Algebra Lineare A.A. 2020-2021 Esame 25/1/2021

Soluzione dell'esame.

Esercizio 1. Siano A=(1,2,-3), B=(-2,0,1) e C=(1,0,0) tre punti dello spazio euclideo. Si dica quale delle seguenti affermazioni è vera e si giustifichi la scelta.

- a) Il piano $\pi : x + 9y + 6z 1 = 0$ passa per A, B e C.
- b) Il piano $\sigma: 2y-3z+3=0$ ha giacitura parallela ad \overrightarrow{AC} e passa per B.
- c) La retta r di equazioni parametriche r : $\begin{cases} x = 3t \\ y = 0 \\ z = -t \end{cases}$ passa per B e C.

Soluzione:

La risposta vera è la b). $\overrightarrow{AC} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix} = -\mathbf{n}$ dove $\mathbf{n} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$ è la giacitura di σ . Inoltre σ passa per

Esercizio 2. Sia A una matrice quadrata 3×3 ad entrate reali. Sapendo che il polinomio caratteristico di A è $p_A(\lambda) = (\lambda+1)(\lambda-1)(\lambda-2)$ possiamo concludere che A è invertibile? Perché? Si tenga presente che A è invertibile se e solo se $\det A \neq 0$.

Soluzione:

Sì, possiamo concludere che A è invertibile. Poiché $p_A(\lambda)=0$ se e solo se $\lambda=-1,1,2,\ A$ ha 3 autovalori distinti ed è quindi diagonalizzabile. Ciò significa che esiste una matrice invertibile B tale

che
$$B^{-1}AB = D$$
 con $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Allora $-2 = \det D = \det(B^{-1}AB) = \det B^{-1} \det A \det B = 0$

1. Si utilizzi il teorema di Rouché-Capelli per studiare al variare di $k \in \mathbb{R}$ la compatibilità (ovvero l'esistenza o meno di soluzioni) del sistema

$$\Sigma_k = \begin{cases} x_1 + kx_2 = 0 \\ x_1 + kx_2 - kx_4 = -1 \\ x_1 + x_2 + (1 - k)x_3 = 0 \\ -k(1 - k)x_2 - kx_4 = 0 \end{cases}.$$

- 2. Si dica se esistono dei valori di k per cui l'insieme delle soluzioni di Σ_k è il sottospazio vettoriale
 - di \mathbb{R}^4 generato dal vettore $\begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}$. Si giustifichi la risposta facendo riferimento al punto 1.
- 3. Sia $T_k:\mathbb{R}^4\to\mathbb{R}^4$ l'endomorfismo rappresentato rispetto alla base canonica dalla matrice dei coefficienti di Σ_k . Si studi iniettività e suriettività di T_k al variare di $k \in \mathbb{R}$. Si faccia riferimento al punto 1.

4. Posto k = -1, si calcoli $\operatorname{Spec}(T_{-1})$ e si verifichi che T_{-1} è diagonalizzabile.

Soluzione:

1. La matrice dei coefficienti di Σ_k è la matrice

$$A_k = \begin{pmatrix} 1 & k & 0 & 0 \\ 1 & k & 0 & -k \\ 1 & 1 & 1-k & 0 \\ 0 & -k(1-k) & 0 & -k \end{pmatrix},$$

quella completa è invece la matrice

$$A'_k = \begin{pmatrix} 1 & k & 0 & 0 & 0 \\ 1 & k & 0 & -k & -1 \\ 1 & 1 & 1 - k & 0 & 0 \\ 0 & -k(1-k) & 0 & -k & 0 \end{pmatrix}.$$

$$\det A_k = \det \begin{pmatrix} k & 0 & -k \\ 1 & 1-k & 0 \\ -k(1-k) & 0 & -k \end{pmatrix} - k \det \begin{pmatrix} 1 & 0 & -k \\ 1 & 1-k & 0 \\ 0 & 0 & -k \end{pmatrix} =$$

$$= k \det \begin{pmatrix} 1-k & 0 \\ 0 & -k \end{pmatrix} - k \det \begin{pmatrix} 1 & 1-k \\ -k(1-k) & 0 \end{pmatrix} - k \begin{pmatrix} -k \det \begin{pmatrix} 1 & 0 \\ 1 & 1-k \end{pmatrix} \end{pmatrix} =$$

$$= -k^2(1-k) - k^2(1-k)^2 + k^2(1-k) = -k^2(1-k)^2.$$

Poiché det $A_k=0 \Leftrightarrow k=0$ o k=1, per $k\neq 0,1$, $\operatorname{rg} A_k=\operatorname{rg} A_k'=4$ e per il teorema di Rouché-Capelli il sistema Σ_k ammette una e una sola soluzione.

Se k = 0

$$A_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad e \qquad A'_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Riducendo a scala entrambe le matrici si ha:

$$A_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
e quindi rg $A_0 = 2$;

$$A'_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ e quindi } \text{rg} A'_0 = 3.$$

Quindi per $k = 0 \text{ rg} A_0' > \text{rg} A_0$ e il sistema NON è compatibile (non ammette soluzioni).

