快速傅立叶 变换:FFT算法

多项式求值算法

给定多项式:

$$A(x)=a_0+a_1x+...+a_{n-1}x^{n-1}$$

设x 为1 的 2n 次方根,对所有的x 计算A(x) 的值.

算法1: 对每个x 做下述运算: 依次计算每个项 $a_i x^i$, i=1,...,n-1 对 $a_i x^i$ (i=0,1,...,n-1)求和.

蛮力算法的时间复杂度

$$T_1(n) = O(n^3)$$

改进的求值算法

算法2: 依次对 每个x 做下述计算

$$\underline{A_1(x)} = a_{n-1}$$

$$A_2(x) = a_{n-2} + x \underline{A_1(x)} = a_{n-2} + a_{n-1}x$$

$$A_3(x) = a_{n-3} + xA_2(x) = a_{n-3} + a_{n-2}x + a_{n-1}x^2$$

• • •

$$A_n(x) = a_0 + x A_{n-1}(x) = A(x)$$

时间复杂度

$$T_2(n) = O(n^2)$$

偶系数与奇系数多项式

$$n=4$$

$$A(x)=a_0+a_1x+a_2x^2+a_3x^3$$

 $A_{\text{even}}(x)=a_0+a_2x$
 $A_{\text{odd}}(x)=a_1+a_3x$

$$A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$$
$$= a_0 + a_2 x^2 + x(a_1 + a_3 x^2)$$

分治多项式求值算法

一般公式 (n为偶数)

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{(n-2)/2}$$

$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{(n-2)/2}$$

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$$

- x^2 也是1 的 2n 次根
- 偶次数与奇次数多项式计算作为 n/2 规模的子问题,然后利用子问题的解 $A_{\text{even}}(x^2)$ 与 $A_{\text{odd}}(x^2)$ 得到 A(x) 5

分治求值算法设计

算法 3:

- 1. 计算 1 的所有的 2n 次根 $1, \omega_1, \omega_2, ..., \omega_{2n-1}$
- 2. 分别计算 $A_{\text{even}}(x^2)$ 与 $A_{\text{odd}}(x^2)$
- 3. 利用步2 的结果计算 A(x) $A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

注意: x²不需要重新计算,所有根在单位圆间隔分布,隔一取一即可.

分治求值算法分析

$$T(n) = T_1(n) + f(n)$$

 $f(n) = O(n)$ 是步 1 计算 $2n$ 次根的时间

递归过程
$$T_1(n) = 2T_1(n/2) + g(n)$$
 $T_1(1) = O(1)$, $g(n) = O(n)$ 是对所有 $2n$ 次根在步 3 组合解的时间

$$T_1(n)=O(n\log n)$$

$$T(n)=O(n\log n)+O(n)=O(n\log n)$$

FFT算法伪码

- 1. 求值 $A(\omega_i)$ 和 $B(\omega_i)$,j = 0,1,...,2n-1
- 2. 计算 $C(\omega_j)$, j = 0, 1, ..., 2n-1
- 3. 构造多项式

$$D(x)=C(\omega_0)+C(\omega_1)x+...+C(\omega_{2n-1})x^{2n-1}$$

- 4. 计算所有的 $D(\omega_i)$, j = 0,1,...,2n-1
- 5. 利用下式计算C(x)的系数 c_i ,

$$D(\omega_j) = 2nc_{2n-j}$$

 $j = 0, 1, ..., 2n-1$

FFT算法分析

步1: 求值 $A(\omega_i)$ 和 $B(\omega_i)$ $O(n \log n)$

步2: 计算所有的 $C(\omega_i)$ O(n)

步3:

步4: 计算所有的 $D(\omega_i)$ $O(n\log n)$

步5: 计算所有的 c_i O(n)

算法时间为 $O(n\log n)$

小结

• 多项式求值算法

蛮力算法: $O(n^3)$

改进的求值算法: $O(n^2)$

FFT算法: O(nlogn)

• FFT算法的设计与分析