Réduction des endomorphismes et des matrices

Je me	pwiens	2
Cours		3
1	Polynômes annulateurs et valeurs propres	3
	1.1 Cas des endomorphismes	3
	1.2 Cas des matrices	3
2	Lemme de décomposition des noyaux	3
	2.1 Le théorème	3
	2.2 Exemple d'utilisation	4
3	Polynômes annulateurs et réduction	4
	3.1 Une CNS de diagonalisabilité	4
	3.2 Sous-espaces stables	5
	3.3 Théorème de Cayley-Hamilton	5
	3.4 Traduction matricielle des résultats précédents	5
4	Trigonalisabilité	5
	Trigonalisabilité d'un endomorphisme en dimension finie	5
	4.2 Trigonalisabilité d'une matrice carrée	6
5	Nilpotence	6
	Endomorphisme nilpotent, indice de nilpotence	6
	5.2 Polynôme minimal, polynôme caractéristique d'un endomorphisme nilpotent	6
	5.3 Nilpotence et trigonalisabilité d'un endomorphisme	7
	5.4 Traduction matricielle des résultats précédents	7
6	Sous-espaces caractéristiques	7
	Sous-espaces caractéristiques d'un endomorphisme	7
	Sous-espaces caractéristiques d'une matrice carrée	8
7	Annexes	9
	7.1 Annexe : endomorphisme laissant stables les facteurs d'une somme directe	9
	7.2 Annexe : démonstration du théorème de Cayley-Hamilon	9
	v v	10
		10
		11
Exercio	e 1	.1
	ices et résultats classiques à connaître	
DYC		11
	1 V	12
		12 12
		12 12
Fro		12 13
Exe		_
	que de la réduction	
	•	15

Je me souviens

- 1. Que signifie : « F est stable par u » ?
- 2. Que peut-on définir lorsque F est stable par u? Comment cela se traduit matriciellement?

1 Polynômes annulateurs et valeurs propres

1.1 Cas des endomorphismes

Proposition. Soit $u \in \mathcal{L}(E)$, $x \in E$ et $P \in \mathbb{K}[X]$. Si $u(x) = \lambda x$, alors $P(u)(x) = P(\lambda)x$.

Remarque. Rappelons que P(u) désigne un endomorphisme, que l'on évalue en x. Ça n'aurait aucun sens de chercher à évaluer en P le vecteur u(x).

Proposition. Si P est annulateur de $u \in \mathcal{L}(E)$, alors toute valeur propre de u est racine de P.

Proposition. Si E est de dimension finie, $u \in \mathcal{L}(E)$, alors les valeurs propres de u sont les racines du polynôme minimal π_u .

Corollaire. Si E est de dimension finie, $u \in \mathcal{L}(E)$, alors les polynôme caractéristique χ_u et le polynôme minimal π_u ont les mêmes racines.

Remarque. En résumé :

- Les valeurs propres sont les racines du polynôme minimal
- Les valeurs propres sont les racines du polynôme caractéristique
- Si P est annulateur de u, les valeurs propres sont parmi les racines de P

Exemple. On considère un projecteur p d'un espace vectoriel de dimension finie. Calculer son polynôme caractéristique χ_p , son polynôme minimal π_p et donner un autre polynôme, annulateur de p.

1.2 Cas des matrices

Proposition. Soit $A \in \mathcal{M}_n(\mathbb{K})$, $X \in \mathcal{M}_{n1}(\mathbb{K})$ et $P \in \mathbb{K}[X]$. Si $AX = \lambda A$, alors $P(A)X = P(\lambda)X$.

Proposition. Si P est annulateur de $A \in \mathcal{M}_n(\mathbb{K})$, alors toute valeur propre de A est racine de P.

Proposition. Si $A \in \mathcal{M}_n(\mathbb{K})$, alors les valeurs propres de A sont les racines du polynôme minimal π_A .

Corollaire. Si $A \in \mathcal{M}_n(\mathbb{K})$, alors les polynôme caractéristique χ_A et le polynôme minimal π_A ont les mêmes racines.

Remarque. En résumé :

- Les valeurs propres sont les racines du polynôme minimal
- Les valeurs propres sont les racines du polynôme caractéristique $\,$
- Si P est annulateur de A, les valeurs propres sont parmi les racines de P

Exemple. On considère la matrice $J \in \mathcal{M}_n(\mathbb{K})$ remplie de 1. Calculer son polynôme caractéristique χ_J , son polynôme minimal π_J et donner un autre polynôme, annulateur de J.

Exemple. Calculer le polynôme caractéristique et le polynôme minimal de :

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

2 Lemme de décomposition des noyaux

2.1 Le théorème

Lemme de décomposition des noyaux.

Soit P_1, P_2 deux polynômes, que l'on suppose premiers entre eux $(P_1 \wedge P_2 = 1)$. On note $P = P_1P_2$. Alors, pour tout endomorphisme u:

$$\operatorname{Ker}(P(u)) = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u))$$

Remarque. On peut ajouter que les projecteurs associés à cette décomposition sont des polynômes en u.

