ПМИ. Группа 1. Домашнее задание №1. Часть 1. (Дедлайн: 19 сентября)

Оцениваются полные решения с подробностями.

1. (1) Подберите такой предикат P(x,y), чтобы высказывания

$$\forall x \,\exists y : P(x,y) \quad \mathbf{u} \quad \exists x \,\forall y : P(x,y)$$

были истинными, а высказывание $\exists y : \forall x \, P(x, y)$ — ложным.

- **2.** (1) Пусть f(n) и g(n) некоторые функции, заданные на натуральных числах. Рассмотрим три суждения:
 - (a) $\exists N \in \mathbb{N} : \forall n \ge N f(n) > g(n);$
 - (b) f(10) > g(10)
 - (c) $\forall n \ge 10 f(n) > g(n);$

Какие из импликаций (следований) верные? (a) \Rightarrow (c)? (c) \Rightarrow (a)? (b) \Rightarrow (c)? Если импликация справедлива всегда, то объясните. Если нет, то приведите контрпример.

Замечание: следование верно, если в предположении, что утверждение слева истинно, следует, что утверждение справа истинно.

- **3.** (1) С помощью ММИ докажите неравенства: $\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} < 2\sqrt{n}, \quad n > 1, n \in \mathbb{N}.$
- **4.** (1) С помощью ММИ докажите тождество: $1^3 + 2^3 + 3^3 + \ldots + n^3 = (1 + 2 + 3 + \ldots + n)^2$.

ПМИ. Группа 1. Домашнее задание №1. Часть 2. (Дедлайн: 19 сентября)

Для графиков/эскизов указывайте отмеченные точки, расположение исходных графиков относительно вспомогательных, используйте словестные описания, если из графика не ясно поведение функции и пр. Исследовать с помощью производной не нужно.

5. Построить графики функций

$$a. (0.75) y = \arccos(\cos x^2);$$
 $b. (0.75) y = \log_2 |x^3 - x^2|$

- **6.** (1) (творческая) Доказать (необязательно строгую) монотонность функции $y = x + \sin x$. Без производных. Построить эскиз графика.
- 7. Постройте в полярной системе координат:

a) (0.5)
$$\rho = 2 + \cos 2\phi$$
; b) (1) $\rho = \frac{\phi}{\phi + 1}$;

- **8.** (2) Пусть X и Y непустые множества вещественных чисел такие, что:
 - а) для любого $x \in X$ и для любого $y \in Y$ справедливо неравенство $x \leqslant y$;
 - б) для любого $\varepsilon>0$ существуют $x_{\varepsilon}\in X$ и $y_{\varepsilon}\in Y$ такие, что $y_{\varepsilon}-x_{\varepsilon}<\varepsilon$.

Докажите, что $\sup X = \inf Y$.

- **9.** (1) Пусть $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ монотонно убывающая функция. Может ли при всех $t \in \phi(\mathbb{R}_+)$ выполняться неравенство $\phi(t) > \phi^{-1}(t)$?
- 10. (1) Используя ММИ, докажите неравенство

$$\frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2} < 2.$$