INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

SEMIGRUPOS

- **Semigrupo:** conjunto S + oper. binária associativa definida sobre S.
 - Sistema algébrico simples.
 - Muitas aplicações importantes.
 - Ex.: máquinas de estados finitos

SEMIGRUPOS

- **Semigrupo:** conjunto S + oper. binária associativa definida sobre S.
 - Sistema algébrico simples.
 - Muitas aplicações importantes.
 - Ex.: máquinas de estados finitos
- **Denotado por** (S, *).
 - Ou simplesmente por S (quando fica claro o que é "*").

SEMIGRUPOS

- **Semigrupo:** conjunto S + oper. binária associativa definida sobre S.
 - Sistema algébrico simples.
 - Muitas aplicações importantes.
 - Ex.: máquinas de estados finitos
- **Denotado por** (S, *).
 - Ou simplesmente por S (quando fica claro o que é "*").
- Também nos referimos a a*b como o **produto** de a e b.
- (S,*) é chamado de **comutativo** se * é uma operação comutativa.

Exemplo: $(\mathbb{Z},+)$ é um semigrupo comutativo.

Exemplo: $(\mathbb{Z},+)$ é um semigrupo comutativo.

Exemplo: $(P(S), \cup)$ é um semigrupo comutativo.

Exemplo: $(\mathbb{Z},+)$ é um semigrupo comutativo.

Exemplo: $(P(S), \cup)$ é um semigrupo comutativo.

Exemplo: $(\mathbb{Z}, -)$ não é um semigrupo

pois a subtração não é associativa.

- Exemplo: Seja S um conjunto fixo não-vazio.
 - E seja S^S o conjunto de todas as funções $f: S \to S$

- Exemplo: Seja S um conjunto fixo não-vazio.
 - E seja S^S o conjunto de todas as funções $f: S \to S$
 - Então, sejam f e g dois elementos de S^S :

- Exemplo: Seja S um conjunto fixo não-vazio.
 - E seja S^S o conjunto de todas as funções $f:S\to S$
 - Então, sejam f e g dois elementos de S^S :
 - m s * é uma operação binária associativa sobre S^S
 - Portanto, $(S^S, *)$ é um semigrupo (não-comutativo).

- **Exemplo:** Seja (L, \leq) um reticulado.
 - **●** Definição: $a * b = a \lor b$
 - ullet Então, L é um semigrupo.

- **• Exemplo:** Seja $A = \{a_1, a_2, ..., a_n\}$.
 - Sejam α e β dois elementos de A^* .
 - ▶ Note que concatenação (\cdot) é uma operação binaria sobre A^* .

- **• Exemplo:** Seja $A = \{a_1, a_2, ..., a_n\}$.
 - Sejam α e β dois elementos de A^* .
 - Note que concatenação (\cdot) é uma operação binaria sobre A^* .
 - $m{\wp}$ É associativa: se α , $m{\beta}$ e γ são elementos quaisquer de $m{A}^*$:

$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

- ullet Logo, (A^*, \cdot) é um semigrupo.
 - (é o chamado "semigrupo livre gerado por A")

ASSOCIATIVIDADE EM SEMIGRUPOS

- Em um semigrupo (S, *) a propriedade associativa pode ser generalizada:
- **▶ Teorema:** O produto dos elementos a_1, a_2, \ldots, a_n $(n \ge 3)$, de um semigrupo, não depende da inserção de parênteses.
 - Ou seja, este produto pode ser escrito como: $a_1 * a_2 * \cdots * a_n$
- Exemplo: São iguais os produtos:
 - \bullet $((a_1 * a_2) * a_3) * a_4$
 - \bullet $a_1 * (a_2 * (a_3 * a_4))$
 - \bullet $(a_1*(a_2*a_3))*a_4$

Um elemento identidade de um semigrupo satisfaz a:

$${\color{red} e}*a=a*{\color{red} e}=a$$
 , $orall a\in S$

Um elemento identidade de um semigrupo satisfaz a:

$$e * a = a * e = a$$
 , $\forall a \in S$

Exemplo1: O número 0 é uma identidade do semigrupo $(\mathbb{Z},+)$.

