ALGORITMI I STRUKTURE PODATAKA

RAČUNSKE VEŽBE – TERMIN BR. 3 – MATRICE I STRUKTURE ALDINA AVDIĆ, DIPL. INŽ.

MATRICE

- Primer 1. Prikazati vektorsku prezentaciju retke matrice sa slike:
- a) sa jednim vektorom zapisa od po tri polja,
- b) sa tri posebna vektora. $\lceil 0 \rceil$

$$X = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 11 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 8 & 10 & 0 & 0 \\ 0 & 0 & 15 & 0 & 0 & 0 & 0 \end{bmatrix}$$

MATRICE

A) Svaki zapis se sastoji od

- broja vrste (R row)
- broja kolone (C column)
- vrednosti (V value)

R	C	V
2	3	4
3	4	5
3	6	11
5	1	9
5	4	8
5	5	10
6	3	15

$$X = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 11 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 8 & 10 & 0 & 0 \\ 0 & 0 & 15 & 0 & 0 & 0 & 0 \end{bmatrix}$$

MATRICE

- B) Potrebno je formirati 3 nezavisna vektora
 - Vektor V sadrži vrednosti i ima onoliko elemenata koliko ima nenultih elemenata matrice
 - Vektor C sadrži broj kolone odgovarajućeg elementa vektora V
 - Vektor R sadrži indeks prvog elementa vektora C koji odgovara datom elementu vektora R i ima onoliko elemenata koliko i vrsta matrice

	0	0	0	0	0	0	0
	0	0	4	0	0	0	0
$oldsymbol{V}$ _	0	0	0	5	0	11	0
$\Lambda =$	0	0	0	0	0	0	0
	9	0	0	8	10	0	0
X=	str Q tur	e 0	15	0	0	0	0 floor

MATRICE

Primer 2. Objasniti postupak smeštanja i izvesti adresnu funkciju pri pristupu proizvoljnom elementu gornje trougaone matrice smeštene po kolonama. Smatrati da se jedan element matrice smešta u tačno jednu memorijsku

Broj elemenata pre prvog elementa kolone j :

Broj elemenata u koloni j pre traženog elementa:

$$\sum_{k=1}^{j-1} k = \frac{j(j-1)}{2}$$

$$(i-1)$$

$$A_{ij} = A_{11} + (j(j-1)/2 + i - 1)*s$$

MATRICE

Primer 3. Tridijagonalna matrica je matrica reda nxn, gde je A[i,j] = 0, ako je | ij|>1.

a) Koliki je maksimalan broj nenultih elemenata ?

b) Ako se matrica linearizuje po vrstama izvesti adresnu funkciju.

NO 36 HATICA III I						
a ₁₁	a ₁₂					
a ₂₁	a ₂₂	a ₂₃				
	a ₃₂	a ₃₃	a ₃₄			
		a ₄₃	a ₄₄	a ₄₅		
			a ₅₄	a ₅₅		

Matrice i strukture

a)	Max.	broj	nenultih	elemenata:	$n_{nz} =$	3*n –	2
----	------	------	----------	------------	------------	-------	---

b) Matrica se smešta po vrstama:

a ₁₁	a ₁₂	a ₂₁	a ₂₂	a ₂₃	a ₃₂	a ₃₃	
0	1	2	3	4	5	6	

$$A_{ij} = A_{11} + (3(i-1) + j - i + 1 - 1)*s$$
, ako je |i-j| <= 1

 $A_{ij} = A_{11} + (2*i + j - 3)*s$, ako je |i-j| <= 1

$$A_{ii} = A_{11} + (2^{*}i + j - 3)^{*}s$$
, ako je $|i-j| <= 1$

STRUKTURE (SLOGOVI, REKORDI)

- struct [structure tag] {
- member definition;
- member definition;
- •
- member definition;
- } [one or more structure variables];

- struct Books {
- char title[50];
- char author[50];
- char subject[100];
- int book_id;
- } book;

