lambda - 1\right) = \frac{1}{2}(u_n + 2) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 - 2 = \left(\frac{1}{2}\right)^n (u_0 + 2) - 2 = \left(\frac{1}{2}\right)^n - 2,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 72. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{2}{15}\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{15}{17}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{2}{15}u_n - 1\right) - \left(-\frac{2}{15}\lambda - 1\right) = -\frac{2}{15}\left(u_n + \frac{15}{17}\right) = -\frac{2}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{2}{15}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{2}{15}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{2}{15}\right)^n v_0 - \frac{15}{17} = \left(-\frac{2}{15}\right)^n \left(u_0 + \frac{15}{17}\right) - \frac{15}{17} = -\frac{2}{17} \left(-\frac{2}{15}\right)^n - \frac{15}{17},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 73. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -5\lambda + 3$. On trouve immédiatement pour solution: $\lambda = \frac{1}{2}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-5u_n + 3) - (-5\lambda + 3) = -5\left(u_n - \frac{1}{2}\right) = -5v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -5. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-5)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-5)^n v_0 + \frac{1}{2} = (-5)^n \left(u_0 - \frac{1}{2} \right) + \frac{1}{2} = -\frac{1}{2} (-5)^n + \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 74. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{5}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution : $\lambda = \frac{5}{12}$. Ensuite, on introduit la suite $(v_n)_{n\geq 0}$ dont le terme général est défini par : $\forall n \in \mathbb{N}, v_n = u_n - \lambda$.

On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{5}u_n + \frac{1}{3}\right) - \left(\frac{1}{5}\lambda + \frac{1}{3}\right) = \frac{1}{5}\left(u_n - \frac{5}{12}\right) = \frac{1}{5}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{5}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{5}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{5}\right)^n v_0 + \frac{5}{12} = \left(\frac{1}{5}\right)^n \left(u_0 - \frac{5}{12}\right) + \frac{5}{12} = \frac{7}{12} \left(\frac{1}{5}\right)^n + \frac{5}{12},$$

 \leftarrow page 8

puisque par hypothèse de l'énoncé on a : $u_0 = 1$. D'où l'expression explicite demandée.

Corrigé 75. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{4}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{3}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{4}u_n + \frac{1}{2}\right) - \left(\frac{1}{4}\lambda + \frac{1}{2}\right) = \frac{1}{4}\left(u_n - \frac{2}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{4}\right)^n v_0 + \frac{2}{3} = \left(\frac{1}{4}\right)^n \left(u_0 - \frac{2}{3}\right) + \frac{2}{3} = -\frac{2}{3} \left(\frac{1}{4}\right)^n + \frac{2}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 76. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -3\lambda - 9$. On trouve immédiatement pour solution: $\lambda = -\frac{9}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-3u_n - 9) - (-3\lambda - 9) = -3\left(u_n + \frac{9}{4}\right) = -3v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -3. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-3)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-3)^n v_0 - \frac{9}{4} = (-3)^n \left(u_0 + \frac{9}{4} \right) - \frac{9}{4} = -\frac{3}{4} (-3)^n - \frac{9}{4},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -3$. D'où l'expression explicite demandée.

Corrigé 77. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{2}\lambda - \frac{11}{5}$. On trouve immédiatement pour solution: $\lambda = -\frac{22}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n - \frac{11}{5}\right) - \left(\frac{1}{2}\lambda - \frac{11}{5}\right) = \frac{1}{2}\left(u_n + \frac{22}{5}\right) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 - \frac{22}{5} = \left(\frac{1}{2}\right)^n \left(u_0 + \frac{22}{5}\right) - \frac{22}{5} = \frac{22}{5} \left(\frac{1}{2}\right)^n - \frac{22}{5},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 78. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -2\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{3}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-2u_n - 1) - (-2\lambda - 1) = -2\left(u_n + \frac{1}{3}\right) = -2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -2. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-2)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-2)^n v_0 - \frac{1}{3} = (-2)^n \left(u_0 + \frac{1}{3} \right) - \frac{1}{3} = \frac{9}{23} (-2)^n - \frac{1}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{4}{69}$. D'où l'expression explicite demandée.

