Applied Economics: Math Review 2022 Day 1 Mwaso Mnensa

LOGIC AND PROOFS

1. Definitions and notations

A	For all		
3	There exists		
∄	There does not exist		
:	Therefore		
:	Because		
コ	Negation		
≡	Identical to or the same as For example, we write $f \equiv g$ if $f(x) = g(x)$ for all x		
\Rightarrow	$A \Rightarrow B$ means: "A implies B, "If A then B or "A is sufficient condition for B"		
\Leftrightarrow	A ⇔B means "A if and only if B", "A is equivalent to B" or "A is a necessary and sufficient condition for B"		
A ⊂ B	"B strictly contains A" or "A is a proper subset of B"		
A ⊆ B	"B contains A" or "A is a subset of B"		
€ (∉)	In (Not in) or an element of (Not an element of)		
	Bonus: End of proof, Q.E.D.		

Note: QED is the abbreviation for **quod erat demonstrandum**, translating "Which was to be demonstrated" or "which is what had to be proved".

The last 3 notations have to do with sets. We shall discuss sets in more detail tomorrow. A set is defined by its elements A

Capital letters from the few first letters of the alphabet usually are commonly used to denote properties or object of statements.

A = "student attending the 2022 Math Review"

B = "student at the University of Minnesota"

C = "student in the department of Applied Economics"

Which statements are true if the following statement is true?

$$A \Rightarrow B$$

Answer:

- a. "A implies B
- b. "A is sufficient for B"
- c. "B is necessary for A"
- d. "if A, then B"

A statement is followed by a family of statements. Their names are:

Statement $A \Rightarrow B$

Contrapositive $\neg B \Rightarrow \neg A$

Converse B \Rightarrow A

Inverse $\neg A \Rightarrow \neg B$

Fill in the table below using the notations in the table above for the 3 statements A, B and C about students in the Math Review class.

	А	В	С
Α			
В			
		\Leftrightarrow	
С			

When are two statements or properties implied by each other? Give examples.

More vocabulary

Axiom: statements we assume to be true

e.g.
$$a = b$$
, $b = c \Rightarrow a = c$

Theorem: a statement that has been proven to be true.

Corollary: a theorem that follows on from another theorem.

Lemma: a less important theorem that is used to prove another theorem.

3 methods of proof.

1. Direct proof

Example 1. Prove that if m is an even integer and n is any integer, the m*n is an even integer.

Proof:

m is an even integer so \exists an integer q such that m = 2 * q by the definition of even integer.

$$m * p = (2 * q) * p = 2 * (q * p)$$
, so $m * p$ is an even integer

Example 2. Prove that if a function mapping real numbers to real numbers and that it is homogenous of degree r, its first derivative is a function of degree r-1.

Note: A function, f(x), is homogeneous of degree r if for any t,

$$f(tx) = t^r f(x)$$

Proof:

2. Proof by contradiction

Example: Prove that $\sqrt{2}$ is irrational.

Note: An irrational number is a number that can be expressed as a irreducible ratio of 2 integers.

Proof. By way of contradiction, suppose that $\sqrt{2}$ were rational. Then there exist two integers, m and n, that contain no common factors, with $\sqrt{2} = \frac{m}{n}$ or $2 = \left(\frac{m}{n}\right)^2$. But then $2n^2 = m^2$, so m^2 is even because it is twice n^2 . If m^2 is even, though, m is even so m^2 must be divisible by 4, which means that $\frac{m^2}{2}$ is even. Thus n^2 is even and we know that m and n are both divisible by 2, contradicting the claim that m and n contain no common factors. This completes the proof.

3. Proof by induction

Example: Prove that
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

First, consider the case where n = 1. Then we have:

$$1 = \frac{1(1+1)}{2} = 1$$

The statement holds.

Now consider $n = k \ge 1$ We have the following:

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

Now we show that if this is true, then n = k + 1, that is:

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{(k+1)((k+1)+1)}{2} = \frac{(k+1)(k+2)}{2}$$

We have shown that it is true for n = 1 and true for any integer k+1 if it is true for k, implying that:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2} \text{ for all } n \in \mathbb{N}.$$

Practice problems

- 1. Prove that log₂3 is irrational
- 2. Prove: The sum of two even integers is always even
- 3. Given that : $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$ prove that if $\sigma \to 1, u(c) \to \log(c)$