Um elemento identidade de um semigrupo satisfaz a:

$$e * a = a * e = a$$
 , $\forall a \in S$

- **Exemplo1:** O número 0 é uma identidade do semigrupo $(\mathbb{Z},+)$.
- **Exemplo2**: Seja $S = \{x, y, u, v\}$ e defina * como:

*	$oldsymbol{x}$	$oldsymbol{y}$	$oldsymbol{u}$	$oldsymbol{v}$
\boldsymbol{x}	$oldsymbol{x}$	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}
\boldsymbol{y}	$oldsymbol{x}$	$oldsymbol{y}$	$oldsymbol{y}$	\boldsymbol{x}
\boldsymbol{u}	x	$oldsymbol{y}$	$oldsymbol{u}$	$oldsymbol{v}$
$oldsymbol{v}$	$oldsymbol{x}$	$oldsymbol{y}$	$oldsymbol{v}$	u

Teorema: Se um semigrupo (S, *) tem uma identidade, ela é única.

Prova:

- ullet Suponha que e e e' são identidades em S.
- Como e é uma identidade: e * e' = e'
- Também, como e' é uma identidade: e * e' = e
- ullet Portanto: e=e'

Monóide: semigrupo que tem identidade.

- Monóide: semigrupo que tem identidade.
- **Exemplo:** O semigrupo $(P(S), \cup)$ é um monóide.
 - ▲ A identidade é o elemento ∅, pois:

$$\emptyset * A = \emptyset \cup A = A = A \cup \emptyset = A * \emptyset , \quad \forall A \in P(S)$$

- Monóide: semigrupo que tem identidade.
- **Exemplo:** O semigrupo $(P(S), \cup)$ é um monóide.
 - ▲ A identidade é o elemento ∅, pois:

$$\emptyset * A = \emptyset \cup A = A = A \cup \emptyset = A * \emptyset , \quad \forall A \in P(S)$$

- **Exemplo:** O semigrupo (A^*, \cdot) é um monóide.
 - ▲ A identidade é o elemento Λ, pois:

$$lpha \cdot {f \Lambda} \ = \ {f \Lambda} \cdot lpha = lpha$$
 , $orall lpha \in A^*$

- Monóide: semigrupo que tem identidade.
- **Exemplo:** O semigrupo $(P(S), \cup)$ é um monóide.
 - ▲ A identidade é o elemento Ø, pois:

$$\emptyset * A = \emptyset \cup A = A = A \cup \emptyset = A * \emptyset , \quad \forall A \in P(S)$$

- **Exemplo:** O semigrupo (A^*, \cdot) é um monóide.
 - ▲ A identidade é o elemento Λ, pois:

$$\alpha \cdot \mathbf{\Lambda} = \mathbf{\Lambda} \cdot \alpha = \alpha$$
 , $\forall \alpha \in A^*$

- Exemplo: O conjunto de todas as relações sobre um conjunto A é um monóide sob a operação de composição.
 - ullet A identidade é a relação de igualdade Δ .

- **▶** Sejam (S, *) um semigrupo e T um subconjunto de S:
 - (T,*) é um **subsemigrupo** de (S,*) se T for fechado sob *
 - ullet (fechado: $a*b \in T$ sempre que $a,b \in T$)

- **S**ejam (S,*) um semigrupo e T um subconjunto de S:
 - (T,*) é um **subsemigrupo** de (S,*) se T for fechado sob *
 - ullet (fechado: $a*b \in T$ sempre que $a,b \in T$)

Similarmente:

- Seja (S,*) um monóide (com identidade e) e seja T um subconjunto de S.
 - (T,*) é um **submonóide** de (S,*) se T for fechado sob * e se $e \in T$.

A associatividade vale em qualquer subconjunto de um semigrupo.

- A associatividade vale em qualquer subconjunto de um semigrupo.
- Deste modo, um subsemigrupo (T,*) de um semigrupo (S,*) é por si mesmo um semigrupo.

- A associatividade vale em qualquer subconjunto de um semigrupo.
- Deste modo, um subsemigrupo (T,*) de um semigrupo (S,*) é por si mesmo um semigrupo.
- Da mesma forma: um submonóide de um monóide é ele próprio um monóide.

