

Batteries

 One or more electrochemical cells that convert stored chemical energy into electrical energy

3

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

Batteries

- Redox reduction oxidation reaction
 - Reduction gains electrons, loses oxygen
 - Oxidation loses electrons, gains oxygen
 - Potential difference
 - Chemistry dependent
 - 1.2V to 3.8V

- Batteries
 - Chemistry
 - Standard Electrical Potential
 - Copper +0.52V
 - Zinc -0.76V
 - Maximum Voltage
 - 0.52V (-0.76V) = 1.28V

MECH 10 Fundamentals of Electronics

Batteries

- Primary cell one time use, not rechargeable, voltage on initial construction
 - Zinc-carbon, alkaline-manganese
- Secondary cell many times use, rechargeable, charge required on initial construction
 - Nickel-cadmium, nickel-metal hydride, lithium-ion cobalt, lithium-ion manganese, lithium-ion phosphate

6

- Batteries
 - Specific Energy
 - Energy per unit mass
 - Mega joules per kilogram (MJ/kg)
 - Watt hours per kilogram (Wh/kg)
 - Energy Density
 - Energy per unit volume
 - Mega joules per liter (MJ/l)
 - Watt hours per liter (Wh/l)

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Batteries
 - Capacity
 - The amount of charge the battery produces at a given discharge rate
 - Amp-hours (A-H)
 - Milli amp-hours (mA-H)

Batteries

- Capacity
 - C-Rate the charge / discharge rate required to achieve battery capacity rating
 - Capacity = 1000mAh @ 25mA
 - 1C-rate = 25mA
 - 2C = 50mA
 - 0.5C = 12.5mA

MECH 10 Fundamentals of Electronics

Batteries

- Internal Resistance
 - The resistance within a source to current flow, resulting in a voltage drop across the source.
 - Increased at high currents
 - Measurement
 - Full load voltage minus no load voltage divided by full load current

$$R_{CI} = \frac{V_{NL} - V_{FL}}{I_{FL}}$$

 R_{CI} = cell internal resistance V_{NL} = no load voltage V_{FL} = full load voltage I_{FL} = full load current

10

MECH 10 Fundamentals of Electronics • Batteries • Cost per unit power • \$470,000 per megawatt • \$470.00 per kilowatt • 47 cents per watt

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

Batteries

- Chemistry
 - Nickel-metal-hydride secondary cell (500 cycles), 1.2V/cell, 120 Wh/kg, 300 mΩ internal resistance, poor high load performance, reduced memory effect, low toxicity!

6

Batteries

- Chemistry
 - Lithium-ion Cobalt secondary cell, 3.6V/cell, 190 Wh/kg, 300 mΩ internal resistance, poor high load performance, no memory, over current protection mandatory

17

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

Batteries

- Chemistry
 - Lithium-ion Manganese secondary cell (1000 cycles), 3.8V/cell, 135 Wh/kg, 75 mΩ internal resistance, excellent high load performance, no memory, over current protection mandatory

18

Batteries

- Lead Acid Charging
 - 12-16 hour charge time
 - Stage 1 1C constant current charge with voltage sensing
 - Stage 2 topping charge, voltage controlled current reduction
 - Stage 3 float charge, self-discharge loss

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

Batteries

- Lithium Charging
 - 3 hour charge time
 - Stage 1 0.5C constant current with voltage rise to cell max voltage
 - Stage 2 saturation charge, voltage controlled current reduction
 - Stage 3 charge terminates
 - Stage 4 standby topping

- Uninterruptible Power Supplies
 - Emergency power to critical loads
 - Computers, PLC's, bio-medical, telecommunications
 - Equipment protection
 - Over / under voltage
 - High frequency noise
 - Harmonic distortion

Lab 09 - Batteries

Learning Objectives

- Build a wet cell battery from dissimilar metals and electrolyte
 Connect batteries in voltage adding and current adding configuration
 Measure electrical values using a digital voltmeter
 Use Ohm's Law to calculate cell internal resistance
 Determine battery current capacity with a load test

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
Wet Cell	Voltage data points recorded in data table	5
	Voltage and load resistance data shown on scatter plot	5
Dry Cell	Voltage and current data points recorded in data table	10
	Voltage, current and load resistance data shown on scatter plot	10
Conclusions	Questions answered completely & accurately	10
	Total	50

29