<u>Corollaire.</u> Soit P_1, \ldots, P_r des polynômes deux à deux premiers entre eux. On note $P = P_1 \ldots P_r$. Alors, pour tout endomorphisme u:

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{r} \operatorname{Ker}(P_i(u))$$

Corollaire. Soit $P \in \mathbb{K}[X]$ un polynôme annulateur non nul de $u \in \mathcal{L}(E)$. On note :

$$P = \lambda P_1^{m_1} \dots P_r^{m_r}$$

sa décomposition en facteurs irréductibles sur K. Alors :

$$E = \bigoplus_{i=1}^{r} \operatorname{Ker} \left(P_i^{m_i}(u) \right)$$

2.2 Exemple d'utilisation

Exemple. On s'intéresse à l'équation différentielle :

$$y^{(3)} + 4y'' + 4y' + 3y = 0 (E)$$

où $y: \mathbb{R} \to \mathbb{R}$ est la fonction inconnue.

- 1. Montrer que si ϕ est solution de (E), alors ϕ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. On considère $u: f \mapsto f'$ endomorphisme de $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Écrire l'ensemble S des solutions de (E) comme $\operatorname{Ker}(P(u))$, où $P \in \mathbb{R}[X]$ est un polynôme que l'on précisera.
- 3. Décomposer P en produit de facteurs irréductibles.
- 4. En déduire la résolution de E par la résolution de deux équations différentielles d'ordre < 3.

3 Polynômes annulateurs et réduction

3.1 Une CNS de diagonalisabilité

Théorème.

Soit E un K-espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Alors:

u est diagonalisable \iff il existe un polynôme annulateur de u scindé à racines simples $\iff \pi_u$ est scindé à racines simples

Proposition. On peut donc aussi écrire :

$$u$$
 est diagonalisable $\iff \pi_u = \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)$

Exemple. Un projecteur, une symétrie sont diagonalisables.

3.2 Sous-espaces stables

<u>Proposition.</u> Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E. On suppose que F est stable par u, et on note u_F l'endomorphisme induit par u sur F. Alors :

$$\chi_{u_F} \mid \chi_u$$
 et $\pi_{u_F} \mid \pi_u$

Proposition. Avec les notations précédentes, si u est diagonalisable, alors u_F est diagonalisable.

3.3 Théorème de Cayley-Hamilton

Théorème de Cayley-Hamilton.

Soit E un K-espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Alors χ_u est annulateur de u.

Corollaire. Si E est de dimension n et $u \in \mathcal{L}(E)$:

- $\pi_u \mid \chi_u$
- $\deg(\pi_u) \leqslant n$

3.4 Traduction matricielle des résultats précédents

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

A est diagonalisable \iff il existe un polynôme annulateur de A scindé à racines simples \iff π_A est scindé à racines simples

$$\iff \pi_A = \prod_{\lambda \in \mathrm{Sp}(A)} (X - \lambda)$$

Exemple. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^q = I_n$ pour un $q \in \mathbb{N}^*$. Justifier que A est diagonalisable.

Théorème de Cayley-Hamilton.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors χ_A est annulateur de A.

Corollaire.

- $\pi_A \mid \chi_A$
- $\deg(\pi_A) \leqslant n$

4 Trigonalisabilité

4.1 Trigonalisabilité d'un endomorphisme en dimension finie

<u>Définition.</u> Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On dit que u est **trigonalisable** s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}(u,\mathcal{B})$ soit triangulaire supérieure.

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors :

u est trigonalisable \iff il existe un polynôme annulateur scindé

 $\iff \chi_u \text{ est scind\'e}$

 $\iff \pi_u \text{ est scind\'e}$

Proposition. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Si u est trigonalisable, i.e. si χ_u est scindé, alors la trace est la somme des valeurs propres (comptées avec multiplicité) et le déterminant est le produit des valeurs propres (comptées avec multiplicité) :

$$\operatorname{tr}(u) = \sum_{\lambda \in \operatorname{Sp}(u)} m(\lambda)\lambda \text{ et } \operatorname{det}(u) = \prod_{\lambda \in \operatorname{Sp}(u)} \lambda^{m(\lambda)}$$

4.2 Trigonalisabilité d'une matrice carrée

<u>Définition</u>. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est **trigonalisable** si et seulement si elle est semblable à une matrice triangulaire supérieure :

$$\exists T \in \mathcal{M}_n(\mathbb{K})$$
 triangulaire supérieure, $\exists P \in \mathrm{GL}_n(\mathbb{K}), \ A = PTP^{-1}$

s'il existe une base \mathcal{B} de E telle que $Mat(u,\mathcal{B})$ soit triangulaire supérieure.