Exemplo:

- ullet Seja (S,*) um semigrupo. Então:
 - ullet (S,*) é um subsemigrupo de (S,*)

Exemplo:

- ullet Seja (S,*) um semigrupo. Então:
 - ullet (S,*) é um subsemigrupo de (S,*)
- ullet Seja (S,*) um monóide. Então:
 - ullet (S,*) é um submonóide de (S,*)
 - $(\{e\},*)$ também é um submonóide de (S,*)

- **S**eja a um elemento de um semigrupo (S, *)
- ▶ Para $n \in \mathbb{Z}^+$, definimos recursivamente as potências a^n :
 - $a^1 = a$
 - $a^n = a^{n-1} * a, \qquad n \ge 2$

- Seja a um elemento de um semigrupo (S, *)
- ▶ Para $n \in \mathbb{Z}^+$, definimos recursivamente as potências a^n :
 - $a^1 = a$
 - $a^n = a^{n-1} * a, \qquad n > 2$
- Além disto:
 - se (S,*) é um monóide, definimos: $a^0=e$
 - se m e n são inteiros não-negativos: $a^m * a^n = a^{m+n}$

Exemplo:

- Se (S, *) é um semigrupo e:
 - lacksquare $a \in S$
 - ullet $T=\{a^i\mid i\in\mathbb{Z}^+\}$
- Então (T,*) é um subsemigrupo de (S,*).

Exemplo:

- Se (S, *) é um semigrupo e:
 - lacksquare $a \in S$
 - ullet $T=\{a^i\mid i\in\mathbb{Z}^+\}$
- ullet Então (T,*) é um subsemigrupo de (S,*).

Exemplo:

- Se (S, *) é um monóide e:
 - $m{\iota} a \in S$
 - ullet $T=\{a^i\mid i\in\mathbb{Z}^+ ext{ ou } i=0\}$
- Então (T,*) é um submonóide de (S,*).

- **Exemplo:** Seja T o conjunto de todos os inteiros pares.
 - Então (T, \times) é um subsemigrupo do monóide (\mathbb{Z}, \times) .
 - Mas não é um submonóide:
 - ullet a identidade de $\mathbb Z$ (o número 1), não pertence a T.

ISOMORFISMOS

- Sejam (S,*) e (T,*') dois semigrupos.
 - Uma $f: S \to T$ é um **isomorfismo** de (S, *) para (T, *') se:
 - 1. ela for uma bijeção de S para T
 - 2. $f(a*b) = f(a)*'f(b), \forall a,b \in S$

- ullet Já que f é uma bijeção de S para T:
 - f^{-1} existe e é uma correspondência um-para-um de T para S.
- **▶ Proposição:** f^{-1} é um isomorfismo de (T, *') para (S, *).

- ullet Já que f é uma bijeção de S para T:
 - f^{-1} existe e é uma correspondência um-para-um de T para S.
- **▶** Proposição: f^{-1} é um isomorfismo de (T, *') para (S, *).
- Prova:
 - ullet sejam a' e b' elementos de T
 - ullet já que f é sobrejetiva:
 - ullet devem existir a e b em S tais que f(a)=a' e f(b)=b'
 - ullet então: $a=f^{-1}(a')$ e $b=f^{-1}(b')$

- lacksquare Já que f é uma bijeção de S para T:
 - f^{-1} existe e é uma correspondência um-para-um de T para S.
- **▶** Proposição: f^{-1} é um isomorfismo de (T, *') para (S, *).
- Prova:
 - ullet sejam a' e b' elementos de T
 - ullet já que f é sobrejetiva:
 - ullet devem existir a e b em S tais que f(a)=a' e f(b)=b'
 - ullet então: $a=f^{-1}(a')$ e $b=f^{-1}(b')$

● daí:
$$f^{-1}(a'*'b') = f^{-1}(f(a)*'f(b))$$

$$= f^{-1}(f(a*b))$$

$$= (f^{-1} \circ f)(a*b)$$

$$= a*b$$

$$= f^{-1}(a')*f^{-1}(b')$$

- ullet Se (S,*) e (T,*') são isomórficos, escrevemos: $S\simeq T$
- **Procedimento** para mostrar que (S,*) e (T,*') são isomórficos:
 - 1. Defina uma função f:S o T com Dom(f)=S.
 - 2. Mostre que f é um-para-um (injetiva).
 - 3. Mostre que f é sobrejetiva.
 - 4. Mostre que f(a * b) = f(a) *' f(b)

Exemplo: Seja T os inteiros pares. Mostre que os semigrupos $(\mathbb{Z},+)$ e (T,+) são isomórficos.

