الإستان المالية المالية

In His Name

Physics Quiz 4

SY: 2022/2023

Duration: 30 min

Score: /10

Date:

Al-Mahdi Schools - Shahed

Name: Grade: G12 LS

A laser beam (S) of wave length $\lambda=633\,\text{nm}$ illuminates in air, at normal incidence, a vertical thin slit, of width $a=0.2\,\text{mm}$, which is cut in an opaque plane (P). We observe a diffraction pattern on a screen (E) placed parallel to (P) at a distance $D=1.5\,\text{m}$ away from it. A point M on the screen belongs to the obtained diffraction pattern, and it has a position x=0M relative to the center O of the central bright fringe. (Document 1) The diffraction angles of the fringes in the following questions are small. Given: $c=3\times10^8\,\text{m/s}$.

Document-1

- 1) The laser beam is monochromatic. Why? Calculate its frequency. (0.5 pt + 0.5 pt)
- 2) Indicate the name of the phenomenon that takes place when light crosses the slit. Justify. (0.25 pt + 0.5 pt)
- 3) Describe what you would observe on the screen. (1 pt)

- 4) Draw (in Box 1) a diagram showing the pattern observed on the screen (E). (0.75 pt)
- 5) Draw (in Box 2) a rough diagram that shows the variation of the intensity I of the diffracted light on the screen, as a function of $\sin \theta$ (θ is the angle of diffraction of a point in the diffraction pattern). Indicate the first and second dark fringes on the figure. (1 pt)

Box 1

6)	The above phenomenon confirms a certain aspect of light. Name this aspect. (0.25 pt)
7)	Write in terms of a, n, and λ , the expression of the diffraction angle θ of M. (0.5 pt)
8)	Show that the abscissa of MO is $x_M = \frac{n\lambda D}{a}$. Deduce the positions of the first dark fringes. (1.5 pt)
9)	Deduce the linear width of the central bright fringe. (0.75 pt)
	The local beam is usulo and by smath on one emitting light of some intensity and of movelength 21
	The laser beam is replaced by another one emitting light of same intensity and of wavelength $\lambda' = 400$ nm. In order to obtain the same diffraction pattern as the one obtained with $\lambda = 633$ nm, determine the new value of D, if a is not changed. (1 pt)
11	M is a point on the screen which has an abscissa x (x = OM). M is the center of a dark fringe of order n of the red color (λ = 633 nm). Also, M is the center of a dark fringe of order (n +1) of a color of wavelength λ ' = 422 nm. Determine n and x. (1.5 pt)
	Blessed Efforts