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

A est trigonalisable \iff il existe un polynôme annulateur scindé

 $\iff \chi_A$ est scindé

 $\iff \pi_A \text{ est scind\'e}$

Proposition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A est trigonalisable, i.e. si χ_A est scindé, alors la trace est la somme des valeurs propres (comptées avec multiplicité) et le déterminant est le produit des valeurs propres (comptées avec multiplicité) :

$$\operatorname{tr}(A) = \sum_{\lambda \in \operatorname{Sp}(A)} m(\lambda) \lambda \text{ et } \operatorname{det}(A) = \prod_{\lambda \in \operatorname{Sp}(A)} \lambda^{m(\lambda)}$$

5 Nilpotence

5.1 Endomorphisme nilpotent, indice de nilpotence

<u>Définition.</u> Soit E un \mathbb{K} -espace vectoriel de dimension finie. On dit que $u \in \mathcal{L}(E)$ est **nilpotent** lorsqu'il existe $k \in \mathbb{N}$ tel que :

$$u^k = 0$$

Dans ce cas, le plus petit entier k satisfaisant cette propriété s'appelle l'indice de niplotence de u.

Remarque. Ainsi, si u est nilpotent d'indice m, on a :

$$u^m = 0$$
 et $u^{m-1} \neq 0$

5.2 Polynôme minimal, polynôme caractéristique d'un endomorphisme nilpotent

Proposition. Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Alors :

- u est nilpotent $\iff \chi_u = X^n$
- u est nilpotent d'indice $m \iff \pi_u = X^m$

Corollaire. Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$ nilpotent d'indice m. Alors :

$$m \leqslant n$$

5.3 Nilpotence et trigonalisabilité d'un endomorphisme

Théorème.

Soit E un K-espace vectoriel de dimension finie. $u \in \mathcal{L}(E)$ est nilpotent si et seulement s'il est trigonalisable et a 0 pour seule valeur propre.

5.4 Traduction matricielle des résultats précédents

Définition. On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est **nilpotente** lorsqu'il existe $k \in \mathbb{N}$ tel que :

$$A^k = 0$$

Dans ce cas, le plus petit entier k satisfaisant cette propriété s'appelle l'indice de niplotence de A.

Remarque. Ainsi, si A est nilpotent d'indice m, on a :

$$A^m = 0 \quad et \quad A^{m-1} \neq 0$$

Proposition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

- A est nilpotent $\iff \chi_A = X^n$
- A est nilpotent d'indice $m \iff \pi_A = X^m$

Corollaire. Soit $A \in \mathcal{M}_n(\mathbb{K})$ nilpotente d'indice m. Alors :

$$m \leqslant n$$

Théorème.

 $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente si et seulement si elle est trigonalisable et a 0 pour seule valeur propre.

Corollaire. $A \in \mathcal{M}_n(\mathbb{C})$ est nilpotente si et seulement si $\mathrm{Sp}(A) = \{0\}.$

Exemple. La matrice $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ a pour unique valeur propre réelle 0, et pourtant n'est pas nilpotente.

Remarque. Une matrice nilpotente n'est pas toujours triangulaire. Par exemple, $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ est nilpotente.

6 Sous-espaces caractéristiques

6.1 Sous-espaces caractéristiques d'un endomorphisme

Définition. Soit E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Si λ est une valeur propre de u, de multiplicité m_{λ} , on appelle sous-espace caractéristique de u associé à λ l'espace :

$$N_{\lambda}(u) = \operatorname{Ker}\left((u - \lambda \operatorname{Id}_{E})^{m_{\lambda}}\right)$$

Proposition. Avec les notations de la définition :

- $E_{\lambda}(u) \subset N_{\lambda}(u)$
- $N_{\lambda}(u)$ est stable par u
- $N_{\lambda}(u)$ est de dimension m_{λ}
- En notant u_{λ} l'endomorphisme induit par u sur $N_{\lambda}(u)$, on a $\chi_{u_{\lambda}} = (X \lambda)^{m_{\lambda}}$.

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On suppose χ_u scindé. Alors :

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} N_{\lambda}(u)$$

De plus, en notant:

$$\chi_u = \prod_{i=1}^r (X - \lambda_i)^{m_i}$$

où les valeurs propres λ_i sont deux à deux distinctes, et les multiplicités m_i sont dans \mathbb{N}^* , il existe une base de E dans laquelle u est représentée par la matrice diagonale par blocs :

où les matrices R_i sont nilpotentes.

6.2 Sous-espaces caractéristiques d'une matrice carrée

<u>Définition</u>. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si λ est une valeur propre de A, de multiplicité m_{λ} , on appelle sous-espace caractéristique de A associé à λ l'espace :

$$N_{\lambda}(A) = \operatorname{Ker}\left((A - \lambda I_n)^{m_{\lambda}}\right)$$

Proposition. Avec les notations de la définition :

- $E_{\lambda}(A) \subset N_{\lambda}(A)$
- $N_{\lambda}(A)$ est de dimension m_{λ}

Théorème.

 $A \in \mathcal{M}_n(\mathbb{K})$. On suppose χ_A scindé. Alors :

$$\mathcal{M}_{n1}(\mathbb{K}) = \bigoplus_{\lambda \in \operatorname{Sp}(A)} N_{\lambda}(A)$$

De plus, en notant:

$$\chi_A = \prod_{i=1}^r (X - \lambda_i)^{m_i}$$

où les valeurs propres λ_i sont deux à deux distinctes, et les multiplicités m_i sont dans \mathbb{N}^* , la matrice A est semblable à une matrice diagonale par blocs :

$$\begin{pmatrix} \lambda_1 I_{m_1} + R_1 & (0) \\ & \ddots & \\ & & \ddots & \\ (0) & & \lambda_r I_{m_r} + R_r \end{pmatrix}$$

où les matrices R_i sont triangulaires supérieures strictes.