- **Exemplo:** Seja T os inteiros pares. Mostre que os semigrupos $(\mathbb{Z},+)$ e (T,+) são isomórficos.
 - ullet Passo 1: a função $f:\mathbb{Z} o T$ é f(a)=2a

- **Exemplo:** Seja T os inteiros pares. Mostre que os semigrupos $(\mathbb{Z},+)$ e (T,+) são isomórficos.
 - ullet Passo 1: a função $f:\mathbb{Z} o T$ é f(a)=2a
 - ▶ Passo 2: mostrando que f é injetiva (um-para-um):
 - ullet suponha que $f(a_1) = f(a_2)$
 - ullet então: $2a_1=2a_2 \implies a_1=a_2$

- **Exemplo:** Seja T os inteiros pares. Mostre que os semigrupos $(\mathbb{Z},+)$ e (T,+) são isomórficos.
 - ullet Passo 1: a função $f:\mathbb{Z} o T$ é f(a)=2a
 - ▶ Passo 2: mostrando que f é injetiva (um-para-um):
 - ullet suponha que $f(a_1) = f(a_2)$
 - ullet então: $2a_1=2a_2$ \Longrightarrow $a_1=a_2$
 - ullet Passo 3: mostrando que f é sobrejetiva:
 - seja b qualquer inteiro par
 - $m{ ilde{m{ ilde{b}}}}$ então: $b/2=a\in\mathbb{Z}$

- **Exemplo:** Seja T os inteiros pares. Mostre que os semigrupos $(\mathbb{Z},+)$ e (T,+) são isomórficos.
 - ullet Passo 1: a função $f:\mathbb{Z} o T$ é f(a)=2a
 - ▶ Passo 2: mostrando que f é injetiva (um-para-um):
 - ullet suponha que $f(a_1)=f(a_2)$
 - ullet então: $2a_1=2a_2$ \Longrightarrow $a_1=a_2$
 - ullet Passo 3: mostrando que f é sobrejetiva:
 - seja b qualquer inteiro par
 - $m{ ilde{m{ ilde{b}}}}$ então: $b/2=a\in\mathbb{Z}$
 - Passo 4: f preserva relação entre operações:

$$f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)$$

- ullet Em geral, é fácil verificar se uma f:S o T é ou não um isomorfismo
 - mas é difícil mostrar que dois semigrupos são isomórficos

- ullet Em geral, é fácil verificar se uma f:S o T é ou não um isomorfismo
 - mas é difícil mostrar que dois semigrupos são isomórficos
- Como no caso dos reticulados:
 - semigrupos isomórficos só podem diferir na natureza dos seus elementos
 - suas estruturas de semigrupos devem ser idênticas

- ullet Em geral, é fácil verificar se uma f:S o T é ou não um isomorfismo
 - mas é difícil mostrar que dois semigrupos são isomórficos
- Como no caso dos reticulados:
 - semigrupos isomórficos só podem diferir na natureza dos seus elementos
 - suas estruturas de semigrupos devem ser idênticas
- lacksquare Se S e T são semigrupos finitos:
 - operações binárias dadas por tabelas de multiplicação
 - S e T serão isomórficos se, rearranjando e renomeando os elementos de S, obtemos a tabela de T.

- **Exemplo(1/2):** Seja $S = \{a, b, c\}$ e $T = \{x, y, z\}$.
 - Sejam as seguintes tabelas de multiplicação:

*	а	b	С	*′	X	у	Z
а	а	b	С	X	Z	X	у
b	b	С	а	У	X	у	Z
С	С	а	b	Z	у	Z	X

ullet Fácil verificar que impõem estruturas de semigrupo a S e T.

