Searching and Sorting

Searching O(N)Linear O(log(N))bisection O(log(log(N dictionary Sorting Insertion, bubble, selection O(N2) CRLS: 2.1 Merge, Quick, Heap O(N log (N)) CRLS: 2.2, CLRS: 8 Bin (Count), Radix, Bucket O(N)Proof: $\Omega(N^2)$ near neighbor exchange Proof: $\Omega(N \log(N))$ Comparison search Median (or k quick selection) Problem CLRS: 9

Proof of $\Omega(Nlog(N))$

Binary decisions: 3! = 6 possible outcomes. Longest path: log(3!)

Radix Sort (IBM Card Sorter!)

- Represent integers in a[i] in base B: $n_0 + n_1 B + n_2 B^2 + + n_D B^P$
- Sort into buckets by low digits first: n_0 , then n_1 , etc.

Queues: B= 10 Example: 64, 8, 216, 512, 27, 729, 0, 1, 343, 125

Buck	cet: 0	1	2	3	4	5	6	7	8	9
#1	0	1	512	343	64	125	216	27	8	729
	8 1 0	216 512	729 27 125		343		64			
#3	64 27 8 1 0	125	216	343		512		729		

$$O(NP)$$
 where $B^P = N$ or $P = log(N) / log(B) = O(1)$

Searching: "Why Sort at All?"

int a[0], a[1],a[2],a[3],.... a[m],....

a[2],a[N-1]

Three Algorithms:

■ Linear Search

(after Sorting)

■ Bisection Search →

■ Dictionary Search →

O(N)

O(log(N)).

O(log[log[N]])

Bisection Search of Sorted List

$$T(N) = T(N/2) + c_0 \rightarrow T(N) \gg Log(N)$$

Dictionary: Sorted and Uniform

$$T(N) = T(N^{1/2}) + c_0 \rightarrow T(N) \gg Log(Log(N))$$

$$N \to N^{\frac{1}{2}} \to N^{\frac{1}{4}} \to N^{\frac{1}{8}} \cdots \to N^{\frac{1}{2^n}} = 1$$
 or $n = log_2(log_2(N))$

Extra Knowledge Helps: % Error » 1/N¹/²

Insertion Sort --- Deck of Cards

• Insertion Sort(a[0:N-1]):

for (i=1; i < n; i++)

for (j = i; (j>0) && (a[j]<a[j-1]); j--)

swap a[j] and a[j-1];

Worst case $\Theta(N^2)$ number of "swaps" (i.e. time)

Outer loop trace for Insertion Sort

	a[0] (Swaps)	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]	
•	6	5	2	8	3	4	7	1	(1)
	5€	→ 6							
•	5	6	2	8	3	4	7	1	
	(2)	24	→ 6						
	2/-		70						
		→ 5					_	4	
-	2	5	6	8	3	4		1	(0)
•	2	5	6	8	3	4	7	1	(3)
•	2	3	5	6	8	4	7	1	(3)
•	2	3	4	5	6	8	7	1	(1)
	2	3	4	5	6	7	8	1	(7)

Bubble Sort --- Sweep R to L

• Bubble Sort(a[0:N-1]): for i=0 to n-1for j=n-1 to i+1if a[j]<a[j-1] then swap a[i] and a[j]

Worst case $\Theta(N^2)$ swaps (time)

Outer loop trace for Bubble Sort

•	a[0] (Swaps)	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]	
•	6	5	2	8	3	4	7	1	(7)
•	1	6	5	2	8	3	4	7	(3)
•	1	2	6	5	3	8	4	7	(3)
•	1	2	3	6	5	4	8	7	(3)
•	1	2	3	4	6	5	7	8	(1)
•	1	2	3	4	5	6	7	8	(0)
•	1	2	3	4	5	6	7	8	(0)
•	1	2	3	4	5	6	7	8	(17)

◆ NOTE SAME # OF SWAPS? WHY?

Average Number of N(N-1)/4 swaps

■Best Case: sorted order → 0 swaps

■ Worst Case: reverse order \rightarrow N(N-1)/2 swaps since 1 + 2 + ... + N-1 = N(N-1)/2

■ Average Case: Pair up each of the N! permutations with its reverse order \rightarrow Every pair must swap in one or the other: Thus average is half of all swaps \rightarrow (1/2) N(N-1)/2 q.e.d.

Selection Sort --- (Bubble only the index)

```
Selection Sort(a[0:N-1]):
 for i=1 to n-2
    \{ min = i \}
     for j = n-1 to i + 1
            if a[j] < a[min] then
                      min = j;
        swap a[i] and a[min];
worst case \Theta(N) swaps + \Theta(N^2) comparisons
```

Outer loop trace for Selection Sort

•	a[0] (Swaps)	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]	
•	6 (1)	5	2	8	3	4	7	1	
	1 €						→	6	
-	1 (1)	5	2	8	3	4	7	6	
	(1)	2	←→ 5						
•	(1)	2	5	8	3	4	7	6	
•	(1) 1 (1)	2	3	8	5	4	7	6	
•	(1)	2	3	4	5	8	7	6	
•	1	2	3	4	5	I 6	7	8	15

Merge Sort: Worst Case $\Theta(Nlog(N))$

```
void mergesort(int a[], int I, int r)
  if (r > I)
     m = (r+I)/2;
     mergesort(a, I, m);
     mergesort(a, m+1, r);
     for (i = I; i < m+1; I++) b[i] = a[i];
     for (j = m; j < r; j++) b[r+m-j] = a[j+1]; // reverse
     for (k = I; k \le r; k++)
             a[k] = (b[i] < b[i]) ? b[i++] : b[i--]; }
```

Outer loop trace for Merge Sort

Lower Bound Theorem for Camparision Sort

Proof: Compute the maximum depth D of decision tree?