7 Annexes

7.1 Annexe : endomorphisme laissant stables les facteurs d'une somme directe

On considère E un \mathbb{K} -espace vectoriel de dimension finie, et F_1, F_2, \ldots, F_m des sous-espaces de dimensions respectives d_1, d_2, \ldots, d_m tels que :

$$E = F_1 \oplus F_2 \oplus \cdots \oplus F_m$$

On considère une base ${\mathcal B}$ de E, adaptée à cette somme directe :

$$\mathcal{B} = \left(\underbrace{e_1, \dots, e_{d_1}}_{\text{base de } F_1}, \underbrace{e_{d_1+1}, \dots, e_{d_1+d_2}}_{\text{base de } F_2}, \dots\right)$$

On considère $u \in \mathcal{L}(E)$. Alors les F_i sont tous stables par u si et seulement si $\mathrm{Mat}(u,\mathcal{B})$ est diagonale par blocs :

$$\begin{pmatrix} A_1 & (0) & \dots & (0) \\ (0) & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ (0) & \dots & (0) & A_m \end{pmatrix}$$

où chaque A_j est dans $\mathcal{M}_{d_j}(\mathbb{K})$. De plus, lorsque c'est le cas, A_j est la matrice de u_{F_j} dans la base à laquelle on pense.

Sous les hypothèses précédentes, on a :

$$\chi_u = \prod_{i=1}^m \chi_{u_{F_i}}$$
 et $\pi_u = \operatorname{ppcm}\left((\pi_{u_{F_i}})_{1 \leqslant i \leqslant m}\right)$

Preuve. Notons plus simplement u_j pour désigner l'endomorphisme induit $u_{F_j},$ et π_j son polynôme minimal.

- L'égalité $\chi_u = \prod_{j=1}^m \chi_{u_j}$ est un simple calcul de déterminant diagonal par blocs.
- Notons $P = \operatorname{ppcm}(\pi_1, \pi_2, \dots, \pi_m)$. Soit $x \in E$, que l'on décompose selon $E = \bigoplus F_i$ en :

$$x = x_1 + x_2 + \dots + x_m$$

On calcule alors:

$$P(u)(x) = P(u)(x_1) + P(u)(x_2) + \dots + P(u)(x_m)$$

$$= P(u_1)(x_1) + P(u_2)(x_2) + \dots + P(u_m)(x_m)$$

$$\operatorname{car} x_j \in F_j \operatorname{donc} u^k(x_j) = u_j^k(x_j)$$

$$= 0 \operatorname{car} \pi_j \mid P$$

On a donc montré que P(u) est l'endomorphisme nul, donc :

$$\pi_u \mid P$$

Comme d'autre part, $\pi_j \mid \pi_u$ pour tout j, $P \mid \pi_u$. Les deux polynômes étant unitaires, on a montré :

$$\pi_u = \operatorname{ppcm}(\pi_1, \pi_2, \dots, \pi_m)$$

7.2 Annexe : démonstration du théorème de Cayley-Hamilon

Théorème de Cayley-Hamilton.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Alors χ_u est annulateur de u.

Preuve. On veut montrer que $\chi_u(u)(x) = 0$ pour tout $x \in E$. Fixons donc $x \in E$.

Si $x = 0_E$, on a bien $\chi_u(u)(0) = 0$.

On suppose donc $x \neq 0_E$. La famille (x) est libre, tandis que $(x,u(x),\ldots,u^n(x))$ est liée comme famille de n+1 vecteurs dans un espace de dimension n. On peut donc trouver p tel que $(x,u(x),\ldots,u^{p-1}(x))$ libre et $(x,u(x),\ldots,u^{p-1}(x),u^p(x))$ liée. Il existe donc $a_0,\ldots,a_{p-1}\in\mathbb{K}$ tels que $u^p(x)=a_{p-1}u^{p-1}(x)+\cdots+a_1u(x)+a_0x$. On note \mathcal{B} une base de E obtenue en complétant la famille libre $(x,u(x),\ldots,u^{p-1}(x))$. La matrice de u dans la base \mathcal{B} est alors :

On reconnaît, dans le bloc en haut à gauche noté A, la transposée d'une matrice compagnon. En calculant par blocs, on a :

$$\chi_u(X) = \chi_A(X) \times \chi_B(X)$$

$$= \left(X^p - \sum_{k=0}^{p-1} a_k X^k\right) \times \chi_B(X)$$

On a donc :

$$\chi_u(u) = \chi_B(u) \circ \left(u^p - \sum_{k=0}^{p-1} a_k u^k \right)$$

et donc :

$$\chi_u(u)(x) = \chi_B(u) \left(u^p(x) - \sum_{k=0}^{p-1} a_k u^k(x) \right)$$
$$= \chi_B(u)(0_E)$$
$$= 0$$

Annexe : démonstration de la caractérisation de la trigonalisabilité

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors:

u est trigonalisable $\iff \chi_u$ est scindé

Preuve

 \Rightarrow On suppose u trigonalisable. Dans une base de trigonalisation \mathcal{B} , on a :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{cccc} \lambda_1 & \bullet & ---- & \bullet \\ 0 & \lambda_2 & & & & \\ 0 & \lambda_2 & & & & \\ & & & & & \\ & & & & & \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{array} \right)$$

En notant A cette matrice, on a :

$$\chi_u(X) = \chi_A(X) = \prod_{k=1}^n (X - \lambda_k)$$

qui est bien scindé.