- **Exemplo(1/2):** Seja $S = \{a, b, c\}$ e $T = \{x, y, z\}$.
 - Sejam as seguintes tabelas de multiplicação:

*	а	b	С	*′	X	У	Z
а	а	b	С	X	Z	X	У
b	b	С	а	у	X	у	Z
С	С	а	b	Z	у	Z	X

- ullet Fácil verificar que impõem estruturas de semigrupo a S e T.
- Isomórficos??

Exemplo(2/2): $S = \{a, b, c\}$ e $T = \{x, y, z\}$.

*	а	b	С	*′	X	у	Z
а	а	b	С	X	Z	X	У
b	b	С	а	у	X	у	Z
	С			Z	у	Z	X

- ullet Considere a função: f(a)=y f(b)=x f(c)=z
- Substituindo os elementos de S por suas imagens e rearranjando a tabela, obtemos, exatamente, a tabela de T
 - $oldsymbol{ iny}$ portanto, S e T são isomórficos .

Teorema:

- Sejam os monóides:
 - (S,*), com identidade e
 - ightharpoonup (T,*'), com identidade e'.
- ullet Então, se f:S o T é um isomorfismo, f(e)=e'.

Teorema:

- Sejam os monóides:
 - (S,*), com identidade e
 - (T,*'), com identidade e'.
- Então, se $f: S \to T$ é um isomorfismo, f(e) = e'.

- Seja b um elemento qualquer de T.
- Como f é sobrejetiva, há um a em S tal que f(a) = b.
- ullet Então: b=f(a)=f(ast e)=f(a)st' f(e)=bst' f(e)

Teorema:

- Sejam os monóides:
 - (S,*), com identidade e
 - (T,*'), com identidade e'.
- Então, se $f: S \to T$ é um isomorfismo, f(e) = e'.

- Seja b um elemento qualquer de T.
- Como f é sobrejetiva, há um a em S tal que f(a) = b.
- Então: b = f(a) = f(a * e) = f(a) *' f(e) = b *' f(e)
- ullet Similarmente, como a=e*a, temos que: b=f(e)*'b.
- ullet Logo, $\forall b \in T$: b = b *' f(e) = f(e) *' b.

Teorema:

- Sejam os monóides:
 - (S,*), com identidade e
 - (T,*'), com identidade e'.
- Então, se $f: S \to T$ é um isomorfismo, f(e) = e'.

- Seja b um elemento qualquer de T.
- Como f é sobrejetiva, há um a em S tal que f(a) = b.
- Então: b = f(a) = f(a * e) = f(a) *' f(e) = b *' f(e)
- Similarmente, como a = e * a, temos que: b = f(e) *' b.
- ullet Logo, $\forall b \in T$: b = b *' f(e) = f(e) *' b.
- ullet Ou seja, f(e) é uma identidade para T.
- ullet Daí, como a identidade tem que ser única: f(e)=e'

- Consequência do teorema anterior:
 - Um semigrupo com identidade não pode ser isomórfico a um semigrupo sem identidade.

- Consequência do teorema anterior:
 - Um semigrupo com identidade não pode ser isomórfico a um semigrupo sem identidade.
- Exemplo: Seja T o conjunto dos inteiros pares.
 - Então os semigrupos (\mathbb{Z}, \times) e (T, \times) não são isomórficos.
 - ullet Pois $\mathbb Z$ tem uma identidade e $oldsymbol{T}$ não.

- Agora vamos tirar da definição de isomorfismo de semigrupos as exigências de que ele seja injetivo e sobrejetivo.
 - Obtemos outro importante método para comparar as estruturas algébricas de dois semigrupos:

- Agora vamos tirar da definição de isomorfismo de semigrupos as exigências de que ele seja injetivo e sobrejetivo.
 - Obtemos outro importante método para comparar as estruturas algébricas de dois semigrupos:

▶ Sejam (S, *) e (T, *') dois semigrupos:

uma $f:S \to T$ é um homomorfismo de (S,*) para (T,*') se:

$$f(a*b) = f(a)*'f(b), \forall a,b \in S$$

- Agora vamos tirar da definição de isomorfismo de semigrupos as exigências de que ele seja injetivo e sobrejetivo.
 - Obtemos outro importante método para comparar as estruturas algébricas de dois semigrupos:

▶ Sejam (S, *) e (T, *') dois semigrupos:

uma $f:S \to T$ é um homomorfismo de (S,*) para (T,*') se:

$$f(a*b) = f(a)*'f(b), \quad \forall a,b \in S$$

Nota: se, por acaso, f também for sobrejetiva, dizemos que T é a imagem homomórfica de S.