- Need N! leaves to get all possible outcomes of a sorting routine.
- Each level at most doubles:

$$1 \oplus 2 \oplus 4 \oplus 8 \oplus \bullet \bullet \oplus 2^D$$

Consequently for D levels: $N! \leq 2^D \Rightarrow D \geq log_2(N!)$

$$\Rightarrow T(N) = \Omega(D) = \Omega(\log_2(N!)) = \Omega(N \log_2(N))$$

$$Information = \log_2(N!) \cong N \log_2(N)$$

Number of bits to encode any (initial) state is information (- Entropy)9

Outer loop trace for Quick Sort (i moves before j)

Quick Sort: original Hoare partition

```
void quicksort(int a[], int I, int r)
 if (r > I){
     v = a[r]; i = I-1; j = r;
     for (;;){ while (a[++i] < v); // move first i to right
              while (a[--i] > v); // then mover j left
                if (i \ge j) break;
               swap(&a[i], &a[i]); }
      swap(&a[i], &a[r]);
                                       // move pivot in to center
      quicksort(a, I, i-1);
       quicksort(a, i+1, r);
```

Quick Sort: My Implementation

```
void quicksort(int a[], int I, int r)
 { int i, j, vl
  if (r > I)
    \{ v = a[r]; i = I-1; j = r; \}
     for (;;)
       { while (a[++i] < v \&\& i >= j); // Move i first from left
         while (a[--i] \ge v \&\& i \ge j); // Move j second from right
         if (i \ge j) break;
         swap(&a[i], &a[j]); } // swap root to divide left and right sublist
     swap(&a[i], &a[r]);
     quicksort(a, I, i-1); quicksort(a, i+1, r);
```

Quick Sort: CLRS:7 Implementation

```
void quicksort(int a[], int I, int r)
  if (r > I){
     v = a[r]; i = I-1;
      for (int j = I; j < r; j + +){
        if (a[i] <= v) {
               i +=1 ;
                                              // move first i to right
              swap(&a[i], &a[i]) }
       swap(&a[i], &a[r]);
                                             // move pivot in to center
       quicksort(a, I, i-1);
       quicksort(a, i+1, r);
```

Very cute: See CLRS page 172 Figure 7.1

- Worst Case (choose smallest as pivot!):
 - ♦ T(N) = T(N-1) + c N → $T(N) = O(N^2)$
- Best Case:(choose median as pivot)
 - ♦ T(N) = 2 T(N/2) + cN → T(N) = O(N log(N))
- Average Case:
 - \bullet T(N) = 2[T(0) + T(1) + ...+ T(N-1)]/N + c N
 - \rightarrow T(N) = O(N log (N))
 - → Using Calculus if you are lazy! (x = N)

$$xT(x) \simeq 2 \int_0^x dy T(y) + cx^2 \quad x \frac{dT(x)}{dx} = T(x) + 2cx \Rightarrow T(x) = 2cx \log(x)$$
23

Can do better-- Worst Case O(N)!

- Approximate Media Selector for pivot v:
 - ★ Partition in 5 rows of N/5
 - Sort each column
 - ★ Find (Exact) Medium of Middle list!
- Result there are (3/5)(1/2)N elements smaller than pivot v
- K-th find is O(N) --- Double recursion!
 - ★ Sort of N/5 col O(N)
 - ★ Find media of T(N/5)
 - ★ Find k-th in T(7N/10) at worst
- T(N) < C0 * (N/5) + T(N/5) + T(7N/10)
 - **★** Try solution: T = C N
 - * C(N N/5 7N/10) = C N/10 < C0 N/5
 - * C < 2 CO

Median Finding: Quick Select

- Median is the element a[m] so that half is less/equal
- Generalize to finding k-th smallest in set S
- Quick(S,k): |S| = size of S
 - ◆ If |S| = 1, the k = 1 in S
 - Pick pivot v 2 S & Partition S − {v} into S_L & S_H
 - If $k < |S_L| + 1$ then k-th 2 S_L : Quick(S_L,k)
 - If $k = |S_1| + 1$ k-th is v : exit
 - If $k > |S_L| + 1$ then k-th $2 S_R$: Quick $(S_R, k- |S_L|-1)$

Now: T(N) = O(N) is average performance

$$T(N) = [T(0) + T(1) + ... T(N-1)]/N + c N$$

$$xT(x) \simeq \int_0^x dy T(y) + cx^2 \quad x \frac{dT(x)}{dx} = 2cx \Rightarrow T(x) = 2cx_{31}$$

5 row of N/5 Columns