Corrigé 79. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = 2\lambda - 3$. On trouve immédiatement pour solution : $\lambda = 3$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (2u_n - 3) - (2\lambda - 3) = 2(u_n - 3) = 2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 2. On en déduit : $\forall n\in\mathbb{N},\ v_n=2^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 2^n v_0 + 3 = 2^n (u_0 - 3) + 3 = -5 \cdot 2^n + 3,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -2$. D'où l'expression explicite demandée.

Corrigé 80. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -6\lambda - 1$. On trouve immédiatement pour solution : $\lambda = -\frac{1}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-6u_n - 1) - (-6\lambda - 1) = -6\left(u_n + \frac{1}{7}\right) = -6v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -6. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-6)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-6)^n v_0 - \frac{1}{7} = (-6)^n \left(u_0 + \frac{1}{7}\right) - \frac{1}{7} = \frac{15}{7} (-6)^n - \frac{1}{7},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 2$. D'où l'expression explicite demandée.

Corrigé 81. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = 12\lambda - \frac{1}{5}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{55}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(12u_n - \frac{1}{5}\right) - \left(12\lambda - \frac{1}{5}\right) = 12\left(u_n - \frac{1}{55}\right) = 12v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 12. On en déduit : $\forall n\in\mathbb{N},\ v_n=12^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 12^n v_0 + \frac{1}{55} = 12^n \left(u_0 - \frac{1}{55} \right) + \frac{1}{55} = \frac{52}{165} \cdot 12^n + \frac{1}{55},$$

 \leftarrow page 8

 \leftarrow page 8

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{3}$. D'où l'expression explicite demandée.

Corrigé 82. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{8}$.

el

 \leftarrow page 9

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n + \frac{1}{4}\right) - \left(-\lambda + \frac{1}{4}\right) = -1\left(u_n - \frac{1}{8}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{1}{8} = (-1)^n \left(u_0 - \frac{1}{8}\right) + \frac{1}{8} = -\frac{17}{8} (-1)^n + \frac{1}{8},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -2$. D'où l'expression explicite demandée.

Corrigé 83. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda - 2$. On trouve immédiatement pour solution: $\lambda = -1$.

 \leftarrow page 9

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n - 2) - (-\lambda - 2) = -1(u_n + 1) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - 1 = (-1)^n (u_0 +) - 1 = \frac{5}{6} (-1)^n - 1,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{6}$. D'où l'expression explicite demandée.

Corrigé 84. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{2}{5}\lambda + 1$. On trouve immédiatement pour solution: $\lambda = \frac{5}{3}$.

 \leftarrow page 9

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{2}{5}u_n + 1\right) - \left(\frac{2}{5}\lambda + 1\right) = \frac{2}{5}\left(u_n - \frac{5}{3}\right) = \frac{2}{5}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{2}{5}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{2}{5}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{2}{5}\right)^n v_0 + \frac{5}{3} = \left(\frac{2}{5}\right)^n \left(u_0 - \frac{5}{3}\right) + \frac{5}{3} = -\frac{7}{6} \left(\frac{2}{5}\right)^n + \frac{5}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 85. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 2\lambda - 2$. On trouve immédiatement pour solution: $\lambda = 2$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (2u_n - 2) - (2\lambda - 2) = 2(u_n - 2) = 2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 2. On en déduit : $\forall n\in\mathbb{N},\ v_n=2^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 2^n v_0 + 2 = 2^n (u_0 - 2) + 2 = -2 \cdot 2^n + 2,$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 86. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\frac{1}{4}\lambda + 3$. On trouve immédiatement pour solution : $\lambda = \frac{12}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{4}u_n + 3\right) - \left(-\frac{1}{4}\lambda + 3\right) = -\frac{1}{4}\left(u_n - \frac{12}{5}\right) = -\frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{4}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{4}\right)^n v_0 + \frac{12}{5} = \left(-\frac{1}{4}\right)^n \left(u_0 - \frac{12}{5}\right) + \frac{12}{5} = -\frac{19}{10} \left(-\frac{1}{4}\right)^n + \frac{12}{5},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 87. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{2}\lambda - \frac{4}{5}$. On trouve immédiatement pour solution: $\lambda = -\frac{8}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n - \frac{4}{5}\right) - \left(\frac{1}{2}\lambda - \frac{4}{5}\right) = \frac{1}{2}\left(u_n + \frac{8}{5}\right) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 - \frac{8}{5} = \left(\frac{1}{2}\right)^n \left(u_0 + \frac{8}{5}\right) - \frac{8}{5} = -\frac{2}{5} \left(\frac{1}{2}\right)^n - \frac{8}{5},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -2$. D'où l'expression explicite demandée.