 \leftarrow On raisonne par récurrence sur n, la dimension de E.

- Si E est de dimension 1, le résultat est évident.
- Soit $n \in \mathbb{N}^*$ quelconque fixé. On suppose que le résultat est vrai dans un espace de dimension n.

Soit alors E un espace de dimension n+1, et $u \in \mathcal{L}(E)$ dont le polynôme caractéristique est scindé. On note λ l'une des racines de χ_u , qui est une valeur propre de u, et e_1 un vecteur propre associé à λ . On complète la famille libre (e_1) en une base $\mathcal{B} = (e_1, e_2, \dots, e_{n+1})$ de E, dans laquelle la matrice de u est donnée par blocs :

$$\underbrace{\operatorname{Mat}_{\mathcal{B}}(u)}_{\text{not\'ee }A} = \left(\begin{array}{c|c} \lambda & B \\ \hline 0 & \\ \vdots & C \\ 0 & \end{array}\right)$$

Notons $F = \text{Vect}(e_2, \dots, e_{n+1})$, de dimension n, et p le projecteur sur F de direction $Vect(e_1)$.

Par les propriétés des calculs des déterminants pour les matrices triangulaires par blocs, on a :

$$\chi_u(X) = \chi_A(X) = (X - \lambda)\chi_C(X)$$

où C est la matrice de $p \circ u_F \in \mathcal{L}(F)$. Par hypothèse, χ_u est scindé donc χ_C l'est aussi, et on peut appliquer l'hypothèse de récurrence à $p \circ u_F$. Il existe une base (e'_2,\ldots,e'_{n+2}) de F dans laquelle la matrice de $p \circ u_F$

on note $\mathcal{B}'=(e_1,e_2',\ldots,e_{n+1}')$. Il reste simplement à vérifier que dans la base \mathcal{B}' , la matrice de u est triangulaire supérieure.

Pour $k \geqslant 2$:

$$\begin{split} u(e_k') &= \alpha_k e_1 + p \circ u(e_k') \\ \text{en décomposant selon } \operatorname{Vect}(e_1) \oplus F \\ &= \alpha_k e_1 + \operatorname{CL}(e_2', \dots, e_k') \\ \operatorname{car}\left(e_2', \dots, e_{n+1}'\right) \text{ est une base} \\ &\text{de trigonalisation de } p \circ u \end{split}$$

ce qui prouve que la matrice de u dans \mathcal{B}' est triangulaire supérieure.

• Par le principe du raisonnement par récurrence, le résultat est donc vrai dans tout espace de dimension finie.

7.4 Complément : décomposition de Dunford

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On suppose χ_u scindé. Alors il existe deux endomorphismes d et n, respectivement diagonalisable et nilpotent, tels que :

$$u = d + n$$
 et $dn = nd$

Ces endomorphismes sont uniques.

Preuve.

• Existence : Par ce qui précède :

$$E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} N_{\lambda}(u)$$

Chaque N_{λ} est stable par u, et l'endomorphisme induit u_{N_λ} satisfait $(u_{N_\lambda} - \lambda \mathrm{Id}_E)^{m_\lambda} = 0$ par définition de l'espace caractéristique. En posant $n_{\lambda} = u_{N_{\lambda}} - \lambda \mathrm{Id}_{N_{\lambda}}$ qui est bien nilpotent et $d_{\lambda} = \lambda \mathrm{Id}_{N_{\lambda}}$ qui est diagonalisable, il suffit de définir n et d par leur restrictions aux N_{λ} . Unicit'e:

Soit (d', n') un autre couple solution.

L'endomorphisme d' commute avec n' donc avec u =d'+n', et avec d qui est un polynôme en u. Comme d et d' sont diagonalisables et commutent, ils admettent une base commune de vecteurs propres (ils sont simultanément diagonalisables), et donc d - d' est en particulier diagonalisable.

D'autre part, n' commute avec u et donc avec n qui est un polynôme en u. On note α et α' les indices de nilpotence de n et n' respectivement. On a alors :

$$(d-d')^{\alpha+\alpha'} = (n'-n)^{\alpha+\alpha'}$$

$$= \sum_{k=0}^{\alpha+\alpha'} (-1)^k {\alpha+\alpha' \choose k} n'^{\alpha+\alpha'-k} n^k$$

$$= \sum_{k=0}^{\alpha} \dots \underline{n'^{\alpha+\alpha'-k}} n^k + \sum_{k=\alpha+1}^{\alpha+\alpha'} \dots \underline{n^k}$$

$$= 0$$

Donc d-d' est diagonalisable et nilpotent, donc nul. Par suite, d = d', puis n = n'.

