Auto-Join: Join Tables by Leveraging Transformations

Erkang (Eric) Zhu*

 $Yeye He^{\dagger}$ yeyehe@microsoft.com ekzhu@cs.toronto.edu

Surajit Chaudhuri[†]
surajitc@microsoft.com

*University of Toronto †Microsoft Research

1. A Bird-Eye View

• Problem: How to join these pairs of tables automatically without any human inputs (including rows/columns to join)?

President	Popular Vote
Barack Obama	52.93%
George W. Bush	47.87%
Bill Clinton	43.01%
George H. W. Bush	53.37%
Ronald Reagan	50.75%

President	Approval Rating
Obama, Barack(1961-)	47.0
Bush, George W.(1946-)	49.4
Clinton, Bill(1946-)	55.1
Bush, George H. W.(1924-)	60.9
Reagan, Ronald(1911- 2004)	52.8

Name	Title
Suhela Chowdhury	Principal
Maureen Paluzzi	Instructor
Missy Payne	Instructor
Carolyn Craddock	Admin
Kelly Moore	Instructor

Email	School
schowdhury@forsyth.k12.ga.us	Big Creek
mpaluzzi@forsyth.k12.ga.us	Brookwood
mipayne@forsyth.k12.ga.us	Chattahoo
ccraddock@forsyth.k12.ga.us	Chestatee
kmoore@forsyth.k12.ga.us	Princeville

Manager Alias
V-JOHH
JOFORD
RICHT
MICHM
ANDYW

Sub-ATU	Segment	
France.01.MIX	SMB	
United States.01.Government	Major	
United States.01.Education	AM EPG	
United States.03.PS-LRG	TM SMS&P	
United States.04.Retail	AM SMS&P	

Each pairs of tables have a clear syntactic transformation between the matching rows, such as Split, Concatenation, Substring and Constant. Applying the transformation to one table creates a join column that can be used to equi-join with a key column of the other table.

- Scenarios: One-off, ad hoc data analysis often requires joining data from different sources whose data values are formatted differently. An automated solutions saves time and money on ETL.
- Fuzzy join? Manual parameter tuning is required otherwise likely to produce unsatisfactory result.
- Our Solution:
- 1. Efficiently identifies promising row pairs that can potentially join using substring indexes
- 2. Using the row pairs as examples to learn a minimum-complexity transformation whose execution can lead to equi-joins.

Source Column	•••	Concat(Select(Split(Join Column	•••
Obama, Barack(1961-)	•••	<pre>Select(Split(Select(Input, 0),</pre>	Barack Obama	•••
Bush, George W.(1946-)	•••	","), 1),	George W. Bush	•••
Clinton, Bill(1946-)		"("), 0), Select(Split(Bill Clinton	•••
Bush, George H. W.(1924-)	•••	<pre>Select(Input, 0), ", "), 0))</pre>	George H. W. Bush	•••

- 3. Maintains interactive speed even on large tables (10K rows) with a novel sampling scheme.
- 4. Precision 98% and recall 93% on a benchmark of 73 real-world cases.

2. Identify Promising Row Pairs

- Q-Gram Distribution in realworld tables is Zipfian, this makes the probability that a Q-Gram appears exactly once in each of two columns by chance is very small.
- 1-to-1 Q-Grams can be used to identify promising row pairs.

Source Column

Bush, George W. 1946-)

Wiki Tables

- Q-Gram Scoring: Since 1-to-1 Q-Grams may not be sampled, target key column may contains a few duplicates, and a transformation may not result in 1-to-1 Q-Grams (e.g., N:1). We also use n-to-m Q-Grams, and quantify their "goodness" as $\frac{1}{nm}$.
- Q-Gram Search: Our Q-Gram search algorithm uses a combination of suffix indexes and binary search to efficiently identify the optimal Q for every sampled data values and produce a ranked list of n-to-m Q-Grams for learning transformation.

3. Learning Transformation

• Learning as a search over a graph of all possible syntactic operators and their parameters, and the transformation is the set of paths from the input to output.

- Search space shrinks exponentially with respect to the number of examples.
- Logical operators are easier for human to rationalize (e.g., "extract the first component") and reduces search space.

• Algorithm: Greedily construct a minimum-complexity transformation (the one with the least number of operators) by iteratively expanding an existing partial transformation with the most progress-yielding logical operator.

4. Optimized Fuzzy Join

- Dirty Data: Data may contain typos and errors, and different sources may have different namings. Applying transformation and equi-join may miss row pairs that are joinable.
- Fuzzy join constraints for archiving high-quality join result:
- . Every row in the join column cannot be joined with more than one distinct row in target key column – similar to key-foreign-key constraint
- 2. Every row in the target key column cannot be joined with more than one distinct row in the join column – assume consistency within one column

• Optimization: We apply binary search and the above constraints to efficiently find the optimal tuning in the fuzzy join parameter space.

5. Evaluation

• Quality evaluation uses tables from Microsoft enterprise spreadsheets and tables from the Web.

• Performance evaluation uses DBLP dataset; Auto-Join runs less than 5 seconds at 10K rows and 14 seconds at 100K rows.