Corrigé 88. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{2}\lambda - \frac{1}{70}$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{35}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n - \frac{1}{70}\right) - \left(\frac{1}{2}\lambda - \frac{1}{70}\right) = \frac{1}{2}\left(u_n + \frac{1}{35}\right) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 - \frac{1}{35} = \left(\frac{1}{2}\right)^n \left(u_0 + \frac{1}{35}\right) - \frac{1}{35} = -\frac{104}{35} \left(\frac{1}{2}\right)^n - \frac{1}{35},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -3$. D'où l'expression explicite demandée.

Corrigé 89. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 6\lambda + \frac{1}{8}$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{40}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(6u_n + \frac{1}{8}\right) - \left(6\lambda + \frac{1}{8}\right) = 6\left(u_n + \frac{1}{40}\right) = 6v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 6. On en déduit : $\forall n\in\mathbb{N},\ v_n=6^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 6^n v_0 - \frac{1}{40} = 6^n \left(u_0 + \frac{1}{40} \right) - \frac{1}{40} = \frac{1}{40} \cdot 6^n - \frac{1}{40},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 90. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -2\lambda + 26$. On trouve immédiatement pour solution: $\lambda = \frac{26}{3}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-2u_n + 26) - (-2\lambda + 26) = -2\left(u_n - \frac{26}{3}\right) = -2v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -2. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-2)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-2)^n v_0 + \frac{26}{3} = (-2)^n \left(u_0 - \frac{26}{3} \right) + \frac{26}{3} = -\frac{29}{3} (-2)^n + \frac{26}{3},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 91. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{3}\lambda + \frac{1}{7}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{28}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-\frac{1}{3}u_n + \frac{1}{7}\right) - \left(-\frac{1}{3}\lambda + \frac{1}{7}\right) = -\frac{1}{3}\left(u_n - \frac{3}{28}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{3}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(-\frac{1}{3}\right)^n v_0 + \frac{3}{28} = \left(-\frac{1}{3}\right)^n \left(u_0 - \frac{3}{28}\right) + \frac{3}{28} = -\frac{3}{28} \left(-\frac{1}{3}\right)^n + \frac{3}{28},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 92. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{2}\lambda - 3$. On trouve immédiatement pour solution : $\lambda = -6$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n - 3\right) - \left(\frac{1}{2}\lambda - 3\right) = \frac{1}{2}\left(u_n + 6\right) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 - 6 = \left(\frac{1}{2}\right)^n (u_0 + 6) - 6 = 5 \left(\frac{1}{2}\right)^n - 6,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 93. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{2}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = 1$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(\frac{1}{2}u_n + \frac{1}{2}\right) - \left(\frac{1}{2}\lambda + \frac{1}{2}\right) = \frac{1}{2}(u_n - 1) = \frac{1}{2}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{2}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{2}\right)^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = \left(\frac{1}{2}\right)^n v_0 + 1 = \left(\frac{1}{2}\right)^n (u_0 - 1) + 1 = -\frac{4}{3} \left(\frac{1}{2}\right)^n + 1,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{3}$. D'où l'expression explicite demandée.