10 / 17 2025-2026 http://mpi.lamartin.fr

7.5 Complément : projecteurs spectraux

Théorème.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On suppose χ_u scindé. Pour toute valeur propre λ de u, on appelle **projecteur spectral** et on note p_{λ} le projecteur sur $N_{\lambda}(u)$ parallèlement à $\bigoplus_{\substack{\mu \in \mathrm{Sp}(u) \\ \mu \neq \lambda}} N_{\mu}(u)$. Alors :

$$\bigcup_{\mu \in \mathrm{Sp}(u)} \mathcal{N}_{\mu}(u).$$

- chaque p_λ est un polynôme en u
- pour toutes valeurs propres $\lambda \neq \mu$:

$$p_{\lambda} \circ p_{\mu} = 0$$

•
$$\sum_{\lambda \in \mathrm{Sp}(u)} p_{\lambda} = \mathrm{Id}_E$$

De plus, si u est diagonalisable, alors :

$$u = \sum_{\lambda \in \mathrm{Sp}(u)} \lambda p_{\lambda}$$

Preuve. Non rédigée.

Exercices et résultats classiques à connaître

Obtenir un polynôme annulateur

260.1

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$M^2 - M^{\top} = I_n$$

Montrer que M est diagonalisable.

Réduction d'une matrice de rang 2

260.2

On considère la matrice $A \in \mathcal{M}_n(\mathbb{R})$ suivante, où $n \geq 3$:

- (a) On souhaite dans cette question déterminer les valeurs propres de A.
 - a1. Quel est le rang de A?
 - a2. Calculer A^2 .
 - a
3. Justifier que 0 est valeur propre d'ordre au moins n-2.
 - a4. En notant λ_1 et λ_2 les deux autres valeurs propres (éventuellement nulle, égales, complexes), donner $\lambda_1 + \lambda_2$ et $\lambda_1 \lambda_2$.
 - a5. En déduire Sp(A).
- (b) Déterminer une CNS pour avoir $\operatorname{Sp}_{\mathbb{R}}(A) \subset \mathbb{Z}$.
- (c) Démontrer que, pour tout $k\geqslant 3,$ il existe λ_k,μ_k tels que :

$$A^k = \lambda_k A + \mu_k A^2$$

Utiliser le lemme des noyaux

260.3

Soit E un espace vectoriel réel et $u \in \mathcal{L}(E)$ tel que $u^3 = \mathrm{Id}_E$. Montrer que $\mathrm{Ker}(u - \mathrm{Id}_E)$ et $\mathrm{Ker}(u^2 + u + \mathrm{Id}_E)$ sont supplémentaires dans E.

Utiliser une équation différentielle

260.4

(a) Montrer que l'application définie par :

$$\varphi(P) = (X^2 - 1)P'(X) - (4X + 1)P(X)$$

est un endomorphisme de $\mathbb{R}_4[X]$.

(b) Résoudre l'équation différentielle :

$$y' = \left(\frac{5+\lambda}{2(x-1)} + \frac{3-\lambda}{2(x+1)}\right)y$$

(c) En déduire les valeurs propres et les vecteurs propres de φ .

GNP 62.21

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 2. Prouver que $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$:
 - (a) en utilisant le lemme des novaux.

260.6

GNP 65.3

3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$.

Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

260.7

http://mpi.lamartin.fr

GNP 68.14

Soit la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Démontrer que A est diagonalisable de quatre manières :
 - (d) en calculant A^2 .

260.8

GNP 75

On considère la matrice $A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$.

- 1. Démontrer que A n'est pas diagonalisable.
- 2. On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A. Trouver une base (v_1, v_2) de \mathbb{R}^2 dans laquelle la matrice de f est de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$

On donnera explicitement les valeurs de a, b et c.

3. En déduire la résolution du système différentiel $\begin{cases} x' = -x - 4y \\ y' = x + 3y \end{cases}$

260.9

GNP 88

- 1. Soit E un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soit $u \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$. Prouver que si P annule u alors toute valeur propre de u est racine de P.
- 2. Soit $n \in \mathbb{N}$ tel que $n \geq 2$. On pose $E = \mathcal{M}_n(\mathbb{R})$. Soit $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant i \leqslant n}}$ la matrice de E définie par $a_{i,j} = \left\{ \begin{array}{l} 0 \text{ si } i = j \\ 1 \text{ si } i \neq j \end{array} \right.$

Soit $u \in \mathcal{L}(E)$ défini par : $\forall M \in E, u(M) = M + \operatorname{tr}(M)A$.

- (a) Prouver que le polynôme $X^2 2X + 1$ est annulateur de u.
- (b) u est-il diagonalisable? Justifier sa réponse en utilisant deux méthodes (l'une avec, l'autre sans l'aide de la question 1.).

260.10

GNP 93.23

260. Réduction des endomorphismes et des matrices

Soit E un espace vectoriel réel de dimension finie n > 0 et $u \in \mathcal{L}(E)$ tel que $u^3 + u^2 + u = 0.$

On notera Id l'application identité sur E.