Exemplo: Seja $A = \{0, 1\}$ e considere os semigrupos:

- ullet (A^*, \cdot) , onde \cdot é concatenação
- ullet (A,+), onde + é definida pela tabela de multiplicação:

+	0	1
0	0	1
1	1	0

Exemplo: Seja $A = \{0, 1\}$ e considere os semigrupos:

- ullet (A^*, \cdot) , onde \cdot é concatenação
- ullet (A,+), onde + é definida pela tabela de multiplicação:

 $m{\square}$ Agora, seja a função $f:A^* \to A$, definida por:

$$f(lpha) = \left\{egin{array}{ll} 1 & ext{se } lpha ext{ tem um nro impar de 1s} \ 0 & ext{se } lpha ext{ tem um nro par de 1s} \end{array}
ight.$$

Exemplo: Seja $A = \{0, 1\}$ e considere os semigrupos:

- ullet (A^*, \cdot) , onde \cdot é concatenação
- ullet (A,+), onde + é definida pela tabela de multiplicação:

 $m{ ilde P}$ Agora, seja a função $f:A^* o A$, definida por:

$$f(lpha) = \left\{egin{array}{ll} 1 & ext{se } lpha ext{ tem um nro impar de 1s} \ 0 & ext{se } lpha ext{ tem um nro par de 1s} \end{array}
ight.$$

• f é um homomorfismo, pois: $f(\alpha \cdot \beta) = f(\alpha) + f(\beta), \quad orall \alpha, \beta \in A^*$

- **Exemplo:** Seja $A = \{0, 1\}$ e considere os semigrupos:
 - $(A^*, \cdot),$ onde \cdot é concatenação
 - ullet (A,+), onde + é definida pela tabela de multiplicação:

 $m{\square}$ Agora, seja a função $f:A^* \to A$, definida por:

$$f(lpha) = \left\{egin{array}{ll} 1 & ext{se } lpha ext{ tem um nro impar de 1s} \ 0 & ext{se } lpha ext{ tem um nro par de 1s} \end{array}
ight.$$

- $m{m{m{\mathcal{I}}}}$ f $\acute{m{e}}$ um homomorfismo, pois: $f(lpha\cdotm{eta})=f(lpha)+f(eta), \quad orall lpha, eta\in A^*$
- ullet Além disto, f é sobrejetiva, pois: f(0)=0 e f(1)=1

- $(A^*, \cdot),$ onde \cdot é concatenação
- ullet (A,+), onde + é definida pela tabela de multiplicação:

ullet Agora, seja a função $f:A^* o A$, definida por:

$$f(lpha) = \left\{egin{array}{ll} 1 & ext{se } lpha ext{ tem um nro impar de 1s} \ 0 & ext{se } lpha ext{ tem um nro par de 1s} \end{array}
ight.$$

- $m{m{m{\mathcal{I}}}}$ f $\acute{m{e}}$ um homomorfismo, pois: $f(lpha\cdotm{eta})=f(lpha)+f(eta), \quad orall lpha, eta\in A^*$
- ullet Além disto, f é sobrejetiva, pois: f(0) = 0 e f(1) = 1
- ullet Mas f não é um isomorfismo, pois não é um-para-um (injetiva).

- Diferença: o isomorfismo tem que ser injetivo e sobrejetivo.
 - ▶ Para ambos: "imagem de um produto" = "produto das imagens"

- Diferença: o isomorfismo tem que ser injetivo e sobrejetivo.
 - Para ambos: "imagem de um produto" = "produto das imagens"
- Teorema: Sejam:
 - (S,*) e (T,*') monóides com respectivas identidades e e e'
 - $f:S\to T$ um homomorfismo de (S,*) sobre (T,*')

Então f(e) = e'.