Matrice i strukture

STRUKTURE - PRISTUP ELEMENTIMA

```
int main( ) {
  struct Books Book1; /* Declare Book1 of type Book */
  struct Books Book2; /* Declare Book2 of type Book */
  /* book 1 specification */
  strcpy( Book1.title, "C Programming");
  strcpy( Book1.author, "Nuha Ali");
  strcpy( Book1.subject, "C Programming Tutorial");
   Book1.book id = 6495407;
  /* book 2 specification */
  strcpy( Book2.title, "Telecom Billing");
  strcpy( Book2.author, "Zara Ali");
  strcpy( Book2.subject, "Telecom Billing Tutorial");
   Book2.book_id = 6495700;
  /* print Book1 info */
  printf( "Book 1 title : %s\n", Book1.title);
  printf( "Book 1 author : %s\n", Book1.author);
  printf( "Book 1 subject : %s\n", Book1.subject);
  printf( "Book 1 book_id : %d\n", Book1.book_id);
  /* print Book2 info */
  printf( "Book 2 title : %s\n", Book2.title);
  printf( "Book 2 author : %s\n", Book2.author);
  printf( "Book 2 subject : %s\n", Book2.subject);
  printf( "Book 2 book_id : %d\n", Book2.book_id);
  return 0;
Matrice i strukture
```

15-Mar-18

STRUKTURE - POTPROGRAMI

```
/* print Book1 info */
   printBook( Book1 );
   /* Print Book2 info */
   printBook( Book2 );
   return 0;
void printBook( struct Books book ) {
   printf( "Book title : %s\n", book.title);
   printf( "Book author : %s\n", book.author);
   printf( "Book subject : %s\n", book.subject);
   printf( "Book book_id : %d\n", book.book_id);
```

Matrice i strukture

STRUKTURE I POKAZIVAČI

```
/* print Book1 info by passing address of Book1 */
   printBook( &Book1 );
   /* print Book2 info by passing address of Book2 */
   printBook( &Book2 );
   return 0:
void printBook( struct Books *book ) {
   printf( "Book title : %s\n", book->title);
   printf( "Book author : %s\n", book->author);
   printf( "Book subject : %s\n", book->subject);
   printf( "Book book id : %d\n", book->book id);
```

Matrice i strukture 15-Mar-18

TYPEDEF

```
#include <stdio.h>
#include <string.h>
typedef struct Books {
   char title[50];
   char author[50];
   char subject[100];
  int book_id;
} Book;
int main( ) {
   Book book;
   strcpy( book.title, "C Programming");
   strcpy( book.author, "Nuha Ali");
   strcpy( book.subject, "C Programming Tutorial");
   book.book_id = 6495407;
   printf( "Book title : %s\n", book.title);
   printf( "Book author : %s\n", book.author);
   printf( "Book subject : %s\n", book.subject);
   printf( "Book book_id : %d\n", book.book_id);
   return 0;
```

Matrice i strukture

NIZ STRUKTURA

```
#include <string.h>
struct student
     int id;
     char name[30];
     float percentage;
};
int main()
     int i;
    struct student record[2];
    // 1st student's record
    record[0].id=1;
    strcpy(record[0].name, "Raju");
     record[0].percentage = 86.5;
    // 2nd student's record
    record[1].id=2;
    strcpy(record[1].name, "Surendren");
    record[1].percentage = 90.5;
    // 3rd student's record
    record[2].id=3;
    strcpy(record[2].name, "Thiyagu");
     record[2].percentage = 81.5;
     for(i=0; i<3; i++)
         printf("
                      Records of STUDENT : %d n'', i+1);
        printf(" Id is: %d \n", record[i].id);
        printf(" Name is: %s \n", record[i].name);
        printf(" Percentage is: %f\n\n", record[i].percentage);
     return 0;
```

#INCLUDE <STOLO.N>

Matrice i strukture

5-Mar-18

Hvala na pažnji!