- (a) Énoncer le lemme des novaux pour deux polynômes.
 - (b) En déduire que $\text{Im} u = \text{Ker}(u^2 + u + \text{Id})$.
- 3. On suppose que u est non bijectif. Déterminer les valeurs propres de u. Justifier la réponse.

Soit u un endomorphisme diagonalisable de E espace vectoriel de dimension finie $n\geqslant 1$. Montrer qu'un sous-espace vectoriel F de E est stable par u si et seulement s'il possède une base formée de vecteurs propres de u.

260.12

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.

- (a) Montrer qu'il existe $X, Y \in \mathcal{M}_{n,1}(\mathbb{K})$ telles que $A = XY^{\top}$, et que $A^2 = \operatorname{tr}(A)A$.
- (b) En déduire que A est diagonalisable si et seulement si $tr(A) \neq 0$.

260.13

Soit $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant $A^3 = I_3$ et $A \neq I_3$.

- (a) Déterminer les valeurs propres réelles de A.
- (b) Déterminer les valeurs propres complexes de A.

260.14

Soit u endomorphisme de E \mathbb{C} -espace vectoriel de dimension finie $n \ge 1$. On suppose que $\mathrm{Sp}(u) = \{1\}$. Montrer que $(u - \mathrm{Id}_E)$ est nilpotent.

Pratique de la réduction

260.15

Soient

$$M = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_5(\mathbb{R})$$

et $m \in \mathcal{L}(\mathbb{R}^5)$ canoniquement associé à M.

- (a) En procédant à un calcul par bloc, déterminer $p \in \mathbb{N}^*$ tel que $M^p = I_5$. En déduire que M est diagonalisable dans $\mathcal{M}_5(\mathbb{C})$.
- (b) Déterminer un vecteur $x \in \mathbb{R}^5$ tel que la famille :

$$(x, m(x), m^2(x), m^3(x), m^4(x))$$

forme une base de \mathbb{R}^5 .

Quelle est la matrice de m dans cette base?

260.16

On considère la matrice :

Est-elle diagonalisable? En donner les éléments propres.

260.17

Montrer que A est diagonalisable et déterminer les éléments propres de $A=(a_{ij})_{ij}\in\mathcal{M}_n(\mathbb{R})$ où :

$$a_{ij} = \begin{cases} 1 & \text{si } j = 1, i \text{ ou } n \\ 0 & \text{sinon} \end{cases}$$

260. Réduction des endomorphismes et des matrices

260.18

Soit $n \ge 2$ entier. On pose $\omega = e^{\frac{2i\pi}{n}}$ et $A = (a_{ij})_{ij}$ où :

$$a_{ij} = \omega^{(i-1)(j-1)}$$

- (a) Dans cette question seulement, on prend n=3. Calculer le polynôme caractéristique de A.
- (b) Calculer A^2 . Montrer que A est diagonalisable.

Soit
$$A = \begin{pmatrix} -1 & 1 & -3 \\ 0 & 2 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
.

- (a) La matrice A est-elle diagonalisable?
- (b) Soit $B = I_3 A$. Trouver $X \in \mathcal{M}_{3,1}(\mathbb{R})$ tel que (B^2X, BX, X) soit une base de $\mathcal{M}_{3,1}(\mathbb{R})$. En déduire une matrice P inversible telle que $P^{-1}AP$ soit triangulaire.

Petits problèmes d'entrainement

260.21

Soit $A \in \mathcal{M}_n(\mathbb{C})$ et B la matrice définie par blocs par :

$$B = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$$

- (a) Cacluler B^2 .
- (b) Montrer que B est inversible si et seulement si A est inversible.
- (c) Montrer que, si A est diagonalisable et inversible, alors B est diagonalisable.

260.22

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose que, pour tout $k \in \mathbb{N}^*$, $\operatorname{tr}(A^k) = 0$. Montrer que A est nilpotente.

Soit E un \mathbb{K} -espace vectoriel et φ une forme linéaire non nulle sur E. On considère $a \in E$ et, pour $x \in E$, on pose :

$$u(x) = \varphi(a)x - \varphi(x)a$$

- (a) Justifier rapidement que $u \in \mathcal{L}(E)$.
- (b) Expliciter $u \circ u$.
- (c) Proposer une condition nécessaire et suffisante, portant sur a et φ , pour que u soit diagonalisable.

260.24

Soit $n \ge 2$. On considère l'application φ définie sur $\mathcal{M}_n(\mathbb{C})$ par :

$$\varphi(M) = M - \operatorname{tr}(M)I_n$$

- (a) Montrer que φ est un automorphisme de $\mathcal{M}_n(\mathbb{C})$.
- (b) Déterminer un polynôme annulateur de φ , et en déduire que φ est diagonalisable.
- (c) Déterminer les éléments propres de φ , sa trace et son déterminant.

260.25

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$A^3 + A^2 + A = 0$$

Montrer que le rang de A est pair, et que tr(A) est un entier.