Se k=1

$$A_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad e \qquad A_1' = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & -1 & -1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}.$$

Riducendo a scala entrambe le matrici si ha:

$$A_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ e quindi } \text{rg} A_1 = 2;$$

$$A'_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & -1 & -1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ e quindi } \text{rg} A'_1 = 3.$$

Quindi per $k = 1 \text{ rg} A_1' > \text{rg} A_1$ e il sistema NON è compatibile (non ammette soluzioni).

- 2. No, non esistono valori di k per cui l'insieme delle soluzioni di Σ_k è costituito da un numero infinito di valori. Per il punto precedente Σ_k ammette una sola soluzione $(k \neq 0, 1)$ o non ne ammette nessuna (k = 0, 1).
- 3. Per $k \neq 0, 1$, rg $A_k = \dim \operatorname{Im} T_k = 4$ quindi l'endomorfismo T_k è suriettivo e di conseguenza anche iniettivo, pertanto T_k è bigettivo. Per k = 0, 1, rg $A_k = \dim \operatorname{Im} T_k = 2$, quindi $\dim \ker T_k = 4 2 = 2$ e T_k non è né iniettivo né suriettivo.
- 4. Per definizione, l'endomorfismo $T_{-1}: \mathbb{R}^4 \to \mathbb{R}^4$ è rappresentato dalla matrice

$$A_{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}.$$

$$p_{T_{-1}}(\lambda) = \det(\lambda I - A_{-1}) = \det \begin{pmatrix} \lambda - 1 & 1 & 0 & 0 \\ -1 & \lambda + 1 & 0 & -1 \\ -1 & -1 & \lambda - 2 & 0 \\ 0 & -2 & 0 & \lambda - 1 \end{pmatrix} = \lambda \det \begin{pmatrix} \lambda - 1 & 1 & 0 \\ -1 & \lambda + 1 & -1 \\ 0 & -2 & \lambda - 1 \end{pmatrix} = (\lambda - 2) \left[(\lambda - 1)(\lambda^2 - 3) + (\lambda - 1) \right] = (\lambda - 2)(\lambda - 1)(\lambda^2 - 2) = 0 \Leftrightarrow \lambda = 2, 1, \pm \sqrt{2}.$$

Ne segue che $\mathrm{Spec}T_{-1}=\{2,1,-\sqrt{2},\sqrt{2}\}$ e T_{-1} è diagonalizzabile, avendo 4 autovalori distinti.

Esercizio 4. Si enunci il secondo criterio di diagonalizzabilità di un endomorfismo $T: V \to V$.

Soluzione:

Sia Spec $T = \{\lambda_1, \ldots, \lambda_k\}$ l'insieme degli autovalori (distinti) di T. Il secondo criterio di diagonalizzabilità afferma che T è diagonalizzabile se e solo se $\sum_{i=1}^k m_a(\lambda_i) = n$ e $m_g(\lambda_i) = m_a(\lambda_i)$ per ogni $1 \le i \le k$.

Esercizio 5. Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare rappresentata rispetto alle basi canoniche di \mathbb{R}^2 e \mathbb{R}^3 dalla matrice

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 0 & 1 \end{pmatrix}.$$

- a) Si trovi una base di kerf e Imf. Cosa possiamo dire su iniettività e suriettività di f?
- b) Sia \mathcal{B} la base di \mathbb{R}^2 costituita dai vettori $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ e $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Determinare la matrice A' che rappresenta f rispetto alla base \mathcal{B} di \mathbb{R}^2 e alla base canonica di \mathbb{R}^3 .
- c) Detta B la matrice del cambiamento di base tale che A'=AB (si veda il punto b)), calcolare B^{-1} .

Soluzione:

a) Osserviamo che rgA=2. La sottomatrice $2\times 2\begin{pmatrix} 1 & -1\\ 2 & 3 \end{pmatrix}$ di A ha infatti determinante $5\neq 0$. Ne segue che dim Imf=2 e che le due colonne linearmente indipendenti di A costituiscono una base di Im $f\colon \mathcal{B}_{\mathrm{Im}f}=\left\{\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, \begin{pmatrix} -1\\ 3\\ 1 \end{pmatrix}\right\}$. Inoltre, dim Im $f=2<3=\dim\mathbb{R}^3$ implica che f non è suriettiva.

Per il teorema della dimensione: dim ker $f = \dim \mathbb{R}^2 - \dim \operatorname{Im} f = 2 - 2 = 0$. Pertando ker $f = \{0\}$ e f è iniettiva.

b) La matrice $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ è la matrice del cambiamento di base dalla base canonica di \mathbb{R}^2 alla base $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Allora

$$A' = AB = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 5 & -1 \\ 1 & -1 \end{pmatrix}.$$

c) Utilizzando la formula dell'inversa di una matrice 2×2 , poiché det $B = \det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2$,

$$B^{-1} = -\frac{1}{2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$