- Diferença: o isomorfismo tem que ser injetivo e sobrejetivo.
 - Para ambos: "imagem de um produto" = "produto das imagens"
- Teorema: Sejam:
 - (S,*) e (T,*') monóides com respectivas identidades e e e'
 - $m{ ilde{ ilde{S}}} \ f:S o T$ um homomorfismo de (S,*) sobre (T,*')

Então f(e) = e'.

- A união deste teorema com os dois a seguir mostra que:
 - se um semigrupo (T,*') é a imagem homomórfica de um outro semigrupo (S,*):
 - Arr (T,*') tem uma "forte semelhança algébrica" com (S,*).

- **Teorema:** Seja f um homomorfismo de um semigrupo (S, *) para um semigrupo (T, *') e seja S' um subsemigrupo de (S, *).
 - ullet Então: $f(S') = \{t \in T \mid t = f(s) \; ext{ para algum } s \in S'\}$ é um subsemigrupo de (T,*')
 - "A imagem de S' sob f é um subsemigrupo de (T, *')"

prova →

- ullet se t_1 e t_2 são elementos quaisquer de f(S'), então:
 - $m{m{\omega}}$ $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns $s_1,s_2\in S'$

Prova:

- se t_1 e t_2 são elementos quaisquer de f(S'), então:
 - $m{m{\omega}}$ $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns $s_1,s_2\in S'$

$$oldsymbol{s}$$
 daí: $t_1*'t_2=f(s_1)*'f(s_2) \ =f(s_1*s_2) \ =f(s_3)$

ullet aonde: $s_3=s_1*s_2\in S'$

- se t_1 e t_2 são elementos quaisquer de f(S'), então:
 - $m{m{\omega}}$ $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns $s_1,s_2\in S'$

$$oldsymbol{s}$$
 daí: $t_1*'t_2=f(s_1)*'f(s_2) \ =f(s_1*s_2) \ =f(s_3)$

- ullet aonde: $s_3=s_1*s_2\in S'$
- - ullet portanto: f(S') é fechado sob *'

- se t_1 e t_2 são elementos quaisquer de f(S'), então:
 - $m{m{\omega}}$ $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns $s_1,s_2\in S'$

$$oldsymbol{s}$$
 daí: $t_1*'t_2=f(s_1)*'f(s_2) \ =f(s_1*s_2) \ =f(s_3)$

- ullet aonde: $s_3=s_1*s_2\in S'$
- - ullet portanto: f(S') é fechado sob *'
- ullet além disto, já que a associatividade vale em T, vale em f(S')
- assim, f(S') é um subsemigrupo de (T, *').

▶ Teorema: Se f é um homomorfismo de um semigrupo comutativo (S,*) sobre um semigrupo (T,*'), então (T,*') também é comutativa.

▶ Teorema: Se f é um homomorfismo de um semigrupo comutativo (S,*) sobre um semigrupo (T,*'), então (T,*') também é comutativa.

- ullet sejam t_1 e t_2 elementos quaisquer de T.
- ullet então: $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns s_1 e s_2 em S

▶ Teorema: Se f é um homomorfismo de um semigrupo comutativo (S,*) sobre um semigrupo (T,*'), então (T,*') também é comutativa.

- ullet sejam t_1 e t_2 elementos quaisquer de T.
- ullet então: $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns s_1 e s_2 em S

$$egin{aligned} oldsymbol{\circ} & \log o \colon & t_1 *' t_2 = f(s_1) *' f(s_2) \ & = f(s_1 * s_2) \ & = f(s_2 * s_1) \end{aligned}$$

▶ Teorema: Se f é um homomorfismo de um semigrupo comutativo (S,*) sobre um semigrupo (T,*'), então (T,*') também é comutativa.

Prova:

- ullet sejam t_1 e t_2 elementos quaisquer de T.
- ullet então: $t_1=f(s_1)$ e $t_2=f(s_2)$ para alguns s_1 e s_2 em S

$$f_1 *' t_2 = f(s_1) *' f(s_2)$$

$$= f(s_1 * s_2)$$

$$= f(s_2 * s_1)$$

$$= f(s_2) *' f(s_1)$$

$$= t_2 *' t_1$$

ullet portanto: (T, *') também é comutativa.

SEMIGRUPOS

Final deste item.

Dica: fazer exercícios sobre semigrupos...