260.26

On considère les matrices :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$

- (a) Vérifier que $\chi_A(X) = \chi_B(X)$.
- (b) Peut-on déduire de la question précédente que A et B sont semblables dans $\mathcal{M}_3(\mathbb{R})$?

Soit E un espace vectoriel de dimension finie, p un projecteur fixé de E et $\phi: \mathcal{L}(E) \to \mathcal{L}(E)$ définie par :

$$\phi(f) = \frac{1}{2}(f \circ p + p \circ f)$$

- (a) ϕ est-elle linéaire?
- (b) ϕ est-elle diagonalisable?
- (c) Quelle est la dimension des sous-espaces propres de ϕ ?

260.28

Soit P une matrice de projection et ϕ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par :

$$\phi(M) = PM + MP$$

Montrer que ϕ est diagonalisable.

260.29

Soit $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrer que :

$$\chi_A(B) \in \mathrm{GL}_n(\mathbb{K}) \iff \mathrm{Sp}_{\mathbb{C}}(A) \cap \mathrm{Sp}_{\mathbb{C}}(B) = \emptyset$$

260.30

Soit $(u_n)_n$ une suite réelle vérifiant, pour tout $n \in \mathbb{N}$:

$$u_{n+3} + 4u_{n+2} + 5u_{n+1} + 2u_n = 0$$

- (a) Écrire la relation de récurrence sous la forme $X_{n+1} = AX_n$ où $X_n \in \mathcal{M}_{3,1}(\mathbb{R})$.
- (b) Exprimer u_n en fonction de u_0, u_1, u_2, n .

260.31

On considère $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

(a) Déterminer le polynôme minimal de A.

On s'intéresse à l'équation suivante, d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$:

$$M^2 - M = A$$

- (b) Justifier que les solutions de cette équation sont diagonalisables, et déterminer les valeurs propres possibles pour celles-ci.
- (c) Utiliser un polynôme annulateur pour résoudre l'équation.

260.32

Montrer qu'une matrice de $\mathcal{M}_n(\mathbb{K})$ est de trace nulle si et seulement si elle est semblable à une matrice de diagonale nulle.

260.33

Soit $A, B, M \in \mathcal{M}_n(\mathbb{C})$ telles que AM = MB et $M \neq 0$.

- (a) Montrer que, pour tout polynôme P, P(A)M = MP(B).
- (b) Montrer que A et B admettent au moins une valeur propre commune.

260.34

Soit E un \mathbb{C} -espace vectoriel de dimension finie $n \geq 1$ et $u \in \mathcal{L}(E)$. On note $\lambda_1, \ldots, \lambda_m$ les valeurs propres de u, sans répétition, et $\alpha_1, \ldots, \alpha_m$ leurs multiplicités respectives. Montrer que, pour tout $k \in \{1, \ldots, m\}$:

$$\dim \operatorname{Ker}(u - \lambda_k \operatorname{Id}_E)^{\alpha_k} = \alpha_k$$

260.35

(a) Déterminer toutes les matrices de $\mathcal{M}_n(\mathbb{C})$ vérifiant :

$$M^n = I_n \text{ et } \operatorname{tr}(M) = n$$

(b) Déterminer toutes les matrices de $\mathcal{M}_n(\mathbb{C})$ vérifiant :

$$M(M - I_n)^3 = 0$$
 et $tr(M) = 0$

260.36

- (a) Diagonaliser la matrice $\begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$.
- (b) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer une condition nécessaire et suffisante portant sur A pour que la matrice définie par blocs :

$$M = \begin{pmatrix} 0 & A \\ -2A & 3A \end{pmatrix}$$

soit diagonalisable.

260.37

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB = BA. On note M la matrice définie par blocs :

$$M = \begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$$

(a) Montrer que, pour tout $P \in \mathbb{R}[X]$:

$$P(M) = \begin{pmatrix} P(A) & P'(A)B\\ 0 & P(A) \end{pmatrix}$$

(b) Donner une condition nécessaire et suffisante portant sur A et B pour que M soit diagonalisable.

260.38

Soient n un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.

(a) Montrer qu'il existe un polynôme $P_n \in \mathbb{R}[X]$ vérifiant au voisinage de 0

$$\sqrt{1+x} = P_n(x) + O(x^n)$$

- (b) Etablir que X^n divise alors le polynôme $P_n^2(X) X 1$.
- (c) Soit f un endomorphisme de E vérifiant $f^n = 0$. Montrer qu'il existe un endomorphisme g de E vérifiant

$$g^2 = \mathrm{Id}_E + f$$

(d) Soit maintenant f un endomorphisme de E ne possédant qu'une valeur propre λ , non nulle.

Montrer que $(f - \lambda \mathrm{Id}_E)^n = 0$ et conclure qu'il existe un endomorphisme q de E vérifiant

$$g^2 = f$$

260.39

Soit
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$
 et $P = X^5 + X + 1$. Résoudre l'équation $P(M) = A$, d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$.

260.40

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que

$$M^2 + M^{\top} = I_n$$

- (a) Montrer que M est inversible si et seulement si $1 \notin \operatorname{Sp} M$.
- (b) Montrer que la matrice M est diagonalisable.