Corrigé 94. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda + 2$. On trouve immédiatement pour solution: $\lambda = 1$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n + 2) - (-\lambda + 2) = -1(u_n - 1) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + 1 = (-1)^n (u_0 - 1) + 1 = -\frac{13}{2} (-1)^n + 1,$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{11}{2}$. D'où l'expression explicite demandée.

Corrigé 95. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = 3\lambda - \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{6}$.

 \leftarrow page 9

 \leftarrow page 10

On a alors:

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\,v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(3u_n - \frac{1}{3}\right) - \left(3\lambda - \frac{1}{3}\right) = 3\left(u_n - \frac{1}{6}\right) = 3v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison 3. On en déduit : $\forall n\in\mathbb{N},\ v_n=3^nv_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = 3^n v_0 + \frac{1}{6} = 3^n \left(u_0 - \frac{1}{6} \right) + \frac{1}{6} = -\frac{2}{3} \cdot 3^n + \frac{1}{6}$$

puisque par hypothèse de l'énoncé on a : $u_0 = -\frac{1}{2}$. D'où l'expression explicite demandée.

Corrigé 96. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda - 1$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{2}$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n - 1) - (-\lambda - 1) = -1\left(u_n + \frac{1}{2}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 - \frac{1}{2} = (-1)^n \left(u_0 + \frac{1}{2} \right) - \frac{1}{2} = -\frac{1}{2} (-1)^n - \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 97. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = -\lambda + \frac{1}{3}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{6}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n + \frac{1}{3}\right) - \left(-\lambda + \frac{1}{3}\right) = -1\left(u_n - \frac{1}{6}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{1}{6} = (-1)^n \left(u_0 - \frac{1}{6} \right) + \frac{1}{6} = -\frac{7}{6} (-1)^n + \frac{1}{6}$$

puisque par hypothèse de l'énoncé on a : $u_0 = -1$. D'où l'expression explicite demandée.

Corrigé 98. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -2\lambda - \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = -\frac{1}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=u_n-\lambda$.

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-2u_n - \frac{1}{3}\right) - \left(-2\lambda - \frac{1}{3}\right) = -2\left(u_n + \frac{1}{9}\right) = -2v_n,$$

← page 10

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -2. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-2)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-2)^n v_0 - \frac{1}{9} = (-2)^n \left(u_0 + \frac{1}{9} \right) - \frac{1}{9} = \frac{1}{9} (-2)^n - \frac{1}{9},$$

puisque par hypothèse de l'énoncé on a : $u_0 = 0$. D'où l'expression explicite demandée.

Corrigé 99. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{10}$. Ensuite, on introduit la suite $(v_n)_{n>0}$ dont le terme général est défini par: $\forall n \in \mathbb{N}, v_n = u_n - \lambda$.

Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}, v_n=u_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = \left(-u_n + \frac{1}{5}\right) - \left(-\lambda + \frac{1}{5}\right) = -1\left(u_n - \frac{1}{10}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{1}{10} = (-1)^n \left(u_0 - \frac{1}{10} \right) + \frac{1}{10} = \frac{107}{30} (-1)^n + \frac{1}{10},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{11}{3}$. D'où l'expression explicite demandée.

Corrigé 100. La méthode pour déterminer une suite arithmético-géométrique est connue. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\lambda + 5$. On trouve immédiatement pour solution: $\lambda = \frac{5}{2}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N},\ v_n=u_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \lambda = (-u_n + 5) - (-\lambda + 5) = -1\left(u_n - \frac{5}{2}\right) = -1v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison -1. On en déduit : $\forall n\in\mathbb{N},\ v_n=(-1)^n\,v_0$. Or $u_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n v_0 + \frac{5}{2} = (-1)^n \left(u_0 - \frac{5}{2} \right) + \frac{5}{2} = -\frac{11}{6} (-1)^n + \frac{5}{2},$$

puisque par hypothèse de l'énoncé on a : $u_0 = \frac{2}{3}$. D'où l'expression explicite demandée.

 \leftarrow page 10